

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年10月19日

- 1. 根据设备使用方法说明文档,了解设备的面板和使用方法
- 2. 用手持万用表和台式万用表测量电阻、电容、导线和二极管
- 3. 用手持万用表和台式万用表测量电流(1V电压、1KΩ电阻)
- 4. 用示波器和手持万用表测量三通道直流电源产生的直流电压 (1V电压、1KΩ电阻)
- 5. 用示波器和手持万用表测量任意波形发生器产生的交流电压 (正弦波、方波、三角波等)

■ 电压和电流测量

1、电压测量:并联

2、电流测量: 串联

3、示波器只用于测电压

■ 台式万用表内阻及测量误差

内阻 = Burden charge/Range

1mA量程: 内阻<(0.17V/1mA=) 170Ω

10mA量程:内阻<(0.17V/10mA=)17Ω

Range	Resolution	Burden Voltage	24 Hours T _{CAL} ±1°C
10 μΑ	10 pA	<0.13 V	0.007 + 0.002
100 μΑ	100 pA	<0.14 V	0.010 + 0.020
1 mA	1 nA	<0.17 V	0.007 + 0.006
10 mA	10 nA	<0.17 V	0.006 + 0.003
100 mA	100 nA	<0.20 V 11	0.010 + 0.030
1 A	1 μΑ	<0.55 V 11	0.020 + 0.004
3 A	1 μΑ	<1.70 V 11	0.030 + 0.004
10 A 12	10 μΑ	<0.50 V	0.140 + 0.025

■ 二极管导通性测量

台式万用表: Diode模式,正接得到正向导通电压,反接得到Overflow V

手持万用表:二极管模式,正接得到正向导通电压,反接得到OL.

注意: 手持万用表需要先旋转到电阻、二极管、蜂鸣测量模式, 再按黄色

按钮调整到二极管测量模式

直流特性测量与分析

■ 直流特性实验内容

- 1、二极管的直流特性测量与分析
- 2、双极型晶体管的直流特性测量与分析
- 3、场效应晶体管的直流特性测量与分析

■ 实验要求和目的:

- 1、了解通用仪表的的基本原理和使用方法
- 2、了解被测器件各项参数的定义和测量方法
- 3、掌握被测器件直流特性和相关机理

电压源 产生电压

手持式万用表 测量电压

台式万用表 测量电流

■ 注意事项

- 1. 请测量发光二极管(小心烫手)
- 2. 反向击穿电压大于30V

■ 课后思考

在二极管直流特性测量中,应该采用电流表外接法还是电流表内接法?为什么?

直流特性测量与分析

- 直流特性实验内容
 - 1、二极管的直流特性测量与分析
 - 2、双极型晶体管的直流特性测量与分析
 - 3、场效应晶体管的直流特性测量与分析

- 实验要求和目的:
 - 1、了解通用仪表的的基本原理和使用方法
 - 2、了解被测器件各项参数的定义和测量方法
 - 3、掌握被测器件直流特性和相关机理

■ 输入特性曲线

TO封装 (Transistor Outline)

三极管由两个 背对背的PN结组成

输入特性曲线图 (*V_{CE}*=**0V(短路)或***V_{CE}*=**0.5V)**

电压源 产生电压

手持式万用表 测量电压

台式万用表 测量电流

■ 注意事项:

- 1. V_{CE}=0V时CE端不需要连接电压源,只需用导线连接
- 2. V_{CE} 太大会烧毁器件(小心烫手),建议 V_{CE} =0.5V
- 3. 反向击穿电压约为-12.5V

输入特性曲线

输入特性曲线图 (V_{CF}=0V(短路)或V_{CF}=1V)

课后思考

- 1. V_{CE} 电压是如何影响BE端的伏安特性曲线的?
- 2. 内在机理是什么?

■ 输出特性曲线

TO封装 (Transistor Outline)

SOT封装 (Small Outline Transistor)

测试器件

输出特性曲线

■ 输出特性曲线

□ 基本测试原理电路如下图所示,测试时用逐点测试的方法把一条条的曲 线描绘出来。

■ 输出特性曲线

测试器件

测试仪表

■ 输出特性曲线

测试器件

实验内容

实验一、二极管直流特性

■ 注意事项

- 1. 请测量发光二极管(小心烫手)
- 2. 反向击穿电压大于30V

实验二、双极型晶体管输入特性

注意事项:

- V_{CE}=0V时CE端不需要连接电压源, 只需用导线连接
- 2. V_{CE} 太大会烧毁器件(小心烫手), 建议 V_{CE} =0.5V
- 3. 反向击穿电压约为-12.5V

课后思考

■ 课后思考

1. 在二极管直流特性测量中,应该采用电流表外接法还是电流表内接法?为什么?

■ 课后思考

- 1. V_{CE} 电压是如何影响BE端的伏安特性曲线的?
- 2. 内在机理是什么?

在旅客院大大學 化在旅客院大大學 化在旅客院大大學

谢谢!