

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE COMPUTAÇÃO

RELATÓRIO FINAL - MC536 - Bancos de Dados: Teoria e Prática

2º Semestre de 2020

Professor:

André Santanchè

Alunos:

Leonardo de Alencar Lopes RA:171928 Raoniton Adriano da Silva RA:186291 Roberta Rozendo Veronez RA:186671

Covid-19 no Brasil: Análise e relação por região

• Slides da Apresentação da Etapa Final

https://github.com/Osedro/MC536-Projeto/blob/main/final/slides/Covid-19%20no%20 Brasil_%20An%C3%A1lise%20e%20rela%C3%A7%C3%A3o%20por%20regi%C3% A3o.pdf

• Resumo do Projeto

O nosso projeto aborda a análise e relação do Covid-19 por região do Brasil, tendo como principais dados o número de casos e óbitos pela doença e a distribuição de verba que cada região recebeu.

Começando por uma abordagem mais ampla, tentamos encontrar dados que mostravam como a Covid-19 impactou o Brasil de muitas formas, desde o número de óbitos até a questão do desemprego. Porém como não era viável uma análise dessa magnitude, focamos na questão da distribuição de verbas que os estados e regiões do Brasil recebiam, e se havia alguma possibilidade da quantidade de verbas influenciar na taxa de mortalidade por Covid-19.

A partir dos conhecimentos adquiridos durante a matéria MC536, selecionamos e organizamos informações encontradas em diversas fontes de dados, resultando em duas principais tabelas: distribuição de verbas por casos confirmados de Covid-19 em relação à mortalidade, e distribuição de verbas por óbitos devido à Covid-19 em relação à mortalidade.

Em conclusão, nosso projeto mostra uma possibilidade da relação a qual regiões que receberam verbas maiores conseguiram lidar melhor com os problemas causados pela Covid-19 e acabaram conseguindo ter uma taxa de mortalidade menor.

• Motivação e Contexto

Como 2020 foi um ano atípico devido à pandemia que atingiu o mundo, escolhemos o tema Covid-19 por ser atual e por ter uma abundância de fontes de dados que poderíamos explorar para compor nossa análise.

Mais especificamente, escolhemos tentar analisar como o Covid-19 impactou o Brasil em cada região e como cada região lidou com a doença, considerando como pontos principais:

- a quantidade de casos registrados da doença
- o número de óbitos causados pela doença
- distribuição de verbas por região

Detalhamento do Projeto

O ponto de partida do nosso projeto foi a busca por fontes de dados variadas e como não havia uma análise definida ainda cogitamos utilizar o máximo de tipos de dados que fosse possível.

Em um segundo momento começamos a imaginar em como montar o modelo conceitual, o que nos levou a pensar de modo mais conciso em relação a análise que queríamos fazer e como poderíamos aproveitar as fontes de dados que encontramos. Nosso modelo conceitual, e posteriormente o lógico, foi feito considerando a relação entre o número de casos confirmados e óbitos causados pelo Covid-19 em cada estado e os insumos hospitalares que cada estado recebia.

No início a ideia era utilizar vários tipos de dados, com vários aspectos em que o Covid-19 atingiu o Brasil, porém após as apresentações e o feedback que recebemos percebemos que seria difícil tentar relacionar muita coisa ao mesmo tempo e começamos a focar em menos fontes de dados mas de forma mais objetiva.

O passo seguinte foi começar a trabalhar com os arquivos de dados, principalmente no formato csv, onde alguns dos arquivos não eram do formato que queríamos e outros eram organizados de uma forma que era difícil trabalhar. Umas das formas de organizá-los em forma de tabela foi a criação de um programa em python, separando as colunas e linhas para facilitar na hora de fazer consultas.

Os principais arquivos de dados que utilizamos foram: Casos por Estado, Casos por Municípios e Distribuição de Respiradores.

