Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Table Data using Numpy, Pandas**

Class Logistics and Agenda

- Canvas. Python Installs.
- Participation. Zoom. Attendance.
- Agenda:
 - Data Encodings
 - Demo: Table Data, Numpy
 - Data Quality
 - Attributes Representation
 - documents
 - The Pandas eco-system
 - · loading and manipulating attributes

Class Overview, by topic

Types of Data and Categorization

Table Data

 Table Data: Collection of data instances and their features

Python: Pandas Dataframe

R: Data.frame

• **Matlab:** Table Class

C++: Make yourown,

std::vector<Record>

Attributes, columns, variables, fields, characteristics, Features

Objects, records, rows, points, samples, cases, entities, instances

	1			1
TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	31-40	positive
4	N	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Y	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Y	35.3	21-30	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

Nominal or Categorical

Variable could be one value in a set of categories. No ordering of values.

Allowed Transforms:

permuting values

boolean, one hot encoding, Example: Employee ID or hash function

Ordinal

Variable could be one value in a set of categories. Ordering matters.

Example: Start Ratings, 1-5

Allowed Transforms:

$$V_{new} = f_{mono} \left(V_{old} \right) + b$$

integer (or boolean)

Interval or Numeric

Value is continuous numeric value. Could be in specified range.

Example: BMI, Temperature, etc.

Allowed Transforms:

$$V_{new} = f_{mono} \left(V_{old} \right) + b$$

float

Ratio or Numeric

Value is continuous numeric value. Zero is meaningful. Often not treated differently than interval.

Example: Length, Elevation

Allowed Transforms:

$$V_{new} = f_{mono} \left(V_{old} \right)$$

float

Data Tables as Variable Representations

TID	Pregnant	BMI	Age	Eye Color	Diabetes
1	Υ	33.6	41-50	brown	positive
2	Ν	26.6	31-40	hazel	negative
3	Υ	23.3	31-40	blue	positive
4	Ν	28.1	21-30	brown	inconclusive
5	Ν	43.1	31-40	blue	positive
6	Υ	25.6	21-30	hazel	negative

Internal Rep. 3 5

TID

6

Demo

"Finish"
Jupyter Notebooks

01_Numpy and Pandas Intro.ipynb

Data Quality

programmers commenting their code

Data Quality Problems

TID	Hair Color	Hgt.	Age	Arrested
1	Brown	5'2"	23	no
2	Hazel	1.5m	12	
3	NaN	5	999	no
4	Brown	5'2"	23	no

- Missing
 - Easy to find, NaNs
- Duplicated
 - Easy to find, hard to verify
- Noise or Outlier
 - Hard to define / catch

Information is not collected (e.g., people decline to give their age and weight)

Features **not applicable** (e.g., annual income for children)

UCI ML Repository: 90% of repositories have missing data

Handling Issues with Data Quality

- Eliminate Instance or Feature
- Ignore the Missing Value During Analysis Replace with all possible values (talk about later)
- Impute Missing Values How?

stats? mean median mode

Imputation

- When is it probably fine to impute missing data:
 - (A) When there is not much missing data
 - (B) When the missing feature is mostly predictable from another feature
 - (C) When there is not much missing data for each subgroup of the data
 - (D) When it is the class you want to predict

Split-Impute-Combine

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	?	positive
4	Ν	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

split: pregnant

split: BMI > 32

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	>32	41-50	positive
8	Υ	>32	?	negative
10	Υ	>32	51-60	positive

Mode: none, can't impute

TID	Pregnant	ВМІ	Age	Diabetes
3	Υ	<32	?	positive
6	Y	<32	21-30	negative
7	Y	<32	21-30	positive

Mode: 21-30

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Table Data using Numpy, Pandas