Table I: Average Run Time of $DPPSort_{qsort}$ and $DPPSort_{STL}$ at $N = 200 \times 10^6$ (Uint64 Random data)

Algorithms	Run Time (sec)					
qsort	26.06					
STLSort	16.06					
	c=N/2	c=N/4	c=N/8	c=N/16	c=N/32	c=N/64
$DPPSort_{qsort}$	4.49	4.26	4.14	4.04	3.97	3.98
$DPPSort_{STL}$	2.98	2.87	2.87	2.93	3.02	3.05

Table II: Average Run Time (Uint64 data) of each distribution at c = N/8 of $DPPSort_{gsort}$, $DPPSort_{STL}$, STLSort and qsort

Algorithms	Distributions	Run Time (sec)				
		N=50×10 ⁶	N=100×10 ⁶	N=200×10 ⁶		
DPPSort _{STL}	Random	0.66	1.37	2.87		
	Reversed	0.55	1.14	2.50		
	Nearly Sorted	0.56	1.15	2.44		
	Few Unique	0.55	1.14	2.45		
DPPSort _{qsort}	Random	0.91	1.93	4.14		
•	Reversed	0.52	1.13	2.41		
	Nearly Sorted	0.73	1.54	3.30		
	Few Unique	0.69	1.51	3.17		
STLSort	Random	3.84	7.76	16.06		
	Reversed	0.56	1.15	2.40		
	Nearly Sorted	3.09	6.49	13.50		
	Few Unique	1.54	3.13	6.45		
qsort	Random	6.03	12.53	26.06		
4	Reversed	1.72	3.57	7.46		
	Nearly Sorted	3.51	7.28	15.10		
	Few Unique	3.97	8.15	16.76		

Table III: Average Speedup of *DPPSortqsort* and *DPPSortSTL* versus c (Uint32 Random)

Algorithms	N(10 ⁶)				С		
		N/2	<i>N</i> /4	<i>N</i> /8	<i>N</i> /16	N/32	N/64
$DPPSort_{qsort}$	50	6.49	7.01	7.65	8.04	8.34	8.59
	100	6.35	7.05	7.54	7.92	8.14	8.38
	200	6.22	6.86	7.58	7.90	8.05	8.26
$DPPSort_{STL}$	50	5.22	5.78	6.10	6.33	6.36	6.33
	100	5.37	6.00	6.22	6.36	6.47	6.41
	200	5.46	6.12	6.25	6.33	6.47	6.33

Table IV: Average Speedup of $DPPSort_{qsort}$ and $DPPSort_{STL}$ versus c (Uint64 Random)

Algorithms	$N(10^6)$				С		
		N/2	<i>N</i> /4	<i>N</i> /8	<i>N</i> /16	N/32	N/64
$DPPSort_{qsort}$	50	6.02	6.41	6.64	6.76	6.82	6.78
	100	5.81	6.25	6.48	6.55	6.66	6.69
	200	5.80	6.12	6.29	6.44	6.56	6.55
$DPPSort_{STL}$	50	5.65	5.59	5.84	5.88	5.54	5.45
	100	5.49	5.69	5.69	5.61	5.50	5.33
	200	5.39	5.60	5.60	5.47	5.32	5.26

Table V: Comparison of Speedup per core and thread of Parallel Sorting Algorithms (DF: Deque-Free)

Algorithms	Speedup	core	thread	Speedup/core	Speedup/thread
$DPPSort_{qsort}$	6.82	4	8	1.71	0.85
$DPPSort_{STL}$	5.88	4	8	1.47	0.74
DF IntroSort [8]	8.1	16	16	0.51	0.51
MultiSort [9]	13.6	32	32	0.43	0.43
<i>psort</i> [11, 12]	11.00	24	24	0.46	0.46
Introqsort [13]	1.47	2	2	0.74	0.74
PPMQSort [16]	12.29	8	16	1.54	0.77
HDPSort [17]	2.49	4	8	0.62	0.31

