Type-C/PD 高压接口芯片 CH211

手册 版本: V1.4 https://wch.cn

1、概述

CH211 是内置了高压开关和升压模块的 Type-C/PD 高压接口芯片。芯片内置了 4 通道高压开关,用于 MCU 的 PD 信号对接高压 Type-C 接口,内置了升压电路,支持外部 N 型 MOSFET 功率管控制;内置了两路 LDO 稳压器,支持双路高压电源输入,内部集成了 VBUS 上电和掉电监测、过压监测、过温监测等模块,单引脚支持按键检测和唤醒,提供 2 线控制接口及中断,可用于 MCU 管理 Type-C 接口电源和 USB PD 信号高压扩展等。

下面为 CH211 的内部框图, 仅供参考。

2、特点

- 两对 PD 信号高压开关,兼做 Type-C 接口 CC 高压信号二选一。
- 内置升压模块 HVCP,支持外部 N 型 MOSFET 功率管栅极控制。
- 内置两路高压 LDO,支持两路电源输入及自动切换。
- 单引脚支持电源开关按键检测和唤醒及 P型 MOSFET 控制,一键开关。
- 兼容 I²C 的 2 线串行控制接口,支持 5V、3. 3V、2. 5V 控制信号。
- 特殊设计的 SCL 引脚可以复用于中断请求输出,节省 MCU 引脚。
- VBUS 支持电源放电和上电及掉电监测,支持过压监测 OVP。
- 内置芯片过温监测模块 OTP。
- 内置 LDO 低压差稳压器,输出 4.9V 和 3.3V 用于 MCU 简单供电。
- 支持 28V 电源电压, Type-C 接口信号支持 30V 耐压。
- Type-C 接口信号的 ESD 支持 6KV HBM。
- 提供 QFN20、QFN16C2 等封装形式。

3、引脚排列

封装形式	塑体尺寸		引脚节距		封装说明	订货型号
QFN20_3x3	3*3mm		0. 4mm	15.7mil	四边无引线 20 脚	CH211D
QFN16C_2x2	2*2mm		0. 4mm	15.7mil	WCH 四边无引线 16 脚	CH211C

注: 0#引脚是指 QFN 封装的底板。

蓝色引脚为支持高电压的引脚。

CH211C 体积小,印字为 211C 及第二行的批号代码。

4、引脚定义

引	脚号	引脚	% ∓II	21脚铁明
211D			类型	引脚说明
17	15	VSYS	高压电源	系统高压电源输入,通常是常备电源
16	14	VBUS	高压电源	Type-C 接口 VBUS 高压电源输入,支持放电和监测
19	16	VDD49	低压电源	内部 4.9V 稳压器 LDO 输出,外接 1uF 退耦电容
20	1	VDD33	低压电源	内部 3. 3V 可调稳压器 LDO 输出,用时需外接退耦电容
18, 0	3	GND	电源	公共接地端
2	4	SCL	输入及	2 线串行接口的时钟输入,
۷	4	JUL	开漏输出	可配置为中断请求的开漏输出
1	2	SDA	输入及	2 线串行接口的数据输入和输出,
		SUA	开漏输出	内置可控的上拉电阻
5	6	6 CCL1	低压双向	PD 信号开关 1#的 CC1 低压侧端口,
			以上次门	通常接 MCU 的 CC 引脚
	10		高压开漏	PD 信号开关 1#的 CC1 高压侧端口,默认断开,
12		CCH1		内置 Rd 下拉电阻,支持输出 VCONN 供电,
3	-	ODL1	低压双向	PD 信号开关 1#的 0D1 低压侧直通端口,连接 0DH1
14	12	ODH1	高压开漏	PD 信号开关 1#的 OD1 高压侧端口,
' ' '	12	ODITI	同心八 // // // // // // // // // // // // //	默认连通 ODL1,可选增加 CCL1 连接
6	7	CCL2	低压双向	PD 信号开关 2#的 CC2 低压侧端口,
	,	OOLZ	[M/±/X[-]	通常接 MCU 的 CC 引脚
				PD 信号开关 2#的 CC2 高压侧端口,默认断开,
11	9	CCH2	高压开漏	内置 Rd 下拉电阻,支持输出 VCONN 供电,
				通常接 Type-C 的 CC 引脚

		_		
4	5	ODL2	低压双向	PD 信号开关 2#的 0D2 低压侧直通端口,连接 0DH2
13	11	ODUO	- 古に エ 海	PD 信号开关 2#的 0D2 高压侧端口,
13	11	ODH2	高压开漏	默认连通 ODL2,可选增加 CCL2 连接
15	10	LIVOD	☆圧投山	升压模块的高压输出,
15	13	HVCP	高压输出	可输出低电平、VBUS 电平、VBUS 升压
-	8	111/10	高压双向	高压输出及输入,内置弱上拉电阻和可控上拉电阻,
7		8 HV10		单引脚支持按键检测和唤醒及 P 型 MOSFET 控制
8	-	VEV	低压双向	低压输出及输入,内置上拉电阻,
8		- KEY		单引脚支持按键检测和唤醒及 P 型 MOSFET 控制
	.		辅助电源	CCH1 引脚内置可控 Rd 下拉电阻的低压端,
10	内部 tr. OND	CCPDG1		独立浮空则禁用内置的 Rd 下拉电阻,
	接 GND			PCB 直连 GND 则上电时默认开启下拉,支持软件关闭
	th 並7		DG2 辅助电源	CCH2 引脚内置可控 Rd 下拉电阻的低压端,
9	内部 接 GND	CCPDG2		独立浮空则禁用内置的 Rd 下拉电阻,
		接 GND		

注: CCPDG1、CCPDG2 引脚主要用于对内连接,ESD 特性较差。

CH211C 在内部已将 CCPDG1 和 CCPDG2 短接到 GND。

低压是指参考 VDD49 电源电压,支持 5V、3.3V、2.5V 信号电平。

VSYS、VBUS、CCH1、CCH2 额定 5V~28V。

HVCP、ODH1、ODH2、HVIO 额定 $5V\sim36V$ 。

5、功能模块

5.1. PD 信号开关

PD 信号高压开关包含 CC 通道和 0D 通道,用于隔离 Type-C 接口的高压,在保持 PD 信号传输的同时,避免 MCU 的 CC 引脚直接承受意外的高压。CH211 内置两对 PD 信号高压开关,支持最多 4 个 CC 信号。

