Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Markus Österle Andréz Gockel

21. November 2018

Inhaltsverzeichnis

0	Einführung			3
	0.1		orlesung	3
	0.2	Einfül	nrung und Überblick	4
		0.2.1	Rückblick	4
		0.2.2	Elektrodynamik	4
	0.3	Aufba	u der Vorlesung	4
1	Elel	lektrostatik		
	1.1	Elektr	rische und Coulombsches Gesetz	5
		1.1.1	Coulombsches Gesetz	5
	1.2	Elektr	risches Feld	6
		1.2.1	Feld eines Systems von Punktladungen	6
		1.2.2	Feld einer kontinuierlichen Ladungsverteilung	7
		1.2.3	Ladungsdichte einer Punktladung	7
		1.2.4	Flächenladungsdichte	9
		1.2.5	Linenladungsdichte	10
	1.3	Feldgl	eichungen und elektrostatische Potential	10
		1.3.1	Elektrostatisches Potential	11
		1.3.2	Feldgleichugn (differentielle Form)	11
		1.3.3	Divergenz (Quellen)	12
		1.3.4	Zusammenfassung:	14
		1.3.5	Integralsätze der Vektoranalysis	15
		1.3.6	Integrale Form der Feldgleichung	17
		1.3.7	Gaußsches Gesetz	17
		1.3.8		18
		1.3.9		18
	1.4	Elektr		19
		1.4.1	Elektrostatische Potentielle Energie	19
	1.5	Verha		21
		1.5.1	=	23
	1.6	Randy	vertprobleme (RWP) der Elektrostatik und	
			gsmethoden	24
		1.6.1		24
		1.6.2	•	25
		1.6.3	Formale Lösungen des elektrostatischen Randwertproblems mit	
				27
		1.6.4	· /	30
		1.6.5		31
		1.6.6		34
		1.6.7	- ,	35
	1.7		•	41

 $1.7.1\,\,$ Multipolentwicklung der Energie der Ladungsverteilung im äußeren Feld $\,$. $\,$ $43\,\,$

Kapitel 0

Einführung

0.1 Zur Vorlesung

Dozent Michael Thoss

Übungen Donnerstag/Freitag (ILIAS) beginnt 18./19.10.18

Übungsleiter Jakob Bätge

Abgabe der Hausaufgaben bus Dienstag 12:00 - Briefkasten GuMi

Klausur 13.02.19, 10-12 Uhr, Hörsaal Anatomie (Nachklausur: 26.19, 10-12 Uhr)

Ankündigungen ILIAS Pass: theophy2.thoss18

Angaben Vorlesung: 4 SWS, Übung: 2 SWS, ECTS: 7

Vorkenntnisse Mathematik: Analysis für Physiker (Vektor Rechnung), Theoretische Physik I, Experimental Physik II.

Hinweis zu den Übungen

- Keine Anwesenheitspflicht.
- Keine Punktzahl nötig für Klausurzulassung.
- Kann auch wehrend Übungen abgegeben werden.

Lehrbücher:

- W. Nolting, Grundkurs Theoretische Physik 3: Elektrodynamik (Springer)
- D.J. Griffiths, Elektrodynamik: Eine Einführung (Pearson)
- T. Fließbach, Elektrodynamik (Spektrum Akademischer Verlag)
- J.D. Jackson, Klassische Elektrodynamik (Walter de Gruyter) geht dieser Vorlesung hinaus

0.2 Einführung und Überblick

Die vier fundamentalen Wechselwirkungen (WW):

- Starke WW
- Elektromagnetische WW Wird in dieser Vorlesung betrachtet
- Schwache WW
- Gravitation

0.2.1 Rückblick

Theoretische Physik 1:

- Mechanik
- Punktmechanik: Bahnkurven von Körpern
- Bewegungsgleichung: $m\ddot{\pmb{r}} = \pmb{F}$

0.2.2 Elektrodynamik

- Grundlegende Größen
- Felder

•

$${m E}({m r},t)$$
 ${m B}({m r},t)$

elektrisches Feld Magnetfeld

→ Feldtheorie sehr wichtiges Konzept

Wie sind Elektrische Felder definiert?

Experimentelle Definition als Messgröße: Kraft auf Ladung

$$F = q(E(r,t) + v \times B(r,t))$$

Theoretische Definition ist Mathematisch: Feldgleichungen-Maxwellgleichungen

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$
 $\mathbf{\nabla} \cdot \mathbf{B} = 0$

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
 $\nabla \times \boldsymbol{B} - \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \boldsymbol{j}$

Hierbei steht ρ für die Ladungsdichte und \boldsymbol{j} für die Stromdichte.

0.3 Aufbau der Vorlesung

1./2. Statische Phänomene: $\frac{\partial E}{\partial t} = 0 = \frac{\partial B}{\partial t}$

$$\Rightarrow \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \mathbf{E} = 0$$
1. Elektrostatik
 $\nabla \times \mathbf{B} = 0$
2. Magnetostatik

- 3. Zeitabhängige magnetische/elektrische Felder
- 4. Relativistische Formulierung der Elektrodynamik

Kapitel 1

Elektrostatik

Wir beschäftigen uns in diesem Kapitel mit **ruhenden Ladungen** und **zeitunabhängigen Feldern**. Das Grundproblem besteht darin, dass wir eine Ladungsverteilung haben und das Elektrische Feld und dessen Potential bestimmen wollen.

ightarrow Feld $m{E}(m{r}),$ el. Potential $m{arPhi}(m{r})$

• q₂ q₁ • q₃

1.1 Elektrische und Coulombsches Gesetz

Ladung: Beobachtungstatsachen:

- i) Zwei Arten "+", "-"
- ii) Abgeschlossenes System: Ladung erhalten: $q = \sum_i q_i = \text{const.}$
- iii) Ladung ist quantisiert in Einheiten der Elementarladung:

$$q = ne, \ n \in \mathbb{Z}, \ e = 1,602 \cdot 10^{-19} \,\mathrm{C}$$

n=-1: für ein Elektron wäre ein Beispiel einer Punktladung

Kontinuierliche Ladungsverteilung Ladungsdichte $\rho(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Volumen}} = \frac{\Delta q}{\Delta V} \text{ Gesamtladung in } V \text{:}$

$$Q = \int_{V} d^3 r \, \rho(\boldsymbol{r})$$

1.1.1 Coulombsches Gesetz

Die Kraft, welche eine am Ort r_2 lokalisierte Punktladung auf eine Punktladung am Ort r_1 ausübt, ist gegeben durch:

$$m{F}_{12} = k rac{q_1 q_2}{|m{r}_1 - m{r}_2|^2} rac{m{r}_1 - m{r}_2}{|m{r}_1 - m{r}_2|}$$

- 1. $F_{12} \sim q_1 q_2$
- 2. $\mathbf{F}_{12} \sim \frac{1}{|\mathbf{r}_1 \mathbf{r}_2|^2}$

- 3. $\mathbf{F}_{12} \sim q_1 q_2 \, \mathbf{e}_{r_{12}}$
- 4. $\mathbf{F}_{12} = -\mathbf{F}_{21}$

Es gilt das Superpositionsprinzip: Das heißt, durch vektorielle Addition der Kräfte kann die Gesamtkraft ermittelt werden.

$$F_1 = k \sum_{j=2}^{N} \frac{q_1 q_j}{r_{1j}^2} e_{r_{1j}}$$

Zur Konstanten k:

Die Konstante ist abhängig von dem verwendeten Maßsystemen.

