

PROGRAMACIÓN DE MICROCONTROLADORES ARM

FABRICUM - PUCP

Sesión 6 - 17/07/2024:

- Módulo de comunicación UART
 - · Descripción del funcionamiento
 - · Registros de operación
 - · Envío y recepción de caracteres
 - · Envío de cadenas
- Systick Timer
 - · Descripción del módulo
 - Interrupciones
 - · Registros de temporización

Módulo UART

Programación de microcontroladores ARM - Sesión 6

Comunicación serial

Los microcontroladores utilizan señales eléctricas para representar información, desde valores lógicos hasta caracteres, en este último caso se utiliza un formato definido de trama el cual es representado a través de 1's y 0's. El código ascii nos brinda la representación numérica de caracteres.

Código ASCII

Figure 281. Configurable stop bits 8-bit Word length (M bit is reset) Possible Next Data Frame Parity Data Frame Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 CLOCK ** LBCL bit controls last data clock pulse a) 1 Stop Bit Possible Next Data Frame Parity Data Frame Start Bit2 Bit4 Bit5 Bit6 Bit3 Bit7 1 1/2 stop bits b) 1 1/2 stop Bits Possible Next Data Frame Parity Data Frame Next Start Bit 2 Stop Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Possible Next Data Frame c) 2 Stop Bits Parity Data Frame Next Start Bit Bit2 Bit3 Bit4 Bit5 Bit0 Bit7 1/2 stop bit d) 1/2 Stop Bit

Velocidad de transmisión

Los parámetros de recepción y envío deben estar configurados tanto en el dispositivo de recepción como en el dispositivo de envío y deben tener la misma referencia. Un parámetro importante es la velocidad de transmisión el cual se define a partir de la velocidad de reloj del módulo.

Tx/ Rx baud =
$$\frac{f_{CK}}{(16*USARTDIV)}$$

Registro de estado del UART

27.6.1 Status register (USART_SR)

Address offset: 0x00
Reset value: 0x00C0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved					CTS	LBD	TXE	TC	RXNE	IDLE	ORE	NE	FE	PE
						rc_w0	rc_w0	r	rc_w0	rc_w0	r	r	r	r	r

Registro de control del UART

27.6.4 Control register 1 (USART_CR1)

Address offset: 0x0C

Reset value: 0x0000

31 25 24 19 18 17 16 Reserved 15 14 13 12 11 10 9 6 3 2 8 5 4 0 WAKE PCE PEIE TXEIE TCIE RXNEIE IDLEIE TE RE UE M RWU SBK Reserved rw rw. rw. rw. rw. rw. rw rw ΓW rw: rw. rw rw **rw**

Registro de control 2 del UART

27.6.5 Control register 2 (USART_CR2)

Address offset: 0x10

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
111							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	LINEN	STO	P[1:0]	CLK EN	CPOL	СРНА	LBCL	Res.	LBDIE	LBDL	Res.	ADD[3:0]			
	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw

Registro de datos

27.6.2 Data register (USART_DR)

Address offset: 0x04

Reset value: Undefined

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Danasiaa								DR[8:0]				
	Reserved						rw	rw	rw	rw	rw	rw	rw	rw	rw

Registro de configuración de velocidad

27.6.3 Baud rate register (USART_BRR)

Note: The baud counters stop counting if the TE or RE bits are disabled respectively.

Address offset: 0x08

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIV_Mantissa[11:0]										DIV_Fraction[3:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Ejemplos de aplicación

Para este módulo se desarrollarán los siguientes ejemplos

- Envio de carácter
- Envio de cadena
- Recepción de carácter
- Integración con Systick y GPIO

SysTick Timer

Programación de microcontroladores ARM - Sesión 6

Temporizadores

El temporizador SysTick es un elemento de los microcontroladores CORTEX M3 que cuenta la cantidad de ciclos de reloj y se gestiona a través de 3 registros, uno de control, otro que lleva la cuenta actual y uno que recarga el valor al terminar la cuenta. En el registro de cuenta actual la cuenta se da de mayor a menor, en donde el valor mayor se recarga del registro LOAD y variando en 1 por cada ciclo de reloj.

Registro de control y estado

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features.

The register address, access type, and Reset state are:

Address 0xE000E010
Access Read/write
Reset state 0x00000000

Figure 8-3 shows the bit assignments of the SysTick Control and Status Register.

Registro de valor de recarga

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FFFFFF. A start value of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FFFFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

The register address, access type, and Reset state are:

Address 0xE000E014 Access Read/write

Reset state Unpredictable

Figure 8-4 shows the bit assignments of the SysTick Reload Value Register.

Figure 8-4 SysTick Reload Value Register bit assignments

Registro de valor actual

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

The register address, access type, and Reset state are:

Address 0xE000E018

Access Read/write clear

Reset state Unpredictable

Figure 8-5 shows the bit assignments of the SysTick Current Value Register.

Figure 8-5 SysTick Current Value Register bit assignments

Ejemplos de aplicación

Para este módulo se desarrollarán los siguientes ejemplos

- Control de tiempo con el systick timer
- Integración GPIO Systick ULTRASONIDO

Diagrama esquemático

