Képletgyűjtemény

• Egymintás u-próba:

$$u = \frac{\bar{\xi} - \mu_0}{\sigma / \sqrt{n}}$$

• Kétmintás u-próba:

$$u = \frac{\bar{\xi} - \bar{\eta}}{\sqrt{\frac{\sigma_{\xi}^2}{n_{\xi}} + \frac{\sigma_{\eta}^2}{n_{\eta}}}}$$

• Egymintás t-próba:

$$t = \frac{\bar{\xi} - \mu_0}{s^* / \sqrt{n}}$$

• Kétmintás t-próba:

$$t = \frac{\bar{\xi} - \bar{\eta}}{\sqrt{\frac{(n-1)s_{\xi}^{*2} + (m-1)s_{\eta}^{*2}}{nm(n+m-2)}(n+m)}}$$

F-próba:

$$F = \frac{\max(\sigma_{\xi}, \sigma_{\eta})}{\min(\sigma_{\xi}, \sigma_{\eta})}$$

• Illeszkedésvizsgálat:

$$\chi^2 = \sum_{i=1}^r \frac{(\nu_i - np_i)^2}{np_i}$$

• Homogenitásvizsgálat:

$$\chi^{2} = n_{\nu} n_{\mu} \sum_{i=1}^{r} \frac{\left(\frac{\nu_{i}}{n_{\nu}} - \frac{\mu_{i}}{n_{\mu}}\right)^{2}}{\nu_{i} + \mu_{i}}$$

• Függetlenségvizsgálat:

$$\chi^2 = \sum_{i=1}^r \sum_{i=1}^s \frac{\left(\nu_{ij} - \frac{\nu_{i} \cdot \nu_{\cdot j}}{n}\right)^2}{\frac{\nu_{i} \cdot \nu_{\cdot j}}{n}}$$

	Standa	ard no	rmál e	loszlás	elosz	lásfügg	gvényé	nek tá	blázat	a
x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0									0.8599	
1.1									0.8810	
1.2									0.8997	
1.3									0.9162	
1.4									0.9306	
1.5									0.9429	
									0.9535	
1.7									0.9625	
									0.9699	
									0.9761	
2.0									0.9812	
2.1									0.9854	
2.2									0.9887	
2.3									0.9913	
									0.9934	
2.5									0.9951	
2.6									0.9963	
2.7									0.9973	
2.8									0.9980	
									0.9986	
									0.9990	
3.1									0.9993	
3.2									0.9995	
3.3									0.9996	
3.4									0.9997	
									0.9998	
									0.9999	
3.7									0.9999	
3.8									0.9999	
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

F-próba kritikus értékei 1- $\alpha=0.95$ esetén (f_1 a nagyobb szóráshoz tartozó szabadsági fok)

_		_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_		_	_	_	_	_	_	_
	1000	254.19	19.49	8.53	5.63	4.37	3.67	3.23	2.93	2.71	2.54	2.41	2.30	2.21	2.14	2.07	2.02	1.97	1.92	1.88	1.85	1.79	1.74	1.70	1.66	1.60	1.56	1.52	1.40	1.30	1.21	1.30
	100	253.04	19.49	8.55	5.66	4.41	3.71	3.27	2.97	2.76	2.59	2.46	2.35	2.26	2.19	2.12	2.07	2.02	1.98	1.94	1.91	1.85	1.80	1.76	1.73	1.67	1.62	1.59	1.48	1.39	1.32	1.39
	20	251.77	19.48	8.58	5.70	4.44	3.75	3.32	3.02	2.80	2.64	2.51	2.40	2.31	2.24	2.18	2.12	2.08	2.04	2.00	1.97	1.91	1.86	1.82	1.79	1.74	1.69	1.66	1.56	1.48	1.41	1.48
	30	250.10	19.46	8.62	5.75	4.50	3.81	3.38	3.08	2.86	2.70	2.57	2.47	2.38	2.31	2.25	2.19	2.15	2.11	2.07	2.04	1.98	1.94	1.90	1.87	1.82	1.78	1.74	1.65	1.57	1.52	1.57
	24	249.05	19.45	8.64	5.77	4.53	3.84	3.41	3.12	2.90	2.74	2.61	2.51	2.42	2.35	2.29	2.24	2.19	2.15	2.11	2.08	2.03	1.98	1.95	1.91	1.86	1.82	1.79	1.70	1.63	1.57	1.63
	20	248.01	19.45	8.66	5.80	4.56	3.87	3.44	3.15	2.94	2.77	2.65	2.54	2.46	2.39	2.33	2.28	2.23	2.19	2.16	2.12	2.07	2.03	1.99	1.96	1.91	1.87	1.84	1.75	1.68	1.62	1.68
	16	246.46	19.43	69.8	5.84	4.60	3.92	3.49	3.20	2.99	2.83	2.70	2.60	2.51	2.44	2.38	2.33	2.29	2.25	2.21	2.18	2.13	5.09	2.05	2.02	1.97	1.93	1.90	1.82	1.75	1.69	1.75
	12	243.91	_	8.74	5.91	4.68	4.00	3.57	3.28	3.07	2.91	2.79	2.69	2.60	2.53	2.48	2.42	2.38	2.34	2.31	2.28	2.23	2.18	2.15	2.12	2.07	2.03	2.00	1.92	1.85	1.80	1.85
	10	241.88		8.79	5.96	4.74	4.06	3.64	3.35	3.14	2.98	2.85	2.75	2.67	2.60	2.54	2.49	2.45	2.41	2.38	2.35	2.30	2.25	2.22	2.19	2.14	2.11	2.08	1.99	1.93	1.88	1.93
f_1	6	240.54	19.38	8.81	00.9	4.77	4.10	3.68	3.39	3.18	3.02	2.90	2.80	2.71	2.65	2.59	2.54	2.49	2.46	2.42	2.39	2.34	2.30	2.27	2.24	2.19	2.15	2.12	2.04	1.97	1.93	1.97
	<u> </u>	-	19.37	8.85	6.04	4.82	4.15	3.73	3.44	3.23	3.07	2.95	2.85	2.77	2.70	2.64	2.59	2.55	2.51	2.48	2.45	2.40	2.36	2.32	2.29	2.24	2.21	2.18	2.10	2.03	1.98	2.03
	7	236.77	19.35	8.89	60.9	4.88	4.21	3.79	3.50	3.29	3.14	3.01	2.91	2.83	2.76	2.71	2.66	2.61	2.58	2.54	2.51	2.46	2.42	2.39	2.36	2.31	2.28	2.25	2.17	2.10	2.06	2.10
	9	233.99	19.33	8.94	6.16	4.95	4.28	3.87	3.58	3.37	3.22	3.09	3.00	2.92	2.85	2.79	2.74	2.70	2.66	2.63	2.60	2.55	2.51	2.47	2.45	2.40	2.36	2.34	2.25	2.19	2.14	2.19
	ಬ	230.16	19.30	9.01	6.26	5.05	4.39	3.97	3.69	3.48	3.33	3.20	3.11	3.03	2.96	2.90	2.85	2.81	2.77	2.74	2.71	2.66	2.62	2.59	2.56	2.51	2.48	2.45	2.37	2.31	2.26	2.31
	4	224.58	19.25	9.12	6.39	5.19	4.53	4.12	3.84	3.63	3.48	3.36	3.26	3.18	3.11	3.06	3.01	2.96	2.93	2.90	2.87	2.82	2.78	2.74	2.71	2.67	2.63	2.61	2.53	2.46	2.42	2.46
	3	-	19.16	9.28	6.59	5.41	4.76	4.35	4.07	3.86	3.71	3.59	3.49	3.41	3.34	3.29	3.24	3.20	3.16	3.13	3.10	3.05	3.01	2.98	2.95	2.90	2.87	2.84	2.76	2.70	2.65	2.70
	2	199.50	_	9.55	6.94	5.79	5.14	4.74	4.46	4.26	4.10	3.98	3.89	3.81	3.74	3.68	3.63	3.59	3.55	3.52	3.49	3.44	3.40	3.37	3.34	3.29	3.26	3.23	3.15	3.09	3.04	3.09
		161.45	18.51	10.13	7.71	6.61	5.99	5.59	5.32	5.12	4.96	4.84	4.75	4.67	4.60	4.54	4.49	4.45	4.41	4.38	4.35	4.30	4.26	4.23	4.20	4.15	4.11	4.08	4.00	3.94	3.89	3.94
	<i>f</i> ₂	1	2	3	4	က	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	22	24	56	28	32	36	40	09	100	200	100

