STATISTICS 205A - FALL 2014 FINAL

Hoang Duong

December 8, 2014

Lemma 1. For $p_i \in [0,1], \forall i \in \mathbb{N}$, prove that:

$$\prod_{m=1}^{\infty} (1 - p_m) = 0 \Leftrightarrow \sum_{m=1}^{\infty} p_m = \infty$$

Proof. As proved in Homework 11, problem 2.

https://www.dropbox.com/sh/lpohr53eycs7ayo/AACfCHL-bvuW37iROcFLLxTsa/SolHW11.pdf?dl=0

Lemma 2. For a sequence of sets $A_n, n \in \mathbb{N}$, and set A, we have

$$C := \lim_{m \to \infty} [B_m \cap A] = [\lim B_m] \cap A := D$$

Proof. It is an obvious lemma. Let $\omega \in C$ then ω is in infinitely many $B_m \cap A$. So $\omega \in A$, and ω is in infinitely many B_m . Thus $\omega \in D$.

On the other hand, if $\omega \in C, \Rightarrow \omega \in A$, and ω is in infinitely many B_m . Thus ω is in infinitely many $B_m \cap A$. So $\omega \in C$.

Problem 1. Let $(A_n, n \ge 1)$ be a sequence of events. Prove that $\mathbb{P}[A_n i.o.] = 1$ iff:

$$\sum_{n} \mathbb{P}\left[A \cap A_{n}\right] = \infty, \forall A : \mathbb{P}\left[A\right] > 0$$

Proof. Firstly, we will prove the " \Leftarrow " direction. Fix $m \in \mathbb{N}$. We observe that:

$$\sum_{n=1}^{\infty} \mathbb{P}\left[A \cap A_n\right] = \infty, \forall A : \mathbb{P}\left[A\right] > 0 \tag{1}$$

$$\Leftrightarrow \sum_{n=m}^{\infty} \mathbb{P}\left[A \cap A_n\right] = \infty, \forall A : \mathbb{P}\left[A\right] > 0$$
 (2)

$$\Leftrightarrow \sum_{n=m}^{\infty} \mathbb{P}\left[A_n \mid A\right] \mathbb{P}\left[A\right] = \infty, \forall A : \mathbb{P}\left[A\right] > 0 \tag{3}$$

$$\Leftrightarrow \sum_{n=m}^{\infty} \mathbb{P}\left[A_n \mid A\right] = \infty, \forall A : \mathbb{P}\left[A\right] > 0 \tag{4}$$

$$\Leftrightarrow \prod_{n=m}^{\infty} (1 - \mathbb{P}[A_n \mid A]) = 0, \forall A : \mathbb{P}[A] > 0$$
 (5)

$$\Leftrightarrow \prod_{n=m}^{\infty} \mathbb{P}\left[A_n^c \mid A\right] = 0, \forall A : \mathbb{P}\left[A\right] > 0 \tag{6}$$

For (2) \Leftrightarrow (3) because of Bayes's theorem for $\mathbb{P}[A] > 0$.

 $(4) \Leftrightarrow (5)$ because of Lemma 1.

On the other hand we have:

$$\mathbb{P}\left[\bigcup_{n=m}^{\infty} A_n\right] = 1\tag{7}$$

$$\Leftrightarrow \mathbb{P}\left[\bigcap_{n=m}^{\infty} A_n^c\right] = 0 \tag{8}$$

Now by contradiction, assuming that $\mathbb{P}\left[\bigcap_{n=m}^{\infty}A_{n}^{c}\right]>0$. Let

$$\begin{split} A^* &= \bigcap_{n=m}^{\infty} A_n^c \\ \Rightarrow A^* \subset &A_n^c, \forall n \geq m \\ \Rightarrow \mathbb{P}\left[A_n^c \mid A^*\right] = &\frac{\mathbb{P}\left[A_n^c \cap A^*\right]}{\mathbb{P}\left[A^*\right]} = \frac{\mathbb{P}\left[A^*\right]}{\mathbb{P}\left[A^*\right]} = 1, \forall n \geq m \\ \Rightarrow &\prod_n \mathbb{P}\left[A_n^c \mid A^*\right] = 1, \forall n \geq m \\ \Rightarrow &\prod_{n=m}^{\infty} \mathbb{P}\left[A_n^c \mid A^*\right] = 1 \end{split}$$

