Questions 1-25 carry 1 mark each

1. Consider a system of linear equations:

$$x - 2y + 3z = -1$$

$$x - 3y + 4z = 1$$

$$-2x + 4y - 6z = k$$

The value of k for which the system has infinitely many solutions is

- 2. A function $f(x) = 1 x^2 + x^3$ is defined in the closed interval [-1, 1]. The value of x, in the open interval (-1,1) for which the mean value theorem is satisfied, is

 - (a) $-\frac{1}{2}$ (b) $-\frac{1}{3}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

- 3. Suppose A and B are two independent events with probabilities $P(A) \neq A$ 0 and $P(B) \neq 0$. Let \overline{A} and \overline{B} be their complements. Which one of the following statements is FALSE?
 - (a) $P(A \cap B) = P(A)P(B)$
- (b) $P(A \cup B) = P(A) + P(B)$

(c) P(A|B) = P(A)

- (d) $P(\overline{A} \cap \overline{B}) = P(\overline{A})P(\overline{B})$
- 4. Let z = x + iy be a complex variable. Consider that contour integration is performed along the unit circle in anticlockwise direction. Which one of the following statements is **NOT TRUE**?
 - (a) The residue of $\frac{z}{z^2-1}$ at z=1 is $\frac{1}{2}$
 - (b) $\oint_C z^2 dz = 0$
 - (c) $\frac{1}{2\pi i} \oint_C \frac{1}{z} dz$
 - (d) \overline{z} (complex conjugate of z) is an analytical function

5. The value of
$$p$$
 such that the vector $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is an eigenvector of the matrix $\begin{bmatrix} 4 & 1 & 2\\p & 2 & 1\\14 & -4 & 10 \end{bmatrix}$ is _____.

6. In the circuit shown, at resonance, the amplitude of the sinusoidal voltage (in Volts) across the capacitor is _____.

7. In the network shown in the figure, all resistors are identical with $R = 300\Omega$. The resistance $R_a b (in\Omega)$ of the network is _____.

8. In the given circuit, the values of V_1 and V_2 respectively are

- (a) 5V, 25V
- (b) 10V, 30V
- (c) 15V, 35V
- (d) 0V, 20V
- 9. A region of negative differential resistance is observed in the current voltage characteristics of a silicon PN junction if
 - (a) both the P-region and the N-region are heavily doped
 - (b) the N-region is heavily doped compared to the P-region
 - (c) the P-region is heavily doped compared to the N-region
 - (d) an intrinsic silicon region is inserted between the P-region and the N-region
- 10. A silicon sample is uniformly doped with donor type impurities with a concentration of $10^16/cm^3$. The electron and hole mobilities in the sample are $1200cm^2/V-s$ and $400cm^2/V-s$ respectively. Assume complete ionization of impurities. The charge of an electron is 1.610^-19C . The resistivity of the sample $(in\Omega-cm)$ is ______.

11. For the circuit with ideal diodes shown in the figure, the shape of the output (v_{out}) for the given sine wave input (v_{in}) will be

12. In the circuit shown below, the Zener diode is ideal and the Zener voltage is 6V. The output voltage $V_o(\text{in volts})$ is _____.

13. In the circuit shown, the switch SW is thrown from position A to position B at time t=0. The energy $(in\mu J)$ taken from the 3V source to charge the $0.1\mu F$ capacitor from 0V to 3V is

- (a) 0.3
- (b) 0.45
- (c) 0.9
- (d) 3
- 14. In an 8085 microprocessor, the shift registers which store the result of an addition and the overflow bit are, respectively
 - (a) B and F
 - (b) A and F
 - (c) H and F
 - (d) A and C
- 15. A 16Kb (=16,384 bit) memory array is designed as a square with an aspect ratio of one (number of rows is equal to the number of columns). The minimum number of address lines needed for the row decoder is
- 16. Consider a four bit D to A converter. The analog value corresponding to digital signals of values 0000 and 0001 are 0V and 0.0625V respectively. The analog value (in Volts) corresponding to the digital signal 1111 is
- 17. The result of the convolution $x(-t) * \delta(-t t_0)$ is

- (a) $x(t+t_0)$ (b) $x(t-t_0)$ (c) $x(-t+t_0)$ (d) $x(-t-t_0)$
- 18. The waveform of a periodic signal x(t) is shown in the figure

A signal g(t) is defined by $g(t) = x\left(\frac{x-1}{2}\right)$. The average power of g(t) is _____.

