

Chapter 5 LAN & MAC

Tran Thanh Dien, PhD
College of Information and communication Technology
Can Tho University

Contents

- Channel allocation Methods
 - Channel partitioning
 - Random Access
 - Taking Turning
- Ethernet

Network Classification by diameter

D	iameter	Host Location	Network Type	
	1 m	Square meter	Personal area network	
	10 m	Room		
	100 m	Building	Local area network	
	1 km	Campus		
	10 km	City	Metropolitan area network	
	100 km	Country	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	1000 km	Continent	Wide area network	
10	,000 km	Planet	The Internet	

Local Area Network LAN characteristics

- One channel shared by all hosts
- Using broadcast transmission technique
- Not require a witching unit such as routers or switches in simple LAN

Local Area Network LAN parameters

- Topology: specify the connection schema of hosts in a LAN
- Shared channel: specify the type of the channel used to connect hosts in a LAN (Coaxial cable, Twisted pair cable, fiber optical cable)
- Protocol of medium access control (MAC Protocol): Specify the way/method used by hosts to share a common channel in a LAN
- MAC Protocol controls access of hosts to a channel of a LAN and is the base for identifying characteristics of a LAN

Local Area Network LAN topologies

Local Area Network Multiple access links

3 types of channels

- 1) Point to point (single wire, e.g. PPP, SLIP)
- 2) Broadcast (shared wire or medium; e.g, Ethernet, etc)
- 3) Switched (switched Ethernet, ATM)

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

humans at a cocktail party (shared air, acoustical)

Local Area Network Medium Access Control Protocol

- LAN: One channel shared for all hosts
- Two hosts transmitting data at the same time will cause signal overlap \rightarrow transmission error status
- Only one host is permitted to send data at a point of time
- Need a protocol to control the sharing of channel between hosts → Medium Access Control Protocol (MAC Protocol)

Local Area Network Medium Access Control Protocol

- Data link layer divided into two sub-layers
 - Logical Link Control layer (LLC layer)
 - Medium Access Control layer (MAC layer)
- LLC Layer:
 - Communicates with network layer
 - Responsible for error control and flow control
 - Provides services for network layer
 - ✓ Unacknowledged connectionless service
 - ✓ Acknowledged connectionless service
 - ✓ Connection oriented service

Local Area Network Medium Access Control Protocol

MAC layer:

- Creates frames including a header (sender address, receiver address), data and checksum
- Receives frame, extracts sender address and receiver address, data, and detects frame error
- Controls access to medium
 - ✓ This function is not included in traditional data link layer
- One LLC layer can have many types of MAC layer

Local Area Network Data units

Local Area Network Medium Access Control Protocols

- Channel partitioning protocols
 - ✓ Partition the channel into many parts (time slots, frequency, code)
 - ✓ Allocate each part to a host for using in an exclusive way
- Random access protocols
 - ✓ Allow the collision between hosts in using a channel
 - ✓ Redo after collision
- Taking turn protocol
 - ✓ Cooperation between hosts in using the channel to avoid the collision

Medium Access Control Protocols: Channel partitioning

- Partition the channel into many parts
- Allocate each part to a host for using
- Three principle methods
 - ✓ FDMA (Frequency Division Multiple Access)
 - ✓ TDMA (Time Division Multiple Access)
 - ✓ CDMA (Code Division Multiple Access)

Medium Access Control Protocols: Channel partitioning

Frequency Division Multiple Access

- Channel spectrum divided into frequency bands
- Each station assigned a fixed frequency band
- Unused transmission time in frequency bands go idle

Example: 6-station LAN; 1, 3 and 4 have data; frequency bands 2,5,6 idle

Medium Access Control Protocols: Channel partitioning

- Frequency Division Multiple Acces
 - Advantages
 - ✓ No collision between hosts
 - ✓ Efficient in systems with small and stable number of users; each user always have data to send
 - Disadvantages
 - ✓ Waste of channel if the number of users smaller than the number of frequency bands
 - ✓ User request denied if the number of users larger than the number of frequency bands
 - ✓ Not exploit the maximum capacity of the channel

Medium Access Control Protocols: Channel partitioning

TDMA (Time Division Multiple Access)

- A set of *N* users share the same radio channel, but each user only uses the channel during predetermined slots
- Each station will be assigned a time slot that is long enough to send a frame
- When a station is in turn and assigned a time slot but it has no data to transmit, it still occupies the time slot.
 - ✓ The slot is considered in idle state

