TD 4 -Indépendance de variables aléatoires

Définition 1 (Indépendance de va discrètes)

Soient X, Y deux v.a. discrètes.

On dit que X,Y sont **indépendantes** si on a : $\forall x \in X(\Omega), y \in Y(\Omega)$:

$$\underbrace{\mathbb{P}(X=x,Y=y)}_{\text{probabilit\'e conjointe}} = \underbrace{\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)}_{\text{le produit des proba. marginales}}$$

Proposition 2 (Expression de probabilités)

Soient X,Y deux variables aléatoires discrètes **indépendantes**.

Pour un ensemble A du plan \mathbb{R}^2 , on a alors :

$$\mathbb{P}\big((X,Y)\in A\big) = \sum_{(x,y)\in A} \mathbb{P}(X=x)\cdot \mathbb{P}(Y=y)$$

(somme des probabilités élémentaires favorables)

1 Événements avec un couple indépendant

Exercice 1 (Dénombrer sur la loi conjointe)

Soient X, Y deux variables aléatoires indépendantes. On suppose : $X \hookrightarrow \mathcal{U}(\llbracket 1,6 \rrbracket)$ et

$$Y \hookrightarrow \mathcal{U}([1,5]).$$

1. Quels événements représentent les points des tableaux ci-dessous? Combien vaut la probabilité associée à chacun d'eux?

2. Repérer sur chaque tableau l'événement, et en déduire la probabilité de chacun.

A = [X = Y],			B = [X + Y = 8],					_	$C = [\max(X, Y) = 4],$							D = [5X + Y = 13].						
$Y \downarrow Z$	$X = 1 \ 2 \ 3 \ 4$	5 6	$Y \downarrow X$	= 1 2	3	4	5 6		$Y \downarrow X$	= 1	2	3	4	5 6	;	$Y \downarrow X$	= 1	2	3	4	5	6
1	0 0 0 0	0 0	1	0 0	0	0	0 0		1	0	0	0	0	0 0		1	0	0	0	0	0	0
2	0 0 0 0	0 0	2	0 0	0	0	0 0		2	0	0	0	0	0 0		2	0	0	0	0	0	0
3	0 0 0 0	0 0	3	0 0	0	0	0 0		3	0	0	0	0	0 0		3	0	0	0	0	0	0
4	0 0 0 0	0 0	4	0 0	0	0	0 0		4	0	0	0	0	0 0		4	0	0	0	0	0	0
5	0 0 0 0	0 0	5	0 0	0	0	0 0		5	0	0	0	0	0 0	_	5	0	0	0	0	0	0

3. Trouver la loi des variables aléatoires définies par : S = X + Y,

$$M = \max(X, Y),$$

►
$$U = 5X + Y$$
.

Exercice 2 (Reconnaître la non-indépendance)

Soient X, Y deux variables aléatoires géométriques $\mathcal{G}(a)$ qui sont indépendantes.

- 1. Soient $I = \min(X, Y)$ et $M = \max(X, Y)$.
 - ▶ $\mathbb{P}(M=1)=a^2$. a) Montrer que l'on a :
 - $\mathbb{P}(I=2) \ge a^2 \cdot (1-a)^2$.
 - ▶ $\mathbb{P}(M=1, I=2)=0.$
 - b) En déduire que les variables aléatoires *M* et *I* ne sont pas indépendantes.
- **2.** Soient S = X + Y, et D = X Y.
 - a) Montrer l'encadrement : $-S \le D \le S$.
 - **b)** Montrer que les variables S et D ne sont pas indépendantes. (on s'inspirera de la q^n 1.)
- **3.** Soient S = X + Y, et $P = X \cdot Y$.
 - a) Montrer l'inégalité : $P \le \left(\frac{S}{2}\right)^2$.
 - **b)** En déduire que les variables *S* et *P* ne sont pas indépendantes.

(On pourra par exemple vérifier: $\mathbb{P}(S=3, P=4)=0$.)

