

Analyse asymptotique

le me souviens	
ixercices	
Exercices et résultats classiques à connaître	
Un équivalent par encadrement	
Le DL de $tan(x)$	
Exercices du CCINP	
Exercices	
Petits problèmes d'entrainement	

Je me souviens

- 1. C'est quoi, l'analyse asymptotique?
- 2. Ca veut dire quoi, négligeable?
- 3. C'est quoi, un o(1)?
- 4. Ca veut dire quoi, dominé?
- 5. C'est quoi, un O(1)?
- 6. On peut faire des opérations sur les petit o? sur les grand O?
- 7. Ca veut dire quoi, équivalent?
- 8. Est-ce que c'est une relation d'équivalence?
- 9. On peut faire des opérations sur les équivalents?
- 10. Y a-t-il des équivalents usuels?
- 11. À quoi servent les équivalents?
- 12. Qu'est ce qui se cache derrière l'argument souvent avancé de « croissances comparées »?
- 13. C'est quoi, un développement limité en 0?
- 14. Est-ce qu'un DL donne un équivalent ? un équivalent donne un DL?
- 15. Quels sont les DL que l'on doit connaître?
- 16. Opérations sur les DL?
- 17. C'est quoi, un développement limité en a?
- 18. C'est quoi, un développement asymptotique?
- 19. Au voisinage de $n \to +\infty$, $\left(1 + \frac{1}{n}\right)^n \sim ?$
- 20. Donner un exemple de suites telles que $u_n \sim v_n$ mais $e^{u_n} \not\sim e^{v_n}$.
- 21. Est-ce qu'on a toujours $u_{n+1} \sim u_n$?

Exercices et résultats classiques à connaître

Un équivalent par encadrement

620.1

Soit $(u_n)_n$ une suite réelle décroissante telle que :

$$u_{n+1} + u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Déterminer un équivalent simple de u_n .

Le DL de tan(x)

620.2

(a) Former le développement limité à l'ordre 3 en 0 de :

$$\tan x = \frac{\sin x}{\cos x}$$

(b) Prolonger ce développement limité à l'ordre 5 en exploitant :

$$\tan(\operatorname{Arctan} x) = x$$

(c) Prolonger ce développement limité à l'ordre 7 en exploitant :

$$\tan'(x) = 1 + \tan^2(x)$$

620. Analyse asymptotique

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang.

1. Prouver que si $u_n \underset{+\infty}{\sim} v_n$ alors u_n et v_n sont de même signe à partir d'un certain rang.

620.4

On considère la série : $\sum_{n>1} \cos \left(\pi \sqrt{n^2 + n + 1}\right)$.

1. Prouver que, au voisinage de $+\infty$:

$$\pi\sqrt{n^2 + n + 1} = n\pi + \frac{\pi}{2} + \alpha \frac{\pi}{n} + O\left(\frac{1}{n^2}\right)$$

où α est un réel que l'on déterminera.

Exercices

620.5

Déterminer un équivalent simple de :

- (a) ln(2n)
- (b) $\ln\left(1+\frac{a}{n}\right)$ où $a\in\mathbb{R}^*$

- (i) $\frac{e^{\frac{1}{n}} e^{\frac{2}{n}}}{\sin{\frac{1}{n}} + \sin{\frac{2}{n}}}$
- (j) $\sin\left(\cos\left(\frac{1}{\ln n}\right) e^{\frac{1}{n}}\right)$

620.6

Déterminer un équivalent simple au voisinage de $x \to 0$ de :

(a) $\frac{1 - \cos x}{\ln(1+x)}$

(b) $\ln(\cos x)$

(d) $(8+x)^{\frac{1}{3}} - 2$ (e) $\ln(1+x+\sqrt{4+x}) - \ln(3)$ (f) $\ln(3e^x + e^{-x}) - 2\ln 2$.

