

1024K x 8 SRAM Module 2048K x 8 SRAM Module

Features

- High-density 8-/16-megabit SRAM modules
- High-speed CMOS SRAMs
 - Access time of 85 ns
- Low active power
 - 605 mW (max.), 2M x 8
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Small footprint SIP
 - PCB layout area of 0.72 sq. in.
- 2V data retention (L version)

Functional Description

The CYM1471 and CYM1481 are high-performance 8-megabit and 16-megabit static RAM modules organized as 1024K words (1471) or 2048K words (1481) by 8 bits. These modules are constructed from eight (1471) or sixteen (1481) 128K x 8 SRAMs in plastic surface-mount packages on an epoxy laminate board with pins. On-board decoding selects one of the SRAMs from the high-order address lines, keeping the remaining devices in standby mode for minimum power consumption.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When MS and WE inputs are

both LOW, data on the eight data input/output pins is written into the memory location specified on the address pins. Reading the device is accomplished by selecting the device and enabling the outputs MS and OE active LOW while WE remains inactive or HIGH. Under these conditions, the content of the location addressed by the information on the address pins is present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable (WE) is HIGH.

Selection Guide

		CYM1471			CYM1481	
Maximum Access Time (ns)	85	100	120	85	100	120
Maximum Operating Current (mA)	95	95	95	110	110	110
Maximum Standby Current (mA)	32	32	32	64	64	64

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature -55° C to $+125^{\circ}$ C
Ambient Temperature with Power Applied
Supply Voltage to Ground Potential $-0.3V$ to $+7.0V$
DC Voltage Applied to Outputs in High Z State

DC Input Voltage0.3V	to -	+7.0V
Output Current into Outputs (LOW)	2	20 mA

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0°C to +70°C	$5V \pm 10\%$

Electrical Characteristics Over the Operating Range

					1471		1481	
Parameter	Description	Test Condition	ns	Min.	Max.	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -1.0) mA	2.4		2.4		V
V_{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 2.0 m.	A		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$V_{CC} + 0.3$	2.2	$V_{CC} + 0.3$	V
$V_{\rm IL}$	Input LOW Voltage			-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-20	+20	-20	+20	μΑ
I_{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Outp	ut Disabled	-20	+20	-20	+20	μA
I_{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., \overline{MS} \le V_{IL}, I$	OUT = 0 mA		95		110	mA
I_{SB1}	Automatic MS Power-Down Current	$\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{MS}} \geq \text{V}_{\text{IH}}, \\ \text{Min. Duty Cycle} = 100\% \end{array}$			32		64	mA
I _{SB2}	Automatic MS	Max. V_{CC} , $\overline{MS} \ge V_{CC}$ –	Standard		16		32	mA
	Power-Down Current	$0.2V, V_{IN} \ge V_{CC} - 0.2V,$ or $V_{IN} \le 0.2V$	L Version -100, -120		250		500	μΑ
			L Version -85		800		1600	μΑ

Capacitance^[1]

Parameter	Description	Test Conditions	CYM1471 Max.	CYM1481 Max.	Unit
C_{INA}	Input Capacitance $(A_{0-16}, \overline{OE}, \overline{WE})$	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 5.0$ V	75	125	pF
C_{INB}	Input Capacitance $(A_{17-20}, \overline{MS})$	VCC = 3.0 V	25	25	pF
C _{OUT}	Output Capacitance		95	165	pF

Note:

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O \longrightarrow O 2.64V

^{1.} Tested on a sample basis.

Switching Characteristics Over the Operating Range^[2]

			1-85 1-85		-100 -100		-120 -120		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYCL	.E								
t_{RC}	Read Cycle Time	85		100		120		ns	
t_{AA}	Address to Data Valid		85		100		120	ns	
t _{OHA}	Data Hold from Address Change	10		10		10		ns	
t _{AMS}	MS LOW to Data Valid		85		100		120	ns	
t _{DOE}	OE LOW to Data Valid		45		50		60	ns	
t _{LZOE}	OE LOW to Low Z	5		5		5		ns	
t _{HZOE}	OE HIGH to High Z ^[3]		30		35		45	ns	
t _{LZMS}	MS LOW to Low Z ^[4]	10		10		10		ns	
t _{HZMS}	MS HIGH to High Z ^[3, 4]		30		35		45	ns	
WRITE CYC	LE ^[5]	•	•	•	•				
$t_{ m WC}$	Write Cycle Time	85		100		120		ns	
t _{SMS}	MS LOW to Write End	75		90		100		ns	
t _{AW}	Address Set-Up to Write End	75		90		100		ns	
t _{HA}	Address Hold from Write End	7		7		7		ns	
t _{SA}	Address Set-Up to Write Start	5		5		5		ns	
t _{PWE}	WE Pulse Width	65		75		85		ns	
t_{SD}	Data Set-Up to Write End	35		40		45		ns	
t _{HD}	Data Hold from Write End	5		5		5		ns	
t _{HZWE}	WE LOW to High Z ^[3]	1	30		35		40	ns	
t _{LZWE}	WE HIGH to Low Z	5		5		5		ns	

Data Retention Characteristics (L Version Only)

			1471	-85		-100 -120	1481	-85		-100 -120	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V_{DR}	V _{CC} for Retention Data		2		2		2		2		V
I_{CCDR}	Data Retention Current	$\frac{V_{DR}}{MS} = 3.0V,$		400		125		800		250	μΑ
t _{CDR} ^[6]	Chip Deselect to Data Retention Time	$\begin{array}{l} V_{DR} = 3.0V,\\ \overline{MS} \geq V_{CC} - 0.2V,\\ V_{IN} \geq V_{CC} - 0.2V \text{ or }\\ V_{IN} \leq 0.2V \end{array}$	0		0		0		0		ns
t _R	Operation Recovery Time		5		5		5		5		ns

Notes:

- 2. Test conditions assume signal transition time of 10 µs or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, output loading of 1 TTL load, and 100-pF load capacitance.
- 3. t_{HZOE} , t_{HZMS} , and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ± 500 mV from steady-state voltage.
- 4. At any given temperature and voltage condition, t_{HZMS} is less than t_{LZMS} for any given device. These parameters are guaranteed and not 100% tested.
- 5. The internal write time of the memory is defined by the overlap of MS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 6. Guaranteed, not tested.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1^[7,8]

- Notes: 7. Device is continuously selected. \overline{OE} , $\overline{MS} = V_{IL}$.
- 8. Address valid prior to or coincident with MS transition LOW
- 9. $\overline{\text{WE}}$ is HIGH for read cycle.

Switching Waveforms (continued)

Write Cycle No. $1^{[5, 10]}$

Notes:

10. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

11. If \overline{MS} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Truth Table

MS	WE	ŌĒ	Input/Outputs	Mode
Н	X	X	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	X	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
85	CYM1471PS-85C	PS08	36-Pin SIP Module	Commercial
	CYM1471LPS-85C			
100	CYM1471PS-100C	PS08	36-Pin SIP Module	Commercial
	CYM1471LPS-100C			
120	CYM1471PS-120C	PS08	36-Pin SIP Module	Commercial
	CYM1471LPS-120C			
Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
	Ordering Code CYM1481PS-85C			
(ns)	8	Type	Туре	Range
(ns)	CYM1481PS-85C	Type	Туре	Range
(ns) 85	CYM1481PS-85C CYM1481LPS-85C	Type PS06	Type 36-Pin SIP Module	Range Commercial
(ns) 85	CYM1481PS-85C CYM1481LPS-85C CYM1481PS-100C	Type PS06	Type 36-Pin SIP Module	Range Commercial

Document #: 38-M-00041-B

Package Diagrams

PIN 1

.100 TYP

- .050 TYP.

3.500 (36 PINS)

- .020 TYP.

.125-.175

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.