Algorithms Lab

Dynamic Programming

Your goal is to remove all elements from A and B by repeatedly applying such operation, with the minimal total cost!

2 5 10 2 6

Cost:

7 1 9 4 2

Your goal is to remove all elements from A and B by repeatedly applying such operation, with the minimal total cost!

Cost:
$$(2+6)*(9+4+2)$$

= 120

Your goal is to remove all elements from A and B by repeatedly applying such operation, with the minimal total cost!

2 5 10 2 6

7 + 9 + 2

Cost:

Your goal is to remove all elements from A and B by repeatedly applying such operation, with the minimal total cost!

Cost: (5 + 10) * (1) = 15

Your goal is to remove all elements from A and B by repeatedly applying such operation, with the minimal total cost!

Cost:

Your goal is to remove all elements from A and B by repeatedly applying such operation, with the minimal total cost!

Cost: (2) * (7) = 14

```
rec_try(i, j) // consider only first i elements of // A and j elements of B  \text{if (i == 1) return } A[1] \cdot (B[1] + \ldots + B[j])   \text{if (j == 1) return } (A[1] + \ldots + A[i]) \cdot B[1]
```

Recursively try all possible removals

```
rec try(i, j) // consider only first i elements of
                   // A and j elements of B
   if (i == 1) return A[1] \cdot (B[1] + ... + B[j])
   if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
   best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
   for a = 1 to i - 1
      for b = 1 to j - 1
         cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
         if (cost + rec try(i - a, j - b) < best)
             best = cost + rec try(i - a, j - b)
```

return best

Recursively try all possible removals

Problem: for some (i,j), we call try_rec(i,j) many times

Observation: for a fixed (i,j), try_rec(i,j) always returns the same value!

Solution: for each (i,j), store the value which **try_rec(i,j)** returns! Only call **try_rec(i,j)** if this value is not stored yet!

```
rec_try(i, j) // consider only first i elements of
                   // A and j elements of B
   if (i == 1) return A[1] \cdot (B[1] + ... + B[j])
    if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
   best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
    for a = 1 to i - 1
      for b = 1 to j - 1
          \operatorname{cost} = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
          if (not stored(i - a, j - b)) rec try(i-a, j-b)
          if (cost + stored(i - a, j - b) < best)</pre>
              best = cost + stored(i - a, j - b)
   store(i,j) <- best</pre>
```

```
rec_try(i, j) // consider only first i elements of
                             // A and j elements of B
             if (i == 1) return A[1] \cdot (B[1] + \ldots + B[j])
O(n) if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
             best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
             for a = 1 to i - 1
                for b = 1 to j - 1
                   \operatorname{cost} = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
                    if (not stored(i - a, j - b)) rec try(i-a, j-b)
                    if (cost + stored(i - a, j - b) < best)</pre>
                       best = cost + stored(i - a, j - b)
             store(i,j) <- best</pre>
```

```
rec_try(i, j) // consider only first i elements of
                             // A and j elements of B
             if (i == 1) return A[1] \cdot (B[1] + \ldots + B[j])
O(n) if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
             best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
             for a = 1 to i - 1
                for b = 1 to j - 1
                   \operatorname{cost} = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
                    if (not stored(i - a, j - b)) rec try(i-a, j-b)
                    if (cost + stored(i - a, j - b) < best)</pre>
                        best = cost + stored(i - a, j - b)
             store(i,j) <- best</pre>
```

```
rec_try(i, j) // consider only first i elements of
                            // A and j elements of B
             if (i == 1) return A[1] \cdot (B[1] + \ldots + B[j])
O(n) if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
             best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
             for a = 1 to i - 1
O(n^2)
            for b = 1 to j - 1
                   cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
                    if (not stored(i - a, j - b)) rec try(i-a, j-b)
                    if (cost + stored(i - a, j - b) < best)</pre>
                       best = cost + stored(i - a, j - b)
             store(i,j) <- best</pre>
```

```
rec_try(i, j) // consider only first i elements of
                            // A and j elements of B
             if (i == 1) return A[1] \cdot (B[1] + ... + B[j])
O(n) if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
             best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
             for a = 1 to i - 1
                for b = 1 to j - 1
                   cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=j-b+1}^{j} B[t]\right)
O(n^3)
                    if (not stored(i - a, j - b)) rec try(i-a, j-b)
                    if (cost + stored(i - a, j - b) < best)</pre>
                       best = cost + stored(i - a, j - b)
             store(i,j) <- best</pre>
```

```
rec try(i, j) // consider only first i elements of
                            // A and j elements of B
             if (i == 1) return A[1] \cdot (B[1] + \ldots + B[j])
             if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
             best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
O(n^3) for a = 1 to i - 1
             for b = 1 to j - 1
                   cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=j-b+1}^{j} B[t]\right)
                   if (not stored(i - a, j - b)) rec try(i-a, j-b)
                   if (cost + stored(i - a, j - b) < best)</pre>
                       best = cost + stored(i - a, j - b)
             store(i,j) <- best</pre>
```

Second approach - running time

try_rec(i,j) will be executed at most once for each pair (i,j), $1 \le i, j \le n$

Second approach - running time

try_rec(i,j) will be executed at most once for each pair (i,j), $1 \le i, j \le n$

 $O(n^3)$ per try_rec(i,j)

Second approach - running time

try_rec(i,j) will be executed at most once for each pair (i,j), $1 \le i, j \le n$

 $O(n^3)$ per try_rec(i,j)

Total running time: $O(n^5)$

This was an example of Dynamic Programming!

