18.09.2024. Алгебра Шаміна Л. С.

Урок № 5

Тема: Аналіз контрольної роботи. Раціональні вирази. Раціональні дроби.

Мета: домогтися засвоєння учнями змісту понять: цілий вираз, дробовий вираз, раціональний вираз, раціональний дріб, допустимі значення змінної у виразі; сформувати в учнів уміння виділяти названі види виразів серед запропонованих виразів зі змінними, а також виконувати дії, що мають на меті знаходження ОДЗ дробового виразу;

активізувати пізнавальну діяльність учнів; формувати культуру усного та писемного мовлення;

виховувати інтерес до вивчення математики, відповідальність за результати своєї роботи, дисциплінованість;

Тип уроку: засвоєння нових знань, умінь, навичок

Хід уроку

- І. Організаційний етап
- II. Аналіз контрольної роботи
- III. Перевірка домашнього завдання
- IV. Мотивація навчальної діяльності

Історична довідка.

Сучасне позначення дробів бере свій початок у Стародавній Індії. Його стали використовувати й араби, а від них у XII-XIV ст. було запозичено європейцями. Спочатку в запису не використовувалась дробова риска. Риску дробу стали постійно застосовувати лише близько 300 років тому.

Першим європейським вченим, який став використовувати і розповсюджувати у 1200 році сучасний запис дробів, був італійський купець і мандрівник Леонардо Пізанський. Він увів слово «дріб». Назву чисельник і знаменник увів у XIII столітті Максим Пеаунд — грецький монах, учений-математик

- V. Засвоєння нових знань
- 1. Дробові вирази. Приклади.

Дробові вирази відрізняються від цілих тим, що вони містять дію ділення на вираз зі змінними. <u>Наприклад, $2a + \frac{x}{y}$ </u>; $\frac{a+b}{a-b}$; $\frac{2}{x}$ — дробові вирази.

2. Раціональні вирази.

Цілі й дробові вирази називають раціональними виразами.

Якщо в раціональному виразі змінні замінити на числа, то отримаємо числовий вираз. Однак ця заміна можлива лише у випадку, коли вона не приводить до ділення на нуль.

Вираз $\frac{x+5}{2-x}$, якщо x=2, не має змісту, тобто числового значення цього виразу не існує.

3. Допустимі значення змінних у раціональних виразах. Приклади.

Допустимими значеннями змінних, які входять до раціонального виразу, називають усі значення змінних, за яких цей вираз має зміст.

Наприклад, у вже розглянутому виразі $\frac{x+5}{2-x}$ допустимими значеннями є всі значення x, крім x=2.

- 4. Дріб дорівнює нулю, якщо чисельник дорівнює нулю, а знаменник не дорівнює нулю. Щоб знайти значення змінної, при якому раціональний дріб дорівнює нулю, треба:
- 1) знайти ОДЗ дробу;
- 2) прирівняти чисельник дробу до нуля і знайти відповідні значення змінних;
- 3) із знайдених значень змінних вилучити ті, які не входять в ОДЗ.
 - VI. Первинне закріплення знань

Виконання вправ

- 1. Дано вирази: $\frac{x+y}{x-y}$; $x^3 \frac{x}{2}$; $\frac{5}{x} + 2x^2$; $\frac{xy-x}{5}$. Які з цих виразів є цілими; дробовими?
- 2. За яких значень змінної не має змісту вираз:
 - a) $\frac{5}{x}$;
 - $\delta) \frac{9+x}{x+3};$
 - B) $\frac{a+4}{b(b-1)}$?
- 3. За яких значень змінної x має зміст вираз:
 - a) $\frac{x}{x-\frac{16}{x}}$;
 - $6) \frac{10}{3+\frac{6}{x}}$?
- 4. Доведіть, що вираз $\frac{x^2+2}{4x-4-x^2}$ за всіх допустимих значень змінної x набуває від'ємних значень.
- 5. Знайдіть допустимі значення змінної x для виразу:
 - a) $\frac{x}{|x|-4}$;
 - $6) \frac{2x+3}{(x+4)(x-7)}$.
- 6. За яких значень змінної x має зміст вираз:
 - a) $\frac{a}{3+\frac{3}{x}}$;

$$6) \frac{1}{x - \frac{4}{x}}?$$

- 7. Відомо, що 3a + 6b = 3. Знайдіть значення виразу:
 - a) $\frac{6}{a+2b}$;
 - $6) \frac{2a+4b}{a^2+4ab+4b^2}.$
- 8. Доведіть, що вираз $\frac{x^2+6x+9}{x^2-4x+4}$ за всіх допустимих значень змінної x набуває невід'ємних значень.
- 9. Знайдіть допустимі значення змінної y для виразу $\frac{2y}{|y|-y}$.

Розв'язання

3. a) Якщо в знаменнику дробу $\frac{x}{x-\frac{16}{x}}$ буде нуль, то вираз не матиме змісту.

$$x - \frac{16}{x} = 0$$
; $\frac{x^2 - 16}{x} = 0$; $x = \pm 4$.

Отже, вираз має зміст за всіх значень змінної x, крім 0; 4; -4.

6)
$$3 + \frac{6}{x} = 0$$
; $\frac{3x+6}{x} = 0$; $x = -2$.

Отже, вираз має зміст за всіх значень змінної x, крім 0; -2.

4. $\frac{x^2+2}{4x-4-x^2} = \frac{x^2+2}{-(x^2-4x+4)} = \frac{x^2+2}{-(x-2)^2}$. Оскільки $x^2+2>0$ для всіх значень змінної x, а $(x-2)^2$

невід'ємний для всіх значень змінної x, то вираз $\frac{x^2+2}{(x-2)^2} < 0$ для всіх значень x, крім 2.

- 5. а) Допустимими значеннями змінної x для виразу $\frac{x}{|x|-4}$ будуть усі значення x, крім 4; —4, оскільки якщо $x=\pm 4$, то |x|-4=0;
- б) допустимими значеннями змінної x для виразу $\frac{2x+3}{(x+4)(x-7)}$ будуть усі значення x, крім -4; 7, оскільки якщо x=-4 і x=7, то (x+4)(x-7)=0.
 - 6. а) Вираз має зміст, якщо x 0 і x –1, оскільки якщо x =0, то не має змісту вираз $\frac{3}{x}$, а якщо x = –1, то вираз $3 + \frac{3}{x}$ дорівнює нулю;
- б) вираз має зміст, якщо x=0 і $x=\pm 2$, оскільки якщо x=0, то не має змісту вираз $\frac{4}{x}$, а якщо $x=\pm 2$, то вираз $x-\frac{4}{x}$ дорівнює нулю.
- 7. Оскільки 3a+6b=9, то 3(a+2b)=9 і a+2b=3.

a)
$$\frac{6}{a+2b} = \frac{6}{3} = 2$$
;

$$6) \frac{2a+4b}{a^2+4ab+4b^2} = \frac{2(a+2b)}{(a+2b)^2} = \frac{2}{a+2b} = \frac{2}{3}.$$

- 8. $\frac{x^2+6x+9}{x^2-4x+4} = \frac{(x+3)^2}{(x-2)^2}$. Вираз $(x+3)^2 = (x+3)^2 = 0$ і вираз $(x-2)^2 = 0$, отже, даний вираз за всіх значень змінної x, крім 2, набуває невід'ємних значень.
- 9. Якщо y > 0, то |y| = y. Отже |y| y = 0 і вираз $\frac{2y}{|y| y}$ не має змісту.

Отже, допустимими значеннями для цього виразу ϵ всі від'ємні значення змінної

VII. Підбиття підсумків уроку Закінчіть речення.

- 1. Раціональний вираз це...
- 2. Дробовим називається вираз, у якому...
- 3. Значення виразу $\frac{b+4}{b^2+2}$, якщо b=0, дорівнює...
- 4. Допустимими значеннями для виразу $\frac{x}{x-2}$ ϵ ...
- 5. Вираз $\frac{a}{a^2-9}$ має зміст, якщо...
- 6. Вираз $\frac{y}{y+3}$ не має змісту, якщо...

VIII. Домашн ϵ завдання

Повторити формули скороченого множення.

Опрацювати §1. Розвязати №8, 12, 14, 19

Перегляньте уважно навчальне відео

 $\underline{https://www.youtube.com/watch?v=IVN7tGYM3k8\&authuser=1}$

Раціональні вирази. Раціональні вирази

1. Цілі вирази складаються із чисел, букв і степенів та дій додавання, віднімання, множення, піднесення до степеня та ділення, крім ділення на змінну.

Приклад. a+b; $2a^3$; $3x(x-y)^3$; b; 5 — цілі вирази. !Будь-який цілий вираз можна подати у вигляді многочлена.

2. Дробові вирази обов'язково містять дію ділення на вираз зі змінною (змінними), а також можуть містити всі дії, які ϵ в цілому виразі.

Приклад. $\frac{a}{b}$; $\frac{a}{2b}$ + 1; $\frac{x-y}{x^2-y^2}$; 5x:y — дробові вирази.

- 3. Цілі вирази разом з дробовими виразами називають раціональними виразами.
- **4.** 4. Запис $\frac{A}{B}$, де A і B деякі буквені або числові вирази, називають дробом.

Дріб $\frac{A}{B}$, де A і B — многочлени називають раціональним дробом.

Приклад. $\frac{5}{a-1}$; $\frac{a}{b+7}$; $\frac{x+y}{x^2+xy+y^2}$ — раціональні дроби.

5. Область допустимих значень змінних у виразі (ОДЗ) — усі такі значення змінних, при яких вираз має зміст.

Приклад. Для виразу $\frac{5}{a^2-4}$ допустимими є всі значення a, крім тих, при яких $a^2-4=0$, тобто (a-2)(a-2)

(x+2)=0, тобто a=2 або a=-2. Отже, **ОДЗ** змінної a у виразі $\frac{5}{a^2-4}$ можна записати так:

ОДЗ: $a \neq \pm 2$ (або $a \neq 2$ і $a \neq -2$, або всі значення a, крім a = 2 та a = -2).

6. Раціональний дріб $\frac{A}{B}$ дорівнює 0, тоді і тільки тоді, коли A=0 і $B\neq 0$ (або $\frac{A=0}{B}$)

Щоб знайти значення змінної, при якому раціональний дріб $\frac{A}{B}$ дорівнює 0, треба:

- а) знайти ОДЗ дробу (з умови $B \neq 0$);
- б) прирівняти чисельник до нуля (A=0) і знайти відповідні значення змінних;
- в) із значень, здобутих в п. б) вилучити ті, що не війшли до ОДЗ.

Приклад. При якому значенні змінної дріб $\frac{x^2 - 16}{x - 4}$ дорівнює нулю?

1) ОДЗ: $x - 4 \neq 0$; $x \neq 4$; 2) $x^2 - 16 = 0$; (x - 4)(x + 4) = 0; x = 4 або x = -4. 3) x = 4 не входить до ОДЗ, тому при x = -4 дріб $\frac{x^2 - 16}{x - 4}$ дорівнює нулю.