

El diagrama en bloque de la figura muestra un sistema causal en tiempo discreto donde:

$$h(n) = \begin{cases} \frac{1}{4} & n = 0, \dots 3\\ 0 & \text{todo otro } n \end{cases}$$

- \bullet X(n) es un proceso blanco de varianza unitaria.
- \bullet W(n) también es blanco y de varianza unitaria, para el cual

$$\mathbb{E}[X(n)W(n+k)] = \delta(k) + \delta(k-1).$$

- 1. Determine si Y(n) y Z(n) son procesos ESA.
- 2. Obtenga $R_Y(k_1, k_2)$ y $S_Y(\omega)$.
- 3. Obtenga $R_Z(k_1, k_2)$ y $S_Z(\omega)$.

Como X(n) es ruido blanco, es ESA. Como además el sistema H es LTI, entonces, la salida Y(n) es ESA.

$$Z(n) = Y(n) + W(n)$$

$$= \sum_{j=-\infty}^{\infty} h(j) X(n-j) W(n+k) = \sum_{j=-\infty}^{\infty} h(j) X(n-j) W(n+k) = \sum_{j=-\infty}^{\infty} h(j) R_{X,U}(n+j)$$

$$\mathbb{E}[Z(n)] = \mathbb{E}[Y(n)] + \mathbb{E}[w(n)] = \mu_{y} \qquad \text{yes es} \qquad \text{we sex} \qquad = h(-n) + h(1-h) : función de k$$

$$\mathbb{E}\left[Z(\eta)Z(\eta+k)\right] = \mathbb{E}\left[\left(Y(\eta)+W(\eta)\right)\left(Y(\eta+k)+W(\eta+k)\right)\right] = \mathbb{R}_{Y}(\kappa)+\mathbb{R}_{W}(\kappa)+\mathbb{E}\left[Y(\eta+k)W(\eta)\right]+\mathbb{E}\left[Y(\eta)W(\eta+k)\right]$$

$$=\mathbb{R}_{Y}(\eta)+\mathbb{R}_{W}(\kappa)+\mathbb{R}_{Y}(\kappa)+\mathbb{R}_{$$

Alcanzaba con decir que como Y(n) y W(n) son ESA, su suma es ESA?

$$2. R_{\gamma}(k) = (h * h * R_{\chi})(k)$$

$$\left(h_{1} + h_{1} \right) (k) = \frac{1}{16} \left(f(k+3) + f(k-3) \right) + \frac{2}{16} \left(f(k+2) + f(k-2) \right)$$

$$+ \frac{2}{16} \left(f(k+1) + f(k-1) \right) + \frac{4}{16} f(k) = \begin{cases} \frac{4 - |k|}{16} & |k| \le 3 \\ 0 & eac \end{cases}$$

$$\text{Como } R_{\times}(k) = f(k) \text{ in tances}$$

$$R_{y}(k) = f(k) / b = \begin{cases} \frac{4-|k|}{16} & |k| \leq 3 \\ 0 & eoc \end{cases}$$

$$S_{y(w)} = f \left\{ R_{y} \left\{ (\omega) = \frac{1}{4} + \frac{3}{16} 2\cos(\omega) + \frac{1}{8} 2\cos(2\omega) + \frac{1}{16} 2\cos(3\omega) \right\} \right\}$$

$$S_{y}(w) = \frac{1}{4} + \frac{3}{8} \cos(w) + \frac{1}{4} \cos(2w) + \frac{1}{8} \cos(2w)$$

3.
$$R_{Z(k)} = R_{Y}(k) + R_{W(k)} + R_{Y,W}(-k) + R_{Y,W}(k)$$

$$= \frac{9-|k|}{16} 11 \left\{ |k| \leq s \right\} + S(k) + \frac{1}{9} 11 \left\{ -3 \leq k \leq 0 \right\} + \frac{1}{9} 11 \left\{ -2 \leq k \leq 1 \right\} + \frac{1}{9} 11 \left\{ 0 \leq k \leq 3 \right\} + \frac{1}{9} 11 \left\{ -1 \leq k \leq 2 \right\}$$

$$R_{Y,W}(k)$$

$$R_{Z(k)} = \frac{2}{9} \int_{0}^{\infty} \int_{0}^{\infty} \left(|k| - 1 \right) + \frac{5}{8} \int_{0}^{\infty} \left(|k| - 2 \right) + \frac{5}{16} \int_{0}^{\infty} \left(|k| - 3 \right)$$

$$S_{Z}(\omega) = \frac{9}{4} + \frac{15}{8} \cos(\omega) + \frac{5}{9} \cos(2\omega) + \frac{5}{8} \cos(3\omega)$$

Ejercicio 1

Sea Y(n) = X(n) + aX(n-1), donde $a \in \mathbb{R}$ es una constante, X(n) es un proceso estocástico de media nula y función de auto-correlación $R_X(k) = \sigma^2 b^{|k|}$, |b| < 1.

- Hallar R_{XY}(k), S_{XY}(ω).
- 2. Hallar $S_Y(w)$, $R_Y(\mathcal{U})$, $\mathbb{E}[Y^2(n)]$
- 3. Para que valor de a el proceso Y(n) resulta ruido blanco.

$$R_{xy}(k) = I + ae^{-jw}$$

$$R_{xy}(k) = E[X(n)Y(n+k)] = E[X(n)(X(n+k)+aX(n+k-1))] = R_{x}(k) + aR_{x}(k-1)$$

$$R_{xy}(k) = e^{-jw}$$

$$R_{xy}(k) = e^{-jw}$$

$$\frac{1}{\sqrt{2}} \int x(\omega) = 1 + \sum_{n=1}^{\infty} b^n e^{-jn\omega} + \sum_{n=1}^{\infty} b^n e^{-jn\omega} + \frac{be^{-j\omega}}{1 - be^{-j\omega}} + \frac{be^{-j\omega}}{1 - be^{-j\omega}} = 1 + b \frac{2cs(\omega) - 2b}{1 - 2bcs(\omega) + b^2}$$

$$\sum_{n=1}^{\infty} b^n (e^{-j\omega})^n = be^{-j\omega} \int_{-\infty}^{\infty} (be^{-j\omega})^n = be^{-j\omega} \int_{-\infty}^{\infty} (be^{-j\omega})^n = be^{-j\omega}$$

$$S_{\times}(\omega) = \frac{1-b^2}{1-2b\cos(\omega)tb^2}$$

$$S_{XY}(\omega) = H(\omega) S_{X}(\omega) = (1 + \alpha e^{-j\omega}) o^{-\frac{2}{1-2b\cos(\omega)+b^2}}$$

$$S_{y}(\omega) = |H(\omega)|^{2} S_{x}(\omega) = \left[\left(1 + a\cos(\omega) \right)^{2} + a^{2} \sin^{2}(\omega) \right] \frac{1 - b^{2}}{1 - 2b \cos(\omega) + b^{2}}$$

$$S_{1}(w) = \sigma^{2} \frac{\left[t_{R}^{2} + 2a \cos(w) \right] \left(1 - b^{2} \right)}{1 - 2b \cos(w) + b^{2}} = \left(t + a^{2} \right) \frac{\sigma^{2} \left(1 - b^{2} \right)}{1 - 2b \cos(w) + b^{2}} + 2a \cos(w) \frac{\sigma^{2} \left(1 - b^{2} \right)}{1 - 2b \cos(w) + b^{2}}$$

$$R_{1}(k) = \left(1 + a^{2} \right) b^{|k|} \sigma^{2} + a \sigma^{2} \left(b^{|k-1|} + b^{|k+1|} \right)$$

$$E[\gamma^{2}(n)] = R_{\gamma}(0) = [(1+a^{2})+2ab]o^{2}$$

3.
$$\gamma$$
 es rudo blanco s_{ii} $S_{\gamma}(\omega) = cte$. $S_{ii} = K(1+l^2) \Rightarrow 1+K^2l^2 = K(1+l^2)$
 $S_{ii} = K(1+l^2) \Rightarrow 1+K^2l^2 = K(1+l^2)$

