Contents

1	测度和积分				
	1.1	可测空间	1		
	1.2	可测函数	5		
	1.3	测度	10		
	1.4	积分	13		

测度和积分

1.1 可测空间

令 E 是集合, \mathcal{E} 是 E 的一个子集族. 若对于任意 $A, B \in \mathcal{E}$ 有 $A \cap B \in \mathcal{E}$, 那么我们说 \mathcal{E} **对交封闭**. 如果 \mathcal{E} 中任意可数个集合的交还在 \mathcal{E} 中, 那么我们说 \mathcal{E} 对可数交封闭. 类似地, 我们可以定义对补封闭、对并封闭和对可数并封闭的概念.

σ-代数

如果 E 的非空子集族 \mathcal{E} 对补和有限并封闭, 那么我们说 \mathcal{E} 是 E 上的**代数**. 如果 其对补和可数并封闭, 那么我们说 \mathcal{E} 是 E 上的 σ -**代数**, 即:

- a) $A \in \mathcal{E} \Rightarrow E \setminus A \in \mathcal{E}$,
- b) $A_1, A_2, \ldots \in \mathcal{E} \Rightarrow \bigcup_n A_n \in \mathcal{E}$.

由于 $(\bigcup_n A_n)^c = \bigcap_n A_n^c \in \mathcal{E}$,所以对补和可数并封闭可以自然导出对可数交封闭,即 σ -代数对可数交也封闭.

任取 $A \in \mathcal{E}$, 那么 $E = A \cup (E \setminus A) \in \mathcal{E}$, 所以 E 上任意 σ -代数都至少包含 E 和 \emptyset . 事实上, $\mathcal{E} = \{E,\emptyset\}$ 是 E 上的最简单的 σ -代数, 被称为**平凡** σ -代数. E 上最大的 σ -代数当然是 $\mathcal{E} = 2^E$, 即 \mathcal{E} 就是 E 的幂集, 被称为**离散** σ -代数.

不难看出, E 上一族 σ -代数的任意交 (不一定可数) 还是 E 上的 σ -代数. 给定 E 的一个子集族 C, 我们可以考虑所有包含 C 的 σ -代数 (总是存在至少一个这样的 σ -代数, 即 2^E), 将这些 σ -代数取交集, 我们便得到了包含 C 的最小的 σ -代数, 被称为由 C 生成的 σ -代数, 记为 σC .

如果 E 是拓扑空间,由 E 的所有开集族生成的 σ -代数被称为 E 上的 **Borel** σ -**代 数**, 记为 $\mathcal{B}(E)$ 或者 \mathcal{B}_E , 其元素被称为 **Borel 集**.

p-系和 d-系

对于 E 的子集族 C, 如果其对交封闭, 那么我们说 C 是一个 p-系, 这里 p 代表 product, 是 "交" 的另一种说法. E 的子集族 D 被称为 d-系, 如果其满足:

a) $E \in \mathcal{D}$,

- b) $A, B \in \mathcal{D}$ and $A \supset B \Rightarrow A \setminus B \in \mathcal{D}$,
- c) $(A_n) \subseteq \mathcal{D}$ and $A_n \nearrow A \Rightarrow A \in \mathcal{D}$.

其中 $(A_n) \subseteq D$ 表明 (A_n) 是 D 中的集合序列, $A_n \nearrow A$ 表明这个序列递增于极限 A:

$$A_1 \subseteq A_2 \subseteq \cdots, \quad \bigcup_{n=1}^{\infty} A_n = A.$$

显然一个 σ -代数既是 p-系又是 d-系, 其反面也是成立的. 所以 p-系和 d-系是产生 σ -代数的原始结构.

命题 1.1. E 的子集族是 σ -代数当且仅当其既是 p-系又是 d-系.

Proof. (⇒) 若 \mathcal{E} 是 σ -代数,其显然是 p-系并且满足 d-系的条件 (a) 和 (c). 下面我们验证其满足 d-系的条件 (b). 任取 $A, B \in \mathcal{E}$ 且 $A \supseteq B$,那么 $A \setminus B = A \cap (E \setminus B) \in \mathcal{E}$,所以 \mathcal{E} 是 d-系.

(⇐) 若 \mathcal{E} 既是 p-系又是 d-系. 任取 $A \in \mathcal{E}$, 根据 d-系的 (a) 和 (b), 我们有 $E \setminus A \in \mathcal{E}$. 所以 \mathcal{E} 对补封闭. 然后我们说明对并封闭. 任取 $A, B \in \mathcal{E}$, 由于

$$A \cup B = E \setminus (A \cup B)^c = E \setminus (A^c \cap B^c),$$

结合 p-系对交封闭, 所以 $A \cup B \in \mathcal{E}$. 最后我们说明对可数并封闭. 如果 $(A_n) \subseteq \mathcal{E}$, 令 $B_n = A_1 \cup \cdots \cup A_n$, 那么 $(B_n) \subseteq \mathcal{E} \perp B_n \nearrow A$, 根据 d-系的 (c), 所以 $A \in \mathcal{E}$, 故 \mathcal{E} 对可数并封闭.

下面的引理为本节的主要定理做准备.

引理 1.2. 令 \mathcal{D} 是 E 上的 d-系, 固定 $D \in \mathcal{D}$, 令

$$\hat{\mathcal{D}} = \{ A \in \mathcal{D} : A \cap D \in \mathcal{D} \},\$$

那么 \hat{D} 仍然是 d-系.

单调类定理

这是一个非常有用的工具来证明某些集族是 σ -代数.

定理 1.3. 如果一个 d-系包含一个 p-系, 那么其包含这个 p-系生成的 σ -代数.

Proof. 设 C 是一个 p-系. 令 D 是包含 C 的最小的 d-系,即包含 C 的所有 d-系的交 (不难看出 d-系的任意交是 d-系). 我们证明 D 实际上是一个 σ -代数,这样包含 C 的任意 d-系都包含 D,而 D 作为包含 C 的 σ -代数,其包含 σ C. 根据 θ 题 1.1,只需要说明 D 既是 p-系又是 d-系,而 D 已经是 d-系,所以只需要说明 D 是 p-系.

我们首先说明对于任意的 $D \in \mathcal{D}$ 和 $C \in \mathcal{C}$, 有 $D \cap C \in \mathcal{D}$. 令

$$\mathcal{D}_1 = \{ A \in \mathcal{D} : A \cap C \in \mathcal{D} \},\$$

根据 引理 1.2, \mathcal{D}_1 是 d-系. 由于 \mathcal{C} 是 p-系, 所以 $\mathcal{C} \subseteq \mathcal{D}_1$, 即 \mathcal{D}_1 是包含 \mathcal{C} 的 d-系, 所以 $\mathcal{D} \subseteq \mathcal{D}_1$. 这就表明 $\mathcal{D} \in \mathcal{D}_1$, 即 $\mathcal{D} \cap \mathcal{C} \in \mathcal{D}$.

下面说明对于任意的 $D, B \in \mathcal{D}$, 有 $D \cap B \in \mathcal{D}$. 令

 $\mathcal{D}_2 = \{ A \in \mathcal{D} : A \cap D \in \mathcal{D} \}.$

同样根据 引理 1.2, \mathcal{D}_2 是 d-系. 根据上面的叙述,有 $\mathcal{C} \subseteq \mathcal{D}_2$,即 \mathcal{D}_2 是包含 \mathcal{C} 的 d-系,所以 $\mathcal{D} \subseteq \mathcal{D}_2$,这就表明 $\mathcal{B} \in \mathcal{D}_2$,即 $\mathcal{D} \cap \mathcal{B} \in \mathcal{D}$. 这就证明了 \mathcal{D} 是 p-系.

