

Department of Electrical and Computer Engineering
Rutgers, The State University of New Jersey 94 Brett Road Piscataway, NJ 08854-8058
(848) 445-3262 (848) 445-3127 FAX: (732) 445-2820

Undergraduate Students Handbook in Electrical and Computer Engineering

This handbook can be found at the <u>ECE</u> website

Undergraduate Director: Professor Hana Godrich

ECE Building-Room 122

Busch Campus

e-mail: godrich@soe.rutgers.edu

(848) 445-2606

(848) 445-3262 (ECE Department)

Last updated: May 2018

Handbook for Undergraduate Students

This handbook describes the details of the undergraduate program offered by the Department of Electrical and Computer Engineering. Each student is responsible for every aspect of completing his/her degree requirements. All relevant information is contained in the attachments. Be sure to thoroughly read this handbook, paying attention to all the degree requirements. Before registering for any course, a student must have met the necessary prerequisites. Also, prior approval is required for any courses a student wishes to take at another institution if those courses are intended to fulfill degree requirements. Please note that additional advising material is available at SOE Dean's website http://soe.rutgers.edu/oaa.

The undergraduate program consists of two specific options: (1) Electrical Engineering option and (2) Computer Engineering option. Both options lead to the same B.S. Degree in Electrical and Computer Engineering (ECE). Details of the two curricula are provided shortly. It should be noted that the freshman and sophomore years are common to both options. In either option a student takes several elective courses in addition to the required courses. The four categories of elective courses are (1) Technically oriented electives, (2) Science Math and Engineering elective, (3) Humanities/Social Science electives and (4) General elective.

1. Degree Title

Bachelor of Science (BS) in Electrical and Computer Engineering (BSECE)

1.1 Electrical and Computer Engineering Mission Statement

The mission of the ECE undergraduate program is to provide students with a broad and flexible education in electrical and computer engineering, to prepare its graduates for rapidly changing technological fields, and give them a sound basis for professional practice, advanced education, active citizenship, and lifelong learning. The students are prepared to expand this knowledge through research into new technologies, design methods, and analysis techniques that link the knowledge with multi-disciplinary fields and advance the state of the art. With a knowledge of contemporary technological issues and their impact globally, economically, and environmentally, electrical and computer engineers are at the forefront of advances that continually transform society.

1.2 <u>Degree Requirements</u>

A B.S. Degree in Electrical and Computer Engineering has the following requirements:

Required Number of Degree Credits:

Both Electrical Engineering and Computer Engineering options require 123 credits for graduation. Under certain circumstances, due to one reason or another, a student might be exempted from taking a required course. If so, to satisfy the number of degree credits required, the student needs to take an additional elective course in its place. Consult with the Undergraduate Director for guidance.

ECE Residency requirements: to satisfy the requirements for graduation a minimum number of 14:332:xxx credits must be taken. Students majoring in the Electrical Engineering option need to take **54 credits of 14:332:xxx** and the Computer Engineering option need to take **50 credits of 14:332:xxx**. Only core courses and electrical and computer electives count towards residency requirement. Technical

electives do not count towards residency. Core courses are detailed in the Electrical and Computer Engineering Curriculum detailed herein.

Required Number of Electives for the ECE major:

Electrical Engineering Option:

Electives consists of (1) <u>four</u> courses of electrical electives, (2) <u>two</u> courses of technical electives, (3) <u>one</u> course of Science Math and Engineering elective, and (4) <u>one</u> course of a general elective.

Computer Engineering Option:

Electives consist of (1) <u>two</u> courses of computer electives, (2) <u>one</u> course of computer or technical elective, (3) <u>one</u> course of technical elective, and (4) <u>one</u> course of Science Math and Engineering elective.

For all SOE majors, students must take 18cr of humanities/social science requirements, including 12cr of electives: two courses of lower level Hum/Soc electives and two courses of upper level Hum/Soc electives. Humanities/Social Science requirements are not a part of the ECE Residency requirement.

1.3 Program Educational Objectives

Consistent with the stated mission of the University, the *mission* of the electrical and computer engineering program is to prepare its graduates for a rapidly changing technological field. The faculty of the department of Electrical and Computer Engineering strives to educate and train the students in a technically sound and challenging manner to achieve the following *educational objectives*:

- 1. To prepare graduates to pursue professional careers or continue their education in graduate programs.
- To ensure that graduates are proficient and competent in the following electrical and computer
 engineering areas: communications, computer engineering, computer signal and information
 processing, systems and controls, and solid state electronics.
- 3. To produce graduates who will pursue life-long learning and professional development.

1.4 Educational Outcomes

Rutgers ECE graduates should have attained:

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multi-disciplinary teams
- (e) an ability to identify, formulate, and solve electrical and computer engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of electrical and computer engineering solutions in a global, economic, environmental, and societal context

- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for electrical and computer engineering practice.

1.5 The Relationship Between Educational Objectives and Outcomes

Relationship of student learning outcomes to program educational objectives. The outcomes and objectives are noted by abbreviated descriptions.

Outcome	Objective 1	Objective 2	Objective 3
	Expectations	Advance Study	Leadership
a - math/science	•	•	
b - experiments	•	•	
c - design	•	•	
d - teams	•		•
e - problem solutions	•	•	
f - ethics	•	•	•
g – communication	•		•
h - broad education	•	•	•
i - life-long learning	•	•	•
j - contemporary issues	•	•	•
k - engineering tools	•	•	

Relationship between student outcomes (SOs) addressed in each required course in the Electrical and Computer Engineering curricula. The level of support is marked by H (highly supported) or S (supported). The ones who are being assessed for each outcome is highlighted in yellow¹.

Course Name and Number	а	b	С	d	е	f	g	h	i	j	k
221 Principles of Electrical Engineering I	Н				Н				S		Н
222 Principles of Electrical Engineering II	Н	S			Н		S		S		Н
223 Principles of Electrical Engineering I Laboratory	Н	Н	S	Н	S	S	Н		S		Н
224 Principles of Electrical Engineering II Laboratory	Н	Н	S	Н	S	S	Н		S		Н
226 Probability and Random Processes	Н	S	Н		Н		S		S		Н
231 Digital Logic Design	Н	Н	S		Н	S	S		S		Н
233 Digital Logic Design Laboratory	Н	Н	Н	Н	Н	S	Н		S		Н

 $^{^{1}}$ Note: The H/S evaluation scoring that the ECE department uses can be equated with the 3-point scoring methods used by others where H = 3, S=2.

252 Programming. Methodology I	Н				Н		S		S		Н
254 Programming. Methodology I	Н	Н	S		S	S	S		S		Н
Laboratory											
312 Discrete Mathematics	Н				Н		S	S			
331 Computer Architecture and Assembly	Н	S			Н		S		S		Н
Language											
333 Comp. Architecture Laboratory	Н	Н		S	Н		S		S		Н
345 Linear Systems and Signals	Н		S		Н		Н		S		Н
346 Digital Signal Processing	Н		S		Н		Н		S		Н
347 Linear Systems and Signals Laboratory	Н	Н	S		S	S	Н		S		Н
348 Digital Signal Processing Laboratory	Н	S	S		Н		S		S		Н
351 Programming Methodology II	Н				Н		S		S		Н
361 Electronic Devices	Н	S			Н		S		S		Н
363 Electronic Devices Laboratory	Н	Н	S	S	S	S	Н		S		Н
366 Digital Electronics	Н	S			Н		S		S		Н
368 Digital Electronics Lab	Н	Н	S	S	S	S	Н		S		Н
393 Professionalism/Ethics						Н		S	S	S	
434 Introduction to Computer Systems	Н				Н				S		Н
437 Digital Systems Design	Н	S			Н		S		S		Н
448 Capstone Design in ECE	Н	Н	Н	Н	Н	Н	Н	Н	Н	S	Н
452 Software Engineering	Н	Н	Н	Н	Н	S	Н	S	S	S	Н

2. Combined Degree Options, Minors and Double Majors

2.1 BS/Master's programs (http://soe.rutgers.edu/oas/BS-Masters):

Rutgers School of Engineering students are eligible to apply for admission to a variety of accelerated Master's Programs. Admission to any of these programs typically requires a cumulative grade point average of at least 3.2 (note: some departments have different GPA requirements) and junior year status. In some cases, an aptitude test such as the GRE or GMAT is also required. These prestigious programs allow students to complete a master's degree in 1-2 extra years while simultaneously integrating an undergraduate engineering experience with that of a graduate program. With the higher demands of the work place in today's world, the B.S./Master's programs ensure that students remain competitive by mastering new techniques and extending their expertise within their subject area and/or in the related areas of business.

There are currently three combined programs available with a B.S. in Engineering. See the following links for details:

- <u>BS-MBA</u> (Master of Business Administration Future Leaders MBA)
- BS-MS/ME (Master of Science, or Master of Engineering): described in 2.5
- BS-MBS (Master of Business and Science)
- BS-MEd (Master of Education)

2.2 Minors, Double Majors, and Dual Degree (http://soe.rutgers.edu/oas/minors-majors):

Minors, majors, and dual degrees provide students with the opportunity to broaden skill sets outside of engineering. Often times you can choose your courses so that they can be 'double-counted' – meaning that the courses will count towards your minor (or major, or dual degree), and count towards engineering. Many of the technical minors (math, computer science, life sciences, etc.) can often count for both the minor and as part of the technical electives for the engineering major. Many of the humanities/social science minors (history, psychology, language, economics, etc.) can count for the minor and as the humanities requirements.

2.3 Minoring in CS:

Requirements for minoring in Computer Science (CS) may be found on the CS Department site at: https://www.cs.rutgers.edu/undergraduate/minor-computer-science.

A suggested choice for Computer Option Students enabling a CS minor is as follows:

Students enrolled in the Computer Engineering Option: Take 198:111, 112, 213/214, and three electives as either Computer electives or Tech electives or a combination of them. These electives are to be taken among the courses listed as technical elective. Substitute 198:111, 112, 213/214 for ECE required courses 332:252, 254 and 351 (PM I & LAB and PM II). You may take a CS course as Science Math Engineering elective.

Students should check with CS departmental advisor before finalizing their schedules.

Students enrolled in the Electrical Engineering Option: It is rather difficult to take a minor in CS unless you are prepared to take six extra CS courses. Consult the UG Director.

Note that with any substitution of an ECE course: Electrical Engineering option students need to take 54 credits of 14:332:xxx and Computer Engineering option students need to take 50 credits of 14:332:xxx.

2.4 Double Majoring in Computer Science and Computer Engineering:

Consult CS Website for details. ECE requirements are the same whether you are a double degree major or a single degree major. You have to check with CS department or their website to know what is required to get a BS in CS. You could use some CS courses as electives for ECE. You have to look at the elective list for computer option to find out what CS courses can be used as electives for ECE. Also, look at the info under `Equivalent of Courses' as given above.

Note that with any substitution of an ECE course: Electrical Engineering option students need to take 54 credits of 14:332:xxx and Computer Engineering option students need to take 50 credits of 14:332:xxx.

Differences between Computer Science and Computer Engineering:

Computer science (CS) and computer engineering (CE) are related to each other but different in their emphasis. When you think of a COMPUTER, two aspects of it are prominent, software (Programming, programming languages, data structures, etc.) and hardware (architecture and what goes in building it, the circuitry). CS deals with mostly software and hardware is only tangential.

On the other hand, CE is the other way.

Let us take an analogy, say the automobile. To make use of an automobile, one really does not need to know how it works. All that needs is the knowledge of how to drive it and with the help of some gauges know whether it needs GAS or OIL, and also be familiar with some warning signs for service and repair. However, knowing something about how an automobile works will enhance the use of it.

On the other hand, an engineer designing an automobile must deal with its architecture both functionally as well as appearance wise. This involves physical hardware design and construction.

Now let us take the Computer instead of an automobile. Computer Science (CS) is mainly interested in using the computer as a tool just like a driver is interested in using an automobile. Thus the curriculum in CS concentrates on the languages needed to communicate with a computer. In other words, software is emphasized although computer architecture and other aspects of hardware are briefly reviewed.

Computer Engineering (CE) emphasizes the architecture, and the physical design of circuitry to make it work. However, some aspects of software are also discussed but not to the same extent as Computer Science does.

2.5 BS-MS Program:

The admission Process for combined BS/MS Degrees is described below.

- 1. ECE undergraduate students in a good academic standing with the GPA of 3.2 and above are eligible for admission in to the ECE graduate program.
- The interested student needs to submit the regular New Brunswick Graduate School
 application at the beginning of the fall semester of senior year to the ECE Graduate
 Director together with three letters of recommendation. The GRE requirement will be
 waived.
- 3. Students must complete the number of credits required for the ECE BS degree before starting the M.S. graduate program. The requirements for the MS degree are identical to the requirements in effect for regular ECE MS students:
 - (a) 24 credits plus the master thesis or
 - (b) 30 credits plus the master technical paper and its public presentation.

Please note that double counting of credits **for both degrees is presently not allowed**. Also, this is not a joint BS/MS 5-year program. Such a program will need the approval from the State.

3 <u>ECE Program Courses Information</u>

The following tables detail the core and elective courses requirements for the electrical engineering and computer engineering options:

3.1 Electrical Engineering Curriculum:

Total Credits			15		Total Credits		1
	, ,						
: :	Hum/Soc elective (200+)		3	J1.220.102	······································		
::	Technical elective	M	3	01:220:102	Microeconomics		
	Science Math Eng elective	M	3		General elective	IVI	3
14:332: 14:332:	Electrical elective	M	3	14:332:448 14:332:	Electrical elective	M	
Senior Year 14:332:	Electrical elective	М	2	11.222.110	Capstone Design elective	М	
Total Credits			15	Total Credits		101	1
·	Harry Soc cicclive (200+)		J		Technical elective	M	
::	Hum/Soc elective (200+)	IVI	3	14:332:308	Electrical elective	M	
14:332:363	Electronic Devices Lab	M	1	14:332:368	Digital Electronics Lab	M	
14:332:347	Electronic Devices	M	3	14:332:393	Digital Electronics	M	
14:332:345 14:332:347	Linear Systems & Signals Linear Sys. & Signals Lab	M	1	14:332:348 14:332:393	Digital Signal Proc. Lab Professionalism/Ethics	M	
14:332:333	Computer Arch. Lab	M	3	14:332:346	Digital Signal Processing	M	
14.222.222	Lang.	N 4	1	14.222.246	Digital Cianal Dagassina	N 4	
14:332:331	Computer Arch.& Asmb.	М	3	14:332:312	Discrete Mathematics	M	;
Junior Year							
Total Credits	<u>i</u>		16	Total Credits	i		1
01:750:229	Analytical Physics II Lab		1				
01:750:227	Analytical Physics IIA		3	01:640:244	Lab Differential Equations		
01:640:251	Multivariable Calculus		4	14:332:254	Programming Method. I.	М	
14:332:233	Digital Logic Design Lab	М	1	14:332:252	Programming Method. I	М	
14:332:231	Digital Logic Design	М	3	14:332:226	Probability & Random Proc.	M	
14:332:223	Principles of EE I Lab	М	1	14:332:224	Principles of EE II Lab	M	
14:332:221	Principles of Elec. Eng. I	М	3	14:332:222	Principles of Elec. Eng. II	М	
Sophomore	<u>Year</u>						
Total Credits	<u>i</u>		17	Total Credits	<u>!</u>		1
::	Hum/Soc elective		3	T-1-1 C 111-			
01:750:123	Analytical Physics IA		2				
01:640:151	Calculus I Math/Physics		4	::	Hum/Soc elective		
14:440:100	Engineering Orientation		1	01:750:124	Analytical Physics IB		
01:355:101	Expository Writing		3	01:640:152	Calculus II		
01:160:171	Introduction to Experimentation		1	14:440:221	Engineering Mechanics		
	General Chemistry for Engineers		3	14:440:127	Intro to Computers for Engineers		

Electives consists of (1) four courses of electrical electives, (2) two courses of Technical electives, (3) one course of Science Math Eng'g elective, (4) two courses of lower level Hum/Soc electives, (5) two courses of upper level Hum/Sci electives denoted by * (not all four humanity electives can be in the same subject), and (6) one course of general elective. For more info on humanity electives, see http://soe.rutgers.edu/oaa/electives.

Electives consists of (1) four courses of electrical electives, (2) two courses of Technical electives, (3) one course of Science Math Eng'g elective, (4) two courses of lower level Hum/Soc electives, (5) two courses of upper level Hum/Sci electives denoted by * (not all four humanity electives can be in the same subject), and (6) one course of general elective. For more info on humanity electives, see http://soe.rutgers.edu/oaa/electives.

Most ECE courses are offered only once a year in the indicated semesters. Odd numbered ECE courses are offered in Fall and even numbered in Spring (some exceptions may happen, e.g., 466, 472 are offered in Fall). The order of the electives as indicated in bold is just a suggestion. They can be reordered as necessary. Beware that a viable capstone design project is a must.

Independent study courses 14:332:491 and 14:332:492: up to six credits are acceptable. These credits can count for either electrical/computer electives or as technical electives.

Co-op and internship courses 14:332:496 and 14:332:497: up to six (6) credits are acceptable. These courses count as **technical electives only**.

A maximum of nine (9) credits is acceptable with 14:332:491, 14:332:492, 14:332:496 and 14:332:497 courses.

3.2 Computer Engineering Curriculum:

Total Credits			15		Total Credits		12
_::	Hum/Soc elective (200+)		3				
	Technical elective	M	3	01:220:102	Microeconomics		3
	Science Math Eng elective	M	3	: :	Hum/Soc elective (200+)		3
: :	Computer elective	M	3	: :	Computer elective	M	3
Senior Year 14:332:437	Digital System Design	М	3	14:332:448	Capstone Design elective	М	3
Total Credits	<u>.</u>		15	Total Credits	<u>.</u>		1
14:332:351	Programming Method. II	М	3	::	Comp/Technical elective	M	3
14:332:363	Electronic Devices Lab	M	1	14:332:368	Digital Electronics Lab	M	1
14:332:361	Electronic Devices	M	3	14:332:366	Digital Electronics	M	3
14:332:347	Linear Sys. & Signals Lab	M	1	14:332:393	Professionalism/Ethics	M	-
14:332:345	Linear Systems & Signals	М	3	14:332:434	Intro to Comp. Systems	M	3
14:332:333	Computer Arch. Lab	M	1	14:332:452	Software Engineering	M	3
14:332:331	Computer Arch.& Asmb. Lang.	М	3	14:332:312	Discrete Mathematics	М	3
<u>Junior Year</u>			ı				
Total Credits	<u>i</u>		16	Total Credits	<u>i</u>		1
01:750:229	Analytical Physics II Lab		1				
01:750:227	Analytical Physics IIA		3	01:640:244	Differential Equations		4
01:640:251			4	14:332:254	Programming Method. I.	М	1
14:332:233	Digital Logic Design Lab Multivariable Calculus	IVI	1	14:332:252	Programming Method. I		3
14:332:231	Digital Logic Design	M	3	14:332:226	Probability & Random Proc.	M	3
14:332:223	Principles of EE I Lab	M	1	14:332:224	Principles of EE II Lab	M	-
14:332:221	Principles of Elec. Eng. I	M	3	14:332:222	Principles of Elec. Eng. II	M	3
Sophomore			2	44.222.222	Detector of the fact H	D 4	
Total Credits	<u>i</u>		17	Total Credits	<u>i</u>		1
_::	Hum/Soc elective		3				
01:750:123	Analytical Physics IA		2				
01:640:151	Calculus I Math/Physics		4	::	Hum/Soc elective		3
14:440:100	Engineering Orientation		1	01:750:124	Analytical Physics IB		2
01:355:101	Expository Writing		3	01:640:152	Calculus II		4
	Experimentation				Engineering Mechanics		
01:160:171	Engineers Introduction to		1	14:440:221	Engineers Engineering Mechanics		3
01:160:159	General Chemistry for		3	14:440:127	Intro to Computers for		3

Electives consists of (1) two courses of computer electives, (2) one course of technical elective, (3) one course of either computer or technical elective, (4) one course of Science Math and Engineering elective, (5) two lower level Hum/Soc electives, and (6) two upper level Hum/Soc electives denoted by * (not all four humanity electives can be in the same subject). For more info on humanity electives, see http://soe.rutgers.edu/oaa/electives

The ECE courses are offered only once a year in the indicated semesters. Odd numbered ECE courses are offered in Fall and even numbered in Spring (some exceptions may happen, e.g., 466

and 472 are offered in Fall). The order of the electives as indicated in bold is just a suggestion. They can be reordered as necessary. Beware that a viable capstone design project is a must.

Independent study courses 14:332:491 and 14:332:492: up to six credits are acceptable. These credits can count for either electrical/computer electives or as technical electives.

Co-op and internship courses 14:332:496 and 14:332:497: up to six (6) credits are acceptable. These courses count as **technical electives only**.

A maximum of nine (9) credits is acceptable with 14:332:491, 14:332:492, 14:332:496 and 14:332:497 courses.

