হাইড্রোপনিক পদ্ধতিতে উদ্যানতাত্ত্বিক ফসলের চাষ

সবজি বিভাগ, উদ্যানতত্ত্ব গবেষণা কেন্দ্র বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট জয়দেবপুর, গাজীপুর

হাইড্রোপনিক পদ্ধতিতে উদ্যানতাত্ত্বিক ফসলের চাষ

রচনায়

এ কে এম সেলিম রেজা মল্লিক ড. জি এম এ হালিম ড. মো. আসাদুজ্জামান ড. মো. আজমত উল্লাহ ড. মোহাম্মদ আবু তাহের মাসুদ ড. ফেরদৌসী ইসলাম

সম্পাদনায়

ড. আবুল কালাম আযাদ
 ড. মো. লুৎফর রহমান
 মো. হাসান হাফিজুর রহমান

সবজি বিভাগ, উদ্যানতত্ত্ব গবেষণা কেন্দ্র বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট জয়দেবপুর, গাজীপুর

প্ৰকাশ কাল

জুন ২০১৮ ২০০০ কপি

প্রকাশনায়

বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট জয়দেবপুর, গাজীপুর-১৭০১

স্বত্ব সংরক্ষিত

বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট

মুদ্রণে

বেঙ্গল কম প্রিন্ট ৬৮/৫, গ্রীন রোড, পান্থপথ, ঢাকা-১২০৫ ফোন: ০১৭১৩-০০৯৩৬৫

মহাপরিচালক বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট

মুখবন্ধ

হাইড্রোপনিক কালচার ফসল উৎপাদনের একটি আধুনিক ও সময়োপযোগী পদ্ধতি যা পৃথিবীর উন্নত দেশসমূহে সফল ও বাণিজ্যিকভাবে ব্যবহার হয়ে আসছে। নিয়ন্ত্রিত পরিবেশে যে কোন পতিত জায়গায় এ পদ্ধতিতে বিভিন্ন প্রকার সবজি, ফল ও ফুলের চাষ করা সম্ভব। এ পদ্ধতিতে রাসায়নিক সার, বাড়তি সেচ এবং সাধারনত কীটনাশক ব্যবহারের প্রয়োজন হয় না বিধায় উৎপাদিত ফসল হয় নিরাপদ। যে সকল ফসলের উচ্চ বাজারমূল্য রয়েছে সেসব ফসল এ পদ্ধতিতে চাষ অধিক লাভজনক। আমেরিকা, ইউরোপের দেশসমূহ, জাপান, তাইওয়ান, চীন, থাইল্যান্ড, সিঙ্গাপুর, মালয়েশিয়া এবং মধ্য-প্রাচ্যের দেশসমূহে বাণিজ্যিকভাবে হাইড্রোপনিক পদ্ধতির মাধ্যমে সবজি, ফল ও ফুল উৎপাদন করছে। এই পদ্ধতিতে সারাবছরই পলিটানেল, নেট হাউজে বা গ্রীনহাউজে সবজি, ফল ও ফুল উৎপাদন করা সম্ভব। বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউটের সবজি বিভাগ, উদ্যানতত্ত্ব গবেষণা কেন্দ্র এর বিজ্ঞানীরা হাইড্রোপনিক কালচার বিষয়ে গবেষণা করে সবজি, ফুল ও ফল জাতীয় ফসলের সফলভাবে উৎপাদন করতে সক্ষম হয়েছেন। আশা করি, এ পদ্ধতি ব্যবহার করে পারিবারিক ও সামগ্রিকভাবে সবজির উৎপাদন ও পুষ্টির চাহিদা মেটানো বহুলাংশে সম্ভব হবে।

হাইড্রোপনিক পদ্ধতি উদ্ভাবন ও পুস্তিকা প্রকাশের সাথে জড়িত সকল বিজ্ঞানীবৃন্দসহ অন্যান্যদের জানাই আন্তরিক ধন্যবাদ।

> **ড. আবুল কালাম আযাদ** মহাপরিচালক

পরিচালক গবেষণা উইং বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট

প্রাক্কথন

হাইড্রোপনিক কালচার ফসল উৎপাদনের একটি আধুনিক ও সময়োপযোগী পদ্ধতি যা পৃথিবীর উন্নত দেশসমূহে সফল ও বাণিজ্যিকভাবে ব্যবহার হয়ে আসছে। নিয়ন্ত্রিত পরিবেশে ও চামের অযোগ্য যে কোন জায়গায় এ পদ্ধতিতে বিভিন্ন প্রকার সবজি, ফল, ফুল ইত্যাদি ফসল চাষ করা সম্ভব। এ পদ্ধতিতে বাড়তি সেচ ও সাধারনত কীটনাশক ব্যবহারের প্রয়োজন হয় না বিধায় উৎপাদিত ফসল হয় নিরাপদ। যে সকল ফসলের উচ্চ বাজারমূল্য রয়েছে সেসব ফসল এ পদ্ধতিতে চাষ অধিক লাভজনক। বাংলাদেশ কষি গবেষণা ইনস্টিটিউটের উদ্যানতত্ত গবেষণা কেন্দ্রের সবজি বিভাগ গবেষণা করে এ যাবত সবজি, ফুল ও ফল জাতীয় ফসলের সর্বমোট ১৬টি জাত হাইড্রোপনিক পদ্ধতিতে সফলভাবে উৎপাদন করতে সক্ষম হয়েছে। বাংলাদেশ একটি ঘনবসতিপূর্ণ জনবহুল দেশ। এখানে এক দিকে যেমন জনসংখ্যা বেড়ে চলেছে অন্যদিকে চাষযোগ্য কৃষি জমির পরিমাণ দিনদিন কমেই চলেছে। অধিকন্তু বৈশ্বিক উষ্ণায়নের প্রভাবে প্রাকৃতি নির্ভর কৃষি প্রতিনিয়ত পড়ছে হুমকির মুখে। এমনি একটি সংকটময় অবস্থায় বিকল্প উপায়ে ফসল চামের পদ্ধতির আবিষ্কার জরুরি। আশা করি, এ পদ্ধতি ব্যবহার করে পারিবারিক ও সামগ্রিকভাবে সবজির উৎপাদন ও পুষ্টির চাহিদা মেটানো বহুলাংশে সম্ভব হবে এবং প্রকাশিত এ পৃষ্টিকাটি হাইড্রোপনিক পদ্ধতিতে ফসল উৎপাদন কলাকৌশলের নির্দেশিকা হিসেবে কাজ করবে।

আমি হাইড্রোপনিক পদ্ধতি উদ্ভাবন ও পুস্তিকা প্রকাশের সাথে সকল বিজ্ঞানীবৃদ্দ ও সংশ্লিষ্ট অন্যান্যদের জানাই আন্তরিক ধন্যবাদ।

ড. মো লুৎফর রহমান

সূচিপত্ৰ

ক্রমিক নম্বর	বিবরণ		
ভূমিকা		٥	
অধ্যায় : ১	হাইড্রোপনিক পদ্ধতিতে ফসল চাষের মূলনীতি		
অধ্যায় : ২	হাইড্রোপনিক পদ্ধতিতে চারা উৎপাদনের কলাকৌশল		
অধ্যায় : ৩	হাইড্রোপনিক পদ্ধতির রাসায়নিক দ্রবণ তৈরির কলাকৌশল		
অধ্যায় : 8	হাইড্রোপনিক পদ্ধতির কার্যপ্রণালী		
অধ্যায় : ৫	হাইড্রোপনিক পদ্ধতিতে উদ্যানতাত্ত্বিক ফসল চাষাবাদের কৌশল	১২	
	হাইড্রোপনিক পদ্ধতিতে মিষ্টি মরিচ (ক্যাপসিকাম) চাষ	১২	
	হাইড্রোপনিক পদ্ধতিতে টমেটো চাষ	26	
	হাইড্রোপনিক পদ্ধতিতে লেটুস চাষ	72	
	হাইড্রোপনিক পদ্ধতিতে শসা চাষ	২০	
	হাইড্রোপনিক পদ্ধতিতে করলা চাষ	২২	
	হাইড্রোপনিক পদ্ধতিতে স্ট্রবেরি চাষ	২৫	
	হ্াইড্রোপনিক পদ্ধতিতে লাউ চাষ	২৭	
	হাইড্রোপনিক পদ্ধতিতে মেলন চাষ	২৯	
	হাইড্রোপনিক পদ্ধতিতে গাঁদা ফুলের চাষ	೨೦	
অধ্যায় : ৬	মাটি ছাড়া নারিকেলের আঁশের গুড়ায় সবজি চাষ	೨೨	
অধ্যায় : ৭	ভার্টিকেল হাইড্রোপনিক পদ্ধতিতে চাষাবাদ	৩৫	
অধ্যায় : ৮	স্বল্প পরিসরে মাটিবিহীন চাষাবাদ মডেল	৩৭	
অধ্যায় : ৯	হাইড্রোপনিক পদ্ধতির লক্ষণীয় বিষয়সমূহ	৩৮	
	হাইড্রোপনিক পদ্ধতির সীমাবদ্ধতা	৩৯	
উপসংহার		80	

ভূমিকা

বাংলাদেশ একটি অত্যন্ত জনবহুল দেশ। এখানে জনসংখ্যার তুলনায় চাষের জমি খুবই কম। প্রতি বছর এদেশের জনসংখ্যা, আবাসনের জন্য ঘর বাড়ি, যোগাযোগের জन्य ताला এবং কলকারখানা ব্যাপক হারে বৃদ্ধি পাচেছ। ফলে দিন দিন কমে যাচেছ আবাদি জমি। বাংলাদেশ এই বাড়তি জনসংখ্যার চাপ মোকাবেলার জন্য শুধু আবাদি জমির উপর নির্ভর করলে চলবে না। এ পরিষ্টিতিতে চাষ অযোগ্য পতিত জমি বা অব্যবহৃত স্থান, বিল্ডিং এর ছাদ চামের আওতায় আনা যেতে পারে। হাইড্রোপনিক চাষ পদ্ধতি সবজি, ফুল ও ফল চাষে বিরাট অবদান রাখতে পারে। হাইড্রোপনিক পদ্ধতিতে নিয়ন্ত্রিত পরিবেশে পানিতে গাছের অত্যাবশ্যকীয় খাদ্য উপাদান সরবরাহ করে ফসল উৎপাদন করা হয়। উন্নত বিশ্বের বিভিন্ন দেশ যেমন- আমেরিকা, জাপান, তাইওয়ান, চীন, থাইল্যান্ড, সিঙ্গাপুর, মালয়েশিয়া এবং মধ্য-প্রাচ্যের দেশসমূহে বাণিজ্যিকভাবে হাইড্রোপনিক পদ্ধতি এর মাধ্যমে সবজি, ফল ও ফুল উৎপাদন হচ্ছে। এই পদ্ধতিতে সারা বছরই পলি টানেল, নেট হাউজ বা গ্রীন হাউজে সবজি, ফল ও ফুল উৎপাদন করা সম্ভব এবং উৎপাদনকালে সাধারনত কীটনাশক ব্যবহার করা হয় না বিধায় এসব পণ্য নিরাপদ এবং অধিক বাজার মূল্য পাওয়া যায়। বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট এর সবজি বিভাগ হাইড্রোপনিক পদ্ধতিতে মাটিবিহীন বড় স্টিলের বা প্লাস্টিকের ট্রেতে পানির মধ্যে গাছের অত্যাবশ্যকীয় খাদ্যোপাদানসমূহ সরবরাহ করে টমেটো, ক্যাপসিকাম, লেটুস, ফুলকপি, ব্রকলি, করলা, খাটো শিম, শসা, ক্ষীরা এবং স্ট্রবেরি, গাঁদা, গোলাপ ইত্যাদি সাফল্যজনকভাবে উৎপাদন করছে।

উচচ বাজারমূল্য সবজি যেমন- টমেটো, শশা, ক্যাপসিকাম, লেটুস এবং ফল যেমন- স্ট্রবেরি ইত্যাদি হাইড্রোপনিক পদ্ধতিতে নিয়ন্ত্রিত পরিবেশে পারিবারিক প্রয়োজন মিটানোর জন্য চষাবাদের সুযোগ রয়েছে। এ পদ্ধতিতে চাষ করা সবজিতে কীটনাশক প্রয়োগ করা হয় না, তাই বিদেশে রপ্তানি করে অধিক মূল্য পাওয়া যাবে। স্ট্রবেরি খুব নরম ফল এবং মাটির স্পর্শে ফল তাড়াতাড়ি পঁচে যায়, তাই এ পদ্ধতি স্ট্রবেরি চাষের জন্য খুবই উপযোগী। হাইড্রোপনিক পদ্ধতিতে নিয়ন্ত্রিত পরিবেশে সারা বৎসর সবজি, ফল ও ফুল উৎপাদন করার সুযোগ রয়েছে। এ পদ্ধতিতে দ্বাপনা তৈরিতে প্রাথমিক খরচ একটু বেশি কিন্তু এটি অনেক বছর ব্যবহার করা যায় তাই পরবর্তী খরচ খুবই কম বিধায় এটি একটি লাভজনক প্রযুক্তি। শহরাঞ্চলের বাড়ীর ছাদ, বারান্দা ইত্যাদি স্থানে বিভিন্ন ধরনের ফুল চাষের সুযোগ রয়েছে। জলাবদ্ধ, লবণাক্ত, পাহাড়ী এবং বন্যা কবলিত এলাকায় হাইড্রোপনিক পদ্ধতিতে চাষের সুযোগ রয়েছে।

অধ্যায়-১

হাইড্রোপনিক পদ্ধতিতে ফসল চামের মূলনীতি

হাইড্রোপনিক পদ্ধতিতে সবজি, ফল ও ফুল ইত্যাদি ফসল চাম্বের মূলনীতি হলোন্যান্ত্রিত পরিবেশে গাছের অত্যাবশ্যকীয় প্রয়োজনীয় খাদ্যোপাদান (Nutrient) পানির মধ্যে সরবরাহ করে স্টিলের বা প্লাস্টিকের ট্রে, বালতি বা বোতলে ফসল উৎপাদন করা।

হাইড্রোপনিক পদ্ধতিতে ফসল উৎপাদনের সুবিধা

- হাইড্রোপনিক পদ্ধতিতে আবাদি জমির প্রয়োজন হয় না, য়ে কোন ফাঁকা জায়গায় ফসল চাষ করা য়য়।
- ২. এ পদ্ধতিতে অনাবাদি জমিকে চাষের আওতায় আনা সম্ভব।
- ৩. এ পদ্ধতির চাষাবাদে আলাদাভাবে সার ও সেচ প্রয়োগের দরকার হয় না।
- 8. হাইড্রোপনিক মাটিবিহীন চাষ পদ্ধতি হওয়ায় গাছে মাটিবাহিত কিংবা কৃমিজনিত কোন রোগ হয় না।
- ৫. নিয়ন্ত্রিত পরিবেশে চাষ করা হয় বিধায় কীটপতঙ্গের আক্রমণ অনেক কম হয়।
- ৬. কীটপতঙ্গের আক্রমণ কম হয় বিধায় কীটনাশক ব্যবহারের প্রয়োজন হয় না এবং এই পদ্ধতিতে কীটনাশকমুক্ত ফসল উৎপাদন করা সম্ভব।
- ৭. নিয়ন্ত্রিত পরিবেশে সারা বছর কিংবা অমৌসুমেও এ পদ্ধতিতে সবজি, ফল ও ফুল চাষাবাদ করা সম্ভব।
- ৮. এই পদ্ধতিতে ছোট এবং বড় পরিসরে স্বাস্থ্য সম্মত উপায়ে এবং পরিচছন্ন পরিবেশে সবজি, ফল ও ফুল উৎপাদন করা যায়।
- ৯. ঘরের বারান্দায় বা বসার ঘরে বালতি কিংবা টবে ফুল চাষ করে মনের খোরাক পাওয়া সম্ভব।

হাইড্রোপনিক ব্যবহার পদ্ধতি

সাধারণত দুই উপায়ে হাইড্রোপনিক পদ্ধতিতে ফসল উৎপাদন করা যায়।

- (ক) সঞ্চালন পদ্ধতি (Circulating System)
- (খ) সঞ্চালনবিহীন পদ্ধতি (Non-circulating System)

ক) সঞ্চালন পদ্ধতি (Circulating System)

এ পদ্ধতিতে গাছের অত্যাবশ্যকীয় খাদ্য উপাদানসমূহ যথাযথ মাত্রায় পানিতে মিশ্রিত করে একটি ট্যাংকিতে নেয়া হয় এবং পাস্পের সাহায্যে পাইপ এর মাধ্যমে ট্রেতে পুষ্টি দ্রবণ (Nutrient solution) নিদিষ্ট সময় পরপর সঞ্চালন করে ফসল উৎপাদন করা হয়। এ ক্ষেত্রে প্রতিদিন অন্ততঃপক্ষে ৭-৮ ঘণ্টা পাম্পের সাহায্যে এই সঞ্চালন প্রক্রিয়া চালু রাখা দরকার। এই পদ্ধতিতে প্রাথমিকভাবে প্রথম বছর ট্রে, পাম্প এবং পাইপের আনুসাঙ্গিক খরচ একটু বেশি হলেও পরবর্তী বছর থেকে শুধু মাত্র রাসায়নিক খাদ্য উপাদানের খরচ প্রয়োজন হয়। ফলে দ্বিতীয় বছর থেকে খরচ অনেকাংশে কমে যায়।

খ) সঞ্চালনবিহীন পদ্ধতি (Non-circulating System)

এই পদ্ধতিতে একটি ট্রেতে গাছের প্রয়োজনীয় খাদ্য উপাদানসমূহ পরিমিত মাত্রায় সরবরাহ করে সরাসরি ফসল চাষ করা হয়। এই পদ্ধতিতে খাদ্য উপাদান সরবরাহের জন্য কোন পাম্প বা পানি সঞ্চালনের প্রয়োজন হয় না। এক্ষেত্রে খাদ্য উপাদান মিশ্রিত দ্রবণ ও তার উপর স্থাপিত কর্কশীটের মাঝে ২-৩ ইঞ্চি পরিমাণ জায়গা ফাঁকা রাখতে হয় অথবা কর্কশীটের উপরে ৪-৫ টি ছোট ছোট ছিদ্র করে দিতে হবে যাতে সহজেই বাতাস চলাচল করতে পারে এবং গাছ তার প্রয়োজনীয় অক্সিজেন কর্কশীটের ফাঁকা জায়গা থেকে সংগ্রহ করতে পারে। ফসলের প্রকার ভেদে সাধারনত ২-৩ বার এই খাদ্য উপাদান ট্রেতে যোগ করতে হয়। আমাদের দেশের সাধারন মানুষ খুব সহজেই এই পদ্ধতি অনুসরণ করে স্টিলের ট্রে. প্রাাস্টিকের বালতি, পরিত্যাক্ত পানির বোতল, মাটির পাতিল, ইত্যাদি ব্যবহার করে বাড়ির ছাদ, বারান্দা এবং খোলা জায়গায় সবজি উৎপাদন করতে পারে। এতে খরচ তুলনামূলকভাবে অনেক কম। গৃহিনী বা বাসার যে কোন লোক এ কাজটি সহজেই করতে পারবে। বাজার থেকে কিনে আনা সবজির চেয়ে ঘরে তৈরি সবজি পরিবেশনের আনন্দই আলাদা। প্রাকৃতিক দূর্যোগ যেমন অতিবৃষ্টির সময় মাঠে সবজির চাষ যেখানে অসম্ভব সে সময়ও হাইড্রোপনিক পদ্ধতিতে সবজি চাষ করা সম্ভব। বিশ্বের জলবায়ু পরিবর্তনে হাইড্রোপনিক পদ্ধতিতে সবজি চাষ বিশেষ ভূমিকা রাখবে।

হাইড্রোপনিক পদ্ধতিতে উৎপাদনযোগ্য ফসল

ফসলের ধরণ	ফসলের নাম	
পাতা জাতীয় সবজি	লেটুস, গীমাকলমি, বিলাতি ধনিয়া, বাঁধাকপি, পুদিনা	
ফল জাতীয় সবজি	টমেটো, বেগুন, ক্যাপসিকাম, করলা, ফুলকপি, শসা, ক্ষিরা, মেলন, লাউ, ব্রকলি, কাঁচা মরিচ	
ফল	স্ট্রবেরি, লেবু, পেঁয়ারা, আঙ্গুর	
ফুল	গাঁদা, এ্যানথুরিয়াম, গোলাপ, অর্কিড, চন্দ্রমল্লিকা, জারবেরা	

অধ্যায়-২

হাইড্রোপনিক পদ্ধতিতে চারা উৎপাদনের কলাকৌশল

সাফল্যজনকভাবে হাইড্রোপনিক পদ্ধতিতে চাষাবাদ করতে হলে চারা উৎপাদনের উপর বিশেষ গুরুত্ব দিতে হয়। কারণ এ পদ্ধতিতে চারা উৎপাদন পুরুত্বপূর্ণ। চারা উৎপাদনের বিভিন্ন পদ্ধতি আছে । নিম্নে পদ্ধতিগুলোর বর্ণনা দেয়া হলো-

স্পঞ্জ ব্লকে চারা উৎপাদন

চারা উৎপাদনের জন্য প্রথমে আমরা একটি স্পঞ্জকে ২.৫ × ২.৫ সেমি সাইজ করে কেটে নিতে হবে। পরে এই স্পঞ্জ ব্লক এর মাঝে ছোট ছোট গর্ত করে এর মধ্যে একটি করে বীজ স্থাপন করতে হয়। চারা গজানোর পর যখন ২-৩ পাতা হবে তখন চারা উৎপাদন ট্রে তে প্রতি একদিন অন্তর অন্তর ২০-৩০ মিলিলিটার করে খাদ্য উপাদান দিতে হবে। চারার বয়স যখন ২০-২৫ দিন হয় তখন এটিকে স্থানান্তর করতে হয়।

স্পঞ্জ ব্লুকে বীজ বপন

স্পঞ্জ ব্লকে চারা উৎপাদন

মাটির পাত্রে নারিকেলের আঁশের গুঁড়ার চারা উৎপাদন

এই পদ্ধতিতে প্রথমে একটি মাটির পাত্র নিতে হবে। তারপর সেটাকে ভাল ভাবে ধুয়ে নিতে হবে। অন্য একটি বালতিতে নারিকেলের আঁশের গুঁড়ায় ভালভাবে ধুয়ে নিতে হবে। তারপর ঐ নারিকেলের আঁশের গুঁড়ায় ১ দিন রোদে শুকাতে হবে। এরপর ঐ নারিকেলের আঁশের গুঁড়া সানকিতে নিতে হবে। এরপর সানকিতে রাখা নারিকেলের গুঁড়ার উপর লাইন টেনে বীজ বপন করতে হবে। কুমড়া জাতীয় বীজ বপনের সময় বীজের সরু ভাগ নিচের দিকে দিতে হবে এবং পুরু ভাগ উপরের দিকে দিতে হবে। অন্যান্য বীজের ক্ষেত্রে বীজকে আনুভূমিক ভাবে বীজের সাইজের দ্বিগুন নিচে চারা বপন করতে হবে। বীজ বপনের পর প্রতিদিন পানি দিতে হবে।

চিত্র: নারিকেলের আঁশের গুঁড়ায় চারা উৎপাদন এর কৌশল

প্লাস্টিকের পটে নারিকেলের আঁশের গুঁড়ায় চারা উৎপাদন

এই পদ্ধতিতে প্রথমে একটি প্লাস্টিক পট নিতে হবে। এবং পটের নিচের অংশে ৪-৫ টি বড় বড় ছিদ্র করতে হবে। তারপর পটের মধ্যে নারিকেলের আঁশের গুঁড়া নিতে হবে এবং প্লাস্টিক পটের মাঝে একটি করে বীজ বপন করতে হবে। বীজ বপনের পর পটের উপরিভাগে একটি খবরের কাগজ দিতে হবে। অঙ্কুরিত হওয়ার পর পর উপর থেকে কাগজ সরিয়ে নিতে হবে। প্রতিদিন অল্প অল্প করে পানি দিতে হবে।

চিত্র : প্লাস্টিকের পটে চারা উপাদন এর কৌশল

হাইড্রোপনিক পদ্ধতিতে বিভিন্ন ফসলের চারার EC ও pH মান

ফসলের নাম	EC মাত্রা	pH মান
টমেটো	2.0 -2.0	৬.০-৬.৫
ক্যাপসিকাম, কাঁচামরিচ	3.8-2.2	৬.০ -৬.৫
লেটুস, পুদিনা	0.6-3.2	৬.০-৭.০
শসা, করলা	3.9 -2.0	0.0
লাউ	3.5-2.8	¢.¢-9.¢
মেলন	2.0-2.0	৫.৫ - ৬.৩
মিষ্টিআলু	2.0 -2.0	C.C-5.0
८७ँ५*1	2.0 - 2.8	৬.৫
গাজর	٥.٤-٥.٥	৬.৩
লেবু	<i>۵.۵- ۵.۷</i>	৫.৫ - ৬.৫
স্ট্রবেরি	3.8-2.2	৬.০
বেগুন	2.0-0.0	৬.০
গাঁদা	3.2 - 3.0	৬.০

অধ্যায়-৩

হাইড্রোপনিক পদ্ধতিতে রাসায়নিক দ্রবণ তৈরির কলাকৌশল

হাইড্রোপনিক পদ্ধতির সাফল্য নির্ভর করে অনেকটা রাসায়নিক দ্রবণ তৈরির উপর কাজেই রাসায়নিক দ্রবণ তৈরির সময় বিশেষ সর্তকতা অবলম্বন করতে হবে। নিম্নে রাসায়নিক দ্রবণ তৈরিতে যে সকল যন্ত্রপাতির প্রয়োজন হয় এবং দ্রবণ তৈরির বিভিন্ন ধাপ বর্ণনা করা হলো।

রাসায়নিক দ্রবণ তৈরিতে যে সকল যন্ত্রপাতির প্রয়োজন তা নিচে তালিকাবদ্ধ করা হলো-

	যন্ত্ৰপাতি		
সাধারন	ব্যালেন্স		
ইলেক্ট্	নিক ব্যালেন্স		
আলাদ	আলাদা পরিমাপের পাত্র		
চামচ			
ফানেল			
20-75	লি সাইজের প্লাষ্টিক জার		
মার্কার	কলম		
মেজারি	ং ফ্লাক্স (১০০০ মিলি লিটার) সাইজ		
টিস্যু ধে	শপার		

যে সকল রাসায়নিক উপাদানের প্রয়োজন তার পরিমাণ (প্রতি ১০ লিটার স্টক সলিউশন "এ" এবং "বি" তৈরির জন্য)

রাসায়নিক উপাদান	রাসায়নিক সংকেত	পরিমাণ (গ্রাম)	
পটাশিয়াম হাইড্রোজেন ফসফেট	KH ₂ PO ₄	২৭০	
পটাসিয়াম না্ইট্রেট	KNO ₃	(bo	
ক্যালসিয়াম নাইট্রেট	Ca (NO ₃) ₂ . 4H ₂ O	\$000	
ম্যাগানেসিয়াম সালফেট	MgSO ₄ .7H ₂ O	670	
ইডিটিএ আয়রন	EDTA-Fe	bo	
ম্যাঙ্গানিজ সালফেট	MnSO ₄ .4H ₂ O	٥.٤٥	
বরিক এসিড	H ₃ BO ₃	5.50	
কপার সালফেট	CuSO _{4.5} H ₂ O	0.80	
অ্যামনিয়াম মলিবডেট	(NH ₄) ₆ Mo ₇ O _{24.} 4H ₂ O	0.08	
জিংক সালফেট	ZnSO ₄ . 7H ₂ O	0.88	

উপরোক্ত রাসায়নিক উপাদান গুলো দিয়ে সলিউশন এ এবং সলিউশান বি তৈরি করা হয়।

হাইড্রোপনিক স্টক সলিউসন "এ" তৈরির পদ্ধতি-

এই Stock solution তৈরি করার সময় ১০০০ গ্রাম ক্যালসিয়াম নাইট্রেট এবং ৮০ গ্রাম EDTA-Fe কে পরিমাপ করে ১০ লিটার পানিতে দ্রবীভূত করে Stock Solution "এ" তৈরি করতে হবে। প্রথমে পানিতে ক্যালসিয়াম নাইট্রেট এবং পরে EDTA-Fe যোগ করতে হবে ও অধাতব দণ্ডের সাহায্যে নেডে ভালোভাবে মিশাতে হবে।

চিত্র: সলিউসন 'এ' তৈরির উপদান

হাইডোপনিক স্টক সলিউসন "বি" তৈরির পদ্ধতি-

পটাশিয়াম হাইড্রোজেন ফসফেট ২৭০ গ্রাম. পটাসিয়াম নাইট্রেট ৫৮০ গ্রাম. ম্যাগানেসিয়াম সালফেট ৫১০ গ্রাম, ম্যাঙ্গানিজ সালফেট ৬.১০ গ্রাম, বরিক এসিড ১.৮০ গ্রাম, কপার সালফেট ০.৪০ গ্রাম, অ্যামনিয়াম মলিবডেট ০.৩৮ গ্রাম, জিংক সালফেট ০.৪৪ গ্রাম আলাদাভাবে পরিমাপ করে পাত্রে উক্ত রাসায়নিক দ্রব্য

গুলিকে একত্রে ১০ লিটার পানিতে দ্রবীভূত করে চিত্র: সলিউসন 'বি' তৈরির উপদান Stock Solution "বি" তৈরি করতে হবে।

রাসায়নিক দ্রব্যের মিশ্রণ প্রক্রিয়া

১০০০ লিটার নিউট্রিয়েন্ট সলিউশান তৈরির ক্ষেত্রে প্রথমে ১০০০ লিটার পানি ট্যাংকে নিতে হবে। তারপর স্টক সলিউসন "এ" থেকে ১০ লিটার দ্রবণ ট্যাংক এর পানিতে ঢালতে হবে. এবং একটি অধাতব দণ্ডের সাহায্যে নাড়া চাড়া করে ভালভাবে মিশাতে হবে। এরপর স্টক সলিউসন "বি" থেকে পর্বের মত ১০ লিটার দ্রবণ ট্যাংকে নিতে হবে এবং পর্বের ন্যায় অধাতব দণ্ডের সাহয্যে পানিতে Stock Solution গুলি সমান ভাবে মিশাতে হবে ৷

EC ও pH মিটারের কার্যপ্রণালী ঃ

EC হলো একটি নিউট্রিয়েন্ট সলিউসনের সকল খাদ্যোপাদানের মোট ঘনত যা একটি বহনযোগ্য মিটার দিয়ে সহজে মাপা যায়। একটি ঘন দ্রবণের EC দূর্বল দ্রবণের চেয়ে বেশি হয়। ডেসিসিমেন/মিটার (dS/m) অথবা সমতুল্য মিলিসিমেনস/সেমি (mS/cm) এককে EC পরিমাপ করা হয়। EC মান বাড়ানোর জন্য রাসায়নিক দ্রবণ যোগ করতে হয়। EC মান দ্রবণের মোট আয়তনের

ঘনত্ব প্রকাশ করে কিন্তু কোন নিদিষ্ট খাদ্যোপাদানের পরিমাপ করে না তাই হাইড্রোপনিক দ্রবণ ব্যবস্থাপনায় এর ব্যবহার সীমিত। দ্রবণের কাঙ্গিত EC মান ফসলের ধরণ, বৃদ্ধির ধাপ, এবং আবহাওয়া উপর নির্ভর করে। EC মান বাড়ানোর জন্য রাসায়নিক দ্রবণ যোগ করতে হয়।

pH মান কোন নিউট্রিয়েন্ট সলিউশনের অম্লুতা বা ক্ষারীয়তা প্রকাশ করে যা সহজে বহনযোগ্য মিটার দিয়ে পরিমাপ করা যায়। হাইড্রোপনিক্স দ্রবণের pH সাধারনত ৫.৫-৬.৫ হতে হয়। তবে গাছের বৃদ্ধির সাথে সাথে pH মানের পরিবর্তন হয়। পাতাজাতীয় সবজির ক্ষেত্রে pH মানের বৃদ্ধি হয় কারণ এসব উদ্ভিদ প্রচুর পরিমাণে NO3-N গ্রহণ করে। গাছের খাদ্যোপাদানের অভাব দেখা দেয় যখন দ্রবণের pH মান ৫.৫ এ নিচে অথবা ৭.৫ এর উপরে পিএইচ মিটার চলে যায়, কারণ pH কোন কোন খাদ্যোপাদানের সহজলভ্যতা প্রভাবিত করে। যদি pH কাঙ্গিত মাত্রার চেয়ে বেশি হয় তবে হাইড্রোকোরিক এসিড বা ফসফরিক এসিড বা নাইট্রিক এসিড যোগ করে এর মান কমাতে হবে। আবার যদি দ্রবণের pH কমে যায় তবে সোডিয়াম হাইড্রোক্সাইড বা পটাশিয়াম

হাইড্রোক্সাইড যোগ করতে হবে।

অধ্যায়-8

হাইড্রোপনিক পদ্ধতির কার্যপ্রণালী

হাইড্রোপনিক চাষাবাদ পদ্ধতিতে স্থাপনা নির্মান কৌশল

হাইড্রোপনিক পদ্ধতিতে ফসল উৎপাদনে স্থাপনা নির্মান একটি গুরুত্বপূর্ণ বিষয়। সাধারনত স্থাপনার মধ্যে রয়েছে গ্রীন-হাউজ, প্লাস্টিক-হাউজ, ভিনাইল-হাউজ, পলি-টানেল, ইত্যাদি। গ্রীন হাউজের মাধ্যমে আমরা সারা বছর যে কোন সময় ফসল উৎপাদন করতে পারি। এ ছাড়া আমরা প্লাস্টিক-হাউজ অথবা ভিনাইল-হাউজের বা পলি-টানেলেও চাষাবাদ করতে পারি। স্বল্প পরিসরে দালান বাড়ীর ছাদ, বারান্দা বা অন্যান্য খোলা জায়গায় এই পদ্ধতিতে চাষাবাদ করা যায়। তবে গ্রীন-হাউজ বা গ্লাস-হাউজে খরচ তুলনামূলক বেশি। তবে উৎপাদিত ফসলের গুণগতমান মাঠ ফসলের তুলনায় অনেক ভাল। আমাদের দেশের আগ্রহী প্রগতিশীল কষক প্রাস্টিক-হাউজ তৈরি করে কম খরচে এ পদ্ধতিতে চাষা বাদ করতে পারে। হাইড্রোপনিক পদ্ধতিতে ফসল উৎপাদনের জন্য স্টিলের ট্রে. প্রাস্টিকের বালতি. অব্যবহৃত প্রাস্টিকের বোতল, ইত্যাদি ব্যবহার করা য়ায়। তবে কোন পদ্ধতিতে ফসল উৎপাদন করা হবে তার উপর নির্ভর করে স্থাপনা তৈরি করতে হবে। সঞ্চালন ও সঞ্চালনবিহীন উভয় পদ্ধতিতে স্টিলের ট্রে ব্যবহার করা যায়। স্টিলের ট্রে ব্যবহারের পূর্বে ট্রে এর মাঝে সাদা রঙ দিয়ে প্রলেপ দিলে ভাল হয়। ফলে রাসায়নিক দ্রবণ সরাসরি ধাতব পদার্থের সংস্পর্শে আসতে পারোনা। কোন অবস্থাতেই মরিচা পড়া স্টিলের ট্রে ব্যবহার করা যাবে না। একটি কাঠের অথবা লোহার বেঞ্চের উপর ট্রে স্থাপন করা যেতে পারে। অনেক সময় কাঠের বেঞ্চের উপর তাক করে ২-৩ টি ট্রে বসানো যেতে পারে। এক্ষেত্রে সর্বনিম্নে তাকের গাছের আকার অনুযায়ী ফসল যেমন ষ্ট্রবেরী, লেটুস, ক্যাপসিকাম ইত্যাদি গাছ নিচে ও মাঝের তাকে এবং উপরের তাকে শসা বা টমেটো গাছ লাগানো যেতে পারে। এই ক্ষেত্রে Vertical চাষাবাদের জন্য অল্প জায়গায় অধিক ফসল উৎপাদন করা যাবে। সাধারনত Non-circulating এবং Circulating উভয় পদ্ধতিতে ট্রে স্থাপন করে ফসল উৎপাদন করা সম্ভব। স্টিলের ট্রে সাধারনত ১৮-২৪ গেজ গ্যালভানাইজিং সিট দ্বারা তৈরি করতে হয় যার দৈর্ঘ্য ৩ মিঃ ও প্রস্থ ৯০ সেমি এবং উচ্চতা ২০-২৫ সেমি হতে হবে। সঞ্চালন পদ্ধতিতে কর্কশীট স্থাপনের জন্য কোন প্রকার লোহার পাত ট্রের মাঝে ব্যবহার করতে হয় না। কিন্তু সঞ্চালনবিহীন পদ্ধতিতে ট্রের উপর থেকে ৫ সেমি বাদ রেখে লোহার পাত স্থাপন করতে হবে। এই পাতের উপর কর্কসীট থাকবে এবং জলীয় দ্রবণ এই দণ্ডের উপর স্থাপিত

কর্কসিটের ৫ সেমি নিচে থাকবে। অতঃপর ট্রে টিকে একটি লোহা অথবা কাঠের ফ্রেমের উপর সমানভাবে বসাতে হবে।

সঞ্চালন পদ্ধিত (Circulating System): এ পদ্ধতিতে গ্যালভানাইজিং করা লোহার তৈরি ট্রেকে একটি Stand এর উপর স্থাপন করা হয়, এবং ট্রে টিকে প্রাস্টিক পাইপের সাহায্যে একটি Tank এর সাথে যুক্ত করা হয়। এই Tank থেকে পাম্পের সাহায্যে রাসায়নিক দ্রব্য মিশ্রিত জলীয় খাদ্য দ্রবণ দিনে কমপক্ষে ৮ (আট) ঘণ্টা Tray তে সঞ্চালন করা হয়। গ্যালভানাইজিং লোহার ট্রের উপর কর্কসিটের মাঝে গাছের প্রয়োজনীয় দূরত্ব অনুসারে যেমন- লেটুস ২০ × ২০ সেমি, টমেটো ৫০ × ৪০ সেমি, এবং স্ট্রবেরি ৩০ × ৩০ সে মি দূরত্বে গর্ত করতে হয়। উপযুক্ত বয়সের চারা স্পঞ্জ ব্লক (Sponge-block) সহ ঐ গর্তে স্থাপন করতে হয়। চারা রোপণের পর ট্যাংক থেকে ট্রের মধ্যে জলীয় দ্রবণ পাম্পের সাহায্যে প্রতিদিন কমপক্ষে ৮-১০ ঘণ্টা সঞ্চালিত করতে হয়। এর মাধ্যমে গাছের অক্সিজেন সরবরাহ বৃদ্ধি করা হয়। ট্রেতে কমপক্ষে ৬-৮ সেমি পানি সব সময় রাখতে হবে। সাধারনত প্রতি ১২-১৫ দিন অন্তর জলীয় দ্রবণ ট্রেতে যোগ করতে হয়।

চিত্র-২ (খ) সঞ্চালন পদ্ধতিতে টমেটো চাষ

সঞ্চালনবিহীন পদ্ধতি (Non-Circulating System): এ পদ্ধতিতে ফসল উৎপাদনের জন্য কোন বৈদ্যুতিক পাম্প বা পানির Tank এর প্রয়োজন পড়ে না। এই পদ্ধতিতে ট্রে, প্লাস্টিকের বালতি, অব্যবহৃত বোতল, ইত্যাদি ব্যবহার করে সবজি, ফল, ফুল উৎপাদন করা যেতে পারে। ভালভাবে পরিষ্কার করা বালতি, বোতল কিংবা ট্রেতে উৎপাদিত চারা একই পদ্ধতিতে রোপণ করতে হবে। চারা রোপণের পূর্বে বোতল জলীয় দ্রবণ দ্বারা এমনভাবে পূর্ণ করতে হবে যাতে কর্কসীট ও জলীয় দ্রবণের মাঝে ৫-৮ সেমি জায়গা ফাঁকা থাকে। তবে

বালতি বা বোতলে চারা লাগালে সে ক্ষেত্রে বায়ু চলাচলের জন্য অতিরিক্ত ৩-৪ টি গর্ত রাখা দরকার। এই পদ্ধতিতে কোন বৈদ্যুতিক মটর, পাম্প বা পাইপ ব্যবহারের প্রয়োজন হয় না। ফলে আগ্রহী চাষীগণ সহজেই বাড়ীর আশেপাশের খোলা ছানে, বারান্দায়, দালান বাড়ীর ছাদ, ইত্যাদি ছানে এ পদ্ধতি ব্যবহার করতে পারে।

চিত্র : ক) সঞ্চালনবিহীন পদ্ধতিতে ফুল চাষ

চিত্র: খ) সঞ্চালনবিহীন পদ্ধতিতে টমেটো চাষ

অধ্যায়-৫

হাইড্রোপনিক পদ্ধতিতে উদ্যানতাত্ত্বিক ফসলের চাষাবাদ কৌশল

হাইড্রোপনিক পদ্ধতিতে মিষ্টিমরিচ (ক্যাপসিকাম) চাষ

ক্যাপসিকাম পৃথিবীর অনেক দেশেই একটি জনপ্রিয় সবজি হিসেবে ব্যবহৃত হয়ে আসছে। খাদ্য হিসেবে ক্যাপসিকামের বহুবিদ ব্যবহার রয়েছে যেমন- সালাদ ও সবজি, ইত্যাদি। তাছাড়া এর অনেক ঔষধি গুণাগুণ রয়েছে। পুষ্টিমানের দিক থেকে ক্যাপসিকাম একটি অত্যন্ত মূল্যবান সবজি। প্রতি ১০০ গ্রামে ১১ মিলিগ্রাম ক্যালসিয়াম, ৮৭০ আই ইউ ভিটামিন এ এবং ১৭৫ মিলিগ্রাম ভিটামিন সি আছে।

জাত ও বীজের পরিমাণ

বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট বারি মিষ্টিমরিচ ১ ও বারি মিষ্টিমরিচ ২ নামে দুইটি জাত উদ্ভাবন করেছে। এছাড়াও ক্যালিফর্নিয়া ওয়ান্ডার জাতটিও কৃষকরা

ব্যবহার করে আসছে। প্রতি গ্রামে গড়ে চিত্র: ক্যাপসিকামের জাত চিত্র: ক্যাপসিকামের বীজ ১৬০ টির মত বীজ থাকে বিধায় প্রতি হেক্টরে ২৩০ গ্রাম বীজের প্রয়োজন হয়।

চারা উৎপাদন

হাইড্রোপনিক পদ্ধতিতে ক্যাপসিকাম চারা উৎপাদনের জন্য প্রথমে বীজকে একটি প্লেটে খবরের কাগজ/টিস্যু পেপার বিছিয়ে তার উপর বীজ ঘন করে ছিটিয়ে রাখতে হবে। এর পর বীজের উপর হালকা পানি দিয়ে ভিজিয়ে রাখতে হবে এবং পেপার দিয়ে ঢেকে দিতে হবে।

চিত্র: স্পঞ্জ ব্লুকে ক্যাপসিকামের বীজ বপন

বীজ অঙ্কুরিত হওয়া শুরু করলে বীজকে Sponge block এর গর্তের মধ্যে স্থাপন করতে হবে। তার পর Sponge block কে পানির ট্রেতে ভাসিয়ে রাখতে হবে। যখন চারা ২-৩ পাতা অবস্থায় আসবে তখন

চিত্র : ক্যাপসিকামের চারা

থেকে প্রতি দিন ট্রেতে ২০-৩০ মিলি লিটার খাদ্য উপাদান দ্রবণ A এবং B যোগ করতে হবে এবং EC এর মান ০.৫-০.৮ ds/m এর মধ্যে রাখতে হবে। চারার বয়স ২০-২৫ দিন হলে চারাগুলি কর্কসিটের মাঝে ছিদ্র করে রোপণ করতে হবে।

চারা রোপণ পদ্ধতি

ট্রের আকার অনুযায়ী উহার ভিতর পরিমাণে মত পানি দিতে হবে। পানির গভীরতা ৬-৮ সেমি হতে হবে। প্রতি ১০০ লিটার পানির জন্য ১ লিটার ক্যাপসিকাম নিউট্রিয়েন্ট সলিউশান এ ও বি যোগ করতে হবে।

দ্রবণ যোগ করার সময় প্রথমে নিউট্রিয়েন্ট এ যোগ করে পানিতে ভালোভাবে মিশিয়ে নিতে হবে এবং পরে খাদ্য নিউট্রিয়েন্ট সলিউশান বি যোগ করে ভালভাবে মিশাতে হবে। দ্রবণের মিশ্রণ তৈরির পর ট্রের উপর কর্কসিট স্থাপন করতে হবে। প্রতিটি গাছ থেকে গাছ এবং সারি থেকে সারি ৩০ সেমি দূরত্বে রাখতে হবে। কর্কসিটের উপর এই দূরত্ব অনুযায়ী ছোট ছিদ্র করতে হবে। তারপর প্রতিটি ছিদ্রে ১ টি করে সুস্থ চারা রোপণ করতে হবে। সাধারনত ২০-২৫ দিন পর পর ট্রেতে ১০% খাদ্যোপাদান সম্বলিত জলীয় দ্রবণ যোগ করতে হবে।

প্লাস্টিক বালতিতে ক্যাপসিকামের চারা রোপণ

নিমুলিখিত উপায়ে প্লাস্টিকের বালতিতে চারা রোপণ করা যায়।

- ❖ বালতির উপর গোল করে কাটা কর্কশীট স্থাপন করতে হবে এবং মাঝের ছোট গর্তে ১টি করে চারা লাগাতে হবে।
- ♦ চারা রোপণের সময় লক্ষ্য রাখতে হবে যেন দ্রবণ ও গাছের গোড়ার মাঝে ২.৫৪ সেমি বা ১ ইঞ্চি জায়গা ফাঁকা থাকে এবং শিকড় দ্রবণ পর্যন্ত পৌঁছাতে হবে। সাধারনত শিকড়ের এক-তৃতীয়াংশ পানিতে এবং দুই-তৃতীয়াংশ বালতির ফাঁকা জায়গায় রাখতে হবে।
- 💠 এবার বালতিটিকে আলো ও বাতাস চলাচল করে এমন স্থানে স্থাপন করতে হবে।

ব্যবস্থাপনা

গাছের বৃদ্ধির সাথে সাথে তার খাদ্যোপাদানের চাহিদা বৃদ্ধি পাবে। সাধারনত ১৫-২০ দিন পর অল্প পরিমাণ খাদ্য উপাদান সমেত দ্রবণ যোগ করতে হবে। গাছের বৃদ্ধির সময় উপরের পাতা হলুদ হয়ে গেলে ৫ গ্রাম ইডিটিএ আয়রন ১ লিটার পানিতে মিশিয়ে প্রতি ১০০ লিটার পানির জন্য ২০০ মিলি হারে প্রয়োগ করতে হবে। গাছে ফুল আসা শুরু হলে গাছের খাবার দ্রবণের মাত্রা বাড়াতে হবে এবং এই সময় দ্রবণের ইসি - ২.০ থেকে ২.৫ এবং পিএইচ ৬.০-৬.৫ এর মধ্যে রাখতে হবে। গাছের দৈর্ঘ্য বৃদ্ধির সাথে সাথে তাকে সোজা করে দাড়িয়ে রাখতে গাছের গোড়ায় বাঁধা একটি রশি (চিত্র) অনুযায়ী বেঁধে রাখতে হবে।

রোগ ও পোকার আক্রমণ এবং তার প্রতিকার

এই পদ্ধতিতে চাষাবাদ করলে সাধারনত রোগ এবং পোকার আক্রমণ কম হয় তবে মাঝে মাঝে লাল মাকড়, সাদা মাছি, খ্রিপস, লিফ মাইনার বা জাব পোকার আক্রমণ দেখা দিতে পারে। সেক্ষেত্রে প্রতি ১ লিটার ভার্টিমেক (লাল মাকড়ের জন্য), ১ মিলি লিটার এডমায়ার (লিফ মাইনরি, খ্রিপস এবং জাব পোকার জন্য) এবং সবিক্রন ২ মিলি লিটার (সাদা মাছির জন্য) ১ লিটার পানিতে মিশিয়ে ৭ দিন পর পর স্প্রে করলে এদের দমন করা যায়। এ ছাড়া ফসলের আশে পাশে হলুদ ও সাদা রঙয়ের আঠাযুক্ত ফাঁদ পেঁতে রাখলে তাতে জাবপোকা ও খ্রিপস জাতীয় পোকা সহজেই দমন করা যায়।

ফসল সংগ্ৰহ

সাধারনত চারা রোপণের ২৫-৩০ দিনের মধ্যে ফুল আসতে শুরু করে এবং চারা রোপণের ৫৫-৬০ দিনের মধ্যে ক্যাপসিকাম সংগ্রহ করা যায়। ফলের ঠিক নিচে ফুল ঝরে পড়ার পর ফল সংগ্রহ করতে হবে। সপ্তাহে একবার ফল সংগ্রহ করাই উত্তম। বোঁটাসহ ফল সংগ্রহ করে ছায়াযুক্ত ঠাপ্তা জায়গায় সংরক্ষণ করে

চিত্র: সংগ্রহ উপযোগী ক্যাপসিকাম

বাজারজাত করা ভাল। প্রতিটি সুস্থ গাছে ৮-১০ টি ফল ধরে থাকে এবং প্রতিটি গাছ থেকে ৮০০-১২০০ গ্রাম পর্যন্ত ফলন পাওয়া যায়। সাধারণত মাটিতে ক্যাপসিকাম চাষ করলে ফল সংগ্রহ করতে যতদিন সময় লাগে হাইড্রোপনিক পদ্ধতিতে তার চেয়ে ১২-১৫ দিন আগেই ফল সংগ্রহ করা যায়।

ফলন

সঠিক পদ্ধতিতে ক্যাপসিকাম চাষ করতে পারলে জমিতে যেখানে হেক্টর প্রতি ২০-২৫ টন ফলন পাওয়া সেখানে একই পরিমাণ জায়গা হতে হাইড্রোপনিক পদ্ধতিতে ৬০-৭০ টন পর্যন্ত ফলন পাওয়া সম্ভব।

