Signale, Systeme und Sensoren

Labor Signale, Systeme und Sensoren WS 2015/16

J. Altmeyer, M. Kieser

Konstanz, 29. Oktober 2015

Zusammenfassung (Abstract)

Thema: Labor Signale, Systeme und Sensoren WS 2015/16

Autoren: J. Altmeyer jualtmey@htwg-konstanz.de

M. Kieser makieser@htwg-konstanz.de

Betreuer: Prof. Dr. Matthias O. Franz mfranz@htwg-konstanz.de

Jürgen Keppler juergen.keppler@htwg-

konstanz.de

Martin Miller martin.miller@htwg-

konstanz.de

TODO:Zusammenfassung etwa 100 Worte.

Inhaltsverzeichnis

Al	bbildu	ıngsverzeichnis	IV
Ta	belle	nverzeichnis	V
Listingverzeichnis			VI
1	Einl	eitung	1
2	Vers	such 1 - Ermittlung der Kennlinie des Abstandssensors	2
	2.1	Fragestellung, Messprinzip, Aufbau, Messmittel	2
	2.2	Messwerte	3
	2.3	Auswertung	4
	2.4	Interpretation	5
3	Vers	such 2	6
	3.1	Fragestellung, Messprinzip, Aufbau, Messmittel	6
	3.2	Messwerte	6
	3.3	Auswertung	6
	3.4	Interpretation	6
4	Vers	such 3	7
	4.1	Fragestellung, Messprinzip, Aufbau, Messmittel	7
	4.2	Messwerte	7
	4.3	Auswertung	7
	4.4	Interpretation	7
5	Vers	such 4	8
	5.1	Fragestellung, Messprinzip, Aufbau, Messmittel	8
	5.2	Messwerte	8

5.3	Auswertung
5.4	Interpretation
Anhang	9
A.1	Quellcode
	A.1.1 Quellcode Versuch 1
	A.1.2 Quellcode Versuch 2
	A.1.3 Quellcode Versuch 3
	A.1.4 Quellcode Versuch 4
Δ 2	Messergehnisse

Abbildungsverzeichnis

2.1	Aufbau des Versuchs zur Ermittlung der Kennlinie des Abstandssensors	3
2.2	verlauf	5

Tabellenverzeichnis

2.1	Ergebnisse der abgelesenen	Werte und Werte des Oszilloskops	 4
	Bigcomose del dogelesemen	Werte and Werte des Oszinoskops	

Listingverzeichnis

Einleitung

[?]

In diesem Versuch werden die in der Vorlesung behandelten Techniken zur Kalibrierung, Fehleranalyse und Fehlerrechnung auf den Fall eines Entfernungmessers angewandt. Der Entfernungsmesser basiert auf dem häufig in der Robotik eingesetzten Distanzsensor GP2Y0A21YK0F der Firma Sharp (s. Datenblatt in Moodle), der nach dem Triangulationsprinzip arbeitet.

Versuch 1 - Ermittlung der Kennlinie des Abstandssensors

2.1 Fragestellung, Messprinzip, Aufbau, Messmittel

Wie sieht das Verhältnis von Distanz zu Spannung aus dargestellt durch eine Kennlinie? Im Folgenden soll diese Kennlinie mittels Messung der Ausgangsspannung des Sensors für 20 verschiedene Entfernungswerte im Bereich von 10 - 70 cm ermittelt werden. Gemessen werden Distanz, Mittelwert der Spannung und ΔV des Rauschens. Es werden zwei Arten von Messungen durchgeführt eine ohne Berücksichtigung und eine mit Berücksichtigung des Einschwingvorgang des Sensors.

Messprinzip: Mit Hilfe des Triangulationsprinzip wird die Distanz über den Sharp Sensor als Spannung in Volt ermittelt. Die Distanz wird mit einem Meterstab gemessen. Das DeltaV wird durch die Differenz des Maximalen und Minimalen Spannungswerts ermittelt.

Aufbau und Messmittel: Der Aufbau der Messeinrichtung ist auf Abbildung 2.1 zu erkennen. Als Normal wird ein Meterstab verwendet. Ein Brett zur Reflexion des Lichtstrahls des Distanzsensors sowie ein Oszilloskop und Netzgerät.

Abbildung 2.1: Aufbau des Versuchs zur Ermittlung der Kennlinie des Abstandssensors

2.2 Messwerte

In Tabelle 2.1 sind die eigens abgelesenen Werte sowie die des Oszilloskops abgebildet. Letztere bestehen aus dem Mittelwert von 1500 Spannungswerten und ignorieren dabei den Einschwingvorgang des Sensors.

	abgelesene Werte		Oszilloskop Werte	
Distanz [cm]	Mittelwert [V]	Delta [mV]	Mittelwert [V]	Delta [mV]
10,0	1,5	80	1,48	80
13,2	1,3	120	1,28	80
16,3	1,19	100	1,17	80
19,4	1,05	32	1,03	32
22,6	0,949	32	0,93	40
25,8	0,881	32	0,86	24
28,9	0,82	32	0,80	32
32,1	0,778	32	0,76	32
35,3	0,714	24	0,70	32
38,4	0,681	64	0,67	64
41,6	0,639	88	0,63	64
44,7	0,638	80	0,63	64
47,9	0,597	80	0,59	72
51,1	0,581	40	0,57	64
54,2	0,562	56	0,55	56
57,4	0,539	40	0,53	56
60,5	0,503	56	0,50	24
63,7	0,486	40	0,48	24
66,8	0,469	40	0,46	32
70,0	0,453	40	0,44	24

Tabelle 2.1: Ergebnisse der abgelesenen Werte und Werte des Oszilloskops

2.3 Auswertung

Im Diagramm (Abbildung 2.2) ist die Osziloskop Kennlinie durchgehend unterhalb der Linie der abgelesenen Daten.

Abbildung 2.2: verlauf

2.4 Interpretation

Die Differenz zwischen Oszilloskop Werten und abgelesenen Werten lässt sich durch den nicht berücksichtigten Einschwingvorgang der ersten 1000 Daten erklären.

Versuch 2

3.1 Fragestellung, Messprinzip, Aufbau, Messmittel

mit ergebnissen aus versuch1 wird gerechnet

3.2 Messwerte

1. Eingangs und Ausgangswerte logarithmiert lineare Regression Bild Zusammenhang

3.3 Auswertung

Ermittlung der Kennlinie:

2. logarithmierte Betrachtung y = a+x+b Bild Gerade es müssen keine werte entfernt werden. Messwerte bilden eine Gerade. Keine extremen Ausreiser auch nicht bei geringen Spannungen bzw. weiter Entfernung y = eb. 3. Steigung a = -1,6 Schnittpunkt mit Y-Achse b = 3 daraus ergibt sich eine Kennlinie wie folgt: y = ...

3.4 Interpretation

interpretation der kennlinie: aus negativen wert des a ergibt sich abnehmender Zusammenhang der Potenzfunktion : Mit zunehmender Spannung nimmt die Distanz ab

Versuch 3

Ermittlung des Fehlers

4.1 Fragestellung, Messprinzip, Aufbau, Messmittel

4.2 Messwerte

Messung des DinA4 Blattes in tabelle2

4.3 Auswertung

4.4 Interpretation

1cm Systematischer Fehler

Versuch 4

- 5.1 Fragestellung, Messprinzip, Aufbau, Messmittel
- 5.2 Messwerte
- 5.3 Auswertung
- 5.4 Interpretation

Anhang

- A.1 Quellcode
- **A.1.1** Quellcode Versuch 1
- A.1.2 Quellcode Versuch 2
- A.1.3 Quellcode Versuch 3
- A.1.4 Quellcode Versuch 4
- A.2 Messergebnisse