Series de números reales

Convergencia de series numéricas

Ejercicio 1. Aplicar el criterio de la raíz para estudiar la posible convergencia de las siguientes

a)
$$\sum \left(\frac{n+1}{3n-1}\right)^n$$

d)
$$\sum \frac{n^n}{e^{(n^2+1)}}$$

a)
$$\sum \left(\frac{n+1}{3n-1}\right)^n$$

b) $\sum \left(\frac{n}{3n-2}\right)^{2n-1}$
c) $\sum \frac{n^n}{(2n+1)^n}$

d)
$$\sum \frac{n^n}{e^{(n^2+1)}}$$

e) $\sum \left(1 + \frac{1}{n}\right)^{-n^2}$

c)
$$\sum \frac{n^n}{(2n+1)^n}$$

Solución 1.

a) Aplicamos el criterio de la raíz $\lim_{n\to\infty} \sqrt[n]{\left(\frac{n+1}{3n-1}\right)^n} = \lim_{n\to\infty} \frac{n+1}{3n-1} = \frac{1}{3} < 1$. Por tanto, la serie es convergente.

b) Aplicamos el criterio de la raíz

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{3n-2}\right)^{2n-1}} = \lim_{n \to \infty} \left(\frac{n}{3n-2}\right)^{\frac{2n-1}{n}} = \left(\frac{1}{3}\right)^2 < 1.$$

Por tanto, la serie es convergente.

c) Aplicamos el criterio de la raíz,

$$\lim_{n \to \infty} \sqrt[n]{\frac{n^n}{(2n+1)^n}} = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}.$$

En consecuencia, la serie es convergente.

d) Aplicamos el criterio de la raíz:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{n}{e^{\frac{n^2 + 1}{n}}} = \lim_{n \to \infty} \frac{n}{e^n} \frac{1}{e^{1/n}} = 0 < 1$$

de lo que se deduce que la serie es convergente.

e) Aplicamos el criterio de la raíz

$$\lim_{n \to \infty} \sqrt[n]{\left(1 + \frac{1}{n}\right)^{-n^2}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\left(1 + \frac{1}{n}\right)^{n^2}}} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1$$

y, en consecuencia, la serie es convergente.

Ejercicio 2. Aplicar el criterio del cociente para estudiar la posible convergencia de las siguientes series:

a)
$$\sum \frac{1}{n2^n}$$

d)
$$\sum \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{1 \cdot 5 \cdot 9 \cdots (4n-3)}$$

e) $\sum \frac{2^n n!}{n!}$

a)
$$\sum \frac{1}{n2^n}$$

b) $\sum \frac{1}{n} \left(\frac{2}{5}\right)^n$
c) $\sum \frac{(n+1)^n}{3^n n!}$

e)
$$\sum \frac{2^n n!}{n^n}$$

c)
$$\sum \frac{(n+1)^n}{3^n n!}$$

Solución 2.

a) Aplicamos el criterio del cociente:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)2^{n+1}}}{\frac{1}{n^{2n}}} = \lim_{n \to \infty} \frac{n}{2(n+1)} = \frac{1}{2} < 1.$$

Por tanto, la serie es convergente.

b) Aplicamos el criterio del cociente,

$$\lim_{n \to \infty} \frac{\frac{1}{n+1} \left(\frac{2}{5}\right)^{n+1}}{\frac{1}{n} \left(\frac{2}{5}\right)^n} = \lim_{n \to \infty} \frac{n}{n+1} \frac{2}{5} = \frac{2}{5} < 1.$$

Por tanto, la serie es convergente.

c) Aplicamos el criterio del cociente,

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{\frac{(n+2)^{(n+1)}}{3^{n+1}(n+1)!}}{\frac{(n+1)^n}{3^n n!}} = \lim_{n\to\infty} \frac{1}{3} \left(\frac{n+2}{n+1}\right)^{n+1} = \frac{e}{3} < 1,$$

y, por tanto, la serie es convergente. Observa que en el último paso hemos utilizado la regla del número e.

d) Aplicamos el criterio del cociente

$$\lim_{n \to \infty} \frac{\frac{2 \cdot 5 \cdot 8 \cdots (3n-1)(3n+2)}{1 \cdot 5 \cdot 9 \cdots (4n-3)(4n+1)}}{\frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{1 \cdot 5 \cdot 9 \cdots (4n-3)}} = \lim_{n \to \infty} \frac{3n+2}{4n+1} = \frac{3}{4} < 1$$

y, por tanto, la serie es convergente.

e) Aplicamos el criterio del cociente:

$$\lim_{n \to \infty} \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \frac{n^n}{2^n n!} = \lim_{n \to \infty} 2\left(\frac{n}{n+1}\right)^n = \frac{2}{e} < 1$$

de lo que se deduce la convergencia de la serie.

