Convex Optimization II

Lecture 5: Convex Functions

Hamed Shah-Mansouri

Department of Electrical Engineering Sharif University of Technology

1400-2

MOTIVATIONS

- Convex and concave functions have many special and important properties.
- Example: Any local minimum of a convex function over a convex set is also a global minimum.
- In this lecture, we introduce some of the important topics of convex functions and their properties.
- These properties can be used to develop suitable optimality conditions and computational schemes for convex optimization problems.
- All materials and figures in this lecture are from [1].
 - [1] S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, 2004.
- Thanks to Prof. Vincent Wong and Prof. Stephen Boyd for all the slides used in this lecture.

CONVEX FUNCTIONS

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

- f is concave if -f is convex
- ullet f is strictly convex if $\operatorname{dom} f$ is convex and

$$(f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y))$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

◆□▶◆□▶◆□▶◆□▶ ■ めへ○

EXTENDED-VALUE EXTENSION

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{\mathbf{dom}} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{\mathbf{dom}} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- ullet dom f is convex
- \bullet for $x,y\in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

FIRST-ORDER CONDITION

f is **differentiable** if $\operatorname{dom} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

first-order approximation of f is global underestimator

Hamed Shah-Mansouri (Sharif)

SYMMETRIC POSITIVE (SEMI)-DEFINITE MATRICES

• The set of symmetric $n \times n$ matrices

$$\mathbf{S}^n = \{ X \in \mathbf{R}^{n \times n} \mid X = X^T \}.$$

• The set of symmetric positive semidefinite matrices

$$\begin{array}{ccc} \mathbf{S}_{+}^{n} & = & \{X \in \mathbf{S}^{n} \mid X \succeq 0\} \\ & = & \{X \in \mathbf{R}^{n \times n} \mid X = X^{T}, \forall v \in \mathbf{R}^{n}, v^{T}Xv \geq 0\}. \end{array}$$

- ullet Equivalently, matrix X has non-negative eigenvalues.
- The set of symmetric positive definite matrices

$$\mathbf{S}_{++}^{n} = \{X \in \mathbf{S}^{n} \mid X \succ 0\}$$
$$= \{X \in \mathbf{R}^{n \times n} \mid X = X^{T}, \forall v \in \mathbf{R}^{n}, v \neq \mathbf{0}, v^{T}Xv > 0\}.$$

 \bullet Equivalently, matrix X has positive eigenvalues.

(□) (部) (注) (注) 注 り(0)

SECOND-ORDER CONDITIONS

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

 \bullet f is convex if and only if

$$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \mathbf{dom} f$$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

4□ > 4Ē > 4Ē > ₹ 9Q

EXAMPLES ON R.

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- ullet exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbb{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbb{R}_{++} , for $0 \le \alpha \le 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

EXAMPLES ON \mathbb{R}^n AND $\mathbb{R}^{n \times m}$

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

EXAMPLES

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q,$$
 $\nabla^2 f(x) = P$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^{T}(Ax - b), \qquad \nabla^{2} f(x) = 2A^{T}A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

EXAMPLES

log-sum-exp: $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ is convex on \mathbb{R}^n .

The Hessian of the log-sum-exp function is

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \mathbf{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{(\sum_{k} z_{k} v_{k}^{2})(\sum_{k} z_{k}) - (\sum_{k} v_{k} z_{k})^{2}}{(\sum_{k} z_{k})^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave

(similar proof as for log-sum-exp)

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣۹@

SUBLEVEL SET AND EPIGRAPH

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

epigraph of $f: \mathbf{R}^n \to \mathbf{R}$:

$$\mathbf{epi}\, f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom}\, f, \ f(x) \le t\}$$

f is convex if and only if $\operatorname{\mathbf{epi}} f$ is a convex set

EPIGRAPH

- Many results for convex functions can be proven (or interpreted) geometrically using epigraphs, and applying results for convex sets.
- e.g., consider the first-order condition for convexity

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

where f is a differentiable convex function and $x, y \in \mathbf{dom} f$.

