

GABARITO QUÍMICA

Questão 49

Uma amostra de $10\,\mathrm{cm}^3$ de um hidrocarboneto desconhecido foi misturada com $70\,\mathrm{cm}^3$ de gás oxigênio. A reação de combustão foi iniciada por uma descarga elétrica. Ao final da reação, o vapor d'água foi liquefeito e o volume dos gases de exaustão diminuiu para $65\,\mathrm{cm}^3$. Os gases foram passados por um leito contendo hidróxido de sódio, que absorve o CO_2 conforme a reação:

$$CO_2(g) + NaOH(s) \longrightarrow NaHCO_3(s)$$

Após a passagem pelo leito, o volume de gás diminuiu para $45 \,\mathrm{cm}^3$.

Assinale a alternativa com a fórmula molecular do hidrocarboneto.

$$\mathbf{B}$$
 () C_2H_2

$$\mathbf{C}$$
 () C_2H_6

$$\mathbf{D}$$
 () C_3H_6

$$\mathbf{E}$$
 () C_3H_8

Gabarito: B

Etapa 1. Calcule o CO₂ formado na reação de combustão.

Quando o CO_2 é absorvido pelo leito de NaOH o volume da mistura gasosa diminui em $20\,\mathrm{cm}^3$, logo:

$$V_{\rm CO_2}=20\,\rm cm^3$$

Etapa 2. Calcule o volume de O_2 em excesso ao final da reação.

Após a condensação de H_2O e absorção do CO_2 , o único gás retante na reação é o oxigênio em excesso, logo,

$$V_{\rm O_2,xs} = 45\,\rm cm^3$$

Etapa 3. Calcule o volume de O_2 consumido na reação de combustão.

$$V_{\rm O_2,consumido} = V_{\rm O_2} - V_{\rm O_2,xs} = 70 \,\text{cm}^3 - 45 \,\text{cm}^3 = 25 \,\text{cm}^3$$

Etapa 4. Seja C_xH_y a fórmula empírica do hidrocarboneto. Escreva a reação de combustão balanceada.

$$C_x H_y(g) + \left(x + \frac{y}{4}\right) O_2(g) \longrightarrow x CO_2(g) + \frac{y}{2} H_2O(l)$$

Etapa 5. Use a relação estequiométrica para converter o volume de C_xH_y no volume de CO_2 .

$$x = \frac{V_{\text{CO}_2}}{V_{\text{C}_x \text{H}_y}} = \frac{20 \,\text{cm}^3}{10 \,\text{cm}^3} = 2$$

Etapa 6. Use a relação estequiométrica para converter o volume de C_xH_y no volume de O_2 .

$$\left(x + \frac{y}{4}\right) = \frac{V_{\text{O}_2}}{V_{\text{C}_x \text{H}_y}} = \frac{25 \,\text{cm}^3}{10 \,\text{cm}^3} = 2,5$$

logo, y = 2, e a fórmula empírica do hidrocarboneto é $|C_2H_2|$.

Questão 50

A ação de uma solução alcalina de iodo sobre o raticida varfarina, C₁₉H₁₆O₄ resulta na formação de uma molécula de iodofórmio, CHI₃, para cada molécula do composto reagido. A análise da varfarina pode então ser baseada na reação entre o iodofórmio e cátions prata:

$$CHI_3(aq) + 3 AgNO_3(aq) + H_2O(l) \longrightarrow 3 AgI(s) + 3 HNO_3(aq) + CO(g)$$

Uma amostra de 6,16 g de um raticida comercial contendo varfarina foi tratada com uma solução alcalina de iodo. O iodofórmio produzido foi coletado em $100\,\mathrm{mL}$ de uma solução contendo $0.01\,\mathrm{mol}\,\mathrm{L}^{-1}$ de cátions ferro(III). A solução resultante foi tratada com $25\,\mathrm{mL}$ de nitrato de prata, $0.03\,\mathrm{mol}\,\mathrm{L}^{-1}$ e então foi titulada com $3 \,\mathrm{mL}$ de tiocianato de potássio $0.05 \,\mathrm{mol}\,\mathrm{L}^{-1}$.

Considere as proposições.

