Analyse numérique **Exercices corrigés**

Interpolation polynômiale

Exercice 1

Déterminer le polynôme d'interpolation de Lagrange satisfaisant au tableau ci-dessous

x	0	2	3	5	
f(x)	-1	2	9	87	

Corrigé: Rappelons que le polynôme de Lagrange basé sur les points d'appui d'abscisses x_0, x_1, \ldots, x_n est de degré n et s'écrit :

$$P_n(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$$
 avec $L_k(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}$

ici les points d'appui donnés par :

déterminons donc un polynôme de Lagrange de degré 3, celui-ci s'écrit :

$$P_3(x) = \sum_{k=0}^{3} f(x_k) L_k(x)$$

avec

$$L_{0}(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{1})(x_{0}-x_{2})(x_{0}-x_{3})}
= \frac{(x-2)(x-3)(x-5)}{(0-2)(0-3)(0-5)}
= -\frac{1}{30}(x-2)(x-3)(x-5)
= -\frac{1}{30}(x-2)(x-3)(x-5)
= \frac{(x-x_{0})(x-x_{2})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x-x_{3})}
= \frac{(x-0)(x-3)(x-5)}{(2-0)(2-3)(2-5)}
= \frac{1}{6}x(x-3)(x-5)
= \frac{1}{6}x(x-3)(x-5)
= \frac{(x-x_{0})(x-x_{2})(x-5)}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})}
= \frac{(x-x_{0})(x-3)(x-5)}{(x_{2}-x_{0})(x-3)(x-5)}
= \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})}
= \frac{1}{30}x(x-2)(x-3)
= \frac{1}{30}x(x-2)(x-3)$$

Finalement

$$P_3(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + f(x_3)L_3(x)$$
$$= \frac{53}{30}x^3 - 7x^2 + \frac{253}{30}x - 1$$

Exercice 2

Soit $f(x) = \frac{1}{1+x^2}$. Déterminer le polynôme d'interpolation de Lagrange pour les points d'appui d'abscisses : -2, -1, 0, 1, 2. Ensuite discuter l'erreur d'interpolation.

Corrigé: Soit $f(x) = \frac{1}{1+x^2}$. Les points d'appui sont :

Le polynôme de Lagrange est de degré 4. Il s'écrit

$$P_4(x) = \sum_{k=0}^{4} f(x_k) L_k(x)$$

avec

$$L_0(x) = \frac{1}{24}x(x+1)(x-1)(x-2) \qquad L_1(x) = -\frac{1}{8}x(x+2)(x-1)(x-2)$$

$$L_2(x) = \frac{1}{4}(x+2)(x+1)(x-1)(x-2) \qquad L_3(x) = -\frac{1}{6}x(x+2)(x+1)(x-2)$$

$$L_4(x) = \frac{1}{24}x(x+2)(x+1)(x-1)$$

Finalement,

$$P_4(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + f(x_3)L_3(x) + f(x_4)L_4(x)$$

$$= \frac{1}{120}x(x+1)(x-1)(x-2) - \frac{1}{12}x(x+2)(x-1)(x-2)$$

$$+ \frac{1}{4}(x+2)(x+1)(x-1)(x-2) - \frac{1}{12}x(x+2)(x+1)(x-2)$$

$$+ \frac{1}{120}x(x+2)(x+1)(x-1)$$

$$= \frac{1}{10}x^4 - \frac{3}{5}x^2 + 1$$

Calculons l'erreur théorique sur cette interpolation. celle-ci est donnée ou point x par :

$$E(x) = f(x) - P_n(x) = \gamma_{n+1}(x) - \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \quad \text{où} \quad \xi \in I = (\min x_i, \max x_i)$$

Elle vérifie,

$$|E(x)| \le |\gamma_{n+1}(x)| \frac{1}{(n+1)!} M_{n+1}$$
 où $\gamma_{n+1}(x) = \prod_{k=0}^{n} (x - x_k)$ $M_{n+1} = \max_{t \in I} \left| f^{(n+1)}(t) \right|$

Comme ici on a 5 points d'appui, cette erreur est majorée par : $|E(x)| \leq |\gamma_5(x)| \frac{1}{5!} M_5$

On a clairement $\gamma_5(x) = \prod_{k=0}^{6} (x - x_k) = x(x^2 - 1)(x^2 - 4)$. Il reste à calculer $M_5 = \max_{t \in I} \left| f^{(5)}(t) \right|$. Un calcul assez long

donne:
$$f^{(5)}(x) = \frac{-240x(3-10x^2+3x^4)}{(1+x^2)^6}$$
 de même, on trouve $f^{(6)}(x) = \frac{-240}{(1+x^2)^7} \left[-21x^6+105x^3-63x^2+3\right]$.

Ainsi l'étude de $f^{(5)}$ donne $M_5=100.$ Finalement,

$$|E(x)| \le |\gamma_5(x)| \frac{1}{5!} M_5 = |x(x^2 - 1)(x^2 - 4)| \frac{100}{5!} = |x(x^2 - 1)(x^2 - 4)| \frac{5}{6}$$

Exercice 3

Avec quelle précision peut-on calculer $\sqrt{115}$ à l'aide de l'interpolation de Lagrange, si on prend les points : $x_0 = 100$, $x_1 = 121$, $x_2 = 144$.

Corrigé:

Exercice 4

- 1. Utiliser la formule d'interpolation de Lagrange pour trouver la cubique passant par 0.4, 0.5, 0.7, 0.8 pour $f(x) = \sin(x)$
- 2. Même question pour $f(x) = \frac{1}{\tan x}$

Corrigé:

Exercice 5

Soit $f(x) = \sqrt{2+x}$

- 1. Determiner le polynôme P(x) Lagrange basé sur les points d'abscisses 0, 1 et 2.
- 2. Calculer P(0.1) et P(0.9), et comparer aux valeurs exactes. Évaluer l'erreur d'interpolation en ces deux points.

Intégration numérique

Exercice 6

Déterminer par la méthode des trapèzes puis par celle de Simpson $\int_0^{\frac{\pi}{2}} f(x)dx$ sur la base du tableau suivant :

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
f(x)	0	0.382683	0.707107	0.923880	1

Ces points d'appui sont ceux donnant sin x, comparer alors les résultats obtenus avec la valeur exacte.

Corrigé:

$$I = \int_0^{\frac{\pi}{2}} f(x) dx$$

1. Soit T l'approximation de I par la méthode des trapèzes, le pas h donné par $h=\frac{x_n-x_0}{n}=\frac{\pi}{8}$

$$T = \frac{h}{2} \left(f(x_0) + f(x_4) + 2 \sum_{i=1}^{3} f(x_i) \right)$$

= $\frac{\pi}{16} (0 + 1 + 2(0.382683 + 0.707107 + 0.92388))$
= 0.987116

2. Soit S l'approximation de I par la méthode de Simpson. Celle-ci s'écrit,

$$S = \frac{h}{3} (y_0 + y_4 + 4(y_1 + y_3) + 2y_2)$$

= $\frac{\pi}{8} \frac{1}{3} [(0 + 1 + 4(0.38... + 0.92...) + 2 \times 0.707...)]$
= 1.000135

Les points d'appui donnés dans cet execice correspondent à la fonction $\sin x$. Et $\int_0^{\frac{\pi}{2}} \sin x dx = 1$. On constate donc que l'approximation de I donnée par la méthode de Simpson est meilleure que celle par les trapèzes, puisque |S-I|=0.000135 et |T-I|=0.012884.

Exercice 7

On lance une fusée verticalement du sol et l'on mesure pendant les premières 80 secondes l'accéleration γ :

t (en s)	0	10	20	30	40	50	60	70	80
$\gamma \ (en \ m/s^2)$	30	31.63	33.44	35.47	37.75	40.33	43.29	46.70	50.67

Calcule la vitesse V de la fusée à l'instant t = 80 s, par la méthode des trapèzes puis par Simpson.

Corrigé: On sait que l'acceleration γ est la dérivée de la vitesse V, donc,

$$V(t) = V(0) + \int_0^t \gamma(s)ds \qquad \Rightarrow \qquad V(80) = 0 + \underbrace{\int_0^{80} \gamma(s)ds}_{I}$$

1. Calculons I par la méthode des trapèzes. Ici, d'après le tableau des valeurs, h=10.

$$I = \frac{h}{2} \left(\gamma(x_0) + \gamma(x_n) + 2 \sum_{i=1}^{n-1} \gamma(x_i) \right)$$

= $\frac{1}{2} \times 10(30 + 50, 67 + 2(31, 63 + \dots + 46, 70))$
= $3089 \ m/s$

2. Calculons I par la méthode de Simpson

$$V(80) = \frac{h}{3} (\gamma(x_0) + \gamma(x_n) + 4(\gamma(1) + \gamma(x_3) + \cdots) + 2(\gamma(2) + \gamma(x_4) + \cdots))$$

$$= \frac{10}{3} (30 + 50, 67 + 4(31, 63 + 35, 47 + \cdots) + 2(33, 44 + 37, 75 + \cdots))$$

$$= 3087 \, m/s$$

3

Exercice 8

Calculer à l'aide de la méthode des trapèzes l'intégrale $I = \int_0^{\pi} \sin x^2 dx$ avec le nombre de points d'appui n = 5 puis n = 10.

Corrigé: Soit $I = \int_0^{\pi} \sin x^2 dx$

1. n=5 donc le pas d'intégration est $h=\frac{\pi}{5}.$ Calculons I par la méthode des trapèzes.

$$I = \frac{h}{2} \left(f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) \right)$$

$$= \frac{\pi}{10} (0 + 1 + 2(\sin(\pi)^2 + \sin(0) + 2(\sin(\frac{\pi}{5})^2 + \sin(\frac{2\pi}{5})^2 + \sin(\frac{3\pi}{5})^2 + \sin(\frac{4\pi}{5})^2))$$

$$= 0.504431$$

2. n=10 donc le pas d'intégration est $h=\frac{\pi}{10}$.

$$I = \frac{\pi}{20}(0 + 1 + 2(\sin(\pi)^2 + \sin(0) + 2(\sin(\frac{\pi}{10})^2 + \sin(\frac{2\pi}{10})^2 + \sin(\frac{3\pi}{10})^2 + \sin(\frac{4\pi}{10})^2))$$

$$= 0.722338$$

alors que la valeur 'exacte' est approximativement 0,772651. Avec ce pas plus petit l'approximation numérique est meilleure.

Exercice 9

Trouver le nombre n de subdivisions nécessaires de l'intervalle d'intégration $[-\pi, \pi]$, pour évaluer à 0.5 10^{-3} près, grâce à la méthode de Simpson, l'intégrale $\int_{-\pi}^{\pi} \cos x \, dx$

Corrigé: Soit

$$I = \int_{-\pi}^{\pi} \cos x \, dx$$

Le pas d'intégration est $h = \frac{b-a}{n} = \frac{2\pi}{n}$. D'autre part l'erreur théorique sur la méthode de Simpson est donnée par

$$E(h) = \frac{-(b-a)}{180} h^4 f^{(4)}(\xi)$$
$$= \frac{-2\pi}{180} (\frac{2\pi}{n})^4 \cos(\xi)$$

où $\xi \in [a, b]$, par conséquent,

$$|E(h)| \leqslant \left| \frac{-2\pi}{180} \left(\frac{2\pi}{n} \right)^4 \right|$$

Ainsi pour que $|E(h)| \le 0.5 \ 10^{-3}$ il suffit que n vérifie $\left|\frac{\pi}{90} \frac{16\pi^4}{n^4}\right| \le 0.5 \ 10^{-3}$, donc, $n^4 \ge \frac{1}{0.5 \ 10^{-3}} \frac{\pi}{90} \ 16\pi^4$. Ainsi n vérifie $n \ge 18.6$ On prendra par exemple n = 20, car pour la méthode de Simpson, le nombre de subdivisions de l'intervalle [a,b] doit toujours être pair.

Exercice 10

Soit $a \le x_0 < x_1 < \cdots < x_{n-1} < n_n \le b$ une partition fixée de l'intervalle [a, b]. Montrer qu'il existe un unique (n+1)-uplet $(\mu_0, \mu_1, \dots, \mu_n)$ de nombres réels tels que

$$\int_{a}^{b} P(x)dx = \sum_{i=0}^{n} \mu_{i} P(x_{i})$$

Pour tout polynôme P de degré inférieur ou égal à n.

 $\begin{aligned} \textbf{Corrig\'e} &: \text{Le polyn\^ome } P \text{ s\'e\'erit dans la base de Lagrange } P(x) = \sum_{i=0}^n L_i(x) \, P\left(x_i\right) \\ \text{avec } L_i(x) &= \prod_{\stackrel{j=0}{j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \text{ puis on int\'egre } (1) \text{ sur } [a,b], \text{ on obtient :} \\ &\int_a^b P(x) dx = \int_a^b \sum_{i=0}^n L_i(x) P\left(x_i\right) dx = \sum_{i=0}^n \left(\int_a^b L_i(x) dx\right) P\left(x_i\right) = \sum_{i=0}^n \mu_i P\left(x_i\right) \end{aligned}$

Exercice 11

Calculer $\int_{1}^{2} \sqrt{x} dx$ par la formule des rectangles en décomposant l'intervalle d'intégration en dix parties. Évaluer l'erreur commise.

Corrigé : On a=1, b=2 et n=10. Le pas de discrétisation $h=\frac{b-a}{n}=\frac{2-1}{10}=0.1$

$$\int_{1}^{2} \sqrt{x} dx = \int_{1}^{1,1} \sqrt{x} dx + \int_{1,1}^{1,2} \sqrt{x} dx + \dots + \int_{1,8}^{1,9} \sqrt{x} dx + \int_{1,9}^{2} \sqrt{x} dx$$

On applique la formule des rectangles sur chaque sous intervalle, on obtient

$$\int_{1}^{2} \sqrt{x} dx = h\left(\sqrt{1} + \sqrt{1,1} + \sqrt{1,2} + \dots + \sqrt{1,8} + \sqrt{1,9}\right) \approx 1,1981$$

L'estimation de l'erreur comise par la méthode des rectangles est $|E| \leqslant \frac{h^2(b-a)}{12} \max_{x \in [a,b]} |f''(x)|$

On a
$$f(x) = \sqrt{x}$$
 et $f''(x) = \frac{-1}{4\sqrt{x^3}}$ donc $\max_{x \in [1,2]} |f''(x)| \le \frac{1}{4}$ ce qui implique que $|E| \le 2.10^{-4}$

Exercice 12

1. Écrire le polynôme d'interpolation de Lagrange P(x) d'une fonction f construite sur les points :

$$-1, \quad -\frac{1}{3}, \quad \frac{1}{3}, \quad 1$$

2. Par intégration du polynôme obtenu, déduire la formule d'intégration approchée suivante :

$$\int_{-1}^{1} f(x)dx \approx \frac{1}{4}f(-1) + \frac{3}{4}f\left(-\frac{1}{3}\right) + \frac{3}{4}f\left(\frac{1}{3}\right) + \frac{1}{4}f(1)$$

Corrigé:

1. On pose $x_0 = -1$, $x_1 = -\frac{1}{3}$, $x_2 = \frac{1}{3}$, $x_3 = 1$. Les polynômes auxiliaires de Lagrange associés sont :

$$L_0(x) = -\frac{16}{9}(x^3 - x^2 - \frac{1}{9}x + \frac{1}{9}) \qquad L_1(x) = \frac{27}{16}(x^3 - \frac{1}{x}x^2 - x + \frac{1}{3})$$

$$L_2(x) = -\frac{27}{16}(x^3 + \frac{1}{x}x^2 - x - \frac{1}{3}) \qquad L_3(x) = \frac{16}{9}(x^3 + x^2 - \frac{1}{9}x - \frac{1}{9})$$

l'expression du polynôme d'interpolation de Lagrange est

$$f(x) \approx P(x) = L_0(x)f(-1) + L_1(x)f(-\frac{1}{3}) + L_2(x)f(\frac{1}{3}) + L_3(x)f(1)$$

2. on intége le polynôme sur [-1, 1]

$$\int_{-1}^{1} f(x)dx \approx \int_{-1}^{1} P(x)dx$$

$$\approx \int_{-1}^{1} L_{0}(x)dx \ f(-1) + \int_{-1}^{1} L_{1}(x)dx \ f(-\frac{1}{3}) + \int_{-1}^{1} L_{2}(x)dx \ f(\frac{1}{3}) + \int_{-1}^{1} L_{3}(x)dx \ f(1)$$

$$\approx \frac{1}{4} f(-1) + \frac{3}{4} f(-\frac{1}{3}) + \frac{3}{4} f(\frac{1}{3}) + \frac{1}{4} f(1)$$

La résolution de l'équation F(x)=0

Exercice 13 Soit la fonction $F(x) = 2x^3 - x - 2$, on se propose de trouver les racines réelles de F par la méthode des approximations successives.

- 1. Montrer que F possède une seule racine réelle $\alpha \in [1, 2]$
- 2. Etudier la convergence des trois méthodes itératives suivantes : $x_0 \in [1,2]$ donné et

(a)
$$x_{n+1} = 2x_n^3 - 2;$$
 (b) $x_{n+1} = \frac{2}{2x_n^2 - 1}$

Corrigé: Soit l'équation $F(x) = 2x^3 - x - 2 = 0$. Il est clair que F est continue et déivable sur \mathbb{R} .

