实验报告 光电效应测量普朗克常数

少年班学院 马天开 PB21000030 (2号)

2022 年 4 月 29 日

1 实验原理

单色光照射在光电管的阴极上有电子发射出来的现象叫光电效应,出射的电子称之为光电子,形成的电流称之为光电流。光电流很弱。加载在光电管中阳极与阴极之间电压为正值时,随着电压的增大光电流迅速增大,电压增大到一定值后,光电流趋于饱和。加载在阳极与阴极之间电压为负值时,随着电压数值逐渐变大,光电流变弱,负电压数值增大到 U_0 值时,光电流变为零。把电压 U_0 称之为遏止电压。本实验要求测量 5 种不同单色光分别照射下,光电流的遏止电压值。本实验还需测量和验证饱和光电流与光强之间的关系,是否满足线性正比关系。

补充内容:测量 5 种不同单色光分别照射下,光电管完整的伏安特性曲线,以及基于此曲线分析和测量出光电流的遏止电压(拐点法)。

2 零电流法、补偿法测量遏止电压

• 实验内容:

固定一种直径大小的光阑的情况下,分别测量 5 种不同单色光的照射下,光电流的遏止电压。

实验原理:根据:

$$\begin{cases} h\upsilon = \frac{1}{2}mv_0^2 + A \\ eU_0 = \frac{1}{2}mv_0^2 \end{cases}$$

得到:

$$eU_0 = hv - A \tag{1}$$

实验数据:

$\Phi = 4mm$

λ_i	v	U_{0i}	$U_{0i}{}'$
365.0	8.214	1.724	1.730
404.7	7.408	1.496	1.502
435.8	6.879	1.178	1.180
546.1	5.480	0.612	0.614
577.0	5.196	0.494	0.498

• 数据处理

对 $U_0 - v, U_0' - v$ 进行线性回归分析:

线性回归的结果:

$$\begin{cases} U_0 = 0.41893012 \cdot \upsilon - 1.67896893 \\ {U_0}' = 0.41992569 \cdot \upsilon - 1.68157493 \end{cases}$$

利用补偿法测出的结果,得到:

$$h = k \cdot e \approx 6.728 \times 10^{-34} J \cdot s$$

与公认值 $h_0 = 6.626 \times 10^{-34} J \cdot s$ 的相对误差:

$$\Delta = 1.539\%$$

令上面 $U_0=0$,解出: $\upsilon_0=4.088\times 10^{14}s^{-1}$,对 应 $\lambda_0=748.5nm$,此即波长红限。

逸出功: $A = e \cdot b = 2.68 \times 10^{-19} J$

3 测量饱和光电流与光强的关系

3.1 测量光阑孔径与光电流的关系

• 实验内容:

选择一种单色光,固定光电管阴阳极电压(在饱和区),改变不同的光阑(直径 Φ)大小,来改变光强。

• 实验数据:

$$\lambda=435.8mm, U_{AK}=40V, l=400mm$$

Φ	I_1
14.35	406.0
8	117.2
4	28.0
2	8.2

$$\lambda=546.1mm, U_{AK}=40V, l=400mm$$

Φ	I_2
14.35	31.1
8	8.2
4	1.8
2	0.5

• 数据分析:

对于 $\ln I_1 - \ln \Phi$, $\ln I_2 - \ln \Phi$ 进行回归分析,得到:

回归的结果:

$$\begin{cases} \ln I_1 = 1.987 \ln \Phi + 0.663 \\ \ln I_2 = 2.102 \ln \Phi - 2.227 \end{cases}$$

发光强度与直径之间满足: $l \propto \Phi^2$,因此光电流 $I \propto \Phi^{1.987} \approx \Phi^2 \propto l$

3.2 测量光源距离和光电流的关系

实验内容:

