

IPv6 Fundamentals, Second Edition by Rick Graziani

- Slides for Chapter 7 Multicast Addresses
- http://www.ciscopress.com/ store/ipv6-fundamentals-astraightforward-approach-tounderstanding-9781587144776

1

Chapter 7

Multicast Addresses

 Table 7-1
 IPv6 Multicast Address Representations

Representation	IPv6 Multicast Address		
Preferred	ff00:0000:0000:0000:0000:0000:0000/8		
No leading 0s	ff00:0:0:0:0:0:0:0/8		
Compressed	ff00::/8		

E - Global

8 - Organization-local

5 - Site-local

2 - Link-local

1 - Interface-local

Figure 7-3 Multicast Scope

ICMPv6 Router Solicitation Message

Source IPv6 Address: fe80::d0f8:9ff6:4201:7086 (LLA) Destination IPv6 Address: ff02::2 (All IPv6 Routers)

Figure 7-4 Link-Local Unicast Addresses and Multicast Addresses with Link-Local Scope

_

/8 Prefix	Flag	Scope	Predefined Group ID	Compressed Format	Description
Interface-Lo	ocal Scope				
ff	0	1	0:0:0:0:0:0:1	ff01::1	All-nodes
ff	0	1	0:0:0:0:0:0:2	ff01::2	All-routers
Link-Local	Scope				
ff	0	2	0:0:0:0:0:0:1	ff02::1	All-nodes
ff	0	2	0:0:0:0:0:0:2	ff02::2	All-routers
ff	0	2	0:0:0:0:0:0:5	ff02::5	OSPF routers
ff	0	2	0:0:0:0:0:0:6	ff02::6	OSPF designated routers
ff	0	2	0:0:0:0:0:0:9	ff02::9	RIP routers
ff	0	2	0:0:0:0:0:0:a	ff02::a	EIGRP routers
ff	0	2	0:0:0:0:0:1:2	ff02::1:2	All-DHCP agents
Site-Local S	соре				
ff	0	5	0:0:0:0:0:0:2	ff05::2	All-routers
ff	0	5	0:0:0:0:0:1:3	ff05::1:3	All-DHCP server

Example 7-1 Displaying Multicast Groups on Router R1's G0/0 Interface R1# show ipv6 interface gigabitethernet 0/0 GigabitEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::5AAC:78FF:FE93:DA00 No Virtual link-local address(es): Global unicast address(es): 2001:DB8:CAFE:1::1, subnet is 2001:DB8:CAFE:1::/64 Joined group address(es): FF02::1 ! All-IPv6 devices FF02::2 ! All-IPv6 routers FF02::FB ! Multicast DNS FF02::1:FF00:1 ! Solicited-node multicast for GUA ! Solicited-node multicast for LLA FF02::1:FF93:DA00 <output omitted for brevity> R1# show running-config <partial output> ipv6 unicast-routing ipv6 route ::/0 2001:DB8:CAFE:2::2

Example 7-2 Displaying Multicast Groups on WinPC and LinuxPC

```
WinPC> netsh interface ipv6 show joins

Interface 11: Local Area Connection

Scope References Last Address

! All-IPv6 devices, local scope
0 0 Yes ff01::1
! All-IPv6 devices, link-local scope
0 0 Yes ff02::1
! Multicast Name Resolution
0 1 Yes ff02::1:3
```

```
! Solicited-node GUA
       1 Yes ff02::1:ff00:100
! Solicited-node LLA
           2 Yes ff02::1:ff01:7086
<output omitted for brevity>
Ubuntu Linux PC
LinuxPC$ netstat -g
IPv6/IPv4 Group Memberships
Interface RefCnt Group
-----
! Solicited-node multicast GUA
eth0 1 ff02::1:ff00:400
! Solicited-node multicast LLA
eth0 1 ff02::1:ffaf:141b
! Multicast Name Resolution
      1
             ff02::fb
! All-IPv6 devices, link-local scope
eth0 1 ip6-allnodes
! All-IPv6 devices, local scope
eth0 1 ff01::1
<some output omitted for brevity>
```

 Table 7-3
 IPv6 Solicited-Node Multicast Address Representations

Representation	IPv6 Loopback Address		
Preferred	ff02:0000:0000:0000:0000:0001:ff00::/104		
Compressed	ff02:0:0:0:0:1:ff00::/104		

