每日一题(3)

2019.03.22

设
$$b_{ij} = (a_{i1} + a_{i2} + \dots + a_{in}) - a_{ij}(i, j = 1, 2, \dots, n)$$
, 求证:

$$\begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix} = (-1)^{n-1}(n-1) \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

证:

$$\begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & & \vdots \\ \vdots & & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}, \tag{1}$$

$$\begin{vmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & & \vdots \\ \vdots & & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{vmatrix} = (-1)^{n-1}(n-1)$$

对 (1) 左右两边同取行列式即得要证明的等式.