МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.6.1

Спектральный анализ электрических сигналов

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

1 Введение

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

2 Теоретические сведения

2.1 Ряд Фурье и спектральный анализ

Согласно теореме Фурье, любая периодическая функция может быть представлена в виде ряда гармонических функций с кратными частотами — pяда Фурье. Одно из представлений ряда Фурье для функции с периодом T имеет вид

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(2\pi\nu_n t) + B_n \sin(2\pi\nu_n t), \tag{1}$$

где $\nu_n = n\nu_0$, $\nu_0 = \frac{1}{T}$, $n = 1, 2, \cdots$ – частоты фурье-гармоник, A_n и B_n — коэффициенты разложения в ряд Фурье. Коэффициенты находятся как

$$A_n = \frac{2}{T} \int_0^T f(t) \cdot \cos(2\pi\nu_n t) dt, \quad B_n = \frac{2}{T} \int_0^T f(t) \cdot \sin(2\pi\nu_n t) dt.$$
 (2)

Удобнее использовать эквивалентную форму записи ряда Фурье в npedcmaenenuu амплитуд и ϕas :

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi\nu_n t + \varphi_n), \tag{3}$$

где $a_n=\sqrt{A_n^2+B_n^2}$ – амплитуда гармоники, а tg $\varphi_n=B_n/A_n$ – фаза.

Совокупность всех частот ν_n и соответствующих им амплитуд a_n и фаз φ_n называют спектром функции f(t). Спектр периодической функции дискретен (число гармоник счётно). Если функция не периодическая, но ограниченная во времени, её можно представить как предел периодической функции с очень большим периодом $T \to \infty$. Тогда частотное расстояние между соседними гармониками $\delta \nu = 1/T$ стремится к нулю, то есть спектр становится непрерывным. Разложение в ряд Фурье при этом переходит в интеграл Фурье.

Формулу (4), в которой функции f(t) ставится в соответствие функция $F(\omega)$ называют преобразованием Фурье. Это преобразование является взаимно-однозначным, а восстановление исходной функции по её спектру называется обратным преобразованием Фурье. Оно представлено формулой (5).

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt \tag{4}$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega \tag{5}$$

Однако при спектральном анализе электрических сигналов, как правило, измеряются именно амплитуды $|a_n|$ спектральных компонент, а информация об их фазах φ_n теряется. Это приводит к тому, что пропадает взаимно-однозначное соответствие между сигналом и спектром, и весьма разные сигналы могут иметь один и тот же амплитудный спектр.

2.2 Периодическая последовательность прямоугольных импульсов

Найдём спектр периодической последовательности прямоугольных импульсов длительности τ с периодом следования импульсов $T > \tau$ (рис. 1).

Рис. 1: Периодическая последовательность импульсов (слева) и её спектр (справа)

$$c_n = \frac{1}{T} \int_{-\tau/2}^{\tau/2} e^{-in\omega_0 t} dt = \frac{\tau}{T} \cdot \frac{\sin(n\omega_0 \tau/2)}{n\omega_0 \tau/2} = \frac{\sin(\pi n\tau/T)}{\pi n} = \frac{\tau}{T} \cdot \frac{\sin(\pi \nu_n \tau)}{\pi \nu_n \tau}.$$
 (6)

Спектр $\{c_n\}$ показан на рис. 1. Пунктирной кривой изображена огибающая функция

$$C(\omega) = \frac{\tau}{T} \cdot \frac{\sin \omega \tau / 2}{\omega \tau / 2}.$$
 (7)

Полуширина $\Delta \omega$ главного максимума этой функции определяется условием $\sin \omega \tau/2 = 0$:

$$\Delta\omega\cdot\frac{\tau}{2}=\pi$$
 или $\Delta\omega\cdot au=2\pi.$

2.3 Периодическая последовательность цугов

Найдём спектр обрывка синусоиды с частотой ω_0 длительностью τ (такой сигнал называют *цу-гом*). Сигнал может быть представлен как

$$f(t) = f_0(t)\cos(\omega_0 t), \tag{8}$$

где $f_0(t)$ - единичный прямоугольный импульс длительностью τ (рис. 2).

