

Ayudantía 8

5 de junio de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

- a) Demuestre que el conjunto de los números complejos \mathbb{C} es equinumeroso con \mathbb{R} .
- b) Dado un alfabeto finito Σ , una palabra infinita w sobre Σ es una secuencia de símbolos:

$$w = s_0 s_1 s_2 \dots$$

tal que $s_i \in \Sigma$ para todo $i \geq 0$. Se define el conjunto de todas las palabras infinitas sobre el alfabeto finito Σ como Σ^{ω} . Para todo alfabeto finito Σ con $|\Sigma| \geq 2$, demuestre que Σ^{ω} es un conjunto no-numerable.

Pregunta 2

Sean f(n) y g(n) funciones de \mathbb{N} a \mathbb{R}^+ . Demuestre o refute las siguientes afirmaciones:

- a) Si $f(n) \notin O(g(n))$, entonces $g(n) \in O(f(n))$.
- b) Si $f(n) \in O(g(n))$, entonces $2^{f(n)} \in O(2^{g(n)})$.

Pregunta 3

Demuestre formalmente (usando la definición formal de la notación O) que:

- a) $(\log(n))^k \in O(n^{\epsilon})$ para $k \ge 1$ y $\epsilon > 0$.
- b) $\sum_{i=1}^{n} n^{i} \in O\left(2^{n \cdot \log(n)}\right)$

Pregunta 4

Demuestre que

$$\log(a_k n^k + \dots + a_1 n + a_0) \in O(\log(n))$$

con $k \ge 0$ y $a_i \ge 0$ para todo $i \le k$.