§ 16.

Folgen, Reihen und Potenzreihen in C

 \mathbb{C} und \mathbb{R}^2 sind Vektorräume **über** \mathbb{R} der Dimension zwei. Sie unterscheiden sich als Vektorräume über \mathbb{R} nur dadurch, dass ihre Elemente mit:

$$z = x + iy \in \mathbb{C}$$
 bzw. $(x, y) \in \mathbb{R}^2$ $(x, y \in \mathbb{R})$

bezeichnet werden. Mit dem komplexen Betrag $|z| \coloneqq \sqrt{x^2 + y^2}$ gilt:

$$|z| = ||(x,y)||$$

Man sieht, dass alle aus der Addition, der Skalarmultiplikation und der Norm entwickelten Begriffe und Sätze aus $\S 1$ und $\S 2$ auch in $\mathbb C$ gelten.

Beispiel (Konvergente Folgen)

Sei (z_n) eine Folge in \mathbb{C} und $z_0 \in \mathbb{C}$. (z_n) konvergiert genau dann gegen z_0 , wenn gilt:

$$|z_n - z_0| \stackrel{n \to \infty}{\to} 0$$

$$\stackrel{2.1}{\Longleftrightarrow} \operatorname{Re}(z_n) \stackrel{n \to \infty}{\to} \operatorname{Re}(z_0) \wedge \operatorname{Im}(z_n) \stackrel{n \to \infty}{\to} \operatorname{Im}(z_0)$$

Außerdem ist (z_n) genau dann eine Cauchyfolge, wenn gilt:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : |z_n - z_m| < \varepsilon$$

Also nach Cauchykriterium genau dann, wenn (z_n) konvergent ist.

Satz 16.1 (Produkte und Quotienten von Folgen) Seien $(z_n), (w_n)$ Folgen in $\mathbb C$ mit $z_n \overset{n \to \infty}{\to} z_0, w_n \overset{n \to \infty}{\to} w_0$.

(1) Es gilt:

$$z_n w_n \stackrel{n \to \infty}{\to} z_0 w_0$$

(2) Ist $z_0 \neq 0$, so existiert ein $m \in \mathbb{N} : \forall n \geq m : z_n \neq 0$ und:

$$\frac{1}{z_n} \stackrel{n \to \infty}{\to} \frac{1}{z_0}$$

Beweis

Wie in Ana I.

Definition

Sei (z_n) eine Folge in \mathbb{C} , $s_n := z_1 + \cdots + z_n$ $(n \in \mathbb{N})$. (s_n) heißt **unendliche Reihe** und wird mit $\sum_{n=1}^{\infty} z_n$ bezeichnet.

 $\sum_{n=1}^{\infty} z_n$ heißt genau dann **konvergent** (**divergent**), wenn (s_n) konvergent (bzw. divergent) ist. Im Konvergenzfall gilt:

$$\sum_{n=1}^{\infty} z_n := \lim_{n \to \infty} s_n$$

Die Definitionen und Sätze der Paragraphen 11, 12, 13 aus Ana I gelten wörtlich auch in \mathbb{C} , bis auf diejenigen Definitionen und Sätze, in denen die Anordnung auf \mathbb{R} eine Rolle spielt (z.B. das Leibniz- und das Monotoniekriterium).

Beispiele:

(1) Sei $z \in \mathbb{C}$. $\sum_{n=0}^{\infty} z^n$ heißt **geometrische Reihe**. Fall 1: Ist |z| < 1, dann gilt:

$$\sum_{n=0}^{\infty} |z|^n \text{ konvergiert}$$

$$\implies \sum_{n=0}^{\infty} z^n \text{ konvergiert absolut}$$

$$\implies \sum_{n=0}^{\infty} z^n \text{ konvergiert}$$

Fall 2: Ist $|z| \ge 1$, dann gilt:

$$|z|^n = |z^n| \stackrel{n \to \infty}{\not\to} 0$$

$$\implies z^n \stackrel{n \to \infty}{\not\to} 0$$

$$\implies \sum_{n=0}^{\infty} z^n \text{ divergient}$$

Ist |z| < 1, so zeigt man wie in \mathbb{R} :

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$

(2) Betrachte $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Für alle $z \in \mathbb{C}$ gilt:

$$\sum_{n=0}^{\infty} \frac{|z|^n}{n!} \text{ konvergiert}$$

$$\implies \sum_{n=0}^{\infty} \frac{z^n}{n!} \text{ konvergiert absolut}$$

Für alle $z \in \mathbb{C}$ definiere die (komplexe) **Exponentialfunktion** wie folgt:

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

- (3) Wie in Beispiel (2) sieht man, dass $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$ und $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$ für alle $z \in \mathbb{C}$ absolut konvergieren.
 - Dadurch lassen sich auch Cosinus und Sinus auf ganz $\mathbb C$ definieren:

$$\cos z := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

$$\sin z := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

Satz 16.2 (Eigenschaften von Exponentialfunktion, Cosinus und Sinus)

Seien $z, w \in \mathbb{C}, z = x + iy$ mit $x, y \in \mathbb{R}$. Es gilt:

- $(1) e^{z+w} = e^z e^w$
- (2) $e^{iy} = \cos y + i \sin y$, insbesondere ist: $|e^{iy}| = 1$
- (3) $e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$
- (4) $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \sin(z) = \frac{e^{iz} e^{-iz}}{2i}$ Insbesondere ist für alle $t \in \mathbb{R} : \cos(it) = \frac{e^{-t} + e^t}{2}, \sin(it) = \frac{e^{-t} - e^t}{2i}$ Also sind Cosinus und Sinus auf \mathbb{C} **nicht** beschränkt.
- (5) $\forall k \in \mathbb{Z} : e^{z+2\pi ik} = e^z$
- (6) $e^z = 1 \iff \exists k \in \mathbb{Z} : z = 2k\pi i$
- (7) $e^{i\pi} + 1 = 0$

Beweis

- (1) Wie in Ana I.
- (2) Nachrechnen!
- (3) Folgt aus (1) und (2).
- (4) Nachrechnen!
- (5) Es gilt:

$$e^{z+2k\pi i} \stackrel{\text{(1)}}{=} e^z e^{2k\pi i}$$

$$\stackrel{\text{(2)}}{=} e^z (\cos(2k\pi) + i\sin(2k\pi))$$

$$= e^z$$

(6) Die Äquivalenz folgt aus Implikation in beiden Richtungen:

",
$$\Leftarrow$$
 " Folgt aus (5) mit $z = 0$.

 \Longrightarrow "Sei z = x + iy mit $x, y \in \mathbb{R}$. Es gilt:

$$1 = e^z = e^x(\cos(y) + i\sin(y)) = e^x\cos(y) + ie^x\sin(y)$$

Daraus folgt:

$$\sin(y) = 0 \implies \exists j \in \mathbb{Z} : y = j\pi$$

Und damit:

$$1 = e^x \cos(j\pi) = e^x (-1)^j$$
$$\implies x = 0 \land \exists k \in \mathbb{N} : j = 2k$$

Also ist $z = i2k\pi$.

(7) Es gilt:

$$e^{i\pi} \stackrel{(2)}{=} \cos(\pi) + i\sin(\pi) = -1$$

Beispiel

Im Folgenden wollen wir alle $z \in \mathbb{C}$ bestimmen, für die $\sin(z) = 0$ ist. Es gilt:

$$\sin(z) = 0 \stackrel{16.2(4)}{\iff} e^{iz} = e^{-iz}$$

$$\stackrel{16.2(1)}{\iff} e^{2iz} = e^{-iz}e^{iz} = e^0 = 1$$

$$\stackrel{16.2(6)}{\iff} \exists k \in \mathbb{Z} : 2iz = i2k\pi$$

$$\iff z = k\pi$$

Der Sinus hat also nur reelle Nullstellen.

Definition

Sei (a_n) ein Folge in $\mathbb C$ und $z_0 \in \mathbb C$. $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ heißt eine **Potenzreihe** (PR). Sei nun:

$$\rho := \limsup \sqrt[n]{|a_n|}$$

Dabei ist $\rho = \infty$, falls $\sqrt[n]{|a_n|}$ unbeschränkt ist. Dann heißt

$$r := \begin{cases} 0 & \text{, falls } \rho = \infty \\ \infty & \text{, falls } \rho = 0 \\ \frac{1}{\rho} & \text{, falls } 0 < \rho < \infty \end{cases}$$

der Konvergenzradius (KR) der PR.

Satz 16.3 (Konvergenz von Potenzreihen)

 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ und r seien wie oben.

- (1) Ist r = 0, so konvergiert die PR **nur** für $z = z_0$.
- (2) Ist $r = \infty$, so konvergiert die PR absolut für alle $z \in \mathbb{C}$.
- (3) Sei $0 < r < \infty$. Es gilt:
 - (i) Ist $z \in \mathbb{C}$ und $|z z_0| < r$, so konvergiert die PR absolut in z.
 - (ii) Ist $z \in \mathbb{C}$ und $|z z_0| > r$, so divergiert die PR in z.
 - (iii) Ist $z \in \mathbb{C}$ und $|z z_0| = r$, so ist keine allgemeine Aussage möglich.

Beweis

Wie in Ana I.

Beispiele:

(1) Die PR $\sum_{n=0}^{\infty} z^n$ hat den KR r=1 und es gilt:

$$\sum_{n=0}^{\infty} z^n \text{ konvergiert } \iff |z| < 1$$

(2) Die PR $\sum_{n=0}^{\infty}\frac{z^n}{n^2}$ hat den KRr=1.Für |z|=1 gilt:

$$\sum_{n=0}^{\infty} \frac{|z|^n}{n^2} = \sum_{n=0}^{\infty} \frac{1}{n^2}$$

Also konvergiert $\sum_{n=0}^{\infty}\frac{z^n}{n^2}$ absolut. Insgesamt gilt also:

$$\sum_{n=0}^{\infty} \frac{z^n}{n^2} \text{ konvergiert} \iff |z| \le 1$$

- (3) Die PR $\sum_{n=0}^{\infty} \frac{z^n}{n}$ hat KR r=1, divergiert in z=1 und konvergiert in z=-1.
- (4) Die PRen

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} \qquad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \qquad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

haben jeweils KR $r = \infty$ (siehe 16.3).