, which is a contradiction with (6). Thus we have:

$$\mathbb{P}\left[\bigcap_{n=m}^{\infty} A_n^c\right] = 0$$

, for $m \in \mathbb{N}$ arbitrary. So it is true for all $m \in \mathbb{N}$. As such:

$$\mathbb{P}\left[\lim_{m\to\infty}\bigcup_{n=m}^{\infty}A_{m}\right]=1$$

Secondly, we will proceed to proving the " \Rightarrow " direction also by contradiction. Assuming the opposite that $\exists A : \mathbb{P}[A] > 0$, such that:

$$\sum_{m} \mathbb{P}\left[A \cap A_n\right] < \infty$$

Then, by the Borel-Centelli Lemma 1, we have:

$$\mathbb{P}\left[\lim_{m\to\infty}\bigcup_{n=m}^{\infty}\left(A_n\bigcap A\right)\right]=0\tag{9}$$

$$\Rightarrow \mathbb{P}\left[\lim_{m\to\infty} \left(\left(\bigcup_{n=m}^{\infty} A_m \right) \bigcap A \right) \right] = 0 \tag{10}$$

$$\Rightarrow \mathbb{P}\left[\left(\lim_{m\to\infty} \left(\bigcup_{n=m}^{\infty} A_m\right)\right) \cap A\right] = 0 \tag{11}$$

For (9) \Leftrightarrow (10) because $(B \cap A) \cup (C \cap A) = (B \cup C) \cap A$ (and use induction we get the general case). (10) \Leftrightarrow (11) because of Lemma 2.

Denote:

$$B = \left(\lim_{m \to \infty} \left(\bigcup_{n=m}^{\infty} A_m\right)\right)$$

$$\Rightarrow \mathbb{P}[B] = 1$$

$$\Rightarrow \mathbb{P}[B^c] = 0$$

$$\Rightarrow \mathbb{P}[A \backslash B] \leq \mathbb{P}[B^c] = 0$$

$$\Rightarrow \mathbb{P}[B \cap A] = \mathbb{P}[A] - \mathbb{P}[A \backslash B] = \mathbb{P}[A] > 0$$

, which is a contradiction with (11). So we also have the proof of the " \Rightarrow " direction.

Problem 2. Let X_1, X_2, X_3 be i.i.d taking values in a finite set, and not constant. Is it necessarily true that $\mathbb{P}[X_3 = X_2 \mid X_2 \neq X_1] \leq \mathbb{P}[X_3 = X_2]$? Give proof or a counter-example.

Proof. We will prove that the inequality is true. Assuming that X_i takes values in the finite set $\{a_1, a_2, ..., a_n\}$ with corresponding probability $\{p_1, p_2, ..., p_n\}$, for $p_1 + p_2 + ... + p_n = 1$. We have:

$$\begin{split} \mathbb{P}\left[X_{3} = X_{2} \mid X_{2} \neq X_{1}\right] = & \frac{\mathbb{P}\left[X_{3} = X_{2} \land X_{2} \neq X_{1}\right]}{\mathbb{P}\left[X_{2} \neq X_{1}\right]} \\ \mathbb{P}\left[X_{3} = X_{2} \land X_{2} \neq X_{1}\right] = & p_{1}^{2}(1 - p_{1}) + p_{2}^{2}(1 - p_{2}) + \dots + p_{n}^{2}(1 - p_{n}) \\ \mathbb{P}\left[X_{3} = X_{2}\right] = & p_{1}^{2} + p_{2}^{2} + \dots + p_{n}^{2} \\ \mathbb{P}\left[X_{2} \neq X_{1}\right] = & 1 - \mathbb{P}\left[X_{2} = X_{1}\right] \\ = & 1 - p_{1}^{2} - p_{2}^{2} - \dots - p_{n}^{2} \end{split}$$

