Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 11. Juni 2014

Gruppenübung

Aufgabe G1 (Formalisierung in Aussagenlogik)

Wir betrachten ein Netzwerk mit vier Ports (Ports 1, 2, 3 und 4), die jeweils entweder aktiv (A) oder inaktiv und entweder offen (O) oder geschlossen sind. Wir führen aussagenlogische Variablen p_{iA} ein für "Port i ist aktiv" und p_{iO} für "Port i ist offen". Formalisieren Sie folgende Aussagen in der Aussagenlogik:

- (a) Wenn Port 1 offen ist, dann ist Port 2 offen oder Port 3 inaktiv.
- (b) Ports 1 und 2 sind nicht beide aktiv.
- (c) Höchstens zwei Ports sind offen.
- (d) Von je drei Ports ist mindestens einer inaktiv.

Lösung: Mögliche Lösungen sind:

- (a) $p_{1O} \rightarrow (p_{2O} \lor \neg p_{3A})$
- (b) $\neg (p_{1A} \land p_{2A})$
- (c) $\bigwedge_{i,j,k\in\{1,2,3,4\},i\neq j,i\neq k,j\neq k} (\neg p_{iO} \lor \neg p_{jO} \lor \neg p_{kO})$ oder $\bigvee_{i,j\in\{1,2,3,4\},i\neq j} (\neg p_{iO} \land \neg p_{jO})$ (mind. zwei Ports sind geschlossen)
- (d) $\bigwedge_{i,j,k\in\{1,2,3,4\},i\neq j,i\neq k,j\neq k} (\neg p_{iA} \lor \neg p_{jA} \lor \neg p_{kA})$ oder $\bigvee_{i,j\in\{1,2,3,4\},i\neq j} (\neg p_{iA} \land \neg p_{jA})$ (mind. zwei Ports sind inaktiv)

Aufgabe G2 (Aussagenlogische Formeln)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \rightarrow (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	
0	0	0
0	1	0
1	0	1
1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, die genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, die genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Lösung:

(a) Wahrheitstafel:

p	q	r	$\neg p \land \neg q$	$p \vee (\neg q \wedge r)$	φ
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	0	1	1

Die Formel ist also erfüllbar, aber nicht allgemeingültig.

- (b) Das ist offensichtlich Negation der Implikation, also $\neg(p \rightarrow q)$.
- (c) Eine mögliche Lösung ist DNF $(\neg p \land \neg q) \lor (\neg p \land \neg r) \lor (\neg q \land \neg r)$.
- (d) Eine mögliche Lösung ist DNF

$$(p \land q \land r \land \neg s) \lor (p \land q \land \neg r \land s) \lor (p \land \neg q \land r \land s) \lor (\neg p \land q \land r \land s) \lor (\neg p \land \neg q \land \neg r \land s) \lor (\neg p \land \neg q \land r \land \neg s) \lor (\neg p \land q \land \neg r \land \neg s) \lor (p \land \neg q \land \neg r \land \neg s).$$

Aufgabe G3 (Modellbeziehung)

- (a) Beweisen oder widerlegen Sie die folgenden Aussagen.
 - i. $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - ii. Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - iii. Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - iv. $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.
- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.

i.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$$

ii.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$$

iii.
$$\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$$

iv.
$$\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$$

Lösung:

- (a) i. Richtig.
 - (\Rightarrow): Ist \Im eine Interpretation, dann gilt entweder $\varphi^{\Im}=0$ oder $\varphi^{\Im}=1$. In dem ersten Fall, gilt $(\varphi \to \psi)^{\Im}=1$, also $\Im \models \varphi \to \psi$. In dem zweiten Fall, gilt auch $\psi^{\Im}=1$, da $\varphi \models \psi$ bedeutet, dass jede Interpretation die φ wahr macht auch ψ wahr macht. Also auch in diesem Fall $(\varphi \to \psi)^{\Im}=1$.
 - (\Leftarrow): Angenommen $\mathfrak I$ ist eine Interpretation mit $\mathfrak I\models\varphi$, also mit $\varphi^{\mathfrak I}=1$. Da auch $\mathfrak I\models\varphi\to\psi$, muss auch gelten $\psi^{\mathfrak I}=1$, also $\mathfrak I\models\psi$. Damit ist $\varphi\models\psi$ gezeigt.
 - ii. Richtig. $\varphi \models \psi$ heißt, dass jede Interpretation, die φ wahr macht, auch ψ wahr macht. Machen alle Interpretationen φ wahr, dann gilt das also auch für ψ ; gibt es eine Interpretation die φ wahr macht, dann ist dieselbe Interpretation ein Modell von ψ .
 - iii. Falsch (in beiden Fällen). 0 ⊨ 1, aber es gibt keine Modelle für 0, und alle Modelle machen 1 wahr.
 - iv. Falsch. Ein Gegenbeispiel: $\varphi = p, \psi = \neg p, \vartheta = 0$. Ein weiteres Gegenbeispiel ist $\varphi = p, \psi = q$ und $\vartheta = p \land q$.
- (b) i. Richtig, da für jede Interpretation 3 gilt:

$$\Im \models \neg (\varphi \lor \psi) \iff \neg (\varphi \lor \psi)^{\Im} = 1$$

$$\iff (\varphi \lor \psi)^{\Im} = 0$$

$$\iff \varphi^{\Im} = 0 \quad \text{und} \quad \psi^{\Im} = 0$$

$$\iff (\neg \varphi)^{\Im} = 1 \quad \text{und} \quad (\neg \psi)^{\Im} = 1$$

$$\iff (\neg \varphi \land \neg \psi)^{\Im} = 1$$

$$\iff \Im \models \neg \varphi \land \neg \psi.$$

- ii. Falsch. Ist $\varphi = p$, $\psi = q$ und \Im eine Interpretation mit $\Im(p) = 1$ und $\Im(q) = 0$, dann gilt $(\neg(\varphi \lor \psi))^{\Im} = 0$ und $(\neg \varphi \lor \neg \psi)^{\Im} = 1$.
- iii. Falsch. Ist $\varphi = p$, $\psi = q$ und \Im eine Interpretation mit $\Im(p) = 1$ und $\Im(q) = 0$, dann gilt $(\neg \psi)^{\Im} = 1$, $(\psi \rightarrow \varphi)^{\Im} = 1$ und $(\neg \varphi)^{\Im} = 0$.
- iv. Richtig. Angenommen \mathfrak{I} ist eine Interpretation mit $\mathfrak{I} \models \{\neg \varphi, \psi \to \varphi\}$, also $(\neg \varphi)^{\mathfrak{I}} = 1$ und $(\psi \to \varphi)^{\mathfrak{I}} = 1$. Es folgt $\varphi^{\mathfrak{I}} = 0$. Da $(\neg \psi \lor \varphi)^{\mathfrak{I}} = 1$ gdw. $(\neg \psi)^{\mathfrak{I}} = 1$ oder $\varphi^{\mathfrak{I}} = 1$, folgt $(\neg \psi)^{\mathfrak{I}} = 1$, wie gewünscht.

Hausübung

Aufgabe H1 (Exklusiv-Oder, Sheffer-Operator, Peirce-Operator)

(12 Punkte)

Wir führen drei neue logische Junktoren ein:

- $p \oplus q := (p \lor q) \land \neg (p \land q)$ (Exklusiv-Oder, XOR, Parity, entweder-oder),
- $p \uparrow q := \neg (p \land q)$ (äquivalent: $\neg p \lor \neg q$) (Sheffer-Operator, NAND),
- $p \downarrow q := \neg (p \lor q)$ (äquivalent: $\neg p \land \neg q$) (Peirce-Operator, NOR, weder-noch).
- (a) Zeigen Sie, dass XOR auch auf diese weiteren Weisen angegeben werden kann: $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ und $p \oplus q \equiv \neg (p \leftrightarrow q)$.
- (b) Zeigen Sie, dass \oplus kommutativ und assoziativ ist, das heißt, $p \oplus q \equiv q \oplus p$ und $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ gelten.

Bemerkung: Das bedeutet, dass man in Ausdrücken, wo \oplus der einzige Junktor ist, die Aussagen in beliebiger Reihenfolge bzw. ohne Klammern schreiben kann. (Dasselbe gilt natürlich auch für \land und \lor .)

(c) Beweisen Sie, dass $\{\uparrow\}$ und $\{\downarrow\}$ vollständige Junktorensysteme sind, $\{\oplus\}$ aber nicht.

Lösung:

(a) 4 P. Es genügt zu zeigen, dass die Wahrheitstafeln für die drei Formeln gleich sind.

p	q	$p \lor q$	$\neg(p \land q)$	$p\oplus q$	$p \wedge \neg q$	$\neg p \wedge q$	$(p \land \neg q) \lor (\neg p \land q)$	$p \longleftrightarrow q$	$\neg(p \longleftrightarrow q)$
0	0	0	1	0	0	0	0	1	0
0	1	1	1	1	0	1	1	0	1
1	0	1	1	1	1	0	1	0	1
1	1	1	0	0	0	0	0	1	0

(b) 4 P. Wahrheitstafeln:

p	q	$p \oplus q$	$q\oplus p$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

p	q	r	$p \oplus q$	$(p\oplus q)\oplus r$	$q \oplus r$	$p\oplus (q\oplus r)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1

Direkte Umformung funktioniert auch.

