Фреймворк для конечно-разностного моделирования диффузионных задач на гибридных вычислительных кластерах

Фролов Д. А.

Ярославский государственный университет им. П. Г. Демидова

Научный руководитель: Глызин С. Д.

Ярославль 2015

Поставленная задача

Разработать программный комплекс для моделирования диффузионных задач.

- Вычислительное ядро
- Предварительная обработка
- Пользовательский интерфейс

Теоретические основы

Общий вид задачи «реакция-диффузия»

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + F(u);$$

$$\frac{\partial u}{\partial x} \Big|_{x=0} = \frac{\partial u}{\partial x} \Big|_{x=1} = 0, F(0) = 0.$$

Приближении оператора Лапласа его разностными аналогами

$$\frac{\partial^2 u}{\partial x^2}\Big|_{x=x_j} = \frac{u_{j-1} - 2u_j + u_{j+1}}{\Delta^2};$$

$$\dot{u}_j = DN^2(u_{j-1} - 2u_j + u_{j+1}) + F(u_j);$$

$$u_0 = u_1, u_{N+1} = u_N, j = \overline{1, N}.$$

Пример области задачи

Kласc Solver и его наследники

Kласс Block и его наследники

Общая схема классов приложения

Схема расчетов

