Introduction to Statistical Language Models

Tanmoy Chakraborty
Associate Professor, IIT Delhi
https://tanmoychak.com/

Next Word Prediction

P(cheese| I like pizza with loads of) > P(corn| I like pizza with loads of) >> P(tree| I like pizza with loads of)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Machine Translation

- P(Heavy rainfall) >> P(Big rainfall)
- P(The festival of lights) >> P(the festival of lamps)
- P(Family gatherings) > P(Family meetings)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Machine Translation

- P(Heavy rainfall) >> P(Big rainfall)
- P(The festival of lights) >> P(the festival of lamps)
- P(Family gatherings) > P(Family meetings)
- Context Sensitive Spelling Correction
- Natural Language Generation

•

Language Models Are Everywhere

Language Models Are Everywhere

Large Language Models Save

Large Language Models (LLMs) <u>hav</u> revolutionized the field of natural language processing. LLMs, such as GPT-3, have demonstrated impressive capabilities in understanding and <u>generate</u> humanlike text across various natural language applications.

Language Models Are Everywhere

Large Language Models (LLMs) hav revolutionized the field of natural language processing. LLMs, such as GPT-3, have demonstrated impressive capabilities in understanding and generate humanlike text across various natural language applications.

Probabilistic Language Models

• **Goal:** Calculate the probability of a sentence or sequence consisting of *n* words

$$P(W) = P(W_1, W_2, W_3, ..., W_n)$$

or

 Related Task: Calculate the probability of the next word conditioned on the preceding words

$$P(W_6 | W_1, W_2, W_3, W_4, W_5)$$

Probabilistic Language Models

Goal: Calculate the probability of a sentence or sequence consisting of n words

$$P(W) = P(W_1, W_2, W_3, ..., W_n)$$

or

 Related Task: Calculate the probability of the next word conditioned on the preceding words

$$P(W_6 | W_1, W_2, W_3, W_4, W_5)$$

A model that calculates either of these is referred to as a **Language Model (LM).**

Probability of a Sentence

Let's consider the following sentence:

The monsoon season has begun

How to compute the probability of the sentence?

```
P(W) = P("The monsoon season has begun")
```

= P(The, monsoon, season, has, begun)

Probability of a Sentence

Let's consider the following sentence:

The monsoon season has begun

How to compute the probability of the sentence?

```
P(W) = P("The monsoon season has begun")
```

= P(The, monsoon, season, has, begun)

We compute the above joint probability by using the principles of

Chain Rule of Probability.

Chain Rule of Probability

• Definition of conditional probability:

$$P(A|B) = P(A,B) / P(B)$$

Rewriting: P(A, B) = P(A|B)P(B)

Chain Rule of Probability

Definition of conditional probability:

$$P(A|B) = P(A,B) / P(B)$$

Rewriting: P(A, B) = P(A | B) P(B)

• More variables: $P(A,B,C,D) = P(A) \cdot P(B \mid A) \cdot P(C \mid A,B) \cdot P(D \mid A,B,C)$

Chain Rule of Probability

Definition of conditional probability:

$$P(A|B) = P(A,B) / P(B)$$

Rewriting: P(A, B) = P(A|B)P(B)

- More variables: P(A,B,C,D) = P(A) . P(B | A) . P(C | A,B) . P(D | A,B,C)
- The Chain Rule in general:

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1) P(x_2 | x_1) P(x_3 | x_1, x_2) ... P(x_n | x_1, ..., x_{n-1})$$

Probability of a Sequence

$$P(w_1w_2...w_n) = \prod_i P(w_i | w_1w_2...w_{i-1})$$

- P(W) = P("The monsoon season has begun")
 - = P(The, monsoon, season, has, begun)
 - = P(The) x P(monsoon | The) x P(season | The monsoon) x P(has | The monsoon season) x P(begun | The monsoon season has)

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

 Problem: Enough data is not available to get an accurate estimate of the above quantities.

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

- **Problem:** Enough data is not available to get an accurate estimate of the above quantities.
- Solution: Markov Assumption

Markov Assumption

Every next state depends only the previous k states

Markov Assumption

Every next state depends only the previous k states

Chain Rule:

$$P(w_1w_2...w_n) = \prod_i P(w_i | w_1w_2...w_{i-1})$$

Applying Markov Assumption we condition on only the preceding k words:

$$P(w_1w_2...w_n) = \prod_i P(w_i|w_{i-k}...w_{i-1})$$

Markov Assumption

Every next state depends only the previous k states

Chain Rule:

$$P(w_1w_2...w_n) = \prod_i P(w_i|w_1w_2...w_{i-1})$$

Applying Markov Assumption we condition on only the preceding k words:

$$P(w_1w_2...w_n) = \prod_i P(w_i|w_{i-k}...w_{i-1})$$

 Probabilistic Language Models exploit the Chain Rule of Probability and Markov Assumption to build a probability distribution over sequences of words.

N-gram Language Models

• Let's consider the following conditional probability:

P(begun | the monsoon season has)

• An N-gram model considers only the preceding N -1 words.

