Notations for the code in "Eval3.ipynb"

Now W is no longer a vector, it is a 32×10000 -matrix.

Using the Einstein notation (exponents mean there is a sum in this variable, so it means there is a hidden multiplication of tensors):

$$\begin{split} \mathbf{R}_{abxy\alpha}(\mathbf{W},\mathbf{P},\mathbf{Q}) &:= \mathbf{P} \boxtimes_W \mathbf{Q}(a,b \mid x,y) \\ &= \mathbf{1}^i \Big[\Big(\Big(A_{xy\alpha^i}^{k}\!(\mathbf{W}) \, \mathbf{P}_k{}^j \Big) \, \Big(B_{xy\alpha^j}^{j}\!(\mathbf{W}) \, \mathbf{Q}_{\ell i} \Big) \Big)_{ab} \, C_{abxy\alpha^j}^{j}\!(\mathbf{W}) \, D_{abxy\alpha^j}^{j}\!(\mathbf{W}) \Big] \mathbf{1}_j \\ i.e. \quad \mathbf{R}(\mathbf{W},\mathbf{P},\mathbf{Q}) &= \Bigg[\mathbf{1}_{2\times 2} \otimes \Big(\Big(A(\mathbf{W}) \cdot \mathbf{P} \Big) * \Big(B(\mathbf{W}) \cdot \mathbf{Q} \Big)^{\top (0,1,2,4,3)} \Big) * C(\mathbf{W}) * D(\mathbf{W}) \Big] \cdot \mathbf{1}_4 \cdot \mathbf{1}_4 \Big], \end{split}$$

where $a, b, x, y \in \{0, 1\}$, and $i, j, k, \ell \in \{0, 1, 2, 3\}$, and $m, n \in \{0, \dots, 31\}$, and $\alpha \in \{0, 9999\}$, and where:

- * is the component-wise multiplication;
- By convention $T \cdot U$ is the tensor multiplication of T and U through the last entry of T and the first one of U;
- $T^{\top \sigma(0,1,\ldots,n-1)}$ (for some permutation $\sigma \in \mathfrak{S}(\{0,\ldots,n-1\})$) is the tensor whose *i*-th entry is the σ_i -th entry of T (if $|\operatorname{supp} \sigma| = 2$, then $\top \sigma$ is simply the transpose);
- \boxtimes is the Kronecker product. When we do $\mathbb{1} \otimes T$, we duplicate the tensor T so that we obtain a new tensor with more entries;

$$\begin{aligned} \bullet \quad & A_{xy\alpha ik}(W) = \left(A_{xik}^{(1)}{}^{m}W_{m\alpha} + A_{xik\alpha}^{(2)} \right)_{y} \left(A_{yik}^{(3)}{}^{n}W_{n\alpha} + A_{yik\alpha}^{(4)} \right)_{x}, \\ & i.e. \quad \left[A(W) = \left(\left[\mathbf{1}_{2} \otimes \left(A^{(1)} \cdot W + A^{(2)} \right) \right]^{\top (1,0,2,3,4)} * \left[\mathbf{1}_{2} \otimes \left(A^{(3)} \cdot W + A^{(4)} \right) \right] \right)^{\top (0,1,4,2,3)} \right] \end{aligned}$$

•
$$B_{xy\alpha j\ell}(W) = \left(B_{xj\ell}^{(1)^m} W_{m\alpha} + B_{yj\ell\alpha}^{(2)}\right)_y \left(B_{yj\ell}^{(3)^n} W_{n\alpha} + B_{yj\ell\alpha}^{(4)}\right)_x$$
,
i.e. $B(W) = \left(\left[\mathbf{1}_2 \otimes \left(B^{(1)} \cdot W + B^{(2)}\right)\right]^{\top (1,0,2,3,4)} * \left[\mathbf{1}_2 \otimes \left(B^{(3)} \cdot W + B^{(4)}\right)\right]\right)^{\top (0,1,4,2,3)}$

•
$$C_{abxy\alpha ij}(W) = \left(C_{axij}^{(1)}{}^{m}W_{m\alpha} + C_{axij\alpha}^{(2)}\right)_{by},$$

 $i.e.$ $C(W) = \left(\mathbf{1}_{2\times 2} \otimes \left(C^{(1)} \cdot W + C^{(2)}\right)\right)^{\top(2,0,3,1,6,4,5)}$;

•
$$D_{abxy\alpha ij}(W) = \left(D_{byij}^{(1)}{}^{m}W_{m\alpha} + D_{byij\alpha}^{(2)}\right)_{ax},$$

