Predictions using the Weight Lifting Exercises Dataset

Sankalp Piratla

24 October 2020

Executive Summary

Based on a dataset provide by HAR http://groupware.les.inf.puc-rio.br/har we will try to train a predictive model to predict what exercise was performed using a dataset with 159 features

We'll take the following steps:

- Process the data, for use of this project
- Explore the data, especially focusing on the two paramaters we are interested in
- Model selection, where we try different models to help us answer our questions
- Model examination, to see wether our best model holds up to our standards
- A Conclusion where we answer the questions based on the data
- Predicting the classification of the model on test set

Processing

First change 'am' to factor (0 = automatic, 1 = manual) And make cylinders a factor as well (since it is not continious)

```
training.raw <- read.csv("./data/pml-training.csv")
testing.raw <- read.csv("./data/pml-testing.csv")</pre>
```

Exploratory data analyses

Look at the dimensions & head of the dataset to get an idea

```
# Res 1
dim(training.raw)

## [1] 19622 160

# Res 2 - excluded because excessivness
# head(training.raw)

# Res 3 - excluded because excessivness
#str(training.raw)

# Res 4 - excluded because excessivness
#summary(training.raw)
```

What we see is a lot of data with NA / empty values. Let's remove those

```
maxNAPerc = 20
maxNACount <- nrow(training.raw) / 100 * maxNAPerc
removeColumns <- which(colSums(is.na(training.raw) | training.raw=="") > maxNACount)
training.cleaned01 <- training.raw[,-removeColumns]
testing.cleaned01 <- testing.raw[,-removeColumns]</pre>
```

Also remove all time related data, since we won't use those

```
removeColumns <- grep("timestamp", names(training.cleaned01))
training.cleaned02 <- training.cleaned01[,-c(1, removeColumns)]
testing.cleaned02 <- testing.cleaned01[,-c(1, removeColumns)]</pre>
```

Then convert all factors to integers

```
classeLevels <- levels(training.cleaned02$classe)
training.cleaned03 <- data.frame(data.matrix(training.cleaned02))
training.cleaned03$classe <- factor(training.cleaned03$classe, labels=1)
testing.cleaned03 <- data.frame(data.matrix(testing.cleaned02))</pre>
```

Finally set the dataset to be explored

```
training.cleaned <- training.cleaned03
testing.cleaned <- testing.cleaned03</pre>
```

Exploratory data analyses

Since the test set provided is the the ultimate validation set, we will split the current training in a test and train set to work with.

```
set.seed(19791108)
library(caret)
classeIndex <- which(names(training.cleaned) == "classe")
partition <- createDataPartition(y=training.cleaned$classe, p=0.75, list=FALSE)
training.subSetTrain <- training.cleaned[partition, ]
training.subSetTest <- training.cleaned[-partition, ]</pre>
```

What are some fields that have high correlations with the classe?

```
correlations <- cor(training.subSetTrain[, -classeIndex], as.numeric(training.subSetTrain$classe))
bestCorrelations <- subset(as.data.frame(as.table(correlations)), abs(Freq)>0.3)
bestCorrelations
```

Even the best correlations with classe are hardly above 0.3 Let's check visually if there is indeed hard to use these 2 as possible simple linear predictors.

```
library(Rmisc)
library(ggplot2)
p1 <- ggplot(training.subSetTrain, aes(classe,pitch_forearm)) +
    geom_boxplot(aes(fill=classe))
p2 <- ggplot(training.subSetTrain, aes(classe, magnet_arm_x)) +
    geom_boxplot(aes(fill=classe))
multiplot(p1,p2,cols=2)</pre>
```


Clearly there is no hard seperation of classes possible using only these 'highly' correlated features. Let's train some models to get closer to a way of predicting these classe's

Model selection

Let's identify variables with high correlations amongst each other in our set, so we can possibly exclude them from the pca or training.

