湘潭大学 201<u>4</u>年上学期 20<u>11</u>级《网络工程与管理》课程考试试卷

(A卷) 适用年级专业 2011 级网络工程专业 考试方式 闭卷 考试时间 120 分钟

一、本是	题中共有 20 个空格,每个空格对	应	一个序号,有 A、B、C、D 四个选项,请选择
一个最	恰当的选项作为解答。将解答按:	空格	编号顺序写在答题纸上。(每小题 2 分, 共
40 分)			
●下列	有关层次化网络设计指南的叙述	‡ ,	正确的是(1 <mark>□</mark> ,
(1): A.	首先设计接入层,接着设计分布	京层	,然后设计核心层
В.	首先设计核心层,接着设计分布	万层,	,然后设计接入层
C.	首先设计分布层,接着设计核心	〉层,	,然后设计接入层
D.	首先设计核心层,接着设计接力	人层	,然后设计分布层
●下列	网络设计活动, <mark>♡</mark> _不属于自:	顶向	下网络设计方法逻辑设计阶段的活动。
(2): A.	设计 IP 编址与命名模型	В.	选择网络安全机制
C.	选择企业广域网技术和路由器	D.	选择交换和路由选择协议
●一个	10Mbit/s 共享式以太网有 200 台	被管	管理设备,每台设备监控 10 个特征参数。轮
询的间	隔是 5 秒,并且每个请求和应答	都是	64 字节数据包。则网络管理引起的流量占
用了(③ <u></u> 的网 <u>络</u> 可用带宽。		
(3): A.	5%	В.	4%
C.	3%	D.	2%
●层次	化网络模型中,(4)执行安全	过滤	、地址聚合和传输媒体转换。
(4): A.	核心层	В.	分布层
	接入层		网络层
●模块	化企业网络拓扑结构中,企业边纪		
	广域网		VPN/接入远程接入
			Internet 连接
	化企业网络设计中,允许将(6)_	置	于服务器集群(或数据中心)子模块。
	认证服务器 🕡	В.	企业内部邮件服务器
	公用 Web 服务器		电子商务数据库服务器
			一个无线接入点(AP)到现有网络中,现有
	连接无线接入点(AP)的可能位		
	接入层		分布层 一
	核心层		公司办公室
	以太网技术中,(8)不属于园!		
	Cisco EtherChannel		长距以太网(LRE)
			802. 3ae 以太网
			.3C71,则其 IPv6 链路本地地址是(9)。
			FE80::201.6498.3C71
С.	FE80::101:64FF:FE98:3C71	υ.	FE80::201:64FF:FE98:3C71

●接入层有许多方法实现工作站到路由器的冗余。下列方法中, ⑩ 不属于接入层工
作站到路由器冗余的方法。
(10): A. 虚拟路由冗余协议(VRRP) B. 热备份路由协议(HSRP)
C. 地址解析协议(ARP) D. 网关负载均衡协议(GLBP)
●下列企业网络模块中, (1) 属于企业园区网络功能区。
(II): A. 电子商务 B. 远程接入
C. 边缘分布 D. Internet 连接
●利用 WiFi 实现无线接入是一种广泛使用的接入模式,AP 可以有条件地允许特定用户
接入以限制其他用户。其中较好的限制措施是(位)。
(位): A. 设置 WAP 密钥并分发给合法用户
B. 设置 WEP 密钥并分发给合法用户
C. 关闭 SSID 广播功能以使无关用户不能连接 AP
D. 设置 MAC 地址允许列表
●某网络内部计算机采用私有地址,通过一个路由器连接到 Internet。该路由器具有一
个合法的 IP 地址,现在要求 Internet 上的用户能访问该内网上的 Web 服务器,则该内
MLDHCP 服务器及路由器应满足的条件是 (13)
(③: A. DHCP 服务器为 Web 服务器分配路由器具有的合法 IP 地址,路由器设置地址映射
B. DHCP 服务器为 Web 服务器分配固定 IP 地址,路由器设置地址映射
C. DHCP 服务器为 Web 服务器动态分配 IP 地址,路由器取消 80 端口过滤功能
D. DHCP 服务器为 Web 服务器动态分配 IP 地址,路由器取消 21 端口过滤功能
●为了在企业园区网络实施 STP, 建议选择的 STP 版本是 (4) 。
C. PVST+ D. RSTP
CIDR 技术将其汇聚成一条路由信息,汇聚路由的子网掩码应该是(lb)。
(场: A. 255.255.0.0 B. 255.255.224.0
C. 255.255.240.0 D. 255.255.248.0
●下列地址中 <mark>○</mark> (16) 是 IPv4 映射成的 IPv6 地址。
(6): A. FFFF::66.241.68.22 B. ::FFFF:66.241.68.22
C. 66.241.68.22: D. ::66.241.68.22
●为企业网络设计选择广域网设备时, (I) 不作为选择广域网路由器的考虑因素。
(0): A. 广域网业务使用的物理接口
B. 是否支持 VPN 和 QoS
C. 路由器的性能限制
D. 广域网服务提供商骨干网络所使用的底层光纤技术
●为园区网络设计选择网络互连设备时,(®)不作为无线接入点(AP)选择的评价标准。
(l8): A. 支持的尤线标准和数据速率
C. 支持的最大传输功率
D. 支持的移动速率
■ 某机构要新建一个网络,除内部办公、员工邮件等功能外,还要对外提供访问本机构
网站(包括动态网页)和 FTP 服务,设计师在设计网络安全策略时,给出的方案是:利
用 DMZ 保护内网不受攻击,在 DMZ 和内网之间配一个内部防火墙,在 DMZ 和 Internet
间,较好的策略是(19)
(19): A. 配置一个外部防火墙,其规则为除非禁止,都被允许
B. 配置一个外部防火墙,其规则为除非允许,都被禁止

