# Efficient Local Search for Nonlinear Real Arithmetic

Zhonghan Wang, Bohua Zhan, Bohan Li, Shaowei Cai

Institute of Software, Chinese Academy of Sciences

VMCAI 2024 15 January 2024

- 1. Problem Nonlinear Real Arithmetic
  - Search Space of SMT(NRA)
  - Current Existing Methods
- 2. Incremental Computation of Variable Scores
  - Scoring Boundary for Arithmetic Variable
  - Incremental Computation
- 3. Temporary Relaxation of Equality (Non-Strick) Constraints
  - Difficulty in Local Search
  - Relaxation Method
- 4. Experiment

- 1. Problem Nonlinear Real Arithmetic
  - Search Space of SMT(NRA)
  - Current Existing Methods
- 2. Incremental Computation of Variable Scores
  - Scoring Boundary for Arithmetic Variable
  - Incremental Computation
- 3. Temporary Relaxation of Equality (Non-Strick)

#### Constraints

- Difficulty in Local Search
- Relaxation Method
- 4. Experiment

# Syntax of SMT(NRA)

polynomial: 
$$p::=x\mid c\mid p+p\mid p-p\mid p\times p$$
 atoms:  $a::=b\mid p=0\mid p>0\mid p<0$  formula:  $f::=a\mid \neg f\mid f\wedge f\mid f\vee f$ 

SMT: Determine whether the formula is satisfied by some assignment (local search focuses), or prove unsat

#### Example:

$$x^2+y^2\leq 1\land x+y<1\land x+z>0$$
 assignment with  $\{x\to 0,y\to 0,z\to 1\}$  satisfies all clauses.

## Fragment of Local Search (1)

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F.
         or failure
Initialize assignment to variables;
while \top do
   if all clauses satisfied then
       return success with assignment;
   end
   if time or step limit reached then
       return failure:
   end
   Critical move procedure.
end
  Algorithm 1: Basic Fragment of Local Search<sup>a</sup>
```

<sup>&</sup>lt;sup>a</sup>Shaowei Cai, Bohan Li, and Xindi Zhang. "Local Search for SMT on Linear Integer

# Fragment of Local Search (2)

