

Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Introducción a la Inteligencia Artificial

Trabajo práctico 4

Alumno:

Petruskevicius Ignacio - Lucio Trincheri

30/05/2022

1. Problema

La idea surgió mientras empezamos a trabajar en este práctico, pues el gato de uno de los integrantes se subió a la mesa del mismo y se acostó. Luego pensamos que podríamos representar un conocimiento relacionado a los gatos y donde estos prefieren dormir. Así elegimos construir un sistema que busca predecir que tan bueno es un lugar para el dormir de un gato, dadas ciertas condiciones del entorno.

En particular, se toman como variables la temperatura del lugar, condición de la superficie, incidencia solar, sueño del gato y ruido ambiente.

2. Modelado

2.1. Variables lingüísticas

2.1.1. Entrada

 \blacksquare Temperatura de la superficie escogida en $C^{\circ},$ puede ser Baja, Media y Alta.

Rango: [15, 45]

- Baja: (1/15, 1/20, 0/25)
- Media: (0/20, 1/25, 0/35)
- Alta: (0/25, 1/35, 1/45)

• Ruido del ambiente. en dB, puede ser Quieto, Moderado, Bullicioso, Ruidoso.

Rango: [30, 110]

- Quieto: (1/30, 1/55, 0/65)
- Moderado: (0/55, 1/65, 0/75)
- Bullicioso: (0/65, 1/75, 0/85)

• Ruidoso: (0/75, 1/85, 1/110)

■ Condición de la superficie escogida, puede ser Mala, Aceptable, Muy buena o Ideal. Hace referencia a la comodidad que representa para el gato, por ejemplo si la misma esta mojada etc.

Rango: [0, 1]

• Mala: $(1/0, 0/0.\hat{3})$

• Aceptable: $(0/0, 1/0.\widehat{3}, 0/0.\widehat{6})$

• Muy buena: $(0/0.\widehat{3}, 1/0.\widehat{6}, 0/1)$

• Ideal: $(0/0.\hat{6}, 1/1)$

• Grado de exposición al **sol** de la superficie escogida, puede ser Nula, Media o Directa.

Rango: [0,1]

• Nulo: (1/0, 0/0, 5)

• Medio: (0/0, 1/0, 5, 0/1)

• Directo: (0/0,5,1/1)

IIA - TP 4 2

■ Tiempo sin dormir, medido en horas. Puede ser Bajo, Medio, Alto, Muy Alto.

Rango: [0, 16]

• Bajo: $(1/0, 0/5.\widehat{3})$

• Medio: $(0/0, 1/5.\widehat{3}, 0/10.\widehat{6})$

• Alto: $(0/5.\hat{3}, 1/10.\hat{6}, 0/16)$

• Muy alto: $(0/10.\hat{6}, 1/16)$

2.1.2. Salida

• Índice que representa las condiciones generales de la superficie escogida, llamado CGS. Esta variable es la salida del primer sistema, y se utiliza como entrada del segundo. Esto se explica más adelante. Puede adoptar valores: Malas, Desfavorables, Favorables o Perfectas.

Rango: [0, 1]

• Malas: (1/0, 0/0.3)

• Desfavorables: $(0/0, 1/0.\hat{3}, 0/0.\hat{6})$

• Perfect as: $(0/0.\widehat{6}, 1/1)$

• Índice que representa el grado de aceptación que tendrá el gato para el lugar escogido para dormir. Varia entre Nunca, Tal vez, Habitualmente, Siempre.

Rango: [0,1]

• Nunca: $(1/0, 0/0.\widehat{3})$

• Tal vez: $(0/0, 1/0.\widehat{3}, 0/0.\widehat{6})$

• Habitualmente: $(0/0.\hat{3}, 1/0.\hat{6}, 0/1)$

• Siempre: $(0/0.\hat{6}, 1/1)$

Para ver los conjuntos difusos de forma mas clara, revisar el archivo de FisPro.

