

ENGENHARIA DE SOFTWARE APLICADA

Use Cases

Licenciatura em Engenharia Informática
ESTSetúbal - IPS 2020/21
Nuno Pina Gonçalves
Paulo Fournier
Rui Borges

nuno.pina@estsetubal.ips.pt

paulo.fournier@estsetubal.ips.pt

Agenda

- O que é modelação com use cases (casos de uso)
- □ Diagrama de **use cases**
 - Elementos e notações gráficas
 - Relacionamentos
 - Como identificar os elementos durante o levantamento de requisitos
- Exercícios.

Modelação com Use Cases

- A modelação com use cases é uma abordagem utilizada na engenharia de requisitos
- Suporta o processo de levantamento dos requisitos funcionais do sistema
- Cria-se um modelo onde são identificadas as funcionalidades que o sistema deverá apresentar para cada um dos seus utilizadores.
- Utiliza-se o diagrama de use cases da Unified Modelling Language (UML) para representar o modelo.

UML - Diagramas

Modelação com Use Cases

- □ A modelação com use cases é muito útil quando:
 - O sistema é dominado por requisitos funcionais
 - O sistema tem diversos tipos de utilizadores a quem fornece diferentes funcionalidades
 - O sistema tem muitos interfaces
- A modelação com use cases não é adequada para capturar restrições do sistema (requisitos não funcionais).

Modelação com Use Cases

- Elementos a incluir no modelo
 - O quê ou quem utiliza o sistema.
 - Quais as funções que o sistema deverá oferecer aos seus utilizadores.
 - Onde se situa a fronteira do sistema.

- □ Ator (O quê ou quem)
 - Um ator interage diretamente com o sistema
 - Os atores identificam quem utiliza o sistema
 - Um ator especifica um papel ("role") desempenhado por uma entidade externa quando interage com o sistema
 - Um ator pode ser outro sistema

- Use Cases (funções do sistema)
 - Um Use Case representa uma funcionalidade do sistema.
 - Um Use Case é sempre iniciado por um ator - ator principal
 - Para que o sistema consiga realizar a funcionalidade poderá ser necessário envolver outros atores - atores secundários
 - Os identificadores são sempre escritos do ponto de vista dos atores

Efetuar Encomenda

Consultar estado da encomenda

- Fronteira (onde se situa a fronteira)
 - Identifica-se o sistema e a sua fronteira.
 - No interior colocam-se as funcionalidades do sistema
 - No exterior colocam-se os utilizadores do sistema

- Os atores Customer e SalesAgent são muito semelhantes
- Ambos interagem com
 ListProducts, OrderProducts e
 AcceptPayment
- O SalesAgent interage ainda com CalculateCommission
- O nosso diagrama está uma confusão – Conseguiremos simplificá-lo?

- Generalização de atores
 - Se dois atores comunicarem da mesma forma com o mesmo conjunto de use cases

Utilizar a generalização de atores quando simplificar o modelo

Relacionamento de <<include>>

 O use case incluído terá sempre que ser realizado

Quando os use cases partilham um comportamento comum podemos separar esse comportamento e incluí-lo nos use cases base.

- Relacionamento de <<extend>>
 - O use case base, poderá despoletar a execução do use case de extensão
 - Existe um comportamento que apenas será realizado quando estiverem reunidas determinadas condições

- O "extension use case" insere comportamento no use case base.
- O *use case* base fornece pontos de extensão.

Minutos do desafio

40 minutos...

Identificação dos atores

- Algumas questões a dar resposta durante o levantamento de requisitos:
 - Quem utiliza o sistema?
 - O sistema terá que interagir com outros sistemas? Quais?
 - Quais os papéis que eles desempenham na interação?
 - Quem instala o sistema?
 - Quem inicia e encerra (shutdown) o sistema?
 - Quem faz a manutenção do sistema?
 - Quem recebe e/ou fornece informação ao sistema?
 - Existe alguma coisa que aconteça num determinado instante de tempo?

Identificação dos Use Cases

- Inicia-se com a lista dos atores que interagem com o sistema.
- Quando se identifica Use Cases, pergunta-se
 - Quais a funções que um determinado ator irá necessitar do sistema?
 - O sistema armazena ou fornece informação? Se sim, quais os atores que despoletam/iniciam o comportamento?
 - Existem eventos externos que afectem o sistema? Como é que o sistema toma conhecimento da ocorrência desses eventos?

A reter

- A modelação com use cases é muito útil quando:
 - O sistema é dominado por requisitos funcionais
 - O sistema tem diversos tipos de utilizadores a quem fornece diferentes funcionalidades
 - O sistema tem muitos interfaces
- A modelação com use cases não é adequada para capturar restrições do sistema (requisitos não funcionais).
- Elementos a incluir no modelo
 - Os atores O quê ou quem utiliza o sistema
 - Os use cases Quais as funções que o sistema deverá oferecer aos seus utilizadores
 - Os relacionamentos entre os atores e os use cases
 - A fronteira do sistema