VE320 – Summer 2022

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 3 Introduction to the Quantum Theory of Solids

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass
- 3.5 Density of States Function
- 3.6 Statistical Mechanics

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass
- 3.5 Density of States Function
- 3.6 Statistical Mechanics

Forming energy bands: analytical

Previously: Electrons in Finite Quantum Well

Forming energy bands: analytical

Forming energy bands: analytical

Band structure in physical and k space for 1D periodic quantum wells

- Black wave with a smaller k (longer wavelength) is in the 1st Brillouis zone.
- Red wave with a larger k (short wavelength) is outside of 1st Brillouis zene.
- Both waves have the same frequency (same energy).
- Both waves can describe the exact same information of a particle.

http://en.wikipedia.org/wiki/Phonon#/media/File:Phonon k 3k.gif

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass
- 3.5 Density of States Function
- 3.6 Statistical Mechanics

Energy band of semiconductors

In k space

Energy band of semiconductors

Energy band of semiconductors

Energy band of semiconductors

In k space

Energy band of semiconductors

Energy band of metals

Forming energy bands is complicated.

Energy band of metals

Energy band of metals

Metals, semiconductors and insulators

Insulators are wide bandgap semiconductors!

3.3eeV

Physicists call semiconductors as Insulators.

30.K

Check your understanding

300K

When the temperature decreases to 0K, how does the

conductivity change for metals and semiconductors?

Check your understanding

What's the difference between metals, semiconductors and insulators in terms of energy bands?

metals: highest bands are partially filled semiconductor: highest bands are completely emicondactor: hignest names

electrons

unel hert avalvable bind is empty

insulators: wide bondgap semicondutors

22

Doping in semiconductors

pure semiconductor, no doping, no defects

Charge carriers are negative, i.e. electrons Doped by donor-type of dopants (impurities)

p-type semiconductors:

Charge carriers are positive, i.e. holes

Doped by acceptor-type of dopants (impurities)

Acceptor type or **p-type** doping (from the view of physical world)

Acceptor-type or **p-type** doping (from the view of energy band)

Acceptor-type or **p-type** doping (from the view of physical world)

Acceptor-type or **p-type** doping (from the view of energy band)

Donor-type or **n-type** doping (from the view of physical world)

Donor-type of dopants

Donor type or **n-type** doping (from the view of energy band)

Donor-type or **n-type** doping (from the view of physical world)

> 0K

Donor-type of dopants

Donor-type or **n-type** doping (from the view of energy band)

Doping in semiconductors

Si atomic concentration: 5 x 10²² cm⁻³

	Loy concentration of doping	Medium concentration doping	High concentration of doping
Concentration (cm ⁻³)	< 1016	10 ¹⁶ -10 ¹⁸	10 ¹⁸ - 10 ²⁰
Relative concentration	1ppm	1 -100 ppm	100 ppm – 1%

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass
- 3.5 Density of States Function
- 3.6 Statistical Mechanics

3.3 Extension to Three Dimensions

3.3 Extension to Three Dimensions

3.3 Extension to Three Dimensions

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass
- 3.5 Density of States Function
- 3.6 Statistical Mechanics

3.4 Effective Mass

- So far the energy band structure is theoretically calculated.
- How to experimentally find it?

3.4 Effective Mass

(1st time approximation)

$$E(k) = E(k_0) + \frac{dE}{dk} \frac{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle + \frac{d^2e}{dk}|} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k - k_0 \rangle} \frac{|\langle k - k_0 \rangle}{|\langle k -$$

conclusions

$$\frac{dE}{dk}\Big|_{k=1c_0} = 0$$

$$E(k) = E(k_0) + \frac{dE}{dk}\Big|_{k_0}(k_0)$$

k (wave vector)