• If $(y,t) \in \mathbf{epi} f$, then

$$\left[\begin{array}{c} \nabla f(x) \\ -1 \end{array}\right]^T \left(\left[\begin{array}{c} y \\ t \end{array}\right] - \left[\begin{array}{c} x \\ f(x) \end{array}\right]\right) \leq 0.$$

• The hyperplane defined by $(\nabla f(x), -1)$ supports **epi** f at the boundary point (x, f(x)).

JENSEN'S INEQUALITY

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

How to Investigate the Convexity of a Function?

Practical methods for establishing convexity of a function

- Verify convexity definition
- First-order condition of convexity for differentiable functions
- Second-order condition of convexity for twice differentiable functions
- Operations that preserve convexity (show that the function is obtained from simple convex functions)
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

POSITIVE WEIGHTED SUM AND COMPOSITION WITH AFFINE FUNCTION

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$ sum: f_1+f_2 convex if f_1,f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax+b) is convex if f is convex

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x),$$
 $\mathbf{dom} f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$

• (any) norm of affine function: f(x) = ||Ax + b||

POINTWISE MAXIMUM

• If f_1, \ldots, f_m are convex functions, then their pointwise maximum f

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}\$$

with $\operatorname{dom} f = \operatorname{dom} f_1 \cap \cdots \cap \operatorname{dom} f_m$, is also convex.

• Example: Piecewise-linear functions

$$f(x) = \max\{a_1^T x + b_1, \dots, a_L^T x + b_L\}$$

SUPREMUM AND INFIMUM

- A number \hat{a} is an upper bound on $C \subseteq \mathbf{R}$ if for each $x \in C$, $x \leq \hat{a}$.
- The number \hat{b} is called the least upper bound or supremum of the set C, and is denoted $\sup C$.
- We take $\sup \emptyset = -\infty$ and $\sup C = \infty$ if C is unbounded above.
- e.g., $C = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\}$. We have $\sup C = 1$.
- When the set C is finite, $\sup C$ is the maximum of its elements.
- Similarly, a number \check{a} is a lower bound on $C \subseteq \mathbf{R}$ if for each $x \in C$, $\check{a} \leq x$.
- The number \check{b} is called the greatest lower bound or infimum of the set C, and is denoted inf $C = -\sup(-C)$.
- e.g., $C = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\}$. We have $\inf C = 0$.
- When the set C is finite, $\inf C$ is the minimum of its elements.

POINTWISE SUPREMUM

• If for each $y \in A$, f(x, y) is convex in x, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex in x.

• Pointwise supremum of functions corresponds to intersection of epigraphs

$$\mathbf{epi}\ g = \bigcap_{y \in \mathcal{A}} \mathbf{epi}\ f(\cdot, y)$$

Examples

- Support function of a set $C \subseteq \mathbf{R}^n$, defined as $S_C(x) = \sup_{y \in C} y^T x$.
- Distance to farthest point of a set $C \subseteq \mathbf{R}^n$, defined as $f(x) = \sup_{y \in C} ||x y||$.
- Maximum eigenvalue of symmetric matrix $X \in \mathbf{S}^n$, defined as $\lambda_{\max}(X) = \sup_{|y||_2=1} y^T X y$.

MINIMIZATION

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

 $\bullet \ f(x,y) = x^TAx + 2x^TBy + y^TCy \ \text{with}$

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x)=\inf_y f(x,y)=x^T(A-BC^{-1}B^T)x$ g is convex, hence Schur complement $A-BC^{-1}B^T\succeq 0$

• distance to a set: $\mathbf{dist}(x,S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex

COMPOSITION WITH SCALAR FUNCTIONS

ullet Composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$

$$f(x) = h(g(x))$$

- f is convex if h is convex, \tilde{h} is nondecreasing, and g is convex.
- f is convex if h is convex, \tilde{h} is nonincreasing, and g is concave.
- f is concave if h is concave, \tilde{h} is nondecreasing, and g is concave.
- f is concave if h is concave, \tilde{h} is nonincreasing, and g is convex.
- monotonicity must hold for extended-value extension \tilde{h} , which assigns value ∞ $(-\infty)$ to points not in **dom** h for h convex (concave).
- proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if \overline{g} is concave and positive

