桂林航天工业学院学生实验报告 实验四

			J 7										
课程名称	计算机组 结构		实验	全 名称		器实验(2 学 寸)							
开课教学	单位及实验			4学与工程 ² 院	实验日期	2024. 11. 12							
学生姓名	廉振威		学号	20230700 30615	专业班级	23 级软件工程 6 班							
指	导教师		张	亚红	实验成绩								
实	验目的		2) 理解领指令的 指令的 3) 掌握打	2) 理解微指令和微程序的概念,理解微指令和计算机 指令的区别与联系3) 掌握指令操作码如何控制微程序跳转									
实	验要求		法 2) 按步驱	2) 按步骤完成实验,独立分析,按要求作好记录									
一、实验电路助能器件	各												
EPROM27160	C3 2Kx2	24 EPRC	DΜ	VCCQ23Q22Q2 A10 A9 A8 A	39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 VCCQ23Q22Q21Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10 Q9 Q8 EPROM2716C3 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 -CE-0EVPP Q0 Q1 Q2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16								
SequeTimer	时钟	发生器		7 6 5 4 T1 T2 T3 T4 SequeTimer Ts StopStepStart 0 1 2 3									
74LS175	4 位美	数据锁存	字器	VCCQ3 Q2 Q 74LS1 -MRD3 D2 D	11 10 9 8 7 6 VCCQ3 Q2 Q1 Q0 CP 74LS175 -MRD3 D2 D1 D0GND 0 1 2 3 4 5								
ORgate	或门			≥1	≥1								
ContinuousPu	ilse 连续	脉冲发生	主器	8									

总体来看,这是一个典型的微程序控制器:

虚拟组件 EPROM2716C3 是一个 2Kx24 的 ROM,用作控制存储器,所有的微程序均存储在当中,其中,23~5 位用作控制字段,第 4 位是判别字段,当微程序需要跳转时该字段值为 1,下地址字段是 3~0 位,实验中需要执行的微指令都事先存储在了 ROM 当中;

控制字段	判别字段 P1	下地址字段 uA3~uA0					
23 5	4	3	0				

微地址寄存器是一个 4 位锁存器 74175,它存储了下一个微指令的地址,与控制存储器的地址端口相连;74175的 CP 信号与时序发生器的 T1 输出端相连,在一个 CPU 周期中,首先给出微指令控制信号,再控制其他部件。地址转移逻辑比较简单,P1 与 IR7, IR6, IR5 这 3 个指令位相与,当 P1 为 1 时,指令位通过或门与微地址寄存器输入端相连。

本次实验的微指令格式如下表所示:

表 1 微指令格式

位	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
地址	S2	S1	80	M	-Cn	-CE	WE	-LOA	LDRO	LDDR	LDDR	LDIR	LDPC	5	-ALU	-PC-	-MS-	-R0-	P(1)	uA3	uA2	uA1	uA0

实验中用到四条机器指令,IN(输入),ADD(加法),STO(存数),JMP(转移),操作码分别为000,001,010,011,指令格式如下表所示:

表 2 指令格式

指令	机器码	长度	功能
IN	00000000	8 位	SW->R0
ADD D	00100000 D	16 位	R0+(D)-> R0
STO D	01000000 D	16 位	R0->(D)
JMP D	01100000 D	16 位	D->PC

每条指令的取指周期完全相同,周期结束的步骤 3,将 P1 值为 1,此时,下一条微指令根据 IR 的不同而出现分支,但最后都以新的取指周期作为结束(微地址 02)。

对应的微指令代码存放在控制存储器中,如下表所示,此处,微地址采用8进制表示:

表 3 微指令二进制代码表

	2	2	2	2	1	1	1	1	1	1	1	1	1	1										
位	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
地 址	S3	28	S1	0S	W	-Cn	-CE	ME	-LOAD	LDRO	LDDR1	LDDR2	LDIR	LDPC	LDAR	-ALU-B	-PC-B	-SW-B	-R0-B	P(1)	nA3	uA2	uA1	uA0
0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	1	1	1	1	0	0	0	0	1
0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	1	0
0 2	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	0	1	1
0 3	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	1	1	1	1	1	1	0	0	0
0 4																								
0 5																								
0 6																								
0 7																								
1 0	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0	1	1	0	1	0	0	0	1	0
1	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	0

1																								
1 2	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1
1 3	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	1	1	0	1
1 4																								
1 5																								

图 4 微程序控制器实验电路图

三、实验设备

- 1. TEC-5G 计算机组成实验系统 1 台+仿真软件
- 2. 逻辑测试笔一支(在实验台上)
- 3. 双踪示波器一台(公用)
- 4. 万用表一只(公用)

四、实验任务

- 1. 连接电路
- 2. 电路预置: ROM 芯片的 \overline{CE} , \overline{OE} , A4, A5 引脚均置为 0, 微地址寄存器的 \overline{CLR} 置 0, 时序发生器 Step 置 1;
- 3. 打开电源。此时微地址寄存器应当输出 00H,控制存储器对应输出地址为 00 的微指令。

此处请贴电路连接图

- 4. 将 \overline{CLR} 置 1,离开清零状态,允许下地址存入
- 5. 将 IR7~IR5 置为 0,思考并回答:如此时不断发出时序信号,微程序应当执行怎样的流程?写出该情形下前 10 条微指令的地址:

流程: 00->01->02->03->10->02->03->10->02->03

1. 连续单击时序发生器 Start 按钮,观察微指令的输出顺序,检验控制存储器的输出 微指令是否与表中相符,验证上一步预测的顺序是否正确。

此处贴前3次单击Start 之后的电路图

2. 设置 IR7-IR5 的不同组合,用音频方式分别读出 ADD、STO、JMP 三条指令的微程序,根据后续微地址和判别指示灯跟踪微程序执行及转移情况,将表 3 中缺少的微程序代码补充完整。

3.

ADD、STO、JMP 三条指令中任选一条,标注所选指令,并贴出指令执行周期每一次单步执 行的电路指示灯变化 3 32 31 30 29 28 27 2 (801701601501401301201 EPROM2716C3 11 10 9 8 7 6 VCCQ3 Q2 Q1 Q0 CP 74LS175 6 8 8 8 8

五、思考题

1. 思考并回答问题: 若不改变实验电路, 四条指令的微程序在控制存储器中的存放位置是否可以任何安排? 有何限制?

答:不改变实验电路,四条指令的微程序在控制存储器中的存放位置不可以随意安排,需要遵循微程序的执行顺序、分支跳转规则和公共微程序段调用等多种限制条件