(c) 4 P. Um zu zeigen, dass $\{\uparrow\}$ ein vollstandiges Junktorensystem ist, genügt es, \neg und \land mit \uparrow auszudrücken. Es gilt $\neg p \equiv p \uparrow p$ und $p \land q \equiv \neg(p \uparrow q) \equiv (p \uparrow q) \uparrow (p \uparrow q)$.

Ähnlich können wir ¬ und \vee mit \downarrow ausdrücken: ¬ $p \equiv p \downarrow p$ und $p \vee q \equiv \neg(p \downarrow q) \equiv (p \downarrow q) \downarrow (p \downarrow q)$.

 $\{\oplus\}$ ist kein vollständiges Junktorensystem, denn wir können beispielsweise \neg nicht mit \oplus ausdrücken. Negation \neg ist ein einstelliger Junktor und alle möglichen Formeln, die nur eine Variable und \oplus enthalten (bis auf die Klammerung, die wir per vorheriger Teilaufgabe ignorieren können), haben die Form

$$\varphi_n := \underbrace{p \oplus p \oplus \ldots \oplus p}_{n\text{-mal}}$$

für $n \ge 1$. Für gerade n gilt $\varphi_n \equiv 0$ und für ungerade $\varphi_n \equiv p$, also in keinem Fall $\varphi_n \equiv \neg p$.

Aufgabe H2 (Boolesche Funktion zu Formel)

(12 Punkte)

Gegeben sei die Boolesche Funktion

$$f(x, y, u, v) := \begin{cases} 1 & \text{die Summe } x + y + u + v \text{ ist ungerade,} \\ 0 & \text{sonst.} \end{cases}$$

- (a) Geben Sie DNF für f(x, y, u, v) an.
- (b) Geben Sie KNF für f(x, y, u, v) an.
- (c) Geben Sie eine Formel φ an, sodass $f=f_{\varphi}$ und φ nur den Junktor \oplus benutzt.

Lösung:

(a)
$$\boxed{4 \ \mathbb{P} } (x \wedge \neg y \wedge \neg u \wedge \neg v) \vee (\neg x \wedge y \wedge \neg u \wedge \neg v) \vee (\neg x \wedge \neg y \wedge u \wedge \neg v) \vee (\neg x \wedge \neg y \wedge u \wedge v) \vee (\neg x \wedge \neg y \wedge u \wedge v) \vee (x \wedge y \wedge u \wedge v) \vee (x \wedge y \wedge u \wedge \neg v) \vee (x \wedge y \wedge u \wedge \neg v)$$

(b)
$$\boxed{4 \ \mathbb{P}} (x \lor y \lor u \lor v) \land (\neg x \lor \neg y \lor \neg u \lor \neg v) \land (x \lor y \lor \neg u \lor \neg v) \land (x \lor \neg y \lor u \lor \neg v) \land (x \lor \neg y \lor u \lor \neg v) \land (\neg x \lor y \lor \neg u \lor v) \land (\neg x \lor \neg y \lor u \lor v)}$$

(c) 4 P.
$$x \oplus y \oplus u \oplus v$$
 (Wir können die Klammern auslassen per **Aufgabe H1**.)

Aufgabe H3 (Erfüllbarkeit unendlicher Menge)

(12 Punkte)

Seien p_1, p_2, \ldots AL-Variablen und seien die Formeln φ_n induktiv definiert durch

$$\varphi_1 := 1, \quad \varphi_{n+1} := (p_n \longleftrightarrow p_{n+1}) \uparrow \varphi_n.$$

Ist die Formelmenge $\Phi := \{ \varphi_n \ \big| \ n \geq 1 \}$ erfüllbar? Wenn ja, finden Sie alle Modelle, die Φ erfüllen.

Lösung: Wir suchen alle \mathfrak{I} , sodass $\mathfrak{I} \models \varphi_n$ für alle n. Für solche \mathfrak{I} gilt $\mathfrak{I} \models \neg (p_n \longleftrightarrow p_{n+1})$ (also $\mathfrak{I} \models p_n \oplus p_{n+1}$) für alle n. Also sehen wir, dass die Belegung alternierend sein muss $(p_n \oplus p_{n+1})$ gilt genau dann, wenn genau entweder p_n oder p_{n+1} gilt), also bestimmt die Belegung der ersten Variable alle folgenden.

Das heißt, die einzigen zwei Kandidaten für Modelle sind $0, 1, 0, 1, 0, \dots$ und $1, 0, 1, 0, 1, \dots$ Dass beide tatsächlich Modelle sind, zeigt man per Induktion.