Olympiades Françaises de Mathématiques 2012-2013

Envoi Numéro 3 – Corrigé

Exercices Juniors

Exercice 1. On appelle diviseur propre d'un entier n un diviseur positif de n qui est différent de 1 et de n.

Existe-t-il un entier n dont le produit des diviseurs propres est égal à 2013?

Solution.

La décomposition en facteurs premiers de 2013 est $3 \times 11 \times 61$. Ainsi, si le produit des diviseurs stricts d'un entier n vaut 2013, cela implique que n est lui même divisible par 3, 11 et 61. Or, dans ce cas, il compte parmi ses diviseurs stricts au moins les nombres suivants :

dont le produit surpasse 2013 (il vaut $2013 \times 33 \times 671 = 44\,573\,859$). Ainsi, un tel entier n n'existe pas.

Exercice 2. Chaque nombre rationnel strictement positif est colorié soit en rouge, soit en noir, de telle sorte que :

- les nombres x et x + 1 sont de couleurs différentes ;
- les nombres x et $\frac{1}{x}$ sont de la même couleur ;
- le nombre 1 est colorié en rouge.

Quelle est la couleur de $\frac{2012}{2013}$?

(On ne demande pas de démontrer l'existence d'un tel coloriage.)

Solution.

On remarque que $\frac{2012}{2013}$ s'écrit :

$$\frac{2012}{2013} = \frac{1}{1 + \frac{1}{2012}}.$$

Ainsi, d'après les règles de l'énoncé, il a la couleur inverse de 2012. Or, ce dernier s'obtient en ajoutant 2011 fois 1 à 1; il a donc la couleur inverse de 1 (puisqu'on inverse 2011 fois la couleur), c'est-à-dire noir. Ainsi $\frac{2012}{2013}$ est rouge.

Exercice 3. La suite de Fibonacci est construite ainsi : chaque terme est la somme des deux précédents. Ses premiers termes valent :

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

Montrer que la suite de Fibonacci contient un multiple de 1000.

Solution.

Notons F_n le n-ième terme de la suite de Fibonacci ($F_1 = 1$, $F_2 = 1$, $F_3 = 2$, etc.) et notons u_n le reste de la division euclidienne de F_n par 1000 (u_n est donc le nombre formé par les trois derniers chiffres de F_n). Comme il n'y a qu'un nombre fini de couples (x, y) d'entiers compris entre 0 et 999 (il y en a exactement $1000^2 = 1\,000\,000$), il existe des entiers n et N tels que N > 0 et

$$u_n = u_{n+N}$$
 ; $u_{n+1} = u_{n+1+N}$. (1)

Or, u_{n-1} (resp. u_{n-1+N}) s'obtient à partir de u_n et u_{n+1} (resp. u_{n+N} et u_{n+1+N}) comme le reste de la division euclidienne de $u_{n+1}-u_n$ (resp. $u_{n+1+N}-u_{n+N}$) par 1000. Ainsi, des égalités (1), on déduit que $u_{n-1}=u_{n-1+N}$. En continuant ainsi, on obtient $u_{N+1}=u_1=1$ et $u_{N+2}=u_2=1$, d'où il résulte enfin $u_N=0$. L'entier F_N est donc multiple de 1000.

Exercice 4. Montrer que l'équation

$$x(x+2) = y(y+1)$$

n'a pas de solution en nombres entiers strictement positifs.

Solution.

Si le couple (x,y) est solution, on a x(x+1) < x(x+2) = y(y+1) et donc x < y. Mais de même, en supposant toujours (x,y) solution, on peut écrire (x+1)(x+2) > x(x+2) = y(y+1), d'où on déduit x+1 > y. Ainsi, une solution (x,y) hypothétique devrait donc vérifier x < y < x+1, ce qui ne peut se produire. On en déduit que l'équation proposée n'a pas de solution en nombres entiers strictement positifs.

Exercices Communs

Exercice 5. Soient n et m deux entiers strictement positifs. Montrer que $5^m + 5^n$ s'écrit comme une somme de deux carrés si et seulement si n et m ont même parité.

Solution.