Ejercicio 3. Aplicar el criterio de comparación para estudiar la posible convergencia de las

$$\log(n)$$

e)
$$\sum \frac{1}{(2n-1)2n}$$

siguientes series:
a)
$$\sum \frac{\log(n)}{n}$$

b) $\sum \frac{1}{\sqrt{n(n+1)}}$

f)
$$\sum \frac{1}{\sqrt{n}}$$

c)
$$\sum \frac{1}{2n-1}$$

d) $\sum \frac{1}{2^n-n}$

e)
$$\sum \frac{1}{(2n-1)2n}$$

f) $\sum \frac{1}{\sqrt{n}}$
g) $\sum \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}}$

d)
$$\sum \frac{2n-1}{2^n-n}$$

Solución 3.

- a) Comparamos con la serie $\sum \frac{1}{n}$ que no es convergente. Como $\frac{\log(n)}{n} \ge \frac{1}{n}$, la serie no es conver-
- b) Comparamos con la serie armónica $\sum \frac{1}{n}$:

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{\sqrt{n(n+1)}}} = \lim_{n \to \infty} \frac{\sqrt{n(n+1)}}{n} = \lim_{n \to \infty} \sqrt{\frac{n(n+1)}{n^2}} = 1.$$

Por tanto, las dos series tienen el mismo carácter y, en consecuencia, la serie $\sum \frac{1}{\sqrt{n(n+1)}}$ no es convergente.

- c) No es convergente. La serie se comporta igual que la serie armónica $\sum \frac{1}{n}$.
- d) Comparamos con la serie convergente $\sum \frac{1}{2^n}$.

$$\lim_{n \to \infty} \frac{\frac{1}{2^n}}{\frac{1}{2^n - n}} = \lim_{n \to \infty} \frac{2^n - n}{2^n} = 1.$$

Por tanto, la serie es convergente.

e) Comparamos con la serie convergente $\sum \frac{1}{n^2}$

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{(2n-1)(2n)}} = \lim_{n \to \infty} \frac{(2n-1)(2n)}{n^2} = 4.$$

Por tanto, las dos series tienen el mismo carácter y, en consecuencia, la serie es convergente.

- f) No es convergente porque $\frac{1}{\sqrt{n}} \ge \frac{1}{n}$.
- g) Comparamos con la serie convergente $\sum \frac{1}{n^{7/6}}$

$$\lim_{n \to \infty} n^{7/6} \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}} = \lim_{n \to \infty} \frac{n\sqrt{n}}{(n+1)\sqrt{n}} = 1$$

y, por tanto, la serie es convergente.

Aplicar el criterio de condensación para estudiar la posible convergencia de las Ejercicio 4. siguientes series:

- a) $\sum \frac{1}{n \log(n)}$ b) $\sum \frac{1}{n(\log(n))^2}$ c) $\sum \frac{1}{n(\log(n)) \log(\log(n))}$

Solución 4.

- a) Aplicando el criterio de condensación, la serie tiene el mismo carácter que la serie $\sum 2^n \frac{1}{2^n \log(2^n)} =$ $\sum \frac{1}{\log(2^n)} = \sum \frac{1}{n \log(2)}$ y esta última serie no es convergente comparando con $\sum \frac{1}{n}$.
- b) Aplicando el criterio de condensación $\sum 2^n \frac{1}{2^n (\log(2^n))^2} = \sum \frac{1}{n^2 (\log(2))^2}$ y esta última serie es convergente (compárase con $\sum \frac{1}{n^2}$).
- c) El término general es decreciente y convergente a cero. Estamos en condiciones de aplicar el criterio de condensación. La serie tiene el mismo carácter de convergencia que la serie

$$\sum \frac{2^n}{2^n \log{(2^n)} \log{(\log{(2^n)})}} = \sum \frac{1}{n \log{(2)} \log{(n \log{(2)})}}$$

que, a su vez y por el criterio de comparación por paso al límite, se comporta igual que $\sum \frac{1}{n \log(n)}$. Esta última serie ya sabemos que no es convergente (véase el Ejercicio ??).

