Сравнительный анализ разных методов классификации с приложением в кардиологии

Мунхтогоо Норжинсурэн, гр. 21.М03-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к. ф.-м.н., Алексеева Н.П. Рецензент: к. ф.-м.н., Ананьевская П.В.

> Санкт-Петербург 2023г.

Особенность медико-биологических данных

- Невозможно достичь полноты данных
- Число признаков больше числа индивидов
- Потеря информативности при удалении пропусков
- Заполнение пропусков проблематично при совместной работе с экспериментатором

Приложение в кардиологии: посткардиотомный синдром (ПКТС). Данные содержат 55 признаков, 458 индивидов:

- x1 ... x16 16 количественные,
- y1... y37 37 категориальные.

Постановка задачи

Цель — решение проблемы с пропусками применяя метод частичной классификации и улучшения точности прогноза с использованием метода классификации по расслоению.

Задачи:

- Получить оценку полного прогноза по частичным для задачи классификации и применить для прогнозирования ПКТС.
- На основе симптомно-синдромального анализа сделать классификацию по расслоению и построить алгоритмическое дерево.

Обычные методы классификации машинного обучения

Пропорция класса 0 и 1 классифицирующего фактора **0.4**. Прологарифмировали признаки: x1, x2, x7, x8, x10, x11, x14, x15, x16.

Методы	Вся	Обучающая	Тестовая	CV
	выборка	выборка	выборка	
LDA	0.63	0.603	0.614	0.59
QDA	0.68	0.69	0.554	0.53
Лог.регрессия	0.64	0.615	0.626	0.64
Случайный лес	1	1	0.662	-

Таблица: Точность классификации разных методов

При использовании обычных методов машинного обучения потеряются 133 индивидов из 458 (30% данных).

Основные понятия метода частичной классификации

Задача дискриминантного анализа состоит в построении дискриминантной функции $z=\alpha^T X$ по независимым переменным X_1,\ldots,X_n в случае двух популяций P_1 и P_2 .

- $\alpha = (\alpha_1, \dots, \alpha_p)^T$ вектор коэффициентов.
- ullet μ_1, μ_2 вектора средних в двух популяции.
- $\Sigma = \{\sigma_{ij}\}_{i,j=1}^n$ ковариационная матрица с дисперсией σ^2 . Будем считать, что $\mathsf{E} X_i = 0, \ i = 1, \dots, n$.

Наилучший классификатор (Фишер, 1936): $z = (\mu_1 - \mu_2)^T \Sigma^{-1} X$

$$f_0 = F(X) = \sum_{i=1}^n \alpha_i X_i$$
, где $\alpha_j = \frac{1}{|\Sigma|} \sum_{i=1}^n (\mu_1^{(i)} - \mu_2^{(i)}) |\Sigma_{ji}|$, (1)

 $|\Sigma|$ – определитель матрицы $\Sigma,$ $|\Sigma_{ij}|$ – алгебраические дополнения по i-строке и j-столбцу матрицы $\Sigma.$

Построение частичных классификаторов

Определение 1. Полный классификатор — наилучшая классификация по всем независимым переменным $X_1 \dots X_n$.

Определение 2. Частичный классификатор – наилучшая классификация по какому-нибудь подмножеству независимых переменных $X_{\tau} = (X_{t_1}, \dots, X_{t_n})$, где $\tau = (t_1, \dots, t_p) \subseteq (1, 2, \dots, n)$.

Предложение 1.

Пусть Z – вектор с компонентами $Z_i=rac{X_i}{\sqrt{\sigma_{ii}}}$ и μ – вектор с компонентами $\mu_i=rac{\mu_{\mathbf{1}}^{(i)}-\mu_{\mathbf{2}}^{(i)}}{\sqrt{\sigma_{ii}}}$, $i=1,2,\ldots,n$ и $\Sigma=EXX^T$.

