

Complex Function: 复变函数

A notebook for Complex Function

作者:John Pink 组织:John 的数学小栈 时间:March 3, 2024 版本:0.1

目录

第1章	复数的基本概念	1
第2章	复变函数	2
第3章	Cauchy 积分	3
3.1	解析函数与调和函数	5
第4章	解析函数的幂级数表示	6
4.1	复级数的基本概念	6
4.2	一致收敛	7
4.3	幂级数	ç
	4.3.1 收敛半径	9
	4.3.2 Taylor 展式	9
第5章	解析函数的零点与奇点	11
5.1	解析函数的零点	11
5.2	解析函数的唯一性	12
5.3	洛朗 (Laurent) 展式	12
5.4	孤立奇点	13
5.5	解析函数在无穷远点的性质	15
5.6	整函数与亚纯函数	16
第6章	留数 (Residue)	17
6.1	留数的概念	17
6.2	利用留数计算积分	19
6.3	辅角原理	20
第7章	共形映射	22
7.1	解析变换的性质	22
7.2	分式线性变换 (Möbius 变换)	23
7.3	黎曼存在唯一性定理与边界对应定理	
第8章	解析延拓	25
8.1	解析延拓的概念	
8.2	透弧解析延拓、对称原理	

第1章 复数的基本概念

定义 1.1 (复数 (Complex number))

我们将形如

z = x + iy

的数称为复数。其中 x, y 均为实数。

注(虚数单位 i) 为了表示某个数的平方为负数,引入虚数单位 i,其满足如下性质

 $i^2 = -1$

定义 1.2 (幅角)

从正实轴旋转到 (x,y) 所在的射线的角度称为复数 z 的幅角,记为 $\mathrm{Arg}z$ 。

第2章 复变函数

定义 2.1 (复函数一致收敛)

一个函数 f(z) 在区域 E 上一致收敛, 当且仅当

 $\forall \varepsilon > 0, \exists \delta = \delta_{\varepsilon} > 0 s.t.z', z'' \in E,$ 只要满足 $|z' - z''| < \delta, 有: |f(z') - f(z'')| < \varepsilon.$

定理 2.1 (Cauchy-Riemann 定理)

设函数 f(z) 为一个复变函数,且

$$f(z) = u(x, y) + iv(x, y).$$

则这个复函数可微的充分必要条件为

- 1. u,v 均可微;
- 2. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$;
- 3. $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

C

定义 2.2 (解析函数与可微)

如果复函数 f(z) 在区域 D 内的每一点都可微, 则称复函数 f(z) 在 D 内解析; 如果 f(z) 在 z_0 的某一个邻域内解析, 则称 f(z) 在 z_0 解析.

连续函数在有界闭区间上的性质(复函数版本)

命题 2.1

- 1. 设函数 f(z) 在简单曲线或者有界闭区域 E 上连续,则它在 E 上一致连续.
- 2. 设函数 f(z) 在简单曲线或者有界闭区域 E 上连续,则它在 E 上有界.
- 3. 设函数 f(z) 在简单曲线或者有界闭区域 E 上连续,则它在 E 上能够达到最大模与最小模.

•

第3章 Cauchy 积分

定理 3.1 (Cauchy 积分公式)

设区域D的边界为C,若

- 1. f 在 D 内解析;
- 2. $f ilde{L} = D \cup C$ 内连续;

则 $\forall z \in D$, 有

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

 \sim

定义 3.1 (Cauchy 积分)

将这种形式的积分称为 Cauchy 积分。

$$\frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

•

例题 3.1 求积分 $\oint_C \frac{e^z}{z^2+1} dz$, 其中 C: |z|=2 的正向.

例题 3.2 设 C 为椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 的正向,设 $f(z) = \oint_C \frac{\zeta^2 - 2}{\zeta - z} d\zeta$,求 f(z), f'(z), f''(z), f''(z),的值。

推论 3.1 (平均值定理)

如果函数 f(z) 在圆 $|\zeta-z| < R$ 内解析,在闭圆 $|\zeta-z| \le R$ 上连续,则

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi}) d\varphi$$

 \sim

证明 令 $z-z_0=Re^{\mathrm{i}\varphi}, \varphi\in[0,2\pi]$ 。则由 Thm3.1Cauchy 积分公式有:

$$f(z_0) = \frac{1}{2\pi i} \int_{|\zeta-z| < R} \frac{f(z)}{z - z_0} dz$$

代入 $z = Re^{i\varphi} + z_0$ 有:

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\varphi})iRe^{i\varphi}d\varphi}{Re^{i\varphi}}$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi})d\varphi$$

定理 3.2 (高阶导数定理)

在 3.1 的条件下, f(z) 在 D 内有任意阶导数,则有

$$f^{(n)} = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} dz, \ (z \in D, n = 1, 2, 3, \dots)$$

0

证明 对柯西积分公式 3.1两边同时多次求导

定理 3.3

f(z) 在 \mathbb{C} 平面上的区域 D 内解析,则 f(z) 在 D 内的任意阶导数,且均在 D 内解析。

 \odot

定理 3.4 (Cauchy 不等式)

设函数 f(z) 在区域 D 内解析,a 为 D 内一点,以 a 为圆心作圆周 γ : $|\zeta-a|=R$,只要 γ 及其内部 K 均含于 D,则有

$$|f^{(n)}| \le \frac{n!M(R)}{R^n}$$

其中 $M(R) = \max_{|z-a|=R} |f(z)|, n = 1, 2, \dots$

 \Diamond

定义 3.2 (整函数)

我们将在整个复平面上解析的函数称为整函数。

*

定理 3.5 (Liouville 定理 (模有界定理))

有界整函数 f(z) 必为常数。

 \Diamond

定理 3.6 (代数学基本定理)

在复平面 \mathbb{C} 上,n次多项式函数

$$p(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n, \ a_0 \neq 0$$

至少有一个零点。

 \sim

证明 [反证法] 如果函数 f(z)=p(z) 在 \mathbb{C} 上没有零点, 令 F(z)=1/f(z), 则函数 F(z) 在 \mathbb{C} 上解析, 由于 $\lim_{z\to\infty}f(z)=\infty$, 则

$$\lim_{z \to \infty} F(z) = 0.$$

从而一定存在一个足够大的正数 R, 使得 |z| > R 时, 有

$$|F(z)| < 1.$$

而当 |z| < R 时,根据连续函数在闭区域上连续必有界,设

$$|F(z)| < M$$
.

从而在 €上,

$$|F(z)| < M + 1.$$

由 Liouville 定理得 F(z) 必为常数, 也即 f(z) 为常数, 与条件矛盾. 作为 Cauchy 积分定理的逆定理, 我们有 Morera 定理, 如下

定理 3.7 (Morera 定理)

若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一周线 C, 有

$$\int_C f(z)dz = 0$$

则 f(z) 在 D 内解析

 \Diamond

定理 3.8

函数 f(z) 在区域 G 内解析的充要条件为

- f(z) 在 G 内连续;
- 对任一周线 C, 只要 C 及其内部全含于 G 内, 就有

$$\int_{C} f(z)dz = 0$$

 \odot

3.1 解析函数与调和函数

f(z) = u + iv 在区域 D 内解析,则由 C.-R. 方程有

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

同时对 u 和 v 继续求偏导得

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y},$$
$$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y}$$

从而有

$$\begin{split} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} &= 0 \\ \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} &= 0 \end{split}$$

则函数 u, v 均满足 Laplace 方程, $\Delta u = \Delta v = 0$.

定义 3.3 (调和函数)

如果二元实函数 H(x,y) 在区域 D 内有二阶连续偏导数,且满足 $\Delta H=0$,则称 H 为调和函数.

*

定义 3.4 (共轭调和函数)

在区域D内满足C.-R.方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

的两个调和函数 u,v 中,v 称为 u 在区域 D 内的共轭调和函数.

注 共轭调和函数的关系并不是对等的,注意上述定义的顺序不可改变。

定理 3.9

若函数 f(z) = u(x,y) + iv(x,y) 在区域 D 内解析,则在区域 D 内 v 必是 u 的共轭调和函数.

第4章 解析函数的幂级数表示

4.1 复级数的基本概念

定义 4.1 (复级数的收敛与发散)

对于复数项的级数

$$\sum_{n=1}^{\infty} \alpha_n = \alpha_1 + \alpha_2 + \dots + \alpha_n + \dots$$

令 $S_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, 称其为复数项级数的部分和. 若复数列 S_n 以有限复数 s 为极限,即如果

$$\lim_{n \to \infty} S_n = s$$

则称复数项无穷级数收敛于s,则称s为级数的和,记为

$$s = \sum_{n=1}^{\infty} \alpha_n$$

若复数列无有限极限, 则称其发散

定理 4.1 (复级数收敛的充要条件)

设 $\alpha_n = a_n + \mathrm{i} b_n$, a_n 与 b_n 为实数列,则复数列 α_n 收敛于 $s = a + \mathrm{i} b$ 的充要条件为: 实级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 分别收敛于 a, b.

证明 设 $s_n = \sum_{k=1}^n \alpha_k$, $A_n = \sum_{k=1}^n a_k$, $B_n = \sum_{k=1}^n b_n$, 则

$$S_n = A_n + iB_n$$

则

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (A_n + iB_n) = \lim_{n \to \infty} A_n + i \lim_{n \to \infty} B_n = a + ib$$

的充要条件为

$$\lim_{n \to \infty} A_n = a, \lim_{n \to \infty} B_n = b.$$

定理 4.2 (Cauchy 收敛准则)

复级数 $\sum_{n=1}^{\infty} \alpha_n$ 收敛的充分必要条件为: $\forall \epsilon$, 存在 $N(\epsilon) \in \mathbb{N}^+$, 当 n > N 时, $\forall p \in \mathbb{N}^+$, 有

$$|\alpha_{n+1} + \alpha_{n+2} + \dots + \alpha_{n+p}| < \epsilon$$

注 若只改变级数中的有限项,则产生的新级数与原级数的同敛散

定理 4.3

复级数 $\sum_{n=1}^{\infty} \alpha_n$ 收敛的一个充分条件为: 级数 $\sum_{n=1}^{\infty} |\alpha_n|$ 收敛

证明 级数 $\sum_{n=1}^{\infty} |\alpha_n|$ 收敛,则由Cauchy 收敛准则知 $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^+, s.t. \forall n > N:$

$$|\alpha_{n+1}| + |\alpha_{n+2}| + \dots + |\alpha_{n+p}| < \varepsilon \ (\forall p \in \mathbb{N}^+)$$

又由绝对值不等式

$$|\alpha_{n+1} + \alpha_{n+2} + \dots + \alpha_{n+p}| < |\alpha_{n+1}| + |\alpha_{n+2}| + \dots + |\alpha_{n+p}| < \varepsilon. (\forall p \in \mathbb{N}^+)$$

故级数 $\sum_{n=1}^{\infty} \alpha_n$ 收敛.

定义 4.2 (绝对收敛)

若级数 $\sum_{n=1}^{\infty} |\alpha_n|$ 收敛,则原级数 $\sum_{n=1}^{\infty} \alpha_n$ 称为绝对收敛; 非绝对收敛的级数称为条件收敛.

*

定理 4.4

- 1. 一个绝对收敛的复级数的各项次序可以重排, 其收敛值不变
- 2. 两个绝对收敛的复级数

$$s = \alpha_1 + \alpha_2 + \dots + \alpha_n + \dots$$
$$s' = \alpha'_1 + \alpha'_2 + \dots + \alpha'_n + \dots$$

可按照对角线方法得出乘积级数, 又称为 Cauchy 级数:

$$\sum_{n=1}^{\infty} \sum_{k=1}^{n} \alpha_k \alpha'_{(n+1)-k} = \alpha_1 \alpha'_1 + (\alpha_1 \alpha'_2 + \alpha_2 \alpha'_1) + \dots + (\alpha_1 \alpha'_n + \alpha_2 \alpha'_{n-1} + \dots + \alpha_n \alpha'_1) + \dots$$

也绝对收敛于 ss'

 \mathbb{C}

4.2 一致收敛

定义 4.3 (和函数)

设复函数项级数

$$f_1(z) + f_2(z) + \dots + f_n(z) + \dots$$
 (4.1)

的各点均在点集 E 上定义,且在 E 上存在一个函数 f(z),对于 E 上的每一点 z,级数 **4.1**均收敛于 f(z),则 称 f(z) 为级数 4.1的和函数.

$$\left| f(z) - \sum_{k=1}^{n} f_k(z) \right| < \varepsilon$$

这里的 N 是一个依赖于 ε 和 z 的量,这种收敛性依赖于所选取的点,因此称之为点态收敛。

定义 4.4 (一致收敛)

对于级数 $\sum_{n=1}^{\infty} f_n(z)$, 如果在点集 E 上有一个函数 f(z), 使得对任意给定的 $\epsilon>0$, 存在正整数 $N=N(\varepsilon)$, 当 n>N 时,对一切的 $z\in E$, 均有

$$\left| f(z) - \sum_{k=1}^{n} f_k(z) \right| < \varepsilon$$

$$\left| f(z) - \sum_{k=1}^{n} f_k(z) \right| < \varepsilon (\forall z \in E)$$

定义 4.5 (非一致收敛)