This was an example of Dynamic Programming!

Let's improve it!

Cheap improvement.

```
rec_try(i, j) // consider only first i elements of
                             // A and j elements of B
              if (i == 1) return A[1] \cdot (B[1] + ... + B[j])
              if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
             best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
              for a = 1 to i - 1
                for b = 1 to j - 1
                   cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
O(n^3)
                    if (not stored(i - a, j - b)) rec try(i-a, j-b)
                    if (cost + stored(i - a, j - b) < best)</pre>
                        best = cost + stored(i - a, j - b)
              store(i,j) <- best</pre>
```

Cheap improvement.

```
rec try(i, j) // consider only first i elements of
                      // A and j elements of B
                                A[1] \cdot (B[1] + \ldots + B[j])
Can you improve me
                         (A[1] + \ldots + A[i]) \cdot B[1]
      to O(n^2)?
                         A[i]) \cdot (B[1] + \ldots + B[j]) // take all
       for a = 1 to i - 1
         for b = 1 to j - 1
             cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=i-b+1}^{j} B[t]\right)
             if (not stored(i - a, j - b)) rec try(i-a, j-b)
             if (cost + stored(i - a, j - b) < best)</pre>
                 best = cost + stored(i - a, j - b)
       store(i,j) <- best</pre>
```

Cheap improve

Yes!

```
Calculating cost can be done
   rec_try(i, j) // cons
                     // A an
                                          in constant time.
                                 (Hint: Precomputing partial sums)
                          urn
Can you improve me
                                (A[1] + \ldots + A[i]) \cdot B[1]
      to O(n^2)?
                          lacksquare A[i]) \cdot (B[1] + \ldots + B[j]) // take all
       for a = 1 to i - 1
         for b = 1 to j - 1
             cost = \left(\sum_{t=i-a+1}^{i} A[t]\right) \cdot \left(\sum_{t=j-b+1}^{j} B[t]\right)
             if (not stored(i - a, j - b)) rec try(i-a, j-b)
             if (cost + stored(i - a, j - b) < best)</pre>
                 best = cost + stored(i - a, j - b)
```

store(i,j) <- best</pre>

From exponential to $O(n^5)$ and then to $O(n^4)$. Not bad!

From exponential to $O(n^5)$ and then to $O(n^4)$. Not bad!

But we can do even better!

Cost I:
$$(A[1] + A[2] + \cdots + A[a]) \cdot (B[1] + B[2] + \cdots + B[b])$$

Cost I:
$$(A[1] + A[2] + \cdots + A[a]) \cdot (B[1] + B[2] + \cdots + B[b])$$

Cost 2:
$$A[1]B[1] + (A[2] + \cdots + A[a])(B[2] + \cdots + B[b])$$

Cost 2:
$$A[1]B[1] + (A[2] + \cdots + A[a])(B[2] + \cdots + B[b])$$

Cost I:
$$(A[1] + \tilde{A})(B[1] + \tilde{B})$$

Cost 2:
$$A[1]B[1] + \tilde{A}\tilde{B}$$

Cost I:
$$(A[1] + \tilde{A})(B[1] + \tilde{B}) = A[1]B[1] + \tilde{A}\tilde{B} + A[1]\tilde{B} + \tilde{A}B[1]$$

Cost 2:
$$A[1]B[1] + \tilde{A}\tilde{B}$$

Cost I:
$$(A[1] + \tilde{A})(B[1] + \tilde{B}) = A[1]B[1] + \tilde{A}\tilde{B} + A[1]\tilde{B} + \tilde{A}B[1]$$

Cost 2:
$$A[1]B[1] + \tilde{A}\tilde{B}$$

Let us observe the cost function more closely

Conclusion?

Always take one element from each array. Right?

Let us observe the cost function more closely

Conclusion?

Always take one element from each array. Right? No!

Previous analysis only works when a > 1 and b > 1

Previous analysis only works when a > 1 and b > 1

This only makes sense when a > 1 and b > 1

The optimal strategy will either:

I. Take one element from both sides (our analysis), or

The optimal strategy will either:

- I. Take one element from both sides (our analysis), or
- 2. Take one element from A (a = 1) and more elements from B (or vice versa)

The optimal strategy will either:

- I. Take one element from both sides (our analysis), or
- 2. Take one element from A (a = 1) and more elements from B (or vice versa)

Therefore: there exists an optimal strategy such that each removal takes either exactly one element from A or exactly one element from B!!!

Third approach

```
rec try(i, j) // consider only first i elements of
                 // A and j elements of B
   if (i == 1) return A[1] \cdot (B[1] + ... + B[j])
   if (j == 1) return (A[1] + \ldots + A[i]) \cdot B[1]
   best = (A[1] + ... + A[i]) \cdot (B[1] + ... + B[j]) // take all
   for a = 1 to i - 1 // take one element from B
      cost = \left(\sum_{i=1}^{i} A[t]\right) B[j]
      if (not stored(i - a, j - 1)) rec_try(i-a, j - 1)
         if (cost + stored(i - a, j - 1) < best)
            best = cost + stored(i - a, j - 1)
   for b = 1 to j - 1
     similar ...
   store(i,j) <- best
```

Third approach

try_rec(i,j) will be executed at most once for each pair (i,j), $1 \le i, j \le n$

two non-nested loops: one up to i, one up to j

Total running time: $O(n^3)$