

SEQUENCE LISTING

<110> Knutzon, Debbie

<120> POLYUNSATURATED FATTY ACIDS IN PLANTS

<130> MOCO.156.00US

<140> 09/330,235

<141> 1999-06-10

<150> 60/089,043

<151> 1998-06-12

<160> 22

<170> PatentIn version 3.0

<210> 1

<211> 1391

<212> DNA

<213> *Caenorhabditis elegans*

<400> 1	
caagttttag gatatggtcgc tcattcctca gaagggttat ccggccacggc tccggtcacc	60
ggcgaggatg ttctgggtga tgctcgtgca tctcttgaag aaaaggaggc tccacgtat	120
gtgaatgcaa acactaaaca ggccaccact gaagagccac gcatccaatt accaactgtg	180
gatgcttcc gtcgtgcaat tccagcacac tggttcgaaa gagatctcgtaaatcaatc	240
agatatttgg tgcaagactt tgcggcactc acaattctct actttgtct tccagcttt	300
gagtactttg gattgtttgg ttacttggtt tggAACATT ttatggagt ttttggattc	360
gcgttgttcg tcgttggaca cgattgtctt catggatcat tctctgataa tcagaatctc	420
aatgatttca ttggacatat cgccttctca ccactttct ctccatactt cccatggcag	480
aaaagtca a gcttcacca tgcttcacc aaccacattt acaaagatca tggacacgtg	540
tggattcagg ataaggattt ggaagcaatg ccatcatgga aaagatggtt caatccaatt	600
ccattctctg gatggcttaa atggttccca gtgtacactt tattcggttt ctgtgatgga	660
tctcacttct gcgcatactc ttcaactttt gttcgtaact ctgaccgtgt tcaatgtgt	720
atctctggaa tctgttgctg tgtgttgca tatattgctc taacaattgc tggatcatat	780
tccaaatttgt tctggacta ttgggttcca ctttctttt tcggattgtat gtcgtcatt	840
gttacctatt tgcaacatgt cgatgtatgtc gctgagggtgt acgaggctga tgaatggagc	900
ttcgtccgtg gacaaaccca aaccatcgat cgttactatg gactcggatt ggacacaacg	960
atgcaccata tcacagacgg acacgttgcc catcaattct tcaacaaaat cccacattac	1020

catctcatcg aagcaaccga aggtgtcaaa aaggtcttgg agccgttgc cgacacccaa	1080
tacgggtaca aatctaagt gaactacgat ttctttgcc gttcctgtg gttcaactac	1140
aagctcgact atctcggtca caagaccgccc ggaatcatgc aattccgaac aactctcgag	1200
gagaaggcaa aggccaagta aaagaatatac ccgtgccgtt ctagagtaca acaacaactt	1260
ctgcgttttc accgggttttgc ctctaattgc aatttttctt tgttctatat atatttttt	1320
gcttttaat tttattctct ctaaaaaact tctacttttc agtgcgttga atgcataaaag	1380
ccataactct t	1391

<210> 2
 <211> 402
 <212> PRT
 <213> *Caenorhabditis elegans*

<400> 2

Met Val Ala His Ser Ser Glu Gly Leu Ser Ala Thr Ala Pro Val Thr			
1	5	10	15

Gly Gly Asp Val Leu Val Asp Ala Arg Ala Ser Leu Glu Glu Lys Glu			
20	25	30	

Ala Pro Arg Asp Val Asn Ala Asn Thr Lys Gln Ala Thr Thr Glu Glu			
35	40	45	

Pro Arg Ile Gln Leu Pro Thr Val Asp Ala Phe Arg Arg Ala Ile Pro			
50	55	60	

Ala His Cys Phe Glu Arg Asp Leu Val Lys Ser Ile Arg Tyr Leu Val			
65	70	75	80

Gln Asp Phe Ala Ala Leu Thr Ile Leu Tyr Phe Ala Leu Pro Ala Phe			
85	90	95	

Glu Tyr Phe Gly Leu Phe Gly Tyr Leu Val Trp Asn Ile Phe Met Gly			
100	105	110	

Val Phe Gly Phe Ala Leu Phe Val Val Gly His Asp Cys Leu His Gly			
115	120	125	

Ser Phe Ser Asp Asn Gln Asn Leu Asn Asp Phe Ile Gly His Ile Ala			
130	135	140	

Phe Ser Pro Leu Phe Ser Pro Tyr Phe Pro Trp Gln Lys Ser His Lys			
145	150	155	160

Leu His His Ala Phe Thr Asn His Ile Asp Lys Asp His Gly His Val			
165	170	175	

Trp Ile Gln Asp Lys Asp Trp Glu Ala Met Pro Ser Trp Lys Arg Trp	
---	--

180	185	190	
Phe Asn Pro Ile Pro Phe Ser Gly Trp Leu Lys Trp Phe Pro Val Tyr			
195	200	205	
Thr Leu Phe Gly Phe Cys Asp Gly Ser His Phe Trp Pro Tyr Ser Ser			
210	215	220	
Leu Phe Val Arg Asn Ser Asp Arg Val Gln Cys Val Ile Ser Gly Ile			
225	230	240	
Cys Cys Cys Val Cys Ala Tyr Ile Ala Leu Thr Ile Ala Gly Ser Tyr			
245	250	255	
Ser Asn Trp Phe Trp Tyr Tyr Trp Val Pro Leu Ser Phe Phe Gly Leu			
260	265	270	
Met Leu Val Ile Val Thr Tyr Leu Gln His Val Asp Asp Val Ala Glu			
275	280	285	
Val Tyr Glu Ala Asp Glu Trp Ser Phe Val Arg Gly Gln Thr Gln Thr			
290	295	300	
Ile Asp Arg Tyr Tyr Gly Leu Gly Leu Asp Thr Thr Met His His Ile			
305	310	315	320
Thr Asp Gly His Val Ala His His Phe Phe Asn Lys Ile Pro His Tyr			
325	330	335	
His Leu Ile Glu Ala Thr Glu Gly Val Lys Lys Val Leu Glu Pro Leu			
340	345	350	
Ser Asp Thr Gln Tyr Gly Tyr Lys Ser Gln Val Asn Tyr Asp Phe Phe			
355	360	365	
Ala Arg Phe Leu Trp Phe Asn Tyr Lys Leu Asp Tyr Leu Val His Lys			
370	375	380	
Thr Ala Gly Ile Met Gln Phe Arg Thr Thr Leu Glu Glu Lys Ala Lys			
385	390	395	400
Ala Lys			

<210> 3
 <211> 41
 <212> DNA
 <213> synthetic primer

<400> 3
 cuacuacuac uactgcagac aatggtcgct cattcctcag a

41

<210> 4
 <211> 38
 <212> DNA
 <213> synthetic primer

<400> 4	38
caucaucauc augcgccgc ttactggcc tttgcctt	
<210> 5	
<211> 32	
<212> DNA	
<213> synthetic polylinker	
<400> 5	32
tcgacactgca ggaagcttgc ggccgcggat cc	
<210> 6	
<211> 32	
<212> DNA	
<213> synthetic polylinker	
<400> 6	32
tcgaggatcc gcggccgcaa gcttcctgca gg	
<210> 7	
<211> 1353	
<212> DNA	
<213> Brassica napus	
<400> 7	
aatccatcaa acctttattc accacatttc actgaaaggc cacacatcta gagagagaaa	60
cttcgtccaa atctctctct ccagcgatgg ttgttgctat ggaccagcgc agcaatgtta	120
acggagattc cggtgcccg aaggaagaag ggtttgatcc aagcgcacaa ccaccgttta	180
agatcggaga tataagggcg gcgattccta agcattgctg ggtgaagagt cctttgagat	240
ctatgagcta cgtcaccaga gacattttcg ccgtcgccgc tctggccatg gccgcgtgt	300
attttgatag ctgggttcctc tggccactct actgggttgc ccaaggaacc cttttctggg	360
ccatcttcgt tcttggccac gactgtggac atgggagttt ctcagacatt cctctgctga	420
acagtgtggc tggtcacatt cttcattcat tcattcgttgc tcattaccat ggttggagaa	480
taagccatcg gacacaccac cagaaccatg gccatgttga aaacgacgag tcttgggttc	540
cgttgcaga aaagttgtac aagaacttgc cccatagttac tcggatgctc agatacactg	600
tccctctgcc catgctcgct tacccgatct atctgtggta cagaagtccct ggaaaagaag	660
ggtcacattt taacccatac agtagtttat ttgctccaag cgagaggaag cttattgcaa	720
cttcaactac ttgctggtcc ataatgttgg ccactttgtt ttagtctatcg ttctcggtt	780
atccagtcac agttctcaaa gtctatggcg ttcccttacat tatctttgtg atgtgggttgg	840