级数 $\sum_{n=1}^{\infty} f_n(z)$ 不一致收敛:

 $\exists \varepsilon_0 > 0, \forall N \in \mathbb{N}^+, \exists n_0 > N, \exists z_0 \in E, s.t.$

$$\left| f(z_0) - \sum_{k=1}^{n_0} f_k(z_0) \right| \ge \varepsilon_0$$

*

定理 4.5 (Cauchy 一致收敛准则)

级数 $\sum_{n=1}^{\infty} f_n(z)$ 在点集 E 上一致收敛于某个函数的充要条件为:

任给 $\varepsilon > 0$, 存在正整数 $N = N(\varepsilon)$, 使得当n > N时, 对一切的 $z \in E$, 均有

$$|f_{n+1}(z) + f_{n+2}(z) + \dots + f_{n+p}(z)| < \varepsilon \ (p = 1, 2, 3, \dots)$$

 $\sum_{n=1}^{\infty} f_n(z)$ 在点集 E 上一致收敛

 \Leftrightarrow

 $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^+, s.t. \forall n > N, \forall z \in E :$

$$|f_{n+1}(z) + f_{n+2}(z) + \dots + f_{n+p}(z)| < \varepsilon \ (p = 1, 2, 3, \dots)$$

定理 4.6 (优级数准则)

如果有正数列 $M_n(n=1,2,...)$, 使得对一切 $z \in E$, 有

$$|f_n(z)| \le M_n \ (n = 1, 2, \ldots)$$

而且正项级数 $\sum_{n=1}^\infty M_n$ 收敛,则复函数项级数 $\sum_{n=1}^\infty f_n(z)$ 在点集 E 上绝对收敛且一致收敛。这样的正项级数 $\sum_{n=1}^\infty M_n$ 称为复函数项级数 $\sum_{n=1}^\infty f_n(z)$ 的优级数

 \sim

定理 4.7 (连续性定理)

设级数 $\sum_{n=0}^{\infty} f_n(z)$ 在点集 E 上一致收敛于 f(z),则当

$$f_n \in C(E), \forall n \in \mathbb{N}^+$$

时, $f \in C(E)$.

C

定理 4.8 (逐项积分)

若有以下两个条件成立

- 1. 在C上, $f_n \in C(E)$, $\forall n \in \mathbb{N}^+$;
- 2. 在 C 上, $\sum f_n \Rightarrow f$.

则有

$$\int_{C} f(z)dz = \sum_{C} \int_{C} f_{n}(z)dz.$$

 \odot

定理 4.9 (逐项求导)

若有以下两个条件成立

- 1. 在区域 D 内, $f_n(z)$ 解析, $\forall n \in \mathbb{N}^+$;
- 2. 在区域 D 上, $\sum f_n(z)$ 内闭一致收敛到 f(z).

则有

- 1. 函数 f(z) 在区域 D 内解析
- 2. $f^{(p)}(z) = \sum f^{(p)}(z), (z \in D, p = 1, 2, \cdots)$
- 3.

 \sim

定理 4.10 (Montel 定理)

设复函数序列 $\{f_n(z)\}_{n=1}^\infty$ 在区域 D 内解析, 并且在 D 上内闭一致收敛, 函数列 $\{f_n(z)\}_{n=1}^\infty$ 在 D 上一定存在子序列 $\{f_{n_k}(z)\}_{n=1}^\infty$ 在 D 上内闭一致收敛, 并且这个子序列的极限函数 f(z) 在区域 D 内解析.

4.3 幂级数

定义 4.6 (幂级数)

具有以下形式的级数称为幂级数

$$\sum_{n=0}^{\infty} c_n (z-a)^n = c_0 + c_1 (z-a) + c_2 (z-a)^2 + \cdots$$
(4.2)

其中 $c_i, i \in \mathbb{N}$ 和 a 均为复常数.

定理 4.11 (Abel 定理)

如果幂级数 4.2在某点 $z_1 \neq a$) 处收敛, 则它必在圆 $K: |z-a| < |z_1-a|$ 内绝对收敛且内闭一致收敛.

4.3.1 收敛半径

定理 4.12 (Cauchy-Hadamard 公式)

如果幂级数 $\sum_{n=0}^{\infty} c_n (z-a)^n$ 的系数 c_n 满足

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = l,$$

或者

$$\lim_{n \to \infty} \sqrt[n]{|c_n|} = l,$$

或者

$$\overline{\lim_{n\to\infty}}\sqrt[n]{|c_n|}=l.$$

则幂级数的收敛半径为

$$R = \begin{cases} \frac{1}{l}, & l \neq 0, l \neq +\infty; \\ 0, & l = +\infty; \\ +\infty, & l = 0. \end{cases}$$

4.3.2 Taylor 展式

定理 4.13 (Taylor 定理)

设复函数 f(z) 在区域 D 内解析, $a \in D$, 则只要圆 K: |z-a| < R 在 D 中, 则 f(z) 在 K 内能够展开为幂级数

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n,$$

其中系数

$$c_n = \frac{1}{2\pi i} \int_{\Gamma_0} \frac{f(\zeta)}{(\zeta - a)}^{n+1} d\zeta = \frac{f^{(n)}(a)}{n!}.$$

定理 4.14

函数 f(z) 在区域 D 上解析的充要条件为: 对于任意一点 $a \in D$, 函数 f(z) 在 a 的邻域内可以展成 Taylor 级数 (幂级数).

定理 4.15

设幂级数 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的收敛半径为 R>0, 且

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n.$$

则 f(z) 在收敛圆周 C:|z-a|=R 上至少存在一个奇点.

 \Diamond

第5章 解析函数的零点与奇点

5.1 解析函数的零点

定义 5.1 (零点)

设函数 f(z) 在解析区域区域 D 内的一点 a 满足

$$f(a) = 0.$$

则称 a 为解析函数 f(z) 的零点.

定理 5.1

不恒为零的解析函数 f(z) 以 a 为 m 阶零点的充要条件为

$$f(z) = (z - a)^m \phi(z).$$

其中 $\phi(z)$ 在点 a 的邻域 |z-a| < R 内解析, 且 $\phi(a) \neq 0$.

证明

(必要性)根据m 阶零点的定义,f(z) 在点a 的邻域内可以展开为

$$f(z) = \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

从而

$$f(z) = (z - a)^m \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^{n-m}.$$

则只需令

$$\phi(z) = \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^{n-m}.$$

即可.

