Factor Graphs for State Estimation From Kalman Filters to Modern Optimization

Zirui Zhang

Cheng Kar-Shun Robotics Institute
The Hong Kong University of Science and Technology

October 9, 2025

- 1 Kalman Filter
- 2 Factor Graph
- 3 Unified View

Markov Chain

The classic Kalman Filter corresponds to a simple **Markov Chain**:

Core Assumptions:

- Markov Property: The current state x_k depends only on the immediate previous state x_{k-1} and input u_k .
- Conditional Independence: Given the current state x_k , the observation y_k is independent of all other states and observations.

Scenario 1: Spatio-Temporal Constraints

A robot revisits a location, observing the same landmark l at two different times, k_1 and k_2 :

$$x_{k_1} \rightarrow x_{k_1+1} \rightarrow \cdots \rightarrow x_{k_2-1} \rightarrow x_{k_2}$$

obs. l obs. l

These two observations create a **direct constraint** between pose x_{k_1} and pose x_{k_2} . In the Kalman Filter, this connection is not direct.

4 / 13

Scenario 2: Physical Constraints

When tracking multiple objects, they may be subject to physical interaction constraints:

Object A:
$$x_0^A \rightarrow \underbrace{x_1^A \rightarrow x_2^A}_{\text{interact with B}} \rightarrow \cdots$$
Object B: $x_0^B \rightarrow \underbrace{x_1^B \rightarrow x_2^B}_{\text{interact with A}} \rightarrow \cdots$

The Kalman Filter, designed for a single Markov chain, cannot natively represent this cross-object dependency.

Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) provide a more flexible framework than a simple Markov chain for representing probabilistic dependencies across time.

Extensions:

- **1 Long-Term Dependencies:** States can depend on earlier states.
- **2 Inter-Variable Links:** Variables within a time slice can be connected.
- **3 Hierarchical States:** States can have sub-states with dependencies.

Dynamic Bayesian Networks (cont.)

A factor graph is a **bipartite graph** consisting of two types of nodes:

- Variable Nodes: Represent the unknown quantities we wish to estimate.
- Factor Nodes: Represent a constraint or a measurement on the set of variables they are connected to.

Goal: Find the most probable assignment of the variables that maximizes the product of all factors.

$$\mathbf{X}^* = \arg\max_{\mathbf{X}} \prod_i f_i(\mathcal{X}_i)$$

Under Gaussian assumptions, this becomes a nonlinear least-squares problem:

$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \sum_{i} ||h_i(\mathcal{X}_i) - z_i||_{\mathbf{S}_i}^2$$

The Dual Information Form

$$p(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{\alpha}} \\ \boldsymbol{\mu}_{\boldsymbol{\beta}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} & \boldsymbol{\Sigma}_{\boldsymbol{\alpha}\boldsymbol{\beta}} \\ \boldsymbol{\Sigma}_{\boldsymbol{\beta}\boldsymbol{\alpha}} & \boldsymbol{\Sigma}_{\boldsymbol{\beta}\boldsymbol{\beta}} \end{bmatrix}\right) = \mathcal{N}^{-1}\left(\begin{bmatrix} \boldsymbol{\eta}_{\boldsymbol{\alpha}} \\ \boldsymbol{\eta}_{\boldsymbol{\beta}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Lambda}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} & \boldsymbol{\Lambda}_{\boldsymbol{\alpha}\boldsymbol{\beta}} \\ \boldsymbol{\Lambda}_{\boldsymbol{\beta}\boldsymbol{\alpha}} & \boldsymbol{\Lambda}_{\boldsymbol{\beta}\boldsymbol{\beta}} \end{bmatrix}\right)$$

Operation	Covariance Form	Information Form
Marginalization	$\mu = \mu_{\alpha}$	$oldsymbol{\eta} = oldsymbol{\eta}_{oldsymbol{lpha}} - oldsymbol{\Lambda}_{oldsymbol{lpha}oldsymbol{eta}}^{-1} oldsymbol{\eta}_{oldsymbol{eta}}$
	$\Sigma = \Sigma_{\alpha \alpha}$	$\boldsymbol{\Lambda} = \boldsymbol{\Lambda}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} - \boldsymbol{\Lambda}_{\boldsymbol{\alpha}\boldsymbol{\beta}}\boldsymbol{\Lambda}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}\boldsymbol{\Lambda}_{\boldsymbol{\beta}\boldsymbol{\alpha}}$
Conditioning	$\boldsymbol{\mu}' = \boldsymbol{\mu}_{\boldsymbol{\alpha}} + \boldsymbol{\Sigma}_{\boldsymbol{\alpha}\boldsymbol{\beta}}\boldsymbol{\Sigma}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}})$	$\eta' = \eta_{\alpha} - \Lambda_{\alpha\beta}\beta$
	$\Sigma' = \Sigma_{\alpha\alpha} - \Sigma_{\alpha\beta}\Sigma_{\beta\beta}^{-1}\Sigma_{\beta\alpha}$	$\Lambda' = \Lambda_{\alpha\alpha}$

