O Detetor de Geiger-Müller

Filipe Miguel (84381) • Francisco Duque (84383) • João Bravo (84390) • José Figueiredo (84402)

Instituto Superior Técnico

Mestrado Integrado em Engenharia Física Tecnológica

LFRA - Quarta-feira - Grupo 4B - Prof. Sérgio Ramos

Outubro de 2017

I. ESTUDO DA CURVA DE RESPOSTA DO DETETOR EM FUNÇÃO DA TENSÃO APLICADA

Começou-se por fazer um varrimento da tensão em incrementos de 25 V e tempos de aquisição (t_{aq}) de 10 s, entre 0 e 1200 V, sem utilizar nenhuma fonte radioativa. Só se observaram contagens a partir de 725 V, correspondentes a ruído principalmente causado pela radioatividade do ar. Para tensões inferiores a contagem é nula por não se ter ainda atingido o patamar de Geiger-Müller, sendo por isso a amplificação insuficiente para que o número de contagens seja mensurável pelo detetor.

Usando uma fonte radioativa de 204 Tl de atividade $0.5~\mu Ci$, fizeram-se aquisições de 20 segundos para tensões entre 600 e 1200 V, apresentando-se os dados na tabela 1. Nesta também estão as taxas de contagem medidas ($R_m = N/t_{aq}$), e taxas de contagem medidas normalizadas à segunda menor taxa de contagem não nula medida, $R_{m_0} = 52.1 \pm 1.6~(s^{-1})$.

Tabela 1: Valores da curva de resposta do detetor em função da tensão aplicada ($t_{aq}=20~{
m s}$)

U (V)	N	$R_m(s^{-1})$	R_m/R_{m_0}
600-700	0 ± 0	0.0 ± 0	0.000 ± 0
725	991 ± 31	49.6 ± 1.6	0.951 ± 0.042
750	1042 ± 32	52.1 ± 1.6	1.000 ± 0.044
775	1080 ± 33	54.0 ± 1.6	1.036 ± 0.045
800	1161 ± 34	58.1 ± 1.7	1.114 ± 0.048
825	1184 ± 34	59.2 ± 1.7	1.136 ± 0.048
850	1176 ± 34	58.8 ± 1.7	1.129 ± 0.048
875	1168 ± 34	58.4 ± 1.7	1.121 ± 0.048
900	1220 ± 35	61.0 ± 1.7	1.171 ± 0.049
925	1251 ± 35	62.6 ± 1.8	1.201 ± 0.050
950	1294 ± 36	64.7 ± 1.8	1.242 ± 0.052
975	1239 ± 35	62.0 ± 1.8	1.189 ± 0.050
1000	1278 ± 36	63.9 ± 1.8	1.226 ± 0.051
1025	1405 ± 37	70.3 ± 1.9	1.348 ± 0.055
1050	1286 ± 36	64.3 ± 1.8	1.234 ± 0.051
1075	1320 ± 36	66.0 ± 1.8	1.267 ± 0.052
1100	1374 ± 37	68.7 ± 1.9	1.319 ± 0.054
1125	1382 ± 37	69.1 ± 1.9	1.326 ± 0.054
1150	1315 ± 36	65.8 ± 1.8	1.262 ± 0.052
1175	1407 ± 38	70.4 ± 1.9	1.350 ± 0.055
1200	1469 ± 38	73.5 ± 1.9	1.410 ± 0.057

Os erros considerados para as grandezas da tabela 1 foram:

$$\sigma_N = \sqrt{N} \tag{1}$$

$$\sigma_{R_m} = \sigma_N / t_{aq} \tag{2}$$

$$\sigma_{\frac{R_m}{R_{m_0}}} = \frac{R_m}{R_{m_0}} \sqrt{\left(\frac{\sigma_N}{N}\right)^2 + \left(\frac{\sigma_{N_0}}{N_0}\right)^2} \ \ (3)$$

Escolheu-se como tensão de trabalho para o resto da experiência $U_0 = 900 \ V$, pois estando esta relativamente a meio do patamar de Geiger-Müller, pequenas flutuações na tensão não irão causar a saída desta região de trabalho. Assim, as condições experimentais mantêm-se aproximadamente constantes ao longo de toda a experiência.

O declive intrínseco do patamar foi obtido fazendo-se um ajuste das taxas de contagem medidas normalizadas, a uma expressão linear do tipo $\frac{R_m}{R_{m_0}} = a \cdot V + b$. A normalização efetuada anteriormente torna este declive independente de qualquer condição experimental externa ao detector, como a distância da fonte ao detector, a fonte radioativa utilizada ou o tempo de aquisição.

Por se terem dúvidas se o patamar de Geiger-Müller se inicia aos 725 V, ou se este ainda corresponde a uma zona de transição entre regiões de trabalho (o chamado joelho do patamar), fizeram-se dois ajustes, com e sem este ponto. Estes encontram-se respetivamente nas fig. 1 e fig. 2, estando os pârametros de ajuste respetivamente nas tabelas 2 e 3.

Tabela 2: Ajuste com primeiro ponto

Tabela 3: Ajuste sem primeiro ponto

Para ambos os ajustes, os declives intrínsecos do patamar, correspondentes ao valor de a, são como esperado reduzidos. O valor

de b é desprovido de significado físico já que o patamar de Geiger-Müller não se estende até à origem U=0 V. Os χ^2/ngl são ambos próximos de 1, indicativo de ajustes de boa qualidade. Como a diferença entre estes é reduzida, não se irá excluir o ponto correspondente aos 725 V do patamar de Geiger-Müller. O declive intrínseco do patamar é então $a=(7.92\pm0.78)\times10^{-4}~V^{-1}$.

Figura 1: Ajuste Linear aos dados referentes à taxa de contagem normalizada em função da tensão (com primeiro ponto).

Figura 2: Ajuste Linear aos dados referentes à taxa de contagem normalizada em função da tensão (sem primeiro ponto).

II. ESTUDO DA CORREÇÃO À TAXA DE CONTAGEM DO DETETOR DEVIDO AO SEU TEMPO MORTO

O tempo morto (T_R) de um detetor quantifica o tempo decorrido após a deteção de um evento, até que este esteja operacional para detetar e resolver um novo. Conhecendo o seu valor, a taxa real de eventos R_v que se detetaria caso o tempo morto fosse nulo pode ser calculada a partir da taxa de contagem medida (R_m) , através de (5). Para deduzir este intervalo, compararam-se contagens medidas de duas fontes independentes, com as contagens obtidas pela exposição simultânea do detetor a ambas as fontes. Assumindo que a taxa de emissão de cada uma das fontes é independente de estarem na vizinhança de outra, a taxa real da emissão simultânea (R_{v12}) seria a soma das taxas reais de emissão de cada uma das fontes $(R_{v1} e R_{v2})$ individualmente. Recorrendo a esta igualdade e desprezando termos de segunda ordem, obtém-se (4) para o cálculo do tempo morto do detetor.

$$T_R = \frac{R_1 + R_2 - R_{12}}{2R_1 R_2} \tag{4}$$

$$R_v = \frac{R_m}{1 - R_m T_R} \tag{5}$$

Recorrendo a duas fontes de meia-lua ²⁰⁴Tálio de atividade semelhante, efetuaram-se contagens de cada uma independentemente e de ambas em simultâneo de acordo com as configurações presentes na figura 3. Os dados obtidos apresentam-se na tabela 4.

Figura 3: Esquema das configurações das fontes para os diferentes casos estudados (os pontos representam a fonte radioativa.

Tabela 4: Dados relativos a cada uma das fontes de Césio e ao caso simultâneo

Configuração	$N_1 \times 10^5$	$N_2 \times 10^5$	$N_{\Sigma} imes 10^5$	$R_m (s^{-1})$	$R_v (s^{-1})$
1+0	1.123 ± 0.011	1.133 ± 0.011	2.257 ± 0.015	188.1 ± 1.3	201 ± 13
0+2	1.085 ± 0.011	1.068 ± 0.011	2.153 ± 0.015	179.4 ± 1.2	192 ± 12
1+2	2.051 ± 0.014	2.06 ± 0.15	4.11 ± 0.21	342.6 ± 1.7	391 ± 43
Radiação de fundo	24 ± 5	18 ± 4	42 ± 6	0.358 ± 0.055	0.358 ± 0.055

Os erros de N_1 e N_2 são dados por (1) enquanto:

$$\sigma_{N\Sigma} = \sqrt{\sigma_{N_1} + \sigma_{N_2}} \tag{6}$$

O tempo morto do detetor, calculado por (4), é $T_R = (3,6 \pm 0.3) \cdot 10^{-04} s$. O erro que lhe está associado foi obtido por propagação de erros através da equação (7).

$$\sigma_{T_R} = \frac{\sqrt{R_1^2(R_1 - R_{12})^2 \sigma_{R_2}^2 + R_2^2(R_2 - R_{12})^2 \sigma_{R_1}^2 + R_1^2 R_2^2 \sigma_{R_{12}}^2}}{2R_1^2 R_2^2}$$
(7)

Fez-se igualmente uma aquisição sem nenhuma das fontes radioativas, de forma a obter a taxa de contagem devido à radiação de fundo. Por ser muito reduzida, o tempo entre duas contagens supera o do tempo morto do detetor e o seu valor corrigido não sofre por isso alterações. Não obstante, perante uma fonte radioativa a radiação de fundo influencia a taxa de contagens medida. Por só fazer sentido comparar taxas de contagem verdadeiras, subtrair-se-á a taxa referente à radiação de fundo, a todas as taxas de contagem medidas após a correção recorrendo a (8), obtendo-se uma taxa de contagem corrigida (R_c) dada por:

$$R_c = \frac{R_m}{1 - R_m T_R} - R_{fundo} \tag{8}$$

O erro que lhe está associado é obtido por propagação de erros através da seguinte expressão:

$$\sigma_{R_c} = \sqrt{\frac{R_m^4 \sigma_{T_r}^2 + \sigma_{R_m}^2}{(1 - R_m T_r)^4} + \sigma_{R_{fundo}}^2}$$
(9)

Aquando o estudo da curva de resposta do detetor em função da tensão aplicada, não se tiveram estes efeitos em consideração pois o tempo morto é dependente da tensão, o que impossibilita esta análise com correções.

III. Estudo das eficiências para radiações β e γ

Nos quadros seguintes apresentam-se os resultados relativos às eficiências das contagens obtidas para a emissão de radiação β por uma fonte de ^{204}Tl e para a emissão de radiação γ por uma fonte de ^{137}Cs . De modo a calcular a eficiência intrínseca do detetor (quociente entre a taxa de contagem obtida pelo detetor e radiação nele incidente) é necessária uma estimativa da razão entre as partículas que interagem com o detetor e as nele incidentes. Esta razão designa-se eficiência geométrica e é dada pela equação (11), sendo proporcional ao ângulo sólido que permite a passagem das partículas até ao detetor, e a um fator multiplicativo c que quantifica a absorção de partículas por parte do meio. No estudo da eficiência dos β , para se obter uma maior precisão do ângulo sólido e consequente diminuição da incerteza da eficiência geométrica, usou-se uma chapa metálica furada, que apenas permite a passagem de partículas pelo furo. Este procedimento não foi possível no caso da radiação γ : a fraca interação desta radiação com a matéria exigiria o uso de placa de elevadíssima densidade e/ou grande espessura para bloquear estes fotões altamente energéticos. Dado a sua inexistência em laboratório, o ângulo sólido de interação é estimado medindo-o numa superfície interior ao detetor na qual ocorram a maioria das interações.

O 204 Tálio foi escolhido como fonte radioativa para o estudo da eficiência de β s já que emite exclusivamente esta radiação (é um chamado β puro). Para a radiação γ este procedimento já não é possível, por não existirem emissores puros de γ (a sua emissão é sempre acompanhada da radiação α ou β), já que esta advém da desexcitação de um nuclídeo-filho. Para a radição β usou-se uma fonte de ^{137}Cs . Para o cálculo das variáveis em questão e respetivos erros estatísticos foram usadas as seguintes expressões:

$$\Omega = 2\pi \left(1 - \frac{h}{\sqrt{h^2 + r^2}} \right) \qquad \sigma_{\Omega} = 2\pi r \sqrt{\frac{h^2 \sigma r^2 + r^2 \sigma h^2}{(h^2 + r^2)^3}}$$
 (10)

$$\varepsilon_{geom} = c \left(\Omega / 4\pi \right) \qquad \qquad \sigma_{\varepsilon_{geom}} = c \left(\sigma_{\Omega} / 4\pi \right) \tag{11}$$

$$\varepsilon_{tot} = \frac{R}{A(t)} \qquad \qquad \sigma_{\varepsilon_{tot}} = \frac{R}{A(t)} \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_{A(t)}}{A(t)}\right)^2} \tag{12}$$

$$\varepsilon_{int} = \frac{\varepsilon_{tot}}{\varepsilon_{geom}} \qquad \qquad \sigma_{\varepsilon_{int}} = \frac{\varepsilon_{tot}}{\varepsilon_{geom}} \sqrt{\left(\frac{\sigma_{\varepsilon_{tot}}}{\varepsilon_{tot}}\right)^2 + \left(\frac{\sigma_{\varepsilon_{geom}}}{\varepsilon_{geom}}\right)^2}$$
 (13)

O fator multiplicativo em (11) deve-se à absorção da radiação no percurso entre a fonte e o detetor. Negligenciando a absorção por parte do ar em ambas as circunstâncias, usa-se c=1 para os cálculos relativos à eficiência geométrica na radiação β , e c=(1-0.1) para a radiação γ , uma vez que a taxa de absorção da placa metálica é de 10% para esta radiação.

