

2016 한국컴퓨터종합학술대회

시간적인 동적 메모리 네트워크와 데이터 확장을 통한 질의응답 최적화

한동식 이충연 장병탁

서울대학교 컴퓨터공학부

2016년 7월 1일

차례

- ■서론
- 동적 메모리 네트워크
- 질의 응답을 위한 DMN 성능 개선 방법
 - ✓학습 데이터 확장
 - ✓시간 순서 인식 개선
 - √성능 평가
- ■실험 결과 및 논의
- 결론 및 향후 연구

- 1. Mary moved to the bathroom.
- 2. Sandra journeyed to the bedroom.
- 3. Mary got the football there.
- 4. John went to the kitchen.
- 5. Mary went back to the garden.
- Q. Where is the football?

- 1. Mary moved to the bathroom.
- 2. Sandra journeyed to the bedroom.
- 3. Mary got the **football** there.
- 4. John went to the kitchen.
- 5. Mary went back to the garden.
- Q. Where is the football?

- 1. Mary moved to the bathroom.
- 2. Sandra journeyed to the bedroom.
- 3. Mary got the **football** there.
- 4. John went to the kitchen.
- 5. Mary went back to the garden.
- Q. Where is the football?

- 1. Mary moved to the bathroom.
- 2. Sandra journeyed to the bedroom.
- 3. Mary got the **football** there.
- 4. John went to the kitchen.
- 5. Mary went back to the garden.
- Q. Where is the football?

- 새로운 지식을 학습하기 위한 효과적인 방법이다.
- 올바른 응답을 도출하기 위한 인지 체계를 내포하고 있다.

메모리 네트워크

• 사실들의 나열을 기억 모델에 단계별 주의 및 추론 저장한 뒤, 질문과 모델 상태에 따라 가장 적합한 사실들을 순차적으로 선택해 올바른 응답을 나타낸다. 연속된 사실 입력 응답 메모리 Input 1: Mary moved to the bathroom. Input 2: Sandra moved to the garden. A: "Bathroom." Input 3: John moved to the office. 네트워크 Input 4: Sandra journeyed to the bathroom. Input 5: John moved to the bedroom. 질문

Q: Where is Sandra?

관련 연구

- 모델
 - 메모리 네트워크 ICLR 2015
 - End-to-End 메모리 네트워크 NIPS 2015
 - 동적 메모리 네트워크 ICML 2016
- 질의 응답 데이터
 - bAbl 문제 ICLR 2016

동적 메모리 네트워크

동적 메모리 네트워크

의미 기억 모듈, 입력 모듈, 질문 모듈

의미 기억 모듈, 입력 모듈, 질문 모듈

- 의미 기억 모듈: 단어 임베딩 벡터. $L = \mathbb{R}^{W \times 300}$ 의 행렬을 통해 단어의 벡터 표현 생성
- 입력 모듈: 문장들의 입력을 벡터의 집합 $F = [f_1, ..., f_N]$ 로 표현해 내는 것을 목적으로 함
 - 입력 문장의 단어들을 단어 임베딩을 통해 고정된 차원의 벡터들로 변환
 - 회귀 신경망을 통해 문장마다 최종 은닉 상태들을 추출
 - 한 문장 내의 i번째 단어 w_i 와 전 은닉 상태 h_{i-1} 에 대해 Gated Recurrent Unit (GRU)에 의한 새로운 은닉 상태 $h_t=GRU(L[w_t],h_{t-1})$ 를 구하는 과정을 문장 내마지막 단어까지 반복
- 질문 모듈
 - 본 모듈은 질문의 벡터 표현인 q를 $q_t = GRU(L[w_t^Q], q_{t-1})$ 로 계산
 - 실제 구현에서는 입력 모듈과 모든 변수를 공유

일화 기억 모듈

일화기억 모듈의 주의 과정

The model predicted 'bathroom', where the target is 'bathroom'

일화 기억 모듈

- q가 요구하는 응답을 하기 위해 필요한 사실들을 순차적으로 검색
- 질문과 입력에 대한 이해를 더 높이기 위한 이 과정은 일화적 통과(episodic pass)라 불리며 이를 통해 일화 메모리 벡터를 추출한다. 초기 메모리 벡터가 $m^0 = q$ 일 때, i번째 일화 기억 모듈을 통과하여 생성되는 m^i 는 다음과 같다.

$$z_t^i = \left[f, m^{i-1}, q, f \circ q, f \circ m^{i-1}, |f - q|, |f - m^{i-1}|, f^{\mathrm{T}} W^{(b)} q, f^{\mathrm{T}} W^{(b)} m^{i-1}\right]$$
 사실과 일화 메모리, 질문간의 관계 계산
$$g_t^i = W^{(2)} \tanh \left(W^{(1)} z_t^i + b^{(1)}\right) + b^{(2)}$$
 관계를 통해 episodic gate (스칼라값) 계산
$$e^i = \sum_{t=1}^T \left(\frac{\exp(g_t^i)}{\sum_{j=1}^T \exp(g_j^i)}\right) f_t$$
 소프트맥스 함수를 이용해 사실 검색, 요약

 $m^i = GRU(e^i, m^{i-1})$ Episodic pass 수에 따라 GRU계산 반복

응답 모듈

응답 모듈

- 질문 모듈의 q와 일화 기억 모듈에서 요약된 $m^{T_{pass}}$ 를 이용하여 올바른 정답을 예측한다.
- 소프트맥스 층을 통해 단어 수준의 답변 형식, 회귀 신경망을 사용하여 연속적 단어 답변을 얻을 수 있다.

