PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-196488

(43) Date of publication of application: 19.07.2001

(51)Int.CL

HU11. 23/08 H01L 41/09 H03H 3/02 HO3H 9/10 HO3H 9/25

(21)Application number: 11-337875

(71)Applicant:

NEC CORP

(22)Date of filing:

29.11.1999

(72)Inventor:

SAKAI MINORU

(30)Priority

Priority number: 11304531

Priority date: 26.10.1999

Priority country: JP

(54) ELECTRONIC COMPONENT DEVICE AND MANUFACTURING METHOD THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electronic component device having a reduced outside size, reliability improved by an improvement in hermeticity and productivity improved by a reduction in manufacturing process, and produced at low cost, and a manufacturing method thereof. SOLUTION: The electronic component device has a resin base 1 integrally formed with a lead member (lead frame) 3, at least one chip 2 made of a piezoelectric substrate and mounted on the resin base 1 and electrically _directly or indirectly connected to an inner lead member (bonding pad) 3c exposed to the resin base 1 by a bonding wire 4, and a resin cap 5 for protecting the chip 2 with a hollow region A therebetween, wherein the resin cap 5 is bonded to the resin base 1. This constitution can reduce the number of manufacturing processes and the manufacturing cost as compared with an electronic component device using a conventional ceramic package.

LEGAL STATUS

[Date of request for examination]

29.11.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-196488 (P2001-196488A)

(43)公開日 平成13年7月19日(2001.7.19)

(51) Int.Cl. ⁷		識別記号	FΙ	テーマコート*(参考)
H01L	23/08		H01L 23/08	A 5J097
	41/09		H 0 3 H 3/02	B 5J108
H03H	3/02		9/10	
	9/10		9/25	Α
	9/25		HO1L 41/08	С
			審查請求 有	請求項の数11 OL (全 10 頁)

(21)出願番号 特願平11-337875

(22)出願日 平成11年11月29日(1999.11.29)

(31) 優先権主張番号 特願平11-304531

(32)優先日 平成11年10月26日(1999.10.26)

(33)優先権主張国 日本 (JP)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 境 実

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100084250

弁理士 丸山 隆夫

Fターム(参考) 5J097 AA24 AA29 AA32 FF03 HA04

HA09 JJ01 JJ03 JJ08 KK10

5J108 BB02 CC04 EE03 CG03 GG08

GG18 KK04 MM03

(54) 【発明の名称】 電子部品装置及びその製造方法

(57)【要約】

【課題】 外形寸法を小型化し、気密性向上に伴う信頼性、製造工程削減による生産性の向上、及び低価格の電子部品装置及びその製造方法を提供する。

【解決手段】 本発明に係る電子部品装置は、リード部3 (リードフレーム) と一体成形された樹脂ベース1 と、樹脂ベース1上に圧電基板からなるチップ2が少なくとも1つ搭載され、樹脂ベース1上に露出させた内部リード部3 c (ボンディングパッド) と電気的に直接あるいは間接にボンディングワイヤ4により接続し、チップ2上に中空領域Aにより保護する樹脂キャップ5を設け、当該樹脂キャップ5と樹脂ベース1とを接合することにより、従来のセラミックパッケージ等を用いた電子部品装置と比較して、製造上における工程数を削減し、低コストで提供することができる。

【特許請求の範囲】

【請求項1】 複数の端子を備えるリードフレームとー 体成形されてなる樹脂ベースと、

前記樹脂ベース上に搭載される少なくとも1つ以上の圧 電基板からなるチップと、

前記チップに外部から電気信号を印加するリード部が前 記樹脂ベースの上面に露出形成され、前記チップと前記 リード部との上面を保護する中空部を備える樹脂キャッ プとを有し、

前記樹脂ベースと前記樹脂キャップとが接合されている 10 ことを特徴とする電子部品装置。

前記樹脂ベースと前記樹脂キャップとの 【請求項2】 接合面は、同一平面であることを特徴とする請求項1記 載の電子部品装置。

【請求項3】 前記リード部の周縁は、樹脂による外囲 部が設けられていることを特徴とする請求項1または2 記載の電子部品装置。

【請求項4】 前記樹脂ベースは、該樹脂ベースの底面 にくぼみ部分が形成されていることを特徴とする請求項 1から3のいずれか1項に記載の電子部品装置。

【請求項5】 前記複数の端子は、前記リードフレーム の少なくとも2面以上に設けられていることを特徴とす る請求項1から4のいずれか1項に記載の電子部品装 置。

前記樹脂ベースは、前記チップが搭載さ 【請求項6】 れる表面あるいは内面に前記リードフレームが存在しな いことを特徴とする請求項1から5のいずれか1項に記 載の電子部品装置。

