

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 686 915 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 08.08.2001 Bulletin 2001/32
- (51) Int Cl.7: G06F 9/46
- (21) Application number: 95108015.9
- (22) Date of filing: 24.05.1995
- (54) Hierarchical resource management method

 Verfahren zur hierarchischen Betriebsmittelverwaltung
 Méthode de gestion hiérarchique des ressources
- (84) Designated Contracting States: **DE FR GB**
- (30) Priority: 27.05.1994 JP 13833094
- (43) Date of publication of application: 13.12.1995 Bulletin 1995/50
- (73) Proprietor: NEC CORPORATION Tokyo (JP)
- (72) Inventor: Shimamura, Nobuaki c/o, NEC Corporation Minato-ku, Tokyo (JP)

- (74) Representative: Betten & Resch Postfach 10 02 51 80076 München (DE)
- (56) References cited: US-A- 4 945 470
 - ROBINSON D C ET AL: "DOMAINS: A NEW APPROACH TO DISTRIBUTED SYSTEM MANAGEMENT" PROCEEDINGS. IEEE WORKSHOP ON FUTURE TRENDS OF DISTRIBUTED COMPUTING SYSTEMS, 14 September 1988, pages 154-163, XP000603850
 - PATENT ABSTRACTS OF JAPAN vol. 012, no. 488 (P-803), 20 December 1988 & JP 63 201732 A (FUJITSU LTD), 19 August 1988,

P 0 686 915 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

BACKGROUND OF THE INVENTION

5 FIELD OF THE INVENTION

[0001] The present invention relates to resource management methods for managing resources of the whole computer system by an operating system and, more particularly, hierarchical resource management methods for hierarchically maneging resources by a time-sharing-oriented operating system which conducts control such as generation and disappearance of processes in accordance with parent-child relationships of a tree structure, as well as dynamically managing resources on a process basis.

DESCRIPTION OF THE RELATED ART

15 [0002] Time-shering-oriented operating systems such as UNIX use tree-structured data, in which process generation, disappearance and the like are controlled through control of a child process executed by a parent process.

[0003] Conventionally, such time-sharing-oriented operating systems dynamically conduct acquisition and release of resources (physical memory etc.), on a process basis, necessery for executing jobs. In a conventional resource management method by such a time-sharing-oriented operating system, the whole system shares resources. The conventional resource management method is therefore largely dependent for acquisition of resources by a predetermined process on operation of other processes. More specifically, at a time when the need of resources erises in e predetermined process, the necessary resources might not be available because they are in use for the operation of other process.

[0004] In a conventional resource management method by a time-sharing-oriented operating system, fallure of resource acquisition through a predetermined process simply causes an error. In other words, the method inherently lacks such a function of securing resources to be used prior to execution of e job to ensure a job execution environment as mainframe type operating systems have. This will cause deley of job execution by the process or ebort of the execution at the worst.

[0005] Patent abstracts of Japan, vol. 012, no. 488 (P-803) discloses a hierarchically resource management method in which a common resource area is hierarchically organized in a tree shape at the time of carrying out e processing.

SUMMARY OF THE INVENTION

30

50

55

[0006] An object of the present invention, intended for eliminating the foregoing drawbacks of a conventional resource management method, is to provide a hierarchical resource management method, for use in a time-sharing-oriented operating system, for hierarchically managing resources of the whole system to secure resources to be used on a job basis in edvance.

[0007] Another object of the present invention is to provide a hierarchical resource management method which ensures execution of each job without being dependent on e process operating in other resource management group and affecting such a process.

[0008] Present Invention is defined in Independent claim 1. Preferred embodiments are described in the dependent claims.

[0009] According to one aspect of the invention, a hierarchical resource management method by a time-sharingoriented operating system for controlling process generation in accordance with parent-child relationships of a tree structure and dynamically managing resources on a process basis, comprising the steps of:

hlerarchically forming resource management groups including e plurality of processes;

a highest-order resource management group including a resource management route process for managing resources of the whole system, at least one process which is a descendant of the resource management route process and not included in other resource menagement groups, and a resource management block for storing information on resources managed by the resource management group; and

each of the resource management groups other than said highest-order resource management group including a resource management process for managing resources allocated to its own group, at least one process which is a descendant of the resource management process and not included in other resource management groups, and a resource management block for storing information on resources managed by its own group;

formling a resource management tree by linking said resource management route process and said resource management processes in accordance with parent-child relationships between the respective resource management groups; and

at the generation of a new resource management group other than said highest-order resource management group, distributing a necessary amount of resources for the newly generated resource management group from those owned by a parent resource management group of said newly generated resource management group in accordance with said resource management tree.

[0010] In the preferred construction, the hierarchical resource management method further comprises the steps of:

5

10

15

20

25

30

35

45

50

55

et the generation of e resource menegement group, when e necessery amount of resources for the newly generated resource management group is covered by unused resources owned by an immediate parent resource management group of the newly generated resource management group, distributing the resources to said newly generated resource management group;

when the unused resources owned by the immediate parent resource management group of said newly generated resource management group are short to satisfy the amount of resources necessary for said newly generated resource management group, distributing resources equivalent to the shortage from a further preceding parent resource menegement group to descending resource menagement groups to secure the necessary amount end then ellocating the resources to said newly generated resource menegement group;

when the resource shortage can not be covered even by tracing back to the highest-order resource management group, if queuing for release of resources is impossible because of designation made at the generation of said new resource management group, distributing as much as resources securable in the resource menagement route process and the respective resource management processes to child resource management groups to allocate the resources to said newly generated resource management group; and

when queuing for release of resources is possible, queuing for release of resources from child resource management groups in the resource management route process and sequentially distributing resources to child resource menegement groups upon ecquisition of resources filling the shortage to ellocate the resources to said newly generated resource management group.

[0011] In the preferred construction, the hierarchical resource management method further comprises the step of, when a resource management group disappears, releasing resources secured by the resource management group to disappear and combining the resources with unused resources owned by an immediate parent resource management group of the resource management group to disappear.

[0012] Also, distribution of resources to an Individual process in the resource management group is made within a total amount of resources allocated to the resource management group.

[0013] In the preferred construction, the hierarchical resource management method further comprises the step of, when a resource management group disappears, releasing resources secured by the resource management group to disappear end combining the resources with unused resources owned by an immediate parent resource management group of the resource menegement group to disappear, wherein

distribution of resources to an individual process in the resource management group is made within a total amount of resources allocated to the resource management group.

[0014] According to another aspect of the Invention, a hierarchical resource management method by a time-sharingoriented operating system for conducting control such as generation and disappearance of processes in accordance with parent-child relationships of a tree structure and dynamically managing resources on a process basis, comprising the steps of:

hierarchically forming resource management groups Including a piurality of processes;

a highest-order resource management group including a resource management route process for managing resources of the whole system, at least one process which is a descendant of the resource management route process and not included in other resource management groups, and a resource management block for storing information on resources managed by the resource management group; and

each of the resource management groups other than said highest-order resource management group including a resource management process for managing resources allocated to its own group, at least one process which is a descendant of the resource management process and not included in other resource management groups, and a resource management block for storing information on resources managed by its own group;

at the generation of e new resource menagement group, when a necessary amount of resources for the newly generated resource management group is covered by unused resources owned by an immediate parent resource management group of the newly generated resource management group, distributing the resources to said newly generated resource management group;

when the unused resources owned by the immediate parent resource management group of said newly generated resource management group are short to satisfy the amount of resources necessary for said newly generated

resource management group, distributing resources equivalent to the shortage from a further preceding parent resource management group to descending resource management groups to secure the necessary amount and then allocating the resources to said newly generated resource management group;

when the resource shortage can not be covered even by tracing back to the highest-order resource management group, if queuing for release of resources is impossible because of designation made at the generation of said new resource management group, distributing es much es resources securable in the resource management route process and the respective resource management processes to child resource management groups to allocate the resources to said newly generated resource management group; and

when queuing for release of resources is possible, queuing for release of resources from child resource management groups in the resource management route process and sequentially distributing resources to child resource management groups upon acquisition of resources filling the shortage to allocate the resources to seld newly generated resource management group.

10

15

25

30

35

40

45

50

55

[0015] In the preferred construction, the hierarchicel resource management method further comprises the step of, when a resource management group disappears, releasing resources secured by the resource management group to disappear and combining the resources with unused resources owned by an immediate parent resource management group of the resource management group to disappear.

[0016] In the preferred construction, distribution of resources to an individual process in a resource menagement group is made within a total emount of resources allocated to the resource management group.

[0017] Also, the hierarchical resource management method further comprises the step of, when a resource menagement group diseppears, releasing resources secured by the resource management group to disappear and combining the resources with unused resources owned by an immediate parent resource management group of the resource menagement group to disappeer, wherein

distribution of resources to en individual process in a resource management group is made within e total amount of resources allocated to the resource management group.

[0018] According to a further aspect of the invention, a hierarchical resource management method by a time-sharingoriented operating system for conducting control such as generation and disappearance of processes in accordance with parent-child relationships of a tree structure and dynamically managing resources on a process basis, comprising the steps of:

hlerarchically forming resource management groups including a plurality of process management units for managing said processes;

a highest-order resource management group including a process management unit for managing e resource management route process which manages resources of the whole system, at least one process management unit for managing e process which is a descendant of the resource management route process and not included in other resource management groups, and a resource management block for storing information on resources managed by the resource management group, said each process management unit linking to said resource management block and said resource management block linking to the process management unit for managing said resource management route process; and

each of the resource management groups other than said highest-order resource management group including a process management unit for managing a resource management process which manages resources allocated to its own group, at least one process management unit for managing a process which is a descendant of the resource management process and not included in other resource management groups, and a resource menagement block for storing information on resources meneged by its own group, said each process management unit linking to said resource management block, said resource management block linking to the process management unit which manages said resource management process, and said resource management block linking to a resource management block of a parent resource management group of its own group;

forming a resource management tree ensuring a hierarchical structure between the respective resource management groups by linkage of a resource management block of a child resource management group to a resource management block of a parent resource management group and linkage of said each resource management block to the process management unit for managing said resource management route process or to the process management unit for managing said resource management process; and

securing resources necessary for the resource management group from its parent resource management group by the process management unit for managing said resource management process in accordance with said resource management tree.

[0019] In this case, the hierarchical resource management method further comprises the steps of:

when e necessary amount for a group is covered by unused resources owned by en immediate parent resource management group of the group, securing the necessary amount of resources for the group by a process management unit of the group for managing a resource management process;

when the unused resources owned by the immediate parent resource management group of its own group are short to satisfy the amount of resources necessary for said newly generated resource management group, sequentially acquiring resources equivalent to the shortage from further preceding parent resource management groups to secure the necessary amount:

when the resource shortage can not be covered even by tracing beck to the highest-order resource manegement group, if queuing for release of resources is impossible because of designation by the process management unit which manages said resource management process, securing as much as resources securable in the resource management route process and the respective resource management processes; and

when queuing for release of resources is possible, queuing for release of resources from child resource management groups in the resource menagement route process and securing the necessary amount of resources upon ecquisition of resources filling the shortage.

[0020] in the ebove-mentioned construction, e process management unit for maneging e resource manegement process of a resource manegement group to disappear releases resources secured by its own group and combines the released resources with unused resources owned by en immediate parent resource management group of its own group.

[0021] in the above-mentioned construction, a process management unit for managing e resource management process distributes resources to en individual process in e resource menagement group within a total amount of resources allocated to the resource management group.

[0022] In the above-mentioned construction, e process management unit for managing a resource management process of a resource management group to disappear releases resources secured by its own group end combines the released resources with unused resources owned by en immediate perent resource management group of its own group; end

e process management unit for managing a resource management process distributes resources to an individual process in a resource management group within e total amount of resources allocated to the resource management group.

[0023] Other objects, features and advantages of the present invention will become clear from the detailed description given herebelow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from the deteiled description given herebelow end from the accompenying drawings of the preferred embodiment of the invention, which, however, should not be taken to be limitative to the invention, but ere for explanation and understanding only.

[0025] In the drawings:

10

15

[0026] Fig. 1 is a model diagram showing a data structure which implements a hierarchical resource management method according to a first embodiment of the present invention.

[0027] Fig. 2 is a functional block diagram showing en arrangement of the hierarchical resource management method of the present embodiment implemented by a computer system.

