NAME		ADM NO				
SIGNATURE	CLASS	DATE				
	233/2 CHEMISTRY	PAPER 2				
	(THEORY)					
	JULY 2024					

2 HOURS CHEMISTRY -233/2

FORM IV END TERM 2 EXAM 2024

(Theory)

(Kenya Certificate of Secondary Education)

Instructions to candidates

- (a) Write your name and admission number in the spaces provided above.
- (b) Answer all the questions in the spaces provided in the question paper.
- (c) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.
- (d) All working **must** be clearly shown where necessary.
- (e) Candidates should answer the questions in English.
- (f) This paper consists of 12 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1	11	
2	13	
3	13	
4	12	
5	11	
6	08	
7	12	
Total score	80	

Get more resources from: Enovate KCSE Revision App

1. State two factors that should be considered when	n choosing fuel for cooking. (2 marks)
(b) The diagram below represents a set –up that combustion of ethanol	was used to determine the molar heat of
. 0	Thermometer
	Metallic container Water
Ethanol	Tripod stand Lamp
	The second second second
During the experiment, the data given belo	w was recorded
Volume of water	450cm ³
Initial temperature of water	$25^{0}\mathrm{C}$
Final temperature of water	$46.5^{\circ}\mathrm{C}$
Mass of ethanol + Lamp before burning	125.5g
Mass of ethanol + Lamp after burning	124.0g
Calculate the:	-
i.Heat evolved during the experiment (density of wa	nter=1g/cm ³ ,Specific heat capacity of water
=4.2Jg ⁻ K ⁻	(2marks)

highschool.co.ke

(c) W	rite the	therm	nal chemica	al equation	n for th	ne com	plete co	ombustic	on of ethar	nol. (1	mark)
			e molar hea e. State two				experi	ment.	o) (ii) abov	(2 n	narks)
e) Def			nolar heat o	of combus	stion					(1 m	
	grid be		nows a sect	tion of the	e period	dic tab	le. The	letters de	o not repre	esent the	actual
	K	L		_			M		N	P	
	W	Q			R	S		T	V		
a) b)		•••••	mily to wh					decomp	oose on he	ating.	(1mark) (2 mark)
c)	With a		on, identify								
d)	Write	the for	rmula of th	e compou	nd for	med be	etween	L and M			(1 mark)

e)	State t	wo uses of element ${\bf R}$ and for each use, state property of element ${\bf R}$ that	at makes it
	possib	le for the use	
	(i)	Use	(1/2mark)
		Property	(1/2 mark)
	(ii)	Use	(1/2 mark)
		Property	(1/2 mark)
f)	Using oxyge:	dots (.) and cross (\mathbf{x}) , show bonding in the compound formed between \mathbf{x} .	R and (2 marks)
	•••••		
g)		ns of structure and bonding, explain why the boiling point of the oxide than that of N.	of L is (1 marks)
	•••••		•••••
h)	Calcul	ate the volume of the gas produced when 1.95g of element W reacts v	vith water
	(W=3)	9, Molar gas volume at S.T.P= 24,000cm ³)	(2 marks)
	•••••		

3. Use the information below	on standard electrode potentials to answ	wer the questions that follow
Electronic reaction]	$E^\Theta ext{volts}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(s) (s) (s) (i) (aq) aq)	+0.34 +0.44 -2.92 -2.71 -0.14 +2.87 +1.09 0.00
a) i) Identify the stronges	t reducing agent.	(1 mark
	of the cell obtained by connecting half	
	agram of a cell formed by connecting l	(3 marks)

Get more resources from: Enovate KCSE Revision App
Page 5 of 13

c) he figure below shows the electrolysis of dilute sulphuric (VI) acid

i)	On the diagram label the cathode and anode	(2 mark)
ii)	Name the gases ${f U}$ and ${f V}$	(2 mark)
	Gas U	
	Gas V	
iii)	Write the equation taking place at the anode	(1 mark)
•	ne the term electrolysis	(1 marks)
•	wo applications of electrolysis	(2 marks)
• • • • • • • • • • • • • • • •		

4. The flow chart below outlines some processes involved in the extraction of copper from copper pyrites. Study it and answer the questions that follow.

(a) Na	ame the following:	(3 marks)
	(i) Ore P	
	(ii) Gas L	
	(iii) Slag M	
(b)	(i) Explain how the ore is concentrated.	(1 mark)
•••••		

(ii) Why is it necessary to grind the ore into powder?	(1 mark)
	,
(c) Give the purpose of adding silicon (IV) oxide compound G into the smelting furn	ace.
	(1 mark)
(d) Pure copper is obtained from impure copper by electrolysis. Name the material us anode and cathode.	sed as (1 mark)
Anode	
Cathode	
(e) What effects does this process of copper extraction have to the environment?	(1 mark)
(f) State two uses of copper metal.	(2 marks)
(g) A current of 100 Amperes was passed for 20 days. What mass of copper in kg deposited at the cathode? ($Cu = 64$, $If = 96500 C$)	was (2 marks)
deposited at the eathode: (Cu = 04, 11 = 20000 C)	(2 marks)
5. The table below above the calculation of a transfer of 1966 and	
5 . The table below shows the solubility of potassium nitrate at different temperatures.	

Temperature ⁰	10	20	30	40	50	60	70	80	90	100
c										
Solubility g/100g of water	80	88	96	104	114	124	136	148	162	180

a) Plot a graph of solubilities of potassium nitrate against temperature. (3mk)

b) From your graph determine;

i) the solubility of the potassium nitrate at $65^{\circ}c$.

(1mk)

ii) the mass of potassium nitrate that would dissolve in 50g of water at 82^oc . (2mk)
a) Determine the molecular concentration of notoccinencitrate at 270 a. (N. 14. O. 16. W. 20.
c) Determine the molar concentration of potassium nitrate at 37° c. (N=14, O= 16, K= 39. Assume the density of solution to be 1g/cm³) (3mk)
d) 130g of potassium nitrate salt was added to 100g of water and heated to 90° c. It was then cooled to 15° c.
i) At what temperature were the crystals first formed? (1mk)
ii) Calculate the mass of crystals formed. (1mk)
6. The figure below shows the apparatus used to burn hydrogen in air. Use it to answer the questions that follow.

Get more resources from: Enovate KCSE Revision App
Page 10 of 13

b). Study the scheme below and answer the questions that follow

i. Identify product

A. (1 mark)
F. (1 mark)

ii.	Name the compound C	(1 mark)
iii.	State the conditions for step 1	(2 mark)
iv.	Name the process leading to formation of compound C	(1 mark)
v.	Write an equation for the reaction leading to the formation of m	
vi.	Identify reagent D.	(1 mark)
vii.	Draw the structure of F.	(1 mark)