 $i.e. D(W) = \left(\mathbf{1}_{2\times 2} \otimes \left(D^{(1)} \cdot W + D^{(2)}\right)\right)^{\top (0,2,1,3,6,4,5)}$

Computation of $A^{(1)}$ **and** $A^{(2)}$ **.** We have :

$$\begin{bmatrix} (1 - f_1(x,0)) & (1 - f_1(x,0)) & f_1(x,0) & f_1(x,0) \\ (1 - f_1(x,0)) & (1 - f_1(x,0)) & f_1(x,0) & f_1(x,0) \\ (1 - f_1(x,1)) & (1 - f_1(x,1)) & f_1(x,1) & f_1(x,1) \\ (1 - f_1(x,1)) & (1 - f_1(x,1)) & f_1(x,1) & f_1(x,1) \end{bmatrix}_{ik} = \left(A_{xik}^{(1)}{}^{m}W_{m\alpha} + A_{xik\alpha}^{(2)}\right)_{ik}$$

for $x \in \{0, 1\}$, and $i, k \in \{0, ..., 3\}$, and $m \in \{0, ..., 31\}$, and $\alpha \in \{0, 9999\}$. We have for all x and for k = 0, 1 (1st and 2nd columns of the above matrix) and then k = 2, 3 (3rd and 4th columns):

$$\begin{pmatrix} A_{xi0}^{(1)m} \end{pmatrix}_{im} = \begin{bmatrix}
x-1 & 0 & -x & 0 \\
x-1 & 0 & -x & 0 \\
0 & x-1 & 0 & -x \\
0 & x-1 & 0 & -x
\end{bmatrix}_{im} = \begin{pmatrix} A_{xi1}^{(1)m} \\ A_{xi2}^{(1)m} \end{pmatrix}_{im},$$

$$= - \begin{pmatrix} A_{xi2}^{(1)m} \\ A_{xi2}^{(1)m} \end{pmatrix}_{im} = - \begin{pmatrix} A_{xi3}^{(1)m} \\ A_{xi3}^{(1)m} \end{pmatrix}_{im}.$$

And for all x, α :

$$\left(A_{xik\alpha}^{(2)}\right)_{ik} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}_{ik} = \begin{bmatrix} \mathbf{1}_{4\times2} & \mathbf{0}_{4\times2} \end{bmatrix}_{ik}.$$

Computation of $A^{(3)}$ and $A^{(4)}$. We have :

$$\begin{bmatrix} (1 - g_1(y, 0)) & g_1(y, 0) & (1 - g_1(y, 0)) & g_1(y, 0) \\ (1 - g_1(y, 1)) & g_1(y, 1) & (1 - g_1(y, 1)) & g_1(y, 1) \\ (1 - g_1(y, 0)) & g_1(y, 0) & (1 - g_1(y, 0)) & g_1(y, 0) \\ (1 - g_1(y, 1)) & g_1(y, 1) & (1 - g_1(y, 1)) & g_1(y, 1) \end{bmatrix}_{ik} = \left(A_{yik}^{(3)n} W_{n\alpha} + A_{yik\alpha}^{(4)}\right)_{ik}$$

for $y \in \{0, 1\}$, and $i, k \in \{0, ..., 3\}$, and $n \in \{0, ..., 31\}$, and $\alpha \in \{0, 9999\}$. We have for all y and k = 0, 2 (1st and 3rd columns of the above matrix) and then for k = 1, 3 (2nd and 4th columns):

$$\begin{pmatrix} A_{yi0}^{(3)}^{n} \end{pmatrix}_{i,n} = \begin{bmatrix} \mathbf{0}_{4\times4} & y-1 & 0 & -y & 0 \\ 0 & y-1 & 0 & -y & 0 \\ y-1 & 0 & -y & 0 \end{bmatrix}_{i,n} \mathbf{0}_{4\times24} = \begin{pmatrix} A_{yi2}^{(3)}^{n} \end{pmatrix}_{i,n},$$

$$= - \begin{pmatrix} A_{yi1}^{(3)}^{n} \end{pmatrix}_{i,n} = - \begin{pmatrix} A_{yi3}^{(3)}^{n} \end{pmatrix}_{i,n}.$$

And for all y, α :

$$\left(A_{yik\alpha}^{(4)}\right)_{ik} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}_{ik} = \begin{bmatrix} \mathbf{1}_{4\times 1} & \mathbf{0}_{4\times 1} & \mathbf{1}_{4\times 1} & \mathbf{0}_{4\times 1} \end{bmatrix}_{ik}.$$

Computation of $B^{(1)}$ to $B^{(4)}$. After doing as before, we obtain:

$$B_{yj\ell\alpha}^{(2)} = A_{yj\ell\alpha}^{(2)}$$
 and $B_{yj\ell\alpha}^{(4)} = A_{yj\ell\alpha}^{(4)}$.

