

Hochschule Neubrandenburg University of Applied Sciences

Hochschule Neubrandenburg Master – Geoinformatik und Geodäsie Modul VMGG33 – Informatik-Projekt 1. Semester

Anwenderdokumentation

Entwicklung einer konfigurierbarer Sensorstation auf der Basis von Raspberry Pi

Autor: Tino Schuldt

Betreuer: Dipl.-Inform. Jörg Schäfer

Prof. Dr.-Ing. Andreas Wehrenpfennig

Tag der Einreichung: 18.01.2016

Inhaltsverzeichnis

In	ıhaltsve	erzeichnis	II	
1	Einf	ührung	1	
	1.1	Nutzung1		
	1.2	Anwendung1		
	1.3	Erster Start1		
	1.4	Sensoren verbinden1		
2	2 Sensorstation			
	2.1	Installation der Sensoren3		
	2.2	Sensorstation nutzen3		
	2.3	Automatisierte Aufzeichnung4		
	2.4	Speicherung der CSV-Daten5		
3	3 Webbasierte Datenabfrage			
	3.1	RESTful-Webservice6		
Q	uellenv	erzeichnis	III	
Α	bbildur	ngsverzeichnis	III	
T	ahallan [.]	verzeichnis	Ш	

1 Einführung

1.1 Nutzung

Die Sensorstation dient zum Auslesen von Messdaten durch beliebige Sensoren am Raspberry Pi.

1.2 Anwendung

Für die Anwendung werden Sensoren benötigt, die von der Sensorstation unterstützt werden. Zurzeit werden folgende Sensoren unterstützt:

- DS18B20 (Temperatursensor)
- DHT22 (Temperatur- & Feuchtigkeitssensor)
- HCSR04 (Entfernungssensor durch Ultraschall)

1.3 Erster Start

Bevor die Sensorstation genutzt werden kann, müssen alle Skripte mit Ausführungsrechten versehen werden. Dazu wird das Terminal geöffnet, in das Projektverzeichnis navigiert anschließend wird der folgender Befehl ausgeführt:

• $chmod +x \cdot R$

1.4 Sensoren verbinden

Um die Sensoren mit dem Raspberry Pi zu verbinden, wird die GPIO-Schnittstelle (General Purpose Input/Output) verwendet. In der Abb. 1.1 wird die Anordnung der Pins von 1 bis 40 dargestellt. In der Tabelle 1.1 wird die Pinbelegung des Raspberry Pi dargestellt.

Abb. 1.1: Anordnung der Pins (übernommen von [PiJ15])

WiringPi	Rev 2	Rev 1		Pi	ns		Rev 1	Rev 2	WiringPi
	+ 3,3 V	+ 3,3 V	1			2	+ 5 V	+ 5 V	
8	GPIO 2	GPIO 0	3			4	+ 5 V	+ 5 V	
9	GPIO 3	GPIO 1	5			6	GND	GND	
7	GPIO 4	GPIO 4	7			8	GPIO 14	GPIO 14	15
	GND	GND	9			10	GPIO 15	GPIO 15	16
0	GPIO 17	GPIO 17	11			12	GPIO 18	GPIO 18	1
2	GPIO 27	GPIO 21	13			14	GND	GND	
3	GPIO 22	GPIO 22	15			16	GPIO 23	GPIO 23	4
	+ 3,3 V	+ 3,3 V	17			18	GPIO 24	GPIO 24	5
12	GPIO 10	GPIO 10	19			20	GND	GND	
13	GPIO 9	GPIO 9	21			22	GPIO 25	GPIO 25	6
14	GPIO 11	GPIO 11	23			24	GPIO 8	GPIO 8	10
	GND	GND	25			26	GPIO 7	GPIO 7	11
	054.6					ı			
30	SDA 0 (GPIO 0)		27			28		SCL 0 (GPIO 1)	31
21	GPIO 5		29			30		GND	
22	GPIO 6		31			32		GPIO 12	26
23	GPIO 13		33			34		GND	
24	GPIO 19		35			36		GPIO 16	27
25	GPIO 26		37			38		GPIO 20	28
	GND		39			40		GPIO 21	29

