Asymmetric cryptography

© André Zúquete, João Paulo Barraca

Information and Organizational Securit

1

Asymmetric (Block) Ciphers

Use key pairs

- One private key (personal, not transmittable)
- One public key, available to all

Allow

- Confidentiality without any previous exchange of secrets
- Authentication
 - Of contents (data integrity)
 - Of origin (source authentication, or digital signature)

© André Zúquete, João Paulo Barraca

Information and Organizational Security

Data signature by Alice • Alice encrypts plaintext P with her private key Kprv_Alice Alice: C = {P}_{kprv_Alice} • Anyone can decrypt cyphertext C with Alice's public key Kpub_Alice Anyone: P'= {C}_{kpub_Bob} • If P' = P, then C is Alice's signature of P • Kpub_Alice needs to be known by signature verifiers Kprv_Alice plaintext plaintext plaintext plaintext

Asymmetric ciphers

Advantages

- They are a fundamental authentication mechanism
- They allow to explore features that are not possible with asymmetric ciphers

Disadvantages

- Performance
- Usually are very inefficient and memory consuming

Problems

- Trustworthy distribution of public keys
- Lifetime of key pairs

© André Zúquete, João Paulo Barraca

Information and Organizational Security

Asymmetric ciphers

Approaches: complex mathematic problems

- Discrete logarithms of large numbers
- Integer factorization of large numbers

Most common algorithms

- RSA
- ElGamal
- Elliptic curves (ECC)

Other techniques with asymmetric key pairs

Diffie-Hellman (key agreement)

© André Zúquete, João Paulo Barraca

Information and Organizational Security

RSA (Rivest, Shamir, Adelman, 1978)

Keys

- Private: (d, n)
- Public: (e, n)

Public key encryption (confidentiality)

- C = Pe mod n
- \circ P = C^d mod n

P, C are numbers

 $0 \le P, C < n$

Private key encryption (signature)

- \circ C = P^d mod n
- \circ P = Ce mod n

© André Zúquete, João Paulo Barraca

Information and Organizational Security

RSA (Rivest, Shamir, Adelman, 1978)

Computational complexity

- Discrete logarithm
- Integer factoring

coprime → gcd(a, b) = 1 × → multiplication mod → modulo operation ≡ → modular congruence

Key selection

- Large n (hundreds or thousands of bits)
- \circ n = p × q with p and q being large (secret) prime numbers
- Chose an e co-prime with (p-1) × (q-1)
- Compute d such that $e \times d \equiv 1 \pmod{(p-1)} \times (q-1)$
- Discard p and q
- The value of d cannot be computed out of e and n
- Only from p and q

© André Zúquete, João Paulo Barraca

Information and Organizational Security

9

RSA example

$$p = 5$$
 $q = 11$ (prime numbers)

- o n = p x q = 55
- \circ (p-1) x (q-1) = 40

$$e = 3$$
 (public key = e , n)

Coprime of 40

$$d = 27$$
 (private key = d, n)

• $e \times d \equiv 1 \pmod{40}$ $\rightarrow d \times e \mod{40} = 1, (27 \times 3) \mod{40} = 1$

For
$$P = 26$$
 (notice that $P, C \in [0, n-1]$)

- C = Pe mod n = 263 mod 55 = 31
- P = C^d mod n = 31²⁷ mod 55 = 26

© André Zúquete, João Paulo Barraca

Information and Organizational Security

Hybrid encryption

Combines symmetric with asymmetric cryptography

- Use the best of both worlds, while avoiding problems
- Asymmetric cipher: Uses public keys (but it is slow)
- Symmetric cipher: Fast (but with weak key exchange methods)

Method:

- Obtain K_{pub} from the receiver
- Generate a random K_{sym}
- Calculate C1 = E_{sym}(K_{sym}, P)
- Calculate C2 = E_{asym}(K_{pub}, K_{sym})
- Send C1 + C2
 - C1 = Text encrypted with symmetric key
 - C2 = Symmetric key encrypted with the receiver public key
 - May also contain the IV

André Zúquete, João Paulo Barraca

Information and Organizational Security

4

Randomization of asymmetric encryptions

Non-deterministic (unpredictable) result of asymmetric encryptions

- N encryptions of the same value, with the same key, should yield N different results
- Goal: prevent the trial & error discovery of encrypted values

Approaches

- Concatenation of value to encrypt with two values
 - · A fixed one (for integrity control)
 - A random one (for randomization)

© André Zúquete, João Paulo Barraca

Information and Organizational Security

Elliptic Curve Cryptography (ECC)

Elliptic curves are specific functions

- They have a generator (G)
- A private key K_{prv} is an integer with a maximum of bits allowed by the curve
- A public key K_{pub} is a point $(x,y) = K_{prv} \times G$
- Given K_{pub}, it should be hard to guess K_{prv}

Curves

- NIST curves (15)
 - P-192, P-224, P-256, P-384, P-521
 - B-163, B-233, B-283, B-409, B-571
- K-163, K-233, K-283, K-409, K-571

Other curves

- Curve25519 (256 bits)
- Curve448 (448 bits)

André Zúquete, João Paulo Barraca

Information and Organizational Securit

ECC public key encryption

Combines hybrid encryption with ECDH

Method:

- \circ Obtain $K_{pub\ recv}$ from the receiver
- $\,{}^{\circ}\,$ Generate a random $\rm K_{prv_send}$ and the corresponding $\rm K_{pub_send}$
- Calculate K_{sym} = K_{prv_send} K_{pub_recv}
- C = E(P, K_{sym})
- Send C + K_{pub_send}
- Receiver calculates $K_{sym} = K_{pub_send} K_{prv_recv}$
- P = D(C, K_{sym})

© André Zúquete, João Paulo Barraca

Information and Organizational Security