Model Documentation of the 'Control surface servo for an underwater vehicle,'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^8 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^2 z$ $\in \mathbb{R}^1 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

	- •	-						
Symbol	Value							
A	0	850.0	0	0	0	0	0	0
	-850.0	-120.0	-4100.0	0	0	0	0	0
	33.0	0	-33.0	0	-700.0	0	0	0
	0	0	0	0	1400.0	0	0	0
	0	0	1600.0	-450.0	-110.0	0	0	0
	0	0	0	81.0	0	-1.0	0	-900.0
	0	0	0	0	0	0	0	110.0
	0	0	0	0	0	12.0	-1.1	-22.0
В	0	0]						_
	4.6 990	0.000						
	0	0						
	0	0						
	0	0						
	0	0						
	0	0						
	0	0						
B_1	0	0						
	4.6 990	0.000						
	0	0						
	0	0						
	0	0						
	0	0						
	0	0						
	0	0						
C_1	L		$[0 \ 1.0 \ 0]$					
C			1.0 0 0)]				
	0 0 0		0 1.0 0					
D_{11}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$			_				
D_{12}^{11}	1.0 0							
	$\begin{bmatrix} 0 & 0 \end{bmatrix}$							
D_{21}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$							
-								

3 Derivation and Explanation

This model is part of the "'COMPleib"'- library and was automatically imported into ACKREP.

The original description was:

UWV Control surface servo for an underwater vehicle, E. J. Davison, "Benchmark Problems for Control System Design", "Report of the IFAC Theory Comittee", $1990~\mathrm{p.}32$

4 Simulation

Figure 1: Simulation of the Control surface servo for an underwater vehicle,.

References

 $[1]\,$. J. Davison, "Benchmark Problems for Control System Design", "Report of the IFAC Theory Comittee", 1990 p.32