[0028] Fig. 3 is a flowchart showing resource securing operation to be executed at the generation of a new resource management group.

15 [0029] Fig. 4 is e block diagram for use in explaining resource securing operation to be executed et the generation of a new resource menagement group in the errangement shown in Fig. 2, taking physical memory es an example of a resource to be secured beforehand.

[0030] Fig. 5 is a flowchart showing resource release operation to be executed at the disappearance of a resource management group.

[0031] Fig. 6 is a block diagram for use in explaining resource release operation of a resource management group to disappear in the arrangement shown in Fig. 2, taking physical memory as an example of a resource.

[0032] Fig. 7 is a flowchart showing resource securing operation of en Individuel process in e resource menagement group.

[0033] Fig. 8 is a block diagram for use in explaining resource securing operation of an individual process in a resource management group in the arrangement of Fig. 2, taking physical memory as an example of a resource.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0034] A preferred embodiment of the present invention will be described in detail with reference to eccompanying drawings. Fig. 1 is a model diagram showing a date structure which implements a hierarchical resource management method according to e first embodiment of the present Invention.

[0035] As shown in the figure, a resource manegement route process 20 manages the whole system resource and in combination with its descendant processes 21 end 22, constitutes e resource management group 10. A resource management block 30 stores vertous kinds of information on resources used by the resource management group 10. The processes 21 end 22 ere general processes operating in the resource management group 10, whose perents ere the process 20 and the process 21, respectively.

[0036] A resource management process 50, which is a process generated with the resource menagement route process 20 as e parent, manages resources used by e resource management group 40 generated with the resource menagement group 10 as a parent. The resource management group 40 is mede up of the resource management process 50 end its descendant processes 51, 52 and 53. A resource management block 60 stores various kinds of information on resources used by the resource management group 40. The processes 51, 52 end 53 are general processes operating in the resource management group 40, whose parents are the processes 50, 51 and 52, respectively.

[0037] A resource menagement process 80, which is a process generated with the process 51 as e perent, menages resources used by e resource management group 70 generated with the resource management group 40 as a parent. The resource management group 70 is made up of the resource management process 80 and its descendant process 81. A resource management block 90 stores various kinds of resource Information. The process 81 is e general process which is generated with the process 80 as a parent and operating in the resource management group 70.

[0038] Linking the resource management processes 20, 50 and 80 of the respective resource management groups 10, 40 and 70 in accordance with parent-child relationships of the groups 10, 40 and 70 makes a resource management tree 100. The resources to be used by the resource management groups 10, 40 and 70 are hierarchically distributed following the resource management tree 100 with reference to the resource management blocks 30, 60 end 90 of the respective groups. Thin solid lines in the figure denote a process tree, which lines link the processes 20 end 21, 21 and 22, 20 and 50, 50 and 51, 51 and 52, 52 and 53, 50 and 80, and 80 and 81.

[0039] Shown In the model diagram of Fig. 1 Is an example where the resource management process 50 comes from the resource management route process 20 and the resource management process 80 comes from the general process 51. Thus, a resource management process as well as e general process can be generated from an arbitrary process of a process tree. Whether a general process such as the process 21, 22, 51 - 53 or 81, or a resource management process such as the process 50 or 80 is to be generated is designated by a parent process from which the process to be generated comes. A resource menegement process is generated only at e request for generating e process which designates generation of the resource management process. When the resource menagement process is generated, e resource management block is simultaneously generated which is referred to and updated by the generated resource management process.

[0040] in the model diagram of Fig. 1, the resource management group 40 is equivalent to a subsystem such as TSS (Time Sharing System), batch processing, or OLTP (OnLine Transaction Processing), while the resource management group 70 is equivalent to a unit of a job operating in the subsystem, for example.

[0041] Fig. 2 is a functional block diagram showing an arrangement of the hierarchical resource management method according to the prasent embodiment implemented by a computer system. Illustrated in the figure is the hierarchical resource management method arranged following the example of the model diagram of Fig. 1. In the following, description will be given relating the model diagram of Fig. 1 and the functional block diagram of Fig. 2.

[0042] A resource management group 110 corresponds to the rasource management group 10 of Fig. 1. A process management unit 120 is for managing the resource management route process 20 of Fig. 1, while process management units 121 and 122 are for managing the processes 21 and 22 of Fig. 1, respectively. A resource menagement block 130 corresponds to the resource management block 30 of Fig. 1, to which the process management units 120, 121 and 122 link which respectively manage the processes 20, 21 and 22 in the resource management group 110. The resource management block 130 links to the process management unit 120 which manages the resource management process 20 in the resource management group 110.

[0043] A resource management group 140 corresponds to the resource management group 40 of Fig. 1. A process management unit 150 is for managing the resource management process 50 of Fig. 1, while process management units 151, 152 and 153 are for managing the processes 51, 52 and 53 of Fig. 1, respectively. A resource management block 160 corresponds to the resource management block 60 of Fig. 1, to which the process management units 150, 151, 152 and 153 link which respectively manage the processes 51, 51, 52 and 53 in the resource management group 140. The resource management block 160 links to the process management unit 150 which manages the resource management process 50 of this resource management group 140. The resource management block 160 further links

to the resource management block 130 of the resource management group 110, the parent of the resource management group 140.

[0044] A resource management group 170 corresponds to the resource management group 70 of Fig. 1. A process menagement unit 180 is for managing the resource management process 80 of Fig. 1, while a process management unit 181 is for managing the process 81 of Fig. 1. A resource management block 190 corresponds to the resource management block 90 of Fig. 1, to which the process management units 180 end 181 link which respectively manage the processes 80 and 81 in the resource management group 170. The resource management block 190 links to the process management unit 180 which meneges the resource menagement process 80 in the resource management group 170. The resource management block 190 further links to the resource management block 160 of the resource management group 140, the parent of the resource menegement group 170.

[0045] In Fig. 2, the linkage of the resource management block in the child resource management group to that of the parent resource management group and the linkage of the resource management blocks to the process management units (120, 150, 180) for the resource management processes in the respective resource management groups correspond to the resource management tree 100 of Fig. 1. A resource management block of a parent resource management group is obtained by the linkage from e resource management block of a child resource management group and distribution of resources is carried out by e process menegement unit for a resource management process to which the obtained resource management block links.

