THESIS TITLE

MSc Thesis (Afstudeerscriptie)

written by

Krsto Proroković

(born March 12, 1993 in Kotor, Montenegro)

under the supervision of **Dr Germán Kruszewski** and **Dr Elia Bruni**, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

Date of the defense goes here Committee goes here

Abstract

Abstract goes here

Acknowledgents

Contents

2	Background		
	2.1	Recur	rent Neural Networks
		2.1.1	Vanilla Recurrent Neural Networks
		2.1.2	Backpropagation Through Time and Vanishing Gradient
		2.1.3	Long-Short Term Memory Networks
		2.1.4	Gated Recurrent Units
		2.1.5	Embeddings
		2.1.6	Attention Models

Chapter 1

Introduction

3

Chapter 2

Background

2.1 Recurrent Neural Networks

Recurrent neural networks [reference] are ... for processing sequences ... They ... handwriting recognition, speech ... In this chapter we ... For a more detailed treatment we point the reader to [reference to Alex Graves' book]

2.1.1 Vanilla Recurrent Neural Networks

We start with a simple vanilla RNN model. ... given with:

- Input to hidden ... $W_x \in \mathbb{R}^{d_h \times d_x}$
- Hidden to hidden ... $W_h \in \mathbb{R}^{d_h \times d_h}$
- Bias term ... $b_h \in \mathbb{R}^{d_h}$
- Activation function $\phi : \mathbb{R} \to \mathbb{R}$
- Hidden to output ... $W_y \in \mathbb{R}^{d_y \times d_y}$
- Bias term ... $b_y \in \mathbb{R}^{d_y}$
- Initial hidden state $h^{(0)} \in \mathbb{R}^{d_h}$ (usually set to ...)

. . .

$$h^{(t)} = \phi \left(W_h h^{(t-1)} + W_x x^{(t)} + b_h \right)$$
$$y^{(t)} = \operatorname{softmax} \left(W_y h^{(t)} + b_y \right)$$

... Here we will be mostly interested in sequence classification, i.e. we will only care about $y^{(T)}$...

Example Suppose that the input sequence consists of ... Consider a vanilla RNN given with

$$W_x = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad W_h = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

While the previous example ... rather simple function ... RNNs are universal [reference Siegelmann and Sontag]

2.1.2 Backpropagation Through Time and Vanishing Gradient

• • •

2.1.3 Long-Short Term Memory Networks

One way to deal with vanishing gradient is to use gated RNNs. One way to deal with vanishing gradient are Long-Short Term Memory Networks [2] ...

$$\begin{bmatrix} f_t \\ i_t \\ o_t \\ g_t \end{bmatrix} = W_x x_t + W_h h_t + b$$

$$c_t = \sigma(f_t) \odot c_{t-1} + \sigma(i_t) \odot \tanh(g_t)$$

$$h_t = \sigma(o_t) \odot \tanh(c_t)$$

LSTM has been successful in many applications, such as ...

2.1.4 Gated Recurrent Units

Another gated recurrent architecture are Gated Recurrent Units (GRU) ... [1]

$$r_{t} = \sigma(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r})$$

$$z_{t} = \sigma(W_{xr}x_{t} + W_{hz}h_{t-1} + b_{z})$$

$$n_{t} = \tanh(W_{xn}x_{t} + r_{t}(W_{hn}h_{t-1} + b_{n}))$$

$$h_{t} = (1 - z_{t})n_{t} + z_{t}h_{t-1}$$

2.1.5 Embeddings

2.1.6 Attention Models

Chapter 3

Experiments (title subject to change)

Bibliography

- [1] Kyunghyun Cho et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation". In: $arXiv\ preprint\ arXiv:1406.1078\ (2014)$.
- [2] Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-Term Memory". In: *Neural Computation* 9.8 (1997), pp. 1735–1780.