## **Optimization in Machine Learning**

# Mathematical Concepts Conditions for optimality





#### Learning goals

- Local and global optima
- First & second order conditions

#### **EXTREMA AND SADDLE POINTS**

- Given  $\mathcal{S} \subseteq \mathbb{R}^d$ ,  $f: \mathcal{S} \to \mathbb{R}$
- Global minimum at  $\mathbf{x}^*$ :  $f(\mathbf{x}^*) \leq f(\mathbf{x})$  for all  $\mathbf{x} \in \mathcal{S}$
- Local minimum at  $\mathbf{x}^*$ :  $\exists \epsilon > 0$  s.t.  $f(\mathbf{x}^*) \leq f(\mathbf{x})$  for all  $\mathbf{x} \in S \cap B_{\epsilon}(\mathbf{x}^*)$  ( $\epsilon$ -ball)
- Analogously for global and local max
- We call  $\mathbf{x}^*$  saddle point if in feasible portion of every eps-ball  $S \cap B_{\epsilon}(\mathbf{x}^*)$ , is at least a strictly better and a strictly worse point





Source (left): https://en.wikipedia.org/wiki/Maxima\_and\_minima Source (right): https://wngaw.github.io/linear-regression/



#### **EXISTENCE OF OPTIMA**

- $f: \mathcal{S} \to \mathbb{R}$
- If f continuous and S compact: minimum and maximum exist (extreme value theorem)
- If f discontinuous: no general existence statement
- Negative example, with S = [0, 1]:

$$f(x) = \begin{cases} 1/x & x > 0 \\ 0 & x = 0 \\ -1/x & x < 0 \end{cases}$$



#### **FIRST-ORDER CONDITION**

- Let  $f: \mathcal{S} \to \mathbb{R}$ , f differentiable,  $\mathbf{x}^*$  interior point of  $\mathcal{S}$
- Necessary condition: If  $\mathbf{x}^*$  is a local extremum, then  $\nabla f(\mathbf{x}^*) = 0$
- Such points are called 'stationary'
- Intuition: at a local extremum, the function must be flat, otherwise we can find a direction to move to a better value
- Not sufficient, e.g. saddle points are possible



Source: Watt (2020)



#### **SECOND-ORDER CONDITION**

- Let  $f: \mathcal{S} \to \mathbb{R}$ ,  $f \in \mathcal{C}^2$ ,  $\mathbf{x}^*$  interior point of  $\mathcal{S}$
- If  $H(x^*)$  is definite, then  $x^*$  is a strict local extremum
- If  $H(x^*)$  is semi-definite, then  $x^*$  is a local extremum
- If  $H(x^*)$  is indefinite, then  $x^*$  is a saddle point
- If H(x\*) is p(s)d, then x\* is a (strict) local min this implies f is locally (strictly) convex
- If  $H(x^*)$  is n(s)d, then  $x^*$  is a (strict) local max this implies f is locally (strictly) concave
- Interpretation: curvature pos (or neg) in all directions





### **EXAMPLE: BRANIN FUNCTION**

Branin function with 3 local minima







• EVs of Hessian at local minima:

|        | $\lambda_1$ | $\lambda_2$ |
|--------|-------------|-------------|
| Left   | 22.29       | 0.96        |
| Middle | 11.07       | 1.73        |
| Right  | 11.33       | 1.69        |

### **CONVEXITY AND OPTIMA**

× O

- $f: \mathcal{S} \to \mathbb{R}$  convex on convex set  $\mathcal{S}$
- Any local minimum is global
- The set of minima is convex
- If f strictly convex: at most one local minimum (unique global on S, if it exists)
- Analogously for concave functions

#### **EXAMPLE**

$$f(x,y) = x^4 + y^4 - x^2 - y^2$$

• 
$$H(x,y) = \begin{pmatrix} 12x^2 - 2 & 0 \\ 0 & 12y^2 - 2 \end{pmatrix}$$

- At  $(0,0)^T$  we have strict local max
- At  $(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}})^T$  we have 4 strict local min
- At  $(0, \pm \frac{1}{\sqrt{2}})^T$ ,  $(\pm \frac{1}{\sqrt{2}}, 0)^T$  we have 4 saddle points

