Advantages

- Reliability in portable environments and no noise
 - No moving parts
- Faster start up
 - Does not need spin up
- Extremely low read latency
 - No seek time (25 μ s (μ =10⁻⁶) per page/4KB)
- Deterministic read performance
 - The performance does not depends on the location of data

Disadvantage

- Cost significantly more per unit capacity
 - 3\$/GB vs. 0.15\$/GB
- Limited number of writes
 - ~100,000 writes
 - high endurance cells may have an 1-5 million
- Performance degrades with time
 - slower write speeds because of the erase blocks becomes larger
- High capacity SSDs may have significant higher power requirements

Conclusion

- Although cost prohibitive, for performance applications SSDs hold a great advantage over platter drives.
- Common consumer setups take advantage of SSDs for program files while using larger cheaper platter drives to store media and other general storage

Hybrid drives

 SSDs represent the evolution toward alleviating the bottleneck that is data storage in present day systems

System organization

What's inside?

- 1. CPU
- 2. Memory Hierarchy (volatile memory)
- 3. Memory Hierarchy (non-volatile memory) / SSD
- 4. External memory

External devices

Flash USB sticks

- External SSD
 - No mechanical part
- External HDD
 - mechanical components

©Dr. Rizwan A Khan

1. CPU

- 1. Cores
- 2. Hyper-threading (Hyper-threading technology creates two virtual processing cores for each physical core present in a CPU.)
- **3. Multi-core** technology adds physical cores
- Newer model CPUs are Hyper-Threaded and multicore (like in the given example)

1. CPU

- 1. Cores
- 2. Hyper-threading

2. Memory

- 1. Cache (volatile)
- 2. RAM (volatile)

Maximum speed:	2.90 GHz
Sockets:	1
Cores:	2
Logical processors:	4
Virtualization:	Enabled
L1 cache:	128 KB
L2 cache:	512 KB
L3 cache:	4.0 MB

- Cache acts as a buffer between the CPU and main memory. It is used to hold those parts of data and program which are **most frequently used** by CPU.
- Cache temporarily retains recently accessed data in order to speed up repeated access to the same data.

1. CPU

- 1. Cores
- 2. Hyper-threading

2. Memory

- 1. Cache (volatile)
- 2. RAM (volatile)
- 3. HDD
- 4. SSD / External drives
- 5. Hybrid Disks

- Rotating Magnetic Media –
 On a disk called a platter
- Platter rotates several hundred times a second
 - 5400, 7200, 10000, 15000 rpm

Disadvantages

- Moving parts
- Latency in reading / writing data

1. CPU

- 1. Cores
- 2. Hyper-threading

2. Memory

- 1. Cache (volatile)
- 2. RAM (volatile)

3. HDD

- 4. SSD / External drives
- 5. Hybrid Disks

Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x
(# surfaces/platter) x (# platters/disk)

Example:

- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

Capacity = $512 \times 300 \times 20000 \times 2 \times 5$

= 30,720,000,00 = **30.72 GB**

Courtesy: Bryant and O'Hallaron

1. CPU

- 1. Cores
- 2. Hyper-threading

2. Memory

- 1. Cache (volatile)
- 2. RAM (volatile)
- 3. HDD
- 4. SSD / External drives
- 5. Hybrid Disks

Advantages

- Reliability in portable environments and no noise. (No moving parts)
- Faster start up (does not need spin up).
- Deterministic read performance (The performance does not depends on the location of data).

Disadvantages

- Cost significantly more per unit capacity (3\$/GB vs. 0.15\$/GB).
- Limited number of writes (~100,000 writes).
- Performance degrades with time.

1. CPU

- 1. Cores
- 2. Hyper-threading

2. Memory

- 1. Cache (volatile)
- 2. RAM (volatile)
- 3. HDD
- 4. SSD / External drives
- 5. Hybrid Disks

1. CPU

- 1. Cores
- 2. Hyper-threading

Memory

- 1. Cache (volatile)
- 2. RAM (volatile)
- 3. HDD (non-volatile)
- SSD / External drives
- Hybrid Disks

Is $2^10 = 10^3$?

8 GB (Gigabyte)

x 1000 1000 x 1000

> Kilo Mega Giga

Memory calculation units / marketing tactics

8000000000 ÷ 1024 ÷ 1024 ÷ 1024

7.450580596923828125

Memory Hierarchy

Flow of data

Summary

Memory hierarchy: speed, space and cost tradeoff

What is on the outside

What is on the outside:

Display connectors

What is on the outside:

USB connector

- You can connect whole range of devices using USB port:
 - Printer
 - Scanner
 - Camera
 - External disk
 - USB Fan / bulb
 - Mouse
 - Keyboard
 - •

What is on the outside:

USB connector

USB-A

USB-B

IEEE 1394 A MINI 4P

IEEE 1394 B 9P

USB-MINI4A

USB-MINI4B

USB-MINI4P

USB-MINI-TDK

USB-MINI5A

USB-MINI5B

USB-MINI8M

USB-MINI8P

Wifi

Short for

wireless fidelity.

- It is a wireless technology that uses radio frequency to transmit data through the air.
- Wi-Fi is based on the 802.11 standard:
 - 802.11a (54 Mbps, more flexible, less interference)
 - 802.11b (11 Mbps)
 - 802.11g (54 Mbps)

- Bluetooth is an open standard for short-range digital radio to interconnect a variety
 - of devices
 - PC / Laptops
 - PDA
 - Printers / cameras / Smart phones
 - etc

- •Founded in Spring 1998, by Ericsson, Intel, IBM, Nokia, Toshiba
- Now more than 2000 organizations joint the SIG

Bluetooth, Why?

- Research area
 - Security (concern for both BT and wifi)
- BT Good for short transfers, but has
 - limitations on file size
 - limitations on distance
- WIFI disadvantages
 - Power consumption
 - Interference with devices operating in same freq. spectrum

Inspiring Stories – Computers changing lives

