APPLIED FUNCTIONAL ANALYSIS HOMEWORK 1

TOMMENIX YU ID: 12370130 STAT 31210 DUE WED JAN 11, 2023, 11PM

Discussed with classmates.

Exercise 1. (1.4) in book

Proof.

Property (a): $d(x, y) \ge 0, \forall x, y \in X \text{ and } d(x, y) = 0 \iff x = y.$

From definition we know that

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2) \ge 0$$

by the property (a) of the metric on X and Y.

For the later half, if $d((x_1, y_1), (x_2, y_2)) = 0$, then again since both summand are non-negative they are both 0, in which case $x_1 = x_2$ and $y_1 = y_2$, by property (a) of the metric on X and Y.

If $(x_1, y_1) = (x_2, y_2)$, then $d((x_1, y_1), (x_2, y_2)) = 0$ follows by definition of the L^1 metric and property (a) of the metric on X and Y.

Property (b): d(x, y) = d(y, x).

By definition we have

 $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2) = d_X(x_2, x_1) + d_Y(y_2, y_1) = d((x_2, y_2), (x_1, y_1))$ since d_X and d_Y are also symmetric.

Property (c): $d(x, z) \le d(x, y) + d(y, z)$.

Using the triangle inequality of d_X and d_Y we get

$$\begin{aligned} d((x_1, y_1), (x_3, y_3)) &= d_X(x_1, x_3) + d_Y(y_1, y_3) \\ &\leq \left(d_X(x_1, x_2) + d_X(x_2, x_3) \right) + \left(d_Y(y_1, y_2) + d_Y(y_2, y_3) \right) \\ &= d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)) \end{aligned}$$

the triangle inequality of d.

Exercise 2. (1.12) in book.

Proof. To show that h is continuous, we only need to show that for all open set $U \in \mathcal{O}_Z$ in the topology of Z, it's pre-image in X is also open.

Using f^{-1} , g^{-1} , h^{-1} to stand for pre-image but not the inverse (since might not a function), we get that

$$h^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$$

where $V \in \mathcal{O}_Y$ by continuity of g and $f^{-1}(V) \in \mathcal{O}_X$ by continuity of f, hence we are done. \Box

Exercise 3. (1.15) in book.

Proof. Every compact subset of a metric space is closed and bounded:

Theorem 1.62 tells us that every subset of a metric space is compact iff it is sequentially compact, and Theorem 1.59 says that every subset of a metric space is sequentially compact iff it is complete and totally bounded.

Combining them, we get that every compact subset of a metric space is complete and totally bounded.

bounded:

If a subset if totally bounded, it automatically says that it is bounded since for any $\varepsilon > 0$, we can find a finite ε -cover of the set. Then, $\forall x, y \in X$, let V_x and V_y be covers in the finite cover that contains x and y. Then

$$d(x, y) \le d(x, v_x) + d(v_x, v_y) + d(v_y, y)$$

where v_x and v_y are centers of V_x and V_y . Since the cover is finite $\max_{\forall center} d(v_x, v_y) < \infty$, hence

$$\sup_{x,y} d(x,y) \le \infty$$

and the subset is bounded.

closed:

So we only need to show that it is closed. But by contradiction if we assume that it is not closed, then $X \setminus S$ (S is the subset) is not open, so $\exists z \in X \setminus S$ such that $\forall \delta > 0$, $\exists z_{\delta} \in S$ such that $z_{\delta} \in B_{\delta}(z)$. Taking $\delta = \frac{1}{n}$ we can construct a sequence $(z_n) \to z$ such that $\forall n, z_n \in S$.

But then (z_n) does not have any convergent subsequence in S since if it has, it must be the limit $z \notin S$. Hence S is not sequentially compact, hence not compact by theorem 1.62, contradiction! So S is closed.

In conclusion, S is closed and bounded.

A closed subset of a compact space is compact:

Let X be the compact space and S be a closed subset. \forall open cover C of S. But by definition of induced topology (I found it under example 4.4 in textbook), every open set in a sub topology is the intersection of some open set in the original topology and the subset. That is, $\forall O \in C, \exists O' \in \mathcal{O}_X$ such that $O = O' \cap S$. Adopt Axiom of Choice we can find the choice function $f: C \to \mathcal{O}_X$ such that $f(O) \cap S = O$. Let C' := f(C).

