Analyzing Machine Learning Techniques to Detect Breast Cancer

By: Aroofa Mohammad(aam170007)

Breast Cancer Facts

- 287,850 new cases of women in the United States in 2022 were discovered to breast cancer
- A woman that in the US has a 1/8 chance of developing breast cancer at some point
- Breast cancer is the 2nd largest cause of dead from cancer for women
- Roughly 1/39 woman dying from breast cancer

0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	fractal_dimension_se	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
32	Unnamed: 32	0 non-null	float64

Data Cleanup and Target Defined

- The research was done on the Wisconsin Breast Cancer Dataset
- The feature are shown in the image on the left
- In the dataset there are two irreverent features that were dropped:
 - Id
 - Unnamed: 32
- The Target of the dataset is the diagnostic:
 - Benign: No Cancer
 - Malignant: Cancer
- The image shown below shows the cases of benign/malignant in the database

Benign: 357

Malignant: 212

Machine Learning Models Used to Tackle Breast Cancer Detection

- The following techniques were used on the Wisconsin Breast Cancer Dataset:
 - Support Vector Machine (SVM)
 - Decision tree
 - K-Nearest Neighbors (KNN)
 - Logistic Regression

Support Vector Machine (SVM)

- SVM categorizes data points by projecting them to a high-dimensional feature space even if not linearly separable
- After the separator is found between the categories, the data is transformed so that the separator can be drawn as a hyperplane

		precision	recall	f1-score	support
	В	0.94	1.00	0.97	87
	М	1.00	0.89	0.94	56
2001102	VCV/			0.96	143
accura		0.97	0.95	0.96	
macro a	_				143
weighted a	ıvg	0.96	0.96	0.96	143

Decision Tree

- A decision tree is a tree-like structure that serves as a decision-making aid by visually exhibiting actions and their probable outcomes, repercussions, and costs
- Overfitting is an issue that happens when the algorithm's depth is increased
 - Because number of nodes is larger than the size
- In this research the max you can raise the depth to is
 3
 - Any binary classification issue can benefit from this optimum depth

support	f1-score	recall	precision	
87	0.96	0.98	0.93	B
56	0.93	0.89	0.96	M
143	0.94	0.03	0.05	accuracy
143	0.94	0.93	0.95	macro avg
143	0.94	0.94	0.94	weighted avg

K-Nearest Neighbors (KNN)

- The KNN algorithm is a data classification approach that estimates the chance that a data point will belong to one group based on the data points closest to it
- K = number of nearest neighbors
- In this breast cancer study, the optimal value of k is 13
 - Higher number might cause underfitting

		precision	recall	f1-score	support
	В	0.93	1.00	0.96	87
	М	1.00	0.88	0.93	56
accura	асу			0.95	143
macro a	avg	0.96	0.94	0.95	143
weighted a	avg	0.95	0.95	0.95	143

Logistic Regression

- Based on past observations of a data set, logistic regression is a statistical analytic approach for predicting a binary result, such as yes or no
 - Like 'M' for malignant and 'B' for benign
- In the research, the training data is fit and forecasted using Logistic Regression with GridSearchCV
- Then we optimize the model performance by automatically tuning the hyperparameters

	precision	recall	f1-score	support
В	0.94	1.00	0.97	87
М	1.00	0.89	0.94	56
accuracy			0.96	143
macro avg	0.97	0.95	0.96	143
weighted avg	0.96	0.96	0.96	143

Result

Model:	Accuracy on Test Data	F1 Accuracy
Support Vector Machine (SVM):	95.80%	96%
Logistic Regression:	95.80%	96%
K-Nearest Neighbors (KNN):	95.10%	95%
Decision tree:	92.31%	92%

SVM is better

- SVM can be used for both classification and regression
- SVM tries to find the best distance between support vector and the line that separates the classes therefore lowering the risk of error of the data
- SVM has geometrical approach and is better with semi-structured data
- SVM is les vulnerable to overfitting compared to Logistic Regression

