

Source: 3D Printing World Environment Day GIF By General Electric

Latest advancements in engineering optimization technology

and its applications in supporting eco-friendly initiatives.

Prof. Joseph Morlier

TOPOPT & ALM

Topology Optimization

- Lightweight
- Free-form shape
- Customization
- Mechanically optimized

Additive Manufacturing

- Customization
- Geometric complexity

ALM

Processus de re-conception pour la fabrication additive par l'optimisation topologique

http://bcove.me/yg7pqkak

Energy-efficient planes are the key

And weight is a determining factor...

"The rate of aircraft weight reduction" = "The rate of fuel weight burned"

Range
$$= Vt_f = V \times \underbrace{\left(\frac{L}{D}\right)}_{\text{propulsion system designer}} \times \underbrace{\ln\left(\frac{W_i}{W_f}\right)}_{\text{propulsion system designer}}$$

Since the endurance/range is defined by *cruise* conditions, the equilibrium steady flight conditions of T=D and L=W

Environnemental Footprint

Breakdown of energy into that associated with each life phase

Green aviation

Embodied energy

$$E_e = \frac{\sum \text{Estimated energy required for primary production}}{\text{Mass of primary material production}}$$

CO2 emission

$$E_c = \frac{\sum \text{Mass of CO2 arising from production}}{\text{Mass of material produced}}$$

Different products ... different impacts

Electrification example (from automotive)

Energy \propto CO₂ footprint

Future Sustainable Air vehicule

Breakdown of energy into that associated with each life phase

Hydrogène, SAF, Electric/Hybrid Propulsion...

An important figure

Massive Demand in Energy and Materials

Over the past century Anthropogenic mass has increased rapidly, doubling approximately every 20 years. The collective mass of these materials has gone from 3% of the world's biomass in 1900 to being on par with it today [1]

(AUN) - ITB Summer Camp 2024

Materials and Energy ressources are linked and limited...

#Structural materials used in a massive way -> huge environmental impact

#The essential technologies for the transition, in particular green energy, will translate into considerable demand for metals that have become strategic.

#In anticipation of 2050, the total tonnage of concrete, steel, aluminum etc... necessary for the development of these energies will be 2 to 8 times the world production of 2010. !!!

Sustainable aviation?

critical materials + Geostrategic problem > cost of materials will increase

... delay ...

Aircraft Design

Fluid x control x physics x applied maths

cs x applied maths * Structures

Topology x Material x Process

Breguet was a French aircraft designer

The Life Cycle of an Aircraft

The Life Cycle of an Aircraft – 'Cradle-to-Gate'

Cradle-to-gate is an assessment of a partial product life cycle from resource extraction (cradle) to the factory gate

- [1] mineral-processing
- [2] blast-furnace
- [3] Alloy ingots
- [4] machining
- [5] Airbus-assembly-line

Materials used in an aircraft

Metal airframe: e.g. a320

Source: planespotters.net

Carbon fiber airframe: e.g. a350

Source: www.airliners.net

Environmental impact of material production

Material	Emissions t CO ₂ eq / t	Energy GJ / t
Aluminium ^[1]	14.9	162.8
Steel ^[1]	1.9	19.9
Titanium ^[1]	17	326
CFRP ^[2]	28	514

^[1] T. E. Norgate et al, Journal of Cleaner Production, 2006

^[2] cfconversions.de/sustainability/

Buy-to-Fly Ratio

BtF = Weight of raw material (Billet)
Weight of Final component

Process	Buy-to-fly
Machining	1.1 – 50
Hot closed die forming	1.2 - 1.5
Sheet metal forming	1.1 – 1.25
Extrusion	1.1 – 1.3
Permanent mold casting	1.0 – 1.2
Powder metallurgy	1.0 – 1.05

Source: Manufacturing Engg. Presentation, Assiut University

Material	Buy-to-fly
Aluminium	5
Steel	16
Titanium	10
CFRP	1.5

Source: E. Pierrat et al, Journal of Cleaner Production, 2021

Formula for estimation of total impact

Known parameters:

Empty weight of aircraft

OWE_{aircraft}

Impact for unit production of material (energy/kg OR CO2/kg) e_m

Mass fraction of material in aircraft F_m

Buy-to-Fly of material BtF_m

Total Environmental impact for making 1 aircraft = $OWE_{aircraft} \times \Sigma(e_m \times F_m \times BtF_m)$ (Energy, Emissions)

Manufacturing waste = $OWE_{aircraft} \times F_m \times (BtF_m - 1)$ generated per material

Assessing the impact of popular commercial aircraft

Approx Empty weight and Material Composition

Aircraft Family	OWE (t)	Aluminium	Steel	Titanium	CFRP
A300	86.2	67%	12%	4%	9%
A320	40	72%	9%	6%	10%
A330	124	58%	19%	8%	9%
A380	277	75%	7%	8%	7%
A350	108	19%	7%	14%	53%
A220	37	24%	1%	8%	46%
B737	41.7	80%	8%	8%	3%
B747	184.6	81%	13%	4%	1%
B767	84.5	78%	13%	2%	5%
B777	168.7	70%	11%	7%	12%
B787	128.8	20%	10%	15%	50%

Assessing the impact of popular commercial aircraft

Aircraft	Aluminium	Steel	Titanium	CFRP
A300	231	155	31	4
A320	115	54	22	2
A330	362	130	112	5
A380	831	291	199	10
A350	82	113	136	29
A220	36	6	27	9
B737	133	50	30	1
B747	598	360	66	1
B767	264	165	15	2
B777	472	278	106	10
B787	103	193	174	32

Calculated manufacturing waste in tonnes considering standard BtF ratios

- Energy and Emissions associated with manufacturing increase linearly with aircraft weight
- Tremendous waste is generated during manufacturing

Assessing the impact of popular commercial aircraft

Estimated overall impact in year 2023 considering deliveries

Single aisle aircraft programs (a320, B737) have larger impact as compared to wide body aircraft

Q: How to find structural designs, materials and additive manufacturing processes with the lowest life-cycle CO₂ footprint?

Process is AM, but WHY?

https://dfam.substack.com/p/dfam-education-in-2022

Hypothesis 1

- CO_2 emissions minimization of parts
 - If material choice is **imposed** => mass minimization

Mass minimization of parts

Redesign through topology optimization
 same performance

Mass minimization of parts

Redesign through topology optimization
 same performance but lower mass

Ecodesign/Manufacturing

- Mass minimization of parts
 - And some additional constraints

(see Enrico's PhD)

- Reparability
- Fail-safe design
- Reusability and robot for assembly (see NASA MADCAT)

Liu, Y., Wang, Z., Lu, H., Ye, J., Zhao, Y., & Xie, Y. M. (2023, September). Layout optimization of truss structures with modular constraints. In Structures (Vol. 55, pp. 1460-1469). Elsevier.

ITB Seminar

(d)

(e) $GWP = 99.9 \text{ kg}_{\text{CO}_2\text{e}}$

28

Example II: Mechanical Properties in Printing Microstructures

What physical properties can be achieved with microstructures?

Mass minimization of parts

Redesign through topology optimization
 same performance but lower mass

Unit cell/material/process

Eco Material selection
Eco Process selection

Unit cell design (anisotropy)

Digital materials as **NeW design variables** in

Multidisciplinary Optimization

Multi-scale TO (well connected+ locally-oriented)

A two level optimization that combines Unit cell design & Topology Optimization

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229–1241.

Wu, Jun, Ole Sigmund, and Jeroen P. Groen. "Topology optimization of multi-scale structures: a review." Structural and Multidisciplinary Optimization 63.3 (2021): 1455-1480.

