TEHNOLOGIJA MEMS SENZORA

UVOD

- Primjena poluvodičkih tehnologija, materijala i proizvodnih procesa u izradi senzora
- Senzor na čipu funkcijski elementi mikro/nanometarskih dimenzija
- · Masovna proizvodnja, niska cijena

ŠTO DONOSI SKALIRANJE?

- Smanjenje dimenzija praktičnost, integracija s mikroelektroničkim sklopovljem
- Načela rada ista (makroskopska) svojstva materijala, ali različiti odnosi fizikalnih veličina (npr. masa, udaljenosti → odnos gravitacije i elektrostatske sile)
- Osjetljivost ovisi o konkretnoj vrsti senzora (jednako, povećanje, smanjenje)
- · Pouzdanost ovisi o dizajnu, materijalima, načinu pakiranja

INTEGRACIJA SENZORA S MIKROELEKTRONIČKIM SKLOPOVLJEM

- Senzorska sučelja analogna prilagodba, A/D pretvorba, digitalna obrada, komunikacija
- Inteligentni senzori umjeravanje, kompenzacija utjecajnih veličina, dijagnostika
- Smjer → digitalna obrada signala, detekcija/klasifikacija na čipu
- Kompatibilnost MEMS i CMOS procesa ograničena (materijali, slijed tehnoloških koraka)

- https://www.engineeringsolutions.philips.com/app/uploads/2017/03/mems-inkjet-print-head-presentation.pdf
- https://www.memsjournal.com/2006/10/rf mems a brief.html
- https://iopscience.iop.org/book/978-0-7503-1545-6/chapter/bk978-0-7503-1545-6ch1
- https://spectrum.ieee.org/chip-hall-of-fame-texas-instruments-digital-micromirrordevice/particle-1
- https://www.memsjournal.com/2011/01/motion-sensing-in-the-iphone-4-memsgyroscope.html
- https://www.edn.com/basic-principles-of-mems-microphones/
- https://archive.thepocketlab.com/educators/lesson/how-does-pressure-sensor-work-physics-probeware
- https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
- https://www.conrad.hr/p/senzor-tlaka-bosch-bme280-300-hpa-do-1100-hpa-lemni-1514423
- https://www.youtube.com/watch?v=OtFguljNmyc&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=55&ab channel=IEEEIndustrialElectronicsSociety
- https://www.youtube.com/watch?v=qCSIGejNT4M&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=8&t=590s&ab channel=SamZeloof
- https://www.youtube.com/watch?v=ebnpmf3kOq4&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=91&t=480s&ab channel=SupportCenterforMicrosystemsEdu cation

MATERIJALI

PODLOGE (SUBSTRATI)

- Kristalni **najčešće silicij**, **Si**; SiC (visoke temperature)
- Amorfni (stakla) silikatno (Pyrex), kvarcno (silika, SiO₂)
- Keramike Al₂O₃, AlN, Si₃N₄
- Polimeri poliamid (PA), polikarbonat (PC), PMMA, PDMS

MEHANIČKI STRUKTURNI SLOJEVI

- Gradivni polikristalni silicij (poly-Si)
- Potporni (sacrificial), stop-maske SiO₂, foto-polimeri

IZOLATORI

- Električki, pasivizacija SiO₂, Si₃N₄
- Difuzijske barijere W, Ta

ELEKTRIČKI VODOVI, IZVODI (ELEKTRODE)

- Metali Al, Au, Pt, legure Al/Si, Cr/Au, Ni/Cr
- Prianjanje na podlogu (adhesive layer) Ti, Cr, Zr
- Dopirani Si

FUNKCIONALNI MATERIJALI

- Piezoelektrici PZT, ZnO, AlN, PVDF
- Piroelektrici PZT, PVDF
- Feromagnetski Fe, Ni, NiFe
- Legure s memorijskim efektom nitinol (NiTi)

MONOKRISTALNI SILICIJ

MEHANIČKA SVOJSTVA

- Kubična kristalna rešetka → anizotropija
- Elastični materijal: $<100>E=1.3\cdot10^{11} \text{ N/m}^2$, v=0.28
- Krhki materijal, pravilni lom uzduž kristalne rešetke
- Dobra toplinska vodljivost $\lambda = 157 \text{ W/mK}$, $\alpha = 2.3 \cdot 10^{-6} \text{ 1/K}$

Kristalna rešetka silicija. Lijevo, ravnina <100>, sredina <110>, desno <111>.

ELEKTRIČKE ZNAČAJKE

- Promjena vodljivosti dopiranjem veliki raspon, 10⁶
- p-tip (B), $\rho = 2.10^2 1.5.10^{-4} \Omega \text{cm}$
- n-tip (P, As, Sb), $\rho = 50 3.10^{-4} \Omega$ cm

SILICIJSKI WAFERI

- Proizvodnja tehnikom Czochralski
- Parametri: tip dopiranja (p/n) vodljivost (Ωcm), kristalna orijentacija (MEMS <100>, mikroelektronika <111>)
- Standardizirane oznake orijentacije, dopiranja primary flat, secondary flat
- Standardni promjeri za MEMS 2", 4", 6"; debljine 300-800 µm

- Geometrijske nepravilnosti varijabilnost debljine (TTV), zakrivljenost (bow), svinutost (warp)
- Posebne izvedbe: dvostrani (SOI, silicon-on-insulator), ukopani (cavity-SOI, CSOI)...

TEHNOLOŠKI POSTUPCI IZRADE MEMS SENZORA

PRISTUPI IZRADI MEMS STRUKTURA

- Obrada kopanjem (bulk micromachining)
 - Anizotropno kemijsko jetkanje Si wafera
 - · Geometrija određena smjerom kristalne rešetke
- Površinska obrada (surface micromachining)
 - Depozicija polikristalnog Si, SiO₂ → jetkanje potpornog SiO₂
 - Ograničenja debljina struktura, materijali, mehanička svojstva
- Dubinska dvostrana obrada (SOI-based micromachining)
 - Proizvoljna geometrija duboki, uski jarci, vertikalni zidovi
 - Kompliciraniji proces, oprema suho jetkanje u plazmi

Kopanje kemijskim jetkanjem (bulk micromachining).

Dubinska obrada suhim jetkanjem.

IZRADA - SLIJED UZASTOPNIH KORAKA, SVAKI UKLJUČUJE:

- 1. **Priprema** wafera (prethodni korak)
- 2. Mikrostrukturiranje litografijom
- 3. Tehnološki proces izrade
 - 1. Aditivni depozicija materijala
 - 2. Subtraktivni jetkanje materijala
- Razvoj MEMS senzora je iterativni, eksperimentalni postupak
- Pronaći optimalni skup parametara svakog tehnološkog procesa "recept"

- https://nanohub.org/resources/26748/download/Fab MicroM PK00 PG.pdf
- https://www.intechopen.com/chapters/44794

TEHNOLOGIJA ČISTIH SOBA (CLEANROOM)

RADNI PROSTOR ZA IZRADU MEMS SENZORA

- Smještaj opreme i instrumenata
- Kontrolirani mikroklimatski uvjeti, sprječavanje kontaminacije: 1) lebdeće čestice, 2) kemijska
- Ventilacija/klimatizacija, razvod plinova, rashladnih tekućina, skladištenje kemijskih agensa, zbrinjavanje i rekuperacija produkata (tekućine, plinovi), sigurnost, protupožarna zaštita...
- Visoki troškovi pogona, održavanja

ODJEĆA, PROCEDURE

Pristup, ulazak, rad, sigurnost

Odjeća za rad u čistoj sobi.

ČISTOĆA ZRAKA – ISO I FED KLASIFIKACIJA

Class			Particle size			
ISO	FED 209 D*	FED 209 E	0.1 μm	0.3 μm	0.5 μm	
ISO 1			10			
ISO 2			100	10	4	
ISO 3	1	M1.5	1000	102	35	
ISO 4	10	M2.5	10000	1020	352	
ISO 5	100	M3.5	100000	10200	3520	
ISO 6	1000	M4.5	1000000	102000	35200	
ISO 7	10000	M5.5			352000	
ISO 8	100000	M6.5			3520000	
ISO 9					35200000	

Razine čistoće čistih soba (ISO i FED klasifikacija).

ORGANIZACIJA RADNOG, SERVISNOG PROSTORA I VENTILACIJSKOG SUSTAVA

Organizacija prostora čiste sobe.

VRSTE, NAMJENE ČISTIH SOBA

- Istraživačka MEMS, elektronika, materijali, optika...
 - Razvoj, prototipna proizvodnja, edukacija/obuka
 - Samostalno rukovanje, slobodno kombiniranje procesa
 - Primjeri:
 - C2N, Pariz, Francuska, 2900 m², ISO 4 (class 10), <u>https://www.c2n.universite-paris-saclay.fr/en/</u>
 - PoliFAB Politecnico di Milano, Italija <u>https://www.polifab.polimi.it/</u>

- DTU Nanolab, Danska, <u>https://www.nanolab.dtu.dk/</u>
- ETH Zürich, Švicarska, https://first.ethz.ch/
- EPFL Center of MicroNanoTechnology, Lausane, Švicarska https://www.epfl.ch/research/facilities/cmi/
- TU Delft, Nizozemska, Else Kooi Lab, Kavli Nanolab https://www.tudelft.nl/ewi/onderzoek/faciliteiten/else-kooi-lab https://www.tudelft.nl/tnw/over-faculteit/afdelingen/quantum-nanoscience/kavli-nanolab-delft
- CEITEC Nano Research Infrastructure, Brno, Češka https://nano.ceitec.cz/
- Nanocenter, Ljubljana, Slovenija http://www.nanocenter.si/
- Virtualna šetnja istraživačkom čistom sobom, DTU Nanolab, Danska
- https://www.nanolab.dtu.dk/english/nyheder/2019/12/the-virtuel-clean-room?id=06846593-15bc-4be0-aad0-8f5d06dbeaa9
- Industrijska
 - Masovna proizvodnja, visoka razina automatizacije
 - Strogo definirani procesi (npr. MEMSCAP PiezoMUMPs...)
 - TSMC, Samsung, Global Foundries, Infineon...

ONLINE MATERIJALI

- https://www.thomasnet.com/articles/automation-electronics/garments-for-cleanrooms/
- https://www.thomasnet.com/articles/automation-electronics/Cleanroom-Air-Flow-Principles/
- https://www.thomasnet.com/articles/plastics-rubber/cleanroom-suit-technology/
- https://www.youtube.com/watch?v=pVRS4NNsNAg&list=PLVq4KLSUSjcFuvKA4ux8 U84RsmGHRHL5U&index=38&t=7s&ab_channel=Inrfucirvine
- https://www.youtube.com/watch?v=wiTu5Mxw7HQ&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=135&ab channel=PortaFabCorporation
- https://www.youtube.com/watch?v=Um0VA6iycY4&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=138&ab channel=DenisseAranda
- https://www.youtube.com/watch?v=TVuXT7b4JgM&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=149&ab channel=nano%40stanford

PRIPREMA PODLOGE – ČIŠĆENJE WAFERA

ODSTRANJIVANJE KONTAMINANATA

- Lebdeće čestice (prašina, koža), metalne čestice, organski spojevi, slojevi oksida
- Izvori prethodni koraci tehnološkog procesa, procesni medij (plinovi, tekućine), zrak, čovjek

