Policy improvement

$$greedy(\pi) \ge \pi$$

 π_1

$$\pi_1 \leq \operatorname{greedy}(\pi_1)$$

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2$$

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2)$$

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3$$

$$\pi_1 \le \operatorname{greedy}(\pi_1) = \pi_2 \le \operatorname{greedy}(\pi_2) = \pi_3 \le \operatorname{greedy}(\pi_3)$$

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \operatorname{greedy}(\pi_3) = \pi_4$$

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \operatorname{greedy}(\pi_3) = \pi_4 \leq \cdots$$

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \operatorname{greedy}(\pi_3) = \pi_4 \leq \cdots$$

Does this improvement process converge?

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \operatorname{greedy}(\pi_3) = \pi_4 \leq \cdots$$

Does this improvement process converge?

Yes!

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\boxed{\pi_* \geq \pi, \quad \forall \pi} \tag{1}$$

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\left[\pi_* \geq \pi, \quad \forall \pi\right]$$
 (1)

Iterative greedy policy improvement converges to the optimal policy.

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \cdots$$

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\boxed{\pi_* \geq \pi, \quad \forall \pi} \tag{1}$$

Iterative greedy policy improvement converges to the optimal policy.

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \cdots \pi_*$$

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\boxed{\pi_* \geq \pi, \quad \forall \pi} \tag{1}$$

Iterative greedy policy improvement converges to the optimal policy.

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \cdots \pi_*$$

• Greedy policy improvement wrt π_* leads to π_* itself

$$\pi_* \le \operatorname{greedy}(\pi_*)$$
 (2)

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\pi_* \geq \pi, \quad \forall \pi$$
 (1)

Iterative greedy policy improvement converges to the optimal policy.

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \cdots \pi_*$$

• Greedy policy improvement wrt π_* leads to π_* itself

$$\pi_* \leq \operatorname{greedy}(\pi_*)$$

$$\Longrightarrow \boxed{\operatorname{greedy}(\pi_*) = \pi_*}$$

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\boxed{\pi_* \geq \pi, \quad \forall \pi} \tag{1}$$

Optimal policy maximizes the value of all states in the MDP

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\boxed{\pi_* \geq \pi, \quad \forall \pi} \tag{1}$$

Optimal policy maximizes the value of all states in the MDP

$$\pi^{'} \geq \pi \quad \text{if} \quad V_{\pi^{'}}(s) \geq V_{\pi}(s), \quad \forall s \qquad (2)$$

Definition

For finite MDPs (has terminal states) with bounded rewards, there exists an optimal policy π_* , such that

$$\boxed{\pi_* \geq \pi, \quad \forall \pi} \tag{1}$$

Optimal policy maximizes the value of all states in the MDP

$$\pi^{'} \geq \pi \quad \text{if} \quad V_{\pi^{'}}(s) \geq V_{\pi}(s), \quad \forall s \qquad (2)$$

$$\Longrightarrow V_{\pi_{*}}(s) \geq V_{\pi}(s), \quad \forall s, \pi$$

Goal

Irrespective of the dynamics of the MDP, find the policy that maximize the discounted reward sum (value) for all states in the MDP.

Goal

Irrespective of the dynamics of the MDP, find the $\it optimal\ policy\ \pi_*.$

Goal

Irrespective of the dynamics of the MDP, find the *optimal policy* π_* .

Method: iterative greedy policy improvement

$$\pi_1 \leq \operatorname{greedy}(\pi_1) = \pi_2 \leq \operatorname{greedy}(\pi_2) = \pi_3 \leq \operatorname{greedy}(\pi_3) = \pi_4 \leq \cdots \pi_*$$

