

Fruit-fly Inspired Neighborhood Encoding for Classification

Kaushik Sinha^{1,2}, Parikshit Ram³

¹Department of Electrical Engineering and Computer Science, Wichita State University ²Institute for Foundations of Machine Learning ³IBM Research Al

(h(x))

FlyHash

FBF: Fly Bloom Filter

- \triangleright Each class FBF $w \in \{0,1\}^m$ summarizes data points from that class
- > Starting with an all ones vector, update is done as follows:

$$w \leftarrow w \land (w \oplus h(x_{\text{in}})) = w \land \overline{h(x_{\text{in}})}$$

- > FBF for each class attempts to assign
- low novelty scores to data points from the same class
- high novelty scores to data points from different classes

Motivation

- > Can we reprogram FBF to the supervised learning setting and devise a classifier based on the simple learning dynamics of the FBF?
- > Will such a supervised classification scheme be useful and competitive when learning needs to happen with a single pass?
- > What generalization guarantees would such a learner have?

Contributions

- Design of a novel FBF based FlyHash Bloom Filter Classifier -- FBFC
- Learning: additions only operations, single-pass, no loss-minimizing optimization
- o *Inference:* efficient FlyHash followed by a sparse binary additions-only dot-product
- > A thorough empirical comparison of FBFC to standard classifiers
- on over 71 datasets demonstrating significant gains over single-pass baselines
- > A theoretical examination of the proposed scheme
- establish conditions under which FBFC agrees with the nearest-neighbor classifier, thereby inheriting its generalization guarantees
- > How the FBFC can provide insights into the problem structure
- o in terms of a **class hierarchy** in classification problem

FBFC Learning

- > The learning scheme is online
 - o an example can be used in isolation to update the model
 - o an example does not need to be seen more than once

FBFC Inference

- > Each class FBF ensure by construction
 - o points similar to points in class are treated as inliers
 - o points from other classes do not affect the class encoding
- > Compute novelty score for a test point on all FBFs and select class with lowest novelty score

Robust Learning of FBFC*

- > Problem: Single mislabeled example can damage class' binary FBF
- > Remedy: Non-binary FBF to capture neighborhood more robustly
- FBF coordinates decayed at a controlled rate

$$|w_{lj} = (1-c)^{\left|\{(x,y)\in S\colon y=l \text{ and } (h(x))_j=1\}\right|}, l\in [L], j\in [m]$$

Robustness of FBFC vs FBFC* on Synthetic Data

Label noise level	1.0%	5.0%	10%	25%
FBFC ACCURACY (%) FBFC* ACCURACY (%)	56.6 ± 0.8 60.1 ± 0.7	54.5±0.9 58.9±0.9	52.0±1.3 57.1±1.2	
REL. IMPROVEMENT (%)				14.2±1.8

Theoretical Guarantee

Runtime complexities

$O(nm \cdot \max\{s, \log \rho\})$	Training time (Claim 1, 3)
$O(m \cdot \max\{s, \log \rho, (\rho L/m)\})$	Inference time (Claim 2)

Learning Theoretic Properties

THEOREM 4. Fix any $\delta \in (0,1)$, $s \ll d$, and $\rho \ll m$. Given a training set S as described above and a test example $x \in X$, let x_{NN} be its closest point from S measured using ℓ_p metric for an appropriate choice of p. If (i) $\rho = \Omega(\log(1/\delta))$, (ii) $||x - x_{NN}||_p = O(1/s)$, and (iii) $m = \Omega(n\rho)$, then under mild conditions, with probability at least $1 - \delta$ (over the random choice of lifting matrix M), prediction of FBFC on x agrees with the prediction of 1NNC on x.

Empirical Evaluation

Comparison against baselines

- > Baselines: nearest-neighbor (kNNC, 1NNC), prototype based (CC1, CC), LSH based bloom filters (SBFC), linear (LR), multi-layered perceptrons (MLPC)
- > Three groups of 71 OpenML data sets: All (all 71 sets), Group A (kNNC best among baselines), **Group B** (LR best among baselines)
- > Performance relative to FBFC*: Fraction FBFC* wins & relative margin of improvement

Метнор	All (71 sets)	Group A (37/71)	Group B (34/71)
<u>k</u> NNC	0.51 (▲0.05%) ∘	0.24 (▼1.08%) ∘	0.79 (▲3.98%) •
1NNC	0.62 (\$\textriangle 2.21%) •	0.38 (▼0.24%) ∘	0.88 (12.1%)
CC1	0.87 (7.64%) •	0.95 (11.8%)	0.79 (▲4.96%) ●
<u>CC</u>	0.38 (▼0.48%) ∘	0.38 (▼0.31%) ∘	0.38 (▼0.50%) ∘
SBFC	0.99 (124.9%)	$0.97 (\blacktriangle 24.7\%) \bullet$	1.00 (▲25.2%) •
LR	0.58 (▲1.34%) ∘	0.78 (▲3.39%) •	0.35 (▼0.68%) ∘
MLPC	0.73 (4.36%) •	$0.81 (\blacktriangle 6.57\%) \bullet$	0.65 (▲3.80%) •
FBFC	0.82 (5.87%) •	0.68 (• 0.73%) •	0.97 (▲9.13%) •

Problem insights

> Class hierarchy based on per-class FBF similarities

