hsk-libs-dev 270

Generated by Doxygen 1.8.12

Contents

1	HSK	XC878 μC Library Developers' Manual	1
	1.1	Preface	1
	1.2	About This Document	1
		1.2.1 Project Layout	1
2	The	XC878 8-Bit Microcontroller Platform	5
	2.1	Registers and Paging	5
	2.2	Memory Limitations	6
		2.2.1 Overlaying	6
	2.3	Pointers	7
3	C51	Compiler Toolchain Setup	9
	3.1	Device	9
	3.2	Target	9
	3.3	C51	10
	3.4	LX51 Locate	11
	3.5	LX51 Misc	12
	3.6	Inline Assembler	13
	3.7	Device Programming and Debugging	13
4	Usir	ng the Small Device C Compiler (SDCC)	15
	4.1	Processor Architecture	15
	4.2	SDCC Header File for XC878	15
	4.3	Compiling Code	16
	4.4	Linking	16
	4.5	Programming	16
	4.6	Memory Usage Compatibility	17
	47	Interrupts	18

ii CONTENTS

5	The	Project Makefile	21
	5.1	Generating the Documentation	21
		5.1.1 Dependencies	21
	5.2	Building	22
	5.3	Implementation Details	22
		5.3.1 Building	22
		5.3.2 Documentation	22
		5.3.3 Clean	23
	5.4	Cygwin	23
6	Code	de Requirements	25
	6.1	SFR Pages	25
	6.2	ISRs	25
	6.3	Memory	25
7	Varia	iables and Memory	27
	7.1	Implications of Overlaying	28
8	Codi	ding Conventions and Guidelines	31
	8.1	Code/Comment Indention and Formatting	31
	8.2	General Comment Guidlines	32
		8.2.1 List Formatting	32
		8.2.2 Tables	33
		8.2.3 Inline Comments	33
	8.3	Function Documentation	34
		8.3.1 Return Values	34
		8.3.2 Public and Private Functions	34
	8.4	Grouping Documentation	34
	8.5	File Naming and Documentation	35
		8.5.1 Headers	35
		8.5.2 C Files	36
		8.5.3 ISR Headers	37
	8.6	Member Naming Conventions	37
		8.6.1 Public Example	38
		8.6.2 Defines	38

9	Authors	39
10	Deprecated List	41
11	Module Index	43
	11.1 Modules	43
12	Data Structure Index	45
	12.1 Data Structures	45
13	File Index	47
	13.1 File List	47
14	Module Documentation	49
	14.1 CAN Node Status Fields	49
	14.1.1 Detailed Description	49
	14.1.2 Macro Definition Documentation	49
	14.1.2.1 CAN_STATUS_ALERT	49
	14.1.2.2 CAN_STATUS_BOFF	50
	14.1.2.3 CAN_STATUS_EWRN	50
	14.1.2.4 CAN_STATUS_LEC	50
	14.1.2.5 CAN_STATUS_RXOK	51
	14.1.2.6 CAN_STATUS_TXOK	51
	14.2 External Interrupt Channels	52
	14.2.1 Detailed Description	52
	14.2.2 Macro Definition Documentation	52
	14.2.2.1 EX_EXINT0	52
	14.2.2.2 EX_EXINT1	52
	14.2.2.3 EX_EXINT2	53
	14.2.2.4 EX_EXINT3	53
	14.2.2.5 EX_EXINT4	53
	14.2.2.6 EX_EXINT5	53
	14.2.2.7 EX_EXINT6	53

iv CONTENTS

14.3 External Interrupt Triggers	54
14.3.1 Detailed Description	54
14.3.2 Macro Definition Documentation	54
14.3.2.1 EX_EDGE_BOTH	54
14.3.2.2 EX_EDGE_DISABLE	54
14.3.2.3 EX_EDGE_FALLING	54
14.3.2.4 EX_EDGE_RISING	54
14.4 External Interrupt Input Ports	55
14.4.1 Detailed Description	56
14.4.2 Macro Definition Documentation	56
14.4.2.1 EX_EXINT0_P05	56
14.4.2.2 EX_EXINT0_P14	56
14.4.2.3 EX_EXINT1_P50	56
14.4.2.4 EX_EXINT1_P53	56
14.4.2.5 EX_EXINT2_P51	56
14.4.2.6 EX_EXINT2_P54	56
14.4.2.7 EX_EXINT3_P11	57
14.4.2.8 EX_EXINT3_P30	57
14.4.2.9 EX_EXINT3_P40	57
14.4.2.10 EX_EXINT3_P55	57
14.4.2.11 EX_EXINT4_P32	57
14.4.2.12 EX_EXINT4_P37	57
14.4.2.13 EX_EXINT4_P41	57
14.4.2.14 EX_EXINT4_P56	57
14.4.2.15 EX_EXINT5_P15	58
14.4.2.16 EX_EXINT5_P33	58
14.4.2.17 EX_EXINT5_P44	58
14.4.2.18 EX_EXINT5_P52	58
14.4.2.19 EX_EXINT6_P16	58
14.4.2.20 EX_EXINT6_P34	58

14.4.2.21 EX_EXINT6_P42	58
14.4.2.22 EX_EXINT6_P45	58
14.4.2.23 EX_EXINT6_P57	58
14.5 Input Port Access	59
14.5.1 Detailed Description	59
14.5.2 Macro Definition Documentation	59
14.5.2.1 IO_PORT_GET	59
14.5.2.2 IO_PORT_IN_INIT	60
14.5.2.3 IO_PORT_ON_GND	60
14.5.2.4 IO_PORT_ON_HIGH	60
14.6 Output Port Access	61
14.6.1 Detailed Description	61
14.6.2 Macro Definition Documentation	61
14.6.2.1 IO_PORT_DRAIN_DISABLE	61
14.6.2.2 IO_PORT_DRAIN_ENABLE	61
14.6.2.3 IO_PORT_OUT_INIT	62
14.6.2.4 IO_PORT_OUT_SET	62
14.6.2.5 IO_PORT_STRENGTH_STRONG	63
14.6.2.6 IO_PORT_STRENGTH_WEAK	63
14.7 I/O Port Pull-Up/-Down Setup	64
14.7.1 Detailed Description	64
14.7.2 Macro Definition Documentation	64
14.7.2.1 IO_PORT_PULL_DISABLE	64
14.7.2.2 IO_PORT_PULL_DOWN	64
14.7.2.3 IO_PORT_PULL_ENABLE	64
14.7.2.4 IO_PORT_PULL_INIT	65
14.7.2.5 IO_PORT_PULL_UP	65
14.8 Variable Access	66
14.8.1 Detailed Description	66
14.8.2 Macro Definition Documentation	66

vi

14.8.2.1 IO_VAR_GET	66
14.8.2.2 IO_VAR_SET	66
14.9 Pulse Width Detection Units	68
14.9.1 Detailed Description	68
14.9.2 Macro Definition Documentation	68
14.9.2.1 PWC_UNIT_SUM_RAW	68
14.10 Pulse Width Times	69
14.10.1 Detailed Description	69
14.10.2 Macro Definition Documentation	69
14.10.2.1 PWC_UNIT_WIDTH_MS	69
14.10.2.2 PWC_UNIT_WIDTH_NS	69
14.10.2.3 PWC_UNIT_WIDTH_RAW	69
14.10.2.4 PWC_UNIT_WIDTH_US	69
14.11 Pulse Frequencies	70
14.11.1 Detailed Description	70
14.11.2 Macro Definition Documentation	70
14.11.2.1 PWC_UNIT_FREQ_H	70
14.11.2.2 PWC_UNIT_FREQ_M	70
14.11.2.3 PWC_UNIT_FREQ_S	70
14.12 Pulse Duty Times	71
14.12.1 Detailed Description	71
14.12.2 Macro Definition Documentation	71
14.12.2.1 PWC_UNIT_DUTYH_MS	71
14.12.2.2 PWC_UNIT_DUTYH_NS	71
14.12.2.3 PWC_UNIT_DUTYH_RAW	72
14.12.2.4 PWC_UNIT_DUTYH_US	72
14.12.2.5 PWC_UNIT_DUTYL_MS	72
14.12.2.6 PWC_UNIT_DUTYL_NS	72
14.12.2.7 PWC_UNIT_DUTYL_RAW	72
14.12.2.8 PWC_UNIT_DUTYL_US	72
14.13SSC I/O Ports	73
14.13.1 Detailed Description	73
14.13.2 Macro Definition Documentation	73
14.13.2.1 SSC_MRST_P05	73
14.13.2.2 SSC_MRST_P14	74
14.13.2.3 SSC_MRST_P15	74
14.13.2.4 SSC_MTSR_P04	74
14.13.2.5 SSC_MTSR_P13	74
14.13.2.6 SSC_MTSR_P14	74
14.13.2.7 SSC_SCLK_P03	74
14.13.2.8 SSC_SCLK_P12	74
14.13.2.9 SSC_SCLK_P13	74

CONTENTS vii

15	Data	Structu	ure Documentation	75
	15.1	hsk_fla	sh_struct Struct Reference	75
		15.1.1	Detailed Description	76
		15.1.2	Field Documentation	76
			15.1.2.1 boot	76
			15.1.2.2 error	76
			15.1.2.3 hsk_flash_chksum	76
			15.1.2.4 hsk_flash_prefix	76
			15.1.2.5 reset	76
	15.2	hsk_isr	r14_callback Struct Reference	77
		15.2.1	Detailed Description	77
		15.2.2	Field Documentation	78
			15.2.2.1 NMIECC	78
			15.2.2.2 NMIFLASH	78
			15.2.2.3 NMIPLL	78
			15.2.2.4 NMIVDDP	78
			15.2.2.5 NMIWDT	78
	15.3	hsk_isr	r5_callback Struct Reference	79
		15.3.1	Detailed Description	80
		15.3.2	Field Documentation	80
			15.3.2.1 CANSRC0	80
			15.3.2.2 CCTOVF	80
			15.3.2.3 EOFSYN	80
			15.3.2.4 ERRSYN	80
			15.3.2.5 EXF2	81
			15.3.2.6 NDOV	81
			15.3.2.7 TF2	81
	15.4	hsk_isr	r6_callback Struct Reference	81
			Detailed Description	82
		15.4.2	Field Documentation	82

viii CONTENTS

15.4	2.1 ADCSR0	 	 	82
15.4	2.2 ADCSR1	 	 	82
15.4	2.3 CANSRC1	 	 	82
15.4	2.4 CANSRC2	 	 	83
15.5 hsk_isr8_cal	back Struct Reference	 	 	83
15.5.1 Deta	led Description	 	 	84
15.5.2 Field	Documentation	 	 	84
15.5	2.1 EOC	 	 	84
15.5	2.2 EXF2	 	 	84
15.5	2.3 EXINT2	 	 	85
15.5	2.4 IERR	 	 	85
15.5	2.5 IRDY	 	 	85
15.5	2.6 NDOV	 	 	85
15.5	2.7 RI	 	 	85
15.5	2.8 TF2	 	 	85
15.5	2.9 Tl	 	 	85
15.6 hsk_isr9_cal	back Struct Reference	 	 	86
15.6.1 Deta	led Description	 	 	86
15.6.2 Field	Documentation	 	 	87
15.6	2.1 CANSRC3	 	 	87
15.6	2.2 EXINT3	 	 	87
15.6	2.3 EXINT4	 	 	87
15.6	2.4 EXINT5	 	 	87
15.6	2.5 EXINT6	 	 	87

16	File I	Docume	entation		89
	16.1	config.l	n File Refe	prence	89
		16.1.1	Detailed	Description	90
		16.1.2	Macro De	efinition Documentation	90
			16.1.2.1	CAN0_BAUD	90
			16.1.2.2	CAN0_IO	90
			16.1.2.3	CAN1_BAUD	90
			16.1.2.4	CAN1_IO	90
			16.1.2.5	CLK	90
	16.2	hsk_ad	lc/hsk_ado	c.c File Reference	91
		16.2.1	Detailed	Description	93
		16.2.2	Macro De	efinition Documentation	93
			16.2.2.1	ADC_CHANNELS	93
			16.2.2.2	ADC_CLK_12MHz	93
			16.2.2.3	ADC_CLK_6MHz	94
			16.2.2.4	ADC_CLK_750kHz	94
			16.2.2.5	ADC_CLK_8MHz	94
			16.2.2.6	ADC_QUEUE	94
			16.2.2.7	BIT_ADC_DIS	94
			16.2.2.8	BIT_ANON	94
			16.2.2.9	BIT_ASEN_PARALLEL	94
			16.2.2.10	BIT_ASEN_SEQUENTIAL	94
			16.2.2.11	BIT_CHNR	95
			16.2.2.12	BIT_CTC	95
			16.2.2.13	BIT_DW	95
			16.2.2.14	BIT_EMPTY	95
			16.2.2.15	BIT_ENGT	95
			16.2.2.16	BIT_FILL	95
			16.2.2.17	BIT_IEN	95
			16.2.2.18	BIT_IMODE	95

		16.2.2.19 BIT_REQCHNR	96
		16.2.2.20 BIT_RESULT	96
		16.2.2.21 BIT_VFCTR	96
		16.2.2.22 BIT_WFR	96
		16.2.2.23 CNT_CHNR	96
		16.2.2.24 CNT_CTC	96
		16.2.2.25 CNT_FILL	96
		16.2.2.26 CNT_REQCHNR	96
		16.2.2.27 CNT_RESULT	97
	16.2.3	Function Documentation	97
		16.2.3.1 hsk_adc_close()	97
		16.2.3.2 hsk_adc_disable()	97
		16.2.3.3 hsk_adc_enable()	97
		16.2.3.4 hsk_adc_init()	97
		16.2.3.5 hsk_adc_isr10()	98
		16.2.3.6 hsk_adc_isr8()	98
		16.2.3.7 hsk_adc_isr_warmup10()	98
		16.2.3.8 hsk_adc_open10()	99
		16.2.3.9 hsk_adc_open8()	99
		16.2.3.10 hsk_adc_request()	99
		16.2.3.11 hsk_adc_service()	00
		16.2.3.12 hsk_adc_warmup10()	00
	16.2.4	Variable Documentation	01
		16.2.4.1 nextChannel	01
		16.2.4.2 ptr10	01
		16.2.4.3 ptr8	01
		16.2.4.4 targets	01
16.3	hsk_ad	c/hsk_adc.h File Reference	01
	16.3.1	Detailed Description	03
	16.3.2	Macro Definition Documentation	03

CONTENTS xi

	16.3.2.1 ADC_RESOLUTION_10
	16.3.2.2 ADC_RESOLUTION_8
	16.3.2.3 hsk_adc_open
	16.3.2.4 hsk_adc_warmup
16.3.3	Typedef Documentation
	16.3.3.1 hsk_adc_channel
16.3.4	Function Documentation
	16.3.4.1 hsk_adc_close()
	16.3.4.2 hsk_adc_disable()
	16.3.4.3 hsk_adc_enable()
	16.3.4.4 hsk_adc_init()
	16.3.4.5 hsk_adc_open10()
	16.3.4.6 hsk_adc_open8()
	16.3.4.7 hsk_adc_request()
	16.3.4.8 hsk_adc_service()
	16.3.4.9 hsk_adc_warmup10()
16.4 hsk_b	pot/hsk_boot.c File Reference
16.4.1	Detailed Description
16.4.2	Macro Definition Documentation
	16.4.2.1 BIT_EORDRES
	16.4.2.2 BIT_EXTOSCR
	16.4.2.3 BIT_MXB
	16.4.2.4 BIT_MXB19
	16.4.2.5 BIT_MXM
	16.4.2.6 BIT_NDIVH
	16.4.2.7 BIT_NDIVL
	16.4.2.8 BIT_NMIPLL
	16.4.2.9 BIT_OSCSS
	16.4.2.10 BIT_PDIV
	16.4.2.11 BIT_PLL_LOCK

xii CONTENTS

	16.4.2.12 BIT_PLLBYP	111
	16.4.2.13 BIT_PLLPD	112
	16.4.2.14 BIT_PLLR	112
	16.4.2.15 BIT_PLLRDRES	112
	16.4.2.16 BIT_XPD	112
	16.4.2.17 CNT_MXB	112
	16.4.2.18 CNT_NDIVH	112
	16.4.2.19 CNT_NDIVL	112
	16.4.2.20 CNT_PDIV	113
	16.4.2.21 PDATA_PAGE	113
	16.4.2.22 XRAM_BANK	113
	16.4.2.23 XRAM_SELECTOR	113
16.4.3	Function Documentation	113
	16.4.3.1 _sdcc_external_startup()	113
	16.4.3.2 hsk_boot_extClock()	114
	16.4.3.3 hsk_boot_io()	115
	16.4.3.4 hsk_boot_isr_nmipII()	115
	16.4.3.5 hsk_boot_mem()	115
16.4.4	Variable Documentation	115
	16.4.4.1 boot	115
	16.4.4.2 ndiv	115
	16.4.4.3 pdiv	115
16.5 hsk_b	oot/hsk_boot.h File Reference	116
16.5.1	Detailed Description	116
16.5.2	Prunction Documentation	117
	16.5.2.1 hsk_boot_extClock()	117
16.6 hsk_ca	an/hsk_can.c File Reference	118
16.6.1	Detailed Description	124
16.6.2	? The XC878 MulitCAN Module	124
16.6.3	CAN List Management	125

CONTENTS xiii

16.6.4	Macro Definition Documentation	25
	16.6.4.1 AUAD_DEC1	25
	16.6.4.2 AUAD_INC1	26
	16.6.4.3 AUAD_INC8	26
	16.6.4.4 AUAD_OFF	26
	16.6.4.5 BIT_ALIE	26
	16.6.4.6 BIT_AM	26
	16.6.4.7 BIT_AUAD	26
	16.6.4.8 BIT_BRP	26
	16.6.4.9 BIT_BSY	26
	16.6.4.10 BIT_BUSY	27
	16.6.4.11 BIT_CALM	27
	16.6.4.12 BIT_CAN_DIS	27
	16.6.4.13 BIT_CANDIS	27
	16.6.4.14 BIT_CCE	27
	16.6.4.15 BIT_DATA	27
	16.6.4.16 BIT_DIR	27
	16.6.4.17 BIT_DIV8	28
	16.6.4.18 BIT_DLC	28
	16.6.4.19 BIT_ERR	28
	16.6.4.20 BIT_FCCFG	28
	16.6.4.21 BIT_IDE	28
	16.6.4.22 BIT_IDEXT	28
	16.6.4.23 BIT_IDSTD	28
	16.6.4.24 BIT_INIT	29
	16.6.4.25 BIT_LECIE	29
	16.6.4.26 BIT_LIST	29
	16.6.4.27 BIT_MIDE	29
	16.6.4.28 BIT_MMC	29
	16.6.4.29 BIT_MSGVAL	29

xiv CONTENTS

16.6.4.30 BIT_NEWDAT
16.6.4.31 BIT_PRI
16.6.4.32 BIT_RBUSY
16.6.4.33 BIT_RWEN
16.6.4.34 BIT_RXEN
16.6.4.35 BIT_RXPND
16.6.4.36 BIT_RXSEL
16.6.4.37 BIT_RXUPD
16.6.4.38 BIT_SJW
16.6.4.39 BIT_TRIE
16.6.4.40 BIT_TSEG1
16.6.4.41 BIT_TSEG2
16.6.4.42 BIT_TXEN0
16.6.4.43 BIT_TXEN1
16.6.4.44 BIT_TXPND
16.6.4.45 BIT_TXRQ
16.6.4.46 CAN_AD_READ
16.6.4.47 CAN_AD_READY
16.6.4.48 CAN_AD_WRITE
16.6.4.49 CNT_AM
16.6.4.50 CNT_DATA
16.6.4.51 CNT_DLC
16.6.4.52 CNT_IDEXT
16.6.4.53 CNT_IDSTD
16.6.4.54 CNT_LIST
16.6.4.55 CNT_MMC
16.6.4.56 CNT_PRI
16.6.4.57 CNT_RXSEL
16.6.4.58 HSK_CAN_MSG_MAX
16.6.4.59 LIST_NODEx

CONTENTS xv

16.6.4.60 LIST_PENDING
16.6.4.61 LIST_UNALLOC
16.6.4.62 MMC_DEFAULT
16.6.4.63 MMC_GATEWAYSRC
16.6.4.64 MMC_RXBASEFIFO
16.6.4.65 MMC_TXBASEFIFO
16.6.4.66 MMC_TXSLAVEFIFO
16.6.4.67 MOAMRn
16.6.4.68 MOARn
16.6.4.69 MOCTRn
16.6.4.70 MODATAHn
16.6.4.71 MODATALn
16.6.4.72 MOFCRn
16.6.4.73 MOFGPRn
16.6.4.74 MOFGPRn_BOT
16.6.4.75 MOFGPRn_CUR
16.6.4.76 MOFGPRn_SEL
16.6.4.77 MOFGPRn_TOP
16.6.4.78 MOSTATn
16.6.4.79 MOSTATn_PNEXT
16.6.4.80 NBTRx
16.6.4.81 NCRx
16.6.4.82 NECNTx
16.6.4.83 NFCRx
16.6.4.84 NIPRx
16.6.4.85 NPCRx
16.6.4.86 NSRx
16.6.4.87 OFF_LISTm
16.6.4.88 OFF_MOn
16.6.4.89 OFF_MSIDk

xvi CONTENTS

	16.6.4.90 OFF_MSPNDk	137
	16.6.4.91 OFF_NODEx	138
	16.6.4.92 PAN_CMD_ALLOC	138
	16.6.4.93 PAN_CMD_ALLOCBEFORE	138
	16.6.4.94 PAN_CMD_ALLOCBEHIND	138
	16.6.4.95 PAN_CMD_INIT	138
	16.6.4.96 PAN_CMD_MOVE	138
	16.6.4.97 PAN_CMD_MOVEBEFORE	138
	16.6.4.98 PAN_CMD_MOVEBEHIND	138
	16.6.4.99 PAN_CMD_NOP	139
	16.6.4.100PANAR1	139
	16.6.4.101PANAR2	139
	16.6.4.102PANCMD	139
	16.6.4.103PANCTR	139
	16.6.4.104PANCTR_READY	139
	16.6.4.105PANSTATUS	140
	16.6.4.106PRI_ID	140
	16.6.4.107PRI_LIST	140
	16.6.4.108RESET	140
	16.6.4.109RESET_DATA	140
	16.6.4.110SET	140
	16.6.4.111SET_DATA	140
16.6.5	Function Documentation	140
	16.6.5.1 hsk_can_data_getIntelSignal()	140
	16.6.5.2 hsk_can_data_getMotorolaSignal()	141
	16.6.5.3 hsk_can_data_getSignal()	141
	16.6.5.4 hsk_can_data_setIntelSignal()	142
	16.6.5.5 hsk_can_data_setMotorolaSignal()	142
	16.6.5.6 hsk_can_data_setSignal()	143
	16.6.5.7 hsk_can_disable()	144

CONTENTS xvii

		16.6.5.8 hsk_can_enable()	44
		16.6.5.9 hsk_can_fifo_connect()	45
		16.6.5.10 hsk_can_fifo_create()	45
		16.6.5.11 hsk_can_fifo_delete()	46
		16.6.5.12 hsk_can_fifo_disconnect()	46
		16.6.5.13 hsk_can_fifo_getData()	47
		16.6.5.14 hsk_can_fifo_getId()	48
		16.6.5.15 hsk_can_fifo_move()	48
		16.6.5.16 hsk_can_fifo_next()	48
		16.6.5.17 hsk_can_fifo_setRxMask()	49
		16.6.5.18 hsk_can_fifo_setupRx()	49
		16.6.5.19 hsk_can_fifo_updated()	49
		16.6.5.20 hsk_can_init()	50
		16.6.5.21 hsk_can_msg_connect()	51
		16.6.5.22 hsk_can_msg_create()	52
		16.6.5.23 hsk_can_msg_delete()	52
		16.6.5.24 hsk_can_msg_disconnect()	53
		16.6.5.25 hsk_can_msg_getData()	54
		16.6.5.26 hsk_can_msg_move()	54
		16.6.5.27 hsk_can_msg_receive()	54
		16.6.5.28 hsk_can_msg_send()	55
		16.6.5.29 hsk_can_msg_sent()	55
		16.6.5.30 hsk_can_msg_setData()	55
		16.6.5.31 hsk_can_msg_updated()	55
		16.6.5.32 hsk_can_status()	56
	16.6.6	Variable Documentation	56
		16.6.6.1 initialised	56
16.7	hsk_ca	n/hsk_can.h File Reference	57
	16.7.1	Detailed Description	59
	16.7.2	CAN Message/Signal Tuples	59

xviii CONTENTS

16.7.3	CAN Node Management
16.7.4	Message Object Management
16.7.5	FIFOs
16.7.6	Message Data
16.7.7	Macro Definition Documentation
	16.7.7.1 CANO
	16.7.7.2 CANO_IO_P10_P11
	16.7.7.3 CANO_IO_P16_P17
	16.7.7.4 CANO_IO_P34_P35
	16.7.7.5 CANO_IO_P40_P41
	16.7.7.6 CAN1
	16.7.7.7 CAN1_IO_P01_P02
	16.7.7.8 CAN1_IO_P14_P13
	16.7.7.9 CAN1_IO_P32_P33
	16.7.7.10 CAN_ENDIAN_INTEL
	16.7.7.11 CAN_ENDIAN_MOTOROLA
	16.7.7.12 CAN_ERROR
16.7.8	Typedef Documentation
	16.7.8.1 hsk_can_fifo
	16.7.8.2 hsk_can_msg
	16.7.8.3 hsk_can_node
16.7.9	Function Documentation
	16.7.9.1 hsk_can_data_getSignal()
	16.7.9.2 hsk_can_data_setSignal()
	16.7.9.3 hsk_can_disable()
	16.7.9.4 hsk_can_enable()
	16.7.9.5 hsk_can_fifo_connect()
	16.7.9.6 hsk_can_fifo_create()
	16.7.9.7 hsk_can_fifo_delete()
	16.7.9.8 hsk_can_fifo_disconnect()

CONTENTS xix

	16.7.9.9 hsk_can_tifo_getData()	168
	16.7.9.10 hsk_can_fifo_getId()	168
	16.7.9.11 hsk_can_fifo_next()	169
	16.7.9.12 hsk_can_fifo_setRxMask()	169
	16.7.9.13 hsk_can_fifo_setupRx()	170
	16.7.9.14 hsk_can_fifo_updated()	170
	16.7.9.15 hsk_can_init()	171
	16.7.9.16 hsk_can_msg_connect()	172
	16.7.9.17 hsk_can_msg_create()	172
	16.7.9.18 hsk_can_msg_delete()	173
	16.7.9.19 hsk_can_msg_disconnect()	173
	16.7.9.20 hsk_can_msg_getData()	174
	16.7.9.21 hsk_can_msg_receive()	174
	16.7.9.22 hsk_can_msg_send()	175
	16.7.9.23 hsk_can_msg_sent()	175
	16.7.9.24 hsk_can_msg_setData()	175
	16.7.9.25 hsk_can_msg_updated()	175
	16.7.9.26 hsk_can_status()	176
16.8 hsk_ex/	hsk_ex.c File Reference	176
16.8.1	Detailed Description	178
16.8.2	Macro Definition Documentation	178
	16.8.2.1 BIT_EXINT0	178
	16.8.2.2 BIT_EXINT1	178
	16.8.2.3 BIT_EXINT2	178
	16.8.2.4 BIT_EXINT3	178
	16.8.2.5 BIT_EXINT4	179
	16.8.2.6 BIT_EXINT5	179
	16.8.2.7 BIT_EXINT6	179
	16.8.2.8 BIT_IMODE	179
	16.8.2.9 CNT_EXINT	179

16.8.3	Function Documentation
	16.8.3.1 hsk_ex_channel_disable()
	16.8.3.2 hsk_ex_channel_enable()
	16.8.3.3 hsk_ex_port_close()
	16.8.3.4 hsk_ex_port_open()
16.8.4	Variable Documentation
	16.8.4.1 modpiselBit
	16.8.4.2 modpiselSel
	16.8.4.3 portAltsel
	16.8.4.4 portBit
	16.8.4.5 ports
16.9 hsk_ex	x/hsk_ex.h File Reference
16.9.1	Detailed Description
16.9.2	Typedef Documentation
	16.9.2.1 hsk_ex_channel
	16.9.2.2 hsk_ex_port
16.9.3	Function Documentation
	16.9.3.1 hsk_ex_channel_disable()
	16.9.3.2 hsk_ex_channel_enable()
	16.9.3.3 hsk_ex_port_close()
	16.9.3.4 hsk_ex_port_open()
16.10hsk_fil	ter/hsk_filter.h File Reference
16.10.	1 Detailed Description
16.10.	2 Macro Definition Documentation
	16.10.2.1 FILTER_FACTORY
	16.10.2.2 FILTER_GROUP_FACTORY
16.11hsk_fla	ash/hsk_flash.c File Reference
16.11.	1 Detailed Description
16.11.	2 Flash Registers
16.11.	3 Flash Timer

CONTENTS xxi

16.11.5 Macro Definition Documentation 191 16.11.5.1 ADDR_DFLASH 191 16.11.5.2 ADDR_PFLASH 191 16.11.5.3 ADDR_ROM 191 16.11.5.4 ADDR_XRAM 192 16.11.5.5 BIT_EEABORT 192 16.11.5.6 BIT_EEBSY 192 16.11.5.7 BIT_ERASE 192 16.11.5.9 BIT_MAS1 192 16.11.5.10BIT_MODE 192 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_PROG 193 16.11.5.12BIT_YE 193 16.11.5.12BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 194 16.11.5.2CDPL 194 16.11.5.22FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.24EEN_DFLASH 195 16.11.5.24EEN_DFLASH 195	16.11.4 DPTR Byte Order
16.11.5.2 ADDR_PFLASH 191 16.11.5.3 ADDR_ROM 191 16.11.5.4 ADDR_XRAM 192 16.11.5.5 BIT_EEABORT 192 16.11.5.6 BIT_EEBSY 192 16.11.5.7 BIT_ERASE 192 16.11.5.9 BIT_MASI 192 16.11.5.10BIT_MODE 192 16.11.5.12BIT_NWIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_OFVAL 193 16.11.5.12BIT_YE 193 16.11.5.12BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_PAGE_PFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.2CDPL 194 16.11.5.2FREE_BEHIND 194 16.11.5.2FREE_LATEST 194 16.11.5.2GLEN_DFLASH 195	16.11.5 Macro Definition Documentation
16.11.5.3 ADDR_ROM 191 16.11.5.4 ADDR_XRAM 192 16.11.5.5 BIT_EEABORT 192 16.11.5.6 BIT_EEBSY 192 16.11.5.7 BIT_ERASE 192 16.11.5.8 BIT_FTEN 192 16.11.5.9 BIT_MAS1 192 16.11.5.1GBIT_MODE 192 16.11.5.1BIT_NMIFLASH 193 16.11.5.1BJT_OFVAL 193 16.11.5.1BJT_OFVAL 193 16.11.5.1BJT_YE 193 16.11.5.1BJT_YE 193 16.11.5.1BJT_YE 193 16.11.5.1BYTES_PAGE_DFLASH 193 16.11.5.1BYTES_WORDLINE_DFLASH 193 16.11.5.2CDPL 194 16.11.5.2CDPL 194 16.11.5.2FREE_BEHIND 194 16.11.5.2FREE_LATEST 194 16.11.5.2ELEN_DFLASH 195	16.11.5.1 ADDR_DFLASH
16.11.5.4 ADDR_XRAM 192 16.11.5.5 BIT_EEABORT 192 16.11.5.6 BIT_EEBSY 192 16.11.5.7 BIT_ERASE 192 16.11.5.8 BIT_FTEN 192 16.11.5.9 BIT_MAS1 192 16.11.5.1@IT_MODE 192 16.11.5.1BIT_NMIFLASH 193 16.11.5.1BIT_NVSTR 193 16.11.5.1BIT_OFVAL 193 16.11.5.1BIT_PROG 193 16.11.5.1BIT_YE 193 16.11.5.1BYTES_PAGE_DFLASH 193 16.11.5.1BYTES_PAGE_DFLASH 193 16.11.5.1BYTES_WORDLINE_DFLASH 193 16.11.5.2CONT_OFVAL 194 16.11.5.2DPH 194 16.11.5.2DPL 194 16.11.5.2FREE_BEHIND 194 16.11.5.2FREE_LATEST 194 16.11.5.2FREE_LATEST 194 16.11.5.2BLEN_DFLASH 195	16.11.5.2 ADDR_PFLASH
16.11.5.5 BIT_EEABORT 192 16.11.5.6 BIT_EEBSY 192 16.11.5.7 BIT_ERASE 192 16.11.5.8 BIT_FTEN 192 16.11.5.9 BIT_MAS1 192 16.11.5.10BIT_MODE 192 16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.29BYTES_WORDLINE_DFLASH 194 16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.3 ADDR_ROM
16.11.5.6 BIT_EEBSY 192 16.11.5.7 BIT_ERASE 192 16.11.5.8 BIT_FTEN 192 16.11.5.9 BIT_MAS1 192 16.11.5.10BIT_MODE 192 16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.14BIT_YE 193 16.11.5.12BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_PAGE_PFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.12BYTES_WORDLINE_PFLASH 194 16.11.5.2DPH 194 16.11.5.2DPL 194 16.11.5.2FREE_BEHIND 194 16.11.5.2FREE_BEHIND 194 16.11.5.2FREE_NONE 195 16.11.5.2GEN_DFLASH 195	16.11.5.4 ADDR_XRAM
16.11.5.7 BIT_ERASE 192 16.11.5.8 BIT_FTEN 192 16.11.5.9 BIT_MAS1 192 16.11.5.10BIT_MODE 192 16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.12BYTES_WORDLINE_PFLASH 194 16.11.5.2DPH 194 16.11.5.22DPL 194 16.11.5.24FREE_LATEST 194 16.11.5.24FREE_LATEST 194 16.11.5.26EN_DFLASH 195	16.11.5.5 BIT_EEABORT
16.11.5.8 BIT_FTEN 192 16.11.5.9 BIT_MAS1 192 16.11.5.10BIT_MODE 192 16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.12BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.14BIT_YE 193 16.11.5.14BIT_YE 193 16.11.5.14BYTES_PAGE_DFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 194 16.11.5.2DPL 194 16.11.5.2DPL 194 16.11.5.2FREE_BEHIND 194 16.11.5.2FREE_LATEST 194 16.11.5.2FREE_LATEST 194 16.11.5.2GLEN_DFLASH 195	16.11.5.6 BIT_EEBSY
16.11.5.9 BIT_MAS1 192 16.11.5.10BIT_MODE 192 16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.13BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.16BYTES_PAGE_PFLASH 193 16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.23PPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.7 BIT_ERASE
16.11.5.10BIT_MODE 192 16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_NVSTR 193 16.11.5.13BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.16BIT_YE 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.8 BIT_FTEN
16.11.5.11BIT_NMIFLASH 193 16.11.5.12BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.14BIT_YE 193 16.11.5.14BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.12BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.22DPL 194 16.11.5.22FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.26EN_DFLASH 195	16.11.5.9 BIT_MAS1
16.11.5.12BIT_NVSTR 193 16.11.5.13BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.12BYTES_WORDLINE_DFLASH 193 16.11.5.12BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22PREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.10BIT_MODE
16.11.5.13BIT_OFVAL 193 16.11.5.14BIT_PROG 193 16.11.5.15BIT_YE 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.11BIT_NMIFLASH
16.11.5.14BIT_PROG 193 16.11.5.16BIT_YE 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22PREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.12BIT_NVSTR
16.11.5.15BIT_YE 193 16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.19BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.13BIT_OFVAL
16.11.5.16BYTES_PAGE_DFLASH 193 16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.26FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.14BIT_PROG
16.11.5.17BYTES_PAGE_PFLASH 193 16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.15BIT_YE
16.11.5.18BYTES_WORDLINE_DFLASH 193 16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.26FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.16BYTES_PAGE_DFLASH
16.11.5.19BYTES_WORDLINE_PFLASH 194 16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.17BYTES_PAGE_PFLASH
16.11.5.20CNT_OFVAL 194 16.11.5.21DPH 194 16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.18BYTES_WORDLINE_DFLASH
16.11.5.21DPH 194 16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.19BYTES_WORDLINE_PFLASH
16.11.5.22DPL 194 16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.20CNT_OFVAL
16.11.5.23FREE_BEHIND 194 16.11.5.24FREE_LATEST 194 16.11.5.25FREE_NONE 195 16.11.5.26LEN_DFLASH 195	16.11.5.21DPH
16.11.5.24FREE_LATEST	16.11.5.22DPL
16.11.5.25FREE_NONE	16.11.5.23FREE_BEHIND
16.11.5.26LEN_DFLASH	16.11.5.24FREE_LATEST
	16.11.5.25FREE_NONE
16.11.5.28LEN_ROM	

xxii CONTENTS

	16.11.5.29LEN_XRAM	195
	16.11.5.30MOVCI	195
	16.11.5.31PAGE_FLASH	195
	16.11.5.32PAGE_RAM	195
	16.11.5.33STATE_DELETE	196
	16.11.5.34STATE_DETECT	196
	16.11.5.35STATE_IDLE	196
	16.11.5.36STATE_REQUEST	196
	16.11.5.37STATE_RESET	196
	16.11.5.3&TATE_WRITE	196
	16.11.5.39VAR_ASM	196
	16.11.5.40VAR_AT	197
16.11.6	Function Documentation	197
	16.11.6.1 hsk_flash_init()	197
	16.11.6.2 hsk_flash_isr_nmiflash()	198
	16.11.6.3 hsk_flash_write()	198
16.11.	7 Variable Documentation	199
	16.11.7.1 dflash	199
	16.11.7.2 EECON	199
	16.11.7.3 FCON	199
	16.11.7.4 FCS	199
	16.11.7.5 FCS1	199
	16.11.7.6 FEAH	199
	16.11.7.7 FEAL	200
	16.11.7.8 FEALH	200
	16.11.7.9 flash	200
	16.11.7.10flashDptr	200
	16.11.7.11free	200
	16.11.7.12FTVAL	200
	16.11.7.13dent	201

CONTENTS xxiii

16.11.7.14atest
16.11.7.15oldest
16.11.7.16ptr
16.11.7.17size
16.11.7.18state
16.11.7.19wrap
16.11.7.20xdataDptr
16.12hsk_flash/hsk_flash.h File Reference
16.12.1 Detailed Description
16.12.2 Byte Order
16.12.3 Macro Definition Documentation
16.12.3.1 FLASH_PWR_FIRST
16.12.3.2 FLASH_PWR_ON
16.12.3.3 FLASH_PWR_RESET
16.12.3.4 FLASH_STRUCT_FACTORY
16.12.3.5 XC878_16FF
16.12.4 Function Documentation
16.12.4.1 hsk_flash_init()
16.12.4.2 hsk_flash_write()
16.13hsk_icm7228/hsk_icm7228.c File Reference
16.13.1 Detailed Description
16.13.2 Macro Definition Documentation
16.13.2.1 ILLUMINATE_OFFSET
16.13.3 Function Documentation
16.13.3.1 hsk_icm7228_illuminate()
16.13.3.2 hsk_icm7228_writeDec()
16.13.3.3 hsk_icm7228_writeHex()
16.13.3.4 hsk_icm7228_writeString()
16.13.4 Variable Documentation
16.13.4.1 codepage

xxiv CONTENTS

16.14hsk_icm7228/hsk_icm7228.h File Reference
16.14.1 Detailed Description
16.14.2 Macro Definition Documentation
16.14.2.1 ICM7228_FACTORY
16.14.3 Function Documentation
16.14.3.1 hsk_icm7228_illuminate()
16.14.3.2 hsk_icm7228_writeDec()
16.14.3.3 hsk_icm7228_writeHex()
16.14.3.4 hsk_icm7228_writeString()
16.15hsk_io/hsk_io.h File Reference
16.15.1 Detailed Description
16.15.2 I/O Port Pull-Up/-Down Table
16.16hsk_isr/hsk_isr.c File Reference
16.16.1 Detailed Description
16.16.2 ISR Callback Reaction Time
16.16.3 Macro Definition Documentation
16.16.3.1 BIT_ADCSR0
16.16.3.2 BIT_ADCSR1
16.16.3.3 BIT_CANSRC0
16.16.3.4 BIT_CANSRC1
16.16.3.5 BIT_CANSRC2
16.16.3.6 BIT_CANSRC3
16.16.3.7 BIT_CCTOVF
16.16.3.8 BIT_EOC
16.16.3.9 BIT_EOFSYN
16.16.3.10BIT_ERRSYN
16.16.3.11BIT_EXF2 [1/2]
16.16.3.12BIT_EXF2 [2/2]
16.16.3.13BIT_EXINT2
16.16.3.14BIT_EXINT3

CONTENTS xxv

	16.16.3.15BIT_EXINT4	222
	16.16.3.16BIT_EXINT5	222
	16.16.3.17BIT_EXINT6	222
	16.16.3.18BIT_IERR	222
	16.16.3.19BIT_IRDY	222
	16.16.3.20BIT_NDOV [1/2]	222
	16.16.3.21BIT_NDOV [2/2]	223
	16.16.3.22BIT_NMIECC	223
	16.16.3.23BIT_NMIFLASH	223
	16.16.3.24BIT_NMIPLL	223
	16.16.3.2 B IT_NMIVDDP	223
	16.16.3.26BIT_NMIWDT	223
	16.16.3.27BIT_RI	223
	16.16.3.28BIT_RMAP	224
	16.16.3.29BIT_TF2 [1/2]	224
	16.16.3.30BIT_TF2 [2/2]	224
	16.16.3.31BIT_TI	224
16.16.	4 Function Documentation	224
	16.16.4.1 dummy()	224
	16.16.4.2 hsk_isr_root1()	224
	16.16.4.3 ISR_hsk_isr14()	225
	16.16.4.4 ISR_hsk_isr5()	225
	16.16.4.5 ISR_hsk_isr6()	225
	16.16.4.6 ISR_hsk_isr8()	226
	16.16.4.7 ISR_hsk_isr9()	226
	16.16.4.8 nmidummy()	226
16.16.	5 Variable Documentation	227
	16.16.5.1 hsk_isr14	227
	16.16.5.2 hsk_isr5	227
	16.16.5.3 hsk_isr6	227

xxvi CONTENTS

16.16.5.4 hsk_isr8
16.16.5.5 hsk_isr9
16.17hsk_isr/hsk_isr.h File Reference
16.17.1 Detailed Description
16.17.2 SFR Pages
16.17.3 Register Banks
16.17.4 Variable Documentation
16.17.4.1 hsk_isr14
16.17.4.2 hsk_isr5
16.17.4.3 hsk_isr6
16.17.4.4 hsk_isr8
16.17.4.5 hsk_isr9
16.18hsk_pwc/hsk_pwc.c File Reference
16.18.1 Detailed Description
16.18.2 Macro Definition Documentation
16.18.2.1 BIT_CCM0
16.18.2.2 BIT_CCTBx
16.18.2.3 BIT_CCTOVEN
16.18.2.4 BIT_CCTOVF
16.18.2.5 BIT_CCTPRE
16.18.2.6 BIT_CCTST
16.18.2.7 BIT_IMODE
16.18.2.8 BIT_T2CCFG
16.18.2.9 BIT_T2CCU_DIS
16.18.2.10BIT_TIMSYN
16.18.2.11CHAN_BUF_SIZE
16.18.2.12CNT_CCMx
16.18.2.13CNT_EXINTx
16.18.2.14EDGE_DEFAULT_MODE
16.18.2.15PWC_CC0_EXINT_BIT

CONTENTS xxvii

16.18.2.16PWC_CC0_EXINT_REG	236
16.18.2.17PWC_CC1_EXINT_BIT	236
16.18.2.18PWC_CC1_EXINT_REG	236
16.18.2.19PWC_CC2_EXINT_BIT	236
16.18.2.20PWC_CC2_EXINT_REG	237
16.18.2.21PWC_CC3_EXINT_BIT	237
16.18.2.22PWC_CC3_EXINT_REG	237
16.18.2.23PWC_CHANNELS	237
16.18.3 Function Documentation	237
16.18.3.1 hsk_pwc_ccn()	237
16.18.3.2 hsk_pwc_channel_captureMode()	237
16.18.3.3 hsk_pwc_channel_close()	238
16.18.3.4 hsk_pwc_channel_edgeMode()	238
16.18.3.5 hsk_pwc_channel_getValue()	238
16.18.3.6 hsk_pwc_channel_open()	239
16.18.3.7 hsk_pwc_channel_trigger()	239
16.18.3.8 hsk_pwc_disable()	240
16.18.3.9 hsk_pwc_enable()	240
16.18.3.10hsk_pwc_init()	240
16.18.3.11hsk_pwc_isr_cc0_p30()	241
16.18.3.12hsk_pwc_isr_cc0_p40()	241
16.18.3.13hsk_pwc_isr_cc0_p55()	242
16.18.3.14hsk_pwc_isr_cc1_p32()	242
16.18.3.15hsk_pwc_isr_cc1_p41()	242
16.18.3.16hsk_pwc_isr_cc1_p56()	243
16.18.3.17hsk_pwc_isr_cc2_p33()	243
16.18.3.18hsk_pwc_isr_cc2_p44()	243
16.18.3.19hsk_pwc_isr_cc2_p52()	244
16.18.3.20hsk_pwc_isr_cc3_p34()	244
16.18.3.21hsk_pwc_isr_cc3_p45()	244

xxviii CONTENTS

CONTENTS xxix

16.19.2.6 PWC_CC1_P32	253
16.19.2.7 PWC_CC1_P41	253
16.19.2.8 PWC_CC1_P56	253
16.19.2.9 PWC_CC2	253
16.19.2.10PWC_CC2_P33	253
16.19.2.11PWC_CC2_P44	253
16.19.2.12PWC_CC2_P52	254
16.19.2.13PWC_CC3	254
16.19.2.14PWC_CC3_P34	254
16.19.2.15PWC_CC3_P45	254
16.19.2.16PWC_CC3_P57	254
16.19.2.17PWC_EDGE_BOTH	254
16.19.2.18PWC_EDGE_FALLING	254
16.19.2.19PWC_EDGE_RISING	254
16.19.2.20PWC_MODE_EXT	255
16.19.2.21PWC_MODE_SOFT	255
16.19.3 Typedef Documentation	255
16.19.3.1 hsk_pwc_channel	255
16.19.3.2 hsk_pwc_port	255
16.19.4 Function Documentation	255
16.19.4.1 hsk_pwc_channel_captureMode()	255
16.19.4.2 hsk_pwc_channel_close()	256
16.19.4.3 hsk_pwc_channel_edgeMode()	256
16.19.4.4 hsk_pwc_channel_getValue()	256
16.19.4.5 hsk_pwc_channel_open()	257
16.19.4.6 hsk_pwc_channel_trigger()	257
16.19.4.7 hsk_pwc_disable()	258
16.19.4.8 hsk_pwc_enable()	258
16.19.4.9 hsk_pwc_init()	258
16.19.4.10hsk_pwc_port_open()	259

16.20hsk_pwm/hsk_pwm.c File Reference
16.20.1 Detailed Description
16.20.2 Macro Definition Documentation
16.20.2.1 BIT_CCU_DIS
16.20.2.2 BIT_CCUCCFG
16.20.2.3 BIT_ECT13O
16.20.2.4 BIT_PSL
16.20.2.5 BIT_PSL63
16.20.2.6 BIT_TnCLK
16.20.2.7 BIT_TnMODEN
16.20.2.8 BIT_TnRR
16.20.2.9 BIT_TnRS
16.20.2.10BIT_TnSTR
16.20.2.11CNT_MSEL6n
16.20.2.12CNT_PSL
16.20.2.13CNT_TnCLK
16.20.2.14CNT_TnMODEN
16.20.2.15MOD_MSEL6n
16.20.3 Function Documentation
16.20.3.1 hsk_pwm_channel_set()
16.20.3.2 hsk_pwm_disable()
16.20.3.3 hsk_pwm_enable()
16.20.3.4 hsk_pwm_init()
16.20.3.5 hsk_pwm_outChannel_dir()
16.20.3.6 hsk_pwm_port_close()
16.20.3.7 hsk_pwm_port_open()
16.20.4 Variable Documentation
16.20.4.1 ports
16.20.4.2 pos
16.20.4.3 sel

CONTENTS xxxi

16.21hsk_pwm/hsk_pwm.h File Reference
16.21.1 Detailed Description
16.21.2 Macro Definition Documentation
16.21.2.1 PWM_60
16.21.2.2 PWM_61
16.21.2.3 PWM_62
16.21.2.4 PWM_63
16.21.2.5 PWM_CC60
16.21.2.6 PWM_CC61
16.21.2.7 PWM_CC62
16.21.2.8 PWM_COUT60
16.21.2.9 PWM_COUT61
16.21.2.10PWM_COUT62
16.21.2.11PWM_COUT63
16.21.2.12PWM_OUT_60_P30
16.21.2.13PWM_OUT_60_P31
16.21.2.14PWM_OUT_60_P40
16.21.2.15PWM_OUT_60_P41
16.21.2.16PWM_OUT_61_P00
16.21.2.17PWM_OUT_61_P01
16.21.2.18PWM_OUT_61_P31
16.21.2.19PWM_OUT_61_P32
16.21.2.20PWM_OUT_61_P33
16.21.2.21PWM_OUT_61_P44
16.21.2.22PWM_OUT_61_P45
16.21.2.23PWM_OUT_62_P04
16.21.2.24PWM_OUT_62_P05
16.21.2.2 5 PWM_OUT_62_P34
16.21.2.26PWM_OUT_62_P35
16.21.2.27PWM_OUT_62_P46

xxxii CONTENTS

CONTENTS xxxiii

16.22.2.12BIT_SSC_DIS	2
16.22.2.13BIT_TIR	2
16.22.2.14BIT_TIREN	2
16.22.2.15CNT_SEL	12
16.22.3 Function Documentation	32
16.22.3.1 hsk_ssc_disable()	12
16.22.3.2 hsk_ssc_enable()	12
16.22.3.3 hsk_ssc_init()	32
16.22.3.4 hsk_ssc_ports()	3
16.22.3.5 hsk_ssc_talk()	3
16.22.3.6 ISR_hsk_ssc()	}4
16.22.4 Variable Documentation	}4
16.22.4.1 bufState	34
16.22.4.2 rcount	34
16.22.4.3 rptr	34
16.22.4.4 wcount	34
16.22.4.5 wptr	34
16.23hsk_ssc/hsk_ssc.h File Reference	35
16.23.1 Detailed Description	36
16.23.2 Half Duplex Operation	37
16.23.3 Macro Definition Documentation	37
16.23.3.1 hsk_ssc_busy	37
16.23.3.2 SSC_BAUD	37
16.23.3.3 SSC_CONF	18
16.23.3.4 SSC_MASTER	18
16.23.3.5 SSC_SLAVE	18
16.23.4 Function Documentation	18
16.23.4.1 hsk_ssc_disable()	18
16.23.4.2 hsk_ssc_enable()	39
16.23.4.3 hsk_ssc_init()	39

16.23.4.4 hsk_ssc_ports()
16.23.4.5 hsk_ssc_talk()
16.24hsk_timers/hsk_timer01.c File Reference
16.24.1 Detailed Description
16.24.2 Macro Definition Documentation
16.24.2.1 BIT_ET0
16.24.2.2 BIT_ET1
16.24.2.3 BIT_RMAP
16.24.2.4 BIT_TOM
16.24.2.5 BIT_T1M
16.24.2.6 CNT_TOM
16.24.2.7 CNT_T1M
16.24.3 Function Documentation
16.24.3.1 hsk_timer01_setup()
16.24.3.2 hsk_timer0_disable()
16.24.3.3 hsk_timer0_enable()
16.24.3.4 hsk_timer0_setup()
16.24.3.5 hsk_timer1_disable()
16.24.3.6 hsk_timer1_enable()
16.24.3.7 hsk_timer1_setup()
16.24.3.8 ISR_hsk_timer0()
16.24.3.9 ISR_hsk_timer1()
16.24.4 Variable Documentation
16.24.4.1 callback
16.24.4.2 overflow
16.24.4.3 timers
16.25hsk_timers/hsk_timer01.h File Reference
16.25.1 Detailed Description
16.25.2 Function Documentation
16.25.2.1 hsk_timer0_disable()

CONTENTS XXXV

16.25.2.2 hsk_timer0_enable()	97
16.25.2.3 hsk_timer0_setup()	97
16.25.2.4 hsk_timer1_disable()	98
16.25.2.5 hsk_timer1_enable()	98
16.25.2.6 hsk_timer1_setup()	98
16.26hsk_wdt/hsk_wdt.c File Reference	99
16.26.1 Detailed Description	00
16.26.2 Watchdog Timer Registers	00
16.26.3 Macro Definition Documentation	00
16.26.3.1 BIT_WDTEN	00
16.26.3.2 BIT_WDTIN	00
16.26.3.3 BIT_WDTRS	00
16.26.4 Function Documentation	01
16.26.4.1 hsk_wdt_disable()	01
16.26.4.2 hsk_wdt_enable()	01
16.26.4.3 hsk_wdt_init()	01
16.26.4.4 hsk_wdt_service()	01
16.27hsk_wdt/hsk_wdt.h File Reference	02
16.27.1 Detailed Description	02
16.27.2 Hazards	03
16.27.3 Function Documentation	03
16.27.3.1 hsk_wdt_disable()	03
16.27.3.2 hsk_wdt_enable()	03
16.27.3.3 hsk_wdt_init()	03
16.27.3.4 hsk_wdt_service()	04
16.28 main.c File Reference	04
16.28.1 Detailed Description	05
16.28.2 Macro Definition Documentation	06
16.28.2.1 PERSIST_VERSION	06
16.28.3 Function Documentation	06

xxxvi CONTENTS

Index	315
	16.28.4.5 tick0_count_250
	16.28.4.4 tick0_count_20
	16.28.4.3 persist
	16.28.4.2 p1_buffer
	16.28.4.1 adc7
	16.28.4 Variable Documentation
	16.28.3.10tick0()
	16.28.3.9 run()
	16.28.3.8 p1_writeString()
	16.28.3.7 p1_writeHex()
	16.28.3.6 p1_writeDec()
	16.28.3.5 p1_refresh()
	16.28.3.4 p1_init()
	16.28.3.3 p1_illuminate()
	16.28.3.2 main()
	16.28.3.1 init()

HSK XC878 μC Library Developers' Manual

1.1 Preface

Welcome to the High Speed Karlsruhe (HSK) XC878 microcontroller (μ C) developers' manual. This document is intended for those who want to perform library development.

This document contains all the library header and code documentation.

See also

PDF Version

1.2 About This Document

This document is work in progress, so far the documentation for the libraries is mostly complete. Documentation of implemented applications is less so and like the applications still subject to a lot of change.

1.2.1 Project Layout

- LICENSE.md
 - ISCL and 3rd party licensing
- Makefile
 - Makefile to invoke the SDCC and doxygen toolchain
- Makefile.local
 - Local non-revisioned Makefile for overriding default parameters
- README.md
 - Repository README
- uVisionupdate.sh
 - Updates the $\mu\mbox{Vision}$ project's overlaying instructions

- bin.c51/
 - C51 toolchain output produced by Keil μVision (safe to delete)
- · bin.sdcc/
 - SDCC compiler output (safe to delete)
- conf/
 - Project configuration files
- conf/doxygen.common
 - Basic doxygen settings
- conf/doxygen.dbc
 - Doxygen setting changes to create documentation from DBC headers
- conf/doxygen.dev
 - Doxygen setting changes to create the developer documentation
- conf/doxygen.scripts
 - Doxygen setting changes to create the scripts documentation
- conf/doxygen.user
 - Doxygen setting changes to create the user documentation
- conf/sdcc
 - SDCC configuration, contains basic CFLAGS and invokes version specific platform hacks
- doc/
 - Documentation build directory
- gen/
 - Generated code e.g. the $\mbox{.}\,\mbox{mk}$ files with build instructions
- gen/dbc/
 - C headers generated from Vector DBCs (via scripts/dbc2c.awk)
- gh-pages/
 - Project documentation, published at https://lonkamikaze.github.io/hsk-libs
- gh-pages/contrib/
 - This directory contains 3rd party documentation
- gh-pages/contrib/ICM7228.pdf
 - Intersil ICM7228 8-Digit, LED Display Decoder Driver data sheet
- $\bullet \ \text{gh-pages/contrib/Microcontroller-XC87} x-\text{Data-Sheet-V15-infineon.pdf}$
 - Data sheet for the Infineon XC87x series
- gh-pages/contrib/XC878_um_v1_1.pdf
 - Infineon XC878 User Manual Version 1.1
- hacks/
 - Storage directory for hacks that are pulled in depending on platform parameters like the SDCC version

1.2 About This Document 3

- img/
 - Pictures included in this documentation
- inc/
 - 3rd party headers
- scripts/
 - extstyle Contains build scripts used by the ${\tt Makefile}$, this folder is documented in the a dedicated document
- src/
 - The project source code
- src/doc/
 - This directory contains general documentation that is not specific to a library, application or a file, i.e. this chapter of the documentation
- src/hsk_.../
 - Directories with this prefix contain library code
- uVision/
 - ARM Keil µVision project files

The XC878 8-Bit Microcontroller Platform

The XC878 is an Intel 8051/8052 compatible μC architecture. This entails strong memory limitations with severe implications to writing code.

The strength of the architecture is that the controller contains many specialized modules that, once set up, perform many tasks without intense interaction.

Critical for this project are the following kinds of modules:

- · 10-Bit AD conversion channels
- Timers that can be triggered by external signals or perform PWM
- · CAN controller

See also

```
XC878 Reference Manual: XC878_um_v1_1.pdf

ARM Keil Infineon XC878-16FF page: http://www.keil.com/dd/chip/4480.htm

Infineon XC87x Series Overview: http://www.infineon.com/cms/en/product/microcontrollers/8-bit/html?channel=db3a304323b87bc20123dcee653f7007&tab=2

8051 Basics Tutorial: http://www.8052.com/tut8051
```

2.1 Registers and Paging

The XC878 functions and modules are controlled through so called Special Function Registers (SFRs).

Due to the number of modules and functions of the controller a lot more registers are present than the 128 that can be addressed. These 128 register addressed in the upper directly addressable address range from 0x80 to 0xFF.

To circumvent the 128 register limit each functional block of registers has a paging register that can be used to access different Pages of registers. In C code this is done using the SFR_PAGE() macro defined in the Infineon/ \leftarrow XC878.h header file that is provided by Keil μ Vision, the IDE used for this project or the headers can directly be downloaded from ARM.

Paging only affects code that directly interacts with the hardware. One of the benefits of *using* these libraries is that paging is not an issue in the logical code.

Each section of the XC878 Reference Manual has a Register Overview that contains a table of pages and registers.

2.2 Memory Limitations

The 8051 platform offers 128 bytes of data memory in the address range 0x00-0x7F in front of the SFR address range. Because 128 bytes are insufficient, the 8051 architecture knows several kinds of memory that are accessed in different manners and thus guicker or slower to access.

The 8052 has an additional 128 bytes of indirectly addressable memory. This memory is accessed through the key word idata. Access to idata is slower than to data. The syntax for declaring a variable in idtata memory is:

```
<type> idata <identifier> [= <value>];
```

The additional idata memory is located in the upper half of the address range. The lower half accesses data memory. Any data access to a pointer actually is idata access. This is why SFRs cannot be accessed with pointers. They are masked by idata memory.

The slowest kind of memory used by this library is the xdata memory. The xdata memory makes 3kb of additional memory available and the libraries place all large data structures in them.

Variables are declared in xdata with the following syntax:

```
<type> xdata <identifier> [= <value>];
```

The first 256 bytes of xdata memory are also accessible as 8 bit addressed pdata. Using pdata is faster than xdata. The p in pdata stands for paged. Historically the 8052 family of μ Cs used register P2 for paging. The XC878 instead provides an SFR named XADDRH.

However current 8051 C compilers don't support paging. I.e. one would have to ensure that structs and buffers do not cross page borders and update XADDRH manually. So instead of making the code more complicated and messing with the linkers XADDRH is fixed to the first xdata page and pdata is simply used as an additional 256 bytes of relatively fast memory.

There also is a 128 bits wide memory range of bit variables, which is used by single bit variables of the type bool.

In contrast to the small amount of available RAM, 64k of ROM are available to hold executable code. Thus a program well designed to the XC878 is one that produces a lot of static code to reduce the required amount of runtime memory use.

Code resides in its own address range, the code block. The μ C can be run from code residing in xdata as well, to bootstrap the μ C. Constants can also be placed in the code block.

2.2.1 Overlaying

In order to mitigate the memory limitations of the platform the C51 and SDCC compilers perform an optimisation called overlaying.

The compilers build a call graph, much like the one in the documentation of main(). The call graph is a directed graph and functions (i.e. their local variables and parameters) may occupy the same space in memory, provided they cannot reach each other in the graph.

E.g. main() can reach both init() and run(), thus main() may not occupy the same memory as init() and run(). However run() and init() cannot reach each other, so they may store their data in the same memory.

This reduces the use of the stack, which is expensive in terms of runtime (this statement is not generally true, it just applies to the 8051 family of μ Cs).

Functions may not be called more than once at a time. I.e. they may not be recursive or called from regular code and interrupts both. Both compilers provide a reentrant keyword to make functions operate on the stack. Its use should be avoided if possible.

Both C51 and SDCC do not track function pointers. Thus creating a function pointer results in a false call in the call tree. A call through a function pointer is not added to the call tree.

The C51 tool chain offers call tree manipulations and SDCC provides the nooverlay pragma to mitigate this.

The section about Implications of Overlaying lists best practices to optimize code for overlaying.

2.3 Pointers 7

2.3 Pointers

Due to the existence of different kinds of memory, pointers come in two variations, generic pointers and memory-specific pointers. Generic pointers take 3 bytes of memory and are by far the slowest to process. Memory-specific pointers take 1 byte for data, idata or pdata and 2 bytes for xdata or code. They are also faster to process.

Note that the data keyword needs to be explicitely specified for data pointers. Pointers declared without explicit mention of the memory type always result in generic pointers.

Pointers can be stored in different kinds of memory than the memory they point to:

```
<type> <ptr_target_mem> * <ptr_mem> <identifier>;
```

The following example creates an idata pointer to a struct in xdata memory:

```
struct foo xdata * idata p_foo;
```

C51 Compiler Toolchain Setup

This section describes the necessary compiler toolchain setup based on the Keil µVision IDE.

3.1 Device

It is critical for device flashing and programming to select the correct version of the μ C. This dialogue also allows you to select the extended linker and assembler. Doing so is imperative to perform the necessary link time optimisations to fit the libraries into the limited memory of the device.

Figure 3.1 Keil μ Vision Device options dialogue

3.2 Target

The target dialogue lets you select several CPU architecture and memory layout settings.

The following options need to be set:

Xtal (MHz):

- This needs to be set to your external oscillator frequency, otherwise flashing and debugging might be unreliable
- · Memory Model: Small
 - This setting means that variables are by default assigned to the first 128 bytes of directly addressable RAM, variables can still be mapped to different memory sections manaully as described in Memory Limitations
- · Code ROM Size: Large: 64K program
 - This setting allows up to 64k of program data to be written to the device
- · Use On-chip ROM
- · Use On-chip XRAM
- · Use multiple DPTR registers
 - This allows the compiler to reduce address writes of reoccuring pointer targets by using multiple pointer registers
- · Safe address extension SFR in interrupts
 - XRAM/xdata access is not atomic. Thus interrupts using XRAM can interrupt and corrupt XRAM access
 of functions. This setting preserves the XRAM address registers and thus protects them from corruption

Figure 3.2 Keil µVision Target options dialogue

3.3 C51

The C51 is the C compiler configuration dialogue. The following settings are not obligatory for use of the HSK libraries, but recommended.

- · Preprocessor Symbols
 - Define: __xdata, __pdata, __idata
 - * This input field allows passing on preprocessor definitions to the preprocessor
 - * The empty __xdata, __pdata, __idata defines allow C51 to ignore SDCC style memory assignments, this is useful to make such assignments where C51 does not support them

3.4 LX51 Locate 11

- · Code Optimization
 - Level: 11: Reuse Common Exit Code
 - * The highest level of optimisation, allowing the compiler the largest reduction of memory use
 - * Select 4 or lower for debugging, all the common code eliminations prevent the debugger from mapping large chunks of C code to assembler code, making the program flow difficult to follow
 - Emphasis: Favor speed
 - * Surprisingly this often produces smaller code than the favor size setting
 - Global Register Coloring
 - * This setting allows the compiler to optimise register use throughout the entire application, reducing memory use and improving performance
 - Linker Code Packing
 - * Activates a link time optimisation, after linking the application, the linker will replace long distance jumps with short jumps where applicable
- · Warnings: Warninglevel 2
- · Enable ANSI integer promotion rules

Figure 3.3 Keil µVision C51 options dialogue

3.4 LX51 Locate

LX51 is the extended linker of the C51 compiler tool chain, the Locate dialogue is used to map memory ranges. The form can also be used to assign portions of code to fixed addresses.

- · User Memory Layout from Target Dialog
 - This option assigns the XC878 memory types to the appropriate address ranges
- User Classes: PDATA (X:0xF000-X:0xF0FF)
 - This option maps the pdata memory into the first 256 bytes of xdata

Figure 3.4 Keil µVision LX51 Locate options dialogue

3.5 LX51 Misc

The Misc dialogue holds the remaining linker settings.

- Overlay
 - This field can be used to add calls through function pointers to the call tree as is necessary for callback functions, the syntax is described in the μ Vision Help section OVERLAY Linker Directive
 - Manually filling this field can be avoided by running the uVisionupdate.sh script
- · Misc controls: REMOVEUNUSED
 - This linker flag saves memory by discarding unused functions

Figure 3.5 Keil µVision LX51 Misc options dialogue

3.6 Inline Assembler

3.6 Inline Assembler

Inline assembler has to be activated for Groups or single files individually. The Group Options can be found in the context menu of a Group.

To activate an option in this menu it needs to be unchecked and checked again.

- · Generate Assembler SRC File
 - This option causes the compiler to generate assembler code instead of an object file
- · Assemble SRC File
 - This option causes the compiler to assemble the generated assembler code

Figure 3.6 Keil µVision Group options dialogue

3.7 Device Programming and Debugging

To program or debug the device via On Chip Debug Support (OCDS) the Infineon Direct Access Server (DAS), a hardware access middleware, is required. The programming and debugging options can also be selected from the target options. Use the following settings in the Utilities tab:

- Use Target Driver for Flash Programming
 - Infineon DAS Client for XC800

Figure 3.7 Keil μVision LX51 Utilities options dialogue

See also

Infineon DAS Tool Interface website: http://www.infineon.com/das/

Select Settings to enter the "Infineon XC800 DAS Driver Setup". The default options are mostly fine. Make sure of the following options:

- · DAS Server: UDAS
- · Target Debug Options
 - Miscellaneous Options
 - * Disable Interrupts during Steps
 - · Frequently occuring interrupts like timer interrupts make step by step debugging completely useless

Figure 3.8 Keil $\mu Vision$ Infineon XC800 DAS Driver Setup

The Debug tab of the target options can be used to choose between in-simulator debugging and on-chip debugging.

Using the Small Device C Compiler (SDCC)

This section describes how to compile code for the XC878 with the Small Device C Compiler. SDCC is an open source compiler supporting several 8 bit architectures.

This section is about using the compiler and maintaining C51 compatibility. Refer to The Project Makefile to build this project using SDCC.

See also

```
SDCC project: http://sdcc.sf.net
Small Device C Compiler Manual: sdccman.pdf
```

4.1 Processor Architecture

The 8051 architecture is selected with the parameter -mmcs51. Additionally the compiler needs to be invoked with the correct memory architecture, XRAM starts at addres 0xF000 and is 3kb wide. For this the parameters --xram-loc and --xram-size are provided:

```
-mmcs51 --xram-loc 0xF000 --xram-size 3072
```

4.2 SDCC Header File for XC878

This projects includes the file Infineon/XC878.h in the inc/ directory, which contains the SFR definitions for the XC878. It is a modified version of the XC878.h file proivided by Keil μ Vision, which in turn is a Dave generated file.

The modification is an #ifdef SDCC block, with some compatibility glue to allow using the C51 code mostly unmodified.

To make the header available to sdcc the inc/ should be added to the include search path with the -I parameter:

```
-mmcs51 --xram-loc 0xF000 --xram-size 3072 -I inc/
```

4.3 Compiling Code

Code is compiled using the -c parameter:

```
sdcc -mmcs51 --xram-loc 0xF000 --xram-size 3072 -I inc/ -o builddir/ -c example.c
```

The compiler will generate a number of files in builddir, among them example.asm and example.rel, the object file.

Instead of the build dir the output parameter -o can also take the name of the object file as a parameter.

SDCC can only compile one .c file at a time, thus every .c file must be compiled separately and linked in a separate step later.

4.4 Linking

Linking can be done by giving all required object files as parameters. The output file name will be based on the first input file or can explicitly be stated:

```
sdcc -mmcs51 --xram-loc 0xF000 --xram-size 3072 -I inc/ -o builddir/ -c example.rel lib1.rel lib2.rel
```

The output file would be builddir/example.ihx (Intel HEX). -o builddir/example.hex can be used to change the filename suffix to .hex, which is more convenient when using XC800 FLOAD to flash the μ C.

4.5 Programming

Whereas μ Vision as an IDE covers flashing, SDCC users need a separate tool to do so. One such tool is Infineon's XC800_FLOAD also requires DAS.

The use of FLOAD is very straightforward, make the following settings:

• Protocol: JTAG/SPD

· Physical Interface: UDAS/JTAG over USB

Target Device: XC87x-16FF

Figure 4.1 XC800_FLOAD Flash Programming Tool

The important functions of FLOAD are:

- · Open: Open a HEX file for programming
- Download: Download the program to the μC flash
- Flash Erase: Clear the μC flash memory

See also

FLOAD download: http://www.infineon.com/cms/en/product/microcontrollers/development-too.html?channel=db3a304319c6f18c011a0b54923431e5
Infineon DAS Tool Interface website: http://www.infineon.com/das/

4.6 Memory Usage Compatibility

In order to write compatible code, the compatiblity glue in the Infineon/XC878.h header maps keywords like data, idata, xdata etc. to their SDCC equivalents __data, __idata and __xdata.

Starting with SDCC 3.x C51 code and SDCC __code are largely interchangeable. This wasn't always the case, which results in two different styles for using code.

E.g. putting a variable into code space, C51 style:

ubyte code foo = 0x2A;

SDCC style:

```
const ubyte foo = 0x2A;
```

The C51 style is consistent with other variable space assignments and portable (it did not work with SDCC 2.x, but works with 3.x). The SDCC style is more logical in terms of writing code that communicates what one intends to do. The recommendation within this project is to use a redundant style, which also worked with SDCC 2.x with some C macro magic:

```
const ubyte code foo = 0x2A;
```

Function pointers are a special case. To SDCC all function pointers refer to code, C51 uses (slower, larger) generic pointers if the code keyword is missing. Unfortunately there is no compatible syntax to place code in a function pointer declaration. This can be circumvented with preprocessor instructions:

```
/*
    * SDCC does not like the \c code keyword for function pointers, C51 needs it
    * or it will use generic pointers.
    */
#ifdef SDCC
    #undef code
    #define code
#endif /* SDCC */
```

A function pointer declaration may look like this:

```
void (code *foo) (void);
```

Take care to restore code before the end of a .h file:

4.7 Interrupts

The most significant difference between interrupt handling in SDCC and C51 is that prototypes for the interrupts must be visible in the context of the main() function.

These prototypes can be enclosed in an #ifdef:

```
#ifndef _HSK_ISR_ISR_
#define _HSK_ISR_ISR_
void ISR_hsk_isr5(void) interrupt 5 using 1;
void ISR_hsk_isr6(void) interrupt 6 using 1;
void ISR_hsk_isr8(void) interrupt 8 using 1;
void ISR_hsk_isr9(void) interrupt 9 using 1;
void ISR_hsk_isr14(void) interrupt 14 using 2;
#endif /* _HSK_ISR_ISR_ */
```

In this project the issue is solved by placing the prototypes in a dedicated file with the file name suffix .isr. It is then included in the relevant headers in the following fashion:

4.7 Interrupts

```
/*
  * Required for SDCC to propagate ISR prototypes.
  */
#ifdef SDCC
#include "../hsk_isr/hsk_isr.isr"
#endif /* SDCC */
```

By not placing the ISR prototypes directly in the header file, unwanted and otherwise unnecessary inclusion of headers can be avoided. Only the small file with the ISR prototypes needs to be included in header files of ISR using code.

According to the SDCC manual functions called by ISRs must be reentrant or protected from memory overlay. This is done with a compiler instruction:

```
#pragma save
#pragma nooverlay
void isr_callback(void) using 1 {
            [...]
}
#pragma restore
```

Unfortunately this causes a compiler warning when using C51:

```
..\src\main.c(49): warning C245: unknown #pragma, line ignored
```

This can be avoided by making nooverlay conditional:

```
#pragma save
#ifdef SDCC
#pragma nooverlay
#endif
void isr_callback(void) using 1 {
            [...]
}
#pragma restore
```

The Project Makefile

The project Makefile offers access to all the UNIX command line facilities of the project. The file is written for the FreeBSD make, which is a descendant of PMake. Some convenience and elegance was sacrificed to make the Makefile GNU Make compatible.

5.1 Generating the Documentation

The Makefile can invoke Doxygen with the make targets html and pdf:

```
# make html pdf
Searching for include files...
Searching for example files...
Searching for images...
[...]
```

The html target creates the directories html/user/ and html/dev/, which contain the HTML version of this documentation.

The pdf target creates the directory pdf/ with the PDF versions of this documentation.

The targets create a Users' and a Developers' Manual. The first only includes documentation for public interfaces (i.e. headers). The second also includes the documentation of the implementation and some additional tidbits in this chapter that are only of interest when developing the libraries instead of building applications with them.

5.1.1 Dependencies

In order to build the documentation the following tools need to be installed on the system:

- Doxygen
- GraphViz (for creating dependency graphs)
- teTeX (for pdflatex)

22 The Project Makefile

5.2 Building

The Makefile uses SDCC to build. This can be changed in the first lines of the Makefile. The default target build builds all the .c files. Each .c file containing a main() function will also be linked, resulting in a .hex file:

```
# make
sdcc -mmcs51 [...] -o bin.sdcc/hsk_adc/hsk_adc.rel -c src/hsk_adc/hsk_adc.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_boot/hsk_boot.rel -c src/hsk_boot/hsk_boot.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_can/hsk_can.rel -c src/hsk_can/hsk_can.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_wdt/hsk_wdt.rel -c src/hsk_wdt/hsk_wdt.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_icm7228/hsk_icm7228.rel -c src/hsk_icm7228/hsk_icm7228.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_isr/hsk_isr.rel -c src/hsk_isr/hsk_isr.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_pwc/hsk_pwc.rel -c src/hsk_pwc/hsk_pwc.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_pwm/hsk_pwm.rel -c src/hsk_pwm/hsk_pwm.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_timers/hsk_timer01.rel -c src/hsk_timers/hsk_timer01.c
sdcc -mmcs51 [...] -o bin.sdcc/hsk_flash/hsk_flash.rel -c src/hsk_flash/hsk_flash.c
sdcc -mmcs51 [...] -o bin.sdcc/main.rel -c src/main.c
sdcc -mmcs51 [...] -o bin.sdcc/main.hex bin.sdcc/hsk_timers/hsk_timer01.rel [...]
```

All compiler output is dumped into the bin.sdcc/ directory. All the .c files are built, independent of whether they are linked into a .hex file.

5.3 Implementation Details

The Makefile consits of three parts:

- · Building
- · Documentation building
- · Cleaning

5.3.1 Building

The Makefile declares the target build first to make it the default target. None of the build targets are manually defined. Instead with every invocation of make the script scripts/build.sh is invoked to regenerate the file build.mk.

The build.sh script searches the source directory for .c files and runs scripts/depends.awk in -compile mode to generate a dependency tree.

In the next stage build.sh generates the build instructions for each .c file.

The last step is to create the linking instructions. For that the script searches for .c files that appear to contain a main() function. The scripts/depends.awk script in -link mode is used to determine all the libraries that have to be linked with each of the main() containing .c files.

5.3.2 Documentation

The targets doc and doc-private build the user and the developer documentation. The html target simply copies them to the html/ directory.

The pdf target copies the PDF versions of the manuals to pdf/, but first a PDF needs to be generated by running make in the doc/latex/ and doc-private/latex/ directories, which is done by the respective targets.

5.4 Cygwin 23

5.3.3 Clean

The clean-doc target removes the directory doc/, the clean-doc-private target removes the directory doc-private/ and the target clean-build removes the directory BUILDDIR, which defaults to bin.sdcc/.

The meta-target clean invokes all these targets.

5.4 Cygwin

Using a combination of native Binaries and Cygwin, the complete set of build and generator facilities can be used from Microsoft Windows.

The followin downloads are required:

- GIT: https://git-scm.com/downloads
- SDCC: https://sourceforge.net/projects/sdcc/files/
- Cygwin installer: http://cygwin.com/install.html

Additionally to the defaults the following Cygwin packages have to be installed:

· Devel: gcc-core

· Devel: libiconv

· Devel: make

After the installation the PATH variable should reference SDCC and Cygwin:

Figure 5.1 Cygwin and SDCC PATH environment

24 The Project Makefile

The libraries provide simple batch files to execute uVisionupdate.sh and call make. For ease of use the table of make targets is displayed:

```
Target
build (default)
Builds a .hex file and dependencies
all Builds a .hex file and devery .c library
Builds a .hex file and every .c library
Builds a .hex file and every .c library
Builds a .hex file and
```

Figure 5.2 Make and available targets in Cygwin

Code Requirements

To use these libraries the utilizing code must meet a small number of requirements.

6.1 SFR Pages

All public functions expect all pages set to 0 and reset all pages they touch to 0 before they exit.

All public functions also expect RMAP 0.

6.2 ISRs

The hsk_isr.h documentation lists the rules that need to be obeyed when implementing ISRs and callback functions:

- SFR Pages
- Register Banks

6.3 Memory

In order to access pdata and xdata the hsk_boot library must be linked.

26 Code Requirements

Variables and Memory

The Infineon/XC878.h header defines some unsigned data types:

- · bool (1 bit)
- · ulong (32 bits)
- · uword (16 bits)
- · ubyte (8 bits)

Signed types should only be used when necessary, floating point arithmetic should be avoided if in any way possible.

The correct place to store a variable depends on four factors:

- · Size
- Lifetime
- · Frequency of use during lifetime
- · Overlay possibility

Size, and frequency are the most obvious, considering Memory Limitations. It is desireable to use fast memory for frequently accessed variables. Large data structures like buffers, arrays and structs simply use too much of the precious memory space to put them anywhere but xdata.

Both the C51 and SDCC compilers use a technique called overlay to fit all variables into memory. A stack is only used in reentrant functions. Only data/idata variables can be stacked with push/pop instructions. Stacking xdata is emulated in software and thus very slow.

The overlay approach is to build a call graph and thus decide which variables are never used at the same time. These variables are mapped to the same fixed memory addresses.

Variables with a long lifetime are locals in the main() function, static variables and global variables. These variables have to keep their state during the entire runtime. Thus they use memory space that cannot be shared with other variables.

ISRs and functions called by ISRs also cannot share memory, because there is no sensible way to make sure that a given function is not running when an interrupt occurs. In technical terms, each ISR is the root node of its own call graph.

The following table lists recommended memory types:

Context	Size	Critical	Memory
*	bool	*	bit
parameter	*	*	data
const	*	*	code
local	byte, word	*	data, idata
	>= long	no	xdata
		ISR/blocking	pdata, xdata
static/global	*	no	xdata
		ISR/blocking	pdata, xdata

ISR/blocking refers to memory accessed by ISRs, functions called back by ISRs and sections of code that block an interrupt.

7.1 Implications of Overlaying

First and foremost, Overlaying is only performed for the default memory. This project is built around the small memory model, i.e. only data memory is overlaid by SDCC and C51.

The data memory is only 128 bytes minus the used register banks large. With three register banks that means only 104 bytes of data memory are available. Thus non-overlayable variables should be placed in idata in order to use data memory for well overlayable variables.

Furthermore SDCC does not build a complete call tree, so it cannot eliminate unused functions like C51/LX51 and only overlays leaf functions. I.e. only functions that call no other functions are overlaid.

For SDCC overlaying ISRs is not possible, that is why locals of ISRs should in most cases be placed in idata, despite the performance impact.

A limitation of C51/LX51 is that it ignores explicit memory assignments in function parameters and always places them in the default memory, if they cannot be passed in registers. This limitation does not appear to be documented, but it was reported by an ARM support employee in case #530915.

SDCC does not share this limitation, it can place function parameters in all kinds of memory. Because such assignments are ignored by C51/LX51, parameter memory type should be optimised for SDCC. Explicit memory assignments prevent parameters from being passed in registers. SDCC only passes the first non-bool parameter in registers, so optimizations should be performed on the non-overlayable arguments following it.

For single use functions like init and enable functions, it might make sense to pass parameters in xdata. In such cases the SDCC memory assignment style should be used, to give the C51 preprocessor the chance to remove the assignments.

```
void hsk_can_init(const ubyte pins, const ulong __xdata baud);
```

If an application runs out of data space locals should be put into idata memory. Variables accessed by IS \leftarrow Rs/ISR callbacks should be placed in pdata or idata. If that suffices the code should be checked for frequently accessed variables. The most frequent ones should be assigned to the default memory type if possible.

Both SDCC and C51 provide detailed information about memory use. The effects of relocating variables are often counter-intuitive, because it may interfere with several compiler and linker optimizations. This it is necessary to make use of this information in order to make sure that changes have the desired effect.

For SDCC check the assembler output for the DSEG area (search regex $/ \$ area DSEG/):

The .map file lists the complete memory layout produced by the linker (search regex $/^DSEG/$):

Area	Addr	Size	Decimal Bytes	(Attributes)
DSEG	00000000	00000080 =	128. bytes	(REL, CON)
Value G	Global		Global Defined	d In Module
00000018 0000001C 0000001E 00000025 00000027 00000028	_hsk_pwm_init_P. _hsk_pwm_channe _hsk_pwm_channe _hsk_icm7228_wr _hsk_icm7228_wr _hsk_icm7228_wr	l_set_PARM_2 l_set_PARM_3 iteDec_PARM_2 iteDec_PARM_3	hsk_pwm hsk_pwm hsk_pwm hsk_icm7228 hsk_icm7228 hsk_icm7228	

In μ Vision the .map file can be accessed by double clicking the project in the project tree view (search string "D A T A"):

START	STOP	LENGTH	ALIGN	RELOC	MEMORY CLASS	SEGMENT NAME
=======						
* * * * *	* * * * *	* D A T	A M	EMORY	* * * * * *	* * * * * * *
000000H	000007H	000008H		AT	DATA	"REG BANK 0"
000008H	00000FH	000008H		AT	DATA	"REG BANK 1"
000010H	000017H	000008H		AT	DATA	"REG BANK 2"
000018H	00001BH	000004H	BYTE	UNIT	IDATA	_IDATA_GROUP_
00001CH.0	00001FH.7	000004H.0			**GAP**	
000020H.0	000020H.4	000000H.5	BIT	UNIT	BIT	_BIT_GROUP_
000020H.5	000020H.5	000000H.1	BIT	UNIT	BIT	?BI?HSK_CAN
000020H.6	000020H	000000H.2			* *GAP * *	
000021H	00003FH	00001FH	BYTE	UNIT	DATA	_DATA_GROUP_
000040H	000040H	000001H	BYTE	UNIT	IDATA	?STACK

See also

Overlaying in the SDCC manual Global Registers used for Parameter Passing in the SDCC manual

Coding Conventions and Guidelines

This section describes the coding style used in these libraries.

The term *member* in this section applies to functions, globals, structs, unions, typedefs and defines of the current library.

8.1 Code/Comment Indention and Formatting

Use 8 spaces wide real tabs for indention. Don't put spaces before a tab, even in comments, unless it is in a code or verbatim section.

In the following example tabs are symbolised by <tab> and the beginning of a line by $^{\land}$:

Formatting on the other hand should be done using spaces. This way, no matter the displayed tab width, formatted code and comments will always look as intended.

The values assigned to preprocessor defines should be aligned. The recommended indention is 4 spaces behind the longest identifier in the file. All other defines should be aligned to the same column.

In the next example FOOBAR is the longest identifier and thus dictates the formatting of all values:

```
#define FOO     1
#define BAR     2
#define FOOBAR     3
#define ZOOM     4
```


Figure 8.1 Keil µVision Editor tab of the configuration dialogue

8.2 General Comment Guidlines

Every member is to be documented in one of the following manners:

- <brief>
 - A short, single sentence description of the member
- <description>
 - A detailed description of the member

8.2.1 List Formatting

Descriptions may contain syntactical sugar such as lists:

```
This is a list:
- List entry 0
- List entry 1 is a little wider than 80 characters and thus needs to cover multiple lines
- List entry 1.0
- List entry 2
```

List entries are started with a dash. Every sublevel is indented by 1 tab per level. In multiple line entries the successive lines are indented 2 additional spaces to align them with the previous line.

Unless it is a keyword the first word of a list entry needs to be a capital letter. List entries do not end with a full stop.

8.2.2 Tables

The syntax for tables is:

The resulting table looks like this:

Heading 0	Heading 1
Row 0, col 0	Row 0, col 1
Row 1, col 0	Row 1, col 1

Use a colons in the seperator row to align columns:

```
| Heading Left | Heading Centre | Heading Right | |:-----|:-----:| | Left | Centre | Right |
```

Heading Left	Heading Centre	Heading Right
Left	Centre	Right

Note

Take care to obey the Code/Comment Indention and Formatting guidelines, using the wrong tab width looks especially disturbing in the plain text version of a table.

8.2.3 Inline Comments

Inline comments not intended to appear in the documentation can take one of the following shapes. Compact:

```
/\star <comment> \star/
```

Multiline compact:

Significant:

8.3 Function Documentation

Every parameter of a member function and the return value if present need JavaDoc style <code>@param</code> and <code>@return</code> documentations in their descriptions:

8.3.1 Return Values

Use @retval to document return values with logical instead of numerical meanings:

```
@retval 0
  The operation failed
@retval 1
  The operation succeeded
```

The resulting documentation takes the following appearance:

Return values

0	The operation failed
1	The operation succeeded

8.3.2 Public and Private Functions

The documentation to public functions belongs into the \cdot h file. All functions that have a prototype in the header file are considered public, private functions are those, which are only used internally in the \cdot c file.

If a function is public additional documentation may be placed in the .c file, it will only show up in the developers' manual.

Inline comments within functions may appear in JavaDoc style, in that case they are also appended to the function documentation of the developers' manual.

Private functions should be marked with " at the end of their documentation block.

8.4 Grouping Documentation

In some cases a set of documented members belong together, such as a set of defines for a certain function parameter. In such a cases the members can be grouped:

Groups are listed in the Modules chapter.

8.5 File Naming and Documentation

Three different file type suffixes are used in the construction of these libraries, .c for C files, .h for header files and .isr for headers that only contain ISR prototypes.

The following naming conventions exist for each file:

```
hsk_<category>/hsk_<name>.<suffix>
```

- <category>
 - The library category, often identical to name, but not necessarily so
- <name>
 - The name of the library
- <suffix>
 - The file type suffix

8.5.1 Headers

Be greedy. Only members, which are required to use a library should be listed in header files.

Header files in this project should avoid including other headers. There are two exceptions to that rule, headers containing a define to generate code might have to include headers for the generated code and headers. The second exception are ISR Headers.

Every header file begins with a JavaDoc style comment:

```
/** \file
  * HSK <brief> headers
  *
  * <description>
  *
  * @author <author tag>
  */
```

- <brief>
 - A descriptive title such as "Analog Digital Conversion" this description appears in the file list, nouns, verbs and adjectives in the brief should start with capital letters
- <description>
 - A text containing all the necessary information to use the provided functions
- <author tag>
 - A short author tag from Authors
- <iso date>
 - The ISO 8601 date (YYYY-MM-DD) of the last edit

The next block contains the traditional header opening:

```
#ifndef _<FILE>_
#define _<FILE>_
```

- <FILE>
 - The file name with the following translation '[:lower:].' '[:upper:]_', e.g. hsk_isr.h becomes HSK_ISR_H

The $\verb§#ifndef|$ block is closed at the end of the header file with:

```
#endif /* _<FILE>_ */
```

Prototypes etc. belong within the block.

8.5.2 C Files

Like header files every C file starts with a JavaDoc style comment:

```
/** \file
  * HSK <bri> implementation
  *
  * <description>
  *
  * @author <author tag>
  */
```

- <brief>
 - Should be the same title as in the header file
- <description>

 Instead of how to use the library this should make mention of all things of interest, when working on the implementation

```
• <author tag>
```

- A short author tag from Authors

The first include in a C file is the Infineon/XC878.h header, followed by the own header file. The next (optional) include block contains all the required C library headers. The final include block includes the headers of other libraries. The following example is from hsk_adc.c:

```
#include <Infineon/XC878.h>
#include "hsk_adc.h"
#include <string.h> /* memset() */
#include "../hsk isr/hsk isr.h"
```

Comments for public members of a C file do not need to be copied from the header.

8.5.3 ISR Headers

The ISR headers exist solely for an oddity of SDCC. All interrupts must be visible from the context of the main() function.

Every implementation providing an interrupt has has to provide a .isr file. The file should just contain a very plain list of prototypes, the following examples is from hsk_timer01.isr:

```
#ifndef _HSK_TIMER01_ISR_
#define _HSK_TIMER01_ISR_
void ISR_hsk_timer0(void) interrupt 1 using 1;
void ISR_hsk_timer1(void) interrupt 3 using 1;
#endif /* _HSK_TIMER01_ISR_ */
```

The .isr file should be included from the header file of the library providing it as well as from the header files of all libraries using that library.

The file should be included in the following manner:

```
/*
 * ISR prototypes for SDCC.
 */
#ifdef SDCC
#include "hsk_timer01.isr"
#endif /* SDCC */
```

8.6 Member Naming Conventions

All members except defines and statics have the same structure of context prefix. Contexts can be nested, each level of context is separated by an underscore. Member names following the underscore separated context are camel case. The root context is always the library, subcontexts need to have a central concept or data structure that defines them.

Defines are always specified in capitals. Thus all separation in the names of defines is done by underscore. Public defines have the library name without

Statics are considered private within the context and thus do not require a prefix.

HSK as a prefix.

8.6.1 Public Example

This subsection explains the naming conventions in public scope (i.e. in a header file) using the example of the hsk can library.

Public defines are provided to interpret return values or to specify possible parameters:

Typedefs give primitive data types a meaningful name for use in a certain context. This library has functions that work on CAN nodes and functions that work on message objects:

```
typedef ubyte hsk_can_node;
typedef ubyte hsk_can_msg;
```

The CAN nodes are the central structure of the library. Functions in the hsk_can context always take a node as the first parameter:

```
void hsk_can_init(const ubyte pins, const ulong __xdata baud);
void hsk_can_enable(const hsk_can_node node);
```

Other functions work around the concepts of messages and message data, which are represented in their context prefixes:

8.6.2 Defines

In the private context only a few rules apply to naming defines.

If defines are named after registers or bits from the μC manual, their original spelling should be preserved, even if it means including non-capital letters:

```
#define NBTRx 0x0084
```

Apart from that special naming conventions for defines only apply to register bits. Every register bit definition is prefixed by BIT. Bit fields also specify a count:

```
#define BIT_RXSEL 0
#define CNT_RXSEL 3
```

Chapter 9

Authors

Authors use short tags in the code, this is the complete list of authors and the aliases they use.

Author

kami

Dominic Fandrey dominic.fandrey@highspeed-karlsruhe.de kamikaze@bsdforen.de

Head of Electronics Development season 2010/2011, 2011/2012

40 Authors

Chapter 10

Deprecated List

Global CAN_ENDIAN_INTEL

In favour of shorter and cleaner code the hsk_can_data_getSignal() and hsk_can_data_setSignal() functions were switched to using boolean (motorola positive) logic

Global CAN_ENDIAN_MOTOROLA

In favour of shorter and cleaner code the hsk_can_data_getSignal() and hsk_can_data_setSignal() functions were switched to using boolean (motorola positive) logic

Global hsk_adc_open

Use hsk_adc_open10() or hsk_adc_open8() as appropriate

Global hsk_adc_warmup

Use hsk_adc_warmup10()

42 Deprecated List

Chapter 11

Module Index

11.1 Modules

Here is a list of all modules:

CAN Node Status Fields
External Interrupt Channels
External Interrupt Triggers
External Interrupt Input Ports
Input Port Access
Output Port Access
I/O Port Pull-Up/-Down Setup
Variable Access
Pulse Width Detection Units
Pulse Width Times
Pulse Frequencies
Pulse Duty Times
SSC I/O Ports

44 Module Index

Chapter 12

Data Structure Index

12.1 Data Structures

Here are the data structures with brief descriptions:

isk_flash_struct	
This struct is a template for data that can be written to the D-Flash	75
sk_isr14_callback	
Shared non-maskable interrupt routine	77
sk_isr5_callback	
Shared interrupt 5 routine	79
sk_isr6_callback	
Shared interrupt 6 routine	81
sk_isr8_callback	
Shared interrupt 8 routine	83
sk_isr9_callback	
Shared interrupt 9 routine	86

46 Data Structure Index

Chapter 13

File Index

13.1 File List

Here is a list of all documented files with brief descriptions:

config.h
Configuration for the Infineon XC800 Starter Kit
main.c
Simple test file that is not linked into the library
hsk_adc/hsk_adc.c
HSK Analog Digital Conversion implementation
hsk_adc/hsk_adc.h
HSK Analog Digital Conversion headers
hsk_boot/hsk_boot.c
HSK Boot implementation
hsk_boot/hsk_boot.h
HSK Boot headers
hsk_can/hsk_can.c
HSK Controller Area Network implementation
hsk_can/hsk_can.h
HSK Controller Area Network headers
hsk_ex/hsk_ex.c HSK External Interrupt Routing implementation
hsk_ex/hsk_ex.h HSK External Interrupt Routing headers
hsk filter/hsk filter.h
HSK Filter generator
hsk flash/hsk flash.c
HSK Flash Facility implementation
hsk flash/hsk flash.h
HSK Flash Facility headers
hsk_icm7228/hsk_icm7228.c
HSK ICM7228 8-Digit LED Display Decoder Driver implementation
hsk icm7228/hsk icm7228.h
HSK ICM7228 8-Digit LED Display Decoder Driver generator
hsk io/hsk io.h
HSK I/O headers
hsk isr/hsk isr.c
HSK Shared Interrupt Service Routine implementation
hsk_isr/hsk_isr.h
HSK Shared Interrupt Service Routine headers

48 File Index

hsk_pwc/hsk_pwc.c	
HSK Pulse Width Counter implementation	31
hsk_pwc/hsk_pwc.h	
HSK Pulse Width Counter headers	19
hsk_pwm/hsk_pwm.c	
HSK Pulse Width Modulation implementation	30
hsk_pwm/hsk_pwm.h	
HSK Pulse Width Modulation headers	38
hsk_ssc/hsk_ssc.c	
HSK Synchronous Serial Interface implementation	78
hsk_ssc/hsk_ssc.h	
HSK Synchronous Serial Interface headers	35
hsk_timers/hsk_timer01.c	
HSK Timer 0/1 implementation	90
hsk_timers/hsk_timer01.h	
HSK Timer 0/1 headers) 6
hsk_wdt/hsk_wdt.c	
HSK Watchdog Timer implementation	99
hsk_wdt/hsk_wdt.h	
HSK Watchdog Timer headers	12

Chapter 14

Module Documentation

14.1 CAN Node Status Fields

Macros

• #define CAN_STATUS_LEC 0

The Last Error Code field provides the error triggered by the last message on the bus.

#define CAN_STATUS_TXOK 1

Message Transmitted Successfully.

• #define CAN_STATUS_RXOK 2

Message Received Successfully.

• #define CAN_STATUS_ALERT 3

Alert Warning.

• #define CAN_STATUS_EWRN 4

Error Warning Status.

• #define CAN_STATUS_BOFF 5

Bus-off Status.

14.1.1 Detailed Description

This group of defines specifies status fields that can be queried from hsk_can_status().

14.1.2 Macro Definition Documentation

14.1.2.1 CAN_STATUS_ALERT

#define CAN_STATUS_ALERT 3

Alert Warning.

Return values

0	No warnings
1	One of the following error conditions applies: CAN_STATUS_EWRN; CAN_STATUS_BOFF

14.1.2.2 CAN_STATUS_BOFF

#define CAN_STATUS_BOFF 5

Bus-off Status.

Return values

0	The bus is not off
1	The bus is turned off due to an error counter exceeding 256

14.1.2.3 CAN_STATUS_EWRN

#define CAN_STATUS_EWRN 4

Error Warning Status.

Return values

0	No error warnings exceeded
1	An error counter has exceeded the warning level of 96

14.1.2.4 CAN_STATUS_LEC

#define CAN_STATUS_LEC 0

The Last Error Code field provides the error triggered by the last message on the bus.

For details check table 16-8 from the User Manual 1.1.

Return values

0	No Error	
1	Stuff Error, 5 consecutive bits of the same value are stuffed, this error is triggered when the stuff bit is missing	
2	Form Error, the frame format was violated	
3	Ack Error, the message was not acknowledged, maybe nobody else is on the bus	
4	Bit1 Error, a recessive (1) bit was sent out of sync	
5	Bit0 Error, a recessive (1) bit won against a dominant (0) bit	
6	CRC Error, wrong checksum for a received message	

14.1.2.5 CAN_STATUS_RXOK

#define CAN_STATUS_RXOK 2

Message Received Successfully.

Return values

0	No successful receptions since the last time this field was queried	
1	A message was received successfully	

14.1.2.6 CAN_STATUS_TXOK

#define CAN_STATUS_TXOK 1

Message Transmitted Successfully.

Return values

		No successful transmission since TXOK was queried last time
1 A mess		A message was transmitted and acknowledged successfully

14.2 External Interrupt Channels

This group consists of defines representing external interrupt channels.

Macros

```
• #define EX_EXINT0 0
```

External interrupt channel EXINTO.

• #define EX_EXINT1 1

External interrupt channel EXINT1.

• #define EX_EXINT2 2

External interrupt channel EXINT2.

• #define EX EXINT3 3

External interrupt channel EXINT3.

• #define EX_EXINT4 4

External interrupt channel EXINT4.

• #define EX EXINT5 5

External interrupt channel EXINT5.

• #define EX_EXINT6 6

External interrupt channel EXINT6.

14.2.1 Detailed Description

This group consists of defines representing external interrupt channels.

14.2.2 Macro Definition Documentation

14.2.2.1 EX_EXINT0

```
#define EX_EXINT0 0
```

External interrupt channel EXINT0.

Mask with EA, disable with EX0.

14.2.2.2 EX_EXINT1

```
#define EX_EXINT1 1
```

External interrupt channel EXINT1.

Mask with EA, disable with EX1.

14.2.2.3 EX_EXINT2

#define EX_EXINT2 2

External interrupt channel EXINT2.

Mask with EX2.

14.2.2.4 EX_EXINT3

#define EX_EXINT3 3

External interrupt channel EXINT3.

Mask with EXM.

14.2.2.5 EX_EXINT4

#define EX_EXINT4 4

External interrupt channel EXINT4.

Mask with EXM.

14.2.2.6 EX_EXINT5

#define EX_EXINT5 5

External interrupt channel EXINT5.

Mask with EXM.

14.2.2.7 EX_EXINT6

#define EX_EXINT6 6

External interrupt channel EXINT6.

Mask with EXM.

14.3 External Interrupt Triggers

This group contains defines representing the different edge triggers.

Macros

```
• #define EX_EDGE_DISABLE 3
```

Deactivate external interrupt.

• #define EX_EDGE_RISING 0

Trigger interrupt on rising edge.

• #define EX_EDGE_FALLING 1

Trigger interrupt on falling edge.

• #define EX_EDGE_BOTH 2

Trigger interrupt on both edges.

14.3.1 Detailed Description

This group contains defines representing the different edge triggers.

14.3.2 Macro Definition Documentation

```
14.3.2.1 EX EDGE BOTH
```

```
#define EX_EDGE_BOTH 2
```

Trigger interrupt on both edges.

```
14.3.2.2 EX_EDGE_DISABLE
```

```
#define EX_EDGE_DISABLE 3
```

Deactivate external interrupt.

14.3.2.3 EX_EDGE_FALLING

```
#define EX_EDGE_FALLING 1
```

Trigger interrupt on falling edge.

14.3.2.4 EX_EDGE_RISING

```
#define EX_EDGE_RISING 0
```

Trigger interrupt on rising edge.

14.4 External Interrupt Input Ports

Each define of this group represents an external interrupt port configuration.

Macros

```
• #define EX EXINTO P05 0
     External interrupt EXINT0 input port P0.5.
• #define EX_EXINT3_P11 1
     External interrupt EXINT3 input port P1.1.

    #define EX EXINTO P14 2

     External interrupt EXINT0 input port P1.4.
• #define EX_EXINT5_P15 3
     External interrupt EXINT5 input port P1.5.
• #define EX EXINT6 P16 4
     External interrupt EXINT6 input port P1.6.
#define EX_EXINT3_P30 5
     External interrupt EXINT3 input port P3.0.
• #define EX EXINT4 P32 6
     External interrupt EXINT4 input port P3.2.
#define EX_EXINT5_P33 7
     External interrupt EXINT5 input port P3.3.
• #define EX EXINT6 P34 8
     External interrupt EXINT6 input port P3.4.
#define EX_EXINT4_P37 9
     External interrupt EXINT4 input port P3.7.
• #define EX_EXINT3_P40 10
     External interrupt EXINT3 input port P4.0.

    #define EX EXINT4 P41 11

     External interrupt EXINT4 input port P4.1.
• #define EX_EXINT6_P42 12
     External interrupt EXINT6 input port P4.2.
• #define EX_EXINT5_P44 13
     External interrupt EXINT5 input port P4.4.
• #define EX_EXINT6_P45 14
     External interrupt EXINT6 input port P4.5.

    #define EX EXINT1 P50 15

     External interrupt EXINT1 input port P5.0.
• #define EX_EXINT2_P51 16
     External interrupt EXINT2 input port P5.1.
• #define EX EXINT5 P52 17
     External interrupt EXINT5 input port P5.2.
#define EX_EXINT1_P53 18
     External interrupt EXINT1 input port P5.3.
• #define EX_EXINT2_P54 19
     External interrupt EXINT2 input port P5.4.
• #define EX_EXINT3_P55 20
     External interrupt EXINT3 input port P5.5.
• #define EX EXINT4 P56 21
```

External interrupt EXINT4 input port P5.6.

External interrupt EXINT6 input port P5.7.

#define EX EXINT6 P57 22

14.4.1 Detailed Description

Each define of this group represents an external interrupt port configuration.

14.4.2 Macro Definition Documentation

```
14.4.2.1 EX_EXINT0_P05
```

```
#define EX_EXINTO_P05 0
```

External interrupt EXINT0 input port P0.5.

14.4.2.2 EX_EXINT0_P14

```
#define EX_EXINTO_P14 2
```

External interrupt EXINT0 input port P1.4.

14.4.2.3 EX_EXINT1_P50

```
#define EX_EXINT1_P50 15
```

External interrupt EXINT1 input port P5.0.

14.4.2.4 EX_EXINT1_P53

```
#define EX_EXINT1_P53 18
```

External interrupt EXINT1 input port P5.3.

14.4.2.5 EX_EXINT2_P51

```
#define EX_EXINT2_P51 16
```

External interrupt EXINT2 input port P5.1.

14.4.2.6 EX_EXINT2_P54

#define EX_EXINT2_P54 19

External interrupt EXINT2 input port P5.4.

```
14.4.2.7 EX_EXINT3_P11
#define EX_EXINT3_P11 1
External interrupt EXINT3 input port P1.1.
14.4.2.8 EX_EXINT3_P30
#define EX_EXINT3_P30 5
External interrupt EXINT3 input port P3.0.
14.4.2.9 EX_EXINT3_P40
#define EX_EXINT3_P40 10
External interrupt EXINT3 input port P4.0.
14.4.2.10 EX_EXINT3_P55
#define EX_EXINT3_P55 20
External interrupt EXINT3 input port P5.5.
14.4.2.11 EX_EXINT4_P32
#define EX_EXINT4_P32 6
External interrupt EXINT4 input port P3.2.
14.4.2.12 EX EXINT4 P37
#define EX_EXINT4_P37 9
External interrupt EXINT4 input port P3.7.
14.4.2.13 EX_EXINT4_P41
#define EX_EXINT4_P41 11
External interrupt EXINT4 input port P4.1.
```

14.4.2.14 EX_EXINT4_P56 #define EX_EXINT4_P56 21 External interrupt EXINT4 input port P5.6.

14.4.2.15 EX_EXINT5_P15 #define EX_EXINT5_P15 3 External interrupt EXINT5 input port P1.5. 14.4.2.16 EX_EXINT5_P33 #define EX_EXINT5_P33 7 External interrupt EXINT5 input port P3.3. 14.4.2.17 EX_EXINT5_P44 #define EX_EXINT5_P44 13 External interrupt EXINT5 input port P4.4. 14.4.2.18 EX_EXINT5_P52 #define EX_EXINT5_P52 17 External interrupt EXINT5 input port P5.2. 14.4.2.19 EX_EXINT6_P16 #define EX_EXINT6_P16 4 External interrupt EXINT6 input port P1.6. 14.4.2.20 EX_EXINT6_P34 #define EX_EXINT6_P34 8 External interrupt EXINT6 input port P3.4. 14.4.2.21 EX_EXINT6_P42 #define EX_EXINT6_P42 12 External interrupt EXINT6 input port P4.2. 14.4.2.22 EX_EXINT6_P45 #define EX_EXINT6_P45 14 External interrupt EXINT6 input port P4.5. 14.4.2.23 EX_EXINT6_P57

#define EX_EXINT6_P57 22

External interrupt EXINT6 input port P5.7.

Generated by Doxygen

14.5 Input Port Access 59

14.5 Input Port Access

This group contains defines and macros to initialize port pins as inputs and read them.

Macros

```
    #define IO_PORT_IN_INIT(port, pins)
    Initializes a set of port pins as inputs.
```

• #define IO_PORT_ON_GND 0

Bit mask to set the logical 1 to GND level for all selected pins.

• #define IO_PORT_ON_HIGH 0xff

Bit mask to set the logical 1 to high level for all selected pins.

• #define IO_PORT_GET(port, pins, on)

Evaluates to a bit mask of logical pin states of a port.

14.5.1 Detailed Description

This group contains defines and macros to initialize port pins as inputs and read them.

14.5.2 Macro Definition Documentation

14.5.2.1 IO_PORT_GET

Value:

Evaluates to a bit mask of logical pin states of a port.

Note

Can also be used for Output Port Access

Warning

Expects port page 0 and RMAP 0, take care in ISRs

Parameters

port	The parallel port to access	
pins	A bit mask of the pins to select	
Generated by doi:tygensk of pins that defines the states which repre		ĺ

14.5.2.2 IO_PORT_IN_INIT

Value:

Initializes a set of port pins as inputs.

Warning

Expects port page 0 and RMAP 0, take care in ISRs

Parameters

port	The parallel port to configure
pins	A bit mask of the pins to select

14.5.2.3 IO_PORT_ON_GND

```
#define IO_PORT_ON_GND 0
```

Bit mask to set the logical 1 to GND level for all selected pins. $\,$

Note

Can also be used for Output Port Access

14.5.2.4 IO_PORT_ON_HIGH

```
#define IO_PORT_ON_HIGH 0xff
```

Bit mask to set the logical 1 to high level for all selected pins.

Note

Can also be used for Output Port Access

14.6 Output Port Access

This group contains macros and defines to initialize port pins for output and safely set output states.

Macros

- #define IO_PORT_STRENGTH_WEAK 0
 - Bit mask to set weak drive strength for all selected pins.
- #define IO_PORT_STRENGTH_STRONG 0xff
 - Bit mask to set strong drive strength for all selected pins.
- #define IO_PORT_DRAIN_DISABLE 0
 - Bit mask to disable drain mode for all selected pins.
- #define IO PORT DRAIN ENABLE 0xff
 - Bit mask to enable drain mode for all selected pins.
- #define IO_PORT_OUT_INIT(port, pins, strength, drain, on, set)
 - Initializes a set of port pins as outputs.
- #define IO_PORT_OUT_SET(port, pins, on, set)
 - Set a set of output port pins.

14.6.1 Detailed Description

This group contains macros and defines to initialize port pins for output and safely set output states.

14.6.2 Macro Definition Documentation

14.6.2.1 IO_PORT_DRAIN_DISABLE

```
#define IO_PORT_DRAIN_DISABLE 0
```

Bit mask to disable drain mode for all selected pins.

14.6.2.2 IO_PORT_DRAIN_ENABLE

```
#define IO_PORT_DRAIN_ENABLE 0xff
```

Bit mask to enable drain mode for all selected pins.

14.6.2.3 IO_PORT_OUT_INIT

Value:

```
{
    port##_DIR |= pins; \
    SFR_PAGE(_pp3, noSST); \
    port##_OD &= (drain) | ~(pins); \
    port##_OD |= (drain) & (pins); \
    port##_DS &= (strength) | ~(pins); \
    port##_DS |= (strength) & (pins); \
    SFR_PAGE(_pp0, noSST); \
    port##_DATA &= ((set) ^ ~(on)) | ~(pins); \
    port##_DATA |= ((set) ^ ~(on)) & (pins); \
}
```

Initializes a set of port pins as outputs.

Warning

Expects port page 0 and RMAP 0, take care in ISRs

Parameters

port	The parallel port to configure
pins	A bit mask of the pins to select
strength	A bit mask of pins with strong drive strength
drain	A bit mask of pins that only drive GND
on	A bit mask of pins that defines the states which represent on

See also

```
IO_PORT_ON_GND
IO_PORT_ON_HIGH
```

Parameters

```
set Initial logical values for the defined outputs
```

14.6.2.4 IO_PORT_OUT_SET

```
on,
set )
```

Value:

```
{\
          port##_DATA &= ((set) ^ ~(on)) | ~(pins); \
          port##_DATA |= ((set) ^ ~(on)) & (pins); \
}
```

Set a set of output port pins.

Warning

Expects port page 0 and RMAP 0, take care in ISRs

Parameters

port	The parallel port to set
pins	A bit mask of the pins to select
on	A bit mask of pins that defines the states which represent on

See also

```
IO_PORT_ON_GND
IO_PORT_ON_HIGH
```

Parameters

se	et	Set logical values for the defined outputs
----	----	--

14.6.2.5 IO_PORT_STRENGTH_STRONG

```
#define IO_PORT_STRENGTH_STRONG 0xff
```

Bit mask to set strong drive strength for all selected pins.

14.6.2.6 IO_PORT_STRENGTH_WEAK

```
#define IO_PORT_STRENGTH_WEAK 0
```

Bit mask to set weak drive strength for all selected pins.

14.7 I/O Port Pull-Up/-Down Setup

This group contains macros and defines to initialize the pull-up/-down devices of port pins.

Macros

```
• #define IO_PORT_PULL_DISABLE 0
```

Bit mask to disable pull up/down for all selected pins.

• #define IO_PORT_PULL_ENABLE 0xff

Bit mask to enable pull up/down for all selected pins.

• #define IO_PORT_PULL_DOWN 0

Bit mask to select pull down for all selected pins.

• #define IO_PORT_PULL_UP 0xff

Bit mask to select pull up for all selected pins.

#define IO_PORT_PULL_INIT(port, pins, pull, dir)

Sets the pull-up/-down properties of port pins.

14.7.1 Detailed Description

This group contains macros and defines to initialize the pull-up/-down devices of port pins.

14.7.2 Macro Definition Documentation

```
14.7.2.1 IO_PORT_PULL_DISABLE
```

```
#define IO_PORT_PULL_DISABLE 0
```

Bit mask to disable pull up/down for all selected pins.

```
14.7.2.2 IO_PORT_PULL_DOWN
```

```
#define IO_PORT_PULL_DOWN 0
```

Bit mask to select pull down for all selected pins.

14.7.2.3 IO_PORT_PULL_ENABLE

```
#define IO_PORT_PULL_ENABLE 0xff
```

Bit mask to enable pull up/down for all selected pins.

