DS Tutorial 1

Question 1:

Based on advertising data, find out the residual standard error(RSE), R^2 and F-statistics with respect to TV, radio, newspaper advertising budgets. Comment on the values.

Answer:

	TV	
Beta1	0.04753664	
Beta0	7.03259355	
RSS	2102.53856	
RSE	3.26	
TSS	5417.14875	
R^2	0.61187358	
F-statistic	312.143059	

Radio				
Beta1	0.202495783			
Beta0	9.311638095			
RSS	3618.479549			
RSE	4.27			
TSS	5417.14875			
R^2	0.332032455			
F-statistic	98.42158757			

Newspaper				
Beta1	0.054693098			
Beta0	12.35140707			
RSS	5134.804544			
RSE	5.09			
TSS	5417.14875			
R^2	0.052120445			
F-statistic	10.88729908			

Conclusion:

TV: The strongest predictor, with the lowest RSE (3.26), high R² (0.6119), and a very significant F-statistic (312.14).

Radio: A moderate predictor, with a higher RSE (4.27), moderate R^2

(0.3320), and a significant F-statistic (98.42).

Newspaper: The weakest predictor, with the highest RSE (5.09), very low R²

(0.0521), and the lowest F-statistic (10.89).

Question 2:

Create a dataset of your own choice, explain the dataset and using logistic regression predict the value for unknown inputs.

Answer:

Dataset where a company wants to predict if a customer will purchase a product based on their age, annual income, and spending score.

Dataset Explanation

Age: The age of the customer (18–65 years). **Annual Income**: Income in thousands of dollars.

Spending Score: A score (1–100) that reflects customer spending behavior. **Purchased**: Binary target variable (1 = Purchased, 0 = Not Purchased).

Create the dataset using Python

Generate the data and build a logistic regression model to predict whether a customer will purchase the product based on the input features.

```
# New inputs for prediction
new_inputs = pd.DataFrame({
 'Age': [30, 50],
 'Annual_Income': [85, 40],
 'Spending_Score': [70, 30]
})
```

Predict using the logistic regression model predictions = log_reg.predict(new_inputs)

Here is a sample of the generated dataset:

Age	Annual_Income	Spending_Score	Purchased
56	27	62	0
46	107	58	1
32	82	52	1
60	30	12	0
25	100	39	1

Age: Customer age ranges from 18 to 65.

Annual Income: Income ranges from \$20k to \$120k. Spending Score: Spending score ranges from 1 to 100. Purchased: Binary outcome where 1 indicates a purchase.

After training the logistic regression model:

Accuracy: 90% on the test set.

Classification Report:

 Metric
 Class 0
 Class 1

 Precision
 0.86
 1.00

 Recall
 1.00
 0.73

 F1-Score
 0.93
 0.84

Overall: The model performs well, especially for customers who did not purchase (Class 0). However, it is slightly less effective at identifying customers who made a purchase (Class 1)

Predictions for New Inputs:

- Age = 30, Annual Income = 85, Spending Score = 70
 Predicted Outcome: Purchased (1)
 This customer is likely to purchase the product due to their high spending score and income.
- Age = 50, Annual Income = 40, Spending Score = 30
 Predicted Outcome: Not Purchased (0)
 This customer is less likely to purchase the product due to their lower spending score and income.