Сила Лоренца

Задачи из mathus

Движение заряда в магнитном поле

Задача 7

Частица массой m, несущая заряд q, влетает со скоростью v в область однородного магнитного поля с индукцией В перпендикулярно линиям индукции и плоской границе области (см. рисунок). Определите максимальное расстояние, на которое удалится от границы области частица в процессе своего движения.

Решение:

Частица движется по дуге окружности, радиус которой R и есть искомое расстояние. Сила Лоренца, действующая на частицу, создаёт центростремительное ускорение:

$$a = \frac{qvB}{m} = \frac{v^2}{R}.$$

Отсюда

$$R = \frac{mv}{qB}.$$

Задача 17

Две бусинки, каждая с положительным зарядом q и массой m, могут скользить без трения по жёсткому непроводящему стержню. Систему помещают в однородное магнитное поле с индукцией B и приводят во вращение с постоянной угловой скоростью ω вокруг оси O, перпендикулярной стержню и параллельной направлению магнитного поля (см. рис.). Оказалось,

что шарики находятся в равновесии (относительно стержня) на одном и том же расстоянии R от оси O при двух значениях угловой скорости ω_1 и ω_2 .

- 1) Найти заряд q, считая известными m, B, ω_1 и ω_2 .
- 2) Найти R, считая известными m, B, ω_1 и ω_2 .

Силой тяжести, силами сопротивления, а также магнитным полем, индуцированным бусинками, пренебречь.

Решение:

Составим систему уравнений и найдём q и R:

$$q\omega_1 RB - \frac{kq^2}{4R^2} = m\omega_1^2 R$$
, $q\omega_2 RB - \frac{kq^2}{4R^2} = m\omega_2^2 R$
 $q\omega_1 B - \frac{kq^2}{4R^3} = m\omega_1^2$, $q\omega_2 B - \frac{kq^2}{4R^3} = m\omega_2^2$

Исключив R из системы двух последних уравнений, находим $q=\frac{m(\omega_1+\omega_2)}{B}$. Подставив выражение для q в любое B уравнение системы, получим $R=\sqrt[3]{\frac{km(\omega_1+\omega_2)^2}{4\omega_1\omega_2B^2}}$.

Задача 8

Частица массой m и зарядом q влетает со скоростью v в область однородного магнитного поля шириной d. В результате после прохождения магнитного поля направление скорости изменяется на угол α . Траектория частицы лежит в одной плоскости (см. рис.). Определите индукцию магнитного поля B и время пролёта частицы через магнитное поле.

$\stackrel{d}{\longrightarrow}$

Решение:

Так как начальная скорость частицы $v\perp B$, то движение её будет происходить в перпендикулярной полю плоскости. Действительно, сила Лоренца всегда перпендикулярна полю, а потому продольная её составляющая равна нулю. Не может появиться, следовательно, и продольная составляющая скорости. Далее, так как в магнитном поле всегда v=const и $v\perp B$, то $F_{\pi}=qvB=const$.

Таким образом, частица будет двигаться с постоянной по модулю скоростью под действием постоянной по модулю силы, перпендикулярной скорости. Это — движение по дуге окружности. Записывая второй закон Ньютона для этого движения, получим

$$m\frac{v^2}{R} = qvB \Rightarrow B = \frac{mv}{qR} = \frac{mv}{qd}\sin\alpha.$$

Для задания с кратким ответом: время полного оборота частицы с массой m и зарядом q в магнитном поле B определяется формулой $T=\frac{2\pi}{\omega}=\frac{2\pi m}{qB},$ а время движения по дуге с углом α определяется формулой

$$\tau = \frac{\alpha}{2\pi}T = \frac{\alpha m}{qB} = \frac{\alpha d}{v \sin \alpha}.$$

Задача 10

Частица массой $m=6.6\cdot 10^{-27}$ кг и зарядом $q=3.2\cdot 10-19$ Кл пролетает область однородного магнитного поля с индукцией B=0.03 Тл, изменив направление своего движения на угол $\alpha=0.8$ рад (см. рисунок). Начальная скорость частицы перпендикулярна границе поля и силовым линиям поля.

- 1) Найти отношение скорости v при вылете из поля к скорости v_0 при влёте в поле. Дать объяснение.
 - 2) Найти время пролёта частицы через магнитное поле.

Решение:

- 1) v/v_0 , так как сила Лоренца перпендикулярна скорости и её работа равна нулю.
- 2) В поле частица движется с постоянной скоростью по дуге окружности радиусом R . При этом, дуге соответствует центральный угол, равный α . Имеем:

$$\frac{mv^2}{R} = qvB \; , \qquad t = \frac{R\alpha}{V}$$

Итак,

$$t = \frac{m\alpha}{qB} = 5.5 \cdot 10^{-7} \text{ c} = 550 \text{ нс.}$$

Задача 9

Электрон со скоростью $v=10^9$ см/с влетает в область однородного магнитного поля с индукцией $B=10^{-3}$ Тл (см. рисунок). Направление скорости перпендикулярно линиям индукции поля. Определите максимальную глубину h проникновения электрона в область магнитного поля (то есть наибольшее удаление электрона от прямой KL). Отношение заряда электрона к его массе $\gamma=1.76\cdot 10^{11}$ Кл/кг, угол падения $\alpha=30^\circ$.

Решение:

Электрон будет двигаться в магнитном поле с постоянной скоростью v по дуге окружности радиуса R, который найдётся из условия равенства центростремительной силы и силы Лоренца:

$$\frac{mv^2}{R} = evB.$$

Здесь e — заряд электрона, m — его масса. Глубина проникновения

$$h = R - R \sin \alpha = \frac{v}{\gamma B} (1 - \sin \alpha) \approx 28 \ mm$$

Задача 11

Электрон влетает в область однородного магнитного поля и через время t=0.91 нс покидает поле (см. рисунок). Начальная скорость электрона перпендикулярна силовым линиям поля и составляет угол $\beta=0.4$ рад с границей поля. Масса электрона $m=9.1\cdot 10^{-31}$ кг, модуль его заряда $e=1.6\cdot 10^{-19}$ Кл.

- 1) Найти отношение скорости v при вылете из поля к скорости v_0 при влёте в поле. Дать объяснение.
 - 2) Найти индукцию магнитного поля.

Решение:

- 1) $v/v_0=1$, так как сила Лоренца перпендикулярна скорости и её работа равна нулю.
- 2) В поле частица движется с постоянной скоростью по дуге окружности радиусом R. При этом, дуге соответствует центральный угол $\alpha=2\beta$. Имеем:

$$\frac{mv^2}{R} = evB \; , \qquad t = \frac{R\alpha}{v} = \frac{2R\beta}{v}.$$

Итак,

$$t = \frac{2m\beta}{et} = 5 \cdot 10^{-3} \text{ Tл} = 5 \text{ мТл}.$$

Задача 14

(Винтовая линия) В область однородного магнитного поля B влетает заряженная частица, скорость v которой направлена под острым углом α к вектору магнитной индукции. Объясните, почему траекторией частицы будет винтовая линия. Найдите радиус и шаг этой винтовой линии. Масса частицы равна m, заряд равен q.

Решение:

Рассмотрим случай $\alpha=0$. При этом сила Лоренца равна нулю и на заряд не действует. Следовательно, он будет двигаться прямолинейно с постоянной скоростью v, т.е. по инерции. Легко видеть, что вариант произвольного угла α представляет собой ком-бинацию двух частных случаев: $\alpha_1=90^\circ$ и $\alpha_2=0$. Разложим вектор \vec{v} на две составляющие $\vec{v}_1\perp\vec{B}$ и $\vec{v}_2\parallel\vec{B}$: $\vec{v}=\vec{v}_1+\vec{v}_2$. Интуитивно ясно, что частица будет совершать вращательное движение по поверхности цилиндра, равномер-но перемещаясь со скоростью v_2 вдоль его образующей.

Pадиус цилиндра R определяется из уравнения

 $\frac{mv_1^2}{R} = qv_1B$ (сила Лоренца действует на тело только благодаря составляющей скорости v_1):

$$R = \frac{mv_1}{qB} = \frac{mv\sin\alpha}{qB}.$$

Период обращения частицы

$$T = \frac{2\pi R}{v_1} = \frac{2\pi m}{qB}.$$

Он не зависит ни от модуля скорости v, ни от её направления, определяемого углом α . Траектория заряда — винтовая линия, «навитая» на цилиндр. Её шаг — расстояние, проходимое вдоль образующей за один оборот:

$$h = v_2 T = \frac{2\pi m v \sin \alpha}{qB}.$$

Задача 15

Электрон влетает в однородное магнитное поле. В точке A он имеет скорость v, которая составляет с напралением поля угол α (см. рисунок). При какой индукции магнитного поля электрон окажется в точке D? Заряд электрона равен e, его масса равна m, расстояние AD = L.

