

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 5070/22

Paper 2 Theory

May/June 2011

1 hour 30 minutes

Candidates answer on the Question Paper.

No additional materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
Section A	
В7	
B8	
В9	
B10	
Total	

This document consists of 17 printed pages and 3 blank pages.

Section A

For Examiner's Use

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following compounds to answer the questions below.

ammonia

carbon monoxide

copper(II) carbonate

copper(II) chloride

copper(II) sulfate

sodium chloride

sodium hydroxide

sodium sulfate

sulfur dioxide

sulfuric acid

zinc carbonate

zinc nitrate

Each compound can be used once, more than once or not at all.

Which compound

(a) is a white solid with a high melting point that dissipution,	solves in water to form an alkaline
	[1]
(b) is a blue solid which, when dissolved in water, give barium nitrate,	es a white precipitate with aqueous
	[1]
(c) is a colourless gas that turns moist red litmus paper	r blue,
	[1]
(d) is a white solid that decomposes on heating to form	carbon dioxide?
	[1]
	[Total: 4]

A2	2 Alkanes are a homologous series of saturated hydrocarbons.					
	(a)	What is the general formula of alkanes?	Examiner's Use			
		[1]				
	(b)	Draw the structures of the two isomers of C ₄ H ₁₀ .				
		[2]				
	(c)	One of the isomers of C_4H_{10} , butane, reacts with chlorine in the presence of ultra-violet				
	(0)	light. It forms hydrogen chloride gas and a mixture of liquid compounds.				
		(i) Name this type of reaction.				
		[1]				
		(ii) Draw the structure of one of the liquid compounds.				
		[1]				
	(d)					
	(d)					
		[1]				
		[Total: 6]				

For Examiner's Use

А3	3 Vegetable oils can be used both to make margarine and as fuels such as bio-diesel.			
	(a)	Mar	ny vegetable oils are polyunsaturated.	
		(i)	Explain the meaning of the term <i>polyunsaturated</i> .	
			[2]	
		(ii)	Describe how you could distinguish between samples of saturated and unsaturated vegetable oils.	
			[2]	
	(b)	Des	cribe how margarine can be manufactured from unsaturated vegetable oils.	
			[1]	
	(c)	Bio- Sug	diesel contains the compound $C_{15}H_{30}O_2$. gest the products of the complete combustion of this compound.	
	(d)	ferti	mers that grow vegetable oil crops often use large quantities of ammonium nitrate liser, NH ₄ NO ₃ . culate the percentage by mass of nitrogen in ammonium nitrate.	
			percentage = % [2]	

For Examiner's Use

(e)	Microorganisms in the soil convert ammonium nitrate into gaseous nitrous oxide This gas is a greenhouse gas.				
	(i)	Describe two possible consequences of an increasing concentration of greenhouse gases in the atmosphere.			
		[2]			
	(ii)	Ammonium nitrate can be thermally decomposed in the laboratory to form nitrous oxide and one other product. Construct the equation for this decomposition.			
		[1]			
		[Total: 12]			

a)	How	•	valency electrons will b	•			
b)	Com		ne following table about				[1]
			nucleon number		280		
			number of protons				
			number of neutrons				
				I			[2]
c)	Pred	lict two	physical properties of	his new eleme	nt.		
	1						
	2						[2]
d)	Fluo	rine rea	cts with magnesium to	form magnesiu	ım fluoride.		
				O			
	(i)	Write a	balanced equation for	_			
	(i)	Write a	balanced equation for	_			
				this reaction.			[1]
	(ii)	Give bo	balanced equation for balanced equation for other balanced equation for the balanced equation fo	this reaction.	charge on th	e ions which a	
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	ie ions which a	
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	re present
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	re present
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	re present
	(ii)	Give bo	oth the electronic config	this reaction.	charge on th	e ions which a	re present

IIIII	nuorochioromethane, CF3Ci, is a covalent compound.	For
(i)	Draw a 'dot-and-cross' diagram for a CF_3Cl molecule. You only need to show the outer electrons for each atom.	Examiner's Use
	The same and same and same and an analysis analysis and an analysis and an analysis and an analysis and an ana	
	[2]	
(ii)	Trifluorochloromethane does not conduct electricity.	
(,	Suggest one other physical property of trifluorochloromethane.	
	[1]	
(iii)	Suggest one environmental problem associated with the presence of	
(111)	trifluorochloromethane in the atmosphere.	
	[1]	
	[Total: 12]	

A5 Blue diamonds are an impure form of carbon. Part of the structure of a blue diamond is shown below.

For Examiner's Use

[Total: 6]

Blue diamonds have a high melting point and can conduct electricity.

(a)	Exp poir	lain, in terms of structure and bonding, why blue diamonds have a high melting it.
		[2]
(b)	Nor	mal diamonds are a pure form of carbon. They do not conduct electricity.
	(i)	Explain, in terms of structure and bonding, why normal diamonds do not conduct electricity.
		[1]
	(ii)	Suggest why blue diamonds can conduct electricity.
		[1]
(c)		phite is another pure form of carbon. Suggest two reasons why graphite is often d as an electrode in electrolysis.
	1	
	2	[2]

A 6	6 Proteins are natural polyamides which can be hydrolysed to form amino acids.					
	(a)	Name a synthetic polyamide.	Examiner's Use			
		[1]				
	(b)	The hydrolysis of proteins forms a mixture of colourless amino acids. Describe, with the aid of a labelled diagram, how paper chromatography can be used to identify a mixture of amino acids.				
		[4]				
		[Total: 5]				

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B7 Nitric oxide, NO, is an atmospheric pollutant formed inside car engines by the reaction between nitrogen and oxygen.

$$N_2(g) + O_2(g) \rightarrow 2NO(g) \Delta H = +66 \text{ kJ mol}^{-1}$$

This reaction is endothermic.

