Project: Adverse Event Associated with Patient's Death

- 1. 基本**数据1**:每行代表一个trial arm,每行有death和其他serious/non-serous events (心脏停跳,头晕,呕吐,等等)
- 2. 要做的分析 Table 1基于数据1:

其他 Event 名字	其他 Event Frequency F(Event)	当有这些Events 的时候,Death 出现的次数: F(Death) given Event	Death probability : F(Death)/F(Event)	
心跳停止	出现100次	10	10%	
头晕	200	20	10%	
恶心。。。	200	10	5%	

- 3. Association mining (Fp-tree)**数据3**结果: [Event 1, Event 2, Event 3] => [Death], 比如[头痛, 心跳停止]=>[死亡]
- 4. 要做的分析Table 2基于**数据3**和**数据1**:

几个Event集 合(从rule mining 结果来)	Event集合同 时出现频率 F(E1, E2, E3)	当这些Events 集体出现的时候,Death出现的频率 F(Death), given e1, e2, e3同时出现	Death的	
心跳停止,头 晕	20	5	25%	
恶心,呕吐	10	4	40%	

5. 要做的分析Table 3基于数据1和数据2:

从数据1中,我们可以获取所有跟death一起出现的高频/高几率event, 比如心脏停跳,头疼**数据5**:采用一个Fequency/proability阈值,比如出现次数高于10,proabablity>0.05, 可以选出一个Event列表:比如心脏停跳,肺炎,血液感染,呼吸困难,等等

数据6:用数据5,排除过滤数据1里面的低频(不重要)event,比如假设:头晕,头疼。 等于数据6是数据1的高频重要部分

数据7: 从数据6中读取所有可能的event对(event pair。比如数据6有[死亡,心脏停跳,肺炎】,就会生成三个pair: [死亡,心脏停跳], [死亡,肺炎], [心脏停跳,肺炎]。基本算法就是从一个event集合(set)里面找出所有的event对(pair)

数据8: 统计所有event对在**数据1**中的出现频率 根据数据7,8生成Table 3,用于Gephi做网络图

st ar t	tar get	Freque ncy: 数据8 的频率	directi on	TOD O: dise ase	TODO: treatm ent
死 亡	心 脏 停 跳	10	undirec ted	待 继 续	待继续
心 脏 停 跳	肺 炎	11	undirec ted	待继续	待继续

6. 把table 3导入到Gephi,作图