PD 信号高压开关的结构参考下图。

CCH 引脚有 2 种应用: 一是作为 CCL 的高压通道,二是独立用于开漏输出。CCL 通常连接 MCU 的 CC 引脚的低压 PD 信号,CCH 通常连接 Type-C 接口的高压 PD 信号,CCM 为中间节点。默认 CC_0E=0,CCH 断开 CCM 及 CCL。默认 CC_GE=0,CCL 断开 CCM 接 GND。当 CC_0E=1 且 CC_GE=0 时,CCH 开漏输出低。当 CC_0E=1 且 CC_GE=1 时,CCH 与 CCL 及 CCM 连通,CCM 与高阈值参考电压 V_{TCC} 比较后输出 CCI。默认 CC_VE=0,如果 CC_VE=1,则 VDD49 输出到 CCH 作为 VCONN 电源。默认 CC_PD=1,如果 CCPDG 接 GND,则 CCH 连通 5. 1K 的 Rd 下拉电阻。注意 CCM 与 CCH 之间、CCM 与 CCL 之间都有二极管,如果 CC_GE=1 且 CC_0E=0,理论上 CCH 断开,但上述二极管仍然会将 CCL 的高电平信号传输到 CCH。

注意 5.1K的 Rd 下拉电阻对 GND 之间存在约 10V 的稳压管,当 CCH 电压较高时会导通。

ODH 引脚有 3 种应用: 一是作为 CCL 的另一个高压通道,二是作为 ODL 的高压通道,三是独立用于开漏输出。默认 OD_PE=1,默认 OD_OE=1,ODH 与 ODL 连通。默认 OD_GE=0,ODL 与 CCL 断开。当 OD_OE=1 且 OD_GE=0 且 OD_PE=1 时,ODH 与 ODL 连通,ODL 可以连接 MCU 的 CC 引脚。当 ODL 悬空、OD_OE=1 且 OD_GE=1 且 OD_PE=1 时,ODH 与 CCL 连通,ODH 作为 CCL 的另一个高压通道。当 ODL 悬空、OD_OE=1 且 OD GE=0 且 OD PE=0 时,ODH 开漏输出低。

PD 信号开关的内阻不大,作为开漏输出时应避免过流,必要时可以外部串联电阻限制电流。

5.2. 升压模块

升压模块以 VBUS 为基础产生更高电压,提升电压值 V_{\circ} 约为两倍 VDD49 减去 2. 3V,用于控制外部 N 型 MOSFET 功率管的栅极。

升压模块的结构参考下图。

HVCP 引脚有 2 种应用: 一是单管控制,二是 3 管控制。单管控制是指 HVCP 直接控制外部 N 管的栅极,可以输出低电平(关闭 N 管)、上拉到 VBUS 电平、基于 VBUS 升压(开启 N 管)。3 管控制是指 HVCP 外接约 100nF 电容后提供简单的升压电源,由 3 个兆欧级上拉电阻分别连接到三个 N 管的栅极,同时分别连接 0DH1、0DH2、HVIO 三个高压引脚,以开漏驱动方式实现三个 N 管的开关控制。

Rcp 为内置的放电电阻,Rcpl 为内置的下拉电阻,HVCP 引脚无需外部下拉电阻。

默认 CP_PU=0,CP_AE=0,CP_LX=0,CP_LE=1,HVCP 由 R_{cP} 和 R_{cPL} 分压输出弱下拉的低电平,当 VBUS 默认 5V 供电时 HVCP 不超过 0. 2V,外部 N 管关闭。MCU 上电后,可以设置 CP_LX=1,使 HVCP 输出强下拉的低电平,之后 MCU 如果申请 USB PD 高压供电,HVCP 也能维持较低电压以关闭外部 N 管。当 CP_PU=1 且 CP_AE=0 且 CP_LE=0 时,开启 VBUS 上拉,HVCP 输出接近 VBUS 电压,此电压经过电阻和两个二极管串联衰减。当 CP_PU=0 且 CP_AE=1 且 CP_LE=0 时(实际不支持此组合),开启升压,HVCP 输出净提升电压 V_{CP} 。当 CP_PU=1 且 CP_AE=1 且 CP_LE=0 时,开启 VBUS 升压,HVCP 输出电压为 VBUS 加上净提升电压 V_{CP} 。

HVCP 带载能力较差,负载电流越大时 V_G电压值越小。建议优选开启电压 Vth 较低的 N 管。

5.3. 高压 I/0

HVIO 是支持高压开漏输出和输入的高压通用 I/O,也可作为中断输出,内置弱上拉电阻 R_{m□}和可控的上拉电阻 R_{n□},支持电源开关按键检测和唤醒及 P 型 MOSFET 控制。

HVI0 的结构参考下图。

默认 HV_0E=0,HVI0 开漏输出禁止。默认 HV_PU=0,默认 HV_PD=0,仅提供弱上拉电阻 R_{WPU}。当 HV_PD=1 时,HVI0 输出 V_{REFM}弱低电平,支持外部 P型 MOSFET 栅极控制,同时支持按键检测。HVHI 和 HVLI 是高、低两种阈值下输入采样,根据其结果微调上拉电阻值,当 HV_PU=1 时提供 R_{PU}上拉。

用于 HV10 单引脚一键开关时,启用内部 R_{PU}上拉电阻或外接上拉电阻到更高电压,电源开关按键连接在 HV10 与 GND 之间,HV10 同时用于驱动外部 P 型 MOSFET 的栅极,该 P 管的源极接电源,漏极向目标输出电源。关闭 P 管需要高电平,HV10 已内置 VDD49 电压的上拉电阻,可直接驱动 P 管控制5V 或更低电压的电源。如果用于控制高于 5V 的高电压电源,HV10 需要外接几十 KΩ 到几百 KΩ 的上拉电阻到高电压电源,上拉电流不能超过 I_{POK} 。例如,高电压电源为 20V,连接 P 管的源极,HV10 连接 P 管的栅极,并通过 I_{POK} 公 上拉电阻连接高电压电源。

