## CSC 578 Quiz#1 Sample Solutions

## 1. Mitchell's book #4.1

By plugging in the two intercepts <-1, 0> and <0, 2> in the general decision surface formula with 2 input variables, we get the following two equations with three variables:

$$w0 - w1 = 0$$
  
 $w0 + 2*w2 = 0$ 

So we know w0 = w1 and  $w0 = -2*w2 \leftarrow (*)$ 

Since the origin (0,0) is classified as negative, we also know

$$w0 < 0 \leftarrow (**)$$

So by setting  $\underline{w0}$  to be -1 arbitrarily, by (\*\*) we get  $\underline{w1} = -1$  and  $\underline{w2} = 0.5$ .

Other numbers work as well, as long as they satisfy the constraints (\*) and (\*\*).

## 2. Mitchell's book #4.2

## a) $A \wedge \neg B$

A B A ∧ ¬B

1 1 -1
1 -1 1
-1 1 -1
-1 1 -1

One example solution (while there are infinitely many):



b) A XOR B  $\equiv$  (A  $\land \neg$ B)  $\lor$  ( $\neg$ A  $\land$  B)

So, the  $A \land \neg B$  network above can be used directly for the first term and with the A,B weights flipped for the second term, and they are combined with OR.

|   | A   | В  | A | XOR    | В |
|---|-----|----|---|--------|---|
|   | 1   | 1  |   | <br>·1 |   |
|   | 1   | -1 |   | 1      |   |
| - | -1  | 1  |   | 1      |   |
| _ | - 1 | -1 | _ | - 1    |   |



Other weights are fine as long as they produce correct result for all data instances.