Math 250A, Fall 2015

Some simple facts (Lang Algebra)

8/27

```
A group G acts on a set S:
     G \times S \rightarrow S
     (g,s)\mapsto g\cdot s
     e \cdot s = s
     (gg') \cdot s = g \cdot (g' \cdot s)
Alternatively,
     \phi: G \to Perm(S) is a homomorphism
     (\phi(g))(s) = g \cdot s
Examples
    trivial action: (\forall g) \ g \mapsto e_{Perm(S)}
    G acting on self by left/right translation, conjugation
    G acting on the set of subgroups of G by conjugation: g \cdot H = gHg^{-1} = \{ghg^{-1} | h \in H\}
    normal subgroup N \subseteq G: all g \in G fix N under conjugation
     V vector space over a field K, GL(V) acts on V by L \cdot v = L(v)
The orbit of s, O(s) := \{g \cdot s | g \in G\}
     constitutes an equivalence relation on S
The stabilizer (isotropy group) of s \in S, G_s := \{g \in G | g \cdot s = s\}
    G_s is closed under inverses: g \in G_s \to g \cdot s = s \to g^{-1}gs = g^{-1}s \to s = g^{-1}s
There exists a natural bijection \alpha: G/G_s \to O(s), gG_s \mapsto g \cdot s
    well-defined: g_1G_s = g_2G_s \to \exists g \in G_s, g_1 = g_2g, \alpha(g_1G_s) = g_1s = g_2gs = g_2s = \alpha(g_2G_s)
injective: \alpha(g_1G_s) = g_1 \cdot s = g_2 \cdot s = \alpha(g_2G_s) \to g_2^{-1}g_1 \cdot s = s, g_2^{-1}g_1 \in G_s, so g_1G_s = g_2G_s
Action under conjugation:
     the conjugacy classes of a set are the orbits of the action
     O(g) = \{g\} \leftrightarrow g \in Z(G) the center of the group
     Z(G) = \{ g \in G : xg = gx \ \forall x \in G \}
    in a permutation group, \sigma(a_1, a_2, a_3, ... a_k) \sigma^{-1} = (\sigma a_1, \sigma a_2, \sigma a_3, ... \sigma a_k)
```

9/1

Let Σ be a set of representative elements of the orbits of S. The index of a subgroup H is (G:H)=#(G/H) For finite G, $(G:H)=\frac{\#G}{\#H}$ ($g\not\in H$, \exists natural bijection $H\to gH$) $\#S=\sum_{s\in\Sigma}\#O(s)=\sum_s(G:G_s)$ defines a 'mass formula' $\#S=(\sum_s\frac{1}{\#(G_s)})(\#G)$

```
\#H_S = \#H and from the above \#G = (G:H) \cdot \#H.
this is a statement of Lagrange's Theorem, (G: H) = \frac{\#G}{\#H}.
```

Let G act on a subgroup H by left translation.

The kernel of the action $K = \bigcap_{s \in S} G_s$, which is just the kernel of $G \xrightarrow{\phi} Perm(S)$. We can relate the stabilizers of points in the same orbit.

Let
$$s' = gs$$
.

Assume $x \in G_s$.

Since $x \in G_{s, r}(gxg^{-1})gs = g(xs) = gs$.

Hence $gxg^{-1} \in G_{gs}$, so $gG_sg^{-1} \subset G_{gs}$.

Apply this relation with $g \to g^{-1}$ and $s \to gs$:

Assume $x \in G_{gs}$.

Then
$$(g^{-1}xg)(s) = (g^{-1})(xgs) = (g^{-1}gs) = s$$
.
So $g^{-1}G_{gs}g \subset G_s \to G_{gs} \subset gG_sg^{-1}$

Thus, $gG_sg^{-1} = G_{gs} = G_{s'}$.

The stabilizer of s' = gs is a conjugate of the stabilizer of s.

p : prime

p-group: a finite group G, $\#G = p^n, n \ge 1$

"A p-group has a non-trivial center"

Notation: S^G is the set of points in S fixed under the group action. $(gs = s \ \forall g \in G)$ Let G act on itself by conjugation (S = G). Then $S^G = Z(G)$.

For $s \in S(=G)$, G_s is a subgroup, and its order divides the order of the group, p^n .

Either O(s) is trivial, and $s \in S^{G} = Z(G)$, otherwise $\#(O(s)) = p^{k}$ for k > 0

 $\#S = \text{sum of } \#S = \text{sum o$

$$\#Z(G) \equiv_{modp} \#(S^G) \equiv_{modp} \#S = \#G = p^n \equiv_{modp} 0.$$

Z(G) cannot be 1, since the identity of the group is in the center.

Thus, the order of the center is divisible by p, and must be non-trivial.

 $H \leq G$ a finite group, (G: H) = p, the smallest prime dividing $\#G \to H \leq G$

Let S = G/H; #(S) = (G : H) = p, and let G act on S by left translation.

This induces $\varphi: G \to S_P$; recall $\#S_p = p!$

The stabilizer of H, $G_H = \{x \in G | xH = H\}$, hence $G_H = H$.

By inspection, we can see that $G_{gH} = gHg^{-1}$.

Let $K = \bigcap_{g \in G} gHg^{-1}$, the largest normal subgroup contained in H.

For each coset gH, K stabilizes that coset, hence K is the kernel of φ .

By the First Isomorphism Theorem $\varphi(G) \leq S_p$.

 $(G:K) = \#(G/K) = \#(\varphi(G))$, which divides $\#(S_p) = p!$

Further, since $K \le H \le G$, (G:K) = (G:H)(H:K).

Since (G:K) divides p! and (G:H) divides p, (H:K) divides (p-1)!.

But p is the smallest prime dividing #G, so (H:K)=1, K=H and H is normal.

A familiar embedding of a group into a larger group; "Cauchy's Theorem" $G \hookrightarrow Perm(G)$ by letting G act on itself by left-translation.

```
Its kernel K = \{g \in G | gs = s \forall s\} = \{e\} (consider s = e), so an injection \rightarrow an embedding.
```

Recall $S_n \subset \text{group of } n \times n \text{ invertible matrices. } \sigma \mapsto M(\sigma) \text{ a permutation matrix.}$

Need to be careful in the construction to ensure $M(\sigma\tau) = M(\sigma)M(\tau)!$

E.g. $\sigma = (132)$ does $M(\sigma)$ have 1 in the 1st column, 3rd row?

Or in the 1st row, 3rd column? One of these yields $M(\sigma \tau) = M(\tau)M(\sigma)$.

G finite of order n; V the vector space of functions $G \xrightarrow{f} \mathbb{Z}$; note $V \cong \mathbb{Z}^n$

Linear maps $V \to V$ correspond to $n \times n$ matrices over \mathbb{Z} : $GL(V) \approx GL(n, \mathbb{Z})$.

Similarly, invertible linear maps correspond to $n \times n$ invertible matrices over \mathbb{Z} .

We can embed G in $GL(n,\mathbb{Z})$ by using a left action of G on $GL(n,\mathbb{Z}) = \{\phi : V \to V\}$

Can think of this as an action on $\mathbb{Z}^n \cong V$, whose permutation group is simply $GL(n,\mathbb{Z})$.

Recall that $V = \{f : G \to \mathbb{Z}\}.$

This left action takes the form $L_g \mapsto \phi$ where $\phi(f(x)) = f(xg)$

 $L_{gg'} = L_{g'} \circ L_g$ as desired? Verify for yourself.