(充分性) 假设 $f(z) = (z - a)^m \phi(z)$, 则

$$f^{(n)}(z) = \sum_{k=0}^{n} \binom{n}{k} [(z-a)^m]^{(k)} \cdot \phi^{(n-k)}(z).$$

于是当 n < m 时, $[(z-a)^m]^{(k)}|_{z=a} = 0$, 从而 $f^{(n)}(a) = 0$.

而当 n = m 时, $f^{(m)}(a) = m! \phi(a)$, 由于 $\phi(a) \neq 0$, 从而 $f^{(m)}(a) \neq 0$, 则由 m 阶零点的定义可知 a 为 f(z) 的 m 阶零点.

定理 5.2

不恒为 0 的解析函数的零点必是孤立的.

 $^{\circ}$

证明 设a为函数f(z)的m阶零点,则由以上定理有

$$f(z) = (z - a)^m \phi(z).$$

其中 $\phi(z)$ 在点 a 的邻域 |z-a| < R 内解析,而且 $\phi(a) \neq 0$,从而在这个邻域内没有异于 a 的零点.

引理 5.1

如果

- 函数 f(z) 在 a 的邻域 K:|z-a|< R 内解析,
- 在 K 内, f(z) 有一列零点 $\{z_n\}(z_n \neq a)$ 且 $\lim_{n\to\infty} z_n = a$

则 f(z) 在 K 内必为常数.

注 这个 Lemma 就是相当于: 存在非孤立奇点的解析函数一定为常数.

5.2 解析函数的唯一性

定理 5.3 (唯一性定理)

假设

- 函数 $f_1(z)$ 和函数 $f_2(z)$ 均在区域 D 内解析,
- 在区域 D 内有一个点列 $\{z_n\}$ 收敛于点 $a(a \in D)$, 在点列 $\{x_n\}$ 上有 $f_1(z) = f_2(z)$.

则

$$f_1(z) = f_2(z)(\forall z \in D).$$

引理 5.2

若函数 $f_1(z)$, $f_2(z)$ 为区域 D 上的解析函数, 且在 D 的某一子区域上

$$f_1(z) = f_2(z).$$

则 $\forall z \in D$

$$f_1(z) = f_2(z).$$

 \Diamond

定理 5.4 (最大模原理)

函数 f(z) 在 D 内解析且不恒为常数,则 |f(z)| 在 D 内任何点都不能达到最大值.

 \sim

注 解析函数只有可能在边界点达到最大值.

5.3 洛朗 (Laurent) 展式

定义 5.2 (双边幂级数)

将如下形式的级数定义为双边幂级数

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n.$$

其在圆环 H: r < |z-a| < R 上收敛.

*

定理 5.5 (Laurent 定理)

在圆环 $H:r<|z-a|< R(r\geq 0,R\leq +\infty)$ 上的解析函数 f(z) 一定可以展开为双边幂级数:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n,$$

其中

$$c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \ (n = 0, \pm 1, \pm 2, \cdots),$$

 Γ 为一个圆周 $|\zeta - a| = \rho(r < \rho < R)$, 而且展式是唯一的.

 \odot

注 f(z) 的以上形式展示称为 Laurent 展式, 级数 $\{c_n\}$ 称为 Laurent 级数.

5.4 孤立奇点

定义 5.3 (孤立奇点)

如果函数 f(z) 在点 a 的某一去心邻域 $K\setminus\{a\}:0<|z-a|< R$ 内解析, 而且点 a 为 f(z) 的奇点, 则称 a 为 f(z) 的一个孤立奇点.

命题 5.1

设函数 f(z) 有孤立奇点 a, 则函数在 a 的某去心邻域 $K\setminus\{a\}$ 内可以展为 Laurent 级数

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$

称非负幂部分 $\sum_{n=0}^{\infty} c_n(z-a)$ 为 f(z) 在点 a 的正则部分, 称负幂部分 $\sum_{n=1}^{\infty} c_{-n} z^{-n}$ 为 f(z) 在点 a 的主要部分.

定义 5.4 (孤立奇点的类型)

设函数 f(z) 以点 a 为孤立奇点,

- 1. 如果 f(z) 在点 a 的主要部分为 0, 则称 a 为 f(z) 的可去奇点.
- 2. 如果 f(z) 在点 a 的主要部分为有限多项, 设为

$$\frac{c_{-m}}{(z-a)^m} + \frac{c_{-(m-1)}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{z-a} \ (c_{-m} \neq 0).$$

则称 a 为 f(z) 的 **m** 阶极点.

3. 如果 f(z) 在点 a 的主要部分为无穷多项,则称 a 为 f(z) 的本质奇点.

定理 5.6 (可去奇点的等价刻画)

如果 a 为函数 f(z) 的孤立奇点,以下条件均为 a 为可去奇点的充要条件

- 1. f(z) 在点 a 的主要部分为 0;
- 2. $\lim_{z\to a} f(z) = b(\neq \infty);$
- 3. f(z) 在点 a 的某去心邻域内有界.

证明

 $(1. \rightarrow 2.)$ 因为 f(z) 的主要部分为 0, 则 f(z) 的 Laurent 展式可以表示为:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n.$$

从而 $\lim_{z\to a} f(z) = c_0$.

 $(2. \rightarrow 3.)$ 由于 $\lim_{z\to a} f(z) = b$, 则 $\forall \epsilon > 0$, 存在 $\delta > 0$, 使得如果 $|z-a| < \delta$, 则

$$|f(z) - b| < \epsilon$$
.

从而由三角不等式

$$|f(z)| < |b| + \epsilon.$$

即 f(z) 在点 a 的去心邻域 $N_{\delta}(a)\setminus\{a\}$ 上是有界的.

 $(3. \to 1.)$ 设函数 f(z) 在点 a 某一去心邻域 $K\setminus\{a\}$ 内以 M 为界. 假设 f(z) 在点 a 的主要部分为

$$\frac{c_{-m}}{(z-a)^m} + \frac{c_{-(m-1)}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{z-a}.$$

其中

$$c_{-n} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} d\zeta.$$

Γ 是完全包含在 K 内的圆周 $|\zeta - a| = \rho$. 则

$$|c_{-n}| = \frac{1}{2\pi} \left| \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} d\zeta \right|$$

$$\leq \frac{1}{2\pi} \frac{M}{\rho^{-n+1}} 2\pi \rho = M \rho^{n}.$$

因为 ρ 可以充分小, 从而 $c_{-n} = 0$ (n = 1, 2, ...). 也即 f(z) 的主要部分为 0.

