concours externe de recrutement de professeurs agrégés

section : mathématiques

composition de mathématiques générales

Durée : 6 heures

Plusieurs définitions ou notations, imprimées en italiques, sont introduites au fur et à mesure dans l'énoncé du problème.

La lettre k désigne un corps commutatif **infini** et la lettre G un groupe. Les termes "espace vectoriel", "application linéaire" et "forme linéaire" signifient respectivement "k-espace vectoriel", "application k-linéaire" et "forme k-linéaire". Si V est un espace vectoriel, le groupe des automorphismes de V (c'est à dire des applications linéaires de V dans lui même qui sont des bijections) sera noté GL(V).

Def 1- Une action de G sur un espace vectoriel V est par convention la donnée d'un morphisme de groupes $\rho: G \to GL(V)$. On dit aussi que G agit sur V. On notera souvent, pour $g \in G$ et $v \in V$, g.v au lieu de $\rho(g)(v)$. Il faut noter qu'avec cette convention une action est toujours linéaire : $g.(\lambda_1v_1 + \lambda_2v_2) = \lambda_1g.v_1 + \lambda_2g.v_2$. Pour connaître une action ρ de G sur V, il suffit donc de savoir, pour tout élément g de G, quelle est l'image par $\rho(g)$ des éléments d'une base de V.

Def 2- Un invariant pour l'action de G sur V est un élément v de V tel que, pour tout $g \in G$, on ait q.v = v. Les invariants forment un sous-espace vectoriel de V que l'on notera V^G .

Def 3- Si $S = k[X_1, \ldots, X_n]$ désigne l'algèbre des polynômes à n indéterminées, à coefficients dans k, on notera S_d le sous-espace vectoriel de S constitué du polynôme nul et des polynômes homogènes de degré d. Tout polynôme P de S permet de définir une fonction de k^n dans k que l'on appelle la fonction associée à P.

0-1- Soit E un ensemble. On note F(E) l'ensemble des fonctions de E dans k. On peut additionner deux éléments f_1 et f_2 de F(E) en posant, pour $e \in E$, $(f_1 + f_2)(e) = f_1(e) + f_2(e)$. On peut aussi multiplier f_1 par un scalaire $\lambda \in k$ en posant $(\lambda f_1)(e) = \lambda f_1(e)$. Muni de ces deux lois, F(E) est un espace vectoriel.

PARTIE I —PRÉLIMINAIRES—

Soit n un entier non nul.

1-1- Pour tout entier i entre 1 et n, on se donne une partie **infinie** A_i de k. Soit $P \in k[X_1, \ldots, X_n]$. On suppose que la restriction à $A_1 \times A_2 \times \cdots \times A_n$ de la fonction associée à P est identiquement nulle. Montrer que P est le polynôme nul.

- 1-2- On suppose ici que $k = \mathbf{R}$ ou \mathbf{C} . Soit U un ouvert non vide de k^n (pour la topologie usuelle d'espace vectoriel de dimension finie) et $P \in k[X_1, \ldots, X_n]$. On suppose que la restriction à U de la fonction associée à P est identiquement nulle. Montrer que P est le polynôme nul.
- 1-3- On choisit une action d'un groupe G sur un espace vectoriel V. Soit $g \in G$, $f \in F(V)$ (cf 0-1) et $v \in V$. On définit $g.f \in F(V)$ par $(g.f)(v) = f(g^{-1}.v)$.
 - 1-3-1- Montrer que l'on a bien défini ainsi une action de G sur l'espace vectoriel F(V).
- **1-3-2-** Soit $v \in V$ et $\mathcal{O}_v = \{g.v | g \in G\}$ sa G-orbite. Soit $h \in F(V)^G$ un invariant. Montrer que h est constant sur \mathcal{O}_v . Si une fonction $f \in F(V)$ est constante sur toutes les G-orbites, est-elle dans $F(V)^G$?
- 1-4- Soit r un entier strictement positif. On suppose que k est de caractéristique nulle ou de caractéristique ne divisant pas r. On suppose aussi que k contient une racine primitive r-ième de l'unité ω . On note $G = \mu_r$ le groupe des racines r-ièmes de l'unité dans k constitué des puissances de ω . On fait agir G sur k[X] via $\rho(\omega)(X^n) = \omega^n X^n$.
- 1-4-1- Montrer que pour tout g dans G et pour tout P et Q dans k[X], on a $\rho(g)(P.Q) = \rho(g)(P).\rho(g)(Q)$.
- 1-4-2- Montrer que $k[X]^G=k[X^r]$ où $k[X^r]$ est l'ensemble des polynômes de la forme $P(X^r)$ pour P un polynôme.
- 1-5- Soit $G = Gl_n(k)$. $Gl_n(k)$ désigne l'ensemble des matrices inversibles $n \times n$ à coefficients dans k. Il agit sur k^n par multiplication d'une matrice A de G par un vecteur colonne v de k^n .
- 1-5-1- Soit $P \in k[X_1, \ldots, X_n]$. On notera aussi $P \in F(k^n)$ la fonction associée. Montrer que pour tout $g \in G$, g.P est encore une fonction associée à un polynôme de $k[X_1, \ldots, X_n]$ (cf 1-3 pour la définition de g.P).
 - **1-5-2-** Soit v non nul dans k^n . Quelle est son orbite par $G = Gl_n(k)$?
- 1-5-3- Montrer que les seules fonctions de $F(k^n)$, associées à des polynômes et invariantes par $G = Gl_n(k)$, sont les constantes.

PARTIE II — POLYNÔMES ET ACTIONS SUR DES ALGÈBRES—

- **Def 4-** Une algèbre est un k-espace vectoriel A, muni d'une loi de composition interne, appelée le produit, qui à (a_1, a_2) dans A^2 associe a_1a_2 dans A et qui vérifie :
- a) (A, +, .) est un anneau commutatif et unitaire. L'élément neutre multiplicatif sera noté 1_A (ou simplement 1 si aucune confusion n'en résulte).
- b) Pour tout $(a_1, a_2) \in A^2$ et $\lambda \in k$, on a $\lambda(a_1 a_2) = (\lambda a_1)a_2 = a_1(\lambda a_2)$.
- Une sous-algèbre d'une algèbre est un sous ensemble qui est à la fois un sous espace vectoriel et un sous-anneau unitaire. Soit E un ensemble. L'espace vectoriel F(E) des fonctions de E dans k est aussi une algèbre. Le produit y est défini par $(f_1f_2)(e) = f_1(e)f_2(e)$. L'unité est la fonction constante qui à tout élément de E associe $1 \in k$.
- Def 5- Un morphisme d'algèbres d'une algèbre A dans une algèbre B est une application α de A dans B qui est simultanément un morphisme d'espaces vectoriels et d'anneaux unitaires. En particulier il envoie 1_A sur 1_B et satisfait, pour tout $(a_1,a_2) \in A^2$, à $\alpha(a_1a_2) = \alpha(a_1)\alpha(a_2)$. Un automorphisme de l'algèbre A est un morphisme d'algèbres de A dans A qui est bijectif. L'inverse est alors aussi un morphisme d'algèbres. L'ensemble des automorphismes d'algèbre de A forme un groupe pour la composition, appelé groupe des automorphismes de l'algèbre A.
- **Def 6-** Une action d'un groupe G sur une algèbre A est la donnée d'un morphisme de groupes de G vers le groupe des automorphismes de l'algèbre A. Autrement dit, il s'agit d'un morphisme ρ de G vers le groupe des automorphismes de k-espace vectoriel de A, satisfaisant en outre à $\rho(g)(a_1a_2)=\rho(g)(a_1)\rho(g)(a_2)$ et $\rho(g)(1)=1$ pour tout $g\in G,a_1\in A$ et $a_2\in A$. L'ensemble A^G des invariants (au sens de la définition 2) forme alors une sous-algèbre de A.

- Def 7- Si A est une algèbre et f_1, \ldots, f_n des éléments de A, on note $k[f_1, \ldots, f_n]$ l'image du morphisme d'algèbres $\pi: k[X_1, \ldots, X_n] \to A$ qui est défini par $\pi(X_i) = f_i$. On dit que $k[f_1, \ldots, f_n]$ est engendrée par les n éléments f_1, \ldots, f_n .
- Def 8- Soit $(e_i)_{1 \leq i \leq n}$ une base de V supposé ici de dimension finie. On notera $X_1^0, ..., X_n^0$ la base duale : $X_i^0(x_1e_1 + \cdots + x_ne_n) = x_i$. Soit F(V) l'algèbre de toutes les fonctions de V dans k. Les éléments X_i^0 engendrent une sous-algèbre de l'algèbre F(V), que l'on notera S(V). Les éléments de $S(V) = k[X_1^0, ..., X_n^0]$ sont appelés les fonctions polynômes de V.
- 2-1- On reprend ici les notations de la définition 8. A priori, la sous-algèbre S(V) de F(V) introduite dans cette définition dépend du choix d'une base de V.
 - 2-1-1 Montrer que la sous-algèbre S(V) est indépendante du choix de la base de V.
- **2-1-2** Montrer que le morphisme d'algèbres qui à X_i associe X_i^0 est un isomorphisme de l'algèbre $S = k[X_1, \ldots, X_n]$ des polynômes à n indéterminées vers l'algèbre S(V).
- 2-1-3-On note $S(V)_d$ l'image de S_d par l'isomorphisme de 2-1-2. Montrer que $S(V)_d$ ne dépend pas du choix de la base de V.

Dorénavant, dès qu'une base de V est choisie, on identifiera S(V) et $S = k[X_1, \ldots, X_n]$ et on notera X_i pour X_i^0 .

- 2-2- On se place dans la situation de 1-3.
- 2-2-1- Montrer que l'action ρ de G sur l'espace vectoriel F(V), action définie en 1-3, est en fait aussi une action de G sur l'algèbre F(V).
- 2-2-2- Montrer que, pour tout $d \ge 0$, $S(V)_d$ est stable pour cette action, c'est à dire que pour tout $g \in G$, $\rho(g)(S(V)_d)$ est inclus dans $S(V)_d$.
 - 2-2-3- Prouver que

$$S(V)^G = \bigoplus_{d \geq 0} (S(V)^G \cap S(V)_d).$$

PARTIE III— EXEMPLES—

3—GROUPE SPÉCIAL LINÉAIRE—

Soit V un espace vectoriel de dimension finie n et r un entier strictement positif. On suppose que k est R ou C. Le groupe des automorphismes de V est noté GL(V).

Soit
$$G = SL(V) = \{g \in GL(V) \mid \det g = 1\}.$$

Ce groupe agit sur V^r de la façon diagonale suivante :

$$q.(v_1,\ldots,v_r)=(q(v_1),\ldots,q(v_r)).$$

Soit U_r le sous ensemble suivant de V^r :

$$\{(v_1,\ldots,v_r)\in V^r|\ \text{la famille }v_1,\ldots,v_r\ \text{est linéairement indépendante dans }V\}.$$

- 3-1- Montrer que U_r est un ouvert de V^r .
- 3-2- Montrer que pour $r < n, \ U_r$ est une orbite de G . En déduire que alors $S(V^r)^G = k$.
- 3-3- On suppose que r = n. On fixe une base $e = (e_1, \ldots, e_n)$ de V. Soit $f(v_1, \ldots, v_n) = \det_e(v_1, \ldots, v_n)$, le déterminant des vecteurs v_1, \ldots, v_n dans la base e.
 - **3-3-1-** Montrer que $f \in S(V^n)^G$.

3-3-2- Montrer que tout élément de U_n a dans son orbite sous G un élément unique de la forme $(e_1, \ldots, e_{n-1}, \alpha e_n)$ pour un élément $\alpha \in k$ que l'on calculera. En déduire que $S(V^n)^G = k[f]$.

4 — QUELQUES GROUPES FINIS—

- **Def 9-** Soit A une algèbre. On dit que A est une algèbre de polynômes s'il existe $n \in \mathbb{N}$, $f_1 \in A, \ldots, f_n \in A$, tels que le morphisme d'algèbres $\pi : k[X_1, \ldots, X_n] \to A$ qui est défini par $\pi(X_i) = f_i$ soit un isomorphisme.
- 4-1- Soit $G = \mathfrak{S}_n$ le groupe symétrique des bijections de l'ensemble $\{1,\ldots,n\}$ des n premiers entiers non nuls. Soit• $\pi \in \mathfrak{S}_n$, on pose $\pi(X_i) = X_{\pi(i)}$, ce qui permet de définir une action de G sur l'algèbre $k[X_1,\ldots,X_n]$. Quelle est l'algèbre $k[X_1,\ldots,X_n]^{\mathfrak{S}_n}$? Est-ce que cette algèbre est une algèbre de polynômes?
- 4-2- Soit $G = \mathbb{Z}/2\mathbb{Z}$. On note 1 et ε les éléments de G et on suppose ici que la caractéristique de k est différente de 2. On fait agir G sur l'algèbre $k[X_1, \ldots, X_n]$ par $\varepsilon X_j = -X_j$.
 - **4-2-1-** Montrer que $k[X_1, \ldots, X_n]^G = k[X_1^2, \ldots, X_i X_j, \ldots, X_n^2]$.
- 4-2-2- Montrer que pour $n \geq 2, k[X_1, \dots, X_n]^G$ n'est pas un anneau factoriel. Pour quelles valeurs de $n, k[X_1, \dots, X_n]^G$ est une algèbre de polynômes?
- **4-2-3-** Montrer que si P est un polynôme de k[U, V, W] tel que $P(X^2, XY, Y^2)$ est nul dans k[X, Y], alors P est divisible par $V^2 UW$.

Indication: On pourra utiliser sans la prouver la version suivante de la division euclidienne: si D est un anneau commutatif unitaire et intègre, si A et B sont deux polynômes de D[V], avec B non nul et unitaire, il existe Q et R dans D[V] tels que A = BQ + R et, soit R = 0, soit degR < degB.

4-2-4- Montrer que $k[X^2, XY, Y^2]$ est isomorphe à $k[U, V, W]/(V^2 - UW)$.

5 et 6—GROUPE ORTHOGONAL—

Dans 5 et 6, le corps k est le corps des réels.

- 5- Soit V un espace vectoriel de dimension finie n muni d'un produit scalaire et O(V) le groupe orthogonal correspondant. Il agit naturellement sur V. Soit (e_1, \ldots, e_n) une base orthonormée de V. On en déduit une identification entre S(V) et $k[X_1, \ldots, X_n]$.
- 5-1- Montrer que tout élément v de V a dans son orbite sous O(V) un unique élément ae_1 où a est un réel positif ou pul que l'on déterminera.
- **5-2-** En déduire que $S(V)^{O(V)} = \mathbf{R}[X_1^2 + \dots + X_n^2]$.
- 6- Soit $E=\mathbf{R}^2$ muni du produit scalaire usuel : si $x=(x_1,x_2)$ et $y=(y_1,y_2)$ sont deux éléments de E, $x.y=x_1x_2+y_1y_2$. On note $e=(e_1,e_2)$ la base canonique (donc orthonormée) de E. Soit $V=E^2=\mathbf{R}^4$, lui aussi muni de sa base canonique, et G=O(2) le groupe orthogonal de E. On fait agir G sur V de façon diagonale par g.(x,y)=(g(x),g(y)). Soit $F(x_1,x_2,y_1,y_2)=F(x,y)$ une fonction polynôme de V qui soit G-invariante.
- **6-1-** Soit $H \in \mathbf{R}[X_1, X_2, X_3]$. Soit $L \in \mathbf{R}[X_1, X_2, Y_1, Y_2]$ défini par $L(x_1, x_2, y_1, y_2) = H(x_1y_1 + x_2y_2, x_1^2 + x_2^2, y_1^2 + y_2^2) = H(x_1y_1, x_2, y_2, y_1^2 + y_2^2) = H(x_1y_1, x_2, y_2, y_1^2 + y_2^2) = H(x_1y_1, x_2, y_2, y_2^2 + y_2^2) = H(x_1y_1, x_2, y_2^2 + y_2^2) = H(x_1y_1, x_2, y_2^2 + y_2^2) = H(x_1y_1, x_2, y_2^2 + y_2^2 + y_2^2) = H(x_1y_1, x_2, y_2^2 + y$
- **6-2-** On pose, pour tout $(a,b,c) \in \mathbf{R}^3$, K(a,b,c) = F(a,0,b,c). Montrer que K est un polynôme en a^2 , b^2 , c^2 , ab.

Indication : Utiliser des éléments convenables de G, notamment la symétrie orthogonale d'axe $\mathbf{R}e_1$ et 4-2-1.

Math Géné 5/10

6-3- Montrer que tout élément (x,y) de V a dans son orbite sous G un élément (u,v) où u est proportionnel à e_1 . En déduire qu'il existe un polynôme $M \in \mathbf{R}[U,V,W]$ et un entier α positif ou nul tels que, si $x \neq 0$:

$$F(x,y) = \frac{M(x.y, x.x, y.y)}{(x.x)^{\alpha}}.$$

6-4- On se donne deux polynômes P et Q dans $\mathbf{R}[U,V,W]$. On suppose qu'il existe deux entiers positifs ou nuls p et q tels que pour tout x et y dans $E-\{0\}$ on ait :

$$(y.y)^p P(x.y, x.x, y.y) = (x.x)^q Q(x.y, x.x, y.y).$$

Montrer que les polynômes $W^p.P(U,V,W)$ et $V^q.Q(U,V,W)$ de $\mathbf{R}[U,V,W]$ sont égaux. 6-5- Montrer que :

$$\mathbf{R}[X_1, X_2, Y_1, Y_2]^G = \mathbf{R}[X_1Y_1 + X_2Y_2, X_1^2 + X_2^2, Y_1^2 + Y_2^2].$$

7—CONJUGAISON—

Soit E un C-espace vectoriel de dimension finie n et $V = End_{\mathbb{C}}(E)$ l'espace vectoriel des endomorphismes de E. Soit G = GL(E). On fait agir ce groupe sur V par :

$$g.a = g a g^{-1}$$

7-1- Montrer que l'ensemble U des éléments de V dont les n valeurs propres sont distinctes est un ouvert de V. Soit u un élément de U. Décrire l'orbite de u sous G.

7-2- Soit $A \in V$ et $P_A(T) = \det(T.Id - A) \in k[T]$ son polynôme caractéristique. On définit n fonctions τ_1, \ldots, τ_n de V dans k par :

$$P_A(T) = T^n - \tau_1(A) T^{n-1} + \dots + (-1)^{n-1} \tau_{n-1}(A) T + (-1)^n \tau_n(A).$$

Vérifier que pour tout j entre 1 et $n, \tau_j \in S(V)^G$.

7-3- Montrer que $S(V)^G = k[\tau_1, \dots, \tau_n]$.

