Computational Physics Lecture 14 – Solving Boundary Value Problems

Pat Scott

Department of Physics, Imperial College

November 16, 2018

Slides available from https://bb.imperial.ac.uk/

Goals

The point of this lecture is to teach you to

- Properly identify boundary value problems
- Set them up as root-finding problems
- Solve them using the shooting method
- Identify which problems are most amenable to shooting, and which ones are not.

Outline

- Quick Recap Problem and Solution Classes
- Solution methods for BVPs
 - The shooting method
 - Shooting to an interior point

Outline

- Quick Recap Problem and Solution Classes
- Solution methods for BVPs
 - The shooting method
 - Shooting to an interior point

Setting up the problem

Any Nth order ordinary differential equation can be recast as a coupled set of N first order ODEs

$$y'(x) = y_1(x, y)$$

$$y'_1(x) = y_2(x, y, y_1)$$
...
$$y'_{N-2}(x) = y_{N-1}(x, y, y_1, y_2, ..., y_{N-2})$$

$$y'_{N-1}(x) = F(x, y, y_1, y_2, ..., y_{N-2}, y_{N-1})$$
(1)

Note that not every set of *N* first order ODEs can necessarily be written as an neat *Nth* order ODE

Setting up the problem

Most general problem is to solve any system of *N* first order ODEs

We can rewrite these as

$$\frac{\mathrm{d}y_i}{\mathrm{d}x}(x) = f_i(x, \vec{y}(x)) \tag{2}$$

where i = 0..N - 1 and each f_i may individually depend on the full vector $\vec{y} = (y_0, y_1, ...y_{N-1})$

Types of Boundary Conditions

- - Function and all derivatives are defined at some x_s
 - All that remains is to evolve the system forwards and/or backwards from x_s to get $\vec{y}(x)$ for all x of interest

These are Initial Value Problems – covered two lectures ago

Types of Boundary Conditions

- ② Some components of \vec{y} may be specified at one x_s , others at one (or more) other value(s) of x
 - Some components may not be specified anywhere
 - Some may be specified at multiple values of x
 - In general we just require that there are N unique constraints

These are **Boundary Value Problems**

Types of Boundary Conditions

- Some other more complicated auxiliary condition must be satisfied
 - some combination of values might be fixed at one boundary, e.g.

$$y_1(0) + y_2^3(0) = A$$

• or a combination of values at different places, e.g.

$$y_1(2) + 5y_2(10) = B$$

• or some non-local condition might exist, e.g.

$$\max[y_1(x)] = C$$

These are also examples of **Boundary Value Problems** – today's topic.

Outline

- Quick Recap Problem and Solution Classes
- Solution methods for BVPs
 - The shooting method
 - Shooting to an interior point

Outline

- Quick Recap Problem and Solution Classes
- Solution methods for BVPs
 - The shooting method
 - Shooting to an interior point

- You have *N* differential equations, with *N*-dimensional solution vector $\vec{y}(x)$.
- You have N constraints on \vec{y} .
- Those constraints need to be applied at more than one value of x.

- You have *N* differential equations, with *N*-dimensional solution vector $\vec{y}(x)$. \odot
- You have N constraints on \vec{y} .
- Those constraints need to be applied at more than one value of x.

- You have *N* differential equations, with *N*-dimensional solution vector $\vec{y}(x)$. \odot
- You have *N* constraints on \vec{y} . ©
- Those constraints need to be applied at more than one value of x.

- You have *N* differential equations, with *N*-dimensional solution vector $\vec{y}(x)$. \odot
- You have *N* constraints on \vec{y} .
- Those constraints need to be applied at more than one value of x.☺

Solution

- Choose the x_s where the *most* constraints (n_1 of them) are defined
- 2 Apply them at x_s
- **3** Guess the remaining $n_2 \equiv N n_1$ components of $\vec{y}(x_s)$
- Propagate the system from x_s to other x_o at which remaining constraints are defined
- **6** Compare the propagated $\vec{y}(x_0)$ to the n_2 other constraints
- If (when) they don't agree, repeat the process with different guesses

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- ② Guess at $y'(x_s)$

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- Set $y(x_s)$
- 2 Guess at $y'(x_s)$
- Solve the ODEs using IVP techniques (e.g. RK45)

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- Set $y(x_s)$
- 2 Guess at $y'(x_s)$
- Solve the ODEs using IVP techniques (e.g. RK45)
- Oompare the result at $x = x_0$ to the target $y(x_0)$

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- Set $y(x_s)$
- ② Guess at $y'(x_s)$
- Solve the ODEs using IVP techniques (e.g. RK45)
- Ompare the result at $x = x_0$ to the target $y(x_0)$
- Make another guess

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- Set $y(x_s)$
- ② Guess at $y'(x_s)$
- Solve the ODEs using IVP techniques (e.g. RK45)
- Oompare the result at $x = x_0$ to the target $y(x_0)$
- Make another guess
- If your results at x = x_o bracket the known value, start zooming in

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- Set $y(x_s)$
- ② Guess at $y'(x_s)$
- Solve the ODEs using IVP techniques (e.g. RK45)
- Oompare the result at $x = x_0$ to the target $y(x_0)$
- Make another guess
- If your results at x = x_o bracket the known value, start zooming in

- $y_1(x) \equiv y(x)$ and $y_2(x) \equiv y'(x)$
- We know $y(x_s)$ and $y(x_o)$ but not $y'(x_s)$ nor $y'(x_o)$
- Set $y(x_s)$
- 2 Guess at $y'(x_s)$
- Solve the ODEs using IVP techniques (e.g. RK45)
- Oompare the result at $x = x_0$ to the target $y(x_0)$
- Make another guess
- If your results at x = x_o bracket the known value, start zooming in

What? Bracketing? I know what this is...

BVPs are essentially IVPs wrapped in a root-finding problem

- To solve the IVP, you need to specify an *N*-dimensional $\vec{y}(x_s)$
- You know n₁ of these components from your BCs at x_s
- \implies you have $n_2 = N n_1$ unknowns to find
- You have n₂ equations to solve for these n₂ unknowns
 these just come from the n₂ other BCs at x₀
- At the simplest level, these equations can be just

$$\vec{F} \equiv \begin{bmatrix} \hat{y}_{n_{1}}(x_{o}) \\ \vdots \\ \hat{y}_{N-2}(x_{o}) \\ \hat{y}_{N-1}(x_{o}) \end{bmatrix} - \begin{bmatrix} y_{n_{1}}(x_{o}) \\ \vdots \\ y_{N-2}(x_{o}) \\ y_{N-1}(x_{o}) \end{bmatrix} = \vec{0},$$
 (3)

where \hat{y}_i are the solutions to the IVP at $x = x_o$ and y_i are the target values (i.e. the BCs).

Outline

- Quick Recap Problem and Solution Classes
- Solution methods for BVPs
 - The shooting method
 - Shooting to an interior point

Shoot first, ask questions later...

Shooting may fail due to (or cause?*) interior pathologies

- Bad guesses for $\vec{y}(x_s)$ might cause \vec{y} to hit a singular point between x_s and x_o
- Your numerical approximations around $x = x_0$ may only be stable for a small range of y about the known BC value
 - → it is safe to integrate out of the BC, but not into it

Or, you may just have multiple x_o

• i.e. your BCs are defined at \geq 3 different x values: x_s, x_{o1}, x_{o2} , etc.

^{*}yes, that is a joke. hah.

- integrate from both boundaries
- try to match solutions in the middle somewhere

- integrate from both boundaries
- try to match solutions in the middle somewhere

• Set n_1 BCs at x_s , n_2 BCs at x_o

- integrate from both boundaries
- try to match solutions in the middle somewhere
- Set n_1 BCs at x_s , n_2 BCs at x_o
- 2 Choose n_2 free parameters at x_s , n_1 at x_0

- integrate from both boundaries
- try to match solutions in the middle somewhere
- Set n_1 BCs at x_s , n_2 BCs at x_o
- Ohoose n_2 free parameters at x_s , n_1 at x_0
- Evolve ODEs both ways using IVP techniques (e.g. RK45)

- integrate from both boundaries
- try to match solutions in the middle somewhere
- Set n_1 BCs at x_s , n_2 BCs at x_o
- Ohoose n_2 free parameters at x_s , n_1 at x_0
- Evolve ODEs both ways using IVP techniques (e.g. RK45)
- Ompare the results at $x = x_{interior}$

- integrate from both boundaries
- try to match solutions in the middle somewhere
- Set n_1 BCs at x_s , n_2 BCs at x_o
- Ohoose n_2 free parameters at x_s , n_1 at x_0
- Evolve ODEs both ways using IVP techniques (e.g. RK45)
- Occupance the results at $x = x_{interior}$
- Make some more guesses

- integrate from both boundaries
- try to match solutions in the middle somewhere
- Set n_1 BCs at x_s , n_2 BCs at x_o
- Choose n₂ free parameters at x_s, n₁ at x_o
- Evolve ODEs both ways using IVP techniques (e.g. RK45)
- Oompare the results at $x = x_{interior}$
- Make some more guesses
- 6 Keep guessing until whole \vec{y} agrees at $x = x_{interior}$

Notice that in this example we must

choose 2 derivatives:

$$y'(x_s)$$
 and $y'(x_o)$

• match the result in 2 quantities at the interior point:

$$y(x_{\text{interior}})$$
 and $y'(x_{\text{interior}})$

Notice that in this example we must

choose 2 derivatives:

$$y'(x_s)$$
 and $y'(x_o)$

• match the result in 2 quantities at the interior point:

$$y(x_{\text{interior}})$$
 and $y'(x_{\text{interior}})$

Actually an N-dimensional root-finding problem (instead of n_2 -dimensional)

Notice that in this example we must

choose 2 derivatives:

$$y'(x_s)$$
 and $y'(x_o)$

match the result in 2 quantities at the interior point:

$$y(x_{\text{interior}})$$
 and $y'(x_{\text{interior}})$

Actually an N-dimensional root-finding problem (instead of n_2 -dimensional)

⇒ often much harder than shooting boundary-to-boundary

So...

...this means solving an awful lot of IVPs.

And having to do multi-dimensional root-finding. . .

⇒ not usually just a simple afternoon's programming.

But – reasonably doable for many not-too-complicated problems.

Sometimes it totally fails

- Surface traversed by the root-finder is too messy
- or the appropriate starting values can't be located
- ⇒ roots never get found

At that stage it is time to look further afield – relaxation and matrix methods are usually the next port of call.

(Stellar evolution is a classic example.)

Housekeeping

- Tuesday (last examinable lecture): PDEs
- Feedback: what do you want to see in the revision lecture?