[0046] Each process management unit is implemented by a CPU of e personal computer or e workstation, etc. Eech resource management block is implemented by a memory such as e RAM or a storege device such as e magnetic disk device

[0047] Fig. 3 is e flowchart showing operation for securing resources when a new resource management group is genereted. At the time of generation of a new resource management group, a resource management process of the new resource menagement group generates a request for securing group resources in advance (Step 301) and notifies its parent resource management group of the request (Step 302). When the amount of securable resources is less than that required, the resource edvance ecquisition request cen designete, as a function of the resource management process, whether to queue for releese of resources as e result of disappearance of other processes etc. (queuing) or not to queue (no queuing).

[0048] A resource management process of the parent resource management group heving received the notification determines whether a requested amount of resources can be secured or not with reference to the resource management block of the group (Step 303).

[0049] As to the requested resources, if

15

20

30

35

45

50

(the amount of secured resources - the amount of

resources in use) ≥ the requested amount of resources to

be secured

holds, determination is made that the resources allocated to the parent resource menagement group has free resources fulfilling the request (Step 304) to distribute the requested amount of resources to be secured to the child resource management group (Step 310).

[0050] On the other hand, as to requested resources, if

(the amount of secured resources - the amount of

resources in use) < the requested amount of resources to

be secured

holds (Step 304), the resource management process newly takes the value of (the requested amount of resources to be secured - (the amount of resources being secured - the amount of resources in use)) as a requested amount of resources to be secured by its group (Step 305). Then, if the resource management process is not a resource management route process (Step 306), the process notifies e parent resource management group of the new request for securing resources whose amount is calculated at Step 305 and recursively secures resources.

[0051] More specifically, when the value of (the amount of resources being secured - the amount of resources in use) exceeds the notified amount of resources to be secured, the parent resource management group being notified

of the resource securing request distributes the requested amount of resources to the child resource management group. When the value of (the amount of resources being secured - the amount of resources in use) falls short of the requested amount of resources to be secured, the parent resource management group recursively repeats operation of taking the value of (the requested amount of resources to be secured - (the amount of resources being secured - the amount of resources in use)) as a newly requested emount of resources to be secured by a parent resource management group of its own group.

[0052] On the other hand, when the resource management process is e resource management route process, or if e necessery emount of resources is yet to be secured as a result of tracing back to the resource management route process through the above-described recursive processing (Step 306), determination is made in the resource management route process as to whether a first resource advance acquisition request made by the generated resource management group designates "queuing" or "no queuing" (Step 307). If "no queuing" is designeted, the resources being so far secured are recursively distributed to child groups to eventually allocate the resources to the generated resource management group (Step 310).

[0053] When the first resource advance acquisition request designates queuing, release of the requested amount of resources from eny of child resource management groups is waited for in the resource menagement route process (Steps 308 end 309). Then, upon acquisition of the requested emount of resources, the resources ere recursively distributed to child resource management groups to eventually ellocate the requested amount of resources to be secured in advance to the generated resource management group (Step 310).

[0054] in other words, in the example shown in Fig. 3, when a resource management process of a newly generated resource management group notifies its immediate parent resource management group of the requested amount of resources to be secured in advance, if there remain necessary resources in the immediate parent resource management group, the resources are distributed from there. If there remeins no sufficient resource, e further preceding parent resource management group is notified of the insufficient amount to secure the emount. Such processing is recursively repeated following the resource menagement tree until tracing back to the resource menagement route process. On this occasion, when the requested amount is secured in the course of processing, tracing the resource management tree is cenceled to recursively distribute the secured amount of resources to the child resource management groups. [0055] On the other hend, in a case where the necessary amount of resources is not acquired even by tracing back to the resource management route process, when queuing for release of resources is impossible because of the designation made by the resource edvance acquisition request, the amount of resources so far secured are recursively distributed to child resource management groups. If queuing for release of resources is possible because of the des-Ignation made by the resource advance acquisition request, release of resources from other resource management groups is waited for to distribute the requested amount of resources to be secured to the child resource manegement groups at the time when the released resources reach the requested amount. Resources ere secured in advance following this procedure.

[0056] Fig. 4 is e block diagram for use in expleining resource securing operation to be executed at the time of generation of e new resource management group in the arrangement shown in Fig. 2, taking physical memory as an exemple of a resource to be secured in advance.

[0057] In Fig. 4, a resource management group 210 is a group which manages resources of the whole system. A resource management block 230 of this group secures 100 MB, the total amount of physical memory of the whole system. 50 MB is allocated to e child resource management group 240 of the group 210 and 40 MB is in use by the resource management group 210 itself. A total of 90 MB of physical memory in use is managed. Similarly managed in a resource management block 260 of the resource management group 240 are 50 MB being secured and 20 MB in use by the group itself.

[0058] In this state, description will be given of operation for securing 30 MB, 40 MB and 50 MB of physical memory in advence et the time of generation of e resource management group 270.

[0059] In a case of 30 MB memory to be secured in advance:

20

30

A resource management process 280 of the resource management group 270 requests a resource management process 250 of the parent resource management group 240 to secure physical memory of 30 MB in advance. Here, the resource management process 250 of the parent resource management group 240 is obtained by the linkage of a resource management block 290 of the resource management group 270 to the resource management block 260 and the linkage of the resource management block 260 to the resource management process 250. The resource management process 250 of the resource management group 240, which is notified of the resource advance acquisition request, refers to the linked resource management block 260.

[0060] In this case, (the amount of acquired physical memory - the amount of physical memory in use) is 30 MB, which satisfies the requested amount of physical memory. 30 MB physical memory is therefore distributed to the resource management group 270. As a result, advance securing of physical memory completes for the resource management group 270.

[0061] In a case of 40 MB physical memory to be secured in advance:

When 40 MB is to be secured in advence, since the parent resource management group 240 has 30 MB as distributable physical memory, the resource management process 250 requests its parent resource management group 210 for 10 MB to make up the shortage. A resource management process (resource menagement route process) 220 of the parent resource management group 210 refers to the resource management block 230 and allocates free 10 MB ieft in the block to the child resource management group 240. The resource management process 250 distributes a total of 40 MB of physical memory including the allocated 10 MB and the already secured 30 MB to the resource management group 270. As a result, advance securing of the physical memory completes for the resource management group 270.

[0062] In e case of 50 MB physical memory to be secured in advance:

10

20

When 50 MB is to be secured in advance, a request for ecquiring 20 MB physical memory to make up the shortage is made to the resource management group 210 similarly to the above-described case. The resource management process 220 of the resource management group 210, which is e resource management route process, has only 10 MB as free memory. When the resource advance acquisition request designates "no queuing", the 10 MB is distributed as the acquired physical memory. Because of the designation of "no queuing", the resource management process 250 distributes the total of 40 MB physical memory, which is the sum of the allocated 10 MB end the already secured 30 MB, to the resource management group 270.

[0063] On the other hand, when the resource advence acquisition request designetes queuing, the resource management route process 220 queues for release of physical memory and refers to the resource management block 230 to give notification of ecquisition when free 20 MB is generated. As a result, the resource management group 270 is notified of acquisition of the requested emount of 50 MB.

[0064] When "no queuing" is dasignated by the resource advance acquisition request, the operation results in that the resource management group 270 fails to store up to 50 MB of physical memory. Therefore, when the process of the resource management group 270 operates in this state, conditions such as thet for the use of physical memory should be provided so as to execute the job anyhow even with insufficient physical memory.

[0065] Fig. 5 is a flowchart showing resource release operation to be executed when e resource menagement group diseppears. At the disappearence of a resource manegement group, a request for releesing resources is generated within a resource menagement process of the resource management group (Step 501). The resource management process of the resource management group to disappear refers to a resource management block of the same group (Step 502), and notifies its parent resource management group of the release of the secured resources (Step 503). The parent includes the notified resources in its own resource management group (Step 504) and notifies the child resource management group of the release of the resources.

resource management group of the release of the resources (Step 505). This completes the release of the resources secured by the resource management group to disappear. Disappearance of the resource management group then follows.

[0066] Fig. 6 is a block diagram for use in explaining resource release operation of a resource management group to disappear in the arrangement shown in Fig. 2, taking physical memory as en example of e resource.

[0067] In Fig. 6, e resource management group 370 secures physical memory of 20 MB end is to disappear. A resource management process 380 of the resource management group 370 refers to a resource menagement block 390 and notifies a parent resource management group 340 of the release of the 20 MB physical memory being secured. A resource management process 350 of the parent resource management group 340, with the intention of managing the released physical memory by its own group, updates a resource management block 360.

[0068] More specifically, the resource management block 360 updates the physical memory of 40 MB in use to 20 MB. This adds 20 MB to the free physical memory of the resource management group 340. Thereafter, the resource management process 340 notifies its child resource management process 380 of the release of the physical memory, completing the release of physical memory of the resource management group 370.

[0069] In a case where the resource management group 340 is to disappear thereafter, the resource menagement process 350 refers to the resource menagement block 360 and notifies the parent resource management group 310 of the release of 50 MB physical memory being secured, whereby a rasource management route process 320 updates the physical memory in use in a resource management block 330 from 90 MB to 40 MB. Then, the process 320 notifies its child resource management process 350 of the release of the physical memory.

[0070] Fig. 7 Is a flowchart showing resource securing operation of an individual process in a resource management group.

•

[0071] When a predetermined process in a resource management group generates a request for acquiring resources (Step 701), a resource management process of the resource management group refers to a resource management block (Step 702) to confirm the requested amount of resources to be secured and the amount of resources in use (Step 703). When the value of (the amount of resources being secured - the amount of resources in use) is not less than the requested amount (Step 704), the resource management process makes notification to the process which has made the request and distributes the requested amount of resources to that process (Step 705). This completes acquisition of the resources by the process which has made the request.

[0072] On the other hand, when the value of (the amount of resources being secured - the amount of resources In use) is less than the requested amount (Step 704), release of resources is queued for from other process of the same resource management group or a child resource management group (Step 706). Upon release of the resources from the process, the operation returns to Step 702 to repeat the foregoing processing. Here, the release of resources from the child resource management group is carried out in a manner as described above. The release of the resources from other process in the same resource management group is conducted through updeting of e resource management block 430 by e resource management process of the resource menegement group to reduce the emount of resources in use.

[0073] Fig. 8 is a block diagram for use in explaining resource securing operation of an individual process in a resource management group in the arrangement shown in Fig. 2, with physical memory es an example of a resource.

[0074] In Fig. 8, when a process 421 in a resource menagement group 410 is to acquire physical memory, e resource management process 420 of this resource management group 410 refers to the resource management block 430. With the emount of physical memory requested by the process 421 being 10 MB, the resource management process 420 distributes 10 MB out of the free physical memory of 20 MB to the process 421. As a result, the process 421 acquires physical memory of 10 MB.

[0075] Assuming that the amount of the physical memory requested by the process 421 is 30 MB, since the emount of physical memory allocated to the resource management group 410 has no free memory to fulfill the request, distribution will not be executed immediately. After queuing for release of physical memory from the process 422 or 423 in the resource management group 410, or from a child resource management group 440, the physical memory is distributed to the process 421 upon generation of free physical memory of 30 MB as requested. This enables distribution of physical memory to each process in the resource management group 410 without exceeding the amount of the physical memory secured in the resource menegement group 410.

[0076] The ebove-described hierarchical resource menagement method eccording to the present invention achieves the following effects.

[0077] Arrangement of hierarchical resource management groups having parent-child relationships enables hierarchical management of resources. Then, distribution of resources is made to the resource management groups to secure resources necessary for execution of a job prior to generation of a resource management group. This allows preparation of e job execution environment by securing resources for use prior to execution of the job.

[0078] In addition, divisional use of resources is possible on a sub-system level such as TSS, batch processing and OLTP.

[0079] Furthermore, since in the present invention, resources are distributed to an individual process in e resource management group so as not to exceed the total amount of resources allocated to the resource management group, execution of each job is ensured without being dependent on e process operating in other resource menagement group end affecting such a process.

