Chemical	Proxy for media	Type/ characteristics	Concentration	Units	Location	Reference
PCB126	Fish	Corvina (fish)	0.9-4.95;	ng/g ww	USA	(1)
1 0 3 1 2 0	1 1011	(11011)	Lowest: Muscle; Highest: Liver	115 5 · · · ·	0.211	(-)
PCB126	Fish	Tilapia (fish)	<0.18-0.82; Lowest: Muscle; Highest: Liver	ng/g ww	USA	(1)
PCB126	Fish	Micropterus sp. (fish)	0.35	ng/g	USA	(2)
PCB126	Mollusc	S. subcrenata	<7.9	pg/g lipid	China	(3)
PCB126	Mollusc	Amusium spp.	61	pg/g lipid	China	(3)
PCB126	Mollusc	C. ferreri	55	pg/g lipid	China	(3)
PCB126	Mollusc	S. grandis	18	pg/g lipid	China	(3)
PCB126	Mollusc	M. meretrix	<8.4	pg/g lipid	China	(3)
PCB126	Mollusc	Amusium spp.	36	pg/g lipid	China	(3)
PCB126	Mollusc	C. californiense	8	pg/g lipid	China	(3)
PCB126	Mollusc	S. culacons tricta	52	pg/g lipid	China	(3)
BaP	Fish	Bolti	0.22	ng/g ww	Egypt	(4)
BaP	Fish	Mullet	0.34	ng/g ww	Egypt	(4)
BaP	Crustacea n	Crab	0.05	ng/g ww	Egypt	(4)
BaP	Mollusc	Bivalves	0.6	ng/g ww	Egypt	(4)
PCB126	Fish	Fish and shellfish	7.32	ng/kg ww	Spain	(5)
PCB118	Packaged food	PE packaging	ND-12.3408	μg/kg	China	(6)
PCB138	Packaged	PE packaging	ND-7.8927	μg/kg	China	(6)
(close to	food					
PCB126)						
PCB 138	Air	Urban	0.39-6.79	pg/m ³	Greece	(7)
PCB138	Air	Semirural	0.36-2.6	pg/m ³	Greece	(7)
PCB126	Air	Semirural	0.051 Max: 0.108	pg/m ³	South Africa	(8)
PCB126	Air	Urban	62.5	fg/m ³	Hong Kong	(9)
PCB126	Air	Urban	99	fg/m ³	Hong Kong	(9)
PCB126	Air	Urban	66	fg/m ³	Hong Kong	(9)
PCB126	Fish	Rural	2300	pg/g lipid	India	(10)
PCB126	Fish	Rural	310	pg/g lipid	India	(10)
PCB126	Fish	Rural	150	pg/g lipid	India	(10)
PCB126	Fish	Semirural	0.03	ng/g ww	Malaysia	(11)
PCB126	Fish	Rita rita	0.47	ng/g ww	Pakistan	(12)
PCB126	Fish	Mastacembelus armatus	0.47	ng/g ww	Pakistan	(12)
PCB126	Fish	Securila gora	0.57	ng/g ww	Pakistan	(12)
PCB126	Fish	Gudusia chapra	0.24	ng/g ww	Pakistan	(12)

PCB126	Fish	Clupisoma naziri	0.22	ng/g ww	Pakistan	(12)
PCB126	Fish	Clupisoma garua	0.37	ng/g ww	Pakistan	(12)
PCB126	Fish	Cyprinus carpio	0.22	ng/g ww	Pakistan	(12)
PCB126	Fish	Cirrhinus reba	0.21	ng/g ww	Pakistan	(12)
PCB126	Fish	Cirrhinus	0.46	ng/g ww	Pakistan	(12)
		mrigala		8.8		()
PCB126	Fish	Catla catla	0.27	ng/g ww	Pakistan	(12)
PCB126	Fish	Labeo calbasu	0.18	ng/g ww	Pakistan	(12)
PCB126	Fish	Silver salmon	7.2	pg/g ww	Japan	(13)
PCB126	Fish	Silver salmon	0.21	pg/g ww	Japan	(13)
PCB126	Fish	King salmon	1.5	pg/g ww	Japan	(13)
PCB126	Fish	Atlantic salmon	48	pg/g ww	Japan	(13)
PCB126	Fish	Flatfish	0	pg/g ww	Japan	(13)
PCB126	Fish	Flatfish	3.3	pg/g ww	Japan	(13)
PCB126	Fish	Flatfish	0.0045	pg/g ww	Japan	(13)
PCB126	Fish	Mackerel	1.7	pg/g ww	Japan	(13)
PCB126	Fish	Mackerel	30	pg/g ww	Japan	(13)
PCB126	Fish	Mackerel	37	pg/g ww	Japan	(13)
PCB126	Fish	Mackerel	5.7	pg/g ww	Japan	(13)
PCB126	Fish	Sardine	4.9	pg/g ww	Japan	(13)
PCB126	Fish	Young yellow-tail	9.5	pg/g ww	Japan	(13)
PCB126	Fish	Young yellow- tail	10	pg/g ww	Japan	(13)
PCB126	Fish	Seabass	12	pg/g ww	Japan	(13)
PCB126	Fish	Japanese Spanish	52	pg/g ww	Japan	(13)
100120	1 1511	mackerel			vapan	(13)
PCB126	Fish	European sea bass	0.26	ng/g lipid	Italy	(14)
PCB126	Fish	European sea bass	0.08	ng/g lipid	Italy	(14)
PCB126	Fish	European sea bass	0.11	ng/g lipid	Italy	(14)
Lead	Fish	European sea bass	0.065	mg/kg fw	Italy	(14)
Lead	Fish	European sea bass	0.11	mg/kw fw	Italy	(14)
Lead	Fish	European sea bass	0.022	mg/kg fw	Italy	(14)
Lead	Fish	Common trout	0.0273	μg/g	Spain	(15)
Lead	Fish	European eel	0.1018	μg/g	Spain	(15)
Lead	Fish	Barbel	0.0620	μg/g	Spain	(15)
PCB126	Fish	Common trout	0	ng/g ww	Spain	(15)
PCB126	Fish	European eel	0.004	ng/g ww	Spain	(15)
PCB126	Fish	Tuna	9.56	pg/g ww	Italy	(16)
PCB126	Fish	Swordfish	17.55	pg/g ww	Italy	(16)
PCB126	Fish	Toothfish	0	pg/g ww	Italy	(16)
Lead	Fish	Albacore	1.18	μg/g	Italy	(17)
Lead	Fish	Horse mackerel	0.03	μg/g	Italy	(17)

Lead	Fish	Mediterranean horse mackerel	0.04	μg/g	Italy	(17)
Lead	Fish	Pilchard	0.06	μg/g	Italy	(17)
Lead	Fish	European anchovy	0.1	μg/g	Italy	(17)
Lead	Fish	Frostfish	0.03	μg/g	Italy	(17)
Lead	Fish	Hake	0.04	μg/g	Italy	(17)
Lead	Fish	Greater forkbeard	0.04	μg/g	Italy	(17)
Lead	Fish	Sea bream	0.06	μg/g	Italy	(17)
Lead	Fish	Four spotted megrim	0.02	μg/g	Italy	(17)
Lead	Fish	Megrim	0.01	μg/g	Italy	(17)
Lead	Fish	Rosefish	0.13	μg/g	Italy	(17)
Lead	Fish	Striped mullet	0.06	μg/g	Italy	(17)
Lead	Fish	Conger	0.07	μg/g	Italy	(17)
Lead	Fish	Yellow gurnard	0.02	μg/g	Italy	(17)
Lead	Fish	Brown ray	0.03	μg/g	Italy	(17)
Lead	Fish	Starry ray	0.02	μg/g	Italy	(17)
Lead	Fish	Thornback ray	0.03	μg/g	Italy	(17)
Lead	Crustacea ns	Red shrimp	0.01	μg/g	Italy	(17)
Lead	Crustacea ns	Pink shrimp	0.03	μg/g	Italy	(17)
Lead	Crustacea ns	Shrimp	0.02	μg/g	Italy	(17)
PCB126	Mollusc	Mollusc	10.22	pg/g ww	Spain	(18)
PCB126	Mollusc	Mollusc	0.16	pg/g ww	Spain	(18)
PCB126	Mollusc	Mollusc	3.874	pg/g ww	Spain	(18)
PCB126	Mollusc	Mollusc	7.542	pg/g ww	Spain	(18)
PCB126	Mollusc	Mollusc	6.336	pg/g ww	Spain	(18)
PCB126	Mollusc	Mollusc	8.12	pg/g ww	Spain	(18)
PCB126	Air	Particulate matter	7.5516	pg/m ³	India	(19)
PCB126	Air	Particulate matter	0.633	pg/m ³	India	(19)
PCB126	Air	Particulate matter	0.1787	pg/m ³	India	(19)
BaP	Air	Particulate matter (TSP)	90	pg/m ³	UK	(20)
BaP	Air	PM2.5	980	pg/m ³	Italy	(21)
BaP	Air	PM2.5	124	pg/m ³	Italy	(21)
BaP	Air	PM2.5	64	pg/m ³	Italy	(21)
BaP	Air	PM2.5	52	pg/m ³	US	(22)
BaP	Air	PM2.5	100	pg/m ³	Hong Kong	(23)
BaP	Air	PM2.5	600	pg/m ³	China	(23)
BaP	Air	PM2.5	970	pg/m ³	China	(23)
BaP	Air	PM10	65	pg/m ³	France	(24)

BaP	Air	PM10	138	pg/m ³	France	(25)
DEHP	Air	PM10	46200	pg/m ³	France	(25)
DEHP	Air	PM10	41500	pg/m ³	France	(24)
DEHP	Air	PM10	13500	pg/m ³	Norway	(26)
DEHP	Air	TSP	22900	pg/m ³	US	(27)
DEHP	Air	TSP	560000	pg/m ³	China	(28)
DEHP	Air	PM10	70000	pg/m ³	China	(29)
BaP	Fish	Freshwater fish		ng/g	Hong	(30)
			0		Kong	,
BaP	Fish	Marine fish		ng/g	Hong	(30)
			0		Kong	, ,
BaP	Fish	Sea perch	117.48	ng/g lipid	Malaysia	(31)
Lead	Fish	Cynoglossus		μg/g dw	Ghana	(32)
		senegalensis	0.7			
Lead	Fish	Pomadasys		μg/g dw	Ghana	(32)
		perotetti	0			
Lead	Fish	Drapane		μg/g dw	Ghana	(32)
		africana	0.28			
Lead	Fish	Cynoglossus		μg/g dw	Ghana	(32)
		senegalensis	0			
Lead	Fish	Pomadasys		μg/g dw	Ghana	(32)
		peroteti	0	1		()
Lead	Fish	Drapane		μg/g dw	Ghana	(32)
· 1	77. 4	africana	0	, ,	G1	(2.2)
Lead	Fish	Pomadasys	0.2	μg/g dw	Ghana	(32)
т 1	F: 1	peroteti	0.2	/ 1	C1	(22)
Lead	Fish	Drapane		μg/g dw	Ghana	(32)
D.D.	Ei ala	africana	0	12.2/2	Earms	(22)
BaP	Fish	Euthynnus alletteratus	5693.380	ng/g	Egypt	(33)
BaP	Fish	Scomberomorus	3093.380	na/a	Egypt	(33)
Баг	1,1211		2511.813	ng/g	Едурі	(33)
BaP	Fish	Sphyraena	2311.013	ng/g	Egypt	(33)
Dai	1 1511	sphyraena	1902.720	ng/g	Едурі	(33)
BaP	Fish	Diplodus Diplodus	1702.720	ng/g	Egypt	(33)
Dai	1 1311	vulgaris	4309.320	ng/g	Едурі	(33)
BaP	Fish	Alepes djedaba	32905.485	ng/g	Egypt	(33)
BaP	Fish	Clupea sirem	0	ng/g	Egypt	(34)
BaP	Fish	Mugil sehli	29.3	ng/g	Egypt	(34)
BaP	Fish	Mugil capito	17.6	ng/g	Egypt	(34)
BaP	Fish	Sciasna sp.	38	ng/g	Egypt	(34)
BaP	Fish	Morone labrax	37.9	ng/g	Egypt	(34)
BaP	Fish	Paranchanna		μg/kg	Nigeria	(35)
		obscura	0			
BaP	Fish	Oreochromis		μg/kg	Nigeria	(35)
		niloticus	13.4			
BaP	Fish	Gymnarchus		μg/kg	Nigeria	(35)
1		niloticus	0	_	_	

BaP	Fish	Sebastes		μg/kg	Nigeria	(35)
Bui		fasciatus	1.5	FB/115	11180114	
BaP	Fish	Gadus morhua	0.9	μg/kg	Nigeria	(35)
BaP	Fish	Chrysichthys		μg/kg	Nigeria	(35)
		nigrodigitatus	3.9			
BaP	Fish	Sardinella aurita	14.1	μg/kg	Nigeria	(35)
BaP	Fish	Trachurus		μg/kg	Nigeria	(35)
		trachurus	0			
BaP	Fish	Scomber		μg/kg	Nigeria	(35)
		scombrus	2.5			
BaP	Fish	Pseudotolithus		μg/kg	Nigeria	(35)
		senegalensis	0.2			
BaP	Fish	Doma	0	ng/g ww	India	(36)
BaP	Fish	Mandeli	0	ng/g ww	India	(36)
BaP	Fish	Mathi	0	ng/g ww	India	(36)
BaP	Fish	Ravas	1.25	ng/g ww	India	(36)
BaP	Fish	Singala	0	ng/g ww	India	(36)
BaP	Mollusc	Mussels	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.7	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.45	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.08	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.21	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.14	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.07	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Mussels	0.27	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.045	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.633	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.8	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.055	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.077	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.118	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.045	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.201	μg/kg ww	Spain	(37)
BaP	Mollusc	Clam	0.126	μg/kg ww	Spain	(37)
BaP	Mollusc	Cockle	79	ng/kg	Nigeria	(38)
Lead	Oyster	Oyster	0.75	μg/g dw	US	(39)
Lead	Oyster	Oyster	0.75	μg/g dw	US	(39)
Lead	Oyster	Oyster	4	μg/g dw	US	(39)
Lead	Oyster	Oyster	1.6	μg/g dw	US	(39)
Lead	Oyster	Oyster	2.4	μg/g dw	US	(39)
Lead	Oyster	Oyster	0.75	μg/g dw	US	(39)
Lead	Oyster	Oyster	0.75	μg/g dw	US	(39)
Lead	Oyster	Oyster	0.75	μg/g dw	US	(39)

Lead	Oyster	Oyster	0.75	μg/g dw	US	(39)
BaP	Oyster	Oyster	40	ng/g dw	US	(39)
BaP	Oyster	Oyster	7.2	ng/g dw	US	(39)
BaP	Oyster	Oyster	0.05	ng/g dw	US	(39)
BaP	Oyster	Oyster	0.05	ng/g dw	US	(39)
BaP	Oyster	Oyster	48	ng/g dw	US	(39)
BaP	Oyster	Oyster	0.05	ng/g dw	US	(39)
BaP	Oyster	Oyster	0.05	ng/g dw	US	(39)
BaP	Oyster	Oyster	0.05	ng/g dw	US	(39)
BaP	Oyster	Oyster	0.05	ng/g dw	US	(39)
BaP	PS pellet	Raw material	0	ng/g	US	(40)
DEHP	Packaging	PP	1.1	μg/g	US	(41)
DEHP	Packaging	PET	1610	μg/g	China	(42)
DEHP	Fish	Bluefish	1.60	μg/g	US	(43)
DEHP	Fish	Trout	1.36	μg/g	US	(43)
DEHP	Fish	Rock fish	0.81	μg/g	US	(43)
DEHP	Fish	Flounder	0.28	μg/g	US	(43)
DEHP	Fish	Croaker	0.62	μg/g	US	(43)
DEHP	Fish	Perch	1	μg/g	US	(43)
DEHP	Fish	Tilapia	1.23	μg/g	US	(43)
DEHP	Fish	Atlantic		μg/g	US	(43)
		mackerel	0			
DEHP	Mollusc	Oyster	0.21	μg/g	US	(43)
DEHP	Mollusc	Clam	0	μg/g	US	(43)
DEHP	Mollusc	Crab	0	μg/g	US	(43)
DEHP	Mollusc	White shrimp	0	μg/g	US	(43)
DEHP	Fish	Fish	176.9	μg/kg	China	(44)
DEHP	Fish	Tuna	9.14	ng/g	Italy	(45)
DEHP	Fish	Fish	136.8	ng/g	China	(46)
DEHP	Crustacea n	Prawn	59.9	ng/g	China	(46)
DEHP	Mollusc	Mollusc	264.2	ng/g	China	(46)
DEHP	Fish	Freshwater	0.63	μg/g	Hong	(47)
					Kong	
DEHP	Fish	Marine	1.04	μg/g	Hong	(47)
					Kong	
Lead	Fish	Catfish	0	μg/g	Nigeria	(48)
Lead	Fish	Mullet	0	μg/g	Nigeria	(48)
DEHP	Air	Particulate	7.69	ng/m ³	Korea	(49)
DEHP	Fish	Fish	83.3	μg/kg dw	Korea	(49)
DEHP	Packaging	Plastic (printed)	0.1	mg/kg	Czech	(50)
					Republic	
DEHP	Packaging	Plastic (non-	4259	mg/kg	Czech	(50)
DETT	D 1 :	printed)	1100.0	,	Republic	(5.1)
DEHP	Packaging	Dairy	1188.8	μg/g	Australia	(51)
DEHP	Packaging	Baked goods	48	μg/g	Australia	(51)
DEHP	Packaging	Bread	52.4	μg/g	Australia	(51)
DEHP	Packaging	Beverage	20.3	μg/g	Australia	(51)
DEHP	Packaging	Cereal	19.5	μg/g	Australia	(51)

DEHP	Packaging	Confectionary	75.8	μg/g	Australia	(51)
DEHP	Packaging	Pasta	197.5	μg/g	Australia	(51)
DEHP	Packaging	Miscellaneous	1361.3	μg/g	Australia	(51)
Lead	Air	PM2.5	0.306	$\mu g/m^3$	China	(52)
Lead	Air	PM2.5 (steel)	134	ng/m ³	China	(53)
Lead	Air	PM2.5 (steel)	176	ng/m ³	China	(53)
Lead	Air	PM2.5 (Traffic)	30	ng/m ³	China	(53)
Lead	Air	PM2.5	41	ng/m ³	China	(53)
		(residential)				
Lead	Air	PM2.5 (rural)	158	ng/m ³	China	(53)
Lead	Air	PM2.5	23.9	ng/m ³	Austria	(54)
Lead	Air	PM10	27.6	ng/m ³	Austria	(54)
Lead	Air	PM2.5	200	ng/m ³	Egypt	(55)
Lead	Air	PM2.5	77.1	ng/m ³	South	(56)
					Africa	
Lead	Air	PM10	96.1	ng/m ³	South	(56)
					Africa	
Lead	Air	Fine	107.3	ng/m ³	China	(57)
Lead	Air	Coarse	34.3	ng/m ³	China	(57)
Lead	Air	Fine	14	ng/m ³	Brazil	(58)
Lead	Air	Coarse	11	ng/m ³	Brazil	(58)
Lead	Air	PM22 (main	32.6	ng/m ³	Germany	(59)
		street)				
Lead	Air	PM22 (side	12.6	ng/m ³	Germany	(59)
		street)				
Lead	Air	PM22 (rural)	11.6	ng/m ³	Germany	(59)
Lead	Air	PM1 (summer)	0.3957	ng/m ³	Canada	(60)
Lead	Air	PM1 (winter)	0.3959	ng/m ³	Canada	(60)
Lead	Air	PM10	0.35	$\mu g/m^3$	Pakistan	(61)
		(residential)				
Lead	Air	PM10	1.07	$\mu g/m^3$	Pakistan	(61)
		(industrial)				
Lead	Air	PM10 (traffic)	0.71	$\mu g/m^3$	Pakistan	(62)
Lead	Air	PM10 (traffic)	0.64	μg/m ³	Pakistan	(62)
Lead	Air	PM10	0.04	$\mu g/m^3$	Iran	(63)
		(industrial)				
Lead	Air	PM1 (roadside)	210	ng/m ³	Algeria	(64)
Lead	Air	PM2.5	290	ng/m ³	Algeria	(64)
		(roadside)				
Lead	Air	PM10	360	ng/m ³	Algeria	(64)
Lead	Air	PM1 (urban)	200	ng/m ³	Algeria	(64)
Lead	Air	PM2.5 (urban)	450	ng/m ³	Algeria	(64)
Lead	Air	PM10 (urban)	580	ng/m ³	Algeria	(64)
Lead	Air	PM10 (urban)	0.58	μg/m ³	India	(65)
Lead	Air	PM10 (urban)	10.8	ng/m ³	Costa	(66)
					Rica	
Lead	Air	PM2.5 (urban)	8.385	ng/m ³	Costa	(66)
					Rica	

Lead	Air	PM10 (urban)	0.06	μg/m ³	Colombi	(67)
Lead	Fish	Tilapia (muscle)	0.078	mg/g	Malaysia	(68)
Lead	Fish	Sockeye salmon fry	230.8	ng/g dw	Canada	(69)
Lead	Mollusc	Manila clams	33.7	ng/g dw	Canada	(69)
Lead	Mollusc	Pacific oyster	108.05	ng/g dw	Canada	(69)
Lead	Mollusc	Blue mussel	208.6	ng/g dw	Canada	(69)
Lead	Fish	Pacific herring	27.8	ng/g dw	Canada	(69)
Lead	Fish	Chinook salmon	17.7	ng/g dw	Canada	(69)
Lead	Fish	Chum salmon	21.1	ng/g dw	Canada	(69)
Lead	Fish	Pink salmon	9.3	ng/g dw	Canada	(69)
Lead	Fish	Sockeye salmon	8.5	ng/g dw	Canada	(69)
Lead	Fish	Mackerel	5.0	mg/kg	Indonesi a	(70)
Lead	Fish	Selangat	5.3	mg/kg	Indonesi a	(70)
Lead	Fish	Shark	4.6	mg/kg	Indonesi a	(70)
Lead	Fish	White pomfret	4.8	mg/kg	Indonesi a	(70)
Lead	Fish	Sembilang	3.8	mg/kg	Indonesi a	(70)
Lead	Mollusc	Patella nigrolineata	0.152	mg/kg	Egypt	(71)
Lead	Mollusc	Ostrea crestata	0.241	mg/kg	Egypt	(71)
Lead	Mollusc	Tridacna squamosa	0.081	mg/kg	Egypt	(71)
Lead	Mollusc	Nerita waigiensis	0.045	mg/kg	Egypt	(71)
Lead	Mollusc	Lepidochiton cinereus	0.207	mg/kg	Egypt	(71)
Lead	Mollusc	Morula squamosa	0.276	mg/kg	Egypt	(71)
Lead	Mollusc	Brachidontes sp.	0.331	mg/kg	Egypt	(71)
Lead	Mollusc	Lepidochiton cinereus	0.179	mg/kg	Egypt	(71)
Lead	Mollusc	Patella nigrolineata	0.060	mg/kg	Egypt	(71)
Lead	Mollusc	Nerita waigiensis	3.451	mg/kg	Egypt	(71)
Lead	Mollusc	Patella miniata	5.337	mg/kg	Egypt	(71)
Lead	Mollusc	Dinocardum robustum vanhyningi	0.121	mg/kg	Egypt	(71)
Lead	Mollusc	Brachidontes sp.	0.121	mg/kg	Egypt	(71)
Lead	Mollusc	Nassarius clathratus	0.237	mg/kg	Egypt	(71)

Lead	Mollusc	Patella		mg/kg	Egypt	(71)
		testudinaria	0.295			
Lead	Mollusc	Lepidochiton cinereus	0.387	mg/kg	Egypt	(71)
Lead	Mollusc	Nerita	0.199	mg/kg	Egypt	(71)
Lead	Mollusc	waigiensis Nerita	0.199	mg/kg	Egypt	(71)
Leau		waigiensis	0.560	mg/kg	Egypt	
Lead	Mollusc	Lepidochiton cinereus	0.486	mg/kg	Egypt	(71)
Lead	Mollusc	Morula squamosa	3.085	mg/kg	Egypt	(71)
Lead	Mollusc	Tridacna		mg/kg	Egypt	(71)
т 1	N f 11	squamosa	0.648	/1	Г ((71)
Lead	Mollusc	Nerita peloronta	0.376	mg/kg	Egypt	(71)
Lead	Mollusc	Psammobia depressa	0.259	mg/kg	Egypt	(71)
Lead	Mollusc	Lepidochiton		mg/kg	Egypt	(71)
		cinereus	0.546			
Lead	Mollusc	Morula squamosa	0.454	mg/kg	Egypt	(71)
Lead	Mollusc	Nerita peloronta	0.060	mg/kg	Egypt	(71)
Lead	Mollusc	Nerita undata	0.084	mg/kg	Egypt	(71)
Lead	Fish	Epinephelus sp.	0.587	μg/g	Egypt	(72)
Lead	Fish	Caranx sp.	0.265	$\mu g/g$	Egypt	(72)
Lead	Fish	Scarus gibbus	0.225	μg/g	Egypt	(72)
Lead	Fish	Synodus sp.	0.395	$\mu g/g$	Egypt	(72)
Lead	Fish	Nemipterus	0.575	$\mu g/g$	Egypt	(72)
Lead	1 1511	japonicus	0.37	μ6/6	Lgypt	(72)
Lead	Fish	Carangoides bajad	0.52	μg/g	Egypt	(72)
Lead	Fish	Lutjanus bohar	0.51	μg/g	Egypt	(72)
Lead	Fish	Thunnus albacares	0.32	μg/g	Egypt	(72)
Lead	Fish	Gerres oyena	0.41	μg/g	Egypt	(72)
Lead	Fish	Sargocentron spiniferum	0.28	μg/g	Egypt	(72)
Lead	Fish	Sardinella sp.	0.375	μg/g	Egypt	(72)
Lead	Fish	Siganus rivulatus	0.44	μg/g	Egypt	(72)
Lead	Fish	Trachurus mediterraneus	0.4	μg/g	Egypt	(72)
Lead	Fish	Lethrinus sp.	0.25	μg/g	Egypt	(72)
Lead	Mollusc	O. glomerata	0.47	mg/kg dw	China	(73)
Lead	Mollusc	P. viridis	0.48	mg/kg dw	China	(73)
Lead	Mollusc	C. scripta	0.34	mg/kg dw	China	(73)
Lead	Mollusc	M. edulis	0.44	mg/kg dw	China	(73)
Lead	Mollusc	G. divaricatum	0.24	mg/kg dw	China	(73)
Lead	Mollusc	B. virescens	0.83	mg/kg dw	China	(73)
Lead	Packaging	HDPE	0	mg/kg	Brazil	(74)
Lead	Packaging	HDPE	2.73	mg/kg	Brazil	(74)

