Socioeconomic Influences

March 28, 2024

2. Socioeconomic Influences: In what ways can support vector machines (SVMs) elucidate the impact of socioeconomic and environmental factors on diabetes progression?

```
[2]: import pandas as pd
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.preprocessing import StandardScaler
     from sklearn.svm import LinearSVC
     from sklearn.metrics import classification_report, confusion_matrix
     from sklearn.feature_selection import SelectFromModel
     import seaborn as sns # Import seaborn for plotting
     import matplotlib.pyplot as plt
     # Assuming the 'diabetes 012 health indicators BRFSS2015.csv' file path is a
     ⇔correct and accessible
     # Load the dataset
     df = pd.read_csv('/Users/winnietaiwo/Desktop/
      ⇔diabetes 012 health indicators BRFSS2015.csv')
     # Corrected list of socioeconomic features
     socioeconomic_features = ['Education', 'Income', 'BMI', 'Smoker', |
     ⇔'PhysActivity', 'Fruits', 'Veggies']
     # Define features and target
     X = df[socioeconomic_features]
     y = df['Diabetes_012'] # Target variable
     # Preprocess the data: scale features
     scaler = StandardScaler()
     X_scaled = scaler.fit_transform(X)
     # Split the data
     X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3,_
      ⇒random state=42)
     # Increase max_iter and set dual=False to avoid future warnings
     linear_svc = LinearSVC(C=0.01, penalty="11", dual=False, max_iter=5000).
      →fit(X_train, y_train)
     model = SelectFromModel(linear_svc, prefit=True)
```

```
X_train_selected = model.transform(X_train)
X_test_selected = model.transform(X_test)
# Tuning using GridSearchCV
parameters = {'C': [0.01, 0.1, 1], 'max_iter': [5000]} # Increased max_iter_u
⇔for convergence
grid_search = GridSearchCV(LinearSVC(dual=False), parameters, cv=3, n_jobs=-1) _
 →# Reduced cv and use all cores with n_jobs=-1
grid_search.fit(X_train_selected, y_train)
# Best model after tuning
best svm = grid search.best estimator
# Predictions
predictions = best_svm.predict(X_test_selected)
# Evaluation, set zero_division parameter to avoid warnings
print(classification_report(y_test, predictions, zero_division=0))
print("Confusion Matrix:")
conf_matrix = confusion_matrix(y_test, predictions)
print(conf_matrix)
# Confusion matrix visualization
sns.heatmap(conf_matrix, annot=True, fmt='g')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
# Features selected
selected_features = X.columns[model.get_support()]
print("Number of features selected: %d" % len(selected_features))
print('Selected features:', selected_features)
# There seems to be some code below that was perhaps pasted by accident.
# It should be removed if it is not part of the intended script.
```

	precision	recall	f1-score	support
0.0	0.84	1.00	0.91	64180
1.0	0.00	0.00	0.00	1425
2.0	0.30	0.01	0.02	10499
accuracy			0.84	76104
macro avg	0.38	0.34	0.31	76104
weighted avg	0.75	0.84	0.77	76104

Confusion Matrix:

```
[[63906 0 274]
[1416 0 9]
[10376 0 123]]
```



```
# Define socioeconomic features and target
socioeconomic_features = ['Education', 'Income', 'BMI', 'Smoker', |

¬'PhysActivity', 'Fruits', 'Veggies']
X = df[socioeconomic_features]
y = df['Diabetes 012']
# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3,_
 ⇔random_state=42)
# Initialize the LinearSVC model with L1 penalty
linear_svc = LinearSVC(C=0.01, penalty="11", dual=False, max_iter=5000)
# Feature selection using SelectFromModel
model = SelectFromModel(linear_svc, prefit=False)
# Setup GridSearchCV for hyperparameter tuning
parameters = {'C': [0.01, 0.1, 1], 'max_iter': [5000]}
grid_search = GridSearchCV(LinearSVC(penalty="11", dual=False), parameters, __
\hookrightarrowcv=3, n_jobs=-1)
grid_search.fit(X_train, y_train)
# Get the best model after hyperparameter tuning
best_svm = grid_search.best_estimator_
# Apply feature selection using the best model
model = SelectFromModel(best_svm, prefit=True)
X_train_selected = model.transform(X_train)
X_test_selected = model.transform(X_test)
# Make predictions with the tuned model
predictions = best_svm.predict(X_test_selected)
# Evaluate the model
print(classification_report(y_test, predictions, zero_division=0))
print("Confusion Matrix:")
conf_matrix = confusion_matrix(y_test, predictions)
# Visualize the confusion matrix
sns.heatmap(conf_matrix, annot=True, fmt='g')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
```

