1. Introduction, the natural numbers

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} = \mathbb{N} \cup \{0\}$
- **Peano's axioms**: three primitive terms: \mathbb{N}_0 , 0 and **successor function**, S.
 - $0 \in \mathbb{N}_0$.
 - $\forall a \in \mathbb{N}_0, S(a) \neq 0.$
 - $S(a) = S(b) \Rightarrow a = b$.
 - If $X \subseteq \mathbb{N}_0$ and
 - $0 \in X$ and
 - $\forall a \in X, S(a) \in X$

then
$$X = \mathbb{N}_0$$
.

- Last axiom applied to $X = \{n \in \mathbb{N}_0 : P(n) \text{ true}\}$ gives **Principle of Mathematical Induction (PMI)**: for statement P(n), if P(0) true and $\forall n \in \mathbb{N}_0, P(n) \Rightarrow P(n+1)$ then P(n) true for every $n \in \mathbb{N}_0$.
- PMI variants:
 - If P(0) true and if for every $n \in \mathbb{N}_0$, P(x) for every x < n implies P(n), then P(n) true for every $n \in \mathbb{N}_0$.
 - Same as two variants above but with base case P(1) true leading to P(n) true for every $n \in \mathbb{N}$.
- Addition of natural numbers: let $a \in \mathbb{N}_0$.
 - a + 0 = a.
 - a + S(b) = S(a + b)
- Well ordering principle (WOP): let $S \subseteq \mathbb{N}_0$, $S \neq \emptyset$, then S has a smallest element.

2. Divisibility

- a divides b, $a \mid b$ if $\exists d \in \mathbb{Z}, b = ad$. If not, write $a \nmid b$.
- Properties of divisibility:
 - $a \mid 0$.
 - If $a \neq 0, 0 \nmid a$.
 - $1 \mid a \text{ and } a \mid a$.
 - $a \mid b \Longrightarrow a \mid bc$.
 - $a \mid b$ and $b \mid c \Longrightarrow a \mid c$.
 - $a \mid b$ and $a \mid c \Longrightarrow a \mid (bx + cy)$ for any $x, y \in \mathbb{Z}$.
 - $a \mid b$ and $b \mid a \Longrightarrow a = \pm b$.
 - $a \mid b, a > 0, b > 0 \Longrightarrow a \leq b$.
 - $a \mid b \Longrightarrow ac \mid bc$.
- **Division algorithm**: let $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Then exist unique q and r such that

$$a = qb + r$$
, $0 \le r < b$

- **Common divisor** d of a and b is such that $d \mid a$ and $d \mid b$.
- Greatest common divisor (gcd) of a and b is maximal common divisor.
- gcd(0,0) doesn't exist.
- Properties of gcd:

- gcd(a, b) = gcd(b, a).
- If a > 0, gcd(a, 0) = a.
- gcd(a, b) = gcd(-a, b).
- If $a > 0, b > 0, \gcd(a, b) \le \min\{a, b\}.$
- For every $a, b, q \in \mathbb{Z}$,

$$\gcd(a,b)=\gcd(a,b-a)=\cdots=\gcd(a,b-qa)$$

• Euclidean algorithm: let $a, b \in \mathbb{N}$. Repeating the division algorithm:

$$\begin{aligned} a &= q_1 b + r_1 \\ b &= q_2 r_1 + r_2 \\ r_1 &= q_3 r_2 + r_3 \\ &\vdots \\ r_{n-2} &= q_n r_{n-1} + r_n \end{aligned}$$

Then exists smallest n such that $r_n=0$. Then if $n=1,\gcd(a,b)=b$, else $\gcd(a,b)=r_{n-1}.$ Also, exists $x,y\in\mathbb{Z}$ such that

$$\gcd(a,b) = ax + by$$