

Inequações

I. Inequações fundamentais

162. Sejam f e g duas funções trigonométricas da variável real x. Resolver a inequação f(x) < g(x) significa obter o conjunto S, denominado conjunto solução ou conjunto verdade, dos números r para os quais f(r) < g(r) é uma sentença verdadeira.

Quase todas as inequações trigonométricas podem ser reduzidas a inequações de um dos seguintes seis tipos:

- 1^{a}) sen x > m
- 2^{a}) sen x < m
- 3^a) $\cos x > m$
- 4^{a}) cos x < m
- 5^a) tg x > m
- 6^{a}) tg x < m

em que m é um número real dado. Por esse motivo, essas seis são denominadas inequações fundamentais. Assim, é necessário saber resolver as inequações fundamentais para poder resolver outras inequações trigonométricas.

II. Resolução de sen x > m

163. Marcamos sobre o eixo dos senos o ponto P_1 tal que $OP_1 = m$. Traçamos por P_1 a reta r perpendicular ao eixo. As imagens dos reais x tais que sen x > m estão na interseção do ciclo com o semiplano situado acima de r.

Finalmente, descrevemos os intervalos aos quais x pode pertencer, tomando o cuidado de partir de A e percorrer o ciclo no sentido anti-horário até completar uma volta.

164. Exemplo de inequação sen x > m

Resolver a inequação sen $x \ge -\frac{\sqrt{2}}{2}$, em \mathbb{R} .

Procedendo conforme foi indicado, temos:

$$0\,+2k\pi\leqslant x<\frac{5\pi}{4}+2k\pi$$

ou

$$\frac{7\pi}{4} + 2k\pi < x < 2\pi + 2k\pi$$

$$S = \left\{x \in \mathbb{R} \mid 0 + 2k\pi \leqslant x < \frac{5\pi}{4} + 2k\pi \text{ ou } \frac{7\pi}{4} + 2k\pi < x < 2\pi + 2k\pi\right\}$$

Notemos que escrever $\frac{7\pi}{4}$ + $2k\pi$ < x < $\frac{5\pi}{4}$ + $2k\pi$ estaria errado pois,

como $\frac{7\pi}{4} > \frac{5\pi}{4}$, não existe x algum neste intervalo.

III. Resolução de sen x < m

165. Marcamos sobre o eixo dos senos o ponto P_1 tal que $OP_1 = m$. Traçamos por P_1 a reta r perpendicular ao eixo. As imagens dos reais x tais que sen x < m estão na interseção do ciclo com o semiplano situado abaixo de r.

Finalmente, partindo de A e percorrendo o ciclo no sentido anti-horário até completar uma volta, descrevemos os intervalos que convêm ao problema.

166. Exemplo de inequação sen x < m

Resolver a inequação sen $x < \frac{1}{2}$, em \mathbb{R} .

Procedendo conforme foi indicado, temos:

$$0 + 2k\pi \leqslant x < \frac{\pi}{6} + 2k\pi$$

$$\frac{5\pi}{6} + 2k\pi < x < 2\pi + 2k\pi$$

$$S = \left\{ x \in \mathbb{R} \; | \; 0 \, + \, 2k\pi \leqslant x < \frac{\pi}{6} \, + \, 2k\pi \; \text{ ou } \; \frac{5\pi}{6} \, + \, 2k\pi < x < 2\pi \, + \, 2k\pi \right\}$$

EXERCÍCIOS

334. Resolva a inequação $0 \le \text{sen } x < \frac{\sqrt{3}}{2}$, para $x \in \mathbb{R}$.

Solução

A imagem de x deve ficar na interseção do ciclo com a faixa do plano compreendida entre *r* e s. Temos, então:

$$0 + 2k\pi \le x < \frac{\pi}{3} + 2k\pi$$
ou
$$2\pi$$

$$\frac{2\pi}{3} + 2k\pi < x \leqslant \pi + 2k\pi$$

$$S = \left\{x \ \in \mathbb{R} \ \big| \ 0 \, + \, 2k\pi \leqslant x < \frac{\pi}{3} \, + \, 2k\pi \ \text{ ou } \ \frac{2\pi}{3} \, + \, 2k\pi < x \leqslant \pi \, + \, 2k\pi \right\}$$

