ClavaDDPM: Multi-relational Data Synthesis with Cluster-guided Diffusion Models

Wei Pang

Single-Table Synthesis

Individual ID	Married	Age	Language
1	F	1	English
2	F	2	English
3	F	10	Chinese
4	Т	25	English
5	F	35	English
6	F	7	French
7	F	9	French
8	F	14	English
9	F	29	English
10	Т	78	Chinese

Single-Table Synthesis

Individual ID	Married	Age	Language
1	F	1	English
2	F	2	English
3	F	10	Chinese
4	T	25	English
5	F	35	English
6	F	7	French
7	F	9	French
8	F	14	English
9	F	29	English
10	Т	78	Chinese

- Model the correlation between columns.
- Each row is i.i.d.

Individual ID	Married	Age	Language	Household ID
1	F	1	English	1
2	F	2	English	1
3	F	10	Chinese	2
4	T	25	English	1
5	F	35	English	3
6	F	7	French	4
7	F	9	French	4
8	F	14	English	1
9	F	29	English	3
10	Т	78	Chinese	2

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

Individual ID	Married	Age	Language	Household ID	
1	F	1	English	1	
2	F	2	English	1	
3	F	10	Chinese	2	
4	Т	25	English	1	
5	F	35	English	3	
6	F	7	French	4	
7	F	9	French	4	
8	F	14	English	1	
9	F	29	English	3	
10	Т	78	Chinese	2	

A Canadian household with 2 individuals

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

Individual ID	Married	Age	Language	Household ID
1	F	1	English	1
2	F	2	English	1
3	F	10	Chinese	2
4	T	25	English	1
5	F	35	English	3
6	F	7	French	4
7	F	9	French	4
8	F	14	English	1
9	F	29	English	3
10	Т	78	Chinese	2

A Canadian household with 4 individuals

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

Individual ID	Married	Age	Language	Household ID
1	F	1	English	1
2	F	2	English	1
3	F	10	Chinese	2
4	T	25	English	1
5	F	35	English	3
6	F	7	French	4
7	F	9	French	4
8	F	14	English	1
9	F	29	English	3
10	T	78	Chinese	2

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

• **Inter-column** correlation still exists.

Individual ID	Married	Age	Language	Household ID	
1	F	1	English	1	
2	F	2	English	1	
3	F	10	Chinese	2	
4	T	25	English	1	
5	F	35	English	3	
6	F	7	French	4	
7	F	9	French	4	+
8	F	14	English	1	
9	F	29	English	3	
10	Т	78	Chinese	2	

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

- **Inter-column** correlation still exists.
- Inter-table columns can also be correlated.

Individual's language is strongly correlated with **Household**'s country!

Individual ID	Married	Age	Language	Household ID	
1	F	1	English	1	
2	F	2	English	1	
3	F	10	Chinese	2	
4	T	25	English	1	
5	F	35	English	3	
6	F	7	French	4	
7	F	9	French	4	
8	F	14	English	1	
9	F	29	English	3	
10	Т	78	Chinese	2	

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

- **Inter-column** correlation still exists.
- Inter-table columns can also be correlated.
- Child table **rows are no longer i.i.d.**, but dependent on parent table.

Individuals within the same **Household** tend to speak the same language!

Individual ID	Married	Age	Language	Household ID
1	F	1	English	1
2	F	2	English	1
3	F	10	Chinese	2
4	T	25	English	1
5	F	35	English	3
6	F	7	French	4
7	F	9	French	4
8	F	14	English	1
9	F	29	English	3
10	Т	78	Chinese	2

Household ID	Country	Size
1	US	4
2	China	2
3	Canada	2
4	Canada	2

- Inter-column correlation still exists.
- Inter-table columns can also be correlated.
- Child table rows are no longer i.i.d., but dependent on parent table.
- The **size of a group** referring to the same parent is correlated with parent table.

The number of **Individuals** within the same **Household** is also dependent on parent table!

