

Impact of Time-Varying Biology on Reference Points in SS3

Richard Methot

June 2025

Previewing SS3.30.24

Overview

- Review relevant equations
- Describe incomplete SS3 logic for reference points
- Describe changed logic
- Demonstrate impact of time-varying biology in old code and new
- Demonstrate equilibrium vs long-projection
- New user controls
- Bev-Holt with alpha, beta
- What happens if SR parms themselves are changed (regime)?
- Next steps

Beverton-Holt Spawner-Recruitment

$$R_{t+a_r} = \frac{\alpha S_t}{1 + \beta S_t}$$

$$R_{t+a_r} = \frac{4R_0 h S_t}{(1-h)\tilde{R}_0 \phi_0 + (5h-1)S_t}$$

Implicit in values of **a**, *B*

Φ₀ is the unfished, virgin SSB/R Miller and Brooks, 2021

RO, h interconversion with alpha, beta

unexploited spawning biomass per recruit

$$\tilde{S}_0/\tilde{R}_0 = \phi_0$$

$$h = \frac{\alpha \phi_0}{4 + \alpha \phi_0} \qquad R_0 = \frac{1}{\beta} \left(\alpha - \frac{1}{\phi_0} \right)$$

Miller and Brooks, 2021

Equilibrium SSB and R calculations

 Φ_0 is the unfished, virgin SSB/R

SS3 has always used alpha, beta transitionally in the equilibrium spawn_recr calculations:

```
alpha = 4.0 * steepness / (\Phi_0^* (1. - steepness));
beta = (5.0 * steepness - 1.0) / ((1 - steepness) * SSB_virgin);
B_equil = (alpha * \Phi_F^- 1.0) / beta;
R_equil = alpha * B_equil / (1.0 + beta * B_equil);
```

Where Φ_{F} is SSB/R under some level of F and taking into account time-varying biology

 Φ_0 and SSB_virgin are not updated over time, even if there is time-varying biology. They are computed using start year biology, then kept constant throughout the time series.

Equivalently, the values of alpha & beta computed in start year could be saved for all other spawn_recr calculations.

SSB/R in Benchmark - current

- 1. Calculate Φ_{R} as unfished SSB/R using benchmark biology
- 2. Use it, not Φ_0 , in the equilibrium spawner-recruitment calculations to find F_{MSY} , $F_{B40\%}$, etc.
- 3. Use it to report unfished SSB as $R_0 * \Phi_B$

Steps 2 and 3 are accurate only if $\Phi_{\rm B} = \Phi_{\rm 0}$

What is Time-varying Biology?

- Anything that affects SSB/R
- Occurs with parametric growth and with empirical wt-at-age (EWAA)
- With parametric growth, the equilibrium body weight-at-age is only calculated in start year
- It can take many years for wt-at-age to approach new equilibrium after a change in growth parameters. SS3 benchmark uses the resultant wt-at-age averaged over the specified range of years, it does not calculate equilibrium wt-at-age from parameters averaged over that range of years
 - So, hard to get forecast biology to be same as benchmark biology
- With EWAA, there is no year-to-year continuity of size-at-age, so equilibrium and forecast can be forced to use the same biology.
- However, noisy EWAA data may need to be externally averaged to create a EWAA vector for start year that is good to use for the calculation of Φ_0

What's the issue when there is time-varying biology?

- Everything is fine if there is constant biology over time
- ✓ Time series is correct even with time-varying biology
- Benchmark is correct if using start year biology, but illogical to not use recent biology
- ≠ Benchmark calculations that use spawn_recr are not consistent with findings of Miller & Brooks
- ≠ Reported unfished SSB is not the new equilibrium
- \neq Long projection with F_{MSY} will not replicate B_{MSY}
- Not enough reporting/transparency of what calculations were being done
- Not enough user-controls to allow exploration of options and backward compatibility

Impact depends upon degree of change in biology and the level of steepness

What needed to change?