19. Negative feedback in a closed-loop control system **DOES NOT**

- (a) reduce the overall gain
- (b) reduce bandwidth
- (c) improve disturbance rejection
- (d) reduce sensitivity to parameter variation

20. A unity negative feedback system has the open-loop transfer function $G\left(t\right)=\frac{K}{s\left(s+1\right)\left(s+3\right)}$. The value of the gain $K\left(>0\right)$ at which the root locus crosses the imaginary axis is _____.

21. The polar plot of the transfer function

$$G(s) = \frac{10(s+1)}{s(s+10)}$$
 for $0 \le \omega < \infty$

will be in the

- (a) first quadrant
- (b) second quadrant
- (c) third quadrant
- (d) fourth quadrant
- 22. A sinusoidal signal of 2kHz frequency is applied to a delta modulator. The sampling rate and step-size Δ of the delta modulator are 20,000

samples per second and 0.1V, respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is

- (a) $\frac{1}{2\pi}$ (b) $\frac{1}{\pi}$ (c) $\frac{2}{\pi}$

- 23. Consider the signal $s(t) = m(t) \cos(2\pi f_c t) + \hat{m}(t) \sin(2\pi f_c t)$ where $\hat{m}(t)$ denotes the Hilbert transform of m(t) and the bandwidth of m(t)is very small compared to f_c . The signal $\mathbf{s}(t)$ is a
 - (a) high-pass signal
 - (b) low-pass signal
 - (c) band-pass signal
 - (d) double sideband suppressed carrier signal
- 24. Consider a straight, infinitely long, current carrying conductor lying on the z-axis. Which one of the following plots (in linear scale) qualitatively represents the dependence of H_{ϕ} on r, where H_{ϕ} is the magnitude of the azimuthal component of magnetic field outside the conductor and r is the radial distance from the conductor?

25. The electric field component of a plane wave traveling in a lossless dielectric medium is given by $\overrightarrow{E}(z,t) = \hat{a_y} 2cos \left(10^8 t - \frac{z}{sqrt2}\right) V/m$. The wavelength (in m) for the wave is _____.

Questions 26-55 carry 2 marks each

- 26. The solution of the differential equation $\frac{d^2y}{dy^2}+2\frac{dy}{dt}+y=0$ with $y\left(0\right)=y'\left(0\right)=1$ is
 - (a) $(2-t)e^t$

(b) $(1+2t)e^{-t}$

(c) $(2+t)e^{-t}$

- (d) $(1-2t)e^t$
- 27. A vector \overrightarrow{P} is given by $\overrightarrow{P} = x^3 y \overrightarrow{a_x} x^2 y^2 \overrightarrow{a_y} x^2 y x \overrightarrow{a_z}$. Which one of the following statements is **TRUE**?
 - (a) \overrightarrow{P} is solenoidal, but not irrotational
 - (b) \overrightarrow{P} is irrotational, but not solenoidal
 - (c) \overrightarrow{P} is neither solenoidal nor irrotational
 - (d) \overrightarrow{P} is both solenoidal and irrotational
- 28. Which one of the following graphs describes the function $f(x) = e^{-x}(x^2 + x + 1)$?

- 29. The maximum area (in square unit) of a rectangle whose vertices lie on the ellipse $x^2 + 4y^2 = 1$ is _____.
- 30. The damping ratio of a series RLC circuit can be expressed as
 - (a) $\frac{R^2C}{2L}$ (b) $\frac{2L}{R^2C}$ (c) $\frac{R}{2}\sqrt{\frac{C}{L}}$ (d) $\frac{2}{R}\sqrt{\frac{L}{C}}$
- 31. In the circuit shown, switch SW is closed at t = 0. Assuming zero initial conditions, the value of $v_c(t)$ (in Volts) at t = 1 sec is _____.