-+		67th TT 1/ L	4 D 44 T	<i>1</i>
$\kappa = \pi$	单引脚:	一键开关的	711 +M 1	1/E 1/E 7/E
1 7 N		_ +J± /_ /_ I	N / I. MH I	T E 4 A 5.55 a

工作状态	HV_0E	HV_PU	HV_PD	HVLI	HVHI	HVIO引脚	说明
上电时默认开机	0	0	0	0	0	充电期间低	HVIO 对 GND 接电容
上电时默认关机	0	0	0	1	1	上拉到高	可选: HVIO 对电源 接上拉电容或电阻
维持开机、待机	0	1	1	1	0	弱低电平	MCU 设置 HV_PD=1 输出 V _{REFM} 开启 P 管
按键按下接 GND	0	1	1	0	0	低电平	查询 HVLI 或中断
MCU 主动关机	0	1	0	1	1	上拉到高	

当 HVIO 有外部上拉电阻时,HV_PU 可以无需置 1。

HVIO 对 GND 的电容值取决于 MCU 启动时间,兼用于按键去抖动。HVIO 内部弱上拉电阻 Rmu 和可选的外部上拉电阻与该电容构成 RC 充电电路,充电期间保持 P 管开启,直到 MCU 启动完成后接管,置HV_PD=1 维持 P 管开启。如果电容值太小,会造成 MCU 来不及接管就充电完成并断了 MCU 电源。

CH211 的 VDD33 是可关闭的,对于 MCU 由 VDD33 供电的应用,可以无需外部 P 型 MOSFET 就能实现一键开关,由 KEY 或 HV10 连接按键。

关机状态是指 MCU 在 VDD33 开启状态下睡眠,或 LD033_0FF=1 且 LD033_WAKE=1 关闭 VDD33 电源, HV_PD=0。当按键按下时, HV10 低电平,触发中断恢复 VDD33 供电并唤醒 MCU。

唤醒后的 MCU 进入工作状态,设置 HV PD=1, HVIO 输出 VREM 弱低电平,用于驱动外部 P型 MOSFET

保持主电源开启,同时继续监控 HVIO 引脚上的按键。当按键按下时,触发 MCU 中断,设置 HV_PD=0; 当按键释放后,HVIO 恢复高电平,关闭外部 P 型 MOSFET 或 MCU 设置 LD033_0FF=1。

5.4. 低压 1/0

KEY 是支持开漏输出和输入的低压通用 I/O, 也可作为中断输出, 内置上拉电阻 R₂, 支持电源开关按键检测和唤醒及低压 P型 MOSFET 控制。

KEY 的结构参考下图。

默认 KEY_0E=0, KEY 开漏输出禁止。默认 KEY_PD=0, 仅提供上拉。当 KEY_PD=1 时,KEY 输出 V_{REFM} 弱低电平,支持不超过 VDD49 电压的外部 P型 MOSFET 功率管的栅极控制,同时支持按键检测。KEYHI 和 KEYLI 是高、低两种阈值下输入采样,根据其结果微调上拉电阻值。

KEY 用于单引脚一键开关时,相当于 HVIO 的低电压版,参考 HVIO。区别在于:KEY 不支持高压,只能驱动 P 管控制 5V 或更低电压的电源,KEY 通常无需外部上拉电阻。

5.5. 电源系统

CH211 内置 3 个 LDO 稳压器, 其中两路为高压 LDO, 支持两路电源输入及自动切换, 另一路低压 LDO 输出可调 3. 3V 用于 MCU 简单供电。

VSYS 为系统高压电源输入,通常是常备电源,自身功耗较小,输出 VDD49 电源,带载能力稍弱。 VBUS 为外部高压电源输入,通常是 Type-C 接口 VBUS 高压电源输入,支持 VBUS 放电和监测,包括 VBUS 上电和掉电监测、过压监测等。检测到 VBUS 电压高于 V_{BUSRDY} 即 VBUS 电源就绪后,内部自动将 VDD49 切换为 VBUS 供电,不从 VSYS 消耗电流;当 VBUS 掉电后,再自动切换回 VSYS 供电,VBUS 上电或者掉电都会触发中断。

VSYS 和 VBUS 支持额定 5V、9V、12V、20V、28V 等电源电压,需要外置不低于 0.1 uF 的退耦电容。 VDD49 需要贴近 VDD49 和 GND 引脚放置 $0.33 \text{uF} \sim 3.3 \text{uF}$ 范围内的退耦电容,额定输出电压 4.9V,但当 VSYS 或 VBUS 输入低于 5.1V 时,VDD49 输出可能将不足 4.9V。

VDD33 由内置低压 LD0 从 VDD49 产生,默认 3. 3V,以 0. 3V 为步距,支持 2. 4V 到 4. 5V 多个档位。用于为 MCU 提供不超过 20mA 的简单 3. 3V 供电,根据需要外接 0. $1uF\sim3$. 3uF 范围内的退耦电容,不对 MCU 等外设供电时无需外接电容。

默认 LD033_0FF=0, 低压 LD0 和 VDD33 输出开启。当 LD033_0FF=1 时, VDD33 输出关闭。默认 LD033_WAKE=0, 如果 LD033_WAKE=1 且 LD033_0FF=1,则 VDD33 处于输出关闭状态,但可以被任一中断唤醒并开启 VDD33,包括 KEY 或 HV10 所连接的电源开关按键或者 VBUS 上电或掉电等事件。

电源系统的结构参考下图。

5.6. 控制和状态寄存器

CH211 内部有 8 个寄存器,用于功能和引脚控制及状态返回,MCU 通过 2 线接口实现读写。下表中的寄存器属性使用两种缩写: RO 表示只读,RW 表示可读可写。寄存器列表如下:

名称	地址	描述	复位值
PIN_STAT	0	引脚状态寄存器	0Fh
PIN_CFG	1	引脚配置寄存器	00h
CC_CTRL	2	CC 通道控制寄存器	44h
OD_CTRL	3	OD 通道控制寄存器	AAh
HVCP_CTRL	4	HVCP 控制寄存器	02h
HV10_KEY	5	HVIO 和 KEY 控制寄存器	00h
SYS_CFG	6	系统配置寄存器	08h
SYS_STAT	7	系统状态寄存器	01h

引脚状态寄存器(PIN_STAT):

位	名称	属性	描述	复位值
7	CC12	R0	PD 信号开关 2#的 CCM2 节点电平状态,CC2 高阈值电平状态	0
6	CC11	R0	PD 信号开关 1#的 CCM1 节点电平状态,CC1 高阈值电平状态	0
5	VBUS_0V	R0	VBUS 电源过压状态,VBUS 电压高于 V _{BUSOV}	0
4	VBUS_RDY	R0	VBUS 电源就绪状态,VBUS 电压高于 VBUSRDY	0

3	HVHI	R0	HVIO 引脚的高阈值电平状态,引脚电压高于 V _{REFH}	1
2	HVLI	R0	HVIO 引脚的低阈值电平状态,引脚电压高于 V _{ref} l	1
1	KEYHI	R0	KEY 引脚的高阈值电平状态,引脚电压高于 V _{REFH}	1
0	KEYLI	R0	KEY 引脚的低阈值电平状态,引脚电压高于 Vrefl	1

引脚配置寄存器(PIN_CFG):

位	名称	访问	描述	复位值
7	CC2_IE	RW	CC2 低电平中断使能,为 0 禁止 CC2 触发中断, 为 1 且 CC2_GE=1 且 CC12=0 时产生中断	0
6	CC1_IE	RW	CC1 低电平中断使能,为 0 禁止 CC1 触发中断, 为 1 且 CC1_GE=1 且 CC11=0 时产生中断	0
5	HVIO_IE	RW	HVIO 引脚低电平中断使能,为 0 禁止 HVIO 触发中断, 为 1 且 HVLI=0 且 HVHI=0 时产生中断	0
4	KEY_IE	RW	KEY 引脚低电平中断使能,为 0 禁止 KEY 触发中断, 为 1 且 KEYL I=0 且 KEYHI=0 时产生中断	0
3	VBUS_DOWN_IE	RW	VBUS 掉电事件中断使能,为 0 禁止 VBUS 掉电触发中断, 为 1 且 VBUS_RDY=0 且 VBUS_LAST=1 时产生中断。 VBUS 上电事件中断总是使能的, 在 VBUS_RDY=1 且 VBUS_LAST=0 时产生中断	0
2	SDA_PU	RW	SDA 引脚内部上拉电阻使能,为 0 禁止内部上拉, 为 1 开启内部上拉,适用于 MCU 引脚内部上拉较弱的情况。 如果 LD033_WAKE=1 且 LD033_0FF=1 则会禁止上拉	0
1	INT_PIN	RW	中断输出引脚选择: 00 关闭中断请求输出; 01 通过 SCL 引脚弱驱动低电平输出中断请求,节省引脚;	0
0		RW	10 通过 HVI0 引脚驱动低电平输出中断请求; 11 通过 KEY 引脚驱动低电平输出中断请求。 除非中断原因消除,否则持续请求中断	0

CC 通道控制寄存器(CC_CTRL):

位	名称	访问	描述	复位值
7	CC2_VCE	RW	CCH2 的 VCONN 电源输出使能,为 0 禁止 CCH2 电源输出, 为 1 则将 VDD49 输出到 CCH2 引脚	0
6	CC2_PD	RW	CCH2 的 Rd 下拉电阻使能,为 0 禁止 CCH2 下拉电阻, 为 1 且 CCPDG2=GND 时开启 CCH2 下拉电阻 Rd	1
5	CC2_0E	RW	CCH2 引脚连通使能,为 0 禁止 CCH2 连通, 为 1 则连通 CCH2 到中间节点 CCM2	0
4	CC2_GE	RW	CCL2 引脚与中间节点 CCM2 连通使能, 为 0 则 CCM2 短接 GND 并断开 CCL2, 为 1 则 CCM2 断开 GND 并连通 CCL2	0
3	CC1_VCE	RW	CCH1 的 VCONN 电源输出使能,为 0 禁止 CCH1 电源输出, 为 1 则将 VDD49 输出到 CCH1 引脚	0
2	CC1_PD	RW	CCH1 的 Rd 下拉电阻使能,为 0 禁止 CCH1 下拉电阻, 为 1 且 CCPDG1=GND 时开启 CCH1 下拉电阻 Rd	1
1	CC1_0E	RW	CCH1 引脚连通使能,为 0 禁止 CCH1 连通, 为 1 则连通 CCH1 到中间节点 CCM1	0
0	CC1_GE	RW	CCL1 引脚与中间节点 CCM1 连通使能, 为 0 则 CCM1 短接 GND 并断开 CCL1, 为 1 则 CCM1 断开 GND 并连通 CCL1	0

OD 通道控制寄存器(OD_CTRL):

位	名称	访问	描述	复位值
7	0D2_0E	RW	ODH2 引脚连通使能,为 0 禁止 ODH2 连通, 为 1 则连通 ODH2 到 ODL2	1
6	OD2_GE	RW	ODL2 引脚与 CCL2 连通使能,为 0 则 ODL2 断开 CCL2, 为 1 则 ODL2 连通 CCL2	0
5	OD2_PE	RW	ODL2 断开 GND 使能,为 0 则 ODL2 短接 GND, 为 1 则 ODL2 断开 GND	1
4		R0	保留位	0
3	0D1_0E	RW	ODH1 引脚连通使能,为 0 禁止 ODH1 连通, 为 1 则连通 ODH1 到 ODL1	1
2	OD1_GE	RW	ODL1 引脚与 CCL1 连通使能,为 0 则 ODL1 断开 CCL1, 为 1 则 ODL1 连通 CCL1	0
1	OD1_PE	RW	ODL1 断开 GND 使能,为 0 则 ODL1 短接 GND, 为 1 则 ODL1 断开 GND	1
0		R0	保留位	0