Ejercicio 5. Discutir la convergencia de las siguientes series de números reales:

d) $\sum \frac{n^2}{(3n-1)^2}$ e) $\sum \frac{3n-1}{(\sqrt{2})^n}$

a) $\sum \frac{2^n}{n}$ b) $\sum \frac{n+1}{2n+1}$ c) $\sum \frac{1}{n^2 \log(n)}$

Solución 5.

- a) No es convergente porque lim_{n→∞} a_n = lim_{n→∞} ^{2ⁿ}/_n = +∞.
 b) No es convergente porque el término general no tiende a cero: lim_{n→∞} ⁿ⁺¹/_{2n+1} = ½.
 c) Como log(n) ≥ 1 para n ≥ 3, se tiene que ½ 1/(n² log(n)) ≤ ½, para cualquier n ≥ 3. La serie ∑ ½ es convergente y, el criterio de comparación nos dice que ∑ ½ 1/(n² log(n)) también lo es.
- d) El término general no converge a cero y, por tanto, la serie no es convergente.
- e) Aplicamos el criterio del cociente

$$\lim_{n \to \infty} \frac{\frac{3(n+1)-1}{\left(\sqrt{2}\right)^{n+1}}}{\frac{3n-1}{(\sqrt{2})^n}} = \lim_{n \to \infty} \left(\frac{3n+2}{3n-1}\right) \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} < 1$$

y, por tanto, la serie es convergente.

Ejercicio 6. Discutir la convergencia de las siguientes series de números reales:

a)
$$\sum \frac{1}{n!}$$

b) $\sum \frac{1}{(3n-2)(3n+1)}$
c) $\sum \frac{2n+1}{(n+1)^2(n+2)^2}$

e)
$$\sum \frac{n^2}{4(n-1)}$$

c)
$$\sum \frac{2n+1}{(n+1)^2(n+2)^2}$$

Solución 6.

a) Aplicamos el criterio del cociente

$$\lim_{n \to \infty} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$$

y, por tanto, la serie es convergente.

b) Comparamos con la serie $\sum \frac{1}{n^2}$

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{(3n-2)(3n+1)}} = \lim_{n \to \infty} \frac{(3n-2)(3n+1)}{n^2} = 9$$

y, por tanto la serie es convergente.

c) Comparamos con la serie $\sum \frac{1}{n^3}$,

$$\lim_{n \to \infty} \frac{\frac{2n+1}{(n+1)^2(n+2)^2}}{\frac{1}{n^3}} = 2.$$

En consecuencia, las dos series tienen el mismo carácter de convergencia. Puesto que la serie $\sum \frac{1}{n^3}$ es convergente, ambas lo son.

d) No es convergente porque el término general no converge a cero:

$$\lim_{n \to \infty} \left(\frac{3n}{3n+1} \right)^n = e^L \iff \lim_{n \to \infty} n \left(\frac{3n}{3n+1} - 1 \right) = L$$

y el segundo límite vale

$$\lim_{n \to \infty} n \left(\frac{3n}{3n+1} - 1 \right) = \lim_{n \to \infty} n \left(\frac{3n-3n-1}{3n+1} \right) = -1/3.$$

Por tanto el término general de la serie converge a $e^{-1/3} \neq 0$.

e) Aplicamos el criterio de la raíz

$$\lim_{n \to \infty} \sqrt[n]{\frac{n^2}{4^{(n-1)}}} = \lim_{n \to \infty} \frac{\sqrt[n]{n^2}}{4^{\frac{n-1}{n}}} = \frac{1}{4} < 1$$

y, por tanto, la serie es convergente.

Ejercicio 7. Estudiar la convergencia de las series

a)
$$\sum \frac{n}{a}$$

b)
$$\sum \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}}$$

c) $\sum \frac{(n!)^2}{(2n)!}$
d) $\sum \frac{2^n}{1\cdot 3\cdot 5\cdots (2n)!}$

e) $\sum \left(\frac{n+1}{n^2}\right)^n$ f) $\sum \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n+2)}$ g) $\sum \frac{2 \cdot 4 \cdot 6 \cdots 2n}{5 \cdot 7 \cdot 9 \cdots (2n+3)}$

o)
$$\sum {n!}^2$$

c)
$$\sum \frac{(n!)^2}{(2n)!}$$

d)
$$\sum \frac{2^n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}$$

Solución 7.

- a) Aplicamos el criterio de la raíz $\lim_{n\to\infty} \sqrt[n]{\frac{n^3}{e^n}} = \lim_{n\to\infty} \frac{\sqrt[n]{n^3}}{\sqrt[n]{e^n}} = \frac{1}{e} < 1$ y, en consecuencia, la serie es
- b) Aplicamos el criterio de la raíz

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}}} = \lim_{n \to \infty} \left(\frac{2n+1}{3n+1}\right)^{\frac{1}{2}} = \sqrt{\frac{2}{3}} < 1$$

y, por tanto, la serie es convergente.

c) Aplicamos el criterio del cociente

$$\lim_{n \to \infty} \frac{\frac{[(n+1)!]^2}{(2n+2)!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n \to \infty} \frac{(n+1)!}{n!} \frac{(n+1)!}{(2n+2)!} \frac{(2n)!}{(2n+2)!} = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4} < 1$$

y, por tanto, la serie es convergente.

d) Aplicamos el criterio del cociente

$$\lim_{n \to \infty} \frac{\frac{2^{n+1}}{1 \cdot 3 \cdot 5 \cdots (2n+1)(2n+3)}}{\frac{2^n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}} = \lim_{n \to \infty} \frac{2^{n+1}}{2^n} \frac{1 \cdot 3 \cdot 5 \cdots (2n+1)}{1 \cdot 3 \cdot 5 \cdots (2n+1)(2n+3)} = \lim_{n \to \infty} \frac{2}{2n+3} = 0 < 1$$

y, en consecuencia, la serie es convergente.

e) Aplicamos el criterio de la raíz

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{n+1}{n^2}\right)^n} = \lim_{n \to \infty} \frac{n+1}{n^2} = 0 < 1$$

y, por tanto, la serie es convergente.

f) Aplicamos el criterio del cociente

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\frac{1\cdot 3\cdot 5\cdots (2n-1)(2n+1)}{2\cdot 4\cdot 6\cdots (2n+2)(2n+4)}}{\frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots (2n+2)}}=\lim_{n\to\infty}\frac{2n+1}{2n+4}=1$$

pero, como $\frac{2n+1}{2n+4} \le 1$, el criterio del cociente no decide. Ya que hemos calculado $\frac{a_{n+1}}{a_n}$, aplicamos el criterio de Raabe

$$\lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) = \lim_{n \to \infty} n \left(1 - \frac{2n+1}{2n+4} \right) = \lim_{n \to \infty} \frac{3n}{2n+4} = \frac{3}{2} > 1$$

y, por tanto, la serie es convergente.

g) Aplicamos el criterio del cociente

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{2 \cdot 4 \cdot 6 \cdots 2n \cdot (2n+2)}{5 \cdot 7 \cdot 9 \cdots (2n+3) \cdot (2n+5)}}{\frac{2 \cdot 4 \cdot 6 \cdots 2n}{5 \cdot 7 \cdot 9 \cdots (2n+3)}} = \lim_{n \to \infty} \frac{2n+2}{2n+5} = 1,$$

pero $\frac{2n+2}{2n+5} \le 1$ por lo que el criterio del cociente no decide. Aplicamos el criterio de Raabe

$$\lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) = \lim_{n \to \infty} n \left(1 - \frac{2n+2}{2n+5} \right) = \lim_{n \to \infty} \frac{3n}{2n+5} = \frac{3}{2} > 1$$

y, en consecuencia, la serie es convergente.

