## Prova 1 - Circuitos Digitais

## Prof. Daniel Oliveira

## Abril de 2024

| Nome: | -            |             |  | - |  |
|-------|--------------|-------------|--|---|--|
| m     | 11015375-201 | 101 ST 1880 |  |   |  |

Exercício 1. [10 pontos] Faça as seguintes conversões de base mostrando as operações de divisão multiplicação necessárias para atingir o resultado.

- a)  $|11101110|_2 = |...|_8 = |...|_{10} = |...|_{16}$
- b)  $|AB|_{16} = |...|_{10}$
- c)  $|1110.1110|_2 = |...|_{10}$

Exercício 2. [30 pontos] Faça as seguintes equações convertendo de decimal para binário com 6 bits (tamanho da palavra) utilizando complemento de dois, mostrando os cálculos necessários para atingir o resultado. Indique também caso ocorra overflow:

- a) +14 21
- b) -18 19
- c) -25-7

Exercício 3. [5 pontos] Faça a extensão dos números abaixo passando de 6 para 12 bits considerando as representações.

- a) 111100 (sem sinal)
- b) 010101 (sinal magnitude)
- c) 111001 (sinal magnitude)
- d) 110101 (complemento de dois)
- e) 011010 (complemento de dois)

Exercício 4. [10 pontos] Considerando a Tabela 1, expresse a função S usando a Forma Normal Disjuntiva (FND), mintermos.

Exercício 5. [10 pontos] Considerando a Tabela 1, expresse a função P usando a Forma Normal Conjuntiva (FNC), maxtermos.

Exercício 6. [15 pontos] Considerando a Tabela 1, simplifique por mapa de Karnaugh a função S.

Exercício 7. [10 pontos] Desenhe o circuito lógico descrito pelas seguintes equações (não precisa simplificar).

a) 
$$(\overline{A \cdot C} + B) \cdot (\overline{B + C})$$

b) 
$$(\overline{A+B\cdot C})+(\overline{A}+B+C)$$

Exercício 8. [10 pontos] Obtenha as equações que descrevem os seguintes circuitos, indicando o nome de cada saída:



| 1   | Α | В | C | D | S(A,B,C,D) | P(A, B, C, D) |
|-----|---|---|---|---|------------|---------------|
| -   | 0 | 0 | 0 | 0 | 1 .        | 0 -           |
|     | 0 | 0 | 0 | 1 | 0          | 1             |
|     | 0 | 0 | 1 | 0 | 1          | 0             |
| **  | 0 | 0 | 1 | 1 | 0          | 0             |
| -   | 0 | 1 | 0 | 0 | 0          | 0             |
|     | 0 | 1 | 0 | 1 | 0          | 1             |
| Si. | 0 | 1 | 1 | 0 | 1 .        | 1             |
| 8   | 0 | 1 | 1 | 1 | 1          | 1             |
|     | 1 | 0 | 0 | 0 | 1          | 1             |
|     | 1 | 0 | 0 | 1 | 0          | 1             |
| 3   | 1 | 0 | 1 | 0 | 1          | 1             |
| 8   | 1 | 0 | 1 | 1 | 1          | 1             |
|     | 1 | 1 | 0 | 0 | 0          | 1             |
| No. | 1 | 1 | 0 | 1 | 1          | 0             |
| *** | 1 | 1 | 1 | 0 | 1          | - 0           |
|     | 1 | 1 | 1 | 1 | 1          | 0             |

Tabela 1: Tabela verdade para as funções S(A, B, C, D) e P(A, B, C, D), onde A, B, C e D são quatro sinais de entrada,