335. Resolva a inequação sen $x \ge 0$, sendo $x \in \mathbb{R}$.

336. Resolva a inequação sen $x \le -\frac{\sqrt{3}}{2}$, em \mathbb{R} .

337. Resolva a inequação $-\frac{1}{2} \le \text{sen } x < \frac{\sqrt{2}}{2}$, para $x \in \mathbb{R}$.

338. Resolva a inequação $|\text{sen }x| \geqslant \frac{\sqrt{3}}{2}$, em \mathbb{R} .

Solução

$$|\operatorname{sen} x| \ge \frac{+\sqrt{3}}{2} \Rightarrow \begin{cases} \operatorname{sen} x \le -\frac{\sqrt{3}}{2} \\ \operatorname{ou} \\ \operatorname{sen} x \ge \frac{\sqrt{3}}{2} \end{cases}$$

A imagem de x deve ficar na interseção do ciclo com o semiplano situado abaixo de *r* ou com o semiplano situado acima de s.

Assim, temos:

$$\frac{\pi}{3} + 2k\pi \leqslant x \leqslant \frac{2\pi}{3} + 2k\pi \ \text{ou} \ \frac{4\pi}{3} + 2k\pi \leqslant x \leqslant \frac{5\pi}{3} + 2k\pi$$

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} + 2k\pi \leqslant x \leqslant \frac{2\pi}{3} + 2k\pi \text{ ou } \frac{4\pi}{3} + 2k\pi \leqslant x \leqslant \frac{5\pi}{3} + 2k\pi \right\}$$

INEQUAÇÕES

339. Resolva a inequação $|\text{sen x}| \leq \frac{1}{2}$, em \mathbb{R} .

340. Resolva a inequação $|\text{sen }x|>\frac{\sqrt{2}}{2}, \text{ para }x\in\mathbb{R}.$

341. Resolva a inequação $2 \operatorname{sen}^2 x < \operatorname{sen} x$, para $x \in \mathbb{R}$.

Solução

 $2 \operatorname{sen}^2 x < \operatorname{sen} x \Leftrightarrow$

$$\Leftrightarrow$$
 2 sen² x - sen x < 0 \Leftrightarrow

$$\Leftrightarrow 0 < \text{sen } x < \frac{1}{2}$$

Examinando o ciclo trigonométrico, obtemos:

$$2k\pi < x < \frac{\pi}{6} + 2k\pi$$
 ou

$$\frac{5\pi}{6} + 2k\pi < x < \pi + 2k\pi$$

$$S = \left\{ x \in \mathbb{R} \mid 2k\pi < x < \frac{\pi}{6} + 2k\pi \text{ ou } \frac{5\pi}{6} + 2k\pi < x < \pi + 2k\pi \right\}$$

b) Resolva a equação, em \mathbb{R} :

$$\log_2 (2 \operatorname{sen} x - 1) = \log_4 (3 \operatorname{sen}^2 x - 4 \operatorname{sen} x + 2)$$

IV. Resolução de cos x > m

167. Marcamos sobre o eixo dos cossenos o ponto P_2 tal que $OP_2 = m$. Traçamos por P_2 a reta r perpendicular ao eixo. As imagens dos reais x tais que $\cos x > m$ estão na interseção do ciclo com o semiplano situado à direita de r.

Para completar, descrevemos os intervalos que convêm ao problema.

168. Exemplo de inequação $\cos x > m$

Resolver a inequação cos $x > \frac{\sqrt{3}}{2}$, para $x \in \mathbb{R}$.

Procedendo conforme foi indicado, temos:

$$2k\pi \leqslant x < \frac{\pi}{6} + 2k\pi$$

OΠ

$$\frac{11\pi}{6} + 2k\pi < x < 2\pi + 2k\pi$$

$$S = \left\{x \in \mathbb{R} \mid 2k\pi \leqslant x < \frac{\pi}{6} + 2k\pi \text{ ou } \frac{11\pi}{6} + 2k\pi < x < 2\pi + 2k\pi\right\}$$

V. Resolução de cos x < m

169. Marcamos sobre o eixo dos cossenos o ponto P_2 tal que $OP_2 = m$. Traçamos por P_2 a reta r perpendicular ao eixo. As imagens dos reais x tais que cos x < m estão na interseção do ciclo com o semiplano situado à esquerda de r.