3.3 General guidelines on electives:

- 3.3.1 Science Math and Engineering Elective: any 3 Cr or 4 Cr course at 200 level or higher in any area of Science, or Mathematics, or Engineering. Although students are free to select this elective, they are encouraged to take a course that will later serve as a prerequisite for more advanced courses that would be of interest. There are several required courses in Math and Science. Any course lower level to the required courses is not allowed as a Science Math and Engineering Elective. Also, if a course qualifies as a Humanities course, it is not allowed as a Science Math and Engineering Elective. A list of electives is given later
- 3.3.2 Independent Study/Special Problems option: The Department of Electrical and Computer Engineering allows a student to earn six academic credits for research through courses 14:332:491 and 14:332:492. Credits can count as either electrical/computer electives or technical electives, provided permission has been granted by a faculty supervisor and the Undergraduate Director. Note that Independent Study/Special Problems courses are not open to students on academic probation. A maximum of 3 credits of Independent Study/Special Problems may be taken in any one semester. Independent Study/Special Problems xxx:491 and xxx:492, where "xxx" is a departmental code other than 332, are not considered as electives unless they have been approved prior to the start of classes by the Undergraduate Director. Again, a maximum of 6 such credits may be counted toward the B.S. degree and a maximum of 3 credits may be taken in any one semester.

A one-page proposal of the technical work along with its title and an application form (found on ECE website) properly filled must be submitted to the Undergraduate Director to enroll in this course. Students who are on academic probation are not qualified to enroll in this course. A technical report and poster describing in detail the study undertaken must be submitted to the Undergraduate Director at the end of the study.

A maximum of nine (9) credits are acceptable with 14:332:491, 14:332:492, 14:332:496 and 14:332:497 courses.

3.3.3 **Co-Op/Internship option**: The Department of Electrical and Computer Engineering allows a student to earn six academic credits on a Pass/No credit basis.

Upon successful completion, six credits can be used as **technical elective**.

An option for a three months Co-Op is also available for either fall or spring semester. In such case, three credits are earned that will count for a technical elective.

Students who plan to enroll in a Co-Op Internship should review the guidelines specified under the course heading 14:332:496/497 Co-Op Internship in Electrical and Computer Engineering. The student should contact the Career Services Center at Rutgers to review listings of participating

organizations/companies for possible interest. Contact the Co-Op Student Services Administrator, Career Services-Employment Center, Busch Campus Center.

Eligible student should not be on academic probation and have completed a minimum of 90 credits (40 credits in the major) with a cumulative grade point average of 2.5 or better.

Co-op must at least be of six months of continuous duration, full time for six credits or at least three months for three credits. Normally, it is to be taken in the summer/fall semesters or spring/summer semesters. The Internship should continue with the same employer during both semesters. A three months Co-Op during either fall or spring semester will count towards three credit technical elective. The Co-Op credit will not be given for summer employment alone. In order to earn credit, the student must be working on a specified and approved project. A one-page description of the project and an application form appropriately filled must be submitted for approval to the Undergraduate Director. Additionally, the student must have a faculty advisor as well as an industrial advisor who will supervise the student. At the end of the project, a technical report must be written, and a copy of it must be submitted to the Undergraduate Director as well as to the industrial advisor who together decide whether the student is to receive a passing grade or not.

A maximum of nine (9) credits are acceptable with 14:332:491, 14:332:492, 14:332:496 and 14:332:497 courses.

3.3.4 **Humanities/Social Science Requirements:** all SOE majors must take a total of 18cr of humanities/social science courses. For a description and list of acceptable humanities/social science requirements, please refer to the website: http://soe.rutgers.edu/oas/electives.

The courses **01:355:101** Expository Writing and **01:220:102** Introduction to Microeconomics are required courses that are a part of the humanities/social science requirements.

Additional advising information is available at http://soe.rutgers.edu/oas.

The course **14:332:301** Forces and Strategies That Shaped the Wireless Revolution counts as an upper level Hum/Soc elective for SOE majors. It is neither a department elective, nor a technical elective, nor MSE elective, nor a part of the ECE residency requirement.

3.3.5 **General Electives:** Almost any course taught for credit at Rutgers qualifies as a general elective, including technically oriented electives and humanities/social science electives. There are, however, a few exceptions. Such exceptions include remedial courses and courses related to athletics and sports. For more information, see http://soe.rutgers.edu/oas/electives. Although students are free to select this elective, they are encouraged to take an ECE course that will later serve as a prerequisite for more advanced ECE courses that would be of interest.

3.4 List of Electives for the Electrical Engineering Option

Guideline for electives selection for Electrical Engineering option:

- 3.3.1 FOUR Electrical Electives are to be selected from list 3.4.1.
- 3.3.2 Any TWO Technical Electives are to be selected from list 3.4.2.
- 3.3.3 One Science Math and Engineering elective (any Science, Math, or Engineering course above 200 level)
- 3.3.4 One general elective (any course 200 level and above)
- 3.3.5 Each 4-credit Computer Science (Livingston College) course constitutes one elective course.
- 3.3.6 Students with a cumulative average of 3.2 or better may take a graduate level course as a Technical or Electrical Elective with the approval of their advisor, instructor of the course, and the Dean's office.

LIST 3.4.1: ELECTRICAL ELECTIVES

	ECIRICAL ELECTIVES
14:332:322	Principles of Communication Systems
14:332:351	Programming Methodology II (The course198:213 or 198:214 can be taken in
	place of 332:351)
14:332:376	Virtual Reality (14:332:378 is a corequisite)
14:332:382	Electromagnetic Fields
14:332:402	Sustainable Energy: Choosing among options
14:332:411	Electrical Energy Conversion
14:332:415	Introduction to Automatic Control Theory
14:332:417	Introduction to Control System Design
14:332:421	Wireless Communication Systems
14:332:423	Computer and Communication Networks
14:332:424	Introduction to Information and Network Security
14:332:427	Communication System Design
14:332:434	Introduction to Computer Systems
14:332:435	Topics in Electrical and Computer Engineering
14:332:436	Topics in Electrical and Computer Engineering
14:332:437	Digital System Design
14:332:445	Topics in Electrical and Computer Engineering
14:332:446	Topics in Electrical and Computer Engineering
14:332:447	Digital Signal Processing Design
14:332:451	Introduction to Parallel and Distributed Programming
14:332:452	Software Engineering
14:332:453	Mobile App Engineering and User Experience
14:332:456	Network-Centric Programming (Usually offered only in alternate years)
14:332:460	Power Electronics
14:332:463	Analog Electronics
14:332:464	RF Integrated Circuits
14:332:465	Physical Electronics
14:332:466	Opto-Electronic Devices
14:332:467	Microelectronic Processing
14:332:472	Robotics and Computer Vision
14:332:474	Introduction to Computer Graphics (The course 198:428 can be taken in place)
14:332:479	VLSI Design
14:332:481	Electromagnetic Waves
14:332:482	Deep Submicron VLSI Design for Electrical and Computer Engineering
14:332:493	Topics in Electrical and Computer Engineering
14:332:494	Topics in Electrical and Computer Engineering

LIST 3.4.2: TECHNICAL ELECTIVES

14:xxx: (where "xxx" is a departmental code): SOE 200+ level courses from other departments are accepted as technical electives;

