

What you will Learn?

MLOps foundations: end-to-end lifecycle, roles & workflows

CI/CD for ML: automate testing, packaging and deployment pipelines

MLflow essentials: experiment tracking, model & dataset versioning, model registry

Lightweight deployment: expose models through Flask / Streamlit APIs

Large Language Models (LLMs): what they are, common use cases, basic prompt design

LLM observability basics: prompt / response logging, latency & cost metrics, simple health dashboards

Best-practice pipelines: reproducible environments, rollback strategies, minimal governance

Hands-on mini-project: build a small, fully tracked, monitored MLOps workflow you can reuse at work

What not to expect?

Deep-dive **ML theory** (statistics, advanced algorithms, math proofs)

Hyper-parameter tuning frameworks, AutoML or neural-network architecture search

Enterprise-grade Kubernetes, multi-cloud or GPU cluster orchestration

Production-scale **LLM fine-tuning**, RLHF, or model compression techniques

In-depth **security**, **compliance** or cost-optimization audits

Full-stack data-engineering tools (Airflow, Spark, Kafka, feature stores)

Guaranteed coverage of every edge case—focus is on beginner-friendly, core concepts only

Topics	Session Type	Description	Outcome
Foundation & Introduction	Conceptual Learning	MLOps fundamentals, CI/CD principles, LLM introduction, observability concepts	Understanding of MLOps ecosystem and workflow requirements
	Demo & Hands-on Lab	Basic ML workflow setup, simple model training, Flask API deployment, basic logging implementation	Working ML model API with prediction logging and health checks

Topics	Session Type	Description	Outcome
Environment & Model Tracking	Conceptual Learning	Environment management, MLflow architecture, experiment tracking principles, model versioning strategies	Knowledge of MLflow components and version control best practices
	Demo & Hands-on Lab	Anaconda/Docker setup, MLflow installation, experiment tracking, model registry usage, dataset versioning	Complete MLflow environment with tracked experiments and registered models

Topics	Session Type	Description	Outcome
Validation & Deployment	Conceptual Learning	Model validation techniques, performance metrics, monitoring strategies, deployment patterns	Understanding of model validation and production deployment considerations
	Demo & Hands-on Lab	Model validation implementation, Flask/Streamlit deployment, API development, metrics collection	Production-ready model serving with comprehensive validation and monitoring

Topics	Session Type	Description	Outcome
LLM Conceptual Learning Observability			Knowledge of LLM-specific monitoring requirements and quality metrics
	Demo & Hands-on Lab	LLM monitoring tools setup, prompt logging implementation, response tracking, inference metrics dashboard	Functional LLM monitoring system with prompt/response tracking

Topics	Session Type	Description	Outcome
Best Practices & Integration	, c	MLOps best practices, CI/CD pipeline design, model lifecycle management, production considerations	Comprehensive understanding of production MLOps workflows
	Demo & Hands-on Lab	CI/CD pipeline creation, miniproject integration, end-to-end workflow testing, deployment automation	Complete MLOps pipeline ready for workplace implementation

Keywords - Core ML Terminology

Model Types

Supervised Learning - Learning with labeled training data

Unsupervised Learning - Finding patterns in unlabeled data

Classification - Predicting categories/classes (e.g., spam/not spam)

Regression - Predicting continuous numerical values (e.g., house prices)

Keywords - Core ML Terminology

Data Concepts

Features - Input variables/attributes used for prediction

Target/Label - The output variable you're trying to predict

Training Data - Data used to teach the model

Test Data - Data used to evaluate model performance

Dataset - Complete collection of data for ML project

Keywords - Core ML Terminology

Model Development Process

Training - Process of teaching the model using training data

Prediction/Inference - Using trained model to make predictions on new data

Model Parameters - Internal settings learned during training

Hyperparameters - Settings you configure before training (e.g., learning rate)

What is MLOps?

Definition

MLOps = Machine Learning + Operations Practices for deploying and maintaining ML models in production reliably and efficiently Bridge between ML development and IT operations

Why MLOps Matters?

Scale: Deploy models at enterprise level

Reliability: Ensure consistent model performance

Automation: Reduce manual intervention

Collaboration: Align data scientists and engineers

MLOps vs Traditional Software Development

Traditional Software	MLOps
Code-centric	Data + Code + Model centric
Deterministic outputs	Probabilistic outputs
Binary success/failure	Performance degradation
Static Functionality	Dynamic model behavior

Key MLOps Concepts

Data Management

Data versioning and lineage

Data quality monitoring

Model Development

05 Experiment tracking

Model versioning

Model Deployment

Automated deployment pipelines

09 A/B testing and rollbacks

Monitoring & Observability

Performance tracking

Data drift detection

Key MLOps Concepts

Data Management

Data versioning and lineage

Data quality monitoring

Model Deployment

- Automated deployment pipelines
- A/B testing and rollbacks

01

Model Development

Experiment tracking

Model versioning

03

Monitoring & Observability

- Performance tracking
- Data drift detection

02

04

MLOps Workflow Overview

Workflow Diagram

Data Collection → Data Preparation → Model Training → Model Validation → Model Deployment → Monitoring → Feedback Loop

Key Stages

Data Pipeline: Collect, clean, validate data **Training Pipeline:** Train, validate, test models **Deployment Pipeline:** Deploy models to

production

Monitoring Pipeline: Track performance and

retrain

What is CI/CD?