Multi-table Synthesis: Motivation

To address these:

- Inter-column correlation still exists.
- **Inter-table** columns can also be correlated.
- Child table **rows are no longer i.i.d.**, but dependent on parent table.
- The **size of a group** referring to the same parent is correlated with parent table.

Multi-table Synthesis: Motivation

To address these:

- Inter-column correlation still exists.
- **Inter-table** columns can also be correlated.
- Child table **rows are no longer i.i.d.**, but dependent on parent table.
- The **size of a group** referring to the same parent is correlated with parent table.

We aim to design a model that:

- Maintains single-table quality.
- Captures inter-table correlations.
- Models row-wise correlations.
- Models group size distributions.

Multi-relational Data

Multi-relational database:

$$\mathcal{R} = (R_1, \dots, R_m)$$

Multi-relational database with foreign key constraints (DAG):

$$\mathcal{G} = (\mathcal{R}, \mathcal{E}),$$

$$\mathcal{E} = \{ (R_i \to R_i) | i, j \in \{1, ..., m\}, i \neq j, R_i \text{ refers to } R_i \}$$

We also call $(R_i \to R_j)$ a **parent-child** relationship.

relation R_{acc}

Demographic

Account Client

foreign key constraint

 $(R_{trans} \rightarrow R_{acc})$

relation R_{trans}

	Trans ID	Acc ID	Amount	Туре	
	1	4			*
	2	4			
	3	4			۱.,
*,	4	3			, *
	5	1			

Transaction

Order

Loan

n Disposition

Card

A foreign key group with size 3.

- Follows the same assumption on categorical and numerical values.
- Assumptions:
 - Different columns are correlated.
 - Different tables are correlated. (parent-child relationships)
 - Rows are not i.i.d. due to foreign key constraints.
- Desiderata:
 - **Inter-column** correlations within the same table.
 - **Intra-group** correlations within the same foreign key group.
 - **Inter-table** correlations.
 - **Group size** distributions.

ClavaDDPM: Gaussian Diffusion as Backbone

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Gaussian transition **forward** process

$$p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \mathcal{N}(\boldsymbol{x}_{t-1};\boldsymbol{\mu}_{\theta}(\boldsymbol{x}_t,t),\boldsymbol{\Sigma}_{\theta}(\boldsymbol{x}_t,t))$$

Learnable parameterized **reverse** process with a Gaussian form

$$\log(p_{\theta,\varphi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{y})) \approx \log(p(\mathbf{z})) + C$$

$$z \sim \mathcal{N}(\mu + \Sigma g, \Sigma)$$

$$\boldsymbol{g} = \nabla_{\boldsymbol{x}_{t-1}} \log (p_{\varphi}(\boldsymbol{y}|\boldsymbol{x}_t)|_{\boldsymbol{x}_{t-1} = \boldsymbol{\mu}})$$

$$\begin{array}{c}
\mathbf{x}_{T} \longrightarrow \cdots \longrightarrow \mathbf{x}_{t} \xrightarrow{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \mathbf{x}_{t-1} \longrightarrow \cdots \longrightarrow \mathbf{x}_{0} \\
\downarrow q(\mathbf{x}_{t}|\mathbf{x}_{t-1})
\end{array}$$

Child ID	Parent ID	X
1	2	x_1
2	2	x_2
3	1	x_3
4	3	x_4
5	3	<i>x</i> ₅
6	3	<i>x</i> ₆
7	4	x_7
8	4	<i>x</i> ₈
9	5	x_9
10	5	<i>x</i> ₁₀

Parent ID	Y
1	y_1
2	y_2
3	y_3
4	y_4
5	${\cal Y}_5$

	Child ID	Parent ID	X			
	1	2	x_1			
-	2	2	<i>x</i> ₂	Foreign key group g_1		Parent ID
	3	1	<i>x</i> ₃		-	1
Ī	4	3	x_4		•	2
	5	3	x_5			3
	6	3	<i>x</i> ₆			4
	7	4	<i>x</i> ₇			
	8	4	<i>x</i> ₈		5)
	9	5	x_9			
	10	5	<i>x</i> ₁₀			

