





# 数据驱动安全

2015 中国互联网安全大会 China Internet Security Conference

歌者之眼:

国内APT事例揭秘

奇虎360 胡星儒





# 报告提纲

概述

事例揭秘

组织分析

经验想法





## 什么是APT

### 一些关键词

**Spear Phishing** 

(鱼叉式钓鱼攻击)

**Targeted Malicious Email** 

(针对性恶意邮件)

**Advanced Targeted Attacks** 

(高级针对性攻击)

**Threat Intelligence** 

(威胁情报)

Cybersecurity

(网络空间安全)

**Advanced Persistent Threats** 

(高级持续性威胁)

**Watering Hole** 

(水坑式攻击)

**Cyber Espionage** 

(网络间谍)

**Indicators of Compromise** 

(威胁指标)

**Remote Access Trojan** 

(远程访问木马)

**Targeted Attacks** 

(针对性攻击、定向攻击)





# 什么是APT







## 一些数据统计

### 公开报告数量



注:相关数据基于第三方公开资源APTnotes, https://github.com/kbandla/APTnotes







## 一些数据统计

### 攻击方式



注:相关数据基于第三方公开资源APTnotes, https://github.com/kbandla/APTnotes





# 一些数据统计

#### 漏洞数量



注:相关数据基于第三方公开资源APTnotes, https://github.com/kbandla/APTnotes







# 报告提纲

概述

#### 事例揭秘

组织分析

经验想法





# 监控并发现的APT

|          | <u></u> |           |            |       |          |         |
|----------|---------|-----------|------------|-------|----------|---------|
| APT活动    | 境内感染量   | 首次发现时间    | 最近发现时间     | 影响省份数 | 影响行业     | 感染方式    |
| APT-C-00 | 1047    | 2012/4    | 2015/5/22  | 30    | 政府、海洋、海事 | 鱼叉邮件、水坑 |
| APT-C-01 | 235     | 2014/2/15 | 2015/4/5   | 28    | 政府       | 鱼叉邮件    |
| APT-C-04 | 17      | 2014/4/3  | 2014/6/29  | 3     | 科研、教育    | 鱼叉邮件    |
| APT-C-02 | 180     | 2014/8/1  | 2015/4/14  | 9     | 教育       | 鱼叉邮件    |
| APT-C-03 | 5       | 2014/11/3 | 2014/12/15 | 2     | 非政府组织    | 鱼叉邮件    |
| APT-C-05 | 12      | 2015/2/12 | 2015/3/24  | 3     | 政府       | 鱼叉邮件    |
| APT-C-06 | 4       | 2015/2/24 | 2015/3/7   | 3     | 科研       | 鱼叉邮件    |







# 监控到第三方披露的

| APT活动         | 境内感染量 | 首次发现时间     | 最近发现时间     | 影响省份数 | 影响行业     | 感染方式           |
|---------------|-------|------------|------------|-------|----------|----------------|
| Desert_Falcon | 3     | 2014/4/30  | 2015/3/3   | 3     | 教育       | 鱼叉邮件、水坑        |
| GDATA_TooHash | 4     | 2014/6/1   | 2014/8/31  | 3     | 科研       | 鱼叉邮件           |
| Darkhotel     | 334   | 2014/6/1   | 2015/3/19  | 29    | 教育、能源、电信 | 鱼叉邮件、网络层<br>劫持 |
| DarkSeoul     | 4     | 2014/6/5   | 2015/1/5   | 3     | 电信       | 鱼叉邮件           |
| Epic Turla    | 14    | 2014/6/12  | 2015/3/21  | 6     | 科研、教育    | 鱼叉邮件           |
| NGO_Attack    | 6     | 2014/6/18  | 2015/3/13  | 6     | 非政府组织    | 鱼叉邮件           |
| Dragonfly     | 2     | 2014/7/15  | 2014/8/19  | 1     | 能源       | 鱼叉邮件、水坑        |
| APT28         | 1     | 2014/8/7   | 2014/8/7   | 1     | 航空       | 鱼叉邮件           |
| Anunak        | 383   | 2014/9/28  | 2015/3/26  | 26    | 金融、电信、政府 |                |
| CARETO        | 1     | 2014/10/28 | 2014/10/28 | 1     | 政府       | 鱼叉邮件           |
| XSLCmd_OSX    | 1     | 2014/10/30 | 2014/10/30 | 1     | 金融       | 鱼叉邮件           |
| Waterbug      | 1     | 2014/12/31 | 2014/12/31 | 1     | 政府       | 鱼叉邮件、水坑        |
| Snake         | 1     | 2015/2/15  | 2015/2/15  | 1     | 金融 Uź    |                |
| Equation      | 1     | 2015/4/16  | 2015/4/16  | 1     | 军工       | U盘             |