KEMIJSKI POSTUPCI ČIŠĆENJA

- Organske tvari (foto-polimeri, masti, vosak) aceton / izopropanol; dušična kiselina HNO₃
- Metali Cu, Ag, Ni, Co, Cd NH₄OH/H₂O₂/H₂O; Au, Cr, Fe, Na HCI/H₂O₂/H₂O
- Oksidi, SiO₂ fluorovodična kiselina HF
- Ispiranje u deinoiziranoj vodi praćenje električke otpornosti kupke
- Sušenje s N₂ ili u centrifugi

ČIŠĆENJE PLAZMOM

- Vakuum, uvođenje plina (O₂, N₂), visoki napon → ionizacija plina
- Skidanje ostataka foto-polimera (litografija, jetkanje)
- Čišćenje metalnih elektroda, aktivacija površine, bolje prianjanje (depozicije, spajanje substrata – bonding, ožičenje – wire-bonding)

ONLINE MATERIJALI

- https://www.plasmi.eu/products
- https://www.plasmaetch.com/plasma-cleaningsystems.php?gclid=CjwKCAjw5c6LBhBdEiwAP9ejG2nvS6pHmqfyyuc3296sHQUUIn B8gL9IPJfGBTWhHK9Uw-n5-7rgRxoCOLUQAvD BwE
- https://www.thierry-corp.com/plasma-knowledgebase/nitrogen-plasma
- https://www.youtube.com/watch?v=atVSxvbiPg0&list=PLVq4KLSUSjcFuvKA4ux8U84 RsmGHRHL5U&index=11&t=84s&ab channel=AppliedScience

MIKROSTRUKTURIRANJE

LITOGRAFIJA

- Prijenos 2D geometrijskog uzorka na polimer koji služi kao stop-maska za selektivnu obradu podloge
- Priprema za suha i mokra jetkanja, dopiranje, depoziciju postupkom lift-off
- · Omogućiti umnažanje dizajna, masovnu proizvodnju

NAČINI PRIJENOSA UZORKA NA POLIMER

- Fotolitografija UV, rendgenske zrake (*UV photolitography*)
- Nabijenim česticama elektronska ili ionska zraka (ion-beam, electron-beam lithography)
- Mehaničkim utiskivanjem (nanoimprint litography)
- Preko litografske maske, krom na staklu
- Bez maske (mask-less lithography, direct-writing)

UV FOTOLITOGRAFIJA

- Izvori svjetla živina lampa λ = 436 nm, 365 nm; LED; laser
- **Ogib** svjetla na maski (debljina *d*, udaljenost maske *G*)
 - → najmanja veličina uzorka (feature-size, L)

 Poravnavanje slojeva uzastopnih koraka procesa – optički uređaj mask-aligner, markeri na litografskim maskama i podlozi

$$L = 1.5\sqrt{\lambda \cdot (G + d/2)}$$

FOTO-OSJETLJIVI POLIMERI (PHOTO-RESIST)

- Pozitiv osvjetljeni dio depolimerizira, uzorak istovjetan maski, PMMA, DNQ, AZ9260, AZ5214...
- Negativ osvjetljeni dio polimerizira, uzorak komplementaran maski, SU8
- Gustoća, viskoznost, najveća debljina, agensi za razvijanje

SLIJED KORAKA PROCESA UV FOTOLITOGRAFIJE

- Specifično se prilagođava namjeni, procesu obrade koji slijedi
- Izbor, debljina, priprema foto-polimera, parametri osvjetljavanja, razvijanja
- 1. Nanošenje foto-polimera
 - čišćenje aceton / izopropanol / N₂
 - predgrijavanje (hot-plate), npr. 180°C, 4 min
 - nanošenje centrifugom, $d \sim n^{1/2}$ (spin-coating), npr. n = 4000 rpm, dn/dt = 2000 rpm/s, t = 30 s
- 2. Termička priprema (softbake, prebake)
 - stvrdnjivanje, uklanjanje otapala
 - grijaća ploča (hot-plate) ili pećnica
 - profil (slijed temperatura, trajanja) ovisi o polimeru, namjeni
- 3. Poravnavanje i osvjetljavanje (alignment, exposure)
 - poravnavanje s prethodnim slojevima na podlozi (mask-aligner)
 - prijenos uzorka UV svjetlom preko maske na foto-polimer na podlozi
 - konačno vrijeme (s) ili doza (mJ)
 - .
- 4. Razvijanje i provjera (development, inspection)
 - termička obrada (stojni valovi od osvjetljavanja)
 - razvijanje mokrim kemijskim jetkanjem
 - termička obrada (hardbake) bolje prianjanje, uklanjanje otapala
 - inspekcija vizualno, optički mikroskop

Procjena završenosti postupka razvijanja.

PORAVNAVANJE UZASTOPNIH SLOJEVA

- Uređaj za optičko poravnavanje litografske maske s podlogom (*mask aligner*) i UV osvjetljavanje (*exposure*)
- Metode osvjetljavanja kontaktna, iz bliza (proximity), projekcijska
- Sustav vizualnih oznaka, markera za poravnavanje na maski i podlozi (alignment marks)
- Obostrana obrada → poravnavanje donje strane podloge s maskom na gornjoj strani

Poravnavanje uzastopnih slojeva (mask aligner).

