CMPE 314 Midterm Exam-1 Solutions

PI

(a) Depart type: acceptor, group III atoms

Depart concentration $N_a = P_0 = 8 \times 10^{14} \frac{1}{\text{cm}^2}$ Minority carrier is electron

Electron concentration $n_0 = \frac{n_1^2}{P_0} = \frac{n_1^2}{N_a}$

Forward bias: majority carriers
electrons moving from n-region to p-region.
holes moving from p-region to n-region

Reverse bias: minority carriers
holes moving from n-region to p-region
electrons moving from p-region to n-region

Reverse break down: excess carriers
electrons and holes generated in the
space-charge region. Holes moving to
p-region, electrons moving to n-region

PZ

(a)
$$I_{I} = I_{R_1} + I_{D}$$

$$I_{R_1} = \frac{V_c}{R_1}$$

$$I_{D} = I_{S} (e^{V_{D}N_{T}} - 1)$$

$$V_{O} = V_{B} + V_{D}$$

- (b) ① When II is too small, $I_D = 0$, divide is off $V_0 = R$, $I_I \leq V_B + V_S$
 - (2) When $R_1I_I > V_B + V_Y$, diode is on $I_I = I_{R_1} + I_D$ $I_{R_1} = \frac{V_0}{R_1}$ $V_D = V_X + \Gamma_f I_D$ $V_0 = V_B + V_D$

P3

When
$$U_s > V_y \rightarrow D_1$$
 off $\rightarrow U_0 = -U_s + V_y$

$$D_2 \text{ on} \qquad U_{0,\text{max}} = -5 + 0.7 = -4.3 \text{ V}$$
When $U_s < -V_y \rightarrow D_1$ on $\rightarrow U_0 = U_s + V_y$

$$D_2 \text{ off} \qquad V_{0,\text{max}} = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

$$V_0 \rightarrow V_0 = U_s + V_y \rightarrow V_0 = -5 + 0.7 = -4.3 \text{ V}$$

P4

(a)
$$V_{I} < V_{B} - V_{Y}$$
, divide on $V_{o} = V_{B} - V_{Y}$

$$V_{I} > V_{B} - V_{Y}$$
, divide off $V_{c}(t) = V_{I}(t)$

(b)
$$V_B - V_Y = 5 - 0.7 = 4.3V$$

clipper circuit

 $\frac{P5}{(a)}$ Let $V_c(0) = 0$

When UI > VB+Vr, diode on, capacitor charging

When UI < VB + Vr, divde off capacitor discharging slowly

Vo = Vc(max)

In steady state

(b)
$$V_{clmax} = 30 - (2 + 0.7)$$

= 27.3 V

$$U_c(t) = U_{I}(t) - 27.3 V$$

clamper circuit

Zener diode is reverse break down

$$\frac{V_0 - V_{ps}}{R} + \frac{V_0 - V_{zo}}{\Gamma_z} + \frac{V_0}{RL} = 0$$

$$\rightarrow V_0 = V_7 = 5.073 V$$

$$I_2 = \frac{V_2 - V_2}{V_2} = \frac{5.073 - 5}{10} = 7.3 \text{ mA}$$

$$\frac{V_0 - V_{ps}}{R} + \frac{V_0 - V_{zo}}{r_z} = 0$$

variation of Vo due to variation of Vps $\Delta V_0(\frac{1}{R} + \frac{1}{R}) = \frac{\Delta V_{PS}}{R}$

$$\Rightarrow \frac{dV_0}{dV_{pS}} = \frac{r_z}{R + r_z} = \frac{10}{500 + 10} = 1.96\%$$