Extra Problems

Online Problems

Problem 1 Compute the following:

$$(1,2,3) + (8,3,6) = \boxed{(9,5,9)}$$

$$4(1,-2,4) = \boxed{(4,-8,16)}$$
$$-12((5,2,6) - (8,2,4)) = \boxed{(36,0,24)}$$

Problem 2 Let h be a constant. Compute the following:

$$(7,2,-1) + (2h,0,h) = \boxed{(7+2h,2,h-1)}$$
$$h(1,8,2) = \boxed{(h,8h,2h)}$$

Problem 3 For each of the following, determine whether the quantity exists or does not exist.

$$(1, 8, 3, 7) + (-1, 7, 2, 7)$$

Multiple Choice:

- (a) Exists. ✓
- (b) Does not exist.

$$(2,8,3)+(1,7)$$

Multiple Choice:

Learning outcomes: Author(s):

Extra Problems

- (a) Exists.
- (b) Does not exist. ✓
- (2,7,3)+1

Multiple Choice:

- (a) Exists.
- (b) Does not exist. ✓
- (2,8,3)(1,7,3)

Multiple Choice:

- (a) Exists.
- (b) Does not exist. ✓

2(7,2,3,7,2)

Multiple Choice:

- (a) Exists. ✓
- (b) Does not exist.

Problem 4 For points $P_1 = (2, -3, 7, 1)$ and $P_2 = (-1, 7, 2, 1)$, compute the displacement vector $\vec{P_1P_2}$.

$$\vec{P_1P_2} = (-3, 10, -5, 0)$$

Problem 5 Write the vector $2\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$ in \mathbb{R}^3 in standard vector notation.

$$2\mathbf{i} - 5\mathbf{j} + 2\mathbf{k} = (2, -5, 2)$$

Problem 6 Compute the dot product.

$$(1,8,3) \cdot (-2,6,0) = \boxed{46}$$

Problem 7 Compute the projection of $\vec{v} = (1,7,3)$ onto $\vec{w} = (-3,-2,1)$.

$$proj_{\vec{w}}(\vec{v}) = \boxed{(7/2, 7/3, -7/6)}$$

Problem 8 Compute the projection of the vector $\vec{v} = (1,2,3)$ onto the vector $\vec{w} = (-3,2,-1)$.

$$proj_{\vec{w}}(\vec{v}) = \boxed{(0,0,0)}$$

Problem 8.1 Why does your answer make sense?

Multiple Choice:

- (a) The vectors are parallel.
- (b) The vectors are perpendicular. \checkmark
- (c) They are the same length.

Problem 9 Compute the dot product.

$$(1, -5, 0, 2) \cdot (2, -1, 4, 1) = \boxed{9}$$

Problem 10 Compute the dot product.

$$(1,8,3)\cdot(-3,0,1)=\boxed{0}$$

What can you conclude about the vectors?

Multiple Choice:

- (a) They're perpendicular. ✓
- (b) They aren't perpendicular.

Problem 11 Compute the dot product.

$$(1,2,3)\cdot(-3,-2,-1)=\boxed{-10}$$

What can you conclude about the vectors?

Multiple Choice:

- (a) They're perpendicular.
- (b) They aren't perpendicular. ✓

Problem 12 Compute the dot product.

$$(1,8,3,6)\cdot(3,-3,-1,4) = \boxed{-0}$$

What can you conclude about the vectors?

Multiple Choice:

- (a) They're perpendicular. ✓
- (b) They aren't perpendicular.

Problem 13 For each expression, determine whether it exists or does not exist.

$$(2,8,3)\cdot(1,8,2,4)$$

Multiple Choice:

- (a) Exists.
- (b) Does not exist. \checkmark

 $(2,8,3,1,8) \cdot (1,8,2,4,2)$

Multiple Choice:

- (a) Exists. ✓
- (b) Does not exist.

Problem 14 Compute the angle between the vectors (2,8) and (-8,2) in degrees.

$$\theta = \boxed{90}^{\circ}$$

Problem 15 Compute the angle between the vectors (2, 1, 3, 1, 1) and (-3, 1, 1, 1, -2) in degrees.

$$\theta = \boxed{104.48}^{\circ}$$

(Give your answer as a positive number to two decimal places.

Problem 16 Suppose you have vectors \vec{v} and \vec{w} such that $||\vec{v}|| = 6$ and $||\vec{w}|| = 2$, and the angle between \vec{v} and \vec{w} is $\frac{\pi}{4}$ radians. Compute the dot product of \vec{v} and \vec{w} .

$$\vec{v} \cdot \vec{w} = \boxed{6\sqrt{2}}$$

Written Problems

Problem 17 For any vector \vec{v} in \mathbb{R}^n , prove that $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$.

Problem 18 Prove that vectors \vec{v} and \vec{w} in \mathbb{R}^n are perpendicular if and only if $\operatorname{proj}_{\vec{w}}(\vec{v})$ is the zero vector.