

Manual de Segurança e Qualidade para a Cultura do Amendoim

Manual de Segurança e Qualidade para a Cultura do Amendoim

CONFEDERAÇÃO NACIONAL DA INDÚSTRIA - CNI CONSELHO NACIONAL DO SENAI

Armando de Queiroz Monteiro Neto *Diretor-Presidente*

CONSELHO NACIONAL DO SESI

Jair Antonio Meneguelli *Presidente*

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA -ANVISA

Cláudio Maierovitch P. Henriques *Diretor-Presidente*

Ricardo Oliva Diretor de Alimentos e Toxicologia

CONFEDERAÇÃO NACIONAL DO COMÉRCIO - CNC CONSELHO NACIONAL DO SENAC CONSELHO NACIONAL DO SESC

Antônio Oliveira Santos *Presidente*

CONFEDERAÇÃO NACIONAL DA AGRICULTURA - CNA CONSELHO NACIONAL DO SENAR

Antônio Ernesto Werna de Salvo *Presidente*

EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA

Clayton Campanhola *Diretor-Presidente*

Mariza Marilena T. Luz Barbosa *Diretora-Executiva*

Herbert Cavalcante de Lima *Diretor-Executivo*

Gustavo Kauark Chianca *Diretor-Executivo*

SENAI - DEPARTAMENTO NACIONAL

José Manuel de Aguiar Martins *Diretor Geral*

Regina Torres Diretora de Operações

SEBRAE - NACIONAL

Silvano Gianni Diretor-Presidente

Luiz Carlos Barboza Diretor Técnico

Paulo Tarciso Okamotto Diretor de Administração e Finanças

SESI - DEPARTAMENTO NACIONAL

Armando Queiroz Monteiro Diretor-Nacional

Rui Lima do Nascimento Diretor-Superintendente

José Treigger Diretor de Operações

SENAC - DEPARTAMENTO NACIONAL

Sidney da Silva Cunha Diretor Geral

SESC - DEPARTAMENTO NACIONAL

Marom Emile Abi-Abib

Diretor Geral

Álvaro de Mello Salmito Diretor de Programas Sociais

Fernando Dysarz Gerente de Esportes e Saúde

SENAR - SERVIÇO NACIONAL DE APRENDIZAGEM RURAL

Antônio Ernesto Werna de Salvo Presidente do Conselho Deliberativo

Geraldo Gontijo Ribeiro Secretário-Executivo

Manual de Segurança e Qualidade para a Cultura do Amendoim

Qualquer parte desta obra poderá ser reproduzida, desde que citada a fonte.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária

Parque Estação Biológica - PqEB s/nº Caixa Postal: 040315 Edifício Sede CEP. 70770-900 Brasília-DF

Tel.: (61) 448 4433 Fax: (61) 347 1041

Internet: www.pas.senai.br e-mail: valois@sede.embrapa.br

FICHA CATALOGRÁFICA

Manual de Segurança e Qualidade para a Cultura do Amendoim. Brasília, DF : CampoPAS, 2004.

44 p. (Qualidade e Segurança dos Alimentos). Convênio CNI/SENAI/SEBRAE/EMBRAPA.

ISBN 85.7383.231-2

1. Segurança dos alimentos. 2. Amendoim - Cultura - Segurança. I. Série.

CDD 633.368.028.9 (21 ed.)

SUMÁRIO

PREFÁCIO	7
APRESENTAÇÃO	Ç
1- INTRODUÇÃO	11
2- SISTEMA DE PRODUÇÃO	13
2.1- Etapa de Pré-Colheita	13
2.2- Etapa de Pós-Colheita	14
3- FLUXOGRAMAS DE PRODUÇÃO	17
3.1- Etapa de Pré-Colheita	18
3.2- Etapa de Pós-Colheita	18
4- PERIGOS NA PRODUÇÃO	19
4.1- Perigos Químicos	19
4.1.1- Micotoxinas	19
4.1.2- Resíduos de Defensivos Agrotóxicos	20
4.2- Perigos Físicos	21
4.3- Perigos Biológicos	21

5- APLICAÇÃO DO SISTEMA APPCC	23
5.1- Formulários para Caracterização da Empresa/Produto	24
Formulário A	24
Formulário B	25
Formulário C	26
Formulário D	27
Formulário E	28
5.2- Análise de Perigos (Formulário G)	29
5.2.1- Etapa de Pré-Colheita	29
5.2.2- Etapa de Pós-Colheita	30
5.3- Determinação dos PC/PCC (Formulário H)	31
5.3.1- Etapa de Pré-Colheita	31
5.3.2- Etapa de Pós-Colheita	32
5.4- Resumo do Plano APPCC (Formulário I)	33
5.4.1- Etapa de Pré-Colheita	33
5.4.2- Etapa de Pós-Colheita	34
6- GLOSSÁRIO	35
7- BIBLIOGRAFIA	37
O ANEVOS	20

PAS-CAMPO PREFÁCIO

Programa de Alimentos Seguros (PAS) foi criado em 6 de agosto de 2002, tendo sido originado do Projeto APPCC (Análise de Perigos e Pontos Críticos de Controle), iniciado em abril de 1998 através de uma parceria entre CNI/SENAI e o SEBRAE. O PAS tem como objetivo principal, garantir a produção de alimentos seguros à saúde e satisfação dos consumidores, como um dos fulcros para o sucesso da agricultura e pecuária do campo à mesa, para fortalecer a agregação de valores no processo da geração de empregos, serviços, renda e outras oportunidades em benefícios da sociedade. Esse programa está constituído pelos setores da Indústria, Mesa, Transporte, Distribuição, Ações Especiais e Campo, em projetos articulados.

O PAS – Setor Campo foi concebido através de convênio de cooperação técnica e financeira entre o SENAI, SEBRAE e EMBRAPA, para instruir os produtores, técnicos e empresários da produção primária na adoção de Boas Práticas Agrícolas/Agropecuárias (BPA), usando os princípios da Análise de Perigos e Pontos Críticos de Controle (APPCC), para mitigar ou evitar os perigos físicos, químicos e biológicos, visando a segurança alimentar dos consumidores. Tem como focos a segurança dos alimentos e do ambiente e a orientação aos agricultores de produção familiar em especial, além de atuar como ferramenta de base integradora aos demais projetos do PAS.

O Sistema APPCC, versão nacional do Hazard Analysis and Critical Control Point (HACCP) criado nos Estados Unidos em 1959, no Brasil tem sido reconhecido por instituições oficiais como o Ministério da Agricultura, Pecuária e Abastecimento, Ministério da Saúde e Ministério da Ciência e Tecnologia, com visão no cumprimento da legislação brasileira.

No âmbito internacional, o HACCP é recomendado pela Organização das Nações Unidas para Alimentação e Agricultura (FAO), Organização Mundial da Saúde (OMS), Organização Mundial do Comércio (OMC) e Codex Alimentarius.

Esse reconhecimento e conjugação de esforços entre o Programa e Sistemas asseguram a colocação de produtos agrícolas de qualidade no mercado interno, além de possibilitar maior competitividade no mercado internacional, suplantando possíveis barreiras não tarifárias.

Esta publicação faz parte de um conjunto de documentos orientados para a disponibilização aos produtores, técnicos, empresários rurais e demais interessados no uso de BPA, para a consistente aplicação de sistemas de gestão no controle adequado de riscos e perigos nos alimentos.

PRESENTAÇÃO

agricultura e pecuária brasileiras vêm experimentando um grande avanço especialmente em produtividade, ultrapassando a barreira dos 100 milhões de toneladas de grãos, por exemplo.

No entanto, a produção primária tem apresentado limitações quanto ao controle de perigos físicos, químicos e biológicos, principalmente por necessitar de maiores cuidados nos processos de pré-colheita e pós-colheita, o que pode conduzir a doenças transmitidas por alimentos, tanto no consumo interno como no externo.

Em tempos de economia e mercados globalizados e no âmbito interno é patente a maior exigência dos consumidores por alimentos seguros e sustentabilidade ambiental, daí os vários exemplos já ocorridos no Brasil quanto à imposição de barreiras não tarifárias.

No sentido de conduzir a fase atual para uma situação mais confortável e competitiva urge a grande necessidade de instruir produtores rurais para uma mudança de hábito, costume, postura e atitude no trato dos produtos alimentícios, que será de grande valia inclusive para seu próprio benefício.

A real concepção e adoção do Programa de Alimentos Seguros (PAS), tendo como base as Boas Práticas Agrícolas/Agropecuárias (BPA) e com o foco dos princípios da Análise de Perigos e Pontos Críticos de Controle (APPCC), para ascender à Produção Integrada (PI), tem o objetivo geral de se constituir em medida antecipadora para a segurança dos alimentos, com a função indicadora de lacunas na cadeia produtiva para futuro preenchimento.

Com isso, será possível garantir a segurança e qualidade dos produtos, incrementar a produção, produtividade e competitividade, além de atender às exigências dos mercados internacionais e à legislação brasileira.

No contexto da saudável cooperação e parceria entre o SENAI, SEBRAE e EMBRAPA este Manual, agora colocado à disposição dos usuários, foi elaborado à luz dos conhecimentos e tecnologias disponíveis, com base no desenvolvimento de pesquisas empíricas apropriadas e validadas, além de consistente revisão bibliográfica.

INTRODUÇÃO

amendoim (*Arachis hipogea*) é um grão que possui altos índices de proteínas e óleos, apresentando aproveitamento em torno de 40 e 50% na extração de óleo e farelo, respectivamente, que aliados ao agradável sabor, o torna largamente consumido por adultos e crianças nas mais diversas formas, desde o grão apenas torrado, até em sofisticados doces, confeitos e pratos da culinária brasileira e de outros países.

O amendoim é um dos grãos mais susceptíveis à contaminação por micotoxinas (aflatoxinas e outras), podendo as mesmas ocorrer praticamente em todas as fases das várias etapas da sua cadeia produtiva.

As Boas Práticas Agrícolas – BPA para controle preventivo de perigos de naturezas física, química e biológica no amendoim são constituídas de um conjunto de práticas e técnicas agronômicas, para serem utilizadas ao longo da cadeia produtiva.

A ação dos agentes biológicos (fungos, bactérias, outros) pode ocorrer, praticamente, em todas as etapas da cadeia produtiva do amendoim, ou seja, na produção, no beneficiamento, no armazenamento, no transporte, na comercialização e na industrialização/processamento, sendo menos freqüente nesta última, devido a aplicação de medidas de controle destes agentes. Entretanto, esta iniciativa pode não surtir efeito, em decorrência da vulnerabilidade das etapas anteriores, consideradas críticas, onde praticamente inexiste a aplicação de medidas efetivas de controle que assegurem limites toleráveis de contaminação da matéria-prima destinada ao processamento e também do amendoim que chega ao consumidor final *in natura* via mercado informal (venda "a granel" em feiras, torrado nas praias, carrocinhas, etc.).

A contaminação do amendoim por micotoxinas é decorrente de falhas no controle da umidade e temperatura em todas as fases e etapas da cadeia produtiva, propiciando condições favoráveis para o desenvolvimento dos fungos toxigênicos (principalmente *Aspergillus flavus* e *A. parasiticus*), sendo o controle dificultado pelas condições climáticas e pela própria natureza do amendoim, tornando esta cultura altamente suscetível à contaminação e crescimento de bolores produtores de aflatoxinas, sendo as mesmas consideradas muito importantes na segurança do alimento humano e animal.

Nesse sentido, o presente documento visa apresentar, em linhas gerais, as medidas básicas para controle preventivo da produção de micotoxinas, assim como propor um plano de ação para implementação, visando uma atuação rápida no sentido de assegurar ao amendoim e seus derivados os limites máximos de micotoxinas tolerados pela legislação em vigor.

Com estes objetivos, serão discutidas as medidas e técnicas práticas de manejo, visando o controle de micotoxinas nas principais etapas da pré-colheita (pré-cultivo, cultivo e colheita) e nas de pós-colheita (beneficiamento, transporte e armazenamento).

Produção

2.1- Etapa de Pré-Colheita

O controle pré-colheita da contaminação por aflatoxina no amendoim compreende cuidados como a escolha da área para o plantio e da cultivar, controle de pragas, da umidade no solo no período que antecede a colheita, entre outros. Basicamente, são considerados os fatores agronômicos e ambientais que favorecem a infecção das vagens e sementes com o fungo produtor de aflatoxina. Em função da variação desses fatores, escolhe-se a área a ser cultivada e as práticas agrícolas a serem adotadas para reduzir a contaminação por aflatoxinas.

A rotação de culturas é uma prática recomendada, pois tem o propósito de reduzir a população de A. flavus e A. parasiticus. Em regiões semi-áridas, onde a população destes patógenos tende a ser mais alta, essa prática tem pouco efeito.

Solos arenosos são mais suscetíveis a estresse hídrico que os solos argilosos, que retêm mais água. O cultivo nesses solos mais vulneráveis requer maior cuidado. Se necessário, deve-se garantir umidade para a cultura com irrigação suplementar, para que as plantas não sofram estresse hídrico no período de 4 a 6 semanas antes da colheita. Esse é considerado um período crítico para infecção por Aspergillus no campo.

A escolha da cultivar também é um fator fundamental para controlar a contaminação por aflatoxina. O ideal seria escolher cultivares resistentes à produção de aflatoxina, adaptados às condições edafoclimáticas da região de cultivo. No Brasil, apenas uma cultivar, lançado pelo IAC apresenta resistência, o IAC-Caiapó. Desenvolvida para o estado de São Paulo, a IAC-Caiapó atende ao

mercado interno de grãos maiores e de cor bege e a indústria de óleo. Cultivares resistentes a insetos também são desejáveis, pois as plantas sofrem menos estresse e danos mecânicos, especialmente nas vagens, que favorecem a infecção e proliferação de *Aspergillus*. Além da resistência ao *Aspergillus* e insetos, outros atributos das cultivares são importantes e podem contribuir muito para reduzir a contaminação por aflatoxina no amendoim. A adaptação à região de cultivo é importante, por submeter a planta a menos estresse em condições adversas de fertilidade do solo e disponibilidade de água, por exemplo. As cultivares BR-1 e L-7 foram desenvolvidas pela Embrapa Algodão e são adaptadas às regiões do Nordeste onde se cultiva amendoim. Por terem ciclo mais curto, de 89 dias, são mais resistentes a estresses hídricos. Também produzem bem em cultivo irrigado, mas ainda não foram testadas em outras regiões do País, como no cerrado. A escolha de uma cultivar com ciclo compatível com o regime de chuvas é fundamental. No cultivo do amendoim, deve-se evitar que ocorra estresse hídrico nas últimas 4-6 semanas, pois essa condição é altamente favorável a infecção das vagens e sementes pelo *Aspergillus*. Caso o ciclo da cultivar seja mais longo que o período das chuvas, deve-se providenciar irrigação complementar.