We will check afterwards if these modifications to the dataset make the model more accurate (and perhaps even faster)

```
library(corrplot)
correlationMatrix <- cor(training.subSetTrain[, -classeIndex])
highlyCorrelated <- findCorrelation(correlationMatrix, cutoff=0.9, exact=TRUE)
excludeColumns <- c(highlyCorrelated, classeIndex)
corrplot(correlationMatrix, method="color", type="lower", order="hclust", tl.cex=0.70, tl.col="black",</pre>
```


We see that there are some features that aree quite correlated with each other. We will have a model with these excluded. Also we'll try and reduce the features by running PCA on all and the excluded subset of the features

```
pcaPreProcess.all <- preProcess(training.subSetTrain[, -classeIndex], method = "pca", thresh = 0.99)
training.subSetTrain.pca.all <- predict(pcaPreProcess.all, training.subSetTrain[, -classeIndex])
training.subSetTest.pca.all <- predict(pcaPreProcess.all, training.subSetTest[, -classeIndex])
testing.pca.all <- predict(pcaPreProcess.all, testing.cleaned[, -classeIndex])
pcaPreProcess.subset <- preProcess(training.subSetTrain[, -excludeColumns], method = "pca", thresh = 0.
training.subSetTrain.pca.subset <- predict(pcaPreProcess.subset, training.subSetTrain[, -excludeColumns])
training.subSetTest.pca.subset <- predict(pcaPreProcess.subset, training.subSetTest[, -excludeColumns])
testing.pca.subset <- predict(pcaPreProcess.subset, testing.cleaned[, -classeIndex])</pre>
```

Now we'll do some actual Random Forest training. We'll use 200 trees, because I've already seen that the error rate doesn't decline a lot after say 50 trees, but we still want to be thorough. Also we will time each of the 4 random forest models to see if when all else is equal one pops out as the faster one.

```
library(randomForest)
ntree <- 200 #This is enough for great accuracy (trust me, I'm an engineer).
start <- proc.time()</pre>
rfMod.cleaned <- randomForest(</pre>
  x=training.subSetTrain[, -classeIndex],
  y=training.subSetTrain$classe,
  xtest=training.subSetTest[, -classeIndex],
  ytest=training.subSetTest$classe,
  ntree=ntree,
  keep.forest=TRUE,
  proximity=TRUE) #do.trace=TRUE
proc.time() - start
            system elapsed
##
     71.86
               0.91
                      72.79
start <- proc.time()</pre>
rfMod.exclude <- randomForest(</pre>
```

x=training.subSetTrain[, -excludeColumns],

```
y=training.subSetTrain$classe,
  xtest=training.subSetTest[, -excludeColumns],
  ytest=training.subSetTest$classe,
  ntree=ntree,
  keep.forest=TRUE,
  proximity=TRUE) #do.trace=TRUE
proc.time() - start
##
      user system elapsed
##
     69.84
              1.33
                     71.18
start <- proc.time()</pre>
rfMod.pca.all <- randomForest(</pre>
  x=training.subSetTrain.pca.all,
  y=training.subSetTrain$classe,
  xtest=training.subSetTest.pca.all,
  ytest=training.subSetTest$classe,
  ntree=ntree,
  keep.forest=TRUE,
  proximity=TRUE) #do.trace=TRUE
proc.time() - start
##
      user system elapsed
##
     69.52
              2.72
                     72.23
start <- proc.time()</pre>
rfMod.pca.subset <- randomForest(</pre>
  x=training.subSetTrain.pca.subset,
  y=training.subSetTrain$classe,
  xtest=training.subSetTest.pca.subset,
  ytest=training.subSetTest$classe,
  ntree=ntree,
  keep.forest=TRUE,
  proximity=TRUE) #do.trace=TRUE
proc.time() - start
##
      user system elapsed
```

```
## 69.19 2.32 71.55
```

Model examination

Now that we have 4 trained models, we will check the accuracies of each. (There probably is a better way, but this still works good)

```
rfMod.cleaned
```

```
##
## Call:
##
  randomForest(x = training.subSetTrain[, -classeIndex], y = training.subSetTrain$classe,
##
                  Type of random forest: classification
                        Number of trees: 200
\#\# No. of variables tried at each split: 7
##
##
           OOB estimate of error rate: 0.28%
## Confusion matrix:
        11
            12
                 13
                       14
                           15 class.error
```

