MFE 409 LECTURE 3 RISK FOR OPTIONS

Valentin Haddad

Spring 2019

UCLA Anderson

LECTURE OBJECTIVES

Risk management for option trading

■ What are the risks of option strategies?

■ How to quantify these risks?

Trading Derivatives and Risk Management

■ Two broad levels of risk management inside financial institutions

► Trader level: (hard) risk limits

Institution level: aggregate positions and construct broad measures of risk

Trading Derivatives and Risk Management

■ Two broad levels of risk management inside financial institutions

- ► Trader level: (hard) risk limits
 - ★ Often expressed in terms of Greeks

- Institution level: aggregate positions and construct broad measures of risk
 - * Often around VaR

DELTA

DELTA

■ Delta (Δ) of a portfolio: change in portfolio price in response to a change in underlying price

$$\Delta = \frac{\partial P}{\partial S}$$

DELTA

■ Delta (Δ) of a portfolio: change in portfolio price in response to a change in underlying price

$$\Delta = \frac{\partial P}{\partial S}$$

- \blacksquare Buying $-\Delta$ of the underlying protects the portfolio against local changes in underlying price
- Can also hedge with another option

LINEAR PRODUCTS

■ If the value of the portfolio is linear in the price of the underlying, delta-hedging eliminates all risk

Examples: forwards, futures, fixed promises in foreign currency, ...

Static hedging works perfectly: "hedge and forget"

EXAMPLE

- A U.S. company has a receivable of EUR 10mil in one year.
- \blacksquare One-year forward exchange rate $F=1.436 \mathrm{USD}/\mathrm{EUR}$

EXAMPLE

- A U.S. company has a receivable of EUR 10mil in one year.
- lacksquare One-year forward exchange rate $F=1.436 \mathrm{USD/EUR}$

Nonlinear Products

If portfolio payoff nonlinear, static delta-hedging does not protect against larger shocks

■ But ...

Nonlinear Products

 If portfolio payoff nonlinear, static delta-hedging does not protect against larger shocks

■ But ...

- Continuous delta-hedging eliminates all risk
- By no arbitrage, can be used to find option prices

▶ Long EUR10m, EUR/USD =
$$1.436$$
, volatility of EUR/USD 0.65%)

Short 10m
$$\rightarrow$$
 puts to sell euros in 6 m $\Delta = -0.5044$

$$R_{t+1} = 10m \times (M_{t+1} - \Pi_{t}) = 10m (P_{t+1} - P_{t})$$

$$= 14.36 \times (\Pi_{t+1} - \Pi_{t}) = 10m (P_{t+1} - P_{t})$$

$$\approx 14.36 \times (\Pi_{t+1} - \Pi_{t}) = 10m \times \Delta \times (\Pi_{t+1} - \Pi_{t})$$

$$\frac{14.36 \times [\Pi_{tx_1} - \Pi_{t})}{\Pi_{tx_1}} - 10 \times \Delta \times (\Pi_{t+1} - \Pi_{t})}$$

$$\approx 14.36 \left(\frac{\Pi_{tx_1} - \Pi_{t}}{\Pi_{tx_1}}\right) - 10 \times \Delta \times \Pi_{t} \left(\frac{\Pi_{tx_1} - \Pi_{t}}{\Pi_{t}}\right)$$

$$\approx (14.36 - 14.36 \Delta) \times \frac{\Pi_{tx_1} - \Pi_{t}}{\Pi_{tx_1}} \times (14.36 - 14.36 \Delta) \times \frac{\Pi_{tx_1} - \Pi_{t}}{\Pi_{tx_1}} \times (0.065\%)$$

$$\sqrt{R} = 2.32 \left(14.36 - 14.36 \Delta\right) \times 6$$

Portfolio/Option contract O(St)
price of the option underlying

Portfolio gain:
$$O(S_{t+1}) - O(S_t)$$
we know something about $S_{t+1} - S_t$
(normally distributed)

we know something about
$$S_{t+1}-S_t$$

(normally distributed)

Approximate: $O(S_{t+1}) \approx O(S_t) + \frac{\partial O(S_t)}{\partial S_t} \times (S_{t+1})$

Approximate: 0(S++1) = 0(S+) + 30(s) x (S++1-S+)

Q(2+1)-Q(2+) ~ Qx 2+x 2+1-2+

Vak: 2.32 × D × St × 65

- Portfolio:
 - ▶ Long EUR10m, EUR/USD = 1.436, volatility of EUR/USD 0.65%)
 - ▶ Short 10m in puts to sell euros in 6m, $\Delta = -0.5044$
- 1% VaR?
 - ▶ Put price $p_t = G(M_t)$, where
 - ► Approximately:

$$p_{t+1} - p_t \approx G'(M_t) \times (M_{t+1} - M_t) = \Delta \times (M_{t+1} - M_t)$$

Portfolio gain:

$$V_{t+1} - V_t = 10\text{m} \times (M_{t+1} - M_t) + 10\text{m} \quad (p_{t+1} - p_t)$$

$$\approx 10\text{m} \times (1 + \Delta) \times (M_{t+1} - M_t)$$

$$\approx 514.36\text{m} \times (1 + \Delta) \times R_{M,t}$$

99% 1 day VaR = $0.4956 \times $217,204 = $107,684$

PUT PRICE: DELTA APPROXIMATION

WHEN THE DELTA APPROACH GOES WRONG

■ Nick Leeson

WHEN THE DELTA APPROACH GOES WRONG

- Nick Leeson, 1995 Barings Bank
- Short puts and Calls with the same strike price on Nikkei Index

WHEN THE DELTA APPROACH GOES WRONG

- Nick Leeson
- Short puts and Calls with the same strike price on Nikkei Index

GAMMA

■ Gamma (Γ): second derivative of portfolio price with respect to the price of the underlying asset

$$\Gamma = \frac{\partial^2 P}{\partial S^2}$$

GAMMA

■ Gamma (Γ): second derivative of portfolio price with respect to the price of the underlying asset

$$\Gamma = \frac{\partial^2 P}{\partial S^2}$$

Also rate of change of Delta with respect to the price of the underlying asset:

$$\Gamma = \frac{\partial \Delta}{\partial S}$$

GAMMA

■ Gamma (Γ): second derivative of portfolio price with respect to the price of the underlying asset

$$\Gamma = \frac{\partial^2 P}{\partial S^2}$$

Also rate of change of Delta with respect to the price of the underlying asset:

$$\Gamma = \frac{\partial \Delta}{\partial S}$$

Delta-Gamma hedging does better with less frequent readjustments

PUT PRICE: DELTA GAMMA APPROXIMATION

- Assume change in underlying price $S_{t+1} S_t \sim \mathcal{N}(\mu_S, \sigma_S^2)$
- Change in portfolio value:

$$P_{t+1} - P_t = \Delta \times (S_{t+1} - S_t) + \frac{1}{2}\Gamma \times (S_{t+1} - S_t)^2$$

$$Vol(X) = \text{E(X)} - \text{E(X)}$$

- Assume change in underlying price $S_{t+1} S_t \sim \mathcal{N}(\mu_S, \sigma_S^2)$
- Change in portfolio value:

$$P_{t+1} - P_t = \Delta \times (S_{t+1} - S_t) + \frac{1}{2}\Gamma \times (S_{t+1} - S_t)^2$$

■ Can compute moments of $R_S = S_{t+1} - S_t$:

$$\mathbb{E}[R_s] = \mathbf{p}_s$$
 $\mathbb{E}[R_s^2] = \mathbf{p}_s^{\mathbf{p}_s \mathbf{p}_s} \mathbf{e}_s^{\mathbf{p}_s}$
 $\mathbb{E}[R_s^3] =$
 $\mathbb{E}[R_s^4] =$

- Assume change in underlying price $S_{t+1} S_t \sim \mathcal{N}(\mu_S, \sigma_S^2)$
- Change in portfolio value:

$$P_{t+1} - P_t = \Delta \times (S_{t+1} - S_t) + \frac{1}{2}\Gamma \times (S_{t+1} - S_t)^2$$

 \blacksquare Can compute moments of $R_S = S_{t+1} - S_t$:

$$\begin{split} \mathbb{E}[R_s] &= \mu_S \\ \mathbb{E}[R_s^2] &= \sigma_S^2 + \mu_S^2 \\ \mathbb{E}[R_s^3] &= \mu_S^3 + 3\mu_S \sigma_S^2 \\ \mathbb{E}[R_s^4] &= \mu_S^4 + 6\mu_S^2 \sigma_S^2 + 3\sigma_S^4 \end{split}$$

■ Obtain mean and variance of $P_{t+1} - P_t$:

$$\mathbb{E}[P_{t+1} - P_t] = \Delta \rho_s + \frac{1}{2} \Gamma \left(\xi^1 \uparrow \gamma^2 \right)$$

$$var[P_{t+1} - P_t] = \Delta^2 \sigma_s^2 + \frac{1}{4} \Gamma^2 \left(p_s^4 + 6 p_s^2 \sigma_s^2 + \frac{3}{5} \sigma_s^4 - \sigma_s^4 - p_s^4 - 2 \sigma_s^4 p_s^2 \right)$$

$$+ \Delta \Gamma \left(cov \left(R_s, R_s^4 \right) \right)$$

$$= \underbrace{\left(R_s^3 \right) - \left(R_s \right) \left(R_s^2 \right)}_{\text{E}(R_s^3)}$$

■ Obtain mean and variance of $P_{t+1} - P_t$:

$$\begin{split} \mathbb{E}[P_{t+1} - P_t] &= \Delta \mathbb{E}[R_s] + \frac{1}{2}\Gamma \mathbb{E}[R_s^2] \\ &= \Delta \mu_S + \frac{1}{2}\Gamma(\mu_S^2 + \sigma_S^2) \\ \mathrm{var}[P_{t+1} - P_t] &= \Delta^2 \mathrm{var}[R_s] + \frac{1}{4}\Gamma^2 \mathrm{var}[R_s^2] + \frac{1}{2}\Delta \Gamma \mathrm{cov}[R_s, R_s^2] \\ &= \Delta^2 \sigma_S^2 + \frac{1}{2}\Gamma^2 \sigma_S^2(2\mu_S^2 + \sigma_S^2) + \Delta \Gamma \mu_S \sigma_S^2 \end{split}$$

■ Obtain mean and variance of $P_{t+1} - P_t$:

$$\begin{split} \mathbb{E}[P_{t+1} - P_t] &= \Delta \mathbb{E}[R_s] + \frac{1}{2}\Gamma \mathbb{E}[R_s^2] \\ &= \Delta \mu_S + \frac{1}{2}\Gamma(\mu_S^2 + \sigma_S^2) \\ \mathrm{var}[P_{t+1} - P_t] &= \Delta^2 \mathrm{var}[R_s] + \frac{1}{4}\Gamma^2 \mathrm{var}[R_s^2] + \frac{1}{2}\Delta \Gamma \mathrm{cov}[R_s, R_s^2] \\ &= \Delta^2 \sigma_S^2 + \frac{1}{2}\Gamma^2 \sigma_S^2 (2\mu_S^2 + \sigma_S^2) + \Delta \Gamma \mu_S \sigma_S^2 \end{split}$$

■ Plug in the estimator for the normal distribution:

$$VaR(c) = -\mathbb{E}[P_{t+1} - P_t] + z(c) var[P_{t+1} - P_t]$$

■ Obtain mean and variance of $P_{t+1} - P_t$:

$$\begin{split} \mathbb{E}[P_{t+1} - P_t] &= \Delta \mathbb{E}[R_s] + \frac{1}{2}\Gamma \mathbb{E}[R_s^2] \\ &= \Delta \mu_S + \frac{1}{2}\Gamma(\mu_S^2 + \sigma_S^2) \\ \mathrm{var}[P_{t+1} - P_t] &= \Delta^2 \mathrm{var}[R_s] + \frac{1}{4}\Gamma^2 \mathrm{var}[R_s^2] + \frac{1}{2}\Delta \Gamma \mathrm{cov}[R_s, R_s^2] \\ &= \Delta^2 \sigma_S^2 + \frac{1}{2}\Gamma^2 \sigma_S^2(2\mu_S^2 + \sigma_S^2) + \mathbf{2}\Delta \Gamma \mu_S \sigma_S^2 \end{split}$$

Plug in the estimator for the normal distribution:

$$VaR(c) = -\mathbb{E}[P_{t+1} - P_t] + z(c)var[P_{t+1} - P_t]$$

■ Can also deal with portfolio of options with more than one risk

CORNISH-FISHER EXPANSION

- With this approach, we could also compute any moments of the portfolio: skewness, kurtosis, ...
- How to incorporate into VaR calculation?

CORNISH-FISHER EXPANSION

- With this approach, we could also compute any moments of the portfolio: skewness, kurtosis, ...
- How to incorporate into VaR calculation?
- Cornish-Fisher expansion: asymptotic expansion for the quantile of a distribution
 - Skewness: $\xi_P = \mathbb{E}[(R_P \mu_P)^3]/\sigma_P^3$
 - ightharpoonup Quantile 1-c:

$$\mu_P + \left(z(1-c) + \frac{1}{6}\left(z(1-c)^2 - 1\right)\xi_P\right) \delta_P$$

Can also include kurtosis and higher moments

VEGA

■ Vega (ν): derivative of option value with respect to the volatility of the underlying asset

$$\nu = \frac{\partial P}{\partial \sigma}$$

- Under the assumptions of Black-Scholes, there is no risk of change in volatility ... but in practice volatility can move
- We can add changes in volatility to our previous calculations:

$$P_{t+1} - P_t = \Delta \times (S_{t+1} - S_t) + \frac{1}{2}\Gamma \times (S_{t+1} - S_t)^2 + \nu(\sigma_{t+1} - \sigma_t) + \dots$$

OTHER GREEKS

■ Theta (Θ): change of the value of the portfolio due to passage of time:

$$\Theta = \frac{\partial P}{\partial t}$$

- Often ignored for risk management (same as means)
- Rho: change of the value of the portfolio due to a parallel shift in all interest rates in a particular country

$$\mathsf{Rho} = \frac{\partial P}{\partial r}$$

Particularly relevant for interest rate and exchange rate products

IN PRACTICE

■ Traders must be delta neutral at least once a day

- Traders must keep Gamma and Vega within limits set by risk management
 - Adjust whenever the opportunity arises

IN PRACTICE

■ Traders must be delta neutral at least once a day

- Traders must keep Gamma and Vega within limits set by risk management
 - Adjust whenever the opportunity arises
- Delta can be adjusted by trading the underlying

Gamma and Vega need trading of other options

TAKEAWAYS

■ When trading options, identify the key risks and hedge them

Think one step ahead and about potential large shocks: gamma-hedging

For risk management: crucial to take into account the non-linearity of option contracts