```
In [111]: #Import Dependencies
  import pandas as pd
  import numpy as np
  import os
  import matplotlib.pyplot as plt
  import seaborn as sns
```

```
In [112]: #Create file paths for raw data
    csv_path_clinical = os.path.join('raw_data', 'clinicaltrial_data.csv')
    csv_path_mouse = os.path.join('raw_data', 'mouse_drug_data.csv')

# Read the CSV files into a Pandas DataFrame
    mouse_trial_df = pd.read_csv(csv_path_mouse)
    clinical_trial_df = pd.read_csv(csv_path_clinical)

#Merge the two dataframes and call the resulting df
    combine_df = pd.merge(mouse_trial_df, clinical_trial_df, on="Mouse ID")
    combine_df_2 = combine_df[["Mouse ID", "Timepoint", "Tumor Volume (mm3)"
    , "Metastatic Sites", "Drug"]]
    combine_df_2.head()
```

Out[112]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Drug
0	f234	0	45.000000	0	Stelasyn
1	f234	5	47.313491	0	Stelasyn
2	f234	10	47.904324	0	Stelasyn
3	f234	15	48.735197	1	Stelasyn
4	f234	20	51.112713	2	Stelasyn

Tumor Response to Treatment

```
In [113]: #Tumor response to treatment

#Mean Tumor Volume by Drug name and Timepoint
combine_df_2.groupby("Drug")["Timepoint"].count()
tumor_response_df = combine_df_2.groupby(["Drug","Timepoint"])
tumor_response_2_df = tumor_response_df["Tumor Volume (mm3)"].mean().to_
frame()
tumor_response_2_df
```

Out[113]:

		Tumor Volume (mm3)
Drug	Timepoint	
Capomulin	0	45.000000
	5	44.266086
	10	43.084291
	15	42.064317
	20	40.716325
	25	39.939528
	30	38.769339
	35	37.816839
	40	36.958001
	45	36.236114
Ceftamin	0	45.000000
	5	46.503051
	10	48.285125
	15	50.094055
	20	52.157049
	25	54.287674
	30	56.769517
	35	58.827548
	40	61.467895
	45	64.132421
Infubinol	0	45.000000
	5	47.062001
	10	49.403909
	15	51.296397
	20	53.197691
	25	55.715252
	30	58.299397
	35	60.742461
	40	63.162824
	45	65.755562

		Tumor Volume (mm3)
Drug	Timepoint	
Ramicane	0	45.000000
	5	43.944859
	10	42.531957
	15	41.495061
	20	40.238325
	25	38.974300
	30	38.703137
	35	37.451996
	40	36.574081
	45	34.955595
Stelasyn	0	45.000000
	5	47.527452
	10	49.463844
	15	51.529409
	20	54.067395
	25	56.166123
	30	59.826738
	35	62.440699
	40	65.356386
	45	68.438310
Zoniferol	0	45.000000
	5	46.851818
	10	48.689881
	15	50.779059
	20	53.170334
	25	55.432935
	30	57.713531
	35	60.089372
	40	62.916692
	45	65.960888

100 rows × 1 columns

```
In [114]: #Standard Error by Drug name and Timepoint
    tumor_response_error = combine_df_2.groupby(["Drug","Timepoint"])["Tumor
    Volume (mm3)"].sem()
    tumor_response_error_2 = tumor_response_error.to_frame()
    tumor_response_error_2.head()
```

Out[114]:

		Tumor Volume (mm3)
Drug	Timepoint	
Capomulin	0	0.000000
	5	0.448593
	10	0.702684
	15	0.838617
	20	0.909731

```
In [115]: #Create dataframe that will be used for plot
    tumor_plot_df = tumor_response_2_df.unstack(0)
    tumor_plot_df_2 = tumor_plot_df["Tumor Volume (mm3)"]
    tumor_plot_df_2
```

Out[115]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva
Timepoint							
0	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000
5	44.266086	46.503051	47.062001	47.389175	46.796098	47.125589	47.248967
10	43.084291	48.285125	49.403909	49.582269	48.694210	49.423329	49.101541
15	42.064317	50.094055	51.296397	52.399974	50.933018	51.359742	51.067318
20	40.716325	52.157049	53.197691	54.920935	53.644087	54.364417	53.346737
25	39.939528	54.287674	55.715252	57.678982	56.731968	57.482574	55.504138
30	38.769339	56.769517	58.299397	60.994507	59.559509	59.809063	58.196374
35	37.816839	58.827548	60.742461	63.371686	62.685087	62.420615	60.350199
40	36.958001	61.467895	63.162824	66.068580	65.600754	65.052675	63.045537
45	36.236114	64.132421	65.755562	70.662958	69.265506	68.084082	66.258529

Creating the plot to show how the tumor volume changes over time for each treatment

```
In [116]: #Creating the Plot
          #define x-axis
          x_axis = [0,5,10,15,20,25,30,35,40,45]
          x limit = 45
          plt.figure(figsize=(10,7))
          #Define each drug
          error = tumor response error 2["Tumor Volume (mm3)"]["Capomulin"]
          capomulin = plt.errorbar(x_axis, tumor_plot_df_2["Capomulin"], yerr=erro
          r, fmt="o", color="red", ls="dashed", linewidth=1, alpha=1, capsize=3)
          error = tumor response error 2["Tumor Volume (mm3)"]["Infubinol"]
          infubinol = plt.errorbar(x axis, tumor plot df 2["Infubinol"], yerr=erro
          r, fmt="^", color="blue", ls="dashed", linewidth=1, alpha=1, capsize=3)
          error = tumor_response_error_2["Tumor Volume (mm3)"]["Ketapril"]
          ketapril = plt.errorbar(x axis, tumor plot df 2["Ketapril"], yerr=error,
           fmt="s", color="green", ls="dashed", linewidth=1, alpha=1, capsize=3)
          error = tumor response error 2["Tumor Volume (mm3)"]["Placebo"]
          placebo = plt.errorbar(x_axis, tumor_plot_df_2["Placebo"], yerr=error, f
          mt="D", color="black", ls="dashed", linewidth=1, alpha=1, capsize=3)
          #Axes limits
          plt.ylim(20, 80)
          plt.xlim(0, 45)
          #Axes and Chart Labels
          plt.title("Tumor Response to Treatment", fontsize=20)
          plt.xlabel("Time (Days)", fontsize=14)
          plt.ylabel("Tumor Volume (mm3)", fontsize=14)
          plt.grid(linestyle="dashed")
          #Chart Legend
          plt.legend((capomulin, infubinol, ketapril, placebo), ("Capomulin", "Inf
          ubinol", "Ketapril", "Placebo"), fontsize=12)
          plt.show()
```


Metastatic Response to Treatment

```
In [117]: #Metastatic sites by Drug
    combine_df_2.groupby("Drug")["Timepoint"].count()
    metastatic_response_df = combine_df_2.groupby(["Drug", "Timepoint"])
    metastatic_response_df_2 = metastatic_response_df["Metastatic Sites"].me
    an().to_frame()
    metastatic_response_df_2.head()
```

Out[117]:

		Metastatic Sites
Drug	Timepoint	
Capomulin	0	0.000000
	5	0.160000
	10	0.320000
	15	0.375000
	20	0.652174

```
In [118]: #Metastatic sites by Drug Standard Error

meta_response_error = combine_df_2.groupby(["Drug","Timepoint"])["Metast atic Sites"].sem()
    meta_response_error_2 = meta_response_error.to_frame()
    meta_response_error_2.head()
```

Out[118]:

		Metastatic Sites
Drug	Timepoint	
Capomulin	0	0.000000
	5	0.074833
	10	0.125433
	15	0.132048
	20	0.161621

```
In [119]: #Create dataframe that will be used for plot
   meta_plot_df = metastatic_response_df_2.unstack(0)
   meta_plot_df_2 = meta_plot_df["Metastatic Sites"]
   meta_plot_df_2
```