PARTIE IV— LES FORMES BINAIRES—

Dans cette partie G est le groupe $SL_2(k)$ des matrices 2×2 , de déterminant 1, à coefficients dans un corps k algébriquement clos de caractéristique nulle. Il agit naturellement sur k^2 et l'on obtient grâce à 1-3 et 2-2 une action ρ sur l'algèbre k[X,Y]. Explicitement,

$$\mathrm{si}\ g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(k),\ \rho(g)(X) = \delta X - \beta Y \ \mathrm{et}\ \rho(g)(Y) = -\gamma X + \alpha Y.$$

On note ρ_d l'action de G dans $R_d = k[X,Y]_d$, l'espace vectoriel des polynômes homogènes de degré d. Ceci permet de définir une action π_d de G sur $S(R_d)$, l'algèbre des fonctions polynômes sur R_d (voir 1-3 et 2-2).

8- UN EXEMPLE (d=2) -

On suppose ici que d=2 et l'on rappelle que k est algébriquement clos de caractéristique nulle. Tout élément de R_2 s'écrit $uX^2 + vXY + wY^2$ d'où une identification de $S(R_2)$ et de k[u,v,w].

8-1- Si
$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(k)$$
, montrer que $(\pi_2(g)P)(u, v, w)$ est la fonction :

$$P(\alpha^2 u + \alpha \gamma v + \gamma^2 w, 2\alpha \beta u + (\alpha \delta + \beta \gamma) v + 2\gamma \delta w, \beta^2 u + \beta \delta v + \delta^2 w).$$

En déduire que le polynôme $\Delta(u, v, w) = v^2 - 4uw$ appartient à $S(R_2)^G$.

8-2- Montrer que pour tout choix de $(u,v,w)\in k^3$ tel que $u\neq 0$, il existe $g\in G$ tel que $\pi_2(g)(uX^2+vXY+wY^2)=X^2-\frac{\Delta(u,v,w)}{4}Y^2$. En déduire que $S(R_2)^G=k[\Delta]$.

9— CAS GÉNÉRAL—

L'action π_d de G sur $S(R_d)$ laisse stable chaque sous-espace vectoriel $S(R_d)_e$ $(e \ge 0)$, et définit une action de G sur $S(R_d)_e$ que l'on notera $\pi_{d,e}$. Soit m(d,e) la dimension sur k de l'espace vectoriel des invariants de cette dernière action $\pi_{d,e}$. Le but de cette partie est de donner une formule permettant le calcul de m(d,e). On rappelle que ρ_d est défini au début de la partie IV.

une formule permettant le calcul de m(d,e). On rappelle que ρ_d est défini au début de la partie IV. Soit $a \in k$. Si a est non nul, on note g_a l'élément $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ de $SL_2(k)$.

9-1- Ecrire la matrice de $\rho_d(g_a)$ dans la base $(X^d, X^{d-1}Y, \dots, Y^d)$ de R_d et montrer que la trace de $\rho_d(g_a)$ vaut $\frac{a^{d+1}-a^{-(d+1)}}{a-a^{-1}}$.

9-2 Montrer que $(R_0)^G = k$ et que, pour d > 0, $(R_d)^G = 0$.

Def 11- Soit H un groupe et $h \in H$. Soit I un ensemble fini d'indices et $(\pi_i)_{i \in I}$ une famille d'actions de H sur des espaces vectoriels de dimension finie V_i . La somme directe des π_i , notée $\pi = \bigoplus_{i \in I} \pi_i$, est l'action de H sur $\bigoplus_{i \in I} V_i$ définie par $\pi(h)((v_i)_{i \in I}) = (\pi_i(h)(v_i))_{i \in I}$. En particulier, si ρ est une action de H sur V, on définit pour $k \in \mathbb{N}$ une action ρ^k de H sur V^k par $\rho^k(h)(v_1,\ldots,v_k) = (\rho(h)(v_1),\ldots,\rho(h)(v_k))$.

9-3- On utilise les notations de la définition 11. Montrer que la trace de $\pi(h)$ vaut la somme, sur l'ensemble I, des traces de $\pi_i(h)$.

9-4- On admet que pour toute action λ de $G = SL_2(k)$ dans un espace vectoriel V de dimension finie, il existe, pour tout entier $d \ge 0$, un entier n(d) tel que :

- a) n(d) est nul sauf pour un nombre fini de valeurs de d.
- b) il existe un isomorphisme θ entre $\bigoplus_{d\geq 0} R_d^{n(d)}$ et V.
- et c) pour tout $g \in G$, $\bigoplus_{d \ge 0} \rho_d^{n(d)}(g) = \theta^{-1} \circ \lambda(g) \circ \theta$.

9-4-1- Montrer que la trace de
$$\lambda(g_a)$$
 vaut alors $\sum_{d\geq 0} n(d) \frac{a^{d+1} - a^{-(d+1)}}{a - a^{-1}}$.

9-4-2- En déduire que les entiers n(d) sont uniquement déterminés par λ .

9-4-3- On rappelle qu'un polynôme de Laurent est un élément de $k[a,a^{-1}]$. Montrer que $\dim_k(V^G)$ est le coefficient de a dans le polynôme de Laurent $\left[(a-a^{-1})\operatorname{Trace}(\lambda(g_a))\right]$.