De maneira geral, deve-se evitar todo tipo de estresse que favoreca a infecção por *Aspergillus*. Cuidados como seguir a recomendação de adubação, respeitar a época de plantio e o espaçamento adequado, controles eficientes de insetos e plantas daninhas são fundamentais para prevenir a contaminação por aflatoxina antes da colheita.

A colheita do amendoim deve ser planejada para ser realizada no ponto ótimo de maturidade, uma vez que a colheita precoce ou tardia aumenta a proporção de vagens imaturas ou que passaram do padrão de maturidade, aumentando a contaminação por aflatoxina.

Plantas que morreram devido ao ataque de pragas ou patógenos devem ser colhidas separadamente, pois provavelmente suas vagens terão altos índices de aflatoxina. Em áreas que não foram irrigadas a colheita também deve ser feita separadamente, pelo mesmo motivo explicado anteriormente. A seleção de vagens danificadas deve ser feita, para evitar misturar material infectado com *Aspergillus* do material sadio. Além disso, deve-se reduzir ao máximo a mistura de amendoim com material estranho – plantas daninhas, solo, pedras – promovendo assim melhor aeração e condições de secagem para as vagens.

2.2- Etapa de Pós-Colheita

O manuseio com as vagens após a colheita deve ser feito cuidadosamente, para evitar que se quebrem ou que sofram danos que favoreçam a infecção por *Aspergillus*.

Deve-se também, determinar a umidade dos grãos, realizando amostragem em locais diferentes. Esse procedimento permite separar a colheita em lotes de acordo com a umidade dos grãos, permitindo a secagem de maneira mais eficiente. É importante, especialmente se a área cultivada for irregular, oferecendo oportunidades para ocorrer diferentes níveis de umidade no solo.

As vagens devem ser colocadas para secar o mais rápido possível. Habitualmente isso é feito invertendo-se a planta no campo, expondo as vagens ao sol e vento. A taxa de secagem durante a cura deve ser a mais alta possível, para reduzir a atividade de água, prevenindo o desenvolvimento de microrganismos como o *Aspergillus*. A utilização de calor suplementar durante a fase de cura deve ser feita com cuidado, pois o aquecimento excessivo acarreta perda de sabor e despeliculamento, reduzindo a qualidade dos grãos. Após a fase de cura, a umidade deve ser mantida em níveis inferiores a 10 %, para prevenir a multiplicaçõ de fungos como o *Aspergillus*.

Considerando que no amendoim a infecção primária por *Aspergillus* ocorre no solo, a realização do descascamento e a manutenção da umidade em níveis baixos previnem a multiplicação do fungo e o acúmulo indesejável da sua toxina. Após o descascamento, a umidade recomendada é entre 5-7 %. Preferencialmente, essa operação deve ser feita 48 horas após a colheita.

Os grãos devem ser transportados para o local próprio de armazenamento ou processamento logo após a cura. Os vagões, "containers", ou caminhões devem estar limpos, secos e livres de insetos e roedores, sem desenvolvimento visível de fungos antes de serem utilizados ou re-utilizados.

Durante o transporte, é essencial evitar flutuações de temperatura, para não condensar água em torno da carga e o consequente re-umedecimento dos grãos.

O ponto-chave para prevenir a contaminação por aflatoxina durante o armazenamento é evitar a reidratação dos grãos.

O local deve ser ventilado, seco, com boa cobertura, de preferência com paredes duplas e piso de concreto. Deve ter estruturas de ventilação, ser protegido de chuva e de insetos, pássaros e roedores, com flutuação mínima de temperatura. Os grãos devem ser distribuídos de maneira uniforme, favorecendo a dispersão do calor e umidade. Dessa forma, há redução das áreas favoráveis a proliferação de insetos, que causam picos de aquecimento e umidade, favorecendo o fungo que produz a aflatoxina. Umidade relativa do local menor que 70% e temperatura entre 0 e 10°C propiciam ótimas condições de armazenamento. Recomenda-se medir a temperatura em intervalos fixos, para monitorar a ocorrência de temperaturas altas, que indicam atividade microbiana ou de insetos.

Fungicidas e inseticidas registrados para a cultura podem ser utilizados, porém respeitando os prazos de carência e as dosagens recomendadas.

O monitoramento do nível de aflatoxina pode ser feito por análises químicas. Lotes com contaminação devem ser separados dos livres ou com pouca contaminação. Considerando que a distribuição da aflatoxina em um lote é heterogênea, a seleção de grãos e vagens danificados e com crescimento do fungo, começando na colheita e cura, constituem as medidas que mais impacto causam no controle e prevenção da contaminação por aflatoxina. Vale ressaltar que a ausência do controle da umidade dos grãos após a colheita invalida os cuidados adotados anteriormente.

FLUXOGRAMAS DE PRODUÇÃO

3.1- Etapa de Pré-Colheita

3.2- Etapa de Pós-Colheita

PRODUÇÃO

produção do amendoim está sujeita a perigos químicos, físicos e biológicos, praticamente em todas as suas etapas e fases. A aplicação de BPA pode minimizar a ocorrência dos agentes que causam as contaminações, entretanto a identificação de pontos de controle é fundamental para implementação de medidas preventivas e posterior implantação do Sistema APPCC. Os perigos mais comuns encontrados na produção do amendoim são:

4.1- Perigos Químicos

4.1.1- Micotoxinas

As micotoxinas são metabólitos tóxicos produzidos por algumas espécies de fungos, principalmente dos gêneros Aspergillus e Penicillium. Muitas delas revelam efeitos tóxicos e degenerativos no consumidor, sendo nefrotóxicas e possivelmente carcinogênicas e teratogênicas.

No caso específico do amendoim, a micotoxina mais importante é a aflatoxina (dos tipos B e G), produzida por Aspergillus flavus e A. parasiticus, principalmente em grãos com teor elevado de umidade. O A. flavus produz apenas a aflatoxina B, sendo que aproximadamente 40 % das cepas são produtoras; já o A. parasiticus produz tanto a aflatoxina B como a G, sendo que 100% das cepas isoladas do ambiente são produtoras. Essas duas espécies são relacionadas morfologicamente, tanto que a maioria dos autores não as diferenciam. Porém, são bastante distintas no comportamento ecológico e biológico. A. parasiticus é mais adaptado ao ambiente

terrestre, sendo mais comum em amendoim, enquanto que *A. flavus* adapta-se melhor em ambientes aéreos, ocorrendo com maior freqüência em culturas como milho, algodão, arroz e nozes. Em conseqüência, aflatoxinas do tipo G raramente são encontradas em análises realizadas em milho, arroz e caroço de algodão, sendo freqüentemente encontradas em análises feitas em amendoim, estando presentes também as do tipo B. Esses bolores são associados com o amendoim e outros grãos, predominando em regiões de clima tropical.

O amendoim ensacado, com teor de umidade superior a 11%, propicia condições para o rápido desenvolvimento dos fungos, ficando, por isso, muito sujeito à presença de micotoxinas. Para reduzir o risco dessa contaminação, o ensaque e armazenamento do amendoim em casca devem sempre ser feitos quando ele estiver com teor de umidade até 11%, de preferência ao redor de 10%.