Thus the inequality we need to prove is equivalent to:

$$\begin{split} \mathbb{P}\left[X_{3} = X_{2} \wedge X_{2} \neq X_{1}\right] \leq & \mathbb{P}\left[X_{3} = X_{2}\right] \mathbb{P}\left[X_{2} \neq X_{1}\right] \\ \Leftrightarrow & \sum_{i=1}^{n} p_{i}^{2} - \sum_{i=1}^{n} p_{i}^{3} \leq \left(\sum_{i=1}^{n} p_{i}^{2}\right) \left(1 - \sum_{i=1}^{n} p_{i}^{2}\right) \\ \Leftrightarrow & p_{1}^{3} + p_{2}^{3} + \ldots + p_{n}^{3} \geq \left(p_{1}^{2} + p_{2}^{2} + \ldots + p_{n}^{2}\right)^{2} \\ \Leftrightarrow & (p_{1} + p_{2} + \ldots + p_{n})(p_{1}^{3} + p_{2}^{3} + \ldots + p_{n}^{3}) \geq \left(p_{1}^{2} + p_{2}^{2} + \ldots + p_{n}^{2}\right)^{2} \end{split}$$

The last inequality is true according to Cauchy-Schwarz inequality applied to two sequences: $\left(\sqrt{p_i}\right)_{i=1}^n$ and $\left(\sqrt{p_i^3}\right)_{i=1}^n$. The equality holds iff $p_1=p_2=\ldots=p_n=1/n$.

Problem 3. Let $(X_i, i \ge 1)$ be i.i.d but not necessarily integrable. Let $S_n = \sum_{i=1}^n X_i$.

- (i) Prove that $\limsup_n S_n = \infty$ a.s. iff \exists a stopping time $T < \infty$ a.s. such that $\mathbb{E}S_T > 0$.
- (ii) Now assume $\mathbb{E}X_1^+ = \infty$. Prove that $\limsup_n n^{-1}S_n = \infty$ a.s. iff \exists a stopping time $T < \infty$ a.s. such that $\mathbb{E}S_T > \infty$.

Proof. (i) " \Rightarrow " direction. If $\limsup_n S_n = \infty$ a.s., then choose $T = \inf\{n \mid S_n > 1\}$, then $T < \infty$ a.s., and $S_T > 0$, $\forall \omega$, thus $\mathbb{E}S_T > 0$.

" \Leftarrow " direction. Assuming that $\exists T$ a stopping time, $T < \infty$ a.s., and $\mathbb{E}S_T > 0$. We need to prove $\limsup_n S_n = \infty$ a.s.

According to Theorem 4.1.2 in Durrett, for S_n a random walk on \mathbb{R} , there are only four possibilities, one of which has probability one:

- (a) $S_n = 0, \forall n$.
- (b) $S_n \to \infty$.
- (c) $S_n \to -\infty$
- (d) $-\infty = \liminf S_n < \limsup S_n = \infty$

Applying this theorem to our problem. First we note that case (a) can not happen, because otherwise $\lim S_T = 0$ for any stopping time, which is a contradiction. If case (b) or case (d) happens with probability one, then we have the proof.

We only need to deal with case (c), when $S_n \to -\infty$ a.s. Thus $\lim \mathbb{E}S_n = -\infty$. According to Theorem 4.1.3 in Durrett, for T is a stopping time with $\mathbb{P}[T < \infty] = 1$, condition on $\{T < \infty\}$, $\{X_{T+n}, n \ge 1\}$ is independent of \mathcal{F}_T and has the same distribution as the original sequence. Now since for our case $T < \infty$ a.s., conditioning on this event is the same as no conditioning.

Let $\mathbb{E}S_T = \mu > 0$, and $M \in \mathbb{N}$ be arbitrary. Then $\exists k \in \mathbb{N}$ such that $k\mu > M$. Let $T_1, T_2, ..., T_k$ be independent copy of T, then applying Theorem 4.1.3 mentioned above, we have : $\mathbb{E}S_{T_1+T_2+...+T_k} = k\mu > M$. This contradicts with the fact that $\lim \mathbb{E}S_n = -\infty$. So case (c) cannot happen. As such, we complete the proof for part (i)

(ii) " \Rightarrow " direction. If $\limsup n^{-1}S_n = \infty$ a.s., then choose $T = \inf \{ n \mid n^{-1}S_n > 1 \}$, then $T < \infty$ a.s. We also have $S_T > T > 0$, thus $\mathbb{E}S_T > -\infty$.

