Topology

Alessio Esposito

November 2, 2022

Definition 1. (X_1, \mathcal{T}_1) , (X_2, \mathcal{T}_2) topological spaces with $X_1 \cap X_2 = \emptyset$. let $X = X_1 \cup X_2$, $\mathcal{T} = \{A_1 \cup A_2 \mid A_i \in \mathcal{T}_i\}$.

Lemma 1. (X, \mathcal{T}) is a topological space.

Proof. Lets verify the axioms.

1.
$$\emptyset \in \mathcal{T}_1$$
, $\emptyset \in \mathcal{T}_2 \Rightarrow \emptyset = \emptyset \cup \emptyset$
 $X_i \in \mathcal{T}_i \Rightarrow X = X_1 \cup X_2 \in \mathcal{T}$

2.
$$\{A\}_{i \in I} \in \mathcal{T} \Rightarrow A_i = A_{1,i} \cup A_{2,i}$$

 $\bigcup_{i \in I} A_i = \bigcup_{i \in I} (A_{1,i} \cup A_{2,i}) = \bigcup_{i \in I} (A_{1,i}) \cup \bigcup_{i \in I} (A_{2,i}) \in \mathcal{T}_1 \cup \mathcal{T}_2$

3.
$$A, A' \in \mathcal{T} \Rightarrow A = A_1 \cup A_2, A' = A'_1 \cup A'_2$$

 $A \cap A' = (A_1 \cup A_2) \cap (A'_1 \cup A'_2) = (A_1 \cap A'_1) \cup (A_2 \cap A'_2) \in \mathcal{T}$

Definition 2. \mathcal{T} is defined as a sum of Topologies \mathcal{T}_1 and \mathcal{T}_2 . We notice that $\forall A_i \in \mathcal{T}_i$, $A_i \cup \emptyset \in \mathcal{T}$ so \mathcal{T} contains \mathcal{T}_1 and \mathcal{T}_2 .

Definition 3. (X, \mathcal{T}) topological space $Y \subseteq X$, $Y \neq \emptyset$ $\mathcal{T}_{/Y} = \{A \cap Y \mid A \in \mathcal{T}\}$ prove that $\mathcal{T}_{/Y}$ is a topology defined as Inducted topology on Y

Definition 4. (X, \mathcal{T}) topological space, X verifies the second axiom of numerability if posseses a finite base or numerable, in that case (X, \mathcal{T}) is said \mathcal{N}_2

Proposition 1. Let \mathbb{R} be gifted by the topology with a base of the following type:

Then $(\mathbb{R}, \mathcal{T})$ is not \mathcal{N}_2

Proof. Let \mathcal{B} a base for \mathcal{T} . Let $a > 0 \in \mathbb{R}$ then $\forall x \in \mathbb{R}$, there exists $B_x \in \mathcal{B}$ with $x \in B_x \subseteq [x, x+a]$. If $y \in \mathbb{R}$ with y > x then $x \notin [y, y+a]$ so $x \notin B_y$. The application $x \in \mathbb{R} \longmapsto B_x \in \mathcal{B}$ is injective so \mathcal{B} has the continuum order. \square