Medium Access Control Protocols: Channel partitioning

TDMA (Time Division Multiple Access)

- Example: A 6-station LAN
 - \checkmark Frame 1: 1, 2,4,5 have data, slots 2 and 6 idle
 - ✓ Frame 2: 2,5, 6 have data, slots 1, 3, 4 idle

Medium Access Control Protocols: Channel partitioning

TDMA

- Advantages
 - ✓ Collision Free
- Disadvantages
 - ✓ Unused slot at a node goes useless while another node could not use it
 - ✓ TDMA requires synchronization between different stations
 - ✓ Why is time synchronization a headache?
 - ***** Extra communication
 - Synchronization error
 - Does not scale

Medium Access Control Protocols: Channel partitioning

- CDMA (Code Division Multiple Access)
 - Used mostly in wireless broadcast channels such as cellular phones
 - All users share same frequency band.
 - Each station to transmit over the entire frequency spectrum all the time
 - Each user has their own orthogonal Wash code 'chipping' sequence to encode data
 - To detect the message, receiver should know the codeword used by transmitter
 - In CDMA, the number of users i not limited but its performance degrades

Medium Access Control Protocols: Channel partitioning

- CDMA (Code Division Multiple Access)
 - Time for sending a bit (so-called bit time) divided into m short intervals called chips
 - ✓ Typically, there are 64 chips or 128 chips per bit time
 - Each station assigned a unique code at long of m-bit code, called chip sequence
 - Chip sequence of a user used to encode and decode his data

Medium Access Control Protocols: Channel partitioning

- Given a chip sequence 11110011
 - ✓ To send bit 1, the sender will send his chip sequence 11110011
 - \checkmark To sen bit 0, the sender will send the complement of his chip sequence 00001100
- Use bipolar signal
 - \checkmark Bit 0 is represented by -1
 - ✓ Bit 1 is represented by +1
- The chip sequence 11110011 becomes +1+1+1+1-1-1+1+11

Medium Access Control Protocols: Channel partitioning

CDMA (Code Division Multiple Access)

• S•T is the inner product of two code S and T

$$S \bullet T = \frac{1}{m} \sum_{i=1}^{m} S_i T_i$$

Example

$$S = +1+1+1-1-1+1+1-1$$

$$T = +1+1+1+1-1-1+1-1$$

$$S \bullet T = \frac{+1+1+1+(-1)+1+(-1)+1+1}{8} = \frac{1}{2}$$

• If all chip sequences are pairwise orthogonal, then they can send data concurrently with low possibility of inference

Medium Access Control Protocols: Channel partitioning

CDMA (Code Division Multiple Access)

- Coding data bit for sending
 - ✓ D_i: data bit that user i want to transmit to the channel
 - \checkmark C_i: chip sequence of user I
 - ✓ Encoded signal of user i:

$$Z_i = D_i \times C_i$$

✓ Combined signal transmitted on the channel:

$$Z = \sum_{i=1}^{n} Z_i$$

n number of users transmitting data on the channel at the same time

Medium Access Control Protocols: Channel partitioning

- Decoding data bit
 - Extracting Data of user i from combined signal: $D_i = Z_i \cdot C_i$
 - If D_i > "threshold", then D_i is 1, otherwise D_i is -1

Medium Access Control Protocols: Channel partitioning

Medium Access Control Protocols: Channel partitioning

CDMA (Code Division Multiple Access)

• A system with 4 user A, B, C, D having chip sequence as the following

A: 0 0 0 1 1 0 1 1 B: 0 0 1 0 1 1 1 0 C: 0 1 0 1 1 1 0 0 D: 0 1 0 0 0 0 1 0

• Representation of chip sequence in bi-polar signal

Note that all chip sequences are orthogonal

Medium Access Control Protocols: Channel partitioning

CDMA (Code Division Multiple Access)

1	\wedge 1			1	1 • ,	1
	l Inli	U 110 ΔT	•	CANC	h ₁ t	•
1.	OIII	y user		SCHUS	UIL	1.
		<i>J</i>		~ ~ ~ ~		

$$Z = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$Z = (-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2)$$

$$Z = (0 \ 0 - 2 + 2 \ 0 - 2 \ 0 + 2)$$

$$Z = (-1+1-3+3+1-1-1+1)$$

$$Z = (-4 \ 0 - 2 \ 0 + 2 \ 0 + 2 - 2)$$

$$Z = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0)$$

Calculate original bit of user C from combine signal

Medium Access Control Protocols: Random access protocols

- If a station need to send a frame
 - ✓ It will send the frame onto the entire bandwidth of the channel
 - ✓ There is no cooperation between stations
- If there are two stations sending frame at the same time then collision will occur, both two frame will be damaged.
- Random access protocols have to propose methods for
 - ✓ Detecting collision
 - ✓ Redoing after a collision
- Example of random access protocols: Slotted ALOHA, Pure ALOHA, CSMA and CSMA/CD