14.7.2.4 IO_PORT_PULL_INIT

Value:

```
{
    SFR_PAGE(_pp1, noSST); \
    port##_PUDSEL &= (dir) | ~(pins); \
    port##_PUDSEL |= (dir) & (pins); \
    port##_PUDEN &= (pull) | ~(pins); \
    port##_PUDEN |= (pull) & (pins); \
    SFR_PAGE(_pp0, noSST); \
}
```

Sets the pull-up/-down properties of port pins.

Warning

Expects port page 0 and RMAP 0, take care in ISRs

Parameters

port	The parallel port to configure
pins	A bit mask of the pins to select
pull	A bit mask of pins to activate the internal pull up/down device for
dir	A bit mask of pins to set the pull direction

14.7.2.5 IO_PORT_PULL_UP

```
#define IO_PORT_PULL_UP 0xff
```

Bit mask to select pull up for all selected pins.

14.8 Variable Access

This group specifies macros to access bits of a variable.

Macros

```
    #define IO_VAR_SET(var, bits, on, set)
    Set a set of variable bits.

#define IO_VAR_CET(var, bits, on)
```

• #define IO_VAR_GET(var, bits, on)

Evaluates to a bit mask of logical states of a variable.

14.8.1 Detailed Description

This group specifies macros to access bits of a variable.

Their value lies in the seperation of encoded on state and logical on (1), as well as the safe bit masking.

14.8.2 Macro Definition Documentation

14.8.2.1 IO_VAR_GET

```
#define IO_VAR_GET(
     var,
     bits,
     on )
```

Value:

Evaluates to a bit mask of logical states of a variable.

Parameters

var	The variable to access
bits	A bit mask of the bits to select
on	A bit mask that defines the states which represent true

14.8.2.2 IO_VAR_SET

```
#define IO_VAR_SET(
     var,
     bits,
```

14.8 Variable Access 67

```
on,
set )
```

Value:

```
{\
     (var) &= ((set) ^ ~(on)) | ~(bits); \
     (var) |= ((set) ^ ~(on)) & (bits); \
}
```

Set a set of variable bits.

Parameters

var	The variable to set
bits	A bit mask of the bits to select
on	A bit mask that defines the states which represent true
set	Set logical values for the defined bits

14.9 Pulse Width Detection Units

This group of defines is used to select return format of hst.pwc_channel_getValue().

Modules

· Pulse Width Times

The defines are for returning average pulse width.

Pulse Frequencies

These defines are for returning average frequencies.

• Pulse Duty Times

These defines are used for returning the duty time of the latest pulse.

Macros

* #define PWC_UNIT_SUM_RAW 0 ${\it Sum~of~buffered~pulse~widths~in~multiples~of}~1/48*10^{-6}s.$

14.9.1 Detailed Description

This group of defines is used to select return format of hsk_pwc_channel_getValue().

14.9.2 Macro Definition Documentation

```
14.9.2.1 PWC_UNIT_SUM_RAW
```

```
#define PWC_UNIT_SUM_RAW 0
```

Sum of buffered pulse widths in multiples of $1/48 * 10^{-6}s$.

This is the sum of the buffered values, not the average.

Use this if precision is of the utmost importance.

14.10 Pulse Width Times 69

14.10 Pulse Width Times

The defines are for returning average pulse width.

Macros

```
• #define PWC_UNIT_WIDTH_RAW 1 
 Average of buffered pulse widths in multiples of 1/48*10^{-6}s.
```

• #define PWC_UNIT_WIDTH_NS 2

Average of buffered pulse widths in multiples of $10^{-9}s$.

• #define PWC_UNIT_WIDTH_US 3

Average of buffered pulse widths in multiples of $10^{-6}s$.

• #define PWC_UNIT_WIDTH_MS 4

Average of buffered pulse widths in multiples of $10^{-3}s$.

14.10.1 Detailed Description

The defines are for returning average pulse width.

14.10.2 Macro Definition Documentation

```
14.10.2.1 PWC_UNIT_WIDTH_MS
```

```
#define PWC_UNIT_WIDTH_MS 4
```

Average of buffered pulse widths in multiples of $10^{-3}s$.

```
14.10.2.2 PWC_UNIT_WIDTH_NS
```

```
#define PWC_UNIT_WIDTH_NS 2
```

Average of buffered pulse widths in multiples of $10^{-9}s$.

```
14.10.2.3 PWC_UNIT_WIDTH_RAW
```

```
#define PWC_UNIT_WIDTH_RAW 1
```

Average of buffered pulse widths in multiples of $1/48 * 10^{-6} s$.

14.10.2.4 PWC_UNIT_WIDTH_US

```
#define PWC_UNIT_WIDTH_US 3
```

Average of buffered pulse widths in multiples of $10^{-6}s$.

14.11 Pulse Frequencies

These defines are for returning average frequencies.

Macros

```
• #define PWC_UNIT_FREQ_S 5 
 Average frequency of buffered pulses in multiples of 1/s.
```

• #define PWC UNIT FREQ M 6

Average frequency of buffered pulses in multiples of 1/m.

• #define PWC UNIT FREQ H 7

Average frequency of buffered pulses in multiples of 1/h.

14.11.1 Detailed Description

These defines are for returning average frequencies.

14.11.2 Macro Definition Documentation

```
14.11.2.1 PWC_UNIT_FREQ_H
```

```
#define PWC_UNIT_FREQ_H 7
```

Average frequency of buffered pulses in multiples of 1/h.

To prevent overflow issues this value is always a multiple of the number of averaged values * 60.

This is just a convenience feature for quick testing, it is possible to achieve much better precision if the use case is known.

```
14.11.2.2 PWC_UNIT_FREQ_M
```

```
#define PWC_UNIT_FREQ_M 6
```

Average frequency of buffered pulses in multiples of 1/m.

To prevent overflow issues this value is always a multiple of the number of averaged values.

```
14.11.2.3 PWC_UNIT_FREQ_S
```

```
#define PWC_UNIT_FREQ_S 5
```

Average frequency of buffered pulses in multiples of 1/s.

14.12 Pulse Duty Times 71

14.12 Pulse Duty Times

These defines are used for returning the duty time of the latest pulse.

Macros

```
• #define PWC UNIT DUTYH RAW 8
     Latest high pulse in multiples of 1/48 * 10^{-6} s.
• #define PWC_UNIT_DUTYH_NS 9
     Latest high pulse in multiples of 1*10^{-9}s.
• #define PWC_UNIT_DUTYH_US 10
     Latest high pulse in multiples of 1 * 10^{-6} s.
• #define PWC_UNIT_DUTYH_MS 11
     Latest high pulse in multiples of 1*10^{-3}s.
• #define PWC_UNIT_DUTYL_RAW 12
     Latest low pulse in multiples of 1/48 * 10^{-6} s.
• #define PWC UNIT DUTYL NS 13
     Latest low pulse in multiples of 1 * 10^{-9} s.
• #define PWC_UNIT_DUTYL_US 14
     Latest low pulse in multiples of 1 * 10^{-6} s.
• #define PWC_UNIT_DUTYL_MS 15
     Latest low pulse in multiples of 1 * 10^{-3} s.
```

14.12.1 Detailed Description

These defines are used for returning the duty time of the latest pulse.

In order to use this return type, the channel buffer must hold at least 2 values. I.e. the averageOver argument of hsk_pwc_port_open() must be 2 or greater (there is no benefit to a value above 2).

To produce correct results the channel must also be in edge mode PWC_EDGE_BOTH.

14.12.2 Macro Definition Documentation

```
#define PWC_UNIT_DUTYH_MS 11  
Latest high pulse in multiples of 1*10^{-3}s.  
#define PWC_UNIT_DUTYH_NS  
#define PWC_UNIT_DUTYH_NS 9  
Latest high pulse in multiples of 1*10^{-9}s.
```

72 Module Documentation

```
14.12.2.3 PWC_UNIT_DUTYH_RAW
```

```
#define PWC_UNIT_DUTYH_RAW 8
```

Latest high pulse in multiples of $1/48 * 10^{-6} s$.

14.12.2.4 PWC_UNIT_DUTYH_US

```
#define PWC_UNIT_DUTYH_US 10
```

Latest high pulse in multiples of $1*10^{-6}s$.

14.12.2.5 PWC_UNIT_DUTYL_MS

```
#define PWC_UNIT_DUTYL_MS 15
```

Latest low pulse in multiples of $1 * 10^{-3} s$.

14.12.2.6 PWC_UNIT_DUTYL_NS

```
#define PWC_UNIT_DUTYL_NS 13
```

Latest low pulse in multiples of $1*10^{-9}s$.

14.12.2.7 PWC_UNIT_DUTYL_RAW

```
#define PWC_UNIT_DUTYL_RAW 12
```

Latest low pulse in multiples of $1/48 * 10^{-6} s$.

14.12.2.8 PWC_UNIT_DUTYL_US

```
#define PWC_UNIT_DUTYL_US 14
```

Latest low pulse in multiples of $1*10^{-6}s$.

14.13 SSC I/O Ports 73

14.13 SSC I/O Ports

Used to create an I/O Port configuration, by unifying one of the SSC_MRST_P* with a SSC_MTSR_P* and a SSC_SCLK_P* ports.

Macros

• #define SSC MRST P05 1

Master mode RX, slave mode TX port P0.5.

• #define SSC_MRST_P14 0

Master mode RX, slave mode TX port P1.4.

• #define SSC_MRST_P15 2

Master mode RX, slave mode TX port P1.5.

• #define SSC_MTSR_P04 (1 << 2)

Master mode TX, slave mode RX port P0.4.

• #define SSC_MTSR_P13 (0 << 2)

Master mode TX, slave mode RX port P1.3.

#define SSC_MTSR_P14 (2 << 2)

Master mode TX, slave mode RX port P1.4.

#define SSC_SCLK_P03 (1 << 4)

Synchronous clock port P0.3.

• #define SSC_SCLK_P12 (0 << 4)

Synchronous clock port P1.2.

#define SSC_SCLK_P13 (2 << 4)

Synchronous clock port P1.3.

14.13.1 Detailed Description

Used to create an I/O Port configuration, by unifying one of the SSC_MRST_P* with a SSC_MTSR_P* and a SSC_SCLK_P* ports.

E.g.:

```
SSC_MRST_P05 | SSC_MTSR_P4 | SSC_SCLK_P03.
```

The ports have the following functions:

Type	Master Mode	Slave Mode
MRST	RX port	TX port
MTSR	TX port	RX port
SCLK	TX clock	RX clock

14.13.2 Macro Definition Documentation

14.13.2.1 SSC_MRST_P05

#define SSC_MRST_P05 1

74 Module Documentation

Master mode RX, slave mode TX port P0.5. 14.13.2.2 SSC_MRST_P14 #define SSC_MRST_P14 0 Master mode RX, slave mode TX port P1.4. 14.13.2.3 SSC_MRST_P15 #define SSC_MRST_P15 2 Master mode RX, slave mode TX port P1.5. 14.13.2.4 SSC_MTSR_P04 #define SSC_MTSR_P04 (1 << 2) Master mode TX, slave mode RX port P0.4. 14.13.2.5 SSC_MTSR_P13 #define SSC_MTSR_P13 (0 << 2) Master mode TX, slave mode RX port P1.3. 14.13.2.6 SSC_MTSR_P14 $\#define SSC_MTSR_P14 (2 << 2)$ Master mode TX, slave mode RX port P1.4. 14.13.2.7 SSC_SCLK_P03 #define SSC_SCLK_P03 (1 << 4) Synchronous clock port P0.3. 14.13.2.8 SSC_SCLK_P12 $\#define SSC_SCLK_P12 (0 << 4)$ Synchronous clock port P1.2. 14.13.2.9 SSC_SCLK_P13

 $\#define SSC_SCLK_P13 (2 << 4)$

Synchronous clock port P1.3.

Generated by Doxygen

Chapter 15

Data Structure Documentation

15.1 hsk_flash_struct Struct Reference

This struct is a template for data that can be written to the D-Flash.

Collaboration diagram for hsk_flash_struct:

Data Fields

• ubyte boot

Used for boot counting.

• ubyte reset

Used for reset counting.

• ubyte error

For storing errors.

Private Attributes

ubyte hsk_flash_prefix
 For data integrity/compatibility detection.

• ubyte hsk_flash_chksum

For data integrity detection.

15.1.1 Detailed Description

This struct is a template for data that can be written to the D-Flash.

It is created by invoking the FLASH_STRUCT_FACTORY macro.

15.1.2 Field Documentation

```
15.1.2.1 boot
```

ubyte hsk_flash_struct::boot

Used for boot counting.

```
15.1.2.2 error
```

ubyte hsk_flash_struct::error

For storing errors.

Certain errors like a WDT can only be reported after a reboot.

```
15.1.2.3 hsk_flash_chksum
```

```
ubyte hsk_flash_struct::hsk_flash_chksum [private]
```

For data integrity detection.

15.1.2.4 hsk_flash_prefix

```
ubyte hsk_flash_struct::hsk_flash_prefix [private]
```

For data integrity/compatibilty detection.

15.1.2.5 reset

```
ubyte hsk_flash_struct::reset
```

Used for reset counting.

The documentation for this struct was generated from the following file:

• main.c

15.2 hsk_isr14_callback Struct Reference

Shared non-maskable interrupt routine.

#include <hsk_isr.h>

Collaboration diagram for hsk_isr14_callback:

Data Fields

void(* NMIWDT)(void)

Function to be called back when the NMIWDT interrupt event is triggered.

void(* NMIPLL)(void)

Function to be called back when the NMIPLL interrupt event is triggered.

void(* NMIFLASH)(void)

Function to be called back when the NMIFLASH interrupt event is triggered.

void(* NMIVDDP)(void)

Function to be called back when the NMIVDDP interrupt event is triggered.

void(* NMIECC)(void)

Function to be called back when the NMIECC interrupt event is triggered.

15.2.1 Detailed Description

Shared non-maskable interrupt routine.

This interrupt has the following sources:

- Watchdog Timer NMI (NMIWDT)
- PLL NMI (NMIPLL)
- Flash Timer NMI (NMIFLASH)
- VDDP Prewarning NMI (NMIVDDP)
- Flash ECC NMI (NMIECC)

15.2.2 Field Documentation

15.2.2.1 NMIECC

```
void( * hsk_isr14_callback::NMIECC) (void)
```

Function to be called back when the NMIECC interrupt event is triggered.

15.2.2.2 NMIFLASH

```
void( * hsk_isr14_callback::NMIFLASH) (void)
```

Function to be called back when the NMIFLASH interrupt event is triggered.

15.2.2.3 NMIPLL

```
void( * hsk_isr14_callback::NMIPLL) (void)
```

Function to be called back when the NMIPLL interrupt event is triggered.

15.2.2.4 NMIVDDP

```
void( * hsk_isr14_callback::NMIVDDP) (void)
```

Function to be called back when the NMIVDDP interrupt event is triggered.

15.2.2.5 NMIWDT

```
void( * hsk_isr14_callback::NMIWDT) (void)
```

Function to be called back when the NMIWDT interrupt event is triggered.

The documentation for this struct was generated from the following file:

• hsk_isr/hsk_isr.h

15.3 hsk_isr5_callback Struct Reference

Shared interrupt 5 routine.

#include <hsk_isr.h>

Collaboration diagram for hsk_isr5_callback:

Data Fields

void(* TF2)(void)

Function to be called back when the TF2 interrupt event is triggered.

void(* EXF2)(void)

Function to be called back when the EXF2 interrupt event is triggered.

void(* CCTOVF)(void)

Function to be called back when the CCTOVF interrupt event is triggered.

void(* NDOV)(void)

Function to be called back when the NDOV interrupt event is triggered.

void(* EOFSYN)(void)

Function to be called back when the EOFSYN interrupt event is triggered.

void(* ERRSYN)(void)

Function to be called back when the ERRSYN interrupt event is triggered.

void(* CANSRC0)(void)

Function to be called back when the CANSRC0 interrupt event is triggered.

15.3.1 Detailed Description

Shared interrupt 5 routine.

Activate the interrupt by setting ET2 = 1.

This interrupt has the following sources:

- Timer 2 Overflow (TF2)
- Timer 2 External Event (EXF2)
- T2CCU CCT Overflow (CCTOVF)
- Normal Divider Overflow (NDOV)
- End of Syn Byte (EOFSYN)
- Syn Byte Error (ERRSYN)
- CAN Interrupt 0 (CANSRC0)

15.3.2 Field Documentation

15.3.2.1 CANSRC0

```
void( * hsk_isr5_callback::CANSRC0) (void)
```

Function to be called back when the CANSRC0 interrupt event is triggered.

15.3.2.2 CCTOVF

```
void( * hsk_isr5_callback::CCTOVF) (void)
```

Function to be called back when the CCTOVF interrupt event is triggered.

15.3.2.3 EOFSYN

```
void( * hsk_isr5_callback::EOFSYN) (void)
```

Function to be called back when the EOFSYN interrupt event is triggered. \\

15.3.2.4 ERRSYN

```
void( * hsk_isr5_callback::ERRSYN) (void)
```

Function to be called back when the ERRSYN interrupt event is triggered.

15.3.2.5 EXF2

```
void( * hsk_isr5_callback::EXF2) (void)
```

Function to be called back when the EXF2 interrupt event is triggered.

15.3.2.6 NDOV

```
void( * hsk_isr5_callback::NDOV) (void)
```

Function to be called back when the NDOV interrupt event is triggered.

15.3.2.7 TF2

```
void( * hsk_isr5_callback::TF2) (void)
```

Function to be called back when the TF2 interrupt event is triggered.

The documentation for this struct was generated from the following file:

• hsk_isr/hsk_isr.h

15.4 hsk_isr6_callback Struct Reference

Shared interrupt 6 routine.

```
#include <hsk_isr.h>
```

Collaboration diagram for hsk_isr6_callback:

Data Fields

void(* CANSRC1)(void)

Function to be called back when the CANSRC1 interrupt event is triggered.

void(* CANSRC2)(void)

Function to be called back when the CANSRC2 interrupt event is triggered.

void(* ADCSR0)(void)

Function to be called back when the ADCSR0 interrupt event is triggered.

void(* ADCSR1)(void)

Function to be called back when the ADCSR1 interrupt event is triggered.

15.4.1 Detailed Description

Shared interrupt 6 routine.

Activate the interrupt by setting EADC = 1.

This interrupt has the following sources:

- CANSRC1
- CANSRC2
- · ADCSR0
- · ADCSR1

15.4.2 Field Documentation

15.4.2.1 ADCSR0

```
void( * hsk_isr6_callback::ADCSR0) (void)
```

Function to be called back when the ADCSR0 interrupt event is triggered.

15.4.2.2 ADCSR1

```
void( * hsk_isr6_callback::ADCSR1) (void)
```

Function to be called back when the ADCSR1 interrupt event is triggered.

15.4.2.3 CANSRC1

```
void( * hsk_isr6_callback::CANSRC1) (void)
```

Function to be called back when the CANSRC1 interrupt event is triggered.

15.4.2.4 CANSRC2

```
void( * hsk_isr6_callback::CANSRC2) (void)
```

Function to be called back when the CANSRC2 interrupt event is triggered.

The documentation for this struct was generated from the following file:

• hsk_isr/hsk_isr.h

15.5 hsk_isr8_callback Struct Reference

Shared interrupt 8 routine.

```
#include <hsk_isr.h>
```

Collaboration diagram for hsk_isr8_callback:

Data Fields

void(* EXINT2)(void)

Function to be called back when the EXINT2 interrupt event is triggered.

void(* RI)(void)

Function to be called back when the RI interrupt event is triggered.

void(* TI)(void)

Function to be called back when the TI interrupt event is triggered.

void(* TF2)(void)

Function to be called back when the TF2 interrupt event is triggered.

void(* EXF2)(void)

Function to be called back when the EXF2 interrupt event is triggered.

void(* NDOV)(void)

Function to be called back when the NDOV interrupt event is triggered.

void(* EOC)(void)

Function to be called back when the EOC interrupt event is triggered.

void(* IRDY)(void)

Function to be called back when the IRDY interrupt event is triggered.

void(* IERR)(void)

Function to be called back when the IERR interrupt event is triggered.

15.5.1 Detailed Description

Shared interrupt 8 routine.

Activate the interrupt by setting EX2 = 1.

This interrupt has the following sources:

- External Interrupt 2 (EXINT2)
- UART1 (RI)
- UART1 (TI)
- Timer 21 Overflow (TF2)
- T21EX (EXF2)
- UART1 Fractional Divider (Normal Divider Overflow) (NDOV)
- CORDIC (EOC)
- MDU Result Ready (IRDY)
- MDU Error (IERR)

15.5.2 Field Documentation

15.5.2.1 EOC

```
void( * hsk_isr8_callback::EOC) (void)
```

Function to be called back when the EOC interrupt event is triggered.

15.5.2.2 EXF2

```
void( * hsk_isr8_callback::EXF2) (void)
```

Function to be called back when the EXF2 interrupt event is triggered.

15.5.2.3 EXINT2

```
void( * hsk_isr8_callback::EXINT2) (void)
```

Function to be called back when the EXINT2 interrupt event is triggered.

15.5.2.4 IERR

```
void( * hsk_isr8_callback::IERR) (void)
```

Function to be called back when the IERR interrupt event is triggered.

15.5.2.5 IRDY

```
void( * hsk_isr8_callback::IRDY) (void)
```

Function to be called back when the IRDY interrupt event is triggered.

15.5.2.6 NDOV

```
void( * hsk_isr8_callback::NDOV) (void)
```

Function to be called back when the NDOV interrupt event is triggered.

15.5.2.7 RI

```
void( * hsk_isr8_callback::RI) (void)
```

Function to be called back when the RI interrupt event is triggered.

15.5.2.8 TF2

```
void( * hsk_isr8_callback::TF2) (void)
```

Function to be called back when the TF2 interrupt event is triggered.

15.5.2.9 TI

```
void( * hsk_isr8_callback::TI) (void)
```

Function to be called back when the TI interrupt event is triggered.

The documentation for this struct was generated from the following file:

• hsk_isr/hsk_isr.h

15.6 hsk_isr9_callback Struct Reference

Shared interrupt 9 routine.

#include <hsk_isr.h>

Collaboration diagram for hsk_isr9_callback:

Data Fields

void(* EXINT3)(void)

Function to be called back when the EXINT3/T2CC0 interrupt event is triggered.

void(* EXINT4)(void)

Function to be called back when the EXINT4/T2CC1 interrupt event is triggered.

void(* EXINT5)(void)

Function to be called back when the EXINT5/T2CC2 interrupt event is triggered.

void(* EXINT6)(void)

Function to be called back when the EXINT6/T2CC3 interrupt event is triggered.

void(* CANSRC3)(void)

Function to be called back when the CANSRC3 interrupt event is triggered.

15.6.1 Detailed Description

Shared interrupt 9 routine.

Activate the interrupt by setting EXM = 1.

This interrupt has the following sources:

- EXINT3/T2CC0
- EXINT4/T2CC1
- EXINT5/T2CC2
- EXINT6/T2CC3
- CANSRC2

15.6.2 Field Documentation

15.6.2.1 CANSRC3

```
void( * hsk_isr9_callback::CANSRC3) (void)
```

Function to be called back when the CANSRC3 interrupt event is triggered.

15.6.2.2 EXINT3

```
void( * hsk_isr9_callback::EXINT3) (void)
```

Function to be called back when the EXINT3/T2CC0 interrupt event is triggered.

15.6.2.3 EXINT4

```
void( * hsk_isr9_callback::EXINT4) (void)
```

Function to be called back when the EXINT4/T2CC1 interrupt event is triggered.

15.6.2.4 EXINT5

```
void( * hsk_isr9_callback::EXINT5) (void)
```

Function to be called back when the EXINT5/T2CC2 interrupt event is triggered.

15.6.2.5 EXINT6

```
void( * hsk_isr9_callback::EXINT6) (void)
```

Function to be called back when the EXINT6/T2CC3 interrupt event is triggered.

The documentation for this struct was generated from the following file:

• hsk_isr/hsk_isr.h

Chapter 16

File Documentation

16.1 config.h File Reference

Configuration for the Infineon XC800 Starter Kit.

This graph shows which files directly or indirectly include this file:

Macros

• #define CLK 800000UL

The external oscilator clock frequency.

• #define CAN0_BAUD 1000000

The CAN0 baud rate in bits/s.

• #define CAN1_BAUD 1000000

The CAN1 baud rate in bits/s.

• #define CAN0_IO CAN0_IO_P10_P11

The CAN0 IO pin configuration RX P1.0 TX P1.1.

• #define CAN1_IO CAN1_IO_P14_P13

The CAN1 IO pin configuration RX P1.4 TX P1.3.

16.1.1 Detailed Description

Configuration for the Infineon XC800 Starter Kit.

Author

kami

16.1.2 Macro Definition Documentation

16.1.2.1 CAN0_BAUD

#define CANO_BAUD 1000000

The CAN0 baud rate in bits/s.

16.1.2.2 CAN0_IO

#define CAN0_IO CAN0_IO_P10_P11

The CAN0 IO pin configuration RX P1.0 TX P1.1.

16.1.2.3 CAN1_BAUD

#define CAN1_BAUD 1000000

The CAN1 baud rate in bits/s.

16.1.2.4 CAN1_IO

#define CAN1_IO CAN1_IO_P14_P13

The CAN1 IO pin configuration RX P1.4 TX P1.3.

16.1.2.5 CLK

#define CLK 800000UL

The external oscilator clock frequency.

16.2 hsk_adc/hsk_adc.c File Reference

HSK Analog Digital Conversion implementation.

```
#include <Infineon/XC878.h>
#include "hsk_adc.h"
#include <string.h>
#include "../hsk_isr/hsk_isr.h"
Include dependency graph for hsk adc.c:
```


Macros

• #define ADC CLK 12MHz 0

Conversion clock prescaler setting for 12MHz.

#define ADC_CLK_8MHz 1

Conversion clock prescaler setting for 8MHz.

• #define ADC_CLK_6MHz 2

Conversion clock prescaler setting for 6MHz.

• #define ADC_CLK_750kHz 3

Conversion clock prescaler setting for 750kHz.

• #define ADC_CHANNELS 8

Number of availbale ADC channels.

• #define ADC_QUEUE 4

Number of queue slots.

• #define BIT_CHNR 0

ADC_RESRxL Channel Number bits.

• #define CNT_CHNR 3

CHNR bit count.

• #define BIT_RESULT 6

ADC_RESRxLH Conversion Result bits.

• #define CNT_RESULT 10

RESULT bit count.

• #define BIT_DW 6

ADC_GLOBCTR Data Width bit.

• #define BIT_CTC 4

ADC_GLOBCTR Conversion Time Control bits.

• #define CNT_CTC 2

CTC bit count.

• #define BIT ASEN SEQUENTIAL 6

ADC_PRAR Arbitration Slot Sequential Enable bit.

#define BIT_ASEN_PARALLEL 7

ADC_PRAR Arbitration Slot Parallel Enable bit.

• #define BIT IEN 4

RCRx Interrupt Enable bit.

• #define BIT_WFR 6

RCRx Wait-for-Read Mode.

• #define BIT VFCTR 7

RCRx Valid Flag Control bit.

• #define BIT ENGT 0

QMR0 Enable Gate bit.

• #define BIT ANON 7

ADC_GLOBCTR Analog Part Switched On bit.

• #define BIT_IMODE 4

SYSCON0 Interrupt Structure 2 Mode Select bit.

• #define BIT_ADC_DIS 0

PMCON1 ADC Disable Request bit.

• #define BIT_FILL 0

QSR0 bits Filling Level.

• #define CNT_FILL 2

Filling Level bit count.

• #define BIT_EMPTY 5

QSR0 bit Queue Empty.

• #define BIT_REQCHNR 0

ADC_QINR0 Request Channel Number bits.

• #define CNT_REQCHNR 3

REQCHNR bit count.

Functions

void hsk adc isr10 (void)

Write the 10bit conversion result to the targeted memory address.

void hsk_adc_isr8 (void)

Write the 8bit conversion result to the targeted memory address.

void hsk_adc_init (ubyte resolution, uword convTime)

Initialize the AD conversion.

· void hsk adc enable (void)

Turns on ADC conversion, if previously deactivated.

void hsk_adc_disable (void)

Turns off ADC conversion unit to converse power.

void hsk adc open10 (const hsk adc channel channel, uword *const target)

Open the given ADC channel in 10 bit mode.

void hsk_adc_open8 (const hsk_adc_channel channel, ubyte *const target)

Open the given ADC channel in 8 bit mode.

· void hsk adc close (const hsk adc channel channel)

Close the given ADC channel.

• bool hsk_adc_service (void)

A maintenance function that takes care of keeping AD conversions going.

bool hsk_adc_request (const hsk_adc_channel channel)

Requests an ADC for a specific channel.

void hsk_adc_isr_warmup10 (void)

Special ISR for warming up 10 bit conversions.

void hsk_adc_warmup10 (void)

Warm up 10 bit AD conversion.

Variables

static hsk_adc_channel nextChannel = 8

Holds the channel of the next conversion that will be requested.

```
    union {
        uword * ptr10
            Pointer type used for 10 bit conversions.
        ubyte * ptr8
            Pointer type used for 8 bit conversions.
    } targets [8]
```

An array of target addresses to write conversion results into.

16.2.1 Detailed Description

HSK Analog Digital Conversion implementation.

This file implements the functions defined in hsk_adc.h.

To be able to use all 8 channels the ADC is kept in sequential mode.

In order to reduce processing time this library uses the convention that all functions terminate with ADC register page 6. Page 6 contains the ADC queue request and status registers.

Author

kami

16.2.2 Macro Definition Documentation

```
16.2.2.1 ADC_CHANNELS
```

```
#define ADC_CHANNELS 8
```

Number of availbale ADC channels.

16.2.2.2 ADC_CLK_12MHz

```
#define ADC_CLK_12MHz 0
```

Conversion clock prescaler setting for 12MHz.

```
16.2.2.3 ADC_CLK_6MHz
```

```
#define ADC_CLK_6MHz 2
```

Conversion clock prescaler setting for 6MHz.

16.2.2.4 ADC_CLK_750kHz

```
#define ADC_CLK_750kHz 3
```

Conversion clock prescaler setting for 750kHz.

16.2.2.5 ADC_CLK_8MHz

```
#define ADC_CLK_8MHz 1
```

Conversion clock prescaler setting for 8MHz.

16.2.2.6 ADC_QUEUE

#define ADC_QUEUE 4

Number of queue slots.

16.2.2.7 BIT_ADC_DIS

#define BIT_ADC_DIS 0

PMCON1 ADC Disable Request bit.

16.2.2.8 BIT_ANON

#define BIT_ANON 7

ADC_GLOBCTR Analog Part Switched On bit.

16.2.2.9 BIT_ASEN_PARALLEL

#define BIT_ASEN_PARALLEL 7

ADC_PRAR Arbitration Slot Parallel Enable bit.

16.2.2.10 BIT_ASEN_SEQUENTIAL

#define BIT_ASEN_SEQUENTIAL 6

ADC_PRAR Arbitration Slot Sequential Enable bit.

```
16.2.2.11 BIT_CHNR
#define BIT_CHNR 0
ADC_RESRxL Channel Number bits.
16.2.2.12 BIT_CTC
#define BIT_CTC 4
ADC_GLOBCTR Conversion Time Control bits.
16.2.2.13 BIT_DW
#define BIT_DW 6
ADC_GLOBCTR Data Width bit.
16.2.2.14 BIT_EMPTY
#define BIT_EMPTY 5
QSR0 bit Queue Empty.
16.2.2.15 BIT_ENGT
#define BIT_ENGT 0
QMR0 Enable Gate bit.
16.2.2.16 BIT_FILL
#define BIT_FILL 0
QSR0 bits Filling Level.
16.2.2.17 BIT_IEN
#define BIT_IEN 4
RCRx Interrupt Enable bit.
16.2.2.18 BIT_IMODE
#define BIT_IMODE 4
SYSCON0 Interrupt Structure 2 Mode Select bit.
```

Generated by Doxygen

```
16.2.2.19 BIT_REQCHNR
#define BIT_REQCHNR 0
ADC_QINR0 Request Channel Number bits.
16.2.2.20 BIT_RESULT
#define BIT_RESULT 6
ADC_RESRxLH Conversion Result bits.
16.2.2.21 BIT_VFCTR
#define BIT_VFCTR 7
RCRx Valid Flag Control bit.
16.2.2.22 BIT_WFR
#define BIT_WFR 6
RCRx Wait-for-Read Mode.
16.2.2.23 CNT_CHNR
#define CNT_CHNR 3
CHNR bit count.
16.2.2.24 CNT_CTC
#define CNT_CTC 2
CTC bit count.
16.2.2.25 CNT_FILL
#define CNT_FILL 2
Filling Level bit count.
16.2.2.26 CNT_REQCHNR
#define CNT_REQCHNR 3
```

REQCHNR bit count.

16.2.2.27 CNT_RESULT

```
#define CNT_RESULT 10
```

RESULT bit count.

16.2.3 Function Documentation

16.2.3.1 hsk_adc_close()

Close the given ADC channel.

Stopp ADC if no more channels were left.

Parameters

```
channel The channel id
```

16.2.3.2 hsk_adc_disable()

Turns off ADC conversion unit to converse power.

16.2.3.3 hsk_adc_enable()

```
void hsk_adc_enable (
     void )
```

Turns on ADC conversion, if previously deactivated.

16.2.3.4 hsk_adc_init()

Initialize the AD conversion.

The shortest possible conversion time is 1.25 µs, the longest is 714.75 µs. The given value will be rounded down.

There is a 4 entry queue, for starting conversions, so it suffices to average the interval below convTime.

All already open channels will be closed upon calling this function.

Parameters

resolution The conversion resolution, any of		The conversion resolution, any of
		ADC_RESOLUTION_*
ĺ	convTime	The desired conversion time in µs

Here is the call graph for this function:

16.2.3.5 hsk_adc_isr10()

Write the 10bit conversion result to the targeted memory address.

16.2.3.6 hsk_adc_isr8()

Write the 8bit conversion result to the targeted memory address.

16.2.3.7 hsk_adc_isr_warmup10()

Special ISR for warming up 10 bit conversions.

This is used as the ISR by hsk_adc_warmup() after the warmup countdowns have been initialized. After all warmup countdowns have returned to zero The original ISR will be put back in control. Here is the call graph for this function:

16.2.3.8 hsk_adc_open10()

Open the given ADC channel in 10 bit mode.

Parameters

channel	The channel id
target	A pointer where to store conversion results

16.2.3.9 hsk_adc_open8()

Open the given ADC channel in 8 bit mode.

Parameters

channel	The channel id
target	A pointer where to store conversion results

16.2.3.10 hsk_adc_request()

Requests an ADC for a specific channel.

This function is an alternative to <a href="https://his.google.go

This function uses the same queue as hsk_adc_service(), if the queue is full it fails silently.

Parameters

channel	The channel id

Return values

0	7 The queue is full	
1	A conversion request has been added to the queue	

16.2.3.11 hsk_adc_service()

A maintenance function that takes care of keeping AD conversions going.

This has to be called repeatedly.

There is a queue of up to 4 conversion jobs. One call of this function only adds one job to the queue.

Return values

	0	No conversion request had been queued, either the queue is full or no channels have been configured	
Ī	A conversion request has been added to the queue		

Here is the call graph for this function:

16.2.3.12 hsk_adc_warmup10()

Warm up 10 bit AD conversion.

I.e. make sure all conversion targets have been initialized with a conversion result. This is a blocking function only intended for single use during the boot procedure.

This function will not terminate unless interrupts are enabled.

Note

This function only works in 10 bit mode, because in 8 bit mode it is impossible to initialize targets with an invalid value.

Here is the call graph for this function:

16.2.4 Variable Documentation

16.2.4.1 nextChannel

```
hsk_adc_channel nextChannel = 8 [static]
```

Holds the channel of the next conversion that will be requested.

16.2.4.2 ptr10

uword* ptr10

Pointer type used for 10 bit conversions.

16.2.4.3 ptr8

ubyte* ptr8

Pointer type used for 8 bit conversions.

16.2.4.4 targets

targets [static]

An array of target addresses to write conversion results into.

16.3 hsk_adc/hsk_adc.h File Reference

HSK Analog Digital Conversion headers.

#include "../hsk_isr/hsk_isr.isr"
Include dependency graph for hsk_adc.h:

This graph shows which files directly or indirectly include this file:

Macros

• #define ADC RESOLUTION 100

10 bit ADC resolution.

• #define ADC_RESOLUTION_8 1

8 bit ADC resultion.

• #define hsk_adc_open hsk_adc_open10

Backwards compatibility hack.

#define hsk_adc_warmup hsk_adc_warmup10

Backwards compatibility hack.

Typedefs

• typedef ubyte hsk_adc_channel

Typedef for ADC channel ids.

Functions

void hsk_adc_init (ubyte resolution, uword convTime)

Initialize the AD conversion.

• void hsk_adc_enable (void)

Turns on ADC conversion, if previously deactivated.

void hsk_adc_disable (void)

Turns off ADC conversion unit to converse power.

• void hsk_adc_open10 (const hsk_adc_channel channel, uword *const target)

Open the given ADC channel in 10 bit mode.

void hsk_adc_open8 (const hsk_adc_channel channel, ubyte *const target)

Open the given ADC channel in 8 bit mode.

void hsk_adc_close (const hsk_adc_channel channel)

Close the given ADC channel.

bool hsk_adc_service (void)

A maintenance function that takes care of keeping AD conversions going.

• bool hsk_adc_request (const hsk_adc_channel channel)

Requests an ADC for a specific channel.

void hsk_adc_warmup10 (void)

Warm up 10 bit AD conversion.

16.3.1 Detailed Description

HSK Analog Digital Conversion headers.

This library provides access to all 8 ADC channels. Each channel can be provided with a pointer. Every completed conversion is written to the address provided by the pointer. The target memory can be protected for read access by msking the interrupts with EADC.

The conversion time can be freely configured in a wide range. Even short conversion times like 5µs yield good precission.

In order to keep the conversion going a service function hsk_adc_service() has to be called on a regular basis. This prevents locking up of the CPU due to an overload of interrupts, the ADC module can provide a new conversion result every 30 clock cycles.

Making the hsk_adc_service() call only as often as needed reduces the drain on the analogue input and reduces flickering.

Alternatively hsk_adc_request() can be used to request single just in time conversions.

Author

kami

16.3.2 Macro Definition Documentation

```
16.3.2.1 ADC_RESOLUTION_10
```

#define ADC_RESOLUTION_10 0

10 bit ADC resolution.

16.3.2.2 ADC_RESOLUTION_8

#define ADC_RESOLUTION_8 1

8 bit ADC resultion.

16.3.2.3 hsk_adc_open

#define hsk_adc_open hsk_adc_open10

Backwards compatibility hack.

Deprecated Use hsk_adc_open10() or hsk_adc_open8() as appropriate

```
16.3.2.4 hsk_adc_warmup
```

```
#define hsk_adc_warmup hsk_adc_warmup10
```

Backwards compatibility hack.

Deprecated Use hsk_adc_warmup10()

16.3.3 Typedef Documentation

```
16.3.3.1 hsk_adc_channel
```

```
typedef ubyte hsk_adc_channel
```

Typedef for ADC channel ids.

16.3.4 Function Documentation

```
16.3.4.1 hsk_adc_close()
```

Close the given ADC channel.

Stopp ADC if no more channels were left.

Parameters

```
channel The channel id
```

16.3.4.2 hsk_adc_disable()

Turns off ADC conversion unit to converse power.

16.3.4.3 hsk_adc_enable()

Turns on ADC conversion, if previously deactivated.

16.3.4.4 hsk_adc_init()

Initialize the AD conversion.

The shortest possible conversion time is 1.25µs, the longest is 714.75µs. The given value will be rounded down.

There is a 4 entry queue, for starting conversions, so it suffices to average the interval below convTime.

All already open channels will be closed upon calling this function.

Parameters

resolution	The conversion resolution, any of
	ADC_RESOLUTION_*
convTime	The desired conversion time in µs

Here is the call graph for this function:

16.3.4.5 hsk_adc_open10()

Open the given ADC channel in 10 bit mode.

Parameters

channel	The channel id
target	A pointer where to store conversion results

16.3.4.6 hsk_adc_open8()

Open the given ADC channel in 8 bit mode.

Parameters

channel	The channel id
target A pointer where to store conversion resul	

16.3.4.7 hsk_adc_request()

Requests an ADC for a specific channel.

This function is an alternative to <a href="https://his.google.go

This function uses the same queue as hsk_adc_service(), if the queue is full it fails silently.

Parameters

channe	The channel id
channe	el The channel id

Return values

0	0 The queue is full	
1	A conversion request has been added to the queue	

16.3.4.8 hsk_adc_service()

A maintenance function that takes care of keeping AD conversions going.

This has to be called repeatedly.

There is a queue of up to 4 conversion jobs. One call of this function only adds one job to the queue.

Return values

0	No conversion request had been queued, either the queue is full or no channels have been configured
1	A conversion request has been added to the queue

Here is the call graph for this function:

16.3.4.9 hsk_adc_warmup10()

Warm up 10 bit AD conversion.

I.e. make sure all conversion targets have been initialized with a conversion result. This is a blocking function only intended for single use during the boot procedure.

This function will not terminate unless interrupts are enabled.

Note

This function only works in 10 bit mode, because in 8 bit mode it is impossible to initialize targets with an invalid value.

Here is the call graph for this function:

16.4 hsk_boot/hsk_boot.c File Reference

HSK Boot implementation.

```
#include <Infineon/XC878.h>
#include "hsk_boot.h"
#include "../hsk_isr/hsk_isr.h"
```

#include "../hsk_io/hsk_io.h"
Include dependency graph for hsk_boot.c:

Macros

• #define BIT_MXB 0

MEX3 XRAM Bank Number bits.

#define CNT MXB 3

MEX3 XRAM Bank Number bit count.

• #define BIT MXB19 4

MEX3 XRAM Bank Number highest bit.

• #define XRAM_BANK 0xF

The selected XRAM bank number.

• #define BIT_MXM 3

MEX3 XRAM Bank Selector bit.

#define XRAM_SELECTOR 1

Set BIT_MXM to access the data memroy bank with MOVX instructions.

• #define PDATA_PAGE 0xF0

The page to locate pdata at.

• #define BIT_EXTOSCR 0

OSC_CON bit.

• #define BIT_EORDRES 1

OSC_CON bit.

• #define BIT_OSCSS 2

OSC_CON bit.

• #define BIT_XPD 3

OSC_CON bit.

• #define BIT_PLLPD 5

OSC_CON bit.

• #define BIT_PLLBYP 6

OSC_CON bit.

• #define BIT_PLLRDRES 7

OSC_CON bit.

#define BIT_PLL_LOCK 0

PLL_CON bit.

• #define BIT_PLLR 1

PLL_CON bit.

```
#define BIT_PDIV 0
PLL_CON1 bit.
#define CNT_PDIV 5
PDIV bit count.
#define BIT_NDIVL 2
PLL_CON low PLL NF-Divider bits.
#define CNT_NDIVL 6
NDIVL bit count.
#define BIT_NDIVH 5
PLL_CON1 high PLL NF-Divider bits.
#define CNT_NDIVH 3
NDIVH bit count.
#define BIT_NMIPLL 1
NMICON PLL Loss of Clock NMI Enable bit.
```

Functions

void hsk boot io (void)

Initialises all IO ports as input ports without pull.

void hsk_boot_mem (void)

Sets up xdata and pdata memory access.

ubyte <u>_sdcc_external_startup</u> (void)

Turns off pullup/-down for all ports prior to global/static initialisation.

void hsk_boot_isr_nmipIl (void)

Loss of clock recovery ISR.

void hsk_boot_extClock (const ulong clk)

Switches to an external oscilator.

Variables

```
    struct {
        ubyte pdiv
        The PDIV value for the configured clock speed.
        uword ndiv
        The NDIV value for the configured clock speed.
    } boot
```

Boot parameter storage for the loss of clock ISR callback.

16.4.1 Detailed Description

HSK Boot implementation.

The High Speed Karlsruhe XC878 boot up code implementation.

This obsoletes 3rd party provided assembler boot code.

Author

kami

16.4.2 Macro Definition Documentation

```
16.4.2.1 BIT_EORDRES
```

#define BIT_EORDRES 1

OSC_CON bit.

External Oscillator Watchdog Reset, used when switching to an external clock.

16.4.2.2 BIT_EXTOSCR

#define BIT_EXTOSCR 0

OSC_CON bit.

External Oscillator Run Status Bit, used to determine whether the external oscilator is available.

16.4.2.3 BIT_MXB

#define BIT_MXB 0

MEX3 XRAM Bank Number bits.

Used to select the memory bank where the XRAM is located. This 4 bit field is divided, the highest bit goes into the BIT_MXB19 bit.

16.4.2.4 BIT_MXB19

#define BIT_MXB19 4

MEX3 XRAM Bank Number highest bit.

The final MXB bit.

16.4.2.5 BIT_MXM

#define BIT_MXM 3

MEX3 XRAM Bank Selector bit.

16.4.2.6 BIT_NDIVH

#define BIT_NDIVH 5

PLL_CON1 high PLL NF-Divider bits.

```
16.4.2.7 BIT_NDIVL
#define BIT_NDIVL 2
PLL_CON low PLL NF-Divider bits.
16.4.2.8 BIT_NMIPLL
#define BIT_NMIPLL 1
NMICON PLL Loss of Clock NMI Enable bit.
16.4.2.9 BIT_OSCSS
#define BIT_OSCSS 2
OSC_CON bit.
Oscillator Source Select, used to turn the external oscillator on(1)/off(0).
16.4.2.10 BIT_PDIV
#define BIT_PDIV 0
PLL_CON1 bit.
Something to do with the CPU clock.
16.4.2.11 BIT_PLL_LOCK
#define BIT_PLL_LOCK 0
PLL_CON bit.
PLL Lock Status Flag, used when switching to an external clock.
16.4.2.12 BIT_PLLBYP
#define BIT_PLLBYP 6
OSC_CON bit.
```

Generated by Doxygen

PLL Output Bypass Control, used when switching to an external clock.

```
16.4.2.13 BIT_PLLPD
#define BIT_PLLPD 5
OSC_CON bit.
PLL Power Down Control, used when switching to an external clock.
16.4.2.14 BIT_PLLR
#define BIT_PLLR 1
PLL_CON bit.
PLL Run Status Flag, used when switching to an external clock.
16.4.2.15 BIT_PLLRDRES
#define BIT_PLLRDRES 7
OSC_CON bit.
PLL Watchdog Reset, used when switching to an external clock.
16.4.2.16 BIT_XPD
#define BIT_XPD 3
OSC_CON bit.
XTAL Power Down Control, used when switching to an external clock.
16.4.2.17 CNT_MXB
#define CNT_MXB 3
MEX3 XRAM Bank Number bit count.
16.4.2.18 CNT_NDIVH
#define CNT_NDIVH 3
NDIVH bit count.
16.4.2.19 CNT_NDIVL
#define CNT_NDIVL 6
```

NDIVL bit count.

16.4.2.20 CNT_PDIV

#define CNT_PDIV 5

PDIV bit count.

16.4.2.21 PDATA_PAGE

```
#define PDATA_PAGE 0xF0
```

The page to locate pdata at.

Use the first XRAM page, because that is where the compilers expect it.

16.4.2.22 XRAM_BANK

```
#define XRAM_BANK 0xF
```

The selected XRAM bank number.

16.4.2.23 XRAM_SELECTOR

```
#define XRAM_SELECTOR 1
```

Set BIT_MXM to access the data memroy bank with MOVX instructions.

Otherwise the current bank (whichever that is) would be addressed. MOVX is used to access external memory. The data memory bank is selected with the MXB bits.

16.4.3 Function Documentation

16.4.3.1 _sdcc_external_startup()

Turns off pullup/-down for all ports prior to global/static initialisation.

This function is automatically linked by SDCC and called from startup.a51 by Keil C51.

Returns

Always returns 0, which indicates that SDCC should initialise globals and statics

Here is the call graph for this function:

16.4.3.2 hsk_boot_extClock()

```
void hsk_boot_extClock ( {\tt const\ ulong\ } clk\ )
```

Switches to an external oscilator.

This function requires xdata access.

The implemented process is named: "Select the External Oscillator as PLL input source"

The following is described in more detail in chapter 7.3 of the XC878 User Manual.

The XC878 can either use an internal 4MHz oscilator (default) or an external oscilator from 2 to 20MHz, normally referred to as FOSC. A phase-locked loop (PLL) converts it to a faster internal speed FSYS, 144MHz by default.

This implementation is currently limited to oscilators from 2MHz to 20MHz in 1MHz intervals.

The oscilator frequency is vital for external communication (e.g. CAN) and timer/counter speeds.

This implementation switches to an external clock ensuring that the PLL generates a 144MHz FSYS clock. The CLKREL divisor set to 6 generates the fast clock (FCLK) that runs at 48MHz. The remaining clocks, i.e. peripheral (PCLK), CPU (SCLK, CCLK), have a fixed divisor by 2, so they run at 24MHz.

After setting up the PLL, this function will register an ISR, that will attempt to reactivate the external oscillator in a PLL loss-of-clock event.

Parameters

clk The frequency of the external oscilator in Hz.

WARNING - Here be dragons ...

Before messing with this stuff you should be aware that this is tricky business. Mistakes can result in hardware damage. Or at least all your timers and external interfaces will act weird.

Basically this bypasses/turns off the PLL, sets up the external oscilator and than reconfigures the PLL and brings it back into play.

Many of the OSC_CON, which is on page 1, bits are write protected. The MAIN_vUnlockProtecReg() turns the protection off for 32 cycles. So it has to be turned off each time protected bits are accessed. Here is the call graph for this function:

16.4.3.3 hsk_boot_io()

Initialises all IO ports as input ports without pull.

16.4.3.4 hsk_boot_isr_nmipII()

Loss of clock recovery ISR.

This takes very long.

16.4.3.5 hsk_boot_mem()

Sets up xdata and pdata memory access.

Refer to the Processor Architecture and Memory Organization chapters of the XC878 User Manual.

16.4.4 Variable Documentation

16.4.4.1 boot

```
boot [static]
```

Boot parameter storage for the loss of clock ISR callback.

16.4.4.2 ndiv

```
uword ndiv
```

The NDIV value for the configured clock speed.

See table 7-5 in the data sheet for desired NDIV values. See the NDIV description for value encoding.

16.4.4.3 pdiv

```
ubyte pdiv
```

The PDIV value for the configured clock speed.

See table 7-5 in the data sheet for desired PDIV values. See the PDIV description for value encoding.

16.5 hsk_boot/hsk_boot.h File Reference

HSK Boot headers.

#include "../hsk_isr/hsk_isr.isr"
Include dependency graph for hsk_boot.h:

This graph shows which files directly or indirectly include this file:

Functions

void hsk_boot_extClock (const ulong clk)
 Switches to an external oscilator.

16.5.1 Detailed Description

HSK Boot headers.

This file contains the prototypes to put the μC into working condition.

Currently implemented:

hsk_boot_extClock() Activates external clock input and sets up the PLL, this is important when communicating
with other devices, the internal clock is not sufficiently precise

Linking this library also automatically causes the following boot actions:

- · Deactivate all internal pullup devices
- · Activate XDATA access
- · Set the PDATA page to the first XDATA block

Author

kami

16.5.2 Function Documentation

16.5.2.1 hsk_boot_extClock()

Switches to an external oscilator.

This function requires xdata access.

The implemented process is named: "Select the External Oscillator as PLL input source"

The following is described in more detail in chapter 7.3 of the XC878 User Manual.

The XC878 can either use an internal 4MHz oscilator (default) or an external oscilator from 2 to 20MHz, normally referred to as FOSC. A phase-locked loop (PLL) converts it to a faster internal speed FSYS, 144MHz by default.

This implementation is currently limited to oscilators from 2MHz to 20MHz in 1MHz intervals.

The oscilator frequency is vital for external communication (e.g. CAN) and timer/counter speeds.

This implementation switches to an external clock ensuring that the PLL generates a 144MHz FSYS clock. The CLKREL divisor set to 6 generates the fast clock (FCLK) that runs at 48MHz. The remaining clocks, i.e. peripheral (PCLK), CPU (SCLK, CCLK), have a fixed divisor by 2, so they run at 24MHz.

After setting up the PLL, this function will register an ISR, that will attempt to reactivate the external oscillator in a PLL loss-of-clock event.

Parameters

clk The frequency of the external oscilator in Hz.

WARNING - Here be dragons ...

Before messing with this stuff you should be aware that this is tricky business. Mistakes can result in hardware damage. Or at least all your timers and external interfaces will act weird.

Basically this bypasses/turns off the PLL, sets up the external oscilator and than reconfigures the PLL and brings it back into play.

Many of the OSC_CON, which is on page 1, bits are write protected. The MAIN_vUnlockProtecReg() turns the protection off for 32 cycles. So it has to be turned off each time protected bits are accessed. Here is the call graph for this function:

16.6 hsk_can/hsk_can.c File Reference

HSK Controller Area Network implementation.

```
#include <Infineon/XC878.h>
#include "hsk_can.h"
#include <string.h>
```

Include dependency graph for hsk_can.c:

Macros

• #define BIT RWEN 0

CAN_ADCON Read/Write Enable bit.

#define BIT_BSY 1

CAN ADCON Data Transmission Busy bit.

• #define BIT_AUAD 2

CAN_ADCON Auto Increment/Decrement the Address bits.

#define AUAD_OFF (0 << BIT_AUAD)

AUAD auto increment off setting.

#define AUAD_INC1 (1 << BIT_AUAD)

AUAD auto increment setting.

```
    #define AUAD_DEC1 (2 << BIT_AUAD)</li>

     AUAD auto decrement setting.

    #define AUAD INC8 (3 << BIT AUAD)</li>

     AUAD auto increment setting.

    #define BIT_DATA 4

     CAN_ADCON CAN Data Valid bits.
• #define CNT DATA 4
     DATA bit count.

    #define CAN_AD_WRITE(msk) CAN_ADCON = (1 << BIT_RWEN) | ((msk) << BIT_DATA)</li>

     Sets up the CAN_AD bus for writing.

    #define CAN AD READ() CAN ADCON = 0

     Sets up the CAN_AD bus for reading.

    #define CAN_AD_READY() while (CAN_ADCON & (1 << BIT_BSY))</li>

     Make sure the last read/write has completed.

    #define BIT FCCFG 4

      CMCON MultiCAN Clock Configuration bit.

    #define OFF_LISTm 0

      The Id() of the List Register (LISTm) m offset factor.
• #define OFF_MSIDk 0
      The Id() of the Message Index Register k offset factor.

    #define OFF_MSPNDk 0

      The Id() of the Message Pending Register k offset factor.
• #define OFF NODEx 6
      The Id() of the Node Register x offset factor.
• #define OFF_MOn 3
      The Id() of the Message Object n offset factor.

    #define NCRx 0x0080

     Node x Control Register base address.
• #define NSRx 0x0081
     Node x Status Register base address.
• #define NIPRx 0x0082
     Node x Interrupt Pointer Register base address.
• #define NPCRx 0x0083
     Node x Port Control Register base address.
• #define NBTRx 0x0084
     Node x Bit Timing Register base address.

    #define NECNTx 0x0085

     Node x Error Counter Register base address.
• #define NFCRx 0x0086
     Node x Frame Counter Register base address.

    #define BIT INIT 0

      CAN NCRx Node Initialization bit.

    #define BIT_TRIE 1

     CAN NCRx Transfer Interrupt Enable bit.
• #define BIT LECIE 2
     CAN NCRx LEC Indicated Error Interrupt Enable bit.

    #define BIT_ALIE 3

     CAN NCRx Alert Interrupt Enable bit.

    #define BIT CANDIS 4

     CAN NCRx CAN Disable.

    #define BIT_CCE 6
```

CAN NCRx Configuration Change Enable bit.

#define BIT_CALM 7

CAN NCRx CAN Analyze Mode bit.

• #define BIT BRP 0

NBTRx Baud Rate Prescaler bits.

• #define BIT SJW 6

NBTRx (Re) Synchronization Jump Width bits.

#define BIT TSEG1 8

NBTRx Time Segment Before Sample Point bits.

• #define BIT_TSEG2 12

NBTRx Time Segment After Sample Point bits.