acgctgtcac	gtacttgcac	catcatggtc	acgatgagaa	gttgccctgg	tacaggaggca	900
aggaatggag	ttatttacgt	ggaggattaa	caactattga	tagagattac	ggaatcttca	960
acaacatcca	tcacgacatt	ggaactcacf	tgatccatca	tctttcccc	caaatccctc	1020
actatcactt	ggtcgatgcc	acgagagcag	ctaaacatgt	gttaggaaga	tactacagag	1080
agccgaagac	gtcaggagca	ataccgattc	acttggtgga	gagtttggtc	gcaagtatta	1140
aaaaagatca	ttacgtcagt	gacactggtg	atattgtctt	ctacgagaca	gatccagatc	1200
tctacgttta	tgcttctgac	aaatctaaaa	tcaattaact	tttcttccta	gctctattag	1260
gaataaacac	tccttctctt	ttacttattt	gtttctgctt	taagttaaa	atgtactcgt	1320
gaaacctttt	ttttattaaat	gtatttacgt	ta			1353

<210> 8
 <211> 383
 <212> PRT
 <213> Brassica napus

<400> 8

Met	Val	Val	Ala	Met	Asp	Gln	Arg	Ser	Asn	Val	Asn	Gly	Asp	Ser	Gly
1										10					15
Ala	Arg	Lys	Glu	Glu	Gly	Phe	Asp	Pro	Ser	Ala	Gln	Pro	Pro	Phe	Lys
										20		25			30
Ile	Gly	Asp	Ile	Arg	Ala	Ala	Ile	Pro	Lys	His	Cys	Trp	Val	Lys	Ser
										35		40			45
Pro	Leu	Arg	Ser	Met	Ser	Tyr	Val	Thr	Arg	Asp	Ile	Phe	Ala	Val	Ala
										50		55			60
Ala	Leu	Ala	Met	Ala	Ala	Val	Tyr	Phe	Asp	Ser	Trp	Phe	Leu	Trp	Pro
										65		70			80
Leu	Tyr	Trp	Val	Ala	Gln	Gly	Thr	Leu	Phe	Trp	Ala	Ile	Phe	Val	Leu
										85		90			95
Gly	His	Asp	Cys	Gly	His	Gly	Ser	Phe	Ser	Asp	Ile	Pro	Leu	Leu	Asn
										100		105			110
Ser	Val	Val	Gly	His	Ile	Leu	His	Ser	Phe	Ile	Leu	Val	Pro	Tyr	His
										115		120			125
Gly	Trp	Arg	Ile	Ser	His	Arg	Thr	His	His	Gln	Asn	His	Gly	His	Val
										130		135			140
Glu	Asn	Asp	Glu	Ser	Trp	Val	Pro	Leu	Pro	Glu	Lys	Leu	Tyr	Lys	Asn
										145		150			160
Leu	Pro	His	Ser	Thr	Arg	Met	Leu	Arg	Tyr	Thr	Val	Pro	Leu	Pro	Met

