Mat2033 - Discrete Mathematics

Set Theory

Introduction to Set Theory

- A <u>set</u> is a new type of structure, representing an <u>unordered</u> collection (group, plurality) of zero or more <u>distinct</u> (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).

Basic notations for sets

- For sets, we'll use variables S, T, U, ...
- We can denote a set S in writing by listing all of its elements in curly braces:
 - {a, b, c} is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition P(x) over any universe of discourse, {x|P(x)} is the set of all x such that P(x).

Basic properties of sets

- Sets are inherently unordered:
 - No matter what objects a, b, and c denote,
 {a, b, c} = {a, c, b} = {b, a, c} =
 {b, c, a} = {c, a, b} = {c, b, a}.
- All elements are distinct (unequal);
 multiple listings make no difference!
 - If a=b, then
 {a,b,c}={a,c}={b,c}={a,a,b,a,b,c,c,c,c}.
 - This set contains at most 2 elements!

Definition of Set Equality

- Two sets are declared to be equal if and only if they contain <u>exactly the same elements</u>.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set
 {1, 2, 3, 4}
 ={x | x is an integer where 0 < x < 5 }
 ={x | x is a positive integer where 0 < x² < 25}

Infinite Sets

- · Conceptually, sets may be infinite
- Symbols for some special infinite sets:

```
N = \{0, 1, 2, ...\} The Natural numbers.

Z = \{..., -2, -1, 0, 1, 2, ...\} The Integers.

R = \text{The Real numbers}.
```

Basic Set Relations: Member of

- $x \in S$ ("x is in S") is the proposition that object x is an element or member of set S.
 - e.g. 3∈N,
 - "a" $\in \{x \mid x \text{ is a letter of the alphabet}\}$
 - Can define set equality in terms of ∈ relation:

$$\forall S,T: S=T \leftrightarrow (\forall x: x \in S \leftrightarrow x \in T)$$

"Two sets are equal iff they have all the same members."

• $x \notin S := \neg(x \in S)$ "'x is not in S"

The Empty Set

- Ø ("null set", "empty set") is the unique set that contains no elements whatsoever.
- $\varnothing = \{\}$
- No matter what is the domain of discourse (or u.d.), we have the axiom $\neg \exists x : x \in \emptyset$.

Subset and Superset Relations

- S⊆T ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x (x \in S \to x \in T)$
- Ø⊂S, S⊂S.
- S⊇T ("S is a superset of T") means T⊆S.
- Note $S=T \Leftrightarrow S \subseteq T \land S \supseteq T$.
- $S \subset T$ means $\neg(S\subseteq T)$, i.e. $\exists x(x \in S \land x \notin T)$

Proper (Strict) Subsets & Supersets

• $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \not\subseteq S$. Similar for $S \supset T$.

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$, then $S=\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!

Cardinality and Finiteness

- | S| (read "the cardinality of S") is a measure of how many different elements S has.
- E.g., $|\emptyset|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$
- If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we've seen?
 N, Z, R, ...

The Power Set Operation

- The power set P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}$.
- E.g. $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^S . Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|. There are different sizes of infinite sets!

Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set {a, b, c} and set-builder {x|P(x)}.
- \in relational operator, and the empty set \emptyset .
- Set relations =, \subseteq , \supseteq , \subset , \supset , $\not\subset$, etc.
- Venn diagrams.
- Cardinality |S| and infinite sets N, Z, R.
- Power sets P(S).

Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence of length n is written $(a_1, a_2, ..., a_n)$. The first element is a_1 , the second element is a_2 , etc.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.

Cartesian Products of Sets

- For sets A, B, their Cartesian product
 A×B := {(a, b) | a∈A ∧ b∈B }.
- E.g. $\{a,b\}\times\{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B,

$$|A \times B| = |A|.|B|$$

- Note that the Cartesian product is not commutative: ¬∀A,B: A×B=B×A.
- Extends to $A_1 \times A_2 \times ... \times A_n$...

The Union Operator

- For sets A, B, their union A ∪ B is the set containing all elements that are either in A, or ("∨") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{x \mid x \in A \lor x \in B\}.$
- Note that $A \cup B$ contains all the elements of A **and** it contains all the elements of B: $\forall A, B: (A \cup B) \supseteq A \land (A \cup B) \supseteq B$

Union Examples

```
• \{a,b,c\}\cup\{2,3\} = \{a,b,c,2,3\}
```

•
$$\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\}$$

= $\{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection A ∩ B is the set containing all elements that are simultaneously in A and ("∧") in B.
- Formally, $\forall A,B: A \cap B = \{x \mid x \in A \land x \in B\}.$
- Note that A∩B is a subset of A and it is a subset of B:

```
\forall A, B: ((A \cap B) \subseteq A) \land ((A \cap B) \subset B)
```

Intersection Examples

- $\{a,b,c\} \cap \{2,3\} = \emptyset$
- $\{2,4,6\} \cap \{3,4,5\} = \{4\}$

Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. (A∩B=Ø)
- Example: the set of even integers is disjoint with the set of odd integers.