14:332:491/2	Special Problems/Independent Study (not open to students on academic probation)
14:332:496/7	Co-Op and Internship (not open to students on academic probation)
14.552.450//	co op and internship (not open to students on academic probation)
01:198:314	Principles of Programming Languages
01:198:323*	Numerical Analysis and Computing
01:198:334	Introduction to Imaging and Multimedia
01:198:336	Principles of Information and Data Management
01:198:344	Design and Analysis of Computer Algorithms
01:198:417	Distributed Systems: Concepts and Design
01:198:424	Modeling and Simulation of Continuous Systems
01:198:440	Introduction to Artificial Intelligence
01:198:442	Topics in Computer Science
01:198:443	Topics in Computer Science
01:198:444	Topics in Computer Science
01:198:445	Topics in Computer Science
01:198:440	Introduction to Artificial Intelligence
01:198:452	Formal Languages and Automata
01:640:250	Introductory Linear Algebra
01:640:311	Advanced Calculus I
01:640:312	Advanced Calculus II (640:421 Advanced Calculus for Engineers is not acceptable
	as this duplicate 332:345 Linear Systems and Signals)
01:640:350	Linear Algebra
01:640:351	Introduction to Abstract Algebra I
01:640:352	Introduction to Abstract Algebra II
01:640:354	Linear Optimization
01:640:357	Topics in Applied Algebra
01:640:373*	Numerical Analysis I
01:640:374*	Numerical Analysis II
01:640:403	Introduction to Theory of Functions of a Complex Variable
01:640:423	Elementary Partial Differential Equations (01:640:421 is not acceptable)
01:640:424	Stochastic Models in Operations Research
01:640:428	Graph Theory
01:640:454	Combinatorics
01:640:478	Mathematical Theory of Probability II
04 750 040	AA. J Db J
01:750:313	Modern Physics I
01:750:314	Modern Physics II
01:750:351**	Thermal Physics I

Thermal Physics II
Introductory Solid State Physics
Intermediate Quantum Mechanics
Fluid and Plasma Phenomena
Mathematical Physics
Regression Methods
Applied Multivariate Analysis
Basic Applied Statistics
Organic Chemistry I
Organic Chemistry II
Honors Organic Chemistry II

Independent Study or Special Problems xxx:491, xxx:492, other than 332, are not, in general, considered as electives.

NOTEs:

- * Credit not given for both 01:198:323-324 and 01:640:373-374
- ** Credit not given for both 01:750:351 and 14:650:351
- *** Credit will not be given to 01:198:416

3.5 List of Electives for the Computer Engineering Option

Guideline for electives selection for Computer Engineering option:

- 3.4.1 TWO Computer Electives are to be selected from list 3.5.1.
- 3.4.2 Any One Elective is to be selected from either list 3.5.1 or list 3.5.2.
- 3.4.3 Any One Elective is to be selected from list 3.5.2.
- 3.4.4 One Science Math and Engineering elective (any Science, Math, or Engineering course above 200 level)
- 3.4.5 Each 4-credit Computer Science (Livingston College) course constitutes one elective course.
- 3.4.6 Students with a cumulative average of 3.2 or better may take a graduate level course as a Technical or Computer Elective with the approval of their advisor, instructor of the course, and the Dean's office.

LIST 3.5.1: COMPUTER ELECTIVES

14:332:322	Principles of Communication Systems
14:332:346	Digital Signal Processing
14:332:376	Virtual Reality (14:332:378 is a co-requisite)
14:332:402	Sustainable Energy: choosing among options
14:332:415	Introduction to Automatic Control Theory (This course is not offered often)
14:332:421	Wireless Communication Systems (14:332:322 is a prerequisite)
14:332:423	Computer and Communication Networks
14:332:424	Introduction to Information and Network Security
14:332:447	Introduction to Digital Signal Processing Design
14:332:451	Introduction to Parallel and Distributed Programming
14:332:453	Mobile App Engineering and User Experience
14:332:456	Network-Centric Programming (usually offered only in alternate years)
14:332:472	Robotics and Computer Vision
14:332:474	Intro to Computer Graphics (The course198:428 can be taken in place)

14:332:479	VLSI Design
14:332:482	Deep Submicron VLSI Design for Electrical and Computer Engineering
14:332:491/2	Special Problems/Independent Study (not open to students on academic probation)
14:332:493	Topics in Electrical and Computer Engineering (if topic is computer related)
14:332:494	Topics in Electrical and Computer Engineering (if topic is computer related)
01:198:334	Introduction to Imaging and Multimedia
01:198:336	Principles of Information and Data Management
01:198:344	Design and Analysis of Computer Algorithms
01:198:440	Introduction to Artificial Intelligence

LIST 3.5.2: TECHNICAL ELECTIVES

14:xxx: (where "xxx" is a departmental code): SOE 200+ level courses from other departments are accepted as technical electives;

14:332:382 14:332:463 14:332:465 14:332:466 14:332:481 14:332:491/2 14:332:496/7	Electromagnetic Fields Analog Electronics Physical Electronics Opto-Electronic Devices Electromagnetic Waves Special Problems/Independent Study (not open to students on academic probation) Co-Op and Internship (not open to students on academic probation)
01:640:250	Introductory Linear Algebra
01:640:311	Advanced Calculus I
01:640:312	Advanced Calculus II (640:421 Advanced Calculus for Engineers is not acceptable
	as this duplicate 332:345 Linear Systems and Signals)
01:640:350	Linear Algebra
01:640:351	Introduction to Abstract Algebra I
01:640:352	Introduction to Abstract Algebra II
01:640:354	Linear Optimization
01:640:357	Topics in Applied Algebra
01:640:373	Numerical Analysis I
01:640:374	Numerical Analysis II
01:640:403	Introduction to Theory of Functions of a Complex Variable
01:640:423	Elementary Partial Differential Equations (01:640:421 is not acceptable)
01:640:424	Stochastic Models in Operations Research
01:640:428	Graph Theory
01:640:454	Combinatorics
01:640:478	Mathematical Theory of Probability II
01:750:313	Modern Physics I
01:750:314	Modern Physics II
01:750:351**	Thermal Physics I
01:750:352	Thermal Physics II
01:750:406	Introductory Solid-State Physics
01:750:417	Intermediate Quantum Mechanics

01:750:421 01:750:464	Fluid and Plasma Phenomena Mathematical Physics
01:960:463 01:960:467 01:960:484	Regression Methods Applied Multivariate Analysis Basic Applied Statistics
01:160:307 01:160:308 01:160:316	Organic Chemistry I Organic Chemistry II Honors Organic Chemistry II
01:198:323* 01:198:417 01:198:424 01:198:476	Numerical Analysis and Computing Distributed Systems: Concepts and Design Modeling and Simulation of Continuous Systems Advanced Web Applications: Design and Implementation

Independent Study or Special Problems xxx:491, xxx:492, other than 332, are not, in general, considered as electives.

NOTEs:

- * Credit not given for both 01:198:323-324 and 01:640:373-374
- ** Credit not given for both 01:750:351 and 14:650:351
- *** Credit will not be given to 01:198:416

3.6 List of Science, Math, and Engineering Electives

Science Math and Engineering Elective is any 3 Cr or 4 Cr course at 200 level or higher in any area of Science, or Mathematics, or Engineering. Although students are free to select this elective, they are encouraged to take a course that will later serve as a prerequisite for more advanced courses that would be of interest. There are several required courses in Math and Science. Any course lower level to the required courses is not allowed as a Science Math and Engineering Elective. Also, if a course qualifies as a Humanities course, it is not allowed as a Science Math and Engineering Elective.

The following is a list of courses where 'x' represents any digit:

Departments/School	Courses
Accounting	33:010:2xx, 3xx, 4xx
Anthropology	01:070:2xx, 3xx, 4xx
Biological Sciences	01:115:2xx, 3xx, 4xx
	01:119:2xx, 3xx, 4xx
	01:126:2xx, 3xx, 4xx
	01:146:2xx, 3xx, 4xx
	01:694:2xx, 3xx, 4xx
Biotechnology	11:126: 2xx, 3xx, 4xx
Chemistry	01:160:2xx, 3xx, 4xx
Computer Science	01:198:2xx, 3xx, 4xx
Engineering (SOE)	14:xxx:2xx, 3xx, 4xx (Exception: 14:332:301 which counts as humanities)
Environmental Science	11:375:2xx, 3xx, 4xx
Food Science	11:400:2xx, 3xx, 4xx
Geography	01:4502xx, 3xx, 4xx
Geological Sciences	01:460:2xx, 3xx, 4xx
Genetics	01:447:2xx, 3xx, 4xx
Food Science	01:400:2xx, 3xx, 4xx
Marine Sciences	01:628:2xx, 3xx, 4xx
Mathematics	01:640:2xx, 3xx, 4xx
Physics	01:750:2xx, 3xx, 4xx
Science, Technology, and Society:	01:880: 2xx, 3xx, 4xx
Statistics	01:960:2xx, 3xx, 4xx

3.7 Courses Substitutions and Equivalence

Course Substitutions: Absolutely no substitutions are allowed for any required core courses. With permission of the Undergraduate Director, a student who fails a required course at Rutgers may take an equivalent course at another institution. For electives, a student can substitute equivalent courses from another institution with prior permission of the Undergraduate Director.

Equivalency of CS and ECE Courses: Regarding basic programming courses, one needs to follow either ECE course sequence (332:252, 254, 351) or CS course sequence (198:111, 112, 213 or 214) as a group.

Some important notes:

- 198:111 is based on Java while 332:252 (PM I) and its lab 254 are based on C++. The course 332:351 (PM II) introduces Java.
- Let us also emphasize that 198:111, 112 at Rutgers Camden are not equivalent to 198:111, 112 at New Brunswick; they are entirely different courses. The same applies to Rutgers Newark 198:101 and 198:102.
- Students who take the sequence 111, 112, and 213 (or 214) know more Java and less C (and related languages). On the other hand, students who take the sequence 252, 254, and 351 know more C++ and less Java. A student who successfully completes the three CS courses 198:111, 198:112, and 198:213 (or 198:214) is given credit for the courses 332:252, 332:254, and 332:351.
- A student who successfully completes only CS 111 should not proceed to take ECE 351 (PM II), he/she must take 198:111 and 198:112 before taking either 198:213/214 or 332:351. Then, he/she as mentioned above will get credit for 252, 254, and 351.
- Important: there is a residency requirement for ECE graduation and the CS courses will not count towards these 332:xxx credits requirements.

The following equivalences apply:

- 332:252 (Programming Methodology I): 198:112 (Data Structures)
- 332:254 (Programming Methodology I Lab): 198:111 (Introduction to Computer Science)
- **332:351** (Programming Methodology II): 198:213 (Software Methodology) or 198:214 (Systems Programming)
- **14:332:312** (Discrete Mathematics): 01:198:205 (Introduction to Discrete Structures I) or 01:640:300 (Introduction to Mathematical Reasoning)
- **14:332:226** (Probability & Random Processes): 01:198:206 (Introduction to Discrete Structures II) or 01:640:477 (Mathematical Theory of Probability)
- **14:332:331** (Computer Architecture and Assembly Language): 01:198:211 (Computer Architecture). Those who take 01:198:211 must still take the lab 14:332:333

3.8 Courses Prerequisite Chart

PRE-REQUISITE CHART FOR ECE UNDERGRADUATES

OFFERED	Course #	Course name	Prerequisite	Co-requisite
Fall; Spring	14:332:221	Principles of Electrical Engineering 1	(01:640:152 or 01:640:154 or 01:640:192) and (01:750:124 or 01:750:116 or 01:750:201 or 01:750:203 or 01:750:271)	14:332:223
Spring; Summer	14:332:222	Principles of Electrical Engineering 2	14:332:221 and 14:332:223 and (01:640:251 or 01:640:291) and (01:750:227) and (01:750:229)	14:332:224
Fall; Spring	14:332:223	Principles of Electrical Engineering 1 Laboratory	(01:640:152 or 01:640:154 or 01:640:192) and (01:750:124 or 01:750:116 or 01:750:201 or 01:750:203 or 01:750:271)	14:332:221
Spring; Summer	14:332:224	Principles of Electrical Engineering 2 Laboratory	14:332:221 and 14:332:223 and (01:640:251 or 01:640:291) and (01:750:227) and (01:750:229)	14:332:223
spring; summer	14:332:226	Probability and Random Processes	14:332:221 and (01:640:251 or 01:640:291)	N/A
Fall; Summer	14:332:231	Digital Logic Design	(14:440:127 or 01:198:111) and (01:640:152 or 01:640:154 or 01:640:192) and (01:750:124 or 01:750:116 or 01:750:201 or 01:750:203 or 01:750:271)	14:332:233

Fall; Summer	14:332:233	Digital Logic Design Laboratory	(14:440:127 or 01:198:111) and (01:640:152 or 01:640:154 or 01:640:192) and (01:750:124 or 01:750:116 or 01:750:201 or 01:750:203 or 01:750:271)	14:332:231
Spring	14:332:252	Programming Methodology	14:440:127	14:332:254
Spring	14:332:254	Programming Methodology I Laboratory	14:440:127	14:332:252
Fall	14:332:301	Forces and Strategies that Shaped the Wireless Revolution	Junior standing	
Spring	14:332:312	Discrete Mathematics	14:332:226 and 14:332:231	
Spring	14:332:322	Principles of Communications Systems	14:332:226 and 14:332:345	
Fall; Spring; Summer	14:332:331	Computer Architecture and Assembly Language	14:332:231 and 14:332:233	14:332:333
Fall; Spring; Summer	14:332:333	Computer Architecture Laboratory	14:332:231 and 14:332:233	14:332:331
Fall; Summer	14:332:345	Linear Systems and Signals	14:332:222 and 14:332:224 and (01:640:244 or 01:640:252 or 01:640:292) and 14:440:127	14:332:347
Spring	14:332:346	Digital Signal Processing	14:332:345 and 14:440:127	14:332:348
Fall; Summer	14:332:347	Linear Systems and Signals Laboratory	14:332:222 and 14:332:224 and (01:640:244 or 01:640:252 or 01:640:292) and 14:440:127	14:332:345
Spring	14:332:348	Digital Signal Processing Laboratory	14:332:345 and 14:440:127	14:332:346
Fall	14:332:351	Programming Methodology	14:332:252 and 14:332:254	
Fall	14:332:361	Electronic Devices	14:332:222 and 14:332:224	14:332:363
Fall	14:332:363	Electronic Devices Laboratory	14:332:222 and14:332:224	14:332:361
Fall; Spring	14:332:366	Digital Electronics	14:332:361 and 14:332:363	14:332:368
Fall; Spring	14:332:368	Digital Electronics Laboratory	14:332:361 and 14:332:363	14:332:366