引理 5.3 (Schwarz Lemma)

如果函数 f(z) 在单位圆 |z| < 1 内解析, 并且满足条件

$$f(0) = 0, |f(z)| = 1 (|z| < 1).$$

则在单位圆|z|<1上恒有

$$|f(z)| \le |z|, |f'(0)| \le 1.$$

定理 5.7 (m 阶极点的等价刻画)

如果 a 为函数 f(z) 的孤立奇点,以下条件均为 a 为 m 阶极点的充要条件

1. f(z) 在点 a 的主要部分为

$$\frac{c_{-m}}{(z-a)^m} + \frac{c_{-(m-1)}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{z-a} \ (c_{-m} \neq 0).$$

2. f(z) 可以在点 a 的某去心邻域内表示为

$$f(z) = \frac{\lambda(z)}{(z-a)^m}.$$

其中 $\lambda(z)$ 在点 a 的邻域内解析, 且 $\lambda(a) \neq 0$. 3. $g(z) = \frac{1}{f(z)}$ 以点 a 为 m 阶零点 (可去奇点看作解析点).

定理 5.8 (极点的充要条件)

函数 f(z) 以孤立奇点 a 为极点的充要条件为

$$\lim_{z \to a} f(z) = \infty.$$

定理 5.9 (本质奇点的充要条件)

函数 f(z) 的孤立奇点 a 为本质奇点的充要条件为

$$\lim_{z \to z} f(z)$$
不存在 (不是有限数和无穷).

定理 5.10

如果函数 f(z) 以 a 为本质奇点, 且在 a 的邻域内恒不为 0, 则 a 一定为 $\frac{1}{f(z)}$ 的本质奇点.

 \Diamond

定理 5.11 (Picard 定理)

设函数 f(z) 以点 a 为本质奇点, 则 $\forall A \in \hat{\mathbb{C}}$, 都存在一个收敛于 a 的点列 $\{z_n\}$, 使得

$$\lim_{n \to \infty} f(z_n) = A.$$

 \Diamond

5.5 解析函数在无穷远点的性质

由于无穷远点一定为解析函数的奇点,故可以讨论无穷远点这个奇点的某些性质.

定义 5.5 (无穷远点为孤立奇点)

设函数 f(z) 在无穷远点的(去心)邻域

$$N\backslash\{\infty\}: +\infty > |z| > r \ge 0.$$

内解析, 则称 ∞ 为 f(z) 的孤立奇点.

做一个变量替换

$$z' = \frac{1}{z}$$
.

且令

$$\phi(z') = f(\frac{1}{z'}) = f(z).$$

则 $\phi(z')$ 就在原点的去心邻域 $K\setminus\{0\}: 0 < |z'| < 1/r$ 内解析, 且以 0 为孤立奇点.

定义 5.6 (无穷远点孤立奇点的分类)

 $\ddot{z}'=0$ 为 $\phi(z')$ 的可去奇点 (解析点)、m 阶极点、本质奇点,则相应的, $z=\infty$ 为 f(z) 的可去奇点 (解析点)、m 阶极点、本质奇点.

定义 5.7 (∞ 点处的 Laurent 展式)

设 $\phi(z')$ 在去心邻域 $K\setminus\{0\}$ 内的Laurent展式为

$$\phi(z') = \sum_{n = -\infty}^{\infty} c_n z'^n.$$

从而做替换z'=1/z之后, f(z)在 ∞ 点可以展开为

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^{-n}.$$

记为

$$f(z) = \sum_{n = -\infty}^{\infty} b_n z^n.$$

其中 $b_n=c_{-n}, (n=0,\pm 1,\pm 2,\cdots)$,即为 f(z) 在 ∞ 点的 Laurent 展式. 将 $\sum_{n=1}^{\infty}b_nz^n$ 称为主要部分.

*

定理 5.12 (∞ 为可去奇点的等价刻画)

函数 f(z) 以 ∞ 点为可去奇点的充要条件为

- f(z) 在 ∞ 点处的主要部分为 0.
- $\lim_{z\to\infty} f(z) = b(\neq \infty)$.
- 函数 f(z) 在 $z = \infty$ 的某去心邻域 $N \setminus \{\infty\}$ 内有界.

 \odot

定理 5.13 (∞ 为 m 阶极点的等价刻画)

函数 f(z) 以 ∞ 点为 m 阶极点的充要条件为

• f(z)∞ 的主要部分为

$$\sum_{n=1}^{m} b_n z^n, (b_m \neq 0).$$

• f(z) 在 ∞ 的某去心邻域内 $N\setminus\{\infty\}$ 可以表示为

$$f(z) = z^m \mu(z).$$

其中 $\mu(z)$ 在 $N\backslash \{\infty\}$ 解析, 而且 $\mu(\infty)\neq 0$.

• $g(z)=\frac{1}{f(z)}$ 以 ∞ 为 m 阶零点.(令 $g(\infty)=0$))

定理 5.14 (∞ 为极点的充要条件)

f(z) 以 ∞ 为极点的充要条件为

$$\lim_{z \to \infty} f(z) = \infty.$$

定理 5.15 (∞ 为本质奇点的等价刻画)

函数 f(z) 以 ∞ 点为本质奇点充要条件为

- f(z) 在 ∞ 点的主要部分有无穷多项.
- $\lim_{z\to\infty} f(z)$ 不存在 (不等于有限数或者 ∞).

5.6 整函数与亚纯函数

如果 f(z) 为一个整函数,则其只以 ∞ 为孤立奇点,则 f(z) 可以写为

$$f(z) = \sum_{n=0}^{\infty} c_n z^n.$$

定理 5.16

如果 f(z) 为一个整函数,则

- 1. $z = \infty$ 为 f(z) 的可去奇点 $\iff f(z)$ 为常数.
- 2. $z = \infty$ 为 f(z) 的 m 阶极点 \iff ($\{c_n\}$ 有有限多项)

$$f(z) = \sum_{n=0}^{m} c_n z^n, (c_m \neq 0).$$

3. $z = \infty$ 为 f(z) 的本质奇点 \iff $\{c_n\}$ 有无穷多项.

定义 5.8 (亚纯函数)

在2平面上除极点外没有其他类型的奇点的单值解析函数称为亚纯函数.

定理 5.17

有理函数一定为亚纯函数.

定义 5.9 (超越亚纯函数)

非有理函数的亚纯函数称为超越亚纯函数.

第6章 留数 (Residue)

6.1 留数的概念

定义 6.1 (留数 (residue))

设函数 f(z) 以点 a 为孤立奇点, 即 f(z) 在点 a 的某去心邻域 0 < |z-a| < R 内解析, 则称积分

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz.$$

其中 $\Gamma: |z-a| = \rho, 0 < \rho < R$, 为 f(z) 在点 a 处的留数 (residue), 记为 $\mathop{\mathrm{Res}}_{z=a} f(z)$.

