Deep Learning MSiA 490-30

Theory and Applications

NORTHWESTERN UNIVERSITY

Preliminaries

- Class photo?
- GPU/AWS?
- Heatmaps
- Groups
- Projects

Feedback: News and Ideas

~5-10 min to share ideas/news

NAND gates universal for computation

Most modern computers, phones, tablets

Last time...

- Python tutorial
- Linear classifier identifying 3's
- → This time:
 - How to improve classification performance
 - NN in "depth"

History: Perceptrons

Schematic of a biological neuron.

Schematic of Rosenblatt's perceptron.

Rosenblatt, 1957

Think of NN as statistical generalization machines with priors - not as brain models

"Layered" Logistic Regression

Recall...

- Simple Linear classifier
- Creates a separating hyperplane defined by:

$$f_w(x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

- To "improve" predictions, first define an objective function
- Any ideas?

Hint: Reward for correct answers, penalize for wrong

- To "improve" predictions, first define an objective function
- Simple penalty: Mean Square Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - t_i)^2$$

over n examples

Correct Label (t)	Prediction (y)	Penalty
0	0	0
0	1	1
1	0	1
1	1	0

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - t_i)^2$$

Recall simple linear classifier:

$$f_w(x) = 1 * w_0 + w_1 x_1 + \dots + w_p x_p$$
$$= \sum_{j=0}^{p} w_j x_j = w \cdot x$$

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f_w(x_i) - t_i)^2$$

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=0}^{p} w_j x_j - t_i \right)^2$$

Any ideas how to minimize MSE?

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - t_i)^2$$

Recall simple linear classifier:

$$f_w(x) = 1 * w_0 + w_1 x_1 + \dots + w_p x_p$$

$$= \sum_{j=0}^{p} w_j x_j = w \cdot x$$

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f_w(x_i) - t_i)^2$$

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=0}^{p} w_j x_j - t_i \right)^2$$

Any ideas how to minimize MSE?

Remember that x_0 =1

This is called the "dot product"

$$y = f(w, x)$$

= $w_0 + w_1 x_1 + w_2 x_2$

х	t	y=f(x)
~(3,2)	1	~1
~(-2,-3)	0	~0

 Lots of variance in guessing, few solutions are good

Random guessing again

MSE < 0.25

- y = f(w, x)
- $\cdot = w_0 + w_1 x_1 + w_2 x_2$

X	t	y=f(x)
~(3,2)	1	~1
~(-2,-3)	0	~0

- Doesn't scale well, suppose 10 possible values in each dimension:
 - 100 in 2D
 - 1000 in 3D
 - 1,000,000 in 6D...

Random guessing again

Function as a graph

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.5,0.1]$$

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.5,0.1]$$

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.5,0.1]$$

 y_i : 0.7

 t_i : 1

Make y_i look like t_i . More formally, this means minimize $(y_i - t_i)^2$

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.5,0.1]$$

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

Х	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.5,0.1]$$

Method 1: Fix everything but one variable and adjust single variable

•	y = f(w, x) =
	$w_0 x_0 + w_1 x_1 + w_2 x_2$

X	t
~(3,2)	1
~(-2,-3)	0

w = [-0.7, 0.5, 0.1]

Add 0.3 to w_0 makes w_0 -0.7 and y_i exactly t_i

Method 1: Fix everything but one variable and adjust single variable

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.5,0.1]$$

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.6,0.1]$$

$$y = f(w, x) = w_0 x_0 + w_1 x_1 + w_2 x_2$$

X	t
~(3,2)	1
~(-2,-3)	0

$$w = [-1,0.6,0.1]$$

We've basically found an optimization method called "coordinate descent"

Adding 0.1 to w_1 makes 0.6. w_1x_1 is now 1.8 and $y_i = t_i = 1$

 y_i : 1

 t_i : 1

Coordinate Descent

Repeat until convergence

- Choose a coordinate (randomly)
- Step towards minimum along an axis
- Update solution vector

But how do we figure out what's "Best"?

- □ Pros:
 - Simple
- Cons:
 - Slow (updates only one direction at a time)
 - Stepping in one direction can "undo" gains in another

Issues with Coordinate descent

- Updating one dimension at a time is slow
- We might hit a local minima
- Evaluating at lots of points is slow

- Can we do better?
 - Any ideas?

Issues with Coordinate descent

- Updating one dimension at a time is slow
- We might hit a local minima
- Evaluating at lots of points is slow

- Can we do better?
 - Any ideas?

Use calculus to minimize!

But how do we figure out what's "Best"?

□ Pros:

Improvement: Take a step η in the direction of steepest descent (slope) slope $\approx \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

But how do we figure out what's "Best"?

Pros:

Improvement:

Take a step η in the direction of steepest descent (slope)

Finite difference unbalanced
 (so use centered difference)

slope

$$\approx \lim_{h\to 0} \frac{f(a+h) - f(a-h)}{2h}$$

Why?

Finite difference error:

 $O(\Delta h)$

Centered difference error:

 $O(\Delta h^2)$

http://www.mathematik.unidortmund.de/~kuzmin/cfdintro/lecture4.pdf

Quick review of derivatives

$$f(x,y) = xy \rightarrow \frac{\partial f}{\partial x} = ?, \frac{\partial f}{\partial y} = ?$$

$$\Box \frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x + h) = f(x) + h \frac{\partial f(x)}{\partial x}$$

Example: x=5, $y=-2 \rightarrow f(x,y)=x^*y=?$

$$\frac{\partial f}{\partial x} = ?$$

$$\frac{\partial f}{\partial y} = ?$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Partial derivatives

Gradient

Quick review of derivatives

$$f(x,y) = xy \rightarrow \frac{\partial f}{\partial x} = y, \frac{\partial f}{\partial y} = x$$

$$\Box \frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = f(x) + h \frac{\partial f(x)}{\partial x}$$

Example: x=5, $y=-2 \rightarrow f(x,y)=x^*y=-10$

$$\frac{\partial f}{\partial x} = -2$$

$$\frac{\partial f}{\partial y} = 5$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Partial derivatives

Gradient

$$f(x, y, z) = (x + y)z$$

$$q = x + y$$

$$f = qz$$

Forward pass:

$$q = x + y \rightarrow q = ?$$

$$f = q * z \rightarrow f = ?$$

x=-2, y=5, z=-4

$$f(x, y, z) = (x + y)z$$

$$q = x + y$$

$$f = qz$$

Forward pass:

$$q = x + y \rightarrow q = 3$$
 $f = q * z \rightarrow f = -12$

x=-2, y=5, z=-4

$$f(x, y, z) = (x + y)z = qz$$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = ?, \frac{\partial q}{\partial y} = ?$

$$\frac{\partial f}{\partial q} = ?, \frac{\partial f}{\partial z} = ?$$

Forward pass:

$$q = x + y \rightarrow q = 3$$
 $f = q * z \rightarrow f = -12$

$$f(x, y, z) = (x + y)z = qz$$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Forward pass:

Forward pass:

$$q = x + y \rightarrow q = 3$$

 $f = q * z \rightarrow f = -12$

Backward pass:

$$dfdz = q \rightarrow 3$$

$$dfdq = z \rightarrow -4$$

Compound expressions

$$f(x, y, z) = (x + y)z = qz$$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

Forward pass:

Forward pass:

$$q = x + y \rightarrow q = 3$$

 $f = q * z \rightarrow f = -12$

Backward pass:

$$dfdz = q \rightarrow 3$$

$$dfdq = z \rightarrow -4$$

Back one more level:

dfdx = dqdx*dfdq =
$$1.0*$$
dfdq $\rightarrow -4$
dfdy = dqdy*dfdq = $1.0*$ dfdq $\rightarrow -4$

Congratulations!

- We've now discovered the basics of learning weights in a NN take a step along direction of steepest descent (gradient)
- □ NN consists of elementary operations such as: +, *, /, e^x
- Neural network can be expressed in terms of these basic operations
- → And we've learned how to optimize one part of these

Schematic of Rosenblatt's perceptron.

$$f(w,x) = \frac{1}{1 + e^{-s}}$$
$$= \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

$f(x)=e^x$	$\rightarrow \frac{\partial f}{\partial x} = ?$	$f(x) = \frac{1}{x} \longrightarrow$	$\frac{\partial f}{\partial x} = $?
$f_a(x) = ax$	$\rightarrow \frac{\partial f}{\partial x} = ?$	$f_c(x) = c + x \longrightarrow$	$\frac{\partial f}{\partial x} = ?$