Child ID	Parent ID	X			
1	2	x_1			
2	2	<i>x</i> ₂	Foreign key group g_2	Parent ID	
3	1	<i>x</i> ₃		1	_
4	3	x_4		2	
5	3	x_5	·	3	•
6	3	x_6		4	
7	4	<i>x</i> ₇		5	
8	4	<i>x</i> ₈		5	
9	5	<i>x</i> ₉			
10	5	<i>x</i> ₁₀			

Child ID	Parent ID	X				
1	2	x_1				
2	2	x_2			Parent ID	
3	1	<i>x</i> ₃				
4	3	x_4	•	Foreign key group g_3	1	
5	3	x_5			2	
6	3	<i>x</i> ₆			3	
	•••••		•		4	
7	4	x_7				
8	4	<i>x</i> ₈			5	
9	5	<i>x</i> ₉				
10	5	<i>x</i> ₁₀				

	Child ID	Parent ID	X			
	1	2	x_1			
	2	2	<i>x</i> ₂		Parent ID	Y
	3	1	<i>x</i> ₃			
	4	3	x_4		1	y_1
	5	3	<i>x</i> ₅		2	y_2
	6	3	<i>x</i> ₆	Foreign key group g_4	3	<i>y</i> ₃
•	7	4	<i>x</i> ₇		4	У4
	8	4	<i>x</i> ₈		5	<i>y</i> ₅
	9	5	<i>x</i> ₉			
	10	5	<i>x</i> ₁₀			

	Child ID	Parent ID	X
	1	2	x_1
	2	2	x_2
	3	1	x_3
	4	3	x_4
	5	3	<i>x</i> ₅
	6	3	<i>x</i> ₆
	7	4	<i>x</i> ₇
	8	4	<i>x</i> ₈
*	9	5	<i>x</i> ₉
	10	5	<i>x</i> ₁₀

	Parent ID	Y
	1	y_1
	2	y_2
	3	y_3
•	4	y_4
	5	<i>y</i> 5

Foreign key group g_5

Child ID	Parent ID	X
1	2	
2	2	g_2
3	1	g_1
4	3	
5	3	g_3
6	3	
7	4	a
8	4	g_4
9	5	a
10	5	g_5

Instead of modeling x directly, we model foreign key groups g.

Parent ID	Y
1	y_1
2	y_2
3	<i>y</i> ₃
4	<i>y</i> ₄
5	<i>y</i> ₅

ClavaDDPM: Modelling

Assumptions

- Each parent row *y* is i.i.d.
- The child row distribution x is and only is constrained by its parent y.
 - Child table *X* is formed by a collection of foreign key groups $X = \{g_1, ..., g_{|y|}\}$.
 - Each foreign key group g_j is formed by a collection of rows $g_j = \{x_j^i | i = 1, ..., |g_j|\}$, which corresponds to parent row y_j .

ClavaDDPM: Modelling

Idea

- Model parent table distribution p(y).
- Model conditional foreign key group distribution p(g|y).

Difficulties

- Parent table space *Y* can be sparse and badly shaped.
- Vectors y can be high-dimensional.

Modelling the full conditional distribution p(g|y) can be **costly** and leads to **bad performance**.

- Instead of learning the full conditional distribution p(g|y) directly:
 - We quantize (g, y) into codebook c. We call this *relation-aware clustering*.
 - Use *c* as a proxy for modelling foreign key group distributions.

$$p(g_j, y_j) = \sum_{c} p(g_j|c)p(y, c)$$

Gaussian Mixture Models (GMM) clustering.