• #define BIT_DIV8 15

NBTRx Divide Prescaler Clock by 8 bit.

• #define BIT_RXSEL 0

NPCRx Receive Select bit.

• #define CNT RXSEL 3

RXSEL bit count.

• #define PANCTR 0x0071

The Panel Control Register.

#define PANCMD CAN DATA0

PANCTR Command Register.

#define PANSTATUS CAN_DATA1

PANCTR Status Register.

• #define BIT_BUSY 0

PANCTR PANSTATUS Panel Busy Flag bit.

• #define BIT_RBUSY 1

PANCTR PANSTATUS Result Busy Flag bit.

#define PANAR1 CAN_DATA2

PANCTR Argument 1 Register.

• #define PANAR2 CAN DATA3

PANCTR Argument 2 Register.

#define BIT_ERR 7

PANCTR PANAR2 Error bit.

#define PANCTR_READY()

Wait for list operations to complete.

• #define PAN_CMD_NOP 0x00

List panel No Operation command.

• #define PAN_CMD_INIT 0x01

List panel Initialize Lists command.

#define PAN_CMD_MOVE 0x02

List panel Static Allocate command.

• #define PAN_CMD_ALLOC 0x03

List panel Dynamic Allocate command.

#define PAN_CMD_MOVEBEFORE 0x04

List panel Static Insert Before command.

#define PAN_CMD_ALLOCBEFORE 0x05

List panel Dynamic Insert Before command.

#define PAN_CMD_MOVEBEHIND 0x06

List panel Static Insert Behind command.

• #define PAN_CMD_ALLOCBEHIND 0x07

List panel Dynamic Insert Behind command.

#define HSK_CAN_MSG_MAX 32

The maximum number of message objects.

• #define LIST UNALLOC 0

This list holds unallocated message objects.

• #define LIST_NODEx 1

These lists hold message objects connected to a CAN node.

• #define LIST PENDING 3

This list holds message objects pending assignment to a can node.

• #define BIT CAN DIS 5

PMCON1 CAN Disable Request bit.

• #define MOFCRn 0x0400

Message Object n Function Control Register base address.

• #define MOFGPRn 0x0401

Message Object n FIFO/Gateway Pointer Register base address.

• #define MOAMRn 0x0403

Message Object n Acceptance Mask Register base address.

#define MODATALn 0x0404

Message Object n Data Register Low base address.

• #define MODATAHn 0x0405

Message Object n Data Register High base address.

• #define MOARn 0x0406

Message Object n Arbitration Register base address.

#define MOCTRn 0x0407

Message Object n Control Register base address.

• #define MOSTATn MOCTRn

Message Object n Status Register base address.

#define RESET_DATA CAN_DATA01

The register to write Control Register resets into.

#define SET_DATA CAN_DATA23

The register to write Control Register settings into.

#define RESET 0x3

Bit mask for writing resets.

• #define SET 0xC

Bit mask for writing settings.

• #define BIT RXPND 0

MOCTRn/MOSTATn Receive Pending bit.

#define BIT_TXPND 1

MOCTRn/MOSTATn Transmit Pending bit.

#define BIT_RXUPD 2

MOCTRn/MOSTATn Receive Updating bit.

• #define BIT NEWDAT 3

MOCTRn/MOSTATn New Data bit.

• #define BIT_MSGVAL 5

MOCTRn/MOSTATn Message Valid bit.

#define BIT_RXEN 7

MOCTRn/MOSTATn Receive Signal Enable bit.

#define BIT_TXRQ 8

MOCTRn/MOSTATn Transmit Signal Request bit.

• #define BIT_TXEN0 9

MOCTRn/MOSTATn Transmit Signal Enable bit.

• #define BIT_TXEN1 10

MOCTRn/MOSTATn Transmit Signal Enable Select bit. #define BIT_DIR 11 MOCTRn Direction bit. • #define BIT AM 0 MOAMRn Acceptance Mask for Message Identifier bits. #define CNT AM 29 AM bit count. #define BIT MIDE 29 MOAMRn Acceptance Mask Bit for Message IDE Bit. • #define BIT_DLC 0 MOFCRn Data Length Code bits in byte 3. • #define CNT_DLC 4 DLC bit count. • #define BIT_MMC 0 MOFCRn Message Mode Control bits in byte 0. • #define CNT MMC 4 MMC bit count. • #define MMC DEFAULT 0 Regular message mode. #define MMC RXBASEFIFO 1 Message is the base of an RX FIFO. #define MMC_TXBASEFIFO 2 Message is the base of a TX FIFO. #define MMC_TXSLAVEFIFO 3 Message is a TX FIFO slave. • #define MMC_GATEWAYSRC 4 Message is a source object for a gateway. #define BIT_IDEXT 0 MOARn Extended CAN Identifier of Message Object n bits. • #define CNT IDEXT 29 ID bit count. #define BIT IDSTD 18 MOARn Standard CAN Identifier of Message Object n bits. • #define CNT IDSTD 11 ID bit count. • #define BIT_IDE 29 MOARn Identifier Extension Bit of Message Object n. • #define BIT PRI 30 MOARn Priority Class bits. #define CNT_PRI 2 PRI bit count. • #define PRI LIST 1 List order based transmit priority. #define PRI ID 2 CAN ID based transmit priority. • #define BIT_LIST 4 MOSTATn List Allocation bits in byte 1. • #define CNT_LIST 4 LIST bit count. • #define MOSTATn_PNEXT CAN_DATA3

MOSTATn Pointer to Next Message Object byte.

• #define MOFGPRn_BOT CAN_DATA0

MOFGPRn bottom pointer byte.

#define MOFGPRn TOP CAN DATA1

MOFGPRn top pointer byte.

#define MOFGPRn_CUR CAN_DATA2

MOFGPRn current pointer byte.

#define MOFGPRn SEL CAN DATA3

MOFGPRn select pointer byte.

Functions

void hsk can init (const ubyte pins, const ulong baud)

Setup CAN communication with the desired baud rate.

void hsk_can_enable (const hsk_can_node node)

Go live on the CAN bus.

void hsk can disable (const hsk can node node)

Disable a CAN node.

ubyte hsk can status (const hsk can node node, const ubyte field)

Returns a status field of a CAN node.

hsk_can_msg hsk_can_msg_create (const ulong id, const bool extended, const ubyte dlc)

Creates a new CAN message.

ubyte hsk_can_msg_move (const hsk_can_msg msg, const ubyte list)

Move the selected message and its slaves to a different list.

ubyte hsk_can_msg_connect (const hsk_can_msg msg, const hsk_can_node node)

Connect a message object to a CAN node.

ubyte hsk_can_msg_disconnect (const hsk_can_msg msg)

Disconnect a CAN message object from its CAN node.

ubyte hsk_can_msg_delete (const hsk_can_msg msg)

Delete a CAN message object.

void hsk_can_msg_getData (const hsk_can_msg msg, ubyte *const msgdata)

Gets the current data in the CAN message.

void hsk_can_msg_setData (const hsk_can_msg msg, const ubyte *const msgdata)

Sets the current data in the CAN message.

void hsk_can_msg_send (const hsk_can_msg msg)

Request transmission of a message.

bool hsk_can_msg_sent (const hsk_can_msg msg)

Return whether the message was successfully sent between this and the previous call of this method.

void hsk_can_msg_receive (const hsk_can_msg msg)

Return the message into RX mode after sending a message.

bool hsk_can_msg_updated (const hsk_can_msg msg)

Return whether the message was updated via CAN bus between this call and the previous call of this method.

hsk_can_fifo hsk_can_fifo_create (ubyte size)

Creates a message FIFO.

• void hsk_can_fifo_setupRx (hsk_can_fifo fifo, const ulong id, const bool extended, const ubyte dlc)

Set the FIFO up for receiving messages.

void hsk_can_fifo_setRxMask (const hsk_can_fifo fifo, ulong msk)

Changes the ID matching mask of an RX FIFO.

ubyte hsk can fifo move (hsk can fifo fifo, const ubyte list)

Move the selected FIFO to a different list.

ubyte hsk_can_fifo_connect (const hsk_can_fifo fifo, const hsk_can_node node)

Connect a FIFO to a CAN node.

ubyte hsk_can_fifo_disconnect (const hsk_can_fifo fifo)

Disconnect a FIFO from its CAN node.

ubyte hsk_can_fifo_delete (const hsk_can_fifo fifo)

Delete a FIFO.

void hsk_can_fifo_next (const hsk_can_fifo fifo)

Select the next FIFO entry.

bool hsk_can_fifo_updated (const hsk_can_fifo fifo)

Return whether the currently selected FIFO entry was updated via CAN bus between this call and the previous call of this method.

void hsk_can_fifo_getData (const hsk_can_fifo fifo, ubyte *const msgdata)

Gets the data from the currently selected FIFO entry.

ulong hsk_can_fifo_getId (const hsk_can_fifo fifo)

Returns the CAN ID of the selected FIFO entry.

void hsk_can_data_setIntelSignal (ubyte *const msg, ubyte bitPos, char bitCount, ulong value)

Sets a signal value in a data field.

• void hsk can data setMotorolaSignal (ubyte *const msg, ubyte bitPos, char bitCount, ulong value)

Sets a big endian signal value in a data field.

void hsk_can_data_setSignal (ubyte *const msg, const bool motorola, const bool sign, const ubyte bitPos, const char bitCount, const ulong value)

Sets a signal value in a data field.

- ulong hsk_can_data_getIntelSignal (const ubyte *const msg, const bool sign, ubyte bitPos, char bitCount)

 Get a little endian signal value from a data field.
- ulong hsk_can_data_getMotorolaSignal (const ubyte *const msg, const bool sign, ubyte bitPos, char bit
 — Count)

Get a big endian signal value from a data field.

 ulong hsk_can_data_getSignal (const ubyte *const msg, const bool motorola, const bool sign, const ubyte bitPos, const char bitCount)

Get a signal value from a data field.

Variables

• static bool initialised = 0

Stores whether common initialisation has been performed.

16.6.1 Detailed Description

HSK Controller Area Network implementation.

This file implements the functions defined in hsk can.h.

Author

kami

16.6.2 The XC878 MulitCAN Module

The following is a little excursion about CAN on the XC878.

The MultiCAN module is accessible through 3 registers:

Register	Function	Width
CAN_ADCON	CAN Address/Data Control Register	8 bits
CAN_AD	CAN Address Register	16 bits
CAN_DATA	CAN Data Register	32 bits

These registers give access to a bus. CAN_ADCON is used to control bus (e.g. write or read), everything else is done by writing the desired MultiCAN address into the CAN_AD register. The desired MultiCAN register is then accessible through the CAN_DATA register.

Register	Representation	Bits	Starting
CAN_ADCON	CAN_ADCON	8	0
CAN_AD	CAN_ADL	8	0
	CAN_ADH	8	8
	CAN_ADLH	16	0
CAN_DATA	CAN_DATA0	8	0
	CAN_DATA1	8	8
	CAN_DATA2	8	16
	CAN_DATA3	8	24
	CAN_DATA01	16	0
	CAN_DATA23	16	16

Internally the MultiCAN module has register groups, i.e. a structured set of registers that are repeated for each item having the registers. An item may be a node or a list. Each register has a fixed base address and each item a fixed offset. Each register for an item is thus addressed by setting:

```
CAN_ADLH = REGISTER + ITEM_OFFSET
```

The following example points CAN_DATA to the Node 1 Status register:

```
CAN_ADLH = NSRx + (1 << OFF_NODEx)
```

16.6.3 CAN List Management

The MultiCAN module offers 32 message objects that can be linked to one of 8 lists.

List 0 holds the unallocated (i.e. unused) objects. List 1 is connected to CAN node 0. List 2 is connected to CAN node 1.

The following implementation will use 1 of the 5 general purpose lists to park messages.

All the list management will be hidden from the "user".

16.6.4 Macro Definition Documentation

16.6.4.1 AUAD_DEC1

```
#define AUAD_DEC1 (2 << BIT_AUAD)</pre>
```

AUAD auto decrement setting.

```
16.6.4.2 AUAD_INC1
#define AUAD_INC1 (1 << BIT_AUAD)</pre>
AUAD auto increment setting.
16.6.4.3 AUAD_INC8
#define AUAD_INC8 (3 << BIT_AUAD)</pre>
AUAD auto increment setting.
16.6.4.4 AUAD_OFF
#define AUAD_OFF (0 << BIT_AUAD)</pre>
AUAD auto increment off setting.
16.6.4.5 BIT_ALIE
#define BIT_ALIE 3
CAN NCRx Alert Interrupt Enable bit.
16.6.4.6 BIT_AM
#define BIT_AM 0
MOAMRn Acceptance Mask for Message Identifier bits.
16.6.4.7 BIT_AUAD
#define BIT_AUAD 2
CAN ADCON Auto Increment/Decrement the Address bits.
16.6.4.8 BIT_BRP
#define BIT_BRP 0
NBTRx Baud Rate Prescaler bits.
16.6.4.9 BIT_BSY
#define BIT_BSY 1
```

CAN_ADCON Data Transmission Busy bit.

16.6.4.10 BIT_BUSY #define BIT_BUSY 0 PANCTR PANSTATUS Panel Busy Flag bit. 16.6.4.11 BIT_CALM #define BIT_CALM 7 CAN NCRx CAN Analyze Mode bit. 16.6.4.12 BIT_CAN_DIS #define BIT_CAN_DIS 5 PMCON1 CAN Disable Request bit. 16.6.4.13 BIT_CANDIS #define BIT_CANDIS 4 CAN NCRx CAN Disable. Can be used for a complete shutdown of a CAN node. 16.6.4.14 BIT_CCE #define BIT_CCE 6 CAN NCRx Configuration Change Enable bit. 16.6.4.15 BIT_DATA #define BIT_DATA 4 CAN_ADCON CAN Data Valid bits. 16.6.4.16 BIT_DIR

Generated by Doxygen

#define BIT_DIR 11

MOCTRn Direction bit.

Set this to 1 for TX, this was figured out by trial and error.

```
16.6.4.17 BIT_DIV8
#define BIT_DIV8 15
NBTRx Divide Prescaler Clock by 8 bit.
16.6.4.18 BIT_DLC
#define BIT_DLC 0
MOFCRn Data Length Code bits in byte 3.
Valid DLC values range from 0 to 8.
16.6.4.19 BIT_ERR
#define BIT_ERR 7
PANCTR PANAR2 Error bit.
16.6.4.20 BIT_FCCFG
#define BIT_FCCFG 4
CMCON MultiCAN Clock Configuration bit.
Used to select PCLK * 2 (1) or PCKL (0) to drive the MultiCAN module.
16.6.4.21 BIT_IDE
#define BIT_IDE 29
MOARn Identifier Extension Bit of Message Object n.
16.6.4.22 BIT_IDEXT
#define BIT_IDEXT 0
MOARn Extended CAN Identifier of Message Object n bits.
16.6.4.23 BIT_IDSTD
```

#define BIT_IDSTD 18

MOARn Standard CAN Identifier of Message Object n bits.

Generated by Doxygen

```
16.6.4.24 BIT_INIT
#define BIT_INIT 0
CAN NCRx Node Initialization bit.
16.6.4.25 BIT_LECIE
#define BIT_LECIE 2
CAN NCRx LEC Indicated Error Interrupt Enable bit.
16.6.4.26 BIT_LIST
#define BIT_LIST 4
MOSTATn List Allocation bits in byte 1.
16.6.4.27 BIT_MIDE
#define BIT_MIDE 29
MOAMRn Acceptance Mask Bit for Message IDE Bit.
16.6.4.28 BIT_MMC
#define BIT_MMC 0
MOFCRn Message Mode Control bits in byte 0.
16.6.4.29 BIT_MSGVAL
#define BIT_MSGVAL 5
MOCTRn/MOSTATn Message Valid bit.
16.6.4.30 BIT_NEWDAT
#define BIT_NEWDAT 3
MOCTRn/MOSTATn New Data bit.
16.6.4.31 BIT_PRI
#define BIT_PRI 30
```

Generated by Doxygen

MOARn Priority Class bits.

```
16.6.4.32 BIT_RBUSY
#define BIT_RBUSY 1
PANCTR PANSTATUS Result Busy Flag bit.
16.6.4.33 BIT_RWEN
#define BIT_RWEN 0
CAN_ADCON Read/Write Enable bit.
Write is 1.
16.6.4.34 BIT_RXEN
#define BIT_RXEN 7
MOCTRn/MOSTATn Receive Signal Enable bit.
16.6.4.35 BIT_RXPND
#define BIT_RXPND 0
MOCTRn/MOSTATn Receive Pending bit.
16.6.4.36 BIT_RXSEL
#define BIT_RXSEL 0
NPCRx Receive Select bit.
16.6.4.37 BIT_RXUPD
#define BIT_RXUPD 2
MOCTRn/MOSTATn Receive Updating bit.
16.6.4.38 BIT_SJW
#define BIT_SJW 6
```

NBTRx (Re) Synchronization Jump Width bits.

```
16.6.4.39 BIT_TRIE
#define BIT_TRIE 1
CAN NCRx Transfer Interrupt Enable bit.
16.6.4.40 BIT_TSEG1
#define BIT_TSEG1 8
NBTRx Time Segment Before Sample Point bits.
16.6.4.41 BIT_TSEG2
#define BIT_TSEG2 12
NBTRx Time Segment After Sample Point bits.
16.6.4.42 BIT_TXEN0
#define BIT_TXEN0 9
MOCTRn/MOSTATn Transmit Signal Enable bit.
16.6.4.43 BIT_TXEN1
#define BIT_TXEN1 10
MOCTRn/MOSTATn Transmit Signal Enable Select bit.
16.6.4.44 BIT_TXPND
#define BIT_TXPND 1
MOCTRn/MOSTATn Transmit Pending bit.
```

#define BIT_TXRQ 8

16.6.4.45 BIT_TXRQ

MOCTRn/MOSTATn Transmit Signal Request bit.

16.6.4.46 CAN_AD_READ

```
#define CAN_AD_READ( ) CAN_ADCON = 0
```

Sets up the CAN_AD bus for reading.

The controller always reads all 4 data bytes.

16.6.4.47 CAN_AD_READY

```
\#define CAN_AD_READY( ) while (CAN_ADCON & (1 << BIT_BSY))
```

Make sure the last read/write has completed.

This is supposed to be mandatory for accessing the data bytes and CAN_ADCON, but tests show that the busy flag is never set if the module runs at 2 times PCLK, which is what this library does.

16.6.4.48 CAN_AD_WRITE

Sets up the CAN AD bus for writing.

Parameters

msk A bit mask representing the data bytes that should be written. E.g. 0xC would only write CAN_DATA2 and CAN_DATA3.

16.6.4.49 CNT_AM

#define CNT_AM 29

AM bit count.

16.6.4.50 CNT_DATA

#define CNT_DATA 4

DATA bit count.

16.6.4.51 CNT_DLC

#define CNT_DLC 4

DLC bit count.

```
16.6.4.52 CNT_IDEXT
#define CNT_IDEXT 29
ID bit count.
16.6.4.53 CNT_IDSTD
#define CNT_IDSTD 11
ID bit count.
16.6.4.54 CNT_LIST
#define CNT_LIST 4
LIST bit count.
16.6.4.55 CNT_MMC
#define CNT_MMC 4
MMC bit count.
16.6.4.56 CNT_PRI
#define CNT_PRI 2
PRI bit count.
16.6.4.57 CNT_RXSEL
#define CNT_RXSEL 3
RXSEL bit count.
16.6.4.58 HSK_CAN_MSG_MAX
#define HSK_CAN_MSG_MAX 32
The maximum number of message objects.
16.6.4.59 LIST_NODEx
#define LIST_NODEx 1
```

Generated by Doxygen

These lists hold message objects connected to a CAN node.

16.6.4.60 LIST_PENDING

```
#define LIST_PENDING 3
```

This list holds message objects pending assignment to a can node.

16.6.4.61 LIST_UNALLOC

```
#define LIST_UNALLOC 0
```

This list holds unallocated message objects.

16.6.4.62 MMC_DEFAULT

```
#define MMC_DEFAULT 0
```

Regular message mode.

16.6.4.63 MMC_GATEWAYSRC

```
#define MMC_GATEWAYSRC 4
```

Message is a source object for a gateway.

16.6.4.64 MMC_RXBASEFIFO

```
#define MMC_RXBASEFIFO 1
```

Message is the base of an RX FIFO.

16.6.4.65 MMC_TXBASEFIFO

```
#define MMC_TXBASEFIFO 2
```

Message is the base of a TX FIFO.

16.6.4.66 MMC_TXSLAVEFIFO

#define MMC_TXSLAVEFIFO 3

Message is a TX FIFO slave.

16.6.4.67 MOAMRn

#define MOAMRn 0x0403

Message Object n Acceptance Mask Register base address.

16.6.4.68 MOARn

#define MOARn 0x0406

Message Object n Arbitration Register base address.

16.6.4.69 MOCTRn

#define MOCTRn 0x0407

Message Object n Control Register base address.

16.6.4.70 MODATAHn

#define MODATAHn 0x0405

Message Object n Data Register High base address.

16.6.4.71 MODATALn

#define MODATALn 0x0404

Message Object n Data Register Low base address.

16.6.4.72 MOFCRn

#define MOFCRn 0x0400

Message Object n Function Control Register base address.

16.6.4.73 MOFGPRn

#define MOFGPRn 0x0401

Message Object n FIFO/Gateway Pointer Register base address.

16.6.4.74 MOFGPRn_BOT

#define MOFGPRn_BOT CAN_DATA0

MOFGPRn bottom pointer byte.

16.6.4.75 MOFGPRn_CUR

#define MOFGPRn_CUR CAN_DATA2

MOFGPRn current pointer byte.

Generated by Doxygen

16.6.4.76 MOFGPRn_SEL

#define MOFGPRn_SEL CAN_DATA3

MOFGPRn select pointer byte.

16.6.4.77 MOFGPRn_TOP

#define MOFGPRn_TOP CAN_DATA1

MOFGPRn top pointer byte.

16.6.4.78 MOSTATn

#define MOSTATn MOCTRn

Message Object n Status Register base address.

The status register is at the same address as the control register. It is accessed by reading from the address instead of writing.

16.6.4.79 MOSTATn_PNEXT

#define MOSTATn_PNEXT CAN_DATA3

MOSTATn Pointer to Next Message Object byte.

16.6.4.80 NBTRx

#define NBTRx 0x0084

Node x Bit Timing Register base address.

16.6.4.81 NCRx

#define NCRx 0x0080

Node x Control Register base address.

16.6.4.82 NECNTx

#define NECNTx 0x0085

Node x Error Counter Register base address.

16.6.4.83 NFCRx

#define NFCRx 0x0086

Node x Frame Counter Register base address.

16.6.4.84 NIPRx

#define NIPRx 0x0082

Node x Interrupt Pointer Register base address.

16.6.4.85 NPCRx

#define NPCRx 0x0083

Node x Port Control Register base address.

16.6.4.86 NSRx

#define NSRx 0x0081

Node x Status Register base address.

16.6.4.87 OFF_LISTm

#define OFF_LISTm 0

The Id() of the List Register (LISTm) m offset factor.

16.6.4.88 OFF_MOn

#define OFF_MOn 3

The Id() of the Message Object n offset factor.

16.6.4.89 OFF_MSIDk

#define OFF_MSIDk 0

The Id() of the Message Index Register k offset factor.

16.6.4.90 OFF_MSPNDk

#define OFF_MSPNDk 0

The Id() of the Message Pending Register k offset factor.

Generated by Doxygen

16.6.4.91 OFF_NODEx

#define OFF_NODEx 6

The Id() of the Node Register x offset factor.

16.6.4.92 PAN_CMD_ALLOC

#define PAN_CMD_ALLOC 0x03

List panel Dynamic Allocate command.

16.6.4.93 PAN_CMD_ALLOCBEFORE

#define PAN_CMD_ALLOCBEFORE 0x05

List panel Dynamic Insert Before command.

16.6.4.94 PAN_CMD_ALLOCBEHIND

#define PAN_CMD_ALLOCBEHIND 0x07

List panel Dynamic Insert Behind command.

16.6.4.95 PAN_CMD_INIT

#define PAN_CMD_INIT 0x01

List panel Initialize Lists command.

16.6.4.96 PAN_CMD_MOVE

#define PAN_CMD_MOVE 0x02

List panel Static Allocate command.

16.6.4.97 PAN_CMD_MOVEBEFORE

#define PAN_CMD_MOVEBEFORE 0x04

List panel Static Insert Before command.

16.6.4.98 PAN_CMD_MOVEBEHIND

#define PAN_CMD_MOVEBEHIND 0x06

List panel Static Insert Behind command.

```
16.6.4.99 PAN_CMD_NOP
#define PAN_CMD_NOP 0x00
List panel No Operation command.
16.6.4.100 PANAR1
#define PANAR1 CAN_DATA2
PANCTR Argument 1 Register.
16.6.4.101 PANAR2
#define PANAR2 CAN_DATA3
PANCTR Argument 2 Register.
16.6.4.102 PANCMD
#define PANCMD CAN_DATA0
PANCTR Command Register.
16.6.4.103 PANCTR
#define PANCTR 0x0071
The Panel Control Register.
All list manipulations are performed here.
16.6.4.104 PANCTR_READY
#define PANCTR_READY( )
Value:
```

Wait for list operations to complete.

Only execute this if CAN_ADLH points to PANCTR.

CAN_AD_READ(); \
} while (PANSTATUS & ((1 << BIT_BUSY) | (1 << BIT_RBUSY)))</pre>

do { \

16.6.4.105 PANSTATUS

```
#define PANSTATUS CAN_DATA1
```

PANCTR Status Register.

```
16.6.4.106 PRI_ID
```

```
#define PRI_ID 2
```

CAN ID based transmit priority.

16.6.4.107 PRI_LIST

```
#define PRI_LIST 1
```

List order based transmit priority.

16.6.4.108 RESET

```
#define RESET 0x3
```

Bit mask for writing resets.

16.6.4.109 RESET_DATA

```
#define RESET_DATA CAN_DATA01
```

The register to write Control Register resets into.

16.6.4.110 SET

```
#define SET 0xC
```

Bit mask for writing settings.

16.6.4.111 SET_DATA

```
#define SET_DATA CAN_DATA23
```

The register to write Control Register settings into.

16.6.5 Function Documentation

16.6.5.1 hsk_can_data_getIntelSignal()

Get a little endian signal value from a data field.

Parameters

msg	The message data field to read from
sign	Indicates whether the value has a signed type
bitPos	The bit position of the signal
bitCount	The length of the signal

Returns

The signal from the data field msg

16.6.5.2 hsk_can_data_getMotorolaSignal()

Get a big endian signal value from a data field.

See also

hsk_can_data_setMotorolaSignal() For details on the difference between big and little endian

Parameters

msg	The message data field to read from
sign	Indicates whether the value has a signed type
bitPos	The bit position of the signal
bitCount	The length of the signal

Returns

The signal from the data field msg

16.6.5.3 hsk_can_data_getSignal()

Get a signal value from a data field.

Parameters

msg	The message data field to read from
motorola	Indicates big endian (Motorola) encoding
sign	Indicates whether the value has a signed type
bitPos	The bit position of the signal
bitCount	The length of the signal

Returns

The signal from the data field msg

Here is the call graph for this function:

16.6.5.4 hsk_can_data_setIntelSignal()

Sets a signal value in a data field.

Parameters

msg	The message data field to write into
bitPos	The bit position of the signal
bitCount	The length of the signal
value	The signal value to write into the data field

16.6.5.5 hsk_can_data_setMotorolaSignal()

```
ubyte bitPos,
char bitCount,
ulong value ) [private]
```

Sets a big endian signal value in a data field.

Big endian signals are bit strange, play with them in the Vector CANdb editor to figure them out.

The start position of a signal is supposed to point to the most significant bit of a signal. Consider a 10 bit message, the bits are indexed:

```
9 8 7 6 5 4 3 2 1 0
```

In that example bit 9 is the most significant bit, bit 0 the least significant. The most significant bit of a signal will be stored in the most significant bits of the message. Under the assumption that the start bit is 2, the message would be stored in the following bits:

```
Signal 9 8 7 6 5 4 3 2 1 0 Message 2 1 0 15 14 13 12 11 10 9
```

Note that the signal spreads to the most significant bits of the next byte. Special care needs to be taken, when mixing little and big endian signals. A 10 bit little endian signal with start bit 2 would cover the following message bits:

```
Signal 9 8 7 6 5 4 3 2 1 0
Message 11 10 9 8 7 6 5 4 3 2
```

Parameters

msg	The message data field to write into
bitPos	The bit position of the signal
bitCount	The length of the signal
value	The signal value to write into the data field

16.6.5.6 hsk_can_data_setSignal()

```
void hsk_can_data_setSignal (
    ubyte *const msg,
    const bool motorola,
    const bool sign,
    const ubyte bitPos,
    const char bitCount,
    const ulong value )
```

Sets a signal value in a data field.

msg The message data field to write into		The message data field to write into
	motorola	Indicates big endian (Motorola) encoding
	sign	Indicates whether the value has a signed type

Parameters

bitPos	The bit position of the signal
bitCount	The length of the signal
value	The signal value to write into the data field

The sign parameter is not required for setting signals, it is just there so that one signal configuration tuple suffices for hsk_can_data_setSignal() and hsk_can_data_getSignal(). Here is the call graph for this function:

16.6.5.7 hsk_can_disable()

Disable a CAN node.

This completely shuts down a CAN node, cutting it off from the internal clock, to reduce energy consumption.

Parameters

noc	le	The CAN node to disable
-----	----	-------------------------

16.6.5.8 hsk_can_enable()

Go live on the CAN bus.

To be called when everything is set up.

16.6.5.9 hsk_can_fifo_connect()

Connect a FIFO to a CAN node.

Parameters

fifo	The identifier of the FIFO
node	The CAN node to connect to

Return values

CAN_ERROR	The given FIFO is not valid
0	Success

Here is the call graph for this function:

16.6.5.10 hsk can fifo create()

Creates a message FIFO.

FIFOs can be used to ensure that multiplexed signals are not lost.

For receiving multiplexed signals it is recommended to use a FIFO as large as the number of multiplexed messages that might occur in a single burst.

If the multiplexor is large, e.g. 8 bits, it's obviously not possible to carve a 256 messages FIFO out of 32 message objects. Make an educated guess and hope that the signal provider is not hostile.

If the number of available message objects is at least one, but less than the requested length this function succeeds, but the FIFO is only created as long as possible.

size	The desired FIFO size

Return values

CAN_ERROR	Creating the FIFO failed
[0;32[The created FIFO id

Slave Objects

Slave objects are put into the same list as the base message object, so it can be used as a slave as well.

Always configure slave messages as TXSLAVEs, because in RXMODE the setting is ignored anyway.

Message Pointers

MOFGPRn of the base object holds the message pointers that define the list boundaries. SEL will be used to keep track of where to read/write the next message when interacting with the FIFO.

```
16.6.5.11 hsk_can_fifo_delete()
```

Delete a FIFO.

Parameters

fifo The identifie	r of the FIFO
--------------------	---------------

Return values

CAN_ERROR	The given FIFO is not valid
0	Success

Here is the call graph for this function:

16.6.5.12 hsk_can_fifo_disconnect()

Disconnect a FIFO from its CAN node.

This takes the FIFO out of active communication, without deleting it.

Parameters

fifo	The identifier of the FIFO
------	----------------------------

Return values

CAN_E	RROR	The given FIFO is not valid
	0	Success

Here is the call graph for this function:

16.6.5.13 hsk_can_fifo_getData()

Gets the data from the currently selected FIFO entry.

This writes DLC bytes from the FIFO entry into msgdata.

Parameters

fifo	The identifier of the FIFO	
msgdata	The character array to store the message data in	

Here is the call graph for this function:

16.6.5.14 hsk_can_fifo_getId()

Returns the CAN ID of the selected FIFO entry.

Parameters

```
fifo The ID of the FIFO
```

Returns

The ID of the currently selected message object

16.6.5.15 hsk_can_fifo_move()

Move the selected FIFO to a different list.

Parameters

fifo	The identifier of the FIFO	
list	The list to move the FIFO to	

Return values

CAN_ERROR	The given FIFO id is not valid
0	Move successful

16.6.5.16 hsk_can_fifo_next()

Select the next FIFO entry.

The hsk_can_fifo_updated() and hsk_can_fifo_getData() functions always refer to a certain message within the FIFO. This function selects the next entry.

fifo	The ID of the FIFO to select the next entry from
------	--

16.6.5.17 hsk_can_fifo_setRxMask()

Changes the ID matching mask of an RX FIFO.

Every RX FIFO is setup to receive only on complete ID matches. This function allows updating the mask.

To generate a mask from a list of IDs use the following formula:

$$msk = \sim (id_0|id_1|...|id_n)|(id_0\&id_1\&...\&id_n)$$

Precondition

```
hsk_can_fifo_setupRx()
```

Parameters

fifo	The FIFO to change the RX mask for
msk	The bit mask to set for the FIFO

16.6.5.18 hsk_can_fifo_setupRx()

Set the FIFO up for receiving messages.

Parameters

fifo	The FIFO to setup	
id	The message ID.	
extended	Set this to 1 for an extended CAN message	
dlc	The data length code, # of bytes in the message, valid values range from 0 to 8	

16.6.5.19 hsk_can_fifo_updated()

Return whether the currently selected FIFO entry was updated via CAN bus between this call and the previous call of this method.

It can be used to decide when to call hsk_can_fifo_getData() and hsk_can_fifo_next().

Parameters

fifo	The identifier of the FIFO to check
------	-------------------------------------

Return values

1	The FIFO entry was updated since the last call of this function
0	The FIFO entry has not been updated since the last call of this function

Here is the call graph for this function:

16.6.5.20 hsk_can_init()

Setup CAN communication with the desired baud rate.

The CAN node is chosen with the pin configuration.

The bus still needs to be enabled after being setup.

Parameters

pins	Choose one of 7 CANn_IO_* configurations	
baud	The target baud rate to use	

Configure the Bit Timing Unit

Note

Careful study of section 16.1.3 "CAN Node Control" of the XC878 Reference Manual is advised before changing the following code.

Minima and maxima are specified in ISO 11898.

One bit is s separated into 3 blocks, each of which are multiples of a time quantum. The size of the time quantum (TQ) is controlled by the BRP and DIV8 bits. Because TSYNC is fixed to a single quantum, the other segments should be made up of a minimum of TQs, so TSYNC doesn't get too short (making a bit up of more TQs requires each one to be shorter at the same baud rate). However, the minimum number of TQs is 8 and some spare quantums are needed to adjust the timing between each bit transmission.

Time Slice	Value	Minimum	Encoding
TSYNC	1	Fixed	Implicite
TSEG1	8	3	7
TSEG2	3	2	2
SWJ	4	-	3

The above values provide 4 time quantums to adjust between bits without dropping below 8 quantums. The adjustment value is provided with the SWJ time slice.

The sample point is between TSEG1 and TSEG2, i.e. at 75%.

This means one bit requires 12 cycles. The BRP bits can be used to achieve the desired baud rate:

$$baud = 48000000/12/BRP$$

 $BRP = 48000000/12/baud$

The encoding of BRT is also VALUE+1.

I/O Configuration

There are 7 different I/O pin configurations, four are availabe to node 0 and three to node 1.

See also

Section 16.1.11 "MultiCAN Port Control" of the XC878 Reference Manual

16.6.5.21 hsk_can_msg_connect()

Connect a message object to a CAN node.

Parameters

msg	The identifier of the message object
node	The CAN node to connect to

Return values

CAN_ERROR	The given message is not valid
0	Success

Here is the call graph for this function:

16.6.5.22 hsk_can_msg_create()

Creates a new CAN message.

Note that only up to 32 messages can exist at any given time.

Extended messages have 29 bit IDs and non-extended 11 bit IDs.

Parameters

id	The message ID.
extended	Set this to 1 for an extended CAN message.
dlc	The data length code, # of bytes in the message, valid values range from 0 to 8.

Return values

CAN_ERROR	Creating the message failed	
[0;32[A message identifier	

16.6.5.23 hsk_can_msg_delete()

Delete a CAN message object.

msg	The identifier of the message object
-----	--------------------------------------

Return values

CAN_ERROR	The given message is not valid
0	Success

Here is the call graph for this function:

16.6.5.24 hsk_can_msg_disconnect()

Disconnect a CAN message object from its CAN node.

This takes a CAN message out of active communication, without deleting it.

Parameters

msg	The identifier of the message object
-----	--------------------------------------

Return values

CAN_ERROR	The given message is not valid
0	Success

Here is the call graph for this function:

16.6.5.25 hsk_can_msg_getData()

Gets the current data in the CAN message.

This writes DLC bytes from the CAN message object into msgdata.

Parameters

msg	The identifier of the message object
msgdata	The character array to store the message data in

16.6.5.26 hsk_can_msg_move()

Move the selected message and its slaves to a different list.

Parameters

msg	The identifier of the message object
list	The list to move the message object to

Return values

CAN_ERROR	The given message object id is not valid
0	Move successful

16.6.5.27 hsk_can_msg_receive()

Return the message into RX mode after sending a message.

After sending a message the messages with the same ID from other bus participants are ignored. This restores the original setting to receive messages.

msg The identifier of the mess	sage to receive
--------------------------------	-----------------

16.6.5.28 hsk_can_msg_send()

Request transmission of a message.

Parameters

msg	'	The identifier of the message to send
-----	---	---------------------------------------

16.6.5.29 hsk_can_msg_sent()

Return whether the message was successfully sent between this and the previous call of this method.

Parameters

msg	The identifier of the message to check
-----	--

Return values

1	The message was sent since the last call of this function	
0	The message has not been sent since the last call of this function	l

16.6.5.30 hsk_can_msg_setData()

Sets the current data in the CAN message.

This writes DLC bytes from msgdata to the CAN message object.

Parameters

msg	The identifier of the message object
msgdata	The character array to get the message data from

16.6.5.31 hsk_can_msg_updated()

Return whether the message was updated via CAN bus between this call and the previous call of this method.

An update does not entail a change of message data. It just means the message was received on the CAN bus.

This is useful for cyclic message occurance checks.

Parameters

ms	g	The identifier of the message to check
----	---	--

Return values

1	The message was updated since the last call of this function
0	The message has not been updated since the last call of this function

16.6.5.32 hsk_can_status()

Returns a status field of a CAN node.

Parameters

node	The CAN node to return the status of
field	The status field to select

Returns

The status field state

See also

CAN Node Status Fields

16.6.6 Variable Documentation

16.6.6.1 initialised

```
bool initialised = 0 [static]
```

Stores whether common initialisation has been performed.

16.7 hsk_can/hsk_can.h File Reference

HSK Controller Area Network headers.

This graph shows which files directly or indirectly include this file:

Macros

• #define CAN_ERROR 0xff

Value returned by functions in case of an error.

• #define CANO 0

CAN node 0.

• #define CAN1 1

CAN node 1.

• #define CAN0_IO_P10_P11 0

CAN node 0 IO RX on P1.0, TX on P1.1.

#define CAN0_IO_P16_P17 1

CAN node 0 IO RX on P1.6, TX on P1.7.

• #define CAN0_IO_P34_P35 2

CAN node 0 IO RX on P3.4, TX on P3.5.

• #define CAN0 IO P40 P41 3

CAN node 0 IO RX on P4.0, TX on P4.1.

#define CAN1_IO_P01_P02 4

CAN node 1 IO RX on P0.1, TX on P0.2.

#define CAN1_IO_P14_P13 5

CAN node 1 IO RX on P1.4, TX on P1.3.

• #define CAN1_IO_P32_P33 6

CAN node 1 IO RX on P3.2, TX on P3.3.

• #define CAN_ENDIAN_INTEL 0

Little endian signal encoding.

• #define CAN ENDIAN MOTOROLA 1

Big endian signal encoding.

#define CAN_STATUS_LEC 0

The Last Error Code field provides the error triggered by the last message on the bus.

#define CAN STATUS TXOK 1

Message Transmitted Successfully.

• #define CAN_STATUS_RXOK 2

Message Received Successfully.

#define CAN_STATUS_ALERT 3

Alert Warning.

• #define CAN_STATUS_EWRN 4

Error Warning Status.

#define CAN STATUS BOFF 5

Bus-off Status.

Typedefs

typedef ubyte hsk_can_node

CAN node identifiers.

• typedef ubyte hsk_can_msg

CAN message object identifiers.

typedef ubyte hsk_can_fifo

CAN message FIFO identifiers.

Functions

void hsk_can_init (const ubyte pins, const ulong baud)

Setup CAN communication with the desired baud rate.

void hsk_can_enable (const hsk_can_node node)

Go live on the CAN bus.

void hsk_can_disable (const hsk_can_node node)

Disable a CAN node.

ubyte hsk_can_status (const hsk_can_node node, const ubyte field)

Returns a status field of a CAN node.

hsk_can_msg hsk_can_msg_create (const ulong id, const bool extended, const ubyte dlc)

Creates a new CAN message.

• ubyte hsk_can_msg_connect (const hsk_can_msg msg, const hsk_can_node node)

Connect a message object to a CAN node.

ubyte hsk_can_msg_disconnect (const hsk_can_msg msg)

Disconnect a CAN message object from its CAN node.

• ubyte hsk_can_msg_delete (const hsk_can_msg msg)

Delete a CAN message object.

void hsk_can_msg_getData (const hsk_can_msg msg, ubyte *const msgdata)

Gets the current data in the CAN message.

• void hsk_can_msg_setData (const hsk_can_msg msg, const ubyte *const msgdata)

Sets the current data in the CAN message.

void hsk_can_msg_send (const hsk_can_msg msg)

Request transmission of a message.

bool hsk_can_msg_sent (const hsk_can_msg msg)

Return whether the message was successfully sent between this and the previous call of this method.

void hsk_can_msg_receive (const hsk_can_msg msg)

Return the message into RX mode after sending a message.

bool hsk_can_msg_updated (const hsk_can_msg msg)

Return whether the message was updated via CAN bus between this call and the previous call of this method.

hsk_can_fifo hsk_can_fifo_create (ubyte size)

Creates a message FIFO.

void hsk_can_fifo_setupRx (hsk_can_fifo fifo, const ulong id, const bool extended, const ubyte dlc)

Set the FIFO up for receiving messages.

void hsk_can_fifo_setRxMask (const hsk_can_fifo fifo, ulong msk)

Changes the ID matching mask of an RX FIFO.

ubyte hsk_can_fifo_connect (const hsk_can_fifo fifo, const hsk_can_node node)

Connect a FIFO to a CAN node.

ubyte hsk_can_fifo_disconnect (const hsk_can_fifo fifo)

Disconnect a FIFO from its CAN node.

ubyte hsk_can_fifo_delete (const hsk_can_fifo fifo)

Delete a FIFO.

void hsk_can_fifo_next (const hsk_can_fifo fifo)

Select the next FIFO entry.

ulong hsk_can_fifo_getId (const hsk_can_fifo fifo)

Returns the CAN ID of the selected FIFO entry.

• bool hsk_can_fifo_updated (const hsk_can_fifo fifo)

Return whether the currently selected FIFO entry was updated via CAN bus between this call and the previous call of this method.

void hsk_can_fifo_getData (const hsk_can_fifo fifo, ubyte *const msgdata)

Gets the data from the currently selected FIFO entry.

void hsk_can_data_setSignal (ubyte *const msg, const bool motorola, const bool sign, const ubyte bitPos, const char bitCount, const ulong value)

Sets a signal value in a data field.

 ulong hsk_can_data_getSignal (const ubyte *const msg, const bool motorola, const bool sign, const ubyte bitPos, const char bitCount)

Get a signal value from a data field.

16.7.1 Detailed Description

HSK Controller Area Network headers.

This file contains the function prototypes to initialize and engage in CAN communication over the builtin CAN nodes 0 and 1.

Author

kami

16.7.2 CAN Message/Signal Tuples

The recommended way to use messages and signals is not to specify them inline, but to provide defines with a set of parameters.

These tupples should follow the following pattern:

The symbols have the following meaning:

• MSGNAME: The name of the message in capitals, e.g. AFB_CHANNELS

- id: The CAN id of the message, e.g. 0x403
- extended: Whether the CAN ID is extended or not, e.g. 0 for a regular ID
- · dlc: The data length count of the message, e.g. 3
- · SIGNAME: The name of the signal in capitals, e.g. AFB CHANNELO CURRENT
- motorola: Whether the signal is in big endian (Motorola) format
- · signed: Whether the signal is signed
- · bitPos: The starting bit of the signal, e.g. 0
- · bitCount: The length of the signal in bits, e.g. 10

Tuples using the specified format can directly be used as parameters for several functions in the library.

16.7.3 CAN Node Management

There are 7 port pairs available for CAN communication, check the CANn_IO_* defines. Four for the node CAN0 and three for CAN1.

16.7.4 Message Object Management

The MultiCAN module offers up to 32 message objects. New messages are set up for receiving messages. Message object can be switched from RX to TX mode and back with the hkk_can_msg_send() and hkk_can_msg_receive() functions.

16.7.5 FIFOs

FIFOs are the weapon of choice when dealing with large numbers of individual messages or when receving multiplexed data. In most use cases only the latest version of a message is relevant and FIFOs are not required. But messages containing multiplexed signals may contain critical signals that would be overwritten by a message with the same ID, but a different multiplexor.

If more message IDs than available message objects are used to send and/or receive data, there is no choice but to use a FIFO.

Currently only RX FIFOs are supported.

A FIFO can act as a buffer the CAN module can store message data in until it can be dealt with. The following example illustrates how to read from a FIFO:

```
if (hsk_can_fifo_updated(fifo0)) {
    hsk_can_fifo_getData(fifo0, data0);
    hsk_can_fifo_next(fifo0);
    select = hsk_can_data_getSignal(data0, SIG_MULTIPLEXOR);
    [...]
}
```

When using a mask to accept several messages checking the ID becomes necessary:

FIFOs draw from the same message object pool regular message objects do.

16.7.6 Message Data

The hsk_can_data_setSignal() and hsk_can_data_getSignal() functions allow writing and reading signals across byte boundaries to and from a buffer.

For big endian signals the bit position of the most significant bit must be supplied (highest bit in the first byte). For little endian signals the least significant bit must be supplied (lowest bit in the first byte).

This conforms to the way signal positions are stored in Vector CANdb++ DBC files.

16.7.7 Macro Definition Documentation

```
16.7.7.1 CAN0
```

#define CANO 0

CAN node 0.

16.7.7.2 CANO_IO_P10_P11

#define CANO_IO_P10_P11 0

CAN node 0 IO RX on P1.0, TX on P1.1.

16.7.7.3 CAN0_IO_P16_P17

#define CAN0_IO_P16_P17 1

CAN node 0 IO RX on P1.6, TX on P1.7.

16.7.7.4 CAN0_IO_P34_P35

#define CANO_IO_P34_P35 2

CAN node 0 IO RX on P3.4, TX on P3.5.

16.7.7.5 CAN0_IO_P40_P41

#define CANO_IO_P40_P41 3

CAN node 0 IO RX on P4.0, TX on P4.1.

16.7.7.6 CAN1

#define CAN1 1

CAN node 1.

16.7.7.7 CAN1_IO_P01_P02 #define CAN1_IO_P01_P02 4 CAN node 1 IO RX on P0.1, TX on P0.2. 16.7.7.8 CAN1_IO_P14_P13 #define CAN1_IO_P14_P13 5 CAN node 1 IO RX on P1.4, TX on P1.3. 16.7.7.9 CAN1_IO_P32_P33 #define CAN1_IO_P32_P33 6 CAN node 1 IO RX on P3.2, TX on P3.3. 16.7.7.10 CAN_ENDIAN_INTEL #define CAN_ENDIAN_INTEL 0 Little endian signal encoding. Deprecated In favour of shorter and cleaner code the hsk_can_data_getSignal() and hsk_can_data_setSignal() functions were switched to using boolean (motorola positive) logic 16.7.7.11 CAN_ENDIAN_MOTOROLA #define CAN_ENDIAN_MOTOROLA 1 Big endian signal encoding. Deprecated In favour of shorter and cleaner code the hsk_can_data_getSignal() and hsk_can_data_setSignal() functions were switched to using boolean (motorola positive) logic 16.7.7.12 CAN_ERROR #define CAN_ERROR 0xff

Value returned by functions in case of an error.

16.7.8 Typedef Documentation

```
16.7.8.1 hsk_can_fifo
```

```
typedef ubyte hsk_can_fifo
```

CAN message FIFO identifiers.

```
16.7.8.2 hsk_can_msg
```

```
typedef ubyte hsk_can_msg
```

CAN message object identifiers.

```
16.7.8.3 hsk_can_node
```

```
typedef ubyte hsk_can_node
```

CAN node identifiers.

16.7.9 Function Documentation

16.7.9.1 hsk_can_data_getSignal()

Get a signal value from a data field.

msg	The message data field to read from
motorola	Indicates big endian (Motorola) encoding
sign	Indicates whether the value has a signed type
bitPos	The bit position of the signal
bitCount	The length of the signal

Returns

The signal from the data field msg

Here is the call graph for this function:

16.7.9.2 hsk_can_data_setSignal()

Sets a signal value in a data field.

Parameters

msg	The message data field to write into
motorola Indicates big endian (Motorola) encodi	
sign	Indicates whether the value has a signed type
bitPos	The bit position of the signal
bitCount	The length of the signal
value	The signal value to write into the data field

The sign parameter is not required for setting signals, it is just there so that one signal configuration tuple suffices

for hsk_can_data_setSignal() and hsk_can_data_getSignal().Here is the call graph for this function:

16.7.9.3 hsk_can_disable()

Disable a CAN node.

This completely shuts down a CAN node, cutting it off from the internal clock, to reduce energy consumption.

Parameters

node The CAN node to disable	÷
------------------------------	---

16.7.9.4 hsk_can_enable()

Go live on the CAN bus.

To be called when everything is set up.

Parameters

```
node The CAN node to enable
```

16.7.9.5 hsk_can_fifo_connect()

Connect a FIFO to a CAN node.

Parameters

fifo	The identifier of the FIFO
node	The CAN node to connect to

Return values

CAN_ERROR	The given FIFO is not valid
0	Success

Here is the call graph for this function:

16.7.9.6 hsk_can_fifo_create()

Creates a message FIFO.

FIFOs can be used to ensure that multiplexed signals are not lost.

For receiving multiplexed signals it is recommended to use a FIFO as large as the number of multiplexed messages that might occur in a single burst.

If the multiplexor is large, e.g. 8 bits, it's obviously not possible to carve a 256 messages FIFO out of 32 message objects. Make an educated guess and hope that the signal provider is not hostile.

If the number of available message objects is at least one, but less than the requested length this function succeeds, but the FIFO is only created as long as possible.

Parameters

size	The desired FIFO size

Return values

CAN_ERROR	Creating the FIFO failed
[0;32[The created FIFO id

Slave Objects

Slave objects are put into the same list as the base message object, so it can be used as a slave as well.

Always configure slave messages as TXSLAVEs, because in RXMODE the setting is ignored anyway.

Message Pointers

MOFGPRn of the base object holds the message pointers that define the list boundaries. SEL will be used to keep track of where to read/write the next message when interacting with the FIFO.

16.7.9.7 hsk_can_fifo_delete()

Delete a FIFO.

Parameters

fifo	The identifier of the FIFO
------	----------------------------

Return values

CAN_ERROR	The given FIFO is not valid
0	Success

Here is the call graph for this function:

16.7.9.8 hsk_can_fifo_disconnect()

Disconnect a FIFO from its CAN node.

This takes the FIFO out of active communication, without deleting it.

fifo	The identifier of the FIFO

Return values

CAN_ERROR	The given FIFO is not valid
0	Success

Here is the call graph for this function:

16.7.9.9 hsk_can_fifo_getData()

Gets the data from the currently selected FIFO entry.

This writes DLC bytes from the FIFO entry into msgdata.

Parameters

fifo	The identifier of the FIFO
msgdata	The character array to store the message data in

Here is the call graph for this function:

16.7.9.10 hsk_can_fifo_getId()

Returns the CAN ID of the selected FIFO entry.

Parameters

fifo	The ID of the FIFO
------	--------------------

Returns

The ID of the currently selected message object

16.7.9.11 hsk_can_fifo_next()

Select the next FIFO entry.

The hsk_can_fifo_updated() and hsk_can_fifo_getData() functions always refer to a certain message within the FIFO. This function selects the next entry.

Parameters

fifo The ID of the FIFO to select the next entry from

16.7.9.12 hsk_can_fifo_setRxMask()

Changes the ID matching mask of an RX FIFO.

Every RX FIFO is setup to receive only on complete ID matches. This function allows updating the mask.

To generate a mask from a list of IDs use the following formula:

$$msk = \sim (id_0|id_1|...|id_n)|(id_0\&id_1\&...\&id_n)$$

Precondition

```
hsk_can_fifo_setupRx()
```

fifo	The FIFO to change the RX mask for
msk	The bit mask to set for the FIFO

16.7.9.13 hsk_can_fifo_setupRx()

Set the FIFO up for receiving messages.

Parameters

fifo	The FIFO to setup
id	The message ID.
extended	Set this to 1 for an extended CAN message
dlc	The data length code, # of bytes in the message, valid values range from 0 to 8

16.7.9.14 hsk_can_fifo_updated()

Return whether the currently selected FIFO entry was updated via CAN bus between this call and the previous call of this method.

It can be used to decide when to call hsk_can_fifo_getData() and hsk_can_fifo_next().

Parameters

fifo	The identifier of the FIFO to check
------	-------------------------------------

Return values

1	The FIFO entry was updated since the last call of this function
0	The FIFO entry has not been updated since the last call of this function

Here is the call graph for this function:

16.7.9.15 hsk_can_init()

Setup CAN communication with the desired baud rate.

The CAN node is chosen with the pin configuration.

The bus still needs to be enabled after being setup.

Parameters

pins	Choose one of 7 CANn_IO_* configurations
baud	The target baud rate to use

Configure the Bit Timing Unit

Note

Careful study of section 16.1.3 "CAN Node Control" of the XC878 Reference Manual is advised before changing the following code.

Minima and maxima are specified in ISO 11898.

One bit is s separated into 3 blocks, each of which are multiples of a time quantum. The size of the time quantum (TQ) is controlled by the BRP and DIV8 bits. Because TSYNC is fixed to a single quantum, the other segments should be made up of a minimum of TQs, so TSYNC doesn't get too short (making a bit up of more TQs requires each one to be shorter at the same baud rate). However, the minimum number of TQs is 8 and some spare quantums are needed to adjust the timing between each bit transmission.

Time Slice	Value	Minimum	Encoding
TSYNC	1	Fixed	Implicite
TSEG1	8	3	7
TSEG2	3	2	2
SWJ	4	-	3

The above values provide 4 time quantums to adjust between bits without dropping below 8 quantums. The adjustment value is provided with the SWJ time slice.

The sample point is between TSEG1 and TSEG2, i.e. at 75%.

This means one bit requires 12 cycles. The BRP bits can be used to achieve the desired baud rate:

$$baud = 48000000/12/BRP$$

 $BRP = 48000000/12/baud$

The encoding of BRT is also VALUE+1.

I/O Configuration

There are 7 different I/O pin configurations, four are availabe to node 0 and three to node 1.

See also

Section 16.1.11 "MultiCAN Port Control" of the XC878 Reference Manual

16.7.9.16 hsk_can_msg_connect()

Connect a message object to a CAN node.

Parameters

msg	The identifier of the message object
node	The CAN node to connect to

Return values

CAN_ERROR	The given message is not valid
0	Success

Here is the call graph for this function:

16.7.9.17 hsk_can_msg_create()

Creates a new CAN message.

Note that only up to 32 messages can exist at any given time.

Extended messages have 29 bit IDs and non-extended 11 bit IDs.

id	The message ID.
extended	Set this to 1 for an extended CAN message.
dlc	The data length code, # of bytes in the message, valid values range from 0 to 8.

Return values

CAN_ERROR	Creating the message failed
[0;32[A message identifier

16.7.9.18 hsk_can_msg_delete()

Delete a CAN message object.

Parameters

msg	The identifier of the message object
-----	--------------------------------------

Return values

CAN_ERROR	The given message is not valid
0	Success

Here is the call graph for this function:

16.7.9.19 hsk_can_msg_disconnect()

Disconnect a CAN message object from its CAN node.

This takes a CAN message out of active communication, without deleting it.

