CAPÍTULO 1

PARTE I Fundamentos del análisis de sistemas

Sistemas, roles y metodologías de desarrollo

OBJETIVOS DE APRENDIZAJE

Al completar este capítulo usted podrá:

- 1. Recordar los tipos básicos de sistemas de computación que un analista debe conocer.
- 2. Comprender la forma en que los usuarios de las nuevas tecnologías pueden modificar la dinámica de un sistema.
- 3. Conocer los distintos roles de un analista de sistemas.
- Comprender los fundamentos de tres metodologías de diseño: SDL, la metodología ágil y el análisis y diseño de sistemas orientado a objetos.
- Aprender sobre las herramientas CASE y cómo pueden ayudar a un analista de sistemas.

Durante mucho tiempo, las organizaciones han reconocido la importancia de administrar recursos clave como las personas y la materia prima. Actualmente, la información ha encontrado su lugar apropiado como recurso clave. Los responsables de la toma de decisiones por fin comprenden que la información no es sólo un producto derivado de las operaciones comer-

ciales, sino que además provee impulso a las empresas y puede constituir el factor decisivo para determinar el éxito o el fracaso de un negocio.

Para maximizar la utilidad de la información, una empresa debe administrarla en forma apropiada, de la misma manera en que administra los demás recursos. Los administradores necesitan comprender que hay costos asociados con la producción, distribución, seguridad, el almacenamiento y la recuperación de toda información. Aunque la información está a nuestro alrededor, no es gratuita y no debemos dar por hecho su uso estratégico para poner a una empresa en una posición competitiva.

El hecho de que las computadoras se puedan conectar de manera rápida y sencilla a una red, aunado a la capacidad de acceder a Internet y Web, ha creado una explosión de información en la sociedad en general, y en los negocios en particular. El proceso de administrar la información generada por computadora difiere de manera considerable del proceso de manejar los datos producidos en forma manual; por lo general debemos administrar una mayor cantidad de información computacional. Los costos de administración y mantenimiento pueden aumentar a ritmos alarmantes, y a menudo los usuarios consideran este tipo de información con menos escepticismo que la que se obtiene de otras fuentes. En este capítulo examinaremos los fundamentos de distintos tipos de sistemas de información, los diversos roles de los analistas de sistemas, las fases en el ciclo de vida del desarrollo de sistemas (SDLC) y la forma en que se relacionan con los factores de Interacción humano-computadora (HCI), además de una introducción a las herramientas de Ingeniería de Software Asistida por Computadora (CASE).

TIPOS DE SISTEMAS

Los sistemas de información se desarrollan para distintos fines, dependiendo de las necesidades de los usuarios humanos y la empresa. Los sistemas de procesamiento de transacciones (TPS) funcionan en el nivel operacional de la organización; los sistemas de automatización de oficinas (OAS) y los sistemas de trabajo de conocimiento (KWS) brindan soporte para el trabajo a nivel del conocimiento. Entre los sistemas de nivel superior se encuentran los sistemas de información administrativa (MIS) y los sistemas de soporte de decisiones (DSS)*. Los sistemas expertos aplican la experiencia de los encargados de tomar decisiones para resolver problemas específicos y estructurados. En el nivel estratégico de la administración se encuentran los sistemas de soporte para ejecutivos (ESS). Los sistemas de soporte de decisiones en grupo (GDSS) y los sistemas de trabajo colaborativo asistido por computadora (CSCWS), que se describen en forma más general, ayudan en el proceso de toma de decisiones, a nivel de grupo, de la variedad semiestructurada o no estructurada.

En la figura 1.1 se muestra la variedad de sistemas de información que pueden desarrollar los analistas. Observe que la figura presenta estos sistemas de arriba hacia abajo, indicando que el nivel operacional de la organización (el más bajo) cuenta con apoyo (soporte) de los sistemas TPS, mientras que el nivel estratégico de decisiones semiestructuradas y no estructuradas (el más alto) cuenta con soporte de los sistemas ESS, GDSS y CSCWS en la parte superior. En este libro utilizamos los términos sistemas de información administrativa, sistemas de información (IS), sistemas de información computarizados y sistemas de información de negocios computarizados para indicar los mismos sistemas de información computarizados que ofrecen soporte para el rango más amplio de interacciones de los usuarios con las tecnologías y actividades comerciales por medio de la información que producen en contextos organizacionales.

Sistemas de procesamiento de transacciones

Los sistemas de procesamiento de transacciones (TPS) son sistemas de información computarizados que se desarrollaron para procesar grandes cantidades de información para las transacciones de negocios rutinarias, como nóminas e inventario. Un TPS elimina el tedio de las transacciones operacionales necesarias y reduce el tiempo que se requería para realizarlas en forma manual, aunque la mayoría de las personas aún deben introducir los datos en forma manual en los sistemas computarizados.

Los sistemas de procesamiento de transacciones son sistemas que atraviesan límites y permiten que la organización interactúe con los entornos externos. Como los administradores analizan los datos generados por el TPS para obtener información actualizada sobre lo que ocurre en sus empresas, es imprescindible que estos sistemas funcionen sin problemas ni interrupciones para sustentar las operaciones diarias de estas compañías.

Sistemas de automatización de oficinas y sistemas de trabajo de conocimiento

En el nivel de conocimiento de la organización hay dos clases de sistemas. Los sistemas de automatización de oficinas (OAS) brindan apoyo a las personas que trabajan con datos no para crear conocimiento sino para anali-

FIGURA 1.1

Un analista de sistemas puede involucrarse con cualquiera o con todos estos sistemas.

^{*} Esta traducción es la más aceptada por la mayoría de los académicos, aunque una mejor traducción de estas siglas sería: Sistemas de apoyo a la toma de decisiones, y sistemas de apoyo a la toma de decisiones en grupo, para las siglas GDSS.

zar la información y transformar los datos o manipularlos de cierta forma antes de compartirlos o diseminarlos de manera formal a través de la organización y, algunas veces, más allá. Los aspectos más conocidos de los sistemas OAS son el procesamiento de palabras, las hojas de cálculo, el diseño gráfico por computadora, la planificación electrónica y la comunicación a través de correo de voz, correo electrónico (e-mail) y teleconferencias.

Los sistemas de trabajo de conocimiento (KWS) brindan apoyo a profesionales como científicos, ingenieros y médicos, ayudándoles a crear conocimiento (a menudo en equipos) y a integrarlo a su organización o la sociedad.