- 1. O iodofórmio não pode ser titulado diretamente com a prata devido à dificuldade de identificação do ponto de equivalência. Nesse caso foi empregado o método de titulação indireta por retrotitulação, sendo os cátions ferro(III) adicionados para identificar o ponto de equivalência na titulação da prata com o tiocianato.
- 2. Os íons nitrato e os cátions ferro(III) são íons espectadores das reações de titulação.
- 3. A amostra continha cerca de 10% de varfarina em massa.
- 4. Se a solução de nitrato de prata fosse adicionada diretamente à solução resultante da primeira etapa do processo, haveria interferência dos íons hidróxido e a fração mássica de varfarina calculada incorretamente seria superior ao valor correto.

Assinale a alternativa que relaciona as proposições *corretas*.

A() 1 e 2

B() 1 e 4

C() 2 e 4

 ${f D}$ () 1, 2 e 4 ${f E}$ () 1, 2, 3 e 4

Gabarito: D

Etapa 1. (1) Escreva a equação iônica simplificada da reação do Fe³⁺ com SCN⁻.

O ferro atua como indicador para o íon tiocianato:

$$Fe^{3+}(aq) + SCN^{-}(aq) \longrightarrow FeSCN^{2-}(aq)$$

Etapa 2. (2) Escreva as equações iônicas simplificadas das reações de precipitação.

$$CHI_3(aq) + 3 Ag^+(aq) + H_2O(l) \longrightarrow 3 AgI(s) + 3 H^+(aq) + CO(g)$$
$$Ag^+(aq) + SCN^-(aq) \longrightarrow AgSCN(s)$$

Os íons nitrato e os cátions ferro(III) **são íons espectadores** já que não participam das reações de titulação.

Etapa 3. (3) Calcule a quantidade adicionada de Ag⁺ e SCN⁻.

$$\begin{split} n_{\rm Ag^+} &= n_{\rm AgNO_3} = c_{\rm AgNO_3} V_{\rm AgNO_3} = (0.03\,\frac{\rm mol}{\rm L}) \times (25\,\rm mL) = 0.75\,\rm mmol \\ n_{\rm SCN^-} &= n_{\rm KSCN} = c_{\rm KSCN} V_{\rm KSCN} = (0.05\,\frac{\rm mol}{\rm L}) \times (3\,\rm mL) = 0.15\,\rm mmol \end{split}$$

Etapa 4. Use as relações estequiométricas para converter as quantidades de Ag⁺ em SCN⁻ e CHI₃.

$$n_{\mathrm{Ag^+}} = 3n_{\mathrm{CHI_3}} + n_{\mathrm{SCN^-}}$$

logo,

$$n_{\text{CHI}_3} = \frac{1}{3} \Big\{ 0.75 \, \text{mmol} - 0.15 \, \text{mmol} \Big\} = 0.2 \, \text{mmol}$$

Etapa 5. Converta a quantidade de CHI₃ na quantidade de varfarina.

Como cada molécula de varfarina libera uma molécula de iodofórmio:

$$n_{\text{varfarina}} = 0.2 \, \text{mmol}$$

Etapa 6. Converta a quantidade de varfarina, C₁₉H₁₆O₄, em massa.

$$m_{\rm varfarina} = n_{\rm varfarina} M_{\rm varfarina} = (0.2\,{\rm mmol})\times(308\,\frac{\rm g}{\rm mol}) = 61.6\,{\rm mg}$$

Etapa 7. Calcule a fração mássica de varfarina na amostra.

$$f_{\text{varfarina}} = \frac{m_{\text{varfarina}}}{m_{\text{amostra}}} = \frac{61.6 \text{ mg}}{6.16 \text{ g}} = \boxed{1\%}$$

Etapa 8. (4) Verifique a possibilidade de reações indesejadas com o íon hidróxido.

Os íons hidróxido podem reagir com a prata formando um precipitado insolúvel:

$$Ag^{+}(aq) + 2OH^{-}(aq) \longrightarrow Ag_2O(s) + H_2O(l)$$

Quando parte da prata é consumida devido à formação de hidróxido de prata, a quantidade de tiocianato necessária para atingir o ponto de equivalência é menor e a massa de iodofórmio calculada é maior. Assim, a fração mássica de varfarina calculada incorretamente seria **superior ao valor correto**.

Considere as proposições sobre reações de substituição nucleofílica com mecanismo via S_N1 e S_N2 .

- 1. O mecanismo de substituição nucleofílica S_N1 ocorre com formação de um carbocátion intermediário. Fatores que contribuem para estabilizar cargas positivas em solução, como a escolha de um solvente polar, favorecem esse tipo de mecanismo.
- 2. Em ambos os processos ocorre a quebra da ligação do carbono com o grupo de saída. Assim, diferentes grupos de saída não favorecem um dos mecanismos em detrimento do outro.
- 3. Haletos de alquila terciários reagem preferencialmente via S_N1, enquanto haletos de alquila primários reagem via S_N2 .
- 4. As reações via S_N 2 ocorrem com inversão da configuração carbono. As reações via S_N 1, por outro lado, produzem misturas racêmicas mesmo a partir de substratos quirais.

Assinale a alternativa que relaciona as proposições corretas.

A() **1** e **3**

B() 1 e 4

C() 3 e 4

D() 1, 3 e 4 **E**() 1, 2, 3 e 4

Gabarito: D

Etapa 1. Compare os mecanismos via S_N1 e S_N2 .

- 1. O intermediário de uma reação via S_N1 é um carbocátion, a estabilização do carbocátion é o principal fator para favorecer esse tipo de mecanismo.
- 2. Grupos de saída que formam ligações fortes com o carbono inviabilizam reações S_N1 .
- 3. O impedimento espacial para o ataque do nucleófilo inviabiliza que haletos de alquila terciários reajam via S_N2 . As reações de S_N1 são favorecidas para esses reagentes devido à maior estabilização do carbocátion formado.
- 4. O ataque do nucleófilo em uma reação $S_{\rm N}2$, do lado oposto ao do grupo de saída, leva à inversão da configuração. Em uma reação $S_{\rm N}1$ o ataque pode ocorrer de ambos os lados do carbocátion, formando uma mistura racêmica.

Questão 52

Assinale a alternativa com o número total de isômeros (constitucionais e estereoisômeros) com fórmula molecular C_3H_7N .

A () 12

B() 13

C () 14

D() 15

E () 16

Etapa 1. Escreva as aminas de cadeia aberta.

$$NH_2$$
 NH_2 NH_2 NH_2 NH_2

Etapa 2. Escreva as iminas de cadeia aberta.

$$N_{H}$$

Etapa 3. Escreva as aminas de cadeia fechada.

Uma amostra de 1,2 g de um soluto apolar foi dissolvida em 60 g de fenol. O ponto de congelamento da solução abaixou em 1,4 °C e essa tinha densidade 1,2 g cm⁻³.

A constante do ponto de congelamento fenol é $k_{\rm c,fenol} = 7 \, {\rm K \, kg^{-1} \, mol^{-1}}$.

Considere as proposições.

- 1. A massa molar do soluto é cerca de $100 \,\mathrm{g} \,\mathrm{mol}^{-1}$.
- 2. Caso o soluto sofra dimerização parcial quando dissolvido em fenol, a massa molar calculada considerando que não há dimerização será menor do que sua massa molar real.
- 3. A pressão osmótica dessa solução em 27 °C é cerca de 5,9 atm.
- 4. A pressão osmótica dessa solução pode ser medida calculando a pressão exercida pelas moléculas do soluto sob uma membrana semipermeável.

Assinale a alternativa que relaciona as proposições corretas.

- **A**() **1**
- $\mathbf{B}(\)$ 3
- ${f C} (\) \ {f 1} \ {f e} \ {f 3} \hspace{1cm} {f D} (\) \ {f 1}, {f 2} \ {f e} \ {f 3} \hspace{1cm} {f E} (\) \ {f 1}, {f 3} \ {f e} \ {f 4}$

Etapa 1. (1) Calcule a molalidade da solução usando a equação da crioscopia.

De $\Delta T_{\rm f} = k_{\rm f} \times wi$, com i = 1

$$w = \frac{\Delta T_{\rm f}}{k_{\rm f}} = \frac{1.4\,{\rm ^{\circ}K}}{7\,{\rm \frac{K\,kg}{mol}}} = 0.2\,{\rm mol\,kg^{-1}}$$

Etapa 2. Calcule a quantidade de soluto na amostra.

$$n_{\text{soluto}} = w \times m_{\text{solvente}} = (0.2 \,\text{mol kg}^{-1}) \times (0.06 \,\text{kg}) = 0.012 \,\text{mol}$$

Etapa 3. Calcule a massa molar do soluto.

$$M_{\text{soluto}} = \frac{m_{\text{soluto}}}{n_{\text{soluto}}} = \frac{1.2 \,\text{g}}{0.012 \,\text{mol}} = \boxed{100 \,\text{g mol}^{-1}}$$

Etapa 4. (2) Verifique o efeito da reação de dimerização.

Quando do soluto dimeriza, o número de mols em solução diminui. Assim, como a massa total é a mesma, a massa molar calculada incorretamente seria **superior ao valor correto**.

Etapa 5. (3) Calcule a massa total da solução.

$$m = m_{\text{fenol}} + m_{\text{soluto}} = 1.2 \,\text{g} + 60 \,\text{g} = 61.2 \,\text{g}$$

Etapa 6. Calcule o volume de solução.

$$V = \frac{m}{d} = \frac{61.2 \,\mathrm{g}}{1.2 \,\frac{\mathrm{g}}{\mathrm{mL}}} = 51 \,\mathrm{mL}$$

Etapa 7. Calcule a concentração molar do soluto.

$$c = \frac{n_{\text{soluto}}}{V} = \frac{0.012 \,\text{mol}}{51 \,\text{mL}} = 0.24 \,\text{mol} \,\text{L}^{-1}$$

Etapa 8. Calcule a pressão osmótica usando a equação van't Hoff.

$$\Pi = cRT = (0.082 \, \frac{\text{atm L}}{\text{mol K}}) \times (300 \, \text{K}) \times (0.24 \, \frac{\text{mol}}{\text{L}}) = \boxed{5.9 \, \text{atm}}$$

Etapa 9. (4) Use a definição de pressão osmótica.

A pressão osmótica é a pressão exercida sobre a solução necessária para deter o fluxo de solvente quando há diferença de concentração entre soluções separadas por uma membrana semipermeável. Essa pressão **não é exercida sobre a membrana**.

As primeiras oito energias de ionização para dois elementos do terceiro período da Tabela Periódica são apresentados a seguir.

Assinale a alternativa com a fórmula empírica do composto iônico binário formado pela reação entre A e B.

A () AB

 \mathbf{B} () $\mathbf{A}_2\mathbf{B}$

 \mathbf{C} () AB_2

 \mathbf{D} () A_2B_3

 \mathbf{E} () A_3B_2

Gabarito: D

Etapa 1. Determine o grupo da Tabela Periódica de A identificando o maior salto na energia de ionização.

Para A, há um grande salto da terceira para a quarta energia de ionização, indicando que o quarto elétron foi retirado de uma camada inferior. A tem três elétrons em sua camada de valência e pertence ao Grupo 13 (alumínio).

Etapa 2. Determine o grupo da Tabela Periódica de B identificando o maior salto na energia de ionização.

Para B, há um grande salto da sexta para a sétima energia de ionização, indicando que o sétimo elétron foi retirado de uma camada inferior. B tem seis elétrons em sua camada de valência e pertence ao Grupo 16 (enxofre).

Etapa 3. Identifique o composto formado entre A e B.

Para atingir a configuração do gás nobre, A deve perder três elétrons formando o cátion A^{3+} e B deve ganhar dois elétrons para formar o ânion B^{2-} .

O composto iônico formado por A^{3+} e B^{2-} é o A_2B_3 .

Considere os compostos: NSF₃, BeF₂, ClF₃, XeO₂F₄.

Assinale a hibridização do átomo central de cada composto, respectivamente.

- ${\bf A} \ (\) \ sp^3, \, sp, \, sp^3d, \, sp^3d^2 \qquad \qquad {\bf B} \ (\) \ sp^3d, \, sp, \, sp^2, \, sp^3d \qquad \qquad {\bf C} \ (\) \ sp^3, \, sp^3, \, sp^3, \, sp^3d$

- ${\bf D} \ (\) \ sp^3d, \, sp, \, sp^3, \, sp^3d^2 \qquad \qquad {\bf E} \ (\) \ sp^3d^2, \, sp^3, \, sp^2, \, sp^3d^2$

Gabarito: A

Etapa 1. Escreva a estrutura de Lewis para as moléculas.

Etapa 2. Calcule o número de nuvens eletrônicas ao redor de cada átomo central.

NSF_3	BeCl_2	ClF_3	$XeOF_4$
4 nuvens	2 nuvens	5 nuvens	6 nuvens
sp^3	sp	$\mathrm{sp^3d}$	$\mathrm{sp^3d^2}$

Questão 56

Aminoacetais simples são rapidamente hidrolisados em soluções de ácidos diluídos, conforme a reação:

A estabilidade do código genético depende da estabilidade do DNA. Se a hidrólise dos aminoacetais que compõe o DNA, apresentados a seguir, fosse tão simples a vida não poderia existir como é hoje.

Assinale a alternativa que apresenta a justificativa para a dificuldade de hidrólise dos grupos acetais no DNA.

- **A** () Os aminoacetais do DNA possuem átomos de nitrogênio com basicidade consideravelmente menor, já que seus pares eletrônicos não ligantes estão conjugados com o sistema aromático.
- **B** () Os aminoacetais do DNA possuem grupos hidroxila, que podem formar ligações de hidrogênio intramoleculares com o átomo de nitrogênio do grupo aminoacetal.
- C () Os aminoacetais do DNA possuem grupos hidroxila que, por efeito indutivo, reduzem a densidade eletrônica do oxigênio heteroátomo.
- **D** () Os aminoacetais do DNA possuem grupos com maior impedimento especial, dificultando a interação com o ácido.
- **E** () Os aminoacetais do DNA possuem menor barreira de rotação para a ligação C-N, devido à menor interação com o oxigênio heteroátomo.

Gabarito: A

Etapa 1. Identifique o átomo mais básico no grupo aminoacetal.

O nitrogênio é menos eletronegativo que o oxigênio. Assim o nitrogênio deve ser o átomo protonado na reação dos aminoacetais com ácidos. Para que os aminoacetais do DNA não reajam com ácidos, a basicidade do átomo de nitrogênio nesses compostos deve ser menor.

Etapa 2. Identifique diferenças na estrutura dos aminoaceitais do DNA que justifiquem a menor basicidade do átomo de nitrogênio.

Nos aminoacetais do DNA o átomo de nitrogênio está conjugado, diminuindo sua basicidade.

Questão 57

Um cilindro provido de pistão contém água até a metade do seu volume. O espaço acima da água é ocupado por ar atmosférico e possui uma entrada lateral para adição de gases.

Considere os procedimentos:

- 1. A posição do pistão é fixada e o cilindro é carregado com argônio pela entrada lateral.
- 2. O pistão é movimentado no sentido da compressão do sistema.
- 3. O pistão é liberado para se mover livremente e o sistema é carregado com mais CO_2 pela entrada
- 4. O pistão é liberado para se mover livremente e o sistema é resfriado.

Assinale a alternativa que relaciona os procedimentos que resultam no aumento da quantidade de CO₂ dissolvido.

A() **2** e **3**

B() 2 e 4

C() 3 e 4

D() **2**, **3** e **4 E**() **1**, **2**, **3** e **4**

Gabarito: D

Etapa 1. Verifique se há aumento da pressão parcial de CO₂ ou redução da temperatura.

- 1. O aumento da pressão total pela adição de um gás inerte não altera a pressão parcial de CO₂ e, portanto, não altera a quantidade de CO₂ dissolvido.
- 2. Quando o sistema é comprimido a pressão parcial de CO₂ aumenta, o que aumenta a quantidade de CO₂ dissolvido.
- 3. Quando o pistão é liberado a pressão total é mantida constante igual à pressão externa de 1 atm, logo, a adição de CO₂ ao sistema aumenta sua pressão parcial aumentando a quantidade de CO₂ dissolvido.
- 4. A solubilidade de gases aumenta com a redução da temperatura, assim, a quantidade de CO_2 dissolvido aumenta quando o sistema é resfriado.

Questão 58

O diagrama de fases para a mistura de água e 1,4-dioxano é apresentado a seguir.

Considere as proposições.

- 1. Água e dioxano formam um azeótropo de ponto de ebulição mínimo quando a fração molar de água é 20%.
- 2. A mistura de água e dioxano ocorre com liberação de energia.
- 3. Em 20°C, a pressão de vapor da água é 20 Torr e a do dioxano é 30 Torr. A pressão de vapor de uma mistura equimolar de água e dioxano em 20°C é menor que 25 Torr.
- 4. Uma mistura contendo 80% de água e 20% de dioxano em base molar em $70\,^{\circ}\mathrm{C}$ é aquecida até o início da ebulição. O vapor coletado é resfriado de volta a 70 °C resultando em um líquido contendo 40% de água em base molar.

Assinale a alternativa que relaciona as proposições corretas.

A () 1

B()4

C() 1 e 4 D() 1, 2 e 4 E() 1, 3 e 4

Gabarito: C

Etapa 1. O eixo das abscissas é a fração molar, mas a espécie não está indicada. Identifique qual é a espécie.

Quando a fração molar dessa espécie é zero, a temperatura de ebulição é 100°C, temperatura de ebulição da água. Assim, eixo das abscissas representa a fração molar de dioxano.

Etapa 2. (1) Identifique o ponto de azeótropo no diagrama de fases.

No ponto de azeótropo a composição do vapor é a mesma do líquido em ebulição. O diagrama de fases possui um azeótropo quando a fração molar de dioxano é 80% (e a fração molar de água é 20%) com temperatura de ebulição mínima (80°C).

Etapa 3. (2) Identifique o tipo de desvio da lei de Raoult.

A mistura de água e dioxano provoca a diminuição da temperatura de ebulição, caracterizada pelo azeótropo de mínimo. Assim, o par água e dioxano apresenta desvio positivo da lei de Raoult e o processo de mistura ocorre com absorção de energia.

Etapa 4. (3) Calcule a pressão de vapor da mistura ideal usando a lei de Raoult.

Em uma mistura equimolar, $x_{\text{H}_2\text{O}} = x_{\text{dioxano}} = 0.5$.

$$P_{\text{vap,ideal}} = x_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}}^{\star} + x_{\text{dioxano}} P_{\text{dioxano}}^{\star} = (0,5) \times (20 \,\text{Torr}) + (0,5) \times (30 \,\text{Torr}) = \boxed{25 \,\text{Torr}}$$

Como a mistura apresenta desvio positivo da lei de Raoult, a pressão de vapor total deve ser maior do que a prevista pela lei de Raoult, isto é, **deve ser maior que** 25 Torr.

Etapa 5. (4) Identifique os pontos correspondentes às etapas do processo de destilação do diagrama de fases.

Quando uma mistura contendo 80% de água e 20% de dioxano em base molar em 70°C é aquecida até 90 °C ela entra em ebulição, possibilitando a marcação do ponto A que representa o líquido α .

O ponto B representa o vapor β gerado pela vaporização do líquido α . Quando o vapor β é condensado o líquido resultante tem 60% de dioxano (e 40% de água) em base molar.

Questão 59

As três primeiras energias de ionização do átomo de alumínio são $6.0\,\mathrm{eV},\ 19\,\mathrm{eV}$ e $28\,\mathrm{eV}$ e a afinidade eletrônica do átomo de bromo é $3.4\,\mathrm{eV}.$

Dados em 298 K	Al(g)	Br(g)	$\mathrm{AlBr}_3(s)$
Entalpia padrão de formação, $\Delta H_{\rm f}^{\circ}/\frac{\rm kJ}{\rm mol}$	+326	+112	-530

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de alumínio em 298 K.

A ()
$$1.2 \,\mathrm{MJ} \,\mathrm{mol}^{-1}$$

$$\mathbf{B}$$
 () 2,7 MJ mol⁻¹

$$\mathbf{C}$$
 () 4,1 MJ mol⁻¹

$$\mathbf{D}$$
 () 5,3 MJ mol⁻¹

$$\mathbf{E} (\) \ 8,4 \,\mathrm{MJ} \,\mathrm{mol}^{-1}$$

Gabarito: D

Etapa 1. Calcule a energia de ionização do Al a Al^{3+} .

$$I = I_1 + I_2 + I_3 = (6.0 \,\text{eV}) + (19 \,\text{eV}) + (28 \,\text{eV}) = 53 \,\text{eV}$$

Etapa 2. Converta os dados de elétrons-volt pra $kJ \text{ mol}^{-1}$.

$$\begin{split} 1\,\mathrm{eV} &= (1,6\cdot 10^{-19}\,\mathrm{J})\times (6\cdot 10^{21}\,\mathrm{mol}^{-1}) = 96,5\,\mathrm{kJ}\,\mathrm{mol}^{-1} \\ \mathrm{logo}, \\ \Delta H_{I,\mathrm{Al}}^{\circ} &= (+53)\times (96,5\,\frac{\mathrm{kJ}}{\mathrm{mol}}) = +5114\,\frac{\mathrm{kJ}}{\mathrm{mol}} \\ \Delta H_{AE,\mathrm{Br}}^{\circ} &= (-3,4)\times (96,5\,\frac{\mathrm{kJ}}{\mathrm{mol}}) = -328\,\frac{\mathrm{kJ}}{\mathrm{mol}} \end{split}$$

