Практическое задание 4

```
In [25]:
```

```
from sympy import *
import math
import pandas as pd
```

1. Найти производную функции:

$$y = \frac{1}{x} + \frac{2}{x^2} - \frac{5}{x^3} + \sqrt{x} - \sqrt[3]{x} + \frac{3}{\sqrt{x}}$$

$$\left(\frac{1}{x} + \frac{2}{x^2} - \frac{5}{x^3} + \sqrt{x} - \sqrt[3]{x} + \frac{3}{\sqrt{x}}\right)' = -\frac{1}{x^2} - \frac{4}{x^3} + \frac{15}{x^4} + \frac{1}{2\sqrt{x}} - \frac{1}{3\sqrt[3]{x^2}} - \frac{1}$$

Проверим

In [26]:

x=Symbol('x')

In [27]:

$$f=1/x+2/(x**2)-5/x**3+sqrt(x) - (x ** (1/3))+3/sqrt(x)$$

Out[27]:

In [28]:

diff(f,x)

Out[28]:

$$-\frac{0.33333333333333333}{x^{0.6666666666667}} - \frac{1}{x^2} - \frac{4}{x^3} + \frac{15}{x^4} + \frac{1}{2\sqrt{x}} - \frac{3}{2x^{\frac{3}{2}}}$$

Видим, что производная найдена верно.

2. Найти производную функции:

$$y = x \cdot \sqrt{1 + x^2}$$

$$\left(x \cdot \sqrt{1 + x^2}\right)' = x' \cdot \sqrt{1 + x^2} + x \cdot \left(\sqrt{1 + x^2}\right)' = 1 \cdot \sqrt{1 + x^2} + x \cdot \frac{1}{2 \cdot \sqrt{1 + x^2}}$$
$$\cdot (1 + x^2)' = \sqrt{1 + x^2} + x \cdot \frac{1}{2 \cdot \sqrt{1 + x^2}} \cdot 2x = \sqrt{1 + x^2} + \frac{x^2}{\sqrt{1 + x^2}} = \frac{2x^2 + x^2}{\sqrt{1 + x^2}}$$

Проверим

In [29]:

f=x*sqrt(1+x**2)

In [30]:

diff(f,x)

Out[30]:

$$\frac{x^2}{\sqrt{x^2+1}} + \sqrt{x^2+1}$$

Видим, что производная найдена верно.

3. Найти производную функции:

$$y = \frac{2x}{1 - x^2}$$

$$\left(\frac{2x}{1-x^2}\right)' = \frac{(2x)' \cdot (1-x^2) - 2x \cdot (1-x^2)'}{(1-x^2)^2} = \frac{2 \cdot (1-x^2) - 2x \cdot (-2x)}{(1-x^2)^2}$$
$$= \frac{2 - 2x^2 + 4x^2}{(1-x^2)^2} = \frac{2(x^2+1)}{(1-x^2)^2}$$

Проверим

In [31]:

f=2*x/(1-x**2) f

Out[31]:

$$\frac{2x}{1-x^2}$$

In [32]:

diff(f,x)

Out[32]:

$$\frac{4x^2}{(1-x^2)^2} + \frac{2}{1-x^2}$$

Если сложить данные дроби, то получится найденное нами выражение. Таким образом видим, что производная найдена верно.

4*. Найти производную функции:

$$y = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

$$\left(\sqrt{x+\sqrt{x+\sqrt{x}}}\right)' = \frac{\left(x+\sqrt{x+\sqrt{x}}\right)'}{2\cdot\sqrt{x+\sqrt{x+\sqrt{x}}}} = \frac{1+\left(\sqrt{x+\sqrt{x}}\right)}{2\cdot\sqrt{x+\sqrt{x+\sqrt{x}}}}$$
$$= \frac{1+\frac{1+\frac{1}{2\sqrt{x}}}{2\cdot\sqrt{x+\sqrt{x}}}}{2\cdot\sqrt{x+\sqrt{x}+\sqrt{x}}} = \frac{1+\left(\sqrt{x+\sqrt{x}}\right)}{2\cdot\sqrt{x+\sqrt{x}+\sqrt{x}}}$$

5. Найти производную функции:

$$y = \ln(x + \sqrt{x^2 + 1})$$

$$(\ln(x+\sqrt{x^2+1}))' = \frac{1}{x+\sqrt{x^2+1}} \cdot (x+\sqrt{x^2+1})' = \frac{(x+\sqrt{x^2+1})'}{x+\sqrt{x^2+1}}$$

$$= \frac{(x)' + (\sqrt{x^2+1})'}{x+\sqrt{x^2+1}} = \frac{1 + \frac{1}{2\cdot\sqrt{x^2+1}} \cdot (x^2+1)'}{x+\sqrt{x^2+1}} = \frac{1 + \frac{2x}{2\cdot\sqrt{x^2+1}}}{x+\sqrt{x^2+1}} = \frac{1 + \frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}$$

Проверим

In [33]:

f=ln(x+sqrt(x**2+1))
f

Out[33]:

 $\log\left(x+\sqrt{x^2+1}\right)$

In [34]:

diff(f,x)

Out[34]:

$$\frac{\frac{x}{\sqrt{x^2+1}}+1}{x+\sqrt{x^2+1}}$$

Видим, что производная найдена верно.

6. Найти производную функции:

$$y = x \cdot \ln(x + \sqrt{x^2 + 1}) - \sqrt{x^2 + 1}$$

$$(x \cdot \ln(x + \sqrt{x^2 + 1}) - \sqrt{x^2 + 1})' = (x \cdot \ln(x + \sqrt{x^2 + 1}))' - (\sqrt{x^2 + 1})' = (x)'$$

$$(x + \sqrt{x^2 + 1}) + x \cdot (\ln(x + \sqrt{x^2 + 1}))' - (\sqrt{x^2 + 1})' = \ln(x + \sqrt{x^2 + 1})$$

$$+ \frac{x \cdot \left(1 + \frac{x}{\sqrt{x^2 + 1}}\right)}{x + \sqrt{x^2 + 1}} - \frac{x}{\sqrt{x^2 + 1}}$$

Проверим

```
In [35]:
```

```
f=x*ln(x+sqrt(x**2+1)) - sqrt(x**2+1)
f
```

Out[35]:

$$x \log \left(x + \sqrt{x^2 + 1}\right) - \sqrt{x^2 + 1}$$

In [36]:

Out[36]:

$$-\frac{x}{\sqrt{x^2+1}} + \frac{x\left(\frac{x}{\sqrt{x^2+1}} + 1\right)}{x + \sqrt{x^2+1}} + \log\left(x + \sqrt{x^2+1}\right)$$

Видим, что производная найдена верно.

7*. Найти производную функции:

$$y = \arcsin(\sin x)$$

$$(\arcsin(\sin(x))' = \frac{1}{\sqrt{1 - \sin^2(x)}} \cdot (\sin(x))' \frac{\cos(x)}{\sqrt{1 - \sin^2(x)}}$$

In [37]:

```
f=asin(sin(x))
f
```

Out[37]:

 $a\sin(\sin(x))$

In [38]:

diff(f,x)

Out[38]:

$$\frac{\cos(x)}{\sqrt{1-\sin^2(x)}}$$

Видим, что производная найдена верно.

8*. Вычислить приближенное значение:

$$\sin(1^0) = \sin\left(\frac{\pi}{180}\right)$$

Для решения используем формулу

$$f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$$

$$x = 0$$

$$\Delta x = \frac{\pi}{180}$$

$$f(x) = \sin x = \sin 0 = 0$$

$$f'(x) = \cos x = \cos 0 = 1$$

$$\Delta x = \frac{1 \cdot \pi}{180}$$

$$\sin(1^0) = 0 + 1 \cdot \frac{1 \cdot \pi}{180} = \frac{3.14}{180} = 0.0174$$

9.** Написать на python алгоритм, по вычислению значений $\sin(x)$ для $x \in [0, 30^0]$

Для проверки подойдут данные из таблицы Брадиса

Загрузим данные из таблицы Брадиса

In [39]:

```
data = pd.read_csv('sin.csv', delimiter=' ')
```

Посмотрим на рассчетные значения синусов углов от 0 до 30 градусов при привязке к 0 и к $\pi/6$

In [40]:

```
data_sin_1 = []
data_sin_2 = []
for a in range (1, 31):
    data_sin_1.append(a*math.pi/180)
    data_sin_2.append(0.5 - (3**(1/2))/2*(30-a)*math.pi/180)
```

