

用户手册

[SBC-PH8700]

历史版本

Rev.	Note	Author
20160902	Initial	Sandy

目录

历史版	反本	2
目录		3
Releas	se Note	5
1.	. 镜像版本	5
2.	功能列表	5
3.	. 己知问题	6
第1章	章 快速启动	7
1.	.1 烧写镜像到 SD 卡	7
1.	.2 从 SD 卡启动系统	8
1.	.3 从 EMMC 启动系统	9
第2章	章 功能测试	10
2.	.1 LED 测试	10
2.	.2 RTC 测试	10
2.	3 EEPROM 测试	11
2.	.4 EMMC 测试	12
2.	.5 ADC 测试	12
2.	.6 HDMI 测试	13
2.	.7 HDMI AUDIO 测试	13
2.	.8 LCD 测试	13
2.	.9 背光测试	13
2.	.10 触摸屏测试	13
2.	.11 串口测试	14
	2.11.1 UART1	14
	2.11.2 UART2	14
	2.11.3 UART4	14
2.	.12 RS485 测试	14
	2.12.1 RS485-2 和 RS485-3	14
2.	.13 CAN 测试	15
2.	.14 网络测试	15
2.	.15 USB 测试	16
	2.15.1 Host 测试	16

	2.15.2	OTG 测试	16
第 3 章	系统编	肩译	18
3.1	配置纲	扁译环境	18
3.2	编译(UBOOT	18
	3.2.1	获取 uboot 源码	18
	3.2.2	编译并烧写镜像到 SD 卡	18
	3.2.3	编译并烧写镜像到 EMMC	18
3.3	Kernel	l	19
	3.3.1	获取内核源码	19
	3.3.2	编译并烧写镜像到 SD 卡	19

Release Note

1. 镜像版本

SBC-PH8700_Shipment_Image_SDcard_Rev01.img SBC-PH8700_Shipment_Image_EMMC_Rev01.img

2. 功能列表

	SBC-PH8700											
Feature List	Schematic	On-Chip	On-Board	Detail Functions(existing)								
	Page#	Peripherals	Peripherals	Detail I directions(existing)								
u-boot version	2015.09			Supports kernel boot								
kernel version	4.1.6			Supports all below functionality								
				Default root file system used by								
Filesystem	Debian			debian								
CPU	PH8700-U5	AM3358_ZCZ		Null								
				Can access read write and run								
DDRAM	PH8700-P8-U12	DDR	MT41K256M16HA-125	code								
PMIC	PH8700-P3-U2	I2C0	TPS65217	Null								
еММС	PH8700-P9-U13	MMC1	MTFC4GLDEA	Can access read write and boot								
SDCard	Null											
MicroSD_(TF)	SPH1800-P6-TF1	MMC0	Null	Can access read write and boot								
				can read write and keep time off								
External-RTC	SPH1800-P9-U55	12C0	RX-8025TUB	power								
				can read write and keep time off								
Integrited-RTC	PH8800-u11	RTC	Null	power								
	PH8800-p10-D3/D			System can control LED to light or								
LEDs	4	gpio	Null	not								
LCD	SPH1800-P9-J9	RGB	Null	Can show picture on the screen								
				System can control the LCD								
Backlight	SPH1800-P9-J9	PWM	Null	backlight								
TouchScreen	SPH1800-P9-J9	ADC-TSC	Null	System use touchscreen								
			MTFC4GACAAAM-4M									
EEPROM	PH8800-p8-u14	MMC1	IT	Can access read write								
CAN	SPH1800-p8-J61	CAN1	MC33901WEF	System can send and receive data								

