Difference-in-Differences using Mixed-Integer Programming Matching Approach

Magdalena Bennett

McCombs School of Business, The University of Texas at Austin

Seminario DIIS - PUC

November 20th, 2024

Diff-in-Diff as an identification strategy

Cannot compare treated vs control

Cannot compare before and after

Parallel trend assumption (PTA)

Estimate Average Treatment Effect on the Treated (ATT)

Diff-in-Diff is very popular in Economics

Source: Web of Science (11/18/2024)

Diff-in-Diff is very popular in Economics

Source: Web of Science (11/18/2024)

• Main identification assumption fails

- Main identification assumption fails
- Find sub-groups that potentially follow PTA
 - o E.g. similar units in treatment and control
 - o Similar to synthetic control intuition.

- Main identification assumption fails
- Find sub-groups that potentially follow PTA
 - o E.g. similar units in treatment and control
 - Similar to synthetic control intuition.
- Can matching help?
 - It's complicated (Ham & Miratrix, 2022; Zeldow & Hatfield, 2021; Basu & Small, 2020; Lindner & McConnell, 2018; Daw & Hatfield, 2018 (x2); Ryan, 2018; Ryan et al., 2018)

This paper

- Identify contexts when matching can recover causal estimates under certain violations of the parallel trend assumption.
 - o Overall bias reduction and increase in robustness for sensitivity analysis.
- Use mixed-integer programming matching (MIP) to balance covariates directly.

Simulations:

Different DGP scenarios

Application:

School segregation & vouchers

Let's get started

DD Setup

- Let $Y_{it}(z)$ be the potential outcome for unit i in period t under treatment z.
- ullet Intervention implemented in $T_0 o \mathsf{No}$ units are treated in $t\le T_0$
- Difference-in-Differences (DD) focuses on ATT for $t>T_0$:

$$ATT(t) = E[Y_{it}(1) - Y_{it}(0)|Z = 1]$$

Expected difference in potential outcomes

if the treatment hadn't happened

for the treatment group

DD Setup

- Let $Y_{it}(z)$ be the potential outcome for unit i in period t under treatment z.
- ullet Intervention implemented in $T_0 o \mathsf{No}$ units are treated in $t\le T_0$
- Difference-in-Differences (DD) focuses on ATT for $t>T_0$:

$$ATT(t) = E[Y_{it}(1) - Y_{it}(0)|Z = 1]$$

- Assumptions for DD:
 - Parallel-trend assumption (PTA)
 - Common shocks

$$E[Y_{i1}(0) - Y_{i0}(0)|Z = 1] = E[Y_{i1}(0) - Y_{i0}(0)|Z = 0]$$

DD Setup (cont.)

• Under these assumptions:

$$\hat{ au}^{DD} = E[Y_{i1}|Z=1] - E[Y_{i1}|Z=0] - \ (E[Y_{i0}|Z=1] - E[Y_{i0}|Z=0]) \ \Delta_{pre}$$

- \circ Where t=0 and t=1 are the pre- and post-intervention periods, respectively.
- $\circ Y_{it} = Y_{it}(1) \cdot Z_i + (1 Z_i) \cdot Y_{it}(0)$ is the observed outcome.

But what if the PTA doesn't hold?

But what if the PTA doesn't hold?

We can potentially remove [part of] the bias by matching on $X_{it}^s = X_i$

We can write a general form of the potential outcomes Y(0) and Y(1) as follows:

$$Y_{it}(0) = lpha_i + \lambda_t + \gamma_0(X_i) + \gamma_1(X_i, t) + \gamma_2(X_i, t) \cdot Z_i + u_{it}$$
 $Y_{it}(1) = Y_{it}(0) + au_{it} = lpha_i + \lambda_t + \gamma_0(X_i) + \gamma_1(X_i, t) + \gamma_2(X_i, t) \cdot Z_i + au_{it} + u_{it}$

Covariate distribution between groups can be different

$$X_i|Z\sim F_x(z)$$

$$Y_{it}(0) = \alpha_i + \lambda_t + \gamma_0(X_i) + \gamma_1(X_i, t) + \gamma_2(X_i, t) \cdot Z_i + u_{it}$$

- α_i and λ_t are individual and time FE, respectively.
 - \circ If $\lambda_t | Z \sim F_{\lambda}(z,t)$, then PTA fails.

$$Y_{it}(0) = \alpha_i + \lambda_t + \gamma_0(\mathbf{X_i}) + \gamma_1(X_i, t) + \gamma_2(X_i, t) \cdot Z_i + u_{it}$$

- $lpha_i$ and λ_t are individual and time FE, respectively. • If $\lambda_t|Z\sim F_\lambda(z,t)$, then PTA fails.
- ullet $\gamma_0(X_i)$ is a time-invariant function that associates X and Y

$$Y_{it}(0) = \alpha_i + \lambda_t + \gamma_0(X_i) + \gamma_1(\mathbf{X_i,t}) + \gamma_2(X_i,t) \cdot Z_i + u_{it}$$

