

FCC PART 95 MEASUREMENT AND TEST REPORT

For

Tekk International Inc.

1916 Linn St North Kansas City, Missouri, United States

FCC ID: U59XM-700

Report Type: Product Type:

Original Report two way radio

Report Number: RSZ170502006-00B

Report Date: 2017-05-19

Oscar Ye

Reviewed By: RF Engineer

Test Laboratory: Bay Area Compliance Laboratories Corp. (Kunshan)

No.248 Chenghu Road, Kunshan, Jiangsu province, China

Oscar. Ye

Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

Report No.: RSZ170502006-00B

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	q
APPLICABLE STANDARD	
FCC §2.1046, §95.639(h) - RF OUTPUT POWER	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC	12
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1051 & §95.635(e) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	18
APPLICABLE STANDARD	
TEST PROCEDURE	18
TEST DATA	18
FCC §2.1053 & §95.635(e) - RADIATED SPURIOUS EMISSION	21
APPLICABLE STANDARD	21
TEST PROCEDURE	
TEST DATA	21
FCC§2.1055 (d), §95.632(c) - FREQUENCY STABILITY	
APPLICABLE STANDARD	
TEST PROCEDURE	23

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Tekk International Inc.*'s product, model number: *XM-700(FCC ID: U59XM-700)* or the "EUT" in this report was a *two way radio*, which was measured approximately: 112.5 mm (L) x 59.0 mm (W) x 37.0 mm (H), rated input voltage: DC 7.4V Li-ion Battery or 12V from adapter.

Report No.: RSZ170502006-00B

Adapter information: Model: JST-A2PA01

Input: 100-240V DC 50-60Hz, 0.3A

Output: 12V, 500mA

* All measurement and test data in this report was gathered from production sample serial number: 1700892 (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2017-05-02.

Objective

This report is prepared on behalf of *Tekk International Inc.* in accordance with Part 2 and Part 95, Subpart J & Subpart E of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with Part 95 Subpart J of the Federal Communication Commissions rules with TIA-603-D, Land Mobile FM or PM-Communications Equipment-Measurement and Performance Standards.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item		Uncertainty
RF conducted test with spectrum		±0.9dB
Dadieted emission	30MHz~1GHz	±5.91dB
Radiated emission	Above 1G	±4.92dB
Occupied Bandwidth		±0.5kHz
Temperature		±1.0℃
Humidity		±6%

FCC Part 95 Page 3 of 24

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Report No.: RSZ170502006-00B

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 95

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Note:

Transmitter channel frequencies are 151.820 MHz, 151.880 MHz, 151.940 MHz, 154.570 MHz and 154.600 MHz.

Report No.: RSZ170502006-00B

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	50 ohm Load	N/A	N/A

External I/O Cable

Cable Description	Length (m)	From / Port	То
Shielding Detachable RF Cable	0.8	Load	EUT

FCC Part 95 Page 5 of 24

Block Diagram of Test Setup

Report No.: RSZ170502006-00B

FCC Part 95 Page 6 of 24

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b) & §2.1093	RF Exposure	Compliance
§2.1046, §95.639(h)	RF Output Power	Compliance
\$2.1049, \$95.633(f), \$95.635(e)	Authorized Bandwidth & Emission Mask Compliance	
§2.1051, §95.635(e)	Spurious Emission at Antenna Terminal Compliance	
§2.1053, §95.635(e)	Spurious Radiated Emissions Complian	
§2.1055(d), §95.632(c)	Frequency Stability	Compliance

Report No.: RSZ170502006-00B

FCC Part 95 Page 7 of 24

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	F	Radiated Emission	n Test		
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-12
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-25
Sunol Sciences	Broadband Antenna	ЈВ3	A090314-2	2016-01-09	2019-01-08
Sunol Sciences	Broadband Antenna	ЈВ3	A090314-1	2016-01-09	2019-01-08
Narda	Pre-amplifier	AFS42- 00101800	2001270	2016-09-08	2017-09-08
EMCO	Horn Antenna	3116	9510-2384	2015-11-07	2018-11-06
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-25
ETS	Horn Antenna	3115	6229	2016-12-12	2019-12-12
ETS	Horn Antenna	3115	9311-4159	2016-01-11	2019-01-10
R&S	Auto test Software	EMC32	V 09.10.0	NCR	NCR
haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-12
haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-12
haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-12
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-12
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-12
MICRO-COAX	Coaxial Cable	Cable-7	007	2016-12-12	2017-12-12
НР	Signal Generator	8341B	2624A00116	2016-08-29	2017-08-29
		RF Conducted	test		
BACL	TS 8997 Cable-01	T-KS-EMC086	T-KS-EMC086	2016-12-09	2017-12-08
BACL	RF cable	KS-LAB-012	KS-LAB-012	2016-12-15	2017-12-14
WEINSCHEL	10dB Attenuator	5328	N/A	2016-06-18	2017-06-18
Rohde & Schwarz	OSP120 BASE UNIT	OSP120	101247	2016-07-04	2017-07-03
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2016-09-21	2017-09-21
HEWLETT PACKARD	RF Communications Test SET	8920A	3438A05201	2016-09-21	2017-09-21
HONOVA	Power Splitter	ZFRSC-14-S+	019411452	2016-06-12	2017-06-12

Report No.: RSZ170502006-00B

FCC Part 95 Page 8 of 24

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 95 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Report No.: RSZ170502006-00B

Result: Compliance.

Please refer to SAR Report Number: RSZ170502006-20.

FCC Part 95 Page 9 of 24

FCC §2.1046, §95.639(h) - RF OUTPUT POWER

Applicable Standard

Per FCC §95.639 (h) No MURS unit, under any condition of modulation, shall exceed 2 Watts transmitter power output.

Report No.: RSZ170502006-00B

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	100.0 kPa

The testing was performed by Poboo Li on 2017-05-15.

FCC Part 95 Page 10 of 24

Test Mode: Transmitting

Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (W)	Limit (W)	Result
151.82	Н	32.82	1.91	2	Pass
131.82	L	29.44	0.88	2	Pass
151 00	Н	32.81	1.91	2	Pass
151.88	L	29.42	0.87	2	Pass
151.94	Н	32.80	1.91	2	Pass
131.94	L	29.42	0.87	2	Pass
154.57	Н	32.83	1.92	2	Pass
134.37	L	29.25	0.84	2	Pass
154.00	Н	32.83	1.92	2	Pass
154.60	L	29.24	0.84	2	Pass

Report No.: RSZ170502006-00B

Note:

The Rated High power is 2W. The Rated Low power is 1W.

FCC Part 95 Page 11 of 24

FCC §2.1049 & §95.633(f) & §95.635(e)- AUTHOURIZED BANDWIDTH AND EMISSION MASK

Report No.: RSZ170502006-00B

Applicable Standard

According to §95.633(f), the authorized bandwidth for any emission type transmitted by a MURS transmitter is specified as follows:

- (1) Emissions on frequencies 151.820 MHz, 151.880 MHz, and 151.940 MHz are limited to 11.25 kHz.
- (2) Emissions on frequencies 154.570 and 154.600 MHz are limited to 20.0 kHz.
- (3) Provided, however, that all A3E emissions are limited to 8 kHz.

According to §95.635(e), for transmitters designed to operate in the MURS, transmitters shall comply with the following:

Frequency	Mask with audio low pass filter	Mask without audio low pass filter
151.820 MHz, 151.880 MHz and 151.940 MHz	(1)	(1)
154.570 MHz and 154.600 MHz	(2)	(3)

- (1) Emission Mask 1—For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (i) On any frequency from the center of the authorized bandwidth f_o to 5.625 kHz removed from f_o : Zero dB.
- (ii) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: at least 7.27(f_d -2.88 kHz) dB.
- (iii) On any frequency removed from the center of the authorized bandwidth by a displacement frequency $(f_d \text{ in kHz})$ of more than 12.5 kHz: at least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation.
- (2) Emission Mask 2—For transmitters designed to operate with a 25 kHz channel bandwidth that are equipped with an audio low-pass filter, the power of any emission must be below the unmodulated carrier power (P) as follows:
- (i) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: at least 25 dB.
- (ii) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: at least 35 dB.
- (iii) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: at least 43 + 10 log (P) dB.