- C. 不配置防火墙, 自由访问, 但在主机上安装杀病毒软件
- D. 不配置防火墙,只在路由器上设置禁止 PING 操作
- ②D: A. Web 服务器, FTP 服务器, 邮件服务器, 相关数据库服务器
 - B. FTP 服务器,邮件服务器
 - C. Web 服务器, FTP 服务器
 - D. FTP 服务器,相关数据库服务器
- 二、阅读以下说明,回答问题 1 至问题 5,将解答按空格编号顺序写在答题纸上。(每个 空格 1 分, 共 15 分)

【说明】

图 2-1 所示的具有冗余的交换网布线拓扑结构中,每一交换机使用 rapid-pvst 生成 树模式。分布层交换机 DLSW1, DLSW2 为多层交换,接入层交换机 ALSW1, ALSW2、 ALSW3 为层二交换。无线用户通过无线接入点 AP1、AP2 访问网络。

图 2-1 所示的交换网络互连部署如下。

1. 按网络用户所在部门、使用场所等将交换网络划分多个 VLAN 和子网。如本案 例中将所有无线用户置于 VLAN 110 中, 而职员培训教室的用户终端置于 VLAN 120 中。 每个 VLAN 处于一个 IP 子网中,根据需要采用静态、动态、或两者结合的寻址方式, 如表 2-1。

	14 2 1	0 TOTALL XII \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
VLAN 编号	命名	寻址方式	网络
1	default	静态	10.1.1.0/24
110	VLAN110	DHCP (地址池 wlan)	10.1.110.0/24
120	VLAN120	DHCP (地址池 class)	10.1.120.0/24

表 2-1 VI AN 划分与寻址

- 2. 对交换机实施 STP 配置。保持 VLAN 1、VLAN 110 的生成树恰好以 DLSW1 作 为主根, DLSW2 作为备根,而保持 VLAN 120 的生成树恰好以 DLSW2 作为主根,以 DLSW1 作为备根。
- 3. 使用 VTP 简化 VLAN 配置和管理。以 EXAMNET 作为 VTP 管理域名, 分布层 交换机作为 VTP 服务器,接入交换机作为 VTP 客户。
- 4. 在分布层交换机上对于每个 VLAN 配置 HSRP。以每个 VLAN 对应的生成树主 根作为默认的激活路由器,其优先级为150,以其对应的生成树备根作为为备份路由器。
 - 5. 网络中的交换设备端口分配如表 2-2。

表 2-2	交换设备端口分配	
4× 7.=7.	9 156 LV 195 200 LD 11 HI .	