- i) Gauß-System (cgs): $k \equiv 1$, dyn = $\frac{\text{g·cm}}{\text{s}^2} = 10^{-5} \,\text{N}$ 1 dyn = $\frac{(1\text{ESE})^2}{\text{cm}^2}$ 1ESE = $\frac{\sqrt{\text{g·cm}^3}}{\text{s}}$
- ii) SI (MKSA-System): Definition von A = Ampère

$$\frac{\Delta F}{\Delta l} = 2 \cdot 10^{-7} \frac{\text{N}}{\text{m}}$$

$$\frac{\Delta F}{2 \text{eit}} \Rightarrow 1 \text{A} = \frac{1 \text{C}}{1 \text{s}} \rightarrow e = 1,602 \cdot 10^{-19} \text{ C} \qquad c \approx 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$$

$$\frac{\Delta F}{\Delta l} = k \frac{2 I^2}{c^2 d} \rightarrow k = 2 \cdot 10^{-7} \frac{\text{N}}{\text{m}} \frac{c^2 1 \text{m}}{2(1 \text{A})^2} = 10^{-7} c^2 \frac{\text{N}}{\text{A}^2}$$

$$k = \frac{1}{4\pi \varepsilon_0}$$

Damit erhalten wir für die Dielektrizitätskonstante des Vakuums:

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

1.2 Elektrisches Feld

1.2.1 Feld eines Systems von Punktladungen

N-Ladungen q_1, \ldots, q_N ruhen an den Orten r_1, \ldots, r_N . Nun bringen wir eine Testladung q am Ort r mit ein.

Kraft von q_1 , q_2 auf q

$$\boldsymbol{F} = \frac{1}{4\pi\varepsilon_0} q \sum_{j=1}^{N} q_n \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} = q \boldsymbol{E}(\boldsymbol{r})$$

Somit ist das elektrisches Feld:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$$

Bemerkung

- i) Testladung klein (formal: $\lim_{q\to 0} \frac{F}{q}$)
- ii) math. $\boldsymbol{E}(\boldsymbol{r})$ Vektorpfeil

kartesisch:
$$\boldsymbol{E}(\boldsymbol{r}) = \begin{pmatrix} E_x(\boldsymbol{r}) \\ E_y(\boldsymbol{r}) \\ E_z(\boldsymbol{r}) \end{pmatrix}$$

iii) Wechselwirkungsprozess: 2 Teile

$$q_j \to \boldsymbol{E}(\boldsymbol{r}) \to \boldsymbol{F} = q\boldsymbol{E}(\boldsymbol{r})$$

iv) Superpositionsprinzip gilt

Feld einer kontinuierlichen Ladungsverteilung $\rho(r)$ 1.2.2

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int\limits_{V} d^3r' \, \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}}_{\substack{\text{schließt alle} \\ \text{Ladungen ein}}}$$

$$ho(m{r}_j) = rac{\Delta q_j}{\Delta V_j}$$

$$E(\mathbf{r}) = k \sum_{j} \Delta q_{j} \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$

$$= k \sum_{j} \Delta V_{j} \rho(\mathbf{r}_{j}) \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$
mit $\Delta V_{j} \rightarrow 0 \rightarrow k \int_{V} d^{3}r' \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}}$

Ladungsdichte einer Punktladung 1.2.3Deltafunktion

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

Punktladung in $\mathbf{r}_0 \Rightarrow \rho(\mathbf{r}) = 0 \quad \mathbf{r} \neq \mathbf{r}_0$ Ladungsdichte divergiert in r_0

$$\rho(\mathbf{r}_0) = \infty$$

 $ho({m r}_0) = \infty$ Modell für Punktladung:

Ladung q in Kugel mit Radius ε um $\mathbf{r}_0, \ \varepsilon \to 0$

$$\rho_2(\mathbf{r}) = \left\{ \begin{array}{cc} \frac{q}{v_k} & |\mathbf{r}| \le \varepsilon \\ 0 & \text{sonst} \end{array} \right\} = \frac{q}{\frac{4}{3}\pi\varepsilon^3} \underbrace{\Theta(\varepsilon - |\mathbf{r}|)}_{\text{Stufenfunktion}}$$

$$\rho(\mathbf{r}) = \lim_{\varepsilon \to 0} \rho_{\varepsilon}(\mathbf{r}) = \begin{cases} \infty & \mathbf{r} = 0 \\ 0 & \mathbf{r} \neq 0 \end{cases}$$

Divergenz muss so sein, dass

$$\int\limits_{\substack{V \\ \boldsymbol{r}_0 \in V}} d^3 r \ \rho(\boldsymbol{r}) = q$$

Definition Delta-Funktion (Diracsche Deltafunktion)

1.

$$\delta(\boldsymbol{r} - \boldsymbol{r}_0) = \left\{ \begin{array}{ll} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{array} \right.$$

2.

$$\int_{V} d^{3}r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_{0}) = \left\{ \begin{array}{cc} f(\boldsymbol{r}_{0}) & \boldsymbol{r}_{0} \in V \\ 0 & \boldsymbol{r}_{0} \notin V \end{array} \right.$$

Mathematik

Distribution - Funktional

Funktional: Abb. Funktionen $\mapsto \mathbb{R}, \mathbb{C}$

$$\delta_{\boldsymbol{r}_0}: f \mapsto f(\boldsymbol{r}_0)$$

Physik

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = f(\boldsymbol{r})$$

 δ -Fkt. als Grenzwert einer Folge von Funktionen im Integral

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \lim_{\varepsilon \to 0} \int d^3 \ f(\boldsymbol{r}g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0))$$

mit

$$egin{aligned} \lim_{arepsilon o 0} g_{arepsilon}(m{r} - m{r}_0) &= \left\{egin{array}{ll} 0 & m{r}
eq m{r}_0 \ \infty & m{r} &= m{r}_0 \end{array}
ight. \ \int_{V} d^3r \ g_{arepsilon}(m{r} - m{r}_0) &= 1 \end{aligned}$$

Beispiel: $g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0)=\frac{\Theta(\varepsilon-|\boldsymbol{r}|)}{\frac{4}{3}\pi\varepsilon^3}$ Mehrere Punktladungen q_j in \boldsymbol{r}_j

$$ho(m{r}) = \sum_j q_j \delta(m{r} - m{r}_j)$$

$$\Rightarrow \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \sum_j q_j \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \int_V d^3r' \ \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} \quad \checkmark$$

1.2.4 Flächenladungsdichte

$$\sigma({m r}) = rac{ ext{Ladung}}{ ext{Fläche}} = rac{\Delta q}{\Delta A}$$

erzeugtes elektrisches Feld:

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int_{A} \underbrace{df'}_{\text{Elächenelement}} \sigma(r) \frac{r - r'}{|r - r'|^3}$$

Beispiel: Elektrisches Feld einer homogenen Flächenladung

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \ \sigma \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \qquad \boldsymbol{r}' = (x', y', 0)$$

Symmetrie: \boldsymbol{E} unabhängig von x, y $\boldsymbol{r} = (0, 0, z)$

$$\mathbf{r} - \mathbf{r}' = (-x', -y', z), |\mathbf{r} - \mathbf{r}'|^3 = (x'^2 + y'^2 + z^2)^{3/2}$$

$$E_x \sim \sigma \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \frac{(-x')}{(x'^2 + y'^2 + z^2)^{3/2}} = 0 = E_y$$

 $\mathbf{E} = (0, 0, E_z)$

$$E_{z} = \frac{1}{4\pi\varepsilon_{0}} \sigma_{z} \int_{-\infty}^{+\infty} dx' \underbrace{\int_{-\infty}^{+\infty} dy' \frac{(x')}{(x'^{2} + y'^{2} + z'^{2})^{3/2}}}_{\frac{1}{x'^{2} + z^{2}} \frac{y'}{(x'^{2} + y'^{2} + z^{2})^{3/2}} \Big|_{-\infty}^{+\infty} = \frac{1}{x'^{2} + z^{2}} \frac{\operatorname{sgn}(y')}{\sqrt{1 + \frac{x'^{2} + z^{2}}{y'^{2}}}} \Big|_{-\infty}^{+\infty} = \frac{2}{x'^{2} + z^{2}}$$

$$= \frac{1}{2\pi\varepsilon_{0}} \sigma_{z} \underbrace{\int_{-\infty}^{+\infty} dx' \frac{1}{x'^{2} + z^{2}}}_{\frac{1}{z} \arctan\left(\frac{x'}{2}\right) \Big|_{-\infty}^{+\infty} = \frac{1}{z} \operatorname{sgn}(z)\pi$$

$$E_{z} = \frac{\sigma}{2\varepsilon_{0}} \operatorname{sgn}(z)$$

Grenzfläche: $z \to 0$

$$E \xrightarrow[z \to 0]{} \left\{ egin{array}{ll} rac{\sigma}{2\varepsilon_0} e_z & z > 0 \\ -rac{\sigma}{2\varepsilon_0} e_z & z < 0 \end{array}
ight.$$

$$m{E}_{\perp_+} - m{E}_{\perp_-} = rac{\sigma}{arepsilon_0}, \qquad m{E}_{\parallel} = 0$$

1.2.5 Linenladungsdichte

$$\lambda(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Länge}} = \frac{\Delta q}{\Delta s}$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\gamma} ds' \ \lambda(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}}_{\text{Linienintegral}}$$

Beispiel: Elektrisches Feld einer homogenen Linienladung $\lambda = \text{const.}$

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int_{\gamma} ds' \, \lambda \frac{r - r'}{|r - r'|^3} \qquad \gamma : z' \mapsto r'(z') = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$

$$x = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{r - \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

$$E_x = \frac{\lambda x}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{1}{(x^2 + y^2 + (z - z')^2)^{3/2}} = \frac{\lambda x}{4\pi\varepsilon_0} \underbrace{\int_{-\infty}^{\infty} d\bar{z} \, \frac{1}{(x^2 + y^2 + \bar{z}^2)^{3/2}}}_{\frac{2}{x^2 + y^2}} = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_y = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_z = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{z - z'}{(x^2 + y^2 + (z - z')^2)^{3/2}} = 0$$

$$E(r) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{x^2 + y^2} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

$$\rho = \sqrt{x^2 + y^2} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho} e_{\rho}, \qquad e_{\rho} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \\ 0 \end{pmatrix}$$

1.3 Feldgleichungen und elektrostatische Potential

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r'}) \frac{\boldsymbol{r} - \boldsymbol{r'}}{|\boldsymbol{r} - \boldsymbol{r'}|^3}$$

1.3.1 Elektrostatisches Potential

elektrische Feld ist ein Potentialfeld $\boldsymbol{E}(\boldsymbol{r}) = -\nabla \phi(\boldsymbol{r}) = -\left(\boldsymbol{e}_x \frac{\partial \phi}{\partial x} + \boldsymbol{e}_y \frac{\partial \phi}{\partial y} + \boldsymbol{e}_z \frac{\partial \phi}{\partial z}\right)$

$$\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}} = -\nabla \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

$$-\frac{\partial}{\partial x} \frac{1}{[(x - x')^{2} + (y - y')^{2} + (z - z')^{2}]^{1/2}} = \frac{-(-\frac{1}{2})}{[(x - x')^{2} + (y - y')^{2} + (z - z')^{2}]^{3/2}} = \frac{(x - x')}{|\mathbf{r} - \mathbf{r}'|^{3}}$$

$$\Rightarrow \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \int d^{3}\mathbf{r}' \ \rho(\mathbf{r}') \left(-\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|}\right) = \nabla_{F} \frac{1}{4\pi\varepsilon_{0}} \int d^{3}\mathbf{r}' \ \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

 \rightarrow elektrostatisches Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \, \frac{\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} + c$$

übliche Konvention: $c = 0 \ (\phi(\mathbf{r}) \ | \mathbf{r}| \stackrel{\rightarrow}{\rightarrow} \infty \ 0)$

Potential einer Punktladung in r_0 :

$$\begin{split} \rho(\boldsymbol{r}) &= q\delta(\boldsymbol{r} - \boldsymbol{r}_0) \\ \phi(\boldsymbol{r}) &= \int_{\mathbb{R}^3} d^3 r' \; \frac{q\delta(\boldsymbol{r}' - \boldsymbol{r}_0)}{|\boldsymbol{r} - \boldsymbol{r}'|} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|} \\ \boldsymbol{E}(\boldsymbol{r}) &= -\boldsymbol{\nabla}\phi = \frac{1}{4\pi\varepsilon_0} q \boldsymbol{\nabla} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|} = \frac{1}{4\pi\varepsilon_0} q \frac{\boldsymbol{r} - \boldsymbol{r}_0}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} \end{split}$$

(Funktional-Analysis Siegfried Großmann Springer) (Landau-Lipschitz Buch geht weit der Vorlesung hinaus)

1.3.2 Feldgleichugn (differentielle Form)

Rotation (Wirbel)

$$\operatorname{rot} \mathbf{E} \nabla \times \mathbf{E} = \mathbf{e}_{x} \left(\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{x}}{\partial z} \right) + \mathbf{e}_{y} \left(\frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \right) + \mathbf{e}_{z} \left(\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} \right) \Rightarrow \nabla \times \mathbf{E} = -\nabla \times (\nabla \phi) = 0$$

Mathe: Es sind äquivalent

i
$${m E} = - \nabla \phi$$

ii $\nabla \times \mathbf{E} = 0$ (auf einfach zusammenhängendem Gebiet)

iii Kurvenintegral $\int_{\gamma} d\mathbf{r} \cdot \mathbf{E}$ ist Wegunabhängig

$$\int_{r_1}^{r_2} d\mathbf{r} \cdot \mathbf{E} = -\int_{r_1}^{r_2} dt \underbrace{\frac{d\mathbf{r}}{dt} \times \nabla \phi(\mathbf{r}(t))}_{\frac{d\phi}{dt}} = \underbrace{(\phi(\mathbf{r}_2) - \phi(\mathbf{r}_1))}_{\text{Potential differenz}}$$

1.3.3 Divergenz (Quellen)

$$\div \mathbf{E} = \nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \nabla_{\boldsymbol{r}} \cdot \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r}') \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$
$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\boldsymbol{r}') \nabla_{\boldsymbol{r}} \cdot \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

x-Anteil:

$$\frac{\partial}{\partial x} \frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{1 \cdot [\dots]^{3/2} (x - x') (x - x')^{3/2} \cdot 2[\dots]^{1/2}}{[\dots]^3}$$

$$= \frac{[\dots]^{1/2} ((x - x')^2 + (y - y')^2 + (z - z')^2 - 3(x - x')^2)}{[\dots]^{3/2}}$$

$$= \frac{(y - y')^2 + (z - z')^2 - 2(x - x')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial y} \frac{y - y'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (z - z')^2 - 2(y - y')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial z} \frac{z - z'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (y - y')^2 - 2(z - z')^2}{[\dots]^{3/2}}$$

$$\nabla \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} = 0$$
 falls $\mathbf{r} \neq \mathbf{r}'$

 \Rightarrow falls $r \notin V$, d.h. r in Gebiet ohne Ladungsdichte $\rho(r) = 0$

$$\Rightarrow \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = 0$$

 $r \in V$: Grenzwertbetrachtung (Regularisierung des Integranden)

statt

$$\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = \frac{\boldsymbol{r} - \boldsymbol{r}'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

betrachten wir:

$$\boldsymbol{f}_a(\boldsymbol{r}-\boldsymbol{r}') = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(x-x')^2+(y-y')^2+(z-z')^2]^{3/2}} = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(\boldsymbol{r}-\boldsymbol{r}')^2+a^2]^{3/2}} \quad a \in \mathbb{R}, \ a > 0$$

am Ende Grenzwert $\lim_{a \to 0}$

$$abla \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{4\piarepsilon_0} \lim_{a o 0} \int_V d^3r' \;
ho(oldsymbol{r}') oldsymbol{
abla}_{oldsymbol{r}} \cdot f_a(oldsymbol{r}-oldsymbol{r}')$$

$$\begin{split} \frac{\partial}{\partial x} \frac{x - x'}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{3/2}} &= \frac{[\cdots + a^2]^{3/2} - (x - x')\frac{3}{2} \cdot 2(x - x')[\cdots + a^2]^{3/2}}{[\cdots + a^2]^3} \\ &= \frac{(y - y')^2 + (z - z')^2 + a^2 - 2(x - x')^2}{[\cdots + a^2]^{3/2}} \end{split}$$

$$\nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}') = \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}}$$
$$\lim_{a \to 0} f_a(\boldsymbol{r} - \boldsymbol{r}') = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}' \\ \infty & \boldsymbol{r} = \boldsymbol{r}' \end{cases}$$

 \Rightarrow zum Integral $\int_V d^3r'\dots$ trägt (in Limes $a\to 0)$ nur der Bereich ${\bm r}'\approx {\bm r}$ bei

$$K_R(\boldsymbol{r}) = \{ \boldsymbol{r}' \in \mathbb{R}^3 : |\boldsymbol{r} - \boldsymbol{r}'| \le R \}$$

$$\lim_{a \to 0} \int_{V} d^{3}r' \ \rho(\mathbf{r}') \nabla_{\mathbf{r}} \cdot f_{a}(\mathbf{r} - \mathbf{r}')$$

$$= \lim_{a \to 0} \int_{K_{R}(\mathbf{r})} d^{3}r' \ \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

$$+ \lim_{a \to 0} \int_{V/K_{R}(\mathbf{r})} d^{3}r' \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

Wähle R klein genug, dass man innerhalb $K_R(r)$ $\rho(r')$ in Taylorreihe um r entwickeln kann.

$$\begin{split} \tilde{\bm{r}} &= \bm{r}' - \bm{r}, \ d^3r' = d^3\tilde{r} \\ \int_{K_R(\bm{r})} d^3r' \ \rho(\bm{r}') \frac{3a^2}{[(\bm{r} - \bm{r}')^2 + a^2]^{5/2}} &= \int_{K_R(0)} d^3\tilde{r} \ \rho(\bm{r} + \tilde{\bm{r}}) \frac{3a^2}{[\tilde{\bm{r}}^2 + a^2]^{5/2}} \end{split}$$

Taylorentwicklung von $\rho(\mathbf{r} + \tilde{\mathbf{r}})$ zum $\tilde{\mathbf{r}} = 0$

$$\rho(\mathbf{r} + \tilde{\mathbf{r}}) = \rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots$$

$$= \int_{K_R(0)} d^3 \tilde{r} \left(\rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots \right) \frac{3a^2}{[\tilde{\mathbf{r}}^2 + a^2]^{5/2}}$$

1. Integral:

$$\int_{K_{R}(0)} d^{3}\tilde{r} \ \rho(\mathbf{r}) \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}} = \rho(\mathbf{r}) \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}}}_{\left[\frac{\tilde{r}^{3}}{(\tilde{r}^{2} + a^{2})^{3/2}}\right]_{0}^{R}} \underbrace{\int_{0}^{\sin\theta a\theta a\varphi}}_{=4\pi}$$

$$= 4\pi \rho(\mathbf{r}) \frac{R^{3}}{(R^{2} + a^{2})^{3/2}} \xrightarrow[a \to 0]{} 4\pi \rho(\mathbf{r})$$

2. Integral:

$$\int_{K_R(0)} d^3\tilde{r} \underbrace{\tilde{\boldsymbol{r}}}_{\tilde{\boldsymbol{r}}} \cdot \nabla_{\boldsymbol{r}} \rho(\boldsymbol{r}) \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}} = \underbrace{\int_0^R d\tilde{r}}_{\tilde{\boldsymbol{r}}} \frac{3a^2\tilde{r}^3}{(\tilde{r}^2 + a^2)^{3/2}} \underbrace{\int d\Omega \ \boldsymbol{e_{\tilde{r}}} \cdot \nabla \rho(\boldsymbol{r})}_{\text{unabh. von } a} \xrightarrow[a \to 0]{} 0$$

gilt auch für alle höheren Terme

$$\lim_{a \to 0} \int_{V} d^{3}r' \rho(\mathbf{r}) \nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{3/2}} = 4\pi \rho(\mathbf{r})$$

$$\Rightarrow \nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \lim_{a \to 0}^{"} = \frac{1}{\varepsilon_{0}} \rho(\mathbf{r})$$

$$abla oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r}) \quad oldsymbol{r} \in \mathbb{R}^3$$

1.3.4 Zusammenfassung:

Feldgleichungen der Elektrostatik

Mathe: partielle DGL

$$\nabla E(r) = \frac{1}{\varepsilon_0} \rho(r)$$
 inhomogene DGL
 $\nabla \times E(r) = 0$ homogene DGL

DGL für Potential $\phi \colon \boldsymbol{E} = -\nabla \phi$

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla \cdot \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix}$$
$$= -\underbrace{\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}\right)}_{=:\Delta \phi}$$

Partielle DGL 2. Ordnung:

Poissongleichung

$$\Delta \varPhi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

für Gebiete mit $\rho(\mathbf{r}) = 0$:

$$\Delta \phi(\mathbf{r}) = 0$$
 Laplacegleichung

Darstellung der Deltafunktion:

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \underbrace{\nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}}}_{\frac{3a^2}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{5/2}} =: g_a(\mathbf{r}' - \mathbf{r})} = 4\pi \rho(\mathbf{r})$$

 $\frac{1}{4\pi}g_a$ liefert Grenzwertdarstellung der δ -funktion.

$$\lim_{a\to 0} \int_{\mathbb{R}^3} d^3r' \ \rho(\boldsymbol{r}') \frac{1}{4\pi} g_a(\boldsymbol{r}'-\boldsymbol{r}) = \rho(\boldsymbol{r})$$

$$\lim_{a \to 0} g_a(\mathbf{r}' - \mathbf{r}) = \begin{cases} 0 & \mathbf{r} \neq \mathbf{r}' \\ \infty & \mathbf{r} = \mathbf{r}' \end{cases}$$

$$\delta(\mathbf{r}) = \lim_{a \to 0} \frac{1}{4\pi} \nabla_{\mathbf{r}} \cdot \frac{r^2}{(r^2 + a^2)^{3/2}}$$

$$\stackrel{\text{formal}}{=} \frac{1}{4\pi} \nabla \cdot \underbrace{\frac{\mathbf{r}}{r^3}}_{= -\nabla_{\frac{1}{r}}} = -\frac{1}{4\pi} \nabla \cdot \left(\nabla_{\frac{1}{r}}\right) = \frac{-1}{4\pi} \Delta_{\frac{1}{r}}^1 \Rightarrow \Delta_{\frac{1}{r}}^1 = -4\pi \delta(\mathbf{r})$$

z.B. Potential einer Punktladung ρ q in r_0 :

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\Delta\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} q \underbrace{\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}_0)} = -\frac{1}{\varepsilon_0} \underbrace{q\delta(\mathbf{r} - \mathbf{r}_0)}_{=\rho(\mathbf{r})} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$

Wiederholung

$$egin{aligned} oldsymbol{
abla} \cdot oldsymbol{E}(oldsymbol{r}) &= rac{1}{arepsilon_0}
ho(oldsymbol{r}) \ oldsymbol{
abla} imes oldsymbol{E}(oldsymbol{r}) &= 0 \end{aligned}$$
 $\Rightarrow oldsymbol{E} = -oldsymbol{
abla} \Phi(oldsymbol{r}) = -rac{1}{arepsilon_0}
ho(oldsymbol{r})$

1.3.5 Integralsätze der Vektoranalysis

1) Gaußscher Satz:

Sei $\mathbf{A}(\mathbf{r})$ ein Vektorfeld im Volumen $V \subset \mathbb{R}^3$, so gilt:

$$\int_V d^3r \ \nabla \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{\partial V} d\boldsymbol{f} \ \cdot \boldsymbol{A}(\boldsymbol{r})$$

$$\partial V \ \text{Rand von } V$$

$$d\boldsymbol{f} = \boldsymbol{n} \ df$$
 nach aussen orientierter Normaleneinheutsvektor

Bemerkung:

i) Analogie 1D: Fundamentalsatz der Integralrechnung:

$$\int_{a}^{b} dx \frac{df}{dx} = f(b) - f(a)$$

ii) Geometrische / physikalische Integration:

Fluss des Vektorfeldes \boldsymbol{A} durch ∂V

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

Integral über die Quellen von \boldsymbol{A}

$$\int_V d^3r \boldsymbol{\nabla} \cdot \boldsymbol{A}$$

$$\mathbf{A} = \text{const.} \rightarrow \mathbf{\nabla} \cdot \mathbf{A} = 0$$

 $\textit{Beispiel: } \text{Geschwindigkeit einer Flüssigkeit: } \boldsymbol{A}(\boldsymbol{r}) = \boldsymbol{v}(\boldsymbol{r})$

$$\mathbf{v} = \text{const.} \quad \nabla \cdot \mathbf{v} = 0 \quad \int_{\partial V} d\mathbf{f} \cdot \mathbf{v} = 0$$

 \Rightarrow Es gibt keine Quellen von \boldsymbol{v}

$$\nabla \cdot \boldsymbol{r} \neq 0$$
 $\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{v} \neq 0$

iii)

$$\int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right)$$

$$\begin{split} &\int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \underbrace{\int_{0}^{\Delta x} dx \frac{\partial A_{x}}{\partial x}}_{A_{x}(\Delta x, y, z) - A_{x}(0, y, z)} \\ &= \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} A_{x}(\Delta x, y, z) - \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy A_{x}(0, y, z) \\ &= \int_{F_{A}^{+}} d\boldsymbol{f} \cdot \boldsymbol{A} + \int_{F_{A}^{-}} d\boldsymbol{f} \cdot \boldsymbol{A} \end{split}$$

$$F_x^+: d\mathbf{f} = \mathbf{e}_x dy dz$$
 $F_x^-: d\mathbf{f} = -\mathbf{e}_x dy dz$

ebenso gilt dann für die anderen Koordinaten:

$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \frac{\partial A_{y}}{\partial y} = \int_{F_{y}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{y}^{-}} d\mathbf{f} \cdot \mathbf{A}$$
$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} dz \frac{\partial A_{z}}{\partial z} = \int_{F_{z}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{z}^{-}} d\mathbf{f} \cdot \mathbf{A}$$

$$\Rightarrow \int_{V} d^{3}r \nabla \cdot \boldsymbol{A} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

2) Stokescher Satz

Sei A(r) ein Vektorfeld, F eine Fläche mit Randkurve ∂F , so gilt:

$$\int\limits_{\text{Linienintegral}} d\boldsymbol{r} \boldsymbol{A}(\boldsymbol{r}) = \int\limits_{F} d\boldsymbol{f} \cdot (\nabla \times \boldsymbol{A}(\boldsymbol{r}))$$
 Linienintegral $\to \partial F$

$$d\mathbf{f} = \mathbf{n}df$$

Richtung von $d\mathbf{f}$ und Umlauf sinn von ∂F : rechte Hand Regel. Beispiel:

$$\mathbf{A}(\mathbf{r}) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\mathbf{\nabla} \times \mathbf{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1+1 \end{pmatrix} = 2\mathbf{e}_z$$

$$\mathbf{r}(\varphi) = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} \qquad \varphi \in [0, 2\pi]$$

$$\frac{\partial \mathbf{r}}{\partial \varphi} = R \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

$$\int_{\partial F} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = \int_0^{2\pi} d\varphi \frac{\partial \mathbf{r}}{\partial \varphi} \cdot \mathbf{A}(\mathbf{r}(\varphi))$$

$$= \int_0^{2\pi} d\varphi R(+\sin^2 \varphi + \cos^2 \varphi) = 2\pi R^2$$

$$\int_{-\infty}^{2\mathbf{e}_z} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = 2\pi R^2$$

Vektorfeld ohne Wirbel z.B. $\mathbf{A} = \text{const.}$

$$\nabla \times \boldsymbol{A} = 0$$

Bemerkung:

1.3.6 Integrale Form der Feldgleichung

1.3.7 Gaußsches Gesetz

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{1}{arepsilon_0} \ \int_V d^3r oldsymbol{
abla} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0} \int_V d^3r
ho(oldsymbol{r}) = rac{1}{arepsilon_0} Q_V \ = \int_V doldsymbol{f} \cdot oldsymbol{E}(oldsymbol{r}) \ \int_{\partial V} doldsymbol{f} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon} Q_V \ \end{pmatrix}$$

Berechnung elektrischer Felder für hochsymmetrische Ladungsverteilungen

Beispiel:

Homogen geladene Kugel mit Radius R und Gesamtladung Q. Damit ist die Ladungsdichte innerhalb der Kugel:

$$\rho = \frac{Q}{V} = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$\boldsymbol{E}(\boldsymbol{r}) = E_r(r)\boldsymbol{e}_r$$

$$r = r \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$

 $\boldsymbol{e}_r = \frac{\boldsymbol{r}}{r}$ Fluss von \boldsymbol{E} durch Oberfläche einer Kugel mit Radius r

$$d\mathbf{f} = \mathbf{e}_r r^2 \sin \theta d\theta d\varphi \Rightarrow d\mathbf{f} \cdot \mathbf{E} = E_r(r) r^2 \sin \theta d\theta d\varphi$$

$$\begin{split} \int_{\partial K_r(0)} d\boldsymbol{f} \ \boldsymbol{E} &= \int_0^T d\theta \ \int_0^{2\pi} d\varphi E_r(r) r^2 \sin\theta \\ &= E_r(r) r^2 4\pi \\ &= \frac{1}{\varepsilon_0} Q_{K_r(0)} = \frac{1}{\varepsilon_0} \int_{K_r(0)} d^3 r \ \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \left\{ \begin{array}{l} Q & r > R \\ Q \frac{r^3}{R^3} & r \leq R \end{array} \right. \\ &\Rightarrow E_r(r) = \frac{Q}{4\pi\varepsilon_0} \left\{ \begin{array}{l} \frac{1}{r^2} & r > R \\ \frac{r}{R^3} & r \leq R \end{array} \right. \end{split}$$

Satz von Stokes 1.3.8

$$\nabla \times \boldsymbol{E} = 0$$

Definition: $\gamma = \partial F$

 \int_{γ} ist dann ein Linienintegral über eine geschlossene Kurve

$$\int_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = \int_{F} d\boldsymbol{f} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) = 0$$

Zusammenfassung: Feldgleichungen der Elektrostatik differentielle Darstellung:

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \nabla \times \boldsymbol{E} = 0 \quad \rightarrow \quad \boldsymbol{E} = -\nabla \Phi \quad \rightarrow \quad \Delta \Phi = -\frac{1}{\varepsilon_0} \rho$$

Integral Darstellung:

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} Q_V \qquad , \qquad \oint_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = 0$$

18

1.4 Elektrostatische Energie

potentielle Energie einer Punktladung im äußeren elektrischen Feld Kraft auf Ladung q:

$$\boldsymbol{F} = q\boldsymbol{E}$$

Die Arbeit bei Verschiebung der Ladung von \boldsymbol{a} nach \boldsymbol{b}

$$W = -\int_{a}^{b} d\mathbf{r} \cdot \mathbf{F} = -q \int_{a}^{b} d\mathbf{r} \cdot \mathbf{E}(\mathbf{r})$$
$$= q \int_{a}^{b} d\mathbf{r} \cdot \nabla \Phi = q \underbrace{(\Phi(\mathbf{b}) - \Phi(\mathbf{a}))}_{\text{Potential differenz}}$$

Die Arbeit um q aus dem unendlichen ∞ nach \boldsymbol{r} zu bringen ist dann:

$$W = q(\Phi(\mathbf{r}) - \Phi(\infty))$$

Zur Referenz: $\Phi(\infty) = 0$

Damit ist die Energie der Ladung q im äußeren Feld:

$$\Rightarrow W = q(\Phi(\mathbf{r}))$$
$$\mathbf{E} = -\nabla \Phi$$

Elektrostatische Potentielle Energie

Energie einer Verteilung von Punktladungen

N Ladungen q: an Orten r_i

Zunächst: $\underbrace{i-1}_{\text{erzeugen am Ort } \boldsymbol{r}_i}$ Ladungen q_j bei \boldsymbol{r}_j

Das Potential

$$\Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_i}{|\mathbf{r}_j - \mathbf{r}_i|}$$

Arbeit um $i\text{--}\mathrm{te}$ Ladung aus dem unendlichen nach \boldsymbol{r} zu bringen:

$$W_i = q_i \Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{j-1} \frac{q_i q_j}{r_{ij}}$$

Somit ergibt sich die gesamte Arbeit für N Ladungen als:

$$W = \sum_{i=2}^{N} W_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{r_{ij}}$$
$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j}{r_{ij}}$$

$$\Rightarrow W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}}$$

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \left(\sum_{\substack{j\\j\neq i}} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_{ij}} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{N} q_i \Phi_{j}(\mathbf{r}_i)$$

Energie einer kontinuierlichen lokalisierten Ladungsverteilung

$$W = \frac{1}{8\pi\varepsilon_0} \int d^3r \int d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}$$

$$= \frac{1}{2} \int d^3r \, \rho(\mathbf{r}) \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\mathbb{R}^3} d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}}_{\Phi(\mathbf{r})}$$

$$E_{\text{ext}}$$

$$W_{\text{ext}} = \int d^3r \, \rho(\mathbf{r}) \Phi_{\text{ext}}(\mathbf{r})$$

Energie W durch E ausdrücken:

$$\begin{split} \boldsymbol{\Delta}\boldsymbol{\Phi} &= -\frac{1}{\varepsilon_0}\boldsymbol{\rho} \quad \Rightarrow \quad \boldsymbol{W} = -\frac{1}{2}\int d^3r \varepsilon_0 \underbrace{\boldsymbol{\Delta}\boldsymbol{\Phi}(\boldsymbol{r})\boldsymbol{\Phi}(\boldsymbol{r})}_{\boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})-(\boldsymbol{\nabla}\boldsymbol{\Phi})^2} \\ &= -\frac{\varepsilon_0}{2}\underbrace{\int_{\mathbb{R}^3} d^3r \boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})}_{R\rightarrow\infty} + \frac{\varepsilon_0}{2}\int d^3r \boldsymbol{E}(\boldsymbol{r}) \\ &= \lim_{R\rightarrow\infty}\int_{K_R(0)} d^3r \boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi}) = \lim_{R\rightarrow\infty}\int_{\partial K_R(0)} d\boldsymbol{f}\cdot\underbrace{(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})}_{R\rightarrow\infty} = 0 \\ &= \frac{\varepsilon_0}{2}\int d^3r \boldsymbol{E}(\boldsymbol{r}) \end{split}$$

Zur Umformung oben wurde benutzt:

$$\Phi \overset{R \to \infty}{\sim} \frac{1}{R} \qquad \nabla \Phi \sim \frac{1}{R^2} \qquad d\mathbf{f} = \mathbf{n} \underbrace{d\mathbf{f}}_{\sim R^2}$$

Damit ergibt sich für die Energie einer Verteilung von Punktladungen

$$\Rightarrow \qquad W = \frac{\varepsilon_0}{2} \int d^3r \ \boldsymbol{E}^2(\boldsymbol{r})$$

nicht für Punkladungen

Energiedichte des elektrostatischen Feldes

$$w(\boldsymbol{r}) = \frac{\varepsilon_0}{2} \boldsymbol{E}^2(\boldsymbol{r})$$

Beispiel: Plattenkondensator

Fläche F, Ladung $\rightarrow r = \frac{q}{F} \rightarrow \mathbf{E} = \frac{r}{\varepsilon_0} \mathbf{e}_x$

- \to Die Energiedichte ist: $w=\frac{\varepsilon_0}{2}\pmb{E}^2=\frac{\sigma^2}{2\varepsilon_0}$ (nicht für Punktladungen)
- \rightarrow Die Energie beträgt: $W=\int d^3r w({\bm r})=l\cdot F\cdot \frac{\sigma^2}{2\varepsilon_0}$

Potentialdifferenz - Spannung

$$\Phi(\mathbf{r}) - \Phi(0) = -\int_0^{\mathbf{r}} d\mathbf{r}' \cdot \mathbf{E}(\mathbf{r}') = -\int_0^x dx' \frac{\sigma}{\varepsilon_0} = -\frac{\sigma}{\varepsilon} x$$

Die Spannung zwischen zwei Kondensatorplatten ist dann:

$$U = \Phi(0) - \Phi(l) = \frac{\sigma}{\varepsilon_0} l = \frac{q}{\varepsilon_0 F} l$$

Die Kapazität ist also:

$$C = \frac{q}{U} = \frac{\varepsilon_0 F}{I}$$

Was ist die Energie bei einer Verteilung von Punktladungen und bei einer kontinuierlichen Ladungsverteilung. Bei einer kontinuierlichen Ladungsverteilung haben wir herausgefunden:

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}} \qquad \text{für Punktladungen}$$

Die Energie der Punktladung selbst steckt hier nicht drinnen. Man muss dabei aufpassen, welche Gleichung man für welches Modell benutzt.

$$\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} q \frac{\boldsymbol{r}}{r^3} \qquad \int d^3 r \ \boldsymbol{E}^2 = \int d^3 r \ \frac{1}{r^4} = \infty$$

1.5 Verhalten des el. Feldes an Grenzflächen mit Flächenladung

ightarrow Diskontinuitäten von ${m E}$

Beispiel: Wir betrachten eine homogene Flächenladung.

$$\Rightarrow \boldsymbol{E} = \frac{\sigma}{2\varepsilon_0} \mathrm{sgn}(z) \boldsymbol{e}_z$$

$$m{E}_{\perp} = \pm rac{\sigma}{2arepsilon_0} m{e}_z \ m{E}_{\parallel} = 0$$

Das elektrische Feld $\boldsymbol{E}_{\parallel}$ ist gleich der Ableitung des elektrischen Potentials:

Das elektrische Potential ist also stetig.

