Лабораторная работа 5.2

Моделирование оптических приборов и определение их увеличения.

Жарков Андрей 495 28 марта 2017 г.

Теоретические сведения.

Увеличение астрономической зрительной трубы. Труба Кеплера состоит из двух собирающих линз расположенных на расстоянии f_1+f_2 друг от друга (см. рис). Как было выяснено, при наблюдении далёких предметов с помощью астрономической зрительной трубы (трубы Кеплера) глазом, аккомодированным на бесконечность, задний фокус объектива совпадает с передним фокусом окуляра. В этом случае труба является афокальной системой: параллельный пучок лучей, входящий в объектив, остаётся параллельным по выходе из окуляра. Такой ход лучей называют телескопическим.

рис. Труба Кеплера.

Увеличение можно найти как

$$\gamma = \frac{tg\varphi_2}{tg\varphi_1} = \frac{f_1}{f_2} = \frac{D_1}{D_2} \tag{1}$$

Увеличение галилеевой зрительной трубы. Если заменить положительный окуляр астрономической трубы отрицательным, получается галилеева (или земная) труба. При телескопическом ходе лучей в галилеевой трубе расстояние между объективом и окуляром равно разности (точнее — алгебраической сумме) их фокусных расстояний (рис. 5а), а изображение оправы объектива, даваемое окуляром, оказываетс я мнимым. Это изображение располагается между объективом и окуляром. Легко показать, что формула (1), полученная для астрономической трубы, справедлива и для земной трубы.

Достоинством галилеевой трубы является то, что она даёт прямое изображение. Поэтому зрительные трубы, бинокли и т.д. делаются по схеме Галилея.

рис. Труба Галилея

Увеличение микроскопа. Увеличение микроскопа (см. рис) можно найти, как

$$\gamma = \frac{tg\varphi_2}{tg\varphi_1} = \frac{L(\Delta - f_1 - f_2)}{f_1 f_2} \tag{2}$$

рис. Микроскоп

Выполнение работы.

Измерение фокусных расстояний линз. Настроим зрительную трубу на бесконечность. Фокусные расстояния собирающей и рассеивающей линз можно определить следующим образом:

Экран Зрит. труба a_0

Рис. 7. Определение фокусного расстояния собирающей линзы

Рис. 8. Определение фокусного расстояния рассеивающей линзы

Результаты измерений в таблице ($f_{\text{перев}}$ - измерения после переворачивания линзы другой стороной, $f_{\text{инстр}}$ - по паспорту линзы)

Nº	1	2	3	4
f, cm	20,0	14,9	-13,2	-24,1
f, cm	10,3	14,8	-12,9	-24,2
f, cm	10,1	15,1	-13,0	-24,0
f _{перев} , см	10,1	15,0	-12,9	-24,3
f _{инстр} , см	10,0	15,0	-13,0	-24,0

Как видим, линзы можно считать тонкими. Фокусные расстояния определены с точностью до 1мм.

Труба Кеплера.

В качестве коллиматора возьмём линзу f=15,0см. Найденное $l_1=1,30\pm0,05$ мм - размер изображения одного деления шкалы осветителя.

Теперь соберём модель телескопа Кеплера $(f_1 = 40, 0sm, f_2 = 10, 0sm)$:

Телескоп Кеплера Колл. линза Зрит. труба

Рис. 9. Модель телескопа

Тогда, по формуле (1) $\gamma = \frac{f_1}{f_2} = 4,00 \pm 0,04$ С другой стороны, измерив $l_2 = 5,1 \pm 0,1$ мм - размер изображения одного деления шкалы осветителя после прохождения телескопа, $\gamma = \frac{l_2}{l_1} = 3,92 \pm 0,15$

Через диаметры ($D_1=3,2\pm0,1$ см, $D_2=0,9\pm0,1$ см): $\gamma=\frac{D_1}{D_2}=3,6\pm0,4$

В пределах погрешности найденные значения совпадают.

Труба Галилея.

В трубе $f_1 = 40,0$ см, $f_2 = -13,0$ см.

По формуле (1) $\gamma = \frac{f_1}{f_2} = 3,08 \pm 0,04$

С другой стороны, измерив $l_2=4,0\pm0,1$ мм - размер изображения одного деления шкалы осветителя после прохождения трубы галилея, $\gamma = \frac{l_2}{l_1} = 3, 1 \pm 0, 1$

В пределах погрешности найденные значения совпадают

Увеличение микроскопа.

Будем использовать линзы $f_1=15,0$ см, $f_2=10,0$ см. Хочется получить $\gamma=5$. Для этого, пользуясь (2) подберём значение Δ . Получим, $\Delta = 55,0$ см. Теперь соберём установку.

Рис. 10. Модель микроскопа

Измерим $l_2=4,0\pm0,1$ мм - размер изображения одного деления шкалы осветителя после прохождения трубы галилея. Тогда, взяв $L=25\mathrm{cm}$ - расстояние наилучшего зрения, можно посчитать увеличение $\gamma = \frac{l_2}{l_1} \frac{L}{f} = 5, 1 \pm 0, 2.$

В пределах погрешности совпадает с $\gamma = 5$ - вычисленное по (2).