TP: reconnaissance de classes Θ (Début)

Rappel (simplifié)

On dit qu'un programme est d'une **complexité** dans $\Theta(f(n))$ si le nombre d'opérations qu'effectue ce programme est proportionnel à f(n)

Les programmes demandés ci dessous devont être écrits "sans tricher" :

- les répétitives doivent être entre 1 et n
 - Une répétitive Pour i de 1 à 2^n est le type même de ce dont je ne veux pas
- les points d'arrêts et les appels initiaux des récursives ne doivent comporter ni exponentiel, ni puissance.

Question 1

- 1. écrire des programmes
 - void $f_1(int \ n)$ dont la complexité soit dans $\Theta(n)$,
 - void $f_3(int \ n)$ dont la complexité soit dans $\Theta(n^3)$,
 - void $g_2(int \ n)$ dont la complexité soit dans $\Theta(2^n)$
 - et void $g_3(int \ n)$ dont la complexité soit dans $\Theta(3^n)$.

A partir de quelle valeur de n sentez vous la différence entre l'exécution des programmes

- $f_1(n)$ et $f_3(n)$?
- $f_3(n)$ et $g_2(n)$?
- $-g_2(n)$ et $g_3(n)$?

y a-t-il une valeur de n pour laquelle vous sentez une différence entre

- l'exécution du programme $f_3(n)$
 - et l'exécution successive des programmes $f_1(n)$ et $f_3(n)$?
- l'exécution du programme $g_2(n)$
 - et l'exécution successive des programmes $f_3(n)$ et $g_2(n)$?
- l'exécution du programme $g_3(n)$
 - et l'exécution successive des programmes $g_2(n)$ et $g_3(n)$?

Indications:

Pour les programmes de complexité polynomiale, imbriquez des répétitives. Pour les programmes de complexité exponentielle, utilisez des appels récursifs.

Travail à rendre pour la question 1

Le fichier Q1.cpp devra contenir

- le code de toutes vos fonctions
- Un main qui réponde à chacune des six questions et pour chacune des questions
 - affiche de quelle question il s'agit
 - la valeur trouvée pour n
 - et fasse les deux appels correspondants en affichant un message au début de chacun des deux appels.
- et la dernière ligne du fichier devra être / / g++ Q1.cpp -o R1