Heart Disease Prediction with Logistic Regression

Objective

To analyze cardiovascular disease data and build a machine-learning model to predict heart disease based on patient characteristics.

Dataset Overview

- **Source:** Kaggle Dataset
- **Features:** Age, gender, resting blood pressure, serum cholesterol, maximum heart rate, old peak, and target (presence of heart disease: 0 = No, 1 = Yes).

Data Analysis Insights

Demographics:

- Average Age by Heart Disease Status:
 - \circ No Heart Disease (target = 0): **49.07 years**
 - ∘ With Heart Disease (target = 1): **49.37 years**
- Gender Distribution (from 1,000 patients):
 - Percentage of Males: 76.50%
 - Percentage of Females: 23.50%

Health Metrics:

- Average Resting Blood Pressure:
 - $_{\circ}$ No Heart Disease (target = 0): **134.77 mmHg**
 - With Heart Disease (target = 1): 164.04 mmHg
- Median Serum Cholesterol:
 - No Heart Disease (target = 0): 270.00 mg/dL
 - ∘ With Heart Disease (target = 1): **351.50 mg/dL**

Disease Prevalence:

• **58.00%** of patients in the dataset had heart disease.

Key Predictors:

- Features like **max heart rate** and **old peak** showed the highest correlation with the target variable:
 - Correlation of Max Heart Rate with Target: 0.23
 - Correlation of Old Peak with Target: 0.10

Model Performance

- Algorithm Used: Logistic Regression.
- Accuracy: 94.50%
- AUC: 99.10%
- Evaluation Metrics for Heart Disease Detection:
 - Precision: 93.39%Recall: 97.41%

Visualizations

Confusion Matrix:

- A heatmap representation of the confusion matrix shows the number of true positives, true negatives, false positives, and false negatives.
- **Analysis:** The matrix highlights the model's strong ability to correctly classify both patients with and without heart disease, with minimal misclassifications.

Target Variable Distribution:

- **Graph Description:** A histogram of the target variable (Heart Disease) shows the frequency of patients with (1) and without (0) heart disease.
- **Analysis:** Slight imbalance, with more patients having heart disease. This imbalance was considered during model development.

Numerical Feature Distributions:

• Histograms for features like age, resting BP, serumcholestrol, maxheartrate, and oldpeak show the overall distribution of these variables.

Analysis:

 Most variables display expected distributions, with some outliers in serumcholestrol and restingBP.

Correlation Heatmap:

- **Graph Description:** The heatmap visualizes relationships between numerical features.
- Analysis: Features like maxheartrate (positive correlation) and oldpeak (negative correlation) are highly predictive of heart disease.

Boxplots of Features by Target Variable:

• **Graph Description:** Boxplots were created to compare the distributions of key features like age, resting BP, and serumcholestrol across the two classes of the target variable (0 and 1).

• Analysis:

- Age: No significant difference in age distribution between the two groups.
- RestingBP: Patients with heart disease tend to have higher resting blood pressure on average.
- Serum Cholesterol: Patients with heart disease generally have higher cholesterol levels than those without.

Pairplot of Selected Features:

- **Graph Description:** Pairwise relationships between selected features and the target variable were analyzed.
- Analysis:
 - Overlapping distributions for some variables indicate difficulty in separability.
 - Trends, such as lower max heart rates and higher old peak values for patients with heart disease, stand out.

ROC Curve:

- **Graph Description:** The curve plots the true positive rate against the false positive rate for the Logistic Regression model.
- Analysis: With an AUC of 99.10%, the model demonstrates excellent predictive ability.

General Observations

- 1. Symmetric distributions and lack of significant outliers enhance the model's reliability.
- 2. Features like age, restingBP, and maxheartrate show meaningful differences across classes, supporting their inclusion in the model.

Conclusions and Recommendations

- 1. The Logistic Regression model is highly effective at identifying patients at risk of heart disease.
- 2. Key predictors, including **resting blood pressure** and **max heart rate**, provide valuable insights for healthcare interventions.
- 3. Future Work:
 - Experiment with advanced models (e.g., Random Forest, Gradient Boosting).
 - Include additional features, such as family history and lifestyle factors, to enhance predictive accuracy.