

# Test delle ipotesi

#### Giovanni Delnevo

PhD Student
Data Science and Computation
Department of Computer Science and Engineering
University of Bologna

# Perché usare i test delle ipotesi?

 In un esperimento che implichi l'estrazione di un campione da una popolazione, c'è sempre la possibilità che il fenomeno osservato sia occorso semplicemente a causa di un errore di campionamento.



### Test delle ipotesi: quale usare?

- Esistono una miriade di test delle ipotesi (solo oggi ne citeremo 27!). La domanda che sorge spontanea è: Quale test scegliere?
- Ovviamente dipende!
- Da cosa?
  - Da cosa si vuole provare
  - Dalla tipologia dei dati
  - Dalla distribuzione dei dati
  - Dai parametri disponibili
  - •



### Test delle ipotesi: quale usare?

- Oggi vedremo in dettaglio i più utilizzati. In particolare:
  - Z Test
  - T Test
  - Test Chi Quadrato
- Successivamente, faremo una breve carrellata dei cosiddetti test non parametrici.



# **Domande?**





#### **Z** Test

- Lo Z Test ha lo scopo di verificare se il valore medio di una distribuzione si discosta significativamente da un certo valore di riferimento. È un test delle ipotesi di tipo parametrico.
- Assunzioni:
  - La popolazione segue una distribuzione normale.
  - La varianza è nota.
- Vedremo in seguito come questi vincoli possono essere rilassati.



#### **Z Test - Procedimento**

- Formulare l'ipotesi nulla (e la rispettiva ipotesi alternativa)
- 2. Fissare il livello di significatività  $\alpha$
- 3. Determinare il valore (o i valori) critici
- 4. Calcolare la statistica Z
- 5. Si determina se accettare o rifiutare l'ipotesi nulla



### Z Test – 1) Formulare l'ipotesi nulla

- L'ipotesi nulla,  $H_0$ , rappresenta lo stato attuale delle cose.
- Se i valori del campione non sono favorevoli ad  $H_0$ , si conclude che  $H_0$  è falsa. Per cui deve esserci un'altra ipotesi  $H_1$ , opposta ad  $H_0$ , che risulta vera.
- Quando il campione osservato fornisce sufficiente evidenza del fatto che l'ipotesi nulla sia falsa, la si rifiuta (decisione forte).
- Il mancato rifiuto di  $H_0$  NON dimostra che questa sia vera. Semplicemente si conclude che non c'è sufficiente evidenza empirica contraria ad essa (decisione debole).

# Z Test – 1) Formulare l'ipotesi nulla (2)

- L'ipotesi nulla contiene sempre un segno di eguale (=, ≥, ≤).
- L'ipotesi alternativa non contiene mai un segno di eguale (≠,<,>) e specifica la regione di rifiuto.



# Z Test – 2) Fissare il livello di significatività

- Il livello di significatività è la probabilità che lo studio rifiuti l'ipotesi nulla, dato che era vera.
- Rappresenta l'area della regione di rifiuto.
- È solitamente definito a priori.
- I livelli più usati sono:
  - 10%
  - 5%
  - 1%
  - 0.1%



# Z Test – 3) Determinare valori critici

- Se il test è a due code, si calcola  $1 \alpha/2$  mentre se il test è ad una coda, si calcola  $1 \alpha$
- Si usa questo valore per determinare il valore critico di z (o i valori critici), usando una cosiddetta tabella Z (riportata nella slide seguente).



# Z Test – 3) Determinare valori critici – Tabella Z

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |



# Z Test – 3) Determinare valori critici – Tabella Z

| Z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |

Dato  $\alpha = 0.05$  e un test a due code, definire i valori critici



# Z Test – 3) Determinare valori critici – Tabella Z

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |

Dato  $\alpha = 0.05$  e un test a due code, definire i valori critici

$$1 - \alpha/2 = 0.975$$

$$z_c = \pm 1.96$$



# Z Test – 4) Calcolare la statistica Z

La statistica Z si calcola con la seguente formula:

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- dove:
  - $\bar{X}$  è la media campionaria
  - $\mu_0$  è la media della popolazione
  - $\sigma$  è la deviazione standard della popolazione
  - $n \ \dot{e} \ la \ dimensione \ del \ campione$