Student-féle t eloszlás eloszlásfüggvényének táblázata

		α	
f	0.1	0.05	0.02
	0.05	0.025	0.01
1	6.314	12.706	31.821
2	2.920	4.303	6.965
3	2.353	3.182	4.541
4	2.132	2.776	3.747
5	2.015	2.571	3.365
6	1.943	2.447	3.143
7	1.895	2.365	2.998
8	1.860	2.306	2.896
9	1.833	2.262	2.821
10	1.812	2.228	2.764
11	1.796	2.201	2.718
12	1.782	2.179	2.681
13	1.771	2.160	2.650
14	1.761	2.145	2.624
15	1.753	2.131	2.602
16	1.746	2.120	2.583
17	1.740	2.110	2.567
18	1.734	2.101	2.552

		α	
f	0.1	0.05	0.02
	0.05	0.025	0.01
19	1.729	2.093	2.539
20	1.725	2.086	2.528
21	1.721	2.080	2.518
22	1.717	2.074	2.508
23	1.714	2.069	2.500
24	1.711	2.064	2.492
25	1.708	2.060	2.485
26	1.706	2.056	2.479
27	1.703	2.052	2.473
28	1.701	2.048	2.467
29	1.699	2.045	2.462
30	1.697	2.042	2.457
35	1.690	2.030	2.438
40	1.684	2.021	2.423
45	1.679	2.014	2.412
50	1.676	2.009	2.403
55	1.673	2.004	2.396
$ _{\infty}$	1.645	1.960	2.326

A táblázat oszlopainál a felső érték tartozik a kétoldali, az alsó pedig az egyoldali értékekhez.

A χ^2 próba kritikus értékei

f			α	
*		0.1	0.05	0.01
1		2.71	3.84	6.63
2		4.61	5.99	9.21
3		6.25	7.81	11.34
4		7.78	9.49	13.28
5		9.24	11.07	15.09
6		10.64	12.59	16.81
7		12.02	14.07	18.48
8		13.36	15.51	20.09
9		14.68	16.92	21.67
10)	15.99	18.31	23.21
11		17.28	19.68	24.72
12	2	18.55	21.03	26.22
13	3	19.81	22.36	27.69
14	Į	21.06	23.68	29.14
15	6	22.31	25.00	30.58
16	;	23.54	26.30	32.00
17	•	24.77	27.59	33.41

f		α						
•	0.1	0.05	0.01					
18	25.99	28.87	34.81					
19	27.20	30.14	36.19					
2 0	28.41	31.41	37.57					
21	29.62	32.67	38.93					
22	30.81	33.92	40.29					
23	32.01	35.17	41.64					
24	33.20	36.42	42.98					
25	34.38	37.65	44.31					
26	35.56	38.89	45.64					
27	36.74	40.11	46.96					
28	37.92	41.34	48.28					
29	39.09	42.56	49.59					
30	40.26	43.77	50.89					
35	46.06	49.80	57.34					
40	51.81	55.76	63.69					
45	57.51	61.66	69.96					
50	63.17	67.50	76.15					