Now $C' \cup X \setminus S$ is an open cover for X, which can be reduced to a finite cover \mathcal{D}' of X. If $X \setminus S$ is in the new cover, we subtract it; if not we don't change the finite cover. Denote this processed cover \mathcal{D}'' . Now let $\mathcal{D} = \{U = U'' \cap S | U'' \in \mathcal{D}''\}$ we obtain a finite subcover \mathcal{D} of C of S. Hence, S is compact.

Exercise 4. (1.16) in book.

Proof. Just use the function in the hint and check the three conditions are satisfied. The function is

$$f(x) = \frac{d(x, G^c)}{d(x, G^c) + d(x, F)}.$$

(a) $0 \le f(x) \le 1$:

Since $G^c \cap F = \emptyset$, the 2 terms in the denominator cannot both be 0, so the function is well defined for all \mathbb{R}^n .

Since $d(x, G^c) \ge 0$ and $d(x, F) + d(x, G^c) \ge 0$, $f(x) \ge 0$;

since
$$d(x, F) + d(x, G^c) \ge d(x, G^c) \ge 0, f(x) \le 1$$
.

(b) f(x) = 1 for $x \in F$:

When
$$x \in F$$
, $d(x, F) = 0$ and $d(x, G^c) \neq 0$, so $f(x) = \frac{d(x, G^c)}{d(x, G^c)} = 1$.

(c) f(x) = 0 for $x \in G^c$:

When
$$x \in G^c$$
, $d(x, G^c) = 0$ so $f(x) = \frac{d(x, G^c)}{d(x, G^c) + d(x, F)} = 0$.

Exercise 5. (1.20) in book.

Proof.

Banach \Rightarrow every absolute convergent series converge:

For $\sum x_n$ absolute convergent, we use the fact that convergent implies Cauchy to get that $\forall \epsilon, \exists N \text{ such that}$

$$\sum_{k=n>N}^{m} ||x_k|| < \varepsilon$$

for all $m \ge n \ge N$.

By triangular inequality we get

$$d\left(\sum_{i=1}^{m} x_i, \sum_{j=1}^{n} x_j\right) = \left\|\sum_{i=1}^{m} x_i - \sum_{j=1}^{n} x_j\right\| = \left\|\sum_{k=n>N}^{m} x_k\right\| \le \sum_{k=n>N}^{m} ||x_k|| < \varepsilon$$

which means that $\sum x_i$ is Cauchy. But the space is Banach, which means it is complete with respect to the norm metric, which is the one we're using, so it converges.

Banach *⇐* every absolute convergent series converge:

For the purpose of contradiction, assume that the space is not Banach, that is, there exists a sequence (y_n) that is Cauchy but does not have a limit in the space.

Now since y_n behaves pretty bad let's just pick a subsequence of it, call it z_n , such that for $x_n = z_n - z_{n-1}$ with $x_1 = 0$ we have $||x_n|| \le \frac{1}{2^n}$. This is possible since y_n is Cauchy and we can just let $\varepsilon = \frac{1}{2^n}$ each time and find the corresponding N, then let $z_n = y_{N+1}$.

Now by our construction, $\sum ||x_n||$ converges and thus $\sum x_n$ converges to some point x. Hence $z_n = z_1 + \sum x_n = z_0 + x := y$ by our construction. So a subsequence of y_n has a limit y, and by Cauchy property we know that $\forall \varepsilon, \exists N$ such that $\forall m \geq N$ we have $||y_m - y|| < \varepsilon$, which means that it converges. In other words, y_n has a limit in the space, contradiction! So the space is indeed Banach.

Exercise 6. (1.27) in book.

Proof. For the purpose of contradiction, we assume that the sequence does not converge to x. This means by definition that $\exists \varepsilon > 0$ such that there are infinitely many x_i s out side of the ball $B_{\varepsilon}(x)$. Rename these infinite points (must be countable since it's subset of a sequence) as y_i , with the original order.

Then, since the space is compact metric space, it is sequentially compact and hence y_i has a converging subsequence (z_i) . But the limit of (z_i) is x by assumption, yet this cannot be true since none of the element in (z_i) is in the ball $B_{\varepsilon}(x)$. Contradiction! So $x_n \to x$ as $n \to \infty$.