

Universidade Federal de Pernambuco Centro de Informática

Aprendizagem de Máquina

Projeto de Graduação, 2014-2

Eduardo M. B. de A. Tenório Hélio de M. Lins Neto Hugo B. Barbosa

Introdução

O projeto consiste em gerar 300 amostras a partir de distribuições gaussianas bivariadas, formando 2 classes. A classe 1 é dividida nas subclasses 1-1 e 1-2, com 100 amostras cada, e a classe 2 com 100 amostras também. As funções geradoras possuem os seguintes parâmetros:

1-1:
$$\mu_1 = 60$$
, $\mu_2 = 30$, $\sigma_1^2 = 9$ e $\sigma_2^2 = 144$

1-2:
$$\mu_1 = 52$$
, $\mu_2 = 30$, $\sigma_1^2 = 9$ e $\sigma_2^2 = 9$

2:
$$\mu_1 = 45$$
, $\mu_2 = 22$, $\sigma_1^2 = 100$ e $\sigma_2^2 = 9$

Os dados podem ser gerados por uma das duas funções: mvnrnd do MATLAB ou multivariate_normal do pacote random de NumPy (biblioteca numérica para Python). São registrados nos arquivos texto r11.txt, r12.txt e r2.txt, com cada linha correspondendo a uma amostra, composta por dois números reais representando a primeira e a segunda variáveis, respectivamente.

Figura 1: Classes 1 (1-1 em vermelho e 1-2 em verde) e 2 (azul).

Questão 1

O algoritmo FCM-DFCV foi retirado de [1], implementado utilizando Python3.4 com a biblioteca NumPy. A biblioteca matplotlib foi utilizada para gerar os gráficos necessários para a visualização dos dados e da classificação final.

Ocorreram poucas dificuldades, entre elas a falta de familiaridade com a biblioteca NumPy e o entendimento do algoritmo em si. A implementação alcançou protótipos muito parecidos com a média das distribuições 1-1, 1-2 e 2, obtendo um índice de Rand entre 55% e 70% dependendo da distribuição. Em grande parte das vezes o algoritmo converge antes de 150 iterações. Os dados descritos em Fig. 1 foram agrupados utilizando Fuzzy c-Means (FCM), como mostrado em Fig. 2.

Figura 2: Classes 1 (1-1 em vermelho e 1-2 em verde) e 2 (azul).

Questão 2

As probabilidades a priori $P(\omega_1)$ e $P(\omega_2)$ são determinadas pela maximização da verossimilhança. Neste caso correspondem à razão entre a quantidade de objetos da classe e do conjunto universo:

$$P(\omega_1) = \frac{200}{300} = \frac{2}{3}$$

$$P(\omega_2) = \frac{100}{300} = \frac{1}{3}$$
(1)

(A)

Para a gaussiana bivariada o método da Estimação da Máxima Verossimilhança (Maximum Likelihood Estimation, MLE) nos diz que a média e a matrix de covariância são dadas por

$$\mu = \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_k \qquad (2) \qquad \Sigma = \frac{1}{N} \sum_{k=1}^{N} (\mathbf{x}_k - \mu)(\mathbf{x}_k - \mu)' \qquad (3)$$

respectivamente, cuja implementação encontra-se em segunda_a.m. A densidade de probabilidade para a classe 2 encontra-se em Fig. 3. Para a classe 1 o algoritmo Expectation-Maximization (EM) estima um média e uma matriz de covariância para cada gaussiana da mistura. A descrição do processo encontra-se no arquivo EM_GM.m, com alguns resultados em Fig. 4 e Fig. 5.

Figura 3: Densidade de probabilidade

Agora podemos calcular a densidade de probabilidade total da classe 1, ponderando os valores das subclasses (obtidos pelo EM) e misturando as gaussianas. O resultado é mostrado em Fig. 6.

Figura 6:

Por fim, $P(\omega_i|\mathbf{x}_k)$ é calculado a partir dos parâmetros já encontrados, exibida em Fig. 7 e Fig. 8.

