Learning & Memory/Language & Lateralization

Tricia Ngoon 8.1.17

Sign into Section

- Sign in: http://shoutkey.com/peel
- Slides: tinyurl.com/s1cogs17
- MT3 Wednesday, Final Friday
- Office Hours Thursday, 11am CSB 233

Conditioning

Conditioning

• Classical Conditioning

• Operant Conditioning

Little Albert: Classical Conditioning in Humans

Conditioning

• Classical Conditioning

• Operant Conditioning

Long-term Potentiation

Hebbian Learning

Cells that _____ together, ____ together

Hebbian Learning

Cells that **fire** together, **wire** together

Describe Long-Term Potentiation

- LTP semi-permanent structural connectivity changes as a result of frequent activation
- This is the primary NT in learning.
- This NT has 2 receptor sites. They are:
 - o A
 - o N___

Describe Long-Term Potentiation

- LTP semi-permanent structural connectivity changes as a result of frequent activation
- This is the primary NT in learning. **Glutamate**
- This NT has 2 receptor sites. They are:
 - AMPA
 - o NMDA

LTP: Glutamate Receptors -NMDA receptors blocked by what ion?

LTP: Glutamate Receptors -What causes the eviction of Mg++ from the NMDA receptors?

LTP: The eviction of Mg++ from EPSP of AMPA receptor allows what ions to flow into cell?

LTP: The eviction of Mg++ from EPSP of AMPA receptor allows what ions to flow into cell? Ca++ and Na+

LTP: Use it or Lose it

Other structural changes from LTP

- Formation of new dendritic branches:
- Can lead to synthesis of this that prolongs NT release from post-synaptic cell to pre-synaptic cell:
- Division of pre-synaptic cell into 2 terminal buttons:
- Formation of new hippocampal cells:

Other structural changes from LTP

- Formation of new dendritic branches: dendritization
- Can lead to synthesis of this that prolongs NT release from pre-synaptic cell to post-synaptic cell: **retrograde messenger**
- Division of pre-synaptic cell into 2 terminal buttons: perforation
- Formation of new hippocampal cells: neurogenesis

3 types of memory

- Knowing how to ride a bike: **Procedural**
- Knowing how to get around campus: Spatial
- Answering questions on your midterm: Declarative

Spatial Memory

- In rats, what cells correspond to different locations they travel to?
- These cells aid in creating a cognitive map of a location
- They are located in what region of the brain?

Spatial Memory

- In rats, what cells correspond to different locations they travel to? Place cells
- These cells aid in creating a cognitive map of a location
- They are located in what region of the brain?
 Hippocampus

London taxi cab drivers have larger hippocampi

What regions associated with learning motor skills (procedural memory)?

- This region is associated with coordination of movements:
- This region is associated with planning of movement:

What regions associated with learning motor skills (procedural memory)?

- This region is associated with coordination of movements: cerebellum
- This region is associated with planning of movement: basal ganglia

Impairment of procedural memory

- Impairment of this region leads to inability to learn conditioned eye blink
- NMDA-antagonist injected into this region interferes with recall of cued-procedures
- Suppression of this region leads to no blink when air is puffed into the eye

- A. Striatum
- B. Lateral Interpositus Nucleus (LIP) of cerebellum
- C. Red Nucleus of tegmentum

Impairment of procedural memory

- Impairment of this region leads to inability to learn conditioned eye blink B
- NMDA-antagonist injected into this region interferes with recall of cued-procedures
- Suppression of this region leads to no blink when air is puffed into the eye

- A. Striatum
- B. Lateral Interpositus Nucleus (LIP) of cerebellum
- C. Red Nucleus of tegmentum

Impairment of procedural memory

- Impairment of this region leads to inability to learn conditioned eye blink B
- NMDA-antagonist injected into this region interferes with recall of cued-procedures A
- Suppression of this region leads to no blink when air is puffed into the eye

- A. Striatum
- B. Lateral Interpositus Nucleus (LIP) of cerebellum
- C. Red Nucleus of tegmentum

Impairment of procedural memory

- Impairment of this region leads to inability to learn conditioned eye blink B
- NMDA-antagonist injected into this region interferes with recall of cued-procedures A
- Suppression of this region leads to no blink when air is puffed into the eye C

- A. Striatum
- B. Lateral Interpositus Nucleus (LIP) of cerebellum
- C. Red Nucleus of tegmentum

Declarative memory: Describe match-to-sample task

- Rats trained to pick the correct stimulus which matches the original stimulus
- What happens when the hippocampus is lesioned?
- This implies what about the hippocampus?

Declarative memory: Describe match-to-sample task

- Rats trained to pick the correct stimulus which matches the original stimulus
- What happens when the hippocampus is lesioned?
 Performance is impaired
- This implies what about the hippocampus? Hippocampus is important in forming and retrieving memories

What happens in Korsakoff's Syndrome?

