Functional Analysis Assignment 5

Ashish Kujur

Note

A checkmark \checkmark indicates the question has been done.

Contents

1	Question 1	2
2	Question 2	4
3	Question 3	5
4	Question 4	6
5	Question 5	7
6	Question 6	8
7	Question 7	9
8	Question 8	10
9	Question 9	11
10	Question 10	12
11	Question 11	13

Suppose M and N are two topologically complimentary closed subspace of a Banach space $(X, \|\cdot\|_X)$. Now consider $M \oplus_1 N$, the external direct sum, defined in the following way)

$$M \oplus_1 N = \{(m,n) : m \in M, n \in N\}, \|(m,n)\|_1 = \|m\|_X + \|n\|_X.$$

- (a) Show that $M \oplus_1 N$ is a Banach space w.r.t the norm $\|\cdot\|_1$ mentioned above.
- (b) Show that X is isomorphic to $M \oplus_1 N$.
- (c) Show that the quotient space X/M is isomorphic to the Banach space N.

Proof of item (a). We proceed to prove (a). Let $((m_k, n_k))_{k \in \mathbb{N}}$ be a Cauchy sequence in $M \oplus_1 N$. We show that (m_k) is Cauchy in X. Consider the following:

$$||m_k - m_l||_X \le ||(m_k, n_k) - (m_l, n_l)||_1$$
.

Now since $((m_k, n_k))$ is Cauchy, we have that (m_k) is Cauchy in X. Since X is a Banach space, we have that (m_k) converges to some $m \in M$ as M is closed. Likewise it can be shown that (n_k) converges to some $n \in N$. We now show that $((m_k, n_k))$ converges to (m, n) in $M \oplus_1 N$. Consider the following:

$$||(m_k, n_k) - (m, n)|| = ||m_k - m||_X + ||n_k - n||_X$$

Since (m_k) converges to m and (n_k) converges to n, we are done.

Proof of item (b). To show that X is isomorphic to $M \oplus_1 N$, consider the map $T : M \oplus_1 N \to X$ given by

$$T(m,n) = m + n$$

for every $m \in M$ and every $n \in N$. First, we show that T is a normed linear space isomorphism, that is, both T and T^{-1} are bounded linear operators. It is immediate that T is bijective and linear. Since the projection maps $m+n \to m$ and $m+n \to n$ are continuous, there are some constant μ and ν such that $\|m\|_X \le \mu \|m+n\|_X$ and $\|n\|_X \le \nu \|m+n\|_X$. Now, let $m \in M$ and $n \in N$. Then

$$\begin{split} \|T\left(m,n\right)\|_{X} &= \|m+n\|_{X} \\ &\leq \|m\|_{X} + \|n\|_{X} \\ &= \|(m,n)\|_{1} \end{split}$$

and

$$\begin{split} \left\| T^{-1}(m+n) \right\|_1 &= \left\| (m,n) \right\|_1 \\ &= \left\| m \right\|_1 + \left\| n \right\|_1 \\ &\leq (\mu + \nu) \left\| m + n \right\|_X \end{split}$$

This shows that X is isomorphic to $M \oplus_1 N$.

 $\ddot{}$

Proof of item (c). Let $P_N: X \to N$ be the projection of X into N. Since P_N is onto, by the first isomorphism theorem for vector spaces, we have that $X/M \cong N$. It remains to show that map $[x]_M \mapsto P_N(x)$ and its inverse is continuous (note this is the isomorphism given by the first isomorphism theorem). We show that the map $P_N(x) \mapsto [x]_M$ is continuous. Let $x \in X$. Suppose x = m + n. Then we have that $P_N(x) = n$. Then

$$||[x]_M|| \le ||x - m||$$
 (by definition of quotient norm)
= $||n||$
= $||P_N(x)||_X$

This shows that the aforementioned map is continuous and bijective, by the Banach isomorphism theorem, we are done.

Let H be a Hilbert space with an orthonormal basis $\{e_j : j \in \mathbb{N}\}$. Consider the set

$$A = \{ e_k + ke_l : k < l, k, l \in \mathbb{N}, \}.$$

Show that 0 belongs to the weak closure of A. Also show that there is no sequence in A which converge weakly to 0.