The Dual Information Filter

	Kalman Filter	Information Filter
Prediction Step	$\boldsymbol{\mu}_{t t-1} = \mathbf{A}_t \boldsymbol{\mu}_{t-1}$	$\mathbf{\Lambda}_{t t-1} = (\mathbf{A}_t \mathbf{\Lambda}_{t-1}^{-1} \mathbf{A}_t^{\top} + \mathbf{Q}_t)^{-1}$
	$\mathbf{\Sigma}_{t t-1} = \mathbf{A}_t \mathbf{\Sigma}_{t-1} \mathbf{A}_t^{\top} + \mathbf{Q}_t$	$\boldsymbol{\eta}_{t t-1} = \boldsymbol{\Lambda}_{t t-1} \boldsymbol{A}_t \boldsymbol{\Lambda}_{t-1}^{-1} \boldsymbol{\eta}_{t-1}$
Update Step	$\mathbf{K}_t = \mathbf{\Sigma}_{t t-1} \mathbf{H}_t^{\top} (\mathbf{H}_t \mathbf{\Sigma}_{t t-1} \mathbf{H}_t^{\top} + \mathbf{R}_t)^{-1}$	$\mathbf{\Lambda}_t = \mathbf{\Lambda}_{t t-1} + \mathbf{H}_t^{\top} \mathbf{R}_t^{-1} \mathbf{H}_t$
	$\boldsymbol{\mu}_t = \boldsymbol{\mu}_{t t-1} + \mathbf{K}_t(\mathbf{z}_t - \mathbf{H}_t \boldsymbol{\mu}_{t t-1})$	$oldsymbol{\eta}_t = oldsymbol{\eta}_{t t-1} + oldsymbol{\mathrm{H}}_t^{\top} oldsymbol{\mathrm{K}}_t^{\top} oldsymbol{\mathrm{H}}_t^{\top}$
	$\mathbf{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}_t) \mathbf{\Sigma}_{t t-1}$	$\mathbf{\eta}_t - \mathbf{\eta}_{t t-1} + \mathbf{\Pi}_t \mathbf{R}_t \mathbf{Z}_t$

Factor Graph with Information Form

The global nonlinear optimization problem

$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \sum_{i} ||h_i(\mathcal{X}_i) - z_i||_{\mathbf{S}_i}^2$$

can be linearized at current estimation X_0 :

$$h_i(\mathcal{X}_i) \approx h_i(\mathcal{X}_{i,0}) + \mathbf{J}_i \cdot \delta \mathcal{X}_i$$

where:

- $\mathbf{J}_i = \frac{\partial h_i}{\partial \mathcal{X}_i}|_{\mathcal{X}_{i,0}}$ is the **Jacobian matrix** of measurement function h_i
- $\mathbf{r}_i = z_i h_i(\mathcal{X}_{i,0})$ is the **residual vector**

Factor Graph with Information Form (cont.)

Local Information Form	Global Information Form
$\mathbf{\Lambda}_i = \mathbf{J}_i^{\top} \mathbf{S}_i^{-1} \mathbf{J}_i$	$\mathbf{\Lambda} = \sum_i \mathbf{A}_i^{\top} \mathbf{\Lambda}_i \mathbf{A}_i$
$oldsymbol{\eta}_i = \mathbf{J}_i^{ op} \mathbf{S}_i^{-1} \mathbf{r}_i$	$oldsymbol{\eta} = \sum_i \mathbf{A}_i^ op oldsymbol{\eta}_i$

where A_i is the **selection matrix** that maps local variables \mathcal{X}_i to the global state vector \mathbf{X} . The optimal update is then:

$$\mathbf{X}^* = \mathbf{X}_0 + (\mathbf{\Lambda})^{-1} \boldsymbol{\eta}$$

From Filtering to Smoothing

Kalman Filter, Information Filter, and Factor Graph are fundamentally solving the same problem: **state estimation under Gaussian assumptions**. They are probabilistically equivalent.

Despite their equivalence, FG-based smoothing dominates modern applications because:

- 1 It naturally encodes arbitrary constraints;
- 2 It exploits sparse structure for efficient solving;
- 3 It's batch-based update enabling non-linear optimization;
- 4 It corrects past states by future evidence.

Thank you for listening!

Zirui Zhang

