Fisica CdL in Viticoltura ed Enologia

Appello 06/02/2019

Problema 1: Un punto materiale P di massa $m=441\,\mathrm{g}$ cade da un piano inclinato di altezza $h=90\,\mathrm{cm}$ e angolo $\alpha=51\,^\circ.$

- i) Calcolare la velocità di P in fondo al piano inclinato se questo è liscio. (1 pt)
- ii) Se il piano inclinato è ruvido con coefficiente di attrito pari a μ =0.526, calcolare in quanto tempo P raggiunge la base del piano. (1.5 pt)
- iii) Nelle stesse condizioni del punto (ii), calcolare il lavoro (con segno) dissipato dalla forza di attrito. (2 pt)
- iv) Nelle stesse condizioni del punto (ii), calcolare l'enercia cinetica finale di P se questo è anche spinto da un motore che fa lungo il piano inclinato un lavoro complessivo pari a $L_{mot} = 2.29 J$. (1.5 pt)
- v) Rifare il quesito (iv) se il motore ha un'efficienza $\eta=88\%$. (0.5 pt)

Problema 2: Una mole di gas perfetto compie il ciclo termodinamico reversibile mostrato nel diagramma PV a lato. Il volume del gas e la sua pressione nel punto A sono $V_1=40\,\mathrm{L}$ e $P_1=10\,\mathrm{kPa}$. Il volume massimo raggiunto dal gas nel ciclo è $V_2=4\,V_1$, mentre la pressione massima è $P_2=2\,P_1$.

- i) Calcolare le temperature massima e minima che il gas raggiunge durante il ciclo e i punti in cui queste sono raggiunte. (1.5 pt)
- ii) Calcolare il lavoro fatto dal gas durante un ciclo. (1.5 pt)
- iii) Il calore specifico per una mole di gas in una trasformazione a volume costante è $C_V=3R/2$, mentre per un'espansione a pressione costante è $C_P=5R/2$, dove R è la costante universale dei gas. Calcolare il calore assorbito dal gas durante un ciclo. (Si noti che il gas assorbe calore solo durante le trasformazioni in cui la sua temperatura <u>aumenta</u>.) (2 pt)
- iv) Calcolare l'efficienza del ciclo. (1 pt)
- v) Confrontare l'efficienza del ciclo con quella di una macchina di Carnot che operi tra due sorgenti di calore la cui temperatura sia pari a quella massima e minima raggiunte dal gas nel ciclo. (0.5 pt)

Domande a risposta multipla (risposta corretta 1.5 pt, nessuna risposta 0 pt, risposta errata -0.5 pt)

- 1. Un'auto di massa $m=1777\,\mathrm{kg}$ si muove di moto rettilineo uniforme con velocità $v=42\,\mathrm{km/h}$. In quanto tempo (in secondi) percorre una distanza $s=714\,\mathrm{m}$?
 - a) 8330 s
- b) 61.2 s
- c) 17 s
- d) 29.04 s
- 2. Quale delle seguenti affermazioni collegate ai tre principi della dinamica non è corretta?
 - a) Un punto materiale non soggetto a forze si muove di moto rettilineo uniforme o resta in quiete.
 - b) Un punto materiale soggetto a forze acquisisce un'accelerazione inversamente proporzionale alla sua massa.
 - c) Le forze di azione e reazione tra due punti materiali sono uguali in modulo e direzione, ma hanno verso opposto e sono applicate sulla stessa retta di azione.
 - d) Un punto materiale soggetto a forze acquisisce un'accelerazione inversamente proporzionale alla forza applicata.

3.	Un'auto A si muove su una strada rettilinea a velocità v_A =80 km/h, mentre sull'altra carreggiata un auto B si muove in direzione opposta alla velocità v_B =79 km/h. Calcolare la velocità relativa di A rispetto a B (senza segno).								
	a) $79 \mathrm{km/h}$	b) $1 \mathrm{km/h}$	c) $159\mathrm{km/h}$	d) $80 \mathrm{km/h}$					
4.				a P =87 kW. Partendo da ferma, qual è il tem g raggiunga la velocità di v =110 km/h? d) 141.7 s	ipo				
5.		asse facendo 295	giri al minuto. Se i nuova velocità ang	•					
6.	Una carriola è schematizzabile come una leva di secondo genere con i due bracci pari rispettivamente a $b1=60\mathrm{cm}$ e $b2=120\mathrm{cm}$. Se si vuole sollevare un carico di $72\mathrm{kg}$ (resistenza), qual è il valore minimo della forza da applicare (misurata nel S.I.)? a) $36\mathrm{kgf}$ b) $0.002834\mathrm{N}$ c) $1411\mathrm{N}$ d) $352.8\mathrm{N}$								
7.	Un corpo di massa $1.5\mathrm{kg}$ e densità $500\mathrm{kg/m^3}$ galleggia in un recipiente pieno di olio ($\rho_{olio}=920\mathrm{kg/m^3}$). Quale percentuale del volume del corpo emerge dal liquido? a) 72.83% b) 45.65% c) 54.35% d) 50%								
8.	Un sistema consiste in 10 g di ghiaccio alla temperatura di 0°C. Dopo un certo intervallo di tempo il ghiaccio si è completamente trasformato in acqua alla temperatura di 50°C. Quanto calore è stato assorbito dal sistema in questa traformazione? (Trascurare la variazione di volume tra ghiaccio ed acqua.) a) 24690 J b) 3330 J c) 5423 J d) 2093 J								
9.	Un recipiente contenente 2×10^3 L di olio è caricato su un carrello di massa $500\mathrm{kg}$. Se il carrello poggia su 4 ruote e la superficie di contatto di ogni ruota col terreno è $200\mathrm{cm}^2$ quale è la pressione esercitata sul suolo? (Si trascuri il peso del recipiente e si usi il valore $\rho_{olio} = 920\mathrm{kg/m}^3$ per la densità dell'olio.) a) $29250\mathrm{Pa}$ b) $286600\mathrm{Pa}$ c) $225400\mathrm{Pa}$ d) $1.147\times10^6\mathrm{Pa}$								
10.	Quale delle seguenti	affermazioni colle	gate al secondo pri	ncipio della termodinamica <u>non</u> è corretta?					
	 a) Non può esistere una sorgente di calore a T = 0 K. b) Il coefficiente di prestazione (COP) di una pompa di calore è minore di 1. c) Non è possibile convertire integralmente il calore in lavoro meccanico. d) Il rendimento di una macchina termica operante tra due sorgenti di calore è minore o uguale a quello di una macchina di Carnot che operi tra le stesse sorgenti. 								
11.	Una macchina di Car	rnot che lavora tra	a le temperature —	$30^{\circ}\mathrm{C}$ e $50^{\circ}\mathrm{C}$ ha efficienza					
	a) $e = 0.4$	b) $e = 1.6$	c) $e = 0.2476$	d) $e = 0.7524$					
12.	Tre resistori con resistente?	stenza 10Ω , 5Ω e	15Ω sono collegat	i in parallelo. Quanto vale la resistenza equi	va-				
	a) 2.727Ω	b) 0.3667Ω	c) 0.03333Ω	d) 30Ω					

a .		c		1
Costan	t.i	118	310	:he

Costanti fisiche						
ità						
g = 9.81 m/s						
$g = 1.62\mathrm{m/s}$						
ità						
$\rho = 1000 \mathrm{kg/m^3}$						
$\rho = 920\mathrm{kg/m^3}$						
ecifici						
4186 J/kg·°C						
$2090\mathrm{J/kg}^{\circ}\mathrm{C}$						
$2010\mathrm{J/kg}\cdot^{\circ}\mathrm{C}$						
calori latenti						
$3.33 \times 10^5 \mathrm{J/kg}$						
$2.26 imes 10^6 \mathrm{J/kg}$						
costanti termodinamiche						
$R = 8.314 \mathrm{J/mol \cdot K}$						
$k_B = 1.38 \times 10^{-23} \mathrm{J/K}$						
$N_A = 6.022 \times 10^{23} / \text{mol}$						
$1\mathrm{cal} = 4.186\mathrm{J}$						
$-273.15^{\circ}{\rm C}$						
costanti elettromagnetiche						
$k_e = 8.988 \times 10^9 \mathrm{N \cdot m^2/C^2}$						
$e = 1.602 \times 10^{-19} \mathrm{C}$						