(a) Explain the meaning of the term *endothermic*.

(b) Complete the energy profile diagram for the reaction between nitrogen and oxygen. On your diagram label the

- product,
- activation energy, $E_{\rm a}$,
- enthalpy change for the reaction, ΔH .

[3]

(c) Calculate the mass of nitric oxide formed when 100 g of nitrogen reacts completely with oxygen.

mass of nitric oxide = g [3]

© UCLES 2011

For Examiner's Use

Propanoic acid, C₂H₅CO₂H, and hydrochloric acid, HCl, both act as acids when dissolved in water.

For Examiner's Use

(a) State the formula of an ion found in both dilute propanoic acid and in dilute hydrochloric acid.

[1]

- **(b)** Propanoic acid reacts with magnesium carbonate to form water, a colourless gas and a salt. In this reaction
 - (i) name the gas,

(ii) give the formula of the salt.

_____[1]

(c) In an experiment magnesium ribbon is added to 25.0 cm³ of 1.00 mol/dm³ hydrochloric acid, an excess.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Every 30 seconds the total volume of hydrogen formed is measured at room temperature and pressure. The results are shown on the grid below.

	(i)	Use information from the graph to calculate the mass of magnesium ribbon used in the experiment. [One mole of any gas at room temperature and pressure occupies a volume of $24000\mathrm{cm}^3$.]	For Examiner's Use
		mass of magnesium ribbon = g [3]	
	(ii)	The experiment was repeated using the same mass of magnesium ribbon but with 25.0 cm³ of 1.00 mol/dm³ propanoic acid, an excess. Draw on the grid a graph of the results for the reaction between magnesium ribbon and propanoic acid. [2]	
(d)		Ite hydrochloric acid reacts with aqueous silver nitrate to form a white precipitate. te an ionic equation, with state symbols, for this reaction.	
		[2]	
		[Total:10]	

B9 Copper is a transition metal. It is used both in its pure form and in alloys. (a) The physical properties of copper can be explained in terms of metallic bonding. Describe, with the aid of a labelled diagram, the metallic bonding in copper. **(b)** Pure copper is used to make electrical wires because it is a good electrical conductor. Explain why copper is a good electrical conductor. (ii) Describe how impure copper can be purified.[2] (c) Name an alloy that contains copper.[1]

For Examiner's Use

(d)	Many millions of tonnes of copper are recycled every year. Describe some of the advantages and disadvantages of recycling copper.	For Examiner's Use
	[0]	
	[3]	
	[Total: 10]	

For Examiner's Use

B10 Glu	cose	, C ₆ H ₁₂ O ₆ , is one of the products of photosynthesis.
(a)	Stat	te the empirical formula for glucose.
(b)	(i)	Write an equation to show how glucose is formed in photosynthesis.
	(ii)	Give the essential conditions for this process.
(c)	Ferr	mentation converts glucose into ethanol, a biofuel.
(0)	1 611	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$
	(i)	State two essential conditions for fermentation to take place.
	(ii)	1
	(iii)	maximum mass of ethanol = tonne [3] Suggest one possible problem in making biofuels by fermentation. [1] [Total: 10]

17

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

						F	he Perio	dic Tabl	The Periodic Table of the Elements	Elemen	ts						
	=							5	2			≡	≥	>	>	=	0
	-	_					-										4
							I										Не
							Hydrogen 1										Helium 2
7								1				7	12	14	16	19	20
	Be	d)										Ω	ပ	Z	0	ш	Ne
Lithium 3	m Beryllium 4	mnjj										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na												ΝI	Si	۵	S	CI	Ar
Sodium 11	≥ 5	sium										Aluminium 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
39	40	0 45	48	51	52	55	56	29	59	64	65	70	73	75	62	80	84
Y	S	a Sc	F	>	ప	Mn	Бe	ဝိ	Z	C	Zu	Ga	Ge	As	Se	Ŗ	Ā
Potassium 19	um Calcium 20	ium Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
82	88	89	91	86	96		101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	>	Zr	QN	Mo	ဍ	Bu	R	Pd	Ag	ပ္ပ	I	Sn	Sb	<u>a</u>	Ι	Xe
Rubidium 37	um Strontium 38	tium Yttrium 39	Zrconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	7 139	178	181	184	186	190	192	195	197	201	204	207	209	209	210	222
Cs			Ξ	<u>a</u>	>	Re	Os	i	₹	Αn	Ηg	11	Pb	Ξ	8	Αt	R
Caesium 55	ım Barium 56	um Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
223		6 227															
Ţ.																	
Francium 87	nn Radium 88	um Actinium 89 †															
* 58–	71 Lantha	* 58–71 Lanthanoid series	1	140	141	144	147	150	152	157	159	162	165	167	169	173	175
+ 90	103 Actir	† 90–103 Actinoid series		ပိ	Ā		Pm	Sm	П	Вg	Q L	۵	운	ш	۳	Αþ	3
-				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68		Ytterbium 70	Lutetium 71
	ß	a = relative atomic mass	mic mass	232	231	238	237	244	243	247	247	251	252	257		259	260
Key	×	X = atomic symbol	loqu	ᄕ	Ра	-	М Ф	Pu	Am	S	¥	₽	Es	Fm	βQ	8	בֿ
	р	b = atomic (proton) number	ton) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
				The v	The volume of one mol		of any or	o ic 24 dr	o of any gas is 24 dm ³ at room temperature and pressure (rtn)	tempers	ture and	01100010	(,,				

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).