Sistemas de información administrativa

Los sistemas de información administrativa (MIS) no sustituyen a los sistemas de procesamiento de transacciones; más bien, todos los sistemas MIS incluyen el procesamiento de transacciones. Los MIS son sistemas de información computarizados que funcionan debido a la decidida interacción entre las personas y las computadoras. Al requerir que las personas, el software y el hardware funcionen en concierto, los sistemas de información administrativa brindan soporte a los usuarios para realizar un espectro más amplio de tareas organizacionales que los sistemas de procesamiento de transacciones, incluyendo los procesos de análisis y toma de decisiones.

Para acceder a la información, los usuarios del sistema de información administrativa comparten una base de datos común; ésta almacena tanto los datos como los modelos que permiten al usuario interactuar con ellos, interpretarlos y aplicarlos. Los sistemas de información administrativa producen información que se utiliza en el proceso de toma de decisiones. También pueden ayudar a integrar algunas de las funciones de información computarizadas de una empresa.

Sistemas de soporte de decisiones

Los sistemas de soporte de decisiones (DSS, o sistemas de apoyo a la toma de decisiones) pertenecen a una clase superior de sistemas de información computarizados. Los sistemas DSS son similares al sistema de información administrativa tradicional debido a que ambos dependen de una base de datos como fuente de datos. La diferencia estriba en que el sistema de soporte de decisiones está más enfocado a brindar respaldo a la toma de decisiones en todas sus fases, aunque la decisión misma aún corresponde de manera exclusiva al usuario. Los sistemas de soporte de decisiones se ajustan más a la persona o el grupo usuario que un sistema de información administrativa tradicional. También se describen a veces como sistemas enfocados en la inteligencia de negocios.

Inteligencia artificial y sistemas expertos

La inteligencia artificial (AI) puede ser considerada como el campo dominante de los sistemas expertos. La idea general de la AI ha sido desarrollar equipos que se comporten de manera inteligente. Dos ramas de investigación de la AI son 1) la comprensión del lenguaje natural y (2) el análisis de la habilidad para razonar un problema y llegar a una conclusión lógica. Los sistemas expertos utilizan las metodologías de razonamiento de la AI para resolver los problemas que los usuarios de negocios (y otros tipos de usuarios) les presentan.

Los sistemas expertos son una clase muy especial de sistema de información que ha demostrado su utilidad comercial gracias a la disponibilidad extendida de hardware y software como las computadoras personales (PC) y las interfaces de sistemas expertos. Un sistema experto (también conocido como sistema basado en el conocimiento) captura y utiliza en forma efectiva el conocimiento de uno o varios expertos humanos para resolver un problema específico al que una organización se enfrenta. Cabe mencionar que a diferencia de los sistemas DSS, que en última instancia dejan la decisión a la persona encargada de la toma de decisiones, un sistema experto selecciona la mejor solución para un problema o una clase específica de problemas.

Los componentes básicos de un sistema experto son la base de conocimiento, un motor de inferencia que conecta al usuario con el sistema mediante el proceso de consultas en lenguajes —como el lenguaje de consulta estructurado (SQL) —, y la interfaz de usuario. Las personas conocidas como ingenieros del conocimiento capturan la experiencia de los expertos, crean un sistema computacional que incluye este conocimiento y después lo implementan.

Sistemas de soporte de decisiones en grupo y sistemas de trabajo colaborativo asistido por computadora

Las organizaciones confían cada vez más en los grupos o equipos para tomar decisiones en conjunto. Cuando los grupos toman decisiones semiestructuradas o no estructuradas, un sistema de soporte de decisiones en grupo (GDSS, o sistema de apoyo a la toma de decisiones en grupo) puede ofrecer una solución. Estos sistemas, que se utilizan en cuartos especiales equipados con varias configuraciones, permiten a los miembros de los grupos interactuar con el soporte electrónico (a menudo en la forma de software especializado) y un facilitador de grupo especial. El objetivo de los sistemas de soporte de decisiones en grupo es lograr que un grupo resuelva un problema con la ayuda de varios apoyos como encuestas, cuestionarios, lluvia de ideas y creación de escenarios. Se puede diseñar software GDSS para minimizar los comportamientos de grupo negativos típicos como la escasez de participación por temor a las represalias por expresar un punto de vista impopular o polémico, la dominación por parte

de los miembros del grupo con facilidad de palabra y la toma de decisiones mediante el "pensamiento grupal". Algunas veces los sistemas GDSS se consideran bajo el término más general de sistemas de trabajo colaborativo asistido por computadora (CSCWS), que podría incluir el soporte de software conocido como groupware para colaborar en equipo mediante computadoras conectadas en red. Los sistemas de soporte de decisiones en grupo también se pueden utilizar en un ambiente virtual.

Sistemas de soporte para ejecutivos

Cuando los ejecutivos fijan su atención en la computadora, a menudo buscan obtener ayuda para tomar decisiones en el nivel estratégico. Los sistemas de soporte para ejecutivos (ESS, sistemas de apoyo para ejecutivos) ayudan a los ejecutivos a organizar sus interacciones con el entorno externo ofreciendo tecnologías de gráficos y comunicaciones en sitios accesibles como salas de juntas u oficinas corporativas personales. Aunque los sistemas ESS se basan en la información que generan los sistemas TPS y MIS, ayudan a sus usuarios a enfrentar los problemas relacionados con decisiones no estructuradas inespecíficas de una aplicación, para lo cual crean un entorno que les ayude a pensar sobre los problemas estratégicos de una manera informada. Los sistemas ESS extienden las capacidades de los ejecutivos y les ofrecen soporte para que puedan entender mejor sus entornos.

INTEGRACIÓN DE LAS TECNOLOGÍAS EN SISTEMAS

A medida que los usuarios adoptan nuevas tecnologías, parte del trabajo del analista de sistemas consiste en integrar los sistemas tradicionales con los nuevos para asegurar un contexto útil, como se muestra en la figura 1.2. En esta sección veremos algunas de las nuevas tecnologías de información que los analistas de sistemas utilizan a medida que las personas trabajan para integrar sus aplicaciones de comercio electrónico en sus negocios tradicionales, o a medida que inician negocios electrónicos completamente nuevos.