চিত্র : সংগ্রহকৃত ক্যাপসিকাম

আয় ব্যয়ের হিসাব

ব্যয় : প্রতি ৩ মিটার × ১ মিটার মাপের ট্রেতে ৩০ সে.মি. × ২০ সে.মি. গাছের দূরত্বে মোট ৩৬টি গাছ লাগানো সম্ভব যা মাঠের গাছের সংখ্যার ৩ গুন। ক্যাপসিকাম এক মৌসুমে প্রতিটি ট্রেতে রাসায়নিক দ্রবণ বাবদ খরচ হবে ৮০০

টাকা. কর্কসিট বাবদ খরচ ৩০০ টাকা এবং অন্যান্য বাবদ ৬০০ টাকাসহ মোট খরচ ১.৭০০ টাকা।

আয়: প্রতি গাছ থেকে ফলন = ১.০ কেজি; সুতরাং ৩৬টি গাছ থেকে ফলন = ৩৬ কেজি প্রতি কেজি ক্যাপসিকাম মূল্য ১০০ টাকা হিসেবে ৩৬ কেজির মূল্য = ৩,৬০০ টাকা। অর্থাৎ প্রতি ৩ বর্গ মিটার ট্রে হতে লাভ = ৩,৬০০ - ১,৭০০ = ১,৯০০ টাকা।

হাইডোপনিক পদ্ধতিতে টমেটো চাষাবাদ

জাত ও বীজের পরিমাণ

বাংলাদেশ কৃষি গবেষণা ইনস্টিটিউট এ পর্যন্ত টমেটোর বেশ কয়েকটি মুক্ত পরাগায়িত, হাইবিড ও গ্রীম্মকালীন জাত উদ্ভাবন করেছে। আগাম ও নাবি জাত হিসেবে বারি টমাটো ১৪, বারি হাইব্রিড টমেটো-৪ এবং বারি হাইবিড টমেটো-১০ অত্যন্ত জনপ্রিয়। এ জাতটি হাইড্রোপনিক পদ্ধতিতে অন্যান্য জাতের চেয়ে বেশি চাষ উপোযোগী।

চিত্র: বারি টমাটো-১৪

এজাতের টমাটো ফল আকারে বড়, মাংসল ও আকর্ষণীয় রঙয়ের হয়ে থাকে। প্রতিটি ফলের গড ওজন ৯০-৯৫ গ্রাম এবং প্রতি গাছে গড়ে ৩০-৩৫ টি ফল ধরে। এ জাতের বিশেষ একটি বৈশিষ্ট্য হলো ফল দীর্ঘসময় (৪৫-৬০ দিন) পর্যন্ত আহরণ করা যায় এবং সংরক্ষণ গুণাগুণও ভাল। এ জাতটি ব্যাকটেরিয়া জনিত ঢলে পড়া রোগ প্রতিরোধী। বিধায় এ পদ্ধতিতে চাষাবাদ উপযোগী।

চারা উৎপাদন

হাইড্রপনিক পদ্ধতিতে টমেটোর চারা উৎপাদনের জন্য প্রথমে বীজকে একটি প্রেটের খবরের কাগজ/টিস্যু পেপার বিছিয়ে তার উপর বীজ ঘন করে ছিটিয়ে রাখতে হবে। এর পর বীজের উপর হালকা পানি দিয়ে ভিজিয়ে পেপার দিয়ে ঢেকে দিতে হবে। বীজ অঙ্ক্ষরিত হওয়া শুরু করলে বীজকে স্পঞ্জ ব্রক এর গর্তের মধ্যে স্থাপন করতে হবে। তার পর স্পঞ্জ ব্রক কে পানির ট্রেতে ভাসিয়ে রাখতে হবে। যখন চারা ২-৩ পাতা চিত্র: বটক করে কাটা স্পঞ্জ ব্লক

চিত্র : পেটিডিসে বীজ

চিত্র : কর্কসিটে চারা উৎপাদন

চিত্র : রোপণোপযোগী চারা

অবস্থায় আসবে তখন থেকে প্রতি দিন ট্রেতে ১০-২০ মি.লি. লিটার খাদ্য উপাদান দ্রবণ "এ" এবং "বি" যোগ করতে হবে এবং ds/m o.৫-o.৮ এর মধ্যে রাখতে হবে।

চারা রোপণ পদ্ধতি

ক) ট্রেতে চারা রোপণ

চারা লাগানোর ট্রের সাইজ বিভিন্ন মাপের হতে পারে যা ট্রের ধারকের উপর অনেকটা নির্ভর করে। সাধারণত ৩ মিটার × ১ মিটার মাপের ট্রে হলে ব্যবস্থাপনা ভালভাবে করা যায়। আকার অনুযায়ী তার ভিতর পরিমাপ মত পানি নিতে হবে। পানির গভীরতা ৬-৮ সেমি হতে হবে। পানিতে প্রতি ১০০ লিটার পানির জন্য ১ লিটারে খাদ্য উপাদান দ্রবণ A এবং ১ লিটার খাদ্য উপাদান দ্রবণ B যোগ করতে হবে। দ্রবণ মিশানোর সময় প্রথমে খাদ্য উপাদান দ্রবণ A যোগ করে পানিতে ভালভাবে মিশিয়ে নিতে হবে এবং পরে খাদ্য উপাদান দ্রবণ B যোগ করে ভালভাবে মিশাতে হবে। দ্রবণের মিশ্রণ তৈরির পর ট্রের উপর কর্কসিট

চিত্র- ৯: ট্রেতে রোপণকত চারা

স্থাপন করতে হবে। প্রতিটি গাছ থেকে গাছ এবং সারি থেকে সারি ৩০ সেমি দূরে দূরে রাখতে হবে এবং কর্কসিটের উপর এই দূরত্ব অনুযায়ী ছোট্ট গর্ত করতে হবে। তারপর প্রতিটি গর্তে ১টি করে সৃষ্ট সবল চারা রোপণ করতে হবে।

খ) প্লাস্টিক বালভিতে টমেটোর চারা রোপণ

ট্রেতে চারা লাগানো ছাড়া বালতিতেও টমেটো উৎপাদন করা যায়। নিম্নলিখিত উপায়ে

প্রাস্টিকের বালতিতে চারা রোপণ করা যায়। প্রথমে বালতি ভালভাবে পরিষ্কার পানি দিয়ে ধুয়ে নিতে হবে। বালতির উপর ৬-৮ সেমি জায়গা ফাঁকা রেখে নির্দিষ্ট পরিমাণ পানি দ্বারা উহা পূর্ণ করতে হবে। অতঃপর প্রতি ১ লিটার পানির জন্য ১০ মি.লি. দ্রবণ "এ" এবং ১০ মিলি দ্রবণ "বি" যোগ করতে হবে। মনে রাখতে হবে দ্রবণ যোগ চিত্র-১০ঃ প্লাস্টিকের বালতিতে চারা রোপণ পদ্ধতি

করার সময় প্রথমে দ্রবণ "এ" এর পরে দ্রবণ বণ "বি" মিশাতে হবে। একটি কর্কসিট বালতির মুখে স্থাপন করে প্রথমে তা দাগ দিয়ে তার চেয়ে সামান্য ছোট করে কেটে নিতে হবে। অতঃপর তার উপর মাঝ বরাবর ১টি এবং পার্শ্বে আরও ২-৩ টি গর্ত করতে হবে যাতে পাত্রের ভিতর বাতাস চলাচল করতে পারে। বালতির উপর গোল

করে কাটা কর্কসীট স্থাপন করতে হবে এবং এর মাঝের ছোট গর্তে ১ টি করে চারা লাগাতে হবে। চারা রোপণের সময় লক্ষ্য রাখতে হবে যেন দ্রবণ ও গাছের গোডার মাঝে ২.৫৪ সে.মি. বা ১ ইঞ্চি পরিমাণ জায়গা ফাঁকা থাকে অথচ শিকড দ্রবণ পর্যন্ত পৌছায়। এবার বালতিটিকে আলো ও বাতাস চলাচল করে এমন স্থানে স্থাপন করতে হবে।

চিত্র-১১ : প্লাস্টিকের বালতিতে রোপণকৃত চারা

অন্যান্য ব্যবস্থাপনা ও পরিচর্যা

চারা গাছের বৃদ্ধির সাথে সাথে তার খাদ্যের প্রয়োজনীয়তা বৃদ্ধি পাবে। সাধারনত ১৫-২০ দিন পর অল্প পরিমাণ ১০% খাদ্য উপাদান সমেত দ্রবণ যোগ করতে হয়। গাছের বৃদ্ধির সময় উপরের দিকের পাতা হলুদ হয়ে গেলে ৫ গ্রাম EDTA আয়রন ১

লিটার পানিতে মিশিয়ে প্রতি ১০০ লিটার পানির জন্য ২০০ মিলি হারে প্রয়োগ করতে হবে। গাছে ফুল আসা শুরু হলে গাছের খাবার দ্রবণের মাত্রা বাড়াতে হবে। এক্ষেত্রে প্রতি ১০০ লিটার পানিতে ১০০ মিলি নিউট্রিয়েন্ট সলিউশান A এবং ১০০ মি.লি. নিউট্রিয়েন্ট সলিউশান B দ্রবণ যোগ করতে হবে। এ সময় দ্রবণের EC- চিত্র-১২ঃ প্লাস্টিকের রশি দ্বারা গাছ সোজা রাখা

২.০ থেকে ২.৫ এবং pH ৬.০-৬.৫ এর মধ্যে বজায় রাখতে হবে। গাছের দৈর্ঘ্য বৃদ্ধির সাথে সাথে তাকে সোজা করে দাড়িয়ে রাখতে গাছের গোড়ায় বাঁধা একটি

রোগ ও পোকার আক্রমণ এবং তার প্রতিকার

রশি পার্শ্বের চিত্র অনুযায়ী বেঁধে রাখতে হবে।

এই পদ্ধতিতে চাষাবাদ করলে সাধারনত রোগ এবং পোকার আক্রমণ খুবই কম হয়। তবে মাঝে মাঝে লাল মাকড়, সাদা মাছি, থ্রিপস এবং জাব পোকার আক্রমণ দেখা দিতে পারে। সেক্ষেত্রে প্রতি ১ লিটার পানিতে ১ মিলি ভারটিমেক (লাল মাকড়ের জন্য), ১ মিলি এডমায়ার (থ্রপস এবং জাব পোকার জন্য) এবং সবিক্রন ২ মিলি ১ লিটার পানিতে মিশিয়ে ৭ দিন পর পর স্পে করলে এদের দমন করা যায়।

ফসল সংগ্ৰহ

সময়মত গাছের ফল সংগ্রহ করলে উপরের দিকে ফল বেশি আসে। সাধারনত চারা রোপণের ১৫-২০ দিনের মধ্যে ফুল আসতে শুরু করে এবং ফুল ফোঁটার ৪৫-৬০ দিনের মধ্যে টমাটো সংগ্রহ করা যায়। ফলের ঠিক নিচে ফুল ঝরে পড়ার পর যে দাগ থাকে ঐ স্থানে লাল রঙ দেখা দিলেই ফল সংগ্রহ করতে হবে। সপ্তাহে একবার ফল সংগ্রহ করাই উত্তম। বোঁটাসহ ফল সংগ্রহ করে ছায়াযুক্ত ঠান্ডা জায়গায় সংরক্ষণ করে বাজারজাত করা ভাল। প্রতিটি সুস্থ গাছে ২৫-৩০টি ফল ধরে থাকে যার গড় ওজন ১৫০-১৬০ গ্রাম এবং প্রতিটি গাছ থেকে ৩.৭৫-৪.৮০ কেজি পর্যন্ত ফলন পাওয়া যায়। সাধারণত মাটিতে টমাটোর চাষ করলে ফল সংগ্রহ করতে যতদিন সময় লাগে হাইড্রোপনিক পদ্ধতিতে তার চেয়ে ১০-১২ আগেই ফল সংগ্রহ করা যায় এবং ফলন ১-২ গুন বেশি হয়।

ফলন

সঠিক পদ্ধতিতে চাষ করতে পারলে মাটিতে যেখানে হেক্টরপ্রতি ফলন ৯০-৯৫ টন সেখানে হাইড্রোপনিক পদ্ধতিতে ১২০-১৩০ টন পর্যন্ত ফলন পাওয়া সম্ভব।

আয় ব্যয়ের হিসাব

= ১০২ কেজি

ব্যয়: প্রতি ৩ × ১ মিটার মাপের ট্রেতে ৩০ × ৩০ সেমি গাছের দুরত্বে মোট ২৪টি গাছ লাগানো সম্ভব যা মাঠের গাছের সংখ্যার ৩ গুন। টমেটোর এক মৌসুমে প্রতিটিট্রেতে রাসায়নিক দ্রবণ বাবদ খরচ হবে ৬০০ টাকা, কর্কসীট বাবদ খরচ ৩০০ টাকা, শ্রমিক এবং অন্যান্য বাবদ ৫০০ টাকাসহ মোট খরচ ১,৪০০ টাকা। আয়়: প্রতি গাছ থেকে গড় ফলন = ৪.২৫০ কেজি; সুতরাং ২৪টি গাছ থেকে ফলন

প্রতি কেজি টমেটোর মূল্য ২৫ টাকা হিসেবে ১০২ কেজির মূল্য = ২,৫৫০ টাকা। অর্থাৎ প্রতি ৩ বর্গ মিটার ট্রে হতে প্রকৃত লাভ = ২,৫৫০ – ১,৪০০ = ১,১৫০ টাকা।

হাইড্রোপনিক পদ্ধতিতে লেটুস চাষ

বাংলাদেশে লেটুস একটি অপ্রচলিত সবজি হলেও দিন দিন শহরাঞ্চলে বিশেষ করে ফাস্ট-ফুড ও চাইনিজ রেস্টুরেন্ট সমূহে এর চাহিদা বৃদ্ধি পাচেছ। সালাদ হিসেবে টাটকা অবস্থায় খাওয়া হয় বলে লেটুস একটি উচ্চ পুষ্টিগুণ সম্পন্ন উৎকৃষ্ট সবজি। লেটুস উচ্চমূল্য সম্পন্ন সবজি হওয়ায় অর্থনৈতিক গুরুত্ব অনেক বেশি। আমাদের দেশে প্রচলিত পদ্ধতিতে লেটুস চাষ শীতকালের একটি নির্দিষ্ট সময়েই এবং যা শহরাঞ্চলের আশেপাশেই সীমাবদ্ধ। আমাদের মত জনবহুল দেশে যেখানে চাষের

জমির স্বল্পতা সেখানে ঘরের-ছাদে বা আঙ্গিনায়, পলি-টানেল ও নেট-হাউজে উন্নত বিশ্বের বিভিন্ন দেশের মত হাইড্রোপনিক পদ্ধতিতে সারা বছরব্যাপী লেটুস চাষ করা যায়। হাইড্রোনিক পদ্ধতিতে সঞ্চালন ও সঞ্চালনবিহীন উভয় পদ্ধতির মাধ্যমেই লেটুসের চাষ করা সম্ভব।

চিত্ৰ : ট্ৰেতে লেটুস চাষ

জাত ও বীজ

লেটুসের জন্য রোগমুক্ত বীজ ও জনপ্রিয় জাত নির্বাচন করতে হবে। বাংলাদেশে লেটুসের জনপ্রিয় জাতগুলির মধ্যে বারি লেটুস ১, গ্র্যান্ত-র্যাপিড, গ্রীন-ওয়েভ, সেলিনা, রেক্স, ইত্যাদি উল্লেখযোগ্য।

চারা উৎপাদন

চারা উৎপাদনের জন্য ৩০ সে.মি. × ৩০ সে.মি. স্পঞ্জ ২.৫ সে. × ২.৫ সে. বর্গাকার ব্লকে কেটে প্রতি ব্লকের মাঝে ১ সে.মি. কেটে ১ টি করে বীজ বপন করতে হবে। বীজ বপনের পূর্বে বীজকে ১০% ক্যালসিয়াম দিয়ে বীজ শোধন করে নিতে হবে। বীজ বপনের পর ট্রের মধ্যে স্পঞ্জকে পানিতে ভাসমান অবস্থায় রাখতে হবে যাতে সহজে চারা গজাতে পারে। চারা গজানোর ২-৩ দিন পর প্রাথমিক অবস্থায় ৫-১০ মিলি খাদ্যপাদান সম্বলিত দ্রবণ ১ বার এর চারা গজানোর ১০-১২ দিন পর থেকে চারা রোপণের পূর্ব পর্যন্ত প্রতিদিন ১০-১২ মিলি দ্রবণ দিতে হবে।

