Материал курса Коммутативная алгебра, 2025

Содержание

1.	Основные понятия	- 2 -
	1.1. Кольца и идеалы	- 2 -
	1.2. Нильрадикал и радикал Джекобсона	- 4 -
	1.3. Операции над идеалами	- 5 -

1. Основные понятия

1.1. Кольца и идеалы

Определение 1.1.1. (коммутативное кольцо): Кортеж $(A, +, \cdot, 0, 1)$ называется *коммутативным кольцом*, (или просто *кольцом*) если

$$+, \cdot : A \times A \to A, \quad 0, 1 : \{\emptyset\} \to A \quad (0, 1 \in A),$$

а также выполняются следующие свойства:

- (1) (A, +, 0) абелева группа; (то есть операция сложения + коммутативна и ассоциативна, 0 есть её нейтральный элемент, а
- (2) $(A, \cdot, 1)$ коммутативная полугруппа; (то есть умножение \cdot коммутативно и ассоциативно, 1 есть её нейтральный элемент)

также каждый элемент $x \in A$ имеет единственный противоположный $-x \in A$)

(3) $\forall x,y,z\in A:\ x(y+z)=xy+xz$ (свойство дистрибутивности)

Замечание 1.1.2. Может статься, что 0=1 в кольце A. Тогда имеем $x=x\cdot 1=x\cdot 0=0$ и $A=\{0\}=:0$.

Определение 1.1.3. (гомоморфизм колец): Отображение $f:A\to B$ между кольцами A и B называется *гомоморфизмом*, если оно является гоморфизмом абелевых групп по сложению и полугрупп по умножению, то есть

- (1) $f(x +_A y) = f(x) +_B f(y), f(x \cdot_A y) = f(x) \cdot_B f(y);$
- (2) $f(0_A) = 0_B$, $f(1_A) = 1_B$.

Определение 1.1.4. (подкольца и идеалы):

- (1) Подмножество $S \subset A$ называется *подкольцом*, если $(S, +, \cdot, 0, 1)$ есть кольцо.
- (2) Подмножество $\mathfrak{a}\subset A$ называется идеалом, если $\mathfrak{a}\overset{<}{\underset{\mathrm{Ab}}{\leq}}A$, а также $A\mathfrak{a}\subset\mathfrak{a}$;
- (3) Для любого $x \in A$, множество $xA = \{xy \mid y \in A\}$ образует идеал, который обозначается (x).

Определение 1.1.5. (факторкольцо): Пусть $\mathfrak{a} \leq A$. Тогда имеем $(A/\mathfrak{a},+,\cdot,0+\mathfrak{a},1+\mathfrak{a}) \in \mathrm{Ring}$, где

$$(x+\mathfrak{a})+_{\mathfrak{a}}(y+\mathfrak{a})=(x+y)+\mathfrak{a},\quad (x+\mathfrak{a})\cdot (y+\mathfrak{a})=xy+\mathfrak{a}.$$

(Пусть $\mathfrak a$ — идеал в кольце A. Тогда абелева группа $A/\mathfrak a$ однозначно снабжается умножением, индуцированным с умножения в кольце A, что превращает её в кольцо, называемое ϕ акторкольцом $A/\mathfrak a$)

Отображение $\varphi:A\to A/\mathfrak{a},\ \varphi(x)=x+\mathfrak{a},$ называется канонической проекцией.

Утверждение 1.1.6. Существует биекция

$$\tilde{\varphi}: \{\mathfrak{b} \leq A \mid \mathfrak{a} \subset \mathfrak{b}\} \leftrightarrow \{\overline{\mathfrak{b}} \leq A/\mathfrak{a}\},\$$

сохраняющая включение.

Доказательство: Упражнение.

Определение 1.1.7. (делители нуля, нильпотенты, единицы):

- (1) Пусть $x \in A$. Если найдётся $y \neq 0$, что xy = 0, то x называется делителем нуля. $(x \mid 0)$
- (2) Кольцо $A \neq 0$, не имеющее ненулевых делителей нуля, называется областью целостности.
- (3) Элемент $x \in A$ называется *нильпотентом*, если $x^n = 0$ для некоторого $n \ge 1$. Всякий нильпотент является делителем нуля, но не всегда наоборот.
- (4) Пусть $x \in A$. Если для некоторого $y \in A$ выполняется xy = 1, то x называется *обратимым* $(x \mid 1)$. Обратимые элементы кольца A образуют абелеву группу по умножению.
- (5) Ненулевое кольцо A, в котором каждый ненулевой элемент обратим, называется *полем*.

