

CHEMISTRY RETROALIMENTACIÓN

TOMO VII

A partir de la siguiente reacción : $N_2O_{4(g)} \rightleftarrows NO_{2(g)}$, $\Delta H_{Rxn} = +58\frac{KJ}{mol}$

Indicar verdadero (V) o falso(F), según corresponda, respecto a las siguientes variaciones.

- I. Al aumentar la presión , el sistema se desplaza hacia la izquierda.(V)
- II. Si disminuimos la temperatura , el sistema se desplaza hacia la derecha(F)
- III. Agregar NO_2 , hace que el sistema se desplace hacia la izquierda (V)

RESOLUCIÓN:

Sea la reacción:

$$N_2O_{4(g)}$$
 + $58\frac{KJ}{mol}$ \rightleftharpoons $2NO_{2(g)}$
 $n_R = 1 \ mol$ $n_P = 2 \ mol$

Perturbación	Sistema	Desplazamiento		
↑ P	Menor moles	←		
↓ T	↑ T	\leftarrow		
↑ [<i>NO</i> ₂]	↓ [NO ₂]	←		

Rpta: VFV

Indicar los efectos que favorecen la producción de \mathcal{CO}_2 , para la siguiente reacción exotérmica : $\mathcal{CO}_{(g)}+\mathcal{O}_{2(g)}\rightleftarrows\mathcal{CO}_{2(g)}$

- I. Aumento de la presión. (Favorece)
- II. Aumento de la temperatura. (No favorece)
- III. Aumento de la concentración de O_2 .(Favorece)

RESOLUCIÓN:

Sea la reacción:

$$2CO_{(g)} + O_{2(g)} \rightleftharpoons 2CO_{2(g)} + Calor$$
 $n_R = 3 \ mol \qquad n_P = 2 \ mol$

Perturbación	Sistema	Desplazamiento	
↑ P	Menor moles	\rightarrow	
↑ T	↓ T	\leftarrow	
↑ [0 2]	$\downarrow [\boldsymbol{o_2}]$	$\rightarrow $	

Rpta: I y III

Para la siguiente reacción exotérmica en equilibrio . $N_2O_{4(g)} \rightleftharpoons N_{2(g)} + 2O_{2(g)}$

El equilibrio se desplaza hacia la derecha cuando:

- I. Se introduce un catalizador en el sistema.
- II. Se aumenta la temperatura del sistema.
- III. Se disminuye la presión del sistema.

RESOLUCIÓN:

$$N_2O_{4(g)} \quad \rightleftarrows \quad N_{2(g)} + \quad 2O_{2(g)} +$$
Calor

$$n_R = 1 \ mol$$
 $n_P = 3 \ mol$

Perturbación	Sistema	Desplazamiento	
Se introduce un catalizador	Permanece el equilibrio	\leftrightarrow	
↑ T	↓ T	←	
↓ P	Mayor moles	\rightarrow	

Rpta: Solo III

Dada la siguiente reacción :

Es correcto:

- a) El fenol es base de Bronsted Lowry.
- b) El agua es ácido de Bronsted Lowry.
- \bigcirc El H_30^+ es ácido conjugado de Bronsted Lowry.
 - d) No hay transferencia de hidronios.
 - e) No hay transferencia de protones.

Rpta: ÁCIDO CONJUGADO ES H₃O⁺

Identifique los pares conjugados respectivamente para la siguiente reacción :

$$MgOH^+ + NH_2^- \rightleftharpoons MgO + NH_3$$

RESOLUCIÓN:

Sea la ecuación:

Rpta: $MgOH^+$, MgO NH_2^- , NH_3

Marque la relación incorrecta:

 $I. \quad BH_3: Acido de Lewis$

II. CO_2 : Ácido de Lewis

III. Al^{3+} : Base de Lewis

IV. C_2H_5OH : Base de Lewis

RESOLUCIÓN:

Realizando el diagrama de Lewis.

No tiene octeto el átomo central (Ácido)

 Al^{3+}

Los cationes son (Ácido de Lewis)

El carbono tiene enlaces múltiples (Ácido)

El oxigeno tiene dos pares de electrones libres (Base)

Rpta: Solo III

Datos: Log 5,4 = 0,73

RESOLUCIÓN:

Calculamos el PH mediante la concentración de iones hidrógenos

$$pH = -log[H^+]$$

$$pH = -\log(5.4x \ 10^{-9})$$

$$pH = -[\log(5,4) + \log(10^{-9})]$$

$$pH = -[\log(5,4) - 9\log(10)]$$

$$pH = -[0.73 - 9(1)]$$

$$pH = 9 - 0.73$$

Rpta: 8, 27

Calcular el POH de una solución acuosa sabiendo que sus iones hidronio tienen una concentración de 0,000008 mol/L.

Datos: Log 2 = 0,30

RESOLUCIÓN:

Por dato:

$$[H^+] = 0.000008 = 8x10^{-6} \ mol/L$$

$$[H^+] = 2^3 x 10^{-6} \ mol/L$$

Calculamos ahora el PH:

$$pH = -log[H^+]$$

$$pH = -\log(2^3 \ x \ 10^{-6})$$

$$pH = -[3\log 2 + (-6\log 10)]$$

$$pH = -[3(0,3) - 6(1)]$$

$$pH = 5.1$$

Pero se sabe que:

$$5,1 + pOH = 14$$

Rpta: 8, 9

Una solución acuosa tiene POH =4,5 ¿Cuál es la concentración de sus iones hidronio en mol/L

RESOLUCIÓN:

Calculamos la concentración de iones hidronio con el PH.

$$[H^+] = 1x10^{-PH}$$

$$[H^+] = 1x10^{-9.5}$$

$$[H^+] = 1x10^{-10} \ x \ 10^{0.5}$$

$$[H^+] = 1x10^{-10} \ x \ \sqrt{10}$$

Rpta: $3, 16 \times 10^{-10} M$

Calcular el PH de una solución de H_2SO_4 , con una disociación del 10% si su concentración es de 0,05M.

RESOLUCIÓN:

Construimos un cuadro para la disociación del H_2SO_4 , cuando es una solución muy diluida

	$H_2SO_{4(ac)}$	\rightleftarrows	2 <i>H</i> ⁺	+	SO_4^{2-}
Moles	$1\ mol$		$2\ mol$		1mol
n_i	$0,05\ mol$				
n_d	$-0,1x0,05\ mol$				
n_f		4	-2x0,1x0,05 m	ol	$+1x0,1x0,05\ mol$
n_{eq}	$0,9x0,05\ mol$		$2x0,1x0,05\ mc$	ol	$0,1x0,05\ mol$
[]			0,01 <i>M</i>		

Luego:

$$[H^+] = 0.01 = 1x10^{-2} mol/L$$

 $pH = -log[H^+]$
 $pH = -log(10^{-2})$
 $pH = -(-2)log 10$

$$pH = -\log(10^{-2})$$

$$pH = -(-2)\log 10$$

Rpta: 2