Parameters

msg The identifier of the message object

Return values

CAN_ERROR	The given message is not valid
0	Success

Here is the call graph for this function:

16.7.9.20 hsk_can_msg_getData()

Gets the current data in the CAN message.

This writes DLC bytes from the CAN message object into msgdata.

Parameters

msg	The identifier of the message object
msgdata	The character array to store the message data in

16.7.9.21 hsk_can_msg_receive()

Return the message into RX mode after sending a message.

After sending a message the messages with the same ID from other bus participants are ignored. This restores the original setting to receive messages.

msg	The identifier of the message to receive
-----	--

16.7.9.22 hsk_can_msg_send()

Request transmission of a message.

Parameters

msg	The identifier of the message to send
-----	---------------------------------------

16.7.9.23 hsk_can_msg_sent()

Return whether the message was successfully sent between this and the previous call of this method.

Parameters

msg	The identifier of the message to check
-----	--

Return values

1	The message was sent since the last call of this function
0	The message has not been sent since the last call of this function

16.7.9.24 hsk_can_msg_setData()

Sets the current data in the CAN message.

This writes DLC bytes from msgdata to the CAN message object.

Parameters

msg	The identifier of the message object
msgdata	The character array to get the message data from

16.7.9.25 hsk_can_msg_updated()

Return whether the message was updated via CAN bus between this call and the previous call of this method.

An update does not entail a change of message data. It just means the message was received on the CAN bus.

This is useful for cyclic message occurance checks.

Parameters

msg	The identifier of the message to check
-----	--

Return values

1	The message was updated since the last call of this function
0	The message has not been updated since the last call of this function

16.7.9.26 hsk_can_status()

Returns a status field of a CAN node.

Parameters

node	The CAN node to return the status of
field	The status field to select

Returns

The status field state

See also

CAN Node Status Fields

16.8 hsk_ex/hsk_ex.c File Reference

HSK External Interrupt Routing implementation.

```
#include <Infineon/XC878.h>
#include "hsk_ex.h"
```

#include "../hsk_isr/hsk_isr.h"
Include dependency graph for hsk_ex.c:

Macros

• #define CNT_EXINT 2

EXICON0/1 External Interrupt Trigger Select bit count.

• #define BIT EXINT0 0

EXICON0 External Interrupt 0 Trigger Select bits.

#define BIT_EXINT1 2

EXICON0 External Interrupt 1 Trigger Select bits.

• #define BIT_EXINT2 4

EXICON0 External Interrupt 2 Trigger Select bits.

• #define BIT_EXINT3 6

EXICON0 External Interrupt 3 Trigger Select bits.

#define BIT_EXINT4 0

EXICON1 External Interrupt 4 Trigger Select bits.

• #define BIT_EXINT5 2

EXICON1 External Interrupt 5 Trigger Select bits.

#define BIT_EXINT6 4

EXICON1 External Interrupt 6 Trigger Select bits.

• #define BIT_IMODE 4

SYSCON0 Interrupt Structure 2 Mode Select bit.

• #define EX_EDGE_DISABLE 3

Deactivate external interrupt.

Functions

void hsk_ex_channel_enable (const hsk_ex_channel channel, const ubyte edge, const void(*const call-back)(void))

Enable an external interrupt channel.

• void hsk_ex_channel_disable (const hsk_ex_channel channel)

Disables an external interrupt channel.

void hsk_ex_port_open (const hsk_ex_port port)

Opens an input port for an external interrupt.

void hsk_ex_port_close (const hsk_ex_port port)

Disconnects an input port from an external interrupt.

Variables

```
    struct {
        ubyte modpiselBit
            The MODPISEL[n] bit(s) to select.
        ubyte modpiselSel
            The MODPISEL value.
        ubyte portBit
            The port bit.
        ubyte portAltsel
            The port ALTSEL (alternative select) setting.
    } ports []
```

External input configuration structure.

16.8.1 Detailed Description

HSK External Interrupt Routing implementation.

This file implements the methods necessary to route μC pins to external interrupts.

Author

kami

16.8.2 Macro Definition Documentation

```
16.8.2.1 BIT_EXINTO #define BIT_EXINTO 0
```

EXICON0 External Interrupt 0 Trigger Select bits.

```
16.8.2.2 BIT_EXINT1
#define BIT_EXINT1 2
```

EXICON0 External Interrupt 1 Trigger Select bits.

```
16.8.2.3 BIT_EXINT2

#define BIT_EXINT2 4

EXICON0 External Interrupt 2 Trigger Select bits.
```

16.8.2.4 BIT_EXINT3

```
#define BIT_EXINT3 6
```

EXICON0 External Interrupt 3 Trigger Select bits.

```
16.8.2.5 BIT_EXINT4
```

```
#define BIT_EXINT4 0
```

EXICON1 External Interrupt 4 Trigger Select bits.

16.8.2.6 BIT_EXINT5

```
#define BIT_EXINT5 2
```

EXICON1 External Interrupt 5 Trigger Select bits.

16.8.2.7 BIT_EXINT6

```
#define BIT_EXINT6 4
```

EXICON1 External Interrupt 6 Trigger Select bits.

16.8.2.8 BIT_IMODE

```
#define BIT_IMODE 4
```

SYSCON0 Interrupt Structure 2 Mode Select bit.

16.8.2.9 CNT_EXINT

```
#define CNT_EXINT 2
```

EXICON0/1 External Interrupt Trigger Select bit count.

16.8.3 Function Documentation

16.8.3.1 hsk_ex_channel_disable()

Disables an external interrupt channel.

Parameters

channel The channel to disable, one of External Interrupt Channels

16.8.3.2 hsk_ex_channel_enable()

Enable an external interrupt channel.

It is good practice to enable a port for the channel first, because port changes on an active interrupt may cause an undesired interrupt.

The callback function can be set to 0 if a change of the function is not desired. For channels EXINT0 and EXINT1 the callback is ignored, implement interrupts 0 and 2 instead.

Parameters

channel	The channel to activate, one of External Interrupt Channels	
edge	The triggering edge, one of External Interrupt Triggers	
callback	The callback function for an interrupt event	

Setting up EXINT0/1 is somewhat confusing. Refer to UM 1.1 section 5.6.2 to make sense of this.

16.8.3.3 hsk_ex_port_close()

Disconnects an input port from an external interrupt.

Parameters

port	The port to close, one of External Interrupt Input Ports
------	--

16.8.3.4 hsk_ex_port_open()

Opens an input port for an external interrupt.

Parameters

port	The port to open, one of External Interrupt Input Ports
------	---

16.8.4 Variable Documentation

```
16.8.4.1 modpiselBit
ubyte modpiselBit
The MODPISEL[n] bit(s) to select.
16.8.4.2 modpiselSel
ubyte modpiselSel
The MODPISEL value.
16.8.4.3 portAltsel
ubyte portAltsel
The port ALTSEL (alternative select) setting.
16.8.4.4 portBit
ubyte portBit
The port bit.
16.8.4.5 ports
ports [static]
Initial value:
```

External input configuration structure.

16.9 hsk_ex/hsk_ex.h File Reference

HSK External Interrupt Routing headers.

This graph shows which files directly or indirectly include this file:

Macros

• #define EX_EXINT0 0

External interrupt channel EXINTO.

• #define EX_EXINT1 1

External interrupt channel EXINT1.

• #define EX_EXINT2 2

External interrupt channel EXINT2.

• #define EX_EXINT3 3

External interrupt channel EXINT3.

• #define EX EXINT4 4

External interrupt channel EXINT4.

• #define EX_EXINT5 5

External interrupt channel EXINT5.

• #define EX EXINT6 6

External interrupt channel EXINT6.

• #define EX_EDGE_RISING 0

Trigger interrupt on rising edge.

• #define EX_EDGE_FALLING 1

Trigger interrupt on falling edge.

• #define EX_EDGE_BOTH 2

Trigger interrupt on both edges.

• #define EX_EXINT0_P05 0

External interrupt EXINT0 input port P0.5.

• #define EX_EXINT3_P11 1

External interrupt EXINT3 input port P1.1.

• #define EX_EXINT0_P14 2

External interrupt EXINT0 input port P1.4.

• #define EX EXINT5 P15 3

External interrupt EXINT5 input port P1.5.

#define EX_EXINT6_P16 4

External interrupt EXINT6 input port P1.6.

• #define EX_EXINT3_P30 5

External interrupt EXINT3 input port P3.0.

#define EX EXINT4 P32 6

External interrupt EXINT4 input port P3.2.

#define EX_EXINT5_P33 7

External interrupt EXINT5 input port P3.3.

• #define EX_EXINT6_P34 8

External interrupt EXINT6 input port P3.4.

• #define EX_EXINT4_P37 9

External interrupt EXINT4 input port P3.7.

• #define EX_EXINT3_P40 10

External interrupt EXINT3 input port P4.0.

• #define EX_EXINT4_P41 11

External interrupt EXINT4 input port P4.1.

#define EX_EXINT6_P42 12

External interrupt EXINT6 input port P4.2.

• #define EX_EXINT5_P44 13

External interrupt EXINT5 input port P4.4.

• #define EX_EXINT6_P45 14

External interrupt EXINT6 input port P4.5.

• #define EX_EXINT1_P50 15

External interrupt EXINT1 input port P5.0.

• #define EX_EXINT2_P51 16

External interrupt EXINT2 input port P5.1.

• #define EX_EXINT5_P52 17

External interrupt EXINT5 input port P5.2.

#define EX_EXINT1_P53 18

External interrupt EXINT1 input port P5.3.

• #define EX_EXINT2_P54 19

External interrupt EXINT2 input port P5.4.

• #define EX_EXINT3_P55 20

External interrupt EXINT3 input port P5.5.

• #define EX EXINT4 P56 21

External interrupt EXINT4 input port P5.6.

• #define EX EXINT6 P57 22

External interrupt EXINT6 input port P5.7.

Typedefs

· typedef ubyte hsk_ex_channel

Typedef for externel interrupt channels.

typedef ubyte hsk_ex_port

Typedef for externel interrupt ports.

Functions

void hsk_ex_channel_enable (const hsk_ex_channel channel, const ubyte edge, const void(*const call-back)(void))

Enable an external interrupt channel.

void hsk_ex_channel_disable (const hsk_ex_channel channel)

Disables an external interrupt channel.

void hsk_ex_port_open (const hsk_ex_port port)

Opens an input port for an external interrupt.

void hsk_ex_port_close (const hsk_ex_port port)

Disconnects an input port from an external interrupt.

16.9.1 Detailed Description

HSK External Interrupt Routing headers.

This file offers functions to activate external interrupts and connect them to the available input pins.

Author

kami

16.9.2 Typedef Documentation

```
16.9.2.1 hsk_ex_channel
```

```
typedef ubyte hsk_ex_channel
```

Typedef for externel interrupt channels.

```
16.9.2.2 hsk_ex_port
```

```
typedef ubyte hsk_ex_port
```

Typedef for externel interrupt ports.

16.9.3 Function Documentation

16.9.3.1 hsk_ex_channel_disable()

Disables an external interrupt channel.

Parameters

channel The channel to disable, one of External Interrupt Channels

16.9.3.2 hsk_ex_channel_enable()

Enable an external interrupt channel.

It is good practice to enable a port for the channel first, because port changes on an active interrupt may cause an undesired interrupt.

The callback function can be set to 0 if a change of the function is not desired. For channels EXINT0 and EXINT1 the callback is ignored, implement interrupts 0 and 2 instead.

Parameters

channel	The channel to activate, one of External Interrupt Channels	
edge	The triggering edge, one of External Interrupt Triggers	
callback	The callback function for an interrupt event	

Setting up EXINT0/1 is somewhat confusing. Refer to UM 1.1 section 5.6.2 to make sense of this.

16.9.3.3 hsk_ex_port_close()

Disconnects an input port from an external interrupt.

Parameters

```
port The port to close, one of External Interrupt Input Ports
```

16.9.3.4 hsk_ex_port_open()

Opens an input port for an external interrupt.

Parameters

port The port to open, one of External Interrupt Input Ports

16.10 hsk_filter/hsk_filter.h File Reference

HSK Filter generator.

```
#include <Infineon/XC878.h>
#include <string.h>
Include dependency graph for hsk_filter.h:
```


Macros

- #define FILTER_FACTORY(prefix, valueType, sumType, sizeType, size)
 Generates a filter.
- #define FILTER_GROUP_FACTORY(prefix, filters, valueType, sumType, sizeType, size)

 Generates a group of filters.

16.10.1 Detailed Description

HSK Filter generator.

This file offers preprocessor macros to filter analogue values, by calculating the average of a set of a given length.

The buffer for the filter is stored in xdata memory.

Author

kami

16.10.2 Macro Definition Documentation

16.10.2.1 FILTER_FACTORY

Generates a filter.

The filter can be accessed with:

- void <prefix>_init(void)
 - Initializes the filter with 0
- <valueType> <prefix>_update(const <valueType> value)
 - Update the filter and return the current average

Parameters

prefix	A prefix for the generated internals and functions
valueType	The data type of the stored values
sumType	A data type that can contain the sum of all buffered values
sizeType	A data type that can hold the length of the buffer
size	The length of the buffer

16.10.2.2 FILTER_GROUP_FACTORY

Generates a group of filters.

The filters can be accessed with:

- void <prefix>_init(void)
 - Initializes all filters with 0
- $\bullet < \!\! \text{valueType} \!\! > \!\! < \!\! \text{prefix} \!\! > \!\! _ \text{update}(\text{const ubyte filter}, \text{const} < \!\! \text{valueType} \!\! > \!\! \text{value})$
 - Update the given filter and return the current average

Parameters

prefix	A prefix for the generated internals and functions
filters	The number of filters
valueType	The data type of the stored values
sumType	A data type that can contain the sum of all buffered values
sizeType	A data type that can hold the length of the buffer
size	The length of the buffer

16.11 hsk_flash/hsk_flash.c File Reference

HSK Flash Facility implementation.

```
#include <Infineon/XC878.h>
#include "hsk_flash.h"
#include <string.h>
#include "../hsk_isr/hsk_isr.h"
Include dependency graph for hsk_flash.c:
```


Macros

• #define MOVCI .db 0xA5

MOVC @(DPTR++),A instruction.

· #define DPL dpl

DPTR low byte.

· #define DPH dph

DPTR high byte.

• #define VAR_AT(type, name, addr) type __at(addr) name

Create variable at a certain address, SDCC version.

#define VAR_ASM(name) _##name

Insert global variable address into inline assembler SDCC style.

• #define PAGE_RAM 2

XC878-16FF code page that has the Boot ROM and XRAM mapped into it.

• #define PAGE FLASH 0

XC878-16FF code page that has the flash.

• #define ADDR_PFLASH 0x0000

XC878-16FF start address of the P-Flash.

#define LEN_PFLASH (60u << 10)

XC878-16FF length of the P-Flash.

• #define BYTES PAGE PFLASH (1 << 9)

XC878-16FF the number of bytes in a P-Flash page.

#define BYTES_WORDLINE_PFLASH (1 << 6)

XC878-16FF the number of bytes in a P-Flash wordline.

• #define ADDR DFLASH 0xF000

XC878-16FF start address of the D-Flash.

#define LEN_DFLASH (4u << 10)

XC878-16FF length of the D-Flash.

#define BYTES_PAGE_DFLASH (1 << 6)

XC878-16FF the number of bytes in a D-Flash page.

• #define BYTES_WORDLINE_DFLASH (1 << 5)

XC878-16FF Id() of the number of bytes in a D-Flash wordline.

#define ADDR_ROM 0xC000

XC878-16FF start address of the Boot ROM.

#define LEN ROM (8u << 10)

XC878-16FF length of the Boot ROM.

#define ADDR XRAM 0xF000

XC878-16FF start address of the XRAM.

#define LEN XRAM (3u << 10)

XC878-16FF length of the XRAM.

• #define BIT_PROG 0

FCON/EECON Program Bit.

• #define BIT_ERASE 1

FCON/EECON Erase Bit.

• #define BIT_MAS1 2

FCON/EECON Mass Erase Bit.

#define BIT NVSTR 3

FCON/EECON Non-Volatile Store Bit.

• #define BIT_YE 5

FCON/EECON Y-Address Enable Bit.

• #define BIT EEBSY 6

EECON D-Flash Busy Bit.

• #define BIT_FTEN 5

FCS Flash Timer Enable Bit.

• #define BIT_EEABORT 0

FCS1 D-Flash Program/Erase Abort bit.

• #define BIT_OFVAL 0

FTVAL Overflow Value bits.

#define CNT_OFVAL 7

OFVAL bit count.

• #define BIT MODE 7

FTVAL MODE bit.

• #define BIT NMIFLASH 2

NMICON Flash Timer NMI Enable bit.

• #define STATE IDLE 0

The state to use when nothing is to be done.

• #define STATE_REQUEST 1

The state to use to kick off a write.

• #define STATE_DETECT 10

The state that decides whether a delete or idle is appropriate.

#define STATE_WRITE 20

The state to use when starting to write to the D-Flash.

• #define STATE_DELETE 40

The state to use when erasing D-Flash pages.

#define STATE_RESET 60

The state to use when mass erasing the D-Flash.

• #define FREE LATEST 0

The block indicated hsk_flash::latest is available for writing.

#define FREE_BEHIND 1

The block behind the block indicated by hsk_flash::latest is available for writing.

• #define FREE_NONE 2

There is no block available for writing.

Functions

 void hsk_flash_isr_nmiflash (void) Flash delete/write state machine. ubyte hsk flash init (void *const ptr, const uword size, const ubyte version) Recovers a struct from a previous session and sets everything up for storage of changes. bool hsk_flash_write (void) Writes the current data to the D-Flash. **Variables** static const ubyte dflash [(4u<< 10)] Bytewise access to the D-Flash area. • SFR FCON = 0xD1 P-Flash Control Register. • SFR EECON = 0xD2 D-Flash Control Register. • SFR FCS = 0xD3 Flash Control and Status Register. • SFR FEAL = 0xD4 Flash Error Address Register Low. • SFR FEAH = 0xD5 Flash Error Address Register High. SFR16 FEALH = 0xD4 Flash Error Address Register Low and High (16 bits). SFR FTVAL = 0xD6 Flash Timer Value Register. SFR FCS1 = 0xDD Flash Control and Status Register 1. struct { ubyte * ptr The pointer to the data structure to persist. uword size The size of the data structure to persist. uword wrap The useable amount of D-Flash. uword oldest The offset of the oldest data in the D-Flash. uword latest The offset of the latest data in the D-Flash. ubyte free This byte indicates where free space can be found in the D-Flash. ubyte ident The prefix/postfix to identify the data structure in the flash. The current state of the flash ISR state machine. } flash Holds the persistence configuration. static volatile ubyte * flashDptr A pointer to the flash target address.

A pointer to the xdata src address.

static volatile ubyte * xdataDptr

16.11.1 Detailed Description

HSK Flash Facility implementation.

This file implements the flash management functions defined in hsk_flash.h.

Author

kami

16.11.2 Flash Registers

All registers are in the mapped register are, i.e. RMAP=1 must be set to access them.

16.11.3 Flash Timer

Non-blocking flash reading/writing is controlled by a dedicated flash timer. Timings, especially flash writing, are so critical that all the flash delete/write procedures are implemented in a single state machine within hsk_flash_isr_
mmiflash(), which is called by a non-maskable interrupt upon timer overflow.

16.11.4 DPTR Byte Order

Due to the Byte Order differences between SDCC and C51, the DPL and DPH macros are used to adjust DPTR assignments in inline assembler.

16.11.5 Macro Definition Documentation

16.11.5.1 ADDR_DFLASH

#define ADDR_DFLASH 0xF000

XC878-16FF start address of the D-Flash.

16.11.5.2 ADDR_PFLASH

#define ADDR_PFLASH 0x0000

XC878-16FF start address of the P-Flash.

16.11.5.3 ADDR_ROM

#define ADDR_ROM 0xC000

XC878-16FF start address of the Boot ROM.

16.11.5.4 ADDR_XRAM

#define ADDR_XRAM 0xF000

XC878-16FF start address of the XRAM.

16.11.5.5 BIT_EEABORT

#define BIT_EEABORT 0

FCS1 D-Flash Program/Erase Abort bit.

16.11.5.6 BIT_EEBSY

#define BIT_EEBSY 6

EECON D-Flash Busy Bit.

16.11.5.7 BIT_ERASE

#define BIT_ERASE 1

FCON/EECON Erase Bit.

16.11.5.8 BIT_FTEN

#define BIT_FTEN 5

FCS Flash Timer Enable Bit.

16.11.5.9 BIT_MAS1

#define BIT_MAS1 2

FCON/EECON Mass Erase Bit.

16.11.5.10 BIT_MODE

#define BIT_MODE 7

FTVAL MODE bit.

Controls the flash timer speed.

Mode	Value	Effect
Program	0	1 count per $CCLK$ (24MHz) clock cycle
Erase	1	1 count per $CCLK/2^{12}$ clock cycles

```
16.11.5.11 BIT_NMIFLASH
#define BIT_NMIFLASH 2
NMICON Flash Timer NMI Enable bit.
16.11.5.12 BIT_NVSTR
#define BIT_NVSTR 3
FCON/EECON Non-Volatile Store Bit.
16.11.5.13 BIT_OFVAL
#define BIT_OFVAL 0
FTVAL Overflow Value bits.
16.11.5.14 BIT_PROG
#define BIT_PROG 0
FCON/EECON Program Bit.
16.11.5.15 BIT_YE
#define BIT_YE 5
FCON/EECON Y-Address Enable Bit.
16.11.5.16 BYTES PAGE DFLASH
#define BYTES_PAGE_DFLASH (1 << 6)
XC878-16FF the number of bytes in a D-Flash page.
16.11.5.17 BYTES_PAGE_PFLASH
#define BYTES_PAGE_PFLASH (1 << 9)</pre>
XC878-16FF the number of bytes in a P-Flash page.
16.11.5.18 BYTES_WORDLINE_DFLASH
\#define BYTES_WORDLINE_DFLASH (1 << 5)
```

Generated by Doxygen

XC878-16FF Id() of the number of bytes in a D-Flash wordline.

```
16.11.5.19 BYTES_WORDLINE_PFLASH
\#define BYTES_WORDLINE_PFLASH (1 << 6)
XC878-16FF the number of bytes in a P-Flash wordline.
16.11.5.20 CNT_OFVAL
#define CNT_OFVAL 7
OFVAL bit count.
16.11.5.21 DPH
#define DPH dph
DPTR high byte.
See also
     DPTR Byte Order
16.11.5.22 DPL
#define DPL dpl
DPTR low byte.
See also
     DPTR Byte Order
16.11.5.23 FREE_BEHIND
#define FREE_BEHIND 1
The block behind the block indicated by hsk_flash::latest is available for writing.
16.11.5.24 FREE_LATEST
#define FREE_LATEST 0
```

The block indicated hsk_flash::latest is available for writing.

16.11.5.25 FREE_NONE #define FREE_NONE 2 There is no block available for writing. 16.11.5.26 LEN_DFLASH $\#define LEN_DFLASH (4u << 10)$ XC878-16FF length of the D-Flash. 16.11.5.27 LEN_PFLASH #define LEN_PFLASH (60u << 10)</pre> XC878-16FF length of the P-Flash. 16.11.5.28 LEN_ROM $\#define LEN_ROM (8u << 10)$ XC878-16FF length of the Boot ROM. 16.11.5.29 LEN_XRAM $\#define LEN_XRAM (3u << 10)$ XC878-16FF length of the XRAM. 16.11.5.30 MOVCI #define MOVCI .db 0xA5 MOVC @(DPTR++), A instruction.

16.11.5.31 PAGE_FLASH

#define PAGE_FLASH 0

XC878-16FF code page that has the flash.

16.11.5.32 PAGE_RAM

#define PAGE_RAM 2

XC878-16FF code page that has the Boot ROM and XRAM mapped into it.

16.11.5.33 STATE_DELETE

```
#define STATE_DELETE 40
```

The state to use when erasing D-Flash pages.

16.11.5.34 STATE_DETECT

```
#define STATE_DETECT 10
```

The state that decides whether a delete or idle is appropriate.

16.11.5.35 STATE_IDLE

```
#define STATE_IDLE 0
```

The state to use when nothing is to be done.

16.11.5.36 STATE_REQUEST

```
#define STATE_REQUEST 1
```

The state to use to kick off a write.

16.11.5.37 STATE_RESET

```
#define STATE_RESET 60
```

The state to use when mass erasing the D-Flash.

16.11.5.38 STATE_WRITE

```
#define STATE_WRITE 20
```

The state to use when starting to write to the D-Flash.

16.11.5.39 VAR_ASM

Insert global variable address into inline assembler SDCC style.

16.11.5.40 VAR_AT

Create variable at a certain address, SDCC version.

16.11.6 Function Documentation

16.11.6.1 hsk_flash_init()

Recovers a struct from a previous session and sets everything up for storage of changes.

There are two modes of recovery. After a fresh boot the data can be recovered from flash, if previously stored there. After a simple reset the data can still be found in XRAM and recovery can be sped up.

If recovery fails entirely all members of the struct will be set to 0.

Parameters

version	Version number of the persisted data structure, used to prevent initilization with incompatible data	
ptr	A pointer to the xdata struct/array to persist	
size	The size of the data structure to persist	

Return values

FLASH_PWR_FIRST	No valid data was recovered
FLASH_PWR_RESET	Continue operation after a reset
FLASH_PWR_ON	Data restore from the D-Flash succeeded

Here is the call graph for this function:

16.11.6.2 hsk_flash_isr_nmiflash()

Flash delete/write state machine.

Every named state is the root of a state machine that performs a specific task.

See also

Section 4.4 Flash Memory - Operating Modes from the XC8787 reference manual: XC878_um_v1_1.pdf

- STATE_IDLE is a sleeping state that turns off the state machine. This state is a dead end, the state machine has to be reactivated externally to resume operation.
- STATE_REQUEST implements the procedure called "Abort Operation" from the XC878 UM 1.1.
 After completing the abort STATE_WRITE is entered.
- STATE_DETECT checks whether there is a page that should be deleted.
 It either goes into STATE_DELETE or STATE_IDLE.
- STATE_WRITE implements the procedure called "Program Operation" from the XC878 UM 1.1.
 The next address to write is expected in flashDptr. The next address to read from XRAM is expected in xdataDptr.
- STATE_DELETE implements the procedure called "Erase Operation" from the XC878 UM 1.1.
- STATE_RESET implements the procedure called "Mass Erase Operation" from the XC878 UM 1.1.

Here is the call graph for this function:

16.11.6.3 hsk_flash_write()

Writes the current data to the D-Flash.

Ongoing writes are interrupted. Ongoing deletes are interrupted unless there is insufficient space left to write the data.

Return values

1	The D-Flash write is on the way
0	Not enough free D-Flash space to write, try again later

16.11.7 Variable Documentation

16.11.7.1 dflash

```
const ubyte dflash[(4u << 10)] [static]
```

Bytewise access to the D-Flash area.

16.11.7.2 EECON

```
SFR EECON = 0xD2
```

D-Flash Control Register.

16.11.7.3 FCON

```
SFR FCON = 0xD1
```

P-Flash Control Register.

16.11.7.4 FCS

SFR FCS = 0xD3

Flash Control and Status Register.

16.11.7.5 FCS1

SFR FCS1 = 0xDD

Flash Control and Status Register 1.

16.11.7.6 FEAH

SFR FEAH = 0xD5

Flash Error Address Register High.

16.11.7.7 FEAL

```
SFR FEAL = 0xD4
```

Flash Error Address Register Low.

16.11.7.8 FEALH

```
SFR16 FEALH = 0 \times D4
```

Flash Error Address Register Low and High (16 bits).

16.11.7.9 flash

```
flash [static]
```

Holds the persistence configuration.

16.11.7.10 flashDptr

```
volatile ubyte* flashDptr [static]
```

A pointer to the flash target address.

Not in a struct for easier inline assembler access.

16.11.7.11 free

ubyte free

This byte indicates where free space can be found in the D-Flash.

Available values are:

- FREE_LATEST
- FREE_BEHIND
- FREE_NONE

16.11.7.12 FTVAL

SFR FTVAL = 0xD6

Flash Timer Value Register.

16.11.7.13 ident

ubyte ident

The prefix/postfix to identify the data structure in the flash.

It consist of the last 6 bits of the version and two alternating bits to make sure the value can neither become 0x00 nor 0xff.

Pre-/postfixing the ident ensures that the data was completely written.

16.11.7.14 latest

uword latest

The offset of the latest data in the D-Flash.

16.11.7.15 oldest

uword oldest

The offset of the oldest data in the D-Flash.

16.11.7.16 ptr

ubyte* ptr

The pointer to the data structure to persist.

16.11.7.17 size

uword size

The size of the data structure to persist.

16.11.7.18 state

ubyte state

The current state of the flash ISR state machine.

16.11.7.19 wrap

uword wrap

The useable amount of D-Flash.

16.11.7.20 xdataDptr

```
volatile ubyte* xdataDptr [static]
```

A pointer to the xdata src address.

Not in a struct for easier inline assembler access.

16.12 hsk_flash/hsk_flash.h File Reference

HSK Flash Facility headers.

#include "../hsk_isr/hsk_isr.isr"
Include dependency graph for hsk_flash.h:

This graph shows which files directly or indirectly include this file:

Macros

#define XC878 16FF

Ensure that a flash memory layout is defined.

• #define FLASH_STRUCT_FACTORY(members)

Used to create a struct that can be used with the hsk_flash_init() function.

#define FLASH PWR FIRST 0

Returned by hsk_flash_init() when the μC boots for the first time.

#define FLASH_PWR_RESET 1

Returned by hsk_flash_init() after booting from a reset without power loss.

• #define FLASH PWR ON 2

Returned by hsk_flash_init() during power on, if valid data was recovered from the D-Flash.

Functions

ubyte hsk_flash_init (void *const ptr, const uword size, const ubyte version)

Recovers a struct from a previous session and sets everything up for storage of changes.

bool hsk flash write (void)

Writes the current data to the D-Flash.

16.12.1 Detailed Description

HSK Flash Facility headers.

This file contains function prototypes to menage information that survives a reset and allow storage within the D-Flash.

It provides the FLASH_STRUCT_FACTORY to create a struct with data that can be stored with hsk_flash_write() and recovered with hsk_flash_init().

The D-Flash is used as a ring buffer, this distributes writes over the entire flash to gain the maximum achievable lifetime. The lifetime expectancy depends on your usage scenario and the size of the struct.

Refer to section 3.3 table 20 and table 21 of the XC87x data sheet for D-Flash life times.

Complete coverage of the D-Flash counts as a single D-Flash cycle. Thus the formula for the expected number of write calls is:

$$writes = |4096/sizeof(struct)| * expected cycles$$

- expectedcycles
 - The expected number of possible write cycles depending on the usage scenario in table 20
- sizeof(struct)
 - The number of bytes the struct covers
- floor()
 - Round down to the next smaller integer

E.g. to store 20 bytes of configuration data, the struct factory adds 2 bytes overhead to be able to check the consistency of written data, so sizeof(struct) = 22. Expecting that most of the μ C use is within the first year, table 20 suggests that expectedcycles = 100000. In that case the expected number of possible hsk_flash_write() calls is 18.6 million.

Author

kami

16.12.2 Byte Order

C51 stores multiple byte variables in big endian order, whereas the DPTR register, several SFRs and SDCC use little endian.

If the data struct contains multibyte members such as int/uword or long/ulong, this can lead to data corruption, when switching compilers.

Both the checksum and identifier are single byte values and thus will still match after a compiler switch, causing multibyte values to be restored from the flash with the wrong byte order.

A byte order change can be detected with a byte order word in the struct. A BOW initialized with 0x1234 would read 0x3412 after a an order change.

The suggested solution is to only create struct members with byte wise access. E.g. a ulong member may be defined in the following way:

```
ubyte ulongMember[sizeof(ulong)];
```

The value can be set like this:

```
myStruct.ulongMember[0] = ulongValue;
myStruct.ulongMember[1] = ulongValue >> 8;
myStruct.ulongMember[2] = ulongValue >> 16;
myStruct.ulongMember[3] = ulongValue >> 24;
```

Reading works similarly:

```
ulongValue = (ubyte)myStruct.ulongMember[0];
ulongValue |= (uword)myStruct.ulongMember[1] << 8;
ulongValue |= (ulong)myStruct.ulongMember[2] << 16;
ulongValue |= (ulong)myStruct.ulongMember[3] << 24;</pre>
```

Another alternative is to use a single ubyte[] array and store/read all data with the hsk_can_data_setSignal()/hsk← _can_data_getSignal() functions. Due to the bit addressing of CAN message data the maximum length of such an array would be 32 bytes (256bits).

An advantage would be that less memory is required, because data no longer needs to be byte aligned.

16.12.3 Macro Definition Documentation

16.12.3.1 FLASH_PWR_FIRST

```
#define FLASH_PWR_FIRST 0
```

Returned by <code>hsk_flash_init()</code> when the μC boots for the first time.

This statements holds true as far as can be told. I.e. a first boot is diagnosed when all attempts to recover data have failed.

Two scenarios may cause this:

- · No valid data has yet been written to the D-Flash
- · The latest flash data is corrupted, may happen in case of power down during write

16.12.3.2 FLASH_PWR_ON

```
#define FLASH_PWR_ON 2
```

Returned by hsk_flash_init() during power on, if valid data was recovered from the D-Flash.

A power on is detected when two criteria are met:

- Data could not be recovered from xdata memory
- · Valid data was recovered from the D-Flash

16.12.3.3 FLASH_PWR_RESET

```
#define FLASH_PWR_RESET 1
```

Returned by hsk_flash_init() after booting from a reset without power loss.

The typical mark of a reset is that xdata memory still holds data from the previous session. If such data is found it will just be picked up.

For performance reasons access to the struct is not guarded, which means that there can be no protection against data corruption, such as might be caused by a software bug like an overflow.

16.12.3.4 FLASH_STRUCT_FACTORY

Value:

Used to create a struct that can be used with the hsk_flash_init() function.

The hsk_flash_init() function expects certain fields to exist, in the struct, which are used to ensure the consistency of data in the flash.

The following example shows how to create a struct named storableData:

Parameters

members Struct member definitions	;
-----------------------------------	---

16.12.3.5 XC878_16FF

```
#define XC878_16FF
```

Ensure that a flash memory layout is defined.

Either XC878_16FF (64k flash) or XC878_13FF(52k flash) are supported. XC878_16FF is the default.

16.12.4 Function Documentation

16.12.4.1 hsk_flash_init()

Recovers a struct from a previous session and sets everything up for storage of changes.

There are two modes of recovery. After a fresh boot the data can be recovered from flash, if previously stored there. After a simple reset the data can still be found in XRAM and recovery can be sped up.

If recovery fails entirely all members of the struct will be set to 0.

Parameters

version	Version number of the persisted data structure, used to prevent initilization with incompatible data	
ptr	A pointer to the xdata struct/array to persist	
size	The size of the data structure to persist	

Return values

FLASH_PWR_FIRST	No valid data was recovered
FLASH_PWR_RESET	Continue operation after a reset
FLASH_PWR_ON	Data restore from the D-Flash succeeded

Here is the call graph for this function:

16.12.4.2 hsk_flash_write()

Writes the current data to the D-Flash.

Ongoing writes are interrupted. Ongoing deletes are interrupted unless there is insufficient space left to write the data.

Return values

1	The D-Flash write is on the way
0	Not enough free D-Flash space to write, try again later

16.13 hsk_icm7228/hsk_icm7228.c File Reference

HSK ICM7228 8-Digit LED Display Decoder Driver implementation.

```
#include <Infineon/XC878.h>
#include "hsk_icm7228.h"
Include dependency graph for hsk_icm7228.c:
```


Macros

#define ILLUMINATE_OFFSET 16
 The offset for illuminating a number of segments.

Functions

- void hsk_icm7228_writeString (ubyte *const buffer, char const *str, ubyte pos, ubyte len)

 Convert an ASCII string to 7 segment encoding and store it in an xdata buffer.
- void hsk_icm7228_writeDec (ubyte *const buffer, uword value, char power, ubyte const pos, ubyte len)

 Write a 7 segment encoded, right aligned decimal number into an xdata buffer.
- void hsk_icm7228_writeHex (ubyte *const buffer, uword value, char power, ubyte const pos, ubyte len)

 Write a 7 segment encoded, right aligned hexadecimal number into an xdata buffer.
- void hsk_icm7228_illuminate (ubyte *const buffer, ubyte segments, ubyte pos, ubyte len) Illumante the given number of segments.

Variables

• static const ubyte codepage []

This is a codepage to translate 7bit ASCII characters into corresponding 7 segment display patterns.

16.13.1 Detailed Description

HSK ICM7228 8-Digit LED Display Decoder Driver implementation.

This file implements the static functions of the ICM7228 display decoder driver.

See also

```
Intersil ICM7228 Data Sheet: ICM7228.pdf
```

Author

kami

16.13.2 Macro Definition Documentation

```
16.13.2.1 ILLUMINATE_OFFSET
#define ILLUMINATE_OFFSET 16
```

The offset for illuminating a number of segments.

16.13.3 Function Documentation

16.13.3.1 hsk_icm7228_illuminate()

Illumante the given number of segments.

Parameters

buffer	The target buffer for the encoded string
segments	The number of segments to illuminate
pos	The target position in the buffer
len	The number of digits available to encode the number

16.13.3.2 hsk_icm7228_writeDec()

Write a 7 segment encoded, right aligned decimal number into an xdata buffer.

The power parameter controlls the placing of the '.' by 10 to the power. E.g. value = 12, power = -1 and len = 3 would result in the encoding of "1.2". If power = 0, no dot is drawn. If the power is positive (typically 1), the resulting string would be filled with '0' characters. I.e. the previous example with power = 1 would result in an encoding of "012".

Parameters

buffer	The target buffer for the encoded string
value	The number to encode
power	The 10 base power of the number to encode
pos	The target position in the buffer
len	The number of digits available to encode the number

16.13.3.3 hsk_icm7228_writeHex()

Write a 7 segment encoded, right aligned hexadecimal number into an xdata buffer.

The power parameter controlls the placing of the '.' by 16 to the power. E.g. value = 0x1A, power = -1 and len = 3 would result in the encoding of "1.A". If power = 0, no dot is drawn. If the power is positive (typically 1), the resulting string would be filled with '0' characters. I.e. the previous example with power = 1 would result in an encoding of "01A".

Parameters

buffer	The target buffer for the encoded string
value	The number to encode

Parameters

power	The 16 base power of the number to encode
pos	The target position in the buffer
len	The number of digits available to encode the number

16.13.3.4 hsk_icm7228_writeString()

Convert an ASCII string to 7 segment encoding and store it in an xdata buffer.

This function is usually invoked through the cprefix> writeString() function created by ICM7228 FACTORY.

The function will write into the buffer until it has been filled with len characters or it encounters a 0 character reading from str. If the character: is encountered it is merged with the previous character, unless that character is a '.' itself. Thus a single dot does not use additional buffer space. The 7 character string "foo ..." would result in 6 encoded bytes. Thus the proper len value for that string would be 6.

Parameters

buffer	The target buffer for the encoded string
str	The buffer to read the ASCII string from
pos	The position in the buffer to write the encoded string to
len	The target length of the encoded string

16.13.4 Variable Documentation

16.13.4.1 codepage

```
const ubyte codepage[] [static]
```

Initial value:

```
0xFB, 0xB0, 0xED, 0xF5, 0xB6, 0xD7, 0xDF, 0xF0,
0xFF, 0xF7, 0xFE, 0x9F, 0xCB, 0xBD, 0xCF, 0xCE,
0x80, 0xC0, 0xE0, 0xF0, 0xF1,
                              0xF9,
                                    0xFB,
                                           0xFF,
0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
                  0x00,
                        0x00,
                              0x00,
                                     0x00,
0xFB, 0xB0, 0xED, 0xF5,
                        0xB6.
                              0xD7.
                                     0xDF.
0xFF, 0xF7,
            0xFE, 0x9F,
                        0xCB,
                              0xBD,
                                     0xCF.
                                           0xCE,
0x00, 0xFE, 0x9F, 0xCB, 0xBD,
                                     0xCE,
                              0xCF,
                                           0xDF,
0xBE, 0x8A, 0xB1,
                  0xDE,
                        0x8B,
                              0xFA,
                                     0xFA,
0xEE, 0xF6, 0x8C, 0xD7, 0x8F,
0xB4, 0xB6, 0xC5,
                  0x00, 0x00,
                              0x00,
0x00, 0xFE, 0x9F,
                  0xCB,
                        0xBD,
                              0xCF,
                                     0xCE,
                                           0xDF
0xBE, 0x8A, 0xB1, 0xDE, 0x8B, 0xFA, 0xFA,
                                           0×9D.
0xEE, 0xF6, 0x8C, 0xD7, 0x8F,
                              0xBB, 0x99, 0xBB,
0xB4, 0xB6, 0xC5, 0x00, 0x00, 0x00, 0x00, 0x00
```

This is a codepage to translate 7bit ASCII characters into corresponding 7 segment display patterns.

The ASCII character can be used to receive the desired 7 segment code. E.g. codepage['A'] retrieves the letter 'A' from the table.

Some letters like 'X' are badly recognisable, others cannot be well represented at all. E.g. the letters 'M' and 'W' are identical to the letters 'N' and 'U'.

Capitals and small characters are identical. Characters without proper encoding are filled with 0x00, which leaves only the '.' of a 7 segment display active.

The 6 characters beyond 0-9 return "ABCDEF", which permits for easier display of HEX digits.

The first 16 characters from index 0 return the characters "0123456789ABCDEF" as well.

16.14 hsk_icm7228/hsk_icm7228.h File Reference

HSK ICM7228 8-Digit LED Display Decoder Driver generator.

#include <string.h>
Include dependency graph for hsk_icm7228.h:

This graph shows which files directly or indirectly include this file:

Macros

• #define ICM7228_FACTORY(prefix, regData, regMode, bitMode, regWrite, bitWrite)

Generate an ICM7228 driver instance.

Functions

- void hsk_icm7228_writeString (ubyte *const buffer, char const *str, ubyte pos, ubyte len)

 Convert an ASCII string to 7 segment encoding and store it in an xdata buffer.
- void hsk_icm7228_writeDec (ubyte *const buffer, uword value, char power, ubyte const pos, ubyte len)

 Write a 7 segment encoded, right aligned decimal number into an xdata buffer.
- void hsk_icm7228_writeHex (ubyte *const buffer, uword value, char power, ubyte const pos, ubyte len)

 Write a 7 segment encoded, right aligned hexadecimal number into an xdata buffer.
- void hsk_icm7228_illuminate (ubyte *const buffer, ubyte segments, ubyte pos, ubyte len)

 Illumante the given number of segments.

16.14.1 Detailed Description

HSK ICM7228 8-Digit LED Display Decoder Driver generator.

This file is a code generating facility, that offers preprocessor macros that produce code for the Intersil ICM7228 display decoder.

Generating code in this fashion avoids the hard coding of I/O registers and bits and even allows the use of multiple ICM7228 ICs.

See also

```
Intersil ICM7228 Data Sheet: ICM7228.pdf
```

Author

kami

16.14.2 Macro Definition Documentation

16.14.2.1 ICM7228_FACTORY

Generate an ICM7228 driver instance.

This creates functions to use a connect ICM7228 IC.

- void <prefix>_init(void)
 - Initialize the buffer and I/O register bits
- void <prefix>_refresh(void)
 - Commit buffered data to the 7 segment displays
- void <prefix>_writeString(char * str, ubyte pos, ubyte len)
 - Wrapper around hsk_icm7228_writeString()
- void c(uword value, char power, ubyte pos, ubyte len)
 - Wrapper around hsk_icm7228_writeDec()
- void cprefix>_writeHex(uword value, char power, ubyte pos, ubyte len)
 - Wrapper around hsk_icm7228_writeHex()

Parameters

prefix	A prefix for the names of generated functions
regData	The register that is connected to the data input
regMode	The register that is connected to the mode pin
bitMode	The bit of the regMode register that is connected to the mode pin
regWrite	The register that is connected to the write pin
bitWrite	The bit of the regWrite register that is connected to the write pin

16.14.3 Function Documentation

16.14.3.1 hsk_icm7228_illuminate()

Illumante the given number of segments.

Parameters

buffer	The target buffer for the encoded string
segments	The number of segments to illuminate
pos	The target position in the buffer
len	The number of digits available to encode the number

16.14.3.2 hsk_icm7228_writeDec()

```
uword value,
char power,
ubyte const pos,
ubyte len )
```

Write a 7 segment encoded, right aligned decimal number into an xdata buffer.

The power parameter controlls the placing of the '.' by 10 to the power. E.g. value = 12, power = -1 and len = 3 would result in the encoding of "1.2". If power = 0, no dot is drawn. If the power is positive (typically 1), the resulting string would be filled with '0' characters. I.e. the previous example with power = 1 would result in an encoding of "012".

Parameters

buffer	The target buffer for the encoded string
value	The number to encode
power	The 10 base power of the number to encode
pos	The target position in the buffer
len	The number of digits available to encode the number

16.14.3.3 hsk_icm7228_writeHex()

Write a 7 segment encoded, right aligned hexadecimal number into an xdata buffer.

The power parameter controlls the placing of the '.' by 16 to the power. E.g. value = 0x1A, power = -1 and len = 3 would result in the encoding of "1.A". If power = 0, no dot is drawn. If the power is positive (typically 1), the resulting string would be filled with '0' characters. I.e. the previous example with power = 1 would result in an encoding of "01A".

Parameters

buffer	The target buffer for the encoded string
value	The number to encode
power	The 16 base power of the number to encode
pos	The target position in the buffer
len	The number of digits available to encode the number

16.14.3.4 hsk_icm7228_writeString()

Convert an ASCII string to 7 segment encoding and store it in an xdata buffer.

This function is usually invoked through the cprefix>_writeString() function created by ICM7228_FACTORY.

The function will write into the buffer until it has been filled with len characters or it encounters a 0 character reading from str. If the character: is encountered it is merged with the previous character, unless that character is a '.' itself. Thus a single dot does not use additional buffer space. The 7 character string "foo ..." would result in 6 encoded bytes. Thus the proper len value for that string would be 6.

Parameters

buffer	The target buffer for the encoded string
str	The buffer to read the ASCII string from
pos	The position in the buffer to write the encoded string to
len	The target length of the encoded string

16.15 hsk_io/hsk_io.h File Reference

HSK I/O headers.

This graph shows which files directly or indirectly include this file:

Macros

- #define IO_PORT_IN_INIT(port, pins)
 - Initializes a set of port pins as inputs.
- #define IO_PORT_ON_GND 0

Bit mask to set the logical 1 to GND level for all selected pins.

- #define IO_PORT_ON_HIGH 0xff
 - Bit mask to set the logical 1 to high level for all selected pins.
- #define IO_PORT_GET(port, pins, on)
 - Evaluates to a bit mask of logical pin states of a port.
- #define IO_PORT_STRENGTH_WEAK 0

Bit mask to set weak drive strength for all selected pins.

• #define IO_PORT_STRENGTH_STRONG 0xff

Bit mask to set strong drive strength for all selected pins.

• #define IO PORT DRAIN DISABLE 0

Bit mask to disable drain mode for all selected pins.

#define IO PORT DRAIN ENABLE 0xff

Bit mask to enable drain mode for all selected pins.

• #define IO_PORT_OUT_INIT(port, pins, strength, drain, on, set)

Initializes a set of port pins as outputs.

• #define IO PORT OUT SET(port, pins, on, set)

Set a set of output port pins.

• #define IO PORT PULL DISABLE 0

Bit mask to disable pull up/down for all selected pins.

• #define IO PORT PULL ENABLE 0xff

Bit mask to enable pull up/down for all selected pins.

• #define IO_PORT_PULL_DOWN 0

Bit mask to select pull down for all selected pins.

• #define IO PORT PULL UP 0xff

Bit mask to select pull up for all selected pins.

• #define IO PORT PULL INIT(port, pins, pull, dir)

Sets the pull-up/-down properties of port pins.

#define IO_VAR_SET(var, bits, on, set)

Set a set of variable bits.

#define IO_VAR_GET(var, bits, on)

Evaluates to a bit mask of logical states of a variable.

16.15.1 Detailed Description

HSK I/O headers.

This file contains macro definitions to use and initialize I/O ports and variables bitwise.

All the macros take a port and a mask to select the affected pins. All operations are masked with the selected pins so it is safe to define 0xff (every bit 1) to activate a certain property.

Set and get macros take a bit field to define the value that represents the on or true state, so the logic code can always use a 1 for true/on.

The macros are grouped as:

- Input Port Access
- Output Port Access
- Variable Access

Author

kami

16.15.2 I/O Port Pull-Up/-Down Table

The device boots with all parallel ports configured as inputs. The following table lists the pins that come up with activated internal pull up:

Port\Bit	7	6	5	4	3	2	1	0
P0	1	1	Х	х	Х	1	Х	х
P1	1	1	1	1	1	1	1	1
P3	Х	1	Х	Х	Х	Х	Х	х
P4	Х	Х	Х	х	Х	1	Х	х
P5	1	1	1	1	1	1	1	1

16.16 hsk_isr/hsk_isr.c File Reference

HSK Shared Interrupt Service Routine implementation.

```
#include <Infineon/XC878.h>
#include "hsk_isr.h"
Include dependency graph for hsk_isr.c:
```


Macros

• #define BIT_RMAP 0

SYSCON0 Special Function Register Map Control bit.

• #define BIT_TF2 7

T2_T2CON Timer 2 Overflow bit.

• #define BIT_EXF2 6

T2_T2CON T2EX bit.

• #define BIT_CCTOVF 3

T2CCU_CCTCON CCT Overflow bit.

• #define BIT NDOV 2

FDCON Normal Divider Overflow bit.

• #define BIT_EOFSYN 4

FDCON End of Syn Byte bit.

• #define BIT_ERRSYN 5

FDCON Syn Byte Error bit.

• #define BIT_CANSRC0 0

IRCON2 MultiCAN Node 0 bit.

• #define BIT_CANSRC1 5

IRCON1 Interrupt Flag 1 for MultiCAN bit.

• #define BIT_CANSRC2 6

IRCON1 Interrupt Flag 2 for MultiCAN bit.

• #define BIT_ADCSR0 3

IRCON1 Interrupt Flag 0 for ADC bit.

• #define BIT ADCSR1 4

IRCON1 Interrupt Flag 1 for ADC bit.

• #define BIT_EXINT2 2

IRCON0 Interrupt Flag for External Interrupt 2 bit.

• #define BIT_RI 0

SCON Serial Interface Receiver Interrupt Flag.

#define BIT TI 1

SCON Serial Interface Transmitter Interrupt Flag.

• #define BIT_TF2 7

T2_T2CON Timer 2 Overflow bit.

• #define BIT_EXF2 6

T2_T2CON T2EX bit.

• #define BIT NDOV 2

FDCON Normal Divider Overflow bit.

• #define BIT EOC 2

CD_STATC End of Calculation Flag.

• #define BIT_IRDY 0

MDU MDUSTAT Interrupt on Result Ready bit.

• #define BIT_IERR 1

MDU_MDUSTAT Interrupt on Error bit.

• #define BIT_EXINT3 3

IRCON0 Interrupt Flag for External Interrupt 3 or T2CC0 Capture/Compare Channel bit.

• #define BIT_EXINT4 4

IRCON0 Interrupt Flag for External Interrupt 4 or T2CC1 Capture/Compare Channel bit.

• #define BIT_EXINT5 5

IRCON0 Interrupt Flag for External Interrupt 5 or T2CC2 Capture/Compare Channel bit.

• #define BIT_EXINT6 6

IRCON0 Interrupt Flag for External Interrupt 6 or T2CC3 Capture/Compare Channel bit.

• #define BIT_CANSRC3 4

IRCON2 Interrupt Flag 3 for MultiCAN bit.

• #define BIT NMIWDT 0

NMISR Watchdog Timer NMI Flag bit.

• #define BIT_NMIPLL 1

NMISR PLL NMI Flag bit.

#define BIT_NMIFLASH 2

NMISR FLASH Timer NMI Flag bit.

#define BIT_NMIVDDP 5

NMISR VDDP Prewarning NMI Flag bit.

• #define BIT_NMIECC 6

NMISR ECC NMI Flag bit.

Functions

void hsk isr root1 (void)

This is a dummy function used for putting register bank 1 using ISRs into a common call tree for C51.

• void dummy (void)

This is a dummy function to point unused function pointers to.

void nmidummy (void)

This is a dummy function to point unused function pointers to.

void ISR hsk isr5 (void)

Shared interrupt 5 routine.

void ISR_hsk_isr6 (void)

Shared interrupt 6 routine.

· void ISR hsk isr8 (void)

Shared interrupt 8 routine.

void ISR_hsk_isr9 (void)

Shared interrupt 9 routine.

void ISR_hsk_isr14 (void)

Shared non-maskable interrupt routine.

Variables

volatile struct hsk_isr5_callback hsk_isr5 = {&dummy, &dummy, &dummy, &dummy, &dummy, &dummy, &dummy}

Define callback function pointers for ISR 5.

volatile struct hsk_isr6_callback hsk_isr6 = {&dummy, &dummy, &dummy, &dummy}

Define callback function pointers for ISR 6.

volatile struct hsk_isr8_callback hsk_isr8 = {&dummy, &dummy, &dummy, &dummy, &dummy, &dummy, &dummy, &dummy}

Define callback function pointers for ISR 8.

volatile struct hsk_isr9_callback hsk_isr9 = {&dummy, &dummy, &dummy, &dummy, &dummy}

Define callback function pointers for ISR 9.

volatile struct hsk_isr14_callback hsk_isr14 = {&nmidummy, &nmidummy, &nmidummy, &nmidummy, &nmidummy}

Define callback function pointers for NMI ISR.

16.16.1 Detailed Description

HSK Shared Interrupt Service Routine implementation.

This contains interrupts, shared between several interrupt sources. These interrupt sources can hook into the ISRs by storing a callback function in the hsk_isr* data structures.

Author

kami

16.16.2 ISR Callback Reaction Time

The following table describes what happens up to the point that the NMI ISR starts operation (based on SDCC code):

CCLK Cycles	Task	Instruction	Duration
0	Core: Poll interrupt request		2
2	Core: Call ISR	Icall	1 x 4
6	ISR setup: Push registers	6 x push	6 x 4
30	ISR setup: Reset PSW	1 x mov dir,#	1 x 4
34	ISR: Backup RMAP		3 x 2 + 4
44	ISR: Reset RMAP		2 x 2 + 4
52	ISR: Select callback		

16.16.3 Macro Definition Documentation

16.16.3.1 BIT_ADCSR0

#define BIT_ADCSR0 3

IRCON1 Interrupt Flag 0 for ADC bit.

16.16.3.2 BIT_ADCSR1

#define BIT_ADCSR1 4

IRCON1 Interrupt Flag 1 for ADC bit.

16.16.3.3 BIT_CANSRC0

#define BIT_CANSRC0 0

IRCON2 MultiCAN Node 0 bit.

16.16.3.4 BIT_CANSRC1

#define BIT_CANSRC1 5

IRCON1 Interrupt Flag 1 for MultiCAN bit.

16.16.3.5 BIT_CANSRC2

#define BIT_CANSRC2 6

IRCON1 Interrupt Flag 2 for MultiCAN bit.

