BAYESIAN LEARNING - LECTURE 8

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

LECTURE OVERVIEW

- Markov Chain Monte Carlo the general idea
- ► Metropolis-Hastings
- ► MCMC in practice

MARKOV CHAINS

- ▶ Let $S = \{s_1, s_2, ..., s_k\}$ be a finite set of **states**.
 - Weather: $S = \{\text{sunny, rain}\}.$
 - ▶ Journal rankings: $S = \{A+, A, B, C, D, E\}$
- Markov chain is a stochastic process $\{X_t\}_{t=1}^T$ with random state transitions

$$p_{ij} = \Pr(X_{t+1} = s_j | X_t = s_i)$$

► Example realization journal ranking:

$$X_1 = C$$
, $X_2 = C$, $X_3 = B$, $X_4 = A+$, $X_5 = B$.

► Transition matrix for weather example

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.7 & 0.3 \end{pmatrix}$$

STATIONARY DISTRIBUTION

► *h*-step transition probabilities

$$P_{ij}^{(h)} = \Pr(X_{t+h} = s_j | X_t = s_i)$$

► h-step transition matrix

$$P^{(h)} = P^h$$

- ► The chain has a unique equilibrium stationary distribution $\pi = (\pi_1, ..., \pi_k)$ if it is
 - irreducible (possible to get from any state from any state)
 - ► aperiodic (does not get stuck in predictable cycles)
 - positive recurrent (expected time of returning to any state is finite)
- Limiting (long-run) distribution

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \to \infty$$

STATIONARY DISTRIBUTION, CONT.

► Limiting (long-run) distribution

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \to \infty$$

Stationary distribution

$$\pi = \pi P$$

► Example:

$$P = \left(\begin{array}{ccc} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right)$$

$$\pi = (0.545, 0.272, 0.181)$$

THE BASIC MCMC IDEA

- Aim: to simulate from a discrete distribution p(x) when $x \in \{s_1, s_2, ..., s_k\}$.
- ▶ MCMC: simulate a Markov Chain with a stationary distribution that is exactly p(x).
- ► How to set up the transition matrix *P*? Metropolis-Hastings!

REJECTION SAMPLING

RANDOM WALK METROPOLIS ALGORITHM

- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample $\theta_{
 ho}| heta^{(i-1)}\sim extstyle N\left(heta^{(i-1)},c\cdot\Sigma
 ight)$ (the proposal distribution)
 - 2. Compute the acceptance probability

$$lpha = \min\left(1, rac{p(heta_p|\mathbf{y})}{p(heta^{(i-1)}|\mathbf{y})}
ight)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

RANDOM WALK METROPOLIS, CONT.

- ▶ Assumption: we can compute $p(\theta_p|\mathbf{y})$ for any θ .
- ightharpoonup Proportionality constant in $p(\theta_p|\mathbf{y})$ does not matter. It will cancel in α

$$\alpha = \min\left(1, \frac{c \cdot p(\theta_p|\mathbf{y})}{c \cdot p(\theta^{(i-1)}|\mathbf{y})}\right) = \min\left(1, \frac{p(\theta_p|\mathbf{y})}{p(\theta^{(i-1)}|\mathbf{y})}\right)$$

▶ So we many use tattoo-version: $p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)p(\theta)$

$$\alpha = \min \left(1, \frac{p\left(\mathbf{y}|\theta_{p}\right)p\left(\theta_{p}\right)}{p\left(\mathbf{y}|\theta^{(i-1)}\right)p\left(\theta^{(i-1)}\right)} \right)$$

lacktriangle We can generalize the proposal $heta_{
m p}| heta^{(i-1)}\sim {\it N}\left(heta^{(i-1)}$, $c\cdot\Sigma
ight)$ to

$$\theta_p | \theta^{(i-1)} \sim q \left(\cdot | \theta^{(i-1)} \right)$$

where $q\left(\cdot|\theta^{(i-1)}\right)$ is symmetric is its arguments

$$q(y|x) = q(x|y)$$

RANDOM WALK METROPOLIS, CONT.

