statistical-rethinking-chapter-3

2024-07-27

Preliminary Code

```
p_grid <- seq(from=0, to=1, length.out=1000)
prior <- rep(1, 1000)
likelihood <- dbinom(6, size=9, prob=p_grid)
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
plot(p_grid, posterior)</pre>
```


samples <- sample(p_grid, prob=posterior, size=1e4, replace=TRUE)</pre>

3E1.

sum(samples < 0.2) / length(samples)
[1] 5e-04</pre>

3E2.

sum(samples > 0.8) / length(samples)

[1] 0.1188

3E4.

quantile(samples, 0.2)

20% ## 0.5185185

3E5.

quantile(samples, 0.8)
80%
0.7567568

3E6.

HPDI(samples, prob=0.66)

|0.66 0.66| ## 0.5255255 0.7927928

3E7.

PI(samples, prob=0.66)

17% 83% ## 0.4994995 0.7727728

3M1.

p_grid <- seq(from=0, to=1, length.out=le3)
prior <- rep(1, length(p_grid))
likelihood <- dbinom(8, 15, prob=p_grid)
posterior <- likelihood * prior
plot(p_grid, posterior)</pre>

3M2.

samples <- sample(p_grid, prob=posterior, size=le4, replace=TRUE)
HPDI(samples, prob=0.90)</pre>

|0.9 0.9| ## 0.3383383 0.7267267

3M3.

Construct a posterior predictive check

samples <- sample(p_grid, prob=posterior, size=1e4, replace=TRUE) w <- rbinom(1e4, size=15, prob=samples) sum(w == 8) / 1e4

[1] 0.1544

3M4.

w <- rbinom(1e4, size=9, prob=samples)
sum(w==6) / 1e4</pre>

[1] 0.1788

3M5.

Redo 3M1.

p_grid <- seq(from=0, to=1, length.out=1000)
prior <- ifelse(p_grid < 0.5, 0, 1)
likelihood <- dbinom(x=8, size=15, prob=p_grid)
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
plot(p_grid, posterior, type="l")</pre>

Redo 3M2.

```
samples <- sample(p_grid, prob=posterior, size=1e4, replace=TRUE)
HPDI(samples, prob=0.9)</pre>
```

```
## |0.9 0.9|
## 0.5005005 0.7107107
```

Redo 3M3.

```
samples <- sample(p_grid, prob=posterior, size=1e4, replace=TRUE)
w <- rbinom(1e4, size=15, prob=samples)
sum(w == 8) / 1e4</pre>
```

```
## [1] 0.1563
```

Redo 3M4.

```
samples <- sample(p_grid, prob=posterior, size=1e4, replace=TRUE)
w <- rbinom(1e4, size=9, prob=samples)
sum(w == 6) / 1e4</pre>
```

```
## [1] 0.2262
```

3M6.

You want the 99% percentile interval of the posterior distribution of p to be only 0.05 wide. This means the distance between the upper and lower bound of the interval should be 0.05. How many times will you have to toss the globe to do this?

```
## [1] 2156
```

Hard Problems

```
data(homeworkch3)
```

3H1.

p_grid <- seq(from=0, to=1, length.out=1e3)</pre>

7/28/24, 15:20