

Preliminary

TFT LCD Preliminary Specification

MODEL NO.: M215H3-LA1

Customer:	
Approved by :	
Note:	

核准時間	部門	審核	角色	投票
2010-02-10 13:19:58	MTR 產品管理處	吳 2010.02.10 柏 勳	Director	Accept

Preliminary

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION	 4
1.1 OVERVIEW 1.2 FEATURES	
1.2 PEATURES 1.3 APPLICATION	
1.4 GENERAL SPECIFICATIONS	
1.5 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS	 5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 ELECTRICAL ABSOLUTE RATINGS	
2.2.1 TFT LCD MODULE	
2.2.2 BACKLIGHT UNIT	7
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE	 7
3.2 BACKLIGHT UNIT	
4. BLOCK DIAGRAM	 12
4.1 TFT LCD MODULE	
4.2 BACKLIGHT UNIT	
5. INPUT TERMINAL PIN ASSIGNMENT	 13
5.1 TFT LCD MODULE	
5.2 BACKLIGHT UNIT	
5.3 COLOR DATA INPUT ASSIGNMENT	4.0
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS	 16
6.2 POWER ON/OFF SEQUENCE	
7. OPTICAL CHARACTERISTICS	 19
7.1 TEST CONDITIONS	. •
7.2 OPTICAL SPECIFICATIONS	
8. PACKAGING	 22
8.1 PACKING SPECIFICATIONS	
8.2 PACKING METHOD	
9. DEFINITION OF LABELS	 24
9.1 CMO MODULE LABEL	
10. RELIABILITY TEST	 25
11. PRECAUTIONS	 26
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	
11.2 SAFETY PRECAUTIONS	
11.3 SAFETY STANDARDS	
11.4 STORAGE	
11.5 OPERATION CONDITION GUIDE 11.6 OTHER	
12 MECHANICAL CHARACTERISTICS	 27

Preliminary

REVISION HISTORY

Version	Date	Section			ı	Descripti	on	
Ver 0.0 Ver 1.0	Dec,01,'09 Feb,04,'10		M215H3-LA1 Specifications was first issued。 Modify the MECHANICAL SPECIFICATIONS Change the module weight form 1970g to 2010g Modify the OPTICAL SPECIFICATIONS					
			Original Red Green Blue White	Rx+P Rx+P Gx+P Gy+P Bx+P By+P Wx+P Wx+P	Min. ₽ Txp. → 0.03₽	Typ. (0.636) (0.348) (0.327) (0.611) (0.154) (0.059) (0.3134) (0.3294)	Max.₽ Typ + 0.03₽	
			NEW: Red Green Blue White	Rx+ Ry+ Gx+ Gy+ Bx+ By+ Wx+ Wx+	Min. <i>₽</i> Typ → 0.03 <i>₽</i>	Typ.# (0.644) (0.338) (0.310) (0.619) (0.153) (0.062) (0.313# 0.329#	Max.₽ Typ + 0.03₽	
		8.1	Modify PACKA Change Box w	AGING:	24.89 K	g to 26.81	Kg (12 n	modules per box)

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The M215H3-LA1 model is a 21.5 inch wide TFT-LCD module with LED Backlight Unit and a 30-pin 2ch-LVDS interface. This module supports 1920 x 1080 Full HD (16:9 wide screen) mode and displays up to 16.7 millions colors. The converter module for the Backlight Unit is not built in.

1.2 FEATURES

- Super wide viewing angle
- High contrast ratio
- Fast response time
- Low power consumption
- FULL HD(1920 x 1080 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Lower power consumption
- RoHS compliance.

1.3 APPLICATION

- Workstation & desktop monitor
- Display terminals for AV application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal size	546.86 (21.53")	mm	
Active Area	476.64 x 268.11	mm	(1)
Bezel Opening Area	479.8 (H) x 271.3 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.248(H) x 0.248(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7 millions	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H), AG (Haze 25%)	-	-
Module Power Consumption	12.55	Watt	(2)

1.5 MECHANICAL SPECIFICATIONS

Ito	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	495.1	495.6	496.1	mm	
Module Size	Vertical(V)	291.7	292.2	292.7	mm	(1)
	Depth(D)	11.0	11.5	12.0	mm	
We	Weight		2010	2060	g	
I/F connector mounting		The mounting in				
pos	sition	the screen cente				

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Please refer to sec. 3.1 & 3.2 in this document for more information of power consumption

Preliminary

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Cumbal	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	٥C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	٥C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)
LCD Cell Life Time	L _{CELL}	50,000	-	Hrs	MTBF based

Relative Humidity (%RH)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90% RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The temperature of panel surface should be 0 °C Min. and 60 °C Max.
- Note (3) 50G,11 ms, half-sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 300 Hz, sweep rate 10 min / cycle, 30 min for X,Y,Z axis
- Note (5) Upon the Vibration and Shock tests, the fixture used to hold the module must be firm and rigid enough to prevent the module from twisting or bending by the fixture.

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itom	Symbol	Va	lue	Unit	Note	
Item	Syllibol	Min.	Max.	Offic		
Power Supply Voltage	Vcc	-0.3	+6	V	(1)	

2.2.2 BACK LIGHT UNIT

Item	Symbol	Value			Unit	Note	
Item	Symbol	Min.	Тур.	Max.	Ullit	Note	
LED Forward Current Per Input Pin	I _F	(0)	(40)	(50)	mA	(1), (2)	
LED Reverse Voltage Per Input Pin	V_R			(65)	V	Duty=100%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 (Refer to 3.2 and 3.3 for further Information).

Preliminary

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \, {}^{\circ}C$

Parameter		Symbol	Value				Note	
Faiaillet	CI	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-	
Ripple Voltage		V_{RP}	-		300	mV	Vp-p	
Power on Rush Current	Power on Rush Current		-		3	Α	(2)	
	White		-	0.51	0.61	Α	(3)a	
Power Supply Current	Black	Icc	-	1.05	1.26	Α	(3)b	
	Vertical Stripe		-	1.06	1.26	Α	(3)c	
Power consumption(without Backlight Unit)		Plcd	-	5.3	6.3	W	(4)	
LVDS differential input voltage		Vid	100	-	600	mV	(5)	
LVDS common input volta	ige	Vic	1	1.2	1.4	V		

Note (1) The module should be always operated within above ranges.

Note (2) Power on rush current measurement conditions:

Vcc rising time is 470µs

Preliminary

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4)The power consumption is specified at the pattern with the maximum current Note (5) VID waveform condition

Single-End

Preliminary

3.2 Vcc Power Dip Condition:

Dip condition: 4.0V: Vcc: 4.5V, Td: 20ms

Preliminary

3.3 BACKLIGHT UNIT

Ta = 25 ± 2 ℃

Parameter	Symbol		Value			Note
raiailletei	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Input Voltage Per Input Pin	V _{PIN}		(41.6)	(45.5)	V	(1), Duty=100%, I _{PIN} = 40mA
LED Light Bar Current Per Input Pin	I _{PIN}	0	(40)	(50)	mA	(1), (2) Duty=100%
LED Life Time	L _{LED}	(30000)			Hrs	(3)
Power Consumption	P _{BL}		(9.984)	(10.92)	W	(1) Duty=100%, I _{PIN} = 40mA

- Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:
- Note (2) $P_{BL} = I_{PIN} \times V_{PIN} \times (6)$ input pins , LED light bar circuit is (13)Series, (6)Parallel.
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at $Ta = 25 \pm 2$ and I= (20) mA (per chip) until the brightness becomes 50% of its original value.

Preliminary

3.4 LIGHTBAR Connector Pin Assignment

Connector: B-F,7083K-F12N-00L,ENTERY(恩得利),

Input Connector pin assignment:

(1) Input connector pin assignment: CN1

Input	connector CN1	
(vendor) ENTERY	(type) B-F,7083K-F12N-00L	Comments
Pin	Function	
1	NC	No connect
2	LED1	LED1 negative polarity
3	LED2	LED2 negative polarity
4	LED3	LED3 negative polarity
5	NC	No connect
6	VLED (41.6V)	Input voltage Power Supply + (41.6V.typ)
7	VLED (41.6V)	Input voltage Power Supply + (41.6V.typ)
8	NC	No connect
9	LED4	LED4 negative polarity
10	LED5	LED5 negative polarity
11	LED6	LED6 negative polarity
12	NC	No connect

Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Preliminary

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	NC	Not connection, this pin should be open.
27	NC	Not connection, this pin should be open.
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: 093G30-B2001A-M4(STARCONN) or MSCKT2407P30H,STM(信盛)

Note (2) Mating Wire Cable Connector Part No.: FI-X30H(JAE) or FI-X30HL(JAE)

Note (3) Mating FFC Cable Connector Part No.: B-F,7083K-F12N-00L,ENTERY(恩得利)

Note (4) The first pixel is odd.

Note (5) Input signal of even and odd clock should be the same timing.

5.2 LVDS DATA MAPPING TABLE

Doc No.: 400041888 Issued Date: Feb,04 2010 Model No.: M215H3-LA1

Preliminary

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Charmer O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel LU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E i	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDO CHAIIIIEI LZ	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Chariller E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

Preliminary

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal										
	Color				Re								G	reer							Blu				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3		B1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Orccii	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
2140	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

0'	11	0	NA" -	т	N 4 -	11.20	NI.t.
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	58.54	74.25	97.98	MHz	-
	Period	Tc	-	13.47	-	ns	
	Input cycle to cycle jitter	T _{rcl}	-	ı	200	ps	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	1	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(2)
	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LVDS Data	Setup Time	Tlvs	600	-	-	ps	(2)
LVD3 Data	Hold Time	Tlvh	600	-	-	ps	(3)
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Τv	1115	1125	1136	Th	-
Vertical Active Display Term	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	45	Tv-Tvd	Th	-
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	960	960	960	Tc	-
	Blank	Thb	Th-Thd	140	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Preliminary

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5	5< t1	10 msec
0	< t2	50 msec
0	< t3	50 msec
	t4	500 msec
	t5	450 msec
	t6	90 msec
5	t7	100 msec

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of Vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) t4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) CMO won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t7 spec".

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	(5)	V
Input Signal	According to typical value	alue in "3. ELECTRICAL	CHARACTERISTICS"
LED Light Bar Input Current	I	(40 ± 0.6)	mA_DC
Per Input Pin	I _{PIN}	(40 ± 0.0)	IIIADC
PWM Duty Ratio	D	100	%
LED Light Bar Test Converter		(CMO 27-D041745)	

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx Ry			(0.644)			
	Green	Gx			(0.310)		/p + cd/m² 2.2 ms 5.8 ms .42) Deg Deg.	
Color	Giccii	Gy		Тур –	(0.619)	Typ +		(4) (5)
Chromaticity (CIE 1931)	Blue	Bx	0 00 0 00	0.03	(0.153)	0.03		(1), (5)
(OIL 1001)	Dide	Ву	θ_x =0°, θ_Y =0° CS-2000T		(0.062)			
	\	Wx	C3-20001		0.313			
	White	Wy			0.329			
Center Lumina (Center of		L _C		200	250		cd/m ²	(4), (5)
Contras	t Ratio	CR		700	1000			(2), (6)
Respons	a Tima	T_R	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		1.3	2.2	ms	(3)
Respons	e mine	T _F	υ _χ =υ , υγ =υ		3.7	5.8	ms	(3)
White Va	ariation	δW	θ_x =0°, θ_Y =0° USB2000			(1.42)	-	(5), (6)
	Horizontal	θ_x +		150	170			
Minusia a Amala	Пописта	θ _x -	CR 10	150	170		Dog	(4) (5)
Viewing Angle	Vertical	θ _Y +	USB2000	140	160		Deg.	(1), (5)
	vertical	θ _Y -		140	160			
	Horizontal	θ_x +		160	178			(1), (5)
Viewing Angle	Tionzontai	θ _x -	CR 5	100	170		Dea	
Viewing Angle	Vertical	θ _Y +	USB2000	150	170		Dog.	(1), (3)
		θ_{Y} -						

Preliminary

Note (1) Definition of Viewing Angle $(\theta x, \theta y)$:

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

 $L_{C} = L (5)$

Preliminary

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for (30 minutes) to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for (30 minutes) in a windless room.

Note (6) Definition of White Variation (δ W): Measure the luminance of gray level 255 at 9 points δ W = Maximum [L (1) ~ L (9)] / Minimum [L (1) ~ L (9)]

Preliminary

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 12 LCD modules / 1 Box
- (2) Box dimensions: 563(L) X 390 (W) X 375 (H) mm
- (3) Weight: 26.81Kg (12 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

	T	
Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	·
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Conner, 3 Edge, 6 Face, 45.7cm (ISTA Standard)	Non Operation

Figure. 8-1 Packing method

Preliminary

For ocean shipping

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft Container)

Figure. 8-2 Packing method

For air transport

Air Transportation

Figure. 8-3 Packing method

Preliminary

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M215H3-LA1

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Х	CMO internal use	-
XX	CMO internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-L5H31-X-X-X-X-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
L5H31	Model number	M215H3-LA1=L53A1
Х	Revision code	ZBD, C1=A, C2=B, Non ZBD, C1=1, C2=2,
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	1~Z
XX	Module location	Tainan, Taiwan=TN; NB, China=NP; NH, China=NH
L	Module line #	1~Z
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

(e) UL Factory ID:

Region	Factory ID
TWCMO	GEMN
NBCMO	LEOO
NBCME	CANO
NHCMO	CAPG

Preliminary

10. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50 , 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50 , 50%RH , 240hours	
Low Temperature Operation (LTO)	Ta= 0 , 240hours	
High Temperature Storage (HTS)	Ta= 60 , 240hours	
Low Temperature Storage (LTS)	Ta= -20 , 240hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Half-sine Frequency: 10 - 300 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms Direction: ± X, ± Y, ± Z.(one time for each Axis)	
Thermal Shock Test (TST)	-20 /30min, 60 / 30min, 100 cycles	
On/Off Test	25 ,On/10sec , Off/10sec , 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω) Air Discharge: ± 15KV, 150pF(330Ω) Operation:10,000 ft / 24hours	
Altitude Test	Non-Operation:30,000 ft / 24hours	

Preliminary

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

11.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

11.4. Storage

- (1) Do not leave the module in high temperature, and high humidity for a long time.
 - It is highly recommended to store the module with temperature from 0 to 35
 - And relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

Preliminary

11.5. Operation condition guide

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15 Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude, display pattern or operation time etc...It is strongly recommended to contact CMO for application engineering advice. Otherwise, Its reliability and function may not be guaranteed.

11.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

12. MECHANICAL CHARACTERISTICS

[Refer to the next 2 pages]

