

Санкт-Петербургский государственный университет

Математико-механический факультет

Прикладная математика и информатика

Ковальчуков Александр Алексеевич 2 курс, 223 группа

Курсовая работа

Филлотаксис, решетки и диофантовы приближения вектора

Научный руководитель	
Андрей Александрович Лодкин	доц.,
	-
Студент	
	-

 ${
m Cahkt-}\Pi{
m erepfypr}$ 2019

Введение

Исследуя листорасположение на стеблях, ван Итерсон предолжил [1] цилиндрическую модель роста растений, в которой по мере роста стебля новые листья появляются через равные промежутки по высоте, но на наибольшем удалении от уже существующих. Словам «наибольшее удаление» следует придавать такой смысл: из всех точек очередной окружности нужно выбирать ту, на которой расстояние до ближайшего листа оказывается максимальным. Левитов показал[2], что угол дивергенции между двумя соседними листьями сходится к золотому сечению: $\varphi = \frac{\sqrt{(5)-1}}{2}$.

Рис. 1: Зависимость угла дивергенции от номера слоя для 6 разных разностей высот. Иллюстрация взята из статьи [3]

Золотое сечение играет важную роль во множестве других областей математики. Например, ϕ медление всего приближается цепными дробями, а также является пределом отношения соседних чисел Фибоначчи. В работах А.Лодкина фигурирует [4] такая характеристика решеток $L_{x,h} \in \mathbb{R}^2$, как асферичность A(x,h) ячейки Вороного, постоенной по ней. Оказалось, что из всех x предел A(x,h) при $h \to 0$ минимален $\iff x = \phi$.

Цель работы состоит в отыскании и исследовании двумерного алалога золотого сечения с похожими свойствами.

Размерность 2

Будем отталкиваться от филлотаксиса, и попрбуем построить пространственную модель, когда для выбора места появления нового вектора отводится 2 степени свободы. В модели ван Итерсона лист появляется на окружности, отстоящей от предыдущей на некоторое расстояние h, одинаковое для всех слоёв. В нашей модели сохранится параметр h, а вместо окружности мы возьмем квадрат \mathbb{D} , с отождественными противоположными сторонами. Такая фигура топологически эквивалентна тору, но для удобства вычислений будем пользоваться «квадрат-

ной» моделью: $\mathbb{T} = \mathbb{D} \times [0, +\infty)$.

Иттерационный процесс

Первую точку поставим в произвольном месте первого квадрата - (x_0, y_0) . Поскольку все точки тора равноправны, расстояния не будут зависеть от начальных условий.

Далее запускаем иттерационный процесс. На n слое мы должны поставить точку так, чтобы максимизировать расстояние до I - множества всех предыдущих векторов. Координаты новой точки (x_n, y_n) должны доставлять максимум функции

$$\Psi'(x_n, y_n) = \min_{i \in I} \left(\left(\min(|x_n - x_i|, 1 - |x_n - x_i|) \right)^2 + \left(\min(|x_n - x_i|, 1 - |x_n - x_i|) \right)^2 + \left(h * (n - i) \right)^2 \right)$$
(1)

Правая часть формулы определяется метрикой на Т: На торе существует множество способов дойти из одной точки в другую по геодезическим линиям, но только в одном направлении путь оказывается кратчайшим.

Чтобы упростить формулу, можно воспользоваться модульной арифметикой. Для каждого известного вектора создадим 8 его копий, но при этом независимо изменяя его координаты x и y на -1, 0, и +1, и поместим эти копии в I. Тогда функция Ψ' примет вид:

$$\Psi(x_n, y_n) = \min_{i \in J} \left(|x_n - x_i|^2 + |x_n - x_i|^2 + (h * n - z_i)^2 \right)$$
 (2)

Поскольку минимум берётся по конечному множеству индексов, Ψ непрерывна, и по теореме Вейрштрасса она достигает своего наибольшего значения на D.

