Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Занятие 4. Свойства предела последовательности

І. теоремы Вейерштрасса и о сжатой переменной

II. вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

III. второй замечательный предел

Составила: Рванова А.С.

Редакторы: Лебедева А.Д., Правдин К.В.

В аудитории

І. Теоремы Вейерштрасса и о сжатой переменной

Задача 1. Доказать, что последовательность с общим членом $x_n = \frac{2n-1}{2n+1}$ – возрастающая.

Задача 2. Даны последовательности. Указать, какие из этих последовательностей ограничены и какие из них не ограничены.

a)
$$x_n = \frac{5n^2}{n^2+3}$$

a)
$$x_n = \frac{5n^2}{n^2 + 3}$$

6) $y_n = (-1)^n \frac{2n}{n+1} \sin n$

B)
$$z_n = n \cos \pi n$$

Задача 3. Доказать, что последовательность сходится и найти её предел.

$$x_1 = \frac{x_0}{a + x_0}$$
; $x_2 = \frac{x_1}{a + x_1}$; $x_3 = \frac{x_2}{a + x_2}$; ...; $x_n = \frac{x_{n-1}}{a + x_{n-1}}$; ... $(a > 1, x_0 > 0)$

Задача 4. Доказать, что следующие последовательности сходятся, и найти их пределы:

$$x_1=\sqrt{2}; \quad x_2=\sqrt{2+\sqrt{2}}; \quad x_3=\sqrt{2+\sqrt{2+\sqrt{2}}}; \dots; \quad x_n=\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}} \ (n \ \text{радикалов}); \ \dots$$

Задача 5. Найти пределы последовательностей с общими членами:

$$x_n = \frac{n}{\sqrt{n^2 + n}}; \quad z_n = \frac{n}{\sqrt{n^2 + 1}}; \quad y_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

II. Вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Вычислить:

Задача 6.
$$\lim_{n\to\infty} \frac{10n}{n^2+1}$$

Задача 7.
$$\lim_{n\to\infty} \frac{n^2-n}{n-\sqrt{n}}$$

Задача 8.
$$\lim_{n\to\infty} \frac{5\cdot 3^n}{3^n-2}$$

Задача 9.
$$\lim_{n\to\infty}(\sqrt{n^2+n}-n)$$

III. Второй замечательный предел

Задача 10.
$$\lim_{n\to\infty} \left(\frac{2n+1}{2n+3}\right)^{3n}$$

Задачи для практических занятий

Консультация

II. Вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Задача 11.
$$\lim_{n\to\infty} \frac{\arctan((-1)^n n)}{n^2+1}$$
.

Задача 12.
$$\lim_{n\to\infty} \frac{2+\frac{3}{n} \cdot 3\cdot \left(\frac{1}{3}\right)^n}{\left(\frac{2}{5}\right)^n - 3}.$$

Задача 13.
$$\lim_{n\to\infty} \frac{(-1)^n - \left(\frac{3}{4}\right)^n}{\frac{5}{n} - (-1)^n}$$
.

Задача 14.
$$\lim_{n\to\infty} \frac{n^2-4n}{3n^2+n+1}$$
.

Задача 15.
$$\lim_{n\to\infty} \frac{2n^2-4n-3}{3n^3-8n+5}$$

Задача 16.
$$\lim_{n\to\infty} \frac{n^2-5n+1}{3n+7}$$

Задача 17.
$$\lim_{n\to\infty} \frac{\sqrt{n^2+1}+\sqrt[3]{8n^3-n}}{n-\sqrt[4]{n^3+16}}$$
.

Задача 18.
$$\lim_{n\to\infty} \frac{3n^5-3^{n+2}+2^n}{n^3+3^n}$$
.

Задача 19.
$$\lim_{n\to\infty} \frac{(n+2)!+(n+1)!}{(n+3)!}$$
.

Задача 20.
$$\lim_{n\to\infty} \frac{\sqrt[n]{n^2}-3\sqrt[n]{n}+2}{\sqrt[n]{n}-1}$$
.

Задача 21.
$$\lim_{n\to\infty} (\sqrt{n^2+n} - \sqrt{n^2-n}).$$

III. Второй замечательный предел

Задача 22.
$$\lim_{n\to\infty} \left(\frac{2n+1}{4n-3}\right)^{2n+3}$$

Задача **23.**
$$\lim_{n\to\infty} \sqrt[n]{5^{n+2} \cdot n^3 + 9}$$

Задача 24.
$$\lim_{n\to\infty} \left(\frac{n^3+1}{n^3}\right)^{n^2+1}$$

Задача 25.
$$\lim_{n\to\infty} \left(\frac{n^2-n}{n^2+1}\right)^{n^2+n+1}$$

Самостоятельно

І. Теорема Вейерштрасса и о сжатой переменной

Задача 26. Доказать, что последовательность с общим членом $x_n = \frac{10^n}{n!}$ убывает при $n \ge 10$.

Задача 27. Доказать, что последовательность сходится:

$$x_n = \frac{1}{5+1} + \frac{1}{5^2+1} + \frac{1}{5^3+1} + \dots + \frac{1}{5^n+1}$$

Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

$$\left(\text{r. e. } x_1 = \frac{1}{5+1}; \ x_2 = \frac{1}{5+1} + \frac{1}{5^2+1}; \ x_3 = \frac{1}{5+1} + \frac{1}{5^2+1} + \frac{1}{5^3+1}; \ \dots \right)$$

Задача 28. Пользуясь теоремой о существовании предела монотонной ограниченной последовательности, доказать сходимость следующих последовательностей:

a)
$$x_n = \frac{n^2 - 1}{n^2}$$

a)
$$x_n = \frac{n^2 - 1}{n^2}$$

6) $x_n = 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$

Задача 29. С помощью теоремы о «зажатой» последовательности доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1 \ (a>0)$.

II. Вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Задача 30.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin(n!)}{n+2}$$

Задача 31.
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n})$$

Задача 32.
$$\lim_{n\to\infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$$

Задача 33.
$$\lim_{n\to\infty} \frac{(n+2)!+(n+1)!}{(n+2)!-(n+1)!}$$
.

Задача 34.
$$\lim_{n\to\infty} \left(\frac{1+2+3+\cdots+n}{n+2} - \frac{n}{2}\right)$$
.

Задача 35.
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}\right)$$
.

III. Второй замечательный предел

Задача 36.
$$\lim_{n\to\infty} \left(\frac{2^{n}+3}{2^{n}+1}\right)^{n}$$

Задача 37.
$$\lim_{n \to \infty} \left(\frac{n^2 + n}{n^2 + 2n + 2} \right)^n$$