Problema A. Ţelină

Fişier de intrare: telina.in
Fişier de ieşire: telina.out
Limită de timp: 0.5 secunde
Limită de memorie: 16 megabytes

Ţelina, sau apium graveolens, este o plantă din familia apiaceae. Poate atinge o înălțime de până la 1 metru. Frunzele sale sunt mari, penat-lobate. Florile sunt mici, de obicei având culoarea albă. Fructul său este achenă. Poate rezista până la temperaturi aproape de 0 grade Celsius. Perioada de înflorire este la începutul toamnei. Este o plantă hidrofilă. [sursă: wikipedia.ro]

Se dă un şir de N caractere $S_1S_2...S_N$. Țelina citeşte (poate citi!) acest şir din dreapta spre stânga, începând cu caracterul de pe poziția N şi terminând cu cel de pe poziția 1.

Pe măsură ce aceasta parcurge caractere, le introduce într-o stivă T (inițial vidă). În momentul în care citește caracterul A_{N-i+1} (la pasul i) îl introduce în vârful stivei T. Inainte de citi caracterul de la pasul i+1 țelina poate inversa toate caracterele din stivă sau poate continua la pasul următor.

Țelina vă roagă să aflați șirul minim lexicografic ce se poate forma în stiva T (primul element fiind in vârful stivei iar ultimul element în capătul stivei) la finalizarea operațiilor de la pasul N.

Date de intrare

În fişierul de intrare telina.in se află pe prima linie şirul S.

Date de ieșire

În fişierul de ieşire telina.out va conține pe prima linie şirul minim lexicografic ce se poate obține în T aplicând operațiile descrise anterior.

Precizări

- $1 \le N \le 10^6$.
- S conține doar caractere mici ale alfabetului englez.
- Pentru 15% din teste $1 \le N \le 15$.

Exemplu

telina.in	telina.out
telinab	abnilet

Explicație

La pasul 1, T = b. După citirea caracterului a stiva T = ab. Înainte de a termina pasul 2 țelina întoarce toate elementele din T iar acum T = ba. La pașii următori T = nab, T = nba, T = inba, T = linba, T = elinba. La ultimul pas se inversează toate caracterele iar T = abnilet.

Problema B. Coliziune

Fişier de intrare: coliziune.in Fişier de ieşire: coliziune.out

Limită de timp: 5 secunde Limită de memorie: 4 megabytes

Servicul de Telecomunicații Speciale urmărește îndeaproape concursul RoTopCoder. Acesta a descoperit că în cadrul concursului se află concurenți care au reușit să identifice un algoritm eficient pentru determinarea coliziunilor unei funcții \mathcal{H} . O coliziune reprezintă 2 valori x, y pentru care $\mathcal{H}(x) = \mathcal{H}(y)$.

Este un lucru binecunoscut în criptografie (studiul tehnicilor pentru comunicații securizate) că această problemă este una dificilă (pentru o funcție \mathcal{H} bine aleasă).

Fie o funcție \mathcal{H} ce primeste ca date intrare șiruri de lungime variabilă continând doar cifre de 0 și 1 (șir binar). Considerăm un șir binar S de lungime N pentru care primul caracter se află pe poziția 1 (numerotarea cifrelor incepe de la 1).

 \mathcal{H} este calculată în felul următor:

$$\mathcal{H}(S) = (\sum_{i=1}^{N} (S(i) + 1)B^{N-i}) \mod M$$
 (1)

unde cu $x \mod M$ am notat restul împărțirii lui $x \ln M$.

Dându-se 2 numere naturale B şi M, se cere sa găsiți 2 şiruri binare diferite x si y, astfel încât $\mathcal{H}(x) = \mathcal{H}(y)$.

Date de intrare

În fişierul de intrare *coliziune.in* pe prima linie se vor afla 2 numere întregi M si B (cu semnificația descrisă în enunț) separate prin spațiu. $(2 \le B \le M - 2, 4 \le M \le 5 * 10^{10})$

Date de ieșire

În fişierul de ieşire coliziune.out se vor afla 2 şiruri binare x, y separate printr-un spaţiu astfel încât $\mathcal{H}(x) = \mathcal{H}(y)$.

Precizări

- Dacă sunt mai multe soluții atunci puteți afișa oricare dintre ele atât timp cât lungimea șirului x, respectiv lungimea lui y nu depășește 10^6 .
- Pentru 30% din teste $1 \le M \le 900$. Pentru 60% din teste $1 \le M \le 10^6$.

Exemple

coliziune.in	coliziune.out
10 3	11000000 01101110010
4 2	1100 1110

Explicație

Se observă că pentru cel de-al 2-lea exemplu $\mathcal{H}(1100) = 2$ şi $\mathcal{H}(1110) = 2$. Deci am găsit 2 şiruri binare diferite 1100, 1110 pentru care funcția întoarce acelaș rezultat.