```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.seasonal import seasonal_decompose
from sklearn.metrics import mean_absolute_error, mean_squared_error
from pandas.plotting import register_matplotlib_converters

# Disable scientific notation for large numbers
pd.options.display.float_format = '{:.0f}'.format

# Setting display options for Pandas to show three decimal places for floati
pd.set_option('display.float_format', lambda x: '%.2f' % x)
```

Data Loading

```
In [3]: # import data
iris_df = pd.read_csv('/content/drive/MyDrive/Iris.csv')
```

Data Exploration

```
In [4]: | iris df.info()  # Display information about the DataFrame, including data ty
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 150 entries, 0 to 149
      Data columns (total 5 columns):
                        Non-Null Count Dtype
           Column
       ___
           SepalLengthCm 150 non-null
       0
                                        float64
                                       float64
       1 SepalWidthCm 150 non-null
          PetalLengthCm 150 non-null
                                       float64
           PetalWidthCm 150 non-null
                                       float64
           Species
                        150 non-null
                                        object
      dtypes: float64(4), object(1)
      memory usage: 6.0+ KB
In [5]: iris df.head() # Display top 5 records
```

Out[5]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.10	3.50	1.40	0.20	Iris- setosa
	1	4.90	3.00	1.40	0.20	Iris- setosa
	2	4.70	3.20	1.30	0.20	Iris- setosa
	3	4.60	3.10	1.50	0.20	Iris- setosa
	4	5.00	3.60	1.40	0.20	Iris- setosa

In [6]: iris_df.describe() # Display statistical info abour dataset

Out[6]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.00	150.00	150.00	150.00
	mean	5.84	3.05	3.76	1.20
	std	0.83	0.43	1.76	0.76
	min	4.30	2.00	1.00	0.10
	25%	5.10	2.80	1.60	0.30
	50%	5.80	3.00	4.35	1.30
	75 %	6.40	3.30	5.10	1.80
	max	7.90	4.40	6.90	2.50

Data Cleaning

```
In [7]: print(iris_df.isna().sum().sum()) # Print the sum of missing values
```

Since, the sum of missing values is zero, so there is no need to replace missing values.

```
In [8]: print(iris_df.duplicated().sum()) # Print the sum of duplicated values
3
In [9]: iris_df.drop_duplicates(inplace=True) # Drop duplicates
```

In [10]: print(iris_df.duplicated().sum()) # Print the sum of duplicated values after

Feature Engineering and Standardization

```
In [11]: # Separate features and target
         features = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'
         X = iris df[features]
         y = iris df['Species']
         # Standardize the features
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X)
         # Apply PCA
         pca = PCA(n_components=2)
         principal components = pca.fit transform(X scaled)
         # Create a DataFrame with the principal components
         principal df = pd.DataFrame(data=principal components, columns=['PC1', 'PC2'
         # Attach the target
         principal df['Species'] = iris df['Species']
In [12]: principal df.head()
Out[12]:
             PC1 PC2
                          Species
         0 -2.29 0.49 Iris-setosa
         1 -2.12 -0.67 Iris-setosa
         2 -2.40 -0.33 Iris-setosa
         3 -2.33 -0.59 Iris-setosa
         4 -2.42 0.65 Iris-setosa
```

Data Visualization

Task 2: Stock Price Prediction Using Time Series Forecasting

Data Loading

```
In [14]: # import data
stock_prices_df = pd.read_csv('/content/drive/MyDrive/stock_prices.csv')
```

Data Exploration

In [15]: stock_prices_df.info() # Display information about the DataFrame, including

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 112457 entries, 0 to 112456
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Index	112457 non-null	object
1	Date	112457 non-null	object
2	0pen	110253 non-null	float64
3	High	110253 non-null	float64
4	Low	110253 non-null	float64
5	Close	110253 non-null	float64
6	Adj Close	110253 non-null	float64
7	Volume	110253 non-null	float64

dtypes: float64(6), object(2)

memory usage: 6.9+ MB

Out[17]:

In [16]: stock_prices_df.head() # Display top 5 records

Out[16]:		Index	Date	Open	High	Low	Close	Adj Close	Volume
	0	NYA	1965-12-31	528.69	528.69	528.69	528.69	528.69	0.00
	1	NYA	1966-01-03	527.21	527.21	527.21	527.21	527.21	0.00
	2	NYA	1966-01-04	527.84	527.84	527.84	527.84	527.84	0.00
	3	NYA	1966-01-05	531.12	531.12	531.12	531.12	531.12	0.00
	4	NYA	1966-01-06	532.07	532.07	532.07	532.07	532.07	0.00