HVCP 控制寄存器(HVCP_CTRL):

位	名称	访问	描述	复位值
7	VBUS_DISC	RW	VBUS 放电使能,为 0 关闭 VBUS 放电, 为 1 则开启 VBUS 放电,建议不要长时间持续放电	0
6		R0	保留位	0
5		R0	保留位	0
4	CP_AUTO	RW	HVCP 自动升压使能,为 0 关闭自动升压, 为 1 则开启自动升压,CP_LE 应该设置为 0	0
3	CP_AE	RW	HVCP 手动升压控制,为 0 则完成升压并空闲, 为 1 则预备升压	0
2	CP_PU	RW	HVCP 引脚手动上拉输出,为 0 关闭 HVCP 引脚的上拉, 为 1 则开启 VBUS 对 HVCP 引脚的上拉,弱驱动高电平	0
1	CP_LE	RW	HVCP 引脚手动下拉控制,为 0 关闭 HVCP 引脚的下拉, 为 1 则开启 HVCP 引脚的下拉或低电平驱动	1
0	CP_LX	RW	HVCP 下拉强度选择,为 0 选择弱下拉,弱驱动低电平, 为 1 选择强下拉,驱动低电平	0

HVIO和 KEY 控制寄存器(HVIO_KEY):

位	名称	访问	描述	复位值
7		R0	保留位	0
6		R0	保留位	0
5	KEY_PD	RW	KEY 引脚下拉到 V _{REFM} 使能,为 0 关闭 KEY 下拉, 为 1 则 KEY 引脚下拉到 V _{REFM} ,处于 V _{REFH} 和 V _{REFL} 之间	0
4	KEY_0E	RW	KEY 引脚开漏输出使能,为 0 禁止 KEY 输出低电平, 为 1 则 KEY 输出低电平	0
3		R0	保留位	0
2	HV_PU	RW	HVIO 引脚上拉使能,为 0 关闭 HVIO 上拉, 为 1 则 HVIO 引脚上拉到 V ₀₀₄₉ (经过电阻和二极管串联)	0
1	HV_PD	RW	HVI0 引脚下拉到 V _{REFM} 使能,为 0 关闭 HVI0 下拉, 为 1 则 HVI0 引脚下拉到 V _{REFM} ,处于 V _{REFM} 和 V _{REFL} 之间	0

0	HV_0E	RW	HVIO 引脚开漏输出使能,为 0 禁止 HVIO 输出低电平, 为 1 则 HVIO 输出低电平	0
---	-------	----	--	---

系统配置寄存器(SYS_CFG):

位	名称	访问	描述	复位值
7	LD033_0FF	RW	VDD33 关闭控制,为 0 开启 VDD33 输出, 为 1 关闭 VDD33 输出,如果 LD033_WAKE=1 则可以被中断自 动清零	0
6	CC_HVT3V	RW	CC 高阈值参考电压 V∞选择,为 0 适用于 VDD49=4. 9V, 为 1 适用于 VDD49=3. 3V	0
5	CPLE_0V0T	RW	过压过温时自动 HVCP 下拉使能,为 0 不自动下拉, 为 1 则在 VBUS 过压或过温期间强制 HVCP 引脚下拉或低电平, 等效于 CP_LE 置 1	0
4	RST_OV	RW	过压时自动复位使能,为 0 不自动复位, 为 1 则在 VBUS 过压时自动复位 CC 通道控制寄存器 CC_CTRL、 OD 通道控制寄存器 OD_CTRL、HVCP 控制寄存器 HVCP_CTRL	0
3	LD033_WAKE	RW	VDD33 中断唤醒使能,为 0 不支持中断唤醒, 为 1 支持中断唤醒,发生中断时,LD033_0FF 自动清零	1
2		RW	VDD33 电压选择:	0
1	LDO_VSEL	RW	000 选择 3. 3V; 001 选择 3V; 010 选择 2. 7V; 011 选择 2. 4V;	0
0		RW	100 选择 3. 6V; 101 选择 3. 9V; 110 选择 4. 2V; 111 选择 4. 5V	0

系统状态寄存器(SYS_STAT):

位	名称	访问	描述	复位值
7	LD033_0FF	R0	VDD33 关闭控制状态,为 0 表示开启,为 1 表示关闭	0
6	OT_RST	RO	过温状态,为 0 表示温度未超过 Tso, 为 1 表示过温,并触发中断,同时自动复位 CC_CTRL、OD_CTRL、 HVCP_CTRL	0
5	VBUS_0V	R0	VBUS 电源过压状态,VBUS 电压高于 V _{BUSOV}	0
4	VBUS_RDY	R0	VBUS 电源就绪状态,VBUS 电压高于 VBUSRDY	0
3	VBUS_LAST	RO	记录上一次读取 SYS_STAT 时的 VBUS 电源就绪状态,当读取 SYS_STAT 之后,该位自动更新为当前电源状态 VBUS_RDY	0
2		R0	保留位	0
1	VBUS_EXIST	R0	VBUS 电源存在状态,VBUS 电压高于 Vexist	0
0	VSYS_EXIST	R0	VSYS 电源存在状态,VSYS 电压高于 Vexist	1

5.7. 2线串行接口

CH211 内部有 8 个控制和状态寄存器,提供 2 线串行接口,包含 SCL 和 SDA 引脚,兼容 IIC, 用于 MCU 控制。

SDA 用于串行数据输入和开漏输出,准双向信号,需要上拉电阻,默认是高电平。高电平表示位数据 1,低电平表示位数据 0,串行数据输入的顺序是高位在前,低位在后。

SCL 用于提供串行时钟输入,CH211 在其上升沿后的高电平期间从 SDA 输入数据,在其下降沿后的低电平期间从 SDA 输出数据。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的 START 信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的 STOP 信号。在 MCU 的 I/O 引脚资源紧张时,保持 SDA 引脚状态不变的情况下,SCL 引脚也可以与其它接口电路共用。