Tabelle 1.1: Pin-Belegung der GPIO-Schnitstelle

2 Sensorstation

2.1 Installation der Sensoren

Bevor die Sensorstation vollständig genutzt werden kann, müssen einige Sensoren wie z.B. der DS18B20 und DHT22 im System installiert werden. Die Sensorstation muss dafür mit Root-Rechten ausgeführt werden. Dazu wird das Terminal aufgerufen und im Projektverzeichnis folgender Befehl ausgeführt:

• sudo ./setup.py

2.2 Sensorstation nutzen

Wie in der Abb. 2.1 dargestellt, wird nach dem Start der Sensor ausgewählt. Nach der Wahl des Sensors kann dieser durch einen Klick auf den Button "Konfigurieren" konfiguriert werden. Anschließend erscheint wie in Abb. 2.2 dargestellt ein neues Fenster für die Konfiguration. Wie der Sensor angeschlossen werden kann, wird in diesem Fenster auf der rechten Seite angezeigt. Auf der linken Seite müssen die genutzten GPIO-Nummern und das Intervall für die Abfrage der Werte angegeben werden. In der Mitte sind alle möglichen Aktionen der Sensoren dargestellt. Diese Aktionen sind in der Tabelle 2.1 kurz erläutert.

Die Sensorstation beschränkt sich auf die Nutzung von einem einzigen Sensor pro Typ. Mehrere Sensoren des gleichen Typs können nicht unterschieden werden.

Aktion	Beschreibung				
Sensor installieren	Starten eine Installationsroutine, die notwendig für einige Sensoren sind. Benötigt dazu Root-Rechte!				
Sensor testen	Prüft, ob der Sensor Werte liefert, und gibt diese als Message Box aus.				
Aufzeichnung starten	Startet dauerhaft das Auslesen des Sensors im eingegebenen Intervall, bis dieser gestoppt wird.				
Zeitgesteuerte Aufzeichnung	Öffnet ein Fester, in dem ein Job für die Aufzeichnung erstellt werden kann.				
Export als CSV-Datei	Exportiert die Daten als CSV-Datei im Ordner "data".				
Beenden	Schließt das Fenster.				

Tabelle 2.1: Aktionen der Sensoren

Abb. 2.1: Auswählen des Sensors

Abb. 2.2: Sensor DHT22 konfigurieren

2.3 Automatisierte Aufzeichnung

Durch einen Klick auf den Button "Zeitgesteuerte Aufzeichnung" erscheint wie in der Abb. 2.3 dargestellt ein neues Fenster, in dem Jobs erstellt werden können. Zuerst muss eine Startzeit festgelegt werden, an dem die Messung automatisch beginnt. Diese Einstellung kann durch fünf Angaben (Monat, Wochentag, Tag, Stunde und Minute) spezifiziert werden. Danach muss die Laufzeit der Messung nach dem Start in Minuten angegeben werden. Einige Beispiele für die Nutzung sind in der Tabelle 2.2 dargestellt.

Um einen eingestellten Job zu übernehmen, wird der Button "Neuen Job" genutzt. Anschließend werden alle aktiven Jobs im unteren Feld angezeigt. Alle Jobs können mit dem Button "Alle Jobs entfernen" entfernt werden.

Aktion	Laufzeit[Min]	Monat	Wochentag	Tag	Stunde	Min.
Jeden Abend um 20:30	60	*	*	*	20	30
Uhr bis 21:30 Uhr						
Jeden Montag um 12:00	120	*	Mo.	*	12	00
Uhr bis 14:00 Uhr						
Jede volle Stunde für 10	10	*	*	*	*	00
Minuten						
Den ganzen Tag am	1440	12	*	24	00	00
24.12						

Tabelle 2.2: Beispiele für die Benutzung der zeitgesteuerten Aufzeichnung

Abb. 2.3: Zeitgesteuerte Aufzeichnung

2.4 Speicherung der CSV-Daten

Um die Daten beispielsweise mit Excel zu visualisieren, können die Messdaten als CSV-Datei (Comma Separated Values) gespeichert werden. Eine CSV-Datei beinhaltet eine Kopfzeile mit einer Beschreibung der Spalten und dann zeilenweise alle Messdaten, die durch ein Trennzeichen getrennt sind.