32. In the given circuit, the maximum power (in Watts) that can be transferred to the load R_L is (C_J)

- 33. The built-in potential of an abrupt p-n junction is 0.75V. If its junction capacitance (C_J) at a reverse bias (V_R) of 1.25V is 5pF, the value of C_J (in pF) when $V_R = 7.25V$ is _____.
- 34. A MOSFET in saturation has a drain current of 1mA for $V_DS = 0.5V$. If the channel length modulation coefficient is $0.05V^{-1}$, the output resistance (in $k\Omega$) of the MOSFET is ____.

- 35. For a silicon diode with long P and N regions, the accepter and donor impurity concentrations are $1\times 10^17~cm^-3$ and $1\times 10^15~cm^-3$, respectively. The lifetimes of electrons in P region and holes in N region are both 100 μ s. The electron and hole diffusion coefficients are $49~cm^2/s$ and $36~cm^2/s$, respectively. Assume kT/q=26~mV, the intrinsic carrier concentration is $1\times 10^10~cm^-3$, and $q=1.6\times 10^-19$ C. When a forward voltage of 208~mV is applied across the diode, the hole current density (in nA/cm^2) injected from P region to N region is ______.
- 36. The Boolean expression $F(X,Y,Z) = \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z} + XYZ$ converted into the canonical product of sum (POS) form is

(a)
$$(X + Y + Z) (X + Y + \overline{Z}) (X + \overline{Y} + \overline{Z}) (\overline{X} + Y + \overline{Z})$$

(b)
$$(X + \overline{Y} + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)(\overline{X} + \overline{Y} + \overline{Z})$$

(c)
$$(X + Y + Z)(\overline{X} + Y + \overline{Z})(X + \overline{Y} + Z)(\overline{X} + \overline{Y} + \overline{Z})$$

(d)
$$(X + \overline{Y} + \overline{Z})(\overline{X} + Y + Z)(\overline{X} + \overline{Y} + Z)(X + Y + Z)$$

37. All the logic gates shown in the figure have a propagation delay of 20 ns. Let A=C=0 and B=1 until time t=0. At t=0, all the inputs flip (i.e., A=C=1 and B=0) and remain in that state. For t>0, output Z=1 for a duration (in ns) of ______.

- 38. A 3-input majority gate is defined by the logic function M(a,b,c) = ab + bc + ca. Which one of the following gates is represented by the function $M\left(\overline{M(a,b,c)},M(a,b,\overline{c}),c\right)$?
 - (a) 3-input NAND gate
- (b) 3-input XOR gate
- (c) 3-input NOR gate

(d) 3-input XNOR gate

39. For the NMOSFET in the circuit shown, the threshold voltage is V_{th} , where $V_{th} > 0$. The source voltage V_{SS} is varied from 0 to V_{DD} . Neglecting the channel length modulation, the drain current I_d as a function of V_{SS} is represented by

40. In the circuit shown, assume that the opamp is ideal. The bridge output voltage V_0 (in mV) for $\delta = 0.05$ is _____.

41. The circuit shown in the figure has an ideal opamp. The oscillation frequency and the condition to sustain the oscillations, respectively, are

(a) $\frac{1}{CR}$ and $R_1 = R_2$

(b) $\frac{1}{CR}$ and $R_1 = 4R_2$

(c) $\frac{1}{2CR}$ and $R_1 = R_2$

(d) $\frac{1}{2CR}$ and $R_1 = 4R_2$

42. In the circuit shown, $I_1 = 80 \text{mA}$ and $I_2 = 4 \text{mA}$. Transistors T_1 and T_2 are identical. Assume that the thermal voltage V_T is 26 mV at $27^{\circ}C$. At $50^{\circ}C$, the value of the voltage V_12 (in mV) is ______.

43. Two sequences [a, b, c] and [A, B, C] are related as

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & W_3^{-1} & W_3^{-2} \\ 1 & W_3^{-2} & W_3^{-4} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \text{ where } W_3 = e^{j\frac{2\pi}{3}}.$$

If another sequence [p, q, r] is derived as,

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & W_3^1 & W_3^2 \\ 1 & W_3^2 & W_3^4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & W_3^2 & 0 \\ 0 & 0 & W_3^4 \end{bmatrix} \begin{bmatrix} A/3 \\ B/3 \\ C/3 \end{bmatrix}$$

then the relationship between sequence [p, q, r] and [a, b, c] is

- (a) [p, q, r] = [b, a, c]
- (b) [p, q, r] = [b, c, a]
- (c) [p, q, r] = [c, a, b]