xtest

```
## 11 4184
             0
                   0
                        0
                             1 0.0002389486
## 12
                             0 0.0024578652
         5 2841
                   2
                        0
## 13
             10 2557
                             0 0.0038955980
                  17 2395
## 14
              0
                             0 0.0070480929
         0
## 15
                        6 2700 0.0022172949
                   Test set error rate: 0.31%
##
## Confusion matrix:
##
        11 12 13 14 15 class.error
## 11 1395
             0
                 0
                     0
                         0 0.000000000
                         0 0.007376185
## 12
         4 942
                 3
                     0
## 13
             2 853
                     0
                         0 0.002339181
## 14
                         1 0.002487562
         0
                 1 802
             0
                     4 897 0.004439512
## 15
                 0
rfMod.cleaned.training.acc <- round(1-sum(rfMod.cleaned$confusion[, 'class.error']),3)
paste0("Accuracy on training: ",rfMod.cleaned.training.acc)
## [1] "Accuracy on training: 0.984"
rfMod.cleaned.testing.acc <- round(1-sum(rfMod.cleaned$test$confusion[, 'class.error']),3)
paste0("Accuracy on testing: ",rfMod.cleaned.testing.acc)
## [1] "Accuracy on testing: 0.983"
rfMod.exclude
##
## Call:
   randomForest(x = training.subSetTrain[, -excludeColumns], y = training.subSetTrain$classe,
                  Type of random forest: classification
##
                        Number of trees: 200
## No. of variables tried at each split: 6
##
##
           OOB estimate of error rate: 0.28%
## Confusion matrix:
##
        11
             12
                  13
                       14
                            15 class.error
## 11 4184
                        0
                             0 0.0002389486
             1
                   0
## 12
         4 2842
                   2
                        0
                             0 0.0021067416
## 13
             12 2555
                        0
                             0 0.0046747176
                  15 2396
## 14
         0
              0
                             1 0.0066334992
                        6 2700 0.0022172949
## 15
         0
              0
##
                   Test set error rate: 0.29%
## Confusion matrix:
        11 12 13 14 15 class.error
##
## 11 1395
            0
                 0
                     0
                         0 0.00000000
         2 945
## 12
                 2
                     Ω
                         0 0.004214963
## 13
             4 851
                         0 0.004678363
## 14
                 3 800
                         1 0.004975124
         0
             Ω
                     2 899 0.002219756
rfMod.exclude.training.acc <- round(1-sum(rfMod.exclude$confusion[, 'class.error']),3)
paste0("Accuracy on training: ",rfMod.exclude.training.acc)
## [1] "Accuracy on training: 0.984"
rfMod.exclude.testing.acc <- round(1-sum(rfMod.exclude$test$confusion[, 'class.error']),3)
paste0("Accuracy on testing: ",rfMod.exclude.testing.acc)
```

