Arquitetura e Organização de Computadores

Aula 7 – Sistemas Numéricos

Profa. Karina Buttignon

Sistemas de Numeração

- Existem várias regras que permitem ler e escrever qualquer número, usando poucas palavras e poucos símbolos.
- □O conjunto de tais regras constitui um Sistema de Numeração. Estes sistemas, têm variado com as épocas e com os povos.
- □Os Sistemas de Numeração têm por objetivo prover símbolos e convenções para representar quantidades, de forma a registrar a informação quantitativa e poder processá-la.

Como são representadas as informações

- □ Para representar valores o ser humano utiliza o sistema de numeração decimal que contém os dígitos 0,1,2,3,4,5,6,7,8 e 9 (Sistema Decimal, onde sua base é 10)
- □Os computadores por sua vez utilizam um sistema de numeração conhecido como Sistema Binário, nele existem apenas dois dígitos: 0 (zero) e 1 (um)

(Sistema Binário, onde sua base é 2)

Sistema Binário

- O sistema binário base 2 utiliza 2 dígitos (0 e 1);
- É utilizado nos computadores eletrônicos, pois representa adequadamente os possíveis estados de componentes eletrônicos:
- Ligado / Desligado
- Aceso / Apagado;
- □Sim / Não;
- Verdadeiro / Falso, etc.

Representação de caracteres

- □ Bit Binary Digit é menor unidade de informação e pode assumir 2 valores.
 - O bit pode assumir dois valores :
 - □ 0 ou 1

Byte - grupo de 8 bits. Cada byte armazena o equivalente a um caractere de nossa linguagem.

- □ 1 caractere = 1 byte = 8 bits → 256 combinações
 - Para armazenarmos a letra B usaríamos o número binário 01000010.

Múltiplos do Byte

KB quilobyte (mil bytes) $2^{10} = 1.024$ bytes

- Computador 1ª geração memória 2KB, 3ª geração
 124 KB
- Disquete de $5\frac{1}{4}$ " (diâmetro em polegadas) \longrightarrow 360 KB.

MB megabyte (milhão de bytes) $2^{20} = 1.048.576$ bytes

- Disquete 3,5" 1,44MB
- CD-ROM 700 MB

GB gigabyte (bilhão de bytes) 2³⁰ = 1.073.741.824 bytes.

- HD 80 GB

TB terabyte (trilhão de bytes) 2⁴⁰ bytes.

Robô de DLT com 6 fitas de 200GB total de 1.2TB

Múltiplos do Byte

Termo	Abrev.	Quant. (em bytes)	≈ No Pág. De texto
Kilobyte	KB	1.024	50
Megabyte	MB	1.048.576	50.000
Gigabyte	GB	1.073.741.824	50.000.000
Terabyte	TB	1.099.511.627.776	50.000.000.000

Representação de dados

□ Dados são representados na memória do computador e em seus meios de armazenamento, através de códigos convencionados, e expressos em um sistema de numeração adequado.

■Exemplos:

- □Códigos: ASCII, EBCDIC, UNICODE
- □Sistemas de Numeracão: Decimal, Binário, Hexadecimal.

Representação de dados

- □ ASCII (American Standard Code for Interchange Information)
 - □sistema mais usado nos microcomputadores
 - □exemplo:
 - □letra A é representada como $(41)_{16} = (0100\ 0001)_2$

Tabela ASCII

□ A Tabela ASCII (American Standard Code for Information Interchange) é usada pela maior parte da indústria de computadores para a troca de informações. Cada caractere é representado por um código de 8 bits (um byte).

