

- = SOLID SUPPORT
 - R = TERMINAL PROTECTING GROUP FOR EXAMPLE: DIMETHOXYTRITYL (DMT)
- (1) = CLEAVABLE LINKER
 (FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR INVERTED DEOXYABASIC SUCCINATE)
 - = CLEAVABLE LINKER
 (FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR INVERTED DEOXYABASIC SUCCINATE)

INVERTED DEOXYABASIC SUCCINATE LINKAGE

GLYCERYL SUCCINATE LINKAGE


```
SENSE STRAND (SEQ ID NO 287)
               ALL POSITIONS RIBONUCLEOTIDE EXCEPT POSITIONS (N N)
      5'-
                                                           -3'
               A
          -5'
      3'-
                         ANTISENSE STRAND (SEQ ID NO 288)
                 ALL POSITIONS RIBONUCLEOTIDE EXCEPT POSITIONS (N N)
                       SENSE STRAND (SEO ID NO 289)
       ALL PYRIMIDINES = 2'-FLUORO AND ALL PURINES = 2'-OM EXCEPT POSITIONS (N N)
               -3'
\mathbb{B}
           -5'
      3'-
                      ANTISENSE STRAND (SEO ID NO 290)
      ALL PYRIMIDINES = 2'-FLUORO AND ALL PURÌNES = 2'-O-ME EXCEPT POSITIONS (N N)
                         SENSE STRAND (SEQ ID NO 291)
             ALL PYRIMIDINES = 2'-O-ME OR 2'-FLUORO EXCEPT POSITIONS (N N)
      5'-
                                                           -3'
               -5'
      3'-
            ANTISENSE STRAND (SEQ ID NO 292)
                   ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N)
                       SENSE STRAND (SEO ID NO 293)
      ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSÌTIONS (N N) AND ALL PURINES = 2'-DEOXY
      5'-
               -3'
L-(N<sub>s</sub>N) NNNNNNNNNNNNNNNNNNN
                                                           -5'
      3'-
                      ANTISENSE STRAND (SEQ ID NO 290)
       ALL PYRIMIDINES = 2'-FLUORO AND ALL PURÌNES = 2'-O-ME EXCEPT POSITIONS (N N)
                         SENSE STRAND (SEQ ID NO 294)
                 ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N)
      5'-
               -3'
\mathbb{E}
          L-(N<sub>5</sub>N) NNNNNNNNNNNNNNNNNNNN
                                                           -5'
                      ANTISENSE STRAND (SEO ID NO 290)
      ALL PYRIMIDINES = 2'-FLUORO AND ALL PURINES = 2'-O-ME EXCEPT POSITIONS (N N)
                       SENSE STRAND (SEQ ID NO 293)
     ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSÌTIONS (N N) AND ALL PURINES = 2'-DEOXY
      5'-
               -3'
\mathbb{F}
           -5'
      3'-
                      ANTISENSE STRAND (SEQ ID NO 295)
      ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N) AND ALL PURINES = 2'-DEOXY
```

POSITIONS (NN) CAN COMPRISE ANY NUCLEOTIDE, SUCH AS DEOXYNUCLEOTIDES (eg. THYMIDINE) OR UNIVERSAL BASES

B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP THAT IS OPTIONALLY PRESENT

L = GLYCERYL or B THAT IS OPTIONALLY PRESENT

S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE that is optionally absent

		SENSE STRAND (SEQ ID NO 296))
A	5'- 3'-	iB- G A A C A A C A A U G A U G C U G C U T T-iB L-T _S T C U U G U U G U U A C U A C G A C G A ANTISENSE STRAND (SEQ ID NO 297)	-3' -5'
		SENSE STRAND (SEQ ID NO 298)	
\mathbb{B}	5'- 3'-	$\begin{array}{c} \mathbf{g}\mathbf{a}\mathbf{a}c\mathbf{a}\mathbf{a}c\mathbf{a}\mathbf{a}u\mathbf{g}\mathbf{a}u\mathbf{g}cu\mathbf{g}cu\mathbf{g}cuT_{\mathbf{S}}T\\ \mathbf{L}\text{-}T_{\mathbf{S}}Tcuu\mathbf{g}uu\mathbf{g}uu\mathbf{a}cu\mathbf{a}c\mathbf{g}\mathbf{a}c\mathbf{g}\mathbf{a}\\ & $	-3' -5'
		SENSE STRAND (SEQ ID NO 300)	j
\mathbb{C}	5'- 3'-	iB-G A A c A A c A A u G A u G c u G c u T T-iB L-T _S T c u u G u u G u u A c u A c G A c G A ANTISENSE STRAND (SEQ ID NO 301)	-3' -5'
		SENSE STRAND (SEQ ID NO 302)	
\mathbb{D}	5'-	iB-GAAcAAcAAuGAuGcuGcuTT-iB L-T _S Tcuuguuguu <u>a</u> cu <u>a</u> cg <u>a</u> cg <u>a</u> ANTISENSE STRAND (SEQ ID NO 299)	-3' -5'
		SENSE STRAND (SEQ ID NO 303)	
E	5'- 3'-	iB-G A A c A A c A A u G A u G c u G c u T T-iB L-T _S T c u u g u u g u u a c u a c g a c g a ANTISENSE STRAND (SEQ ID NO 299)	-3' -5'
		SENSE STRAND (SEQ ID NO 302))
\mathbb{F}	3'-	iB-GAAcAAcAAuGAuGcuGcuTT-iB L-T _S TcuuGuuGuuAcuAcGAcGA ANTISENSE STRAND (SEQ ID NO 304)	-3' -5'

lower case = 2'-O-Methyl or 2'-deoxy-2'-fluoro

italic lower case = 2'-deoxy-2'-fluoro

underline = 2'-O-methyl

ITALIC UPPER CASE = DEOXY
iB = INVERTED DEOXYABASIC
L = GLYCERYL MOIETY or iB OPTIONALLY PRESENT
S = PHOSPHOROTHIOATE OR
PHOSPHORODITHIOATE OPTIONALLY PRESENT

Identify efficacious target sites based on siRNA sequence Sequence siRNA Clone oligos into vector Figure 9: Target site Selection using siRNA Select cells exhibiting desired phenotype Ш **m** siRNA against Target RNA sequence Synthesize oligos encoding Transduce target cells

R = O, S, N, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, or aralkyl B = Independently any nucleotide base, either naturally occurring or chemically modified, or optionally H (abasic).

Figure 11: Modification Strategy

Figure 12: Phosphorylated siNA constructs

Attorney Docket No. 04-183 (400.147) Sheet 14 of 24

Figure 14B: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence

Attorney Docket No. 04-183 (4) Sheet 16 of 24

Figure 14C: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly

Attorney Docket No. 04-183 (400.147) Sheet 17 of 24

Figure 14D: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly and inhibition of Target Sequence Expression

Figure 15: Duplex forming oligonucleotide constructs that utilize artificial palindrome or repeat sequences

Hybridize self complementary strands

XXXXX

Ω

to form duplex siNA construct

Figure 17: Examples of hairpin multifunctional siNA constructs with

Complementary Region 2

Figure 18: Examples of double stranded multifunctional siNA constructs with

distinct complementary regions and a self complementary/palindrome region Figure 19: Examples of hairpin multifunctional siNA constructs with

Figure 21: Example of multifunctional siNA targeting two regions within the same target nucleic acid sequence

X = cleavage