Exemples du cours Limites de Suites 2021/2022

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

13 septembre 2021

Table des matières

- Capacité 1
- Capacité 2
- Capacité 8
- Capacité 9

Pour tout entier naturel *n*, on note :

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants;
- v_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.

Pour tout entier naturel *n*, on note :

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants;
- v_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.
- Pour tout $n \in \mathbb{N}$, la relation $u_n + v_n = 120$ traduit le fait que la population totale est constante.

Pour tout entier naturel *n*, on note :

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants;
- v_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.
- Pour tout $n \in \mathbb{N}$, la relation $u_n + v_n = 120$ traduit le fait que la population totale est constante.
- Pour compléter la feuille de calcul, on peut saisir les formules suivantes :

$$B3 = 0,9 * B2 + 0,05 * C2 et C3 = 120 - B3.$$

Pour tout entier naturel *n*, on note :

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants;
- v_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.
- Pour tout $n \in \mathbb{N}$, la relation $u_n + v_n = 120$ traduit le fait que la population totale est constante.
- Pour compléter la feuille de calcul, on peut saisir les formules suivantes :

$$B3 = 0.9 * B2 + 0.05 * C2 et C3 = 120 - B3.$$

 On peut conjecturer que l'évolution à long terme va se stabiliser autour de 40 millions en zone rurale et 80 millions en zone urbaine.

• Pour tout $n \in \mathbb{N}$, on a par définition du modèle d'évolution : $u_{n+1} = 0.9u_n + 0.05v_n$ avec $v_n = 120 - u_n$, donc $u_{n+1} = 0.9u_n + 0.05(120 - u_n) = 0.85u_n + 6$

- Pour tout $n \in \mathbb{N}$, on a par définition du modèle d'évolution : $u_{n+1} = 0.9u_n + 0.05v_n$ avec $v_n = 120 u_n$, donc $u_{n+1} = 0.9u_n + 0.05(120 u_n) = 0.85u_n + 6$
- Pour tout entier $n \ge 0$, on pose $w_n = u_n 40$ donc on a :

$$w_{n+1} = u_{n+1} - 40 = 0,85u_n + 6 - 40 = 0,85u_n - 34$$

 $w_{n+1} = 0,85(u_n - 40) = 0,85w_n$

On en déduit que la suite (w_n) est géométrique de raison 0,85.

- Pour tout $n \in \mathbb{N}$, on a par définition du modèle d'évolution : $u_{n+1} = 0.9u_n + 0.05v_n$ avec $v_n = 120 u_n$, donc $u_{n+1} = 0.9u_n + 0.05(120 u_n) = 0.85u_n + 6$
- Pour tout entier $n \ge 0$, on pose $w_n = u_n 40$ donc on a :

$$w_{n+1} = u_{n+1} - 40 = 0,85u_n + 6 - 40 = 0,85u_n - 34$$

 $w_{n+1} = 0,85(u_n - 40) = 0,85w_n$

On en déduit que la suite (w_n) est géométrique de raison 0,85.

• Par propriété des suites géométriques, on a pour tout entier naturel n, $w_n = w_0 \times 0.85^n = (u_0 - 40) \times 0.85^n = 50 \times 0.85^n$. On en déduit que $u_n = 50 \times 0.85^n + 40$.

- Pour tout $n \in \mathbb{N}$, on a par définition du modèle d'évolution : $u_{n+1} = 0.9u_n + 0.05v_n$ avec $v_n = 120 u_n$, donc $u_{n+1} = 0.9u_n + 0.05(120 u_n) = 0.85u_n + 6$
- Pour tout entier $n \ge 0$, on pose $w_n = u_n 40$ donc on a :

$$w_{n+1} = u_{n+1} - 40 = 0,85u_n + 6 - 40 = 0,85u_n - 34$$

 $w_{n+1} = 0,85(u_n - 40) = 0,85w_n$

On en déduit que la suite (w_n) est géométrique de raison 0,85.

- Par propriété des suites géométriques, on a pour tout entier naturel n, $w_n = w_0 \times 0.85^n = (u_0 40) \times 0.85^n = 50 \times 0.85^n$. On en déduit que $u_n = 50 \times 0.85^n + 40$.
- Pour tout entier naturel n, on a donc : $v_n = 120 u_n = 80 50 \times 0,85^n$.
- Puisque $0 \le 0,85 < 1$, on peut conjecturer que $0,85^n$ tend vers 0 lorsque ntend vers $+\infty$ et donc par somme que u_n tend vers 40 et v_n tend vers 80. La conjecture établie à la question 3) est donc très probablement vraie. (En fait elle l'est.)

