

Universidad Tecnológica de la Mixteca

Clave DGP: 557524

Maestría en Ciencias de Materiales

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Caracterización Óptica de Películas Delgadas

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	300507	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Al finalizar el curso, el estudiante va a saber los conceptos relacionados con las propiedades ópticas de los materiales.

TEMAS Y SUBTEMAS

1. Propagación de la luz

- 1.1. Reflexión y refracción
- 1.2. Ondas en una interfaz
- 1.3. Ecuaciones de Fresnel
- 1.4. Reflectancia y transmitancia

2. Constantes ópticas de sólidos

- 2.1. Índice de refracción (n) y coeficiente de extinción (k)
- 2.2. Oscilador de Lorentz
- 2.3. Relaciones de Kramers-Krönig
- 2.4. Relaciones de dispersión de Cauchy y de Sellmier
- 2.5. Obtención de n y k por el método de Swanepoel

3. Mecanismos de absorción de radiación

- 3.1. Absorción por la red
- 3.2. Absorción por cargas libres
- 3.3. Absorción fundamental
- 3.4. Absorción por impurezas

4. Equipo experimental

4.1. Espectrómetros y monocromadores

- 4.2. Fuentes y detectores.
- 4.3. Ventanas y filtros
- 4.4. Polarizadores

5. Técnicas de medición

- 5.1. Espectroscopia de transmisión/reflexión
- 5.2. Reflectancia y transmitancia modulada
- 5.3. Elipsometría
- 5.4. Ejemplos de análisis de los resultados experimentales

6. Aplicaciones de materiales con propiedad ópticas especificas

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico a través de computadora, medios digitales y prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de problemas asociados a temas del curso; la suma de estos dos porcentajes dará la calificación final. Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Óptica, E. Hecth, Ed. Addison Wesley Longman/Pearson, (2010).
- Optical properties of solids, M. Fox, Ed. Oxford Univ Pr., (2010).
- Optical characterization of solids, D. Dragoman, M. Dragoman, Ed. Springer-Verlag, (2002).
- The physics of thin film optical spectra: An introduction, O. Stenzel, Ed. Springer International Publishing (2016).

Consulta:

- Optical properties of condensed matter and applications, J. Singh, Ed. John Wiley & Sons; (2006).
- Optical processes in semiconductors, J. I. Pankove, Ed. Dover publications, Inc. NY; (1975).
- Optical properties of thin solid films, O. S. Heavens, Ed. Dover publications, Inc. NY; (1991).
- Semiconductor optics, C. F. Klingshirn, Ed. Springer-Verlag, (2012).

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Física, Ciencia de los Materiales, y en áreas a fines con experiencia en Ciencia de Materiales.

Vo.Bo

DIVISION DE ESTUDIOS

DR. JOSÉ ANIBAL ARIAS AGUILAR SERADO JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO