

planetmath.org

Math for the people, by the people.

restricted direct product of algebraic systems

 ${\bf Canonical\ name} \quad {\bf Restricted Direct Product Of Algebraic Systems}$

Date of creation 2013-03-22 17:05:57 Last modified on 2013-03-22 17:05:57

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 08B25

Defines restricted direct product
Defines weak direct product

Let $\{A_i \mid i \in I\}$ be a family of algebraic systems indexed by a set I. Let J be a Boolean ideal in P(I), the Boolean algebra over the power set of I. A subset B of the direct product $\prod \{A_i \mid i \in I\}$ is called a restricted direct product of A_i if

- 1. B is a subalgebra of $\prod \{A_i \mid i \in I\}$, and
- 2. given any $(a_i) \in B$, we have that $(b_i) \in B$ iff $\{i \in I \mid a_i \neq b_i\} \in J$.

If it is necessary to distinguish the different restricted direct products of A_i , we often specify the "restriction", hence we say that B is a J-restricted direct product of A_i , or that B is restricted to J.

Here are some special restricted direct products:

- If J = P(I) above, then B is the direct product $\prod A_i$, for if $(b_i) \in \prod A_i$, then clearly $\{i \in I \mid a_i \neq b_i\} \in P(I)$, where $(a_i) \in B$ (B is non-empty since it is a subalgebra). Therefore $(b_i) \in B$.
 - This justifies calling the direct product the "unrestricted direct product" by some people.
- If J is the ideal consisting of all finite subsets of I, then B is called the weak direct product of A_i .
- If J is the singleton $\{\emptyset\}$, then B is also a singleton: pick $a, b \in B$, then $\{i \mid a_i \neq b_i\} = \emptyset$, which is equivalent to saying that $(a_i) = (b_i)$.

Remark. While the direct product of A_i always exists, restricted direct products may not. For example, in the last case above, A \varnothing -restricted direct product exists only when there is an element $a \in \prod A_i$ that is fixed by all operations on it: that is, if f is an n-ary operation on $\prod A_i$, then $f(a, \ldots, a) = a$. In this case, $\{a\}$ is a \varnothing -restricted direct product of $\prod A_i$.

References

[1] G. Grätzer: Universal Algebra, 2nd Edition, Springer, New York (1978).