Learning to Filter Context for Retrieval-Augmented Generation

Zhiruo Wang Jun Araki Zhengbao Jiang Md Rizwan Parvez Graham Neubig

◆Carnegie Mellon University ◆Bosch Research {zhiruow, zhengbaj, gneubig}@cs.cmu.edu

Venue: arXiv preprint 2023

발제자: 이다현 (hyundai@soongsil.ac.kr)

HUMANE Lab

2024-07-15

Introduction

- 모델에 내재된 Knowledge만을 이용하는 한계 → Retrieval-augmented 접근 방식
- 외부 Knowledge(e.g. Wikipedia)를 탐색해 가져옴
 - Retriever에 의해 반환된 Top-k개 Passage들을 Generator에게 무분별하게 입력으로 제공
- Retriever의 불완전성
 - 종종 Query와 무관하거나 오히려 정답 생성에 방해가 되는 정보를 Generator에게 제공
 - 정답과 관련된 Passage를 잘 Retrieve 해왔을지라도, 해당 Passage 내에는 정답에 방해가 되는 문장들이 존재할 수 있음

Introduction

- 이상 : 모델이 정확한 출력을 생성하기 위해 정답을 정확히 지원하는 콘텐츠에 기반해야 함
- 현실 : 완벽한 Retriever가 없기에 Retriever 단독으로는 해결이 어려움
- 선행연구
 - Reranking 과정 추가
 - 2차 필터링: Initial Retrieval결과 Top-N개 → Reranker를 이용해 Top-K개로 추림
 - 생성 모델이 도움이 필요할 때만 Retrieve
 - Evidential Passage만 선택
 - Answer Generation과 Evidentiality Prediction을 동시에 학습
- 그러나 이는 상당한 인간 주석 작업을 필요로함
- 또한 관련 Passage에서도 방해가 되는 콘텐츠는 여전히 발생할 수 있음

Introduction

- Filter Context
- 목표
 - Retrieved Passage 중에서도 Output 생성에 필요한 문장을 골라내는 것

- Test Time
 - Context Filtering Model M_{ctx} 이용
- Training Time
 - String Inclusion: 정답 Output 포함 여부
 - Lexical Overlap: 정답 Output과 문장 간 텍스트 겹침 정도 (Uni-gram)
 - Conditional Cross-Mutual Information(CXMI): 문장이 제공됐을 때 Generator가 정답 Output을 생성할 확률

- q: 입력 Query
- *o* : 정답 Output
- e: 예시 한 세트, $e = \{q, o\}$
 - M_{ctx} : Context Filtering Model
 - 검색된 Passages P 는 주어진 상황

- Retrieve된 Passage P의 내용을 필터링해 Filtered Content t를 반환
- 학습을 위한 데이터
 - Input: {*q*, *P*}
 - Output: *t*
- M_{gen} : 생성 모델
 - Filtered Content t와 Input Query q를 입력으로 받아 답변 p를 생성

- Context Filterin를 모델을 학습시키기 위한 Oracle Filtered Content 선별
- Filtering 함수 f() 사용
 - Query q, 정답 Output o, Passage P를 입력
 - Best Span *T*를 반환
 - 1. Passage P를 spa[@]y Tokenizer를 이용해 문장 단위로 Split
 - 2. 모든 문장들 중 $\P()$ 값을 최대로 하는 Span 하나를 Best Span T로 반환
- 사용된 Filtering 함수 f() 종류
 - String Inclusion
 - Lexical Overlap
 - Conditional Cross-Mutual Information(CXMI)

- String Inclusion
 - $f_{inc}(t,o) \in \{0,1\}$
 - Text Span t가 Output o를 텍스트 그대로 포함하고 있는지 여부
 - Output o를 포함하는 첫 번째 Text Span t를 Best Span T로 반환
 - 단점
 - Passage 내에 정답 Output 텍스트를 그대로 포함하고 있는 경우에만 사용 가능
 - Abstractive Task에는 적용 불가

- Lexical Overlap
 - $f_{uf1} \in [0,1]$
 - Example $e = \{q, o\}$ 와 Text Span t 간의 Unigram F1 Score를 측정
 - Task에 따라 Filtering 함수 입력값이 다름
 - Knowledge-grounded Response Generation: $f_{uf1}(t, o) \in [0, 1]$
 - Fact Verification: $f_{uf1}(t,q) \in [0,1]$
 - Unigram F1 Score가 임계값 $\lambda=0.5$ 이상인 값들 중 가장 큰 값인 Text Span t를 Best Span T로 반환
 - 단점
 - Query 자체가 factually incorrect할 경우(예: fact verification)
 - Nonfactual한 Span을 BestSpan으로 반환해 부정확한 생성 결과를 유도할 수 있음

- Conditional Cross-Mutual Information(CXMI)
- $f_{\text{cxmi}}(t, e) = \frac{M_{\text{gen}}(o|t \oplus q)}{M_{\text{gen}}(o|t)} \in \mathbb{R}$
- M_{gen} Input에 Text span이 있는 경우와 없는 경우에 대한 정답 Output 생성 확률의 차이 측정
- CXMI Score가 Threshold $\lambda = 1.0$ 보다 크고, 가장 값이 큰 Text Span t 를 Bext Span T로 반환
- Lexical한 방법인 String Inclusion과 Lexical Overlap의 한계 극복 & 모든 Task에 적용 가능
- 단점
 - Computational Cost가 큼

- Context Filtering Model
- Train: Oracle Filtered Content를 이용해 학습
 - 세 Filtering 방법을 이용해 각 학습 데이터 인스턴스에 대한 Filtered Content t_{silver} 확보
 - Context Filtering Model M_{ctx} 학습
 - Input: [Query q; Retrieved Passage P]
 - Output: $t_{pred} \leftrightarrow Label$: t_{silver}
- Inference: 학습된 Context Filtering Model 이용해 Span 반환
 - Context Filtering Model 을 통해 Filtering된 Span을 Query와 함께 Generation Model의 Input으로
 사용

