THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS COMP30026 Models of Computation

Selected Tutorial Solutions, Week 11

- 75. Here are the context-free grammars:
 - (a) $\{w \mid w \text{ starts and ends with the same symbol}\}:$

(b) $\{w \mid \text{the length of } w \text{ is odd}\}:$

$$S \ \, \rightarrow \ \, 0 \, | \, 1 \, | \, 0 \, 0 \, S \, | \, 0 \, 1 \, S \, | \, 1 \, 0 \, S \, | \, 1 \, 1 \, S$$

(c) $\{w \mid \text{the length of } w \text{ is odd and its middle symbol is 0}\}:$

$$S \rightarrow 0 | 0 S 0 | 0 S 1 | 1 S 0 | 1 S 1$$

(d) $\{w \mid w \text{ is a palindrome}\}:$

$$S \rightarrow 0 S 0 | 1 S 1 | 0 | 1 | \epsilon$$

76. Here is a context-free grammar for M:

The grammar is ambiguous; for example, aaaabb has two different parse trees.

77. The class of context-free languages is closed under the regular operations: union, concatenation, and Kleene star.

Let G_1 and G_2 be context-free grammars generating L_1 and L_2 , respectively. First, if necessary, rename variables in G_2 so that the two grammars have no variables in common. Let the start variables of G_1 and G_2 be S_1 and S_2 , respectively. Then we get a CFG for $L_1 \cup L_2$ by keeping the rules from G_1 and G_2 , adding

$$\begin{array}{ccc} S & \to & S_1 \\ S & \to & S_2 \end{array}$$

where S is a fresh variable, and making S the new start variable.

We can do exactly the same sort of thing for $L_1 \circ L_2$. The only difference is that we now just add one rule:

$$S \rightarrow S_1 S_2$$

again making (the fresh) S the new start variable.

Let G be a CFG for L and let S be fresh. If we add two rules to those from G:

$$\begin{array}{ccc} S & \rightarrow & \epsilon \\ S & \rightarrow & S \ S' \end{array}$$

where S' is G's start variable, then we have a CFG for L^* (it has the fresh S as its start variable).

- 78. Here are some sentences generated from the grammar:
 - (a) A dog runs
 - (b) A dog likes a bone
 - (c) The quick dog chases the lazy cat
 - (d) A lazy bone chases a cat
 - (e) The lazy cat hides
 - (f) The lazy cat hides a bone

The grammar is concerned with the structure of well-formed sentences; it says nothing about meaning. A sentence such as "a lazy bone chases a cat" is syntactically correct—its structure makes sense; it could even be semantically correct, for example, "lazy bone" may be a derogatory characterisation of some person. But in general there is no guarantee that a well-formed sentence carries meaning.

79. We can easily extend the grammar so that a sentence may end with an optional adverbial modifier:

$$S \rightarrow NP \ VP \ PP$$

$$\vdots$$

$$PP \rightarrow \epsilon$$

$$PP \rightarrow \text{ quietly}$$

$$PP \rightarrow \text{ all day}$$

$$\vdots$$

80. To find a context-free grammar for $\{a^ib^jc^k \mid i=j \lor j=k \text{ where } i,j,k \ge 0\}$ we note that the language is the union of two context-free languages, generated by the two CFGs

Hence we get a context-free grammar for the language by adding the rule $S \to B \mid C$ and making S the start symbol. The grammar is ambiguous. We get two different parse trees for any string of form $\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n$. For example, for \mathbf{abc} :

81. We are looking at the context-free grammar G:

$$\begin{array}{ccc} S & \rightarrow & A B A \\ A & \rightarrow & \mathbf{a} A \mid \epsilon \\ R & \rightarrow & \mathbf{b} R \mid \epsilon \end{array}$$

(a) The grammar is ambiguous. For example, a has two different leftmost derivations:

$$S\Rightarrow A\ B\ A\Rightarrow B\ A\Rightarrow A\Rightarrow \mathbf{a}\ A\Rightarrow \mathbf{a}$$

$$S\Rightarrow A\ B\ A\Rightarrow \mathbf{a}\ A\ B\ A\Rightarrow \mathbf{a}\ B\ A\Rightarrow \mathbf{a}\ A\Rightarrow \mathbf{a}$$

- (b) $L(G) = a^*b^*a^*$.
- (c) To find an unambiguous equivalent context-free grammar it helps to build a DFA for a*b*a*. (If this is too hard, we can always construct an NFA, which is easy, and then translate the NFA to a DFA using the subset construction method, which is also easy.) Below is the DFA we end up with. The states are named S, T, and U to suggest how they can be made to correspond to variables in a context-free grammar. The DFA translates easily to the grammar on the right. The resulting grammar is a so-called regular grammar, and it is easy to see that it is unambiguous—there is never a choice of rule to use.

82. Here is a PDA for $M = \{a^iba^j \mid i > j \ge 0\}$:

Note that the stack won't be empty when this PDA halts; and that's okay.