Claims

20

30

35

40

45

50

55

 A hierarchical resource management method by a time-sharing-oriented operating system for conducting control such as generation and disappearance of processes in eccordance with parent-child relationships of a tree structure and dynamically managing resources on a process basis, comprising the steps of:

hlererchically forming resource menagement groups (10,40,70) including a plurality of processes (20,21,22,50-53,80,81);

a highest-order resource management group (10) including a process management unit for meneging a resource menagement route process (20) for managing resources of the whole system, at least one process management unit for managing a process (21) which is a descendant of the resource management route process (20) and not included in other resource management groups (40,70), and a resource management block (30) for storing information on resources managed by the resource management group (10); and

each of the resource management groups (40,70) other than said highest-order resource management group (10) including a process menagement unit for managing e resource menagement process (50) for menaging resources allocated to its own group, at least one process management unit for managing e process (51,52,53) which is a descendant of the resource management process (50) and not included in other resource management groups (10,70), and a resource management block (60) for storing information on resources managed by its own group (40);

forming a resource management tree (100) by linking said resource menagement route process (20) and said resource management processes (50, 80) in accordance with parent-child relationships between the respective resource management groups (10,40,70); and

at the generation of a new resource management group other than said highest-order resource menegement group (10), distributing a necessary amount of resources for the newly generated resource management group from those owned by a parent resource management group of said newly generated resource management group in accordance with said resource management tree (100).

2. The hierarchical resource management method according to claim 1, comprising the steps of:

at the generation of a resource management group (270), when a necessery amount of resources for the newly generated resource management group (270) is covered by unused resources owned by en immediate parent resource management group (240) of the newly generated resource management group (270), distributing the resources to said newly generated resource management group (270);

when the unused resources owned by the immediate perent resource management group (240) of said newly generated resource management group (270) ere short to satisfy the amount of resources necessary for said newly generated resource management group (210), distributing resources equivalent to the shortage from a further preceding parent resource management group (210) to descending resource management groups (240) to secure the necessary emount and then allocating the resources to said newly generated resource management group (270);

when the resource shortage can not be covered even by tracing back to the highest-order resource management group (270), if queuing for release of resources is impossible because of designation made at the generation of sald new resource management group (270), distributing as much es resources securable in the resource management route process (20) and the respective resource management processes (50,80) to child resource menegement groups (240,270) to allocate the resources to sald newly generated resource management group (270); end

when queuing for release of resources is possible, queuing for release of resources from child resource manegement groups (240) in the resource menagement route process (20) and sequentially distributing resources to child resource management groups upon acquisition of resources filling the shortage to allocate the resources to said newly generated resource management group.

- 3. The hierarchical resource management method according to claim 1, further comprising the step of, when a resource management group disappears, releasing resources secured by the resource management group to disappear and combining the resources with unused resources owned by an immediate parent resource management group of the resource management group to disappear.
 - 4. The hiererchical resource management method according to claim 2, further comprising the step of, when a resource menagement group disappears, releasing resources secured by the resource management group to diseppear and combining the resources with unused resources owned by an immediate parent resource management group of the resource management group to disappear.
- 5. The hierarchical resource management method according to claim 1, 2, or 4, wherein distribution of resources to an Individual process in e resource management group is made within a totel emount of resources allocated to the resource management group.
 - A hierarchical resource management method according to claim 1,

wherein each of said process management unit links to said resource management block and each of said resource management blocks links to said process management unit for managing said resource menagement route process; and

wherein forming a resource management tree ensures a hierarchical structure between the respective resource management groups by linkage of a resource management block of e child resource management group to a resource management block of a parent resource management group and linkage of each of said resource management blocks to the process management unit for managing said resource management route process or to the process management unit for managing said resource management process.

55 Patentansprüche

5

10

15

20

25

35

45

50

Hierarchisches Betriebsmittel-Managementverfahren durch ein teilnehmerorientiertes Betriebssystem zum Durchführen einer Steuerung, wie belspielsweise einer Erzeugung und eines Verschwindens eines Prozesses, gemäß

Eltern-Kind-Bezlehungen einer Baumstruktur und zum dynamischen Managen von Betriebsmitteln auf einer Prozeß-Besls, welches Verfahren die folgenden Schritte eufwelst:

hlerarchisches Bilden von Betriebsmittel-Managementgruppen (10, 40, 70), die eine Vietzahl von Prozessen (20, 21, 22, 50-53, 80, 81) enthalten;

wobei eine Betriebsmittel-Managementgruppe höchster Ordnung (10) eine Prozeß-Managementeinheit zum Managen eines Betriebsmittel-Manegement-Führungsprozesses (20) zum Managen von Betriebsmitteln des gesamten Systems, wenigstens eine Prozeß-Managementeinheit zum Managen eines Prozesses (21), der ein Abkömmling des Betriebsmittel-Management-Führungsprozesses (20) ist und nicht in anderen Betriebsmittel-Menegementgruppen (40, 70) entheiten ist, und einen Betriebsmittel-Managementblock (30) zum Spelchern von Informetionen über durch die Betriebsmittel-Managementgruppe (10) gemanagte Betriebsmittel enthält; und

10

15

20

25

30

35

40

45

50

wobei jede der Betriebsmittel-Managementgruppen (40, 70), die eine andere als die Betriebsmittel-Manegementgruppe höchster Ordnung (10) ist, eine Prozeß-Manegementeinheit zum Managen eines Betriebsmittel-Menagementprozesses (50) zum Managen von seiner eigenen Gruppe zugeteilten Betriebsmitteln, wenigstens eine Prozeß-Managementeinheit zum Menagen eines Prozesses (51, 52, 53), der ein Abkömmiling des Betriebsmittel-Managementprozesses (50) ist und nicht in anderen Betriebsmittel-Managementgruppen (10, 70) enthalten ist, und einen Betriebsmittel-Managementblock (60) zum Speichern von Informationen über durch seine eigene Gruppe (40) gemanagte Betriebsmittel enthält;

Bliden eines Betriebsmittel-Managementbaums (100) durch Verbinden des Betriebsmittel-Management-Führungsprozesses (20) und der Betriebsmittel-Menagementprozesse (50, 80) gemäß Eltern-Kind-Beziehungen zwischen den jeweiligen Betriebsmittel-Managementgruppen (10, 40, 70); und

bel der Erzeugung einer neuen Betriebsmittel-Managementgruppe, die eine andere els die Betriebsmittel-Managementgruppe höchster Ordnung (10) ist, Verteilen einer nötigen Menge an Betriebsmitteln für die neu erzeugte Betriebsmittel-Managementgruppe aus denjenigen im Besitz einer Eitern-Betriebsmittel-Managementgruppe der neu erzeugten Betriebsmittel-Managementgruppe gemäß dem Betriebsmittel-Managementbaum (100).