При фиксированном значении і правая часть представляет собой эллиптический параболоид с вершиной (x_i, y_i, z_i) , а весь график функции Ψ - это нижняя огибающая параболоидов, построенных по всем векторам, индексированным J. Очевидно, что максимум такой функции следует искать на пересечении трех парболоидов. 2

Пусть $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)$ - вершины параболоидов, H = n * h. То точка их пересечения определяется из системы уравнений:

$$(x-x_1)^2+(y-y_1)^2+(H-z_1)^2=(x-x_2)^2+(y-y_2)^2+(H-z_2)^2=(x-x_3)^2+(y-y_3)^2+(H-z_3)^2$$

Раскрывая скобки и приводя подобные слагаемые, получаем:

$$\begin{cases} Ax + By = C \\ Dx + Ey = F \end{cases}$$

$$A = 2 * (x_2 - x_1), B = 2 * (y_2 - y_1), C = (H - z_2)^2 - (H - z_1)^2 + x_2^2 - x_1^2 + y_2^2 - y_1^2$$

$$D = 2 * (x_3 - x_1), E = 2 * (y_3 - y_1), F = (H - z_3)^2 - (H - z_1)^2 + x_3^2 - x_1^2 + y_3^2 - y_1^2$$

Рис. 2: График $\min (x^2 + y^2, (x-1)^2 + (y-1)^2, (x+1)^2 + (y-1)^2)$

После того, как мы перебрали все возможные тройки и нашли $\Theta(|J|^3)$ кандидатов на экстремум, из них нужно выделить максимум. Во-первых, нужно выкинуть явно неподходящих: тех, у кого оказался нулевой определитель в знаментателе и тех, кто не попал в квадрат 1*1. Но и из оставшихся просто так взять глобальный максимум нельзя. Поскольку мы пересечали все возможные тройки, некоторые пересечения могут оказаться выше графика Ψ . Это означает, что найдется точка, которая ближе к (x,y,H), чем тройка, по которой она построена. Чтобы разрешить эту ситуацию пройдемся по множеству кандидатов, и оставим среди них только те вектора, у которых расстояние до J совпадает с расстоянием до тройки. После этого можно взять глобальный максимум Ψ простым перебором.

Была составлена компьютерная программа, симулирующая этот процесс. Исходный код программы доступен по адресу: https://github.com/cool-school/coursework-2

Промежуточные результаты

В настоящей модели наиболее интересно поведение модулей уклонений по каждой из осей, а также расстояния до множества Ј при $n \to \infty$. Ассимптотика решения составляет $O(n^4)$, что накладывает ограничения на значение n, при котором вычисления занимают приемлемое время. Ниже приведены графики $dx(n) = \min\left(|x_n - x_{n_1}|, \ 1 - |x_n - x_{n_1}|\right)$ и $dy(n) = \min\left(|y_n - y_{n_1}|, \ 1 - |y_n - y_{n_1}|\right)$ для двух разных значений h.

Рис. 3: Зависимость модуля уклонения по x соседних точек при h=0.1

Рис. 4: Зависимость модуля уклонения по y соседних точек при h=0.1

Рис. 5: Зависимость модуля уклонения по x соседних точек при h=0.05

Рис. 6: Зависимость модуля уклонения по y соседних точек при h=0.05

Исследование графиков dx и dy показало, что начиная с n, сравнимого с 1/h, dx и dy становятся перидичны. Вероятнее всего, при $h\to 0$, верхние пределы dx, dy будет сходиться к некоторым константам. Суть вопроса в том, что это за константы. Поскольку для малых h нужно рассматривать много слоёв, прежде чем ряд Ψ_n станет периодичным.

Дальнейшие доработки программы будут осуществляться за счет введения эвристик и отсечения заведомо неоптимальных вариантов. Одной из них является удаление слоев, которые отстоят более чем на $\sqrt{(\frac{1}{2}+h^2)}$. Однако при $h\to 0$ такая проверка становится бесполезной. Выходом из этой ситуации может быть улушенная оценка на число векторов, которая при $h\to 0$ тоже будет стремиться к нулю. Такой оценкой является расстояние до J на предыдущем шаге. Оно стремится к пределу при $n\to \infty$, и не может ни в какой момент слишком резко увеличиться. Можно воспользоваться этим замечанием и брать в J только те векторы, расстояние до которых не меньше 2r, где r - расстояние до J на предыдущем шаге.

Список литературы

- [1] G. van (Gerrit) Iterson. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen. Jena, Fischer, 1907. https://www.biodiversitylibrary.org/bibliography/8287.
- [2] Leonid S Levitov. Phyllotaxis of flux lattices in layered superconductors. *Physical review letters*, 66(2):224, 1991.
- [3] Tony Phillips. The mechanical model.
- [4] Andrei Lodkin. Multidimensional generalization of phyllotaxis. *Cybernetics and Physics*, pages 153–160, 11 2019.