FCC Part 95

(3) Emission Mask 3—For transmitters designed to operate with a 25 kHz channel bandwidth that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

Report No.: RSZ170502006-00B

- (i) On any frequency removed from the center of the authorized bandwidth by a displacement frequency $(f_d \text{ in kHz})$ of more than 5 kHz, but not more than 10 kHz: at least 83 log $(f_d/5)$ dB.
- (ii) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: at least 29 log (f_d 2 /11) dB or 50 dB, whichever is the lesser attenuation.
- (iii) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least $43 + 10 \log (P) dB$.

Test Procedure

TIA-603-D, section 2.2.11

Test Data

Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Poboo Li on 2017-05-06.

Test Mode: Transmitting

Frequency (MHz)	Power Level	20dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)	Limit (kHz)	Result
151 00	Н	5.29	9.86	11.25	Pass
151.88	L	5.29	9.86	11.25	Pass
154.60	Н	15.03	14.67	20.00	Pass
154.60	L	15.39	14.67	20.00	Pass

FCC Part 95 Page 13 of 24

99% Occupied Bandwidth & 20 dB Emissions Bandwidth:

151.88 MHz (Low Power Level)

Report No.: RSZ170502006-00B

151.88 MHz (High Power Level)

FCC Part 95 Page 14 of 24

154.60 MHz (Low Power Level)

Report No.: RSZ170502006-00B

154.60 MHz (High Power Level)

FCC Part 95 Page 15 of 24

Emission Mask:

151.88 MHz (Low Power Level)

Report No.: RSZ170502006-00B

151.88 MHz (High Power Level)

FCC Part 95 Page 16 of 24

154.60 MHz (Low Power Level)

Report No.: RSZ170502006-00B

154.60 MHz (High Power Level)

FCC Part 95 Page 17 of 24

FCC §2.1051 & §95.635(e) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

According to §95.635(e), for transmitters designed to operate in the MURS, transmitters shall comply with the following:

Report No.: RSZ170502006-00B

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level For 151.820 MHz, 151.880 MHz and 151.940 MHz: Spurious attenuation limit in dB = $50+10 \log_{10}$ (power out in Watts) For 154.570 MHz and 154.600 MHz: Spurious attenuation limit in dB = $43+10 \log_{10}$ (power out in Watts)

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Poboo Li on 2017-05-06.

Test Mode: Transmitting

Please refer to the following plots.

FCC Part 95 Page 18 of 24

30 MHz - 1 GHz, 151.88 MHz

Report No.: RSZ170502006-00B

1 GHz - 1.6 GHz, 151.88 MHz

FCC Part 95 Page 19 of 24

30 MHz - 1 GHz, 154.60 MHz

Report No.: RSZ170502006-00B

1 GHz - 1.6 GHz, 154.60 MHz

FCC Part 95

FCC §2.1053 & §95.635(e) - RADIATED SPURIOUS EMISSION

Applicable Standard

FCC §2.1053 and §95.635(e)

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

Report No.: RSZ170502006-00B

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level For 151.820 MHz, 151.880 MHz and 151.940 MHz: Spurious attenuation limit in dB = $50+10 \text{ Log}_{10}$ (power out in Watts) For 154.570 MHz and 154.600 MHz: Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	50 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Poboo Li on 2017-05-15.

FCC Part 95 Page 21 of 24

Test Mode: Transmitting

Channel: 151.88MHz

Report No.: RSZ170502006-00B

Indicat	ed	Table	Test A	ntenna	Substituted			Absolute		
Frequency (MHz)	Receiver Reading (dBuV)	Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
303.76	50.57	263	1.2	Н	-59.2	0.2	3.85	-55.55	-20	35.55
303.76	59.08	161	1.6	V	-48.1	0.2	3.85	-44.45	-20	24.45
455.64	55.25	105	1.6	Н	-50.2	0.23	4.05	-46.38	-20	26.38
455.64	55.59	110	2.1	V	-46.6	0.23	4.05	-42.78	-20	22.78
607.52	49.68	131	2.4	Н	-49.7	0.24	5.35	-44.59	-20	24.59
607.52	39.71	187	1.7	V	-62.2	0.24	5.35	-57.09	-20	37.09
1063.16	37.87	282	1.7	Н	-67.1	0.29	7.08	-60.31	-20	40.31
1063.16	39.99	187	1.9	V	-66.8	0.29	7.08	-60.01	-20	40.01

Channel: 154.60 MHz

Indicat	ed	Table	Test A	ntenna		Substituted		Absolute		
Frequency (MHz)	Receiver Reading (dBuV)	Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
309.2	49.27	153	1.6	Н	-60.5	0.2	3.85	-56.85	-13	43.85
309.2	62.58	350	2.3	V	-44.6	0.2	3.85	-40.95	-13	27.95
463.8	50.55	19	1.5	Н	-54.9	0.23	4.05	-51.08	-13	38.08
463.8	49.29	336	1.4	V	-52.9	0.23	4.05	-49.08	-13	36.08
618.4	37.38	145	1.6	Н	-62.0	0.24	5.35	-56.89	-13	43.89
618.4	46.91	200	1.3	V	-55.0	0.24	5.35	-49.89	-13	36.89
1082.20	38.57	45	1.3	Н	-66.4	0.29	7.08	-59.61	-13	46.61
1082.20	40.39	242	2.1	V	-66.4	0.29	7.08	-59.61	-13	46.61

Note:

1) Absolute Level = SG Level - Cable loss + Antenna Gain 2) Margin = Limit- Absolute Level

FCC Part 95 Page 22 of 24

FCC§2.1055 (d), §95.632(c) - FREQUENCY STABILITY

Applicable Standard

According to FCC §2.1055(a) (1), the frequency stability shall be measured with variation of ambient temperature from –30 °C to +50 °C, and according to FCC 2.1055(d) (2), the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point which is specified by the manufacturer.

Report No.: RSZ170502006-00B

According to FCC §95.632(c), MURS transmitters must maintain a frequency stability of 5.0 ppm, or 2.0 ppm if designed to operate with a 6.25 kHz bandwidth.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Frequency Counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Frequency Counter.

Frequency Stability vs. Voltage:

- 1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	50 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Poboo Li on 2017-05-15.

FCC Part 95 Page 23 of 24

Test Mode: Transmitting

MURS: 151.88 MHz

Report No.: RSZ170502006-00B

Reference Frequency: 151.88 MHz, Limit: ±5 ppm						
Environment Temperature (°C)	Voltage Supplied (V _{DC})	Measurement Frequency (MHz)	Frequency Error (ppm)			
	Frequency Stability	ty Ver. Temperature				
50	7.4	151.880625	4.115			
40	7.4	151.880617	4.062			
30	7.4	151.880638	4.201			
20	7.4	151.880601	3.957			
10	7.4	151.880629	4.141			
0	7.4	151.880641	4.220			
-10	7.4	151.880626	4.122			
-20	7.4	151.880637	4.194			
-30	7.4	151.880657	4.326			
Frequency Stability Ver. Input Voltage						
20	6.5	151.880669	4.405			

MURS: 154.60 MHz

Reference Frequency: 154.60 MHz, Limit: ±5 ppm						
Environment Temperature (℃)	Voltage Supplied (V _{DC})	Measurement Frequency (MHz)	Frequency Error (ppm)			
	Frequency Stability	ty Ver. Temperature				
50	7.4	154.600621	4.017			
40	7.4	154.600634	4.101			
30	7.4	154.600615	3.978			
20	7.4	154.600601	3.887			
10	7.4	154.600624	4.036			
0	7.4	154.600639	4.133			
-10	7.4	154.600657	4.250			
-20	7.4	154.600632	4.088			
-30	7.4	154.600626	4.049			
Frequency Stability Ver. Input Voltage						
20	6.5	154.600674	4.360			

***** END OF REPORT *****

FCC Part 95 Page 24 of 24