选择一种单色光,固定光电管阴阳极电压(在饱和区),改变光电管与汞灯光源的距离(*l*),来改变光强。

• 实验数据:

$$\lambda=435.8mm, U_{AK}=50V, \Phi=4mm$$

L	I
400	29.2
380	34.1
360	39.4
340	46.9
320	56.0
300	67.5

$$\lambda=546.1mm, U_{AK}=50V, \Phi=4mm$$

L	I
400	19.2
380	22.4
360	26.1
340	31.7
320	38.4
300	45.8
320	38.4

• 数据分析:

对于 $\ln I_1 - \ln L$, $\ln I_2 - \ln L$ 进行回归分析, 得到:

回归的结果:

$$\begin{cases} \ln I_1 = -2.910 \ln L + 20.812 \\ \ln I_2 = -3.062 \ln L + 21.296 \end{cases}$$

发光强度与到光源的距离满足: $l \propto L^{-3}$,因此光电流 $I \propto L^{-2.986} \approx L^{-3} \propto l$

4 "拐点法"测量光电流的遏止电压

• 实验内容:

测量完整的伏安特性曲线,以及使用"拐点法"测量光电流的遏制电压。计算普朗克常数 h。

• 实验数据:

实验数据放在文章末尾。

• 数据分析:

首先对 I-U 作图,得到:

可以看到当 U_0 较小时,图像存在较为明显的拐点:

以 365mm 单色光为例在 $-2V \sim 0V$ 之间拟合的 结果为:

$$\Phi = 4mm, \lambda = 365mm, -2V \leq U \leq 0V$$

对拟合的结果取二阶偏导;得到拐点: $x_0 = -1.87V$;根据拐点法的要求,对 $x \in (-2, x_0)$ 中的点进行线性回归,绘制得到:

$$\Phi = 4mm, \lambda = 365mm, -2V \le U \le 0V$$

将数据进行补偿后,测算截止电压 $U_0 = 1.70V$ 。

-2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00

用相同的办法处理余下数据,可以得到下表:

 $\Phi = 4mm$ U_{0i} λ_i v365.08.2141.896 404.77.408 1.786 435.86.8791.447 546.1 5.4800.787577.0 5.1960.751

线性回归的结果:

通过与上面相同的方法, 测算 h 的值为:

$$h = 6.685 \times 10^{-34} J \cdot s$$

与公认值 $h_0 = 6.626$ 的相对误差为:

$$\Delta = 0.890\%$$

5 另附

- 拐点法实验数据
- 拐点法函数图像(经过拟合)

附 1: 实验数据

U/V	$I/10^{-12}A$	$I/10^{-12}A$	$I/10^{-12}A$	$I/10^{-12}A$	$I/10^{-12}A$
	365nm	405nm	436nm	546nm	577nm
-1	70	0	0	0	0
0	80	21	40	0	0
1	350	104	190	14	1
2	510	215	350	28	13
3	610	292	460	43	28
4	730	359	580	56	38
5	840	437	680	65	46
6	930	502	790	74	52
7	1020	560	880	82	56
8	1140	613	970	88	59
9	1250	670	1070	94	62
10	1380	730	1140	102	67
11	1490	788	1220	107	69
12	1610	850	1300	113	73
13	1700	912	1410	120	77
14	1810	975	1480	126	80
15	1900	1025	1590	132	84
16	1980	1083	1650	136	86
17	2050	1193	1740	141	89
18	2130 2220	1170 1208	1790 1870	144	91
20	2310	1259	1930	151	94
21	2380	1307	2000	154	97
22	2450	1346	2070	158	99
23	2620	1404	2110	161	100
24	2590	1427	2180	165	103
25	2660	1481	2220	166	103
26	2740	1507	2270	169	105
27	2780	1552	2320	170	106
28	2840	1566	2330	172	107
29	2880	1597	2400	175	108
30	2950	1620	2400	177	110
31	2980	1660	2440	180	111
32	3020	1675	2470	180	110
33	3070	1695	2500	182	111
34	3130	1723	2530	184	113
35	3160	1739	2560	184	113
36	3160	1765	2580	188	113
37	3190	1773	2630	188	114
38	3200	1792	2630	190	115
39	3250	1818	2660	191	116
40	3260	1816	2680	193	116
41	3290	1836	2690	195	117
42	3230	1870	2740	196	117
43	3280	1858	2730	196	118

