

Infinite Series

Exercise Set 9.1

1. (a) $\frac{1}{3^{n-1}}$ (b) $\frac{(-1)^{n-1}}{3^{n-1}}$ (c) $\frac{2n-1}{2n}$ (d) $\frac{n^2}{\pi^{1/(n+1)}}$
2. (a) $(-r)^{n-1}; (-r)^n$ (b) $-(-r)^n; (-1)^n r^{n+1}$
3. (a) $2, 0, 2, 0$ (b) $1, -1, 1, -1$ (c) $2(1 + (-1)^n); 2 + 2 \cos n\pi$
4. (a) $(2n)!$ (b) $(2n-1)!$
5. (a) No; $f(n)$ oscillates between ± 1 and 0. (b) $-1, +1, -1, +1, -1$ (c) No, it oscillates between $+1$ and -1 .
6. If n is an integer then $f(2n+1) = 0$.
- (a) $0, 0, 0, 0, 0$ (b) $b_n = 0$ for all n , so the sequence converges to 0. (c) No, it oscillates between ± 1 and 0.
7. $1/3, 2/4, 3/5, 4/6, 5/7, \dots$; $\lim_{n \rightarrow +\infty} \frac{n}{n+2} = 1$, converges.
8. $1/3, 4/5, 9/7, 16/9, 25/11, \dots$; $\lim_{n \rightarrow +\infty} \frac{n^2}{2n+1} = +\infty$, diverges.
9. $2, 2, 2, 2, 2, \dots$; $\lim_{n \rightarrow +\infty} 2 = 2$, converges.
10. $\ln 1, \ln \frac{1}{2}, \ln \frac{1}{3}, \ln \frac{1}{4}, \ln \frac{1}{5}, \dots$; $\lim_{n \rightarrow +\infty} \ln(1/n) = -\infty$, diverges.
11. $\frac{\ln 1}{1}, \frac{\ln 2}{2}, \frac{\ln 3}{3}, \frac{\ln 4}{4}, \frac{\ln 5}{5}, \dots$; $\lim_{n \rightarrow +\infty} \frac{\ln n}{n} = \lim_{n \rightarrow +\infty} \frac{1}{n} = 0$ (apply L'Hôpital's Rule to $\frac{\ln x}{x}$), converges.
12. $\sin \pi, 2 \sin(\pi/2), 3 \sin(\pi/3), 4 \sin(\pi/4), 5 \sin(\pi/5), \dots$; $\lim_{n \rightarrow +\infty} n \sin(\pi/n) = \lim_{n \rightarrow +\infty} \frac{\sin(\pi/n)}{1/n}$; but using L'Hospital's rule, $\lim_{x \rightarrow +\infty} \frac{\sin(\pi/x)}{1/x} = \lim_{x \rightarrow +\infty} \frac{(-\pi/x^2) \cos(\pi/x)}{-1/x^2} = \pi$, so the sequence also converges to π .
13. $0, 2, 0, 2, 0, \dots$; diverges.
14. $1, -1/4, 1/9, -1/16, 1/25, \dots$; $\lim_{n \rightarrow +\infty} \frac{(-1)^{n+1}}{n^2} = 0$, converges.
15. $-1, 16/9, -54/28, 128/65, -250/126, \dots$; diverges because odd-numbered terms approach -2 , even-numbered terms approach 2.

16. $1/2, 2/4, 3/8, 4/16, 5/32, \dots$; using L'Hospital's rule, $\lim_{x \rightarrow +\infty} \frac{x}{2^x} = \lim_{x \rightarrow +\infty} \frac{1}{2^x \ln 2} = 0$, so the sequence also converges to 0.
17. $6/2, 12/8, 20/18, 30/32, 42/50, \dots$; $\lim_{n \rightarrow +\infty} \frac{1}{2}(1+1/n)(1+2/n) = 1/2$, converges.
18. $\pi/4, \pi^2/4^2, \pi^3/4^3, \pi^4/4^4, \pi^5/4^5, \dots$; $\lim_{n \rightarrow +\infty} (\pi/4)^n = 0$, converges.
19. $e^{-1}, 4e^{-2}, 9e^{-3}, 16e^{-4}, 25e^{-5}, \dots$; using L'Hospital's rule, $\lim_{x \rightarrow +\infty} x^2 e^{-x} = \lim_{x \rightarrow +\infty} \frac{x^2}{e^x} = \lim_{x \rightarrow +\infty} \frac{2x}{e^x} = \lim_{x \rightarrow +\infty} \frac{2}{e^x} = 0$, so $\lim_{n \rightarrow +\infty} n^2 e^{-n} = 0$, converges.
20. $1, \sqrt{10}-2, \sqrt{18}-3, \sqrt{28}-4, \sqrt{40}-5, \dots$; $\lim_{n \rightarrow +\infty} (\sqrt{n^2+3n}-n) = \lim_{n \rightarrow +\infty} \frac{3n}{\sqrt{n^2+3n}+n} = \lim_{n \rightarrow +\infty} \frac{3}{\sqrt{1+3/n}+1} = \frac{3}{2}$, converges.
21. $2, (5/3)^2, (6/4)^3, (7/5)^4, (8/6)^5, \dots$; let $y = \left[\frac{x+3}{x+1} \right]^x$, converges because $\lim_{x \rightarrow +\infty} \ln y = \lim_{x \rightarrow +\infty} \frac{\ln(x+3)}{1/x} = \lim_{x \rightarrow +\infty} \frac{2x}{(x+1)(x+3)} = 2$, so $\lim_{n \rightarrow +\infty} \left[\frac{n+3}{n+1} \right]^n = e^2$.
22. $-1, 0, (1/3)^3, (2/4)^4, (3/5)^5, \dots$; let $y = (1-2/x)^x$, converges because $\lim_{x \rightarrow +\infty} \ln y = \lim_{x \rightarrow +\infty} \frac{\ln(1-2/x)}{1/x} = \lim_{x \rightarrow +\infty} \frac{-2}{1-2/x} = -2$, $\lim_{n \rightarrow +\infty} (1-2/n)^n = \lim_{x \rightarrow +\infty} y = e^{-2}$.
23. $\left\{ \frac{2n-1}{2n} \right\}_{n=1}^{+\infty}$; $\lim_{n \rightarrow +\infty} \frac{2n-1}{2n} = 1$, converges.
24. $\left\{ \frac{n-1}{n^2} \right\}_{n=1}^{+\infty}$; $\lim_{n \rightarrow +\infty} \frac{n-1}{n^2} = 0$, converges.
25. $\left\{ (-1)^{n-1} \frac{1}{3^n} \right\}_{n=1}^{+\infty}$; $\lim_{n \rightarrow +\infty} \frac{(-1)^{n-1}}{3^n} = 0$, converges.
26. $\{(-1)^n n\}_{n=1}^{+\infty}$; diverges because odd-numbered terms tend toward $-\infty$, even-numbered terms tend toward $+\infty$.

27. $\left\{(-1)^{n+1} \left(\frac{1}{n} - \frac{1}{n+1}\right)\right\}_{n=1}^{+\infty}$; the sequence converges to 0.

28. $\{3/2^{n-1}\}_{n=1}^{+\infty}$; $\lim_{n \rightarrow +\infty} 3/2^{n-1} = 0$, converges.

29. $\{\sqrt{n+1} - \sqrt{n+2}\}_{n=1}^{+\infty}$; converges because $\lim_{n \rightarrow +\infty} (\sqrt{n+1} - \sqrt{n+2}) = \lim_{n \rightarrow +\infty} \frac{(n+1) - (n+2)}{\sqrt{n+1} + \sqrt{n+2}} = \lim_{n \rightarrow +\infty} \frac{-1}{\sqrt{n+1} + \sqrt{n+2}} = 0$.

30. $\{(-1)^{n+1}/3^{n+4}\}_{n=1}^{+\infty}$; $\lim_{n \rightarrow +\infty} (-1)^{n+1}/3^{n+4} = 0$, converges.

31. True; a function whose domain is a set of integers.

Exercise Set 9.1

439

32. False, e.g. $a_n = 1 - n, b_n = n - 1$.

33. False, e.g. $a_n = (-1)^n$.

34. True.

35. Let $a_n = 0, b_n = \frac{\sin^2 n}{n}, c_n = \frac{1}{n}$; then $a_n \leq b_n \leq c_n, \lim_{n \rightarrow +\infty} a_n = \lim_{n \rightarrow +\infty} c_n = 0$, so $\lim_{n \rightarrow +\infty} b_n = 0$.

36. Let $a_n = 0, b_n = \left(\frac{1+n}{2n}\right)^n, c_n = \left(\frac{3}{4}\right)^n$; then (for $n \geq 2$), $a_n \leq b_n \leq \left(\frac{n/2+n}{2n}\right)^n = c_n$, $\lim_{n \rightarrow +\infty} a_n = \lim_{n \rightarrow +\infty} c_n = 0$, so $\lim_{n \rightarrow +\infty} b_n = 0$.

37. $a_n = \begin{cases} +1 & k \text{ even} \\ -1 & k \text{ odd} \end{cases}$ oscillates; there is no limit point which attracts all of the a_n . $b_n = \cos n$; the terms lie all over the interval $[-1, 1]$ without any limit.

38. (a) No, because given $N > 0$, all values of $f(x)$ are greater than N provided x is close enough to zero. But certainly the terms $1/n$ will be arbitrarily close to zero, and when so then $f(1/n) > N$, so $f(1/n)$ cannot converge.

(b) $f(x) = \sin(\pi/x)$. Then $f = 0$ when $x = 1/n$ and $f \neq 0$ otherwise; indeed, the values of f are located all over the interval $[-1, 1]$.

39. (a) 1, 2, 1, 4, 1, 6 (b) $a_n = \begin{cases} n, & n \text{ odd} \\ 1/2^n, & n \text{ even} \end{cases}$ (c) $a_n = \begin{cases} 1/n, & n \text{ odd} \\ 1/(n+1), & n \text{ even} \end{cases}$

(d) In part (a) the sequence diverges, since the even terms diverge to $+\infty$ and the odd terms equal 1; in part (b) the sequence diverges, since the odd terms diverge to $+\infty$ and the even terms tend to zero; in part (c) $\lim_{n \rightarrow +\infty} a_n = 0$.

40. The even terms are zero, so the odd terms must converge to zero, and this is true if and only if $\lim_{n \rightarrow +\infty} b^n = 0$, or $0 < b < 1$ (b is required to be positive).

41. $\lim_{n \rightarrow +\infty} x_{n+1} = \frac{1}{2} \lim_{n \rightarrow +\infty} \left(x_n + \frac{a}{x_n} \right)$ or $L = \frac{1}{2} \left(L + \frac{a}{L} \right), 2L^2 - L^2 - a = 0, L = \sqrt{a}$ (we reject $-\sqrt{a}$ because $x_n > 0$, thus $L \geq 0$).

42. (a) $a_{n+1} = \sqrt{6 + a_n}$.

(b) $\lim_{n \rightarrow +\infty} a_{n+1} = \lim_{n \rightarrow +\infty} \sqrt{6 + a_n}, L = \sqrt{6 + L}, L^2 - L - 6 = 0, (L-3)(L+2) = 0, L = -2$ (reject, because the terms in the sequence are positive) or $L = 3; \lim_{n \rightarrow +\infty} a_n = 3$.

43. (a) $a_1 = (0.5)^2, a_2 = a_1^2 = (0.5)^4, \dots, a_n = (0.5)^{2^n}$.

(c) $\lim_{n \rightarrow +\infty} a_n = \lim_{n \rightarrow +\infty} e^{2^n \ln(0.5)} = 0$, since $\ln(0.5) < 0$.