设备	端口	VLAN	
DLSW1	Gig0/1 - 2	802.1Q Trunk 和 EtherChannel Group 12	
DLSWI	Fa0/22 - 24	802.1Q Trunk	
DLSW2	Gig0/1 - 2	802.1Q Trunk 和 EtherChannel Group 12	
DLS W Z	Fa0/22 - 24	802.1Q Trunk	
ALSW1	Fa0/21	VLAN 110	
ALSW2	Fa0/1 - 20	VLAN 120	
ALSW3	Fa0/21	VLAN 110	

6. 网络中的设备接口 IP 地址分配如表 2-3。

表 2-3 设备接口 IP 地址分配

设备	接口	IP Address	默认网关
	VLAN 1	10.1.1.251/24	10.1.1.253/24
DLSW1	VLAN 110	10.1.110.251/24	10.1.1.253/24
	VLAN 120	10.1.120.252/24	10.1.1.253/24
	VLAN 1	10.1.1.252/24	10.1.1.253/24
DLSW2	VLAN 110	10.1.110.252/24	10.1.110.253/24
	VLAN 120	10.1.120.251/24	10.1.120.253/24
PC1	NIC	DHCP pool class	DHCP pool class
PC2	NIC	DHCP pool class	DHCP pool class
LT1	NIC	DHCP pool wlan	DHCP pool wlan
LT2	NIC	DHCP pool wlan	DHCP pool wlan

【问题1】

在 32768、16384、12288 中选择合适的优先值,在 DLSW1 上配置 STP,使 VLAN 1 和 VLAN 110 的生成树以 DLSW1 作为主根,而 VLAN 120 的生成树以 DLSW1 作为备根。

DLSW1#

DLSW1#configure terminal

DLSW1(config)#spanning-tree vlan 1, 110 priority __(1)__

DLSW1(config)#spanning-tree vlan 120 priority __(2)___

DLSW1(config)#end

【问题 2】

请根据图 2-1 以及上述说明,在 DLSW1 上完成以下 VTP 配置。

DLSW1#

DLSW1#configure terminal

DLSW1(config)#vtp mode _

 $-\frac{(3)}{(4)}$

DLSW1(config)#vtp domain __(4)_

DLSW1(config)#vlan 110

DLSW1(config-vlan)#end

【问题3】

请根据图 2-1 以及上述说明,在 DLSW1 上完成以下 EtherChannel 和 Trunk 配置。

DLSW1#

DLSW1#configure terminal

DLSW1(config)#interface range GigabitEthernet0/1 - 2

DLSW1(config-if-range)#switchport trunk encapsulation

DLSW1(config-if-range)#switchport mode trunk
DLSW1(config-if-range)#channel-group (6) mode on
DLSW1(config-if-range)#exit
DLSW1(config)#interface range FastEthernet0/22 - 24 DLSW1(config-if-range)#switchport trunk encapsulation(7)
DLSW1(config-if-range)#switchport mode trunk
DLSW1(config-if-range)#end
【问题 4】
请根据图 2-1 以及上述说明,在 DLSW1 上完成以下 HSRP 配置并启用路由。
DLSW1#
DLSW1#configure terminal
DLSW1(config)#ip(8)
DLSW1(config)#interface Vlan110
DLSW1(config-if)#ip address(9) 255.255.255.0
DLSW1(config-if)#standby 110 ip(10)
DLSW1(config-if)#standby 110 priority(11)
DLSW1(config-if)#standby 110 preempt
DLSW1(config-if)#exit
DLSW1(config)#interface Vlan120
DLSW1(config-if)#ip address(12)255.255.255.0
DLSW1(config-if)#standby 120 ip(l3)
DLSW1(config-if)#standby 120 preempt
DLSW1(config-if)#end 【问题 5】
【问题 3】 分布层交换机 DLSW1 可以作为 DHCP 服务器使用,请根据图 2-1 以及上述说明,
在 DLSW1 上完成以下对于 DHCP 地址池 wlan 的配置。
DLSW1#
DLSW1#configure terminal
DLSW1(config)#ip dhcp excluded-address 10.1.110.1 10.1.110.10
DLSW1(config)#ip dhcp excluded-address 10.1.110.251 10.1.110.255
DLSW1(config)#ip dhcp excluded-address 10.1.120.1 10.1.120.10
DLSW1(config)#ip dhcp excluded-address 10.1.120.251 10.1.120.255
DLSW1(config)#ip dhep pool wlan
DLSW1(dhcp-config)#network(l4)
DLSW1(dhcp-config)#default-router(15)
DLSW1(dhep-config)#end
 三、阅读以下说明,回答问题 1 至问题 5,将解答按空格编号顺序写在答题纸上。(每个
空格 1 分, 共 15 分)
【说明】
某公司的网络互连拓扑如图 3-1。

图 3-1

公司总部、分支机构、Internet之间的网络互连部署如下。

1. 公司总部与各分支机构之间通过 Frame Relay 链路连接, 形成以公司总部为中心的点到多点的多路接入网络, 并使用 RIPv2 协议实现公司总部网络与各分支机构网络之间的互连。Frame Relay 交换设备的接口 DLCI 分配分配如表 3-1。

表 3-1 Frame Relay 交换设备的接口 DLCI 分配

From Port	Sublink DLCI	To Port	Sublink DLCI
Serial1	102	Serial2	201
Serial1	103	Serial3	301

- 2. 公司总部通过 PPP 链路连接到 Internet, 公司总部与各分支机构的网络用户都必须通过该链路访问 Internet。
- 3. 针对公司总部的公用服务器与内部服务器之间的通信安全,划分 2 个 VLAN。 所有内部服务器置于 VLAN 10 中,对应的 IP 子网为 172.16.1.0/24。所有公用服务器置于 VLAN 20,对应的 IP 子网为 172.16.2.0/24。交换机经 802.1Q Trunk 与路由器连接。
- 4. ISP 分配给公司可用的公用 IP 地址块为 209.165.202.128/30。为了让公司内部所有网络用户获得访问 Internet 的公用 IP 地址,以公用 IP 地址块的前两地址作为地址池,在路由器 HQ-RT 中配置带 PAT 的动态 NAT,实现内部地址到公用 IP 地址的动态转换。为了让 Internet 用户访问公司的公用 Web 服务器,在路由器 HQ-RT 中配置静态 NAT,将公用 Web 服务器内部地址(172.16.2.240)映射到外部地址(209.165.202.131)。
 - 5. 路由器 HO-RT 上对主机名、接口及 IP 地址所作配置如下。

```
hostname HQ-RT

interface FastEthernet0/0
no ip address

interface FastEthernet0/0.1
ip address 172.16.1.250 255.255.255.0

interface FastEthernet0/0.2
ip address 172.16.2.250 255.255.255.0
```

```
interface Serial0/0/0
     no ip address
     encapsulation frame-relay ietf
     frame-relay lmi-type q933a
    interface Serial0/0/0.100 multipoint
     ip address 172.30.0.1 255.255.255.248
    interface Serial0/0/1
     ip address 209.165.200.2 255.255.255.252
    6. 路由器 BR1-RT 上对主机名、接口及 IP 地址所作配置如下。
    hostname BR1-RT
    interface FastEthernet0/0
     ip address 172.16.11.250 255.255.255.0
    interface Serial0/0/0
     no ip address
     encapsulation frame-relay ietf
     frame-relay lmi-type q933a
    interface Serial0/0/0.200 multipoint
     ip address 172.30.0.2 255.255.255.248
    7. 路由器 BR2-RT 上对主机名、接口及 IP 地址所作配置如下。
    hostname BR2-RT
    interface FastEthernet0/0
     ip address 172.16.12.250 255.255.255.0
    interface Serial0/0/0
     no ip address
     encapsulation frame-relay ietf
     frame-relay lmi-type q933a
    interface Serial0/0/0.300 multipoint
     ip address 172.30.0.3 255.255.255.248
【问题 1】
    请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
HQ-RT 上完成接口 FastEthernet0/0 的子接口配置。
    HQ-RT#
```

HQ-RT#configure terminal
HQ-RT(config)#interface FastEthernet0/0.1
HQ-RT(config-subif)#encapsulation dot1Q(1)
HQ-RT(config-subif)#exit
HQ-RT(config)#interface FastEthernet0/0.2
HQ-RT(config-subif)#encapsulation dot1Q(2)
HQ-RT(config-subif)#end
【问题 2】
请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
HQ-RT 上完成 Frame Relay 多点子接口静态映射配置。
HQ-RT#
HQ-RT#configure terminal
HQ-RT(config)#interface Serial0/0/0.100 multipoint
HQ-RT(config-subif)#frame-relay map ip(3) broadcast
HQ-RT(config-subif)#frame-relay map ip(4) broadcast
HQ-RT(config-subif)#end
【问题 3】
请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,以到达
Internet 为默认路由,以 RIP 为动态路由,在路由器 HQ-RT 上完成以下路由配置。
HQ-RT#
HQ-RT#configure terminal
HQ-RT(config)#ip route(5) Serial0/0/1
HQ-RT(config)#router rip
HQ-RT(config-router)#version 2
HQ-RT(config-router)network(6)
HQ-RT(config-router)network (7)
HQ-RT(config-router)default-information originate
HQ-RT(config-router)no auto-summary
HQ-RT(config-router)#end
【问题 4】
路由器 HQ-RT 到 Internet 的 PPP 链路采用 CHAP 认证,口令为 passppp。请根据图
3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器 HQ-RT 上完
成以下 PPP 配置。
HQ-RT#
HQ-RT#configure terminal
HQ-RT(config)#username ISP secret(8)
HQ-RT(config)#interface Serial0/0/1
HQ-RT(config-if)#encapsulation ppp
HQ-RT(config-if)#ppp authentication(9)
HQ-RT(config-if)#end
【问题 5】
请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
HQ-RT 上完成以下 NAT 配置。
HQ-RT#
HQ-RT#configure terminal
HQ-RT(config)#access-list 10 permit 172.16.0.0(10)

```
HQ-RT(config)#ip nat pool ipnatpool
                                       (1) netma<u>sk</u> 255.255.255.252
                                                 02) overload
HQ-RT(config)#ip nat inside source list 10 pool
HQ-RT(config)#ip nat inside source static
HQ-RT(config)#interface FastEthernet0/0.1
HQ-RT(config-subif)#ip nat inside
HQ-RT(config-subif)#exit
HQ-RT(config)#interface FastEthernet0/0.2
HQ-RT(config-subif)##ip nat inside
HQ-RT(config-subif)##exit
HQ-RT(config)#interface Serial 0/0/0.100 multipoint
HQ-RT(config-subif)#ip nat
                           (14)
HQ-RT(config-subif)##exit
HQ-RT(config-if)#interface Serial0/0/1
HQ-RT(config-if)#ip nat
HQ-RT(config-if)#end
```

四、阅读以下说明,回答问题 1 至问题 5,将解答按空格编号顺序写在答题纸上。(每个 空格 1 分, 共 15 分)

【说明】

某网络互连拓扑如图 4-1。网络 NET1、网络 NET2、路由器 RT1 到路由器 RT2 之 间的网络使用 OSPF 协议。网络 NET3、路由器 RT3 到路由器 RT1 之间的网络使用 RIPv2 协议。网络 NET4、路由器 RT4 到 RT2 之间的网络使用静态路由或默认路由。为了在不 同的路由协议之间共享路由信息,需要运行多种路由协议的路由器上 RT1、RT2 实施重 分发。

图 4-1

网络中各路由器的主机名、接口及IP地址配置如下。

1、路由器 RT1 上对主机名、接口及 IP 地址所作配置如下。

```
hostname RT1
```

```
interface Loopback0
 ip address 192.168.255.1 255.255.255.255
interface FastEthernet0/0
 ip address 172.16.10.251 255.255.255.0
interface Serial0/0/0
 ip address 172.31.0.1 255.255.255.252
interface Serial0/0/1
 ip address 172.31.0.5 255.255.255.252
2. 路由器 RT2 上对主机名、接口及 IP 地址所作配置如下。
hostname RT2
interface Loopback0
 ip address 192.168.255.2 255.255.255.255
interface FastEthernet0/0
 ip address 172.16.20.251 255.255.255.0
interface Serial0/0/0
ip address 172.31.0.2 255.255.255.252
interface Serial0/0/1
 ip address 172.31.0.9 255.255.255.252
3. 路由器 RT3 上对主机名、接口及 IP 地址所作配置如下。
hostname RT3
interface FastEthernet0/0
 ip address 172.16.30.251 255.255.255.0
interface Serial0/0/0
 ip address 172.31.0.6 255.255.255.252
4. 路由器 RT4 上对主机名、接口及 IP 地址所作配置如下。
hostname RT4
interface FastEthernet0/0
 ip address 172.16.40.251 255.255.255.0
interface Serial0/0/0
```


请根据图 4-1 以及上述说明, 并结合已有的主机名、接口及 IP 地址配置, 在路由器 RT4 上配置默认路由。

RT4#

RT4#configure terminal

RT4(config)#ip route __(4)___

RT4(config)#end

【问题 5】

用一句话概括环回接口(Loopback)在 OSPF 配置环境中的可能用途。 (b) 。

五、阅读以下说明,回答问题 1 至问题 2,将解答按空格编号顺序写在答题纸上。(每个空格 1 分,共 15 分)

