Status meeting

Tudat radiation pressure models 21 July 2023

Agenda

Validation

- Visualization of Knocke's paneling algorithm
- Comparison with Knocke's accelerations for LAGEOS-1
- Comparison with Orekit accelerations for LAGEOS-1
- Comparison with Smith's accelerations for LRO
- Convergence for increasing number of panels

Science results

RP accelerations of LRO

Visualization of Knocke's paneling algorithm

Knocke's paneling algorithm: LAGEOS and LRO

Knocke's paneling algorithm: Flexible panels

Comparison with Knocke for LAGEOS-1

Comparison with Knocke: $\beta = 0^{\circ}$

Comparison with Knocke: $\beta = 0^{\circ}$

Comparison with Knocke: $\beta = 90^{\circ}$

Comparison with Orekit for LAGEOS-1

Comparison with Orekit

Comparison with Orekit

7

Comparison with Smith for LRO

Comparison with Smith: $\beta = 35^{\circ}$

Comparison with Smith: $\beta = 56^{\circ}$

Convergence for increasing number of panels

Convergence for LAGEOS-1

Convergence for LRO

Validation summary

- Cannonball and paneled target for solar RP agree with existing implementation
 - Cannonball 4% slower, paneled 6% faster
- Accelerations agree with Knocke for LAGEOS-1
 - General shape agrees well
 - Magnitude can be over/underestimated by up to 15%
 - Possible reason: wrong arc
- Accelerations agree with Orekit for LAGEOS-1
 - General shape agrees well
 - Magnitude can be off by up to 30%
 - Orekit defines panels wrong
- Accelerations do NOT agree with Smith
 - Order of magnitude discrepancy for albedo
- Accelerations converge for increasing number of panels
- → Sufficiently validated?

Radiation pressure accelerations of LRO

Constant vs SH albedo: $\beta = 0^{\circ}$

Constant albedo = 0.19

Constant vs SH albedo: $\beta = 90^{\circ}$

Constant albedo = 0.19

Albedo vs thermal: $\beta = 0^{\circ}$

Angle-based emissions in W/m²

Albedo vs thermal: $\beta = 90^{\circ}$

Angle-based emissions in W/m²

Instantaneous reradiation of lunar radiation

Instantaneous reradiation of solar radiation

Next steps

For paper

- Complete validation
 - Investigate oscillation above south pole
 - Investigate mismatch in magnitude of albedo radiation pressure
- Generate results with different models
 - Accelerations for $\beta = 0^{\circ}$ and $\beta = 90^{\circ}$
 - Effect on orbital elements
 - Performance impact (wall time, ...?)

For Tudat

- Write documentation
- Switch to new RP models but remain backwards-compatible
- Profile to find bottlenecks