	precision	recall	f1-score	support
0.0	0.84	1.00	0.91	64180
1.0	0.00	0.00	0.00	1425
2.0	0.30	0.01	0.02	10499
accuracy			0.84	76104
macro avg	0.38	0.34	0.31	76104
weighted avg	0.75	0.84	0.77	76104

Confusion Matrix:


```
Selected features and their coefficients:
    {'Education': 0.030356225770398745, 'Income': 0.08523965605644407, 'BMI':
    -0.1464667801401856, 'Smoker': -0.025281873322904963, 'PhysActivity':
    0.04108137880625749, 'Fruits': -0.003018693102231555, 'Veggies':
    0.011983520941558272}
[8]: from itertools import cycle
     from sklearn.metrics import roc_curve, auc, roc_auc_score
     from sklearn.preprocessing import label_binarize
     import matplotlib.pyplot as plt
     import numpy as np
     # Binarize the output
     y_test_bin = label_binarize(y_test, classes=np.unique(y_test))
     n_classes = y_test_bin.shape[1]
     # Compute ROC curve and ROC area for each class
     fpr = dict()
     tpr = dict()
     roc auc = dict()
     for i in range(n_classes):
         fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])
         roc_auc[i] = auc(fpr[i], tpr[i])
     # Compute micro-average ROC curve and ROC area
     fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_score.ravel())
     roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
     # Aggregate all false positive rates
     all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
     # Then interpolate all ROC curves at these points
     mean_tpr = np.zeros_like(all_fpr)
     for i in range(n_classes):
         mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
     # Finally average it and compute AUC
     mean_tpr /= n_classes
     fpr["macro"], tpr["macro"], _ = roc_curve(y_test_bin.ravel(), y_score.ravel())
     roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
     # Plot all ROC curves
     plt.figure()
     plt.plot(fpr["micro"], tpr["micro"],
              label='micro-average ROC curve (area = {0:0.2f})'
                    ''.format(roc_auc["micro"]),
```

```
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
         label='macro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["macro"]),
         color='navy', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
    plt.plot(fpr[i], tpr[i], color=color, lw=2,
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Extension of Receiver Operating Characteristic to Multi-class')
plt.legend(loc="lower right")
plt.show()
\# Assuming 'best_sum' is your trained SVM model and 'socioeconomic_features' \sqcup
⇔are your feature names
feature_importance = best_svm.coef_.ravel()
# Now we can plot the feature importances:
sorted_idx = np.argsort(feature_importance)
plt.figure(figsize=(10, 7))
plt.title('Feature Importance')
plt.barh(range(len(sorted_idx)), feature_importance[sorted_idx], align='center')
plt.yticks(range(len(sorted_idx)), np.array(socioeconomic_features)[sorted_idx])
plt.xlabel('Coefficient Value')
plt.show()
```



```
IndexError Traceback (most recent call last)

Cell In[8], line 69
67 plt.title('Feature Importance')
68 plt.barh(range(len(sorted_idx)), feature_importance[sorted_idx],
□
□ align='center')
---> 69 plt.yticks(range(len(sorted_idx)), np.
□ array(socioeconomic_features)[sorted_idx])
70 plt.xlabel('Coefficient Value')
71 plt.show()

IndexError: index 15 is out of bounds for axis 0 with size 7
```


[]: