Problems

Plaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (Fig. P13.21). Assume the orbital speed of each star is $|\overrightarrow{\mathbf{v}}| = 220$ km/s and the orbital period of each is 14.4 days. Find the mass *M* of each star. (For comparison, the mass of our Sun is 1.99 × 10³⁰ kg.)

Figure P13.21

- 30. A satellite in Earth orbit has a mass of 100 kg and is w at an altitude of 2.00 × 10⁶ m. (a) What is the potential energy of the satellite–Earth system? (b) What is the magnitude of the gravitational force exerted by the Earth on the satellite? (c) What If? What force, if any, does the satellite exert on the Earth?
- **31.** How much work is done by the Moon's gravitational field on a 1 000-kg meteor as it comes in from outer space and impacts on the Moon's surface?
- **38.**] A "treetop satellite" moves in a circular orbit just above the surface of a planet, assumed to offer no air resistance. Show that its orbital speed v and the escape speed from the planet are related by the expression $v_{\rm esc} = \sqrt{2}v$.
- **43.** (a) Determine the amount of work that must be done on a 100-kg payload to elevate it to a height of 1 000 km above the Earth's surface. (b) Determine the amount of additional work that is required to put the payload into circular orbit at this elevation.
- 64. A spacecraft of mass 1.00×10^4 kg is in a circular orbit at an altitude of 500 km above the Earth's surface. Mission Control wants to fire the engines in a direction tangent to the orbit so as to put the spacecraft in an elliptical orbit around the Earth with an apogee of 2.00×10^4 km, measured from the Earth's center. How much energy must be used from the fuel to achieve this orbit? (Assume that all the fuel energy goes into increasing the orbital energy. This model will give a lower limit to the required energy because some of the energy from the fuel will appear as internal energy in the hot exhaust gases and engine parts.)