可测空间

一个**可测空间**指的是二元组 (E,\mathcal{E}) , 其中 E 是集合, \mathcal{E} 是 E 上的 σ -代数. 此时, \mathcal{E} 的元素被称为**可测集**. 当 E 是拓扑空间, $\mathcal{E} = \mathcal{B}_E$ 的时候, 可测集也被称为 **Borel 集**.

可测空间的积

令 (E, \mathcal{E}) 和 (F, \mathcal{F}) 是可测空间. 如果 $A \in \mathcal{E}$ 和 $B \in \mathcal{F}$, 那么 $A \times B$ 被称为**可测矩形**. 我们用 $\mathcal{E} \otimes \mathcal{F}$ 表示 $E \times F$ 上的由可测矩形集族生成的 σ -代数, 被称为**乘积** σ -代数. 可测空间 $(E \times F, \mathcal{E} \otimes \mathcal{F})$ 被称为 (E, \mathcal{E}) 和 (F, \mathcal{F}) 的积,我们通常使用 $(E, \mathcal{E}) \times (F, \mathcal{F})$ 来表示.

Exercises

1-1 (划分生成 σ-代数)

- a) 令 $\mathcal{C} = \{A, B, C\}$ 是 E 的一个划分, 列出 $\sigma \mathcal{C}$ 的元素.
- b) 令 \mathcal{C} 是 E 的 (可数) 划分. 证明 $\sigma \mathcal{C}$ 的每个元素都是 \mathcal{C} 中元素的可数并.
- c) $\Diamond E = \mathbb{R}$, $\mathcal{C} \neq \mathbb{R}$ 的所有单点子集构成的子集族.证明 $\sigma \mathcal{C}$ 的元素要么是可数集要么是可数集的补集.这表明从直观上来看, $\sigma \mathcal{C}$ 要比 $\mathcal{B}(\mathbb{R})$ 小得多,例如开区间 (0,1) 属于后者但是不属于前者.

Solution. (a) 令

 $\mathcal{E} = \{A, B, C, A \cup B, A \cup C, B \cup C, E\},\$

显然 \mathcal{E} 是一个 σ -代数. 对于任意包含 \mathcal{C} 的 σ -代数, 由于其对并封闭, 所以其必须包含 \mathcal{E} , 所以 $\mathcal{E} = \sigma \mathcal{C}$.

- (b) 令 \mathcal{E} 为 \mathcal{C} 中元素的所有可数并构成的集族. 根据 σ -代数对可数并的封闭性, 所以 $\sigma\mathcal{C} \supseteq \mathcal{E}$. 设 (A_n) 构成 \mathcal{E} 的可数划分,即 (A_n) 两两不相交且 $\mathcal{E} = \bigcup_n A_n$. 任取 $\bigcup_k A_{n_k} \in \mathcal{E}$,那么 $\mathcal{E} \setminus (\bigcup_k A_{n_k})$ 依然是某些 (A_n) 的可数并,所以 $\mathcal{E} \setminus (\bigcup_k A_{n_k}) \in \mathcal{E}$,即 \mathcal{E} 对补封闭,所以 \mathcal{E} 是 σ -代数,所以 $\mathcal{E} = \sigma\mathcal{C}$.
- (c) 令 \mathcal{E} 为 \mathbb{R} 的可数子集和补集可数的子集构成的子集族. 显然 $\mathcal{E} \subseteq \sigma \mathcal{C}$ 且不难验证 \mathcal{E} 是一个 σ -代数 (可数个可数集的并是可数集), 所以 $\mathcal{E} = \sigma \mathcal{C}$.

1-2 (\mathbb{R} 上的 Borel σ -代数) $\mathbb{R} = (-\infty, +\infty)$ 的任意开子集都是开区间的可数并,使用这一事实证明 $\mathcal{B}(\mathbb{R})$ 由所有开区间构成的子集族生成.

Proof. 设 \mathcal{C} 为所有开区间构成的子集族, \mathcal{T} 为所有开集构成的子集族 (即 \mathbb{R} 上的拓扑). 显然 $\mathcal{C} \subseteq \mathcal{T}$, 所以 $\sigma \mathcal{C} \subseteq \sigma \mathcal{T} = \mathcal{B}(\mathbb{R})$. 由于 \mathcal{T} 中集合都是 \mathcal{C} 中集合的可数并, 所以 $\mathcal{T} \subseteq \sigma \mathcal{C}$, 这表明 $\mathcal{B}(\mathbb{R}) = \sigma \mathcal{T} \subseteq \sigma \mathcal{C}$. 所以 $\mathcal{B}(\mathbb{R}) = \sigma \mathcal{C}$ 由所有开区间构成的子集族生成.

1-3 ($\mathbb R$ 上的 Borel σ -代数) 证明: $\mathbb R$ 中的任意区间都是 Borel 集. 特别的, $(-\infty,x),(-\infty,x],(x,y],[x,y]$ 都是 Borel 集.对于每个x,单点集 $\{x\}$ 也是 Borel 集.

Proof. 只需注意到

$$(-\infty, x) = \bigcup_{n=1}^{\infty} (-n + x, x), (-\infty, x] = \bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right),$$
$$(x, y] = \bigcap_{n=1}^{\infty} \left(x, y + \frac{1}{n}\right), [x, y] = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, y\right], \{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x\right].$$

所以上述集合都是 Borel 集, 对于其他的区间同理.

- 1-4 (\mathbb{R} 上的 Borel σ -代数) 证明 $\mathcal{B}(\mathbb{R})$ 可以由以下任意一种集族生成 (实际上还有很多可能):
 - a) 所有形如 $(-\infty, x]$ 的区间构成的子集族.
 - b) 所有形如 (x, y] 的区间构成的子集族.
 - c) 所有形如 [x, y] 的区间构成的子集族.
 - d) 所有形如 $(x, +\infty)$ 的区间构成的子集族.

此外,在每种情况中x,y可以被限制为有理数.

Proof. (a) 记该集族为 C, 由上题, 这样的区间已经是 Borel 集, 所以 $\sigma C \subseteq \mathcal{B}(\mathbb{R})$. 任取 \mathbb{R} 的开区间 (x,y), 有

$$(x,y) = (-\infty,x]^c \cap (-\infty,y) = (-\infty,x]^c \cap \bigcup_{n=1}^{\infty} \left(-\infty,y-\frac{1}{n}\right] \in \sigma \mathcal{C},$$

而 $\mathcal{B}(\mathbb{R})$ 由所有开区间生成, 所以 $\mathcal{B}(\mathbb{R}) \subset \sigma \mathcal{C}$. 所以 $\mathcal{B}(\mathbb{R}) = \sigma \mathcal{C}$.

1-5 (迹空间) 令 (E, \mathcal{E}) 是可测空间, 固定 $D \subseteq E$, 令

$$\mathcal{D} = \mathcal{E} \cap D = \{ A \cap D : A \in \mathcal{E} \}.$$

证明 \mathcal{D} 是 \mathcal{D} 上的 σ -代数,被称为 \mathcal{E} 在 \mathcal{D} 上的**迹**. $(\mathcal{D},\mathcal{D})$ 也被称为 $(\mathcal{E},\mathcal{E})$ 在 \mathcal{D} 上的迹.

