

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 5

Large and Fast: Exploiting Memory Hierarchy

Principle of Locality

- Programs access a small proportion of their address space at any time
- Temporal locality
 - Items accessed recently are likely to be accessed again soon
 - e.g., instructions in a loop, induction variables
- Spatial locality
 - Items near those accessed recently are likely to be accessed soon
 - E.g., sequential instruction access, array data

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy Levels

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - = 1 hit ratio
 - Then accessed data supplied from upper level

Memory Technology

- Static RAM (SRAM)
 - 0.5ns 2.5ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per GB
- Magnetic disk
 - 5ms 20ms, \$0.20 \$2 per GB
- Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

DRAM Technology

- Data stored as a charge in a capacitor
 - Single transistor used to access the charge
 - Must periodically be refreshed
 - Read contents and write back
 - Performed on a DRAM "row"

Advanced DRAM Organization

- Bits in a DRAM are organized as a rectangular array
 - DRAM accesses an entire row
 - Burst mode: supply successive words from a row with reduced latency
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
- Quad data rate (QDR) DRAM
 - Separate DDR inputs and outputs

DRAM Generations

Year	Capacity	\$/GB
1980	64Kbit	\$1500000
1983	256Kbit	\$500000
1985	1Mbit	\$200000
1989	4Mbit	\$50000
1992	16Mbit	\$15000
1996	64Mbit	\$10000
1998	128Mbit	\$4000
2000	256Mbit	\$1000
2004	512Mbit	\$250
2007	1Gbit	\$50

DRAM Performance Factors

- Row buffer
 - Allows several words to be read and refreshed in parallel
- Synchronous DRAM
 - Allows for consecutive accesses in bursts without needing to send each address
 - Improves bandwidth
- DRAM banking
 - Allows simultaneous access to multiple DRAMs
 - Improves bandwidth

Increasing Memory Bandwidth

- 4-word wide memory
 - Miss penalty = 1 + 15 + 1 = 17 bus cycles
 - Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
- 4-bank interleaved memory
 - Miss penalty = $1 + 15 + 4 \times 1 = 20$ bus cycles
 - Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

a. One-word-wide

memory organization

Memory

Flash Storage

- Nonvolatile semiconductor storage
 - 100x 1000x faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)

Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

Disk Storage

Nonvolatile, rotating magnetic storage

Disk Sectors and Access

- Each sector records
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Disk Access Example

Given

- 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk
- Average read time
 - 4ms seek time
 - $+ \frac{1}{2} / (15,000/60) = 2$ ms rotational latency
 - + 512 / 100 MB/s = 0.005 ms transfer time
 - + 0.2ms controller delay
 - = 6.2 ms
- If actual average seek time is 1ms
 - Average read time = 3.2ms

Disk Performance Issues

Manufacturers quote average seek time

- Based on all possible seeks
- Locality and OS scheduling lead to smaller actual average seek times

Smart disk controller allocate physical sectors on disk

- Present logical sector interface to host
- Popular Industry Standard Protocols: Small Computer System Interface (SCSI, pronounced "skuzzy"), iSCSI ("eye-skuzzy"), Advanced Technology Attachment (ATA), Serial ATA (SATA)

Disk drives include caches

- Prefetch sectors in anticipation of access
- Avoid seek and rotational delay

Cache Memory

- Cache memory
 - The level of the memory hierarchy closest to the CPU
- Given read/write accesses X₁, ..., X_{n-1}, X_n

X ₄
X_1
X_{n-2}
X_{n-1}
X_2
X ₃

a. Before the reference to X_n

X ₄	
X ₁	
X _{n-2}	
X _{n-1}	
X ₂	
X_n	
X ₃	

b. After the reference to X_n

For read operation:

- Where do we look for it?
- How do we know if the data is present?

For write operation:

- Where do we look for it?
- Is the data in the cache synced to main memory, before being overwritten?

