

# Bank Marketing By Wilbert Rodriguez and Tommy Le

#### **Bank Marketing**

- Bank Marketing refers to strategies that are undertaken by banks
  - Promote their products and services to customers
  - Attract new clients
- It helps build brand awareness, increases customer engagement, and ultimately helps the business growth of the bank
- Some of its components are product promotion, target audience, advertising, and promotion



#### **The Bank Marketing Data**

The Data we obtained is on direct marketing campaigns(phone calls) of a Portuguese banking institution

The classification goal is to predict if the client will subscribe a

term deposit

|       | age | job          | marital  | education | default | balance | housing | loan | contact   | day | month | duration | campaign | pdays | previous | poutcome | У   |
|-------|-----|--------------|----------|-----------|---------|---------|---------|------|-----------|-----|-------|----------|----------|-------|----------|----------|-----|
| 0     | 58  | management   | married  | tertiary  | no      | 2143    | yes     | no   | unknown   | 5   | may   | 261      | 1        | -1    | 0        | unknown  | no  |
| 1     | 44  | technician   | single   | secondary | no      | 29      | yes     | no   | unknown   | 5   | may   | 151      | 1        | -1    | 0        | unknown  | no  |
| 2     | 33  | entrepreneur | married  | secondary | no      | 2       | yes     | yes  | unknown   | 5   | may   | 76       | 1        | -1    | 0        | unknown  | no  |
| 3     | 47  | blue-collar  | married  | unknown   | no      | 1506    | yes     | no   | unknown   | 5   | may   | 92       | 1        | -1    | 0        | unknown  | no  |
| 4     | 33  | unknown      | single   | unknown   | no      | 1       | no      | no   | unknown   | 5   | may   | 198      | 1        | -1    | 0        | unknown  | no  |
|       | -   | 100          |          |           |         |         | 223     |      | 200       |     | 810   |          | 800.     | 1120  |          | 1411     |     |
| 45206 | 51  | technician   | married  | tertiary  | no      | 825     | no      | no   | cellular  | 17  | nov   | 977      | 3        | -1    | 0        | unknown  | yes |
| 45207 | 71  | retired      | divorced | primary   | no      | 1729    | no      | no   | cellular  | 17  | nov   | 456      | 2        | -1    | 0        | unknown  | yes |
| 45208 | 72  | retired      | married  | secondary | no      | 5715    | no      | no   | cellular  | 17  | nov   | 1127     | 5        | 184   | 3        | success  | yes |
| 45209 | 57  | blue-collar  | married  | secondary | no      | 668     | no      | no   | telephone | 17  | nov   | 508      | 4        | -1    | 0        | unknown  | no  |
| 45210 | 37  | entrepreneur | married  | secondary | no      | 2971    | no      | no   | cellular  | 17  | nov   | 361      | 2        | 188   | 11       | other    | no  |



### **Data Before and After Preprocessing**

|       | age | job          | marital  | education | default | balance | housing | loan | contact   | day | month | duration | campaign | pdays | previous | poutcome | у   |
|-------|-----|--------------|----------|-----------|---------|---------|---------|------|-----------|-----|-------|----------|----------|-------|----------|----------|-----|
| 0     | 58  | management   | married  | tertiary  | no      | 2143    | yes     | no   | unknown   | 5   | may   | 261      | 1        | -1    | 0        | unknown  | no  |
| 1     | 44  | technician   | single   | secondary | no      | 29      | yes     | no   | unknown   | 5   | may   | 151      | 1        | -1    | 0        | unknown  | no  |
| 2     | 33  | entrepreneur | married  | secondary | no      | 2       | yes     | yes  | unknown   | 5   | may   | 76       | 1        | -1    | 0        | unknown  | no  |
| 3     | 47  | blue-collar  | married  | unknown   | no      | 1506    | yes     | no   | unknown   | 5   | may   | 92       | 1        | -1    | 0        | unknown  | no  |
| 4     | 33  | unknown      | single   | unknown   | no      | 1       | no      | no   | unknown   | 5   | may   | 198      | 1        | -1    | 0        | unknown  | no  |
|       |     | 100)         |          |           |         | 1200    |         | 1444 | 1911      |     |       | 511      | 2        |       |          | 100      |     |
| 45206 | 51  | technician   | married  | tertiary  | no      | 825     | no      | no   | cellular  | 17  | nov   | 977      | 3        | -1    | 0        | unknown  | yes |
| 45207 | 71  | retired      | divorced | primary   | no      | 1729    | no      | no   | cellular  | 17  | nov   | 456      | 2        | -1    | 0        | unknown  | yes |
| 45208 | 72  | retired      | married  | secondary | no      | 5715    | no      | no   | cellular  | 17  | nov   | 1127     | 5        | 184   | 3        | success  | yes |
| 45209 | 57  | blue-collar  | married  | secondary | no      | 668     | no      | no   | telephone | 17  | nov   | 508      | 4        | -1    | 0        | unknown  | no  |
| 45210 | 37  | entrepreneur | married  | secondary | no      | 2971    | no      | no   | cellular  | 17  | nov   | 361      | 2        | 188   | 11       | other    | no  |

- The dataset didn't have any missing dataIt did have a lot of
  - categorical features.This is where we used one-hot encoding

|       | age  | balance | day   | duration | campaign | pdays | previous | balance<br>at age | job_admin. | Job_blue-<br>collar |      | career_technician_tertiary | career_technician_unknown | care |
|-------|------|---------|-------|----------|----------|-------|----------|-------------------|------------|---------------------|------|----------------------------|---------------------------|------|
| 0     | 58   | 2143    | 5     | 261      | 1        | -1    | 0        | 2201              | 0          | 0                   |      | 0                          | 0                         |      |
| 1     | 44   | 29      | 5     | 151      | 1        | -1    | 0        | 73                | 0          | 0                   | 1110 | 0                          | 0                         |      |
| 2     | 33   | 2       | 5     | 76       | 1        | -1    | 0        | 35                | 0          | 0                   |      | 0                          | 0                         |      |
| 3     | 47   | 1506    | 5     | 92       | 1        | -1    | 0        | 1553              | 0          | 1                   |      | 0                          | 0                         |      |
| 4     | 33   | 1       | 5     | 198      | 1        | -1    | 0        | 34                | 0          | 0                   |      | 0                          | 0                         |      |
|       | 2772 | (87)    | 30.55 |          | 317      | ***   | 34.5     |                   | 275        | 322                 | ***  |                            |                           |      |
| 45206 | 51   | 825     | 17    | 977      | 3        | -1    | 0        | 876               | 0          | 0                   |      | 1                          | 0                         |      |
| 45207 | 71   | 1729    | 17    | 456      | 2        | -1    | 0        | 1800              | 0          | 0                   |      | 0                          | 0                         |      |
| 45208 | 72   | 5715    | 17    | 1127     | 5        | 184   | 3        | 5787              | 0          | 0                   |      | 0                          | 0                         |      |
| 45209 | 57   | 668     | 17    | 508      | 4        | -1    | 0        | 725               | 0          | 1                   | 1110 | 0                          | 0                         |      |
| 45210 | 37   | 2971    | 17    | 361      | 2        | 188   | 11       | 3008              | 0          | 0                   |      | 0                          | 0                         |      |



#### **Machine Learning Techniques**

- Random Forest
- Gradient Boosting
- Logistic Regression
- Naive Bayes



|                  | Accuracy     | Precision    | Recall       | F1 Score     |
|------------------|--------------|--------------|--------------|--------------|
| Random Forest    | 0.9034612407 | 0.6879310345 | 0.3657195234 | 0.4775583483 |
| Gradient Boostin | 0.895        | 0.62         | 0.341        | 0.44         |
| Logistic Regress | 0.8866526595 | 0.5825       | 0.2135655362 | 0.3125419182 |
| Naive Bayes      | 0.8897080507 | 0.543220339  | 0.401126408  | 0.4614830814 |

#### Results

- From our analysis, the best technique would be Random Forest
- It has the best accuracy, precision, and F1 score with Recall going to Naive Bayes
- That means the Random Forest has the best overall correctness, precision of positive predictions, and the balance between precision and recall although it may struggle to identify all positive instances correctly.



## Thank you

For Listening