2.2. Inferencia

En esta parte, generamos 2 grupos de reglas. Uno para obtener el **CGS** (condiciones generales de la superficie) y otro para el resultado final. En el primero relacionamos los conceptos de Temperatura, Condición de la superficie y Incidencia del sol, mediante las siguientes reglas:

Rule	IE Tompor	AND Super	AND Sol	THEN CGS
	IF Temper	AND Super		
1	Baja	Muy buena	Nulo	Malas
2	Baja	Muy buena	Medio	Desfavorables
3	Baja	Muy buena	Directo	Favorables
4	Baja	Ideal	Nulo	Desfavorables
5	Baja	Ideal	Medio	Desfavorables
6	Baja	Ideal	Directo	Favorables
7	Baja	Aceptable	Nulo	Malas
8	Baja	Aceptable	Medio	Malas
9	Baja	Aceptable	Directo	Desfavorables
10	Baja	Mala		Malas
11	Media	Mala		Malas
12	Media	Aceptable	Nulo	Desfavorables
13	Media	Aceptable	Medio	Favorables
14	Media	Aceptable	Directo	Favorables
15	Media	Muy buena	Nulo	Favorables
16	Media	Muy buena	Medio	Favorables
17	Media	Muy buena	Directo	Perfectas
18	Media	Ideal		Perfectas
19	Alta	Mala		Malas
20	Alta	Aceptable	Nulo	Desfavorables
21	Alta	Aceptable	Medio	Malas
22	Alta	Aceptable	Directo	Malas
23	Alta	Muy buena	Nulo	Favorables
24	Alta	Muy buena	Medio	Malas
25	Alta	Muy buena	Directo	Malas
26	Alta	Ideal	Nulo	Favorables

Y para el calculo final de la preferencia utilizamos el CGS calculado en el punto anterior, así como el sueño y el ruido. Estos parámetros se relacionan mediante las siguientes reglas:

Rule	IF Sueño	AND CGS	AND Rui	THEN Pref
1	Bajo	Malas		Nunca
2	Bajo	Desfavorabl		Nunca
3	Bajo	Favorables	Ruidoso	Nunca
4	Bajo	Favorables	Bullicioso	Nunca
5	Bajo	Favorables		
6	Bajo	Favorables		
7	Bajo	Perfectas	Ruidoso	Nunca
8	Bajo	Perfectas	Bullicioso	Nunca
9	Bajo	Perfectas	Moderado	Tal vez
10	Bajo	Perfectas	Quieto	Habitualmente
11	Medio	Malas		Nunca
12	Medio	Desfavorabl		
13	Medio	Favorables	Ruidoso	Nunca
14	Medio	Favorables	Bullicioso	Nunca
15	Medio	Favorables	Moderado	Tal vez
16	Medio	Favorables	Quieto	Habitualmente
17	Medio	Perfectas	Ruidoso	Nunca
18	Medio	Perfectas	Bullicioso	Nunca
19	Medio	Perfectas	Moderado	Habitualmente
20	Medio	Perfectas	Quieto	Habitualmente
21	Alto	Malas		Nunca
22	Alto	Desfavorabl	Ruidoso	Nunca
23	Alto	Desfavorabl	Bullicioso	Nunca
24	Alto	Desfavorabl	Moderado	Tal vez
25	Alto	Desfavorabl	Quieto	Tal vez
26	Alto	Favorables Ruidoso		Tal vez
27	Alto	Favorables	Bullicioso	Tal vez
28	Alto	Favorables	Moderado	Habitualmente
29	Alto	Favorables	Quieto	Siempre
30	Alto	Perfectas	Ruidoso	Tal vez
31	Alto	Perfectas	Bullicioso	Tal vez
32	Alto	Perfectas		
33	Alto	Perfectas	Quieto	Siempre
34	Muy alto	Malas		
35	Muy alto	Desfavorabl		Tal vez
36	Muy alto	Favorables	Ruidoso	Tal vez
37	Muy alto	Favorables	Bullicioso	Habitualmente
38	Muy alto	Favorables Moderado		Habitualmente
39	Muy alto	Favorables Quieto		Siempre
40	Muy alto	Perfectas Ruidoso		Habitualmente
41	Muy alto	Perfectas	Bullicioso	Siempre
42	Muy alto	Perfectas	Moderado	Siempre
43	Muy alto	Perfectas	Quieto	Siempre

La idea de estas fue realizar un **or** con el sueño, a modo de que este cobre mayor importancia. Lo cual refleja un comportamiento real, dado que si el gato tiene mucho sueño bajará sus estándares y dormirá en peores condiciones si es necesario.

Para la confección de las mismas nos basamos en experiencias propias y de otros dueños de gatos. Además buscamos información en sitios especializados en conductas de gatos domésticos y tomamos datos sobre las preferencias de los mismos.