Alguns valores da Tabela ASCII

Caractere	Decimal	Hexadecimal	Bin á rio	Coment á rio
0	48	30	0011 0000	
1	49	31	0011 0001	
2	50	32	0011 0010	
3	51	33	0011 0011	
4	52	34	0011 0100	
5	53	35	0011 0101	
6	54	36	0011 0110	
7	55	37	0011 0111	
8	56	38	0011 1000	
9	57	39	0011 1001	
•	58	3A	0011 1010	

Alguns valores da Tabela ASCII

Caractere	Decimal	Hexadecimal	Bin á rio	Coment á rio
A	65	41	0100 0001	
В	66	42	0100 0010	
C	67	43	0100 0011	
D	68	44	0100 0100	
E	69	45	0100 0101	
F	70	46	0100 0110	
a	97	61	0110 0001	
b	98	62	0110 0010	
c	99	63	0110 0011	
d	100	64	0110 0100	
e	101	65	0110 0101	
f	102	66	0110 0110	

Sistemas de Numeração

- □EBCDIC (Extended Binary Code Decimal Interchange Code)
- □sistema mais usado nos mainframes
 - □exemplo:
 - □ algarismo 1 é representado como :
 - \Box (F1)₁₆ = (1111 0001)₂

Tabela UNICODE

- Diferentes tabelas geram problemas de adaptação para os usuários, torna mais difícil a configuração e comunicação entre computadores, exige muito dos sistemas de conversão e não padronizam a comunicação.
- Para resolver o problema, empresas interessadas se reuniram e desenvolveram o consórcio UNICODE, cuja missão foi o desenvolvimento de uma tabela única, para codificar todos os caracteres, de todos os idiomas.
- □ A tabela UNICODE foi desenvolvida com 16 BITs podendo representar 65.536 caracteres (216 = 65.536). Agora já trabalha com até 32 Bits (232 = 4.294.967.296).

Sistemas de Numeração

- ■Decimal (Base 10)
 - Usa os algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
 - Sistema usual fora do computador
- □Binário (Base 2)
 - Só usa os algarismos 0 e 1
 - ☐ É o sistema usado pelo computador
 - Octal (Base 8)
 - Usa os algarismos 0 e 7
- ■Hexadecimal (Base 16)
 - ■Usa os 10 algarismos e as letras A, B, C, D, E e F
 - É usado para representar números grandes, tais como os endereços de memória.

Sistemas utilizados na Computação

```
□a) Sistema Binário (Base 2)
   Símbolos: 0 e 1
   Exemplo:
(101100101)₂
□Sistema Quaternário (Base 4)
   □Símbolos: 0, 1, 2, 3
   Exemplo:
     (2130012)_{4}
□Sistema Octal (Base 8)
   □Símbolos: 0, 1, 2, 3, 4, 5, 6, 7
   Exemplo:
     (26074461)_{8}
```

FCqnyersão de Sistemas de Numeração

- ■Conversão da base 2 para base 10:
- Exemplo:

```
(101101110)_2 = (?)_{10}

1.2^8 + 0.2^7 + 1.2^6 + 1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 1.2^1 + 0.2^0 =

1.256 + 0.128 + 1.64 + 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1 =

256 + 0 + 64 + 32 + 0 + 8 + 4 + 2 + 0 = 366

= (366)_{10}
```

Outro método: Tabela

- ■Conversão da base 2 para base 10:
- Tabela

$$\Box$$
(101101110)₂ = (?)₁₀

1	0	1	1	0	1	1	1	0	
256	128	64	32	16	8	4	2	1	

$$256 + 64 + 32 + 8 + 4 + 2 = = (366)10$$

Conversão de Sistemas de Numeração

Transforme os números abaixo de binário para decimal:

```
- 1110(b)=_____
```

$$-1010(b)=$$

Respostas: 14,10,817;

Conversão de Sistemas de Numeração

- □Conversão da base 10 para base 2:
- □Dividir sucessivamente o número representado no sistema decimal (base 10) por 2 até que seja obtido o quociente 0

■Exemplo:

$$(30)_{10} = (?)_2$$

□Conversão da base 10 para base 2:

□Exemplo:

$$(30)_{10} = (?)_2$$

30|2

0 15 2

1 7 2

1 3<u>|2</u>

1 1

$$30_{10} = 11110_2$$

Transforme os números abaixo de decimal para binário:

$$-19_{10} =$$

$$-61_{10} =$$

– Resposta :

•
$$19_{10} = 10011_2$$

•
$$61_{10} = 111101_2$$

Decimal para Binário

Octal para decimal

$$5x8^{1}+6x8^{0}$$

Arquitetura de Computadores Decimal para Octal

```
568
```

```
568 | <u>8</u>
0 71 | <u>8</u>
7 8 | <u>8</u>
0 1
```

Resposta: $(1070)_8$

- Sistema de Numeração Hexadecimal
- Este sistema é bastante utilizado em microcomputadores tanto em hardware como em software.
- Este sistema tem base 16 e portanto possui 16 dígitos.
- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E e F são os dígitos deste sistema.
- A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

- Conversão da base 16 para base 10 (Hexadecimal para Decimal)
- $1A2F_{16} = 1 \times 16^3 + A \times 16^2 + 2 \times 16^1 + F \times 16^0$
- = $1 \times 16^3 + 10 \times 16^2 + 2 \times 16^1 + 15 \times 16^0$
- \bullet = 4096 + 2560 + 32 + 15
- = 6703_{10}
- $1C3_{16} = 1x16^2 + 12x16^1 + 3x16^0 = 256 + 192 + 3 = 451_{10}$

- Conversão da base 10 para base 16 (Decimal para Hexadecimal)
 - Divide-se o número decimal por 16

```
1000|\underline{16}
8 62|\underline{16}
14 3|\underline{16}
3 0 	 1000_{10} = 3E8_{16}
```


Tabela de conversão

Decimal	Binário		Octal		Hexadecimal
0		0000		0	0
1		0001		1	Ĩ
2		0010		2	2
3		0011		3	3
4		0100		4	4
5		0101		5	5
6		0110		6	6
7		0111		7	7
8		1000		10	8
9		1001		11	9
10		1010		12	Α
11		1011		13	В
12	1100		14		C
13	1101		15		D
14	1110		16		E
15	1111		17		F

- Conversão da base 16 para base 2 (Hexadecimal para Binário)
 - Exemplificando. Converter AB3₁₆ em binário.

$$AB3_{16} = \underbrace{1010}_{A} \underbrace{1011}_{B} \underbrace{0011}_{3} = 101010110011_{2}$$

Vejamos outro exemplo. Converter F8DD₁₆ em binário.

$$F8DD_{16} = \underbrace{11111000}_{8} \underbrace{1101101}_{D} \underbrace{1101}_{D} \underbrace{1111100011011101}_{2}$$

Canversão de Sistemas de Nume ração

- Conversão da base 2 para base 16 (Binário para Hexadecimal)
 - Desta vez agrupamos os bits de 4 em 4 à partir da direita.
 - Converter 1001110₂ em hexadecimal.

$$-100 = 4$$
 $1110 = E$ $10011102 = 100 1110 = 4E16$

Converter 1100011011₂ em hexadecimal.

$$11 = 3$$
 $0001 = 1$ $1011 = B$ $1100011011_2 = 11 0001 1011 = 31B_{16}$

Conversão Octal para Binário – Agrupamento 3 dígitos

Valor: 123₈

1 2 3

001 010 011 (Verificar a Tabela, e acrescentar o digito que falta, para 3)

Valor: **001010011**₂

Conversão Binário para Octal

• 10101100₂

Separa em 3 casas (dígitos)

010 101 100 (verifica a tabela)

2 5 4

Valor octal = 254_8

Conversão Octal para Hexadecimal

• 1057₈

Hexadecimal para Octal

```
• 1F4
```

 1
 F
 4

 0001
 111
 0100
 (converter binario)

 000
 111
 110
 100
 (3 digitos octal)

7 6 4

0

Exercício

• Converta:

1B2₁₆ para decimal

2BA₁₆ para octal

255₈ para hexadecimal

101011₂ para octal

1B2₁₆ para decimal

$$\bullet$$
 =1x16² + 11x16¹+ 2x16⁰

$$\bullet$$
 = 256 + 176 + 2

2BA₁₆ para octal

```
2 B A 00101011 1010 (binario)
```

```
    001 010 111 010 (tabela binario para octal)
    1 2 7 2
```

$$=1272_{8}$$

255₈ para hexadecimal

```
5
10
101
101 (tabela binario)
1010
1101 (agrupamento 4 em 4)
A D (valor tabela Hexadecimal)
```

$$=AD_{16}$$

101011₂ para octal

```
101011

101 011 (tabela octal)

=53_8
```