ESc201: Introduction to Electronics

DC Power Supply

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Recap: Diode Models

$$i_D = I_S \times \{ \exp(\frac{v_d}{V_T}) - 1 \}$$

Accuracy

Analysis using ideal diode model

$$I = \frac{10}{1k} = 10mA$$

Analysis with a constant voltage diode model

$$I = \frac{10 - 0.7}{1k} = 9.3mA$$

Analysis with a constant voltage plus resistor diode model

$$\begin{array}{ccccc} & V_{\gamma} & r_{f} \\ \hline & & V > V_{\gamma} \\ \hline & & & V < V_{\gamma} \\ \hline & & & open circuit \\ \end{array}$$

$$I = \frac{10 - 0.7}{1000 + 10} = 9.208 mA$$

Example

Find the current through the diode using ideal diode model

Is the diode forward biased? - Not Sure!!

Assume that it is forward biased ©

Carry out analysis and then check if current through the diode is in appropriate direction.

If not, diode is reverse biased and we carry out the analysis again!!

Example

Assume forward bias

$$i = 4mA$$

Current is positive, so our assumption is correct

$$-2mA + \frac{-10}{5K} - i_D = 0$$

$$i_D = -4 \quad mA$$

This is not possible.

Therefore, our assumption is incorrect

Assume reverse bias

DC Power Supply

Half wave Rectifier circuit

V rms

$$220V \times \sqrt{2}$$

$$= 311.127V \ peak \ value$$

Т

Transformer

$$\frac{V_S}{V_{IN}} = \frac{N_1}{N_2}$$

$$V_{\text{IN}} = 220V \times \sqrt{2}$$

$$= 311.127V \text{ peak}$$

$$N_{1} = 311$$

$$V_S = 220V \times \sqrt{2}$$

= 311.127V peak value

For
$$V_O$$
 to be 12V, the input V_{IN} should be ~12.7V

$$\frac{N_1}{N_2} = \frac{311}{12.7} = 24.5$$

Zoomed view

17

Want to hold that voltage during negative half cycle

Diode is forward biased

Diode is reverse biased

Output has a ripple

Ripple Voltage:
$$V_r = V_M - V_L$$

Average Output Voltage:
$$V_o(avg) \cong V_M - \frac{V_R}{2}$$

$$C\frac{dV_O}{dt} + \frac{V_O}{R_L} = 0 \Rightarrow \frac{dV_O}{dt} = -\frac{V_O}{R_L C}$$

$$-\frac{V_O}{R_L C} V_O(t) = V_M \times e^{-\frac{t}{R_L C}}$$

Assuming that $t_1 \ll R_L C$

$$V_r \cong V_M \times \{1 - (1 - \frac{t_1}{R_L C})\} = \frac{V_M t_1}{R_L C}$$

$$t_1 \cong T$$

$$V_r = \frac{V_M t_1}{R_L C} \cong \frac{V_M T}{R_L C}$$

$$V_r \cong \frac{V_M}{fR_LC}$$

Example

Example

$$V_r \cong \frac{V_M}{fR_L C} = \frac{11.904}{50 \times 10^3 \times 500 \times 10^{-6}} = 0.476V$$

$$\frac{R_L C}{T} = 25$$

Design Example

Design a power supply that will supply 6V to a load of 100Ω with ripple voltage less than 0.1V.

For V_O to be 6V, the input V_{IN} should be ~6.7V $\frac{N_1}{N_2} = \frac{311.127}{6.7} = 46.4$

$$V_r \cong \frac{V_M}{fR_LC} = 0.1 \Rightarrow C = 12mF$$

How do we choose a diode for this application?

How do we choose a diode for this application?

Peak diode current, average diode current and peak inverse voltage

Diode forward bias current

$$i_D = C \times \frac{dv_O}{dt} + \frac{v_O}{R_L}$$

Peak Diode Current

$$i_{D\max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$

$$V_r \cong \frac{V_M}{fR_LC}$$

$$\Delta t = \frac{1}{\omega} \sqrt{\frac{2V_r}{V_M}}$$

$$i_{D\max} = \frac{V_M}{R_L} \left[1 + 2\pi \sqrt{\frac{2V_M}{V_r}} \right]$$

Average Diode Currents

Peak and Average Diode Currents

Peak diode current increases as ripple reduces²

Peak Inverse Voltage

Peak Inverse Voltage

$$V_m = 12.7$$

$$PIV \cong 2v_o + 0.7$$

$$PIV = 2V_M + V_{\gamma}$$