Departamento de Física

UNIVERSIDADE DE AVEIRO

FÍSICA COMPUTACIONAL

1º Teste Prático Ano Lectivo 2009/2010 - 2º Semestre

Duração: 2 horas

NOTE:

a) Responda às perguntas, justificando-as.

- b) Indique claramente o sistema de eixos usado.
- c) Esboce os gráficos, indicando univocamente os pontos importantes.
- d) Indique os métodos, os algoritmos, passos, ...

Deve ser enviado um ficheiro .zip ou .rar a scpip@ua.pt , com cópia para o próprio, contendo um ficheiro .m por alínea e um ficheiro .jpg por figura (print -djpeg nome_figura).

1. Considere um pêndulo gravítico de comprimento L=1m e massa m=1kg. A velocidade inicial é nula e o afastamento angular inicial em relação à vertical é $\theta_0=0.5$ rad . A equação dinâmica do movimento é

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\sin\theta.$$

- a) Obtenha $\theta(t)$ usando o método de Euler-Cromer. Represente $\theta(t)$ em função de t e a trajectória no espaço de fases.
- b) Confirme que a energia se conserva. Determine o período.
- c) Para valores de θ_0 iguais ou inferiores a $0.7\,\mathrm{rad}$, determine a diferença entre o período obtido e o seu valor aproximado para pequenas oscilações, $2\pi\sqrt{L/g}$. Faça um estudo da dependência deste desvio com θ_0 .
- 2. Uma massa m = 1kg move-se no plano xy sob a acção de uma força $\vec{F} = -ar^3 \cdot \hat{r}$, com $a = 1 \,\mathrm{Nm}^{-3}$. A energia potencial associada é $U = a \, r^4 / 4$. Considere $x(0) = 1.0 \,\mathrm{m}$, $y(0) = 1.5 \,\mathrm{m}$, $v_x(0) = 1.2 \,\mathrm{ms}^{-1}$ e $v_y(0) = 1.0 \,\mathrm{ms}^{-1}$.
 - a) Represente a trajectória da partícula no plano. Confirme que a energia se conserva.
 - b) Determine o valor da distância máxima à origem. Para dois máximos consecutivos, determine a diferença de tempo e a diferença de posições angulares. Estes valores são iguais para todos os pares de máximos consecutivos?