(d) Replace 0.5 in part (a) with a_0 ; then the sequence converges for $-1 \leq a_0 \leq 1$, because if $a_0 = \pm 1$, then $a_n = 1$ for $n \geq 1$; if $a_0 = 0$ then $a_n = 0$ for $n \geq 1$; and if $0 < |a_0| < 1$ then $a_1 = a_0^2 > 0$ and $\lim_{n \rightarrow +\infty} a_n = \lim_{n \rightarrow +\infty} e^{2^{n-1} \ln a_1} = 0$ since $0 < a_1 < 1$. This same argument proves divergence to $+\infty$ for $|a| > 1$ since then $\ln a_1 > 0$.

44. $f(0.2) = 0.4, f(0.4) = 0.8, f(0.8) = 0.6, f(0.6) = 0.2$ and then the cycle repeats, so the sequence does not converge.

440

Chapter 9

45. (a)

(b) Let $y = (2^x + 3^x)^{1/x}$, $\lim_{x \rightarrow +\infty} \ln y = \lim_{x \rightarrow +\infty} \frac{\ln(2^x + 3^x)}{x} = \lim_{x \rightarrow +\infty} \frac{2^x \ln 2 + 3^x \ln 3}{2^x + 3^x} = \lim_{x \rightarrow +\infty} \frac{(2/3)^x \ln 2 + \ln 3}{(2/3)^x + 1} = \ln 3$, so $\lim_{x \rightarrow +\infty} (2^x + 3^x)^{1/x} = e^{\ln 3} = 3$. Alternate proof: $3 = (3^x)^{1/x} < (2^x + 3^x)^{1/x} < (2 \cdot 3^x)^{1/x} = 3 \cdot 2^{1/x}$. Then

45. (a)

(b) Let $y = (2^x + 3^x)^{1/x}$, $\lim_{x \rightarrow +\infty} \ln y = \lim_{x \rightarrow +\infty} \frac{\ln(2^x + 3^x)}{x} = \lim_{x \rightarrow +\infty} \frac{2^x \ln 2 + 3^x \ln 3}{2^x + 3^x} = \lim_{x \rightarrow +\infty} \frac{(2/3)^x \ln 2 + \ln 3}{(2/3)^x + 1} = \ln 3$, so $\lim_{n \rightarrow +\infty} (2^n + 3^n)^{1/n} = e^{\ln 3} = 3$. Alternate proof: $3 = (3^n)^{1/n} < (2^n + 3^n)^{1/n} < (2 \cdot 3^n)^{1/n} = 3 \cdot 2^{1/n}$. Then apply the Squeezing Theorem.

46. Let $f(x) = 1/(1+x)$, $0 \leq x \leq 1$. Take $\Delta x_k = 1/n$ and $x_k^* = k/n$ then $a_n = \sum_{k=1}^n \frac{1}{1+(k/n)}(1/n) = \sum_{k=1}^n \frac{1}{1+x_k^*} \Delta x_k$
so $\lim_{n \rightarrow +\infty} a_n = \int_0^1 \frac{1}{1+x} dx = \ln(1+x) \Big|_0^1 = \ln 2$.

47. (a) If $n \geq 1$, then $a_{n+2} = a_{n+1} + a_n$, so $\frac{a_{n+2}}{a_{n+1}} = 1 + \frac{a_n}{a_{n+1}}$.

(c) With $L = \lim_{n \rightarrow +\infty} (a_{n+2}/a_{n+1}) = \lim_{n \rightarrow +\infty} (a_{n+1}/a_n)$, $L = 1 + 1/L$, $L^2 - L - 1 = 0$, $L = (1 \pm \sqrt{5})/2$, so $L = (1 + \sqrt{5})/2$ because the limit cannot be negative.

48. $\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon$ if $n > 1/\epsilon$;

(a) $1/\epsilon = 1/0.5 = 2$, $N = 3$. (b) $1/\epsilon = 1/0.1 = 10$, $N = 11$. (c) $1/\epsilon = 1/0.001 = 1000$, $N = 1001$.

49. $\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon$ if $n+1 > 1/\epsilon$, $n > 1/\epsilon - 1$;

(a) $1/\epsilon - 1 = 1/0.25 - 1 = 3$, $N = 4$. (b) $1/\epsilon - 1 = 1/0.1 - 1 = 9$, $N = 10$. (c) $1/\epsilon - 1 = 1/0.001 - 1 = 999$, $N = 1000$.

50. (a) $\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon$ if $n > 1/\epsilon$, choose any $N > 1/\epsilon$.

(b) $\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon$ if $n > 1/\epsilon - 1$, choose any $N > 1/\epsilon - 1$.

Exercise Set 9.2

1. $a_{n+1} - a_n = \frac{1}{n+1} - \frac{1}{n} = -\frac{1}{n(n+1)} < 0$ for $n \geq 1$, so strictly decreasing.

2. $a_{n+1} - a_n = \left(1 - \frac{1}{n+1}\right) - \left(1 - \frac{1}{n}\right) = \frac{1}{n(n+1)} > 0$ for $n \geq 1$, so strictly increasing.

3. $a_{n+1} - a_n = \frac{n+1}{2n+3} - \frac{n}{2n+1} = \frac{1}{(2n+1)(2n+3)} > 0$ for $n \geq 1$, so strictly increasing.

4. $a_{n+1} - a_n = \frac{n+1}{4n+3} - \frac{n}{4n-1} = -\frac{1}{(4n-1)(4n+3)} < 0$ for $n \geq 1$, so strictly decreasing.

Exercise Set 9.2

441

5. $a_{n+1} - a_n = (n+1 - 2^{n+1}) - (n - 2^n) = 1 - 2^n < 0$ for $n \geq 1$, so strictly decreasing.

6. $a_{n+1} - a_n = [(n+1) - (n+1)^2] - (n - n^2) = -2n < 0$ for $n \geq 1$, so strictly decreasing.

7. $\frac{a_{n+1}}{a_n} = \frac{(n+1)/(2n+3)}{n/(2n+1)} = \frac{(n+1)(2n+1)}{n(2n+3)} = \frac{2n^2+3n+1}{2n^2+3n} > 1$ for $n \geq 1$, so strictly increasing.

8. $\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{1+2^{n+1}} \cdot \frac{1+2^n}{2^n} = \frac{2+2^{n+1}}{1+2^{n+1}} = 1 + \frac{1}{1+2^{n+1}} > 1$ for $n \geq 1$, so strictly increasing.

9. $\frac{a_{n+1}}{a_n} = \frac{(n+1)e^{-(n+1)}}{ne^{-n}} = (1+1/n)e^{-1} < 1$ for $n \geq 1$, so strictly decreasing.

10. $\frac{a_{n+1}}{a_n} = \frac{10^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{10^n} = \frac{10}{(2n+2)(2n+1)} < 1$ for $n \geq 1$, so strictly decreasing.

11. $\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = (1+1/n)^n > 1$ for $n \geq 1$, so strictly increasing.

12. $\frac{a_{n+1}}{a_n} = \frac{5^{n+1}}{2^{(n+1)^2}} \cdot \frac{2^{n^2}}{5^n} = \frac{5}{2^{2n+1}} < 1$ for $n \geq 1$, so strictly decreasing.

13. True by definition.

14. False; either $a_{n+1} \leq a_n$ always or else $a_{n+1} \geq a_n$ always.

15. False, e.g. $a_n = (-1)^n$.

16. False; such a sequence could decrease until a_{300} , e.g.

17. $f(x) = x/(2x+1)$, $f'(x) = 1/(2x+1)^2 > 0$ for $x \geq 1$, so strictly increasing.
18. $f(x) = \frac{\ln(x+2)}{x+2}$, $f'(x) = \frac{1-\ln(x+2)}{(x+2)^2} < 0$ for $x \geq 1$, so strictly decreasing.
19. $f(x) = \tan^{-1} x$, $f'(x) = 1/(1+x^2) > 0$ for $x \geq 1$, so strictly increasing.
20. $f(x) = xe^{-2x}$, $f'(x) = (1-2x)e^{-2x} < 0$ for $x \geq 1$, so strictly decreasing.
21. $f(x) = 2x^3 - 7x$, $f'(x) = 4x - 7 > 0$ for $x \geq 2$, so eventually strictly increasing.
22. $f(x) = \frac{x}{x^2+10}$, $f'(x) = \frac{10-x^2}{(x^2+10)^2} < 0$ for $x \geq 4$, so eventually strictly decreasing.
23. $\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!} = \frac{n+1}{3} > 1$ for $n \geq 3$, so eventually strictly increasing.
24. $f(x) = x^5 e^{-x}$, $f'(x) = x^4(5-x)e^{-x} < 0$ for $x \geq 6$, so eventually strictly decreasing.
25. Yes: a monotone sequence is increasing or decreasing; if it is increasing, then it is increasing and bounded above, so by Theorem 9.2.3 it converges; if decreasing, then use Theorem 9.2.4. The limit lies in the interval $[1, 2]$.
26. Such a sequence may converge, in which case, by the argument in part (a), its limit is ≤ 2 . If the sequence is also increasing then it will converge. But convergence may not happen: for example, the sequence $\{-n\}_{n=1}^{+\infty}$ diverges.

27. (a) $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}$.
- (b) $a_1 = \sqrt{2} < 2$ so $a_2 = \sqrt{2+a_1} < \sqrt{2+2} = 2$, $a_3 = \sqrt{2+a_2} < \sqrt{2+2} = 2$, and so on indefinitely.
- (c) $a_{n+1}^2 - a_n^2 = (2+a_n) - a_n^2 = 2 + a_n - a_n^2 = (2-a_n)(1+a_n)$.
- (d) $a_n > 0$ and, from part (b), $a_n < 2$ so $2-a_n > 0$ and $1+a_n > 0$ thus, from part (c), $a_{n+1}^2 - a_n^2 > 0$, $a_{n+1} - a_n > 0$, $a_{n+1} > a_n$; $\{a_n\}$ is a strictly increasing sequence.
- (e) The sequence is increasing and has 2 as an upper bound so it must converge to a limit L , $\lim_{n \rightarrow +\infty} a_{n+1} = \lim_{n \rightarrow +\infty} \sqrt{2+a_n}$, $L = \sqrt{2+L}$, $L^2 - L - 2 = 0$, $(L-2)(L+1) = 0$, thus $\lim_{n \rightarrow +\infty} a_n = 2$.
28. (a) If $f(x) = \frac{1}{2}(x+3/x)$, then $f'(x) = (x^2-3)/(2x^2)$ and $f'(x) = 0$ for $x = \sqrt{3}$; the minimum value of $f(x)$ for $x > 0$ is $f(\sqrt{3}) = \sqrt{3}$. Thus $f(x) \geq \sqrt{3}$ for $x > 0$ and hence $a_n \geq \sqrt{3}$ for $n \geq 2$.
- (b) $a_{n+1} - a_n = (3-a_n^2)/(2a_n) \leq 0$ for $n \geq 2$ since $a_n \geq \sqrt{3}$ for $n \geq 2$; $\{a_n\}$ is eventually decreasing.
- (c) $\sqrt{3}$ is a lower bound for a_n so $\{a_n\}$ converges; $\lim_{n \rightarrow +\infty} a_{n+1} = \lim_{n \rightarrow +\infty} \frac{1}{2}(a_n+3/a_n)$, $L = \frac{1}{2}(L+3/L)$, $L^2 - 3 = 0$, $L = \sqrt{3}$.
29. (a) $x_1 = 60$, $x_2 = \frac{1500}{7} \approx 214.3$, $x_3 = \frac{3750}{13} \approx 288.5$, $x_4 = \frac{75000}{251} \approx 298.8$.
- (b) We can see that $x_{n+1} = \frac{RK}{K/x_n + (R-1)} = \frac{10 \cdot 300}{300/x_n + 9}$; if $0 < x_n$ then clearly $0 < x_{n+1}$. Also, if $x_n < 300$, then $x_{n+1} = \frac{10 \cdot 300}{300/x_n + 9} < \frac{10 \cdot 300}{300/300 + 9} = 300$, so the conclusion is valid.
- (c) $\frac{x_{n+1}}{x_n} = \frac{RK}{K + (R-1)x_n} = \frac{10 \cdot 300}{300 + 9x_n} > \frac{10 \cdot 300}{300 + 9 \cdot 300} = 1$, because $x_n < 300$. So x_n is increasing.
- (d) x_n is increasing and bounded above, so it is convergent. The limit can be found by letting $L = \frac{RKL}{K + (R-1)L}$, this gives us $L = K = 300$. (The other root, $L = 0$ can be ruled out by the increasing property of the sequence.)
30. (a) Again, $x_{n+1} = \frac{RK}{K/x_n + (R-1)}$, so if $x_n > K$, then $x_{n+1} = \frac{RK}{K/x_n + (R-1)} > \frac{RK}{K/K + (R-1)} = K$, so the conclusion is valid (we only used $R > 1$ and $K > 0$).
- (b) $\frac{x_{n+1}}{x_n} = \frac{RK}{K + (R-1)x_n} < \frac{RK}{K + (R-1)K} = 1$, because $x_n > K$. So x_n is decreasing.
- (c) x_n is decreasing and bounded below, so it is convergent. The limit can be found by letting $L = \frac{RKL}{K + (R-1)L}$, this gives us $L = K$. (The other root, $L = 0$ can be ruled out by the fact that $x_n > K$.)
31. (a) $a_{n+1} = \frac{|x|^{n+1}}{(n+1)!} = \frac{|x|}{n+1} \frac{|x|^n}{n!} = \frac{|x|}{n+1} a_n$.
- (b) $a_{n+1}/a_n = |x|/(n+1) < 1$ if $n > |x| - 1$.
- (c) From part (b) the sequence is eventually decreasing, and it is bounded below by 0, so by Theorem 9.2.4 it converges.

32. (a) The altitudes of the rectangles are $\ln k$ for $k = 2$ to n , and their bases all have length 1 so the sum of their areas is $\ln 2 + \ln 3 + \dots + \ln n = \ln(2 \cdot 3 \cdot \dots \cdot n) = \ln n!$. The area under the curve $y = \ln x$ for x in

32. (a) The altitudes of the rectangles are $\ln k$ for $k = 2$ to n , and their bases all have length 1 so the sum of their areas is $\ln 2 + \ln 3 + \dots + \ln n = \ln(2 \cdot 3 \cdot \dots \cdot n) = \ln n!$. The area under the curve $y = \ln x$ for x in the interval $[1, n]$ is $\int_1^n \ln x dx$, and $\int_1^{n+1} \ln x dx$ is the area for x in the interval $[1, n+1]$ so, from the figure, $\int_1^n \ln x dx < \ln n! < \int_1^{n+1} \ln x dx$.

$$(b) \int_1^n \ln x dx = (x \ln x - x) \Big|_1^n = n \ln n - n + 1 \text{ and } \int_1^{n+1} \ln x dx = (n+1) \ln(n+1) - n, \text{ so from part (a),}$$

$$n \ln n - n + 1 < \ln n! < (n+1) \ln(n+1) - n, e^{n \ln n - n + 1} < n! < e^{(n+1) \ln(n+1) - n}, e^n \ln n e^{1-n} < n! < e^{(n+1) \ln(n+1)} e^{-n},$$

$$\frac{n^n}{e^{n-1}} < n! < \frac{(n+1)^{n+1}}{e^n}.$$

$$(c) \text{ From part (b), } \left[\frac{n^n}{e^{n-1}} \right]^{1/n} < \sqrt[n]{n!} < \left[\frac{(n+1)^{n+1}}{e^n} \right]^{1/n}, \frac{n}{e^{1-1/n}} < \sqrt[n]{n!} < \frac{(n+1)^{1+1/n}}{e}, \frac{1}{e^{1-1/n}} < \frac{\sqrt[n]{n!}}{n} < \frac{1}{e}.$$

$$\frac{(1+1/n)(n+1)^{1/n}}{e}, \text{ but } \frac{1}{e^{1-1/n}} \rightarrow \frac{1}{e} \text{ and } \frac{(1+1/n)(n+1)^{1/n}}{e} \rightarrow \frac{1}{e} \text{ as } n \rightarrow +\infty \text{ (why?), so } \lim_{n \rightarrow +\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}.$$

$$33. n! > \frac{n^n}{e^{n-1}}, \sqrt[n]{n!} > \frac{n}{e^{1-1/n}}, \lim_{n \rightarrow +\infty} \frac{n}{e^{1-1/n}} = +\infty, \text{ so } \lim_{n \rightarrow +\infty} \sqrt[n]{n!} = +\infty,$$

Exercise Set 9.3

1. (a) $s_1 = 2, s_2 = 12/5, s_3 = \frac{62}{25}, s_4 = \frac{312}{125}, s_n = \frac{2 - 2(1/5)^n}{1 - 1/5} = \frac{5}{2} - \frac{5}{2}(1/5)^n, \lim_{n \rightarrow +\infty} s_n = \frac{5}{2}$, converges.
- (b) $s_1 = \frac{1}{4}, s_2 = \frac{3}{4}, s_3 = \frac{7}{4}, s_4 = \frac{15}{4}, s_n = \frac{(1/4) - (1/4)2^n}{1 - 2} = -\frac{1}{4} + \frac{1}{4}(2^n), \lim_{n \rightarrow +\infty} s_n = +\infty$, diverges.
- (c) $\frac{1}{(k+1)(k+2)} = \frac{1}{k+1} - \frac{1}{k+2}, s_1 = \frac{1}{6}, s_2 = \frac{1}{4}, s_3 = \frac{3}{10}, s_4 = \frac{1}{3}, s_n = \frac{1}{2} - \frac{1}{n+2}, \lim_{n \rightarrow +\infty} s_n = \frac{1}{2}$, converges.
2. (a) $s_1 = 1/4, s_2 = 5/16, s_3 = 21/64, s_4 = 85/256, s_n = \frac{1}{4} \left(1 + \frac{1}{4} + \dots + \left(\frac{1}{4} \right)^{n-1} \right) = \frac{1}{4} \frac{1 - (1/4)^n}{1 - 1/4} = \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^n \right); \lim_{n \rightarrow +\infty} s_n = \frac{1}{3}$.
- (b) $s_1 = 1, s_2 = 5, s_3 = 21, s_4 = 85, s_n = \frac{4^n - 1}{3}$, diverges.
- (c) $s_1 = 1/20, s_2 = 1/12, s_3 = 3/28, s_4 = 1/8, s_n = \sum_{k=1}^n \left(\frac{1}{k+3} - \frac{1}{k+4} \right) = \frac{1}{4} - \frac{1}{n+4}, \lim_{n \rightarrow +\infty} s_n = 1/4$.
3. Geometric, $a = 1, r = -3/4, |r| = 3/4 < 1$, series converges, sum = $\frac{1}{1 - (-3/4)} = 4/7$.
4. Geometric, $a = (2/3)^3, r = 2/3, |r| = 2/3 < 1$, series converges, sum = $\frac{(2/3)^3}{1 - 2/3} = 8/9$.
5. Geometric, $a = 7, r = -1/6, |r| = 1/6 < 1$, series converges, sum = $\frac{7}{1 + 1/6} = 6$.
6. Geometric, $r = -3/2, |r| = 3/2 \geq 1$, diverges.

7. $s_n = \sum_{k=1}^n \left(\frac{1}{k+2} - \frac{1}{k+3} \right) = \frac{1}{3} - \frac{1}{n+3}, \lim_{n \rightarrow +\infty} s_n = 1/3$, series converges by definition, sum = 1/3.
8. $s_n = \sum_{k=1}^n \left(\frac{1}{2^k} - \frac{1}{2^{k+1}} \right) = \frac{1}{2} - \frac{1}{2^{n+1}}, \lim_{n \rightarrow +\infty} s_n = 1/2$, series converges by definition, sum = 1/2.
9. $s_n = \sum_{k=1}^n \left(\frac{1/3}{3k-1} - \frac{1/3}{3k+2} \right) = \frac{1}{6} - \frac{1/3}{3n+2}, \lim_{n \rightarrow +\infty} s_n = 1/6$, series converges by definition, sum = 1/6.
10. $s_n = \sum_{k=2}^{n+1} \left[\frac{1/2}{k-1} - \frac{1/2}{k+1} \right] = \frac{1}{2} \left[\sum_{k=2}^{n+1} \frac{1}{k-1} - \sum_{k=2}^{n+1} \frac{1}{k+1} \right] = \frac{1}{2} \left[\sum_{k=2}^{n+1} \frac{1}{k-1} - \sum_{k=4}^{n+3} \frac{1}{k-1} \right] =$

$$= \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]; \lim_{n \rightarrow +\infty} s_n = \frac{3}{4}$$
, series converges by definition, sum = 3/4.
11. $\sum_{k=3}^{\infty} \frac{1}{k-2} = \sum_{k=1}^{\infty} 1/k$, the harmonic series, so the series diverges.
12. Geometric, $a = (\epsilon/\pi)^4, r = \epsilon/\pi, |r| = \epsilon/\pi < 1$, series converges, sum = $\frac{(\epsilon/\pi)^4}{1 - \epsilon/\pi} = \frac{\epsilon^4}{\pi^3(\pi - \epsilon)}$.
13. $\sum_{k=1}^{\infty} \frac{4^{k+2}}{7^{k-1}} = \sum_{k=1}^{\infty} 64 \left(\frac{4}{7} \right)^{k-1}$; geometric, $a = 64, r = 4/7, |r| = 4/7 < 1$, series converges, sum = $\frac{64}{1 - 4/7} = 448/3$.
14. Geometric, $a = 125, r = 125/7, |r| = 125/7 \geq 1$, diverges.
15. (a) Exercise 5 (b) Exercise 3 (c) Exercise 7 (d) Exercise 9
16. (a) Exercise 10 (b) Exercise 6 (c) Exercise 4 (d) Exercise 8

17. False; e.g. $a_n = 1/n$.

18. True, Theorem 9.3.3.

19. True.

20. True.

21. $0.9999\dots = 0.9 + 0.09 + 0.009 + \dots = \frac{0.9}{1 - 0.1} = 1$.

22. $0.4444\dots = 0.4 + 0.04 + 0.004 + \dots = \frac{0.4}{1 - 0.1} = 4/9$.

23. $5.373737\dots = 5 + 0.37 + 0.0037 + 0.00037 + \dots = 5 + \frac{0.37}{1 - 0.01} = 5 + 37/99 = 532/99$.

24. $0.451141414\dots = 0.451 + 0.0014 + 0.000014 + 0.00000014 + \dots = 0.451 + \frac{0.00014}{1 - 0.01} = \frac{44663}{99000}$.

25. $0.a_1a_2\dots a_n9999\dots = 0.a_1a_2\dots a_n + 0.9(10^{-n}) + 0.09(10^{-n}) + \dots = 0.a_1a_2\dots a_n + \frac{0.9(10^{-n})}{1 - 0.1} = 0.a_1a_2\dots a_n + 10^{-n} = 0.a_1a_2\dots (a_n + 1) = 0.a_1a_2\dots (a_n + 1)0000\dots$

Exercise Set 9.3

445

26. The series converges to $1/(1-x)$ only if $-1 < x < 1$.

27. $d = 10 + 2 \cdot \frac{3}{4} \cdot 10 + 2 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot 10 + 2 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot 10 + \dots = 10 + 20 \left(\frac{3}{4}\right) + 20 \left(\frac{3}{4}\right)^2 + 20 \left(\frac{3}{4}\right)^3 + \dots = 10 + \frac{20(3/4)}{1 - 3/4} = 10 + 60 = 70$ meters.

28. Volume = $1^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{4}\right)^3 + \dots + \left(\frac{1}{2^n}\right)^3 + \dots = 1 + \frac{1}{8} + \left(\frac{1}{8}\right)^2 + \dots + \left(\frac{1}{8}\right)^n + \dots = \frac{1}{1 - (1/8)} = 8/7$.

29. (a) $s_n = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{n}{n+1} = \ln \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n}{n+1}\right) = \ln \frac{1}{n+1} = -\ln(n+1)$, $\lim_{n \rightarrow +\infty} s_n = -\infty$, series diverges.

(b) $\ln(1 - 1/k^2) = \ln \frac{k^2 - 1}{k^2} = \ln \frac{(k-1)(k+1)}{k^2} = \ln \frac{k-1}{k} + \ln \frac{k+1}{k} = \ln \frac{k-1}{k} - \ln \frac{k}{k+1}$, so

$$s_n = \sum_{k=2}^{n+1} \left[\ln \frac{k-1}{k} - \ln \frac{k}{k+1} \right] = \left(\ln \frac{1}{2} - \ln \frac{2}{3} \right) + \left(\ln \frac{2}{3} - \ln \frac{3}{4} \right) + \left(\ln \frac{3}{4} - \ln \frac{4}{5} \right) + \dots + \left(\ln \frac{n}{n+1} - \ln \frac{n+1}{n+2} \right) = \ln \frac{1}{2} - \ln \frac{n+1}{n+2}$$
, and then $\lim_{n \rightarrow +\infty} s_n = \ln \frac{1}{2} = -\ln 2$.

30. (a) $\sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \dots = \frac{1}{1 - (-x)} = \frac{1}{1+x}$ if $| -x | < 1$, $|x| < 1$, $-1 < x < 1$.

(b) $\sum_{k=0}^{\infty} (x-3)^k = 1 + (x-3) + (x-3)^2 + \dots = \frac{1}{1 - (x-3)} = \frac{1}{4-x}$ if $|x-3| < 1$, $2 < x < 4$.

(c) $\sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \dots = \frac{1}{1 - (-x^2)} = \frac{1}{1+x^2}$ if $| -x^2 | < 1$, $|x| < 1$, $-1 < x < 1$.

31. (a) Geometric series, $a = x$, $r = -x^2$. Converges for $| -x^2 | < 1$, $|x| < 1$; $S = \frac{x}{1 - (-x^2)} = \frac{x}{1+x^2}$.

(b) Geometric series, $a = 1/x^2$, $r = 2/x$. Converges for $|2/x| < 1$, $|x| > 2$; $S = \frac{1/x^2}{1 - 2/x} = \frac{1}{x^2 - 2x}$.

(c) Geometric series, $a = e^{-x}$, $r = e^{-x}$. Converges for $|e^{-x}| < 1$, $e^{-x} < 1$, $e^x > 1$, $x > 0$; $S = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^x - 1}$.

32. Geometric series, $a = \sin x$, $r = -\frac{1}{2} \sin x$. Converges for $| -\frac{1}{2} \sin x | < 1$, $|\sin x| < 2$, so converges for all values of x . $S = \frac{\sin x}{1 + \frac{1}{2} \sin x} = \frac{2 \sin x}{2 + \sin x}$.

33. $a_2 = \frac{1}{2}a_1 + \frac{1}{2}$, $a_3 = \frac{1}{2}a_2 + \frac{1}{2} = \frac{1}{2^2}a_1 + \frac{1}{2^2} + \frac{1}{2}$, $a_4 = \frac{1}{2}a_3 + \frac{1}{2} = \frac{1}{2^3}a_1 + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2}$, $a_5 = \frac{1}{2}a_4 + \frac{1}{2} = \frac{1}{2^4}a_1 + \frac{1}{2^4} + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2}$, ..., $a_n = \frac{1}{2^{n-1}}a_1 + \frac{1}{2^{n-1}} + \frac{1}{2^{n-2}} + \dots + \frac{1}{2}$, $\lim_{n \rightarrow +\infty} a_n = \lim_{n \rightarrow +\infty} \frac{a_1}{2^{n-1}} + \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 0 + \frac{1/2}{1 - 1/2} = 1$.

34. $\frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$, $s_n = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) = \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} \right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} \right) + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} \right) + \dots + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = 1 - \frac{1}{\sqrt{n+1}}$; $\lim_{n \rightarrow +\infty} s_n = 1$.

446

Chapter 9

445 (447 / 762)

$$(1/3 - 1/5) + (1/4 - 1/6) + \dots + [1/n - 1/(n+2)] = (1 + 1/2 + 1/3 + \dots + 1/n) - (1 + 1/2 + 1/3 + \dots + 1/n + 1) = 3/2 - 1/(n+1) - 1/(n+2)$$

$$\lim_{n \rightarrow +\infty} s_n = 3/2$$

$$\dots = \sum_{n=1}^{\infty} 1 - \sum_{n=1}^{\infty} [1/2 - 1/2] - 1 \left[\sum_{n=1}^{\infty} 1 - \sum_{n=1}^{\infty} 1 \right] - 1 \left[\sum_{n=1}^{\infty} 1 - \sum_{n=1}^{\infty} 1 \right]$$

35. $s_n = (1 - 1/3) + (1/2 - 1/4) + (1/3 - 1/5) + (1/4 - 1/6) + \dots + [1/n - 1/(n+2)] = (1 + 1/2 + 1/3 + \dots + 1/n) - (1/3 + 1/4 + 1/5 + \dots + 1/(n+2)) = 3/2 - 1/(n+1) - 1/(n+2)$, $\lim_{n \rightarrow +\infty} s_n = 3/2$.

36. $s_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \sum_{k=1}^n \left[\frac{1/2}{k} - \frac{1/2}{k+2} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+2} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{k} - \sum_{k=3}^{n+2} \frac{1}{k} \right] = \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]; \lim_{n \rightarrow +\infty} s_n = \frac{3}{4}$.

37. $s_n = \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^n \left[\frac{1/2}{2k-1} - \frac{1/2}{2k+1} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=1}^n \frac{1}{2k+1} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=2}^{n+1} \frac{1}{2k-1} \right] = \frac{1}{2} \left[1 - \frac{1}{2n+1} \right]; \lim_{n \rightarrow +\infty} s_n = \frac{1}{2}$.

38. $A_1 + A_2 + A_3 + \dots = 1 + 1/2 + 1/4 + \dots = \frac{1}{1 - (1/2)} = 2$.

39. By inspection, $\frac{\theta}{2} - \frac{\theta}{4} + \frac{\theta}{8} - \frac{\theta}{16} + \dots = \frac{\theta/2}{1 - (-1/2)} = \theta/3$.

40. (a) Geometric; 18/5. (b) Geometric; diverges. (c) $\sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right) = 1/2$.

Exercise Set 9.4

1. (a) $\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1/2}{1 - 1/2} = 1$; $\sum_{k=1}^{\infty} \frac{1}{4^k} = \frac{1/4}{1 - 1/4} = 1/3$; $\sum_{k=1}^{\infty} \left(\frac{1}{2^k} + \frac{1}{4^k} \right) = 1 + 1/3 = 4/3$.

(b) $\sum_{k=1}^{\infty} \frac{1}{5^k} = \frac{1/5}{1 - 1/5} = 1/4$; $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1$, (Ex. 5, Section 9.3); $\sum_{k=1}^{\infty} \left[\frac{1}{5^k} - \frac{1}{k(k+1)} \right] = 1/4 - 1 = -3/4$.

2. (a) $\sum_{k=2}^{\infty} \frac{1}{k^2 - 1} = 3/4$ (Ex. 10, Section 9.3); $\sum_{k=2}^{\infty} \frac{7}{10^{k-1}} = \frac{7/10}{1 - 1/10} = 7/9$; so $\sum_{k=2}^{\infty} \left[\frac{1}{k^2 - 1} - \frac{7}{10^{k-1}} \right] = 3/4 - 7/9 = -1/36$.

(b) With $a = 9/7$, $r = 3/7$, geometric, $\sum_{k=1}^{\infty} 7^{-k} 3^{k+1} = \frac{9/7}{1 - (3/7)} = 9/4$; with $a = 4/5$, $r = 2/5$, geometric, $\sum_{k=1}^{\infty} \frac{2^{k+1}}{5^k} = \frac{4/5}{1 - (2/5)} = 4/3$; $\sum_{k=1}^{\infty} \left[7^{-k} 3^{k+1} - \frac{2^{k+1}}{5^k} \right] = 9/4 - 4/3 = 11/12$.

3. (a) $p=3 > 1$, converges. (b) $p=1/2 \leq 1$, diverges. (c) $p=1 \leq 1$, diverges. (d) $p=2/3 \leq 1$, diverges.

4. (a) $p=4/3 > 1$, converges. (b) $p=1/4 \leq 1$, diverges. (c) $p=5/3 > 1$, converges. (d) $p=\pi > 1$, converges.

5. (a) $\lim_{k \rightarrow +\infty} \frac{k^2 + k + 3}{2k^2 + 1} = \frac{1}{2} \neq 0$; the series diverges. (b) $\lim_{k \rightarrow +\infty} \left(1 + \frac{1}{k} \right)^k = e \neq 0$; the series diverges.

(c) $\lim_{k \rightarrow +\infty} \cos k\pi$ does not exist; the series diverges. (d) $\lim_{k \rightarrow +\infty} \frac{1}{k!} = 0$; no information.

Exercise Set 9.4

6. (a) $\lim_{k \rightarrow +\infty} \frac{k}{e^k} = 0$; no information. (b) $\lim_{k \rightarrow +\infty} \ln k = +\infty \neq 0$; the series diverges.

(c) $\lim_{k \rightarrow +\infty} \frac{1}{\sqrt{k}} = 0$; no information. (d) $\lim_{k \rightarrow +\infty} \frac{\sqrt{k}}{\sqrt{k} + 3} = 1 \neq 0$; the series diverges.

7. (a) $\int_1^{+\infty} \frac{1}{5x+2} dx = \lim_{t \rightarrow +\infty} \frac{1}{5} \ln(5x+2) \Big|_1^t = +\infty$, the series diverges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

(b) $\int_1^{+\infty} \frac{1}{1+9x^2} dx = \lim_{t \rightarrow +\infty} \frac{1}{3} \tan^{-1} 3x \Big|_1^t = \frac{1}{3} (\pi/2 - \tan^{-1} 3)$, the series converges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

8. (a) $\int_1^{+\infty} \frac{x}{1+x^2} dx = \lim_{t \rightarrow +\infty} \frac{1}{2} \ln(1+x^2) \Big|_1^t = +\infty$, the series diverges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

(b) $\int_1^{+\infty} (4+2x)^{-3/2} dx = \lim_{t \rightarrow +\infty} -1/\sqrt{4+2x} \Big|_1^t = 1/\sqrt{6}$, the series converges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

9. $\sum_{k=1}^{\infty} \frac{1}{k+6} = \sum_{k=7}^{\infty} \frac{1}{k}$, diverges because the harmonic series diverges.

10. $\sum_{k=1}^{\infty} \frac{3}{5k} = \sum_{k=1}^{\infty} \frac{3}{5} \left(\frac{1}{k} \right)$, diverges because the harmonic series diverges.

11. $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+5}} = \sum_{k=6}^{\infty} \frac{1}{\sqrt{k}}$, diverges because the p -series with $p = 1/2 \leq 1$ diverges.

