Subestaciones y centros de transformación

 ${\bf Maker Garage}$

Mayo 2021

Índice

1.	Problemas 3			
	I.	Intens	idad en alta tensión	
	II.	Intens	idad en baja tensión	
	III.	Intens	idad de cortocircuito en alta tensión	
	IV.	Intens	idad de cortocircuito en baja tensión	
	V.	Dimen	sionado del embarrado	
		a).	Comprobación por densidad de corriente	
		b).	Comprobación por solicitación electrodinámica	
		c).	Comprobación por solicitación térmica a cortocircuito	
2.	Teo	ría		
3.	Tipe	os de (CT	
4.	. Tipos de Subestaciones			

1. Problemas

I. Intensidad en alta tensión

$$I_p = \frac{S}{\sqrt{3} \cdot U_p} [A]$$

Donde:

- S es potencia aparente en kVA
- $\blacksquare \ U_p$ es la tensión del primario en k V

II. Intensidad en baja tensión

$$I_s = \frac{S}{\sqrt{3} \cdot U_s} [A]$$

Donde:

- \blacksquare S es potencia aparente en kVA
- \bullet U_s es la tensión del secundario en kV

III. Intensidad de cortocircuito en alta tensión

$$I_{ccp} = \frac{S_{cc}}{\sqrt{3} \cdot U_p} [A]$$

Donde:

- $lacksquare S_{cc}$ es potencia aparente de cortocircuito en kVA
- lacktriangle U_p es la tensión del primario en kV

IV. Intensidad de cortocircuito en baja tensión

$$I_{ccs} = \frac{S}{\sqrt{3} \cdot U_s \cdot \frac{U_{cc} \%}{100}} [A]$$

Donde:

- S es potencia aparente en kVA
- \bullet U_s es la tensión del secundario en kV
- U_{cc} % Tensión de cortocircuito en %

V. Dimensionado del embarrado

a). Comprobación por densidad de corriente

$$d_{corriente} = \frac{I_p}{S} \left[\frac{A}{mm^2} \right]$$

Donde:

- $\blacksquare I_p[A]$
- \blacksquare S Sección en mm^2

b). Comprobación por solicitación electrodinámica

$$\sigma \max \ge \left(\operatorname{Iccp}^2 \cdot L^2\right) / (60 \cdot d \cdot W)$$

Donde:

- \bullet I_{ccp} Intensidad permanente de cortocircuito trifásico[kA]
- L Separación longitudinal entre apoyos [cm]
- d Separación entre fases[cm]
- W Módulo resistente de los conductores $[cm^3]$

c). Comprobación por solicitación térmica a cortocircuito

Ith =
$$\alpha \cdot \mathbf{S} \cdot \sqrt{\Delta T/t}$$
 [A]

- $\blacksquare \ \alpha$ 13 para el cobre
- \blacksquare S sección del embarrado en mm^2
- \blacksquare ΔT Elevación o incremento máximo de temperatura 150ºC para Cu
- \blacksquare t tiempo del cortocircuito en s

2. Teoría

Todos los centros de transformación disponen de:

- Celda de entrada
- Celda de salida
- Fusible trafo (si es privado no la instalan y corre a cargo del usuario)
- En caso de ser propiedad privada se añaden
 - Celda de entrega
 - Celda de protección general
 - Celda de protección del trafo (en caso de ser 2 ya que la general solo vale par 1 trafo)
 - Celda de medida

3. Tipos de CT

C.T. Propiedad de la compañía suministradora:

Esquema unifilar CT Prefabricado 1 Transformador

Esquema unifilar CT Prefabricado 2 Transformadores

C.T. Propiedad del abonado:

4. Tipos de Subestaciones

Subestaciones de barra simple

FALLO EN LÍNEA ⇒ SE PIERDE LA LÍNEA FALLO EN BARRA ⇒ SE PIERDE TODO

Subestaciones de barra simple con by-pass

Subestaciones de barra partida

FALLO EN LÍNEA ⇒ SE PIERDE LA LÍNEA FALLO EN BARRA ⇒ SE PIERDE MEDIA BARRA TRAS "APAGÓN" DE CORTA DURACIÓN

Subestaciones con barra principal y de transferencia

Subestaciones de barra doble

Subestaciones de barra doble con by-pass

Subestaciones de barra doble y doble interruptor

Subestaciones de barra en anillo

- El requerimiento de espacio es elevado, en particular, cuando el número de líneas es alto.
- La apertura del anillo para realizar tareas de mantenimiento puede ocasionar disparos intempestivos en las protecciones.
- El diseño de la aparamenta de medida y protección es más complicado;
- La ampliación de la subestación requiere la interrupción del suministro.

FALLO EN LÍNEA ⇒ SE PIERDE LA LÍNEA FALLO EN BARRA ⇒ SE PIERDE UNA LÍNEA SE PUEDEN MANTENER LOS INTERRUPTORES SIN PÉRDIDA DE SUMINISTRO

85

Subestaciones de interruptor y medio

FALLO EN LÍNEA ⇒ SE PIERDE LA LÍNEA

FALLO EN BARRA ⇒ FUNCIONAMIENTO NORMAL

MANTENIMIENTO DE INTERRUPTORES ⇒ FÁCIL Y FLEXIBLE, SIN

PÉRDIDA DE SUMINISTRO