Experiment 8: Op-Amps II

Materials

- 1. $1 \text{ k}\Omega$, $3.3 \text{ k}\Omega$, $10 \text{ k}\Omega$ resistors
- 2. $0.01 \mu F$, 100 pF capacitors
- 3. LM741 and LF411 Op-Amp

Note: For this activity, op-amps need to be biased at both its V_+ and V_- pins. If the activity states that $V_s = \pm 15$ V, set up the op-amp's V_+ and V_- pins as in figure on the right:

A. Limitation: Slew Rate

- 1. Construct the following circuit. Use a square wave input ($V_{pp} = 5V$, f = 1kHz, no DC offset) and opamp $V_s = \pm 15V$.
- 2. Sketch the input and output waveforms. Indicate the important voltage values and points on the plot.

- 3. Determine the slew rate of the op-amp (both the slewing up and slewing down rates). Hint: It is related to a slope.
- 4. Compare the experimental slew rate with the typical slew rate of LM741 (i.e. $0.5 V/\mu s$).
- 5. Change the input to a sine wave (V_{pp} = 5V, no DC offset). Vary the frequency until the output amplitude begins to drop. Take note of this frequency and relate it with the slew rate.
- 6. What is the significance of the slew rate of an op-amp?

B. Application 6: Op-Amp Integrator (Active Low-Pass Filter)

- 1. Construct the following circuit. Use a square wave input (V_{pp} = 5V, f = 1kHz, no DC offset) and op-amp V_s = ±15V.
- 2. Sketch the input and output waveforms. Indicate the important voltage values/points on the plot.
- 3. Calculate the theoretical peak-to-peak amplitude of the expected wave output.

 (Hint: Perform an integration). Compare with the experimental result in B2.
- 4. Remove the $10M\Omega$ resistor and vary the DC output of the input. Describe and explain what happens. What is the function of the $10M\Omega$ resistor? Warning: The oscilloscope must be in DC coupling.
- 5. Repeat steps B1 to B3 using sine wave and triangle wave inputs. Explain the output.

Experiment 8: Op-Amps II

C. Application 7: Op-Amp Differentiator (Active High-Pass Filter)

- 1. Construct the following circuit. Use a square wave input (V_{pp} = 5V, f = 1kHz, no DC offset) and opamp V_s = ±15V.
- 2. Sketch the input and output waveforms. Indicate the important voltage values/points on the plot.
- 3. Repeat steps C1 to C2 using sine wave and triangle wave inputs. Explain the output.

D. Application 8: Active Rectifier

1. Construct the following circuit. Use a square wave input (V_{pp} = 10V, f = 100Hz, no DC offset) and op-amp V_s = ±15V.

- 2. Sketch the input and output waveforms (see circuit). Indicate the important voltage values and points on the plot.
- 3. What causes the glitch in the output waveform?
- 4. Sketch the input and output waveforms (see circuit). Indicate the important voltage values and points on the plot.
- 5. Explain the difference between the output waveforms in steps D2 and D4.

E. Application 9: Active Clamp

1. Construct the following circuit. Use a square wave input (V_{pp} = 20V, f = 1kHz, no DC offset) and op-amp V_s = ±15V.

- 2. Sketch the input and output waveforms. Indicate the important voltage values and points on the plot.
- 3. Vary the input amplitude to lower values. Describe and explain what happens to the output. Explain the output.
- 4. Repeat steps E1 to E2 with the diode reversed.