Les quadripôles

- Définitions
- Caractéristiques internes
- Associations de quadripôles
- Caractéristiques externes
- Fonctions de transfert
- Notion d'adaptation
- Diagramme de Bode

Définitions

Boîte munie de deux bornes d'entrée et deux bornes de sortie

- □ Possibilité de décomposer un circuit électronique complexe en un ensemble de quadripôles
- ☐ Etude facilitée par l'usage du calcul matriciel

<u>Quadripôles passifs</u>: le réseau ne comporte aucune source d'énergie <u>Quadripôles actifs</u>: le réseau comporte des sources de tension ou/et courant

Définitions

Un quadripôle est dit <u>linéaire</u> s'il existe une relation linéaire entre V₁, V₂, I₁ et I_{2 (1)}

Un quadripôle est dit **symétrique** s'il présente le même aspect vu de l'entrée et vu de la sortie

Un quadripôle est dit <u>réciproque</u> si une source de tension placée en entrée conduit à un courant l₂ égal au courant l₁ obtenu lorsque la source de tension est placée en sortie

Un quadripôle est <u>unilatéral</u> si la tension ou courant d'entrée ne dépend pas des paramètres de sortie

 $_{(1)}$ V_1 , V_2 , I_1 et I_2 amplitudes complexes associées à $v_1(t)$, $v_2(t)$, $i_1(t)$ et $i_2(t)$

Caractéristiques internes d'un quadripôle

Paramètres qui relient les grandeurs d'entrée V₁, I₁ et les grandeurs de sortie V₂, I₂

Matrice impédance [Z]

$$\begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ V_2 = Z_{21}I_1 + Z_{22}I_2 \end{cases} \qquad [Z] = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix}$$

Q unilatéral \rightarrow $Z_{12} = 0$

Q symétrique \rightarrow $Z_{11} = Z_{22}$ Q réciproque \rightarrow $Z_{12} = Z_{21}$

Matrice admittance [Y]

$$\begin{cases} I_1 = Y_{11}V_1 + Y_{12}V_2 \\ I_2 = Y_{21}V_1 + Y_{22}V_2 \end{cases}$$

$$\begin{bmatrix} Y \end{bmatrix} = \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix}$$

Q symétrique \rightarrow $Y_{11} = Y_{22}$

Q unilatéral \rightarrow $Y_{12} = 0$

Q réciproque \rightarrow $Y_{12} = Y_{21}$

 $[Y] = [Z]^{-1}$

Caractéristiques internes d'un quadripôle

Matrice chaîne [a]

$$\begin{cases} I_1 = a_{11}V_2 - a_{12}I_2 \\ V_1 = a_{21}V_2 - a_{22}I_2 \end{cases}$$

$$\begin{bmatrix} a \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Q symétrique \rightarrow $a_{11} = a_{22}$

Q unilatéral → det[a] = 0

Q réciproque → det[a] = 1

Matrice hybride [h]

$$\begin{cases} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{cases}$$

$$[h] = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$$

Q symétrique \rightarrow det[h] = 1

Q unilatéral \rightarrow h₁₂ = 0

Q réciproque \rightarrow $h_{12} = -h_{21}$

→ Application transistor bipolaire

Relations entre les diverses représentations matricielles des quadripôles

MATRICE	[2]	[X]	[h]	[a]	[g]
[z]	z ₁₁ z ₁₂	1 Y ₂₂ -Y ₁₂	$\begin{vmatrix} h_{12} \\ h_{22} \end{vmatrix} - h_{21} $	a _{l1} Δa	$\begin{bmatrix} 1 & -g_{12} \\ \frac{1}{g_{11}} & g_{21} & \Delta g \end{bmatrix}$
-	z ₂₁ z ₂₂			a 1 a 22	a ¹¹ a ⁵¹ va
(Y)	Z 2 Z 12	Y Y 11 12	$\begin{bmatrix} \frac{1}{h_{11}} & 1 & -h_{12} \\ h_{21} & \Delta h \end{bmatrix}$	a - Δa	$\begin{bmatrix} \Delta g & g \\ 12 \end{bmatrix}$
	Δ Z -Z ₂₁ Z ₁₁	- United the second of the sec	·	a ₁₂ -1 a ₁₁	g ₂₂ -g ₂₁ 1
[h]	$\begin{bmatrix} 1 \\ Z_{22} \end{bmatrix} \Delta Z \qquad Z_{12}$	$\begin{bmatrix} \frac{1}{Y_{11}} & -Y_{12} \\ \frac{1}{Y_{23}} & A \end{bmatrix}$	h ₁₁ h ₁₂		g ₂₂ -g ₁₂
	ZI	21	1121 122	a ₂₂ -1 a ₂₁	$\begin{bmatrix} A & B \\ A & B \end{bmatrix}$ $\begin{bmatrix} A & B \\ A & B \end{bmatrix}$ $\begin{bmatrix} A & B \\ A & B \end{bmatrix}$
[a]	$\begin{bmatrix} \frac{1}{Z_{21}} \end{bmatrix}$	- 1 Y ₂₁	_∆ h -h ₁₁	a ₁₁ a ₁₂	1 g ₂₂
	1 21 1 Z	$\begin{bmatrix} 1^{Y}21 \\ A & Y \end{bmatrix}$	$\begin{bmatrix} h \\ 21 \\ -h \\ 22 \end{bmatrix}$	a a 21 22	g ₂₁
[g]	1 -Z	1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	h 22 12	a - Δa	g ₁₁ g ₁₂
	Z ₁ 11 Z ₂ 1 A Z	Y 22 -Y ₂₁ 1	-h ₂₁ h ₁₁	1 a ₁₂	a ⁵¹ a ⁵⁵

Associations de quadripôles

Association série

$$[Z_{eq}] = [Z] + [Z']$$

Association parallèle

$$[Y_{eq}] = [Y] + [Y']$$

Association en chaîne ou en cascade

(très utilisée)

Caractéristiques externes d'un quadripôle

Impédance d'entrée du quadripôle chargé par Z

$$Z_e = \frac{V_1}{I_1}$$

Impédance de sortie du quadripôle alimenté par un générateur d'impédance interne Z_q

$$Z_s = \frac{V_2}{I_2} \bigg|_{e_g(t)=0}$$

Le modèle de Thévenin équivalent à la sortie du quadripôle comporte un générateur de tension en série avec une impédance <u>Zs</u>. Cette dernière est l'impédance de sortie du quadripôle.

Fonctions de transfert

La fonction de transfert en régime sinusoïdal permanent est le quotient d'une grandeur de sortie et d'une grandeur d'entrée du quadripôle.

La nature des grandeurs d'entrée et de sortie définit le type de fonction de transfert ou de gain du quadripôle

$$G_{v} = \frac{V_2}{V_I}$$

$$G_I = -\frac{I_2}{I_1}$$

$$G_p = -\frac{1/2 \Re e(V_2 I_2^*)}{1/2 \Re e(V_1 I_1^*)}$$

Adaptation en tension ou en courant ou en puissance d'un quadripôle chargé

Quadripôle adapté en tension

en entrée \rightarrow $|Z_e| >> |Z_g|$

en sortie \rightarrow $|Z_s| << |Z_L|$

Quadripôle adapté en courant

en entrée \rightarrow $|Z_e| << |Z_g|$

en sortie \rightarrow $|Z_s| >> |Z_L|$

Quadripôle adapté en puissance

en entrée \rightarrow $Z_e = Z_g^*$

en sortie \rightarrow $Z_s = Z_L^*$

Représentation graphique des fonctions de transfert : Diagramme de Bode

□ 2 graphiques :

 $|T(j\omega)|_{dB}$ en fonction de $log(\omega)$ Arg $[T(j\omega)]$ en fonction de $log(\omega)$

$$|T(j\omega)|_{dB} = 20 \log|T(j\omega)|$$

 $|T(j\omega)|_{dB} = 10 \log|T(j\omega)|$

pour les tensions et courants pour les puissances

