1 Recap: What's Regular?

- You've seen DFAs. You know what they look like. They have finitely many states, work on finitely many symbols, and require "memory" constant in the length of the input string.
- A language is *regular* if there is a DFA that recognizes it. Here, the word *recognize* means accepts only strings in the language and rejects all the nonmembers.
- DFA == NFA because every DFA is already an NFA, and an NFA can be converted to a DFA with the same behavior.
- regular expressions == NFA because we can convert any regex to an NFA and vice versa.

2 Is Every Language Universally Regular?

Consider the following languages. Please draw a DFA/NFA for each of them (skip what you can't do):

- 1. L_1 is all binary strings that have an equal number of occurrences of 01s and 10s as substrings. (A: $0 + 1 + \varepsilon + 0\Sigma^*0 + 1\Sigma^*1$)
- 2. L_2 is all binary strings that have an equal number of 0s and 1s as substrings. (A: err.. not possible)
- 3. L_3 is all binary strings of the form $0^i 1^i$ for $i \ge 0$. (A: err... impossible)

I claim that L_2 and L_3 don't have a corresponding DFA and therefore are not regular. But how can we prove that this is the case? Arguing that we are unable to draw a DFA isn't at all a good argument. Perhaps someone else can.

We need an airtight argument that shows that no DFA whatsoever can correctly recognize L_2 or L_3 .

For concreteness, let us focus on the language L_3 , which can be written formally as

$$L_3 = \{0^n 1^n \mid n \in \mathbb{Z}_{\geqslant 0}\}$$

Why can't this language have a DFA that recognizes it? Say you can somehow draw a DFA for it. I don't know how many states it will have, but let's make up a number. Suppose your DFA has 7 states.

I'll keep the arrows and the accepting states rather hazy for now. It probably doesn't matter all that much. Imagine giving it the input

$0^7 = 0000000$	
where we and up often each armibal	

If we keep tabs of where we end up after each symbol, we'll probably have something like this:

_	q_0
0	q_2
00	q_5
000	q_6
0000	q_1
00000	q_3
000000	q_4
0000000	q_3

After Input

The important point here is that there is a state q_i that we end up in multiple times (in this example q_3).

One thing about DFA is that it doesn't remember the past, so *once you are in* q_i *and given the string* y, *you'll end up in the same state regardless of which string you used to reach* q_i *in the first place.*

To be precise, define $\delta^*: Q \times \Sigma^*$, where $\delta^*(q, S)$ is the state we are in starting from q after processing the string S. If you're pedantic, you'll write $S = s_0 s_1 \dots s_{k-1}$. Then $r_0 = q$ and $r_{i+1} = \delta(r_i, s_i)$, and $\delta^*(q, S) = r_k$.

This means: in the above example, this DFA can't tell the difference between 00000 and 0000000. This further means if

$$x = 0000011111$$
 and $y = 000000011111$

this DFA will either accept both x and y—or reject them both. This can't be good. Specifically, the problem with this DFA is that

- On input x, after consuming five 0s, the machine is in state q_3 . Formally, we say $q_3 = \delta^*(q_0, 00000)$. Then, for the following five 1s, it will end up in $q = \delta^*(q_3, 11111)$.
- On input y, after consuming seven 0s, the machine ends up in state q_3 —again, $q_3 = \delta^*(q_0, 0000000)$. Then, for the following five 1s, it will end up in $q = \delta^*(q_3, 11111)$.

The crux of the contradiction is that q can't be both accepting and nonaccepting.

2.1 More Formally...

Let's spell this one as a formal proof. Notice that in general:

- we don't know how many states the claimed DFA has.
- we don't know which state is repeated, either.

As you'll see, this can be fixed using the pigeonhole principle.

Proof: Suppose for a contradiction that there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that decides L_3 using $k \ge 1$ states. We define r_i to be the state that M is in after consuming the string 0^i stating from the initial state q_0 , that is,

$$r_i = \delta^*(q_0, 0^i)$$
 for $i \geqslant 0$

By pigeonhole, there are repeats among r_0, r_1, \ldots, r_k . This means $r_s = r_t$ for some $0 \le s \ne t \le k$. Consider the following:

- Because $0^s 1^s \in L_3$, the state $f_s = \delta^*(q_0, 0^s 1^s) = \delta^*(\delta^*(q_0, 0^s), 1^s) = \delta^*(r_s, 1^s)$, which is the final state after reading the input $0^s 1^s$, must be an accepting state, so $f_s \in F$.
- On a different input $0^t 1^s$, its final state $f_t = \delta^*(q_0, 0^t 1^s) = \delta^*(\delta^*(q_0, 0^t), 1^s) = \delta^*(r_s, 1^s) = f_s$.