Figura 7: Densidade de probabilidade por Bayes, classe 1.

Figura 8: Densidade de probabilidade por Bayes, classe 2.

(B)

Utilizando a função de kernel bivariada, os códigos parzen.m, bivar.m, multi.m e uni.m implementam a Janela de Parzen e definem as densidades de probabilidade variando o valor de h. A partir destes resultados é possível calcular $P(\omega_i|\mathbf{x}_k)$, esboçado nas figuras abaixo.

Figura 9: $P(\omega_1|\mathbf{x}_k)$ para k=1.

Figura 10: $P(\omega_2|\mathbf{x}_k)$ para k = 1.

Figura 11: $P(\omega_1|\mathbf{x}_k)$ para k = 0.5.

Figura 12: $P(\omega_2|\mathbf{x}_k)$ para k = 0.5.

Figura 13: $P(\omega_1|\mathbf{x}_k)$ para k = 0.3.

Figura 14: $P(\omega_2|\mathbf{x}_k)$ para k = 0.3.

(C)

O código knn.py implementa a probabilidade a posteriori de ω_i em relação a uma amostra \mathbf{x} . Como demonstrado em [2], uma boa estimativa de $P(\omega_i|\mathbf{x})$ é

$$P_n(\omega_i|\mathbf{x}) = \frac{p_n(\mathbf{x}, \omega_i)}{\sum_{j=1}^c p_n(\mathbf{x}, \omega_j)}$$
(4)

e como

$$p_n(\mathbf{x}, \omega_i) = \frac{k_i/n}{V} \tag{5}$$

 \mathbf{e}

$$\sum_{j=1}^{c} k_j = k \tag{6}$$

então Eq. 4 torna-se

$$P_n(\omega_i|\mathbf{x}) = \frac{k_i}{k} \tag{7}$$

A equação descrita acima apenas demonstra que $P_n(\omega_i|\mathbf{x})$ tende a $P(\omega_i|\mathbf{x})$ quando k cresce. Logo, achando os k vizinhos mais próximos ao ponto \mathbf{x} temos o valor estimado de sua probabilidade *a posteriori*. Fig. 15 e Fig. 16 mostram as estimações para k=9. Note que o gráfico de ω_1 é o inverso do de ω_2 . Isto ocorre porque

$$P_n(\omega_1|\mathbf{x}) + P_n(\omega_2|\mathbf{x}) = 1 \tag{8}$$

Figura 15: $P(\omega_1|\mathbf{x})$, para k=9.

Figura 16: $P(\omega_2|\mathbf{x})$, para k=9.

(D)

Utilizando um MLP treinado com backpropagation obtemos através de mlp.py um erro médio quadrático convergente após 300 épocas. O algoritmo permanece em execução até 10000 épocas (Fig. 17). Foram usadas 3 camadas escondidas e o

resultado da classificação foi documentado em *mlpout.txt*, onde a primeira coluna corresponde aos objetos da classe 1 e 2, respectivamente, na mesma ordem das matrizes r11, r12 e r2. A segunda coluna corresponde a saída da rede neural e a terceira, ao erro. Considerou-se que a classe 2 deve ter resposta ideal zero e a classe 1, deverá ter resposta 1.

Figura 17: Erro médio x Épocas.

(E)

A regra da soma, implementada em ${\tt regra_soma.m},$ para uma determinada classe ω_j é dada por

$$(1 - L)P(\omega_j) + \sum_{i=1}^{L} p(\omega_j | \mathbf{x_i})$$
(9)

Figura 18:

Questão 3

Bibliografia

- [1] Francisco de A.T. de Carvalho, Camilo P. Tenório e Nicomedes L. Cavalcanti Junior. "Partitional fuzzy clustering methods based on adaptive quadratic distances". Em: Fuzzy Sets and Systems 157 (2006), pp. 2833–2857.
- [2] Richard O. Duda, Peter E. Hart e David G. Stork. *Pattern Classification*. second. Wiley-Interscience, 2000.