Ejercicio 8. Discutir la convergencia de las siguientes series de números reales:

a)
$$\sum (-1)^n \frac{20^n}{n+1}$$

d)
$$\sum \log \left(\frac{n^2+3}{n^2+2} \right)$$

a)
$$\sum (-1)^n \frac{20^n}{n+1}$$
b)
$$\sum \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}\right)^2$$
c)
$$\sum \log \left(1 + \frac{1}{n}\right)$$

d)
$$\sum \log \left(\frac{n^2 + 3}{n^2 + 2} \right)$$

e) $\sum \frac{\sqrt[3]{n} \log(n)}{n^2 + 1}$
f) $\sum (-1)^n e^{-n}$

c)
$$\sum \log \left(1 + \frac{1}{n}\right)$$

f)
$$\sum (-1)^n e^{-n}$$

Solución 8.

a) No es convergente porque el término general no converge a cero

b) Aplicamos el criterio de Raabe y llegamos a $n\left(1-\frac{a_{n+1}}{a_n}\right)=\frac{4n^2+3n}{4n^2+8n+4}\leq 1$, de lo que se deduce la no convergencia de la serie.

c) Comparamos con la serie armónica $\sum \frac{1}{n}$

$$\lim_{n \to \infty} \frac{\log\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = \lim_{n \to \infty} n \log\left(1 + \frac{1}{n}\right) = \lim_{n \to \infty} \log\left(1 + \frac{1}{n}\right)^n = \log(e) = 1$$

y, por tanto, la serie no es convergente.

d) Podemos escribir el término general de la forma:

$$a_n = \log\left(\frac{n^2 + 3}{n^2 + 2}\right) = \log\left(1 + \frac{1}{n^2 + 2}\right).$$

Comparando con la serie $\sum \frac{1}{n^2}$ se obtiene la convergencia de la serie dada. e) Comparamos con la serie $\sum \frac{\log(n)}{n^{5/3}}$ ya que

$$\lim_{n \to +\infty} \frac{a_n}{\frac{\log(n)}{n^{5/3}}} = 1$$

Y aplicando el criterio de condensación a la serie $\sum \frac{\log(n)}{n^{5/3}}$ se obtiene que es convergente, luego la de partida también lo es.

f) No hay más que aplicar el criterio de Laeibnitz para series alternadas.

Ejercicio 9. Estudia el carácter de las siguientes series:

a)
$$\sum \left(\frac{2n+1}{2n+5}\right)^{n^2}$$
.

b)
$$\sum \frac{1+\log(n)}{n^n}$$
.

Solución 9.

a) Aplicamos el criterio de la raíz, considerando como $a_n = \left(\frac{2n+1}{2n+5}\right)^{n^2}$. Tendremos entonces que estudiar el límite de $\{\sqrt[n]{a_n}\}$ y compararlo con 1; esto es

$$\sqrt[n]{a_n} = \sqrt[n]{\left(\frac{2n+1}{2n+5}\right)^{n^2}} = \left(\frac{2n+1}{2n+5}\right)^{n^2/n} = \left(\frac{2n+1}{2n+5}\right)^n$$

sucesión que presenta una indeterminación del tipo "1[∞]" por lo que aplicamos la regla del número e:

$$\lim n \left(\frac{2n+1}{2n+5} - 1 \right) = \lim \frac{-4n}{2n+5} = -2 \implies \lim \sqrt[n]{a_n} = e^{-2} < 1$$

Por tanto la serie dada es convergente.

b) Aplicamos el criterio del cociente, considerando como $a_n = \frac{1 + \log(n)}{n^n}$; de esta forma, habrá que estudiar el límite de la siguiente sucesión y compararlo con el valor1:

$$\frac{a_{n+1}}{a_n} = \frac{1 + \log(n+1)}{(n+1)^{n+1}} \frac{n^n}{1 + \log(n)} = \frac{1 + \log(n+1)}{1 + \log(n)} \frac{n^n}{(n+1)^n (n+1)}$$
$$= \frac{1 + \log(n+1)}{1 + \log(n)} \left(\frac{n}{n+1}\right)^n \frac{1}{n+1}$$

Finalmente, si calculamos el límite de cada uno de los tres factores que tenemos, el primer factor es claro que converge a 1 (no hay más que dividir el numerador y denominador por $\log(n+1)$), el segundo factor converge a e^{-1} (basta aplicar la regla del número e) y el tercero converge a cero. Por tanto:

$$\lim \frac{a_{n+1}}{a_n} = 0 < 1 \implies \sum a_n$$
 es convergente.