VECTOR COMPOSITION

• Composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$

$$f(x) = h(g(x)) = h(g_1(x), g_1(x), \dots, g_k(x))$$

- f is convex if h convex, h nondecreasing in each argument, g_i convex.
- f is convex if h convex, h nonincreasing in each argument, g_i concave.
- f is concave if h concave, h nondecreasing in each argument, g_i concave.
- f is concave if h concave, h nonincreasing in each argument, g_i convex.
- proof (for n = 1, twice differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive.
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

QUASICONVEX FUNCTIONS

 $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\operatorname{\mathbf{dom}} f$ is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

are convex for all α

- f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

EXAMPLES OF QUASICONVEX FUNCTIONS

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

is quasilinear

• distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

SUMMARY

- Definition of convex function and epigraph.
- Examples of convex and concave functions in \mathbf{R} , \mathbf{R}^n , and $\mathbf{R}^{n \times m}$.
- First order and second order conditions, Jensen's inequality.
- Operations that preserve convexity.
 - ► Nonnegative weighted sums
 - Composition with an affine mapping
 - Pointwise maximum and supremum
 - Scalar and vector composition
 - Minimization
 - Perspective of a function
- Examples.
- Reading: Sections 3.1–3.3 in [1] by Boyd and Vandenberghe.

APPENDIX

Mathematical Background

MATRIX OPERATION CHEAT-SHEET

Rule	Comments		
$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$	order is reversed, everything is transposed		
$(\mathbf{a}^T \mathbf{B} \mathbf{c})^T = \mathbf{c}^T \mathbf{B}^T \mathbf{a}$	as above		
$\mathbf{a}^T\mathbf{b} = \mathbf{b}^T\mathbf{a}$	(the result is a scalar, and the transpose of a scalar is itsel		
$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$	multiplication is distributive		
$(\mathbf{a} + \mathbf{b})^T \mathbf{C} = \mathbf{a}^T \mathbf{C} + \mathbf{b}^T \mathbf{C}$	as above, with vectors		
$\mathbf{AB} eq \mathbf{BA}$	multiplication is not commutative		

For a more comprehensive reference, see

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

MATRIX DERIVATIVES CHEAT-SHEET

Scalar derivative		Vector derivative			
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{B}$	\rightarrow	В
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{b}$	\rightarrow	b
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{Bx}$

For a more comprehensive reference, see

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

CONJUGATE FUNCTION

Given $f: \mathbf{R}^n \to \mathbf{R}$, the conjugate function $f^*: \mathbf{R}^n \to \mathbf{R}$ defined as:

$$f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$$

with domain consisting of $y \in \mathbf{R}^n$ for which the supremum is finite.

- $f^*(y)$ is always convex. It is the pointwise supremum of a family of affine functions of y. This is true whether or not f is convex.
- Fenchel's inequality: $f(x) + f^*(y) \ge x^T y$ for all x, y (by definition).
- $f^{**} = f$ if f is convex and closed.

Useful for Lagrange duality theory.

EXAMPLES OF CONJUGATE FUNCTIONS

- Affine function. f(x) = ax + b, where $x \in \mathbf{R}$. $f^*(a) = -b$ with **dom** $f^* = \{a\}$.
- Negative logarithm. $f(x) = -\log x$ with $\operatorname{dom} f = \mathbf{R}_{++}$. $f^*(y) = -\log(-y) 1$ with $\operatorname{dom} f^* = \{y \mid y < 0\} = -\mathbf{R}_{++}$.
- Exponential. $f(x) = e^x$. $f^*(y) = y \log(y) y$ with **dom** $f^* = \{y \mid y \ge 0\} = \mathbf{R}_+$.
- Negative entropy. $f(x) = x \log x$ with **dom** $f = \mathbf{R}_+$ and f(0) = 0. $f^*(y) = e^{y-1}$ with **dom** $f^* = \mathbf{R}$.
- Strictly convex quadratic function. $f(x) = \frac{1}{2}x^TQx$, where Q is positive definite. $f^*(y) = \frac{1}{2}y^TQ^{-1}y$ with **dom** $f^* = \mathbf{R}$.
- Log-sum-exp function. $f(x) = \log \sum_{i=1}^n e^{x_i}$. $f^*(y) = \sum_{i=1}^n y_i \log y_i$ if $y \succeq 0$ and $\sum_{i=1}^n y_i = 1$. $(f^*(y) = \infty$ otherwise).