$f(x) = e^x \longrightarrow$	$\frac{\partial f}{\partial x} = e^x$	$f(x) = \frac{1}{x} \to $	$\frac{\partial f}{\partial x} = \frac{-1}{x^2}$
$f_a(x) = ax \rightarrow$	$\frac{\partial f}{\partial x} = a$	$f_c(x) = c + x \rightarrow$	$\frac{\partial f}{\partial x} = 1$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x$$
 $f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$ $f_c(x) = ax \rightarrow \frac{\partial f}{\partial x} = a$ $f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^{x} \rightarrow \frac{\partial f}{\partial x} = e^{x}$$

$$f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^{2}}$$

$$f_{a}(x) = ax \rightarrow \frac{\partial f}{\partial x} = a$$

$$f_{c}(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^{x} \rightarrow \frac{\partial f}{\partial x} = e^{x} \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^{2}}$$

$$f_{a}(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_{c}(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x$$
 $f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$ $f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a$ $f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$f(x)=e^x$	$\Rightarrow \frac{\partial f}{\partial x} = e^x$	$f(x) = \frac{1}{x} \longrightarrow$	$\frac{\partial f}{\partial x} = \frac{-1}{x^2}$
$f_a(x) = ax$	$\Rightarrow \frac{\partial f}{\partial x} = a$	$f_c(x) = c + x \rightarrow$	$\frac{\partial f}{\partial x} = 1$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$
 $f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$

$$w_1 = \frac{1}{1 + e^{-s}} = \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + w_0)}}$$

Block partial derivative:

$$\frac{\partial}{\partial s} \frac{1}{1+e^{-s}} = -1(1+e^{-s})^{-2} \frac{\delta}{\delta s} (1+e^{-s}) = -1(1+e^{-s})^{-2} (-1e^{-s}) = \frac{e^{-s}}{(1+e^{-s})^2} = \frac{1}{1+e^{-s}} \left(\frac{1+e^{-s}}{1+e^{-s}} - \frac{1}{1+e^{-s}} \right) = \sigma(s)(1-\sigma(s))$$

$$\frac{e^{-s}}{(1+e^{-s})^2} = \frac{1}{1+e^{-s}} \left(\frac{1+e^{-s}}{1+e^{-s}} - \frac{1}{1+e^{-s}} \right) = \sigma(s)(1-\sigma(s))$$

0.73

-0.60

0.20

$$f(x) = e^x \qquad \rightarrow \qquad \frac{\partial f}{\partial x} = e^x$$

$$f_a(x) = ax \qquad \rightarrow \qquad \qquad \frac{\partial f}{\partial x} = a$$

$$f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \qquad \rightarrow \qquad \qquad \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$

$$f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \qquad f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$
 $f_a(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \qquad f_c(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$

$$f(x) = e^x \quad \rightarrow \quad \frac{\partial f}{\partial x} = e^x \qquad \qquad f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{\partial f}{\partial x} = \frac{-1}{x^2}$$
 $f_a(x) = ax \quad \rightarrow \quad \frac{\partial f}{\partial x} = a \qquad \qquad f_c(x) = c + x \quad \rightarrow \quad \frac{\partial f}{\partial x} = 1$

- **Gradient on MSE:**
- $MSE = (y_i t_i)^2$
- $\Box \frac{\partial}{\partial y} MSE = 2 * (y_i t_i)$
- MSE gradient * Sigmoid gradient:

Overall gradient=MSE gradient * Sigmoid gradient:

$$\square 2(\sigma - t) * \sigma(1 - \sigma) * x_1$$
MSE Sigmoid Dot product

Now that we know the gradient...

Pros:

Improvement:

Take a step η in the direction of steepest descent as determined by the analytical gradient

Use numeric gradient to double-check analytical gradient

http://www.mathematik.unidortmund.de/~kuzmin/cfdintro/lecture4.pdf

Schematic of Rosenblatt's perceptron

0.20

Sigmoid example

Schematic of a biological neuron.

- Our long example was just a single neuron
- This neuron can be trained using backpropagation

$$f(w,x) = \boxed{\frac{1}{1+e^{-s}}} = \frac{1}{1+e^{-(w_1x_1+w_2x_2+w_0)}}$$

$$\sigma(s) = 0.73$$

$$+ \frac{1.00}{0.20} * -1 \frac{-1.00}{-0.20} e^{x} \frac{0.37}{-0.53} + 1 \frac{1.37}{-0.53} \frac{0.73}{1.00}$$

$$\sigma'(s) = \sigma(s)(1 - \sigma(s)) = 0.73(1 - 0.73) = 0.20$$

"Layered" Logistic Regression

Feedforward networks

Goal: Learn weights such that outputs agree with training data \rightarrow Minimize $\sum_{i} (Y_i - O_i)^2$

match this

Feedforward networks

Goal: Learn weights such that outputs agree with training data \rightarrow Minimize $\sum_{i} (Y_i - O_i)^2$

Forward propagation

Forward propagation

Each activation is simply a logistic regression.