2015 中国互联网安全大会 China Internet Security Conference





## 回顾5月海莲花

#### OceanLotus — 数字海洋的游猎者

9) 2015年3月至今, OceanLotus 针对更多中国政府直属机构发起攻击。



通过对 OceanLotus 组织数年活动情况的跟踪与取证,我们已经确认了大量的受害者。下图为 2014 年 2 月至今,全球每月感染 OceanLotus 特种木马的电脑数量趋势分布。



从地域分布上看, OceanLotus 特种木马的境内感染者占全球感染总量的 92.3%。而在境内感染者中, 北京地区最多, 占 22.7%, 天津次之, 为 15.5%。



#### OceanLotus — 数字海洋的游猎者

#### 第二章 OceanLotus 攻击手法

#### 一、 攻击手法概述

OceanLotus 主要使用两类攻击手法,一类是鱼叉攻击,一类是水坑攻击。

鱼叉攻击(Spear Phishing)是针对特定组织的网络欺诈行为,目的是不 通过授权访问机密数据,最常见的方法是将木马程序作为电子邮件的附件发 送给特定的攻击目标,并诱使目标打开附件。

水坑攻击(Water Holing)是指黑客通过分析攻击目标的网络活动规律, 寻找攻击目标经常访问的网站的弱点,先攻下该网站并植入攻击代码,等待 攻击目标访问该网站时实施攻击。

下图给出了 OceanLotus 使用鱼叉攻击和水坑攻击的基本方法。



从目前受害者遭到攻击的情况看, 鱼叉攻击占 58.6%, 水坑攻击占 41.4%。





2





## 抛砖引玉

### 由海莲花的攻击方式展开







# 国内APT事例揭秘 两个典型实例

#### H组织

- 2011年-2015年, 持续4年
- 针对中国等其他国家
- 涉及政府、科研等领域

#### B组织

- 2007年-2015年, 持续8年
- 只针对中国,涉及31个省级行政区
- 涉及政府、国防、科研、教育等领域





# H组织概述

## 5月阶段性分析情况

| 描述项        | 具体内容          |
|------------|---------------|
| 攻击时间       | 2014年-2015年5月 |
| 漏洞利用情况     | 无             |
| 是否利用0day漏洞 | 无             |
| 针对的国家      | 中国            |
| 关注的行业      | 政府、科研         |
| RAT种类      | 4             |
| RAT主流类型的种类 | 无             |
| C&C是否有动态域名 | 无             |