ONLINE MATERIJALI

- https://www.mems-exchange.org/MEMS/processes/lithography.html
- https://www.microchemicals.com/products/photoresists.html
- https://www.suss.com/en/products-solutions/mask-aligner/mjb4
- https://www.evgroup.com/products/lithography/mask-alignment-systems/evg610/
- https://www.youtube.com/watch?v=1bxf9QRVesQ&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=6&t=108s&ab channel=SupportCenterforMicrosystemsEdu cation
- https://www.youtube.com/watch?v=HPyckggOa4U&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=7&ab channel=NFFAEurope
- https://www.youtube.com/watch?v=IF2pDoPBv10&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=24&ab channel=Inrfucirvine
- https://www.youtube.com/watch?v=sl1-5- <u>EviR0&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=28&ab_channel=I</u> nrfucirvine
- https://www.youtube.com/watch?v=Nxz ENnmgtl&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=105&ab channel=SamZeloof

ADITIVNI POSTUPCI – NANOŠENJE TANKIH SLOJEVA MATERIJALA

 Tipično od ~10 nm do oko 100 μm, materijali: silicij, metali, oksidi, nitridi, piezoelektrici

VRSTE POSTUPAKA

- Depozicija iz tekuće faze (otopine):
 - Centrifugiranje premaza (*spin-coating*, *sol-gel*)
 - Elektro-kemijski (electro-chemical plating)
 - Narastanje kristala (*molecular beam epitaxy, MBE*)

- Depozicija iz plinovite faze (pare):
 - Kemijski (chemical vapor deposition, CVD)
 - Termički (thermal oxidation, atmospheric pressure, APCVD)
 - Pri smanjenom tlaku (low pressure, LPCVD)
 - U plazmi (plasma enhanced, PECVD)
 - Fizikalno (physical vapor deposition, PVD)
 - Termičko naparivanje (evaporation, vapor deposition)
 - Ionsko bombardiranje (sputtering)
 - Laserska depozicija (pulsed laser deposition, PLD)

Technique	PVD		CVD		
	Vapor deposition	Sputtering	APCVD	LPCVD	PECVD
Temperature	ca. 100 °C	<300 °C	>1000 °C	4001000 °C	200 400 °C
Pore density	high	middle	middle	very good	very good
Contaminations	low	high	high	low	low
Adhesion	poor	good	middle	good	good
Conformity	very bad	bad	bad	very good	very good

Usporedba postupaka nanošenja tankih slojeva.

ZNAČAJKE NANESENOG TANKOG SLOJA

- Kemijski sastav kontaminanti, defekti kristalne rešetke
- Fizikalne značajke konformnost, hrapavost, prianjanje, elastičnost, rezidualni stres

Konformnost tankih slojeva dobivenih tipičnim postupcima.

ONLINE MATERIJALI

- https://www.mems-exchange.org/MEMS/processes/deposition.html
- https://www.youtube.com/watch?v=JJEILA8k6Qg&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=4&ab channel=SupportCenterforMicrosystemsEducation

REZIDUALNI STRES TANKIH SLOJEVA MATERIJALA

MEHANIČKI STRES U TANKOM SLOJU NAKON DEPOZICIJE (Σ , GPA)

- Kod tankih slojeva (filmova) djeluje samo u lateralnom smjeru
- Promjena mehanička svojstva smanjenje amplitude, pomak rezonantne frekvencije...
- Defekti, pukotine u nanesenom sloju
- Zakrivljenje površine

VRSTE REZIDUALNOG STRESA

- tlačni (compressive) podloga ispupčena
- vlačni (tensile) podloga udubljena

Vlačni i tlačni rezidualni stres u tankom sloju.

UZROCI

 razlike u građi kristalnih rešetki, gustoćama, koeficijentima elastičnosti, toplinskog širenja

Uzroci i posljedice rezidualnog stresa u tankom sloju.

SMANJENJE RIZIKA

- · Izbor poznato "kompatibilnih" materijala
- · Izbor tehnike depozicije
- Parametri procesa (npr. temperatura ↔ trajanje)

ONLINE MATERIJALI

https://link.springer.com/content/pdf/10.1007/978-1-4020-5295-8 17.pdf

DEPOZICIJA SILICIJEVOG DIOKSIDA, SIO2

TERMIČKA OKSIDACIJA (THERMAL OXIDATION)

- Debeli konformalni oksidni sloj visoke čistoće, dobrih dielektričkih svojstava električka izolacija od podloge
- Jednostavna oprema, pećnica, 1000-1200°C
- Oksidansi suhi, O₂; mokri, H₂O (+ HCl)
- Mokra oksidacija veća brzina, manja gustoća, niži probojni napon (lošiji dielektrik), imobilizacija metalnih kontaminanata

$$Si + O_2 \rightarrow SiO_2$$

$$Si + 2H_2O_{(g)} \rightarrow SiO_2 + 2H_{2(g)}$$

Depozicija silicijevog dioksida termičkom oksidacijom.

DEPOZICIJA KEMIJSKIH PARA U PLAZMI

(PECVD, PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION)

- Niža temperatura, 200-400°C → manji rezidualni stres
- Depozicija na postojeće slojeve (potporni sloj, pasivizacija)
- Tanji slojevi, manja kvaliteta od termičkog oksida
- · Kompliciranija oprema, vakuum, visoki napon, plinovi, plazma
- Plinovi silan (SiH₄) i dušikov oksid (N₂O)
- Slični proces za depoziciju poli-silicija, silicij-nitrida LPCVD

$$\begin{array}{c} SiH_4+O_2 \rightarrow SiO_2+2H_2 \\ SiH_4+2N_2O \rightarrow SiO_2+2N_2+2H_2 \end{array}$$

Depozicija silicijevog dioksida depozicijom kemijskih para u plazmi (PECVD).

- https://en.wikipedia.org/wiki/Thermal oxidation
- https://en.wikipedia.org/wiki/Chemical vapor deposition
- https://plasma.oxinst.com/technology/pecvd
- https://www.youtube.com/watch?v=j80jsWFm8Lc&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=52&ab channel=MassachusettsInstituteofTechnology%28MI T%29

DOPIRANJE SILICIJA

PROMJENA OTPORNOSTI SI PODLOGE, STOP-MASKA ZA KEMIJSKO JETKANJE

- Izvor nosioca p-tipa bor, B
- Izvor nosioca n-tipa fosfor, P

DIFUZIJA DOPANADA U SI PODLOGU PRI VISOKOJ TEMPERATURI

- 1) kemijska priprema → 2) termička difuzija u pećnici
- Praćenje (trajanje, koncentracije, difuzijski profil) Fickov model difuzije za čvrsta tijela
- Jednostavnost, velika difuzijska dubina do 100 μm
- Loša ponovljivost, postepena promjena koncentracije na pn-spoju
- Izvor dopanada tekućine, viši tlak pare,
 B → boroetan, B₂H₆, BF₃, BBr₃; F → PH₃, POCl₃

$$B_2H_{6(l)} + 3O_{2(g)} \rightarrow B_2O_{3(s)} + 3H_2O_{(l)}$$

 $2B_2O_{3(s)} + 3Si_{(s)} \rightarrow 4B_{(s)} + 3SiO_{2(s)}$

IMPLANTACIJA IONA

- Ubrzavanje iona dopanada u podlogu električkim poljem, razdjeljivanje različitih atomskih masa magnetskim poljem – visoka čistoća
- Veći izbor kombinacija materijala dopanada i podloga izrada ukopanog SiO₂, SiC, izolatora ukopanih u metale (npr. AlN u Al)...
- Skokovita promjena koncentracije na pn-spoju, odlična ponovljivost
- Mala difuzijska dubina do 1 μm, kompliciranija oprema, trajanje

NAPARIVANJE TANKIH SLOJEVA (EVAPORACIJA)

- Toplina → taljenje, isparavanje materijala (*cruible*) → taloženje na podlozi (*wafer*)
- Materijali Al, Au, Ti, Cr, Pt, Mo, Ta, W...

OPREMA

- Vakuum → smanjenje temperature tališta, kontaminacije
- Termičko grijanje (thermal evaporation) grijanje električkom strujom (otpornički, induktivno)
- Grijanje elektronskim snopom (e-beam evaporation)
- Brzina depoziciie udalienost, tlak, temperatura
- Mjerenje debljine sloja (završetak procesa): Δf kristalnog oscilatora

Depozicija tankih slojeva naparivanjem (evaporator).

ZNAČAJKE NAPARENIH SLOJEVA

- Mali termički stres (< 100°C), brzina procesa, jednostavnost
- Ograničen izbor materijala, loše prianjanje, neuniformnost

ONLINE MATERIJALI

- https://www.youtube.com/watch?v=5K7DhrbEVaQ&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=37&ab channel=Inrfucirvine
- https://www.youtube.com/watch?v=T2FXGLd0sQ&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=39&t=396s&ab_ch annel=Inrfucirvine
- https://www.youtube.com/watch?v=cpwMZ8cIhVU&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=40&ab channel=Inrfucirvine
- https://www.youtube.com/watch?v=hAht2ME2TPI&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=41&t=1s&ab channel=gatechmirc

DEPOZICIJA IONSKIM BOMBARDIRANJEM (SPUTTERING)

• Ionizacija plina (Ar plazma) → ubrzani ioni udaraju u metu (*target*) → izbijeni, ubrzani atomi mete talože se na substrat

Depozicija tankih slojeva ionskim bombardiranjem u plazmi (sputtering).

MATERIJALI, METODE

- **DC** vodljive mete, metali Al, Au, Pt, Ti, W...
- **RF**, ISM 13,56 MHz izolatori, dielektrici (nemetali)
- Reaktivno oksidi (SiO₂, Al₂O₃, SnO₂), nitridi (Si₃N₄, AlN)...
- **Magnetron** vanjsko magnetsko polje povećava ionizaciju, ubrzava reakciju, smanjuje napon, potrošnju energije, većina uređaja

ZNAČAJKE, U ODNOSU NA NAPARIVANJE

- 10-100x veća kinetička energija atoma mete → bolje prianjanje, kolizije → bolja konformnost, uniformnija površina
- Manja čistoća, defekti rešetke, ugrađeni atomi plina
- Visoka temperatura potrebno hlađenje mete, rezidualni termički stres
- Kompliciranija oprema visoki vakuum, plinovi, plazma, RF izvor, trošenje mete

ONLINE MATERIJALI

- https://angstromengineering.com/tech/magnetronsputtering/?utm_medium=cpc&utm_source=google&utm_term=sputtering&utm_camp_ aign=s-magnetronsputtering&utm_content=&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VGJpE9B8cPICGh_ 4Y_Ft7QlahLw52X-FsVDBePhEFEn41vKQiJA3MAQaAtg2EALw_wcB_
- https://www.dentonvacuum.com/products-technologies/magnetron-sputtering/
- https://www.youtube.com/watch?v=L6ZlkmIVm6c&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=60&ab channel=SemicoreEquipment
- https://www.youtube.com/watch?v=ljbESGs1XrM&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=3&t=541s&ab channel=SupportCenterforMicrosystemsEduc ation
- https://www.youtube.com/watch?v=90Ez_e9C4KM&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=9&ab_channel=AppliedScience
- https://www.youtube.com/watch?v=5X0EKbpLuRc&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=10&ab channel=AppliedScience
- https://www.youtube.com/watch?v=GMbj8FUDEQ0&list=PLVq4KLSUSjcFuvKA4ux8 U84RsmGHRHL5U&index=51&ab channel=MicroNanoTools
- https://www.youtube.com/watch?v=ZcpNdjeh94w&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=122&ab channel=PrecisionSimulations

SUBTRAKTIVNI POSTUPCI: JETKANJE MATERIJALA

SELEKTIVNOST JETKANJA (S)

• Izbor agensa čija je brzina nagrizanja željenog sloja (R_{V1}) veća od brzine nagrizanja stop-maske (R_{V2}) ili podloge ($R_{Vsubstrat}$)

$$S = R_{V1}/R_{V2}$$

$$R_{V1} \gg R_{V2}$$

$$R_{V1} \gg R_{Vsubstrat}$$

ANIZOTROPNOST (A)

Brzina jetkanja ovisi o smjeru

$$A = 1 - R_V/R_L$$

Selektivnost, izotropnost procesa jetkanja.

PROCJENA TRAJANJA, ZAVRŠETKA

- Početna točka analitički model, veliki broj stupnjeva slobode: agensi, početne koncentracije, temperature, međuprodukti...
- Nužna eksperimentalna provjera

KORIŠTENI POSTUPCI

Tekst

- Mokra jetkanja (wet etching)
 - · kemijsko, elektrokemijsko
- Suha jetkanja (dry etching)
 - Kemijsko, u plazmi (plasma etching)
 - Fizikalno, ionskim bombardiranjem u el. polju (ion etching)
 - Reaktivno ionsko, u plazmi (reactive ion etching, RIE)
 - Duboko reaktivno ionsko (deep reactive ion etching, DRIE)

ONLINE MATERIJALI

- https://www.mems-exchange.org/MEMS/processes/etch.html
- https://link.springer.com/referenceworkentry/10.1007%2F978-90-481-9751-4 431
- https://www.youtube.com/watch?v=mT1FStxAVz4&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=12&ab channel=AppliedScience

KEMIJSKO JETKANJE

NAMJENE, TIPIČNI KEMIJSKI AGENSI

- Si KOH, TMAH, EDP
- SiO₂ HF, HF / NH₄F (buffered-HF)
- Poli-Si HNO₃ / HF / CH₃COOH
- Si₃N4 H₃PO4 / H₂O

KEMIJSKO JETKANJE SI PODLOGE (BULK MICROMACHINING)

- Anizotropnost zbog kristalne strukture, zahtjeva precizno orijentiranje Si podloge, nemogućnost izvedbe proizvoljnih oblika
- Moguće unaprijed modelirati efekte (kut α , trajanje \rightarrow potkopavanje u)
- Stop-maska SiO₂, Si₃N₄, Au, Cr

Kemijsko jetkanje silicijske podloge.

JEDNOSTAVNA TEHNOLOGIJA (CHEMICAL BENCH)

- Kontaminacija, sigurnost odvojeni prostori za kiseline, lužine i otapala
- Ventilirani digestor, kupka za jetkanje, kupka za ispiranje deioniziranom vodom (mjerenje električke vodljivosti), sušenje N₂
- Pospješivanje elektrokemijsko, ultrazvučne vibracije, temperatura, para
- Odvodi za rekuperaciju ili zbrinjavanje (neutralizaciju) produkata

ONLINE MATERIJALI

 https://www.youtube.com/watch?v=UKf0offCyw0&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=2&t=455s&ab channel=SupportCenterforMicrosystemsEduc ation

SUHO JETKANJE

MEHANIZMI SUHOG JETKANJA

- **Kemijsko** jetkanje u plazmi (*plasma etching*) selektivnost (S)
- Fizikalno jetkanje ionskim bombardiranjem u el. polju (ion etching)
 anizotropija (A→1, strmi vertikalni zidovi), loša selektivnost
- Reaktivno ionsko jetkanje u plazmi (reactive ion etching, RIE)
 - selektivnost plazme i anizotropija ionskog bombardiranja

Mehanizmi suhog jetkanja. Lijevo: kemijsko u plazmi (*plasma etching*). Sredina: fizikalno ionsko (*ion etching*). Desno: reaktivno ionsko (*reactive ion etching*, *RIE*).

IZVEDBE REAKTORA ZA REAKTIVNO IONSKO JETKANJE (RIE)

- Kapacitivno spregnuta plazma (CCP-RIE)
- Induktivno spregnuta plazma (ICP-RIE)

TIPIČNE PRIMJENE

- Tanki slojevi Si, SiO₂, Si₃N4, AlN, AlO, GaAs, GaN, foto-polimeri
- Korišteni plinovi O₂, SF₆, CF₄, CHF₃, Ar

NEDOSTACI

- Komplicirana konstrukcija: plinovi, vakuum, izvori napona, hlađenje
- Rizik oštećenja uzorka UV radijacijom u plazmi
- Sigurnost skladištenje toksičnih plinovitih reaktanata, obrada i zbrinjavanje toksičnih produkata

- https://plasma.oxinst.com/products/icp-etching/plasma-pro-80-icp
- https://cleanroom.yale.edu/equipment/etching/oxford-80-icp-rie
- https://snfexfab.stanford.edu/guide/equipment/oxford-plasmapro-80-reactive-ion-etcher-rie-oxford-plasmapro-80-at-snsf
- https://www.youtube.com/watch?v=D9r0ZBNIq48&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=5&ab channel=SupportCenterforMicrosystemsEducation
- https://www.youtube.com/watch?v=UMvRXF3ZZr4&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=26&t=24s&ab_channel=nano%40stanford
- https://www.youtube.com/watch?v=dkMeB3CE7L8&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=36&ab channel=Inrfucirvine

DUBOKO REAKTIVNO IONSKO JETKANJE (DRIE, BOSCHOV PROCES)

Dubinsko jetkanje Si podloge RIE postupkom – mala brzina, kosi zidovi
 → prikladno samo za tanke slojeve

DRIE, Boschov Proces

- naizmjenično iteriranje:
 - Reaktivno ionsko jetkanje u plazmi (RIE) ionima Ar⁺, produkt SiF₄
 - Pasivizacija kemijskom depozicijom polimera (CF₂)_n u plazmi (**PECVD**)
 sprječava lateralno potkopavanje (*undercutting*), vertikalni zidovi

Duboko reaktivno ionsko jetkanje (DRIE / Boschov proces).