Main MTO methods

Approach	Examples	Connectivity	Locally adapted	Speed	Manufacturability
De-homogenization	[1],[2]				
Parametrized lattice	[3]				
Connectors	[4]				

[1] Grégoire Allaire, Perle Geoffroy-Donders et Olivier Pantz. « Topology optimization of modulated and oriented periodic microstructures by the homogenization method ». en. In: Computers & Mathematics with Applications. [2] Groen, Jeroen P., and Ole Sigmund. "Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures." International [5] Wu, Jun, et al. "Topology Optimization of Multi-Scale Structures: A Review." Journal for Numerical Methods in Engineering

[3] Wang, Chuang, et al. "Concurrent Design of Hierarchical Structures with Three-

Dimensional Parameterized Lattice Microstructures for Additive Manufacturing." Structural and Multidisciplinary Optimization

[4] Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. Journal of Materials Science

Structural and Multidisciplinary Optimization

Multiscale Topology Optimization

Macroscale Problem

need to solve

$$\underset{x_{\text{dens}}^{i}, x_{a}^{i}, \dots}{\text{minimize}} \quad c = u^{T} K u$$

subject to
$$Ku = f$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{i,j} \le n \times m \times v_{f}$$

$$x^{i} = [x_{\text{dens}}^{i}, x_{\text{or}}^{i}, x_{\text{cub}}^{i}]$$
 subject to $K_{i}u_{i}^{A(pq)} = f_{i}^{(pq)}$

best unit cell per quad

macro-density, angle, cubicity

minimize
$$c_i = E_{1111}^{i\alpha} \times (1 - \frac{x_{\text{cub}}^i}{2}) + E_{2222}^{i\alpha} \times \frac{x_{\text{cub}}^i}{2}$$

subject to
$$K_i u_i^{A(pq)} = f_i^{(pq)}$$

$$\sum_{i=1}^{m} \rho_{i,j} \le m \times x_{\text{dens}}^{i}$$

$\epsilon < \rho_{i,j} < 1$

Cubicity of the cells

Since the objective is to create micro-structure with optimal properties towards specific directions, the objective function is a weighted function of the two components $E\alpha$ 1111 and $E\alpha$ 2222

Comparison

• Top88 versus EMTO

Result on classical test cases

• 4x14*14 design variables; stopping criteria : tolfun< 10^{-3}

Do you see a difference (Left2Right)?

EMTO 3pts bending (disp vs stress)

Hypothesis 2

- CO_2 emissions minimization of parts
 - If material choice is **free** => more complicated

First zoom

Missing point from Ashby's theory: The absence of a simple analytical relation between compliance and volume fraction.

Procedia CIRP Volume 109, 2022, Pages 454-459

Ecodesign with topology optimization

Edouard Duriez ^a ≅, Joseph Morlier ^a, Catherine Azzaro-Pantel ^b, Miguel Charlotte ^a

Show more

Share 55 Cite

Thanks

https://doi.org/10.1016/j.procir.2022.05.278 Under a Creative Commons license Get rights and content

Open access

To go deeper

Cleaner Environmental Systems Volume 9, June 2023, 100114

A fast method of material, design and process eco-selection via topology optimization, for additive manufactured structures

Edouard Duriez ^a A S, Catherine Azzaro-Pantel ^b, Joseph Morlier ^a, Miguel Charlotte ^a

Properties	Bending beam (Ashby)	Bending plate (Ashby)	Duriez et al. (2022b)	Our problem	Get rights and content a
Fixed	L, <i>9</i>	L, t, <i>D</i>	L_{\max} , h_{\max}	$L_{\max}, h_{\max},$ t_{\max}	
Constraint	δ_{max}	δ_{max}	δ_{max}	δ_{max}	

Hypothesis 2

- CO_2 emissions minimization of parts
 - If material choice is **free** => more complicated

Process is AM, but WHY?

https://dfam.substack.com/p/dfam-education-in-2022

Composites Fiber Placement as DVs

ITB Seminar

44

GE Bracket by Schmidt et al., Struct. Multidiscip. Optim. (2020)

Inspired by spatial printing*

*Fang, G., Zhang, T., Huang, Y., Zhang, Z., Masania, K., & Wang, C. C. (2024). Exceptional mechanical performance by spatial printing with continuous fiber: Curved slicing, toolpath generation and physical verification. Additive Manufacturing, 104048.

https://www.youtube.com/watch?v=7Jxyu9uRMLo

ONERSesseinanar 46

Full wingbox concept

Opgenoord, M. M. and Willcox, K. E. (2018)

Cramer, N. B. et al. (2019)

Wingspan, m: 58.76 MTOW, t: 297,55

3 load cases:

- +2.5 g manouver
- -1 g manouver
- Cruise with gust (+1.3 g)

ITB Seminar

Material	Aluminum alloy		
E	69 GPa		
σ_c	-270 MPa		
σ_{t}	270 MPa		
ρ	2.7 g/cm ³		

Optimized mass = 21.342 t

-27.01% compared to 29.238 t (Fakhimi et al., 2021)

40

Practical Engineering Skills

Mechanical Learning of Additive Manufacturing Parts

• Highlights of MATLS 2H04A (2018) - Structure Materials Design Project

Example of 3D printed parts with different materials

Compression tests of students' designs (video click to play: crushed samples will disappear)

Sessional Instructor: Dr. Bosco (Hiu Ming) Yu, PhD 2018

A solution is determined by its manufacturing process: (in this case printing path)

- MNA Components are replaced by printed branches
- Design variables will be printed branch position and width per layer: x_{li} , w_{li}
- For each layer a projection is made to get the solid model modulus

Optimization formulation

$$\begin{cases} \min_{X} c = F^T \cdot U & \text{External forces work} \\ s. t. & \\ \sum_{i=1}^{N} \rho_i - v_f N \leq 0 & \text{Mass constraint} \\ \theta_l \leq \theta & \leq \pi - \theta_l & \text{Overhang angle constraint} \end{cases}$$

$$N_x = N_y = 52$$

 $v_f = 0.4$
5 printing components
18 printing intervals
 $5 \times 18 \times 2$ design variables

How to ECOdesign tomorrow's structures?

Prof. Joseph Morlier, Edouard Duriez, Miguel Charlotte, Catherine Azzaro-Pantel

#Our very First Results

#SIMP vs EMTO

Print it, test it

SMALL EXERCICE using top88.m

- Search the optimal 2D topology using symmetry
- --> modify top88.m

top88_ptBENDING(140, 50, 0.3, 3, 2, 2)

2 Outputs

Outputs

Need to add constraint max displacement?

Need to produce a Pareto front design vs volfrac?

Need to produce a Pareto front design vs volfrac?

How do you experimentaly introduce the external force?

How do you experimentaly introduce the external force?

Is the design sensitive to BCs size?

Is the design sensitive to BCs size?