注 如果函数 f(z) 在点 a 的去心邻域内的 Laurent 展式为

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$

则沿 Γ 积分后, 只有

$$\frac{c_{-1}}{z-a}.$$

的积分结果不是0,从而f(z)在a点的留数为

$$\operatorname{Res}_{z=a} f(z) = c_{-1}.$$

定理 6.1 (Cauchy 留数定理)

f(z) 在周线或复周线 C 的内部 D, 除去 a_1,a_2,\ldots,a_n 外解析, 在在闭区域 $\bar{D}=D+C$ 上除 a_1,a_2,\ldots,a_n 连续, 则

$$\int_C f(z)dz = 2\pi i \sum_{k=1}^n \mathop{\mathrm{Res}}_{z=a_k} f(z).$$

定理 6.2 (n 阶极点的留数)

设a为f(z)的n阶极点,则f(z)可以写为

$$f(z) = \frac{\phi(z)}{(z-a)^n}.$$

其中 $\phi(z)$ 在 a 点解析, 且 $\phi(a) \neq 0$, 则

Res_{z=a}
$$f(z) = \frac{\phi^{(n-1)}(a)}{(n-1)!}$$
.

证明

$$\operatorname{Res}_{z=a} f(z) = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{\phi(z)}{(z-a)^n} dz = \frac{\phi^{(n-1)}(a)}{(n-1)!}.$$

引理 6.1

设a为f(z)的1阶极点.

$$\phi(z) = (z - a)f(z),$$

则

$$\operatorname{Res}_{z=a} f(z) = \phi(a).$$

 \sim

引理 6.2

设a为f(z)的2阶极点.

$$\phi(z) = (z - a)^2 f(z),$$

则

$$\operatorname{Res}_{z=a} f(z) = \phi'(a).$$

 \bigcirc

定理 6.3

设a 为函数 $f(z) = \frac{\phi(z)}{\psi(z)}$ 的 1 阶极点, 则

$$\operatorname{Res}_{z=a} f(z) = \frac{\phi(a)}{\psi'(a)}.$$

证明 设

$$\varphi(z) = \frac{\phi(z)}{\psi(z)}(z - a),$$

由于 $\varphi(z)$ 在a点解析,则

$$\varphi(a) = \lim_{z \to a} \varphi(z) = \lim_{z \to a} \frac{\phi(z)}{\psi(z)} (z - a) = \lim_{z \to a} \frac{\phi(z)}{\frac{\psi(z)}{\sqrt{z}}} = \frac{\phi(a)}{\psi'(a)}.$$

定义 6.2 (∞ 点的留数)

设 ∞ 为函数 f(z) 的孤立奇点, 即 f(z) 去心邻域 $N\backslash \{\infty\}: 0 \leq r < |z| < +\infty$ 内解析, 则称

$$\frac{1}{2\pi i} \int_{\Gamma^{-}} f(z) dz \; (\Gamma:|z|=\rho>r).$$

为 f(z) 在 ∞ 点的留数, 记为 $\mathop{\mathrm{Res}}_{z=\infty} f(z)$.

•

如果函数 f(z) 在 ∞ 点的去心邻域内有 Laurent 展式

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n.$$

则由定义可以计算出 f(z) 在 ∞ 点的留数为

$$\operatorname{Res}_{z=\infty} f(z) = -c_{-1}.$$

定理 6.4

如果函数 f(z) 在 \mathbb{C}_{∞} 上只有有限个孤立奇点, 设为 $a_1,a_2,\ldots,a_n,\infty$, 则

$$\sum \operatorname{Res} f(z) = 0.$$

也即所有点的留数之和为 0.

 \bigcirc

证明 以原点为圆心作圆周 Γ , 使得 a_1, a_2, \ldots, a_n 均在 Γ 内部, 则由 Cauchy 留数定理得

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z=a_k}{\text{Res }} f(z).$$

也即

$$\sum_{k=1}^{n} \mathop{\mathrm{Res}}_{z=a_k} f(z) - \frac{1}{2\pi i} \int_{\Gamma} f(z) dz = 0.$$

则

$$\sum_{k=1}^{n} \operatorname{Res}_{z=a_{k}} f(z) + \frac{1}{2\pi i} \int_{\Gamma^{-}} f(z) dz = 0.$$

再根据∞点留数的定义得到

$$\sum_{k=1}^{n} \operatorname{Res}_{z=a_k} f(z) + \operatorname{Res}_{z=\infty} f(z) = 0.$$

命题 6.1 (∞ 点留数转化为 0 点留数)

$$\mathop{\mathrm{Res}}_{z=\infty} f(z) = - \mathop{\mathrm{Res}}_{t=0} \, \left[f(\frac{1}{t}) \frac{1}{t^2} \right].$$

6.2 利用留数计算积分

定理 **6.5** (计算 $\int_{-\infty}^{+\infty} \frac{P(x)}{O(x)} dx$ 类型的积分)

设 $f(z) = \frac{P(z)}{Q(z)}$ 为有理分式, 其中

$$P(z) = \sum_{k=0}^{m} c_k z^k, (c_m \neq 0)$$

$$Q(z) = \sum_{k=0}^{n} b_k z^k, (c_n \neq 0)$$

为互质的多项式, 且满足

- 1. $n m \ge 2$,
- 2. $Q(z) \neq 0 \ (\forall z \in \mathbb{R}).$

则

$$\int_{-\infty}^{+\infty} f(z)dz = 2\pi i \sum_{\text{Im} a_k > 0} \underset{z=a_k}{\text{Res}} f(z).$$

引理 6.3 (Jordan 引理)

设函数 g(z) 沿半圆周 $\Gamma_R: z = Re^{i\theta} (0 \le \theta \le \pi, R$ 充分大) 上连续, 且

$$\lim_{R \to +\infty} g(z) = 0.$$

在 Γ_R 上一致成立. 则

$$\lim_{R\to +\infty} \int_{\Gamma_R} g(z) e^{imz} dz = 0 \ (m>0).$$

定理 **6.6** (计算 $\int_{-\infty}^{+\infty} \frac{P(x)}{O(x)} e^{imx} dx$ 类型的积分)

设 $g(z) = \frac{P(z)}{Q(z)}$, 其中 P(z) 和 Q(z) 是互质多项式, 且满足

- 1. $\deg Q(z) > \deg P(z)$,
- 2. $Q(z) \neq 0 \ (\forall z \in \mathbb{R}),$
- 3. m > 0.

则

$$\int_{-\infty}^{+\infty} g(x)e^{imx}dx = 2\pi i \sum_{\text{Im} a_k > 0} \underset{x = a_k}{\text{Res}} g(x)e^{imx}.$$

 \sim

6.3 辅角原理

定义 6.3 (对数留数)

将如下形式的积分定义为

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz.$$

f(z) 的对数留数.