【说明】

某公司决定利用公用 Internet 实现公司总部与分支机构之间的互连,如图 5-1。

图 5-1

针对网络连通性及通信安全的作以下部署。

- 1. 在总部路由器 HQ-RT 与分支机构路由器 BR-RT 经过 Internet 的连接之间构建 GRE 隧道,使用外部网关协议 BGP 实现位于 GRE 隧道两端的网络的连通性。
- 2. 在总部路由器 HQ-RT 与分支机构路由器 BR-RT 经过 Internet 的连接之间构建 IPsec 安全信道,对所有传输数据进行加密。
 - 3. 构建 IPsec 安全信道所使用的 ISAKMP 策略参数和 IPsec 变换集如下。

ISAKMP 认证方法: 预共享密钥

ISAKMP 预共享密钥: ikepsk

ISAKMP 加密算法: AES 256

ISAKMP 哈希算法: SHA

ISAKMP 密钥交换: DH 组 5

IPsec 加密变换: ESP 使用 AES 256 加密算法

IPsec 认证变换: ESP 使用 SHA 认证算法

总部与各分支机构形成的每一对 IPsec 对等方分别采用不同的预共享密钥。

4. 总部路由器 HQ-RT 上对主机名、接口及 IP 地址所作配置如下。

```
| hostname HQ-RT | interface Tunnel0 | ip address 172.31.0.1 255.255.255.252 | tunnel mode gre ip | interface FastEthernet0/0
```

```
ip address 172.16.1.250 255.255.255.0
   interface Serial0/0/0
    ip address 202.103.100.170 255.255.255.252
    5. 分支机构路由器 BR-RT 上对主机名、接口及 IP 地址所作配置如下。
   hostname BR-RT
   interface Tunnel0
    ip address 172.31.0.2 255.255.255.252
    tunnel mode gre ip
   interface FastEthernet0/0
    ip address 172.16.9.250 255.255.255.0
   interface Serial0/0/0
    ip address 202.103.101.194 255.255.255.252
【问题 1】
   为了在总部路由器 HQ-RT 和分支机构路由器 BR-RT 之间构建 GRE 隧道,并使用
外部网关协议 BGP 实现 GRE 隧道两端的网络的连通性。根据图 5-1 以及上述说明,并
结合已有的主机名、接口及 IP 地址配置,在总部路由器 HQ-RT 上完成下列配置。
   HQ-RT#
   HQ-RT#configure terminal
   HQ-RT(config)#interface Tunnel 0
   HQ-RT(config-if)#tunnel source Serial0/0/0
   HQ-RT(config-if)# tunnel destination
   HQ-RT(config-if)#exit
                                255.255.255.255 Serial0/0/0
   HQ-RT(config)# ip route
   HQ-RT(config)#router bgp 65001
                                (3) remote-as 65002
   HQ-RT(config-router)#neighbor
                                (4) mask 255.255.255.0
   HQ-RT(config-router)#network
   HQ-RT(config-router)#end
【问题 2】
   为了在总部路由器 HQ-RT 和分支机构路由器 BR-RT 之间构建 IPsec 安全隧道,对
所有传输数据进行加密。根据图 5-1 以及上述说明,并结合已有的主机名、接口及 IP 地
址配置,在总部路由器 HQ-RT 上完成下列配置。
   HQ-RT#
   HQ-RT#configure terminal
   HQ-RT(config)#crypto isakmp policy 1
   HQ-RT (config-isakmp)#encryption
   HQ-RT (config-isakmp)#authentication pre-share
   HQ-RT (config-isakmp)#hash
   HQ-RT (config-isakmp)#group 5
   HQ-RT (config-isakmp)#lifetime 86400
```

HQ-RT (config-isakmp)#exit
HQ-RT(config)#crypto isakmp key ikepsk address(7)
HQ-RT(config)#crypto ipsec transform-set ipsec-set(8)(9)(9)
HQ-RT(config)#access-list 101 permit gre host host host host
HQ-RT(config)#crypto map ipsec-map 10 ipsec-isakmp
HQ-RT(config-crypto-map)#set peer (12)
HQ-RT(config-crypto-map)#set pfs group5
HQ-RT(config-crypto-map)#set security-association lifetime seconds 7200
HQ-RT(config-crypto-map)#set transform-set (13)
HQ-RT(config-crypto-map)#match address(l4)
HQ-RT(config-crypto-map)#exit
HQ-RT(config)#interface Serial0/0/0
HQ-RT(config-if)#crypto map(15)
HQ-RT(config-if)#end