

Chapter 7

Hypotheses Testing based on Normal Distribution

Overview

- Hypotheses testing based on Normal distribution
- Types I and II Error
- Level of significance
- Hypotheses testing concerning mean
- Critical value approach and p-value approach
- Hypotheses testing concerning difference between two means
- Hypotheses testing concerning variances

7.1 Null and Alternative Hypotheses

7.1.1 Statistical Hypothesis

- A statistical hypothesis is an assertion or conjecture concerning one or more populations.
- We shall use the terms accept and reject frequently throughout this chapter.

Null and Alternative Hypotheses (Continued)

7.1.1 Statistical Hypothesis (Continued)

- It is important to understand that the rejection of a hypothesis is to conclude that it is false, while the acceptance of a hypothesis merely implies that we have insufficient evidence to believe otherwise.
- Because of this terminology, the statistician or experimenter will often choose to state the hypothesis in a form that hopefully will be rejected.

Null and Alternative Hypotheses (Continued)

Null hypothesis:

- Hypothesis that we formulate with the hope of rejecting, denoted by H_0 .
- A null hypothesis concerning a population parameter will always be stated to specify an exact value of the parameter.

Alternative hypothesis:

- The rejection of H_0 leads to the acceptance of an alternative hypothesis, denoted by H_1 .
- It allows for the possibility of several values.

Example 1

- We may wish to determine whether the mean IQ of the pupils of a certain school is different from 100.
- Then we have H_0 : $\mu = 100$ against H_1 : $\mu \neq 100$.
- This is called a two-sided alternative. The test used is called a two-sided (or two-tailed) test
- We may like to test whether the mean IQ of the pupils is greater than 100 (or less than 100). This is called a one-sided alternative. The test is called a one-tailed (or one-sided) test.
- That is,

```
H_0: \mu = 100 against H_1: \mu > 100 or H_0: \mu = 100 against H_1: \mu < 100.
```


Example 1

Claim: the population mean IQ is 100.

TTTTTTT

(Null hypothesis:

 H_0 : $\mu = 100$)

If not likely,
REJECT
Null Hypothesis

Suppose the sample mean IQ is 70:

$$\overline{X} = 70$$

CYM

Reason for Rejecting H₀

Sampling Distribution of $ar{X}$

If H₀ is true

If it is unlikely that we would get a sample mean of this value ...

... if in fact this were the population mean...

... then we reject the null hypothesis that $\mu=100$.

7.1.2 Types of Error

Two types of errors in the hypothesis testing:

	State of Nature	
Decision	H ₀ is true	H ₀ is false
Reject H ₀	Type I error Pr(Reject H_0 given that H_0 is true) = α	Correct decision Pr(Reject H ₀ given that H ₀ is false) = $1 - \beta$
Do not reject H ₀	Correct decision Pr(Do not reject H_0 given that H_0 is true) = $1 - \alpha$	Type II error Pr(Do not reject H_0 given that H_0 is false) = β

Types I and II Error

Type I error

- Rejection of H_0 when H_0 is true is called a type I error.
- It is considered as a serious type of error

Type II Error

Not rejecting H₀ when H₀ is false is called a type II error.

Types I and II Error (Continued)

- α = level of significance
 - = Pr(type I error)
 - = $Pr(reject H_0 when H_0 is true)$
 - = $Pr(reject H_0 | H_0)$.
- α is set by the researcher in advance
- α is usually set at 5% or 1%

Types I and II Error (Continued)

- β = Pr(type II error)
 = Pr(do not reject H₀ when H₀ is false)
 = Pr(do not reject H₀ | H₁).
- 1β = Power of a test = Pr(reject H₀ | H₁)

Types I and II Error (Continued)

Test H_0 : $\mu = \mu_0$ against H_1 : $\mu = \mu_1$

7.1.3 Acceptance and Rejection Regions

- To test a hypothesis about a population parameter, we first select a suitable test statistic for the parameter under the hypothesis.
- Once the significance level, α , is given, a decision rule can be found such that it divides the set of all possible values of the test statistic into two regions,
- one being the **rejection region** (or critical region) and the other the **acceptance region**.

Acceptance and Rejection Regions (Continued)

- Once a sample is taken, the value of the test statistic is obtained.
- If the test statistic assumes a value in the rejection region, the null hypothesis is rejected; otherwise it is not rejected.
- The value that separates the rejection and acceptance regions is called the **critical value**.

