3주차

1정규형에 존재하는 갱신 이상

학생	학생 <u>학번</u> 학교		학과전화번호	<u>과목번호</u>	학점
	11002	컴퓨터과학	210-2261	CS310	A0
	11002	컴퓨터과학	210-2261	CS313	В0
	24036	정보통신	210-2585	IC214	B+

이런 릴레이션에서 데이터를 넣으려면 학번, 과목번호 둘 다 존재해야만 넣을 수 있음 (기본키이기 때문) 수정하려면 ⇒ 데이터 싹 다 수정해야 됨

학번 → 학과이름, 학과전화번호

학번 → 과목번호, 학점

⇒ 함수적 종속성이 2개 이상 존재하게 됨

2정규형

학생1	<u>학번</u>	학과이름	학과전화번호
	11002	컴퓨터과학	210-2261
	24036	정보통신	210-2585
	11048	컴퓨터과학	210-2261

1정규형을 만족하면서도 기본 키에 완전 함수 종속인 릴레이션

⇒ 기본 키가 2개 이상의 column으로 구성되어 있을 때만 고려하면 됨

수정, 삽입, 삭제 이상

학번 → 학과이름

학과이름 → 학과전화번호

이렇게 각각 종속됨 (이행적 종속성)

3정규형

수강	<u>학번</u>	<u> 과목</u>	강사
	11002	데이터베이스	이영준
	11002	운영 체제	고성현
	24036	자료 구조	엄영지
	24036	데이터베이스	조민형
	11048	데이터베이스	이영준

2정규형을 만족하면서도 이행적 종속성이 없는 릴레이션

갱신이상

(학번, 과목) ⇒ 강사 결정 강사 ⇒ 과목 결정

결정자가 서로를 결정하는 문제 발생

BCNF

3정규형이면서 모든 결정자가 후보 키

위의 강사 column은 후보 키가 아님에도 불구하고 과목 column을 결정하기 때문에 BCNF가 아님

이런식으로 사이클? 이 있으면 BCNF 만족 못함

반정규화

response time을 줄이기 위해 사용 (query 속도 향상)

뷰

복잡한 질의를 간단하게 표현하는 수단, 데이터독립성을 높이기 위해서 사용됨
(권한 설정도 별도로 할 수 있음)
실제 물리적으로 데이터를 저장하진 않고 논리적으로만 저장
그래서 뷰를 실행하면 쿼리를 실행 (원본 테이블이 변경되면 뷰의 결과도 같이 변경됨)

⇒ view 의 정의를 위배하는 쿼리(update)는 무시

뷰의 갱신

⇒ 뷰에 데이터를 insert 하면 원본 데이터에도 같이 추가됨

갱신이 불가능한 뷰

1. 기본 키가 포함되지 않은 뷰

데이터 무결성을 보장하는데 사용 가능

- 2. NOT NULL이 지정된 attribute이 존재하는 경우
- 3. 집단 함수(GROUP BY를 이용한 통계)가 포함된 뷰
- 4. 조인으로 정의된 뷰

스냅샷

특정 시점의 결과를 저장 ⇒ 그 시간에 실행된 결과값을 그대로 실행함 (뷰는 갱신되면 갱신된 값을 출력)

시스템 카탈로그(메타데이터)

시스템 내의 객체(릴레이션, 뷰, 인덱스, 사용자, 접근권한)을 모두 확인할 수 있음

- 1. 릴레이션에 접근할 수 있는 권한이 있는지 확인
- 2. 인덱스가 정의되어 있는지 확인
- 3. 인덱스가 존재한다면 어떤 릴레이션의 인덱스를 사용하는 것이 유리한지 예상

사용자는 시스템 카탈로그를 변경할 수 없음(DELETE, UPDATE, INSERT $\mathbb E$ 등) ALTER를 이용해서 카탈로그를 제거해야지 DELETE 쓰면 안됨

MS SQL Server의 시스템 카탈로그

real time은 아님 ⇒ UPDATE STATISTICS 문을 사용해 수동갱신 가능 (meta data를 수정하는 오버헤드가 커서 주기적으로 갱신)

질의 최적화

DBMS가 질의를 수행하는 여러 가지 방법들 중에서 가장 비용이 적게 드는 방법을 찾는 과정 ⇒ 이거 내가 알기로는 가장은 아님, 최소 비용을 찾는데에도 비용이 들어서 적당히 제일 작아보이는 방법 채택

3주차 4