第十一周作业

[题 7.4] 图 P7.4 是用 CMOS 反相器接成的压控施密特触发电路,试分析它的转换电平 $V_{\tau_{\tau}}$ 、 $V_{\tau_{\tau}}$ 以及回差电压 ΔV_{τ} 与控制电压 V_{co} 的关系。

 $V_A = \sqrt{\frac{R_1 / R_3}{R_1 + R_2 / R_3}} + \sqrt{\frac{R_1 / R_2}{R_3 + R_1 / R_2}} + \sqrt{\frac{R_1 / R_3}{R_2 + R_2 / R_2}} + \sqrt{\frac{R_1 / R_3}{R_2 + R_2 / R_2}}$

① J₁₊

当VI增大时,Vo=0

VTH = VT+ R. +R211R3 + Vto R3+R,11R

Va = VTH At, VI = VT+

 $V_{1+} = \left(V_{1+1} - V_{10} \frac{R_{1} | R_{2}|}{R_{1} + R_{1} | R_{2}|}\right) \frac{R_{1} + R_{2} | R_{2}|}{R_{2} | R_{3}|}$ $= V_{1+1} \left(1 + \frac{R_{1}}{R_{1}} + \frac{R_{2}}{R_{2}}\right) - \frac{R_{1}}{R_{2}} V_{10}$

2 V1-

与 Vit 推导过程相似,可得

 $V_{T-} = V_{TM} \left(1 + \frac{R_i}{R_i} - \frac{R_i}{R_i} \right) - \frac{R_j}{R_j} V_{\ell o}$

3 DUT

 $D U_{1} = V_{7+} - V_{7-} = \left(V_{7H} \left(1 + \frac{R_{1}}{R_{2}} + \frac{R_{1}}{R_{2}}\right) - \frac{R_{1}}{R_{3}} V_{co}\right) - \left[V_{7H} \left(1 + \frac{R_{1}}{R_{3}} - \frac{R_{1}}{R_{2}}\right) - \frac{R_{2}}{R_{3}} V_{co}\right]$

= 2 R. VTH

- R. Viii) =) 印 DV t 与 Vco 无关

[题 7.9] 图 P7.9 是用 TTL 门电路接成的微分型单稳态电路,其中 R_a 阻值足够大,保证稳态时 v_A 为高电平。R 的阻值很小,保证稳态时 v_{12} 为低电平。试分析该电路在给定触发信号 v_1 作用下的工作过程,画出 v_A 、 v_{01} 、 v_{12} 和 v_0 的电压波形。 C_a 的电容量很小,它与 R_a 组成微分电路。

図 D7 0