9-5- Soit $B=(b_{i,j})_{1\leq i\leq n, 1\leq j\leq n}$ une matrice inversible. On lui associe un automorphisme, toujours noté B, de l'algèbre $k[X_1,\ldots,X_n]$ défini par :

$$(B.P)(x_1,\ldots,x_n)=P(B^{-1}\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}).$$

Soit $tr_e(B)$ la trace de la restriction de cet automorphisme à l'espace vectoriel $k[X_1, \ldots, X_n]_e$. On note $\mathbf{1}_n$ la matrice identité de taille $n \times n$. Enfin k[T] représente l'algèbre des séries formelles en l'indéterminée T à coefficients dans k.

- 9-5-1- On considère le polynôme en T suivant : $\det(\mathbf{1}_n B^{-1}T)$. Montrer que ce polynôme a un inverse dans l'algèbre des séries formelles k[[T]]. On notera dans la suite cet inverse $(\det(\mathbf{1}_n B^{-1}T))^{-1}$.
- 9-5-2- Montrer que si B est triangulaire supérieure (c'est à dire $b_{i,j} = 0$ si i > j), les séries formelles, $\sum_{e>0} tr_e(B) T^e$ et $(\det(\mathbf{1}_n B^{-1}T))^{-1}$, sont égales dans k[[T]].
- 9-5-3- Montrer que l'égalité de 9-5-2 est encore valable que B soit triangulaire ou pas. Indication : On pourra utiliser la question 2-1.
- 9-6- Soit $\chi_{d,e}(a)$ la trace de $\pi_{d,e}(g_a)$. Montrer que :

$$\sum_{e\geq 0} \chi_{d,e}(a) \ T^e = \left[(1 - a^{-d} \ T)(1 - a^{-d+2} \ T) \dots (1 - a^d \ T) \right]^{-1}$$

9-7- Soit $\mathbf{Z}[U][[W]]$ l'anneau des séries formelles en l'indéterminée W à coefficients dans $\mathbf{Z}[U]$. Soit $F_U(W)$ l'élément de cet anneau défini par

$$F_U(W) = (1 - W)(1 - U W) \dots (1 - U^d W).$$

Montrer qu'il existe des polynômes $M_{d,e}(U) \in \mathbf{Z}[U]$ tels que

$$[F_U(W)]^{-1} = \sum_{e>0} M_{d,e}(U) W^e.$$

On définit les entiers c(d,e,i) par $M_{d,e}(U) = \sum_{i \geq 0} c(d,e,i) U^i$.

9-8- Montrer que $\chi_{d,e}(a) = a^{-de} M_{d,e}(a^2)$.

9-9- On rappelle que, par définition, m(d,e) est la dimension sur k de $S(R_d)_e^G$. Prouver que m(d,e)=0 si de est impair et que si de est pair :

$$m(d, e) = c(d, e, de/2) - c(d, e, (de/2) - 1).$$

PARTIE V—GROUPE SYMÉTRIQUE—

Dans toute la partie V, et donc jusqu'à la fin du problème, le corps k sera supposé de caractéristique nulle.

10—POLARISATION—

Soit B une algèbre. Soit $f(U_1, \ldots, U_n)$ un polynôme en les n indéterminées à coefficients dans B. On définit un polynôme $D_{U,Y}$ en les 2n indéterminées $(U_1, \ldots, U_n, Y_1, \ldots, Y_n)$ par

$$D_{U,Y}f(U_1,\ldots,U_n,Y_1,\ldots,Y_n)=Y_1\frac{\partial f}{\partial U_1}+\cdots+Y_n\frac{\partial f}{\partial U_n}.$$

Pour simplifier l'écriture on posera $U=(U_1,\ldots,U_n), Y=(Y_1,\ldots,Y_n)$ et on notera B[U] pour $B[U_1,\ldots,U_n]$ et B[U,Y] pour $B[U_1,\ldots,U_n,Y_1,\ldots,Y_n]$.

On rappelle qu'une application D de B[U] vers B[U,Y] est une dérivation si elle est B-linéaire (c'est à dire si $D(b_1P_1+b_2P_2)=b_1D(P_1)+b_2D(P_2)$ pour tout $(b_1,b_2)\in B^2$ et $(P_1,P_2)\in B[U]^2$) et si elle satisfait à D(PQ)=PD(Q)+QD(P) pour tout P et Q dans Q dans Q.

10-1- On suppose ici que $k = \mathbf{R}$. On considère l'application λ de \mathbf{R} dans B[U,Y] donnée par

$$t \mapsto f(U_1 + t Y_1, U_2 + t Y_2, \dots, U_n + t Y_n) = \lambda(t).$$

Montrer que $D_{U,Y}f = \lambda'(0)$. En déduire que l'application qui à f associe $D_{U,Y}f$ est une dérivation de B[U] dans B[U,Y].

On admet dans la suite que ce résultat est vrai pour tout corps k.

