	k.	(a)	Construct	the	following	graphs	ş
--	----	-----	-----------	-----	-----------	--------	---

-8

- (i) Eulerian but not Hamiltonian.
- (ii) Hamiltonian but not Eulerian.
- (iii) Neither Eulerian nor Hamiltonian.
- (iv) Eulerian and Hamiltonian.
- (b) Define : Graph, Simple Graph, Pseudo graph and Weighted graph.
 8
- (c) A tree of order n has size (n − 1). Prove.

Roll No.

Total Pages : 4

8303

BT-3/DX

DISCRETE STRUCTURE

Paper: CSE-205(E)

Time: Three Hours]

[Maximum Marks: 100

Note: Attempt five questions in all, selecting at least one question from each section.

SECTION-I

- (a) If A, B and C be subsets of the universal set U, then prove:
 - (i) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.
 - (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
 - (b) In a city 60% of the residents can speak German and 50% can speak French. What percentage of residents can speak both the languages, if 20% residents can not speak any of these language?
- (a) (i) If R be an equivalence relation defined on a nonempty set A and x, y be arbitrary elements in A, and x∈ [x] and y ∈ [x], then [x] = [y].
 - (ii) Prove by method of induction

 $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$

- (b) (i) Let f: A → B and g: B → C be two functions, then (gof) is one-one if both f and g are one-one and (gof) is onto if both f and g are onto.
 - (ii) Give an example of a function which is (α) Injective but not Surjective (β) Bijective (γ) Surjective but not Injective, (δ) Constant.

SECTION-II

- (a) Prove by constructing truth table
 P → (O ∨ R) = (P → O) ∨ (P → R).
 - (b) Solve the recurrence relation S_n − 7S_{n-1} + 10S_{n-2} = 0, S₀ = 0 and S₁ = 3 by using generating function where, n ≥ 2.
 - (c) Find the total solution of the difference equation $S_n S_{n-1} = 5$, given that $S_0 = 2$.
- 4. (a) Solve the difference equation

$$\sqrt{S_{n-1} + \sqrt{S_{n-2} + \sqrt{S_{n-3} + \sqrt{\dots}}}}$$
, given that $S_0 = 4$.

- (b) Find the total distinct numbers of six digits that can be formed with 0, 1, 3, 5, 7 and, 9 and how many of them is divisible by 10?
- (c) Discuss the importance of recurrence relations in the binary algorithm. 7

SECTION-III

- 5. (a) If G is a set of Real numbers (non-zero) and let
 - $a*b = \frac{a.b}{2}$, show that (G, *) is an abelian group. 7

- (b) A finite integral domain is a field, Prove.
- (c) State and prove Lagrange's theorem.
- (a) Let R is a ring with unity and (x . y)² = x², y² ∀ x, y ∈ R. Show that R is a commutative ring.
 - (b) Show that the characteristic of an integral domain is either O or a prime number.
 - (c) If H is subgroup of a group G and h∈H, then Hh = H = hH.

SECTION-IV

 (a) Determine whether the graph given below by its adjacency matrix is connected or not, where the matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

(b) Find the complement of the following graphs:

(c) If T is a binary tree of height h and order p, then $(h+1) \le p \le 2^{(h+1)} - 1$.