44	3410	1893	2740	197	118
45	3460	1886	2780	198	119
46	3450	1916	2780	200	120
47	3460	1904	2810	201	121
48	3450	1914	2800	201	121
49	3480	1924	2830	202	121
50	3510	1946	2840	202	122

U/V	$I/10^{-12}A$	$I/10^{-12}A$	$I/10^{-12}A$	$I/I/10^{-12}A$	$I/10^{-12}A$
	365nm	405nm	436nm	546nm	577nm
-1.998	-2.8	-1.88	-3.6	-0.54	-0.4
-1.96	-2.56	-1.88	-3.6	-0.53	-0.39
-1.92	-2.4	-1.85	-3.5	-0.52	-0.39
-1.88	-2.23	-1.88	-3.4	-0.51	-0.39
-1.84	-2.03	-1.76	-3.4	-0.53	-0.37
-1.8	-1.83	-1.72	-3.4	-0.52	-0.38
-1.76	-1.58	-1.63	-3.4	-0.53	-0.38
-1.72	-1.24	-1.54	-3.3	-0.52	-0.37
-1.68	-0.73	-1.45	-3.3	-0.51	-0.38
-1.64	0.06	-1.32	-3.2	-0.5	-0.39
-1.6	1.26	-1.14	-3.2	-0.5	-0.39
-1.56	2.93	-0.92	-3.1	-0.51	-0.38
-1.52	4.97	-0.72	-3.1	-0.51	-0.39
-1.48	7.25	-0.33	-3.1	-0.51	-0.38
-1.44	9.94	0.03	-2.9	-0.52	-0.37
-1.4	13.17	0.48	-2.8	-0.51	-0.37
-1.36	16.87	1.08	-2.7	-0.5	-0.37
-1.32	20.9	1.85	-2.5	-0.5	-0.38
-1.28	25.6	2.86	-2.2	-0.49	-0.38
-1.24	30.6	4.16	-2	-0.5	-0.39
-1.2	35.9	6	-1.5	-0.51	-0.38
-1.16	40.7	8.2	-0.8	-0.51	-0.36
-1.12	45.5	10.7	0.3	-0.5	-0.36
-1.08	50.2	13.6	2.2	-0.51	-0.34
-1.04	54.7	16.8	4.9	-0.49	-0.36
-1	60.8	19.9	9	-0.49	-0.35
-0.96	64.6	23	14.5	-0.48	-0.35
-0.92	69.4	26.1	20.8	-0.48	-0.36
-0.88	74.3	28.8	27.6	-0.47	-0.36
-0.84	78.9	32.3	34.3	-0.48	-0.35
-0.8	82.8	35.6	40.7	-0.48	-0.36
-0.76	86.3	38.4	47	-0.48	-0.36
-0.72	90.1	41.6	54.1	-0.46	-0.35
-0.68	94.3	45.2	61.1	-0.44	-0.34
-0.64	99.6	47.9	68	-0.42	-0.33
-0.6	104.9	51.1	74.1	-0.35	-0.32
-0.56	107.3	53.7	80.1	-0.21	-0.32
-0.52	111.4	57.6	86.2	0.16	-0.31

-0.48	116.3	60.3	91.6	0.77	-0.24
-0.44	121.1	63.3	96.7	1.55	-0.09
-0.4	126.3	68	103.3	2.48	0.19
-0.36	130.3	70.5	107.9	3.48	0.6
-0.32	135.3	73.6	114.4	4.59	1.24
-0.28	139.3	77.2	120.3	5.69	1.99
-0.24	145.2	81.2	125.7	6.81	2.85
-0.2	150.9	85	131.3	8.06	3.65
-0.16	155.2	87.6	138.2	9.35	4.48
-0.12	160.6	91.4	143.9	10.4	5.32
-0.08	166.6	94.2	148.5	11.05	5.87
-0.04	172.4	973	154.3	12.24	6.82
0	178.1	100.8	160.8	13.53	7.44

附 2: 实验图像