ZNAČAJKE DRIE U ODNOSU NA RIE:

- Veća brzina (RIE 50 nm/min, DRIE 50 μm/min), duboki kanali >100 μm, vertikalni zidovi 90 ± 2°, veliki omjer dubine i širine (aspect-ratio) 30:1
- Tekstura vertikalnih zidova (scalloping), kontrolira se frekvencijom izmjene koraka jetkanja/depozicije, 1-10 Hz
- Kompliciranija oprema veći broj plinovi, hlađenje, vakuum, izvori napona

- https://www.samcointl.com/basics-bosch-process-silicon-deep-rie/
- https://www.tf.unikiel.de/matwis/amat/semitech en/kap 7/backbone/r7 2 2.html#Black%20art;%20wet %20etching
- https://www.youtube.com/watch?v=onEpizpBAkl&list=PLVq4KLSUSjcFuvKA4ux8U84 RsmGHRHL5U&index=35&t=155s&ab channel=Inrfucirvine
- https://www.youtube.com/watch?v=kj_UYQ3HAoo&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=34&ab_channel=Inrfucirvine

MJERENJA

- Provjera uspješnosti/kvalitete pojedinačnih koraka
- Pronalaženje, optimiranje parametara tehnološkog procesa (fotolitografije, depozicije, jetkanja)
- Karakterizacija izrađenog prototipa MEMS senzora

VRSTE MJERENJA

- Morfologija, površina
- Sastav materijala
- Mehanička svojstva
- Električka svojstva

MORFOLOŠKA MJERENJA (1D, 2D)

PROFILOMETRIJA (1D)

- Pravocrtno mjerenje vertikalnog profila podloge (z-os)
- Računalno upravljani mehanička igla (stylus), regulirana sila pritiska na podlogu
- Kvantitativna provjera zakrivljenosti podloge, debljine tankih slojeva nakon depozicije
- Razlučivost vertikalna 0,5 nm; horizontalna 1-10 μm
- Sporost, nije pogodno za mekane materijale

SVJETLOSNA MIKROSKOPIJA (2D)

- Kvalitativna inspekcija površine
- Provjera mikrostrukturiranja foto-polimera, tijek/završetak kemijskog jetkanja
- Brzo, nije potrebna priprema uzorka
- Nije 3D, nema informacije o visini (z-os)
- Horizontalna razlučivost ograničena ogibom svjetlosti (diffraction limit)

MORFOLOŠKA MJERENJA (3D) - MIKROSKOP ATOMSKIH SILA, AFM

3D VIZUALIZACIJA POVRŠINE U VISOKOJ RAZLUČIVOSTI (ATOMIC FORCE MICROSCOPE, AFM)

- Minijaturizirani mehanički profilometar, vrh mikro-grede skenira površinu (x-y)
- Optičko očitavanje pomaka vrha

Mikroskop atomskih sila (AFM).

ZNAČAJKE **AFM**

- Odlična vertikalna razlučivost ~25 pm, horizontalno 1-20 nm → mjerenje hrapavosti
- Dodatno, mapiranje mehaničkih (modul elastičnosti), termičkih, elektro-magnetskih (permitivnost, vodljivost)
 i elektro-mehaničkih svojstava (piezoelektričnost)
- Neke izvedbe mogu raditi kao skenirajući tunelirajući mikroskop (*STM*), vizualizacije kristalne rešetke metala

PREDNOSTI I NEDOSTACI AFM

- Jednostavna konstrukcija, stolna izvedba, ne treba vakuum, visokonaponski izvor
- Proizvoljna vrsta materijala
- Ograničen raspon skeniranja po svim osima (x, y, z)

ONLINE MATERIJALI

- https://en.wikipedia.org/wiki/Atomic force microscopy
- https://wiki.anton-paar.com/en/atomic-force-microscopy-afm/
- https://afm.oxinst.com/

MORFOLOŠKA MJERENJA (3D) – OPTIČKA INTERFEROMETRIJA

OPTIČKI SUSTAV ZA 3D VIZUALIZACIJU POVRŠINE UZORKA

- Interferometar (Michelson, Mirau)
- 3D rekonstrukcija iz slijeda interferometrijskih slika snimljenih s pomacima u optičkom putu (vertikalno, < λ)

Optički Michelsonov interferometar.

PRIMJENE

- 3D mapiranje, mjerenje udaljenosti, debljine slojeva
- Mjerenje hrapavosti površine (nakon jetkanja, depozicije)
- Depozicije mjerenje zakrivljenost površine → estimacija rezidualnog stresa σ, mehaničkih svojstava materijala (E, ν), koeficijenta toplinskog širenja α

IZVEDBE

- Vidno polje: široko; fokusirano u točku (x-y skenirajući)
- Izvor svjetla: monokromatski (valna duljina prozirnost), bijelo
- Različite metode rekonstrukcije 3D topologije

PREDNOSTI I NEDOSTACI

- Veći raspon (x, y, z) no manja razlučivost od AFM
 vertikalno 1-10 nm, horizontalno 200-500 nm
- 3D prikaz, cijena, jednostavnost, brzina, priprema uzorka
- Osjetljivost na vibracije i promjene temperature okoline

ONLINE MATERIJALI

- https://www.npl.co.uk/special-pages/guides/gpg108 interferometry
- https://en.wikipedia.org/wiki/Coherence scanning interferometry
- https://en.wikipedia.org/wiki/White light interferometry

MEHANIČKI ODZIV (4D) – OPTIČKA VIBROMETRIJA

OPTIČKA VIBROMETRIJA: INTERFEROMETRIJA UZ MEHANIČKU POBUDU UZORKA

- Mjerenje frekvencijskog odziva (pomak) iz niza interferometrijskih slika na mehaničku pobudu uzorka
- Izvor mehaničke pobude električki izvor signala sinkroniziran s interferometrijskim postavom pobuđuje aktuator: piezoelektrički (vibracije), grijač (toplinsko širenje)...
- Rezonantna frekvencija, amplituda, širina pojasa, faktor dobrote
- Stroboskopija 3D vizualizacija kretanja uzorka u rezonanciji (modova)

IZVEDBE VIBROMETARA

- Skenirajući laserski, Dopplerov efekt (laser Doppler vibrometry, LDV)
- Digitalna holografska mikroskopija (digital holographic microscopy, DHM)

