Capítulo 2-Projeto Lógico Combinacional

Profa. Eliete Caldeira

Introdução

- Circuito combinacional circuito digital cuja saída no instante t depende apenas da entrada no instante t
- Circuito sequencial circuito digital cuja saída no instante t depende de entradas em instantes anteriores

Figure 2.1 Combinational versus sequential digital circuits.

Chaves

 A entrada de controle permite (OM) ou não (OFF) a passagem de corrente entre a fonte e a saída

Figure 2.3 (a) The evolution of switches: relays (1930s), vacuum tubes (1940s), discrete transistors (1950s), and integrated circuits (ICs) containing transistors (1960s–present). IC's originally held about ten transistors; now they can hold more than a billion. (b) Simple view of a switch.

Os Transistores CMOS

- Os chips ou Cl's são feitos com transistores CMOS em silício
- nMOS é ativo em nível lógico alto
- pMOS é ativo em nível lógico baixo

Fonte (*source*) Dreno (*drain*) e porta (*gate*)

Figure 2.4 CMOS transistors: (a) transistor on silicon, (b) nMOS transistor symbol with indication of conducting when gate = 1, (c) pMOS transistor symbol conducts when gate = 0.

Portas Lógicas Booleanas

- Álgebra booleana desenvolvida por George Boole– usa variáveis que só podem ser 1 ou 0 (verdadeiro ou falso) e cujos operadores AND, OR e NOT operam com estas variáveis e dão como retorno 1 ou 0
- ▶ Operações boolenas ⇒ portas lógicas

Exercícios - Escreva a expressão booleana

- Exercício 1 Escreva a expressão booleana
 - a) Um chuveiro automático de um sistema de combate a incêndio deve borrifar água quando uma temperatura elevada for detectada e o sistema estiver habilitado
 - e=1, se temperatura elevada; caso contrário e=0
 - h=1, se habilitado; caso contrário h=0
 - c = 1 se chuveiro ligado; c=0 caso contrário
 - b) Um alarme sonoro deverá ser ativado se o sistema de alarme estiver habilitado e se o carro for sacudido ou se a porta for aberta
 - s=1, se carro sacudido; caso contrário s=0
 - p=1, se porta aberta; caso contrário p=0
 - h=1, se habilitado; caso contrário h=0
 - a=1, se alarme ligado; a=1 caso contrário

Álgebra de Boole e Álgebra de Chaveamento

Figure 2.7 Shannon applied Boolean algebra to switch-based circuits, providing a formal basis to digital circuit design.

Porta NOT (Inversora)

$$F = x'$$
 ou $F = \bar{x}$

Figure 2.9 Inverter conduction paths when: (a) the input is 0, and (b) the input is 1.

Figure 2.10 Inverter timing diagram.

Porta AND ("E")

$$F = x.y$$
 $l\hat{e} - se$ $F = x AND y$

Figure 2.13 AND gate conduction paths when: (a) all inputs are 1, and (b) and input is 0.

Figure 2.14 AND gate timing diagram.

Porta OR ("OU")

$$F = x + y$$
 $l\hat{e} - se$ $F = x OR y$

Figure 2.11 OR gate conduction paths when: (a) one input is 1, and (b) both inputs are 0.

Figure 2.12 OR gate timing diagram.

Portas CMOS

As portas AND e OR apresentadas não são boas!

CMOS - Características de passagem

- Um nMOS é ativo no nível lógico 1, ou seja:
 - Conduz se $V_{GSn} \ge V_{tn}$
 - \circ Corta se $V_{GSn} < V_{tn}$

Onde V_{tn} é a tensão de limiar do nMOS

- Um pMOS é ativo no nível lógico
 - 0, ou seja:
 - \circ Conduz se $V_{SGp} \ge |V_{tp}|$
 - \circ Corta se $V_{SGp} < |V_{tp}|$

Onde V_{tp} é a tensão de limiar do pMOS pmos transistor

NMOS transistor

logical symbol

logical

CMOS – Características de passagem

nMOS

(a) Logic 0 transfer

pMOS

(a) Logic 1 transfer

(b) Logic 1 transfer

(b) Logic 0 transfer

CMOS – Características de passagem

- Um nMOS (ativo no nível lógico 1):
 - Passa bem o nível lógico 0
 - Passa mal ou degrada o nível lógico 1
- Um pMOS (ativo no nível lógico 0):
 - Passa bem o nível lógico 1
 - Passa mal ou degrada o nível lógico 0

Portas CMOS

Sendo assim, as portas CMOS devem ser inversoras como a NAND e a NOR

Porta NAND CMOS

Porta NOR CMOS

Porta AND CMOS

Figure 2.46 AND gate in CMOS.

Porta OR CMOS

Portas XOR e XNOR

XOR (OU Exclusivo)

$$F = x \oplus y$$

$$F = x\bar{y} + \bar{x}y$$

$$F = xy' + x'y$$

XNOR (Não OU Exclusivo ou Equiv

$$F = \overline{x \oplus y}$$

$$F = \overline{x}\overline{y} + xy$$

$$F = x'y' + xy$$

x	у	F
0	0	1
0	1	0
1	0	0
1	1	1

Exercício

- Exercício 2 Desenhe o circuito lógico usando portas lógicas para o sistema de acendimento automático da lâmpada w = k AND NOT(s) ou w = k.s' onde:
 - k = 1 se tem movimento
 - \circ s = 1 se tem luz
 - w = 1 se a lâmpada está ligada

Exercício

- Exercício 2 Desenhe o circuito lógico usando portas lógicas para o sistema de acendimento automático da lâmpada w = k AND NOT(s) ou w = k.s' onde:
 - k = 1 se tem movimento
 - \circ s = 1 se tem luz
 - w = 1 se a lâmpada está ligada

Exercício

Exercício 3 - Converta em circuito F = a AND NOT(b OR NOT(c)) ou F = a.(b+c')'

Portas AND e OR de mais entradas

Figure 2.17 Using multiple-input AND gates: (a) using 2-input AND gates, (b) using a 3-input AND gate.

Convenção

- Sem rótulos dentro da porta
- Sentido sempre da saída de uma porta para a entrada da outra mas sem setas
- A saída de uma porta pode se conectar a mais de uma entrada de porta, mas a entrada de uma porta não pode ser alimentada por dois sinais diferentes

Vantagens de CMOS

- ▶ Consumo de potência estática ≅0
- Boa capacidade de corrente
- Simetria de tensão e corrente na saída
- Corrente de entrada ≈ 0
- Pouca área em CI

Vantagens de CMOS

Inversor nMOS

- Se a entrada é baixa, nenhuma potência é dissipada e saída é V_{DD}
- Se a entrada é alta, há dissipação de potência estática e saída é V_{OL} que é pequena mas maior que 0

Inversor com BJT

- Se a entrada é baixa, nenhuma potência é dissipada e saída é V_{CC}
- \circ Se a entrada é alta, há dissipação de potência estática e saída $V_{OL} = V_{CEsat}$ que é pequena mas maior que 0

Vantagens de CMOS

Inversor TTL

Características de tempo

- Tempos de subida e de descida
- Atrasos de propagação

Carregamento

- ▶ Fan-in
 - Número de entradas que uma porta apresentar
 - Quanto maior número de entradas, maior o atraso
- Carga-padrão: carga de entrada de uma NOT
- Fan-out
 - Número de entradas que a saída de uma porta pode se conectar sem apresentar riscos ou erros na transmissão dos dados
 - Dado em cargas-padrão
 - Está relacionado com a corrente que pode passar pelos contatos dos Cl's

Carregamento

▶ Fan-in e fan-out

Níveis de tensão CMOS

Valores típicos:

$$V_{Hmax}$$
 3.3V V_{Lmax} 0.8V V_{Hmin} 2.0V V_{Lmin} 0.0V

Margem de ruído

Porta de transmissão ou transmission gate

- Se s = 0, y e x estão desconectados
- Se s = 1, y = x

(a) Transistor circuit

- (b) Symbol
- Passa bem os níveis lógicos 1 e 0

Porta de transmissão ou transmission gate

Aplicação: Portas XOR e XNOR com TG's

FIM