Show complete work—that is, all the steps needed to completely justify your answer. You may refer to theorems in the book (without referencing theorem numbers etc.).

- (1) Let *V* be a vector space.
 - (a) Carefully define eigenvalues, eigenvectors and generalized eigenvectors of $T \in L(V)$.
 - (b) Now suppose $T \in L(V)$ is invertible. Show that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .
 - (c) Prove that T and T^{-1} have the same generalized eigenspaces.

Proof. (b) First note that, since T is invertible, $null(T) = \{0\}$, and so 0 cannot be an eigenvalue of T. Now

$$\lambda$$
 is an eigenvalue of $T\iff T(\mathbf{v})=\lambda\,\mathbf{v}$ for some $\mathbf{v}\neq\mathbf{0}$ $\iff \mathbf{v}=T^{-1}(\lambda\,\mathbf{v})$ for some $\mathbf{v}\neq\mathbf{0}$ $\iff \frac{1}{\lambda}\,\mathbf{v}=T^{-1}(\mathbf{v})$ for some $\mathbf{v}\neq\mathbf{0}$ $\iff \frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

(c) Let $n = \dim V$, and consider an eigenvalue λ of T. Then

$$\operatorname{null}(T - \lambda \mathbf{I})^n = \operatorname{null}\left(\lambda T \left(\frac{1}{\lambda} \mathbf{I} - T^{-1}\right)\right)^n = \operatorname{null}\left((\lambda T)^n \left(\frac{1}{\lambda} \mathbf{I} - T^{-1}\right)^n\right)$$

for some $j \in \mathbb{Z}_{>0}$. (Here the last equality holds because T commutes with both I and T^{-1} .) But since λT is invertible,

$$\operatorname{null}\left((\lambda T)^n\left(\tfrac{1}{\lambda}\mathbf{I}-T^{-1}\right)^n\right)=\operatorname{null}\left(\tfrac{1}{\lambda}\mathbf{I}-T^{-1}\right)^n,$$

and so we have

$$\operatorname{null}(T - \lambda I)^n = \operatorname{null}\left(\frac{1}{\lambda}I - T^{-1}\right)^n$$

in words: the generalized eigenspace of T corresponding to λ equals the generalized eigenspace of T^{-1} corresponding to $\frac{1}{\lambda}$.

- (2) Let V be a complex inner-product space.
 - (a) Define what it means for $T \in L(V)$ to be *normal* and what it means for T to be *self adjoint*.
 - (b) Prove that a normal operator in L(V) is self adjoint if and only if all its eigenvalues are real. (*Hint:* you may use the spectral theorem.)

Proof of (b). Suppose T is self adjoint, and λ is an eigenvalue with eigenvector $\mathbf{v} \neq \mathbf{0}$. Then

$$\lambda \, ||\mathbf{v}||^2 = \langle \lambda \, \mathbf{v}, \mathbf{v} \rangle = \langle T(\mathbf{v}), \mathbf{v} \rangle = \langle \mathbf{v}, T(\mathbf{v}) \rangle = \langle \mathbf{v}, \lambda \, \mathbf{v} \rangle = \overline{\lambda} \, ||\mathbf{v}||^2$$

and so, since $||\mathbf{v}|| \neq 0$, $\lambda = \overline{\lambda}$, i.e., $\lambda \in \mathbf{R}$.

Conversely, suppose all eigenvalues of $T \in L(V)$ are real. By the (complex version of the) spectral theorem, there exists an orthonormal basis of eigenvectors of T, and with respect to this basis, T has a diagonal matrix whose diagonal entries are the eigenvalues. But since these entries are real, $T^* = T$ (neither conjugation nor transposing changes the matrix), i.e., T is self adjoint.

- (3) Let *V* be an inner-product space.
 - (a) Define what it means for $T \in L(V)$ to be an *isometry*.
 - (b) Suppose n is an odd positive integer and $T \in L(\mathbf{R}^n)$ is an isometry. Prove that T has eigenvalue 1 or -1. (Hint: you may use the existence of a certain block-diagonal form of a matrix of T.)

