

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Přípravy na kroužek Mechatronika – KA6(A2d)

1. lekce – Seznámení s mikrokontroléry Atmel AVR

Co je mikrokontrolér?

Je to malý počítač vyrobený jako jeden celistvý chip formou integrovaného obvodu. Mikrokontrolér obsahuje součásti jako běžný počítač:

- vlastní procesor CPU
- paměť
- programovatelné vstupně/výstupní rozhraní

V případě mikrokontrolérů Atmel jsou obsaženy další součásti jako A/D převodník, několik typů pamětí apod.

Atmel AVR mikrokontroléry

Výrobce: Atmel (www.atmel.com)

Architektura: 8 a 32 bit RISC (harvardská architektura)

Provedení: PDIP, TQFP,MLF

provozní napětí: 2.7 V – 5.5 V, 4.5 V – 5.5 V **programování:** v jazyku C a v assembleru

Příklady provedení:

Provedení TQFP

Provedení MLF

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Rodina mikrokontrolérů Atmel AVR je rozdělena do několika skupin:

Rodina MCU	Architektura	Použití	Parametry
32-bit AVR UC3	32bit	Všeobecné použití	16 – 512 KB Flash 48 - 144 pinů takt až 66 MHz výkon 1.5 MIPS/MHz

Rodina MCU	Architektura	Použití	Parametry
AVR XMEGA	8bit	Všeobecné použití	16 – 384 KB Flash 32 - 100 pinů takt až 32 MHz výkon 1.0 MIPS/MHz

Rodina MCU	Architektura	Použití	Parametry
megaAVR	8bit	Všeobecné použití Osvětlení LCD	4 – 256 KB Flash 28 - 100 pinů takt až 20 MHz výkon 1.0 MIPS/MHz

Rodina MCU	Architektura	Použití	Parametry
tinyAVR	8bit	Všeobecné použití Pro DPS malých rozměrů	0.5 – 8 KB Flash 6 - 32 pinů takt až 20 MHz výkon 1.0 MIPS/MHz

K dispozici jsou dále různé typy AVR MCU pro specifické aplikace – řízení napájení (kontrola baterií), pro automobilovou techniku atd.

Všeobecné použití MCU AVR je pro řídící účely v průmyslu a různých zařízeních. Najdeme jej v domácích spotřebičích, automobilech, systémech dálkového ovládání, řízení vytápění, USB periferiích, budíkách, hodinách a spoustě dalších.

Základní stavba MCU AVR

Flash paměť – nevolatilní flash paměť (k uchování informací nepotřebuje napájení), zde jsou uloženy naše programy, které pro AVR vytváříme. Velikost Flash paměti většinou najdeme v samotném názvu MCU – ATmega32x, ATmega16x atd.

EEPROM paměť – paměť pro uložení dat (konfigurace apod.), opět nevyžaduje k uchování informací napájení. U většiny čipů AVR ji nelze přímo adresovat, musí se s ní pracovat jako s periferií, tj. nepřímou adresací.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

SRAM – dočasná paměť pro běh programu, statická RAM paměť, není třeba ji s každým cyklem obnovovat.

Mimo tinyAVR disponují ostatní chipy rozhraním pro připojení externí flash a eeprom paměti.

I/O porty

MCU tinyAVR a megaAVR disponují několika vstupně/výstupními porty, každý z nich je napojený na tři 8-bitové registry – DDRx, PORTx a PINx, x je identifikátor portu (A,B,C.....).

DDRx – data direction register – nastavuje příslušný port na vstup nebo na výstup

PORTx - výstupní registr – určuje výstupní hodnotu pinu nastaveného jako výstup, zapíná nebo vypíná pull-up rezistory u pinů nastavených na vstup.

PINx – vstupní registr – pro čtení úrovně signálu na pinu nastaveném jako vstup.

Analogový komparátor u některých modelů

A/D převodník

AVR obsahují **10bit nebo 12bit A/D převodníky** s 16ti kanálovým multiplexem.

Podpora řadičů CAN, USB, Ethernet, LCD a DMA.

Podpora kryptografie AES a DES.

Bootloader – MCU AVR mají vyhrazenou paměť pro zavaděč, krátký program, který na základě nějakých podnětů rozhodne, jak bude MCU dále pracovat – pustí li se hlavní program nebo nahraje software ze sítě přes PXE apod.

Rozhraní pro programování

ISP – in serial programming interface – programování pomocí sběrnice SPI, umožňuje programování MCU přímo v zapojeném obvodu bez toho, aniž bychom ho museli odpojit nebo odletovat.

PDI – vlastní rozhraní firmy Atmel pro debugování a programování chipů XMEGA.

HVSP – high voltage serial programming – záložní mód na malých AVR.

HVPP – high voltage paralel programming – v některých případech poslední možnost, jak napravit špatné nastavení fuses.

aWire – nové jednovodičové debugovací rozhraní pro 32bit MCU UC3.

Debugovací rozhraní:

debugWIRE – debugování přes jeden pin MCU, pro malé MCU, kde nemůžeme využít 4 piny pro JTAG.

Středočeský kraj

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

JTAG – Join Test Action Group – zpřístupňuje debugovací fungkce chipu, zatím co je v běhu uvnitř cílového systému. Zpřístupňuje paměť, registry, umí nastavovat breakpointy v kódu a umožňuje krokování programu.

Vypracoval: Radek Zvěřina. Použité zdroje: Wikipedia (obrázky), Atmel (www.atmel.com).