Proof. 任取 $A \cap D \in \mathcal{D}$, 其中 $A \in \mathcal{E}$, 那么

$$D \setminus (A \cap D) = (E \setminus A) \cap D \in \mathcal{D}$$
,

所以 \mathcal{D} 对补封闭. 任取 $(A_n \cap D) \subseteq \mathcal{D}$, 那么

$$\bigcup_{n=1}^{\infty} (A_n \cap D) = \left(\bigcup_{n=1}^{\infty} A_n\right) \cap D \in \mathcal{D},$$

所以D对可数并封闭.

1-6 (子集的 Borel σ -代数是迹) 设 (E,\mathcal{T}) 是拓扑空间, (D,\mathcal{T}_D) 是子空间. 证明 D 上的 Borel σ -代数 \mathcal{B}_D 与 D 在 E 上的迹 $\mathcal{B}_E \cap D$ 相同.

Proof. 由于 $T_D = T \cap D \subseteq \mathcal{B}_E \cap D$,由上题 $\mathcal{B}_E \cap D$ 是 σ-代数,所以 $\mathcal{B}_D \subseteq \mathcal{B}_E \cap D$. 记

$$\mathcal{C} = \{ A \subseteq E : A \cap D \in \mathcal{B}_D \},\$$

那么 $T \subseteq C$. 我们只需要证明 $C \not\in E$ 上的 σ -代数,那么就有 $C \supseteq \sigma T = \mathcal{B}_E$,即 $\mathcal{B}_D \supseteq C \cap D \supseteq \mathcal{B}_E \cap D$. 任取 $A \in C$,那么 $(E \setminus A) \cap D = D \setminus (A \cap D) \in \mathcal{B}_D$,所以 $E \setminus A \in C$. 任取 $(A_n) \subseteq C$,那么

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap D = \bigcup_{n=1}^{\infty} (A_n \cap D) \in \mathcal{B}_D,$$

所以 $\bigcup_n A_n \in \mathcal{C}$. 这就表明 \mathcal{C} 是 \mathcal{E} 上的 σ -代数.

1.2 可测函数

可测函数

 $\Rightarrow (E, \mathcal{E})$ 和 (F, \mathcal{F}) 是可测空间,映射 $f: E \to F$ 如果使得任取 $B \in \mathcal{F}$,有 $f^{-1}B \in \mathcal{E}$,那么我们说 f 相对于 \mathcal{E} 和 \mathcal{F} 可测.

命题 1.4. 映射 $f: E \to F$ 相对于 $\mathcal E$ 和 $\mathcal F$ 可测当且仅当对于任意生成 $\mathcal F$ 的子集族 $\mathcal F_0$,任取 $B \in \mathcal F_0$,有 $f^{-1}B \in \mathcal E$.

Proof. 必要性显然. 下证充分性. 设 \mathcal{F}_0 使得 $\mathcal{F} = \sigma \mathcal{F}_0$, 且对于任意的 $\mathcal{B} \in \mathcal{F}_0$ 有 $f^{-1}\mathcal{B} \in \mathcal{E}$. 记

$$\mathcal{F}_1 = \{ A \in \mathcal{F} : f^{-1}A \in \mathcal{E} \},\$$

显然 $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}$. 由于

$$f^{-1}(F \setminus A) = E \setminus (f^{-1}A), \quad f^{-1}\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f^{-1}A_i,$$

所以 \mathcal{F}_1 是 σ -代数, 所以 $\mathcal{F} = \mathcal{F}_1$, 即 f 相对于 \mathcal{E} 和 \mathcal{F} 可测.

命题 1.5. 给定可测空间 (E, \mathcal{E}) , (F, \mathcal{F}) , (G, \mathcal{G}) , 如果 f 相对于 \mathcal{E} 和 \mathcal{F} 可测,g 相对于 \mathcal{F} 和 \mathcal{G} 可测,那么复合 $g \circ f$ 相对于 \mathcal{E} 和 \mathcal{G} 可测.

Proof. 任取 $C \in \mathcal{G}$, 有

$$(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C)),$$

g 可测表明 $g^{-1}(C) \in \mathcal{F}$, f 可测表明 $f^{-1}(g^{-1}(C)) \in \mathcal{E}$, 所以 $g \circ f$ 相对于 \mathcal{E} 和 \mathcal{G} 可测.

数值函数

令 (E,\mathcal{E}) 是可测空间. 回顾实数及扩充实数 $\mathbb{R}=(-\infty,+\infty)$, $\mathbb{R}=[-\infty,+\infty]$, $\mathbb{R}_+=[0,+\infty)$, $\mathbb{R}_+=[0,+\infty]$. E 上的**数值函数**指的是从 E 到 \mathbb{R} 或者 \mathbb{R} 的子集的映射. 如果这个映射的值在 \mathbb{R} 中,那么我们一般称其为**实值函数**.

E 上的数值函数如果相对于 \mathcal{E} 和 $\mathcal{B}(\mathbb{R})$ 可测,那么我们说其是 \mathcal{E} -可测的. 如果 \mathcal{E} 是拓扑空间且 $\mathcal{E} = \mathcal{B}(E)$,那么 \mathcal{E} -可测函数被称为 **Borel 函数**. 下面的命题是 <mark>命题 1.4</mark> 的直接结果.

命题 1.6. 映射 $f: E \to \mathbb{R}$ 是 \mathcal{E} -可测的当且仅当对于每个 $r \in \mathbb{R}$, $f^{-1}[-\infty, r] \in \mathcal{E}$.

上述命题中的 $[-\infty, r]$ 可以改为 $[-\infty, r)$, $[r, \infty]$, $(r, \infty]$ 中的任意一种.

函数的正部分和负部分

对于 $a,b \in \mathbb{R}$, 我们记 $a \lor b$ 为 a 和 b 中的最大者, $a \land b$ 为 a 和 b 中的最小者. 对于函数 f,g, 用 $f \lor g$ 表示函数 $x \mapsto f(x) \lor g(x)$. 令 (E,\mathcal{E}) 是可测空间, $f \in E$ 上的数值函数. 那么

$$f^{+} = f \vee 0, \quad f^{-} = -(f \wedge 0)$$

都是非负函数并且 $f = f^+ - f^-$. 函数 f^+ 被称为 f 的**正部分**, f^- 被称为 f 的**负部分**.

命题 1.7. 函数 $f \in \mathcal{E}$ -可测的当且仅当 f^+ 和 f^- 都是 \mathcal{E} -可测的.

Proof. 若 f 是 \mathcal{E} -可测的. 任取 $r \in \mathbb{R}$, 若 r < 0, 则 $(f^+)^{-1}[-\infty, r] = \emptyset \in \mathcal{E}$. 若 $r \ge 0$, 则

$$(f^+)^{-1}[-\infty, r] = E \setminus (f^+)^{-1}(r, \infty] = E \setminus f^{-1}(r, \infty],$$

由于 $(r, \infty]$ 是 Borel 集, 所以 $(f^+)^{-1} [-\infty, r] \in \mathcal{E}$. 综合起来, f^+ 是 \mathcal{E} -可测的. 同理可证 f^- 是 \mathcal{E} -可测的.

若 f^+ 和 f^- 都是 \mathcal{E} -可测的. 任取 $r \in \mathbb{R}$, 若 r < 0, 那么

$$f^{-1}[-\infty, r] = (f^{-})^{-1}[-r, \infty] \in \mathcal{E}.$$

若 r > 0, 那么

$$f^{-1}[-\infty, r] = E \setminus f^{-1}(r, \infty] = E \setminus (f^+)^{-1}(r, \infty] \in \mathcal{E}.$$

所以 f 是 \mathcal{E} -可测的.