Supposons pour commencer que n et m n'ont pas même parité. On étudie alors la quantité $5^n + 5^m$ modulo 8. Par récurrence, on démontre facilement que 5^k est congru à 1 (resp. 5) modulo 8 si k est pair (resp. impair). Ainsi, d'après notre hypothèse, on a toujours $5^n + 5^m \equiv 6 \pmod{8}$. Or, par ailleurs, un carré est toujours congru à 0, 1 ou 4 modulo 8. Comme il n'y a aucune manière d'écrire 6 comme somme de deux de ces trois nombres, on en déduit que $5^n + 5^m$ ne peut s'écrire comme somme de deux carrés.

Supposons maintenant que n et m ont même parité. Quitte à échanger n et m, on peut supposer en outre que $m \ge n$. Ainsi, il existe un entier k positif ou nul tel que m = n + 2k. On a alors $5^m + 5^n = 5^n(5^{2k} + 1)$. Comme, manifestement $5 = 2^2 + 1^2$ et $5^{2k} + 1$ s'écrivent comme sommes de deux carrés, il suffit pour conclure de montrer que, si x et y s'écrivent comme somme de deux carrés, alors il en va de même du produit xy. Ceci résulte directement de la formule :

$$(a^2 + b^2)(c^2 + d^2) = (ad - bc)^2 + (ac + bd)^2.$$

Exercice 6. Existe-t-il des nombres rationnels positifs ou nuls x, y et z tels que :

$$x^5 + 2y^5 + 5z^5 = 11.$$

Solution.

Nous allons montrer qu'il n'existe pas de tels rationnels x, y, z. On raisonne par l'absurde en supposant qu'il en existe. Soit d le plus petit dénominateur commun de x, y et z. On peut alors écrire $x = \frac{a}{d}$, $y = \frac{b}{d}$ et $z = \frac{c}{d}$ pour certains entiers a, b et c. L'équation que l'on cherche à résoudre devient alors :

$$a^5 + 2b^5 + 5c^5 = 11d^5$$

Étudions cette équation modulo 11. Une recherche exhaustive (ou l'utilisation du petit théorème de Fermat) montre qu'une puissance 5-ième est congrue à 0, 1 ou -1 modulo 11. On en déduit que la congruence $a^5 + 2b^5 + 5c^5 \equiv 0 \pmod{11}$ implique que a, b et c sont tous les trois multiples de 11. Ainsi, $a^5 + 2b^5 + 5c^5$ est divisible par 11^5 , d'où on déduit que d est lui aussi divisible par 11. Les fractions $\frac{a}{d}$, $\frac{b}{d}$ et $\frac{c}{d}$ peuvent donc, toutes les trois, être simplifiées par 11. Ceci contredit la minimalité de d et termine la démonstration.

Exercices Olympiques

Exercice 7. Prouver qu'il existe une unique manière de colorier chaque nombre rationnel strictement positif soit en rouge, soit en bleu, de sorte que :

- les nombres x et x + 1 sont de couleurs différentes ;
- les nombres x et $\frac{1}{x}$ sont de la même couleur;
- le nombre 1 est colorié en rouge.

Solution.

Montrons tout d'abord qu'un tel coloriage est nécessairement unique. Pour cela, nous allons démontrer par récurrence sur $\max(a,b)$ que la couleur de la fraction $\frac{a}{b}$ (supposée écrite sous forme irréductible) est entièrement déterminée. La conclusion est vraie lorsque $\max(a,b)=1$ puisque cela impose a=b=1 et que l'on sait, par hypothèse, que la couleur de 1 est rouge. Considérons maintenant une fraction irréductible $\frac{a}{b}$ et supposons que l'on ait déjà démontré que la couleur de toute fraction irréductible $\frac{a'}{b'}$ avec $\max(a',b')<\max(a,b)$ soit déterminée. Quitte à remplacer $\frac{a}{b}$ par son inverse $\frac{b}{a}$ (ce qui ne modifie ni $\max(a,b)$, ni la couleur de la fraction), on peut supposer que a>b. Par hypothèse, $\frac{a}{b}$ a la couleur inverse de $\frac{a}{b}-1=\frac{a-b}{b}$. De plus, $\max(a-b,b)<\max(a,b)=a$. Ainsi, la fraction $\frac{a-b}{b}$ relève de l'hypothèse de récurrence ; sa couleur est donc entièrement déterminée et, par suite, celle de $\frac{a}{b}$ l'est également.