In [17]: stock_prices_df.describe() # Display statistical info abour dataset

	Open	High	Low	Close	Adj Close	Volume
count	110253.00	110253.00	110253.00	110253.00	110253.00	110253.00
mean	7658.52	7704.37	7608.00	7657.55	7657.35	1273975162.60
std	9011.48	9066.64	8954.51	9011.51	9011.61	4315783120.88
min	54.87	54.87	54.87	54.87	54.87	0.00
25%	1855.03	1864.51	1843.98	1855.06	1854.18	0.00
50%	5194.09	5226.28	5154.05	5194.75	5194.75	432900.00
75 %	10134.30	10207.82	10060.35	10134.83	10134.83	173431400.00
max	68775.06	69403.75	68516.99	68775.06	68775.06	94403740000.00

Data Cleaning

```
0
Out[18]:
             Index
              Date
                       0
             Open 2204
              High 2204
              Low 2204
             Close 2204
         Adj Close 2204
           Volume 2204
        dtype: int64
In [19]: stock prices df.fillna(method='ffill', inplace=True) # Filling missing value
        /tmp/ipython-input-1425105089.py:1: FutureWarning: DataFrame.fillna with 'me
        thod' is deprecated and will raise in a future version. Use obj.ffill() or o
        bj.bfill() instead.
          stock prices df.fillna(method='ffill', inplace=True)
In [20]: stock prices df.isna().sum() # Print the sum of missing values after replace
                    0
Out[20]:
             Index 0
             Date 0
             Open 0
             High 0
              Low 0
             Close 0
         Adj Close 0
           Volume 0
        dtype: int64
In [21]: print(stock_prices_df.duplicated().sum()) # Print the sum of duplicated valu
```

Since, the sum of duplicated values, so there is no need to drop duplicates.

Data Preprocessing

```
In [22]: # Convert the 'Date' column to datetime format
    stock_prices_df['Date'] = pd.to_datetime(stock_prices_df['Date'])
# Set 'Date' as the index
    stock_prices_df.set_index('Date', inplace=True)
```

Data Visualization

```
In [23]: # Plot the time series of Close prices
plt.figure(figsize=(14, 6))
plt.plot(stock_prices_df['Close'], color='blue', linewidth=1)
plt.title('Time Series of Close Prices', fontsize=16)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Close Price', fontsize=12)
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
In [24]: # Drop missing values in the 'Close' column
    stock_prices_df = stock_prices_df.dropna(subset=['Close'])

# Perform seasonal decomposition (assume ~252 trading days/year)
    decomposition = seasonal_decompose(stock_prices_df['Close'], model='multipli
In [25]: # Plot the observed trend seasonal and residual components
```

```
In [25]: # Plot the observed, trend, seasonal, and residual components
   plt.figure(figsize=(14, 10))
   decomposition.plot()
   plt.suptitle('Seasonal Decomposition of Close Prices', fontsize=16)
   plt.tight_layout()
   plt.show()
```

<Figure size 1400x1000 with 0 Axes>

Seasonal Decomposition of Close Prices

Feature Engineering

```
In [26]: # Sort the DataFrame by date in ascending order
         stock prices df.sort index(inplace=True)
         # Create lag feature: previous day's close price
         stock prices df['Close Lag1'] = stock prices df['Close'].shift(1)
In [27]: # Display the top 5 rows with the new lag feature
         print(stock prices df[['Close', 'Close Lag1']].head())
                     Close Close Lag1
        Date
        1965-01-05 1257.72
                                   NaN
        1965-01-06 1263.99
                               1257.72
        1965-01-07 1274.27
                               1263.99
        1965-01-08 1286.43
                               1274.27
        1965-01-11 1286.43
                               1286.43
```

Rolling window calculations

```
In [28]: # Calculate rolling window metrics
stock_prices_df['MA_7'] = stock_prices_df['Close'].rolling(window=7).mean()
```

```
stock_prices_df['MA_30'] = stock_prices_df['Close'].rolling(window=30).mean(
stock_prices_df['STD_30'] = stock_prices_df['Close'].rolling(window=30).std(
```

```
In [29]: # Plot original Close and moving averages
    plt.figure(figsize=(14, 6))
    plt.plot(stock_prices_df['Close'], label='Close Price', alpha=0.5)
    plt.plot(stock_prices_df['MA_7'], label='7-Day MA', color='orange')
    plt.plot(stock_prices_df['MA_30'], label='30-Day MA', color='green')
    plt.title('Close Price with Moving Averages')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```


Model Training and Forecasting

