UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo

Vaja 47 - Sila med ploščama kondenzatorja

Luka Orlić

Kazalo

Se	Seznam uporabljenih simbolov		
1	Teoretični uvod	3	
2	Naloga	4	
3	Naloga	4	
4	Potrebščine	4	
5	Skica	4	
6	Meritve	4	
7	Obdelava meritev	5	
8	Analiza rezultatov	7	

Seznam uporabljenih simbolov

Oznaka	Pomen
Δ	TEXT, enota: $UNIT$
В	Magnetno polje , enota: T
p_m	Magnetni dipolni navor , enota: Am^2
N	Število ovojev , enota: /
S	presek, enota: m^2
M	Navor , enota: Nm
I	Tok , enota: A
μ_0	indukcijska konstanta, enota: Vs/Am
ϕ	Kot med tuljavam , enota: deg

1 Teoretični uvod

Zaradi električnih sil med nasprotnima nabojema se elektrodi kondenzatorja privlačita. Pri ploščatem kondenzantorju, ki ima plošči s ploščino S v razmiku d, je kapaciteta opisana po enačbi (1), kjer je ϵ_0 električna konstanta. Če kondenzator priključimo na napetost U, je sila F med ploščama enaka produktu nabojea e_1 na prvi plošči in poljske jakosti E_2 , ki bi jo dobili samo z nabojem na drugi plšoči. Pri tem je e_1 opisan z enačbo (3) in E_2 je opisan z enačbo (4). Iz izraza za kapaciteto kondenzatorja sledi, da je sila sorazmerna s kvadratom napetosti in velja enačba (5).

$$C = \epsilon_{=} \frac{S}{d} \tag{1}$$

$$F = e_1 E_2 \tag{2}$$

$$e_1 = CU (3)$$

$$E_2 = \frac{U}{2d} \tag{4}$$

$$F = \frac{CU^2}{2d} = \frac{\epsilon_0 SU^2}{2d^2} \tag{5}$$

2 Naloga

i.) Z uravnovešenjem navora na tuljavo v homogenem magnetnem polju Helmholtzove tuljave določi indukcijsko konstanto.

3 Naloga

i.) Izmeri silo med ploščama danega kondenza
otrja v odvisnosti od napetosti in določi električno konstanto.

4 Potrebščine

- Tehnica s kondenzatorskima ploščama,
- Usmernik za 2000V,
- \bullet Voltmeter,
- $\bullet \ 2$ žici z bananami.

5 Skica

Skice ni.

6 Meritve

Meritve							
Index	masa $[g]$	U_1 [V]	$U_2[V]$	$U_3[V]$			
1	1	639	637	656			
2	1.2	760	773	769			
3	1.3	845	850	843			
4	1.5	1083	1076	1079			
5	2	1391	1348	1361			
6	2.2	1469	1442	1449			
7	2.5	1631	1626	1633			
8	3	1820	1814	1866			
9	3.2	1897	1910	1903			

$$r = 9,5 cm$$

$$d = 0,51 cm$$
(6)

7 Obdelava meritev

Za računanje U^2 , uporabimo aritmetično povprečje vrednosti $U_1,\,U_2,\,U_3$ pri isti masi, kjer je $\Delta V\approx 15V.$ Za silo teže smo izračunali iz mase z enčbo $F=mg;\;g=9,81\;m/s^2.$

Z linearnim fitom, smo določili premico, ki se podatkom najbolj prilega v obliki funkcije f(x) = kx + n; n = 0. To prikazuje graf (1). Primerjamo z izračunano vrednostjo funkcije, kjer je $\epsilon_0 = (c^2\mu_0)^{-1}$; $\mu_0 = 4 \cdot \pi \cdot 10^{-7} Vs/A \wedge c = 2.998 \cdot 10^8 m/s$. Dobili smo:

$$k_{izm.} = 9.5 \cdot 10^{-9} \ N/V^2$$

$$k_{izr.} = 5.0 \cdot 10^{-9} \ N/V^2$$

$$R = \frac{k_{izm.}}{k_{izr.}} \approx 2$$
(7)

S pomočjo enačbe (8), dobimo izraz za izračunanja ϵ_0 . Primerjamo z pričakovano vrednostjo:

$$F = \frac{\epsilon_0 S U^2}{2d^2}$$

$$k = \frac{\epsilon_0 S}{2d^2}$$

$$\epsilon_0 = \frac{2kd^2}{S}$$
(8)

$$IZR: \ \epsilon_0 = 6,29 \cdot 10^{-12} \ F/m$$

 $IZM: \ \epsilon_0 = 8,85 \cdot 10^{-12} \ F/m$ (9)

Slika 1: Graf $F(U^2);$ OPOMBA: $(kV)^2=10^6\cdot V^2$

8 Analiza rezultatov

Rezultat smo izraunali na 27% natančno. Nenatančnost izvira predvsem iz merjenja razmika med ploščama.

V realni uporabi, se ϵ_0 uporablja za računanje debeline d med ploščama. V našem primeru dobimo, da je $d\approx 19\,cm$