ID: Sec: Name:

Brac University

Set: 02

Semester: Spring 2022 Final
Course No: CSE251 Full Marks: 40
Course Title: Electronic Devices and Circuits TIme: 2 hours
Section: 1 to 14 Date: May 13, 2022

Answer all 4 questions. All the questions carry equal marks.

Question 1 [CO1, CO2]

10

In the circuit, the input voltage $V_{\rm in}$ has a nominal voltage of 10 V with a fluctuation of $\pm 10\%$. The Zener diode in the circuit is specified with parameter $V_z=5.75$ V at $I_z=5$ mA, $r_z=0.05$ k Ω , and $I_{\rm zk}=0.3$ mA.

- (a) Compute the Zener diode parameter V_{z_0} . [2]
- (b) **Identify** the worst-case conditions and **calculate** the Zener current (I_z) , Zener voltage (V_z) , and the input voltage in this worst-case scenario. [1+1+1+1]
- (c) Calculate the load current I_L and the source current I_s in the worst-case conditions. [2]
- (d) **Design** the circuit, i.e., find the value of R_s , such that even in the worst-case scenario voltage regulation is maintained. [2]

Question 2 [CO3, CO4]

10

(a) **Analyze** the circuit below to find an expression of f in terms of *boolean* inputs A, B, C, D, and E.

Set: 2

(b) **Design** a circuit using ideal BJTs (S-model) to implement the logic function
$$f = \overline{AC + \overline{(B+D)}}$$
 [2]

(c) **Show** (draw) and **label** the circuit diagram of a MOSFET common-source small-signal amplifier. **Describe** its operation in short in the saturation region. [2+2]

Question 3 [CO1, CO4]

10

Analyze the following circuit to find the values of I_B , I_C , I_E , and V_{CE} . Here, **use** the Method of Assumed State. You must **validate** your assumptions. [7 + 3]

$$\begin{array}{c|c}
 & 20V \\
\hline
 & 35k2 \\
\hline
 & 100ka \\$$

Question 4 [CO1, CO4]

10

Analyze the following circuit to find the values of I_D and V_{DS} using the Method of Assumed State. You must validate your assumptions. [7 + 3] Hint: Use I_D as unknown x. Use Ohm's law to represent V_D and V_S in terms of x.

For MOSFET

$$\begin{split} I_D &= 0, \text{ if } V_{GS} < V_T \\ I_D &= k_n' \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right], \text{ if } V_{GS} \geq V_T \text{ and } V_{DS} < \left(V_{GS} - V_T \right) \\ I_D &= \frac{1}{2} k_n' \left(V_{GS} - V_T \right)^2, \text{ if } V_{GS} \geq V_T \text{ and } V_{DS} \geq \left(V_{GS} - V_T \right) \end{split}$$