Ringen en Lichamen

Luc Veldhuis

11 September 2017

Herhaling

Vorige keer

R een ring

- $a \neq 0$ heet **nuldeler** als er $b \neq 0$ is met ab = 0 of ba = 0
- Als R een $1 \neq 0$ heeft dan is $\mathbb{R}^* = \{u \in R | v \in R \text{ met } uv = vu = 1\}$

Herhaling

Vorige keer

De verzameling van eenheden van R:

- 1 ∈ R*
- Als $u \in R^*$ met uv = vu = 1 dan ook $v \in R^*$, gegeven $u \in R^*$ is die v uniek (notatie u^{-1})
- R* is groep onder vermenigvuldiging
 - $1 \in R^*$, het neutrale element voor de vermenigvuldiging
 - Als $u_1, u_2 \in R^*$ dan bestaan $v_1, v_2 \in R^*$ met $u_i v_i = 1 = v_i u_i$ voor i = 1, 2.
 - Dan is $u_1u_2v_2v_1 = 1 = v_2v_1u_1u_2 = v_21u_2 = v_2u_2 = 1$
 - Elke $u \in R^*$ heeft inverse u^{-1}
 - De vermenigvuldiging in R (dus R^*) is associatief

Opmerking

Als R een $1 \neq 0$ heeft, dan is een element nooit zowel nuldeler als eenheid.

Stel a is beide, dus er is $c \in R$ met ac = 1 = ca en $b \neq 0 \in R$ met ab = 0 of ba = 0. Zeg als ab = 0, dan geldt b = 1b = cab = c0 = 0. Tegenspraak.

Voorbeeld

In een delingsring R (bijvoorbeeld een lichaam als \mathbb{Q} , \mathbb{R} , \mathbb{C}) geldt $R^*=R\setminus\{0\}$ en dus heeft een delingsring geen nuldeler.

Integriteitsgebied

Definitie

Integriteitsgebied of domein (Engels: integral domain) is een commutatieve ring met $1 \neq 0$ zonder nuldelers

Opmerking

In een ring zonder nuldelers geldt $ab = 0 \Leftrightarrow a = 0 \lor b = 0$, en dus ook $ab = ac \Leftrightarrow a(b - c) = 0 \Leftrightarrow a = 0$ of b = c.

Voorbeelden

- ℤ is een ITG
- Een lichaam is een ITG (Voorbeeld: \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$ met p priem)

Stelling

Elk eindig ITG is een lichaam. Bewijs: zie boek

Ook: een eindige delingsring is een lichaam (Wedderbrom)

Definition

 $S \subseteq R$ met R een ring heet een **deelring** als S met de + en de \cdot van R zelf een ring is.

Opgave \Leftrightarrow :

- *S* ≠ ∅
- Als $a, b \in S$ dan zijn a b en ab ook in S

Voorbeeld

- $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C} \subseteq H$ zijn deelringen
- $s=\{\overline{0},\overline{3}\}\subseteq \mathbb{Z}/6\mathbb{Z}=R$ een deelring, maar $1_S=\overline{3}
 eq \overline{1}_R$

Definitie

Op $\mathbb{Z}[\sqrt{D}]$ definieer je de **norm** N: $N(a+b\sqrt{D})=|(a+b\sqrt{D})(a-b\sqrt{D})|=|a^2-Db^2|\in\mathbb{N}$

Voorbeeld

Als $D \in \mathbb{Z}$ en D is geen kwadraat, dan is

$$\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} || a, b \in \mathbb{Z}\}\$$

 $\mathbb{Z}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2 | a, b, c \in \mathbb{Z}\}$ is een deelring van \mathbb{C} ga na: $(\sqrt{D})^2 = D$.

Als D=-1 dan krijg je $\mathbb{Z}[i]=\{a+bi|a,b\in\mathbb{C}\}$, de gehelen van Gauß

Dan geldt $N(\alpha\beta) = N(\alpha)N(\beta)$ als $\alpha, \beta \in \mathbb{Z}[\sqrt{D}]$.

Opmerking

In het algemeen geldt niet $N(\alpha + \beta) = N(\alpha) + N(\beta) = \alpha^2 + \beta^2$

Voorbeeld

Als D=-1 dan is $N(a+bi)=a^2+b^2$. Wat is $\mathbb{Z}[i]^*$? Stel $\alpha\in\mathbb{Z}[i]^*$, dan is er een $\beta\in\mathbb{Z}[i]$ met $\alpha\beta=1=\beta\alpha$ Dan geldt $N(1)=N(\alpha)N(\beta)=N(\alpha)N(\beta)$ met $N(\alpha),N(\beta)\in\mathbb{N}$ Hieruit volgt dat $N(\alpha)=N(\beta)=1$ Als $\alpha=a+bi$, dan is $1=N(\alpha)=a^2+b^2$. Dus $a=\pm 1 \vee a=\pm i$. Controleer nu of $\pm 1,\pm i$ eenheden zijn. Dus $\mathbb{Z}[i]^*=\{\pm 1,\pm i\}$

Voorbeeld

 $(a^2 + b^2)(c^2 + d^2)$ is een som van twee kwadraten: $N(a^2 + b^2)N(c^2 + d^2) = N(a + bi)N(c + di) = N((a + bi)(c + di))$ is een som van twee kwadraten.