				between two board
				System can send and receive data
UART-0	SPH1800-p7-CN4	UART0	NUII	in loopback mode
				System can send and receive data
UART-1	SPH1800-p7-J4	UART5	MAX3232CUE+	in loopback mode
				System can send and receive data
UART-2	SPH1800-p13-J58	UART3	Null	in loopback mode
				System can send and receive data
UART-4	SPH1800-p13-J58	UART1	MAX3232CUE+	in loopback mode
				System can send and receive data
RS485-2	SPH1800-p8-u5	SPI0	SC16IS752IPW	between two board
				System can send and receive data
RS485-3	SPH1800-p8-u5	SPI0	SC16IS752IPW	between two board
USB-Host	SPH1800-p11-p3	USB1	Null	Can recognize U disk by USB host
O3D-HOSt	3FH1800-p11-p3	0381	Null	-
				Can recognize U disk in host mode, and can work as usb
USB-OTG	SPH1800-p11-j13	USB0	Null	ethernet in device mode
Ethernet-1	PH8800-P9-U9	RGMII1	KSZ9031RNXIA	Can ping the server
Linernet 1	11100001909	KOWIIII	K323031KWAIA	can ping the server
Ethernet-2	SPH1800-P12-J17	RGMII2	AR8035	Can ping the server
				. 0
HDMI	SPH1800-P10-U34	12C0	TDA19988BHN/C1,551	Can show picture on the screen
Audio	SPH1800-P10-U34	12C0	TDA19988BHN/C1,551	can play wav

3. 已知问题

Known issue List	Detail
LCD	4.3 inch screen turn white for a while in boot
	7 inch screen blink several times when boot
HDMI	Not shown correctly
	Not support Sony HDMI display

第1章 快速启动

1.1 烧写镜像到 SD 卡

- ▶ 首先, 你需要准备一张不小于 2G 的 SD 卡
- ▶ 然后,你需要从 https://sourceforge.net/projects/win32diskimager/ 下载并安装 Win32 Disk Imager

▶ 选择需要烧写的镜像,SBC-PH8700_Shipment_Image_SDcard_Rev01.img:

➤ 点击 Write 烧写镜像:

1.2 从 SD 卡启动系统

- 在 PC 上安装串口软件(例如 SecureCRT),选择正确的端口号,波特率 115200,8 位数据位,1 位停止 位,无奇偶校验
- 用 USB 转 TTL 模块把板子上的 DEBUG 接口(CN4)和 PC 相连
- 把 Micro SD 卡插入板上的插槽 TF1
- 按下按键 S3,用 5V,2A 的电源,给板子供电(J1),上电复位后松开 S3
- 系统启动完毕之后, 串口显示如下

```
4.779552] systemd[1]: Starting Journal Service...
4.802315] systemd[1]: Started Journal Service.
5.040992] systemd-udevd[144]: starting version 215
                            systemd-journald[143]: Received request to flush runtime journal from PID 1 remoteprocO: failed to load am335x-pm-firmware.elf
          5.360032]
          6.677796]
         6.733794]
6.739527]
                              remoteproc0: powering up wkup_m3 remoteproc0: Direct firmware load for am335x-pm-firmware.elf failed with error
                              remoteproc0: Falling back to user helper
remoteproc0: request_firmware failed: -11
          6.895292]
7.275365]
          7.281803
8.031991
                              remoteproc0: rproc_boot failed
       7.281803] remoteproc0: rproc_boot failed
8.031991] net eth0: initializing cpsw version 1.12 (0)
8.114081] net eth0: phy found : id is : 0x4dd072
8.140049] net eth1: initializing cpsw version 1.12 (0)
8.224126] net eth1: phy found : id is : 0x4dd072
8.919773] c_can_platform 481cc000.can can0: bit-timing not yet defined
8.973742] c_can_platform 481cc000.can can0: failed to open can device
9.665888] random: nonblocking pool is initialized
11.114500] cpsw 4a100000.ethernet eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Debian GNU/Linux 8 embest ttyS0
www.embest-tech.com
default username:password is [root:root]
embest login:
输入用户名和密码 root 登录;
 Debian GNU/Linux 8 embest tty50
 www.embest-tech.com
 default username:password is [root:root]
 embest login: root
 Password:
 Linux embest 4.1.6 #1 PREEMPT Tue Sep 27 10:47:01 CST 2016 armv7l
```

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law. root@embest:~

1.3 从 EMMC 启动系统

将 SBC-PH8700_Shipment_Image_EMMC_Rev01.img 拷贝到 U 盘;

参考 1.2, 先从 SD 卡启动系统, 再将 U 盘插入 USB 接口 (P3):

在串口终端输入:

root@embest:~# Is /dev/sd*

/dev/sda /dev/sda1

root@embest:~# mount /dev/sda1 /mnt/

root@embest:~# dd if=/mnt/SBC-PH8700_Shipment_Image_EMMC_Rev01.img of=/dev/mmcblk1

注意: 烧写时间较长,请耐心等待...

烧写结束后,上电复位并启动系统(不用按S3)

第2章 功能测试

首先, 请参考第一章 1.1, 把系统启动起来. 然后跟随下面的指引测试各项功能.

2.1 LED 测试

用户能够控制 SOM-PH8700 上的 LED (D2,D3) 指示灯。在终端中执行以下命令来进行测试;(其中 D2 对应 user_leds_d2, D3 对应 user_leds_d2)

熄灭 LED:

root@embest:~# echo 0 > /sys/class/leds/user_leds_d2/brightness

root@embest:~# echo 0 > /sys/class/leds/user_leds_d3/brightness

点亮 LED:

root@embest:~# echo 1 > /sys/class/leds/user_leds_d2/brightness

root@embest:~# echo 1 > /sys/class/leds/user_leds_d3/brightness

2.2 RTC 测试

在串口终端输入:

查看当前时间:

root@embest:~# date

Sat Jan 1 00:02:07 UTC 2000

设置时间 2016 年 3 月 9 日 10 时 46 分:

root@embest:~# date 030910462016

Wed Mar 9 10:46:00 UTC 2016

把系统时钟写入 RTC:

root@embest:~# hwclock -w

读取 RTC:

root@embest:~# hwclock

Wed 09 Mar 2016 10:46:23 AM UTC -0.432561 seconds

可以看到,硬件时钟 RTC 被设置成 2016 年 3 月 9 日,系统时钟被保存到硬件时钟里。 重启系统并查看时间:

root@embest:~# date

Wed Mar 9 10:46:45 UTC 2016

2.3 EEPROM 测试

在串口终端输入以下命令:

root@embest:~# ./eeprom_test

data will write to EEPROM at 0x400

00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	Of
10	11	12	13	14	15	16	17	18	19	1a	1b	1c	1d	1e	1f
20	21	22	23	24	25	26	27	28	29	2a	2b	2c	2d	2e	2f
30	31	32	33	34	35	36	37	38	39	3a	3b	3c	3d	3e	3f
40	41	42	43	44	45	46	47	48	49	4a	4b	4c	4d	4e	4f
50	51	52	53	54	55	56	57	58	59	5a	5b	5c	5d	5e	5f
60	61	62	63	64	65	66	67	68	69	6a	6b	6c	6d	6e	6f
70	71	72	73	74	75	76	77	78	79	7a	7b	7c	7d	7e	7f
80	81	82	83	84	85	86	87	88	89	8a	8b	8c	8d	8e	8f
90	91	92	93	94	95	96	97	98	99	9a	9b	9с	9d	9e	9f
a0	a1	a2	a3	a4	a5	a6	a7	a8	a9	aa	ab	ac	ad	ae	af
b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	ba	bb	bc	bd	be	bf
c0	c1	c2	c3	c4	c5	c6	c7	c8 (c9 (ca d	cb c	с с	d ce	e cf	
d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	da	db	dc	dd	de	df
e0	e1	e2	e3	e4	e5	e6	e7	e8	e9	ea	eb	ec	ed	ee	ef
f0	f1	f2	f3	f4 f	5 f6	5 f7	f8	f9	fa	fb	fc	fd 1	fe f	f	

