0.1 Globale Beleuchtung

0.1.1 Rendering-Gleichung

Die Rendering-Gleichung bildet die tatsächlichen Verhältnisse bei der Beleuchtung am genauesten ab.

Variablen

- p, p', p'', p'''... Punkte auf den Oberflächen der Objekte
- $\overline{pp'}$... Sehstrahlen.
- f(p', p'')... Leuchtdichte auf dem Strahl p'p''

Gegeben

• $\rho(p', p'', p''')$... Welchen Anteil des Lichtes auf p'p'' wird in Richtung p''p''' zurückgeworfen?

Beispiel perfekter Spiegel:

$$\rho(p',p'',p''') = \begin{cases} 1, & \text{wenn die Winkehalbierende von } p'p''p''' \text{ senkrecht auf der Fläche steht} \\ 0, & \text{sonst} \end{cases}$$

Rendering-Gleichung

$$f(p'',p''') = \int\limits_{p':\ p'p''\ \text{ist sichtbar}} f(p',p'')\rho(p',p'',p''')\underbrace{\mathrm{d}p'}_{\text{Flächenintegral}} + \underbrace{e(p'',p''')}_{\text{Wass wird von}} + \underbrace{e(p'',p''')}_{p'''\ \text{als Lichtquelle}}$$

$$= \int\limits_{p':\ p'p''\ \text{ist sichtbar}} f(p',p'')\rho(p',p'',p''')\underbrace{\mathrm{d}p'}_{\text{Flächenintegral}} + \underbrace{e(p'',p''')}_{\text{Wass wird von}} + \underbrace{e(p'',p''')}_{p'''\ \text{als Lichtquelle}}$$

$$= \int\limits_{p':\ p'p''\ \text{ist sichtbar}} f(p',p'')\rho(p',p'',p''')\underbrace{\mathrm{d}p'}_{\text{Flächenintegral}} + \underbrace{e(p'',p''')}_{\text{Wass wird von}} + \underbrace{e(p'',p''')}_{p'''\ \text{als Lichtquelle}}$$

$$= \int\limits_{p':\ p'p''\ \text{ist sichtbar}} f(p',p'')\rho(p',p'',p''',p''')\underbrace{\mathrm{d}p'}_{\text{Flächenintegral}} + \underbrace{e(p'',p''')}_{\text{Wass wird von}} + \underbrace{e(p'',p''')}_{p'''\ \text{als Lichtquelle}}$$

$$= \int\limits_{p':\ p'p''\ \text{ist sichtbar}} f(p',p'')\rho(p',p'',p''',p''')\underbrace{\mathrm{d}p'}_{\text{Flächenintegral}} + \underbrace{e(p'',p''')}_{\text{Wass wird von}} + \underbrace{e(p'',p''')}_{p'''\ \text{als Lichtquelle}}$$

$$= \int\limits_{p':\ p'p'''\ \text{ist sichtbar}} f(p',p'')\rho(p',p'',p''',p''')\underbrace{\mathrm{d}p'}_{p'''\ \text{log}} + \underbrace{e(p'',p''')}_{p'''\ \text{log}} + \underbrace{e(p'',p''')}_{p'''$$

Integralgleichung. f ist eine Funktion von 4 Variablen

$$f(p'',p''',\lambda) = \int ... \rho(p',p'',p''',\lambda)...,\lambda \in \mathbb{R} \text{ bzw. } \lambda \in \{R,G,B\}$$

 \Rightarrow In wirklichkeit auch von λ abhängig.

0.1.2 Radiosity-Verfahren

Vereinfachung der Rendering-Gleichung

- Betrachtet alle Wechselwirkungen zwischen Flächen
- nur diffuse Flächen
- \bullet Die Flächen werden in kleine Flächenstücke zerlegt; auf die Art wird das Problem diskreditiert \to großes lineares Gleichungssystem

Formfaktor f_{ij} : Welcher Anteil des Lichtstroms, der von Fläche A_i ausgesendet wird, kommt bei der Fläche A_j an?

Variablen

- b_i ... Beleuchtu ngsstärke der Fläche A_i . Wieviel Lichtstrom wird pro Flächeneinheit ausgeschickt?
- ρ_i ... Reflektionskoeffizient der Fläche A_i
- e_i ... Eigenstrahlungslichtstärke von A_i , wenn A_i eine Lichtquelle ist.

Summe des eintreffenden Lichtes auf A_i :

$$\sum_{j} b_j \cdot |A_j| \cdot f_{ji}$$

Ausgeschicktes Licht auf A_i :

$$b_i \cdot |A_i| = \rho_i \cdot \sum_j b_j \cdot |A_j| \cdot f_{ji} + e_i \cdot |A_i|$$

Dies muss man für R,G,B bzw. für jede Wellenlänge λ seperat lösen.

Formfaktoren

Hängen von der Geometrie ab.