L'existence se démontre de la même façon : en reprenant les arguments précédents, on construit le coloriage par récurrence sur $\max(a,b)$ en vérifiant que chaque identité entre couleurs est utilisée une et une seule fois lorsqu'on construit le coloriage avec cette méthode.

Remarque. Si α et b sont deux entiers premiers entre eux, notons $q_1(\alpha,b),\ldots,q_n(\alpha,b)$ la suite (finie) des quotients successifs obtenus lorsque l'on effectue l'algorithme d'Euclide à partir de α et b. On peut alors montrer que l'unique coloriage satisfaisant aux conditions de l'énoncé est celui qui attribue la couleur rouge (resp. bleue) à la fraction irréductible $\frac{\alpha}{b}$ lorsque $\sum_i q_i(\alpha,b)$ est impair (resp. pair).

Exercice 8. Trouver tous les entiers naturels k > 0 tels que l'équation en x et y :

$$x(x+k) = y(y+1)$$

ait une solution en entiers strictement positifs.

Solution.

L'équation de l'énoncé s'écrit encore $(x + \frac{k}{2})^2 = (y + \frac{1}{2})^2 + \frac{k^2 - 1}{4}$, soit, en factorisant :

$$\left(x - y + \frac{k-1}{2}\right) \cdot \left(x + y + \frac{k+1}{2}\right) = \frac{k^2 - 1}{4}.$$
 (2)

Distinguons deux cas selon la parité de k. Si k est impair, on écrit $k=2\alpha+1$ et l'équation précédente devient $(x-y+\alpha)(x+y+\alpha+1)=\alpha(\alpha+1)$. En écrivant que le premier facteur vaut 1 et le second $\alpha(\alpha+1)$, on obtient $x=\frac{\alpha(\alpha-1)}{2}$ et $y=x+(\alpha-1)=\frac{(\alpha-1)(\alpha+2)}{2}$. Étant donné que le produit de deux entiers consécutifs est toujours pair, les valeurs que l'on vient d'obtenir forment une solution dès que $\alpha>1$. Pour $\alpha=1$ (i.e. k=3), au contraire, il n'y a pas de solution, car l'égalité (x-y+1)(x+y+2)=2 ne peut être satisfaite étant donné que le deuxième facteur est toujours >2 lorsque x et y sont strictement positifs. Pour $\alpha=0$, enfin, on a k=1 et, clairement, tous les couples (x,y) conviennent.

On raisonne de manière analogue dans le cas où k est pair. On pose k=2a et l'équation (2) devient $(2x-2y+2a-1)(2x+2y+2a+1)=4a^2-1$. Comme précédemment, en demandant que le premier facteur vaille 1, on obtient un système en x et y dont les solutions sont x=a(a-1) et y=(a+1)(a-1). Cette solution est acceptable dès que a>1. Pour a=1, l'équation à résoudre devient (2x-2y+1)(2x+2y+3)=3 et elle n'a pas de solution avec x,y>0 étant donné que cette dernière condition implique que le deuxième facteur est >3.

En résumé, les entiers k convenables sont k = 1 et tous les entiers $k \ge 4$.

Exercice 9. Soit $p \ge 5$ un nombre premier. Montrer que 1 et 5 sont les seuls diviseurs positifs de $2^p + 3^p$ qui soient inférieurs ou égaux à p.

Solution.

La factorisation

$$2^{p} + 3^{p} = 5 \cdot \sum_{i=0}^{p-1} 2^{i} (-3)^{p-1-i}$$
(3)

montre que 5 est bien un diviseur de $2^p + 3^p$.

