	*
LISTA DE EXERCÍCIOS	9:
SISTEMAS DE NUMERAÇÃO	e LOGICA BINARIA
1) Para 10 te	mps: 10 = 5 = 2 = 1 1010/2)
0) 10,5625	
Co Para 0,5625 temos: 0,56:	25 - 1125 - 0,25 - 0,5 - 1,0
Resposta: 1010, 1001(2)	7 +100
11 255 12 12 12 12 12	31=215=27=23=21
6) 255 - 12+ - 05 -	7 7 7
Resporta: 11.111.111(2)	
(50 130 8/1. 1 mg. T	
c) 256 - 128 - 64 -	32 + 16 + 8 + 4 + 2 +
0 0 0	(5 5 1 5 5
Resporta: 100 000 000 (2)	[el@4.9.0 10/0
TELLIA TOLE	(1) 10 01 01 01
d) 1(10) - Resporta: 1(2)	e) O(10) ~ Resporta: O(2)
0.5 4 (1487 (3)	(b) The public took (a
2) Resporta: Os endereses do	de IP das alternativos a e d são
da Validos, isso	de IP das alternativos a e d são sorgen um mumero de 8 bits pode somente
da Validos, isse j guardar de -2	de IP das alternativos a e d são surgeu um mumero d 8 bits pode soment 55 até + 256, então as outros alterna
Validos, isso por de -2 tivos now ra	de IP das alternativos a e d são surger um número de 8 bits pode somente 55 até + 256, então as outros alterna o validas.
Validos, isso 1 guardar de -2 tivos mão ra	Le IP das alternativos a e d são surgen um mumero de 8 bits pode somente 55 até + 256, então as outros alternas o validas.
Validos, isso par de -2 tivos não rão 3) a) 100 11 (2)	de IP das alternativos a e d são parque um mumero d 8 bits pode somente 55 até + 256, então as outros alterna o validas.
Validos, ibreo 1 guardar de -2 tivos não rão 3) a) 100 11 (2) 1 2 4 m 1 0 16 ~ 16	Le IP das alternativos a e d são sorgen um mumero de 8 bits pode somete 55 até + 256, então as outros alterna- o validas.
Validos, isso 1 guardar de -2 tivos não ra 3) a) 100 11 (2) 1 . 2 4 ~ 1 . 16 ~ 16 0 . 2 3 ~ 0 . 8 ~ 0	Le IP das alternativos a e d são surgen um mumero de 8 bits pode somete 55 até + 256, então as outros alterna o validas. 1 b) 777 7 (8) 7.8° ~ 7.64 ~ 448 7.8° ~ 7.8° ~ 56
Validos, isso 1 guardar de -2 tivos não rão 3) a) 100 11 (2) 1 • 2 4 ra 1 • 16 ~ 16 0 • 2 3 ra 0 • 8 ~ 0 0 • 2 2 ra 0 • 4 ~ 0	Le IP das alternativos a e d são sorgen um mumero de 8 bits pode somete 55 até + 256, então as outros alterna- o validas.
Validos, isso guardar de -2 tivos não rão 3) a) 100 11 (2) 1 · 2 4 · 1 · 16 · 16 0 · 2 3 · 0 · 8 · 0 0 · 2 2 · 0 · 4 · 0 1 · 2 1 · 1 · 2 · 2	Le IP das alternativos a e d são perque um mimere d 8 bits pode somente 55 até + 256, então as outras alterna g. válidas. 7 · 8 ² ~ 7 · 64 ~ 448 7 · 8 ¹ ~ 7 · 8 ~ 56 7 · 8 ° ~ 7 · 1 ~ 7 · 8 511(10)
Validos, isolo guardar de -2 tivos não rão 3) a) 100 11 (2) 1.2 4 1. 16 ~ 16 0.2 3 ~ 0.8 ~ 0 0.2 2 ~ 0.4 ~ 0 1.2 1 ~ 1.2 ~ 2 1.2 0 ~ 1.1 ~ 1	Le IP das alternativos a e d são surger um mumero d 8 bits pode romente 55 até + 256, então as outros alternas o validas. b) 777 (8) 7.82 ~ 7.64 ~ 448 7.81 ~ 7.8 ~ 56 7.80 ~ 7.1 ~ 511(10) - C) A E (16)
Validos, isolo guardar de -2 tivos vavo ra 3) a) 100 11 (2) 1.2 4 1. 16 ~ 16 0.2 3 ~ 0.8 ~ 0 0.2 2 ~ 0.4 ~ 0 1.2 1 ~ 1.2 ~ 2 1.2 0 ~ 1.1 ~ 1 196	Le IP das alternativos a e d são surgeu um mumero de 8 bits pode somente 55 até + 256, então as outras alterna o válidas. 7 · 8 ² ~ 7 · 64 ~ 448 7 · 8 ² ~ 7 · 64 ~ 56 7 · 8 ° ~ 7 · 8 ~ 56 7 · 8 ° ~ 7 · 1 ~ 7 · 511 (10) - C) A E (16) 10) A ~ 10 · 16 ~ 10 · 16 ~ 160
Validos, isolo guardar de -2 tivos vavo ra 3) a) 100 11 (2) 1.2 4 1. 16 ~ 16 0.2 3 1. 0.8 ~ 0 0.2 2 1. 0.4 ~ 0 1.2 1 ~ 1. 2 ~ 2 1.2 0 ~ 1. 1 ~ 1 19(d) 1 (2)	Le IP das alternativos a e d rão sergen um mimero d 8 bits pode roment 55 até + 256, então as outros alterna o validas. 1 b) 7777(8) 7 · 8 ° ~ 7 · 64 ~ 448 7 · 8 ° ~ 7 · 8 ~ 56 7 · 8 ° ~ 7 · 1 ~ 7 511(10) - C) A E (16) 10) A ~ 10 · 16° ~ 10 · 16 ~ 160 E ~ 14 · 16° ~ 14 · 1 ~ 14/
Validos, isolo guardar de -2 tivos vavo ra 3) a) 100 11 (2) 1.2 4 1. 16 ~ 16 0.2 3 ~ 0.8 ~ 0 0.2 2 ~ 0.4 ~ 0 1.2 1 ~ 1.2 ~ 2 1.2 0 ~ 1.1 ~ 1 196	Le IP das alternativos a e d são surgeu um mumero de 8 bits pode somente 55 até + 256, então as outras alterna o válidas. 7 · 8 ² ~ 7 · 64 ~ 448 7 · 8 ² ~ 7 · 64 ~ 56 7 · 8 ° ~ 7 · 8 ~ 56 7 · 8 ° ~ 7 · 1 ~ 7 · 511(10) - C) A E (16) 10) A ~ 10 · 16 ~ 10 · 16 ~ 160

0 11(2) (8) 1. 512 ~ 512 1.64 00 2 - 1.4 -4 1. 1 ~~ 1] = 7 15,375(10) 585(10) 1.1/4 ~0,25 70,375 2-3~ 1.1/2 201,125 4) 1001 (2) 1011 1011(2) -0101 0010(2) 1010(2) 1001(2) 0101 0010 1111 (2) 0001 1101 (2) +1011 1110 (2) + 10010 1110 (2) 01 1101(2) 1111(2) 1111(2) 1111 (2) 0011 1111(2) 0101 0111 (2) 52025 1101 0101(2) 1011(2) Está brio ou mão está charendo Não este brio Não está brio 1 mão esté chorendo ehouvend ista e está chonendo Esta brio se e romente se mão c) Está brio ou está chevendo esta chiovendo. d) Está charendo se a somenta Está frio e so mão está Le este brio Chovendo, entero esta forio a) De está frio, entas mão está Choulindo

tilibra

		71						-		* /* - 1*	
		$\frac{7}{2}$									
		a) plag c)~(~pvag) e) pv(~plag) b) pl~ag d)~pl~ag b)~(~pvag)									
		b) pl~qq d)~pl~qq (q)~(~p~qq)									
			F - F	· Vac I	John	4)	V-0 F	F	alra		
							e) F -> V Verdadeine				
~		b) V - V Vardadeiro c) V - V F Falzo					(b) F - F Verdadeiro				
_		9)	VVI	7-00	129	1 47	V		90 00000		
pain.		a) V	4 ÷ \	/ Vand	007117.0	12)1	1 AN F	F,	elza		
		a) V > i V Verdaderre d) V + F Falzo b) F > F Verdadeire e) F > F Verdadeire									
~		c) V 40 F Falso b) V 40 F Falso									
~		10)	(N)4>		q in	V 0 10 4	- 4 100		.,0 19.	[5]	
9		a) ~ F Verdadeire () ~ (V +> F) Verdadeire									
		b)~V Falso b)~(F + F) Falso									
1		c) ~ (V & F) Verdaderro g) V - (F - F) Verdaderro									
		d)~(VVF) False h)~(FAV) Verdadiers									
$\overline{}$		11)									
		a) V	LYF	Verda	deiro	(d) >	VIXF	F	also		
		b)V.	YY	Verda	deiro	(1) >	dry yel	1	herda deir		
~		c) ~ A	THE	Fals	0	19) V	1 1 (~)	VV	F) Fa	beo	
~		12)	(1)	(1)	187	0	0	7			
-	5	a)	b.	09	1197	~p/0	019	~77	9 V 3	3 +> (4)	
7	5	- V]	· V	V	V	FV	F	F	V	V	
	8	1	. V	V	F	FV	F	7	V	> V	
$\overline{}$	<u>۵</u>	- V- .	\bigvee	F	V	FB	F	F	F	F	
	1	V	V	F	F	Fold	F	1	V	V	
\sim	Y	V	F	V/	V	V	\ \	F	V	V	
~	9	L V L	F	V	F	V	F	V	V	V	
	>		F	F		V	\ \	FV	F	-	
			F.	FI	I F	1 7	LF.	V	Y	V	
						1	(3)	0	(4)	tilibra	

3 (2) P-VM 9 2 F (2) 0 (3) M a V V V V 6 (4) 3 (5 0 かんののかけん)人 9 (5) 9 V 4 P 77 -b77 90 V V F V V V F V V V V V V V 00 V

tilibra

I

13)	\/ \\
a) VIV + F Folgo	Ja) ~ F ~ VLV Verdadeine
b) FYF - V Verdoding	a) (VYF) L (VYF) Verdadeiro
c) V+ V & F Falso	h) (For) L (VXV) Vandodeiro
d) V - (FtF) Verdadeiro	i) (VIN) VF Folso
	f)~((E+V) Y (E+V)) Falso
e) (V oF) to F Verdaders	A) (() A ()) I ONSA
*	
-	
<u> </u>	

tilibra