Yes: $L_{gg'}(\varphi(x)) = \varphi(xgg') = L_{g'}(\varphi(xg)) = L_{g'} \circ L_{g}(\varphi(x))$

 $g \mapsto L_g$ is a homomorphism $G \to GL(V)$

Using \mathbb{F}_p instead of \mathbb{Z} , get $G \hookrightarrow GL(n, \mathbb{F}_p)$, an embedding into a finite group.

9/3

Lagrange: If $H \leq G$ then #(H) | #(G).

 A_4 with n = 6: a counterexample to the converse.

If $|G| = p^k \cdot r$, (p,r) = 1, a p-Sylow subgroup of G is an $H \le G$ such that $|H| = p^k$

 \mathbb{Z}_{12} has 2-sylow subgroup $\{0,3,6,9\}$ and 3-sylow subgroup $\{0,4,8\}$

 D_6 generated by r, s subject to $rs = sr^{-1}$, $r^6 = e$, $s^2 = e$

 $\#(D_6) = 12$ so has 3-sylow subgroup $\{1, r^2, r^4\}$

Also has 2-sylow subgroups $\{1, r^3, s, r^3s\}$, $\{1, r^3, rs, r^4s\}$, $\{1, r^3, r^2s, r^5s\}$

 $G = GL_n(\mathbb{F}_p)$, $n \times n$ linear transformations in \mathbb{F}_p , equal to $Aut(\mathbb{F}_p^n)$

Approximating the order of |G|:

Asserting linear independence in each vector of an $n \times n$ matrix

 $|G| = (p^{n} - 1)(p^{n} - p)(p^{n} - p^{2}) \cdots (p^{n} - p^{n-1}) = p^{1+2+3+\cdots+n-1} \cdot r = p^{\frac{n^{2}-n}{2}} \cdot r, (p,r) = 1$

Consider P the set of $n \times n$ upper triangular matrices with 1's on the diagonal.

Then $|P| = p^{1+2+3+\dots+n-1} = p^{\frac{n^2-n}{2}}$, and P is a p-Sylow subgroup.

Will use this fact in the subsequent proof.

Theorem: (Sylow I) For $|H| = p^k \cdot r$, (p,r) = 1, H has a p-Sylow subgroup. Proof Sketch:

Show $\exists G$, $H \leq G$, such that G has a p-Sylow subgroup

Show that if G has a p-Sylow subgroup and $H \le G$, then H has a p-Sylow subgroup Proof:

Cayley's theorem, can embed H (of order n) in S_n by acting on itself by translation.

Additionally $S_n \leq GL_n(\mathbb{F}_p)$ mapping to permutation matrices.

Alternatively, consider $V \cong \mathbb{F}_p^n$, the vector space of functions $\varphi : G \to \mathbb{F}_p$.

Embed H into GL(V) by the action $g \in H \mapsto$ automorphism taking $\varphi(x)$ to $\varphi(xg)$.

 $GL_n(\mathbb{F}_p)$ has p-Sylow subgroups. (upper triangular matrices with 1s on diag)

Let P be a p-Sylow subgroup of $G = GL_n(\mathbb{F}_p)$. Let G act on the cosets of P.

Now, $G_{gP} = gPg^{-1}$. Similarly, when H acts on G/P, $G_{gP} = (gPg^{-1} \cap H)$

This intersection is a p-group.

Want to choose $g \in G$ such that $gPg^{-1} \cap H$ is a p-Sylow subgroup.

If $(H:(gPg^{-1}\cap H))$ is coprime to p, then $gPg^{-1}\cap H$ is a p-Sylow subgroup.

By Orbit-Stabilizer, $(H:(gPg^{-1}\cap H))=O(gP)$.

Note this is an orbit of G/P induced by the action of the group H.

Since P is a p-Sylow subgroup of G, $|G/P| \not\equiv_{mod v} 0$.

The sum of the orbits is |G/P|.

Hence there must be some orbit with size coprime to p.

The stabilizer of this orbit $gPg^{-1} \cap H$ is a p-Sylow subgroup H_v .

Corollary: All p-subgroups of H are contained in a conjugate of P.

Let $J \leq H$ be a p-subgroup. Then $J \cap gPg^{-1}$ is a p-Sylow subgroup of J for some $g \in G$. A p-group can't contain a proper p-Sylow subgroup, so $J \cap gPg^{-1} = J$ and $J \subset gPg^{-1}$.

Corollary: (Sylow II) All p-Sylow groups are conjugate.

Let $H \leq G$ and $P \leq G$ be p-Sylow subgroups.

By the preceding corollary ($G \le G$, $H \le G$, $P \le G$), $H \subset gPg^{-1}$ for some $g \in G$.

Since $|H| = |P| = |gPg^{-1}|$, $H \cap gPg^{-1} = H$.

Corollary: Every p-subgroup of G is contained in a p-Sylow of G.

By the above, each is contained in a conjugate of P, said conjugate being a p-Sylow.

The p-Sylow subgroups in G are all conjugate, so that:

If P is a p-Sylow of G then $G/N(P) \leftrightarrow \text{set of p-Sylows in G}$.

N(P) the normalizer of P

There are $n_p = (G : N(P))$ p-Sylows in total.

Lemma: If a finite p-group Γ acts on a set X, then $\#(X) \equiv_{mod p} \#(X^{\Gamma})$

(X^Γ the fixed points of X under Γ).

Proof:

Each
$$\frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} 1$$
 if x_i fixed, else $\frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} 0$.
Hence $\#X = \sum_i \#Orb(x_i) = \sum_i \frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} \#X^{\Gamma}$.

Hence
$$\#X = \sum_i \#Orb(x_i) = \sum_i \frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} \#X^{\Gamma}$$
.

Let $Syl_v(G)$ describe the p-Sylow subgroups of G and n_v denote its cardinality.

Theorem: (Sylow III) If $|G| = p^k \cdot r$, k > 0 then $n_p \equiv_{mod p} 1$. Further, $n_p | r$.

Proof:

Let P act on $Syl_v(G)$ by conjugation.

By the lemma, $\#Syl_p(G) = n_p \equiv_{modp} (Syl_p(G))^P$. Suppose Q is fixed under the group action. Then $pQp^{-1} = Q \ \forall p \in P$. Then $P \leq N(Q)$; similarly $Q \leq N(Q)$. P, Q are p-Sylow subgroups of N(Q); therefore P, Q are conjugate in N(Q). However, $Q \leq N(Q)$ so that Q is equal to all its conjugates in N(Q), and P = Q. Hence P is the only fixed Sylow-p subgroup so $(Syl_P(G))^P \equiv_{modp} 1$. G acts on $Syl_p(G)$ as only one orbit since all p-Sylows in G are conjugate. $(G:P) = n_p, n_p = |G| = p^k \cdot r, n_p|p^k \cdot r$, but $n_p \nmid p$, so $n_p|r$.

9/8

P, Q p-Sylows and $P \subset N(Q)$ then P = Q reason: $PQ \leq G$ a subgroup of G HK not necessarily a group, but will be if one normalizes the other $(H \subset N(K))$

A simple group is a non-trivial group with no non-trivial proper normal subgroups

A finite abelian group G is simple \leftrightarrow G is cyclic of prime order show this

non-sporadic finite simple groups

 $A_n (n \leq 5)$

recall the alternating groups A_n are the even permutations on $\{1, \dots, n\}$

Lie groups over finite fields, e.g. $\{\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\} \subset SL(2, \mathbb{Z}|p\mathbb{Z})$

P = projective; $PSL(2, \mathbb{Z}|p\mathbb{Z}) = SL(2, \mathbb{Z}|p\mathbb{Z})$

Simple groups of order ≤ 60 .

- (a) There are no non-abelian simple groups of order < 60
- (b) If G is simple of order 60, then $G \cong A_5$.

$$(\#A_n = \frac{n!}{2})$$

G simple of order 60.

