Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"
[LCBE] Langlands correspondence and Bezrukavnikov's equivalence

[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)

https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables.

K-(-)	pt	B TB	3×B T*(8×B)	Sŧ
G	Z[x*(T)]"	$\mathbb{Z}[x^*(T)]$	$\mathbb{Z}[x^*(\tau)]\otimes_{\mathbb{Z}[x^*(\tau)]^{w}}\mathbb{Z}[x^*(\tau)]$	$Z[W_{ext}]$
В	Z[x*(τ)]	$\mathbb{Z}[X^*(T)] \otimes_{\mathbb{Z}[X^*(T)]}^{\mathbf{w}} \mathbb{Z}[X^*(T)]$	$\mathbb{Z}[\chi^{\tau}(\tau)] \otimes_{\mathbb{Z}[\chi^{\tau}(\tau)]^{w}} \mathbb{Z}[\chi^{\tau}(\tau)] \otimes_{\mathbb{Z}[\chi^{\tau}(\tau)]} \mathbb{Z}[\chi^{\tau}(\tau)]$	
Id	7/			Z[x*(1)]/_~Z[W]
$G \times \mathbb{C}^*$	ℤ[x*(τ)] " [t	±1]		\mathcal{H}_{ext}
β× ¢ *	Z/[x*(t)][t*	"]		
C*	Z [t±]			

We use the shorthand.

K-(-)	pt	B T*B	B×B T*(BXB)	St
G	, К(т) ^w	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	$R(T) \otimes_{R(G)} R(T)$	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	72			RIJ//_~Z[W]
۵×۵*	R(G)[t ^{±1}]			Hext
Β× C *	R(T)[t ^{±1}]			
C*	Z'[t [±]]			

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{\mathbf{w}} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathbb{C}) = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[t^{\frac{1}{2}}]$$

$$K^{G \times \mathbb{C}}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St
SL.	Z(r)	Z [¿ ^{±'}]	Z[zt, zt] (2-21)(2-21)	$Z[W_{ext}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$
B	$\mathbb{Z}[y^{\pm 1}]$	Z[yt',z]/(z-y)(z-y')	Z(y ^{±),} ₹1, ₹2]/((₹,-y)(₹,-y ⁺⁾), (₹1-y)(₹1-y ⁻¹))	
Id	72	7/[2]/(2-1)2	Z[2,, 2,]/((2,-1)2,(2,-1)2)	$R^{(T)}/_{I_{T}} \times Z[W_{f}] = \bigoplus_{\omega \in W} Z[z_{\omega}^{\pm 1}]/_{(z_{\omega}-1)^{2}}$
St xCx	Z∕[×,t [±]]			Hext = D Z[Zw, ti]
B× ¢ *	Z[yt',tt]			
C*	Z'[t [±]]			

K-(-)	pt	Fd Repd(Q)	$F_{\underline{d}} \times F_{\underline{d}}$	Zd.d'
Gd	R(Ta) ^{wa}	R(T _d)	R(Td)@R(Td)	
Bu	R(Ta)	R(J)⊗ _{R(Ga)} R(J _d) ⊕ _{we wa} R(Ja)[Ωω] ^{Ta}	R(T _a) & R(T _a) & R(T _a) & R(T _a) B(T _a) [[[]] T _a	[⊕] _{υ.ω'εwa} R(τα) [<u>π</u> ω,ω] ^{τα}
Id	72	بي الآي	Outer Z [sum.	$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \widehat{\Omega}_{w,w} \end{array} \end{bmatrix}$
C4×C*	R(Gd)[t ^{±1}]			
B _a ×¢*	R(T _e)[t ^{±1}]	C) Level	~	O to the a to the action of t
C*	Z(t [±]]	$\bigoplus_{n \in \mathbb{N}^n} K(\mathbb{C}_x) [\underline{Y}^n]_{c_x}$	$\bigoplus_{\omega,\omega'\in w_{d}} R(T_{d} \times C^{*}) \left[\overline{\Omega_{\omega,\omega'}} \right]^{T_{d} \times C^{*}}$ $\bigoplus_{\omega,\omega'\in w_{d}} R(C^{*}) \left[\overline{\Omega_{\omega,\omega'}} \right]^{C^{*}}$	$\bigoplus_{w,w'\in w_{\mathcal{A}}} R(T_{\mathcal{A}} \times \mathring{\mathbb{C}}) \left[\overline{\widetilde{\Omega}_{w,w'}} \right]^{T_{\mathcal{A}} \times \mathring{\mathbb{C}}^{\times}}$ $\bigoplus_{w,w'\in w_{\mathcal{A}}} R(\mathbb{C}^{\times}) \left[\overline{\widetilde{\Omega}_{w,w'}} \right]^{\mathbb{C}^{\times}}$

