

| 单片机原理及接口技术开发板实验指导手册 |                                                                                                                                         |                                                                                   |     |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|--|--|
| 实验名称                | 实验描述                                                                                                                                    | 硬件连接                                                                              | 页码  |  |  |
|                     | 拨动开关调至 LED<br>LD1、LD6 为红灯<br>LD2、LD7 为黄灯<br>LD3、LD8 为绿灯<br>模拟交通灯现象                                                                      | P0.1-P0.7 控制 LD1-LD8                                                              | 126 |  |  |
| 例 5-1               | 以频率 800Hz 发声,发声时间 250ms                                                                                                                 | P4.0BUZZ                                                                          | 133 |  |  |
| 例 5-2               | 拨动开关调至 SEG<br>利用 rand ()函数产生 0-999 之间的随机数,<br>并以 16 进制在数码管上显示                                                                           | P0 控制数码管数据<br>P2.4 控制锁存                                                           | 138 |  |  |
| 例 5-3               | 拨动开关调至 SEG、独立键盘<br>上电后数码管显示"P",当按键 K0、K1、<br>K2 按下时,在数码管上显示相应的按键号<br>0-2 并计数按键次数;当按键 K3 按下时,<br>在数码管上显示按键次数 0-F,当按键次数<br>超过 16 次后,计数回 0 | P3.0-P3.3 控制按键 K1-K3<br>P0 控制数码管数据<br>P2.4 控制锁存                                   | 144 |  |  |
| 例 5-4               | 拨动开关调至 SEG、矩阵键盘<br>在数码管显示 "P" , 在数码管上显示按键<br>对应的十六进制键号                                                                                  | P3.0-P3.3 控制矩阵键盘行<br>P3.4-P3.7 控制矩阵键盘列<br>P0 控制数码管数据<br>P2.4 控制锁存                 | 147 |  |  |
| 例 5-5               | 拨动开关调至 SEG、矩阵键盘<br>在数码管显示 "P", 在数码管上显示按键<br>对应的十六进制键号                                                                                   | P3.0-P3.3 控制矩阵键盘 1-4<br>行<br>P3.4-P3.7 控制矩阵键盘 1-4<br>列<br>P0 控制数码管数据<br>P2.4 控制锁存 | 150 |  |  |
| 例 5-6               | 在 LCD1602 上显示指定字符串                                                                                                                      | P2.0LCD1602_RS P2.1LCD1602_RW P2.2LCD1602_E P1.0-P1.7LCD1602_D1-D7                | 155 |  |  |



| 单片机原理及接口技术开发板实验指导手册         |                                                                                  |                                                             |     |  |  |
|-----------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-----|--|--|
| 实验名称                        | 实验描述                                                                             | 硬件连接                                                        | 页码  |  |  |
| 应用案例-简<br>易电子密码<br>锁        | 拨动开关调至 SEG、矩阵键盘<br>基于 4x4 矩阵键盘和 6 位共阳数码管的<br>电子密码锁系统,具有 密码验证、错误次<br>数限制、密码修改 等功能 |                                                             | 159 |  |  |
| 例 6-7                       | 利用定时器输出周期为 20ms 的方波                                                              | 使用 MCU 内部定时器                                                | 188 |  |  |
| 例 6-8                       | 利用定时器输出周期为 2s 的方波                                                                | 使用 MCU 内部定时器                                                | 190 |  |  |
| 应用案例-简<br>易秒表计时<br>器        | 拨动开关调至 SEG、独立键盘<br>使用 4 位共阳数码管显示"分:秒"<br>(MM:SS),并通过 K4 按键实现"启动/<br>停止/清零"三态控制   | P3.3K4<br>P0 控制数码管数据<br>P2.4 控制锁存                           | 197 |  |  |
| 例 7-3                       | 两台单片机串行通信, A 单片机发送数据 B<br>单片机接收数据                                                | P3.0USART RX<br>P3.1USART TX                                | 219 |  |  |
| 例 7-4                       | 两台单片机串行通信, A 单片机发送数据 B 单片机接收数据, 并点亮 LED,每次接收数据据都要奇偶校验。                           | P3.0USART RX<br>P3.1USART TX<br>P0 控制 LD1-LD8               | 221 |  |  |
| 应用案例-单<br>片机双机通<br>讯        | 两个单片机上电默认数码管显示"8",两机比较校验和,如果正确可以通讯数码管显示"P"。                                      | P3.0USART RX P3.1USART TX P0 控制数码管数据 P2.4 控制锁存              | 232 |  |  |
| 单片机扩展<br>多并行 IO 口<br>及 sram | 利用单片机扩展 16 个 IO 口, 其中 8 个输入口, 8 个输出口。另外系统用还有 3 2 KB 的 SRAM 数据储存器                 | P1.7SRAM_CE P3.6SRAM_WR P3.7SRAM_RD                         | 269 |  |  |
| 01 应用案例 -简易信号发生器            | •                                                                                | P4.1CLK<br>P4.2DIN<br>P4.65615CS                            | 330 |  |  |
| 02 应用案例<br>-简易数字电<br>压表     | 利用 TLC549 设计一个建议数字电压表,测得电压在四位 LED 上显示。                                           | P4.5549CS<br>P4.1CLK<br>P4.3DOUT<br>P0 控制数码管数,P2.4 控制锁<br>存 | 334 |  |  |



| 单片机原理及接口技术开发板实验指导手册 |                            |             |     |  |  |
|---------------------|----------------------------|-------------|-----|--|--|
| 实验名称                | 实验描述                       | 硬件连接        | 页码  |  |  |
| 03 应用案例             |                            | P2.7DS18B20 |     |  |  |
| -温度测量系              | 利用 DS18B20 测量温度,显示在 LED 上。 | P0 控制数码管数据  | 337 |  |  |
| 统                   |                            | P2.4 控制锁存   |     |  |  |