【請求項7】 前記チップと前記リード部とが接続導体 を介して対面接続されていることを特徴とする請求項1 または2記載の電子部品装置。

【請求項8】 前記対面接続は、

前記チップと前記リード部とを電気的に接続すると共 に、前記チップの実装位置を固定することを特徴とする 請求項7記載の電子部品装置。

【請求項9】 複数の端子を備えるリードフレームと樹 脂ベースとを一体成形する成形工程と、

前記成形工程により成形された前記樹脂ベース上に圧電 基板からなるチップをマウントするマウント工程と、

部リードとを電気的に接続する接続工程と、

他のリードフレームにより樹脂キャップを製造する製造 工程と、

前記製造工程により製造された前記樹脂キャップと前記 樹脂ベースとを接合する接合工程と、

外部リードとなる部分を残してリードフレームを切断す る切断工程と、

前記外部リードを階段状に折り曲げる折り曲げ工程と、 を有することを特徴とする電子部品装置の製造方法。

【請求項10】 複数の端子を備えるリードフレームと 50 いることも可能である。

樹脂ベースとを一体成形する成形工程と、

前記成形工程により成形された前記樹脂ベース上に露出 する内部リードと圧電基板からなるチップとを接続導体 を介して電気的に接続する接続工程と、

他のリードフレームにより樹脂キャップを製造する製造 工程と、

前記製造工程により製造された前記樹脂キャップと前記 樹脂ベースとを接合する接合工程と、

を有することを特徴とする電子部品装置の製造方法。

【請求項11】 前記接続工程は、

前記チップに形成される電極パターンと前記内部リード とが対面するように接続することを特徴とする請求項1 0 記載の電子部品装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子部品装置及び その製造方法に関し、特に携帯電話機等の移動通信体に 内蔵される共振器及び周波数帯域フィルタに用いられる 弾性表面波素子 (SAW) 等に適用される電子部品装置 20 及びその製造方法に関する。

[0002]

【従来の技術】従来の電子部品装置は、表面実装用のセ ラミックケースや、コールドウェルドもしくは電着によ る金属パッケージ等が使用されていた。例えば、図12 は、従来の電子部品装置としてセラミックケースを用い た場合の一実施例を示す断面図である。

【0003】図12において、従来のセラミックケース を用いた場合では、通常、最下層102と、中間層10 3と、上層104と、による積層構造をとるのが一般的 30 である。さらに、上層 1 0 4 の上部を中空領域 A を備え るキャップ106で覆う構成とするため、金属リング1 05と上層104とがロウ付けされている。チップ10 1は、最下層102の上面にて金属メッキ111が施さ れている領域に搭載される。

【0004】以上のように構成される従来のセラミック ケースにおいては、チップ101と表面実装用パッドで ある外部端子109とを電気的に接続する必要があるた め、セラミック各層(最下層102、上層104)の一 部に配線もしくはスルーホール等による内部配線110 前記マウント工程によりマウントされた前記チップと内 40 を設け、中間層103の一部に設置されたボンディング パッド108から内部配線110を通って外部端子10 9に接続されている。

> 【0005】チップ101は、水晶等により構成される 圧電基板からなり、セラミックケース内の最下層102 上にマウントされ、ボンディングワイヤ107にて当該 チップ101とボンディングパッド108とが結線され る。その後、キャップ106が金属リング105の上に 載せられ、シーム溶接等の方法により封止する。この封 止方法としては、シーム溶接以外に半田や金スズ等を用

【0006】例えば、従来例1として、実公昭56-0 15830号公報に開示される「弾性表面波装置」がある。この従来例1によれば、弾性表面波素子の外側にディップ等の方法による絶縁性樹脂層が設けられ、当該絶縁性樹脂層の外側に電気的に設置された導電性被膜が設けられた構成となっている。

【0007】また、従来例2として、特開平05-06 3495号公報に開示される「弾性表面波装置」があ る。この従来例2によれば、リードフレーム上に固着し た弾性表面波素子の上面に、樹脂モールドによる中空部 を備えた外囲器を設ける構成となっており、外囲器の内 部表面に導電層を設けて絶縁被膜により被覆して外部に 配線する場合と、外囲器に導電性樹脂を用いる場合とが 示されている。

【0008】また、従来例3として、特開平06-18 8672号公報に開示される「電子部品装置」がある。 この従来例3によれば、リードフレームをプレモールド により成形された樹脂ベースと、当該リードフレーム上 に搭載されたチップ表面を保護するために中空部を設け るようにしたキャップとをはめ合わせ、当該はめ合わせ られた周縁を樹脂によって融着する構成が示されてい る。

「【0009】さらに、上述される従来例2及び従来例3 に開示される電子部品装置は、いずれもSIP (Single In-line Package) 構造、すなわち、リードがパッケー ジの一面から直線状に出ている構成に関するものであ る。

[0010]

【発明が解決しようとする課題】しかしながら、上記従来例に示されるセラミックパッケージを用いた電子部品装置においては、内部配線の引き回し及びセラミックの積層が必要となるため、パッケージサイズもしくは結線位置を変更する度毎にパッケージ製造用の金型が必要となるという問題があった。

【0011】また、封止方法においても、シーム溶接の場合には、金属リングをセラミック上(図12の上層104)にロウ付けする必要があり、半田封止による場合においても、特殊な半田リッドを用意しなければならないため、電子部品装置の低価格化が困難であるという問題があった。

【0012】例えば、従来例1においては、弾性表面波素子の外側に絶縁性樹脂層を設けるものであるが、外部温度変化による伸縮が弾性表面波素子へと伝わり、特性変化が顕著となったり、ボンディングワイヤ断線に至りデバイス故障の原因となるという問題があった。

【0013】また、従来例2においては、内部導電膜と 囲部が設けられる導電膜とを電気的に接続する、あるいは、外囲器に 「0021】 導電性樹脂を用いる構成のため、デバイス内部からのリ いずれか1項ード線の周りを絶縁被膜により覆う必要があるため、製 樹脂ベースの造工程数が増えるといった問題や低価格のデバイスを提 50 特徴とする。

供するのが困難であるという問題があった。

【0014】また、従来例3においては、樹脂ベースと樹脂キャップとをはめ合わせた後、接合部周縁を樹脂により融着するため、接合用の樹脂量が少なすぎたり、熱硬化温度が低すぎたりすると気密性が十分にとれなかったり、反対に接合用の樹脂量が多すぎると、デバイス側面にはみ出したり、このはみ出した分が垂れてしまったりすることにより、外形寸法が変化してしまうという問題があった。

4

【0015】また、従来例2及び従来例3のようなSIP構造により形成される電子部品装置においては、パッケージの片側にピン(リード)が集中しているため、プリント基板への実装時に傾きが生じ、これによるプリント基板変形等のストレスがデバイス特性に影響したり、また、従来のセラミックパッケージによる表面実装デバイスとプリント基板とを共通化することができないため、専用のプリント基板が必要となり、生産コストの増大を招くという問題があった。

【0016】さらに、SIP構造による圧電デバイスにおいては、圧電基板からなるチップを支持するために、チップをリードフレーム上に搭載する構成が示されているが、このような構成では、デバイスとして浮遊容量が発生し、特に高周波特性に対して悪影響を及ぼし、所望のデバイス特性を得ることが非常に困難であると共に、歩溜りが悪化するという問題があった。

【0017】本発明は、上述される問題点を解消するために成されたものであり、外形寸法を小型化し、気密性向上に伴う信頼性を向上し、組み立て工程を削減することによる生産性向上、及び低価格の電子部品装置及びその製造方法を提供することを目的とする。

[0018]

【課題を解決するための手段】前記課題を解決するために、請求項1記載の発明は、複数の端子を備えるリードフレームと一体成形されてなる樹脂ベースと、樹脂ベース上に搭載される少なくとも1つ以上の圧電基板からなるチップと、チップに外部から電気信号を印加するリード部が樹脂ベースの上面に露出形成され、チップとリード部との上面を保護する中空部を備える樹脂キャップとを有し、樹脂ベースと樹脂キャップとが接合されている 20 ことを特徴とする。

【0019】請求項2記載の発明は、請求項1記載の発明において、樹脂ベースと樹脂キャップとの接合面は、同一平面であることを特徴とする。

【0020】請求項3記載の発明は、請求項1または2 記載の発明において、リード部の周縁は、樹脂による外 囲部が設けられていることを特徴とする。

【0021】請求項4記載の発明は、請求項1から3の いずれか1項に記載の発明において、樹脂ベースは、該 樹脂ベースの底面にくばみ部分が形成されていることを 特徴とする

【0022】請求項5記載の発明は、請求項1から4の いずれか1項に記載の発明において、複数の端子は、リ ードフレームの少なくとも2面以上に設けられている

こ とを特徴とする。

【0023】請求項6記載の発明は、請求項1から5の いずれか1項に記載の発明において、樹脂ベースは、チ ップが搭載される表面あるいは内面にリードフレームが 存在しないことを特徴とする。

【0024】請求項7記載の発明は、請求項1または2 記載の発明において、チップとリード部とが接続導体を 介して対面接続されていることを特徴とする。

【0025】請求項8記載の発明は、請求項7記載の発 明において、対面接続は、チップとリード部とを電気的 に接続すると共に、チップの実装位置を固定することを 特徴とする。

【0026】請求項9記載の発明は、複数の端子を備え るリードフレームと樹脂ベースとを一体成形する成形工 程と、成形工程により成形された樹脂ベース上に圧電基 板からなるチップをマウントするマウント工程と、マウ ント工程によりマウントされたチップと内部リードとを *20* 電気的に接続する接続工程と、他のリードフレームによ り樹脂キャップを製造する製造工程と、製造工程により 製造された樹脂キャップと樹脂ベースとを接合する接合 工程と、外部リードとなる部分を残してリードフレーム を切断する切断工程と、外部リードを階段状に折り曲げ る折り曲げ工程と、を有することを特徴とする。

【0027】請求項10記載の発明は、複数の端子を備 えるリードフレームと樹脂ベースとを一体成形する成形 工程と、成形工程により成形された樹脂ベース上に露出 する内部リードと圧電基板からなるチップとを接続導体 を介して電気的に接続する接続工程と、他のリードフレ 一ムにより樹脂キャップを製造する製造工程と、製造工 程により製造された樹脂キャップと樹脂ベースとを接合 する接合工程と、を有することを特徴とする。

【0028】請求項11記載の発明は、請求項10記載 の発明において、接続工程は、チップに形成される電極 パターンと内部リードとが対面するように接続すること を特徴とする。

【0029】〈作用〉本発明によれば、リードフレーム 樹脂ベースと、当該樹脂ベース上に露出形成されたリー ド部とチップとを中空領域により保護する樹脂キャップ とを接合することにより、製造工程を簡略化し、低価格 で、かつ小型化でき、信頼性を備えた電子部品装置を実 現する。

[0030]

【発明の実施の形態】次に、添付図面を参照して本発明 に係る電子部品装置及びその製造方法の実施の形態を詳 細に説明する。図1から図11を参照すると、本発明の 実施形態である電子部品装置及びその製造方法が示され 50

ている。

【0031】〈第1の実施形態〉図1は、本発明の第1 の実施形態である電子部品装置の概略構成を示すパッケ ージの断面図である。図1において、本発明の第1の実 施形態である電子部品装置は、不図示のリードフレーム と樹脂ベースとをプレモールドにより一体成形された樹 脂ベース1と、樹脂ベース1上に搭載される圧電基板か らなるチップ2と、チップ2に対して外部から電気信号 を直接的または間接的に印加するリード部(リードフレ ーム) 3と、このリード部3のうちボンディングパッド となる内部リード部3cが樹脂ベース1の上面に露出形 成され、チップ2と内部リード部(ボンディングパッ ド)3 cとを電気的に接続するボンディングワイヤ4 と、チップ2と内部リード部3c及びボンディングワイ ヤ4とを保護するための中空領域Aを備える樹脂キャッ プ5とを有し、樹脂ベース1と樹脂キャップ5とを接合 面Bにて接合して形成される。

6

【0032】本発明の第1の実施形態においては、圧電 基板として水晶基板を用い、当該水晶基板上に櫛形状の アルミニウム電極パターンが配置された弾性表面波素子 (SAW) によりチップ2を形成している。このチップ 2を形成する圧電基板としては、例えば、用途によって リチウムナイオベート基板やリチウムタンタレート基板 等を用いることも可能である。

【0033】電極材料としては、アルミニウムを用いて いるが、アルミニウム-銅合金等の材料を用いることも 可能である。

【0034】チップ2は、リードフレームと一体成形さ れた樹脂ベース1上に、シリコン系接着剤を用いて固着 されているが、この他の接着材料としてエポキシ系接着 剤、銀ペースト等を用いることができる。

【0035】リード部3(外部リード部3a、折り曲げ リード部3b、内部リード部3c)は、銅ー鉄合金を用 いているが、この他にも鉄ーニッケル合金等の通常の半 導体装置に使用されるものを用いることも可能である。

【0036】チップ2と内部リード部3cとは、金やア ルミニウム等のボンディングワイヤ4により電気的に接 続されている。

【0037】チップ2を形成する弾性表面波素子の上面 と一体成形され、圧電基板からなるチップを搭載された 40 を中空領域Aにより保護するための樹脂キャップ5は、 エポキシ樹脂のような熟硬化性樹脂やポリフェニレンサ ルファイド樹脂のような熱可塑性樹脂を用いることも可 能である。

> 【0038】樹脂ベース1と樹脂キャップ5との接合面 Bは、パッケージの気密性を保持するために熱硬化性樹 脂が用いられているため、封止を容易に行うことができ る。

> 【0039】内部リード3cは、リードフレーム形成時 にあらかじめチップ2の両側に形成されているので、表 面実装が可能な弾性表面波素子を実現することができ

る。

【0040】(第2の実施形態)図2は、本発明の第2 の実施形態である電子部品装置のパッケージ構成を示す 断面図である。図2において、リード部3は、外部リー ド部3 a から折り曲げリード部3 b 、内部リード部3 c へと至る形状にあらかじめ形成された後、樹脂ベース1 と一体成形され、内部リード部3 cが樹脂ベース1の上 面に露出形成される。

【0041】上述される第1の実施形態においては、外 部リード部3aが樹脂ベース1の外側に向けて折り曲げ 10 られる構成であったが、第2の実施形態では、この外部 リード部3aを樹脂ベース1の底面側に折り曲げるよう に形成されている。

【0042】チップ2は、シリコン接着剤を用いて樹脂 ベース1上にマウントされる。このシリコン接着剤は、 あらかじめ弾性表面波素子からなるチップ2上に途布さ れているものとする。

