3 Regular Expressions, Regular Languages

[Linz, Ch. 3]

Regular Expressions over Σ

Let Σ be a finite alphabet.

A **regular expression** over Σ (or Σ -regular expression) is a string built up from the Σ -symbols, λ and \emptyset , and the operators +, \cdot , * and (,).

 $RegExp(\Sigma)$ is the set of Σ -regular expressions.

Recursive Definition of RegExp(Σ)

[Cf. p. 1-14 for recursive definition of Σ^*]

Basis:

- $a \in \Sigma \Longrightarrow a \in RegExp(\Sigma)$
- $\lambda \in RegExp(\Sigma)$
- $\emptyset \in RegExp(\Sigma)$

Recursive Steps:

- $r_1, r_2 \in RegExp(\Sigma) \implies r_1 + r_2 \in RegExp(\Sigma)$
- $r_1, r_2 \in RegExp(\Sigma) \implies r_1 \cdot r_2 \in RegExp(\Sigma)$
- $r \in RegExp(\Sigma) \implies r^* \in RegExp(\Sigma)$
- $r \in RegExp(\Sigma) \implies (r) \in RegExp(\Sigma)$

Alternatively, use **modified BNF** to define $RegExp(\Sigma)$:

Given Σ , with elements a, \ldots ,

define $RegExp(\Sigma)$, with elements $r, r_1, r', ...$:

$$r ::= a \mid \lambda \mid \emptyset \mid (r_1 + r_2) \mid (r_1 \cdot r_2) \mid r^* \mid (r)$$

Note:

- (1) Can **drop** "·" for concatentation
- (2) Can **drop parentheses**
 - Use Rules of Precedence

*

+

A Σ -regular expression r defines a Σ -language $L(r) \subseteq \Sigma^*$.

Definition: We define $L(r) \subseteq \Sigma^*$ by structural recursion on $r \in RegExp(\Sigma)$.

(Cf. definition of $RegExp(\Sigma)$ by structural recursion on p. 3-1.)

Base cases:

$$L(a) = \{a\}$$

$$L(\lambda) = \{\lambda\}$$

$$L(\varnothing)=\varnothing$$

Recursive Steps:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

 $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2) L(r^*) = L(r)^*$
 $L((r)) = L(r)$

Note:

Alternatively, this definition is by (CV) recursion on compl(r) or |r|.

Exercises:

- (a) Given a regular expression, describe what language it defines.
- (b) Given a set $A \subseteq \Sigma$, find a regular expression, r, which defines A, i.e. s.t. L(r) = A.

Linz, section 3.1 has **many examples** of these.

Examples: [Assume $\Sigma = \{a, b\}$ unless otherwise stated.]

- (1) Find r s.t. $L(r) = \{a^m b^n \mid m, n \ge 0, m \text{ even}, n \text{ odd}\}$
- (2) Find r s.t. $L(r) = \Sigma^*$ if $\Sigma = \{a_1, ..., a_k\}$
- (3) Find r:L(r)= set of all Σ -strings with **no consec.** a's or b's.

Definition: Equivalence of Regular Expressions

$$r_1 \equiv r_2 \Longleftrightarrow L(r_1) = L(r_2)$$

Examples: Are the following pairs of regular expressions equivalent? (assume $\Sigma = \{a, b\}$)

(1)
$$r_1 + r_2 \stackrel{?}{=} r_2 + r_1$$

$$(2) \quad r_1 r_2 \stackrel{?}{\equiv} r_2 r_1$$

$$(3) \quad (r^*)^* \stackrel{?}{\equiv} r^*$$

$$(4) r_1(r_2+r_3) \stackrel{?}{=} r_1r_2+r_1r_3$$

Examples: Try some of the following:

L6, §3.1 Exs p. 78-79:

Questions: 7, 8, 9.ab, 10, 15, 16, 18, 19.ab, 20.abc, 21.b

L5, §3.1 Exs p. 75-77:

Questions: 4, 5, 6.ab, 7, 11, 13, 15, 16.ab, 17.abc, 18.b

<u>Note</u>:

(1) We saw earlier (p. 2-16) that changing the definition of **nfa's** to allow more than one state would not make a significant difference, since any **nfa** with more than one start state can be replaced by an **equivalent nfa** with one start state.

(2) Similarly, we can assume without loss of generality (w.l.o.g. for future reference) that any **nfa** that we are using does <u>not</u> have more than one final state. Why? Consider:

Assume, given an alphabet, Σ .

Definition: A Σ -language, $L \subseteq \Sigma^*$, is **regular** if it is defined by a **regular expression**, r. i.e. if

$$L = L(r)$$

<u>Note</u>:

This is **not** Linz's definition of a regular language (Def. 2.3, p. 46 in L6), but it turns out to be equivalent.