A partir desses arquivos de dados organizados em tabelas, fizemos algumas consultas para organizar as informações e posteriormente fazer a análise de alguma possível relação. Os resultados que obtivemos a partir das consultas foram: total de verba gasta em insumos para cada estado, total de verba gasta em insumos para cada região do Brasil, casos e óbitos por estado, casos e óbitos por região.

A partir desses resultados, a análise que fizemos foi em relação ao número de casos e óbitos com a verba recebida por cada estado ou região e se a quantidade de verba recebida poderia ter alguma influência no aumento desse número. Foi observado que havia uma discrepância entre a comparação de casos confirmados e óbitos, e isso pode ter ocorrido devido a falta de teste para a Covid-19 que o Brasil realiza, e portanto os dados de casos confirmados podem não ser tão preciso em comparação ao número de óbitos que não pode ser mascarado.

Por fim, a partir das análises feitas, nosso projeto mostra que há a chance de que regiões que receberam uma maior distribuição de verbas conseguiram lidar melhor com a Covid-19, e logo preveniram mais mortes.

• Evolução do Projeto

Inicialmente, como encontramos várias fontes de dados sobre diversos aspectos em que o Covid-19 atingia as regiões brasileiras, acabamos por tentar relacionar muitas coisas ao mesmo tempo, como por exemplo: casos confirmados, óbitos, distribuição de insumo, desemprego como consequência da pandemia, adesão à quarentena, etc.

Era uma grande diversidade de dados mas que não conseguíamos uma direção para tentar fazer uma análise mais objetiva, além de difícil relacionar todos os pontos citados acima.

Após a nossa primeira apresentação conseguimos direcionar e clarear melhor nossas ideias, com a ajuda do professor Santanchè e do PED Heitor, de forma a selecionar uma fonte de dados menor porém explorá-las mais a fundo.

Por fim, decidimos por tentar relacionar o número de casos e óbitos da Covid-19 por região do Brasil com a distribuição de verbas que cada região recebeu, e tentar ver se havia alguma relação entre esses pontos.

• Resultados e Discussão

Os principais resultados obtidos foram as tabelas de casos e óbitos por estado e por região, verba/óbitos com mortalidade por estado e por região, verba/casos com mortalidade por estado e por região, além dos gráficos de verba/óbitos x mortalidade e verba/casos x mortalidade nos estados.

Através dos gráficos obtidos é possível notar uma tendência a uma curva descendente. Isso sugere uma relação entre a distribuição da verba e a mortalidade nos estados, na qual recebendo uma quantia menor para o combate da doença os hospitais estão menos preparados para tratar a população.

O gráfico que relaciona verba/casos com a mortalidade não segue uma tendência tão nítida de uma curva descendente. Conforme foi dito anteriormente, isso é decorrente da baixa quantidade de testes realizados na população no Brasil, o que gera um valor para o número de casos que não está de acordo com a realidade. Por outro lado, esse problema não ocorre com os óbitos, já que pessoas que morrem têm a causa da morte documentada e adicionada às estatísticas.

Tabela 1: Casos e óbitos por estado

REGIAO	FORNECEDOR	CODUF	DATA	SEMANAEPI	POPULAÇÃO	CASOSACUMULADO	CASOSNOVOS	OBITOSACUMULADOS	OBITOSNOVOS
Norte	RO	11	13/12/2020	51	1777225	85854	444	1642	4
Norte	AC	12	13/12/2020	51	881935	38412	49	750	1
Norte	AM	13	13/12/2020	51	4144597	186828	554	5001	3
Norte	RR	14	13/12/2020	51	605761	66407	186	755	0
Norte	PA	15	13/12/2020	51	8602865	280272	672	6998	9
Norte	AP	16	13/12/2020	51	845731	63313	271	849	0
Norte	то	17	13/12/2020	51	1572866	85385	113	1201	3
Nordeste	MA	21	13/12/2020	51	7075181	197056	50	4380	5
Nordeste	PI	22	13/12/2020	51	3273227	134717	288	2722	2
Nordeste	CE	23	13/12/2020	51	9132078	315913	1239	9784	10
Nordeste	RN	24	13/12/2020	51	3506853	103916	1070	2796	6
Nordeste	PB	25	13/12/2020	51	4018127	153649	93	3439	9
Nordeste	PE	26	13/12/2020	51	9557071	198684	258	9284	13
Nordeste	AL	27	13/12/2020	51	3337357	98612	435	2376	4
Nordeste	SE	28	13/12/2020	51	2298696	99151	679	2365	4
Nordeste	BA	29	13/12/2020	51	14873064	444661	1196	8610	21
Sudeste	MG	31	13/12/2020	51	21168791	468023	3478	10701	56
Sudeste	ES	32	13/12/2020	51	4018650	212304	312	4560	1
Sudeste	RJ	33	13/12/2020	51	17264943	389125	694	23722	4
Sudeste	SP	35	13/12/2020	51	45919049	1334703	940	44018	47
Sul	PR	41	13/12/2020	51	11433957	329782	2483	6764	4
Sul	SC	42	13/12/2020	51	7164788	427401	1306	4365	31
Sul	RS	43	13/12/2020	51	11377239	376590	3891	7587	9
CentroOeste	MS	50	13/12/2020	51	2778986	113298	422	1931	18
CentroOeste	MT	51	13/12/2020	51	3484466	166111	240	4202	8

Tabela 2: Casos e óbitos por região

REGIAO	TOTALCASOS	TOTALOBITOS
Sudeste	2404155	83001
Norte	806471	17196
Nordeste	1746359	45756
CentroOeste	811194	16733
Sul	1133773	18716

Tabela 3: Verba/óbito X Mortalidade (Regiões)

REGIAO	TOTALOBITOS	VERBA	VERBAPOROBITO	MORTALIDADE
Sudeste	83001	212114083.4	2555.560576378598	3.4523980359003477
Nordeste	45756	152374730	3330.158449165137	2.6200798346731684
Norte	17196	84506424	4914.307048150733	2.1322527406441147
CentroOeste	16733	77047815	4604.54281957808	2.062761805437417
Sul	18716	89062103	4758.607768754007	1.6507713625214218

Tabela 4: Verba/óbito X Mortalidade (Estados)

UF	OBITOSACUMULADOS	CASOSACUMULADO	TOTALRECEBIDO	VERBAPOROBITO	MORTALIDADE
RJ	23722	389125	88678139	3738.2235477615714	6.09624156761966
PE	9284	198684	11953350	1287.521542438604	4.672746673109057
SP	44018	1334703	61225107.4	1390.9107047117088	3.297962168362549
CE	9784	315913	17089300	1746.6578086672118	3.097055201906854
RN	2796	103916	16840710	6023.143776824034	2.69063474344663
MA	5001	186828	12912784	2582.0403919216155	2.676793628364056
MT	4202	166111	12787707	3043.2429795335556	2.529633799086153
PA	6998	280272	20959450	2995.0628751071736	2.496860192955414
AL	2376	98612	11593870	4879.5749158249155	2.409443069808948
SE	2365	99151	9891490	4182.448202959831	2.385250779114683
MG	10701	468023	48700387	4551.012709092608	2.286426094444076
PB	3439	153649	18642570	5420.927595231172	2.238218276721618
GO	6534	292689	35091680	5370.627486991123	2.232403677623689
MA	4380	197056	16377590	3739.175799086758	2.222718415069828
ES	4560	212304	13510450	2962.8179824561403	2.147863441103323
PR	6764	329782	34960085	5168.551892371378	2.051051907017363
PI	2722	134717	9713460	3568.501102130786	2.020531929897489
RS	7587	376590	46459748	6123.599314617109	2.014657850712977
AC	750	38412	9029000	12038.66666666666	1.952514839112777
BA	8610	444661	40272390	4677.397212543554	1.936306534640996
RO	1642	85854	15019670	9147.180267965896	1.912549211452
MS	1931	113298	15362848	7955.902641118591	1.704354887111864
DF	4066	239096	13805580	3395.371372356124	1.700572155117609
то	1201	85385	9875430	8222.672772689426	1.406570240674591
AP	849	63313	8125960	9571.213191990577	1.340956833509705
RR	755	66407	8584130	11369.708609271524	1.136928335868206
SC	4365	427401	7642270	1750.8064146620848	1.021289140643096

Figura 1: Verba/óbito X Mortalidade (Estados)

Tabela 5: Verba/casos X Mortalidade (Região)

REGIAO	TOTALOBITOS	VERBA	VERBAPORCASO	MORTALIDADE
Sudeste	83001	212114083.4	88.22812314513831	3.4523980359003477
Nordeste	45756	152374730	87.25280998924048	2.6200798346731684
Norte	17196	84506424	104.7854467178609	2.1322527406441147
CentroOeste	16733	77047815	94.98075059726773	2.062761805437417
Sul	18716	89062103	78.55373430131075	1.6507713625214218

Tabela 6: Verba/casos X Mortalidade (Estados)

UF	OBITOSACUMULADOS	CASOSACUMULADO	TOTALRECEBIDO	VERBAPORCASO	MORTALIDADE
RJ	23722	389125	88678139	227.89113780918728	6.09624156761966
PE	9284	198684	11953350	60.1626200398623	4.672746673109057
SP	44018	1334703	61225107.4	45.87170883709709	3.297962168362549
CE	9784	315913	17089300	54.09495652284015	3.097055201906854
RN	2796	103916	16840710	162.06079910697102	2.69063474344663
MA	5001	186828	12912784	69.11589269274413	2.676793628364056
МТ	4202	166111	12787707	76.98290299859732	2.52963379908615
PA	6998	280272	20959450	74.78253268253697	2.49686019295541
AL	2376	98612	11593870	117.57057964547926	2.40944306980894
SE	2365	99151	9891490	99.76187834716745	2.38525077911468
MG	10701	468023	48700387	104.05554214215968	2.28642609444407
РВ	3439	153649	18642570	121.33219220430982	2.23821827672161
GO	6534	292689	35091680	119.89408553105856	2.23240367762368
MA	4380	197056	16377590	83.11134905813576	2.22271841506982
ES	4560	212304	13510450	63.63728427161052	2.14786344110332
PR	6764	329782	34960085	106.00968215366515	2.05105190701736
PI	2722	134717	9713460	72.10270418729633	2.02053192989748
RS	7587	376590	46459748	123.36957433813963	2.01465785071297
AC	750	38412	9029000	235.05675309799022	1.95251483911277
ВА	8610	444661	40272390	90.56874787759664	1.93630653464099
RO	1642	85854	15019670	174,94432408507467	1.912549211452
MS	1931	113298	15362848	135.5968154777666	1.70435488711186
DF	4066	239096	13805580	57.7407401211229	1.70057215511760
то	1201	85385	9875430	115.65766820870176	1.40657024067459
AP	849	63313	8125960	128.34583734778008	1.34095683350970
RR	755	66407	8584130	129.26543888445497	1.13692833586820
sc	4365	427401	7642270	17.88079578662661	1.02128914064309

Figura 2: Verba/casos X Mortalidade (Estados)

Conclusões

Analisando os resultados, observamos uma possível relação na verba que um estado recebe para o combate ao Covid com a taxa de letalidade da doença. Assim, estados brasileiros que receberam maior verba conseguiram lidar melhor com as perdas humanas. Isso mostra a importância da verba destinada à saúde, principalmente em um momento de pandemia, além de indicar a necessidade de uma melhor distribuição entre os estados.

Modelo Conceitual

O modelo conceitual é uma ferramenta importante para identificar relações entre os objetos provenientes de uma abstração do mundo real, sem se preocupar com aspectos de implementação.

Nesse projeto identificamos:

As entidades:

- Estado:
 - atributos: Nome, UF
- Insumos Hospitalares
 - atributos: Fornecedor, UF
- Casos Confirmados
 - atributos: Número, UF
 - Recuperados e Óbitos.
 - Herdam atributos de "Casos Confirmados"

Os relacionamentos:

Recuperados

- Recebe:
 - atributos: Quantidade, Valor, Insumo, Destino
- Tem

Modelo Conceitual Destino Valor Quantidade Insumo Fornecedor Nome (1,n) (1,n)UF UF Recebe Estado Insumos Hospitalares (1,1)Tem UF (0,n)Casos Confirmados Numero Extends Extends XT - Exclusiva e Total

Figura 3: Modelo conceitual

Obitos

Modelo Lógico

O modelo lógico é um passo adiante do modelo conceitual, no qual já sabemos mais detalhes do projeto e fizemos um diagrama que detalha a entidade como classe e cada atributo já tem seu tipo definido, que já tem ligação com o modelo e estrutura do Banco de Dados que será usado.

No nosso projeto identificamos as classes:

- Estado
 - atributos: Nome: char, UF:char
- Recebe
 - atributos: Insumo: char, Destino: char, Valor: Integer, Quantidade: Integer
- Insumos
 - atributos: Fornecedor: char, UF:char
- Contaminado
 - atributos: Estado: char, Número: Integer
 - herdeiros: Recuperados e Óbitos

Figura 4: Modelo Lógico

Programa de Extração e Conversão de Dados

Jupyter Notebook

Jupyter Notebook é uma aplicação web de código livre que permite criar e compartilhar documentos que contêm códigos, equações, visualizações e textos no mesmo arquivo.

Usos: Limpeza de dados e transformações, simulação numérica, modelagem estatística, visualização de dados, aprendizado de máquina, etc.

Utilizamos em nosso o **Jupyter Notebook** integrado com **SQL** para realizar as Consultas SQL.

Neo4J Cypher

Neo4j é um banco de dados **NoSQL** orientado a grafos. Cypher é a linguagem de grafo do Neo4j que permite armazenar e recuperar dados de um grafo.

Entrega uma forma facilitada de lidar e manipular grande volume de dados de dados

CSV

CSV significa "Comma-separated values", ou seja, "Valores separados por virgula". Arquivos em CSV permitem que os dados sejam representados como tabelas, esses arquivos podem ser interpretados por programas como

Excel, LibreOffice, etc, sendo assim, é possível realizar consultas **SQL** com arquivos em CSV.

• Conjunto de Queries

Queries feitas em SQL, para os arquivos CSV

DROP TABLE IF EXISTS VerbaEstado; DROP TABLE IF EXISTS Respiradores; CREATE TABLE Respiradores (Data VARCHAR(10), Fornecedor VARCHAR(100), Destino VARCHAR(100), EstadoMunicipio VARCHAR(100), Tipo VARCHAR(100), Quantidade INTEGER, Valor FLOAT, UF VARCHAR(2), DataEntrega VARCHAR(10),

```
) AS SELECT
          DATA,
           FORNECEDOR,
           DESTINO.
           ESTADOMUNICIPIO.
           TIPO
          QUANTIDADE,
          VALOR.
          UF.
           DATADEENTREGA
        FROM CSVREAD('distribuicao_respiradores_certo.csv');
        FROM Respiradores;
DROP TABLE IF EXISTS VerbaEstado;
CREATE VIEW VerbaEstado AS
  SELECT R.UF, SUM(R.Valor) as TotalRecebido
  FROM Respiradores as R
  GROUP BY R.UF;
SELECT *
FROM VerbaEstado as VE
GROUP BY VE.UF
ORDER BY VE.TotalRecebido DESC;
DROP TABLE IF EXISTS VerbaRegiao;
CREATE TABLE VerbaRegiao (
  Regiao VARCHAR(20),
  Verba FLOAT,
INSERT INTO VerbaRegiao VALUES ('Sudeste',(SELECT SUM(VE.TotalRecebido)
                       FROM VerbaEstado as VE
                       WHERE VE.UF = 'SP' OR VE.UF = 'RJ' OR VE.UF = 'ES' OR VE.UF = 'MG'));
INSERT INTO VerbaRegiao VALUES ('Norte', (SELECT SUM(VE. TotalRecebido)
                       FROM VerbaEstado as VE
                       WHERE VE.UF = 'AM' OR VE.UF = 'RR' OR VE.UF = 'AP' OR VE.UF = 'PA' OR VE.UF = 'TO' OR VE.UF = 'RO'
OR VE.UF = 'AC'));
INSERT INTO VerbaRegiao VALUES ('Nordeste', (SELECT SUM(VE. TotalRecebido)
                       FROM VerbaEstado as VE
                       WHERE VE.UF = 'MA' OR VE.UF = 'PI' OR VE.UF = 'CE' OR VE.UF = 'RN' OR VE.UF = 'PE' OR VE.UF = 'PB'
OR VE.UF = 'SE' OR VE.UF = 'AL' OR VE.UF = 'BA'));
INSERT INTO VerbaRegiao VALUES ('CentroOeste', (SELECT SUM(VE. TotalRecebido)
                       FROM VerbaEstado as VE
                       WHERE VE.UF = 'MT' OR VE.UF = 'MS' OR VE.UF = 'GO' OR VE.UF = 'DF'));
INSERT INTO VerbaRegiao VALUES ('Sul', (SELECT SUM(VE. TotalRecebido)
                       FROM VerbaEstado as VE
                       WHERE VE.UF = 'PR' OR VE.UF = 'RS' OR VE.UF = 'SC'));
SFLECT*
FROM VerbaRegiao as VR
GROUP BY VR. Regiao
ORDER BY VR. Verba DESC;
DROP TABLE IF EXISTS CasosRegiao;
DROP TABLE IF EXISTS CasosEstado;
CREATE TABLE CasosEstado (
  Regiao VARCHAR(20),
  Fornecedor VARCHAR(2),
  CodUF INTEGER,
  Data VARCHAR(100),
  SemanaEPI INTÈGER,
  População INTEGER.
  CasosAcumulado INTEGER,
  CasosNovos INTEGER,
  ObitosAcumulados INTEGER,
  ObitosNovos INTEGER.
) AS SELECT
 regiao,
  estado.
  coduf.
  data,
```

semanaEpi, populacaoTCU2019. casosAcumulado, casosNovos, obitosAcumulado, obitosNovos FROM CSVREAD('casos_por_estado.csv'); **SELECT*** FROM CasosEstado; DROP TABLE IF EXISTS CasosRegiao; CREATE VIEW CasosRegiao AS SELECT CE.Regiao, SUM(CE.CasosAcumulado) AS TotalCasos,SUM(CE.ObitosAcumulados) AS TotalObitos FROM CasosEstado AS CE **GROUP BY CE. Regiao**; **SELECT** * FROM CasosRegiao; SELECT CR.Regiao, CR.TotalObitos, VR.Verba, VR.Verba/CR.TotalObitos AS VerbaPorObito, CAST((1.0*100*CR.TotalObitos/CR.TotalCasos) AS FLOAT) AS Mortalidade FROM CasosRegiao AS CR, VerbaRegiao AS VR WHERE CR.Regiao=VR.Regiao **GROUP BY CR.**Regiao ORDER BY Mortalidade DESC; SELECT VE.UF AS Estado, CE.ObitosAcumulados AS Obitos, CE.CasosAcumulado AS Casos, VE.TotalRecebido AS Verba, VE.TotalRecebido/CE.ObitosAcumulados AS VerbaPorObito. CAST(1.0*100*CE.ObitosAcumulados/CE.CasosAcumulado AS FLOAT) AS Mortalidade FROM CasosEstado AS CE, VerbaEstado AS VE WHERE CE.Fornecedor=VE.UF **GROUP BY VE.UF** ORDER BY Mortalidade DESC; SELECT CR.Regiao, CR.TotalObitos, VR.Verba, VR.Verba/CR.TotalCasos AS VerbaPorCaso, CAST((1.0*100*CR.TotalObitos/CR.TotalCasos) AS FLOAT) AS Mortalidade FROM CasosRegiao AS CR, VerbaRegiao AS VR WHERE CR.Regiao=VR.Regiao **GROUP BY CR. Regiao** ORDER BY Mortalidade DESC; SELECT VE.UF AS Estado, CE.ObitosAcumulados AS Obitos, CE.CasosAcumulado AS Casos, VE.TotalRecebido AS Verba, VE.TotalRecebido/CE.CasosAcumulado AS VerbaPorCaso,

