Introduction to Attention Mechanism in Deep Learning

23.06.2020

Recap

Figure 01. Autoencoder with MNIST dataset[1]

What about sequential data?

Seq2seq Model

Figure 02. Seq2seq LSTMs[1]

Seq2seq was designed to encode sequential data (e.g. text, audio, speech) and decode sequential data of arbitrary length respectively.

Application: Machine Translation, Speech Recognition, Parsing Sentence into Grammar Tree

Problem: Context Vector of fixed length!

Attention

- Biologically, attention existed is the visual system of a human being.
- High Attention: "High Resolution"
- Low Attention: "Low Resolution"

(b)

Figure 03. (a) Perceiving attention visually [1] and in (b) text [2]

Attention

- Attention mechanism was design to tackle fixed context vector
- Attention create shortcuts between the context vector and the input source
- Focus more on certain regions and less on others
- Attention fells what to keep during reduction to minimize information loss salient features
- Attention provide more "fine grain" of region to be attended
- Classification: Self- Attention, Soft-Attention, Hard-Attention

Soft vs Hard Attention

Soft Attention	Hard Attention
Different Parts, Different Subregions	Only ONE subregion
Deterministic	Stochastic
Differentiable	Non-differentiable

Figure 04. (Left) Soft subregions vs (Right) hard subregion [1]

Soft Attention-Additive Attention (1)

Figure 05. (Top) Aggregated additive attention mechanism. (Bottom) Unfold additive attention mechanism [1]

Soft Attention-Additive Attention(2)

Figure 06. Diagram derived from Bahdanau et al., 2015 with addition information from [1]

```
\begin{aligned} \mathbf{c}_t &= \sum_{i=1}^n \alpha_{t,i} \boldsymbol{h}_i & ; \text{Context vector for output } y_t \\ \alpha_{t,i} &= \operatorname{align}(y_t, x_i) & ; \text{How well two words } y_t \text{ and } x_i \text{ are aligned.} \\ &= \frac{\exp(\operatorname{score}(\boldsymbol{s}_{t-1}, \boldsymbol{h}_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(\boldsymbol{s}_{t-1}, \boldsymbol{h}_{i'}))} & ; \text{Softmax of some predefined alignment score..} \end{aligned}
\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \mathbf{v}_a^\top \operatorname{tanh}(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])
```

Soft Attention-Additive Attention(3)

Figure 06. (Top) Text2text machine translation, (Bottom) Speech2text machine translation [1]

Summary

Name	Definition	Citation
Self- Attention(&)	Relating different positions of the same input sequence. Theoretically the self- attention can adopt any score functions above, but just replace the target sequence with the same input sequence.	
Global/Soft	Attending to the entire input state space.	Xu2015
Local/Hard	Attending to the part of input state space; i.e. a patch of the input image.	Xu2015;
		Luong2015

Name	Alignment score function	Citation
Content-base attention	$ ext{score}(m{s}_t,m{h}_i) = ext{cosine}[m{s}_t,m{h}_i]$	Graves2014
Additive(*)	$\operatorname{score}(oldsymbol{s}_t, oldsymbol{h}_i) = \mathbf{v}_a^ op anh(\mathbf{W}_a[oldsymbol{s}_t; oldsymbol{h}_i])$	Bahdanau2015
Location-	$lpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a oldsymbol{s}_t)$	Luong2015
Base	Note: This simplifies the softmax alignment to only depend on the target position.	
General	$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^ op \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015
Product(^) Note: very	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = rac{oldsymbol{s}_t^ op oldsymbol{h}_i}{\sqrt{n}}$	Vaswani2017
	Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	

Thank you for your kind attention!