Proof. Recall the fact that in a topological space, we have that $x \in \overline{A}$ if there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A converging to $x \in A$.

For each $k \in \mathbb{N}$, we have that the sequence $(e_k + ke_l)_{l \geq k}$ converges to e_k . Thus, we have that $e_k \in \overline{A}^w$. Also, $(e_k) \in \overline{A}^w$ converges to 0. Therefore, we have that $0 \in \overline{A}^w$.

Let (\tilde{e}_n) be a sequence in A converging to 0. Then $\tilde{e}_n = e_{k_n} + k_n e_{l_n}$ for some $k_n, l_n \in \mathbb{N}$ with $k_n < l_n$. Then (\tilde{e}_n) must be norm bounded. Let M > 0 such that $\|\tilde{e}_n\| \leq M$ for each $n \in \mathbb{N}$.

We claim that $\{k_n : n \in \mathbb{N}\}$ is finite. This is easy to see:

$$M \ge ||k_n e_{l_n} + e_{k_n}||$$

$$\ge |k_n ||e_{l_n}|| - ||e_{k_n}|||$$

$$> k_n - 1$$

for each $n \in \mathbb{N}$.

Since the aforementioned set is finite, we may let $\{k_n:n\in\mathbb{N}\}=\{k_{n_1},\ldots,k_{n_l}\}$ for some $n_1,n_2,\ldots,n_l\in\mathbb{N}$. It is a consequence of Riesz Representation theorem that in a Hilbert Space, $x_n\to x$ weakly iff $\langle x_n,y\rangle\to\langle x,y\rangle$ for each $y\in H$. We use this to achieve a contradiction. Now, let $y=e_{k_{n_1}}+e_{k_{n_2}}+\ldots+e_{k_{n_l}}$. It can be seen that $\langle \tilde{e}_n,y\rangle\geq 1$ for each $n\in\mathbb{N}$ and cannot converge to 0 as $n\to\infty$.

Let H be a Hilbert space. Suppose $\{x_n\}_{n\in\mathbb{N}}$ is a sequence of vector in H which converges weakly to a vector x in H and $||x_n|| \to ||x||$ as $n \to \infty$. Then show that $||x_n - x|| \to 0$ as $n \to \infty$.

Proof. Let (x_n) be a sequence in H converging to $x \in H$ and furthermore suppose that $||x_n|| \to ||x||$ as $n \to \infty$. We wish to show that $x_n \to x$ strongly.

Since $x_n \to x$ weakly, we have that $\langle x_n, y \rangle \to \langle x, y \rangle$ for each $y \in H$ by the definition and Riesz Representation theorem. Thus, we have that $\langle x_n, x \rangle \to ||x||^2$ in particular.

Now,

$$||x_n - x||^2 = ||x_n||^2 - 2\Re \langle x_n, x \rangle + ||x||^2.$$

Taking limits both sides, we have that

$$\lim_{n \to \infty} \|x_n - x\|^2 = 0$$

because $||x_n||^2 \to ||x||^2$ and $\langle x_n, x \rangle \to ||x||^2$.

This completes the proof as square root function is continuous.

Let $\{e_n : n \in \mathbb{N}\}$ be the standard Schauder basis for the Banach space $\ell^p(\mathbb{N})$ where $1 \leq p < \infty$. Show that $e_n \to 0$ in the weak topology of $\ell^p(\mathbb{N})$ for every p > 1. But for p = 1, the sequence e_n does not converges to 0 in the weak topology of $\ell^1(\mathbb{N})$.

Proof. First, we deal with the case when 1 . It can be shown that

$$(\ell^p(N))^* = \{L_y : y \in \ell^q(\mathbb{N})\}\$$

where $L_y(x) = \sum_{i=1}^{\infty} x_i y_i, x \in \ell^q(\mathbb{N})$. Note that for each $y \in \ell^q(\mathbb{N})$ with $1 \le q < \infty$, we have that $y_i \to 0$ as $i \to \infty$. This is because $\sum_{i=1}^{\infty} |y_i|^q < \infty$ for $y \in \ell^q(\mathbb{N})$.

Now, let $y \in \ell^q(\mathbb{N})$. We have that

$$L_y(e_n) = y_n \to 0 \text{ as } n \to \infty.$$

This shows that (e_n) converges to 0 in the weak topology.

Now, consider the case where p = 1. Then we have

$$\left(\ell^{1}\left(\mathbb{N}\right)\right)^{*} = \left\{L_{y} : y \in \ell^{\infty}\left(\mathbb{N}\right)\right\}$$

where L_y is as specified in the previous case. Let y = (1, 1, 1, ...). Then we have that

$$L_y\left(e_n\right) = 1$$

for each $n \in \mathbb{N}$. Hence, we have that (e_n) does not converge to 0 in the weak topology.

Let M be a norm closed subspace of a normed linear space X. Show that M is also closed in the weak topology of X.

Proof. Let M be a strongly closed subspace of X. We wish to show that it is weakly closed. To do so, we will show that $X \setminus M$ is weakly open.

Let $x \in X \setminus M$. We will be done if we show that there is a weakly open set U such that $x \in U \subset X \setminus M$.

Recall a result about metric spaces: in a metric space, distance between a closed set and a compact set which are disjoint is strictly positive. Since $\{x\}$ is compact and M is closed, we have that the distance d between the point x and M is strictly positive.

We claim that there is linear functional $f \in X^*$ such that f(M) = 0 and f(x) = d.

For the timebeing, let us assume this claim. Let $f \in X^*$ be such a functional. Then we have that $U := f^{-1}((d/2, \infty))$ is weakly open (because weak topology is the smallest topology which makes every linear functional continuous), $a \in U$ and $U \subset X \setminus M$. This shows that $X \setminus M$ is weakly open and hence M is weakly closed.

We now proceed to prove that claim. Consider the subspace:

$$N := \{ \lambda x + m : \lambda \in \mathbb{F}, m \in M \}$$

of X. We now define a continuous linear functional f_N on N and extend it to X via Hahn Banach. So, consider the linear functional $f_N: N \to \mathbb{F}$ given by $f_N(\lambda x + m) = \lambda d$. It is easy to see that this functional is well defined and linear. We now show that $||f_N||_{N^*} \le 1$. Let $\lambda \in \mathbb{F}$ and $m \in M$. We have that

$$\|\lambda x + m\| = |\lambda| \|x - \left(-\frac{m}{\lambda}\right)\| \ge |\lambda| d = \|f_N(\lambda x + m)\|$$

This shows that f_N is continuous. Hence, by Hahn Banach, we are done.

Let H be a Hilbert space. Show that closed unit ball in H is compact in the weak topology.

Proof. First, we show that any Hilbert space is isometrically isomorphic to its dual. Let H be a Hilbert space. Let H^* be its dual. We establish that there is a isometry between H and H^* . For each $y \in H$, define $L_y : H \to \mathbb{C}$ by $L_y(x) = \langle x, y \rangle$.

Now, consider the map $\varphi: H \to H^*$ given by $\varphi(y) = L_y$ for each $y \in H$. We claim that this map is an isometric isomorphism. It is easy to see this map is linear. To see that this map is one one, let $y \in H$ such that $L_y = 0$. Then we have that $\langle y, y \rangle = 0$. Thus, y = 0. This shows that y = 0. Onto and isometry follows from Riesz Representation theorem.

Now, we prove that if X and Y are isometric normed linear spaces then there is a homeomorphism between the weak topology on X and the weak topology on Y. Let $\varphi: X \to Y$ be isometry between X and Y. (Complete the proof ...)

Therefore, we have the closed unit ball in H is compact in the weak topology.

Suppose X is a finite dimensional normed linear space. Then show that the weak topology on X and the norm topology on X coincides.

Proof. It is clear that the norm topology contains the norm topology. To show the reverse inclusion, we show that every open ball contains a basis element of the weak topology.

Consider the open ball B(0,1). Suppose that X is of dimension n. Consider the linear functionals $f_i(x) = x_i$ for each i = 1, 2, ..., n. Then it is easy to see that $\bigcap_{i=1}^n f_i^{-1}(B(0,1/2)) \subset B(0,1)$. This completes the proof.