Medium Access Control Protocols: Random access protocols

- Pure (Unslotted) ALOHA
 - Let users transmit whenever they have data to be sent
 - Whenever two frames try to occupy the channel at the same time, there will be a collision and both will be garbled/destroyed

- Sender just waits a random amount of time and sends the frame again
- A frame sent at moment t0 will conflict with frames sent in period [t0-1, t0+1]

Medium Access Control Protocols: Random access protocols

Slotted ALOHA

- Time is divided into discrete intervals called slots, each interval corresponding to one frame time
- A station will send a frame at the beginning of the next slot
- If collision occurs, the station will retransmit the frame at the following slots

Success (S), Collision (C), Empty (E) slots

Medium Access Control Protocols: Random access protocols

- CSMA Carrier Sense Multiple Access protocol
 - Stations listen for a carrier (i.e., a transmission) and act accordingly
 - When a station has data to send, it first listens to the channel to see if anyone else is transmitting at that moment
 - If the channel is idle, the stations transmit entire frame immediately
 - ✓ If a collision occurs, wait for a random period then repeat the transmission again.

Medium Access Control Protocols: Random access protocols

- CSMA Carrier Sense Multiple Access protocol
 - If the channel is busy:
 - ✓ 1-persistent: Listen until the channel is available then the station transmits immediately (with probability of 1)
 - ✓ Non-persistent CSMA:
 - o waits a random time period and then check the medium again
 - Transmitting immediately when the channel available
 - ✓ P-persistent CSMA: Listen until the channel is available then the station transmits with the possibility p

Medium Access Control Protocols: Random access protocols

Comparison of the channel utilization versus load

Medium Access Control Protocols: Random access protocols

CSMA collisions

- Collision can still: propagation delay means two nodes can't hear each other's transmission
- Collision: entire frame transmission time wasted
- The distance between two stations and the propagation delay have an important effect on collisions

Medium Access Control Protocols: Random access protocols

CSMA/CD (CDMA with Collision Detection)

- Use a carrier sensing scheme in which station continue detecting other signal while transmitting a frame
- When collision detected, station:
 - ✓ Stops transmitting that frame
 - ✓ Sends jamming signals to tell other stations that collision has occurred
 - ✓ Waits for random interval (backoff) before trying to resend the frame
- Used to improve CSMA performance by terminating transmission as soon as a collision detected

Medium Access Control Protocols: Random access protocols

Medium Access Control Protocols: Random access protocols

CSMA/CD: Time of frame transmission

- T_{prop} is propagation time between the two farthest station on a channel
- At point of time t, A begins to transmit a frame
- At point of time $t+T_{prop}-\varepsilon$, B find that the channel is idle, so it transmits its frame
- At point of time t+T_{prop}, B detect a collision
- At point of time $t+2T_{prop}$ - ϵ , A detect a collision

Medium Access Control Protocols: Random access protocols

CSMA/CD: Point of time for destroying a collided frame

thay vì lãng phí thời gian để truyền hết khung bị đụng độ, hủy bỏ việc truyền ngay sau khi đụng độ xảy ra

Medium Access Control Protocols: Random access protocols

CSMA/CD: redo after a collision

- After detecting the frame collided, the station runs back-off algorithm to calculate amount of time it has to wait for before retransmitting the frame
 - ✓ The time must be random to avoid a collision occurring again
- Back-off algorithm
 - 1) Get a random an integer number M, 0<M<2^k
 - \checkmark k=min(n,10)
 - ✓ n: number of collision times for the current frame
 - 2) A mount of time the station has to wait for before retransmitting the frame: M*Tw
 - 3) If n reaches 16 times, cancel the transmission for this frame

www.ctu.edu.vn

Medium Access Control Protocols: Taking turn protocols

- Channel partitioning protocols
 - ✓ Channel is divided effectively and fairly for channel with high bandwidth
 - ✓ Ineffective with the channel having low traffic
- Random access protocols
 - ✓ Effective with the channel having low bandwidth
 - ✓ Ineffective with the channel having high traffic, high collision rate
- Taking turn protocol
 - ✓ Taking advantages of the two above protocols
 - ✓ Avoid collision occurring by queuing requests of accessing the channel