```
cls \leftarrow \mathsf{random} \ \mathsf{unsat}
                                 isfied clause:
var, new value, score \leftarrow
                                 var, new value, score \leftarrow
best move according to
                                 critical move making
make-break score:
                                 cls satisfied:
if score > 0 then
                                 if score \neq -\infty then
    Move
               var
                         to
                                     new value;
    new value:
                                 end
end
else
                             until 3 times:
    Update clause weight: if no move performed
                             then
end
                                 Move some variables
                                 in unsatisfied clauses:
                             end
```

repeat

### Local Search for SAT and SMT

| LS                | SAT                    | SMT                     |  |  |  |  |
|-------------------|------------------------|-------------------------|--|--|--|--|
| Operation (Move)  | Flip                   | Critical Move           |  |  |  |  |
| Score Definition  | Weighted unsat clauses |                         |  |  |  |  |
| Score Computation | Cached score           | No Caching, time costly |  |  |  |  |

#### What LS for SAT brings us:

Maintain scoring information after each iteration.

#### Difficulty:

Predetermine critical move shift value.

#### **Our Solution:**

Introduce Scoring Boundaries.

- 1. Problem Nonlinear Real Arithmetic
  - Search Space of SMT(NRA)
  - Current Existing Methods
- 2. Incremental Computation of Variable Scores
  - Scoring Boundary for Arithmetic Variable
  - Incremental Computation
- 3. Temporary Relaxation of Equality (Non-Strick)
- Difficulty in Local Search
  - Relaxation Method
- 4. Experiment

#### Make-break Intervals

#### make-break intervals<sup>1</sup>

Combination of (in)feasible intervals of arithmetic variable x with respect to all clauses.

#### Example

Current assignment:  $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$ Calculate infeasible set for each clause.

- $x^2 + y^2 \le 1$  (unsat):  $(-\infty, 0) \cup (0, \infty)$ .
- x + y < 1 (unsat):  $[0, \infty)$ .
- x + z > 0 (sat):  $(-\infty, -1]$ .

Combined information: x:  $(-\infty, -1] \mapsto 0$ ,  $(-1, 0) \mapsto 1$ ,  $[0, 0] \mapsto 1$ ,  $(0, \infty) \mapsto 0$ .

<sup>&</sup>lt;sup>1</sup>Bohan Li and Shaowei Cai. "Local Search For SMT On Linear and Multilinear Real Arithmetic". In: CoRR abs/2303.06676 (2023). accepted for FMCAD.. DOI: 10.48550/arXiv.2303.06676. arXiv: 2303.06676. URL: https://doi.org/10.48550/arXiv.2303.06676.

## Traditional Computation

**Input**: unsat clauses FOutput: Best critical move (variable, value) **foreach** variable v in unsat clauses do **foreach** unsat clause c with v do Compute interval-score info of v in c. end Combine interval-score information. Update best var-value move. end return best critical move

#### Repeated computation:

- variable's (in)feasible set
- clause's sat staus

## Boundary

**Definition.** A quadruple  $\langle val, is\_open, is\_make, cid \rangle$ , where val is a real number,  $is\_open$  and  $is\_make$  are boolean values, and cid is a clause identifier.

#### Meaning

- val: make-break value.
- *is\_open*: active or not at *val* point.
- is\_make: make or break, increase or decrease score.
- *cid* : causing clause.

**Sorting** First ordered by val, then by  $is\_open (\bot < \top)$ .

## Boundary

#### Current assignment: $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$

- $x^2+y^2\leq 1$ : starting score 0, boundary set  $\{(0,\bot,\top,1),(0,\top,\bot,1)\}$ , indicating no change for large negative values, *make* at boundary  $[0,\cdots,$  followed by *break* at boundary  $(0,\cdots)$ .
- x+y<1: starting score 3, boundary set  $\{(0,\perp,\perp,2)\}$ , indicating *make* at large negative values, and *break* at boundary  $[0,\ldots]$
- x+z>0: starting score -2, boundary set  $\{(-1, \top, \top, 3)\}$ , indicating *break* at large negative values, and *make* at boundary  $(-1, \ldots)$

#### sorted boundary set:

$$\{(-1, \top, \top, 3), (0, \bot, \top, 1), (0, \bot, \bot, 2), (0, \top, \bot, 1)\}$$

## Boundary Example

boundary set:

$$\{(-1, \top, \top, 3), (0, \bot, \top, 1), (0, \bot, \bot, 2), (0, \top, \bot, 1)\}$$



**Starting score:** Score when x moves to  $-\infty$ . Maintain and Change: We maintain the boundary

info for all arithmetic varaibles, unless the neighbour

does a critical move.

# Algorithm for computing boundary

```
Input: Variable v that is modified
Output: Make-break score for all variables
S \leftarrow \{\}: // set of updated variables
for clause cls that contains v do
   for variable v' appearing in cls do
       add v' to S:
       recompute starting score and boundary of v'
        with respect to cls;
   end
end
for variable y' in S do
   recompute best critical move and score in terms
    of boundary information;
end
```

- Problem Nonlinear Real Arithmetic
  - Search Space of SMT(NRA)
  - Current Existing Methods
- 2. Incremental Computation of Variable Scores
  - Scoring Boundary for Arithmetic Variable
  - Incremental Computation
- 3. Temporary Relaxation of Equality (Non-Strick)

#### Constraints

- Difficulty in Local Search
- Relaxation Method
- 4. Experiment

## Previous Algorithm and Difficulty

#### Number complexation in Local Search

When a variable chooses a complex value, the iteration is much slower, but sometimes we have to ... Reference<sup>2</sup> ignores equalities constraints due to its accurate value complexation.

We introduce Relaxation into strick equality constraints, resulting in temporary interval candidate (rather than a point).

<sup>&</sup>lt;sup>2</sup>Bohan Li and Shaowei Cai. "Local Search For SMT On Linear and Multilinear Real Arithmetic". In: CoRR abs/2303.06676 (2023). accepted for FMCAD.. DOI: 10.48550/arXiv.2303.06676. urLi: https://doi.org/10.48550/arXiv.2303.06676.

## Algebraic Numbers Situation

## Definition (Complexity of values)

We define a preorder  $\prec_c$  on algebraic numbers as follows.  $x \prec_c y$  if x is rational and y is irrational, or if both x and y are rational numbers, and the denominator of x is less than that of y. We write  $x \sim_c y$  if neither  $x \prec_c y$  nor  $y \prec_c x$ .

Algebraic (irrational) numbers have the largest complexity.

#### Relaxation

#### Example

Given assignment 
$$\{x\mapsto 1,y\mapsto 1\}$$
 
$$z^2=x^2+y^3 \qquad z^3\geq 5x^2+y\vee z^3\leq 3x+3y$$

Both situations force z to an irrational number.

#### Relaxation

- If the constraint is of the form p=0, it is relaxed into the pair of inequalities  $p<\epsilon_p$  and  $p>-\epsilon_p$ .
- If the constraint is of the form  $p \geq 0$ , it is relaxed into  $p > -\epsilon_p$ . Likewise, if the constraint is of the form  $p \leq 0$ , it is relaxed into  $p < \epsilon_p$ .

#### Local Search with Relaxation

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F, or failure
Initialize assignment to variables;
while \top do
     if all clauses satisfied then
          success \leftarrow find exact solution;
          if success then
               return success with assignment;
          end
          else
               Restore relaxed constraints to original form;
               success \leftarrow find exact solution by limited local search;
               if success then
                   return success with assignment;
               end
          end
     end
     if time or step limit reached then
          return failure;
     end
     Proceed traditional local search (slack).
end
```

