Лабораторная работа №1

Изменение статической системы стабилизации высоты полёта

Пащенко А.Е. Зарубин Р.С. Вариант 3

Цуль работы: Исследование методов математического моделирования системы стабилизации высоты на персональном компьюторе.

1 Теоретический минимум

Стабилизация высоты полёта может быть достигнута как воздействием на руль высоты, так и посредством изменением тяги. Будем рассматривать наиболее распространённый случай, когда скорость полёта постоянна, а высота стабилизируется рулём высоты.

В общем видет при постоянной скорости полёта структурная схема высоты показана на рис. 1

Рис. 1: Структурная схема системы стабилизации высоты

Устойчивость такого контура может быть обеспечина выумя путями:

- 1) введением внутренней стабилизирующей обратной связи по сигналу угла тангажа ϑ , т.е. введением автопилота угла тангажа;
- 2) введением в закон управления $R_H(p)$ сигнал первой производной отклонения высоты для случая, если сервопривод имеет жёсткую обратную связь, и ссумы сигналов первой и всторой производных от сигнала отклонения высоты для случая,

когдасервопривод имеет скоростную или изодромную обратную связь.

На рис. 2 приведена структурная схема системы стабилизации высоты, содержащей автопилот угла тангажа.

Рис. 2: Структурная схема системы стабилизации высоты

Основным приемуществом такой системы чвляется то, что устойчивость траекторного контура обеспечивается регулятором $R_H(p) = i_H$ за счёт сигнала угла тангажа, снимаемого с надёжного датчика – гировертикали, практически лишённого запаздывания. Система содержащая регулятор $R_H(p) = i_H$, называется статической системой т.к. этот регулятор не обеспечивает астатизм регулярования в отношении других возмущений.

$$\begin{cases}
\dot{\Delta \alpha} = \Delta \omega_z - \bar{Y}_a^{\alpha} \Delta \alpha \\
\dot{\Delta \omega}_z = \bar{M}_z^{\alpha} \Delta \alpha + \bar{M}_z^{\omega_z} \Delta \omega_z + \bar{M}_z^{\delta_B} \Delta \delta_B \\
\dot{\Delta \vartheta} = \Delta \omega_z \\
\dot{\Delta V}_y = V_0 \bar{Y}_a^{\alpha} \Delta \alpha \\
\dot{\Delta H} = \Delta V_y \\
\dot{\Delta n}_y = n_y^{\alpha} \Delta \alpha
\end{cases} \tag{1}$$

Где система (1) — это система дифференциальных уравнений, используемая для маделирования движения самолёта в короткопериодическом движении.

$$\begin{cases} \Delta \delta_B = K_{\omega_z} \Delta \omega_z + K_{\vartheta} (\Delta \vartheta - \Delta \vartheta + f) \\ \Delta \vartheta = i_H (\Delta H - \Delta H) + i_p \int_0^t (\Delta H - \Delta H) dt \end{cases}$$
 (2)

2 Выполнение работы

2.1 Исходные данные

Таблица 1: Исходные данные

m_0	25000 кг	
S	50 m^2	
b_a	5м	
J_z	$50000 \ {\rm Kr} \ {\rm M}^2$	
H	1000 м	
M	0,5	

Таблица 2: Исходные данные

$\bar{Y}_a^{\alpha} = a_{11}, 1/c$	0.642
$\bar{M}_z^{\alpha} = a_{21}, 1/c$	5.65
$M_z^{\omega_z} = a_{22}, 1/c^2$	0.468
$\bar{M}_z^{\delta_B} = b_2$	4.5
$V_0 = a_{46}, \text{M}/c$	168
$n_y^{\alpha} = a_{51}$	11.0
K_{ω_z}, c	0.4
K_{ϑ}	0.5, 1, 2
i_H рад/м	$0.000875 \ 0.00175 \ 0.002625$
i_p рад/м	$0.0000875 \ 0.000175 \ 0.0002625$
\hat{t}_{cp}, c	8
$\hat{\sigma}_{\Delta H},\%$	30
$\hat{n}_{y_{max}}, c$	1.2
$\hat{H}_{cm}, {\scriptscriptstyle \mathrm{M}}$	20

2.2 Ход работы

- 1. На персональном компьютере установить задачу 1, после чего в цикле для каждой пары коэффициентов заданных в табл. 1, определяются:
 - а) при отработке управляющего воздействия = 100м:
 - время срабатывания
 - максимальное значение высоты
 - максимальное значение перегрузки.
 - б) при отработке постоянного возмущения f = -0.035 рад:
 - статическую ошибку регулирования.

Результаты расчетов оформить в виде таблиц 4-7.

Таблица 3: t_{cp} , c

		-F /	
$K_{\vartheta}, c/i_H$	0.000875;	0.00175	0.002625
0.5	15.75	9.5	7.5
1	15.3	8.25	6.2
2	17.6	7.7	5.75

Таблица 4: ΔH_{max} , м

$K_{\vartheta}, c/i_H$	0.000875;	0.00175	0.002625
0.5	115	131.3	141.7
1	106.2	120.3	130.5
2	101.5	112.5	120.6

Таблица 5: $\sigma_{\Lambda H}$, %

	1	- <u>—</u> 111) , •	
$K_{\vartheta}, c/i_H$	0.000875;	0.00175	0.002625
0.5	0.27	0.54	0.8
1	0.44	0.88	1.317
2	0.576	1.145	1.644

Таблица 6: $\Delta n_{y_{max}}$

$K_{\vartheta}, c/i_H$	0.000875;	0.00175	0.002625
0.5	15	31.3	41.7
1	6.2	20.3	30.5
2	1.5	12.5	20.6

Таблица 7: ΔH_{cm} , м

$K_{\vartheta}, c/i_H$	0.000875;	0.00175	0.002625
0.5			
1			
2			

2. Построить по данным табл. 4-7 графики следующих зависимостей:

$$t_{cp} = f_1(K_{\vartheta}, i_H); \sigma_{\Delta H} = f_2(K_{\vartheta}, i_H)$$

$$\Delta n_{y_{max}} = f_3(K_{\vartheta}, i_H); \Delta H_{cm} = f_4(K_{\vartheta}, i_H)$$

Нанести на графики прямые линии, соответствующие максимально допустимым величинам показателей качества переходных процессов t_{cp} .

$$\hat{\sigma}_{\Delta H};\!\Delta n_{y_{max}};\!\Delta \hat{H}_{cm}($$
смотри табл. 2)

3. Построить, используя зависимости п. 2, допустимую область изменения коэффициентов усиления $K_{\vartheta}=f(i_H)$ из условия

$$t_{cp} \le \hat{t}_{cp}; \ \sigma_{\Delta H} \le \hat{\sigma}_{\Delta H_{cp}}; \ \Delta n_{y_{max}} \le \Delta \hat{n}_{y_{max}}; \ \Delta H_{cm} \le \Delta \hat{H}_{cm}$$