Out[119]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Rami
Timepoint								
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
5	0.160000	0.380952	0.280000	0.304348	0.260870	0.375000	0.320000	0.120
10	0.320000	0.600000	0.666667	0.590909	0.523810	0.833333	0.565217	0.250
15	0.375000	0.789474	0.904762	0.842105	0.857143	1.250000	0.764706	0.333
20	0.652174	1.111111	1.050000	1.210526	1.150000	1.526316	1.000000	0.347
25	0.818182	1.500000	1.277778	1.631579	1.500000	1.941176	1.357143	0.652
30	1.090909	1.937500	1.588235	2.055556	2.066667	2.266667	1.615385	0.782
35	1.181818	2.071429	1.666667	2.294118	2.266667	2.642857	2.300000	0.952
40	1.380952	2.357143	2.100000	2.733333	2.466667	3.166667	2.777778	1.100
45	1.476190	2.692308	2.111111	3.363636	2.538462	3.272727	2.571429	1.250

In [120]: #Creating the Plot plt.figure(figsize=(10,7)) #Define each drug error2 = meta response error 2["Metastatic Sites"]["Capomulin"] capomulin2 = plt.errorbar(x_axis, meta_plot_df_2["Capomulin"], yerr=erro r2, fmt="o", color="red", ls="dashed", linewidth=1, alpha=1, capsize=3) error2 = meta_response_error_2["Metastatic Sites"]["Infubinol"] infubinol2 = plt.errorbar(x axis, meta plot df 2["Infubinol"], yerr=erro r2, fmt="^", color="blue", ls="dashed", linewidth=1, alpha=1, capsize=3) error2 = meta response error 2["Metastatic Sites"]["Ketapril"] ketapril2 = plt.errorbar(x axis, meta plot df 2["Ketapril"], yerr=error2 , fmt="s", color="green", ls="dashed", linewidth=1, alpha=1, capsize=3) error2 = meta_response_error_2["Metastatic Sites"]["Placebo"] placebo2 = plt.errorbar(x axis, meta plot df 2["Placebo"], yerr=error2, fmt="D", color="black", ls="dashed", linewidth=1, alpha=1, capsize=3) #Axes limits plt.ylim(0, 4)plt.xlim(0, 45)**#Axes** and Chart Labels plt.title("Metastatic Spread During Treatment", fontsize=20) plt.xlabel("Treatment Duration (Days)", fontsize=14) plt.ylabel("Metastatic Sites", fontsize=14) plt.grid(linestyle="dashed") #Chart Legend plt.legend((capomulin2, infubinol2, ketapril2, placebo2), ("Capomulin", "Infubinol", "Ketapril", "Placebo"), fontsize=12) plt.show()

Survival Rates

```
In [121]: #Count the number of unique mice
    mice_count = combine_df_2.groupby(["Drug", "Timepoint"])["Mouse ID"].nun
    ique()
    mice_count_2 = mice_count.to_frame()
    mice_count_2 = mice_count_2.rename(columns={"Mouse ID": "Mouse Count"})
    mice_count_2.head()
```

Out[121]:

		Mouse Count
Drug	Timepoint	
Capomulin	0	25
	5	25
	10	25
	15	24
	20	23

In [122]: #Create dataframe that will be used for plot
 mice_plot = mice_count_2.unstack(0)
 mice_plot_2 = mice_plot["Mouse Count"]
 mice_plot_2

Out[122]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramica
Timepoint								
0	25	25	25	25	25	25	25	25
5	25	21	25	23	23	24	24	25
10	25	20	21	22	21	24	22	24
15	24	19	21	19	21	20	16	24
20	23	18	20	19	20	19	16	23
25	22	18	18	19	18	17	14	23
30	22	16	17	18	15	15	13	23
35	22	14	12	17	15	14	10	21
40	21	14	10	15	15	12	9	20
45	21	13	9	11	13	11	7	20

```
In [123]:
          #Creating the Plot
          plt.figure(figsize=(10,7))
          #Mice Count per Drug
          capomulin3 = plt.errorbar(x_axis, (mice_plot_2["Capomulin"]/25*100), fmt
          ="o", color="red", ls="dashed", linewidth=1, alpha=1, capsize=3)
          infubinol3 = plt.errorbar(x_axis, (mice_plot_2["Infubinol"]/25*100), fmt
          ="^", color="blue", ls="dashed", linewidth=1, alpha=1, capsize=3)
          ketapril3 = plt.errorbar(x_axis, (mice_plot_2["Ketapril"]/25*100),
          "s", color="green", ls="dashed", linewidth=1, alpha=1, capsize=3)
          placebo3 = plt.errorbar(x_axis, (mice plot_2["Placebo"]/25*100), fmt=
          "D", color="black", ls="dashed", linewidth=1, alpha=1, capsize=3)
          #Axes Limits
          plt.ylim(40, 100)
          plt.xlim(0, 45)
          #Axes and Chart Labels
          plt.title("Survival During Treatment", fontsize=20)
          plt.xlabel("Time (Days)", fontsize=14)
          plt.ylabel("Survival Rate (%)", fontsize=14)
          plt.grid(linestyle="dashed")
          #Chart Legend
          plt.legend((capomulin3, infubinol3, ketapril3, placebo3), ("Capomulin",
          "Infubinol", "Ketapril", "Placebo"), fontsize=12)
          plt.show()
```


Summary Bar Graph

```
In [124]: #Creating the summary table
    summary_df=((tumor_plot_df_2.iloc[9,:]-tumor_plot_df_2.iloc[0,:])*100/tu
    mor_plot_df_2.iloc[0,:]).to_frame()

# Renaming the column
    summary_df_2=summary_df.rename(columns={0:"Percent Tumor Change"})
    summary_df_2
```

Out[124]:

	Percent Tumor Change
	Tereent runner entringe
Drug	
Capomulin	-19.475303
Ceftamin	42.516492
Infubinol	46.123472
Ketapril	57.028795
Naftisol	53.923347
Placebo	51.297960
Propriva	47.241175
Ramicane	-22.320900
Stelasyn	52.085134
Zoniferol	46.579751

```
In [126]: #Creating the final summary bar plot
          plt.figure(figsize=(8,5))
          #Graphing each drug
          change cap = plt.bar(0, summary df 2["Percent Tumor Change"][0], color=
          'green', alpha=1, align="edge", ec="black", width=1)
          change inf = plt.bar(1, summary df 2["Percent Tumor Change"][2], color=
          'red', alpha=1, align="edge", ec="black", width=1)
          change_ket = plt.bar(2, summary_df_2["Percent Tumor Change"][3], color=
          'red', alpha=1, align="edge", ec="black", width=1)
          change plac = plt.bar(3, summary_df_2["Percent Tumor Change"][5], color=
          'red', alpha=1, align="edge", ec="black", width=1)
          #Bar Height for Capomulin
          def autolabel(rects):
              for rect in rects:
                  height = rect.get height()
                  plt.text(rect.get_x() + rect.get_width()/2., -8,
                           '%d' % int(height) + "%",
                          ha='center', va='bottom', color='white', fontsize=14)
          autolabel(change_cap)
          #Bar Height for Infubinol, Ketapril, and Placebo
          def autolabel(rects):
              for rect in rects:
                  height = rect.get height()
                  plt.text(rect.get x() + rect.get width()/2., 2,
                           '%d' % int(height) + "%",
                          ha='center', va='bottom', color='white', fontsize=14)
          autolabel(change inf)
          autolabel(change ket)
          autolabel(change plac)
          #Formatting
          xvalues=["Capomulin", "Infubinol", "Ketapril", "Placebo"]
          x axis2 = np.arange(0, len(xvalues), 1)
          tick locations = [value+0.5 for value in x axis2]
          plt.xticks(tick locations, (xvalues))
          #plt.xticks(tick locations, summary df 2.index.values, rotation="horizon
          tal")
          plt.grid(linestyle="dashed")
          #Axes Limits
          plt.xlim(0, 4)
          plt.ylim(-30, 70)
          #Axes and Chart Labels
          plt.title("Tumor Change Over 45 Day Treatment", fontsize=20)
          plt.ylabel("% Tumor Volume Change")
          plt.show()
```