# Z Test – 5) Accettare/rifiutare ipotesi nulla

- Test Bilaterale: Si rifiuta  $H_0$  se  $Z < -z_c$  oppure se  $Z > +z_c$
- Test Unilaterale sinistro: Si rifiuta  $H_0$  se  $Z < -z_c$
- Test Unilaterale destro: Si rifiuta  $H_0$  se  $Z > +z_c$

#### Z Test - Esercizio 1

- I pezzi meccanici tagliati con un procedimento particolare devono avere una lunghezza di 84mm; si sa da precedenti misure che la lunghezza risulta normalmente distribuita con  $\sigma = 2.5mm$ . Un campione casuale di 25 elementi ha fornito un valore medio di 85mm.
- Sottoporre a test l'ipotesi che le due medie siano uguali contro l'ipotesi che siano diverse con un livello di significatività  $\alpha=0.05$



#### Z Test - Esercizio 1

 Abbiamo già le due ipotesi (nulla ed alternativa):

$$H_0$$
:  $\mu = 84 \text{ e } H_1$ :  $\mu \neq 84$ 

- 2. Abbiamo il livello di significatività  $\alpha = 0.05$
- 3. Calcoliamo i valori critici per  $\alpha=0.05$   $z_c=\pm 1.96$
- 4. Calcoliamo la statistica Z

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{85 - 84}{\frac{2.5}{\sqrt{25}}} = 2$$

5.  $Z > z_c$  per cui rifiuto l'ipotesi nulla e accetto l'alternativa. Le medie sono diverse.



#### Z Test - Esercizio 1b

- Usare gli stessi dati dell'esercizio precedente ma sottoporre a test l'ipotesi che le due medie siano uguali contro l'ipotesi che siano diverse con un livello di significatività  $\alpha=0.01$
- Cosa cambia rispetto all'esercizio precedente?
- I valori critici per  $\alpha = 0.01$   $z_c = \pm 2.57$  (avremmo potuto scegliere anche 2.58)
- Falliamo nel rifiutare l'ipotesi nulla, visto che  $-z_c \le Z \le z_c$



#### Z Test – Esercizio 2

- Un'azienda che produce cereali vuole controllare se il peso dei cereali eccede i 368g, peso su cui viene calcolato il prezzo. Il peso è distribuito normalmente con  $\sigma=15g$ . Un campione casuale di 16 elementi ha fornito un valore medio di 372.5g.
- Il livello di significatività è  $\alpha = 0.05$



#### Z Test – Esercizio 2

- 1. Le due ipotesi sono:  $H_0$ :  $\mu \le 368$  e  $H_1$ :  $\mu > 368$
- 2. Abbiamo il livello di significatività  $\alpha = 0.05$
- 3. Calcoliamo il valore critico per  $\alpha = 0.05$   $z_c = +1.64$
- 4. Calcoliamo la statistica Z

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{372.5 - 368}{\frac{15}{\sqrt{16}}} = 1.2$$

5.  $Z \le z_c$  per cui l'ipotesi nulla non può essere rifiutata.



#### Z Test - Esercizio 2b

- Usare gli stessi dati dell'esercizio precedente ma sapendo che la dimensione del campione è 36 (e non 16).
- Cosa cambia rispetto all'esercizio precedente?

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{372.5 - 368}{\frac{15}{\sqrt{36}}} = 1.8$$

•  $Z > z_c$  per cui rifiuto l'ipotesi nulla e accetto l'alternativa. La media del campione è maggiore di quella della popolazione.

### Z Test – Procedimento alternativo con p-value

- È possibile utilizzare un approccio alternativo (ma equivalente) basato sul p-value, il livello di significatività osservato.
- Supponendo l'ipotesi nulla vera, il p-value rappresenta la probabilità di ottenere risultati uguali o meno probabili di quelli osservati durante il test.
- In pratica, serve per capire se la differenza tra il risultato osservato e quello ipotizzato è semplicemente dovuta al caso, oppure se tale differenza è statisticamente significativa
- Le regole decisionali cambiano nel seguente supposono n

### Z Test – Procedimento alternativo con p-value

- Le regole decisionali cambiano nel seguente modo. A prescindere dal test (bilaterale, unilaterale sinistro e unilaterale destro):
- Si rifiuta  $H_0$  se p-value  $< \alpha$

# Z Test – Procedimento alternativo con p-value (2)

- Il procedimento cambia nel seguente modo.
  - Si salta il punto 3, quindi non si determinano i valori critici.
  - Dopo il punto 4, si calcola il p-value relativo alla statistica Z usando la funzione di ripartizione della distribuzione normale.
  - Si utilizza la regola decisionale della slide precedente.
- Ci sono altri modi per ottenere il p-value della statistica Z?



### **Z Test - Confronto**





#### Z Test – Caso di Studio

- Caso di studio riguardante letture di strumenti di misura meccanici.
- Valutazione di 3 dataset distinti:
  - DS1: dataset contenente le letture ottenute dai dati grezzi applicando una prima semantica di validità.
  - DS2: dataset ottenuto da DS1 applicando una semantica «rinforzata».
  - DS3: dataset ottenuto da DS2 selezionando in modo casuale le letture.
- Vogliamo valutare quanto le operazioni di pulizia dei dati hanno trasformato i dati dal punto di vista statistico.

#### Z Test – Caso di Studio

Abbiamo quindi valutato le seguenti ipotesi:

• 
$$H_0$$
:  $\mu_1 = \mu_2 e H_1$ :  $\mu_1 \neq \mu_2$ 

• 
$$H_0$$
:  $\mu_2 = \mu_3 e H_1$ :  $\mu_2 \neq \mu_3$ 

• 
$$H_0$$
:  $\mu_1 = \mu_3 e H_1$ :  $\mu_1 \neq \mu_3$ 

Caratteristiche Dataset

| Dataset | # Letture  | μ     | σ      |
|---------|------------|-------|--------|
| DS1     | 11,856,582 | 5,307 | 86,450 |
| DS2     | 1,973,493  | 3,674 | 17,796 |
| DS3     | 135,018    | 3,647 | 11,852 |



#### Z Test – Caso di Studio

- Per ogni test delle ipotesi, si calcolano Z e il rispettivo p-value.
- Il p-value è stato valutato rispetto a due diversi livelli di significatività: 0.05 e 0.01

| Ipotesi Nulla | Z       | p-value  | α=0.05                | α=0.01                |
|---------------|---------|----------|-----------------------|-----------------------|
| μ1=μ2         | -265.36 | < 0.0001 | Rifiutare             | Rifiutare             |
| μ2=μ3         | -1.76   | 0.0784   | Fallire nel rifiutare | Fallire nel rifiutare |
| μ1=μ3         | -70.56  | < 0.0001 | Rifiutare             | Rifiutare             |



# **Domande?**





#### t test

- Il t test ha lo scopo di verificare se il valore medio di una distribuzione si discosta significativamente da un certo valore di riferimento. È un test delle ipotesi di tipo parametrico.
- Assunzioni:
  - La popolazione segue una distribuzione normale.
  - La varianza NON è nota.



#### t test - Procedimento

- Formulare l'ipotesi nulla (e la rispettiva ipotesi alternativa)
- 2. Fissare il livello di significatività  $\alpha$
- 3. Determinare il valore (o i valori) critici
- 4. Calcolare la statistica t
- 5. Si determina se accettare o rifiutare l'ipotesi nulla



# t test – 3) Determinare valori critici

- Se il test è a due code, si calcola  $1 \alpha/2$  mentre se il test è ad una coda, si calcola  $1 \alpha$
- Si usa questo valore, insieme v=n-1 (gradi di libertà), per determinare il valore critico di t (o i valori critici), usando una cosiddetta tabella t (riportata nella slide seguente).