N-gram Language Models

Let's consider the following conditional probability:

P(begun | the monsoon season has)

- An N-gram model considers only the preceding N -1 words.
 - Unigram: P(begun)
 - Bigram: P(begun | has)
 - Trigram: P(begun | season has)

N-gram Language Models

Let's consider the following conditional probability:

P(begun | the monsoon season has)

- An N-gram model considers only the preceding N −1 words.
 - Unigram: P(begun)
 - Bigram: P(begun | has)
 - Trigram: P(begun | season has)

Relation between Markov model and Language Model:

An N-gram Language Model \equiv (N -1) order Markov Model

Raw bigram counts (absolute measure)

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw unigram counts (absolute measure)

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Unigram and bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Raw bigram counts (absolute measure)

		i	want	to	eat		chine		food	lunch		spend			
	i	5	827	0	9		0		0	0		2			
	want		i		want	to		eat	chi	nese	foo	d	lunc	h	spend
	to	i	0.0	002	0.33	0		0.003	36 0		0		0		0.00079
	eat	wan	t 0.0	022	0	0.66		0.00	0.0065		0.0065		0.0054	0.0011	
	chinese	to	0.0	00083	0	0.001		0.28	0.0	0083	3 0		0.00°	25	0.087
	food	eat	0		0	0.00	027	0	0.0	21	0.0	027	0.05	6	0
	lunch	chin	ese 0.0	063	0	0		0	0		0.5	2	0.00	63	0
	spend	food	0.0	14	0	0.0	14	0	0.0	0092	0.0	037	0		0
	_	lunc	h 0.0	059	0	0		0	0		0.0	029	0		0
Raw unigram counts		spen	d 0.0	036	0	0.00	036	0	0		0		0		0
i	want	to	e	at	chine	se	fo	od	lunc	h	spe	nd			
2533	927	241	7	46	158		10	93	341		278				

Unigram and bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Limitation of N-gram Language Models

• An insufficient model of language since they are **not effective in capturing long-range dependencies present in language**.

Limitation of N-gram Language Models

An insufficient model of language since they are not effective in capturing long-range dependencies present in language.

Example:

The **project**, which he had been working on for months, was finally **approved** by the committee.

The above example highlights the long-distance dependency between "project" and "approved", where the context provided by earlier words affects the interpretation of later parts of the sentence.

Estimate N-gram Probabilities

- Maximum Likelihood Estimate (MLE):
 - Used to estimate the parameters of a statistical model
 - Determine the most likely values of the parameters that would make the observed data most probable

Estimate N-gram Probabilities

- Maximum Likelihood Estimate (MLE):
 - Used to estimate the parameters of a statistical model
 - Determine the most likely values of the parameters that would make the observed data most probable
- For example, bigram probabilities can be estimated as follows:

$$P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})} = \frac{c(w_{i-1}, w_{i})}{c(w_{i-1})}$$

Limitations with MLE Estimation

Problem: N-grams only work well for word prediction if the test corpus looks like the training corpus. It is often not the case in real scenarios (data sparsity problem).

Limitations with MLE Estimation

Problem: N-grams only work well for word prediction if the test corpus looks like the training corpus. It is often not the case in real scenarios (data sparsity problem).

Training set:

- ... enjoyed the movie
- ... enjoyed the food
- ... enjoyed the game
- ... enjoyed the vacation

Test set:

- ... enjoyed the concert
- ... enjoyed the festival
- ... enjoyed the walk

Zero probability n-grams:

- P(concert | enjoyed the) = P(festival | enjoyed the) = P(walk | enjoyed the) = 0
- As a result, the probability of the test set will be 0.
- Perplexity cannot be computed (Cannot divide by 0).

Limitations with MLE Estimation

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Solution: Various smoothing techniques

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!
- MLE estimate (in case of bigram model)

$$P_{MLE}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i)}{C(W_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(W_i | W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + |V|}$$

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!
- MLE estimate (in case of bigram model)

$$P_{MLE}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i)}{C(W_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + |V|}$$

Effective bigram count (c*(w_{n-1}w_n)):

$$\frac{C^*(W_{n-1}W_n)}{C(W_{n-1})} = \frac{C(W_{n-1},W_n) + 1}{C(W_{n-1}) + |V|}$$

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Add-one smoothed bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero probabilities are in gray.

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero counts are in gray.

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

More General Smoothing Techniques

Add-k smoothing:

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + k|V|}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

More General Smoothing Techniques

Add-k smoothing:

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + k|V|}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

Unigram prior smoothing:

$$P_{\text{UnigramPrior}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m P(w_i)}{c(w_{i-1}) + m}$$

More General Smoothing Techniques

Add-k smoothing:

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + k|V|}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

Unigram prior smoothing:

$$P_{\text{UnigramPrior}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m P(w_i)}{c(w_{i-1}) + m}$$

An optimal value for k or m can be determined using a held-out dataset.

• As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.
- Back-off:
 - Opt for a trigram when there is sufficient evidence, otherwise use bigram, otherwise unigram

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.

Back-off:

• Opt for a trigram when there is sufficient evidence, otherwise use bigram, otherwise unigram

Interpolation:

- Mix unigram, bigram, trigram
- Interpolation generally results in improved performance

Interpolation

Linear interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

$$\sum_i \lambda_i = 1$$

Context-dependent interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

Advanced Smoothing Algorithms

• Naïve smoothing algorithms have limited usage and are not very effective. Not frequently used for N-grams.

However, they can be used in domains where the number of zeros isn't so huge.

