CIS507 DESIGN & ANALYSIS OF ALGORITHMS

Khaled Elbassioni

kelbassioni@masdar.ac.ae

Material

- Main Textbook:
 - Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms. MIT Press, 3rd Edition, 2009
- Classroom is to present ideas + discussion
- Detailed study is your responsibility

	Item	Weight	Date	Due?
Assessment	ILCIII	weignt	Date	Due:
	Quiz 1	5%	Jan 16	-
No make-up quizzes/exams	Quiz 2	5%	3 Feb	
	Quiz 3	5%	17 Feb	-
No extensions	Homework 1	10%	17 Feb	1 March
	Quiz 4	5%	6 Mar	-
	Homework 2	10%	6 March	22 Mar
Final is Inclusive!	Mid-Term Exam	20%	24 Mar	-
	Quiz 5	5%	24 April	-
	Homework 3	10%	24 April	5 May
	Final	30%	11-15 May	-

Getting Help

- Office hours:
 - 14:00-15:00 on class days
- Outside office hours:
 - By appointment
- Teaching Assistants
 - Mukesh Jha: mjha@masdar.ac.ae
 - Hayk Baluyan: bhayk@masdar.ac.ae
- Please feel free to interrupt me at anytime to ask questions!

Weel	k Topic (tentative outline)	Chapter
1	Intro, asymptotic notation, recurrences, master method	1, 2, 3,4
1	Divide and conquer, randomized sort	4, 5
2	Linear-time sorting, order statistics	6, 7, 8, 9
4	Hashing	11
5	Binary search trees, Red-Black Trees	12, 13
6	Augmenting data structures	14
7,8	Amortized analysis, competitive analysis	17
9 10,11	Dynamic programming, greedy algorithms Shortest paths	15, 16, 23 22, 24, 25
12	Mid Term Exam	
15	Network flows, linear programming	26
16	NP Completeness, Reductions	34
17	Approximation algorithms	35
18	Revision & pre-exam break	
19	Final Exam	

Standard Question: What's in the Exam?

- All topics we cover are included in the exam
- Use your own judgment to determine what I consider most important:
 - Techniques & ideas covered in class are most fundamental they will constitute majority of questions
 - But the book is your ultimate source of material
 - In other words: Topics not covered in class, but are in the book included, but will constitute small proportion of grade
- I will indicate which chapters are covered, and which sections are excluded

Pre-Requisites

Math

- Set theory and discrete mathematics
- Writing proofs (including induction and proof-by-contradiction)
- Basic probability theory
- Sums
- (lots of) Algebra

Algorithms

- Basic data structures (lists, queues, trees, graphs)
- Basic algorithmic techniques (loops, conditions, recursion)
- Any gaps? Start filling immediately!
 - -See textbook appendix A, B, C
 - -Read Chapters 1,2,3 and 4 of text book (Quiz 1 on Jan. 16)
 - Additional handouts will be posted if necessary

Refreshing your Math

- Textbook appendices
- "Mathematics for Computer Science" course on MIT Open Courseware
 - http://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-042j-mathematics-for-computer-science-spring-2010/
- "Mathematics for Computer Science" notes by MIT
 - Posted on Moodle (https://source.masdar.ac.ae)

Programming

- This is a "theory" course
- Programming can help your understanding
- There will be some programming in the homeworks
- All programs are to be written in Python

One-off Python overview session:

• Time: Tuesday, 14 Jan, 11:00-12:00 am

Place: IT Lab, Level 3

Demonstrator: Mukesh Jha

Why Algorithms?

- Single most important course in a CS degree
- Essential for interviews with serious companies:
 - Google
 - Microsoft
 - Facebook

– ...

Let's Explore!

Analysis of algorithms

The theoretical study of computer-program performance and resource usage.
What's more important than performance?

- modularity
- correctness
- maintainability
- functionality
- robustness

- user-friendliness
- programmer time
- simplicity
- extensibility
- reliability

Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a language for talking about program behavior.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

The problem of sorting

```
Input: sequence \langle a_1, a_2, ..., a_n \rangle of numbers.

Output: permutation \langle a'_1, a'_2, ..., a'_n \rangle Such that a'_1 \le a'_2 \le ... \le a'_n.
```

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

The TSP problem

(Travelling Sales Person problem)

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of cities with pairwise distances c_{ij} .

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ that minimizes the total distance for visiting all cities in that order

and coming back home.

September 7, 2005 L1.5

Simple exhaustive search

Try all permutations

Running time is proportional to $n! \sim n^n$

Suppose that *n*=20

Then on your laptop (say even with 200,000 MIPS), you need typically

$$\frac{20^{20}}{200,000 \times 10^6 \times 3600 \times 24 \times 365} \sim 16625063 \text{ years}$$

September 7, 2005 L1.5

The TSP problem

(Travelling Sales Person problem)

Bad news: you will get \$1000,000 if you get a "good" algorithm to solve the problem optimally.

Good news: you can approximate the optimal solution in reasonable time.

September 7, 2005 L1.5

The problem of sorting

```
Input: sequence \langle a_1, a_2, ..., a_n \rangle of numbers.

Output: permutation \langle a'_1, a'_2, ..., a'_n \rangle Such that a'_1 \le a'_2 \le ... \le a'_n.
```

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Two algorithms

- Insertion sort
- Merge sort
- Main question: Which one is better?

Two algorithms

- Insertion sort $O(n^2)$
- Merge sort O(n log n)
- Main question: Which one is better?