Para o caso da radiação γ , como discutido antes, a estimativa do ângulo sólido é delicada. Tendo em conta que fotões que entram no detetor muito próximos da sua borda e imediatamente saem, considera-se que a sua contribuição para as contagens é nula, pois esta distância é muito menor que o seu livre percurso médio. Numa primeira análise considerou-se a soma da distância da terceira prateleira à base com meia altura do detetor e o seu raio para o cálculo do ângulo sólido de interação. Mais tarde, na secção V estudou-se a variação da taxa de contagens com a distância entre a fonte e o detetor, sendo possível ajustar com precisão a distância relevante de interação, obtendo-se $h=61.6\pm0.8$. O raio do detetor é dado no guia da experiência sem incerteza associada, não sendo esta por isso utilizada no cálculo da incerteza no ângulo sólido. No caso da emissão β a altura para o cálculo do Ângulo sólido é dada pela distância da fonte a meia altura da chapa furada, tomando-se a mesma meia altura como incerteza. O raio do furo e respetiva incerteza são dados no guia.

Por fim destacar que as taxas de contagem experimentais foram corrigidas recorrendo à equação (8), sendo o erro dado por (9).

Tabela 5: Dados relativos à eficiência geométrica para a radiação β da fonte de ^{204}Tl

h (mm) r (mm)
$$\Omega$$
 (sr) ε_{geom} (%)
27.0 ± 1.6 3.625 ± 0.025 0.056 ±0.006 0.45 ± 0.06

Tabela 6: Dados relativos à eficiência geométrica para a radiação γ da fonte de 137 Cs

Tabela 7: Dados relativos às contagens para a radiação β da fonte de 204 Tl e respetiva taxa corrigida

Tabela 8: Dados relativos às contagens para a radiação γ da fonte de 137 Cs e respetiva taxa corrigida

Tabela 9: Resultados para a eficiência total e intrínseca para a radiação β da fonte de ^{204}Tl

$$\varepsilon_{tot}$$
 (%) ε_{int} (%) 0.33 ± 0.09 75 ± 22

Apresentam-se ainda as atividades calculadas para ambas as fontes foram devidamente pesados com a probabilidade de ocorrência do decaimento que resulta na emissão da partícula considerada. Isto é, para o ^{204}Tl o valor da constante multiplicativa c em (14) é de 0.979 uma vez que só 97.9% dos decaimentos desses núcleos resultam na emissão β , e o mesmo é válido para o ^{137}Cs , com c igual a 0.935 (e, nesse caso, a emissão é γ). As expressões relevantes para os cálculos das grandezas e respetivos erros encontram-se abaixo:

$$A(t) = c \left(A_0 e^{-\lambda \Delta t} \right) \tag{14}$$

$$\sigma_{\lambda} = \log(2)(1/t_{1/2})^2 \sigma_{t_{1/2}} \tag{15}$$

$$\sigma_{\Lambda t} = \Delta t / 10 \tag{16}$$

$$\sigma A(\Delta t) = A(\Delta t) \sqrt{\left(\frac{\sigma_{A_0}}{A_0}\right)^2 + (\lambda \sigma_{\Delta t})^2 + (\Delta t \sigma_{\lambda})^2}$$
(17)

Tabela 10: Resultados para a eficiência total e intrínseca para a radiação γ da fonte de ^{137}Cs

$$\frac{\varepsilon_{tot}(\%)}{0.021 \pm 0.009} = \frac{\varepsilon_{int}(\%)}{2.3 \pm 1.0}$$

Tabela 11: Dados relativos à fonte de ^{204}Tl

t_0 (data)	$A(t_0)$ (Ci)	Δt (anos)	$t_{1/2}$ (anos)	$\lambda (s^{-1})$	$A(\Delta t)$ (kBq)
1/4/08	0.5 ± 0.1	9.5	3.78 ± 0.01	$(5.81 \pm 0.02) \times 10^{-9}$	3.1 ± 0.8

Tabela 12: *Dados relativos à fonte de* ¹³⁷Cs

t_0 (data)	$A(t_0)$ (Ci)	Δt (anos)	$t_{1/2}$ (anos)	$\lambda (s^{-1})$	$A(\Delta t)$ (kBq)
1/3/94	5 ± 1	23.6	30.08 ± 0.01	$(7.275 \pm 0.003) \times 10^{-10}$	100 ± 21

Observa-se que a eficiência intrínseca para a radiação β (resultados na tabela 9) é bastante elevada como seria de esperar dada a elevada capacidade de ionização. Pelo contrário, no caso da radiação γ (resultados na tabela 8) esta é muito reduzida (mas não nula), dado que a ausência de carga nos fotões diminui a sua capacidade de interação com a matéria. Por esta razão, o seu livre percurso médio é muito maior e para que o detetor tivesse a mesma eficiência geometrica para esta radiação teria de ter dimensões muito maiores.