Do you check the stress field a posteriori? Force = 54kN Thickness = 10 mm 50 mm 140 mm 280 mm

```
1 %%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 %%%%
                                                                                 . %%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 %%%%
                                                                                 x %example top88 joseph(140, 50, 0.3, 3, 2, 2)
 2 function x=top88(nelx,nely,volfrac,penal,rmin,ft)
                                                                                > function x=top88_ptBENDING(nelx,nely,volfrac,penal,rmin,ft)
                                                                                > close all
 3 %% MATERIAL PROPERTIES
                                                                                 . %% MATERIAL PROPERTIES
4 E0 = 1;
                                                                                 x E0 = 210e3;
 5 Emin = 1e-9;
                                                                                 . Emin = 1e-9;
 6 nu = 0.3;
                                                                                 nu = 0.3;
                                                                                > thickness=10;
                                                                                > Force_amplitude=54e3;
 7 %% PREPARE FINITE ELEMENT ANALYSIS
                                                                                 . ** PREPARE FINITE ELEMENT ANALYSIS
 8 All = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
                                                                                 . All = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
 9 A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
                                                                                 . Al2 = [-6 -3 \ 0 \ 3; \ -3 \ -6 \ -3 \ -6; \ 0 \ -3 \ -6 \ 3; \ 3 \ -6 \ 3 \ -6];
10 B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
                                                                                 . B11 = [-4 \ 3 \ -2 \ 9; \ 3 \ -4 \ -9 \ 4; \ -2 \ -9 \ -4 \ -3; \ 9 \ 4 \ -3 \ -4];
11 B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 21;
                                                                                 . B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 21;
12 KE = 1/(1-nu^2)/24*([All Al2;Al2' All]+nu*[Bl1 Bl2;Bl2' Bl1]);
                                                                                 x KE = thickness*1/(1-nu^2)/24*([All Al2;Al2' All]+nu*[Bl1 Bl2;Bl2' Bl1]);
13 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
                                                                                 . nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
14 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
                                                                                 . edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
15 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
                                                                                edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
16 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
                                                                                 . iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
17 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
                                                                                 . jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
18 % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
                                                                                 . % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
19 F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
                                                                                 x F = Force_amplitude*sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
20 U = zeros(2*(nely+1)*(nelx+1),1);
                                                                                 . U = zeros(2*(nely+1)*(nelx+1),1);
21 fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
                                                                                 x fixeddofs = union([1:2:2*(nely+1)],[(nelx+2)*(nely+1)]);
22 alldofs = [1:2*(nely+1)*(nelx+1)];
                                                                                 . alldofs = [1:2*(nely+1)*(nelx+1)];
23 freedofs = setdiff(alldofs,fixeddofs);
                                                                                 . freedofs = setdiff(alldofs,fixeddofs);
24 %% PREPARE FILTER
                                                                                 . %% PREPARE FILTER
                                                                  [58 unmodified lines hidden]
83 %% PRINT RESULTS
                                                                                    %% PRINT RESULTS
    fprintf(' It.: %5i Obj.: %11.4f Vol.: %7.3f ch.: %7.3f\n',loop,c, ...
                                                                                 . fprintf(' It.: %5i Obj.: %11.4f Vol.: %7.3f ch.: %7.3f \n',loop,c, ...
                                                                                      mean(xPhys(:)),change);
      mean(xPhys(:)),change);
                                                                                > figure(2)
                                                                                 > hold on
                                                                                 > plot(loop,c,'bo','MarkerFaceColor','b')
                                                                                > plot(loop,mean(xPhys(:))*100, 'ro', 'MarkerFaceColor', 'r')
                                                                                 > % plot(outeriter,(1+GKS1)*VMl,'ko','MarkerFaceColor','k')
                                                                                 > title(['Convergence volfrac = ',num2str(mean(xPhys(:))*100),', Compliance = ',num
                                                                                > grid on
                                                                                > legend('Compliance','Volume Fraction %')
                                                                                > xlabel('iter')
86 %% PLOT DENSITIES
                                                                                     && PLOT DENSITIES
                                                                                     figure(1)
87 colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow; .
                                                                                    colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;
                                                                                 > print(['DZ_it',num2str(loop,'%3d')],'-dpng')
88 end
                                                                                 . end
90 *********************
```

SAME EXERCISE using top3D

• https://top3dapp.com

Search the optimal 3D topology using symmetry

A regarder ... avant les prochaines séances... OptiStruct

https://altairuniversity.com/13907-topology-optimization-tutorial-3-point-bending-of-a-beam-1d-2d-and-3d/#

- 3 Surfaces de contact avec Ra=3,2μm
- Canalisation de refroidissement

Objectifs : déterminer une forme optimale qui minimise le rapport poids/résistance mécanique dans un volume défini tout en garantissant les surfaces de contact et la canalisation de refroidissement.