- ▶ Common choices of Σ in proposal $N\left(\theta^{(i-1)}, c \cdot \Sigma\right)$:
 - $\Sigma = I$ (may propose 'off the cigar')
 - $\Sigma = J_{\hat{\theta}, \mathbf{v}}^{-1}$ (propose 'along the cigar')
 - Adaptive. Start with $\Sigma = I$ and then recompute Σ from an initial simulation run.
- ▶ c is set so that average acceptance probability is roughly 25-30%.
- A good proposal:
 - Easy to sample
 - **Easy to compute** α
 - Proposals should take reasonably **large steps** in θ -space
 - ▶ Proposals should **not be reject too often**.

THE METROPOLIS-HASTINGS ALGORITHM

- ▶ Generalization when the proposal density is not symmetric.
- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample $heta_p \sim q\left(\cdot| heta^{(i-1)}
 ight)$ (the proposal distribution)
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_p\right)}{q\left(\theta_p|\theta^{(i-1)}\right)}\right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

THE INDEPENDENCE SAMPLER

- ▶ Independence sampler: $q\left(\theta_p|\theta^{(i-1)}\right) = q\left(\theta_p\right)$.
- ▶ Proposal is independent of previous draw.
- Example:

$$heta_{
m p} \sim t_{
m v} \left(\hat{ heta}, J_{\hat{ heta}, {f y}}^{-1}
ight)$$
 ,

where $\hat{\theta}$ and , $J_{\hat{\theta}|_{\mathbf{v}}}$ are computed by numerical optimization.

- ► Can be very **efficient**, but has a tendency to **get stuck**.
- ▶ Make sure that $q(\theta_p)$ has heavier tails than $p(\theta|\mathbf{y})$.

METROPOLIS-HASTINGS WITHIN GIBBS

- ▶ Gibbs sampling from $p(\theta_1, \theta_2, \theta_3|\mathbf{y})$
 - ► Sample $p(\theta_1|\theta_2, \theta_3, \mathbf{y})$
 - ► Sample $p(\theta_2|\theta_1, \theta_3, \mathbf{y})$
 - ► Sample $p(\theta_3|\theta_1,\theta_2,\mathbf{y})$
- ► When a **full conditional is not easily sampled** we can simulate from it using MH.
- Example: at *i*th iteration, propose θ_2 from $q(\theta_2|\theta_1, \theta_3, \theta_2^{(i-1)}, \mathbf{y})$. Accept/reject.
- ▶ Gibbs sampling is a special case of MH when $q(\theta_2|\theta_1,\theta_3,\theta_2^{(i-1)},\mathbf{y}) = p(\theta_2|\theta_1,\theta_3,\mathbf{y})$, which gives $\alpha=1$. Always accept.

THE EFFICIENCY OF MCMC

- \bullet $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ are dependent (autocorrelated).
- ▶ How efficient is my MCMC compared to iid sampling?
- ▶ If $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ are iid with variance σ^2 , then

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N}.$$

▶ If $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ are generated by MCMC

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N} \left(1 + 2 \sum_{k=1}^{\infty} \rho_k \right)$$

where $\rho_k = Corr(\theta^{(i)}, \theta^{(i+k)})$ is the autocorrelation at lag k.

► Inefficiency factor

$$IF = 1 + 2\sum_{k=1}^{\infty} \rho_k$$

► Effective sample size from MCMC

$$ESS = N/IF$$

BURN-IN AND CONVERGENCE

- ► How long burn-in?
- ► How long to sample after burn-in?
- ► To **thin** of not to thin? Only keeping every *h* draw reduces autocorrelation.
- ► Convergence diagnostics
 - Raw plots of simulated sequences (trajectories)
 - ► CUSUM plots + Local means
 - ▶ Potential scale reduction factor, R.