1)
$$\int_{-1}^{2} (x+x^{4}) dx = \frac{x^{2}}{2} + \frac{x^{5}}{5} /_{-1}^{2} = (2+\frac{32}{5}) - (\frac{1}{2}-\frac{1}{5})$$

2) $\int_{0}^{2} \sin t dt = -\cos t /_{0}^{2} = 1.416$
3) $\int_{\frac{1}{2}}^{1} \frac{dx}{2x} = \frac{1}{2} \ln x /_{\frac{1}{2}}^{1} = \frac{1}{2} (\ln 1 - \ln \frac{1}{2})$
 $\frac{1}{2} \ln x = .347$

4)
$$Mt = 2t-4$$
 $0 \le t \le 6$
 $dup = 5(t) = \begin{cases} (2t-4)dt = t^2-4t/6 = 12 \\ 2t-4=0 \end{cases}$
 $2t-4=0$
 $2t-4=0$
 $3t=4$
 $5(2t-4)dt = t^2-4t/2 = -4$
 $5(2t-4)dt = t^2-4t/2 = (2-(-4)=12+4=(6))$
 $3(2t-4)dt = t^2-4t/2 = (2-(-4)=12+4=(6))$
 $3(2t-4)dt = (2t-4)dt = ($

5)
$$\frac{1}{2^{2}-2}$$
 $\int_{-\frac{\pi}{2}}^{3\pi} cos2xdx = \frac{1}{\pi} \left(\frac{1}{2} sin2x/\frac{3\pi}{\pi}\right)$
= $\frac{1}{2\pi} \left(sm31) - sin7$