Algorithm 1

- 1. **Read** in clockwise order the vertices v_i and store them in a cyclical list $P = \{v_1, \dots, v_n\}$.
- 2. $L^0 \leftarrow \{v_1\}; m \leftarrow 1.$
- 3. While n > 3 do (Begin MP1)
 - 3.1. $v^{(1)} \leftarrow Last[L^{m-1}]; v^{(2)} \leftarrow Next[P, v^{(1)}].$
 - 3.2. $L^m \leftarrow \{v^{(1)}, v^{(2)}\}; i \leftarrow 2; v^{(i+1)} \leftarrow Next[P, v^{(i)}].$
 - 3.3. While $ang\{(v^{(i-1)},v^{(i)},v^{(i+1)}),(v^{(i)},v^{(i+1)},v^{(1)}), (v^{(i+1)},v^{(1)},v^{(2)})\} \le 180^{\circ} \text{ and } |L^{m}| < n \frac{\text{do}}{\text{do}}$ 3.3.1. $L^{m} \leftarrow L^{m} \cup \{v^{(i+1)}\}; i \leftarrow i+1; v^{(i+1)} \leftarrow Next[P,v^{(i)}].$
 - 3.4. If $|L^m| \neq |P|$ then
 - 3.4.1. **Obtain** the list *LPVS* with the vertices $v_i \in P \setminus L^m$ which are notches.
 - 3.4.2. While |LPVS| > 0 do
 - •Obtain the smallest rectangle R with sides parallel to the axes containing all the vertices of L^m .
 - \bullet Backward \leftarrow false.
 - ullet While not Backward and |LPVS|>0 do Repeat

$$v \leftarrow First[LPVS]$$
.

If $v \notin R$ then $LPVS \leftarrow LPVS \{v\}$

Until $v \in R$ or |LPVS| = 0.

If |LPVS| > 0 then

If v is inside the polygon generated by L^m then

Obtain the set *VTR* of vertices of L^m in the semiplane generated by $v^{(1)}v$ containing $Last[L^m]$.

$$L^m \leftarrow L^m \ VTR; \ Backward \leftarrow true.$$

 $LPVS \leftarrow LPVS \setminus \{v\}. (End \ MP1)$

- 3.5. If $Last[L^m] \neq v^{(2)}$ then
 - 3.5.1. Write L^m as a convex polygon of the partition.
 - 3.5.2. $P \leftarrow (P \setminus L^m) \cup \{First[L^m], Last[L^m]\};$ $n \leftarrow n - |L^m| + 2;$
- 3.6. $m \leftarrow m + 1$.