Синусы в геометрии

- П На сторонах BC, CA, AB треугольника ABC во внешнюю сторону построены треугольники BCA_1 , CAB_1 , ABC_1 так, что $\angle BCA_1 = \angle B_1CA = \varphi$, $\angle CAB_1 = \angle BAC_1 = \theta$, $\angle CBA_1 = \angle ABC_1 = \psi$. Докажите, что прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке.
- $\boxed{2}$ В треугольнике ABC проведены биссектрисы AA', BB' и CC'. Пусть P точка пересечения A'B' и CC', а Q точка пересечения A'C' и BB'. Докажите, что $\angle PAC = \angle QAB$.
- $\boxed{3}$ В окружность вписан выпуклый шестиугольник ABCDEF. Докажите, что прямые AD, BE и CF пересекаются в одной точке тогда и только тогда, когда $AB \cdot CD \cdot EF = BC \cdot DE \cdot FA$.
- 4 Через точку M проведены касательные MA и MB и две произвольные секущие CD и EF. Докажите, что прямые CF и DE пересекаются на прямой AB.
- [5] В треугольнике ABC через внутреннюю точку X проведены чевианы AD, BE, CF. В сегмент, отсекаемый прямой AC от описанной окружности ω треугольника ABC (не содержащий точку B), вписана окружность, касающася AC в точке E и ω в точке B_1 . Аналогично определяются точки A_1 и C_1 . Докажите, что прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке.
- [6] Противоположные стороны выпуклого шестиугольника попарно параллельны. Докажите, что прямые, соединяющие середины противоположных сторон, пересекаются в одной точке.
- Присанная окружность треугольника ABC касается его сторон в точках A_1 , B_1 и C_1 . Внутри треугольника ABC взята точка X. Прямая AX пересекает дугу B_1C_1 вписанной окружности в точке A_2 ; точки B_2 и C_2 определяются аналогично. Докажите, что прямые A_1A_2 , B_1B_2 и C_1C_2 пересекаются в одной точке.
- 8 Через точки A и D, лежащие на окружности, проведены касательные, пересекающиеся в точке S. На дуге AD взяты точки B и C. Прямые AC и BD пересекаются в точке P, AB и CD в точке Q. Докажите, что прямая PQ проходит через точку S.