串行数据帧通常包含 START 位、7 位设备地址和 1 个命令位及 1 个应答位、8 位数据和 1 个应答位及其重复、最终以 STOP 位作为结束。CH211 的设备地址默认为 0x35 或 0x34,该地址需左移一位加上读写命令位后作为 8 位数据传输,0x35 为 2 线接口常规读写操作地址,0x34 为 2 线接口快速读操作地址。CH211 支持 0x35 设备地址写寄存器操作、支持 0x35 设备地址读寄存器操作、支持 0x34 设备地址快速读寄存器操作。

常规写操作的步骤:

MCU(或其它主机)发送 START 信号;

MCU 发送 7 位设备地址 0x35 和写命令位 0,CH211 检查设备地址匹配则返回 1 个应答位 0;MCU 发送 8 位的寄存器地址(仅 $0\sim7$ 有效),CH211 记录此起始地址并返回 1 个应答位 0;MCU 发送 8 位数据,CH211 将该数据写入寄存器,同时地址自动加 1 并返回 1 个应答位 0;可选的,MCU 可以选择继续向下一个寄存器发送 8 位数据并等待 CH211 写入并应答;

MCU 发送 STOP 信号,结束操作。

常规读操作的步骤:

MCU(或其它主机)发送 START 信号;

MCU 发送 7 位设备地址 0x35 和写命令位 0,CH211 检查设备地址匹配则返回 1 个应答位 0;MCU 发送 8 位的寄存器地址(仅 $0\sim7$ 有效),CH211 记录此起始地址并返回 1 个应答位 0;MCU 再次发送 START 信号;

MCU 发送 7 位设备地址 0x35 和读命令位 1, CH211 检查地址匹配则返回 1 个应答位 0; CH211 从寄存器读取数据返回,同时地址自动加 1, MCU 接收 8 位数据并返回 1 个应答位; 可选的, MCU 可以选择继续从下一个寄存器读取 8 位数据并应答;

MCU 发送 STOP 信号,结束操作。

快速读操作的步骤:

MCU(或其它主机)发送 START 信号:

MCU 发送 7 位设备地址 0x34 和读命令位 1, CH211 检查设备地址匹配则返回 1 个应答位 0; CH211 从 0 地址寄存器 PIN_STAT 读取数据返回,地址自动加 1, MCU 接收数据并返回应答; 可选的,MCU 可以选择继续从下一个寄存器读取 8 位数据并应答;

MCU 发送 STOP 信号,结束操作。

MCU 引脚的内部上拉通常较弱,SDA 上升沿较慢,为提高 2 线接口通讯速率,可以设置 SDA_PU=1 启用 CH211 内部 SDA 上拉电阻,在 VDD33 供电下,关电时会自动关闭上拉,上电时自动恢复。

5.8. 中断

CH211 支持 8 个中断信号源,包含 HVIO 引脚低电平、KEY 引脚低电平、CC1 低电平,CC2 低电平、VBUS 上电、VBUS 掉电、VBUS 过压、过温。其中,VBUS 上电、VBUS 过压、过温总是使能中断,其它的信号源需要开启对应的中断使能位。

除非中断原因消除,否则 CH211 将一直请求中断。对于 VBUS 上电和掉电事件,读取 SYS_STAT 后将自动更新 VBUS_LAST,从而消除中断原因,取消中断请求。但其它中断例如 VBUS 过压,需要等到 VBUS 不再过压才会取消中断请求。

CH211 可选 3 种中断输出方式,由 INT_PIN 选择。其中,通过 HVIO 或 KEY 引脚输出低电平请求中断是常规方式,通过 SCL 引脚弱驱动低电平请求中断则可以节约 I/O 引脚。

CH211 的 SCL 引脚支持弱驱动低电平,该灌电流强于普通 MCU 引脚的上拉驱动电流,但弱于普通 MCU 引脚的推挽高电平驱动电流。

在空闲态时, MCU 的 SCL 引脚设置为不输出,同时启用 MCU 内部 SCL 引脚的上拉电阻或上拉电流,通常该上拉电流不超过 200uA。如果 CH211 请求中断, CH211 的 SCL 引脚将输出弱驱动低电平,可以将 SCL 信号线拉到低电平,此低电平可以触发 MCU 中断。

在 2 线接口通讯状态下,MCU 关闭 SCL 引脚的低电平中断输入功能,并将 SCL 引脚设置为推挽输出,通常其高电平驱动电流超过 2mA,远超 CH211 的 SCL 引脚的低电平驱动电流,可以确保 SCL 信号线正常通讯。通讯结束后,MCU 开启 SCL 引脚的低电平中断输入功能。

SCL 引脚复用于中断请求可以为 MCU 和 CH211 分别节省一个引脚,MCU 相关程序流程如下。

MCU 主程序初始化流程	MCU 通讯接口子程序流程	中断程序流程
启用 SCL 引脚的内部上拉电阻; 清除 SCL 引脚的中断标志; 初始化 SCL 引脚为中断输入 (低电平有效); 等待中断。	暂时禁用 SCL 引脚中断,IE=0; 设置 SCL=1 且为推挽输出; 设置 SDA=1 且输出; 正常发出 2 线接口的 START 信号; 正常进行 2 线接口串行数据通讯; 正常发出 2 线接口的 STOP 信号; 将 SCL 从推挽输出改为带上拉的输入; 清除 SCL 引脚的中断标志; 恢复 SCL 引脚的中断使能,IE=1; 2 线接口子程序返回。	处理中断; 清除中断原因; 中断退出。

5.9. VBUS 电压监测

CH211 内置过压监测模块,持续监测 VBUS 电压,当 VBUS 电源电压高于 V_{BUSOV} 时,触发中断或者可选复位,可选自动强制 HVCP 引脚下拉或低电平,相当于关闭 HVCP 升压。

CH211 内置 VBUS 电压监测模块,当 VBUS 电源电压高于 V_{BUSRDY} 时,触发中断并自动切换为 VBUS 电源供电,系统不再消耗 VSYS 的电流; 当 VBUS 电源电压低于 V_{BUSRDY} 时,可选触发中断并自动切换为 VSYS 电源供电。

