Zeta functions of the joint algebras over finite fields

Tung T. Nguyen

May 27-29, 2022 2022 Zassenhaus Groups and Friends Conference

Muller's Lab, Western University.

Circulant matrices and group rings

Let R be a ring with unity and G a finite group of size n.

Definition

An $n \times n$ G-circulant matrix over R is an $n \times n$ matrix of the form

$$A=(a_{\tau^{-1}\sigma})_{\tau,\sigma\in G},$$

where $a_g \in R$ for all $g \in G$.

Circulant matrices and group rings

Let R be a ring with unity and G a finite group of size n.

Definition

An $n \times n$ G-circulant matrix over R is an $n \times n$ matrix of the form

$$A=(a_{\tau^{-1}\sigma})_{\tau,\sigma\in G},$$

where $a_g \in R$ for all $g \in G$.

We see that A is uniquely determined by the vector $[a_g]_{g \in G}$. For convenience, we can write

$$A=\mathrm{circ}([a_g]_{g\in G}).$$

We will denote by $J_G(R)$ the set of all G-circulant matrices over R.

We can check that $J_G(R)$ is a subring of $M_n(R)$.

We can check that $J_G(R)$ is a subring of $M_n(R)$. Let us also recall

$$R[G] = \{ \sum_{g \in G} a_g g \},\,$$

the group ring of G over R.

We can check that $J_G(R)$ is a subring of $M_n(R)$. Let us also recall

$$R[G] = \{ \sum_{g \in G} a_g g \},\,$$

the group ring of G over R. We have the following

Proposition (Hurley)

The map

$$R[G]
ightarrow J_G(R),$$
 $\sum_{g \in G} a_g g \mapsto \mathit{circ}([a_g]_{g \in G}),$

is a ring isomorphism.

1. Circulant matrices were introduced by Dedekind in his study of normal bases for Galois extensions.

- 1. Circulant matrices were introduced by Dedekind in his study of normal bases for Galois extensions.
- 2. In 1886, Frobenius gave a complete factorization of the determinant of $A \in J_G$ into irreducible factors and this was the start of the theory of linear representations and characters of finite groups.

- 1. Circulant matrices were introduced by Dedekind in his study of normal bases for Galois extensions.
- 2. In 1886, Frobenius gave a complete factorization of the determinant of $A \in J_G$ into irreducible factors and this was the start of the theory of linear representations and characters of finite groups.
- 3. Due to (2), many problems involving circulant matrices can have closed-form or analytical solutions.

A motivation from network theory

Let G, H be two graphs. The joint graph G + H of G and H has the following pictorial definition

Figure 1: The join of two graphs G and H.

A motivation from network theory

If we denote the adjacency matrix of G, H by A_G, A_H then the adjacency matrix of G + H is

$$A = \begin{pmatrix} A_G & J \\ J & A_H \end{pmatrix},$$

where J is the matrix with all entries equal to 1.

A motivation from network theory

If we denote the adjacency matrix of G, H by A_G, A_H then the adjacency matrix of G + H is

$$A = \begin{pmatrix} A_G & J \\ J & A_H \end{pmatrix},$$

where J is the matrix with all entries equal to 1. This is an example of a multilayer network with two layers.

The joint group ring $J_{G_1,G_2,...,G_d}(R)$

Definition

Let G_1, G_2, \ldots, G_d be groups of size k_1, k_2, \ldots, k_d respectively. A join of circulant matrices R is a matrix of the form

$$A = \begin{pmatrix} A_1 & a_{1,2}J & \cdots & a_{1,d}J \\ \hline a_{2,1}J & A_2 & \cdots & a_{2,d}J \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline a_{d,1}J & a_{d,2}J & \cdots & A_d \end{pmatrix},$$

where A_i is a G_i -circulant matrix and J denotes the matrix with all entries equal to 1.

The joint group ring $J_{G_1,G_2,...,G_d}(R)$

We have the following observation.

Proposition

 $J_{G_1,G_2,...,G_d}(R)$ is a subring of $M_n(R)$ where $n = \sum_{i=1}^d |G_i|$. Furthermore, there is an augmentation map $J_{G_1,G_2,...,G_d}(R) \to M_d(R)$ defined by

$$\varepsilon(A) = \begin{bmatrix} \epsilon(A_1) & k_2 a_{12} & \cdots & k_d a_{1d} \\ k_1 a_{21} & \epsilon(A_2) & \cdots & k_d a_{2d} \\ \vdots & \vdots & & \vdots \\ k_1 a_{n1} & k_2 a_{n2} & \cdots & \epsilon(A_d) \end{bmatrix}.$$

Here ϵ is the classical augmentation map on $R[G_i]$.

