J1

Transfers

02:51 PM

Goal: Shift to an orbit that does NOT intersect the original orbit

To accomplish: use multi impulses transfer

Usually propellant is the limiting factor so use the transfer that requires the minimum total Δv

< NOTE: min AV = min # of impulses>

Approach transfer problems:

(1) Define transfer geometry

Given transfer orbit type: what are departure arrival points initial final orbits; departure arrival conditions

(2) Define departure/arrival points

solve for transfer path that weets the specification

Since (2) more difficult, begin by considering some types from (1)

simplest possible example: circle -to-circle planor transfer

Simplest two-impulse transfer (also the minimum Δv two-impulse solution)

Hohmann Transfer

Walter Hohmann – first to draw attention to problem and compute mission times

1925 (Munich) "The Accessibility of the Heavenly Bodies" Sketches \leftarrow consistent with numerical vesults $\gamma \rightarrow \theta^* \rightarrow E \rightarrow H$

transformation & angles => quadrant matrix check

local horizon - add to sketch/plot

J2

Example

$$r_1 = 2 R_{\oplus} \qquad \qquad r_2 = 4 R_{\oplus}$$

transfer geometry known Solution:

(a) Establish current orbit

$$a = r_1 = 2R_{\oplus}$$
$$e = 0$$

insert into process

(b) Conditions at thrust point <u>before</u> maneuver

$$r_1 = 2 R_{\oplus}$$

$$v_1 = 5.59 \,\mathrm{km/s}$$

$$\gamma_1 = 0^{\circ}$$

To calculate Δv requires conditions on the transfer ellipse so transfer ellipse must be defined

(c) Determine transfer ellipse

$$a_T = \frac{1}{2} (r_p + r_a) = 3 R_\oplus$$
 Transfer angle: The

$$r_p = a(1-e) \longrightarrow e_7 = \frac{1}{3}$$

(d) Conditions at thrust point (on transfer) after maneuver

$$r = r_1$$

$$\frac{v_p^2}{2} = \frac{\mu}{r_1} - \frac{\mu}{2a_T} \longrightarrow V^{\dagger} = V_p = 645 \text{ km/s}$$

$$\gamma_1 = 0^{\circ}$$

(e) Vector Diagram for $\Delta \overline{v}_1$ ALWAYS sketch the vector diagram

(f) move to the next maneuver point

Conditions at thrust point before 2nd maneuver (now in transfer orbit)

(g) Conditions required after maneuver in final orbit

$$r_2 = 4R_{\oplus}$$

$$v_2 = \sqrt{\frac{\mu}{r_2}} = 3.95 \,\text{km/s}$$

$$\gamma = 0^{\circ}$$

(h) Vector diagram for $\Delta \overline{v}_2$

(i) Total
$$\Delta v = |\Delta \overline{v}_1| + |\Delta \overline{v}_2|$$

Hohmann - inexpensive -> ATT is targential

takes time - efficient easy to compare

to transfer ToF (time of flight)

J J5

Conditions for Rendezvous

Transfers shift vehicles from one orbit to another

Additional complexity if rendezvous:

Just reaching target orbit is not sufficient Timing becomes a critical factor

Example: \oplus orbiting OTV departing low \oplus orbit to rendezvous with a space station

transfer time

1/2 p of transfer orbit

Example: Hohmann Earth-to-Pluto

Requirement for rendezvous/interception determines initial geometry

If this "launch" opportunity is missed, how long until proper alignment again available?

synodic period?

porte: just need 4 to excur again do NTT require that planets
be in same position in space

L after one ⊕ period

transfer orbit

J6

2

J7

- 1. $IP_{Pluto} = 247 \text{ yrs}$; **2** does not move far in one Earth IP
- 2. After one IP_{Earth} , angle between Earth and Pluto = $\phi + \delta \phi$
- 3. Earth moves faster than Pluto, so if we let both move a little, Earth will "catch up"

$$IP = \frac{2\pi}{n}$$
 h P = $2\pi (360^\circ)$ ht = angle thru time

Earth time to go one period plus a little = $IP + \Delta = t_s$

$$n_{Earth} t_s = 2\pi + \Delta$$
 $n_{Pluto} t_s = \Delta$
 $\leq \text{Unitable}$

17 boch @ and & more thru sake A -> recreate geometry

$$t_{\text{Barth}} t_s = 2\pi + \Delta$$
 $t_{\text{Pluto}} t_s = \Delta$

Subtract

 $t_s = \frac{2\pi}{n_{\text{Pluto}}} t_s = \Delta t_s$
 $t_s = \frac{2\pi}{n_{\text{everh}} - h_{\text{Pluto}}} t_s = \Delta t_s$

Synodic

 $t_s = \frac{2\pi}{n_{\text{everh}} - h_{\text{Pluto}}} t_s = \Delta t_s$

J8

Bi-Elliptical Transfers

Hoelker-Silber

all tangential

Extension to Hohmann transfer that uses three impulses

save ~10% than Hohmanh

Characteristics:

- 1. Initial orbit circular (?)
- 1st impulse applies <u>tangentially</u>; shift to periapsis of transfer Ellipse #1 (E1)
- 3. Apogee on E1 = $r > r_f$ 2^{nd} impulse applied <u>tangentially</u>; shifts from apoapsis of E1 tp apoapsis of transfer Ellipse #2 (E2)
- 4. Periapsis on E2 = r_f 3^{rd} impulse applied <u>tangentially</u>; shifts into final circular (?) orbit
- 5. Total cost = $\left|\Delta \overline{v}_1\right| + \left|\Delta \overline{v}_2\right| + \left|\Delta \overline{v}_3\right|$

J9

Bi-Parabolic Transfers

Move the intermediate radius out to infinity $(r \to \infty)$ Transfer paths become parabolic $2^{\rm nd}$ impulse becomes infinitesimally small $(\Delta v_2 \approx 0)$

No practical value because duration infinite

Gain achieved by use of bi-parabolic (in-plane) small (max \approx 10%) so Hohmann preferred in practice

Return to Bi-elliptic

$$\Delta v_{\rm Total} = \left| \Delta \overline{v}_1 \right| + \left| \Delta \overline{v}_2 \right| + \left| \Delta \overline{v}_3 \right|$$
 This total cost a fin of intermediate radius

To clarify the relationship between Δv_{Total} and r, consider a plot for circle-to-circle bi-elliptic transfers

Next page: Find conditions for minimum cost

Check limits $r = r_f$ (two-impulse Hohmann) $r \to \infty$ (bi-parabolic)

- (a) $1 \le r_f \le 9$ \longrightarrow Alvioral increases; absolute min Hohmann
- (b) 9≤r, ≤15.58 → Al Verral local mins for Hohmenh & bi-parchafic
 - (i) 9≤r, ≤11.94 absolute min Hohmann
 - (ii) 11.94≤r, ≤15.58 absolute min bi-parabolic
- (c) r, ≥15.58 ⇒ Hohmanh not even low min all hi-elliptic transfers require less 10 than Hohmann

