MDI230 - PROJET VÉLIB

Pour la simulation, nous avons besoin de

- $\lambda_{it_{ij}}$ le paramètre de la loi exponentielle qui régit le temps entre les départs de la station i pour aller en station j,
- $\lambda_{t_{ij}j}$ le paramètre de la loi exponentielle qui régit le temps de trajet entre la station i et la station j.

Nous disposons des données réelles :

- Le nombre d'arrivées A_i pour la station $i \in I$ observée pendant T_i heures.
- Le nombre de départs D_i pour la station $i \in I$ observée pendant T_i heures.
- Le temps moyen de trajet en minutes τ_{ij} pour tous les couples de stations $i, j \in I, i \neq j$.

On sait que la moyenne d'une variable aléatoire qui suit une loi exponentielle est l'inverse de son paramètre. Donc on a immédiatement, en convertissant τ_i en secondes :

$$\lambda_{t_{ij}j} = \frac{1}{\tau_{ij}}.$$

Ensuite, on peut découper le paramètre $\lambda_{it_{ij}}$ en $\lambda_{it_{ij}} = \lambda_i p_{ij}$ où λ_i est l'intensité de départs de la station i en s^{-1} et p_{ij} est la probabilité de faire le trajet t_{ij} sans unité. On a alors immédiatement :

$$\lambda_i = \frac{D_i}{T_i}.$$

Attention aux unités, il faut convertir T_i en secondes.

Ensuite, la probabilité p_{ij} est la proportion de vélos qui en partant de la station i vont à la station j, c'est donc :

$$p_{ij} = \frac{A_j/T_j}{\sum_{k \in I, k \neq i} A_k/T_k}.$$

Attention à bien retirer les arrivées en i car le trajet t_{ii} est impossible.

Pour la simulation, on ne conserve que 5 stations (numéros 3 à 7), les paramètres calculés, ainsi que les conditions initiales sont donnés dans le fichier Excel Donnees_simulations.xlsx.