CAST(1.0*100*CE.ObitosAcumulados/CE.CasosAcumulado AS FLOAT) AS Mortalidade

FROM CasosEstado AS CE, VerbaEstado AS VE

WHERE CE.Fornecedor=VE.UF

GROUP BY VE.UF

ORDER BY Mortalidade DESC;

Queries feitas em Cypher, a partir dos resultados obtidos em csv

LOAD CSV WITH HEADERS FROM 'https://raw.githubusercontent.com/Osedro/MC536-Projeto/main/final/data/resultado_obitos.csv' AS line

CREATE (:est {estado: line.ESTADO, mort: line.MORTALIDADE, verba: line.VERBAOBITO})

MATCH (i1:est)

MATCH (i2:est)

WHERE toFloat(i1:mort)-toFloat(i2:mort) < 0.3 AND toFloat(i1:verba)-toFloat(i2:verba) < 1000 AND i1.estado <> i2.estado AND toFloat(i1:mort)-toFloat(i2:mort) >= 0 AND toFloat(i1:verba)-toFloat(i2:verba) >= 0

CREATE (i1) - [:MuitoSimilar] -> (i2)

MATCH (i1:est)

MATCH (i2:est)

WHERE toFloat(i1:mort)-toFloat(i2:mort) < 0.5 AND toFloat(i1:verba)-toFloat(i2:verba) < 1500 AND i1.estado <> i2.estado AND toFloat(i1:mort)-toFloat(i2:mort) >= 0 AND toFloat(i1:verba)-toFloat(i2:verba) >= 0

CREATE (i1) - [:Similar] -> (i2)

MATCH (i1:est)

MATCH (i2:est)

WHERE toFloat(i1:mort)-toFloat(i2:mort) < 0.7 AND toFloat(i1:verba)-toFloat(i2:verba) < 2500 AND i1.estado <> i2.estado AND toFloat(i1:mort)-toFloat(i2:mort) >= 0 AND toFloat(i1:verba)-toFloat(i2:verba) >= 0

CREATE (i1) - [:PoucoSimilar] -> (i2)

• Base de Dados

As bases de dados utilizadas disponibilizam arquivos CSV.

Título	Link	Descrição	
Brasil.io	https://brasil.io/covid19/	Compilação de boletins epidemiológicos diários de casos e óbitos confirmados por município.	
Portal Brasileiro de Dados Abertos	https://dados.gov.br/	Dados relacionados a gestão de recursos públicos, como gastos com equipamentos e insumos para saúde. Há dados voltados especificamente para covid.	
CoronaVirus Brasil	https://covid.saude.gov.br/	Fornece dados gerais (casos fatais) sobre a atuação do covid-19 no brasil, separados por região.	

• Arquivos de Dados

Nome do arquivo	Link	Breve descrição	
casos_por_estado.csv	https://github.com/Osed ro/MC536-Projeto/blob/ main/final/data/csv/cas os_por_estado.csv	Tabela com dados sobre o Covid dividos entre os municípios, estados e regiões.	
distribuicao_respiradores.csv	https://github.com/Osed ro/MC536-Projeto/blob/ main/final/data/csv/distr ibuicao_respiradores.cs v	Tabela com dados de distribuição de respiradores e outros insumos de combate ao Covid entre os estados	