

EIT-5, E22

7. Digital IIR Filters: Impulse Invariant Method Bilinear Transformation

Assoc. Prof. Peter Koch, AAU

Frequency

Continuous Time

Discrete Time

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x[n] (re^{j\omega})$$

$$= \sum_{n=-\infty}^{\infty} (r \cdot x[n])e^{j\omega}$$

$$= \sum_{n=-\infty}^{\infty} x[n] e^{j\omega} \text{ for } r = 1$$

$$= X(e^{j\omega}) \text{ Discrete Time FT}$$

z transform

Reconstruction

x[n]

$$\omega = \Omega T = 2\pi f \frac{1}{f_S}$$

TH LECTURE

"SYNTHESIS OF LIBITIER"

SPECIFICATION OF THE DIGITAL FILTER

DESIGN THE ANALOG PROTO. TYPE FILTER

H(S)

DO THE TEADSTOCHATION

H(S) > H(Z)

- @ A BRIEF RECAP ON ANALOG FILTERS (BUTTERWORTH)
- @ IMPULSE INVARIANCE METHOD
- & THE BILINEAR TRANSFORMATION.

@ MONOTONICALLY DECREASING IN PASS/STOP. BAND.

TO THE IDEAL FILTER.

THE NARROWER THE TRANSITION BAND

POLE LOCATION

$$\left| \frac{1}{1 + \left(\frac{s}{\Omega_c} \right)^{2N}} \right| = \frac{1}{1 + \left(\frac{s}{\Omega_c} \right)^{2N}}$$

$$1 + \left(\frac{s}{Q_c}\right)^{2N} = 0$$
 The poles are the values of s where the denominator equals zero

$$\int_{0}^{\infty} \frac{2N}{1} \int_{0}^{\infty} \frac$$

H(S) is NOW DERIVED FROM THE POLES IN THE LEFT. HAND SIDE OF THE PLANE. (STABILITY) THUS, WE CAN EXPRESS THE PROSFER TUNCTION
AS;

H_C(S) = $\frac{G}{11}$ (S-S_k) k=1

THE DENOMINATOR REPRESENTS THE

BUTTERWORTH POLYNOUIAL

Denominator coefficients for polynomials of the form $\mathbb{S}_n^n + a_{n-1} \mathbf{s}^{n-1} + a_{n-2} \mathbf{s}^{n-2} + \dots + a_1 \mathbf{s} + a_0$

n	\mathbf{a}_0	a_1	\mathbf{a}_2	\mathbf{a}_3	a_4	\mathbf{a}_5	a_6	a ₇	a_8	\mathbf{a}_9
1	1		* 1		W11					
2	1	1.414								
3	1	2.000	2.000							4
4	1	2.613	3.414	2.613						
5	1	3.236	5.236	5.236	3.236					
6	1	3.864	7.464	9.142	7.464	3.864				
7	1	4.494	10.098	14.592	14.592	10.098	4.494			
8	1	5.126	13.137	21.846	25.688	21.846	13.137	5.126		10
9	1	5.759	16.582	31.163	41.986	41.986	31.163	16.582	5.759	
10	1	6.392	20.432	42.802	64.882	74.233	64.882	42.802	20.432	6.392

n (order)	Normalized Denominator Polynomials in Factored Form
1	(1+s)
2	(1+1.414s+s ²)
3	$(1+s)(1+s+s^2)$
4	(1+0.765s+s ²)(1+1.848s+s ²)
5	(1+s)(1+0.618s+s ²)(1+1.618s+s ²)
6	(1+0.518s+s ²)(1+1.414s+s ²)(1+1.932s+s ²)
7	(1+s)(1+0.445s+s ²)(1+1.247s+s ²)(1+1.802s+s ²)
8	(1+0.390s+s ²)(1+1.111s+s ²)(1+1.663s+s ²)(1+1.962s+s ²)
9	(1+s)(1+0.347s+s ²)(1+s+s ²)(1+1.532s+s ²)(1+1.879s+s ²)
10	(1+0.313s+s ²)(1+0.908s+s ²)(1+1.414s+s ²)(1+1.782s+s ²)(1+1.975s+s ²)

Now THAT WE HAVE HOLS), WE ALSO HAVE he (+).

DERIVE HIZI USING THE IMPULSE INVARIANCE WETHOD

WOW, LET'S SEE HOW IT LOOKS LIKE IN THE TREQUENCY DOMAIN;

$$= \frac{1}{h[n]} \cdot \frac{j\omega n}{e} = \frac{1}{h(nT)} \cdot \frac{j\omega n}{e}$$

$$= \frac{1}{h[n]} \cdot \frac{j\omega n}{e} = \frac{1}{h(nT)} \cdot \frac{j\omega n}{e}$$

hand is discrete in time

| Ledw is Periodic in Trequency

This is a consequence of sampling

IN ORDER TO MAINTAIN THE SAME PASS BAND AMPLIFICATION, WE MUST MULTIPLY WITH I ;

NOW, LET'S ASSUME THAT VHAVE HOS, WHICH GENACALLY HAS THE FORM;

FOR BUTTERWORTH LOW PASS, M= O

FIND H(z)?

H_c(s) =
$$\frac{A_1}{S-S_1} + \frac{A_2}{S-S_2} + \cdots + \frac{A_N}{S-S_N} = \frac{N}{S-S_N}$$

$$h[n] = T \cdot h_c(nT)$$
 $h[n] = T \cdot h_c(nT)$
 $h[n] = T \cdot h_c(nT)$
 $h[n] = T \cdot h_c(nT)$
 $h[n] = h_c(nT)$

 $\frac{||Z_k|<1|}{|G_k<0|}$

- DESCRIPTION OF THE S-plane to Z-plane mapping.
- THE POLES IN HIZ) ARE FUNCTIONS OF

 THE POLES AND THUS THE ZEROS

 ARE BEING MAPPED DIFFERENTLY THAN THE

 POLES.

THERE IS A TROBLEM THOUGH

- @ H(edio) is a PERIODIC FUNCTION.
- & DO ANALOG FILTER IS BAND-LIMITED.

VERSIONS OF THE DESIRED AMPLITUDE RESPONSE

ALIASING

0	HOW CAN WE POSSIBLY ELIMINATE
	THE ALIASING PROPLEM?
	1/1/
	THE DESIDE
	Tupolist alabance
	THE DESIREDAM THE DESIREDAM TOWARIANCE
	T
	THE BILINEAR TRANSFORMATION
	0
	IDEA :
	-00 < D<00 -11 = W = IT
	A
	THIS NON-LINEAR TRANSFORMATION MAPS THE
	ENTIER FREQUENCY AXIS IL ONTO ONE
0	ÎTERATION ON THE UNIT CIRCLE.
	THE IDEA IS THAT S IS SUBSTITUTED
	BY A FUNCTION ;
	H(z) = H(s) $S = f(z)$
	(Z=+(Z)
0	

$$S = \frac{2}{T} \cdot \frac{Z - 1}{Z + 1}$$

$$Z = \frac{1 + \overline{z}s}{1 - \overline{z}s} = \frac{1 + \overline{s}(\sigma + j\Omega)}{1 - \overline{s}(\sigma + j\Omega)}$$

Using This EQUATION, WE CAN NOW INVESTIGATE
THREE IMPORTANT THINGS;

$$|z| = \frac{\sqrt{(1+\frac{T}{2}\sigma)^2 + (\frac{T}{2}\Omega)^2}}{\sqrt{(1-\frac{T}{2}\sigma)^2 + (\frac{T}{2}\Omega)^2}} < 1$$

LEFT. HAND SIDE OF THE Siplane is MAPPED TO THE Ziplane inside THE UNIT-CIECLE

1 Q. AXIS MAPS TO THE UNIT. CIRCLE.

STABLE H(S) => STABLE H(Z)

NOW, WHAT IS THE RELATION BETWEEN ?? IL AND W USING THE BILINEAR TRANSF. ..

$$S = (J + j\Omega) = \frac{2e - 1}{e^{j\omega}}$$

$$S = (J + j\Omega) = \frac{2e - 1}{e^{j\omega}}$$

$$Z = e^{j\omega}$$

IF WE UTILIZE THAT $e = e \cdot e^{\frac{i\omega}{2}}$ AND EUNER IDENTITY FOR COS AND SIN

THE RIGHT HAND SIDE IS MAGINARY

$$\Omega = \frac{3}{7} + \frac{\omega}{2}$$

Eau. 26

AUD

$$\omega = 2 \cdot \arctan\left(\frac{2}{2}\right)$$
 Equ. 2

P. 529

SO, MAPPING FROM THE S-plane TO THE Z-plane, is AN ARCTAN- FUNCTION.

WE MAY ELIMINATE THIS DISTORTION BY INTRODUCING A PRE-DISTORTION, CALLED A PRE-WARPING.

SO, THE IDEA HERE IS, THAT WE MOVE UPWARDS ONE CRITICAL FREQUENCY WHICH AFTER BILINEAR TRANSFORMATION THEN IS LOCATED EXACTLY WHERE WE WAN

THIS IS DONE ON H(S) PRIOR TO TRANSFORMATION TO H(Z).

