Maximum Likelihood Estimation

Estimation

Goal: Estimate a population parameter θ .

Data: $X_1, X_2, \ldots, X_n \sim iid$ with distribution depending on θ .

If one has many estimators to choose from, pick

- That with the smallest SE, among all unbiased estimators.
- That with the smallest RMS error, even if biased.
- \longrightarrow Sometimes it is not clear how to form even one good estimator.

Maximum likelihood estimation

Likelihood function: $L(\theta) = Pr(data \mid \theta)$

Log likelihood: $l(\theta) = \log \Pr(\text{data} \mid \theta)$

Maximum likelihood estimate:

 \longrightarrow Choose, as the estimate of θ , the value of θ for which the likelihood function L(θ) (or equivalently, the log likelihood function) is maximized.

You need to solve these equations analytically or numerically!

Likelihood

Imagine we have a Binomial(n=10,p) and observe 7 successes.

L(p) = Pr(7 successes out of 10 trials | p)

Example 1

Suppose $X \sim Binomial(n, p)$.

log likelihood function: $l(p) = log \{ \binom{n}{x} p^x (1-p)^{(n-x)} \}$ = x log(p) + (n-x) log(1-p) + constant

MLE: the obvious thing: $\hat{p} = x/n$

Example 2

Suppose $X_1, \ldots, X_{20} \sim iid \ Poisson(\lambda)$.

log likelihood function: $l(\lambda) = \log \left\{ \prod_i e^{-\lambda} \lambda^{x_i} / x_i! \right\}$ = ... = $-20\lambda + (\sum x_i) \log \lambda + \text{ constant}$

MLE: the obvious thing: $\hat{\lambda} = \bar{x}$

Example 3

Suppose $X_1, \ldots, X_n \sim iid N(\mu, \sigma)$

log likelihood function: $l(\mu, \sigma) = \log \left\{ \prod_{i} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{x}_{i} - \mu}{\sigma} \right)^{2} \right] \right\}$

MLEs: almost the obvious things:

$$\hat{\mu} = \bar{\mathbf{x}}$$
 $\hat{\sigma} = \sqrt{\sum (\mathbf{x}_i - \bar{\mathbf{x}})^2/n}$

About MLEs

Maximum likelihood estimation is a general procedure for finding a reasonable estimator

- In many cases, the MLE turns out to be the obvious thing.
- MLEs are often very good (but not necessarily the best) possible estimators:
 - Unbiased or nearly unbiased.
 - o Small standard errors.
- Sometimes obtaining the MLEs requires hefty computation!

Example 4: ABO blood groups

Phenotype	Genotype	Frequency
0	00	p_{O}^{2}
Α	AA or AO	$p_{\text{A}}^2 + 2p_{\text{A}}p_{\text{O}}$
В	BB or BO	$p_{\text{B}}^2 + 2p_{\text{B}}p_{\text{O}}$
AB	AB	$2p_Ap_B$

Frequencies under the assumption of Hardy-Weinberg equilibrium.

Example 4: Data

Phenotype	No. subjects	% subjects	
0	117	46.8%	
Α	98	39.2%	
В	29	11.6%	
AB	6	2.4%	
Total	250	100%	

 \longrightarrow What are the estimates of p_A , p_B , p_O ?

Example 4: Estimates

Simple estimates:

$$\longrightarrow \ \tilde{p}_O = \sqrt{0.468} = 0.684$$

$$\longrightarrow \ \tilde{p}_{A}^{2} + 2\tilde{p}_{A}0.684 = 0.392 \ \longrightarrow \ \tilde{p}_{A} = 0.243$$

$$\longrightarrow ~\tilde{p}_{\text{B}} = 0.024/(2\tilde{p}_{\text{A}}) = 0.072$$

Log likelihood Remember the Multinomial distribution function!

$$l(p_O, p_A, p_B) =$$

$$117\, log(p_O^2) + 98\, log(p_A^2 + 2p_Ap_O) + 29\, log(p_B^2 + 2p_Bp_O) + 6\, log(2p_Ap_B)$$

Example 4: log likelihood

Example 5

Consider the problem of estimating the recombination fraction (call that parameter θ) between two genetic markers in an intercross.

→ Note: We won't observe the haplotypes.

Example 5

	Data			Probabilities		
				AA	Aa	aa
BB	58	9	0	$\frac{1}{4} (1-\theta)^2$	$\frac{1}{2} \theta (1 - \theta)$ $\frac{1}{2} [\theta^2 + (1 - \theta)^2]$	$\frac{1}{4} \theta^2$
Bb	8	95	14	$\frac{1}{2} \theta (1-\theta)$	$rac{1}{2}\left[heta^2+(1- heta)^2 ight]$	$\frac{1}{2} \theta (1-\theta)$
bb					$\frac{1}{2} \theta (1 - \theta)$	

 \longrightarrow Possible estimates of the recombination fraction, θ ?

$$L(\theta) \; \propto \; \left\{ \tfrac{1}{4} \; (1-\theta)^2 \right\}^{(58+53)} \; \times \; \left\{ \tfrac{1}{2} \; \theta (1-\theta) \right\}^{(9+8+14+12)} \; \times \; \left\{ \tfrac{1}{4} \; \theta^2 \right\}^{(1+0)} \; \times \; \left\{ \tfrac{1}{2} \; [\theta^2 + (1-\theta)^2] \right\}^{95}$$

