

UNIVERSIDADE FEDERAL DO CEARÁ

Campus Quixadá

Curso: Redes de Computadores

Disciplina: Administração de Sistemas Operacionais Windows

Aula 8.1 – Endereçamento IPv4

Prof. Rafael Braga

Agenda

- IP e máscara
- Endereço IP
- Redes e Host
- Endereços reservados
 - Loopback, Rede e Broadcast
- Classes IPv4
 - Classes A, B, C, D e E
- Sub Redes IPv4

IP e Máscara

Não podem
 existir duas
 máquinas com o
 mesmo número
 IP dentro da
 mesma rede.

Endereço IP

- X.Y.Z.W
- Casa endereço IP tem 32 bits ou 4 BYTES ou 4 Octetos. Cada campo em 8 bits;
 - 0000000(Zero) até o 1111111(255)
- O valor máximo para casa octeto é 255;
- Dica de como transformar binário para decimal:
 - -111111111 --> (128+64+32+16+8+4+2+1)

Redes -> Ruas

Hosts -> Casas

Loopback

- Endereços da rede 127.0.0.0: São utilizados como uma aliás (apelido), para fazer referência a própria máquina. Normalmente é utilizado o endereço 127.0.0.1, o qual é associado ao nome localhost. Esta associação é feita através do arquivo hosts.
 - No Windows 2000/XP/Vista/2003 ->
 system32/drives/etc, sendo que este caminho fica
 dentro da pasta onde o Windows foi instalado;

Endereço de Rede

 Endereço com todos os bits destinados à identificação da máquina, iguais a 0: Um endereço com zeros em todos os bits de identificação da máquina, representa o endereço da rede.

• Exemplo:

- Host: 200.100.10.3

- Máscara: 255.255.255.0

Endereço de REDE: 200.100.10.0

Endereço de broadcast - Todos

 Endereço com todos os bits destinados a identificação da máquina iguais a 1. Um endereço com valor 1 em todos os bits de identificação da máquina, representa o endereço de broadcast.

Exemplo:

- Host: 200.100.10.3

- Máscara: 255.255.255.0

Endereço de broadcast: 200.100.10.255

Classes IP

Classe A

1-126

- Endereço IP → 11.200.12.200/8
- Máscara padrão → 255.0.0.0
- Função da máscara rede.host.host.host
- Quantidade de rede → 126
- Qtd. de hosts por rede → 16.777.214 hosts
- Exemplo:
 - REDE \rightarrow 11.0.0.0
 - -1 Post → 11.0.0.1
 - Último Host → 11.255.255.254
 - Broadcast \rightarrow 11.255.255.255

Classe B

128-191

- Endereço IP → 170.70.7.10**/16**
- Máscara padrão → 255.255.0.0

- Quantidade de rede → 16.384
- Qtd. de hosts por rede → 65.534
- Exemplo:
 - REDE → 170.70.0.0
 - -1 Post → 170.70.0.1
 - Último Host → 170.70.255.254
 - Broadcast \rightarrow 170.70.255.255

Classe C

192-223

- Endereço IP → 200.100.10.100/24
- Máscara padrão → 255.255.255.0

- Quantidade de rede \rightarrow 2.097.152
- Qtd. de hosts por rede → 254
- Exemplo:
 - REDE → 200.100.10.0
 - -1° Host \rightarrow 200.100.10.1
 - Último Host → 200.100.10.254
 - Broadcast \rightarrow 200.200.10.255

Resumo das Classes

Classe	Primeiros bits	Número de redes	Número de hosts	Máscara padrão			
A (1-126)	0	126	16.777.214	255.0.0.0			
B (128-191)	10	16.382	65.534	255.255.0.0			
C (192-223)	110	2.097.150	254	255.255.255.0			
D (224-239)	1110	Utilizado para tráfego Multicast					
E (240-255)	1111	Reservado para uso futuro e testes					

Cada host na internet pode ter um IP único?

Endereços IP Reservados para LAN

Classe	Faixa de endereços IP	Notação CIDR
Classe A	10.0.0.0 – 10.255.255.255	10.0.0.0/8
Classe B	172.16.0.1 – 172.31.255.255	172.16.0.0/16
Classe C	192.168.0.0 – 192.168.255.255	192.168.0.0/24

IP Classe C

 Suponha que o setor de TI da UFC/Quixadá queira fazer o endereçamento de 4 laboratórios e que cada laboratório possui sua própria rede inacessível pelas outras. A seguir, veja a rede e a máscara oferecidas pelo setor.

