

Informe del número π

Daniel Montesdeoca Villaverde 9 de abril de 2014

Resumen

En este documento se tratará acerca del número π calculado en Python.

1. Motivación y Objetivos

Nuestro objetivo ha sido investigar el número π . Para ello se ha procedido a aproximar π hasta 35 cifras decimales usando Python¹. También se ha creado una función para usar π en Python y hallado el umbral de error del número π . La siguiente tabla es un ejemplo:

Columna#1	Columna#2	Columna#3	Columna#4
1	43	54	34
2	45	89	76
3	23	67	98

2. Procedimiento

En primer lugar, hay que aproximar π hasta 35 decimales. Para ello se deben calcular los extremos de los subintervalos, el punto x_i , el valor de la función de aproximación del número π , el resultado del número π y por último calcular π con 35 decimales. Referencia a tabla: 1 Referencia a gráfico:

2.1. Pasos que se deben seguir

1. Subintervalos.

¹Página web de Python: https://www.python.org

- 2. Punto x_i .
- 3. Función de aproximación fx_i .
- 4. Valor aproximado.
- 5. Valor de π con 35 decimales.

Si utilizamos 4 subintervalos², el programa debería de quedar así:

Referencias

- [1] Tutorial de Python. http://docs.python.org/2.7
- [2] Cómo hacer una tabla: http://www1.maths.leeds.ac.uk/latex/TableHelp1.pdf

 $^{^2\}mathrm{Se}$ pueden utilizar más, pero para este ejemplo nos vale