Las aplicaciones de comercio electrónico y los sistemas Web

A muchos de los sistemas que veremos en este libro se les puede agregar una mayor funcionalidad si se hacen migrar a la World Wide Web o si se conciben e implementan originalmente como tecnologías basadas en Web. Hay muchos beneficios relacionados con el proceso de montar o mejorar una aplicación en Web:

- 1. Aumenta el número de usuarios que se enteran de la disponibilidad de un servicio, producto, industria, persona o grupo.
- 2. Los usuarios tiene la posibilidad de acceder las 24 horas del día.

FIGURA 1.2

Los analistas de sistemas necesitan estar conscientes de que al integrar tecnologías se ven afectados todos los tipos de usuarios y sistemas.

- 3. Se puede mejorar la utilidad y capacidad de uso del diseño de la interfaz.
- 4. Se puede expandir un sistema globalmente en vez de permanecer en el entorno local, con lo cual se puede establecer contacto con personas en ubicaciones remotas sin preocuparse por la zona horaria en la que se encuentren.

Sistemas empresariales

Muchas organizaciones preveen beneficios potenciales derivados de la integración de diversos sistemas de información existentes en distintos niveles administrativos y dentro de diferentes funciones. Algunos autores describen la integración como arquitectura orientada a servicios (SOA), la cual existe en capas. Los sistemas empresariales conformarían la capa superior. Estos sistemas, también conocidos como sistemas de planificación de recursos empresariales (ERP), están diseñados para llevar a cabo esta integración. Para establecer un ERP se requiere de un enorme compromiso y cambios en la organización. A menudo, los analistas de sistemas actúan como consultores para los proyectos de ERP que utilizan software propietario. Dentro del software ERP popular están los sistemas de SAP y Oracle. Algunos de estos paquetes están orientados hacia el proceso de migrar las empresas a la Web. Por lo general, los analistas y algunos usuarios requieren capacitación, soporte y mantenimiento por parte del distribuidor para diseñar, instalar, mantener, actualizar y utilizar de manera apropiada un paquete ERP específico.

Sistemas para dispositivos inalámbricos y móviles

Se ha pedido a los analistas diseñar una amplia variedad de sistemas y aplicaciones para usuarios aventureros, como las orientadas a dispositivos inalámbricos y móviles como el iPhone y el iPod de Apple o la BlackBerry. Adicionalmente, algunos de ellos tal vez se enfrenten al reto de diseñar redes de comunicaciones estándar o inalámbricas que integren voz, video, mensajería de texto y correo electrónico a las intranets de una organización o a las extranets industriales. El comercio electrónico inalámbrico se conoce como m-Commerce o mCommerce (comercio móvil).

Tal vez a usted le pidan diseñar sistemas de redes inalámbricas de área local (WLAN); redes de fidelidad inalámbrica, conocidas como Wi-Fi o redes personales inalámbricas que reúnan muchos tipos de dispositivos bajo el estándar Bluetooth. En configuraciones más avanzadas, tal vez los analistas tengan que diseñar agentes inteligentes: software capaz de aprender progresivamente las preferencias de los usuarios para posteriormente brindarles ayuda basada en el conocimiento adquirido. Por ejemplo, mediante el uso de la tecnología pull, un agente inteligente puede buscar en la Web historias de interés para el usuario después de haber observado sus patrones de comportamiento a través del tiempo, y realizar búsquedas en la Web sin tener que estar solicitándole información en forma continua.

Software de código fuente abierto

El software de código fuente abierto (OSS) es una alternativa al desarrollo de software tradicional, en donde el código propietario se oculta a los usuarios. Con el OSS, los usuarios y programadores pueden estudiar, compartir y modificar el código o las instrucciones de computadora. Las reglas de esta comunidad incluyen la idea de que cualquier modificación a los programas se debe compartir con todas las personas en el proyecto.

El desarrollo de OSS constituye toda una filosofía y no sólo el proceso de crear software. A menudo, las personas involucradas en comunidades de OSS lo ven como una forma de ayudar a que las sociedades cambien. Algunos de los proyectos de código fuente abierto más conocidos son el servidor Web Apache, el navegador Mozilla Firefox y Linux, un sistema operativo de código fuente abierto similar a Unix.

No obstante, sería simplista pensar en el OSS como un movimiento monolítico, además de que esto no ayuda en nada a revelar qué tipo de usuarios o analistas están desarrollando proyectos de OSS y en qué se basan. Para ayudarnos a comprender el movimiento de software libre, algunos investigadores recientemente categorizaron las comunidades de software libre en cuatro tipos: ad hoc, estandarizado, organizado y comercial, además de contar con seis distintas dimensiones: estructura general, entorno, objetivos, métodos, comunidad de usuarios y licencias. Algunos investigadores argumentan que el OSS está en una encrucijada y que los grupos de OSS comercial y comunitario necesitan comprender dónde convergen y dónde puede haber conflictos potenciales.

El desarrollo de software de código fuente abierto es útil para muchas aplicaciones que se ejecutan en diversas plataformas, incluyendo dispositivos móviles y equipos de comunicación. Su empleo puede contribuir a acelerar el proceso de estandarización de comunicaciones entre dispositivos. El uso extendido de OSS puede ayudar a aliviar la severa escasez de programadores, al poner las herramientas de programación en manos de estudiantes de países en desarrollo en menos tiempo del que se requeriría si estuvieran limitados al uso de paquetes propietarios, y puede ayudar a resolver grandes problemas mediante una colaboración intensa y extensa.

NECESIDAD DEL ANÁLISIS Y DISEÑO DE SISTEMAS

El análisis y diseño de sistemas que los analistas de sistemas llevan a cabo busca comprender qué necesitan los humanos para analizar la entrada o el flujo de datos de manera sistemática, procesar o transformar los datos, almacenarlos y producir información en el contexto de una organización específica. Mediante un análisis detallado, los analistas buscan identificar y resolver los problemas correctos. Además, el análisis y diseño de sistemas se utiliza para analizar, diseñar e implementar las mejoras en el apoyo para los usuarios y las funciones de negocios que se puedan llevar a cabo mediante el uso de sistemas de información computarizados.

Si un sistema se instala sin una planificación apropiada, a menudo los usuarios quedan muy insatisfechos y dejan de usar el sistema. El análisis y diseño añade estructura a los sistemas, y constituye una actividad costosa que de otra manera se realizaría al azar. Se puede considerar como una serie de procesos que se llevan a cabo en forma sistemática para mejorar una empresa mediante el uso de sistemas de información computarizados. El análisis y diseño de sistemas implica trabajar con los usuarios actuales y eventuales de los sistemas de información para ofrecerles soporte en su empleo de las tecnologías en un entorno organizacional.