Child ID	Parent ID	X
1	2	
2	2	g_2
3	1	g_1
4	3	
5	3	g_3
6	3	
7	4	a
8	4	g_4
9	5	
10	5	g_5

JOIN

Parent ID	Y
1	y_1
2	y_2
3	y_3
4	y_4
5	${\mathcal Y}_5$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		_
5	3	g_3	у ₃
6	3		
7	4	~	
8	4	${g_4}$	y_4
9	5		
10	5	g_5	y_5

Child ID Parent ID		X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	y_3
6	3		
7	4	a	27
8	4	g_4	\mathcal{Y}_4
9	5	<i>a</i>	27
10	5	g_5	${\cal Y}_5$

Child ID	Parent ID	X	Y	С
1	2			
2	2	g_2	y_2	c_2
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	<i>c</i> ₃
6	3			
7	4	_		_
8	4	${g}_4$	y_4	<i>c</i> ₂
9	5	_		_
10	5	g_5	${\cal Y}_5$	<i>c</i> ₃

Same cluster indicates similar parent and children, serving as a quantization.

Child ID	Parent ID	X	Y	С
1	2	~	41	a
2	2	g_2	y_2	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4	a	21	
8	4	g_4	y_4	<i>c</i> ₂
9	5	a	27	C
10	5	g_5	${\mathcal Y}_5$	<i>c</i> ₃

Augmented parent table

Parent ID	Y	C
2	y_2	c_2
1	y_1	c_1
3	y_3	<i>c</i> ₃
4	y_4	c_2
5	<i>y</i> ₅	c_3

Original parent table

Parent ID	Y
1	y_1
2	y_2
3	y_3
4	<i>y</i> ₄
5	${\cal Y}_5$

Augmented parent table

Parent ID	Y	C
2	y_2	<i>c</i> ₂
1	y_1	c_1
3	y_3	<i>c</i> ₃
4	y_4	c_2
5	<i>y</i> 5	<i>c</i> ₃

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	<i>y</i> ₁
4	3		_
5	3	g_3	у ₃
6	3		
7	4		
8	4	g_4	y_4
9	5		
10	5	g_{5}	y_5

Child ID	Parent ID	X	Y	C
1	2	, !		
2	2	<i>g</i> ₂	<i>y</i> ₂	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4	_		_
8	4	g_4	y_4	<i>c</i> ₂
9	5	_		_
10	5	g_5	${\cal Y}_5$	<i>c</i> ₃

Sampled from $g_2|c_2$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4		27
8	4	g_4	y_4
9	5	a	21
10	5	g_5	${\cal Y}_5$

Child ID	Parent ID	X	Y	С
1	2			
2	2	g_2	y_2	c_2
3	1	g_1	<i>y</i> ₁	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4	_		_
8	4	g_4	y_4	c_2
9	5			
10	5	g_5	<i>y</i> ₅	c_3

Sampled from $g_1|c_1$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	y_3
6	3		
7	4	a	27
8	4	g_4	\mathcal{Y}_4
9	5	a	27
10	5	g_{5}	${\cal Y}_5$

Child ID	Parent ID	X	Y	C
1	2			
2	2	g_2	y_2	c_2
3	1	g_1	y_1	c_1
4	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
5	3	g_3	y_3	c_3
6	3	•		
7	4	-		
8	4	g_4	y_4	<i>c</i> ₂
9	5	<i>a</i>		
10	5	g_5	y_5	<i>c</i> ₃

Sampled from $g_3|c_3$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2 y_2	<i>y</i> ₂
3	1	g_1	y_1
4	3		
5	3	g_3	у ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5		
10	5	g_5	y_5

Child ID	Parent ID	X	Y	C
1	2	_		_
2	2	g_2	y_2	c_2
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4			
8	4	<i>g</i> ₄	y_4	c_2
9	5			
10	5	g_5	y_5	<i>c</i> ₃

Sampled from $g_4|c_2$

Child ID	Parent ID	X	Y	
1	2			
2	2	g_2	y_2	
3	1	g_1	y_1	
4	3			
5	3	g_3	<i>y</i> ₃	
6	3			
7	4	a	27	
8	4	g_4	y_4	
9	5	a	27	
10	5	g_5	y_5	

