

(9) 日本国特許庁 (JP)

① 特許出願公開

⑩公開特許公報(A)

昭56-109584

⑤Int. Cl.³		識別記号	庁内整理番号	. @	公開 昭和	口56年(19	81)8月31	1 H
C 12 N 5	/00		7235-4B					
C 12 M 1	/12		6971-4B		発明の数	2		
# A 61 L 2,	/02		6917-4C		審査請求	未請求		
(C 12 N 5	/00							
C 12 R 1	/91).						(全8]	頁)

弱感染抑制方法および装置

②特 願 昭55-189471 ②出 願 昭55(1980)12月27日

優先権主張 301980年1月16日30米国(US)

@112704

②発明者 ウイルソン・グレイトバッチ アメリカ合衆国ニューヨーク州 14031クラレンス・ダニングト ン・ロード5220

⑪出 願 人 ウイルソン・グレイトバッチ アメリカ合衆国ニユーヨーク州 14031クラレンス・ダニングト

ン・ロード5220

の代理 人 弁理士 山田豊

1.発明の名称 成数抑制方法および装置 2. 特許請求の範囲: (1) 一定量の植物または動物の組織を電解質培地 中に催く工程と、前配組織を前記培地中において **アノード的に発生させられた銀イオンで処理して** パクテリアまたはウイロイドを死滅させる工程と からなることを特徴とする感染抑制方法。 (2) 一定量の電解質培給を保持する容器と、前記 培他内において植物または動物組織の感染部位の 折くに配備された銀のアノードと、前配培地内に 配備された非腐食性金属のカソードと、前配アノ ードおよびカソードに作用接続され、前記アノー ドに正の電光を供給してこのアノードを徐々に密 解させ銀イオンを放出させて前記感染部位のまわ りに収蔵性環境を形成する手段とからなることを 特徴とする感染抑制装置。 3. 幕明の幹細な説明

(1)

本発明は感染(infection)を電子的に抑制ないし制御する技術、より辞しくは確物パクテリア および動物パッテリア並びに被物タイゴイド(plant virotd)を死滅させるための新規で改良され た電子的方法および装置に関するものである。

的一世紀にわたる経験によって金属の編および 顔の塩が感染に対して効果があることが知られて いる。1894年にはポルトン(Bolton)が、また 1018年にはベルステッド(Nalatsata)が新しい 毎に観音を貼付して数生物の成長を選止できるこ とを述べており、10年ないし20年前にはフーケ ロル(erserol)中議機編が教育剤として一数 的に使用されていた。

しかしその効果は決して目ざましいものではなく、無度決は臨床的に使用されなくなつた。水溶 液中において振および多くの紙の気の溶解性低低の が低いので、Ag+ イォンの適度も非常に低い。 1974年にスペデロ(Spatero)はこの高い発 化性イオンが無果的な製質剤になることを示すと ともに、金異類をアノード的に(anodicality)