

IIItiouuzion

Dataset e metodologie

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri Analisi esplorativa e statistica del consumo globale di alcol: evidenze da dati WHO disaggregati per fattori socio-demografici

Daniele Angeloni , Alessandra Ruggeri

Corso di Laurea Magistrale in Ingegeria Informatica Curriculum Data Science and Data Engineering Università degli Studi di Perugia

A.A. 2024/2025

Table of Contents

Introduzion

Dataset e

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

- 1 Introduzione
- 2 Dataset e metodologie
- 3 Exploratory Data Analysis (EDA)
- 4 Analisi statistica: Verifica della normalità
- 5 Analisi statistica: Test non parametrici
- 6 Conclusioni e sviluppi futuri

Disuguaglianze nel Consumo di Alcol

Introduzione

Dataset e metodologi

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

- Il consumo di alcol è un importante indicatore di disuguaglianza nella salute pubblica.
- Riflette differenze nei comportamenti sanitari tra gruppi socioeconomici, culturali e demografici.
- L'analisi si focalizza su:
 - Diffusione (% consumatori)
 - Consumo (litri medi tra i bevitori)
 - Astensione (% astinenti a vita)

Obiettivi del Progetto

Introduzione

Dataset e metodologie

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

- Esplorare disuguaglianze nel consumo di alcol a livello globale.
- Analisi esplorativa dei dati disaggregati per:
 - Genere
 - Regione geografica (WHO)
 - Fascia di reddito (World Bank)
 - Anni (2000-2020)
- Verificare la significatività statistica delle differenze osservate.
- Supportare politiche sanitarie mirate e basate su evidenze.

Descrizione del Dataset

Introduzione

Dataset e metodologie

(EDA)

statistica: Verifica della normalità

Analisi statistica: Test non parametrici

- Fonte dati: Health Inequality Data Repository WHO Global Health Observatory (2024) [1] [2].
- Copertura temporale: 2000–2020 (per gli indicatori selezionati).
- Unità di osservazione: per paese, anno, genere, gruppo di reddito e regione geografica.
- Indicatori analizzati:
 - Alcohol, consumers past 12 months (%) —
 Perc_Cons: percentuale della popolazione (15+) che ha
 consumato alcol negli ultimi 12 mesi.
 - Alcohol, drinkers only per capita (15+)
 consumption (litres of pure alcohol) —
 Litres_Cons: litri medi di alcol puro consumati per
 bevitore (15+).
 - Alcohol, abstainers lifetime (%) Perc_Ast: percentuale della popolazione (15+) che non ha mai consumato alcol nella vita.

Metodologie Analitiche

Introduzione

Dataset e metodologie

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futur

Workflow in R:

- Preprocessing: Fase di pulizia, riorganizzazione e armonizzazione dei dati, con adeguamento dei nomi delle variabili e gestione dei valori mancanti.
- Controllo qualità dati: range validi, distribuzioni, outlier.
- Analisi Esplorativa (EDA): visualizzazioni aggregate, confronto tra gruppi, analisi temporali.
- Test di normalità: Shapiro-Wilk [3] e QQ-plot.
- Test statistici:
 - Wilcoxon rank-sum [4](equivalente del Mann-Whitney) (confronto tra due gruppi indipendenti)
 - Kruskal-Wallis[5] (con tre o più gruppi indipendenti)
 - Friedman[6] (misure ripetute)
 - Test post-hoc di Dunn[7] (con correzione Bonferroni[8])

Preprocessing e controllo qualità dei Dati

Introduzione Dataset e

metodologie Exploratory

Analisi statistica: Verifica della

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futur Prima dell'analisi esplorativa e statistica, è stata effettuata una fase di pulizia e validazione dei dati per garantirne l'affidabilità e la coerenza.

