9. Hallar una expresión para un vector unitario normal a la superficie

 $x = \cos v \operatorname{sen} u, \quad y = \operatorname{sen} v \operatorname{sen} u, \quad z = \cos u$

en la imagen de un punto (u, v) para u en $[0, \pi]$ y v en $[0, 2\pi]$. Identificar esta superficie.

- **10.** Repetir el Ejercicio 9 para la superficie $x=3\cos\theta\sin\phi,\ y=2\sin\theta\sin\phi,\ z=\cos\phi$ para $\theta\in[0,2\pi]$ y $\phi\in[0,\pi]$.
- **11.** Repetir el Ejercicio 9 para la superficie $x=\sin v, y=u, z=\cos v$ para $0\leq v\leq 2\pi$ y $-1\leq u\leq 3.$
- **12.** Repetir el Ejercicio 9 para la superficie $x=(2-\cos v)\cos u, y=(2-\cos v)\sin u, z=\sin v$ para $-\pi \le u \le \pi, -\pi \le v \le \pi$. ¿Es una superficie regular?
- **13.** (a) Desarrollar una fórmula para el plano tangente a la superficie x = h(y, z).
 - (b) Obtener una fórmula similar para y = k(x, z).
- **14.** Hallar la ecuación del plano tangente a la superficie $x=u^2, y=v^2, z=u^2+v^2$ en el punto u=1, v=1.
- **15.** Hallar una parametrización de la superficie $z = 3x^2 + 8xy$ y utilizarla para determinar el plano tangente en x = 1, y = 0, z = 3. Comparar la respuesta con la que se obtiene usando gráficas.
- **16.** Hallar una parametrización de la superficie $x^3 + 3xy + z^2 = 2$, z > 0, y utilizarla para determinar el plano tangente en el punto x = 1, y = 1/3, z = 0. Comparar la respuesta con la que se obtiene usando conjuntos de nivel.
- 17. Considérese la superficie en \mathbb{R}^3 parametrizada por

$$\begin{split} & \mathbf{\Phi}(r,\theta) = (r\cos\theta, r\sin\theta, \theta), \quad 0 \leq r \leq 1 \\ & \text{y} \quad 0 \leq \theta \leq 4\pi. \end{split}$$

- (a) Dibujar y describir la superficie.
- (b) Hallar una expresión para una normal unitaria a la superficie.
- (c) Hallar una ecuación para el plano tangente a la superficie en el punto (x_0, y_0, z_0) .
- (d) Si (x_0, y_0, z_0) es un punto de la superficie, demostrar que el segmento de línea horizon-

tal de longitud unidad desde el eje z que pasa por (x_0, y_0, z_0) está contenido en la superficie y en el plano tangente a la superficie en (x_0, y_0, z_0) .

- **18.** Dada una esfera de radio 2 centrada en el origen, hallar la ecuación del plano tangente a ella en el punto $(1, 1, \sqrt{2})$ considerando la esfera como:
 - (a) Una superficie parametrizada por $\Phi(\theta, \phi) = (2\cos\theta \sin\phi, 2\sin\theta \sin\phi, 2\cos\phi)$.
 - (b) Una superficie de nivel de $f(x, y, z) = x^2 + y^2 + z^2$.
 - (c) La gráfica de $g(x, y) = \sqrt{4 x^2 y^2}$.
- **19.** (a) Hallar una parametrización para el hiperboloide $x^2 + y^2 z^2 = 25$.
 - (b) Hallar una expresión para una normal unitaria a esta superficie.
 - (c) Hallar una ecuación para el plano tangente a la superficie en $(x_0, y_0, 0)$, donde $x_0^2 + y_0^2 = 25$.
 - (d) Demostrar que las líneas $(x_0, y_0, 0) + t(-y_0, x_0, 5)$ y $(x_0, y_0, 0) + t(y_0, -x_0, 5)$ están en la superficie y también en el plano tangente determinado en el apartado (c).
- **20.** Una superficie parametrizada se describe mediante una función diferenciable $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^3$. Como vimos en el Capítulo 2, la derivada proporciona una aproximación lineal que da una representación del plano tangente. Este ejercicio demuestra que, en efecto, esto es así.
 - (a) Suponiendo que $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$, demostrar que la imagen de la transformación lineal $\mathbf{D}\Phi(u_0, v_0)$ es el plano generado por \mathbf{T}_u y \mathbf{T}_v . [Aquí \mathbf{T}_u y \mathbf{T}_v están evaluados en (u_0, v_0) .]
 - (b) Demostrar que $\mathbf{w} \perp (\mathbf{T}_u \times \mathbf{T}_v)$ si y solo si \mathbf{w} está en la imagen de $\mathbf{D}\Phi(u_0, v_0)$.
 - (c) Demostrar que el plano tangente tal y como se ha definido en esta sección es lo mismo que el "plano parametrizado"

$$(u,v)\mapsto \mathbf{\Phi}(u_0,v_0)+\mathbf{D}\mathbf{\Phi}(u_0,v_0)\begin{bmatrix}u-u_0\\v-v_0\end{bmatrix}.$$

- **21.** Considérense las superficies $\Phi_1(u,v) = (u,v,0)$ y $\Phi_2(u,v) = (u^3,v^3,0)$.
 - (a) Demostrar que la imagen de Φ_1 y de Φ_2 es el plano xy.
 - (b) Demostrar que Φ_1 describe una superficie regular, pero Φ_2 no. Concluir que la noción