Lead	Packaging	HDPE	2.11	mg/kg	Brazil	(74)
Lead	Packaging	HDPE	393.65	mg/kg	Brazil	(74)
Lead	Packaging	HDPE	366.10	mg/kg	Brazil	(74)
Lead	Packaging	HDPE	462.35	mg/kg	Brazil	(74)
Lead	Packaging	PE	2992	mg/kg	Turkey	(75)
Lead	Packaging	PE	141.5	mg/kg	Turkey	(75)
Lead	Packaging	PE	224	mg/kg	Turkey	(75)
Lead	Packaging	PE	1528.5	mg/kg	Turkey	(75)
Lead	Packaging	PE	0	mg/kg	Turkey	(75)
Lead	Packaging	PP	1244	mg/kg	Turkey	(75)
Lead	Packaging	PP	102.5	mg/kg	Turkey	(75)
Lead	Packaging	PE	13000	mg/kg	Belgium	(76)
Lead	Packaging	PE	15950	mg/kg	Belgium	(76)
Lead	Packaging	PE	3.1	mg/kg	Belgium	(76)
Lead	Packaging	Hard plastic	6394.2	mg/kg	Korea	(77)
Lead	Packaging	Hard plastic	273.3	mg/kg	Korea	(77)
Lead	Packaging	PP	1893.7	mg/kg	Korea	(77)
Lead	Packaging	PP	1581.2	mg/kg	Korea	(77)
Lead	Packaging	PP	1192.1	mg/kg	Korea	(77)
Lead	Packaging	PP	920.5	mg/kg	Korea	(77)
Lead	Packaging	PP	1254.0	mg/kg	Korea	(77)
Lead	Packaging	Film	0.21	mg/kg	Switzerla	(78)
					nd	
Lead	Packaging	Film	0.08	mg/kg	Switzerla	(78)
					nd	
Lead	Packaging	HDPE	0.11	mg/kg	Switzerla	(78)
					nd	
Lead	Packaging	PB+Film PE	1.46	mg/kg	Switzerla	(78)
					nd	
Lead	Packaging	PE	0.1	mg/kg	Switzerla	(78)
					nd	
Lead	Packaging	PET	0.15	mg/kg	Switzerla	(78)
					nd	
Lead	Packaging	PP	0.32	mg/kg	Switzerla	(78)
	<u> </u>	D.C.			nd	(=0)
Lead	Packaging	PS	0.62	mg/kg	Switzerla	(78)
					nd	

Additional notes:

- All fish and shellfish concentrations converted to lipid wet weight (for HOCs).
- For muscle concentration, assumed lipid fraction (f_lip)=0.05 and for liver concentration, assumed f_lip=0.70, unless specific f_lip is reported from study.
- If study shows below detection limit (DL), assume DL/2 as concentrations.
- Crab f lip = 0.7
- Mollusc f_lip= 0.07 (Average of Ref 18)

- For dry weight units (fish), convert assuming 80% moisture content if data is not provided.
- According to Li et al. (2017) (79), higher molecular weight PAHs were not detected in food contact materials (polystyrene) due to the more complex reaction pathway for the formation.

References

- 1. Y. Sapozhnikova, O. Bawardi, D. Schlenk, Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. *Chemosphere* (2004), doi:10.1016/j.chemosphere.2003.12.009.
- 2. T. B. Henry, Ecotoxicology of polychlorinated biphenyls in fish-a critical review. *Crit. Rev. Toxicol.* (2015), doi:10.3109/10408444.2015.1038498.
- 3. X. Zhao, M. Zheng, L. Liang, Q. Zhang, Y. Wang, G. Jiang, Assessment of PCBs and PCDD/Fs along the Chinese Bohai Sea coastline using mollusks as bioindicators. *Arch. Environ. Contam. Toxicol.* (2005), doi:10.1007/s00244-004-0130-0.
- 4. N. Loutfy, M. Fuerhacker, P. Tundo, S. Raccanelli, M. T. Ahmed, Monitoring of polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like PCBs and polycyclic aromatic hydrocarbons in food and feed samples from Ismailia city, Egypt. *Chemosphere* (2007), doi:10.1016/j.chemosphere.2006.07.081.
- 5. J. M. Llobet, A. Bocio, J. L. Domingo, A. Teixidó, C. Casas, L. Müller, Levels of polychlorinated biphenyls in foods from Catalonia, Spain: Estimated dietary intake. *J. Food Prot.* (2003), doi:10.4315/0362-028X-66.3.479.
- 6. Z. hai Li, D. Li, J. li Ren, L. bing Wang, L. jiang Yuan, Y. chen Liu, Optimization and application of accelerated solvent extraction for rapid quantification of PCBs in food packaging materials using GC-ECD. *Food Control* (2012), doi:10.1016/j.foodcont.2012.04.006.
- 7. T. Kouimtzis, C. Samara, D. Voutsa, C. Balafoutis, L. Müller, PCDD/Fs and PCBs in airborne particulate matter of the greater Thessaloniki area, N. Greece. *Chemosphere* (2002), doi:10.1016/S0045-6535(01)00291-0.
- 8. S. Batterman, S. Chernyak, Y. Gouden, J. Hayes, T. Robins, S. Chetty, PCBs in air, soil and milk in industrialized and urban areas of KwaZulu-Natal, South Africa. *Environ. Pollut.* (2009), doi:10.1016/j.envpol.2008.08.015.
- 9. M. P. K. Choi, S. K. M. Ho, B. K. L. So, Z. Cai, A. K. H. Lau, M. H. Wong, PCDD/F and dioxin-like PCB in Hong Kong air in relation to their regional transport in the Pearl River Delta region. *Chemosphere* (2008), doi:10.1016/j.chemosphere.2007.09.060.
- 10. M. Someya, M. Ohtake, T. Kunisue, A. Subramanian, S. Takahashi, P. Chakraborty, R. Ramachandran, S. Tanabe, Persistent organic pollutants in breast milk of mothers residing around an open dumping site in Kolkata, India: Specific dioxin-like PCB levels and fish as a potential source. *Environ. Int.* (2010), doi:10.1016/j.envint.2009.09.003.
- 11. H. Y. Kaw, N. Kannan, A review on polychlorinated biphenyls (PCBs) and Polybrominated diphenyl ethers (PBDEs) in South Asia with a focus on Malaysia. *Rev. Environ. Contam. Toxicol.* (2017), doi:10.1007/398 2016 14.