2. Hierarchisches Betriebsmittel-Managementverfahren nach Anspruch 1, das die folgenden Schritte aufwelst:

bei der Erzeugung einer Betriebsmittel-Managementgruppe (270), wenn eine nötige Menge an Betriebsmitteln für die neu erzeugte Betriebsmittel-Manegementgruppe (270) durch nicht eingesetzte Betriebsmittel im Besitz einer nächstgelegenen Eltern-Betriebsmittel-Menagementgruppe (240) der neu erzeugten Betriebsmittel-Managementgruppe (270) gedeckt ist, Vertellen der Betriebsmittel zur neu erzeugten Betriebsmittel-Managementgruppe (270);

wenn die nicht eingesetzten Betriebsmittel im Besitz der nächstgelegenen Eltern-Betriebsmittel-Managementgruppe (240) der neu erzeugten Betriebsmittel-Managementgruppe (270) die Menge an für die neu erzeugte Betriebsmittel-Managementgruppe (270) nötigen Betriebsmittel knepp erfüllen, Vertellen von Betriebsmitteln äquivelent zur Verknappung von einer weiter vorangehenden Eltern-Betriebsmittel-Managementgruppe (210) zu Betriebsmittel-Managementgruppen (240), die Abkömmlinge sind, um die nötige Menge zu sichem, und dann Zuteilen der Betriebsmittel zur neu erzeugten Betriebsmittel-Managementgruppe (270);

wenn dle Betriebsmittelverknappung selbst durch Zurückverfolgen zur Betriebsmittel-Managementgruppe höchster Ordnung (210) nicht gedeckt werden kann, wenn eine Warteschlangenbildung zur Freistellung von Betriebsmitteln aufgrund einer bei der Erzeugung der neuen Betriebsmittel-Managementgruppe (270) durchgeführten Bestimmung unmöglich ist, Verteilen von so vielen Betriebsmitteln wie möglich, die im Betriebsmittel-Management-Führungsprozeß (20) und in den jeweiligen Betriebsmittel-Manegementprozessen (50, 80) sicherbar sind, zu Kind-Betriebsmittel-Managementgruppen (240, 270), um die Betriebsmittel zur neu erzeugten Betriebsmittel-Managementgruppe (270) zuzuteilen; und

wenn eine Warteschlangenbildung zur Freistellung von Betriebsmittelnmöglich ist, Bilden einer Warteschlange für eine Freistellung von Betriebsmitteln aus Kind-Betriebsmittel-Managementgruppen (240) im Betriebsmittel-Management-Führungsprozeß (20) und sequentielles Verteilen von Betriebsmitteln zu Kind-Betriebsmittel-Managementgruppen (240), auf eine Bescheffung von Betriebsmitteln hin, die die Verkneppung erfüllen, um die Betriebsmittel zur neu erzeugten Betriebsmittel-Managementgruppe (270) zuzuteilen.

3. Hierarchisches Betriebsmittel-Managernentverfahren nach Anspruch 1, das weiterhin den folgenden Schritt aufweist: wenn eine Betriebsmittel-Managementgruppe verschwindet, Freistellen von durch die Betriebsmittel-Managementgruppe gesicherten Betriebsmitteln zum Verschwinden und Kombinieren der Betriebsmittel mit nicht eingesetzten Betriebsmitteln im Besitz einer n\u00e4chstelegenen Eltern-Betriebsmittel-Managementgruppe der ver-

schwindenden Betriebsmittel-Managementgruppe.

- 4. Hierarchische Betriebsmittel-Managementverfahren nach Anspruch 2, das weiterhin den folgenden Schritt aufweist: wenn eine Betriebsmittel-Managementgruppe verschwindet, Freistellen von durch die Betriebsmittel-Managementgruppe gesicherten Betriebsmitteln zum Verschwinden und Kombinieren der Betriebsmittel mit nicht eingesetzten Betriebsmitteln im Besitz einer nächstgelegenen Eltern-Betriebsmittel-Managementgruppe der verschwindenden Betriebsmittel-Managementgruppe.
- Hierarchisches Betriebsmittel-Managementverfahren nach Anspruch 1, 2 oder 4, wobel eine Vertellung von Betriebsmitteln zu einem Individuellen Prozeß in einer Betriebsmittel-Manegementgruppe innerhalb einer Gesamtmenge von zur Betriebsmittel-Managementgruppe zugeteilten Betriebsmitteln durchgeführt wird.
 - 6. Hierarchisches Betriebsmittel-Menegementverfehren nach Anspruch 1,
- wobei jede Prozeß-Manegementelnheit zum Betriebsmittel-Managementblock verbindet und jeder der Betriebsmittel-Menagementblöcke zur Prozeß-Menagementeinheit verbindet, um den Betriebsmittel-Management-Führungsprozeß zu managen; und wobei ein Bilden eines Betriebsmittel-Managementbaums eine hierarchische Struktur zwischen den jeweiligen Betriebsmittel-Managementgruppen durch eine Verbindung eines Betriebsmittel-Managementblocks einer
 - Betriebsmittel-Managementgruppen durch eine Verbindung eines Betriebsmittel-Managementblocks einer Kind-Betriebsmittel-Managementgruppe mit einem Betriebsmittel-Menagementblock einer Eltern-Betriebsmittel-Managementgruppe und aine Verbindung jedes der Betriebsmittel-Menagementblöcke mit der Prozeß-Managementeinheit zum Menagen des Betriebsmittel-Management-Führungsprozesses oder mit der Prozeß-Menagementelnheit zum Managen des Betriebsmittel-Managementprozesses sicherstellt.

