

1

2

3

4

Tema 3. Capa de transporte en Internet TSTC 1. Introducción. Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jonge Navarro Ortiz Funciones y servicios de la capa de transporte: Comunicación extremo a extremo (end-to-end). Multiplexación/demultiplexación de aplicaciones → puerto. Protocolo UDP: Multiplexación/demultiplexación de aplicaciones. Servicio no orientado a conexión, no fiable. Protocolo TCP: Multiplexación/demultiplexación de aplicaciones. Servicio orientado a conexión, fiable: • Control de errores y de flujo. Control de la conexión. Control de congestión. Extensiones TCP 6 1

6

1. Introducción.
2. Protocolo de datagrama de usuario (UDP).
3. Protocolo de control de transmisión (TCP).
1. Multiplexación/demultiplexación.
2. Control de conexión.
3. Control de errores y de flujo.
4. Control de congestión.
4. Extensiones TCP.
5. Ejercicios.

8

Tema 3. Capa de transporte en Internet

2. Protocolo de datagrama de usuario (UDP).

Fundamentos de Redes - Grado en Ingenieria Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jorge Navarro Ortiz

Multiplexación/demultiplexación: transportar las TPDU al proceso correcto.

Existen puertos preasignados con servicios normalizados:

Ejemplos de puertos UDP preasignados

Puerto	Aplicación/Servicio	Descripción
7	echo	Eco
13	daytime	Fecha
37	time	Hora
42	nameserver	Servicio de nombres
53	domain	Servicio de nombres de domino
69	tftp	Transferencia simple de ficheros
123	ntp	Protocolo de tiempo de red

- Otros puertos (>1024) están a libre disposición del desarrollador.
- UDP se usa frecuentemente para aplicaciones multimedia: tolerantes a fallos y sensibles a retardos.
- Cada segmento UDP se encapsula en un datagrama IP.

Lintersidad de Granad

10

10

11

12

13

14

15

Tema 3. Capa de transporte en Internet

3.2. TCP. Control de conexión.

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz

Control de la conexión. Números de secuencia.

- El número de secuencia es un campo de 32 bits que cuenta bytes en módulo 232 (el contador se da la vuelta cuando llega al valor máximo).
- El número de secuencia no empieza normalmente en 0, sino en un valor denominado ISN (Initial Sequence Number) elegido "teóricamente" al azar; para evitar confusiones con solicitudes anteriores.
- El ISN es elegido por el sistema (cliente o servidor). El estándar sugiere utilizar un contador entero incrementado en 1 cada 4 μs aproximadamente. En este caso el contador se da la vuelta (y el ISN reaparece) al cabo de 4 horas 46 min.
- El mecanismo de selección de los ISN es suficientemente fiable para proteger de coincidencias, pero no es un mecanismo de protección frente a sabotajes. Es muy fácil averiguar el ISN de una conexión e interceptarla suplantando a alguno de los dos participantes.
- TCP incrementa el número de secuencia de cada segmento según los bytes que tenía el segmento anterior, con una sola excepción: Los flags SYN y FIN, cuando están puestos, incrementan en 1 el número de secuencia.
- La presencia del flag ACK no incrementa el número de secuencia.

16

16

Tema 3. Capa de transporte en Internet TSTC 3.2. TCP. Control de conexión. Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz Establecimiento de la conexión. Caso sin incidencias (normal): TCP A TCP B CLOSED LISTEN seq=100, SYN SYN-SENT (ISN 100) SYN-RECEIVED seq=300, ack=101, SYN, ACK (ISN 300) **ESTABLISHED** ← Tiempo seq=101, ack=301, ACK **ESTABLISHED** 17

17

18

Tema 3. Capa de transporte en Internet TSTC 3.2. TCP. Control de conexión. Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jonge Navarro Ortiz Establecimiento de la conexión. Caso con SYN retrasados y duplicados: TCP B SYN-SENT seq=90, SYN LISTEN (ISN 90) CLOSED SYN-SENT (ISN 100) eq=100, SYN SYN-RECEIVED q=300, ack=91, SYN, ACK (ISN 300) LISTEN eq=100, SYN SYN-RECEIVED (ISN 400) **ESTABLISHED** seq=101, ack=401, ACK **ESTABLISHED** 19

19

20

21

22

23

24

Tema 3. Capa de transporte en Internet 3.3. TCP. Control de errores y de flujo. Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz Control de errores y de flujo: Control de errores: escenarios de retransmisión (gráficas © James F. ₩ Host A Host B 🖳 Host A Host B Seq=92, 8 bytes data Seq=92, 8 bytes data Seq=100, 20 bytes data Seq=100 timeout -Seq=92 timeo ACK=100 pérdida 🗙 Seq=92, 8 bytes data ACK=100 tiempo timeout prematuro y Pérdida de ACK

ACK acumulativo

25

25

26

Tema 3. Capa de transporte en Internet

TSTC

3.3. TCP. Control de errores y de flujo.

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.10 - Juan M. López Soler y Jorge Navarro Ortiz

11. Los hosts A y B se están comunicando a través de una conexión TCP y B ya ha recibido y confirmado todos los bytes hasta el byte 126. Suponga que a continuación el host A envía dos segmentos seguidos a B que contienen, respectivamente, 70 y 50 bytes de datos. El envío de A es ordenado, el número de puerto origen en dichos segmentos es 302 y el de destino el 80. El host B envía una confirmación inmediata a la recepción de cada segmento de A, sin esperar el retardo de 500 ms del estándar.