Упражнение 1.1.8. Докажите следующие простые свойства кольца:

- (1) $x \cdot 0 = 0$;
- (2) $f: A \to B, g: B \to C \text{ homo} \Longrightarrow (g \circ f): A \to C \text{ homo};$

(композиция гомоморфизмов — гомоморфизм)

- (3) $f: A \to B$ инъекция \iff ker f = 0;
- (4) $x \mid 0 \Longrightarrow x \nmid 1$.

(всякий делитель нуля необратим)

Утверждение 1.1.9. Пусть A — ненулевое кольцо. Следующие условия равносильны:

- (1) A nоле;
- (2) $\mathfrak{a} \leq A \Longrightarrow \mathfrak{a} = 0 = \{0\} \lor \mathfrak{a} = (1) = A;$

 $(B\ A\$ нет идеалов, кроме $0 = \{0\}\ u\ (1))$

(3) $\forall B \neq 0, \forall f : A \rightarrow B : f - ин.$

(всякий гомоморфизм из A в ненулевое кольцо инъективен)

Доказательство:

- $(1)\Longrightarrow (2)$: Если $\mathfrak{a}\leq A$ и $\mathfrak{a}\neq 0$, то \mathfrak{a} содержит некий обратимый элемент $x\in A$. Тогда $1=xy\in A$ для некоторого y, а значит $\forall z\in A:\ z=z\cdot 1\in \mathfrak{a},$ и $\mathfrak{a}=(1).$
- $(2)\Longrightarrow (3)$: Если $B\neq 0$, то для гомоморфизма $f:A\to B$ имеем f(1)=1, а значит $\ker f\neq A$. Следовательно, $\ker f=0$, и f инъективно.
- $(3)\Longrightarrow (1)$: Пусть $x\in A, x\neq 0$. Рассмотрим каноническую проекцию $\varphi:A\to A/(x)$. Так как $\varphi(0)=\varphi(x)=(x)$, мы заключаем, что φ не инъективно. Тогда A/(x)=0, а значит (x)=A, и 1=xy для некоторого $y\in A$.

Определение 1.1.10. (простые и максимальные идеалы):

- (1) Идеал $\mathfrak{p} \subset A$ называется *простым*, если $\mathfrak{p} \neq A$ и включение $xy \in \mathfrak{p}$ влечёт $x \in \mathfrak{a}$ либо $y \in \mathfrak{p}$.
- (2) Идеал $\mathfrak{m}\subset A$ называется максимальным, если $\mathfrak{m}\neq A$ и не существует идеала \mathfrak{b} , такого что $\mathfrak{m}\subsetneq\mathfrak{b}\subsetneq A$.

Утверждение 1.1.11. Пусть $A - \kappa$ ольцо.

- (1) Идеал $\mathfrak{p} \subset A$ простой $\iff A/\mathfrak{p}$ область целостности;
- (2) Идеал $\mathfrak{m} \subset A$ максимальный $\iff A/\mathfrak{m}$ поле.

Доказательство: Упражнение.

Следствие 1.1.12. Всякий максимальный идеал прост.

Теорема 1.1.13. В каждом кольце $A \neq 0$ есть максимальный идеал.

Доказательство: Для доказательства сформулируем лемму Цорна:

Предложение 1.1.14. (Лемма Цорна): Пусть (P,\leqslant) — непустое частично упорядоченное множество. Тогда если каждое линейно упорядоченное подмножество в P имеет мажоранту, то в P существует по крайней мере один максимальный элемент.

Это утверждение мы оставим без доказательства, отметив только, что оно эквивалентно *аксиоме выбора*.

Далее, рассмотрим множество Σ всех собственных идеалов в A, частично упорядоченное по включению. Это множество непусто, так как содержит нулевой идеал 0.

Теперь пусть $\left\{\mathfrak{a}_{\alpha}\right\}_{\alpha\in\mathcal{I}}$ — некое линейно упорядоченное подмножество Σ . Рассмотрим объединение

$$\mathfrak{b}=\bigcup_{\alpha\in\mathcal{I}}\mathfrak{a}_{\alpha}.$$

Очевидно, что \mathfrak{b} — идеал (упражнение), и кроме того $1 \notin \mathfrak{b}$, так как $1 \notin \mathfrak{a}_{\alpha}$ при всех $\alpha \in \mathcal{I}$. Следовательно, $\mathfrak{b} \in \Sigma$, а значит \mathfrak{b} является мажорантой множества $\{\mathfrak{a}_{\alpha}\}_{\alpha \in \mathcal{I}}$.