12. $\lim_{k \rightarrow +\infty} \frac{1}{e^{1/k}} = 1$, the series diverges by the Divergence Test, because $\lim_{k \rightarrow +\infty} u_k = 1 \neq 0$.

13. $\int_1^{+\infty} (2x-1)^{-1/3} dx = \lim_{\ell \rightarrow +\infty} \frac{3}{4} (2x-1)^{2/3} \Big|_1^{\ell} = +\infty$, the series diverges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

14. $\frac{\ln x}{x}$ is decreasing for $x \geq e$, and $\int_3^{+\infty} \frac{\ln x}{x} dx = \lim_{\ell \rightarrow +\infty} \frac{1}{2} (\ln x)^2 \Big|_3^{\ell} = +\infty$, so the series diverges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

15. $\lim_{k \rightarrow +\infty} \frac{k}{\ln(k+1)} = \lim_{k \rightarrow +\infty} \frac{1}{1/(k+1)} = +\infty$, the series diverges by the Divergence Test, because $\lim_{k \rightarrow +\infty} u_k \neq 0$.

16. $\int_1^{+\infty} xe^{-x^2} dx = \lim_{\ell \rightarrow +\infty} -\frac{1}{2} e^{-x^2} \Big|_1^{\ell} = e^{-1}/2$, the series converges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

17. $\lim_{k \rightarrow +\infty} (1+1/k)^{-k} = 1/e \neq 0$, the series diverges by the Divergence Test.

18. $\lim_{k \rightarrow +\infty} \frac{k^2+1}{k^2+3} = 1 \neq 0$, the series diverges by the Divergence Test.

19. $\int_1^{+\infty} \frac{\tan^{-1} x}{1+x^2} dx = \lim_{\ell \rightarrow +\infty} \frac{1}{2} (\tan^{-1} x)^2 \Big|_1^{\ell} = 3\pi^2/32$, the series converges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous), since $\frac{d}{dx} \frac{\tan^{-1} x}{1+x^2} = \frac{1-2x\tan^{-1} x}{(1+x^2)^2} < 0$ for $x \geq 1$.

20. $\int_1^{+\infty} \frac{1}{\sqrt{x^2+1}} dx = \lim_{\ell \rightarrow +\infty} \sinh^{-1} x \Big|_1^{\ell} = +\infty$, the series diverges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

21. $\lim_{k \rightarrow +\infty} k^2 \sin^2(1/k) = 1 \neq 0$, the series diverges by the Divergence Test.

22. $\int_1^{+\infty} x^2 e^{-x^3} dx = \lim_{\ell \rightarrow +\infty} -\frac{1}{3} e^{-x^3} \Big|_1^{\ell} = e^{-1}/3$, the series converges by the Integral Test (which can be applied, because $x^2 e^{-x^3}$ is decreasing for $x \geq 1$, it is continuous and the series has positive terms).

23. $7 \sum_{k=5}^{\infty} k^{-1.01}$, p -series with $p = 1.01 > 1$, converges.

24. $\int_1^{+\infty} \operatorname{sech}^2 x dx = \lim_{\ell \rightarrow +\infty} \tanh x \Big|_1^{\ell} = 1 - \tanh(1)$, the series converges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

25. $\frac{1}{x(\ln x)^p}$ is decreasing for $x \geq e^{-p}$, so use the Integral Test (which can be applied, because f is continuous and the series has positive terms) with $a = e^{\alpha}$, i.e. $\int_{e^{\alpha}}^{+\infty} \frac{dx}{x(\ln x)^p}$ to get $\lim_{\ell \rightarrow +\infty} \ln(\ln x) \Big|_{e^{\alpha}}^{\ell} = +\infty$ if $p = 1$, $\lim_{\ell \rightarrow +\infty} \frac{(\ln x)^{1-p}}{1-p} \Big|_{e^{\alpha}}^{\ell} = \begin{cases} +\infty & \text{if } p < 1 \\ \frac{e^{\alpha(1-p)}}{p-1} & \text{if } p > 1 \end{cases}$. Thus the series converges for $p > 1$.

26. If $p > 0$ set $g(x) = x(\ln x)[\ln(\ln x)]^p$, $g'(x) = (\ln(\ln x))^{p-1} [(1+\ln x)\ln(\ln x) + p]$, and, for $x > e^e$, $g'(x) > 0$, thus $1/g(x)$ is decreasing for $x > e^e$; use the Integral Test with $\int_{e^e}^{+\infty} \frac{dx}{x(\ln x)[\ln(\ln x)]^p}$ to get $\lim_{\ell \rightarrow +\infty} \ln[\ln(\ln x)] \Big|_{e^e}^{\ell} = +\infty$ if $p = 1$, $\lim_{\ell \rightarrow +\infty} \frac{[\ln(\ln x)]^{1-p}}{1-p} \Big|_{e^e}^{\ell} = \begin{cases} +\infty & \text{if } p < 1, \\ \frac{1}{p-1} & \text{if } p > 1 \end{cases}$. Thus the series converges for $p > 1$ and diverges for $0 < p \leq 1$. If $p \leq 0$ then $\frac{[\ln(\ln x)]^{-p}}{x \ln x} \geq \frac{1}{x \ln x}$ for $x > e^e$ so the series diverges, since $\int \frac{1}{x \ln x} dx$ is divergent by Exercise 25. (The Integral Test can be applied, because f is continuous and the series has positive terms).

27. Suppose $\sum(u_k + v_k)$ converges; then so does $\sum[(u_k + v_k) - u_k]$, but $\sum[(u_k + v_k) - u_k] = \sum v_k$, so $\sum v_k$ converges which contradicts the assumption that $\sum v_k$ diverges. Suppose $\sum(u_k - v_k)$ converges; then so does $\sum[u_k - (u_k - v_k)] = \sum v_k$ which leads to the same contradiction as before.

28. Let $u_k = 2/k$ and $v_k = 1/k$; then both $\sum(u_k + v_k)$ and $\sum(u_k - v_k)$ diverge; let $u_k = 1/k$ and $v_k = -1/k$ then $\sum(u_k + v_k)$ converges; let $u_k = v_k = 1/k$ then $\sum(u_k - v_k)$ converges.

29. (a) Diverges because $\sum_{k=1}^{\infty} (2/3)^{k-1}$ converges (geometric series, $r = 2/3$, $|r| < 1$) and $\sum_{k=1}^{\infty} 1/k$ diverges (the harmonic series).

(b) Diverges because $\sum_{k=1}^{\infty} 1/(3k+2)$ diverges (Integral Test) and $\sum_{k=1}^{\infty} 1/k^{3/2}$ converges (p -series, $p = 3/2 > 1$).

30. (a) Converges because both $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$ (Exercise 25) and $\sum_{k=2}^{\infty} \frac{1}{k^2}$ converge (p -series, $p = 2 > 1$).

(b) Diverges because $\sum_{k=-\infty}^{+\infty} k e^{-k^2}$ converges (Integral Test), and, by Exercise 25, $\sum_{k=-\infty}^{+\infty} \frac{1}{k \ln k}$ diverges.

31. False; if $\sum u_k$ converges then $\lim u_k = 0$, so $\lim \frac{1}{u_k}$ diverges, so $\sum \frac{1}{u_k}$ cannot converge.

32. True; if $\sum cu_k$ diverges then $c \neq 0$ so $\sum u_k$ diverges.

33. True, see Theorem 9.4.4.

34. False, $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is a p-series.

$$\text{(a)} \quad 3 \sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{1}{k^4} = \pi^2/2 - \pi^4/90. \quad \text{(b)} \quad \sum_{k=1}^{\infty} \frac{1}{k^2} - 1 - \frac{1}{2^2} = \pi^2/6 - 5/4. \quad \text{(c)} \quad \sum_{k=2}^{\infty} \frac{1}{(k-1)^4} = \sum_{k=1}^{\infty} \frac{1}{k^4} = \pi^4/90.$$

36. (a) If $S = \sum_{k=1}^{\infty} u_k$ and $s_n = \sum_{k=1}^n u_k$, then $S - s_n = \sum_{k=n+1}^{\infty} u_k$. Interpret u_k , $k = n+1, n+2, \dots$, as the areas of inscribed or circumscribed rectangles with height u_k and base of length one for the curve $y = f(x)$ to obtain the result.

(b) Add $s_n = \sum_{k=1}^n u_k$ to each term in the conclusion of part (a) to get the desired result: $s_n + \int_{n+1}^{+\infty} f(x) dx < \sum_{k=1}^{+\infty} u_k < s_n + \int_n^{+\infty} f(x) dx$.

37. (a) In Exercise 36 above let $f(x) = \frac{1}{x^2}$. Then $\int_n^{+\infty} f(x) dx = -\frac{1}{x} \Big|_n^{+\infty} = \frac{1}{n}$; use this result and the same result with $n+1$ replacing n to obtain the desired result.

$$(b) \quad s_3 = 1 + 1/4 + 1/9 = 49/36; \quad 58/36 = s_3 + \frac{1}{4} < \frac{1}{6}\pi^2 < s_3 + \frac{1}{3} = 61/36.$$

$$(d) \quad 1/11 < \frac{1}{6}\pi^2 - s_{10} < 1/10.$$

38. Apply Exercise 36 in each case:

$$(a) \quad f(x) = \frac{1}{(2x+1)^2}, \quad \int_n^{+\infty} f(x) dx = \frac{1}{2(2n+1)}, \quad \text{so } \frac{1}{46} < \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} - s_{10} < \frac{1}{42}.$$

$$(b) \quad f(x) = \frac{1}{k^2+1}, \quad \int_n^{+\infty} f(x) dx = \frac{\pi}{2} - \tan^{-1}(n), \quad \text{so } \pi/2 - \tan^{-1}(11) < \sum_{k=1}^{\infty} \frac{1}{k^2+1} - s_{10} < \pi/2 - \tan^{-1}(10).$$

$$(c) \quad f(x) = \frac{x}{e^x}, \quad \int_n^{+\infty} f(x) dx = (n+1)e^{-n}, \quad \text{so } 12e^{-11} < \sum_{k=1}^{\infty} \frac{k}{e^k} - s_{10} < 11e^{-10}.$$

39. (a) Let $S_n = \sum_{k=1}^n \frac{1}{k^4}$. By Exercise 36(a), with $f(x) = \frac{1}{x^4}$, the result follows.

(b) $h(x) = \frac{1}{3x^3} - \frac{1}{3(x+1)^3}$ is a decreasing function, and the smallest n such that $\left| \frac{1}{3n^3} - \frac{1}{3(n+1)^3} \right| \leq 0.001$ is $n = 6$.

(c) The midpoint of the interval indicated in Part e is $S_6 + \frac{\frac{1}{3 \cdot 6^3} + \frac{1}{3 \cdot 7^3}}{2} \approx 1.082381$. A calculator gives $\pi^4/90 \approx 1.08232$.

40. (a) Let $F(x) = \frac{1}{x}$, then $\int_1^n \frac{1}{x} dx = \ln n$ and $\int_1^{n+1} \frac{1}{x} dx = \ln(n+1)$, $u_1 = 1$, so $\ln(n+1) < s_n < 1 + \ln n$.

(b) $\ln(1,000,001) < s_{1,000,000} < 1 + \ln(1,000,000)$, $13 < s_{1,000,000} < 15$.

(c) $s_{10^9} < 1 + \ln 10^9 = 1 + 9 \ln 10 < 22$.

(d) $s_n > \ln(n+1) \geq 100$, $n \geq e^{100} - 1 \approx 2.688 \times 10^{43}$, $n = 2.69 \times 10^{43}$.