Child ID	Parent ID	X Y	C
1	2		
2	2	g_2 y_2	<i>c</i> ₂
3	1	g_1 y_1	c_1
4	3		
5	3	g_3 y_3	c_3
6	3		
7	4	<i>a</i> 27	a
8	4	g_4 y_4	c_2
9	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
10	5	<i>g</i> ₅ <i>y</i> ₅	<i>c</i> ₃

Sampled from $g_5|c_3$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5	a	27
10	5	g_{5}	<i>y</i> ₅

Child ID	Parent ID	X	Y	C
1	2			
2	2	g_2	y_2	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	<i>y</i> ₃	<i>c</i> ₃
6	3			
7	4	<i>a</i>	21	
8	4	g_4	<i>y</i> ₄	<i>c</i> ₂
9	5		21	
10	5	g_5	${\cal Y}_5$	<i>c</i> ₃

How many rows does g_3 contain?

- Model group size s = |g|.
- Two-step generation:
 - Sample group size *s*.
 - Sample *s* rows in foreign key group *g*.

$$p(g_j|c) = p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

Sample
$$p(c, y)$$
 c

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

$$p(X,Y) \approx \prod_{j=1}^{|R_2|} \sum_{c} p(y_j,c) p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

$$p(X,Y) \approx \prod_{j=1}^{|R_2|} \sum_{c} p(y_j,c) p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

Diffusion model for augmented parent table

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

$$p(X,Y) \approx \prod_{j=1}^{|R_2|} \sum_{c} p(y_j,c) p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

Classifier guided sampling using child diffusion model p(x) and classifier p(c|x)

child

parent

Train diffusion model p(y, c) on augmented parent

Train diffusion model p(y, c) on augmented parent

Note: the **parent** augmentation depends on **child**.

ClavaDDPM: Two Tables Sampling

ClavaDDPM: Two Tables Sampling

Note: the **child** sampling depends on **parent**.

Cluster, augment, and train

• Parent: Disposition

• Child: Card

- Parent: Client
- Child: **augmented** Disposition

Cluster, augment, and train

• Parent: Account

• Child: **augmented** Disposition

- Parent: **augmented** Account
- Child: Loan

- Parent: **augmented** Account
- Child: Order

- Parent: **augmented** Account
- Child: Transaction

- Parent: Demographic
- Child: **augmented** Account

- Parent: **augmented** Demographic
- Child: **augmented** Client

Synthesize **augmented** Demographic

Demographic

Conditioned on **augmented** Demographic Synthesize **augmented** Demographic

Conditioned on **augmented** Demographic Synthesize **augmented** Client

Conditioned on **augmented** Account Synthesize Transaction

Conditioned on **augmented** Account Synthesize Order

Conditioned on **augmented** Account Synthesize Loan

Conditioned on augmented Account
Synthesize augmented Disposition (Account)

Account

Client

Demographic

Account

Client

Disposition
(Account)

Conditioned on **augmented** Client Synthesize **augmented** Disposition (Client)

Demographic Conditioned on **augmented** Disposition (Client) Synthesize Card Client Account Order Transaction Disposition Loan (Client) Card

Remove augmented columns

Extension to More: Multi-parent Dilemma

Disposition (Client)

Disp ID	Client ID	X ^c
1	2	x_1^c
2	2	x_2^c
3	1	x_3^c
4	3	x_4^c
5	3	x_5^c
6	3	x_6^c
7	4	x_7^c
8	4	x_7^c x_8^c

Disp ID	Account ID	X^a
1	2	x_1^a
2	1	x_2^a
3	3	x_3^a
4	5	x_4^a
5	5	x_5^a
6	2	x_6^a
7	2	x_7^a
8	1	x_8^a
9	3	x_9^a

Extension to More: Multi-parent Dilemma

Disposition (Client)

Disp ID	Client ID	X ^c
1	2	x_1^c
2	2	x_2^c
3	1	x_3^c
4	3	x_4^c
5	3	x_5^c
6	3	x_6^c
7	4	x_7^c
8	4	x_8^c