Наконец, по лемме Цорна мы заключаем, что множество Σ имеет максимальный элемент \mathfrak{m} , то есть максимальный идеал в кольце A.

Следствие 1.1.15. Каждый собственный идеал $\mathfrak{a} \subset A$ содержится в некотором максимальном идеале, и всякий необратимый элемент содержится в некотором максимальном идеале.

I Доказательство: Достаточно рассмотреть кольцо A/\mathfrak{a} и применить предыдущую теорему.

Определение 1.1.16. Кольцо A, имеющее всего один максимальный идеал, называется *покальным.* Если множество максимальных идеалов кольца A конечно, то кольцо A называется *полулокальным.*

Утверждение 1.1.17. Пусть A — некоторое кольцо.

- (1) Если \mathfrak{a} такой собственный идеал, что всякий элемент $x \in A \setminus \mathfrak{a}$ обратим, то кольцо A локально, и \mathfrak{a} его максимальный идеал.
- (2) Если \mathfrak{m} максимальный идеал в A, и всякий элемент $1+x\in 1+\mathfrak{m}$ обратим, то A является локальным.

Доказательство:

- (1) Пусть \mathfrak{m} некий максимальный идеал. Тогда если $x \in \mathfrak{m}$, то x необратим и следовательно $x \in \mathfrak{a}$. Тогда $\mathfrak{m} \subset \mathfrak{a}$, а значит $\mathfrak{m} = \mathfrak{a}$, так как идеал \mathfrak{m} максимальный. Итого, все максимальные идеалы в A совпадают с \mathfrak{a} , ч.т.д.
- (2) Допустим, что $x \in A \setminus \mathfrak{m}$. Так как \mathfrak{m} максимален, идеал, порождённый \mathfrak{m} и x, совпадает со всем кольцом A. Поэтому найдутся такие элементы $y \in A, t \in \mathfrak{m}$, что xy+t=1. Следовательно, $xy=1-t\in 1+m$, а значит xy обратим. Тогда x обратим. Остаётся только воспользоваться утверждением (1).

1.2. Нильрадикал и радикал Джекобсона

Утверждение 1.2.1. Множество $\mathfrak N$ всех нильпотентов кольца A является идеалом. В кольце $A/\mathfrak N$ нет ненулевых нильпотентов.

Доказательство: Очевидно, что если $x \in \mathfrak{N}$, то $ax \in \mathfrak{N}$ для любого $a \in A$. Теперь рассмотрим два элемента $x,y \in \mathfrak{N}$, причём $x^n = 0$ и $y^m = 0$. Тогда выражение $(x+y)^{m+n}$ по теореме Ньютона раскрывается следующим образом:

$$(x+y)^{n+m} = \sum_{i+j=n+m} a_{ij} x^i y^j.$$

При этом для каждой пары (i,j), либо $i\geq n$, либо $j\geq m$. Следовательно, каждое слагаемое $a_{ij}x^iy^j$ равно нулю, а значит $(x+y)^{n+m}=0$, и $x+y\in\mathfrak{N}$.

Далее, рассмотрим элемент $x+\mathfrak{N}\in A/\mathfrak{N}$ и допустим, что $(x+\mathfrak{N})^n=\mathfrak{N}.$ Это означает, что $x^n\in\mathfrak{N}$, и для некоторого $k\in\mathbb{N}$

$$x^{nk} = (x^n)^k = 0 \Longrightarrow x \in \mathfrak{N} \Longrightarrow x + \mathfrak{N} = \mathfrak{N}.$$

Определение 1.2.2. Идеал \mathfrak{N} называется нильрадикалом кольца A.

Теорема 1.2.3. Нильрадикал кольца A совпадает с пересечением всех его простых идеалов.

Доказательство: Пусть P — пересечение всех простых идеалов кольца A. Во-первых, очевидно, что всякий нильпотент лежит во всяком простом идеале (упражнение), так что $\mathfrak{N} \subset P$.

Обратно, пусть элемент $f \in A$ не является нильрадикалом. Нам нужно показать, что он не содержится в каком-либо простом идеале. Рассмотрим множество Σ всех идеалов $\mathfrak a$ со свойством

$$\forall n \in \mathbb{N}: f^n \notin \mathfrak{a}.$$

Множество Σ непусто, поскольку $0 \in \Sigma$. Рассуждение из <u>теоремы 1.2.3</u> показывает применимость леммы Цорна ко множеству Σ , в результате чего получаем максимальный элемент $\mathfrak{p} \in \Sigma$. Покажем, что \mathfrak{p} — простой идеал.

