算法导论习题选集

练习 3-2

节选自《算法导论》教材第三版

课程网站: https://algorithm.cuijiacai.com

- 1. 使用代入法证明 T(n) = 4T(n/3) + n 的解为 $T(n) = \Theta(n^{\log_3 4})$ 。(提示: 需要在假设中减去一个低阶项以完成归纳)
- 2. 利用换元法求解递归式 $T(n)=3T(\sqrt{n})+\log n$ 。你的解应该是渐近紧确的,不必担心数值是否是整数。

- 1. 对递归式 T(n) = T(n-1) + T(n/2) + n,利用递归树确定一个好的渐近上界,用代入 法进行验证。
- 2. 对递归式 $T(n)=T(\alpha n)+T((1-\alpha)n)+cn$,利用递归树给出一个渐近紧确界,其中 $0<\alpha<1$ 和 c>0 是常数。

对下列递归式,使用主方法求出渐近紧确界。

- 1. T(n) = 2T(n/4) + 1
- 2. $T(n) = 2T(n/4) + \sqrt{n}$
- 3. T(n) = 2T(n/4) + n
- 4. $T(n) = 2T(n/4) + n^2$

熊教授想设计一个渐近快于 Strassen 算法的矩阵相乘算法。他的算法使用分治方法,将每个矩阵分解为 $n/4 \times n/4$ 的子矩阵,分解和合并步骤共花费 $\Theta(n^2)$ 时间。他需要确定,他的算法需要创建多少个子问题,才能击败 Strassen 算法。如果他的算法创建 a 个子问题,则描述运行时间 T(n) 的递归式为 $T(n) = aT(n/4) + \Theta(n^2)$ 。熊教授的算法如果要渐近快于 Strassen 算法,a 的最大整数值应是多少?

考虑主定理情况 3 的一部分: 对某个常数 c<1,正则条件 $af(n/b)\leq cf(n)$ 是否成立。给出一个例子,其中常数 $a\geq 1, b>1$ 且函数 f(n) 满足主定理情况 3 中除正则条件外的所有条件。

证明: 如果 $f(n) = \Theta(n^{\log_b a} \log^k n)$, 其中 $k \ge 0$, 那么主递归式的解为

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

为简单起见,假定n是b的幂。

证明: 主定理中的情况 3 被过分强调了,从某种意义上来说,对于某个常数 c<1,正则条件 $af(n/b) \leq cf(n)$ 成立本身就意味着存在常数 $\varepsilon>0$,使得 $f(n) = \Omega(n^{\log_b a + \varepsilon})$ 。