Medium Access Control Protocols: Taking turn protocols

Polling protocol

- ✓ Master station demands a slave station to send
- ✓ Master station schedule accessing channel for every slave stations or master station accepts a request for accessing the channel from a slave
- ✓ Issues: Polling cost, delay, out-off control when master station is died

Token passing protocol

- ✓ A token will be passed from one station to other.
- ✓ When a station holds the token, it has the permission to transmit a frame.
- ✓ A station pass the token to the next station after finishing a frame transmission
- ✓ Issues: Cost for token management, delay in waiting the token, loss of token

Medium Access Control Protocols: Taking turn protocols

Polling protocol

- Consisting of reservation phase and transmission phase
- Reservation phase consists N bits (reservation bit) corresponding to N stations
 - ✓ If station i have data to send, it set its reservation bit into 1
- Transmission phase
 - ✓ Stations begin transmitting frames in numerical order

Medium Access Control Protocols: Taking turn protocols

Token passing protocol

- Token small message passed from one station to the next in the predefined order.
- Token represents permission to send
- If a station has a frame queued for transmission when it receives the token, it send that frame before it passes the token to the next station
- If it has no queued frame, it simply passes the token

Medium Access Control Protocols: Taking turn protocols

Token passing protocol

- When a frame arrives a station:
 - ✓ If the station's address is equal to receiver's address of the frame: it copy the frame into it buffer
 - ✓ If the station's address is equal to sender's address of the frame, it remove the frame from the ring
 - ✓ Otherwise, it simply passes the frame to the next station

Medium Access Control Protocols: Taking turn protocols

Token passing protocol: Time to release the token

a) RAT- Release After Transmission

b) RAR- Release After Reception

www.ctu.edu.vn

Medium Access Control Protocols: Taking turn protocols

Token passing protocol

Given

- ✓ THT: Token Holding Time
- ✓ TRT: Token Rotation Time
- ✓ Active station: Station in working
- ✓ Ring delay: Amount of time that the token passes through all nodes where these is no active station

Then

✓ TRT <= number of active station * THT + ring delay

Medium Access Control Protocols: Taking turn protocols

Token passing protocol: Manage the ring

- One station is proposed to play the role of monitor
 - ✓ Monitor takes care of the health of the ring
 - ✓ Any station can become the monitor
 - ✓ A campaign for electing a monitor happens when the ring is initiated or the current monitor is not active
 - ✓ A healthy monitor will send to all stations periodically a special message that indicates the present of the monitor
 - ✓ If a station hasn't received the special message from the current monitor in a predefined interval, it will try to promote itself to be a monitor

Medium Access Control Protocols: Taking turn protocols

Token passing protocol: Manage the ring

- ✓ If a station wants to become the monitor, it will send a demand message to all stations to announce that it would like to be the monitor
- ✓ If this announcement message passes all stations and return, it thinks that everyone agree to its demand and then it begins to play the role of a monitor
- ✓ If many stations want to be the monitor, several rules applied to select one station for the monitor role, such as the station with the highest address.

Medium Access Control Protocols: Taking turn protocols

Token passing protocol: Functions of a monitor

- ✓ Ensuring the existence of the token in the ring
- ✓ When the token passes the monitor, the monitor setup a timer with a maximum time-out value being:

number of active station * THT + ring delay

✓ The monitor also checks for error frames or frames that no station receives

Mô hình tham khảo OSI

Local Area Network LAN Standards

Mô hình tham khảo cho mạng LAN

- MAC: Control access to the medium
- LLC: ensure an independence between management of links and
 - ✓ Medium
 - ✓ MAC protocols

Local Area Network LAN Standards

IEEE (Institute of Electrical and Electronic Engineers)

- ✓ Developing standards for the computer and electronics industry.
- ✓ IEEE 802 standards for local-area networks are widely followed

