Northeastern University

Model

Singel interval SD

Control and Decision Making in Systems Biology

Northeastern University

December 13, 2021

Presenter: Mahdiar Sadeghi

Advisor: Prof. Eduardo Sontag

Committee: Dr. Irina Kareva

Prof. Mark Niedre Prof. Carey Rappaport

Prof. Bahram Shafai

Presentation outline

- 1. Background
- 2. Chemotherapy
- 3. Immunotherapy
- 4. Epidemics
- 5. Acknowledgement

Proposal Review

Northeastern University

Outline

Background

Chemotherapy

Model Metronomic

Optimal cont

MDOR

Epidemic
Singel interval SD

Background

Chemotherap

Model

Metronom

/DOR

Epidemic
Singel interval SD

Proposal Review

Model

Metronomic Optimal control

Epidemic

Acknowledgment

► Motivation: Metronomic/intermittent experiments¹ in mice. A lower dose with a higher frequency than MTD were shown to requit immune system and reduce the tumor volume.

The current standard of care limits the regiments used primaritly

to daily dose and maximum-tolerated dose (MTD) treatments.

Objective: Use optimal control techniques in order to have a better treatment outcome among all possible dosing strategies.

¹ Junjie Wu and David J Waxman. "Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model". In: *Cancer letters* 353;2 (20±4), pp. 272±289 c

Chemotherapy

Singel interval SD

Now, a new generation of quantitative experiments made it

Early efforts in using optimal control techniques for cancer treatment started in the 1970s for Radiotherapy² and

Chemotherapy³.

possible to have more realistic models of the system.

The goal is to use optimal control techniques to find a mathematically derived optimal regimen (MDOR) to be tested in a similar experimental settings.

²K Bahrami and M Kim. "Optimal control of multiplicative control systems arising from cancer therapy". In: IEEE Transactions on Automatic Control 20.4 (1975), pp. 537-542.

³Thomas L Swan George W Vincent. "Optimal control analysis in the chemotherapy of IgG multiple myeloma". In: Bulletin of mathematical biology 39.3 (1977), pp. 317-337. 4日 → 4周 → 4 目 → 4 目 → 9 Q P

Model

Singel interval SD

$$\dot{T}(t) = k_a T(t) - \frac{k_b C(t) T(t)}{k_c C(t) + T(t)} - k_d T(t) I(t), \tag{1a}$$

$$\dot{I}(t) = qX(t) - k_e T(t)I(t) - k_f C(t)I(t) - k_g Y(t)I(t) - k_h I,$$
 (1b)

$$\dot{X}(t) = \frac{qC(t)T(t)}{k_iC(t) + T(t)} - k_jX(t) - k_kX(t)Y(t),$$
 (1c)

$$\dot{Y}(t) = \frac{I(t)}{k_I + I(t)} - k_m Y(t) C(t), \tag{1d}$$

$$\dot{C}t = u(t) - \frac{k_1 C(t)}{k_2 + C(t)}.$$
 (1e)

Where Tumor T represents the tumor volume, and the phenamenological variables immune system I, immunostimulatory X, immunossuppressor Y, and drug C represent the dynamics in the tumor microenvinronment.

Model is fitted to the tumor and immune data in mouse experiments.

Chemothera Model

Metronomic Optimal contr

MDOR

Singel interval SD

Acknowledgmen

The average tumor volume at different time ranges of 20-25 days (left), 30-35 days (middle), and 40-45 days (right) after starting a metronomic regimens. The horizontal axis represent the number of dose between each dose, y axis is the total amount of drug given to the animal every 6 days.

for the optimal control problem.

Chemotherapy Model

Optimal control

Epidemic

Singel interval SD

 $\min_{u(t)} T(t_f), \tag{2a}$

Numerical software GPOPS II is used to solve the following setup

s.t. $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \le \begin{bmatrix} C(t) \\ T(t) \\ I(t) \\ X(t) \\ Y(t) \\ U(t) \end{bmatrix} \le \begin{bmatrix} C_m \\ T_m \\ I_m \\ X_m \\ Y_m \\ U_m \end{bmatrix}, \tag{2b}$

$$\int_{0}^{t_f} u(t)dt \le U_m. \tag{2c}$$

Numerical result for a low input upper bound

Circles show the final collocation points.

Northeastern University

Outlin

ackground

Chemotherapy Model

Metronomic
Optimal control

MDOR

Singel interval SD

Numerical result for a high input upper bound

Circles show the final collocation points.

Northeastern University

Outilin

ackground

Chemotherapy Model

Metronomic
Optimal control

MDOR

Singel interval SD

Optimal control vs. metronomic regimen

Comparing a standard 140 mg/kg Q6D metronomic chemotherapy plan (solid lines) with the obtained optimal control (dashed lines).

However, The maximum tolerated dose is 300 mg/kg/day for CPA.

Proposal Review

Northeastern University

Outline

Rackeround

Chemotherapy Model

Metronomic

Optimal control

MDOR

Singel interval SD

Mathematically derived optimal regiment

Comparing a standard 140 mg/kg Q6D metronomic/intermittent plan (solid lines) and the mathematically derived optimal regimen (dashed lines).

Proposal Review

Northeastern University

Outlin

Background

hemotherapy

Metronomic

MDOR

Singel interval SD

A new viable regimen to be tested experimentally

Proposal Review

Northeastern University

Outline

Background

Chemotherapy

Metronomic

Optimal control

MDOR

Epidemic Singel interval SD

⁴ Junjie Wu and David J Waxman. "Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model". In: *Cancer letters*, 353(2) (2014), pp. 272=280; q.

Model

iviodei

Optimal co

Epidemic

Singel interval SD

Acknowledgment

During the COVID-19 epidemic, social distancing as a form of non-pharmaceutical intervention has been enacted in the US and other countries.

- ► Motivation: Shortening the period of time that populations are socially distanced is economically advantageous.
- Objective: To reduce the disease burden (here measured as the peak of the infected population) while simultaneously minimizing the length of time that the population is socially distanced.

Early days and limited data!

Proposal Review

Northeastern University

Outli

Background

Chemotherapy

Model

Metronomic
Optimal contro

MDOR

Epidemic

Singel interval SD

$$\beta(t) = \begin{cases} \beta_n & 0 \le t_s \\ \beta_d & t_s \le t < t_s + t_d \\ \beta_n & t_s + t_d \le t \end{cases}$$
 (3)

Normalized infected population in SIR model, with no re-infection.

Proposal Review

Northeastern University

Outlin

Background

Chemotherapy

Model

Optimal contr

DOR

Singel interval SD

.....

This work is a result of teamwork

Advisor: Eduardo Sontag

Lab members: M. Ali Alradhawi, Anh Phong Tran, Zheming An,

William Cho, Shu Wang, Tianchi Chen.

Presented projects

Chemotherapy: Anh Phong Tran, Irina Kareva, M. Ali Alradhawi,

and Waxman Lab.

Epidemics: James Greene, M. Ali Alradhawi.

Other projects

Immunotherapy: Irina Kareva, Kumpal Madrasi, Abed Alnaif, Anup Zutshi, and EMD Serono Inc team.

Parkinson's Disease: AMP-PD research community, and Sanofi team.

Ribosome: M. Ali Alradhawi, Michael Margaliot, Nikolai Slavov,

Edward Emmott.

Open-source community: Julia team, Gleb Pogudin, Esteban Vargas. Bioconductor project.

Proposal Review

Northeastern University

Outline

ckground

Chemotherapy

/lodel

tronomic timal cont

OOR

Epidemic Singel interval SD

Acknowledgment