

Escola Politécnica de Pernambuco

Engenharia da Computação

Mineração de Dados Aula 4

Prof. Dr. Alexandre Maciel amam@ecomp.poli.br

PRÉ-PROCESSAMENTO DOS DADOS

Dados AUSENTES

CPF Nome Sexo Data_nasc E	Est_civil	Num_dep	Renda	Despesa	Tp_res	Bairro_res
9999999999 José 1 5/5/1289	С	1		1000	Р	Centro

- Espaço em branco ou símbolo (?)
- Implica em perda relevante
- Imputação não deve enviesar a base
- Alguns algoritmos não conseguem trabalhar
- Tratamento incorreto pode promover erro

Imputar valores AUSENTES:

- 1. Ignorar objeto.
- 2. Imputar manualmente.
- 3. Usar constante global.
- 4. Imputar por similaridade ou distância entre objetos.
- 5. Imputar de acordo com última observação.
- 6. Usar média ou moda do atributo.
- 7. Usar média ou moda de todos objetos da mesma classe.
- 8. Usar modelos preditivos.

Dados RUIDOSOS

	CPF	Nome	Sexo	Data_nasc	Est_civil	Num_dep	Renda	Despesa	Tp_res	Bairro_res
9999	9999999	José	1	5/5/1289	С	1		1000	Р	Centro

- Erros de medição e entrada do dados
- Erros acumulados
- Distorção da realidade
- Não existe um padrão consistente
- Não deve ser considerado pelo algoritmo

Dados RUIDOSOS

Suavizar dados RUIDOSOS:

1. Encaixotamento

Mesma largura:

_
23

Suavização pela média da caixa:

7	7		
18	18	18	18

Mesma frequência:

79	141	185	199	220	341
Caixa 1 [79,185]:		79	141	185	
Caixa 2 [199,341]:		199	220	341	

Suavização pelos extremos:

79	185	185
199	199	341

Suavizar dados RUIDOSOS:

2. Agrupamento

3. Aproximação

Dados INCONSISTENTES

						_	_	_	
CPF	Nome	Sexo	Data_nasc	Est_civil	Num_dep	Renda	Despesa	Tp_res	Bairro_res
9999999999	José	Х	5/5/1289	С	1		1000	P	Centro
_		-		-	-	-		-	

- Discrepância em relação a outros dados.
- Influencia na validade, utilidade e integridade da aplicação.
- Diferentes nomes de atributos em diferentes sistemas.

Corrigir dados INCONSISTENTES:

- Análise manual.
- Utilização de gráficos.
- Participação de especialista de domínio.

INTEGRAÇÃO DE DADOS

- REDUNDÂNCIA ... pode ser obtido por vários atributos da base.
- **DUPLICIDADE** ... atributos aparecem repetidos na base.
- CONFLITOS ... para mesma entidade, diferentes valores na base.

REDUÇÃO DOS DADOS

- SELEÇÃO de atributos
- COMPRESSÃO de atributos
- AMOSTRAGEM dos dados
- APROXIMAÇÃO de dados
- DISCRETIZAÇÃO

Seleção de atributos

Redução horizontal:

1. Segmentação do conjunto de dados.

```
SELECT * FROM CLIENTE WHERE TP RES = 'P';
```

2. Eliminação direta dos casos.

```
DELETE FROM CLIENTE WHERE TP RES <> 'P';
```

3. Agregação de informações.

```
SELECT SUM(VALOR) FROM PEDIDO WHERE CPF = '03274271403';
```


Seleção de atributos

Redução vertical:

- Escolha de subconjunto relevantes de atributos.
- Exclusão ou combinação de atributos.
- Motivação:
 - Pode conduzir a modelos de conhecimento mais concisos.
 - Otimizar tempo de processamento.
 - A exclusão de um atributo é muito mais relevante em termos de tamanho do conjunto de dados do que de um registro.

Seleção de atributos

- Redução vertical
 - 1. Eliminação direta de atributos
 - Heurísticas:
 - Eliminar atributos com valores constantes
 - » País...
 - Eliminar atributos que sejam identificadores
 - » Nome, CPF ...

Compressão de atributos

Redução vertical:

2. Análise de componentes principais

- Técnica de baixo custo computacional aplicável a dados numéricos.
- Consiste na transformação dos dados para um novo espaço com dimensão inferior ao original.
- O novo espaço fica caracterizado por um novo conjunto de eixos, ortonormais entre si, ordenados em ordem decrescente de variância.

