Three-Phase Power Measurement

Exp. No: Date:

Aim: To measure power in a three phase circuit using two wattmeter's method under

- a) Balanced resistive load condition
- b) Unbalanced resistive load condition

Apparatus required:

S.N	Name of the	Range/	Type	Quantity
0	equipment	Specification		
1	Voltmeter	(0-150) V	MI	1
2	Ammeter	(0-5) A	MI	3
3	Wattmeter	150V, 5A,UPF	Electro-	2
			dynamic	
4	3- Phase Auto	I/P: 3-φ, 415V	Core	1
	Transformer	O/P: (0-470)V,10A	type	
5	Gang Rheostat	26Ω , $4.1A$	Wire	1
		Per each limb	wound	
6	Rheostat	26Ω, 4.1Α	Wire	3
			wound	
7	Connecting wires	1.5sq.mm	copper	Required

Balanced resistive load condition

Procedure:

- 1. Connect the circuit as per the circuit diagram.
- 2. Adjust the gang rheostat and Individual rheostats for the maximum resistance position.
- 3. Initially keep the output voltage of the 3-Phase autotransformer at zero.
- 4. Switch ON the supply and set the autotransformer output voltage to 120V.
- 5. Read the meters to obtain V_L , I_1 , I_2 and I_3 . Note the wattmeter reading W_1 and W_2 (Note the multiplying factor on the wattmeter).
- 6. Vary the Gang rheostat resistance (decrease) and obtain at least five sets of observations, the current should not exceed the maximum load current limit of (4.1 A).
- 7. Tabulate the readings and verify the results with theoretical calculations.

Measuerment of 3-Phase power by two wattmeter method under Balanced load condition

Observation table -1 Three phase power in a balanced load

SI	(v)	I ₁ (A)	I ₂ (A)	<i>I</i> ₃ (A)	(W)	W ₂ (W)	Calculated power (Wc)= $(V_L/\sqrt{3})$ $(I_1+I_2+I_3)$	(W)m= $(W_1 + W_2)$	Error $\frac{W-W_c}{W_c} *$ 100%

Theoretical calculations:

Calculated power

For Star connected Unbalanced load:

$$V_{Ph=} V_{L} / \sqrt{3}$$

$$I_{Ph}=I_{L}$$

$$W_{I}=\sqrt{3} \ V_{Ph} \ I_{Ph} \ Cos \ (30 + \Phi) \ (OR) \ V_{L} . I_{L} \ Cos \ (30 + \Phi)$$

$$W_{2}=\sqrt{3} \ V_{Ph} \ I_{Ph} \ Cos \ (30 - \Phi) \ (OR) \ V_{L} . I_{L} \ Cos \ (30 - \Phi)$$

$$W_{I}+ \ W_{2}=\sqrt{3} \ V_{L} . I_{L} \ Cos \ \Phi$$

$$W_{C}= \ V_{Ph} \ I_{Ph1} + \ V_{Ph} \ I_{Ph2} + \ V_{Ph} \ I_{Ph3}$$

$$W_{C}= \ \frac{V^{L}}{\sqrt{3}} \ (II+I2+I3) \longrightarrow V_{Ph=} \ V_{L} / \sqrt{3}$$

Determination of power factor for the balanced load

$$\emptyset = Tan^{-1} \left(\sqrt{3} \cdot \frac{(W2 - W1)}{(W2 + W1)} \right)$$

Unbalanced resistive load

Procedure:

- 1. Connect the circuit as per circuit diagram in Fig. 2.
- 2. Adjust the three rheostats and gang rheostat at the maximum resistance position.
- 3. Switch ON the supply and set the autotransformer output voltage to 120V.
- 4. Take five sets of observation for different rheostat settings such that the reading of **I1**, **I2** and **I3** in each set is appreciably different to create unbalanced loading condition. (Don't vary the gang rheostat). The current should not exceed the limits in each arm.
- 5. Note down I₁, I₂, I₃, V₁, V₂, V₃, W₁ and W₂. Check the result by completing the computations indicated in Table.2.

Measuerment of 3-Phase power by two wattmeter method under Unbalanced load condition

Observation table -2 (three phase power in an unbalanced load)

SI No	(V)	(V)	V ₃ (V)	(A)	I ₂ (A)	I ₂ (A)	W ₁ (W)	W ₂ (W)	Calculated power= Wc= $V_1I_1+V_2I_2+V_3I_3$	Wm= $(W_1 + W_2)$	Error $\frac{W - W_c}{W_c}$ * 100%

Theoretical calculations:

Star connected Unbalanced load:

$$V_{Ph=} V_L / \sqrt{3}$$
 $I_{Ph} = I_L$
 $W_1 = \sqrt{3} \ V_{Ph} \ I_{Ph} \ Cos \ (30 + \Phi) \ (OR) \ V_L \ .I_L \ Cos \ (30 + \Phi)$
 $W_2 = \sqrt{3} \ V_{Ph} \ I_{Ph} \ Cos \ (30 - \Phi) \ (OR) \ V_L \ .I_L \ Cos \ (30 - \Phi)$
 $W_1 + \ W_2 = \sqrt{3} \ V_L \ .I_L \ Cos \ \Phi$

Calculated power

$$W_C = VR_{Ph}I_{Ph1} + VY_{Ph}I_{Ph2} + VB_{Ph}I_{Ph3}$$

Determination of power factor for the balanced load

$$\emptyset = Tan^{-1} \left(\sqrt{3} \cdot \frac{(W2 - W1)}{(W2 + W1)} \right)$$

Precautions:

- 1. All the connections should be tight.
- 2. Initially keep the output voltage of the autotransformer to zero.

Result: