CSC 365

Introduction to Database Systems

Three important components of a data model:

- ✓ Structure
- ✓ Integrity Constraints

Manipulation

What is an Algebra?

CAL POLY

An algebra consists of **operators** and **operands** that can be combined into **expressions**

In familiar elementary algebra:

- Operands are variables (x) and constants (42)
- Familiar operators: +, -, *, /

Relational Model - Definition Review

CAL POLY

- Tuple: List of attribute values (synonyms: row, record)
- Relation: A set of tuples, or informally, a named two-dimensional table of data
- Attribute: A named column of a relation
- Domain: Data type of an attribute, must be atomic (integer, string, date)
 - Special value (null) is a member of every domain

Relational Model - Notation & Structure

CAL POLY

Relational Algebra

CAL POLY

- Operands in Relational Algebra are relations (or expressions that yield relations)
- We will also cover a few derived operators that are not listed here: Division, additional join variations (Semijoin, Antijoin, Outer Join)

(derived operators are marked with *)

Operator Name	Symbol
Selection	σ
Projection	π
Cartesian Product	×
Union	U
Difference	_
Rename	ρ
Intersection *	Λ
Natural Join *	M
Theta Join *	Θ

Sample Relation Instances

AIRPLANE

TailNum	Make	Model	MaxSpeed
C97W	Boeing	797	null
R53Q	Cessna	FG	220
Т80Н	Airbus	A380	634
G59K	Airbus	A320	450
P88T	Piper	Arrow	180
K30W	Boeing	707	450

FLIGHT

<u>TailNum</u>	<u>PilotID</u>	CopilotID	Runway	<u>Date</u>
R53Q	K407	D342	S-2	9/1/17
Т80Н	K407	null	W-2	9/21/17
C97W	D342	null	W-2	8/9/21
Т80Н	D342	K407	W-3	9/9/17

PILOT

PilotID	Name
D342	Charlie
K407	Juliett
Н452	Piper

Sample Relation Instances

CAL POLY

BOOK

<u>ISBN</u>	Title	PubYear	Author
1234	DBMS: The Complete Book	2015	Jennifer Widom
4567	The Art of Computer Programming	1990	Donald Knuth

PATRON

PatronId	Name	SignUpDate
1	Jennifer Widom	7/7/1977
2	Donald Knuth	9/21/1955
3	Grace Hopper	8/9/1942
4	E.F. Codd	7/7/1977

BORROW

Book	PatronId	<u>DateOut</u>	DateDue	DateIn
1234	2	1/1/2009	1/15/2009	1/5/2009
1234	3	1/17/1985	2/3/1985	2/1/1985
4567	1	3/4/2005	4/4/2005	4/15/2005
4567	2	7/1/2018	7/15/2018	null

Relational Algebra - Selection - (σ)

CAL POLY

The selection operator, applied to relation R, produces a new relation with a subset of R's tuples. A condition C, involving the attributes of R, may be applied.

$$\sigma_{C}(R) = \{ t \mid t \in R \text{ and } t \text{ satisfies } C \}$$

Examples:

$$\sigma_{MaxSpeed > 500}$$
 (AIRPLANE)

AND	٨	&&
OR	V	Ш
NOT	7	!

The projection operator is used to produce from a relation R a new relation that has only some of R's columns, possibly rearranged.

$$\boldsymbol{\pi}_{A1, A2, \dots, An}(R)$$

Examples:

 $\pi_{\mathit{Make. Model. TailNum}}$ (AIRPLANE)

 $oldsymbol{\pi}_{\mathit{Name}}$ (PILOT)

"Utility" operator that does not affect tuples of relation, but changes that relation *schema* (names of attributes and/or name of the relation itself) Three variations:

$$\rho_{S(B1, B2, ..., Bn)}(R)$$
 $\rho_{S(B1, B2, ..., Bn)}(R)$

S is the new relation name, B1, B2, ..., Bn are the new attribute names.

