Linear Factor Models

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Linear Factor Models

- Linear factor model definition
- 1. Probabilistic PCA and Factor Analysis
- 2. Independent Component Analysis (ICA)
- 3. Slow Feature Analysis
- 4. Sparse Coding
- 5. Manifold Interpretation of PCA

Probabilistic Model with Latent Variables

- A linear factor model describes a data generating process for x that includes latent variables h, where x is a linear function of h
- A linear factor model:

$$h \sim p(h)$$
 with $p(h) = \prod_i p(h_i)$

The noise is Gaussian and diagonal (independent across dimensions)

 Different models such as probabilistic PCA, factor analysis or ICA make different choices about the form of *noise* and *prior* p(h)

Factor Analysis

- The latent variable prior is a unit variance Gaussian $h \sim N(h; 0, I)$
 - Observed variables x_i are conditionally independent given \boldsymbol{h}
 - Noise is drawn from ψ =diag (σ^2)
 - with $\sigma^2 = [\sigma_1^2, ... \sigma_n^2]$
 - It can be shown that \boldsymbol{x} is just a multivariate normal random variable $\boldsymbol{x} \sim N(\boldsymbol{x}; \boldsymbol{b}, WW^T + \psi)$

Probabilistic PCA

- A slightly modified factor analysis model
- Assume equal conditional variances: $\sigma^2 = \sigma_1^2 = ... = \sigma_n^2$
- Thus $\boldsymbol{x} \sim N(\boldsymbol{x}; \boldsymbol{b}, WW^T + \sigma^2 I)$
 - Or equivalently $x = Wh + b + \sigma z$ where $z \sim N(z; 0, I)$ is Gaussian noise
 - Iterative EM can be used to estimate W and σ^2
 - Most variations are captured by the latent variables h, upto some small residual reconstruction error σ^2

Probabilistic PCA becomes PCA as $\sigma \rightarrow 0$

Independent Component Analysis

- Among oldest representation algorithms
- Approach seeks to separate an observed signal into many underlying signals that are scaled and added together to form the observed data
 - Signals are intended to be fully independent rather than merely decorrelated from each other
 - Independence is stronger than zero covariance
 - Ex: We sample x from [-1,1]. We choose s to be 1 with probability 0.5, otherwise s=0. We generate random variable y by assigning y=sx. Clearly x and y are not independent, since y is generated from x. But x and y have zero covariance.

An ICA model

- Prior over underlying factors $p(\mathbf{h})$ fixed ahead of time
- Model deterministically generates x = Wh
 - Use nonlinear change of variables to determine p(x)

$$p_{x}(x) = p_{y}(g(x)) \left| \frac{\partial g(x)}{\partial x} \right|$$

- Learning proceeds using maximum likelihood
- By choosing independent $p(\mathbf{h})$ we can recover underlying factors that are close to independent
 - Used to recover low level signals that are mixed together

ICA signal separation

- Each example is one moment in time
- Each x_i is a sensor observation of mixed signals
- Each h_i is one estimate of the original signals

Srihari

Choice of p(h) in ICA

- All ICA variants require p(h) be non-Gaussian
 - This is because if p(h) is an independent prior with Gaussian components then W is not identifiable
- This is different from probabilistic PCA and factor analysis, where $p(\mathbf{h})$ is Gaussian
- Typical choice is $p(h_i) = [d/dh_i]\sigma(h_i)$
 - Have larger peaks near 0 than does Gaussian
 - So ICA is learning sparse features

Generalization of ICA

- Just as PCA can be generalized to nonlinear autoencoders
- ICA can be generalized to a nonlinear generative model
 - In which we use a nonlinear function f to generate observed data

Slow Feature Analysis

- Linear factor model that uses information from time signals to learn invariant features
- Motivation: important features change slowly
- Ex: running zebra:
 - overall location: doesn't change,
 - position changes slowly, stripes change quickly.
- Performed by adding a term to the loss function

$$\lambda \sum_{t} L(f(\boldsymbol{x}^{(t+1)}), f(\boldsymbol{x}^{(t)}))$$

- where f is teature extractor to be regularized,
- λ is the strength of the regularization term,
- ullet L is a loss function, e.g., mean squared difference