CIS 350 - INFRASTRUCTURE TECHNOLOGIES

SMALL GROUP ACTIVITY #7 (EXTRA CREDIT)

Names: Brooklynn Taylor, Dylan Lasley, Jonathan McCarrick, Zoe Druen

Topic: Address translation under segmentation, paging, and segmentation and Paging (Translation of virtual addresses to physical addresses)

Logistics

- 1. Get in touch with your group. (See Groups folder on Blackboard.)
- 2. Discuss and complete the assignment together via E-mail, Discussion Forum, Blackboard Collaborate Ultra, and/or MS Teams.
- 3. Choose a recorder to prepare the final copy (<u>one</u> per group) and submit it via the Blackboard Assignments/Small Group Activities folder to the instructor.
- 4. Be sure all group members' names are on final copy. Do <u>not</u> add names of your group classmates who did not participate in the assignment.

I. Assignment

Work 3 problems on address translation under (1) segmentation, (2) paging, and (3) segmentation and paging.

In particular, your job has the following sections:

- A. Allocate space for the program when it is loaded
 - 1. Find the memory space to use
 - 2. Create the appropriate segment or page tables
- B. Perform address translation during I-time (Instruction time)
 - Calculate the physical address from the virtual address under Segmentation, paging, and segmentation and paging

Note: Clarification on I-time. In the computer, instructions are executed in machine cycles. The machine cycle consists of I-time (Instruction time - Fetch Phase) and E-time (Execution time - Execution Phase). During I-time the instruction is fetched from memory to the instruction register (Fetch Phase). During E-time the instruction is executed (Execution Phase). Address translation is performed during I-time before the instruction is executed. I-time works with virtual addresses, whereas E-time operates on physical addresses.

HANDY CHART TO HELP WITH ADDRESSING

0K = 0	7K = 7168	14K = 14336
1K = 1024	8K = 8192	15K = 15360
2K = 2048	9K = 9216	16K = 16384
3K = 3072	10K = 10240	17K = 17408
4K = 4096	11K = 11264	18K = 18432
5K = 5120	12K = 12288	19K = 19456
6K = 6144	13K = 13312	20K = 20480

MEMORY MAP FOR SEGMENTATION

	Start Address		Length		Status	
	20K		8K		1	
ĺ	28K	ĺ	16K	İ	0 1 ←	seg #0
ĺ	44K	ĺ	16K	ĺ	1	
	60K		4K	I	0 1 ←	seg #1
	64K		12K	1	0 1 ←	seg #2
	76K		10K	1	1	
	86K		12K	I	0 1 ←	seg #3
	98K		10K	I	1	
1_		I		I		I

PROBLEM 1

- 1. Load Program A 4 segments: seg 0 = size 15K, 1=4K, 2=6K, 3=10K
- 2. Create Segment Table

Seg #	Starting address
0	28672
1	61440
2	65536
3	88064

3. Find the physical address of virtual address | 0 | 50 |seg# disp.

28672 + 50 = 68722

PAGE FRAME TABLE FOR PAGING

		<u> </u>		Ī
PAGE	PROGRAM ID	PAGE	STATUS	İ
FRAME #		NUMBER		1
				1
0	Operating Sys	0	1	-
1	Operating Sys	1	1	1
2	Operating Sys	2	1	1
3	Operating Sys] 3	1	1
4	Program X	0	1	-
5	Program X	1	1	
6	program A	0	0 1	page 0
7	Program Y	0	1	
		1		1
8	Program X	2	1	1
9	Program X] 3	1	
10	program A	1		page 1
11	Program X	4	1	
		1		1
12	Program Y	1	1	1
13	program A	2		page 2
14	program A	3		page 3
15	program A	4		page 4
				1

NOTE: Each frame is 4K, so the address of Page Frame #4 would be 16K (4K * Page Frame #)

PROBLEM 2

- 1. Load Program A 20K
- 2. Create Page Table

Page #	Starting address
0	24576
1	40960
2	53248
3	57344
4	61440

57344 + 100 = 57444

PAGE FRAME TABLE FOR SEGMENTATION & PAGING

 PAGE FRAME 	 PROGRAM ID 	 SEGMENT NUMBER 	 PAGE NUMBER 	 STATUS 	
0	Operating Sys	0	0	1	
1	Operating Sys	0	1	1	
2	Operating Sys	1	0	1	
3	Operating Sys	1	1	1	
I	I	l	l	l	
4	Program X	0	0	1	
5	Program Y	0	0	1	
6	Program A	0	0	0 1	seg#0, page 0
7	Program A	0	1	0 1	seg#0, page 1
1	I	l	l		
8	Program X	0	1	1	
9	Program X	1	0	1	
10	Program X	1	1	1	
11	Program A	1	0	0 1	seg#1, page 0
1	1	l	l		
12	Program A	2	0	0 1	seg#2, page 0
13	Program A	2	1	0 1	seg#2, page 1
14	Program Y	1	0	1	
15	Program A	2	2	0 1	seg#2, page 2
1	1	l	l		
16	Program Y	1	1	1	
17	Program X	2	0	1	
18	Program A	2	3	0 1	seg#2, page 3
19	Program A	3	0	l 0 1	seg#3, page 0
I	I	l	l		

NOTE: Each frame is 4K, so the address of Page Frame #4 would be 16K (4K * Page Frame #)

PROBLEM 3

1. Load Program A - 4 segments: seg 0 = size 8K, 1=4K, 2=16K, 3=4K

2. Create Page Table for Seg #2 only

page #	Starting address
0	49152
1	53248
2	61440
3	73728

3. Find the physical address of virtual address

| 2 | 3 | 110 | seg# page# disp.

73728 + 110 = 73838