- 12. S. A. M. A. S. Eqani, A. Cincinelli, A. Mehmood, R. N. Malik, G. Zhang, Occurrence, bioaccumulation and risk assessment of dioxin-like PCBs along the Chenab river, Pakistan. *Environ. Pollut.* (2015), doi:10.1016/j.envpol.2015.08.045.
- 13. S. Ohta, H. Tokusawa, T. Nakao, O. Aozasa, H. Miyata, M. Alaee, Global contamination of coplanar polybrominated/chlorinated biphenyls (Co-PXBs) in the market fishes from Japan. *Chemosphere* (2008), doi:10.1016/j.chemosphere.2008.01.080.
- 14. A. Trocino, G. Xiccato, D. Majolini, M. Tazzoli, F. Tulli, E. Tibaldi, C. M. Messina, A. Santulli, Levels of dioxin-like polychlorinated biphenyls (DL-PCBs) and metals in European sea bass from fish farms in Italy. *Food Chem.* (2012), doi:10.1016/j.foodchem.2012.02.153.
- 15. L. R. Bordajandi, G. Gómez, M. A. Fernández, E. Abad, J. Rivera, M. J. González, Study on PCBs, PCDD/Fs, organochlorine pesticides, heavy metals and arsenic content in freshwater fish species from the River Turia (Spain). *Chemosphere* (2003), doi:10.1016/S0045-6535(03)00417-X.
- 16. S. Corsolini, N. Ademollo, T. Romeo, S. Greco, S. Focardi, in *Microchemical Journal* (2005).
- 17. M. M. Storelli, Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). *Food Chem. Toxicol.* (2008), doi:10.1016/j.fct.2008.05.011.
- 18. N. Carro, I. García, M. Ignacio, A. Mouteira, Polychlorinated dibenzo-P-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBS) in bivalve mollusk from Galician Rías (N. W., SPAIN). *Chemosphere* (2018), doi:10.1016/j.chemosphere.2017.12.171.
- 19. P. Chakraborty, G. Zhang, S. Eckhardt, J. Li, K. Breivik, P. K. S. Lam, S. Tanabe, K. C. Jones, Atmospheric polychlorinated biphenyls in Indian cities: Levels, emission sources and toxicity equivalents. *Environ. Pollut.* (2013), doi:10.1016/j.envpol.2013.07.032.
- 20. J. M. Delgado-Saborit, C. Stark, R. M. Harrison, Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. *Environ. Int.* (2011), doi:10.1016/j.envint.2010.10.011.
- 21. P. Romagnoli, C. Balducci, M. Perilli, M. Gherardi, A. Gordiani, C. Gariazzo, M. P. Gatto, A. Cecinato, Indoor PAHs at schools, homes and offices in Rome, Italy. *Atmos. Environ.* (2014), doi:10.1016/j.atmosenv.2014.03.063.
- 22. X. Zhu, C. Jia, Apportioning variability of polycyclic aromatic hydrocarbons (PAHs) and chlordanes in indoor and outdoor environments. *J. Environ. Monit.* (2012), doi:10.1039/c2em30127j.
- 23. W. Wang, M. juan Huang, C. Y. Chan, K. C. Cheung, M. H. Wong, Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the implications from human hair. *Atmos. Environ.* (2013), doi:10.1016/j.atmosenv.2013.03.007.

- 24. O. Blanchard, P. Glorennec, F. Mercier, N. Bonvallot, C. Chevrier, O. Ramalho, C. Mandin, B. Le Bot, Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. *Environ. Sci. Technol.* (2014), doi:10.1021/es405269q.
- 25. C. Mandin, F. Mercier, O. Ramalho, J. P. Lucas, E. Gilles, O. Blanchard, N. Bonvallot, P. Glorennec, B. Le Bot, Semi-volatile organic compounds in the particulate phase in dwellings: A nationwide survey in France. *Atmos. Environ.* (2016), doi:10.1016/j.atmosenv.2016.04.016.
- 26. K. E. Rakkestad, C. J. Dye, K. E. Yttri, J. A. Holme, J. K. Hongslo, P. E. Schwarze, R. Becher, Phthalate levels in Norwegian indoor air related to particle size fraction. *J. Environ. Monit.* (2007), doi:10.1039/b709947a.
- 27. T. M. Tran, K. Kannan, Occurrence of Phthalate Diesters in Particulate and Vapor Phases in Indoor Air and Implications for Human Exposure in Albany, New York, USA. *Arch. Environ. Contam. Toxicol.* (2015), doi:10.1007/s00244-015-0140-0.
- 28. X. Wang, W. Tao, Y. Xu, J. Feng, F. Wang, Indoor phthalate concentration and exposure in residential and office buildings in Xi'an, China. *Atmos. Environ.* (2014), doi:10.1016/j.atmosenv.2014.01.018.
- 29. L. Zhang, F. Wang, Y. Ji, J. Jiao, D. Zou, L. Liu, C. Shan, Z. Bai, Z. Sun, Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China. *Atmos. Environ.* (2014), doi:10.1016/j.atmosenv.2013.11.068.
- 30. K. C. Cheung, H. M. Leung, K. Y. Kong, M. H. Wong, Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. *Chemosphere* (2007), doi:10.1016/j.chemosphere.2006.06.008.
- 31. E. Nasher, L. Y. Heng, Z. Zakaria, S. Surif, Health risk assessment of polycyclic aromatic hydrocarbons through aquaculture fish consumption, Malaysia. *Environ. Forensics* (2016), doi:10.1080/15275922.2015.1133733.
- 32. B. A. M. Bandowe, M. Bigalke, L. Boamah, E. Nyarko, F. K. Saalia, W. Wilcke, Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment. *Environ. Int.* (2014), doi:10.1016/j.envint.2013.12.018.
- 33. T. O. Said, Determination of persistent organic pollutants in sediment and fish of the western coast of Alexandria, Egypt. *Chem. Ecol.* (2007), doi:10.1080/02757540701443695.
- 34. M. T. Ahmed, N. Loutfy, M. Shoieb, Y. Y. Mosleh, Residues of Aliphatic and Polycyclic Aromatic Hydrocarbons in Some Fish Species of Lake Temsah, Ismailia, Egypt: An Analytical Search for Hydrocarbon Sources and Exposure Bioindicators. *Hum. Ecol. Risk Assess.* (2014), doi:10.1080/10807039.2013.842742.
- 35. C. M. A. Iwegbue, G. O. Tesi, L. C. Overah, F. I. Bassey, F. O. Nwadukwe, B. S. Martincigh, Concentrations and profiles of polycyclic aromatic hydrocarbons in some popular fish species in Nigeria. *J. Food Prot.* (2015), doi:10.4315/0362-028X.JFP-14-432.
- 36. V. Dhananjayan, S. Muralidharan, Polycyclic Aromatic Hydrocarbons in Various Species of Fishes from Mumbai Harbour, India, and Their Dietary Intake

