Nombres entiers, itérations

Aperçu

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence

- 1. Nombres entiers
- 1.1 L'ensemble ordonné (\mathbb{N}, \leq)
- 1.2 Le principe de récurrence
- 1.3 L'ensemble ordonné (\mathbb{Z}, \leq)
- 2. Suites définies par une relation de récurrence

- 1. Nombres entiers
- 1.1 L'ensemble ordonné (\mathbb{N}, \leq)
- 1.2 Le principe de récurrence
- 1.3 L'ensemble ordonné (\mathbb{Z}, \leq)
- 2. Suites définies par une relation de récurrence

T 1 Axiomatique

Ν

L'ensemble $\mathbb N$ est muni d'une relation d'ordre totale \le vérifiant les deux propriétés fondamentales suivantes

- 1. Toute partie non vide de N admet un plus petit élément.
- 2. Toute partie non vide et majorée de N admet un plus grand élément.
- 3. N n'a pas de plus grand élément.

Si p et q sont des entiers, on note

$$[[p,q]] = \{ n \in \mathbb{N} \mid p \le n \le q \}.$$

Si p et q sont des entiers,

$$p \le q \iff p < q + 1.$$

1. Nombres entiers

- 1.1 L'ensemble ordonné (\mathbb{N}, \leq)
- 1.2 Le principe de récurrence
- 1.3 L'ensemble ordonné (\mathbb{Z}, \leq)
- 2. Suites définies par une relation de récurrence

On rappelle qu'un **prédicat** ou une **propriété** sur $\mathbb N$ est une relation contenant une variable $n \in \mathbb N$, c'est-à-dire une application de $\mathbb N$ dans l'ensemble $\mathcal B = \{ \text{Vrai}, \text{Faux} \}$. Si R est un tel prédicat, on écrit «on a R(n)» ou plus simplement «R(n)» pour exprimer que la valeur de R(n) est Vrai. Par exemple, si R(n) est « $2n \ge n^2$ », on a R(1) et R(2) mais on n'a pas R(3).

T 2

Principe de récurrence

Soit R un prédicat sur \mathbb{N} . On suppose que

- R(0) est vraie,
- $\forall n \in \mathbb{N}, R(n) \implies R(n+1).$

Dans ces conditions, la propriété R(n) est vraie pour tout $n \in \mathbb{N}$:

$$\forall n \in \mathbb{N}, R(n).$$

Utiliser ces propriétés, c'est faire un raisonnement par récurrence.

Démonstration non exigible. Effectuons un raisonnement par l'absurde. On suppose donc qu'il existe $n \in \mathbb{N}$ tel que R(n) est faux ; autrement dit, l'ensemble

$$A = \{ n \in \mathbb{N} \mid \text{non } R(n) \}.$$

n'est pas vide. Or $A \subset \mathbb{N}$ donc A admet un plus petit élément, noté a.

R(0) est vraie, donc $a \ge 1$. Par définition de a, on a $a-1 \notin A$, c'est-à-dire que l'assertion R(a-1) est vraie. Or

$$\forall n \in \mathbb{N}, R(n) \implies R(n+1);$$

donc R(a) est vraie, c'est absurde.

Conclusion: $\forall n \in \mathbb{N}, R(n)$.

E 3

Démonstration. Raisonnons par récurrence. Pour $n \in \mathbb{N}$, on définit l'assertion

$$R(n): 5^{n+2} \ge 4^{n+2} + 3^{n+2}.$$

- L'assertion R(0) est vraie¹ puisque $5^2 = 4^2 + 3^2$.
- Soit un entier $n \ge 0$. On suppose que R(n) est vraie, c'est-à-dire $5^{n+2} > 4^{n+2} + 3^{n+2}$. Ainsi²

$$5^{n+3} = 5 \times 5^{n+2}$$

$$\geq 5 \times (4^{n+2} + 3^{n+2})$$

d'après R(n).

Or $5 \times 4^{n+2} \ge 4^{n+3}$ et $5 \times 3^{n+2} \ge 3^{n+3}$; on peut donc affirmer $5^{n+3} > 4^{n+3} + 3^{n+3}$.

d'où
$$R(n+1)$$
.

D'après le principe de récurrence, ³ l'assertion R(n) est vraie pour tout $n \in \mathbb{N}$.

¹Initialisation : R(0).

C 4 Récurrence à deux pas

Soit R un prédicat sur \mathbb{N} . On suppose que

$$R(0)$$
 et $R(1)$ et $\forall n \in \mathbb{N}, (R(n) \text{ et } R(n+1)) \Longrightarrow R(n+2).$

Dans ces conditions,

$$\forall n \in \mathbb{N}, R(n).$$

Ce résultat peut se généraliser à la récurrence à trois pas, quatre pas. . .

\mathbf{i} Récurrence à partir du rang k

Soit R un prédicat sur $[k, +\infty[$. On suppose que

$$R(k)$$
 et $\forall n \geq k, R(n) \implies R(n+1)$.