Completamos o problema descrevendo os intervalos que convêm.

170. Exemplo de inequação $\cos x < m$

Resolver a inequação $\cos x < -\frac{1}{2}$.

INEQUAÇÕES

Procedendo conforme foi indicado, temos:

$$\frac{2\pi}{3} + 2k\pi < x < \frac{4\pi}{3} + 2k\pi.$$

$$S = \left\{x \in \mathbb{R} \mid \frac{2\pi}{3} + 2k\pi < x < \frac{4\pi}{3} + 2k\pi\right\}$$

EXERCÍCIOS

343. Resolva a inequação $-\frac{3}{2} \le \cos x \le 0$, para $x \in \mathbb{R}$.

Solução

A imagem de x deve ficar na interseção do ciclo com a faixa do plano compreendida entre r e s. Temos, então:

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{2} + 2k\pi \le x \le \frac{3\pi}{2} + 2k\pi \right\}$$

344. Resolva a inequação cos $x \ge -\frac{1}{2}$, em \mathbb{R} .

345. Resolva a inequação cos $x < \frac{\sqrt{2}}{2}$, para $x \in \mathbb{R}$.

346. Resolva a inequação $-\frac{\sqrt{3}}{2} \leqslant \cos x \leqslant \frac{1}{2}$, para $x \in \mathbb{R}$.

- **347.** Resolva a inequação $|\cos x| < \frac{\sqrt{3}}{2}$, em \mathbb{R} .
- **348.** Resolva a inequação $|\cos x| > \frac{5}{3}$, em \mathbb{R} .
- **349.** Resolva a inequação cos $2x + \cos x \le -1$, para $x \in \mathbb{R}$.

Solução

 $\cos 2x + \cos x \le -1 \Leftrightarrow (2\cos^2 x - 1) + \cos x \le -1 \Leftrightarrow$

$$\Leftrightarrow 2 \cos^2 x + \cos x \le 0 \Leftrightarrow -\frac{1}{2} \le \cos x \le 0$$

Examinando o ciclo trigonométrico, obtemos:

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{2} + 2k\pi \leqslant x \leqslant \frac{2\pi}{3} + 2k\pi \text{ ou } \frac{4\pi}{3} + 2k\pi \leqslant x \leqslant \frac{3\pi}{2} + 2k\pi \right\}$$

- **350.** Resolva a inequação $4 \cos^2 x < 3$, em \mathbb{R} .
- **351.** Resolva a inequação cos $2x \ge \cos x$, para $x \in \mathbb{R}$.
- **352.** Resolva a inequação sen $x + \cos x \ge \frac{\sqrt{2}}{2}$, para $x \in \mathbb{R}$.

Solução

$$\operatorname{sen} x + \cos x \ge \frac{\sqrt{2}}{2} \iff \operatorname{sen} x + \operatorname{sen} \left(\frac{\pi}{2} - x\right) \ge \frac{\sqrt{2}}{2} \iff$$

$$\Leftrightarrow \ 2 \cdot \text{sen} \ \frac{\pi}{4} \cdot \cos \left(x - \frac{\pi}{4} \right) \geqslant \frac{\sqrt{2}}{2} \ \Leftrightarrow \ \cos \left(x - \frac{\pi}{4} \right) \geqslant \frac{1}{2}$$

Fazendo x $-\frac{\pi}{4}$ = y, temos a inequação cos y $\geq \frac{1}{2}$. Examinando o ciclo, vem:

$$2k\pi \leqslant y < \frac{\pi}{3} + 2k\pi$$

Οl

$$\frac{5\pi}{3} + 2k\pi \leqslant y < 2\pi + 2k\pi$$

INEQUAÇÕES

como $x = y + \frac{\pi}{4}$, vem:

$$S = \left\{x \in \mathbb{R} \mid \frac{\pi}{4} + 2k\pi \leqslant x \leqslant \frac{7\pi}{12} + 2k\pi \text{ ou} \right.$$
$$\left. \frac{23\pi}{12} + 2k\pi \leqslant x < \frac{9\pi}{4} + 2k\pi \right\}$$