Local Area Network LAN Standards

- ✓ IEEE 802.1 : High Level Interface
- ✓ IEEE 802.2 : Logical Link Control (LLC)
- ✓ IEEE 802.3: CSMA/CD
- ✓ IEEE 802.4: Token bus
- ✓ IEEE 802.5: Token ring
- ✓ IEEE 802.6: MAN
- ✓ IEEE 802.7: Broadband Technical Advisory Group
- ✓ IEEE 802.8: Fiber Technical Advisory Group
- ✓ IEEE 802.9: Integrated Data and Voice Network
- ✓ IEEE 802.10: Standard for Interoperable LAN security
- ✓ IEEE 802.11: Wireless LAN
- ✓ IEEE 802.12: 100VG AnyLAN

LAN Standards: IEEE 802.3

Invented by Bob Metcalfe, (Xerox PARC, 1972)

- Preamble: 7 bytes of 10101010 and 1 byte of 10101011, used to synchronize transmission rate between sender and receiver
- Source and destination addresses (6 bytes): the address of the sender and receiver off the frame, respectively
 - ✓ 8:0:2b:e4:b1:2

- Type: Protocol used by network layer, such as IP, Novell IPX, AppleTalk...
- CRC: Used by receiver to detect error

- MAC address: Every Ethernet adapter has a unique address
 - ✓ Media Access Control (MAC)
- Burned into ROM in hardware
- Sequence of six numbers separated by colons
 - ✓ Six binary numbers
 - ✓ Usually displayed in hex for humans
- Example:

 - 8:0:2b:e4:b1:2

- MAC address: Every Ethernet adapter has a unique address
 - ✓ Ethernet Adapter receives all frames and accepts frame that are addressed to
 - Its own address
 - Broadcast address (all 1's)
 - Multicast address that it has been program to accept
 - ✓ Can also be put into promiscuous mode to accept all frames
 - Only used in network debugging and hacking

LAN Standards: IEEE 802.3

Line coding method: Manchester

LAN Standards: IEEE 802.3

CSMA/CD+Exponential backoff

Receive a packet from higher layer

- K := 0; n := 0; // K: a random waiting time; n: number of collision times
- Repeat:

```
Wait for K*512 bit-time;
while (line is busy) wait;
Wait for 96 bit-time after the line is idle
Send frame and listen for collision
if (collision occurred) {
    Stop transmission and transmit 48-bits to emphasize the collision;
n ++;
m := min(n, 10);
Choose K randomly from the set of \{0, 1, 2, ..., 2m-1\}.
if (n < 16) goto repeat;
else cancel the transmitting frame;
```


LAN Standards: IEEE 802.3

CSMA/CD+Exponential backoff

Receive a packet from higher layer

- K := 0; n := 0; // K: a random waiting time; n: number of collision times
- Repeat:

```
Wait for K*512 bit-time;
while (line is busy) wait;
Wait for 96 bit-time after the line is idle
Send frame and listen for collision
if (collision occurred) {
    Stop transmission and transmit 48-bits to emphasize the collision;
n ++;
m := min(n, 10);
Choose K randomly from the set of \{0, 1, 2, ..., 2m-1\}.
if (n < 16) goto repeat;
else cancel the transmitting frame;
```


Local Area Network Ethernet

- 10BaseT: (T "twisted"): hoạt động tốc độ 10 Mb/s, dựa trên hệ thống cáp UTP Cat 3 trở lên, chiều dài cáp tối đa cho 1 phân đoạn mạng là 100m
- 10BaseF (F là viết tắt của Fiber Optic): hoạt động ở tốc độ 10 Mb/s, dựa trên hệ thống cáp quang, chiều dài cáp tối đa cho 1 phân đoạn mạng là 2000m

Local Area Network Ethernet Performance

Efficiency of Ethernet at 10 Mbps with 512-bit slot times.

Local Area Network Ethernet

Original IEEE	IEEE Shorthand Name	Informal Name(s)	Speed	Typical Cabling
802.3i	10BASE-T	Ethernet	10 Mbps	UTP
802.3u	100BASE-T	Fast Ethernet (Fast E)	100 Mbps	UTP
802.3z	1000BASE-X	Gigabit Ethernet (Gig E, GbE)	1000 Mbps	Fiber
802.3ab	1000BASE-T	Gigabit Ethernet (Gig E, GbE)	1000 Mbps	UTP
802.3ae	10GBASE-X	10 GbE	10 Gbps	Fiber
802.3an	10GBASE-T	10 GbE	10 Gbps	UTP
802.3ba	40GBASE-X	40GbE (40 GigE)	40 Gbps	Fiber
802.3ba	100GBASE-X	100GbE (100 GigE)	100 Gbps	Fiber

