PROCESADOR ARM

ARM = Advanced RISC Machines, Ltd.

ARM licenses IP to other companies (ARM does not fabricate chips)

2005: ARM had 75% of embedded RISC market, with 2.5 billion processors

ARM available as microcontrollers, IP cores, etc.

CONJUNTO DE INSTRUCCIONES ARM- ESQUEMA

- Versiones ARM.
- Lenguaje Ensamblador ARM.
- Modelo de Programación ARM.
- Organización de Memoria
 ARM.
- Operadores de Datos ARM.
- Flujo de Control ARM.

CONJUNTO DE PROCESADORES CORTEX-A

- Se definen por la capacidad para ejecutar sistemas operativos complejos, incluidos Linux, Android, Chrome OS, Tizen, Microsoft Windows (CE / Embedded) y otros.
- Esta clase de procesadores integran una Unidad de administración de memoria (MMU) para administrar los requisitos de memoria de sistemas operativos complejos y permitir la descarga y ejecución de software de terceros

¿DÓNDE ENCONTRAMOS CORTEX-A?

•Smartphones *Feature Phones *Tablets / eReaders

Digital Television *Set-top Boxes/Satellite Receivers

*Adv. Personal Media Players

*High-End Printers

Personal Navigation Devices *Server/Enterprise *Wearables *Home Networking

CONJUNTO DE PROCESADORES CORTEX-M

- Son la solución óptima para aplicaciones informáticas integradas de BAJA POTENCIA.
- La Familia CORTEX-M de 32 bits es la clave para transformar todo tipo de sistemas integrados en sistemas inteligentes y conectados a la red.
- Los sistemas CORTEX, a menudo son una "caja negra" con aplicaciones precargadas.
- Tienen una capacidad limitada para ampliar la funcionalidad del hardware, y en la mayoría de los casos no tienen pantalla.

¿DÓNDE ENCONTRAMOS CORTEX-M?

- Merchant MCUs *Automotive Control Systems
- White Goods controllers *Smart Meters *Sensors

*Motor Control Systems
*Internet of Things

Arm® Cortex®-M and Arm SecurCore® portfolio

CONJUNTO DE PROCESADORES CORTEX-R

- El ARM Cortex-R es una familia de núcleos de procesador RISC ARM de 32 bits
- Los núcleos están optimizados para aplicaciones críticas en tiempo real y críticas para la seguridad. Los núcleos de esta familia implementan el perfil ARM Real-time (R)

¿DÓNDE ENCONTRAMOS CORTEX-R?

- •Medical device
- •Programmable logic controller (PLC)
- •Electronic control units (ECU) for a wide variety of applications
- •Robotics
- Avionics
- Motion control

Arm® Cortex®-R portfolio

Cortex-R7

High performance 4G modem and storage

Cortex-R8

Highest performance 5G modem and storage Storage and modem

Cortex-R4

Real-time performance

Cortex-R5

Real-time performance with functional safety

Cortex-R52

Most advanced processor for functional safety Functional safety

Armv7-R

Armv8-R

Performance and scalability for a diverse range of applications

Previous		Armv6		Armv7		Armv8	
Armv5		Armv6		Armv7-A		Armv8-A	
			Ą	Cortex-A17 Cortex-A15		Cortex-A73 Cortex-A75 Cortex-A76 Cortex-A57 Cortex-A72	High performance
Arm968E-S Arm946E-S Arm926EJ-S		Arm11MPCore Arm1176JZ(F)-S Arm1136J(F)-S	Cortex-A	Cortex-A9 Cortex-A8		Cortex-A53 Cortex-A55	High efficiency
				Cortex-A7 Cortex-A5		Cortex-A35 Cortex-A32	Ultra high efficiency
			~	Armv7-R	1	Armv8-R	1
		Arm1156T2(F)-S	Cortex-R	Cortex-R8 Cortex-R7 Cortex-R5 Cortex-R4		Cortex-R52	Real time
Armv4		Armv6-M		Armv7-M	1	Armv8-M	High
	Σ			Cortex-M7			performance
Arm7TDMI Arm920T	Cortex-M			Cortex-M4 Cortex-M3		Cortex-M33 Cortex-M35P	Performance efficiency
		Cortex-M0+ Cortex-M0				Cortex-M23	Lowest power and area

