AUTOTUNING GPU COMPILER PARAMETERS WITH OPENTUNER

Pedro Bruel phrb@ime.usp.br

Marcos Amarís amaris@ime.usp.br

Alfredo Goldman gold@ime.usp.br September 28, 2015

Instituto de Matemática e Estatística Universidade de São Paulo

CONTRIBUTION

It is possible to optimize GPU applications for different devices by automatically tuning compilation parameters.

Configurations and Optimizations

PROPERTY OF THE PROPERTY OF TH

Search Space

AUTOTUNING: OPENTUNER

- · Autotuning framework
- Implements ensembles of search techniques
- Shares optimization results between techniques

Figure 1: Autotuning recursive sorting algorithms for an 8-core machine.

Figure 1: Ansel, Jason, et al. "Opentuner: An extensible framework for program autotuning." Proceedings of the 23rd ICPAC. ACM, 2014.

HP THE MACHINE: POSSIBLE CONTRIBUTION

Optimizing programs for The Machine will cost a lot of time. Autotuning can help the programmer by:

- Adapting existing algorithms
- Pointing the way to the best optimizations

COMPILER FLAGS

Step	Options					
NVCC	<pre>prec-sqrt, relocatable-device-code, no-align-double, use-fast-math, gpu-architecture,</pre>					
PTX	<pre>def-load-cache, opt-level, fmad, allow-expensive-optimizations, maxrregcount</pre>					
NVLINK	preserve-relocs					

Options	gpu-architecture	opt-level	def-load-cache	maxrregcount	
Values	sm_20, sm_21, sm_30, sm_32, sm_35	0 - 1	ca, cg, cv, cs	16 - 64	

GPU TESTBED

Model	c.c.	Global Memory	Bus	Bandwidth	L2	SM/Cores	Clock
GTX-680	3.0	2 GB	256-bit	192.2 GB/s	512 KB	8/1536	1006 Mhz
Tesla-K20	3.5	4 GB	320-bit	208 GB/s	1280 KB	13/2496	706 Mhz
Tesla-K40	3.5	12 GB	384-bit	276.5 GB/s	1536 KB	15/2880	745 Mhz

EXPERIMENTS

All the results' data and the code for the experiments, the autotuner and the figures is hosted at github.com/phrb/gpu-autotuning, under the GNU GPLv3 license.

EXPERIMENTS: MATRIX MULTIPLICATION

Four optimizations of square matrix multiplication (N = 1024):

- #1: Non-Coalesced accesses to Global Memory
- #2: Coalesced accesses to Global Memory
- #3: #1, plus Shared Memory
- #4: #2, plus Shared Memory

EXPERIMENTS: MAXIMUM SUBARRAY

Find the maximum subsequence sum of an array (N = 134217728):

- · 4096 threads
- · 32 blocks of 128 threads

RESULTS: OPTIMIZATION

RESULTS: OPTIMIZATION

Why did the GTX-680 have the best results?

Model	c.c.	Global Memory	Bus	Bandwidth	L2	SM/Cores	Clock
GTX-680	3.0	2 GB	256-bit	192.2 GB/s	512 KB	8/1536	1006 Mhz
Tesla-K20	3.5	4 GB	320-bit	208 GB/s	1280 KB	13/2496	706 Mhz
Tesla-K40	3.5	12 GB	384-bit	276.5 GB/s	1536 KB	15/2880	745 Mhz

RESULTS: AUTOTUNER

Results for optimization #2 in the GTX-680:

RESULTS: AUTOTUNER

Results for optimization #2 in the GTX-680:

RESULTS: FAILED CONFIGURATIONS

RESULTS: FAILED CONFIGURATIONS

Who's guilty?

• sm_32, for #1 in the K20 and K40

CONCLUSION

 \cdot 30% speedup for #1 in the GTX-680

CONCLUSION

- 30% speedup for #1 in the GTX-680
- Different parameters for each GPU

CONCLUSION

- 30% speedup for #1 in the GTX-680
- · Different parameters for each GPU
- · Always assert the results

AUTOTUNING GPU COMPILER PARAMETERS WITH OPENTUNER

Pedro Bruel phrb@ime.usp.br

Marcos Amarís amaris@ime.usp.br

Alfredo Goldman gold@ime.usp.br September 28, 2015

Instituto de Matemática e Estatística Universidade de São Paulo