Compressão de atributos

- Redução vertical:
 - 3. Análise de correlação

Amostragem dos Dados

Aleatória sem substituição

n<m objetos retirados.

Aleatória com substituição

objetos retirados voltam à base.

Sistemática

Ordenação e critério para retirada.

Por grupo

Para bases organizadas por grupos.

Estratificada

Mantida proporção de classes.

TRANSFORMAÇÃO DOS DADOS

- PADRONIZAÇÃO
- CODIFICAÇÃO
- NORMALIZAÇÃO
- PARTIÇÃO

PADRONIZAÇÃO DOS DADOS

Capitalização

Maiúscula, minúscula ou ambos.

Caracteres especiais

Ferramentas sensíveis ao conjunto de caracteres.

Formato dos atributos

Datas, CPF, abreviações...

Conversão de unidades

Centímetros-metros, quilômetros por hora-milhas por hora, ...

CODIFICAÇÃO DOS DADOS

Numérica → Categórica

- Mapeamento direto
 - 1 -> M
 - 0 -> F
- Mapeamento em intervalos (discretização)

Intervalo	Frequência
1000 - 1600	3
1600 - 4400	5
4400 - 5400	2

Comprimento determinado pelo usuário

Intervalo	Frequência
1000 - 2000	4
2000 - 3000	1
3000 - 4000	2
4000 - 5000	3

Comprimento em intervalos iguais

Divisão por clusterização

CODIFICAÇÃO DOS DADOS

Categórica -> Numérica

Representação binária

Valores Originais	Rep. Bin
Casado	001
Solteiro	010
Viúvo	100
Divorciado	011
Outro	110

Valores Originais	Rep. Bin
Casado	00001
Solteiro	00010
Viúvo	00100
Divorciado	01000
Outro	10000

Valores Originais	Rep. Bin
Fraco	0001
Regular	0011
Bom	0111
Ótimo	1111

Temperatura

Econômica 1-N

NORMALIZAÇÃO DOS DADOS

- Ajustar escala de valores, de cada atributo, de modo que sejam restritos a pequenos intervalos.
 - [-1;1] ou [0;1]
- Evitar que alguns atributos, por apresentarem uma escala de valores maior, influenciem nos algoritmos de aprendizagem de máquina.
 - Redes neurais ou métodos baseados em distância.

Transformação dos dados

• Normalização Max-Min: $A' = \frac{A-Min}{Max-Min}$

CPF	Despesas Valores Originais	Despesas Normalizadas
9999999999	1000	0,14
11111111111	2000	0,43
3333333333	3000	0,71
5555555555	1500	0,29
2222222222	1500	0,29
00000000000	1000	0,14
8888888888	3000	0,71
7777777777	500	0,00
6666666666	4000	1,00
4444444444	1000	0,14

Transformação dos dados

• Normalização Z-score: $A' = \frac{A - \mu}{\sigma}$

•
$$\mu = 1850$$

•
$$\sigma = 1131$$

CPF	Despesas Valores Originais	Despesas Normalizadas
9999999999	1000	-0,75
11111111111	2000	0,13
3333333333	3000	1,02
555555555	1500	-0,31
2222222222	1500	-0,31
0000000000	1000	-0,75
8888888888	3000	1,02
7777777777	500	-1,19
6666666666	4000	1,90
4444444444	1000	-0,75

Transformação dos dados

• Normalização por escala decimal: $A' = \frac{A}{10^{j}}$

•
$$j=4$$

CPF	Despesas Valores Originais	Despesas Normalizadas
9999999999	1000	0,10
11111111111	2000	0,20
3333333333	3000	0,30
5555555555	1500	0,15
2222222222	1500	0,15
00000000000	1000	0,10
8888888888	3000	0,30
7777777777	500	0,05
6666666666	4000	0,40
4444444444	1000	0,10

PARTIÇÃO DOS DADOS

Holdout:

- Treino = p ; Teste = 1 - p

K-fold Cross Validation:

Divisão do conjunto em K subconjuntos, com N elementos.

• Stratifield K-fold Cross Validation:

Considera a proporção de exemplos em cada uma das classes.

Bootstrap:

- Conjunto de treinamento gerado a partir de N sorteios aleatórios.
- Repetido várias vezes a fim de estimar a média de desempenho.

DINÂMICA

- Vamos rodar o pré-processamento de dados do seu projeto...