mat - 116 logaruthmic function

The logarithmic function to the base a, where a>0 and a \$1 is denoted by J=logax and 1s defined by y = logax if and only if x=ay

Example: If y=log x then x = 39 ie 4 = log381 then 81 = 34 Similarly if a4 = 24 than 4 = log = 24

Example

Find the exact value of

i.
$$\log_2 16$$

50 $y = \log_2 16$
 $\Rightarrow 2^y = 16$

Therefore
$$log_216=4$$
 Therefore $log_3\frac{1}{27}=-3$

Domain & Range:

Domain of logaruthmic fun" = Range of exponential = (0,00)

Range of logarothmic fun" = Domain of exponential = (-an, an)

Ex: Find the domain of f(x) = log_2(x+3)

Soln: The domain of f comists of all x for which x+3>0i'e x>-3.: Domain = (-3, an)

Ex: Find the domain of $g(x) = log_5(\frac{1+x}{1-x})$

381": The domain of g consists of all α for which $\frac{1+\alpha}{1-\alpha} > 0$

Solving this inequality, the domain of g(m) consists of all or between -1 and I. I'e -1<x<1.

In interval notation (-1.1).

Do you know, how?

Thus 1+x >0 only when x lies between -1 and 1.

Prespecties of Logar :

スフト

(H)(H)

- 1. The domain is the net of positive read numbers or (0,00).

 The trange is set of all read numbers or 2 (-00,00)
- 2. The n-intercept is 1. There is no y-intercept.
- 3. The y-axis (x=0) is a vertical asymptote.
- 4. A lograrithmic function is decreasing if oxax1 and increasing if a>1.
- 5. The graph of f contains points (1,0), (a,1) and (1,-1)

y = 2x and y = log2x are inverse functions to each other.

y= (1) 2 and y= log , x are inverse functions to each other.

Nortural logarcithm:

If the base of a logarithmic function is the number e

then we have the natural logarithm

y = lase if and only if x = ey

Note: If the base a of the logarithmic function is not indicated, it is

understood to be 10. i.e y = logx iff x=10%,

$$Ex:$$
 $f(x) = 3log(x-1)$

Soln: Domain = 3x1x>1

Ventical asymptote x = 1

Range = $(-\infty, \infty)$

To find f-1(x) begin with y = 3log(x-1), Then interchange x and y.

$$\Rightarrow \frac{3}{3} = \log(9-1)$$

$$9 - 1 = 10^{2/3}$$

$$9 = 10^{2/3} + 1$$

Exi Show that
$$\log_a 1 = 0$$

$$\frac{\text{Solm}}{\text{Solm}} \quad y = \log_a 1$$

$$\Rightarrow \alpha^y = 1$$

$$\Rightarrow \alpha^y = \alpha^0$$

$$\Rightarrow y = 0$$

$$\therefore \log_a 1 = 0$$

Exi show that
$$\log_a 1 = 0$$

Solm: $y = \log_a 1$
 $\Rightarrow \alpha^y = 1$
 $\Rightarrow \alpha^y = \alpha^0$
 $\Rightarrow \alpha^y = \alpha^0$

Presperties of logarcithms:

4.
$$log_{n}(\frac{m}{N}) = log_{n}m - log_{n}N$$

5.
$$log_{\alpha}MR = \pi log_{\alpha}M$$
 6. $\alpha^{\chi} = e^{\chi ln}$

Ex:
$$log_{\mathbf{a}}(x\sqrt{x^{\nu}+1}) = log_{\mathbf{a}}x + log_{\mathbf{a}}\sqrt{x^{\nu}+1}$$

$$= log_{\mathbf{a}}x + log_{\mathbf{a}}(x^{\nu}+1)^{\nu}$$

$$= log_{\mathbf{a}}x + \frac{1}{2}log_{\mathbf{a}}(x^{\nu}+1); x>0$$

$$\frac{Ex!}{(x-1)^3} = \ln x^2 - \ln (x-1)^3$$
= $2 \ln x - 3 \ln (x-1)$; $x > 1$

