Applied Stat Formula Sheet

Counting Formulas:
$$n!$$
 $\frac{n!}{(n-k)!}$ $\binom{n}{k} = \frac{n!}{(n-k)!k!}$
$$P(A^c) = 1 - P(A)$$
 DeMorgan's $A' \cap B' = (A \cup B)'$
$$P(B) = P(B \cap A) + P(B \cap A')$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$
 Law of total prob: $P(S) = P(S|A)P(A) + P(S|A')P(A')$

Discrete Distributions

	pmf	CDF	E(X)	V(X)
Binomial (n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$F_B(x;n,p)$	np	np(1-p)
	dbinom(x,n,p)	$\operatorname{pbinom}(x,n,p)$		
Negative Binomial (r, p)	$\binom{r+x-1}{r-1}(1-p)^x p^r$	$F_{NB}(x;r,p)$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
	dnbinom(x,r,p)	$\operatorname{pnbinom}(\mathbf{x},\mathbf{r},\mathbf{p})$		
Hypergeometric (n, m, N)	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$F_{HG}(x;n,m,N)$	$n\frac{m}{N}$	$n(\frac{m}{N})(1-\frac{m}{N})\frac{N-n}{N-1}$
	dhyper(x,m,N-m,n)	phyper(x,m,N-m,n)		
Poisson (λ)	$\frac{e^{-\lambda}\lambda^x}{x!}$	$F_{POI}(x;\lambda)$	λ	λ
	$\mathrm{dpois}(\mathrm{x,}\lambda)$	$\operatorname{ppois}(\mathrm{x},\!\lambda)$		

Continuos Distributions

		Г	T		
	domain	f(x)	CDF	E(X)	V(X)
Normal (μ, σ^2)	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x-\mu}{2\sigma^2}}$	$\Phi(\frac{x-\mu}{\sigma})$	μ	σ^2
		$\operatorname{dnorm}(\mathbf{x},\!\mu,\sigma)$	$\operatorname{pnorm}(\mathbf{x},\!\mu,\sigma)$		
Uniform (a, b)	[a,b]	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
		$\operatorname{dunif}(\mathbf{x}, a, b)$	punif(x,a,b)		
Exponential (λ)	$[0,\infty)$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$
		$\operatorname{dexp}(\mathbf{x}, \lambda)$	$\operatorname{pexp}(\mathbf{x},\!\lambda)$		
Gamma (α, β)	$[0,\infty)$	$\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}$	$F_{GAM}(x;\alpha,\beta)$	$\alpha\beta$	$\alpha\beta^2$
		$dgamma(x,\alpha,scale=\beta)$	$pgamma(x,\alpha,scale=\beta)$		
$\chi^2(\nu)$	$[0,\infty)$	$\frac{1}{\beta^{k/2}\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}$	$F_{CHI}(x;\nu)$	ν	2ν
		$dchisq(x,\nu)$	$\operatorname{pchisq}(\mathbf{x},\!\nu)$		

$$(if X_i \sim \operatorname{Exp}(\lambda))$$
CDF of $\max(X_1, \dots, X_n) = [F(x)]^n = [1 - e^{-\lambda x}]^n$
CDF of $\min(X_1, \dots, X_n) = 1 - [1 - F(x)]^n = 1 - e^{-n\lambda x}$

Z-test

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \quad \hat{p}_{1} - \hat{p}_{2} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}} \quad \bar{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \quad \bar{X} - \bar{Y} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

$$\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}} \quad \frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}}(1-\hat{p})(\frac{1}{n_{1}} + \frac{1}{n_{2}})} \qquad \bar{X} - \bar{Y} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

H_A	rejection region	p-value	power
upper-tailed	$z > z_{\alpha}$	$1 - \Phi(z)$	$1 - \Phi(z_{\alpha} - \mu_A)$
lower-tailed	$z < -z_{\alpha}$	$\Phi(z)$	$\Phi(-z_{\alpha}-\mu_A)$
Two-tailed	$z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2}$	$2(1-\Phi(z))$	$1 - \Phi(z_{\frac{\alpha}{2}} - \mu_A) + \Phi(-z_{\frac{\alpha}{2}} - \mu_A)$
			$\mu_A = (\mu - \mu_0) / \frac{\sigma}{\sqrt{n}}$
			$\mu_A = (\mu_1 - \mu_2 - \Delta_0) / \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

For two-sample t-test, the df can be calculated by letting $a=S_1^2/n_1, b=S_2^2/n_2$ and

$$\nu = \frac{(a+b)^2}{\frac{a^2}{n_1-1} + \frac{b^2}{n_2-1}}$$

One-Sample Variance

$$\sigma^2 \in \left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right), \frac{(n-1)S^2}{\sigma_0} \sim \chi^2(\text{n-1}) \text{ under } H_0$$

Two-Sample Variance

$$\frac{\sigma_2^2}{\sigma_1^2} \in \left(\frac{S_2^2}{S_1^2} \mathcal{F}_{1-\frac{\alpha}{2},m-1,n-1}, \quad \frac{S_2^2}{S_1^2} \mathcal{F}_{\frac{\alpha}{2},m-1,n-1}\right), \quad \frac{S_1^2}{S_2^2} \sim F(\text{m-1, n-1}) \text{ under } H_0$$

Prediction Interval

$$\overline{X} \pm Z_{\frac{\alpha}{2}} \sigma \sqrt{\frac{1}{n} + 1}$$

ANOVA

Source	DF	Sum of Squares	MS	F
Group (between)	k-1	$SSG = \sum_{group} n_i (\bar{x}_i - \bar{x})^2$	MSG = SSG/k-1	F=MSG/ MSE
1	1	$SSE = \sum_{group} (n_i - 1)S_i^2$		
Total	N-1	SST		

$$F \sim F(k-1,N-k)$$
 under the null hypothesis.

$$SST = SSG + SSE$$

$$R^2 = \frac{SSG}{SST}$$
 $\hat{\sigma}^2 = MSE$

Least Square Regression Regression line:

$$y_i = b_0 + b_1 x_i + \epsilon_i$$

Fitted line:

$$\hat{Y} = \hat{b}_0 + \hat{b}_1 X$$
 $\hat{b}_1 = r \frac{S_2}{S_1}$ $\hat{b}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $\hat{\sigma}^2 = MSE$

 $100(1-\alpha)\%$ (two-sided) CI for b_1 can be derived as

$$\left(\hat{b}_1 \pm t_{\frac{\alpha}{2}, n-2} \operatorname{SE}_{\hat{b}_1}\right)$$

 $100(1-\alpha)\%$ (two-sided) CI for mean response given $x=x^*$ is

$$(\hat{b}_0 + \hat{b}_1 x^*) \pm t_{\frac{\alpha}{2}, n-2} \sqrt{\mathrm{SE}_{\hat{b}_0} + \mathrm{SE}_{\hat{b}_1} (x - \bar{x})^2}$$

 $100(1-\alpha)\%$ (two-sided) prediction interval for response given $x=x^*$ is

$$(\hat{b}_0 + \hat{b}_1 x^*) \pm t_{\frac{\alpha}{2}, n-2} \sqrt{\mathrm{SE}_{\hat{b}_0} + \mathrm{SE}_{\hat{b}_1} (x - \bar{x})^2 + \hat{\sigma}^2}$$