الفصل الثاني 1434 / 1435 هـ	اجابات الاختبار الفصلي الثاني	جامعة الملك سعود / كلية العلوم
- 4435/4/6		قســـم الرياضيات

4	3	2	1	رقم السؤال
ب	7	J.	J.	رمز الاجابة

(1) مجموعة قيم الثابت a التي تجعل المتجه (a,4,8) تركيبا خطيا من المتجهين a التي تجعل المتجه (a,4,8)

$$R \ (2) \qquad \phi \ (\epsilon) \qquad \{2\} \ \underline{(\, \cdot \! \cdot \,)} \qquad \qquad R \setminus \{2\} \ (\, ^\dagger)$$

: $S = \{(1,1,2), (1,2,3), (3,2,1), (1,0,-1)\}$

$$R^3$$
 مستقلة خطّیا و لا تولّد R^3 مستقلة خطّیا و تولّد R^3 مستقلة خطّیا و تولّد R^3 مستقلة خطیا و لا تولد R^3 لیست مستقلة خطیا و لا تولد R^3 مستقلة خطیا و الا تولد R^3 مستقلة خطیا و تولد R^3 مستقلة مستقلة R^3 مستقلة مستقلة R^3 مستقلة مستقلة مستقلة R^3 مستقلة مستقلة مستقلة R^3 مستقلة مستقلة R^3 مستقلة خطیا و تولد R^3 مستقلة مستقلة R^3 مستقل

$$(a,b,c,d) = (0,0,0,0) \ (\because)$$
 $(a,b,c,d) = (10,15,9,3) \ (i)$

$$(a,b,c,d) = (10,15,3,9)$$
 (2) $(a,b,c,d) = (6,3,5,3)$ (4)

 C_{R} اذا كان كل من R^{2} فإن مصفوفة الانتقال $C=\{(1,1),(2,3)\}$ و $B=\{(1,0),(0,1)\}$ اذا كان كل من من B الى C هى:

$$\begin{bmatrix}
3 & -2 \\
-1 & 1
\end{bmatrix}
\underbrace{(\because)}$$

$$\begin{bmatrix}
1 & 2 \\
1 & 3
\end{bmatrix}$$

$$(i)$$

$$\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} (2) \qquad \qquad \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} (3)$$

الجزء الثاني : السؤال الأول : [4 درجات]

$$u = (2,-1,-1)$$
 و $v = (1,0,-1)$ المولد بالمتجهات R^3 و R^3 و المولد

$$(a,b,c)\in W$$
 کي يکون a,b,c کي يجب وضعها على a,b,c کي يکون (1)

 R^3 أساسا للفضاء $\{u, v, w\}$ عين متجها W بحيث يكون

$$a+b+c=0$$
 الفيد هو $a+b+c=0$ (الختزال 2 درجة + كتابة القيد: 1 درجة)

(2) (1 درجة)

$$A = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ 0 & -1 & -1 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 3 & 9 & 0 & -12 \end{bmatrix}$$
 لتكن المصفوفة A .

- - row(A) جد أساسا للفضاء الصفى (2)
 - col(A) جد أساسا للفضاء العمودي (3)

ادرجة (2) درجة (1):
$$rref(A) = \begin{bmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 3 & 0 & -4 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
نتكن المصفوفة

- rank(A) استخدم نظرية البعد للمصفوفات لاستنتاج الرتبة (2)

$$N(A)$$
 أساس الفضاء $\{(-3,3,-2,1)\}$ ررجة: 2

السؤال الرابع: [4 درجات] السؤال الرابع: $(a_1,a_2,a_3),(b_1,b_2,b_3)>=a_1b_1+2a_2b_2+3a_3b_3$ ليكن $(a_1,a_2,a_3),(b_1,b_2,b_3)>=a_1b_1+2a_2b_2+3a_3b_3$ ليكن المن الداخلي حيث: (a_1,a_2,a_3) u = (1,-1,1), v = (2,2,2) وليكن

- $(v \ u \ u)$ المسافة بين d(u,v) المسافة (1)
- v و u احسب $\cos \theta$ حیث θ هي الزاوية بین المتجهین و (2)
 - 2u + v متعامد مع (-3,1,1) متعامد مع (3)
 - $d(u,v) = \sqrt{22}$ 1 (1)
 - $\cos \theta = 1/3$ ϵ_{1+1} (2)
 - <2u+v,(-3,1,1)>=0 درجة (3)

السوال الخامس: [2 درجات]

T(x,y,z)=(2x-y+z,x+y-z) أثبت أن التطبيق $T:R^3
ightarrow R^2$ المعرف بالقاعدة هو تحویل خطی: 1+1 درجة