IIA - TP 4 5

3. Pruebas y ajustes de parámetros

Nos proponemos a evaluar el comportamiento de nuestros sistemas en los siguientes casos:

■ Caso A:

 $\bullet\,$ Temperatura: 25 C°

• Ruido: 55 dB

 $\bullet\,$ Condición superficie: $0.8\,$

• Exposición al sol: 0.6

• Tiempo sin dormir: 5 horas

■ Caso B:

 $\bullet\,$ Temperatura: 20 C°

• Ruido: 60 dB

• Condición superficie: 0.9

• Exposición al sol: 0.2

• Tiempo sin dormir: 8 horas

■ Caso C:

 $\bullet\,$ Temperatura: 15 C°

• Ruido: 85 dB

 $\bullet\,$ Condición superficie: 0.5

• Exposición al sol: 0.7

 $\bullet\,$ Tiempo sin dormir: 2 horas

• Caso D:

 $\bullet\,$ Temperatura: 30 C°

• Ruido: 40 dB

• Condición superficie: 0.4

• Exposición al sol: 0.8

 $\bullet\,$ Tiempo sin dormir: 14 horas

Analizaremos los resultados para los operadores de conjunción "minimum" y "product" y los defuzzificadores "mean max" y "area". La disyunción utilizada es "max"

IIA - TP 4 6

Caso	Operador Conjunción	Defuzzification	Valor Intermedio CGS	Valor Final Preferencia
A	minimum	mean max	0.667	0.834
В	minimum	mean max	0.333	0.167
С	minimum	mean max	0.250	0.062
D	minimum	mean max	0.083	0.333
A	product	mean max	0.747	0.731
В	product	mean max	0.333	0.083
C	product	mean max	0.283	0.076
D	product	mean max	0.127	0.333
A	minimum	area	0.783	0.650
В	minimum	area	0.236	0.192
C	minimum	area	0.340	0.023
D	minimum	area	0.469	0.585
A	product	area	0.793	0.798
В	product	area	0.254	0.161
С	product	area	0.331	0.023
D	product	area	0.447	0.531

4. Resultados

Los valores resultantes obtenidos se encuentran dentro de los esperados, siendo el Caso A el de mejor índice tal como se predijo, ya que los valores de las variables lingüísticas del mismo activan las mejores reglas en cuanto a la preferencia. Además, pudimos observar como el sueño cumple como uno de los parámetros más importantes gracias a las reglas que diseñamos. Esto se hace evidente en el Caso D, donde el resto de valores eran de los menos deseables, pero un valor alto en el sueño del gato logró mejorar la preferencia final (en particular con el defuzzificador "mean max").

Aún así, nos fue difícil predecir que tanto un valor de una variable lingüística afectaría el resultado antes de cargar valores en la herramienta, o sin tener todas las gráficas de los conjuntos borrosos presentes al momento de decidir los valores. Esto nos llevo a realizar distintos casos de prueba y error hasta llegar a ejemplos suficientemente distintos para mostrar distintas situaciones. Esto se complicó un poco más debido a la cantidad de reglas que creamos y la cantidad de variables lingüísticas que tiene nuestro modelo, además de ser necesario el pasaje de valores de un archivo al otro antes de poder llegar a el valor final.

5. Conclusiones

En este trabajo, modelamos de manera general el comportamiento de los gatos. Es claro que cada individuo se va a comportar de manera diferente, en base a sus gustos o experiencias. Por lo tanto, vimos que es necesaria la capacidad de flexibilizar el modelos para adoptar estos casos. Para eso proponemos 2 alternativas, una de las cuales probamos:

• Modificar los conjuntos fuzzy de manera que las etiquetas sean más acordes a cada gato en particular. Por ejemplo, si el gato prefiere que la superficie este más caliente, se pueden mover las etiquetas hacia la derecha. De esta manera la temperatura tiene que ser efectivamente más alta para que entre en la categoría Media (por ejemplo).

Otra forma es añadiendo nuevas variables lingüísticas que representen el índice de afinidad o preferencia del gato por cada variable actual. Es decir, una nueva variable que determine mediante un and, cuanto se va a tener en cuenta dicha variable a la hora de encontrar el nivel de preferencia por la superficie. De esta manera, se pueden variar las entradas de estos índices y conseguir un resultado más certero.

Por otro lado, refiriéndonos a la herramienta **FisPro**, la misma presenta algunos problemas menores pero que se hacen molestos a la hora de trabajar. Por ejemplo, cuando se quiere inferir y se escribe el valor crisp de una variable, el programa tiende a restarle unos decimales $(5 \to 4.97)$.

Además **FisPro** tiene ciertas limitaciones que nos dificultaron un poco el trabajo. En este utilizamos reglas concatenadas, es decir que se aplican nuevas reglas sobre el resultados de otras. Esto no es soportado por **FisPro** y nos fuerza a crear dos archivos y realizar el pasaje de números a mano.

De todas maneras, con un poco de paciencia se pudieron representar todos los conjuntos y reglas.