19. A/Dコンバータ(繰り返し掃引モード)(プロジェクト: ad_kurikaeshi_souin)

19.1 概要

本章では、2 本の 0~5V の電圧信号をマイコンの A/D コンバータで読み込む方法を説明します。A/D 変換した結果は、マイコンボードの LED に出力します。今回の A/D 変換は、繰り返し掃引モードを使います。今回は 2本分ですが、プログラムを替えることにより 8本の電圧信号まで読み込むことができます。

19.2 接続

■使用ポート

マイコンのポート	接続内容						
P0_0, P0_1 (J3)	センサ部を接続します。U8、U7 の A/D 値を読み込みます。						
P1_3、P1_2、 P1_1、P1_0	マイコンボード上の LED です。						
P6 (J2)	実習基板の LED 部など、出力機器を接続します。						

■接続

マイコンボードのポート0とセンサ部をフラットケーブルで接続します。センサは4個ありますが、今回LEDに出力するのは、U8(P0_0)とU7(P0_1)のセンサです。また、マイコンボードのポート6と実習基板のLED部を接続します。

■操作方法

センサ部の U8 の下部を白色や灰色や黒色に近づけます。フォトインタラプタ U8 から出力された 0~5V の電圧をマイコンの P0_0 から読み込み、A/D 変換した値をマイコンボードの LED に出力します。

センサ部の U7 の下部を白色や灰色や黒色に近づけます。フォトインタラプタ U7 から出力された 0~5V の電圧をマイコンの P0_1 から読み込み、A/D 変換した値を実習基板の LED 部に出力します。

19.3 プロジェクトの構成

	ファイル名	内容
1	startup.c	固定割り込みベクタアドレスの設定、スタートアッププログラム、RAM の初期化(初期値のないグローバル変数、初期値のあるグローバル変数の設定)などを行います。このファイルは共通で、どのプロジェクトもこのファイルから実行されます。
2	ad_kurikaeshi_souin.c	実際に制御するプログラムが書かれています。R8C/35Aの内蔵周辺機能(SFR)の初期化も行います。
3	sfr_r835a.h	R8C/35A マイコンの内蔵周辺機能を制御するためのレジスタ(Special Function Registers)を定義したファイルです。

19.4 プログラム「ad_kurikaeshi_souin.c」

```
/* 対象マイコン R8C/35A
/* ファイル内容 A/D変換
/* バージョン Ver.1.20
 2 3
                                                                           */
                    A/D変換(繰り返し掃引モード)
                                                                           */
                    4
5
6
7
     /* Date
     /* Copyright
 8
     9
     /↑
入力: ANO (PO_7) ~AN7 (PO_0) 端子
0~5V(ミニマイコンカーの赤外線フォトインタラプタ (U5, U6, U7, U8)
出力: P1_3-P1_0(マイコンボードのLED)
P6_7-P6_0(実習基板のLED部など)
10
11
12
13
14
     ANO (PO_7) ~AN7 (PO_0) 端子の8端子から入力した電圧をA/D変換して、
デジタル値をマイコンボードのLEDと実習ボードのLED部へ出力します。
8端子分のA/D変換しますが、入出力設定を出力しているAD端子の値は不定です。
15 :
16 :
17
18
19
20:
20 :
21 :
22 :
23 :
24 :
25 :
     /* インクルード
                                          */
     #include "sfr_r835a.h'
                                          /* R8C/35A SFRの定義ファイル
26
     28
29:
     /* プロトタイプ宣言
30:
                                          */
31:
                                          */
     void init( void );
33
     void led_out( unsigned char led );
```

```
35
     36
37
38
     void main( void )
39
40
        int ad7data, ad6data;
41
                                  /* 初期化
       init();
                                                         */
42
43
          \text{while(1)} \{
44
          // AD7を出力
ad7data = ad7;
ad7data = ad7data >> 6;
45
46
                                  /* AD7取得
47
          led_out( ad7data );
                                  /* マイコンボードのLEDへ出力
48
                                                         */
49
50
          // AD6を出力
          ad6data = ad6;
ad6data = ad6data >> 6;
51
                                  /* AD6取得
53
          p6 = ad6data;
                                  /* P6のbit3~0のLEDへ出力
                                                         */
54
    }
55
56
     57
58
     /* R8C/35A スペシャルファンクションレジスタ(SFR)の初期化
59
     60
     void init( void )
61
62
        int i;
63
       /* クロックをXINクロック(20MHz)に変更 */
64
                                  65
       prc0 = 1;
                                  cm13 = 1;

cm05 = 0;
66
67
       for(i=0; i<50; i++);
ocd2 = 0;
prc0 = 0;
68
69
70
71
        /* ポートの入出力設定 */
                                  /* PDOのプロテクト解除
/* 7-5:LED 4:SW 3-0:アナログ電圧*/
/* 3-0:LEDは消灯 */
73
       prc2 = 1;
74
       pd0 = 0xe0;
       p1 = 0x0f;
pd1 = 0xdf;
75
76
                                  /* 5:RXD0 4:TXD0 3-0:LED
                                                         */
77
       pd2 = 0xfe;
                                  /* 0:PushSW
                                                         */
78
       pd3 = 0xfb;
                                  /* 4:Buzzer 2:IR
                                  /* 7:XOUT 6:XIN 5-3:DIP SW 2:VREF*/
/* 7:DIP SW */
79
       pd4 = 0x83;
80
       pd5 = 0x40;
                                  /* LEDなど出力
81
       pd6 = 0xff;
                                                         */
82
83
       /* A/Dコンバータの設定 */
                                  /* 繰り返し掃引モードに設定
/* 入力端子P0の8端子を選択
       admod = 0x33;
84
85
       adinsel = 0x30;
                                                         */
       adcon1 = 0x30;
asm("nop");
adcon0 = 0x01;
86
                                  /* A/D動作可能
                                  /* φADの1サイクルウエイト入れる*/
/* A/D変換スタート */
87
88
89
90
91
     /* マイコン部のLED出力
/* 引数 スイッチ値 0~15
93
     94
     void led_out( unsigned char led )
95
96
97
       unsigned char data;
98
        led = ^{\sim}led;
99
       led &= 0x0f;
data = p1 & 0xf0;
100
101
       p1 = data | led;
102
103
104
105
     /* end of file
106
107:
```

