CONTROCTOCTOCACCACCACCACCACCACCACCACCACCACCACCACCAC	2 120
CTGGAGACCCCTGTGCGTTCCTGTGCTTTTGGTCCTATCTGTCTTTATCTTCAACCAGT	180 22
CCCTATCCACAAACTCCACCATCACCACAAACCCCTCATCA	240 42
CAATGACATTCACACGCAGTCGGTATCCGCCAAGCAGAGGGTCACTGGCATTGACTT N D I S H T <u>O</u> S V S A R Q R V T G L D V	900 300
CATHULTURGUTTURCCULATICTCHLITTIGTCCARGATGGACCACALTCTGGCAGGTCTA	160 82
TEARCACCTCCTCACCACCTCCCCAAAATCTCCCAAAATCCCAATCACCCAATCACCTCAAA	420 102
GAATCTCCGAGACCTCCTCCACCTCCTCCGCCTTCTCCCTCACACC	480 122
CACTOSCCTCAGAAACCAGAAACCTOGATURCUKUTUUAAUUCTUALTUTACTCUAC	540 142
_AGAGGGGGGGCTPTGAGCACUUTUUNGCCCTCTCTGCACCACATTCTTCAACAGTTGGA	600 162
TUTTACCCCTCAATGCTGAAGTFTCAAAGGCCACCAGGCTCCCAAGAATCATGTAMAGGG V 8 P B C •	660 167
AAGAAACCTTGGCTTCCACCCCTCTTCACGAGAAGAGAGCGATGTGGAGAGAGA	720
TCATTTCTCTCCCTCCTQTAGACCACCCATCCAAAGGCATGAC1CCACAATGCTTUACTC	780
AAGTTATGCACACATCATGAGCACAAGGAGGGUUCCAGCCTUCAGACGGGAACTCTCAC	840
CTACTTCTTCACCAACTAGAGATAAGAECCATCCCATCCC	900
GGGYAC AND INCUTED TOOUTALACCETTEGETGCGGGCCCAGGAGAGAYGAGATAGGAA	960
TOGGTAGAGCCTTTCCCCTCTCACAGTCTTTCGGAAGCACCGTGAAGGCTGCATCCACA	1020
CACAGUTGGAAACTCCCAAGCAGCACACGATGGAAGCACTYATYTTTTTTTTTT	1040
TATTTTCGATCGATCTGAAGCAAGGCAUCAUCTTTTCACCCTTTCCCCCCTCAGGCAGGA	1140
TGAGGAAGGCTCCTGGGGIGUTUUTTTUAATCCTATTGATGGGTCTGGGGGAGGCAAACC	1200
TAATTTTTGAGTGACTGGAAAGGTTCCGATCTTAGAAAGAA	1260
COCICAAGATICACCTCTCOTGACTGOFFFTOTTICTATIOLIGACICIALTCTATCCAAAC	1110
ACCUPTUCACCCCATTCCCCGGAGCANAGGCTAUCPTATTATCAAAACCAGATGAATTT	1300
TCTCAACTCTAATATOTATC1/A4O49UACCTCACCCTACACCATGTGTTAGAGGGAGGGF	1440
GAAGGATCCGGAAGIUFIYCTCTCAATTAÇATATQTGGTAGGCFFFFYCTUAAAGGGTGA	1600
GGCAT-TT-ICTTACCTCTCTCTCGCCACATAGTO-IGUCTTTUTCAAAAACGAAATTVA	1560
CTUTTTCCCGAACATTTGGAGAGAGACALUAUUUACCCTTCGAGGGCTAAAGCTACAGGCUT	1G20
TTTCTTCCCATATTCCTVAGCIC:AUGCACTCACCCCCACATINVAGACAUTUAGCCCC	1680
AAGAAAAGGGTCCC:UUTUTAGATCTCGAAGGTTGTCCAGGU!TUATCTCACAATGCGTT	1740
TCTTANGCAGGTAGAGGTTTGCATGCCAATATGTGGTTCTCATCTGATTGGTTCATCCAA	1100
AUTACAACCCTVTCTCCCACCCATTCTCTCCCCCGGTTTTTCTTCCAG1GUUAATUACAAAT	1860
CACTTAGEAGATOGTCCTGAGCCCTGGGCAGGAGGAGGAAGTGCCAGGGGAG	1920
GCCAGGCTGCCAGAATTUCCCTTCGGGCTGGAGGATUAACAAAGGGGCTTGGGTTTTTTCC	1980
ATCACCCCTRCACCCTATCTCACCANCAAACTGGGGGACATGAGAGAGAGACTTG	2040
ATGGAAAGCAATACACTTTAAGACIGAGCACACTTTCGTGCTCAXCACIGIGTCGTG	2100
TURGET AGRICACIONCONCONTREATA TRARANTE AGRICACIO TECNO TECNO TENO	2160
ACCCTACTCGCGGCGUTGTACTCCACCACAGCAGCACCGCACC	2220
GTC11CAACACCTGTGAAAGAACC1GAGCTGACGTGACAGTGCCCAGGGGAACGAACGTGCT	2280
TOUNGTETATTGCATTTACATACCCCATTTCAGGCCACATTAGCATCCCTATAGTA	2340
GENCACTOTTGACAATAGGAUNACCGATAGGGGTTGACTATCCTTATCCAAAATGC11G	2400
GCACTAGAAGAGTPTTCGATTTTAGAGTCTTTTCAGGCATACGTATATTTGAGTATATAT	2460
AAAATGAGAYATCTTGGGGATGGGGGCCCCAACTATAAACATGAAGGTCAYTYATATTTCAT	1520
AATACCOTATAUACACTCCTTGAAGTGTAUTTTTATACAGTGTTTTAAATAACGTTGTAT	2500
GCATGAAAGACUTTTTTACAGCATGAACUTGTCTACTCATGCCAGCACTUAAAAACCTTG	2640
GGGT:11TGGACCACTTTGGATC'1:IGGUTTTTCTCTTAAGAGA:IGUTTACCTTATACCTAA	2700
AACCATAATCCCAAACAGGC!GCAGGACCACACTGGAACCICAGCCCTGAAGTGTGCCCT	2760
TUCKOCCAGGTCATACCCTRUTUGAGGTGAGCGGGATCACCTTTTTYTGGTGCTAAGAGAGG	2820
actticagotaga:11ttccaccatctga/guc	2452

BEST AVAILABLE COPY

GGTTG	CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACC	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
GTCCAAGCTG	TGCCCATCCA	AAAAGTCCAA	GATGACACCA	AAACCCTCAT	150
CAAGACAATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCAGTCT	200
CCTCCAAACA	GAAAGTCACC	GGTTTGGACT	TCATTCCTGG	GCTCCACCCC	250
ATCCTGACCT	TATCCAAGAT	GGACCAGACA	CTGGCAGTCT	ACCAACAGAT	300
CCTCACCAGT	ATGCCTTCCA	GAAACGTGAT	CCAAATATCC	AACGACCTGG	350
AGAACCTCCG	GGATCTTCTT	CACGTGCTGG	CCTTCTCTAA	GAGCTGCCAC	400
TTGCCCTGGG	CCAGTGGCCT	GGAGACCTTG	GACAGCCTGG	GGGGTGTCCT	450
GGAAGCTTCA	GGCTACTCCA	CAGAGGTGGT	GGCCCTGAGC	AGGCTGCAGG	500
GGTCTCTGCA	GGACATGCTG	TGGCAGCTGG	ACCTCAGCCC	TGGGTGCTGA	550
GGCCTTGAAG	GTCACTCTTC	CTGCAAGGAC	T-ACGTTAAG	GGAAGGAACT	600
CTGGTTTCCA	GGTATCTCCA	GGATTGAAGA	GCATTGCATG	GACACCCCTT	650
ATCCAGGACT	CTGTCAATTT	CCCTGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
G	·			••	701
•	•				•

Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp 16 Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile 31 Ser His Thr Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu 46 Asp Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met 61 Asp Gln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro 76 Ser Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg 91 Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro 106 Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly Val Leu 121 Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu 136 Gln Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro 151 166 Gly Cys End

Mouse	MCWRPLCRFL		WALI ÖKAĞDD	TKILLIVITAL	KINDIOMAGO	
Human	* ** * MHWGTLCGFL	WLWPYLFYVQ	AVPIQKVQDD	TKTLIKTIVT	RINDISHTQS	
Mouse			_	_	SQNVLQIAND	100
Human	VSSKQKVTGL	DFIPGLHPIL	TLSKMDQTLA	VYQQILTSMP	SRNVIQISND	
Mouse	LENLRDLLHL	LAFSKSCSLP	QTSGLQKPES	LDGVLEASLY	STEVVALSRL	150
Human	LENLRDLLHV	LAFSKSCHLP	WASGLETLDS	LGGVLEASGY	STEVVALSRL	
Mouse	QGSLQDILQQ	LDVSPEC	•			167
	OCST.ODMT.WO	LDLSPGC				

600-1-087 CIPZ (Sheet 5 of 52)

Figure 5

1	Met	Cys	Trp	Arg	Pro	Leu	Cys	Arg	r Phe	Leu	Trp	Leu	Trp	Ser	Tyr
16	Lau	Ser	Tyr	Va1	Gln	Ala	Val	Pro	Ile	Gln	Lys	Val	Gln	Asp	Asp
31				Leu											
46				Ser											
61				Gly				-							
76 (Ala											
91				Leu											
106				Leu											
121				Leu											
136				Tyr											
151				Gln .											
166	Cys					• •					veb	197	.;.	S.E.O.	d10

600-1-087 (IP2 (sheet 6 of 52)

Figure 6

1 Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys Thr Lou Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Cln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser 76 Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp 91 Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro Trp 106 Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Cly Cly Val Leu Glu 121 Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro Gly Cys End 166

Figure 8

+10 +20 +30 +40 GTGCAAGAAG AAGAAGATCC CAGGGCAGGA AAATGTGCTG GAGACCCCTG	
CACGTTCTTC TTCTTCTAGG GTCCCGTCCT TTTACACGAC CTCTGGGGAC +10 +20 +30 +40 TGTCGGGTCC NGTGGNTTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC	
ACAGCCCAGG NCACCNAAAC CAGGATAGAC AGAATACANG TTCGTCACGG +10 +20 7 +30 7+40 TATCCAGAAA GTCCAGGATG ACACCAANAG CCTCATCAAG ACCATTGTCA	-
ATAGGTCTTT CAGGTCCTAC TGTGGTTTTC GGAGTAGTTC TGGTAACAGT +10 +20 +30 +40 NCAGGATCAC TGANATTTCA CACACG	,
151 ?? NGTCCTAGTG ACTNTAAAGT GTGTGC	

Figure 11A

Figure 11B

white fat

brain

small intestine

stomach

pancreas

lung

testis

heart

spleen

liver

Figure 12A

Figure 12 B

SM/Ckc-+Dac-+/+ fat
SM/Ckc-+Dac-ob^{2J}/ob^{2J} fat
C57BL/6J +/+ fat
C57BL/6J ob/ob fat

2G7

- 28S - 18S

Actin

- 18S

CKC/smj ob/ob	CKC/smj +/?	CKC/smj ob/ob	CKC/smj +/?	CKC/smj ob/ob	CKC/smj +/?	CKC/smj +/+
---------------	-------------	---------------	-------------	---------------	-------------	-------------

ap2

2G7

Figure 15A

_	Dp	n l	<u> </u>		Rs	a I			Bg			٦	Αlι	1 I		,	
SM/Ckc-+Dac-oh2J/oh2J	SM/Ckc-+ ^{Dac} -+/+	C57BL/6J ob/ob	C57BL/6J +/+	SM/Ckc-+ ^{Dac} -ob ^{2J} /ob ^{2J}	SM/Ckc-+Dac-+/+	C57BL/6J ob/ob	. C57BL/6J +/+	SM/Ckc-+Dac-ob2J/ob2J	SM/Ckc-+Dac-+/+	C57BL/6J ob/ob	C57BL/6J +/+	$SM/Ckc-+^{Dac}-ob^2J/ob^2J$	SM/Ckc-+Dac-+/+	C57BL/6J ob/ob	C57BL/6J +/+		
							-	-						21	C. a	-	12kB
i de de									P4	•	6					_	5kB
<i>T</i> .																	3kB
				**** (•					_	2kB
					•	٠.		٠			-		•	, :.			1kB
	No.	1	-				Agr.			٠			4	iod iod	なるので	-	500bp

Figure 15B

BgIII Digests

- the control

obese
lean
obese
lean
lean
lean
lean
lean
obese
obese
lean
obese

Figure 16.

	17 promoter primer #69348-1				
Bg/ 11	17 promoter	lac operator	Xba l		rba
AGATETEGATECEG	GAAATTAATAUGAUTCACTATAGGGG	AATTGTGAGCGGATAACAA	TTCCCCTCTAC	AAATAATTTTGTTTAACTTTAAGA	ADADDA
Ncoi	Hia-Tag [®]			no I BamH I	
TATACCATGGCAGO	CAGCCATCATCATCATCACAGCAG Sechichichichichichichich	CGCCTGGTGCGGCGCGCCACGCCACGCCACGCCACGCCA	AGCCATAIGCT Serhismetle	CGAGGATCCGGCTGCTAAGAAAGC uGluAapProAldaldAsnLyaAl	CCCA WACD
	<i>Bpu</i> 1102 1	thrombin	17 term	inator	
AACCAAGCTGAGTTO LysciuaidGiuleu	GET GE GECACEGET GAGE AAT NACT	AGCATAACCCCTTGGGGCC	TUTAAACGGGT	CTTGAGGGGITITITG	
•	T7 leminator primer #	89337-1			

Figure 18 A

Soluble
in soluble
Flow Thr.
5 mm
20 mm
300 mm
300 mm
5trippin

111.2 -

Figure 18B

Soluble
insoluble
Flow thr.
5 mm
20 mm
3 or mm
3 or mm

Figure 11A

Figure 19B

		jure 2	OA		
1	2	0 3	0 4	0	50
GGTTGCNAG		C CCATCCTGG	G AAGGAAAAT	G CATTGGGG	AA
6(HOBLE 7	ကု စ		96' I	190
CCTGTGCGG	ATTCTTGTG	G CTTTGGCCC	T ATCTTTTCT	A TGTCCAAG	CI
17	0 12	20 1:	30 1	10	150
GTGCCCATC	AAAAAGTCC	A AGATGACAC	C AAAACCCTC	A TCAAGACA	ĄΤ
16	0 1	70 1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dst introm	2 00
IGTCACCAGO	ATCAATGAC	A TTTCACACA	C GETAAGGAG	A GTATGCGG	GG
2]	0 23	20 2:	30 2	40	250
CAAAGTAGA	ACTGCAGCC	A GCCCAGCAC	T GGCTCCTAG	T GGCACTGG	AC
26	0 2	0 . 2	PO 2	SO MORES &	300
CAGATAGTO	CAAGAAACA	T TTATTGAAC	G CCTCCTGAA	T GCCAGGCA	cc
31	0 3	20 3 :	3 0 3	10 .	350
PACTGCAAGO	TGAGAAGGA	T TTTGGATAG	C ACAGGGCTC	C ACTCTTTC	TG
36	0 3	70 31	ŖO 3	90	490
GTTGTTTCTT	NTGGCCCCC	L T CTGCCTGCT	G AGATNOCAG	G GGTTAGNG	GT
4}	0 - 47	2 0 4 :	30 4	40	450
TCTTAATTCC	TAAA,-A		EATOR TO T	-4 Kb)	CT
46		GAP OF SEQU	90 4	• /	500
GTTCTTCA	GGAAGAGGC	C ATGTAAGAG	A AAGGAATTG	A CCTAGGGA	L AA
51					550
ATTGGCCTGG	GAAGTGGAG	G GAACGGATG	I G TGTGGGAAA	A GCAGGAAT	CT
56					 6Q0
CGAGACCAG	CTTAGAGGC'	T TGGCAGTCA	L C CTGGGTGCA	G GANACAAG	GG.
61					650
1		G GAGGGTGGA	<u> </u>]	_ـــــــــــــــــــــــــــــــــــــ
66	•				700
CCTCCATGO		A GGCAGAGGG		G ATTCCTCC	
71:	, cuncuuudd 1		INTRON	_	750
CATGCTGAGC	ACTTGTTCT	C CCTCTTCCT	4	A GTCAGTCT	1
HOBER 76			•		BOO
CCAAACAGA		G TTTGGACTT		1	
ICCAMACAGA 81					M 1 950
CTGACCTTA		G ACCAGACAC		<u> </u>	٠
REPORTED SE					900
<u>l</u>		A AACGTGATC		1	
CACCAGTAT	GCCTTCCAG	M MACGIGATO	CAMMINICCA	A CGACCIGG	

910	920	930	940	950
AACCTCCGGG ATCT	TCTTCA CGT	CTGGCC TTC	CTAAGA GCT	CCACTT
. 960	970	980	990	1000
SCCCTGGGCC AGTG	GCCTGG AGAC	CTTGGA CAGO	CTGGGG GGTG	TCCTGG
1010	1020	1030	10,40	1050
AAGCTTCAGG CTAC	TCCACA GAGO	TGGTGG CCCT	GAGCAG GCTG	CAGGGG
10,60	10,70	1080	1090	1100
TCTCTGCAGG ACAT	GCTGTG GCAG	CTGGAC CTCA	GCCCTG GGTG	CTGAGG
11,10	1120	1130	11,40	1150
CTTGAAGGT CACT	CTTCCT GCAA	GGACTA CGTT	AAGGGA AGGA	ACTCTG
1160	11,70	11,80	1190	1200
GETTCCAGGT ATCT	CAGGA TIGA	AGAGCA TTGC	ATGGAC ACCC	CTTATC
1210 4	09291270	. 1230	12,40	1250
CAGGACTCTG TCAA	TTCCC TGAC	TCCTCT AAGC	CACTCT TCCA	AAGG

Figure 20B

MOUS	SE OB STRUCTURE			
!st ex	1st intr 2nd ex	2nd intr	3rd exon	
	////////ATG		_	TGA
	· start			stop

Figure 20c

Figure 21A

Figure 21 B

XI. I	– LL ·LYS · ARG · GLU·ALA· G	LU · ACA ·	ob ·	\exists
	KEX -2 CLEAVAGE	STE-13 CLEAVAGE ?		
·	GLU•ALA•G	cu · AcA ·	ob ob	コー

Figure 21 C

_Xho.		
LEU. O	LLU·LY S · ARG · Ob	
	KEX-2 CLEMUNGE	
•	ob	

Figure 22A

600-1-087 CIP2 (Sheet 30 of 52)

Figure 22B.

we sic sea	HIS.TAG		THROW BIN CLOSUACE	ab		
CLENVASS CLENVASS		ļ	(FOLICIOSING THROW DIN CLEAVAGE)			
			GLY · SER · PRO ·		•Ь	

Figure 23A.

Figure 23B

Figure 24 A

Aeast M-ob 121.0 — A.6.0 = 0.08 50.7 — 33.6 — 27.8 — 19.4 — 19.4 — 7.4

Figure 24B

19.4

Yeast M-ob

Zucker Lean

fa/fa

087 CIP2 (Sheet 34 of

Figure 24C

recombinant ob (ng)

wt 0.01 0.1 0.5 2.0 15.0

19.4 —

600 1-087 CIP2 (Sheet 35 of 52)

Figure 24 D

Yeast M-ob
wild type
db/db

Figure 25A

Yeast H-ob
HP2
HP3
HP4
HP5
HP6

Figure 25 B

ELISA STANDARD CURVE

Figure 25C

Figure 26 A

600-1-087 CIPZ (sheet 40 of 52)

<u>Human ob</u>

Peptide	<u>Mass(Da)</u>	
	Expected	Observed
22-167 22-75 76-89 90-167 158-167	16,024 5936.9 1562.7 8434.5 1131.9	16,024 ± 3 5936.6 ± 1 N.D. 8435.6 ± 1 N.D.

600-1-087 CFP2 (Sheet 41 of 52)

Figure 27

600-1-087 CIP 2 (sheet 42 of 52) Figure 28

600-1-087 CFP2 (Sheet 43 of 52)

Figure 29A

Figure 29B

600-1-087 CIPZ (Sheet 45 of 52)

Figure 290

Figure 30

Figure 31

Figure 32A

Figure 32 B

brown fat RNA/RT brown fat RNA @ 4°c

ob

ucp

600-6087 CEP2 (Sheet 50 of 52)

Figure 33

600-1-087 CFP2 (sheet 51 of 52)

Figure 34:

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not infinted to the items checked:		
	☐ BLACK BORDERS	
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
	☐ FADED TEXT OR DRAWING	
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
	☐ SKEWED/SLANTED IMAGES	
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
	☐ GRAY SCALE DOCUMENTS	
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
	□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.