- α_i and λ_t are individual and time FE, respectively. • If $\lambda_t|Z\sim F_\lambda(z,t)$, then PTA fails.
- $\gamma_0(X_i)$ is a time-invariant function that associates X and Y.
- $\gamma_1(X_i,t)$ is a time-dependent function.

$$Y_{it}(0) = \alpha_i + \lambda_t + \gamma_0(X_i) + \gamma_1(X_i, t) + \gamma_2(\mathbf{X_i}, \mathbf{t}) \cdot \mathbf{Z_i} + u_{it}$$

- α_i and λ_t are individual and time FE, respectively.
 - \circ If $\lambda_t|Z\sim F_\lambda(z,t)$, then PTA fails.
- $\gamma_0(X_i)$ is a time-invariant function that associates X and Y.
- $\gamma_1(X_i,t)$ is a time-dependent function.
- $\gamma_2(X_i,t)\cdot Z_i$ is a differential time-dependent function only for the treatment group.

If the PTA holds...

Then, for a 2x2 DD, where $t < T_0$ (pre) and $t' > T_0$ (post):

$$\mathbb{E}[\gamma_1(X_i, t') + \gamma_2(X_i, t') - \gamma_1(X_i, t) - \gamma_2(X_i, t) | Z = 1] = \mathbb{E}[\gamma_1(X_i, t') - \gamma_1(X_i, t) | Z = 0]$$

One of the two conditions need to hold:

- 1) No effect or constant effect of X on Y over time: $\mathbb{E}[\gamma_1(X,t)] = \mathbb{E}[\gamma_1(X)]$
- 2) Equal distribution of observed covariates between groups: $X_i|Z=1\stackrel{d}{=}X_i|Z=0$

in addition to:

3) No differential time effect of X on Y by treatment group: $\mathbb{E}[\gamma_2(X,t)]=0$

Cond. 2 can hold through matching

Cond. 3 can be tested with sensitivity analysis

Sensitivity analysis for Diff-in-Diff

• Use of **pre-trends** to test plausibility of the PTA:

Sensitivity analysis for Diff-in-Diff

• Using a diff-in-diff strategy, we shouldn't find an effect

Sensitivity analysis for Diff-in-Diff

ullet In an event study o null effects prior to the intervention:

Honest approach to test pretrends

- One main issue with the previous test → Underpowered
- Rambachan & Roth (2023) propose sensitivity bounds to allow pre-trends violations:
 - E.g. Violations in the post-intervention period can be *at most M* times the max violation in the pre-intervention period.

Honest approach to test pretrends

- One drawback of the previous method is that it can **overstate** (or understate) the robustness of findings if the point estimate is biased.
 - Honest CIs depend on the magnitude of the point estimate as well as the pre-trend violations.
- Matching can reduce the overall bias of the point estimate

(a) Biased estimate

(b) Unbiased estimate

How do we match?

- Match on covariates or outcomes? Levels or trends?
- Propensity score matching? Optimal matching? etc.

This paper:

- Match on time-invariant covariates that could make groups behave differently.
 - Use distribution of covariates to match on a template.
- Use of Mixed-Integer Programming (MIP) Matching (Zubizarreta, 2015; Bennett, Zubizarreta, & Vielma, 2020):
 - Balance covariates directly
 - Yield largest matched sample under balancing constraints (cardinality matching)
 - Works fast with large samples

Simulations

Different scenarios

For linear and quadratic functions:

S1: No interaction between X and t

S2: Equal interaction between X and t

S3: Differential interaction between X and t

Additional tests:

S1b-S3b: Including time-varying covariates

ullet For all scenarios, differential distribution of covariates X between groups

Data Generating Processes

Scenarios	Functions
Linear	
(1) No interaction between X and t	$\gamma_0(X)=eta_x\cdot X \qquad \gamma_1=\gamma_2=0$
(2) Equal interaction between $oldsymbol{X}$ and $oldsymbol{t}$ by treatment	$\gamma_0(X) = eta_x \cdot X \qquad \gamma_1(X,t) = eta_{x_t} \cdot X \cdot rac{t}{2} \qquad \gamma_2(X,t) = 0$
(3) Different interaction between \boldsymbol{X} and \boldsymbol{t} by treatment	$\gamma_0(X) = eta_x \cdot X \qquad \gamma_1(X,t) = eta_{x_t} \cdot X \cdot rac{t}{2} \qquad \gamma_2(X,t) = eta_{x_{t1}} \cdot X \cdot rac{t}{5} \cdot Z$
Quadratic	
(1) No interaction between X and t	$\gamma_0(X) = eta_x \cdot X + eta_x \cdot rac{X^2}{10} \hspace{0.5cm} \gamma_1 = \gamma_2 = 0$
(2) Equal interaction between X and t by treatment	$\gamma_0(X) = eta_x \cdot X + eta_x \cdot rac{X^2}{10} \hspace{0.5cm} \gamma_1(X,t) = eta_{x_t} \cdot X \cdot rac{t^2}{10} \hspace{0.5cm} \gamma_2(X,t) = 0$
(3) Different interaction between X and t by treatment	$\gamma_0(X)=eta_x\cdot X+eta_x\cdot rac{X^2}{10} \hspace{0.5cm} \gamma_1(X,t)=eta_{x_t}\cdot X\cdot rac{t^2}{10} \hspace{0.5cm} \gamma_2(X,t)=eta_{x_{t1}}\cdot X\cdot rac{t^2}{50}\cdot Z$

