HRS testing

Nick Graetz

February 22, 2019

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Feb 22, 2019 - 5:35:55 PM

Table 1: Black only

	$\operatorname{cognitive}$			
	\mathbf{Crude}	${\bf Weight}$	\mathbf{Crude}	${\bf Weight}$
	Model 1	Model 2	Model 3	Model 4
as.factor(female) 1	0.179***	0.175***	0.139***	0.136***
	(0.040)	(0.040)	(0.033)	(0.033)
$as.factor(cohort_group)1930$	-0.132^{**}	-0.127^{**}	-0.275^{***}	-0.267^{***}
	(0.059)	(0.062)	(0.050)	(0.052)
$as.factor(cohort_group)1940$	-0.094	-0.088	-0.366***	-0.359***
	(0.066)	(0.069)	(0.057)	(0.059)
$as.factor(cohort_group)1950$	0.003	0.056	-0.428^{**}	-0.362^{**}
	(0.216)	(0.212)	(0.176)	(0.173)
edu_years	, ,	, ,	0.431***	0.435***
			(0.016)	(0.016)
wealth			0.017^{*}	0.021**
			(0.009)	(0.009)
log_income			0.039***	0.033***
			(0.009)	(0.009)
age_poly_1	-0.456***	-0.455***	-0.442^{***}	-0.439***
	(0.015)	(0.017)	(0.015)	(0.017)
age_poly_2	-0.082****	-0.081****	-0.077****	-0.076***
	(0.012)	(0.014)	(0.012)	(0.014)
Constant	-0.067	-0.065	0.112**	0.109**
	(0.058)	(0.061)	(0.049)	(0.051)
N	10585	10111	10577	10103
Log Likelihood	-11333.480	-11333.390	-10989.900	-10989.550
AIC	22694.960	22694.780	22013.800	22013.100
BIC	22796.700	22795.880	22137.330	22135.850

^{***}p < .01; **p < .05; *p < .1

^{##} Computing p-values via Wald-statistics approximation (treating t as Wald z).

^{##} Caution! ICC for random-slope-intercept models usually not meaningful. Use `adjusted = TRUE` to use the mean ran

^{##} Computing p-values via Wald-statistics approximation (treating t as Wald z).

^{##} Caution! ICC for random-slope-intercept models usually not meaningful. Use `adjusted = TRUE` to use the mean ran

^{##} Computing p-values via Wald-statistics approximation (treating t as Wald z).

^{##} Caution! ICC for random-slope-intercept models usually not meaningful. Use `adjusted = TRUE` to use the mean ran

^{##} Computing p-values via Wald-statistics approximation (treating t as Wald z).

^{##} Caution! ICC for random-slope-intercept models usually not meaningful. Use `adjusted = TRUE` to use the mean ran

cognitive

cognitive

 $\operatorname{cognitive}$

 $\operatorname{cognitive}$

Predictors

 ${\bf Estimates}$

 CI

p

Estimates

 CI

p

Estimates

 CI

p

Estimates

 CI

p

(Intercept)

-0.07

-0.18 - 0.05

0.249

-0.07

-0.18 - 0.05

0.281

0.11

0.02 - 0.21

0.022

0.11

0.01 - 0.21

0.033

as factor (female) 1

0.18

0.10 - 0.26

< 0.001

0.18

0.10 - 0.25

< 0.001

0.14

0.07 - 0.20

< 0.001

0.14

0.07 - 0.20

< 0.001

as factor(cohortgroup) 1930

-0.13

-0.25 - -0.02

0.025

-0.13

-0.25 - -0.01

0.040

-0.28

-0.37 - -0.18

< 0.001

-0.27

-0.37 - -0.16

< 0.001

as factor(cohort group) $1940\,$

-0.09

-0.22 - 0.04

0.159

-0.09

-0.22 - 0.05

0.204

-0.37

-0.48 - -0.25

< 0.001

-0.36

-0.48 - -0.24

< 0.001

as factor (cohortgroup)1950 $\,$

0.00

-0.42 - 0.43

0.990

0.06

-0.36 - 0.47

- 0.790
- -0.43
- -0.77 -0.08
- 0.015
- -0.36
- -0.70 -0.02
- 0.036
- age poly 1
- -0.46
- -0.49 -0.43
- < 0.001
- -0.46
- -0.49 -0.42
- < 0.001
- -0.44
- -0.47 -0.41
- < 0.001
- -0.44
- -0.47 -0.41
- < 0.001
- age poly 2
- -0.08
- -0.11 -0.06
- < 0.001
- -0.08
- -0.11 -0.05
- < 0.001
- -0.08
- -0.10 -0.05
- < 0.001
- -0.08
- -0.10 -0.05
- < 0.001
- edu years
- 0.43
- 0.40 0.46
- < 0.001
- 0.44

0.40 - 0.47

< 0.001

wealth

0.02

-0.00 - 0.03

0.056

0.02

0.00 - 0.04

0.015

log income

0.04

0.02 - 0.06

< 0.001

0.03

0.02 - 0.05

< 0.001

Random Effects

2

0.33

0.07

0.33

0.07

00

 $0.46~{\rm id_factor}$

 $0.45~{\rm id_factor}$

 $0.26~{\rm id_factor}$

 $0.25~{\rm id_factor}$

11

 $0.08~id_factor.age_poly_1$

 $0.08~id_factor.age_poly_1$

 $0.07~id_factor.age_poly_1$

 $0.07~id_factor.age_poly_1$

 $0.01~{\rm id_factor.age_poly_2}$

 $0.04~{\rm id_factor.age_poly_2}$

 $0.01~id_factor.age_poly_2$

 $0.04~id_factor.age_poly_2$

01

-0.14 id_factor.age_poly_1

- -0.11 id_factor.age_poly_1
- $\hbox{-}0.13 \hbox{ id_factor.age_poly_1}$
- -0.14 id_factor.age_poly_1
- -0.80 id_factor.age_poly_2
- $\hbox{-}0.46~\hbox{id_factor.age_poly_2}$
- $\hbox{-}0.85~\hbox{id_factor.age_poly_2}$
- -0.57 id_factor.age_poly_2

ICC

- $0.58~{\rm id_factor}$
- $0.87~{\rm id_factor}$
- $0.45~{\rm id_factor}$
- $0.79 \ \mathrm{id_factor}$

Observations

10585

10111

10577

10103

Marginal R2 / Conditional R2

 $0.137 \ / \ 0.674$

 $0.181\ /\ 0.910$

0.332 / 0.671

 $0.446\ /\ 0.909$