Inclusion-Exclusion Principle

• How many elements are in $A \cup B$? $|A \cup B| = |A| + |B| - |A \cap B|$

Example:

How many positive integers between 50 and 100

- a) are divisible by 7? Which integers are these?
- b) are divisible by 11? Which integers are these?
- c) are divisible by both 7 and 11? Which integers are these?
- d) are divisible by 7 or 11? Which integers are these?
- a) Seven: 56, 63, 70, 77, 84, 91, 98
- **b)** Five: 55, 66, 77, 88, 99
- c) One: 77
- d) Eleven: 55, 56, 63, 66, 70, 77, 84, 88, 91, 98, 99

Set Difference

- For sets A, B, the difference of A and B, written A-B, is the set of all elements that are in A but not B.
- A B = $\{x \mid x \in A \land x \notin B\}$ = $\{x \mid \neg(x \in A \rightarrow x \in B)\}$
- Also called:
 The complement of B with respect to A.

Set Difference Examples

•
$$\{(1,2,3,4,5,6)\}$$
 - $\{(2,3,5,7,9,11)\}$ = $\{(1,4,6)\}$

```
• Z - N =
= {..., -1, 0, 1, 2, ...} - {0, 1, ...}
= {x | x is an integer but not a Natural.}
= {x | x is a negative integer}
= {..., -3, -2, -1}
```

Set Difference - Venn Diagram

A-B is what's left after B
 "takes a bite out of A"

Set Complements

 The universe of discourse can itself be considered a set, call it U.

When the context clearly defines U, we say that for any set A⊆U, the complement of A, written A, is the complement of A w.r.t. U, i.e., it is U-A.

• E.g., If
$$U=N$$
, $\{3,5\} = \{0,1,2,4,6,7,...\}$

More on Set Complements

An equivalent definition, when U is clear:

$$\overline{A} = \{x \mid x \notin A\}$$

Symmetric difference

• A⊕B = (A−B) U (B−A)

Cardinality

- $|P \cup Q| = |P| + |Q| |P \cap Q|$
- $|P \oplus Q| = |P| + |Q| 2|P \cap Q|$
- $|P-Q| = |P|-|P\cap Q|$
- $|\overline{A}| = |U| |A|$, U is universe of discourse

Set Identities

Identity:

$$A \cup \emptyset = A$$
, $A \cap U = A$

Domination:

$$A \cup U = U$$
, $A \cap \emptyset = \emptyset$

• Idempotent:

$$A \cup A = A = A \cap A$$

Set Identities

Double complement:

$$\overline{(\overline{A})} = A$$

Commutative:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

Associative:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

DeMorgan's Law for Sets

 Exactly analogous to (and derivable from) DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proving Set Identities

- To prove statements about sets, of the form E1 = E2 (where Es are set expressions), here are three useful techniques:
- 1. Prove E1 \subseteq E2 and E2 \subseteq E1 separately.
- 2. Use set builder notation & logical equivalences.
- 3. Use a membership table.

Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$ Homework.

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

Example: Prove $(A \cup B) - B = A - B$.

\boldsymbol{A}	B	$A \cup B$	$(A \cup B)$	$B \mid A-B$
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	0	0

Membership Table Exercise

Exercise: Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	B-C	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					

Generalized Unions & Intersections

 Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets (A,B) to operating on sequences of sets (A₁,···,A_n), or even unordered sets of sets, X={A | P(A)}.

Generalized Union

Binary union operator: A∪B

n-ary union:

$$A_1 \cup A_2 \cup ... \cup A_n :\equiv ((...(A_1 \cup A_2) \cup ...) \cup A_n)$$

(grouping & order is irrelevant)

• "Big U" notation:

$$\bigcup_{i=1}^{n} A_{i}$$

• Or for infinite sets of sets:

$$\bigcup_{A\in X}A$$

Generalized Intersection

Binary intersection operator: A∩B

n-ary intersection:

$$A_1 \cap A_2 \cap ... \cap A_n := ((...(A_1 \cap A_2) \cap ...) \cap A_n)$$

(grouping & order is irrelevant)

• "Big Arch" notation: $\bigcap_{i=1}^{n} A_i$

• Or for infinite sets of sets: $\bigcap_{A \in X} A$

Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.
- E.g., one can represent natural numbers as
 - Sets:

$$0:=\emptyset$$
, $1:=\{0\}$, $2:=\{0,1\}$, $3:=\{0,1,2\}$, ...

- Bit strings:

$$0:=0$$
, $1:=1$, $2:=10$, $3:=11$, $4:=100$, ...

Representing Sets with Bit Strings

For an enumerable u.d. U with ordering $\{x_1, x_2, ..., x_n\}$, represent a finite set $S\subseteq U$ as the finite bit string $B=b_1b_2...b_n$ where $\forall i \colon x_i \in S \leftrightarrow (i < n \land b_i = 1)$.

E.g. U=**N**, S={2,3,5,7,11}, B=001101010001.

In this representation, the set operators " \cup ", " \cap ", " $^{-}$ " are implemented directly by bitwise OR, AND, NOT!

TABLE 1 Set Identities.		
Identity	Name	
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	

TABLE 1 Set Identities.		
Identity	Name	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws	

The symmetric difference of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

Find the symmetric difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$.

Show that
$$A \oplus B = (A \cup B) - (A \cap B)$$
.

Show that
$$A \oplus B = (A - B) \cup (B - A)$$
.

Show that if A is a subset of a universal set U, then

a)
$$A \oplus A = \emptyset$$
.

b)
$$A \oplus \emptyset = A$$
.

c)
$$A \oplus U = \overline{A}$$
.

d)
$$A \oplus \overline{A} = U$$
.

Example: Show that $A \oplus B = (A \cup B) - (A \cap B)$.

Example: Show that $A \oplus B = (A \cup B) - (A \cap B)$.

element is in $(A \cup B) - (A \cap B)$ if it is in the union of A and B but not in the intersection of A and B, which means that it is in either A or B but not in both A and B. This is exactly what it means for an element to belong to $A \oplus B$.

a)
$$A \oplus A = \emptyset$$
.

c)
$$A \oplus U = \overline{A}$$
.

b)
$$A \oplus \emptyset = A$$
.

d)
$$A \oplus \overline{A} = U$$
.

a)
$$A \oplus A = \emptyset$$
.

b)
$$A \oplus \emptyset = A$$
.

c)
$$A \oplus U = \overline{A}$$
.

d)
$$A \oplus \overline{A} = U$$
.

a)
$$A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$$

a)
$$A \oplus A = \emptyset$$
.

b)
$$A \oplus \emptyset = A$$
.

c)
$$A \oplus U = \overline{A}$$
.

d)
$$A \oplus \overline{A} = U$$
.

a)
$$A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$$

b)
$$A \oplus \emptyset = (A - \emptyset) \cup (\emptyset - A) = A \cup \emptyset = A$$

a)
$$A \oplus A = \emptyset$$
.

b)
$$A \oplus \emptyset = A$$
.

c)
$$A \oplus U = \overline{A}$$
.

$$\mathbf{d)} \ A \oplus \overline{A} = U.$$

a)
$$A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$$

b)
$$A \oplus \emptyset = (A - \emptyset) \cup (\emptyset - A) = A \cup \emptyset = A$$

c)
$$A \oplus U = (A - U) \cup (U - A) = \emptyset \cup \overline{A} = \overline{A}$$

a)
$$A \oplus A = \emptyset$$
.

b)
$$A \oplus \emptyset = A$$
.

c)
$$A \oplus U = \overline{A}$$
.

$$\mathbf{d)} \ A \oplus \overline{A} = U.$$

a)
$$A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$$

b)
$$A \oplus \emptyset = (A - \emptyset) \cup (\emptyset - A) = A \cup \emptyset = A$$

c)
$$A \oplus U = (A - U) \cup (U - A) = \emptyset \cup \overline{A} = \overline{A}$$

d)
$$A \oplus \overline{A} = (A - \overline{A}) \cup (\overline{A} - A) = A \cup \overline{A} = U$$

Examples: $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}.$$
 Then

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $A \cap B = \{4, 5\}$
- $\bullet \overline{A} = \{0, 6, 7, 8, 9, 10\}$
- $\bullet \ \overline{B} = \{0, 1, 2, 3, 9, 10\}$
- $\bullet A B = \{1, 2, 3\}$
- $B A = \{6, 7, 8\}$
- $A \oplus B = \{1, 2, 3, 6, 7, 8\}$