实验一 开环调速系统仿真

- 一、实验目的
 - 1、掌握直流电机开环系统各部分组成及基本原理
 - 2、掌握基于物理模型的直流电机开环系统仿真方法
 - 3、具备一定实验数据分析能力
- 二、实验内容
 - 1、直流电机开环系统基本组成及原理电气原理图见下图。
 - 2、直流电机开环系统仿真模型的建立
 - 3、仿真模型中各主要元件介绍与参数设置
- 三、进行实验仿真
 - 1、仿真参数: 仿真算法ode15s, 仿真时间1.5秒, 电机空载启动, 0.5秒后加额定负载TL=171.4
 - 2、实验要求:观测电枢两端电压,电枢电流,电动机转速。
- 四、实验结果

实验一 开环调速系统仿真

(以下模型已经上传至https://github.com/gwertyuyl/Matlab of electrical drive)

一、实验目的

- 1、掌握直流电机开环系统各部分组成及基本原理
- 2、掌握基于物理模型的直流电机开环系统仿真方法
- 3、具备一定实验数据分析能力
- 二、实验内容
- 1、直流电机开环系统基本组成及原理电气原理图见下图。

电动机采用它励直流电机,电枢回路由三相晶闸管整流电路经平波电抗器L供电。通过改变触发器移相控制信号 U_c 调节晶闸管的控制角 α ,从而改变整流器的输出电压,实现直流电机的调速。

2、直流电机开环系统仿真模型的建立

在MATLAB/Simulink中搭建直流电机开环系统仿真模型如下:

在仿真中,为了方便仿真,对模型做了如下简化:

- (1) 省略了整流变压器和同步变压器, 晶闸管交流侧电源直接采用三相交流电源代替。
- (2) 直流电机的励磁回路由单独的直流电源供电,构成它励直流电机。
- (3) 直流电机开环系统的给定信号本应该是控制电压 U_c ,在仿真时直接给出控制信号对应的移相触发角 α 。

3、仿真模型中各主要元件介绍与参数设置

(1) 直流电机模型 在MATLAB/Simulink中,直流电机模型见下图。

其参数设置如下图

(2) 交流电源模型模型

其具体参数为:

™ Block Parameters: 三相电源
Three-Phase Source (mask) (link)
Three-phase voltage source in series with RL branch.
Parameters Load Flow
Configuration: Yg ▼
Source
Specify internal voltages for each phase
Phase-to-phase voltage (Vrms): 142*sqrt(3)
Phase angle of phase A (degrees): 0
Frequency (Hz): 50
Impedance
✓ Internal
Source resistance (0hms): 0.001
Source inductance (H): 0
Base voltage (Vrms ph-ph): 25e3
OK Cancel Help Apply

(3) 三相整流桥模型

其具体参数为:

(4) 直流回路中平波电抗器

其具体参数为:

🚹 Block Parameters: 平波电抗器	\times
Series RLC Branch (mask) (link)	
Implements a series branch of RLC elements. Use the 'Branch type' parameter to add or remove elements from the branch.	
Parameters	
Branch type: L	•
Inductance (H):	
0.02	:
Set the initial inductor current	
Measurements None	•
OK Cancel Help Apply	У

(5) Powergui模型

Continuous

PowerGui

(5) 所构建的同步六脉冲触发器子系统模型

其内部具体结构为:

(6) 其他模型介绍从略

三、进行实验仿真

1、仿真参数: 仿真算法ode15s, 仿真时间1.5秒, 电机空载启动, 0.5秒后加额定负载TL=171.4

2、实验要求:观测电枢两端电压,电枢电流,电动机转速。

四、实验结果

电机输出数据画图如下:

要求数据如下:

将上述实验要求数据导出并画图显示为:

经分析可得:

- (1) 电枢电流与电磁转矩波形的形状相同,这与理论一致,因为 $T_e=C_eI_a$ 。
- (2) 在触发角 $\alpha=30\,^\circ$ 不变(即给定电压 U_c 不变),在t=0.5s时,随着负载增大,电磁转矩和电枢电流也同时增大。这是因为随着负载增加,要使电机达到稳态,相应的电磁转矩也必须增加,才能使转子合转矩为零,电机才能保持稳态,但注意此时电机的转速已经回不到原来的转速值了,所加负载越大,稳态误差就越大。