

On munit l'ensemble $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$ de la loi de composition T définie par $(x, y) T (x', y') = (xx', xy' + y)$. Les questions 16, 17 et 18 se rapportent à (\mathbf{R}^2, T) .

16. L'élément neutre pour la loi T est :

1. $(1, 0)$
2. $(\frac{1}{2}, \frac{1}{2})$
3. $(0, 0)$
4. $(0, 1)$
5. $(1, 1)$

17. Le symétrique de $(-1, 3)$ pour la loi T est :

1. $(3, -1)$
2. $(-1, \frac{1}{3})$
3. $(1, -3)$
4. $(3, 0)$
5. $(-1, 3)$

18. Les éléments (x, y) qui commutent avec $(0, \frac{1}{2})$ sont tels que

- | | | |
|---------------------|-----------------|---------------------|
| 1. $x = 0$ | 3. $2y - 1 = 0$ | 5. $2x + y - 1 = 0$ |
| 2. $x + 2y - 1 = 0$ | 4. $x + 2y = 0$ | (M. - 83) |

19. Munis de leur addition et de leur multiplication respectives, les ensembles qui ont une structure de corps sont :

- | | | |
|---|---|---|
| 1. $\mathbf{N}, \mathbf{R}, \mathbf{C}$ | 3. $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ | 5. $\mathbf{N}, \mathbf{Z}, \mathbf{R}$ |
| 2. $\mathbf{Z}, \mathbf{R}, \mathbf{C}$ | 4. $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$ | (M. - 83) |

20. On munit les ensembles $\mathbf{N}, \mathbf{Z}, \mathbf{R}, \mathbf{C}$ de leur addition et de leur multiplication. Indiquer la proposition qui contient tous les corps.
(M. - 83)

1. $\mathbf{Q}, \mathbf{R}, \mathbf{C}$
2. $\mathbf{N}, \mathbf{Z}, \mathbf{R}, \mathbf{C}$
3. $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$
4. $\mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$
5. \mathbf{R}, \mathbf{C}

On définit dans \mathbf{C} la loi de composition $*$ par $\forall z = a + bi \quad \forall z' = a' + b'i ;$
 $z * z' = aa' + (ab' + a'b)i$ avec $(a, a', b, b') \in \mathbf{R}^4$.

On peut montrer que $(\mathbf{C}, +, *)$ est une structure d'anneau commutatif unitaire. Les questions 21, 22 et 23 se rapportent à cet énoncé.

21. Indiquer si elle existe la proposition fausse :

1. $(\mathbf{C} \setminus \{0\}, *)$ est un groupe abélien
2. la loi $*$ est associative
3. la loi $*$ admet un élément neutre
4. la loi $*$ est distributive par rapport à l'addition $+$
5. $(\mathbf{C}, +)$ est un groupe abélien