*

引理 6.4

1. 设a 为函数 f(z) 的 n 阶零点,则a 必为函数 $\frac{f'(z)}{f(z)}$ 的一阶极点,而且

$$\operatorname{Res}_{z=a} \left[\frac{f'(z)}{f(z)} \right] = n.$$

2. 设b为f(z)的m阶极点,则b必为函数 $\frac{f'(z)}{f(z)}$ 的一阶极点,并且有

$$\operatorname{Res}_{z=b} \left[\frac{f'(z)}{f(z)} \right] = -m.$$

0

证明

1. 如果 a 为 f(z) 的 n 阶零点, 则 f(z) 可表示为

$$f(z) = (z - a)^n \phi(z).$$

其中 $\phi(z)$ 在 N_a 内解析且 $\phi(a) \neq 0$. 则

$$\frac{f'(z)}{f(z)} = \frac{n}{z-a} + \frac{\phi'(z)}{\phi(z)}.$$

从而 z = a 为 $\frac{f'(z)}{f(z)}$ 的一阶极点,且

$$\operatorname{Res}_{z=a} \left[\frac{f'(z)}{f(z)} \right] = n.$$

2. 类似可证.

定理 6.7

设C是一条周线,f(z)满足

- 1. f(z) 在 C 内是亚纯的 (奇点类型都是极点),
- 2. f(z) 在 C 上解析且不为 0.

则有

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N(f, C) - P(f, C).$$

其中 N(f,C) 和 P(f,C) 分别表示在 C 内部 f(z) 零点和极点的个数 (按重数计算).

 \Diamond

证明 f(z) 在 C 内至多有有限个零点和极点,设 $\{a_k\}(k=1,2,\ldots,p)$ 为零点,其对应的阶为 $\{n_k\}(k=1,2,\ldots,p)$;设 $\{b_j\}(j=1,2,\ldots,q)$ 为极点,其对应的阶为 $\{m_j\}(j=1,2,\ldots,q)$. 于是

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = \sum_{a_{k}} \operatorname{Res}_{z=a_{k}} \frac{f'(z)}{f(z)} + \sum_{b_{j}} \operatorname{Res}_{z=b_{j}} \frac{f'(z)}{f(z)}$$
$$= \sum_{k=1}^{p} n_{k} + \sum_{j=1}^{q} (-m_{j})$$
$$= N(f, C) - P(f, C).$$

定理 6.8 (辅角原理)

设C是一条周线,f(z)满足

- 1. f(z) 在 C 内是亚纯的 (奇点类型都是极点),
- 2. f(z) 在 C 上解析且不为 0.

则有

$$N(f,C) - P(f,C) = \frac{\Delta_C \arg f(z)}{2\pi}.$$

其中 $\Delta_C \arg f(z)$ 为 z 绕 C 一周后 $\arg f(z)$ 的改变量.

特别的, 如果 f(z) 在周线 C 内解析且 f(z) 在 C 上不为 0, 则

$$N(f,C) = \frac{\Delta_C \arg f(z)}{2\pi}.$$

定理 6.9 (Rouché 定理)

设C是一条周线,函数f(z)及 $\varphi(z)$ 满足

- 1. 它们均在C的内部解析,且连续到边界,
- 2. 在周线 C 上, $|f(z)| > |\varphi(z)|$.

则

$$N(f + \varphi, C) = N(f, C).$$

 \bigcirc

定理 6.10

设 f(z) 在区域 D 内单叶解析, 则在 D 内 $f'(z) \neq 0$.

 \odot

定理 6.11

设 f(z) 是单连通区域 D 内的单叶解析函数, 则 G = f(D) 是单连通的.

C

第7章 共形映射

7.1 解析变换的性质

定理 7.1 (保域定理)

设w = f(z) 在区域D 内解析且不恒为常数,则D 的像G = f(D) 也是一个区域.

\odot

引理 7.1

如果 w = f(z) 在区域 D 内单叶解析, 则 D 的像 G = f(D) 也是一个区域.

 \odot

证明 单叶解析必不恒为常数.

定理 7.2 (局部单叶性定理)

设函数 w = f(z) 在点 z_0 解析, 且 $f'(z_0) \neq 0$, 则 f(z) 在 z_0 的一个邻域内单叶解析。

 \sim

定义 7.1 (旋转角和伸缩率)

设w = f(z)在区域D内解析,在 $z_0 \in D$ 有 $f'(z_0) \neq 0$,

- $\arg f'(z_0)$ 称为变换 w = f(z) 在点 z_0 的旋转角,
- $|f'(z_0)|$ 称为变换 w = f(z) 在点 z_0 的伸缩率.

定义 7.2 (保角变换)

若函数 w = f(z) 在点 z_0 的邻域内有定义,且在点 z_0 具有:

- 1. 伸缩率不变性;
- 2. 过 z_0 的任意两条曲线的夹角在变换w = f(z)下,即保持大小,又保持方向(保定向).

则称 w = f(z) 在点 z_0 处是保角的, 或称 f(z) 是在点 z_0 处的保角变换.

如果 w = f(z) 在区域 D 上的任意一点都是保角的,则称 w = f(z) 是区域 D 上的保角变换.

定理 7.3

如果w = f(z)在区域D内解析,则其在导数不为0的是保角的.

 \bigcirc

引揮72

如果w = f(z)在区域D上是单叶解析的,则w = f(z)在区域D上是保角的.

 \sim

定义 7.3 (共形映射)

如果w = f(z) 在区域 D 内是单叶的且保角的,则称w = f(z) 在 D 内是共形的,称为 D 的共形映射.

*

定理 7.4

设w = f(z)在区域D内单叶解析,则

- 1. w = f(z) 将 D 共形映射为区域 G = f(D).
- 2. 反函数 $z = f^{-1}(w)$ 在区域 G 内单叶解析, 且

$$f^{-1'}(w_0) = \frac{1}{f'(z_0)} \ (z_0 \in D, w_0 = f(z_0) \in G).$$

 \sim

7.2 分式线性变换 (Möbius 变换)

定义 7.4 (分式线性变换)

将如下形式的

$$w = \frac{az+b}{cz+d}, \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$

的变换称为分式线性变换或者 Möbius 变换, 记为 w = L(z) 或 w = M(z).

定义 7.5 (反演)

将

$$w = \frac{1}{z}.$$

称为反演(将z点映射为关于单位圆的对称点).

定理 7.5 (分式线性变换的共形性)

分式线性变换在 \mathbb{C}_{∞} 是共形的.