IV. Estudo da retrodifusão de partículas β

Usou-se nesta parte do trabalho uma fonte radioativa simétrica de β pura, a 2^{04} Tl, na 3^a prateleira do detetor. Começou-se por analisar as contagens de partículas β sem a presença de um material retrodifusor, seguindo-se a mesma análise com materiais de diferentes números atómicos. Com estes, foi possível calcular os respetivos fatores de retrodifusão f_{bksc} e estudar a variação do mesmo com o número atómico dos materiais retrodifusores.

Apresentam-se de seguida os números atómicos dos elementos que compõem os materiais usados na experiência, bem como os cálculos de um $Z_{efetivo}$ dos materiais compostos por vários elementos, através de uma média ponderada pelos coeficientes estequiométricos dos elementos nas formulas químicas dos materiais:

Tabela 13: Número atómico dos elementos que compõem os materiais usados

Elemento	Z	$Z_{CH} = \frac{1 \cdot Z_C + 1 \cdot Z_H}{2} = \frac{1 \cdot 6 + 1 \cdot 1}{2} = 3.5$	(18)
Н	1	Δ Δ	
C	6		
O	8	$Z_{SiO_2} = \frac{Z_{Si} + 2 \cdot Z_O}{3} = \frac{14 + 2 \cdot 8}{3} = 10$	(10)
Al	13	$Z_{SiO_2} = {3} = {3} = 10$	(19)
Si	14		
Fe	26		
Cu	29	$Z_{Fe_{99}C} = \frac{99 \cdot Z_{Fe} + Z_C}{100} = \frac{99 \cdot 26 + 6}{100} = 25.8$	(20)
W	74	100 100	(==)
Pb	82		

Apresenta-se na tabela 14 dados recolhidos e tratados para os diversos materiais retrodifusores na realização de duas aquisições de $90 \ s$ para cada, à tensão de trabalho de $900 \ V$:

Tabela 14: Numero atómico dos materiais retrodifusores com as respetivas contagens, taxas corrigidas e fator de retrodifusão ($t_{aq} = 90 \text{ s}$)

Material	Z	$\sqrt{\frac{(Z+1)Z}{M}} (u.m.a.)^{-1/2}$	N_1	N_2	N	$R(s^{-1})$	$R_c \ (s^{-1})$	f_{bksc}
Nenhum	0	0	19200 ± 139	19042 ± 138	38242 ± 196	212.5 ± 1.1	230.1 ± 2.0	1.000 ± 0.012
Plástico (CH)	3.5	1.56	20050 ± 142	19846 ± 141	39896 ± 200	221.6 ± 1.2	241.0 ± 2.1	1.047 ± 0.013
Vidro (SiO ₂)	10	2.34	21870 ± 148	21722 ± 147	43592 ± 209	242.2 ± 1.2	265.5 ± 2.5	1.154 ± 0.014
Alumínio	13	2.60	22007 ± 148	22167 ± 149	44174 ± 210	245.4 ± 1.2	269.4 ± 2.5	1.171 ± 0.015
Aço (<i>Fe</i> ₉₉ <i>C</i>)	25.8	3.53	22454 ± 150	22822 ± 151	45276 ± 213	251.5 ± 1.2	276.8 ± 2.6	1.203 ± 0.015
Cobre	29	3.70	23062 ± 152	23415 ± 153	46477 ± 216	258.2 ± 1.2	285.0 ± 2.7	1.238 ± 0.016
Tungsténio	74	5.49	28938 ± 170	29009 ± 170	57947 ± 241	321.9 ± 1.4	364.9 ± 4.1	1.586 ± 0.022
Chumbo	82	5.73	29491 ± 172	29344 ± 171	58835 ± 243	326.9 ± 1.4	371.2 ± 4.3	1.613 ± 0.023

^{*} M na terceira coluna corresponde à massa do núcleo difusor.

Na análise de resultados, para além da expressões para o erro das contagens e taxas corrigidas, (1), (6), (8) e (9), foram utilizadas as expressões abaixo para o fator de retrodifusão e erros associados:

$$f_{bksc} = \frac{N}{N_{none}} \qquad \sigma_{f_{bksc}} = f_{bksc} \sqrt{\left(\frac{\sigma_N}{N}\right)^2 + \left(\frac{\sigma_{N_{none}}}{N_{none}}\right)^2} \tag{21}$$

onde N_{none} representa as contagens na ausência de qualquer material retrodifusor.