Решение:

Очевидно, что на расстоянии L должно уложиться целое число шагов винтовой линии, т.е.

$$L = nh = \frac{2\pi mv\cos\alpha}{qB} \cdot n$$

Отсюда получаем неоднозначный ответ:

$$B = \frac{2\pi mv \cos \alpha}{qL} \cdot n$$

где n = 1, 2, 3, ...

Задача 16

В двух полупространствах созданы однородные магнитные поля с индукциями B_1 и B_2 ($B_2=2B_1$), векторы которых параллельны. Частица с зарядом q и массой m находится на границе раздела полей и имеет скорость v_0 , направленную перпендикулярно границе раздела. Найти среднюю скорость смещения частицы вдоль границы раздела полей за большое время.

Решение:

В верхнем и нижнем полупространствах частица будет двигаться по полуокружности с постоянной скоростью. Однако из-за неодинаковости индукций магнитного поля радиусы этих окружностей

$$R = \frac{mv_0}{qB}$$

будут различными, причем радиус окружности в верхнем полупространстве R_1 будет вдвое больше радиуса окружности в нижнем R_2 (см. рисунок). Поэтому за период частица сдвинется вдоль границы раздела полупространств на расстояние

$$\Delta x = 2 (R_1 - R_2) = \frac{2mv_0 (B_2 - B_1)}{qB_1B_2}$$

за время

$$t = \frac{\pi R_1}{v_0} + \frac{\pi R_2}{v_0} = \frac{\pi (R_1 + R_2)}{v_0} = \frac{\pi m (B_2 + B_1)}{q B_1 B_2}$$

Поэтому средняя за время одного прохождения частицы по двум полупространствам скорость частицы (или за большое время, включающее в себя много таких прохождений) будет равна

$$v_{cp} = \frac{\Delta x}{t} = \frac{2v_0 (B_2 - B_1)}{\pi (B_2 + B_1)} = \frac{2v_0}{3\pi}.$$

Задача 22

В устройстве для определения изотопного состава ионы калия $^{39}K+~(A_1=39)~$ и $^{41}K+~(A_2=41)~$ сначала ускоряются в электрическом поле, а затем попадают в однородное магнитное поле индукции B, перпендикулярное направлению их движения. В процессе опыта из-за несовершенства аппаратуры ускоряющее напря-жение меняется около своего среднего значения на величину $\pm \Delta u$. С какой относительной погрешностью $\Delta u/u_0$ нужно поддерживать постоянным значение ускоряющего напряжения, чтобы следы пучков изотопов калия на фотопластинке Φ не перекрывались?

Решение:

На движущийся заряженную частицу в магнитном поле действует сила Лоренца, перпендикулярная скорости частицы и равная по абсолютной величине qvB. Здесь q — заряд частицы, v — ее скорость, B — индукция магнитного поля. В однородном магнитном поле частица будет двигаться по окружности, радиус R которой можно найти из второго закона Ньютона:

$$m \frac{v^2}{R} = qvB$$
, и $R = \frac{mv}{qB}$

где m — масса частиц. Если воспользоваться законом сохранения энергии $\frac{mv^2}{2} = qu$ то радиус траектории можно выразить через ускоряющий потенциал u:

$$R = \frac{mv}{qB} = \frac{1}{B}\sqrt{\frac{2um}{q}}.$$

Это соотношение показывает, что радиус траекторий зависит от произведения *um*. При изменении ускоряющего потенциала радиус траектории каждого из пучков калия будет изменяться (см. рис.). Чтобы пучки ионов не перекрывались, необходимо выполнение следующего условия:

$$(u_0 + \Delta u)m_1 < (u_0 - \Delta u)m_2$$

или

$$m_1 + \frac{\Delta u}{u_0} m_1 < m_2 - \frac{\Delta u}{u_0} m_2,$$

где m_1 и m_2 — массы ионов калия, пропорциональные атомным весам A_1 и A_2 соответственно. Отсюда

$$\frac{\Delta u}{u_0} < \frac{m_2 - m_1}{m_2 + m_1} = \frac{A_2 - A_1}{A_2 + A_1} = 0.025 = 2.5 \%$$

Заметим, что современная экспериментальная техника позволяет фиксировать ускоряющий потенциал с гораздо более высокой точностью (на несколько порядков).