El diagrama en bloque de la figura muestra un sistema causal en tiempo discreto donde:

$$h(n) = \begin{cases} \frac{1}{4} & n = 0, \dots 3\\ 0 & \text{todo otro } n \end{cases}$$

- X(n) es un proceso blanco de varianza unitaria.
- \bullet W(n) también es blanco y de varianza unitaria, para el cual

$$\mathbb{E}[X(n)W(n+k)] = \delta(k) + \delta(k-1).$$

- 1. Determine si Y(n) y Z(n) son procesos ESA.
- 2. Obtenga $R_Y(k_1, k_2)$ y $S_Y(\omega)$.

Ejercicio 1

- 3. Obtenga $R_Z(k_1, k_2)$ y $S_Z(\omega)$.
- Y(n) es la salida de un sistema LTI cuya entrada X(n) es ESA (ruido blanco), por lo que la salida será ESA también La suma de dos procesos ESA es ESA, así que Z(n) también lo es.

2.
$$R_{y}(\kappa) = I[Y(n)|Y(n+k)] = IT$$

$$(h*h*k*)(\kappa) = \begin{cases} \frac{4-|\kappa|}{16} & |\kappa| \leq 3 \\ 0 & e \neq 0 \end{cases}$$

$$Recordances give $R_{x}(\kappa) = I(\kappa)$, antances $(h*h*R_{x})(\kappa) = (h*h)(\kappa)$.
$$R_{y}(\kappa) = \begin{cases} \frac{4-|\kappa|}{16} & |\kappa| \leq 3 \\ 0 & e \neq 0 \end{cases}$$

$$R_{y}(\kappa) = \begin{cases} \frac{4-|\kappa|}{16} & |\kappa| \leq 3 \\ 0 & e \neq 0 \end{cases}$$$$

$$S_{y}(\omega) = |H(\omega)|^{2} S_{x}(\omega) , \qquad |H(\omega)| = \frac{1}{4} (1 + e^{j\omega} + e^{-j2\omega} + e^{-j3\omega}), \qquad S_{x}(\omega) = 1 ,$$

$$|H(\omega)|^{2} = \frac{1}{16} \left(1 + e^{j\omega} + e^{-j2\omega} + e^{-j3\omega} \right) \left(1 + e^{j\omega} + e^{j2\omega} + e^{-j3\omega} \right)$$

$$= \frac{1}{16} \left(1 + e^{j\omega} + e^{-j2\omega} + e^{-j3\omega} + e^{-j\omega} + e^{-j\omega} + e^{-j2\omega} + e^{-j2\omega$$

3.
$$R_{Z}(K) = \mathbb{E}\left[\left(Y(n) + W(n)\right)\left(Y(n+k) N(n+k)\right)\right] = R_{Y}(K) + R_{YW}(K) + R_{YW}(-K) + R_{W}(K)$$

$$R_{YW}(K) = \mathbb{E}\left[Y(n) W(n+k)\right] = \mathbb{E}\left[\left(h * X\right)(n) W(n+k)\right] = \mathbb{E}\left[\sum_{m=0}^{3} h(m) X(n-m) W(n+k)\right]$$

$$= \sum_{m=0}^{3} \sqrt{4} \mathbb{E}\left[X(n-m) W(n+k)\right] = \sqrt{2} R_{XW}(K+m)$$

$$R_{yw}(-3) = \frac{1}{4}$$
 $R_{yw}(0) = \frac{1}{2}$
 $R_{yw}(-2) = \frac{1}{2}$ $R_{yw}(0) = \frac{1}{4}$

$$R_{yw}(-1) = 1/2$$
 $R_{yw}(1) = 1/4$

$$R_{2}(n) = \frac{9}{4} \delta(n) + \frac{15}{16} \delta(|n|-1) + \frac{5}{8} \delta(|n|-2) + \frac{5}{16} \delta(|n|-3)$$

$$S_2(\omega) = \frac{9}{4} + \frac{15}{8} \cos(\omega) + \frac{5}{4} \cos(2\omega) + \frac{5}{8} \cos(3\omega)$$