National Institute of Technology Delhi

Mid Semester Examinations-B. Tech

Branch- CSE and EEE
Course Name – Analog Electronics
Course Code - ECB-206

Year-2016, Semester-3rd
Maximum Marks – 25
Total Time: 2:00 Hours

All questions are compulsory. Symbols have their usual meaning. Assume any data, if it is missing.

Q.1-(a): How does the band theory differ from the free electron model in explaining the properties of metals? The resistivity of an intrinsic semiconductor is 4.5 Ω m at 20° C and 2.0 Ω m at 32° C. Find the energy gap in eV unit. (2.5)

(b): Why does the effective mass of the electron differ from its free mass toward an external force in the crystal lattice? Using the concept of de-Broglie wave show that effective mass of the electron in the crystal lattice is expressed by following relation: $m^* = \frac{\hbar^2}{d^2E/dk^2}$. (2.5)

Or

What do you understand by thermal runaway? Derive the condition $V_{CE} < V_{CC}/2$ to avoid thermal runaway in transistor. (2.5+2.5)

Q.2-(a): Consider a peak rectifier fed by a 60 Hz sinusoid having a peak $V_p = 100 V$. Let the load resistance $R = 10 k \Omega$. Find the value of the capacitance C that will result in a peak to peak ripple of 2 V. Also, calculate the fraction of the cycle during which the diode is conducting and the average and peak values of the diode current.

(b): Determine C_1 and C_2 for the voltage doubling circuit as shown below to produce a 1% maximum output ripple. The input is a \pm 12 V, 5 kHz square wave. (2)

(b): For a BJT, the CB current gain $\alpha = 0.98$ and the collector-base junction reverse saturation current is $0.6 \, \mu A$. This BJT is connected in CE-mode and operated in active region with a base drive current of 20 μA . Determine the collector current.

Q.3: What are the characteristics of the ideal current and trans-conductance amplifiers? For the two port network as shown below determine: $\frac{V_0}{V_i}$, $\frac{I_0}{I_l}$, R_{in} and R_{out} . Further, comment that can this network be considered as an amplifier or not? (5)

(a) In the circuit shown, find the input impedance R_i in terms of the CE h parameters, R_L and R_E .

(b) If $R_L = R_E = 1$ K and assume the suitable h parameters, what is the value of R_i ?.

(3+2)

Q.4: A CE amplifier employing an NPN transistor has load resistor R_C connected between collector and V_{CC} supply of +16V. For biasing, a resistor R_1 is connected between V_{CC} supply and base, resistor $R_2=30k\Omega$ is connected between base and ground and a resistor $R_E=1$ $k\Omega$ is connected between emitter and ground. Draw the circuit diagram. Calculate the values of R_1 and R_C and the stability factor S, if $V_{BE}=0.2$ V, $I_E=2$ mA, $\alpha=0.985$ and $V_{CE}=6$ V.

Q.5- Define the pinch-off voltage of the JFET. A JFET amplifier with stabilized biasing circuit shown below has following parameters: $V_P = -2 V$, $I_{DSS} = 5 \, mA$. $R_L = 910 \, \Omega$, $R_F = 2.29 \, k\Omega$, $R_1 = 12 \, M\Omega$, $R_2 = 8.57 \, M\Omega$ and $V_{DD} = 24 \, V$. Determine the value of drain current I_D at the operating point. Also verify that FET will operate in pinch-off region. (5)