4. Les variables aléatoires D = X - Y et $P = X \cdot Y$ sont-elles indépendantes?

Exercice 3 (Comparaison de va géométriques indépendantes)

Soient *X* et *Y* deux variables aléatoires indépendantes de lois respectives :

- **1.** Pour $m, n \ge 1$, montrer: $\mathbb{P}(X = m, Y = n) = ab \cdot (1 a)^{m-1} \cdot (1 b)^{n-1}$.
- **2.** L'événement A = [X = Y]
 - a) Décomposer l'événement A en événements élémentaires [X = m, Y = n].
 - **b)** En déduire que : $\mathbb{P}(A) = ab \cdot \sum_{n=1}^{+\infty} [(1-a)(1-b)]^{n-1}$.
 - **c)** Calculer $\mathbb{P}(A)$.
- **3.** L'événement B = [X > Y] Pour $n \ge 1$, on note : $B_n = B \cap [Y = n]$.

 - a) Montrer l'égalité d'événements : $B = \bigsqcup_{n=1}^{+\infty} B_n$. b) Montrer, pour $n \ge 1$, l'expression : $\mathbb{P}(B_n) = b \cdot (1-b)^{n-1} \cdot \sum_{k=n+1}^{+\infty} a \cdot (1-a)^{k-1}$. c) En déduire : $\mathbb{P}(B) = \sum_{n=1}^{+\infty} b \cdot (1-a) \cdot \left[(1-a)(1-b) \right]^{n-1}$.

 - **d)** Calculer $\mathbb{P}(B)$.
- **4.** À quoi correspondent les probabilités $\mathbb{P}(A) + \mathbb{P}(B)$ et $1 \mathbb{P}(B)$?

Exercice 4 (Différence de deux géométriques)

Soient X, Y variables indépendantes de même loi $\mathcal{G}(p)$. On note : $U = \min(X, Y)$

$$V = |X - Y|$$
.

- **1.** Montrer que $U(\Omega) = \mathbb{N} \setminus \{0\}$ et $V(\Omega) = \mathbb{N}$.
- **2.** Soit $u \ge 1$. Montrer que : $\mathbb{P}(U = u, V = 0) = \mathbb{P}(X = Y = u)$.
- **3.** Montrer pour $u, v \ge 1$, l'égalité : $[(U, V) = (u, v)] = [(X, Y) = (u, u + v)] \sqcup [(X, Y) = (u + v, u)]$.
- **4.** En déduire pour $u \ge 1$, $v \ge 0$, que : $\mathbb{P}(U = u, V = v) = \begin{cases} p^2 \cdot q^{2(u-1)} & \text{pour } v = 0 \\ 2p^2 \cdot q^{2(u-1)} \cdot q^v & \text{pour } v \ge 1. \end{cases}$
- **5.** Déterminer les lois de U et V. En déduire que les variables aléatoires U et V sont indépendantes.

2 Min et max de variables indépendantes

Proposition 3 (Max de deux va)

Soient *X*, *Y* deux variables aléatoires.

Notons: $M = \max(X, Y)$.

Alors pour $x \in \mathbb{R}$, on a les égalités d'év^{ts}:

$$[M \leqslant x] = [X \leqslant x] \cap [Y \leqslant x]$$

$$[M \geqslant x] = [X \geqslant x] \cup [Y \geqslant x]$$

Proposition 5 (Min de deux va)

Soient *X*, *Y* deux variables aléatoires.

Notons: $I = \max(X, Y)$.

Alors pour $x \in \mathbb{R}$, on a les égalités d'év^{ts} :

$$[I \leqslant x] = [X \leqslant x] \cup [Y \leqslant x]$$

$$[I \geqslant x] = [X \geqslant x] \cap [Y \geqslant x]$$

Proposition 4 (Foncⁿ de répartition du max)

Soient *X*, *Y* deux *v.a.* **indépendantes**.

Notons: $M = \max(X, Y)$.

Alors, pour $x \in \mathbb{R}$, on a :

$$\mathbb{P}(M \le x) = \mathbb{P}(X \le x) \cdot \mathbb{P}(Y \le x)$$

Proposition 6 (Foncⁿ d'anti-répart^{on} du min)

Soient *X*, *Y* deux *v.a.* **indépendantes**.

Notons: $I = \min(X, Y)$.

Alors, pour $x \in \mathbb{R}$, on a :

$$\mathbb{P}(I > x) = \mathbb{P}(X > x) \cdot \mathbb{P}(Y > x)$$

Exercice 5 (Min de deux géométriques)

Soient X et Y deux variables aléatoires indépendantes de loi respectives : $X \hookrightarrow \mathcal{G}(a)$

$$Y \hookrightarrow \mathcal{G}(b)$$

On étudie la variable aléatoire : I = min(X,Y).

- **1.** Calculer la fonction d'anti-répartition de X, définie pour $n \in \mathbb{N}$, par : $A_X(n) = \mathbb{P}(X > n)$.
- **2.** Montrer pour $n \ge 1$, l'égalité d'événéments : $[I > n] = [X > n] \cap [Y > n]$. Exprimer la fonction d'anti-répartition A_I de I en fonction de celles de X et Y.
- **3.** En déduire que I suit une loi géométrique dont on précisera le paramètre. Exprimer $\mathbb{E}[I]$ en fonction de $\mathbb{E}[X]$ et $\mathbb{E}[Y]$.
- **4.** La variable aléatoire définie par $S = \max(X, Y)$ est-elle aussi de loi géométrique?

Exercice 6 (Max de deux variables uniformes)

Soient U,V deux variables indépendantes de loi uniforme $\mathcal{U}(\llbracket 1,n \rrbracket)$.

On étudie la variable aléatoire $S = \max(U, V)$.

1. Quelles sont les valeurs possibles $S(\Omega)$ pour la variable S?

2. Fonction de répartition

- a) Rappeler la fonction de répartition de U et V.
- **b)** Montrer, pour $k \in [1, n]$, l'égalité d'événements : $[S \le k] = [U \le k] \cap [V \le k]$
- c) En déduire, pour $k \in [1, n]$, que : $\mathbb{P}(S \le k) = (\frac{k}{n})^2$.

3. Probabilités et espérance

- a) Pour $k \in [1, n]$, exprimer l'événement [S = k] en termes de $[S \le k 1]$ et $[S \le k]$. En déduire : $\mathbb{P}(S = k) = \frac{1}{n^2} \cdot (2k - 1)$.
- **b)** Montrer que : $\mathbb{E}[S] = \frac{1}{6n} \cdot (n+1) \cdot (4n-1)$. Donner un équivalent de $\mathbb{E}[S]$ quand $n \to +\infty$.

Exercice 7 (Min de deux variables uniformes)

Soient U,V deux variables indépendantes de loi uniforme $\mathcal{U}(\llbracket 1,n \rrbracket)$.

On étudie la variable aléatoire $I = \min(U, V)$.

- **1.** a) Rappeler la fonction de répartition de U et V.
 - **b)** En déduire pour $k \in [0,n]$, la probabilité $\mathbb{P}(U > k)$.

2. Fonction d'anti-répartition

- a) Montrer, pour $k \in [0,n]$, l'égalité d'événements : $[I > k] = [U > k] \cap [V > k]$
- **b)** En déduire, pour $k \in [0, n]$, que : $\mathbb{P}(I > k) = \left(\frac{n-k}{n}\right)^2$.

3. Calcul a priori de l'espérance

- a) Soit X une v.a. à valeurs dans [0,n]. Montrer : $\mathbb{E}[X] = \sum_{k=0}^{n} \mathbb{P}(X > k)$.
- **b)** En déduire : $\mathbb{E}[I] = \frac{1}{n^2} \cdot \sum_{k=0}^{n} (n-k)^2$.

Montrer enfin : $\mathbb{E}[I] = \frac{1}{6n} \cdot (n+1) \cdot (2n+1)$. (On reconnaîtra une somme des carrés.)

c) On rappelle que pour $S = \max(U, V)$, on a : $\mathbb{E}[S] = \frac{1}{6n} \cdot (n+1) \cdot (4n-1)$. Que remarque-t-on pour $\mathbb{E}[I] + \mathbb{E}[S]$?