Os materiais de blindagem utilizados possuíam uma espessura de 1/8" (à parte do tungsténio), o que levantou a necessidade de nivelamento da fonte com cartões da mesma espessura. Isto permitiu manter a distância da fonte ao detetor, e assim o ângulo sólido, aproximadamente iguais. Note-se que, comprovando que esta espessura era já a de saturação para o material com o menor número atómico, o plástico, então também o seria para os restantes materiais, o que de facto se verificou.

Nota-se assim a partir da tabela 14 que o f_{bksc} não é constante com o aumento do número atómico da blindagem usada, o que faz sentido já que, sendo as partículas β difundidas a grandes ângulos devido à sua pequena massa, as contagens das mesmas pelo detetor na configuração usada devem depender da capacidade de retrodifusão do material usado. Este parâmetro aumento com o aumento do Z do material de blindagem usado conforme o esperado.

Fez-se um ajuste linear do tipo $f_{bksc}^{sat} = a \cdot \sqrt{\frac{(Z+1)Z}{M}} + b$ de forma a comprovar a proporcionalidade teórica entre estas duas grandezas. Apresenta-se de seguida o mesmo em conjunto com os parâmetros de ajuste obtidos:

Figura 4: Ajuste do fator de retrodifusão de saturação $f_{\mathrm{bksc}}^{\mathrm{sat}}$ com $\sqrt{\frac{(\mathrm{Z}+1)\mathrm{Z}}{M}}$

Tabela 15: Parâmetros do ajuste apresentado da fig. 4

$a (u.m.a)^{1/2}$	b	ngl	χ^2/ngl
0.0966 ± 0.0033	0.9363 ± 0.0096	6	22.13

O ajuste não interseta todos os pontos nas suas incertezas, o que indica que a proporcionalidade teórica não se confirma neste conjunto de dados experimentais. Já o valor da ordenada na origem encontra-se próximo da unidade, valor esperado sem a presença de um material retrodifusor, embora não a intercete na sua incerteza, distanciando-se cerca de $6.6\sigma_b$ da mesma, um valor ainda elevado. O χ^2/ngl do ajuste é algo superior à unidade, correspondendo esta ao ajuste perfeito, em uma ordem de grandeza, o que indica a possível existência de erros na configuração experimental usada que não foram considerados. De qualquer modo, é possível verificar o aumento do fator de retrodifusão de saturação com o número atómico do material da blindagem, que se justifica pelo aumento da secção eficaz de interação da radiação β com a matéria e consequente aumento da probabilidade de retrodifusão associada à blindagem utilizada.

V. Estudo da variação da taxa de contagem de partículas γ com a distância

Nesta etapa do trabalho utilizou-se uma fonte de ^{137}Cs , alterando-se a sua distância ao detetor de modo a estudar a variação da taxa de contagem de γ s com esta grandeza. Na prateleira 0 foi colocada uma placa de alumínio para bloquear a radiação β . Esta radiação é composta por partículas carregadas eletricamente que interagem com o ar. Ao variar-se a prateleira em que as aquisições são feitas, varia-se o tamanho da camada de ar com que a radiação interage. Logo, as condições experimentais não seriam mantidas em cada ensaio se a radiação β também fosse contabilizada. O mesmo não se passa com a radiação γ cujas partículas constituintes são neutras, e apenas sofrem uma absorção de 10 % pela chapa de alumínio, que é constante para todos os ensaios. Para cada prateleira foram realizadas duas aquisições de 60 s, cujos resultados se encontram na tabela 16:

Tabela 16: Contagens e respetivas taxas corrigidas em função da distância ao detetor(L denota a distância da respetiva prateleira à base do detetor; $t_{aq} = 60 \text{ s}$

Prateleira	L(mm)	N_1	N_2	N	$R_c (s^{-1})$
1	6.35	2818 ± 53	2928 ± 54	5746 ± 76	48.39 ± 0.66
2	15.875	1780 ± 42	1882 ± 43	3662 ± 61	30.51 ± 0.52
3	25.4	1221 ± 35	1274 ± 36	2495 ± 50	20.59 ± 0.43
4	34.925	900 ± 30	933 ± 31	1833 ± 43	15.00 ± 0.37
5	44.45	753 ± 27	692 ± 26	1445 ± 38	11.74 ± 0.32

Fez-se um ajuste dos dados a uma expressão do tipo $f=\frac{a_1}{(r+a_2)^2}$, já que teoricamente para fontes isotrópicas a intensidade da radiação decai com $1/r^2$ (sendo r a distância à fonte). O parâmetro a_2 permite estimar a distância entre a base do detetor e a zona média onde as partículas são detetadas, uma vez que a distância a considerar terá que ser, na realidade, a soma das duas. Na seguinte figura 5 encontra-se o ajuste obtido, apresentado-se os pârametros de ajuste na tabela 17:

Figura 5: Ajuste dos dados da variação da taxa de contagem de γ s com a distância a $f = \frac{a_1}{(R+a_2)^2}$

Tabela 17: Parâmetros do ajuste apresentado da fig.5

O valor de a_2 se encontra-se dentro do esperado ($0 < a_2 < h/2$, com h a altura do detetor). Este valor poderá agora ser utilizado para estimar mais corretamente o ângulo sólido considerado no cálculo da eficiência geométrica para a emissão γ na fonte de ^{137}Cs . O χ^2/ngl encontra-se um pouco afastado da unidade, correspondendo esta ao ajuste perfeito, pelo que ainda que este intersete todos pontos nas suas barras de erro, existirão erros para além dos considerados.

VI. ESTUDO DA DISPERSÃO ESTATÍSTICA

De modo a estudar a dispersão estatística dos resultados obtidos para umas dadas condições experimentais, retiraram-se 50 aquisições de 30 s para a uma fonte radioativa de ^{204}Tl , apresentando-se os resultados na segunda coluna da tabela 18 (N). À semelhança dos casos anteriores, corrigiram-se as taxas de contagens obtidas (e consequentemente as próprias contagens) considerando o tempo morto do detetor, encontrando-se os resultados deste processo na terceira coluna desta tabela (N_{corr}). Por fim, calculou-se o desvio da contagem obtida em cada ensaio em relação à média das contagens (quarta coluna $N_{corr} - \overline{N}$), e normalizaram-se estes desvios ao desvio quadrático médio (dado pela equação (23)) da amostra (quinta coluna; a média \overline{N} e o desvio padrão σ da distribuição apresentam-se na tabela 19). A média da amostra e o seu desvio quadrático médio representam respetivamente o estimador do valor médio e o desvio padrão da distribuição estatística da população. Sendo a radiação de fundo um erro sistemático aditivo, na subtração da média a cada contagem este erro cancela-se. Assim, no cálculo de N_{corr} não se subtraiu a taxa de contagem da radiação de fundo, evitando-se uma propagação adicional de erros.

Segundo o Teorema do Limite Central, quando o número de amostras da variável estatística tende para infinito - as contagens do detetor - os desvios relativamente ao valor médio apresentam uma distribuição normal. De modo a confirmar esta ideia, na tabela 20 compara-se a frequência relativa de eventos em vários intervalos de relevância estatística com a probabilidade prevista pela distribuição normal, verificando-se uma correspondência quase total. Com o propósito de obter um histograma representativo desta distribuição, dividiram-se os valores de $\frac{N_{corr}-\overline{N}}{\sigma}$ em classes de 0.5 de amplitude, estando as frequências absolutas e relativas na tabela 21. Na representação gráfica, teve-se ainda o cuidado de dividir a frequência relativa de cada classe pela sua amplitude, eliminando a dependência da normalização à largura de cada classe. Os dados encontram-se a vermelho na figura 6. As barras de erro de cada classe representam, na horizontal, a sua amplitude, e na vertical relacionam-se com a variância associada a cada classe (\sqrt{n} , sendo n a frequência absoluta de cada classe renormalizada pelo total de ensaios e pela amplitude da classe).

Por fim ajustou-se uma expressão gaussiana (24) ao histograma, usando como parâmetros livres o valor médio μ e o desvio padrão σ . Os resultados obtidos para os parâmetros encontram-se na tabela 22. Note-se que estes resultados estão, dentro da sua incerteza, de acordo com os previstos teoricamente para uma distribuição estatística renormalizada deste modo ($\mu_{teor.}=0$ e $\sigma_{teor.}=1$, havendo mais uma vez elevada concordância entre a distribuição dos dados experimentais e a prevista estatisticamente, tendo-se obtido um ajuste de boa qualidade com χ^2/ngl próximo da unidade. Pode-se se por isso concluir que as incertezas que afetaram a experiência têm fundamentalmente um caráter aleatório.

Tabela 18: Dispersão estatística do número de contagens obtidas em 50 ensaios (t_{aq} =30 s)