ONLINE MATERIJALI

- https://www.polytec.com/eu/vibrometry/technology/laser-doppler-vibrometry
- https://www.smaract.com/PICOSCALE-Vibrometer
- https://en.wikipedia.org/wiki/Digital holographic microscopy
- https://www.lynceetec.com/holographic-mems-analyzer/
- https://www.lynceetec.com/reflection-dhm/#tab-1
- https://www.lynceetec.com/mems-cantilevers/
- https://www.lynceetec.com/microhotplate/

SKENIRAJUĆI ELEKTRONSKI MIKROSKOP (SEM)

VIZUALIZACIJA POVRŠINE I KVALITATIVNO MJERENJE SASTAVA UZORKA (SCANNING ELECTRON MICROSCOPE, SEM)

- Elektronski top (katoda, volfram) ubrzava zraku
 primarnih elektrona (PE) prema uzemljenom uzorku, nastaju:
 - 1. Sekundarni elektroni (SE) morfologija, topologija površine
 - Povratno-raspršeni elektroni (back-scattered electrons, BSE)
 distribucija kemijskog sastava, kontrast ~ atomski broj
 - 3. **Rendgenske zrake** kemijski sastav uzorka, vrsta elementa (*energy-dispersive X-ray spectroscopy, EDS*)
- 2D slika nastaje x-y skeniranjem elektronske zrake po površini
- 3D sjenčanje kut upada SE, izometrijski prikaz zakretanjem uzorka

Načelo rada skenirajućeg elektronskog mikroskopa (SEM).

ZNAČAJKE

- Povećanje veće od svjetlosnog mikroskopa, do 3·10⁶, određuje ga površina skeniranja (x-y), elektroni ne podliježu granici ogiba svjetlosti
- Horizontalna razlučivost 1-20 nm
- Potreban vakuum, visoki napon (15-20 kV)
- Uzorci prikladni za vakuum (čvrstoća), električki vodljivi
 - nevodljivi materijali se metaliziraju (stolni sputtering uređaji)

- https://en.wikipedia.org/wiki/Scanning electron microscope
- https://www.youtube.com/watch?v=GY9lfOtVfE&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=18&t=246s&ab_cha nnel=MaterialsScience2000
- https://www.youtube.com/watch?v=Mr9-1Sz CK0&list=PLVq4KLSUSjcFuvKA4ux8U84RsmGHRHL5U&index=21&ab channe l=CaptainCorrosion
- https://www.youtube.com/watch?v=KfQ4VNpWN4M&list=PLVq4KLSUSjcFuvKA4ux8 U84RsmGHRHL5U&index=22&ab channel=NUSChemEmelynTan
- https://www.youtube.com/watch?v=MwpGKBFNjXA&list=PLVq4KLSUSjcFuvKA4ux8 U84RsmGHRHL5U&index=23&t=1s&ab channel=NanoBioNode
- https://www.youtube.com/watch?v=VdjYVF4a6iU&list=PLVq4KLSUSjcFuvKA4ux8U8 4RsmGHRHL5U&index=19&ab channel=AppliedScience
- https://www.youtube.com/watch?v=kNCCMK7I_rU&list=PLVq4KLSUSjcFuvKA4ux8U 84RsmGHRHL5U&index=43&ab channel=UniversityofLeicester

	Oxford Instruments Jupiter XR AFM	Scanning Electron Microscopes	Interferometric Optical Profilometers	Stylus Profilometers	Relevance	
Lateral resolution	<1-20 nm	<1-20 nm	200-500 nm	1000-10,000 nm	Accurate nanoscale surface roughness measurements require nanometer-scale resolution.	
Height resolution	<0.025 nm	No true 3D measurements possible	1-10 nm	0.5 nm		
Measurement type	Surface topography (3D) and surface properties*	Surface morphology (quasi-3D) and composition*	Surface topography	Line profiles (inefficient for surface mapping)	Areal surface roughness measurements require accurate imaging of 3D topography.	
Measurement time (per site)	<1 minute	<10 seconds	<10 seconds	<1 minute	Throughput of multisite measurements is affected by time spent per site.	
Surface material limitations	Any material type can be measured up 200 mm in diameter and 35 mm in height	Must be conductive (or coated) and vacuum compatible	Large variations in reflectivity and refractive index, steep slopes or edges, and very thin films can be problematic.	Most materials can be measured unless very soft and/or sticky	Many inspection tools have constraints on the types of materials that can be measured.	

Table 1: Comparison of tools for surface characterization. Specifications given for non-AFM tools are typical ranges for commercial instruments. Additional detailed comparisons can be found in Ref. 1. Both AFMs and scanning electron microscopes can provide information about materials properties beyond topography. For example, AFMs can measure a host of electrical (e.g., conductivity, permittivity), mechanical (e.g., elastic modulus), and functional properties (e.g., piezoelectric response). For more information, see Ref. 2.

Usporedba tehnika za mjerenje značajki površine uzorka.

MJERENJE ELEKTRIČKIH SVOJSTAVA

TIPIČNE MJERENE VELIČINE

- Napon, struja
- Frekvencijski odziv
- Otpor, vodljivost
- Dielektričnost, kapacitet
- Impedancijska spektroskopija
- S-parametri

POSEBNOSTI ISPITNIH STANICA

- Mikroelektrode, mikropozicioniranje, prihvat uzorka ili wafera
- Zaštita od električkih smetnji, oklapanje
- Izolacija od mehaničkih vibracija

LITERATURA

- [1] Gerlach, Gerald, and Wolfram Dotzel. Introduction to microsystem technology: a guide for students. John Wiley & Sons, 2008.
- [2] Franssila, Sami. Introduction to microfabrication. John Wiley & Sons, 2010.
- [3] Madou, Marc J. Fundamentals of microfabrication: the science of miniaturization. CRC press, 2018.