Prove the following propositions. Format your proof so each step of the proof is on its own line; each line should still be a complete sentence.

Proposition 1. If $n \in \mathbb{N}$, then

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

Proof.

Problem 2. A chocolate bar consists of unit squares arranged in an $n \times m$ rectangular grid. You may split the bar into individual unit squares by breaking along the lines. What is the number of breaks required? Prove your answer is correct.

Solution.

Proposition 3. Let $n \in \mathbb{N}$ with $n \geq 2$, and let A_1, A_2, \ldots, A_n be sets. Let B be a set. Then,

$$B \cap (A_1 \cup A_2 \cup \cdots \cup A_n) = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_n).$$

Proof.