UPPSALA UNIVERSITY Department of Mathematics Rolf Larsson

Exam in Mathematical Statistics Inference Theory II, 1MS037 2021–01–14

Time: 15.00-20.00. Limits for the credits 3, 4, 5 are 18, 25 and 32 points, respectively. The solutions should be well motivated.

Permitted aids: Hand-written sheet of formulae. Pocket calculator. Dictionary. No electronic device with internet connection.

1. Consider the random variable

$$X = \begin{cases} 0, & \text{with probability } 4\theta_1\theta_2, \\ 1, & \text{with probability } \theta_1^2, \\ 2, & \text{with probability } 4\theta_2^2, \end{cases}$$

where $\theta_1 + 2\theta_2 = 1$. Suppose that we have an independent sample $\mathbf{X} = (X_1, ..., X_n)$ where all X_i are distributed as X.

Does the distribution belong to a strictly k-parametric family? In that case, determine k, the natural parameters(s) and the sufficient statistic(s). (5p)

2. A continuous random variable X is said to be Weibull distributed with parameters $\gamma > 0$ and $\beta > 0$ if it has density function

$$f(x) = \frac{\gamma}{\beta} x^{\gamma - 1} \exp\left(-\frac{x^{\gamma}}{\beta}\right),$$

for $x \geq 0$, and 0 otherwise.

Suppose that we have an independent sample $\mathbf{X} = (X_1, ..., X_n)$ where all X_i are distributed as X.

You may without proof use that $E(X) = 3\sqrt{\pi\beta}/2$, $E(X^2) = \beta$, $E(X^4) = 2\beta^2$.

- (a) Assume that γ is fixed. Give a sufficient statistic for β . (2p)
- (b) Suppose that $\gamma = 2$. Consider the estimator

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

Show that this is an unbiased estimator of β . (1p)

(c) Is the estimator in (b) efficient for β ? Motivate your answer. (3p)

- 3. Let X be a continuous random variable which is uniform on $(\theta, \theta + 1)$, where $-\infty < \theta < \infty$. Suppose that we have an independent sample $\mathbf{X} = (X_1, ..., X_n)$ where all X_i are distributed as X.
 - (a) Show that $(\min_i X_i, \max_i X_i)$ is a sufficient statistic for θ . (2p)
 - (b) Show that $(\min_i X_i, \max_i X_i)$ is a minimal sufficient statistic for θ . (3p)
- 4. Suppose that X is Bernoulli distributed with parameter p, i.e. that P(X = 1) = p = 1 P(X = 0). Suppose that we have an independent sample $\mathbf{X} = (X_1, ..., X_n)$ where all X_i are distributed as X.
 - (a) Show that X_1 is an unbiased estimator of p. (1p)
 - (b) Show that $T = \sum_{i=1}^{n} X_i$ is sufficient for p. (1p)
 - (c) Use the Rao-Blackwell theorem to find an unbiased estimator of p with smaller variance that X_1 . (2p)
 - Hint: $\binom{n}{t} = \frac{n}{t} \binom{n-1}{t-1}$.
 - (d) Is your estimator in (c) the best unbiased estimator (BUE) of p? Motivate your answer! (2p)
- 5. Consider testing that the observation x comes from a discrete distribution with probability function $p_0(x)$ vs the alternative that it comes from a discrete distribution with probability function $p_1(x)$, where these two probability functions are given in the following table:

- (a) Which is the most powerful (MP) test at level $\alpha = 0.05$? (2p)
- (b) Calculate the size of the type II error and the power for the MP test.(2p)
- (c) Calculate sizes of the errors of type I and II as well as the power for the test that rejects with probability 0.5 if x = 2, and otherwise does not reject. Compare to the power for the MP test. (2p)

- 6. Let X be normally distributed with expectation 0 and variance σ^2 , and suppose that we have an independent sample $\mathbf{X} = (X_1, ..., X_n)$ where all X_i are distributed as X. The corresponding observations are $\mathbf{x} = (x_1, ..., x_n)$.
 - (a) Consider testing H_0 : $\sigma^2 \leq 1$ vs H_1 : $\sigma^2 > 1$. Let $\chi^2_{\alpha}(n)$ be such that $P\{Y > \chi^2_{\alpha}(n)\} = \alpha$ for $Y \sim \chi^2(n)$.

$$T(\mathbf{x}) = \sum_{i=1}^{n} x_i^2.$$

Show that the test that rejects H_0 if.f. $T(\mathbf{x}) > \chi_{\alpha}^2(n)$ is a UMP (uniformly most powerful) size α test for this situation. (3p)

(b) Show that as $\sigma^2 \to 0$, the probability of rejecting H_0 in (a) tends to 0. (1p)

Hint: You may use without proof that $\sum_{i=1}^{n} X_{i}^{2}/\sigma^{2}$ is $\chi^{2}(n)$.

- (c) Now, consider testing H_0 : $\sigma^2 = 1$ vs H_1 : $\sigma^2 \neq 1$. Is the test in (a) an unbiased size α test for this situation? Why or why not? (2p)
- 7. Suppose that we have a sample $\mathbf{X} = (X_1, X_2)$, where for $i = 1, 2, X_i$ is Poisson with parameter μ_i . Moreover, suppose that $\mu_1 = \psi \mu_2$. Hence, the parameters of our model are ψ and μ_2 .
 - (a) Show that X_1 is sufficient for ψ and that $T = X_1 + X_2$ is sufficient for μ_2 . (2p)
 - (b) Show that $X_1|T=t$ is Binomial with parameters t and $\psi/(1+\psi)$. (1p)
 - (c) Suppose that we want to test H_0 : $\psi \geq 1$ vs H_1 : $\psi < 1$, and that we have the observations $x_1 = 0$ and $x_2 = 4$.

Does the UMP α similar test reject H_0 at the 10% level? (3p)

GOOD LUCK!