1. (4 points) Determine the domain and range of the function f graphed below.

- (a) Domain:
- (b) Range:
- (c) Does f have an inverse? Justify your answer.

2. (4 points) Consider the functions f and g given by the graphs below.

Evaluate:

(a)
$$(f+g)(2) =$$

(c)
$$(f \circ g)(2) =$$

(b)
$$(f-g)(3) =$$

(d)
$$(g \circ f)(3) =$$

3. (2 points) Select the function that corresponds to the graph below

A.
$$y = -|x+2| + 1$$

B.
$$y = -|x+2| - 1$$

C.
$$y = -|x - 2| + 1$$

D.
$$y = -|x - 2| - 1$$

- **4.** (4 points) Use long division to calculate $(x^3 + x^2 x + 2) \div (x 2)$
- **5.** Determine the inverse function $f^{-1}(x)$ of the following functions:

(a) (3 points)
$$f(x) = \frac{2-x}{3x-5}$$

(b) (2 points)
$$f(x) = 1 + e^{x-1}$$

6. Determine the domain of the following functions:

(a) (2 points)
$$f(x) = \frac{x+1}{x^2+2x-3}$$

(b) (3 points)
$$f(x) = \frac{\sqrt{x-2}+1}{\sqrt{3-x}}$$

- 7. (5 points) Let $f(x) = -2x^2 + 4x + 6$
 - (a) Determine the coordinates of the axis intercepts.
 - (b) Determine the coordinates of the vertex of the parabola.
 - (c) Sketch a graph labelling the intercepts and the vertex.
- **8.** Solve the following equations:

(a) (3 points)
$$x^4 + 2x^2 = 3x^3$$

(b) (3 points)
$$x^3 - x^2 + x = 1$$

(c) (3 points)
$$x^4 - 5x^2 + 4 = 0$$

(d) (3 points)
$$\ln x + \ln(x-1) = \ln(4x+6)$$

(e) (3 points)
$$3^{2x+5} = 27$$

(f) (3 points) $2 \cdot 3^x = 5$ (Round the answer to three decimal places)

(g) (4 points)
$$\frac{x}{x+1} = \frac{12}{x^2 - x - 2} - \frac{4}{x-2}$$

(h) (4 points)
$$\sqrt{x^2 + 32} - \sqrt{x^2 - 33} = 5$$

- 9. Simplify the following expressions:
 - (a) (3 points) $\frac{\sqrt[3]{x^{17}y^{-9/4}}}{x^{2/3}\sqrt[4]{y}}$ (Answer must be expressed with positive exponents)
 - (b) (3 points) $\frac{\frac{x-3}{x+1} + x}{\frac{6}{x+1} x}$
- **10.** (3 points) Solve the inequality: $\frac{x^2 x 1}{x 1} \ge 1$. Write the answer in interval notation.
- 11. (3 points) Use properties of logarithms to rewrite the following expression as a combination of $\ln x$, $\ln 5$, and $\ln(x-5)$:

$$\ln\left(\frac{x^3 - 5x^2}{5}\right)$$

- **12.** (5 points) Let $f(x) = 1 \log_3(x+1)$.
 - (a) Determine the coordinates of the axis intercepts.
 - (b) State the equation of the asymptote of the graph.
 - (c) Sketch a graph labelling the intercepts and the asymptote.
- 13. (2 points) I need \$15 000 in 18 years. My bank offers an investment fund that earn 5% interest rate of compounded monthly. How much should I invest now to have that amount in the future? Approximate the answer to the nearest cent.
- 14. (3 points) How long does it take to **double** an investment made at 5% interest rate compounded **monthly**? Approximate the answer to the nearest year.
- **15.** (1 point) Convert $\frac{11\pi}{4}$ radians to degrees.
- 16. (1 point) Convert 240° to radians.
- 17. (3 points) If $\sec \theta = \frac{3}{2}$ and $\tan \theta < 0$, then:
 - (a) At which quadrant is θ located?
 - (b) $\sin \theta =$
 - (c) $\cot \theta =$

18. (3 points) State the amplitude, the period, and sketch at least two cycles of the function

$$f(x) = -3\sin(2x)$$

(a) Amplitude:

 $\rightarrow x$ (b) Period:

19. (3 points) Determine all values of θ in the interval $[0, 2\pi)$ that satisfy $\cot \theta = \sqrt{3}$. Provide all solutions using exact values (involving π).