- Associated with damage to what region?
- This region forms connections to what other region associated with higher-order functioning?
- Can be caused by what type of drug abuse?
- Leads to what symptoms?

What happens in Korsakoff's Syndrome?

- Associated with damage to what region? Medial dorsal thalamus
- This region forms connections to what other region associated with higher-order functioning? **Prefrontal cortex**
- Can be caused by what type of drug abuse? Chronic alcoholism
- Leads to what symptoms? Anterograde amnesia, confabulation

^{**}What other famous patient had anterograde amnesia?

What happens in Korsakoff's Syndrome?

- Associated with damage to what region? Medial dorsal thalamus
- This region forms connections to what other region associated with higher-order functioning? **Prefrontal cortex**
- Can be caused by what type of drug abuse? Chronic alcoholism
- Leads to what symptoms? Anterograde amnesia, confabulation

**What other famous patient had anterograde amnesia? H.M.

H.M.: Damage to hippocampus, but procedural memory intact. Long-term memory intact.

Recap

- Law of Effect learning of behavior from learned associations and reinforcements
- Cells that "fire together, wire together" from LTP
- 3 types of memory: spatial, procedural, and declarative

Lateralization of Brain Functions

What is lateralization?

- The dominance of one side of the brain for certain functions over others
- The right hemisphere is usually dominant for what tasks?
- The left hemisphere is usually dominant for what tasks?

What is lateralization?

- The dominance of one side of the brain for certain functions over others
- The right hemisphere is usually dominant for what tasks? Visuo-spatial processes, emotional processes
- The left hemisphere is usually dominant for what tasks? **Analytical processes, fine motor control**

How are the 2 hemispheres connected?

- This region connects the 2 hemispheres.
- What purpose does this region serve?

How are the 2 hemispheres connected?

- This region connects the 2 hemispheres. **Corpus callosum**
- What purpose does this region serve? Enables communication between the 2 hemispheres

Split-Brain Studies

• What physical ailment is split-brain surgery used to treat?

Split-Brain Studies

• What physical ailment is split-brain surgery used to treat? **Epilepsy**

Why are brain functions lateralized? • Prevent competition between the hemispheres • Evolutionary purpose for multi-tasking Language

Language Centers

- Broca's Area associated with:
- Wernicke's Area associated with:

Language Centers

- Broca's Area associated with: Language production
- Wernicke's Area associated with:

Broca's Aphasia

Broca's aphasia will cause what?

Broca's Aphasia

- Broca's aphasia will cause what? Slow, halting speech; mispronunciation of words
- Anomia difficulty saying closed class terms
- Agrammatism difficulty producing grammatical forms
- Broca's area near motor cortex.

Language Centers

- Broca's Area associated with: Language production
- Wernicke's Area associated with: Language comprehension

Wernicke's aphasia

Wernicke's aphasia can cause what?

Wernicke's aphasia

- Wernicke's aphasia can cause what? Incomprehension, nonsensical speech, anomia for content terms
- Wernicke's is in higher auditory cortex.

What is conduction aphasia?

- Damage to the (gray matter/white matter) connections between Broca's and Wernicke's areas
- This bundle known as?
- What does conduction aphasia cause?

What is conduction aphasia?

- Damage to the (gray matter/white matter) connections between Broca's and Wernicke's areas
- This bundle known as? Arcuate fasiculus
- What does conduction aphasia cause? Impairment to repeating words, phonemic paraphasia, impairment to coherent conversation

Common cause of aphasia: stroke

• What is the broad specialization of the right hemisphere?			
misphere la	teralizations	5	
5		misphere? <mark>Globa</mark> l	
ie example of a gid	obai process:		
ŀ	he broad specializa s	he broad specialization of the right he	

Right hemisphere lateralizations

- What is the broad specialization of the right hemisphere? Global processes
- What's one example of a global process? Organizing narratives, musical processing, spatial reasoning, understanding a joke

What happens when right regions damaged?

- Damage to right parietal lobe leads to deficit in what ability?
- Damage to frontal lobe leads to deficit in what aspects of emotional processing?

What happens when right regions damaged?

- Damage to right parietal lobe leads to deficit in what ability? Map reading, solving spatial puzzles
- Damage to frontal lobe leads to deficit in what aspects of emotional processing? **Emotional expression/interpretation, sarcasm/irony**

The myth of left-brain/right-brain

Recap

- Brain functions are lateralized with each hemisphere specializing in certain functions (i.e. left=analytical processes, right=socio-emotional processes)
- Split-brain studies reveal the mediating role of the corpus callosum
- Language centers: Broca's area (language production), Wernicke's area (language production), many other areas in coordination
- Right hemisphere involved in global processes (i.e. narrative organization, processing music, understanding emotional expressions)