Bar length = level of activation

$$=\frac{1}{1+e^{-(w_0+w_1x_1+w_2x_2)}}$$

Forward propagation

Forward propagation

Each activation is simply a stacked logistic regression.

Bar length = level of activation

but we only show one

Forward propagation

Forward propagation

Goal: Learn weights such that outputs agree with training data \rightarrow Minimize $\sum_{i} (Y_i - O_i)^2$

Recall the following activations in the forward pass

Backpropagation

Figure out how to adjust input(green) weights(red) to match target activations(purple)

Feedforward networks

Feedforward networks

Each input neuron carries a signal # neurons in input layer

- = # inputs
- = #pixels = 25

Recall: vectorizing inputs

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Samples are column vectors

Input

Feedforward networks

 Signals are propagated to the second layer

 a_4

 $b=w_0$

 Each neuron in the second layer is a logistic regression

w_1
w_n

Weights are row vectors

Feedforward networks

Signals are propagated to the second layer → Vectorize

 $b=w_0$

Each neuron in the second layer is a logistic regression

return $1.0/(1 + np.e^{**}-s)$ A1 = sigm(np.dot(W1, X))

Feedforward networks

Signals are propagated to the third layer

 $b = w_0$

Each neuron in the third layer is a logistic regression

return $1.0/(1 + np.e^{**}-s)$

A1 = sigm(np.dot(W1, X))

A2 = sigm(np.dot(W2, A1))

Input

Feedforward networks

- Signals are propagated to the final layer
- The output is a logistic regression

return $1.0/(1 + np.e^{**}-s)$ A1 = sigm(np.dot(W1, X))A2 = sigm(np.dot(W2, A1))Out = sigm(np.dot(W3, A2))

Making things fast

VECTORIZING FEEDFORWARD NETS

Setup code:

```
# 784 → 256 → 128 → 10

X = training_data # 784 x 60000

T = target classes # 10 x 60000
```

$$W1 = 2*rand(784, 256).T - 1$$

 $W2 = 2*rand(256, 128).T - 1$
 $W3 = 2*rand(128, 10).T - 1$

A.T means A

transpose: $A_{ij}^T = A_{ji}$

Don't confuse this with target T

Vectorized backward pass

Vectorized backward pass

Vectorized backward pass

Vectorized weight updates

Vectorized weight updates

Vectorized weight updates

```
Code:
# Setup
# 784 → 256 → 128 → 10
X = training data # 784 x 60000
T = target classes # 10 x 60000
W1 = 2*rand(784, 256).T - 1
W2 = 2*rand(256, 128).T - 1
W3 = 2*rand(128, 10).T - 1
1r = 1e-5
def sigmoid(x): return 1.0/(1.0 + np.e^{**-x})
for i in range (5000):
     # Forward pass
     L1 = sigmoid(W1.dot(X))
     L2 = sigmoid(W2.dot(L1))
     L3 = sigmoid(W3.dot(L2))
     # Backward pass
     dW3 = (L3 - T) * L3*(1 - L3)
     dW2 = W3.T.dot(dW3)*(L2*(1-L2))
     dW1 = W2.T.dot(dW2)*(L1*(1-L1))
     # Update
     W3 = 1r*np.dot(dW3, L2.T)
     W2 = lr*np.dot(dW2, L1.T)
     W1 -= lr*np.dot(dW1, X.T)
     print("[%04d] MSE Loss: %0.3f" % (i, np.sum((L3 - T) **2)/len(T.T)))
```


Assignment schedule

- Assignment 1: Due April 26th
 - Basic NN concepts
 - Optimization
- Assignment 2 (Group): Due May 18th
 - Computer Vision
 - Preparation for project
- Mini Quiz 1: May 8th: Basic NN, optimization and generalization multiple choice
- Mini Quiz 2: June 9th (2nd half): Generative, recurrent and applications multiple choice

May 2017 ^ V								
Su	Мо		We	Th		Sa		
30	1	2	3	4	5	6		
7	8	9	10	11	12	13		
14	15	16	17	18	19	20		
21	22	23	24	25	26	27		
28	29	30	31					
4		6		8	9	10		

Projects

- Project group size
- Poster invitation
- Project proposal

Homework

• HW1

Next time

- Next time:
 - Advanced optimization techniques

Reading:

http://neuralnetworksanddeeplearning.com/chap3.html

New stuff

- Genetic algorithms to design NN:
 https://en.wikipedia.org/wiki/Neuroevolution of augmenting topologies
- Overview of various NN: https://culurciello.github.io/tech/2016/06/04/nets.html