Mini-projet

Comparaison de méthodes exactes et approchées

General VNS

<u>Initialization</u>. Select the set of neighborhood structures \mathcal{N}_k , for $k = 1, \ldots, k_{max}$, that will be used in the shaking phase, and the set of neighborhood structures N_ℓ for $\ell = 1, \ldots, \ell_{max}$ that will be used in the local search; find an initial solution x and improve it by using RVNS; choose a stopping condition;

Repeat the following sequence until the stopping condition is met:

- (1) Set $k \leftarrow 1$;
- (2) Repeat the following steps until $k = k_{max}$:
 - (a) Shaking. Generate a point x' at random from the k^{th} neighborhood $\mathcal{N}_k(x)$ of x;
 - (b) Local search by VND.
 - (b1) Set $\ell \leftarrow 1$;
 - (b2) Repeat the following steps until $\ell = \ell_{max}$;
 - · Exploration of neighborhood. Find the best neighbor x'' of x' in $N_{\ell}(x')$;
 - · Move or not. If f(x'') < f(x') set $x' \leftarrow x''$ and $\ell \leftarrow 1$; otherwise set $\ell \leftarrow \ell + 1$;
 - (c) Move or not. If this local optimum is better than the incumbent, move there $(x \leftarrow x'')$, and continue the search with \mathcal{N}_1 $(k \leftarrow 1)$; otherwise, set $k \leftarrow k+1$;

RVNS

Initialization.

Select the set of neighborhood structures \mathcal{N}_k , for $k = 1, \dots, k_{\text{max}}$, that will be used in the search; find an initial solution x; choose a stopping condition;

Repeat the following sequence until the stopping condition is met:

- (1) Set $k \leftarrow 1$;
- (2) Repeat the following steps until $k = k_{\text{max}}$:
- (a) Shaking. Generate a point x' at random from the kth neighborhood of x ($x' \in \mathcal{N}_k(x)$);
- (b) Move or not. If this point is better than the incumbent, move there $(x \leftarrow x')$, and continue the search with \mathcal{N}_1 $(k \leftarrow 1)$; otherwise, set $k \leftarrow k+1$;

Variable Neighborhood Descent (VND)

<u>Initialization</u>. Select the set of neighborhood structures N_{ℓ} , for $\ell = 1, \ldots, \ell_{max}$, that will be used in the descent; find an initial solution x (or apply the rules to a given x);

Repeat the following sequence until no improvement is obtained:

- (1) Set $\ell \leftarrow 1$;
- (2) <u>Repeat</u> the following steps until $\ell = \ell_{max}$:
 - (a) Exploration of neighborhood. Find the best neighbor x' of x ($x' \in N_{\ell}(x)$);
 - (b) Move or not. If the solution x' thus obtained is better than x, set $x \leftarrow x'$ and $\ell \leftarrow 1$; otherwise, set $\ell \leftarrow \ell + 1$;

Steepest descent heuristic & First descent heuristic

Initialization.

Choose f, X, neighborhood structure N(x), initial solution x;

Current step (Repeat).

- (1) Find $x' = argmin_{x \in N(x)} f(x)$;
- (2) If f(x') < f(x) set $x' \leftarrow x''$ and iterate; otherwise, stop.

Steepest descent heuristic

<u>Initialization</u>.

Choose f, X, neighborhood structure N(x), initial solution x;

Current step (Repeat).

- (1) Find first solution $x' \in N(x)$;
- (2) If f(x') > f(x), find next solution $x'' \in N(x)$; set $x' \leftarrow x''$ and iterate
- (2); otherwise, set $x \leftarrow x'$ and iterate (1);
- (3) If all solutions of N(x) have been considered, stop.

First descent heuristic

Swap operator

• Swap Operator (N1): The swap operator selects a pair of jobs π i and π j in the current sequence π of jobs, exchanges their positions

Insertion operator

• Insertion Operator (N2): For a given incumbent arrangement of jobs, the insertion neighborhood can be obtained by removing a job from its position and inserting it into another position.

2-opt operator

• 2-opt Operator (N3): The 2-opt is the most classical heuristic for the traveling salesman problem in which it removes two edges from the tour and reconnects the two paths created.

Voisins de X selon une structure :

Considérons la solution initiale X=(5,1,2,3,4) et les deux structures de voisinages

- Swap Operator (N1): sélectionne une paire de jobs i et j dans la séquence actuelle X,
- Insertion Operator (N2): voisin peut être obtenu en supprimant un job de sa position et en l'insérant dans une autre position.

Solution X:

5	1	2	3	4

Voisins de X selon une structure :

5 1 2 3 4

Nombre de voisins selon Swap Operator (N1) $O(n^2)$

Voisins selon Swap Operator (N1)

1	5	2	3	4
2	1	5	3	4
3	1	2	5	4
4	1	2	3	5
5	2	1	3	4
5	3	2	1	4
5	4	2	3	1
5	1	3	2	4
5	1	4	3	2
5	1	2	4	3

Voisins de X selon une structure :

5 1 2 3 4

• Voisins selon **Insertion Operator** (N2)

 $O(n^2)$

4	5	1	2	3
5	4	1	2	3
5	1	4	2	3
5	1	2	4	3

1	5	2	3	4
1	2	5	3	4
1	2	3	5	4
1	2	3	4	5
2	5	1	3	4
5	2	1	3	4
5	1	3	2	4
5	1	3	4	2
3	5	1	2	4
5	3	1	2	4
5	1	3	2	4
5	1	2	4	3

$1||\sum \alpha_i E_i + \beta_i T_i|$

Problème 1|| ΣU_i

Algorithme de Hodgson & Moore

- 1) $S = \{\};$
- 2) Considérer les tâches dans l'ordre EDD
- 3) Ajouter la tâche *i* à S
- 4) Si la tache i est en retard
- 5) Alors supprimer de S la plus grande tâche
- 6) $i \leftarrow i + 1$;
- 7) Si *i* < *n* aller a l'étape 3

L'algorithme de Hodgson & Moore est optimal pour Problème 1 $\parallel \Sigma U_i$ Sa complexite est O(nlogn).