16.16.3.6 BIT_CANSRC3

#define BIT_CANSRC3 4

IRCON2 Interrupt Flag 3 for MultiCAN bit.

```
16.16.3.7 BIT_CCTOVF
#define BIT_CCTOVF 3
T2CCU_CCTCON CCT Overflow bit.
16.16.3.8 BIT_EOC
#define BIT_EOC 2
CD_STATC End of Calculation Flag.
16.16.3.9 BIT_EOFSYN
#define BIT_EOFSYN 4
FDCON End of Syn Byte bit.
16.16.3.10 BIT_ERRSYN
#define BIT_ERRSYN 5
FDCON Syn Byte Error bit.
16.16.3.11 BIT_EXF2 [1/2]
#define BIT_EXF2 6
T2_T2CON T2EX bit.
T2_T2CON Timer 2 External Flag.
16.16.3.12 BIT_EXF2 [2/2]
#define BIT_EXF2 6
T2_T2CON T2EX bit.
T2_T2CON Timer 2 External Flag.
16.16.3.13 BIT_EXINT2
#define BIT_EXINT2 2
```

Generated by Doxygen

IRCON0 Interrupt Flag for External Interrupt 2 bit.

```
16.16.3.14 BIT_EXINT3
#define BIT_EXINT3 3
IRCON0 Interrupt Flag for External Interrupt 3 or T2CC0 Capture/Compare Channel bit.
16.16.3.15 BIT_EXINT4
#define BIT_EXINT4 4
IRCON0 Interrupt Flag for External Interrupt 4 or T2CC1 Capture/Compare Channel bit.
16.16.3.16 BIT_EXINT5
#define BIT_EXINT5 5
IRCON0 Interrupt Flag for External Interrupt 5 or T2CC2 Capture/Compare Channel bit.
16.16.3.17 BIT_EXINT6
#define BIT_EXINT6 6
IRCON0 Interrupt Flag for External Interrupt 6 or T2CC3 Capture/Compare Channel bit.
16.16.3.18 BIT_IERR
#define BIT_IERR 1
MDU_MDUSTAT Interrupt on Error bit.
16.16.3.19 BIT_IRDY
#define BIT_IRDY 0
MDU_MDUSTAT Interrupt on Result Ready bit.
16.16.3.20 BIT_NDOV [1/2]
```

FDCON Normal Divider Overflow bit.

#define BIT_NDOV 2

FDCON Overflow Flag in Normal Divider Mode.

```
16.16.3.21 BIT_NDOV [2/2]
#define BIT_NDOV 2
FDCON Normal Divider Overflow bit.
FDCON Overflow Flag in Normal Divider Mode.
16.16.3.22 BIT_NMIECC
#define BIT_NMIECC 6
NMISR ECC NMI Flag bit.
16.16.3.23 BIT_NMIFLASH
#define BIT_NMIFLASH 2
NMISR FLASH Timer NMI Flag bit.
16.16.3.24 BIT_NMIPLL
#define BIT_NMIPLL 1
NMISR PLL NMI Flag bit.
16.16.3.25 BIT_NMIVDDP
#define BIT_NMIVDDP 5
NMISR VDDP Prewarning NMI Flag bit.
16.16.3.26 BIT_NMIWDT
#define BIT_NMIWDT 0
NMISR Watchdog Timer NMI Flag bit.
16.16.3.27 BIT_RI
#define BIT_RI 0
```

Generated by Doxygen

SCON Serial Interface Receiver Interrupt Flag.

```
16.16.3.28 BIT_RMAP
#define BIT_RMAP 0
SYSCON0 Special Function Register Map Control bit.
16.16.3.29 BIT_TF2 [1/2]
#define BIT_TF2 7
T2_T2CON Timer 2 Overflow bit.
T2_T2CON Timer 2 Overflow/Underflow Flag.
16.16.3.30 BIT_TF2 [2/2]
#define BIT_TF2 7
T2_T2CON Timer 2 Overflow bit.
T2_T2CON Timer 2 Overflow/Underflow Flag.
16.16.3.31 BIT_TI
#define BIT_TI 1
SCON Serial Interface Transmitter Interrupt Flag.
16.16.4 Function Documentation
16.16.4.1 dummy()
void dummy (
              void ) [private]
```

This is a dummy function to point unused function pointers to.

This is a dummy function used for putting register bank 1 using ISRs into a common call tree for C51.

16.16.4.3 ISR_hsk_isr14()

Shared non-maskable interrupt routine.

This interrupt has the following sources:

- Watchdog Timer NMI (NMIWDT)
- PLL NMI (NMIPLL)
- Flash Timer NMI (NMIFLASH)
- VDDP Prewarning NMI (NMIVDDP)
- Flash ECC NMI (NMIECC)

16.16.4.4 ISR_hsk_isr5()

Shared interrupt 5 routine.

Activate the interrupt by setting ET2 = 1.

This interrupt has the following sources:

- Timer 2 Overflow (TF2)
- Timer 2 External Event (EXF2)
- T2CCU CCT Overflow (CCTOVF)
- Normal Divider Overflow (NDOV)
- End of Syn Byte (EOFSYN)
- Syn Byte Error (ERRSYN)
- CAN Interrupt 0 (CANSRC0)

16.16.4.5 ISR_hsk_isr6()

Shared interrupt 6 routine.

Activate the interrupt by setting EADC = 1.

This interrupt has the following sources:

- CANSRC1
- CANSRC2
- · ADCSR0
- · ADCSR1

16.16.4.6 ISR_hsk_isr8()

Shared interrupt 8 routine.

Activate the interrupt by setting EX2 = 1.

This interrupt has the following sources:

- External Interrupt 2 (EXINT2)
- UART1 (RI)
- UART1 (TI)
- Timer 21 Overflow (TF2)
- T21EX (EXF2)
- UART1 Fractional Divider (Normal Divider Overflow) (NDOV)
- CORDIC (EOC)
- MDU Result Ready (IRDY)
- MDU Error (IERR)

16.16.4.7 ISR_hsk_isr9()

Shared interrupt 9 routine.

Activate the interrupt by setting EXM = 1.

This interrupt has the following sources:

- EXINT3/T2CC0
- EXINT4/T2CC1
- EXINT5/T2CC2
- EXINT6/T2CC3
- CANSRC3

16.16.4.8 nmidummy()

This is a dummy function to point unused function pointers to.

16.16.5 Variable Documentation

```
16.16.5.1 hsk_isr14
```

```
volatile struct hsk_isr14_callback hsk_isr14 = {&nmidummy, &nmidummy, &nmidummy, &nmidummy, &nmidummy}
```

Define callback function pointers for NMI ISR.

Introduce callback function pointers for NMI ISR.

```
16.16.5.2 hsk_isr5
```

```
volatile struct hsk_isr5_callback hsk_isr5 = {&dummy, &dummy, &dummy, &dummy, &dummy, &dummy, &dummy}
```

Define callback function pointers for ISR 5.

Introduce callback function pointers for ISR 5.

```
16.16.5.3 hsk_isr6
```

```
volatile struct hsk_isr6_callback hsk_isr6 = {&dummy, &dummy, &dummy, &dummy}
```

Define callback function pointers for ISR 6.

Introduce callback function pointers for ISR 6.

```
16.16.5.4 hsk_isr8
```

```
volatile struct hsk_isr8_callback hsk_isr8 = {&dummy, &dummy, &dummy, &dummy, &dummy, &dummy, &dummy, &dummy}
```

Define callback function pointers for ISR 8.

Introduce callback function pointers for ISR 8.

```
16.16.5.5 hsk_isr9
```

```
volatile struct hsk_isr9_callback hsk_isr9 = {&dummy, &dummy, &dummy, &dummy, &dummy}
```

Define callback function pointers for ISR 9.

Introduce callback function pointers for ISR 9.

16.17 hsk_isr/hsk_isr.h File Reference

HSK Shared Interrupt Service Routine headers.

#include "hsk_isr.isr"
Include dependency graph for hsk_isr.h:

This graph shows which files directly or indirectly include this file:

Data Structures

- struct hsk_isr5_callback
 - Shared interrupt 5 routine.
- struct hsk_isr6_callback
 - Shared interrupt 6 routine.
- struct hsk_isr8_callback
 - Shared interrupt 8 routine.
- struct hsk_isr9_callback
 - Shared interrupt 9 routine.
- struct hsk_isr14_callback
 - Shared non-maskable interrupt routine.

Variables

- volatile struct hsk_isr5_callback hsk_isr5
 - Introduce callback function pointers for ISR 5.
- volatile struct hsk_isr6_callback hsk_isr6
 - Introduce callback function pointers for ISR 6.
- volatile struct hsk_isr8_callback hsk_isr8
 - Introduce callback function pointers for ISR 8.
- volatile struct hsk_isr9_callback hsk_isr9
 - Introduce callback function pointers for ISR 9.
- volatile struct hsk_isr14_callback hsk_isr14
 - Introduce callback function pointers for NMI ISR.

16.17.1 Detailed Description

HSK Shared Interrupt Service Routine headers.

This header is used by other libraries to use interrupts with multiple sources. A callback function can be provided for each available interrupt source.

Author

kami

16.17.2 SFR Pages

An ISR callback function cannot make assumptions about current SFR pages like the regular functions that can expect all pages to be set to 0.

Instead a callback function needs to set all pages and restore whatever page was in use previously.

The following table lists the store and restore selectors by context and must be obeyed to avoid memory corruption:

Save	Restore	Context
SST0	RST0	ISRs
SST1	RST1	ISR callback functions
SST2	RST2	NMI ISR
SST3	RST3	NMI callback functions

Every callback function is called with RMAP = 0. If the callback function changes RMAP it does not have to take care of restoring it. RMAP is always restored to its original state by the shared ISRs.

16.17.3 Register Banks

Interrupts are each a root node of their own call tree. This is why they must preserve all the working registers.

the pushing and popping of the 8 Rn registers for each interrupt call costs 64 CCLK cycles.

To avoid this overhead different register banks are used. Call trees, i.e. interrupts, can use the same register bank if they cannot interrupt each other. Each used register bank costs 8 bytes of regular data memory. To minimize this cost all interrupts must have the same priority.

The following table is used:

Priority	Context	Bank
-	Regular code	0
0	ISR, callback	1
1	ISR, callback	-
2	ISR, callback	-
3	ISR, callback	-
NMI	NMI ISR, callback	2

Assigning higher priority to an ISR will affect (as in break) the operation of all lower priority ISRs.

16.17.4 Variable Documentation

```
16.17.4.1 hsk_isr14
```

```
volatile struct hsk_isr14_callback hsk_isr14
```

Introduce callback function pointers for NMI ISR.

Functions called back from the NMI ISR should use SST3/RST3 instead of SST1/RST1, because they might interrupt other ISRs.

Introduce callback function pointers for NMI ISR.

```
16.17.4.2 hsk_isr5
```

```
volatile struct hsk_isr5_callback hsk_isr5
```

Introduce callback function pointers for ISR 5.

Introduce callback function pointers for ISR 5.

```
16.17.4.3 hsk_isr6
```

```
volatile struct hsk_isr6_callback hsk_isr6
```

Introduce callback function pointers for ISR 6.

Introduce callback function pointers for ISR 6.

16.17.4.4 hsk_isr8

```
volatile struct hsk_isr8_callback hsk_isr8
```

Introduce callback function pointers for ISR 8.

Introduce callback function pointers for ISR 8.

16.17.4.5 hsk_isr9

```
volatile struct hsk_isr9_callback hsk_isr9
```

Introduce callback function pointers for ISR 9.

Introduce callback function pointers for ISR 9.

16.18 hsk_pwc/hsk_pwc.c File Reference

HSK Pulse Width Counter implementation.

```
#include <Infineon/XC878.h>
#include "hsk_pwc.h"
#include <string.h>
#include "../hsk_isr/hsk_isr.h"
Include dependency graph for hsk_pwc.c:
```


Macros

• #define PWC CHANNELS 4

The number of available PWC channels.

#define CHAN_BUF_SIZE 8

The size of a PWC ring buffer.

• #define BIT_T2CCFG 4

CR_MISC Timer 2 Capture/Compare Unit Clock Configuration bit.

• #define BIT_CCTST 0

T2CCU_CCTCON Capture/Compare Timer Start/Stop Control bit.

• #define BIT_TIMSYN 1

T2CCU_CCTCON Enable synchronized Timer Starts.

#define BIT_CCTOVEN 2

T2CCU_CCTCON Capture/Compare Timer Overflow Interrupt Enable bit.

• #define BIT_CCTOVF 3

T2CCU_CCTCON Capture/Compare Timer Overflow Flag bit.

• #define BIT CCTPRE 4

T2CCU_CCTCON T2CCU Capture/Compare Timer Control Register bits.

• #define BIT_CCTBx 0

T2CCU_CCTBSEL Channel x Time Base Select bit.

• #define BIT_IMODE 4

SYSCON0 Interrupt Structure 2 Mode Select bit.

• #define BIT_CCM0 0

T2CCU_CCEN Capture/Compare Enable bits start.

• #define CNT_CCMx 2

CCMx bit count.

• #define EDGE_DEFAULT_MODE PWC_EDGE_BOTH

Default to using both edges for pulse detection.

• #define CNT EXINTx 2

EXICONn EXINTx mode bit count.

#define PWC_CC0_EXINT_REG EXICON0

External Interrupt Control Register for setting the PWC_CC0 edge detection mode.

• #define PWC_CC0_EXINT_BIT 6

The edge detection mode bit position for PWC_CCO.

#define PWC_CC1_EXINT_REG EXICON1

External Interrupt Control Register for setting the PWC_CC1 edge detection mode.

• #define PWC CC1 EXINT BIT 0

The edge detection mode bit position for PWC_CC1.

#define PWC CC2 EXINT REG EXICON1

External Interrupt Control Register for setting the PWC_CC2 edge detection mode.

#define PWC CC2 EXINT BIT 2

The edge detection mode bit position for PWC_CC2.

#define PWC_CC3_EXINT_REG EXICON1

External Interrupt Control Register for setting the PWC_CC3 edge detection mode.

• #define PWC CC3 EXINT BIT 4

The edge detection mode bit position for PWC_CC3.

• #define BIT_T2CCU_DIS 3

PMCON1 T2CCU Disable Request bit.

Functions

· void hsk pwc isr ccn (const hsk pwc channel channel, uword capture) using 1

This is the common implementation of the Capture ISRs.

void hsk_pwc_isr_cc0_p30 (void)

The ISR for Capture events on channel PWC_CC0_P30.

void hsk pwc isr cc0 p40 (void)

The ISR for Capture events on channel PWC_CC0_P40.

void hsk_pwc_isr_cc0_p55 (void)

The ISR for Capture events on channel PWC CC0 P55.

void hsk_pwc_isr_cc1_p32 (void)

The ISR for Capture events on channel PWC_CC1_P32.

void hsk_pwc_isr_cc1_p41 (void)

The ISR for Capture events on channel PWC_CC1_P41.

void hsk_pwc_isr_cc1_p56 (void)

The ISR for Capture events on channel PWC_CC1_P56.

void hsk_pwc_isr_cc2_p33 (void)

The ISR for Capture events on channel PWC_CC2_P33.

void hsk_pwc_isr_cc2_p44 (void)

The ISR for Capture events on channel PWC_CC2_P44.

void hsk pwc isr cc2 p52 (void)

The ISR for Capture events on channel PWC_CC2_P52.

void hsk_pwc_isr_cc3_p34 (void)

The ISR for Capture events on channel PWC_CC3_P34.

void hsk pwc isr cc3 p45 (void)

The ISR for Capture events on channel PWC_CC3_P45.

void hsk_pwc_isr_cc3_p57 (void)

The ISR for Capture events on channel PWC_CC3_P57.

void hsk_pwc_isr_cctOverflow (void)

The ISR for Capture/Compare overflow events.

void hsk_pwc_ccn (const hsk_pwc_channel channel, uword capture)

This is the common implementation for soft capture events.

void hsk_pwc_init (ulong window)

This function initializes the T2CCU Capture/Compare Unit for capture mode.

void hsk_pwc_channel_open (const hsk_pwc_channel channel, ubyte averageOver)

Configures a PWC channel without an input port.

void hsk_pwc_port_open (const hsk_pwc_port port, ubyte averageOver)

Opens an input port and the connected channel.

void hsk_pwc_channel_close (const hsk_pwc_channel channel)

Close a PWC channel.

void hsk pwc channel edgeMode (const hsk pwc channel channel, const ubyte edgeMode)

Select the edge that is used to detect a pulse.

void hsk_pwc_channel_captureMode (const hsk_pwc_channel channel, const ubyte captureMode)

Allows switching between external and soft trigger.

void hsk pwc channel trigger (const hsk pwc channel channel)

Triggers a channel in soft trigger mode.

void hsk pwc enable (void)

Enables T2CCU module if disabled.

void hsk pwc disable (void)

Turns off the T2CCU clock to preserve power.

ulong hsk_pwc_channel_getValue (const hsk_pwc_channel channel, const ubyte unit)

Returns a measure of the values in a channel buffer.

Variables

· static ubyte prescaler

The prescaling factor.

· static volatile ubyte overflows

A CCT overflow counter.

struct {

ulong sum

The sum of the values stored in the ring buffer.

uword buffer [8]

A ring buffer of PWC values.

uword lastCapture

The last captured value.

ubyte averageOver

The number of pulses to average over.

ubyte pos

The current ring position.

ubyte overflow

The overflow count during the last capture.

ubyte invalid

This is an invalidation counter.

ubyte state

The state of the input pin during the last update.

} channels [4]

Processing data for PWC channels.

```
• struct {
        ubyte portBit
           The input port configuration bit position.
        ubyte portSel
           The input port configuration bits to select.
        ubyte inBit
           The external interrupt configuration bit position.
        ubyte inSel
           The external interrupt configuration to select.
        ubyte inCount
           The external interrupt configuration bit count.
      } hsk_pwc_ports []
          External input configuration structure.
16.18.1 Detailed Description
HSK Pulse Width Counter implementation.
The Pulse Width Conter (PWC) module uses the T2CCU Capture/Compare Timer (CCT) to measure pulse width.
Author
      kami
```

16.18.2 Macro Definition Documentation

```
16.18.2.1 BIT_CCM0 #define BIT_CCM0 0
```

T2CCU_CCEN Capture/Compare Enable bits start.

```
16.18.2.2 BIT_CCTBx
#define BIT_CCTBx 0
T2CCU_CCTBSEL Channel x Time Base Select bit.
16.18.2.3 BIT_CCTOVEN
```

T2CCU_CCTCON Capture/Compare Timer Overflow Interrupt Enable bit.

```
16.18.2.4 BIT_CCTOVF
#define BIT_CCTOVF 3
```

#define BIT_CCTOVEN 2

T2CCU_CCTCON Capture/Compare Timer Overflow Flag bit.

```
16.18.2.5 BIT_CCTPRE
#define BIT_CCTPRE 4
T2CCU_CCTCON T2CCU Capture/Compare Timer Control Register bits.
16.18.2.6 BIT_CCTST
#define BIT_CCTST 0
T2CCU CCTCON Capture/Compare Timer Start/Stop Control bit.
16.18.2.7 BIT_IMODE
#define BIT_IMODE 4
SYSCON0 Interrupt Structure 2 Mode Select bit.
16.18.2.8 BIT_T2CCFG
#define BIT_T2CCFG 4
CR_MISC Timer 2 Capture/Compare Unit Clock Configuration bit.
16.18.2.9 BIT_T2CCU_DIS
#define BIT_T2CCU_DIS 3
PMCON1 T2CCU Disable Request bit.
16.18.2.10 BIT_TIMSYN
#define BIT_TIMSYN 1
T2CCU_CCTCON Enable synchronized Timer Starts.
16.18.2.11 CHAN_BUF_SIZE
```

#define CHAN_BUF_SIZE 8
The size of a PWC ring buffer.

This must not be greater than 32 or the calculation of values returned by hsk_pwc_channel_getValue() might over-

The value 8 should be a sensible compromise between an interest to get averages from a sufficient number of values and memory use.

```
16.18.2.12 CNT_CCMx
```

#define CNT_CCMx 2

CCMx bit count.

16.18.2.13 CNT_EXINTx

#define CNT_EXINTx 2

EXICONn EXINTx mode bit count.

16.18.2.14 EDGE_DEFAULT_MODE

```
#define EDGE_DEFAULT_MODE PWC_EDGE_BOTH
```

Default to using both edges for pulse detection.

16.18.2.15 PWC_CC0_EXINT_BIT

```
#define PWC_CCO_EXINT_BIT 6
```

The edge detection mode bit position for PWC_CC0.

16.18.2.16 PWC_CC0_EXINT_REG

#define PWC_CCO_EXINT_REG EXICONO

External Interrupt Control Register for setting the PWC_CC0 edge detection mode.

16.18.2.17 PWC_CC1_EXINT_BIT

#define PWC_CC1_EXINT_BIT 0

The edge detection mode bit position for PWC CC1.

16.18.2.18 PWC_CC1_EXINT_REG

#define PWC_CC1_EXINT_REG EXICON1

External Interrupt Control Register for setting the PWC_CC1 edge detection mode.

16.18.2.19 PWC_CC2_EXINT_BIT

#define PWC_CC2_EXINT_BIT 2

The edge detection mode bit position for PWC_CC2.

```
16.18.2.20 PWC_CC2_EXINT_REG
```

```
#define PWC_CC2_EXINT_REG EXICON1
```

External Interrupt Control Register for setting the PWC_CC2 edge detection mode.

```
16.18.2.21 PWC_CC3_EXINT_BIT
```

```
#define PWC_CC3_EXINT_BIT 4
```

The edge detection mode bit position for PWC_CC3.

```
16.18.2.22 PWC_CC3_EXINT_REG
```

```
#define PWC_CC3_EXINT_REG EXICON1
```

External Interrupt Control Register for setting the PWC_CC3 edge detection mode.

16.18.2.23 PWC_CHANNELS

```
#define PWC_CHANNELS 4
```

The number of available PWC channels.

16.18.3 Function Documentation

16.18.3.1 hsk_pwc_ccn()

This is the common implementation for soft capture events.

Parameters

channel	The channel that was captured.
capture	The value that was captured.

16.18.3.2 hsk_pwc_channel_captureMode()

Allows switching between external and soft trigger.

This does not reconfigure the input ports. Available modes are specified in the PWC_MODE_* defines. $PWC_M \leftarrow ODE_EXT$ is the default.

Parameters

channel	The channel to configure.
captureMode	The mode to set the channel to.

16.18.3.3 hsk_pwc_channel_close()

Close a PWC channel.

Parameters

channel	The channel to close.
or iai ii ioi	i i i o o i a i i i o o o o o o o o

16.18.3.4 hsk_pwc_channel_edgeMode()

Select the edge that is used to detect a pulse.

Available edges are specified in the PWC_EDGE_* defines.

Parameters

channel	The channel to configure the edge for.
edgeMode	The selected edge detection mode.

16.18.3.5 hsk_pwc_channel_getValue()

Returns a measure of the values in a channel buffer.

It also takes care of invalidating channels that haven't been captured for too long.

The value is returned in a requested unit, the units defined as PWC_UNIT_* are available.

Parameters

channel	The channel to return the buffer sum of
unit	'The unit to return the channel value in

Return values

>0	The channel value in the requested unit
0	Invalid channel, measurement timed out

16.18.3.6 hsk_pwc_channel_open()

Configures a PWC channel without an input port.

The channel is set up for software triggering (PWC_MODE_SOFT), and triggering on both edges (PWC_EDGE_← BOTH).

Parameters

channel	The PWC channel to open
averageOver	The number of pulse values to average over when returning a value or speed. The value must
	be between 1 and 8.

Set the PWC capture mode.

Set the interrupt triggering edge. Here is the call graph for this function:

16.18.3.7 hsk_pwc_channel_trigger()

Triggers a channel in soft trigger mode.

Parameters

|--|

Here is the call graph for this function:

16.18.3.8 hsk_pwc_disable()

Turns off the T2CCU clock to preserve power.

16.18.3.9 hsk_pwc_enable()

```
void hsk_pwc_enable (
     void )
```

Enables T2CCU module if disabled.

16.18.3.10 hsk_pwc_init()

This function initializes the T2CCU Capture/Compare Unit for capture mode.

The capturing is based on the CCT timer. Timer T2 is not used and thus can be useed without interference.

The window time is the time frame within which pulses should be detected. A smaller time frame results in higher precission, but detection of longer pulses will fail.

Window times vary between \sim 1ms ($(2^{16}-1)/(48*10^6)$) and \sim 5592ms ($(2^{16}-1)*2^{12}/(48*10^6)$). The shortest window time delivers \sim 20ns and the longest time \sim 85 μ s precision.

The real window time is on a logarithmic scale (base 2), the init function will select the lowest scale that guarantees the required window time. I.e. the highest precision possible with the desired window time, which is at least 2^{15} for all windows below or equal 5592ms.

Parameters

window	The time in ms to detect a pulse.

Here is the call graph for this function:

16.18.3.11 hsk_pwc_isr_cc0_p30()

The ISR for Capture events on channel PWC_CC0_P30.

Here is the call graph for this function:

16.18.3.12 hsk_pwc_isr_cc0_p40()

The ISR for Capture events on channel PWC_CC0_P40.

16.18.3.13 hsk_pwc_isr_cc0_p55()

The ISR for Capture events on channel PWC_CC0_P55.

Here is the call graph for this function:

16.18.3.14 hsk_pwc_isr_cc1_p32()

The ISR for Capture events on channel PWC_CC1_P32.

Here is the call graph for this function:

16.18.3.15 hsk_pwc_isr_cc1_p41()

The ISR for Capture events on channel PWC_CC1_P41.

16.18.3.16 hsk_pwc_isr_cc1_p56()

The ISR for Capture events on channel PWC_CC1_P56.

Here is the call graph for this function:

16.18.3.17 hsk_pwc_isr_cc2_p33()

The ISR for Capture events on channel PWC_CC2_P33.

Here is the call graph for this function:

16.18.3.18 hsk_pwc_isr_cc2_p44()

The ISR for Capture events on channel PWC_CC2_P44.

16.18.3.19 hsk_pwc_isr_cc2_p52()

The ISR for Capture events on channel PWC_CC2_P52.

Here is the call graph for this function:

16.18.3.20 hsk_pwc_isr_cc3_p34()

The ISR for Capture events on channel PWC_CC3_P34.

Here is the call graph for this function:

16.18.3.21 hsk_pwc_isr_cc3_p45()

The ISR for Capture events on channel PWC_CC3_P45.


```
16.18.3.22 hsk_pwc_isr_cc3_p57()
```

The ISR for Capture events on channel PWC_CC3_P57.

Here is the call graph for this function:

16.18.3.23 hsk_pwc_isr_ccn()

This is the common implementation of the Capture ISRs.

Parameters

channel	The channel that was captured.
capture	The value that was captured.

16.18.3.24 hsk_pwc_isr_cctOverflow()

The ISR for Capture/Compare overflow events.

It simply increases overflows, which is used by hsk_pwc_channel_getSum() to check whether the capture time window was left.

16.18.3.25 hsk_pwc_port_open()

Opens an input port and the connected channel.

The available configurations are available from the PWC_CCn_* defines.

Parameters

	port	The input port to open	
Ī	averageOver	The number of pulse values to average over when returning a value or speed. The value must	1
		be between 1 and CHAN_BUF_SIZE	

Here is the call graph for this function:

16.18.4 Variable Documentation

16.18.4.1 averageOver

ubyte averageOver

The number of pulses to average over.

16.18.4.2 buffer

uword buffer[8]

A ring buffer of PWC values.

16.18.4.3 channels

```
channels [static]
```

Processing data for PWC channels.

16.18.4.4 hsk_pwc_ports

hsk_pwc_ports

Initial value:

External input configuration structure.

16.18.4.5 inBit

ubyte inBit

The external interrupt configuration bit position.

16.18.4.6 inCount

ubyte inCount

The external interrupt configuration bit count.

16.18.4.7 inSel

ubyte inSel

The external interrupt configuration to select.

16.18.4.8 invalid

ubyte invalid

This is an invalidation counter.

Each time 0 is written into the buffer this is increased. Each time a valid value makes it in it's decreased, so that results are only output by getSum when all values are valid.

```
16.18.4.9 lastCapture
uword lastCapture
The last captured value.
16.18.4.10 overflow
ubyte overflow
The overflow count during the last capture.
This is used by hsk_pwc_channel_getSum() to detect whether the capturing time window was left.
16.18.4.11 overflows
volatile ubyte overflows [static]
A CCT overflow counter.
16.18.4.12 portBit
ubyte portBit
The input port configuration bit position.
16.18.4.13 portSel
ubyte portSel
The input port configuration bits to select.
16.18.4.14 pos
ubyte pos
The current ring position.
16.18.4.15 prescaler
ubyte prescaler [static]
```

The prescaling factor.

16.18.4.16 state

ubyte state

The state of the input pin during the last update.

I.e. in case of 0 a high pulse was completed, in case of 1 a low pulse.

16.18.4.17 sum

ulong sum

The sum of the values stored in the ring buffer.

16.19 hsk_pwc/hsk_pwc.h File Reference

HSK Pulse Width Counter headers.

#include "../hsk_isr/hsk_isr.isr"
Include dependency graph for hsk_pwc.h:

This graph shows which files directly or indirectly include this file:

Macros

• #define PWC_CC0 0 Capture/Compare channel 0 on EXINT3. • #define PWC CC1 1 Capture/Compare channel 1 on EXINT4. • #define PWC_CC2 2 Capture/Compare channel 2 on EXINT5. • #define PWC CC3 3 Capture/Compare channel 3 on EXINT6. #define PWC_CC0_P30 0 Capture/Compare channel 0 input port P3.0 configuration. #define PWC_CC0_P40 1 Capture/Compare channel 0 input port P4.0 configuration. #define PWC_CC0_P55 2 Capture/Compare channel 0 input port P5.5 configuration. #define PWC_CC1_P32 3 Capture/Compare channel 1 input port P3.2 configuration. • #define PWC CC1 P41 4 Capture/Compare channel 1 input port P4.1 configuration. #define PWC_CC1_P56 5 Capture/Compare channel 1 input port P5.6 configuration. • #define PWC CC2 P33 6 Capture/Compare channel 2 input port P3.3 configuration. #define PWC CC2 P44 7 Capture/Compare channel 4 input port P4.4 configuration. • #define PWC CC2 P52 8 Capture/Compare channel 2 input port P5.2 configuration. #define PWC CC3 P34 9 Capture/Compare channel 3 input port P3.4 configuration. #define PWC CC3 P45 10 Capture/Compare channel 3 input port P4.5 configuration. • #define PWC_CC3_P57 11 Capture/Compare channel 3 input port P5.7 configuration. • #define PWC EDGE FALLING 0 Configuration selection to trigger pulse detection on falling edge. • #define PWC_EDGE_RISING 1 Configuration selection to trigger pulse detection on rising edge. • #define PWC EDGE BOTH 2 Configuration selection to trigger pulse detection on both edges. • #define PWC MODE EXT 1 Available capture modes, capture on external interrupt. #define PWC MODE SOFT 3 Available capture modes, capture on sofware event. • #define PWC UNIT SUM RAW 0 Sum of buffered pulse widths in multiples of $1/48 * 10^{-6} s$. #define PWC UNIT WIDTH RAW 1 Average of buffered pulse widths in multiples of $1/48 * 10^{-6} s$. #define PWC UNIT WIDTH NS 2

Average of buffered pulse widths in multiples of $10^{-9}s$.

• #define PWC_UNIT_WIDTH_US 3

```
Average of buffered pulse widths in multiples of 10^{-6}s.

    #define PWC_UNIT_WIDTH_MS 4

     Average of buffered pulse widths in multiples of 10^{-3}s.
• #define PWC UNIT FREQ S 5
     Average frequency of buffered pulses in multiples of 1/s.

    #define PWC_UNIT_FREQ_M 6

     Average frequency of buffered pulses in multiples of 1/m.

    #define PWC UNIT FREQ H 7

     Average frequency of buffered pulses in multiples of 1/h.

    #define PWC_UNIT_DUTYH_RAW 8

     Latest high pulse in multiples of 1/48 * 10^{-6} s.

    #define PWC_UNIT_DUTYH_NS 9

     Latest high pulse in multiples of 1 * 10^{-9} s.

    #define PWC_UNIT_DUTYH_US 10

     Latest high pulse in multiples of 1 * 10^{-6} s.

    #define PWC_UNIT_DUTYH_MS 11

     Latest high pulse in multiples of 1 * 10^{-3}s.
• #define PWC_UNIT_DUTYL_RAW 12
     Latest low pulse in multiples of 1/48*10^{-6}s.

    #define PWC_UNIT_DUTYL_NS 13

     Latest low pulse in multiples of 1 * 10^{-9} s.
• #define PWC UNIT DUTYL US 14
     Latest low pulse in multiples of 1 * 10^{-6} s.

    #define PWC_UNIT_DUTYL_MS 15

     Latest low pulse in multiples of 1 * 10^{-3} s.
```

Typedefs

- typedef ubyte hsk_pwc_channel
 - Typedef for PWC channel IDs.
- typedef ubyte hsk_pwc_port

Typedef for PWC input port.

Functions

void hsk_pwc_init (ulong window)

This function initializes the T2CCU Capture/Compare Unit for capture mode.

void hsk_pwc_channel_open (const hsk_pwc_channel channel, ubyte averageOver)

Configures a PWC channel without an input port.

void hsk_pwc_port_open (const hsk_pwc_port port, ubyte averageOver)

Opens an input port and the connected channel.

void hsk_pwc_channel_close (const hsk_pwc_channel channel)

Close a PWC channel.

void hsk_pwc_channel_edgeMode (const hsk_pwc_channel channel, const ubyte edgeMode)

Select the edge that is used to detect a pulse.

void hsk_pwc_channel_captureMode (const hsk_pwc_channel channel, const ubyte captureMode)

Allows switching between external and soft trigger.

void hsk_pwc_channel_trigger (const hsk_pwc_channel channel)

Triggers a channel in soft trigger mode.

void hsk_pwc_enable (void)

Enables T2CCU module if disabled.

void hsk_pwc_disable (void)

Turns off the T2CCU clock to preserve power.

ulong hsk_pwc_channel_getValue (const hsk_pwc_channel channel, const ubyte unit)

Returns a measure of the values in a channel buffer.

16.19.1 Detailed Description

HSK Pulse Width Counter headers.

This library uses the T2CCU to measure pulse width on the external interrupt pins.

Every caputre channel blocks an external interrupt. Opening a channel will block this interrupt and change its configuration.

Pulse with measurement has a window time that is configured with hsk_pwc_init() and defines the time frame within which pulses can be detected.

If no pulse occurs during the window, the channel buffer is invalidated and the hsk_pwc_channel_getValue() function will returns invalid (0) until the buffer is repopulated with valid measurements.

In order to guarantee the detection of invalid channels, the hsk_pwc_channel_getValue() function has to be called at least once every 256 window times.

Author

kami

16.19.2 Macro Definition Documentation

```
16.19.2.1 PWC_CC0
```

#define PWC_CC0 0

Capture/Compare channel 0 on EXINT3.

```
16.19.2.2 PWC_CC0_P30
```

#define PWC_CC0_P30 0

Capture/Compare channel 0 input port P3.0 configuration.

```
16.19.2.3 PWC_CC0_P40
```

#define PWC_CC0_P40 1

Capture/Compare channel 0 input port P4.0 configuration.

```
16.19.2.4 PWC_CC0_P55
```

```
#define PWC_CC0_P55 2
```

Capture/Compare channel 0 input port P5.5 configuration.

16.19.2.5 PWC_CC1

```
#define PWC_CC1 1
```

Capture/Compare channel 1 on EXINT4.

16.19.2.6 PWC_CC1_P32

```
#define PWC_CC1_P32 3
```

Capture/Compare channel 1 input port P3.2 configuration.

16.19.2.7 PWC_CC1_P41

```
#define PWC_CC1_P41 4
```

Capture/Compare channel 1 input port P4.1 configuration.

16.19.2.8 PWC_CC1_P56

```
#define PWC_CC1_P56 5
```

Capture/Compare channel 1 input port P5.6 configuration.

16.19.2.9 PWC_CC2

```
#define PWC_CC2 2
```

Capture/Compare channel 2 on EXINT5.

16.19.2.10 PWC_CC2_P33

#define PWC_CC2_P33 6

Capture/Compare channel 2 input port P3.3 configuration.

16.19.2.11 PWC_CC2_P44

#define PWC_CC2_P44 7

Capture/Compare channel 4 input port P4.4 configuration.

```
16.19.2.12 PWC_CC2_P52
```

```
#define PWC_CC2_P52 8
```

Capture/Compare channel 2 input port P5.2 configuration.

16.19.2.13 PWC_CC3

```
#define PWC_CC3 3
```

Capture/Compare channel 3 on EXINT6.

```
16.19.2.14 PWC_CC3_P34
```

```
#define PWC_CC3_P34 9
```

Capture/Compare channel 3 input port P3.4 configuration.

16.19.2.15 PWC_CC3_P45

```
#define PWC_CC3_P45 10
```

Capture/Compare channel 3 input port P4.5 configuration.

16.19.2.16 PWC_CC3_P57

```
#define PWC_CC3_P57 11
```

Capture/Compare channel 3 input port P5.7 configuration.

16.19.2.17 PWC_EDGE_BOTH

```
#define PWC_EDGE_BOTH 2
```

Configuration selection to trigger pulse detection on both edges.

16.19.2.18 PWC_EDGE_FALLING

```
#define PWC_EDGE_FALLING 0
```

Configuration selection to trigger pulse detection on falling edge.

16.19.2.19 PWC_EDGE_RISING

```
#define PWC_EDGE_RISING 1
```

Configuration selection to trigger pulse detection on rising edge.

```
16.19.2.20 PWC_MODE_EXT
```

```
#define PWC_MODE_EXT 1
```

Available capture modes, capture on external interrupt.

16.19.2.21 PWC_MODE_SOFT

```
#define PWC_MODE_SOFT 3
```

Available capture modes, capture on sofware event.

16.19.3 Typedef Documentation

16.19.3.1 hsk_pwc_channel

```
typedef ubyte hsk_pwc_channel
```

Typedef for PWC channel IDs.

16.19.3.2 hsk_pwc_port

```
typedef ubyte hsk_pwc_port
```

Typedef for PWC input port.

16.19.4 Function Documentation

16.19.4.1 hsk_pwc_channel_captureMode()

Allows switching between external and soft trigger.

This does not reconfigure the input ports. Available modes are specified in the PWC_MODE_* defines. $PWC_M \leftarrow ODE_EXT$ is the default.

channel	The channel to configure.
captureMode	The mode to set the channel to.

16.19.4.2 hsk_pwc_channel_close()

Close a PWC channel.

Parameters

channel The channel to close.	close.
-------------------------------	--------

16.19.4.3 hsk_pwc_channel_edgeMode()

Select the edge that is used to detect a pulse.

Available edges are specified in the PWC_EDGE_* defines.

Parameters

channel	The channel to configure the edge for.
edgeMode	The selected edge detection mode.

16.19.4.4 hsk_pwc_channel_getValue()

Returns a measure of the values in a channel buffer.

It also takes care of invalidating channels that haven't been captured for too long.

The value is returned in a requested unit, the units defined as PWC_UNIT_* are available.

Parameters

channel	The channel to return the buffer sum of
unit	'The unit to return the channel value in

Return values

>	>0	The channel value in the requested unit
	0	Invalid channel, measurement timed out

16.19.4.5 hsk_pwc_channel_open()

Configures a PWC channel without an input port.

The channel is set up for software triggering (PWC_MODE_SOFT), and triggering on both edges (PWC_EDGE_← BOTH).

Parameters

channel	The PWC channel to open	1
averageOver	The number of pulse values to average over when returning a value or speed. The value must	
	be between 1 and 8.	

Set the PWC capture mode.

Set the interrupt triggering edge. Here is the call graph for this function:

16.19.4.6 hsk_pwc_channel_trigger()

Triggers a channel in soft trigger mode.

channel	The channel to trigger.

Here is the call graph for this function:

16.19.4.7 hsk_pwc_disable()

Turns off the T2CCU clock to preserve power.

16.19.4.8 hsk_pwc_enable()

Enables T2CCU module if disabled.

16.19.4.9 hsk_pwc_init()

This function initializes the T2CCU Capture/Compare Unit for capture mode.

The capturing is based on the CCT timer. Timer T2 is not used and thus can be useed without interference.

The window time is the time frame within which pulses should be detected. A smaller time frame results in higher precission, but detection of longer pulses will fail.

Window times vary between \sim 1ms ($(2^{16}-1)/(48*10^6)$) and \sim 5592ms ($(2^{16}-1)*2^{12}/(48*10^6)$). The shortest window time delivers \sim 20ns and the longest time \sim 85 μ s precision.

The real window time is on a logarithmic scale (base 2), the init function will select the lowest scale that guarantees the required window time. I.e. the highest precision possible with the desired window time, which is at least 2^{15} for all windows below or equal 5592ms.

window	The time in ms to detect a pulse.

Here is the call graph for this function:

16.19.4.10 hsk_pwc_port_open()

Opens an input port and the connected channel.

The available configurations are available from the PWC_CCn_* defines.

port	The input port to open
averageOver	The number of pulse values to average over when returning a value or speed. The value must be between 1 and CHAN BUF SIZE

Here is the call graph for this function:

16.20 hsk_pwm/hsk_pwm.c File Reference

HSK Pulse Width Modulation implementation.

```
#include <Infineon/XC878.h>
#include "hsk_pwm.h"
```

Include dependency graph for hsk_pwm.c:

Macros

• #define BIT_CCUCCFG 5

CR_MISC CCU6 Clock Configuration bit.

• #define BIT_TnCLK 0

CCU6_TCTR0L/CCU6_TCTR0H Timer T12/T13 Input Clock Select and Prescaler bits.

#define CNT TnCLK 4

TnCLK bit count.

• #define BIT_PSL 0

PSLR Compare Outputs Passive State Level bits.

• #define CNT PSL 6

PSL bit count.

• #define BIT_PSL63 7

PSLR Passive State Level of Output COUT63 bit.

• #define BIT_TnMODEN 0

CCU6_MODCTRL/CCU6_MODCTRH T12/T13 Modulation Enable bits.

• #define CNT TnMODEN 6

TnMODEN bit count.

• #define BIT_ECT13O 7

CCU6_MODCTRH Enable Compare Timer T13 Output bits.

• #define CNT_MSEL6n 4

T12MSELL/H Capture/Compare Mode Selection width.

• #define MOD_MSEL6n 0x3

T12MSELL/H Capture/Compare Mode Selection mode.

• #define BIT_TnSTR 6

CCU6_TCTR4L/CCU6_TCTR4H Timer T12/T13 Shadow Transfer Request bit.

• #define BIT_CCU_DIS 2

PMCON1 Capture Compare Unit Disable bit.

• #define BIT_TnRR 0

CCU6_TCTR4L/CCU6_TCTR4H Timer T12/T13 Run Reset bit.

• #define BIT_TnRS 1

CCU6_TCTR4L/CCU6_TCTR4H Timer T12/T13 Run Set bit.

Functions

```
    void hsk_pwm_init (const hsk_pwm_channel channel, const ulong freq)
```

Sets up the the CCU6 timer frequencies that control the PWM cycle.

void hsk_pwm_port_open (const hsk_pwm_port port)

Set up a PWM output port.

· void hsk pwm port close (const hsk pwm port port)

Close a PWM output port.

• void hsk_pwm_channel_set (const hsk_pwm_channel channel, const uword max, const uword value)

Set the duty cycle for the given channel.

void hsk pwm outChannel dir (hsk pwm outChannel channel, const bool up)

Set the direction of an output channel.

void hsk_pwm_enable (void)

Turns on the CCU6.

void hsk_pwm_disable (void)

Deactivates the CCU6 to reduce power consumption.

Variables

```
    struct {
        ubyte pos
        The Pn_ALTSEL[01] bit position to make the port configuration in.
        ubyte sel
        Select a 2 bits Pn_ALTSEL[01] configuration.
    } ports []
```

Data structure to hold output port configurations.

16.20.1 Detailed Description

HSK Pulse Width Modulation implementation.

This would mostly be straightforward if it wasn't for the messy output channel configuration.

The init function buys a lot of simplicity by limiting the CCU6 use to generating PWM. Also, the channels PWM_60, PWM_61 and PWM_62 operate at the same base frequency and period. This is a hardware limitation.

Author

kami

16.20.2 Macro Definition Documentation

```
16.20.2.1 BIT_CCU_DIS
```

```
#define BIT_CCU_DIS 2
```

PMCON1 Capture Compare Unit Disable bit.

```
16.20.2.2 BIT_CCUCCFG
#define BIT_CCUCCFG 5
CR_MISC CCU6 Clock Configuration bit.
16.20.2.3 BIT_ECT130
#define BIT_ECT130 7
CCU6_MODCTRH Enable Compare Timer T13 Output bits.
16.20.2.4 BIT_PSL
#define BIT_PSL 0
PSLR Compare Outputs Passive State Level bits.
16.20.2.5 BIT_PSL63
#define BIT_PSL63 7
PSLR Passive State Level of Output COUT63 bit.
16.20.2.6 BIT_TnCLK
#define BIT_TnCLK 0
CCU6_TCTR0L/CCU6_TCTR0H Timer T12/T13 Input Clock Select and Prescaler bits.
16.20.2.7 BIT_TnMODEN
#define BIT_TnMODEN 0
CCU6 MODCTRL/CCU6 MODCTRH T12/T13 Modulation Enable bits.
16.20.2.8 BIT_TnRR
#define BIT_TnRR 0
CCU6_TCTR4L/CCU6_TCTR4H Timer T12/T13 Run Reset bit.
16.20.2.9 BIT_TnRS
#define BIT_TnRS 1
```

Generated by Doxygen

CCU6_TCTR4L/CCU6_TCTR4H Timer T12/T13 Run Set bit.

```
16.20.2.10 BIT_TnSTR
#define BIT_TnSTR 6
CCU6_TCTR4L/CCU6_TCTR4H Timer T12/T13 Shadow Transfer Request bit.
16.20.2.11 CNT_MSEL6n
#define CNT_MSEL6n 4
T12MSELL/H Capture/Compare Mode Selection width.
16.20.2.12 CNT_PSL
#define CNT_PSL 6
PSL bit count.
16.20.2.13 CNT_TnCLK
#define CNT_TnCLK 4
TnCLK bit count.
16.20.2.14 CNT_TnMODEN
#define CNT_TnMODEN 6
TnMODEN bit count.
16.20.2.15 MOD_MSEL6n
#define MOD_MSEL6n 0x3
T12MSELL/H Capture/Compare Mode Selection mode.
This mode means CC6n and COUT6n are in output mode.
```

16.20.3 Function Documentation

```
16.20.3.1 hsk_pwm_channel_set()
```

Set the duty cycle for the given channel.

I.e. the active time frame slice of period can be set with max and value.

To set the duty cycle in percent specify a max of 100 and values from 0 to 100.

Parameters

channel	The PWM channel to set the duty cycle for, check the PWM_6x defines
max	Defines the scope value can move in
value	The current duty cycle value

16.20.3.2 hsk_pwm_disable()

Deactivates the CCU6 to reduce power consumption.

16.20.3.3 hsk_pwm_enable()

Turns on the CCU6.

Deactivates the power disable mode and sets the T12 and T13 Timer Run bits.

Precondition

All hsk_pwm_init() calls have to be completed to call this

16.20.3.4 hsk_pwm_init()

Sets up the the CCU6 timer frequencies that control the PWM cycle.

The channels PWM_60, PWM_61 and PWM_62 share the timer T12, thus initializing one of them, initializes them all. The channel PWM_63 has exclusive use of the timer T13 and can thus be used with its own operating frequency.

Frequencies up to $\sim\!\!732.4\text{Hz}$ are always between 15 and 16 bits precision.

Frequencies above 48kHz offer less than 1/1000 precision. From there it is a linear function, i.e. 480kHz still offer 1/100 precision.

The freq value 0 will result in \sim 0.02Hz ($48000000/2^{31}$).

The following formula results in the freq value that yields exactly the desired precision, this is useful to avoid precision loss by rounding:

$$freq(precision) = 480000000 * precision$$

E.g. 10 bit precision: $freq(1/2^{10}) = 468750$

Parameters

channel	The channel to change the frequency for
freq	The desired PWM cycle frequency in units of 0.1Hz

PWM Timings

The CCU6CLK can run at FCLK (48MHz) or PCLK (24MHz), configured in the CCUCCFG bit. This implementation always uses 48MHz.

The T12CLK can run any power of two between CCU6CLK and CCU6CLK/128, configured in the T12CLK bit field.

This value can additionally be multiplied with a prescaler of 1/256, activated with the T12PRE bit.

The same is true for the T13CLK.

Additionally the period is length for T12 and T13 can be configured to any 16 bit value. Assuming at least 1/1000 precision is desired that means the clock cycle can be shortened by any factor up to 2^6 (64).

The conclusion is that PWM frequencies between 48kHz and \sim 0.02Hz can be configured. Very high values degrade the precision, e.g. 96kHz will only offer 1/500 precision. The freq value 0 will result in \sim 0.02Hz ($48000000/2^{31}$).

16.20.3.5 hsk_pwm_outChannel_dir()

Set the direction of an output channel.

The channel value can be taken from any of the PWM CCx/PWM COUTx defines.

Parameters

channel	The IO channel to set the direction bit for
ир	Set 1 to output a 1 during the cycle set with hsk_pwm_channel_set(), set 0 to output a 0 during the
	cycle set with hsk_pwm_channel_set()

16.20.3.6 hsk_pwm_port_close()

Close a PWM output port.

This configures the necessary port direction bits.

The port can be any one of the PWM_OUT_x_* defines.

Parameters

port	The output port to deactivate
1	

16.20.3.7 hsk_pwm_port_open()

Set up a PWM output port.

This configures the necessary port direction bits and activates the corresponding output channels.

The port can be any one of the PWM_OUT_x_* defines.

Precondition

This function should only be called after hsk_pwm_enable(), otherwise the output port will be driven (1) until PWM is enabled

Parameters

```
port The output port to activate
```

16.20.4 Variable Documentation

16.20.4.1 ports

```
ports [static]
```

Initial value:

Data structure to hold output port configurations.

16.20.4.2 pos

ubyte pos

The Pn_ALTSEL[01] bit position to make the port configuration in.

16.20.4.3 sel

ubyte sel

Select a 2 bits Pn_ALTSEL[01] configuration.

16.21 hsk_pwm/hsk_pwm.h File Reference

HSK Pulse Width Modulation headers.

This graph shows which files directly or indirectly include this file:

Macros

• #define PWM_60 0

PWM channel 60, Timer T12 driven.

• #define PWM_61 1

PWM channel 61, Timer T12 driven.

• #define PWM_62 2

PWM channel 62, Timer T12 driven.

• #define PWM_63 3

PWM channel 63, Timer T13 driven.

• #define PWM CC60 0

IO channel configuration for PWM_60.

#define PWM_COUT60 1

Output channel configuration for PWM_60.

• #define PWM CC61 2

IO channel configuration for PWM_61.

• #define PWM_COUT61 3

Output channel configuration for PWM_61.

• #define PWM_CC62 4

IO channel configuration for PWM_62.

• #define PWM_COUT62 5

Output channel configuration for PWM_62,.

• #define PWM_COUT63 6

Output channel configuration for PWM_63.

#define PWM OUT 60 P30 0

PWM_60 output configuration for P3.0 through PWM_CC60.

• #define PWM_OUT_60_P31 1

PWM 60 output configuration for P3.1 through PWM COUT60.

#define PWM_OUT_60_P40 2

PWM_60 output configuration for P4.0 through PWM_CC60.

#define PWM_OUT_60_P41 3

PWM_60 output configuration for P4.1 through PWM_COUT60.

• #define PWM_OUT_61_P00 4

PWM_61 output configuration for P0.0 through PWM_CC61.

#define PWM_OUT_61_P01 5

PWM 61 output configuration for P0.1 through PWM COUT61.

• #define PWM OUT 61 P31 6

PWM_61 output configuration for P3.1 through PWM_CC61.

#define PWM_OUT_61_P32 7

PWM_61 output configuration for P3.2 through PWM_CC61.

• #define PWM OUT 61 P33 8

PWM 61 output configuration for P3.3 through PWM COUT61.

• #define PWM_OUT_61_P44 9

PWM_61 output configuration for P4.4 through PWM_CC61.

• #define PWM_OUT_61_P45 10

PWM_61 output configuration for P4.5 through PWM_COUT61.

#define PWM_OUT_62_P04 11

PWM_62 output configuration for P0.4 through PWM_CC62.

#define PWM_OUT_62_P05 12

PWM_62 output configuration for P0.5 through PWM_COUT62.

#define PWM_OUT_62_P34 13

PWM_62 output configuration for P3.4 through PWM_CC62.

#define PWM_OUT_62_P35 14

PWM_62 output configuration for P3.5 through PWM_COUT62.

#define PWM OUT 62 P46 15

PWM_62 output configuration for P4.6 through PWM_CC62.

#define PWM_OUT_62_P47 16

PWM_62 output configuration for P4.7 through PWM_COUT62.

• #define PWM_OUT_63_P03 17

PWM_63 output configuration for P0.3 through PWM_COUT63.

• #define PWM_OUT_63_P37 18

PWM_63 output configuration for P3.7 through PWM_COUT63.

#define PWM_OUT_63_P43 19

PWM_63 output configuration for P4.3 through PWM_COUT63.

Typedefs

• typedef ubyte hsk_pwm_channel

Type definition for PWM channels.

typedef ubyte hsk_pwm_outChannel

Type definition for output channels.

• typedef ubyte hsk_pwm_port

Type definition for ports.

Functions

void hsk_pwm_init (const hsk_pwm_channel channel, const ulong freq)

Sets up the the CCU6 timer frequencies that control the PWM cycle.

void hsk_pwm_port_open (const hsk_pwm_port port)

Set up a PWM output port.

void hsk_pwm_port_close (const hsk_pwm_port port)

Close a PWM output port.

void hsk_pwm_channel_set (const hsk_pwm_channel channel, const uword max, const uword value)

Set the duty cycle for the given channel.

• void hsk_pwm_outChannel_dir (hsk_pwm_outChannel channel, const bool up)

Set the direction of an output channel.

void hsk_pwm_enable (void)

Turns on the CCU6.

void hsk_pwm_disable (void)

Deactivates the CCU6 to reduce power consumption.

16.21.1 Detailed Description

HSK Pulse Width Modulation headers.

This file provides function prototypes to perform Timer T12 and T13 based PWM with CCU6.

The CCU6 offers the following PWM channels:

- PWM 60
- PWM_61
- PWM 62
- PWM 63

Each PWM channel is connected to two IO channels for output:

- PWM_CCx
- PWM_COUTx

The distinction between PWM and IO channels is important to understand the side effects of some operations.

Refer to the PWM_OUT_x_* defines to know which channel can be connected to which output pins.

The functions are implemented under the assumption, that the use of the timers T12 and T13 as well of the CCU6 is exclusive to this library.

The safe boot order for pwm output is the following:

- hsk_pwm_init()
- hsk_pwm_enable()
- hsk_pwm_port_open()

Author

kami

16.21.2 Macro Definition Documentation

```
16.21.2.1 PWM_60
```

#define PWM_60 0

PWM channel 60, Timer T12 driven.

16.21.2.2 PWM_61

#define PWM_61 1

PWM channel 61, Timer T12 driven.

16.21.2.3 PWM_62

#define PWM_62 2

PWM channel 62, Timer T12 driven.

16.21.2.4 PWM_63

#define PWM_63 3

PWM channel 63, Timer T13 driven.

16.21.2.5 PWM_CC60

#define PWM_CC60 0

IO channel configuration for PWM_60.

```
16.21.2.6 PWM_CC61
#define PWM_CC61 2
IO channel configuration for PWM_61.
16.21.2.7 PWM_CC62
#define PWM_CC62 4
IO channel configuration for PWM_62.
16.21.2.8 PWM_COUT60
#define PWM_COUT60 1
Output channel configuration for PWM_60.
16.21.2.9 PWM_COUT61
#define PWM_COUT61 3
Output channel configuration for PWM_61.
16.21.2.10 PWM_COUT62
#define PWM_COUT62 5
Output channel configuration for PWM_62,.
16.21.2.11 PWM_COUT63
#define PWM_COUT63 6
Output channel configuration for PWM 63.
16.21.2.12 PWM_OUT_60_P30
#define PWM_OUT_60_P30 0
PWM_60 output configuration for P3.0 through PWM_CC60.
16.21.2.13 PWM_OUT_60_P31
#define PWM_OUT_60_P31 1
```

PWM_60 output configuration for P3.1 through PWM_COUT60.

```
16.21.2.14 PWM_OUT_60_P40
```

#define PWM_OUT_60_P40 2

PWM_60 output configuration for P4.0 through PWM_CC60.

16.21.2.15 PWM_OUT_60_P41

#define PWM_OUT_60_P41 3

PWM_60 output configuration for P4.1 through PWM_COUT60.

16.21.2.16 PWM_OUT_61_P00

#define PWM_OUT_61_P00 4

PWM_61 output configuration for P0.0 through PWM_CC61.

16.21.2.17 PWM_OUT_61_P01

#define PWM_OUT_61_P01 5

PWM_61 output configuration for P0.1 through PWM_COUT61.

16.21.2.18 PWM_OUT_61_P31

#define PWM_OUT_61_P31 6

PWM_61 output configuration for P3.1 through PWM_CC61.

