Zadanie projektowe nr 1

Implementacja i analiza efektywności algorytmu podziału i ograniczeń lub programowania dynamicznego dla wybranego problemu optymalizacji

Należy zaimplementować oraz dokonać analizy efektywności algorytmu przeglądu zupełnego (BF), podziału i ograniczeń (B & B) lub programowania dynamicznego (DP) dla jednego z następujących problemów:

- a) problemu komiwojażera (TSP),
- b) jednoprocesorowego problemu szeregowania zadań przy kryterium minimalizacji ważonej sumy opóźnień zadań.

Zestaw algorytmów które powinny być zaimplementowane oraz ewentualne dodatkowe wymagania podane są na końcu, przy omówieniu zasad oceniania projektu.

Należy przyjąć następujące założenia:

- używane struktury danych powinny być alokowane dynamicznie (w zależności od aktualnego rozmiaru problemu),
- program powinien umożliwić weryfikację poprawności działania algorytmu (wczytanie danych wejściowych z pliku tekstowego),
- po zaimplementowaniu i sprawdzeniu poprawności działania algorytmu należy dokonać pomiaru czasu jego działania w zależności od rozmiaru problemu N (badania należy wykonać dla minimum 7 różnych reprezentatywnych wartości N),
- dla każdej wartości *N* należy wygenerować po 100 losowych instancji problemu (w sprawozdaniu należy umieścić tylko wyniki uśrednione),
- implementacje algorytmów powinny być zgodne z obiektowym paradygmatem programowania,
- używanie "okienek" nie jest konieczne i nie wpływa na ocenę (wystarczy wersja konsolowa),
- kod źródłowy powinien być komentowany,
- sposoby dokładnego pomiaru czasu w systemie Windows podano na stronie www: http://staff.iiar.pwr.wroc.pl/antoni.sterna/pea/PEA_time.pdf
- warto pamiętać o dużych różnicach w wynikach testów czasowych pomiędzy wersjami
 Debug i Release (testy trzeba przeprowadzić w wersji Release).

Sprawdzenie poprawności zbudowanej struktury/operacji:

Aby sprawdzić poprawność działania algorytmu musi być możliwość wczytania danych z pliku tekstowego i wykonania na nich obliczeń. Format danych w pliku jest następujący:

- a) dla problemu komiwojażera (TSP):
- w pierwszej linii podana jest liczba miast,
- w kolejnych liniach odległości z danego miasta do wszystkich pozostałych miast (liczby całkowite rozdzielone białymi znakami),

- dane na przekątnej (odległość z miasta do niego samego) będą równe 0,
- przyjąć pierwsze miasto jako punkt początkowy i końcowy podróży.
- b) dla jednoprocesorowego problemu szeregowania zadań przy kryterium minimalizacji ważonej sumy opóźnień zadań:
- w pierwszej linii jest podana jest liczba zadań,
- w pozostałych liniach opisy zadań (liczby całkowite rozdzielone białymi znakami): czas przetwarzania zadania p_i , priorytet w_i oraz termin zakończenia d_i .

Sprawozdanie powinno zawierać:

- wstęp teoretyczny zawierający opis rozpatrywanego problemu, opis algorytmu, oszacowanie jego złożoności obliczeniowej na podstawie literatury,
- przykład praktyczny opis działania algorytmu "krok po kroku" dla przykładowego, problemu o niewielkim rozmiarze,
- opis implementacji algorytmu (wykorzystane struktury danych istotne dla działania algorytmu, w przypadku B & B dokładny opis funkcji obliczającej ograniczenia),
- plan eksperymentu (rozmiar używanych struktur danych, sposób generowania danych, metoda pomiaru czasu, itp.),
- wyniki eksperymentów (w postaci tabel i wykresów),
- wnioski dotyczące otrzymanych wyników,
- kod źródłowy w formie elektronicznej wraz z wersją wykonywalną programu.

Ocena projektu:

- 3.0 programowanie dynamiczne lub algorytm B & B (w najprostszej wersji)
- 4.0 przegląd zupełny oraz <u>oba</u> algorytmy (B & B i DP), w najprostszej wersji
- 5.0 przegląd zupełny oraz oba algorytmy (B & B oraz DP), w przypadku B & B przynajmniej dwie strategie przeszukiwania (lub funkcje ograniczające)

Jeżeli wybrana została opcja z różnymi strategiami (lub funkcjami ograniczającymi), to należy porównać czasy ich wykonywania.

Jeśli implementowany jest przegląd zupełny, to jego testy można ograniczyć do mniejszych zadań, tak aby czas wykonania był "rozsądny". W takim przypadku weryfikacja działania algorytmów B & B i DP dla większych zadań będzie wymagać znajomości poprawnego rozwiązania.

Dodatkowe materialy internetowe:

http://www.cs.put.poznan.pl/mkomosinski/materialy/optymalizacja/BB_DP.pdf
https://www.ii.uni.wroc.pl/~prz/2011lato/ah/opracowania/met_podz_ogr.opr.pdf
http://cs.pwr.edu.pl/zielinski/lectures/om/mow10.pdf

2 2018-10-03