Рис. 2: Прямоугольный (а) и синусоидальный (б) импульсы

Найдём спектр прямоугольного импульса длительности au единичной амплитуды:

$$F_0(\omega) = \int_{-\tau/2}^{\tau/2} e^{-i\omega t} dt = \tau \frac{\sin \omega \tau/2}{\omega \tau/2}.$$
 (9)

Соотношение для смещения спектра:

$$F(\omega) = \frac{1}{2}F_0(\omega - \omega_0) + \frac{1}{2}F_0(\omega + \omega_0).$$
 (10)

Отсюда, получим

$$F(\omega) = \frac{\tau}{2} \left[\frac{\sin(\omega - \omega_0)\tau/2}{(\omega - \omega_0)\tau/2} + \frac{\sin(\omega + \omega_0)\tau/2}{(\omega + \omega_0)\tau/2} \right]. \tag{11}$$

Спектры $F_0(\omega)$ и $F(\omega)$ представлены на рис. 3.

Рис. 3: Спектры прямоугольного импульса и синусоидального цуга

Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

2.4 Соотношения неопределённостей

Если у сигнала f(t) есть какое характерное время Δt , то в спектре $a(\nu)$ будет наблюдаться характерный масштаб $\Delta \nu \sim 1/\Delta t$. Соотношения вида

$$\Delta \nu \cdot \Delta t \sim 1 \tag{12}$$

принято называть соотношениями неопределённостей.

Например, если $\Delta t = \tau$ — характерная *длительность* импульса, то характерная *ширина* спектра по порядку величины будет равна $\Delta \nu \sim 1/\tau$. Конкретное числовое значение зависит, во-первых, от детальной формы сигнала, и, во-вторых, от того, что именно мы называем *характерным* временем и что — *шириной* спектра.

Другой пример, для любого сигнала с периодом T в спектре обязательно будут наблюдаться гармоники на расстоянии $\delta \nu = 1/T$ друг от друга. В данном случае соотношение является точным и от формы сигнала не зависит.

2.5 Амплитудная модуляция

Рассмотрим простейшее амплитудно-модулированное колебание, в котором амплитуда модуляции является гармонической функцией:

$$f(t) = a(t)\cos(\omega_0 t) = a_0(1 + m\cos\Omega t)\cos\omega_0 t = a_0\cos\omega_0 t + \frac{ma_0}{2}\cos(\omega_0 + \Omega)t + \frac{ma_0}{2}\cos(\omega_0 - \Omega)t.$$
 (13)

Итак, амплитудно-модулированное колебание представляется в виде суммы трёх гармонических колебаний:

$$f_0(t) = a_0 \cos \omega_0 t, \ f_1(t) = \frac{ma_0}{2} \cos (\omega_0 + \Omega)t, \ f_2(t) = \frac{ma_0}{2} \cos (\omega_0 - \Omega)t$$
 (14)

с частотами соответственно ω_0 , $\omega_0 + \Omega$, $\omega_0 - \Omega$ и амплитудами a_0 , $ma_0/2$, $ma_0/2$. Колебание $f_0(t)$ называется несущим колебанием, а $f_1(t)$ и $f_2(t)$ – боковыми гармониками.

Константа $0 < m \le 1$ называется *глубиной модуляции*. Глубину модуляции можно выразить через максимальную a_{max} и минимальную a_{min} амплитуды сигнала:

$$m = \frac{a_{max} - a_{min}}{a_{max} + a_{min}}. (15)$$

2.6 Интегрирующая RC-цепочка

Частотная характеристика RC-цепочки (рис. 4) равна

$$\lambda(\omega) = \frac{1}{1 + i\omega\tau_{RC}}. (16)$$

Отсюда, амплитудный коэффициент фильтрации равен

Рис. 4: Интегрирующая RC-цепочка

$$K(\nu) = \frac{1}{\sqrt{1 + 4\pi^2 \nu^2 R^2 C^2}} \tag{17}$$

При $2\pi\nu\gg 1/\tau_{RC}$ имеем $K\approx\frac{1}{2\pi\nu RC}\to 0$, то есть RC-цепочка подавляет все компоненты сигнала с достаточно высокой частотой, а низкочастотные компоненты пропускает без искажения $(K\to 1)$ при $2\pi\nu\ll 1/\tau_{RC}$). Такие устройства называют фильтрами низких частот.

3 Методика измерений и используемое оборудование

Вследствие того, что частота исследуемого сигнала не слишком велика (заведомо меньше тактовой частоты процессоров), в данной работе применяется цифровой спектральный анализ, который имеет две отличительные особенности.

Во-первых, при цифровом анализе возникает *частоота дискретизации* $\nu_{\text{дискр}}$, то есть частота, с которой считываются значения напряжения, подаваемого на входной канал анализатора. Дискретизация не позволит исследовать спектр частот, превышающих частоту $\nu_{\text{дискр}}$, и исказит спектр вблизи неё, поэтому надёжно получать спектр можно лишь на достаточно низких частотах $\nu \ll \nu_{\text{дискр}}$. Внутренняя частота дискретизации осциллографов обычно велика (типичное значение — 1 ГГц), однако для преобразования Фурье в целях оптимизации скорости работы она может существенно урезаться. В настройках цифровых осциллографов часто используется параметр *количество точек»* на интервал времени. Например, если сигнал записывался в течение 1 с, то при стандартных для многих осциллографов 4096 точках дискретизации, спектр будет заведомо ограничен лишь частотой ~ 2 кГц.

Во-вторых, интервал времени Δt , в течение которого регистрируется сигнал, всегда ограничен. Для анализа сигнала вырезается его участок — $o\kappa no$ $t\in[t_0;t_0+\Delta t]$. Такое преобразование Фурье часто называют $o\kappa onhum$. Из-за ограниченности размеров $o\kappa na$ неизбежно возникают дополнительные искажения спектра. Чтобы компенсировать эти искажения, значениям регистрируемой функции в пределах $o\kappa na$ придают разный вес. В таком случае говорят об $o\kappa onhoù$ функции преобразования Фурье. На практике применяются различные оконные функции, каждая из которых обладает своими достоинствами и недостатками (одни уменьшают шумы, другие уменьшают ширину пиков и погрешность частоты, третьи погрешность измерения амплитуд и т.д.). В нашей работе важно аккуратное измерения амплитуд, для чего лучше всего подходят окна $o\kappa na$ c $nnoc\kappa où$ вершиной.

4 Результаты измерений и обработка данных

4.1 Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

Настроив генерацию прямоугольных импульсов с частотой повторения $\nu_{\text{повт}} = 1 \text{ к} \Gamma$ ц (период T=1 мc) и длительностью импульса $\tau = T/20 = 50 \text{ мкc}$, получили на экране спектр сигнала. Изменяя на генераторе параметры сигнала, зафиксировали, как изменялся спектр (рис. 5).

При фиксированных параметрах $\nu_{\text{повт}} = 1$ к Γ ц и $\tau = 50$ мкс, были измерены амплитуды a_n и частоты ν_n нескольких спектральных компонент ($\mathit{гармоник}$). Результаты измерений представлены в таблице 1.

n	$ u_n^{exp}$, Гц	$ u_n^{theor}$, Гц	$ a_n ^{exp}$, усл. ед.	$ a_n/a_1 ^{exp}$	$ a_n/a_1 ^{theor}$
1	1021	1000	284,6	1,000	1,000
2	2045	2000	280,3	0,985	0,988
3	2994	3000	273,7	0,962	0,967
4	4056	4000	266,5	0,936	0,939
5	5042	5000	256,4	0,901	0,904
6	6028	6000	244,0	0,857	0,862
7	7014	7000	231,0	0,812	0,814
8	8001	8000	214,4	0,753	0,760
9	9025	9000	199,1	0,700	0,702
10	10001	10000	180,3	0,634	0,639
11	11040	11000	161,5	0,567	0,574
12	12020	12000	143,4	0,504	0,507

Таблица 1: Результаты исследования амплитуд и частот гармоник

При составлении таблицы были использованы соотношения 6.

Зафиксировав период повторения T=1 мс прямоугольного сигнала, исследуем зависимость полной ширины спектра сигнала $\Delta \nu$ от длительности импульса τ . Результаты измерений представлены в таблице 2.

По этим данным построим график зависимости $\Delta \nu \left(1/\tau \right)$ (рис. 6).