- **Ejercicio 10.** Estudiar, según los valores de a > 0 la convergencia de las siguientes series:

 - a) $\sum \frac{a^n}{n^a}$ b) $\sum a^n n^a$

Solución 10.

- a) Sólo tenemos en cuenta 0 < a < 1 puesto que en para a = 1 es la serie armónica que no converge, y para a > 1 el término general no converge a cero. Entonces, para 0 < a < 1aplicamos el criterio de la raíz y obtenemos que la serie es convergente.
- b) Sólo tenemos en cuenta 0 < a < 1 puesto que para $a \ge 1$ el término general no converge a cero. Entonces, para 0 < a < 1 aplicamos el criterio de la raíz y obtenemos que la serie es convergente.

Suma de series

Suma, si es posible, las siguientes series

a)
$$\sum_{n=0}^{\infty} \frac{15}{10^n}$$

$$b) \sum_{n=1}^{\infty} \frac{1}{2n(n+1)}$$

c)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{3^n}$$

Solución 11.

a) Usando la suma de una progresión geométrica

$$\sum_{n=0}^{\infty} \frac{15}{10^n} = 15 \sum_{n=0}^{\infty} \frac{1}{10^n} = 15 \cdot \frac{1}{1 - \frac{1}{10}} = \frac{150}{9}.$$

- b) La suma es $\frac{1}{2}$ puesto que la serie es la mitad de la del Ejemplo ??.
- c) De nuevo utilizamos la suma de una progresión geométrica

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{3^n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} - \sum_{n=0}^{1} \frac{(-1)^n}{3^n} = \frac{1}{1 - \left(-\frac{1}{3}\right)} - 1 + \frac{1}{3} = \frac{1}{12}.$$

Ejercicio 12. Suma, si es posible, las siguientes series

a)
$$\sum_{n=0}^{\infty} \frac{1}{(n+3)(n+4)}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n+3}}$$

$$c) \sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$$

Solución 12.

 a) Calculamos las sumas parciales usando la descomposición en fracciones simples del término general:

$$\sum_{n=0}^{\infty} \frac{1}{(n+3)(n+4)} = \sum_{n=0}^{\infty} \left(\frac{1}{(n+3)} - \frac{1}{(n+4)} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \dots + \left(\frac{1}{n+3} - \frac{1}{n+4} \right)$$

$$= \lim_{n \to \infty} \frac{1}{3} - \frac{1}{n+4} = \frac{1}{3}.$$

b) Aprovechamos que estamos sumando una progresión geométrica:

$$\sum_{n=1}^{\infty} \frac{1}{2^{n+3}} = \sum_{n=0}^{\infty} \frac{1}{2^{n+4}} = \frac{1}{16} \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{16} \frac{1}{1 - \frac{1}{2}} = \frac{1}{8}.$$

c) Dividimos en dos progresiones geométricas y sumamos:

$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n} = \sum_{n=1}^{\infty} \frac{2^n}{5^n} + \sum_{n=1}^{\infty} \frac{3^n}{5^n} = \frac{13}{6}.$$

Ejercicio 13. Suma la serie de números reales $\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n!}$

Solución 13. Esta serie se suma haciendo uso de que $\sum_{n=0}^{\infty} \frac{1}{n!} = e$, y para ello descomponemos el numerador del término general de la forma siguiente:

$$n^2 + n + 1 = \alpha n(n-1) + \beta n + \gamma$$

e igualando coeficientes obtenemos que $\alpha=1, \beta=2$ y $\gamma=1$. Por tanto la suma de la serie (que existe por el criterio del cociente) es:

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n!} = \sum_{n=1}^{\infty} \frac{n(n-1)}{n!} + 2\sum_{n=1}^{\infty} \frac{n}{n!} + \sum_{n=1}^{\infty} \frac{1}{n!}$$
$$= \sum_{n=2}^{\infty} \frac{1}{(n-2)!} + 2\sum_{n=1}^{\infty} \frac{1}{(n-1)!} + \sum_{n=1}^{\infty} \frac{1}{n!}$$
$$= e + 2e + (e-1) = 4e - 1.$$