- Rede: 200.100.10.X

- Máscara: 255.255.255.0

IP classe C

- Para a rede oferecida, temos:
 - Rede: 200.100.10.X
 - Máscara: 255.255.255.0
 - Quantidade de Host's: 254
 - Faixa de IP's: 200.100.10.1 até o 200.100.10.254
 - Endereço de rede: 200.100.10.0
 - Endereço de broadcast: 200.100.10.255

Desperdício de endereços

 Se uma rede fosse atribuída para cada laboratório teríamos um desperdício assim:

Laboratório	Nº de máquinas	Rede	Desperdício
Laboratório 1	60	200.100.10.X	194 IP's
Laboratório 2	55	200.100.11.X	199 IP's
Laboratório 3	59	200.100.12.X	195 IP's
Laboratório 4	45	200.100.13.X	209 IP's

Dividir um rede em 4 sub-rede

• Então, a divisão ficaria assim:

Laboratório	Nº de máquinas	Sub-Rede
Laboratório 1	60	1ª sub-rede
Laboratório 2	55	2ª sub-rede
Laboratório 3	59	3ª sub-rede
Laboratório 4	45	4ª sub-rede

- Rede: 200.100.10.X
- Máscara: 255.255.255.0
 - Máscara em binário:
- Bit 1 representa REDE (Network)
- Bit 0 representa HOST (Computadores, Impressoras, Câmeras, Nobreaks e etc.)

- Para criar sub-rede, ocorrerá o "empréstimo" de bits da parte de HOST.
 - Dessa forma, a quantidade de sub redes que podem ser criados por bit "emprestado" pode ser calculado assim:
 - 2^{nº} de bits 1 "emprestados"
- Dessa forma então podemos determinar a quantidade de sub redes.

- 200.100.10.X
- 255.255.255.??
 - 11111111.11111111.1111111.10000000
- Então,
 - $-2^1 = 2$ sub redes (sub rede 0 e 1)

- 200.100.10.X
- 255.255.255.??
 - 11111111.11111111.111111.1<mark>1</mark>000000
- Então,
 - -2^2 = 4 sub redes (sub rede 00, 01, 10 e 11)

- 200.100.10.X
- 255.255.255.??
 - 11111111.11111111.111111.1<mark>11</mark>00000
- Então,
 - $-2^3 = 8$ sub redes, são elas:
 - 000
 - 001
 - 010
 - 011

- 100
- 101
- 110
- 111

- 200.100.10.X
- 255.255.255.??
 - **-** 11111111.11111111.11111111.1111110
- Não funciona, pois não sobra nenhum host válido somente 0 e 1 que é REDE e BROADCAST.

- 200.100.10.X
- 255.255.255.??
 - **-** 11111111.11111111.11111111.111100
- Então,
 - -2^6 = 64 sub redes, que é o máximo de sub redes em uma rede de IP's classe C;

- 200.100.10.X
- 255.255.255.192
 - 11111111.11111111.111111.1<mark>11</mark>000000

128	64	32	16	8	4	2	1
1	1	0	0	0	0	0	0

128+64 = 192

- 200.100.10.X
- 255.255.255.224
 - 11111111.11111111.1111111.1<mark>11</mark>00000

128	64	32	16	8	4	2	1
1	1	1	0	0	0	0	0

•
$$128 + 64 + 32 = 224$$

- 200.100.10.X
- 255.255.255.192
 - 11111111.11111111.1111111.111000000
- Para determinar a quantidade de Hosts por sub rede, pode-se fazer assim:
 - 2nº de bits 0 (a parte de host)
 - Para a máscara acima: 2⁶ = 64 hosts por sub rede;
 - Mas, desse 64 endereços dois são reservados o endereço de REDE (.0) e o de Broadcast (.255)
 - Portanto, para endereçamento efetivo sobram 62;

- Rede: 200.100.10.X
- Máscara (Decimal): 255.255.255.224
 - 11111111.11111111.111111.1<mark>11</mark>00000
 - Para a máscara acima: $2^5 = 32$ hosts por sub rede;
 - Mas, dois são reservados, o endereço de REDE (00000000) e o de Broadcast (11111111);
 - Logo, para endereçamento efetivo de sobram 30;