41. $x^2 e^{-x}$ is continuous, decreasing and positive for $x > 2$ so the Integral Test applies: $\int_1^{\infty} x^2 e^{-x} dx = -(x^2 + 2x + 2)e^{-x} \Big|_1^{\infty} = 5e^{-1}$ so the series converges.

42. (a) $f(x) = 1/(x^3 + 1)$ is continuous, decreasing and positive on the interval $[1, +\infty]$, so the Integral Test applies.

(c)

n	10	20	30	40	50	60	70	80	90	100
s_n	0.681980	0.685314	0.685966	0.686199	0.686307	0.686367	0.686403	0.686426	0.686442	0.686454

(e) Set $g(n) = \int_n^{+\infty} \frac{1}{x^3+1} dx = \frac{\sqrt{3}}{6} \pi + \frac{1}{6} \ln \frac{n^3+1}{(n+1)^3} - \frac{\sqrt{3}}{3} \tan^{-1} \left(\frac{2n-1}{\sqrt{3}} \right)$; for $n \geq 13$, $g(n) - g(n+1) \leq 0.0005$; $s_{13} + (g(13) + g(14))/2 \approx 0.6865$, so the sum ≈ 0.6865 to three decimal places.

Exercise Set 9.5

All convergence tests in this section require that the series have positive terms - this requirement is met in all these exercises.

1. (a) $\frac{1}{5k^2 - k} \leq \frac{1}{5k^2 - k^2} = \frac{1}{4k^2}, \sum_{k=1}^{\infty} \frac{1}{4k^2}$ converges, so the original series also converges.

(b) $\frac{3}{k-1/4} > \frac{3}{k}, \sum_{k=1}^{\infty} \frac{3}{k}$ diverges, so the original series also diverges.

2. (a) $\frac{k+1}{k^2-k} > \frac{k}{k^2} = \frac{1}{k}$, $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges, so the original series also diverges.

(b) $\frac{2}{k^4+k} < \frac{2}{k^4}, \sum_{k=1}^{\infty} \frac{2}{k^4}$ converges, so the original series also converges.

3. (a) $\frac{1}{3^k+5} < \frac{1}{3^k}, \sum_{k=1}^{\infty} \frac{1}{3^k}$ converges, so the original series also converges.

(b) $\frac{5 \sin^2 k}{k!} < \frac{5}{k!}, \sum_{k=1}^{\infty} \frac{5}{k!}$ converges, so the original series also converges.

4. (a) $\frac{\ln k}{k} > \frac{1}{k}$ for $k \geq 3$, $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, so the original series also diverges.

(b) $\frac{k}{k^{3/2}-1/2} > \frac{k}{k^{3/2}} = \frac{1}{\sqrt{k}}, \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverges, so the original series also diverges.

5. Compare with the convergent series $\sum_{k=1}^{\infty} \frac{1}{k^5}$, $\rho = \lim_{k \rightarrow +\infty} \frac{4k^7 - 2k^6 + 6k^5}{8k^7 + k - 8} = 1/2$, which is finite and positive, therefore the original series converges.

6. Compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k^3}$, $\rho = \lim_{k \rightarrow +\infty} \frac{k}{9k+6} = 1/9$, which is finite and positive, therefore the original series diverges.

7. Compare with the convergent series $\sum_{k=1}^{\infty} \frac{5}{3^k}$, $\rho = \lim_{k \rightarrow +\infty} \frac{3^k}{3^k+1} = 1$, which is finite and positive, therefore the original series converges.

8. Compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k}, \rho = \lim_{k \rightarrow +\infty} \frac{k^2(k+3)}{(k+1)(k+2)(k+5)} = 1$, which is finite and positive, therefore the original series diverges.

9. Compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k^{2/3}}$, $\rho = \lim_{k \rightarrow +\infty} \frac{k^{2/3}}{(8k^2 - 3k)^{1/3}} = \lim_{k \rightarrow +\infty} \frac{1}{(8 - 3/k)^{1/3}} = 1/2$, which is finite and positive, therefore the original series diverges.

10. Compare with the convergent series $\sum_{k=1}^{\infty} \frac{1}{k^{17}}$, $\rho = \lim_{k \rightarrow +\infty} \frac{k^{17}}{(2k+3)^{17}} = \lim_{k \rightarrow +\infty} \frac{1}{(2+3/k)^{17}} = 1/2^{17}$, which is finite and positive, therefore the original series converges.

11. $\rho = \lim_{k \rightarrow +\infty} \frac{3^{k+1}/(k+1)!}{3^k/k!} = \lim_{k \rightarrow +\infty} \frac{3}{k+1} = 0 < 1$, the series converges.

12. $\rho = \lim_{k \rightarrow +\infty} \frac{4^{k+1}/(k+1)^2}{4^k/k^2} = \lim_{k \rightarrow +\infty} \frac{4k^2}{(k+1)^2} = 4 > 1$, the series diverges.

13. $\rho = \lim_{k \rightarrow +\infty} \frac{k}{k+1} = 1$, the result is inconclusive.

14. $\rho = \lim_{k \rightarrow +\infty} \frac{(k+1)(1/2)^{k+1}}{k(1/2)^k} = \lim_{k \rightarrow +\infty} \frac{k+1}{2k} = 1/2 < 1$, the series converges.

15. $\rho = \lim_{k \rightarrow +\infty} \frac{(k+1)^(k+1)^3}{k!/k^3} = \lim_{k \rightarrow +\infty} \frac{k^3}{(k+1)^2} = +\infty$, the series diverges.

16. $\rho = \lim_{k \rightarrow +\infty} \frac{(k+1)/[(k+1)^2+1]}{k/(k^2+1)} = \lim_{k \rightarrow +\infty} \frac{(k+1)(k^2+1)}{k(k^2+2k+2)} = 1$, the result is inconclusive.

17. $\rho = \lim_{k \rightarrow +\infty} \frac{3k+2}{2k-1} = 3/2 > 1$, the series diverges.

18. $\rho = \lim_{k \rightarrow +\infty} k/100 = +\infty$, the series diverges.

19. $\rho = \lim_{k \rightarrow +\infty} \frac{k^{1/k}}{5} = 1/5 < 1$, the series converges.

20. $\rho = \lim_{k \rightarrow +\infty} (1 - e^{-k}) = 1$, the result is inconclusive.

21. False; it uses terms from two different sequences.

22. True, Ratio Test.

23. True, Limit Comparison Test with $v_k = 1/k^2$.

24. False; it decides convergence based on a limit of k -th roots of the terms of the series.

25. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} 7/(k+1) = 0$, converges.

26. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$, $\rho = \lim_{k \rightarrow +\infty} \frac{k}{2k+1} = 1/2$, which is finite and positive, therefore the original series diverges.

27. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} \frac{(k+1)^2}{5k^2} = 1/5 < 1$, converges.

28. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} (10/3)(k+1) = +\infty$, diverges.

29. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} e^{-1}(k+1)^{50}/k^{50} - e^{-1} < 1$, converges

30. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$.

31. Limit Comparison Test, compare with the convergent series $\sum_{k=1}^{\infty} 1/k^{5/2}$, $\rho = \lim_{k \rightarrow +\infty} \frac{k^3}{k^3+1} = 1$, converges

32. $\frac{4}{2+3^k k} < \frac{4}{3^k k}$, $\sum_{k=1}^{\infty} \frac{4}{3^k k}$ converges (Ratio Test) so $\sum_{k=1}^{\infty} \frac{4}{2+3^k k}$ converges by the Comparison Test

33. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$, $\rho = \lim_{k \rightarrow +\infty} \frac{k}{\sqrt{k^2+k}} = 1$, diverges

Exercise Set 9.5

453

34. $\frac{2+(-1)^k}{5^k} \leq \frac{3}{5^k}$, $\sum_{k=1}^{\infty} 3/5^k$ converges so $\sum_{k=1}^{\infty} \frac{2+(-1)^k}{5^k}$ converges by the Comparison Test

35. Limit Comparison Test, compare with the convergent series $\sum_{k=1}^{\infty} \frac{1}{k^{5/2}}$, $\rho = \lim_{k \rightarrow +\infty} \frac{k^3+2k^{5/2}}{k^3+3k^2+3k} = 1$, converges

36. $\frac{4+\cos x}{k^3} < \frac{5}{k^3}$, $\sum_{k=1}^{\infty} 5/k^3$ converges so $\sum_{k=1}^{\infty} \frac{4+\cos x}{k^3}$ converges

37. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/\sqrt{k}$

38. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} (1+1/k)^{-k} = 1/e < 1$, converges.

39. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} \frac{\ln(k+1)}{e \ln k} = \lim_{k \rightarrow +\infty} \frac{k}{e(k+1)} = 1/e < 1$, converges

40. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} \frac{k+1}{e^{2k+1}} = \lim_{k \rightarrow +\infty} \frac{1}{2e^{2k+1}} = 0$, converges

41. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} \frac{k+5}{4(k+1)} = 1/4$, converges.

42. Root Test, $\rho = \lim_{k \rightarrow +\infty} \left(\frac{k}{k+1} \right)^k = \lim_{k \rightarrow +\infty} \frac{1}{(1+1/k)^k} = 1/e$, converges

43. Diverges by the Divergence Test, because $\lim_{k \rightarrow +\infty} \frac{1}{4+2^{-k}} = 1/4 \neq 0$

44. $\sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^3+1} > \sum_{k=2}^{\infty} \frac{\sqrt{k} \ln k}{k^3+1}$ because $\ln 1 = 0$, $\frac{\sqrt{k} \ln k}{k^3+1} \sim \frac{\sqrt{k} \ln k}{k^3} = \frac{\ln k}{k^{5/2}}$, $\int_2^{+\infty} \frac{\ln x}{x^{5/2}} dx = \lim_{t \rightarrow +\infty} \left(-\frac{\ln x}{x} - \frac{1}{x} \right) \Big|_2^t$
 $\frac{1}{2}(\ln 2 + 1)$, so $\sum_{k=2}^{\infty} \frac{\ln k}{k^2}$ converges and so does $\sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^3+1}$

45. $\frac{\tan^{-1} k}{k^2} < \frac{\pi/2}{k^2}$, $\sum_{k=1}^{\infty} \frac{\pi/2}{k^2}$ converges so $\sum_{k=1}^{\infty} \frac{\tan^{-1} k}{k^2}$ converges.

46. $\frac{5^k - k}{k! + 3} < \frac{5^k - 5^k}{k!} = \frac{2(5^k)}{k!}$, $\sum_{k=1}^{\infty} 2 \left(\frac{5^k}{k!} \right)$ converges (Ratio Test), so $\sum_{k=1}^{\infty} \frac{5^k - k}{k! + 3}$ converges

47. Ratio Test, $\rho = \lim_{k \rightarrow +\infty} \frac{(k+1)^2}{(2k+2)(2k+1)} = 1/4$, converges

48. Root Test: $\rho = \lim_{k \rightarrow +\infty} \frac{\pi(k+1)}{k^{1+1/k}} = \lim_{k \rightarrow +\infty} \frac{k+1}{k} = \pi$, diverges

49. $a_k = \frac{\ln k}{3^k}$, $\frac{a_{k+1}}{a_k} = \frac{\ln(k+1)}{\ln k} \cdot \frac{3^k}{3^{k+1}} \rightarrow \frac{1}{3}$, converges

50. $a_k = \frac{\alpha^k}{k^\alpha}$, $\frac{a_{k+1}}{a_k} = \alpha \left(\frac{k+1}{k} \right)^\alpha \rightarrow \alpha$, converges if and only if $\alpha < 1$. ($\alpha = 1$ harmonic series)

454

Chapter 9

51. $u_k = \frac{k!}{1 \cdot 3 \cdot 5 \cdots (2k-1)}$, by the Ratio Test $\rho = \lim_{k \rightarrow +\infty} \frac{k+1}{2k+1} = 1/2$; converges

52. $u_k = \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{(2k-1)!}$, by the Ratio Test $\rho = \lim_{k \rightarrow +\infty} \frac{1}{2k} = 0$; converges

53. Set $g(x) = \sqrt{x} - \ln x$; $\frac{d}{dx} g(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} < 0$ only at $x=4$. Since $\lim_{x \rightarrow 0^+} g(x) = \lim_{x \rightarrow +\infty} g(x) = +\infty$ it follows that $g(x)$ has its absolute minimum at $x=4$, $g(4) = \sqrt{4} - \ln 4 > 0$, and thus $\sqrt{x} - \ln x > 0$ for $x > 0$

(a) $\frac{\ln k}{k^2} < \frac{\sqrt{k}}{k^2} = \frac{1}{k^{3/2}}$, $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$ converges so $\sum_{k=1}^{\infty} \frac{\ln k}{k^2}$ converges.

