Generic Homomorphic Undeniable Signature Scheme: Optimizations

Yvonne Anne Oswald

Semester Project February 2005

Responsible

Prof. Serge Vaudenay

Supervisor

Jean Monnerat

Outline

- Introduction generic homomorphic undeniable signatures
- Homomorphisms: quartic residue symbol, Jacobi symbol, discrete logarithm, RSA
- Comparison signature generation
- Conclusion

Undeniable Signatures

- Verification of validity of signature only by interaction with Signer
- Complete signature scheme consists of
 - Key generation algorithm
 - Signature algorithm
 - Confirmation protocol
 - Denial Protocol

GHI Problem

Definition: G, H Abelian groups, $S := \{(x_1, y_1), \ldots, (x_s, y_s)\} \subseteq G \times H$. We say that S interpolates in a group homomorphism if there exists a homomorphism $\phi: G \to H$ such that $\phi(x_i) = y_i$ for $i = 1, \ldots, s$.

GHI Problem (Group Homomorphism Interpolation Problem)

Parameters: two Abelian Groups G and H, a set of s points $S \subseteq G \times H$.

Input: $x \in G$

Problem: find $y \in H$ such that (x,y) interpolates with S in a group homomorphism.

The GHI problem is the generalization of many cryptographic problem: discrete logarithm, Diffie-Hellmann, RSA.

Generic homomorphic undeniable signatures

Key generation:

- Select G, H Abelian groups and hom. $\phi: G \to H$ (private key)
- Compute public key $K := \{(x_{key1}, \phi(x_{key1}), \dots, (x_{keyk}, \phi(x_{keyk}))\}$, x_i generated from seed ρ using det. pseudorandom generator

Signature and protocols:

- Generate (x_1, \ldots, x_s) from message m using det. pseudorandom generator
- Compute signature $S := \{(x_{sig1}, \phi(x_{sig1}), \dots, (x_{sigs}, \phi(x_{sigs}))\}$
- ullet Confirmation/denial protocol: proving/disproving that K interpolates with S in a homomorphism

Generic homomorphic undeniable signatures

- Security of generic homomorphic undeniable signatures depends on hardness of GHI problem
- Various homomorphisms suitable (hard characters, discrete logarithm, RSA exponentiation)
- Summer 2004: Demonstrator for MOVA signature scheme using quartic residue symbol as homomorphism

Description of project

- Optimize existing implementation of quartic residue symbol
- Implement 3 additional homomorphisms (Jacobi symbol, discrete logarithm, RSA exponentiation) and compare them to each other
- Programming language C, GNU Multiple Precision Arithmetic Library GMP

Quartic residue symbol $\chi_{\beta}(\alpha)$

Definition Let $\alpha, \beta \in \mathbb{Z}[i]$ be such that $(1+i) \nmid \beta$ and $\gcd(\beta, \alpha) = 1$. The quartic residue symbol is defined as $\chi_{\beta} : \mathbb{Z}[i] \to \{0, \pm 1, \pm i\}$

$$\chi_{\beta}(\alpha) = \begin{cases} \left(\alpha^{\frac{N(\beta)-1}{4}}\right) \mod \beta & \text{if } \beta \text{ prime} \\ \prod_{i} \chi_{\beta_{i}}(\alpha) & \text{if } \beta = \prod_{i} \beta_{i}, \ \beta_{i} \text{ prime} \end{cases}$$

Properties

- Modularity: $\chi_{\beta}(\alpha) = \chi_{\beta}(\alpha \mod \beta)$
- Multiplicativity: $\chi_{\beta}(\alpha \alpha') = \chi_{\beta}(\alpha) \chi_{\beta}(\alpha')$
- Reciprocity Law: if α , β primary:

$$\chi_{\beta}(\alpha) = \chi_{\alpha}(\beta) \cdot (-1)^{\frac{N(\alpha)-1}{4} \cdot \frac{N(\beta)-1}{4}}$$

Quartic residue symbol $\chi_{\beta}(\alpha)$

Basic algorithm

```
\begin{array}{l} t \leftarrow 0 \\ \text{WHILE } (N(\alpha) > 1) \text{ DO} \\ & \alpha \leftarrow \alpha \bmod \beta \\ & \text{ (Modularity)} \\ & \text{find } \alpha' \text{ primary such that } i^j \cdot (1+i)^k \cdot \alpha' \\ & \text{set } \alpha \leftarrow \alpha' \text{ and adjust } t \\ & \text{ swap } \alpha \text{ and } \beta \text{ and adjust } t \\ & \text{ (Reciprocity)} \\ & \text{IF } (N(\alpha) = 1) \text{ return } i^t \end{array}
```