In [41]:

```
data["experience_1"] = data_sin_1
data["experience_2"] = data_sin_2
data["difference_1"] = data["experience_1"] - data["Sin"]
data["difference_2"] = data["experience_2"] - data["Sin"]
data
 8
       9 0.1564
                      0.157080
                                   0.182585
                                                0.000680
                                                             0.026185
 9
      10 0.1736
                      0.174533
                                   0.197700
                                                0.000933
                                                             0.024100
10
          0.1908
                      0.191986
                                   0.212815
                                                0.001186
                                                             0.022015
      11
                      0.209440
                                   0.227930
                                                             0.020030
 11
      12 0.2079
                                                0.001540
12
      13 0.2250
                      0.226893
                                   0.243045
                                                0.001893
                                                             0.018045
13
          0.2419
                      0.244346
                                   0.258160
                                                0.002446
                                                             0.016260
14
      15 0.2588
                      0.261799
                                   0.273275
                                                0.002999
                                                             0.014475
```

15 0.2756 0.279253 0.288390 0.003653 0.012790 16 0.2924 0.296706 0.303505 0.004306 0.011105 17 0.3090 0.314159 0.318620 0.005159 0.009620 18 0.3256 0.331613 0.333735 0.006013 0.008135 19 0.3420 0.349066 0.348850 0.007066 0.006850

Посмотрим на сколько каждая из привязок отличается от значений Брадиса

N 363065

In [42]:

21 0 3584

20

```
data["difference_1"].plot()
data["difference_2"].plot()
```

N NNR110

0 005565

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0xa54e1c8>

N 366510

Мы видим, что в значении 19 градусов значения этих привязок равны. Следовательно до 19 градусов целесообразно использовать в качестве x_0 0, а начиная с 19 градусов - $\frac{\pi}{6}$.

```
In [43]:
data = pd.read_csv('sin.csv', delimiter=' ')
In [44]:
data_sin = []
for a in range (1, 31):
    if a<=19:
        data_sin.append(a*math.pi/180)
    else:
        data_sin.append(0.5 - (3**(1/2))/2*(30-a)*math.pi/180)
data_sin
Out[44]:
[0.017453292519943295,
0.03490658503988659,
0.05235987755982988,
0.06981317007977318,
0.08726646259971647,
0.10471975511965977,
0.12217304763960307,
0.13962634015954636,
0.15707963267948966,
0.17453292519943295,
0.19198621771937624,
0.20943951023931953,
0.22689280275926285,
0.24434609527920614,
0.2617993877991494,
0.2792526803190927,
0.29670597283903605,
0.3141592653589793,
0.3316125578789226,
0.3488500529804819,
0.36396504768243365,
0.3790800423843855,
0.3941950370863373,
0.4093100317882891,
0.42442502649024094,
0.43954002119219276,
```

Посмтрим, какую погрешность мы в итоге имеен на участке от $0\,\mathrm{дo}\,30^{o}$

0.45465501589414453, 0.46977001059609635, 0.4848850052980482,

0.5]

In [45]:

```
data["experience"] = data_sin
data["difference"] = data["experience"] - data["Sin"]
data
```

Out[45]:

	Угол	Sin	experience	difference
0	1	0.0175	0.017453	-0.000047
1	2	0.0349	0.034907	0.000007
2	3	0.0523	0.052360	0.000060
3	4	0.0698	0.069813	0.000013
4	5	0.0872	0.087266	0.000066
5	6	0.1045	0.104720	0.000220
6	7	0.1219	0.122173	0.000273
7	8	0.1392	0.139626	0.000426
8	9	0.1564	0.157080	0.000680
9	10	0.1736	0.174533	0.000933
10	11	0.1908	0.191986	0.001186
11	12	0.2079	0.209440	0.001540
12	13	0.2250	0.226893	0.001893
13	14	0.2419	0.244346	0.002446
14	15	0.2588	0.261799	0.002999
15	16	0.2756	0.279253	0.003653
16	17	0.2924	0.296706	0.004306
17	18	0.3090	0.314159	0.005159
18	19	0.3256	0.331613	0.006013
19	20	0.3420	0.348850	0.006850
20	21	0.3584	0.363965	0.005565
21	22	0.3746	0.379080	0.004480
22	23	0.3907	0.394195	0.003495
23	24	0.4067	0.409310	0.002610
24	25	0.4226	0.424425	0.001825
25	26	0.4384	0.439540	0.001140
26	27	0.4540	0.454655	0.000655
27	28	0.4695	0.469770	0.000270
28	29	0.4848	0.484885	0.000085
29	30	0.5000	0.500000	0.000000

In [46]:

```
data["difference"].plot()
```

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0xc2e0e48>

Видим, что при таком подходе ошибка в расчетах составляет не более 0,0068