Set of elements that are in *R* or *S* or both. (Normal set operation, applied to relations.) Relations *R* and *S* must be *union compatible*: same number of attributes and matching data types.

$$R \cup S = \{ t \mid t \in R \text{ or } t \in S \}$$

Examples:

$$\sigma_{MaxSpeed > 500}$$
 (AIRPLANE) $\sigma_{MaxSpeed < 250}$ (AIRPLANE)

$$oldsymbol{\pi}_{Name}$$
 (PILOT) $oldsymbol{\mathsf{U}}$ $oldsymbol{\pi}_{Make}$ (AIRPLANE)

Set of elements that are in R but not in S. As with union and intersect, relations R and S must have the same number of attributes and matching data types.

$$R - S = \{ t \mid t \subseteq R \text{ and } t \notin S \}$$

Example:

$$\pi_{\it Make}$$
 (AIRPLANE) $\pi_{\it Name}$ (PILOT)

Set of elements that are in both R and S. As with union, relations R and S must have the same number of attributes and matching data types.

$$R \cap S = \{ t \mid t \in R \text{ and } t \in S \}$$

Example:

$$\pi_{\it Name}$$
 (PILOT) \cap $\pi_{\it Make}$ (AIRPLANE)

Intersection is a derived relational algebra operator.

$$R \cap S = R - (R - S)$$

Relational Algebra - Cartesian Product (x)

CAL POLY

The **Cartesian Product** (or *cross-product*, or just *product*) of two relations *R* and *S* pairs the tuples of two relations in all possible ways.

$$R \times S$$

= {
$$t \mid t = (a_1, \ldots, a_n, b_1, \ldots, b_m) \land (a_1, \ldots, a_n) \in R \land (b_1, \ldots, b_m) \in S$$
}

An example (deck of playing cards):

Note that result tuples are "flattened"

SUIT x RANK

Degree: number of attributes in a relation

|Schema(R)|

Cardinality: number of tuples in a relation

| R |

 $R \times S$

Degree?

Cardinality?

Relational Algebra - Cartesian Product (\times)

CAL POLY

Consider:

EMPLOYEE(<u>EmployeeID</u>, Name, HireDate, <u>DeptID</u>)
DEPARTMENT(<u>DeptID</u>, DeptName, Location)

EMPLOYEE × DEPARTMENT

Attribute names?

Relational Algebra - Joins

CAL POLY

- Several types of join operations
 - Theta join
 - Natural join
 - Equijoin
 - Semijoin
 - Antijoin
- Selectively pair tuples from two relations.
- Joins can be expressed in terms of other basic operators we have seen (cartesian product, selection, projection)

Theta Join pairs tuples from two relations based on an arbitrary condition.

$$R \bowtie_{\theta} S$$

The result could be constructed as follows:

- 1. Take the cartesian product (x) of R and S
- 2. Select from the product only those tuples that satisfy condition θ (the condition is sometimes represented using the letter C)

Theta Join may be expressed as selection combined with cartesian product

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

Relational Algebra - Natural Join (⋈)

CAL POLY

Generally, a *join* is the product of two relations *R* and *S*, with *matching* tuples paired. *Natural Join* pairs only those tuples from *R* and *S* that agree in whatever attribute names are *common to the schemas of both R* and *S*.

 $R \bowtie S$

Examples:

FLIGHT ⋈ PILOT

PILOT ⋈ AIRPLANE

Relational Algebra

CAL POLY

Relation R

Α	В
1	2
3	4

Relation S

В	С	D
2	5	6
4	7	8
9	10	11

Relational Algebra - Example

Relation R

Α	В
1	2
3	4

Relation S

В	С	D
2	5	6
4	7	8
9	10	11

 $R \times S$ Degree? Cardinality? Result? What about column B? $R \bowtie S$?

Relational Algebra - Example

Relation U

Α	В	С
1	2	3
6	7	8
9	2	8

Relation V

В	С	D
2	3	4
2	3	5
7	8	10

 $U \bowtie V$ Degree? Cardinality? Result?

$$U\bowtie_{\Delta<\Omega}V$$

$$U \bowtie_{A < D} V$$
 $U \bowtie_{A < D \land U.B!=V.B} V$

Relational Algebra - Tuple Counts

CAL POLY

Given information about relation structure and constraints, along with a relational algebra expression, it is often useful to estimate (or determine exactly) the cardinality of the result.

We can do so using knowledge of the algebraic operators.

Relational Algebra - Tuple Counts

Given two relations R1 and R2, where R1 has cardinality N1, R2 has cardinality N2 (N2>N1>0)

RA Expression	Assumptions?	Min Cardinality	Max Cardinality
R1 U R2			
R1 ∩ R2			
R2 - R1			
R1 x R2			
R2 x R1			
σ _{A>3} (R1)			
$\pi_{A,B}(R2)$			
R1 ⋈ R2			

Relational Algebra - Summary

CAL POLY

- Five core relational algebra operators can be combined to express interesting and complex queries
 - Selection
 - Projection
 - Union
 - Difference
 - Cartesian Product
 - o (and rename, a "utility operator")
- Derived Operators
 - Intersection
 - Natural Join
 - Theta Join