A Study on Utility, Privacy, and Fairness in GAN-generated Synthetic Data

Bharathvaj K M, Katyani S, Rudraksh K

CMPUT 622 - Under the guidance of Dr. Nidhi Hegde

Outline

- Terminology Review
- Motivation
- Related Work and Research Gap
- Data
- GAN architectures
- Methodology
- Preliminary Results
- Next Steps

Terminology Review

Synthetic data

Data created artificially, having the same distribution as real data

GAN

A framework for generating synthetic data

Terminology Review

Privacy

- Protecting personally identifiable information
- Don't want synthetic data to exactly match real data

Fairness

- Unfairness biased outcome
- Don't want synthetic data to reinforce any stereotypes
- Protected attribute: something that you don't want to discriminate on the basis of

Utility

- Performance of the ML model on the task, e.g. classification accuracy
- o Don't want synthetic data distribution to be too different from real data

Motivating Example

- Sensitive datasets are used to train many machine learning models
 - o E.g. Electronic health records
- Models can leak information about their training data privacy risk
 - Through membership inference attacks (Shokri 2016) [1], for example
- Using a synthetic training dataset helps mitigate privacy risk
- While ideally also maintaining utility
 - I.e. on a task such as binary classification
- This has been studied.
- But what impact does any of this have on fairness?

Related Work and Research Gap

- There is plenty of previous work on
 - Privacy vs Utility (A)
 - Lin 2021 [2]
 - Privacy vs Fairness (B)
 - Gupta 2021 [3]
 - Fairness vs Utility (C)
 - Xu 2018 [4]
- We seek to study all three of these factors and their trade-offs.

Dataset considered

- For our study, we consider the Census Income dataset [5]
- Associated task is binary classification
 - o Input: Green
 - Target: Red (>= \$50k or < \$50k)
- Protected attributes:
 - o E.g. sex, race, age

Tabular GAN

- Key Idea: Learn marginal distribution of each column by minimizing KL Divergence
- Gen: LSTM
 - Continuous: v, u -2 steps
 - o Discrete: **d** 1 step
 - Generates each in order
- **Disc**: Multi-layer perceptron
 - Concatenates features together for input.
 - Uses mini-batch discrimination vector.

Data Age Education

Age	Education	Income/h	label
numerical	categorial	numerical	categorial
0 ~ 120	highschool college 	0 ~ 1000	<50000 >50000
$\mathbf{v}_{_{1}}$ $\mathbf{u}_{_{1}}$	d_1	$egin{array}{c} \mathbf{v}_2 \\ \mathbf{u}_2 \end{array}$	\mathbf{d}_2

Discriminator

Generator

CTGAN

Three key elements

- 1. Conditional vector
- 2. Generator loss
- 3. Training-by-sampling

PATE-GAN

Training procedure for the **teacher-discriminator**

Credits: James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data with differential privacy guarantees. In International Conference on Learning Representations, 2018. https://openreview.net/pdf?id=S1zk9iRqF7

PATE-GAN

Training procedure for the **student-discriminator** and the **generator**

Credits: James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data with differential privacy guarantees. In International Conference on Learning Representations, 2018. https://openreview.net/pdf?id=S1zk9iRqF7

Key Elements - GAN Models

Normal GANs

- In TabularGAN, LSTM architecture is used in the generator, whereas CTGAN uses conditional generator
- In TabularGAN, Column order of original dataset matters
- TabularGAN minimises the KL divergence between real and synthetic columns

Differentially private GAN

- Ensures differential privacy of the generator in GANs
- Tightly bounds the influence of any individual sample on the model
- Based on Private
 Aggregation of Teacher
 Ensembles (PATE)
 framework

Methodology for Study

Flow for studying utility, privacy and fairness of model trained on synthetic data.

Studying privacy budget effect on fairness and utility (Our Contribution)

Flow for studying the effect of privacy budget on the model's fairness and utility.

Preliminary Results

- Data Insights
- Preliminary Results
 - Utility
 - Privacy
 - Fairness

Data Insights

Correlations for original data:

Data Insights

Race and Income

Data Insights

Gender and Income

Preliminary Results: Utility

Preservation of original correlations

TabularGAN

CTGAN

-0.50- 0.25 -0.00-0.25-0.50-0.75

Preliminary Results: Privacy

Preliminary Results: Fairness

- **Privileged Group** Male
- Unprivileged Group Female

Next Steps

- Work towards in depth analysis of results obtained.
- Vary the privacy budget (ϵ) in PATE-GAN and generate synthetic datasets for different values of ϵ .
- Run experiments to analyze the effect of ε on the fairness as well as the utility metrics.

Thank you, questions?

If you want to contact us later for any other questions or suggestions, feel free to email us at:

Bharathvaj Kumba Mothilal - <u>kumbamot@ualberta.ca</u>

Katyani Singh - <u>katyani@ualberta.ca</u>

Rudraksh Kapil - rkapil@ualberta.ca

References

- 1. Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP) (pp. 3-18). IEEE.
- 2. Lin, Z., Sekar, V., & Fanti, G. (2021, March). On the Privacy Properties of GAN-generated Samples. In *International Conference on Artificial Intelligence and Statistics* (pp. 1522-1530). PMLR.
- 3. Gupta, A., Bhatt, D., & Pandey, A. (2021). Transitioning from Real to Synthetic data: Quantifying the bias in model. *arXiv preprint arXiv:2105.04144*.
- 4. Xu, D., Yuan, S., Zhang, L., & Wu, X. (2018, December). Fairgan: Fairness-aware generative adversarial networks. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 570-575). IEEE.
- 5. Dua, D., & Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.