Table VI: Perf results of *DPPSort_{qsort}* and *DPPSort_{STL}* at $N = 200 \times 10^6$ (Uint32) and c = N/8

Distributions	Algorithms	Run Time (sec)	cache misses	branch load misses
Random	$DPPSort_{STL}$	2.35	3.81×10^{8}	2.43×10^{9}
	$DPPSort_{qsort}$	3.64	5.61×10^{8}	2.52×10^{9}
	STLSort	14.68	2.26×10^{8}	2.50×10^{9}
	qsort	27.57	4.43×10^{8}	2.75×10^{9}
Reversed	$DPPSort_{STL}$	1.99	4.85×10^{8}	4.99×10^{8}
	$DPPSort_{qsort}$	1.53	4.77×10^{8}	3.18×10^{7}
	STLSort	2.18	1.65×10^{8}	2.35×10^{7}
	qsort	6.61	3.35×10^{8}	1.02×10^7
Nearly Sorted	$DPPSort_{STL}$	1.81	3.56×10^{8}	1.63×10^{9}
	$DPPSort_{qsort}$	2.65	5.47×10^{8}	1.24×10^{9}
	STLSort	12.14	2.24×10^{8}	1.90×10^{9}
	qsort	17.17	3.17×10^{8}	1.20×10^9
Few Unique	$DPPSort_{STL}$	1.47	3.72×10^{8}	7.13×10^{8}
	$DPPSort_{qsort}$	2.68	5.24×10^{8}	9.88×10^{8}
	STLSort	5.58	2.05×10^{8}	7.01×10^{8}
	qsort	17.69	4.35×10^{8}	9.88×10^{8}

Table VII: Perf results of $DPPSort_{qsort}$ and $DPPSort_{STL}$ at $N = 200 \times 10^6$ (Uint64) and c = N/8

Distributions	Algorithms	Run Time (sec)	cache misses	branch load misses
Random	$DPPSort_{STL}$	2.87	8.04×10^{8}	2.28×10^{9}
	$DPPSort_{qsort}$	4.14	1.20×10^{9}	2.49×10^{9}
	STLSort	16.06	4.65×10^{8}	2.25×10^{9}
	qsort	26.06	9.58×10^{8}	2.73×10^{9}
Reversed	$DPPSort_{STL}$	2.50	1.02×10^{9}	4.71×10^{8}
	$DPPSort_{qsort}$	2.41	9.84×10^{8}	3.81×10^{7}
	STLSort	2.39	3.04×10^{8}	1.87×10^7
	qsort	7.46	7.27×10^{8}	1.03×10^{7}
Nearly Sorted	$DPPSort_{STL}$	2.44	7.92×10^{8}	1.50×10^{9}
	$DPPSort_{qsort}$	3.30	1.17×10^{9}	1.24×10^{9}
	STLSort	13.50	4.74×10^{8}	1.81×10^{9}
	qsort	15.10	6.85×10^{8}	1.24×10^{9}
Few Unique	$DPPSort_{STL}$	2.45	7.53×10^{8}	6.75×10^{8}
	$DPPSort_{qsort}$	3.17	1.08×10^{9}	8.94×10^{8}
	STLSort	6.45	4.58×10^{8}	6.69×10^{8}
	qsort	16.76	9.36×10^{8}	1.00×10^{9}

Table VIII: Run time and standard deviation (STD) of our proposed vs *Hoare's partitioning algorithm* at $N = 200 \times 10^6$ (Uint32)

С	Proposed (sec)	Hoare's (sec)	Proposed STD	Hoare's STD
N/2	3.15	3.14	0.1662	0.1367
<i>N</i> /4	2.57	2.51	0.0997	0.0869
<i>N</i> /8	2.24	2.28	0.0970	0.0770
<i>N</i> /16	2.14	2.14	0.0591	0.0658
<i>N</i> /32	2.14	2.14	0.0687	0.0891
N/64	2.10	2.15	0.0649	0.0796