CS 260: Homework 4

Daniel Lopez

July 28, 2017

 $22~\mathrm{July}~2017$

1 1

1.1 a

Leaf nodes: D, M, N, F, J, K, L

1.2 b

Root node: A

1.3 c

Parent node of C: A

1.4 d

Node C's children: F, G, H

1.5 e

Node ancestors of E: B, A

1.6 f

Node descendants of E: I, M, N

1.7 g

Right siblings of D and E: none

1.8 h

Nodes to the left or right of G: J and K

1.9 i

Depth of node C: 1

1.10 j

Height of node C:2

2 2

1: B E I

 $2: \to I N$

3: E I M

4: C H L 5: C G K

6: C G J

3 3

	pr(n) <	in(n) <	po(n) <
	pr(m)	in(m)	po(m)
n is to the	✓	✓	✓
left of m			
n is to the	✓		✓
right of m			
n is a proper	✓	✓	
ancestor of			
m			
n is a proper		✓	✓
descendant			
of m			

4 4

5 5

A tree with n nodes would have a maximum height of n-1 trees to take the root into account.

0-1 nodes have a height of 0, 2-3 nodes have a height of 1, 4-7 nodes have a height of 2...so for a binary tree, the minimum height will be $\log_2(n)$.

6 6

With similar logic above, the maximum height will still be n-1 height for n nodes. The minimum height will be $\log_b(n)$ for n nodes with b number of children.