X^a	Disp ID	Account ID
x_1^a	1	2
x_2^a	2	1
x_3^a	3	3
x_4^a	4	5
x_5^a	5	5
x_6^a	6	2
x_7^a	7	2
x_8^a	8	1
x_9^a	9	3

Disposition (Client)

Disp ID	Client ID	X ^c
1	2	x_1^c
2	2	x_2^c
3	1	x_3^c
4	3	x_4^c
5	3	x_5^c
6	3	x_6^c
7	4	x_7^c
8	4	x_8^c

Disposition (Account)

X^a	Disp ID	Account ID
x_1^a	1	2
x_2^a	2	1
x_3^a	3	3
x_4^a	4	5
x_5^a	5	5
x_6^a	6	2
x_7^a	7	2
x_8^a	8	1
x_9^a	9	3

Disposition

Disp ID	Client ID	Account ID	X
1	2		
2	2		
3	1		
4	3		
5	3		
6	3		
7	4		
8	4		

Disposition (Client)

ъ.	• . •
I ligno	sition
אסנים	BILLOIL

Disp ID	Client ID	X ^c	Χ ^a	Disp ID	Account ID
1	2	$x_1^c \leftarrow$	$\rightarrow x_1^a$	1	2
2	2	x_2^c	x_2^a	2	1
3	1	x_3^c	x_3^a	3	3
4	3	x_4^c	x_4^a	4	5
5	3	x_5^c	x_5^a	5	5
6	3	x_6^c	x_6^a	6	2
7	4	x_7^c	x_7^a	7	2
8	4	x_8^c	x_8^a	8	1
	'	0	x_9^a	9	3

Disposition (Client)

ъ.	• . •
1)ign(sition
Dispe	BILIOII

Disposition (Client)

ъ.	• . •
L)ign(sition
Dispe	SILIOII

 X^c

 x_4^c

 x_5^c

 x_6^c

 χ_7^c

 x_8^c

Disposition (Client)

Client ID

2

1

3

3

3

4

Disp ID

1

2

3

4

5

6

7

8

Disposition (Account)

Disp ID

1

2

3

4

5

6

8

9

 X^a

 x_2^a

 x_5^a

 x_8^a

 x_9^a

Account

ID

Disposition

Disp ID	Client ID	Account ID	X
1	2	2	(x_1^c, x_1^a)
2	2	3	(x_2^c, x_3^a)
3	1	5	(x_3^c, x_4^a)
4	3	2	(x_4^c, x_7^a)
5	3		
6	3		
7	4		
8	4		

3

Disposition (Client)

Disposition (Account)

Disposition

Disposition (Client)

Disposition (Account)

Disposition

Disposition (Client)

Disposition (Account)

Disposition

Account

Disposition (Client)

Disposition (Account)

Disposition

Evaluation: Metrics

- Kolmogorov-Sirnov Test (KST): measures the distance between two continuous distributions.
- Total Variation Distance (TVD): measures the distance between two discrete distributions.
- Pearson Correlation Coefficient: measures the correlation between two continuous distributions.
- Contingency Similarity: measures the distance between two discrete joint distributions.

Evaluation: Long-range Dependency

Evaluation: Long-range Dependency

Evaluation: Datasets

	# Tables	# Foreign Key Constraints	Depth	Total # of Attributes	# Rows in Largest Table
California	2	1	2	15	1,690,642
Instacart 05	6	6	3	12	1,616,315
Berka	8	8	4	41	1,056,320
Movie Lens	7	6	2	14	996,159
CCS	5	4	2	11	383,282

Evaluation: Baselines

- SDV HMA Synthesizer
- PrivLava $\varepsilon = 50$
- Single Table (ST): each table is synthesized independently.
- Denorm (D): synthesizes the joint table, then split into separate tables.
- Single table synthesis backbones:
 - CTGAN
 - TabDDPM
 - ClavaDDPM

