情報統計第5回

2020年9月17日 神奈川工科大学

櫻井 望

国立遺伝学研究所 生命情報・DDBJセンター

スケジュール

	16日(水) データの見える 化	17日(木) 検定のこれだけ は	18日(金) 分散分析と多変 量解析の雰囲気	19日(土) データ準備 発表会
1限	1 ガイダンスPC環境準備、データの見える化	5 区間推定、分布とその使い方	9 分布の仲間と、分散分析	13 補足自習(課題、質問)
2限	2 統計の基本と用語	6 t検定	10 相関、主成分分析	14 自習(課題、質 問)
3限	3 プログラミング の基礎	7 検定で注意すること	11 他の多変量解 析	15 発表会
4限	4 自習(課題検討、復習)	8 自習(課題検討、復習)	12 自習(課題検討、復習)	

昨日

- 図で見える化
- 数値で見える化(統計の基礎)平均、分散、標準偏差母平均、母分散…

- アンケートでデータを作る
- Excelの基本操作
- Pythonやってみる

今日

見える化した数値や、そこから 感じ取れる仮説が、どれだけ正 しそうかを、客観的に評価する 方法

検定

の考え方を学びます

情報統計第5回

2020年9月17日 神奈川工科大学

櫻井 望

国立遺伝学研究所 生命情報・DDBJセンター

区間推定

分布とその使い方

学習目標

区間推定を通じて、検定などの 基本となる分布と、その使い方 を身につけます

- ✓ 正規分布
- ✓ 標準正規分布
- √ t分布

統計的推定

母集団が大きい、あるいは無限で、直 接観測できないとき、標本を観測する ことで、母集団の性質を調べる。

母平均L

標本平均家

一致が期待できる

母分散σ² 標本分散s²

母集団の全標本を観測できる場合は一致するが、 そうでない場合は、実は一致が期待できない

一致が期待できる

不偏(標本)分散v2

真の値から外れていないことを、 不偏性があると言うので。

点推定

「母平均μはこの値」、「母分散σ²はこの値」のように、一つの代表値を決める方法

区間推定

「神奈川県の男子の平均身長は、信頼係数95%で170.2~174.6 cmである」のように、幅を持たせて表現する方法

標準正規分布

分布

データの散らばり具合

ヒストグラム 観測結果 確率密度関数

事象の起こる確率 を表すモデル

正規分布(ガウス分布)

- ●平均値が中心で、
- ●平均値に近いものが多く、
- ●左右に均等な釣り鐘状の分布

均等な確率で生じたばらつき の場合にとる分布

- ✓ 身長の分布
- ✓ 測定誤差の分布
- ✓ 自然界で起こるゆらぎ など

復習

サンプリングして標本平均を算出して、 を繰り返すと… 母平均u 標本平均家 の分布 母集団の 分布 標本平均家

のヒストグラム

標本平均家の分布

- 正規分布に従う
- 標本の数nが大きいほど、標本平均xの推定確度は 高まり、分散が小さくなる
- 分散は母分散σ²の1/nになることが知られている

n=1なら、母集団のうち一つずつを測定するのと同じなので、分散も同じ。 n=母集団数Nなら、全数検査なので、母平均µとのずれはゼロになる。

中心極限定理

正規分布

標準正規分布

平均と分散で決まる N(μ, σ²)と表記

N(0, 1)

標準化 (Z変換)

 $N(\mu, \sigma^2)$ の正規分布に従う変数Xについて、

$$\mathbf{Z} = \frac{X - \mu}{\sigma}$$
 と変換すると、標準正規分布になる。

中央をµずらして、幅を1に合わせているだけ!

標準正規分布

- 形が一定なので、ある値より外側の面積が計算できる例) 1.96以上なら2.5%
- 逆に言えば、外側がある面積(事象がおこる確率)となる 境界値を求めることができる
- 左右対称。上側(下側)の面積を上側(下側)確率という

標準正規分布表

上側確率をあらかじめ 計算したもの

Excelでは、 NORM.S.DIST関数 NORM.S.INV関数 で求められる

u	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
0.8	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0.14007	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551
1.7	0.04457	0.04363	0.04272	0.04182	0.04093	0.04006	0.03920	0.03836	0.03754	0.03673
1.8	0.03593	0.03515	0.03438	0.03362	0.03288	0.03216	0.03144	0.03074	0.03005	0.02938
1.9	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0.02442	0.02385	0.02330
2.0	0.02275	0.02222	0.02169	0.02118	0.02068	0.02018	0.01970	0.01923	0.01876	0.01831
2.1	0.01786	0.01743	0.01700	0.01659	0.01618	0.01578	0.01539	0.01500	0.01463	0.01426
2.2	0.01390	0.01355	0.01321	0.01287	0.01255	0.01222	0.01191	0.01160	0.01130	0.01101
2.3	0.01072	0.01044	0.01017	0.00990	0.00964	0.00939	0.00914	0.00889	0.00866	0.00842
2.4	0.00820	0.00798	0.00776	0.00755	0.00734	0.00714	0.00695	0.00676	0.00657	0.00639
ادر	_diet	ribut	tion/	table	/	.00539	0.00523	0.00508	0.00494	0.00480

J.00402 0.00391 0.00379 0.00368 0.00357

出典

https://to-kei.net/distribution/normal-distribution/table/

区間推定の考え方

- ある事象が正規分布に従っていることが分かって おり、
- 平均μ、分散σ²が分かっているなら、
- ●標準正規分布におけるa%のときの境界値を用いて、その正規分布の境界値を求めればよい
- その境界値間を、a%信頼区間という

標準化

標準化の逆

$$z = \frac{X - \mu}{\sigma}$$

$$X = \mu + Z\sigma$$

例)
$$Z = 1.96$$
なら、
 $X = \mu + 1.96 \sigma$

標準誤差

- 標本平均xの標準偏差のこと。つまり、母平均μの推定値のばらつきを表す
- 母分散σ²の1/nの平方根

 μ 推定值: \overline{x}

標準偏差: $\frac{\sigma}{\sqrt{n}}$

を当てはめる

区間推定のまとめ

- 母平均µの推定値: 標本平均 x̄
- ullet 推定値の標準偏差:標本平均の標準偏差 $rac{\sigma}{\sqrt{n}}$
- の場合、95%信頼区間は、以下で求められる

$$\overline{x}$$
 - 1.96 * $\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x}$ + 1.96 * $\frac{\sigma}{\sqrt{n}}$

意味:「母集団から標本を取り出して95%信頼区間を求めるという作業を100回やったとき、母平均がその区間内に含まれるのが95回になる」

イメージ

一般化すると

区間推定 (分散既知の場合)

母平均μ、母分散σ²の正規分布する母集団から抽出したn個の標本から求められる、a%信頼区間は以下となる。

$$\overline{x} - A * \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + A * \frac{\sigma}{\sqrt{n}}$$

ここでAは、標準正規分布表から、

$$\alpha$$
 (信頼係数) = $(100-a)/2/100$

で求められる境界値

ただし…

$$\overline{x}$$
 - 1.96 * $\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x}$ + 1.96 * $\frac{\sigma}{\sqrt{n}}$

母分散σ2は不明な場合がほとんど

母平均μが不明(推定したい)のに母分散σ²だけ分かっているって、 どういうこと? そんな状況はほとんどない!

母分散が不明な場合は、正規分布では なく、t分布を用いて同様に考える

t分有

標準正規分布の、標本数が少ない場合の 実用化バージョン by 櫻井

t分布 スチューデントのt分布

正規分布する母集団から標本をとり、母平均µを求めようとするとき、標本数が少ないと、標本側で起こる確率を、標準正規分布ではうまく表現しきれない。実際の実験などでは、標本数が少ないことがほとんど。そこで考え出された、標準正規分布の、標本数を考慮した、実用化バージョン。

考えた人

ウィリアム・シーリー・ゴセット William Sealy Gosset イギリスの統計学者

出典: Wikipedia

出典:ギネス社HP

ギネスビール社で醸造とオオムギの品種改良の研究をするなかで*t*分布を発見したが、ギネス社は社員の論文発表を禁じていたため、スチューデントというペンネームで論文発表した(1908年)。

t分布

自由度(標本-1)が小さいほど裾 野が広がっており、自由度が高く なると標準正規分布に近づく

Excelでは、T.DIST, T.INV関数で計算で きる

t分布表

□自由度ν	lpha=0.1	lpha=0.05	lpha=0.025	lpha=0.01	lpha=0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
出典	1.321	1.717	2.074	2.508	2.819

https://to-kei.net/distribution/tdistribution/t-table/

t分布

性質:母平均μ、不偏分散v²の正規分布に従う 母集団から抽出したn個の標本を使って求めた 次の統計量tは、自由度(n-1)のt分布に従う。

$$\mathsf{t} = \frac{\overline{x} - \mu}{\frac{v}{\sqrt{n}}}$$

「標本平均xの分布を標準化した」と言える。 これまでと同様の考え方

区間推定(母分散が不明な場合)

母平均µ、不偏分散v²の母集団から抽出したn個の標本から求められる、a%信頼区間は以下となる。

$$\overline{x} - A * \frac{v}{\sqrt{n}} \le \mu \le \overline{x} + A * \frac{v}{\sqrt{n}}$$

ここでAは、t分布表から、

- ✓自由度=n-1
- $\checkmark \alpha$ (信頼計数) = (100-a)/2/100

で求められる境界値。

まとめ

分布 (確率密度関数)

事象が起きる確率を推定できる!

描いてみよう

- 標準正規分布
- t分布
- 裾野の面積と境界値を計算

標準化してみようx

【参考】覚える必要はありません

正規分布の確率密度関数

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

標準正規分布の確率密度関数

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

【参考】覚える必要はありません

t分布の確率密度関数

$$f(t) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \Gamma\left(\frac{v}{2}\right)} (1 + \frac{t^2}{v})^{-(\frac{v+1}{2})}$$

v: 自由度