## 意外之旅

### 新组织?已知组织?

```
080 = 0;
                        sub_4100600(099, (int)&0159);
                                                                                           h0bject = 0;
                        v100 = v145;
                                                                                           ThreadId = 0;
                        if ( !sub_41B1930(*v145) )
                                                                                           sub_100146E0(&lParam);
                                                                                           v87 = 0;
                          dword
                                                                                           sub 100146E0(&U82):
v34 = 0;
v35 = 8;
operator delete(v33);
                                                                                DWORD __stdcall sub_10018060(LPV0ID lpThreadParameter)
if ( U11 )
  goto LABEL_36;
                                                                                  HANDLE hObject; // [sp+10h] [bp-1Ch]@1
sub_41C0590(v15, (int)&v29, (int)&NetworkMiner_exe, (int)&unk_41E1E70);
LOBYTE(044) - 5;
                                                                                  hObject = CreateThread(0, 0, __BuildCatchObjectHelper, 0,
SKIPJACK_Decode((int)&v29);
                                                                                  if ( hObject )
027 - 016;
                                                                                    CloseHandle(hObject);
037 - &021;
                                                                                  while ( g_FindAVTools )
useless3(&v29, (int)&v21);
sub_41BB850((int)&v27, v21, v22, v23, v24, v25, v26);
                                                                                                         _10001180() || sub_10001240() || sub
sub_41BB6F0((int)&v39, v27);
017 = sub_41BD698(039);
v18 = (int)(v39 - 8);
                                                                                  return 0;
if ( _InterlockedDecrement((volatile signed __int32 *)v39 - 1) <= 0 )</pre>
                                                                                                           对抗手法(结构不同)
  v19 = **( DWORD **)v18;
  v27 = (const CHAR *)v18;
  (*(void ( stdcall **)(int))(v19 + 4))(v18);
                                                                                            v71 = v64;
                        U182 = DoRemoteCommand(*U188, (int)&U163, &U159, *(int *)U168, (LPARAM)&U163)
                                                                                            if ( v64 <= 0 )
                        v183 = &v134;
                                                                                              break;
                        v103 = v102;
                                                                                            v83 = 0;
```





## 意外之旅

### 答案:H组织涉及行动中的历史样本

2014\2015 2011\2012 2013

1、解密算法 CoInitialize(0); CoInitialize(0): ns\_exc.registration.TryLevel = 0: 062 = 1:if ( \_nemicmp(lpCmdLine, u16 - (int)u23: if ( \_nemicnp(v23 sub 409740(U7); sub\_40A470(v19); Filename = 0; memset(&v14, 0, 0x206u); PathName = 0: if ( GetModuleFileNameW(0, &Filename, 0x104u) ) nemset(&v35, 0, 0x206u); < if ( GetTempPathW(0x104u, &PathName) ) Buffer - 0: if ( GetTempFileNameW(&PathName, 0, 0, &PathName) ) nemset(&v16, 0, 0x206u); if ( GetTempPathW(0x104u, &Buffer) ) FileName = 0; if ( GetTempFileNameW(&Buffer, 0, 0, &Buffer) ) nemset(&u33, 0, 0x206u); if ( GetModuleFileNameV(0, &FileName, 0x104u) ) if ( sub\_4079C0() ) if ( sub\_407CD0() ) v17 = 0; nemset(&v18, 0, 0x80u); v36 - 0; v10 = 0x81;memset(&u37, 0, 0x80u); if ( sub 40A300(v5, &v10) ) U23 - (Uoid \*)129; if ( sub\_40AFF0(v17, &v23) ) if ( sub\_408AD0(&Buffer, &Filename) ) if ( sub\_40CEA0((int)&PathName, &FileName) ) CommandLine = 0; nemset(&v12, 0, 0x7FFEu); CommandLine = 0: swprintf\_s(&CommandLine, nenset(&v31, 0, 0x7FFEu); nemset(&StartupInfo.lpReserved, 0, 0x40u); suprintf\_s(&ConnandLine nenset(&StartupInfo.1pReserved, 0, 0x40u);

> 未知攻击载体 -intelwifi类

HTA-B粪.hta

H-窃密-A类.doc





# 扩大战果

### 基于H组织样本的主动发掘







# 追本溯源

### H组织同源样本发现过程







## 能力背后

### 海量情报数据

#### 全球独有的样本库

- 总样本95亿
- 每天新增900万

#### 全球唯一的主防库

- 覆盖5亿客户端
- · 总日志数50000亿条
- 每天新增100亿

#### 最大的中文漏洞库

- 总漏洞数超过40万
- 每天新增达500个



#### 互联网域名信息库

- 50亿递归解析
- 每天新增100万

#### 最大的存活网址库

- 每天查询300亿条
- 每天处理100亿条
- 覆盖国内96%客户端





# H组织回顾

## 样本汇总(5月后补充)

| 按载体和特性划分             | 按功能划分(后门类型)      |  |  |  |
|----------------------|------------------|--|--|--|
| 未知攻击载体1(Intel Wifi类) | Fake Tools       |  |  |  |
| 0day漏洞-未知RAT         | 未知RAT            |  |  |  |
| 0day漏洞-gh0st类        | Gh0st修改版         |  |  |  |
| 未知攻击载体2(PRI类)        |                  |  |  |  |
| 捆绑可信应用类              | — plutonium<br>— |  |  |  |
| 文档漏洞类                |                  |  |  |  |
| HTA类(类型1)            |                  |  |  |  |
| HTA类(类型2)            | ─ H-窃密-A类(5月)    |  |  |  |
| H-窃密-A类              |                  |  |  |  |
| 2015未知RAT类           | 未知RAT            |  |  |  |