165	170	175
Leu Ala Tyr Pro Ile Tyr Leu Trp Tyr Arg Ser Pro Gly Lys Glu Gly		
180	185	190
Ser His Phe Asn Pro Tyr Ser Ser Leu Phe Ala Pro Ser Glu Arg Lys		
195	200	205
Leu Ile Ala Thr Ser Thr Thr Cys Trp Ser Ile Met Leu Ala Thr Leu		
210	215	220
Val Tyr Leu Ser Phe Leu Val Asp Pro Val Thr Val Leu Lys Val Tyr		
225	230	235
Gly Val Pro Tyr Ile Ile Phe Val Met Trp Leu Asp Ala Val Thr Tyr		
245	250	255
Leu His His His Gly His Asp Glu Lys Leu Pro Trp Tyr Arg Gly Lys		
260	265	270
Glu Trp Ser Tyr Leu Arg Gly Leu Thr Thr Ile Asp Arg Asp Tyr		
275	280	285
Gly Ile Phe Asn Asn Ile His His Asp Ile Gly Thr His Val Ile His		
290	295	300
His Leu Phe Pro Gln Ile Pro His Tyr His Leu Val Asp Ala Thr Arg		
305	310	315
Ala Ala Lys His Val Leu Gly Arg Tyr Tyr Arg Glu Pro Lys Thr Ser		
325	330	335
Gly Ala Ile Pro Ile His Leu Val Glu Ser Leu Val Ala Ser Ile Lys		
340	345	350
Lys Asp His Tyr Val Ser Asp Thr Gly Asp Ile Val Phe Tyr Glu Thr		
355	360	365
Asp Pro Asp Leu Tyr Val Tyr Ala Ser Asp Lys Ser Lys Ile Asn		
370	375	380

<210> 9
 <211> 40
 <212> DNA
 <213> synthetic primer

<400> 9
 cuacuacuac uagagctcag cgatggttgt tgctatggac

40

<210> 10
 <211> 37
 <212> DNA
 <213> synthetic primer

<400> 10
 caucaucauc augaattctt aattgatttt agatttg

37

<210> 11
 <211> 1482
 <212> DNA
 <213> Mortierella alpina

<400> 11	
gcttcctcca gttcatcctc catttcgcca cctgcattct ttacgaccgt taagcaagat	60
gggaacggac caaggaaaaa cttcacctg ggaagagctg gcggccata acaccaagga	120
cgacctactc ttggccatcc gcggcagggt gtacgatgtc acaaagttct tgagccgcca	180
tcctggtgg a gtggacactc tcctgctcgg agctggccga gatgttactc cggtcttga	240
gatgtatcac gcgttgggg ctgcagatgc cattatgaag aagtactatg tcggtacact	300
ggtctcgaat gagctgccc tcttccgga gccaacggtg ttccacaaaa ccatcaagac	360
gagagtcgag ggctacttta cggatcgaa cattgatccc aagaatagac cagagatctg	420
gggacgatac gcttttatct ttggatcctt gatcgcttcc tactacgcgc agcttttgt	480
gccttcgtt gtcaacgca catggctca ggtggtgtt gcaatcatca tgggatttgc	540
gtgcgcacaa gtcggactca accctcttca tcatgcgtct cacttttag tgacccacaa	600
ccccactgtc tggaaagattc tggagccac gcacgacttt ttcaacggag catcgatct	660
ggtgtggatg taccaacata tgctcgccca tcacccctac accaacattg ctggagcaga	720
tcccgacgtg tcgacgtctg agcccgatgt tcgtcgatc aagcccaacc aaaagtggtt	780
tgtcaaccac atcaaccagc acatgtttgt tcctttctg tacggactgc tggcgttcaa	840
ggtgcgatt caggacatca acattttgtt ctttgtcaag accaatgacg ctattcggt	900
caatccatc tcgacatggc acactgtgat gttctgggc ggcaaggctt tctttgtctg	960
gtatcgctg attgttcccc tgcagtatct gcccctggc aaggtgctgc tcttgttac	1020
ggtcgcccac atgggtgtcg tttactggct ggctgctgacc ttccaggcga accacgttgt	1080
tgaggaagtt cagtggccgt tgcctgacga gaacgggatc atccaaaagg actggcagc	1140
tatgcaggc gagactacgc aggattacgc acacgattcg cacctctgga ccagcatcac	1200
tggcagctt aactaccagg ctgtgcacca tctgttcccc aacgtgtcgc agcaccatta	1260
tcccgatatt ctggccatca tcaagaacac ctgcagcgag tacaagggttc cataccttgt	1320
caaggatacg ttttggcaag catttgcttc acatttgag cacttgcgtg ttcttggact	1380
ccgtcccaag gaagagtaga agaaaaaaaaag cgccgaatga agtattgccc ctttttctc	1440
caagaatggc aaaaggagat caagtggaca ttctctatga ag	1482

<210> 12
<211> 446
<212> PRT
<213> Mortierella alpina

<400> 12

Met Gly Thr Asp Gln Gly Lys Thr Phe Thr Trp Glu Glu Leu Ala Ala
1 5 10 15

His Asn Thr Lys Asp Asp Leu Leu Leu Ala Ile Arg Gly Arg Val Tyr
20 25 30

Asp Val Thr Lys Phe Leu Ser Arg His Pro Gly Gly Val Asp Thr Leu
35 40 45

Leu Leu Gly Ala Gly Arg Asp Val Thr Pro Val Phe Glu Met Tyr His
50 55 60

Ala Phe Gly Ala Ala Asp Ala Ile Met Lys Lys Tyr Tyr Val Gly Thr
65 70 75 80

Leu Val Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His
85 90 95

Lys Thr Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile
100 105 110

Asp Pro Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe
115 120 125

Gly Ser Leu Ile Ala Ser Tyr Tyr Ala Gln Leu Phe Val Pro Phe Val
130 135 140

Val Glu Arg Thr Trp Leu Gln Val Val Phe Ala Ile Ile Met Gly Phe
145 150 155 160

Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe
165 170 175

Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His
180 185 190

Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met
195 200 205

Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val
210 215 220

Ser Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp
225 230 235 240

Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly
245 250 255

Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe
 260 265 270
 Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His
 275 280 285
 Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu
 290 295 300
 Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Phe
 305 310 315 320
 Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln
 325 330 335
 Ala Asn His Val Val Glu Glu Val Gln Trp Pro Leu Pro Asp Glu Asn
 340 345 350
 Gly Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln
 355 360 365
 Asp Tyr Ala His Asp Ser His Leu Trp Thr Ser Ile Thr Gly Ser Leu
 370 375 380
 Asn Tyr Gln Ala Val His His Leu Phe Pro Asn Val Ser Gln His His
 385 390 395 400
 Tyr Pro Asp Ile Leu Ala Ile Ile Lys Asn Thr Cys Ser Glu Tyr Lys
 405 410 415
 Val Pro Tyr Leu Val Lys Asp Thr Phe Trp Gln Ala Phe Ala Ser His
 420 425 430
 Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Glu Glu
 435 440 445
 <210> 13
 <211> 39
 <212> DNA
 <213> synthetic primer
 <400> 13
 cuacuacuac uactcgagca agatggaaac ggaccaagg

<210> 14
<211> 39
<212> DNA
<213> synthetic primer

<400> 14
caucaucauc auctcgagct actcttcctt gggacggag

39

<210> 15
<211> 47
<212> DNA

<213> synthetic primer

<400> 15 cuacuacuac uatctagact cgagaccatg gctgctgctc cagtgtg 47

<210> 16

<211> 40

<212> DNA

<213> synthetic primer

<400> 16 caucaucauc auaggcctcg agttactgcg ccttacccat 40

<210> 17

<211> 1617

<212> DNA

<213> Mortierella alpina

<400> 17
cgacactcct tccttcttct cacccgtcct agtccccttc aaccggccctc tttgacaaag 60
acaacaaacc atggctgctg ctcccagtgt gaggacgtt actcggggcg aggttttgaa 120
tgccgaggct ctgaatgagg gcaagaagga tgccgaggca cccttcttga tgatcatcga 180
caacaagggtg tacgatgtcc gcgagttcgt ccctgatcat cccgggtggaa gtgtgattct 240
cacgcacgtt ggcaaggacg gcactgacgt ctttgacact tttcaccccg aggctgcttg 300
ggagactctt gccaactttt acgttggtga tattgacgag agcgaccgcg atatcaagaa 360
tgatgacttt gccccggagg tccgcaagct gcgtaccttgc ttccagtctc ttggttacta 420
cgattcttcc aaggcatact acgccttcaa ggtctcggtc aacctctgca tctggggttt 480
gtcgacggtc attgtggcca agtggggcca gacctcgacc ctgcggcaacg tgctctcgcc 540
tgcgcttttgc ggtctgttct ggcagcagtg cggatggttg gtcacgact ttttgcata 600
ccaggtcttc caggaccgtt tctggggta tctttcgcc gccttcttgg gaggtgtctg 660
ccagggtttc tcgtctcggt ggtggaaagga caagcacaac actcaccacg ccggccccaa 720
cgtccacggc gaggatcccg acattgacac ccaccctctg ttgacctgga gtgagcatgc 780
gttggagatg ttctcgatg tcccaagatga ggagctgacc cgcatgtggt cgcgtttcat 840
ggtcctgaac cagacctggt tttacttccc cattctctcg tttgcccgtc tctcctggtg 900
cctccagttcc attctcttgc tgctgcctaa cggtcaggcc cacaaggccct cggggcgccg 960
tgtgcccatac tcgttggtgc agcagctgac gcttgcgtatg cactggacct ggtacctcg 1020
caccatgttc ctgttcatca aggatcccggt caacatgctg gtgtactttt tgggtgcga 1080

ggcgggtgtgc ggaaacttgt tggcgatcgt gttctcgctc aaccacaacg gatatgcctgt 1140
 gatctcgaaag gaggaggccgg tcgatatgga tttcttcacg aagcagatca tcacgggtcg 1200
 tgatgtccac ccgggtctat ttgccaactg gttcacgggt ggattgaact atcagatcga 1260
 gcaccactg ttcccttcga tgcctcgcca caactttca aagatccagc ctgctgtcga 1320
 gaccctgtgc aaaaagtaca atgtccgata ccacaccacc ggtatgatcg agggaaactgc 1380
 agaggtctt agccgtctga acgaggtctc caaggctgcc tccaaagatgg gtaaggcgca 1440
 gtaaaaaaaaaa aaacaaggac gtttttttc gccagtgcct gtgcctgtgc ctgcttcct 1500
 tgtcaagtcg agcgttctg gaaaggatcg ttcagtgcag tatcatcatt ctcctttac 1560
 cccccgctca tatctcattc atttctctta ttaaacaact tgttcccccc ttcacccg 1617