Continuous Integration (CI)

Automated testing of code changes **Frequent integration** of code into shared repository **Early detection** of bugs and conflicts

Continuous Deployment (CD)

Automated deployment to production Consistent release process Rapid delivery of features and fixes

01

Traditional Software CI/CD

- Code testing and deployment
- Binary pass/fail tests
- Immediate rollback capability

ML CI/CD Challenges

Data dependencies: Models depend on training data

Model performance: Requires statistical validation

A/B testing: Gradual rollout and comparison Model decay: Performance degrades over time 02

CI/CD Pipeline for ML Models

Pipeline Stages

1) Code Commit

• Data scientist pushes model code

2) Automated Testing

- Unit tests for code
- Data validation tests
- Model performance tests

3) Model Training

- Automated training on fresh data
- Model validation and comparison

4) Deployment

- Staging environment testing
- Production deployment
- Performance monitoring

Introduction to Large Language Models (LLMs)

What are LLMs?

- **Neural networks** trained on massive text datasets
- Transformer architecture with billions of parameters
- Capable of understanding and generating humanlike text
- Few- shot learning capabilities

Key Characteristics

Scale: Billions to trillions of parameters

Versatility: Multiple tasks without retraining

Context awareness: Understanding of conversation

flow

Popular LLMs and Applications

Major LLMs

Model	Developer	Parameters	Key Features
GPT-4	OpenAl	~1T	Test generation, reasoning
Claude	Anthropic	~175B	Helpful, harmless, honest
LLaMA	Meta	7B-65B	Open-source, efficient
Gemini	Google	Variable	Multimodal capabilities

LLM Challenges

01

Technical Challenges

Computational Requirements: High memory and processing needs

Latency: Response time considerations

Hallucinations: Generating incorrect information

Bias: Reflecting training data biases

02

Operational Challenges

Cost Management: Expensive inference

Scalability: Handling multiple users

Monitoring: Different metrics than traditional ML

What is Observability in ML Systems?

Definition

Ability to understand system behavior from external outputs
Monitoring, logging, and tracing of ML systems
Proactive detection of issues before they impact users

Three Pillars of Observability

Metrics: Quantitative measures of system performance

Logs: Detailed records of system events

Traces: End- to- end request flow

tracking

Traditional ML vs LLM Observability

Traditional ML Monitoring

Accuracy, precision, recall

Data drift detection

Model performance metrics

LLM-Specific Observability

Prompt quality and relevance
Response coherence and
accuracy
Token usage and costs
Latency and throughput
Safety and bias detection

Key Metrics to Monitor in ML Systems

01

Performance Metrics

Accuracy: Overall correctness **Latency:** Response time **Throughput:** Requests per

second

Error rates: Failed predictions

01

Data Quality Metrics

Data drift: Changes in input distribution

Feature drift: Changes in

feature relationships **Completeness:** Missing

completeness: Miss

data detection

03

Business Metrics

User satisfaction: Feedback

scores

Cost per prediction: Resource

utilization

Model ROI: Business impact

measurement

LLM-Specific Monitoring Metrics

Quality Metrics

Relevance: Response appropriateness

Coherence: Logical consistency Factuality: Accuracy of information Safety: Harmful content detection

Operational Metrics

Token consumption: Cost tracking

Cache hit rates: Efficiency

optimization

Model switching: Load balancing

User Experience Metrics

Response satisfaction: User

ratings

Task completion: Success rates **Engagement:** Usage patterns

Lab Session Overview

Today's Hands-on Activities

- Environment Setup
 - > Install required tools
 - > Configure development environment

- Basic MLOps Workflow
 - Create simple ML model
 - Set up basic tracking
 - > Implement simple deployment

- LLM Introduction
 - Explore LLM APIs
 - Basic prompt engineering
 - Simple observability setup

Lab Prerequisites Check

Required Installations

- ✓ Python 3.10+
- ✓ Jupyter Notebook
- ✓ Git
- ✓ Basic ML libraries (pandas, scikit- learn)

Knowledge Check

- ✓ Basic Python programming
- ✓ Understanding of ML concepts
- ✓ Familiarity with command line
- ✓ Jupyter Notebook usage