另外,VBUS 电源电压还与更低电压阈值的 VEXIST 比较,产生 VBUS_EXIST。

5.10. 过温监测 OTP

CH211 内置温度监测模块,当检测到芯片温度达到过温保护点 Tso 时,触发过温中断或者可选复位,可选自动强制 HVCP 引脚下拉或低电平,相当于关闭 HVCP 升压。

6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位	
T _A	工作时的环境温度	-40	85	$^{\circ}$ C	
TJ	工作结温	-40	125	$^{\circ}$	
Ts	储存时的环境温度	-55	150	$^{\circ}$	
V_{sys}	VSYS 引脚的电源电压	-0. 4	32	٧	
$V_{\scriptscriptstyle BUS}$	VBUS 引脚的电源电压	-0. 4	32	٧	
V_{DD49}	VDD49 引脚的电源电压	-0. 4	6. 5	٧	
V_{DD33}	VDD33 引脚的电源电压	-0. 4	VDD49+0. 4	٧	
V_{CCH}	CCH1/CCH2 引脚的信号电压	-0. 4	32	٧	
V_{ODH}	ODH1/ODH2/HVIO 引脚的信号电压	-0. 4	40	٧	
V_{LVIO}	SCL/SDA/CCL/ODL/KEY/CCPDG 等其它引脚的信号电压 -0.4 6.5		6. 5	٧	
V _{ESDCC}	CCH/VBUS 引脚的 HBM 模型 ESD 耐压		KV		
V_{ESDHV}	ODH/HVIO/HVCP/VSYS 引脚的 HBM 模型 ESD 耐压		KV		
V_{ESDNO}	CCPDG 引脚的 HBM 模型 ESD 耐压		0.8		
V _{ESDLV}	SCL/SDA/CCL/ODL/KEY/VDD 引脚的 HBM 模型 ESD 耐压		2	KV	

I ₁₀₁	单个 1/0 引脚的	30	mA	
I ₁₀₈	单个 1/0 引脚的占空比/	100	mA	
I _{ALL}	所有 I/0 引脚	的总电流	150	mA
DD	整个芯片的最大功耗	QFN20_3x3	500	mW
PD		QFN16C_2x2	350	mW
0	±+ ½± ±h [[P	QFN20_3x3	100	°C/W
θ JA	封装热阻	QFN16C_2x2	150	°C/W

6.2. 电气参数 (测试条件: T_A=25℃、V_{SYS}=5~28V 且 V_{BUS}=5~28V)

名称		参	数说	明		最小值	典型值	最大值	单位
V _{SYS}	VS	YS 引月	却的目	息源电.	压	2. 8	5∼28	29	V
V _{BUS}	VB	US 引用	却的自	1源电	压	4. 7	5∼28	29	٧
V	VDD49 引脚	V _{sys} <u>ī</u>	或 V _{BU:}	s>=5. 2	V,10mA 负载	4. 7	4. 9	5. 1	٧
V_{DD49}	LDO 输出电压	V _{sys} =	5V 且	V _{BUS} =C	IV,10mA 负载	4. 6	4. 8	5. 0	٧
V_{DD33}	VDD33 引脚 LD	0 输出	的电	源电压	E,10mA 负载	V-0. 1	2.4~4.5	V+0. 1	٧
	VDD49 和 VDD33 合计输出			V _{SYS} >	=5V 且 V _{BUS} <3V			15	mA
VDD49	负载电流,含 VCONN				$V_{BUS}>=5V$			35	mA
I _{VDD33}	VDD33 输出负载电流				$V_{BUS}>=5V$			20	mA
VCONN	CCH	引脚 V	CONN	负载	电流			25	mA
V _{EXIST}	电源存在	的电压	阈值	,带(). 3V 迟滞	2. 8	3∼3. 3	3. 5	V
$V_{\sf BUSRDY}$	VBUS 电源就	绪	VB	US 上記	升时电压阈值	4. 2	4. 4	4. 6	V
▼ BUSRDY				US 下降	绛时电压阈值	4. 0	4. 2	4. 4	V
V_{BUSOV}	VBUS 过	压监》	则 OVF	的电	压阈值	31. 5	33	34. 5	V
I _W	开启 HVCP 但无负载			,时的二	匚作电流		0. 8	2	mA
I _{QS}	V _{sys} 静态电流	空闲	态	V _{SYS} >	=5V 且 V _{BUS} <3V		15	40	uA
I QS		且关	闭		$V_{BUS}>=5V$		1	10	uA
I _{QB}	V _{BUS} 静态电流	HVC			$V_{BUS}>=5V$		40	100	uA
V_{IL}	SCL/SDA 引脚的低电平输入电压					0		0.8	V
V _{IH}	SCL/SDA	引脚	的高	电平输	ì入电压	2. 1		5	V
V_{REFL}	HV10/KEY 引服	即的低	参考!	电压,	带 0.1V 迟滞	0. 9	1.1	1. 35	V
V_{REFM}	HV10/KEY 引					1. 35	1. 6	2. 5	V
V_{REFH}	HV10/KEY 引服	即的高	参考!	电压,	带 0.1V 迟滞	3. 2	3. 5	3. 8	V
V _{TCC}	CC 的高阈值参					2. 1	2. 4	2. 8	V
▼ ICC	压,带 0. 1V i	尺滞	V_{DD4}	₉ =3. 3V	, CC_HVT3V=1	2. 1	2. 3	2. 5	V
$V_{ ext{CP}}$	CP_AUT0=1 稳定后的净提		玉	负载	烖电流<=10uA	5	7. 4	8	٧
I _{OLSDA}	SDA 引脚的(氐电平	灌电	流	SDA=0. 4V	5	10	16	mA
1.	SCL 引脚的(氏电平	灌电	<u></u> 流	SCL=0. 4V	0. 18	0. 3	0. 5	mA
OLSCL	(SCL 复用-	<u> </u>	输出)	SCL=V _{DD49}		1. 3	2. 0	mA
I _{PDK}	HVIO/KEY	引脚到	V_{REFM}	的下拉	负载电流			800	uA
1	VRIIS 218±11	的抗中	由法		V _{BUS} =5V		25		mA
VBUSDISC	VBUS 引脚的放电电流				V _{BUS} =28V		30		mA
I _{CP}	HVCP	升压机	莫块白	り负载	电流			60	uA
1	HVCP 强下拉	的色	出出さ	点	HVCP=0. 5V	400	700	1200	uA
CPX	IIVOF J虫 广九	「HJMは	我ピル	ИL	HVCP=28V		6		mA
l _{CPL}	HVCP 弱下拉的	负载电	流	HV	CP=3V~28V	60	100	140	uA