 \sim

定义 7.6 (交比)

 C_{∞} 上有顺序的四个点 z_1, z_2, z_3, z_4 构成以下量称为交比

$$(z_1, z_2, z_3, z_4) := \frac{z_4 - z_1}{z_4 - z_2} : \frac{z_3 - z_1}{z_3 - z_2}.$$

当某一项出现∞时,将那一项换为1.

•

定理 7.6 (保交比性)

分式线性变换保交比.

 \Diamond

定理 7.7

设分式线性变换将 \mathbb{C}_{∞} 上相异的三个点 z_1, z_2, z_3 映射为 w_1, w_2, w_3 ,则此分式线性变换就被唯一确定,并且可以写为

$$(w_1, w_2, w_3, w_4) = (z_1, z_2, z_3, z).$$

定理 7.8 (分式线性变换的保圆性)

分式线性变换将 ℂ上的圆周 (直线) 映射为圆周或者直线.

 $^{\circ}$

 $\dot{\mathbf{L}}$ 如果将直线理解为经过 ∞ 的圆周,则上述定理可以描述为: 分式线性变换将 \mathbb{C}_{∞} 上的圆周映射为圆周.

定义 7.7 (对称点)

 $称 z_1, z_2$ 关于圆 $\gamma : |z - a| = R$ 对称, 当且仅当

$$|z_1 - a||z_2 - a| = R^2.$$

也即

$$z_1 - a = \frac{R}{\overline{z_2 - a}}.$$

定理 7.9

 \mathbb{C}_{∞} 上两点 z_1, z_2 关于圆周 γ 对称的充要条件是, 通过 z_1, z_2 的任意圆周都与 γ 正交.

 \sim

定理 7.10 (保对称性)

设 \mathbb{C}_{∞} 上两点 z_1,z_2 关于圆周 γ 对称, w=L(z) 为一分式线性变换, 则 $w_1=L(z_1),w_2=L(z_2)$ 关于圆周 $\Gamma=L(\gamma)$ 对称.

7.3 黎曼存在唯一性定理与边界对应定理

定理 7.11 (黎曼存在唯一性定理)

 \mathbb{C}_{∞} 上的单连通区域 D, 其边界点不止一点, 则在 D 内有一个单叶解析函数 w=f(z), 其将 D 共形映射为单位圆 |w|<1; 且当满足

$$f(a) = 0, f'(a) > 0 (a \in D)$$

时, 函数 f(z) 是唯一的.

\Diamond

定理 7.12 (边界对应定理)

设

- 1. 有界单连通区域 D 与 G 的边界分别为周线 C 和 Γ .
- 2. w = f(z) 将 D 共形映射为 G.

则 f(z) 可以延拓为 F(z),使得在 D 内有 F(z)=f(z),在 $\overline{D}=D+C$ 在 F(z) 连续,并且将 C 双方单值且 连续地映射为 Γ .

定理 7.13 (解析函数单叶性的充分条件)

设单连通区域 D 和 G 分别为周线 C 和 Γ 的内部, 且设函数 w=f(z) 满足下列条件

- w = f(z) 在 D 内解析, 在 D+C 上连续;
- w = f(z) 将 C 双方单值变为 Γ .

则有

- 1. w = f(z) 在 D 内单叶;
- 2. G = f(D).

第8章 解析延拓

8.1 解析延拓的概念

定义 8.1 (解析延拓)

设函数 f(z) 在区域 D 内解析, 若存在一个更大的区域 $G \supset D$, 有函数 F(z) 在区域 G 内解析, 而且在区域 D 内有 F(z) = f(z),则称函数 f(z) 可以解析延拓到 G 内, 并且称 F(z) 是函数 f(z) 在区域 G 内的解析 延拓.

定义 8.2 (解析函数元素)

设 D 是一个区域, f(z) 是 D 内的单值解析函数, 将两者的组合称为解析函数元素, 记为 $\{D,f(z)\}$.

定理 8.1 (相交区域的解析延拓原理)

设 $\{D_1, f_1(z)\}, \{D_2, f_2(z)\}$ 为两个解析函数元素, 满足:

- 1. 区域 D_1 与 D_2 有一个公共区域 d_{12} ;
- 2. $f_1(z) = f_2(z), (z \in d_{12}).$

则 $\{D_1 + D_2, F(z)\}$ 也是一个解析函数元素, 其中

$$F(z) = \begin{cases} f_1(z), & z \in D_1 - d_{12}, \\ f_2(z), & z \in D_2 - d_{12}, \\ f_1(z) = f_2(z), & z \in d_{12}. \end{cases}$$

定义 8.3 (直接解析延拓)

如果

- 1. $D_1 \cdot D_2 = d_{12}$ 为一个区域;
- 2. $f_1(z) = f_2(z), (z \in d_{12}),$

则两个解析函数元素 $\{D_1, f_1(z)\}$ 和 $\{D_2, f_2(z)\}$ 称为互为直接解析开拓.

8.2 透弧解析延拓、对称原理

相交区域的解析延拓原理可以将条件弱化为一段公共边界,所谓"透弧"就是穿过这条边界的解析延拓。

定理 8.2 (Painlevé 连续延拓原理)

设 $\{D_1, f(z)\}$ 与 $\{D_2, f_2(z)\}$ 为两个解析函数元素, 满足

- 1. 区域 D_1, D_2 不相交, 当时有一段公共边界, 除去端点的开弧记为 Γ ;
- 2. $f_1(z)$ 在 $D_1 + \Gamma$ 上连续, $f_2(z)$ 在 $D_2 + \Gamma$ 上连续.

则 $\{D_1 + \Gamma + D_2, F(z)\}$ 也是一个解析函数元素. 其中

$$F(z) = \begin{cases} f_1(z), & z \in D_1, \\ f_1(z) = f_2(z), & z \in \Gamma, \\ f_2(z), & z \in D_2 \end{cases}$$

 \bigcirc

定理 8.3 (对称原理)

设

- $1. d \rightarrow d^* \in \mathbb{C}$ 上关于圆弧或直线段 s 对称的两个区域, 且它们的边界都包含 s;
- 3. w=f(z) 在 d 内单叶解析, 且在 d+s 上连续, 并且把 s 一一地映射为 t=f(s).

则存在函数 F(z) 满足

- 1. w = F(z) 在区域 $d + s + d^*$ 内单叶解析, 且将 $d + s + d^*$ 共形映射到 $g + t + g^*$;
- 2.

$$F(z) = \begin{cases} f(z), & z \in d, \\ f^*(z), & z \in d^*, \\ f(z) = f^*(z) & z \in s. \end{cases}$$

也即 $\{d^*,f^*(z)\}$ 是 $\{d,f(z)\}$ 透过弧 s 的直接解析延拓.

 \Diamond