Задача 23

Узкий пучок ионов с одинаковым зарядом, но с немного различающимися массами направляют в область цилиндрической формы, в которой создано однородное магнитное поле, направленное по оси цилиндра. Скорость ионов перпендикулярна этой оси. После прохождения области пучок отклонился от направления первоначального движения на угол $\alpha=30^\circ$, и у него появилась расходимость с углом $\Delta \alpha \approx 0.6^\circ$ (начальная расходимость была пренебрежимо мала по сравнению с этой). Найти (в процентах) разброс масс ионов пучка $(\Delta m/m=?)$.

Решение:

Пусть q-заряд каждого иона. Под действием силы Лоренца ионы двигаются по окружности, радиус которой определяется из уравнения для центростремительной компоненты ускорения:

$$m\frac{v^2}{R} = qvB \Rightarrow R = \frac{mv}{qB}$$

(v-c)корость ионов). Из построения видно, что угол отклонения иона при прохождении цилиндрической области радиуса r с магнитным полем определяется из соотношения

$$\operatorname{tg}\left(\frac{\alpha}{2}\right) = \frac{r}{R} = \frac{qBr}{mv}.$$

R

Изменение этого угла при малом изменении массы:

$$\Delta \left[\operatorname{tg} \left(\frac{\alpha}{2} \right) \right] \approx \frac{\Delta \alpha}{2 \cos^2(\alpha/2)} \approx \frac{qBr}{v} \left(-\frac{1}{m^2} \right) \Delta m.$$

Так как знак изменения нам не важен (знак «минус» здесь просто показывает, что увеличение массы соответствует уменьшению угла), перепишем это соотношение в виде

$$\frac{qBr}{mv}\frac{\Delta m}{m} = \operatorname{tg}\left(\frac{\alpha}{2}\right)\frac{\Delta m}{m} \approx \frac{\Delta \alpha}{2\cos^2(\alpha/2)},$$

откуда

$$\frac{\Delta m}{m} \approx \frac{\Delta \alpha}{\sin(\alpha)} \approx 2.1\%.$$

Omeem: $\frac{\Delta m}{m} \approx \frac{\Delta \alpha}{\sin(\alpha)} \approx 2,1\%$.

Задача 24

Сплошной металлический цилиндр радиусом R вращается вокруг своей оси с постоянной угловой скоростью ω . Объясните, почему в цилиндре при этом появляется электрическое поле, и найдите разность потенциалов между поверхностью цилиндра и осью вращения. При какой индукции магнитного поля, направленного вдоль оси цилиндра, электрическое поле в цилиндре не возникнет? Отношение заряда электрона к его массе равно e.

Решение:

При вращении цилиндра свободные электроны за счет центробежного эффекта отбрасываются к поверхности цилиндра, образуя вблизи нее избыточный отрицательный заряд. Это разделение зарядов прекращается, когда возникшее электрическое поле способно сообщать свободным электронам центростремительное ускорение $a=\omega^2 r$, т. е. когда eE=ma. Отсюда $E=\frac{m\omega^2 r}{e}$. Напряженность электрического поля с ростом r линейно возрастает, поэтому ее среднее значение

$$E_{\rm cp} = \frac{E_{max}}{2} = \frac{m\omega^2 R}{2e}.$$

Значит,

$$U = E_{\rm cp}R = \frac{m\omega^2 R^2}{2e}$$

Если магнитное поле направлено вдоль оси цилиндра, сила Лоренца, направленная по радиусу, может сама сообщить электронам необходимое центростремительное ускорение: $F_{\pi}=evB,\,v=\omega r$ и $a=\omega^2 r$, получаем $e\omega Br=m\omega^2 r$; значит, $B=\frac{m\omega}{e}$.

Разумеется, направление \vec{B} должно быть согласовано с направлением вращения (чтобы сила Лоренца была направлена к оси вращения).