16.21.2.19 PWM_OUT_61_P32

#define PWM_OUT_61_P32 7

PWM 61 output configuration for P3.2 through PWM CC61.

16.21.2.20 PWM_OUT_61_P33

#define PWM_OUT_61_P33 8

PWM_61 output configuration for P3.3 through PWM_COUT61.

16.21.2.21 PWM_OUT_61_P44

#define PWM_OUT_61_P44 9

PWM_61 output configuration for P4.4 through PWM_CC61.

16.21.2.22 PWM_OUT_61_P45

#define PWM_OUT_61_P45 10

PWM_61 output configuration for P4.5 through PWM_COUT61.

16.21.2.23 PWM_OUT_62_P04

#define PWM_OUT_62_P04 11

PWM_62 output configuration for P0.4 through PWM_CC62.

16.21.2.24 PWM_OUT_62_P05

#define PWM_OUT_62_P05 12

PWM_62 output configuration for P0.5 through PWM_COUT62.

16.21.2.25 PWM_OUT_62_P34

#define PWM_OUT_62_P34 13

PWM_62 output configuration for P3.4 through PWM_CC62.

16.21.2.26 PWM_OUT_62_P35

#define PWM_OUT_62_P35 14

PWM_62 output configuration for P3.5 through PWM_COUT62.

16.21.2.27 PWM_OUT_62_P46

#define PWM_OUT_62_P46 15

PWM 62 output configuration for P4.6 through PWM CC62.

16.21.2.28 PWM_OUT_62_P47

#define PWM_OUT_62_P47 16

PWM_62 output configuration for P4.7 through PWM_COUT62.

16.21.2.29 PWM_OUT_63_P03

#define PWM_OUT_63_P03 17

PWM_63 output configuration for P0.3 through PWM_COUT63.

```
16.21.2.30 PWM_OUT_63_P37
#define PWM_OUT_63_P37 18
PWM_63 output configuration for P3.7 through PWM_COUT63.
16.21.2.31 PWM_OUT_63_P43
#define PWM_OUT_63_P43 19
PWM_63 output configuration for P4.3 through PWM_COUT63.
16.21.3 Typedef Documentation
16.21.3.1 hsk_pwm_channel
typedef ubyte hsk_pwm_channel
Type definition for PWM channels.
16.21.3.2 hsk_pwm_outChannel
typedef ubyte hsk_pwm_outChannel
Type definition for output channels.
16.21.3.3 hsk_pwm_port
typedef ubyte hsk_pwm_port
Type definition for ports.
16.21.4 Function Documentation
```

16.21.4.1 hsk_pwm_channel_set()

Set the duty cycle for the given channel.

I.e. the active time frame slice of period can be set with max and value.

To set the duty cycle in percent specify a max of 100 and values from 0 to 100.

Parameters

channel	The PWM channel to set the duty cycle for, check the PWM_6x defines	
max	Defines the scope value can move in	
value	The current duty cycle value	

16.21.4.2 hsk_pwm_disable()

Deactivates the CCU6 to reduce power consumption.

16.21.4.3 hsk_pwm_enable()

Turns on the CCU6.

Deactivates the power disable mode and sets the T12 and T13 Timer Run bits.

Precondition

All hsk_pwm_init() calls have to be completed to call this

16.21.4.4 hsk_pwm_init()

Sets up the the CCU6 timer frequencies that control the PWM cycle.

The channels PWM_60, PWM_61 and PWM_62 share the timer T12, thus initializing one of them, initializes them all. The channel PWM_63 has exclusive use of the timer T13 and can thus be used with its own operating frequency.

Frequencies up to $\sim\!\!732.4\text{Hz}$ are always between 15 and 16 bits precision.

Frequencies above 48kHz offer less than 1/1000 precision. From there it is a linear function, i.e. 480kHz still offer 1/100 precision.

The freq value 0 will result in \sim 0.02Hz ($48000000/2^{31}$).

The following formula results in the freq value that yields exactly the desired precision, this is useful to avoid precision loss by rounding:

```
freq(precision) = 480000000 * precision
```

E.g. 10 bit precision: $freq(1/2^{10}) = 468750$

Parameters

channel	The channel to change the frequency for
freq	The desired PWM cycle frequency in units of 0.1Hz

PWM Timings

The CCU6CLK can run at FCLK (48MHz) or PCLK (24MHz), configured in the CCUCCFG bit. This implementation always uses 48MHz.

The T12CLK can run any power of two between CCU6CLK and CCU6CLK/128, configured in the T12CLK bit field.

This value can additionally be multiplied with a prescaler of 1/256, activated with the T12PRE bit.

The same is true for the T13CLK.

Additionally the period is length for T12 and T13 can be configured to any 16 bit value. Assuming at least 1/1000 precision is desired that means the clock cycle can be shortened by any factor up to 2^6 (64).

The conclusion is that PWM frequencies between 48kHz and \sim 0.02Hz can be configured. Very high values degrade the precision, e.g. 96kHz will only offer 1/500 precision. The freq value 0 will result in \sim 0.02Hz ($48000000/2^{31}$).

16.21.4.5 hsk_pwm_outChannel_dir()

Set the direction of an output channel.

The channel value can be taken from any of the PWM CCx/PWM COUTx defines.

Parameters

channel	The IO channel to set the direction bit for	
ир	Set 1 to output a 1 during the cycle set with hsk_pwm_channel_set(), set 0 to output a 0 during the	
	cycle set with hsk_pwm_channel_set()	

16.21.4.6 hsk_pwm_port_close()

Close a PWM output port.

This configures the necessary port direction bits.

The port can be any one of the PWM_OUT_x_* defines.

Parameters

port The output port to deactiva

16.21.4.7 hsk_pwm_port_open()

Set up a PWM output port.

This configures the necessary port direction bits and activates the corresponding output channels.

The port can be any one of the PWM_OUT_x_* defines.

Precondition

This function should only be called after hsk_pwm_enable(), otherwise the output port will be driven (1) until PWM is enabled

Parameters

port	•	The output port to activate
------	---	-----------------------------

16.22 hsk_ssc/hsk_ssc.c File Reference

HSK Synchronous Serial Interface implementation.

```
#include <Infineon/XC878.h>
#include "hsk_ssc.h"
Include dependency graph for hsk_ssc.c:
```


Macros

```
• #define BIT RMAP 0
          SYSCON0 Special Function Register Map Control bit.
    • #define BIT_EIR 0
          IRCON1 Error Interrupt Flag for SSC bit.
    • #define BIT_TIR 1
          IRCON1 Transmit Interrupt Flag for SSC bit.
    • #define BIT RIR 2
          IRCON1 Receive Interrupt Flag for SSC bit.

    #define BIT_SSC_DIS 1

          PMCON1 Disable Request bit.

    #define BIT MS 6

          SSC_CONH_P Master Select bit.
    • #define BIT EIREN 0
          MODIEN Error Interrupt Enable Bit for SSC.
    • #define BIT_TIREN 1
          MODIEN Transmit Interrupt Enable Bit for SSC.

    #define BIT_RIREN 2

          MODIEN Receive Interrupt Enable Bit for SSC.
    • #define BIT MIS 0
          MODPISEL3 Master Mode Input Select bits.
    • #define BIT_SIS 2
          MODPISEL3 Slave Mode Input Select bits.

    #define BIT_CIS 4

          MODPISEL3 Slave Mode Clock Input Select bits.
    • #define CNT SEL 2
          Input Select bit count.
    • #define BIT_LB 7
          SSC_CONL Loop Back Control bit.
    • #define BIT_EN 7
          SSC_CONH_O Enable Bit.
Functions

    void ISR_hsk_ssc (void)

          Transmit and receive interrupt.
    • void <a href="https://hxx.nc.init/">hsk_ssc_init</a> (const uword baud, const ubyte config, const bool mode)
          The maximum baud rate in master mode is 12000000 bits/s, and 6000000 bits/s in slave mode.
```

void hsk ssc ports (const ubyte ports)

Configure the I/O ports of the SSC unit.

• void hsk_ssc_talk (char *buffer, ubyte len)

Send and receive data.

void hsk_ssc_enable ()

Turn the SSC module on.

• void hsk ssc disable ()

Turn the SSC module off.

Variables

```
    struct {
        char * rptr
            Pointer used for storing data read from the serial connection.
        char * wptr
            Pointer used to fetch data for writing on the serial connection.
        ubyte rcount
            Bytes left to read from the connection.
        ubyte wcount
            Bytes left to write on the connection.
    } bufState
```

Keeps the SSC communication state.

16.22.1 Detailed Description

HSK Synchronous Serial Interface implementation.

Note

The SFRs SSC_CONx_O and SSC_CONx_P refer to the same register address. The different suffixes signify the operation and programming modes in which the register exposes different bits.

Author

kami

16.22.2 Macro Definition Documentation

```
16.22.2.1 BIT_CIS
```

#define BIT_CIS 4

MODPISEL3 Slave Mode Clock Input Select bits.

```
16.22.2.2 BIT_EIR
#define BIT_EIR 0
```

IRCON1 Error Interrupt Flag for SSC bit.

16.22.2.3 BIT_EIREN

#define BIT_EIREN 0

MODIEN Error Interrupt Enable Bit for SSC.

```
16.22.2.4 BIT_EN
#define BIT_EN 7
SSC_CONH_O Enable Bit.
16.22.2.5 BIT_LB
#define BIT_LB 7
SSC_CONL Loop Back Control bit.
Half-duplex mode when set.
16.22.2.6 BIT_MIS
#define BIT_MIS 0
MODPISEL3 Master Mode Input Select bits.
16.22.2.7 BIT_MS
#define BIT_MS 6
SSC_CONH_P Master Select bit.
16.22.2.8 BIT_RIR
#define BIT_RIR 2
IRCON1 Receive Interrupt Flag for SSC bit.
16.22.2.9 BIT_RIREN
#define BIT_RIREN 2
MODIEN Receive Interrupt Enable Bit for SSC.
16.22.2.10 BIT_RMAP
#define BIT_RMAP 0
```

Generated by Doxygen

SYSCON0 Special Function Register Map Control bit.

```
16.22.2.11 BIT_SIS
#define BIT_SIS 2
MODPISEL3 Slave Mode Input Select bits.
16.22.2.12 BIT_SSC_DIS
#define BIT_SSC_DIS 1
PMCON1 Disable Request bit.
16.22.2.13 BIT_TIR
#define BIT_TIR 1
IRCON1 Transmit Interrupt Flag for SSC bit.
16.22.2.14 BIT_TIREN
#define BIT_TIREN 1
MODIEN Transmit Interrupt Enable Bit for SSC.
16.22.2.15 CNT_SEL
#define CNT_SEL 2
Input Select bit count.
16.22.3 Function Documentation
16.22.3.1 hsk_ssc_disable()
void hsk_ssc_disable ( )
Turn the SSC module off.
16.22.3.2 hsk_ssc_enable()
void hsk_ssc_enable ( )
Turn the SSC module on.
16.22.3.3 hsk_ssc_init()
void hsk_ssc_init (
              const uword baud,
              const ubyte config,
              const bool mode )
```

The maximum baud rate in master mode is 12000000 bits/s, and 6000000 bits/s in slave mode.

Calling this function turns the SSC off until hsk_ssc_enable() is called.

Parameters

baud	The timer reload value for the baud rate generator, use SSC_BAUD to generate this value	
config	The SSC configuration byte, use SSC_CONF to generate it	
mode	Select master or slave operation	

16.22.3.4 hsk_ssc_ports()

Configure the I/O ports of the SSC unit.

Warning

Do not use when the SSC is enabled.

Parameters

ports	Selects an SSC I/O Ports I/O port configuration
-------	---

16.22.3.5 hsk_ssc_talk()

Send and receive data.

The buffer with the given length should contain the data to transceive and will be filled with the received data upon completion.

The provided buffer needs to reside in xdata memory, e.g. to create and use a string buffer the following should work:

```
char xdata buffer[] = "20 character buffer.";
...
hsk_ssc_talk(buffer, sizeof(buffer) - 1);
```

Note that char must not be const and that sizeof(buffer)-1 is used to prevent sending and overwriting the terminal 0 character. There may be cases where a terminal 0 character is desired.

buffer	The rx/tx transmission buffer
len	The length of the buffer

```
16.22.3.6 ISR_hsk_ssc()
void ISR_hsk_ssc (
              void )
Transmit and receive interrupt.
16.22.4 Variable Documentation
16.22.4.1 bufState
bufState [static]
Keeps the SSC communication state.
16.22.4.2 rcount
ubyte rcount
Bytes left to read from the connection.
16.22.4.3 rptr
char* rptr
Pointer used for storing data read from the serial connection.
16.22.4.4 wcount
ubyte wcount
Bytes left to write on the connection.
16.22.4.5 wptr
char* wptr
```

Pointer used to fetch data for writing on the serial connection.

16.23 hsk_ssc/hsk_ssc.h File Reference

HSK Synchronous Serial Interface headers.

```
#include "hsk_ssc.isr"
Include dependency graph for hsk_ssc.h:
```


This graph shows which files directly or indirectly include this file:

Macros

• #define SSC_MRST_P05 1

Master mode RX, slave mode TX port P0.5.

• #define SSC_MRST_P14 0

Master mode RX, slave mode TX port P1.4.

• #define SSC_MRST_P15 2

Master mode RX, slave mode TX port P1.5.

• #define SSC_MTSR_P04 (1 << 2)

Master mode TX, slave mode RX port P0.4.

#define SSC_MTSR_P13 (0 << 2)

Master mode TX, slave mode RX port P1.3.

#define SSC_MTSR_P14 (2 << 2)

Master mode TX, slave mode RX port P1.4.

```
#define SSC_SCLK_P03 (1 << 4)

Synchronous clock port P0.3.</li>
#define SSC_SCLK_P12 (0 << 4)

Synchronous clock port P1.2.</li>
#define SSC_SCLK_P13 (2 << 4)

Synchronous clock port P1.3.</li>
#define SSC_MASTER 1

Master mode, output shift clock on SCLK.
#define SSC_SLAVE 0

Slave mode, receive shift clock on SCLK.
```

Slave mode, receive snift clock on SCLK.

#define SSC_BAUD(bps) (uword)(12000000ul / (bps) - 1)

Converts a baud rate value in bits/s into a baud rate value for the hsk_ssc_init() function.

• #define SSC_CONF(width, heading, phase, polarity, duplex) (((width) - 1) | ((heading) << 4) | ((phase) <<

• #define SSC_CONF (width, heading, phase, polarity, duplex) (((width) - 1) | ((heading) << 4) | ((phase) << 5) | ((polarity) << 6) | ((duplex) << 7))

Generates an SSC configuration byte.

#define hsk_ssc_busy() ESSC

Returns whether the SSC is currently busy with data transmission.

Functions

void hsk_ssc_init (const uword baud, const ubyte config, const bool mode)

The maximum baud rate in master mode is 12000000 bits/s, and 6000000 bits/s in slave mode.

void hsk_ssc_ports (const ubyte ports)

Configure the I/O ports of the SSC unit.

void hsk ssc talk (char *buffer, ubyte len)

Send and receive data.

void hsk_ssc_enable ()

Turn the SSC module on.

void hsk_ssc_disable ()

Turn the SSC module off.

16.23.1 Detailed Description

HSK Synchronous Serial Interface headers.

General purpose serial communication, setup in the following order:

- hsk_ssc_init()
- hsk ssc ports()
- hsk_ssc_enable()

Communication is established by the hsk_ssc_talk() function. Use hsk_ssc_busy() to detect whether a buffer was completely read and written.

Author

kami

16.23.2 Half Duplex Operation

For half duplex operation TX and RX pins need to be short circuited.

The TX pin is set up in open drain mode, i.e. an external pull-up resistor is required.

The TX pin needs to be manually configured before calling hsk_ssc_talk() in order to speak or listen on the bus. To listen the TX pin needs to be configured as an input pin, to speak on the bus as an output pin. For efficiency reasons this is not handled by this library (it would result in lots of runtime logic for what should be a single instruction).

Instead it is recommended to define macros in a central header. E.g. for the port configuration SSC_MRST_P05 in slave mode the following code would work:

Syntactically it can be used like a regular function:

```
SSC_TX();
hsk_ssc_talk(buffer, sizeof(buffer) - 1);
```

16.23.3 Macro Definition Documentation

```
16.23.3.1 hsk_ssc_busy
```

```
#define hsk_ssc_busy( ) ESSC
```

Returns whether the SSC is currently busy with data transmission.

```
16.23.3.2 SSC_BAUD
```

Converts a baud rate value in bits/s into a baud rate value for the hsk ssc init() function.

The distance between adjustable baud rates grows exponentially. Available baud rates in kBit progress like this:

```
\{12000, 6000, 4000, 3000, 2400, 2000, \ldots\}
```

Use the following formula to determine the baud rate that results from a desired value:

$$realBps(bps) = \frac{12000000}{\left\lfloor \frac{12000000}{bps} \right\rfloor}$$

Note

The maximum speed is 12 Mbit/s in master mode and 6 Mbit/s in slave mode.

Parameters

bps	The desired number in bits/s
-----	------------------------------

Returns

A timer reload value

16.23.3.3 SSC_CONF

Generates an SSC configuration byte.

For details check the XC878 user manual section 12.3.5.1.

Parameters

width	The data with in bits, the available range is $\left[2;8\right]$	
heading	Use 0 for transmitting/receiving LSB first, 1 for MSB first	
phase	Use 0 to shift on leading and latch on trailing edge, use 1 to shift on trailing and latch on leading edge	
polarity	Use 0 for low idle clock, and 1 for high idle clock	
duplex	Use 0 for full duplex mode and 1 for half duplex	

16.23.3.4 SSC_MASTER

```
#define SSC_MASTER 1
```

Master mode, output shift clock on SCLK.

16.23.3.5 SSC_SLAVE

```
#define SSC_SLAVE 0
```

Slave mode, receive shift clock on SCLK.

16.23.4 Function Documentation

16.23.4.1 hsk_ssc_disable()

```
void hsk_ssc_disable ( )
```

Turn the SSC module off.

```
16.23.4.2 hsk_ssc_enable()
```

```
void hsk_ssc_enable ( )
```

Turn the SSC module on.

16.23.4.3 hsk_ssc_init()

The maximum baud rate in master mode is 12000000 bits/s, and 6000000 bits/s in slave mode.

Calling this function turns the SSC off until hsk_ssc_enable() is called.

Parameters

baud	The timer reload value for the baud rate generator, use SSC_BAUD to generate this value	
config	The SSC configuration byte, use SSC_CONF to generate it	
mode	Select master or slave operation	

16.23.4.4 hsk_ssc_ports()

Configure the I/O ports of the SSC unit.

Warning

Do not use when the SSC is enabled.

Parameters

ports	Selects an SSC I/O Ports I/O port configuration
-------	---

16.23.4.5 hsk_ssc_talk()

Send and receive data.

The buffer with the given length should contain the data to transceive and will be filled with the received data upon completion.

The provided buffer needs to reside in xdata memory, e.g. to create and use a string buffer the following should work:

```
char xdata buffer[] = "20 character buffer.";
...
hsk_ssc_talk(buffer, sizeof(buffer) - 1);
```

Note that char must not be const and that sizeof(buffer)-1 is used to prevent sending and overwriting the terminal 0 character. There may be cases where a terminal 0 character is desired.

Parameters

buffer	The rx/tx transmission buffer
len	The length of the buffer

16.24 hsk_timers/hsk_timer01.c File Reference

HSK Timer 0/1 implementation.

```
#include <Infineon/XC878.h>
#include "hsk_timer01.h"
Include dependency graph for hsk_timer01.c:
```


Macros

• #define BIT_ET0 1

IEN0 Timer 0 Overflow Interrupt Enable bit.

• #define BIT_ET1 3

IEN0 Timer 1 Overflow Interrupt Enable bit.

• #define BIT_TOM 0

TMOD Timer 0 Mode select bits.

```
    #define CNT_T0M 2
        T0M bit count.
    #define BIT_T1M 4
        TMOD Timer 0 Mode select bits.
    #define CNT_T1M 2
        T1M bit count.
    #define BIT_RMAP 0
        SYSCON0 Special Function Register Map Control bit.
```

Functions

```
    void ISR_hsk_timer0 (void)
        The ISR for timer 0.
    void ISR_hsk_timer1 (void)
        The ISR for timer 1.
    void hsk_timer01_setup (const ubyte id, const uword interval, const void(*const callback)(void))
        Setup timer 0 or 1 to tick at a given interval.
    void hsk_timer0_setup (const uword interval, const void(*const callback)(void))
        Setup timer 0 to tick at a given interval.
    void hsk_timer0_setup (void)
```

void hsk_timer0_enable (void)

Enables the timer 0 and its interrupt.

void hsk_timer0_disable (void)

Disables timer 0 and its interrupt.

void hsk_timer1_setup (const uword interval, const void(*const callback)(void))

Setup timer 1 to tick at a given interval.

• void hsk_timer1_enable (void)

Enables the timer 1 and its interrupt.

void hsk_timer1_disable (void)

Disables timer 1 and its interrupt.

Variables

```
    struct {
        uword overflow
        The value to load into the timer upon overflow.
        void(* callback )(void)
        A callback function pointer used by the ISR.
    } timers [2]
```

Struct representing runtime information for a timer.

16.24.1 Detailed Description

HSK Timer 0/1 implementation.

This simple library implements access to the timers T0 and T1, as 16 bit timers to use as a ticking source.

Author

kami

```
16.24.2 Macro Definition Documentation
16.24.2.1 BIT_ET0
#define BIT_ET0 1
IEN0 Timer 0 Overflow Interrupt Enable bit.
16.24.2.2 BIT_ET1
#define BIT_ET1 3
IEN0 Timer 1 Overflow Interrupt Enable bit.
16.24.2.3 BIT_RMAP
#define BIT_RMAP 0
SYSCON0 Special Function Register Map Control bit.
```

16.24.2.4 BIT_TOM

#define BIT_TOM 0

TMOD Timer 0 Mode select bits.

```
16.24.2.5 BIT_T1M
```

#define BIT_T1M 4

TMOD Timer 0 Mode select bits.

```
16.24.2.6 CNT_TOM
```

#define CNT_TOM 2

T0M bit count.

16.24.2.7 CNT_T1M

#define CNT_T1M 2

T1M bit count.

16.24.3 Function Documentation

16.24.3.1 hsk_timer01_setup()

```
void hsk_timer01_setup (
            const ubyte id,
            const uword interval,
            const void(*)(void) callback ) [private]
```

Setup timer 0 or 1 to tick at a given interval.

The callback function will be called by the interrupt once the interrupt has been enabled. Note that the callback function is entered with the current page unknown.

This works on the assumption, that PCLK is set to 24MHz.

Parameters

id	Timer 0 or 1.	
interval	The ticking interval in µs, don't go beyond 5461.	
callback	A function pointer to a callback function.	

The timer ticks with PCLK / 2, which means 12 timer ticks per μ s.

16.24.3.2 hsk_timer0_disable()

Disables timer 0 and its interrupt.

16.24.3.3 hsk_timer0_enable()

Enables the timer 0 and its interrupt.

16.24.3.4 hsk_timer0_setup()

Setup timer 0 to tick at a given interval.

The callback function will be called by the interrupt once the interrupt has been enabled. Note that the callback function is entered with the current page unknown.

This works on the assumption, that PCLK is set to 24MHz.

Parameters

interval	The ticking interval in µs, don't go beyond 5461.
callback	A function pointer to a callback function.

Here is the call graph for this function:

16.24.3.5 hsk_timer1_disable()

Disables timer 1 and its interrupt.

16.24.3.6 hsk_timer1_enable()

Enables the timer 1 and its interrupt.

16.24.3.7 hsk_timer1_setup()

Setup timer 1 to tick at a given interval.

The callback function will be called by the interrupt once the interrupt has been enabled. Note that the callback function is entered with the current page unknown.

This works on the assumption, that PCLK is set to 24MHz.

Parameters

	interval	The ticking interval in µs, don't go beyond 5461.
callback A function pointer to a callback function.		A function pointer to a callback function.

Here is the call graph for this function:

16.24.3.8 ISR_hsk_timer0()

The ISR for timer 0.

Sets up the timer 0 count registers and calls the callback function.

16.24.3.9 ISR_hsk_timer1()

The ISR for timer 1.

Sets up the timer 1 count registers and calls the callback function.

16.24.4 Variable Documentation

16.24.4.1 callback

```
void( * callback) (void)
```

A callback function pointer used by the ISR.

16.24.4.2 overflow

uword overflow

The value to load into the timer upon overflow.

16.24.4.3 timers

```
timers [static]
```

Struct representing runtime information for a timer.

16.25 hsk_timers/hsk_timer01.h File Reference

HSK Timer 0/1 headers.

#include "hsk_timer01.isr"
Include dependency graph for hsk_timer01.h:

This graph shows which files directly or indirectly include this file:

Functions

void hsk_timer0_setup (const uword interval, const void(*const callback)(void))

Setup timer 0 to tick at a given interval.

void hsk_timer0_enable (void)

Enables the timer 0 and its interrupt.

void hsk_timer0_disable (void)

Disables timer 0 and its interrupt.

• void hsk_timer1_setup (const uword interval, const void(*const callback)(void))

Setup timer 1 to tick at a given interval.

void hsk_timer1_enable (void)

Enables the timer 1 and its interrupt.

void hsk_timer1_disable (void)

Disables timer 1 and its interrupt.

16.25.1 Detailed Description

HSK Timer 0/1 headers.

Provides access to the timers 0 and 1. Each timer can be provided with a callback function that will be called by the timers ISR.

Author

kami

16.25.2 Function Documentation

16.25.2.1 hsk_timer0_disable()

Disables timer 0 and its interrupt.

16.25.2.2 hsk_timer0_enable()

Enables the timer 0 and its interrupt.

16.25.2.3 hsk_timer0_setup()

Setup timer 0 to tick at a given interval.

The callback function will be called by the interrupt once the interrupt has been enabled. Note that the callback function is entered with the current page unknown.

This works on the assumption, that PCLK is set to 24MHz.

Parameters

interval	The ticking interval in µs, don't go beyond 5461.
callback	A function pointer to a callback function.

Here is the call graph for this function:

16.25.2.4 hsk_timer1_disable()

Disables timer 1 and its interrupt.

16.25.2.5 hsk_timer1_enable()

Enables the timer 1 and its interrupt.

16.25.2.6 hsk_timer1_setup()

Setup timer 1 to tick at a given interval.

The callback function will be called by the interrupt once the interrupt has been enabled. Note that the callback function is entered with the current page unknown.

This works on the assumption, that PCLK is set to 24MHz.

Parameters

interval	The ticking interval in µs, don't go beyond 5461.
callback A function pointer to a callback function.	

Here is the call graph for this function:

16.26 hsk_wdt/hsk_wdt.c File Reference

HSK Watchdog Timer implementation.

```
#include <Infineon/XC878.h>
#include "hsk_wdt.h"
#include "../hsk_isr/hsk_isr.h"
Include dependency graph for hsk_wdt.c:
```


Macros

• #define BIT_WDTIN 0

WDTCON Watchdog Timer Input Frequency Selection bit.

• #define BIT_WDTEN 2

WDTCON WDT Enable bit.

• #define BIT_WDTRS 1

WDTCON WDT Refresh Start bit.

Functions

void hsk_wdt_init (const uword window)

Sets up the watchdog timer.

void hsk_wdt_enable (void)

Activates the Watchdog Timer.

void hsk_wdt_disable (void)

Disables the Watchdog Timer.

void hsk_wdt_service (void)

Resets the watchdog timer.

16.26.1 Detailed Description

HSK Watchdog Timer implementation.

The WDT is a 16bit counter that counts up, upon overflow a reset is initiated. When the timer is serviced the higher byte is loaded from the WDTREL SFR.

Author

kami

16.26.2 Watchdog Timer Registers

All registers are in the mapped register area, i.e. RMAP=1 must be set to access them.

16.26.3 Macro Definition Documentation

```
16.26.3.1 BIT WDTEN
```

#define BIT_WDTEN 2

WDTCON WDT Enable bit.

This bit is protected.

16.26.3.2 BIT_WDTIN

#define BIT_WDTIN 0

WDTCON Watchdog Timer Input Frequency Selection bit.

Used to select PCLK/128 instead of PCLK/2.

16.26.3.3 BIT_WDTRS

#define BIT_WDTRS 1

WDTCON WDT Refresh Start bit.

16.26.4 Function Documentation

16.26.4.1 hsk_wdt_disable()

Disables the Watchdog Timer.

16.26.4.2 hsk_wdt_enable()

```
void hsk_wdt_enable (
     void )
```

Activates the Watchdog Timer.

16.26.4.3 hsk_wdt_init()

Sets up the watchdog timer.

The window time specifies the time available to call hsk_wdt_service() before a reset is triggered. Possible times range from 21.3µs to 350ms.

The window time is rounded up to the next higher possible value. Exceeding the value range causes an overflow that results in shorter window times.

Parameters

window The time window in multiples of 10μs

The WDT runs at PCLK/2 or PCLK/128, i.e. the WDT low byte WDTL overlow occurs either every $21.333\mu s$ or every 1365.333ms.

One time unit (10μ s) equals 120 PCLK/2 clock ticks. One PCLK/128 time unit (640μ s) equals 120 PCLK/128 clock ticks.

16.26.4.4 hsk_wdt_service()

```
void hsk_wdt_service (
     void )
```

Resets the watchdog timer.

This function needs to be called to prevent the WDT from resetting the device.

16.27 hsk_wdt/hsk_wdt.h File Reference

HSK Watchdog Timer headers.

This graph shows which files directly or indirectly include this file:

Functions

void hsk_wdt_init (const uword window)

Sets up the watchdog timer.

void hsk_wdt_enable (void)

Activates the Watchdog Timer.

void hsk_wdt_disable (void)

Disables the Watchdog Timer.

void hsk_wdt_service (void)

Resets the watchdog timer.

16.27.1 Detailed Description

HSK Watchdog Timer headers.

Provides access to the Watchdog Timer (WDT) of the XC878.

Depending on the configured window time the μ C reset is delayed for 1.024ms (window < 5460 μ s) or 65.536ms (window >= 5460 μ s).

This time can be used by assigning a callback function to hsk_isr14 member hsk_isr14_callback::NMIWDT and setting the NMICON.NMIWDT bit.

Warning

The WDT should be set up at the end of the boot procedure. Setting the WDT up at the beginning of the boot process can trigger all kinds of erratic behaviour like reset races or a complete lockup.

Author

kami

16.27.2 Hazards

The WDT has proven a useful tool in hazardous EMI conditions. Severe EMI may freeze the μ C without causing a proper reboot. In most cases the WDT can mitigate this issue by reactivating the system.

However the WDT is trigger happy. A series of refresh time interval measurements shows that the WDT resets the μ C long before the end of its interval shortly after boot. The best mitigation is to refresh the WDT with the hsk $_{\leftarrow}$ wdt $_{service}$ () function unconditionally. Instead of using fixed timings (e.g. for 20ms watchdog time a 5ms refresh interval should have been quite safe).

That however does not solve the problem with NMIs. Any non-maskable interrupt may cause the WDT to reset the μ C. This means it is incopatible to the hsk_flash library, which requires precise timings with only a couple of μ s tolerance. To meet this requirement the library uses the Flash Timer of the XC878, which triggers NMIs.

16.27.3 Function Documentation

16.27.3.1 hsk_wdt_disable()

Disables the Watchdog Timer.

16.27.3.2 hsk_wdt_enable()

Activates the Watchdog Timer.

16.27.3.3 hsk_wdt_init()

Sets up the watchdog timer.

The window time specifies the time available to call hsk_wdt_service() before a reset is triggered. Possible times range from 21.3µs to 350ms.

The window time is rounded up to the next higher possible value. Exceeding the value range causes an overflow that results in shorter window times.

Parameters

```
window The time window in multiples of 10μs
```

The WDT runs at PCLK/2 or PCLK/128, i.e. the WDT low byte WDTL overlow occurs either every $21.333\mu s$ or every 1365.333ms.

One time unit (10 μ s) equals 120 PCLK/2 clock ticks. One PCLK/128 time unit (640 μ s) equals 120 PCLK/128 clock ticks

16.27.3.4 hsk_wdt_service()

Resets the watchdog timer.

This function needs to be called to prevent the WDT from resetting the device.

16.28 main.c File Reference

Simple test file that is not linked into the library.

```
#include <Infineon/XC878.h>
#include "config.h"
#include "hsk_boot/hsk_boot.h"
#include "hsk_timers/hsk_timer01.h"
#include "hsk_can/hsk_can.h"
#include "hsk_icm7228/hsk_icm7228.h"
#include "hsk_adc/hsk_adc.h"
#include "hsk_pwm/hsk_pwm.h"
#include "hsk_pwc/hsk_pwc.h"
#include "hsk_flash/hsk_flash.h"
#include "hsk_wdt/hsk_wdt.h"
#include "hsk_io/hsk_io.h"
Include dependency graph for main.c:
```


Data Structures

struct hsk_flash_struct

This struct is a template for data that can be written to the D-Flash.

Macros

• #define PERSIST_VERSION 1

The version of the persist struct.

Functions

void p1_init (void)

Set up buffer and ports for display driver at I/O port P1.

void p1_refresh (void)

Reflesh displays at I/O port P1 with the buffered data.

• void p1_writeString (char const *const str, ubyte const pos, ubyte const len)

Write an ASCII encoded string into p1_buffer.

void p1_writeDec (uword const value, char const power, ubyte const pos, ubyte const len)

Write a decimal number into p1_buffer.

• void p1_writeHex (uword const value, char const power, ubyte const pos, ubyte const len)

Write a hexadecimal number into p1 buffer.

void p1 illuminate (ubyte const segments, ubyte const pos, ubyte const len)

Illuminate a number of segments in p1_buffer.

• void main (void)

Call init functions and invoke the run routine.

· void init (void)

Initialize ports, timers and ISRs.

• void run (void)

The main test code body.

void tick0 (void)

A ticking function called back by the timer T0 ISR.

Variables

• ubyte p1_buffer [8]

Buffer for display driver at I/O port P1.

volatile struct hsk_flash_struct persist

This structure is used to persist data between resets.

• volatile uword tick0_count_250 = 0

A counter used to detecting that 250ms have passed.

• volatile ubyte tick0_count_20 = 10

A counter used to detecting that 20ms have passed.

volatile uword adc7

The storage variable for the potentiometer on the eval board.

16.28.1 Detailed Description

Simple test file that is not linked into the library.

This file is normally rigged to run on the XC800 Starter Kit eval board and used for testing whatever code is currently under development.

Author

kami

16.28.2	Macro	Definition	Document	tation

16.28.2.1 PERSIST_VERSION

```
#define PERSIST_VERSION 1
```

The version of the persist struct.

16.28.3 Function Documentation

16.28.3.1 init()

```
void init (
     void )
```

Initialize ports, timers and ISRs.

16.28 main.c File Reference 307

Here is the call graph for this function:

16.28.3.2 main()

```
void main (
     void )
```

Call init functions and invoke the run routine.

Here is the call graph for this function:

16.28.3.3 p1_illuminate()

```
void p1_illuminate (
          ubyte const segments,
          ubyte const pos,
          ubyte const len ) [inline]
```

16.28 main.c File Reference	309
Illuminate a number of segments in p1_buffer.	

Parameters

segments	The number of segments to illuminate
pos	The target position in the buffer
len	The number of digits available to encode the number

See also

```
ICM7228_FACTORY hsk_icm7228_illuminate
```

```
16.28.3.4 p1_init()
```

```
void pl_init (
     void )
```

Set up buffer and ports for display driver at I/O port P1 .

See also

ICM7228_FACTORY

16.28.3.5 p1_refresh()

```
void p1_refresh (
     void )
```

Reflesh displays at I/O port P1 with the buffered data.

See also

```
ICM7228_FACTORY
```

16.28.3.6 p1_writeDec()

Write a decimal number into p1_buffer.

Parameters

value	The number to encode
power	The 10 base power of the number to encode
pos	The target position in the buffer
len	The number of digits available to encode the number

See also

```
ICM7228_FACTORY
hsk_icm7228_writeDec
```

16.28.3.7 p1_writeHex()

Write a hexadecimal number into p1_buffer.

Parameters

value	The number to encode
power	The 16 base power of the number to encode
pos	The target position in the buffer
len	The number of digits available to encode the number

See also

```
ICM7228_FACTORY
hsk_icm7228_writeHex
```

16.28.3.8 p1_writeString()

Write an ASCII encoded string into p1_buffer.

Parameters

str	The buffer to read the ASCII string from
pos	The position in the buffer to write the encoded string to
len	The target length of the encoded string

See also

```
ICM7228_FACTORY
hsk_icm7228_writeString
```

```
16.28.3.9 run()
```

```
void run (
```

The main test code body.

Here is the call graph for this function:

16.28 main.c File Reference 313

```
16.28.3.10 tick0()
void tick0 (
              void )
A ticking function called back by the timer T0 ISR.
16.28.4 Variable Documentation
16.28.4.1 adc7
volatile uword adc7
The storage variable for the potentiometer on the eval board.
16.28.4.2 p1_buffer
ubyte p1_buffer[8]
Buffer for display driver at I/O port P1.
See also
     ICM7228_FACTORY
16.28.4.3 persist
persist
This structure is used to persist data between resets.
16.28.4.4 tick0_count_20
volatile ubyte tick0_count_20 = 10
A counter used to detecting that 20ms have passed.
16.28.4.5 tick0_count_250
```

A counter used to detecting that 250ms have passed.

volatile uword tick0_count_250 = 0

Index

_sdcc_external_startup	BIT ALIE
hsk_boot.c, 113	hsk_can.c, 126
<u></u>	BIT ANON
ADC_CHANNELS	hsk_adc.c, 94
hsk_adc.c, 93	BIT ASEN PARALLEL
ADC_CLK_12MHz	 hsk_adc.c, 94
hsk_adc.c, 93	BIT_ASEN_SEQUENTIAL
ADC_CLK_6MHz	hsk_adc.c, 94
hsk_adc.c, 93	BIT_AUAD
ADC_CLK_750kHz	hsk_can.c, 126
hsk_adc.c, 94	BIT_AM
ADC_CLK_8MHz	hsk_can.c, 126
hsk_adc.c, 94 ADC_QUEUE	BIT_BRP
hsk_adc.c, 94	hsk_can.c, 126
ADC_RESOLUTION_10	BIT_BSY
hsk_adc.h, 103	hsk_can.c, 126
ADC_RESOLUTION_8	BIT_BUSY
hsk_adc.h, 103	hsk_can.c, 126
ADCSR0	BIT_CALM
hsk_isr6_callback, 82	hsk_can.c, 127 BIT_CAN_DIS
ADCSR1	hsk can.c, 127
hsk_isr6_callback, 82	BIT CANDIS
ADDR_DFLASH	hsk_can.c, 127
hsk_flash.c, 191	BIT CANSRC0
ADDR_PFLASH	hsk_isr.c, 220
hsk_flash.c, 191	BIT CANSRC1
ADDR_ROM	hsk_isr.c, 220
hsk_flash.c, 191	BIT CANSRC2
ADDR_XRAM	_ hsk_isr.c, <mark>220</mark>
hsk_flash.c, 191 AUAD DEC1	BIT_CANSRC3
hsk_can.c, 125	hsk_isr.c, 220
AUAD INC1	BIT_CCM0
hsk can.c, 125	hsk_pwc.c, 234
AUAD INC8	BIT_CCTBx
 hsk_can.c, 126	hsk_pwc.c, 234
AUAD_OFF	BIT_CCTOVEN
hsk_can.c, 126	hsk_pwc.c, 234
adc7	BIT_CCTOVF
main.c, 313	hsk_isr.c, 220
averageOver	hsk_pwc.c, 234
hsk_pwc.c, 246	BIT_CCTPRE
DIT ADO DIO	hsk_pwc.c, 234
BIT_ADC_DIS	BIT_CCTST
hsk_adc.c, 94	hsk_pwc.c, 235 BIT CCU DIS
BIT_ADCSR0	hsk pwm.c, 262
hsk_isr.c, 220 BIT ADCSR1	BIT CCUCCFG
hsk_isr.c, 220	hsk_pwm.c, 262
1131.131.10, 220	113N_pw111.6, 202

BIT_CCE	hsk_ex.c, 178
hsk_can.c, 127	hsk_isr.c, 221
BIT_CHNR	BIT_EXINT4
hsk_adc.c, 94	hsk_ex.c, 178
BIT_CIS	hsk_isr.c, 222
hsk_ssc.c, 280	BIT EXINT5
BIT CTC	hsk_ex.c, 179
hsk_adc.c, 95	hsk_isr.c, 222
BIT DATA	BIT EXINT6
hsk_can.c, 127	hsk_ex.c, 179
BIT DIV8	hsk_isr.c, 222
-	BIT EXTOSCR
hsk_can.c, 127	-
BIT_DIR	hsk_boot.c, 110
hsk_can.c, 127	BIT_EN
BIT_DLC	hsk_ssc.c, 280
hsk_can.c, 128	BIT_FCCFG
BIT_DW	hsk_can.c, 128
hsk_adc.c, 95	BIT_FILL
BIT_ECT13O	hsk_adc.c, 95
hsk_pwm.c, 263	BIT_FTEN
BIT_EEABORT	hsk_flash.c, 192
hsk_flash.c, 192	BIT_IDEXT
BIT_EEBSY	hsk_can.c, 128
hsk_flash.c, 192	BIT IDSTD
BIT EIREN	hsk_can.c, 128
hsk_ssc.c, 280	BIT IDE
BIT EIR	hsk_can.c, 128
hsk_ssc.c, 280	BIT IERR
BIT EMPTY	hsk_isr.c, 222
DII LIVIFIT	115K_151.C, 222
_	DIT IEN
hsk_adc.c, 95	BIT_IEN
hsk_adc.c, 95 BIT_ENGT	hsk_adc.c, 95
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95	hsk_adc.c, 95 BIT_IMODE
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR BIT_ERR hsk_can.c, 128 BIT_ETO hsk_timer01.c, 292	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERRR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERRR hsk_can.c, 128 BIT_ERR BIT_ETO hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ERR BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIDE
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221 BIT_EXINT0 hsk_ex.c, 178	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281 BIT_MIS
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221 BIT_EXINT0 hsk_ex.c, 178	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281 BIT_MIS
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221 BIT_EXINT0 hsk_ex.c, 178 BIT_EXINT1	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281 BIT_MIS hsk_ssc.c, 281 BIT_MIS hsk_can.c, 129 BIT_MIS hsk_can.c, 129
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221 BIT_EXINT0 hsk_ex.c, 178 BIT_EXINT1 hsk_ex.c, 178	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281 BIT_MMC hsk_can.c, 129 BIT_MMC hsk_can.c, 129 BIT_MODE
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ET0 hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXINT0 hsk_ex.c, 178 BIT_EXINT1 hsk_ex.c, 178 BIT_EXINT2	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIDE hsk_can.c, 129 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281 BIT_MMC hsk_can.c, 129 BIT_MODE hsk_flash.c, 192
hsk_adc.c, 95 BIT_ENGT hsk_adc.c, 95 BIT_EOFSYN hsk_isr.c, 221 BIT_EORDRES hsk_boot.c, 110 BIT_EOC hsk_isr.c, 221 BIT_ERASE hsk_flash.c, 192 BIT_ERRSYN hsk_isr.c, 221 BIT_ERR hsk_can.c, 128 BIT_ERR hsk_timer01.c, 292 BIT_ET1 hsk_timer01.c, 292 BIT_EXF2 hsk_isr.c, 221 BIT_EXF2 hsk_isr.c, 221 BIT_EXINT0 hsk_ex.c, 178 BIT_EXINT1 hsk_ex.c, 178 BIT_EXINT2 hsk_ex.c, 178	hsk_adc.c, 95 BIT_IMODE hsk_adc.c, 95 hsk_ex.c, 179 hsk_pwc.c, 235 BIT_INIT hsk_can.c, 128 BIT_IRDY hsk_isr.c, 222 BIT_LECIE hsk_can.c, 129 BIT_LIST hsk_can.c, 129 BIT_LB hsk_ssc.c, 281 BIT_MAS1 hsk_flash.c, 192 BIT_MIDE hsk_can.c, 129 BIT_MIDE hsk_can.c, 129 BIT_MIS hsk_ssc.c, 281 BIT_MODE hsk_flash.c, 192 BIT_MODE hsk_flash.c, 192 BIT_MODE hsk_flash.c, 192 BIT_MSGVAL

hsk_boot.c, 110	hsk_adc.c, 96
BIT_MXB	BIT_RIREN
hsk_boot.c, 110	hsk_ssc.c, 281
BIT_MXM	BIT_RIR
hsk_boot.c, 110	hsk_ssc.c, 281
BIT_MS	BIT_RMAP
hsk_ssc.c, 281	hsk_isr.c, 223
BIT_NDIVH	hsk_ssc.c, 281
hsk_boot.c, 110	hsk_timer01.c, 292
BIT_NDIVL	BIT_RWEN
hsk_boot.c, 110	hsk_can.c, 130
BIT NDOV	BIT RXEN
 hsk_isr.c, 222	hsk_can.c, 130
BIT NEWDAT	BIT RXPND
hsk_can.c, 129	hsk_can.c, 130
BIT NMIECC	BIT RXSEL
hsk_isr.c, 223	hsk_can.c, 130
BIT_NMIFLASH	BIT RXUPD
hsk flash.c, 193	hsk_can.c, 130
hsk_isr.c, 223	BIT RI
BIT_NMIPLL	hsk_isr.c, 223
hsk boot.c, 111	BIT SIS
— · · · · · · · · · · · · · · · · · · ·	-
hsk_isr.c, 223	hsk_ssc.c, 281
BIT_NMIVDDP	BIT_SJW
hsk_isr.c, 223	hsk_can.c, 130
BIT_NMIWDT	BIT_SSC_DIS
hsk_isr.c, 223	hsk_ssc.c, 282
BIT_NVSTR	BIT_TOM
hsk_flash.c, 193	hsk_timer01.c, 292
BIT_OFVAL	BIT_T1M
hsk_flash.c, 193	hsk_timer01.c, 292
BIT_OSCSS	BIT_T2CCFG
hsk_boot.c, 111	hsk_pwc.c, 235
BIT_PDIV	BIT_T2CCU_DIS
hsk_boot.c, 111	hsk_pwc.c, 235
BIT_PLL_LOCK	BIT_TF2
hsk_boot.c, 111	hsk_isr.c, 224
BIT_PLLBYP	BIT_TIMSYN
hsk_boot.c, 111	hsk_pwc.c, 235
BIT_PLLPD	BIT_TIREN
hsk_boot.c, 111	hsk_ssc.c, 282
BIT_PLLRDRES	BIT_TIR
hsk_boot.c, 112	hsk_ssc.c, 282
BIT_PLLR	BIT_TRIE
hsk_boot.c, 112	hsk_can.c, 130
BIT_PROG	BIT_TSEG1
hsk_flash.c, 193	hsk_can.c, 131
BIT_PRI	BIT_TSEG2
hsk_can.c, 129	hsk_can.c, 131
BIT_PSL63	BIT_TXEN0
hsk_pwm.c, 263	hsk_can.c, 131
BIT_PSL	BIT_TXEN1
 hsk_pwm.c, 263	hsk_can.c, 131
BIT RBUSY	BIT TXPND
hsk_can.c, 129	hsk_can.c, 131
BIT REQCHNR	BIT TXRQ
hsk_adc.c, 95	hsk_can.c, 131
	,
BIT RESULT	BIT TI

hsk_isr.c, 224	hsk_can.h, 161
BIT_TnCLK	CAN0_IO
hsk_pwm.c, 263	config.h, 90
BIT_TnMODEN	CAN1
hsk_pwm.c, 263	hsk_can.h, 161
BIT_TnRR	CAN1_BAUD
hsk_pwm.c, 263	config.h, 90
BIT_TnRS	CAN1_IO_P01_P02
hsk_pwm.c, 263	hsk_can.h, 161
BIT_TnSTR	CAN1_IO_P14_P13
hsk_pwm.c, 263	hsk_can.h, 162
BIT_VFCTR	CAN1_IO_P32_P33
hsk_adc.c, 96	hsk_can.h, 162
BIT_WDTEN	CAN1_IO
hsk_wdt.c, 300 BIT_WDTIN	config.h, 90
hsk_wdt.c, 300	CAN_AD_READY
BIT WDTRS	hsk_can.c, 132
hsk_wdt.c, 300	CAN_AD_READ
BIT WFR	hsk_can.c, 131
hsk_adc.c, 96	CAN_AD_WRITE
BIT XPD	hsk_can.c, 132
hsk_boot.c, 112	CAN_ENDIAN_INTEL
BIT_YE	hsk_can.h, 162
hsk_flash.c, 193	CAN_ENDIAN_MOTOROLA
BYTES PAGE DFLASH	hsk_can.h, 162
hsk_flash.c, 193	CAN_ERROR
BYTES PAGE PFLASH	hsk_can.h, 162
hsk_flash.c, 193	CAN_STATUS_ALERT
BYTES WORDLINE DFLASH	CAN Node Status Fields, 49
hsk_flash.c, 193	CAN_STATUS_BOFF
BYTES_WORDLINE_PFLASH	CAN Node Status Fields, 50
hsk_flash.c, 193	CAN Node Status Fields 50
boot	CAN STATUS LEG
hsk_boot.c, 115	CAN Node Status Fields 50
hsk_flash_struct, 76	CAN Node Status Fields, 50 CAN_STATUS_RXOK
bufState	CAN Node Status Fields, 50
hsk_ssc.c, 284	CAN_STATUS_TXOK
buffer	CAN_STATOS_TXOR CAN Node Status Fields, 51
hsk_pwc.c, 246	CANSRC0
OANIN 0: 5: 40	hsk_isr5_callback, 80
CAN Node Status Fields, 49	CANSRC1
CAN_STATUS_ALERT, 49	hsk_isr6_callback, 82
CAN STATUS EWEN FO	CANSRC2
CAN_STATUS_EWRN, 50 CAN_STATUS_LEC, 50	hsk_isr6_callback, 82
CAN STATUS RXOK, 50	CANSRC3
CAN STATUS TXOK, 50	hsk_isr9_callback, 87
CANO	CCTOVF
hsk_can.h, 161	hsk_isr5_callback, 80
CANO_BAUD	CHAN_BUF_SIZE
config.h, 90	hsk_pwc.c, 235
CANO IO P10 P11	CLK
hsk_can.h, 161	config.h, 90
CANO IO P16 P17	CNT AM
hsk_can.h, 161	hsk_can.c, 132
CANO IO P34 P35	CNT_CCMx
hsk can.h, 161	hsk_pwc.c, 235
CANO IO P40 P41	CNT CHNR
	- -

hsk_adc.c, 96	hsk_icm7228.c, 210
CNT_CTC	config.h, 89
hsk_adc.c, 96	CAN0_BAUD, 90
CNT DATA	CAN0_IO, 90
hsk can.c, 132	CAN1_BAUD, 90
CNT DLC	CAN1_IO, 90
hsk_can.c, 132	CLK, 90
	OLIN, OU
CNT_EXINTx	DPH
hsk_pwc.c, 236	hsk flash.c, 194
CNT_EXINT	DPL
hsk_ex.c, 179	
CNT_FILL	hsk_flash.c, 194
hsk_adc.c, 96	dflash
CNT IDEXT	hsk_flash.c, 199
hsk_can.c, 132	dummy
CNT IDSTD	hsk_isr.c, 224
_	
hsk_can.c, 133	EDGE_DEFAULT_MODE
CNT_LIST	hsk pwc.c, 236
hsk_can.c, 133	EECON
CNT_MMC	hsk_flash.c, 199
hsk_can.c, 133	EOFSYN
CNT_MSEL6n	
hsk_pwm.c, 264	hsk_isr5_callback, 80
CNT MXB	EOC
hsk_boot.c, 112	hsk_isr8_callback, 84
CNT NDIVH	ERRSYN
_	hsk_isr5_callback, 80
hsk_boot.c, 112	EX_EDGE_BOTH
CNT_NDIVL	External Interrupt Triggers, 54
hsk_boot.c, 112	EX EDGE DISABLE
CNT_OFVAL	External Interrupt Triggers, 54
hsk_flash.c, 194	EX EDGE FALLING
CNT PDIV	
hsk_boot.c, 112	External Interrupt Triggers, 54
CNT PRI	EX_EDGE_RISING
hsk_can.c, 133	External Interrupt Triggers, 54
	EX_EXINT0
CNT_PSL	External Interrupt Channels, 52
hsk_pwm.c, 264	EX_EXINT0_P05
CNT_REQCHNR	External Interrupt Input Ports, 56
hsk_adc.c, 96	EX EXINTO P14
CNT_RESULT	External Interrupt Input Ports, 56
hsk_adc.c, 96	EX EXINT1
CNT_RXSEL	External Interrupt Channels, 52
hsk_can.c, 133	EX_EXINT1_P50
CNT SEL	
_	External Interrupt Input Ports, 56
hsk_ssc.c, 282	EX_EXINT1_P53
CNT_T0M	External Interrupt Input Ports, 56
hsk_timer01.c, 292	EX_EXINT2
CNT_T1M	External Interrupt Channels, 52
hsk_timer01.c, 292	EX_EXINT2_P51
CNT_TnCLK	External Interrupt Input Ports, 56
hsk_pwm.c, 264	EX EXINT2 P54
CNT_TnMODEN	External Interrupt Input Ports, 56
hsk_pwm.c, 264	EX EXINT3
callback	External Interrupt Channels, 53
	•
hsk_timer01.c, 295	EX_EXINT3_P11
channels	External Interrupt Input Ports, 56
hsk_pwc.c, 246	EX_EXINT3_P30
codepage	External Interrupt Input Ports, 57

EX_EXINT3_P40	EX_EXINT6, 53
External Interrupt Input Ports, 57	External Interrupt Input Ports, 55
EX_EXINT3_P55	EX_EXINT0_P05, 56
External Interrupt Input Ports, 57	EX_EXINT0_P14, 56
EX_EXINT4	EX_EXINT1_P50, 56
External Interrupt Channels, 53	EX_EXINT1_P53, 56
EX_EXINT4_P32	EX_EXINT2_P51, 56
External Interrupt Input Ports, 57	EX_EXINT2_P54, 56
EX_EXINT4_P37	EX_EXINT3_P11, 56
External Interrupt Input Ports, 57	EX_EXINT3_P30, 57
EX_EXINT4_P41	EX_EXINT3_P40, 57
External Interrupt Input Ports, 57	EX_EXINT3_P55, 57
EX_EXINT4_P56	EX_EXINT4_P32, 57 EX_EXINT4_P37, 57
External Interrupt Input Ports, 57	EX_EXINT4_F37, 57 EX_EXINT4_P41, 57
EX_EXINT5	EX_EXINT4_P41, 57 EX_EXINT4_P56, 57
External Interrupt Channels, 53	EX_EXINT5_P15, 57
EX_EXINT5_P15	EX_EXINT5_F13, 57 EX_EXINT5_P33, 58
External Interrupt Input Ports, 57	EX EXINT5 P44, 58
EX_EXINT5_P33	EX EXINT5 P52, 58
External Interrupt Input Ports, 58	EX_EXINT5_F32, 56 EX_EXINT6_P16, 58
EX_EXINT5_P44	EX_EXINT6_P34, 58
External Interrupt Input Ports, 58	EX EXINT6 P42, 58
EX_EXINT5_P52	EX_EXINT6_P45, 58
External Interrupt Input Ports, 58	EX_EXINT6_P57, 58
EX_EXINT6	External Interrupt Triggers, 54
External Interrupt Channels, 53	EX EDGE BOTH, 54
EX_EXINT6_P16	EX_EDGE_DISABLE, 54
External Interrupt Input Ports, 58	EX_EDGE_DISABLE, 54 EX_EDGE_FALLING, 54
EX_EXINT6_P34	EX_EDGE_RISING, 54
External Interrupt Input Ports, 58	EX_EDGE_NISHNG, 54
EX_EXINT6_P42	FCON
External Interrupt Input Ports, 58	hsk flash.c, 199
EX_EXINT6_P45	FCS1
External Interrupt Input Ports, 58	hsk_flash.c, 199
EX_EXINT6_P57	FCS
External Interrupt Input Ports, 58	hsk_flash.c, 199
EXF2	FEALH
hsk_isr5_callback, 80	hsk_flash.c, 200
hsk_isr8_callback, 84	FEAH
EXINT2	hsk_flash.c, 199
hsk_isr8_callback, 84	FEAL
EXINT3	hsk_flash.c, 199
hsk_isr9_callback, 87	FILTER_FACTORY
EXINT4	hsk_filter.h, 186
hsk_isr9_callback, 87	FILTER_GROUP_FACTORY
EXINT5	hsk_filter.h, 187
hsk_isr9_callback, 87	FLASH_PWR_FIRST
EXINT6	hsk_flash.h, 204
hsk_isr9_callback, 87	FLASH_PWR_ON
error	hsk_flash.h, 204
hsk_flash_struct, 76	FLASH_PWR_RESET
External Interrupt Channels, 52	hsk_flash.h, 205
EX_EXINT0, 52	FLASH_STRUCT_FACTORY
EX_EXINT1, 52	hsk_flash.h, 205
EX_EXINT2, 52	FREE_BEHIND
EX_EXINT3, 53	hsk_flash.c, 194
EX_EXINT4, 53	FREE_LATEST
EX_EXINT5, 53	hsk_flash.c, 194

