AE4 - Realização de Filtro Digitais FIR e IIR

Jessica de Souza, Leticia Aparecida Coelho

Engenharia de Telecomunicações, Instituto Federal de Santa Catarina <jessica.souzajds@gmail.com,leticia.ac23@gmail.com>

21 de agosto de 2018

1 Introdução e Metodologia

Os experimentos descritos neste relatório têm como objetivo comparar filtros que possuem a mesma especificação de magnitude usando filtros IIR e FIR para determinar a eficiência. Foi escolhido utilizar um filtro passa-faixa do tipo FIR com o algoritmo de otimização Parks-McClellan e um filtro IIR do tipo Chebychev II. Para a realização do filtro FIR e IIR, serão utilizadas as seguintes estruturas: Forma direta I e seções de segunda ordem (SOS) para o IIR e forma direta e simétrica para o FIR. Iremos analizar cada filtro e demostrar as vantagens de cada estrutura, considerando o aspecto de tamanho de hardware. A sessão 2 mostra os resultados no desenvolvimento do experimento com a ferramenta fdatool do Matlab.

1.1 Especificações do Projeto

Para o filtro FIR e IIR, serão utilizados os seguintes parâmetros para seu desenvolvimento: $f_1=1088$ Hz, $f_2=1185$ Hz, $f_3=1233$ Hz, $f_4=1330$ Hz, $f_a=4$ kHz, $G_p=0$ dB, $A_p=1$ dB e $A_s=40$ dB.

2 Resultados e Discussão

A realização dos filtros foi realizada utilizando o software fdatool e resultou nos parâmetros necessários para a implementação de um hardware físico, os quais podem ser visualizados na Tabela 1. Os parâmetros "número de multiplicadores", "somadores", "atraso"e "bits"foram obtidos na sessão "Filter information" do software fdatool. O parâmetro Hardware demonstrado na Tabela 1 é relacionado ao tamanho do hardware que foi obtido através da equação 1.

$$AHw = max((2*Num.multiplicadores + Num.somadores), Num.atrasos)*Num.bits$$
 (1)

Tabela 1 – Resultados da análise de filtros

Coeficientes dos filtros						
Id	Filtro	Mult.	Somadores	Atrasos	Bits	Hardware
1	IIR - Chebychev II - Quantizado	12	11	12	24	840
2	IIR - Chebychev II - Quantizado SOS	13	12	12	24	912
3	FIR - Parks-McCleallan	65	64	64	14	2716
4	FIR - Parks-McCleallan - Quantizado Simetrico	33	65	64	14	1834

Para assegurar que a análise dos valores correspondentes ao projeto de hardware dos filtros está correta, podemos visualizar as Figuras 4, 5 e 6 demonstram o resultado do filtro FIR e as Figuras 1, 2 e 3 demonstram o resultado do filtro IIR.

2.1 Filtro IIR

Figura 1 – Resposta do filtro IIR - Chebychev II

Figura 2 – Zoom na atenuação de passagem.

Figura 3 – Zoom nas atenuações de rejeição.

2.2 Filtro FIR

Figura 4 – Resposta do filtro FIR - Parks-McCleallan.

Figura 5 – Zoom nas atenuações de passagem.

Figura 6 – Zoom nas atenuações rejeição.

Podemos observar que o filtro IIR obteve um número de componentes inferior ao FIR e o seu hardware é significativamente menor ao do FIR, porém é necessário uma maior quantidade de bits para o sinal ficar dentro da especificação nas frequências utilizadas. Além disso, na figura 2, por mais que houvessem pontos para que o zoom na imagem seja permitido, o filtro gerado com os coeficientes do FDATool não pode mostrar o sinal dentro da máscara desejada, mas o datatip mostra que na frequência desejada a atenuação está correta. Após a quantização, o filtro IIR possui como coeficientes num = $[1 \ 0 \ -1]$ e den = $[1 \ 0.6 \ 0.9]$.

3 Conclusão

Os experimentos realizados foram relacionados a comparação entre filtros IIR com **ordem 6** e **atraso de grupo de 60 amostras**, e filtros FIR com **ordem 64** e **atraso de grupo de 32 amostras/s**, quantizados e não quantizados, para obter uma análise relacionada ao hardware gerado por cada tipo de filtro. Com a análise podemos perceber que os filtros quantizados apresentam menor harware com precisões em ponto-fixo de 14 bits para o filtro FIR e 24 bits para o filtro IIR. Concluimos que o filtro mais eficiente no quesito hardware é o IIR - Chebyshev II quantizado com tamanho 840 pois realiza a filtragem nas mesmas faixas de frequência com menor hardware.