【0043】ボンディングワイヤ4は、チップ2と樹脂 ベース1の上面に露出形成された内部リード部(ボンデ 続する。

【0044】次に、別のリードフレームにより成形され た樹脂キャップ 5を製造し、エポキシ系接着剤により接 着することにより封止する。

【0045】この他の材料としては、上述される第1の 実施形態にて用いられる方法、及び材料により、本発明 の第2の実施形態である電子部品装置を製造することが できる。

【0046】本発明の第2の実施形態によれば、リード することにより、外部リード部 (リード先端) 3 a が表 面実装パターンとなり、表面実装が可能となると共に、 実装時における半田付け等の効率を向上することができ る。

【0047】〈第3の実施形態〉図3は、本発明の第3 の実施形態である電子部品装置のパッケージ構成を示す 断面図である。図3において、リード部3は、外部リー ド部3 a から折り曲げリード部3 b 、内部リード部3 c へと至る形状をあらかじめ作成された後、プレモールド が樹脂ベース1の上面に露出形成される。

【0048】折り曲げリード部3bは、樹脂ベース1の 内部に形成され、外部リード部 (リード先端) 3 a は、 樹脂ベース1の底面から露出するように形成される。

【0049】チップ2は、シリコン接着剤を用いて樹脂 ベース1上にマウントされる。このシリコン接着剤は、 あらかじめチップ2上に塗布されているものとする。

【0050】ボンディンワイヤ4は、チップ2と樹脂べ ース1の上面に露出形成された内部リード部(ボンディ ングパッド)3cとを接続する。

【0051】次に、別のリードクレームにより成形され た樹脂キャップ5を製造し、エポキシ系接着剤により接 着し、封止する。

【0052】この他の材料としては、上述される第1及 び第2の実施形態にて用いられる方法、及び材料によ り、本発明の第3の実施形態である電子部品装置を製造 することができる。

【0053】本発明の第3の実施形態によれば、リード フレームを切断し、図示されるようにリードを成形する ことにより、外部リード部(リード先端)3 a が表面実 装パターンとなり、表面実装が可能となる。

【0054】〈第4の実施形態〉図4は、本発明の第4 の実施形態である電子部品装置のパッケージ構成を示す 断面図である。図4において、リード部3は、外部リー ド部3aから折り曲げリード部3b、内部リード部3c に至る形状をあらかじめ作成された後、プレモールドに より樹脂ベース1と一体成形され、内部リード部3 c が 樹脂ベース1の上面に露出形成される。外部リード部3 aは、樹脂ベース1の底面側から露出するように形成さ ィングパッド)3cとをボンディングワイヤ4により接 20 れ、樹脂ベース1の側面に接するように折り曲げられて いる。

> 【0055】上述される第3の実施形態においては、折 り曲げリード部3bが樹脂ベース1の底面から露出する ように形成され、該底面に沿って樹脂ベース1の外側に 向けて折り曲げられる構成であったが、第4の実施形態 では、この外部リード部3aを樹脂ベース1の側面に接 するように折り曲げられて形成されている。

【0056】チップ2は、シリコン接着剤を用いて樹脂 ベース1上にマウントされる。このシリコン接着剤は、 フレームを切断し、図示されるようにリード部3を形成 *30* あらかじめ弾性表面波素子からなるチップ2上に塗布さ れているものとする。

> 【0057】ボンディングワイヤ4は、チップ2と樹脂 ベース1の上面に露出形成された内部リード部(ボンデ ィングパッド) 3 cとをボンディングワイヤ4により接 続する。

> 【0058】次に、別のリードフレームにより成形され た樹脂キャップ5を製造し、エポキシ系接着剤により接 着することにより封止する。

【0059】この他の材料としては、上述される第1か により樹脂ベース1と一体成形され、内部リード部3 c 40 ら第3の実施形態にて用いられる方法、及び材料によ り、本発明の第4の実施形態である電子部品装置を製造 することができる。

> 【0060】本発明の第4の実施形態によれば、リード フレームを切断し、図示されるようにリード部3を形成 することにより、外部リード部(リード先端)3 a が表 面実装パターンとなり、表面実装が可能となると共に、 実装時における半田付け等の効率を向上することができ る。

【0061】〈第5の実施形態〉図5は、本発明の第5 50 の実施形態である電子部品装置のパッケージ構成を示す 断面図である。図5において、リード部3は、外部リード部 (リード先端) 3 a から折り曲げリード部3 b、内部リード部3 cへと至る形状をあらかじめ作成する。これは、折り曲げリード部3 b及び内部リード部3 cの合計の長さの部分をリードフレーム上にくり抜き、90度の曲げを2回繰り返す等の方法により形成される。このようにして形成されたリードフレームと樹脂ベース1と

【0062】この場合に、内部リード部3cは、樹脂ベース1の表面に形成され、外部リード部(リード先端)3aは、樹脂ベース1の底面に露出するように形成される。なお、この外部リード部(リード先端)3aは、必用に応じて適宜折り曲げて使用することが可能である。

を一体成形する。

【0063】この他の材料としては、上述される第1~ 第4の実施形態にて用いられる方法、及び材料により、 本発明の第5の実施形態である電子部品装置を製造する ことができる。

