

Problem 2 (LSTM) (a) False. Because, if 24 = O vector we have; fr = o (Ufht-1+bf) 11 = o (uiht-1+bi) Ct = tonh (Vcht-1+bc) Ct = o (Ufht-1+bf) 0 (t-1+o (Uiht-1 +bi) O G D+ = o(Moht-1 + 60) :. ht = o(Uoht-1+bo) tanh (o(Ufht-1+bf) 0 (1-1)+ (o (liht-1+bi) 0 (t)) hr = h+-1 (b) False. Because, from LSTM equations we can see that it & Ct depends on ht-1 not on ft value (c) True Because, the equation of ft, it, of is a sigmoid with range (0,1). (d) False. Because, signoide are applied element-noise.

Fach sigmoid gives values in the range
(0,1) which need not sum to 1.

Problem 3 It is given that the dimension of $x_{\pm} = [2x]$ Dimension of Wf = [1x2] The dimension of Wf 2t will therefore be [IX] This makes dinkension of ft to be [1x1]=[1] due to the property of Vaddition operator to have similar dimension among its elemente Similarly we can show that the dimension of it I to be IXI= I as wil wo dimensione are [1x2] Ct dimension is Ct is the output of element-wise multiplication The dimension of Ct is I The dimension of ht also is I due to Ct lot being 1 (b) Co = Diector ho = O vector $\frac{1}{0}$ + [0.5] × 0 + [0.2] = $\sigma(1.2)$ = 0.7685 $i_1 = \sigma \left(\begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \end{bmatrix} \times 0 + \begin{bmatrix} -0 \cdot 1 \end{bmatrix} \right) = \sigma(-i \cdot 1)$ = 0.24974

```
C1 = tanh [12] [1] + [1.5] x0 + [0.5]
     = tanh (1+0.5) = 0.905
  C, = fix 6 + i1 x C, = 0 + 0.02 6052 = 0.226052
      = \sigma([30][1] + [-1] \times 0 + [0.8]) = \sigma(3.8)
 0, = 0.978119
     - 0.217415
 f2 = 0 [12] [0.5] + [0.5] x 0.217415 + [0.2]
    = 0 (-1-19129) = 0.2 33028
 i_2 = \sigma[[-10][0.5] + [2] \times 0.217415 + [-0.1]
     = 0 (-0.16517) = 0.458801
C2 = tanh/[12][0.5] + 1.5 x 0.217415 +(0.5)
    = tanh (-0.67388) = -0.58753.
C2 = +2xC1 + 12 xC2 = -0.21688.
02 = 5 ([30] [0.5] + [-1] X0-217415+[0.8]
   - 5 (2.082585) - 0.889199
h2 = 0.889199x tan(-0.21688) = -0.18988
72 = -0-189881
```

O MSE =
$$1 \left[(0.5 - h_1)^2 + (0.8 - h_2)^2 \right]$$

= 0.52986
= 52.986%

Problem 4

(a) To find out KL divergence between $(9(x)|p(2))$
Let $q(x) = N(u_1, \sigma_1)$, $p(x) = N(u_2, \sigma_2)$
 $k_1(q,p) = -\frac{1}{9}(x)\log p(x)dx + \frac{1}{9}(x)\log q(x)dx$
 $|q(x)\log q(x)dz = -\frac{1}{2}\left(1+\log 2\pi\sigma_1^2\right)$
 $|q(x)\log q(x)dz = \frac{1}{2}\left(1+\log 2\pi\sigma_1^2\right)$
 $|q(x)\log q(x)dx = \frac{1}{2}\log (3\pi\sigma_2^2) - \frac{1}{9}(x)\log e^{\frac{1}{2}\sigma_1^2}dx$
 $= \frac{1}{2}\log (3\pi\sigma_2^2) - \frac{1}{9}(x)\left(-\frac{1}{2}\log^2\right)^2 dx$
Separating the sums and taking out σ_2^2 of integral we get.

 $-\frac{1}{9(x)\log p(x)dx} = \frac{1}{2}\log(2\pi\sigma_2^2) + \frac{1}{9(x)}\frac{2}{x^2}dx - \frac{1}{9(x)}\frac{2}{2}u_2dx + \frac{1}{9(x)}\frac{2}{x^2}dx$ $2\sigma_2^2$ Expectations $\int 9(x) x^2 dx = \sigma_1^2 + \mu_1^2$ $\int 9(x) \mu_2^2 dx = \mu_2^2$ $\int 9(x) 2x \mu_2 dx = \mu_1 \mu_2 \times 2$ $= \frac{1 \log (2 \pi \sigma_2^2) + (\sigma_1^2 + u_1^2 - 2 u_1 u_2 + u_2^2)}{2 \sigma_2^2}$ $= \frac{1 \log (2 \pi \sigma_2^2) + \sigma_1^2 + (u_1 - u_2)^2}{2 \sigma_2^2}$ $= \frac{1 \log (2 \pi \sigma_2^2) + \sigma_1^2 + (u_1 - u_2)^2}{2 \sigma_2^2}$ $KL(q,p) = 1 log (2\pi \sigma_2^2) + \sigma_1^2 + (\mu_1 - \mu_2)^2 - 1 (1 + log 2\pi \sigma_1^2)$ $= 2 \log (52) + 5 + (11-11-11-12)^{2} - 1$ $= 2 \log (52) + 5 + (11-11-11-12)^{2} - 1$ De have 5=1, U2=0, tt=5, U1=U $|cl(q,p)| = \log(1) + \sigma^2 + u^2 - 1$ (b) When a is too large the input will lead to similar encoding. As a result whenever the decoder works of will generate a single kind of output which will not vary with the input.

The same	
(7)	The aspects where VAE & PCA are
	different are
Ú)	PCA is essentially a linear transformation
	but Auto-encoders are capable of modelling
	Complex non-linear functions
(11)	PCA features are totally linearly uncorrelated
	with each other since features are projection
	onto the orthogonal basis. But autoencoded
	features might have correlations since they
oiis	are just trained for accurate reconstruction PCA is faster and computationally cheaper
(11)	than autoencoders
Physical Property	than autoentoders

Problem 5 (a) False In GAN both the generator & discriminator are trained simultaneously with update of one parameter the natural of optimization problem that is being solved changes as ut is a dynamic system. Therefore the update of generator ((>1) times for every one time update of discriminator cannot quarantee acceleration of training of GAN (b) The value of D(G(z)) is closer to O because early in the training Dis much better Uthan G. One reason is that G's task of generating images that look like real data is a more difficult that D's task of distinguishing take images from real images. (C) I would choose non-saturating cost as it leads to much higher gradient early in the training and thur help the generator to learn quicker.