$$\frac{\text{Ex:}}{\eta_{\alpha}^{3}(x+1)^{4}} = \log_{\alpha}\sqrt{x^{4}+1} - \log_{\alpha}\left[x^{3}(x+1)^{4}\right] \\
= \log_{\alpha}\left(x^{4}+1\right)^{\frac{1}{2}} - \log_{\alpha}x^{3} - \log_{\alpha}(x+1)^{4} \\
= \frac{1}{2}\log_{\alpha}\left(x^{4}+1\right) - 3\log_{\alpha}x - 4\log_{\alpha}(x+1) + 3\log_{\alpha}x - 4\log_{\alpha}x - 4\log_{\alpha}x$$

Ex:
$$\log_{a}7 + 4\log_{a}3 = \log_{a}7 + \log_{a}3^{4}$$
 tr $\log_{a}M = \log_{a}M^{2}$

$$= \log_{a}7 + \log_{a}81$$

$$= \log_{a}(7.81) \qquad \log_{a}M + \log_{a}N = \log_{a}MN$$

$$= \log_{a}567$$
Ex: $2 \leq \ln 8 - \ln(5^{8}-1) = \ln 8^{2/3} - \ln(25-1)$

$$8^{2/3} = (3/8)^{2} \qquad = \ln 4 - \ln 24$$

$$= 2^{4} \qquad = \ln(\frac{4}{2}) = \ln(6)$$

$$= 4 \qquad = \ln(-\ln 6) = -\ln 6$$
If $M = N$, then $\log_{a}M = \log_{a}N$
If $\log_{a}M = \log_{a}N$ then $M = N$
Ex: Approximate $\log_{a}7$.

Som: $y = \log_{a}7$

$$\Rightarrow y = 2 + \log_{a}7$$

$$\Rightarrow y = 2 + \log_{a}7$$

$$\Rightarrow y = 2 + \log_{a}7$$

$$\Rightarrow y = 2 + \log_{a}7$$
If $a \neq 1$, $b \neq 1$ then $\log_{a}M = \frac{\log_{a}M}{\log_{a}a}$
Either $b = 10$
on $b = e$.

Leg $89 = \frac{\log_{a}89}{\log_{a}5} \approx 2.7889$

Ex: 30lve
$$2 \log_5 x = \log_5 9$$
 901^{m} : $2 \log_5 x = \log_5 9$
 $\Rightarrow \log_5 x = \log_5 9$
 $\Rightarrow x^* = 9$
 $\Rightarrow x = +3 \text{ or } x = -3$

Since the domain is x70, so we discard x=-3.

Ex: log_5 (x+6) +log_5 (x+2)=1

Solon. The domain of the variable traquities that x+676 and x+2>0, so x>-6 and x>-2. This means any solution must satisfy x>-2.

: log 5 (x+6) + log 5 (x+2) = 1

$$\Rightarrow \chi^{2} + 6\chi + 2\chi + 12 = 5$$

 $\therefore x = -1 \text{ on } x = -7$

only x=-1 satisfies the restriction x>-2.

. The solution set is 3-1].

Ex: Solve
$$5^{\chi-2} = 3^{3\chi+2}$$

 501^{m} : $5^{\chi-2} = 3^{3\chi+2}$
 $3^{\chi-2} = 3^{\chi+2}$
 $3^{\chi-2} = 3^{\chi+2}$
 $3^{\chi-2} = 3^{\chi+2}$
 $3^{\chi} = 3^{\chi+2}$

$$\Rightarrow \chi = \frac{2(\ln 5 + \ln 3)}{\ln 5 - 3 \ln 3}$$

$$\therefore \text{ The solution set is } \frac{2(\ln 5 + \ln 3)}{\ln 5 - \ln 3}$$

Ex: Solve
$$4^{x} - 2^{x} - 12 = 0$$

$$\frac{Sol^{n}}{2^{n}} = 4^{x} - 2^{x} - 12 = 0$$

$$-3(2^{2})^{x}-2^{x}-12=0$$

$$\Rightarrow 2^{2x} - 2^x - 12 = 0$$

$$2^{2} = 4$$

: $u^{2} - 4 - 12 = 0$

$$\Rightarrow u = -3$$

$$\Rightarrow u = -3$$

$$\Rightarrow 2^{x} = -3 \quad \text{But } 2^{x} > 0$$

Angles and measure

If two trays are dream with a common vertex, they form an angle.

Rotation counterclockwise - angle positive , angle negative clockwise

counter clockutse trotation Positive angle.

An angle O is said to be in standard position if its ventex is at origin of a rectangular coordinate system and its initial side colonides with positive x-ands.

Degrees:

The angle formed by testering the initial side exactly once in the counterclockwise direction until it coincides with itself (1 revolution) is said to measure 360 dogrees.

convert bet decimals and degrees:

one minute,
$$1' = \frac{1}{60}$$
 degree

Ex: convert 50°6'21" to a decimal indeprees.

$$\frac{50^{11}}{50^{\circ}6^{\prime}21^{\parallel}} = 50^{\circ}+6^{\prime}+21^{\parallel}$$

$$= 50^{\circ}+6\cdot\frac{1}{60}^{\circ}+21\cdot\frac{1}{3600}^{\circ}$$

$$= 50^{\circ}+0\cdot1^{\circ}+0\cdot0058^{\circ}$$

$$= 50\cdot1058^{\circ}$$

Ex: Convert 21.256° to the DOM's" form.

Som:
$$21.256^{\circ} = 21^{\circ} + 0.256^{\circ}$$

 $= 21^{\circ} + (0.256)(60')$
 $= 21^{\circ} + 15.36'$
 $= 21^{\circ} + 15' + 0.36'$
 $= 21^{\circ} + 15' + (0.36)(60'')$
 $= 21^{\circ} + 15'' + 21.6''$
 $\approx 21^{\circ} + 15' + 21.6''$

Radians:

If the tradius of the circle is TZ and the length of the arre subtended by the central angle is also TZ, then the measure of angle is I tredian.

The state of the state of

Are length:

For a circle of tradius Tr, a central angle of O tradians subtends an arra whose length 5 is 5=T20

Ex: Find the length of the arrc of a circle of readius 2 meters subtended by a central angle of 6.25 readian.

5017: Here
$$\pi = 2$$
, $\theta = 0.25$
 $S = \pi \theta = 2(0.25) = 0.5$ meter.

Ex: convert degree to tradians $60^{\circ} = 60. \text{ Tradian} = \frac{3}{5} \text{ tradians}$ $150^{\circ} = 150. \text{ Tradian} = \frac{5}{6} \text{ tradians}$ $-45^{\circ}, 90^{\circ}$

Ex: convert each angle in tradians to degrees. $\frac{T}{6}$ tradians = $\frac{T}{6}$. 1 tradian = $\frac{T}{6}$. $\frac{180}{\pi}$ = 30° $\frac{3T}{2}$ tradians = $\frac{3T}{2}$. $\frac{180}{\pi}$ degrees = 276° $\frac{7T}{3}$, 3 tradians.

Arrea of a sector

Ex: Find the arrea of the sector of a circle of tradius 2 feet formed by an angle of 30°.

Here
$$\pi = 2$$
 $\theta = 30^{\circ} = 30 \cdot \frac{\pi}{180} = \frac{\pi}{6}$ tradians
$$A = \frac{1}{2} \cdot 2^{2} \cdot \frac{\pi}{6} = 2 \cdot \frac{\pi}{6} = \frac{\pi}{3} \frac{\text{tradians}}{\text{tradians}}$$

$$2 \cdot 1.05 \text{ square feet.}$$