ELC 2137 Lab 4: Subtractor

Jake Simmons and Haonan Jin

February 8, 2020

Summary

In this experiment we made a subtractor from a adder. First we made an adder by combining two full adders which is a two-bit adder. Then we added three XOR Gates, this was becasue we needed to invert two of our inputs to generate the 2's complement. The third XOR Gate inverted the carry out bit because Figure 3 shows that the carry out bit in our expected results was the opposite of what mathematically it should have been.

Q&A

- 1. Why did we use two full adders instead of a half adder and a full adder?
 - (a)
- 1. How many input combinations would it take to exhaustively test the adder/subtractor?
 - (a)
- 1. Why were the combinations given in the truth table chosen?
 - (a)
- 1. Do the results from your adder/subtractor match what you would expect from theory? Explain any discrepancies.
 - (a)

Results

Figure 1: Picture of Assembled Circuit

Figure 2: Two-Bit Adder/Subtractor Schematic

ELC 2137 Lab 4. Subtractor

Circuit Demonstration Page

Student names:	Jake Simmons
Haonan Jin	
Instructor Signature	s
Separate Full Adders	Tot Balling
Two-Bit Adder	St Button
Adder/Subtractor	Dil Bedron

Inputs		Expected Results			Actual Results
A	В	B 2's comp	Sub	Dec	Sub
00	01	1 1	011	3	111
00	10	10	010	2	110
00	11	01	00	1	101
01	01	11	100	- 5	000
10	01	11	101	- 3	001
10	00	00	119	- 2	010

4

Figure 3: Circuit Demonstration Page

\mathbf{Code}