Capacité 1

Deux corrigés en ligne sont disponibles :

- Dans un environnement Python interactif : https://repl.it/@fredericjunier/SuitePartie2Capacite5
- Au format pdf: https://fredericjunier.github.io/Premiere/SuitesPartie2/Cours/ressources/Premiere-Corrige-PartieSuite2-ExemplesCours.pdf

Capacité 2 Partie 1

Soit u_0 le nombre de bactéries exprimé en millions au début de la phase exponentielle et u_n le nombre de bactéries après n temps de génération, c'est-à-dire après n fois 20 minutes. On a ainsi $u_0 = 50$. D'après le modèle le nombre de bactéries double à chaque génération, toutes les 20 minutes.

- $u_1 = u_0 \times 2 = 100$ puis $u_2 = 2 \times u_1 = 200$ puis $u_3 = 2 \times u_2 = 400$.
- D'après le modèle, pour tout entier naturel n, on a $u_{n+1} = 2u_n$ donc la suite (u_n) est géométrique de raison 2. D'après une propriété du cours sur les suites géométriques, on a $u_n = u_0 \times 2^n = 50 \times 2^n$.
- 2 heures représentent 6×20 minutes, donc le nombre de bactéries au bout de deux heures sera égal à $u_6 = 2^6 \times 50 = 6400$ millions.

Capacité 2 Partie 2

- 4 heures représentent $4 \times 3 \times 20$ minutes, donc le nombre de bactéries au bout de deux heures sera égal à $u_{12} = 2^{12} \times 50 = 204800$ millions donc supérieur à 200 milliards.
- On peut conjecturer que u_n peut dépasser n'importe quel nombre pour n assez grand et que la suite (u_n) diverge vers $+\infty$. Il s'agit d'une croissance exponentielle. En pratique cette croissance s'interrompt nécessairement au bout d'un certain nombre de générations, notre monde n'étant pas infini.

Capacité 2 Partie 3

Fonction seuil(s) en Python qui retourne le plus petit entier n tel que $u_n \ge s$ en supposant le modèle exponentiel toujours valable.

```
def seuil(s):
    u = 50
    n = 0
    while u < s:
        u = 2 * u
        n = n + 1
    return n</pre>
```

Prapitre 2: limeter de suites

Capacité 3 Application des règles opératoires, formes indéterminées, exo résolu 5 p. 33 Calculer la limite de la suite (u_n) dans chacun des cas suivants :

1.
$$u_n = -3n^2 - 5n + 1$$

4.
$$u_n = -3n^2 + 5n + 1$$

7.
$$u_n = \frac{n^2}{e^{-n} + \frac{1}{n}}$$

2.
$$u_n = -2n\sqrt{n}$$

5.
$$u_n = 3n^4 - 5n^3 - n + 1$$

8.
$$u_n = n - \sqrt{n}$$

$$3. \ u_n = 3 + \frac{e^n}{e^{2n} + 2}$$

6.
$$u_n = \frac{4n+1}{n+1}$$

9.
$$u_n = \frac{4+n}{n-n^2-1}$$

$$\omega = 1 + m = -\infty$$

donc par recodnit, on a:

3) beer tout enter m>0:

$$M_{m} = 3 + \frac{e^{m}}{e^{2m} + 2} = 3 + \frac{1}{e^{2m}} + \frac{1}{e^{m}}$$

on a lime = +0 donc per qualient lime = 0 n-sto en donc par somme limbent of -tx puis for qualient lim 1 _ ot n->tes ent1 et infingarson. Dim M-3 4) Mm= -3~2+5~+1 Par somme on a une farme indéterminée du tryre - vo + + vo. En Edwise for de terms preparderant Pour tout entier m >0. $M_{m} = m^{2} \left(-3m + \frac{5}{m} + \frac{1}{4} \right)$

En a lim -3m+5 + 1 = -00 dans perduit: lien m (-3m + 5 + 1) = -00 m-> + 00 m 2 Lien u = - - 00 m-> + 00 4) Reur bout entier m>0. M=3m-5m3-m+1 Par somme on a une FIShe tryle +D + D - + CD+ En factorise gar la terma pre pande inter inpætne. $\mathcal{L}_{n} = m \times \left(3 - \frac{5}{n} - \frac{1}{n^3} + \Lambda\right)$ Gra a linn m - +D at lim 3- 5- 1 +1-3 Den parlint ling met

	Si Burtaul enter m>0:
	Mu = huty
	2 - 44/
	on quotient on a sens FI du trypo
-	10
(on lactores numerateur et dans
_	- meraken son ken terrer
	Tonel de mestanem sends in - - Ens emes mes nos mestanem - le m dae ing art me Lacrobard - Le m dae ing art me Lacrobard en selislamics del se
	· Les entre esperants des
1	our tout enter n > 0.
	pur tout enter n > 0.
	2 _ 2 _ 2
F	endone they as theilang no
a	re Xim ry - h
	me Lim Me - h