Evaluation: Results

Berka	PrivLava	SDV	ST-CTGAN	ST- TabDDPM	ST- ClavaDDPM	D-CTGAN	D- TabDDPM	D- ClavaDDPM	ClavaDDPM
Cardinality			96.08 ±0.18	68.29±0.00	97.06±0.80	97.72±0.29	97.71±0.00	96.06±1.15	96.92±0.71
1-way			79.78±0.75	76.41±2.21	94.58±0.01	83.00±0.65	80.09±0.68	83.28±0.97	94.29±0.44
o-hop			74.24±0.32	72.80±1.23	91.72±0.23	76.04±0.34	74.82±0.49	72.12±0.73	91.49±0.82
1-hop	DNC	DNC	66.59±0.54	54.01±2.35	81.77±1.19	75.25±0.55	61.99±2.10	55.77±2.80	86.86±2.74
2-hop			75.83±1.07	59.88±1.39	78.09±0.53	72.40±0.43	63.94±1.33	57.68±1.67	89.25±2.27
3-hop			72.58±0.86	55.29±1.58	75.56±0.34	71.74±0.69	62.67±2.26	55.59±1.48	87.27±1.92
AVG 2-way			73.22±0.45	61.74±1.57	82.33±0.40	73.94±0.37	66.29±1.30	60.93±1.49	89.21±1.95

Evaluation: Results

End-to-end	PrivLava	SDV	ST-CTGAN	ST-TabDDPM	ST-ClavaDDPM	D-CTGAN	D-TabDDPM	D-ClavaDDPM	ClavaDDPM
California									
CARDINALITY	$99.90\ \pm0.03$	$71.45\ \pm0.00$	$99.93\ \pm0.02$	99.94 ± 0.00	99.89 ± 0.04	$99.90\ \pm0.07$	99.94 ± 0.00	99.87 ± 0.02	99.19 ± 0.29
1-WAY	99.71 ± 0.02	72.32 ± 0.00	$91.59\ \pm0.50$	83.27 ± 0.07	99.51 ± 0.04	$91.22\ \pm0.07$	93.10 ± 0.84	94.99 ± 0.02	98.77 ± 0.02
0-нор	98.49 ± 0.05	50.23 ± 0.00	87.67 ± 0.63	$79.27\ \pm0.08$	98.69 ± 0.08	86.58 ± 0.44	$91.12\ \pm1.35$	$94.17\ \pm0.01$	97.65 ± 0.05
1-нор	97.46 ± 0.12	54.89 ± 0.00	$84.82\ \pm0.61$	78.44 ± 0.04	92.96 ± 0.05	82.72 ± 0.30	84.43 ± 1.80	87.24 ± 0.10	95.16 ± 0.39
AVG 2-WAY	97.97 ± 0.09	52.56 ± 0.00	$86.25\ \pm0.60$	$78.85\ \pm0.06$	95.83 ± 0.07	$84.65\ \pm0.35$	87.78 ± 1.57	90.71 ± 0.04	96.41 ± 0.20
Instacart 05									
CARDINALITY			95.78 ± 0.96		94.73 ± 0.14	93.81 ± 0.39		$94.98\ \pm0.84$	95.30 ± 0.79
1-WAY			79.85 ± 0.96		89.30 ± 0.00	$69.07\ \pm0.57$		71.83 ± 0.32	89.84 ± 0.29
0-нор	DNC	DNC	$78.27\ \pm0.28$	TLE	99.70 ± 0.00	84.85 ± 0.44	TLE	88.74 ± 0.00	99.62 ± 0.04
1-нор	DNC	DNC	$62.48\ \pm0.16$	ILE	66.93 ± 0.07	60.26 ± 0.38	TLE	62.58 ± 0.05	76.42 ± 0.39
2-нор			$24.82\ \pm 8.02$		16.22 ± 13.41	0.00 ± 0.00		0.00 ± 0.00	39.29 ± 3.38
AVG 2-WAY			60.05 ± 1.40		$66.66\ \pm2.37$	$56.19\ \pm0.33$		$58.52\ \pm0.03$	76.02 ± 0.78
Berka									
CARDINALITY			$96.08\ \pm0.18$	68.29 ± 0.00	$97.06\ \pm0.80$	97.72 ± 0.29	97.71 ± 0.00	96.06 ± 1.15	96.92 ± 0.71
1-WAY			79.78 ± 0.75	76.41 ± 2.21	94.58 ± 0.01	83.00 ± 0.65	80.09 ± 0.68	83.28 ± 0.97	94.29 ± 0.44
0-нор			$74.24\ \pm0.32$	72.80 ± 1.23	91.72 ± 0.23	76.04 ± 0.34	74.82 ± 0.49	72.12 ± 0.73	91.49 ± 0.82
1-нор	DNC	DNC	$66.59\ \pm0.54$	54.01 ± 2.35	81.77 ± 1.19	$75.25\ \pm0.55$	61.99 ± 2.10	$55.77\ \pm2.80$	86.86 ± 2.74
2-нор			$75.83\ \pm1.07$	59.88 ± 1.39	$78.09\ \pm0.53$	72.40 ± 0.43	63.94 ± 1.33	$57.68\ \pm1.67$	89.25 ± 2.27
3-нор			72.58 ± 0.86	$55.29\ \pm1.58$	75.56 ± 0.34	71.74 ± 0.69	62.67 ± 2.26	55.59 ± 1.48	87.27 ± 1.92
AVG 2-WAY			73.22 ± 0.45	61.74 ± 1.57	82.33 ± 0.40	73.94 ± 0.37	$66.29\ \pm1.30$	60.93 ± 1.49	89.21 ± 1.95
Movie Lens									
CARDINALITY			98.91 ± 0.06		98.99 ± 0.16	98.70 ± 0.40		98.87 ± 0.26	99.07 ± 0.18
1-WAY			86.58 ± 0.80		99.19 ± 0.00	68.38 ± 0.36		78.03 ± 0.17	99.34 ± 0.10
0-нор	DNC	DNC	$72.80\ \pm0.86$	TLE	$98.56\ \pm0.01$	31.96 ± 0.32	TLE	57.33 ± 0.10	98.69 ± 0.15
1-нор			$74.86\ \pm0.63$		$92.72\ \pm0.09$	$58.00\ \pm0.05$		$77.45\ \pm1.93$	96.19 ± 0.11
AVG 2-WAY			74.10 ± 0.62		$94.87\ \pm0.06$	48.45 ± 0.09		70.07 ± 1.19	97.11 ± 0.02
CCS									
CARDINALITY		74.36 ± 8.40	99.00 ± 0.53	93.70 ± 0.00	99.37 ± 0.16	26.98 ± 0.05	26.97 ± 0.00	$26.70\ \pm0.20$	99.25 ± 0.16
1-WAY		69.04 ± 4.38	82.21 ± 0.32	82.72 ± 0.06	95.20 ± 0.00	73.68 ± 0.35	79.28 ± 0.10	$79.29\ \pm0.13$	92.37 ± 2.30
0-нор	DNC	94.84 ± 1.00	$87.02\ \pm0.18$	88.10 ± 0.07	98.96 ± 0.00	81.70 ± 0.33	87.15 ± 0.16	86.60 ± 0.14	98.47 ± 0.79
1-нор		$21.74\ \pm 9.62$	$49.84 \ \pm 2.30$	$47.11 \ \pm 0.06$	$51.62\ \pm0.22$	$56.86\ \pm0.66$	$61.53\ \pm1.50$	$57.77\ \pm0.69$	83.15 ± 4.22
AVG 2-WAY		$41.68\ \pm6.73$	$59.98\ \pm1.72$	$58.29\ \pm0.06$	$64.53\ \pm0.16$	$63.64\ \pm0.57$	$68.51\ \pm1.11$	$65.64\ \pm0.50$	87.33 ± 3.12

WATERLOO

Thank you!

Our greatest impact happens together.