Metody syntezy logicznej

w zadaniach pozyskiwania wiedzy i analizy danych

Synteza logiczna

Inżynieria informacji

- > Minimalizacja F.B.
- Redukcja argumentów
- Generacja reguł decyzyjnych
- Redukcja atrybutów

Dekompozycja funkcjonalna

Odwzorowanie technologiczne FPGA

Hierarchiczne podejmowanie decyzji

Tablice i reguly decyzyjne

- > Atrybuty
- > Ich wartości
- Operatory

$$(a,1) \land (b,0) \land (d,1) \longrightarrow (e,1)$$

	а	b	d	е
1	1	0	1	1
2	1	0	0	1
3	0	0	0	0
4	1	1	1	0
5	1	1	2	2
6	2	2	2	2

redukcja atrybutów redukcja (generacja) reguł decyzyjnych

Р	
W	

Atrybuty:	wiek	płeć	Stan	zawód	Klasa decyzyjna
<i>X</i> ₁	20	Female	Married	Farm	1
<i>X</i> ₂	17	Female	Single	Farm	2
X ₃	25	Male	Single	Business	3
X ₄	16	Female	Single	Farm	2
X 5	38	Male	Single	Business	3
X ₆	25	Female	Single	Pleasure	4 (-)
X ₇	48	Female	Single	Pleasure	4
X 8	20	Female	Single	Farm	2
X 9	21	Male	Married	Business	5
X ₁₀	22	Male	Married	Business	5
X ₁₁	23	Male	Married	Business	5
X ₁₂	24	Male	Married	Business	5

Przykład tablicy decyzyjnej

I T P W

Reguły decyzyjne generowane z tablicy decyzyjnej

```
(Age, 20) ∧ (Marital Status, Married)
                                                     (Class, 1),
                              (Age 16) \rightarrow (Class, 2),
                              (Age, 17) \rightarrow (Class, 2),
       (Age, 20) \land (Marital Status, Single) \rightarrow (Class, 2),
               (Age, 25) ∧ (Gender, Male)
                                             \rightarrow (Class, 3),
                                         \rightarrow (Class, 3),
                              (Age, 38)
                                        \rightarrow (Class, 4)
       (Age, 25) ∧ (Gender, Female)
                              (Age, 48) \rightarrow (Class, 4),
                              (Age, 21) \rightarrow (Class, 5),
                              (Age, 22) \rightarrow (Class, 5),
                              (Age, 23) \rightarrow (Class, 5),
                              (Age, 24)
                                                     (Class, 5).
                                         \rightarrow
```

I T P W

ZPT

Generacja reguł

Metoda analogiczna do ekspansji:

Tworzy się macierz porównań M,

Wyznacza minimalne pokrycie M,

Atrybutami reguły minimalnej są atrybuty należące do minimalnego pokrycia M.

Przykład generacji reguł

Tablica decyzyjna

U	а	b	С	d	е
1	1	0	0	1	1
2	1	0	0	0	1
3	0	0	0	0	0
4	1	1	0	1	0
5	1	1	0	2	2
6	2	2	0	2	2
7	2	2	2	2	2

Tablica reguł minimalnych

а	b	С	d	е
1/	0	3//	7	1
0				0
	1		1	0
			2	2

U	a	b	С	d	е
1	1	0	0	_	1
2	1	0	0	0	1
3	0	0	0	0	0
4	1	1	0	1	0
5	1	1	0	2	2
6	2	2	0	2	2
7	2	2	2	2	2

Macierz M powstaje przez porównanie obiektów: (u_1, u_3) , (u_1, u_4) , ..., (u_1, u_7) . Wynikiem porównania są wiersze M. Dla takich samych wartości atrybutów odpowiedni m=0, dla różnych m=1.

Przykład: uogólniamy U₁

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & b \\ 0 & 1 & 0 & 1 & b, d \end{pmatrix}$$

1 1 0 1 a, b, d

1 1 1 1 a, b, c, d

U	a	b	С	d	е
1	1	0	0	1	1
2	1	0	0	0	1

Minimalne pokrycia są: $\{a,b\}$ oraz $\{b,d\}$,

Wyznaczone na ich podstawie minimalne reguły:

$$(a,1) \& (b,0) \rightarrow (e,1)$$

 $(b,0) \& (d,1) \rightarrow (e,1)$

U	a	b	С	d	е
1	1	0		1.	1
2	1	0	0	0	1

Przykład generacji reguł cd.

Po uogólnieniu obiektu $u_1 \supseteq u_2$.