Let V be a vector space over \mathbb{F} , where $(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C})$. Suppose g, f_1, f_2, \dots, f_k are non zero linear functional on V satisfying

$$\bigcap_{j=1}^k \ker f_j \subseteq \ker g.$$

Then show that g belong to span $\{f_1, f_2, \ldots, f_k\}$.

Proof. We proceed by induction. First suppose that $\ker f \subset \ker g$. We show that $g = \lambda f$ for some $\lambda \in \mathbb{F}$.

Observe that if $\ker g = V$ then g = 0 = 0f and we are done. Suppose not. Then we can select $v_0 \in V$ such that $g(v_0) = 1$. Then $f(v_0) \neq 0$ for otherwise $v_0 \in \ker f$ which would imply that $g(v_0) = 0$ as $\ker f \subset \ker g$. Define $\lambda_1 = \frac{1}{f(v_0)}$.

We have that $V = \ker f \oplus \operatorname{span} \{v_0\}$. We have that $v = v_f + \lambda v_0$ for some $\lambda \in \mathbb{F}$. Therefore, we have that

$$g(v) = g(v_f + \lambda v_0)$$
$$= 1$$

Also, note that

$$\lambda_1 f(v) = \lambda_1 \lambda f(v_0)$$
$$= \lambda$$

This shows the theorem is true for the case n = 1.

Let X be an infinite dimensional normed linear space and $S = \{x \in X : ||x|| = 1\}$ be the unit sphere in X. Show that if $y \in X$ with $||y|| \le 1$, then every weak neighbourhood of y must intersect S. Finally show that weak closure of S is equal to the closed unit Ball $B = \{x \in X : ||x|| \le 1\}$.

Proof. We proceed to show that if $y \in X$ with $||y|| \le 1$ and U is a weak neighbourhood of y then $U \cap S \ne \emptyset$.

Since U is a nonempty set, we claim that there exists $x_0 \neq 0$ such that $y + \operatorname{span}\{x_0\} \subset U$. Since U is a weakly open set, there exists $f_1, f_2, \ldots, f_n \in X^*$ and $\varepsilon > 0$ such that

$$\bigcap_{i=1}^{n} \{x \in X : |f_i(y-x)| < \varepsilon\} \subset U.$$

We show that there is an $x_0 \in X \setminus \{0\}$ such that $f_1(x_0) = f_2(x_0) = \dots = f_n(x_0) = 0$. If there are none, we consider the map

$$X \to \mathbb{C}^n$$

 $x \mapsto (f_1(x), f_2(x), \dots, f_n(x)).$

and this map would be injective which is a contradiction as C^n is finite dimensional while OTOH, X is infinite dimensional.

Thus, we can let $x_0 \in X \setminus \{0\}$ such that $f_1(x_0) = f_2(x_0) = \ldots = f_n(x_0) = 0$. Now, for any $t \in \mathbb{C}$ and $i \in \{1, 2, \ldots, n\}$, we have that

$$f_i(y+tx_0)=f_i(y).$$

Hence, we have that

$$y + tx_0 \in \bigcap_{i=1}^n f_i^{-1} (\{f_i(y)\}) \subset \bigcap_{k=1}^n f_i^{-1} (B(f_i(y), \varepsilon)).$$

This shows that $y + tx_0 \in U$ for each $t \in \mathbb{C}$. This completes the proof of our claim.

Now, observe that the function $f: t \mapsto ||y+tx_0||$ is continuous on $[0,+\infty)$, $f(0) \le 1$, and $f(t) = |t| ||x_0 + \frac{1}{t}x|| \to +\infty$, $t \to +\infty$ if $||x_0|| \ne 0$. By the intermediate value theorem, there is a $t_0 \in [0,+\infty)$ such that $f(t_0) = ||y+t_0x_0|| = 1$.

Thus, we have that $S \cap U \neq \emptyset$.

Let $T: X^* \to \mathbb{F}$ be a linear functional such that T is continuous w.r.t the weak star topology (X, τ_w) . Show that $T = J_x$ for some $x \in X$.

Suppose X be an infinite dimensional normed linear space. Then show that the weak topology (X, τ_w) is never first countable and hence (X, τ_w) is not metrizable.