GUA 2001:db8:cafe:1::1 LLA fe80::5aac:78ff:fe93:da00

WinPC

GUA 2001:db8:cafe:1::100/64 LLA fe80::d0f8:9ff6:4201:7086

NDP Neighbor Solicitation Message

Destination MAC: 33-33-ff-00-01-00 (Multicast)

Destination IPv6: ff02::1:ff00:100 (Solicited-Node Multicast)

Message: Who ever has 2001:db8:cafe:1::100 I need your

MAC address

Figure 7-6 Use of Solicited-Node Multicasts with Address Resolution

Example 7-3 Displaying Solicited-Node Multicasts on Router R1's G0/0 Interface

```
R1# show ipv6 interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::5AAC:78FF:FE93:DA00
 No Virtual link-local address(es):
 Global unicast address(es):
    2001:DB8:CAFE:1::1, subnet is 2001:DB8:CAFE:1::/64
 Joined group address(es):
    FF02::1
                        ! All-IPv6 devices
    FF02::2
                       ! All-IPv6 routers
                       ! Multicast DNS
   FF02::FB
    FF02::1:FF00:1
                      ! Solicited-node multicast for GUA
    FF02::1:FF93:DA00
                       ! Solicited-node multicast for LLA
<output omitted for brevity>
```


Figure 7-7 Mapping R1's Global Unicast Address to a Solicited-Node Multicast Address

Figure 7-8 *Mapping R1's Link-Local Unicast Address to a Solicited-Node Multicast Address*

Figure 7-9 Mapping R1's Global Unicast Address to a Solicited-Node Multicast Address to an Ethernet MAC Address

Figure 7-10 Mapping R1's Link-Local Unicast Address to a Solicited-Node Multicast Address to an Ethernet MAC Address

Unicast Add	dress	Solicited-Node Multicast Address	Ethernet Multicast MAC Address	
Router R1				
Global	2001:db8:cafe:1::1	ff02::1:ff00: 1	33-33-ff-00-00-01	
Link-local	fe80::5aac:78ff:fe 93:da00	ff02::1:ff 93:da00	33-33-ff- 93-da-00	
WinPC				
Global	2001:db8:cafe:1:: 100	ff02::1:ff00:100	33-33-ff-00-01-00	
Link-local	fe80::d0f8:9ff6:42 01:7086	ff02::1:ff 01:7086	33-33-ff- 01-70-86	
LinuxPC				
Global	2001:db8:cafe:4:: 400	ff02::1:ff00: 400	33-33-ff-00-04-00	
Link-local	fe80::250:56ff:fe af:141b	ff02::1:ff af:141b	33-33-ff- af-14-1b	

__

Wireshark Capture of ICMPv6 Neighbor Solicitation Message from R1 Example 7-4 Ethernet II, Src: 58:ac:78:93:da:00, Dst: 33:33:ff:00:01:00 Internet Protocol Version 6 0110 = Version: 6 0000 0000 = Traffic class: 0x00000000 0000 0000 0000 0000 = Flowlabel: 0x00000000 Payload length: 32 Next header: ICMPv6 (0x3a) Hop limit: 255 Source: 2001:db8:cafe:1::1 Destination: ff02::1:ff00:100 Internet Control Message Protocol v6 Type: 135 (Neighbor solicitation) Code: 0 Target: 2001:db8:cafe:1::100 ICMPv6 Option (Source link-layer address) Type: Source link-layer address (1) Length: 8 Link-layer address: 58:ac:78:93:da:00

Figure 7-12 Address Mappings for R1's Neighbor Solicitation Message

 Table 7-5
 Well-Known Multicast to Ethernet MAC Address Mappings

Description	Well-Known Multicast	Mapped Ethernet MAC Address
All-Devices	ff02::1	33-33-ff- 00-00-01
All-Routers	ff02:: 2	33-33-ff- 00-00-02
All-OSPF Routers	ff02::5	33-33-ff- 00-00-05
All-EIGRP Routers	ff02::a	33-33-ff- 00-00-0 a