$$y_t = \operatorname{softmax}(W^{(a)}a_t)$$

$$a_t = GRU([y_{t-1}, q], a_{t-1})$$

질의 응답을 위한 DMN 성능 개선 방법

- 1K bAbl 문제의 20개 과제들 (학습 데이터 20,000 개, 테스트 데이터 20,000개)
- 오류 역전파 알고리즘
- Adam 최적화 방법

학습 데이터 개선

- 데이터가 충분치 않을 경우 학습 데이터에 과적합 문제가 발생
- 어휘 셔플링(vocabulary shuffling): 학습시 이름, 장소, 사물 등 같은 범주로 사용되는 어휘끼리 매 학습 횟수 마다 임베딩 벡터의 연결을 임의로 바꾸어 매번 새로운 일화를 학습하는 효과에 가깝도록 함

기술	원본 데이터	생성된 데이터
	•	1 <u>Lily</u> moved to the <u>hallway</u> . 2 <u>Daniel</u> went to the <u>kitchen</u> . Q: Where is <u>Lily</u> ? A: <u>hallway</u>

시간 순서 개선

시간 순서 개선

- 기존 DMN이 가진 주의 기제의 취약점 중 하나는 명시적인 상대 시간 정보를 이용하지 않는다는 점
- 따라서 DMN의 주의 기제는 질문이 의도한 시점이 아닌 과거 혹은 미래 시점의 사실들을 찾을 가능성이 높을 수 있다.
- 본 연구에서는 시간 임베딩(temporal embedding)을 채용한다.
- T라는 행렬에 대해 다음과 같이

$$f_i' = f_i + T(N - i + 1)$$

N-i+1의 행 백터를 합한 상대 시간에 의존적인 $F'=[f_i',...,f_i']$ 를 일화기억 모듈에 사용

• 실제 학습에서는 시퀀스 여분의 20% 만큼 랜덤하게 상대적 순서를 유지하면서 index를 재배열한다.

성능 평가

• Strongly supervised DMN: 정답과 이 정답을 도출하기 위한 근거 문장 정보를 학습에 사용.

$$J = \alpha E_{CE}(GATES) + \beta E_{CE}(Answers)$$

where $\alpha + \beta = 1$

• Weakly supervised DMN: 정답만을 목적으로 신경망을 학습

$$J = E_{CE}(Answers)$$

질의 응답을 위한 DMN 성능 개선 방법

	비교 모델		개선된 DMN	
과제	End-to-End MemNN	DMN	Strongly Supervised DMN	Weakly Supervised DMN
1: 1 supporting fact	100	100	98.6	98.6
2: 2 supporting fact	88.6	39.7	72.3	78.6
3: 3 supporting fact	78.1	41.5	69.3	84.2
4: 2 argument relations	86.6	75.5	98	97.5
5: 3 argument relations	85.6	50.1	99	98.9
6: yes/no questions	97.2	97.7	96	99.2
7: counting	81.7	91.4	82.7	87.4
8: lists/sets	90.7	95.2	88.2	95.3
9: simple negations	98.1	99	96.4	98
10: indefinite knowledge	93.5	87.3	88.8	95.4
11: basic coreference	99.7	100	91.1	85.3
12: conjunction	99.9	87	98	96
13: compound coreference	99.8	97.4	93	92.4
14: time reasoning	93.1	73.1	97.8	98.3
15: basic deduction	100	53.9	87.6	98.2
16: basic induction	97.3	49.5	95.6	65.9
17: positional reasoning	59.6	59.3	59.6	63
18: size reasoning	90.6	98.3	97.1	96.6
19: path finding	12	9	29.1	45.6
20: agent's motivation	100	97.1	100	99.3
평균 정답률 (%)	87.605	75.1	86.91	88.685
통과 과제 (정답률 > 95%)	9	8	10	12

1K bAbl 문제에서의 평균 정답률

의미 기억 모듈의 명사 단어 지식 분석

GloVe DMN

의미 기억 모듈의 동사 단어 지식 분석

GloVe DMN

1 supporting fact

일화 기억 모듈의 주의 기제 분석 (episodic_pass = 3)

2 supporting fact

3 supporting fact

일화 기억 모듈의 주의 기제 분석

- 모델이 일화적 통과의 횟수에 적합한 문제를 더 어려운 문제임에도 불구하고 더 잘 해결하고 있음을 확인할 수 있다.
- 이는 사용되는 주의 기제와 소프트맥스 함수가 단계마다 하나의 추가 근거 사실을 찾는 작업에 적합하기 때문으로 보인다.
- 실험 결과는 DMN이 난이도에 관계없이 특정 과제 유형에 맞는 최적의 구조가 존재한다는 것을 함의하며, 적절한 통과 횟수의 조절을 통해 유연성을 갖출 필요성을 나타낸다.

결론 및 향후 연구

- 질의응답 문제를 위한 동적 메모리 네트워크를 다시 소개하였다.
- 최적의 정답률을 얻기 위해 적용할 수 있는 개선들에 대해 고찰하였다.
- 학습된 메모리 구성요소에 대한 분석을 시도하였다.
- 향후 대용량 멀티모달 질의 응답을 위한 외현 메모리 모델 구조 및 관련 알고리즘을 연구할 계획이다.

Q & A

감사합니다.