Exercice 8 (Maximum multiple)

Soient $U_1, U_2, ..., U_\ell$ une famille de ℓ variables aléatoires. (avec $\ell \ge 1$)

On suppose qu'elles sont : mutuellement indépendantes, et

- toutes de loi $\mathcal{U}([1,n])$.
- **a)** Rappeler, pour $i \in [0,\ell]$, la fonction de répartition de U_i .
 - **b)** En déduire que, pour $k \in [1, n]$, on peut écrire : $\mathbb{P}(U_1 \le k, ..., U_\ell \le k) = (\frac{k}{n})^\ell$.

On note $S = \max(U_1, ..., U_\ell)$.

- a) Déduire de 1.b) la fonction de répartition de S.
 - **b)** On suppose *n* pair. Simplifier la probabilité $\mathbb{P}(S \leq \frac{n}{2})$.
 - c) Montrer que l'on a $S(\Omega) = [1, n]$ et que : $\forall k \in [1, n]$, $\mathbb{P}(S = k) = \left(\frac{k}{n}\right)^{\ell} \left(\frac{k-1}{n}\right)^{\ell}$.
- 3. Asymptotique $\ell \to +\infty$ des probabilités (« échantillon infini »)
 - a) Interpréter en termes des variables $U_1, U_2, ..., U_\ell$ l'événement [S = n].
 - **b)** Montrer que, pour $\ell \to +\infty$, on a : $\mathbb{P}(S=n) \longrightarrow 1$.
 - c) Quelle est la limite $\ell \to +\infty$ de la probabilité $\mathbb{P}(S < n)$?

(Interprétation?)

- **4.** Asymptotique $n \to +\infty$ de l'espérance (« passage au continu »)
 - a) Soit X une v.a. à valeurs dans [0,n]. Montrer : $\mathbb{E}[X] = \sum_{k=0}^{n} \mathbb{P}(X > k)$.

En déduire : $\mathbb{E}[X] = n + 1 - \sum_{k=1}^{n} \mathbb{P}(X \le k)$.

- **b)** En reconnaissant une somme de Riemann, montrer : $\lim_{n \to +\infty} \left[\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n} \right)^{\ell} \right] = \frac{1}{\ell+1}$.
- c) En déduire un équivalent de $\mathbb{E}[S]$ quand $n \to +\infty$.

3 Sommes de variables indépendantes

Proposition 7 (Loi de la somme)

Soient X,Y deux variables aléatoires discrètes.

Supposons: $X(\Omega) \subset \mathbb{N}, Y(\Omega) \subset \mathbb{N},$

X,Y indépendantes.

On définit : S = X + Y.

Alors $S(\Omega) \subset \mathbb{N}$, et $\forall n \in \mathbb{N}$, on a :

$$\mathbb{P}(S=n) = \sum_{k=0}^{n} \mathbb{P}(X=k) \cdot \mathbb{P}(Y=n-k)$$

Nécessité de l'indépendance

Si X, Y ne sont pas indépendantes, on a :

$$\mathbb{P}(S=n) = \sum_{k=0}^{n} \mathbb{P}(X=k, Y=n-k)$$

Adapter la formule

Souvent, les variables X et Y ne prennent pas toutes les valeurs $\in \mathbb{N}$.

(Par exemple, pour $X \hookrightarrow \mathcal{G}(p)$, on $a X(\Omega) = \mathbb{N}^*$.) Dans ce cas, il faut adapter les bornes de sommation dans la formule.

Exercice 9 (Somme de variables de Poisson (Cours!))

Soient $X \hookrightarrow \mathcal{P}(a)$ et $Y \hookrightarrow \mathcal{P}(b)$ deux variables de Poisson, avec $a, b \ge 0$

On suppose que X et Y sont **indépendantes**, et on s'intéresse à la loi de la variable S = X + Y.

- 1. Rappeler $X(\Omega)$, et, $\forall n \in \mathbb{N}$, la probabilité $\mathbb{P}(X = n)$. Donner aussi l'expression de $\mathbb{E}[X]$ et Var(X).
- **2.** a) Déterminer l'ensemble des valeurs $S(\Omega)$.
 - **b)** À quelle condition sur X, Y a-t-on S = 0? En déduire la probabilité $\mathbb{P}(S = 0)$.
- **3.** Soit $n \in \mathbb{N}$
 - a) Décomposer l'événement [S = n] comme réunion d'événements [X = i, Y = j].
 - **b)** En déduire la formule : $\mathbb{P}(S=n) = \sum_{k=0}^{n} \mathbb{P}(X=k) \cdot \mathbb{P}(Y=n-k)$.
 - **c)** Rappeler la formule du binôme de Newton pour $(a+b)^n$. (On écrira $\binom{n}{k}$ en factorielles.)
 - **d)** En déduire la valeur de $\mathbb{P}(S=n)$. (On pourra mettre $\frac{1}{n!}$ en facteur de la somme.)
- **4. a)** En déduire la loi de la variable *S*.
 - **b)** En déduire la valeur de $\mathbb{E}[S]$ et Var(S). Exprimer l'espérance et la variance de S en fonction de celles de X et Y.

Exercice 10 (Somme de deux variables géométriques)

Soient X,Y deux variables aléatoires mutuellement indépendantes, toutes deux de loi $\mathcal{G}(p)$.

- 1. Rappeler $X(\Omega)$ et la loi de X. Préciser son espérance et sa variance.
- **2.** Montrer que la loi conjointe de (X,Y), pour $i,j \ge 1$ s'écrit : $\mathbb{P}(X=i,Y=j) = p^2 \cdot q^{i+j-2}$. On note S = X + Y.
- **3.** a) Déterminer l'ensemble des valeurs $S(\Omega)$.
 - **b)** Quels couples de valeurs de X,Y donnent S=2? S=3? S=4?
 - c) Pour $n \ge 2$, décomposer l'événement [S = n] comme union d'év^{ts} [X = i, Y = j].
 - **d)** Montrer que pour $n \ge 2$, on a : $\mathbb{P}(S = n) = \sum_{k=1}^{n-1} \mathbb{P}(X = k) \cdot \mathbb{P}(Y = n k)$. En déduire que la loi de S est donnée par : $\forall n \ge 2$, $\mathbb{P}(S = n) = p^2 \cdot (n 1) \cdot q^{n-2}$.
- **4.** a) Vérifier par le calcul qu'on a bien : $\sum_{n=2}^{+\infty} \mathbb{P}(S=n) = 1.$
 - **b)** Vérifier par le calcul que l'on a : $\mathbb{E}[S] = \frac{2}{p}$.
 - c) Combien vaut Var(S)? En déduire la valeur de $\mathbb{E}[S^2]$.

Définition 8 (Indépendance mutuelle)

On dit que les variables $X_1,...,X_n$ sont **mutuellement indépendantes** si pour toute collection $A_1...A_n$ de parties de \mathbb{R} , on a :

$$\mathbb{P}\left(\bigcap_{i=1}^{n} [X_i \in A_i]\right) = \prod_{i=1}^{n} \mathbb{P}(X_i \in A_i).$$

Fonctions de répartition

Cette condition équivaut à : $\forall x_1, \dots x_n \in \mathbb{R}$,

$$\mathbb{P}\left(\bigcap_{i=1}^n [X_i \leq x_i]\right) = \prod_{i=1}^n \mathbb{P}(X_i \leq x_i).$$

Proposition 9 (Cas discret)

Si les variables $X_1,...,X_n$ sont discrètes, la condition d'indépendance mutuelle s'écrit:

$$\mathbb{P}\left(\bigcap_{i=1}^{n} [X_i = x_i]\right) = \prod_{i=1}^{n} \mathbb{P}(X_i = x_i).$$

Lemme 10 (Coalitions)

Soient $X_1, ..., X_n$ mut^{nt} indépendantes. Posons $Y = f(X_1, ..., X_r)$ où $f : \mathbb{R}^r \to \mathbb{R}$. $(avec \ r \leq n)$ Alors $Y, X_{r+1}, ..., X_n$ sont mut^{nt} indép^{tes}.

Démonstration: Résultat admis.

Exercice 11 (Somme de trois variables géométriques)

Soient X,Y,Z des variables aléatoires mutuellement indépendantes, toutes de loi $\mathcal{G}(p)$. On note S = X + Y et T = X + Y + Z.

- a) Quelle relation a-t-on entre les variables T et S? Sont-elles indépendantes?
 - **b)** Justifier que *S* et *Z* sont indépendantes.

On a montré dans l'ex. 10 que la loi de S est donnée pour $n \ge 2$ par : $\mathbb{P}(S = n) = p^2 \cdot (n-1) \cdot q^{n-2}$.

- **2.** Soit $n \ge 3$.
 - a) Décomposer l'événement [T = n] selon les [S = i, Z = j].
 - **b)** En déduire que : $\mathbb{P}(T = n) = \sum_{k=2}^{n-1} p^3 \cdot (k-1) \cdot q^{n-3}$.
 - **c)** Conclure: $\mathbb{P}(T = n) = p^3 \cdot \frac{(n-1)(n-2)}{2} \cdot q^{n-3}$.
- **3.** Combien valent $\mathbb{E}[T]$ et Var(T)?

Exercice 12 (Somme de géométriques G'(p))

Soient X_1, X_2, \dots v.a. indépendantes telles que $\forall k \ge 1$: $\qquad \qquad X_k(\Omega) = \mathbb{N},$

 $\forall n \in \mathbb{N}, \quad \mathbb{P}(X_k = n) = q \cdot p^n.$

On étudie la loi de la somme : $S_m = \sum_{k=1}^m X_k$, $m \ge 1$.

On définit une famille de suites comme suit : $\forall n \in \mathbb{N}, \quad u_{1,n} = 1$ $\forall m \geq 1, \forall n \in \mathbb{N}, \quad u_{m+1,n} = \sum_{k=0}^n u_{m,k}.$

1. Vérifier que $\forall n \in \mathbb{N}$, on a : $\mathbb{P}(S_1 = n) = u_{1,n} \cdot p \cdot q^n$.

Par le lemme des coalitions, pour tout $m \ge 1$, les variables S_m et X_{m+1} sont indépendantes.

- **2.** En écrivant $S_{m+1} = S_m + X_{m+1}$, montrer : $\mathbb{P}(S_{m+1} = n) = \sum_{k=0}^{n} \mathbb{P}(S_m = k) \cdot \mathbb{P}(X_{m+1} = n k)$.
- **3.** Montrer que $\forall m \ge 1, n \ge 0$, on a : $\mathbb{P}(S_m = n) = u_{m,n} \cdot p^m \cdot q^n$. (on fera une récurrence sur m.)
- 4. Bonus : détermination de la suite double $u_{m,n}$
 - a) Montrer que pour tout $m \ge 1$, on a : $u_{m,0} = 1$.
 - **b)** Montrer pour tout $m \ge 1$, $n \in \mathbb{N}$, la relation : $u_{m+1,n} + u_{m,n+1} = u_{m+1,n+1}$.
 - **c)** En déduire pour $m \ge 1$, $n \in \mathbb{N}$, l'expression : $u_{m,n} = \binom{n+m-1}{n}$.

Exercice 13 (Irwin-Hall discret (d'après Ecricome 2017))

Soient U_1, U_2, U_3, \dots v.a. telles que : $\forall k \ge 1$, on a $U_k \hookrightarrow \mathcal{U}(\llbracket 1, n \rrbracket)$

▶ les $(U_k)_{k \ge 1}$ sont mutuellement indépendantes.

Pour $k \ge 1$, on note: $S_k = \sum_{j=1}^k U_j$.

- **a)** Rappeler, pour $j, k \ge 1$, la formule de Pascal liant les coefficients $\binom{j-1}{k-1}$, $\binom{j-1}{k}$ et $\binom{j}{k}$. **b)** En déduire que, pour $1 \le k < i$, on a : $\sum_{i=k}^{i-1} \binom{j-1}{k-1} = \binom{i-1}{k}$.
- **2.** Soit *k* ≥ 1.
 - a) Quelles sont les valeurs possibles pour S_k ?
 - **b)** Exprimer S_{k+1} en fonction de S_k et U_{k+1} .
- c) Montrer que S_k et U_{k+1} sont independantes. a) En déduire pour $i \in [k+1,n]$, que : $\mathbb{P}(S_{k+1}=i) = \frac{1}{n} \cdot \sum_{j=k}^{i-1} \mathbb{P}(S_k=j)$. (soit: $\mathbb{P}(S_{k+1}=i) = \frac{1}{n} \cdot \mathbb{P}(S_k < i)$.)
 - **b)** Montrer que, pour $1 \le k \le i \le n$, on a : $\mathbb{P}(S_k = i) = \frac{1}{n^k} \cdot {i-1 \choose k-1}$. (Récurrence sur $k \in [1,n]$.)

Exercice 14 (La mitrailleuse à {0,1} (plus formel))

Soit E_1, E_2, E_3, \dots une suite (infinie) de v.a. qui sont : \rightarrow mutuellement indépendantes

• toutes de loi $\mathcal{B}(\frac{1}{2})$

1. On définit une suite de variables aléatoires par : • $U_1 = E_1$, et

 $\forall n \in \mathbb{N}, U_{n+1} = U_n + 2^n \cdot E_{n+1}.$

a) Justifier, pour n ≥ 1, que U_n = ∑ 2^{k-1} · E_k.
b) En déduire, pour n ≥ 1, que U_n est indépendante de E_{n+1}.

c) Montrer par récurrence pour $n \ge 1$, que U_n suit la loi uniforme : $U_n \hookrightarrow \mathcal{U}([0,2^n-1])$.

2. Pour $n \ge 1$, on pose : $X_n = \frac{1}{2^n} \cdot U_n$.

a) Montrer que pour $n \ge 1$ et $x \in [0;1[$, on a : $\mathbb{P}(X_n \le x) = \frac{\lfloor 2^n \cdot x \rfloor + 1}{2^n}$. $(où \lfloor \cdot \rfloor = partie\ entière)$

b) Montrer, pour $x \in [0;1]$ que l'on a : $\left|x - F_{X_n}(x)\right| \le \frac{1}{2^n}$.

c) En déduire, pour $x \in [0;1]$, que l'on a : $\lim_{n \to +\infty} F_{X_n}(x) = x$.

À quelle loi à densité, la fonction de répartition limite (pour $n \to +\infty$) correspond-elle?

3. Montrer que X_n a la même loi que : $\sum_{k=1}^n \frac{E_k}{2^k}.$

(C'est-à-dire que E_k est le $k^{\grave{e}me}$ chiffre dans l'écriture binaire de ce nombre.)

4 Correction

Corrigé Ex (Différence de deux géométriques)

Soient X, Y variables indépendantes de même loi $\mathcal{G}(p)$. On note : $U = \min(X, Y)$

V = |X - Y|.

- **1.** Montrer que $U(\Omega) = \mathbb{N} \setminus \{0\}$ et $V(\Omega) = \mathbb{N}$.
 - ▶ **Valeurs de** *U* On a $U = \min(X, Y)$, avec X, Y à valeurs dans $\mathbb{N} \setminus \{0\}$.

Les valeurs possibles pour U sont donc aussi dans $\mathbb{N}\setminus\{0\}$.

Par indépendance toutes les valeurs sont possibles.

▶ **Valeurs de** *V* On a V = |X - Y|.

Les valeurs possibles pour X - Y sont entières (dans \mathbb{Z}).

Par passage à la valeur absolue, $V(\Omega) \subset \mathbb{N}$.

Là encore par indépendance, toutes les valeurs sont possibles : $V(\Omega) = \mathbb{N}$.

2. Soit $u \ge 1$. Montrer que: $\mathbb{P}(U=u, V=0) = \mathbb{P}(X=Y=u)$.

On a l'égalité d'événements : $[U=u, V=0] = [\min(X,Y)=u, |X-Y|=0]$

=
$$[\min(X,Y) = u, X = Y] = [\min(X,X) = u, X = Y].$$

On passe aux probabilités dans l'égalité trouvée : [U=u, V=0] = [X=Y=u],

d'où:
$$\mathbb{P}(U=u, V=0) = \mathbb{P}(X=Y=u)$$
.

3. *Montrer pour* $u, v \ge 1$, *l'égalité* : $[(U, V) = (u, v)] = [(X, Y) = (u, u + v)] \sqcup [(X, Y) = (u + v, u)]$.

On utilise, pour a > 0 l'équivalence : $[|x| = a] \iff [x = a \text{ ou } -x = a]$.

