LauraTraderscode_testedonPSME—seedlings.R

edeegan

2023-11-09

```
# Add packages here
library(knitr)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
           1.1.2
                      v readr
                                   2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.2 v tibble 3.2.1
## v lubridate 1.9.2
                                   1.3.0
                       v tidyr
## v purrr
              1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggplot2)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
      recode
##
## The following object is masked from 'package:purrr':
##
##
       some
library(dplyr)
library(car)
library(broom)
library(emmeans)
library(lmerTest)
## Loading required package: lme4
## Loading required package: Matrix
## Attaching package: 'Matrix'
```

```
## The following objects are masked from 'package:tidyr':
##
##
      expand, pack, unpack
##
##
## Attaching package: 'lmerTest'
##
## The following object is masked from 'package:lme4':
##
##
      lmer
##
## The following object is masked from 'package:stats':
##
##
      step
library(lme4)
library(pbkrtest)
seedlings <- read_csv("C:/Users/edeegan/OneDrive - DOI/Fire_project/Fire_project/PMSE_data/PSME_Trees</pre>
## New names:
## Rows: 208 Columns: 25
## -- Column specification
## ------ Delimiter: "," chr
## (10): MacroPlot Name, Monitoring Status, Date, Status, AgeCl, UV1, Field... dbl
## (5): Index, SizeClHt, Count, SubFrac, MicroPlotSize lgl (10): AvgDia,
## AvgCrwnRto, Comment, UV2, UV3, UV1Desc, UV2Desc, UV3Desc, ...
## i Use 'spec()' to retrieve the full column specification for this data. i
## Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## * '' -> '...25'
seedlings<-as_tibble(seedlings)</pre>
seedlings=rename(seedlings, plot=`MacroPlot Name`)
seedlings=seedlings %>% separate(Date, c("month", "day", "year"), "/")
seedlings=seedlings %>% separate(year, c("year"), " ")
## Warning: Expected 1 pieces. Additional pieces discarded in 208 rows [1, 2, 3, 4, 5, 6,
## 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
#Fill in the missing plot names, year, and/or species and insert a "zero" for Count
seedlings_fill <- seedlings %>% drop_na(Count)
#Convert "plot" and "year" to factors with mutate. In R, factors are variables that take on a limited n
#of different values; often referred to as categorical variables (e.g. not continuous). Categorical var
#enter into statistical models differently than continuous variables, so storing data as factors ensure
#modeling functions will treat such data correctly.
seedlings factor1 <- seedlings fill %>%
 mutate(plot=factor(plot))
```

Year	n	Min.	Max.	Mean	SD	SE
1990	6	1	15	4.833	5.307	2.167
1991	4	1	11	4.000	4.761	2.380
1992	21	1	5	1.619	1.203	0.263
1997	20	1	4	1.400	0.821	0.184
2001	27	1	4	1.481	0.802	0.154
2004	8	0	2	1.000	0.756	0.267
2023	43	0	18	4.930	5.625	0.858

```
data=seedlings_factor2) +
ylab("Average seedlings Count ") +
ggtitle("Average seedlings Count ")
```

Average seedlings Count

#Create a histogram. A histogram is an approximate representation of the distribution of continuous dat #Histograms can be used to identify patterns in data, such as the shape of the distribution (e.g. norma # distributed, skewed), the spread of the data, and outliers. The height of each bar represents the fre #(count) of data points within the corresponding bin (x-axis).

Average seedlings Count

#Fit a mixed model for a repeated measures design using lmer and indicate "plot" as a random effect. Ca "summary on the model. We have repeated measurements on individual plots (experimental units) and those "measurements will be correlated (not independent). A mixed model accounts for the correlated responses "We indicate "plot" as a random effect to account for the correlation between measurements that arise f "the same plot. "Plot" has random variation and is not of primary interest in this analysis.

boundary (singular) fit: see help('isSingular')

```
summary(seedlings_lmer)
```

```
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Count ~ year + (1 | plot)
## Data: seedlings_factor2
##
## REML criterion at convergence: 678.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3614 -0.5330 -0.1329 0.1432 3.6089
##
## Random effects:
```

```
## Groups
                        Variance Std.Dev.
            Name
            (Intercept) 0.00
## plot
                                 0.000
                        13.12
## Residual
## Number of obs: 129, groups: plot, 10
## Fixed effects:
              Estimate Std. Error
                                        df t value Pr(>|t|)
## (Intercept)
               4.8333
                          1.4785 122.0000
                                            3.269
                                                    0.0014 **
## year1991
               -0.8333
                           2.3377 122.0000 -0.356
                                                     0.7221
## year1992
               -3.2143
                          1.6765 122.0000 -1.917
                                                     0.0575 .
## year1997
               -3.4333
                           1.6858 122.0000 -2.037
                                                     0.0438 *
               -3.3519
                           1.6345 122.0000 -2.051
                                                     0.0424 *
## year2001
## year2004
               -3.8333
                          1.9559 122.0000 -1.960
                                                     0.0523 .
                0.0969
                         1.5783 122.0000 0.061
                                                     0.9511
## year2023
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
           (Intr) yr1991 yr1992 yr1997 yr2001 yr2004
## year1991 -0.632
## year1992 -0.882 0.558
## year1997 -0.877 0.555 0.773
## year2001 -0.905 0.572 0.798 0.793
## year2004 -0.756 0.478 0.667 0.663 0.684
## year2023 -0.937 0.592 0.826 0.822 0.847 0.708
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
#Call anova (Analysis of Variance) on the model. Question: "Is there a difference in mean seedlings Cou
#between years?"
#Null hypothesis (HO): There is no difference in mean seedlings Count between years.
#Alternative hypothesis (HA): There is a difference in mean seedlings Count between years.
#A small p-value (less than alpha 0.05) will reject the null hypothesis that there is no difference in
#seedlings Count between years. You can then conclude that there is evidence of a difference in mean se
#Count between years.
anova(seedlings_lmer, ddf="Kenward-Roger")
## Type III Analysis of Variance Table with Kenward-Roger's method
       Sum Sq Mean Sq NumDF DenDF F value
## year 345.67 57.611
                         6 103.68 4.3739 0.0005604 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#Create a plot of standardized residuals vs. fitted values for the model to assess the assumption of co
#variance. Fitted values are the values predicted by the model. Residuals are the differences between t
#observed values (data) and the corresponding fitted values. This plot displays the fitted values of th
#along the x-axis and the residuals of the fitted values along the y-axis. If the spread of the residua
#equal at each level of the fitted values, the constant variance assumption is met. The residuals shoul
#scattered randomly about zero, with no obvious pattern emerging
plot(seedlings_lmer)
```


#Create a Quantile-Quantile (QQ) plot to assess normality of the residuals (normal distribution). A QQ excompares two probability distributions by plotting their quantiles against each other: the quantiles of the sample data versus the theoretical quantile values from a normal distribution (or what we would expect # a normal distribution). Data points should fall on a fairly straight line to indicate linearity. If d #deviate largely from a straight line, it suggests that the two data sets do not have the same distribution.

```
qqnorm(residuals(seedlings_lmer))
qqline(residuals(seedlings_lmer), col = "blue")
```

Normal Q-Q Plot

#Create an emmeans object and conduct Tukey-adjusted pairwise comparisons ("contrasts") between years.
#These contrasts provide estimates of the pairwise differences in average live seedlings Count between
#Include confidence intervals and p-values that have been adjusted for multiple comparisons.
#Multiple comparison problem: each time you run a hypothesis test, there is a small chance you will obt
#a "false" significant result (you will reject the null hypothesis when it is actually true, also calle
#Error Rate). If you run multiple tests, the number of "false positives" increases with each test, so t
#this Type I Error Rate, the p-values can be adjusted (Tukey is one method and used here) to be more
#conservative (less false positives).