353. Resolva a inequação sen $x + \cos x < 1$, em \mathbb{R} .

354. Determine o domínio da função real f dada por $f(x) = \sqrt{\frac{\cos 2x}{\cos x}}$, em \mathbb{R} .

Solução

- I) Devemos ter $\frac{\cos 2x}{\cos x} \ge 0$.
- II) Fazendo $\cos x = y$, temos:

$$\frac{\cos 2x}{\cos x} \geqslant 0 \iff \frac{2y^2 - 1}{y} \geqslant 0$$

III) Fazendo o quadro de sinais:

	$-\frac{\sqrt{2}}{2}$		$\frac{\sqrt{2}}{2}$	
2y² - 1	+	-	-	+ y
у	-	ı	+	+
$\frac{2y^2-1}{y}$	_	+	-	+

concluímos que o quociente é positivo para:

$$-\frac{\sqrt{2}}{2} \leqslant y < 0 \text{ ou } y \geqslant \frac{\sqrt{2}}{2}$$

IV) Examinando o ciclo trigonométrico, temos:

$$-\frac{\sqrt{2}}{2} \le \cos x < 0 \iff \begin{cases} \frac{\pi}{2} + 2k\pi < x \le \frac{3\pi}{4} + 2k\pi \\ \text{ou} \end{cases}$$
$$\frac{5\pi}{4} + 2k\pi \le x < \frac{3\pi}{2} + 2k\pi$$

$$\cos x \geqslant \frac{\sqrt{2}}{2} \iff \begin{cases} 2k\pi \leqslant x \leqslant \frac{\pi}{4} + 2k\pi \\ & \text{ou} \\ \frac{7\pi}{4} + 2k\pi \leqslant x \leqslant 2\pi + 2k\pi \end{cases}$$

$$\begin{split} S &= \left\{x \;\in \mathbb{R} \;\middle|\; \frac{\pi}{2} + 2k\pi < x \leqslant \frac{3\pi}{4} + 2k\pi \;\; \text{ou} \right. \\ &\left. \frac{5\pi}{4} + 2k\pi \leqslant x < \frac{3\pi}{2} + 2k\pi \;\; \text{ou} \right. \\ &\left. 2k\pi \leqslant x \leqslant \frac{\pi}{4} + 2k\pi \;\; \text{ou} \;\; \frac{7\pi}{4} + 2k\pi \leqslant x \leqslant 2\pi + 2k\pi \right\} \end{split}$$

355. Resolva o sistema abaixo:

VI. Resolução de tg x > m

171. Marcamos sobre o eixo das tangentes o ponto T tal que AT = m. Traçamos a reta r = OT. As imagens dos reais x tais que tg x > m estão na interseção do ciclo com o ângulo rOV.

Para completar, descrevemos os intervalos que convêm ao problema.

172. Exemplo de inequação tg x > m

Resolver a inequação tg x > 1, em \mathbb{R} .

Procedendo conforme foi indicado, temos:

$$\frac{\pi}{4} + 2k\pi < x < \frac{\pi}{2} + 2k\pi$$

$$\frac{5\pi}{4}+2k\pi < x < \frac{3\pi}{2}+2k\pi$$

que podem ser resumidos em:

$$\frac{\pi}{4} + k\pi < x < \frac{\pi}{2} + k\pi$$

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} + k\pi < x < \frac{\pi}{2} + k\pi \right\}$$

VII. Resolução de tg x < m

173. Marcamos sobre o eixo das tangentes o ponto T tal que AT = m. Traçamos a reta $r = \overrightarrow{OT}$. As imagens dos reais x tais que tg x < m estão na interseção do ciclo com o ângulo vÔr.

Para completar, descrevemos os intervalos que convêm ao problema.