Ensaio	N	N_{corr}	$N-\overline{N}$	$N - \overline{N}/\sigma$
1	1815 ± 43	1856 ± 45	-7.37	-0.18
2	1848 ± 43	1891 ± 45	27.17	0.65
3	1845 ± 43	1888 ± 45	24.03	0.57
4	1880 ± 43	1924 ± 46	60.69	1.44
5	1832 ± 43	1874 ± 45	10.42	0.25
6	1760 ± 42	1799 ± 44	-64.86	-1.54
7	1838 ± 43	1880 ± 45	16.70	0.40
8	1732 ± 42	1770 ± 44	-94.10	-2.24
9	1820 ± 43	1862 ± 45	-2.13	-0.05
10	1809 ± 43	1850 ± 45	-13.64	-0.32
11	1822 ± 43	1864 ± 45	-0.04	0.00
12	1792 ± 42	1832 ± 44	-31.42	-0.75
13	1854 ± 43	1897 ± 45	33.45	0.80
14	1829 ± 43	1871 ± 45	7.28	0.17
15	1792 ± 42	1832 ± 44	-31.42	-0.75
16	1854 ± 43	1897 ± 45	33.45	0.80
17	1829 ± 43	1871 ± 45	7.28	0.17
18	1866 ± 43	1910 ± 45	46.02	1.09
19	1789 ± 42	1829 ± 44	-34.56	-0.82
20	1843 ± 43	1886 ± 45	21.94	0.52
21	1857 ± 43	1900 ± 45	36.60	0.87
22	1777 ± 42	1817 ± 44	-47.10	-1.12
23	1862 ± 43	1906 ± 45	41.83	1.00
24	1794 ± 42	1834 ± 44	-29.33	-0.70
25	1746 ± 42	1784 ± 44	-79.49	-1.89
26	1867 ± 43	1911 ± 45	47.07	1.12
27	1827 ± 43	1869 ± 45	5.19	0.12
28	1807 ± 43	1848 ± 45	-15.73	-0.37
29	1774 ± 42	1814 ± 44	-50.24	-1.19
30	1879 ± 43	1923 ± 46	59.64	1.42
31	1801 ± 42	1842 ± 44	-22.01	-0.52
32	1810 ± 43	1851 ± 45	-12.60	-0.30
33	1892 ± 43	1937 ± 46	73.26	1.74
34	1885 ± 43	1930 ± 46	65.93	1.57
35	1821 ± 43	1863 ± 45	-1.09	-0.03
36	1813 ± 43	1854 ± 45	-9.46	-0.22
37	1787 ± 42	1827 ± 44	-36.65	-0.87
38	1901 ± 44	1946 ± 46	82.70	1.97
39	1792 ± 42	1832 ± 44	-31.42	-0.75
40	1807 ± 43	1848 ± 45	-15.73	-0.37
41	1844 ± 43	1887 ± 45	22.98	0.55
42	1784 ± 42	1824 ± 44	-39.78	-0.95
43	1769 ± 42	1808 ± 44	-55.46	-1.32
44	1837 ± 43	1879 ± 45	15.66	0.37
45	1781 ± 42	1821 ± 44	-42.92	-1.02
46	1829 ± 43	1871 ± 45	7.28	0.17
47	1907 ± 44	1953 ± 46	88.99	2.12
48	1761 ± 42	1800 ± 44	-63.82	-1.52
49	1845 ± 43	1888 ± 45	24.03	0.57
50	1796 ± 42	1837 ± 44	-27.24	-0.65
total	-	-	0	0

Tabela 19: Média e desvio-padrão da distribuição da tabela 18

$$\begin{array}{c|cc} \overline{N} & \sigma \\ \hline 1863.8 \pm 5.9 & 42 \end{array}$$

$$\sigma_{\overline{N}} = \frac{\sigma}{\sqrt{N}} \tag{22}$$

$$\sigma^2 = \frac{1}{50} \sum_{i=1}^{50} (x_i - \overline{x})^2 \tag{23}$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (24)

Tabela 20: Frequência relativa de contagens em intervalos de relevância estatística

Intervalo	$\int f r_{exp.}$	$fr_{teor.}$
$[-\sigma,\sigma]$	0,68	0,68
$[-2\sigma, 2\sigma]$	0,96	0,95
$[-3\sigma, 3\sigma]$	1,00	0,997

Tabela 21: Frequência absoluta de contagens correspondentes a cada classe

Classes	f _a	f_r
[-3 ,-2.5[0	0
[-2.5, -2[1	0,02
[-2, 1.5[3	0,06
[-1.5, -1[4	0,08
[-1, 0.5[9	0,18
[-0.5, 0[9	0,18
[0, 0.5[7	0,14
[0.5, 1[9	0,18
[1, 1.5[4	0,08
[1.5, 2[3	0,06
[2, 2.5[1	0,02
[2.5,3]	0	0

Figura 6: Ajuste dos dados da tabela 21 a uma gaussiana do tipo (24). Notese que a frequência relativa de cada classe foi dividida pela amplitude desta, para manter a normalização da gaussiana sem ser necessário qualquer fator multiplicativo.

Tabela 22: Parâmetros do ajuste apresentado da fig.6

μ	σ	ngl	χ^2/ngl
$(-1.4 \pm 8.6) \times 10^{-2}$	1.103 ± 0.072	10	0.65