19.5 プログラムの解説

19.5.1 init関数(I/Oポートの入出力設定)

ポート 0 にはセンサ部が接続されています。bit7~5 は LED で出力、bit4 はマイクロスイッチで入力、bit3~0 はフォトインタラプタで入力に設定します。

72 :	/* ポートの入出力設定 */		
73 :	prc2 = 1;	/* PD0のプロテクト解除	*/
74 :	pd0 = 0xe0;	/* 7-5:LED 4:SW 3-0:アナログ	電圧*/
75 :	p1 = 0x0f;	/* 3-0:LEDは消灯	*/
76 :	pd1 = 0xdf;	/* 5:RXD0 4:TXD0 3-0:LED	*/
77 :	pd2 = 0xfe;	/* 0:PushSW	*/
78 :	pd3 = 0xfb;	/* 4:Buzzer 2:IR	*/
79 :	pd4 = 0x83;	/* 7:XOUT 6:XIN 5-3:DIP SW 2	:VREF*/
80 :	pd5 = 0x40;	/* 7:DIP SW	*/
81 :	pd6 = 0xff;	/* LEDなど出力	*/

19.5.2 init関数(A/Dコンバータの設定)

A/D コンバータを設定するプログラムは、次のようになります。

```
83:
       /* A/Dコンバータの設定 */
84:
       admod = 0x33;
                                    /* 繰り返し掃引モードに設定
                                                             */
       adinsel = 0x30;
                                    /* 入力端子P0の8端子を選択
85 :
                                                             */
       adcon1 = 0x30;
                                    /* A/D動作可能
86 :
                                                             */
       asm( " nop ");
87 :
                                    /* φADの1サイクルウエイト入れる*/
       adcon0 = 0x01;
                                    /* A/D変換スタート
88 :
```

今回は、ポート0の8本の端子からアナログ電圧を読み込み、繰り返しA/D変換する設定(**繰り返し掃引モード**)にします。ポート0からAD 値を読み込めるのは、フォトインタラプタが接続されている $P0_0(AN7) \sim P0_0(AN7)$ の4端子です。残04端子は読み込んでも値は不定です。

レジスタの設定手順を下記に示します。

①A/D モードレジスタ(ADMOD: A-D mode register)の設定

設定 bit	上:ビット名 下:シンボル	内容	今回の 内容
bit7,6	A/D 変換トリガ選択ビット bit7: adcap1 bit6: adcap0	00:ソフトウェアトリガ(ADCON0 レジスタの ADST ビット) による A/D 変換開始 01:タイマ RD からの変換トリガによる A/D 変換開始 10:タイマ RC からの変換トリガによる A/D 変換開始 11:外部トリガ(ADTRG)による A/D 変換開始 A/D 変換を開始するきっかけをどれにするか設定します。ソフト的に開始するので、"00"を選択します。	00
bit5~3	A/D 動作モード選択 bit5: md2 bit4: md1 bit3: md0	000: 単発モード 001: 設定しないでください 010: 繰り返しモード 0 011: 繰り返しモード 1 100: 単掃引モード 101: 設定しないでください 110: 繰り返し掃引モード 111: 設定しないでください 今回は、繰り返し掃引モードを選択します。	110
bit2	クロック源選択ビット cks2	0:f1 (20MHz)を選択1:fOCO-F(高速オンチップオシレータ)を選択f1 を選択します。	0
bit1,0	分周選択ビット bit1: cks1 bit0: cks0	00:fAD の 8 分周 (8/20MHz=400ns) 01:fAD の 4 分周 (4/20MHz=200ns) 10:fAD の 2 分周 (2/20MHz=100ns) 11:fAD の 1 分周 (1/20MHz=50ns) fAD とは、bit2 で設定したクロック源のことです。このクロックを何分周で使用するか選択します。遅くする必要はないので、いちばん速い 1 分周で使用します。	11

A/D モードレジスタ(ADMOD)の設定値を下記に示します。

bit	7	6	5	4	3	2	1	0	
設定値	0	0	1	1	0	0	1	1	
16 進数		Ş	3		3				

②A/D 入力選択レジスタ(ADINSEL: A-D input select register) どのアナログ入力端子を A/D 変換するか、設定します。

A/D 入力グループ 選択ビット		A/D 掃引端子数 選択ビット		bit3	bit2	bit1	bit0	アナログ入力端子
bit7	bit6	bit5	bit4					
0	0	0	0	0	0	0	0	AN0(P0_7)~AN1(P0_6)の 2 端子
0	0	0	1	0	0	0	0	AN0(P0_7)~AN3(P0_4)の 4 端子
0	0	1	0	0	0	0	0	AN0(P0_7)~AN5(P0_2)の 6 端子
0	0	1	1	0	0	0	0	AN0(P0_7)~AN7(P0_0)の 8 端子
0	1	0	0	0	0	0	0	AN8(P1_0)~AN9(P1_1)の 2 端子
0	1	0	1	0	0	0	0	AN8(P1_0)~AN11(P1_3)の 4 端子

[※]それ以外は設定禁止

今回は、AN0(P0_7)~AN7(P0_0)の 8 端子を選択します。A/D 入力選択レジスタ (ADINSEL)の設定値を下記に示します。

bit	7	6	5	4	3	2	1	0
設定値	0	0	1	1	0	0	0	0
16 進数		3	3		О			

③A/D 制御レジスタ 1 (ADCON1: A-D control register1)

A/D を動作可能にします。

設定 bit	上:ビット名 下:シンボル	内容	今回の 内容
bit7	A/D 断線検出アシスト方式選 択ビット(注 4)	0:変換前ディスチャージ 1:変換前プリチャージ A/D 断線検出アシストしませんのでどちらでも構いませんが、今回は"0"にしておきます。	0
bit6	A/D 断線検出アシスト機能許可ビット(注 4)	0:禁止 1:許可 A/D 断線検出アシストは使いません。	0
bit5	A/D スタンバイビット(注 3) adstby	0:A/D 動作停止(スタンバイ) 1:A/D 動作可能 A/D 動作可能にして A/D 変換できるようにします。こ の bit を"0"から"1"にしたときは、 φ A/D の 1 サイクル 以上経過した後に A/D 変換を開始します。	1
bit4	8/10 ビットモード選択ビット bits	0:8 ビットモード 1:10 ビットモード A/D 変換を 10bit(0~1023) にするか、8bit(0~255) に するか選択します。今回は、10bit にします。	1
bit $3\sim1$		"000"を設定	000
bit0	拡張アナログ入力端子選択 ビット(注 1) adex0	0:拡張アナログ入力端子を非選択 1:チップ内蔵基準電圧を選択(注 2) 拡張アナログ入力端子は使いません。	0

- 注 1. チップ内蔵基準電圧をアナログ入力として使用する場合、ADEX0 ビットを"1"(チップ内蔵基準電圧を選択)にした後に、OCVREFCR レジスタの OCVREFAN ビットを"1"(チップ内蔵基準電圧とアナログ入力を接続)にしてください。また、チップ内蔵基準電圧をアナログ入力として使用しない場合、OCVREFAN ビットを"0"(チップ内蔵基準電圧とアナログ入力を切断)にした後に、ADEX0 ビットを"0"(拡張アナログ入力端子を非選択)にしてください。
- 注2. 単掃引モード、繰り返し掃引モードでは設定しないでください。
- 注 3. ADSTBY ビットを"0"(A/D 動作停止) から"1"(A/D 動作可能) にしたときは、 ϕ AD の 1 サイクル以上経 過した後に A/D 変換を開始してください。
- 注 4. A/D 断線検出アシスト機能を許可にするためには、ADDDAEN ビットを"1"(許可)にした後、ADDDAEL ビットで変換開始状態を選択してください。 断線時の変換結果は、外付け回路によって変化します。 本機能はシステムに合わせた評価を十分に行った上で、使用してください。