Level of Significance and the Rejection Region

Example 1

- A certain type of cold vaccine is known to be only 25% effective after a period of 2 years.
- In order to determine if a new and somewhat more expensive vaccine is superior in providing protection against the same virus for a longer period of time.
- 20 people are chosen at random and inoculated with the new vaccine.
- If more than 8 of those receiving the new vaccine surpass the 2-year period without contracting the virus, the new vaccine will be considered superior to the one presently in use.

- This is equivalent to testing the hypothesis that the binomial parameter for the probability of a success on a given trial is p=1/4 against the alternative that p>1/4. Or
- H_0 : p = 1/4 against H_1 : p > 1/4.

$$X = \underbrace{\begin{array}{c} \text{Acceptance Region} \\ 0 \ 1 \ 2 \ 3 \ 4 \cdots 7 \ 8 \end{array}}_{\text{Acceptance Region}} \underbrace{\begin{array}{c} \text{Rejection Region} \\ \text{Rejection Region} \end{array}}_{\text{Rejection Region}}$$

where *X* is the number of individuals who remain free of the virus for at least 2 years

 The above decision rule has the level of significance given by

```
\alpha = \Pr(\text{Type I error})
= \Pr(\text{Reject } H_0 \mid H_0)
= \Pr(X > 8 \text{ when } p = 1/4)
= \sum_{i=9}^{20} {20 \choose i} \left(\frac{1}{4}\right)^i \left(\frac{3}{4}\right)^{20-i}
= 0.0409.
```


- The probability of committing a type II error, denoted by β , is impossible to compute unless we have a specific alternative hypothesis.
- Consider testing

```
H_0: p = 1/4 against H_1: p = 1/2 (Note 1/2 > 1/4).
```


Then

$$\beta = \text{Pr}(\text{Type II error}) = \text{Pr}(\text{Accept } H_0 \mid H_1)$$

$$= \text{Pr}(X \le 8 \text{ when } p = 1/2)$$

$$= \sum_{i=0}^{8} {20 \choose i} \left(\frac{1}{2}\right)^i \left(\frac{1}{2}\right)^{20-i} = 1 - \sum_{i=9}^{20} {20 \choose i} \left(\frac{1}{2}\right)^{20}$$

$$= 1 - 0.7483 = 0.2517.$$

7.2 Hypotheses Testing Concerning Mean

7.2.1 Hypo. Testing on Mean with Known Variance

Consider the problem of testing the hypothesis concerning the mean, μ , of a population with

- 1. Variance, σ^2 , known and
- 2. Underlying distribution is normal or n is sufficiently large (say n > 30)

Refer to Section 6.3.1

7.2.1.1 Two-sided Test

- Test H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$.
- When the population is normal or the sample size is large (then by the Central Limit Theorem), we can expect that

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

• Hence under H_0 : $\mu = \mu_0$, we have

$$\bar{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Two-sided Test (Continued)

Critical Value Approach

• By using a significance level of α , it is possible to find two critical values \bar{x}_1 and \bar{x}_2 such that

• the interval $\bar{x}_1 < \bar{X} < \bar{x}_2$ defines the acceptance region and

• the two tails of the distribution, $\bar{X} < \bar{x}_1$ and $\bar{X} > \bar{x}_2$ constitute the critical (or rejection) region.

Two-sided Test (Continued)

 There are two cutoff values (critical values), defining the regions of rejection

Finding critical values

The critical region can be given in terms of *z* values by means of the transformation

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Note: μ_0 is the value of μ under H_0 .

Finding critical values (Continued)

Therefore

$$\Pr\left(-z_{\alpha/2} < \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha$$

or

$$\Pr\left(\mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X} < \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Hence
$$\bar{x}_1 = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 and $\bar{x}_2 = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

Hypothesis testing process

- From the population we select a random sample of size *n* and compute the sample mean.
- If \bar{X} falls in the acceptance region $\bar{x}_1 < \bar{X} < \bar{x}_2$, we conclude that $\mu = \mu_0$; otherwise we reject H_0 and accept the H_1 : $\mu \neq \mu_0$.
- Since $Z=(\bar X-\mu_0)/(\sigma/\sqrt n)$, therefore $\bar x_1<\bar X<\bar x_2$ is equivalent to $-z_{\alpha/2}< Z< z_{\alpha/2}$.
- The critical region is usually stated in terms of Z rather then \bar{X} .

Example 1

- The director of a factory wants to determine if a new machine A is producing cloths with a breaking strength of 35 kg with a standard deviation of 1.5 kg.
- A random sample of 49 pieces of cloths is tested and found to have a mean breaking strength of 34.5 kg.
- Is there evidence that the machine is not meeting the specifications for mean breaking strength?
- Use $\alpha = 0.05$

Solution to Example 1

Step 1

- Let μ be the mean breaking strength of cloths manufactured by the new machine.
- Test H_0 : $\mu = 35 \text{ kg vs } H_1$: $\mu \neq 35 \text{ kg. (Why?)}$

Step 2

• Set $\alpha = 0.05$.

Solution to Example 1 (Continued)

Step 3

• Since σ is known, the test statistic

$$Z = \frac{(\bar{X} - \mu_0)}{\sigma/\sqrt{n}}$$

is used.

- $z_{\alpha/2} = z_{0.025} = 1.96$.
- Critical region z < -1.96 or z > 1.96, where

$$z = \frac{(\bar{x} - \mu_0)}{\sigma / \sqrt{n}}$$

Solution to Example 1

Step 4

• Computations: $\bar{x} = 34.5 \text{ kg}, n = 49$, and hence $z = \frac{34.5 - 35}{1.5/\sqrt{49}} = -2.3333$

Step 5

• Conclusion: Since the observed z value = -2.3333 falls inside the critical region (i.e. $z < z_{0.025} = -1.96$), hence H_0 : $\mu = 35$ kg is rejected at the 5% level of significance.

Solution to Example 1 (Continued)

Reject H_0 if Z < -1.96 or Z > 1.96; otherwise do not reject H_0

Relationship between two-sided test and confidence interval

- The two-sided test procedure just described is equivalent to finding a $(1 \alpha)100\%$ confidence interval for μ
- H_0 is accepted if the confidence interval covers μ_0 .
- If the C.I. does not cover μ_0 , we reject $\mu = \mu_0$ in favour of the alternative H_1 : $\mu \neq \mu_0$ since

$$\Pr\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$\Leftrightarrow \Pr\left(\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X} < \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

• For $\bar{x}=34.5$, $\sigma=1.5$ and n=49, the 95% confidence interval is:

$$34.5 - (1.96) \frac{1.5}{\sqrt{49}} < \mu < 34.5 + (1.96) \frac{1.5}{\sqrt{49}}$$
$$34.08 \le \mu \le 34.92$$

• Since this interval does not contain the hypothesized mean, μ_0 (= 35), we reject the null hypothesis at $\alpha = 0.05$.

p-Value Approach to Testing

- *p*-value: Probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample value given H₀ is true
 - Also called observed level of significance

p-Value Approach to Testing (Continued)

- Convert a sample statistic (e.g., X) to a test statistic (e.g., Z statistic)
- Obtain the *p*-value
- Compare the p-value with α

 - If p-value < α, reject H₀ If p-value ≥ α, do not reject H₀

Example 1 (Continued)

• How likely is it to see a sample mean of 34.5 (or something further from the mean, in either direction) if the true mean is 35? ($\sigma = 1.5$ and n = 49)

$$\overline{X}$$
 = 34.5 is translated to a Z score of Z = -2.33

$$Pr(Z < -2.33) = 0.0099$$

$$Pr(Z > -2.33) = 0.9901$$

p-value

 $= 2 \min{Pr(Z < -2.33), Pr(Z > -2.33)}$

= 2(0.0099) = .0198

p-Value Approach to Testing (Continued)

- Compare the p-value with α
 - If *p*-value $< \alpha$, reject H₀
 - − If *p*-value ≥ α , do not reject H₀

Here: p-value = .0198

 $\alpha = .05$

Since .0198 < .05, we reject the null hypothesis

7.2.1.2 One sided test

- (a) Test H_0 : $\mu = \mu_0$ against H_1 : $\mu > \mu_0$.
- Let $Z = \frac{(\bar{X} \mu_0)}{\sigma / \sqrt{n}}$.
- Then H_0 is rejected if the observed values of Z, say z, is greater than z_{α} .

7.2.1.2 One sided test

- (b) Test H_0 : $\mu = \mu_0$ against H_1 : $\mu < \mu_0$.
- Let $Z = \frac{(\bar{X} \mu_0)}{\sigma / \sqrt{n}}$.
- Then H_0 is rejected if the observed values of Z, say z, is less than $-z_{\alpha}$.

Example 2

- A manufacturer of sports equipment has developed a new synthetic fishing line that he claims has a mean breaking strength better than the market average strength of 8 kilograms.
- Suppose the breaking strength of this type of fishing lines has a standard deviation of 0.5 kg.
- A random sample of 50 lines is tested and found to have a mean breaking strength of 8.2 kg.
- Test the manufacturer's claim.
- Use a 0.01 level of significance.

Solution to Example 2

Step 1

- Let μ be the mean breaking strength of the new type of fishing lines.
- Test H_0 : $\mu = 8$ against H_1 : $\mu > 8$. (Why?)

Step 2

• Set $\alpha = 0.01$.

Step 3

• Since σ is known, the test statistic

$$Z = \frac{(X - 8)}{0.5/\sqrt{50}}$$

is used.

- $z_{\alpha} = z_{0.01} = 2.326$.
- Critical region z > 2.326, where

$$z = \frac{(\bar{x} - 8)}{0.5/\sqrt{50}}$$

Step 4

• Computations: $\bar{x} = 8.2$, hence 8.2 - 8

$$z = \frac{8.2 - 8}{0.5/\sqrt{50}} = 2.828.$$

• p-value = $Pr(Z > 2.828) \approx 0.00233$.

Step 5

- Conclusion: Since the observed z value = 2.828 falls inside the critical region (i.e. $z>z_{0.01}=2.326$), hence H_0 : $\mu=8$ kg is rejected at the 1% level of significance.
- Conclusion based on p-value: Since p-value ≈ 0.00233 is less than 0.01, hence H_0 is rejected at the 1% level of significance.

Critical Value Approach

7.2.2 Hypothesis Testing on Mean with Variance Unknown

Consider the problem of testing the hypothesis concerning the mean, μ , of a population with

- 1. Variance unknown and
- 2. Underlying distribution is normal

Refer to Section 6.3.2

Test for mean with unknown variance

- (1) Two sided test
- Test H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$.
- Let

$$T = \frac{(\bar{X} - \mu_0)}{S/\sqrt{n}}$$

where S^2 is the sample variance.

• Then H_0 is rejected if the observed value of T, say t, > $t_{n-1;\alpha/2}$ or $<-t_{n-1;\alpha/2}$.

Test for mean with unknown variance (Continued)

(2) One sided test

- Test H_0 : $\mu = \mu_0$ against H_1 : $\mu > \mu_0$.
- Then H_0 is rejected if $t > t_{n-1;\alpha}$.
- Test H_0 : $\mu = \mu_0$ against H_1 : $\mu < \mu_0$.
- Then H_0 is rejected if $t < -t_{n-1;\alpha}$.

Example 3

- The average length of time for students to register for summer classes at a certain college has been 50 minutes.
- A new registration procedure is being tried.
- A random sample of 12 students had an average registration time of 42 minutes with a standard deviation of 11.9 minutes under the new system.
- Test the hypothesis that the population mean is now less than 50, using a level of significance of 0.05.
- Assume the population of times to be normal.

Solution to Example 3

Step 1

- Let μ be the mean registration time.
- Test H_0 : $\mu = 50$ against H_1 : $\mu < 50$. (Why?)

Step 2

• Set $\alpha = 0.05$.

Step 3

• Since σ is unknown, the test statistic

$$T = \frac{(\bar{X} - \mu_0)}{S/\sqrt{n}}$$

is used.

- n = 12 implies that $t_{11:0.05} = 1.796$
- Critical region t < -1.796, where

$$t = \frac{(\bar{x} - \mu_0)}{s/\sqrt{n}}$$

Step 4

- Computations: $\bar{x} = 42$, s = 11.9, n = 12, and hence $t = \frac{42 50}{11.9/\sqrt{12}} = -2.329$
- p-value = $\Pr(T < -2.329) = 0.0199$. [or p-value is between 0.025 and 0.01 since 2.329 is between $t_{11;0.025} = 2.201$ and $t_{11;0.01} = 2.718$ if statistical table is used.]

Step 5

- **Conclusion:** Since the observed t=-2.329 falls inside the critical region (i.e. $t < t_{0.05} = -1.796$), hence H_0 : $\mu = 50$ minutes is rejected at the 5% level of significance and we conclude that the true mean is likely to be less than 50 minutes.
- **Conclusion based on** p**-value:** Since p-value = 0.0199 is less than 0.05, hence H_0 is rejected at the 5% level of significance and we conclude that the true mean is likely to be less than 50 minutes.

7.3 Hypotheses Testing Concerning Difference Between Two Means

- 7.3.1 Known Variances
- 1. Variances σ_1^2 and σ_2^2 are known and
- 2. Underlying distribution is normal or both n_1 and n_2 are sufficiently large

(say
$$n_1 \ge 30$$
, $n_2 \ge 30$)

Refer to Section 6.4.1

Example 1

- Analysis of a random sample consisting of $n_1 = 20$ specimens of cold-rolled steel to determine yield strengths resulted in a sample average strength of $\bar{x}_1 = 29.8$ ksi.
- A second random sample of $n_2 = 25$ two-side galvanized steel specimens gave a sample average strength of $\overline{x}_2 = 34.7$ ksi.
- Assuming that the two yield strength distributions are normal with $\sigma_1 = 4.0$ and $\sigma_2 = 5.0$,
- does the data indicate that the corresponding true average yield strengths μ_1 and μ_2 are different?
- Use $\alpha = 0.01$.

Solution to Example 1

Step 1

- Let μ_1 and μ_2 be the mean strength of cold-rolled steel and two-side galvanized steel respectively.
- Test H_0 : $\mu_1 \mu_2 = 0$ against H_1 : $\mu_1 \mu_2 \neq 0$.

Step 2

• Set $\alpha = 0.01$.

Step 3

• Since σ_1^2 and σ_2^2 are known, therefore the test statistic

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

is used.

• $\alpha = 0.01$ implies $z_{\alpha/2} = z_{0.005} = 2.5728$.

Step 3 (Continued)

• Critical region: z < -2.5758 or z > 2.5758, where

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

Step 4

- Computations: $\bar{x}_1 = 29.8$, $\bar{x}_2 = 34.7$, $\sigma_1^2 = 16$, $\sigma_2^2 = 25$, $n_1 = 20$ and $n_2 = 25$, so $z = \frac{[(29.8 34.7) 0]}{\sqrt{16/20 + 25/25}} = -3.652.$
- p-value = $2 \times \min\{\Pr(Z > -3.652), \Pr(Z < -3.652)\} = 2(0.00013) = 0.00026.$

Step 5

- Conclusion: Since z = -3.652 falls inside the critical region, hence H_0 : $\mu_1 = \mu_2$ is rejected at the 1% level of significance and conclude that the sample data strongly suggest that the true average yield strength for cold-rolled steel differs from that for galvanized steel.
- Conclusion based on p-value: Since p-value = 0.00026 is less than the level of significance 0.01, hence H_0 is rejected at the 1% level of significance.

7.3.2 Large Sample Testing with Unknown Variances

- 1. Variances σ_1^2 and σ_2^2 are unknown and
- 2. both n_1 and n_2 are sufficiently large

(say
$$n_1 \ge 30$$
, $n_2 \ge 30$)

Refer to Section 6.4.2

Example 2

- In selecting a sulfur concrete for roadway construction in regions that experience heavy frost,
- it is important that the chosen concrete have a low value of thermal conductivity in order to minimize subsequent damage due to changing temperatures.
- Suppose two types of concrete, a graded aggregate and a no-fines aggregate, are being considered for a certain road.

Example 2 (Continued)

• The following table summarizes data from an experiment carried out to compare the two types of concrete.

Туре	Sample size	Sample average conductivity	Sample s.d.
Graded	35	0.497	0.187
No-fines	35	0.359	0.158

- Does this information suggest that the true conductivity for the graded concrete exceeds that for the no-fines concrete?
- Use $\alpha = 0.01$.

Solution to Example 2

Step 1

- Let μ_1 and μ_2 be the mean conductivity of graded and nofines concretes respectively.
- Test H_0 : $\mu_1 \mu_2 = 0$ against H_1 : $\mu_1 \mu_2 > 0$.

Step 2

• Set $\alpha = 0.01$.

Step 3

• Since σ_1^2 and σ_2^2 are unknown and the sample sizes are large, therefore the test statistic

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

is used.

• $\alpha = 0.01$ implies $z_{\alpha} = z_{0.01} = 2.3263$.

Step 3 (Continued)

• Critical region: z > 2.3263, where

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

Step 4

• Computations: $\bar{x}_1 = 0.497$, $\bar{x}_2 = 0.359$, $s_1^2 = 0.187^2$, $s_2^2 = 0.158^2$, $n_1 = n_2 = 35$, so $z = \frac{[(0.497 - 0.359) - 0]}{\sqrt{0.187^2/35 + 0.158^2/35}} = 3.335.$

• p-value = Pr(Z > 3.335) = 0.00043.

Step 5

- **Conclusion:** Since z = 3.335 falls inside the critical region, hence H_0 : $\mu_1 = \mu_2$ is rejected at the 1% level of significance and conclude that the sample data argue strongly that the true average thermal conductivity for the graded concrete does exceed that for the no-fines concrete.
- **Conclusion based on** p**-value**: Since p**-value** = 0.00043 is less than the level of significance 0.01, hence H_0 is rejected at the 1% level of significance.

7.3.3 Unknown but Equal Variances

- 1. σ_1^2 and σ_2^2 are unknown but equal and
- 2. the populations are normal
- 3. Small sample sizes (say $n_1 \leq 30$, $n_2 \leq 30$)

Refer to Section 6.4.3

Example 3

- A course in mathematics is taught to 12 students by the conventional classroom procedure.
- A second group of 10 students was given the same course by means of programmed materials.
- At the end of the semester the same examination was given to each group.
- The 12 students meeting in the classroom made an average grade of 85 with a standard deviation of 4,

Example 3 (Continued)

- while the 10 students using programmed materials made an average of 81 with a standard deviation of 5.
- Test the hypothesis that the two methods of learning are equal using a 0.10 level of significance.
- Assume the populations to be approximately normal with equal variances.

Solution to Example 3

Step 1

- Let μ_1 and μ_2 be the average grades students taking this course by the classroom and programmed presentations, respectively.
- Test H_0 : $\mu_1 \mu_2 = 0$ against H_1 : $\mu_1 \mu_2 \neq 0$.

Step 2

• Set $\alpha = 0.1$.

Solution to Example 3 (Continued)

Step 3

- $n_1 = 12$ and $n_2 = 10$ implies $t_{n_1+n_2-2;\alpha} = t_{20;0.05} = 1.725$.
- Critical region : t < -1.725 or t > 1.725, where

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

with

$$S_p^2 = \frac{1}{n_1 + n_2 - 2} [(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2].$$

Solution to Example 3 (Continued)

Step 4

Computations:

$$\bar{x}_1 = 85$$
 and $\bar{x}_2 = 81$,
 $s_1^2 = 16$, $s_2^2 = 25$,
 $n_1 = 12$ and $n_2 = 10$, so

$$s_p^2 = \frac{[11(16) + 9(25)]}{(12 + 10 - 2)} = 20.05$$
and $s_p = 4.478$.

Solution to Example 3 (Continued)

Step 4 (Continued)

Hence

$$t = \frac{[(85 - 81) - 0]}{\sqrt{20.05(1/12 + 1/10)}} = 2.086$$

•
$$p$$
-value = 2 × min{Pr(T_{20} > 2.086), Pr(T_{20} < 2.806)}
= 2(0.025) = 0.05.

Solution to Example 2 (Continued)

Step 5

- **Conclusion**: Since the observed t-value = 2.086 which falls inside the critical region, hence H_0 : $\mu_1 = \mu_2$ is rejected at the 10% level of significance and conclude that the two methods of learning are not equal.
- Since p-value = 0.05 is less than 0.10, therefore we reject H_0 at the 10% level of significance and conclude that the two methods of learning are not equal.

7.3.4 Paired Data

Refer to Section 6.4.4

Example 4

- We wish to compare <u>two methods</u> for determining the percentage of iron ore in ore samples.
- Each of 12 ore samples was split into two parts.
- One-half of each sample was randomly selected and subjected to Method 1;
- The other half was subject to Method 2.
- The results are given in next slide.

Example 4 (Continued)

Sample	1	2	3	4	5	6
Method 1	38.25	31.68	26.24	41.29	44.81	46.37
Method 2	38.27	31.71	26.22	41.33	44.80	46.39
$d_i = X_1 - X_2$	-0.02	-0.03	0.02	-0.04	0.01	-0.02
Sample	7	8	9	10	11	12
Sample Method 1	7 35.42		9 42.68		11 29.20	12 30.76
-	•			46.71		

Example 4 (Continued)

- Do the data provide sufficient evidence that Method 2 yields a higher average percentage than Method 1?
- Assume the differences are normally distributed.
- Use $\alpha = 0.05$.

Solution to Example 4

Step 1

- Let μ_d be the average difference in percentage between methods 1 and 2.
- Test H_0 : $\mu_d = 0$ against H_1 : $\mu_d < 0$. (why?)

Step 2

• Set $\alpha = 0.05$.

Solution to Example 4 (Continued)

Step 3

- n = 12 implies $t_{n-1;\alpha} = t_{11;0.05} = 1.796$.
- Critical region t < -1.796, where

$$t = \frac{\bar{d} - \mu_d}{s_d / \sqrt{n}}, \quad \text{with } d_i = X_{1i} - X_{2i}$$

Solution to Example 4 (Continued)

Step 4

- **Computations:** From the data, we have $\sum_i d_i = -0.2$ and $\sum_i d_i^2 = 0.0112$. Hence $\bar{d} = -0.0167$ and $s_d^2 = [0.0112 12(-0.0167)^2]/11 = 0.00072$.
- Therefore

$$t = [(-0.0167) - 0]/\sqrt{0.00072/12} = -2.156.$$

• p-value = $\Pr(T_{11} < -2.156) = 0.027$. [or p-value is between 0.05 and 0.025 since 2.156 is between $t_{11;0.05} = 1.796$ and $t_{11;0.025} = 2.201$ if statistical table is used.]

Solution to Example 4 (Continued)

Step 5

- Since the observed t-value = -2.156 falls in the critical region, hence H_0 : $\mu_d = 0$ is rejected at the 5% level of significance and conclude that sufficient evidence exists to permit us to conclude that Method 2 yields a higher average percentage than does Method 1.
- Since p-value = 0.027 is less than 0.05, therefore we reject H_0 and conclude that sufficient evidence exists to permit us to conclude that Method 2 yields a higher average percentage than does Method 1.

7.4 Hypotheses Testing Concerning Variance

7.4.1 One Variance case

Assumption: Underlying distribution is normal

- Let X_1, X_2, \dots, X_n be a random sample of size n from a (approximate) $N(\mu, \sigma^2)$ distribution, where σ^2 is unknown.
- We wish to test null hypothesis

$$H_0: \sigma^2 = \sigma_0^2$$

We know that

$$\chi^2 = \frac{(n_1 - 1)S^2}{\sigma_0^2} \sim \chi^2(n - 1).$$

Hypothesis Testing for σ^2 (Continuous)

Hence

H _o	Test Statistic
$\sigma^2 = \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$

Hypothesis Testing for σ^2 (Continuous)

• H_0 : $\sigma^2 = \sigma_0^2$ is rejected if the observed χ^2 -value

H ₁	Critical Region
$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{n-1;\alpha}$
$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{n-1;1-\alpha}$
$\sigma^2 \neq \sigma_0^2$	$\chi^2 < \chi^2_{n-1;1-\alpha/2} \text{ or } \chi^2 > \chi^2_{n-1;\alpha/2}$

where
$$\Pr(W > \chi^2_{n-1:\alpha}) = \alpha$$
 with $W \sim \chi^2(n-1)$

Example 1

- A manufacturer of car batteries claims that the life of his batteries is approximately normally distributed with a standard deviation equal to 0.9 year.
- If a random sample of 10 of these batteries has a standard deviation of 1.2 years,
- do you think that $\sigma > 0.9$ year?
- Use a 0.05 level of significance.

Solution to Example 1

Step 1

- Let σ^2 be the variance of the battery life.
- Test H_0 : $\sigma^2 = 0.81$. H_1 : $\sigma^2 > 0.81$.

