

## planetmath.org

Math for the people, by the people.

## $C^*$ -algebra homomorphisms have closed images

Canonical name CalgebraHomomorphismsHaveClosedImages

Date of creation 2013-03-22 17:44:37 Last modified on 2013-03-22 17:44:37 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 9

Author asteroid (17536)

Entry type Theorem Classification msc 46L05

Synonym image of  $C^*$ -homomorphism is a  $C^*$ -algebra

Theorem - Let  $f: \mathcal{A} \longrightarrow \mathcal{B}$  be a \*-homomorphism between the http://planetmath.org/CAlg algebras  $\mathcal{A}$  and  $\mathcal{B}$ . Then f has http://planetmath.org/ClosedSetclosed http://planetmath.org/Functionimage, i.e.  $f(\mathcal{A})$  is closed in  $\mathcal{B}$ . Thus, the image  $f(\mathcal{A})$  is a  $C^*$ -subalgebra of  $\mathcal{B}$ .

**Proof:** The kernel of f,  $\operatorname{Ker} f$ , is a closed two-sided ideal of  $\mathcal{A}$ , since f is continuous (see http://planetmath.org/HomomorphismsOfCAlgebrasAreContinuousthis entry). Factoring threw the quotient  $C^*$ -algebra  $\mathcal{A}/\operatorname{Ker} f$  we obtain an injective \*-homomorphism  $\widetilde{f}: \mathcal{A}/\operatorname{Ker} f \longrightarrow \mathcal{B}$ .

Injective \*-homomorphisms between  $C^*$ -algebras are known to be isometric (see http://planetmath.org/InjectiveCAlgebraHomomorphismIsIsometricthis entry), hence the image  $\widetilde{f}(\mathcal{A}/\mathrm{Ker}f)$  is closed in  $\mathcal{B}$ .

Since the images  $\widetilde{f}(\mathcal{A}/\mathrm{Ker}f)$  and  $f(\mathcal{A})$  coincide we conclude that  $f(\mathcal{A})$  is closed in  $\mathcal{B}$ .  $\square$