174. Exemplo de inequação tg x < m

Resolver a inequação tg x $< \sqrt{3}$, em \mathbb{R} .

Procedendo conforme foi indicado, temos:

$$0+2k\pi \leqslant x < \frac{\pi}{3}+2k\pi$$
 ou
$$\frac{\pi}{2}+2k\pi < x < \frac{4\pi}{3}+2k\pi$$
 ou
$$\frac{3\pi}{2}+2k\pi < x < 2\pi+2k\pi$$

$$S = \left\{x \in \mathbb{R} \mid 2k\pi \leqslant x < \frac{\pi}{3} + 2k\pi \text{ ou } \frac{\pi}{2} + 2k\pi < x < \frac{4\pi}{3} + 2k\pi \text{ ou } \frac{3\pi}{2} + 2k\pi < x < 2\pi + 2k\pi\right\}$$

EXERCÍCIOS

356. Resolva a inequação $|\text{tg x}| \leq 1$, para $x \in \mathbb{R}$.

Solução

$$|\operatorname{tg} x| \le 1 \Leftrightarrow -1 \le \operatorname{tg} x \le 1$$

A imagem de x deve ficar na interseção do ciclo com ângulo r \hat{O} s. Temos, então:

$$0\,+\,2k\pi\leqslant x\leqslant\frac{\pi}{4}+2k\pi$$
 ou

$$\frac{3\pi}{4} + 2k\pi \leqslant x \leqslant \frac{5\pi}{4} + 2k\pi \ \ \text{ou} \ \ \frac{7\pi}{4} + 2k\pi \leqslant x < 2\pi + 2k\pi$$

$$S = \left\{x \in \mathbb{R} \mid 2k\pi \leqslant x \leqslant \frac{\pi}{4} + 2k\pi \text{ ou } \frac{3\pi}{4} + 2k\pi \leqslant x \leqslant \frac{5\pi}{4} + 2k\pi \text{ ou} \right.$$

$$\left. \frac{7\pi}{4} + 2k\pi \leqslant x < 2\pi + 2k\pi \right\}$$

- **357.** Resolva a inequação tg $x > \sqrt{3}$, em \mathbb{R} .
- **358.** Resolva a inequação tg $x \le 0$, para $x \in \mathbb{R}$.
- **359.** Resolva a inequação $-\sqrt{3} < \operatorname{tg} x \leq \frac{\sqrt{3}}{3}$, para $x \in \mathbb{R}$.
- **360.** Resolva a inequação $|\text{tg x}| \ge \sqrt{3}$, em \mathbb{R} .
- **361.** Seja y = $a^{\log \lg x}$ com 0 < a < 1, em que log u indica o logaritmo neperiano de u. Determine x para que log $y \ge 0$.

LEITURA

Euler e a incorporação da trigonometria à análise

Hygino H. Domingues

Dentre as contribuições da Índia à matemática, merece lugar de relevo a introdução da ideia de seno. O responsável por essa inovação foi o matemático Aryabhata (476-?), ao substituir as cordas gregas (ver págs. 36 a 38) por semicordas — para as quais calculou tábuas de 0° a 90°, em intervalos de 3°45′ cada um.

Os árabes, posteriormente, não se limitaram a apenas divulgar a obra de gregos e hindus: também deram contribuições significativas próprias à matemática, em particular à trigonometria. Neste campo, em que adotaram a noção de seno dos hindus, introduziram os conceitos de tangente, cotangente, secante e cossecante, mas também como medidas de segmentos convenientes em relação a unidades pré-escolhidas. E o primeiro texto sistemático de trigonometria, desvinculado da astronomia, é de um autor árabe: Nasir Eddin (1201-1274).

No Renascimento talvez o ponto alto da trigonometria seja o início de sua abordagem analítica, em que pontificou Viète. Mesmo com sua notação pouco funcional, Viète estabeleceu relações trigonométricas importantes, como as fórmulas para sen $(n\theta)$ e cos $(n\theta)$ em função de sen θ e cos θ .

Um grande avanço no sentido de levar a trigonometria para os domínios da análise foi dado por Newton, no século XVII, ao expressar as funções circulares na forma de séries inteiras (por exemplo:

sen
$$x = x - \frac{x_3}{3!} + \frac{x_5}{5!} - \dots$$
).