Etapa 3. Escreva a reação desejada como uma combinação das reações fornecidas.

$$\begin{array}{c} \text{Al(s)} &\longrightarrow \text{Al(g)} & \Delta H_{\text{f,Al(g)}}^{\circ} \\ \text{Al(g)} &\longrightarrow \text{Al}^{3+}(\text{g}) + 3\,\text{e}^{-}(\text{g}) & \Delta H_{\text{f,Al}}^{\circ} \\ \frac{3}{2}\,\text{Br}_{2}(\text{l}) &\longrightarrow 3\,\text{Br}(\text{g}) & 3\Delta H_{\text{f,Br}(\text{g})}^{\circ} \\ 3\text{Br}(\text{g}) + 3\,\text{e}^{-}(\text{g}) &\longrightarrow 3\,\text{Br}^{-}(\text{g}) & 3\Delta H_{AE,\text{Br}}^{\circ} \\ && \text{AlBr}_{3}(\text{s}) &\longrightarrow \text{Al(s)} + \frac{3}{2}\,\text{Br}_{2}(\text{l}) & -\Delta H_{\text{f,AlBr}_{3}(\text{s})}^{\circ} \\ \hline && \text{AlBr}_{3}(\text{s}) &\longrightarrow \text{Al}^{3+}(\text{g}) + \text{Br}^{-}(\text{g}) & \Delta H_{\text{rede}}^{\circ} \end{array}$$

A entalpia da reação desejada é dada por:

$$\Delta H_{\text{rede}}^{\circ} = \Delta H_{\text{f,Al(g)}}^{\circ} + \Delta H_{I,\text{Al}}^{\circ} + 3\Delta H_{\text{f,Br(g)}}^{\circ} + 3\Delta H_{AE,\text{Br}}^{\circ} - \Delta H_{\text{f,AlBr_3(s)}}^{\circ}$$

logo,

$$\Delta H_{\rm r}^{\circ} = \Big\{ (+326) + (+5114) + 3(+112) + 3(-328) - (-530) \Big\} \frac{\rm kJ}{\rm mol} = \boxed{5322\,\rm kJ\,mol^{-1}}$$

Questão 60

Um engenheiro projetou uma planta para separação de um efluente industrial aquoso contendo massas iguais de nitrato de cobre(II), nitrato de chumbo(II) e nitrato de prata, na concentração total de 51 g/L.

O Misturador 1 recebe a entrada de efluente na vazão de $100\,\mathrm{L\,s^{-1}}$ que é misturada com $100\,\mathrm{L\,s^{-1}}$ de uma solução de sulfato de amônio $26\,\mathrm{g\,L^{-1}}$. O Misturador 1 é equipado com uma jaqueta que mantém a mistura em $80\,\mathrm{^{\circ}C}$.

O Misturador 2 recebe o material passante do Filtro 1 e $100\,\mathrm{L\,s^{-1}}$ de uma solução aquosa de carbonato de sódio de concentração $53\,\mathrm{g\,L^{-1}}$ com pequena quantidade de uma solução de hidróxido de sódio objetivando o ajuste do pH de precipitação. A temperatura da solução é mantida em $10\,\mathrm{^{\circ}C}$ no misturador para, em seguida, proceder a filtração no Filtro 2.

A curva de solubilidade do sulfato de prata em água é apresentada a seguir.

Considere as proposições.

- 1. A saída sólida do Filtro 1 é constituída apenas de sulfato de chumbo(II).
- 2. A saída de sólida do Filtro 2 é uma mistura heterogênea.
- 3. Todos os cátions metálicos do efluente são removidos nas saídas sólidas dos Filtros 1 e 2.
- 4. A prata metálica pode ser obtida pela calcinação da mistura na saída sólida do Filtro 2.

Assinale a alternativa que relaciona as proposições corretas.

$$\mathbf{E}(\)\ \mathbf{1},\mathbf{2},\mathbf{3}\in\mathbf{4}$$

Gabarito: E

Etapa 1. (1) Identifique os íons em solução no Misturador 1.

A solução no Misturador 1 contém os íons Ag⁺, Pb²⁺, Cu²⁺, NO₃⁻, NH₄⁺ e SO₄²⁻.

Etapa 2. Use as regras de solubilidade para verificar se há formação de precipitado no Misturador 1.

Os íons Pb^{2+} e $\mathrm{SO_4}^{2-}$ formam um composto insolúvel, e o $\mathrm{PbSO_4}$ precipita.

