

IT Trends

- Virtualization
- Density
- Density vs Reliability Profile
- Chip Cooling

Virtualization and Density

- For every 18'F rise in temperature hardware reliability decreased by 50%
- Footprint reduction = 30% per year
- Since 2000, power consumption for chips doubled
- 17% annual increase in load density in past 10 years

Chip Cooling

Chip Manufacturers are Investigating:

- New Sink Architectures
- Water Cooled Sinks
- Large Cooling Fans (up to 70 cfm per server)

Density vs. Reliability Profile

Total Cost of Ownership

Best Practices - Data Center Planning/Design

- Don't lose the forest for the Tiers
- kW/cabinet is more insightful than average W/sq ft
- Nail the program, budget and schedule early on
- Design in modularity and scalability
- Optimization through planning, design and commissioning

In The Data Center

Fan Powered Cabinet Example

Hot Air

is discharged out of the top via ductwork

Raised Floor

Conditioned Air

is drawn through the front of the cabinet

In The Data Center

Water Cooled Cabinet Example

Raised Floor

High Pressure

flex hose and quick-connect fittings to chilled water mains

Fan Coil

on rear door cools servers

Conditioned Air

is drawn through the front of the cabinet

In The Data Center

Hot Aisle Cold Aisle Configuration

Conditioned Air

is drawn through the front of the cabinet

Hot Air

is discharged out of the back of the cabinet

Conditioned Air

is drawn through the front of the cabinet

System Alternatives

- Chiller/Cooling Tower
- Air Cooled Chiller
- Adiabatic Cooling/Swamp Cooler (Roof, Ground, CRAH)
- Outside Air
- Air to Air (Munthers, Schneider, Hunt Aire, Kyoto)
- Water Side Economizer
 - (Heat Exchanger)
- DX Backup/Full-Partial
- Drycoolers

System Selection Process

System Selection Process

System Alternatives

Direct Air Economizer System

Outside air does enter the data center

Indirect Air Economizer System

Outside air **does not** enter the data center

System Alternatives

Direct Evaporative Air Economizer

Indirect Evaporative Air Economizer

"Swamp" cooler with outside air entering the data center

"Swamp" cooler without outside air entering the data center

System Alternatives

KYOTO WHEEL

Indirect Air-side Economizer

- Reliability / Availability
- UPS Technology
- Concurrent Maintainability
- Example One Line

- Load Density (The Major Issue)
- 99.9999% Availability ("Six Sigma")
- 2(N+1), 2N, N+2 Redundancy Common
- N or (N+1) Systems Not Good Enough
- Full Concurrent Maintenance
- Fault Tolerant Configurations Eliminate SPOF's

UPS Technology

- UPS with transformer or transformer free
 - Efficiency
 - Ground current issues
- UPS Modules with internal redundancy
 - Internal redundancy but same single input/output
- UPS System Static Switch
 - module level
 - system level
- UPS Technology
 - Double Conversion
 - Offline
 - Line interactive
 - Delta Conversion
 - Rotary
 - etc.

UPS Technology

- Eco Mode
 - Good Efficiency
 - Bad UPS Offline
- ITIC Curve/CBEMA Curve
- UPS Distribution Voltage
 - 600, 575, 480V, 415V, 120/208V
 - 3 Phase 3 Wire,3 Phase 4 Wire
- DC systems and voltage – 380VDC

UPS Technology

Typical UPS Configurations

- Single Module Systems
- Isolated Redundant
- Parallel Redundant
- Distributed Redundant
- Block Redundant

Parallel Redundant

Distributed Redundant

Cost, Availability and Design Topology

Pushing the Limits of Complexity = Bad Capital Investment

Availability

Cost \$

Data Center Electrical Infrastructure

Topologies – Reliability Table

Description of RBD	MTBF (Hours)	Inherent Availability (A _i)	Probability of Failure in 5 years
N + 1 UPS system - dual cord loads	32,509	0.99981626	58.16%
Distributed Redundant (2-3) UPS system - dual cord loads	161,646	0.99997994	7.43%
2N UPS system - dual cord loads	214,182	0.99998723	6.56%
2(N + 1) UPS system - dual cord loads	305,251	0.9999868	6.49%
Utility and N + 1 UPS system, ASTSs - dual cord loads	65,056	0.9999821	8.02%
Redundant Reserve (2-3) UPS System, ASTSs - dual cord loads	257,459	0.99999058	2.58%
Distributed Redundant (2-3) UPS system, ASTSs - dual cord loads	256,674	0.99999046	2.72%
2N UPS system, ASTSs - dual cord loads	445,691	0.9999845	1.12%
2(N + 1) UPS system, ASTSs - dual cord loads	989,960	0.9999839	0.88%

Electrical Trends

575V Distribution

Traditional voltage distribution to the PDU primary is 480V, consider use of 575V

Benefits:

- Reduces cable and bus sizes by 20%
- Allows systems to operate more efficiently
- Allows more capacity out of the equivalent 480V infrastructure
- Maintains the use of standard equipment sizes
- Can be utilized with UPS, motor and all other major equipment within the building
- Overall reduces initial installation cost and long term maintenance and operating costs

Electrical Trends

415V Distribution and Eliminate Transformers

- Transformers are traditionally used to step down the voltage to 208V for use at the server rack.
- Because the vast majority of modern servers are designed for the global market including the IEC low voltage standard 415/240V, the implementation of a 415/240V UPS system with a 3 phase, four wire distribution can be used.
- Distribution at 415/240V eliminates the transformation requirements and aligns critical loads directly with the UPS

Benefits:

- Still maintains the use of standard equipment, electrically and servers
- Reduces one level of transformation, increasing overall electrical efficiency by ~2%.
- Reduces HVAC requirements by 6 tons/MW.
- Reduces the amount of equipment needed to support the load, reducing initial costs.
- Increases reliability and availability, and reduces maintenance costs

Electrical Trends - Eco Mode

Concurrent Maintainability

Goals

- "Change Tires, Transmission and Engine at 60mph...and Don't Lose Speed."
- No IT Downtime for Preventative and Corrective Maintenance
- Scalability

Concurrent Maintainability

The Solution

- Dual/Diverse Utility Services
- Dual Active Distribution Paths
- N+2 Generator Plant
- "Self-Healing" Automation and Control
- Physical Separation/Compartmentalization
- 2N Static UPS or Similar
- Dual Electrical Cords to IT Cabinets

Medium Voltage Distribution

Utility Bypass/Gen Control Maintenance

UPS – Normal Operation

Red-Normal 'A'
Green-Normal 'B'
Blue-UPS 'A'
Pink-UPS' B'

UPS to RPP Normal Operation

QUESTIONS?

Thank you and please feel free to contact me

Steven Shapiro, P.E.

SShapiro@MorrisonHershfield.com

<u>linkedin.com/in/stevenshapirope</u>