data read from EEPROM at 0x400

00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	Of
10	11	12	13	14	15	16	17	18	19	1a	1b	1c	1d	1e	1f
20	21	22	23	24	25	26	27	28	29	2a	2b	2c	2d	2e	2f
30	31	32	33	34	35	36	37	38	39	3a	3b	3c	3d	3e	3f
40	41	42	43	44	45	46	47	48	49	4a	4b	4c	4d	4e	4f
50	51	52	53	54	55	56	57	58	59	5a	5b	5c	5d	5e	5f
60	61	62	63	64	65	66	67	68	69	6a	6b	6c	6d	6e	6f
70	71	72	73	74	75	76	77	78	79	7a	7b	7c	7d	7e	7f
80	81	82	83	84	85	86	87	88	89	8a	8b	8c	8d	8e	8f
90	91	92	93	94	95	96	97	98	99	9a	9b	9c	9d	9e	9f
a0	a1	a2	a3	a4	a5	a6	a7	a8	a9	aa	ab	ac	ad	ae	af
b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	ba	bb	bc	bd	be	bf
c0	c1	c2	c3	c4	c5	c6	c7	c8 (c9 (ca c	b c	C C	d ce	e cf	
d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	da	db	dc	dd	de	df

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

写数据与读到的数据相同,测试通过;

2.4 EMMC 测试

在串口终端执行:

root@embest:~# touch emmc_read emmc_write

编辑 emmc write:

root@embest:~# vi emmc_write

例如写入 "emmc write test"

写 emmc 命令:

root@embest:~# dd if=emmc_write of=/dev/mmcblk1

68.358218] mmcblk1: p1 p2

0+1 records in

0+1 records out

16 bytes (16 B) copied, 0.0273767 s, 0.6 kB/s

读 emmc 命令:

root@embest:~# dd if=/dev/mmcblk1 of=emmc_read bs=1K count=10

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.00800079 s, 1.3 MB/s

查看 emmc read:

root@embest:~# cat emmc_read

emmc write test

测试成功;

2.5 ADC 测试

在串口终端输入以下命令,采样值返回:

root@embest:~# cat /sys/bus/platform/devices/TI-am335x-adc/iio\:device0/in_voltage4_raw 571

root@embest:~# cat /sys/bus/platform/devices/TI-am335x-adc/iio\:device0/in_voltage5_raw

root@embest:~# cat /sys/bus/platform/devices/TI-am335x-adc/iio\:device0/in_voltage6_raw

root@embest:~# cat /sys/bus/platform/devices/TI-am335x-adc/iio\:device0/in_voltage7_raw

863

2.6 HDMI测试

打开 SD 卡中 uEnv.txt 文件,修改 fdtfile=embest-SOM_PH8700-BB_SPH1800-HDMI.dtb 用 HDMI 数据线相连接显示设备并重新启动系统;

2.7 HDMI AUDIO 测试

连接 HDMI 设备,执行以下命令播放默认音频文件

root@embest:~# aplay /boot/firmware/audio_sample.wav

Playing WAVE '/boot/firmware/audio_sample.wav' : Signed 16 bit Little Endian, Rate 22050 Hz, Stereo

2.8 LCD 测试

连接显示屏到 J9:

4.3 寸屏:

打开 SD 卡中 uEnv.txt 文件,修改 fdtfile= embest-SOM_PH8700-BB_SPH1800-4.3inch_LCD.dtb 连接 4.3 寸屏并重新启动系统;

7 寸屏:

打开 SD 卡中 uEnv.txt 文件,修改 fdtfile= embest-SOM_PH8700-BB_SPH1800-7inch_LCD.dtb 连接 7 寸屏并重新启动系统;

2.9 背光测试

背光的亮度设置范围为(1—8),1表示亮度最低,8表示亮度最高,在串口终端下输入如下命令进行背光测试:

最暗:

root@embest:~# echo 1 > /sys/class/backlight/backlight/brightness

最亮:

root@embest:~# echo 8 > /sys/class/backlight/backlight/brightness

2.10 触摸屏测试

连接显示屏到 J9,在串口终端输入以下命令执行触摸屏校准程序:

root@embest:~# ts_calibrate

按照屏幕上提示,点击 "+" 图标 5 次完成校准。

2.11 串口测试

开发板上有 4 个串口,其中 UARTO(CN4)为 debug 接口

2.11.1UART1

短接 J4 第 2, 3 号接口:

root@embest:~# ./uart_test -d /dev/ttyS1 -b 115200

/dev/ttyS1 SEND: 1234567890

/dev/ttyS1 RECV 10 total

/dev/ttyS1 RECV: 1234567890 注意: Ctrl+C 中断串口测试

2.11.2 UART2

短接 J58 第 16, 17 号接口:

root@embest:~# ./uart_test -d /dev/ttyS2 -b 9600

/dev/ttyS2 SEND: 1234567890

/dev/ttyS2 RECV 10 total

/dev/ttyS2 RECV: 1234567890 注意: Ctrl+C 中断串口测试

2.11.3 UART4

短接 J58 第 14, 15 号接口:

root@embest:~# ./uart_test -d /dev/ttyS4 -b 9600

/dev/ttyS4 SEND: 1234567890

/dev/ttyS4 RECV 10 total

/dev/ttyS4 RECV: 1234567890 注意: Ctrl+C 中断串口测试

2.12 RS485 测试

2.12.1RS485-2 和 RS485-3

分别短接 J62 的 7,9 号引脚; 8,10 号引脚((即 RS485-A3 to RS485-A2, RS485-B3 to RS485-B2): 串口终端输入如下命令(在后台运行):

root@embest:~# ./uart_test -d /dev/ttySC1 -b 9600 -s "a" &

接着输入:

root@embest:~# ./uart_test -d /dev/ttySC0 -b 9600 -s "c"

/dev/ttySC0 SEND: c /dev/ttySC1 RECV 1 total

/dev/ttySC1 RECV: c

/dev/ttySC1 SEND: a

/dev/ttySC0 RECV 1 total

/dev/ttySC0 RECV: a

ttySC0,ttySC1 分别发送数据,并能接收数据;

2.13 CAN 测试

测试方法:

在串口终端中执行以下命令

root@embest:~# ip link set can0 type can bitrate 50000 loopback on

root@embest:~# ip link set can0 up

[1080.870648] c_can_platform 481cc000.can can0: setting BTR=1c1d BRPE=0000

执行以下命令在后台接受数据包:

root@embest:~# candump can0 &

执行以下命令在发送数据包:

root@embest:~# cansend can0 123#11223344556677

can0 123 [7] 11 22 33 44 55 66 77

can0 123 [7] 11 22 33 44 55 66 77

关闭设备:

root@embest:~# ip link set can0 down

read: Network is down

root@embest:~# [1280.241265] c can platform 481cc000.can can0: setting BTR=1c1d BRPE=0000

2.14 网络测试

连接网线到 J17, 在串口终端中输入以下命令来测试:

设置 IP 地址:

root@embest:~# ifconfig eth0 192.168.2.64

网络测试:

root@embest:~# ping 192.168.2.1

eth1 测试时,断开 J17 网线,连接外接网卡,执行同样的命令(eth0 改成 eth1)。

2.15 USB 测试

2.15.1 Host 测试

将 U 盘插入 USB host 接口 (P3), 串口显示磁盘信息:

[749.839750] usb 2-1: USB disconnect, device number 2

[753.033776] usb 2-1: new high-speed USB device number 3 using musb-hdrc

753.174244] usb 2-1: New USB device found, idVendor=0781, idProduct=5530

753.181112] usb 2-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[753.189783] usb 2-1: Product: Cruzer

753.193454] usb 2-1: Manufacturer: SanDisk

[753.198779] usb 2-1: SerialNumber: 20060876900F3042FBB5

[753.207733] usb-storage 2-1:1.0: USB Mass Storage device detected

[753.218483] scsi host1: usb-storage 2-1:1.0

[754.224988] scsi 1:0:0:0: Direct-Access SanDisk Cruzer 1.26 PQ: 0 ANSI: 5

754.248822] sd 1:0:0:0: [sda] 7821312 512-byte logical blocks: (4.00 GB/3.72 GiB)

[754.261207] sd 1:0:0:0: [sda] Write Protect is off

[754.269365] sd 1:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA

754.291840] sda:

[754.300985] sd 1:0:0:0: [sda] Attached SCSI removable disk

串口终端输入如下命令:

root@embest:~# Is /dev/sd*

/dev/sda

/dev 下存在设备节点:

2.15.2OTG 测试

2.15.2.1 主设备

通过转接线连接 U 盘到 J13:

[777.452379] usb 2-1: USB disconnect, device number 3

[828.653766] usb 1-1: new high-speed USB device number 2 using musb-hdrc

828.794284] usb 1-1: New USB device found, idVendor=0781, idProduct=5530

[828.801145] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[828.811356] usb 1-1: Product: Cruzer

828.817391] usb 1-1: Manufacturer: SanDisk

[828.823054] usb 1-1: SerialNumber: 20060876900F3042FBB5

828.834098] usb-storage 1-1:1.0: USB Mass Storage device detected

828.848209] scsi host2: usb-storage 1-1:1.0

[829.854966] scsi 2:0:0:0: Direct-Access SanDisk Cruzer 1.26 PQ: 0 ANSI: 5

829.879600] sd 2:0:0:0: [sda] 7821312 512-byte logical blocks: (4.00 GB/3.72 GiB)

[829.893393] sd 2:0:0:0: [sda] Write Protect is off

[829.902869] sd 2:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA

[829.927923] sda:

829.939997] sd 2:0:0:0: [sda] Attached SCSI removable disk

串口终端输入如下命令:

root@embest:~# Is /dev/sd*

/dev/sda

/dev 下存在设备节点;

2.15.2.2 从设备

连接 J13 到 PC 端, 打开设备管理器, 识别到如下设备:

第3章 系统编译

3.1 配置编译环境

将 SBC-PH8700-Release-REV01 文件夹拷贝到 Linux 环境下的\$HOME 目录下(解压 rar 文件),编译工具 gcc-linaro-4.9-2015.05-x86_64_arm-linux-gnueabihf 在\$HOME/S5_Tool 目录下,用如下命令解压:

\$xz -d gcc-linaro-4.9-2015.05-x86_64_arm-linux-gnueabihf.tar.xz

\$tar -xvf gcc-linaro-4.9-2015.05-x86_64_arm-linux-gnueabihf.tar

导入环境变量:

\$export

CROSS_COMPILE=\$HOME/S5_Tool/gcc-linaro-4.9-2015.05-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-

\$export ARCH=arm

3.2 编译 UBOOT

3.2.1 获取 uboot 源码

Uboot 源码在\$HOME/S4_Sourcecode/目录下,解压 u-boot*.tar.gz:

\$ cd \$HOME/S4_Sourcecode/

\$ tar -zxvf u-boot*.tar.gz

3.2.2 编译并烧写镜像到 SD 卡

\$ cd \$HOME/S4_Sourcecode/u-boot

\$ make distclean

\$make som_ph8700_defconfig

\$make

编译完成后在\$HOME/S4 Sourcecode/u-boot 目录下生成 MLO, u-boot.img,将两个文件拷贝到 SD 卡中;

3.2.3 编译并烧写镜像到 EMMC

\$ cd \$HOME/S4_Sourcecode/u-boot

\$ make distclean

\$make som_ph8700_emmcboot_defconfig

\$make

编译完成后在\$HOME/S4_Sourcecode/u-boot 目录下生成目录下生成 MLO, u-boot.img,将两个文件烧写到 EMMC 中;

(参考 1.3 从 EMMC 启动系统)

3.3 Kernel

3.3.1 获取内核源码

内核源码存在\$HOME/S4_Sourcecode/目录下,解压 linux*.tar.gz

\$ tar -zxvf linux*.tar.gz

3.3.2 编译并烧写镜像到 SD 卡

\$ cd \$HOME/S4_Sourcecode/linux

\$ make distclean

\$ make embest_ti_8700_defconfig

\$ make

编译完成后在

- 目录\$HOME/release/sourcecode/linux/arch/arm/boot 下生成 zImage 文件。
- 目录 \$HOME/ release/sourcecode/linux/arch/arm/boot/dts 中生成下列 3 个文件:
- 1. embest-SOM_PH8700-BB_SPH1800-4.3inch_LCD.dtb
- 2. embest-SOM_PH8700-BB_SPH1800-7inch_LCD.dtb
- 3. embest-SOM_PH8700_BB_SPH1800-HDMI.dtb

dtb 文件分别对应 4.3 寸屏,7 寸屏,HDMI 显示(配置方法参考 LCD 测试, HDMI 测试);将文件拷贝到 SD 卡中。