(b) $\frac{1}{(\ln k)^2} > \frac{1}{k}$, $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges so $\sum_{k=2}^{\infty} \frac{1}{(\ln k)^2}$ diverges

54. (b) $\rho = \lim_{k \rightarrow +\infty} \frac{\sin(\pi/k)}{\pi/k} = 1$ and $\sum_{k=1}^{\infty} \pi/k$ diverges, so the original series also diverges.

55. (a) $\cos x \approx 1 - x^2/2, 1 - \cos\left(\frac{1}{k}\right) \approx \frac{1}{2k^2}$. (b) $\rho = \lim_{k \rightarrow +\infty} \frac{1 - \cos(1/k)}{1/k^2} = 1/2$, converges.

56. (a) If $\lim_{k \rightarrow +\infty} (a_k/b_k) = 0$ then for $k \geq K$, $a_k/b_k < 1$, $a_k < b_k$ so $\sum a_k$ converges by the Comparison Test.

(b) If $\lim_{k \rightarrow +\infty} (a_k/b_k) = +\infty$ then for $k \geq K$, $a_k/b_k > 1$, $a_k > b_k$ so $\sum a_k$ diverges by the Comparison Test.

57. (a) If $\sum b_k$ converges, then set $M = \sum b_k$. Then $a_1 + a_2 + \dots + a_n \leq b_1 + b_2 + \dots + b_n \leq M$; apply Theorem 9.4.6 to get convergence of $\sum a_k$.

(b) Assume the contrary, that $\sum b_k$ converges; then use part (a) of the Theorem to show that $\sum a_k$ converges, a contradiction.

Exercise Set 9.7

1. (a) $f^{(k)}(x) = (-1)^k e^{-x}$, $f^{(k)}(0) = (-1)^k$; $e^{-x} \approx 1 - x + x^2/2$ (quadratic), $e^{-x} \approx 1 - x$ (linear).

(b) $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f(0) = 1$, $f'(0) = 0$, $f''(0) = -1$, $\cos x \approx 1 - x^2/2$ (quadratic), $\cos x \approx 1$ (linear).

2. (a) $f(x) = \cos x$, $f''(x) = -\sin x$, $f(\pi/2) = 1$, $f'(\pi/2) = 0$, $f''(\pi/2) = -1$, $\sin x \approx 1 - (x - \pi/2)^2/2$ (quadratic), $\sin x \approx 1$ (linear).

(b) $f(1) = 1$, $f'(1) = 1/2$, $f''(1) = -1/4$; $\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2$ (quadratic), $\sqrt{x} \approx 1 + \frac{1}{2}(x-1)$ (linear).

3. (a) $f'(x) = \frac{1}{2}x^{-1/2}$, $f''(x) = -\frac{1}{4}x^{-3/2}$; $f(1) = 1$, $f'(1) = \frac{1}{2}$, $f''(1) = -\frac{1}{4}$; $\sqrt{x} \approx 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2$.

(b) $x = 1.1$, $x_0 = 1$, $\sqrt{1.1} \approx 1 + \frac{1}{2}(0.1) - \frac{1}{8}(0.1)^2 = 1.04875$, calculator value ≈ 1.0488088 .

4. (a) $\cos x \approx 1 - x^2/2$.

(b) $2^\circ = \pi/90$ rad, $\cos 2^\circ = \cos(\pi/90) \approx 1 - \frac{\pi^2}{2 \cdot 90^2} \approx 0.999939077$, calculator value ≈ 0.999939083 .

5. $f(x) = \tan x$, $61^\circ = \pi/3 + \pi/180$ rad; $x_0 = \pi/3$, $f'(x) = \sec^2 x$, $f''(x) = 2 \sec^2 x \tan x$; $f(\pi/3) = \sqrt{3}$, $f'(\pi/3) = 4$, $f''(\pi/3) = 8\sqrt{3}$; $\tan x \approx \sqrt{3} + 4(x - \pi/3) + 4\sqrt{3}(x - \pi/3)^2$, $\tan 61^\circ = \tan(\pi/3 + \pi/180) \approx \sqrt{3} + 4\pi/180 + 4\sqrt{3}(\pi/180)^2 \approx 1.80397443$, calculator value ≈ 1.80404776 .

6. $f(x) = \sqrt{x}$, $x_0 = 36$, $f'(x) = \frac{1}{2}x^{-1/2}$, $f''(x) = -\frac{1}{4}x^{-3/2}$; $f(36) = 6$, $f'(36) = \frac{1}{12}$, $f''(36) = -\frac{1}{864}$; $\sqrt{x} \approx 6 + \frac{1}{12}(x-36) - \frac{1}{1728}(x-36)^2$; $\sqrt{36.03} \approx 6 + \frac{0.03}{12} - \frac{(0.03)^2}{1728} \approx 6.00249947917$, calculator value ≈ 6.00249947938 .

7. $f^{(k)}(x) = (-1)^k e^{-x}$, $f^{(k)}(0) = (-1)^k$; $p_0(x) = 1$, $p_1(x) = 1 - x$, $p_2(x) = 1 - x + \frac{1}{2}x^2$, $p_3(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{3!}x^3$, $p_4(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{3!}x^3 + \frac{1}{4!}x^4$; $\sum_{k=0}^n \frac{(-1)^k}{k!} x^k$.

8. $f^{(k)}(x) = a^k e^{ax}$, $f^{(k)}(0) = a^k$; $p_0(x) = 1$, $p_1(x) = 1 + ax$, $p_2(x) = 1 + ax + \frac{a^2}{2}x^2$, $p_3(x) = 1 + ax + \frac{a^2}{2}x^2 + \frac{a^3}{3!}x^3$, $p_4(x) = 1 + ax + \frac{a^2}{2}x^2 + \frac{a^3}{3!}x^3 + \frac{a^4}{4!}x^4$; $\sum_{k=0}^n \frac{a^k}{k!} x^k$.

9. $f^{(k)}(0) = 0$ if k is odd, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is even; $p_0(x) = 1$, $p_1(x) = 1$, $p_2(x) = 1 - \frac{\pi^2}{2!}x^2$, $p_3(x) = 1 - \frac{\pi^2}{2!}x^2$, $p_4(x) = 1 - \frac{\pi^2}{2!}x^2 + \frac{\pi^4}{4!}x^4$; $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!} x^{2k}$.

NB: The function $[x]$ defined for real x indicates the greatest integer which is $\leq x$.

10. $f^{(k)}(0) = 0$ if k is even, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is odd; $p_0(x) = 0$, $p_1(x) = \pi x$, $p_2(x) = \pi x$; $p_3(x) = \pi x - \frac{\pi^3}{3!}x^3$, $p_4(x) = \pi x - \frac{\pi^3}{3!}x^3$; $\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \frac{(-1)^k \pi^{2k+1}}{(2k+1)!} x^{2k+1}$.

NB: If $n = 0$ then $\lfloor \frac{n-1}{2} \rfloor = -1$; by definition any sum which runs from $k = 0$ to $k = -1$ is called the 'empty sum' and has value 0.

Exercise Set 9.7

11. $f^{(0)}(0) = 0$; for $k \geq 1$, $f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{(1+x)^k}$, $f^{(k)}(0) = (-1)^{k+1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x - \frac{1}{2}x^2$, $p_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3$, $p_4(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4$; $\sum_{k=1}^n \frac{(-1)^{k+1}}{k} x^k$.

12. $f^{(k)}(x) = (-1)^k \frac{k!}{(1+x)^{k+1}}$; $f^{(k)}(0) = (-1)^k k!$; $p_0(x) = 1$, $p_1(x) = 1 - x$, $p_2(x) = 1 - x + x^2$, $p_3(x) = 1 - x + x^2 - x^3$, $p_4(x) = 1 - x + x^2 - x^3 + x^4$; $\sum_{k=0}^n (-1)^k x^k$.

13. $f^{(k)}(0) = 0$ if k is odd, $f^{(k)}(0) = 1$ if k is even; $p_0(x) = 1$, $p_1(x) = 1$, $p_2(x) = 1 + x^2/2$, $p_3(x) = 1 + x^2/2$, $p_4(x) = 1 + x^2/2 + x^4/4!$; $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{(2k)!} x^{2k}$.

14. $f^{(k)}(0) = 0$ if k is even, $f^{(k)}(0) = 1$ if k is odd; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x$, $p_3(x) = x + x^3/3!$, $p_4(x) = x + x^3/3!$; $\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \frac{1}{(2k+1)!} x^{2k+1}$.

15. $f^{(k)}(x) = \begin{cases} \frac{(-1)^{k/2}(x \sin x - k \cos x)}{k} & k \text{ even} \\ \frac{(-1)^{(k-1)/2}(x \cos x + k \sin x)}{k} & k \text{ odd} \end{cases}$, $f^{(k)}(0) = \begin{cases} \frac{(-1)^{1+k/2}k}{2} & k \text{ even} \\ 0 & k \text{ odd} \end{cases}$; $p_0(x) = 0$, $p_1(x) = 0$, $p_2(x) = x^2$, $p_3(x) = x^2$, $p_4(x) = x^2 - \frac{1}{6}x^4$; $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor - 1} \frac{(-1)^k}{(2k+1)!} x^{2k+2}$.

16. $f^{(k)}(x) = (k+x)e^x$, $f^{(k)}(0) = k$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x + x^2$, $p_3(x) = x + x^2 + \frac{1}{2}x^3$, $p_4(x) = x + x^2 + \frac{1}{2}x^3 + \frac{1}{3!}x^4$; $\sum_{k=1}^n \frac{1}{(k-1)!} x^k$.

17. $f^{(k)}(x_0) = e$; $p_0(x) = e$, $p_1(x) = e + e(x-1)$, $p_2(x) = e + e(x-1) + \frac{e}{2}(x-1)^2$, $p_3(x) = e + e(x-1) + \frac{e}{2}(x-1)^2 + \frac{e}{3!}(x-1)^3$.

17. $f^{(k)}(x_0) = e$; $p_0(x) = e$, $p_1(x) = e + e(x - 1)$, $p_2(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2$, $p_3(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{3!}(x - 1)^3$, $p_4(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{3!}(x - 1)^3 + \frac{e}{4!}(x - 1)^4$; $\sum_{k=0}^n \frac{e}{k!}(x - 1)^k$.

18. $f^{(k)}(x) = (-1)^k e^{-x}$, $f^{(k)}(\ln 2) = (-1)^k \frac{1}{2}$; $p_0(x) = \frac{1}{2}$, $p_1(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2)$, $p_2(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2$, $p_3(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2 - \frac{1}{2 \cdot 3!}(x - \ln 2)^3$, $p_4(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2 - \frac{1}{2 \cdot 3!}(x - \ln 2)^3 + \frac{1}{2 \cdot 4!}(x - \ln 2)^4$; $\sum_{k=0}^n \frac{(-1)^k}{k!}(x - \ln 2)^k$.