- **1** Наилучший классификатор (1) имеет вид $F(X) = (\mu_1 \mu_2)^T \Sigma^{-1} X = \mu^T \Lambda^{-1} Z$.
- (AX) = F(X), где A квадратная матрица полного ранга n.

Строятся частичные классификаторы $f = (f_1, \dots f_p), f_i = F(X_{\tau_i})$:

$$F(X_{\tau}) = (\mu_1 - \mu_2)^T \Sigma_p^{-1} X_{\tau}$$

Математическое ожидание определителя матрицы Λ_n (Алексеева Н. П.)

 Λ_n — корреляционная матрица частичных классификаторов f_1, \dots, f_n . Модель корреляционной матрицы классификаторов:

$$\Lambda_{n} = \begin{bmatrix} 1 & r + x_{12} & \dots & r + x_{1n} \\ r + x_{21} & 1 & \dots & r + x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ r + x_{n1} & r + x_{n2} & \dots & 1 \end{bmatrix}$$
(2)

где $\mathsf{E} x_{ij} = \mathsf{0} \,,\, \mathsf{D} x_{ij} = \sigma_{\mathsf{0}}^2,\, x_{ij} = x_{ji},\, \mathsf{0} < r < 1$

$$\mathsf{E}\Lambda_n = rnJ_{n-1}(\sigma_0, r) + J_n(\sigma_0, r) \quad \text{in } \mathsf{E}\Lambda_{n,kj} = -rJ_{n-2}(\sigma_0, r), \ k \neq j. \tag{3}$$

где
$$J_n(\sigma_0,r)=\sum_{k=0}^{[n/2]}C_n^{2k}(-1)^k\psi_k\sigma_0^{2k}(1-r)^{n-2k}, \quad n=1,2,3,\ldots$$

$$\psi_k=1 imes3 imes5 imes\ldots imes(2k-1)=rac{(2k)!}{2^kk!}$$
 — нечетный факториал.

Оценка полного прогноза по частичным

Утверждение 1.

Наилучший классификатор имеет вид

$$F(f) = \mu^T \Lambda_n^{-1} Z = \sum_{j=1}^n \gamma_j z_j,$$
 где $\gamma_j = \frac{1}{|\Lambda_n|} \sum_{i=1}^n \mu_i |\Lambda_{n,ij}|$ (4)

компоненты вектора $\gamma=\mu^T\Lambda^{-1}$, $\delta_j=1-\frac{\bar{\mu}}{\mu_j}$, $f_j=\mu_jz_j$. Тогда для оценки полного прогноза $f_b(r,n,\sigma_0,\mu)$ по частичным классификаторам справедливо выражение

$$F(f) = f_b = \sum_{j=1}^{n} c_j f_j, \quad \text{где } c_j = \frac{J_{n-1}(\sigma_0, r) + rnJ_{n-2}(\sigma_0, r)\delta_j}{J_n(\sigma_0, r) + rnJ_{n-1}(\sigma_0, r)}$$
 (5)

Следствие 1. Пусть имеется оценка f_b (5), то когда $\mu_i = \mu_0$ и $\sigma_0 = 0$ получим оценку $f_{\alpha} = f_b(r, n, 0, \mu_0 1^n)$:

$$f_{\alpha} = C_{\alpha} \bar{f},$$
 где $C_{\alpha} = \frac{n}{1 + r(n-1)}$ (6)

Результаты применения частичной классификации

462 частичных классификаторов по 5 признакам \Rightarrow были центрированы \Rightarrow выбраны самые лучшие по точности классификаторы \Rightarrow построена Λ_n вычислен r=0.8157 \Rightarrow вычислены оценки $f_{mean}, f_{\alpha}, f_{b}$.

Расслоение популяции

Вероятности ошибочной классификации в популяции W_1, W_2 : $\mathcal{P} = q_1 P(2|1) + q_2 P(1|2).$

- ullet $q = P(W_1)$ априорные вероятности, тогда $1-q = P(W_2)$.
- Будем делать расслоение популяции с вероятностями $s = P(S^1), \ 1-s = P(S^2).$
- ullet Если обозначить $x=P(W_1^1)$, тогда $P(W_2^1)=s-x$, $P(W_1^2)=q-x$, $P(W_2^2)=1-s-q+x$.

Вычисляем вероятности ошибочной классификации:

$$\mathcal{P}_0 = q\Phi(u_0) + (1 - q)\Phi(v_0),$$

$$s\mathcal{P}_1 = x\Phi(u_1) + (s - x)\Phi(v_1),$$

$$(1 - s)\mathcal{P}_2 = (q - x)\Phi(u_2) + (1 - s - q + x)\Phi(v_2).$$

где
$$u_i = \frac{K_i}{\Delta_i} - \frac{\Delta_i}{2}, \ v_i = -\frac{K_i}{\Delta_i} - \frac{\Delta_i}{2}, \ K_0 = ln\left(\frac{1}{q} - 1\right), \ K_1 = ln\left(\frac{s}{x} - 1\right), \ K_2 = ln\left(\frac{1-s}{q-x} - 1\right).$$
 $i = 0$ нерасслоенная и $i = 1,2$ расслоенные выборки.

Вероятность ошибочной классификации

Эффективность расслоения будет определятся через разность

$$P(x) = \mathcal{P}_0 - (s\mathcal{P}_1 + (1-s)\mathcal{P}_2)$$

Предложение 2.

Если расстояние Махаланобиса инвариантны относительно расслоения популяции, то вероятность случайной классификации при расслоении не увеличится.

Если признаки, определяющие расслоение общей популяции на W_1^1,W_2^1,W_1^2,W_2^2 , независимы, то x=qs, следовательно, $K_0=K_1=K_2,\ u_0=u_1=u_2,\ v_0=v_1=v_2,\ P(sq)=0,P'(sq)=0,P''(sq)\geq 0$, т.е. в точке x=qs функция P(x) имеет минимум.

Доказательство. Аналитическое выражение о том, что $P''(sq) \geq 0$:

$$P''(qs) = \frac{1}{\sqrt{2\pi}}e^{\frac{-\nu_1^2}{2}}\frac{1}{\Delta q^2s(1-q)} + \frac{1}{\sqrt{2\pi}}e^{\frac{-\nu_2^2}{2}}\frac{1}{\Delta q^2(1-s)(1-q)} \geq 0. \quad \blacksquare$$

Построение мультипликативного синдрома

Определение симптома. Пусть вектор $A = (a_1, \dots, a_m)^T$, где элементы $a_i \in \{0,1\}$ и набор $\tau = \{t : a_t = 1\}$, k – длина τ . Линейная комбинация

$$X_{\tau} = \sum_{t=1}^{m} a_t X_t(mod2) = A^{\mathsf{T}} \boldsymbol{X}_m(mod2)$$

называется симптомом ранга k.

Определение синдрома. Пусть имеется k+1>0 симптомов X_0,\dots,X_k . Совокупность $2^{k+1}-1$ симптомов вида $\beta_1X_0+\dots+\beta_kX_k (mod2)$, где коэффициенты $\beta_i\in F_2$ не равны нулю одновременно, называется синдромом k-ого порядка S_k .

$$S(X_1) = X_1, S(X_1, X_2) = S(X_1), X_2, S(X_1) + X_2 \pmod{2}, \dots,$$

$$S(\mathbf{X}_m = (S(\mathbf{X}_{m-1}), X_m, S(\mathbf{X}_{m-1} + X_m \pmod{2}))$$
 rate $X_m \notin S(\mathbf{X}_{m-1}), m > 2.$ (7)

Алгоритм применения симптомно-синдромального анализа

строим всевозможные комбинации для пары $(y_i,y_j),\ i,j=1\dots 37,\ i
eq j$

получим
$$C_{37}^2 = \frac{\overset{\Psi}{\stackrel{37!}{}}}{\overset{2!(37-2)!}{\stackrel{}{\stackrel{}{}}}} = 666$$
 пары

для каждой пары (y_i,y_j) строим $C_{37}^2=666 imes 7=4662$ синдромы \downarrow

Перечислим все логические сочетания:

$$s_1=y_i,$$

$$s_2 = y_j$$

$$s_3 = (y_i + y_j) \bmod 2,$$

$$s_4 = y_i y_j,$$

$$s_5 = (y_i + y_i y_j) \bmod 2,$$

$$s_6 = (y_j + y_i y_j) \bmod 2,$$

$$s_7 = (y_i + y_j + y_i y_j) \bmod 2.$$

Таблица: Интерпретация симптомов:

Уi	Уj	s_1	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	S ₅	<i>S</i> ₆	S ₇
0	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	1	1	1	0	1	0	0	1

Результаты классификации по расслоению на полных данных

Рис.: График итерационной классификации по расслоению в виде дерева

Результаты классификации по расслоению на полных данных

Рис.: График итерационной классификации по расслоению в виде дерева

Обьединение факторов риска

Таблица: Коэффициенты дискриминантных функций

	f 1	f2	f3	f 4	<i>f</i> 5	f6	f7	f8	<i>f</i> 9	f10
x1	1.62	0.46	0.11	-0.54	-0.5	-0.69	0.29	-2.15	2.09	1.08
x2	1.08	-0.05	-0.26	-0.27	0.15	0.09	-0.85	-0.78	-1.23	-0.71
х3	0.58	-0.72	0.57	-0.47	1.5	1.34	-1.01	1.42	-2.75	0.76
x4	-3.51	1.33	0.33	-0.27	-0.38	-2.31	-0.58	-0.74	1.49	0.76
x5	-0.22	0.29	0.48	0.63	0.2	0.18	0.76	0.26	-0.48	0.28
x6	0.38	-0.02	0.14	-0.14	2.69	0.98	-1.67	3.29	-4.76	-0.79
×7	0.29	-0.10	-0.51	-0.15	0.02	1.38	0.73	-0.21	0.64	0.21
x8	3.01	0.53	0.5	0.87	-1.21	-1.2	0.45	4.17	-3.27	2.1
x9	2.14	0.55	0.13	-5.35	-0.08	-0.13	-0.37	2.81	-0.97	2.26
×10	1.56	0.53	1.09	0.35	-0.005	-0.07	0.68	-3.69	0.39	0.37
x11	3.54	-1.75	-1.84	-1.05	-1.27	-2.39	0.07	-1.37	-10.4	0.36
x12	-3.9	1.69	0.92	-0.03	0.11	0.78	0.34	0.21	4.18	0.24
x13	1.84	-0.75	-0.45	0.53	-0.09	1.76	-1.1	-4.05	-3.31	0.58
×14	-1.17	-0.95	-0.69	-0.22	0.67	-1.08	-0.4	3.44	-2.12	0.65
x15	0.34	-0.62	0.63	1.14	0.59	2.1	-0.47	0.87	6.81	-2.76
x16	2.33	-0.66	0.49	1.5	-1.29	-0.65	-0.44	-1.0	1.15	0.71

Заключение

- Получена оценка полного прогноза по частичным для задачи классификации и мною были доказаны Утверждение 1,
 Следствие 1 и Предложение 1, 2.
- Применила метод частичной классификации для прогнозирования ПКТС и получила вывод, что обычное усреднение частичных классификаторов достаточно для классификации.
- Для улучшения точности классификации применила расслоение на основе мультипликативного синдрома и получила алгоритмическое дерево.
- В результате расслоения получили классификацию с удовлетворительной точностью.

Расслоение популяции
Вероятность ошибочной классификации
Построение мультипликативного синдрома
Результаты метода классификации по расслоенной выбо

Спасибо за внимание!