" \Leftarrow " direction. First, if $\mathbb{E}X^- < \infty$, then according to Theorem 2.4.5 in Durrett, we have $S_n/n \to \infty$ a.s. As such, $\limsup n^{-1}S_n \to \infty$ a.s.

We consider the harder case when $\mathbb{E}X^- = \infty$.

We want to apply Theorem 2.5.9 and 2.3.7 in Durrett for $a_n=n$. We check the conditions: $\mathbb{E}|X_1| \geq \mathbb{E}|X^+| = \infty$.

$$\sum_{n} \mathbb{P}\left[|X_{1}| \ge n\right] \ge \sum_{n} \mathbb{P}\left[X_{1}^{+} \ge n\right]$$
$$\ge \int_{0}^{\infty} \mathbb{P}\left[X_{1}^{+} > x\right] dx$$
$$= \mathbb{E}X_{1}^{+} = \infty$$

Thus we have: $\limsup_n |S_n|/n = \infty$. So $\limsup_n S_n/n$ is either ∞ or $-\infty$. Assuming that $\limsup_n S_n/n = -\infty$, then $\liminf_n S_n/n \leq \limsup_n S_n/n = -\infty$. Thus $\lim_n S_n/n = -\infty$, so $\mathbb{E}(S_n/n) = -\infty$. But again using a similar argument as in part (i), let $\mathbb{E}S_T = \mu > -\infty$. Then $\forall N \in \mathbb{N}$, exists M > N of the form $T_1 + T_2 + \ldots + T_k$ such that $\mathbb{E}S_M = k\mu \Rightarrow \mathbb{E}S_M/M = k\mu/M \geq \mu > -\infty$, which is a contradiction. Thus $\limsup_n S_n/n = \infty$.

Problem 4. Let μ be a probability measure on [1/4, 3/4] with mean 1/2. Describe a joint distribution for random variable (X, Y) such that:

- (i) X has distribution μ
- (ii) Y has the uniform distribution on [0,1]
- (iii) $\mathbb{E}[Y \mid X] = X$

Proof. Denote $S_x = [1/4, 3/4]$, $S_x = \mathcal{B}(S_x)$, $S_y = [0, 1]$, $S_y = \mathcal{B}(S_y)$. Let Q(x, B) be the conditional distribution of Y given X. By Proposition 5 in the note of conditional distribution, we have the joint distribution ν satisfy:

$$\nu(A \times B) = \int_{A} Q(x, B)\mu(dx), \forall A \in \mathcal{S}_{x}, B \in \mathcal{S}_{y}$$

This joint distribution satisfies:

$$\lambda(B) = \nu(S_x \times B) = \int_{S_x} Q(x, B) \mu(dx), \forall B \in \mathcal{S}_y$$

for λ denotes the Lebesgue measure, and:

$$\int_{S_y} yQ(X(\omega), dy) = X(\omega)$$

Proposition 1. Proposition 5.27 page 96 Breiman (1992).

Let $X_1, X_2, ...$ be a submartingale, $a > 0, T = \inf\{n : X_n \ge a\}$. If $\mathbb{E}\left[\sup_n (X_{n+1} - X_n)^+\right] < \infty$, then for $X_{n \wedge T}$,

$$\limsup \mathbb{E} |X_{n \wedge T}| < \infty$$

Proof. For any $n, X_T^+ \le a + U$, where $U = \sup_n (X_{n+1} - X_n)^+$. By Theorem 5.2.9 in Durrett (Optional Stopping Theorem), we have:

$$\mathbb{E} X_{n \wedge T} \ge \mathbb{E} X_{1 \wedge T} = \mathbb{E} X_1$$

$$\Rightarrow \mathbb{E} X_{n \wedge T}^- \le \mathbb{E} X_{n \wedge T}^+ - \mathbb{E} X_1$$

$$\Rightarrow \mathbb{E} |X_{n \wedge T}| \le 2\mathbb{E} X_{n \wedge T}^+ - \mathbb{E} X_1 \le 2a + 2\mathbb{E} U - \mathbb{E} X_1$$

$$\Rightarrow \lim \sup \mathbb{E} |X_{n \wedge T}| < \infty$$

Theorem 1. (Theorem 5.28 page 96 Breiman (1992)) Let $\{(X_n, \mathcal{F}_n)\}_{n\geq 1}$ be a martingale such that

$$\mathbb{E}\left[\sup_{n\geq 1}|X_{n+1}-X_n|\right]<\infty$$

If

$$A_1 = \{ \omega : \lim X_n \text{ exists and is finite} \}$$

$$A_2 = \{ \omega : \lim \sup X_n = \infty, \lim \inf X_n = -\infty \}$$

then $\mathbb{P}[A_1 \cup A_2] = 1$ a.s.

Proof. Consider $T = \inf\{n : X_n \ge K\}$, then by Proposition 1, and Martingale Convergence Theorem, we have $X_{n \wedge T} \to X$ a.s. On the set $F_K = \{\omega : \sup_n X_n < K\}$, $X_n = X_{n \wedge T}, \forall n$. Hence on F_K , $\lim_n X_n$ exists and is finite a.s. Thus this limit exists and is finite a.s. on the set $\bigcup_{K=1}^{\infty} F_K$, but this set is exactly the set $\{\lim \sup X_n < \infty\}$.

Similarly, using the MG sequence $-X_1, -X_2, ...$, we conclude that $\lim_n X_n$ exists and is finite a.s. on the set $\{\lim\inf X_n > -\infty\}$. Hence $\lim X_n$ exists and is finite for almost all ω in the set $\{\liminf X_n > -\infty\} \cup \{\limsup X_n < \infty\}$. Thus the theorem is proved.

Problem 5. Let $(X_n, n \ge 0)$ be a martingale w.r.t. a filtration (\mathcal{F}_n) . Write $\Delta_n = X_n - X_{n-1}$. Suppose $\mathbb{E} \sup_{n \ge 1} |\Delta_n| < \infty$. Consider the events

$$A := \left\{ \sum_n \Delta_n^2 < \infty \right\}$$

$$B := \left\{ X_n \text{ converges to a finite limit} \right\}$$

Prove that $A \subseteq B$ a.s.

Proof. From Theorem 1, with similar notation A_1, A_2 , we have $\mathbb{P}[A_1 \cup A_2] = 1$. We just need to prove that A_2 happens with probability 0.

Problem 6. Let $(\xi_m, 1 \le m < \infty)$ be i.i.d with exponential(1) distribution. Consider the "alternating signs random walk"

$$S_n = \sum_{m=1}^{n} (-1)^{m-1} \xi_m$$

Let $T^* = \inf \{ n \ge 1 : S_n < 0 \}$ and for x > 0, let $U_x = \inf \{ n : S_n \ge x \}$

(a) Show that

$$\mathbb{E}S_{\min(U_x+1,T^*)}=0$$

(b) Find the distribution of $M := \sup_{n < T^*} S_n$.

[Hint: for (b) use the memoryless property of the exponential to analyze overshoots.]

Proof. (a) Define a sequence $(e_n)_{n=1}^{\infty}$ as $e_{2k} = 0, \forall k \in \mathbb{N}, e_{2k+1} = 1, \forall k \in \mathbb{N}$, then it is obvious that $S_n - e_n = \sum_{m=1}^n (-1)(\xi_m - 1)$ is a martingale since $\xi_m - 1$ are i.i.d with mean zero. We have

$$U_x + 1 = \inf \{ n : S_{n-1} \ge x \}$$

is a stopping time. T^* is a stopping time. Thus $N = \min\{U_x + 1, T^*\}$ is also a stopping time.

First we will prove that $N < \infty$. Indeed, consider the even subsequence of S_n , which is $S_{2k} = (\xi_1 - \xi_2) + (\xi_3 - \xi_4) + ... + (\xi_{2k-1} - \xi_{2k})$ is a random walk (of Laplace random variable). Thus by Theorem 4.1.2 in Durrett, either $\lim \inf S_{2k} = -\infty$ or $\limsup S_{2k} = \infty$ with probability 1 (since we can rule out the case of $S_{2k} = 0, \forall k$). So $N < \infty$.

Second, we will prove that $e_N = 1$. Indeed, observe that T^* must be even because if it was even, then S_{T^*-1} is smaller, as such $S_{T^*-1} < 0$, which contradicts with the definition of T^* . Similarly, U_x must be odd, since if it was even, S_{U_x-1} is bigger, as such $S_{U_x-1} > x$, which contradicts with the definition of U_x . As such $U_x + 1$ is even. So N is even, which implies $e_N = 0$.

Now applying the Optional Stopping Theorem to the martingale $S_n - e_n$ and the finite stopping time N, we have:

$$\mathbb{E}[S_0 - e_0] = \mathbb{E}[S_N - e_N]$$

$$\Rightarrow 0 = \mathbb{E}S_N - 0$$

$$\mathbb{E}S_N = 0$$

(b) Since $S_1 \geq 0$, we have M is a non-negative random variable. We have:

$$\mathbb{P}[M < x] = \mathbb{P}\left[\sup_{n \le T^*} S_n < x\right]$$
$$= \mathbb{P}[T^* + 1 \le U_x] := p$$

From (a) we have:

$$\begin{split} 0 = & \mathbb{P}\left[T^* < U_x + 1\right] \mathbb{E}\left[S_{T^*} - e_{T^*} \mid T^* < U_x + 1\right] + \\ + & \mathbb{P}\left[T^* \geq U_x + 1\right] \mathbb{E}\left[S_{U_x + 1} - e_{U_x + 1} \mid T^* \geq U_x + 1\right] \\ = & \mathbb{P}\left[T^* < U_x + 1\right] \mathbb{E}\left[S_{T^*} \mid T^* \leq U_x - 1\right] + \\ + & \left(1 - \mathbb{P}\left[T^* < U_x + 1\right]\right) \mathbb{E}\left[S_{U_x + 1} \mid T^* \geq U_x + 1\right] \end{split}$$

And since T^* and $U_x + 1$ are both even, $T^* < U_x + 1 \Leftrightarrow T^* \le U_x - 1$. So $p = \mathbb{P}[T^* < U_x + 1]$. So we have:

$$p = \frac{\mathbb{E}\left[S_{U_x+1} \mid T^* \ge U_x + 1\right]}{\mathbb{E}\left[S_{U_x+1} \mid T^* \ge U_x + 1\right] + \mathbb{E}\left[S_{T^*} \mid T^* \le U_x - 1\right]}$$

Now consider:

$$\mathbb{E}\left[S_{U_x+1} \mid T^* \ge U_x + 1\right] =$$

Problem 7. (a) Consider events (A_n) adapted to a filtration (\mathcal{F}_n) . Suppose $\mathbb{P}[A_n \mid \mathcal{F}_{n-1}] \geq 0.6$ for all $n \geq 1$. Let $M_k = \sum_{i=1}^k \mathbb{I}_{A_i}$. Find a constant C such that

$$\mathbb{P}[M_k \le 0.55k - C \text{ for some } k \ge 0] \le 0.05$$

(b) You are planning a tennis tournament with n players. When player i plays against player $j \neq i$, player i will win with some probability $p_{ij} = 1 - p_{ji}$, independent of other matches. The number (p_{ij}) are unknown to you, but suppose there is some "best" player i (you don't know which player) such that $p_{ij} \geq 0.6$ for all $j \neq i$. You want an algorithm for scheduling matches in such a way that after a deterministic number t_n of matches you can announce a winner and know that with chance $\geq 95\%$ the announced winner is the best player. Describe how to do this using $t_n \leq Bn$ matches, for some constant B not depending on n.

Proof. We have:

$$\mathbb{P}\left[M_k \le 0.55k - C \text{ for some } k \ge 0\right] \le 0.05$$

$$\Leftrightarrow \mathbb{P}\left[M_k > 0.55k - C, \forall k \ge 0\right] \ge 0.95$$

From the Conditional Borel-Cantelli Lemma, we have: $\lim M_k = \infty$, as $\sum_n \mathbb{P}[A_n \mid \mathcal{F}_{n-1}] = \infty$. Moreover, we have:

$$\frac{M_k}{\sum \mathbb{P}\left[A_n \mid \mathcal{F}_{n-1}\right]}$$

converges to 1 a.s., as a result of Dubins and Freedman (1965).

Reference: Durrett, R (2013). Probability Theory. Breiman, L (1992). Probability. Dubins, L.E., Freedman, D.A., (1965). A Sharper Form of The Borel-Cantelli Lemma And The Strong Law $\hfill\Box$