<210> 18
 <211> 457
 <212> PRT
 <213> Mortierella alpina

<400> 18

Met Ala Ala Ala Pro Ser Val Arg Thr Phe Thr Arg Ala Glu Val Leu
 1 5 10 15

Asn Ala Glu Ala Leu Asn Glu Gly Lys Lys Asp Ala Glu Ala Pro Phe
 20 25 30

Leu Met Ile Ile Asp Asn Lys Val Tyr Asp Val Arg Glu Phe Val Pro
 35 40 45

Asp His Pro Gly Gly Ser Val Ile Leu Thr His Val Gly Lys Asp Gly
 50 55 60

Thr Asp Val Phe Asp Thr Phe His Pro Glu Ala Ala Trp Glu Thr Leu
 65 70 75 80

Ala Asn Phe Tyr Val Gly Asp Ile Asp Glu Ser Asp Arg Asp Ile Lys
 85 90 95

Asn Asp Asp Phe Ala Ala Glu Val Arg Lys Leu Arg Thr Leu Phe Gln
 100 105 110

Ser Leu Gly Tyr Tyr Asp Ser Ser Lys Ala Tyr Tyr Ala Phe Lys Val
 115 120 125

Ser Phe Asn Leu Cys Ile Trp Gly Leu Ser Thr Val Ile Val Ala Lys
 130 135 140

Trp Gly Gln Thr Ser Thr Leu Ala Asn Val Leu Ser Ala Ala Leu Leu
 145 150 155 160

Gly Leu Phe Trp Gln Gln Cys Gly Trp Leu Ala His Asp Phe Leu His

165	170	175
His Gln Val Phe Gln Asp Arg Phe Trp Gly Asp Leu Phe Gly Ala Phe		
180	185	190
Leu Gly Gly Val Cys Gln Gly Phe Ser Ser Ser Trp Trp Lys Asp Lys		
195	200	205
His Asn Thr His His Ala Ala Pro Asn Val His Gly Glu Asp Pro Asp		
210	215	220
Ile Asp Thr His Pro Leu Leu Thr Trp Ser Glu His Ala Leu Glu Met		
225	230	235
240		
Phe Ser Asp Val Pro Asp Glu Glu Leu Thr Arg Met Trp Ser Arg Phe		
245	250	255
Met Val Leu Asn Gln Thr Trp Phe Tyr Phe Pro Ile Leu Ser Phe Ala		
260	265	270
Arg Leu Ser Trp Cys Leu Gln Ser Ile Leu Phe Val Leu Pro Asn Gly		
275	280	285
Gln Ala His Lys Pro Ser Gly Ala Arg Val Pro Ile Ser Leu Val Glu		
290	295	300
320		
Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe		
305	310	315
320		
Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser		
325	330	335
Gln Ala Val Cys Gly Asn Leu Leu Ala Ile Val Phe Ser Leu Asn His		
340	345	350
Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe		
355	360	365
Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe		
370	375	380
380		
Ala Asn Trp Phe Thr Gly Leu Asn Tyr Gln Ile Glu His His Leu		
385	390	395
400		
Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val		
405	410	415
Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met		
420	425	430
430		
Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys		
435	440	445
Ala Ala Ser Lys Met Gly Lys Ala Gln		
450	455	

<211> 1488
 <212> DNA
 <213> Mortierella alpina

<400> 19						
gtcccccgtc	gctgtcgca	caccccatcc	tccctcgctc	cctctgcgtt	tgtccttggc	60
ccaccgtctc	tcctccaccc	tccgagacga	ctgcaactgt	aatcaggaac	cgacaaaatac	120
acgatttctt	tttactcagc	accaactcaa	aatcctcaac	cgcaaccctt	tttcaggatg	180
gcaccccca	acactatcga	tgccggtttg	acccagcgtc	atatcagcac	ctcgccccca	240
aactcgccca	agcctgcctt	cgagcgcaac	taccagctcc	ccgagttcac	catcaaggag	300
atccgagagt	gcatccctgc	ccactgcttt	gagcgctccg	gtctccgtgg	tctctgccac	360
tttgccatcg	atctgacttg	ggcgtcgctc	ttgttcctgg	ctgcgaccca	gatcgacaag	420
tttgagaatc	ccttgatccg	ctatttggcc	tggcctgttt	actggatcat	gcagggtatt	480
gtctgcacccg	gtgtctgggt	gctggtcac	gagtgtggtc	atcagtcctt	ctcgacccctc	540
aagaccctca	acaacacagt	tggttggatc	ttgcactcga	tgctcttggt	cccctaccac	600
tcctggagaa	tctcgactc	gaagcaccac	aaggccactg	gccatatgac	caaggaccag	660
gtctttgtgc	ccaagacccg	ctcccaggtt	ggcttgcctc	ccaaggagaa	cgctgctgct	720
gccgttcagg	aggaggacat	gtccgtgcac	ctggatgagg	aggctcccat	tgtgactttg	780
ttctggatgg	tgatccagtt	cttggtcgga	tggcccgctg	acctgattat	gaacgcctct	840
ggccaagact	acggccgctg	gacctcgac	ttccacacgt	actcgcccat	ctttgagccc	900
cgcaactttt	tcgacattat	tatctcgac	ctcggtgtgt	tggctgcctt	cggtgccttg	960
atctatgcct	ccatgcagtt	gtcgctcttgc	accgtcacca	agtactatat	tgtcccctac	1020
ctctttgtca	acttttggtt	ggctctgatc	accttcttgc	agcacaccga	tcccaagctg	1080
ccccattacc	gcgagggtgc	ctggaatttc	cagcgtggag	ctcttgcac	cgttgaccgc	1140
tcgtttggca	agttcttggaa	ccatatgttc	cacggcattg	tccacaccca	tgtggcccat	1200
cacttgttct	cgcaaatgcc	gttctaccat	gctgaggaag	ctacctatca	tctcaagaaa	1260
ctgctggag	agtactatgt	gtacgaccca	tccccgatcg	tcgttgcgtt	ctggaggtcg	1320
ttccgtgagt	gccgattcgt	ggaggatcag	ggagacgtgg	tcttttcaa	gaagtaaaaa	1380
aaaagacaat	ggaccacaca	caacccgtc	tctacagacc	tacgttatcat	gtagccatac	1440
cacttcataa	aagaacatga	gctctagagg	cgtgtcatcc	gcgcctcc		1488