চাষ পদ্ধতি

সাধারনত ২-৩ সপ্তাহ বয়সের চারা ট্রের কর্কসিটের উপর ৩০ সেমি × ৩০ সেমি দুরত্বে গর্তের মধ্যে স্থানান্তর করা হয়। চারা স্থানান্তরের সময় দ্রবণের pH ৫.৮-৬.৫ এর মধ্যে এবং EC এর মাত্রা ১.৫-১.৯ dS/m এর মধ্যে রাখা দরকার। এরপর ১০-১৫ দিন পর জলীয় খাদ্য দ্রবণ ১০% যোগ করে EC এর মাত্রা বাড়িয়ে ২.০-২.২ dS/m এর মধ্যে রাখতে হবে।

ফসল সংগ্ৰহ

চারা লাগানোর ২০ দিন পর থেকে লেটুস সংগ্রহ করা যেতে পারে এবং ৩০-৩৫ দিনের মধ্যে সম্পূ্র্ণ সংগ্রহ উপযোগী হয়। সংগ্রহের সময় প্রতিটি গাছের পাতাসহ গড় ওজন প্রায় ৪০০-৬০০ গ্রামের মত হয়ে থাকে। প্রথম বার লেটুস সংগ্রহের পর ঐ একই রাসায়নিক দ্রবণের ভিতর পূণরায় লেটুস লাগিয়ে দ্বিতীয় বার ফসল উৎপাদন করা যায়। সাধারনত শীত মৌসুমে একটি ট্রে থেকে ২-৩ বার লেটুস উৎপাদন করা সম্ভব।

রোগ পোকার আক্রমণ ও প্রতিকার

এই পদ্ধতিতে চাষাবাদ করলে সাধারনত রোগ এবং পোকার আক্রমণ কম হয়। তবে মাঝে মাঝে জাব পোকার আক্রমণ দেখা দিতে পারে। সেক্ষেত্রে প্রাথমিক অবস্থায় হাতে ধরে পিষে মারা সম্ভব। যেহেতু লেটুস সরাসরি খাওয়া হয়। তাই কোন কীটনাশক ব্যবহার করা উচিত নয়। অক্সিজেনের অভাবে গাছের শিকড় পচা রোগ দেখা দিতে পারে। এ ক্ষেত্রে জলীয় খাদ্য দ্রবণে পর্যাপ্ত অক্সিজেন সরবরাহের ব্যবস্থা নিশ্চিত করতে হবে।

হাইড্রোপনিক পদ্ধতিতে লেটুস চাষে লক্ষণীয় বিষয়সমূহ

- ★ রোগ-মুক্ত চারা লাগাতে হবে। কোন চারা রোগাক্রান্ত হলে তা সাথে সাথে তুলে ফেলতে হবে।
- ❖ যেহেতু অক্সিজেনের অভাবে গাছের শিকড় পঁচে নষ্ট হয়ে ফলন মারাত্মকভাবে কমে যেতে পারে তাই জলীয় খাদ্য দ্রবণে পর্যাপ্ত অক্সিজেন সরবরাহের ব্যবস্থা নিশ্চিত করতে হবে।
- ❖ চামের স্থানে পর্যাপ্ত আলোর সুব্যবস্থা থাকতে হবে।
- ❖ নিয়মিত তদারকির মাধ্যমে রোগ ও পোকা দমনের ব্যবস্থা নিতে হবে।

হাইড্রোপনিক পদ্ধতিতে শসা চাষ

বাংলাদেশে শসা প্রধান সালাদ সবজিসমূহের মধ্যে অন্যতম। প্রায় সারাবছরই এদেশে বিভিন্ন জাতের শসা পাওয়া যায়। সালাদ, সবজি, কাসুন্দি বিভিন্নভাবে এর

ব্যবহার হয়। শসা উচ্চমূল্য সম্পন্ন সবজি হওয়ায় এর অর্থনৈতিক গুরুত্ব অনেক বেশি। আমাদের দেশে প্রচলিত পদ্ধতিতে মাঠে বিশেষ বিশেষ এলাকায় শসা সারা বছর চাষ হলেও মূলত গ্রীপ্মকালেই (ফেব্রুয়ারি-জুন মাসে) শসা ও শীত কালে খিরার চাষ হয়ে থাকে। ভাল জাতের অভাব, মাটির দৃষণ, বৃষ্টি, খরা, তাপমাত্রা,

অভাব, মাটির দূষণ, বৃষ্টি, খরা, তাপমাত্রা, চ্নি: হাইড্রোপনিক পদ্ধতিতে শসা চাষ রোগবালাই ও পোকামাকড়ের প্রার্দুভাব ইত্যাদি নানা কারণে শসার উৎপাদন মারাত্বকভাবে ব্যহত হয়। আমাদের মত জনবহুল দেশে যেখানে চাষের জমির স্বল্পতা সেখানে ঘরের ছাদে বা আঙ্গিনায়, পলি-টানেল ও নেট-হাউজে উন্নত বিশ্বের বিভিন্ন দেশের মত হাইড্রোপনিক পদ্ধতিতে সারা বছরই শসা চাষ করা যায়।

জাত

শসার জন্য রোগমুক্ত, খাট অধিক স্ত্রী ফুল উৎপাদনকারী জেসমিন জাত নির্বাচন করতে হবে। উন্নত জাতগুলির মধ্যে আলাভী, সুফলা, বারোমাসী ইত্যাদি উল্লেখযোগ্য।

চারা উৎপাদন

স্পঞ্জ ব্লক (৩০ সে.মি. × ৩০ সে.মি.) থেকে ২.৫ সে. মি. দৈর্ঘ্য প্রস্থ বর্গাকারে, কেটে নিতে হয় এবং এর মাঝে ১ সে.মি. করে কেটে প্রতিটি বর্গাকারে স্পঞ্জ এর মধ্যে ১ টি করে বীজ বপন করতে হয়। ক্যালসিয়াম অথবা সোডিয়াম হাইপোকোরাইড (১০%) দিয়ে বীজ বপনের পূর্বে বীজ শোধন করে নিতে হবে। বীজ বপনের পর স্পঞ্জকে ১ টি ছোট ট্রেতে ৩-৮ সেমি পানিতে ভাসমান অবস্থায় রাখতে হবে। চারা গজানোর ২-৩ দিন পর প্রাথমিক অবস্থায় ৫-১০ মিলি খাদ্যপাদান সম্বলিত দ্রবণ ১ বার এবং চারা গজানোর ১০-১২ দিনপর থেকে চারা রোপণের পূর্ব পর্যন্ত প্রতিদিন ৫ মি. লি./লিটার দ্রবণ দিতে হবে।

চাষ পদ্ধতি

শসার চারা সাধারনত ১০-১৫ দিন বয়সের চারা ট্রের কর্কশীটের উপর ৫০ সেমি \times ৫০ সে.মি. দূরত্বে গর্তের মধ্যে স্থানান্তর করা হয়। চারা রোপণের পর দ্রবণের pH মাত্রা ৫.৮-৬.২ এর মধ্যে এবং EC মাত্রা ১.৫-১.৮ dS/m এর মধ্যে রাখা দরকার। গাছে ফুল আসা শুরু হলে EC এর মাত্রা বাড়িয়ে ২.০-২.২ dS/m এর মধ্যে রাখতে হবে। গাছের বৃদ্ধির পর্যায়ে উপর থেকে সুতা বা শক্ত রিশ ঝুলিয়ে গাছকে সোজা ও খাড়া রাখতে হবে। মাঝে মাঝে পার্শ্ববর্তী শাখা ভেঙ্গে দিলে ফলন ভাল হয়। ট্রেতে খাদ্যের পরিমাণ কমে গেলে ২০-২৫ দিন পর জলীয় খাদ্য দ্রবণ যোগ করতে হবে।

ফসল সংগ্ৰহ

সাধারনত চারা লাগানোর ২০-২৫ দিনের মধ্যে ফুল আসে এবং ৪০-৪৫ দিনের মধ্যে শসা উত্তোলন করা সম্ভব। প্রতিটি গাছে সঞ্চালন পদ্ধতিতে ৫-৭ টি এবং সঞ্চালনবিহীন পদ্ধতিতে ৪-৫ ফল উত্তোলন করা সম্ভব। ফলন প্রতিগাছে সঞ্চালন পদ্ধতিতে ১.৫-২.৫ কেজি এবং সঞ্চালনবিহীন পদ্ধতিতে ১.৫-২.০ কেজি হতে পারে। কৃত্রিম পরাগায়ন দ্বারা ফলন অনেক গুন বাড়ানো সম্ভব।

রোগ পোকার আক্রমণ ও প্রতিকার

এই পদ্ধতিতে চাষাবাদ করলে সাধারনত রোগ এবং পোকার আক্রমণ কম হয়। তবে মাঝে মাঝে লিফ মাইনার ও ফলের মাছি পোকার আক্রমণ দেখা দিতে পারে। সেক্ষেত্রে বিষটোপ ফাদের সাহায্যে মাছি পোকার পূর্ণবয়ক্ষ স্ত্রী ও পুরুষ মাছি পোকা মারা যায়। এছাড়া ফেরোমন কিউলিউর ফাঁদের সাহায্যে স্ত্রী মাছি পোকা দমন করা যায়। লিফ মাইনারের আক্রমণ ব্যাপক হলে ফল ধরার পূর্ব পর্যন্ত ২-৩ বার কীটনাশক ব্যবহার করে তা দমন করা যায়।

হাইড্রোপনিক পদ্ধতিতে শসা চাষে লক্ষণীয় বিষয়সমূহ

- কোগ-মুক্ত চারা লাগাতে হবে। কোন চারা রোগাক্রান্ত হলে তা সাথে সাথে তুলে
 ফেলতে হবে।
- কেনে যেতে পারে তাই জলীয় খাদ্য দ্রবণে পর্যাপ্ত অক্সিজেন সরবরাহের ব্যবস্থা
 নিশ্চিত করতে হবে।
- ❖ চামের স্থানে পর্যাপ্ত আলোর সুব্যবস্থা থাকতে হবে।
- ❖ নিয়মিত তদারকির মাধ্যমে রোগ ও পোকা দমনের ব্যবস্থা নিতে হবে।

হাইড্রোপনিক পদ্ধতিতে করলা চাষ

করলা একটি গুরুত্বপূর্ণ গ্রীষ্মকালীন সবজি, এর অনেক পুষ্টি ও ঔষধি গুনাগুন আছে। বাংলাদেশ কৃষি গবেষণা ইনিস্টিটিউট বারি করলা ১ নামের একটি জাত উদ্ভাবন করেছে। বর্তমানে এটি বাংলাদেশের অনেক জনপ্রিয় সবজি। বর্তমানে প্রচুর চাহিদা থাকার কারণে মুক্ত পরাগায়িত জাতের করলার সাথে হাইব্রিড করলারও ব্যাপক

চিত্র ১: টেতে করলার চাষ

চাষাবাদ করা হচ্ছে। চাহিদার অনুপাতে পর্যাপ্ত করলা সরবরাহ না থাকায় হাইড্রোপনিক পদ্ধতিতে করলার চাষবাদ করা সম্ভব। হাইড্রোপনিক পদ্ধতিতে সারা বছর করলার চাষ করা যায় এবং এই পদ্ধতিতে গাছ থেকে গাছের রোপণ দূরত্ব কম থাকার কারণে প্রতি বর্গমিটারে গাছের সংখ্যা বেশি থাকায় ফলন তুলনামূলকভাবে বেশি পাওয়া যায়।

জাত: আমাদের দেশে সাধারণত বারি করলা ১, টিয়া, কাকোলি, তাজ, গ্রীন, এ্যারো, শুকতারা, এবং গজ করলা ইত্যাদি জাতের করলার চাষাবাদ হয়ে থাকে।

চারা উৎপাদন

হাইড্রোপনিক পদ্ধতিতে করলার উৎপাদনের জন্য প্রথমে বীজকে একটি কাচের প্রেটে উপর খবরের কাগজ/ টিসু পেপার রেখে তার উপর বীজ ঘন করে রাখতে হবে এর পর বীজের উপর হালকা পানি দিয়ে ভিজিয়ে রাখতে হবে এবং পেপার দিয়ে ঢেকে দিতে হবে। এছাড়া নারিকেলের আঁশের গুঁড়া অথবা বালিতে বীজ বীপন করে চারা উৎপাদন করা যায়।

বীজ অঙ্কুরিত হওয়া শুরু করলে বীজকে স্পঞ্জ ব্লক এর মধ্যে স্থাপন করতে হবে। তার পর স্পঞ্জ ব্লক কে পানির ট্রে-তে ভাসিয়ে রাখতে হবে। চারা ২-৩ পাতা অবস্থা থেকে প্রতি দিন ট্রেতে ২০-৩০ মিলি লিটার খাদ্য উপাদান দ্রবণ এবং "এ" এবং "বি" যোগ করতে হবে। চারার বয়স ২০-২৫ দিন হলে চারা রোপণ করতে হবে।

চারা রোপণ পদ্ধতি

ট্রের আকার পরিমাপ করে পানি নিতে হবে। পানির গভীরতা ৬-৮ সেমি হতে হবে। প্রতি ১০০ লিটার পানির জন্য ১ লিটার দ্রবণ "এ" এবং ১ লিটার দ্রবণ "বি" যোগ করতে হবে। দ্রবণ যোগ করার সময় প্রথমে দ্রবণ "এ" যোগ করে পানিতে ১-২ মিনিট কাঠি দিয়ে নেড়ে ভাল ভাবে মিশিয়ে নিতে হবে

চিত্র ২: ট্রেতে করলার চাষ

এবং পরে দ্রবণ "বি" যোগ করে ভাল ভাবে মিশাতে হবে। দ্রবণের মিশ্রণ তৈরির পর ট্রের উপর কর্কসিট স্থাপন করতে হবে। প্রতিটি গাছ থেকে গাছ ৩০ সেমি এবং সারি থেকে সারি ৬০ সেমি দূরত্বে রাখতে হবে এবং কর্কসিটের উপর এ দূরত্ব অনুযায়ী গর্ত করতে হবে। প্রতিটি গর্তে ১ টি করে সুস্থ সবল চারা রোপণ করতে হবে।

প্লাস্টিক বালতি/ বোতলে চারা রোপণ

প্লাস্টিক বালতি বা বোতলে চারা রোপণ নিম্মলিখিত ভাবে করা যায়।

- প্রথমে বালতি /বোতলকে ভাল ভাবে পরিষ্কার
 পানি দিয়ে ধুয়ে নিতে হবে।
- বালতির উপর থেকে ৬-৮ সেমি জায়গা ফাকা
 রেখে পানি দ্বারা পূর্ণ করতে হবে।
- ♦ পানি পূর্ণ করার পর প্রতি ১ লিটার পানির জন্য ১০ মিলি দ্রবণ "এ" এবং ১০ মিলি "বি" দ্রবণ যোগ করতে হবে।

চিত্র ৩: বালতিতে করলার চাষ

- ♦ দ্রবণ যোগ করার সময় প্রথমে "এ" যোগ করতে হবে এবং এর ১-২ মিনিট
 পরে "বি" দিতে হবে।
- ♦ চারা রোপণের সময় লক্ষ্য রাখতে হবে যে কর্কসিটের ও দ্রবণের মাঝে ২.৫৪ সেমি বা ১ ইঞ্চি জায়গা ফাঁকা রাখতে হবে।

ব্যবস্থাপনা

গাছ বেড়ে উাঠার সাথে সাথে উপর থেকে নাইলন রশি দিয়ে গাছকে বেধে দিতে হবে। গাছের বৃদ্ধির সাথে সাথে তার খাদ্যের প্রয়োজনীয়তা বৃদ্ধি পাবে। সাধারণত ১৫-২০ দিন পর অল্প পরিমাণ খাদ্য উপাদান সমেত দ্রবণ যোগ করতে হবে। গাছের বৃদ্ধির সময় যদি উপরের দিকের পাতা হলুদ হয় তবে ৫ গ্রাম ইডিটিএ আয়রন ১ লিটার পানিতে মিশিয়ে প্রতি ১০০ লিটার পানির জন্য ২০০ মিলি করে প্রয়োগ করতে হবে অথবা প্রতি লিটার পানিতে ১ গ্রাম ইডিটিএ আয়রন মিশিয়ে পাতায় স্পেকরতে হবে। ফুল আসা শুরু হলে গাছের খাবার দ্রবণের মাত্রা বাড়াতে হবে। এই সময় জলীয় দ্রবণের EC ১.৫ - ২.০ ds/m এর মধ্যে রাখতে হবে এবং pH ৬.০ - ৬.৫ এর মধ্যে রাখতে হবে।

রোগ পোকার আক্রমণে ও প্রতিকার

এই পদ্ধতিতে চাষাবাদ করলে সাধারণতঃ রোগ এবং পোকার আক্রমণ কম হয়। তবে মাঝে মাঝে মাছি পোকার আক্রমণ দেখা দিতে পারে। সেক্ষেত্রে ফেরোমন ফাদের সাহায্যে পুরুষ মাছি পোকা মারা যায়। ফাঁদের ভিতর কিউলিটর নামক হরমোন তুলার সাথে বেঁধে plastic বড় বোতলে নিয়ে বোতলের নিচে সাবান পানি দিয়ে ফাঁদ তৈরি করা যায়।

ফসল সংগ্ৰহ

সাধারণত চারা রোপণের ৩০ দিনের মধ্যে ফুল আসতে গুরু করে। পরাগায়ণের ১০-১২ দিন পর থেকে করলা সংগ্রহ করা যায়। হাইড্রোপনিক পদ্ধতি করলা উৎপাদনে মাটির চেয়ে ১০-১৫ দিন আগাম ফসল পাওয়া যায়। সাধারণতঃ সপ্তাহে দুবার গাছ থেকে ফল সংগ্রহ করা হযে থাকে। ফল সংগ্রহের ঠান্ডা অথচ ছায়া মুক্ত স্থানে বাজারজাতকরণের পূর্ব পর্যন্ত সংরক্ষণ করতে হবে। ফল সংগ্রহের সময় প্রতিটি ফলে সামান্য পরিমাণে বোঁটা

চিত্র: সংগ্রহত্তার করলা

রেখে দিতে হবে। প্রতিটি সুস্থ সবল গাছ থেকে ১০-১৫ টি করে করলা সংগ্রহ করা যায়। প্রতিটির ফলের গড় ওজন প্রায় ২০০ গ্রাম হয়ে থাকে। তবে জাত ভেদে এবং ফলের আকার ওজন তারতম্য হয়ে থাকে। প্রতিটি গাছে প্রায় গড়ে ২.০-৩.৫ কেজি পর্যন্ত ফসল সংগ্রহ করা যায়।

ফলন

মাটিতে চাষ করলে ফলন ২০-২৫ টন আর হাইড্রোপনিক পদ্ধতিতে চাষ করলে ৫০-৬০ টন প্রতি হেক্টরে পাওয়া সম্ভব।

আয় ব্যায়ের হিসাব

বয়ে:

প্রতি ২ \times ১ মিটার সাইজের ট্রেতে ৬০ \times ৩০ সে.মি. দূরত্বে ১২ টি গাছ লাগানো সম্ভব যা মাঠ ফসলের গাছের ঘনত্বের গ্রায় ৩ গুন। প্রতি ট্রের রাসায়নিক দ্রবণ বাবদ ২০০ টাকা এবং কর্কসিট বাবদ ১৫০ টাকা , অন্যান্য ১০০ টাকা মোট ৪৫০ টাকা ।

আয়

প্রতি গাছের গড়ে ২.৫ কেজি হিসাবে ফলন = ৩০ কেজি; প্রতি কেজি ৩০ টাকা হিসেবে দাম = ৩০ × ৩০= ৯০০ টাকা নিট লাভ = ৯০০ - ৪৫০ = ৪৫০ টাকা অর্থাৎ প্রতি বর্গ মিটারে চাষ করে ২২৫ টাকা লাভ করা সম্ভব।

হাইড্রোপনিক পদ্ধতিতে স্ট্রবেরি চাষ

স্ট্রবেরি একটি গুলা জাতীয় উদ্ভিদ। হালকা শীত প্রধান দেশে স্ট্রবেরি স্বল্প মেয়াদী ফল হিসেবে চাষ হয়। আকর্ষণীয় বর্ণ, গন্ধ ও পুষ্টিমানের জন্য স্ট্রবেরি অত্যন্ত সমাদৃত। ইহাতে প্রচুর পরিমাণ ভিটামিন সি, ছাড়াও অন্যান্য ভিটামিন ও খনিজ পদার্থ বিদ্যমান আছে। ফল হিসাবে খাওয়া ছাড়াও বিভিন্ন খাদ্যের সৌন্দর্য ও সুগন্ধ বৃদ্ধিতে ইহা ব্যাপক ভাবে ব্যবহৃত হয়। বাংলাদেশ কৃষি গবেষণা ইনস্টটিউটের উদ্যানতত্ত্ব গবেষণা কেন্দ্রের ফল বিজ্ঞানীরা বারি স্ট্রবেরি-১ নামক জাত উদ্ভাবন করেছে। স্ট্রবেরি গাছ খুব ছোট হওয়ায় টব, বাড়ির ছাদ বা বারান্দায় চাষ করা যায়।

অনুকুল পরিবেশ

স্ট্রবেরি মূলত শীত প্রধান আঞ্চলের ফসল কিন্ত গ্রীষ্মকালীন জাত তাপ সহিষ্ণু। দিন ও রাতের যথাক্রমে ২০-২৬° ও ১২-১৬° সে: তাপ মাত্র গ্রীষ্মকালীন জাত সমূহের জন্য প্রয়োজন। ফুল ও ফল আসার সময় শুষ্ক আবহাওয়া আবশ্যক। বাংলাদেশে যে সমন্ত জাত আছে তা রবি মৌসুমে চাষের উপযোগী। হাইড্রোপনিক পদ্ধতিতে pH ৫.৫-৬.৫ এবং EC ১.৫-২.৫ dS/m স্ট্রবেরি চাষের জন্য উপযোগী।

চারা উৎপাদন

স্ট্রবেরি রানার এর মাধ্যমে বাংশ বিস্তার করে। পূর্বের বছরের গাছ নষ্ট না করে হালকা ছায়াযুক্ত স্থানে রাখতে হবে। গাছ থেকে উৎপন্ন রানারে শিকড় বের হলে তা প্লাষ্টিক পটে লাগাতে হবে। টিস্যু কালচারের মাধ্যমে উৎপাদিত চারাও ব্যবহার করা যেতে পারে। টিস্যু কালচারের চারা ব্যবহারে স্ট্রবেরির ফলন ক্ষমতা ধীরে হ্রাস পেতে থাকে। কাজেই টিস্যু কালচারের মাধ্যমে উৎপাদিত চারা ব্যবহার করলে জাতের বৈশিষ্ট্য অন্ন থাকে।

চারা রোপণ ও খাদ্য উপাদান প্রয়োগ

সঞ্চালন ও সঞ্চালন বিহিন পদ্ধতিতে স্ট্রবেরি উৎপাদন করা যায়। সাধারণত ট্রেতে ও বালতিতে চারা রোপণ করতে হয় চারা রোপণে পূর্বে বালতি বা ট্রেতে পানি নিতে হয়। এই পানিতে প্রতি ১০০ লিঃ পানির জন্য ১ লিঃ দ্রবণ "এ"এবং ১ লিঃ দ্রবণ "বি" যোগ করতে হবে। সারি থেকে সারি ৬০ সে.মি. এ গাছ থেকে গাছ ৪০ সে.মি. দূরত্ব রাখতে হবে। প্রাসটিক বালতির ক্ষেত্রে প্রতি বালতিতে ৮-১০ লিঃ পানিতে ১ টি করে চারা রোপণ করতে হবে। বাংলাদেশের আবহাওয়া মধ্য সেস্টেম্বর থেকে মধ্য অক্টোবর স্ট্রবেরি চারা রোপণের উপযুক্ত সময়।

EC ও pH মান निय़खन

চারা লাগানোনর সময় দ্রবণের EC এর মান ১.৫-১.৯ ds/m এবং pH ৫.৫-৬.০ মধ্যে রাখতে হবে। চারার রোপণের ১ মাস পর EC এর মান ২.০-২.৫ এর মধ্যে রাখতে হবে। pH এর মান সব সময় ৫.৫-৬.৫ এর মাঝে রাখতে হবে। EC বেশি হলে বিশুদ্ধ পানি যোগ করে EC কমাতে হবে।

চিত্র : ট্রেতে স্ট্রবেরি রোপণ

EC কমে গেলে খাদ্য উপাদান সমেত জলীয় দ্রবণ যোগ করতে হবে। pH বাড়লে এসিড সাধারন HCl বা ${
m H_3PO_4}$ যোগ করতে হয়। pH কমে গেলে ${
m NaOH}$ ও KOH যোগ করতে হবে। গাছে দৈহিক বৃদ্ধির পর্যায়ে হঠাৎ করে pH বা EC পরিবর্তন করা যাবে না।

অন্যান্য ব্যবস্থাপনা

সাধারণত গাছের রানার বের হলে ১০-১৫ দিন পর কেটে দিতে হবে। রানার না কাটলে গাছের ফুল ও ফল উৎপাদন হ্রাস পায়। গাছের কোন খাদ্য উপাদান জনিত অভাব দেখা দিলে তা খাদ্য উপাদান যোগ করে যে অভাব দূর করতে হবে। সাধারই উপরের দিকের পাতা অর্থাৎ growing leaf যদি হলুদ হয় তবে EDTA Fe যোগ করতে হবে। দ্রবণের EC এবং pH সবসময় অনুমোদিত মাত্রার মধ্যে রাখতে হবে।

ফল সংগ্ৰহ

সেপ্টম্বর মাসে রোপণ করলে ডিসেম্বর মাসের শেষে দিকে ফল সংগ্রহ শুরু হয় এবং ফেব্রুয়ারি মাস পর্যন্ত সংগ্রহ চলতে থাকে। ফল পেকে লাল রং ধারণ করলে ফল সংগ্রহ করতে হয়

ফলের সংরক্ষণ সময় খুব কম। সংগ্রহের পরপর টিসু পেপার দিয়ে মুড়িয়ে বাশের/প্লাসটিকের ঝুড়িতে এমন ভাবে রাখতে হবে যাতে ফল গাদাগাদি অবস্থায় না থাকে। সংগ্রহের পরপর বাজার জাত করতে হয়।

ফলন

প্রতিটি সুস্থ সবল গাছ থেকে ৩০-৩৫ টি ফল সংগ্রহ করা চিত্র: সংগ্রহ উপযোগী স্ট্রবেরি যায়। ফলের ওজন প্রায় ১৫-২০ গ্রাম হয়। গাছ প্রতি ফলন ৩০০-৩৫০ গ্রাম হয়ে থাকে।

আয় ও ব্যয়ের হিসাব ঃ

ব্যয়: প্রতি ৩ × ১ মিটার ট্রেতে ৩০ × ৩০ সে: মি: দূরত্বে মোট ৩৬ টি গাছ লাগানো সম্ভব যা মাঠের গাছের সংখ্যার ৩ গুন। প্রতিটি ট্রেতে রাসায়নিক দ্রবণ বাবদ খরচ হবে ৮০০

চিত্র : সংগ্রহত্তোর স্ট্রবেরি

টাকা, কর্কসিট বাবদ খরচ ৩০০ টাকা অন্যান্য ব্যয় ৬০০ টাকা সহ মোট খরচ ১৭০০ টাকা ।

আয় : প্রতি গাছ থেকে গড় ফলন ৪০০ গ্রাম। সুতরাং ৩৬ টি গাছ থেকে ফলন ১৪.৪ কেজি।

প্রতি কেজি স্ট্রবেরির মূল্য ২০০ টাকা হিসেবে ১৪.৪ কেজির মূল্য ২৮৮০ টাকা। অর্থাৎ প্রতি ৩ বর্গমিটার ট্রে হতে প্রকৃত লাভ ২৮৮০-১,৭০০ = ১,১৮০ টাকা।

হাইড্রোপনিক পদ্ধতিতে লাউ চাষ

এই পদ্ধতিতে লাউ উৎপাদনের জন্য আমরা প্লাস্টিকের বালতি, অব্যবহৃত বোতল, বাড়ীর আঙ্গিনা, বারান্দা, ছাদ অর্থাৎ যে সমস্ত জায়গায় ফসল চাষাবাদ করা যায় না এমন জায়গায় লাউ চাষাবাদ করা যাবে।

চারা উৎপাদন

চারা উৎপাদনের জন্য প্রথমে আমরা একটি মাটির সান্কিতে প্রথমে নারিকেলের ছোবড়া অথবা বালিতে ঘন করে বীজ বপন করতে হবে। বীজ অঙ্কুরিত হওয়ার ২-৩ দিন পর অঙ্কুরিত চারাকে ২.৫ - ২.৫ সেমি সাইজ স্পঞ্জ ব্লকে স্থানান্তর করতে হবে। চারা গজানোর পর যখন ২-৩ পাতা হবে তখন চারা উৎপাদন ট্রেতে প্রতি একদিন

অন্তর ২০-৩০ মিলিলিটার করে খাদ্য উপাদান দিতে হবে। চারার বয়স যখন ১৫-২০ দিন হয় তখন এটিকে স্থানান্তর করতে হয়।

প্লাস্টিকের বালতিতে চারা রোপণ

প্লাস্টিকের বালতিতে চাষাবাদের জন্য নিম্নের ধাপসমূহ অনুসরণ করলে কাঙ্ছিত সাফল্য পাওয়া যাবে।

চিত্র : স্পঞ্জ ব্লকে লাউয়ের চারা উৎপাদন

প্রথম ধাপ: ১০ লিটার সাইজের যদি ঢাকনা থাকে তবে প্রথমে ঢাকনার উপরে তাতাল বা ড্রিল দিয়ে ১ ইঞ্চি ব্যাসার্ধের ছিদ্র করে নিতে হবে। অথবা বালতির মুখের আকারে বনশোলা দিয়ে কেটে নিতে হবে। তারপর কর্কসিটের মাঝে ১ ইঞ্চি ব্যাসার্ধের একটি ও তার পাশে ১ × ২ সাইজের আর একটি ছিদ্র করে নিতে হবে।

২য় ধাপ: বালতিতে ৮ লিটার পানি নিতে হবে। তারপর প্রতি লিটার পানির জন্য ১০ মিলি হিসাবে ৮০ মিলি খাদ্য উপাদান দ্রবণ এ ও বি যোগ করতে হবে। দ্রবণ যোগ করার সময় প্রথমে দ্রবণ এ' এবং পরে দ্রবণ বি' যোগ করতে হবে এবং ভালভাবে মিশাতে হবে।

চিত্ৰ: খালি বালতি

৩য় ধাপ: স্পঞ্জ ব্রক অথবা অন্য কোন মাধ্যম থেকে সংগ্রহিত চারা বালতির মাঝের ছিদ্রের মধ্যে রোপণ করতে হবে। চারা রোপণের সময় লক্ষ্য রাখতে যেন গাছের শিক্ড জলীয় দ্রবণ স্পর্শ করে। সাধারণত ১/৩ অংশ শিকড জলীয় দ্রবণে থাকলে ভালো হয়। বাকী ১/৩ অংশ বাতাসে চিত্র: জলীয় দ্রবণ মিথিত পানি থাকতে হবে।

৪র্থ ধাপ: মাঝে মধ্যে ইসি ও পিএইচ মিটার দিয়ে ইসি ১.৫-২.০ dS/m এর pH ৬.০-৬.৫ আছে কিনা তা দেখতে হবে। প্রতিদিন উপর থেকে কিছু পানি যোগ করে পরিমিত মাত্রায় পানি বালতিতে রাখতে হবে এবং ২-১ দিন পর পর বালতির পানি একটা কাঠি দিয়ে নেড়ে দিতে হবে। ৩০ দিন পর 🖟 চিত্র: স্পঞ্জ ব্লকে উৎপন্ন চারা রোপণ ঐ দ্রবণ বালতি থেকে সরিয়ে আবার নতুন দ্রবণ দিতে হবে।

শ্মে ধাপ: গাছ বৃদ্ধির সাথে সাথে উপর থেকে একটি নাইলন রশি দিয়ে বেঁধে দিতে হবে। সাধারণত চারা রোপণের ৩০-৩৫ দিন পর ফুল ফুটলে শুরু করে এবং ৪৫-৫০ দিনের মধ্যে প্রথম ফসল সংগ্রহ করা যাবে। গাছের ফুল ধরার এ পর্যায়ে ৭ দিন অন্তর অন্তর খাদ্য উৎপাদন সহ জলীয় দবণ যোগ করতে হবে।

চিত্র: খাদ্যোপদান পরিবর্তন

৬৯ ধাপ: কুমড়া জাতীয় সবজি যত বেশি সংগ্রহ করা যায় তার ফলন তত বেশি হয়। স্ত্রী ফুল ফোঁটার বা পরাগায়ণের ১৫-২০ দিন পর পর ফল সংগ্রহ করা যেতে পারে। বালতির প্রতিটি গাছ থেকে গড়ে ৩-৪টি ফল সংগ্রহ করা সম্ভব।

চিত্ৰ: খাদ্যোপাদান সংযোজন

আয় ব্যয়ের হিসাব

জাত: বারি লাউ -৪

ফসল উৎপাদন সময়: অক্টোবর - জানুয়ারি

ব্যয়: প্রতিটি বালতিতে ১০ লিটার পানি নিতে হবে এবং গাছ বদ্ধির পর্যায়ে প্রতি ৭ দিন পর পর খাদ্য উপাদান সমেত দ্রবণ পানি দিতে হবে। প্রতি বালতি রাসায়নিক দ্রবণ বাবদ খরচ- ৫০ টাকা, বালতি ও অন্যান্য বাবদ ৮০ টাকা ব্যয় করতে হবে। মোট ব্যয় (৮০ + ৫০) = ১৩০ টাকা।