```
In [30]: register matplotlib converters()
         # Fit ARIMA model (p=5, d=1, q=2)
         model = ARIMA(stock prices df['Close'], order=(5, 1, 2))
         model fit = model.fit()
         # Summary of the model
         print(model fit.summary())
         # Forecast the next 30 days
         forecast = model fit.forecast(steps=30)
         # Plot historical and forecasted values
         plt.figure(figsize=(12, 6))
         plt.plot(stock prices df['Close'], label='Historical Close')
         plt.plot(forecast.index, forecast, label='Forecast (Next 30 Days)', color='r
         plt.title("ARIMA Forecast")
         plt.xlabel("Date")
         plt.ylabel("Close Price")
         plt.legend()
```

```
plt.grid(True)
plt.tight_layout()
plt.show()
```

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:47
3: ValueWarning: A date index has been provided, but it has no associated fr equency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:47
3: ValueWarning: A date index has been provided, but it has no associated fr equency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:47
3: ValueWarning: A date index has been provided, but it has no associated fr equency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/statespace/sarimax.p
y:978: UserWarning: Non-invertible starting MA parameters found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

SARIMAX Results

==							1124
Dep. Varia 57	ible:	C	lose	No.	Observations	•	1124
Model:		ARIMA(5, 1	., 2)	Log	Likelihood	-	1170800.9
11 Date:	F	ri, 01 Aug	2025	AIC			2341617.8
23 Time :		07.1	1.12	DTC			2241604 0
Time: 65		07:1	1:13	BIC			2341694.8
Sample: 80			0	HQIC			2341641.0
80		- 11	.2457				
Covariance	: Type:		opg				
==							
5]	coef	std err		Z	P> z	[0.025	0.97
ar.L1	-1.0119	0.028	-36.	279	0.000	-1.067	-0.9
57	0 2151	0 006	20	000	0.000	-0.226	0.2
ar.L2 04	-0.2151	0.006	-39.	080	0.000	-0.220	-0.2
ar.L3 91	-0.2011	0.005	-37.	173	0.000	-0.212	-0.1
ar.L4	-0.1762	0.005	-34.	631	0.000	-0.186	-0.1
66 ar.L5	-0.0847	0.003	-26.	142	0.000	-0.091	-0.0
78							
ma.L1 46	-0.1000	0.028	-3.	610	0.000	-0.154	-0.0
ma.L2	-0.8935	0.028	-32.	381	0.000	-0.948	-0.8
39 sigma2	7.755e+07	5.53e-10	1.4e	+17	0.000	7.76e+07	7.76e+
07							
=======	========	========			========	=======	=======
Ljung-Box	(L1) (Q):		4.	43	Jarque-Bera	(JB):	54
5776.66 Prob(Q):			0.	04	Prob(JB):		
0.00	lacticity (U)		4	16	Skew:		
2.47	lasticity (H)	:	4.	10	Skew:		
Prob(H) (two-sided): 12.60			0.	00	Kurtosis:		
=======				====			
======							

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (compl ex-step).

^[2] Covariance matrix is singular or near-singular, with condition number 9. 52e+31. Standard errors may be unstable.

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:83 7: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:83 7: FutureWarning: No supported index is available. In the next version, call ing this method in a model without a supported index will result in an exception.

return get_prediction_index(

In [30]: # Install pmdarima, which is used to tune ARIMA
!pip install pmdarima

Collecting pmdarima

Downloading pmdarima-2.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014 _x86_64.manylinux_2_28_x86_64.whl.metadata (7.8 kB)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.11/dis

t-packages (from pmdarima) (1.5.1)

Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /usr/loca l/lib/python3.11/dist-packages (from pmdarima) (3.0.12)

Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/di st-packages (from pmdarima) (2.0.2)

Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.11/dis t-packages (from pmdarima) (2.2.2)

Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3. 11/dist-packages (from pmdarima) (1.6.1)

Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.11/dis t-packages (from pmdarima) (1.16.1)

Requirement already satisfied: statsmodels>=0.13.2 in /usr/local/lib/python 3.11/dist-packages (from pmdarima) (0.14.5)

Requirement already satisfied: urllib3 in /usr/local/lib/python3.11/dist-pac kages (from pmdarima) (2.5.0)

Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3.11/dist-packages (from pmdarima) (75.2.0)

Requirement already satisfied: packaging>=17.1 in /usr/local/lib/python3.11/dist-packages (from pmdarima) (25.0)

Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyth on3.11/dist-packages (from pandas>=0.19->pmdarima) (2.9.0.post0)

Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dis t-packages (from pandas>=0.19->pmdarima) (2025.2)

Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/d ist-packages (from pandas>=0.19->pmdarima) (2025.2)

Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python 3.11/dist-packages (from scikit-learn>=0.22->pmdarima) (3.6.0)

Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.11/dis t-packages (from statsmodels>=0.13.2->pmdarima) (1.0.1)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-pa ckages (from python-dateutil>=2.8.2->pandas>=0.19->pmdarima) (1.17.0)

Installing collected packages: pmdarima Successfully installed pmdarima-2.0.4

In [34]: # Current version of NumPy is not compatible with the version of pandas, so
!pip uninstall numpy
!pip install numpy==1.26.4

```
WARNING: Skipping numpy as it is not installed.
Collecting numpy==1.26.4
  Downloading numpy-1.26.4-cp311-cp311-manylinux 2 17 x86 64.manylinux2014 x
86 64.whl.metadata (61 kB)
                                     61.0/61.0 kB 3.7 MB/s eta 0:0
Downloading numpy-1.26.4-cp311-cp311-manylinux 2 17 x86 64.manylinux2014 x86
64.whl (18.3 MB)
                                  18.3/18.3 MB 95.0 MB/s eta 0:00:
\Theta
Installing collected packages: numpy
ERROR: pip's dependency resolver does not currently take into account all th
e packages that are installed. This behaviour is the source of the following
dependency conflicts.
thinc 8.3.6 requires numpy<3.0.0, >=2.0.0, but you have numpy 1.26.4 which is
incompatible.
opency-python-headless 4.12.0.88 requires numpy<2.3.0,>=2; python version >=
"3.9", but you have numpy 1.26.4 which is incompatible.
opency-contrib-python 4.12.0.88 requires numpy<2.3.0,>=2; python version >=
"3.9", but you have numpy 1.26.4 which is incompatible.
opency-python 4.12.0.88 requires numpy<2.3.0,>=2; python version >= "3.9", b
ut you have numpy 1.26.4 which is incompatible.
Successfully installed numpy-1.26.4
```

Tuning ARIMA (p, d, q) parameters for better accuracy.

```
In [31]: from pmdarima import auto arima
         # Use auto arima to find optimal (p, d, q)
         stepwise model = auto arima(
             stock prices df['Close'],
             start p=0, max p=5,
             start q=0, max q=5,
             d=None, # Automatically determine the order of differencing
             seasonal=False, # Set to True if data is seasonal
             trace=True, # Print status of search
             error action='ignore',
             suppress warnings=True,
             stepwise=True  # Use stepwise search to reduce computation
         # Print the best model parameters
         print("Best ARIMA parameters:", stepwise model.order)
         # Fit the model with optimal parameters
         model = stepwise model.fit(stock prices df['Close'])
         # Forecast the next 30 days
         forecast = model.predict(n periods=30)
         # Create future date range
         future dates = pd.date range(stock_prices_df.index[-1] + pd.Timedelta(days=1
         # Plot historical and forecasted values
         plt.figure(figsize=(12, 6))
         plt.plot(stock prices df['Close'], label='Historical Close')
```

```
plt.plot(future dates, forecast, label='Forecast (Next 30 Days)', color='red
 plt.title("Tuned ARIMA Forecast")
 plt.xlabel("Date")
 plt.ylabel("Close Price")
 plt.legend()
 plt.grid(True)
 plt.tight layout()
 plt.show()
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
Performing stepwise search to minimize aic
 ARIMA(0,1,0)(0,0,0)[0] intercept
                                   : AIC=2430438.152, Time=2.45 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
 warnings.warn(
 ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=2397724.482, Time=3.07 sec
```