- (d) [p, q, r] = [c, b, a]
- 44. For the discrete-time system shown in the figure, the poles of the system transfer function are located at

- (a) 2, 3
- (b) $\frac{1}{2}$, 3
- (c) $\frac{1}{2}$, $\frac{1}{3}$
- (d) $2, \frac{1}{3}$
- 45. The pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has multiplicity 4. The impulse response of the system is h[n]. If h[0] = 1, we can conclude,

- (a) h[n] is real for all n
- (b) h[n] is purely imaginary for all n
- (c) h[n] is real for only even
- (d) h[n] is purely imaginary for only odd
- 46. The open-loop transfer function of a plant in a unity feedback configuration is given as $G(s) = \frac{K(s+4)}{(s+8)(s^2-9)}$. The value of the gain K(>0) for which -1+j2 lies on the root locus is _____.
- 47. A lead compensator network includes a parallel combination of R and C in the feed-forward path. If the transfer function of the compensator is $G_c(s) = \frac{s+2}{s+4}$, the value of RC is _____.
- 48. A plant transfer function is given as $G_c(s) = \left(K_P + \frac{K_I}{s}\right) \frac{1}{s(s+2)}$. When the plant operates in a unity feedback configuration, the condition for the stability of the closed loop system is

(a)
$$K_p > \frac{K_I}{2} > 0$$
 (b) $2K_I > K_p > 0$ (c) $2K_I < K_p$ (d) $2K_I > K_p$

49. The input X to the Binary Symmetric Channel(BSC) shown in the figure is '1' with probability 0.8. The cross-over probability is 1/7. If the received bit Y = 0, the conditional probability that '1' was transmitted is _____.

50. The transmitted signal in a GSM system is of 200 kHz bandwidth and 8 users share a common bandwidth using TDMA. If at a given time 12 users are talking in a cell, the total bandwidth of the signal received by the base station of the cell will be at least (inkHz) ______.

51. In the system shown in Figure(a),m(t) is a low-pass signal with bandwidth W Hz. The frequency response of the band-pass filter H(f) is shown in Figure(b). If it is desired that the output signal z(t) = 10x(t), the maximum value of W(Hz) should be strictly less than _____.

52. A source emits bit 0 with probability $\frac{1}{3}$ and bit 1 with probability $\frac{2}{3}$. The emitted bits are communicated to the receiver. The receiver decides for either 0 or 1 based on the received value R. It is given that the conditional density functions of R are as

$$f_{R|0}(r) = \begin{cases} \frac{1}{4}, & -3 \le r \le 1\\ 0 & \text{otherwise.} \end{cases} \text{ and } f_{R|1}(r) = \begin{cases} \frac{1}{6}, & -1 \le r \le 5\\ 0 & \text{otherwise.} \end{cases}$$

The minimum decision error probability is

(a) 0 (b)
$$1/12$$
 (c) $1/9$ (d) $1/6$

53. The longitudinal component of the magnetic field inside an air-filled rectangular waveguide made of a perfect electric conductor is given by

the following expression

$$H_z(x, y, z, t) = 0.1\cos(25\pi x)\cos(30.3\pi y)\cos(12y \times 10^9 t - \beta z)(A/m)$$

The cross-sectional dimensions of the waveguide are given as a=0.08m and b=0.033m. The mode of propagation inside the waveguide is

(a) TM_{12}

(b) TM_{21}

(c) TE_{21}

- (d) TE_{12}
- 54. The electric field intensity of a plane wave traveling in free space is given by the following expression

$$\mathbf{E}(x,t) = \mathbf{a}_y 24\pi \cos(\omega t - k_0 x) (V/m)$$

In this field, consider a square area $10\text{cm} \times 10\text{cm}$ on a plane x + y = 1. The total time-averaged power (in mW) passing through the square area is _____.

55. Consider a uniform plane wave with amplitude (E_0) of 10V/m and 1.1 GHz frequency travelling in air, and incident normally on a dielectric medium with complex relative permittivity (ε_r) and permeability (μ_r) as shown in the figure.

The magnitude of the transmitted electric field component (inV/m) after it has travelled a distance of 10 cm inside the dielectric region is