R _{PUSDA}	SDA 引脚的内置	7	10	15	K Ω		
R _d	CCH 引脚的内置 Rd 下拉F	电阻	V _{CCH} >=1. 2V	4. 2	5. 1	6	ΚΩ
R _{GCC}	CC 通道导通电阻	V _{CCH} <=1. 2V		14	20	Ω	
R_{GOD}	0D 通道导通电阻	V _{ODH} <=1. 2V		32	45	Ω	
R_{WPU}	HVIO 内置弱」	4000	8000	15000	$\mathbf{K} \Omega$		
В	HVIO/KEY 内置上拉电阻	HV_PD/KEY_PD=0		30	60	180	$\mathbf{K} \Omega$
R _{PU}	NVIO/KET	HV_	PD/KEY_PD=1	80	160	400	$\mathbf{K} \Omega$
R _{CP}	HVCP 内置放	800	1200	1600	$\mathbf{K} \Omega$		
R_{CPL}	HVCP 弱下拉目	25	40	60	$\mathbf{K} \Omega$		
T _{SD}	OTP 过温监	115	135	160	$^{\circ}\!\mathbb{C}$		
$V_{\scriptscriptstyle LVR}$	上电复位和低压复	位的电	上压门限	2. 0	2. 2	2. 5	٧

6.3. 接口时序参数 (测试条件: T_A=25℃, V_{SYS}=5~28V, 参考附图)

名称	参数说明	最小值	典型值	最大值	单位
T _{SSTA}	SDA 下降沿启动信号的建立时间	90			nS
T _{HSTA}	SDA 下降沿启动信号的保持时间	90			nS
T _{SSTO}	SDA 上升沿停止信号的建立时间	90			nS
T _{HST0}	SDA 上升沿停止信号的保持时间	90			nS
T_{CLOW}	SCL 时钟信号的低电平宽度	90			nS
T_{CHIG}	SCL 时钟信号的高电平宽度	90			nS
T_{SDA}	SDA 输入数据对 SCL 上升沿的建立时间	30			nS
T_{HDA}	SDA 输入数据对 SCL 上升沿的保持时间	10			nS
Rate	平均数据传输速率	0		2M	bps

7、应用

7.1. PD-HUB 高压扩展

内置 PD 的 HUB 芯片(例如 CH634 或 CH339)通过 SCL 和 SDA 控制 CH211,两个 CC 其中一个作为 PWR-CCL,通过 CH211 连接到 Type-C 供电端口 P2 两个 CC 引脚进行二选一,另一个作为 HUB-CCL,通过 CH211 连接到 HUB 端口 P1,P1 连接 USB 主机,是 USB 通信端口。

CH211C 的 CCH1 和 CCH2 已内置 5K1 下拉电阻, 0DH2 需外加下拉电阻 R5。该电路中, VSYS 仅用于检测 Type-C 供电端口 P2 是否有电。

CH211 的 HVCP 可以将 VHV 升压,通过两个上拉电阻连接到 Q1 和 Q2 两个 N 型 MOSFET 功率管的栅极,在 CH211 两个高压开漏引脚的控制下独立开启或关闭两个 N 管。如果不升压,也可用两个高压开漏引脚和两个连接到 VHV 的上拉电阻独立控制两个 P 管实现同样功能。P 管与 N 管的区别是在同等条件下,P 管导通内阻略大或成本略高。

7.2. 一键开关与 DRP

CH211 为 PDUSB MCU (例如 CH32X035 或 CH32L103) 提供 Type-C 的 Rd 下拉电阻,支持 PD Source、Sink 和 DRP, HVCP 引脚产生高压可以控制 DCDC 通断, 为电池充电或者反向输出。如果仅用于 Source,那么两个 CCPDG 引脚应该悬空,CH211 的 VBUS 引脚无需连接。

MCU 通过两线接口连接 CH211, SCL 兼用于中断,实现 I/O 扩展或高压开漏 I/O 驱动。经过 CH211

高压扩展后的 Type-C 信号,可以直接承受 C 口相邻高压引脚 VBUS 的意外高压接触,从而保护 MCU 的 CC 引脚。

如果 VSYS 引脚的电压远高于 DCDC 的输出电压,那么可以将 DCDC 的输出电源送到 CH211 的 VBUS 引脚代替 VSYS 供电,从而降低 CH211 的 LDO 功耗。

为了降低 VBAT 电池待机功耗,空闲时 MCU 可以处于断电状态,由单按键 K1 实现一键开关。K1 按下后,CH211 唤醒,MCU 获得 CH211 的 VDD33 供电(或 Q3 控制的 V49 或者其它 5V 供电),MCU 设置 CH211 的 KEY 引脚输出弱低电平维持 Q3 开启;当 MCU 长时间空闲、或者 MCU 检测到 K1 再次按下或者 K1 长按后,设置 VDD33 关闭(或设置 KEY 引脚关闭 Q3)并由 CH211 等待 K1 唤醒。上图中 P 管 Q3 是可选的,如果 MCU 采用 CH211 的可控 VDD33 电源则无需 Q3。

如果需要控制超过 5V 的高压电源,那么可以参考下图,将 K1 和 Q3 从 KEY 引脚改到 HVIO 引脚,并在 Q3 的栅极和源极之间增加上拉电阻 R3。稳压管 DZ1 和限流电阻 R4 是可选的,仅用于在高压电源电压超过 Q3 栅源耐压时保护 Q3 栅极。

8、封装信息

尺寸单位均为 mm, QFN 封装误差均不超过±0.1, 非 QFN 封装误差均不超过±0.2。

8. 1. QFN20_3x3x0. 55-0. 4

8. 2. QFN16C_2x2x0. 55-0. 4