【0065】 (第6の実施形態) 図6は、本発明の第6の実施形態である電子部品装置のパッケージ構成を示す断面図である。図6において、リード部3は、外部リード部 (リード先端) 3 a から折り曲げリード部3 b、内部リード部3 cへと至る形状をあらかじめ作成する。これは、折り曲げリード部3 b及び内部リード部3 cの合計の長さの部分をリードフレーム上にくり抜き、90度の曲げを2回繰り返す等の方法により形成される。このようにして形成されたリードフレームと樹脂ベース1とを一体成形する。

【0066】この場合に、内部リード部3cは、樹脂ベース1の表面に形成され、外部リード部(リード先端)3aは、樹脂ベース1の底面に露出するように形成され、樹脂ベース1の側面に接するように折り曲げられて形成されている。

【0067】上述される第5の実施形態においては、折り曲げリード部3bが樹脂ベース1の底面から露出するように形成され、該底面に沿って樹脂ベース1の外側に向けて折り曲げられる構成であったが、第6の実施形態 40では、この外部リード部3aを樹脂ベース1の側面に接するように折り曲げるように形成されている。

【0068】この他の材料としては、上述される第1~第5の実施形態にて用いられる方法、及び材料により、本発明の第6の実施形態である電子部品装置を製造することができる。

【0069】本発明の第6の実施形態によれば、リードフレームを切断し、図示されるようにリード部3を成形することにより、外部リード部(リード先端)3 a が表面実装パターンとなり、表面実装が可能となると共に、

実装時における半田付け等の効率を向上することができる。

【0070】〈第7の実施形態〉図7は、本発明の第7の実施形態である電子部品装置のパッケージ構成を示す断面図である。図7に示されるように、リード部3と樹脂ベース1とは、プレモールドにより一体成形されている。

【0071】この際に、内部リード部3cは、樹脂ベース1の上面に露出形成されている。また、内部リード部3cの外周には、樹脂ベース1により形成される外囲部6を設けている。

【0072】チップ2は、シリコン接着剤を用いて樹脂ベース1上にマウントされる。このシリコン接着剤は、あらかじめチップ2上に塗布されているものとする。

【0073】ボンディングワイヤ4は、チップ2と樹脂ベース1の上面に露出形成された内部リード部(ボンディングパッド)3cとを接続する。

【0074】次に、別のリードフレームにより成形された樹脂キャップ5を製造し、エポキシ系接着剤により接着し、封止する。

【0075】この他の材料としては、上述される第1~ 第6の実施形態にて用いられる方法、及び材料により、 本発明の第7の実施形態である電子部品装置を製造する ことができる。

【0076】本発明の第7の実施形態によれば、リードフレームを切断し、図示されるようにリード部3を形成することにより、外部リード部(リード先端)3aが表面実装パターンとなり、表面実装が可能となると共に、外囲部6がボンディング面よりも高くなるようになっているため、ヘニみの浅い樹脂キャップ5を用いた場合でも、ボンディングワイヤ4との余分なクリアランスがとれるので、容易に電子部品装置を製造することができる。

【0077】この外囲部6における高さは、高ければ高いほどボンディングワイヤ4とのクリアランスを十分にとることができるがが、ボンディング装置のウェッジが動作可能な範囲に設定されることが望ましい。

【0078】以上のように、本発明の第7の実施形態によれば、外囲部6を設けることにより、厚みの薄い樹脂キャップを用いた場合でも製造が可能となり、安価な電子部品装置を製造できる。

【0079】また、本発明の第7の実施形態において、 樹脂ベース1の底面に沿って折り曲げられている外部リード部3aは、樹脂ベース1の底面側に向けて折り曲げることも適宜可能であり、さらに折り曲げられた状態で 一体成形することも可能である。

【0080】 (第8の実施形態) 図8は、本発明の第8 の実施形態である電子部品装置のパッケージ構成を示す 断面図である。本発明の第8の実施形態である電子部品 50 装置は、リード部3と樹脂ベース1とがプレモールドに より一体成形され、図示されるような断面形状、すなわ ち樹脂ベース1の底面にくぼみ7を設けるように形成す る。

【0081】上述のくぼみ7を形成する具体的な方法と しては、一体成形する金型上に突起を設け、当該突起を 樹脂ベース1に転写することによりくぼみ7を設けるも のである。この際に、内部リード部3 c は、樹脂ベース 1の上面に露出するように形成される。

【0082】また、別の方法としては、樹脂ベース1を 形成した後、機械的な加工(例えば、エンドミル等)に 10 よりくばみ7を形成することも可能である。

【0083】チップ2は、シリコン接着剤を用いて樹脂 ベース1上にマウントされる。このシリコン接着剤は、 あらかじめチップ2上に塗布されているものとする。

【0084】ボンディングワイヤ4は、チップ2と樹脂 ベース1の上面に露出形成された内部リード (ボンディ ングパッド)3cとを接続する。

【0085】次に、別のリードフレームにより成形され た樹脂キャップ5を製造し、エポキシ系接着剤により接 着し、封止する。

【0086】この他の材料としては、上述される第1~ 第7の実施形態にて用いられる方法、及び材料により、 本発明の第8の実施形態である電子部品装置を製造する ことができる。

【0087】本発明の第8の実施形態によれば、リード フレームを切断し、図示されるようにリード部3を形成 することにより、外部リード部3aが表面実装パターン となり、表面実装が可能となる。

【0088】また、本発明の第8の実施形態において は、樹脂ベース1の底面にくぼみ7を設けることによ り、従来のセラミックパッケージと比較した場合に、弱 い機械的強度を補強し、曲げや振動等によるデバイスの 信頼性を向上することができる。

【0089】上述されるいずれの実施形態において、少 なくとも圧電基板からなるチップを搭載する樹脂ベース の表面あるいは内部には、リードフレーム等により形成 される金属パターンは存在せず、金属パターンから生じ る等価的浮遊容量による外乱が生じず、所望の電子部品 装置を得ることができる。

【0090】また、圧電基板以外に、抵抗、コンデン サ、インダクタンス等の電子部品を樹脂ベース上に搭載 し、中空部を保護として樹脂キャップと接合することで 製造され、モジュール化した電子部品装置においても同 様の効果が得られる。

【0091】次に、本発明の実施形態である電子部品装 置の製造方法を図9のフローチャートに基づいて説明す る。図9において、リードフレームと樹脂ベースとを一 体成形する(ステップS1)。この一体成形された樹脂 ベース上に弾性表面波素子からなるチップをマウントす る (ステップS2)。この際に、樹脂ベースには、あら 50 【0100】接続導体8としては、例えば、金、銅、あ

かじめシリコン系接着剤を塗布しておき、その上にチッ プを載せるものである。

12

【0092】ステップS2において、チップがマウント されると、ボンディングワイヤでチップと内部リード部 とを電気的に接続する(ステップS3)。別のリードフ レーム等により成形された樹脂キャップを製造し(ステ ップS4)、この樹脂キャップと樹脂ベースとを熱硬化 性樹脂を用いて接合させる(ステップS5)。外部リー ド部となる部分を残してリードフレームを切断した後、 リードを階段状に折り曲げる(ステップS6)。

【0093】(第9の実施形態)図10は、本発明の第 9 の実施形態である電子部品装置の概略構成を示すパッ ケージの断面図である。図10において、本発明の第9 の実施形態である電子部品装置は、リードフレームと樹 脂ベースとをプレモールドにより一体成形された樹脂ベ ース1と、圧電基板からなるチップ2と、チップ2に対 して外部から電気信号を直接的または間接的に印加する リード部(リードフレーム)3と、チップ2を保護する ための中空領域Aを備える樹脂キャップ5と、チップ2 20 とリード部3とを電気的に接続する接続導体8とを有 し、樹脂ベース1と樹脂キャップ5とを接合面Bにて接 合して形成される。.

【0094】本発明の第9の実施形態では、上述される 本発明の第1から第8の実施形態において、チップ2に 形成される電極パターンの実装向きが、樹脂キャップ 5 側(上向き)に実装されていたのに対し、樹脂ベース1 側、すなわち、下向きになるように実装するものであ る。

【0095】本発明の第9の実施形態においては、圧電 基板として水晶基板を用い、当該水晶基板上に櫛形状の アルミニウム電極パターンが配置された弾性表面波素子 (SAW)によりチップ2を形成している。このチップ 2を形成する圧電基板としては、例えば、用途によって リチウムナイオベート基板やリチウムタンタレート基板 等を用いることも可能である。

【0096】電極材料としては、アルミニウムを用いて いるが、アルミニウムー銅合金等の材料を用いることも 可能である。

【0097】チップ2は、櫛形状のアルミニウム電極パ 40 ターン (チップパターン) 面が下向きになるように配さ れ、接続導体8を介して内部リード部3 c に接続され る。

【0098】リード部3(外部リード部3a、折り曲げ リード部3b、内部リード部3c)は、銅ー鉄合金を用 いているが、この他にも鉄ーニッケル合金等の通常の半 導体装置に使用されるものを用いることも可能である。

【0099】また、接続導体8を介して接続される内部 リード部3cは、電気的接続部分のみ金メッキを施すこ とにより、接続信頼性を確保している。

るいは半田などが用いられ、あらかじめ内部リード部3 cに設けておいてもよいし、チップ2上に設けておくこ とも可能である。

【0101】チップ2を形成する弾性表面波素子の上面 を中空領域 Aにより保護するための樹脂キャップ 5 は、 エポキシ樹脂のような熱硬化性樹脂やポリフェニレンサ ルファイド樹脂のような熱可塑性樹脂を用いることも可 能である。

【0102】樹脂ベース1と樹脂キャップ5との接合面 Bは、パッケージの気密性を保持するためのパッケージ 10 接着剤として熱硬化性樹脂が用いられているため、封止 を容易に行うことができる。

【0103】本発明の第9の実施形態によれば、チップ 2をパッケージ内部で下向きに実装することができるの で、組み立て工程においてチップ表面を傷つけることを 抑止し、信頼性の高い組み立てが行えると共に、接着剤 を用いることなくチップの実装位置をパッケージ内部で 固定でき、さらに、ボンディングワイヤを削除すること により、ワイヤーループによる制約が取り除かれるの で、チップ2の電極パターンが形成されない裏面に樹脂 キャップ5が近接して形成された場合でも、電気特性、 機構的にも問題はない。従って、昨今のモバイル市場で |要求される部品の小型化、特に実装時における低背高化 にも充分に対応することができる。

【0104】また、本発明の第9の実施形態において、 外部リード部(リード先端) 3 a が樹脂ベース1の底面 に露出するように形成されているが、当該外部リード部 3aを樹脂ベース1の底面側、あるいは、樹脂ベース1 の側面側に折り曲げて構成することも可能である。

【0105】次に、本発明の第9の実施形態である電子 *30* パッケージ構成を示す断面図である。 **部品装置の製造方法を図11のフローチャートに基づい** て説明する。図11において、リードフレームと樹脂べ ースとを一体成形する(ステップS11)。この一体成 形された樹脂ベース上に形成されている内部リード部と チップパターン面を下向きにしたチップと接続導体を介 して接続する(ステップS12)。

【0106】ステップS12において、チップと内部リ ード部とが接続導体を介して電気的に接続されると、別 のリードフレーム等により成形された樹脂キャップを製 造し(ステップS13)、この樹脂キャップと樹脂ベー 40 パッケージ構成を示す断面図である。 スとを熱硬化性樹脂を用いて接合させる (ステップS1 4)

【0107】なお、上述される各実施形態は、本発明の 好適な実施形態であり、本発明の要旨を逸脱しない範囲 内において種々変形実施することが可能である。

[0108]

【発明の効果】以上の説明より明らかなように、本発明 の電子部品装置及びその製造方法によれば、リードフレ 一ムと一体成形された樹脂ベースと、当該樹脂ベース上 に圧電基板からなるチップが少なくとも1つ搭載され、

樹脂ベース上に露出させたボンディングパッドと電気的 に直接的、あるいは間接的に接続し、チップ上に中空部 からなる保護部を設けて樹脂キャップと樹脂ベースとを 接合することにより、従来のセラミックパッケージ等を 用いた電子部品装置と比較して、製造上における工程数

【0109】また、本発明の電子部品装置及びその製造 方法によれば、信頼性の点においても従来のセラミック パッケージと同等の封止性並びに気密性を得ることがで きるので、高信頼性の電子部品装置及びその製造方法を 提供することができる。

を削減し、低コストで提供することができる。

【0110】また、本発明の電子部品装置及びその製造 方法によれば、チップ上に形成される電極パターン面を 下向きに実装することができるので、組み立て工程時に おいてチップ表面が破損するといった危険性を抑止する ことができる。

【0111】また、本発明の電子部品装置及びその製造 方法によれば、チップを下向きに実装する際に、接続導 体により樹脂ベースへの機械的接着と電気的接合を同時 に行うことができるので、製造上における工程数を削減 し、低コストで提供することができる。

【0112】さらに、本発明の電子部品装置及びその製 造方法によれば、チップを固定するための接着剤及び電 気的接続を図るためのボンディングワイヤを設ける必要 がないので、安価で且つ低背高化を実現できる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態である電子部品装置の パッケージ構成を示す断面図である。

【図2】本発明の第2の実施形態である電子部品装置の

【図3】本発明の第3の実施形態である電子部品装置の パッケージ構成を示す断面図である。

【図4】本発明の第4の実施形態である電子部品装置の パッケージ構成を示す断面図である。

【図5】本発明の第5の実施形態である電子部品装置の パッケージ構成を示す断面図である。

【図6】本発明の第6の実施形態である電子部品装置の パッケージ構成を示す断面図である。

【図7】本発明の第7の実施形態である電子部品装置の

【図8】本発明の第8の実施形態である電子部品装置の パッケージ構成を示す断面図である。

【図9】本発明の実施形態である電子部品装置の製造方 法を示すフローチャートである。

【図10】本発明の第9の実施形態である電子部品装置 のパッケージ構成を示す断面図である。

【図11】本発明の第9の実施形態である電子部品装置 の製造方法を示すフローチャートである。

【図12】従来の電子部品装置のパッケージ構成を示す 50 断面図である。

【符号の説明】

- 1 樹脂ベース
- 2 チップ
- 3 リード部
- 3 a 外部リード部
- 3 b 折り曲げリード部

3 c 内部リード部

- 4 ボンディングワイヤ
- 5 樹脂キャップ
- A 中空領域
- B 接合面

[図1]

1.5

[図2]

【図3】

【図4】

[図5]

[図6]

【図12】

