Name:	
	Math 338 Practice Final Exam
-	estion in the space provided. To receive full credit, you must clearly presented any necessary computations.
1. (15 points answer.) Decide if each of the following statements is True or False. Explain your

(b) If ABCD is a parallelogram, then $\Delta ABC \cong \Delta CDA$.

(c) If ABCD is a quadrilateral inscribed in a circle, then $\angle ABC$ and $\angle CDA$ are supplementary.

- 2. (10 points) Define the following terms.
 - (a) Euclidean metric (give the formula too!)

(b) Circle inversion

3.	(15 points) rectangle.	Prove that	if $ABCD$ is	a parallelog	ram inscribed	in a circle,	ABCD is a

4. (10 points) Explain why it isn't possible to construct a square in the Poincare disk.

5.	(25 points) Fill in the missing steps in the following proof.
	Claim: Suppose $\triangle ABC$ and $\triangle DEF$ are triangles such that $\angle ABC \cong \angle DEF$, and $\angle BCA \cong \angle EFD$, then $\triangle ABC \sim \triangle DEF$.
	Proof:
	• Apply a dilation to $\triangle ABC$ with center B and scaling factor $k=$
	• After the dilation, call the triangle $\Delta A'B'C'$ where $B=B'$ and A moved to A' , C moved to C' .
	• Then $A'B' = DE$ by our choice of k .
	• We also know that $\angle A'B'C'\cong \angle DEF$ because
	• Further, $\angle B'C'A' \cong \angle EFD$ because
	• So by the Triangle Congruence Theorem, $\Delta A'B'C'\cong \Delta DEF$.

• Therefore ______.

6. (25 points) Suppose ABCD is a parallelogram. Prove that if X is a point on \overline{CD} such that \overline{BX} is perpendicular to \overline{CD} , then the area of ABCD is $BX \cdot CD$. (You can use the axioms for area, including the area of a rectangle formula, but **not** the area of a triangle formula.)