Fall; Spring	14:332:373	Elements of Electrical Engineering	(01:640:251 or 01:640:291) and (01:750:227) ; Not open to electrical engineering students	01:640:244 and 14:332:375
Fall; Spring	14:332:375	Elements of Electrical Engineering Laboratory	Not open to electrical engineering students	14:332:373
Spring	14:332:376	Virtual Reality	14:332:331	14:332:378
Spring	14:332:378	Virtual Reality Laboratory	14:332:331	14:332:376
Spring	14:332:382	Electromagnetic Fields	(01:640:152 or 01:640:154 or 01:640:192) and 01:750:227, and 14:332:222	
Spring	14:332:393	Professionalism/Ethics	Junior standing	
Fall	14:332:402	Sustainable Energy: Choosing among Options	Junior standing	
Fall	14:332:411	Electrical Energy Conversion	14:332:222 or 50:750:234	
	14:332:415	Introduction to Automatic Control Theory	14:332:345	
Fall	14:332:417	Control Systems Design	14:332:345	
Fall	14:332:421	Wireless Communications	14:332:345	
Fall	14:332:423	Computer and Communication Networks	(14:332:226 or 01:198:206 or 01:640:477)	
Fall; Spring	14:332:424	Introduction to Information and Network Security	14:332:226 and 14:332:312	
Fall	14:332:427	Communication Systems Design	14:332:322	
Spring	14:332:434	Introduction to Computer Systems	14:332:331 and 14:332:351	
Fall; Spring	14:332:435	Topics in ECE		
Fall; Spring	14:332:436	Topics in ECE		
fall	14:332:437	Digital Systems Design	14:332:351 and 14:332:331	
Fall; Spring	14:332:445	Topics in ECE		
Fall; Spring	14:332:446	Topics in ECE		

Fall	14:332:447	Digital Signal Processing Design	14:332:346	
Spring	14:332:448	Capstone Design in ECE	Senior standing	
Fall	14:332:451	Introduction to Parallel and Distributed Programming	14:332:351 and 14:332:331	
Spring	14:332:452	Software Engineering	14:332:351	
Fall	14:332:453	Mobile App Engineering and User Experience	14:332:351	
Spring	14:332:456	Network Centric Programming	14:332:351	
Spring	14:332:460	Power Electronics	14:332:361	
Fall	14:332:461	Pulse Circuits	14:332:366	
Fall	14:332:463	Analog Electronics	14:332:361	
Spring	14:332:464	RF Integrated Circuit Design	14:332:361 and 14:332:463	
Fall	14:332:465	Physical Electronics	14:332:361	
Spring	14:332:466	Optoelectronic Devices	14:332:361 and 14:332:382	
Fall	14:332:467	Microelectronic Processing	14:332:361	
Fall	14:332:472	Robotics and Computer Vision	14:332:345 and 14:332:346	
	14:332:474	Introduction to Computer Graphics	14:332:252	
Fall	14:332:479	VLSI Design	14:332:331 and 14:332:252 and 14:332:366	
Fall	14:332:481	Electromagnetic Waves	14:332:382	
Fall	14:332:491	Special Problems: Independent Study	Permission of department	
Spring	14:332:492	Special Problems: Independent Study	Permission of department	
Fall; Spring	14:332:493	Topics in Electrical and Computer Engineering		
Fall; Spring	14:332:494	Topics in Electrical and Computer Engineering		
Spring	14:332:496	Co-op Internship in Electrical and Computer Engineering	Permission of department. Graded Pass/No Credit	

Fall	14:332:497	Co-op Internship in Electrical	Permission of department.	
		and Computer Engineering	Graded Pass/No Credit	

3.9 Capstone Design Course

Capstone design program, or engineering design projects, mark an important millstone in the ECE undergraduate students education. Senior year students engage in a one-semester long design project held in the spring semester. Teams of three to four students work on real-life problems, focused on putting fundamental knowledge accumulated along the years with know-hows of engineering. Students get an opportunity to develop an engineering project from idea inception to a fully operational product. A faculty adviser, at times in collaboration with an industry adviser or other representatives from other departments, works with the students on design and implementation of cutting-edge technology and research.

The program starts in the fall semester through a series of open sessions that cover the following:

- 1. **Information orientation session:** setting up program timeline for the fall including teaming up, choosing a project, finding an adviser and submitting proposal. Previous years projects are reviewed and guidelines for the spring preparations are shared.
- 2. Project management workshop: fast-track workshop on projects management based on the SMART (Specific, Measurable, Achievable, Relevant and Timely) way has been added to the curricula along with an introduction to the use of project management tools. Students are guided on defining an appropriate scope of work (SOW), writing a proposal, and choosing the appropriate topic and team members for the project.
- 3. **Networking sessions:** faculty and industry panels are being organized to introduce potential advisers to the students and enable them to brainstorm on their ideas with professionals from the academia and industry:
 - a. **Faculty panels**: Two one-hour sessions are held in September and October. Faculty introduce themselves to students and talk about their research background, past capstone projects they advised on, and topics they are interested to work on.
 - b. Capstone Kickoff event: this industry/faculty networking events includes professionals from diverse industries. It served as a great opportunity for professionals from diverse industries to meet with senior students and learn about their design projects and offer expert advice

By December of the fall semester all students team-up, submit a project proposal, have an adviser and are registered to one of the Capstone Design course sections. The Capstone Design course is normally held during senior year in the spring semester. Students sign up to 14:332:448:xx course. Each ECE faculty is assigned a capstone design their own course section in the form 14:332:448:xx, where xx represent a section number unique to each advisor. Signed up to the course is made using special permission numbers given by the faculty advising the students. The project advisor should assign each team with a set of special permission numbers, one for each of the team members. The ECE faculty will provide the students with the appropriate Capstone Design course index and special permission numbers for registration.

In the spring semester, the students have predefined milestones, deliverables and need to operate under time and budget constraints. All these are defined in the 'Capstone Design Projects Handbook' and available at: http://www.ece.rutgers.edu/ece-capstone.

There are in general no specific prerequisites for capstone courses except for successful completion of EE/CE core courses. However, some recommendations for electives tracks are detailed hereafter.