Soit à présent $d \in \{2, \dots, p\}$ un diviseur de $2^p + 3^p$. On souhaite démontrer que d = 5. On considère pour cela q un diviseur premier de d. Alors, manifestement, q est aussi un diviseur de $2^p + 3^p$ qui est $\leq p$. De plus, il est clair que l'on ne peut pas avoir q = 2. Ainsi q est impair et de la congruence $2^p + 3^p \equiv 0 \pmod{q}$, on déduit que $\alpha^p \equiv 1 \pmod{q}$ où α un entier est tel que $2\alpha \equiv -3 \pmod{q}$ (un tel entier existe bien car q est impair). Par ailleurs, par le petit théorème de Fermat, on sait également que $\alpha^q \equiv \alpha \pmod{q}$ et donc $\alpha^{q-1} \equiv 1 \pmod{q}$ (puisque α n'est pas un multiple de q). On en déduit que $\alpha^n \equiv 1 \pmod{q}$ avec n = PGCD(p, q - 1). Or, comme q < p et p est un premier, les entiers p et q - 1 sont nécessairement premiers entre eux. Autrement dit n = 1 et, par suite, $\alpha \equiv 1 \pmod{q}$. En revenant à la définition de α , on obtient $2 \equiv -3 \pmod{q}$, ce qui ne peut se produire que pour q = 5.

On a ainsi démontré que l'unique diviseur premier de d est 5. Il suffit donc pour conclure de démontrer que d n'est pas divisible par 25. Cela est évident si $p \le 25$. Supposant maintenant p > 25, nous allons démontrer que $2^p + 3^p$ n'est, lui-même, pas divisible par 25 (ce qui suffira à conclure). D'après l'équation (3), cela revient à prouver que $\sum_{i=0}^{p-1} 2^i (-3)^{p-1-i}$ n'est pas divisible par 5. Or, un calcul modulo 5 montre que cette somme est congrue modulo 5 à

$$(-3)^{p-1} \cdot \sum_{i=0}^{p-1} 1 = (-3)^{p-1} \cdot p.$$

Or, $(-3)^{p-1}$ est premier avec 5 et, comme p > 25 est un nombre premier, les entiers p et 5 sont premiers entre eux. On a ainsi bien démontré ce que l'on souhaitait.

Exercice 10. Soit $n \ge 5$ un entier. Soient a_1, \ldots, a_n des entiers dans $\{1, \ldots, 2n\}$ deux à deux distincts. Montrer qu'il existe des indices $i, j \in \{1, \ldots, n\}$ avec $i \ne j$ tels que

$$PPCM(a_i, a_j) \leq 6(E(\frac{n}{2}) + 1)$$

où E(x) désigne la partie entière du nombre x.

Solution.

Supposons, pour commencer, qu'il existe un indice i tel que $a_i \le n$. S'il existe j tel que $a_j = 2a_i$, on a alors

$$PPCM(a_i, a_j) = a_j \leq 2n \leq 6 \cdot \left(E(\frac{n}{2}) + 1 \right)$$

et on a trouvé un couple (i,j) convenable. Si, au contraire, l'entier $2\alpha_i$ n'apparaît pas parmi les α_j , définissons les entiers b_1,\ldots,b_n en posant $b_i=2\alpha_i$ et $b_j=\alpha_j$ pour $j\neq i$. Les b_j sont encore deux à deux distincts et compris entre 1 et 2n. De plus, on vérifie immédiatement que PPCM $(b_i,b_j)\geqslant PPCM(\alpha_i,\alpha_j)$. Ainsi, il suffit de démontrer la propriété de l'énoncé pour la suite des b_j .

En appliquant à nouveau le raisonnement précédent — éventuellement plusieurs fois — on en vient à supposer que tous les a_j sont strictement supérieurs à $\mathfrak n$. Autrement dit, l'ensemble des a_j n'est autre que $\{\mathfrak n+1,\mathfrak n+2,\ldots,2\mathfrak n\}$. Posons $k=E(\frac{\mathfrak n}{2})+1$. Comme on a supposé $\mathfrak n\geqslant 5$, il est facile de vérifier que l'un des a_j vaut 2k et un autre vaut 3k. On conclut en remarquant que le PPCM de ces deux nombres est égal à 6k.

Fin