Artificial Bee Colony アルゴリズムによるサポートベクターマシンのハイパーパラメータ最適化

2131007 安達 拓真

千葉工業大学 情報科学部 情報工学科 4 年 山口研究室

2024年9月3日

- 機械学習のハイパーパラメータを自動で調整する研究が行われている
- 先行研究として、Artificial Bee Colony アルゴリズム (ABC)
 を用いて、サポートベクターマシン (SVM) のハイパーパラメータ最適化と特徴選択を行った研究がある
- 本研究では、先行研究で最適化対象ではなかったカーネル関数をハイパーパラメータとして扱う手法を提案する

サポートベクターマシン(SVM)

- 1995 年に C.Cortes らが提案した機械学習アルゴリズム¹
- 非線形データを高次元空間に写像し、線形分離可能にする
- データを分類する最適な境界線(超平面)を探す

¹Cortes, C. and Vapnik, V. Support-vector networks, Ma-chine Learning, Vol.20, No.3, pp.273-297, 1995.

Artificial Bee Colony(ABC) アルゴリズム

- 蜂の採餌行動に着目した最適化アルゴリズム²
- 働き蜂、追従蜂、偵察蜂の三種類の蜂によって各食物源の 探索を行い、最適解を求める
- ABC 自体の設定パラメータは少ない

²Karaboga, Dervis. An idea based on honey bee swarm for numerical optimization. Vol. 200. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.

先行研究³における SVM のハイパーパラメータ最適化

- カーネル関数を RBF カーネルに固定
- ABC アルゴリズムを使用
- 最適化したハイパーパラメータ
 - > SVM の C
 - ▶ ガウスカーネルの γ

³近藤 久,浅沼 由馬"人工蜂コロニーアルゴリズムによるランダムフォレストとサポートベクトルマシンのハイパーパラメータ最適化と特徴選択",人工知能学会論文誌, vol34-2, pp.1-11, 2019.

問題点

- カーネル関数をガウスカーネルに固定している
 - ► SVM にはガウスカーネル以外にも様々なカーネル関数が適用 できる
 - ▶ カーネル関数によってハイパーパラメータが異なる
- ハイパーパラメータ空間の探索範囲が限定的

提案手法

以下の4つのカーネル関数とそのハイパーパラメータも最適 化対象とする

線形カーネル:
$$K(\boldsymbol{x_i}, \boldsymbol{x_j}) = \boldsymbol{x_i}^T \cdot \boldsymbol{x_j}$$
 RBF カーネル: $K(\boldsymbol{x_i}, \boldsymbol{x_j}) = \exp\left(-\gamma \|\boldsymbol{x_i} - \boldsymbol{x_j}\|^2\right)$ シグモイドカーネル: $K(\boldsymbol{x_i}, \boldsymbol{x_j}) = \tanh(\gamma \boldsymbol{x_i}^T \cdot \boldsymbol{x_j} + \text{coef0})$ 多項式カーネル: $K(\boldsymbol{x_i}, \boldsymbol{x_j}) = (\gamma \boldsymbol{x_i}^T \cdot \boldsymbol{x_j} + \text{coef0})^d$

ABC における解表現は以下の5次元で表す

解表現:(カーネル関数, C, γ , coef0, d)

カーネル関数が持つハイパーパラメータの扱い

- カーネル関数によってハイパーパラメータの数は異なる
 - ▶ 同じ性質のパラメータが存在することに着目
- カーネル関数によって異なるハイパーパラメータはカーネル 関数の値によって取捨選択する
- カーネル関数の更新はランダムに選ばれた個体との ルーレット選択

$$P = \frac{\operatorname{fit}(\boldsymbol{x_j})}{\operatorname{fit}(\boldsymbol{x_i}) + \operatorname{fit}(\boldsymbol{x_j})}$$

i: 更新個体 *j*: ランダムに選ばれた値

実験

- 侵入検知問題である KDD'99 データセットを, デフォルトパラメータ,既存手法,提案手法で解く
- 既存手法, 先行研究は 10 回ずつ実行し, 平均値をとる
- データセットはランダムに 10%抽出した物を 3 つ使用する
 - ▶ 学習セット: SVM の学習に使用
 - ▶ 検証セット: SVM の評価に使用
 - ▶ テストセット: 最終的に得られた最良解の評価に使用

実験パラメータ

Table: ABC の実験パラメータ

パラメータ	値
コロニーサイズ	20
LIMIT	100
サイクル数	500

Table: SVM の実験パラメータ

パラメータ	値		
kernel	[linear, RBF, sigmoid, poly]		
C	$[10^{-6}, 35000]$		
γ	$[10^{-6}, 32]$		
coef0	[0, 10]		
d	[1, 3]		

実験結果(分類精度と実行時間)

- 提案手法はデフォルトパラメータ,先行研究よりも分類精度が高くなった。
- 実行時間は先行研究よりも長くなった.

Table: 分類精度と実行時間

	線形	RBF	シグモイド	多項式	先行研究	提案手法
分類精度 [%]	99.68	99.78	96.12	99.76	99.88	99.91
実行時間 [h]	-	-	-	-	11.8	15.5

実験結果(評価指標)

- 提案手法では TP, TN が向上し, FP, FN は減少したため, 検知率が向上し,誤警報率は減少した
 - ▶ 侵入検知問題におけるモデルの性能が向上した

Table: 混同行列の値

	先行研究	提案手法
TP	39602.4	39609.7
TN	9743.8	9748.9
FP	22.2	17.1
FN	33.6	26.3

Table: モデルの評価指標

	先行研究	提案手法
検知率 [%]	99.91	99.93
誤警報率 [%]	0.23	0.17
適合率 [%]	99.94	99.96
F 値 [%]	99.93	99.95

考察

おわりに

- カーネル関数もハイパーパラメータとして扱い、最適化する 手法を提案
- 提案手法は先行研究よりも分類精度が高くなったが、実行時間は長くなった
- 様々なデータセットで提案手法の汎用性を検証する必要がある