

Material de Apoio #0 Algoritmo de Subconjuntos

O algoritmo de subconjuntos é responsável pela conversão de um autômato finito não-determinístico para o autômato determinístico correspondente. Esse algoritmo é fundamental na geração automática de código de reconhecimento de analisadores léxicos, nas situações onde expressões regulares são definidas pelo projetista para descrever os tokens da linguagem a ser implementada no compilador. As expressões regulares são transformadas através da Construção de Thompson em autômatos finitos não-determinísticos que são por sua vez convertidos em autômatos finitos determinísticos através do algoritmo de subconjuntos.

1 Preliminares

Um autômato finito não-determinístico se defina por ter pelo menos uma destas duas características:

• Tem pelo menos uma transição vazia (ϵ) entre dois estados

• Ter mais de uma transição com o mesmo símbolo a partir de um mesmo estado

No primeiro ponto, a transição vazia (ϵ) implica que uma vez no estado de origem, não sabe-se de forma determínistica se devemos não consumir a entrada realizando portanto a transição vazia, ou adotar outra transição no autômato com consumo da entrada. No segundo ponto, não há uma forma direta de decidir se devemos realizar a transição do estado central (A) para (B) consumindo a ou ir para o outro estado (C) consumindo esse mesmo símbolo. Estamos portanto com situações não-determinísticas. Na prática, isso implica que existem múltiplas, e possivelmente infinitas, formas de se reconhecer uma determinada entrada válida de um autômato não-determinista. Este fato complica a implementação desse tipo de autômato em um programa de computador.

2 Visão geral

Considerando um autômato finito $n\tilde{a}o$ -determinístico N e um autômato finito determinístico D, a visão geral que inspira o algoritmo de subconjuntos é que cada estado no autômato determinista equivale a um conjunto de estados do autômato não-determinista. A ideia do algoritmo é portanto detectar quais são estes (sub)conjuntos de estados. Essa detecção é feita através de duas operações fundamentais: o fechamento vazio (Fechamento- ϵ) e o movimento.

3 Operações

Existem duas operações fundamentais no algoritmo de subconjuntos: Fechamento- ϵ e Movimento. Os exemplos abaixo são realizados sobre o autômato finito não-determinístico ilustrando no diagrama de transição da Figura 1.

Figura 1: Autômato finito não-determinístico para a expressão $(a|b)^*abb$

3.1 Fechamento- ϵ

O Fechamento- \mathcal{E} (e) é definido como o conjunto de estados alcançados a partir do estado e utilizando única e exclusivamente transições vazias e incluem por definição e próprio estado e. Considerando o autômato não-determinístico $(a|b)^*abb$ ilustrado na Figura 1, o Fechamento- \mathcal{E} (1) é o subconjunto de estados $\{1,2,4\}$, onde o estado 1 é adicionado por definição e os outros dois estados são adicionados ao subconjunto pois é possível atingí-los somente com transições vazias diretas a partir do estado 1. O Fechamento- \mathcal{E} (5) é o subconjunto de estados $\{5,6,7,1,2\ e\ 4\}$. O estado 5 é adicionado pela definição do fechamento, enquanto que os estados 6, 7, 1, 2 e 4 são atingidos unicamente por transições vazias (observe o autômato da Figura 1).

O Fechamento- ϵ pode também ser calculado a partir de um conjunto de estados. Por exemplo, podemos querer calcular o Fechamento- ϵ ($\{3,5\}$). Neste caso, simplesmente calculamos o Fechamento- ϵ (3) e realizamos a união deste resultado com o obtido do Fechamento- ϵ (5). Sendo assim, temos:

Fechamento-
$$\epsilon$$
 ({ 3, 5 }) = Fechamento- ϵ (3) \cup Fechamento- ϵ (5)

O fechamento de um subconjunto de estados é necessário para a operação de Movimento, descrita a seguir.

3.2 Movimento

A operação de Movimento é utilizada para calcular uma transição a partir de um determinado estado e utilizando um determinado símbolo da gramática. Portanto, denota-se Movimento(\mathbf{e} , \mathbf{s}). O movimento neste caso, caracteriza-se pelo conjunto de estados alcançados a partir do estado \mathbf{e} do autômato consumindo unicamente o símbolo \mathbf{s} através de uma única transição. Sempre, imediatamente após o cálculo do Movimento, realiza-se o Fechamento- $\boldsymbol{\epsilon}$ do conjunto resultante. Considerando o autômato da Figura 1, o Movimento(2, a) é $\{3\}$, mas calculando-se o fechamento do resultado, portanto de Fechamento- $\boldsymbol{\epsilon}$ ($\{3\}$), obtemos o conjunto resultante do movimento $\{3,6,1,2,4,7\}$, pois a partir do estado 2 atinge-se o estado 3 consumindo apenas o símbolo a; os demais estados são calculados realizando-se o fechamento do estado 3. A operação de movimento $\boldsymbol{\epsilon}$ portanto descrita como Fechamento- $\boldsymbol{\epsilon}$ (Movimento (\mathbf{e} , \mathbf{s})).

Da mesma forma que no fechamento, a operação de movimento pode ser calculada a partir de um conjunto de estados. Sobre o exemplo da Figura 1, o Fechamento- ϵ (Movimento ($\{2,7\}$, a)) é definido como $\{3,8\}$ pois há uma transição direta entre os estados 2 e 3 com o símbolo a; e entre 7 e 8 com o mesmo símbolo. Realizando o Fechamento- ϵ deste resultado, obtemos o conjunto final $\{3,8,6,1,2,4,7\}$.

4 Funcionamento

O algoritmo de subconjuntos inicia-se pelo cálculo do Fechamento- ϵ do estado inicial do autômato finito. não-determinístico. O próximo passo é calcular o fechamento do movimento do conjunto de estados obtidos considerando cada um dos símbolos pertecentes a linguagem. O processo se repete iterativamente até todos os subconjuntos terem sido tratados e quando nenhum novo subconjunto é criado. Dois subconjuntos são diferentes se a quantidade de estados difere ou se há pelo menos um estado presente em um e não no outro. Os diferentes subconjuntos de estados representam os novos estados do autômato finito determinístico correspondente, e os movimentos com os diferentes símbolos da linguagem configuram as transições entre estes estados. O estado inicial do novo autômato determinístico é aquele que representa o fechamento- ϵ do estado inicial do autômato não-determinístico. Os estados finais do determinista são todos aqueles que tem em seus respectivos subconjuntos pelo menos um estado final do autômato não-determinista de origem.

5 Exemplo baseado na Figura 1

O autômato da Figura 1 é $n\tilde{a}$ o-determinista pois existem transições com ϵ . Ele tem 11 estados: de 0 a 10; e dois símbolos pertencentes a gramática: \mathbf{a} e \mathbf{b} . Vamos convertê-lo para o autômato determinista correspondente. Iniciamos através do cálculo do Fechamento- ϵ do estado 0 (estado inicial):

• Fechamento- ϵ ({ 0 }) = { 0, 1, 2, 4, 7 }

Como o subconjunto é original { 0, 1, 2, 4, 7 }, vamos nomeá-lo subconjunto **A**. O próximo passo é calcular o fechamento do movimento do subconjunto A acima com os dois símbolos da linguagem:

- Fechamento- ϵ (Movimento(A, a)) = { 3, 8, 6, 1, 2, 4, 7 }
- Fechamento- ϵ (Movimento(A, b)) = { 5, 6, 1, 2, 4, 7 }

Acabamos de criar dois novos subconjuntos originais, pois são diferentes do subconjunto A já existente. Nomeamos o subconjunto { 3, 8, 6, 1, 2, 4, 7 } como subconjunto B e o subconjunto { 5, 6, 1, 2, 4, 7 } como C. O próximo passo é realizar o fechamento do movimento com os símbolos a partir destes dois novos subconjuntos. Começamos pelo subconjunto B:

- Fechamento- ϵ (Movimento(B, a)) = { 3, 8, 6, 1, 2, 4, 7 } (subconjunto já existe, é o próprio B)
- Fechamento- ϵ (Movimento(B, b)) = { 9, 5, 6, 1, 2, 4, 7 }

O subconjunto { 3, 8, 6, 1, 2, 4, 7 } já existe e é o **B**, mas o subconjunto { 9, 5, 6, 1, 2, 4, 7 } criado da transição de **B** com **b** é um original que nomeamos de subconjunto **D**. Já tratamos neste ponto os movimentos a partir dos subconjuntos A e B, devemos agora tratar os subconjuntos C e D. Começando por C, temos:

- Fechamento- ϵ (Movimento(C, a)) = { 8, 3, 6, 1, 2, 4, 7 } (que é o subconjunto B)
- Fechamento- ϵ (Movimento(C, b)) = { 5, 6, 1, 2, 4, 7 } (que é o próprio subconjunto C)

Em seguida, tratamos os movimentos a partir do subconjunto D:

- Fechamento- ϵ (Movimento(D, a)) = { 3, 8, 6, 1, 2, 4, 7 } (que é o subconjunto B)
- Fechamento- ϵ (Movimento(D, **b**)) = { 10, 5, 6, 1, 2, 4, 7 }

O subconjunto { 10, 5, 6, 1, 2, 4, 7 } configura um novo estado **E** que é final pois ele tem o estado 10 do autômato de origem. Embora já tenhamos detectado que o subconjunto E é final, devemos ainda assim calcular o fechamento do movimento a partir deste novo estado pois sempre há a possibilidade de se criar novos estados. Então temos:

- Fechamento- ϵ (Movimento(E, a)) = { 3, 8, 6, 1, 2, 4, 7 } (B)
- Fechamento- ϵ (Movimento(E, **b**)) = { 5, 6, 1, 2, 4, 7 } (C)

A Tabela 1 resume as informações. Podemos representar através de uma diagrama de transições as informações da Tabela 1, criando o autômato determinista correspondete. A Figura 2 ilustra esse novo autômato.

Tabela 1: Resumo das transições da conversão do autômato da Figura 1

		Tra	ansições	
Subconjunto	Identificador	a	b	Comentário
{ 0, 1, 2, 4, 7 }	A	В	\mathbf{C}	Calculado a partir do Fechamento- ϵ (0)
{ 3, 8, 6, 1, 2, 4, 7 }	В	В	D	
{ 5, 6, 1, 2, 4, 7 }	\mathbf{C}	В	\mathbf{C}	
$\{9, 5, 6, 1, 2, 4, 7\}$	D	В	E	
{ 10, 5, 6, 1, 2, 4, 7 }	E	В	C	Estado E é final pois tem 10

Figura 2: Autômato finito determinístico para a expressão $(a|b)^*abb$