FREE_N	IONE		ADC_RESOLUTION_8, 103
	_flash.c, 194		hsk_adc_channel, 104
FTVAL			hsk_adc_close, 104
hsk	_flash.c, 200		hsk_adc_disable, 104
flash			hsk_adc_enable, 104
hsk	_flash.c, 200		hsk_adc_init, 104
flashDpt	r		hsk_adc_open, 103
hsk	_flash.c, 200		hsk_adc_open10, 105
free			hsk_adc_open8, 105
hsk	_flash.c, 200		hsk_adc_request, 106
1101/ 04	ANI MOO MAN		hsk_adc_service, 106
	AN_MSG_MAX		hsk_adc_warmup, 103
	can.c, 133		hsk_adc_warmup10, 107
hsk_adc		hsk_	_adc/hskadc.c, 91
	C_CHANNELS, 93	hsk_	_adc/hskadc.h, 101
	C_CLK_12MHz, 93 C_CLK_6MHz, 93	hsk_	_adc_channel
	_ :		hsk_adc.h, 104
	C_CLK_750kHz, 94 C_CLK_8MHz, 94	hsk_	_adc_close
	C_CER_6MHz, 94 C_QUEUE, 94		hsk_adc.c, 97
	C_Q0E0E, 94 '_ADC_DIS, 94		hsk_adc.h, 104
	_ADC_DI3, 94 ANON, 94	hsk_	_adc_disable
	ASEN PARALLEL, 94		hsk_adc.c, 97
	ASEN SEQUENTIAL, 94		hsk_adc.h, 104
	CHNR, 94	hsk_	_adc_enable
	_CTC, 95		hsk_adc.c, 97
	_DW, 95		hsk_adc.h, 104
	_BW, 35 _EMPTY, 95	hsk_	_adc_init
	ENGT, 95		hsk_adc.c, 97
			hsk_adc.h, 104
	EN, 95	hsk_	_adc_isr10
			hsk_adc.c, 98
	REQCHNR, 95	hsk_	_adc_isr8
	RESULT, 96		hsk_adc.c, 98
	VFCTR, 96	hsk_	_adc_isr_warmup10
	 WFR, 96		hsk_adc.c, 98
		hsk_	_adc_open
			hsk_adc.h, 103
		hsk_	_adc_open10
	T_REQCHNR, 96		hsk_adc.c, 98
	T_RESULT, 96		hsk_adc.h, 105
hsk	a_adc_close, 97	hsk_	_adc_open8
hsk	adc_disable, 97		hsk_adc.c, 99
hsk	adc_enable, 97		hsk_adc.h, 105
hsk	_adc_init, 97	hsk_	_adc_request
hsk	_adc_isr10, 98		hsk_adc.c, 99
hsk	_adc_isr8, 98		hsk_adc.h, 106
hsk	_adc_isr_warmup10, 98	hsk_	_adc_service
hsk	_adc_open10, 98		hsk_adc.c, 99
hsk	_adc_open8, 99		hsk_adc.h, 106
hsk	_adc_request, 99	hsk_	_adc_warmup
	_adc_service, 99		hsk_adc.h, 103
	_adc_warmup10, 100	hsk_	_adc_warmup10
	tChannel, 101		hsk_adc.c, 100
	0, 101		hsk_adc.h, 107
	3, 101	hsk_	_boot.c
_	gets, 101		_sdcc_external_startup, 113
hsk_adc			BIT_EORDRES, 110
AD	C_RESOLUTION_10, 103		BIT_EXTOSCR, 110

BIT_MXB19, 110	BIT_DIR, 127
BIT_MXB, 110	BIT_DLC, 128
BIT_MXM, 110	BIT_ERR, 128
BIT_NDIVH, 110	BIT_FCCFG, 128
BIT_NDIVL, 110	BIT_IDEXT, 128
BIT_NMIPLL, 111	BIT_IDSTD, 128
BIT_OSCSS, 111	BIT_IDE, 128
BIT PDIV, 111	BIT INIT, 128
BIT_PLL_LOCK, 111	BIT_LECIE, 129
BIT PLLBYP, 111	BIT_LIST, 129
BIT_PLLPD, 111	BIT_EIGT, 123 BIT MIDE, 129
BIT_PLLRDRES, 112	BIT_MMC, 129
	- '- '-
BIT_PLLR, 112	BIT_MSGVAL, 129
BIT_XPD, 112	BIT_NEWDAT, 129
boot, 115	BIT_PRI, 129
CNT_MXB, 112	BIT_RBUSY, 129
CNT_NDIVH, 112	BIT_RWEN, 130
CNT_NDIVL, 112	BIT_RXEN, 130
CNT_PDIV, 112	BIT_RXPND, 130
hsk_boot_extClock, 113	BIT_RXSEL, 130
hsk_boot_io, 114	BIT_RXUPD, 130
hsk_boot_isr_nmipII, 115	BIT_SJW, 130
hsk_boot_mem, 115	BIT_TRIE, 130
ndiv, 115	BIT_TSEG1, 131
PDATA_PAGE, 113	BIT_TSEG2, 131
pdiv, 115	BIT_TXEN0, 131
XRAM_BANK, 113	BIT_TXEN1, 131
XRAM_SELECTOR, 113	BIT_TXPND, 131
hsk_boot.h	BIT_TXRQ, 131
hsk_boot_extClock, 117	CAN_AD_READY, 132
hsk_boot/hsk_boot.c, 107	CAN_AD_READ, 131
hsk_boot/hsk_boot.h, 116	CAN AD WRITE, 132
hsk_boot_extClock	CNT AM, 132
hsk boot.c, 113	CNT_DATA, 132
hsk_boot.h, 117	CNT_DLC, 132
hsk boot io	CNT_IDEXT, 132
hsk boot.c, 114	CNT IDSTD, 133
hsk_boot_isr_nmipII	CNT_LIST, 133
hsk_boot.c, 115	CNT_MMC, 133
	CNT_PRI, 133
hsk_boot_mem	
hsk_boot.c, 115	CNT_RXSEL, 133
hsk_can.c	HSK_CAN_MSG_MAX, 133
AUAD_DEC1, 125	hsk_can_data_getIntelSignal, 140
AUAD_INC1, 125	hsk_can_data_getMotorolaSignal, 141
AUAD_INC8, 126	hsk_can_data_getSignal, 141
AUAD_OFF, 126	hsk_can_data_setIntelSignal, 142
BIT_ALIE, 126	hsk_can_data_setMotorolaSignal, 142
BIT_AUAD, 126	hsk_can_data_setSignal, 143
BIT_AM, 126	hsk_can_disable, 144
BIT_BRP, 126	hsk_can_enable, 144
BIT_BSY, 126	hsk_can_fifo_connect, 144
BIT_BUSY, 126	hsk_can_fifo_create, 145
BIT_CALM, 127	hsk_can_fifo_delete, 146
BIT_CAN_DIS, 127	hsk_can_fifo_disconnect, 146
BIT_CANDIS, 127	hsk_can_fifo_getData, 147
BIT_CCE, 127	hsk_can_fifo_getId, 147
BIT_DATA, 127	hsk_can_fifo_move, 148
BIT_DIV8, 127	hsk_can_fifo_next, 148

hsk_can_fifo_setRxMask, 148	PANAR1, 139
hsk_can_fifo_setupRx, 149	PANAR2, 139
hsk_can_fifo_updated, 149	PANCMD, 139
hsk_can_init, 150	PANCTR_READY, 139
hsk_can_msg_connect, 151	PANCTR, 139
hsk_can_msg_create, 152	PANSTATUS, 139
hsk_can_msg_delete, 152	PRI_ID, 140
hsk_can_msg_disconnect, 153	PRI LIST, 140
hsk_can_msg_getData, 153	RESET DATA, 140
hsk_can_msg_move, 154	RESET, 140
hsk_can_msg_receive, 154	SET DATA, 140
hsk_can_msg_send, 154	SET, 140
	hsk can.h
hsk_can_msg_sent, 155	_
hsk_can_msg_setData, 155	CANO, 161
hsk_can_msg_updated, 155	CAN0_IO_P10_P11, 161
hsk_can_status, 156	CANO_IO_P16_P17, 161
initialised, 156	CAN0_IO_P34_P35, 161
LIST_NODEx, 133	CAN0_IO_P40_P41, 161
LIST_PENDING, 133	CAN1, 161
LIST_UNALLOC, 134	CAN1_IO_P01_P02, 161
MMC_DEFAULT, 134	CAN1_IO_P14_P13, 162
MMC_GATEWAYSRC, 134	CAN1_IO_P32_P33, 162
MMC_RXBASEFIFO, 134	CAN_ENDIAN_INTEL, 162
MMC_TXBASEFIFO, 134	CAN_ENDIAN_MOTOROLA, 162
MMC_TXSLAVEFIFO, 134	CAN_ERROR, 162
MOAMRn, 134	hsk_can_data_getSignal, 163
MOARn, 134	hsk can data setSignal, 164
MOCTRn, 135	hsk can disable, 165
MODATAHn, 135	hsk_can_enable, 165
MODATALn, 135	hsk_can_fifo, 163
MOFCRn, 135	hsk can fifo connect, 165
MOFGPRn, 135	hsk_can_fifo_create, 166
MOFGPRn_BOT, 135	hsk_can_fifo_delete, 167
MOFGPRn CUR, 135	hsk can fifo disconnect, 167
<u> </u>	hsk_can_fifo_getData, 168
MOFGPR TOP 136	— — -
MOFGPRn_TOP, 136	hsk_can_fifo_getId, 168
MOSTAT, 136	hsk_can_fifo_next, 169
MOSTATn_PNEXT, 136	hsk_can_fifo_setRxMask, 169
NBTRx, 136	hsk_can_fifo_setupRx, 169
NCRx, 136	hsk_can_fifo_updated, 170
NECNTx, 136	hsk_can_init, 170
NFCRx, 136	hsk_can_msg, 163
NIPRx, 137	hsk_can_msg_connect, 171
NPCRx, 137	hsk_can_msg_create, 172
NSRx, 137	hsk_can_msg_delete, 173
OFF_LISTm, 137	hsk_can_msg_disconnect, 173
OFF_MOn, 137	hsk_can_msg_getData, 174
OFF_MSIDk, 137	hsk_can_msg_receive, 174
OFF_MSPNDk, 137	hsk_can_msg_send, 174
OFF NODEx, 137	hsk_can_msg_sent, 175
PAN CMD ALLOCBEFORE, 138	hsk_can_msg_setData, 175
PAN CMD ALLOCBEHIND, 138	hsk_can_msg_updated, 175
PAN_CMD_ALLOC, 138	hsk_can_node, 163
PAN CMD INIT, 138	hsk_can_status, 176
PAN_CMD_MOVEBEFORE, 138	hsk_can/hsk_can.c, 118
PAN_CMD_MOVE_138	hsk_can/hsk_can.h, 157
PAN_CMD_MOVE, 138	hsk_can_data_getIntelSignal
PAN_CMD_NOP, 138	hsk_can.c, 140

hsk_can_data_getMotorolaSignal	hsk_can.c, 151
hsk_can.c, 141	hsk_can.h, 171
hsk_can_data_getSignal	hsk_can_msg_create
hsk_can.c, 141	hsk_can.c, 152
hsk_can.h, 163	hsk_can.h, 172
hsk_can_data_setIntelSignal	hsk_can_msg_delete
hsk_can.c, 142	hsk_can.c, 152
hsk_can_data_setMotorolaSignal	hsk_can.h, 173
hsk_can.c, 142	hsk_can_msg_disconnect
hsk_can_data_setSignal	hsk_can.c, 153
hsk_can.c, 143	hsk_can.h, 173
hsk_can.h, 164	hsk_can_msg_getData
hsk_can_disable	hsk_can.c, 153
hsk_can.c, 144	hsk_can.h, 174
hsk_can.h, 165	hsk_can_msg_move
hsk_can_enable	hsk_can.c, 154
hsk_can.c, 144	hsk_can_msg_receive
hsk_can.h, 165	hsk_can.c, 154
hsk_can_fifo	hsk_can.h, 174
hsk_can.h, 163	hsk_can_msg_send
hsk_can_fifo_connect	hsk_can.c, 154
hsk_can.c, 144	hsk_can.h, 174
hsk_can.h, 165	hsk_can_msg_sent
hsk_can_fifo_create	hsk_can.c, 155
hsk_can.c, 145	hsk_can.h, 175
hsk_can.h, 166	hsk_can_msg_setData
hsk_can_fifo_delete	hsk_can.c, 155
hsk can.c, 146	hsk_can.h, 175
hsk_can.h, 167	hsk_can_msg_updated
hsk_can_fifo_disconnect	hsk_can.c, 155
hsk can.c, 146	hsk_can.h, 175
hsk_can.h, 167	hsk_can_node
hsk_can_fifo_getData	hsk_can.h, 163
hsk can.c, 147	hsk_can_status
hsk can.h, 168	hsk_can.c, 156
hsk can fifo getId	hsk_can.h, 176
hsk can.c, 147	hsk ex.c
hsk_can.h, 168	BIT EXINTO, 178
hsk_can_fifo_move	BIT EXINT1, 178
hsk_can.c, 148	BIT EXINT2, 178
hsk can fifo next	BIT EXINT3, 178
hsk can.c, 148	BIT EXINT4, 178
hsk_can.h, 169	BIT EXINTS, 179
hsk can fifo setRxMask	BIT EXINT6, 179
hsk can.c, 148	BIT IMODE, 179
hsk can.h, 169	CNT_EXINT, 179
hsk can fifo setupRx	hsk_ex_channel_disable, 179
hsk can.c, 149	hsk_ex_channel_enable, 179
hsk_can.h, 169	hsk_ex_port_close, 180
hsk_can_fifo_updated	hsk_ex_port_open, 180
hsk can.c, 149	modpiselBit, 180
hsk_can.h, 170	modpiselSel, 181
hsk_can_init	portAltsel, 181
hsk can.c, 150	portAitsei, 181
hsk can.h, 170	ports, 181
- ' '	hsk ex.h
hsk_can_msg	hsk ex channel, 184
hsk_can.h, 163	
hsk_can_msg_connect	hsk_ex_channel_disable, 184

hsk_ex_channel_enable, 185	FREE_LATEST, 194
hsk_ex_port, 184	FREE_NONE, 194
hsk_ex_port_close, 185	FTVAL, 200
hsk_ex_port_open, 185	flash, 200
hsk_ex/hsk_ex.c, 176	flashDptr, 200
hsk_ex/hsk_ex.h, 182	free, 200
hsk_ex_channel	hsk_flash_init, 197
hsk_ex.h, 184	hsk_flash_isr_nmiflash, 197
hsk_ex_channel_disable	hsk_flash_write, 198
hsk ex.c, 179	ident, 200
hsk ex.h, 184	LEN_DFLASH, 195
hsk_ex_channel_enable	LEN_PFLASH, 195
hsk_ex.c, 179	LEN_ROM, 195
hsk_ex.h, 185	LEN XRAM, 195
hsk_ex_port	latest, 201
hsk_ex.h, 184	MOVCI, 195
hsk_ex_port_close	oldest, 201
hsk ex.c, 180	PAGE FLASH, 195
hsk_ex.h, 185	PAGE RAM, 195
hsk_ex_port_open	<u> </u>
hsk ex.c, 180	ptr, 201
- :	STATE_DELETE, 195 STATE_DETECT, 196
hsk_ex.h, 185	_ ,
hsk_filter.h	STATE_IDLE, 196
FILTER_FACTORY, 186	STATE_REQUEST, 196
FILTER_GROUP_FACTORY, 187	STATE_RESET, 196
hsk_filter/hsk_filter.h, 186	STATE_WRITE, 196
hsk_flash.c	size, 201
ADDR_DFLASH, 191	state, 201
ADDR_PFLASH, 191	VAR_ASM, 196
ADDR_ROM, 191	VAR_AT, 196
ADDR_XRAM, 191	wrap, 201
BIT_EEABORT, 192	xdataDptr, 201
BIT_EEBSY, 192	hsk_flash.h
BIT_ERASE, 192	FLASH_PWR_FIRST, 204
BIT_FTEN, 192	FLASH_PWR_ON, 204
BIT_MAS1, 192	FLASH_PWR_RESET, 205
BIT_MODE, 192	FLASH_STRUCT_FACTORY, 205
BIT_NMIFLASH, 193	hsk_flash_init, 206
BIT_NVSTR, 193	hsk_flash_write, 207
BIT_OFVAL, 193	XC878_16FF, 206
BIT_PROG, 193	hsk_flash/hsk_flash.c, 187
BIT_YE, 193	hsk_flash/hsk_flash.h, 202
BYTES_PAGE_DFLASH, 193	hsk_flash_chksum
BYTES_PAGE_PFLASH, 193	hsk_flash_struct, 76
BYTES WORDLINE DFLASH, 193	hsk flash init
BYTES_WORDLINE_PFLASH, 193	hsk flash.c, 197
CNT OFVAL, 194	hsk flash.h, 206
DPH, 194	hsk_flash_isr_nmiflash
DPL, 194	hsk_flash.c, 197
dflash, 199	hsk_flash_prefix
EECON, 199	hsk_flash_struct, 76
FCON, 199	hsk_flash_struct, 75
FCS1, 199	boot, 76
FCS, 199	error, 76
FEALH, 200	hsk_flash_chksum, 76
FEAH, 199	hsk_flash_prefix, 76
FEAH, 199 FEAL, 199	reset, 76
	hsk_flash_write
FREE_BEHIND, 194	iisn_iiasii_wiite

hsk_flash.c, 198	BIT_TI, 224
hsk_flash.h, 207	dummy, 224
hsk_icm7228.c	hsk_isr14, 227
codepage, 210	hsk_isr5, 227
hsk_icm7228_illuminate, 208	hsk_isr6, 227
hsk_icm7228_writeDec, 209	hsk_isr8, 227
hsk_icm7228_writeHex, 209	hsk_isr9, 227
hsk_icm7228_writeString, 210	hsk_isr_root1, 224
ILLUMINATE_OFFSET, 208	ISR_hsk_isr14, 224
hsk_icm7228.h	ISR_hsk_isr5, 225
hsk_icm7228_illuminate, 213	ISR_hsk_isr6, 225
hsk_icm7228_writeDec, 213	ISR_hsk_isr8, 225
hsk_icm7228_writeHex, 214	ISR_hsk_isr9, 226
hsk_icm7228_writeString, 214	nmidummy, 226
ICM7228_FACTORY, 212	hsk_isr.h
hsk_icm7228/hsk_icm7228.c, 207	hsk_isr14, 230
hsk_icm7228/hsk_icm7228.h, 211	hsk_isr5, 230
hsk_icm7228_illuminate	hsk_isr6, 230
hsk_icm7228.c, 208	hsk_isr8, 230
hsk_icm7228.h, 213	hsk_isr9, 230
hsk_icm7228_writeDec	hsk_isr/hsk_isr.c, 217
hsk_icm7228.c, 209	hsk_isr/hsk_isr.h, 228 hsk_isr14
hsk_icm7228.h, 213	-
hsk_icm7228_writeHex	hsk_isr.c, 227
hsk_icm7228.c, 209 hsk_icm7228.h, 214	hsk_isr.h, 230 hsk_isr14_callback, 77
-	NMIECC, 78
hsk_icm7228_writeString hsk_icm7228.c, 210	NMIFLASH, 78
hsk icm7228.h, 214	NMIPLL, 78
hsk_io/hsk_io.h, 215	NMIVDDP, 78
hsk isr.c	NMIWDT, 78
BIT ADCSR0, 220	hsk isr5
BIT ADCSR1, 220	hsk_isr.c, 227
BIT CANSRCO, 220	hsk isr.h, 230
BIT_CANSRC1, 220	hsk isr5 callback, 79
BIT CANSRC2, 220	CANSRC0, 80
BIT_CANSRC3, 220	CCTOVF, 80
BIT CCTOVF, 220	EOFSYN, 80
BIT EOFSYN, 221	ERRSYN, 80
BIT EOC, 221	EXF2, 80
BIT ERRSYN, 221	NDOV, 81
BIT EXF2, 221	TF2, 81
BIT EXINT2, 221	hsk isr6
BIT EXINT3, 221	hsk isr.c, 227
BIT EXINT4, 222	hsk_isr.h, 230
BIT EXINT5, 222	hsk_isr6_callback, 81
BIT EXINT6, 222	ADCSR0, 82
BIT IERR, 222	ADCSR1, 82
BIT_IRDY, 222	CANSRC1, 82
BIT_NDOV, 222	CANSRC2, 82
BIT_NMIECC, 223	hsk_isr8
BIT_NMIFLASH, 223	hsk_isr.c, 227
BIT_NMIPLL, 223	hsk_isr.h, 230
BIT_NMIVDDP, 223	hsk_isr8_callback, 83
BIT_NMIWDT, 223	EOC, 84
BIT_RMAP, 223	EXF2, 84
BIT_RI, 223	EXINT2, 84
BIT_TF2, 224	IERR, 85

IRDY, 85	hsk_pwc_port_open, 245
NDOV, 85	hsk_pwc_ports, 247
RI, 85	inBit, 247
TF2, 85	inCount, 247
TI, 85	inSel, 247
hsk_isr9	invalid, 247
hsk_isr.c, 227	lastCapture, 247
hsk_isr.h, 230	overflow, 248
hsk_isr9_callback, 86	overflows, 248
CANSRC3, 87	PWC_CC0_EXINT_BIT, 236
EXINT3, 87	PWC CC0 EXINT REG, 236
EXINT4, 87	PWC_CC1_EXINT_BIT, 236
EXINT5, 87	PWC_CC1_EXINT_REG, 236
EXINT6, 87	PWC CC2 EXINT BIT, 236
hsk_isr_root1	PWC_CC2_EXINT_REG, 236
hsk_isr.c, 224	PWC_CC3_EXINT_BIT, 237
hsk pwc.c	PWC CC3 EXINT REG, 237
averageOver, 246	:
-	PWC_CHANNELS, 237
BIT_CCM0, 234	portBit, 248
BIT_CCTBx, 234	portSel, 248
BIT_CCTOVEN, 234	pos, 248
BIT_CCTOVF, 234	prescaler, 248
BIT_CCTPRE, 234	state, 248
BIT_CCTST, 235	sum, 249
BIT_IMODE, 235	hsk_pwc.h
BIT_T2CCFG, 235	hsk_pwc_channel, 255
BIT_T2CCU_DIS, 235	hsk_pwc_channel_captureMode, 255
BIT_TIMSYN, 235	hsk_pwc_channel_close, 255
buffer, 246	hsk_pwc_channel_edgeMode, 256
CHAN_BUF_SIZE, 235	hsk_pwc_channel_getValue, 256
CNT_CCMx, 235	hsk_pwc_channel_open, 256
CNT_EXINTx, 236	hsk_pwc_channel_trigger, 257
channels, 246	hsk_pwc_disable, 258
EDGE_DEFAULT_MODE, 236	hsk_pwc_enable, 258
hsk_pwc_ccn, 237	hsk_pwc_init, 258
hsk_pwc_channel_captureMode, 237	hsk_pwc_port, 255
hsk_pwc_channel_close, 238	hsk_pwc_port_open, 259
hsk_pwc_channel_edgeMode, 238	PWC_CC0, 252
hsk_pwc_channel_getValue, 238	PWC_CC0_P30, 252
hsk_pwc_channel_open, 239	PWC_CC0_P40, 252
hsk_pwc_channel_trigger, 239	PWC_CC0_P55, 252
hsk_pwc_disable, 240	PWC_CC1, 253
hsk_pwc_enable, 240	PWC_CC1_P32, 253
hsk_pwc_init, 240	PWC_CC1_P41, 253
hsk_pwc_isr_cc0_p30, 241	PWC CC1 P56, 253
hsk_pwc_isr_cc0_p40, 241	PWC CC2, 253
hsk pwc isr cc0 p55, 241	PWC CC2 P33, 253
hsk_pwc_isr_cc1_p32, 242	PWC CC2 P44, 253
hsk_pwc_isr_cc1_p41, 242	PWC_CC2_P52, 253
hsk_pwc_isr_cc1_p56, 242	PWC CC3, 254
hsk_pwc_isr_cc2_p33, 243	PWC CC3 P34, 254
hsk_pwc_isr_cc2_p44, 243	PWC CC3 P45, 254
hsk_pwc_isr_cc2_p52, 243	
	PWC CC3 P57, 254
	PWC_CC3_P57, 254 PWC_EDGE_BOTH, 254
hsk_pwc_isr_cc3_p34, 244	PWC_EDGE_BOTH, 254
hsk_pwc_isr_cc3_p34, 244 hsk_pwc_isr_cc3_p45, 244	PWC_EDGE_BOTH, 254 PWC_EDGE_FALLING, 254
hsk_pwc_isr_cc3_p34, 244 hsk_pwc_isr_cc3_p45, 244 hsk_pwc_isr_cc3_p57, 244	PWC_EDGE_BOTH, 254 PWC_EDGE_FALLING, 254 PWC_EDGE_RISING, 254
hsk_pwc_isr_cc3_p34, 244 hsk_pwc_isr_cc3_p45, 244	PWC_EDGE_BOTH, 254 PWC_EDGE_FALLING, 254

hsk_pwc/hsk_pwc.c, 231	hsk_pwc.c, 245
hsk_pwc/hsk_pwc.h, 249	hsk_pwc_isr_cctOverflow
hsk_pwc_ccn	hsk_pwc.c, 245
hsk_pwc.c, 237	hsk_pwc_port
hsk_pwc_channel	hsk_pwc.h, 255
hsk_pwc.h, 255	hsk_pwc_port_open
hsk_pwc_channel_captureMode	hsk_pwc.c, 245
hsk_pwc.c, 237	hsk_pwc.h, 259
hsk_pwc.h, 255	hsk_pwc_ports
hsk_pwc_channel_close	hsk_pwc.c, 247
hsk_pwc.c, 238	hsk_pwm.c
hsk_pwc.h, 255	BIT_CCU_DIS, 262
hsk_pwc_channel_edgeMode	BIT_CCUCCFG, 262
hsk_pwc.c, 238	BIT_ECT13O, 263
hsk_pwc.h, 256	BIT_PSL63, 263
hsk_pwc_channel_getValue	BIT_PSL, 263
hsk_pwc.c, 238	BIT_TnCLK, 263
hsk_pwc.h, 256	BIT_TnMODEN, 263
hsk_pwc_channel_open	BIT_TnRR, 263
hsk_pwc.c, 239	BIT_TnRS, 263
hsk_pwc.h, 256	BIT_TnSTR, 263
hsk_pwc_channel_trigger	CNT_MSEL6n, 264
hsk_pwc.c, 239	CNT_PSL, 264
hsk_pwc.h, 257	CNT_TnCLK, 264
hsk_pwc_disable	CNT_TnMODEN, 264
hsk_pwc.c, 240	hsk_pwm_channel_set, 264
hsk_pwc.h, 258	hsk_pwm_disable, 265
hsk_pwc_enable	hsk_pwm_enable, 265
hsk_pwc.c, 240	hsk_pwm_init, 265
hsk_pwc.h, 258	hsk_pwm_outChannel_dir, 266
hsk_pwc_init hsk_pwc.c, 240	hsk_pwm_port_close, 266 hsk_pwm_port_open, 267
hsk_pwc.b, 258	MOD_MSEL6n, 264
hsk_pwc_isr_cc0_p30	ports, 267
hsk_pwc.c, 241	pos, 267
hsk_pwc_isr_cc0_p40	sel, 268
hsk pwc.c, 241	hsk_pwm.h
hsk_pwc_isr_cc0_p55	hsk_pwm_channel, 275
hsk_pwc.c, 241	hsk_pwm_channel_set, 275
hsk_pwc_isr_cc1_p32	hsk_pwm_disable, 276
hsk_pwc.c, 242	hsk_pwm_enable, 276
hsk_pwc_isr_cc1_p41	hsk_pwm_init, 276
hsk_pwc.c, 242	hsk_pwm_outChannel, 275
hsk_pwc_isr_cc1_p56	hsk_pwm_outChannel_dir, 277
hsk_pwc.c, 242	hsk_pwm_port, 275
hsk_pwc_isr_cc2_p33	hsk_pwm_port_close, 277
hsk pwc.c, 243	hsk_pwm_port_open, 278
hsk_pwc_isr_cc2_p44	PWM 60, 271
hsk_pwc.c, 243	PWM_61, 271
hsk_pwc_isr_cc2_p52	PWM 62, 271
hsk_pwc.c, 243	PWM_63, 271
hsk_pwc_isr_cc3_p34	PWM_CC60, 271
hsk_pwc.c, 244	PWM_CC61, 271
hsk_pwc_isr_cc3_p45	PWM_CC62, 272
hsk_pwc.c, 244	PWM_COUT60, 272
hsk_pwc_isr_cc3_p57	PWM_COUT61, 272
hsk_pwc.c, 244	PWM_COUT62, 272
hsk_pwc_isr_ccn	PWM_COUT63, 272

PWM_OUT_60_P30, 272	BIT_RIR, 281
PWM_OUT_60_P31, 272	BIT_RMAP, 281
PWM_OUT_60_P40, 272	BIT_SIS, 281
PWM OUT 60 P41, 273	BIT SSC DIS, 282
PWM OUT 61 P00, 273	BIT TIREN, 282
PWM_OUT_61_P01, 273	BIT TIR, 282
PWM_OUT_61_P31, 273	bufState, 284
PWM OUT 61 P32, 273	CNT SEL, 282
PWM OUT 61 P33, 273	hsk ssc disable, 282
PWM OUT 61 P44, 273	
:	hsk_ssc_enable, 282
PWM_OUT_61_P45, 273	hsk_ssc_init, 282
PWM_OUT_62_P04, 274	hsk_ssc_ports, 283
PWM_OUT_62_P05, 274	hsk_ssc_talk, 283
PWM_OUT_62_P34, 274	ISR_hsk_ssc, 283
PWM_OUT_62_P35, 274	rcount, 284
PWM_OUT_62_P46, 274	rptr, 284
PWM_OUT_62_P47, 274	wcount, 284
PWM_OUT_63_P03, 274	wptr, 284
PWM_OUT_63_P37, 274	hsk_ssc.h
PWM_OUT_63_P43, 275	hsk_ssc_busy, 287
hsk_pwm/hsk_pwm.c, 260	hsk_ssc_disable, 288
hsk_pwm/hsk_pwm.h, 268	hsk_ssc_enable, 288
hsk pwm channel	hsk ssc init, 289
hsk pwm.h, 275	hsk_ssc_ports, 289
hsk_pwm_channel_set	hsk_ssc_talk, 289
hsk_pwm.c, 264	SSC BAUD, 287
hsk pwm.h, 275	SSC CONF, 288
_	-
hsk_pwm_disable	SSC_MASTER, 288
hsk_pwm.c, 265	SSC_SLAVE, 288
hsk_pwm.h, 276	hsk_ssc/hsk_ssc.c, 278
hsk_pwm_enable	hsk_ssc/hsk_ssc.h, 285
hsk_pwm.c, 265	hsk_ssc_busy
hsk_pwm.h, 276	hsk_ssc.h, 287
hsk_pwm_init	hsk_ssc_disable
hsk_pwm.c, 265	hsk_ssc.c, 282
hsk_pwm.h, 276	hsk_ssc.h, 288
hsk_pwm_outChannel	hsk_ssc_enable
hsk_pwm.h, 275	hsk_ssc.c, 282
hsk_pwm_outChannel_dir	hsk_ssc.h, 288
hsk pwm.c, 266	hsk ssc init
hsk pwm.h, 277	hsk ssc.c, 282
hsk_pwm_port	hsk ssc.h, 289
hsk_pwm.h, 275	hsk_ssc_ports
hsk pwm port close	hsk ssc.c, 283
hsk pwm.c, 266	hsk_ssc.h, 289
	<u> </u>
hsk_pwm.h, 277	hsk_ssc_talk
hsk_pwm_port_open	hsk_ssc.c, 283
hsk_pwm.c, 267	hsk_ssc.h, 289
hsk_pwm.h, 278	hsk_timer01.c
hsk_ssc.c	BIT_ET0, 292
BIT_CIS, 280	BIT_ET1, 292
BIT_EIREN, 280	BIT_RMAP, 292
BIT_EIR, 280	BIT_T0M, 292
BIT_EN, 280	BIT_T1M, 292
BIT_LB, 281	CNT_T0M, 292
BIT_MIS, 281	CNT T1M, 292
BIT MS, 281	
DIT 1010, 201	- · · ·
BIT RIREN, 281	callback, 295 hsk_timer01_setup, 292

hsk_timer0_disable, 293	hsk_wdt.c, 301
hsk_timer0_enable, 293	hsk_wdt.h, 303
hsk_timer0_setup, 293	hsk_wdt_init
hsk_timer1_disable, 294	hsk_wdt.c, 301
hsk_timer1_enable, 294	hsk_wdt.h, 303
hsk_timer1_setup, 294	hsk_wdt_service
ISR_hsk_timer0, 295	hsk_wdt.c, 301
ISR_hsk_timer1, 295	hsk_wdt.h, 304
overflow, 295	I/O Port Pull-Up/-Down Setup, 64
timers, 295	IO PORT PULL DISABLE, 64
hsk_timer01.h	IO_FORT_PULL_DOWN, 64
hsk_timer0_disable, 297	IO_FORT_PULL_ENABLE, 64
hsk_timer0_enable, 297	IO PORT PULL INIT, 64
hsk_timer0_setup, 297	IO_FORT_PULL_UP, 65
hsk_timer1_disable, 298	ICM7228_FACTORY
hsk_timer1_enable, 298	hsk_icm7228.h, 212
hsk_timer1_setup, 298	IERR
hsk_timer01_setup	hsk_isr8_callback, 85
hsk_timer01.c, 292	ILLUMINATE OFFSET
hsk_timer0_disable	hsk icm7228.c, 208
hsk_timer01.c, 293	IO PORT DRAIN DISABLE
hsk_timer01.h, 297	Output Port Access, 61
hsk_timer0_enable	IO PORT DRAIN ENABLE
hsk_timer01.c, 293	Output Port Access, 61
hsk_timer01.h, 297	IO PORT GET
hsk_timer0_setup	Input Port Access, 59
hsk_timer01.c, 293	IO PORT IN INIT
hsk_timer01.h, 297	Input Port Access, 60
hsk_timer1_disable	IO PORT ON GND
hsk_timer01.c, 294	Input Port Access, 60
hsk_timer01.h, 298	IO PORT ON HIGH
hsk_timer1_enable	Input Port Access, 60
hsk_timer01.c, 294	IO PORT OUT INIT
hsk_timer01.h, 298	Output Port Access, 61
hsk_timer1_setup	IO_PORT_OUT_SET
hsk_timer01.c, 294	Output Port Access, 62
hsk_timer01.h, 298	IO_PORT_PULL_DISABLE
hsk_timers/hsk_timer01.c, 290	I/O Port Pull-Up/-Down Setup, 64
hsk_timers/hsk_timer01.h, 296	IO_PORT_PULL_DOWN
hsk_wdt.c	I/O Port Pull-Up/-Down Setup, 64
BIT_WDTEN, 300	IO_PORT_PULL_ENABLE
BIT_WDTIN, 300	I/O Port Pull-Up/-Down Setup, 64
BIT_WDTRS, 300	IO PORT PULL INIT
hsk_wdt_disable, 301	I/O Port Pull-Up/-Down Setup, 64
hsk_wdt_enable, 301	IO_PORT_PULL_UP
hsk_wdt_init, 301	I/O Port Pull-Up/-Down Setup, 65
hsk_wdt_service, 301	IO_PORT_STRENGTH_STRONG
hsk_wdt.h	Output Port Access, 63
hsk_wdt_disable, 303	IO_PORT_STRENGTH_WEAK
hsk_wdt_enable, 303	Output Port Access, 63
hsk_wdt_init, 303	IO_VAR_GET
hsk_wdt_service, 304	Variable Access, 66
hsk_wdt/hsk_wdt.c, 299	IO_VAR_SET
hsk_wdt/hsk_wdt.h, 302	Variable Access, 66
hsk_wdt_disable	IRDY
hsk_wdt.c, 301	hsk_isr8_callback, 85
hsk_wdt.h, 303	ISR_hsk_isr14
hsk_wdt_enable	hsk_isr.c, 224

ISR_hsk_isr5	MMC_TXBASEFIFO
 hsk_isr.c, 225	hsk can.c, 134
ISR_hsk_isr6	MMC TXSLAVEFIFO
hsk_isr.c, 225	hsk can.c, 134
	MOAMRn
ISR_hsk_isr8	
hsk_isr.c, 225	hsk_can.c, 134
ISR_hsk_isr9	MOARn
hsk_isr.c, 226	hsk_can.c, 134
ISR_hsk_ssc	MOCTRn
hsk_ssc.c, 283	hsk_can.c, 135
ISR_hsk_timer0	MOD_MSEL6n
hsk_timer01.c, 295	hsk_pwm.c, 264
ISR_hsk_timer1	MODATAHn
hsk_timer01.c, 295	hsk_can.c, 135
ident	MODATALn
hsk_flash.c, 200	hsk_can.c, 135
inBit	MOFCRn
hsk_pwc.c, 247	hsk_can.c, 135
inCount	MOFGPRn
hsk_pwc.c, 247	hsk_can.c, 135
inSel	MOFGPRn BOT
hsk pwc.c, 247	hsk can.c, 135
init	MOFGPRn CUR
main.c, 306	hsk_can.c, 135
initialised	MOFGPRn SEL
	-
hsk_can.c, 156	hsk_can.c, 135
Input Port Access, 59	MOFGPRn_TOP
IO_PORT_GET, 59	hsk_can.c, 136
IO_PORT_IN_INIT, 60	MOSTATn
IO_PORT_ON_GND, 60	hsk_can.c, 136
IO PORT ON HIGH, 60	MOSTATn PNEXT
10_F0H1_0N_HIGH, 00	<u> </u>
invalid	_
invalid	hsk_can.c, 136 MOVCI
	hsk_can.c, 136 MOVCI
invalid hsk_pwc.c, 247	hsk_can.c, 136 MOVCI hsk_flash.c, 195
invalid hsk_pwc.c, 247 LEN_DFLASH	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201 MMC_DEFAULT	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313 tick0_count_250, 313 modpiselBit
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201 MMC_DEFAULT	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313 modpiselBit hsk_ex.c, 180
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201 MMC_DEFAULT hsk_can.c, 134	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313 tick0_count_250, 313 modpiselBit hsk_ex.c, 180 modpiselSel
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201 MMC_DEFAULT hsk_can.c, 134 MMC_GATEWAYSRC hsk_can.c, 134	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313 modpiselBit hsk_ex.c, 180
invalid hsk_pwc.c, 247 LEN_DFLASH hsk_flash.c, 195 LEN_PFLASH hsk_flash.c, 195 LEN_ROM hsk_flash.c, 195 LEN_XRAM hsk_flash.c, 195 LIST_NODEx hsk_can.c, 133 LIST_PENDING hsk_can.c, 133 LIST_UNALLOC hsk_can.c, 134 lastCapture hsk_pwc.c, 247 latest hsk_flash.c, 201 MMC_DEFAULT hsk_can.c, 134 MMC_GATEWAYSRC	hsk_can.c, 136 MOVCI hsk_flash.c, 195 main main.c, 307 main.c, 304 adc7, 313 init, 306 main, 307 p1_buffer, 313 p1_illuminate, 308 p1_init, 310 p1_refresh, 310 p1_writeDec, 310 p1_writeHex, 311 p1_writeString, 311 PERSIST_VERSION, 306 persist, 313 run, 311 tick0, 312 tick0_count_20, 313 tick0_count_250, 313 modpiselBit hsk_ex.c, 180 modpiselSel

hsk_can.c, 136	main.c, 313
NCRx	p1_illuminate
hsk_can.c, 136	main.c, 308
NDOV	p1_init
hsk_isr5_callback, 81	main.c, 310
hsk isr8 callback, 85	p1_refresh
NECNTX	main.c, 310
hsk_can.c, 136 NFCRx	p1_writeDec
	main.c, 310
hsk_can.c, 136	p1_writeHex
NIPRx	main.c, 311
hsk_can.c, 137	p1_writeString
NMIECC	main.c, <mark>311</mark>
hsk_isr14_callback, 78	PAGE_FLASH
NMIFLASH	hsk_flash.c, 195
hsk_isr14_callback, 78	PAGE RAM
NMIPLL	_ hsk_flash.c, 195
hsk_isr14_callback, 78	PAN CMD ALLOCBEFORE
NMIVDDP	hsk can.c, 138
hsk_isr14_callback, 78	PAN CMD ALLOCBEHIND
NMIWDT	
hsk_isr14_callback, 78	hsk_can.c, 138
NPCRx	PAN_CMD_ALLOC
	hsk_can.c, 138
hsk_can.c, 137	PAN_CMD_INIT
NSRx	hsk_can.c, 138
hsk_can.c, 137	PAN_CMD_MOVEBEFORE
ndiv	hsk_can.c, 138
hsk_boot.c, 115	PAN_CMD_MOVEBEHIND
nextChannel	hsk_can.c, 138
hsk_adc.c, 101	PAN_CMD_MOVE
nmidummy	hsk_can.c, 138
hsk_isr.c, 226	PAN CMD NOP
	hsk_can.c, 138
OFF_LISTm	
hsk_can.c, 137	PANAR1
OFF MOn	hsk_can.c, 139
hsk can.c, 137	PANAR2
OFF MSIDk	hsk_can.c, 139
hsk_can.c, 137	PANCMD
OFF MSPNDk	hsk_can.c, 139
hsk_can.c, 137	PANCTR_READY
OFF_NODEx	hsk_can.c, 139
	PANCTR
hsk_can.c, 137	hsk can.c, 139
oldest	PANSTATUS
hsk_flash.c, 201	
Output Port Access, 61	nek can c 139
	hsk_can.c, 139
IO_PORT_DRAIN_DISABLE, 61	PDATA_PAGE
IO_PORT_DRAIN_ENABLE, 61	PDATA_PAGE hsk_boot.c, 113
	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION
IO_PORT_DRAIN_ENABLE, 61	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63 IO_PORT_STRENGTH_WEAK, 63 overflow	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63 IO_PORT_STRENGTH_WEAK, 63 overflow hsk_pwc.c, 248	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140 PRI_LIST
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63 IO_PORT_STRENGTH_WEAK, 63 overflow hsk_pwc.c, 248 hsk_timer01.c, 295	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140 PRI_LIST hsk_can.c, 140
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63 IO_PORT_STRENGTH_WEAK, 63 overflow hsk_pwc.c, 248 hsk_timer01.c, 295 overflows	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140 PRI_LIST hsk_can.c, 140 PWC_CC0 hsk_pwc.h, 252
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63 IO_PORT_STRENGTH_WEAK, 63 overflow hsk_pwc.c, 248 hsk_timer01.c, 295	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140 PRI_LIST hsk_can.c, 140 PWC_CC0 hsk_pwc.h, 252 PWC_CC0_EXINT_BIT
IO_PORT_DRAIN_ENABLE, 61 IO_PORT_OUT_INIT, 61 IO_PORT_OUT_SET, 62 IO_PORT_STRENGTH_STRONG, 63 IO_PORT_STRENGTH_WEAK, 63 overflow hsk_pwc.c, 248 hsk_timer01.c, 295 overflows	PDATA_PAGE hsk_boot.c, 113 PERSIST_VERSION main.c, 306 PRI_ID hsk_can.c, 140 PRI_LIST hsk_can.c, 140 PWC_CC0 hsk_pwc.h, 252

hsk_pwc.c, 236	Pulse Duty Times, 71
PWC_CC0_P30	PWC_UNIT_DUTYH_RAW
hsk_pwc.h, 252	Pulse Duty Times, 71
PWC_CC0_P40	PWC_UNIT_DUTYH_US
hsk_pwc.h, 252	Pulse Duty Times, 72
PWC_CC0_P55	PWC_UNIT_DUTYL_MS
hsk_pwc.h, 252	Pulse Duty Times, 72
PWC_CC1	PWC_UNIT_DUTYL_NS
hsk_pwc.h, 253	Pulse Duty Times, 72
PWC_CC1_EXINT_BIT	PWC UNIT DUTYL RAW
hsk pwc.c, 236	Pulse Duty Times, 72
PWC_CC1_EXINT_REG	PWC UNIT DUTYL US
hsk_pwc.c, 236	Pulse Duty Times, 72
PWC_CC1_P32	PWC UNIT FREQ H
hsk_pwc.h, 253	Pulse Frequencies, 70
PWC CC1 P41	PWC_UNIT_FREQ_M
hsk_pwc.h, 253	Pulse Frequencies, 70
PWC_CC1_P56	PWC_UNIT_FREQ_S
hsk_pwc.h, 253	Pulse Frequencies, 70
_	•
PWC_CC2	PWC_UNIT_SUM_RAW
hsk_pwc.h, 253	Pulse Width Detection Units, 68
PWC_CC2_EXINT_BIT	PWC_UNIT_WIDTH_MS
hsk_pwc.c, 236	Pulse Width Times, 69
PWC_CC2_EXINT_REG	PWC_UNIT_WIDTH_NS
hsk_pwc.c, 236	Pulse Width Times, 69
PWC_CC2_P33	PWC_UNIT_WIDTH_RAW
hsk_pwc.h, 253	Pulse Width Times, 69
PWC_CC2_P44	PWC_UNIT_WIDTH_US
hsk_pwc.h, 253	Pulse Width Times, 69
PWC_CC2_P52	PWM_60
- -	
 hsk_pwc.h, 253	hsk_pwm.h, 271
	hsk_pwm.h, 271 PWM_61
hsk_pwc.h, 253	.
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254	PWM_61
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT	PWM_61 hsk_pwm.h, 271 PWM_62
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC61
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CCHANNELS	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CCHANNELS hsk_pwc.c, 237	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC4ANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT_60_P30
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT hsk_pwc.h, 254	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT60_P30 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.c, 237 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT hsk_pwc.h, 254 PWC_MODE_SOFT	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT_60_P30 hsk_pwm.h, 272 PWM_OUT_60_P31
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CCHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT hsk_pwc.h, 254 PWC_MODE_SOFT hsk_pwc.h, 255	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_OUT_60_P30 hsk_pwm.h, 272 PWM_OUT_60_P31 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT hsk_pwc.h, 254 PWC_MODE_SOFT hsk_pwc.h, 255 PWC_UNIT_DUTYH_MS	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_OUT_60_P30 hsk_pwm.h, 272 PWM_OUT_60_P31 hsk_pwm.h, 272 PWM_OUT_60_P40
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT hsk_pwc.h, 254 PWC_MODE_SOFT hsk_pwc.h, 255 PWC_UNIT_DUTYH_MS Pulse Duty Times, 71	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_OUT_60_P30 hsk_pwm.h, 272 PWM_OUT_60_P31 hsk_pwm.h, 272 PWM_OUT_60_P40 hsk_pwm.h, 272
hsk_pwc.h, 253 PWC_CC3 hsk_pwc.h, 254 PWC_CC3_EXINT_BIT hsk_pwc.c, 237 PWC_CC3_EXINT_REG hsk_pwc.c, 237 PWC_CC3_P34 hsk_pwc.h, 254 PWC_CC3_P45 hsk_pwc.h, 254 PWC_CC3_P57 hsk_pwc.h, 254 PWC_CHANNELS hsk_pwc.c, 237 PWC_EDGE_BOTH hsk_pwc.h, 254 PWC_EDGE_FALLING hsk_pwc.h, 254 PWC_EDGE_RISING hsk_pwc.h, 254 PWC_MODE_EXT hsk_pwc.h, 254 PWC_MODE_SOFT hsk_pwc.h, 255 PWC_UNIT_DUTYH_MS	PWM_61 hsk_pwm.h, 271 PWM_62 hsk_pwm.h, 271 PWM_63 hsk_pwm.h, 271 PWM_CC60 hsk_pwm.h, 271 PWM_CC61 hsk_pwm.h, 271 PWM_CC62 hsk_pwm.h, 272 PWM_COUT60 hsk_pwm.h, 272 PWM_COUT61 hsk_pwm.h, 272 PWM_COUT62 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_COUT63 hsk_pwm.h, 272 PWM_OUT_60_P30 hsk_pwm.h, 272 PWM_OUT_60_P31 hsk_pwm.h, 272 PWM_OUT_60_P40

hsk_pwm.h, 273	Pulse Duty Times, 71
PWM_OUT_61_P00	PWC_UNIT_DUTYH_MS, 71
hsk_pwm.h, 273	PWC_UNIT_DUTYH_NS, 71
PWM OUT 61 P01	PWC UNIT DUTYH RAW, 71
hsk_pwm.h, 273	PWC_UNIT_DUTYH_US, 72
PWM_OUT_61_P31	PWC UNIT DUTYL MS, 72
	PWC_UNIT_DUTYL_NS, 72
hsk_pwm.h, 273	PWC_UNIT_DUTYL_RAW, 72
PWM_OUT_61_P32	PWC UNIT DUTYL US, 72
hsk_pwm.h, 273	
PWM_OUT_61_P33	Pulse Frequencies, 70
hsk_pwm.h, 273	PWC_UNIT_FREQ_H, 70
PWM_OUT_61_P44	PWC_UNIT_FREQ_M, 70
hsk_pwm.h, 273	PWC_UNIT_FREQ_S, 70
PWM_OUT_61_P45	Pulse Width Detection Units, 68
hsk_pwm.h, 273	PWC_UNIT_SUM_RAW, 68
PWM_OUT_62_P04	Pulse Width Times, 69
hsk pwm.h, 274	PWC_UNIT_WIDTH_MS, 69
PWM OUT 62 P05	PWC_UNIT_WIDTH_NS, 69
hsk_pwm.h, 274	PWC_UNIT_WIDTH_RAW, 69
PWM OUT 62 P34	PWC_UNIT_WIDTH_US, 69
hsk pwm.h, 274	,
PWM_OUT_62_P35	RESET_DATA
	hsk_can.c, 140
hsk_pwm.h, 274	RESET
PWM_OUT_62_P46	hsk_can.c, 140
hsk_pwm.h, 274	rcount
PWM_OUT_62_P47	hsk ssc.c, 284
hsk_pwm.h, 274	reset
PWM_OUT_63_P03	hsk_flash_struct, 76
hsk_pwm.h, 274	RI
PWM_OUT_63_P37	
hsk pwm.h, 274	hsk_isr8_callback, 85
DWM OUT CO D40	rptr
PWM 001 63 P43	
PWM_OUT_63_P43 hsk_pwm.h. 275	hsk_ssc.c, 284
hsk_pwm.h, 275	run
hsk_pwm.h, 275 pdiv	- '
hsk_pwm.h, 275 pdiv hsk_boot.c, 115	run main.c, 311
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist	run main.c, 311 SET_DATA
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313	run main.c, 311 SET_DATA hsk_can.c, 140
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel	run main.c, 311 SET_DATA
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit	run main.c, 311 SET_DATA hsk_can.c, 140 SET
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwc.c, 248	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwc.c, 248 ports ports hsk_ex.c, 181 hsk_pwm.c, 267 pos	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P03, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwc.c, 267 pos hsk_pwc.c, 248	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwc.c, 248 hsk_pwm.c, 267	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 248 hsk_pwm.c, 267 prescaler	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_BAUD hsk_ssc.h, 287
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 prescaler hsk_pwc.c, 248	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 prescaler hsk_pwc.c, 248 ptr	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF hsk_ssc.h, 288
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 prescaler hsk_pwc.c, 248 ptr hsk_flash.c, 201	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF hsk_ssc.h, 288 SSC_MASTER
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 prescaler hsk_pwc.c, 248 ptr hsk_flash.c, 201 ptr10	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF hsk_ssc.h, 288 SSC_MASTER hsk_ssc.h, 288
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 prescaler hsk_pwc.c, 248 ptr hsk_flash.c, 201	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF hsk_ssc.h, 288 SSC_MASTER hsk_ssc.h, 288 SSC_MRST_P05
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_ex.c, 181 hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 prescaler hsk_pwc.c, 248 ptr hsk_flash.c, 201 ptr10	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF hsk_ssc.h, 288 SSC_MASTER hsk_ssc.h, 288 SSC_MRST_P05 SSC I/O Ports, 73
hsk_pwm.h, 275 pdiv hsk_boot.c, 115 persist main.c, 313 portAltsel hsk_ex.c, 181 portBit hsk_pwc.c, 248 portSel hsk_pwc.c, 248 ports hsk_ex.c, 181 hsk_pwm.c, 267 pos hsk_pwm.c, 267 pos hsk_pwc.c, 248 hsk_pwm.c, 267 prescaler hsk_pwc.c, 248 ptr hsk_flash.c, 201 ptr10 hsk_adc.c, 101	run main.c, 311 SET_DATA hsk_can.c, 140 SET hsk_can.c, 140 SSC I/O Ports, 73 SSC_MRST_P05, 73 SSC_MRST_P14, 74 SSC_MRST_P15, 74 SSC_MTSR_P04, 74 SSC_MTSR_P13, 74 SSC_MTSR_P14, 74 SSC_SCLK_P03, 74 SSC_SCLK_P12, 74 SSC_SCLK_P12, 74 SSC_SCLK_P13, 74 SSC_BAUD hsk_ssc.h, 287 SSC_CONF hsk_ssc.h, 288 SSC_MASTER hsk_ssc.h, 288 SSC_MRST_P05

SSC I/O Ports, 74	Variable Access, 66
SSC_MRST_P15	IO_VAR_GET, 66
SSC I/O Ports, 74	IO_VAR_SET, 66
SSC_MTSR_P04	
SSC I/O Ports, 74	wcount
SSC_MTSR_P13	hsk_ssc.c, 284
SSC I/O Ports, 74	wptr
SSC_MTSR_P14	hsk_ssc.c, 284
SSC I/O Ports, 74	wrap
SSC_SCLK_P03	hsk flash.c, 201
	, -
SSC I/O Ports, 74	XC878 16FF
SSC_SCLK_P12	hsk flash.h, 206
SSC I/O Ports, 74	XRAM BANK
SSC_SCLK_P13	hsk boot.c, 113
SSC I/O Ports, 74	- :
SSC_SLAVE	XRAM_SELECTOR
hsk_ssc.h, 288	hsk_boot.c, 113
STATE_DELETE	xdataDptr
hsk_flash.c, 195	hsk_flash.c, 201
STATE DETECT	
hsk_flash.c, 196	
STATE_IDLE	
hsk_flash.c, 196	
STATE_REQUEST	
hsk_flash.c, 196	
STATE_RESET	
hsk_flash.c, 196	
STATE_WRITE	
hsk_flash.c, 196	
sel	
hsk_pwm.c, 268	
size	
hsk_flash.c, 201	
state	
hsk_flash.c, 201	
hsk_pwc.c, 248	
—	
sum	
hsk_pwc.c, 249	
TEO	
TF2	
hsk_isr5_callback, 81	
hsk_isr8_callback, 85	
targets	
hsk_adc.c, 101	
TI	
hsk_isr8_callback, 85	
tick0	
main.c, 312	
tick0_count_20	
main.c, 313	
tick0_count_250	
main.c, 313	
timers	
hsk_timer01.c, 295	
VAD ACM	
VAR_ASM	
hsk_flash.c, 196	
VAR_AT	
hsk_flash.c, 196	