K-(-)	pt	Fd Repd(Q)	$F_d \times F_d$	Zd = 11 Zd.d.
Gd	R(Ta) ^{wa}	PR(Ta)	\$\frac{1}{2}\ R(\tau_i)\text{\text{\text{R(\tau_i)}}} R(\tau_i)	
Bu	R(Ta)	PRIJORICARITA)	PRUDO PRICAD RICAD PARCAD PARC	(ا مربعا (آلها) [(() مربعا (الم
Id	72	weww.Z[Ow]	O w,w' (Wid) Z [O w,w']	D. C. W. M. Z. [O w. w.]
C"×C,	R(Gd)[t ^{±1}]			
B _a ×¢*	R(T _e)[t ^{±1}]	$\bigoplus_{w \in W_{ul}} R(T_{ul} \times \mathbb{C}^{\times}) [\overline{\mathcal{O}}_{w}]$	Dec Wall R(Td x C) [Olon, w] Td x Cx	⊕, « «Mal R(Ta×¢) [Ju, w] Ta×¢
C*	Z [t±]	∞€W ₁₄₁ R(C*) [Ū ₃] c [×]	$\bigoplus_{\sigma,\omega'\in W_{fall}} R(\mathbb{C}^{x}) [\overline{\mathcal{O}_{\sigma',\sigma'}}]^{\mathbb{C}^{x}}$	$\bigoplus_{w,w'\in W_{kdl}} R(\mathbb{C}^{x}) [\overline{\widetilde{\mathcal{O}}}_{w,w'}]^{\mathbb{C}^{x}}$

$$H^{G_d}_*(Z_{\underline{d},\underline{d}}) \cong R(T_d) \otimes_{R(G_d)} R(T_d) \cong \bigotimes_{d_i} R(T_{d_i}) \otimes_{R(G_{d_i})} R(T_{d_i}) \cong \bigotimes_{d_i} N H_{d_i}$$

Orange: only know the R(Grp)-module structure, and the alg structure is yet not known light yellow: $R(G_d)$ -module + Wd-equiv iso

$$d = (1,2) \qquad \begin{array}{c} a \longrightarrow b \\ \langle v_1 \rangle \longrightarrow \langle v_2 \rangle \end{array}$$

$$\overrightarrow{V} \text{ The action on Flag is not the same as in} \qquad \begin{array}{c} \text{http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomes} \\ \text{sz%20Przezdziecki.pdf} \end{array}$$

		ŧ	# = WU			w	<u>d</u> = u	order of basis	((w)	(w)	B₩	Вы	₩B₩ ⁻¹
	Id	Id	(123)	111	c			ευ., υ ₂ ,υ ₃ }					[* * <u>*</u>]
	t	(23)	(133)	IX	[',']	Ι <u>Χ</u>	abb []	[v,,v3,v2]	ı				[*
	2	(12)	(123)	ΧŢ	[',']	ΙЦ	bab XI	{v., v, , v, }	1	0	[* * *]	[* * <u>*</u>	[* * *]
ŀ	ts	(132)	(312)	×	[,',]	IΧ	bab XI	ξυ _{3,} νι,,ν ₂ }	2	ı	[* * * * *	* **	[* * _*
	st	(123)	$\binom{123}{231}$	X	[',']	ΙЦ	bba 💥	[4,13,11]	2	0	[* * *]	[* * <u>*</u>]	[* * <u>*</u>
2	sts	(13)	(123)	\times	['']	<u> X</u>	bba 💥	[N3, N4, N1]	3	-	* * * *	[* _{* *}]	[* * <u>*</u>

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on. 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/ http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-SchubCells-Usp.pdf

