# 분류성능평가지표

분류성능평가지표

TP (True Positive) - 실제값과 예측값이 모두 True인 경우 (정답을 정답이라 본 경우)

### True Positive



correctly identified prediction for each class

TN (True Negative) - 실제값과 예측값이 모두 False인 경우 (오답을 오답이라 본 경우)

## True Negative for A

|                            |   | predictions (d | output) —— | <b>→</b> |    |
|----------------------------|---|----------------|------------|----------|----|
|                            |   | А              | В          | С        | D  |
| actual                     | Α | 9              | 1          | 0        | 0  |
| actual<br>class<br>(input) | В | 1              | 15         | 3        | 1  |
| (input) *                  | С | 5              | 0          | 24       | 1  |
|                            | D | 0              | 4          | 1        | 15 |

correctly rejected prediction for certain class (A)

FP (False Positive) - 실제로 False이지만 예측은 True인 경우 (오답을 정답이라 본 경우)

### False Positive for A



incorrectly identified predictions for certain class (A)

FN(False Negative) - 실제로 True이지만 예측은 False인 경우 (정답을 오답으로 본 경우)

# False Negative for A

|                  |   | predictions ( | output) —— | <b>→</b> |    |
|------------------|---|---------------|------------|----------|----|
|                  |   | А             | В          | С        | D  |
| actual           | Α | 9             | 1          | 0        | 0  |
| class<br>(input) | В | 1             | 15         | 3        | 1  |
| (input) *        | С | 5             | 0          | 24       | 1  |
|                  | D | 0             | 4          | 1        | 15 |

incorrectly rejected for certain class (A)

### Accuracy\_score (정확도) - TP / 전체

## Accuracy

|                  |   | predictions ( | output) —— | <b>→</b> |    |
|------------------|---|---------------|------------|----------|----|
|                  |   | А             | В          | С        | D  |
| actual           | Α | 9             | 1          | 0        | 0  |
| class<br>(input) | В | 1             | 15         | 3        | 1  |
| (input) *        | С | 5             | 0          | 24       | 1  |
|                  | D | 0             | 4          | 1        | 15 |

correctly identified prediction for each class / total dataset 9 + 15 + 24 + 15 / 80 accuracy = 0.78

정확도는 데이터의 분포가 고루 퍼져있을 때 유용하다.

## Accuracy works well on balanced data



#### F1 - Precision\*recall / Precision + reall

정확도와 재현율의 조화 평균

F1은 데이터의 분포가 고르지 못한 상태의 정확성을 검증할 때 유용하다.

### F1 score is good metric when data is imbalanced

Given a class, will the classifier detect it? (recall)

|   | А   | В  | С  | D  |
|---|-----|----|----|----|
| Α | 100 | 80 | 10 | 10 |
| В | 0   | 9  | 0  | 1  |
| С | 0   | 1  | 8  | 1  |
| D | 0   | 1  | 0  | 9  |

Given a class prediction from the classifier, how likely is it to be correct? (precision)

F1 Score is harmonic mean of recall and precision

Precision(정밀도) = TP / (TP+FP) - 예측이 True인 것 중 실제로 True인 비율

## Precision of Model 1 (macro average)



Precision = 
$$TP / (TP + FP)$$
  $P(A) = 1$   $P(B) = 9/91$   $P(C) = 8/18$   $P(D) = 9/21$  average precision =  $P(A) + P(B) + P(C) + P(D) / 4 = 0.492$  the number of classes

Recall(재현율) = TP / (TP + FN) - 실제값이 True인 것 중 예측이 적중한 비율

# Recall of Model 1 (macro average)

| predictions ———> |     |    |    |    |                  |                  |
|------------------|-----|----|----|----|------------------|------------------|
|                  | Α   | В  | С  | D  |                  |                  |
| Α                | 100 | 80 | 10 | 10 | TP: 100, FN: 100 | R(A) = 100 / 200 |
| В                | 0   | 9  | 0  | 1  | TP: 9, FN: 1     | R(B) = 9/10      |
| С                | 0   | 1  | 8  | 1  | TP: 8, FN: 2     | R(C) = 8/10      |
| D                | 0   | 1  | 0  | 9  | TP: 9, FN: 1     | R(D) = 9/10      |

Recall = 
$$TP / (TP + FN)$$

average recall = 
$$R(A) + R(B) + R(C) + R(D) / 4 = 0.775$$
  
the number of classes

### F1\_Score의 원리

### F1 Score of Model 1



Harmonic Mean - F1의 원리로 조화 평균을 의미

### Harmonic Mean



h is half the harmonic mean

### Harmonic Mean punishes extreme value more



h is half the harmonic mean

#### 분류성능평가지표 한눈에 보기 with Python

```
from sklearn.metrics import classification_report
print(classification_report(val_y, result))
                    precision recall f1-score support

      1.00
      1.00
      1.00

      0.92
      1.00
      0.96

      1.00
      0.93
      0.96

                                                                13
              0
              1
              2
                                                                14
                                                 0.97
                                                            38
    accuracy
                     0.97 0.98
   macro avg
                                                 0.97
                                                                38
                        0.98
                                    0.97
                                                 0.97
                                                                38
weighted avg
```

#### **Average**

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
print('정확도 {}'.format(accuracy_score(val_y, result)))
print('정밀도 {}'.format(precision_score(val_y, result, average='micro')))
print('재현율 {}'.format(recall_score(val_y, result, average='micro')))
print('F1 {}'.format(f1_score(val_y, result, average='micro')))
average = 'None' 라벨 별 각 평균
average = 'micro' 전체 평균
average = 'macro' 라벨 별 각 평균의 합
average = 'weighted_avg' 라벨별 가중치(개수)를 부여한 각 평균
```