Damgård's algorithm

```
\begin{split} t &\leftarrow 0 \\ \text{WHILE } (\alpha \neq \beta) \text{ DO} \\ &\alpha \leftarrow \alpha - \beta \\ &\text{find } \alpha' \text{ primary such that } i^j \cdot (1+i)^k \cdot \alpha' \\ &\alpha \leftarrow \alpha' \text{ and adjust } t & \text{(Multiplicativity)} \\ &\text{IF } (N(\alpha) > N(\beta)) \\ &\text{swap } \alpha \text{ and } \beta \text{ and adjust } t & \text{(Reciprocity)} \\ &\text{IF } (\alpha = 1) \text{ return } i^t \end{split}
```

Implementation

Basic functions in $\mathbb{Z}[i]$

- Multiplication: $\alpha \cdot \beta$
- Modulo: $\alpha \mod \beta$
- Norm: $N(\alpha)$
- Division by $(1+i)^r$
- ullet Primarization: transforms lpha into its primary associate if possible

Optimization

- Scrutinize every line of code
- Implement faster algorithms
- Remove unnecessary function calls
- Use faster, more sophisticated GMP functions
- Reduce the number of GMP variables
- Examine different implementation variants
- Apply general optimization techniques

Number of lines of code: not optimized 1162, optimized 603

Division by $(1+i)^r$

$$\frac{\alpha}{(1+i)} = \frac{Re(\alpha) + Im(\alpha)}{2} + \frac{Im(\alpha) - Re(\alpha)}{2}i$$

$$\frac{\alpha}{(1+i)^r} = \frac{i^{3k} \left(\frac{Re(\alpha)}{2^k} + \frac{Im(\alpha)}{2^k} i \right)}{(1+i)^b} , \quad r = 2k + b$$

Not optimized:

- Compute $(1+i)^r$
- Divide α by result

Optimized:

- Rightshift $Re(\alpha)$ and $Im(\alpha)$ by k+b considering 3k
- If b = 1 perform necessary addition and subtraction

Tests

- Time measurements under Windows and Linux
- Windows platform Intel(R)4 1.4 GHz Desktop Computer,
 256 MB RAM, Windows XP
- Average values produced by test series of 1000 tests
- 512 bit random numbers generated with a GMP function Gaussian integers: real and imaginary part 512 bit random numbers

Results subfunctions

Running time (in ms)	not optimized	optimized	$GMP\;(in\;\mathbb{Z})$
Multiplication in $\mathbb{Z}[i]$	0.078	0.049	0.010
Modulo in $\mathbb{Z}[i]$	0.141	0.104	0.001
Division by $(1+i)^r$	0.061	0.015	0.001
Primarization	0.071	0.006	

Results quartic residue symbol

Running time and iterations	time in ms	iterations
Basic algorithm not optimized	62.79	249.27
Basic algorithm optimized	31.57	249.27
Damgård's algorithm	24.22	512.84

MOVA signature scheme

- n = pq where p, q rational primes, $p \equiv q \equiv 1 \pmod{4}$
- Find π, σ such that $p=\pi\bar{\pi}$ and $q=\sigma\bar{\sigma}$ with algorithms by Tonelli and Cornacchia
- $\bullet \ \ \mathsf{Select} \ G := \mathbb{Z}[i]/\beta\mathbb{Z}[i], \ G \cong \mathbb{Z}_n^* \ \mathsf{with} \ \beta = \pi\sigma, \ G \cong \mathbb{Z}_p^* \ \mathsf{with} \ \beta = \pi$

Results MOVA Setup

Running time and iterations	time in ms	iterations
$\beta = \pi \sigma$		
Basic algorithm optimized	32.12	248.81
Damgård's algorithm	50.63	766.12
$\beta=\pi$		
Basic algorithm optimized	14.31	2123.87
Damgård's algorithm	38.59	640.71

Mixed Algorithm

 $\alpha \leftarrow \alpha \bmod \beta$

return $\mathsf{Damgard}(\alpha,\beta)$

Results including mixed algorithm

MOVA setup running time and iterations	time in ms	iterations
$\beta = \pi \sigma$		
Basic algorithm optimized	32.12	248.81
Damgård's algorithm	50.63	766.12
Mixed algorithm	24.65	511.92
$\beta = \pi$		
Basic algorithm optimized	14.31	2123.87
Damgård's algorithm	38.59	640.71
Mixed algorithm	9.03	255.95

Jacobi Symbol $(\frac{a}{m})$

- ullet Jacobi symbol equivalent of quartic residue symbol in $\mathbb Z$
- Implement basic algorithm (modulo for reduction)
- Compare with GMP function mpz_jacobi (binary algorithm)
- MOVA setup: $n=pq,\ p,q$ prime, $a\in\mathbb{Z}_n^*, m=p$

Results Jacobi symbol

Running time and iterations	time in ms	iterations
Basic algorithm	1.261	187.71
Binary algorithm (GMP)	0.116	

- n = pq with p = rd + 1, q, d prime, gcd(q 1, d) = 1, gcd(r, d) = 1
- ullet g generating a subgroup of \mathbb{Z}_p^* of order d

Construct a homomorphism suitable for the generic homomorphic signature scheme by computing a discrete logarithm in a small subgroup of \mathbb{Z}_n^* like this:

$$\phi: \mathbb{Z}_n^* \to \mathbb{Z}_d \quad \phi(x) = \log_q(x^r \mod p)$$

GMP provides a function for exponentiation modulo an integer \longrightarrow only discrete logarithm to implement

Precomputed table

Construct table containing discrete logarithm for all elements Size of table: 2^{20} 20 bit integers, key 512 bits long

- Hash table: array of integers (32 bits)
- Key management: key not saved, index into array
- Collision management: 24 LSB of key, key >> 24, . . .
- Insertion/Retrieval methods: collision check, correctness check
- Preprocessing time: O(d), running time: O(1)

Baby step giant step algorithm (BSGS)

- Store $O(\sqrt{d})$ elements in hashtable (baby steps)
- Loop from 0 to $O(\sqrt{d})$ to find logarithm (giant steps)
- Use hash table from previous algorithm, less collisions
- Preprocessing time: $O(\sqrt{d})$, running time: $O(\sqrt{d})$

Pollard's rho algorithm

- ullet Group G partitioned into three sets S_0, S_1, S_2 of roughly equal size
- Define sequence of group elements x_i and integers a_i, b_i satisfying $x_i = g^{a_i}y^{b_i} \ \forall i \geq 0$ by $x_0 = 1, \ a_0 = 0, \ b_0 = 0$ and

$$x_{i+1} = \begin{cases} yx_i \mod p & \text{if } x_i \in S_0 \\ x_i^2 \mod p & \text{if } x_i \in S_1 \\ gx_i \mod p & \text{if } x_i \in S_2 \end{cases}$$

- Compute iteratively x_i and x_{2i} until $x_i = x_{2i}$
- ullet Derive logarithm from representation $x_i=g^{a_i}y^{b_i}$
- Running time: $O(\sqrt{d})$

Results

Table construction	time in s	collisions
Precomputed table	16.616	14 274
Baby step giant step	6.023	0
Running time and iterations	time in ms	iterations
GMP mpz_powm	9.44	
Precomputed table	9.66	1.04
Baby step giant step	19.47	388.36
Pollard's rho	74.92	1037.49

RSA

- Select $n = pq, \ p, q$ prime, $\phi(n) = (p-1)(q-1)$
- Choose e such that $1 < e < \phi(n)$ and $\gcd(e, \phi(n)) = 1$
- Compute $d = e^{-1} \mod \phi(n)$

Homomorphism ϕ suitable for generic homomorphic signature scheme:

$$\phi: \mathbb{Z}_n^* \to \mathbb{Z}_n^* \quad \phi(x) = (x^d \mod n)$$

Results

Running time	time in ms
RSA exponentiation	33.87

Signature Generation

Security parameters

- ullet Quartic residue symbol n 1024 bits, s=20
- Jacobi symbol n 1024 bits, s=20
- ullet Hom. based on discrete logarithm d 20 bits, n 1024 bits, s=1
- RSA n 1024 bits, s=1

Signature generation

Results

Signature generation time	time in ms
Quartic residue symbol $(\beta = \pi \sigma)$	493.01
Quartic residue symbol $(\beta = \pi)$	180.64
Jacobi symbol (basic algorithm)	25.22
Jacobi Symbol (GMP)	2.32
Discrete logarithm (Precomputed Table)	9.66
Discrete logarithm (BSGS)	19.47
Discrete logarithm (Pollard's rho)	74.93
RSA	33.87

Conclusion

- Reduced computation time for quartic residue symbol by more than half
- ullet $\mathbb{Z}[i]$ computations prevent quartic residue symbol from being competitive with Jacobi symbol
- Compared implementations of additional homomorphisms by storage requirement and speed