Parameters:

Parameter	Value
Number of obs (N)	1,000
Pr(Z=1)	0.5
Time periods (T)	8
Last pre-intervention period (T_0)	4
Matching PS	Nearest neighbor (using calipers)
MIP Matching tolerance	.01 SD
Number of simulations	1,000

• Estimate compared to sample ATT (can be different for matching)

S1 - No interaction between X and t

S2 - Equal interaction between X and t by treatment

S3 - Differential interaction between X and t by treatment

Matching as an adjustment method for reducing/eliminating bias

Why is this bias reduction important?

• Example of S2 (Quadratic) with no true effect:

Why is this bias reduction important?

• Even under modest bias, we would incorrectly reject the null 20% of the time.

Why is this bias reduction important?

• Sensitivity analysis results are skewed by the magnitude of the bias.

Application

Preferential Voucher Scheme in Chile

- ullet Universal flat voucher scheme $\stackrel{\mathbf{2008}}{\longrightarrow}$ Universal + preferential voucher scheme
- Preferential voucher scheme:
 - Targeted to bottom 40% of vulnerable students
 - Additional 50% of voucher per student
 - Additional money for concentration of SEP students.

Students:

- Verify SEP status
- Attend a SEP school

Schools:

- Opt-into the policy
- No selection, no fees
- Resources ~ performance

Impact of the SEP policy

• Mixed evidence of impact on test scores for lower-income students (Aguirre, 2022; Feigenberg et al., 2019; Neilson, 2016; Mizala & Torche, 2013)

Impact of the SEP policy

- Mixed evidence of impact on test scores for lower-income students (Aguirre, 2022; Feigenberg et al., 2019; Neilson, 2016; Mizala & Torche, 2013)
- Design could have increased socioeconomic segregation (E.g. Incentives for concentration of SEP students)

Impact of the SEP policy

- Mixed evidence of impact on test scores for lower-income students (Aguirre, 2022; Feigenberg et al., 2019; Neilson, 2016; Mizala & Torche, 2013)
- Design could have increased socioeconomic segregation (E.g. Incentives for concentration of SEP students)
- Key decision variables for schools: Performance, current SEP students, competition, add-on fees.
- Diff-in-diff (w.r.t. 2007) for SEP and non-SEP schools:
 - Only for private-subsidized schools
 - o Matching using 2007 variables (similar results when using 2005-2007).
 - o Outcome: Average students' household income and SIMCE score

Before matching: Household income

Year

Years

Before matching: Average SIMCE

Years

Matching + DD

- Prior to matching: No parallel pre-trend
- Different types of schools:
 - Schools that charge high co-payment fees.
 - Schools with low number of SEP student enrolled.
- MIP Matching using constant or "sticky" covariates:
 - Mean balance (0.025 SD): Enrollment, average yearly subsidy, number of voucher schools in county, charges add-on fees
 - Exact balance: Geographic province

Groups are balanced in specific characteristics

Absolute standarized diff. in means

Matching in 16 out of 53 provinces

After matching: Household income

After matching: Average SIMCE

Year

Results

- Matched schools:
 - More vulnerable and lower test scores than the population mean.
- 9pp increase in the income gap between SEP and non-SEP schools in matched DD:
 - SEP schools attracted even more vulnerable students.
 - Non-SEP schools increased their average family income.
- No evidence of increase in SIMCE score:
 - o Could be a longer-term outcome.
- Findings in segregation are moderately robust to hidden bias (Keele et al., 2019):
 - \circ $\Gamma_c=1.76 o$ Unobserved confounder would have to change the probability of assignment from 50% vs 50% to 32.7% vs 67.3%.
 - Allows up to 70% of the maximum deviation in the pre-intervention period (*M* = 0.7) vs 50% without matching (Rambachan & Roth, 2023)

Potential reasons?

• Increase in probability of becoming SEP in 2009 jumps discontinuously at 60% of SEP student concentration in 2008 (4.7 pp; SE = 0.024)

Let's wrap it up

Conclusions and Next Steps

- Matching can be an important tool to address violations in PTA.
- Bias reduction is very important for sensitivity analysis.
- Serial correlation also plays an important role: Don't match on random noise.
- Next steps: Partial identification using time-varying covariates

Difference-in-Differences using Mixed-Integer Programming Matching Approach

Magdalena Bennett

McCombs School of Business, The University of Texas at Austin

Seminario DIIS - PUC

November 20th, 2024

SEP adoption over time

