### CENTRO DE CIENCIAS MATEMÁTICAS

## CINVESTAV

ENES Análisis exploratorio de datos de microbiomas

## Capítulo 7

Andrés Arredondo (email\_1@gmail.com) Adriana Haydé Contreras Peruyero (haydeeperuyero@gmail.com) David Alberto García Estrada (@gmail.com)

Morelia

Septiembre de 2022

# Índice

| 1. | Dat                      | os de l                                   | R   | at  | one                  | es   | <b>y</b> 1 | Ηι  | ım  | an  | .OS |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 3 |
|----|--------------------------|-------------------------------------------|-----|-----|----------------------|------|------------|-----|-----|-----|-----|--|--|---|--|--|---|-------|--|--|---|--|--|--|--|---|-------|--|---|---|
| 2. | Aná                      | Análisis exploratorio con resumen gráfico |     |     |                      |      |            |     |     |     |     |  |  |   |  |  |   | 3     |  |  |   |  |  |  |  |   |       |  |   |   |
|    | 2.1. Gráficos de riqueza |                                           |     |     |                      |      |            |     |     |     |     |  |  |   |  |  | 3 |       |  |  |   |  |  |  |  |   |       |  |   |   |
|    | 2.2.                     | Barras                                    | S   | de  | abı                  | ınc  | lan        | cia | a   |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 5 |
|    | 2.3.                     | Mapas                                     | s c | de  | $\operatorname{cal}$ | or   |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    | 2.4.                     | Redes                                     |     |     |                      |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    | 2.5.                     | Árbol                                     | fi  | log | gene                 | étic | co         |     | •   |     | •   |  |  | • |  |  |   |       |  |  | • |  |  |  |  |   |       |  |   | 6 |
| 3. | Clus                     | Clusters 3.1. Distancias                  |     |     |                      |      |            |     |     |     |     |  |  |   |  |  |   | 6     |  |  |   |  |  |  |  |   |       |  |   |   |
|    | 3.1.                     | Distan                                    | ıci | ias |                      |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    | 3.2.                     | Diferen                                   | nt  | es  | tip                  | os   | de         | cl  | úst | ers | S   |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.2.1.                                    | Ç   | Sin | gle                  |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.2.2.                                    | (   | Со  | mp                   | let  | е          |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.2.3.                                    | 1   | Av  | eraș                 | ge   |            |     |     |     | •   |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.2.4.                                    | 7   | Wa  | $\operatorname{rd}$  | •    |            |     |     |     | •   |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    | 3.3.                     | Ordina                                    | at  | ioı | 1                    |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.3.1.                                    | ]   | PC  | Α                    |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.3.2.                                    | ]   | PC  | οA                   | •    |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.3.3.                                    | I   | NN  | 4DS                  | S .  |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.3.4.                                    | (   | CA  | ٠.                   |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.3.5.                                    | 1   | RΙ  | PΑ                   |      |            |     |     |     | •   |  |  | • |  |  |   | <br>• |  |  |   |  |  |  |  | • |       |  | • | 6 |
|    |                          | 3.3.6.                                    |     |     | A                    |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |
|    |                          | 3.3.7.                                    | (   | CA  | Р                    |      |            |     | •   |     |     |  |  | • |  |  |   |       |  |  | • |  |  |  |  | • | <br>• |  |   | 6 |
| 4. | Con                      | lusion                                    | es  | 5   |                      |      |            |     |     |     |     |  |  |   |  |  |   |       |  |  |   |  |  |  |  |   |       |  |   | 6 |

#### 1. Datos de Ratones y Humanos

Las bases de datos que se ocuparon son dos:

- Vdr: es una base de datos de ratones. Contiene datos de microbiomas intestinales y fueron recolectados de heces y muestras de heces cecales. Las que se usan en este capítulo son de heces.
- Troat.otu.tab: estos datos son de fumadores y se encuentran en el paquete GUniFrac. Estos datos se usarán para explorar el árbol filogenético.

### 2. Análisis exploratorio con resumen gráfico

En este capítulo se exploran diferentes gráficos usuales: riquesa, barras de abundancia, mapas de calor, redes y árbol filogenético.

#### 2.1. Gráficos de riqueza

En el capítulo anterior se exploró la diversidad alfa, en este capítulo vamos a explorar un gráfico relacionado a esto. Para esto, se usa la función plot\_richness() del paquete phyloseq. Generalmente, la riqueza se refiere a un gráfico del número toal de especies, taxones u OTUs en un ambiente, pero está función también nos da otras figuras relacionadas a otras diversidades.

Lo primero que debemos hacer es instalar el paquete y leer los datos.

```
#Para instalar el paquete, usamos Bioconductor

#if (!require("BiocManager", quietly = TRUE))
    # install.packages("BiocManager")

#BiocManager::install("phyloseq")
```

En la carpeta data se encuentra la base de datos a usar VdrFecalGenusCounts.csv.

```
setwd("D:/Users/hayde/Documents/R_sites/Equipo4")
```

```
#library(phyloseq)
#library(ggplot2)
abund_table=read.csv("./data/VdrFecalGenusCounts.csv",row.names=1,check.names=FALSE)
abund_table<-t(abund_table)</pre>
```

Lo primero que se debe de hacer es contruir nuestro objeto phyloseq. Este objeto se contruye tomando en cuenta los siguientes componentes: - Tabla OTU. - Datos muestra. - Tabla de taxonomía. - Árbol filogenético.

Se deben de proporcionar dos objetos de datos pero el orden en que se proporcionan no es importante. Construimos primero nuestra tabla de metadatos con los siguientes comandos.

```
meta_table <- data.frame(row.names=rownames(abund_table),t(as.data.frame(strsplit(rownames(abund_table)
meta_table$Group <- with(meta_table,ifelse(as.factor(X2) %in% c(11,12,13,14,15),c("Vdr-/-"), c("WT")))</pre>
```

Convertimos los datos al formato phyloseq.

```
OTU = otu_table(as.matrix(abund_table), taxa_are_rows = FALSE)
SAM = sample_data(meta_table)
physeq <- merge_phyloseq(phyloseq(OTU),SAM)
physeq</pre>
```

```
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 248 taxa and 8 samples ]
## sample_data() Sample Data: [ 8 samples by 4 sample variables ]
```

Una vez que tenemos nuestro objeto phyloseq, podemos usar la función plot\_richness() para contruir graficar las diversidades alpha observadas y estimadas.



Figura 1: Gráficos de diversidad alpha con Vdr y grupos WT en muestras de heces.

Esta función también nos permite seleccionar solo algunas diversidades. El siguiente es un ejemplo usando solo dos diversidades, la de Chao1 y Shannon.



Figura 2: Gráficos de diversidad alpha seleccionando las diversidades de Chao y Shannon.

### 2.2. Barras de abundancia

La herramienta de phyloseq que nos permite graficar las barras de abundancia es plot\_bar().

- 2.3. Mapas de calor
- 2.4. Redes
- 2.5. Árbol filogenético
- 3. Clusters
- 3.1. Distancias
- 3.2. Diferentes tipos de clústers
- **3.2.1.** Single
- 3.2.2. Complete
- 3.2.3. Average
- 3.2.4. Ward
- 3.3. Ordination
- 3.3.1. PCA
- 3.3.2. PCoA
- 3.3.3. NMDS
- 3.3.4. CA
- 3.3.5. RDA
- 3.3.6. CCA
- 3.3.7. CAP
- 4. Confusiones