Занятие 8-9. Тесты единичного корня. Моделирование с помощью ARIMA.

Часть 1. Тесты единичного корня. Расширенный тест Дики-Фуллера

- 1. В чем суть теста Дики-Фуллера? В чем суть расширенного теста Дики-Фуллера? Какое количество лагов необходимо включать? К каким последствиям это приведет?
- 2. Как проверить наличие второго единичного корня?
- 3. Какие тесты единичного корня еще Вы знаете?

Задача 1. Для некоторого временного ряда y_t (T=100) получена следующая модель (в скобках стандартные ошибки коэффициентов):

$$\Delta \hat{y}_t = 2,95 - 0,18 y_{t-1}$$
(1,147) (0,069)

На уровне значимости 5% сформулировать и проверить гипотезу единичного корня (порядок интегрируемости ряда y_t равен 1, против альтернативной, что порядок интегрируемости равен 0).

Односторонние критические значения статистики Дики-Фуллера (Магнус)

$$y_t = b_1 y_{t-1} + \varepsilon_{1t},$$
 (11.48)
 $y_t = a_2 + b_2 y_{t-1} + \varepsilon_{2t},$ (11.49)
 $y_t = a_2 + b_3 y_{t-1} + c_3 t + \varepsilon_{3t}$ (11.50)

Доверительный уровень		Размер в	ыборки			
	25	50	100			
AF	{ модель (1	1.48)				
0.010	-2.66	-2.62	-2.60	-2.58		
0.025	-2.26	-2.25	-2.24	-2.23		
0.050	-1.95	-1.95	-1.95	-1.95		
AR модел	ть с конста	нтой (11.49	9)			
0.010	-3.75	-3.58	-3.51	-3.43		
0.025	-3.33	-3.22	-3.17	-3.12		
0.050	-3.00	-2.93	-2.89	-2.86		
AR модель с к	AR модель с константой и трендом (11.50)					
0.010	-4.38	-4.15	-4.04	-3.96		
0.025	-3.95	-3.80	-3.69	-3.66		
0.050	-3.60	-3.50	-3.45	-3.41		

Источник: (Fuller, 1976).

Задача 2. Для некоторого временного ряда y_t (T=500) получена следующая тестовая регрессия:

Dickey-F	uller test f	or unit root	. Nu	umber of	obs =	499
1% Crit	cical 5	ated Dickey- % Critical Value		Critical Value		
-3	3.440	-2.870		-2.570		
D. x1	Coef.	Std. Err.	t	P> t	[95%	Conf. Interval]
x1 L1.	-1.00511	. 0449404	-22.37	0.000	-1.093	3407 9168135
_cons	0038383	.0459519	-0.08	0.933	0941	. 0864457

На уровне значимости 1% проверить гипотезу единичного корня.

Работа в Gretl.

Задача 3. Даны три случайных процесса у1, у2, у3, у4. Файл: **DF.dta** откройте в Gretl

3.1. Исследуйте поведение сгенерированных процессов.

3.2. сформулируйте и проверьте гипотезу о наличие единичного корня. Запишите тестируемую регрессию в критерии Дики-Фуллера для у1.

- 3.3. предположив наличие в процессах детерминированного тренда, проведите тест Дики-Фуллера. В чем суть процедуры Доладо? Сделайте вывод.
- 3.4. используйте тест Дики-Фуллера для первой разности изучаемых процессов (в случае необходимости). Сделайте вывод о порядке интегрируемости процессов.
- 3.5. используйте расширенный тест Дики-Фуллера. Какое количество лагов необходимо добавить? Сделайте вывод: как меняется DF-статистика при

добавлении дополнительных лагов и выводы относительно наличия единичного корня?

	DF	Тренд	DF(1)	DF(2)	DF(3)	DF(4)
y1						
y2						
у3						

3.6. Какие тесты единичного корня Вы знаете? Проведите PP- и KPSS-тесты для v1. сравните результаты.

