

World Real Estate Market Prediction with Machine Learning Algorithms

AML Project - AAI 559

Group Members:
Rajanee Shenkar
Samradnyee Kudalkar
Karina Fayn

Table of Contents

Conclusion

Introduction
Problem Statement
Dataset Overview and Preprocessing
Model Selection
Feature Importance and EDA
Implemented Models
Evaluation Comparison and Results

Introduction

- Data-driven predictive modeling is crucial in today's world
- Real estate price prediction is a complex challenge
- Goal: Develop robust machine learning frameworks for accurate predictions

Key Challenges

- Multi-dimensional nature of real estate data
- Balancing computational efficiency and predictive accuracy
- Capturing complex, non-linear relationships

Problem Statement

Objective

Develop a predictive model for real estate prices using multiple machine learning algorithms

Approach

- Utilize diverse algorithms to balance:
 - Interpretability
 - Predictive power
 - Computational efficiency

Algorithms Explored

- Linear Regression (Baseline)
- Random Forest
- Neural Network Regression
- Stacking Regression

Dataset Overview

Source: Kaggle real estate dataset (global listings).

Key Features:

- apartment_total_area (size of property).
- price_in_USD (target variable).
- country, location, number of rooms, and amenities.
- Derived Feature: price_per_m2 for normalized comparison.
- Dataset Size: 147,000 rows.
- Importance: Provides diversity in property attributes and pricing across regions.

Data Preprocessing

Handling Missing Data:

Rows with missing values were dropped to ensure clean data.

Categorical Encoding:

One-hot encoding for country and location columns.

Unit Conversion:

 Converted apartment_total_area from string to numeric by stripping units ("m²").

Outlier Handling:

Capped extreme values using the 5th and 95th percentiles.

Feature Scaling:

StandardScaler was applied to numerical features to normalize data.

Feature Engineering:

 Created price_per_m2 as a derived feature to analyze price relative to area.

Model Selection and Rationale

1. Linear Regression:

- Baseline model for capturing linear relationships.
- Limitation: Cannot model complex non-linear patterns.

2. Random Forest Regressor:

- Ensemble model that handles non-linear relationships.
- Reduces overfitting through aggregation of decision trees.

3. Neural Network (MLP):

- Captures intricate patterns using multi-layer perceptron architecture.
- Activation Function: ReLU; Optimizer: Adam.
- Limitation: Requires extensive tuning and less interpretable.

4. Stacking Regressor:

- Combines Random Forest and Neural Network predictions using a meta-model (Random Forest).
- Balances bias, variance, and predictive power.

Feature Importance Analysis

Random Forest Feature Importance:

- price_per_m2 emerged as the most influential predictor (importance score: 0.658).
- apartment_total_area was the second most significant feature (score: 0.328).
- apartment_living_area contributed minimally (score: 0.005).
- Insight: Price per square meter is a consistent predictor across regions.

Exploratory Data Analysis (EDA)

Correlation Analysis:

Heatmap revealed high positive correlation between:

```
-price_in_USD and price_per_m2.-price_in_USD and apartment total area.
```


Exploratory Data Analysis (EDA)

Scatterplot: apartment_total_area vs. price_in_USD.

Models Implemented Linear Regression

- Theory: Models the relationship between input features and target using:
- Assumption: Linear relationship between features and target.

The linear regression equation is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

Result

- High MSE and negative R² score indicate poor performance.
- Limitation: Unable to handle complex, non-linear relationships.

Random Forest Regression

- Theory: Ensemble of decision trees:
 - Combines predictions of multiple trees to improve accuracy and reduce overfitting.

Mathematical Formula

$$\hat{y} = \frac{1}{n} \sum_{i=1}^{n} T_i(x)$$

- Advantages:
 - Handles non-linear relationships.
 - Provides feature importance.
- Performance:
 - MSE: 1.26e+08; R²: 0.9963.
 - Close alignment between predicted and actual values
- Tuned Hyperparameters to get an optimised Random forest model

Neural Network

• **Theory:** Multi-Layer Perceptron (MLP) with ReLU activation:

The input-output relationship in a Neural Network is described by:

$$h_j = \sigma \left(\sum_i w_{ij} x_i + b_j \right)$$

Architecture:

- Input Layer → Hidden Layers → Output Layer.
- Optimizer: Adam; Activation: ReLU.

Performance:

- Moderate fit with R² = 0.8602.
- Deviations observed for extreme values.

Stacked Model

- Theory: Combines multiple base models (Random Forest + Neural Network):
- Meta-Model: Random Forest synthesizes predictions from base models.

Overall Prediction is given by:

$$\hat{y}_{stacked} = \text{MetaModel}(\hat{y}_1, \hat{y}_2)$$

- Advantages:
 - Reduces bias and variance.
 - Combines strengths of individual models.
- Performance:
 - MSE: 1.46e+08; R²: 0.9957.

Model Evaluation Comparison

Performance Metrics:

MSE, MAE, R² scores for all models.

Results Table:

Model	MSE	MAE	R²
Linear Regression	High	High	Negative
Random Forest	1.26e+08	5950.38	0.9963
Optimized Random Forest	8.92e+07	4898.25	0.9974
Neural Network	4.76e+09	34726.4	0.8602
Stacking Regressor	1.46e+08	5921.3	0.9957

Results

1. Prediction vs Actual Values:

- Linear Regression: Large deviations.
- Random Forest: Close alignment.
- Neural Network: Moderate deviations.
- Stacking Model: Minimal errors.

Insights

- Best Model: Optimized Random Forest achieved the lowest error and highest R².
- Stacking Model: Provided competitive performance, balancing model strengths.
- Linear Regression: Failed to capture non-linear relationships.
- **Neural Networks:** Required extensive tuning but underperformed.

Conclusion and Future Scope

- Developed robust machine learning frameworks
- Demonstrated effectiveness of ensemble methods
- Achieved high prediction accuracy for real estate prices

Future Scope

- Explore more complex ensemble techniques
- Incorporate additional features
- Expand dataset diversity