Пусть $x,y\notin\mathfrak{p}$. Тогда идеалы $\mathfrak{p}+(x)$ и $\mathfrak{p}+(y)$ строго содержат $\mathfrak{p},$ и следовательно, не принадлежат Σ . Иначе говоря, имеем

$$f^m \in \mathfrak{p} + (x), \qquad f^n \in \mathfrak{p} + (y),$$

для некоторых $m,n\in\mathbb{N}$. отсюда следует, что

$$f^{m+n} \in \mathfrak{p} + (xy) \Longrightarrow p + (xy) \notin \Sigma \Longrightarrow xy \notin \mathfrak{p}.$$

Тем самым, мы построили простой идеал, не содержащий f, и потому $f \notin P$.

Определение 1.2.4. Пересечение $\mathfrak R$ всех максимальных идеалов кольца A называется *радикалом* $\mathcal L$ $\mathcal L$

Утверждение 1.2.5. $x \in \Re \iff 1 - xy$ обратим в кольце A для всех $y \in A$.

Доказательство:

 \implies : Допустим, что элемент 1-xy необратим. Тогда, по следствию 1.1.15, этот элемент содержится в некотором максимальном идеале \mathfrak{m} . Но $x\in\mathfrak{R}\subset\mathfrak{m}$, а значит $1=(1-xy)+y\cdot x\in\mathfrak{m}$, противоречие.

 \Leftarrow : Предположим, что $x \notin \mathfrak{m}$ для некоторого максимального идеала \mathfrak{m} . Тогда имеем $A = \mathfrak{m} + (x)$, а потому 1 = u + xy для некоторых $u \in \mathfrak{m}$ и $y \in A$. Следовательно, $1 - xy = u \in \mathfrak{m}$, что невозможно, так как 1 - xy обратим.

1.3. Операции над идеалами

Определение 1.3.1.

- (1) Пусть \mathfrak{a} , \mathfrak{b} идеалы в кольце A. Тогда $\mathfrak{a} + \mathfrak{b}$ идеал, состоящий из сумм x + y, где $x \in \mathfrak{a}$, $y \in \mathfrak{b}$. Это наименьший идеал, содержащий \mathfrak{a} и \mathfrak{b} . Он называется *суммой* \mathfrak{a} и \mathfrak{b} .
- (2) Также, для любого семейсва идеалов $\{\mathfrak{a}_{\alpha}\}_{\alpha\in\mathcal{I}}$, можно определить сумму $\sum_{\alpha\in\mathcal{I}}\mathfrak{a}_{\alpha}$ как идеал всевозможных *конечных* сумм элементов из \mathfrak{a}_{α} ;
- (3) Пересечение любого семейства идеалов является идеалом. Таким образом, идеалы кольца A образуют полную структуру по включению;
- (4) Возникает определение *идеала*, *порождённого множеством*: если $S \subset A$, то $\langle S \rangle$ определяется как пересечение всех идеалов, содержащих S.
- (5) Произведением двух идеалов \mathfrak{a} и \mathfrak{b} называется идеал, порождённый всевозможными произведениями xy, где $x \in \mathfrak{a}, y \in \mathfrak{b}$:

$$\mathfrak{a} \cdot \mathfrak{b} = \langle \{xy \mid x \in \mathfrak{a}, y \in \mathfrak{b}\} \rangle = \Bigg\{ \sum_{i=1}^n x_i y_i \mid x_i \in \mathfrak{a}, y_i \in \mathfrak{b} \Bigg\}.$$

Замечание 1.3.2. Все три операции коммутативны и ассоциативны (упражнение). Кроме того, справедлив дистрибутивный закон:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Определение 1.3.3. Если $\mathfrak{a} + \mathfrak{b} = (1)$, то идеалы \mathfrak{a} и \mathfrak{b} называются *взаимно простыми*.

Замечание 1.3.4. В кольце \mathbb{Z} , идеалы (n) и (m) взаимно просты тогда и только тогда, когда числа n и m взаимно просты.

Доказательство: Упражнение.

Упражнение 1.3.5. Правда ли, что всякий простой идеал \mathfrak{p} взаимно прост с любым другим идеалом $\mathfrak{a} \neq (0)$?

