Chapter 3 Arithmétique des entiers

Exercice 1 (3.0)

- 1. Énoncer le théorème de Bézout dans \mathbb{Z} .
- 2. Soit a et b deux entiers naturels premiers entre eux.

Soit $c \in \mathbb{N}$.

Prouver que: $(a|c \text{ et } b|c) \iff ab|c$.

- 3. On considère le système (S): $\begin{cases} x \equiv 6 & [17] \\ x \equiv 4 & [15] \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

Exercice 2 (3.1)

Démontrer que pour tout $n \in \mathbb{N}$, 7 divise $3^{6n} - 6^{2n}$.

Exercice 3 (3.1)

Les nombres a, b, c, d étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- 1. Si a divise b et c, alors $c^2 2b$ est multiple de a.
- **2.** Si a divise b + c et b c, alors a divise b et a divise c.
- 3. Si a est multiple de b et si c est multiple de d, alors a + c est multiple de b + d.
- **4.** Si 4 ne divise pas bc, alors b ou c est impair.
- **5.** Si a divise b et b ne divise pas c, alors a ne divise pas c.

Exercice 4 (3.1)

Déterminer l'ensemble E des $n \in \mathbb{Z}$ tels que $n^2 + 7 \mid n^3 + 5$.

Exercice 5 (3.1)

Sachant que l'on a $96842 = 256 \times 375 + 842$, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.

Exercice 6 (3.2)

Résoudre l'équation xy + 6x - 3y = 40 d'inconnue $(x, y) \in \mathbb{Z}^2$.

Exercice 7 (3.3)

Calculer pgcd(424, 68) par l'algorithme d'Euclide.

Exercice 8 (3.3)

Soit $n \in \mathbb{N}$. Déterminer, en discutant éventuellement suivant les valeurs de n, le pgcd des entiers suivants.

$$A = 9n^2 + 10n + 1$$

$$B = 9n^2 + 8n - 1$$
.

Exercice 9 (3.3)

On considère l'équation (E): 26x + 15y = 1 dans laquelle les inconnues x et y sont des entiers relatifs.

- 1. Écrire l'algorithme d'Euclide pour les nombres 26 et 15.
- **2.** En déduire une solution particulière de (E) puis l'ensemble des solutions de (E).
- 3. Utiliser ce qui précède pour résoudre l'équation 26x + 15y = 4.

Exercice 10 (3.3)

Les nombres a, b étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si 19 divise *ab*, alors 19 divise *a* ou 19 divise *b*.
- **2.** Si 91 divise *ab*, alors 91 divise *a* ou 91 divise *b*.
- 3. Si 5 divise b^2 , alors 25 divise b^2 .
- **4.** Si 12 divise b^2 , alors 4 divise b.
- 5. Si 12 divise b^2 , alors 36 divise b^2 .

Exercice 11 (3.3)

Résoudre dans \mathbb{Z}^2 les équations

- 1. 1260x + 294y = 3814.
- **2.** 1260x + 294y = 2814.

Exercice 12 (3.4)

Combien 15! admet-il de diviseurs positifs?

Exercice 13 (3.5)

Calculer 2000^{2000} modulo 7 et 2^{500} modulo 3.

Exercice 14 (3.5)

Quel est le reste de la division euclidienne de 3^{2022} par 11.

Exercice 15 (3.5)

15 pirates chinois se partagent un butin constitué de pièces d'or. Mais une fois le partage (équitable) effectué, il reste 3 pièces. Que va-t-on en faire ? La discussion s'anime. Bilan : 8 morts. Les 7 survivants recommencent le partage, et il reste cette fois ci 2 pièce ! Nouvelle bagarre à l'issue de laquelle il ne reste que 4 pirates. Heureusement, ils peuvent cette fois ci se partager les pièces sans qu'il n'en reste aucune.

Sachant que 32 Tsing-Tao (bière chinoise) coûtent une pièce d'or, combien (au minimum) de Tsing-Tao pourra boire chaque survivant ?

Exercice 16 (3.5)

Déterminer les nombres entiers x tels que $x^2 - 2x + 2$ soit divisible par 17.

Exercice 17 (3.5)

Soient $a \in \mathbb{N}^*$ et N le nombre de diviseurs positifs de a. Déterminer une condition nécessaire et suffisante portant uniquement sur N pour que a soit un carré parfait.