<211> 399
<212> PRT
<213> Mortierella alpina

<400> 20

Met Ala Pro Pro Asn Thr Ile Asp Ala Gly Leu Thr Gln Arg His Ile
1 5 10 15

Ser Thr Ser Ala Pro Asn Ser Ala Lys Pro Ala Phe Glu Arg Asn Tyr
20 25 30

Gln Leu Pro Glu Phe Thr Ile Lys Glu Ile Arg Glu Cys Ile Pro Ala
35 40 45

His Cys Phe Glu Arg Ser Gly Leu Arg Gly Leu Cys His Val Ala Ile
50 55 60

Asp Leu Thr Trp Ala Ser Leu Leu Phe Leu Ala Ala Thr Gln Ile Asp
65 70 75 80

Lys Phe Glu Asn Pro Leu Ile Arg Tyr Leu Ala Trp Pro Val Tyr Trp
85 90 95

Ile Met Gln Gly Ile Val Cys Thr Gly Val Trp Val Leu Ala His Glu
100 105 110

Cys Gly His Gln Ser Phe Ser Thr Ser Lys Thr Leu Asn Asn Thr Val
115 120 125

Gly Trp Ile Leu His Ser Met Leu Leu Val Pro Tyr His Ser Trp Arg
130 135 140

Ile Ser His Ser Lys His His Lys Ala Thr Gly His Met Thr Lys Asp
145 150 155 160

Gln Val Phe Val Pro Lys Thr Arg Ser Gln Val Gly Leu Pro Pro Lys
165 170 175

Glu Asn Ala Ala Ala Val Gln Glu Glu Asp Met Ser Val His Leu
180 185 190

Asp Glu Glu Ala Pro Ile Val Thr Leu Phe Trp Met Val Ile Gln Phe
195 200 205

Leu Phe Gly Trp Pro Ala Tyr Leu Ile Met Asn Ala Ser Gly Gln Asp
210 215 220

Tyr Gly Arg Trp Thr Ser His Phe His Thr Tyr Ser Pro Ile Phe Glu
225 230 235 240

Pro Arg Asn Phe Phe Asp Ile Ile Ser Asp Leu Gly Val Leu Ala
245 250 255

Ala Leu Gly Ala Leu Ile Tyr Ala Ser Met Gln Leu Ser Leu Leu Thr
260 265 270

Val Thr Lys Tyr Tyr Ile Val Pro Tyr Leu Phe Val Asn Phe Trp Leu
275 280 285

Val Leu Ile Thr Phe Leu Gln His Thr Asp Pro Lys Leu Pro His Tyr
290 295 300

Arg Glu Gly Ala Trp Asn Phe Gln Arg Gly Ala Leu Cys Thr Val Asp
305 310 315 320

Arg Ser Phe Gly Lys Phe Leu Asp His Met Phe His Gly Ile Val His
325 330 335

Thr His Val Ala His His Leu Phe Ser Gln Met Pro Phe Tyr His Ala
340 345 350

Glu Glu Ala Thr Tyr His Leu Lys Lys Leu Leu Gly Glu Tyr Tyr Val
355 360 365

Tyr Asp Pro Ser Pro Ile Val Val Ala Val Trp Arg Ser Phe Arg Glu
370 375 380

Cys Arg Phe Val Glu Asp Gln Gly Asp Val Val Phe Phe Lys Lys
385 390 395

<210> 21
<211> 36
<212> DNA
<213> synthetic primer

<400> 21
cuacuacuac uaggatccat ggcacctccc aacact

36

<210> 22
<211> 41
<212> DNA
<213> synthetic primer

<400> 22
caucaucauc auggtacctc gagttacttc ttgaaaaaga c

41