A/D 制御レジスタ1(ADCON1)の設定値を下記に示します。

bit	7	6	5	4	3	2	1	0
設定値	0	0	1	1	0	0	0	0
16 進数		Ş	3		О			

④ φ AD の 1 サイクル以上ウエイトを入れる

③の bit5 の A/D スタンバイビットを"1"にした場合、 ϕ A/D の 1 サイクル以上経過した後に A/D 変換を開始しなければいけません。

そのウェイトを入れるため、アセンブリ言語の nop 命令を実行します。「ad.c」内では、アセンブリ言語は実行できないため、asm 命令というアセンブリ言語を実行できる命令を使って nop 命令を実行します。ちなみに、nop は「No Operation(何もしない)」命令で、この命令を実行するのに 1 サイクル分の時間がかかります。 プログラムを下記に示します。

asm(" nop ");

⑤A/D 制御レジスタ 0 (ADCON0: A-D control register0)

A/D 変換を開始します。

設定 bit	上:ビット名 下:シンボル	内容	今回の 内容
bit7~1		"0000000"を設定	0000 000
bit0	A/D 変換開始フラグ adst	0:A/D 変換停止 1:A/D 変換開始 A/D 変換を開始させるので"1"を設定します。	1

A/D 制御レジスタ 0 (ADCON0)の設定値を下記に示します。

bit	7	6	5	4	3	2	1	0
設定値	0	0	0	0	0	0	0	1
16 進数		()		1			

19.5.3 main関数

AN7端子、AN6端子からA/D値を取得、マイコンボード上のLEDと実習基板のLEDへ値を出力します。

```
38 : void main(void)
39 : {
        int ad7data, ad6data;
40 :
41:
42:
        init();
                                       /* 初期化
43 :
44 :
        while(1) {
           // AD7を出力
45 :
46:
           ad7data = ad7;
                                       /* AD7取得
            ad7data = ad7data >> 6;
47 :
48:
           led_out( ad7data );
                                       /* マイコンボードのLED〜出力
49 :
           // AD6を出力
50 :
51:
           ad6data = ad6;
                                       /* AD6取得
52:
           ad6data = ad6data >> 6;
53:
           p6 = ad6data;
                                       /* P6のbit3~0のLED〜出力
                                                                   */
54:
55: }
```

46 行	AD7 端子(P0_0)の A/D 変換値を取得し、ad7data 変数に格納します。
47 行	A/D 変換値は、0~1023(2 進数で 11 1111 1111)の値です。右シフトを 6 ビット分行い、下位の 6 桁を捨てます。その結果、A/D 値は 0~15 の値になり、ad7data 変数に代入します。
48 行	0~15 に変換した A/D 値をマイコンボード上の LED に出力します。
50 行	AD6 端子(P0_1)の A/D 変換値を取得し、ad6data 変数に格納します。
51 行	A/D 変換値は、0~1023(2 進数で 11 1111 1111)の値です。右シフトを6ビット分行い、下位の6桁を捨てます。その結果、A/D値は0~15の値になり、ad6data変数に代入します。
52 行	0~15 に変換した A/D 値を実習基板の LED に出力します。

※A/D 変換値を取得するレジスタ

A/D 変換された結果は、A/D レジスタ 0~7(AD0~AD7)に格納されます。AD0~AD7 のどのレジスタに格納されるかは、アナログ入力端子によって変わります。アナログ入力端子と A/D レジスタの関係を次に示します。

アナログ入力端子	読み込むレジスタ
AN0(P0_7)	AD0
AN1(P0_6)	AD1
AN2(P0_5)	AD2
AN3(P0_4)	AD3
AN4(P0_3)	AD4
AN5(P0_2)	AD5
AN6(P0_1)	AD6
AN7(P0_0)	AD7
AN8(P1_0)	AD0
AN9(P1_1)	AD1
AN10(P1_2)	AD2
AN11(P1_3)	AD3

19.6 演習

- (1) AN5 の A/D 変換値をマイコンボードの LED \sim 、AN4 の A/D 変換値を実習基板の LED 部へ出力しなさい。
- (2) マイコンボードのディップスイッチの値 0~7 によって、実習基板の LED 部へ ANO~AN7 の A/D 変換値を 出力するようにしなさい。