H < G simple (finite), H proper, $(G: H) = n \ge 2$

G acts on G/H by left translation.

The action is transitive (for each pair xH,yH, \exists permutation taking one to the other) Therefore, this action is non-trivial.

$$\pi: G \to Perm(G/H) = S_n$$

 $ker(\pi) \neq G$ and is a normal subgroup \rightarrow the kernel is trivial.

 $\pi: G \hookrightarrow S_n$ and in fact $\pi: G \hookrightarrow A_n$ (if #G > 2)

Why? because $G \cap A_n \subseteq G$

If $G \subset S_n$.

Then $G \to S_n/A_n = \{\pm 1\}$ by the sign map, kernel is $G \cap A_n$.

Recall $sgn: S_n \to \{\pm 1\}$ $sgn(\sigma) = (-1)^t$ given t, num of transpositions $G/(G \cap A_n) \hookrightarrow S_n/A_n = \{\pm 1\}$

 $(G: G \cap A_n) = 1 \text{ or } 2.$

If G is simple then this cannot be 2 (would be normal subgroup), so =1.

And $G \hookrightarrow A_n$ for that A_n .

G simple, order 60.

H a proper subgroup of G, index n. (consider small values of n)

If n = 2 then H is normal in G, a contradiction.

(smallest prime dividing the order of a group)

If n = 3 or n = 4: $G \hookrightarrow A_3, A_4$ but their orders are too small (3, 12)

If n = 5: $G \hookrightarrow A_5$ and they are equal in cardinality \rightarrow done.

Remaining case: n = 15.

What is n_5 , the number of 5-Sylow subgroups.

 $n_5|60/5 = 12$, $n_5 = (G:N(P))$ n_5 divides the index

Also, $n_5 \equiv_{mod 5} 1$.

Thus $n_5 = 1$ or $n_5 = 6$.

If $n_5 = 1$ then only one 5-Sylow subgroup of G, must be normal.

This is impossible since G is simple.

Then $n_5 = 6$: tells you there are lots of elements of order 5 in G.

There is no overlap (excepting at the identity) between 5-Sylows.

Hence the number of elements of order 5 is $6 \cdot 4 = 24$

Elements of order 5 in A_5 are 5-cycles (a b c d e).

Need to take all strings of length 5: 120, and divide out by rotations 5.

Thus we get 120/5 = 24 (check).

Consider n_2 the number of 2-Sylow subgroups.

Then n_2 divides 60/4 = 15, and $n_2 \neq 1$ because of simplicity.

Also, $n_2 = (G : N(P_2))$, and this can't be 3 since G has no subgroup of index 3.

If $n_2 = 5$ then $N(P_2)$ is the desired index-5 subgroup \rightarrow done.

From divisibility $n_2 = 1,3,5,15$.

Elminate 1 by simplicity, 3 since the index is too small, 5 works, consider 15.

Considering the situation where there are 15 2-Sylow subgroups (of order 4).

These are groups like the Klein 4-group (no elements of order 4).

There are 2 2-Sylow subgroups P and Q where $P \cap Q$ has order 2.

Prove by counting.

Taking intersection, must be proper else they would be the same.

Hence $P \cap Q$ has order 1 or 2.

If there is utterly no overlap, there are $15 \cdot 3 + 1 = 46$ elt's of 2-Sylows.

And these do not have order 5. But there are 24 elements of order 5. Too many.

Now we know that some of these 2-Sylow subgroups have non-trivial overlap.

Consider $N(P \cap Q)$ for some such intersection, will be a subgroup of G.

Cannot be all of G, G is simple. (would make $P \cap Q$ normal)

 $N(P \cap Q)$ contains P and Q since both are abelian.

Each are normal subgroups of $N(P \cap Q)$, so its order is divisible by 4.

Hence could have order 12, 20, or 60 (divisible by 4, divides 60).

Its index cannot be 1 (G is simple) cannot be 3 (\tilde{A}_n too small), = 5.

QED (revisit why).

G finite non-trivial.

If G is simple, $\{e\} \subset G$, $G/\{e\}$ simple.

If G is not simple $G \supset G_1 \supset (e)$, $G_1 \subseteq G$, G_1 , G/G_1 smaller than G.

Use principle of strong induction for a full decomposition.

Obtain a successive extension of simple groups.

Given G, such a tower, let $G_i/G_{i+1} = Q_i$ and consider the multiset $\{Q_0, \dots, Q_{n-1}\}$.

In multiset, order does not matter, and multiplicity does matter.

Jordan-Hölder Theorem: Each composition yields the same multiset up to isomorphism.

9/10

Proposition: Given G, $\exists G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n$, $G = G_0$, $G_{i+1} \subseteq G_i$, G_i/G_{i+1} simple.

This is a normal tower or composition series; the simple quotients are the constituents.

If it is simple, then the filtration is $G \supset \{e\}$.

If G is not simple, $G \supset N \supset \{e\}$, where G/N, N proper in G.

By strong induction, have filtrations for each. To conclude, use:

 \exists natural correspondence between subgroups of G/N and subgroups H of $G, N \leq H$

$$G\supset L\supset N, L/N\subset G/N$$

$$\pi:G\to G/N, K\subset G/N,\to \pi^{-1}(K)\leq G$$

Jordan-Hölder Theorem:

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n$$

$$G_{i+1} \leq G_i$$
, $G_i/G_{i+1} = Q_i$ simple.

The "multiplicity set" $\{Q_0, \dots, Q_{n-1}\}$ is independent of the filtration.

Where order doesn't count, multiplicity does, and Q_i up to isomorphism.

Related question: can two different groups have the same reduction?

Yes. $S_3 \supset A_3 \supset \{e\}$. Quotients $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$.

Also $\mathbb{Z}/6\mathbb{Z} \supset 3\mathbb{Z}/6\mathbb{Z} \supset 6\mathbb{Z}/6\mathbb{Z}$, same quotients but radically different structure.

"Knowing the building blocks does not confer knowledge of the building".

Jordan-Hölder Theorem: Proof.

Base case n = 1, $G \supset \{e\}$, $G/\{e\}$ simple and G simple.

Supposing
$$G \supset G_1 \supset \cdots \supset G_n \supset \{e\} = G_{n+1}$$
 and $G \supset G_1' \supset \cdots \supset G_m' \supset \{e\} = G_{m+1}'$.

?
$$m = n$$
, $\{G_i/G_{i+1}\} = \{G'_i/G'_{i+1}\}$... If $G'_1 = G_1$, then done by induction.

Assume G_1 , G_1' are distinct. Then $G_1 \cap G_1'$ is smaller than G_1 or G_1' .

Also, G_1G_1' is a subgroup since its factors are normal by hypothesis.

Indeed, it is also a normal subgroup since G_1 and G'_1 are invariant under conjugation.

Additionally, G_1G_1' is of size larger than G_1 and G_1' . Thus it must be equal to G.

Can map $G_1'/(G_1 \cap G_1') \to G_1G_1'/G_1$. Kernel is exactly $G_1 \cap G_1'$, hence injection.

This defines $G_1'/(G_1 \cap G_1') \hookrightarrow G/G_1$. Symmetrically, $G_1/(G_1 \cap G_1') = G/G_1'$.

Have $G_1 \supset \cdots \supset G_n \supset \{e\} = G_{n+1}$.

Take $G_1 \supset G_1 \cap G_1' = H \supset H_1 \supset H_2 \supset \cdots \supset H_k \supset \{e\}$, a Jordan-Hölder filtration of G_1 .

Obtained by induction.

Note $G_1/H = G/G_1'$ is the first quotient of this filtration.

By induction, these two filtrations have the same length.