(c) $x^x - 1$

|620.7|

Déterminer un équivalent simple au voisinage de $x \to +\infty$ de :

(a) $(x+1)^{\frac{1}{x}} - x^{\frac{1}{x}}$

(c) $\ln\left(\frac{\sin x}{x}\right)$

(d) $\ln\left(\frac{\operatorname{th} x}{x}\right)$

620.8

Déterminer un équivalent simple au voisinage de $x \to \pi$ de :

(a) $\sin(x)$

(b) $\cos \frac{x}{2}$

620.9

Étudier la convergence de la suite de terme général :

(b) $\frac{n}{n^2+1}$

(e) $(n^2 + 1)e^{-\sqrt{n}}$ (f) $\ln(n^3 + n + 1)\sqrt{\sin\frac{1}{n}}$

(c) $\frac{n+(-1)^n}{3n+1}$

(g) $\frac{1}{n} \ln \left(\frac{n^2 + 2n}{n^3 + 2} \right)$

(d) $\frac{\ln(n)\sin(n)}{n}$

(h) $\ln \left(\sin \left(\pi \cos(e^{-n}) \right) \right)$

620.10

- (a) Déterminer le développement limité en 0 à l'ordre 3 de $Arctan(e^x)$.
- (b) Quelle est l'allure de la courbe correspondante au voisinage du point d'abscisse 0?

Petits problèmes d'entrainement

620.11

On considère l'application définie sur \mathbb{R}^* par :

$$f(x) = 1 + x^2 \sin\frac{1}{x}$$

- (a) Montrer que f se prolonge en une fonction dérivable sur \mathbb{R} .
- (b) Est-ce que la dérivée de f admet un développement limité en 0?

|620.12|ØD)

Soit $f:[0,1]\to\mathbb{R}$, avec $f(1)\neq 0$. On pose:

$$I_n = \int_0^1 t^n f(t) \, \mathrm{d}t$$

Déterminer un équivalent simple de I_n en supposant :

- (a) f de classe \mathcal{C}^1 ;
- (b) f continue.

620.13

- (a) Déterminer le développement asymptotique à trois termes en $+\infty$ de x Arctan(x).
- (b) Quelle est l'allure de la courbe correspondante, au voisinage de $x \to +\infty$?

620.14

Déterminer l'asymptote en $+\infty$ et préciser la position de la courbe pour:

$$\frac{1}{\ln\left(1+\ln\left(1+\frac{1}{x}\right)\right)}$$

620.15

Soit P et Q deux polynômes de degré au plus n, et $x_0 \in \mathbb{R}$. Montrer que:

$$P(x) - Q(x) = \underset{x \to 0}{\text{o}} (x^n) \implies P = Q$$

620.16

Montrer que $\sum_{k=0}^{n} k! \sim n!$.

|620.17|

Soit $(u_n)_n$ et $(v_n)_n$ deux suites positives. On suppose que $\sum v_n$ diverge et que $u_n = o(v_n)$. Montrer que :

$$\sum_{k=0}^{n} u_k = o\left(\sum_{k=0}^{n} v_k\right)$$

620.18

Pour $n \in \mathbb{N}^*$, on définit le polynôme :

$$P_n = X(X-1)\dots(X-n)$$

- (a) Montrer que le polynôme P'_n possède une unique racine dans l'intervalle]0,1[. On la note $x_n.$
- (b) Étudier la monotonie de la suite $(x_n)_{n \ge 1}$.
- (c) Former la décomposition en éléments simples de la fraction rationnelle :

$$F_n = \frac{P_n'}{P_n}$$

(d) Déterminer un équivalent de x_n .

620.19

Déterminer le développement asymptotique :

- (a) à 2 termes de $u_n = \frac{1}{n + \sin n}$
- (b) à 3 termes de $v_n = (n+1)\ln(n) n\ln(n+1)$

620.20

Pour $n \in \mathbb{N}$, on considère l'équation d'inconnue $x \in \mathbb{R}_+$:

$$x + \sqrt[3]{x} = n$$

- (a) Montrer que cette équation possède une unique solution x_n .
- (b) Déterminer la limite, puis un équivalent simple de $(x_n)_n$.
- (c) Donner un développement asymptotique à trois termes de $(x_n)_n$.

620.21

Pour $n \in \mathbb{N}$, on considère l'équation d'inconnue $x \in \mathbb{R}_+^*$:

$$x^n \ln x = 1$$

- (a) Montrer que cette équation possède une unique solution x_n , et que $x_n > 1$.
- (b) Montrer que $(x_n)_n$ est décroissante, et déterminer sa limite.

Pour $n \in \mathbb{N}^*$, on pose $y_n = x_n - 1$.

(c) Justifier que $ny_n \sim -\ln y_n$ et en déduire un équivalent de y_n .