#Call tidy to create an emmeans table. Copy tidy code and include kable for an improved table. Use the #table column headers in the first tidy table to create the headers in the second (and final) tidy table

```
seedlings_lmer_emm <- emmeans(seedlings_lmer, ~year)
contrast(seedlings_lmer_emm, "pairwise" , infer=TRUE, conf.int=TRUE)</pre>
```

```
##
    contrast
                         estimate
                                     SE
                                           df lower.CL upper.CL t.ratio p.value
    year1990 - year1991
                           0.8333 2.489
                                         73.2
                                                  -6.71
                                                           8.379
                                                                    0.335 0.9999
                                         42.1
                                                  -2.71
                                                           9.134
                                                                    1.681 0.6322
    year1990 - year1992
                           3.2143 1.913
##
    year1990 - year1997
                           3.4333 1.823
                                         83.9
                                                  -2.08
                                                           8.942
                                                                    1.883
                                                                          0.4972
    year1990 - year2001
                           3.3519 1.797
                                         69.4
                                                  -2.10
                                                           8.808
                                                                    1.865
                                                                           0.5097
    year1990 - year2004
                           3.8333 2.039 115.9
                                                  -2.28
                                                           9.951
                                                                    1.880
                                                                           0.4975
    year1990 - year2023
                          -0.0969 1.743
                                                  -5.40
                                                           5.202
                                                                   -0.056
                                                                           1.0000
                                         66.7
    year1991 - year1992
                                                  -3.64
                                                           8.403
                                                                    1.189
                                                                           0.8968
##
                           2.3810 2.002 103.1
    year1991 - year1997
                           2.6000 2.011 103.8
                                                  -3.45
                                                           8.646
                                                                    1.293
                                                                           0.8537
    year1991 - year2001
                           2.5185 1.962 111.9
                                                  -3.37
                                                           8.409
                                                                    1.284
                                                                           0.8580
##
    year1991 - year2004
                           3.0000 2.247 116.3
                                                  -3.74
                                                           9.744
                                                                    1.335 0.8341
```

```
-6.70
## year1991 - year2023 -0.9302 1.920 103.7
                                                      4.843 -0.484 0.9990
## year1992 - year1997 0.2190 1.156 122.0
                                                      3.686
                                                             0.189 1.0000
                                             -3.25
## year1992 - year2001 0.1376 1.075 120.8
                                             -3.09
                                                      3.362
                                                             0.128 1.0000
## year1992 - year2004  0.6190 1.555 116.8
                                             -4.05
                                                             0.398 0.9997
                                                      5.285
                                                            -3.330 0.0193
   year1992 - year2023 -3.3112 0.994 118.4
                                             -6.29
                                                    -0.329
  year1997 - year2001 -0.0815 1.077 121.0
                                           -3.31
                                                      3.148 -0.076 1.0000
  year1997 - year2004
                       0.4000 1.530 121.5 -4.19
                                                      4.989
                                                             0.261 1.0000
   year1997 - year2023 -3.5302 0.999 121.9
                                                    -0.535 -3.534 0.0101
                                             -6.53
   year2001 - year2004
                        0.4815 1.472 120.0
                                             -3.93
                                                      4.896
                                                             0.327 0.9999
                                                     -0.729 -3.803 0.0041
   year2001 - year2023 -3.4488 0.907 121.4
                                             -6.17
## year2004 - year2023 -3.9302 1.413 121.7
                                             -8.17
                                                      0.306 -2.782 0.0878
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 7 estimates
## P value adjustment: tukey method for comparing a family of 7 estimates
```

tidy(contrast(seedlings_lmer_emm, "pairwise", infer=TRUE), conf.int=TRUE)

```
## # A tibble: 21 x 10
##
     term contrast
                           null.value estimate std.error
                                                            df conf.low conf.high
##
     <chr> <chr>
                                <dbl>
                                         <dbl>
                                                   <dbl> <dbl>
                                                                 <dbl>
                                                                           <dbl>
                                   0
## 1 year year1990 - year~
                                        0.833
                                                    2.49 73.2
                                                                 -6.71
                                                                            8.38
                                                                            9.13
##
   2 year year1990 - year~
                                    0
                                        3.21
                                                    1.91 42.1
                                                                 -2.71
                                        3.43
                                                    1.82 83.9
                                                                 -2.08
                                                                            8.94
## 3 year year1990 - year~
                                    0
## 4 year year1990 - year~
                                    0
                                        3.35
                                                    1.80 69.4
                                                                 -2.10
                                                                            8.81
## 5 year year1990 - year~
                                    0
                                        3.83
                                                    2.04 116.
                                                                 -2.28
                                                                            9.95
## 6 year year1990 - year~
                                    0 -0.0969
                                                    1.74 66.7
                                                                 -5.40
                                                                            5.20
  7 year year1991 - year~
                                    0
                                       2.38
                                                    2.00 103.
                                                                 -3.64
                                                                            8.40
## 8 year year1991 - year~
                                        2.6
                                                    2.01 104.
                                                                            8.65
                                                                 -3.45
                                    0
## 9 year year1991 - year~
                                    0
                                        2.52
                                                    1.96 112.
                                                                 -3.37
                                                                            8.41
## 10 year year1991 - year~
                                        3
                                                    2.25 116.
                                                                 -3.74
                                                                            9.74
## # i 11 more rows
## # i 2 more variables: statistic <dbl>, adj.p.value <dbl>
```

Contrast	Estimate	SE	df	CI-low	CI-high	P-value
year1990 - year1991	0.83	2.49	73.18	-6.71	8.38	0.999879
year1990 - year1992	3.21	1.91	42.10	-2.71	9.13	0.632194
year1990 - year1997	3.43	1.82	83.90	-2.08	8.94	0.497236
year 1990 - year 2001	3.35	1.80	69.36	-2.10	8.81	0.509732
year 1990 - year 2004	3.83	2.04	115.91	-2.28	9.95	0.497462
year 1990 - year 2023	-0.10	1.74	66.70	-5.40	5.20	1.000000
year 1991 - year 1992	2.38	2.00	103.10	-3.64	8.40	0.896780
year1991 - year1997	2.60	2.01	103.80	-3.45	8.65	0.853686
year 1991 - year 2001	2.52	1.96	111.93	-3.37	8.41	0.857959

Contrast	Estimate	SE	df	CI-low	CI-high	P-value
year1991 - year2004	3.00	2.25	116.26	-3.74	9.74	0.834140
year1991 - year2023	-0.93	1.92	103.68	-6.70	4.84	0.999003
year1992 - year1997	0.22	1.16	122.00	-3.25	3.69	0.999996
year1992 - year2001	0.14	1.08	120.85	-3.09	3.36	1.000000
year1992 - year2004	0.62	1.56	116.78	-4.05	5.28	0.999679
year1992 - year2023	-3.31	0.99	118.43	-6.29	-0.33	0.019312
year1997 - year2001	-0.08	1.08	121.04	-3.31	3.15	1.000000
year1997 - year2004	0.40	1.53	121.48	-4.19	4.99	0.999973
year1997 - year2023	-3.53	1.00	121.90	-6.53	-0.53	0.010142
year2001 - year2004	0.48	1.47	120.02	-3.93	4.90	0.999898
year2001 - year2023	-3.45	0.91	121.38	-6.17	-0.73	0.004133
year2004 - year2023	-3.93	1.41	121.67	-8.17	0.31	0.087760

```
#Eva's timeline graph
seedlings_factor2_summ %>%
ggplot(aes(x=Year, y=Mean, size=Mean))+geom_point()+theme_classic()+ylab("Seedlings Count")
```