As we just change f_1 into f_2 and g_1 into g_2 , we have for all x:

$$\left(B_{xj0}^{(1)m}\right)_{j,m} = \begin{bmatrix} \mathbf{0}_{4\times8} & \frac{x-1}{x-1} & 0 & -x & 0\\ 0 & x-1 & 0 & -x & 0\\ 0 & x-1 & 0 & -x \end{bmatrix}_{j,m} = \left(B_{xj1}^{(1)m}\right)_{j,m} = -\left(B_{xj2}^{(1)m}\right)_{j,m} = -\left(B_{xj3}^{(1)m}\right)_{j,m},$$

and for all y:

$$\begin{pmatrix} B_{yj0}^{(3)}^{n} \end{pmatrix}_{j,n} = \begin{bmatrix} \mathbf{0}_{4\times12} & y-1 & 0 & -y & 0 \\ 0 & y-1 & 0 & -y & 0 \\ y-1 & 0 & -y & 0 \end{bmatrix}_{j,n} \mathbf{0}_{4\times16}$$

$$= -\left(B_{yj1}^{(3)}^{n}\right)_{j,n} = \left(B_{yj2}^{(3)}^{n}\right)_{j,n} = -\left(B_{yj3}^{(3)}^{n}\right)_{j,n}.$$

Computation of $C^{(1)}$ and $C^{(2)}$. We have:

$$-\left(-1\right)^{a}\begin{bmatrix} f_{3}(x,0,0) & f_{3}(x,0,0) & f_{3}(x,1,0) & f_{3}(x,1,0) \\ f_{3}(x,0,0) & f_{3}(x,0,0) & f_{3}(x,1,0) & f_{3}(x,1,0) \\ \hline f_{3}(x,0,1) & f_{3}(x,0,1) & f_{3}(x,1,1) & f_{3}(x,1,1) \\ f_{3}(x,0,1) & f_{3}(x,0,1) & f_{3}(x,1,1) & f_{3}(x,1,1) \end{bmatrix}_{ij} = \left(C_{axij}^{(1)}{}^{m}W_{m\alpha}\right)_{ij}$$

For all a, x and for $j \in \{0, 1\}$ (1st and 2nd columns):

and for $j \in \{2,3\}$ (3rd and 4th columns):

And we have $C_{axij\alpha}^{(2)} = (1-a) \mathbf{1}_{xij\alpha}$.

Computation of $D^{(1)}$ and $D^{(2)}$. We have:

$$-(-1)^{b} \begin{bmatrix} g_{3}(y,0,0) & g_{3}(y,1,0) & g_{3}(y,0,0) & g_{3}(y,1,0) \\ g_{3}(y,0,1) & g_{3}(y,1,1) & g_{3}(y,0,1) & g_{3}(y,1,1) \\ g_{3}(y,0,0) & g_{3}(y,1,0) & g_{3}(y,0,0) & g_{3}(y,1,0) \\ g_{3}(y,0,1) & g_{3}(y,1,1) & g_{3}(y,0,1) & g_{3}(y,1,1) \end{bmatrix}_{ij} = \left(D_{byij}^{(1)}{}^{m}W_{m\alpha}\right)_{ij}.$$

For all y and $j \in \{0, 2\}$ (1st and 3rd columns):

$$\left(D_{byi0}^{(1)m}\right)_{i,m} = -(-1)^b \begin{bmatrix} 1-y & 0 & 0 & 0 & y & 0 & 0 & 0 \\ 0 & 1-y & 0 & 0 & 0 & y & 0 & 0 \\ 1-y & 0 & 0 & 0 & y & 0 & 0 & 0 \\ 0 & 1-y & 0 & 0 & 0 & y & 0 & 0 \end{bmatrix}_{i,m} = \left(D_{byi2}^{(1)m}\right)_{i,m},$$

and for $j \in \{1,3\}$ (2nd and 3rd columns):

And $D_{buij\alpha}^{(2)} = (1-b) \mathbf{1}_{yij\alpha}$.