Определение 1.3.6. Пусть $A_1, A_2, ..., A_n$ — некоторые кольца. Их *прямым произведением*

$$A = \prod_{k=1}^{n} A_k$$

называется множество $A_1 \times A_2 \times ... \times A_n$ с поточечными операциями. Проекции $p_k : A \to A_k$ являются гомоморфизмами колец.

Теорема 1.3.7. Пусть A- кольцо, $\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_n-$ его идеалы. Определим гомоморфизм

$$\varphi:A\to \prod_{k=1}^n (A/\mathfrak{a}_k)$$

формулой $\varphi(x)=(x+\mathfrak{a}_1,x+\mathfrak{a}_2,...,x+\mathfrak{a}_n).$ Тогда:

- (1) Если идеалы \mathfrak{a}_i и \mathfrak{a}_j взаимно просты при $i \neq j$, то $\prod a_k = \bigcap a_k$;
- (2) Гомоморфизм φ сюръективен \iff $\mathfrak{a}_i, \mathfrak{a}_j$ взаимно просты при $i \neq j;$
- (3) Гомоморфизм φ инъективен $\iff \bigcap \mathfrak{a}_k = (0)$.

Доказательство:

- (1) Первый пункт доказывается индукцией по n:
 - <u>База:</u> n=2. Имеем такие идеалы $\mathfrak{a},\mathfrak{b}\leqslant A$, что $\mathfrak{a}+\mathfrak{b}=(1)$. Очевидно, $\mathfrak{a}\mathfrak{b}\subset\mathfrak{a}\cap\mathfrak{b}$. Обратно, имеем

$$\mathfrak{a}\cap\mathfrak{b}=(1)\cdot(\mathfrak{a}\cap\mathfrak{b})=(\mathfrak{a}+\mathfrak{b})\cdot(\mathfrak{a}\cap\mathfrak{b})=\mathfrak{a}(\mathfrak{a}\cap\mathfrak{b})+\mathfrak{b}(\mathfrak{a}\cap\mathfrak{b})\subset\mathfrak{a}\mathfrak{b}+\mathfrak{b}\mathfrak{a}=\mathfrak{a}\mathfrak{b}.$$

• <u>Переход:</u> $n-1 \to n$. Пусть $n \ge 3$, и для идеалов $\mathfrak{a}_1, \mathfrak{a}_2, ..., \mathfrak{a}_{n-1}$ результат верен. Положим

$$\mathfrak{b} = \bigcap_{k=1}^{n-1} \mathfrak{a}_k.$$

Так как $\mathfrak{a}_i+\mathfrak{a}_n=(1)$, имеем $x_k+y_k=1$ для некоторых $x_k\in\mathfrak{a}_k,y_k\in\mathfrak{a}_n.$ Следовательно,

$$\prod_{k=1}^{n-1} x_i = \prod_{k=1}^{n-1} (1-y_k) \in 1 + \mathfrak{a}_n.$$

Тогда $\mathfrak{a}_n + \mathfrak{b} = (1)$, а значит

$$\prod_{k=1}^n \mathfrak{a}_k = \mathfrak{b} a_n = b \cap \mathfrak{a}_n = \bigcap_{k=1}^n \mathfrak{a}_n.$$

(2) \Longrightarrow : Покажем, что \mathfrak{a}_1 и \mathfrak{a}_2 взаимно просты. Поскольку φ сюръективно, найдётся такой элемент $x \in A$, что

$$\varphi(x)=(1+\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,...,\mathfrak{a}_n).$$

Тогда имеем $x\in 1+\mathfrak{a}_1$ и $x\in \mathfrak{a}_2$, откуда $\mathfrak{a}_1+\mathfrak{a}_2=(1).$

 \Longleftarrow : Достаточно показать, что для некоторого $x \in A$ выполняется

$$\varphi(x)=(1+\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,...,\mathfrak{a}_n).$$

Так как $\mathfrak a_1$ и $\mathfrak a_k$ взаимно просты при $k\ge 2$, найдутся элементы $u_k\in\mathfrak a_1$ и $v_k\in\mathfrak a_k$ со свойством $1=u_k+v_k$. Тогда положим $x=\prod v_i$. Имеем

$$x = \prod (1-u_k) \in 1 + \mathfrak{a}_1 \quad \text{if} \quad x \in \mathfrak{a}_k \Longrightarrow \varphi(x) = (1+\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_n).$$

(3) Очевидно, поскольку $\bigcap \mathfrak{a}_k = \ker \varphi$,

что и требовалось.