Muitos fatores, desde a produção até o armazenamento, contribuem para a contaminação do amendoim por aflatoxina. O primeiro ponto de controle encontra-se na produção, monitorando a umidade do solo, pragas e doenças que causem estresse às plantas, favorecendo a infecção por *Aspergillus*. Na colheita, a seleção de material danificado, atacado por insetos, vagens chochas, com bolores, é um dos pontos de controle mais importantes para prevenir a contaminação por aflatoxina. A manutenção das vagens com umidade inferior a 10% é uma garantia de que o fungo produtor de aflatoxina não terá chance de se desenvolver-se. As condições de colheita, transporte e armazenamento devem ser rigorosamente controladas; variações na temperatura e nos teores de umidade relativa nos armazéns poderão possibilitar a reidratação das vagens e o desenvolvimento dos fungos contaminantes. Assim, o monitoramento das condições ambientais durante o transporte e o armazenamento do amendoim, constitui-se num importante ponto de controle.

4.1.2- Resíduos de Defensivos Agrotóxicos

A não observação das recomendações técnicas de uso adequado de agrotóxicos (fungicidas, inseticidas, herbicidas) poderá levar à contaminação dos grãos. Embora as condições de processo minimizem em muito os riscos da presença de excesso de resíduos no produto final, é de importância crítica a otimização do uso dos mesmos. A observância dos princípios de Boas Práticas Agrícolas, o uso e manejo adequado dos defensivos, a observação dos períodos de carência, bem como as disposições do Receituário Agronômico, são algumas das exigências fundamentais a serem observadas.

4.2- Perigos Físicos

Embora com menor impacto que os perigos químicos em termos de segurança, mas muito importantes na avaliação das condições gerais de higiene e na aceitação do produto no mercado, os perigos de natureza física devem ser considerados mais nos aspectos de qualidade do que de segurança.

A contaminação por material estranho ou sujidades, principalmente fragmentos de insetos e seus excrementos, bem como pêlos de roedores e outras impurezas diversas, podem causar prejuízos econômicos na comercialização interna e na exportação desse produto. Várias são as causas que podem levar às contaminações desta natureza; sem dúvida, as condições higiênicas precárias na etapa de secagem e o armazenamento do produto em locais com níveis elevados de infestação por pragas, seriam os principais responsáveis pela contaminação.

Assim, a solução do problema passaria, novamente, pela adoção de programas rígidos de BPA nos terreiros de secagem, principalmente evitando-se o acesso de animais aos terreiros, e, no de armazenamento, um programa de BP, envolvendo principalmente o Manejo Integrado de Pragas - MIP, manutenção adequada das instalações e uso de embalagens assegurando uma boa resistência e hermeticidade.

4.3- Perigos Biológicos

São representados por bactérias, parasitos e vírus, potencialmente patogênicos ao homem. Durante a pré-colheita, fatores como a contaminação do solo, uso de esterco ou composto não curtido de forma adequada, uso de água contaminada na irrigação ou formulação de agrotóxicos, são algumas fontes importantes de contaminação da cultura por microrganismos patogênicos. Durante a pós-colheita, a higiene inadequada de manipulação e dos equipamentos e utensílios que contactam o amendoim, seriam fontes adicionais de contaminação. No entanto, deve-se considerar que a baixa umidade recomendada para os grãos e o tratamento térmico de secagem e torração seriam fatores com pronunciado efeito letal sobre os microrganismos, razão pela qual os perigos de natureza biológica não seriam usualmente de importância crítica.

APLICAÇÃO DO SISTEMA APPCC

5.1- Formulários de Caracterização da Empresa/Produto

Formulário A • IDENTIFICAÇÃO DA EMPRESA/PROPRIEDADE

Razão Social:	
Endereço:	
CEP: Cidade:	Estado:
Telefone:	Fax.:
C.N.P.J I.E.:	
Responsável Técnico:	
Supervisor do programa de segurança:	
Identificação do produto agrícola (como é expedido p	pela fazenda):
Destino e finalidade de uso da produção:	

Formulário B • ORGANOGRAMA DA EMPRESA/PROPRIEDADE

Formulário C • EQUIPE APPCC/EQUIPE DO PROGRAMA DE SEGURANÇA

NOME	FUNÇÃO NA EMPRESA
DATA: APROVAD	O DOD:

DAIA.	Ar	FRUVADU	FUN.		

Formulário D • CARACTERIZAÇÃO DO PRODUTO/PROPRIEDADE

Produto agrícola:
Lote:
Data da produção final do lote:
Características importantes do Produto Final: (pH, A _w , umidade, Brix, etc.):
Umidade:
A _w :
Brix:
Outras (especificar):
Classificação:
Forma de uso do produto pelo consumidor ou usuário:
Características da embalagem:
Local de venda do Produto:
Instruções contidas no rótulo:
Controles especiais durante distribuição e comercialização:
DATA: APROVADO POR:

Formulário E • INSUMOS USADOS NA PRODUÇÃO PRIMÁRIA

INSUMOS USADOS NA PRÉ-COLHEITA
Tipo de solo:
Adubo:
Tipo de água para irrigação:
Agroquímicos:
Outros (especificar)
INSUMOS USADOS NA PÓS-COLHEITA
Tipo de água para lavagem:
Impermeabilizante da superfície:
Aditivos:
Embalagem:
Outros (especificar):
DATA: APROVADO POR:

5.2- Análise de Perigos

5.2.1- Formulário G: Análise de Perigos na Etapa de Pré-Colheita • Produto: Amendoim

Medidas Preventivas	Remover ou destruir o mato (plantas daninhas), para eliminar reservatório do fungo produtor. Fazer preparo adequado do solo. Praticar a rotação de culturas.	Utilizar sementes fiscalizadas e/ou certificadas e tratadas com produtos autorizados e registrados.	Controle de infestação por pragas e doenças, com uso de produtos registrados; Controle de plantas daninhas; Evitar danos mecânicos às plantas pelo uso inadequado de implementos agrícolas; Em períodos de seca, irrigar a cultura se possível dias antes da colheita. Evitar condicios de unidade obavada polo uso de	condições de dimade elevada pelo dos de cobertura morta. Aplicação de procedimentos de BPA; Obediência às instruções do Receituário Agronômico e do fabricante.	Colher no ponto ótimo de maturação e com a máxima precocidade; Evitar danos mecânicos durante o arranquio; Regular a colhedeira para evitar danos mecânicos à casca do amendoim.	Inverter o amendoim para a secagem das vagens. Secar até um nível seguro de umidade (de preferência no máximo 10%) não deixar o amendoim ensacado pernoitar no campo.
Risco	Alto	Médio	Alto	Alto	Alto	Alto
Severidade	Alta	Alta	Alta	Alta	Alta	Alta
Justificativa	Presença do fungo produtor no solo e restos de cultura, com desenvolvimento favorecido pela umidade e temperaura.	Presença de inóculo e micotoxinas nas sementes.	A infestação por doenças e pragas, fertilização inadequada, condições climáticas adversas (seca) favorecem a contaminação e proliferação de fungos micotoxigênicos.	Uso inadequado e não observação dos períodos de carência.	Falhas na colheita podem danificar o grão, favorecendo condições inade- quadas de colheita.	Condições de umidade e temperatura, favoráveis a ploriferação de bolores muito toxigênicos.
Perigos	P. Físico: Nenhum P. Químico: Micotoxinas (aflatoxinas) P. Biológico: Nenhum	P. Químico: Micotoxinas (aflatoxinas) P. Biológico: Nenhum P.Físico: Nenhum	P. Químico: Micotoxinas (aflatoxinas) P. Físico: Nenhum	P. Ouímico: Resíduos de agrotóxicos P. Biológico: Nenhum	P. Químico: Micotoxinas (aflatoxinas) P. Biológico: Nenhum P.Físico: Nenhum	P. Químico: Micotoxinas P. Biológico: Nenhum P. Físico: Nenhum
Etapas de processo	Pré-cultivo	Plantio	Cultivo		Colheita	Secagem e Ensacamento no campo

5.2.2- Formulário G: Análise de Perigos na Etapa de Pós-Colheita • Produto: Amendoim

Medidas Preventivas	O amendoim ensacado deve ser imediatamente espalhado no terreiro, ou outro local adequado; se o amendoim já ensacado no campo, for umidecido pela chuva, o mesmo deve ser seco em terreiro o mais rapidamente possível e armazenado separadamente; Quando exposto à secagem artificial, não ultrapassar a temperatura de 38°C, exceto no início do processo, quando pode-se atingir 50-55°C; Nunca iniciar a secagem artificial antes que o teor de umidade do amendoim esteja na faixa de 20-22%; O teor de umidade final dos grãos deverá ser de no máximo 9%, sendo mais seguro o de 8% (Aw=0,70).	Adoção do Programa de Boas Práticas de Fabricação-BPF. Programa de limpeza e sanificação de equipamentos; higiene pessoal.	Adoção de programa de Manejo Integrado de Pragas-MIP e uso de Boas Práticas de Fabrica- ção-BPF. Manutenção da área física; limpeza e sanificação	1	Garantir o armazenamento obedecendo as BPF com ênfase no controle da umidade relativa e temperatura do ambiente, evitando a absorção de umidade pelo amendoim. Efetuar a prélimpeza do produto;
Risco	Alto	Baixo	Médio	I	Alta
Severidade	Alta	Média	Baixa	I	Alta
Justificativa	As condições de umidade dos grãos, a umidade relativa e temperatura do ambiente, aliadas ao tempo de permanência em condições que favoreçam a proliferação dos bolores.	Condições higiênicas deficientes do ambiente, equipamentos e manuseio.	Deterioração e contaminação dos grãos por infestação por pragas.	1	Condições precárias de armazenamento, com estocagem do amendoim úmido, em locais sem ventilação adequada, com mistura de lotes, ausência de tratamentos fitossanitários, precárias condições higiênico-sanitárias, são alguns dos fatores que facilitam a contaminação e proliferação de bolores micotoxigênicos.
Perigos	P. Químico: Micotoxinas (aflatoxinas)	P. Biológico: Bactérias patogênicas	P. Físico: Material estranho (insetos, pêlos de roedores)	P. Biológico: Nenhum	P. Químico: Micotoxinas (aflatoxinas) P. Físico: Nenhum
Etapas de processo	Beneficiamento			Armazenamento	

5.3- Determinação dos PC/PCC

5.3.1- Formulário H: Determinação dos PC/PCC na Etapa de Pré-Colheita • Produto: Amendoim

PC/PCC	ı	I	PC	1
Questão 4 Uma etapa subseqüente eliminará ou reduzirá o perigo a níveis aceitáveis?	1	1	1	I
Ouestão 3 O perigo pode aumentar a níveis inaceitáveis em outra etapa?	1	1	1	ī
Ouestão 2 Esta etapa elimina ou reduz o perigo a níveis aceitáveis?	1	1	1	I
Questão 1 Existem medidas preventivas para o perigo?	1	1	1	ı
O perigo é controla- do pelo programa de pré-requisitos? Se sim, é importante considerar como PC?	Sim/Não	Sim / Não	Sim/Sim	Sim/Não
Perigos significativos (biológicos, químicos e físicos)	(Q): Micotoxinas (aflatoxinas)	(Q): Micotoxinas (aflatoxinas)	(Q): Micotoxinas (aflatoxinas)	(Q): Resíduos de agrotóxicos
Etapa do processo	Pré-Cultivo	Plantio	Cultivo	

5.3.2- Formulário H: Determinação dos PC/PCC na Etapa de Pós-Colheita • Produto: Amendoim

PC/PCC	PCC ₁ (0)	PCC ₂ (Q)		PCC ₃ (Q)	I	ī	1
Questão 4 Uma etapa subseqüente eliminará ou reduzirá o perigo a níveis aceitáveis?	I	ı	ı	1	ı	ı	I
Questão 3 O perigo pode aumentar a níveis inaceitáveis em outra etapa?	I	ı	I	1	I	ı	I
Ouestão 2 Esta etapa elimina ou reduz o perigo a níveis aceitáveis?	П	I	I	1	ı	1	I
Ouestão 1 Existem medidas preventivas para o perigo?	Sim	Sim	1	Não	Γ	1	I
O perigo é controla- do pelo programa de pré-requisitos? Se sim, é importante considerar como PC?	Não	Não	Sim/Não	Não	Sim/Não	Sim/Não	Sim/Não
Perigos significativos (biológicos, químicos e físicos)	(0): Micotoxina (aflatoxinas)	(Q): Micotoxinas (aflatoxinas)	(B): Bactérias patogênicas	(0): Micotoxinas (aflatoxinas)	(F): Material estranho	(Q): Micotoxinas (aflatoxinas)	(B): Bactérias patogênicas
Etapa do processo	Secagem e Ensacamento no campo	Beneficiamento		Armazenamento		Transporte	

APROVADO POR:

DATA:

5.4- Resumo do Plano APPCC

5.4.1- Formulário I: Resumo do Plano APPCC na Etapa de Pré-Colheita · Produto: Amendoim

Verificação	Supervisão e análise dos registros
Registro	Caderno de campo
Ação Corretiva	Retirar cobertu-ra morta
Monitorização	O quê? Cobertura morta Como? Observação visual Quando? Contínuo Quem? Responsável pelo campo
Limite Crítico	Ausência de evidência de cobertura morta
Medidas Preventivas	Controle de infestação por pragas e doenças com uso de produtos registrados; Controle de plantas daninhas; Evitar danos mecânicos às plantas pelo uso inadequado de implementos agrícolas; em períodos de secas, irrigar a cultura se possível 8-10 dias antes da colheita. Evitar condições de umidade elevada pelo uso de cobertura morta. Aplicação de Procedimentos de BPA. Obediência às instruções do receituário agronômico e do fabricante
Perigo	Micotoxinas) (aflatoxinas)
PC/ PCC	PC (0)
Etapa	Cultivo

5.4.2- Formulário I: Resumo do Plano APPCC na Etapa de Pós-Colheita • Produto: Amendoim