Let \mathbb{F}_q be the finite field with $q=p^r$ elements and R an finite dimensional \mathbb{F}_q -algebra.

Definition (Following Fukaya, Kato, and Kurokawa)

The zeta function of R is defined as

$$\zeta_R(s) = \prod_{m \in R} (1 - \#(R/m)^{-s})^{-1}.$$

where m runs over all left maximal ideal of R.

Let \mathbb{F}_q be the finite field with $q=p^r$ elements and R an finite dimensional \mathbb{F}_q -algebra.

Definition (Following Fukaya, Kato, and Kurokawa)

The zeta function of R is defined as

$$\zeta_R(s) = \prod_{m \in R} (1 - \#(R/m)^{-s})^{-1}.$$

where m runs over all left maximal ideal of R.

This zeta function has an equivalent Euler product presentation

$$\zeta_R(s) = \prod_M (1 - q^{-\dim_{\mathbb{F}_q}(M)s})^{-1}$$

where M runs over the set of all simple left modules over R.

Like most other zeta functions in the universe, the zeta function $\zeta_R(s)$ is a "counting" zeta function.

Proposition

Like most other zeta functions in the universe, the zeta function $\zeta_R(s)$ is a "counting" zeta function.

Proposition

Suppose that R is a semi-simple \mathbb{F}_q -algebra. Then

$$\zeta_R(s) = \sum_{n=0}^{\infty} \frac{c_n}{q^{ns}} = \sum_{n=0}^{\infty} c_n u^n,$$

where c_n is the number non-isomorphic R-modules of dimension n and $u = q^{-s}$.

Note that for an \mathbb{F}_q -algebra, we always have

$$\zeta_R(s) = \zeta_{R^{ss}}(s),$$

where $R^{ss} = R/Rad(R)$ is the semisimplication of R.

Some examples

1. Let $R=M_n(\mathbb{F}_q).$ By the Morita equivalence, we have $\zeta_R(s)=\zeta_{\mathbb{F}_q}(s)=(1-q^{-s})^{-1}.$

Some examples

1. Let $R = M_n(\mathbb{F}_q)$. By the Morita equivalence, we have

$$\zeta_R(s) = \zeta_{\mathbb{F}_q}(s) = (1 - q^{-s})^{-1}.$$

2. Suppose G is a p-group $R = \mathbb{F}_q[G]$. Then R is a local ring with

$$\mathsf{Rad}(R) = \mathsf{ker}(\epsilon : R \to \mathbb{F}_q).$$

In particular, $R^{ss} = \mathbb{F}_q$ and $\zeta_R(s) = (1 - q^{-s})^{-1}$.

Some examples

1. Let $R = M_n(\mathbb{F}_q)$. By the Morita equivalence, we have

$$\zeta_R(s) = \zeta_{\mathbb{F}_q}(s) = (1 - q^{-s})^{-1}.$$

2. Suppose G is a p-group $R = \mathbb{F}_q[G]$. Then R is a local ring with

$$\mathsf{Rad}(R) = \mathsf{ker}(\epsilon : R \to \mathbb{F}_q).$$

In particular, $R^{ss} = \mathbb{F}_q$ and $\zeta_R(s) = (1 - q^{-s})^{-1}$.

3. If $p \nmid |G|$ and G is split over \mathbb{F}_q , then by the Artin-Wedderburn theorem

$$R = \mathbb{F}_q[G] \cong \prod_{i=1}^d M_{n_i}(\mathbb{F}_q).$$

Therefore

$$\zeta_R(s) = (1 - q^{-s})^{-d}.$$

Zeta function of the joint algebra $J_{G_1,G_2,...,G_d}(\mathbb{F}_q)$

Up to ordering, there exists a (unique) positive integer r such that

- $p \nmid |G_i|, 1 \le i \le r$.
- $p||G_i|, r < i \le d$.

Theorem

The zeta function of of the joint algebra $J_{G_1,G_2,...,G_d}(\mathbb{F}_q)$ is given by

$$\zeta_{J_{G_1,G_2,...,G_d}(\mathbb{F}_q)}(s) = (1-q^{-s})^{r-1} \prod_{i=1}^d \zeta_{\mathbb{F}_q[G_i]}(s).$$

Assume that $|G_i|$ are all invertible in \mathbb{F}_q .

Assume that $|G_i|$ are all invertible in \mathbb{F}_q . Let

$$e_{G_i} = \frac{1}{|G_i|} \sum_{g \in G_i} g.$$

Then e_{G_i} is a central idempotent element in $\mathbb{F}_q[G]$.

Assume that $|G_i|$ are all invertible in \mathbb{F}_q . Let

$$e_{G_i} = \frac{1}{|G_i|} \sum_{g \in G_i} g.$$

Then e_{G_i} is a central idempotent element in $\mathbb{F}_q[G]$. Therefore, we have the following decomposition

$$\mathbb{F}_q[G_i]\cong \mathbb{F}_q[G_i]e_{G_i} imes \mathbb{F}_q(1-e_{G_i})\cong \mathbb{F}_q imes \Delta_{G_i}(\mathbb{F}_q),$$
 where $\Delta_{G_i}(\mathbb{F}_q)=\ker(\mathbb{F}_q[G_i] o \mathbb{F}_q).$

Assume that $|G_i|$ are all invertible in \mathbb{F}_q . Let

$$e_{G_i} = \frac{1}{|G_i|} \sum_{g \in G_i} g.$$

Then e_{G_i} is a central idempotent element in $\mathbb{F}_q[G]$. Therefore, we have the following decomposition

$$\mathbb{F}_q[G_i] \cong \mathbb{F}_q[G_i]e_{G_i} \times \mathbb{F}_q(1-e_{G_i}) \cong \mathbb{F}_q \times \Delta_{G_i}(\mathbb{F}_q),$$

where
$$\Delta_{G_i}(\mathbb{F}_q) = \ker(\mathbb{F}_q[G_i] o \mathbb{F}_q).$$

Using these idempotents and the generalized augmentation map, we can show that

$$J_{G_1,G_2,...,G_d}(\mathbb{F}_q) \cong M_d(\mathbb{F}_q) imes \prod_{i=1}^d \Delta_{G_i}(\mathbb{F}_q).$$

Assume that $|G_i|$ are all invertible in \mathbb{F}_q . Let

$$e_{G_i} = \frac{1}{|G_i|} \sum_{g \in G_i} g.$$

Then e_{G_i} is a central idempotent element in $\mathbb{F}_q[G]$. Therefore, we have the following decomposition

$$\mathbb{F}_q[G_i] \cong \mathbb{F}_q[G_i] e_{G_i} \times \mathbb{F}_q(1 - e_{G_i}) \cong \mathbb{F}_q \times \Delta_{G_i}(\mathbb{F}_q),$$

where $\Delta_{G_i}(\mathbb{F}_q) = \ker(\mathbb{F}_q[G_i] o \mathbb{F}_q).$

Using these idempotents and the generalized augmentation map, we can show that

$$J_{G_1,G_2,...,G_d}(\mathbb{F}_q) \cong M_d(\mathbb{F}_q) \times \prod_{i=1}^d \Delta_{G_i}(\mathbb{F}_q).$$

The formula for the zeta function of $J_{G_1,G_2,...,G_d}(\mathbb{F}_q)$ follows easily from this isomorphism.

Sketch of the proof in the general case

In general, we can show that

$$J_{G_1,G_2,...,G_d}(\mathbb{F}_q)^{\mathsf{ss}} \cong J_{G_1,...,G_r}(\mathbb{F}_q) imes \prod_{i=r+1}^d \mathbb{F}_q[G_i]^{\mathsf{ss}}.$$

The zeta function of $J_{G_1,G_2,...,G_d}(\mathbb{F}_q)$ can be computed via this isomorphism and the calculations done in the semisimple case.

A corollary

A direct corollary of the above argument is the following.

Theorem (Generalized Maschke theorem)

The joint algebra $J_{G_1,G_2,...,G_d}(\mathbb{F}_q)$ is semisimple if and only if $|G_i|$ is invertible in \mathbb{F}_q for all $1 \leq i \leq d$.

A corollary

A direct corollary of the above argument is the following.

Theorem (Generalized Maschke theorem)

The joint algebra $J_{G_1,G_2,...,G_d}(\mathbb{F}_q)$ is semisimple if and only if $|G_i|$ is invertible in \mathbb{F}_q for all $1 \leq i \leq d$.

Note that this statement holds if we replace \mathbb{F}_q by a semisimple ring R.

Thank you