আয়: প্রতিটি গাছ থেকে গড়ে ৩-৫ টি লাউ উৎপাদন করা সম্ভব যার বাজার দর (৫০ \times ৫) = ২৫০ টাকা অর্থাৎ, প্রতিটি বালতি থেকে লাভ হবে (২৫০-১৫০) = ১০০ টাকা।

হাইড্রোপনিক পদ্ধতিতে মেলন চাষ

মেলন চাষ অনেকটা শসা চাষের মতই। এই পদ্ধতিতে চাষাবাদে প্রথমে Sponge block এ চারা তৈরি করে নিতে হয়। চারা তৈরির সময় চারা উৎপাদন

ট্রেকে ৬০ মিমি ঘনত্বের নেট দিয়ে ঢেকে দিলে ভাল হয়। সাধারণত নভেম্বর ও ডিসেম্বর মাসে চারা রোপণ করে এই পদ্ধতিতে চাষ করলে ভাল হয়। চারার বয়স ১০-১৫ দিন হলে চারাকে একটিট্রে অথবা বালতিতে ১.০- ১.৫ EC মাত্রায় অর্থাৎ প্রতি লিটার পানিতে ১০ মিলি এ ও বি দ্রবণ মিশ্রিত পানিতে রোপণ করতে হবে। গাছের বয়স বাডার সাথে সাথে উপর থেকে নাইলন রশি এবং

চিত্র: সংগ্রহ উপযোগী লাউ

গাঁছকে সাদা নেট দিয়ে ঢেকে দিতে হবে। নেটেড মেলনে ফুট ফ্রাই পোকার আক্রমণ বেশি হয় বিধায় অনেক সময় ফেরোমন ফাঁদ দিয়ে পোকার আক্রমণ দমন করা সম্ভব হয়ে উঠে না। ফলে নেটেড মেলন উৎপাদনের জন্য ট্রে এর মাপে উচু নেট দিয়ে গাছ কে ঢেকে দিতে হবে যেন কোন আবস্থায় ফুট ফ্রাই নেটের ভিতর ঢুকতে না পারে।

চারা রোপণের ২০-২৫ দিনে মধ্যে গাছে ফুল আসা শুরু হয়। প্রতিটি গাছ থেকে ২-৩ টি ফল রেখে বাকি ফল কেটে দিতে হয়। ফল বৃদ্ধির সময় উপর থেকে একটি নাইলন রশি অথবা নেট দিয়ে ফল গাছের সাথে ঝুলিয়ে রাখতে হবে। ফলের উপর পূর্ণাঙ্গ জালিকা বিন্যাস শেষ হলে বুঝা যাবে ফল পরিপক্ক হয়ে গেছে। তা ছাড়া ফলের উপরে আকশী শুকিয়ে যাওয়া এবং ফলের মিষ্টি সুগন্ধি ফল পরিপক্কতা লক্ষণ হিসেবে ধরা যায়।

চিত্র: ট্রেতে নেটেড মেলন

চিত্র : পরিপক্ক মেলন

হাইড্রোপনিক পদ্ধতিতে গাঁদা ফুলের চাষ

Hydroponic পদ্ধতিতে ফুল উৎপাদন করার জন্য কোন মাটি বা গোবর বালির প্রয়োজন নেই। আমরা সহজেই পানিতে গাছের প্রয়োজনীয় খাদ্য উপাদান পরিমিত পরিমাণ মিশ্রিত করে ফুল উৎপাদন করতে পারি। পৃথিবীর বিভিন্ন দেশে যেমন হল্যান্ড, গ্রীনল্যান্ড, জাপান, থাইল্যান্ড, সিঙ্গাপুর, মালয়েশিয়া সহ পৃথিবীর আরও আনেক দেশ এখনও এই উন্নত প্রযুক্তিতে বাণিজ্যিক ভাবে ফুল উৎপাদন করে আসছে। আমরা ইচ্ছা করলে অবসরে এই হাইড্রোপনিক পদ্ধতিতে বাসায় ছাদ, বারান্দায়, দ্রইং রুমসহ যেকোন জাগায় এই ফুল দিয়ে সৌর্ল্যয় বৃদ্ধি করতে পারি। এই পদ্ধতিতে গাঁদা, গোলাপ, চন্দ্র মল্রিকাও জারবেরা চাষ করা সম্ভব।

হাইড্রোপনিক পদ্ধতিতে যে কোন জাতের গাঁদা ফুলের চাষ করা যায়। গাঁদা সাধারণত সেপ্টেম্বর-অক্টোবর মাসে রোপণ করা হয়। সাধারণত ইনকা ১ জাতের গাঁদা এই হাইড্রোপনিক পদ্ধতিতে ভাল ফলন দেয়। এই জাতের গাঁদা হলুদ, কমলা রঙ এর হয়ে থাকে। একটি গাছ ২৫-৩০ সেমি লম্বা এবং প্রতিটি গাছে ১৫-২০ টি ফুল হয়। প্রতিটি ফুল প্রায় ১০ সেমি আকারের হয়। গাঁদা মুলত শীত কালে জন্মে তবে কিছু জাতের গাঁদা আছে যা সারা বছল চাষ করা যায়। গাঁদা ফুল আসার সময় নিমু তাপ মাত্রা আবশ্যক। গাঁদা উৎপাদনের জন্য pH ৫.৫-৬.২ এবং EC এর মান ০.৭৫-১.৫ dS/m থাকা আবশ্যক।

চারা উৎপাদন

চারা উৎপাদনের জন্য Sponge Block ব্যবহার করা হয়। ৩০ × ৩০ সে মি সাইজের এই টি Sponge কে ২.৫-২.৫ সেমি সাইজে ৬ট ৬ট করে কেটে প্রতিটি Block এর মাঝে ছিদ্র করে বীজ স্থাপন করতে হবে। বীজ অঙ্কুরিত হওয়ার পূর্ব পর্যন্ত বীজের উপরে কাগজ দিয়ে ঠেকে রাখতে হয়। চারা অঙ্কুরিত হওয়ার পর পরই ঐ কাগজ সরিয়ে ফেলতে হবে। চারার বয়স ২০-২৫ দিন হলে স্পঞ্জসহ চারা বালতি/ট্রেতে স্থানান্তর করতে হবে।

বালতিতে গাঁদা ফুলের চাষ

- প্রথমে বালতিকে ভালভাবে পরিষ্কার পানি দ্বারা ধুয়ে নিয়ে উহাতে উপর থেকে ৫ সেমি জায়গা ফাঁকা রেখে পরিমাপ করে পানি দ্বারা পূর্ণ করতে হবে।
- ♦ পানি দেয়ার পর পানির পরিমাণ অনুযায়ী প্রতি লিটার পানির জন্য ১০ মিলি বা ২ ক্যাপ পরিমাণ প্রথমে খাদ্য উপাদান A এবং পরে খাদ্য উপাদান B যোগ করতে হবে।

চিত্র: বালতিতে গাঁদা ফুলের চাষ

- খাদ্য উপাদান যোগ করার পর বালতির পানিতে উপাদানগুলি ভালভাবে মিশাতে হবে।
- কালতির উপরের মুখের পরিমাপ অনুযায়ী কর্মসিট কেটে তার মাঝে ২-৩ টি
 ফাঁকা জায়গা রাখতে হবে এবং মাঝের গর্তের মধ্যে চারা রোপণ করতে হবে।
- ♦ EC এবং pH মাত্রা সঠিকভাবে পরিমাপ করে নিতে হবে এবং ১৫-২০ দিন পর পর ১-২ লিটার জলীয় দ্রবণ বালতিতে যোগ করতে হবে।

ট্রেতে চারা রোপণ

- সাধারণত ৩ মি × ০.৯৫ মিটার সাইজের ট্রেতে ৩০০-৩৫০ লিটার পানি নিতে হবে।
- ❖ অতঃপর প্রতি ১০০ লিটার পানির জন্য ১ লিটার খাদ্য উপাদান A এবং খাদ্য উপাদান B যোগ করতে হবে।
 - ♦ EC এবং pH মিটারের সাহায্যে খাদ্য উপাদানের মাত্রা ও pH মাত্রা পরিমাপ করতে হবে।

চিত্র: ট্রেতে গাঁদা ফুলের চাষ

- ♦ সাধারণত EC ০.৭৫-১.৫ dS/m এবং pH ৫.৫-৬.২ এর মধ্যে রাখতে হবে।
- ♦ EC এর মান কমে গেলে খাদ্য উপাদান যোগ করতে হবে এবং EC এর মান বেড়ে গেলে পানি যোগ করতে হবে।
- ♦ pH এর মান বেড়ে গেলে এসিড যোগ করতে হবে এবং কমলে ক্ষার জাতীয় দ্রব্য ব্যবহার করতে হবে।

EC ও pH এর মান নিয়ন্ত্রণ

চারা লাগানোনর সময় দ্রবণের EC এর মান ০.৭৫-১.০ dS/m এবং pH ৫.৫-৬.০ মধ্যে রাখতে হবে। চারার রোপণের ১ মাস পর EC এর মান ১.০-১.৫ dS/m এর মধ্যে রাখতে হবে। pH এর মান সব সময় ৫.৫-৬.৫ এর মাঝে রাখতে হবে। EC বেশি হলে বিশুদ্ধ পানি যোগ করে EC কমাতে হবে। EC কমে গেলে খাদ্য উপাদান সমেত জলীয় দ্রবণ যোগ করতে হবে। pH বাড়লে এসিড সাধারন HCl বা H_3PO_4 যোগ করতে হয়। pH কমে গেলে NaOH ও $Ca(OH)_2$ যোগ করতে হবে। গাছে দৈহিক বৃদ্ধির পর্যায়ে হঠাৎ করে pH বা EC পরিবর্তন করা যাবে না।

ব্যবস্থাপনা (Management)

চারা লাগানের পর গাছে পর্যন্ত আলো পায় তার ব্যবস্থা করতে হবে। মাঝে মাঝে কর্কসিট তুলে দেখতে হবে জলীয় দ্রবণ কি পরিমাণ আছে। প্রয়োজন অনুযায়ী গাছে খাদ্য উপাদান সমেত দ্রবণ যোগ করতে হবে। গাছ ১০-১৫ সেমি: লম্বা হলে একটি বাঁশ/ কাঠ দিয়ে গাছকে খাড়া রাখতে হবে।

ফুল সংগ্ৰহ

নভেম্বর-ডিসেম্বর মাসে গাছে ফুল আসা শুরু করে এবং তা অনুযায়ী ফেব্রুয়ারি পর্যন্ত ফুল গাছে থাকে। ফুলের আকার ৯-১০ সেমি হয়ে থাকে এবং প্রতিটি গাছে প্রায় ১০-১৫ টি ফুল আসে।

অধাায়-৬

মাটি ছাড়া নারিকেলের আঁশের গুঁড়ায় সবজি চাষাবাদ

মাটি ছাড়াও বিভিন্ন মাধ্যম যেমন নারিকেলের আঁশের ওঁড়া, ভার্মিকুলাইট, ন্ডিপাথর, কাঠের গুঁড়া এবং চারকলেটেড রাইচ হান্ধ ইত্যাদি মাধ্যমেও চাষাবাদ করা যায়। নিমে নারিকেলের আঁশের গুঁডায়চাষাবাদের বর্ণনা করা হলো:

এই পদ্ধতিতে প্রথমে একটি পাত্র নিতে হবে। পাত্রের নীচ থেকে দেড ইঞ্চি উপরে ছিদ্র করে একটি সরু পাইপ অতিরিক্ত পানি নিষ্কাসনের জন্য লাগাতে হবে।তারপর পাত্রটিকে ভালভাবে ধুয়ে নিতে হবে।এবার অন্য একটি পাত্রে নারিকেলের আঁশের গুঁড়া ভালভাবে ধুইয়ে নিতে হবে। তারপর ঐ নারিকেলের আঁশের গুঁড়া ১ দিন রোদে শুকাতে হবে। এরপর ঐ নারিকেলের আঁশের গুঁড়া টবে নিতে হবে। এরপর টবে চারা রোপণ করতে হবে। চারা রোপণের পর ৩-৫ দিন পর্যন্ত গাছের গোডায় পানি দিতে হবে. এরপর থেকে প্রতি সপ্তাহে একবার প্রতিটি গাছে ৫০০-৬০০ মিলি খাদ্য উপাদান সমেত জলীয় দ্রবণ যোগ করতে হবে। সবজির চাষে চারা রোপণের ৩০-৩৫ দিন পর ফল আসা শুরু করে। প্রতিটি টব থেকে ২.৫-৩.০ কেজি টমেটো এবং ১.০-১.২ কেজি ক্যাপসিকাম বিভিন্ন সবজি সংগ্রহ করা সম্ভব।

চিত্র : নারিকেলের আঁশের গুঁড়ায় চিত্র: নারিকেলের আঁশের গুঁড়ায় টমেটো ও ক্যাপসিকাম চাষ

বিভিন্ন সবজি চাষ

চিত্র: নারিকেলের আঁশের গুঁড়ায় পুদিনা চাষ

নারিকেলের আঁশের গুঁড়ায় মরিচ চাষ

এই পদ্ধতিতে প্রথমে একটি পাত্র নিতে হবে। পাত্রের নিচ থেকে দেড় ইঞ্চি উপরে ছিদ্র করে একটি সরু পাইপ অতিরিক্ত পানি নিষ্কাসনের জন্য লাগাতে হবে। তারপর পাত্রটিকে ভালভাবে ধুয়ে নিতে হবে। এবার অন্য একটি পাত্রে নারিকেলের আঁশের গুঁড়া ভালভাবে ধুইয়ে নিতে হবে। তারপর ঐ নারিকেলের আঁশের গুঁড়া ১ দিন রোদে শুকাতে হবে। এরপর ঐ নারিকেলের আঁশের

চিত্র: নারিকেলের আঁশের গুঁড়ায় মরিচ চাষ

छँ । उत्तर्भ वित्र वित्र

৩-৫ দিন পর্যন্ত গাছের গোড়ায় পানি দিতে হবে এরপর থেকে প্রতি সপ্তাহে একবার প্রতিটি গাছে ৫০০-৬০০ মিলি খাদ্য উপাদান সমেত জলীয় দবণ যোগ করতে হবে। মরিচ চামে চারা রোপণের ৩০-৩৫ দিন পর ফুল আসা শুরু করে। প্রতিটি টব থেকে ১ o-১ c কেজি মবিচ সংগ্রহ করা সম্ভব।

নারিকেলের আঁশের গুঁডায় মিষ্টিআলু চাষ

উৎপাদন পদ্ধতি

এই পদ্ধতিতে প্রথমে নারিকেলের আঁশের গুঁড়া পানি দারা ধুয়ে নিতে হবে। তারপর একটা পাত্র সাধারণত ১ × ১ মিটার আকারের ট্রেতে ১০-১৫ সে.মি. পুরু করে নারিকেলের আঁশের গুঁড়া নিতে হবে। এরপর ২০-২৫ সে.মি. মিষ্টি আলুর কাটিং ৩০ × ৩০ সে.মি. দূরতে রোপণ চিত্র :ট্রতে মিষ্টি আলুর চাষ

করতে হবে। সাধারণত নভেম্বর মাস মিষ্টি আলু রোপণের উপযুক্ত সময়।

রোপণের ৩-৫ দিন পর্যন্ত প্রতি গাছের গোড়ায় ১০০ মিলি পানি দিতে হবে। এরপর প্রতি দই দিন অন্তর এ ও বি খাদ্য উপাদান সমেত দ্রবণ দিতে হবে। কাটিং

এর বয়স বাডার সাথে প্রতিদিন কমপক্ষে একবার বিশুদ্ধ পানি যোগ করতে হবে। গাছের বদ্ধির পর্যায়ে মিষ্টি আলুর ডগা এবং পাতা সবজি হিসাবে ব্যবহার করা যাবে। সাধারণত রোপণের ১০০-১২০ দিন পর মিষ্টি আলু সংগ্রহ করা যাবে। প্রতি গাছ থেকে গড়ে ১.৫-২.০ কেজি মিষ্টি আলু সংগ্রহ করা সম্ভব।

চিত্র : মিষ্টি আলু সংগ্রহ

নারিকেলের আঁশের গুঁডায় লেবু চাষ

এই পদ্ধতিতে প্রথমে একটি পাত্র নিতে হবে। পাত্রের নীচ থেকে দেড ইঞ্চি উপরে ছিদ্র করে একটি সরু পাইপ অতিরিক্ত পানি নিষ্কাসনের জন্য লাগাতে হবে। তারপর পাত্রটিকে ভালভাবে ধুয়ে নিতে হবে। এবার অন্য একটি পাত্রে নারিকেলের আঁশের গুঁড়া ভালভাবে ধইয়ে নিতে হবে। তারপর ঐ নারিকেলের আঁশের গুঁড়া ১ দিন রোদে শুকাতে হবে। এরপর ঐ ^{চিত্র: নারিকেলের আঁশের গুঁড়ায় লেবু চাষ}

নারিকেলের আঁশের গুঁড়া টবে নিতে হবে। এরপর টবে কার্টিং রোপণ করতে হবে। কার্টিং রোপণের পর ৩-৫ দিন পর্যন্ত গাছের গোড়ায় পানি দিতে হবে, এরপর থেকে প্রতি সপ্তাহে একবার প্রতিটি গাছে ৫০০-৬০০ মিলি খাদ্য উপাদান সমেত জলীয় দ্রবণ যোগ করতে হবে। ফলের চাষে কার্টিং এর চারা রোপণের ২-৩ মাস পর ফুল আসা শুরু করে। প্রতিটি টব থেকে প্রতি মৌসুমে ৫০-৬০টি লেবু সংগ্রহ করা সম্ভব।

অধ্যায়-৭

ভার্টিকেল হাইড্রোপনিক পদ্ধতিতে চাষাবাদ

এক বা একাধিক আনুভূমিক স্তর উলম্বভাবে (Vertically) স্থাপন করে সল্প জায়গায় একাধিক ফসল উৎপাদনের কৌশল কেই ভার্টিকেল হাইড্রোপনিক পদ্ধতি বলে। এই পদ্ধতিতে বাসা বাড়ির ছাদে এবং পতিত জায়গায় অনায়াসে সারা বছর ব্যাপি বিভিন্ন লাভজনক সবজি ফসলের চায়াবাদ করা সম্পর।

চিত্র : ভার্টিকেল হাইড্রোপনিক পদ্ধতিতে বিভিন্ন সবজির চাষ

ভার্টিকেল হাইড্রোপনিক এর সুবিধা কি ?