La participación del usuario en el proyecto de sistemas es imprescindible para el desarrollo exitoso de los sistemas de información computarizados. Los analistas de sistemas, cuyos roles en la organización analizaremos a continuación, son el otro componente esencial para desarrollar sistemas de información útiles.

Los usuarios avanzan al primer plano a medida que los equipos de desarrollo de software se internacionalizan más en cuanto a su composición. Esto significa que hay más énfasis en trabajar con los usuarios de software; en realizar un análisis de su empresa, sus problemas y objetivos; y en comunicar el análisis y diseño del sistema planificado a todos los involucrados.

Las nuevas tecnologías también impulsan la necesidad del análisis de sistemas. Ajax (JavaScript asíncrono y XML) no es un nuevo lenguaje de programación, sino una técnica que utiliza los lenguajes existentes para hacer que las páginas Web funcionen en forma más parecida a un programa de aplicación de escritorio tradicional. Los analistas se enfrentarán a la tarea de crear y rediseñar páginas Web que utilicen tecnologías Ajax. Los nuevos lenguajes de programación, como el marco de trabajo Web de código fuente abierto conocido como *Ruby on Rails*, una combinación entre lenguaje de programación y generador de código para crear aplicaciones Web, requerirá de más análisis.

ROLES DEL ANALISTA DE SISTEMAS

El analista de sistemas evalúa en forma sistemática cómo interactúan los usuarios con la tecnología y cómo operan las empresas, para lo cual examina los procesos de entrada/salida de los datos y la producción de información con la intención de mejorar los procesos organizacionales. Muchas mejoras implican un mejor soporte de las tareas de trabajo de los usuarios y las funciones empresariales mediante el uso de sistemas de información computarizados. Esta definición enfatiza el uso de una metodología sistemática para analizar (y potencialmente mejorar) lo que ocurre en el contexto específico que los usuarios experimentan y las empresas crean.

El analista de sistemas como consultor

Con frecuencia el analista de sistemas actúa como consultor de sistemas para las personas y sus empresas y, por ende, pueden llegar a contratarlo específicamente para lidiar con las cuestiones relacionadas con los sistemas de información dentro de la empresa. Dicha contratación puede ser una ventaja, ya que los consultores externos pueden proveer una perspectiva fresca de la cual carezcan otras personas en la organización. También implica que los analistas externos están en desventaja, ya que alguien de fuera nunca podrá conocer la verdadera cultura organizacional. Como consultor externo, usted dependerá en gran parte de los métodos sistemáticos que el libro describe para analizar y diseñar sistemas de información apropiados para los usuarios que trabajan en una empresa en particular. Además se basará en los usuarios de los sistemas de información para que le ayuden a comprender la cultura organizacional desde los puntos de vista de los demás.

El analista de sistemas como experto de soporte

Como empleado de una empresa, tal vez le toque desempeñarse como experto en soporte en algún puesto de sistemas. En este rol, el analista se basa en su experiencia profesional sobre hardware y software y su uso en los

OPORTUNIDAD DE CONSULTORÍA 1.1

Contratación saludable: se solicita ayuda para el comercio electrónico

Le agradará saber que presionamos mucho a la gerencia para contratar un nuevo analista de sistemas especializado en el desarrollo de comercio electrónico", dice Al Falfa, analista de sistemas de la cadena internacional Marathon Vitamin Shops, con múltiples puntos de venta, quien se reunirá con su extenso equipo de analistas de sistemas para decidir sobre las cualidades que deberá poseer el nuevo miembro de su equipo. Al continúa: "De hecho, les emocionó tanto la posibilidad de que nuestro equipo ayude a migrar a Marathon a una estrategia de comercio electrónico que dijeron que deberíamos empezar a buscar ahora y no esperar hasta otoño".

Ginger Rute, una de las analistas, asiente diciendo: "La demanda de desarrolladores de sitios Web aún sobrepasa a la oferta. Debemos movernos con rapidez. Creo que el nuevo miembro de nuestro equipo debe tener experiencia en modelado de sistemas, JavaScript, C++ y Rational Rose, y debe estar familiarizado con Ajax, entre otras cosas".

Al mira sorprendido la extensa lista de habilidades de Ginger y luego responde: "Bueno, sin duda podríamos basarnos en eso. Pero también me gustaría una persona con conocimientos de negocios. La mayoría de los recién egresados tienen sólidas habilidades de programación, pero también deben saber sobre contabilidad, inventarios y distribución de bienes y servicios".

Vita Ming, la analista más reciente del grupo, finalmente participa en la discusión: "Una de las razones por las que elegí trabajar con ustedes es que sentí que nos llevaríamos muy bien. Como tenía otras oportunidades, analicé con mucho cuidado la atmósfera de aquí. Hasta donde he visto, somos un grupo amigable. Debemos asegurarnos de contratar a alguien con buena personalidad y que se acople bien a nosotros".

Al asiente y continúa: "Vita tiene razón. El nuevo miembro debe ser capaz de comunicarse bien tanto con nosotros como con los clientes de la empresa. Siempre nos estamos comunicando de una forma u otra, por medio de presentaciones formales, dibujando diagramas o entrevistando usuarios; si comprenden el proceso de toma de decisiones, el trabajo será más sencillo. Asimismo, Marathon está interesada en integrar el comercio electrónico en todas las actividades comerciales. Necesitamos alguien que por lo menos tenga una noción de la importancia estratégica de la Web. El diseño de páginas es una parte muy pequeña de ello".

Ginger interviene de nuevo con una dosis saludable de sentido práctico y dice: "Dejemos eso a la administración. Yo sigo pensando que el nuevo miembro debe ser un buen programador". Después delibera en voz alta: "Me pregunto, ¿qué tan importante será el UML?".

Después de escuchar pacientemente la lista de deseos de todos los demás, Carl Siem, uno de los analistas en jefe habla bromeando: "¡Mejor deberíamos averiguar si Supermán está disponible!".

Mientras todos en el grupo comparten risas, Al ve una oportunidad de intentar consenso y dice: "Ya escuchamos varias cualidades. Ahora hagamos, cada uno de nosotros, una lista de las cualidades que personalmente creemos deba poseer la nueva persona encargada del desarrollo de comercio electrónico. Compartiremos las listas y seguiremos discutiendo hasta que podamos describir a la persona con el detalle suficiente como para enviar la descripción al grupo de recursos humanos para que la procesen."

¿Qué cualidades debería estar buscando el equipo al contratar al nuevo miembro del equipo de desarrollo de comercio electrónico? ¿Es más importante conocer lenguajes específicos o tener la aptitud de aprender a usar lenguajes y paquetes de software con rapidez? ¿Qué tan importante es que la persona a contratar tenga ciertos conocimientos básicos de negocios? ¿Deben todos los miembros del equipo poseer competencias y habilidades idénticas? ¿Qué rasgos de personalidad o carácter son deseables en un analista de sistemas que trabaje en el desarrollo de comercio electrónico?

negocios. A menudo este trabajo no es un verdadero proyecto de sistemas, sino que supone una pequeña modificación o decisión que afecta a un solo departamento.

Como experto en soporte usted no administra el proyecto; simplemente actúa como recurso para quienes lo administran. Si usted es un analista de sistemas empleado por una organización de manufactura o de servicios, tal vez muchas de sus actividades diarias correspondan a este rol.

El analista de sistemas como agente de cambio

El rol más extenso y responsable del analista de sistemas es el de agente de cambio, ya sea interno o externo, para la empresa. Como analista, usted actúa como un agente de cambio cada vez que realiza alguna de las actividades en el ciclo de vida del desarrollo de sistemas (que veremos en la siguiente sección) y está presente e interactúa con los usuarios y la empresa durante un periodo extendido (de dos semanas hasta más de un año). Podemos definir a un agente de cambio como una persona que actúa como catalizador para el cambio, desarrolla un plan de cambio y trabaja con otros para facilitarlo.

Su presencia en la empresa genera un cambio; como analista de sistemas debe reconocer este hecho y utilizarlo como punto inicial para su análisis. Debe interactuar con los usuarios y la administración (si no son lo mismo) desde las primeras etapas del inicio de su proyecto, pues sin su ayuda usted no podrá comprender qué necesitan para apoyar su trabajo en la organización, y no se podrá llevar a cabo el verdadero cambio.

Si el cambio (es decir, las mejoras que se pueden realizar en la empresa por medio de los sistemas de información) parece garantizado después del análisis, el siguiente paso es desarrollar un plan junto con las personas que deben llevarlo a cabo. Una vez que se llega a un consenso en cuanto al cambio que se debe realizar, usted debe interactuar en forma constante con todos los que vayan a cambiar.

En el rol de agente de cambio, un analista de sistemas aboga por una vía particular de cambio involucrada con el uso de sistemas de información. También enseña a los usuarios el proceso del cambio, ya que los cambios en el sistema de información no ocurren por separado, sino que producen cambios consecuentes en el resto de la organización.

Cualidades del analista de sistemas

A partir de las anteriores descripciones de roles, es fácil deducir que un analista de sistemas exitoso debe poseer un amplio rango de cualidades. Aunque los perfiles pueden variar de un caso específico a otro, hay ciertas cualidades que la mayoría de los analistas de sistemas parecen tener.

Por encima de todo, el analista es un solucionador de problemas: una persona que ve el análisis de los problemas como un reto y se divierte al idear soluciones factibles. Cuando sea necesario, el analista debe tener la capacidad de lidiar de manera sistemática con la situación existente mediante la aplicación habilidosa de herramientas, técnicas y experiencia. El analista también debe ser un comunicador capaz de crear relaciones significativas con otras personas durante periodos extendidos de tiempo. Los analistas de sistemas necesitan ser capaces de comprender las necesidades de los humanos al interactuar con la tecnología, además de que necesitan suficiente experiencia con las computadoras como para programar, comprender las capacidades de las computadoras, deducir los requerimientos de información de los usuarios y comunicar lo que se necesita a los programadores. También deben poseer una sólida ética personal y profesional para poder dar forma a las relaciones con sus clientes.

El analista de sistemas debe ser un individuo disciplinado y motivado, y tener capacidad para coordinar tanto a personas como recursos variados para llevar a cabo los proyectos. El análisis de sistemas es una carrera exigente, pero como compensación siempre está en continua evolución y ofrece nuevos retos.

EL CICLO DE VIDA DEL DESARROLLO DE SISTEMAS

En este capítulo hemos hecho referencia a la metodología sistemática con la que los analistas llevan a cabo el análisis y diseño de los sistemas de información. Gran parte de ello se expresa en lo que conocemos como el ciclo de vida del desarrollo de sistemas (SDLC). El SDLC es una metodología en fases para el análisis y diseño, de acuerdo con la cual los sistemas se desarrollan mejor al utilizar un ciclo específico de actividades del analista y los usuarios.

Los analistas no se han puesto de acuerdo sobre la cantidad de fases que hay en el SDLC, pero por lo general alaban su metodología organizada. En este libro vamos a dividir el ciclo en siete fases, como se muestra en la figura 1.3. Aunque cada fase se presenta de manera discreta, en realidad nunca se puede llevar a cabo como un paso separado, sino que varias actividades pueden ocurrir al mismo tiempo, e incluso se pueden repetir.

FIGURA 1.3
Las siete fases del ciclo de desarrollo de sistemas (SDLC).

Incorporación de las consideraciones de la interacción humano-computadora

En años recientes, el estudio de la interacción humano-computadora (HCI) se ha vuelto cada vez más importante para los analistas de sistemas. Aunque la definición sigue evolucionando, los investigadores caracterizan a la HCI como el "aspecto de una computadora que permite las comunicaciones e interacciones entre ella y los humanos. Es el nivel de la computadora que está entre ella y los humanos" (Zhang, Carey, Te'eni & Tremaine, 2005, p. 518). Los analistas que utilizan una metodología HCI se enfocan en las personas en vez del trabajo a realizar o la TI involucrada. Su metodología para un problema es multifacética, ya que analiza los "factores humanos ergonómicos, cognitivos, afectivos y de comportamiento involucrados en las tareas de los usuarios, los procesos de solución de problemas y el contexto de la interacción" (Zhang, Carey, Te'eni & Tremaine, 2005, p. 518). La interacción entre humano y computadora se concentra en las necesidades humanas en vez de enfocarse primero en las necesidades de la organización y del sistema. Los analistas que adoptan los principios de la HCI examinan una amplia variedad de necesidades en el contexto de los usuarios humanos que interactúan con la tecnología de información para completar sus tareas y resolver problemas. Aquí también se toman en cuenta los factores físicos o ergonómicos, los cognitivos relacionados con la facilidad de uso, los estéticos, los relacionados con una experiencia de uso agradable, y los aspectos conductuales relacionados con la utilidad del sistema.

La HCI también se considera una metodología centrada en los humanos, que pone a las personas por encima de la estructura o cultura organizacional al crear sistemas. Cuando los analistas emplean la HCI como un lente para filtrar el mundo, su trabajo posee una calidad distinta a la del trabajo de aquellos quienes no poseen esta perspectiva.

Su carrera profesional se puede beneficiar gracias a la sólida comprensión de los fundamentos de la HCI. La demanda de analistas capaces de incorporar la HCI al proceso de desarrollo de sistemas sigue en aumento, a medida que cada vez más empresas se dan cuenta de que la calidad de los sistemas y la calidad de la vida laboral se pueden mejorar mediante el empleo de una metodología centrada en los humanos desde el inicio de un provecto.

La aplicación de los principios de la interacción humano-computadora implica descubrir y resolver las frustraciones que los usuarios experimentan al usar tecnologías de información, entre las que se cuenta la sospecha de que el analista malentendió el trabajo que se iba a realizar, las tareas involucradas y cuál era la mejor manera de apoyarlas; sensación de impotencia o falta de control al trabajar con el sistema; violaciones intencionales a la privacidad; problemas al navegar por las pantallas y menús del sistema, y una discrepancia general entre el sistema que se diseñó y la forma en que los mismos usuarios piensan con respecto a sus procesos laborales.

Cuando los analistas de sistemas adoptan una metodología HCI, pueden erradicar o minimizar las malas apreciaciones y los errores de diseño que provocan el rechazo de los usuarios hacia los nuevos sistemas o su abandono poco tiempo después de la implementación.

Los investigadores de la HCI observan ventajas al incluir la HCI en cada fase del SDLC. Es una metodología que vale la pena usar y para reflejar esto trataremos de llevar los intereses humanos en forma explícita a cada fase del SDLC. Como estudiante de análisis de sistemas, usted también puede ofrecer una nueva perspectiva al SDLC para identificar las oportunidades que tienen los diseñadores de lidiar con las cuestiones de la HCI y las formas en que los usuarios pueden tener una participación más primordial en cada fase del SDLC. En el capítulo 14 nos dedicaremos a examinar el rol del analista de sistemas en cuanto a diseñar sistemas e interfaces centrados en los humanos desde la perspectiva de la HCI.

Identificación de los problemas, oportunidades y objetivos

En esta primera fase del ciclo de vida del desarrollo de sistemas, el analista se encarga de identificar correctamente los problemas, las oportunidades y los objetivos. Esta etapa es imprescindible para el éxito del resto del proyecto: ya que a nadie le gusta desperdiciar el tiempo resolviendo un problema mal caracterizado.

En la primera fase el analista debe analizar con honestidad lo que está ocurriendo en la empresa. Después, junto con otros miembros de la organización, debe comenzar a señalar los problemas. A menudo, otras personas habrían planteado también estos problemas, razón por la cual se llamó en un principio al analista. Las oportunidades residen en las situaciones que el analista cree poder mejorar mediante el uso de sistemas de información computarizados. Al aprovechar estas oportunidades, la empresa puede obtener una ventaja competitiva o establecer un estándar en la industria.

La identificación de los objetivos también es un componente importante de la primera fase. El analista debe descubrir primero qué trata de hacer la empresa; después debe ser capaz de determinar si alguno de los aspectos de las aplicaciones de los sistemas de información puede ayudar a que la empresa logre sus objetivos al enfrentar problemas u oportunidades específicos.

Las personas involucradas en la primera fase son los usuarios, los analistas y los administradores de sistemas que coordinan el proyecto. En esta fase las actividades consisten en entrevistar a los encargados de la administración de los usuarios, sintetizar el conocimiento obtenido, estimar el alcance del proyecto y documentar los

resultados. El resultado de esta fase es un informe de viabilidad, el cual contiene la definición de un problema y sintetiza los objetivos. Después, la administración de la empresa debe tomar una decisión en cuanto a proceder o no con el proyecto propuesto. Si el grupo de usuarios no tiene suficientes fondos en su presupuesto o desea hacer frente a problemas que no están relacionados, o si los problemas no requieren un sistema computacional, tal vez se pueda recomendar una solución distinta y el proyecto de sistemas no continúe.

Determinación de los requerimientos de información del factor humano

La siguiente fase a la que entra el analista es determinar las necesidades de los usuarios involucrados, mediante el uso de varias herramientas, para comprender la forma en que interactúan en el contexto laboral con sus sistemas de información actuales. El analista utilizará métodos interactivos como entrevistas, muestreos e investigación de datos duros, además de los cuestionarios y los métodos discretos, como observar el comportamiento de los encargados al tomar las decisiones y sus entornos de oficina, y los métodos integrales como la creación de prototipos.

El analista utilizará estos métodos para plantear y responder muchas preguntas relacionadas con la interacción humano-computadora (HCI), incluyendo preguntas tales como: "¿Cuáles son las fortalezas y limitaciones físicas de los usuarios?", o dicho en otras palabras, "¿qué hay que hacer para que el sistema sea perceptible, legible y seguro?", "¿cómo puede diseñarse el nuevo sistema para que sea fácil de usar, aprender y recordar?", "¿cómo puede el sistema ser agradable o incluso divertido de usar?", "¿cómo puede el sistema apoyar las tareas laborales individuales de un usuario y buscar nuevas formas de hacerlas más productivas?".

En la fase de requerimientos del SDLC, el analista se esfuerza por comprender qué información requieren los usuarios para realizar sus trabajos. En este punto el analista examina cómo hacer que el sistema sea útil para las personas involucradas. ¿Cómo puede el sistema ofrecer un mejor apoyo para las tareas individuales que se deben llevar a cabo? ¿Qué nuevas tareas habilita el nuevo sistema que los usuarios no podían realizar sin él? ¿Cómo se puede crear el sistema de manera que extienda las capacidades de un usuario más allá de lo provisto por el sistema anterior? ¿Cómo puede el analista crear un sistema gratificante para los trabajadores?

