Bolzano's Theorem:

Let $h:[a,b]\to\mathbb{R}$ be continuous on [a,b], and suppose h(a) and h(b) have opposite signs. Then, there exists $c\in(a,b)$ such that h(c)=0.

Proof: (Complete the proof by filling in the blanks)

Without loss of generality, assume h(a) < 0 and h(b) > 0. So h(a) < 0 < h(b). Define three sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ as follows. First, let

$$x_1 = a$$
 , $y_1 = b$, and $z_1 = \frac{1}{2}(x_1 + y_1)$.

For n > 1,

- (i) If $h(z_n) < 0$, define $x_{n+1} = z_n$ and $y_{n+1} = y_n$,
- (ii) If $h(z_n) \ge 0$, define $x_{n+1} = x_n$ and $y_{n+1} = z_n$,
- (iii) For either situation, define $z_{n+1} = \frac{1}{2} (x_{n+1} + y_{n+1})$.

Define the interval I_n by $I_n = [x_n, y_n]$.

Since I_n forms a [______], by the Nested Interval Property, there exists c such that [_____].

However, [length(I_n) =], and thus [$x_n \to$] and [$y_n \to$].
Now, since h is continuous at c , $[\lim h(x_n) = \underline{}]$ where $[h(x_n) \underline{}]$ (insert a comparative
here, such as \geq , = or $<$). Thus, [$h(c)$ 0].
On the other hand, $[\lim h(y_n) = \underline{\qquad}]$ where $[h(y_n) \underline{\qquad}0]$. Thus, $[h(c) \underline{\qquad}0]$.
Therefore, $[h(c) 0]$.
Now, $c \in [a, b]$. But $c \neq a$ since $h(a) \neq 0$. Similarly, []
Therefore, $c \in (a, b)$.