Γ	ms umom ha ha	hopeopee as It
	ფაკულტეტი	საინჟინრო-ტექნიკური
1	დეპარტამენტი	ენერგეტიკისა და ტელეკომუნიკაციების
	სპეციალობა	ელექტრული ინჟინერია (6B211-21; 6B212-21);
		ელექტროტექნიკის ამოცანების მათემატიკური უზრუნველყოფა
		დასკვნითი გამოცდა
1	სემესტრი	სწ მე-2 წელი, საშემოდგომო

	შეკითხვის, დავალების, საკითხის ან ტესტის შინაარსი	ტესტის შემთხვევაში ჩაწერეთ წერტილით გამოყოფილი პასუხები	1, 2, 3,
1.	რა ეწოდებათ მოცემული ჩანაცვლების სქემის1,2,3,და 4 წერტილებს ?	(ა) 1, 2, 3 და 4 წერტილებს კვანძები. 8) 1, 2, 3 და 4 წერტილებს შტოები. გ) 1, 2, 3 და 4 წერტილებს კონტურები. დ) 1, 2, 3 და 4 წერტილებს განაწილების კოეფიციენტები.	1
2.	3 რას უწოდებენ ღია სქემას, რომლის შტოებზეც არჩეული გვაქვს დადებითი მიმართულება?	(ა)) მოგეზილი ანუ ორიენტირებული სქემა. გ) გამარტივებული სქემა. გ) გართულებული სქემა.	2
3.	რა განზომილება აქვს დენს I ?	დ) არცერთი პასუხი არ არის სწორი. ③]ამპერი. გ) ომი. გ) ვოლტი. დ) სიმენსი.	3
4.	რა განზომილება აქვს დენს R ?	ა) ამპერი. <mark>8) ომი.</mark>	3

	The same of the sa	$\sum E = \sum Ir$	
9.	როგორ B მატრიცას ეწოდება A ატრიცის შებრუნებული მატრიცა?	ა)რომლის A მატრიცასთან ნამრავლი გვაძლევს ერთეულოვან მატრიცას. ბ) რომლის A მატრიცასთან ჯამი გვაძლევს ერთეულოვან მატრიცას. გ)რომლის A მატრიცასთან სხვაობა გვაძლევს ერთეულოვან მატრიცას. დ)რომლის A მატრიცასთან განაყოფი გვაძლევს ერთეულოვან მატრიცას.	6
10	. გამოთვალეთ დეტერმინანტის მნიშვნელობა: [2 1 1] [1 2 3] [1 2 1]	(a) 60.6 (b) 60.6 (c) 60.6 (c) 60.6 (c) 60.6 (c) 60.6 (d) 60.6 (e) 60.6 (f) 60.6	7
11.	გამოსახეთ კოორდინატთა ღერძეზის და \vec{i} , \vec{j} და \vec{k} მგეზავეზით \vec{a} , \vec{b} და \vec{c} ვექტორეზის ჯამი, თუ: $\vec{a} = \vec{a}(1;2;3); \ \vec{b} = \vec{b}(0;-1;-2);$ $\vec{c} = \vec{c}(2;2;2).$	(a) $3\vec{i} + 3\vec{j} + 3\vec{k}$. (a _x + b _x + c _x) \vec{i} (a _y + b _y + c _y) \vec{i} ; (a _z + b _z + c _z) \vec{k} = $3\vec{i} + 3\vec{j} + 3\vec{k}$ (a) $2\vec{i} + 2\vec{j} + 4\vec{k}$. (a) $2\vec{i} + 7\vec{j} + 3\vec{k}$. (a) $2\vec{i} + 3\vec{j} + 8\vec{k}$.	8
12.	გამოსახეთ კოორდინატთა ღერძების და \vec{i} , \vec{j} და \vec{k} მგეზავებით \vec{a} , \vec{b} და \vec{c} ვექტორების ჯამი, თუ: $\vec{a} = \vec{a}(3;1;1); \ \vec{b} = \vec{b}(1;1;1);$ $\vec{c} = \vec{c}(-2;0;2).$	s) $3\vec{i} + 3\vec{j} + 3\vec{k}$. 8) $2\vec{i} + 2\vec{j} + 4\vec{k}$. $(a_x + b_x + c_x)\vec{i}(a_y + b_y + c_y)\vec{i}$; $(a_z + b_z + c_z)\vec{k} = 2\vec{i} + 2\vec{j} + 4\vec{k}$ 8) $2\vec{i} + 7\vec{j} + 3\vec{k}$. 9) $\vec{i} + 3\vec{j} + 8\vec{k}$.	8
13.	იპოვეთ $\vec{a}(1;2;3)$ და $\vec{b}(3;1;2)$ ვექტორების სკალარული ნამრავლი.	$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$ $\vec{a} \cdot \vec{b} = 1 \cdot 3 + 2 \cdot 1 + 3 \cdot 2 = 3 + 2 + 6 = 11$ s) 11. b) 10. b) 27.	9

	D	o) 15.	9
14.	ვექტორების სკალარული ნამრავლი.	$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$ $\vec{a} \cdot \vec{b} = 1 \cdot 1 + 1 \cdot 1 + 4 \cdot 2 = 1 + 1 + 8 = 10$ s) 11. 8) 10.	
		8) 27. (a) 15.	10
15.	როგორ ღია სქემას უწოდებენ მოგეზილი ანუ ორიენტირებული სქემა?	 ა) რომლის შტოებზეც არჩეული გვაქვს დადებითი მიმართულება. გ) რომლის შტოებზეც არჩეული გვაქვს უარყოფითი მიმართულება. გ) რომლის შტოებზეც არჩეული არ გვაქვს მიმართულება. დ) რომელსაც შტოები არ გააჩნია. 	
16.	რას განსაზღვრავს გრაფი?	(ა) კალკეულ ობიექტთა ან სიდიდეთა შორის ფუნქციონალური დამოკიდებულების არსებობის ფაქტს. ბ) დენებისა და ძაბვების არსებობას. გ) წინაღობებისა და სიმძლავრეების არსებობას. დ) არცერთი პასუბი არ არის სწორი.	10
17	რას ეწოდება კომპლექსური რიცხვი?	ა) გარკვეული რიგით აღებულ ნამდვილ რიცხვთა (a,b) წყვილს. გ) ნატურალურ რიცხვთა (a,b) წყვილს. გ) ინტეგრალურ რიცხვთა (a,b) წყვილს. დ) არცერთი პასუხი არ არის სწორი.	11
18	კომპლექსურ რიცხვთა სიმრავლეში რას უდრის i?		12
19	კომპლექსურ რიცხვთა სიმრავლეში როგორ ჩაიწერება კომპლექსური რიცხვები?		13
20	როგარა რიცხვია შევიალმული კონალესური რიცხვის ნამრ ავლი ?	(ა) ნამდვილი. δ) კომპლექსური. გ) ნატურალური. დ) ვუნქვიური.	13

21.	ნებისმიერ ვექქტორს კომპლექსურ სიბრტყეზე შეესაბამება სრულიად გარკვეული კომპლექსური რიცხვი. რა ფორმებით შეიძლება ამ რიცხვების ჩაწერა? ა) მაჩვენებლიანი ფორმით ბ) ტრიგონომეტრიული ფორმით გ) ალგებრული ფორმით	ა) მხოლოდ მაჩვენებლიანი ფორმით. გ) მხოლოდ ტრიგონომეტრიული ფორმით. გ) მხოლოდ ალგებრული ფორმით. (W) ყველა პასუხი სწორია.	14
22.		$\begin{aligned} \delta)I &= I_{m} \sin(\omega t + \varphi). \\ \delta)E &= E_{m} \sin(\omega t + \varphi). \\ \delta)U &= U_{m} \sin(\omega t + \varphi). \\ c)R &= R_{m} \sin(\omega t + \varphi). \end{aligned}$	15
23.	რას უდრის 5 + 2i და 3 + 4i კომპლექსური რიცხვების ჯამი?	(a+bi) + (c+di) = (a+c) + (b+d)i $(5+2i) + (3+4i) = (5+3) + (2+4)i = 8+6i$ $(3)8+6i.$ $(3) + (2+4)i = 8+6i$ $(3) + (3+4)i = 8+6i$ $(4) + (3+4)i = 8+6i$ $(5) + (3+4)i = 8+6i$ $(5) + (3+4)i = 8+6i$ $(6) + (3+4)i = 8+6i$ $(7) + (3+4)i = 8+6i$ $(8) + (3+4)i = 8+6i$ $(9) + (3+3)i = 8+6i$	16
24.	რას უდრის 1 + 2i და 3 + 2i კომპლექსური რიცხვების ნამრავლი?	$(a+bi) \cdot (c+di) = ac+bic+adi+bdi^{2} =$ $= ac+bic+adi-bd = (ac-bd)+(cb+ad)i$ $(1+2i) \cdot (3+2i) = 1 \cdot 3 + 2 \cdot 3i + 1 \cdot 2i + 2 \cdot 2i^{2} =$ $= 3+6i+2i+4i^{2} = 3+8i-4=8i-1$ (5) $8i-1$. (8) $3i-2$. (9) $i+10$.	17
25.	მოცემული სქემისათვის იპოვეთ შტოებში დენების განაწილების კოეფიციენტთა (C) მატრიცა.	(c) = $\begin{pmatrix} -1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$	18

31.	გადაამრავლეთ კომპლექსური რიცხვები: $\alpha_1=4(\cos 77^0+i\sin 77^0)$ და $\alpha_2=2(\cos 13^0+i\sin 13^0)$	$\begin{array}{l} \alpha_1 \cdot \alpha_2 = 8(\cos 77^0 + i \sin 77^0) \cdot (\cos 13^0 + i \sin 13^0) = \\ = 8(\cos 77^0 \cdot \cos 13^0 + i \sin 77^0 \cos 13^0 + \\ + \cos 77^0 \cdot i \sin 13^0 + i^2 \sin 77^0 \sin 13^0 = \\ = 8 \cdot \frac{1}{2} (\cos(77^0 + 13^0) + \cos(77^0 - 13^0) + i \sin(77^0 + 13^0) + \\ + i \sin(77^0 - 13^0) + i \sin(77^0 + 13^0) - i \sin(77^0 - 13^0) + \\ + \cos(77^0 + 13^0) - \cos(77^0 - 13^0)) = \\ = 4(\cos 90^0 + \cos 64^0 + i \sin 90^0 + i \sin 64^0 + i \sin 90^0 - i \sin 64^0 + \cos 90^0 - \cos 64^0 + \cos 90^0 + 2 \sin 90^0) = 8(\cos 90^0 + i \sin 90^0) = 8(0 + i \cdot 1) = 8i \end{array}$	23
	იპოვეთ მოცემული ელექტრული სისტემიდან Δ , Δ_1 , Δ_2 , Δ_3 და \mathbf{I}_I ; \mathbf{I}_{II} ; I_{III} ; მნიშვნელობები .		24

1 1 <th>14 15 16 17 18 19 20 21 22 23 24 1 1 1 1 1 1 1 1 1</th>	14 15 16 17 18 19 20 21 22 23 24 1 1 1 1 1 1 1 1 1
ფაკულტეტის დეკანი	14 15 16 17 18 19 20 21 22 23 24 1 1 1 1 1 1 1 1 1 1