ITI DATA MANAGEMENT TRACK

INTAKE 44

AIRLINE DWH CASE STUDY

Presented by:

Abdelrahman Ahmed

Ahmed Samy

Manar Ayman

Rahaf Mohamad

Contents

Introduction	2
STEPS OF DESIGN	3
Investigating the Bus Matrix	3
Defining Business Processes	3
Defining facts AND GRAIN	4
Dimensions	9
DEFINING MEASURES	10
Sample from Data Population	12
Class of Service Flown Dimension	12
Passenger Profile Dimension	12
Flight Activity Fact Analysis(Not Complete)	13
Business Oueries	13

INTRODUCTION

In an era of rapid transformation, the airline industry faces a pressing need for agile strategies and data-driven solutions. Our project aims to provide actionable insights to a major airline company, leveraging rigorous analysis of flight activity, reservation processes, and customer interactions. By aligning our analysis with the company's objectives, we aim to unlock opportunities for enhanced operational efficiency and customer satisfaction. Through a meticulous review of passenger behaviour, revenue streams, and service utilization, we seek to empower executive management with strategic recommendations for sustainable growth. Our approach integrates advanced analytics with a deep understanding of industry dynamics, ensuring relevance and impact in our findings. As we present our insights, we invite the company to embrace data-driven decision-making as a cornerstone of its strategic vision. Together, we can navigate the complexities of the aviation landscape and chart a course towards continued success and innovation.

STEPS OF DESIGN

We built our model based on Kimball model, Taking "The Data Warehouse Toolkit - The Definitive Guide to Dimensional Modelling "Chapter-12 specifically our reference for this case study.

INVESTIGATING THE BUS MATRIX

We started our work by investigating the bus matrix stated in this chapter to decide which business processes will fit our project requirements and what is the dimensions that intersect with it and here are our findings:

DEFINING BUSINESS PROCESSES

- 1- Flight Activity.
- 2- Reservations.
- 3- Points of flights' ancillary services (spending/earning) tracking for frequent flyers.
- 4- Points of Partners' services (spending/earning) tracking for frequent flyers.
- 5- Customer Care Interactions.
- 6- Ticket issuance (Bonus).

DEFINING FACTS AND GRAIN

Flight Activity Fact: On **segment** level to provide a better usability for both marketing and BI teams, however. *it could be chosen on trip level but on average trip consists of 3 segments so 3X performance enhancements is considered small for the Kimball to lose some needed details.*

Reservations Fact: It's a daily snapshot fact table, on **Flight** level as the purpose of this fact to allow Business users to track the unearned revenues for every day.

Customer Care Interactions: Transactional table on Leg level to allow tracing interaction on the lowest level of grain like (Complains, Feedbacks, Inquires).

Flight Ancillary Points Fact: On level of ticket level to trace points spending and earing through the flights of the flight ancillary services like (Extra baggage, accessing lounge, extra meal, etc.)

Partner Points Fact: On transaction_id level, and *this is separated from the previous fact to allow* tracing the services on the flight independent of partners' services like (Hotels, Transportations, Retail, etc...)

Issued Ticket Fact Table:

Transactional table capturing individual ticket issuance events at the granularity of each ticket issued, providing insights into passenger ticketing activities, such as reservation IDs, flight details, ticket issuance dates, and payment methods.

It enables analysis of ticket issuance trends, passenger booking behaviors, popular flight routes, and revenue generation patterns. This data can be used to optimize ticketing processes, understand passenger preferences, and enhance revenue management strategies.

DIMENSIONS

Date Dimension: Stores various date-related attributes like day, month, year, and quarter. Used for time-based analysis and reporting, facilitating queries related to passenger activities, flight schedules, and revenue trends over time, Note that its recommended to implement the date by creating views to reference different type of date keys like (departure and arrival).

Interaction Dimension: Captures details about different types of interactions with passengers, including inquiries, complaints, and feedback. Enables analysis of customer sentiment, satisfaction levels, and service quality across various communication channels.

Ancillary Service Dimension: Contains information about additional services offered to passengers, such as meals, Wi-Fi, and extra luggage. Facilitates analysis of ancillary service utilization, revenue generation, and passenger preferences.

Main Service Dimension: Represents primary services provided by the airline, such as booking, ticketing, and baggage handling. Supports analysis of service usage, performance, and customer satisfaction.

Passenger Dimension: Stores demographic and contact information about passengers, including names, genders, and contact details. Facilitates customer segmentation, loyalty program management, and personalized marketing initiatives.

Passenger Profile Dimension: There are no specific dimension for frequent flyers, all passengers considered a frequent flyers but the one who has a memberships in the club the airline company will track his point spending and earning, Actually this dimension is the one that specifying the frequent flyer tier of the passenger when he made the flight, Captures details about passengers' frequent flyer tiers, club memberships, and lifetime mileage tiers. Enables segmentation of passengers based on loyalty status, travel patterns, and mileage accrual.