Las personas involucradas en esta fase son los analistas y los usuarios, por lo general los gerentes y los trabajadores de operaciones. El analista de sistema debe conocer los detalles sobre las funciones del sistema actual: el quién (las personas involucradas), el qué (la actividad de la empresa), el dónde (el entorno en el que se lleva a cabo el trabajo), el cuándo (la coordinación) y el cómo (de qué manera particular se realizan los procedimientos actuales) de la empresa a la que está estudiando. Después, el analista debe preguntar por qué la empresa utiliza el sistema actual. Puede haber buenas razones por las cuales la empresa trabaje con los métodos actuales, razón por la que se deben tener en cuenta al diseñar un nuevo sistema.

El desarrollo ágil es una metodología orientada a objetos (OOA) para el desarrollo de sistemas, en la cual se incluye un método de desarrollo (junto con la generación de los requerimientos de información) así como herramientas de software. En el capítulo 6 veremos este tipo de desarrollo, junto con los prototipos (hay más información sobre las metodologías orientadas a objetos en el capítulo 10).

No obstante, si la razón de seguir con las operaciones actuales es que "siempre se ha hecho de esa forma", el analista querrá mejorar los procedimientos. Al terminar esta fase, el analista deberá comprender la forma en que los usuarios realizan su trabajo al interactuar con una computadora y deberá empezar a comprender cómo mejorar la utilidad y capacidad de uso del nuevo sistema. También deberá saber cómo funciona la empresa y tener información completa sobre personas, objetivos, datos y procedimientos involucrados.

Análisis de las necesidades del sistema

La siguiente fase que debe llevar a cabo el analista de sistemas involucra el análisis de las necesidades del sistema. Aquí también hay herramientas y técnicas especiales que ayudan al analista a realizar las determinaciones de los requerimientos. Las herramientas como los diagramas de flujo de datos (DFD) para graficar la entrada, los procesos y la salida de las funciones de la empresa, o los diagramas de actividad o de secuencia para mostrar la secuencia de los eventos, sirven para ilustrar a los sistemas de una manera estructurada y gráfica. A partir de los diagramas de flujo de datos, de secuencia u otros tipos de diagramas se debe desarrollar un diccionario de datos para enlistar todos los elementos de datos utilizados en el sistema, así como sus especificaciones.

Durante esta fase, el analista de sistemas también analiza las decisiones estructuradas llevadas a cabo. Las decisiones estructuradas son aquellas para las que se pueden determinar condiciones, alternativas de condición, acciones y reglas de acción. Hay tres métodos principales para el análisis de las decisiones estructuradas: inglés/ español estructurado, tablas de decisión y árboles de decisión.

En este punto del SDLC, el analista de sistemas prepara una propuesta de sistemas en la que sintetiza todo lo que ha averiguado sobre los usuarios, la capacidad de uso y la utilidad de los sistemas actuales; incluye un análisis de costo-beneficio de las alternativas y, si se requiere, hace recomendaciones. Si la administración acepta una de las recomendaciones, el análisis continúa por esa vía. Cada problema de sistemas es único, por lo que nunca hay sólo una solución correcta. La manera en que se formule una recomendación o solución depende de

las cualidades individuales y la capacitación profesional de cada analista, y de su interacción con los usuarios en el contexto de su entorno laboral.

Diseño del sistema recomendado

En la fase de diseño del SDLC, el analista de sistemas utiliza la información recolectada antes para realizar el diseño lógico del sistema de información. El analista diseña los procedimientos para ayudar a que los usuarios introduzcan los datos con precisión, de manera que los datos que entren al sistema de información sean los correctos. Además, el analista debe ayudar a que los usuarios completen la entrada de datos efectiva al sistema de información mediante el uso de las técnicas del buen diseño de formularios y páginas Web o pantallas.

Parte del diseño lógico del sistema de información es idear la HCI. La interfaz conecta al usuario con el sistema, por lo que es extremadamente importante. La interfaz del usuario se diseña con ayuda de los usuarios para asegurar que el sistema sea perceptible, legible y seguro, así como atractivo y divertido de usar. Ejemplos de interfaces de usuario físicas son el teclado (para escribir las preguntas y respuestas), los menús en pantalla (para obtener los comandos de los usuarios) y varios tipos de interfaces gráficas de usuario (GUI) basadas en un ratón o una pantalla táctil.

La fase de diseño también incluye el diseño de bases de datos que almacenarán gran parte de los datos necesarios para los encargados de tomar las decisiones en la organización. Los usuarios se benefician de una base de datos bien organizada que sea lógica para ellos y se corresponda con la forma en que ven su trabajo. En esta fase, el analista también trabaja con los usuarios para diseñar una salida (ya sea en pantalla o impresa) que cumpla con sus necesidades de información.

Por último, el analista debe diseñar controles y procedimientos de respaldo para proteger el sistema y los datos, y para producir paquetes de especificación de programas para los programadores. Cada paquete debe contener los diseños de las entradas y las salidas, las especificaciones de los archivos y los detalles sobre el procesamiento; también puede incluir árboles o tablas de decisión, UML o diagramas de flujo de datos, junto con los nombres y las funciones de cualquier código previamente escrito dentro de la empresa o que utilice código u otras bibliotecas de clases.

Desarrollo y documentación del software

En la quinta fase del SDLC, el analista trabaja con los programadores para desarrollar el software original requerido. Durante ella, el analista desarrolla junto con los usuarios una documentación efectiva para el software, incluyendo manuales de procedimientos, ayuda en línea, sitios Web con preguntas frecuentes (FAQ) y archivos Léame (Read Me) para incluir con el nuevo software. Como los usuarios están involucrados desde el principio, la fase de documentación debe lidiar con las preguntas que hicieron y resolvieron junto con el analista. La documentación indica a los usuarios cómo deben usar el software y qué deben hacer en caso de que ocurran problemas.

Los programadores desempeñan un rol clave en esta fase, ya que diseñan, codifican y eliminan los errores sintácticos de los programas de computadora. Para asegurar la calidad, un programador puede llevar a cabo un recorrido por el diseño o por el código para explicar las porciones complejas del programa a un equipo formado por otros programadores.

Prueba y mantenimiento del sistema

Antes de utilizar el sistema de información, se debe probar. Es mucho menos costoso detectar los problemas antes de entregar el sistema a los usuarios. Una parte del procedimiento de prueba es llevado a cabo por los programadores solos; la otra la realizan junto con los analistas de sistemas. Primero se completa una serie de pruebas para señalar los problemas con datos de muestra y después se utilizan datos reales del sistema actual. A menudo, los planes de prueba se crean en las primeras etapas del SDLC y se refinan a medida que el proyecto progresa.

El mantenimiento del sistema y la documentación de este mantenimiento empieza en esta fase y se lleva a cabo de manera rutinaria durante toda la vida del sistema de información. Gran parte del trabajo rutinario del programador consiste en el mantenimiento, por lo cual las empresas invierten una gran cantidad de dinero en este proceso. Ciertos procedimientos de mantenimiento, como las actualizaciones de los programas, se pueden llevar a cabo a través del sitio Web del distribuidor. Muchos de los procedimientos sistemáticos que emplea el analista durante el SDLC pueden ayudar a asegurar que el mantenimiento siempre se mantenga en el nivel mínimo necesario.

Implementación y evaluación del sistema

En esta última fase del desarrollo de sistemas, el analista ayuda a implementar el sistema de información. En esta fase hay que capacitar a los usuarios para operar el sistema. Los distribuidores se encargan de una parte de la capacitación, pero la supervisión de la capacitación es responsabilidad del analista de sistemas. Además, el analista necesita planear una conversión sin problemas del sistema antiguo al nuevo. Este proceso incluye convertir los archivos de los formatos anteriores a los nuevos, o crear una base de datos, instalar equipo y llevar el nuevo sistema a producción.

ATRACTIVO DE LA MAC

En el hogar y en nuestras visitas a los campus de universidades y empresas en todo el mundo hemos observado que cada vez más estudiantes y las organizaciones muestran un interés por la Mac. Por ello pensamos que sería interesante mostrar algunas de las opciones que tiene un diseñador de sistemas al respecto de esta plataforma. Al momento de escribir este libro, aproximadamente una de cada siete computadoras personales que se compran en los Estados Unidos es Mac. Las Mac son equipos de calidad basados en procesadores Intel que ejecutan un competente sistema operativo nativo, pero también pueden ejecutar Windows, por lo que en definitiva cualquier cosa que se pueda hacer en una PC se puede hacer también en una Mac. Una forma de ejecutar Windows es arrancar directamente la Mac con el sistema Windows (una vez instalado); otra forma es usar software de virtualización como VM Fusion, el cual mostramos en la figura 1.MAC.

Los seguidores de las Mac citan muchas razones por las cuales las utilizan, incluyendo una mejor seguridad integrada en el sistema operativo de la Mac, respaldos inteligentes mediante la máquina de tiempo integrada, la multitud de aplicaciones ya incluidas, la confiabilidad de la configuración y el trabajo en red, y la capacidad de sincronizar las Mac con otros equipos Mac y con el iPhone. Para nosotros, la razón más convincente es su diseño en sí.

FIGURA 1.MAC

Windows ejecutándose en una Mac mediante el software de virtualización conocido como VM Fusion.

La evaluación se incluye como parte de esta fase final del SDLC principalmente por cuestiones informativas. En realidad, la evaluación se realiza durante cada fase. El criterio clave que debemos satisfacer es si los usuarios previstos están utilizando el sistema.

Hay que tener en cuenta que a menudo el trabajo relacionado con los sistemas es cíclico. Cuando un analista termina una fase del desarrollo de sistemas y continúa con la siguiente, al descubrir un problema tal vez se vea obligado a regresar a la fase anterior y modificar el trabajo que realizó ahí.

El impacto del mantenimiento

Una vez instalado el sistema hay que darle mantenimiento, lo cual implica que tal vez haya que realizar modificaciones en los programas de computadora y mantenerlos actualizados. La figura 1.4 muestra la cantidad promedio de tiempo que se invierte en el mantenimiento de una instalación de MIS común. Las estimaciones del tiempo invertido por los departamentos en el mantenimiento varían desde un 48 hasta un 60 por ciento del tiempo total invertido en el desarrollo de los sistemas. Queda muy poco tiempo libre para el desarrollo de nuevos sistemas. A medida que aumenta el número de programas escritos, también aumenta la cantidad de mantenimiento que se requiere.

FIGURA 1.4

Algunos investigadores estiman que la cantidad de tiempo invertido en el mantenimiento de sistemas puede ser hasta del 60 por ciento del tiempo total invertido en los proyectos de sistemas.

El mantenimiento se lleva a cabo por dos razones. La primera es para corregir los errores de software. Sin importar qué tan minuciosas sean las pruebas en el sistema, se pueden infiltrar errores o 'bugs' en los programas computacionales. Los 'bugs' en el software comercial de PC se documentan comúnmente como "anomalías conocidas" y se corrigen al momento de liberar nuevas versiones, o liberando una versión provisional. En el software personalizado (también conocido como software hecho a la medida), los 'bugs' se deben corregir a medida que se van detectando.

La otra razón de realizar mantenimiento en los sistemas es para mejorar las capacidades del software en respuesta a las necesidades cambiantes de la organización, que por lo general implica una de las siguientes tres situaciones:

- 1. Con frecuencia los usuarios solicitan características adicionales a medida que se familiarizan con el sistema computacional y sus capacidades.
- 2. La empresa cambia con el tiempo.
- 3. El hardware y el software cambian a un ritmo acelerado.

La figura 1.5 muestra la cantidad de recursos (por lo general tiempo y dinero) que se invierten en el desarrollo y mantenimiento de sistemas. El área bajo la curva representa la cantidad total invertida en dólares. Podemos ver que, a través del tiempo, es probable que el costo total del mantenimiento exceda al costo del desarrollo de sistemas. En cierto punto es más factible realizar un nuevo estudio de sistemas, debido a que el costo de continuar con el mantenimiento es sin duda mayor que el de crear un sistema de información totalmente nuevo.

En resumen, el mantenimiento es un proceso continuo que se realiza a lo largo del ciclo de vida de un sistema de información. Una vez que se instala el sistema de información, por lo general el mantenimiento implica corregir los errores del programa que no se habían detectado antes. Una vez corregidos, el sistema se acerca a un estado estable para proveer un servicio confiable a sus usuarios. Durante este periodo, el mantenimiento puede consistir en eliminar unos cuantos 'bugs' que no se detectaron antes y actualizar el sistema con mejoras menores. Sin embargo, a medida que pasa el tiempo y evolucionan tanto la empresa como la tecnología, el esfuerzo de mantenimiento aumenta en forma considerable.

FIGURA 1.5

Consumo de los recursos durante el tiempo de vida del sistema.