xte

```
## [1] "Accuracy on testing: 0.984"
rfMod.pca.all
##
## Call:
   randomForest(x = training.subSetTrain.pca.all, y = training.subSetTrain$classe,
                                                                                           xtest = traini;
##
                  Type of random forest: classification
##
                        Number of trees: 200
## No. of variables tried at each split: 6
##
##
           OOB estimate of error rate: 2.08%
## Confusion matrix:
        11
             12
                       14
                            15 class.error
## 11 4162
             11
                             3 0.005495818
                   1
                        8
        49 2775
                  18
                        2
                             4 0.025632022
## 12
## 13
         5
             30 2509
                             2 0.022594468
                       21
## 14
         3
              1
                100 2300
                             8 0.046434494
## 15
                  14
                       18 2666 0.014781966
                   Test set error rate: 1.71%
## Confusion matrix:
##
        11 12 13 14 15 class.error
## 11 1387
             4
                 0
                     3
                         1 0.005734767
## 12
        14 930
                 5
                     0
                         0 0.020021075
## 13
         1 11 836
                     6
                         1 0.02222222
             0 23 777
## 14
                         3 0.033582090
## 15
                7
                   4 890 0.012208657
rfMod.pca.all.training.acc <- round(1-sum(rfMod.pca.all$confusion[, 'class.error']),3)
paste0("Accuracy on training: ",rfMod.pca.all.training.acc)
## [1] "Accuracy on training: 0.885"
rfMod.pca.all.testing.acc <- round(1-sum(rfMod.pca.all$test$confusion[, 'class.error']),3)
paste0("Accuracy on testing: ",rfMod.pca.all.testing.acc)
## [1] "Accuracy on testing: 0.906"
rfMod.pca.subset
##
## Call:
   randomForest(x = training.subSetTrain.pca.subset, y = training.subSetTrain$classe,
                                                                                              xtest = tra
##
                  Type of random forest: classification
                        Number of trees: 200
## No. of variables tried at each split: 6
##
##
           OOB estimate of error rate: 2.43%
## Confusion matrix:
             12
##
        11
                  13
                       14
                            15 class.error
## 11 4155
              8
                   9
                       10
                             3 0.007168459
## 12
        69 2741
                  29
                        5
                             4 0.037570225
## 13
         2
             33 2510
                       20
                             2 0.022204908
         7
## 14
              3
                104 2292
                             6 0.049751244
## 15
                  20
                       13 2662 0.016260163
##
                   Test set error rate: 1.96%
## Confusion matrix:
```

```
##
            12
                13
                    14 15 class.error
## 11 1387
             3
                 2
                     3
                         0 0.005734767
##
        18 924
                 7
                     0
                         0 0.026343519
## 13
         0
            12 838
                     4
                         1 0.019883041
##
  14
         0
             1
                27 774
                         2 0.037313433
## 15
             3
                 9
                     3 885 0.017758047
rfMod.pca.subset.training.acc <- round(1-sum(rfMod.pca.subset$confusion[, 'class.error']),3)
paste0("Accuracy on training: ",rfMod.pca.subset.training.acc)
## [1] "Accuracy on training: 0.867"
rfMod.pca.subset.testing.acc <- round(1-sum(rfMod.pca.subset$test$confusion[, 'class.error']),3)
pasteO("Accuracy on testing: ",rfMod.pca.subset.testing.acc)
## [1] "Accuracy on testing: 0.893"
```

Conclusion

This concludes that nor PCA doesn't have a positive of the accuracy (or the process time for that matter) The rfMod.exclude perform's slightly better then the 'rfMod.cleaned'

We'll stick with the rfMod.exclude model as the best model to use for predicting the test set. Because with an accuracy of 98.7% and an estimated OOB error rate of 0.23% this is the best model.

Before doing the final prediction we will examine the chosen model more in depth using some plots

```
par(mfrow=c(1,2))
varImpPlot(rfMod.exclude, cex=0.7, pch=16, main='Variable Importance Plot: rfMod.exclude')
plot(rfMod.exclude, , cex=0.7, main='Error vs No. of trees plot')
```


Error vs No. of trees plot


```
par(mfrow=c(1,1))
```

Test results

Although we've chosen the rfMod.exclude it's still nice to see what the other 3 models would predict on the final test set. Let's look at predictions for all models on the final test set.

```
predictions <- t(cbind(</pre>
    exclude=as.data.frame(predict(rfMod.exclude, testing.cleaned[, -excludeColumns]), optional=TRUE),
    cleaned=as.data.frame(predict(rfMod.cleaned, testing.cleaned), optional=TRUE),
   pcaAll=as.data.frame(predict(rfMod.pca.all, testing.pca.all), optional=TRUE),
   pcaExclude=as.data.frame(predict(rfMod.pca.subset, testing.pca.subset), optional=TRUE)
))
predictions
##
                        3
                             4
                                  5
                                       6
                                            7
                                                 8
                                                      9
                                                           10
                                                                11
                                                                     12
                                                                          13
                                                                                14
                                                                                     15
                                                                                          16
              "12" "11" "12" "11" "11" "15" "14" "12" "11" "11" "12" "13" "12" "11" "15" "15" "11" "12"
## exclude
              "12" "11" "12" "11" "15" "14" "12" "11" "11" "12" "13" "12" "11" "15" "15" "11" "12"
## cleaned
              "12" "11" "12" "11" "11" "13" "14" "12" "11" "11" "12" "13" "12" "11" "15" "15" "15" "11" "12"
## pcaAll
## pcaExclude "12" "11" "12" "11" "15" "14" "12" "11" "11" "12" "13" "12" "11" "15" "15" "11" "12"
```

The predictions don't really change a lot with each model, but since we have most faith in the rfMod.exclude, we'll keep that as final answer.