# t test – 3) Determinare valori critici – Tabella t

|     |       | 57,67,6,7 |        |        |        |         |         |
|-----|-------|-----------|--------|--------|--------|---------|---------|
| _ α | 0.1   | 0.05      | 0.025  | 0.01   | 0.005  | 0.001   | 0.000   |
| 1   | 3.078 | 6.314     | 12.076 | 31.821 | 63.657 | 318.310 | 636.620 |
| 2   | 1.886 | 2.920     | 4.303  | 6.965  | 9.925  | 22.326  | 31.598  |
| 3   | 1.638 | 2.353     | 3,182  | 4.541  | 5.841  | 10,213  | 12.924  |
| 4   | 1.533 | 2.132     | 2.776  | 3.747  | 4.604  | 7.173   | 8.610   |
| 5   | 1.476 | 2.015     | 2.571  | 3.365  | 4.032  | 5.893   | 6.869   |
| 6   | 1.440 | 1.943     | 2.447  | 3.143  | 3.707  | 5.208   | 5.959   |
| 7   | 1.415 | 1.895     | 2.365  | 2.998  | 3.499  | 4.785   | 5.408   |
| 8   | 1.397 | 1.860     | 2.306  | 2.896  | 3.355  | 4.501   | 5.041   |
| 9   | 1.383 | 1.833     | 2.262  | 2.821  | 3.250  | 4.297   | 4.78    |
| 10  | 1.372 | 1.812     | 2.228  | 2.764  | 3.169  | 4.144   | 4.587   |
| 11  | 1.363 | 1.796     | 2.201  | 2.718  | 3.106  | 4.025   | 4.437   |
| 12  | 1.356 | 1.782     | 2.179  | 2.681  | 3.055  | 3.930   | 4.318   |
| 13  | 1.350 | 1.771     | 2.160  | 2.650  | 3.012  | 3.852   | 4.22    |
| 14  | 1.345 | 1.761     | 2.145  | 2.624  | 2.977  | 3.787   | 4.140   |
| 15  | 1.341 | 1.753     | 2.131  | 2.602  | 2.947  | 3.733   | 4.073   |
| 16  | 1.337 | 1.746     | 2.120  | 2.583  | 2.921  | 3.686   | 4.015   |
| 17  | 1.333 | 1.740     | 2.110  | 2.567  | 2.898  | 3.646   | 3.965   |
| 18  | 1.330 | 1.734     | 2.101  | 2.552  | 2.878  | 3.610   | 3.922   |
| 19  | 1.328 | 1.729     | 2.093  | 2.539  | 2.861  | 3.579   | 3.883   |
| 20  | 1.325 | 1.725     | 2.086  | 2.528  | 2.845  | 3.552   | 3.850   |
| 21  | 1.323 | 1.721     | 2.080  | 2.518  | 2.831  | 3.527   | 3.819   |
| 22  | 1.321 | 1.717     | 2.074  | 2.508  | 2.819  | 3.505   | 3.792   |
| 23  | 1.319 | 1.714     | 2.069  | 2.500  | 2.807  | 3.485   | 3.767   |
| 24  | 1.318 | 1.711     | 2.064  | 2.492  | 2.797  | 3.467   | 3.745   |
| 25  | 1.316 | 1.708     | 2.060  | 2.485  | 2.787  | 3.450   | 3.725   |
| 26  | 1.315 | 1.706     | 2.056  | 2.479  | 2.779  | 3.435   | 3.707   |
| 27  | 1.314 | 1.703     | 2.052  | 2.473  | 2.771  | 3.421   | 3.690   |
| 28  | 1.313 | 1.701     | 2.048  | 2.467  | 2.763  | 3.408   | 3.674   |
| 29  | 1.311 | 1.699     | 2.045  | 2.462  | 2.756  | 3.396   | 3.659   |
| 30  | 1.310 | 1.697     | 2.042  | 2.457  | 2.750  | 3.385   | 3.646   |
| 40  | 1.303 | 1.684     | 2.021  | 2.423  | 2.704  | 3.307   | 3.55    |
| 60  | 1.296 | 1.671     | 2.000  | 2.390  | 2.660  | 3.232   | 3.460   |
| 120 | 1.289 | 1.658     | 1.980  | 2.358  | 2.617  | 3.160   | 3.373   |
| 00  | 1.282 | 1.645     | 1.960  | 2.326  | 2.576  | 3.090   | 3.29    |



# t test – 4) Calcolare la statistica t

 La statistica t, che segue la distribuzione di Student con v gradi di libertà, si calcola come:

$$t = \frac{\bar{X} - \mu_0}{\frac{\hat{S}}{\sqrt{n}}}$$

- dove:
  - $\bar{X}$  è la media campionaria
  - $\mu_0$  è la media della popolazione
  - $\hat{S}$  è la deviazione standard campionaria
  - n è la dimensione del campione

$$\hat{S} = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{X})^2}{n-1}}$$



# t test – 5) Accettare/rifiutare ipotesi nulla

- Test Bilaterale: Si rifiuta  $H_0$  se t <  $-t_c$  oppure se t >  $+t_c$
- Test Unilaterale sinistro: Si rifiuta  $H_0$  se t <  $-t_c$
- Test Unilaterale destro: Si rifiuta  $H_0$  se t >  $+t_c$

#### t test - Esercizio 1

- Una ditta di semiconduttori afferma che la durata media della vita di funzionamento di alcuni componenti elettronici è di 4000 ore. Un campione di 10 elementi estratto casualmente dalla popolazione ha fornito i seguenti valori (in migliaia di ore):
  - 3.9 3.6 4.1 3.8 4.0 3.7 3.8 3.7 3.9 3.6
- Sottoporre a test l'ipotesi della ditta ad un livello di significatività  $\alpha=0.05$



#### t test - Esercizio 1

1. Le ipotesi sono:

$$H_0$$
:  $\mu = 4 \in H_1$ :  $\mu \neq 4$ 

- 2.  $\alpha = 0.05$
- 3. Calcoliamo i valori critici per  $\alpha = 0.05$   $t_c = \pm 2.262$
- 4. Calcoliamo la media campionaria

$$\bar{X} = \frac{\sum_{i=0}^{n} x_i}{n} = \frac{38.1}{10} = 3.81$$

#### t test - Esercizio 1

4. Calcoliamo la deviazione standard campionaria

$$\hat{S} = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{X})^2}{n-1}} = \sqrt{\frac{\sum_{i=0}^{n} (x_i - 3.81)^2}{9}} = 0.17$$

Calcoliamo la statistica t

$$t = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{3.81 - 4}{\frac{0.17}{\sqrt{10}}} = -3.53$$

5.  $t < -t_c$  per cui rifiuto l'ipotesi nulla e accetto l'alternativa. Le medie sono diverse.



## **Domande?**





## $\chi^2$ test per dati categorici

- Il test chi quadrato è usato per determinare se c'è una differenza statistica significativa tra le frequenze teoriche e quelle osservate in una o più categorie della cosiddetta tabella di contingenza.
- In un campione, si osserva un insieme di eventi E1, ..., Ek, che si sono presentati con frequenze o1, ..., ok mentre le frequenze teoriche sono e1, ..., ek.

| Evento              | E <sub>1</sub> | E <sub>2</sub> | <br>E <sub>k</sub> |
|---------------------|----------------|----------------|--------------------|
| Frequenze osservate | 01             | 02             | <br>o <sub>k</sub> |
| Frequenze attese    | e <sub>1</sub> | e <sub>2</sub> | <br>e <sub>k</sub> |



## $\chi^2$ test - Procedimento

- Formulare l'ipotesi nulla (e la rispettiva ipotesi alternativa)
- 2. Fissare il livello di significatività  $\alpha$
- 3. Determinare il valore critico
- 4. Calcolare la statistica  $\chi^2$
- Si determina se accettare o rifiutare l'ipotesi nulla



## $\chi^2$ test – 1) Formulare l'ipotesi nulla

• L'ipotesi nulla è sempre che le differenze tra le frequenze osservate e quelle teoriche sono imputabili completamente al caso.



## $\chi^2$ test – 3) Determinare valori critici

- Il valore critico si determina a partire da  $\alpha$  e dai gradi di libertà k-1 (dove k è il numero di eventi).
- La tabella è riportata nella slide seguente.



