

A1 - Analysis Aufgaben PLUS Tipps PLUS Lösungen PLUS
1. Gegeben ist die Funktionenschar f_k mit $f_k(x) = rac{x+k}{\mathrm{e}^x}$, $x \in \mathbb{R}$, $k \in \mathbb{R}$. Material 1 enthält Graphen von Funktionen der Schar.
1.1 Berechnen Sie die Nullstellen der Scharfunktionen. Geben Sie für die Graphen in Material 1 die zugehörigen ganzzahligen Parameterwerte von \pmb{k} an. (4P)
1.2 Berechnen Sie jeweils nur anhand der notwendigen Bedingung die Extrem- und Wendestellen der Schar und zeigen Sie, dass für alle Funktionen der Schar die Extremstelle stets genau in der Mitte von Null- und Wendestelle liegt.
(5P)
1.3 Skizzieren Sie in Material 1 die Kurve, die die Hochpunkte verbindet, und leiten Sie für die Ortskurve der Hochpunkte die zugehörige Funktionsgleichung her.
(4P)
1.4 Zeigen Sie, dass für jede Scharfunktion f_k die 2. Ableitungsfunktion f_k'' ebenfalls eine Funktion der Schar ist. Ermitteln Sie, durch welche Abbildungen der Graph von f_k'' aus dem Graphen von f_k hervorgeht.
(4P)
2.
2.1 Berechnen Sie mithilfe partieller Integration (Produktintegration) eine Stammfunktionenschar F_k von f_k . [zur Kontrolle: $F_k(x) = -(x+k+1) \cdot \mathrm{e}^{-x}$]
(5P)
2.2 Untersuchen Sie rechnerisch, ob die Graphen der Schar mit der x -Achse eine Fläche einschließen, die einen endlichen Inhalt hat, und geben Sie diesen gegebenenfalls an.
(6P)
3. Man erhält aus der Funktionenschar f_k durch geeignete Verschiebung jedes Graphen parallel zur x -Achse eine neue Funktionenschar g_k , deren Graphen alle durch den Ursprung gehen (Material 2). Zeigen Sie, dass der Term für g_k sich als $g_k(x) = x \cdot e^{k-x}$ schreiben lässt.
(4P)
4. Gewisse Wachstumsprozesse lassen sich durch Graphen wie in Material 2 beschreiben. In Material 3 ist die Gewichtszunahme von jungen Hunden graphisch dargestellt. Die zugrunde liegenden Daten lassen sich durch abgeänderte Funktionen der Funktionenschar g_k (vgl. Aufgabe 3) gut approximieren.
4.1 Beschreiben Sie die in den Graphen von Material 3 enthaltenen Aussagen im Sachzusammenhang. Auf Unterschiede zwischen den einzelnen Graphen soll nicht eingegangen werden.
(2P)

Seite 1 von 3 © Copyright 2016 - www.SchulLV.de (6P)

4.2 Leiten Sie eine abgeänderte Funktion aus der Schar g_k her, die das Wachstum der Schäferhunde annähernd

beschreibt und deren Graph den gleichen Hochpunkt wie der Graph ${\pmb S}$ in Material 3 hat. Hinweis: Denken Sie an eine Streckung oder Stauchung eines Graphen der Schar.

Material 1

Material 2

Material 3

Gewichtszunahme in Gramm/Tag

http://www1.royal-canin.de

Für den Schäferhund können dem Diagramm folgende Werte entnommen werden:

Alter (in Monaten)	Gewichtszunahme (in g/Tag)
1	100
2	150
3	165
5	130
7	95
10	45
13	20