Appendix II: Laplace Table

$\mathcal{L}1$	1	$\frac{1}{p+a}$ Re $p > 0$
$\mathcal{L}2$	e^{-at}	$\frac{1}{p}$ Re $p > 0$
$\mathcal{L}3$	$\sin at$	$\frac{a}{p^2 + a^2}$ Re $p > \text{Im } a $
$\mathcal{L}4$	$\cos at$	$\frac{p}{p^2 + a^2}$ Re $p > \text{Im } a $
$\mathcal{L}5$	$t^k, \ k > -1$	$\frac{k!}{p^{k+1}} \text{ or } \frac{\Gamma(k+1)}{p^{k+1}}$ $\text{Re } p > 0$
$\mathcal{L}6$	$t^k e^{-at}, k > -1$	$\frac{k!}{(p+a)^{k+1}} \text{ or } \frac{\Gamma(k+1)}{(p+a)^{k+1}}$ $\text{Re } (p+a) > 0$
L7	$\frac{e^{-at} - e^{-bt}}{b - a}$	$\frac{1}{(p+a)(p+b)}$ Re $(p+a) > 0$ Re $(p+b) > 0$
£8	$\frac{ae^{-at} - be^{-bt}}{b - a}$	$\frac{p}{(p+a)(p+b)}$ $\operatorname{Re}(p+a) > 0$ $\operatorname{Re}(p+b) > 0$
L 9	$\sinh at$	$\frac{a}{p^2 - a^2}$ Re $p > \text{Re } a $
£10	$\cosh at$	$\frac{p}{p^2 - a^2}$ Re $p > \text{Re } a $

$$\mathcal{L}33 \qquad \qquad \int_0^t g(\tau) \ d\tau \qquad \qquad \frac{1}{p}G(p)$$

Convolution of g and h, often written as

$$\mathcal{L}34 \qquad g * h$$

$$= \int_0^t g(t - \tau)h(\tau) d\tau$$

$$= \int_0^t g(\tau)h(t - \tau) d\tau$$

$$G(p)H(p)$$

Transforms of derivatives of y

$$\mathcal{L}(y') = pY - y
\mathcal{L}(y'') = p^2Y - py_0 - y'_0
\mathcal{L}(y''') = p^3Y - p^2y_0 - py'_0 - y_0
\mathcal{L}(y^n) = p^nY - p^{n-1}y_0 - p^{n-2}y'_0 - \dots - y_0^{n-1}$$