Porém, não seria exagero nenhum afirmar que o verdadeiro fundador da trigonometria moderna foi Leonhard Euler (1707-1783), o maior matemático do século XVIII.

Euler era filho de um pastor luterano de uma localidade da Suíça próxima da cidade de Basileia. Pela vontade do pai seguiria também o sacerdócio; mas, na Universidade da Basileia, para onde fora com essa finalidade, conheceu Jean Bernoulli e seus filhos Nicolau e Daniel, o que acabou pesando fortemente em sua opção pela matemática. Pouco depois de formado foi convidado a integrar a Academia de S. Petersburgo, na Rússia, onde já estavam Nicolau e Daniel (que o haviam recomendado). Depois de alguns vaivéns, em 1730 ingressou naquela instituição como físico. E, três anos depois, com a volta de Daniel à Suíça, foi-lhe confiado o posto máximo de matemática da Academia. Nessa posição ficou até 1741 quando aceitou se transferir para a Academia de Berlim, a convite de Frederico, o Grande. Depois de 25 anos na Alemanha retorna enfim a S. Petersburgo, onde terminaria seus dias.

Leonhard Euler (1707-1783).

Euler, com seus cerca de 700 trabalhos, entre livros e artigos, é sem dúvida o mais prolífico e versátil matemático de todos os tempos. Os originais que deixou com a Academia de S. Petersburgo ao morrer eram tantos que sua publicação só foi concluída 47 anos depois. E diga-se que Euler perdeu a visão em 1766, o que o obrigou, a partir de então, a ditar suas ideias a algum filho ou a secretários.

Euler foi também um grande criador de notações. Dentre os símbolos mais importantes devidos a ele estão: e para base do sistema para logaritmos naturais (talvez extraído da inicial da palavra "exponencial"); i para a unidade imaginária $(i = \sqrt{-1})$; π para a razão entre a circunferência e seu diâmetro (na verdade, neste caso, foi apenas o divulgador dessa notação, posto já ter sido ela usada anteriormente); Ix para o logaritmo de x; Σ para somatórios e f(x) para uma função de x.

Quanto à trigonometria, seu papel renovador surge já nos conceitos básicos. O seno, por exemplo, não é mais um segmento de reta a ser expresso em relação a alguma unidade, mas a abscissa de um ponto do círculo unitário de centro na origem e, portanto, é um número puro. Caracteriza-se dessa forma (vale o mesmo para as demais linhas trigonométricas) a ideia de relação funcional entre arcos e números reais.

Euler dedicou duas memórias à trigonometria esférica, nas quais partiu do fato de que, sobre a superfície de uma esfera, as geodésicas (arcos de menor comprimento ligando dois pontos) são arcos de círculos máximos. Assim, um triângulo esférico é determinado por três círculos máximos, como na figura. Entre outros resultados obteve, por máximos e mínimos, a lei dos senos da trigonometria esférica (já conhecida):

$$\frac{\operatorname{sen} \hat{A}}{\operatorname{sen} a} = \frac{\operatorname{sen} \hat{B}}{\operatorname{sen} b} = \frac{\operatorname{sen} \hat{C}}{\operatorname{sen} c}$$

- · O ângulo do triângulo esférico ABC é o ângulo formado pelas tangentes MA e NA aos arcos AB e AC, em A, respectivamente.
- · Analogamente se definem os ângulos B
- Prova-se que vale a relação $180^{\circ} < \text{med}(\hat{A}) + \text{med}(\hat{B}) + \text{med}(\hat{C}) < 540^{\circ}$

A famosa identidade de Euler, ligando a trigonometria à função exponencial ($e^{ix} = \cos x + i \sin x$) na verdade já aparecera antes sob a forma logarítmica (Roger Cotes — 1714). Dela decorre a notável igualdade:

$$e^{i\pi} + 1 = 0$$

Para julgar um gênio, só outro gênio. E Laplace dizia a seus alunos: "Leiam, leiam Euler, ele é o nosso mestre em tudo".