- একই জায়গায় অধিক সংখ্যক গাছ রোপণ করা যায়। অর্থাৎ প্রতি একক পরিমাণ স্থানে ৩-৮ গুন বেশি গাছ লাগানো যাবে।
- ❖ ফসল উৎপাদনে পানির পরিমাণ খুবই কম লাগে।
- ❖ সারা বছর চাষাবাদ করা যাবে।
- ❖ অতিরিক্ত বৃষ্টি ও খরায় চাষাবাদ করা যাবে।
- ❖ অমৌসুমে চাষ করে অধিক বাজার মূল্য পাওয়া যাবে।
- ❖ উৎপাদন খরচ কম।
- অন্য যে কোন হাইড্রোপনিক পদ্ধতির চেয়ে কম খরচে অধিক ফসল উৎপাদন করা সম্ভব।
- ❖ একবার স্থাপনা তৈরি করে ৫-৭ বছর ব্যবহার করা যায়।
- ❖ সাধারণতঃ স্ট্রবেরি, টমেটো, শসা, লেটুস, মরিচ, ক্যাপসিকামসহ প্রভৃতি ফসল চাষ করা যায়।

চাষাবাদ পদ্ধতি

এই পদ্ধতিতে প্রথমে ৬ ফুট লম্বা (৫ ইঞ্চি ব্যাস) ৬ টি পিভিসি পাইপ নিতে হবে। প্রতিটি পাইপেরে খোলা দুই প্রান্ত কর্কসিট গোল করে কেটে বন্ধ করে দিতে হবে। প্রতিটি পাইপে ১.৫ ইঞ্চি ব্যাসের ৬ টি ও ০.৫ ইঞ্চি ব্যসের ৪ টি করে মোট ১০ টি ছিদ্র করতে হবে। প্রতিটি বড় গর্তে (১.৫ ইঞ্চি ব্যাস) একটি করে উচ্চ বাজার মূল্যের সবজি

চিত্ৰ: ভার্টিকেল হাইড্রোপনিক পদ্ধতিতে চাষাবাদ

যেমন: ক্যাপসিকাম, লেটুস, স্ট্রবেরি, গ্রীষ্মকালীন টমেটো, কাচাঁমরিচ এবং বেগুন চাষ করা সম্ভব এবং প্রতিটি পাইপে ১০ লিটার করে খাদ্য উপাদান মিশ্রিত জলীয় দ্রবণ নিতে হবে। প্রতি ১৫দিন পরপর ২-৩ লিটার জলীয় দ্রবণ যোগ করতে হবে। ফসল লাগানোর ৩০-৩৫ দিন পর ফুল আসা শুরু করে এবং ফসলভেদে ৪০-৫০ দিনে পর ফসল সংগ্রহ করা হয়। তবে লেটুস ২০-২৫ দিন পর থেকে সংগ্রহ শুরু করে ৪০-৪৫ দিন পর্যন্ত লেটুস সংগ্রহ করা যায়।

ভার্টিকেল হাইড্রোপনিক এর অর্থনীতি

৬ ফুট লম্বা (৫ ইঞ্চি ব্যাস) পাইপে মাত্র মোট ২০ লিটার পানিতে ২০ টাকার রাসায়নিক দ্রবণ ব্যবহার করতে হয়। প্রতি পাইপে ৬টি শসা/স্ট্রবেরি/লেটুস গাছ উৎপাদন করা যাবে। প্রতি পাইপে ৩০ টাকা খরচ করে ১৫০ টাকার ফসল উৎপাদন করা যাবে।

উপরের দিকে এক বা একাধিক স্তরে হাইড্রোপনিক পদ্ধতিতে ফসল উৎপাদনের কৌশলকেই ভার্টিকেল হাইড্রোপনিক বলে। এ পদ্ধতিতে একই পরিমাণ জায়গা থেকে অবস্থা বিশেষে ৩-৫ বা বহু গুন অধিক ফসল উৎপাদন করা সম্ভব। এ ক্ষেত্রে সাধারণত গাছের উচ্চতা অনুসারে বিভিন্ন ফসলকে বিভিন্ন স্তরে বিন্যাস করা যেতে পারে। বাংলাদেশে এ পদ্ধতিতে ফসল উৎপাদন নিয়ে গবেষণা সবেমাত্র শুরু হয়েছে।

ভার্টিকেল হাইড্রোপনিক এর লাভ ক্ষতির হিসাব

প্লাষ্টিকের ৬ ফুট লম্বা ও ৫ ইঞ্চি ব্যাস বিশিষ্ট পাইপে মাত্র ২০ লিটার পানিতে ২০ টাকার রাসায়নিক দ্রবণ ব্যবহার করতে হয়। প্রতি পাইপে ৬টি শসা/স্ট্রবেরি/লেটুস গাছ উৎপাদন করা যাবে। প্রতি পাইপে ৩০ টাকা খরচ করে ১৫০ টাকার ফসল উৎপাদন করা যাবে।

অধ্যায়-৮

সল্প পরিসরে মাটিবিহীন চাষাবাদ মডেল

মাইকো গার্ডেন মডেল কি?

এই পদ্ধতিতে মাটির পরিবর্তে পানিতে অথবা নারিকেলের আঁশের গুঁড়ায় (Coco dust) এ ১০ ফুট × ১০ ফুট সাইজের পলিহাউজে সল্প খরচে নিত্য ব্যবহার্য বিভিন্ন পরিত্যাক্ত দ্রব্যাদি যেমন- তেলের বোতল, পানীয় বোতল ও অনান্য কন্টেইনারসহ প্লাস্টিকের টবে অনায়াসে বিভিন্ন পাতা, ফল ও মূল জাতিয় সবজি ও কিছু কিছু ফলের চাষাবাদ করা যায়।

চিত্র : মাইক্রো গার্ডেন মডেল হাউজ

এই পদ্ধতির সুবিধা

- ১। এই পদ্ধতিতে ১০০ বর্গ ফুট জায়গা থেকে সারা বছর বিভিন্ন সবজি উৎপাদন করা সম্ভব।
- ২। চাষাবাদে চাষযোগ্য জমির প্রয়োজন পড়ে না।
- ৩। নারিকেলের আঁশের গুঁড়া ও পানিতে জলীয় খাদ্য উপাদান দিয়ে ফসল উৎপাদন করা যায়।
- ৪। রোগ পোকার আক্রমণে কোন কীটনাশক ব্যবহার করা হয় না।
- ৫। সারা বছরব্যাপি ২-৩ সদস্যের পরিবারের জন্য সবজি ও ফল জাতীয় সবজি সরবরাহ করা সম্ভব।
- ৬। মাঠের চাষাবাদের চেয়ে আগাম ও ২-৩ গুন ফসল পাওয়া যায়।

যে সকল ফসল এ পদ্ধতিতে চাষাবাদ করা যায়

টমেটো, ক্যাপসিকাম, ফুলকপি, শসা, করলা, ধনিয়া, স্ট্রবেরি, লেটুস, কাঁচা মরিচ, লাউ, লালশাক, মুলা, পুদিনা মিষ্টিআলু, আলু, পিয়াজ, উৎপাদন করা যায়।

উৎপাদন খরচ

টানেল করতে প্রাথমিকভাবে খরচ ৩ হাজার টাকা। রাসায়নিক দ্রবণ ও অন্যান্য স্থাপনা বাবদ খরচ ২ হাজার টাকা। মোট খরচ হবে ৫ হাজার। প্রতি মৌসুমে ২-৩ হাজার টাকা সবজি হওয়া সম্ভব। অর্থাৎ প্রতি বছরে গড়ে ৬ হাজার টাকার সবজি পাওয়া সম্ভব। এখানে উল্লেখ্য যে, স্থাপনা বাবদ যে খরচ হবে তা দিয়ে ২-৩ বছর একই টানেলে চাষাবাদ করা সম্ভব।

চিত্র: মাইক্রো গার্ডেন মডেলে বিভিন্ন সবজি চাষ

অধ্যায়-৯

হাইড্রোপনিক পদ্ধতির লক্ষণীয় বিষয়সমূহ

হাইড্রোপনিক পদ্ধতির সাফল্য নির্ভর করে এর উপযুক্ত এবং যথাযথ ব্যবস্থাপনার উপর। সাফল্যজনকভাবে এ পদ্ধতিতে ফসল উৎপাদনের জন্য নিম্নের কতিপয় বিষয়ের উপর বিশেষভাবে নজর রাখতে হবে। বিষয় গুলি হলো-

- ♦ EC এবং pH এর মাত্রা- সাধারণত pH এর মাত্রা ৫.৮-৬.৫ এবং EC এর মাত্রা ১.৫-২.৫ dS/m এর মধ্যে রাখতে হবে। উল্লেখিত মাত্রার কম বা বেশি হলে গাছের শিকড় মারাত্বকভাবে ক্ষতিগ্রন্থ হবে।
- ♦ মনে রাখতে হবে আক্ষিকভাবে জলীয় খাদ্য দ্রবণের pH এবং EC পরিবর্তন
 করা যাবে না।
- ♦ গাছের খাদ্য উপাদানের প্রয়োজনীয়তা, স্বল্পতা কিংবা আধিক্য গাছের স্বাস্থ্য ও পাতার রং দেখে বুঝা যায়। খাদ্য উপাদানের অভাবের লক্ষণ দেখে বুঝা এবং প্রয়োজন অনুসারে তা যোগ করে অভাব দূর করতে হবে। এ জন্য প্রতিটি উপাদানের অভাব জনিত লক্ষণ সম্পর্কে সম্যক জ্ঞান থাকতে হবে।
- ♣ দ্রবণের আদর্শ তাপমাত্রা রক্ষণাবেক্ষণ করতে হবে। সাধারণতঃ দ্রবণের তাপমাত্রা 25-30°C এর মধ্যে হওয়া বাঞ্ছনীয়। যদি দ্রবণের তাপমাত্রা বেড়ে যায় তবে শ্বসনের হার (Respiratory rate) বেড়ে যায় ফলে অক্সিজেনের চাহিদাও দারুনভাবে বাড়ে যাবে। ফলে দ্রবণে অক্সিজেন এর পরিমাণ কমে যায়। সাধারণতঃ দুপুরে তাপমাত্রা বেড়ে যায় কাজেই এ সময় তাপমাত্রা কমানোর প্রয়োজনীয় ব্যবয়্থা নিতে হবে।
- ❖ জলীয় খাদ্য দ্রবণে অতিরিক্ত অক্সিজেন সরবরাহের ব্যবস্থা করতে হবে। অনেক সময় বাইরে থেকে অক্সিজেন সরবরাহের ব্যবস্থা করতে হয়। কারণ অক্সিজেন এর অভাবে গাছের শিকড় নষ্ট হয়ে যায় ফলে ফলন মারাত্মকভাবে কমে যায়।
- ♦ চাষের স্থানে পর্যাপ্ত আলোর সুব্যবস্থা করতে হবে এবং রোগমুক্ত চারা ব্যবহার করতে হবে। কোন রোগাক্রান্ত গাছ দেখা গেলে তা সাথে সাথে তুলে ফেলতে হবে।

♦ চাষকৃত ফসলে বিভিন্ন পোকা-মাকড়ের আক্রমণ দেখা দিতে পারে। এদের মধ্যে এফিড, লিফ মাইনার, খ্রিপস এবং লাল মাকড় অন্যতম। প্রতি দিনের তদারকির মাধ্যমে এদের দমনের ব্যবস্থা নিতে হবে।

হাইড্রোপনিক পদ্ধতির সীমাবদ্ধতা

- থেহেতু হাইড্রোপনিক একটি আধুনিক চাষ পদ্ধতি তাই দ্রবণ প্রস্তুতি, দ্রবণের অদ্রুত্ব, ক্ষারত্ব, ইসি ও পিএইচ মান বিভিন্ন খাদ্যোপাদানের অভাব জনিত লক্ষণসমূহ সনাক্তকরণ ও প্রয়োজনীয় ব্যবস্থা গ্রহণের দক্ষতা প্রয়োজন।
- এ পদ্ধতির চাষে কখনও কখনও পলিটানেল, নেটহাউস বা গ্লাসহাউজের প্রয়োজন হতে পারে এবং সে কারণে প্রাথমিক খরচ কিছুটা বেশি হয়ে থাকে।
- সব ধরনের ফসল বিশেষ করে গাছ ফসল (Tree plant) এ পদ্ধতিতে চাষ করা যায় না এবং
- 💠 এ পদ্ধতির ফসল চাষে কারিগরি জ্ঞান, দক্ষতা ও অভিজ্ঞতার বিশেষ প্রয়োজন।

খাদ্যৎপাদানের অভাব লক্ষণ নির্দেশিকা

সারণী - খাদ্যৎপাদানের অভাব লক্ষণ প্রকাশের চিত্র যদি এমন হয়-

লক্ষণ সমূহ	N	P	K	Ca	S	Mg	Fe	Mn	В	MB	Zn	Cu	Over Fert.
উপরের পাতা হলুদ				E	•		•	X					
মধ্যের পাতা হলুদ	X				7	X	$\mathcal{I}_{\mathcal{I}}$	$\langle \rangle$		•		/(
নিচের পাতা হলুদ	•	•	•		7	•				7			
কাণ্ড লাল হওয়া	•	•	•	4	$\leq $	•		X		/()		Y	
মেক্রোসিস	V		•	71	-//	•	7	•	•			•	
দাগ হওয়া			$\langle \langle \langle \rangle \rangle$) >-		7	=	•		37			
সরু শাখা গজানো	X	abla			7/	$X \setminus I$			•	/X\			
গাছের উপরের পাতা সাদা	V		7	TE	X	•	7	X		•		1	
গাছের বৃদ্ধি কমে যাওয়া	X	•	7	•	7	X	3	V		*			
পাতায় অগ্রভাগ হলুদ	V		7)	77		$\frac{1}{2}$	7	X		W		X	•
প্যাচানো বা আঁকাবাঁকা পাতার বৃদ্ধি	X	7	7/		7)	X			•	X	7	V	

উপসংহার

প্রতি বছর বাংলাদেশের জনসংখ্যা, আবাসনের জন্য ঘর-বাড়ি, যোগাযোগের জন্য রাস্তা এবং কল-কারখানা ব্যাপক হারে বৃদ্ধি পাচছে। ফলে দিন দিন কমে যাচেছ আবাদ যোগ্য জমির পরিমাণ। বর্ধিত জনসংখ্যার অব্যাহত খাদ্য চাহিদা পূরণের লক্ষ্যে তাই শুধু আবাদি জমির উপর নির্ভর করা যাবে না। দেশের এমনি অবস্থায় প্রয়োজন অব্যবহৃত খালি জায়গা ও পতিত স্থান শস্য চাষের আওতায় আনা। হাইড্রোপনিকস চাষ পদ্ধতি এ ক্ষেত্রে সঠিকভাবে আরোপযোগ্য একটি কৌশল। এ পদ্ধতি বাড়ির ছাদে, আঙ্গিনায়, বারান্দায় কিংবা চাষের অযোগ্য পতিত জমিতে সহজেই বান্ধবায়ন করতে পারি।

উদ্যানতত্ত্ব গবেষণাকেন্দ্র, গাজীপুর

Editorial & Publication

Training & Communication Wing
Bangladesh Agricultural Research Institute
Joydebpur, Gazipur-1701, Bangladesh
Phone: 02 49270038
E-mail: editor.bjar@gmail.com

