Arquitectura de Computadores y Tecnología Electrónica

Electrónica Digital

Prácticas de simulación en ORCAD **Práctica S1**

Criterios de evaluación

Datos importantes

Criterios de evaluación

- No se aceptan faltas sin justificar
- Se realizarán 7 prácticas: 4 de simulación y 3 de laboratorio
- Para lá práctica L1 (Práctica de laboratorio) se entregará una memoria
- Para las prácticas de simulación se justificará cada una de las prácticas de forma presencial.
- La entrega de prácticas se realizará en la semana de 13 al 17 de diciembre.
- El calendario de la impartición de las prácticas se encuentra en Moodle
- Evita usar acentos

Práctica S1

Introducción a la Metodología de Diseño y Simulación de Sistemas Digitales mediante OrCAD y PSPICE 17.2 Lite

Objetivos

ORCAD

Comprender la metodología de diseño y simulación de sistemas digitales mediante OrCAD 16.6 Lite

CAPTURE

Asimilar los conceptos básicos de la herramienta de captura de esquemáticos, CAPTURE

SIMULACIÓN

Comprender el proceso de simulación de los sistemas digitales mediante la herramienta PSPICE 16.6 Lite

ESTIMULOS

Asimilar la forma de describir los estímulos para poder realizar la simulación.

Objetivos

ESTÍMULOS

Asimilar la forma de describir los estímulos para poder realizar la simulación

UNIVERSALIDAD PUERTAS NAND

Demostrar la universalidad de las puertas NAND

TRAZAS

Mostrar el proceso para crear las trazas que visualizan el resultado de la simulación

UNIVERSALIDAD DE LAS PUERTAS NAND Y NOR

UNIVERSALIDAD PUERTAS NAND Y NOR

SON UNIVERSALES

Las puertas NAND y NOR poseen una propiedad especial: son universales. Es decir, con suficientes puertas, cualquier tipo de puerta puede imitar el funcionamiento de cualquier otro tipo de puerta.

PODER IMITAR

Por ejemplo, es posible construir un circuito que muestre la función OR utilizando tres puertas NAND interconectadas. La capacidad de un único tipo de puerta de poder imitar cualquier otro tipo de puerta es una que disfruta NAND y NOR.

INTERCONEXIÓN

Los sistemas de control digital se han diseñado alrededor de puertas NAND o NOR, todas las funciones lógicas necesarias se derivan de colecciones de NAND o NOR interconectados.

Orcad cuenta con tres interfaces

CAPTURE

ESTIMULACIÓN

SIMULACIÓN

Captura de esquemáticos

Estímulos para poder realizar la simulación

Comprender el comportamiento de las trazas.
Interpretación de la simulación

Capture

Jerarquía

OrCAD Capture CIS - Lite - [/ - (SCHEMATIC1: Practica1)] Design Edit View Tools Place SI Analysis Macro PSpice Accessories Options Window Help dence 🗕 🗗 🗴 ~ M ~ 4 ▶ Practice ~ M 4 10 11 00 SCHEMATI 平學與國際原體 表示性血管 医电影 Start Page Practica1 Practica1 · · · 1 · · · 2 · · · 3 · · · 4 · · · 5 · · · 6 · · · 7 · · · 8 · · · 9 · · · 10 · · · 11 · · · 12 · · · 13 · · · 14 · · · 15 · <u></u> [16 · · <u>|</u>17 · · · 18 · · · 19 · · · 22 · · · 23 · · · 24 · · · 25 · · · 26 · · · 27 · · · 28 · · · 29 · · · 30 · · · 31 · · · 32 · INI File Location: C:\Users\Lilita\AppData\Roaming\SPB_16.6\cdssetup\OrCAD_Capture/16.6.0/Capture.ini INFO(ORCAP-2191): Creating PSpice Netlist INFO(ORNET-1041): Writing PSpice Flat Netlist C:\Práctica1\Practica1-PSpiceFiles\SCHEMATIC1\SCHEMATIC1.net INFO(ORNET-1156): PSpice netlist generation complete

Place Part

Esquemático

Estimulación

Estímulos

Tiempo	A	B
0 ns	0	0
200 ns	0	1
400 ns	1	0
600 ns	1	1

Simulación

Tabla de verdad

Universalidad de las puertas NOR

Universalidad de las puertas NOR: Diseñar y realizar las funciones NOT, AND y OR de 2 entradas a partir solamente de puertas NOR de 2 entradas (74LS02), comprobando así la universalidad de las puertas NOR. En el mismo esquemático implementar la función XOR sólo con puertas NOR.

1. Justificación teórica:

Ley de idempotencia

OR: A+B=A+B. Aplicamos el teorema de involución y necesitamos dos puertas NOR de dos entradas.

A

B

A+B

A+B

A+B

Teorema de involución

AND: A·B=A·B=A+B. Aplicamos la ley de involución y el teorema de De Morgan a uno de los complementos. Necesitamos tres puertas NOR de dos entradas.

XOR: Vamos a demostrar que la función XOR podemos implementarla sólo con puertas NOR. Aunque ya está demostrada la universalidad de las puertas NOR con las tres funciones anteriores. Necesitaremos cinco puertas NOR de dos entradas.

$$A \oplus B = \overline{A} \cdot B + A \cdot \overline{B} = (A + B) \cdot (\overline{A} + \overline{B}) = \overline{(A + B) \cdot (\overline{A} + \overline{B})} = \overline{(A + B)} + (\overline{\overline{A} + \overline{B}})$$

 $(\overline{(A+A)+(B+B)})+(\overline{A+B})=(\overline{A+B})+(\overline{A+B})=$ $=(\overline{A+B})\cdot(\overline{A+B})=(\overline{A+B})\cdot(A+B)=$ $=\overline{A}\cdot A+\overline{A}\cdot B+\overline{B}\cdot A+\overline{B}\cdot B=\overline{A}\cdot B+A\cdot \overline{B}=A\oplus B$

Teorema de involución y De Morgan

2. Circuito en ORCAD:

Capture

Esquemático

Estímulos

Simulación:

