Spatial Modulation for Multiple-Antenna Wireless Systems: A Survey

Authors: Marco Di Renzo, French National Center for Scientific Research (CNRS)

Harald Haas and Peter M. Grant, The University of Edinburgh

Published in: IEEE Communications Magazine (Volume: 49, Issue: 12, December 2011)

通訊理論 - 期末報告

學生: Q36114221 蘇沛錦

報告日期: 2022/12/27 (Tue.)

1 Outline

- Introduction
- Working Principle of Spatial Modulation
- Advantages & Disadvantages
- Research Issues
- Conclusion

Introduction

- Multiple-antenna techniques trade-off superior error performance and higher data rates for increased system complexity and cost.
- The major drawback of any MIMO scheme (i.e., an increase in complexity and cost)
 is primarily due to three main reasons:
 - 1) Inter-Channel Interference (ICI)
 - Inter-Antenna Synchronization (IAS)
 - 3) Multiple Radio Frequency (RF) chains
- Several transceiver designs require a number of receive-antenna greater than the number of transmit-antenna.
 - Practical limitation due to economical reasons on mobile handsets

Introduction

- Spatial Modulation (SM) can offer
 - ✓ improved data rates with a very low system complexity (Compared to SISO systems)
 - ✓ robust error performance even in correlated channel environments

 SM exploits the uniqueness and randomness properties of the wireless channel for communication by adopting a simple but effective coding mechanism.

Spatial Modulation: Features

- Just one transmit-antenna is activated for data transmission at any signaling time instance.
 - SM entirely avoids ICI and IAS, and only requires a single RF chain at the transmitter.
 - This allows SM to exploit a low-complexity single-stream receiver design for optimal Maximum-Likelihood (ML) decoding.
- 2. The spatial position of each transmit-antenna in the antenna-array is used as a source of information.
 - This is obtained by establishing a one-to-one mapping between blocks of information bits to be transmitted and the spatial positions of the transmit-antenna in the antenna-array
 - transmit-antenna index coded modulation

The Basic Idea of Spatial Modulation

- Map a block of information bits into two information carrying units:
 - ✓ A symbol that is chosen from a complex signal-constellation diagram.

✓ A unique transmit-antenna index that is chosen from the set of transmit-antenna in the

antenna-array (i.e., spatial constellation-diagram).

- Each block contains log₂(N_t) + log₂(M) bits.
 - N_t (the number of transmit-antenna)
 - M (the size of the complex signal-constellation diagram)

Tridimensional constellation diagram of SM

The Basic Idea of Spatial Modulation

Illustration of the 3-D constellation diagram of SM (Cited from [1])

^[1] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura and L. Hanzo, "Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation," *Proc. IEEE*, vol. 102, no. 1, pp. 56-103, Jan. 2014.

- Space Shift Keying (SSK) modulation
 - \rightarrow The information carrying unit is only the transmit-antenna index (i.e., M = 1).
 - > Each transmit-antenna, when switched on, will send exactly the same signal out.

- The wireless channel plays the role of a "modulation unit."
 - The signal transmitted by each antenna will experience distinct propagation conditions.

 (Different interacting environmental objects along any transmit-to-receive wireless link)

N_r (the number of receive-antenna)

- The receiver must know a priori (in practice this is obtained via channel estimation) the channel impulse response of all the transmit-to-receive wireless links.
 - ML detector with perfect Channel State Information (CSI)

- Rx (the received signal)
- distance(x, y) = Euclidean distance between signals x and y

- In summary, the working principle of SM is based on the following facts:
 - ✓ The wireless environment *naturally* modulates the transmitted signal.
 - ✓ Each transmit-to-receive wireless link has a different channel.
 - ✓ The receiver employs the *a priori* channel knowledge to detect the transmitted signal.

• SM exploits the location-specific property of the wireless channel (i.e., the uniqueness of each transmit-to-receive wireless link) for communication.

11 Advantages

- The 3-D constellation diagram of SM increases the spectral efficiency by a factor of $\log_2(N_1)$ without any bandwidth expansion.
- The receiver design is inherently simpler than conventional MIMO schemes.
 - > SM can attain ML decoding via a simple single-stream receiver.
- SM can efficiently work if N₊ < N_r
 - > SM is suitable for downlink settings with low-complexity mobile units.