10-2- Montrer que si on se donne p éléments h_1, \ldots, h_p de B[U] et si f appartient à $B[h_1, \ldots, h_p]$, alors $D_{U,Y}f$ est un élément de $B[h_1, \ldots, h_p, D_{U,Y}h_1, \ldots, D_{U,Y}h_p]$.

10-3- On suppose qu'un groupe G agit sur $V=k^n$ donc aussi (cf 1-3 et 2-2) sur S(V)=k[U]. On le fait agir sur V^2 par

$$g.(u_1,\ldots,u_n,y_1,\ldots,y_n)=(g.(u_1,\ldots,u_n),g.(y_1,\ldots,y_n)).$$

Ceci permet de définir une action de G sur k[U,Y]. Montrer que si $f \in k[U]$ est invariant pour l'action de G sur k[U], alors $D_{U,Y}f$ est invariant pour l'action de G sur k[U,Y].

10-4- Soit f un polynôme non nul de $k[U]_r$, c'est à dire un polynôme homogène de degré r. Pour tout entier $p \geq 1$, on se donne n indéterminées $U_1^{[p]}, \ldots, U_n^{[p]}$. On pose $U^{[p]} = (U_1^{[p]}, \ldots, U_n^{[p]})$ et on identifie $U^{[1]}$ et U. Soit $N \geq 1$ un entier. On définit un polynôme \widehat{f}_N en les N.n indéterminées $(U_i^{[i]})_{1 \leq i \leq N, 1 \leq j \leq n}$ par :

$$\widehat{f}_N = f \text{ si } N = 1$$

$$\widehat{f}_N(U^{[1]},\dots,U^{[N]}) = D_{U,U^{[N]}} D_{U,U^{[N-1]}}\dots D_{U,U^{[2]}} f \text{ si } N \geq 2.$$

On notera l'ordre dans lequel les indéterminées sont écrites dans ces polynômes. Pour N=r, on dit que $\hat{f}_N=\hat{f}_r$ est la polarisation totale de f.

10-4-1- Soit $P(U^{[1]},\ldots,U^{[N]})$ un polynôme en les nN indéterminées, à coefficients dans k, homogène de degré d en les indéterminées $U^{[1]}=(U_1^{[1]},\ldots,U_n^{[1]})$.

Soit $Q(U^{[1]}, \dots, U^{[N]}, U^{[N+1]}) = (D_{U^{[1]}, U^{[N+1]}}P)(U^{[1]}, \dots, U^{[N]}, U^{[N+1]})$. Montrer que :

$$Q(U^{[1]},\ldots,U^{[N-1]},U^{[N]},U^{[1]})=d\ P(U^{[1]},\ldots,U^{[N]}).$$

10-4-2- Montrer que pour tout p entre 1 et N, il existe une suite de r entiers $(\alpha_1, \ldots, \alpha_r)$, avec $1 \leq \alpha_i \leq N$, telle que le polynôme \widehat{f}_p soit le produit d'un élément de k et du polynôme $\widehat{f}_r(U^{[\alpha_1]}, \ldots, U^{[\alpha_r]})$ où \widehat{f}_r est la polarisation totale de f.

11—ACTION DIAGONALE DU GROUPE SYMÉTRIQUE—

Le groupe symétrique \mathfrak{S}_n sera noté G dans cette partie. Il agit sur l'algèbre des polynômes en les n.N indéterminées $A=k[U_j^{[i]}]_{1\leq i\leq N, 1\leq j\leq n}$ par :

$$\pi.(U_j^{[i]}) = U_{\pi(j)}^{[i]}.$$

11-1- Soient $\varphi_1, \ldots, \varphi_n$ les fonctions symétriques élémentaires en les variables U_1, \ldots, U_n . Elles sont définies par :

$$\varphi_r(U_1,\ldots,U_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} U_{i_1} U_{i_2} \cdots U_{i_r}.$$

Leurs polarisations totales sont notées $\widehat{\varphi}_1, \dots, \widehat{\varphi}_n$. Montrer que :

$$\widehat{\varphi}_r(U^{[1]},\ldots,U^{[r]}) = \sum_{\substack{(i_1,\ldots,i_r) \text{ est une suite de} \\ r \text{ entiers distincts entre 1 et } n}} U^{[1]}_{i_1}\cdots U^{[r]}_{i_r}.$$

11-2- Soit M l'ensemble des $\underline{\alpha}=(\alpha_1,\ldots,\alpha_r)$ où $1\leq\alpha_i\leq N$ et $1\leq r\leq n$. On définit, pour $\underline{\alpha}\in M,\ \psi_{\alpha}$ dans A par :

$$\psi_{\underline{\alpha}}(U^{[1]},\ldots,U^{[i]},\ldots,U^{[N]}) = \frac{1}{r!}\widehat{\varphi}_r(U^{[\alpha_1]},\ldots,U^{[\alpha_r]}).$$

Montrer que ces polynômes $\psi_{\underline{\alpha}}$ sont invariants par l'action de $G = \mathfrak{S}_n$ sur A.