En a lim n² = tes n->te el par somme lim & t_ - ot n->te Incident and sold sim end E) Pour tout entier m >0: M-20-50 Par somme on a une FI du tigre tod - tod Con Celouis pou le jeuns prépande - rant onto qui cot m jour tout antier n >0: Vn - m (1-1 Vn - m (1-1

on a lim m - tcs ot lim 1-1 m-sto Vm at = med find and sould : of restree trust read (E M= h+m $-\omega - \omega - 1$ Par quaterton aune F1 du trope 700 En forterese men crobeen et denomi noteur par Zun serne prépardérant ento et an siamplifice. $-\frac{1}{m^2\left(\frac{1}{m^2}-\frac{1}{m^2}\right)}$

on a lim 1 - 0 et lim 1+ 1 - 1 - 1+ 1 - 1 for qualient. Force par product, chiand. lin mil

	apacité 4 <i>Déterminer la limite d'une suite géométrique, exo résolu 10 p.35</i> e institutrice propose un atelier découpage pour ses élèves à partir d'une feuille de 400 cm ² .
	Étape 1 l'élève partage d'abord la feuille en 9 carrés et découpe le carré central;
	Étape 2 l'élève partage alors les 8 carrés restant en 9 carrés égaux et découpe le carré central ;
	Étapes suivantes l'élève répète le même procédé
	1. On note u_n la surface restante de la feuille après n découpes. Ainsi $u_0 = 400$.
	a. Justifier que la suite (u_n) est géométrique et déterminer sa raison.
	b. Que peut-on conjecturer pour les valeurs de u_n lorsque n devient aussi grand que l'on veut?
	c. Recopier et compléter la fonction seuil(s) pour qu'elle retourne le plus petit entier n tel que $u_n \le s$.
	Programmer cette fonction, quelle est la valeur retournée par seuil(10)?
	2. On note v_n le nombre de nouveaux carrés découpés lors de la $n^{i \`{e} m e}$ découpe avec $n \geqslant 1$. Ainsi $v_1 = 1, \ v_2 = 8 \dots$
	a. Justifier que la suite (v_n) est géométrique et déterminer sa raison.
	b. Que peut-on conjecturer pour les valeurs de v_n lorsque n devient aussi grand que l'on veut?
	c. Recopier et compléter la fonction somme (n) pour qu'elle retourne t_n , le nombre total de carrés découpés après n découpes avec $n \ge 1$.
	Programmer cette fonction, quelle est la valeur retournée par somme (10)?
	d. Déterminer une formule explicite permettant de calculer t_n pour un entier $n \ge 1$.

Algorithme de seuil

```
Fonction seuil(s):

n \leftarrow 0

u \leftarrow 400

Tant que .....

u \leftarrow ...

n \leftarrow n + 1

Retourne n
```


Étape 0:0 découpe

Étape 2 : 9 découpes

Calcul de somme

```
Fonction somme(n):

v ← 1

t ← ...

Pour k allant de 2 à n

v ← ...

t ← ...

Retourne t
```

Python

```
def seuil(s):
    n = 0
    u = 400
    while ....:
        u = ......
        n = n + 1
    return n
```


Étape 1:1 découpe

Étape 3:73 découpes

Python

```
def somme(n):
    v = 1
    t = ......
    for k in range(2, n + 1):
        v = ......
        t = ......
    return t
```

1.15 Capacité 14 Déterminer une relation explicite ou une relation de récurrence pour une suite définie par un motif géométrique ou une question de dénombrement

- 1. On note u_n la surface restante de la feuille après n découpes. Ainsi $u_0 = 400$.
 - a. Pour tout entier naturel n, on a $u_{n+1} = \frac{8}{9}u_n$. La suite (u_n) est donc géométrique de raison $\frac{8}{9}$.
 - b. On peut conjecturer que pour n assez grand u_n deviendra aussi proche de 0 que l'on veut
 - c. Fonction seuil:

```
def seuil(s):
    n = 0
    u = 400
    while u > s:
        u = 8 * u / 9
        n = n + 1
    return n
```

seuil(10) retourne la valeur 32.

- 2. On note v_n le nombre de nouveaux carrés découpés lors de la n^{ime} découpe avec $n \ge 1$. Ainsi $v_1 = 1, v_2 = 8$.
 - a. Pour tout entier naturel $n \ge 1$, on a $v_{n+1} = 8v_n$. La suite (v_n) est donc géométrique de raison 8.
 - b. On peut conjecturer que pour n assez grand v_n deviendra aussi grand que l'on veut.
 - c. Fonction somme:

```
def somme(n):
    v = 1
    t = v
    for k in range(2, n + 1):
        v = 8 * v
        t = t + v
    return t
```

somme (10) retourne la valeur 153391689.

d. D'après une formule du cours :

$$t_n = v_1 + v_2 + \ldots + v_n = v_1 \times \frac{1 - 8^n}{1 - 8} = \frac{8^n - 1}{7}$$

```
In [6]: seuil(10)
Out[6]: 32
In [8]: def somme(n):
            v = 1
            t = v
            for k in range(2, n + 1):
                v = 8 * v
                t = t + v
            return t
In [9]: somme(10)
Out[9]: 153391689
```