Verificação	Análise dos registros; Inspeção de campo; Programa de coleta e análise de amostras.	Análise dos registros; Inspeção do local; Amostragem e análise de umidade e aflatoxinas do amendoim.	Análise dos registros; Inspeção do amazém; Análise de umidade e aflatoxinas do amendoim; Programa de calibração dos equipamentos.		
Registro	Planilha de registro de umidade	Planilha de registro de umidade; Registros de umidade; Registros de UR e tempe- ratura do armazém.	Planilhas de controle de umidade; Registros de UR e temperaturas do armazém. Planilha de controle de pragas.		
Ação Corretiva	Proceder secagem complementar; Treinar pessoal.	Proceder secagem complementar; Dosar aflatoxina; Rejeitar o lote; Treinar pessoal; Adequar condições do armazém.	Proceder secagem complementos do grão; Dosar aflatoxina; Rejeitar o lote; Treinar pessoal; Adequar condições do armazém.		
Monitorização	O que? Umidade Como? Medida específica Quando? Cada lote Quem? Responsável	O quê? Teor de umidade do amendoim Como? Medidor apropriado Quando? Cada lote produzido Quem? Responsável pela operação	O quê? Teor de umidade do grão e UR; Temperatura do amazém Como? Semanal (grãos); Diário (umidade relativa e temperatura ambiente) Quando? Semanal (grãos); Diário (umidade relativa e temperatura ambiente) Quando? Semanal (grãos); Diário (umidade relativa e temperatura ambiente). Quem? Responsável pela operação		
Limite Crítico	Umidade máxima 10%.	Teor de umidade maxima do amendoim de 8-9%.	Umidade máxima do amendoim 8-9%. Ármazém: UR máxima 70%; Temperatura máxima 10°C. Ausência de infestação do amendoim por pragas.		
Medidas Preventivas	Inverter o amendoim para a secagem das vagens. Secar até um nível seguro de umidade (de preferên- cia, no máximo 10%). Não deixar o amendo- im ensacado pernoitar no campo.	Otimizar processo; Amendoim com umidade adequada; Sem infestação por pragas e ambiente com umidade relativa e temperatura adequada.	Garantir condições adequadas de umidade relativa e temperatura do armazém; Impedir reabsorção de umidade pelo amendoim. Adoção de programas de Manejo Integrado de Pragas-MIP		
Perigo	Micotoxinas (aflatoxinas)	Micotoxinas (aflatoxinas)	Micotoxinas (aflatoxinas) Material estranho (pragas)		
PC/ PCC	PCC ₁ (0)	PCC ₂ (0)	PCC ₃ (0)		
Etapa	Secagem e ensacamento no campo	Beneficiamento	Amazenamento		

PAS.

GLOSSÁRIO

Amostragem: procedimento de retirada, coleta ou extração de amostra de um lote e/ou sublote determinado, mediante critérios normativos preestabelecidos no plano de amostragem.

Armazenamento: fase de estocagem no estabelecimento processador.

Armazenamento primário: estocagem do amendoim na propriedade.

Boas Práticas Agrícolas: BPA conjunto de práticas e técnicas agronômicas, para serem aplicadas na produção, objetivando o controle preventivo da contaminação por perigos de natureza física, química ou biológica.

Classificação: ato de determinar as características intrínsecas e extrínsecas de um produto vegetal, seus subprodutos e resíduos de valor econômico, com base em padrões oficiais, e estando sujeita à organização normativa, à supervisão técnica, ao controle e à fiscalização do Ministério da Agricultura, Pecuária e Abastecimento.

Colheita: processo que compreende o arranquio e inversão (embandeiramento) das plantas, secagem prévia, colheita propriamente dita (colhedeiras) e ensacamento ou encaminhamento à granel para secagem.

Comercialização: etapa em que o produto in natura, advindo de produção interna ou importado, em condições de ser destinado diretamente à alimentação humana, é vendido aos canais distribuidores, exportado ou distribuído ao consumidor final.

Controle de qualidade: ato de verificar a conformidade de um produto ou processo conforme seus parâmetros ou características intrínsecas ou extrínsecas mediante aspectos relativos à tolerância de defeitos medidas ou teores de fatores essenciais de composição, característica sensoriais ou qualquer outro aspecto qualitativo que possa influenciar na qualidade comercial ou sanitária do mesmo.

Descascamento: processo de retirada mecânica da casca do amendoim.

Embalagem: recipiente, pacote ou envoltório destinado a garantir a conservação, facilitar o transporte e manuseio do produto.

Empacotamento: processo de acondicionamento do produto em embalagens adequadas, individuais ou coletivas.

Etapa: segmentos que compõe o processo produtivo, que estejam sob a responsabilidade de um mesmo agentes, e delimitada numa sequência contínua no fluxograma da cadeia, como por exemplo: produção, fabricação ou industrialização.

Fases: partes definidas dentro de uma mesma etapa da cadeia.

Industrialização: consiste na transformação total ou parcial da matéria-prima beneficiada e ou processada alterando-se o estado físico, fisiológico e a composição química.

Lote: quantidade de produtos com as mesmas especificações de identidade, qualidade e apresentação, processados pelo mesmo fabricante ou fracionador, em um espaço de tempo determinado, sob condições essencialmente iguais.

Pré-Plantio: é a fase que compreende as atividades que vão desde o preparo do solo até à semeadura.

Pré-limpeza: operação de tratamento do amendoim em casca destinada a eliminação de impurezas e matérias estranhas ao produto.

Processamento: é qualquer processo que altere as suas características naturais e o estado de apresentação, seja do ponto de vista físico-químico, sensoriais, de composição ou forma/aspecto original.

Recepção: processo de entrada do produto no estabelecimento.

Rótulo ou Marcação: toda e qualquer inscrição, legenda, imagem ou toda matéria descritiva ou gráfica que esteja escrita, impressa, estampada, gravada em relevo ou litografada ou colada sobre a embalagem do produto.

Secagem: procedimento natural ou artificial de redução da umidade de um produto.

Seleção: separação do produto de acordo com determinadas especificações previamente definidas.

Ventilação: também conhecida como moreiramento, consistindo na separação do amendoim das impurezas leves, resultantes da operação de descascamento e a separação dos grãos através de peneiras.

BIBLIOGRAFIA

DHINGRA, O.D.; COELHO NETO, R. 1998. Micotoxinas em grãos. Rev. Anu. Patol. Pl. vol. 6, 49-101.

CODEX ALIMENTARIUS COMMISSION - Alinorm 03/12A - Abril 2003.

GODOY, I.J.; S.A. MORAES; J.M. TURATTI; J.C.V.N.A. PEREIRA; A.L.M. MARTINS & E.M. PAULO. **Cultivar de amendoim IAC-Caiapó: menor custo de produção, melhor qualidade**. Instituto Agronômico (folder), 2001b, 6p.

SANTOS, R. C. **Utilização de recursos genéticos e melhoramento de** *Arachis hypogeae L.* **no Nordeste Brasileiro**. In.: QUEIROZ, M. A.; GOEDERT, C. O.; RAMOS, S.R.R. (ed.) Recursos Genéticos e Melhoramento de Plantas para o Nordeste Brasileiro (on line). Versão 1.0. Petrolina-PE: Embrapa Semi-árido/ Brasília-DF: Recursos Genéticos e Biotecnologia, nov. 1999.

Disponível via Word Wide Web http://www.cpatsa.embrapa.br ISBN 85-7405-001-6.

ANEXO I: PRINCIPAIS PRAGAS

INSETOS			
1. MASTIGADORES			
NOME VULGAR	NOME CIENTÍFICO		
1.1. Larva alfinete	Diabrotica speciosa (Germ., 1824) (Coleoptera, Chrysomelidae)		
1.2. Lagarta rosca	Agrotis ipsilon (Hufnagel, 1767) (Lepidoptera, Noctuidae)		
1.3. Lagarta elasmo	Elasmopalpus lignosellus (Zeller, 1848) (Lepidoptera, Pyralidae)		
1.4. Gafanhoto do Nordeste	Schistocerca pallens (Thrunberg, 1815) (Orthoptera, Acrididae)		
1.5. Lagarta-do-pescoço-vermelho	Stegasta bosquella (Chambers, 1875) (Lepidoptera, Gelechiidae)		
1.6. Lagarta-da-soja	Anticarsia gemmatalis Hueb., 1818 (Lepidoptera, Noctuidae)		
1.7. Lagarta-do-cartucho	Spodoptera frugiperda (J.E.Smith, 1797) (Lepidoptera, Noctuidae)		
1.8. Curuquerê-dos-capinzais	Mocis latipes (Guen., 1852) (Lepidoptera, Noctuidae)		
1.9. Lagarta-da-teia	Stylopalpia costalimai Alm., 1960 (Lepidoptera, Pyralidae)		
1.10. Traça das vagens	Corcyra cephalonica (Stainton, 1865) (Lepidoptera, Pyralidae)		
1.11. Gorgulho	Tribolium castaneum Herbst., 1797 (Coleoptera, Tenebrionidae)		
	2. SUGADORES		
NOME VULGAR	NOME CIENTÍFICO		
2.1. Percevejo-castanho	Scaptocoris castanea Perty, 1830 (Hemiptera, Cydnidade)		
2.2. Percevejo-preto	Cyrtonemus mirabilis (Perty, 1836) (Hemiptera, Cydnidade)		
2.3. Cigarrinha verde	Empoasca kraemeri (Ross & Moore, 1957) (Homoptera, Cicadelidae)		
2.4. Tripes dos folíolos	Enneothrips flavens Moulton, 1941 (Thysanoptera, Tripidae)		
2.5. Tripes-do-prateamento	Caliothrips brasiliensis (Morgan, 1929) (Thysanoptera, Tripidae)		
3. ÁCAROS			
NOME VULGAR	NOME CIENTÍFICO		
3.1. Ácaro rajado	Tetranychus urticae (Koch, 1836) (Acari, Tetranychidae)		
3.2. Ácaro vermelho	Tetranychus evansi Baker & Pritchard, 1960 Acari, Tetranichidae)		

Anexo II: Principais Doenças

	FUNGOS
NOME VULGAR	NOME CIENTÍFICO
1- Mancha-Castanha	Mycosphaerella arachidis Deighton [teleomorfo] - Cercospora arachidicola Hori [anamorfo]
2- Mancha-Preta	Mycosphaerella berkeleyi W.A. Jenkins [teleomorph] - Cercosporidium personatum (Berk. & M.A. Curtis) Deighton [anamorfo] -
3- Verrugose	Sphaceloma arachidis Bitanc. & Jenkins.
4- Ferrugem	Puccinia arachidis Speg.
5- Mancha-Barrenta	Didymosphaeria arachidicola (Khokhryakov) Alcorn, Punith. & McCarthy [teleomorfo] - Phoma arachidicola Marasas, G.D. Pauer, & Boerema [anamorfo]
6- Fusariose	Fusarium spp.
7- Tombamento	Pythium spp.
8- Tombamento	Rhizoctonia solani Kühn
9- Podridão-de-Sclerotinia	Sclerotinia sclerotiorum (Lib.) de Bary
10- Murcha-de-Sclerotium	Sclerotium rolfsii Sacc.
11- Mancha-Barrenta	Ascochyta arachidis Woronichin

BACTÉRIAS

12- Ralstonia solanacearum (Smith) Smith

NEMATÓIDES

- 13- Meloidogyne arenaria (Neal) Chitwood
- 14- Meloidogyne hapla Chitwood
- 15- Meloidogyne javanica (Treub.) Chitwood
- 16- Pratylenchus brachyurus (Godfrey) Filipjev & Schuurmanns-Stekhoven
- 17- Pratylenchus coffeae (Zimmermann) Schuurmanns-Stekhoven

4. VÍRUS

- 18- TSWV Tomato Spotted Virus
- 19- PBNV Peanut Bud Necrosis Virus
- 20- PeMoV Peanut Mottle Virus
- 21- PStV Peanut Stripe Virus

ANEXO III: AGROTÓXICOS PERMITIDOS

INGREDIENTE ATIVO	MARCA COMERCIAL	PATÓGENO ALVO*	CARÊNCIA(DIAS)
Acetato de Fentina	Brestan PM	1, 11	21
Acetato de Fentina	Hokko Suzu 200	1,2	21
Azoxistrobina	Amistar	1,2	7
Bitertanol	Baycor	1,2	14
Bromuconazol	Condor 200 SC	1	14
Captana	Captan 750 TS	6, 8	Não se aplica**
Captana	Orthocid 500	7, 8, 10	Não se aplica**
Captana	Orthocid 750	7, 8, 10	Não se aplica**
Carboxina + Tiram	Vitavax-Thiram PM Uniroyal	6, 8, 10	Não se aplica**
Clorotalonil	Bravonil 500	1,2,3,5	14
Clorotalonil	Bravonil 720	1,2	14
Clorotalonil	Bravonil 750 PM	1,2,3,5	14
Clorotalonil	Daconil BR	1,2,3, 11	14
Clorotalonil	Daconil 500	1,2,3,5	14
Clorotalonil	Dacostar 500	1,2,3, 11	14
Clorotalonil	Dacostar 750	1,3, 11	14
Clorotalonil	Isatalonil	1,2	14
			14
Clorotalonil	Isatalonil 500 SC	1,2	
Clorotalonil	Vanox 500 SC	1,2,3, 11	14
Clorotalonil	Vanox 750 PM	1,2,3, 11	14
Clorotalonil + Hexaconazol	Effect	1,2	15
Clorotalonil + Tiofanato-Metílico	Cerconil SC	3	14
Difenoconazol	Score	1,2,3	22
Enxofre	Sulficamp	3	1
Epoxiconazol + Piraclostrobina	Opera	1,2	14
Hidróxido de Cobre	Garant	1,2,3	7
Hidróxido de Cobre	Garant BR	1,2,3	7
Hidróxido de Fentina	Brestanid SC	1,2	21
Mancozebe	Dithane PM	1	14
Mancozebe	Manzate GrDa	1,2	14
Mancozebe	Manzate 800	1,2	14
Mancozebe	Persist SC	1,2,3, 11	14
Mancozebe	Tillex	1,3,5	14
Mancozebe + Oxicloreto de Cobre	Cuprozeb	1,2,3, 11	14
Manebe	Maneb 800	1,2,3	14
Oxicloreto de Cobre	Agrinose	1,2,3, 11	7
Oxicloreto de Cobre	Cobox	1,2,3	7
Oxicloreto de Cobre	Cupravit Azul BR	1,3	7
Oxicloreto de Cobre	Fungitol Verde	2,3	7
Oxicloreto de Cobre	Hokko Cupra 500	1,2,3	7
Oxicloreto de Cobre	Propose	1,2,3	7
Oxicloreto de Cobre	Ramexane 850 PM	1,2,3	7
Oxicloreto de Cobre	Reconil	1,2,3	7
Oxicloreto de Cobre	Recop	1,2,3	7
Óxido Cuproso	Cobre Sandoz BR	1,2,3	7
Óxido Cuproso	Cobre Sandoz MZ	1,2,3	7
Piraclostrobina	Comet	1,2	14
Propiconazol	Tilt	1,2,3	15
Tebuconazol	Constant	2	30
Tebuconazol	Elite	1,2	30
Tebuconazol	Folicur PM	1,2	30
Tebuconazol	Folicur 200 CE	1,2	30
Tebuconazol	Triade	1,2	30
Tiram	Mayran	6, 8	Não se aplica**
Tiram	Rhodiauram 700	8, 9, 10	Não se aplica**
TITALITI	Miloulaulaili 700	0, 7, 10	Nau se aplica