τ , MKC	$\Delta \nu$, к Γ ц	$1/\tau$, $10^3 \cdot c^{-1}$
50	19,6	20
75	13,4	13
100	9,8	10
125	8,0	8
150	6,5	7
175	5,5	6
200	4,5	5

Таблица 2: Результаты измерения зависимости $\Delta \nu$ от au

Рис. 5: Изменение спектра прямоугольных импульсов при варьировании параметров

Рис. 6: График зависимости полной ширины спектра $\Delta \nu$ от 1/ au

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$\Delta\nu \cdot \tau = 0,99 \pm 0,01 \sim 1,$$

что согласуется с соотношением неопределённости (см. пункт 2.4).

Зафиксировав период повторения $\tau=100$ мкс прямоугольного сигнала, исследуем зависимость расстояния $\delta\nu$ между соседними гармониками спектра от периода повторения T. Результаты измерений представлены в таблице 3.

T, MC	$\delta \nu$, к Γ ц	$1/T$, $10^3 \cdot c^{-1}$
0,2	5,000	5,000
1,0	1,014	1,000
1,8	0,554	$0,\!556$
2,6	0,374	0,385
3,4	0,307	0,294
4,2	0,241	0,238
5,0	0,203	0,200

Таблица 3: Результаты измерения зависимости $\delta \nu$ от T

По этим данным построим график зависимости $\delta \nu \, (1/T)$ (рис. 7).

 Φ РКТ М Φ ТИ, 2023 7

Рис. 7: График зависимости расстояния между соседними гармониками $\delta \nu$ от 1/T

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$\delta\nu \cdot T = 1,000 \pm 0,001,$$

что согласуется с соотношением неопределённости (см. пункт 2.4).

4.2 Наблюдение спектра периодической последовательности цугов

Настроив генерацию периодических импульсов синусоидальной формы (uyros) с несущей частотой $\nu_0 = 50$ к Γ ц, периодом повторения T = 1 мс ($\nu_{\text{повт}} = 1$ к Γ ц) и числом периодов синусоиды в одном импульсе N = 5, получили на экране осциллографа устойчивую картину сигнала. Изменяя на генераторе параметры сигнала, зафиксировали, как изменялся спектр (рис. 8).

Теперь установим на генераторе следующие параметры: $\nu_0 = 50$ к Γ ц, N = 5, для них измерим, меняя T, зависимость $\delta \nu$ от 1/T. Полученные результаты исследования зависимости приведены в таблице 4.

T, MC	$\Delta \nu$, к Γ ц	$\delta \nu$, к Γ ц	$1/T$, $10^3 \cdot c^{-1}$
4,00	10	0,25	0,25
2,00	10	0,55	0,50
1,00	10	0,97	1,00
0,50	10	1,94	2,00
0,25	10	4,00	4,00
0,20	10	5,00	5,00

Таблица 4: Результаты измерения зависимости $\delta \nu$ от 1/T

Рис. 8: Изменение спектра синусоидальных импульсов при варьировании параметров

По данным таблицы 4 построим график зависимости $\delta \nu$ (1/T) (рис. 9).

Рис. 9: График зависимости расстояния между соседними гармониками $\delta \nu$ от 1/T

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$\delta\nu \cdot T = 0,997 \pm 0,005,$$

что согласуется с соотношением неопределённости (см. пункт 2.4).

4.3 Исследование спектра амплитудно-модулированного сигнала

Установив на генераторе режим модулированного по амплитуде синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\rm мод}=2$ к Γ ц и глубиной модуляции 50% (m=0,5), получили на экране осциллографа устойчивую картину сигнала.

Измерим максимальную A_{max} и минимальную A_{min} амплитуды сигнала, чтобы вычислить значение m, получим

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1,504 \text{ B} - 0,499 \text{ B}}{1,504 \text{ B} + 0,499 \text{ B}} \approx 0,5.$$

Полученное значение эквивалентно тому, что установлено на генераторе.

Изменяя на генераторе несущую частоту ν_0 и частоту модуляции $\nu_{\text{мод}}$, зафиксировали, как изменялось положение спектральных линий (рис. 10).