The constituents of G_1 are the constituents of H, with $G_1/H = G/G_1'$ appended.

Constituents: G/G_1 + constituents of $G_1 = G/G_1 + G/G_1'$ + constituents of H.

Have $G \supset G_1' \supset H \supset H_1 \supset \cdots \supset H_k = \{e\}$, same length as $G_1' \supset G_2' \supset \cdots \supset G_m' = \{e\}$.

Have related two different filtrations that have are unrelated, by a common filtration, which depends on the intersection of these two filtrations.

Free Groups

S a set, define the free abelian group on S, $\mathbb{Z}^S = \mathbb{Z}\langle S \rangle = \{\sum_{s \in S} n_s \cdot s | n_s \in \mathbb{Z}\}.$

Where all but finitely many of the n_s are 0.

$$S = \{1, \dots, n\}, \mathbb{Z}^S = \mathbb{Z}^n = \{(c_1, \dots, c_n) | c_i \in \mathbb{Z}\}$$

$$\sum_{i=0}^{\infty} n_i x^i = \sum_{i=0}^{\infty} n_i \cdot i \in \mathbb{Z}\langle S \rangle$$

where $n_i = 0$ for i >> 0.

"To map $\mathbb{Z}\langle X\rangle$ to A in the world of abelian groups is to map S to A in the world of sets." $S \to \mathbb{Z}\langle S\rangle$ a set map, $s \in S \mapsto 1 \cdot s$.

Given $f : \mathbb{Z}\langle S \rangle A$ homomorphism.

And in fact, $F : Hom(\mathbb{Z}\langle X \rangle, A) \to Maps(S, A)$, F is a bijection.

These elements of the free abelian group are "formal sums".

That is, an $f: S \to \mathbb{Z}$.

Let
$$f: \mathbb{Z}\langle S \rangle \to A$$
, $f(\sum n_s s) = \sum_{s \in S} n_s f(s)$

An abelian group A is free of finite rank if $A \cong \mathbb{Z}^n$ for some $n \ge 0$ ($\mathbb{Z} = \mathbb{Z}\langle \emptyset \rangle = 0$).

Define rank(A) = n. If $\mathbb{Z}^m \cong A \cong \mathbb{Z}^n$ then n = m.

Why? Take positive integer > 1, e.g. 2. Then $\mathbb{Z}^n/2\mathbb{Z}^n \cong \mathbb{Z}^m/2\mathbb{Z}^m$.

LHS has 2^n elts and RHS has 2^m elts so n = m.

A subgroup of a free abelian group of rank n is a free abelian group of rank $\leq n$. Proof: by induction on n.

$$n = 0$$
: $A = (0) = B$.

n = 1: $A = \mathbb{Z} \supset B$. What are the subgroups of \mathbb{Z} ? (0), $(t) = t\mathbb{Z}$, $t \ge 1$.

Proof by division algorithm: $\mathbb{Z} \supset B \neq 0$, t =smallest positive integer in B.

Division algorithm ensures that all elements are multiples of t.

$$B \subset \mathbb{Z}^n \xrightarrow{\pi} \mathbb{Z}$$
.

$$\pi:(c_1,\cdots,c_n)\mapsto c_n\in\mathbb{Z}.$$

Cases:

(1)
$$\pi(B) = (0), B \subset \mathbb{Z}^{n-1}$$
, free of rank $\leq n-1$

(2)
$$\pi(B) = t\mathbb{Z}, t \geq 1$$

$$B \xrightarrow{\pi|_B} t\mathbb{Z} \xrightarrow{surj.} 0$$

$$ker(\pi)|_B = C$$
 free of rank $\leq n - 1$.

Choose $b \in B$ such that $\pi(b) = t$.

 $C \subset \mathbb{Z}^{n-1}$: $C = ker(\pi)|_{B}$, free of rank $\leq n-1$.

 $C = B \cap \mathbb{Z}^{n-1}$

 $C \subset B$, $\mathbb{Z} \cdot b \subset B$

Missing (pf in Lang)

Simple linear algebra.

 $a_1, \dots, a_n \in A$ corresponds to a homomorphism $\mathbb{Z}^n \to A$, $(c_1, \dots, c_n) \mapsto \sum_{i=1}^n c_i a_i$.

These are linearly independent if f is 1-to-1, and these span/generate A if f is onto.

A is finitely generated if A is spanned by a_1, \dots, a_n for some $n \ge 0$, $a_i \in A$

A is finitely generated iff A is a quotient of \mathbb{Z}^n for some n.

Corollary: a subgroup of a finitely generated abelian group is again finitely generated.

$$\mathbb{Z}^n \xrightarrow{f} A$$
 finitely generated, have $B \subset A$, $f^{-1}(B) \leq \mathbb{Z}^n$, and $f^{-1}(B) \cong \mathbb{Z}^k$, $k \leq n$.

A finitely generated, torsion-free.

I.e. given $a \in A$ and $n \cdot a = 0$, $n \ge 1$, then a = 0.

Statement: A is free and of finite rank.

Proof: Take a finite set of generators S in which take T lin indep and large as possible.

take
$$T = a_1, \dots, a_k$$
 and $S = a_1, \dots, a_k, \dots, a_m$

$$\sum_{1}^{k+1} c_k a_k = 0, c_{k+1} \neq 0$$

$$B = span\{a_1, \cdots, a_k\} \cong \mathbb{Z}^k$$
.

 a_{k+1}, \cdots, a_m : some multiple lies on B.

$$N \ge 1$$
; $N \cdot A \subset B$.

Th: NA free, $N: A \rightarrow NA$ A torsion free.

Multiplication on A by a positive integer is injective.

A is isomorphic to NA by the mutliplication by n, since NA is free, A is free.

9/15

Abelian group, finitely generated.

Last week:

free group has to do with some correspondence to a \mathbb{Z}^n

subgroups of free finitely generated abelian groups are free and finitely generated subgroups of finitely generated abelian groups are finitely generated

finitely generated, torsion free abelian group is a free abelian group

recall torsion free: for all $n \ge 1$, mult by $n, n \cdot A$ is injective

opposite A torsion: for all $a \in A$, $\exists n \ge 1$ such that $n \times a = 0$

Example of a torsion abelian group: \mathbb{Q}/\mathbb{Z}

element
$$p/q \mod \mathbb{Z}, q \ge 1, p \in \mathbb{Z}; q \times \frac{p}{q} = 0 \text{ in } \mathbb{Q}/\mathbb{Z}$$

finitely generated abelian groups up to isomorphism

A is a direct sum of a free part \mathbb{Z}^r and a torsion part (a direct sum of cyclic groups) Direct product of sets A_i indexed by S:

$$\bigoplus_{i \in S} A_i = \{ f : S \to \bigcup_{i \in S} A_i : f(i) \in A_i \}$$

```
where for all but finitely many i, f(i) = 0
    this is equivalent to the direct product when S is finite
Image 1: a map from a \bigoplus_{i \in S} A_i to B is determined by the mappings from the A_i
    The direct sum is a coproduct.
Image 2: a map into a \prod_{i \in S} A_i is determined by the mappings into the A_i
    The direct product is a product (in the categorical sense).
S countably infinite, A_i = \mathbb{Z}/2\mathbb{Z}
    \bigoplus_{i \in S} A_i is countable, but \prod_{i \in S} A_i is not
Categories: products, coproducts, morphisms
    Mor(?,B) = \prod Mor(A_i,B) ? = \text{co-product}
    The coproduct of sets is disjoint union.
Abelian group A and subgroups X and Y
    we have inclusions from each into A
    X \times Y = X \oplus Y \xrightarrow{h} A_{r}(x,y) \mapsto x + y
    h is injective if every a \in A is of the form x + y
   h is one-to-one \leftrightarrow you can't write x + y = x' + y' unless x = x', y = y'
   If true, say A is the direct sum of its submodules X and Y.
Suppose A, X \subset A, A/X is free (f.g. free): then X has a complement Y in A, A \cong X \oplus A/X
    A \xrightarrow{\pi} A/X
    Y \subset A, \pi|_Y is an isom Y \to A/X.
    \pi|_{Y} inj \leftrightarrow Y \cap X = (0).
    \pi|_{Y} surjective: given a + X \in A/X we can find y \in Y s.t. y + X = a + X
    x = y \cdot a \in X
    a = y \cdot x, x \in X, y \in Y
    A/X free, say \cong \mathbb{Z}^r
    To map A/X to A is to choose images in A of the generators of A/X corresponding to
the unit vectors of \mathbb{Z}^r.
    There is a unique homomorphism s: A/X \to A so that s(q_i) = a_i for i = 1, \dots, r
    (\pi \cdot s)(q_i) = \pi(a_i) = q_i
    \pi \circ s = id_{A/X}
    Y = \text{image of } S \subset A.
    \pi|_{Y} surjective. \pi(s(q)) = q for all q \in A/X
    \pi|_{Y} is 1-1. /pi(s(q_0)) = 0 but s(q_0) = q_0 so equals 0.
A a finitely generated abelian group
    X = A_{tors} = \{a \in A | na = 0 \text{ for some } n \ge 1\}.
    X f.g., tors \rightarrow X finite abelian group.
    A/X torsion free, f.g. \to A free \approx \mathbb{Z}^r
A \approx \mathbb{Z}^r \oplus A_{tors}. A_{tors} = ???
   it is a finite abelian group, let B = A_{tors}
   p prime, B_p = \{b \in B | p^t \cdot b = 0 \text{ for some } t \geq 0\}.
    B_P \subset B.
    \bigoplus_{p} B_{p} \stackrel{\iota}{\to} B
    Proposition: \iota is an isomorphism. (formal proof in Lang's book)
```

Proof essence:

```
suppose 60 \cdot b = 0, 60 = 4 \cdot 3 \cdot 5 = 12 \cdot 5
     (12,5) = 1
     1 = r5 + s12 = 25 - 24
     b = r \cdot 5 \cdot b + s \cdot 12 \cdot b
     12x = 0, 5y = 0
     Every element can be written as a sum of terms killed by a power of a prime
A = \mathbb{Z}^r \oplus (\bigoplus_p B_p)
\mathbb{Z}^n \approx F \xrightarrow{\varphi} A A finitely generated (by n elements)
     Ker(\varphi) = X \subset F.
     ? understand A! understand X inside F.
Elementary division theorem
     There exists a basis of F \approx \mathbb{Z}^n s.t. ... X = \bigoplus_{i \le r} 0 \oplus a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus \cdots \oplus a_{n-r} \mathbb{Z}, a_i \ge 1
     X \subset \mathbb{Z}^n
     a_1|a_2|a_3|\cdots|a_{n-r}, increasing multiplicatively
     A = F/X = \mathbb{Z}^r \oplus \mathbb{Z}/a_1\mathbb{Z} \oplus \mathbb{Z}/a_2\mathbb{Z} \oplus \cdots, a_i|a_{i+1}
     A a finite abelian group \rightarrow A is a direct sum of cyclic groups
p prime, \#A = p^4 = a_1 a_2 a_3 \cdots
     A is direct sum of cyclic groups of p-power order.
     A \approx \mathbb{Z}|p^i \oplus \mathbb{Z}|p^j \oplus \mathbb{Z}|p^k \oplus \mathbb{Z}|p^l at most
     i \le j \le k \le l, i + j + k + l = 4, i, j, k, l, \ge 1
```

9/17

A arbitrary finitely generated group that we want to understand

Pick some generators g_1, \dots, g_n

Get a map from $Y = \mathbb{Z}^n$ to A, has some kernel

Considering A = Y/X, and how X lies in Y gives indication of structure of A

Can think of X, Y, as lattices

Theorem: $Y \cong \mathbb{Z}^n$ exists v_1, \dots, v_n basis of Y

such that in that basis $X = a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus \cdots \oplus a_m \mathbb{Z} \oplus 0 \oplus 0 \oplus \cdots \oplus 0$.

 $a_i \geq 1$, $a_1 | a_2, a_2 | a_3, \cdots a_{m-1} | a_m$.

Example: $A = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$

 $Y = \mathbb{Z} \oplus \mathbb{Z}$

 $Y \supset X = 2\mathbb{Z} \oplus 3\mathbb{Z}$

Not at all true that the integers divide each other.

Puzzle. Not the case as in the theorem.

Need to prove to self that in some new basis, $Y = \mathbb{Z} \oplus \mathbb{Z}$,

and $X = \mathbb{Z} \oplus 6/\mathbb{Z}$, $Y/X = \mathbb{Z}/6\mathbb{Z}$.

 $a_1 = 1$, and $a_2 = 6$.

 $X \subset \mathbb{Z}^n$. Ask whether X = (0) the zero submodule. If so, simple. So can assume nonzero. Consider linear forms, homomorphisms $\mathbb{Z}^n \to \mathbb{Z}$.

For each λ have $\lambda(X) \subset \mathbb{Z}$. e.g., $\lambda(X) = 3\mathbb{Z}$. Some λ s are nonzero since X is nonzero.

Choose λ so that $\lambda(X)$ is maximal.

Example: $X = 2\mathbb{Z} \oplus 3\mathbb{Z}$. The first coordinate fn yields $2\mathbb{Z}$,

the second coordinate fn yields $3\mathbb{Z}$.

But with $\lambda(u,v) = v - u$ we can get all of \mathbb{Z} .

possible to get λ s yielding images $2\mathbb{Z}$, $3\mathbb{Z}$, but not to get λ , $\lambda(X)$ containing both? In any case, take a maximal λ , fix that λ .

 $\lambda(X) = a\mathbb{Z}$ maximal

Pick $x \in X$ so that $\lambda(x) = a$.

Claim: $\mu(x) = b$ is divisible by a for all $\mu \in Hom(\mathbb{Z}^n, \mathbb{Z})$

gcd(a,b) = g = ra + sb

 $\tau := r\lambda + s\mu, \, \tau(x) = g$

Now $\tau(X) \supset \mathbb{Z}g \supset \mathbb{Z}a$

So $\tau(x) = \lambda(x)$, $\mathbb{Z}g = \mathbb{Z}a$

a|b for this reason of maximality

"Executive session"

R a commutative ring

R-module: M

1) abelian group

2) endowed with a scalar multiplication $r \in R$, $m \in M$, $rm \in M$

same as a vector space definition except *R* is not assumed to be a field

The context in which this elementary divisor theorem works.

A a finitely generated abelian group replaced by a finitely generated R-module And there are 2 conditions on R.

R is an integral domain: $rs = 0 \rightarrow r = 0$ or s = 0

Ideals of R are principal $M \subset R \to M = R \cdot a$

Digression: motivation. Killer example.

K a field, and R = K[t]. (very much like \mathbb{Z} , can do Euclidean division by remainders)

Have V and action of K[t]: (action of K and action of t)

V + action of $K \rightarrow K$ -vector space

Action of t: $T: V \to V$ multiplication by t, $v \mapsto t \cdot v$, $T(v) = t \cdot v$

Conversely, can form the corresponding polynomial in the linear transformation

Principal Ideal domain. Element of smallest degree, Euclidean algorithm.

Suppose we have an R-module V. This is a K-vector space V with action of t

Multiplication by t gives a linear operator $T: V \to V$ (t commutes with K)

Remark: if V is of finite dimension over K, then it is finitely generated as a K-module In particular, it's finitely generated over the ring R = K[t]

A an abelian group. If A is torsion, we are especially interested.

Suppose we start with a linear operator on a finite-dimension vector space.

There is a characteristic polynomial h such that h(T) = 0.

Cayley-Hamilton theorem.

$$h(t) \in R = K[t]$$
. So $h(t) \cdot v = 0$.

V is a torsion module because h(t) annihilates V.

Summary of what we have so far:

 $0 \neq X \subset Y = \mathbb{Z}^n$, $\lambda : Y \to \mathbb{Z}$, $\lambda(X)$ is maximal among $\mu(X)$ s, $\lambda(X) = a\mathbb{Z}$.

Have shown that $a = \lambda(x)$, then $\mu(x)$ is divisible by a for all μ .

Take μ to be the i^{th} coordinate function, $x=(x_1,\cdots,x_n)\in\mathbb{Z}^n$, $a|x_i$ for all $i=1,\cdots,n$, $x=a\cdot y,y\in\mathbb{Z}^n$, $\lambda(y)=\lambda(x)/a=1$

Think of Y: contains two submodules (subgroups)

 $Y \supset ker(\lambda), Y \supset \mathbb{Z} \cdot y.$

Claim: $Y = ker(\lambda) \oplus \mathbb{Z}y$

1) each $z \in Y$ is: e.g. $(z - \lambda(z) \cdot y) + \lambda(z)y$

2) if my is in $ker(\lambda)$ then $0 = \lambda(my) = m\lambda(y) = m$ so m = 0, my = 0, intersection is 0. The corresponding statement for X is that $X = (\ker(\lambda|_X)) \oplus \mathbb{Z}_X$

Kind of obvious that the intersection is 0.

Each component is a submodule of the corresp. one in Y.

$$z \in X$$
, $\lambda(z) = m\lambda(x) = ma\lambda(y)$.

$$z = z - \lambda(z)y + \lambda(z)y$$

$$\lambda(z)y = m \cdot a \cdot y = mx$$

$$(z - \lambda(z)y) \in ker(\lambda) \cap X = ker(\lambda|_X)$$

$$\mathbb{Z}^n = Y = ker(\lambda) \oplus \mathbb{Z}y$$

$$Y \supset X = ker(\lambda|_X) \oplus \mathbb{Z}ay$$

Apply inductively to portion of lower rank, having pulled off $\mathbb{Z}a$

$$X = a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus \cdots \oplus a_m \mathbb{Z} \oplus 0 \cdots 0 \subset Y = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$$

need to have some kind of divisibility among these a, need to be explained $a_1|a_2,\cdots$

$$Y = \mathbb{Z} \oplus Y'$$
 and $X = a\mathbb{Z} + X'$, working rightward

start thinking of various linear maps $\tilde{\lambda}': Y' \to \mathbb{Z}$, and how they restrict to X taking a maximal one, etc., etc.

need to understand somehow that if we take this $\lambda'(X') = a'\mathbb{Z}$

we want a|a', meaning $a'\mathbb{Z} \subset a\mathbb{Z}$, do this with some greatest common divisor argument Introduce g = gcd(a,a') which we want to be a, write in form ra + sa'

Need to find some interesting linear map from Y to Z

Have a map $Y' \xrightarrow{\lambda'} \mathbb{Z}$ and $\mathbb{Z} \to \mathbb{Z}$ the identity

Both of these are linear maps that give linear maps $Y \to \mathbb{Z}$.

Choose $x' \in X'$ so that $\lambda'(x') = a'$

Have (a,0) in X so that the second linear map (just taking the first coordinate)...

...applied to (a,0) gives a

Take $Y = \mathbb{Z} \oplus Y'$

$$\mathbb{Z} \oplus Y' \xrightarrow{f} \mathbb{Z}$$

$$\mathbb{Z} \oplus Y' \to Y' \to Y' \xrightarrow{\lambda'} \mathbb{Z}$$
, the composition of which call *g*

$$Y = \mathbb{Z} \oplus Y' \ni (a, x') \in X$$

$$f(a, x') = a$$

$$g(a, x') = \lambda(x') = a'$$

$$(rf + sg)(a, x') = G, rf + sg = \mu$$

$$\mu(X) \supset \mathbb{Z} \cdot G \supset \mathbb{Z}a$$

Maximality $\rightarrow G = a$.

Tells us that a really divides a' by maximality.

The Y and the X really divide off into two separate worlds.

$$Y = \mathbb{Z} \oplus Y'$$
 and $X = a\mathbb{Z} \oplus X'$

The world which we have already considered, and the trailing-off world of Y' and X' New map μ defined on all of Y and X, by leaving the first coordinate alone.

Go back to the original example of the 2 and the 3. $Y = \mathbb{Z} \oplus \mathbb{Z} \supset X = 2\mathbb{Z} \oplus 3\mathbb{Z}$

$$\lambda(u,v) = v - u$$

 $x = (2,3), \lambda(x) = 1$
 $a = 1, \lambda(X) = \mathbb{Z}$, need to see how that line splits off in \mathbb{Z} and in X .
 $Y = \mathbb{Z} \cdot y \oplus ker(\lambda)$
 $y = x/a = x, ker(\lambda) = \{(u,v) : u = v\} = \mathbb{Z} \cdot (1,1)$
 $Y = \mathbb{Z} \cdot (2,3) \oplus \mathbb{Z} \cdot (1,1) = \mathbb{Z}^2$
 $X = \mathbb{Z} \cdot (2,3) \oplus \mathbb{Z} \cdot (1,1) \cap (2\mathbb{Z} \oplus 3\mathbb{Z})$
so $X = \mathbb{Z} \cdot (2,3) \oplus 6 \cdot \mathbb{Z}(1,1)$
 $Y/X = \mathbb{Z}/\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/6\mathbb{Z}$.

9/22

Rings R, A (= 'anneau')

definition: whether or not $1 \in R$ is can vary

Lang: $1 \in R$, Hungerford: $1 \notin R$

In the former, $2\mathbb{Z}$ is not a ring, in the latter, it is

gold standard of a ring, the ring of integers \mathbb{Z}

Ring: has an addition and a multiplication, modeled off of the integers under +, ring is an abelian group with distinguished element 0 associative product (not necessarily commutative) with distinguished element 1 distributive laws $(x + y)z = \cdots$ and z(x + y) = zx + zy

Example, given A an abelian group, the ring of endomorphisms

$$R = End(A) = Hom(A, A), (f + g)(a) = f(a) + g(a), fg = f \circ g$$

End(A) can be viewed as a ring of matrices under matrix multiplication if $A = \mathbb{Z}^n$ Example, any field e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}, \mathbb{Q}(i) = \{a + bi | a, b \in \mathbb{Q}\}$

Fields are commutative, and non-zero elements have multiplicative inverses To be explored: X a set, R = P(X), r + s = symmetric difference, $r \cdot s =$ intersection Hamilton quaternions over \mathbb{R} , \mathbb{Q} , a + bi + cj + dk a "skew field"