指示函数和简单函数

令 $A \subseteq E$, 定义 A 的指示函数为 1_A :

$$1_A(x) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

对于 1_E , 我们简记为 1. 显然, 1_A 是 \mathcal{E} -可测的当且仅当 $A \in \mathcal{E}$.

E 上的函数 f 如果形如

$$f = \sum_{i=1}^n a_i 1_{A_i},$$

其中 $n \ge 1$, $a_1, \ldots, a_n \in \mathbb{R}$, A_1, \ldots, A_n 是可测集, 那么我们说 f 是**简单函数**. 在这个定义中, 若 $A_i \cap A_j \ne \emptyset$, 那么我们可以将 $a_i 1_{A_i} + a_j 1_{A_j}$ 拆为

$$a_i 1_{A_i \sim (A_i \cap A_j)} + (a_i + a_j) 1_{A_i \cap A_j} + a_j 1_{A_j \sim (A_i \cap A_j)},$$

所以我们可以假设 A_i 两两不相交. 此外, 如果 $\bigcup_i A_i \neq E$, 记 $B = E \setminus \bigcup_i A_i \in \mathcal{E}$, 那 么

$$f = \sum_{i=1}^{n} a_i 1_{A_i} + 0 \cdot 1_B,$$

所以我们还可以假设 $\bigcup_i A_i = E$. 这意味着对于一个简单函数 f,总存在整数 m,不同的实数 b_1, \ldots, b_m 和 E 的可测划分 $\{B_1, \ldots, B_m\}$ 使得 $f = \sum_{i=1}^m b_i 1_{B_i}$,这种表示被称为简单函数 f 的**标准型**.

利用简单函数的标准型, 很容易验证简单函数都是 \mathcal{E} -可测的. 反之, 若 f 是 \mathcal{E} -可测的, 只有有限个取值且值为实数, 那么 f 为简单函数. 特别地, 任意常值函数是简单函数. 最后, 如果 f, g 是简单函数, 那么

$$f+g$$
, $f-g$, fg , f/g , $f\vee g$, $f\wedge g$

都是简单函数, 其中 f/g 要求 g 的值始终非零.

函数列的极限

 $\Diamond(f_n)$ 是 E 上的一列数值函数, 我们可以逐点定义

$$\inf f_n$$
, $\sup f_n$, $\liminf f_n$, $\limsup f_n$, (1.1)

例如, inf f_n 将 $x \in E$ 送到实数列 ($f_n(x)$) 的下确界. 如果

$$\lim\inf f_n = \lim\sup f_n = f,$$

那么我们说 (f_n) 有逐点极限 f, 记为 $f = \lim f_n$ 或者 $f_n \to f$.

如果 (f_n) 单调递增,即 $f_1 \leq f_2 \leq \cdots$,那么根据单调有界定理, $\lim f_n$ 存在且等于 $\sup f_n$. 此时我们用 $f_n \nearrow f$ 来表示 (f_n) 单调递增且有极限 f. 类似地,用 $f_n \searrow f$ 来表示 (f_n) 单调递减且有极限 f.

下面的定理表明可测函数类对极限操作是封闭的.

定理 1.8. 令 (f_n) 是一列 \mathcal{E} -可测函数,那么 (1.1) 中的四个函数都是 \mathcal{E} -可测的. 此外,如果 $\lim f_n$ 存在,那么 $\lim f_n$ 也是 \mathcal{E} -可测的.

Proof. 记 $g = \sup f_n$. 任取 $r \in \mathbb{R}$, 注意到 $g(x) \le r$ 当且仅当对于所有 n 有 $f_n(x) \le r$. 所以

$$g^{-1}[-\infty, r] = \bigcap_{n=1}^{\infty} f_n^{-1}[-\infty, r],$$

 f_n 可测表明 $f_n^{-1}[-\infty, r] \in \mathcal{E}$, 所以 $g^{-1}[-\infty, r] \in \mathcal{E}$, 即 g 可测. 对于 inf f_n , 我们有 inf $f_n = -\sup(-f_n)$, 所以 inf f_n 也可测. 最后, 注意到

$$\liminf_{m} f_n = \sup_{m} \inf_{n \ge m} f_n, \quad \limsup_{m} f_n = \inf_{m} \sup_{n \ge m} f_n,$$

所以 $\lim \inf f_n$ 和 $\lim \sup f_n$ 可测. 若二者相等, 那么 $\lim f_n$ 也可测.

可测函数的逼近

引理 1.9. 对于 $n \in \mathbb{N}^*$, 令

$$d_n(r) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} 1_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)}(r) + n1_{[n,\infty]}(r), \quad r \in \bar{\mathbb{R}}_+.$$

那么, $d_n(r)$ 是 \mathbb{R}_+ 上单调递增的简单函数,并且对于每个 $r \in \mathbb{R}_+$, $d_n(r)$ 随着 n 的增大是的单调递增的.

Proof. 显然 $d_n(r)$ 是单调递增的简单函数,我们证明任取 $r \in \mathbb{R}_+$, $d_n(r)$ 是单调递增的.若 $r = \infty$,那么 $d_n(r) = n$ 是单调递增的.现在假设 $r \in \mathbb{R}_+$,那么存在正整数 m 使得 $m \le r < m+1$,所以当 $n \le m$ 的时候, $d_n(r) = n$ 单调递增.当 n > m 的时候,直观来看, d_n 将区间 [0,n] 等分为 $n2^n$ 份, $r \in [0,n]$ 表明一定存在唯一的 k_n 使得

 $(k_n-1)/2^n \le r < k_n/2^n$,可以发现 k_n 满足递推关系 $k_{n+1} = 2k_n - 1$ 或者 $k_{n+1} = 2k_n$,这表明

$$d_{n+1}(r) = \frac{k_{n+1} - 1}{2^{n+1}} \ge \frac{2k_n - 2}{2^{n+1}} = \frac{k_n - 1}{2^n} = d_n(r).$$

综上, $d_n(r)$ 随着 n 的增大是的单调递增的.

定理 1.10. E 上的非负函数是 \mathcal{E} -可测的当且仅当其是一列单调递增的非负简单函数序列的极限.

Proof. 充分性来源于 定理 1.8. 对于必要性,设 $f: E \to \mathbb{R}_+$ 是 \mathcal{E} -可测的非负函数. 记 d_n 为上述引理中的函数,令 $f_n = d_n \circ f$. 那么 f_n 是非负的 \mathcal{E} -可测函数,并且其取值只有有限个,所以是简单函数. 由于 (d_n) 单调递增,所以 (f_n) 单调递增. 对于任意 $x \in E$, 由于 $f_n(x) = d_n(f(x))$,所以 $n \to \infty$ 的时候 $f_n(x) \to f(x)$,故 $f = \lim_{n \to \infty} f_n$. \square

函数的单调类

令 M 为 E 上数值函数的一个集合,记 M_+ 为 M 中非负函数组成的子集, M_b 为 M 中有界函数组成的子集.

如果 M 包含常值函数 1, M_b 构成 \mathbb{R} 上的向量空间以及 M_+ 在递增极限下封闭,那么我们说 M 是一个**单调类**. 更准确地说, M 是单调类当且仅当:

- a) $1 \in \mathcal{M}$,
- b) 若 $f,g \in \mathcal{M}_b$ 且 $a,b \in \mathbb{R}$, 则 $af + bg \in \mathcal{M}$,
- c) 若 $(f_n) \subseteq \mathcal{M}_+$ 且 $f_n \nearrow f$, 那么 $f \in \mathcal{M}$.

