Rime®

LoRaSystem

锐米 LoRa-TDMA 技术白皮书

1 背景概述

无线通信技术在物联网应用中大致分为三大阵营,它们的特征如下表所示:

无线技术	市场份额	适合场景 不适合	
2G/3G/4G	10%	长距离, 高速率	电池供电,低价格
WiFi/ZigBee/BT	35%	短距离,室内通信	电池供电,长距离
LoRa 等	55%	长距离,低价格,低功耗	高速率

LoRa 以其"一长三低"(长距离,低功耗,低价格,低速率)的特点,特别适应大量的物联网需求:表计集抄、资产管理、环境监测等场合。

锐米 LoRa 系统实现"端管云"三个层次的产品系列,便捷地将 Smart Object (智能物体)接入 Internet,实现"低成本,高可靠"的物联网解决方案,主要应用如下:

主要功能	应用场景
采集数据	能源表计、工业测量、环境监测、资产管理
远程控制	开关:灯光、电机、阀门、门禁等

2 系统优点

2.1 超低功耗唤醒

支持超低功耗唤醒技术,特别适合:终端电池供电,同时需要支持用户远程控制。 基于 CAD 和地址过滤技术,节能高效;支持广播和单播唤醒,灵活便捷。

2.2 超长通信距离

空旷环境可覆盖半径 5km 的区域, 抗干扰和链路稳定性优于 FSK 技术。

2.3 超低功耗

基于超低功耗设计,终端休眠功耗低至 1.4uA,特别适合电池供电的产品。典型的抄表应用中,2 节 5 号电池可以有效工作 10 年。

2.4 TDMA(时分复用)

基于 TDMA (时分复用) 通信技术,网络内所有终端通信**无碰撞**,最大化利用带宽,没有重传延时,提高网络整体 QoS,降低网络整体功耗。

2.5 自组网

仅需对网关进行简单配置;终端不用配置与维护,与网关自动组网,极大降低用户的使用复杂度和维护成本。

2.6 健壮性

内嵌多种无线通信健壮性技术,智能解决:通信碰撞、微弱信号、外界干扰、断网继连等挑战,提供一个长期稳定运营的物联网系统。

3 产品架构

锐米 LoRa 系统在物联网的"端管云"系统中,主要提供"管道",将 Smart Object 接入 Internet。为此,提供如表 3-1 的产品;为帮助用户使用该系统,提供表 3-2 的资源;系统整体架构如图 3-1 所示。

表 3-1 提供产品

产品	接口	第功能			
	Ethernet	主动上报+唤醒下发			
锐米 LoRa 网关	RS485	主动上报+唤醒下发			
锐米 LoRa 终端	UART	主动上报+唤醒下发			

表 3-2 提供资源

产品	资源	用途		
云服务器	测试云平台、开发源代码、接口协议	方便网关接入云服务器		
DEMO	DEMO 板、软件源代码、原理图/PCB/BOM	方便用户系统接入终端		

图 3-1 锐米 LoRa 系统整体架构

4 应用场景

4.1 采集数据

如图 4-1 所示:电/水/燃气表计、温湿度、烟雾、PM2.5 和红外线的传感器数据都需要接入 Internet,即 WSN(Wireless Sensor Network)无线传感器网络。一般而言,传感器数据具备:采集量少、间隔均匀、主动上报的特点,锐米 LoRa系统满足此应用需求。

图 4-1 采集数据

锐米LoRa采集系统拓扑图

4.2 远程控制

图 4-2 远程控制

锐米LoRa远程控制拓扑图

现实应用中,需要远程控制设备:路灯、广告灯、空调、电机、阀门、门禁和开关等。这种通信拓扑如图 4-2 所示,需要支持唤醒下发,即:平时 LoRa 终端处于休眠节能状态,远程控制时,唤醒该终端并通信。

4.3 采集+控制

如图 4-3 所示,有这样一类设备: 电/水/燃气表计、精密机床、中央空调、农业灌溉、智能路灯等,它们既需要"主动上报"传感器数据,又需要"唤醒下发"实现远程控制: 锐米 LoRa 系统支持这 2 种通信需求。

图 4-3 采集+控制

锐米LoRa采集+控制系统拓扑图

5 功能指标

5.1 通信距离

基于 LoRa ™扩频调制技术,安装高增益 470MHz 天线,网关与终端有效通信 距离空旷可达 5km。网关和终端可以设置空中速率档位,它的规律是: 距离越远, 速率越低。以下是实测数据:

模式	空中速率	空空传输	小区环境	楼道通信
远距离	443bps	5000m	绕射 4 栋 32 层建筑物,120m	36 层
中距离	2876bps	2000m	绕射 3 栋 32 层建筑物,100m	20 层
近距离	20334bps	1000m	绕射 2 栋 32 层建筑物,90m	10 层

5.2 通信速率

同一个子网(星型网)内,所有终端共享 LoRa 无线带宽,如"远距离"模式下,整个子网的最大带宽为 443bps,保留给用户最大 95% (420bps)使用带宽(无线通信协议消耗部分带宽),体现 LoRa"长距离,低速率"的特征。

5.3 终端功耗

对于电池供电的无线通信设备,功耗是极为重要的指标。锐米 LoRa 终端基于超低功耗设计,在硬件选型和软件节能上做足功夫。终端功耗指标如下:

工作模式	测试条件	最大值	典型值	最小值	单位
低功耗模式	射频关闭,MCU 休眠		1.4		μA
CAD 侦听	射频侦听,MCU 运行	11.3	7	6.7	mA
接收模式	射频接收,MCU 运行	17.3	13	12.7	mA
发送模式	射频发送,MCU 运行	92.3	88	87.7	mA

5.4 主动上报

同信道无线通信一般有 CSMA 和 TDMA 两大技术。考虑到 LoRa 远距离时速率 较低(小于 1kbps)而采集系统天生具备定时上报的特性,我们选用 TDMA 做为主动上报技术。

图 5-1 TDMA 示意图

它的原理如图 5-1 所示: N 个终端将一段时间分成 N 个时隙(Slot),每个终端在自己分配的时隙与网关通信。时隙(Slot)依赖于:通信速率和主动上报数据长度,它的实例如表 5-1 所示。

根据大量的实测和应用,我们坚信这是符合 LoRa 特性的。实际上,当网络负荷达到中载(带宽利用率超过 50%)时,CSMA 的效率大减且耗能增大,因为大量的终端通信冲突,不得不延时重传。

表 5-1 时隙(Slot)实例

速率	1Byte(ms)	10Byte(ms)	100Byte(ms)	247Byte(ms)
高	93	97	130	184
中	213	234	469	848
低	1390	1472	2947	5404

5.5 唤醒下发

唤醒通信大致分成4种情形,它们的功耗和时间分别如图5-2和表5-2所示。

- ① 没有唤醒:终端 CAD 侦听信道空闲,立即进入休眠;
- ② 单播唤醒,地址不是自身:终端执行地址过滤,立即进入休眠;
- ③ 广播唤醒:终端打开射频,接收完广播数据帧,再进入休眠;
- ④ 单播唤醒,地址是自身:终端接收数据帧,回复 ACK 帧,最后进入休眠。

表 5-2 唤醒通信时间

\+ →:	T ()	Tcad(ms) Trx1(ms)	Trx2(ms)(依赖数据长度)			Ttx(ms) (依赖 ACK 长度)		
速率	Tcad(ms)		1Byte	10Byte	247Byte	1Byte	10Byte	247Byte
高	21	25	50	53	140	25	29	115
中	26	62	114	145	749	62	83	687
低	201	414	828	992	4842	414	578	4510

图 5-2 唤醒通信终端功耗

5.6 子网划分

用户可以划分不同频段来组织不同的子网,这就是 FDMA(频分复用)技术。如: 一个子网工作在 470MHz,另一个子网工作在 471MHz,这 2 个子网互不干扰。每一个频段称为一个信道,网关信道划分与空中速率档位有如下对应关系:

模式	信道带宽	常用实例				
远距离, 低速率	200kHz	469.8MHz	470.0MHz	470.2MHz		
中距离,中速率	300kHz	469.7MHz	470.0MHz	470.3MHz		
近距离, 高速率	1000kHz	469.0MHz	470.0MHz	471.0MHz		

6 使用导航

尽管我们最大可能地降低使用 LoRa 系统的复杂度,毕竟它是一个物联网系统, 具备一些评估和开发工作量。一般而言,一种无线网络只适应某些通信需求,因 此,我们建议用户按"三步走"方法规划物联网。

第一步: 提取需求,按"距离、带宽、功耗、规模、拓扑和成本"规划无线网络;

第二步: 采购 1 套锐米 LoRa 系统,评估是否满足需要建设的物联网,详情请参阅《评估与开发锐米 LoRa-TDMA 导航图》

第三步:将 Smart Object (Sersor or Actuator)连接锐米 LoRa 终端,将 Cloud 连接锐米 LoRa 网关,组建一个物联网系统。

Rime®

LoRaSystem

销售与服务

公司名称:长沙市锐米通信科技有限公司

公司网站: www.rimelink.com

产品销售: sales@rimelink.com

技术支持: support@rimelink.com

联系电话: 0731-82231246

公司地址:长沙市普瑞大道 278 号 48 座 2504