Fare Basis Dimension: Contains information about fare types and restrictions associated with ticket pricing. Supports analysis of fare structures, pricing strategies, and revenue management.

Class of Service Flown Dimension: Describes the class of service purchased and flown by passengers, such as economy, business, or first class. Facilitates analysis of seat occupancy, revenue distribution, and service differentiation, Note that this dimensions track the upgrades and downgrades by providing all possible combination between all the classes purchased a flown with if its upgraded or downgraded.

Payment Method Dimension: Stores details about payment methods used for transactions, including credit cards, debit cards, and bank transfers. Supports analysis of payment trends, transaction volumes, and revenue channels.

Partner Service Dimension: Contains information about services offered by partner organizations, such as hotels, transportation companies, and retail outlets, <u>and the partners themselves</u>. Enables analysis of partnership effectiveness, service utilization, and revenue sharing.

Booking Channel Dimension: Represents different channels through which bookings are made, including online platforms, call centres, and travel agencies. Facilitates analysis of booking channel performance, customer preferences, and distribution costs.

Aircraft Dimension: Stores details about aircraft, including type, manufacturer, seating capacity, and technical specifications. Supports analysis of fleet management, operational efficiency, and maintenance scheduling.

Airport Dimension: Contains information about airports, including codes, names, locations, and contact details. Facilitates analysis of flight routes, passenger traffic, and airport performance metrics, Here the same idea of views as date dimension to be implemented for (start and end airports).

DEFINING MEASURES

Flight Activity Fact Analysis:

Required:

- Flights taken by frequent flyers.
- · Fare basis paid.
- Frequency of upgrades
- Earning and redemption of frequent flyer miles
- Response to special fare promotions.
- Duration of overnight stays.

Additional:

- Revenue breakdown by fare type
- Analysis of flight delays by severity
- · Distribution of flights by aircraft type
- · Trend analysis of passenger facility charges
- Seasonal variation in flight demand

Reservation Fact Analysis:

Required:

- Analysis of company profit through reservation process
- Distribution of reservations by channel

Additional:

- Trend analysis of booking cancellations
- Seasonal variation in booking patterns
- Analysis of booking changes and their impact on profit

Customer Care Fact Analysis:

Required:

- Handling of customer inquiries, complaints, and feedback
- Analysis of interaction type and problem severity

Additional:

- Trend analysis of customer care response times
- Distribution of interaction types by channel
- Analysis of customer satisfaction scores

Flight Ancillary Points Fact Analysis:

Required:

- Earning and redemption of frequent flyer miles
- Analysis of ancillary service usage

Additional:

- Revenue breakdown by ancillary service
- Trend analysis of ancillary service redemption
- Comparison of ancillary service usage by passenger profile

Partner Points Fact Analysis:

Required:

- Earning and redemption of partner points
- Analysis of partner service usage

Additional:

- Revenue breakdown by partner service
- Trend analysis of partner service redemption
- Comparison of partner service usage by passenger profile

Issued Ticket Fact Analysis:

Required:

- Insight into ticket issuance trends and patterns
- Analysis of passenger booking behaviours.
- Understanding revenue generation from ticket sales

Additional:

- Identification of popular flight routes and times
- Optimization of ticketing processes based on booking channel performance

SAMPLE FROM DATA POPULATION

CLASS OF SERVICE FLOWN DIMENSION

PASSENGER PROFILE DIMENSION

FLIGHT ACTIVITY FACT ANALYSIS(NOT COMPLETE)

BUSINESS QUERIES

-- Query 1: Retrieve passenger information along with their booking channel details and the total revenue generated from their bookings

SELECT p.First_Name, p.Last_Name, p.Email_Address, p.Phone_Number, bc.Channel_Name, COALESCE(SUM(ff.Base Fare Revenue + ff.Passenger_Facility_Charges + ff.Airport_Tax + ff.Government_Tax), 0) AS Total_Revenue

FROM Passenger_DimensionT p

LEFT JOIN Flight_Activity_FactT ff ON p.Passenger_Key = ff.Passenger_Key

LEFT JOIN Booking_Channel_DimensionT bc ON ff.Booking_Channel_Key = bc.Booking_Channel_Key GROUP BY p.First_Name, p.Last_Name, p.Email_Address, p.Phone_Number, bc.Channel_Name;

:	FIRST_NAME	LAST_NAME	EMAIL_ADDRESS	PHONE_NUMBER	CHANNEL_NAME	TOTAL_REVENUE
Þ	David	Miller	david_miller@example.com	123456789001		0
	Amber	Fowler	amber_fowler@example.com	123456789004	website	822.06
	Brent	Martin	brent_martin@example.com	123456789027	mail	962.45
	Shirley	Williams	shirley_williams@example.com	123456789035	mail	496.04
	Scott	Bailey	scott_bailey@example.com	123456789036	cash desk	377.71
	Ashley	Foster	ashley_foster@example.com	123456789049	cash desk	658.19
	Edward	Rogers	edward_rogers@example.com	123456789051	call	466.33
	Raymond	Mann	raymond_mann@example.com	123456789052	mail	1115.81
	Sandra	Smith	sandra_smith@example.com	123456789053		0
	Tonya	Torres	tonya_torres@example.com	123456789076		0
	Crystal	Foley	crystal_foley@example.com	123456789087	website	415.13