Задача 25

Частица с удельным зарядом $\alpha=10^8~{\rm K}\pi/{\rm K}\Gamma$ влетает в камеру Вильсона, находящуюся в магнитном поле с индукцией $B=10^{-2}~{\rm T}\pi$. Направление её скорости перпендикулярно линиям индукции поля. После поворота вектора скорости на 90° (изменение радиуса трека частицы при этом составило $\varepsilon=5\%$) поле выключают. После этого частица проходит путь $L=300~{\rm km}$ до полной остановки. С какой скоростью влетела частица в камеру, если сила сопротивления при её движении пропорциональна скорости?

Решение:

Рассмотрим сначала движение частицы в однородном магнитном поле. На частицу действуют две силы: сила Лоренца F_n , которая обеспечивает движение по окружности с центростремительным ускорением, и сила сопротивления F_c со стороны окружающего водяного пара (рис.). Уравнение движения под действием силы Лоренца имеет вид

$$\frac{mv^2}{R} = qvB,$$

где v — скорость, q — заряд, m — масса частицы, R — радиус кривизны ее траектории. Из этого уравнения найдем связь между R и v:

$$R = \frac{mv}{qB} = \frac{v}{\alpha B}$$

При малом относительном изменении радиуса кривизны ($\frac{\Delta R}{R} = \frac{\varepsilon}{100} = 0.05$) можно записать

$$\frac{\Delta R}{R} = \frac{\Delta v}{v} \approx \frac{\Delta v}{v_0},$$

где v_0 — скорость частицы при влете в магнитное поле. Изменение абсолютной величины скорости Δv происходит под действием тормозящей силы F=kv, где k — константа. Уравнение движения частицы вдоль траектории имеет вид

$$kvdt = -mdv$$
,

или, поскольку vdt = ds (отрезок пути, пройденного частицей).

$$ds = -\frac{m}{k}dv.$$

В конечных приращениях (за время поворота вектора скорости на 90°)

$$\Delta s pprox rac{\pi R}{2} = rac{\pi v_0}{2 lpha B} \qquad \text{if} \qquad \Delta v = -v_0 rac{arepsilon}{100},$$

откуда получаем:

$$\frac{\pi}{2\alpha B} = \frac{m}{k} \frac{\varepsilon}{100}.$$
 (1)

Теперь рассмотрим прямолинейный участок траектории частицы после выключения магнитного поля. В этом случае на частицу действует только сила сопротивления, поэтому

$$\Delta s = L,$$
 a $\Delta v = -v_0 \left(1 - \frac{\varepsilon}{100} \right).$

Решение уравнения движения в конечных приращениях будет иметь вид

$$L = \frac{m}{k} v_0 \left(1 - \frac{\varepsilon}{100} \right). \tag{2}$$

Совместное рассмотрение движения на обоих участках траектории позволяет из выражений (1) и (2) найти скорость v_0 , с которой частица влетела в магнитное поле:

$$v_0 pprox rac{2\epsilon lpha LB}{(100 - \epsilon)\pi} pprox 10^4 \, \mathrm{m/c}$$

Задача 26

В неоднородном магнитном поле с индукцией $B=\alpha x\ (x\geqslant 0)$ (рис.) стартует частица массой m и зарядом q с начальной скоростью v, направленной вдоль оси Ox. Определите максимальное смещение x_{max} частицы вдоль оси x.

Решение:

Единственная действующая на частицу сила — сила Лоренца $\vec{F}_{\rm n}$ — направлена перпендикулярно скорости частицы, поэтому она работы не совершает. Следовательно, энергия частицы и ее скорость сохраняются. Отсюда получаем

$$v_x^2 + v_y^2 = v^2.$$

Уравнение второго закона Ньютона для частицы в проекции на ось Oy в произвольный момент времени имеет вид (рис.)

$$m\frac{dv_y}{dt} = F_{\pi}\cos\alpha$$

Сила Лоренца равна $F_{\pi} = Bqv$. Тогда

$$m\frac{dv_y}{dt} = Bqv\cos\alpha = Bqv_x = axqv_x$$

Умножим на dt: $m \cdot dv_y = aqx \cdot dx$ и после интегрирования получим

$$m(v_y - v_{0y}) = aq\left(\frac{x^2}{2} - \frac{x_0^2}{2}\right)$$

Начальная скорость по оси Oy равна 0, начальная координата x_0 тоже равно 0, следовательно

$$mv_y = \frac{aqx^2}{2}.$$

Когда удаление частицы вдоль оси Ox максимально, проекция скорости частицы на ось Ox равна 0. Поскольку величина полной скорости частицы постоянна, при максимальном

