Primeira Prova

- 1. Sejam $A = \{\lambda, 0\}, B = \{0, 11\} \in C = \{00, 1\}.$
 - (a) Calcule AAB.
 - (b) Quantas palavras há na linguagem A^k , sendo $k \in \mathbb{N}$?
 - (c) Dê, em português, uma condição necessária e suficiente para que uma palavra pertença a $\{00\}^* \cap B^*$.
 - (d) Descreva $B^* \cap C^*$.
- 2. Obtenha gramáticas para as linguagens:
 - (a) $\{0\}^*\{1\}^+$;
 - (b) $\{xyx^R \mid x \in \{a, b\}^* \text{ e } y \in \{c\}^*\}.$
- 3. Construa AFDs que reconheçam as linguagens a seguir. Apresente apenas os diagramas de estados.
 - (a) $\{0, 11\}^*$.
 - (b) $\{w \in \{0,1\}^* \mid \text{ o último símbolo de } w \text{ é idêntico ao primeiro}\}.$
- 4. Sejam $B = \{0, 11\} \in C = \{00, 1\}.$
 - (a) Construa um AFD que reconheça $\overline{C^*}$. Dica: faça antes um AFD para C^* .
 - (b) Construa um AFD que reconheça B^*-C^* . Dica: utilize produto de autômatos.
- 5. Sobre AFNs:
 - (a) Construa o diagrama de estados de um AFN que reconheça:

 $\{w \in \{\mathtt{a},\mathtt{b},\mathtt{c}\}^* \,|\, w \text{ contém apenas um } \mathtt{a} \text{ ou apenas um } \mathtt{b} \text{ ou apenas um } \mathtt{c}\}.$

(b) Usando o método visto no curso, construa um AFD equivalente ao AFN:

6. Construa um AFN equivalente ao AFN λ a seguir usando o método visto em aula.

Abreviaturas:

AFD: autômato finito determinístico.

AFN: autômato finito não determinístico.

AFN λ : autômato finito não determinístico com transições λ .