Revendications

5

10

20

25

30

35

40

45

50

55

- Méthoda de gestion hiérarchique des ressources par un système d'exploitation orienté temps partagé pour effectuer un contrôle tel que la génération et la disparition de processus conformément à des rapports parent-enfant d'une structure erborescente et gérer dynamiquement des ressources sur une base de processus, comprenant les étapes de :
 - formation h\[earrage random version de ressources (10,40,70) Incluant une pluralit\[earrage de processus (20,21,22,50-53,80,81);
 - un groupe de gestion de ressources d'ordre le plus élevé (10) incluant une unité de gestion de processus pour gérer un processus d'acheminement de gestion de ressources (20) pour gérer des ressources du système tout entier, au moins une unité de gestion de processus pour gérer un processus (21) qui est un descendant du processus d'acheminement de gestion de ressources (20) et non incluse dans d'autres groupes de gestion de ressources (40,70), et un bloc de gestion de ressources (30) pour mémoriser des informations sur des ressources gérées par le groupe de gestion de ressources (10); et
 - chacun des groupes de gestion de ressources (40,70) eutres que ledit groupe de gestion de ressources d'ordre le plus élevé (10) incluant une unité de gestion de processus pour gérer un processus de gestion de ressources (50) pour gérer des ressources allouées à son propre groupe, au moins une unité de gestion de processus pour gérer un processus (51,52,53) qui est un descendant du processus de gestion de ressources (50) et non incluse dans d'autres groupes de gestion de ressources (10,70), et un bloc de gestion de ressources (60) pour mémoriser des informations sur des ressources gérées par son propre groupe (40);
- formation d'un arbre de gestion des ressources (100) en reliant ledit processus d'echeminement de gestion de ressources (20) et les dits processus de gestion de ressources (50,80) conformément à des rapports parentenfant entre les groupes de gestion de ressources (10,40,70) respectifs; et
- à la génération d'un nouveau groupe de gestion de ressources autre que ledit groupe de gestion de ressources d'ordre le plus élevé (10), distribution d'une quantité nécessaire de ressources pour le groupe de gestion de ressources nouvellement généré, à partir de celles possédées par un groupe de gestion de ressources parent dudit groupe de gestion de ressources nouvellement généré, conformément audit arbre de gestion des ressources (100).

- 2. Méthode de gestion hiérerchique des ressources seion la revendication 1, comprenant les étapes de :
 - à la génération d'un groupe de gestion de ressources (270), lorsqu'une quentité nécessaire de ressources pour le groupe de gestion de ressources nouvellement généré (270) est couverte par des ressources inutilisées possédées par un groupe de gestion de ressources parent immédiat (240) du groupe de gestion de ressources nouvellement généré (270), distribution des ressources audit groupe de gestion de ressources nouvellement généré (270):
 - lorsque les ressources inutilisées possédées par le groupe de gestion de ressources parent immédiat (240) dudit groupe de gestion de ressources nouvellement généré (270) sont insuffisantes pour satisfeire à la quantité de ressources nécesseires pour ledit groupe de gestion de ressources nouvellement généré (270), distribution de ressources équivelentes à l'insuffisance à partir d'un groupe de gestion- de ressources parent précédant encore (210) eux groupes de gestion de ressources descendants (240) afin de réserver la quantité nécessaire, puls allocation des ressources audit groupe de gestion de ressources nouvellement généré (270);
 - lorsque l'insuffisance de ressources ne peut pas être couverte même en remontant eu groupe de gestion de ressources d'ordre le plus élevé (210), si l'introduction en file d'attente pour une libération de ressources est Impossible à cause d'une désignation felte à le génération dudit nouveau groupe de gestion de ressources (270), distribution d'eutant de ressources que possible pouvent être réservées dans le processus d'echeminement de gestion de ressources (20) et les processus de gestion de ressources respectifs (50,80) eux groupes de gestion de ressources enfants (240,270) afin d'aliouer les ressources eudit groupe de gestion de ressources nouvellement généré (270); et
 - lorsque l'introduction en file d'attente pour une libération de ressources est possible, ettente de la iibération de ressources depuis des groupes de gestion de ressources enfants (240) dans le processus d'acheminement de gestion de ressources (20) et distribution séquentielle de ressources à des groupes de gestion de ressources ces enfants lors de l'acquisition de ressources remplissant l'insuffisance, afin d'allouer les ressources audit groupe de gestion de ressources nouvellement généré.
- 3. Méthode de gestion hiérerchique des ressources selon la revendication 1, comprenent en outre l'étape, lorsqu'un groupe de gestion de ressources dispareît, de libéretion de ressources réservées par le groupe de gestion de ressources qui doit disparaître et de combinaison des ressources evec des ressources inutilisées possédées per un groupe de gestion de ressources parent immédiat du groupe de gestion de ressources qui doit disparaître.
- 4. Méthode de gestion hiérarchique des ressources selon la revendication 2, comprenant en outre l'étape, torsqu'un groupe de gestion de ressources disparaît, de libération de ressources réservées par le groupe de gestion de ressources _qui doit disparaître et de combinaison des ressources evec des ressources Inutilisées possédées par un groupe de gestion de ressources parent immédiat du groupe de gestion de ressources qui doit disparaître.
- 5. Méthode de gestion hlérarchique des ressources seion l'une des revendications 1, 2 ou 4, dans laquelle la distribution de ressources à un processus individuel dans un groupe de gestion de ressources est faite dans les limites d'une quantité totale de ressources allouées au groupe de gestion de ressources.
- 6. Méthode de gestion hiérarchique des ressources selon la revendication 1, dans lequel chacune desdites unités de gestion de processus est reliée audit bloc de gestion de ressources et chacun desdits blocs de gestion de ressources est relié à ladite unité de gestion de processus pour gérer ledit processus d'acheminement de gestion de ressources; et dans lequel la formation d'un arbre de gestion des ressources assure une structure hiérarchique entre les groupes de gestion de ressources respectifs par la liaison d'un bloc de gestion de ressources d'un groupe de gestion de ressources enfent à un bloc de gestion de ressources d'un groupe de gestion de ressources parent et par la liaison de chacun desdits blocs de gestion de ressources à l'unité de gestion de processus pour gérer ledit processus d'acheminement de gestion de ressources ou à l'unité de gestion de processus pour gérer ledit processus de gestion de ressources.

55

5

10

15

20

25

30

35

40

45

50

FIG.1

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

