Bachelor Thesis Decoding the Color Code

Clemens Schumann, Advised by Peter-Jan Derks

November 22, 2022

Contents

1	Introduction to the Algebra	3
	1.1 Schroedinger and Heisenberg picture	3
	1.1.1 Schroedinger picture	3
2	Conclusion	6
3	Appendix	6

1 Introduction to the Algebra

1.1 Schroedinger and Heisenberg picture

1.1.1 Schroedinger picture

In the Schroedinger picture, we focus on the time evolution of states:

$$|\psi\rangle = |\psi\rangle(t) \tag{1}$$

In this picture we can introduce quantum circuit diagram notation, whereby:

- States progress in time along horizontal parallel lines
- Time goes from left to right
- \bullet Gates denoted X,Y,Z are the pauli matrices $\sigma_x,\sigma_y,\sigma_z$
- Gates can act on one or multiple qubits, whereby an X gate on qubit 1 in a 3-qubit system should be interpreted as: $(X \otimes \mathbb{I} \otimes \mathbb{I})(|\psi_1\rangle \otimes |\psi_2\rangle \otimes |\psi_3\rangle)$

Figure 1: A Quantum Circuit, where $|0\rangle$ is the +1 eigenstate in σ_z -basis

In the quantum circuit depicted in figure 1 the input state can be written as $|\psi_{control}\rangle \otimes |0\rangle \otimes |\psi_{target}\rangle$ and the measurement in the first timestep can be expressed as $\mathbb{I} \otimes X \otimes X$.

To simplify calculation we can write $|\psi_{target}\rangle$ as $\alpha|0\rangle + \beta|1\rangle$ The input state is thus: $|\psi_{control}\rangle \otimes |0\rangle \otimes (\alpha|0\rangle + \beta|1\rangle)$.

The initial state $|\phi_{t=0}\rangle = |\psi_{control}\rangle \otimes |\psi_{ancilla}\rangle \otimes |\psi_{target}\rangle$ where

$$\begin{aligned} |\psi_{control}\rangle &= \alpha|0\rangle + \beta|1\rangle \\ |\psi_{ancilla}\rangle &= |0\rangle \\ |\psi_{target}\rangle &= \gamma|0\rangle + \delta|1\rangle \end{aligned}$$

therefore:

$$|\phi_{t=0}\rangle = \alpha \left(\gamma |000\rangle + \delta |001\rangle\right) + \beta \left(\gamma |100\rangle + \delta |101\rangle\right) \tag{2}$$

If the first measurement result is +1, the state becomes:

$$|\phi_{t=1}^{+}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \mathbb{I} \otimes X \otimes X) |\phi_{t=0}\rangle$$
$$= \alpha (\gamma (|000\rangle + |011\rangle) + \delta (|001\rangle + |010\rangle))$$
$$+ \beta (\gamma (|100\rangle + |111\rangle) + \delta (|101\rangle + |110\rangle))$$

if the result is -1, it becomes:

$$|\phi_{t=1}^{-}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - \mathbb{I} \otimes X \otimes X) |\phi_{t=0}\rangle$$
$$= \alpha (\gamma (|000\rangle - |011\rangle) + \delta (|001\rangle - |010\rangle))$$
$$+ \beta (\gamma (|100\rangle - |111\rangle) + \delta (|101\rangle - |110\rangle))$$

In the case of the +1 Measurement \rightarrow a=0:

$$|\phi_{t=2}^{++}\rangle = \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + Z \otimes Z \otimes \mathbb{I} \right) |\phi_{t=1}^{+}\rangle$$

$$= (|000\rangle\langle 000| + |001\rangle\langle 001| + |110\rangle\langle 110| + |111\rangle\langle 111|) |\phi_{t=1}^{+}\rangle$$

$$= \alpha \left(\gamma |000\rangle + \delta |001\rangle\right) + \beta \left(\gamma |111\rangle + \delta |110\rangle\right)$$

$$\begin{split} |\phi_{t=2}^{+-}\rangle &= \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - Z \otimes Z \otimes \mathbb{I} \right) |\phi_{t=1}^{+}\rangle \\ &= \left(|010\rangle\langle 010| + |011\rangle\langle 011| + |100\rangle\langle 100| + |101\rangle\langle 101| \right) |\phi_{t=1}^{+}\rangle \\ &= \alpha \left(\gamma |011\rangle + \delta |010\rangle \right) + \beta \left(\gamma |100\rangle + \delta |101\rangle \right) \end{split}$$

In the case of the -1 Measurement \rightarrow a=1:

$$|\phi_{t=2}^{-+}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + Z \otimes Z \otimes \mathbb{I}) |\phi_{t=1}^{-}\rangle$$
$$= \alpha (\gamma |000\rangle + \delta |001\rangle) - \beta (\gamma |111\rangle + \delta |110\rangle)$$

$$|\phi_{t=2}^{--}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - Z \otimes Z \otimes \mathbb{I}) |\phi_{t=1}^{-}\rangle$$
$$= -\alpha (\gamma |011\rangle + \delta |010\rangle) + \beta (\gamma |100\rangle + \delta |101\rangle)$$

Now the applied measurement is $\mathbb{I} \otimes X \otimes \mathbb{I}$, which means:

$$\begin{split} |\phi_{t=3}^{++++}\rangle &= \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \mathbb{I} \otimes X \otimes \mathbb{I} \right) |\phi_{t=2}^{++}\rangle \\ &= \frac{1}{2} ((|010\rangle + |000\rangle) \langle 000| + (|011\rangle + |001\rangle) \langle 001| \\ &+ (|000\rangle + |010\rangle) \langle 010| + (|001\rangle + |011\rangle) \langle 011| \\ &+ (|110\rangle + |100\rangle) \langle 100| + (|111\rangle + |101\rangle) \langle 101| \\ &+ (|100\rangle + |110\rangle) \langle 110| + (|101\rangle + |111\rangle) \langle 111|) |\phi_{t=2}^{++}\rangle \\ &= \frac{1}{2} (\alpha \left(\gamma(|000\rangle + |010\rangle) + \delta(|011\rangle + |001\rangle)) \\ &+ \beta \left(\gamma(|101\rangle + |111\rangle) + \delta(|100\rangle + |110\rangle))) \end{split}$$

In this case, a,b and c would each be zero, therefore no further gate would be applied.

As intended, this state is equivalent to $CNOT_{|\psi_{Control}\rangle \to |\psi_{Target}\rangle} |\phi_{t=0}\rangle$.

- 2 Conclusion
- 3 Appendix