Das folgende Beispiel stellt den Inhalt einer CSV-Datei (Sensor: DHT22) dar:

```
timestamp, temperature, humidity
2015-12-27 11:14:43,20.543,50.123
2015-12-27 11:14:48,20.551,50.132
```

3 Webbasierte Datenabfrage

3.1 RESTful-Webservice

Alle Messdaten können als Webservice plattformübergreifend bereitgestellt werden. Hierfür muss die Datei "webservice.py" im Terminal ausgeführt werden. Für den ersten Start muss dieses Skript mit Root-Rechten ausgeführt werden. Anschließend wird das benötigte Paket "python-webpy" installiert. Der Standardport zum kommunizieren mit dem Webservice ist 8080. Um diesen Port zu verändern, kann das Skript mit einem Parameter gestartet werden.

- sudo ./webservice.py 8080
- ./webservice.py 8080

```
Datei Bearbeiten Ansicht Suchen Terminal Hilfe
student@localhost:~/Downloads/work$ ./webservice.py 8080
LOG: 2016-01-09 11:55:18 - Start Webservice on http://localhost:8080
http://0.0.0.0:8080/
127.0.0.1:52308 - - [09/Jan/2016 11:55:24] "HTTP/1.1 GET /" - 200 OK
127.0.0.1:52308 - - [09/Jan/2016 11:55:28] "HTTP/1.1 GET /dht22" - 200 OK
192.168.174.1:50859 - - [09/Jan/2016 11:55:39] "HTTP/1.1 GET /ds18b20" - 200 OK
127.0.0.1:52309 - - [09/Jan/2016 11:55:49] "HTTP/1.1 GET /hcsr04" - 200 OK
192.168.174.1:50861 - - [09/Jan/2016 11:55:59] "HTTP/1.1 GET /all" - 200 OK
```

Abb. 3.1: Webservice im Terminal starten

Nach dem Start kann der Client mit dem Webservice kommunizieren. Zum Testen wird der Webbrowser "Iceweasel" genutzt und die URL "localhost:8080" aufgerufen. Hier erscheint eine Webseite, indem die verfügbaren Sensoren aufgelistet sind. Mit dem Verzeichnis z.B. "/dht22" werden nur die Messwerte des jeweiligen Sensors aus der SQLite-Datenbank ausgelesen. Um alle Auszulesen wird das Verzeichnis "/all" genutzt. Weitere Parameter z.B. rows, pretty und calc können genutzt werden, um die Ausgabe zu verändern. Die Beschreibung der einzelnen Parameter sind in der Tabelle 3.1 dargestellt. Der Aufruf mit dem Webbrowser ist in der Abb. 3.2 dargestellt.

Aufruf / Parameter	Beschreibung				
/dht22	Zeigt die Werte des Sensors DHT22.				
/ds18b20	Zeigt die Werte des Sensors DS18B20.				
/hcsr04	Zeigt die Werte des Sensors HCSR04.				
/all	Zeigt die Werte aller Sensoren an.				
?rows=3	Zeigt die letzten drei Werte an.				
?calc	Berechnet den Mittelwert, Maximalen und Minimalen Wert über				
	alle Messwerte und gibt diese aus.				
?pretty	Formatiert das JSON in leserlicher Form (Für den Produktiven				
	Einsatz ungeeignet)				
?rows=3&calc&pretty	Kombinierte Abfrage der drei Parameter mit dem &-Zeichen				

Tabelle 3.1: Parameter für den Aufruf des Webservices

Abb. 3.2: Kommunikation mit dem Webservice

Quellenverzeichnis

[PiJ15] The Pi4J Project; http://pi4j.com/pins/model-b-plus.html (13.10.2015).

Abbildungsverzeichnis

Abb. 1.1: Anordnung der Pins (übernommen von [PiJ15])				
Abb. 2.1: Auswählen des Sensors				
Abb. 2.2: Sensor DHT22 konfigurieren	4			
Abb. 2.3: Zeitgesteuerte Aufzeichnung	5			
Abb. 3.1: Webservice im Terminal starten				
Abb. 3.2: Kommunikation mit dem Webservice				
Tabellenverzeichnis				
Taballa 4.4. Dia Dalaguaga day CDIO Cabritatalla	2			
Tabelle T.T. Pin-Belegung der GPIO-Schnitstelle				
Tabelle 1.1: Pin-Belegung der GPIO-Schnitstelle	3			
Tabelle 2.1: Aktionen der Sensoren	3			
Tabelle 1.1: Pin-Belegung der GPIO-Schnitstelle	3 4			