

Technische Hochschule Ingolstadt

Specialist area Computer Science Bachelor's course Computer Science

Bachelor's thesis

Subject: Conception, implementation and evaluation of a highly scalable and

highly available Kubernetes-based SaaS platform on Kubernetes Con-

trol Plane (KCP)

Name and Surname: David Linhardt

Issued on: TODO: Insert Issue Date

Submitted on: TODO: Insert Submit Date

First examiner: Prof. Dr. Bernd Hafenrichter

Second examiner: TODO: Insert Second examiner

Abstract

Contents

1	Introduction					
	1.1	Problem Statement and Motivation	4			
	1.2	Objectives and Scope	4			
	1.3	Structure of the Thesis	4			
2	Fundamentals					
	2.1	Kubernetes and Multi-Tenancy	4			
	2.2	Kubernetes Control Plane (KCP)	4			
	2.3	SaaS Architecture and Automation	4			
3	State of the Art and Related Work					
	3.1	Zero-Downtime Deployment Strategies	4			
	3.2	Kubernetes Scaling Methods	4			
	3.3	Multi-Tenancy Concepts in the Cloud	4			
4	Conceptual Design					
	4.1	System Requirements	4			
	4.2	Architecture Design with KCP for SaaS	4			
	4.3	Automated Deployment Strategies	4			
5	Prof	totypical Implementation	4			
	5.1	Infrastructure with KCP	4			
	5.2	5 5 5 5 5 5	4			
	5.3	Scaling Mechanisms	4			
	5.4	Monitoring and Logging	4			
6	Evaluation					
	6.1	Performance Measurements	4			
	6.2	Scaling Scenarios & Optimizations	4			
	6.3	Discussion of Results	4			
	6.4	Related Work	4			
7						
	7.1	Summary	4			
	7.2	Personal Conclusion	4			
	7.3	Future Outlook	4			
Re	fere	nces	4			
Lis	st of	Figures	4			

Glossary

1 Introduction

- 1.1 Problem Statement and Motivation
- 1.2 Objectives and Scope
- 1.3 Structure of the Thesis

2 Fundamentals

- 2.1 Kubernetes and Multi-Tenancy
- 2.2 Kubernetes Control Plane (KCP)
- 2.3 SaaS Architecture and Automation

3 State of the Art and Related Work

- 3.1 Zero-Downtime Deployment Strategies
- 3.2 Kubernetes Scaling Methods
- 3.3 Multi-Tenancy Concepts in the Cloud

4 Conceptual Design

- 4.1 System Requirements
- 4.2 Architecture Design with KCP for SaaS
- 4.3 Automated Deployment Strategies

5 Prototypical Implementation

- 5.1 Infrastructure with KCP
- 5.2 Tenant Provisioning (Automation, Multi-Tenancy)
- 5.3 Scaling Mechanisms (Horizontal Pod Autoscaler)
- 5.4 Monitoring and Logging (Prometheus, Grafana)

6 Evaluation

- 6.1 Performance Measurements (Downtime, Latency, Scaling)
- 6.2 Scaling Scenarios & Optimizations
- 6.3 Discussion of Results
- 6.4 Related Work

7 Conclusion and Outlook

7.1 Summary

Appendix