Dans ces conditions,

$$\forall n \geq k, R(n).$$

C 6 Récurrence limitée à un intervalle

Soit a, b deux entiers tels que $a \le b$, et soit R un prédicat sur [a, b] tel que l'on ait

$$R(a)$$
 et $\forall n \in [a, b-1], R(n) \implies R(n+1).$

Alors

$$\forall n \in [[a,b]], R(n).$$

7 Récurrence avec prédécesseurs

Soit R un prédicat sur \mathbb{N} . On suppose que

$$R(0)$$
 et $\forall n \in \mathbb{N}, (R(0) \text{ et } R(1) \text{ et } \dots \text{ et } R(n)) \Longrightarrow R(n+1).$

Alors

$$\forall n \in \mathbb{N}, R(n).$$

- 1. Nombres entiers
- 1.1 L'ensemble ordonné (\mathbb{N}, \leq)
- 1.2 Le principe de récurrence
- 1.3 L'ensemble ordonné (\mathbb{Z}, \leq)
- 2. Suites définies par une relation de récurrence

- 1. Toute partie non vide et minorée de Z admet un plus petit élément.
- 2. Toute partie non vide et majorée de Z admet un plus grand élément.

1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence

Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **arithmétique** lorsqu'il existe un nombre complexe r tel que

$$\forall n\in\mathbb{N}, u_{n+1}=u_n+r.$$

Ce nombre r est appelé la **raison** de la suite $(u_n)_{n\in\mathbb{N}}$.

P 10 Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r, alors

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Plus généralement,

$$\forall (p,q) \in \mathbb{N}^2, u_q = u_p + (q-p)r.$$

1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence

D 11 Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **géométrique** lorsqu'il existe un nombre complexe r tel que

$$\forall n \in \mathbb{N}, u_{n+1} = ru_n.$$

Ce nombre r est appelé la **raison** de la suite $(u_n)_{n\in\mathbb{N}}$.

P 12 Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison r, alors

$$\forall n \in \mathbb{N}, u_n = u_0 r^n.$$

Plus généralement, si $r \neq 0$.

$$\forall (p,q) \in \mathbb{N}^2, u_q = u_p r^{q-p}.$$

1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence

D 13 Une suite $(u_n)_{n\in\mathbb{N}}$ est dite arithmético-géométrique lorsqu'il existe deux nombres complexes a et b tels que

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b.$$

IV

Soit $f:\mathbb{C}\to\mathbb{C}$ définie par f(x)=ax+b. On considère la suite (u_n) vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b = f(u_n).$$

On suppose $a \neq 1$, (sinon (u_n) est une suite arithmétique).

▶ Déterminons le(s) point(s) fixe(s) de f: pour $x \in \mathbb{C}$,

$$f(x) = x \iff ax + b = x \iff (a - 1)x = -b \iff x = \frac{b}{1 - a}$$

L'application f a donc un unique point fixe $\ell = \frac{b}{1-a}$.

Soit $f:\mathbb{C}\to\mathbb{C}$ définie par f(x)=ax+b. On considère la suite (u_n) vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b = f(u_n).$$

On suppose $a \neq 1$, (sinon (u_n) est une suite arithmétique).

Introduisons la suite (v_n) définie par

$$\forall n \in \mathbb{N}, v_n = u_n - \ell = u_n - \frac{b}{1 - a},$$

alors, pour $n \in \mathbb{N}$,

$$\begin{split} v_{n+1} &= u_{n+1} - \ell = au_n + b - \ell = a(v_n + \ell) + b - \ell \\ &= av_n + a\ell + b - \ell = av_n + f(\ell) - \ell = av_n. \end{split}$$

Ainsi, la suite (v_n) est une suite géométrique de raison a:

$$\forall n \in \mathbb{N}, v_n = a^n v_0.$$

d'où

$$\forall n \in \mathbb{N}, u_n = v_n + \ell = a^n(u_0 - \ell) + \ell = a^n u_0 + b \frac{1 - a^n}{1 - a}.$$

T 14 On considère la suite (u_n) définie par $u_0 = 6$ et $u_{n+1} = 9u_n + 56$ pour tout entier naturel n.

- 1. Calculer les premiers termes de la suites, u_0 , u_1 , u_2 .
- 2. La suite (u_n) est-elle une suite arithmétique? une suite géométrique?
- 3. Exprimer u_n en fonction de n.

Programme Le programme officiel stipule que vous devez connaître une méthode de calcul du terme général d'une suite arithmético-géométrique. Le résultat ci-dessous, en plus d'être plutôt indigeste, est donc hors-programme.

P 15 Hors-Programme

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmético-géométrique vérifiant

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b.$$

Alors, si $a \neq 1$, on a

$$\forall n \in \mathbb{N}, u_n = a^n u_0 + b \frac{1 - a^n}{1 - a} = \left(u_0 - \frac{b}{1 - a}\right) a^n + \frac{b}{1 - a}.$$

Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence

On admet le résultat suivant:

T 16 Soit E un ensemble, f une application de E dans E, a un élément de E. Il existe une et une seule suite $(x_n)_n \in \mathbb{N}$ de E telle que

$$\left\{ \begin{array}{l} x_0 = a \\ \forall n \in \mathbb{N}, x_{n+1} = f(x_n). \end{array} \right.$$

C'est ainsi, par exemple, que l'on définira les suites arithmétiques et géométriques.

On peut aussi définir une suite par des relations de récurrence plus compliquées.

T 17 Soit E un ensemble, $(f_n)_{n\in\mathbb{N}}$ une famille d'applications de E dans E, a un élément de E. Il existe une et une seule suite $(x_n)_{n\in\mathbb{N}}$ de E telle que

$$\left\{ \begin{array}{l} x_0 = a \\ \forall n \in \mathbb{N}, x_{n+1} = f_n(x_n). \end{array} \right.$$

E 18 Avec $E = \mathbb{N}$, $f_n(x) = (n+1)x$, et a = 1. On définit ainsi par récurrence la suite

$$n! = 1 \times 2 \times \cdots \times n$$

(pour n > 0). Ce nombre, qui est le produit des n premiers entiers > 0 s'appelle factorielle de n. On convient que 0! = 1.

n! intervient dans de nombreuses formules; n! prend rapidement de «grandes valeurs»: $10! = 3\,628\,800$; 50! est un nombre de 65 chiffres en base 10; 100! est un nombre à 158 chiffres en base 10.

On peut aussi définir une suite par des relations de récurrence plus compliquées.

T 17 Soit E un ensemble, $(f_n)_{n\in\mathbb{N}}$ une famille d'applications de E dans E, a un élément de E. Il existe une et une seule suite $(x_n)_{n\in\mathbb{N}}$ de E telle que

$$\left\{ \begin{array}{l} x_0 = a \\ \forall n \in \mathbb{N}, x_{n+1} = f_n(x_n). \end{array} \right.$$

E 19 Avec $E = \mathbb{R}_+$, $f_n(x) = \sqrt{x+n}$, et a=1. On définit ainsi par récurrence une suite (x_n) telle que

$$x_0 = 1$$
, $x_1 = 1$, $x_2 = \sqrt{2}$, $x_3 = \sqrt{\sqrt{2} + 2}$, $x_4 = \sqrt{\sqrt{\sqrt{2} + 2} + 3}$,...

On définit aussi des suites par récurrence d'ordre k où k est un entier naturel non nul. Il s'agit de suites (x_n) de E définies à l'aide d'une suite d'applications de (f_n) de E^k dans E, pour lesquelles on se donne les k premières valeurs $x_0, x_1, \ldots, x_{k-1}$ et pour tout n

$$x_{n+k} = f_n(x_n, x_{n+1}, \dots, x_{n+k-1}).$$

Étant donnés $\left(a_0,\dots,a_{k-1}\right)\in E^k$, il y a encore existence et unicité de la suite $\left(x_n\right)$ de E telle que

$$\begin{cases} x_0 = a_0, x_1 = a_1, \dots, x_{k-1} = a_{k-1} \\ \forall n \in \mathbb{N}, x_{n+k} = f_n \left(x_n, x_{n+1}, \dots, x_{n+k-1} \right). \end{cases}$$

E 20 La suite de Fibonacci est définie par

R

$$\left\{ \begin{array}{l} F_0 = 0, F_1 = 1 \\ \forall n \in \mathbb{N}, F_{n+2} = F_n + F_{n+1} \end{array} \right.$$

Il arrive même que l'on définisse une suite par une relation de récurrence dans laquelle chaque terme se calcule à l'aide de tous les précédents. Là aussi on admet l'existence et l'unicité.

On définit aussi des suites par récurrence d'ordre k où k est un entier naturel non nul. Il s'agit de suites (x_n) de E définies à l'aide d'une suite d'applications de (f_n) de E^k dans E, pour lesquelles on se donne les k premières valeurs $x_0, x_1, \ldots, x_{k-1}$ et pour tout n

$$x_{n+k} = f_n(x_n, x_{n+1}, \dots, x_{n+k-1}).$$

Étant donnés $\left(a_0,\dots,a_{k-1}\right)\in E^k$, il y a encore existence et unicité de la suite $\left(x_n\right)$ de E telle que

$$\begin{cases} x_0 = a_0, x_1 = a_1, \dots, x_{k-1} = a_{k-1} \\ \forall n \in \mathbb{N}, x_{n+k} = f_n \left(x_n, x_{n+1}, \dots, x_{n+k-1} \right). \end{cases}$$

E 21 Dans \mathbb{R} , la suite (x_n) telle que

R

$$\left\{ \begin{array}{l} x_0 = 1, x_1 = 2 \\ \forall n \in \mathbb{N}, x_{n+2} = 3x_n - 2x_{n+1} - n. \end{array} \right.$$

Il arrive même que l'on définisse une suite par une relation de récurrence dans laquelle chaque terme se calcule à l'aide de tous les précédents. Là aussi on admet l'existence et l'unicité.