- Concentration to Human. *Int. J. Oceanogr.* (2012), doi:10.1155/2012/645178.
- 37. A. Bouzas, D. Aguado, N. Martí, J. M. Pastor, R. Herráez, P. Campins, A. Seco, Alkylphenols and polycyclic aromatic hydrocarbons in eastern Mediterranean Spanish coastal marine bivalves. *Environ. Monit. Assess.* (2011), doi:10.1007/s10661-010-1574-5.
- 38. M. Moslen, C. A. Miebaka, N. Boisa, Bioaccumulation of Polycyclic Aromatic Hydrocarbon (PAH) in a bivalve (Arca senilis- blood cockles) and health risk assessment. *Toxicol. Reports* (2019), doi:10.1016/j.toxrep.2019.09.006.
- 39. K. Senthil Kumar, K. S. Sajwan, J. P. Richardson, K. Kannan, Contamination profiles of heavy metals, organochlorine pesticides, polycyclic aromatic hydrocarbons and alkylphenols in sediment and oyster collected from marsh/estuarine Savannah GA, USA. *Mar. Pollut. Bull.* (2008), doi:10.1016/j.marpolbul.2007.08.011.
- 40. C. M. Rochman, C. Manzano, B. T. Hentschel, S. L. M. Simonich, E. Hoh, Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment. *Environ. Sci. Technol.* (2013), doi:10.1021/es403605f.
- 41. H. Fang, J. Wang, R. A. Lynch, Migration of di(2-ethylhexyl)phthalate (DEHP) and din-butylphthalate (DBP) from polypropylene food containers. *Food Control* (2017), doi:10.1016/j.foodcont.2016.10.050.
- 42. B. Li, Z. W. Wang, Y. H. Bai, Determination of the partition and diffusion coefficients of five chemical additives from polyethylene terephthalate material in contact with food simulants. *Food Packag. Shelf Life* (2019), doi:10.1016/j.fpsl.2019.100332.
- 43. A. B. Munshi, N. Karim, S. Shaukat, D. Hashmi, G. D. Boardman, G. J. Flick, Toxicity of phthalate esters in fish and shellfish from virginia beach using Matrix Solid Phase Dispersion (MSPD) and GC-MS. *J. Chem. Soc. Pakistan* (2013).
- 44. Y. Xu, R. Weng, Y. Lu, X. Wang, D. Zhang, Y. Li, J. Qiu, Y. Qian, Evaluation of Phthalic Acid Esters in Fish Samples Using Gas Chromatography Tandem Mass Spectrometry with Simplified QuEChERS Technique. *Food Anal. Methods* (2018), doi:10.1007/s12161-018-1313-z.
- 45. C. Guerranti, A. Cau, M. Renzi, S. Badini, E. Grazioli, G. Perra, S. E. Focardi, Phthalates and perfluorinated alkylated substances in Atlantic bluefin tuna (Thunnus thynnus) specimens from Mediterranean Sea (Sardinia, Italy): Levels and risks for human consumption. *J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes* (2016), doi:10.1080/03601234.2016.1191886.
- 46. X. Hu, Y. Gu, W. Huang, D. Yin, Phthalate monoesters as markers of phthalate contamination in wild marine organisms. *Environ. Pollut.* (2016), doi:10.1016/j.envpol.2016.07.020.
- 47. Z. Cheng, X. P. Nie, H. S. Wang, M. H. Wong, Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption. *Environ. Int.* (2013), doi:10.1016/j.envint.2013.04.005.
- 48. I. E. Archibong, C. J. Okonkwo, M. O. Wegwu, C. J. A. Okonkwo, Distribution and health risk assessment of selected endocrine disrupting chemicals in two fish species obtained from Choba River in Rivers State, Nigeria. *Bioeng. Biosci.* 5, 65–73 (2017).
- 49. Y. M. Lee, J. E. Lee, W. Choe, T. Kim, J. Y. Lee, Y. Kho, K. Choi, K. D. Zoh,

- Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. *Environ. Int.* (2019), doi:10.1016/j.envint.2019.02.059.
- 50. A. Jarošová, Phthalic acid esters (PAEs) in the food chain. *Czech J. Food Sci.* (2006), doi:10.17221/3318-cjfs.
- 51. D. Balafas, K. J. Shaw, F. B. Whitfield, Phthalate and adipate esters in Australian packaging materials. *Food Chem.* (1999), doi:10.1016/S0308-8146(98)00240-4.
- 52. H. M. Xu, J. J. Cao, K. F. Ho, H. Ding, Y. M. Han, G. H. Wang, J. C. Chow, J. G. Watson, S. D. Khol, J. Qiang, W. T. Li, Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi'an, China. *Atmos. Environ.* (2012), doi:10.1016/j.atmosenv.2011.09.078.
- 53. X. LI, Y. ZHANG, M. TAN, J. LIU, L. BAO, G. ZHANG, Y. LI, A. IIDA, Atmospheric lead pollution in fine particulate matter in Shanghai, China. *J. Environ. Sci.* (2009), doi:10.1016/S1001-0742(08)62390-6.
- 54. G. J. K. Komarnicki, Lead and cadmium in indoor air and the urban environment. *Environ. Pollut.* (2005), doi:10.1016/j.envpol.2004.12.006.
- 55. Z. Safar, M. W. Labib, Assessment of particulate matter and lead levels in the Greater Cairo area for the period 1998-2007. *J. Adv. Res.* (2010), doi:10.1016/j.jare.2010.02.004.
- 56. S. Batterman, F. C. Su, C. Jia, R. N. Naidoo, T. Robins, I. Naik, Manganese and lead in children's blood and airborne particulate matter in Durban, South Africa. *Sci. Total Environ.* (2011), doi:10.1016/j.scitotenv.2010.12.017.
- 57. K. Zhang, F. Chai, Z. Zheng, Q. Yang, X. Zhong, K. W. Fomba, G. Zhou, Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. *J. Environ. Sci. (China)* (2018), doi:10.1016/j.jes.2018.04.018.
- 58. S. M. C. L. Gioia, M. Babinski, D. J. Weiss, A. A. F. S. Kerr, Insights into the dynamics and sources of atmospheric lead and particulate matter in São Paulo, Brazil, from high temporal resolution sampling. *Atmos. Res.* (2010), doi:10.1016/j.atmosres.2010.08.016.
- 59. F. Zereini, F. Alt, J. Messerschmidt, C. Wiseman, I. Feldmann, A. Von Bohlen, J. Müller, K. Liebl, W. Püttmann, Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. *Environ. Sci. Technol.* (2005), doi:10.1021/es040040t.
- 60. J. J. Y. Zhang, L. Sun, O. Barrett, S. Bertazzon, F. E. Underwood, M. Johnson, Development of land-use regression models for metals associated with airborne particulate matter in a North American city. *Atmos. Environ.* (2015), doi:10.1016/j.atmosenv.2015.01.008.
- 61. S. A. Khan, S. Muhammad, S. Nazir, F. A. Shah, Heavy metals bounded to particulate matter in the residential and industrial sites of Islamabad, Pakistan: Implications for non-cancer and cancer risks: Evaluation of heavy metals bounded to particulate matter for non-cancer and cancer risks. *Environ. Technol. Innov.* (2020), doi:10.1016/j.eti.2020.100822.
- 62. I. Ahmad, B. Khan, S. Khan, Z. ur Rahman, M. A. Khan, N. Gul, Airborne PM10 and lead concentrations at selected traffic junctions in Khyber Pakhtunkhwa, Pakistan:

- Implications for human health. *Atmos. Pollut. Res.* (2019), doi:10.1016/j.apr.2019.03.003.
- 63. G. Goudarzi, N. Alavi, S. Geravandi, E. Idani, H. R. A. Behrooz, A. A. Babaei, F. A. Alamdari, S. Dobaradaran, M. Farhadi, M. J. Mohammadi, Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran. *Int. J. Biometeorol.* (2018), doi:10.1007/s00484-018-1510-x.
- 64. A. Talbi, Y. Kerchich, R. Kerbachi, M. Boughedaoui, Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. *Environ. Pollut.* (2018), doi:10.1016/j.envpol.2017.09.041.
- 65. M. Pandey, A. K. Pandey, A. Mishra, B. D. Tripathi, Speciation of carcinogenic and non-carcinogenic metals in respirable suspended particulate matter (PM10) in Varanasi, India. *Urban Clim.* (2017), doi:10.1016/j.uclim.2017.01.004.
- 66. J. Herrera Murillo, S. Rodriguez Roman, J. F. Rojas Marin, A. Campos Ramos, S. Blanco Jimenez, B. Cardenas Gonzalez, D. Gibson Baumgardner, Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. *Atmos. Pollut. Res.* (2013), doi:10.5094/APR.2013.018.
- 67. F. A. Vargas, N. Y. Rojas, J. E. Pachon, A. G. Russell, PM10 characterization and source apportionment at two residential areas in Bogota. *Atmos. Pollut. Res.* (2012), doi:10.5094/APR.2012.006.
- 68. A. R. Ishak, M. S. M. Zuhdi, M. Y. Aziz, Determination of lead and cadmium in tilapia fish (Oreochromis niloticus) from selected areas in Kuala Lumpur. *Egypt. J. Aquat. Res.* (2020), doi:10.1016/j.ejar.2020.06.001.
- 69. M. Li, D. Weis, K. E. Smith, A. E. Shiel, W. D. Smith, B. P. V. Hunt, A. Torchinsky, E. A. Pakhomov, Assessing lead sources in fishes of the northeast Pacific Ocean. *Anthropocene* (2020), doi:10.1016/j.ancene.2019.100234.
- 70. F. Agustriani, A. I. S. Purwiyanto, W. A. E. Putri, Fauziyah, Y. Suteja, in *IOP Conference Series: Earth and Environmental Science* (2019).
- 71. A. El Nemr, G. F. El-Said, S. Ragab, A. Khaled, A. El-Sikaily, The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt. *Chemosphere* (2016), doi:10.1016/j.chemosphere.2016.09.048.
- 72. K. M. El-Moselhy, A. I. Othman, H. Abd El-Azem, M. E. A. El-Metwally, Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. *Egypt. J. Basic Appl. Sci.* (2014), doi:10.1016/j.ejbas.2014.06.001.
- 73. Y. Yuan, T. Sun, H. Wang, Y. Liu, Y. Pan, Y. Xie, H. Huang, Z. Fan, Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. *Mar. Pollut. Bull.* (2020), doi:10.1016/j.marpolbul.2019.110717.
- 74. P. H. M. Kiyataka, S. T. Dantas, J. A. L. Pallone, Method for assessing lead, cadmium, mercury and arsenic in high-density polyethylene packaging and study of the migration into yoghurt and simulant. *Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess.* (2014), doi:10.1080/19440049.2013.855826.
- 75. E. T. Özer, M. A. Çimenoğlu, Ş. Güçer, Determination of cadmium, chromium, lead,

- and mercury in polyethylene and polypropylene after xylene treatment by energy dispersive x-ray fluorescence spectrometry. *Instrum. Sci. Technol.* (2011), doi:10.1080/10739149.2011.585194.
- 76. M. Resano, E. García-Ruiz, F. Vanhaecke, Laser ablation-inductively coupled plasmadynamic reaction cell-mass spectrometry for the multi-element analysis of polymers. *Spectrochim. Acta Part B At. Spectrosc.* (2005), doi:10.1016/j.sab.2005.09.006.
- 77. K. C. Kim, Y. B. Park, M. J. Lee, J. B. Kim, J. W. Huh, D. H. Kim, J. B. Lee, J. C. Kim, Levels of heavy metals in candy packages and candies likely to be consumed by small children. *Food Res. Int.* (2008), doi:10.1016/j.foodres.2008.01.004.
- 78. L. Perring, M. I. Alonso, D. Andrey, B. Bourqui, P. Zbinden, An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials. *Anal. Bioanal. Chem.* (2001), doi:10.1007/s002160100716.
- 79. S. Q. Li, H. G. Ni, H. Zeng, PAHs in polystyrene food contact materials: An unintended consequence. *Sci. Total Environ.* (2017), doi:10.1016/j.scitotenv.2017.07.262.