Рис. 10: Изменение спектральных линий при варьировании параметров

(d) $\nu_0 = 50$ к Γ ц, $\nu_{\text{мод}} = 4$ к Γ ц

Изменяя на генераторе глубину модуляции m, измерим отношение амплитуд боковой $a_{\rm бок}$ и основной $a_{\rm осh}$ спектральных линий. Полученные результаты приведены в таблице 5.

m, %	$a_{\text{бок}}, B$	$a_{\text{осн}}, B$	$a_{\text{бок}}/a_{\text{осн}}$
10	37,2		0,0522
20	70,2		0,0986
30	105,4		0,1479
40	142,5		0,1999
50	177,7	712,7	0,2493
60	212,8	112,1	0,2986
70	250,0		0,3508
80	285,1		0,4000
90	320,2		0,4493
100	356,4		0,5001

Таблица 5: Результаты измерения зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m

По этим данным построим график зависимости отношения амплитуд $a_{60\text{к}}/a_{\text{осн}}$ от глубины модуляции m (рис. 11).

ФРКТ МФТИ, 2023 11

Рис. 11: График зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m

Аппроксимируя полученные данные при помощи программы *OriginPro 2023b*, получим, что коэффициент наклона графика равен

$$k_{exp} = (0,4995 \pm 0,0006)$$
.

Полученное значение k_{exp} эквивалентно теоретическому $k_{theor} = 0,5$ в пределах погрешности.

4.4 Изучение фильтрации сигналов

Собрав схему с RC-фильтром низких частот с сопротивлением R=3 кОм и ёмкостью $C=10^{-9}$ Ф ($\tau_{RC}=3\cdot 10^{-6}$ с, $\nu_{RC}=333$ к Γ ц), наблюдали форму сигнала и его спектр при различных значениях периода повторения T (рис. 12).

Далее, при некотором фиксированном периоде T провели измерения отношений амплитуд соответствующих спектральных гармоник фильтрованного и исходного сигналов: $K_n = |a_n^{\phi}|/|a_n^{0}|$. Результаты приведены в таблице 6.

n	ν_0 , к Γ ц	ν , к Γ ц	$ a_n^{\phi} $, мВ	$ a_n^0 $, мВ	$K_n = a_n^{\phi} / a_n^0 $
1		35	233	286	0,8147
2		70	164	276	0,5942
3		105	120	270	0,4444
4	35	140	94	260	0,3615
5	99	175	70	253	0,2767
6		210	60	240	0,2500
7		245	48	225	0,2133
8		280	38	208	0,1827

Таблица 6: Результаты измерения зависимости $|a_n^\phi|/|a_n^0|$ от ν

Рис. 12: Изменение спектра RC-цепочки при варьировании T

По данным таблицы 6 построим график зависимости $K(\nu)$ (рис. 13).

Рис. 13: График зависимости амплитудного коэффициента фильтрации K от частоты $\nu=n\nu_0$

Аппроксимируя полученные данные зависимостью вида $K(\nu)=1/\sqrt{1+4\pi^2R^2C^2\nu^2}$ при помощи программы OriginPro~2023b, получим, что

$$4\pi^2 R^2 C^2 = (3,7 \pm 0,1) \cdot 10^{-10} \text{ c}^2 \Rightarrow \tau_{RC}^{exp} = (3,05 \pm 0,05) \cdot 10^{-6} \text{ c}.$$

Полученное значение au_{RC}^{exp} совпадает с $au_{RC}^{theor}=3\cdot 10^{-6}$ с в пределах погрешности.

5 Заключение

В данной работе были изучены спектры периодических электрических сигналов.

В первой части работы было проверено и экспериментально подтверждено соотношение неопределённостей $\Delta \nu \cdot \tau = 1$ для прямоугольных импульсов.

Во второй части работы были исследованы спектры цугов гармонических колебаний, экспериментально подтвержджён тот факт, что при стремлении частоты повторения цугов к нулю спектр переходит в непрерывный.

В последней части работы были исследованы спектры гармонических сигналов, модулированных по амплитуде. Экспериментально подтверждено соотношение $\frac{a_{6\text{ok}}}{a_{\text{och}}} = \frac{m}{2}$.

Результаты оценки погрешностей говорят о хорошей точности использованных методов и корректном проведении эксперимента.