	DF	РР-тест	KPSS-тест	
y1	Расширенный тест Дики-Фуллера для у1 testing down from 10 lags, criterion Крит. Акаике объек выборки 99 иулевая гипотеза единичного кория: $a=1$ тест с константой включая 0 лага (-ов) лля $(1-L)$ у1 модель: $(1-L)$ у = 0 0 + 0 1 - 0 1 - 0 2 тест оценка для $(a-1)$: -0 3032 тестовая статистика: t 2 tau_c(1) = -8 , 99047 P 3 начение 4, 283 = -0 3 хоф. автокорреляции 1-го порядка для $e:-0$,006 с константой и трендом включая 0 лага (-ов) для $(1-L)$ у1 модель: $(1-L)$ у = -0 0 + -0 1 + -0 1 + -0 2 сценка для -0 2 тестовая статистика: -0 3 + -0	Phillips-Ferron unit-root test for y1, Bartlett bandwidth 3: Z_t = -8,97733 (p-value = 0,0000) Test regression (OLS, dependent variable y1, T = 99):	КРSS тест для у1 T = 100 Параметр для усечения лагов = 4 Тестовая статистика = 0,266432 10% 5% 1% Крит. значения: 0,349 0,462 0,734 Р-значение > .10	
y2				

Тесты единичного корня

тесты едини тиого кория				
Тесты единичного	Stata	Gretl		
корня				
Тест Дики-Фуллера	dfuller y	Menu path: /Variable/Unit root		
для у	dfuller y, trend regress lags(2)	tests/Augmented Dickey-Fuller test		
Tect KPSS для у	kpss y	<u>Р</u> асширенный тест Дики-Фуллера (ADF-тест)		
	kpss y, notrend auto	ADF-GLS тест		
Тест Филипса-Перрона	pperron y	KPSS тест		
для у	pperron y, regress	<u>L</u> evin-Lin-Chu test		
Тест Эндрюса-Зивота	zandrews y	<u>Ч</u> астичное интегрирование		
	zandrews y, lagmethod(BIC)	Phillips-Perron test		
	graph	HEGY		

3.7. Проведите тесты единичного корня для у1,у4, в предположении наличия структурного сдвига (Gretl: Kapetanios' (2005) unit root test). Сделайте выводы.

Kapetanios, G. (2005). Unit-root testing against the alternative hypothesis of up to m structural breaks. Journal of Time Series Analysis, 26(1), 123-133.

The test controls for up to 5 level and/or trend breaks under the *alternative hypothesis* of trend stationarity.

Домашнее задание (ТДЗ) 8. Unit root

По данным Всемирного банка выберите 3 показателя за 40-60 лет (опишите какой показатель был взят для анализа, за какой период).

Файл: WDI. (закладка Data)

!Можно взять свои данные

- 1. Опишите выбранные показатели. Постройте графики выбранных показателей. Сделайте вывод о стационарности рядов, исходя из построенных графиков.
- 2. Проведите тесты единичного корня (ADF, PP, KPSS) и их модификации. Сравните результаты и сделайте вывод по результатам тестирования. Для *одного* из показателей результаты представьте в виде сводной таблицы.

BP	Тест	Нулевая	Статистика	р-значение	Вывод
		гипотеза	критерия		

y	DF(с трендом/без)		
	РР(с трендом/без)		
	KPSS(с трендом/без)		
Δy	DF(с трендом/без)		
	РР(с трендом/без)		
	KPSS(с трендом/без)		

По двум другим рядам приведите основные выводы.

3. Сделайте вывод о стационарности рядов и степени интегрируемости (d=?). Являются ли ряды тренд-стационарным или разностно-стационарным?

Ряд	Стационарность
У1	
У2	
У3	

4. Для одного из показателей проведите тест единичного корня (любой) с *учетом структурного сдвига*. Какая нулевая гипотеза. Сделайте вывод по результатам тестирования.

Часть 2. Анализ временных рядов с помощью ARIMA (Gretl).

Методология Бокса-Дженкинса.

- 1. В чем суть методологии Бокса-Дженкинса?
- 2. Какие этапы содержит?

Задание 2.1. Запись ARIMA-моделей. Запишите модели в виде через лаговый оператор, ответ поясните

ARIMA(1,1,1)

ARIMA(2,1,1)

ARIMA(1,2,2)

ARIMA(3,0,0)

Задание 2.2. Анализ младенческой смертности

Файл: млад смерт PMУБ.xls

Данные: младенческая смертность в России за период 1960-2017 гг.

Источник данных: Демоскоп http://www.demoscope.ru/weekly/pril.php

Требуется подобрать соответствующую модель ARIMA для описания динамики *младенческой смертности*, оценить ее параметры и построить прогноз.

Важным показателем смертности и одновременно качества жизни является коэффициент младенческой смертности - число умерших в возрасте до 1 года в расчете на 1000 родившихся живыми. В отличие от общего коэффициента смертности, то поднимавшегося, то снижавшегося на протяжении двух последних десятилетий, коэффициент младенческой смертности довольно устойчиво снижался Наблюдавшиеся повышения значения коэффициента младенческой смертности были связаны в основном с улучшением качества учета и постепенным переходом на международный стандарт в определении живорождения - в 1993 году (на 11%)[12] и в 2012 году (на 17%)[13]. Дополнительное расширение критериев живорождения в 2013 году не привело к повышению показателей младенческой смертности. Число детей, умерших в возрасте до 1 года, быстро снижалось в 1960-е годы за счет сокращения и рождаемости, и смертности, но в 1972-1976 годах стало расти (отчасти за счет улучшения учета родившихся). С конца 1980-х годов число умерших в возрасте до 1 года неуклонно сокращалось, снизившись с 48,5 тысячи в 1987 году до 13,2 тысячи человек в 2011 году. В 2012 году число зарегистрированных смертей в возрасте до 1 года в связи с расширением критериев живорождения увеличилось до 16,3 тысячи человек, что на 24% больше, чем за 2011 год. Значение коэффициента младенческой смертности возросло до 8,6% против 7,4% за 2011 год.

http://www.demoscope.ru/weekly/2018/0761/barom05.php

1. Перенесите данные в в Gretl.

Этап 1. Идентификация модели

2. Постройте график временного ряда младенческой смертности в России. Опишите динамику, сделайте вывод о стационарности ряда.

- 3. Постройте коррелограмму (график автокорреляционной и частной автокорреляционной функции). Сделайте вывод о стационарности ряда.
- 4. Проведите тесты единичного корня (ADF, PP, KPSS) для ряда в уровнях и ряда первой разности (при необходимости). Сравните результаты и сделайте вывод о стационарности ряда и степени интегрируемости (d=?). Является ли ряд тренд-стационарным или разностно-стационарным?

Этап 2. Оценивание модели.

5. После определения степени интегрируемости ряда, перейдем к оцениванию параметров модели ARIMA(p, d, q). Какие предположения относительно порядков p и q можно сделать на основании графиков ACF и PACF?

Свойст	<u>тва автокорреляи</u>	ионных и частнь	Свойства автокорреляционных и частных автокорреляционных функций					
	AR(1)	AR(2)	MA(1)	MA(2)				
ACF	Экспоненциально затухает	Экспоненциально затухает	Пик на лаге 1	Пик на лагах 1,2				
PACF	Пик на лаге 1	Пик на лагах 1,2	Экспоненциально затухает	Экспоненциально затухает				

6. Оцените и сравните несколько моделей **ARIMA**

- **ARIMA** (1, 1, 0)

модель
$$AR(1)$$
 $\Delta y_t = const + \alpha_1 \Delta y_{t-1}$

Модель 5: ARIMA, использованы наблюдения 1961—2017 (T=57) Оценено при помощи фильтра Кальмана (Kalman) (точный метод МП) Зависимая переменная: (1-L) v2

Стандартные ошибки рассчитаны на основе Гессиана

	Коэффициент	Ст. ошиб	ka z	Р-значе	ние
const phi_1	-0,535970 -0,0200474	0,13688 0,14251		•	05 ***
Среднее зав. Среднее инно Лог. правдоп Крит. Шварца	ваций -0 одобие -8	,001079 (3,80900 1	Ст. откл. Крит. Акал	зав. перемен инноваций ике нана-Куинна	1,062280 1,052735 173,6180 176,0000
	Действ. ча			одуль Часто	
AR Корень 1	-49,881	7 0,00	00 49,8	8817 0,500	00

Что можно сказать о качестве модели?

- -запишите модель через лаговый оператор и опишите ее статистические свойства.
- проверьте выполнение предпосылок **ARIMA** (стационарность и обратимость)
- -Оцените модели ARMA(p, q), (p, q<=2). Выберете лучшую модель с точки зрения информационных критериев Акаике и Шварца.

модели ARIMA	Ошибка модели	AIC	BIC
1. ARIMA(1,1,0)			
2. ARIMA(0,1,1)			
3. ARIMA(1,1,1)			
4. ARIMA(1,0,0)+лин.тренд			
5. ARIMA(2,1,1)			

Этап 3. Диагностика моделей.

- -Выберете из полученных моделей 2 с наименьшими значениями информационных критериев.
- -Оцените адекватность построенных моделей на основе *анализа остатков*. *Анализ автокорреляций*. Постройте графики ACF/PACF остатков. Какими свойствами должен обладать ряд остатков?

Нормальность. (Тест Дурника-Хансена)

Альтернативные тесты на нормальность остатков в Gretl.

- 1. Сохраняете остатки модели
- 2. Используете тесты: Переменные -Тесты на нормальное распределение

Тест на нормальное распределение uhat1:

```
Тест Дурника-Хансена (Doornik-Hansen) = 8,28896, р-значение 0,0158517

Тест Шапиро-Уилка (Shapiro-Wilk W) = 0,957794, р-значение 0,0448994

Тест Лиллифорса (Lilliefors) = 0,104789, р-значение ~= 0,12

Тест Жака-Бера (Jarque-Bera) = 4,95901, р-значение 0,0837846
```

Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте.

модели ARIMA	Стационарность,	Ошибка	Анализ остатков	Наилучшая
	обратимость	модели,	(автокорреляция,	модель
	модели	инф.критерии	нормальность)	
1. ARIMA(1,1,0)				

2. ARIMA(0,1,1)		
3. ARIMA(1,1,1)		
4. ARIMA(1,0,0)+лин.тренд		
5. ARIMA(2,1,1)		

Этап 4. Прогнозирование.

- Изобразите в одной системе координат исходные данные и предсказанные значения по модели, рассчитайте прогнозы.

	v2	Предсказание	Ст. ошибка	95% доверительнь	ий интервал
2017	6,0	5,5			
2018		5,5	1,05	3,4 -	7,5
2019		4,9	1,47	2,0 -	7,8
2020		4,4	1,80	0,9 -	7,9
2021		3,8	2,07	-0,2 -	7,9
2022		3,3	2,32	-1,2 -	7,9

- характеристики качества прогноза

Статистика для оценки прогноза

Средняя ошибка (МЕ)	-0,0010785
Корень из средней квадратичной ошибки (RMSE)	1,0528
Средняя абсолютная ошибка (МАЕ)	0,75233
Средняя процентная ошибка (МРЕ)	0,25703
Средняя абсолютная процентная ошибка (МАРЕ)	4,1475
U-статистика Тейла (Theil's U)	0,91019

Сделайте общий вывод о качестве полученной модели.

Самостоятельная работа в группе (на занятии)

Данные: младенческая смертность в *Украине/Молдове/Белоруссии* за период 1960-2017 гг.

Проведите аналогичный анализ в Gretl. Подберите подходящую модель ARIMA (оцените и сравните ARIMA(1,1,1), ARIMA(1,1,0), ARIMA(0,1,1)), обоснуйте выбор модели и опишите полученную модель. Проверьте адекватность модели и постройте прогноз на 6 лет (точечная и интервальная оценка).

Домашнее задание (ТДЗ) 9. ARIMA

По данным Всемирного банка выберите один показатель за 40-60 лет (опишите какой показатель был взят для анализа, за какой период).

Файл: WDI. (закладка Data)

!Можно взять свои данные

Задание. Требуется подобрать соответствующую модель ARIMA для описания динамики *выбранного показателя*, оценить ее параметры и построить прогноз на основании полученной модели.