удалении |vy|=v. Если заряд частицы положителен, то vy=v, а если отрицателен, то vy=-v. Таким образом,

$$mv = rac{a|q|x_{max}^2}{2}, \qquad$$
и $x_{max} = \sqrt{rac{2mv}{a|q|}}.$

Задача 27

Маленькая частица с положительным зарядом q движется в однородном магнитном поле с индукцией B в вязкой среде. Сила сопротивления среды, действующая на частичку, прямо пропорциональна ее скорости. В начальный момент времени импульс частицы равнялся p_0 и был направлен перпендикулярно линиям индукции. Вектор перемещения частицы к моменту, когда скорость частицы впервые оказалась противонаправлена начальной скорости, составляет острый угол φ с вектором $\vec{p_0}$.

- 1. Какой путь прошла частица до остановки?
- 2. Чему равен модуль перемещения частицы до остановки? Силой тяжести пренебречь.

Решение:

Выберем начало координат в т. А, направим ось y по направлению вектора скорости частицы в т. А, а ось x — перпендикулярно $\overrightarrow{v_0}$ и \overrightarrow{B} так, чтобы в начальный момент времени сила Лоренца действовала в положительном направлении оси x. Пусть b — коэффициент пропорциональности в зависимости силы сопротивления от скорости частицы $\overrightarrow{F_c} = -b\overrightarrow{v}$.

Уравнение движения частицы в проекции на координатные оси выглядит так

$$a_x = \frac{\Delta v_x}{\Delta t}; \qquad a_y = \frac{\Delta v_y}{\Delta t}.$$

Тогда

$$\begin{cases} \frac{\Delta v_x}{\Delta t} = kv_y - \alpha v_x \\ \frac{\Delta v_y}{\Delta t} = -kBv_x - \alpha v_y \end{cases}$$

$$\begin{cases} \Delta v_x = kv_y \Delta t - \alpha v_x \Delta t = k\Delta y - \alpha \Delta x \\ \Delta v_y = -kv_x \Delta t - \alpha v_y \Delta t = -k\Delta x - \alpha \Delta y. \end{cases}$$

Здесь Δx и Δy — изменение координат частицы за малый промежуток времени Δt . Суммируя изменения проекций скорости и координат частицы за произвольное время от начала движения, получим

$$\begin{cases} v_x = ky - \alpha x \\ v_y - v_0 = -kx - \alpha y \end{cases}$$

В точке C вектор скорости частицы антипараллелен $\overrightarrow{v_0}$ и $v_x=0$. Отсюда

$$ky = \alpha x$$
 u $\frac{x}{y} = \frac{k}{\alpha} = \operatorname{tg} \varphi,$ $\alpha = k \operatorname{ctg} \varphi.$

Сила Лоренца действует перпендикулярно скорости и изменение модуля скорости частицы определяется только силой сопротивления. Поэтому

$$\frac{\Delta v}{\Delta t} = -\alpha v$$

 $\Delta v = -\alpha v \Delta t = -\alpha \Delta s$, где Δs — расстояние, пройденное за Δt . Суммируя обе части уравнения за произвольное время движения, получаем

$$\begin{aligned} v - v_0 &= -\alpha s \\ v_0 &= \alpha S = kSctg\varphi, \\ S &= \frac{mv_0 \operatorname{tg} \varphi}{qB} = \frac{p_0 \operatorname{tg} \varphi}{qB}. \end{aligned}$$

Здесь S — расстояние, пройденное частицей от начала движения до момента остановки. Пусть координаты точки O (точки остановки) x_0, y_0 . Так как в этой точке $v_x = 0, y_0 = x_0 \operatorname{ctg} \varphi$.

$$v_y - v_0 = -v_0 = -kx_0 - \alpha y_0 = -kx_0 \left(1 + \operatorname{ctg}^2 \varphi \right) = -\frac{kx_0}{\sin^2 \varphi}$$
$$x_0 = \frac{mv_0}{qB} \sin^2 \varphi.$$

Расстояние от начальной точки до точки остановки

$$AO = l = \frac{x_0}{\sin \varphi} = \frac{p_0}{qB} \sin \varphi.$$