Extracting value for Mileslife

Mileslife Group Pearly Ang (ha2488) Shujun Liu (sl4430) Ziwei Jiang (zj2246)

The Process

	The Problem		The Data		Visualization/ Modelling		Analysis		Insight
•	Discussed with our client Shortlisted problem statement Extended problem statement	•	Requested for a dataset with shortlisted variables Cleaned and pre-processed the data	•	Plot relationships of features to transaction frequency and commission paid Heatmaps Models	•	Determined influential factors for merchant performance Showed campaign effectiveness by zones	•	Recommendations to improve campaign strategies Predicting performance of F&B partners for better contractual terms

The Problem Statements

- Part 1: Assessing the quality of F&B merchant partnerships
 - Not all partnerships are equal
 - Differential commission slicing/ pricing
 - Historical performance measure: transaction frequency
 - Potential future performance measure: commission paid

- Part 2: Evaluating the effectiveness of campaigns
 - Type of campaign (e.g. airline-specific, credit card-specific, festival-specific, restaurant-specific)
 - Performance of campaign by different zones
 - Sensitivity of **revenue** to campaigns

The Dataset

- Dataset: transaction data with 25 attributes x 160,000 rows
 - Restaurant-related: name, area, type of flavor
 - Campaign-related: name, promotion miles
 - o Transaction-related: paid time, total price, commission for Mileslife
 - Focused on Hong Kong data: 15,200 rows

Preprocessing:

- Web-scraping to get exact location and address of each restaurant
- Created 'paid day of week' and 'paid hour '
- Integrated a common campaign label for the same campaign in different languages
- Encoded categorical variables for regression and created a categorical variable based on quantiles for pay_commission for classification

Restaurant Features

Paid Time

Transaction Density in Hong Kong

By absolute number of transactions

By rank on number of transactions

Models and Evaluation

Model	Result	Measure			
Linear Regression	695.16 0.018	Mean-squared Error			
Decision Trees	69.9% 81.6%	Accuracy			
Random Forest	77.6%	Accuracy			

- Feature engineering include only relevant features
- Normalization and scaling
- Created a categorical variable for commission using quantiles as thresholds
- Result:
 - a. Large improvement in Linear Regression after normalization
 - b. Better accuracy after pruning the tree in Decision Trees
- Limited utility of predicting the amount of commission to assess quality of partnership

Analytics on Campaign Effectiveness

Methodology: A/B testing

- 1. Setting the objective function as revenue
- 2. Grouping transactions into different zones
- 3. Visualizing the result
- 4. Applying our analysis to more campaigns
- 5. Sensitiveness of revenue to changes in bonus miles multipliers

Analytics on Campaign Effectiveness

'September 3X ANA miles'

Analytics on Campaign Effectiveness

Sensitiveness to Bonus Miles Multiplier

Recommendations - Partnerships

Mileslife should:

- Scout Japanese ramen,
 Shanghai, Yunnan F&B partners
 to suit the Asian palette
- Favor existing partners with **good customer loyalty** such as Tulsi
 and Wine

Mileslife should not:

- Solely assess potential partners on their current metric alone
- Overextend partnerships withWestern restaurants

Recommendations - Campaigns

Mileslife should:

- Focus on specific districts in different campaigns
- Implement more festival- specific campaigns
- Increase the **bonus miles multiplier** by a greater magnitude
 for suburban areas

Mileslife should not:

- Arbitrarily target districts with high transaction density
- Provide blanket multiplier campaigns across all localities

Limitations and Further Improvements

- Dataset
 - Limited timeframe due to Mileslife Hong Kong starting in mid-2018
 - Unable to do Difference-in-Difference analysis for assessing campaigns with a single year's data
 - o By **mid-2020**, there should be two annual revenue growth values for comparison

Extension to a user-friendly interface for the client