Preprocessing e controllo qualità dei dati:

- Rimozione delle osservazioni con valori NA (Not Available) significativi nella variabile value (numero esiguo).
- Selezione delle variabili rilevanti e ridenominazione dei nomi delle etichette per renderle più interpretabili (country, year, gender, income_group, who_region); e per gli indicatori: Perc_Cons, Litres_Cons, Perc_Ast.
- Riclassificazione dei gruppi di reddito mancanti con l'etichetta "Unknown", per preservare l'integrità dei dati.
- Verifica dei range e dei valori validi per ciascun indicatore/variabile e analisi preliminare delle distribuzioni e presenza di outlier.

Exploratory Data Analysis

. .

Introduzione

Exploratory
Data Analysis

(EDA)
Analisi

statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futur L'analisi esplorativa dei dati (EDA) ha l'obiettivo di:

- Investigare la struttura e la distribuzione dei tre indicatori selezionati:
 - Perc_Cons % consumatori ultimi 12 mesi
 - Litres_Cons litri di alcol puro per bevitore
 - Perc_Ast % astinenti a vita
- Analizzare differenze per:
 - Genere
 - Regione WHO
 - Gruppo di reddito
 - Anno
- Individuare outlier, anomalie, trend e pattern regionali o demografici.

Le visualizzazioni seguenti offrono un primo sguardo descrittivo alla struttura del dataset WHO.

Introduzione

Dataset e metodologie

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri Distribuzioni dei valori dei tre indicatori principali (Litres_Cons, Perc_Cons, Perc_Ast) sull'intero campione, utili per confrontare scale e variabilità.

per genere. Evidenziate forti differenze tra uomini e donne.

Dataset e

Exploratory
Data Analysis
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri

Confronto tra media e deviazione standard dei tre indicatori suddivisi

Trend Globale per Indicatori (Male vs Female)

Introduzione

Dataset e

Exploratory
Data Analysis
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri Andamento temporale aggregato a livello globale dei tre indicatori principali, disaggregati per genere. Mostrano una tendenza generale verso la diminuizione del consumo medio tra i bevitori e verso l'aumento della percentuale di consumatori.

Introduzione

Dataset e

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri Riepilogo generale dei dati: a sinistra la matrice di correlazione (Spearman [9]) tra i tre indicatori principali di consumo alcolico, evidenziando una forte correlazione negativa tra astinenza e consumo; a destra media e deviazione standard per genere e indicatore.

Perc_Cons	Litres_Cons	Perc_Ast
1	0.34	-0.98
0.34	1	-0.33
-0.98	-0.33	1

indicator_short	gender	media	sd
Litres_Cons	Female	6.11	3.69
Litres_Cons	Male	16.63	10.26
Perc_Ast	Female	52.10	27.03
Perc_Ast	Male	37.85	27.71
Perc_Cons	Female	34.83	23.06
Perc_Cons	Male	50.26	25.66

Evoluzione nel tempo della media per ciascun indicatore, separata per genere. Permette di osservare andamenti distinti per uomini e donne.

Dataset e

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametric

Distribuzione dei litri medi di alcol puro per bevitore nelle diverse regioni WHO. Evidenti differenze culturali e geografiche.

Introduzione

Exploratory Data Analysis

(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Introduzione

metodologie

Exploratory

Data Analysis (EDA) Analisi

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri Distribuzione percentuale dei consumatori di alcol negli ultimi 12 mesi, suddivisa per regione WHO. Evidenziate aree a forte consumo.

Introduzione

metodologie Exploratory

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri Distribuzione della percentuale di popolazione che non ha mai consumato alcol, distinta per regione. Alcune aree mostrano valori estremi.

B. Analisi per fascia di reddito (Income Group)

Confronto tra media e deviazione standard dei tre indicatori per fasce di reddito. I paesi ad alto reddito mostrano maggiori consumi.

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e

C. Variazioni annuali regionali

Variazioni annuali nella percentuale di **consumatori** e **astinenti** a **vita**, calcolate rispetto all'anno precedente. Le differenze evidenziano andamenti non omogenei tra le regioni WHO.

Consumatori

-10 -05 00 05

Δ% rispetto all'anno precedente

Astinenti a vita 2020 2019 2018 2018 2017 2017 2010 2014 2013 2012 2012 2019 2008 2009 2000 AFRO AMRO EMRO EMRO EVEN SEAROWPRO Regione WHO

Exploratory

Data Analysis (EDA)

statistica: Test non parametric

D. Anomalie e paradosso del consumo

Relazione tra percentuale di astinenti e consumo medio tra i bevitori. Alcune regioni mostrano pattern estremi e paradossali.

Introduzione

Dataset e metodologie

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

D. Anomalie e paradosso del consumo

I paesi con maggiore divario tra alta astinenza e alto consumo tra i bevitori. Spesso associati a contesti religiosi o culturali specifici.

Dataset e

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

E. Differenze di Genere (Gender Gap)

Litri medi pro capite consumati da uomini e donne in ciascuna regione WHO. Gap confermato in ogni regione.

Dataset e

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

E. Differenze di Genere (Gender Gap)

Differenza media annua (uomini – donne) nel consumo tra bevitori. Alcune regioni mostrano riduzioni, altre un divario stabile.

Introduzione

Exploratory Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Verifica della Normalità

Introduzione

 Prima di scegliere il test statistico appropriato, è necessario verificare l'assunzione di normalità della distribuzione dei dati.

A tal fine, sono stati applicati:

- **Shapiro-Wilk test**: verifica se un campione proviene da una distribuzione normale, fornendo evidenza statistica.
- QQ-plot (Quantile-Quantile plot): confronto grafico tra i quantili osservati e teorici di una distribuzione normale. Consente di visualizzare deviazioni dalla normalità.

Interpretazione:

- Se *p-value* minore di $0.05 \Rightarrow$ la normalità è respinta.
- Se i punti nel QQ-plot si discostano dalla diagonale ⇒ possibile asimmetria o presenza di outlier.
- I risultati della verifica guideranno la scelta tra test parametrici e non parametrici nelle analisi successive.

....

Exploratory Data Analys

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametric

Test di Normalità: Litres_Cons \sim gender

Introduzione

Dataset e

Exploratory Data Analys (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Table: Risultati del test Shapiro per Litres_Cons rispetto a gender

gruppo	categoria	n	W	p_value
gender	Female	3835	0.894	1.500000e-45
gender	Male	3835	0.897	4.170000e-45

Test di Normalità: Litres_Cons \sim income_group

Introduzione

Dataset e

Exploratory
Data Analys
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametric

Table: Risultati del test Shapiro per Litres_Cons rispetto a income_group

gruppo	categoria	n	W	p_value
income_group	Low income	988	0.663	2.790000e-40
income_group	Upper middle income	2104	0.858	5.750000e-40
income_group	High income	2394	0.920	7.690000e-34
income_group	Lower middle income	2058	0.822	5.720000e-43

Test di Normalità: Perc_Ast \sim who_region

Introduzione

Dataset e metodologie

Data Analys (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Table: Risultati del test Shapiro per Perc_Ast rispetto a who_region

gruppo	categoria	n	w	p_value
who_region	Eastern Medit.	882	0.771	2.51e-33
who_region	European	2058	0.771	6.17e-47
who_region	African	1932	0.985	4.24e-13

gruppo	categoria	n	w	p_value
who_region	Americas	1470	0.967	8.96e-18
who_region	Western Pacific	1050	0.961	3.08e-16
who_region	South-East Asia	462	0.959	4.83e-10

Test di Normalità: Perc_Cons ∼ income_group

Introduzione

Dataset e

Exploratory
Data Analys

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Table: Risultati del test Shapiro per Perc_Cons rispetto a income_group

gruppo	categoria	n	W	p_value
income_group	Low income	1050	0.952	4.69e-18
income_group	Upper middle income	2100	0.960	1.52e-23
income_group	High income	2478	0.845	4.63e-44
income_group	Lower middle income	2100	0.962	5.52e-23

Test di Normalità: Perc_Cons \sim gender

Introduzione

Dataset e

Data Analys (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Table: Risultati del test Shapiro per Perc_Cons rispetto a gender

gruppo	categoria	n	W	p_value
gender	Female	3927	0.945	4.410000e-36
gender	Male	3927	0.948	2.570000e-35

Approccio ai Test Statistici non Parametrici

Introduzione

Exploratory
Data Analysis
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futur **Motivazione:** I test di normalità (Shapiro–Wilk e QQ-plot) hanno evidenziato distribuzioni non normali. → Sono stati adottati test non parametrici, più robusti e appropriati in questi casi.

Test non parametrici applicati (basati su ranghi):

- Wilcoxon rank-sum test (Mann-Whitney U test) confronto tra due gruppi indipendenti (es. gender)
- Kruskal-Wallis confronto tra tre o più gruppi indipendenti (es. income group, who_region)
- **Friedman** confronto tra misure ripetute su gruppi dipendenti (es. paesi nel tempo)

Post-hoc: Quando i test globali risultano significativi, si applica il **test di Dunn** con correzione Bonferroni (o equivalente per Friedman), per confronti a coppie.

Supporto grafico: Ogni test è accompagnato da un grafico (boxplot, line-plot ...) per facilitarne l'interpretazione visiva.

Wilcoxon rank-sum test: Litres_Cons \sim gender

Risultati del Wilcoxon rank-sum test:

Table: Risultati del Wilcoxon rank-sum test per Wilcoxon_Litres_Cons_by_gender

Test	Statistica	df	p-value
Wilcoxon	2192242	-	< 2.2e-16

IIILIOGUZIOIIE

Dataset e metodologie

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Confronto: Litres_Cons ∼ gender

Boxplot comparativo per genere: confronto dei litri pro capite tra i bevitori.

Analisi statistica: Test non parametrici

Kruskal-Wallis: Litres_Cons \sim income_group

Risultati del test Kruskal per

Kruskal_Litres_
Cons_by_income_group

Test	Statistica	df	p-value
Kruskal-Wallis	319.66	3	< 2.2e-16

metodologie

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futur

Post-hoc (Dunn + Bonferroni):

Table: Risultati del test Dunn per Dunn_Litres_Cons_by_income_group

Comparison	Z	$P_{\text{-}}unadj$	P₋adj
High income - Low income	14.103927	3.59e-45	2.16e-44
High income - Lower middle income	14.249709	4.50e-46	2.70e-45
Low income - Lower middle income	-2.712023	6.69e-03	4.01e-02
High income - Upper middle income	4.308836	1.64e-05	9.85e-05
Low income - Upper middle income	-10.489657	9.64e-26	5.78e-25
Lower middle income - Upper middle income	-9.663184	4.32e-22	2.59e-21

Confronto: Litres_Cons ∼ income_group

Confronto dei consumi medi tra bevitori in base al livello di reddito.

Dataset e

Exploratory
Data Analysis
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Kruskal-Wallis: Perc_Ast \sim who_region

Risultati del test Kruskal per Kruskal_Perc_Ast

Test Statistica df p-value Kruskal-Wallis 4280 5 < 2.2e-16

_by_who_region

Post-hoc (Dunn + Bonferroni):

Table: Risultati del test Dunn per Perc_Ast rispetto a WHO Region

Comparison	Z	P_unadj	P_adj
AFRO - AMRO	33.500610	4.72e-246	7.08e-245
AFRO - EMRO	-20.516810	1.52e-93	2.29e-92
AMRO - EMRO	-46.798042	0.00e+00	0.00e+00
AFRO - EURO	42.163805	0.00e+00	0.00e+00
AMRO - EURO	5.159904	2.47e-07	3.71e-06
EMRO - EURO	53.904717	0.00e+00	0.00e+00
AFRO - SEARO	-1.588806	1.12e-01	1.00e+00
AMRO - SEARO	-23.281419	6.84e-120	1.03e-118

Comparison	Z	P_unadj	P_adj
EMRO - SEARO EURO - SEARO AFRO - WPRO AMRO - WPRO EMRO - WPRO FURO - WPRO	13.084699 -27.542662 16.258830 -13.267709 31.902098 -18.782016	4.03e-39 5.42e-167 1.93e-59 3.56e-40 2.50e-223 1.06e-78	6.04e-38 8.13e-166 2.90e-58 5.34e-39 3.75e-222 1.59e-77
SEARO - WPRO	12.639499	1.28e-36	1.92e-35

sviluppi fut

Analisi statistica: Test non parametrici

Confronto: Perc_Ast \sim who_region

Distribuzione delle percentuali di astinenti a vita nelle varie regioni.

Introduzione

metodologie Exploratory

Analisi statistica: Verifica della

Analisi statistica: Test non parametrici

Kruskal-Wallis: Perc_Cons \sim income_group

Risultati test Kruskal-Wallis:

Table: Risultati del test Kruskal per Kruskal_Perc_Cons_by_income_group

Test	Statistica	df	p-value
Kruskal-Wallis	2815.8	3	< 2.2e-16

Post-hoc (Dunn + Bonferroni):

Table: Risultati del test Dunn per Dunn_Perc_Cons_by_income_group

Comparison	Z	P₋unadj	P_adj
High income - Low income	41.594869	0.00e+00	0.00e+00
High income - Lower middle income	45.685065	0.00e + 00	0.00e + 00
Low income - Lower middle income	-4.672610	2.97e-06	1.78e-05
High income - Upper middle income	30.658551	2.03e-206	1.22e-205
Low income - Upper middle income	-16.464539	6.60e-61	3.96e-60
Lower middle income - Upper middle income	-14.442105	2.81e-47	1.69e-46

Introduzione

Dataset e

Exploratory
Data Analysis
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Confronto: Perc_Cons \sim income_group

Differenze significative nel tasso di consumo per livello di reddito.

Introduzione

Exploratory
Data Analysis

Analisi statistica: Verifica della

Analisi statistica: Test non parametrici

Wilcoxon rank-sum test: Perc_Cons \sim gender

Risultati del Wilcoxon rank-sum test:

Table: Risultati del Wilcoxon rank-sum test per Wilcoxon_Perc_Cons_by_gender

Test	Statistica	df	p-value
Wilcoxon	5066090	-	< 2.2e-16

Introduzione

Dataset e metodologie

Data Analysis (EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Confronto: Perc_Cons \sim gender

Boxplot percentuale consumatori per genere: confronto statistico e visivo.

Dataset e

Exploratory
Data Analysis
(EDA)

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Friedman Test: Litres_Cons ∼ year (Italy, France, Germany)

Analisi statistica: Test non parametrici

Risultati del test Friedman (2000–2020) per

friedman_litres_italy _france_germany

Friedman 47.031 20 0.0005809	Test	Statistica	df	p-value
	Friedman	47.031	20	0.0005809

Post-hoc (Friedman + Bonferroni):

Table: Risultati del test post-hoc di Friedman per Litres_Cons tra Italy, France e Germany (anni 2000–2020)

Group1	Group2	p-value
2015	2000	0.219728
2016	2000	0.153810
2020	2000	0.000040
2016	2002	0.763016

Group1	Group2	p-value
2020	2002	0.005238
2020	2003	0.028373
2020	2004	0.105238
2020	2005	0.307619

Nota: sono stati esclusi dalla tabella i confronti con p-value non calcolabile (NaN) e quelli con p-value = 1.

Trend Litres_Cons - Italy, France, Germany (2000-2020)

Andamento comparativo nel tempo del consumo tra i bevitori in Italia, Francia e Germania.

parametrici

Analisi statistica: Test non

Conclusioni – Disuguaglianze strutturali

Introduzione

Dataset e metodologi

(EDA)

statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri L'analisi ha evidenziato disuguaglianze marcate nel consumo di alcol a livello globale:

- Gli uomini risultano consumatori più assidui e intensi rispetto alle donne in tutte le regioni WHO.
- Nei paesi ad alto reddito prevale il consumo; nei paesi a basso reddito è più diffusa l'astinenza a vita.
- I livelli di consumo e di consumatori di alcol differiscono in modo sostanziale tra le regioni WHO, riflettendo fattori culturali, normativi e socio-economici.
- Il 2020 segna una discontinuità nei trend dei tre indicatori, con variazioni significative in molte regioni — verosimilmente associate agli effetti della pandemia COVID-19.

Un caso emblematico è il **paradosso del consumo**: in alcune regioni una minoranza di forti bevitori coesiste con un'elevata quota di astinenti, evidenziando polarizzazioni comportamentali.

Conclusioni – Robustezza metodologica

......

Dataset e metodologie

Data Analysis (EDA)

statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri

Dal punto di vista statistico:

- I test di normalità (Shapiro-Wilk) hanno escluso la distribuzione normale nella maggior parte dei gruppi.
- I QQ-plot hanno supportato visivamente le deviazioni osservate, evidenziando asimmetrie e outlier.
- I test non parametrici (Wilcoxon rank-sum / Mann Whitney, Kruskal-Wallis e Friedman) hanno garantito inferenze robuste anche in presenza di distribuzioni eterogenee.
- L'integrazione con visualizzazioni grafiche ha rafforzato l'interpretabilità dei risultati.

Tutto il processo è stato realizzato in linguaggio \mathbf{R} , sfruttando la flessibilità della pipeline di analisi (preprocessing, EDA, test inferenziali).

Sviluppi futuri

. . .

Introduzione

Exploratory
Data Analysis

Analisi statistica: Verifica della normalità

Analisi statistica: Test non parametrici

Conclusioni e sviluppi futuri L'analisi può essere ampliata in diverse direzioni:

- Integrare nuove variabili: *istruzione, religione, politiche sull'alcol*.
- Analizzare l'impatto di eventi esogeni: pandemie, conflitti, cambi normativi.
- Collegare il consumo a indicatori di salute pubblica: mortalità, dipendenza, ospedalizzazioni.
- Sviluppare modelli predittivi o profili sintetici di rischio per target specifici.

Queste estensioni potranno supportare strategie di prevenzione basate su evidenze, utilizzando al meglio i dati disaggregati WHO.

Riferimenti I

Riferimenti bibliografici

- [1] World Health Organization, "Health Inequality Data Repository," 2024. [Online]. Available: https://www.who.int/data/inequality-monitor/data
- [2] World Health Organization, "Indicator Metadata: Alcohol Consumption Indicators," Health Inequality Data Repository, Oct. 2024. [Online]. Available: https://www.who.int/data/inequality-monitor/data
- [3] S. S. Shapiro and M. B. Wilk, "An analysis of variance test for normality (complete samples)," Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.
- [4] F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.
- [5] W. Kruskal and W. A. Wallis, "Use of ranks in one-criterion variance analysis," *Journal of the American*
- [6] M. Friedman, "The use of ranks to avoid the assumption of normality implicit in the analysis of variance," *Journal of the American Statistical Association*, vol. 32, no. 200, pp. 675–701, 1937.

Statistical Association, vol. 47, no. 260, pp. 583-621, 1952.

- [7] O. J. Dunn, "Multiple comparisons using rank sums," Technometrics, vol. 6, no. 3, pp. 241-252, 1964.
- [8] C. Bonferroni, "Teoria statistica delle classi e calcolo delle probabilità," Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1936.
- [9] C. Spearman, "The proof and measurement of association between two things," The American Journal of Psychology, vol. 15, no. 1, pp. 72–101, 1904.