O Ag $_2{\rm SO}_4$ é ligeiramente solúvel, sua concentração deve ser calculada para verificar se há precipitação.

Etapa 3. Calcule a concentração molar inicial de Ag^+ e Pb^{2+} no Misturador 1.

$$[Ag^{+}] = [AgNO_{3}] = \frac{1}{2} \times \frac{\frac{1}{3} \times (51 \frac{g}{L})}{170 \frac{g}{mol}} = 50 \, \text{mmol} \, L^{-1}$$
$$[Pb^{2+}] = [Pb(NO_{3})_{2}] = \frac{1}{2} \times \frac{\frac{1}{3} \times (51 \frac{g}{L})}{331 \frac{g}{mol}} = 25 \, \text{mmol} \, L^{-1}$$

Etapa 4. Calcule a concentração molar inicial de $\mathrm{SO_4}^{2-}$ no Misturador 1.

$$[{\rm SO_4}^{2-}] = [({\rm NH_4})_2 {\rm SO_4}] = \frac{1}{2} \times \frac{(26\,\frac{\rm g}{\rm L})}{132\,\frac{\rm g}{\rm mol}} = 100\,{\rm mmol}\,{\rm L}^{-1}$$

Etapa 5. Escreva a equação iônica simplificada para a reação de precipitação do PbSO₄.

$$Pb^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s)$$

Etapa 6. Use a relação estequiométrica para converter a quantidade de Pb^{2+} em $\mathrm{SO_4}^{2-}$ consumido.

$$[{\rm SO_4}^{2-}]_{\rm consumido} = \frac{1}{1} c_{\rm Pb^{2+}} = 25\,{\rm mmol}\,{\rm L}^{-1}$$

Etapa 7. Calcule a quantidade de SO_4^{2-} em excesso no Misturador 1 após a precipitação de $PbSO_4$.

$$[{\rm SO_4}^{2-}]_{\rm xs} = [{\rm SO_4}^{2-}] - [{\rm SO_4}^{2-}]_{\rm consumido} = 100 \, \tfrac{\rm mmol}{\rm L} - 25 \, \tfrac{\rm mmol}{\rm L} = 75 \, \rm mmol \, L^{-1}$$

Etapa 8. Calcule a concentração molar de Ag_2SO_4 no Misturador 1.

$$[\mathrm{Ag_2SO_4}] = 25\,\mathrm{mmol}\,\mathrm{L}^{-1}$$

Etapa 9. Calcule a concentração mássica de Ag₂SO₄ no Misturador 1.

$$[Ag_2SO_4] = (25 \frac{\text{mmol}}{\text{L}}) \times (312 \frac{\text{g}}{\text{mol}}) = \frac{0.78 \text{ g}}{100 \text{ mL}}$$

A concentração é inferior à solubilidade do sal em $80\,^{\circ}$ C. Não há precipitação de Ag_2SO_4 no Filtro 1.

Etapa 10. (2) Identifique os íons em solução no Misturador 2.

A solução no Misturador 2 contém os íons Ag^+ , Cu^{2+} , NO_3^- , NH_4^+ , SO_4^{2-} , Na^+ e CO_3^{2-} .

Etapa 11. Use as regras de solubilidade para verificar se há formação de precipitado no Misturador

Os íons Cu^{2+} e CO_3^{2-} e os íons Ag^+ e CO_3^{2-} formam compostos insolúveis, e há precipitação de $CuCO_3$ e Ag_2CO_3 .

Etapa 12. (3) Identifique a saída de cada cátion metálico.

Os íons Pb^{2+} são removidos na saída sólida do Filtro 1, enquanto os íons Ag^+ e Cu^{2+} são removidos na saída sólida do Filtro 2.

Etapa 13. (4) Escreva as reações de calcinação dos componentes da mistura sólida na saída do Filtro $2 \text{ (Ag}_2\text{CO}_3 \text{ e CuCO}_3)$.

$$\begin{array}{c} Ag_2CO_3(s) \stackrel{\Delta}{\longrightarrow} Ag_2O(s) + CO_2(g) \\ \\ 2 Ag_2O(s) \stackrel{\Delta}{\longrightarrow} 4 Ag(s) + O_2(g) \\ \\ CuCO_3(s) \stackrel{\Delta}{\longrightarrow} CuO(s) + CO_2(g) \end{array}$$

A calcinação do carbonato de prata leva à formação de prata metálica.