下面的定理通常被用于证明所有 \mathcal{E} -可测函数拥有的某一性质.

定理 1.11. 令 \mathcal{M} 是 \mathcal{E} 上函数的单调类. 假设对于某个生成 \mathcal{E} 的 p-系 \mathcal{C} ,任取 $\mathcal{A} \in \mathcal{C}$,有 $\mathcal{I}_A \in \mathcal{M}$. 那么, \mathcal{M} 包含所有的非负 \mathcal{E} -可测函数以及所有的有界 \mathcal{E} -可测函数.

Proof. 首先证明对于任意的 $A \in \mathcal{E}$ 有 $1_A \in \mathcal{M}$. 记

$$\mathcal{D} = \{ A \in \mathcal{E} : 1_A \in \mathcal{M} \}.$$

再根据单调类的定义 (b), M 包含所有的简单函数.

令 f 是非负 \mathcal{E} -可测函数, 根据 定理 1.10, f 是函数序列 (f_n) 的极限, 其中 f_n 是 递增的非负简单函数, 即 $(f_n) \subseteq \mathcal{M}_+$. 根据单调类的定义 (c), 有 $f \in \mathcal{M}$.

令 g 是有界 \mathcal{E} -可测函数, 那么 g^+ 和 g^- 都是非负 \mathcal{E} -可测函数, 所以 $g^+, g^- \in \mathcal{M}$. 显然 g^+, g^- 也都是有界的, 根据单调类的定义 (b), 所以 $g = g^+ - g^- \in \mathcal{M}$.

SECTION 1.3 测度

标准可测空间

令 (E,\mathcal{E}) 和 (F,\mathcal{F}) 是可测空间. 如果 $f:E\to F$ 是双射的相对于 \mathcal{E} 和 \mathcal{F} 的可测函数, 并且其逆映射 $f^{-1}:F\to E$ 是相对于 \mathcal{F} 和 \mathcal{E} 的可测函数, 那么我们说 f 是**同构**.

如果可测空间 (E, \mathcal{E}) 同构于 (F, \mathcal{B}_F) , 其中 F 是 \mathbb{R} 的某个 Borel 子集, 那么我们说 (E, \mathcal{E}) 是**标准可测空间**. 标准可测空间有非常多. 如果 E 是完备度量空间, 那么 (E, \mathcal{B}_E) 是标准可测空间. 如果 E 是波兰空间, 即可分的可完备度量化的拓扑空间, 那么 (E, \mathcal{B}_E) 是标准可测空间. 如果 E 是可分的 Banach 空间, 那么 (E, \mathcal{B}_E) 是标准可测空间.

显然, [0,1] 和它的 Borel σ -代数构成标准可测空间. {1,2,...,n} 和它的离散 σ -代数构成标准可测空间. $\mathbb{N} = \{0,1,2,...\}$ 和它的离散 σ -代数构成标准可测空间. 一个深刻的结果是, 任意标准可测空间都同构于上述三者之一.

1.3 测度

令 (E, \mathcal{E}) 是可测空间, (E, \mathcal{E}) 上的**测度**指的是一个映射 $\mu : \mathcal{E} \to \mathbb{R}_+$, 其满足:

- a) $\mu(\emptyset) = 0$,
- b) 对于不相交的子集列 $(A_n) \subseteq \mathcal{E}$, 有 $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$.

条件 (b) 被称为**可列可加性**. 需要注意 $\mu(A)$ 总是为正数且可以为 $+\infty$. 数 $\mu(A)$ 被称为 A 的**测度**, 也简记为 $\mu(A)$.

一个**测度空间**指的是三元组 (E, \mathcal{E}, μ) , 其中 (E, \mathcal{E}) 是可测空间, μ 是 (E, \mathcal{E}) 上的 测度.

例子

例 1.12 (Dirac 测度). 令 (E, \mathcal{E}) 是可测空间, 固定 $x \in E$. 对于每个 $A \in \mathcal{E}$, 令

$$\delta_x(A) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

那么 δ_x 是 (E, \mathcal{E}) 上的测度, 被称为 **Dirac 测度**. 直观来看, 其基于一个集合 A 是否含有特定元素 x 来给出这个集合的"大小".

例 1.13 (计数测度). 令 (E, \mathcal{E}) 是可测空间,固定 $D \subseteq E$. 对于每个 $A \in \mathcal{E}$,令 $\nu(A)$ 是 $A \cap D$ 中点的个数,此时 ν 是 (E, \mathcal{E}) 上的测度,被称为**计数测度**. 通常,集合 D 被选取为可数集,在这种情况下

$$\nu(A) = \sum_{x \in D} \delta_x(A), \quad A \in \mathcal{E}.$$

例 1.14 (离散测度). 令 (E, \mathcal{E}) 是可测空间,固定可数子集 $D \subseteq E$. 对于每个 $x \in D$,分配一个正数 m(x). 定义

$$\mu(A) = \sum_{x \in D} m(x)\delta_x(A), \quad A \in \mathcal{E}.$$

那么 μ 是 (E, \mathcal{E}) 上的测度,被称为**离散测度**. 我们可能会把 m(x) 理解为点 x 的质量,那么 $\mu(A)$ 就是集合 A 的质量. 特别地, 如果 (E, \mathcal{E}) 是离散可测空间,那么每个测度 μ 都有这种形式.

例 1.15 (Lebesgue 测度). (\mathbb{R} , $\mathcal{B}_{\mathbb{R}}$) 上的测度 μ 如果对于每个区间 A 都满足 $\mu(A)$ 为 A 的 长度, 那么我们说 μ 是 **Lebesgue 测度**. 类似地, \mathbb{R}^2 上的 Lebesgue 测度是 "面积" 测度, \mathbb{R}^3 上的 Lebesgue 测度是 "体积" 测度等等. 我们将它们记作 Leb.

测度的性质

命题 1.16. 令 μ 是可测空间 (E, \mathcal{E}) 上的测度,那么对于任意可测集 A, B 和 A_1, A_2, \ldots ,有:

有限可加性 $A \cap B = \emptyset \Rightarrow \mu(A \cup B) = \mu(A) + \mu(B)$.

单调性 $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$.

连续性 $A_n \nearrow A \Rightarrow \mu(A_n) \nearrow \mu(A)$.

Boole 不等式 $\mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$.

Proof. 有限可加性是可列可加性的特殊情况, 取 $A_1 = A$, $A_2 = B$, $A_3 = A_4 = \cdots = \emptyset$ 即可. 若 $A \subseteq B$, 由于 \mathcal{E} 是 d-系, 所以 $B \setminus A \in \mathcal{E}$, 所以

$$\mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

若 $A_n \nearrow A$, 令 $B_1 = A_1$, $B_n = A_n \setminus A_{n-1}$, 那么 B_n 互不相交且 $\bigcup_{k=1}^n B_k = A_n$, 所以

$$\lim \mu(A_n) = \lim \mu\left(\bigcup_{k=1}^n B_k\right) = \lim \sum_{k=1}^n \mu(B_k) = \sum_{k=1}^\infty \mu(B_k) = \mu(A).$$

对于 Boole 不等式, 注意到

$$\mu(A \cup B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A) \le \mu(A) + \mu(B),$$

所以归纳可得

$$\mu\left(\bigcup_{k=1}^n A_k\right) \le \sum_{k=1}^n \mu(A_k),$$

 \Diamond *n* → ∞, 左边根据连续性即可得到 Boole 不等式.