On a F(1) = -1, F(2) = 12, donc F(1) F(2) < 0. D'autre part, $F'(x) = 6x^2 \ge 0$ sur [1, 2]. Donc, d'après le théorème de la valeur intermédiaire, il existe une seule solution $\alpha \in [1, 2]$ telle que $F(\alpha) = 0$.

(a) Etudions la convergence de la suite $x_{n+1} = g_1(x_n) = 2x_n^3 - 2$. Tout d'abord, cette suite, si elle converge, conduit bien à une racine de F(x) = 0 car si α est la limite de la suite (x_n) , alors

$$\alpha = 2\alpha^3 - 2$$
 donc $F(\alpha) = 2\alpha^3 - \alpha - 2$

Par ailleurs, $g'_1(x) = 6x^2 \ge 6$ sur [1, 2]. Par conséquent, grâce au théorème des accroissements finis, il existe ξ_n compris entre x_n et x_{n+1} tel que

$$|g_1(x_{n+1}) - g_1(x_n)| = g_1'(\xi_n) |x_{n+1} - x_n|$$

donc

$$|g_1(x_{n+1}) - g_1(x_n)| \ge 6 |x_{n+1} - x_n|$$

 $\ge 6^2 |x_n - x_{n-1}|$
 \vdots
 $\ge 6^n |x_1 - x_0|$

Ainsi, cette suite diverge et la méthode est à rejeter.

(b) Étudions la convergence de $x_{n+1} = g_2(x_n) = \frac{2}{2x_n^2 - 1}$. Cette méthode, si elle converge conduit vers la racine α de F(x) dans [1, 2], car si α est la limite de la suite (x_n) , alors

$$\alpha = \frac{2}{2\alpha^2 - 1} \qquad \text{donc} \qquad F(\alpha) = 2\alpha^2 - 2\alpha - 1 = 0 \\ g_2'(x) = \frac{-8x}{(2x^2 - 1)^2} \quad \text{donc} \qquad -8 < g_2''(x) = \frac{8(6x^2 + 1)}{(2x^2 - 1)^3} < \frac{16}{49}$$

En conséquence, on ne peut conclure sur la monotonie de g_2

Exercice 14

On veut résoudre dans \mathbb{R} l'équation x = g(x) où $g(x) = -\ln x$,

- 1. a) Montrer qu'elle admet une seule racine α , montrer que $\alpha \in I = [0,1]$.
 - b) Montrer que la méthode itérative : $x_{n+1} = g(x_n)$ diverge.
 - c) on considère alors $g^{-1}(x) = g^{-1}(g(x)) = x$, (remarquer que g^{-1} existe) montrer que la méthode itérative : $x_{n+1} = g^{-1}(x_n)$ converge. En posant $e_n = x_n \alpha$ montrer que e_{n+1} est de signe opposé à e_n , que peut-on déduie?
- 2. Retrouver α à l'aide de la méthode de Newton.

Corrigé:

Exercice 15
Soit l'équation

$$x\left(1+e^{x}\right) = e^{x} \tag{1}$$

- 1. Montrer que cette équation admet une racine unique s dans [0,1]
- 2. Proposer une itération de point fixe pour l'équation (1).
- 3. Montrer, que cette itération converge vers la solution s.
- 4. Écrire la méthode de Newton pour cette équation en précisant un bon choix de l'initialisation x_0 .

Corrigé : On pose $f(x) = x(1 + e^x) - e^x$

- 1. On a f(0) = -1 et $f(1) = 1 \Rightarrow f(0)$ $f(1) \le 0$, d'après le théorème des valeurs intermédiaires la fonction f admet au moins une racine sur [0,1] et puisque f est monotone, cette racine est unique.
- 2. On considère l'itéation du point fixe suivante : $x_{n+1} = g(x_n) = \frac{e^{x_n}}{1 + e^{x_n}}$
- 3. g est contractante car $g'(x) = \frac{e^x}{(1+e^x)^2}$ et |g'(x)| < 1 $\forall x \in [0,1]$ puisque g est croissante, on a $0 \le x \le 1 \Rightarrow 0 < \frac{1}{2} = g(0) \le g(x) \le g(1) = \frac{e}{1+e} < 1$ alors on a $g([0,1]) \subset [0,1]$. D'après le théoème de convergence du point fixe, notre itéation proposée converge vers la solution de l'équation (1).
- 4. La méthode de Newton : $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)} = x_n \frac{x_n(1+e^{x_n})-e^{x_n}}{1+x_ne^{x_n}}$ Choix de l'initialisation x_0 , il doit vérifier la condition $f(x_0)$ $f''(x_0) > 0$. On a $f(x) = x(1+e^x) - e^x$ et $f''(x) = (1+x)e^x$, on prend par exemple $x_0 = 1$

Exercice 16 Soit l'équation ln(x) = 2 - x

- 1. Montrer que cette équation admet une solution unique α dans l'intervalle [0,2]
- 2. Étudier l'itération

$$x_0$$
 donné $x_{n+1} = 2 - \ln(x_n)$

et montrer que cette itération converge vers α .

3. Montrer que l'équation proposée est équivalente à l'équation $x = e^{2-x}$, et étudier l'itération

$$x_0$$
 donné $x_{n+1} = e^{2-x_n}$

Qu'en déduisez-vous?

4. Écrire la méthode de Newton pour l'équation proposée et proposer un bon choix d'initialisation x_0 de cette méthode.

Corrigé: Soit la fonction $f(x) = \ln(x) + x - 2$, on considère l'équation 'f(x) = 0'

- 1. On a $f(2) = \ln(2)$ et $\lim_{x\to 0} f(x) = -\infty$, d'après le théorème des valeurs intermédiaires il existe au moins une racine α de l'équation f(x) = 0 et puisque f est strictement monotone (coissante) sur [0, 2[, alors la racine α est unique.
- 2. posons $g(x)=2-\ln(x)$, on a $g'(x)=-\frac{1}{x}$ et $\left|g'(\frac{1}{2})\right|=2$ donc g n'est pas contractante.
- 3. On a $x=2-\ln(x) \Leftrightarrow \ln(x)=2-x \Leftrightarrow x=e^{2-x}$, donc pour x_0 donné, l'itération $x_{n+1}=2-\ln(x_n)$ est équivalente à l'itération $x_{n+1}=e^{2-x_n}$. posons $h(x)=e^{2-x}$ et étudions la fomulation $x_{n+1}=h(x_n)$.

Résolution des équations différentielles

Exercice 17 Soit le problème de Cauchy suivant

$$\begin{cases} y' = y - 2x & 0 \leqslant x \leqslant 1 \\ y(0) = 1 \end{cases}$$

7

- 1. Calculer la solution exacte.
- 2. Calculer les valeurs approchées y_1 et y_2 par la méthode d'Euler pour h=0.1 et n=10.

Exercice 18 Soit l'équation différentielle à condition initiale y'(t) = y(t) + t et y(0) = 1. Approcher la solution de cette équation en t = 1 à l'aide de la méthode d'Euler en subdivisant l'intervalle de travail en 10 parties égales. Comparer à la solution exacte.

Coorigé:

$$\begin{cases} y'(t) = y(t) + t = f(t, y) \\ y(0) = 1 \end{cases}$$
 (1)

L'intervalle d'intégration est [0, 1]. Remarquons tout d'abord que f étant continue et lipschitzienne par rapport à y le problème de Cauchy (1) admet une solution unique.

Méthode d'Euler Elle s'écrit :

$$y_{n+1} = y_n + hf(t_n, y_n)$$

= $y_n + h(t_n + y - n)$
= $(1 + h)y_n + ht_n$

On a aussi $y(0) = y_0 = 1$, $h \frac{1-0}{10} = 0.1$ $t_0 = 0$ et $t_n = t_0 + nh = \frac{n}{10}$. D'où l'approximation en t de y(t), est $y_{10} = 3.1874$.

Solution exacte de cette équation en appliquant la méthode de la variation de la constante est donnée par : $y(t) = -1 - t + 2e^t$ ce qui implique y(1) = -1 - 1 + 2e = 3.4366

Estimation de l'erreur : l'erreur effectivement commise lors de l'application de la méthode d'Euler est |E| = |3.4366 - 3.1874| = 0.25

Exercice 19 Soit l'équation différentielle

$$y' = f(x,y) = -2xy^2, \qquad x \in [0,5] \qquad y(0) = 1$$

- 1. Calculer la solution exacte
- 2. En appliquant la méthode de Range Kutta d'ordre 2, calculer les valeurs approchées y_0 et y_1 , avec un pas h=0.5