- 1. Опишите какой показатель был взят для анализа, за какой период, постройте график и сделайте предположение о стационарности ряда.
- 2. Проведите тесты единичного корня (ADF, PP, KPSS) и их модификации. Сравните результаты и сделайте вывод по результатам тестирования. Результаты представьте в виде сводной таблицы.

BP	Тест	Нулевая	Статистика	р-значение	Вывод
		гипотеза	критерия		
y	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				
Δy	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				

Сделайте вывод о стационарности ряда и степени интегрируемости (d=?). Является ли ряд тренд-стационарным или разностно-стационарным?

- 3. На основании ACF/PACF сделайте предположения о порядке ARIMA(p,d,q). Ответ обоснуйте.
- 4. Оцените и сравните несколько ARIMA(p,d,q)-моделей: ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(1,1,1). Запишите модели в математической форме через *паговый* оператор. Проверьте выполнение предпосылок ARIMA-моделей (стационарность, обратимость). Сравните модели между собой по статистическим свойствам (значимость коэффициентов, ошибка модели, информационные критерии).
- 5. Проверьте адекватность моделей на основе анализа остатков (автокорреляция, нормальность)). Оцените прогностические свойства

полученных моделей (характеристики RMSE, MPE, MAPE). Опишите и сравните построенные модели в виде сводной таблицы. Выберите наилучшую. Ответ обоснуйте.

	J			
модели	Ошибка	Стационарность,	Анализ остатков	Качество прогноза
ARIMA	модели,	обратимость	(автокорреляция,	
	инф.критерии	процесса	нормальность)	
1. ARIMA()				
уравнение				
2. ARIMA()				
уравнение				
3. ARIMA()				
уравнение				

6. Постройте прогноз на 6 шагов вперед (точечная и интервальная оценка) по наилучшей модели. В отчете приведите графики (наблюдаемые+предсказанные значения). Сделайте вывод как изменится показатель.

Напишите решение задач (скан рукописного варианта, где это необходимо) и краткий отчет с выводами и полученными графиками (формат pdf). Приветствуется сдача работы в группе по 2 человека (не забывайте указывать авторов).

Выполненная домашняя работа загружается в LMS. Срок выполнения – 1 неделя.

Команды Stata

edit	редактирование данных (открытие редактора данных)				
clear	очистить память компьютера				
display	Вывод на экран значения переменной или выражения				
dis	калькулятор				
list	Вывод на экран значений переменных из активного				
	множества данных				
Описательные стат	Описательные статистики				
list [v1]	вывести значения переменных (v1) на экран,				
	кнопка BREAK (прервать выполнение команды)				
describe [v1]	вывести описание переменных				
sum [v1]	расчет дескриптивных статистик для переменной (v1)				
Действия над переменными					
gen v2=g(v1)	создать новую переменную v2 как функцию g от v1				
drop v1	удалить переменную v1				
ren v1 v2	переименовать переменную v1 в v2				
egen t=seq()	Создание последовательности целых чисел				
Работа с временными рядами					
tsset t	Объявить переменную t переменной времени				
tsline y	Построить график временного ряда у				
regress y t	Построить линейную регрессию				

1	<u> </u>
predict y1, xb	Сохранить предсказанные значения в у1
predict e1, residuals	Сохранить значения остатков в е1
ac y	построить автокорреляционную функцию для у
sum y	вычислить описательные статистики для у
pac y	построить частную автокорреляционную функцию для у
corrgram y	Вычислить значения автокорреляционной функций для у
pergram y	Построение периодограммы для у
sktest e1	Тест на нормальность для е1
wntestq e1	Статистика Льюинга-Бокса для е1
estat dwatson	Статистика Дарбина-Уотсона на наличие автокорреляции
	1-го порядка
Число ПИ	_pi
dfuller y	Тест Дики-Фуллера для у
arima y, arima(1,1,1)	Оценивание arima-модели для у
arima y, $ar(1) ma(1)$	
arima y, ar(1 5) ma(1 3)	