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F), I)
 - How does $\mathcal{H}(G(F), I)$ reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref. [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/o611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Rep}_{\mathsf{K}}^{\mathsf{nil}}(\mathsf{W})}$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot 5$ [Lec 2-3]
- understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathsf{sl}}_{\mathsf{L}})$ [Lec 4]

Hor(IP') = Q: Horx

[Appendix 4]

- define (Quantum) Kac-Moody/loop algs

- Why is that graded

 $K_{\circ}(Rep^{\overline{a}}(R)) = U_{q}(n(Q))$

R = & H. GxCY, BM (Zy)

and what is $K_{\circ}\left(\operatorname{Rep}^{\mathbb{Z}}\left(\bigoplus_{i}K_{\circ}^{\mathsf{G}\times\mathbb{C}^{\mathsf{Y}}}(\mathsf{Zd})\right)\right) ?$

4. Work out the big picture

5. A closer check of Satake iso

Ko combinations Hecke alg

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_{F}))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{W} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_{F}))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{W}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathcal{C}') = \mathbb{Z}[X^*(T)]^{W}[t^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(T) \otimes_{R(G)} R(T) = N \mathcal{H}_{n} \subset End_{\mathbb{Z}}[\mathbb{Z}[X^*(T)])$$

$$K^{C*E^*}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{+} \mathcal{H}(\widehat{G}(F), I)$$
It's claimed by my school mate that
$$K_{0}(Perv_{B}(\mathcal{O}_{B})) \cong \mathcal{H}(G, B)$$

$$\downarrow^{\text{Sym} monoidal structure}$$

$$\text{induced from the convolution}$$
then, what is
$$K_{0}^{B}(B) \cong \mathcal{T}_{N}^{Stock}(B) \cong \mathcal{T}_{N}^{Stock}(B) \cong \mathcal{T}_{N}^{Stock}(B) \cong \mathcal{T}_{N}^{Stock}(B)$$

$$\mathcal{L}_{0}^{Stock}(B) \cong \mathcal{T}_{N}^{Stock}(B) \cong \mathcal{T}_{N}^{Stock}(B)$$

Now, about Steinberg varieties.

6 Draw a picture, indicating the shape/generalization of the following spaces.

(e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$)

G, B,T

B, T*B, St

g, g, gs, gs, N, N, N, h, n gh, Oh, Mw

7. Try to understand what Kazhdan - Lusztig polynomials are [KL2], and

- Compute the transformation matrix between

[[Tw], weWf] and [[]], weWf]?

- understand what standard /crystal basis is

- understand the relationship between KL poly and crystal basis

- see if it is related to two basis in Rep (G) (irr reps & multiplicative basis)

Answer from my schoolmate:

standard basis (KL-poly)

[[Tw], we Wf]

irr reps

canonical basis $\stackrel{\text{tix q}}{\leadsto}$ crystal basis [[Nm], w∈Wf]

multiplicative basis

8 Try to understand the module part, i.e.,

- numbers of components of the Springer fiber
- how does Korr(St) act on Korr (Springer fiber) also act on Korr (Repolar)

- does that occupy "all rep" of Korp (St)

9 Ways of finding multiplication structure

1 By direct computation (with techniques)

double coset calculus

Hecke algebra

2. By formulas as alg-isos

KG (B)

induction formula

3 By geometrical computation cohomology

cup product? de Rham calculus index theorem

Chow group

4. By deformation (indirect)

H top (St)

K G x C (St)

intersection theory

How to get a clear intersection formula of Grothendieck? It's claimed in the introduction of $[https://www.uni-due.de/~adc3o1m/staff.uni-duisburg-essen.de/Publications_files/excessgw.pdf], and the control of the contro$ but I can not find any other references about this excess intersection formula. How is it related to the Riemann-Roch theorem?

10. Different views on the double coset

$$B\backslash G/B = (*/B) \times_{*/G} (*/B)$$

- as a set
- as flag variety quotient B-action
- as a stack
- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), Hsph, (Haff)		week
Applying for tutorials, extend the residence permit, preparation for TOEFL exam, Klein AG	2	weeks
Summer school on Langlands & ICM watch (part)	1	week
. 1		
In total	11	weeks

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Qt.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.