- 1. Problem Nonlinear Real Arithmetic
  - Search Space of SMT(NRA)
  - Current Existing Methods
- 2. Incremental Computation of Variable Scores
  - Scoring Boundary for Arithmetic Variable
  - Incremental Computation
- 3. Temporary Relaxation of Equality (Non-Strick)

#### Constraints

- Difficulty in Local Search
- Relaxation Method
- 4. Experiment

## Overall Result

| Category                    | #inst | Z3   | cvc5 | Yices | Ours | Unique |
|-----------------------------|-------|------|------|-------|------|--------|
| 20161105-Sturm-MBO          | 120   | 0    | 0    | 0     | 88   | 88     |
| 20161105-Sturm-MGC          | 2     | 2    | 0    | 0     | 0    | 0      |
| 20170501-Heizmann           | 60    | 3    | 1    | 0     | 8    | 6      |
| 20180501-Economics-Mulligan | 93    | 93   | 89   | 91    | 90   | 0      |
| 2019-ezsmt                  | 61    | 54   | 51   | 52    | 19   | 0      |
| 20200911-Pine               | 237   | 235  | 201  | 235   | 224  | 0      |
| 20211101-Geogebra           | 112   | 109  | 91   | 99    | 101  | 0      |
| 20220314-Uncu               | 74    | 73   | 66   | 74    | 70   | 0      |
| LassoRanker                 | 351   | 155  | 304  | 122   | 272  | 13     |
| UltimateAtomizer            | 48    | 41   | 34   | 39    | 27   | 2      |
| hycomp                      | 492   | 311  | 216  | 227   | 304  | 11     |
| kissing                     | 42    | 33   | 17   | 10    | 33   | 1      |
| meti-tarski                 | 4391  | 4391 | 4345 | 4369  | 4351 | 0      |
| zankl                       | 133   | 70   | 61   | 58    | 100  | 27     |
| Total                       | 6216  | 5570 | 5476 | 5376  | 5687 | 148    |

# Comparison

#### References I

Shaowei Cai, Bohan Li, and Xindi Zhang. [CLZ22] "Local Search for SMT on Linear Integer Arithmetic". In: Computer Aided Verification - 34th International Conference, CAV 2022. Haifa, Israel, August 7-10, 2022. Proceedings, Part II. Ed. by Sharon Shoham and Yakir Vizel, Vol. 13372. Lecture Notes in Computer Science. Springer, 2022, pp. 227–248. DOI: 10.1007/978-3-031-13188-2\\_12. URL: https://doi.org/10.1007/978-3-031-13188-2\ 12.

#### References II

[LC23] Bohan Li and Shaowei Cai. "Local Search For SMT On Linear and Multilinear Real Arithmetic". In: CoRR abs/2303.06676 (2023). accepted for FMCAD. DOI: 10.48550/arXiv.2303.06676. arXiv: 2303.06676. URL: https://doi.org/10.48550/arXiv.2303.06676.