U	a	b	С	d	е
1	1	0			1
2	1	0	0	0	1

u₂ można usunąć

U	а	b	С	d	е
1	1	0	7		1
2	1	0	0	0	1
3	0	0	0	0	0
4	1	1	0	1	0
5	1	1	0	2	2
6	2	2	0	2	2
7	2	2	2	2	2

Przykład generacji reguł c.d.

U	а	b	С	d	е
1	1	0	0	1	1
2	1	0	0	0	1
3	0	0	0	0	0
4	1	1	0	1	0
5	1	1	0	2	2
6	2	2	0	2	2
7	2	2	2	2	2

$$(a,0) \to (e,0)$$

(b,1) & (d,1) \to (e,0)

 Dla obiektu u3
 Dla obiektu u4

 a
 b
 c
 d

 1
 0
 0
 1
 0
 0

 1
 0
 0
 0
 1
 0
 0

 1
 1
 0
 1
 0
 0
 1

 1
 1
 1
 1
 1
 1
 1
 1

 1
 1
 1
 1
 1
 1
 1
 1

$$0 - -- \supseteq 1101 \qquad -1 - 1 \supseteq 0000$$

Niestety po uogólnieniu ani u₃ nie pokrywa u₄, ani u₄ nie pokrywa u₃

Przykład generacji reguł c.d.

U	a	b	С	d	е
1	1	0	0	1	1
2	1	0	0	0	1
3	0	0	0	0	0
4	1	1	0	1	0
5	1	1	0	2	2
6	2	2	0	2	2
7	2	2	2	2	2

Dla obiektu u5

$$(d,2) \rightarrow (e,2)$$

$$---2 \supseteq u_6, u_7$$

Reguly minimalne

а	b	С	d	е
1	0	1	4	1
0		1	Ξj	0
=	1	-	1	0
	\geq	+	2	2

$$(a,1) \ \& \ (b,0) \to (e,1) \ (a,0) \to (e,0) \ (b,1) \ \& \ (d,1) \to (e,0) \ (d,2) \to (e,2)$$

w innym zapisie:

$$(a,1) \ \& \ (b,0) \to (e,1)$$

 $(a,0) \lor (b,1) \ \& \ (d,1) \to (e,0)$
 $(d,2) \to (e,2)$

Reguly minimalne

ESPRESSO

$$f = \overline{X}_4 \overline{X}_7 + X_2 \overline{X}_6$$

LERS

	a ₁	a_2	a_3	a_4	a_5	a_6	d
1	0	1	0	1	0	0	1
2	1	0	0	0	1	3	2
3	1	1	0	2	2	3	3
4	1	1	0	2	3	3	2
5	1	1	1	0	2	3	4
6	0	0	2	0	2	3	1
7	1	1	2	0	2	2	5
8	1	1	2	0	2	3	6
9	1	0	2	2	1	3	6
10	1	1	2	2	3	1	7

1/2	a ₁	a_3	a ₅	a_6	d
1	0	0	0	0	1
2	1	0	1	3	2
3	1	0	2	3	3
4	1	0	3	3	2
5	1	1	2	3	4
6	0	2	2	3	1
7	1	2	2	2	5
8	1	2	2	3	6
9	1	2	1	3	6
10	1	2	3	1	7

T P W

Redukty: $\{a_1, a_3, a_5, a_6\}$ $\{a_2, a_3, a_5, a_6\}$

Przykład redukcji atrybutów

No.	2/4-		Test V	A ALA			
	a_1	a_2	a_3	a_4	a_5	a_6	d
1	0	0	0	0	0	0	1
2	0	0	1	1	0	0	1
3	1	2	2	0	1	1	2
4	0	1	1	0	0	1	2
5	0	1	0	2	0	1	3
6	1	2	2	3	2	0	2
7	1	2	2	2	0	1	1
8	0	0	1	1	0	1	3
9	0	1	0	3	2	0	4
10	2	2	2	3	2	0	4

$$P_1 \bullet P_6 \mid P_D = \overline{(1,2)(9)}; \overline{(4)(5,8)}; \overline{(6)}; \overline{(3)(7)}; \overline{(10)}$$