An inverse is $\frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$

G a group (written multiplicitavely), take $\mathbb{Z}[G] = \mathbb{Z}\langle G \rangle$ the free abelian group on G elements $\sum n_g \cdot g, n_g \in \mathbb{Z}$ the sum finite can multiply

$$(\sum n_g \cdot g)(\sum m_h \cdot h) = \sum_{x \in G} (\sum_{g,h,gh=x} n_g m_h) x$$
$$c_x = \sum_g n_g m_{g^{-1}x}$$

a convolution product $G = \{x^i | i \in \mathbb{Z}\}, x^i x^j = x^{i+j}$ typical element finite $\sum_i n_i x^i, n_i \in \mathbb{Z}$

```
e.g. x^{-3} + 2x^{-2} + 7x^{-1} + 9x^{100} a polynomial in x, x^{-1}
Ring Homomorphisms
   is a homomorphism of abelian groups, and respects the multiplication operation
    \varphi(xy) = \varphi(x)\varphi(y), note \varphi(1) \neq 1 is possible
   ker(\varphi) = \{r \in R | \varphi(r) = 0\}
   Satisfies the property for being an ideal: x \in R, r \in ker(\varphi) \to xr, rx \in ker(\varphi)
Ideals
    xI \subset I left-sided, Ix \subset I right-sided, 2-sided (bilateral)
    exact analogues of normal subgroups
two-sided ideal: well-defined quotient multiplication
    (r+I)\cdot(s+I):=rs+I
    (r+I)(s+I) = r(s+i) + I = rs + ri + I and similarly
    (r+I)(s+I) = (r+i)s + I = rs + is + I
   ideals are kernels of ring homomorphisms
Principal Ideal I = R \cdot a for some a \in R
   the Ideal that a generates, (a) (minimal ideal containing a)
   is exactly all multiples of a in R
   for subset X, intersection of all ideals containing X (intersections of ideals are ideals)
   if X = \{a_1, \dots, a_t\}, the ideal is (a_1, \dots, a_t)
the ideals of \mathbb{Z} are the additive subgroups of \mathbb{Z}, a\mathbb{Z}, a \ge 0 = (a)
    an ideal of R is an additive subgroup with ideal property
K field, R = K[x]
   euclidean division
    all ideals of R are principal
R = K[x, y] polynomials in x and y
    R \xrightarrow{\varphi} K, f(x,y) \mapsto f(0,0) \in K (the constant term of the polynomial)
    (x,y) = ker(\varphi) = \{\text{polynomials with 0 constant term}\}.
    this is not principal
    elements look like 0 + ax + by + cx^2 + \cdots
Prime ideal P \subset R shall be:
   proper
   if rs \in P then r \in P or s \in P
   If P divides rs then P divides r or s
Prime ideals of \mathbb{Z}
    (0), (p) = p\mathbb{Z}, p \text{ prime.}
If \varphi : R \to S is a ring homomorphism and S contains a prime ideal P
    then \varphi^{-1}(P) is a prime ideal of R
```

then $\varphi(x)\varphi(y)=\varphi(xy)\in P\to \varphi(x)\in P$ or $\varphi(y)\in P$ \square Corollary: Suppose $\varphi:R\to S$ a non-trivial homomorphism of rings and (0) is prime in S Then the kernel of φ is prime.

Let $x, y \in R$ and suppose $xy \in \varphi^{-1}(P) = P'$

Proof:

```
S is called an integral domain if
```

$$(0) \neq S$$

if
$$xy = 0$$
 then $x = 0$ or $y = 0$

Proposition: $P \subset R$ is a prime ideal $\leftrightarrow R/P$ is an integral domain

Maximal ideal $M \subset R$ if $M \neq R$ and $M \subset M'$ a proper ideal, M = M'

Proposition: M is maximal \leftrightarrow R/M is a field

Example: $\mathbb{Z} \supset a\mathbb{Z}$ maximal $\leftrightarrow a$ is prime

Corollary: Maximal ideals are prime

Pf: Fields are integral domains.

9/24: Midterm

9/29

A a ring, I an ideal in A

have a correspondence between ideals J, $I \subset J \subset A$ and the ideals of A/I

$$\pi: A \to A/I$$
 and $\pi(J) = J/I \subset A/I$

for *K* ideal of *A*/*I*, consider
$$\pi^{-1}(K) \subset A$$

$$I \subset \pi^{-1}(K)$$
, show that is an ideal

A a ring, its group of units $A^* = \{u \in A | \exists v \in A, uv = 1\}$

$$\mathbb{Z}[i]^{*} = \{1, -1, i, -i\} \cong \mathbb{Z}/4\mathbb{Z}$$

$$\mathbb{R}[x]^* = \mathbb{R}^*$$

$$\mathbb{Z}[\sqrt{5}] \ni 1, -1, 2 + \sqrt{5}, 2 - \sqrt{5}$$

 $A \text{ a field} \leftrightarrow A^* = A - \{0\} \text{ and } A \neq \{0\}$

a field is an integral domain

the ideal $\{0\}$ is maximal in a field

Every proper ideal of *A* is contained in a maximal ideal.

Proof by Zorn's Lemma.

Chinese Remainder Theorem

10/1

Commutative centre = integral domain.

PIDs UFDs

PID: Every ideal is principal, I = (a)

generalization: every ideal is finitely generated $I = (a_1, \dots, a_m) = \{\sum_{i=1}^m r_i a_i | r_i \in A\}$ Noetherian

equivalence of 3 conditions on a ring, for which, if holds, makes the ring Noetherian (1) each ideal is finitely generated

- (2) chains become stable
- (3) Every non-empty set of ideals of A contains a maximal element.

Condition (2): stability of chains

 $I_1 \subset I_2 \subset I_3 \subset \cdots$ increasing chain of ideals in A

 $\exists N \geq 1$ so that $I_n = I_N$ for all $n \geq N$

e.g. Z

$$(2^{100})\subset (2^{99})\subset \cdots$$

can have arbitrarily long chains in ring of integers

but all of them terminate

(1) implies (2)

Consider a $I_1 \subset I_2 \subset \cdots$

and take
$$I = \bigcup_{i=1}^{\infty} I_i$$

I finitely generated, each a_i needs to be in some I

eventually all of them are in some I_N , so $I \subset I_N$, we are done

(2) implies (3)

Take $I_1 \in S$. If not a maximal elt of S, $I_1 \subset I_2$, $I_2 \in S$

If I_2 not max, etc., continue and construct a chain

can't go to infinity if (2) is assumed; must end, I_N is maximal

irreducible elements of A: elements that can't be factored

an element $a \in A$, $a \neq 0$ and not a unit

if a = bc then b is a unit or c is a unit

 $(0) \subset (a) \subset A$

maximal if A is a PID

$$(a) \subset I = (b) \subset A$$

$$a \in (b)$$
, $a = bc$

b a unit then I = A and if c is a unit, I = (a)

Proposition: If A is a PID, then every $t \in A$, $t \neq 0$, t not a unit

t can be written as a product of irreducible elements

Proof:

Consider the set of (principal) ideals (t) for which the proposition is false

If $S = \emptyset$, done. Else consider a maximum element $(m) \in S$

but if $(m) \subsetneq (m')$ then (m') can be factored

if m irreducible it can be factored, if not m = m'm'' where m', m'' not units $(m) \subseteq (m')$, $(m) \subseteq (m'')$

