Homework Assignment 1: Brain Tumor Segmentation with U-Net

Due time: Friday, February 14, 11:59 PM

Overview

In this homework, you will:

- 1. Implement a custom U-Net architecture with **4 downsamplers** and **4 upsamplers** to reinforce your understanding of how a U-Net is constructed.
- 2. Use the MSD (Medical Segmentation Decathlon) Brain Tumor dataset.
- 3. Perform **5-Fold Cross Validation** on the training set:
 - In each fold, train on 80% of the images (training split) and evaluate on the remaining 20% (validation split).
- 4. Train your U-Net for 30 epochs on each fold.
- 5. Plot the **training loss** and **Dice Score Coefficient** (DSC) for each epoch within each fold.
- 6. Combine the results from all folds to:
 - o Plot the **mean** and **standard deviation** of the **training loss** across folds.
 - Plot the mean and standard deviation of the Dice Score across folds.
- 7. **Visualize** the segmentation performance for **5 randomly selected images** from the validation set in each fold. Your figure for each selected case must show:
 - o **Column 1**: The input image slice (one channel if multi-channel).
 - o Column 2: The ground truth segmentation label.
 - o Column 3: The model's predicted segmentation.
 - Display the IoU (Intersection-over-Union) metric above the predicted segmentation.
- 8. **Answer conceptual questions** about cross-validation, loss functions for segmentation, and common metrics (Cross-Entropy Loss, Dice Coefficient, IoU).

Part A: Conceptual Questions

Please provide short written answers to each:

1. What is k-fold cross-validation?

Define what cross-validation is, what "folds" represent, and why it's used in machine learning.

2. What is the purpose of cross-validation?

Highlight how cross-validation helps in more robust evaluation of your model performance and how it might reduce variance in model performance estimates.

3. What is an appropriate loss function for segmentation models?

o Define Cross-Entropy Loss mathematically and in words.

4. Define the Dice Coefficient Score

 Provide the formula and interpret how it is suitable for medical image segmentation tasks.

5. Define IoU (Intersection over Union)

- o Provide its formula.
- Describe how IoU relates to Dice and in which scenarios IoU might be preferable (or not).

Part B: Implementation

1. U-Net Construction

• Implement a U-Net with a 4 downsampling blocks and 4 upsampling blocks.

2. Data Setup

- Use the **MSD Brain Tumor** dataset that was used in the class notebook.
- **Optional**: If you do not have local access, you can replicate the same environment in Google Colab or any environment with PyTorch installed.

3. 5-Fold Cross Validation

- 1. Create 5 folds from your dataset.
 - o Randomly shuffle your list of image—label pairs.
 - o Split them into 5 roughly equal subsets.
 - o For each fold k:
 - Use the k-th subset (20%) for **validation**.
 - Use the remaining 4 subsets (80%) for **training**.

2. Within each fold:

- o Train your U-Net model using training split.
- Validate using the validation split.
- Train for 30 epochs.
- o Record **training loss** and **Dice score** after each epoch.

4. Training and Logging

- Loss Function: Use Cross-Entropy Loss or a combination of CE + Dice Loss.
- Optimizer: Choose an optimizer.
- For each epoch, record:
 - o The **training loss** (averaged across all mini-batches).
 - o The training Dice score (averaged across mini-batches).
 - o The **validation loss** (averaged across the validation subset).
 - o The **validation Dice score** (averaged across the validation subset).

5. Plots & Statistical Analysis

1. Per-Fold Plots:

- o Plot the training loss vs. epochs for each fold.
- o Plot the Dice score vs. epochs for each fold.
- o Label the fold number clearly.

2. Aggregate Plots:

- o Combine the final results from all 5 folds to produce:
 - A single line plot for **training loss** (epoch on the x-axis, loss on the y-axis) that shows the **mean** across folds plus the **standard deviation** (e.g., shaded region or error bars).
 - A single line plot for Dice score that similarly shows the mean ± standard deviation.
- Clearly label your axes and use a legend or error bars/shading to represent the standard deviation.

6. Segmentation Visualization

For **each fold**:

- 1. Select **5 random images** from the fold's validation split.
- 2. For each selected case, produce a **3-column figure**:
 - o Column 1: Input image (one slice if multi-slice).
 - o Column 2: Ground-truth segmentation (label).
 - Column 3: Model's predicted segmentation with the IoU metric displayed above or next to the predicted mask.
 - Compute IoU on the **segmentation mask** at the slice level.
 - Show the numeric value of IoU (e.g., as text on the figure).

Submission Guidelines

Please include your Code Notebook, Written Answers document (PDF), and Figures (if they are not embedded in the code notebook) in a single zip file named as [Lastname]_[Firstname]_HW_1.

1. Code Notebook:

- o [Lastname] [Firstname] HW 1.ipynb containing:
 - 1. U-Net model implementation.
 - 2. Data splitting and 5-fold cross-validation loop.
 - 3. Training procedure (including your choice of hyperparameters).
 - 4. Loss and Dice plots for each fold and the aggregated mean \pm std plots.
 - 5. Visualization of results with IoU displayed.

2. Short Report / Written Answers:

- o Answer the conceptual questions (Part A).
- Summarize your main results (best Dice, average Dice across folds, best IoU, etc.).

3. **Figures**:

o Attach or embed final figures in your notebook or provide separate files.

4. Optional:

 Share any insights or difficulties you encountered (data size, GPU memory, overfitting, or unexpected behaviors).

Grading Rubric

1. Correct U-Net Implementation (20%)

- o Architecture matches the requested downsamplers/upsamplers.
- o Code compiles and runs without errors.

2. 5-Fold Cross Validation Setup (20%)

- o Properly divides dataset into 5 folds.
- Each fold trains on 80% / validates on 20%.
- o Clear reporting of per-fold performance.

3. Plots (20%)

- o Training loss and Dice score vs. epoch for each fold.
- \circ Mean \pm standard deviation plots across all folds.
- o Axes labeled, curves are readable.

4. Segmentation Visualization (20%)

- 5 random validation samples per fold.
- o 3-column figure: Input / Ground Truth / Prediction + IoU.
- o IoU displayed clearly.

5. Conceptual Answers (20%)

- o Definitions: cross-validation, Dice, IoU, Cross-Entropy.
- Clarity on why cross-validation is used and how it benefits medical imaging with limited data.
- o Appropriate depth of explanation.

Total: 100%