Advantages

ABEP (Average Bit Error Probability)

E_m (the energy radiated by each transmit-antenna)

No (the noise power at the receiver input)

- SM is inherently able to work in multiple-access scenarios:
 - Different pairs of transmitters and receivers usually occupy different spatial positions.
- SSK modulation can reduce the receiver complexity.
 - > A loss in the achievable data rate

Multi-user Setup:

- ① 2 transmitters and 1 receiver
- ② Each transmitter has $N_t = 2$ and the receiver has $N_r = 1$

The channel of both users:

uncorrelated and identically distributed Nakagami-m fading

①
$$m_1 = m_2 = 1$$
 (fading parameter)

②
$$\Omega_1 = \Omega_2 = 1$$
 (average power gain)

$$f(x; m, \Omega) = \frac{2m^m x^{2m-1}}{\Gamma(m)\Omega^m} \exp\left(-\frac{m}{\Omega}x^2\right)$$

Disadvantages

- 1. At least two transmit-antenna are required to exploit the SM concept.
- 2. If the transmit-to-receive wireless links are not sufficiently different, the SM paradigm might not be used or might not yield adequate performance.
- 3. The receiver requires perfect channel knowledge for data detection.
 - > Pose complexity constraints on the channel estimation unit
- 4. When compared to conventional MIMO solutions, SM can offer only a logarithmic (instead of linear) increase of the data rate with the number of transmit-antenna.

Development of Flexible SM Schemes

- SM requires that the number of transmit-antennas is a power of two.
 - > Only 2, 4, 8, 16, etc. antennas at the transmitter
 - > Practical limits on the bit rates achievable by small-size portable devices

- Design of a flexible SM schemes for an arbitrary number of transmit-antennas
 - > Trade-off achievable performance and rates for system complexity and cost

Importance of the Wireless Channel

- The performance of SM is significantly affected by different fading conditions.
- SM offers better ABEP in the presence of power imbalance between the wireless links.

 $N_t = 2$ $N_r = 1$ $m = m_1 = m_2$

Importance of the Wireless Channel

• Different values of the fading parameter $\frac{m}{m}$ can yield a different ABEP in the presence of power imbalance (i.e., the channel power gains Ω_1 , Ω_2 are different).

 $N_t = 2$ $N_r = 1$ $m = m_1 = m_2$

 $N_t = 2$

 $N_r = 1$

 $m = m_1 = m_2$

Importance of the Wireless Channel

• If the wireless links are balanced, the performance of SM degrades for increasing values of the correlation coefficient p.

Importance of the Wireless Channel

• Channel correlation can improve the ABEP by keeping the average power gap between the wireless links (i.e., $\Omega_1 - \Omega_2$) almost constant regardless of the fading fluctuations.

 $N_t = 2$ $N_r = 1$ $m = m_1 = m_2$

Performance of SM with Partial CSI (P-CSI)

- The perfect estimation of CSI might be impractical.
 - ✓ Complexity of the channel estimator
 - ✓ Required overhead for channel estimation
- In the case of SM with P-CSI, the receiver is blind to the channel phase.
 - > An unexpectedly high performance loss

Scenario:

- ① $N_t = 4$, $N_r = 1$
- ② $\{\rho_{i,j}\}_{i,j=1}^4 = \exp(-0.22[i-j])$ (if c.i.d and c.ni.d)
- ③ $\{m_i\}_{i=1}^4 = 2.5$ and $\{\Omega_i\}_{i=1}^4 = 1$ (if i.i.d and c.i.d)

(F-CSI = Full CSI, P-CSI = Partial CSI)

Intriguing Results

• The <u>best propagation scenario</u> for SM is given by <u>c.ni.d</u> wireless links, while <u>the worst</u> one arises when the wireless links are <u>c.i.d</u>.

- ① i.i.d = independent and identically distributed
- ② i.ni.d = independent and non-identically distributed
- ③ c.i.d = correlated and identically distributed
- ④ c.ni.d = correlated and non-identically distributed

21 Intriguing Results

- Power imbalance can be artificially created by allowing the transmit-antenna to emit a different power while still transmitting the same signal according to the SM principle.
- This way, a wireless environment with identically distributed fading could be made equivalent to a non-identically distributed fading scenario at the receiver.
- This approach requires a feedback channel to make available the required CSI at the transmitter.

22 Conclusion

- SM is an entirely new physical layer transmission technique:
 - Combine digital modulation, coding, and multiple-antenna transmission in a unique fashion
 - > Exploit the location-specific property of the wireless channel for communication
 - This enables the position of each transmit-antenna in the antenna-array to be used as an additional dimension for conveying information.
- SM can be a promising candidate for low-complexity MIMO implementations.

Thank you for listening.