# H组织回顾

## 相关描述

| 描述项        | 5月阶段性分析概况     | 后续汇总补充          |
|------------|---------------|-----------------|
| 攻击时间       | 2014年-2015年5月 | 2011年4月-2015年8月 |
| 漏洞利用情况     | 无             | 有               |
| 是否利用0day漏洞 | 无             | 有               |
| 针对的国家      | 中国            | 中国,其他国家         |
| 关注的行业      | 政府、科研         | 政府、科研、教育、安全等    |
| RAT种类      | 4             | 9               |
| RAT主流类型的种类 | 无             | Gh0st           |
| C&C是否有动态域名 | 无             | 有               |





# B组织概述

## 组织描述

| 描述项        | 具体内容             |
|------------|------------------|
| 攻击时间       | 2007年-2015年 (至今) |
| 漏洞利用情况     | 有                |
| 是否利用0day漏洞 | 有                |
| 针对的国家      | 中国,涉及31个省级行政区    |
| 关注的行业      | 政府、国防、科研、教育      |
| RAT种类      | 13               |
| RAT主流类型的种类 | 7                |
| C&C是否有动态域名 | 有                |





## 持续8年的APT







# 13种RAT同源性分析

|       | 开发环境        | 加密方法 | 自定义窃密函数 | Shellcode | 免杀对抗-静 | 免杀对抗-动 | 伪装文档等 |
|-------|-------------|------|---------|-----------|--------|--------|-------|
| RAT1  | VC++        | ×    | ٧       | ×         | ٧      | ٧      | ٧     |
| RAT2  | VC++        | ٧    | ٧       | ٧         | ٧      | ٧      | ٧     |
| RAT3  | VC++        | ٧    | ×       | ٧         | ٧      | ٧      | ×     |
| RAT4  | Borland C++ | √    | ×       | ×         | V      | ×      | ٧     |
| RAT5  | Delphi      | ٧    | ×       | ٧         | ٧      | ٧      | ×     |
| RAT6  | Borland C++ | ٧    | ×       | ×         | ٧      | ×      | ٧     |
| RAT7  | Borland C++ | ×    | ×       | ×         | ×      | ×      | ×     |
| RAT8  | VC++        | ٧    | ×       | ×         | ٧      | ×      | ٧     |
| RAT9  | VC++        | ٧    | ٧       | ٧         | ٧      | ×      | ٧     |
| RAT10 | VC++        | ٧    | ×       | ×         | ٧      | ×      | ×     |
| RAT11 | VC++        | ٧    | ٧       | ٧         | ٧      | ×      | ٧     |
| RAT12 | VC++        | ٧    | ×       | ٧         | ٧      | ×      | ×     |
| RAT13 | VC++        | ٧    | ٧       | ×         | ٧      | ٧      | ٧     |





# 13种RAT同源性分析

### 相关关联项

- 加密方式
- 自定义窃密函数
- Shellcode后门
- 子体文件名
- 免杀对抗(静态)
- 免杀对抗(动态)
- •

```
edi, offset
                                                                         ecx, OFFFFFF
          PCK. DEFFFF
                                                                   lea
                                                                             eax. [ebp+Rect]
          esp. 10h
                                                                                                  : 1pRect
                                                                   push
lea
                                                                             esi, esi
push
         eax
                              : lpRect
                                                                             esi
                                                                                                  ; hWnd
                                                                   push
push
                                                                   call
call
                                                                   test
test
jz
          short loc_40105F
                                                                   jz
                                                                             short loc_51219CD7
nov
                                                                   xor
                                                                             eax, eax
add
          esp. 10h
                                                                   inc
                                                                             eax
                              ; 在虚拟环境, 不执行恶意代码
                                                                             short loc_51219D0F; 在虚拟环境, 不执行恶意代码
retn
                              2011
           040B360
                                     push
                                              e ax
          0040B361
                                              movs byte ptr es: [edi], byte ptr
          0040B363
                                     add
          0040B368
                                              esp,
          0040B368
                                     lea
                                                   dword ptr [esp+48]
                                              ecx.
          0040B360
                                                                                ProcHameOrOrdinal
          0040B36I
                                              dword ptr [CAMERNEL32. GetProcAdd GetProcAddress
                             18E0400( call
           0408368
                                              short 0040B37A
           040B376
                                              eax, dword ptr [esp+14]
edx, dword ptr [esp+374]
                           24 74030(lea
          0040B37/
          0040E38
                                     push
                                              edx
                                     push
          00408384
          0040B386
                                              short 0040B3AB
                           24 8C070(lea
                                              ecx, dword ptr [esp+780]
           040B391
                           24 D0080( nov
          0040B390
                           FC4FFFF
          0040B3A1
                           1000000
          0040B3A6
                           F160000
                                              (Exit)
                                              ecx, 41
                                                                                        : bFailIfExists
p lea
          eax, [esp+2%h+arg 280]
                                                                 push
                                                                         offset NeufileName ; lpNeufileName
  lea
          ecx, [esp+24h+arg_718]
                                                                 push
                                                                                        : lpExistingFileName
                                                                                                                      ptr [ebx+34h]
                          bFailIfExists
  push
                                                                 call
                                                                         edi, [esp+1388h-var_938]
  push
                          IpNeuFileName
                                                                         eck, Offffffffh
  push
                         : lpExistingFileName
          ebx ; CopyFiled
```





# 能力背后

#### 可视化分析技术

• 基于多维数据的关联,通过多种图形展现方式,构造能够帮助安全专家,对未知威胁进行分析、发现、回溯、跟踪及预警的能力





2015中国互联网安全大会





# 报告提纲

概述

事例揭秘

组织分析

经验想法





## 组织、行动和事件







### 1、对抗手法-如何保证P(持续性)

后门选择:公开RAT、商业级别

文件形态:文档漏洞、伪装文档

攻击方式:高度定制化邮件

后门功能:据点、模块化、对抗

数据传输:可信网站、SNS、云盘





### 1、对抗手法-针对目标用户

#### H组织和B组织相关特性







#### 1、对抗手法-针对安全机构

#### H组织和B组织相关特性







### 2、C&C的使用偏好









### 3、攻击方式的选择









# 报告提纲

概述

事例揭秘

组织分析

经验想法





## 他山之石

### 基于已知事件的分析

- 发现未知新的行动、组织
- 基于已知行动、组织扩展发现未知新的行动、组织
- 基于已知行动、组织,发现其中的关联关系

#### 国内厂商的优势是具备其他境外厂商不具备的国内资源

| 首发                       | 后续新发现           |  |  |
|--------------------------|-----------------|--|--|
| icefog                   | Javafog         |  |  |
| Hangover                 | Hangover2       |  |  |
| Anunak                   | Carbanak        |  |  |
| The Epic Turla Operation | Satellite Turla |  |  |







# 如何进一步发现 我们难以掌握和确定的

#### 更多的资源:

- 攻击者的相关资源: Hacking Back
- 被攻击目标的相关资源: 取证分析
- 被攻击目标的相关资源: 蜜罐诱饵







# 如何进一步发现 我们难以掌握和确定的

#### 幕后组织:

• 难以定性,另外存在嫁祸、假情报等情况:

客观陈述,避免主观臆断









# 众人拾柴火焰高 从样本交换说起

**民间样本交换**:主要以个人

厂商样本交换:国内外厂商之间的样本交换。从样本到URL,从PC到移动,已形成交换平台(NSS\MUTE)

威胁情报交换:IOC,STIX等标准

民间样本 交换

厂商样本 交换

威胁情报





## 最后

### 面对新的安全威胁,我们应该怎么做?

## 开放、合作





谢谢!