The Well-Founded Model — A Quick Introduction

Peter Baumgartner

Various Logic Program Semantics

- Assign "meaning" to a program / knowledge base: perfect model, stable models, well-founded model
- Normal (logic) programs: negation in rule body allowed.

$$win(X) \leftarrow move(X, Y), \ not \ win(Y)$$
 (1)

$$move(c,d) \leftarrow$$
 (2)

$$move(a,b) \leftarrow$$
 (3)

$$move(b, a) \leftarrow$$
 (4)

		True	Unaetinea	Faise
9 T	he well-founded model:	win(c)	win(a)	win(d)
			win(b)	

Two stable models:

	True	False		True	False
(i)	win(c)	win(d)	(ii)	win(c)	win(d)
	win(a)	win(b)		win(b)	win(a)

More About Well-Founded Models

- See [VanGelder/Ross/Schlipf 89, Przymusinski 91]
- Generally accepted for "reasonable" sceptical reasoning
- "well-behaved":
 - always exists, stratification not required
 - unique model
 - goal-oriented procedure exists
 - quadratic complexity
- undef is assigned to atoms which negatively depend on themselves, and for which no independent "well-founded" derivation exists
- XSB-Prolog system (Warren et. al., top-down system)
- SModels (Niemelä et. al., bottom-up system, also for stable model semantics)

"Building in" Information into Programs

Program P

$$q \leftarrow r \leftarrow not s$$
 $p \leftarrow not q, s$
 $p \leftarrow not p$

- $oldsymbol{\wp}$ Partial interpretation ${\mathcal J}$
- Quotient program P/A

$$\begin{array}{ccc} \text{True} & \text{Undefined} & \text{False} \\ \hline q & p, r & s \\ \end{array}$$

$$q \leftarrow r \leftarrow true$$
 $p \leftarrow false, s \qquad p \leftarrow undef$

- **೨** I is a partial model of $\frac{P}{\vartheta}$ iff for all $Head \leftarrow Body$ in $\frac{P}{\vartheta}$:
 - If $\Im(Body) = true$ then $\Im(Head) = true$
 - If I(Head) = false then I(Body) = false
- **Least** partial model $LPM(\frac{P}{\theta})$
 - I minimizes true atoms, and
 - I maximizes false atoms

True	Undefined	False
q, r	p	S

Well-Founded Models as Fixpoint Iteration

- \triangle Maintain two sets to represent \mathfrak{I}_i :
 - The "true" atoms
 - The "true or undef" atoms
- Set $\mathfrak{I}_0=$ "all *undef*" and do $\mathfrak{I}_{i+1}=LPM(\frac{P}{\mathfrak{I}_i})$ until fixpoint, where
- sequence $(\mathcal{J}_0 = \text{``all } false\text{''}), \mathcal{J}_1, \dots, \mathcal{J}_{n-1}, (\mathcal{J}_n = \mathcal{J}_{n+1} = LPM(\frac{P}{\mathcal{I}_i}))$ obtained with operator associated to $(Head \leftarrow Body) \in \frac{P}{\mathcal{I}_i}$:
 - (i) If $\mathcal{J}_k(Body) = true$ then $\mathcal{J}_{k+1}(Head) = true$
 - (ii) If $\mathcal{J}_{k+1}(Head) = false$ then $\mathcal{J}_{k}(Body) = false$ iff If $\underbrace{\mathcal{J}_{k}(Body) \neq false}_{\mathcal{J}_{k}(Body) \in \{true, undef\}}$ then $\underbrace{\mathcal{J}_{k+1}(Head) \neq false}_{\mathcal{J}_{k+1}(Head) \in \{true, undef\}}$

P $a \leftarrow$ $c \leftarrow not b, a$ $b \leftarrow not c$ $e \leftarrow not d$ $f \leftarrow e$ $f \leftarrow not a$

P	(i) build $P/$ a, b, c, d, e, f
a ←	a ←
$c \leftarrow \textit{not } b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow undef$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow undef$

<i>P</i>	(i) build $P/$ a, b, c, d, e, f
a ←	a ←
$c \leftarrow not b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow undef$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow undef$

(ii) derive new *true* atoms a

P	(i) build $P/$ a, b, c, d, e, f
a ←	a ←
$c \leftarrow not b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow undef$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow undef$

- (ii) derive new *true* atoms *a*
- (iii) derive new *true* or *undef* atoms $\begin{bmatrix} a & b, c, e, f \end{bmatrix}$

P	(i) build $P/$ a, b, c, d, e, f
a ←	a ←
$c \leftarrow \textit{not } b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow undef$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow undef$

- (ii) derive new *true* atoms *a*
- (iii) derive new true or undef atoms a b, c, e, f
- (iv) conclude new false atoms d

P $a \leftarrow$ $c \leftarrow not b, a$ $b \leftarrow not c$ $e \leftarrow not d$ $f \leftarrow e$ $f \leftarrow not a$

<i>P</i>	(i) build P/\boxed{a} b, c, e, f d
a ←	a ←
$c \leftarrow not b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow true$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow false$

P	(i) build P/a b, c, e, f d
a ←	a ←
$c \leftarrow not b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	e ← true
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow false$

(ii) derive new true atoms a, e, f

P	(i) build P/\boxed{a} b, c, e, f d
a ←	a ←
$c \leftarrow not b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow true$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow false$

- (ii) derive new true atoms a, e, f
- (iii) derive new true or undef atoms a, e, f b, c

P	(i) build P/a b, c, e, f d
a ←	a ←
$c \leftarrow not b, a$	$c \leftarrow undef, a$
$b \leftarrow not c$	$b \leftarrow undef$
$e \leftarrow not d$	$e \leftarrow true$
$f \leftarrow e$	$f \leftarrow e$
f ← not a	$f \leftarrow false$

- (ii) derive new true atoms a, e, f
- (iii) derive new true or undef atoms a, e, f b, c
- (iv) conclude new false atoms d

- (ii) derive new true atoms a, e, f
- (iii) derive new true or undef atoms a, e, f b, c
- (iv) conclude new false atoms d

Fixpoint reached - stop

