Esami Informatica Teorica Semidecidibilità

Ede Boanini

Esercizio 1

Sia $\Sigma = \{0, 1\}$ e sia R un linguaggio decidibile su $\Sigma \times \Sigma$. Dimostra che il linguaggio $L = \{x \mid \exists y : (x, y) \in R\}$ è semidecidibile.

Ragionamento. Allora $\Sigma^* \times \Sigma^* = \{(x,y) \mid x \in \Sigma, y \in \Sigma\}$ quindi:

$$R = \{(0,0), (0,1), (1,0), (1,1)\} \quad \text{lughezza fissa 2; } |x| + |y| = 2$$

$$L = \{\}$$

L accetta tutte le stringhe ...

Esercizio 2

Sia $\Sigma = \{0,1\}$ e sia L un linguaggio semidecidibile su Σ . Dimostrare che esiste un linguaggio decidibile R sull'alfabeto $\Sigma \times \Sigma$ tale che $x \in L$ se e solo se $\exists y : (x,y) \in R$.

Esercizio 3

Si considerino i linguaggi:

$$L_{\emptyset} = \{ R(M) \mid L(M) = \emptyset \}$$

$$\overline{L_{\emptyset}} = \{ R(M) \mid L(M) \neq \emptyset \}$$

- 1. $\overline{L_{\emptyset}}$ è semidecidibile? Giustificare la risposta.
- 2. L_{\emptyset} è semidecidibile? Giustificare la risposta.

Esercizio 4

Il complementare di un linguaggio semidecidibile é semidecidibile: vero o falso? Giustificare la risposta.

Esercizio 5

Dati due linguaggi L_1, L_2 , chiamiamo differenza di L_1 e L_2 il linguaggio: $L_1 \ominus L_2 = \{vw \mid \exists y \in L_2 : vyw \in L_1\}$. Dimostrare che, se L_1 ed L_2 sono entrambi semidecidibili, allora $L_1 \ominus L_2$ é anch'esso semidecidibile.

Esercizio 6

Per ciascuno dei seguenti problemi, stabilire se esso è semidecidibile oppure no, giustificando la risposta. Si supponga che l'alfabeto di tutte le macchine di Turing sia $\{0,1\}$.

- 1. Date due MdT M_1, M_2 che terminano su ogni input, determinare se M_1 e M_2 accettano linguaggi differenti.
- 2. Date due MdT M_1, M_2 che terminano sullo stesso insieme di input, determinare se M_1, M_2 accettano linguaggi differenti.
- 3. Date due MdT M_1, M_2 , determinare se M_1, M_2 accettano linguaggi differenti.

Esercizio 7

Dimostrare che, per ogni linguaggio semidecidibile L, esiste una riduzione di L al linguaggio L_{HALT} del problema dell'arresto (Si rammenti che $L_{HALT} = \{(R(M), w) \mid M \text{ é una macchina di Turing che accetta } w\}$).

Esercizio 8

Sia Q un linguaggio semidecidibile, e sia L un linguaggio t.c. esiste una riduzione da L a Q. Dimostrare che anche L è semidecidibile.

Esercizio 9

Un linguaggio L si dice co-semidecidibile quando il suo complementare \overline{L} è semidecidibile. Sia $L_\emptyset=\{R(M)\mid L(M)=\emptyset\}.$

Dimostrare che L_{\emptyset} è co-semidecidibile.