

Quantum Computing of the Deuteron Binding Energy Improving on arXiv:1801.03897

Pedro Rivero

Argonne National Laboratory Illinois Institute of Technology priveroramirez@anl.gov

October 22, 2019

Contents Overview

Introduction

The Abacus Effect Quantum Software

Case Study

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm
Results

New Results

Future Work

References

1 Introduction

- The Abacus Effect
- Quantum Software

2 Case Study

- Hamiltonian Mapping
- Unitary Coupled Cluster
- Quantum Circuits
- VQE Algorithm
- Results

3 Optimization

- New Results
- Future Work
- 4 References

What is Quantum Computing?

logic instead of the usual classical logic.

Introduction

The Abacus Effect

Unitary Coupled Cluster VQE Algorithm

Future Work

CLASSICAL LOGIC

Set Theory (Boolean algebra)

- **XOR** \Rightarrow $A \cap B A \cup B$

QUANTUM LOGIC

Quantum Theory (Non-Commutative)

- Probabilistic measurement
- Measurement causes disturbance
- Superposition
- Entanglement
- Uncertainty principle

Quantum Computing is the application of **Quantum Information Science (QIS)** to the devel-

opment of machines capable of performing operations and calculations based on quantum

The usefulness of this kind of computation lays not only on the ability to engineer exponentially

faster machines, but also on things such as being able to efficiently simulate nature at the

quantum level, or creating encryption systems which are fundamentally secure.

The Abacus Effect

roduction

The Abacus Effect Quantum Software

Case Study

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm
Results

New Results Future Work

Reference

To try to understand the power of Quantum Computing in abstract, we can resort to what might be called "The Abacus Effect".

Before the abacus was invented, the only way of counting was through a "thermometer-like" scale, which was highly inefficient as it meant adding one physical bead per unit. The abacus did something great: it introduced the concept of **digits**, which was later put into an even more concise notation by the Arabs through the introduction of **numerals**.

This means that, instead of counting up to N using N raw elements, we can count using only $\log_b(N)$ abacus elements —where b is the base of our number system (i.e. the amount of beads per row in the abacus). Therefore, for $b \geq 2$, the abacus introduced an **exponential decrease in resource requirements** to represent the exact same thing.

Quantum computers do something analogous. To represent the quantum state of a system made out of N subsystems —each of which with b degrees of freedom— we would usually need b^N classical elements (i.e. numbers). By using quantum systems for this representation, we would only need N quantum elements (i.e. each subsystem). Again, an exponential decrease in resource requirements.

Quantum Software: IBM's Qiskit

troduction

The Abacus Effect
Quantum Software

0--- 0444

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm

New Results Future Work

References

Working with quantum systems is extremely difficult, and in many cases very expensive, this makes quantum computing research unavailable to many groups and institutions. In order to solve this problem, IBM has developed **Qiskit**, a python framework for quantum computation and quantum information.

This framework allows the construction of quantum circuits —today's most common way of representing quantum computation— for running using different backends. These backends range from simulators to actual quantum devices accessible on the cloud through the IBMQ API included in Qiskit. It also includes tools for handling noise and error correction, developing quantum based applications and tools, or making use of well known, pre-programmed algorithms. It also allows work through different levels of abstraction, from microwave pulses on hardware to high level algorithm implementation.

Case Study

troduction

The Abacus Effect Quantum Software

Case Study

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm
Results

Optimization
New Results
Future Work

References

As a starting point we decided to reproduce the paper **Cloud Quantum Computing of an Atomic Nucleus** (arXiv:1801.03897) by Dumitrescu *et al.*

In this paper, IBM's QX5 quantum computer was used to simulate the **deuteron binding energy**, through a Hamiltonian from pionless effective field theory:

$$H_N = \sum_{n,n'=0}^{N-1} \left\langle n' \big| (T+V) \big| n \right\rangle a_{n'}^{\dagger} a_n$$

Where N is the basis dimension for a discrete variable representation in the harmonic oscillator basis.

Hamiltonian Mapping onto qubits

troduction

The Abacus Effect Quantum Software

Case St

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm

Optimization
New Results
Future Work

References

In order to simulate a quantum system on a quantum computer, we need to map its Hamiltonian onto the qubits of the device. To do so, in this case, we can use the **Jordan-Wigner transformations** which map the creation/annihilation operators onto Pauli matrices. This is necesarry as no direct measurement of a general quantum operator can be performed in a quantum computer. However, it is possible to perform Pauli measurements with ease.

$$a_n^{\dagger} \rightarrow rac{1}{2} \left[\prod_{j=0}^{n-1} - Z_j \right] (X_n - iY_n) \qquad \qquad a_n \rightarrow rac{1}{2} \left[\prod_{j=0}^{n-1} - Z_j \right] (X_n + iY_n)$$

Where a spin up $|\uparrow\rangle$ on qubit n represents zero deuteron in state $|n\rangle$, and a spin down $|\downarrow\rangle$ one deuteron. For different values of N, this returns:

$$\begin{array}{ll} H_1 = 0.218291(Z_0 - I) & \Rightarrow & E_1 = \langle \downarrow | H_1 | \downarrow \rangle \simeq -0.436 \text{MeV} \\ H_2 = 5.906709I + 0.218291Z_0 - 6.125Z_1 - 2.143304(X_0X_1 + Y_0Y_1) \\ H_3 = H_2 + 9.625(I - Z_2) - 3.913119(X_1X_2 + Y_1Y_2) \end{array}$$

Unitary Coupled Cluster

Introduction

The Abacus Effect Quantum Software

Case Study

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm

New Results
Future Work

References

To determine ground-state energy we first need to know the region of Hilbert-space representing valid states of our quantum system. Then, we can use the **Unitary Coupled Cluster ansatz**. For this, we define unitary operators entangling two and three orbitals:

$$\begin{split} U_2(\theta) &= \exp\left[\theta(a_0^{\dagger}a_1 - a_1^{\dagger}a_0)\right] = \exp\left[i\frac{\theta}{2}(X_0Y_1 - X_1Y_0)\right] \\ U_3(\eta, \theta) &= \exp\left[\eta(a_0^{\dagger}a_1 - a_1^{\dagger}a_0) + \theta(a_0^{\dagger}a_2 - a_2^{\dagger}a_0)\right] \\ &\simeq \exp\left[i\frac{\eta}{2}(X_0Y_1 - X_1Y_0)\right] \exp\left[i\frac{\theta}{2}(X_0Z_1Y_2 - X_2Z_1Y_0)\right] \end{split}$$

These operators will transform our initial quantum state into some other state in the region of interest according to their parameters.

Quantum Circuits

ntroduction

The Abacus Effect Quantum Software

Case Stud

Hamiltonian Mapping
Unitary Coupled Cluster
Quantum Circuits
VQE Algorithm

New Results Future Work

References

Once we have the unitary operators which get us from an initial state to some other state in the region of interest, we can implement them as **quantum circuits** and run them through qiskit.

These circuits implement the transformations given by the previously introduced unitary operators from the UCC ansatz.

VQE Algorithm

Introduction

The Abacus Effect Quantum Software

Case Stud

Hamiltonian Mapping Unitary Coupled Cluster Quantum Circuits VQE Algorithm

Optimization

Future Work

References

Now that we have a possible ground-state, we can obtain the expected value for its energy by performing several Pauli measurements, take the averages, and add them up all otgether according to the weights given by the transformed hamiltonians. This will result in the **expectation value for the deuteron hamiltonian**, just as we wanted.

Now we need a way of finding the state which **minimizes this energy**, which will correspond by definition to the ground-state. To do so, we make use of a quantum-classical hybrid algorithm called **VQE algorithm**:

Results for the two Hamiltonians

Introduction

The Abacus Effect Quantum Software

Case Stud

Hamiltonian Mapping Unitary Coupled Cluster Quantum Circuits

Quantum Circuits
VQE Algorithm
Results

Optimization
New Results
Future Work

References

The results we get from this strategy are the following:

```
GROUND-STATE ENERGY (H2):
Minimum ^{\prime}E2 = -1.8100 (MeV) ^{\prime} found at 'theta = 0.6202 (rad)' ^{\prime} ERROR = 3.5% GROUND-STATE ENERGY (H3):
```

```
Minimum \frac{'E3 = -2.0513 \text{ (MeV)'}}{= 0.3\%} found at '[theta, eta] = [0.2819, 0.3040] (rad)'
```

Which we can verify by plotting the expected energy for the entire region of space in both cases:

Optimization

roduction

The Abacus Effect Quantum Software

Case St

Hamiltonian Mapping Unitary Coupled Cluster Quantum Circuits VQE Algorithm Results

Optimization New Results

Future Work

Reference

Running the entire optimization process from the VQE algorithm is **computationally expensive**. We are required to iterate several times asking the quantum processor to evaluate the hamiltonian for as many states as iterration steps are needed (up to a constant factor).

In order to imporve on this, we asked ourselves what was the **minimum number of quantum evaluations** that sufficed to perfectly reproduce the expectation value function on the desiered region of Hilbert-space. We found the answer in Fourier Analysis, along with the **Nyquist-Shannon Sampling Theorem**:

Nyquist-Shannon Sampling Theorem

If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

 $f_{\text{sampling}} > 2B$

New Results for the two Hamiltonians

Introduction

The Abacus Effect Quantum Software

Case Stud

Hamiltonian Mapping Unitary Coupled Cluster Quantum Circuits VQE Algorithm Results

New Results

Future Work

References

We can now compare the results produced in the previous way, with the ones produced making use of Fourier Analysis and the Sampling Theorem:

32 samples \rightarrow 3 samples 400 samples \rightarrow 25 samples

Future Work

Introduction

The Abacus Effect Quantum Software

Case Stud

Hamiltonian Mapping Unitary Coupled Cluster Quantum Circuits VQE Algorithm Results

New Results

References

There are some different paths we can go down from here:

- Study the impact of **noise** on this new method
- Determine the range of cases which benefit form this new approach and its applicability
- Extrapolate this entire procedure to the study of new and more interesting problems

References

Introduction

The Abacus Effect Quantum Software

Case Study

Hamiltonian Mapping Unitary Coupled Cluster Quantum Circuits VQE Algorithm Results

Optimization New Results

New Results Future Work

References

"The only thing demonstrated by an impossibility proof is a lack of imagination."

– John Stewart Bell –

