Linear Regression 'Selection' & Inference

STAT 245

If INFERENCE is your goal...

CIs Beyond Prediction Plots

Slope coefficient of 0 (or CI crossing 0) means:

```
my_model <- lm(response ~ pred1 + pred2, data = my_data)
summary(my_model)</pre>
```

```
##
## Call:
## lm(formula = response ~ pred1 + pred2, data = my_data)
##
## Residuals:
##
      Min
                10 Median
                                30
                                       Max
## -2.75871 -0.73156 -0.06018 1.04880 1.85244
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9823 1.6326 1.214 0.25011
## pred1 -0.7523 0.2419 -3.110 0.00992 **
## pred2B 1.5970 0.9752 1.638 0.12976
## pred2C 0.4770 0.9913 0.481 0.63980
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
```

CIs Beyond Prediction Plots

Slope coefficient of 0 (or CI crossing 0) means:

```
my_model <- lm(response ~ pred1 + pred2,
data = my_data)
confint(my_model)</pre>
```

```
## 2.5 % 97.5 %

## (Intercept) -1.6111048 5.5756121

## pred1 -1.2845856 -0.2199575

## pred2B -0.5494036 3.7433632

## pred2C -1.7048502 2.6589223
```

Hypothesis Tests

May use but see later IC slides for alternative

```
car::Anova(my model)
## Anova Table (Type II tests)
##
## Response: response
          Sum Sq Df F value Pr(>F)
##
## pred1 23.0010 1 9.6749 0.009917 **
## pred2 6.7005 2 1.4092 0.285193
## Residuals 26.1512 11
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01
'*' 0.05 '.' 0.1 ' ' 1
```

pred1 is significant no no no peity no no no never!

Judge *your* strength of evidence (significance threshold)

pred1 is significant (p-value < 0.05)

There is strong evidence (p-value = 0.0099) that pred1 is associated with response, with the expected response increasing by about ____ (95% CI: ____ to ___) when pred1 increases by 1 (if pred2 doesn't change).

To present Anova() results, use your summary(), equation, and ESPECIALLY prediction plot to tell the story in context!

Data

BECHDEL TEST HOW THEY STACK UP	TWO FEMALE CHARACTERS	FEMALE CONVERSATION	NOT ABOUT MEN	
he Social Network	0	8	8	
lad Max Fury Road	0	0	0	
Finding Nemo	0	8	8	
Jack Reacher	0	8	8	(3)
The Hunger Games	0	0	0)	
oy Story	0	8	0	
р	8	8	0	V
he Fast and the Furious	0	0	0	all V
Silence of the Lambs	0	0	O	
Shawshank Redemption	8	8	0	

Bechdel Test Model

What is WRONG here?

Better-planned Model

```
## (Intercept) clean_testdubious

clean_testmen clean_testnotalk

## 6.89076912 2.71983184

1.17133411 0.04824852

## clean_testnowomen budget_2013

## 1.18334508 -0.03661270
```

Selection w/ Information Criteria

Why ICs? Balance conflicting goals

- Want model that fits the data as well as possible (which pushes us toward more predictors)
- Want truth, efficiency (correctly judging when predictors aren't associated with the response).
- Solution: minimize the quantity

$$-(2ln(\mathcal{L}) - \text{penalty}) = -2ln(\mathcal{L}) + \text{penalty}$$

AIC Defined

- ullet is the "Likelihood" of data given model
- In R: logLik(model) gives $ln(\mathcal{L})$
- ullet AIC: $-2ln(\mathcal{L})+2k$
 - \circ k is the number of coefficients being estimated (don't forget σ !)
 - Smaller AIC is better.
- In R: AIC(model) or AIC(model1, model2, model3...)

BIC Defined

- BIC: $-2ln(\mathcal{L}) + ln(n)k$
 - \circ *n* is the number of rows in dataset
 - \circ k is the number of coefficients estimated.
 - Smaller BIC is better.
- In R: BIC(fitted_model) or BIC(model1, model2, model3...)

Comprehension Check: Verify BIC

```
coef(bechdel mod)
##
        (Intercept) clean testdubious
                                         clean testmen clean testnotalk
##
         6.89076912 2.71983184
                                            1.17133411
                                                             0.04824852
## clean testnowomen budget 2013
                         -0.03661270
         1.18334508
##
 nrow(bechdel 13)
  [1] 1600
 logLik(bechdel mod)
  'log Lik.' -6962.028 (df=7)
```

Verify that the BIC for this model is 13976.

Decisions with ICs

Rules of thumb (not laws) for decisions with ICs

- IC lower by at least 3 units = notably better
- If 2+ models have ICs within 3 IC units of each other, they fit about same
- If $\Delta IC < 3$ or so: model with smallest k (fewest predictors) is better

All-subsets selection

Avoid in favor of interpreting the full model or comparing a few key models if possible

- Use dredge() function (MuMIn package) to get and display ICs for every possible combo of predictors.
- First ensure dataset has no missing values,
- then set na.action = 'na.fail' input for our model (with update() or in lm()).

dredge() example

dredge() example

What is the best model according to BIC, for this dataset?

```
## Global model call: lm(formula = roi ~ clean_test + budget_2013, data =
bechdel_13,
## na.action = "na.fail")
## ---
## Model selection table
## (Int) bdg_2013 cln_tst df logLik BIC delta weight
## 2 7.282 -0.03589 3 -6963.452 13949.0 0.00 0.996
## 1 5.220 2 -6972.569 13959.9 10.86 0.004
## 4 6.891 -0.03661 + 7 -6962.028 13975.7 26.66 0.000
## 3 5.157 + 6 -6971.235 13986.7 37.70 0.000
## Models ranked by BIC(x)
```

Which IC to use?

- AIC and BIC (and Anova()) may yield different conclusions, especially if the dataset is large.
- Recommendation: choose **one** to use *a priori* (before making calculations).
- Prefer BIC to be "more conservative" (larger penalty means predictor must improve fit more before we judge it worthwhile)

Quantities derived from (A)IC

- ΔAIC is the AIC for a given model, minus the AIC of the best one in the dataset. (Same for ΔBIC)
- Akaike or BIC weights are values (ranging from 0-1) that measure the weight of evidence suggesting that a model is the best one (given that there is one best one in the set)

Important Caution

- Very important: IC can ONLY be compared for models...
 - With the exact same response variable...
 - and the exact same rows of data.

Conclusions

Evidence of association?

Evidence the arrow (in causal diagram) is strongly, detectably there?

```
## df AIC
## bechdel_mod 7 13938.06
## no_bechdel_mod 3 13932.90
```

pred1 is significant

There is strong evidence (AIC lower by about 5) that a movie's return on investment is associated with its Bechdel test score. Specifically, after controlling for any effect of budget, model results suggest that...[use pred plot here to say which test scores predict more/less ROI!].

To present IC results, use your *summary()*, equation, and ESPECIALLY prediction plot to tell the story in context!