STAT 542: Statistical Learning

K-Nearest Neighbor and the Bias-Variance Trade-Off

Ruoqing Zhu, Ph.D. <rqzhu@illinois.edu>

Course Website: https://teazrq.github.io/stat542/

August 26, 2019

Department of Statistics University of Illinois at Urbana-Champaign

$K ext{-Nearest Neighbour}$

• Let's consider a regression model,

$$Y = f(X) + \epsilon$$
,

where $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.

- Suppose that we collect a set of training data $\mathcal{D}_n = \{x_i, y_i\}_{i=1}^n$
- from the training data, we are able to estimate the regression function as \hat{f} ("f-hat").
- Want to predict the value of Y at a target point x.

• Using squared-error loss, the error of the prediction is

$$\begin{split} & \operatorname{Err}(x) \\ &= \operatorname{E}_{\mathcal{D},Y} \left[\left(Y - \widehat{f}(x) \right)^2 \right] \\ &= \operatorname{E}_{\mathcal{D},Y} \left[\left(Y - f(x) + f(x) - \operatorname{E}_{\mathcal{D}} \widehat{f}(x) + \operatorname{E}_{\mathcal{D}} \widehat{f}(x) - \widehat{f}(x) \right)^2 \right] \\ &= \dots \\ &= \underbrace{\operatorname{E}_{Y} \left[\left(Y - f(x) \right)^2 \right] + \left(f(x) - \operatorname{E}_{\mathcal{D}} \widehat{f}(x) \right)^2 + \operatorname{E}_{\mathcal{D}} \left[\left(\widehat{f}(x) - \operatorname{E}_{\mathcal{D}} \widehat{f}(x) \right)^2 \right]}_{\text{Irreducible Error}} \end{split}$$

All the cross terms are zero

- $\mathsf{E}[(Y-f(x))^2] = \sigma^2$ is the irreducible error term that cannot be avoided, because we cannot predict ϵ
- $\mathsf{E}[(f(x) \mathsf{E}\widehat{f}(x))^2]$ is the squared bias term that evaluates how the average of our estimator deviates from the truth
- $\mathsf{E}[(\widehat{f}(x) \mathsf{E}\widehat{f}(x))^2]$ is the variance term that reflects the sensitivity of the function estimate $\widehat{f}(x)$ to the training sample

Of course we want to minimize both the Bias² and the Variance, however, this is not always possible...

- The first instinct is that one should minimize the bias 2 term $\mathsf{E}[(f(x)-\mathsf{E}\widehat{f}(x))^2]$
- Why would I produce a model that is asymptotically incorrect, i.e., $f(x) \neq \mathsf{E} \widehat{f}(x)$?
- This instinct is wrong! This is usually at the expense of high variance, which eventually damages the prediction performance...
- To demonstrate this, lets start with a particular model, the k-Nearest Neighbour, in both classification and regression settings

k-Nearest Neighbour

- k-Nearest Neighbour (kNN) is a nonparametric method that
 predicts the target point x with averages of nearby observations
 in the training data
- For regression, the prediction at a given target point x is

$$\widehat{y} = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i,$$

where $N_k(x)$ defines the k samples from the training data (in terms of their feature values) that are closest to x.

- For hard classification, the most prevalent class in ${\cal N}_k(x)$ is used

$$\widehat{y} = \underset{c \in C}{\operatorname{arg\,max}} \sum_{x_i \in N_k(x)} \mathbf{1}\{y_i = c\},$$

The the following data is observed, with only 1 feature, uniformly from $[0,2\pi].$ The true model (blue line) is

$$Y = 2\sin(X) + \epsilon,$$

where ϵ is standard normal error. We fit the data with 1NN.

7/31

The bias² term is minimized using 1NN, why?

$$\begin{aligned} \mathsf{E}\widehat{f}(x) &= \mathsf{E}\big[\sum Y_i \mathbf{1}\{X_i \in N_1(x)\}\big] \\ &= \mathsf{E}\big[\sum f(X_i) \mathbf{1}\{X_i \in N_1(x)\}\big] \end{aligned}$$

which the closest we can get for approximating f(x) (if we believe there is a certain continuity in f).

