Utilizing Convolutional Neural Networks to Predict Style of Paintings.

Daniel Wang | Nicholas Nguyen | Steven Shields | Kaytlynn Skibo General Assembly DSI Project 5 | 03/24/23

Table of Contents.

Why might someone need this ML model? (The backstory) Vocabulary

The origins of our dataset and our process for preparing it.

Interesting snippets and statistics about our dataset.

The different models we evaluated (& how they differed).

Results,
explanations,
steps forward,
and the epilogue
to our story.

BONUS: Audience interaction!

Can a painting's art style be predicted by using the image in a CNN model?

Photo by Allef Vinicius on Unsplash

- Neural networks as a "magic bullet".
- So. Many. Art styles.
- Can be hard to distinguish between, even for art experts aficionados.
- CNN for predicting art style from image pixel data.

Story Introduction / Problem Statement

- Art thieves who pulled off the heist of the century.
- Team's resident art expert was KIA.
- No idea how to fence the stolen art without knowing the art styles.
- Getting a **new art expert** is too risky.
- Train a CNN machine learning model instead!

Neural Net Vocabulary.

- Convolutional Neural Network (CNN)
- RGB Pixel Arrays
- Convolution Filters
- Kernel Size
- Batch Normalization
- Regularization
- Dropout Layer
- Dense Layer

Style -artwork style	Link - url for image	V_Sent - sentiment analysis
Artwork - art name	Language - origin language	Hex - color code
Artist	Translated - translated art name	Color - main color of work
Date	Style Num - number for style	

Data Description:

• Data Source : Kaggle

• Data Size : ~120k x 5 columns elements before cleaning

Data Shape: 89,545 rows x 11 columns after cleaning

•

Data Cleaning

- Drop bad URL's
- Drop duplicate artwork
 - Sketches for final work
- Drop styles with less than500 pieces

- Date column
 - Remove hyphens from date ranges
 - Keep first date
 - Change century dates to numeric
 - \rightarrow VII \rightarrow 600 (ad)
 - Drop BC dates

Feature Engineering

9

- Translated
- V_sent
- Style Number
- Color
- Language
- Hex

Tableau Dashboard

Preprocessing

Problems in preparing data for modeling

- Converting imgs into arrays
- Filepaths to imgs
- Creating DF of matrices

The solution?

Preprocessing Solution

<u>Tensorflow Keras</u> (*image_dataset_from_directory* function)

- Faster, easier, higher quality
- BatchDataset
- 250x250 pixels
- Categorical Labels

Sometimes, things don't always go to plan

Model	Train Loss	Validation Loss	Train Acc	Validation Acc
CNN with rmsprop	3.2450	3.2479	0.1456	0.1326
CNN with 3 Dense Layers	2.8841	3.079	0.1989	0.1672
CNN with 9x9 Kernel Size and Dropout (.12)	3.0910	3.0995	0.1628	0.1599
CNN with BatchNormalization and Dropout (.51)	2.6489	3.159	0.2560	0.1797
CNN with 5 Filters, 7x7 Kernel Size, Dropout(.12), & BatchNormalization	3.0741	3.0341	0.1742	0.1783

Recommendations

- Have some prior knowledge on what you're about to steal, helps a lot
- Don't steal 100,000 artworks at one time, or at least make sure they're all the same style
- Making a machine learning model can takes more time than the cops are giving us
- The model can't direct us much, so lets hope museums have a buy-back program

Next Steps.

- More Time, More Processing Power
- Combine Classes or Reduce Them
- Less downsizing, Experiment with

more Models

Expressionism or Romanticism?

Conclusion: Failed Model but 🔷 Successful Experience

