線形代数学・同演習 B

11 月 15 日分 演習問題*1

- 1. (1) $\begin{pmatrix} -1 & -10 & -10 \\ -4 & -23 & -25 \end{pmatrix}$ (2) $\frac{1}{2}$ $\begin{pmatrix} 15 & 0 & -7 \\ 23 & 4 & -11 \end{pmatrix}$ 2. (1) $\begin{pmatrix} 21 & -8 & 12 \\ 10 & -3 & 6 \\ -25 & 10 & -14 \end{pmatrix}$ (2) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; P を基底ベクトルを並べた行列として, $P^{-1}AP$ を計算.
- 3^{\dagger} (1) 略 $(h(x) = \lambda p(x) + \mu q(x) \ (p,q)$ は多項式)とおいて, $T(h(x)) = \lambda T(p(x)) + \mu T(q(x))$ を満たすことを確認すればよい).(2)($\frac{400}{210}$)(3)($\frac{400}{010}$)
- 4^* $(1)(\Rightarrow)$ V の基底を $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ とすれば,T の全射性からある $oldsymbol{u}_i$ が存在してそれぞれ $T(oldsymbol{u}_i) = oldsymbol{v}_i$ となるので $\dim \operatorname{Im} T \geq \dim V$. $\operatorname{Im} T$ は V の部分空間なので $\dim \operatorname{Im} T \leq$ $\dim V$ であるので $\dim \operatorname{Im} T = \dim V$.
 - (⇐) 部分空間の次元が全空間と一致しているならば、その部分空間は全空間と一致する(11 月 1 日の問題 7(2)) ので, $\operatorname{Im} T = V$.
 - $(2)(\Rightarrow)$ 単射性より明らか.
 - (\Leftarrow) U の二元 u,u' を任意にとる.このとき T(u)=T(u') とすると,T の線形性より

$$\mathbf{0}_V = T(\boldsymbol{u}) - T(\boldsymbol{u}') = T(\boldsymbol{u} - \boldsymbol{u}').$$

ここで $\ker T = \{\mathbf{0}_U\}$ であることより , $oldsymbol{u} - oldsymbol{u}' = oldsymbol{0}_U$, つまり $oldsymbol{u} = oldsymbol{u}'$ であるので , T は単射 となる.

- (3) 基底を一つ選び、そのときに現れる列ベクトルを対応させる線形写像により、同型となる、
- ・以下は旧課程における大学入試問題です.講義の記号に合わせて文章を変えています.

$$5.*$$
 $\det A = 1$ より $(1)ad - bc = 1$ であり , $||x_1|| = ||x_2|| = 1$ より

(2)
$$a^2 + c^2 = 1$$
, (3) $(a^2 + bc)^2 + c^2(a+d)^2 = 1$

が成り立つ.ここで(3)に式(1),(2)を代入し,式を整理すれば(a+d)(a-d)=0を得る.

(i) a+d=0 のとき.このとき Cayley-Hamilton の定理より $A^2=-E$ であるので,

$$x_{2k+1} = (-1)^k x_1, \quad x_{2k} = (-1)^k e_1$$

となるため,いずれの場合も $||x_n||=1$.

(ii) a-d=0 のとき、(1) より $a^2-bc=1$ であり、これを(2) に代入すればc(b+c)=0 を 得る.c=0 ならば $oldsymbol{x}_n={}^t(a^n,0)$ であり, $||oldsymbol{x}_1||=|a|=1$ なので $||oldsymbol{x}_n||=|a|^n=1$.c
eq 0ならば b+c=0 なので,このとき $A=\left(\begin{smallmatrix} a&-c\\c&a \end{smallmatrix} \right) \left(a^2+c^2=1 \right)$ という形をしているので,こ れは回転行列

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad (0 \le \theta < 2\pi)$$

である.よって $m{x}_n = A^n m{e}_1 = {}^t(\cos n \theta, \sin n \theta)$ となり, $|| \, m{x}_n \, || = \cos^2 n \theta + \sin^2 n \theta = 1$.

6.* (1)
$$A_n(E-C) = B(E-C^n)$$
. (2) $A_{3n} = \frac{1-(-2)^{3n}}{3} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$.

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.