ECUACIONES DIFERENCIALES

TEMA: Transformada de Laplace

Profesor: Diego Ramírez

En los problemas 1 a 12, use la definición 1 para determinar la transformada de Laplace de la función dada.

2.
$$t^2$$

3.
$$e^{6t}$$
.

4.
$$te^{3t}$$
.

5.
$$\cos 2t$$
.

6. cos *bt*, *b* constante.

7.
$$e^{2t}\cos 3t$$
.

8.
$$e^{-t} \sin 2t$$
.

9.
$$f(t) = \begin{cases} 0, & 0 < t < 2, \\ t, & 2 < t. \end{cases}$$

10.
$$f(t) = \begin{cases} 1 - t , & 0 < t < 1 , \\ 0 , & 1 < t . \end{cases}$$
11. $f(t) = \begin{cases} \text{sen} t , & 0 < t < \pi , \\ 0 , & \pi < t . \end{cases}$
12. $f(t) = \begin{cases} e^{2t} , & 0 < t < 3 , \\ 1 , & 3 < t . \end{cases}$

11.
$$f(t) = \begin{cases} \sec t , & 0 < t < \pi , \\ 0 , & \pi < t . \end{cases}$$

12.
$$f(t) = \begin{cases} e^{2t}, & 0 < t < 3, \\ 1, & 3 < t. \end{cases}$$

En los problemas 13 a 20, use la tabla de transformadas de Laplace y la linealidad de la transformada de Laplace para determinar las siguientes transformadas.

13.
$$\mathcal{L}\{6e^{-3t}-t^2+2t-8\}$$
.

14.
$$\mathcal{L}{5-e^{2t}+6t^2}$$
.

15.
$$\mathcal{L}\left\{t^3-te^t+e^{4t}\cos t\right\}.$$

16.
$$\mathcal{L}\{t^2 - 3t - 2e^{-t} \operatorname{sen} 3t\}$$
.

17.
$$\mathcal{L}\{e^{3t} \operatorname{sen} 6t - t^3 + e^t\}$$
.

18.
$$\mathcal{L}\{t^4 - t^2 - t + \sin\sqrt{2}t\}$$
.

19.
$$\mathcal{L}\left\{t^4e^{5t}-e^t\cos\sqrt{7}t\right\}$$
.

20.
$$\mathcal{L}\left\{e^{-2t}\cos\sqrt{3}t - t^2e^{-2t}\right\}$$
.

Tomado de Ecuaciones diferenciales y problemas con valores en la frontera. Nagle, Saff, Snider. Cuarta Edición. Pearson Educación. 2005.

ECUACIONES DIFERENCIALES TEMA: Transformada de Laplace

Profesor: Diego Ramírez

En los problemas 1 a 20, determine la transformada de Laplace de la función dada usando la tabla 7.1 y las propiedades de la transformada dadas en la tabla 7.2. [Sugerencia: En los problemas 12 a 20, use una identidad trigonométrica adecuada].

1.
$$t^2 + e^t \text{sen } 2t$$
 . **2.** $3t^2 - e^{2t}$.

3.
$$e^{-t}\cos 3t + e^{6t} - 1$$
 . **4.** $3t^4 - 2t^2 + 1$.

5.
$$2t^2e^{-t} - t + \cos 4t$$

7.
$$(t-1)^4$$
.

9.
$$e^{-t} t \text{ sen } 2t$$
.

13.
$$sen^2 t$$
.

15.
$$\cos^3 t$$
.

2.
$$3t^2 - e^{2t}$$

4.
$$3t^4 - 2t^2 + 1$$

5.
$$2t^2e^{-t} - t + \cos 4t$$
 . **6.** $e^{-2t} \operatorname{sen} 2t + e^{3t}t^2$.

8.
$$(1 + e^{-t})^2$$
.

10.
$$te^{2t}\cos 5t$$
.

12. sen
$$3t \cos 3t$$
.

14.
$$e^{7t} \operatorname{sen}^2 t$$
.

16.
$$t \, \text{sen}^2 t$$
.

- **21.** Dado que $\mathcal{L}\{\cos bt\}(s) = s/(s^2 + b^2)$, use la propiedad de traslación para calcular $\mathcal{L}\{e^{at}\cos bt\}$.
- **25.** Use la fórmula (6) como ayuda para determinar

(a)
$$\mathcal{L}\{t\cos bt\}$$

(a)
$$\mathcal{L}\{t\cos bt\}$$
. (b) $\mathcal{L}\{t^2\cos bt\}$.