有限测度

令 μ 是可测空间 (E, \mathcal{E}) 上的测度,如果 $\mu(E) < \infty$,那么 μ 被称为**有限测度**,根据单调性,此时对于任意 $A \in \mathcal{E}$,都有 $\mu(A) < \infty$. 如果 $\mu(E) = 1$,那么 μ 被称为概率 **测度**. 如果存在 E 的可测划分 (E_n) 使得 $\mu(E_n) < \infty$,那么 μ 被称为 σ -**有限测度**. 如果存在一列有限测度 μ_n 使得 $\mu = \sum_n \mu_n$,那么 μ 被称为 Σ -**有限测度**. 有限测度都是 σ -有限的, σ -有限测度都是 Σ -有限的.

命题 1.17. 令 (E, \mathcal{E}) 是可测空间, μ, ν 是两个有限测度且 $\mu(E) = \nu(E)$,如果 μ, ν 在生成 \mathcal{E} 的某个 p-系上取值相同,那么 $\mu = \nu$.

Proof. 设 \mathcal{C} 是 p-系且 $\mathcal{E} = \sigma \mathcal{C}$, 任取 $A \in \mathcal{C}$ 有 $\mu(A) = \nu(A)$. 令

$$\mathcal{D} = \{ A \in \mathcal{E} : \mu(A) = \nu(A) \},$$

那么 $\mathcal{C} \subseteq \mathcal{D}$. 如果我们证明 \mathcal{D} 是 d-系,那么根据单调类定理,就有 $\mathcal{E} = \sigma \mathcal{C} \subseteq \mathcal{D}$,即任 取 $A \in \mathcal{E}$ 有 $\mu(A) = \nu(A)$. 下面我们证明 \mathcal{D} 是 d-系. 由于 $\mu(E) = \nu(E)$,所以 $E \in \mathcal{D}$. 若 $A, B \in \mathcal{D}$ 且 $A \supseteq B$,那么

$$\mu(B) + \mu(A \setminus B) = \mu(A) = \nu(A) = \nu(B) + \mu(A \setminus B),$$

由于 $\mu(B) = \nu(B)$, 所以 $\mu(A \setminus B) = \nu(A \setminus B)$, 即 $A \setminus B \in \mathcal{D}$. 任取 $(A_n) \subseteq \mathcal{D}$ 且 $A_n \nearrow A$, 根据连续性, 所以 $\mu(A_n) \nearrow \mu(A)$ 以及 $\nu(A_n) \nearrow \nu(A)$, 所以

$$\mu(A) = \lim \mu(A_n) = \lim \nu(A_n) = \nu(A),$$

所以 $A \in \mathcal{D}$. 这就证明了 $\mathcal{D} \neq d$ -系.

推论 1.18. 令 μ, ν 是 $(\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$ 上的概率测度,那么 $\mu = \nu$ 当且仅当对于任意的 $r \in \mathbb{R}$ 有 $\mu[-\infty, r] = \nu[-\infty, r]$.

原子, 纯原子测度和非原子测度

令 (E,\mathcal{E}) 是可测空间,假设对于每个 $x \in E$,单点集 $\{x\} \in \mathcal{E}$,这一点对于所有的标准可测空间都是成立的. 令 μ 是 (E,\mathcal{E}) 上的测度,如果点 x 使得 $\mu\{x\} > 0$,那么 x 被称为 μ 的一个**原子**. 如果 μ 没有任何原子,那么 μ 被称为**非原子测度**. 如果 μ 的原子的集合 D 是可数集并且 $\mu(E \setminus D) = 0$,那么 μ 被称为**纯原子测度**. 例如,Lebesgue 测度是非原子测度,Dirac 测度是纯原子测度(其只有一个原子),离散测度是纯原子测度.

命题 1.19. 令 μ 是 (E, \mathcal{E}) 上的 Σ -有限测度, 那么

$$\mu = \lambda + \nu$$

其中 λ 是非原子测度, ν 是纯原子测度.

完备性,零测集

令 (E, \mathcal{E}, μ) 是测度空间, 如果可测集 B 使得 $\mu(B) = 0$, 那么 B 被称为**零测集**. E 的任意子集如果被一个可测的零测集包含, 那么也被称为**零测集**. 如果 E 的每个零测集都是可测集, 那么我们说这个测度空间是**完备的**. 对于不完备的测度空间, 下面的结果表明可以通过包含所有的零测集来扩大 E 以及 μ 来得到一个完备测度空间. 测度空间 $(E, \bar{\mathcal{E}}, \bar{\mu})$ 被称为 (E, \mathcal{E}, μ) 的**完备化**. 当 $E = \mathbb{R}$, $\mathcal{E} = \mathcal{B}_{\mathbb{R}}$ 和 $\mu = \text{Leb}$ 的时候, $\bar{\mathcal{E}}$ 的元素被称为 **Lebesgue** 可测集.

命题 1.20. 令 \mathcal{N} 是 \mathcal{E} 的所有零测子集的集合族, $\bar{\mathcal{E}}$ 为 $\mathcal{E} \cup \mathcal{N}$ 生成的 σ -代数, 那么

- a) 每个 $B \in \bar{\mathcal{E}}$ 都形如 $B = A \cup N$,其中 $A \in \mathcal{E}$ 以及 $N \in \mathcal{N}$,
- b) 定义 $\bar{\mu}(A \cup N) = \mu(A)$,这给出了 $\bar{\mathcal{E}}$ 上的测度 $\bar{\mu}$,并且是唯一的满足 $\bar{\mu}(A) = \mu(A)$ ($A \in \mathcal{E}$) 的测度,此时测度空间 (E, \mathcal{E}, μ) 是完备的.
- 3-1 (限制和迹) 令 (E, \mathcal{E}) 是可测空间, μ 是测度. 令 $D \in \mathcal{E}$.
 - a) 定义 $\nu(A) = \mu(A \cap D)$, 证明 ν 是 (E, \mathcal{E}) 上的测度,被称为 μ 在 D 上的 迹.
 - b) 令 \mathcal{D} 为 \mathcal{E} 在 D 上的迹,对于 $A \in \mathcal{D}$,定义 $\nu(A) = \mu(A)$,证明 ν 是 (D, \mathcal{D}) 上的测度,被称为 μ 在 D 上的限制.

Proof. (a) $\nu(\emptyset) = \mu(\emptyset) = 0$. 设 $(A_n) \subseteq \mathcal{E}$ 是不相交的子集列, 那么 $(A_n \cap D) \subseteq \mathcal{E}$ 仍然不相交, 所以

$$\nu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (A_n \cap D)\right) = \sum_{n=1}^{\infty} \mu(A_n \cap D) = \sum_{n=1}^{\infty} \nu(A_n),$$

即 ν 是 (E, \mathcal{E}) 上的测度.

(b) $\nu(\emptyset) = \mu(\emptyset) = 0$. 设 $(A_n) \subset \mathcal{D}$ 是不相交的子集列, 于是

$$\nu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \nu(A_n).$$

1.4 积分

令 (E, \mathcal{E}, μ) 是测度空间. 我们同时用 \mathcal{E} 表示 E 上的 \mathcal{E} -可测函数的集合, \mathcal{E}_+ 表示 非负 \mathcal{E} -可测函数构成的子集. 下面对于所有合理的 $f \in \mathcal{E}$, 我们定义 "f 相对于 μ 的积分", 我们将记为:

$$\mu f = \mu(f) = \int_E f(x)\mu(\mathrm{d}x) = \int_E f \,\mathrm{d}\mu.$$

并且我们将证明我们定义的积分蕴含下面的性质:对于任意 $a,b\in\mathbb{R}_+$ 和 $f,g,f_n\in\mathcal{E}_+$,有:

非负性 $\mu f > 0$, 若 f = 0, 则 $\mu f = 0$.

线性性 $\mu(af + bg) = a\mu f + b\mu g$.

单调收敛定理 若 $f_n \nearrow f$, 则 $\mu f_n \nearrow \mu f$.

定义 1.21. 我们从简单函数开始逐步定义积分的概念.

a) 令 f 是简单非负函数,设其标准型为 $f = \sum_i a_i 1_{A_i}$,定义

$$\mu f = \sum_{i=1}^{n} a_i \mu(A_i).$$

b) 令 $f \in \mathcal{E}_+$,记 $f_n = d_n \circ f$,其中 d_n 为 引理 1.9 中的简单函数,那么每个 f_n 是简单非负函数。此时 μf_n 是单调递增的,于是我们定义

$$\mu f = \lim \mu f_n$$
.

c) 令 $f \in \mathcal{E}$, 那么 f^+ , $f^- \in \mathcal{E}_+$. 由于 $f = f^+ - f^-$, 于是我们定义

$$\mu f = \mu(f^+) - \mu(f^-).$$

上述定义中我们要求等式右端至少有一项是有限的.

注释 1.22. 令 f,g 是简单非负函数.

a) 设 $f=\sum_i a_i 1_{A_i}$,这里我们不要求是标准型.若 $\bigcup_i A_i \neq E$,那么我们可以添加零项,所以我们假设 $\bigcup_i A_i = E$.若 $A_i \cap A_j \neq \emptyset$,那么

$$a_i 1_{A_i} + a_j 1_{A_j} = a_i 1_{A_i \setminus (A_i \cap A_j)} + (a_i + a_j) 1_{A_i \cap A_j} + a_j 1_{A_j \setminus (A_i \cap A_j)},$$

于是这两项的积分为

$$a_{i}\mu(A_{i} \setminus (A_{i} \cap A_{j})) + (a_{i} + a_{j})\mu(A_{i} \cap A_{j}) + a_{j}\mu(A_{j} \setminus (A_{i} \cap A_{j}))$$

$$= a_{i}\mu(A_{i}) - a_{i}\mu(A_{i} \cap A_{j}) + (a_{i} + a_{j})\mu(A_{i} \cap A_{j}) + a_{j}\mu(A_{j}) - a_{j}\mu(A_{i} \cap A_{j})$$

$$= a_{i}\mu(A_{i}) + a_{j}\mu(A_{j}),$$

所以对于简单函数的非标准形式而言, 其积分依然形如 $\mu f = \sum_i a_i \mu(A_i)$.

b) 若 $a, b \in \mathbb{R}_+$,那么 af + bg 依然是简单非负函数,再根据 (a),就有

$$\mu(af + bg) = a\mu f + b\mu g.$$

c) 如果 $f \leq g$,那么

$$\mu f \le \mu f + \mu (g - f) = \mu (f + g - f) = \mu g.$$

d) 若 $f_1 \leq f_2 \leq \cdots$,根据 (c),有 $\mu f_1 \leq \mu f_2 \leq \cdots$,所以定义中的 $\lim \mu f_n$ 存在 (可以为 $+\infty$).

示例

例 1.23 (离散测度). 固定 $x_0 \in E$, 考虑 Dirac 测度 δ_{x_0} . 任取 $f \in \mathcal{E}_+$, 所以

$$\delta_{x_0} f = \lim \delta_{x_0} (d_n \circ f) = f(x_0).$$

那么对于任意 $f \in \mathcal{E}$, 就有

$$\delta_{x_0} f = \delta_{x_0}(f^+) - \delta_{x_0}(f^-) = f(x_0).$$

设 $\mu = \sum_{x \in D} m(x) \delta_x$ 是离散测度, 其中 $D \in \mathcal{E}$ 是可数集, m(x) > 0, 那么

$$\mu f = \sum_{x \in D} m(x) f(x).$$

例 1.24 (离散空间). 设 (E,\mathcal{E}) 是离散可测空间, 即 E 可数且 $\mathcal{E}=2^E$. 此时 E 上的任意数值函数都是 \mathcal{E} -可测的, 且 E 上的任意测度 μ 都满足 $\mu=\sum_{x\in E}\mu\{x\}\delta_x$,所以对于任意 E 上的函数 f,有

$$\mu f = \sum_{x \in F} \mu\{x\} f(x).$$

例 1.25 (Lebesgue 积分). 设 $E \in \mathbb{R}^d$ 的 Borel 子集, $\mathcal{E} = \mathcal{B}(E)$. 设 μ 是 Lebesgue 测度 在 (E, \mathcal{E}) 上的限制, 对于 $f \in \mathcal{E}$, 我们使用下面的记号表示积分 μf :

$$\mu f = \text{Leb}_E f = \int_E f(x) \, \text{Leb}(dx) = \int_E f(x) \, dx.$$

可积性

对于一个函数 $f \in \mathcal{E}$, 如果 μf 存在且为实数, 那么 f 被称为**可积的**. 也就是说, f 可积当且仅当 $\mu f^+ < \infty$ 以及 $\mu f^- < \infty$.

在可测集上的积分

令 $f \in \mathcal{E}$, A 是可测集, 那么 $f1_A \in \mathcal{E}$, 此时我们把 f 在 A 上的积分定义为 $f1_A$ 的积分, 使用下面的记号:

$$\mu(f 1_A) = \int_A f(x)\mu(\mathrm{d}x) = \int_A f \,\mathrm{d}\mu.$$

引理 1.26. 令 $f \in \mathcal{E}_+$, $A, B \in \mathcal{E}$ 不相交且 $C = A \cup B$, 那么

$$\mu(f1_A) + \mu(f1_B) = \mu(f1_C).$$

对于一般的 $f \in \mathcal{E}$ 也成立.

Proof. 令 $f_n = d_n \circ f$, 由于 f_n 是简单函数, 所以

$$\mu(f_n 1_A) + \mu(f_n 1_B) = \mu(f_n 1_C),$$

注意到 $f_n 1_A = d_n \circ (f 1_A)$, 对 B, C 同理. 令 $n \to \infty$ 即得结论.

非负性和单调性

命题 1.27. 若 $f \in \mathcal{E}_+$, 那么 $\mu f \geq 0$. 如果 $f, g \in \mathcal{E}_+$ 且 $f \leq g$, 那么 $\mu f \leq \mu g$.

Proof. $f \in \mathcal{E}_+$ 表明 $f_n \geq 0$, 从而 $\mu f_n \geq 0$, 所以 $\mu f = \lim \mu f_n \geq 0$. 如果 $f \leq g$, 由于 d_n 是单调递增函数, 所以 $f_n \leq g_n$, 所以 $\mu f_n \leq \mu g_n$, 所以 $\mu f \leq \mu g$.

推论 1.28. 若 $f, g \in \mathcal{E}$ 且 $f \leq g$, 那么 $\mu f \leq \mu g$.

Proof. $f \leq g$ 表明 $f^+ \leq g^+$ 以及 $f^- \geq g^-$,所以 $\mu f = \mu(f^+) - \mu(f^-) \leq \mu(g^+) - \mu(g^-) \leq \mu g$.

单调收敛定理

该定理是交换积分和极限次序的关键工具. 该定理表明映射

$$\mathcal{E}_+ \to \bar{\mathbb{R}}_+, \quad f \mapsto \mu f$$

在递增极限下是连续的.

定理 1.29. 令 (f_n) 是 \mathcal{E}_+ 中的递增序列,那么

$$\mu(\lim f_n) = \lim \mu f_n$$
.

Proof. 令 $f = \lim f_n \in \mathcal{E}_+$, 由于 $f_n \leq f$, 根据单调性, 有 $\mu f_n \leq \mu f$, 故

$$\lim \mu f_n \leq \mu f$$
.

任取满足0 < s < f的非负简单函数s,给定 $0 < \alpha < 1$,定义

$$A_n = \{ x \in E : f_n(x) \ge \alpha s(x) \},$$

那么 $A_n = (f_n - \alpha s)^{-1}[0, \infty] \in \mathcal{E}$. 不难验证 $A_n \subseteq A_{n+1}$. 对于任意 $x \in E$, 由于 $f_n \nearrow f$ 且 $f(x) \ge s(x)$,所以总存在足够大的 n 使得 $f_n(x) \ge s(x) > \alpha s(x)$,即 $x \in A_n$,所以 $A_n \nearrow E$. 定义 (E, \mathcal{E}) 上的测度 ν 为

$$\nu(A) = \mu(s1_A) = \int_A s \, \mathrm{d}\mu,$$

不难验证这确实是一个测度. 此时我们有

$$\mu f_n \ge \mu(f_n 1_{A_n}) \ge \mu(\alpha s 1_{A_n}) = \alpha \mu(s 1_{A_n}) = \alpha \nu(A_n),$$

令 $n \to \infty$, 由于 $A_n \nearrow E$, 所以 $\nu(A_n) \nearrow \nu(E) = \mu s$, 所以

$$\lim \mu f_n > \alpha \mu s$$
.

特别地, 取 $s = d_k \circ f$, 有 $\lim \mu f_n \ge \alpha \mu (d_k \circ f)$, 令 $k \to \infty$, 所以 $\lim \mu f_n \ge \alpha \mu f$. 再 取 $\alpha = 1 - 1/k$, 令 $k \to \infty$, 即得

$$\lim \mu f_n \ge \mu f$$
.

积分的线性性

命题 1.30. 对于 $f, g \in \mathcal{E}_+$ 和 $a, b \in \mathbb{R}_+$,有

$$\mu(af + bg) = a\mu f + b\mu g.$$

对于 $f,g \in \mathcal{E}$ 和 $a,b \in \mathbb{R}$ 也是正确的.

Proof. 已知对于简单函数 $f_n = d_n \circ f$ 和 $g_n = d_n \circ g$, 有

$$\mu(af_n + bg_n) = a\mu f_n + b\mu g_n,$$

而 $f_n \nearrow f$, $g_n \nearrow g$, 根据单调收敛定理, 就有

$$\mu(af + bg) = a\mu f + b\mu g.$$

对于一般的 f,g,只需将其拆为正部分和负部分即可验证.

积分的不敏感性

命题 1.31. 如果 $A \in \mathcal{E}$ 是零测集,那么对于任意 $f \in \mathcal{E}$,有 $\mu(f1_A) = 0$. 如果 $f, g \in \mathcal{E}$ 且几乎处处有 f = g,那么 $\mu f = \mu g$.如果 $f \in \mathcal{E}_+$ 并且 $\mu f = 0$,那么几乎处处 f = 0.

Proof. 先假设 f 是简单非负函数, 其标准型为 $f = \sum_{i} a_{i} 1_{A_{i}}$, 那么

$$f1_A = \sum_{i=1}^n a_i 1_{A_i \cap A},$$

所以 $\mu(f1_A) = \sum_i a_i \mu(A_i \cap A)$. 根据单调性有 $\mu(A_i \cap A) \leq \mu(A) = 0$, 所以 $\mu(f1_A) = 0$. 然后假设 $f \in \mathcal{E}_+$, 那么 $\mu((d_n \circ f)1_A) = 0$, 所以 $\mu(f1_A) = 0$. 最后, 设 $f \in \mathcal{E}_+$, 那么 $\mu(f1_A) = \mu(f^+1_A) - \mu(f^-1_A) = 0$.

记 $A = \{x \in E : f(x) \neq g(x)\}$, 那么 $A = E \setminus (f - g)^{-1}(0)$ 可测, 几乎处处 f = g 表明 A 是零测集. 于是 $\mu(f1_A) = \mu(g1_A) = 0$, 所以

$$\mu f = \mu(f 1_A) + \mu(f 1_{E \setminus A}) = \mu(f 1_{E \setminus A}) = \mu(g 1_{E \setminus A})$$
$$= \mu(g 1_{E \setminus A}) + \mu(g 1_A) = \mu g.$$

记 $N = \{x \in E : f(x) > 0\}, N_k = \{x \in E : f(x) > 1/k\},$ 显然 $N_k \nearrow N$, 故 $\mu(N_k) \nearrow \mu(N)$. 此时 $f > 1/k1_{N_k}$, 所以 $0 = \mu f \ge 1/k\mu(N_k)$, 这表明 $\mu(N_k) = 0$, 所以 $\mu(N) = \lim \mu(N_k) = 0$.

Fatou 引理

引理 1.32. 令 $(f_n) \subseteq \mathcal{E}_+$,那么 $\mu(\liminf f_n) \le \liminf \mu f_n$.

Proof. 记 $g_m = \inf_{n>m} f_n$, 那么 $g_m \in \mathcal{E}_+$ 且递增, 根据单调收敛定理, 有

$$\mu(\liminf f_n) = \mu(\lim g_m) = \lim \mu g_m.$$

又因为 $n \ge m$ 的时候 $g_m \le f_n$, 所以 $\mu g_m \le \mu f_n$, 所以 $\mu g_m \le \inf_{n \ge m} \mu f_n$, 令 $m \to \infty$, 即得

$$\mu(\liminf f_n) = \lim \mu g_m \le \liminf \mu f_n.$$

推论 1.33. 令 $(f_n) \subseteq \mathcal{E}$,如果存在可积函数 g 使得 $f_n \geq g$,那么

$$\mu(\liminf f_n) \leq \liminf \mu f_n$$
.

如果存在可积函数 g 使得 $f_n \leq g$,那么

$$\mu(\limsup f_n) \ge \limsup \mu f_n$$
.

Proof. 若可积函数 g 使得 $f_n \ge g$, 那么 $A = \{x \in E : g(x) \in \mathbb{R}\}$ 的补集是零测集 (练习). 那么几乎处处 $f_n 1_A = f_n$ 以及 $g 1_A = g$. 由于 $g 1_A$ 是实值函数, 所以 $f_n 1_A - g 1_A$ 是有意义的, 故 $f_n 1_A - g 1_A \in \mathcal{E}_+$ 且可积, 根据 Fatou 引理, 有

$$\mu(\liminf(f_n 1_A)) - \mu(g 1_A) = \mu(\liminf(f_n 1_A) - g 1_A) = \mu(\liminf(f_n 1_A - g 1_A))$$

$$\leq \liminf \mu(f_n 1_A - g 1_A) = \liminf \mu(f_n 1_A) - \mu(g 1_A),$$

由于几乎处处 $f_n 1_A = f_n$, 故几乎处处 $\liminf (f_n 1_A) = \liminf f_n$, 故 $\mu(f_n 1_A) = \mu f_n$ 以 及 $\mu(\liminf (f_n 1_A)) = \mu(\liminf f_n)$, 这就表明

$$\mu(\liminf f_n) \leq \liminf \mu f_n$$
.

对于第二点,考虑 $g1_A - f_n1_A \in \mathcal{E}_+$ 并且 $\limsup r_n = -\liminf (-r_n)$ 即可.