MARKETS WE'RE POWERING

20% | Embebidos

16% | Empresarial

58% | Teléfonos y tablet 6% | Hogar

Architecture	Bit width	Cores designed by ARM Holdings	Cores designed by 3rd parties	Cortex profile
ARMv1	32/26	ARM1		
ARMv2	32/26	ARM2, ARM3	Amber	
ARMv3	32	ARM6, ARM7		
ARMv4	32	ARM8	StrongARM, FA526	
ARMv4T	32	ARM7TDMI, ARM9TDMI		
ARMv5	32	ARM7EJ, ARM9E, ARM10E	XScale, FA626TE, Feroceon, PJ1/Mohawk	
ARMv6	32	ARM11		
ARMv6-M	32	ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-M1		Microcontroller
ARMv7-M	32	ARM Cortex-M3		Microcontroller
ARMv7E-M	32	ARM Cortex-M4		Microcontroller
ARMv7-R	32	ARM Cortex-R4, ARM Cortex-R5, ARM Cortex-R7		Real-time
ARMv7-A	32	ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15	Krait, Scorpion, PJ4/Sheeva, Apple A6/A6X (Swift)	Application
ARMv8-A	64/32	ARM Cortex-A53, ARM Cortex-A57 ^[22]	X-Gene, Denver, Apple A7 (Cyclone)	Application
ARMv8-R	32	No announcements yet		Real-time

VERSIONES DE ARQUITECTURA ARM

CARACTERÍSTICAS RISC CPU

- Arquitectura load/store de 32 bits
- Longitud de Instrucción fija
- Menos Instrucciones/ más simples que CISC CPU
- Modos de direccionamiento limitados, tipos de operandos
- Diseño más simple, más fácil de acelerar
- pipeline & scale

LENGUAJE DE ENSAMBLADOR ARM

□ Formato Lenguaje Ensamblador RISC

```
LDR r0,[r8] ; a comment label ADD r4,r0,r1 ;r4

destination source/left source/right
```

SET DE INSTRUCCIONES ARM

Puede ser dividido en 6 categorías generales

- 1. Instrucciones de Salto.
- 2. Instrucciones de Procesamiento de Datos.
- 3. Instrucciones de Transferencias del registro Status.
- 4. Instrucciones para Carga y Escritura en Memoria.
- 5. Instrucciones para Coprocesador (solo se menciona pero no se desarrollara en el resto del apunte)
- 6. Instrucciones para la Generación de Excepciones.

La mayoría de las instrucciones de procesamiento de datos puede actualizar las cuatro banderas de condiciones en el CPSR ([N]Negativo, [Z]Cero, [C]Acarreo y [V]Desborde) de acuerdo a su resultado

REGISTROS DE ARM

- ARM tiene 37 registros, 31 de ellos son registros de 32 bits de propósitos generales, los 6 restantes son registros de estado. Estos registros también son de 32 bits pero solo necesitan implementarse 12 bits.
- El conjunto de registros a los cuales el usuario tiene acceso está determinado por el modo de funcionamiento del procesador.
- En cualquier momento se puede acceder por software a 16 registros, que van de r0 a r15, o sea que 16 registros son visibles. Los otros registros se usan para acelerar el proceso de excepción.
- Los registros pueden cambiar su significado de acuerdo con el modo de funcionamiento del procesador.

r0]			modo usuario	
r1					
r2				_	
r3				solamente en mod	dos del sistema
r4					
r5					
r6					
r7					
r8	r8_fiq				
r9	r9_fiq				
r10	r10 fiq				
r11	r11_fiq				
r12	r12_fiq				
r13	r13_fiq	r13_svc	r13_abt	r13_irq	r13_und
r14(LR)	r14 fiq	r14 svc	r14 abt	r14 irq	r14 und
r15 (PC)					
	-				
CPSR	SPSR_fiq	SPSR_svc	SPSR_abt	SPSR_irq	SPSR_und
modo	modo	modo	modo	modo	modo
usuario	FIQ	supervisor	aborto	IRQ	indefinido
	pedido de			pedido de	
	interrupción			interrupción	
	de alta			normal	
	prioridad				

REGISTROS DE ARM

- El registro r 15 es el contador de programa (PC, Program Counter)
- El registro r14 (LR, Link Register) además de usarse como registro de propósitos generales se usa para guardar la dirección de la siguiente instrucción cuando se lleva a cabo una instrucción de salto
- CPSR, Current Program Status Register
- PSR, Program Status Register: Registros de estado del programa (Existen 6).
- Los registros pueden cambiar su significado de acuerdo con el modo de funcionamiento del procesador.