Step 2

• Set $\alpha = 0.05$.

Solution to Example 1 (Continued)

Step 3

- n = 10 implies $\chi^2_{n-1;\alpha} = \chi^2_{9:0.05} = 16.919$.
- Critical region $\chi^2 > 16.919$, where

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

with n = 10 and $\sigma_0^2 = 0.81$.

Solution to Example 1 (Continued)

Step 4

Computations:

$$s^2 = 11.44$$
, and $n = 10$, so
$$\chi^2 = \frac{9(1.44)}{0.81} = 16.0.$$

• p-value = $Pr(\chi_9^2 > 16) = 0.0669$. [or it is between 0.05 and 0.10 from the statistical table]

Solution to Example 1 (Continued)

Step 5

- **Conclusion:** Since the observed χ^2 -value = 16, which falls outside the critical region, hence H_0 : $\sigma^2 = 0.81$ is not rejected at the 5% level of significance and conclude that there is no reason to doubt that the standard deviation is 0.9 year. Or
- Since p-value is greater than 0.05, we do not reject H_0 .

7.4.2 H.T. Concerning Ratio of Variances

Assumption:

- 1. Underlying distributions is normal
- 2. Means are unknown

Examples

- When we are comparing the precision of one measuring device with that of another,
- the variability in grading practices of one teacher with that of another, and
- the consistency of one production process with that of another,
- we are testing about the difference between two population variances (or standard deviations).

• We know that when two independent samples of sizes n_1 and n_2 are randomly selected from two normal populations then

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

• Under H_0 : $\sigma_1^2 = \sigma_2^2$, $F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1).$

Hence

H _o	Test Statistic
$\sigma_1^2 = \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$

• H_0 : $\sigma_1^2 = \sigma_2^2$ is rejected if the observed *F*-value falls in the critical region

H ₁	Critical Region
$\sigma_1^2 > \sigma_2^2$	$F > F_{(n_1 - 1, n_2 - 1; \alpha)}$
$\sigma_1^2 > \sigma_2^2$	$F < F_{(n_1 - 1, n_2 - 1; 1 - \alpha)}$
$\sigma_1^2 \neq \sigma_2^2$	$F < F_{(n_1-1,n_2-1;1-\alpha/2)}$ or $F > F_{(n_1-1,n_2-1;\alpha/2)}$

where
$$\Pr(W > F_{v_1,v_2;\alpha}) = \alpha$$
 with $W \sim F(v_1, v_2)$

Example 2

- An experiment was performed to compare the abrasive wear of two different laminated materials.
- Eleven pieces of Material 1 were tested, by exposing each piece to a machine measuring wear.
- Nine pieces of Material 2 were similarly tested.
- In each case, the depth of wear was observed.
- The samples of Material 1 gave an average (coded) wear of 85 units with a standard deviation of 4,

Example 2 (Continued)

- while the samples of Material 2 gave an average of 81 and a standard deviation of 5.
- Assume that the two unknown populations to be approximately normal,
- test the two variances are equal.
- Use a 0.10 level of significance.

Solution to Example 2

Step 1

- Let σ_1^2 and σ_2^2 be the variances of the abrasive wear made from Materials 1 and 2 respectively.
- Test: $\sigma_1^2 = \sigma_2^2$ against H_1 : $\sigma_1^2 \neq \sigma_2^2$.

Step 2

• Set $\alpha = 0.1$.

Solution to Example 2 (Continued)

Step 3

- $n_1 = 11$, $n_2 = 9$ implies $F_{n_1 1, n_2 1; \alpha/2} = F_{10,8;0.05} = 3.35$ and
- $F_{n_1-1,n_2-1;1-\alpha/2} = F_{10,8;0.95} = 1/F_{8,10;0.05} = 1/3.07 = 0.326.$
- Critical region: F > 3.35 or F < 0.326, where $F = s_1^2/S_2^2$

Solution to Example 2 (Continued)

Step 4

Computations:

$$s_1^2 = 16$$
, $s_2^2 = 25$, so $F = 16/25 = 0.64$.

Step 5

• **Conclusion:** Since the observed *F*-value = 0.64 which falls outside the critical region, hence H_0 : $\sigma_1^2 = \sigma_2^2$ is not rejected at the 10% level of significance and we conclude that we were justified in assuming the unknown variances equal.