Proof of (b). We proved in class that there exists an orthonormal basis with respect to which T has block-diagonal form, with 1×1 blocks (of the form ± 1) and 2×2 blocks. Since n is odd, there must be a 1×1 block, and so there must be an eigenvalue ± 1 .

- (4) (a) Carefully define the *characteristic* and *minimal polynomials* of an operator $T \in L(\mathbb{C}^n)$.
 - (b) Describe what a *Jordan normal form* for *T* is.
 - (c) If $T \in L(V)$ has minimal polynomial $(x-28)^3(x-34)$ and characteristic polynomial $(x-28)^6(x-34)^2$, what are the possible different Jordan normal forms for T?

Solution for (c). Because the minimal polynomial of T is $(x-28)^3(x-34)$, all the Jordan forms must have a 3×3 Jordan block with eigenvalue 28 (of the form $\begin{bmatrix} 28 & 1 & 0 \\ 0 & 28 & 1 \\ 0 & 0 & 28 \end{bmatrix}$) and

a 1×1 blocks with eigenvalue 34. Since the characteristic polynomial is (x-28)the possible variations are

- (i) two 3×3 Jordan blocks with eigenvalue 28 and two 1×1 blocks with eigenvalue 34,
- (ii) one 3×3 Jordan block with eigenvalue 28, one 2×2 Jordan block with eigenvalue 28, one 1×1 Jordan block with eigenvalue 28, and two 1×1 blocks with eigenvalue 34, and
- (iii) one 3×3 Jordan block with eigenvalue 28, three 1×1 Jordan blocks with eigenvalue 28, and two 1×1 blocks with eigenvalue 34.
- (5) (a) Define the *determinant* of $T \in L(\mathbb{C}^n)$.
 - (b) Suppose $x_1, x_2, \dots, x_n \in \mathbb{C}$, and let $A \in L(\mathbb{C}^n)$ be given in matrix form (with respect to the standard basis of \mathbb{C}^n)

$$A := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}.$$

Viewing x_1, x_2, \dots, x_n as variables, prove that det(A) is a polynomial in x_1, x_2, \dots, x_n of (total) degree at most $\frac{n(n-1)}{2}$. (c) Show that $\det(A) = 0$ if $x_j = x_k$ for some $j \neq k$, and conclude that $x_k - x_j$ divides

- det(A).
- (d) Prove that

$$\det(A) = \prod_{1 < j < k < n} (x_k - x_j).$$

(*Hint*: use (b) and (c) to show that $\det(A) = c \prod_{1 \le j < k \le n} (x_k - x_j)$ for some constant c, and then compute the coefficient of $x_1^0 x_2^1 \cdots x_n^{n-1}$ on both sides.)

Proof. (b) The determinant formula for a matrix we proved in class gives

$$\det(A) = \sum_{\pi \in S_n} \operatorname{sign}(\pi) \prod_{j=1}^n x_{\pi(j)}^{j-1}$$

- which is a polynomial of degree at most $\sum_{j=1}^{n} (j-1) = \frac{n(n-1)}{2}$. (c) If $x_j = x_k$ for some $j \neq k$ then two rows of A are equal, in which case we know that det(A) = 0. Viewing det(A) as a polynomial in x_k , this means that x_i is a root, and so $x_k - x_i$ divides $\det(A)$.
- (d) From part (c) we know that $\prod_{1 \le j < k \le n} (x_k x_j)$, which is a polynomial of degree $\frac{n(n-1)}{2}$, divides det(A). Part (b) then implies that the degree of det(A) must equal $\frac{n(n-1)}{2}$, and so

$$\det(A) = c \prod_{1 \le j < k \le n} (x_k - x_j)$$

for some constant c. The coefficient of $x_1^0 x_2^1 \cdots x_n^{n-1}$ in det(A) is sign(I) = 1, as is the coefficient of $x_1^0 x_2^1 \cdots x_n^{n-1}$ in $\prod_{1 \le j < k \le n} (x_k - x_j)^n$, and so c = 1.

Remark: We have just computed the famous Vandermonte determinant.