Лабораторная работа № 2 «Критерии согласия и однородности выборок»

студента	<u>Шамаева Серге</u>	<u>я </u> группы_	Б21-514	Дата сдач	ни:
Ведущий	преподаватель:	Трофимов .	Александр I	Сеннадьевич	оценка:
подпись:_					

Вариант № 4 (19)

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки критериев согласия ($goodness-of-fit\ tests$) и однородности выборок.

1. Исходные данные

Характеристики наблюдаемой случайной величины *X*:

Распределение		Параметры	Математическое ожидание, <i>m</i>	Дисперсия, σ^2
X	$\sim R(5, 15)$	5, 15	10	8.333

Объём выборки $n_1 = 300$

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

Среднее, \overline{x}		Оценка дисперсии, s ²	Оценка с.к.о., s
9.808	•	7.916	2.813

2. Визуальное представление выборки

Гистограммы частот:

Примечание: для построения гистограмм использовать функцию hist (scipy.stats: histogram; matplotlib.pyplot: hist)

3. Критерий хи-квадрат

а) Статистическая гипотеза: H_0 : $X \sim N(m, \sigma)$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	14.963	0.0005	Не принимается	нет
10	18.574	0.0096	Не принимается	нет
15	40.842	5.205e-05	Не принимается	нет
20	57.998	2.239e-06	Не принимается	нет

<u>б</u>) Статистическая гипотеза:*H*₀:*X*∼*R*

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	2.543	0.280	Принимается	нет
10	3.912	0.790	Принимается	нет
15	13.339	0.345	Принимается	нет
20	24.372	0.110	Принимается	нет

Лабораторный практикум по курсу «Математическая статистика»

в) Статистическая гипотеза: H_0 : $X \sim \chi^2(5)$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	830.638	1.772 e-178	Не принимается	нет
10	929.224	3.119 e-194	Не принимается	нет
15	1151.061	5.726 e-237	Не принимается	нет
20	1201.439	4.562 e-243	Не принимается	нет

Примечание: при расчетах использовать функции chi2gof, fitdist (scipy.stats: histogram, chisquare)

4. Критерий Колмогорова

Статистическая гипотеза, Н0	Выборочное значение статистики критерия	p-value	Статистическое решение при α = 0.05	Ошибка стат. решения
X ~ N(m, σ)	0.067	0.127	Принимается	да
X ~ R	0.036	0.808	Принимается	нет
X ~ χ2(5)	0.607	2.356 e- 106	Не принимается	нет

Примечание: при расчетах использовать функции kstest, lillietest, fitdist (scipy.stats: kstest)

Примечание: для построения графиков использовать функции ecdf, cdf (scipy.stats: uniform.cdf, norm.cdf, chi2.cdf; statsmodels.distributions. empirical_distribution: ECDF)

10

12

14

16

5. Двухвыборочные критерии

6

0.0

4

Характеристики наблюдаемой случайной величины У:

8

Распределение	Параметры	Математическое ожидание	Дисперсия
$Y \sim N(10, 5)$	10, 5	10	25

Объём выборки $n_2 = 100$

Критерий	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при α = 0.05	Ошибка стат. решения
Chi- squared	F(x)=F(y)	18.606	0.058	Принимается	Да
KS-test	F(x)=F(y)	0.19	0.008	Не принимается	Нет
Sign test	F(x)=F(y)	-4.0	0.484	Принимается	Да
U-test	F(x)=F(y)	-0.25	0.799	Принимается	Да

Примечание: при расчетах использоват ь функции chi2gof, kstest2, signtest, ranksum (scipy.stats: chisquare, ks_2samp; statsmodels.stats.descriptivestats. sign_test, ranksums)