## $\chi^2$ test – 3) Determinare valori critici - Tabella

| Gradi di |        | Livello | di Probab | ilita' a | 1,045  | 70.00  | 100.00 | 100000 | 6.00.00 | 4,50  |
|----------|--------|---------|-----------|----------|--------|--------|--------|--------|---------|-------|
| libertà  | 1.00   | 0.99    | 0.95      | 0.90     | 0.25   | 0.10   | 0.05   | 0.025  | 0.01    | 0.005 |
| 1        | CORNEY | 200     | 1. 10000  | 0.02     | 1.32   | 2.71   | 3.84   | 5.02   | 6.64    | 7.88  |
| 2        | 0.01   | 0.02    | 0.10      | 0.21     | 2.77   | 4.61   | 5.99   | 7.38   | 9.21    | 10.6  |
| 3        | 0.07   | 0.12    | 0.35      | 0.58     | 4.11   | 6.25   | 7.82   | 9.35   | 11.35   | 12.8  |
| 4        | 0.21   | 0.30    | 0.71      | 1.06     | 5.39   | 7.78   | 9.49   | 11.14  | 13.28   | 14.8  |
| 5        | 0.41   | 0.55    | 1.15      | 1.61     | 6.63   | 9.24   | 11.07  | 12.83  | 15.09   | 16.7  |
| 6        | 0.68   | 0.87    | 1.64      | 2.20     | 7.84   | 10.65  | 12.59  | 14.45  | 16.81   | 18.5  |
| 7        | 0.99   | 1.24    | 2.17      | 2.83     | 9.04   | 12.02  | 14.07  | 16.01  | 18.48   | 20.2  |
| 8        | 1.34   | 1.65    | 2.73      | 3.49     | 10.22  | 13.36  | 15.51  | 17.54  | 20.09   | 21.9  |
| 9        | 1.74   | 2.09    | 3.33      | 4.17     | 11.39  | 14.68  | 16.92  | 19.02  | 21.67   | 23.5  |
| 10       | 2.16   | 2.56    | 3.94      | 4.87     | 12.55  | 15.99  | 18.31  | 20.48  | 23.21   | 25.1  |
| 11       | 2.60   | 3.05    | 4.58      | 5.58     | 13.70  | 17.28  | 19.68  | 21.92  | 24.73   | 26.7  |
| 12       | 3.07   | 3.57    | 5.23      | 6.30     | 14.85  | 18.55  | 21.03  | 23.34  | 26.22   | 28.3  |
| 13       | 3.57   | 4.11    | 5.89      | 7.04     | 15.98  | 19.81  | 22.36  | 24.74  | 27.69   | 29.8  |
| 14       | 4.08   | 4.66    | 6.57      | 7.79     | 17.12  | 21.06  | 23.69  | 26.12  | 29.14   | 31.3  |
| 15       | 4.60   | 5.23    | 7.26      | 8.55     | 18.25  | 22.31  | 25.00  | 27.49  | 30.58   | 32.8  |
| 16       | 5.14   | 5.81    | 7.96      | 9.31     | 19.37  | 23.54  | 26.30  | 28.85  | 32.00   | 34.2  |
| 17       | 5.70   | 6.41    | 8.67      | 10.09    | 20.49  | 24.77  | 27.59  | 30.19  | 33.41   | 35.7  |
| 18       | 6.27   | 7.02    | 9.39      | 10.87    | 21.61  | 25.99  | 28.87  | 31.53  | 34.81   | 37.1  |
| 19       | 6.84   | 7.63    | 10.12     | 11.65    | 22.72  | 27.20  | 30.14  | 32.85  | 36.19   | 38.5  |
| 20       | 7.43   | 8.26    | 10.85     | 12.44    | 23.83  | 28.41  | 31.41  | 34.17  | 37.57   | 40.0  |
| 21       | 8.03   | 8.90    | 11.59     | 13.24    | 24.94  | 29.62  | 32.67  | 35.48  | 38.93   | 41.4  |
| 22       | 8.64   | 9.54    | 12.34     | 14.04    | 26.04  | 30.81  | 33.92  | 36.78  | 40.29   | 42.8  |
| 23       | 9.26   | 10.20   | 13.09     | 14.85    | 27.14  | 32.01  | 35.17  | 38.08  | 41.64   | 44.1  |
| 24       | 9.89   | 10.86   | 13.85     | 15.66    | 28.24  | 33.20  | 36.42  | 39.36  | 42.98   | 45.5  |
| 25       | 10.52  | 11.52   | 14.61     | 16.47    | 29.34  | 34.38  | 37.65  | 40.65  | 44.31   | 46.9  |
| 26       |        |         |           |          |        |        |        |        | 45.64   | 48.2  |
|          | 11.16  | 12.20   | 15.38     | 17.29    | 30.44  | 35.56  | 38.89  | 41.92  |         |       |
| 27       | 11.81  | 12.88   | 16.15     | 18.11    | 31.53  | 36.74  | 40.11  | 43.19  | 46.96   | 49.6  |
| 28       | 12.46  | 13.57   | 16.93     | 18.94    | 32.62  | 37.92  | 41.34  | 44.46  | 48.28   | 50.9  |
| 29       | 13.12  | 14.26   | 17.71     | 19.77    | 33.71  | 39.09  | 42.56  | 45.72  | 49.50   | 52.3  |
| 30       | 13.79  | 14.95   | 18.49     | 20.60    | 34.80  | 40.26  | 43.77  | 46.98  | 50.89   | 53.6  |
| 31       | 14.46  | 15.66   | 19.28     | 21.43    | 35.89  | 41.42  | 44.99  | 48.23  | 52.19   | 55.0  |
| 32       | 15.13  | 16.36   | 20.07     | 22.27    | 36.97  | 42.59  | 46.19  | 49.48  | 53.49   | 56.3  |
| 33       | 15.82  | 17.07   | 20.87     | 23.11    | 38.06  | 43.75  | 47.40  | 50.73  | 54.78   | 57.6  |
| 34       | 16.50  | 17.79   | 21.66     | 23.95    | 39.14  | 44.90  | 48.60  | 51.97  | 56.06   | 58.9  |
| 35       | 17.19  | 18.51   | 22.47     | 24.80    | 40.22  | 46.06  | 49.80  | 53.20  | 57.34   | 60.2  |
| 36       | 17.89  | 19.23   | 23.27     | 25.64    | 41.30  | 47.21  | 51.00  | 54.44  | 58.62   | 61.5  |
| 37       | 18.59  | 19.96   | 24.08     | 26.49    | 42.38  | 48.36  | 52.19  | 55.67  | 59.89   | 62.8  |
| 38       | 19.29  | 20.69   | 24.88     | 27.34    | 43.46  | 49.51  | 53.38  | 56.90  | 61.16   | 64.1  |
| 39       | 20.00  | 21.43   | 25.70     | 28.20    | 44.54  | 50.66  | 54.57  | 58.12  | 62.43   | 65.4  |
| 40       | 20.71  | 22.16   | 26.51     | 29.05    | 45.62  | 51.81  | 55.76  | 59.34  | 63.69   | 66.7  |
| 41       | 21.42  | 22.91   | 27.33     | 29.91    | 46.69  | 52.95  | 56.94  | 60.56  | 64.95   | 68.0  |
| 42       | 22.14  | 23.65   | 28.14     | 30.77    | 47.77  | 54.09  | 58.12  | 61.78  | 66.21   | 69.3  |
| 43       | 22.86  | 24.40   | 28.97     | 31.63    | 48.84  | 55.23  | 59.30  | 62.99  | 67.46   | 70.6  |
| 44       | 23.58  | 25.15   | 29.79     | 32.49    | 49.91  | 56.37  | 60.48  | 64.20  | 68.71   | 71.8  |
| 45       | 24.31  | 25.90   | 30.61     | 33.35    | 50.99  | 57.51  | 61.66  | 65.41  | 69.96   | 73.1  |
| 46       | 25.04  | 26.66   | 31.44     | 34.22    | 52.06  | 58.64  | 62.83  | 66.62  | 71.20   | 74.4  |
| 47       | 25.78  | 27.42   | 32.27     | 35.08    | 53.13  | 59.77  | 64.00  | 67.82  | 72.44   | 75.7  |
| 48       | 26.51  | 28.18   | 33.10     | 35.95    | 54.20  | 60.91  | 65.17  | 69.02  | 73.68   | 76.9  |
| 49       | 27.25  | 28.94   | 33.93     | 36.82    | 55.27  | 62.04  | 66.34  | 70.22  | 74.92   | 78.2  |
| 50       | 27.99  | 29.71   | 34.76     | 37.69    | 56.33  | 63.17  | 67.51  | 71.42  | 76.15   | 79.4  |
| 55       | 31.74  | 33.57   |           | 42.06    | 61.67  | 68.80  | 73.31  | 77.38  | 82.29   | 85.7  |
| 60       | 35.53  | 37.49   | 43.19     | 46.46    | 66.98  | 74.40  | 79.08  | 83.30  | 88.38   | 91.9  |
| 70       | 43.28  | 45.44   | 51.74     | 55.33    | 77.58  | 85.53  | 90.53  | 95.02  | 100.43  | 104.2 |
| 80       | 51.17  | 53.54   | 60.39     | 64.28    | 88.13  | 96.58  | 101.88 | 106.63 | 112.33  | 116.3 |
| 90       | 59.20  | 61.75   | 69.13     | 73.29    | 98.65  | 107.57 | 113.15 | 118.14 | 124.12  | 128.3 |
| 100      | 67 22  | 70.00   | 77.02     | 97 26    | 100 14 | 110 EO | 424.24 | 120 EE | 125 04  | 4.40  |



# $\chi^2$ test – 4) Calcolare $\chi^2$

• La variabile test  $\chi^2$  si calcola come:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

## $\chi^2$ test – 5) Accettare/rifiutare ipotesi nulla

• Si rifiuta  $H_0$  se  $\chi^2 > \chi^2_c$ 

## x<sup>2</sup> test - Esercizio 1

 Un dado viene lanciato 3000 volte con il seguente risultato

| Esito | # Occorrenze |
|-------|--------------|
| 1     | 582          |
| 2     | 483          |
| 3     | 471          |
| 4     | 474          |
| 5     | 516          |
| 6     | 474          |

• Sottoporre a test l'ipotesi della ditta ad un livello di significatività  $\alpha=0.05$ 



### x<sup>2</sup> test - Esercizio 1

1. Le ipotesi sono:

$$H_0: o_i = e_i \ \forall i \ \in H_1: o_i \neq e_i \ \forall i$$

- 2.  $\alpha = 0.05$
- 3. Calcoliamo il valore critico per  $\alpha = 0.05$  $\chi^2_{c} = 11.07$
- 4. Calcoliamo  $\chi^2$

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = \frac{6724}{500} + \frac{289}{500} + \frac{841}{500} + \frac{676}{500} + \frac{256}{500} + \frac{676}{500} = 18.924$$

5.  $\chi^2 > \chi^2_c$  per cui rifiuto l'ipotesi nulla e accetto l'alternativa.

## **Domande?**





#### Recap

- Abbiamo visto due test statistici per campioni quantitativi e un test per campioni qualitativi.
- Quando devo usare uno e quando l'altro? Ci sono casi in cui non posso usare ne l'uno ne l'altro?



#### Recap Test per Campione Quantitativo



## Test non parametrici

| Anderson–Darling test                                | tests whether a sample is drawn from a given distribution                                                              |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Statistical bootstrap methods                        | estimates the accuracy/sampling distribution of a statistic                                                            |  |
| Cochran's Q                                          | tests whether k treatments in randomized block designs with 0/1 outcomes have identical effects                        |  |
| Cohen's kappa                                        | measures inter-rater agreement for categorical items                                                                   |  |
| Friedman two-way analysis of variance by ranks       | tests whether k treatments in randomized block designs have identical effects                                          |  |
| Kaplan–Meier                                         | estimates the survival function from lifetime data, modeling censoring                                                 |  |
| Kendall's tau                                        | measures statistical dependence between two variables                                                                  |  |
| Kendall's W                                          | a measure between 0 and 1 of inter-rater agreement                                                                     |  |
| Kolmogorov–Smirnov test                              | tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution |  |
| Kruskal–Wallis one-way analysis of variance by ranks | tests whether > 2 independent samples are drawn from the same distribution                                             |  |
| Kuiper's test                                        | tests whether a sample is drawn from a given distribution, sensitive to cyclic variations such as day of the week      |  |
| Logrank test                                         | compares survival distributions of two right-skewed, censored samples                                                  |  |



# Test non parametrici (2)

| tests whether two samples are drawn from the same distribution, as compared          |  |
|--------------------------------------------------------------------------------------|--|
| to a given alternative hypothesis.                                                   |  |
| tests whether, in 2 × 2 contingency tables with a dichotomous trait and              |  |
| matched pairs of subjects, row and column marginal frequencies are equal             |  |
| tests whether two samples are drawn from distributions with equal medians            |  |
| a statistical significance test that yields exact p values by examining all possible |  |
| rearrangements of labels                                                             |  |
| detects differentially expressed genes in replicated microarray experiments          |  |
| tests for differences in scale between two groups                                    |  |
| tests whether matched pair samples are drawn from distributions with equal           |  |
| medians                                                                              |  |
| measures statistical dependence between two variables using a monotonic              |  |
| function                                                                             |  |
| tests equality of variances in two or more samples                                   |  |
| tests equality of two distributions by using ranks                                   |  |
| tests whether the elements of a sequence are mutually independent/random             |  |
| tests whether matched pair samples are drawn from populations with diffe mean ranks  |  |
|                                                                                      |  |



## **Domande?**





#### References

- Sprinthall, R. C. (2011). Basic Statistical Analysis (9th ed.). Pearson Education. ISBN 978-0-205-05217-2.
- Boggio, A., Borello, G. (2008). Statistica. Statistica industrial Ricerca Operativa. Petrini Editore.
- Baldi, P. (1998). Calcolo delle probabilità e statistica,
   2º ed., McGraw-Hill, ISBN 9788838607370.





#### Giovanni Delnevo

PhD Student

Data Science and Computation

Department of Computer Science and Engineering

University of Bologna

giovanni.delnevo2@unibo.it