Anexo IV: Inseticidas/Acaricidas Permitidos

INGREDIENTE ATIVO	MARCA COMERCIAL	PATÓGENO ALVO*
Dimethoate	Dimetoato CE	1, 5, 6, 7, 8, 9, 10, 11, 13, 14
Dissulfoton	Solvirex GR 100	3, 5, 6, 7
Monocrotophos	Agrophos 400	4, 5, 8, 13, 14
Trichlorfon	Dipterex 500	4,8,9,10, 11, 12
Trichlorfon	Trichlorfon pikapau	4, 8, 10
Methamidophos	Stron	5, 9, 11, 14
Parathion methyl	Folisuper 600 BR	5, 8, 9, 10, 11, 12, 13
Malathion	Malathion 500 CE Sultox	5, 6, 8, 10, 11, 17
Metamidophos	Metafos	5, 8, 10
Terbufos	Counter 50 G	5
Malathion	Malatol 1000 CE	5, 7, 9, 11
Monocrotophos	Azodrin 400	5, 6, 13
Malathion	Malatol 40 P	5, 7, 8, 9, 10, 12
Malathion	Malatol 500 CE	5, 6, 8, 9, 16
Malathion	Malathion UBV Cynamid	
Dichlorvos	DDVP 1000 CE Defensa	5, 6, 7, 8, 9, 10, 17
Dichlorvos	DDVP 1000 CE Defensa	5, 8, 17
		5, 8, 17
Chlorpirifos	Clorpirifos 480 CE Defensa	5, 8
Metamidofhos	Metamidofos 600 Defensa	5, 6, 7, 8, 9, 11
Parathion methyl	Methylparathion 600 CE	5, 9, 10, 11
Metamidophos	Tamaron BP	5, 8
Monocrotophos	Nuvacron 400	5, 6, 8, 13
Malathion	Dhematol 500 CE	5, 6, 7, 8
Metamidophos	Metamidofos Fersol 600	5
Dimethoate	Dimexion	5, 6, 14, 17
Acephate	Orthene 750 BR	5, 6, 8
Metamidophos	Ortho hamidop 600	5, 6, 9, 11, 14
Diazinon	Kayaziron 400	5, 6
Fenitrothion	Sumithinon 500 CE	5, 6, 8, 9, 11, 12
Parathion methyl	Bravik 600 CE	5, 6, 8, 9, 10, 11, 12, 17
Metamidophos	Metasip	5, 6, 7, 9, 11
Acephate	Cefanol	5, 7, 8, 9
Dimethoate	Tiomet 400 CE	5, 6, 7, 8, 10, 11, 12, 14, 17
Parathion methyl	Parathion metilico Pikapau	5, 6, 8, 9, 10, 11, 12
Thiometon	Ekatin	5, 6, 7, 17
Malathion	Malatol UBV	5, 7, 8, 9, 10, 12
Trichlorfon	Trichlorfon 500 Defensa	9, 10, 12
Malathion	Dhematol 250 CE	9, 10, 11, 12
Fenitrothion	Sumithion 400 PM	9, 10, 11, 12, 15, 17
Carbaryl	Agrivin 850 PM	2, 5, 6, 7, 8, 9, 10, 11, 12
Carbaryl	Carbaryl fersol Po 75	2, 4, 5, 6, 7, 8, 9, 10, 11, 12
Carbaryl	Sevin 75	2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17
Carbaryl	Sevin 480 SC	4, 5, 6, 7, 8, 17
Carbofuran	Ralzer 50 GR	5
Carbofuran	Furadan 50 G	5
Carbofuran	Furadan 350 SC	5, 6
Carbofuran	Furadan 100 G	5
Carbofuran	Diafuran 50	5
Aldicarb	Temik 100	5, 6
Enxofre	Sulficamp	27
Betacyflutrin	Bulldock 125 SC	
		5, 8
Deltamethrin	Decis 25 CE	5, 8
-	Dipel	9, 11
-	Thuricide	9, 11
-	Bac control PM	9, 11

Anexo V: Praguicidas Permitidos para Grãos Armazenados

INGREDIENTE ATIVO	MARCA COMERCIAL	PATÓGENO ALVO*	CARÊNCIA(DIAS)
Dichlorvos	DDVP 500 CE Defensa	1, 2	
Malathion	Cythion UBV	1	
Fosfina	Phostek	1	
Fosfina	Gastoxim	1	
Fosfina	Degesch-fumicel	1	
Deltamethrin	K-obiol 25 CE	1	30 dias

COMITÉ GESTOR NACIONAL DO PAS

Afonso Celso Candeira Valois – Embrapa/Sede Antônio Carlos Dias – SENAI/DN Daniel Kluppel Carrara – SENAR Fernando Dysarz – SESC/DN Fernando Viga Magalhães – ANVISA/MS Joana Botini – SENAC/DN Maria Regina Diniz – SEBRAE/NA Maria Lúcia Telles S. Farias – SENAI/RJ Mônica O. Portilho – SESI/DN Paschoal Guimarães Robbs – CTN/PAS

COMITÊ TÉCNICO PAS CAMPO

Coordenação Geral:

Afonso Celso Candeira Valois – Embrapa/Sede Paschoal Guimarães Robbs – CTN/PAS

Equipe:

Antonio Tavares da Silva – UFRRJ/CTN/PAS Carlos Alberto Leão – CTN/PAS Maria Regina Diniz – SEBRAE/NA

EQUIPE TÉCNICA

Coordenadora:

Taís Moraes Falleiro Suassuna – Embrapa Algodão

Equipe:

Alderi Emídio de Araújo – Embrapa Algodão Nelson Dias Suassuna – Embrapa Algodão Raul Porfírio de Almeida – Embrapa Algodão Homero Fonseca – USP/Esalg

CONSULTORES

Afonso Celso Candeira Valois – Embrapa/Sede Antonio Tavares da Silva – UFRRJ/CTN/PAS Celso Luiz Moretti – Embrapa Hortaliças Charles Frederick Robbs – PAS Dilma Scalla Gelli – Consultora/PAS Maria Cristina Prata Neves – Embrapa Agrobiologia Mauro Faber Freitas Leitão – FEA/UNICAMP/PAS Paschoal Guimarães Robbs — CTN/PAS Tânia Barreto Simões Corrêa — Embrapa Agroindústria de Alimentos

COLABORADORES

Charles Patrick Kaufmann Robbs – PAS Fabrinni Monteiro dos Santos – PAS Francismere Viga Magalhães – PAS

EDITORAÇÃO E PROJETO GRÁFICO

CV Design

CONVÊNIO PAS CAMPO

CNI/SENAI/SEBRAE/Embrapa