Direct Mapped Cache

- Location determined by address
- Direct mapped: only one choice
 - (Block address) modulo (#Blocks in cache)

- Block size: single/multiple words
- #Blocks is usually a power of 2
- Use low-order address bits

Tags and Valid Bits

- How do we know which particular block is stored in a cache location?
 - Store block address as well as the data
 - Actually, only need the high-order bits
 - Called the tag
- What if there is no data in a location?
 - Valid bit: 1 = present, 0 = not present
 - Initially 0

Cache Example (simple)

- 8-blocks, 1 word/block, direct mapped
- Initial state

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Miss	110

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
26	11 010	Miss	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Hit	110
26	11 010	Hit	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
16	10 000	Miss	000
3	00 011	Miss	011
16	10 000	Hit	000

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Y	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Y	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Address Subdivision

(Block size = 1 word, 1024 blocks in cache)

Example: Larger Block Size

- 64 blocks in cache, 16 bytes/block (i.e. block size = 4 words)
- 64 (= 2⁶) blocks => 6-bit index
 - To what cache index does address 1200 map?
- Memory block address = $\lfloor 1200/16 \rfloor = 75$
- Cache index = 75 modulo 64 = 11

Block Size Considerations

- Larger blocks should reduce miss rate
 - Due to spatial locality
- But in a fixed-sized cache
 - Larger blocks ⇒ fewer of them
 - More competition ⇒ increased miss rate
 - Larger blocks ⇒ pollution
- Larger miss penalty
 - Can override benefit of reduced miss rate
 - Early restart and critical-word-first can help

Cache Misses

- On cache hit, CPU proceeds normally
- On cache miss
 - Stall the CPU pipeline
 - Fetch block from next level of hierarchy
 - Instruction cache miss (e.g. jump to an instruction located far away)
 - Restart instruction fetch
 - Data cache miss
 - Complete data access

Write-Through

- On data-write hit, could just update the block in cache
 - But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
 - e.g., if base CPI = 1, 10% of instructions are stores,
 write to memory takes 100 cycles
 - Effective CPI = $1 + 0.1 \times 100 = 11$
- Solution: write buffer
 - Holds data waiting to be written to memory
 - CPU continues immediately
 - Only stalls on write if write buffer is already full

Write-Back

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty
 - One additional bit ("dirty bit") per cache data entry has to be maintained in cache
- When a dirty block is replaced
 - Write it back to memory
 - Can use a write buffer to allow replacing block to be read first

Write Allocation

- What should happen on a write miss?
- Alternatives for write-through
 - Allocate on miss: fetch the block
 - Write around: don't fetch the block
 - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back
 - Usually fetch the block
- Please refer to flow-charts for details

Example: Intrinsity FastMATH

- Embedded MIPS processor
 - 12-stage pipeline
 - Instruction and data access on each cycle
- Split cache: separate I-cache and D-cache
 - Each 16KB: 256 blocks x 16 words/block
 - D-cache: write-through or write-back
- SPEC2000 miss rates
 - I-cache: 0.4%
 - D-cache: 11.4%
 - Weighted average: 3.2%

Example: Intrinsity FastMATH

Main Memory Supporting Caches

- Use DRAMs for main memory
 - Fixed width (e.g., 1 word)
 - Connected by fixed-width clocked bus
 - Bus clock is typically slower than CPU clock
- Example cache block read
 - 1 bus cycle for address transfer
 - 15 bus cycles per DRAM access
 - 1 bus cycle per data transfer
- For 4-word block, 1-word-wide DRAM
 - Miss penalty = $1 + 4 \times 15 + 4 \times 1 = 65$ bus cycles
 - Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Measuring Cache Performance

- Components of CPU time
 - Program execution cycles
 - Includes cache hit time
 - Memory stall cycles
 - Mainly from cache misses
- With simplifying assumptions:

Memory stall cycles

$$= \frac{Instructions}{Program} \times \frac{Misses}{Instruction} \times Miss penalty$$

Cache Performance Example

Given

- I-cache miss rate = 2%
- D-cache miss rate = 4%
- Miss penalty = 100 cycles
- Base CPI (ideal cache) = 2
- Load & stores are 36% of instructions
- Miss cycles per instruction
 - I-cache: $0.02 \times 100 = 2$
 - D-cache: $0.36 \times 0.04 \times 100 = 1.44$
- Actual CPI = 2 + 2 + 1.44 = 5.44
 - Ideal CPU is 5.44/2 =2.72 times faster

Average Access Time

- Hit time is also important for performance
- Average memory access time (AMAT)
 - AMAT = Hit time + Miss rate x Miss penalty
- Example
 - CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%
 - \blacksquare AMAT = 1 + 0.05 × 20 = 2ns
 - 2 cycles per instruction