- Rede: 200.100.10.X
- Máscara(decimal): 255.255.255.252
 - 11111111.11111111.1111111.1<mark>11111</mark>00
 - Para a máscara acima: 2² = 4 hosts por sub rede;
 - \geq 200.100.10.0 \rightarrow (00) End. de Rede 1º sub rede
 - \geq 200.100.10.1 \rightarrow (01) Host 1
 - \geq 200.100.10.2 \rightarrow (10) Host 2
 - \geq 200.100.10.3 \rightarrow (11) End. de broadcast 1^a sub rede

- Rede: 200.100.10.X
- Máscara (decimal): 255.255.255.192

 - Para a máscara acima: 2⁶ = 64 hosts por sub rede;
 - >000000 > Endereço de Rede 1º sub rede
 - \rightarrow 000001 \rightarrow 1º End. de Host da 1ª sub rede;
 - > 111110 → Último End. de Host 1ª sub rede;
 - ► 111111 → End. de broadcast 1º sub rede

- Rede: 200.100.10.**0**
- Máscara (decimal): 255.255.255.192
 - 11111111.11111111.111111.1<mark>11</mark>000000

128	64	32	16	8	4	2	1
0	0	0	0	0	0	0	0

- \rightarrow 0000000 \rightarrow Endereço de Rede 1º sub rede \rightarrow 0;
- \rightarrow 000001 \rightarrow 1º End. de Host da 1º sub rede;
- ➤ 111110 → Último End. de Host 1ª sub rede;
- ➤ 111111 → End. de broadcast 1º sub rede

- Rede: 200.100.10.1
- Máscara (decimal): 255.255.255.192
 - 11111111.11111111.111111.1<mark>11</mark>000000

128	64	32	16	8	4	2	1
0	0	0	0	0	0	0	1

- \rightarrow 0000000 \rightarrow Endereço de Rede 1ª sub rede \rightarrow 0;
- \rightarrow 000001 \rightarrow 1º End. de Host da 1º sub rede \rightarrow 1;
- ➤ 111110 → Último End. de Host 1ª sub rede;
- ➤ 111111 → End. de broadcast 1º sub rede

- Rede: 200.100.10.62
- Máscara (decimal): 255.255.255.192
 - 11111111.11111111.111111.1<mark>11</mark>000000

128	64	32	16	8	4	2	1
0	0	1	1	1	1	1	0

- \rightarrow 0000000 \rightarrow Endereço de Rede 1ª sub rede \rightarrow 0;
- \rightarrow 000001 \rightarrow 1º End. de Host da 1º sub rede \rightarrow 1;
- \rightarrow 111110 \rightarrow Último End. de Host 1º sub rede \rightarrow 62;
- \rightarrow 111111 \rightarrow End. de broadcast 1º sub rede;

- Rede: 200.100.10.63
- Máscara (decimal): 255.255.255.192
 - 11111111.11111111.111111.1<mark>11</mark>000000

128	64	32	16	8	4	2	1
0	0	1	1	1	1	1	1

- \rightarrow 0000000 \rightarrow Endereço de Rede 1º sub rede \rightarrow 0;
- \rightarrow 000001 \rightarrow 1º End. de Host da 1º sub rede \rightarrow 1;
- \rightarrow 111110 \rightarrow Último End. de Host 1º sub rede \rightarrow 62;
- \rightarrow 1111111 \rightarrow End. de broadcast 1^a sub rede \rightarrow 63;

Tabela com todas as sub redes

	End. de Rede	1º HOST	Último HOST	Broadcast
1ª Sub Rede (Lab. 1)	0	1	62	63
2ª Sub Rede (Lab. 2)	64	65	126	127
3ª Sub Rede (Lab. 3)	128	129	190	191
4ª Sub Rede (Lab. 4)	192	193	254	255

Exercício

- Qual é a classe, máscara, endereço de rede e broadcast dos IPs abaixo?
 - -10.26.40.12
 - -200.100.10.2
 - -180.254.255.254
 - -222.22.2.2
- Qual dos IPs abaixo não são válidos, por que?
 - -10.26.40.0
 - -10.0.0.0
 - -192.168.0.255
 - -127.0.0.1
 - **–** 130.5.255.255

- **24.255.255.255**
- **–** 22.255.0.255
- -148.0.0.1

Exercício

 Divida em 16 sub redes a rede 200.100.10.X, mostrando a máscara de sub rede, a quantidade de host em cada sub rede e a tabela completa de endereços;