 However, the variance is large because the estimator only uses one observation

$$\mathsf{E}\big[(\widehat{f}(x) - \mathsf{E}\widehat{f}(x))^2\big] = \mathsf{E}\epsilon^2 = \sigma^2.$$

• If we use more "neighbouring" points, say k, the variance would reduce to σ^2/k . But the bias² will increase because as the neighbourhood expands, $f(X_i)$ is further away from f(x).

Now we simulate 200 observations, and see how the model changes over k.

Now we simulate 200 observations, and see how the model changes over k.

The model becomes "smoother" as k increases. However, this eventually introduces a significant bias.

Model Complexity, over- and under-fitting

- Model complexity \uparrow (small k) \longrightarrow Bias² \downarrow and Variance \uparrow
- Model complexity \downarrow (large $k) \longrightarrow \mathsf{Bias}^2 \uparrow \mathsf{and} \; \mathsf{Variance} \downarrow$

Prevent over-fitting

- As we can see, model complexity, bias-variance trade-off and over- and under-fitting are usually related concepts
- Over-fitting happens when the model performs well on the training sample, but not on the testing sample
- Controlling complexity can prevent overfitting. Complexity can be measured in different ways. In statistics, we often use degrees of freedom (number of parameters is a model)
- The degrees of freedom of a kNN model is roughly n/k
 - intuition: if neighborhoods don't overlap, there would be n/k neighborhoods, with one parameter for each

Prevent over-fitting

 To control complexity, one approach is to "penalize" it (we will see this a lot later on):

$$\mathop{\arg\min}_f \ \mathsf{loss}(f) + \lambda \ \mathsf{complexity}(f)$$

- Another common approach is to use cross-validation (CV). A 10-fold CV is carried out as follows
 - Randomly split the data into 10 equal sized subsamples
 - Fit the model using 9 out of 10 subsamples as training data and calculate the testing error using the remaining one.
 - Alternate the testing sample, and average the total of 10 experiments

Remark on the degrees of freedom

A rigorous definition for the degrees of freedom is

$$\mathrm{df}(\widehat{f}\,) = \frac{1}{\sigma^2} \sum_{i=1}^n \mathrm{Cov}(\widehat{Y}_i, Y_i)$$

- The amount of covariance between outcome Y_i and its fitted values \widehat{Y}_i , at the same target point x_i .
- Treat $X_i = x_i$ as fixed value, but not random.
- $1/\sigma^2$ takes care of the variance of the random error term.
- In many situations, it is more convenient to define it in the matrix form, noticing that we are just adding up the diagonal elements of the covariance matrix of $\widehat{\mathbf{Y}} = (\widehat{Y}_1, \dots, \widehat{Y}_n)$ and $\mathbf{Y} = (Y_1, \dots, Y_n)$

$$\mathrm{df}(\widehat{f}\,) = \frac{1}{\sigma^2}\mathrm{Trace}\Big(\mathrm{Cov}(\widehat{\mathbf{Y}},\mathbf{Y})\Big)$$

Remark on the degrees of freedom

Based on this definition, we can easily verify several cases:

- For 1NN, df = n
- If $\widehat{y}_i = \overline{y}$, i.e., nNN, then df = 1
- For linear regression, df = p
- For kNN, df = n/k

The formula works for kernel methods too, we shall see that later on.

Bias-Variance Trade-off in Classification

- Classification problems have the same bias-variance trade-off, although the formulation is slightly different due to their loss functions (0-1 loss for "hard" classification)
- A very nice paper about this issue by Friedman (1997)
 — "On bias, variance, 0/1—loss, and the curse-of-dimensionality"

 Try example 7.2 in HTF.
- The optimal classifier is call the Bayes classifier:

$$f_B(x) = \mathbf{1}\{\mathsf{P}(Y|X=x) > 1/2\}$$

· Error produced by Bayes classifier

$$\min \left\{ \mathsf{P}(Y|X=x), 1 - \mathsf{P}(Y|X=x) \right\}$$

is analog to the irreducible error σ^2 in a regression setting

Let's look at a classification example from the HTF text book. (BLUE = 0, ORANGE = 1)

Similar to the regression case, the k-NN classification model does majority vote (the most prevalent class) within the neighborhood of a target point x. 1NN plot is a Voronoi tessellation

We fit k-NN classification model to the example. Of course, we would not expect 1NN to perform well...