Il vient la réunion disjointe : [(U,V)=(u,v)]=[U=u,|X-Y|=v]

$$= [U=u, X-Y=v] \sqcup [U=u, Y-X=v]$$

Dans le premier cas, on a : $[U=u,X-Y=v] = [\min(X,Y)=u,X=Y+v]$

=
$$[\min(Y + v, Y) = u, X = Y + v]$$

= $[Y = u, X = Y + v] = [X = u + v, Y = u]$

De même : [U = u, X - Y = v] = [X = u, Y = X + v] = [X = u, Y = u + v].

4. En déduire pour $u \ge 1$, $v \ge 0$, que : $\mathbb{P}(U = u, V = v) = \begin{cases} p^2 \cdot q^{2(u-1)} & pour \ v = 0 \\ 2p^2 \cdot q^{2(u-1)} \cdot q^v & pour \ v \ge 1 \end{cases}$

On explicite la loi conjointe du couple (X,Y) de variables $\mathcal{G}(p)$, où q=1-p.

Pour
$$x, y \ge 1$$
, on a: $\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$

$$= p \cdot q^{x-1} \cdot p \cdot q^{y-1} = p^2 \cdot q^{x+y-2}$$

On remplace pour trouver l'expression de $\mathbb{P}(U = u, V = v)$.

- ► **Cas** v = 0 Il vient : $\mathbb{P}(U = u, V = 0) = \mathbb{P}(X = u, Y = u) = p^2 \cdot q^{2u-2}$.
- ► Cas $v \ge 1$ Il vient : $\mathbb{P}(U=u, V=v) = \mathbb{P}(X=u+v, Y=u) + \mathbb{P}(X=u, Y=u+v)$ = $p^2 \cdot q^{2u+v-2} + p^2 \cdot q^{2u+v-2} = 2 \cdot p^2 \cdot q^{2u+v-2}$.
- **5.** Déterminer les lois de U et V.

En déduire que les variables aléatoires U et V sont indépendantes.

▶ **Loi de** *U* Pour trouver la loi marginale, on somme la loi conjointe

(décomposition dans le système complet associé à V)

Pour
$$u \ge 1$$
, il vient : $\mathbb{P}(U=u) = \sum_{v=0}^{+\infty} \mathbb{P}(U=u, V=v) = \mathbb{P}(U=u, V=0) + \sum_{v=1}^{+\infty} \mathbb{P}(U=u, V=v)$
= $p^2 \cdot q^{2u-2} + \sum_{v=1}^{+\infty} 2 \cdot p^2 \cdot q^{2u+v-2} = p^2 \cdot q^{2u-2} + \frac{2 \cdot p^2 \cdot q^{2u-1}}{1-q}$.

On a reconnu une série géométrique de raison q, et on remarque que 1-q=p.

Il reste :
$$\mathbb{P}(U=u) = p^2 \cdot q^{2u-2} + 2 \cdot p \cdot q^{2u-1} = p \cdot (p+2q) \cdot q^{2u-2}$$

$$= p \cdot (1+q) \cdot \left(q^2\right)^{u-1}$$

Ainsi, U suit la loi géométrique $\mathcal{G}(1-q^2)$.

▶ Loi de V Même principe, en sommant sur les valeurs de U. D'abord le cas v = 0.

On trouve:
$$\mathbb{P}(V=0) = \sum_{u=1}^{+\infty} \mathbb{P}(U=u, V=0) = \sum_{u=1}^{+\infty} p^2 \cdot q^{2u-2} = \frac{p^2}{1-q^2}.$$

On a reconnu une série géométrique de raison q^2 , et on simplifie par la relation 1 - q = p.

Il reste:
$$\mathbb{P}(V=0) = \frac{p^2}{(1-q)\cdot(1+q)} = \frac{p}{1+q}$$
.

Pour le cas $v \ge 1$, c'est le même calcul, mais avec un facteur $2 \cdot q^v$.

Il reste:
$$\mathbb{P}(V=v) = \frac{2 \cdot p}{1+q} \cdot q^v$$
.

▶ Conclusion : indépendance

On vérifie bien, pour $u \ge 1$, $v \ge 0$, la relation : $\mathbb{P}(U = u, V = v) = \mathbb{P}(U = u) \times \mathbb{P}(V = v)$.