Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 10:52:05 2021 Program finished at Tue Jun 1 11:27:00 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 22846135

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	0	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	0	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	0	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	0	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	0	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	0	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	0	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	0	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	0	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	0	0

11 WhitePo		0	0	0	0	0	0	0	0	0	*	*	0		
12 LaJolla		0	0	0	0	0	0	0	0	0	0	*	*		
Order of paramet															
1	Θ_1								displa	-					
2	Θ_2								displa	-					
3	Θ_3								displa	-					
4	Θ_4								displa	-					
5	Θ_5								displa	-					
6	Θ_6								displa	-					
7	Θ_7								displa	-					
8	$\Theta_{8}^{'}$								displa	-					
9	Θ_9								displa	-					
10	Θ_{10}								displa	-					
11	Θ_{11}								displa	-					
12	Θ_{12}								displa	-					
24	IVI 1-	->2							displa	-					
36	N /	->3							displa	-					
48	N A	->4							displa	-					
60	N /	->5							displa	-					
72	N / 3-	->6							displa	-					
84 96	0-	->7							displa displa	-					
108	/-	->8							displa	-					
120	N 4 0-	->9							displa	-					
132	N / 9-	->10							displa						
144	V /)->11							displa	-					
'''	11	1->12	2						лоріс	.you					
Mutation rate amo	na loc	i:											Mut	tation rate i	s constant
Analysis strategy:														Bayesiaı	n inference
														•	
Proposal distribution	ons fo	r par	amet	ter											
Parameter		-				F	ropo	sal							
Theta				Ме	tropo	olis s	samp	ling							
М					SI	ice s	samp	ling							
Prior distribution fo	or para	amet	er												
Parameter F	Prior	M	linimu	um			Me	an*		M	axim	um	Delta		Bins
Theta Exp win	dow	0.0	00001	10		0.	0100	000		10.0	0000	00	1.000000		500
M Exp win	dow	0.0	00010	00	100	000.	.0000	000	1000	000.0	0000	00	100000.000000		500

Markov chain settings:			Lo	ong chain
Number of chains				1
Recorded steps [a]				1000
Increment (record every x step [b]				100
Number of concurrent chains (replicates) [c]				3
Visited (sampled) parameter values [a*b*c]			;	300000
Number of discard trees per chain (burn-in)				1000
Multiple Markov chains:				
Static heating scheme		4 chains	s with tem	peratures
	100000.00	3.00	1.50	1.00
		Sw	apping into	erval is 1
Print options:				
Data file:		//mcalifor	nianus_21	0528.mig
Output file:				outfile.txt
Posterior distribution raw histogram file:			ļ	bayesfile
Print data:				No
Print genealogies [only some for some data type]:				None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01976
1	Θ_2	0.00001	0.00001	0.01001	0.10001	0.22001	0.11001	0.05127
1	Θ_3	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03468
1	Θ_4	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03044
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01479
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02507
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01995
1	Θ_{8}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01811
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01563
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01121
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01269
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01057
1	M _{1->2}	0.0	0.0	5000.0	10000.0	24000.0	11000.0	5891.9
1	$M_{2->3}$	0.0	2000.0	11000.0	18000.0	36000.0	17000.0	11952.8
1	$M_{3->4}$	0.0	0.0008	19000.0	26000.0	36000.0	21000.0	18036.2
1	$M_{4->5}$	14000.0	24000.0	41000.0	54000.0	234000.0	97000.0	104352.5
1	$M_{5->6}$	0.0	32000.0	45000.0	58000.0	78000.0	43000.0	34323.9
1	M _{6->7}	0.0	0.0	11000.0	22000.0	66000.0	23000.0	24355.4
1	M _{7->8}	12000.0	26000.0	39000.0	50000.0	78000.0	43000.0	43013.4
1	M _{8->9}	0.0	30000.0	41000.0	48000.0	0.00088	39000.0	36109.7
1	M _{9->10}	6000.0	22000.0	43000.0	66000.0	178000.0	59000.0	73750.3
1	M _{10->11}	0.0	4000.0	13000.0	22000.0	38000.0	19000.0	14773.7
1	M _{11->12}	12000.0	18000.0	57000.0	166000.0	198000.0	453000.0	447143.2

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci Freq Freq 600.00 -300.0 400.00 200.0 200.00 100.0-0.00 $\overline{\overset{4}{4}}$ Θ_1 0.0 Θ_2 8 2 2 8 6 6 Freq Freq 400.0 400.00 300.0 200.0 200.00 -100.0 0.0-0.00 Θ_3 Θ_4 2 8 2 6 6 8 Freq Freq 600.00 -400.00 400.00 200.00 -200.00 0.00 -0.00 -^τ₄ Θ₅ Θ_6 2 2 6 8 6 8

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 10:52:05]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2203.111080	(1a)
	-2118.173670	(1b)
Harmonic mean	-1899.762554	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	422/6477	0.06515
Θ_2	372/6541	0.05687
Θ_3^-	751/6634	0.11320
Θ_4	1268/6500	0.19508
) ₅	4310/6665	0.64666
) ₆	1984/6463	0.30698
) ₇	2015/6562	0.30707
) ₈	2866/6564	0.43662
$\mathbf{O}_{\mathbf{Q}}$	3210/6433	0.49899
) ₁₀	4527/6472	0.69947
211	3844/6602	0.58225
12	6295/6539	0.96269
1 1->2	6418/6418	1.00000
1 2->3	6528/6528	1.00000
1 3->4	6698/6698	1.00000
1 4->5	6532/6532	1.00000
5->6	6475/6475	1.00000
1 6->7	6528/6528	1.00000
1 7->8	6425/6425	1.00000
1 8->9	6478/6478	1.00000
1 9->10	6625/6625	1.00000
1 10->11	6522/6522	1.00000
1 11->12	6664/6664	1.00000
enealogies	40025/149655	0.26745

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.95570	67.92
Θ_2	0.96161	60.21
Θ_3^2	0.89141	179.16
Θ_4°	0.82344	298.65
Θ_5	0.41012	1378.73
Θ_6°	0.67241	636.73
\mathbf{p}_{7}°	0.62980	753.43
$\Theta_8^{'}$	0.55175	899.59
Θ_{q}	0.49405	1097.87
9 ₁₀	0.31559	1580.40
) ₁₁	0.43125	1196.76
12	0.11915	2360.07
1->2	0.70089	532.94
1 2->3	0.80277	332.54
1 3->4	0.77005	404.74
1 4->5	0.76673	401.19
1 5->6	0.75624	428.17
1 6->7	0.66129	617.05
1 7->8	0.70456	552.88
1 8->9	0.73932	455.13
1 8->9 9->10	0.77854	377.90
10->11	0.76652	399.53
10->11	0.49599	1019.50
n[Prob(D G)]	0.97343	40.56

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run