Performance Summary

- When CPU performance increased
 - Miss penalty becomes more significant
- Decreasing base CPI
 - Greater proportion of time spent on memory stalls
- Increasing clock rate
 - Memory stalls account for more CPU cycles
- Can't neglect cache behavior when evaluating system performance

Associative Caches

- Fully associative
 - Allow a given block to go in any cache entry
 - Requires all entries to be searched at once
 - Comparator per entry (expensive)
- n-way set associative
 - Each set contains n entries
 - Block number determines set number
 - (Block number) modulo (#Sets in cache)
 - Only all entries in a given set needs to be searched at once
 - n comparators (less expensive)

Associative Cache Example

Spectrum of Associativity

For a cache with 8 blocks

One-way set associative (direct mapped)

Tag	Data
	Tag

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														

Associativity Example

- Compare 4-block caches
 - Direct mapped, 2-way set associative, fully associative
 - Block access sequence: 0, 8, 0, 6, 8
- Direct mapped

Block	Cache	Hit/miss	(Cache conter	nt after acces	S
address	index		0	1	2	3
0	0	miss	Mem[0]			
8	0	miss	Mem[8]			
0	0	miss	Mem[0]			
6	2	miss	Mem[0]		Mem[6]	
8	0	miss	Mem[8]		Mem[6]	

Associativity Example

2-way set associative

Note: set index can be found by (Block address) % (# of sets)

Block	Cache	Hit/miss	Cache content after access			
address	index		Se	et O	Set 1	
	(Set Index)					
0	0	miss	Mem[0]			
8	0	miss	Mem[0]	Mem[8]		
0	0	hit	Mem[0]	Mem[8]		
6	0	miss	Mem[0]	Mem[6]		
8	0	miss	Mem[8]	Mem[6]		

Fully associative

Block address	Hit/miss	Cache content after access				
0	miss	Mem[0]				
8	miss	Mem[0]	Mem[8]			
0	hit	Mem[0]	Mem[8]			
6	miss	Mem[0]	Mem[8]	Mem[6]		
8	hit	Mem[0]	Mem[8]	Mem[6]		

How Much Associativity

- Increased associativity decreases miss rate
 - But with diminishing returns
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000
 - 1-way: 10.3%
 - 2-way: 8.6%
 - 4-way: 8.3%
 - 8-way: 8.1%

Set Associative Cache Organization (4-way set associative, 256 sets, 1024 blocks)

Replacement Policy

- Direct mapped: no choice
- Set associative
 - Prefer non-valid entry, if there is one
 - Otherwise, choose among entries in the set
- Least-recently used (LRU)
 - Choose the one unused for the longest time
 - Simple for 2-way, manageable for 4-way, too hard beyond that
- Random
 - Gives approximately the same performance as LRU for high associativity

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to relatively small cache size
 - Repeatedly, necessary blocks (i.e. blocks to be accessed in near future) gets evicted
- Conflict misses (aka collision misses)
 - There is empty space in the cache on a whole, but still miss happens
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Cache Design Trade-offs

Design change	Effect on miss rate	Negative performance effect
Increase cache size	Decrease capacity misses	May increase access time
Increase associativity	Decrease conflict misses	May increase access time
Increase block size	Decrease compulsory misses	Increases miss penalty. For very large block size, may increase miss rate due to pollution.

Virtual Memory

- Use main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - Protected from other programs
- CPU and OS translate virtual addresses to physical addresses
 - VM "block" is called a page
 - VM translation "miss" is called a page fault
 - Required page is not in main memory

Address Translation

Fixed-size pages (e.g., 4kB)

Virtual address

Physical address

Here, page size: 2¹⁰ bytes = 1 kB virtual memory size: 4 GB physical memory size: 1 GB

Page Fault Penalty

- On page fault, the page must be fetched from disk
 - Takes millions of clock cycles
 - Handled by OS code
- Try to minimize page fault rate
 - Fully associative placement
 - Smart replacement algorithms

Page Tables

- Stores placement information
 - Array of page table entries, indexed by virtual page number
 - Page table register in CPU points to page table in physical memory
- If page is present in memory
 - PTE stores the physical page number
 - Plus other status bits (referenced, dirty, ...)
- If page is not present
 - PTE can refer to location in swap space on disk