As we further increase k, the model tends to be less complex. Compare 66NN with a linear model that uses only 3 parameters.

k-Nearest Neighbour vs. Linear Regression

- The goal is to approximate f(x) = E(Y|X = x)
- Linear regression makes a structural assumption: *f* is linear.
 - low variance: Number of parameters is p (fixed); we know that when sample size n grows, the variance of $\widehat{\beta}$ is $\propto 1/n$.
 - high bias (underfit): linear assumption is very restrictive
- *k*NN makes on assumption on *f* , except some smoothness.
 - low bias (overfit): flexible and adaptive. It can be shown that as if $k\to\infty$ and $n/k\to0$, kNN is consistent.
 - high variance: number of parameters for kNN is roughly n/k;

An "U" shaped prediction error curve is again observed for the testing sample (Figure from HTF):

Distance measures

- Closeness between two points needs to be defined based on some distance measures
- By default, we use Euclidean distance (ℓ_2 norm) for continuous variables

$$d^{2}(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|_{2}^{2} = \sum_{i=1}^{p} (u_{i} - v_{i})^{2}$$

Hence the neighbourhood is not invariant to the scaling of the variables.

Scaling issues

• We often scale the variables marginally when using $k{\sf NN}$, so that the distance is

$$d^2(\boldsymbol{u}, \boldsymbol{v}) = \sum_{j=1}^p \frac{(u_i - v_i)^2}{\sigma_j^2}$$

where σ_i^2 is the variance of variable j.

Mahalanobis distance is also scale-invariant and takes care of correlation

$$d^{2}(\boldsymbol{u},\boldsymbol{v}) = (\boldsymbol{u} - \boldsymbol{v})^{\mathsf{T}} \Sigma^{-1} (\boldsymbol{u} - \boldsymbol{v}),$$

where Σ is a covariance matrix.

· Hamming distance is usually used for categorical variables

Drawbacks of kNN

- Need to score the entire training data for future prediction
- Calculating the prediction can be slow. To find the nearest neighbor of x, one needs to calculate the distance from x to all training sample and compare them. This is computationally expansive especially in high-dimensional setting
- There are some fast nearest neighbor search algorithms such as kd-tree
- A distance measure needs to be specified it may affect accuracy

Example: Handwritten Digit Recognition Data

- Digits 1-9 scanned from envelopes by the U.S. Postal Service
- 7291 training samples, 2007 testing samples
- Apply kNN and calculate the errors
- 1NN with Euclidean distance gives 5.6% error rate
- 1NN with tangent distance (Simard et al., 1993) gives 2.6% error

New Challenges

New Challenge

- High-dimension low sample size $(p \gg n)$
 - The resolution of the handwritten digit example is $16 \times 16 = 256$
 - Some common imaging data in medical are 1024×1024 while only a few hundred samples are available
 - Strategy games (Go, StarCraft, etc.) may have a huge number of variables
- Curse of Dimensionality
 - For fixed n, as p increases, the data become sparse
 - As p increases, the number of possible models explodes (computation burden, variable selection necessary)

Curse of Dimensionality

- The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube.
- Suppose the sample points are evenly spread out on $[0,1]^p$, and we want to capture 10% of the data by constructing a hypercube neighborhood of x. What is the edge length l of this cube? Since the volume of the cube is $l^p = 10\%$, we need $l = 0.1^{1/p}$,

- When p = 1, l = 0.1
- When p = 2, l = 0.32
- When p = 10, l = 0.79

Curse of Dimensionality

- Suppose we have sample points evenly spread out on [0,1]
- In ten dimensions we need to cover 80% of the range of each coordinate to capture 10% of the data.

Curse of Dimensionality

• In linear regression, the curse of dimensionality is easy to see from the normal equation:

$$\widehat{\beta} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$$

where $\mathbf{X}_{n \times p}$ is the design matrix, $\mathbf{y}_{n \times 1}$ is the response vector.

- $\mathbf{X}^\mathsf{T}\mathbf{X}$ is not invertible when p>n, hence $\widehat{\beta}$ is not unique
- In fact, since \mathbf{X} is of rank n, we can always find some $\widehat{\beta}$ such that $\mathbf{y} = \mathbf{X}\widehat{\beta}$, this means we are modeling the error term $\epsilon!$
- Some penalized methods can deal with this problem