Example 7-5 Verifying the Solicited-Node Multicasts on Router R1's G0/0 Interface

```
R1# show ipv6 interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::5AAC:78FF:FE93:DA00
No Virtual link-local address(es):
Global unicast address(es):
2001:DB8:CAFE:1::1, subnet is 2001:DB8:CAFE:1::/64
Joined group address(es):
FF02::1
FF02::2
FF02::FB
FF02::1:FF93:DA00 ! Solicited-node multicast for GUA

FF02::1:FF93:DA00 ! Solicited-node multicast for LLA
```

```
Example 7-6 Verifying the Solicited-Node Multicasts on WinPC
 WinPC> ipconfig
 Ethernet adapter Local Area Connection:
   Connection-specific DNS Suffix . :
   IPv6 Address. . . . . . . . . : 2001:db8:cafe:1::100
   Link-local IPv6 Address . . . . : fe80::d0f8:9ff6:4201:7086%11
   Default Gateway . . . . . . . : 2001:db8:cafe:1::1
 <output omitted for brevity>
 WinPC> netsh interface ipv6 show joins
 Interface 11: Local Area Connection
 Scope References Last Address
              0 Yes ff01::1
               0 Yes ff02::1
               1 Yes ff02::1:3
 ! Solicited-node GUA
               1 Yes ff02::1:ff00:100
 ! Solicited-node LLA
               2 Yes ff02::1:ff01:7086
 <output omitted for brevity>
```

Example 7-7 Verifying the Solicited-Node Multicasts on LinuxPC

```
LinuxPC$ ifconfig
        Link encap:Ethernet HWaddr 00:50:56:af:14:1b
        inet6 addr:0.0.0.6 Bcast:255.255.255.255 Mask:0.0.0.0
        inet6 addr: 2001:db8:cafe:4::400/64 Scope:Global
        inet6 addr: fe80::250:56ff:feaf:141b/64 Scope:Link
<output omitted>
LinuxPC$ netstat -g
IPv6/IPv4 Group Memberships
Interface RefCnt Group
-----
! Solicted-node multicast GUA
eth0 1 ff02::1:ff00:400
! Solicted-node multicast LLA
eth0 1 ff02::1:ffaf:141b
! Multicast Name Resolution
eth0 1 ff02::fb
! All-IPv6 devices, link-local scope
eth0 1 ip6-allnodes
! All-IPv6 devices, local scope
eth0 1 ff01::1
<some output omitted for brevity>
```


	Global Routing Prefix	Subnet ID) Interface	e ID
	1920		← 40 bits →	←24 bits→
PCA	2001:db8:cafe	0001	aaaa:0000:00	00:0200
РСВ	2001:db8:cafe	0001	bbbb:0000:00	00:0200

Figure 7-13 *PCA and PCB with Different GUA Addresses but the Same Solicited-Node Multicast Address*

Example 7-8 R1 Multicast Groups R1# show ipv6 interface gigabitethernet 0/0 GigabitEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::5AAC:78FF:FE93:DA00 No Virtual link-local address(es): Global unicast address(es): 2001:DB8:CAFE:1::1, subnet is 2001:DB8:CAFE:1::/64 Joined group address(es): FF02::1 ! All-IPv6 devices FF02::2 ! All-IPv6 routers FF02::FB ! Multicast DNS ! Solicited-node multicast for GUA FF02::1:FF00:1 ! Solicited-node multicast for LLA FF02::1:FF93:DA00 <output omitted for brevity>

```
R1(config)# interface gigabitethernet 0/0
R1(config-if)# ipv6 address fe80::1 link-local
R1(config-if)# end
R1# show ipv6 interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
  No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:CAFE:1::1, subnet is 2001:DB8:CAFE:1::/64
  Joined group address(es):
! All-IPv6 devices
    FF02::1
! All-IPv6 routers
    FF02::2
! Multicast DNS
    FF02::FB
! Solicited-node multicast for GUA and LLA
      FF02::1:FF00:1
```

Multicast Listener Discovery (MLD) - RFC 2710

Protocol used to discover multicast clients (listeners) on a particular subnet.

IPv6 uses MLDv2 — RFC 3810 — for this purpose IPv4 uses Internet Group Management Protocol (IGMP)

MLDv2 uses ICMPv6 to transport MLD messages

There are 3 types of MLD messages:

- Multicast Listener Queries (Type = 130)
- Multicast Listener Report (Type = 131)
- Multicast Listener Done (Type 132)

ΑB

MLD messages:

Multicast Listener Queries (Type = 130)

To determine which multicast groups still have members on the router's attached networks.

General query

Used to learn which multicast addresses have listeners on an attached link.

Multicast-address-specific query

Used to learn whether a particular multicast address (group) has any listeners on an attached link.

Multicast Listener Report (Type = 131)

Sent by the listener to register for a multicast group. Can be sent in response to a query or sent unsolicited. If in response, only one member of the multicast group needs to send this message.

Multicast Listener Done (Type 132)

Sent when a listener no longer wants to receive traffic for a particular multicast group.

AB

