Datensicherheit, Zusammenfassung Vorlesung 6

HENRY HAUSTEIN, DENNIS RÖSSEL

Welche Eigenschaft sichert bei einem ungleichmäßigen Quellenkode die Dekodierbarkeit?

Präfixfreiheit: kein Kodewort darf Beginn eines anderen Kodewortes sein

Fehlererkennung bei Kanalkodierung: Wie prüft der Empfänger eine empfangene Binärfolge auf Verfälschungen?

Redundanz überprüfen

Was sind mögliche Ergebnisse der Fehlererkennung, und wie sind diese zu interpretieren?

Fehler und kann rekonstruiert werden, Fehler und kann nicht rekonstruiert werden, (Fehler wird nicht erkannt)

Welche Möglichkeiten der Fehlerkorrektur gibt es?

durch Wiederholung (erneute Übertragung im Fehlerfall), durch Rekonstruktion (Redundanz)

Was sind mögliche Ergebnisse der Rekonstruktion im Fehlerfall?

korrekte Rekonstruktion, falsche Rekonstruktion, Versagen der Rekonstruktion

Was sagt die minimale Hammingdistanz d_{min} über die Fehlererkennungsbzw. Fehlerkorrektureigenschaften eines Kodes aus?

 $f_e = d_{min} - 1$ von Null verschiedene Stellen erkennen, $f_k = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor$ von Null verschiedene Stellen korrigieren

Wie funktioniert der Paritätskode? Welche Kodeparameter hat er? Wie erfolgt die Fehlererkennung?

Hinzufügen einer weiteren Stelle, geradzahliges Gewicht insgesamt. Parameter: $(n, l, d_{min}) = (n, n - 1, 2)$, Fehlererkennung: Überprüfen des Paritätsbits