(m'), (m'') not in S, they can be factored, we are done

This proof also works for Noetherian rings generally common tactic by maximal counterexample

prime elements of A

 $a \neq 0$, not a unit, a prime \leftrightarrow (a) is prime

if a|bc then a|b or a|c

Primes are irreducible:

if *a* is prime and a = bc then a|b or a|c

if a|b then b is a multiple of a and a is a multiple of b

so $a \sim b$: $b = u \cdot a$ and $a = u^{-1} \cdot b$, differ by a unit

```
irreducible elements might not be prime
    A = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} | a, b \in \mathbb{Z}\}\
   2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})
   2 is irreducible and not prime, 2|4 but doesn't divide either on the right side
    exists norm N: z \mapsto z\overline{z}
    a + b\sqrt{-3} \mapsto a^2 + 3b^2
   2 is irreducible
   2 = \alpha \beta, N(2) = N(\alpha)N(\beta), 4 = N(\alpha)N(\beta)
   but norms can never be 2 so one of these must be a unit (N=1 implies \pm 1)
In a PID, irreducible elements are prime
    an irred \rightarrow (a) is maximal \rightarrow (a) is prime \rightarrow a is prime
Unique factorization domain: every a \neq 0, unit has a factorization as a prod of irreducibles
    this is unique up to reordering and transformation by units
    a \sim b, a and b are associated, if a = b \cdot u and b = a \cdot u^{-1} for some unit u
Theorem: PIDs are UFDs
   PID: a = \pi_1 \cdots \pi_n = \sigma_1 \cdots \sigma_m
    \sigma_m prime so \sigma_m dviides some \pi_i
   can assume \sigma_m | \pi_n, \phi_n = \sigma_m \cdot c, c unit
   proceed by induction on indices, end
A PID a, b \in A, (a, b) = \{ax + by | x, y \in A\} = (g) since principal
    g = gcd(a,b): (g) = (a,b) \ni a,b
    a and b are multiples of g, g divides a, b
t can't be factored as a product of irreducibles, (t) is maximal in this property
if t irreducible t = t; impossible
   if t not irreducible, t = r \cdot s, r, s non-units
    (t) \subsetneq (r) (t) \subsetneq (s)
A = \mathbb{Z}[\cdots(7)^{\frac{1}{2^N}}\cdots]
    7 is not a unit in A
Lemma: every element of A is "integral"
   it satisfies an equation (monic polynomial) x^n + c_{n-1}x^{n-1} + \cdots + c_0 = 0
   monic: first coefficient = 1
   c_i \in \mathbb{Z}
   integral ring
1/7 satisfies no such polynomial
7 can be factored on and on n(7^{1/n}); not a Noetherian ring
10/6
A-Modules (left modules)
   M = abelian group with an action of scalar multiplication of A (= ring)
    (same axioms as for an A-vector space except that A \neq \text{field})
End(M) = Hom(M, M)
```

$$M = \mathbb{Z}^n$$
, $End(M) = M(n, \mathbb{Z})$
action of A on M: a homomorphism of rings $A \xrightarrow{\varphi} End(M)$
 $\varphi(a) \in End(M)$, $\varphi(a) : M \to M)$, $(\varphi(a))(m) := a \cdot m$
 $f,g \in End(M)$: $fg = f \circ g$
Diversion: Fresh water (Chicago) algebra: $a \in A, m \in M, m^a, (m^{ab}) = (m^a)^b$
instead of $a \cdot m$) or $a(m)$
Module properties
 $\varphi(ab) = \varphi(a)\varphi(b)$
 $(ab) \cdot m = a \cdot (b \cdot m)$
 $a \cdot (m + m') = a \cdot m + a \cdot m'$
 $\varphi(a) \in End(M)$
 $(a + b) \cdot m = a \cdot m + b \cdot m$
 $\varphi(a + b) = \varphi(a) + \varphi(b)$

Examples:

A =field: an A-module is an A-vector space

Th: (uses choice) every A-vector space has a basis \leftrightarrow all A-modules are free M free on the set of generators $\{x_i\}_{i\in I}$

if every $m \in M$ is uniquely a finite A-linear combination of the x_i

For I, the free A-module on the set I

 $\{\sum_{i\in I} a_i x_i | a_i \in A \text{ all but finitely many are } 0\}$

could also notate $\{\sum_{i\in I} a_i i | a_i \in A \text{ all but finitely many are } 0\}$, just indexed by I Direct sums $\{M_i\}_{i\in I}, \oplus_{i\in I} M_i$

set of tuples indexed by I, with the i^{th} entry in M_i , all but finitely many entries are 0 $a \cdot (\cdots m_i \cdots)_{i \in I} = (\cdots a m_i \cdots)_{i \in I}$

Homomorphisms of A-modules M, N

 $M \xrightarrow{h} N$, conditions of linearity h(x+y) = h(x) + h(y), $h(a \cdot x) = ah(x)$

A =field: linear map

 $Hom_A(M,N)$ is an A-module

A map from a direct sum to a module uniquely determined by action on the summands

$$M \hookrightarrow \bigoplus_{j \in I} M_j \xrightarrow{h} N$$

$$M_i \xrightarrow{h_i} N$$

$$Hom_A(\bigoplus M_i, N) \xrightarrow{\alpha} \prod_{i \in I} Hom_A(M_i, N), h \mapsto (\cdots, h_i, \cdots)$$

 α is a bijection

To map a free module to N is to choose the images of each of the generators Unconstrained: can choose arbitrarily the images of the generators

Examples

$$A = \mathbb{Z}$$
, $M = \text{ab grp}$, $\mathbb{Z} \to End(M)$, $1 \mapsto \varphi(1) = id$, $2 \mapsto id + id$, $-1 \mapsto -id$
 $A = A$, $I \subset A$ left ideal, $I = A$ -module, $a \cdot i = ai \in I$

ring hom $A \to A'$, M = A'-module, $A \to A' \xrightarrow{\varphi} End(M)$, A'-modules \mapsto A-modules $M = \mathbb{Z}$ -module, $n \ge 1$, $M^n = \bigoplus_{i=1}^n M$

 $A = M(n, \mathbb{Z})$ acts on M^n by left matrix multiplication

could replace Z by some ring R, new construction

An exercise: A-modules \leftrightarrow abelian groups, leftwards, $M \mapsto M^n$, rightwards, ? Morita equivalence

Exact sequence $X \xrightarrow{h} Y \xrightarrow{g} Z$; Im(h) = Ker(g) (implies $g \circ h = 0$, but even stronger) can make these as long as we like $\cdots X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots$ exact if exact at each place X_i , i.e. $Ker(f_{i+1}) = Im(f_i)$ for all i

Examples

 $Y \xrightarrow{g} Z \xrightarrow{0} 0$, exact. *g* is surjective (epimorphism)

 $0 \to X \xrightarrow{h} Y$, exact. h is injective (monomorphism)

 $0 \to X \xrightarrow{h} Y \xrightarrow{g} Z \to 0$ is called a short exact sequence. $Y/h(X) \cong Z$

 $X \xrightarrow{h} Y$, $0 \to Ker(h) \to X \xrightarrow{h} Im(h) \to 0$, exact, $X/Ker(h) \cong Im(h)$

 $0 \rightarrow Im(h) \rightarrow Y \rightarrow Coker(h) \rightarrow 0$

 $0 \hookrightarrow Ker(h) \hookrightarrow X \xrightarrow{h} Y \to Y/Im(h) = Coker(h) \to 0$

 $N \to X \to Y \ N \to Y, 0 \to X \to Y \to Z \to 0 \text{ exact. } Hom_A(N,X) \to Hom_A(N,Y)$

use a functor, get a $0 \rightarrow Hom(N,X) \rightarrow Hom(N,Y) \rightarrow Hom(N,Z) \rightarrow 0$

have exactness at Hom(N, X), Hom(N, Y)

what about exactness at Hom(N,Z)?

equivalent statement: every homomorphism $N \to Z$ lifts to a homomorphism $N \to Y$ the entering map not necessarily surjective

e.g. $A = \mathbb{Z}, X = 2\mathbb{Z}.Y = \mathbb{Z}$ and $Z = Y/X = \mathbb{Z}/2\mathbb{Z}$, $N = \mathbb{Z}/2\mathbb{Z}$, lift does not exist go from left to right using functor/construction $Hom_A(N,\cdot)$

this functor/construction is "left exact" but not "right exact/fully exact" the class of modules with full exactness are the projective modules