But this is absurd: $0^t 1^s \notin L_3$, a contradiction. Hence, such a machine M cannot exist.

Following this structure, proving that L is not regular typically involves:

- 1. Assume for contradiction there is a DFA M that recognizes L.
- 2. Argue (usually by Pigeonhole) there are two strings x and y which reach the same state in M.
- 3. Show a string z such that $xz \in L$ but $yz \notin L$. This is a contradiction as M acts the same on both.

3 The Pumping Lemma

One common technique that aids in proving a language L is not regular is traditionally called the *pumping lemma*. It states that every regular language has some (defining) special properties. If we can show that L doesn't have some of these special "features," L surely cannot be regular.

Lemma 3.1 (The Pumping Lemma) Let A be a regular language. There is an integer $p \ge 1$ "the pumping length" such that for every string $s \in A$ of length at least p, then s can be written as s = xyz satisfying

- (1) $xy^iz \in A$ for every $i \ge 0$;
- (2) |y| > 0; and

(3)
$$|xy| \leq p$$
.

Remember that |x| is the length of the string x, and y^k means repeating y a total of exactly k times. At this point, it's worth unpacking the lemma a bit before we see some applications of the lemma.

- Pretty much, the lemma says that if A is regular, there is a pumping length p. This is a property of the language—and this value does *not* depend on the string s that is discussed later in the lemma.
- Now you can pick any string $s \in A$, and this string must be able to be broken into *three* pieces x, y, and z such that ...
- the y part can be pumped an arbitrary number of times $(y^0 = \varepsilon)$
- the y part cannot be empty (it's still true if y could be empty... but not very useful)
- finally xy together cannot be longer than p.

The proof of this lemma is pretty much a more streamlined version of what we did earlier in this lecture. Instead, we'll look at a few applications of the lemma.

Example 3.2 Consider the language $L = \{0^n 1^n \mid n \in \mathbb{Z}_{\geq 0}\}$. We'll use the pumping lemma to show that L isn't regular.

Proof: The proof is by contradiction. Assume for a contradiction that L is regular, so there is a "pumping length" $p \ge 1$ given by the pumping lemma. Consider $s = 0^p 1^p$. Clearly $s \in L$ —and as $|s| \ge p$, s can be split into s = xyz satisfying the conditions of the lemma.

Because $|xy| \le p$, xy is made up of all 0s, so y itself consists only of 0s. This means, xyyz has more 0s than 1s, and $xyyz \notin L$, a contradiction to the lemma's assertion that xy^2z must be in L! Hence, L is not regular.

Example 3.3 Let $L_2 = \{w \mid w \text{ has an equal number of 0s and 1s}\}$. Show that C isn't regular. Try it out for yourself first.

Pretty much the proof above works.

Example 3.4 Let $\Sigma = \{0, 1\}$ and $L_3 = \{ww \mid w \in \Sigma^*\}$. Show that L_3 isn't regular.

Proof: The proof is by contradiction. Assume for a contradiction that L is regular, so there is a "pumping length" $p \ge 1$ given by the pumping lemma. Consider $s = 0^p 10^p 1$. Clearly $s \in L$ —and as $|s| \ge p$, s can be split into s = xyz satisfying the conditions of the lemma.

Because $|xy| \le p$, xy is made up of all 0s, so y itself consists only of 0s. This means, xyyz cannot be in L_3 , a contradiction!

The challenge in coming up with such a proof is in finding the right s that exhibits the "essence" of nonregularness.

Example 3.5 Consider $L_4 = \{0^i 1^j \mid i > j\}$. Show that L_4 isn't regular. (Hint: pump down)

Proof: The proof is by contradiction. Assume for a contradiction that L is regular, so there is a "pumping length" $p \ge 1$ given by the pumping lemma. Consider $s = 0^{p+1}1^p$. Clearly $s \in L$ —and as $|s| \ge p$, s can be split into s = xyz satisfying the conditions of the lemma.

Because $|xy| \le p$, xy is made up of all 0s, so y itself consists only of 0s. Pumping up doesn't help in this case: $xyyz \in L_4$, $xyyyz \in L_4$, ...; however, the pumping lemma works even when i = 0. So then, consider that $xy^0z = xz \notin L_4$ (because removing y reduces the number of zeros). This gives a contradiction!

4 Practice

- 1. Show that L_3 above is not regular directly via a contradiction proof (i.e., without using the pumping lemma).
- 2. Let $A = \{0^n 1^n 2^n \mid n \ge 0\}$. Show that A isn't regular using the pumping lemma.
- 3. Let $B = \{0^n 1^m 0^n \mid n \ge 0, m \ge 0\}$. Show that A isn't regular using the pumping lemma.