With any questions regarding registration please contact Dr. Godrich (godrich@soe.rutgers.edu). For additional info please check:

3.10 Courses listing by relevancy:

The ECE courses can be classifying in general into several recommended combination per the fields of interest as follows:

Field of electromagnetics and optoelectronics topic: 14:332:382 Electromagnetic Fields; 14:332:466 Optoelectronics; 14:332:481 Electromagnetic Waves; 14:332:465 Physical Electronics 14:332:463 Analog Electronics

Field of Electronic Circuits: 14:332:460 Power Electronics; 14:332:463 Analog Electronics; 14:332:465 Physical Electronics

Field of Microelectronic Processing: 14:332:460 Power Electronics; 14:332:463 Analog Electronics 14:332:465 Physical Electronics; 14:332:467 Intro to Microelectronic Processing

Communication Systems field - Hardware: 14:332:322 Principles of communication systems; 01:640:250 Intro to Linear Algebra; 14:332:421 Wireless Communication Systems; 14:332:427 Communication System Design; 14:332:423 Computer and Communication Networks; 14:332:424 Intro to Information and Network Security

Field of Wireless Communication Systems: 14:332:322 Principles of communication systems; 01:640:250 Intro to Linear Algebra; 14:332:421 Wireless Communication Systems; 14:332:427 Communication System Design; 14:332:423 Computer and Communication Networks; 14:332:424 Intro to Information and Network Security

Field of Automatic Control: 14:332:346 Digital Signal Processing; 01:640:250 Intro to Linear Algebra; 14:332:415 Intro to Automatic Control; 14:332:417 Control System Design 14:332:463 Analog Electronics

Digital Signal Processing: 14:332:346 Digital Signal Processing; 01:640:250 Intro to Linear Algebra; 14:332:447 Digital Signal Processing Design; 14:332:463 Analog Electronics

VLSI Design: 14:332:460 Power Electronics; 14:332:465 Physical Electronics; 14:332:467 Microelectronic Processing; 14:332:479 VLSI Design; 14:332:482 Deep Submicron VLSI Design

VLSI Design and Microelectronic Processing: Those students interested in coupling Microelectronic Processing with VLSI Design can follow the schedule given below: 14:332:460 Power Electronics; 14:332:465 Physical Electronics; 14:332:467 Microelectronic Processing; 14:332:479 VLSI Design; 14:332:482 Deep Submicron VLSI Design

Robotics and Computer Vision: 14:332:346 Digital Signal Processing; 01:640:250 Intro to Linear Algebra; 14:332:472 Intro to Robotics and Computer Vision

Software and Systems: 14:332:452 Software Engineering; 14:332:456 Network-Centric Programming; 14:332:451 Intro to Parallel and Distributed Programming

4. General Information

4.1 Pass/No Credit Courses:

Pass/Fail or Pass/No Credit - An engineering student may take one elective course on a Pass/Nocr basis in any two terms of the curriculum (meaning, only 1 Pass/Nocr in a semester). Grades of A, B, and C correspond to Pass, and D and F correspond to No-Credit. A No-credit is like a failure in that it cannot count towards anything for graduation.

4.2 Repeating Courses (http://soe.rutgers.edu/oas/pnc-repeat):

A grade of D or F received in any course (except for Capstone Design) may be "E-credited" by retaking the class AT Rutgers. This means that the original grade (D or F) will not count in any GPA calculation. You will however still see both courses and the grades denoted on the transcript. If you choose to retake the course outside of Rutgers University, the course is not eligible for E-credit. This may be done with up to 4 courses.

D grades and E-credit: Students must repeat a course, particularly when the grade is a D, right away. If the student earns a D in a course and then moves on in subsequent coursework, removing the D from the gpa is no longer an option.

4.3 Transfer Credits (http://soe.rutgers.edu/oas/transfer-courses):

Certain courses can be taken at other universities and the credits can be transferred to Rutgers. Courses eligible to be taken outside of RU during the summer/winter include first and second year courses of the engineering curriculum: math, physics, chemistry, humanities/social science electives, non-school 14 tech electives, sophomore level introductory major courses. However, it is not recommended to take two math courses in one summer, particularly for students having academic difficulty. The transfer credits are not computed into a student's grade point average. However, if the grade is **C** or better, it does satisfy the requirement.

4.4 Graduate Courses:

Certain graduate courses can be taken for undergraduate credit and used as departmental or technical electives. An application must be filled out and approved by the Graduate Director before a student can enroll in a graduate course.

4.5 Prerequisites:

Students should NOT register for a course if the needed prerequisite course(s) have not been successfully completed. The department has the option of dropping a student from a course if he/she has not fulfilled the prerequisite requirements, even after the course has successfully been completed.

4.6 Prerequisite Chart:

To review the required prerequisites for each course, please see the prerequisite chart included in the handbook in Appendix A.

4.7 Withdrawing from Courses:

Unfortunately, some students encounter major problems during their college career. Seek help before you are dismissed from the School of Engineering. If you find that you are unable to complete the required work, speak to an advisor, the Undergraduate Director, or the Associate Dean. Make use of the many resources available to you at Rutgers. Please take responsibility for your situation by seeking help if you need it.

Here is the rule: If you fail a course, it is computed into your university and major grade point averages - a withdrawal is not.

You may withdraw from courses up to the 8th week of the term by telephone or on the web. Between the 8th and 12th weeks, you may withdraw with the permission of the Associate Dean, if, for example, you are severely behind in your coursework. After the 12th week, permission from the Dean is required and your reason for withdrawal must be significant and considered beyond your control.

4.8 The Major Average:

All courses offered by the Department of Electrical and Computer Engineering and all technically oriented electives are considered as major courses. In order to graduate, your major average must be 2.00 or better.

If you fail a course and then repeat it, both grades are computed into the major average as well as the university average. When registering, be sure to place an "M" next to the technically oriented electives on the registration card. The computer system cannot keep track of all the possible technical electives.

4.9 Academic Standing (http://soe.rutgers.edu/oas/scholasticstanding):

After the fall and spring semesters (not after summer), the Committee on Student Scholastic Standing, composed of elected faculty and representatives of the deans in the School of Engineering, reviews and may take action on the record of every student whose semester GPA, cumulative GPA, or major GPA is 2.0 or lower. Students who were placed on probation at the end of the previous term also are reviewed. These students may be placed on probation or may be dismissed from the School of Engineering. Students will be notified in writing of their academic standing. For students who are not performing at an acceptable level (Standards of Academic Progress-SAP), this may affect your financial aid, and may require an academic plan.

4.10 Academic Dishonesty:

The department expects each student to conduct himself/herself in a professional manner. Cheating offenses are reported to the appropriate academic office by the faculty of Electrical and Computer Engineering without hesitation. An engineer beginning a career cannot afford to have this kind of incident on record. Both the student who gives information and the one who receives it are considered guilty parties. The University policy on academic dishonesty is carefully spelled out in the undergraduate catalog. Note that copying from, or giving assistance to others, or using forbidden material on any exam or in any required report, is a Level Three violation. The recommended sanction is suspension from the University for one or more terms with a notation of academic disciplinary suspension placed on the student's transcript.

5. Additional Information

<u>SOE Dean's website:</u> You can find general and useful info about Dean's office at http://soe.rutgers.edu/oas.

Contact Information:

SOE Office of Academic Services:http://soe.rutgers.edu/848-445-2212Registrar (SOE):http://registrar.rutgers.edu/NBINDEX.HTM848-445-3557

ECE Department: http://www.ece.rutgers.edu (main menu: UNDERGRADUATE)

ECE Undergraduate Director: Dr. Hana Godrich (godrich@soe.rutgers.edu) 848-445-2606