- a) Especifique los números de secuencia de ambos segmentos.
- Si el primer segmento llega antes que el segundo ¿cuál es el número de acuse y los puertos origen y destino en el primer ACK que se envía?
- Si el segundo segmento llega antes que el primero ¿cuál es el número de acuse y los puertos origen y destino en el primer ACK que envía?
- Imagine que los segmentos llegan en orden pero se pierde el primer ACK.

27 27

TSTC

Tema 3. Capa de transporte en Internet

3.3. TCP. Control de errores y de flujo.

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jonge Navarro Ortiz

Control de errores y de flujo:

- Control de errores: ¿cómo estimar los "timeouts"?
 - Mayor que el tiempo de ida y vuelta (RTT)
 - Si es demasiado pequeño: timeouts prematuros.
 - Si es demasiado grande: reacción lenta a pérdida de segmentos.
 - Para situaciones cambiantes la mejor solución es la adaptable:

RTTmedido: tiempo desde la emisión de un segmento hasta la recepción del ACK.

RTTnuevo = α .RTTviejo + $(1-\alpha)$.RTTmedido , $\alpha \in [0,1]$

Desviacion_{nueva} = (1-x) * Desviacion_{vieja} + x * | RTTmedido - RTTnuevo |

Timeout = RTTnuevo + 4 * Desviacion

- Problema con ACKs repetidos: ambigüedad en la interpretación.
- Solución: Algoritmo de Karn, actualizar el RTT sólo para los no ambiguos, pero si hay que repetir un segmento incrementar el timeout:

 $tout_{nuevo} = \gamma$. $tout_{viejo}$, $\gamma = 2$.

28

28

Tema 3. Capa de transporte en Internet

3.3. TCP. Control de errores y de flujo.

Fundomentos de Redes - Grado en Ingenieria Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz

15. Si el RTT es 30 ms, la Desviación es 2 ms y se reciben ACKs tras 26, 32 y 24 ms, ¿Cuál será el nuevo RTT, Desviación y timeout? Usar a=0,125 y β =0,25. ¿Y si los dos primeros ACKs tienen el mismo número de acuse y se usa el algoritmo de Karn?

29

29

30

Tema 3. Capa de transporte en Internet 3.3. TCP. Control de errores y de flujo. Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jonge Navarro Ortiz Control de errores y de flujo: Control de flujo: Procedimiento para evitar que el emisor sature al receptor con el envío de demasiada información y/o demasiado rápido. Es un esquema crediticio: el receptor informa al emisor sobre los bytes autorizados a emitir sin esperar respuesta. • Se utiliza el campo ventana: ventana útil emisor = ventana ofertada receptor - bytes en tránsito Ventana Aplicación desde TP Buffer del receptor – 31

31

32

Tema 3. Capa de transporte en Internet

3.3. TCP. Control de errores y de flujo:

Control de errores y de flujo:

Control de flujo:

Temporizador de persistencia

Timer de Persistencia

Timer de Persistencia

Posible problema: síndrome de la ventana tonta (RFC 813) si se utilizan segmentos muy pequeños.

Posible mejora: la ventana optimista (RFC 813).

Es posible hacer entregas "no ordenadas": Bit U (URG), campo puntero.

Solicitar una entrega inmediata a la aplicación: bit P (PSH).

3.4. TCP. Control de congestión.

Control de congestión (RFC 2001):

Es un problema debido a la insuficiencia de recursos (ancho de banda de las líneas como buffer en routers y sistemas finales).

Es un problema diferente al control del flujo: involucra a la red y a los sistemas finales.

Tiene naturaleza adelante-atrás.

Se manifiesta en pérdidas y/o retrasos en las ACKs.

Solución: en la fuente limitar de forma adaptable el tráfico generado.

34

33

33

Tema 3. Capa de transporte en Internet 3.4. TCP. Control de congestión. Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jonge Navarro Ortiz Control de congestión: En el emisor se utilizan dos ventanas y un umbral. Bytes permitidos enviar = min{VentanaCongestion, VentanaDelReceptor} VentanaDelReceptor: utilizada para el control de flujo (de tamaño variable) según el campo "ventana" recibido. VentanaCongestion: Inicialmente VentanaCongestion = 1 (num. segmentos) Si VentanaCongestion < umbral, por cada ACK recibido Inicio VentanaCongestion++ (crecimiento exponencial) Prevención ${\bf Si}$ <code>VentanaCongestion</code> > umbral, cada vez que se recibe todos los ACKs pendientes VentanaCongestion++ (crecimiento lineal) congestión

umbral=VentanaCongestion/2 y VentanaCongestion = 1

Si hay timeout entonces

35

35

37

38

39

40

y Comunicaciones

Fundamentos de Redes

Tema 3. Capa de transporte

41

42