19. $f^{(k)}(x) = \frac{(-1)^k k!}{x^{k+1}}$, $f^{(k)}(-1) = -k!$; $p_0(x) = -1$, $p_1(x) = -1 - (x + 1)$, $p_2(x) = -1 - (x + 1) - (x + 1)^2$, $p_3(x) = -1 - (x + 1) - (x + 1)^2 - (x + 1)^3$, $p_4(x) = -1 - (x + 1) - (x + 1)^2 - (x + 1)^3 - (x + 1)^4$; $\sum_{k=0}^n (-1)(x + 1)^k$.

20. $f^{(k)}(x) = \frac{(-1)^k k!}{(x + 2)^{k+1}}$, $f^{(k)}(3) = \frac{(-1)^k k!}{5^{k+1}}$; $p_0(x) = \frac{1}{5}$, $p_1(x) = \frac{1}{5} - \frac{1}{25}(x - 3)$, $p_2(x) = \frac{1}{5} - \frac{1}{25}(x - 3) + \frac{1}{125}(x - 3)^2$, $p_3(x) = \frac{1}{5} - \frac{1}{25}(x - 3) + \frac{1}{125}(x - 3)^2 - \frac{1}{625}(x - 3)^3$, $p_4(x) = \frac{1}{5} - \frac{1}{25}(x - 3) + \frac{1}{125}(x - 3)^2 - \frac{1}{625}(x - 3)^3 + \frac{1}{3125}(x - 3)^4$; $\sum_{k=0}^n \frac{(-1)^k}{5^{k+1}}(x - 3)^k$.

460

Chapter 9

21. $f^{(k)}(1/2) = 0$ if k is odd, $f^{(k)}(1/2)$ is alternately π^k and $-\pi^k$ if k is even; $p_0(x) = p_1(x) = 1$, $p_2(x) = p_3(x) = 1 - \frac{\pi^2}{2}(x - 1/2)^2$, $p_4(x) = 1 - \frac{\pi^2}{2}(x - 1/2)^2 + \frac{\pi^4}{4!}(x - 1/2)^4$; $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!} (x - 1/2)^{2k}$.

22. $f^{(k)}(\pi/2) = 0$ if k is even, $f^{(k)}(\pi/2)$ is alternately -1 and 1 if k is odd; $p_0(x) = 0$, $p_1(x) = -(x - \pi/2)$, $p_2(x) = -(x - \pi/2)$, $p_3(x) = -(x - \pi/2) + \frac{1}{3!}(x - \pi/2)^3$, $p_4(x) = -(x - \pi/2) + \frac{1}{3!}(x - \pi/2)^3 + \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^{k+1}}{(2k+1)!} (x - \pi/2)^{2k+1}$.

23. $f(1) = 0$, for $k \geq 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(1) = (-1)^{k-1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = (x - 1)$, $p_2(x) = (x - 1) - \frac{1}{2}(x - 1)^2$, $p_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$, $p_4(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \frac{1}{4}(x - 1)^4$; $\sum_{k=1}^n \frac{(-1)^{k-1}}{k}(x - 1)^k$.

24. $f(e) = 1$, for $k \geq 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(e) = \frac{(-1)^{k-1}(k-1)!}{e^k}$; $p_0(x) = 1$, $p_1(x) = 1 + \frac{1}{e}(x - e)$, $p_2(x) = 1 + \frac{1}{e}(x - e) - \frac{1}{2e^2}(x - e)^2$, $p_3(x) = 1 + \frac{1}{e}(x - e) - \frac{1}{2e^2}(x - e)^2 + \frac{1}{3e^3}(x - e)^3$, $p_4(x) = 1 + \frac{1}{e}(x - e) - \frac{1}{2e^2}(x - e)^2 + \frac{1}{3e^3}(x - e)^3 - \frac{1}{4e^4}(x - e)^4$; $1 + \sum_{k=1}^n \frac{(-1)^{k-1}}{ke^k}(x - e)^k$.

25. (a) $f(0) = 1$, $f'(0) = 2$, $f''(0) = -2$, $f'''(0) = 6$, the third MacLaurin polynomial for $f(x)$ is $f(x)$.

(b) $f(1) = 1$, $f'(1) = 2$, $f''(1) = -2$, $f'''(1) = 6$, the third Taylor polynomial for $f(x)$ is $f(x)$.

26. (a) $f^{(k)}(0) = k!c_k$ for $k \leq n$; the n th Maclaurin polynomial for $f(x)$ is $f(x)$.

(b) $f^{(k)}(x_0) = k!c_k$ for $k \leq n$; the n th Taylor polynomial about $x = 1$ for $f(x)$ is $f(x)$.

27. $f^{(k)}(0) = (-2)^k$; $p_0(x) = 1$, $p_1(x) = 1 - 2x$, $p_2(x) = 1 - 2x + 2x^2$, $p_3(x) = 1 - 2x + 2x^2 - \frac{4}{3}x^3$.

28. $f^{(k)}(\pi/2) = 0$ if k is odd, $f^{(k)}(\pi/2)$ is alternately 1 and -1 if k is even; $p_0(x) = 1$, $p_2(x) = 1 - \frac{1}{2}(x - \pi/2)^2$, $p_4(x) = 1 - \frac{1}{2}(x - \pi/2)^2 + \frac{1}{24}(x - \pi/2)^4$, $p_6(x) = 1 - \frac{1}{2}(x - \pi/2)^2 + \frac{1}{24}(x - \pi/2)^4 - \frac{1}{720}(x - \pi/2)^6$.

Exercise Set 9.7

461

29. $f^{(k)}(\pi) = 0$ if k is odd, $f^{(k)}(\pi)$ is alternately -1 and 1 if k is even; $p_0(x) = -1$, $p_2(x) = -1 + \frac{1}{2}(x - \pi)^2$, $p_4(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4$, $p_6(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4 + \frac{1}{720}(x - \pi)^6$.

29. $f^{(k)}(\pi) = 0$ if k is odd, $f^{(k)}(\pi)$ is alternately -1 and 1 if k is even; $p_0(x) = -1$, $p_2(x) = -1 + \frac{1}{2}(x - \pi)^2$, $p_4(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4$, $p_6(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4 + \frac{1}{720}(x - \pi)^6$.

30. $f(0) = 0$; for $k \geq 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(x+1)^k}$, $f^{(k)}(0) = (-1)^{k-1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x - \frac{1}{2}x^2$, $p_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3$.

31. True.

32. True, $a_0 = f(0)$.

33. False, $p_6^{(4)}(x_0) = f^{(4)}(x_0)$.

34. False, since $M = e^2$, $|e^2 - p_4(2)| \leq \frac{M|x-0|^{n+1}}{(n+1)!} \leq \frac{e^2 \cdot 2^5}{5!} < \frac{9 \cdot 2^5}{5!}$.

35. $\sqrt{e} = e^{1/2}$, $f(x) = e^x$, $M = e^{1/2}$, $|e^{1/2} - p_n(1/2)| \leq M \frac{|x-1/2|^{n+1}}{(n+1)!} \leq 0.00005$, by experimentation take $n = 5$, $\sqrt{e} \approx p_5(1/2) \approx 1.648698$, calculator value ≈ 1.648721 , difference ≈ 0.000023 .

36. $1/e = e^{-1}$, $f(x) = e^x$, $M_n = \max |f^{(n+1)}(x)| = e^0 = 1$, $|e^{-1} - p_n(-1)| \leq M \frac{|0+1|^{n+1}}{(n+1)!}$, so want $\frac{1}{(n+1)!} \leq 0.0005$. $n = 7$, $e^{-1} \approx p_7(-1) \approx 0.367857$, calculator gives $e^{-1} \approx 0.367879$, $|1/e - p_7(-1)| \approx 0.000022$.

37. $p(0) = 1$, $p(x)$ has slope -1 at $x = 0$, and $p(x)$ is concave up at $x = 0$, eliminating I, II and III respectively and leaving IV.

38. Let $p_0(x) = 2$, $p_1(x) = p_2(x) = 2 - 3(x-1)$, $p_3(x) = 2 - 3(x-1) + (x-1)^3$.

39. From Exercise 2(a), $p_1(x) = 1+x$, $p_2(x) = 1+x+x^2/2$.

(b)

x	-1.000	-0.750	-0.500	-0.250	0.000	0.250	0.500	0.750	1.000
$f(x)$	0.431	0.506	0.619	0.781	1.000	1.281	1.615	1.977	2.320
$p_1(x)$	0.000	0.250	0.500	0.750	1.000	1.250	1.500	1.750	2.000
$p_2(x)$	0.500	0.531	0.625	0.781	1.000	1.281	1.625	2.031	2.500

(c) $|e^{\sin x} - (1+x)| < 0.01$ for $-0.14 < x < 0.14$.

(d) $|e^{\sin x} - (1+x+x^2/2)| < 0.01$ for $-0.50 < x < 0.50$.

(d) $|e^{\sin x} - (1 + x + x^2/2)| < 0.01$ for $-0.50 < x < 0.50$.

40. (a) $\cos \alpha \approx 1 - \alpha^2/2$; $x = r - r \cos \alpha = r(1 - \cos \alpha) \approx r\alpha^2/2$.

(b) In Figure Ex-36 let $r = 4000$ mi and $\alpha = 1/80$ so that the arc has length $2r\alpha = 100$ mi. Then $x \approx r\alpha^2/2 = \frac{4000}{2 \cdot 80^2} = 5/16$ mi.

41. (a) $f^{(k)}(x) = e^x \leq e^b$, $|R_2(x)| \leq \frac{e^b b^3}{3!} < 0.0005$, $e^b b^3 < 0.003$ if $b \leq 0.137$ (by trial and error with a hand calculator), so $[0, 0.137]$.

42. $f^{(k)}(\ln 4) = 15/8$ for k even, $f^{(k)}(\ln 4) = 17/8$ for k odd, which can be written as $f^{(k)}(\ln 4) = \frac{16 - (-1)^k}{8}$.

Exercise Set 9.8

463

$$\sum_{k=0}^n \frac{16 - (-1)^k}{8k!} (x - \ln 4)^k.$$

43. $\sin x = x - \frac{x^3}{3!} + 0 \cdot x^4 + R_4(x)$, $|R_4(x)| \leq \frac{|x|^5}{5!} < 0.5 \times 10^{-3}$ if $|x|^5 < 0.06$, $|x| < (0.06)^{1/5} \approx 0.569$; $(-0.569, 0.569)$.

44. $M = 1$, $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + R_5(x)$, $R_5(x) \leq \frac{1}{6!}|x|^6 \leq 0.0005$ if $|x| < 0.8434$.

45. $f^{(6)}(x) = \frac{46080x^5}{(1+x^2)^7} - \frac{57600x^4}{(1+x^2)^6} + \frac{17280x^2}{(1+x^2)^5} - \frac{720}{(1+x^2)^4}$, assume first that $|x| < 1/2$, then $|f^{(6)}(x)| < 46080|x|^6 + 57600|x|^4 + 17280|x|^2 + 720$, so let $M = 9360$, $R_5(x) \leq \frac{9360}{5!}|x|^5 < 0.0005$ if $x < 0.0915$.

46. $f(x) = \ln(1+x)$, $f^{(4)}(x) = -6/(1+x)^4$, first assume $|x| < 0.8$, then we can calculate $M = 6/2^{-4} = 96$, and $|f(x) - p(x)| \leq \frac{96}{4!}|x|^4 < 0.0005$ if $|x| < 0.1057$.

Exercise Set 9.8

1. $f^{(k)}(x) = (-1)^k e^{-x}$, $f^{(k)}(0) = (-1)^k$, $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$.

463 (465 / 762)