- Generation Model
- Train: Oracle Filtered Content를 이용해 학습
 - Input: $[t_{silver}; Query q]$
 - Output: 정답 o
- Inference: 학습된 Context Filtering Model의 예측 결과를 이용해 추론
 - Input: $[t_{pred}; Query q]$
 - Output: 정답 o
 - 모든 Retrieved Text Span을 Prepend 하는 대신, 일부 Span만을 사용
 - 모델 학습, 추론 시점에서 연산량 감소

- Knowledge-IntensiveTasks
 - Open-DomainQuestionAnswering(ODQA)
 - NaturalQuestions(NQ),TriviaQA(TQA):정답 Output이 Extractive한 형태: ExactMatch 이용 평가
- Multi-hopQA
 - HotpotQA :정답 Output이 Abstractive: UnigramF1 이용 평가
- Long-formQA
 - ELI5:정답 Output이 Abstractive하고 김: UnigramF1 이용 평가
- FactVerification
 - FEVER: Accuracy 이용 평가
- Knowledge-groundedDialogGeneration
 - WoW: UnigramF1이용 평가

Dataset	# Exan train	nples (th dev	ousands) test	Evaluation Metric
NQ	79.2	8.7	3.6	EM
TQA	78.8	8.8	11.3	EM
НотротQА	88.9	5.6	5.6	F_1
ELI5	273.0	1.5	0.6	F_1
FEVER	105.0	10.4	10.1	Accuracy
WoW	63.7	3.1	2.9	F_1

- Experiment Setting
- Base Model
 - Faln-T5 XL (3B)
 - LLAMA2 7B (LoRA Tuning)
 - 각 모델을 Context Filtering Model M_{ctx} 와 Generation Model M_{gen} 로 사용
- Baseline
 - Augmenting with Full Passages(FULL)
 - 모든 Passage를 다 사용
 - Passage-Wise Filtering(PSG)
 - Passage 단위로 Filtering

- Experiment Setting
- FilCo
 - Dataset 별 t_{silver} 산출 위해 적용한 Filtering 방법
 - NQ,TQA:StringInclusion
 - FEVER:LexicalOverlap
 - Wow, HotpotQA, ELI5: CXMI
 - Top-1 Passage로부터 t_{silver} 를 반환하도록 M_{ctx} 학습
 - t_{silver} 를 이용해 정답 Output o를 생성하도록 M_{gen} 학습
 - Upper bound를 확인하기 위한 Additional Experiment
 - M_{ctx} 의 예측 결과가 아닌 Oracle Filtered Content인 t_{silver} 를 M_{gen} 의 input으로 사용

Main Experiment

- 전체 Passage를 Input에 넣는 것보다 일부만을 넣는 경우가 더 높은 성능을 보임 → Filtering의 효과 존재
- 더 Fine-grained하게 Filtering하는 FilCo가 PSG보다 높은 성능 보임 → 단일 Passage 내에서도 문장 단위 필터링 효과 존재
- FilCo와 SILVER 유사한 성능 à ContextFilteringModel을 이용해 Filtering하는 것이 효과적

• Context Filtering 결과 추가 분석: # of Input Tokens, Precision

Method	FULL	PsG	FILCO	SILVER
NQ	2.5	1.3	5.1	7.3
TQA	4.5	3.0	8.4	4.6
Н отрот Q A	2.6	2.6	10.8	17.1
ELI5	92.9	92.5	98.8	98.8
FEVER	1.2	1.2	5.1	4.4
WoW	10.8	35.5	62.9	71.5

- 모델 InputToken 수가 FilCo 적용 후 Full대비 44% ~ 64% 감소 → 모델 연산량 감소
- Context와 Output의 UnigramPrecision 측정 결과, Filtering 후에 Context가 모든 Task에서 더 높은 Precision
 - 필터링을 적용한 결과, Context 내에 정답 생성에 필요한 Token들이 더 많은 비율을 차지함
 - 정답 생성에 불필요한 정보를 걸러낸 덕분에 최종적으로 성능 향상까지 연결되었을 것

- Generation with Multiple Passages
- Top-5 Passage를 Input으로 사용

FLAN-T5							
Measure	STRINC	LEXICAL	CXMI				
NQ	44.7	30.0	39.9				
TQA	59.2	39.0	45.3				
НОТРОТQA	59.2	57.4	60.0				
ELI5	73.6	73.9	74.2				
FEVER	80.9	86.4	95.8				
WoW	63.4	69.3	66.6				
	LLAMA	. 2					
NQ	43.3	35.2	41.8				
TQA	60.7	57.1	60.7				
НотротQА	59.5	61.1	61.3				
ELI5	78.6	78.8	72.8				
FEVER	86.6	88.4	92.3				
WoW	65.5	66.0	65.4				

Conclusion

- Retrieve된 Passage 내에서도 정답 생성에 필요한 내용을 문장 단위로 필터링하는 방법론인 FilCo 제안
- FlanT5와 LLaMA2를 이용해 6개의 Knowledge-intensive데이터셋에 실험한 결과 성능이 모두 향상됨
- Relevant Passage일 확률이 높은 Top-1 Passage라 할지라도 특정 문장만을 필터링해 사용하는 것의 효과 확인
 - 전체 Passage를 사용하는 것 대비 성능 향상 뿐만 아니라 연산량 감소에도 효과적
 - 데이터셋의 특성에 따라 최적의 Filtering 방법이 다름을 확인

Open question

• 더 나은 Filtering 함수가 있을까?