Translation Using a Page Table (page size = 4 kB)

Mapping Pages to Storage

Replacement and Writes

- To reduce page fault rate, prefer leastrecently used (LRU) replacement
 - Reference bit (aka use bit) in PTE set to 1 on access to page
 - Periodically cleared to 0 by OS
 - A page with reference bit = 0 has not been used recently
- Disk writes take millions of cycles
 - Block at once, not individual locations
 - Write through is impractical
 - Use write-back
 - Dirty bit in PTE set when page is written

Fast Translation Using a TLB

- Address translation would appear to require extra memory references
 - One to access the PTE
 - Then the actual memory access
- But access to page tables has good locality
 - So use a fast cache of PTEs within the CPU
 - Called a Translation Look-aside Buffer (TLB)
 - Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate
 - Misses could be handled by hardware or software

Fast Translation Using a TLB

TLB Misses

- If page is in memory
 - Load the PTE from memory and retry
 - Could be handled in hardware
 - Can get complex for more complicated page table structures
 - Or in software
 - Raise a special exception, with optimized handler
- If page is not in memory (page fault)
 - OS handles fetching the page and updating the page table
 - Then restart the faulting instruction

TLB Miss Handler

- TLB miss indicates
 - Page present, but PTE not in TLB
 - Page not present
- Must recognize TLB miss before destination register overwritten
 - Raise exception
- Handler copies PTE from memory to TLB
 - Then restarts instruction
 - If page not present, page fault will occur

Page Fault Handler

- Use faulting virtual address to find PTE
- Locate page on disk
- Choose page to replace
 - If dirty, write to disk first
- Read page into memory and update page table
- Make process runnable again
 - Restart from faulting instruction

TLB and Cache Interaction

- If cache tag uses physical address
 - Need to translate before cache lookup
- Alternative: use virtual address tag
 - Complications due to aliasing
 - Different virtual addresses for shared physical address

Memory Protection

- Different tasks can share parts of their virtual address spaces
 - But need to protect against errant access
 - Requires OS assistance
- Hardware support for OS protection
 - Privileged supervisor mode (aka kernel mode)
 - Privileged instructions
 - Page tables and other state information only accessible in supervisor mode
 - System call exception (e.g., syscall in MIPS)

The Memory Hierarchy

The BIG Picture

- Common principles apply at all levels of the memory hierarchy
 - Based on notions of caching
- At each level in the hierarchy
 - Block placement
 - Finding a block
 - Replacement on a miss
 - Write policy

Block Placement

- Determined by associativity
 - Direct mapped (1-way associative)
 - One choice for placement
 - n-way set associative
 - n choices within a set
 - Fully associative
 - Any location
- Higher associativity reduces miss rate
 - Increases complexity, cost, and access time

Finding a Block

Associativity	Location method	Tag comparisons
Direct mapped	Index	1
n-way set associative	Set index, then search entries within the set	n
Fully associative	Search all entries	#entries
	Full lookup table	0

Hardware caches

- Reduce comparisons to reduce cost
- Virtual memory
 - Full table lookup makes full associativity feasible
 - Benefit in reduced miss rate

Replacement

- Choice of entry to replace on a miss
 - Least recently used (LRU)
 - Complex and costly hardware for high associativity
 - Random
 - Close to LRU, easier to implement
- Virtual memory
 - LRU approximation with hardware support

Write Policy

- Write-through
 - Update both upper and lower levels
 - Simplifies replacement, but may require write buffer
- Write-back
 - Update upper level only
 - Update lower level when block is replaced
 - Need to keep more state
- Virtual memory
 - Only write-back is feasible, given disk write latency

Cache Control

- Example cache characteristics
 - Direct-mapped, write-back, write allocate
 - Block size: 4 words (16 bytes)
 - Cache size: 16 KB (1024 blocks)
 - 32-bit byte addresses
 - Valid bit and dirty bit per block
 - Blocking cache
 - CPU waits until access is complete

Interface Signals

Concluding Remarks

- Fast memories are small, large memories are slow
 - We really want fast, large memories
 - Caching gives this illusion ©
- Principle of locality
 - Programs use a small part of their memory space frequently
- Memory hierarchy
 - L1 cache ↔ L2 cache ↔ ... ↔ DRAM memory ↔ disk
- Memory system design is critical for multiprocessors