20. (3 points) Determine all values of θ in the interval $[0, 360^{\circ})$ that satisfy $\sec \theta = -3$. Use the calculator to approximate your answers to the nearest degree.

21. (3 points) Prove that $\tan^2 x - \sin^2 x = \tan^2 x \sin^2 x$

22. (3 points) Determine the measure of all angles of the triangle below. Approximate your answer to the nearest degree.

23. (3 points) To find the distance across a river, a surveyor selects two reference points, A and B, which are 300 metres apart on the same side of the river. The surveyor then selects a third reference point, C, on the opposite side of the river and determines the angles as shown in the figure. Approximate the distance from A to C to the nearest metre.

Total: 100 points

This is the end of the examination.

Answers

- 1. (a) Domain: $[-4,0) \cup (0,3]$
 - (b) Range: $[-4, -1) \cup [0, 2]$
 - (c) f does not have an inverse because it is not one-to-one as it fails the horizontal line test.
- **2.** (a) (f+g)(2)=7
 - (b) (f-g)(3) = 1
 - (c) $(f \circ g)(2) = 5$
 - (d) $(g \circ f(3) = 0$
- **3.** A. y = -|x+2| + 1
- **4.** Quotient: $x^2 + 3x + 5$

Remainder: 12

- 5. (a) $f^{-1}(x) = \frac{5x+2}{3x+1}$
 - (b) $f^{-1}(x) = \ln(x-1) + 1$
- **6.** (a) Domain: $\mathbb{R} \setminus \{-3, 1\}$
 - (b) Domain: [2, 3)

- 7. (a) x-intercepts: (-1,0) and (3,0)y-intercept: (0,6)
 - (b) Vertex: (1,8)
 - (c)

- **8.** (a) x = 0, x = 1, and x = 2
 - (b) x = 1
 - (c) x = -2, x = -1, x = 1 and x = 2
 - (d) x = 6
 - (e) x = -1
 - (f) $x = \frac{\ln\left(\frac{5}{2}\right)}{\ln 3} \approx 0.834$
 - (g) x = -4
 - (h) x = -7 and x = 7
- **9.** (a) $\frac{x^5}{y}$
 - $(b) \frac{1-x}{x-2}$
- **10.** $[0,1) \cup [2,\infty)$
- 11. $\ln(x-5) + 2\ln x \ln 5$

12. (a) *x*-intercept: (2,0)

y-intercept: (0,1)

(b) Asymptote: x = -1

(c)

- **13.** \$6110
- **14.** 14 years
- **15.** 495°
- **16.** $\frac{4\pi}{3}$
- 17. (a) Fourth quadrant

 - (b) $\sin \theta = \frac{-\sqrt{5}}{3}$ (c) $\cot \theta = \frac{2}{-\sqrt{5}}$

18.

(a) Amplitude: 3

(b) Period: π

19.
$$\theta = \frac{\pi}{6} \text{ and } \theta = \frac{7\pi}{6}$$

20. $\theta \approx 109^{\circ}$ and $\theta \approx 251^{\circ}$

21.

$$\tan^2 x - \sin^2 x = \frac{\sin^2 x}{\cos^2 x} - \sin^2 x$$

$$= \frac{\sin^2 x - \sin^2 x \cos^2 x}{\cos^2 x}$$

$$= \frac{\sin^2 x (1 - \cos^2 x)}{\cos^2 x}$$

$$= \frac{\sin^2 x (\sin^2 x)}{\cos^2 x}$$

$$= \tan^2 x \sin^2 x$$

22. $A \approx 18^{\circ}, B \approx 33^{\circ} \text{ and } C \approx 129^{\circ}$

23. 392 metres