Logistics Hashing Around the Clock Concentration Inequalities Load Balancing (Review-ish)

Thanks for coming to gamos!.

Next wednesday, more pizza,
more space, 6 or 7?

Problem set tomorrow

All but one said they liked pace,

La It (tyb) slow down

Hore group activities

Not available tomorrow, ask me today!!

Hashing Around the Clock

- - server
- 🗙 data item

- (1) E[Lodnosts to wore]
- (Z) Pr(any server jowns" c fraction) = 1/10

(union bound)

It (one somer owns, c) = -

= (1-c) N-1 (then a mitack

(one some onus, c) heet

<u>|</u>

Review in Jecher

Concentration Inequalities

Chebysher gare "disappointing" bound yesterday:

$$M = \mathbb{E}(X)$$
 $\sigma^2 = Now(X)$

Gaussian X $Pr(|X-M| \ge k\sigma) \le 2e^{-k^2/2}$

Is Chebysher just bad?

We need assumptions! Hint?

Hint? $P(X_1 = x_1, ..., X_k = x_k)$ $= Pr(X_1 = x_1) ... Pr(X_k = x_k)$

Central Limit Theorem: Any sum of mutually independent and identically distributed random variables X_1,\ldots,X_k with mean μ and finite variance σ^2 converges to a Gaussian random variable with mean $k\cdot\mu$ and variance $k\cdot\sigma^2$ as k goes to infinity. Formally,

$$\lim_{n \to \infty} \sum_{i=1}^k X_i \sim \mathcal{N}(k\mu, k\sigma^2).$$
Invarity of expectation

Chebysher:

$$Pr(|X-50| \ge 20) \le .0625$$

If
$$CLT$$
 hald exactly,
 $\ln (|x-so| \ge k \cdot 5) \le 2e^{-k^2/2}$
 $|x-so| \ge k \cdot 5 \le 2e^{-k^2/2}$
 $|x-y| \le 2e^{-k^2/2}$
 $|x-y| \le 2e^{-k^2/2}$
 $|x-y| \le 2e^{-k^2/2}$
 $|x-y| \le 2e^{-k^2/2}$

Lets be formal 1

b) Different forms

La use typed notes and/or wikipedia

L) Different assumptions => different bounds

~ indicator!!

Chernoff Bound: Let X_1, \ldots, X_k be independent binary random variables. That is, $X_i \in \{0,1\}$. Let $p_i = \mathbb{E}[X_i]$ where $0 < p_i < 1$.

Choose a parameter $\epsilon>0$. Then the sum $S=\sum_{i=1}^k X_i$, which

has mean $\mu = \sum_{i=1}^k p_i$, satisfies

$$\Pr(S \geq (1+\epsilon)\mu) \leq \exp\left(rac{-\epsilon^2 \mu}{2+\epsilon}
ight)$$
 $\left\{\begin{array}{c} \epsilon \\ \epsilon \end{array}\right\}$ $\left\{\begin{array}{c} \epsilon \\ \epsilon \end{array}\right\}$

and, if $0 < \epsilon < 1$,

$$\Pr(S \leq (1-\epsilon)\mu) \leq \exp\left(rac{-\epsilon^2 \mu}{2}
ight).$$

$$\begin{array}{lll}
\boxed{2+\epsilon \leq 3 & \text{when } \epsilon \leq 1} \\
\boxed{\frac{1}{3} \leq \frac{1}{2+\epsilon}} & \text{exp}\left(\frac{-\epsilon^{2}\mu}{2+\epsilon}\right) \leq \exp\left(\frac{\epsilon^{2}\mu}{3}\right) \\
-\frac{1}{2+\epsilon} \leq -\frac{1}{3} = 3
\end{array}$$

Less restrictive?

Bernstein Inequality: Let X_1,\ldots,X_k be independent random variables with each $X_i\in[-1,1]$. Let $\mu=\sum_{i=1}^k\mathbb{E}[X_i]$ and $\sigma^2=\sum_{i=1}^k\mathrm{Var}[X_i]$. Then, for any $k\leq\frac{\sigma}{2}$, the sum $S=\sum_{i=1}^kX_i$ satisfies

 $\Pr(|S-\mu|>k\sigma)\leq 2\exp\left(rac{-k^2}{4}
ight).$ Hoeffding's Inequality: Let X_1,\ldots,X_k be independent random

Hoeffding's Inequality: Let X_1,\ldots,X_k be independent random variables with each $X_i\in [a_i,b_i]$. Let $\mu=\sum_{i=1}^k\mathbb{E}[X_i]$. Then, for any k>0, the sum $S=\sum_{i=1}^kX_i$ satisfies

$$\Pr(|S-\mu|>k) \leq 2 \exp\left(rac{-k^2}{\sum_{i=1}^k (b_i-a_i)^2}
ight).$$

Coin Flips
$$S = \sum_{i=1}^{K} \chi_{i}$$

$$S = \sum_{i=1}^{K} \chi_{i}$$

Choose
$$k \ge \frac{3\log(2/8)}{\epsilon^2}$$

(1)
$$\mathbb{E}[5] = 6k$$

(2)
$$Pr(|S-bk| \ge \epsilon k) \le \delta$$

$$\Pr\left(\max_{i} S_{i} \geq C\right) \leq \frac{1}{10}$$

$$\Pr\left(S_{i} \geq C\right) \leq \frac{1}{10}$$

$$S_i = \sum_{j=1}^{6may} 11[j goes to i]$$
 Sum!

Chernoft $\Pr(S_i \ge 1 + \epsilon) \le \exp(\frac{-\epsilon^2}{2 + \epsilon})$ $\exp\left(\frac{-\epsilon^2}{2+\epsilon}\right) \leq \frac{1}{10n}$ $\epsilon \geq 2$ $exp(-\frac{\ell^2}{2+\epsilon}) \leq exp(-\frac{\ell^2}{2\epsilon}) = \frac{1}{100}$ $\frac{-\epsilon}{z} = \log(1/10n)$ e = 2109 (10n)

$$\Pr(S_i \geq 1 + \sqrt{3}\log(10n)) \leq \frac{1}{10n}$$

$$\Pr(S_i \geq 0(\log n)) \leq \frac{1}{10n}$$

$$\Rightarrow \Pr(\max S_i \geq 0(\log n)) \leq \frac{1}{10n}$$

Practice: Hash to 2 servers and choose least loaded $O(\log n)$ or $O(\log \log n)$ or O(1) maximum load?

Loglogn on desmos! csazy!

atoms in universe ~ 1082

 $\log \log_{10} \log^{82} = \log_{10} 82 \approx 1.91$