Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет Программной инженерии и компьютерной техники Кафедра информатики и прикладной математики

Дисциплина «Вычислительная математика» Лабораторная работа №2 Метод прямоугольников

Выполнил: Ореховский Антон Михайлович Группа Р3217

Преподаватель: Калёнова Ольга Вячеславовна

Описание метода

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на константу на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота - значением подынтегральной функции в этих узлах.

1. Формула левых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} f(x_{i})(x_{i+1} - x_{i})$$

2. Формула правых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} f(x_{i+1})(x_{i+1} - x_i)$$

3. Формула средних прямоугольников:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} f\left(\frac{x_{i} + x_{i+1}}{2}\right) (x_{i+1} - x_{i})$$

После вычисления интеграла проводится повторное вычисление с удвоенным количеством разбиений и по правилу Рунге вычисляется текущая погрешность:

$$\Delta_{2n} = \theta |I_{2n} - I_n|$$
, где $\theta = 1/3$.

Затем шаг уменьшается вдвое. Алгоритм повторяется до тех пор, пока погрешность не окажется меньше заданной пользователем точности.

Листинг программы

```
private Tuple Calculate(double a, double b, double precision)
    if (a == b) {
        Tuple result;
        result.integral = 0;
        result.steps = 0;
        result.error = 0;
        return result;
    if (double.IsInfinity(f(a)) || double.IsNaN(f(a)))
        a += double.Epsilon;
    if (double.IsInfinity(f(b)) || double.IsNaN(f(b)))
        b -= double.Epsilon;
    double integral_n, error = precision;
    double step = (b - a) / STEPS_AMOUNT;
    do
    {
        integral_n = SolveIntegral(a, b, step);
        double integral_2n = SolveIntegral(a, b, step / 2);
        error = THETA * Math.Abs(integral_2n - integral_n);
        if (error >= precision) step /= 2;
    } while (error >= precision);
    Tuple tuple;
    tuple.integral = integral n;
    tuple.steps = (int)((b- a) / step);
    tuple.error = error;
    return tuple;
}
private double SolveIntegral(double leftLimit, double rightLimit, double step)
    double x, result = 0;
    for (x = leftLimit; x <= rightLimit; x += step)</pre>
        result += Formula(x, x + step);
    return result;
}
private double Formula(double a, double b)
    switch (Modifications.SelectedIndex)
        case 0:
            return f(a) * (b - a);
        case 1:
            return f(b) * (b - a);
        case 2:
            return f((a + b) / 2) * (b - a);
    return Double.NaN;
}
```

Тестовые данные

Выберете функцию	sin(x) v			Сбро	осить	Начать	
Выберете метод:	ыберете метод: Левых прямоугольников У						
Введите левый пре	дел: -2.44	Ведите правый предел:	9	Ведите точность:	0.01		
Значение интеграла:0,133808656434243 Количество разбиений:100 Значение погрешности:0,00226446105603733							
Выберете функцию	: X*X ~			Сбро	сить	Начать	
Выберете метод:	Средних пря	моугольников У					
Введите левый пред	дел: -7	Ведите правый предел:	9	Ведите точность:	0.001		
Значение интеграла:357,333333332057 Количество разбиений:409600 Значение погрешности:4,78727708790407E-09							
Выберете функцию	Exp(x) ~			Сбро	сить	Начать	
Выберете метод: Правых прямоугольников							
Введите левый пред	дел: -9	Ведите правый предел:	-8	Ведите точность:	0.0001		
Значение интеграл Количество разбие Значение погрешн	ений:100						

Вывод

Метод прямоугольника менее точен, чем метод Симпсона. Порядок точности для левых и правых прямоугольников равен 0, для средних прямоугольников и трапеций -1, в то время как метод Симпсона имеет порядок точности 3.

Это означает, что методы прямоугольников и трапеций дают низкую точность и большое количество разбиений при интегрировании полиномов степени 2 и более.