Sommige getallen zijn geen som van kwadraten

Als $a\in\mathbb{Z}$ dan is $a^2\equiv 0,1\mod 4$ $a^2+b^2\equiv 0,1,2\mod 4$ dus bijvoorbeeld 7 is geen som van twee kwadraten.

Voorbeeld

Als $D \in \mathbb{Z}$ geen kwadraat is, dan is $\mathbb{Q}(\sqrt{D}) = \{a + b\sqrt{D} | a, b \in \mathbb{Q}\}$ is een lichaam en deelring van \mathbb{C} . $a + b\sqrt{D} = 0 \Leftrightarrow a^2 - Db^2 = 0$ dus $(a - b\sqrt{D})(a + b\sqrt{D})$

Wortel truuk van middelbare school

$$\frac{1}{a+b\sqrt{D}} = \frac{1}{a+b\sqrt{D}} \frac{a-b\sqrt{D}}{a-b\sqrt{D}} = \frac{a}{a^2-Db^2} + \frac{-b}{a^2-Db^2} \sqrt{D}$$

$$\mathrm{met}\ a\pm b\sqrt{D}\neq 0$$

Definitie

R een ring, X een variabele. $R[X] = \{\text{polynoom in } X \text{ met coefficienten in } \mathbb{R} \} = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n | n \in \mathbb{N}, a_i \in R \forall i \in \mathbb{N} \} = \{\sum_{i=0}^{\infty} a_i x^i | a_i \in R, \text{ voor slechts eindig veel } a_i \neq 0 \}. \text{ Conventie: } a_0 x^0 = a_0$ Met optelling en vermenigvuldiging: $f(x) = \sum_{i=0}^{\infty} a_i x^i$,

$$g(x) = \sum_{i=1}^{\infty} b_i x^i \text{ dan is}$$

$$(f+g)(x) = \sum_{i=0}^{\infty} (a_i + b_i) x^i$$

$$(fg)(x) = \sum_{i=0}^{\infty} c_i x^i$$

met $c_i = \sum_{j=0}^i a_j \cdot b_{i-j}$ is een ring

Eigenschappen

- R[X] is commutatief $\Leftrightarrow R$ is commutatief
- R[X] heeft $1 \Leftrightarrow R$ heeft 1 (als dat zo is $1_{R[X]} = 1_R$ als constante polynoom)
- $R \subseteq R[X]$ als de constante polynomen. Dit is een deelring.

Definitie

Als $0 \neq f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \text{ met } a_n \neq 0$, dan heet n de **graad** van f(x) (Engels: degree(f)), a_n de **kopcoëfficiënt** van f(x).

Als $a_n = 1$ dan heet f(x) monisch.

Stelling

- Als $f(x) = a_m x^m + \dots + a_1 x + a_0$, $a_m \neq 0$ $g(x) = b_n x^n + \dots + b_1 x + b_0$, $b_n \neq 0$ en a_m, b_n zijn geen nuldelers, dan geldt deg(fg) = deg(f) + deg(g)
- Als $1 \in R$ en R heeft geen nuldelers dan geldt $R[X]^* = R^*$
- Als R een ITG is dan is R[X] dat ook

Bewijs

- $f(x)g(x) = a_m b_n x^{m+n} + (a_m b_{n-1} + a_{m-1} b_n) x^{m+n-1} + \cdots + (a_1 b_0 + a_0 b_1) x + a_0 b_0$ Dus $deg(fg) \le deg(f) + deg(g)$. Hierbij is $a_n b_m \ne 0$ omdat a_m , b_n beide geen nuldeler zijn. deg(fg) = m + n = deg(f) + deg(g).
- Stel $f(x) \in R[X]^*$ dus er is een g(x) met f(x)g(x) = 1 = g(x)f(x) $f,g \neq 0$ en 0 = deg(1) = deg(fg) = deg(f) + deg(g) volgens 1. deg(f) = deg(g) = 0, dus $f,g \in R \setminus \{0\}$. Doe verder zelf
- Zie boek/doe zelf

Voorbeeld

Als K een lichaam is (en dus ITG), dan is K[X] een ITG, maar geen lichaam, want $K[X]^* = K^* = K \setminus \{0\}$ volgens de stelling.

Voorbeeld

In $R = \mathbb{Z}/4\mathbb{Z}[X]$ is elk element $\overline{1} + \overline{2}f(x)$ met f(x) in R een eenheid want $(\overline{1} + \overline{2}f(x))^2 = \overline{1}$

Voorbeeld

Als R een ring is, $n \ge 1$, dan is

 $M_n(R) = \{n \times n \text{ matrices met coefficienten in } R\}$ met de gebruikelijke matrix optelling en vermenigvuldiging een ring. (Zie boek)

