

Blockchain como servidor de um jogo online: uma análise com proof of stake

— Trabalho de Conclusão de Curso I——

Aluno: Caio Vianna Rizzo

Orientador: Prof. Wilian Hiroshi Hisatugu

Dezembro 2018 São Mateus, ES

Indice

- Introdução
- Bitcoin
- Blockchain
- Projeto

Introdução

- Dinheiro e moeda
- Sistema bancário atual
- Bitcoin
- Todos são o banco
- Gasto duplo

Bitcoin

- Proof of work
- Timestamp server
- Transações
- Rede peer-to-peer

Bitcoin - Proof of Work

- Mineradores
- Hash
 - One way hash unidirectional
 - Alterações em dados gera alterações de hash
- Cálculo do hash
 - Nonce, hash do bloco anterior, hash das transações do bloco
 - Target Taxa de dificuldade da rede
 - SHA256
 - Através de força bruta usando poder de processamento
 - Maior poder de processamento gera maior vantagem
- Garantia de não alteração
- Quorum
 - Poder computacional

Bitcoin - Timestamp

- A rede garante a ordem
- Obriga oredenação total

Bitcoin - Transação

- Carteiras
 - Mantem controle de privatekey e publickey
- Formas de conseguir o dinheiro
 - Gênesis block
 - Transferência
 - CoinBase
 - Gorjeta
- Input e Output
- Assinatura

Bitcoin - Rede

- Peer to peer
 - Cliente e Servidor
- TCP
- Inundação
- Broadcast/Multicast
- Funcionamento Geral

Blockchain

Transparência

- Apenas o header para verificar se uma transação foi validada
- Não precisa saber quem foi o mineiro e nem onde ele está

Privacidade

Ninguém sabe quem são donos das carteiras

Escalabilidade

- Quanto mais nós, maior a rede
- Árvore de merkle
- Mensagem de Inventário na inundação antes de enviar a transação
- Para entrar na rede os nós não fazem solicitação (Bitcoin)

Blockchain

- Concorrência e Consenso
 - o Mineiros acham blocos válidos ao mesmo tempo e prevalece a da maior cadeia
- Tolerância a Falhas
 - Todos nós completos tem réplica
 - Sem ataque bizantino Quorum

Estado da arte

- Mudanças na arquitetura para outras moedas
 - Scrypt : mais rápida e com mesmo nível segurança
 - Proof of Stake : menos energia.
 - Proof of Space: menos energia e melhorar os problemas do Proof of Work
 - Ethereum : uma nova abordagem

Proof of Stake

- PeerCoin Proof of Stake
 - Diferente do Proof of Work
 - Ecologicamente correto
 - CoinAge : Dinheiro x Tempo
 - Transação especial : minerador para ele mesmo
 - Mais CoinAge gera mais facilidade

Projeto - Objetivos

- Implementação de um servidor em Blockchain
- Implementação de um jogo multiplayer online que usará o servidor
- Criação do protocolo de camada sessão específico
 - Regras de sincronização da troca de mensagens
 - Padronização das mensagens
- Prova de conceito
 - Mostrar a ordenação total dos eventos
 - Integridade dos dados armazenados

Servidor em Blockchain

- Para cada processo de jogo existirá um processo de servidor local.
- Processos de servidores Locais ficam responsáveis pela administração da Blockchain
- Conexões TCP com outros servidores formando a rede.
- Envio de comando/resultado do comando.

Jogo

- Estratégia
- Focado em administração de recursos
 - o Ilhas, Ouro, Pedra, Madeira, Comida, População e Exército
- Principais ações do jogador:
 - Explorar Ilhas
 - Atacar Jogadores
 - Criar Exército
 - Alocar trabalhadores em recursos
- Patentes

Conclusões

- Considerações finais
 - Dinheiro e Proof of stake
- Estado atual
- Próximas etapas

Referências

- S. Nakamoto, (2008) "Bitcoin: A Peer-to-Peer Electronic Cash System,", [Online]. Available: https://bitcoin.org/bitcoin.pdf.
- S. King e S. Nadal, "PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake", pp. 1-6, Agosto 2012.
- I. Bashir, Mastering Blockchain, Birmingham, UK: Packt Publishing, Março 2017
- F. Tschorsch, B. Scheuermann, "Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies", IEEE Communications Surveys & Tutorials Journal, vol.18, no. 3, pp. 2084-2123, Agosto 2016.

Obrigado!

Histórico

- Anos 90 com cypherpunk
 - Moedas Digitais
- David Chaum com Digicash

Crise financeira e Bitcoin

Bitcoin

- Todos são o banco
 - Usuários comuns
 - Usuários completos Mineradores
- Ledger distribuido
- Double spending
- Nascimento da Blockchain

- O que armazenar
- Segurança baseada em confiança
- Analisar dados muito discrepantes

Block Header Block Block Header Index Timestamp Table Table Hash Hash Prev Hash Validator ID Block Block Header Block Header Index Timestamp

Estrutura dos Blocos

Exemplos de funcionamento

Requerimento e Envido de blocos

Protocolo

- Construído sobre o TCP
- Funcionamento de stop-and-wait
- Responsável pelas comunicações
 - Jogo Servidor Local
 - Servidor Local Demais Servidores da Blockchain
- Funções
 - Comunicar eventos de jogador
 - Requisição de blocos da Blockchain
 - Espalhamento de blocos validados