-- Query 2: Get details of flights including their departure and arrival airports along with scheduled departure and arrival dates, and the average delay in departure and arrival times

SELECT ff.Flight_Number, dd1.Datee AS Scheduled_Departure_Date, dd2.Datee AS

Scheduled_Arrival_Date,

da.Airport_Name AS Departure_Airport, aa.Airport_Name AS Arrival_Airport, AVG(ff.Departure_Time_Delay) AS Avg_Departure_Delay, AVG(ff.Arrival Time Delay) AS Avg_Arrival Delay

FROM Flight Activity FactT ff

LEFT JOIN Date_DimensionT dd1 ON ff.Scheduled_Departure_Date_Key = dd1.Date_Key

LEFT JOIN Date_DimensionT dd2 ON ff.Scheduled_Arrival_Date_Key = dd2.Date_Key

LEFT JOIN Airport_DimensionT da ON ff.Start_Airport_Key = da.Airport_Code

LEFT JOIN Airport_DimensionT aa ON ff.End_Airport_Key = aa.Airport_Code

GROUP BY ff.Flight_Number, dd1.Datee, dd2.Datee, da.Airport_Name, aa.Airport_Name;

FLIGHT_NUMBER	SCHEDULED_DEPARTURE_DATE	SCHEDULED_ARRIVAL_DATE	DEPARTURE_AIRPORT	ARRIVAL_AIRPORT	AVG_DEPARTURE_DELAY	AVG_ARRIVAL_DELAY
▶ TICKET7193	07/04/2020	02/04/2015	Miami International Airport	Incheon International Airport	11	8
TICKET8257	03/05/2015	14/07/2015	Amsterdam Airport Schiphol	Dallas/Fort Worth International Airport	66	3
TICKET7313	15/07/2017	30/07/2015	Guangzhou Baiyun International Airport	Sydney Kingsford Smith Airport	110	95
TICKET5621	06/09/2018	30/09/2015	San Francisco International Airport	Miami International Airport	2	83
TICKET7554	18/09/2015	14/02/2016	Miami International Airport	Charles de Gaulle Airport	95	117
TICKET5845	22/06/2018	27/02/2016	Incheon International Airport	Miami International Airport	111	91
TICKET9991	22/10/2023	13/05/2016	O'Hare International Airport	Tokyo Haneda Airport	0	31
TICKET4691	10/08/2026	04/07/2016	Incheon International Airport	Hong Kong International Airport	105	94
TICKET2796	08/03/2017	04/07/2016	Heathrow Airport	Frankfurt Airport	115	83
TICKET8379	09/09/2025	12/07/2016	Sydney Kingsford Smith Airport	Singapore Changi Airport	41	47
TICKET7926	01/10/2021	10/09/2016	Frankfurt Airport	John F. Kennedy International Airport	12	102

-- Query 3: Retrieve passenger interactions along with their sentiment and ratings, and the total number of interactions per passenger

SELECT p.First_Name, p.Last_Name, i.Interaction_Type, i.Sentiment, i.Rating, COUNT(*) AS Total_Interactions

FROM Passenger_DimensionT p

LEFT JOIN Customer_Care_FactT cc ON p.Passenger_Key = cc.Passenger_Key LEFT JOIN Interaction_DimensionT i ON cc.Interaction_ID = i.Interaction_ID

GROUP BY p.First_Name, p.Last_Name, i.Interaction_Type, i.Sentiment, i.Rating;

∄	FIRST_NAME	LAST_NAME	INTERACTION_TYPE	SENTIMENT	RATING	TOTAL_INTERACTIONS
١	Courtney	Moran	inquiries	positive	1	1
	Jennifer	Delgado	inquiries	neutral	3	1
	Angel	Thompson	inquiries	neutral	5	1
	Timothy	Phillips	inquiries	negative	1	1
	Brett	Werner	inquiries	positive	2	1
	Clinton	Hebert	inquiries	positive	3	1
	Brian	Rogers	inquiries	positive	4	1

∄	AIRPORT_NAME	CITY	COUNTRY	REGION	DEPARTURE_COUNT
١	Frankfurt Airport	Frankfurt	Germany	Europe	52
	Dubai International Airport	Dubai	UAE	Middle East	48
	Tokyo Haneda Airport	Tokyo	Japan	Asia	47
	Dallas/Fort Worth International Airport	Dallas	USA	North America	46
	Denver International Airport	Denver	USA	North America	44
	O'Hare International Airport	Chicago	USA	North America	44
	San Francisco International Airport	San Francisco	USA	North America	44