

PL&T: Syntactic guided data analysis group

Semyon Grigorev

Saint Petersburg State University

March 22, 2022

Group Info

- Established in 2012
- Lead: Semyon Grigorev
 - PhD (2016), Associate professor (2016, SPbSU)
 - dblp: https://dblp.org/pid/181/9903.html
 - ▶ h-index (scopus): 5
 - s.v.grigoriev@spbu.ru
- PhD students: 2
- Master's degree students: 5
- Bachelor's degree students: 6
- Publications
 - ▶ Total: > 30
 - Scopus: 25
- Research areas
 - Formal languages constrained path querying
 - ► High-performance graph analysis
 - ► High-level languages for high-performance computing

Formal Language Constrained Path Querying (FLPQ)

- Formal languages as path constraints
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
- Applications
 - Graph analysis
 - Interprocedural static code analysis
 - Graph database querying

Formal Language Constrained Path Querying (FLPQ)

- Formal languages as path constraints
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
- Applications
 - Graph analysis
 - Interprocedural static code analysis
 - Graph database querying
- Research directions
 - New algorithms development
 - Complexity analysis
 - New classes of languages investigation
 - ▶ High performance algorithms implementation and evaluation

FLPQ: Team

- Members
 - PhD students: Rustam Azimov, Ekaterina Shemetova
 - Master students: Alexandra Istomina, Ilya Epelbaum
 - ▶ Bachelor students: Valda Pogozelskaya, Timur Zinnatulin
- Skills
 - Formal language theory, parsing algorithms
 - Graph theory, dynamic graph problems
 - Algorithm design, data structures, algorithms complexity
 - Linear algebra, GraphBLAS
 - RedisGraph, Neo4j, Cypher
- Collaboration
 - INRIA LINKS
 - LDBC community
 - RedisGraph team
 - ▶ Neo4j team

FLPQ: Results

- Tools
 - ► GLL4Graph: CFPQ for Neo4j
 - CFPQ for RedisGraph
 - CFPQ_PyAlgo: set of GrpapBLAS-based FLPQ algorithms
- Papers (> 10)
 - ▶ Multiple-Source Context-Free Path Querying in Terms of Linear Algebra (EDBT, Core A)
 - ► Context-free path querying by matrix multiplication (GRADES-NDA@SIGMOD)
 - Parser combinators for context-free path querying (Scala@ICFP)

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - ► Sparse linear algebra
 - GraphBLAS

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - Sparse linear algebra
 - GraphBLAS
- Research directions
 - Portable multi-GPGPU implementation of GraphBALS-like API
 - ► GraphBLAS-based algorithms design, implementation and evaluation
 - GraphBLAS API analysis

High-Performance Graph Analysis: Team

- Members
 - Master students: Egor Orachev, Vladimir Kutuev
 - ► Bachelor students: Gleb Marin
- Skills
 - Algorithm design, data structures, graph algorithms
 - Linear algebra, sparse linear algebra, GraphBLAS
 - ► C/C++, CUDA, OpenCL, OpenMP, GPGPU, Python
- Collaboration
 - GraphBLAS community
 - LDBC community

High-Performance Graph Analysis: Results

Tools

- Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
- ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- ▶ LDBC Graphalytics extension for evaluation of formal language constrained path querying

Papers

- SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations (GrAPL@IPDPS)
- Evaluation of the context-free path querying algorithm based on matrix multiplication (GRADES-NDA@SIGMOD)

High-Level Languages For High-Performance Computing (HLL for HPC)

In collaboration with Daniil Berezun

- High-level languages for GPGPU programming and HLS
- LIFT, AnyDSL, Futhark

High-Level Languages For High-Performance Computing (HLL for HPC)

In collaboration with Daniil Berezun

- High-level languages for GPGPU programming and HLS
- LIFT, AnyDSL, Futhark
- Research directions
 - Fusion-like optimization for sparse linear algebra routines (distillation)
 - Sparse linear algebra in functional language: type safe, fusion-friendly, natural divide-and-conquer parallelism
 - Special hardware for sparse linear algebra

HLL for HPC: Team

- Members
 - Daniil Berezun
 - ► Master students: Alexey Turin
 - ► Ekaterina Vinnik, Kirill Garbar, Artiom Chernikov
- Skills
 - Algorithm design, data structures
 - Program optimization, program transformation
 - Linear algebra, sparse linear algebra, GraphBLAS
 - ► Functional programming (Haskell, F#), OpenCL, GPGPU, FPGA
- Collaboration
 - Geoff William Hamilton

HLL for HPC: Results

- Tools
 - ▶ Distiller: fusion-like optimization for sparse linear algebra routines
 - ► Contribution to FHW: functional program to hardware translator
 - ► Contribution to Reduceron: specialized processor for functional programms
 - ▶ Brahma.FSharp: F# to OpenCL C translator and respective runtime
- Papers
 - Optimizing GPU programs by partial evaluation (PPoPP, Core A)
 - ► Distilling Sparse Linear Algebra (SRC@ICFP)

Educational Activities

- Research projects for students (bachelor, master, PhD)
- Lectures
 - Formal language theory and parsing algorithms
 - Algorithms and data structures
 - ► Graph theory
 - ▶ Introduction to machine learning