11-3- Soient a_1, \ldots, a_N des entiers positifs ou nuls et $\nu = a_1 + \cdots + a_N$. On définit un élément $P_{\underline{a}}$ de A par :

$$P_{\underline{a}}(U^{[1]},\ldots,U^{[N]}) = \sum_{1 \le j \le n} (U_j^{[1]})^{a_1} \cdots (U_j^{[N]})^{a_N}.$$

Soit $\hat{\sigma}_{\nu}$ la polarisation totale du polynôme de Newton σ_{ν} défini par :

$$\sigma_{\nu}(U) = \sum_{1 \leq j \leq n} (U_j)^{\nu} .$$

Montrer qu'il existe des entiers $\beta_1, \ldots, \beta_{\nu}$ entre 1 et N et λ dans k tels que :

$$P_{\underline{a}}(U^{[1]},\ldots,U^{[N]}) = \lambda \,\widehat{\sigma}_{\nu}(U^{[\beta_1]},\ldots,U^{[\beta_{\nu}]}).$$

En déduire que $P_{\underline{\alpha}}$ peut s'exprimer comme un polynôme à coefficients dans k en les $\psi_{\underline{\alpha}}$ où les indices $\underline{\alpha}$ prennent toutes les valeurs possibles dans M.

11-4- On note $\overline{\varphi}_1, \ldots, \overline{\varphi}_{n-1}$ les fonctions symétriques élémentaires en les n-1 variables U_2, \ldots, U_n . On pose $\overline{U} = (U_2, \ldots, U_n)$. Montrer que l'on a les relations suivantes entre les $\overline{\varphi}_r$ et les φ_r :

$$\overline{\varphi}_1(\overline{U}) = \varphi_1(U) - U_1, \text{ et pour } r \text{ entre } 2 \text{ et } n-1, \overline{\varphi}_r(\overline{U}) = \varphi_r(U) - U_1 \overline{\varphi}_{r-1}(\overline{U}).$$

En déduire que les polarisations totales des $\overline{\varphi}_r$, que l'on notera $\widehat{\overline{\varphi}}_r$, s'expriment comme des polynômes en les $\psi_{\underline{\alpha}}$ (pour $\underline{\alpha} \in M$) avec des coefficients dans $k[U_1^{[1]},\ldots,U_1^{[N]}]$.

11-5- Montrer, par récurrence sur n, que l'algèbre $A^{\mathfrak{S}_n}$ est la k-algèbre engendrée par les polynômes $\psi_{\underline{\alpha}}$ où $\underline{\alpha}$ prend toutes les valeurs possibles dans M.

12—APPLICATION—

Soit G un groupe fini ayant n éléments et π une action de G sur $k^N=V$. On notera g_1,\ldots,g_n les éléments de G. Soit u un vecteur de $V=k^N$. On notera $(u_j^{[1]},\ldots,u_j^{[N]})$ les N coordonnées de $\pi(g_j)(u)$. Enfin si $J\in S(V)=k[U_1^{[1]},\ldots,U_1^{[N]}]$, on définit $\widetilde{J}(U^{[1]},\ldots,U^{[N]})$ dans $A=k[U_j^{[i]}]_{\substack{1\leq i\leq N\\ j=1}}$ par :

$$\widetilde{J}(U^{[1]},\ldots,U^{[N]}) = \frac{1}{n} \sum_{1 \le i \le n} J(U_j^{[1]},\ldots,U_j^{[N]}).$$

12-1- Montrer que si $J \in S(V)^G$ et si le vecteur u et les scalaires $u_j^{[i]}$ sont comme ci-dessus, alors :

$$\widetilde{J}(u_1^{[1]},\ldots,u_i^{[i]},\ldots,u_n^{[N]})=J(u).$$

12-2- Montrer que $\widetilde{J} \in A^{\mathfrak{S}_n}$ (l'action de \mathfrak{S}_n sur A est celle de la question 11).

12-3- Soit Σ l'ensemble des suites $\underline{\alpha} = (\alpha_1, \dots, \alpha_r)$ telles que

$$1 \le \alpha_1 \le \ldots \le \alpha_r \le N$$
 et $1 \le r \le n$.

Soit γ l'application de Σ vers l'ensemble des polynômes de degré inférieur ou égal à n qui à $\underline{\alpha}$ associe $\gamma(\underline{\alpha}) = X_{\alpha_1} \dots X_{\alpha_r}$. Etudier γ et en déduire que le cardinal de Σ est $\frac{(N+1)\cdots(N+n)}{n!}-1$. 12-4- Montrer, en utilisant 11-5, que $S(V)^G$ est une algèbre engendrée par un nombre fini d'éléments de S(V). Donner un majorant de ce nombre de générateurs en fonction de n et de N.