1,9	a_2 , a_4 , a_5
2,9	a_2 , a_3 , a_4 , a_5
4,5	a ₃ , a ₄
4,8	a_2 , a_4
3,7	a ₄ , a ₅

$$(a_4 + a_2) (a_4 + a_3) (a_4 + a_5) = a_4 + a_2 a_3 a_5$$

$${a_1, a_4, a_6}$$

 ${a_1, a_2, a_3, a_5, a_6}$

Dekompozycja tablic decyzyjnych

Dekompozycja tablic decyzyjnych

$$\Pi_{G} \geq P(B)$$
:

$$P(A) \cdot \Pi_G \leq P_D$$

I T P W

Przykład dekompozycji TD

	a ₁	a_2	a_3	a ₄	a ₅	a_6	d
1	0	0	0	0	0	0	1
2	0	0	1	1	0	0	1
3	1	2	2	0	1	1	2
4	0	1	1	0	0	1	2
5	0	1	0	2	0	1	3
6	1	2	2	3	2	0	2
7	1	2	2	2	0	1	1
8	0	0	1	1	0	1	3
9	0	1	0	3	2	0	4
10	2	2	2	3	2	0	4

$$\mathbf{A} = \{a_4, a_5, a_6\} \qquad \mathbf{B} = \{a_1, a_2, a_3\}$$

$$P(A) = (\overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}, \overline{7}; \overline{6}, \overline{9}, \overline{10}; \overline{8})$$

$$P(B) = (\overline{1}; \overline{2}, \overline{8}; \overline{3}, \overline{6}, \overline{7}; \overline{4}; \overline{5}, \overline{9}; \overline{10})$$

$$P_D = (\overline{1}, \overline{2}, \overline{7}; \overline{3}, \overline{4}, \overline{6}; \overline{5}, \overline{8}; \overline{9}, \overline{10})$$

$$P_U | P_D = (\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{7}, \overline{8}; \overline{5}, \overline{9}, \overline{10})$$

$$\Pi_G = (\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{7}, \overline{8}; \overline{5}, \overline{9}, \overline{10})$$

Przykład c.d.

F

G:

	a ₁	a_2	a ₃	g
1	0	0	0	1
2	0	0	1	1
3	1	2	2	1
4	0	1	1	1
5	0	1	0	2
6	2	2	2	2

H:

	a ₄	a ₅	a ₆	g	d
1	0	0	0	1	1
2	1	0	0	1	1
3	0	1	1	1	2
4	0	0	1	1	2
5	2	0	1	2	3
6	3	2	0	1	2
7	2	0	1	1	1
8	1	0	1	1	3
9	3	2	0	2	4

T P W

Kompresja danych

$$S = p\Sigma q_i$$

 $S_F = 130$ jednostek

Dekompozycja

S_G = 42 jednostki

S_H = 72 jednostki

$$S_G + S_H = 87\% S_F$$

ZPT

Przykład

```
!, Decision table for house of reps. !,
< DAAAAAAAAAAAAAAA>
[ CLASS-NAME HANDICAPPED-INFANTS WATER-PROJECT-COST-SHARING
ADOPTION-OF-THE-BUDGET-RESOLUTION PHYSICIAN-FEE-FREEZE EL-
SALVADOR-AID RELIGIOUS-GROUPS-IN-SCHOOLS ANTI-SATELLITE-TEST-BAN
AID-TO-NICARAGUAN-CONTRAS MX-MISSILE IMMIGRATION
SYNFUELS-CORPORATION-CUTBACK EDUCATION-SPENDING SUPERFUND-
RIGHT-TO-SUE CRIME DUTY-FREE-EXPORTS EXPORT-ADMINISTRATION-ACT-
SOUTH-AFRICA]
!. Now the data
                                       68% kompresji
democrat
         nyynyynnnnnnyyyy
                                           danych
republican
         n y n y y y n n n n n y y y n y
republican n n y y y y n n y y n y y y n y
democrat
          nnynnnyyyynnnnny
```

Sici neuronome

T P W

Przykład: zastosowanie dekompozycji w nauczaniu sieci neuronowych

Przykłady		rd53	rd73	rd84	root	s8	sao2	sqrt8	xor5	z4
Bez	Czas [s]	17	233	1200	1200	165	4004	470	432	108
dekompozycji	Liczba błędów	0	0	5	5	0	106	0	0	0
7	Czas [s]	9	29	53	661	26	586	52	67	56
dekompozycją	Liczba błędów	0	0	0	0	0	0	0	0	0

PODSUMOWANIE

Zagadnienia syntezy logicznej znajdują szerokie zastosowanie w wielu dziedzinach techniki:

- w technice cyfrowej w inżynierii informacji
 - w kryptografii w w sieciach neuronowych

Uniwersyteckie Systemy Syntezy Logicznej:

SIS, (Espresso, NOVA, ...), ... DEMAIN

Znaczenie syntezy logicznej ciągle wzrasta, a USSL stają się niezbędnym narzędziem w projektowaniu układów i systemów cyfrowych