- Major refactoring of entity names to clarify the code
- Retain copy of start year (virgin) SSB/R, e.g. Φ_0 , so can be used in benchmark spawner-recruitment calcs.
 - Benchmark body wt-at-age affects how much catch and SSB you get from those recruits, but shouldn't change the SRR itself.
- Add user control that does backward compatibility
- Add more control for denominator in depletion calculations
- Add more control for inflection point in control rule calculation
- Add options for setting B_{target} in benchmark
- Carry changes into SPR/YPR profile and global_MSY

SSB/R in Benchmark - improved

- Retain Φ_0 from the start year calculations
- Use benchmark biology when calculating $\Phi_{\mathbf{F}}$
- Find F_{MSY}, F_{SPR40%}, etc. using equilibrium spawn_recruitment

```
alpha = 4.0 * steepness / (\Phi_0* (1. - steepness));

beta = (5.0 * steepness - 1.0) / ((1 - steepness) * SSB_virgin);

B_equil = (alpha * \Phi_F- 1.0) / beta;

R_equil = alpha * B_equil / (1.0 + beta * B_equil);
```

Report unfished SSB as equilibrium with F=0

Test Model Configuration

- Start with "simple" with parametric growth
- Extend start year back to 1961 to allow the growth change to equilibrate by endyear, 2001
- Increase female Linf in 1962 from 70 cm to 75 cm
 - Base Linf of 70 cm in start year is used for virgin
- Extend forecast to 2081 to provide an alternative way to get MSY values
- R0 and h kept same for all runs

SS330_22 with Constant Biology

Output pulled from Spawn_Recr table, Spawn_Recr_curve, Mgmt_Quant table, and the SPR/YPR profile

All use the same spawn_recr curve, so should align

They do if adult biology is constant, and/or the benchmark uses the start year biology

Reference Point Values

Benchn	mark_UNF	Virgin		Btarget	SPR_target	MSY	Forecast
SSB	55925	55925	SSB	15005	15005	15005	15005
Recruits	7107	7107	Recruits				5445
0.329279 # SPR target 0.268305 # Biomass			SPR	0.329	0.329	0.329	0.329
			F	0.186	0.186	0.186	0.186
0.200303 # blollidss					0.268		
2		, 1 ²	Catch	4590	4590	4590	4590

MSY output used to set B_{target} and SPR_{target} Forecast uses F_{MSY}

SS330_22 with Time-Varying Biology (TVB)

- Benchmark_unfished moved straight to the right
- So, is off the time series' SRR
- Unintentionally creates a new SRR for the reference points
- Difference depends on steepness and degree of TVB

TVB impact on reference points

	Bench	nmark_UNF	Virgin		Btarget	SPR_target	MSY	Forecast
SSB 58548		43335	SSB	15496	15496	15496	16879	
Recruits		6429	6429	Recruits				5686
	0.32595	25954 # SPR target		SPR	0.326	0.326	0.326	0.326
	0.264677 # Biomass target		F	0.141	0.141	0.141	0.141	
	410.00.00.00	size (e) / Zieliness (zi-Bet		Bmsy/B_unf			0.265	
				Catch	4092	4092	4092	4457

Per Recruit calculations

- The search for the F that gives a specific %SPR is unaffected because it is based on per/recruit calculation using benchmark biology
- The search for MSY and a Btarget are affected because they involve the SRR
- Although the search for a F %SPR is unaffected, the equilibrium catch and SSB that come from that F are affected because they use the SRR

SS330_new with compatibility

New code has compatibility flag to demonstrate repeatability of old output

SS330.new

- With compatibility turned off, new code gives expected result All values are along the same SRR
- SRR calculations use virgin SSB/R0, not the benchmark

Consistent Reference Points

	Benchmark_UNF	Virgin		Btarget	SPR_target	MSY	Forecast
SSB 599		43335	SSB	14680	14680	14680	14680
Recruits	6581	6429	Recruits			5529	5529
			SPR	0.292	0.292	0.292	0.292
	0.291523 # SPR tar	F	0.162	0.162	0.162	0.162	
	0.244952 # Biomass target		Bmsy/B_unf			0.245	
			Catch	4484	4484	4484	4484

All values are consistent

Comparison

	Orig	inal	Corre	cted
_	MSY	Forecast	MSY	Forecast
SSB	15496	16879	14680	14680
Recruits	5220	5686	5529	5529
SPR	0.3260	0.3260	0.2915	0.2915
F	0.1409	0.1409	0.1617	0.1617
Bmsy/B_unf	0.2647		0.2450	
MSY_Catch	4092	4457	4484	4484

Empirical Weight-at-Age (EWAA) Example

Differences occur with EWAA also because start year biology used for SSB/R0 can differ from biology over benchmark years

EWAA Consideration

- The single start year biology can be noisy
- SS3 cannot use a later year's biology for the S/R calcs
- You can extend time series back one year and provide an averaged biology for that year.
- Could use all years, or early years for that mean
- Could smooth over ages

Test with alpha, beta parameterization of SRR

- SS3 adds SRR 10 with the ln(alpha), ln(beta) parameterization
- SS3 <u>must</u> have R0 as the first SRR parameter
- R0, h get derived from alpha, beta and placed into the SR_parm list
- You can estimate using alpha, beta as parameters and still put a prior on the derived h

What else depends on RO?

- Everything! It's equivalent to K in a biomass dynamics model
- These depend on either virgin B₀ or Benchmark B₀
 - Depletion
 - Inflection point in control rule
- B_{target} as benchmark output
 Clarify and expand options

Compatibility Switch

New line in starter.ss:

- -1 # random number seed
- **1** # Compatibility flag for legacy (0) vs improved (1) impact of timevary biology on benchmark SRR calcs >= 3.30.24
- 3.30 # check value for end of file and for version control

NOTE: if line with compatibility flag is missing, SS3 will run as if the flag was set to 0,

except if there is time-varying biology, which will generate an EXIT warning until the flag line is included

Depletion Basis

In starter.ss, add option 6:

```
2 # Depletion basis: denom is: 0=skip; 1=X*SSBvirgin; 2=X*SSBmsy; 3=X*SSB_styr; 4=X*SSB_endyr; 5=X*dyn_Bzero; 6=X*Bmark_SSB_unf
```

Where Bmark_SSB_unf used to be just R0 * SSB/R_Bmark

Now it is the unfished equilibrium using the virgin spawn_recr relationship and the $\rm SSB/R_{_Bmark}$

Note that options 2 and 6 use benchmark biology, others use virgin or time series biology

Control Rule Inflection Basis

```
1 # Control rule method (0: none; 1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does
F=f(SSB), buffer on catch)
0.2 # Control rule inflection for constant F (as frac of Bzero, e.g. 0.40); must be > control rule cutoff {-1 approach for Bmsy deprecated here; see below}
1 # Forecast base recruitment: 0= spawn_recr; 1=mult*spawn_recr_fxn; 2=mult*VirginRecr; 3=deprecated; 4=mult*mean_over_yr_range
# for option 4, set phase for fore_recr_devs to -1 in control to get constant mean in MCMC, else devs will be applied
1 # multiplier on base recruitment
2 # HCR_anchor: 0 or 2 uses unfished benchmark SSB (old hardwired approach); 1 = virgin SSB; 3 = Bmsy
{This repurposes a previously unused input}
```

B_{target} Basis

0.35 # Biomass target (e.g. 0.40) as fraction of SSB_virgin if depletion basis = 1, else as fraction of SSB_unfished in benchmark

Previously, SSB_unfished was the only hardwired option.

If you set Do_benchmark = 3 to invoke calculation of B_{limit} also, then options are:

- a. Positive Blim_fraction invokes use of B_{MSY}
- b. Negative Blim_fraction invokes use of SSB_virgin, if depletion basis equals 1
- c. Negative Blim_fraction invokes use of SSB_unf, if depletion basis <> 1

Note that if there is TVB and Bmark_years != startyr, then Bmsy and SSB_unf are consistent in both using the benchmark biology

What happens if R0 or h changes?

- SS3 will use the biology in the year of the change to save a revised value for SSB/ $R_{\rm o}$
- The remainder of the time series, then the projection will use a spawner-recruitment curve calibrated with that SSB/R_0
- The benchmark can also use that revised SSB/R₀, see Bmark_years beg_SRparm and end_SRparm
- If you try this, examine detailed outputs closely!

What happens when a SR parameter changes?

- R_0 change of 0.0 in 1985
- Triggers the logic that causes recompute of SSB/R, so new SRR equil point
- Impact shows up the following year when new curve calcs the 1986 R
- Benchmark_unfished SSB/R on new curve
- SPR/YPR profile follows new curve, so benchmarks must also
- Reference point values all change

Be careful what you ask for!

Examine details in forecast-report.sso

What happens when a SR parameter changes?

- R_o change of 0.02335 in 1985, which is amount needed to be the equilibrium point under the changed Φ_o
- h is same, but the early and late curves differ due to change in Φ_0
- Now the late time series aligns with the benchmark calculations, and
- MSY now matches long forecast
- NOTE: Spawn_Recr_Curve is calculated only with virgin SRR parameter values

Next Steps

- Code clean-up
- Check on implementation of Bmark_years: beg_SRparm and end_SRparm
- Update r4ss to work with the:

```
#New_Expanded_Spawn_Recr_report SPAWN_RECRUIT report:19
```

- Recruit some beta-testers
- Update the User Manual
- Release as SS3.30.24