《基础物理实验》实验报告

实验名称	光学基础实验		易栖如
姓 名_	学号		号(例:01-1)
实验日期	<u>2023</u> 年 <u>9</u> 月 <u>21</u> 日实验地点 <u>705</u>	调课/补课_□是成绩评	定

一. 实验内容与实验记录

使用实验设备为: 氦氖激光器一台(波长: 632.8nm),增强铝反射镜四套,无偏振分光棱镜两个,透镜组一套(焦距分别为-30mm 和 150mm, 1: 5 的透镜组),起偏器一个,检偏器一个,光电池一个,万用表一台,激光防护镜两套,一维调节架,分划板(单缝,双缝,圆孔,光栅等)两种,光栅三种(100 线/mm, 300 线/mm, 600 线/mm)。

1、观察激光的传输、及基本光路的搭建, 搭建 M-Z 干涉仪, 并观察干涉条纹;

2、利用检偏器检验马吕斯定律;

- (1) 将激光器、起偏器、检偏器、光电池按顺序安装,点亮激光器,调节各器件使等高共轴;将光电池与万用表连接起来。
- (2) 旋转起偏器 P1,使光电池接收到较大光强(一般选择 mA 或 μ A 档),此时起偏器与激光偏振方向一致,旋转检偏器 P2,使光电池光强最大,此时起偏器与检偏器偏振方向夹角 0°位置;将检偏器 P2 转至 90°位置,转动起偏器 P1 到消光位置,此时光电池读数最小,固定 P1(后续所有实验起偏器均固定不变)。实验时,注意杂散光线对实验结果的影响。

(3) 将 P2 转到 0° (此时光强为最大值) 开始测量,每转 15° 测量一次光电流的数值 I,将测量结果记入数据表 1,见下表:

θ	0°	15°	30°	45°	60°	75°	90°
I	280.9	222.5	197.8	109.8	48.5	16.6	2.9
$I-I_{min}$	278.0	219.6	194.9	106.9	45.6	13.7	0.0

3、光栅衍射演示实验。

4. 根据光栅方程,计算光栅常数。

根据公式 $dsin\theta = m\lambda m=0$, ± 1 , ……, 已知波长为 632.8nm, 根据测量数据计算可得, 1/d=95.599

M	1÷(0.000001×632.8÷sin((tan ⁻¹ (1÷16.5)))) :: 95.599020862658587058456607652408962760368					
)	1/x	MC	M+	M-	MR
x ²	x ³	xy	C	÷	×	Œ
x!	√	√√X	7	8	9	_
е	e ^x	10 ^x	4	5	6	+
sin ⁻¹	cos ⁻¹	tan-1	1	2	3	
Inv	Rad	π	%	0		

二. 实验思考与心得

光学是一门研究光的性质和规律的科学,它涉及到光的反射、折射、干涉、衍射、偏振等现象,以及 光的产生、传播、探测和应用等方面。光学实验是光学理论的重要补充,它可以帮助我们直观地观察和验 证光学现象,培养我们的实验技能和创新能力,拓展我们的知识面和视野。

通过这些实验,我不仅巩固了课堂上学习的理论知识,而且锻炼了我的动手能力和观察能力。在实验过程中,我遇到了一些困难和问题,例如调节仪器时的细节操作,处理数据时的公式推导等。为了解决这些问题,我查阅了一些相关资料 ,向老师和同学请教专业知识 ,并且多次重复实验提高精度和可靠性。通过这些努力,我终于完成了所有实验,并且得到了较为满意的结果。

总之,这次光学基础实验我收获颇丰,既增加了我的知识储备,又提高了我的科学素养。感谢老师和同学们对我的帮助和支持。我相信,在今后的学习中,我会继续保持好奇心和创造力,用科学方法去发现更多的奥秘和美妙。