```
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
 warnings.warn(
 ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=inf, Time=84.28 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
 ARIMA(0,1,0)(0,0,0)[0]
                                    : AIC=2430436.152, Time=1.36 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
 warnings.warn(
 ARIMA(2,1,0)(0,0,0)[0] intercept : AIC=2383767.541, Time=4.45 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
 warnings.warn(
 ARIMA(3,1,0)(0,0,0)[0] intercept : AIC=2375587.638, Time=7.21 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
 ARIMA(4,1,0)(0,0,0)[0] intercept : AIC=2369875.874, Time=17.03 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
 ARIMA(5,1,0)(0,0,0)[0] intercept
                                  : AIC=2365284.328, Time=19.77 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
 warnings.warn(
 ARIMA(5,1,1)(0,0,0)[0] intercept : AIC=inf, Time=155.61 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
 warnings.warn(
 ARIMA(4,1,1)(0,0,0)[0] intercept : AIC=inf, Time=101.49 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
warnings.warn(
ARIMA(5,1,0)(0,0,0)[0]
                                    : AIC=2365282.329, Time=15.13 sec
/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu
tureWarning: 'force all finite' was renamed to 'ensure all finite' in 1.6 an
d will be removed in 1.8.
  warnings.warn(
 ARIMA(4,1,0)(0,0,0)[0]
                                   : AIC=2369873.875, Time=12.78 sec
```

/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu tureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.

warnings.warn(

ARIMA(5,1,1)(0,0,0)[0] : AIC=inf, Time=81.36 sec

/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu tureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 an d will be removed in 1.8.

warnings.warn(

ARIMA(4,1,1)(0,0,0)[0] : AIC=inf, Time=57.81 sec

Best model: ARIMA(5,1,0)(0,0,0)[0] Total fit time: 563.840 seconds Best ARIMA parameters: (5, 1, 0)

/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu tureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 an d will be removed in 1.8.

warnings.warn(

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:83 7: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get_prediction_index(

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:83 7: FutureWarning: No supported index is available. In the next version, call ing this method in a model without a supported index will result in an exception.

return get prediction index(

/usr/local/lib/python3.11/dist-packages/sklearn/utils/deprecation.py:151: Fu tureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.

warnings.warn(

Model Evaluation

```
In [36]: # Split into train/test (last 30 days as test)
         train = stock prices df['Close'][:-30]
         test = stock prices df['Close'][-30:]
         # Fit ARIMA model on training data (you can use tuned params here)
         model = ARIMA(train, order=(5, 1, 0)) # Best (p,d,q) -> (5, 1, 0) got after
         model fit = model.fit()
         # Forecast exactly the same length as test set
         forecast = model fit.forecast(steps=len(test))
         # Align forecast index to match test
         forecast.index = test.index
         # Evaluate forecast
         mae = mean absolute error(test, forecast)
         rmse = np.sqrt(mean squared error(test, forecast))
         mape = np.mean(np.abs((test - forecast) / test)) * 100
         # Print evaluation
         print(f"\nMAE (Mean Absolute Error): {mae:.2f}")
         print(f"RMSE (Root Mean Squared Error): {rmse:.2f}")
         print(f"MAPE (Mean Absolute Percentage Error): {mape:.2f}% \n")
        /usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa model.py:47
        3: ValueWarning: A date index has been provided, but it has no associated fr
        equency information and so will be ignored when e.g. forecasting.
          self. init dates(dates, freq)
        /usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa model.py:47
        3: ValueWarning: A date index has been provided, but it has no associated fr
        equency information and so will be ignored when e.g. forecasting.
          self. init dates(dates, freq)
        /usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa model.py:47
        3: ValueWarning: A date index has been provided, but it has no associated fr
        equency information and so will be ignored when e.g. forecasting.
          self. init dates(dates, freq)
        MAE (Mean Absolute Error): 12361.19
        RMSE (Root Mean Squared Error): 17966.30
        MAPE (Mean Absolute Percentage Error): 144.13%
        /usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa model.py:83
        7: ValueWarning: No supported index is available. Prediction results will be
        given with an integer index beginning at `start`.
          return get prediction index(
        /usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa model.py:83
        7: FutureWarning: No supported index is available. In the next version, call
        ing this method in a model without a supported index will result in an excep
        tion.
          return get prediction index(
```

Model Visualization

```
In [37]: # Plot actual vs. predicted values
    plt.figure(figsize=(14, 6))
    plt.plot(train.index, train, label='Training Data', color='blue')
    plt.plot(test.index, test, label='Actual Prices (Test)', color='black')
    plt.plot(test.index, forecast, label='Predicted Prices', color='red', linest
    plt.title('Actual vs. Predicted Stock Prices (ARIMA)')
    plt.xlabel('Date')
    plt.ylabel('Close Price')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```


This notebook was converted with convert.ploomber.io