VE320 Yaping Dar

3.4 Effective Mass (For Electrons in the conduction band)

Electrons in free space have:

$$E_f(k) = \frac{\hbar^2 k^2}{2m} \Rightarrow \frac{d^2 E_f(k)}{dk^2} = \frac{\hbar^2}{m}$$

$$E(k) = E(k = k_0) + \frac{d^2 E}{2dk^2}|_{k=k_0} (k - k_0)^2$$

$$\frac{d^2E}{dk^2}|_{k_0} = \frac{\hbar^2}{m^*}$$

- m* has a unit of mass
- We call it the effective mass of electrons in the crystal

$$E(k) = E(k = k_0) + \frac{\hbar^2}{2m^*}(k - k_0)^2$$

3.4 Effective Mass

How to understand effective mass

Example: use Newton's law to find mass of an object

Modulated by Electric potential of ions

3.4 Effective Mass (For Electrons in the valence band)

Electrons in conduction band

$$E(k) = E(k_0) + \frac{d^2E}{2dk^2}|_{k_0}(k - k_0)^2$$

$$\frac{d^2E}{dk^2}|_{k_0'} = \frac{\hbar^2}{m^*} < 0$$

Negative mass would make no sense.

Electrons in valence band

$$E(k) = E(k'_0) \frac{\hbar^2}{2m_p^2} |_{k'_0} (k - k'_0)^2$$

Positive mass

3.4 Effective Mass (A new particle defined: holes)

Electrons in conduction band

$$E(k) = E(k_0) + \frac{\hbar^2}{2m_n^*} |_{k_0} (k - k_0)^2$$

Positive mass

- Equivalent to a positive charge carrier
- Different effective mass

Holes in valence band

$$E(k) = E(k'_0) - \frac{\hbar^2}{2m_p^*} |_{k'_0} (k - k'_0)^2$$

Positive mass

3.4 Effective Mass

Effective mass can be experimentally measured

	Symbol	Germanium	Silicon	Gallium Arsenide
Bandgap	E _g (eV)	0.66	1.12	1.424
Electrons	$m_{\rm e}^*/m_0$	0.067 h	1.08 /	0.55
Holes	$m_{\rm h}^*/\overline{m_0}$	0.48	0.56	0.37

It means that energy band structure can be experimentally found.

(at least near conduction band bottom and valence band top)

Problem Example #1

- 1. <u>In a quantum system</u>, the wavenumber k and energy E is quantized as shown in Figure 1. Please answer the following questions:
- a) Write the static wavefunction of the dot $(k = \frac{3}{4}k_0)$ that the red arrow is pointing to. Find the wavelength of this wavefunction. $\lambda = \frac{2 \sqrt{10}}{2 \sqrt{10}} = \frac{8}{3 \sqrt{10}}$
- b) If all the states are filled with electrons, how many electrons can be filled in the figure below? The electron spin is not considered.
- c) If the effective mass of this quantum system is m_n^* , can this system allow an electron to have a quantized energy of $\frac{\hbar^2 k_0^2}{9m_n^*}$? If yes, mark the state of this electron in the figure below. How about a quantized energy of $\frac{\hbar^2 k_0^2}{8m_n^*}$? If yes, mark the state of

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass

- 3.5 Density of States Function
- 3.6 Statistical Mechanics

Donor-type or **n-type** doping (from the view of energy band)

n type semiconductor

$$I = \frac{\Delta Q}{\Delta t} = \frac{nqA_c\Delta L}{\Delta t} = nqA_cv$$

$$v = \mu E = \mu V/L$$

$$I = \frac{\Delta Q}{\Delta t} = \frac{nqA_c\Delta L}{\Delta t} = nqA_c\mu V/L \qquad \Rightarrow \quad \sigma = \frac{I}{V} = \frac{I}{V}$$

$$\Rightarrow \quad \sigma = \frac{I}{V} = \frac{N_D q A_c \mu}{L}$$

If the semiconductor is intrinsic:

If the semiconductor is intrinsic:

In k space

Reduced k space

If the semiconductor is intrinsic:

3.1 Allowed and Forbidden Energy Bands

in abound

"density" of states in whole crytal within (of): () Kak

withole): # of states =

of states within ak per volume

Two-dimensional

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*}k^2$$

$$k = \mp \frac{\sqrt{2m_n^*(E - E_c)}}{\hbar}$$

Three-dimensional

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*}k^2$$

$$k = \mp \frac{\sqrt{2m_n^*(E - E_c)}}{\hbar}$$

Three-dimensional

spin
$$g(E) = \frac{dV_k}{dE} = \frac{2}{2} \frac{2\pi (2m^*)^{3/2}}{h^3} \sqrt{E - E_c}$$

The concept of electron spin was developed later, which is out of the scope of Schrodinger Equation.

Problem Example #2

Determine the number of quantum states (per unit volume) in silicon between (E_v-kT) and E_v at 300K.

Outline

- 3.1 Allowed and Forbidden Energy Bands
- 3.2 Electrical Conduction in Solids
- 3.3 Extension to Three Dimensions
- 3.4 Effective Mass
- 3.5 Density of States Function
- 3.6 Statistical Mechanics

Maxwell-Boltzmann probability function:

- distinguishable
- no limit on the particle number in each state
- Example: gas molecules in a container

Bose-Einstein probability function:

- indistinguishable,
- no limit on the particle number in each state
- Example: photons

Fermi-Dirac probability function:

- indistinguishable
- one particle limit in each state
- Example: electrons in solids

Fermi-Dirac vs. Bose-Einstein Statistics

$$f_{\text{FD}}(E) = \frac{1}{\exp\!\left(\frac{E - E_{\text{F}}}{k_{\text{B}}T}\right) + 1}$$

$$f_{BE}(E) = \frac{1}{\exp\left(\frac{E}{k_B T}\right) - 1}$$

Fermi-Dirac probability function:

- indistinguishable
- one particle limit in each state
- Example: electrons in solids

The totoal number of ways of arranging N_{i} particles in each ith energy level

$$k_i(k_i-1)\cdots(k_i-(N-1))=\frac{k_i!}{(k_i-N_i)}$$

(Particles are distinguishable)

Fermi-Dirac probability function:

- indistinguishable
- one particle limit in each state
- Example: electrons in solids

The totoal number of ways of arranging $N_{\rm i}$ indistinguishable particles in each ith energy level

$$W_i = \frac{k_i!}{N_i!(k_i - N_i)!}$$

(Particles are indistinguishable)

Fermi-Dirac probability function:

- indistinguishable
- one particle limit in each state
- Example: electrons in solids

For a given total number (N) of particles, the total number of ways of arranging indistiguishable particles among n energy levels is

$$W = \prod_{i=1}^{n} \frac{k_{i}!}{N_{i}!(k_{i} - N_{i})!}$$

$$f_{F}(E)$$

The highest probable distribution at following given constraints:

$$N = \sum_{i=1}^{n} N_i$$
 constant

$$E_{total} = \sum_{i=1}^{n} E_i N_i$$
 constant

The probability of a state at energy E being occupied by an electron:

$$f_F(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

E is the energy level; E_F is the Fermi energy level; k is the Boltzmann constant; T is the absolute temperature.

3.6 Fermi distribution and Fermi level

Physical meaning of Fermi energy level:

At equilibrium, when an electron is added the system, the change of the system energy

3.6 Boltzmann distribution

when
$$\exp\left(\frac{E-E_F}{kT}\right) \gg 1 \Rightarrow E-E_F > 2kT$$

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

$$f_F(E) \approx \exp(-\frac{E - E_F}{kT})$$

Boltzmann distribution

3.6 Boltzmann distribution

Problem Example #3

Assume that the Fermi energy level is 0.35eV above the valence band energy. Let T=300K. Determine the probability of a state being empty of an electron at $E = E_v - kT/2$.