 $p \in A_i, q \in A_j$ $\alpha, \beta \text{ Winkel zu den Flächennormalen}$ $r = \|p - q\|$

Annahme A_i und A_j relativ klein, Sicht ist nicht unzterbrochen ...r, α , β schwanken nur wenig.

Näherungsformel (Fehler gering wenn p und q weit aus einander)

$$f_{ij} \approx \cos \alpha \cdot \cos \beta \cdot \frac{1}{r^2} \cdot |A_j| \cdot \frac{1}{\pi}$$

Exakte Formel

$$f_{ij} = \int_{p \in A_i} \int_{q \in A_j} \frac{\cos \alpha(p, q) \cdot \cos \beta(p, q) \cdot s(p, q)}{\|p - q\|^2} dq dp \cdot \frac{1}{|A_i|} \cdot \frac{1}{\pi}$$
$$s(p, q) = \begin{cases} 1, & p \text{ und } q \text{ sehen sich} \\ 0, & \text{sonst} \end{cases}$$

$$f_{ij} \cdot |A_i| = f_{ji} \cdot |A_j|$$

$$\begin{split} b_i \cdot |A_i| &= \rho_i \cdot \sum_j b_j \cdot |A_j| \cdot f_{ji} + e_i \cdot |A_i| \\ b_i \cdot |\mathcal{X}_i| &= \rho_i \cdot \sum_j b_j \cdot |\mathcal{X}_i| \cdot f_{ij} + e_i \cdot |\mathcal{X}_i| \\ \\ \Rightarrow \boxed{b_i = \rho_i \sum_j b_j \cdot f_{ij} + e_i} \end{split} \quad \text{Radiosity-Gleichungs system}$$

lineares Gleichungssysmte in n Variablen $b_1, ..., b_n$ (n = #Flächenstücke), $O(n^2)$ Koeffizienten f_{ij} $0 \le \rho_i \le 1$

Geometrische "Berechnung" von f_{ij}

 A_i ist ein kleines Flächenstück

Projektion auf die obere Einheitshalbkugel um ${\cal A}_i$

- $\hat{=}$ Multiplikation mit $\cos \beta \cdot \frac{1}{r^2}$
- $\hat{=}$ scheinbare Größe von A_i aus Sicht von A_i

Anschließende Projektion senkrecht auf die Ebene durch $A_i = Multiplikation mit <math>\cos \alpha$ gesamter Fläche des Kreises = π

$$\sum_{i} f_{ij} \stackrel{!}{=} 1$$

Wahl des Konstanten Faktors $\frac{1}{\pi}$ wird durch die physikalische Forderung $\sum_i = 1$ erzwungen.

Das Gleichungssystem löst man am besten iterativ:

• Beginne mit einer beliebigen Ausgangslösung $\vec{b}^{(0)}$ z. B. durch Phong-Beleuchtung berechnet. oder

$$\vec{b}^{(0)} = \begin{pmatrix} b_1^{(0)} \\ \vdots \\ b_n^{(0)} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 \bullet Setze $b^{(k)}$ rechts ein und erhalte die nöchste Näherungslösung

$$b_i^{(k+1)} = \sum_i j = 1b_j^{(k)} \cdot f_{ij} + e_i$$
, $i = 1, ..., n$

Das konvergiert umso schneller, je kleiner die ρ_i -Werte sind.

$$x = Ax$$
 $A \in \mathbb{R}^{n \times n}$ $b \in \mathbb{R}^n$ $x \in \mathbb{R}^n$ $x \in \mathbb{R}^n$

GAUSS-SEIDEL-Verfahren (iteratives Verfahren zur Lösung des Gleichungssystems). Konvergiert unter gewissen Bedingungen. z. B. wenn die Summe der Amsolutbeträge in jeder Zeile von A < 1 ist.

Bei der Radiosity-Gleichung ist dies fast der Fall: ≤ 1 .

Falls alle $\rho_i < 1$ sind: < 1

Zusammenfassung

- 1. Flächen in kleine Stücke zerlegen
 - a) gleichförmiges Gitter
 - b) angepasst an den erwarteten Lichtaustausch.

Wo Flächen nah an anderen Flächen sind wird die Zerlegung feiner.

- c) adaptiv.
 - Man rechnet zuerst mit einer gröberen Zerlegung und verfeinert sie dort, wo das Ergebnis stark schwankt
- 2. Formfaktoren bestimmen (am zeitaufwändigsten) Können auch mit Hilfe von Grafikpuffern berechnet werden.

$$\int_{p \in A_i} \int_{q \in A_j} \dots$$

Für ein festes p ähnelt die Berechnung des Integranden der Grafikpufferberechnung mit Kamera p. Diese Berechnung wird von Grafik-Hardware unterstützt

- 3. Gleichungssystem lösen
- 4. mit den so bestimmten (diffusen) Helligkeiten kann man dann die Szene darstellen

0.2 Transparenz

teildurchsichtige Medien. z. B. Glas mit einem Bild, mit Staub, Nebel, Wolken, Rauch.

0.2.1 RGBA-Modell bzw. (r, g, b, α)

Ein halbdurchsichtiges Bild wird durch eine vierte Größe α (zusätzlich zu R, G, B) für jeden Bildpunkt

lpha=1 vollständig undurchsichtig a=0 vollständig durchsichtig $\alpha=0,3$ 30% wird von diesem Bild beigesteuert, 70% kommt von dem was dahinter liegt

z. B. Bild eines Mauszeigers (idealisiert)

in Wirklichkeit natürlich "pixelig", Übergänge zwischen den kanten mit Antialiasing geglättet:

$$(r,g,b,\alpha) \atop (\bar{r},\bar{g},\bar{b}) \text{(Hintergrund)} \ \left. \right\} \text{Ergebnis} = (\alpha \cdot r + (1\alpha) \cdot \bar{r}, \alpha \cdot g + (1\alpha) \cdot \bar{g}, \alpha \cdot b + (1\alpha) \cdot \bar{b})$$

Ergebis =
$$\alpha^1 rgb^1 + (1 - \alpha^1) \alpha^2 rgb^2 + (1 - \alpha^1) (1 - \alpha^2) \alpha^3 rgb^3 + (1 - \alpha^1) (1 - \alpha^2) (1 - \alpha^3) rgb$$

Wektor aus 3 Komponenten

$$\left(\underbrace{\frac{\alpha^{1} rgb^{1} + (1 - \alpha) \alpha^{2} rgb^{2}}{\alpha^{1} + (1 - \alpha^{1}) \alpha^{2}}}_{rgb^{\text{neu}}}, \underbrace{\alpha^{1} + (1 - \alpha^{1}) \alpha^{2}}_{\alpha^{\text{neu}}}\right)$$

Effekt auf eine dahinter liegende Fläche \overline{rgb}

$$\alpha^{\mathrm{neu}} \, rgb^{\mathrm{neu}} + (1 - \alpha^{\mathrm{neu}}) \, \overline{rgb}$$

Wichtig: durchlässige Medien in der richtigen Reihenfolge kombinieren (z. B. vorne nach hintern, oder hinten nach vorne)

0.2.2 Kombination mit Tiefenpuffer

 (rgb^1, z^1, α^1) (rgb^2, z^2, α^2) einer dieser Werte ist im Tiefenpuffer an einer bestimmten Stelle gespeichern, der andere soll dort hingeschrieben werden

$$\begin{split} z^1 &< z^2 \text{ (o. B. d. A.)} \\ rgb^{\text{neu}} &:= \frac{\alpha^1 \, rgb^1 + (1 - \alpha^1) \, \alpha^2 \, rgb^2}{\alpha^1 + (1 - \alpha^1) \, \alpha^2} \\ \alpha^{\text{neu}} &:= \alpha^1 + (1 - \alpha^1) \alpha^2 \\ z^{\text{neu}} &:= z_1^1 \end{split}$$

(eigentlich unzureichend, aber notwendig, um wenigstens den undurchsichtigen Fall richtig zu behandeln)

Diese Methode funktioniert, wenn man höchstens ein halbdurchlässiges Pixel $(0 < \alpha < 1)$ zeichen möchte oder wenn alle Objekte von vorne nach hinten oder von hinten nach vorne eingefügt werden.

1 Spline-Kurven und -Flächen

z. B. Kreis

implizite Darstellung explizite Darstellung
$$x^2 + y^2 = 1$$

$$y = \sqrt{1 - x^2}$$

$$y = \cos \alpha$$

$$y = \sqrt{1 - x^2}$$

$$x = \sin \alpha$$

$$x = t$$

$$x = \frac{2t}{1 + t^2}$$

$$t = \tan \frac{\alpha}{2}$$

$$y = \sqrt{1 - t^2}$$

$$y = \frac{1 - t^2}{1 + t^2}$$

$$y = \frac{1 - t^2}{1 + t^2}$$

$$y = \frac{1 - t^2}{1 + t^2}$$

- Paramterdarstellung ist gut für das Nachfahren der Kurve; Darstellung als Folge von Punkten
- implizite Darstellung ist gut für Raytracing

Definition Spline-Kurven sund parametrische Kurven, wo siw Parameterfunktionen Polynome sind (es gibt auch rationale Splines). Die Kurven sind durch Leitpunkte (Kontrollpunkte) festgelegt. Dadurch sind sie einigermaßen intuitiv manipulierbar.

1. Bézier-Splines

k+1 Kontrollpunkte definieren einen Bézier-Spline der Ordnung k (Polynome vom Grad $\leq k$)

2. **B-Splines**

Ordnung k: stückweise Polynome der Ordnung k, Kontrollpunkte $< \infty$

3. Hermite-Splines

interpolieren zwischen 2 Endpunkten mit vorgegebenen Tangetenrichtungen und Geschwindigkeiten \dots kubische Splines