

Description

The VSM5N20 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 200V, I_D = 5A$ $R_{DS(ON)} < 580mΩ @ V_{GS} = 10V$ (Typ:520mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-251

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM5N20-T1	VSM5N20	TO-251	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	5	Α	
Drain Current-Pulsed (Note 1)	I _{DM}	20	Α	
Maximum Power Dissipation	P _D	30	W	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	$R_{ heta JA}$	4.17	°C/W

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Daniel Control	0	, , , , , , , , , , , , , , , , , , ,	B.41 .			11.24
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0 V I_D =250 μ A	200	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.7	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =2A	-	520	580	mΩ
Forward Transconductance	G FS	V _{DS} =15V,I _D =2A	-	8	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	580	-	PF
Output Capacitance	C _{oss}		-	90	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	3	-	PF
Switching Characteristics (Note 4)				•		
Turn-on Delay Time	t _{d(on)}		-	10	-	nS
Turn-on Rise Time	t _r	V_{DD} =100V, R_L =15 Ω	-	12	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =2.5 Ω	-	15	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V _{DS} =100V,I _D =2A,	-	12		nC
Gate-Source Charge	Q _{gs}		-	2.5	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	3.8	-	nC
Drain-Source Diode Characteristics	. '		•	•		•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =2A	-	_	1.2	V
Diode Forward Current (Note 2)	Is		-	-	5	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-JunctionTemperature

Qg Gate Charge (nC)

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

T_J-Junction Temperature(℃)

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance