# **Project 2**

Suryansh Singh: 41403921 Piyush Johar: 01935-949

#### Follow the instructions to run the code

Extract the zip file sbt compile; sbt "run <args>"

Arguments will be: <number of nodes> <topology> <algorithm>

#### Example:

sbt "run 1000 Line Gossip" sbt "run 1000 FullNetwork Gossip" sbt "run 1000 3D Gossip" sbt "run 5000 Imperfect3D Push Sum"

To run bonus file command is

sbt "run 1000 Line Gossip": This will automatically take 10 percent.

sbt "run 1000 Line Gossip 20": This will take the specifies 4 argument as percentage.

**Note:** To find a random neighbour of the current actor we used an algorithm which takes O(1) time.

## **Gossip Algorithm:**

Unit of Time: milliseconds

Termination condition for each actor: After receiving 10 gossips

| No of Nodes | Line (ms) | Full Network(ms) | 3D (ms) | Imperfect3D (ms) |
|-------------|-----------|------------------|---------|------------------|
| 500         | 1062      | 1669             | 1248    | 1362             |
| 1000        | 1447      | 3642             | 1605    | 1673             |
| 2500        | 2935      | 14943            | 3441    | 3456             |
| 5000        | 5665      | 57237            | 5806    | 5932             |
| 10000       | 10481     | 216248           | 12062   | 12278            |
| 20000       | 21035     | 784327           | 21952   | 24675            |

Line (ms), Full Network(ms), 3D (ms) and Imperfect3D (ms)



In Gossip implementation, an actor is terminated in 2 ways:

- 1. whenever the actor receives 10 gossips
- 2. whenever all the neighbours of an actor are unreachable

In our implementation, a situation arises when current actor's all neighbours are unreachable (node deadlock). In that case, this current actor is closed and the main system starts the Gossip process with the remaining actors again. This method makes sure that full system converges. For our Gossip implementation, the line performs better because the chances of occurrence of above mentioned situation are maximum in line topology. And in that case, our main system restarts the Gossip system with remaining actors.

If we were not allowing the system to restart for above situation, then the current actor's termination condition would never be achieved (that is it will never receive 10 Gossips), and the system will continue to run forever, which would not be ideal. In this scenario, the Line topology would perform the worst, because the probability of above situation is maximum in Line. And the Line would continue to run forever.

## Push Sum Algorithm: Unit of Time: milliseconds

Termination condition for each actor: 3 consecutive rounds of push sums is less than

0.0000000001

| No of Nodes | Line (ms) | Full Network(ms) | 3D (ms) | Imperfect3D (ms) |
|-------------|-----------|------------------|---------|------------------|
| 100         | 128182    | 1138             | 4292    | 2878             |
| 200         | 561472    | 1893             | 9770    | 5632             |
| 500         | 614732    | 4789             | 40883   | 38919            |
| 1000        | 642123    | 16587            | 63048   | 78770            |



In Push sum implementation, an actor is terminated in 2 ways:

- 1. whenever the actor receives 10 gossips
- 2. whenever all the neighbours of an actor are unreachable

#### **Observations:**

#### **Gossip Algorithm:**

#### **Line Topology**

The line topology takes minimum time for our implementation as explained above. In real scenario, line would take maximum time (explained above)

#### 3D

Time to propagate gossip is almost linear.

#### **Imperfect 3D**

As per our observation, Imperfect 3D takes more time than 3D grid topology but less than full network.

#### **Full Network**

Full network topology takes the maximum time in this simulation. In real life simulation, line would take maximum time. We have explained this above.

#### **Push Sum Algorithm:**

#### Line

Line Topology takes the highest amount of time to compute push sum in the network. But with increase in node size, the gain in time is decreasing.

### **3D Topology**

3D takes less time than Line, but more than full network and imperfect 3D.

### **Imperfect 3D Topology**

Imperfect takes less time than 3D but more than full network.

#### **Full N/W Topology**

It takes the minimum time of all the toplogies.

#### **Bonus Question**

- 1. For bonus part, we are taking another parameter from user, which is the percentage of nodes to kill.
- 2. We kill this percent of nodes from our actor system after 100ms from our system start. If our implementation of algorithm for any topology finishes before 100ms, our implementation will not kill any nodes. But in case the implementation goes beyond 100 ms(which will happen for most scenarios), our main system will close x percent of total nodes (except the current node). These nodes will be selected randomly from the current active nodes.
- 3. In case the user misses out passing this percentage parameter, our system assumes a default 10% and kills 10% of nodes after 100ms.
- 4. After closing these random nodes, a situation might arise where the current node may not have any active neighbour. Our implementation will then find a random actor and continue to propagate the message throughout the whole system. This is fault tolerance in our system.

## **Gossip Algorithm**

| % of Nodes | Line (ms) | Full Network(ms) | 3D (ms) | Imperfect3D (ms) |
|------------|-----------|------------------|---------|------------------|
| 10         | 183       | 272              | 295     | 350              |
| 50         | 100       | 190              | 163     | 206              |
| 70         | 59        | 132              | 104     | 115              |

# Line (ms), Full Network(ms), 3D (ms) and Imperfect3D (ms)



## **Push Sum Algorithm**

| % of Nodes | Line (ms) | Full Network(ms) | 3D (ms) | Imperfect3D (ms) |
|------------|-----------|------------------|---------|------------------|
| 10         | 3923      | 1048             | 3955    | 3923             |
| 50         | 99        | 648              | 2161    | 206              |
| 70         | 65        | 465              | 216     | 125              |

Line (ms), Full Network(ms), 3D (ms) and Imperfect3D (ms)