Normalkomponente E_{\perp}

Gaußscher Satz für V:

$$\begin{split} \int_{V} d^{3}r' \; \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) &= \int_{\partial V} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) \\ &= \int_{\text{Mantel}} d\boldsymbol{f}' \; \boldsymbol{E} + \int_{\partial V_{+}} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) + \int_{\partial V_{-}} d\boldsymbol{f}' \; \boldsymbol{E} \\ &\downarrow^{\Delta z \to 0} \qquad \qquad \downarrow^{\Delta z \to 0} \qquad \qquad \downarrow^{\Delta z \to 0} \\ &\downarrow^{\Delta f'} \; \boldsymbol{n} \cdot \boldsymbol{E}_{+} \qquad - \int_{F} d\boldsymbol{f}' \; \boldsymbol{n} \cdot \boldsymbol{E}_{-} \end{split}$$

 E_{\pm} ist das Feld auf beiden Seiten der Grenzfläche

$$\int_{\partial V} d\mathbf{f}' \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{F} df \mathbf{n} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{F \to 0} F \mathbf{n} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r}))$$

$$\int_{V} d^{2}r' \nabla \cdot \mathbf{E}(\mathbf{r}') = \frac{1}{\varepsilon_{0}} \int_{V} d^{3}r' \rho(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \int_{F} df' \sigma(\mathbf{r}') \xrightarrow{F \to 0} \frac{1}{\varepsilon_{0}} F \sigma(\mathbf{r})$$

$$\Rightarrow \mathbf{n} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = \frac{1}{\varepsilon_{0}} \sigma(\mathbf{r})$$

$$E_{\perp_{\pm}} = \mathbf{n} \cdot \mathbf{E}_{\pm} \qquad E_{\perp_{+}}(\mathbf{r}) - E_{\perp_{-}}(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \sigma(\mathbf{r})$$

Tangentialkomponente $E \parallel$

Satz von Stokes:

$$0 = \oint_{\gamma} d\mathbf{r}' \cdot \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{-\frac{L}{2}}^{-\frac{L}{2}} ds \mathbf{t} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{L \to 0} L \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$
$$\to \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$

 \rightarrow Die Tangentialkomponente ist stetig

$$E_{\parallel_+} = E_{\parallel_-}$$

Insgesamt ergibt sich damit:

$${m E}_+({m r}) - {m E}_-({m r}) = rac{\sigma}{arepsilon_0} {m n}$$

Das elektrische Potential Φ ist damit stetig.

$$\underbrace{\Phi(\boldsymbol{r}_b) - \Phi(\boldsymbol{r}_a)}_{\Phi_+(\boldsymbol{r}) - \Phi_-(\boldsymbol{r})} = \int_{\boldsymbol{r}_a}^{\boldsymbol{r}_b} d\boldsymbol{r}' \cdot \boldsymbol{E} \quad \stackrel{\Delta z \to 0}{\longrightarrow} 0$$

1.5.1 Randbedingungen an el. Leitern

Leiter: Material mit freibeweglichen Ladungsträgern (Metall)

Eigenschaften von \boldsymbol{E} im Leiter:

i)
$$E = 0$$

ii)
$$0 = \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho, \qquad \rho(\boldsymbol{r}) = 0$$

iii) Nettoladung befinden sich an Oberfläche

iv) Potential
$$\Phi(\mathbf{r}_b) - \Phi(\mathbf{r}_a) = 0 \rightarrow \Phi(\mathbf{r}) = \text{const.}$$

Randbedingungen

$$egin{aligned} m{E}_{+} - m{E}_{-} &= rac{\sigma^{-}}{arepsilon_{0}} m{n} \ m{E}_{-} &= 0 \ \
ightarrow m{E}_{+}(m{r}) &= rac{\sigma(m{r})}{arepsilon_{0}} m{n}(m{r}) \end{aligned}$$

[Folie: Ladung an Oberfläche eines Leiters]

1.6 Randwertprobleme (RWP) der Elektrostatik und Lösungsmethoden

1.6.1 Formulierung des Randwertproblems

Das elektrische Potential: $\Phi(\mathbf{r})$: $\mathbf{E}(\mathbf{r}) = -\nabla \Phi(\mathbf{r})$

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 Poisson-Gleichung

Für eine gegebene lokale Ladungsverteilung ρ gilt:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\to \Phi(\mathbf{r}) \stackrel{|\mathbf{r}| \to 0}{\longrightarrow} 0$$

Typische Problemstellung:

Ladungsverteilung ρ + Werte des Potentials auf Randfläche

Beispiel:

Randwertproblem: Gegeben: $\rho(\mathbf{r}')$ im Raumbereich V $\Phi(\mathbf{r})$ oder $\mathbf{E}(\mathbf{r})$ auf Randfläche ∂V

Gesucht: $\Phi(r)$, E(r) überall in V

Zwei Fälle:

- i) $\varPhi({\pmb r})$ ist auf der Randfläche gegeben
 - \rightarrow Dirichlet-Randbedingung
- ii) $\boldsymbol{E}(\boldsymbol{r})$ ist auf der Randfläche gegeben
 - \rightarrow Neumannsche Randbedingung

Gegeben sei: $n \cdot E$ dies ist gleich der Normalenableitung:

$$oldsymbol{n}\cdotoldsymbol{E}=-oldsymbol{n}oldsymbol{
abla}\Phi=-rac{\partial\Phi}{\partial n}$$

Wir beschränken uns vorwiegend auf den ersten Fall. Zur Lösung dieser Probleme gibt es einige Methoden. Zum Einstieg und zur Wiederholung betrachten wir zunächst die Methode der Spiegelladung.

1.6.2 Methode der Bildladung (Spiegelladung)

Punktladung vor leitender, geerdeter Metallplatte

$$oldsymbol{\Delta} arPhi(oldsymbol{r}) = -rac{1}{arepsilon_0}
ho(oldsymbol{r}) = -rac{q}{arepsilon_0} \delta(oldsymbol{r} - oldsymbol{r}_0)$$
 if V is V and V is V and V is V and V is V and V is V in V is V .

Randbedingungen:

$$\Phi(\mathbf{r}) = 0$$
 für $\mathbf{r} \in \partial V$, d.h. $\mathbf{r} = (0, y, z)$

Idee: Ersetze ursprüngliche Problem durch "Fiktives" Problem mit zusätzlichen Ladungen außerhalb von V, welche die Randbedingungen simulieren.

Potential der Punkladungen in r_0 :

$$\Phi_q(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|}$$

addiere Ladung -q in $\boldsymbol{r}_0'=(-d,0,0)=-\boldsymbol{r}_0$

$$\varPhi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|} - \frac{q}{|\boldsymbol{r} + \boldsymbol{r}_0|} \right)$$

Schauen wir nun nach ob dies die Poisson-GLeichung erfüllt:

$$\Delta \Phi = \frac{q}{4\pi\varepsilon_0} \left(\underbrace{\Delta \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}_0)} - \underbrace{-\Delta \frac{1}{|\boldsymbol{r} + \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} + \boldsymbol{r}_0)} \right)$$

$$= -\frac{q}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}_0) + \frac{q}{\varepsilon_0} \underbrace{\delta(\boldsymbol{r} + \boldsymbol{r}_0)}_{=0 \text{ für } \boldsymbol{r} \neq -\boldsymbol{r}_0} \checkmark \forall \boldsymbol{r} \in V$$

Diskussion der Lösung

i) Struktur

$$\Phi(m{r}) = \underbrace{rac{q}{4\piarepsilon_0}rac{1}{|m{r}-m{r}_0|}}_{=: \; \Phi_{ ext{s}}(m{r})} + \underbrace{rac{(-q)}{4\piarepsilon_0}rac{1}{|m{r}+m{r}_0|}}_{=: \; \Phi_{ ext{hom}}(m{r})}$$

 $r \in V$

$$\Delta \Phi_{
m s}(m{r}) = -rac{1}{arepsilon_0}
ho(m{r})$$
 Poisson-Gleichung
$$\Delta \Phi_{
m hom}(m{r}) = 0$$
 Laplace-Gleichung

Mathematisch: Lösung inhomogener DGL

$$\Phi(\mathbf{r}) = \Phi_{\rm s}(\mathbf{r}) + \Phi_{\rm hom}(\mathbf{r})$$

 Φ_{hom} wird so gewählt, dass die Randbedingungen erfüllt werden:

$$r \in \partial V : \quad \Phi_{\text{o}}(r) = \Phi_{\text{s}}(r) + \Phi_{\text{hom}}(r)$$

ii) Elektrisches Feld

$$\boldsymbol{E} = -\boldsymbol{\nabla}\Phi = \frac{q}{4\pi\varepsilon_0} \left(\frac{(x-d,y,z)}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} - \frac{(x+d,y,z)}{|\boldsymbol{r} + \boldsymbol{r}_0|^3} \right)$$

An der Oberfläche
$$x \to 0, x \ge 0$$

 $|\mathbf{r} \pm \mathbf{r}_0|^3 \to (d^2 + y^2 + z^2)$

$$\left. \boldsymbol{E}(\boldsymbol{r}) \right|_{\boldsymbol{r} \in \partial V} = -\frac{qd}{2\pi\varepsilon_0} \frac{1}{(d^2 + y^2 + z^2)^{3/2}} \boldsymbol{e}_x$$

Durch das externe elektrische Feld verschieben sich die Ladungsträger im Metall und es entsteht eine Influenzladung an der Oberfläche.

iii) Influenzladung auf Metalloberfläche

$$oldsymbol{E}_{+}-oldsymbol{E}_{-}=rac{\sigma}{arepsilon_{0}}oldsymbol{n}\qquadoldsymbol{n}=oldsymbol{e}_{x}$$

 $r \in \partial V$:

$$\sigma(\mathbf{r}) = \varepsilon_0 \mathbf{E}_+(\mathbf{r}) = -\frac{qd}{2\pi (d^2 + y^2 + z^2)^{3/2}}$$

gesamte influenzierte Ladung

$$q_i = \int_{\partial V} df \ \sigma(\boldsymbol{r}) = \dots = -q$$

iv) Kraft zwischen Punktladungen und Metallplatte

$$F = q\tilde{E}(r_0) = \frac{-q^2}{4\pi\varepsilon_0(2d)^2}e_x$$

Eindeutigkeit der Lösung des Randwertproblems

Dirichlet-Randwertproblem:

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$ $\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$ $\mathbf{r} \in \partial V$

Annahme: Φ_1 , Φ_2 lösen RWP

d.h.
$$\Delta \Phi_1(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) = \Delta \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in V$$

$$\Phi_1(\boldsymbol{r}) = \Phi_0(\boldsymbol{r}) = \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in \partial V$$

Setze:

$$(\mathbf{r}) := \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r})$$

$$\Delta \Phi(\mathbf{r}) = 0 \quad \mathbf{r} \in V$$

$$\mathbf{r} \in \partial V \quad \Psi(\mathbf{r}) = \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r}) = 0$$

Greensche Identität:

g, h Funktionen an V:

$$\int_{V} d^{3}r \left[(\boldsymbol{\nabla}(\boldsymbol{r})) \cdot (\boldsymbol{\nabla}h(\boldsymbol{r})) + g(\boldsymbol{r})\Delta h(\boldsymbol{r}) \right]$$

$$= \int_{\partial V} d\boldsymbol{f} \cdot (g(\boldsymbol{r})\boldsymbol{\nabla}h(\boldsymbol{r})$$

$$= \int_{\partial V} d\boldsymbol{f} g(\boldsymbol{r}) \underbrace{\boldsymbol{n} \cdot \boldsymbol{\nabla}h(\boldsymbol{r})}_{=\frac{\partial h}{\partial n}(\boldsymbol{r})}$$

$$h = g = \Psi$$

$$\Rightarrow \int_{V} d^{3}r \ ((\nabla \Psi)^{2} + \Psi(\mathbf{r}) \underbrace{\Delta \Psi(\mathbf{r})}_{=0}) = \int_{\partial V} d\mathbf{f} \ \underbrace{\Psi(\mathbf{r})}_{=0} \frac{\partial \Psi(\mathbf{r})}{\partial n}$$

$$\Rightarrow \int_{V} d^{3}r \ (\nabla \Psi(\mathbf{r}))^{2} = 0 \Rightarrow \nabla \Psi(\mathbf{r}) = 0 \qquad \mathbf{r} \in V$$

$$\Psi(\mathbf{r}) = \text{const.} \qquad \Psi(\mathbf{r}) = 0 \text{ in } V \Rightarrow \Phi_{1}(\mathbf{r}) = \Phi_{2}(\mathbf{r})$$

1.6.3 Formale Lösungen des elektrostatischen Randwertproblems mit Greenschen Funktionen (GF)

GF: generelle Methode um inhomogene DGL zu lösen

$$\Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

Greensche Funktionen der Poisson-Gleichung: $\mathcal{G}(r,r')$ mit

Greensche Funktionen der Poisson-Gleichung

$$\Delta_{m{r}}\mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0}\delta(m{r}-m{r}')$$

Diese Gleichung geht vor einer Punktladung mit q=1 aus, ist hier aber zunächst einmal eine Definition.

 \mathcal{G} bekannt

$$\rightarrow \Delta_{\boldsymbol{r}} \mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}')$$

$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') \underset{|\boldsymbol{r}| \rightarrow \infty}{\longrightarrow} 0$$

Dirichlet-Randwertproblem

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r}) \qquad \mathbf{r} \in V$$

$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r}) \qquad \mathbf{r} \in \partial V$$

Green'sche Funktionen (GF):

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \frac{1}{\varepsilon_0}\delta(\mathbf{r} - \mathbf{r}') \quad \mathbf{r}, \mathbf{r}' \in V$$
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0 \quad \text{für} \quad \mathbf{r} \in \partial V \quad \mathbf{r}' \in V$$

Hiermit haben wir das Grenzwertproblem auf eine Integration zurückgeführt. Dies werden wir nun Beweisen:

Beiweis:

Die 2. Greensche Identität lautet:

$$\int_{V} d^{3}r' \left(g(\mathbf{r}')\Delta_{\mathbf{r}'}h(\mathbf{r}') - h(\mathbf{r}')\Delta_{\mathbf{r}'}g(\mathbf{r}')\right)$$

$$= \int_{\partial V} d\mathbf{f}' \cdot \left(g(\mathbf{r}')\nabla_{\mathbf{r}'}h(\mathbf{r}') - h(\mathbf{r}')\nabla_{\mathbf{r}'}g(\mathbf{r}')\right)$$

$$g(\mathbf{r}') := \Phi(\mathbf{r}') \qquad h(\mathbf{r}') := \mathcal{G}(\mathbf{r}', \mathbf{r})$$

$$\Rightarrow \int_{V} d^{3}r' \left[\Phi(\mathbf{r}')\underbrace{\Delta_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}) - \mathcal{G}(\mathbf{r}', \mathbf{r})}_{=-\frac{1}{\varepsilon_{0}}\rho(\mathbf{r}')}\underbrace{\Delta_{\mathbf{r}'}\Phi(\mathbf{r}')}_{=-\frac{1}{\varepsilon_{0}}\rho(\mathbf{r}')}\right]$$

$$= \int_{\partial V} d\mathbf{f}' \left[\underbrace{\Phi(\mathbf{r}')}_{=\Phi_{0}(\mathbf{r}')} \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}) - \underbrace{\mathcal{G}(\mathbf{r}', \mathbf{r})}_{=0} \nabla_{\mathbf{r}'}\Phi(\mathbf{r}')\right]$$

$$\Rightarrow = -\frac{1}{\varepsilon_{0}}\Phi(\mathbf{r}) + \frac{1}{\varepsilon_{0}}\int_{V} d^{3}\mathbf{r}' \mathcal{G}(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r})$$

$$= \int_{\partial V} d\mathbf{f}' \Phi_{0}(\mathbf{r}') \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$= \int_{\partial V} d\mathbf{f}' \Phi_{0}(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} d\mathbf{f}' \Phi_{0}(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$
Es gilt (HA):
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = \mathcal{G}(\mathbf{r}', \mathbf{r}) \quad \text{Reziprozität}$$

$$\to \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \Delta_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

Potential bei Randwertproblem

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi_{0}(\mathbf{r}') \frac{\partial}{\partial n'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$
(1)

Wiederholung

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$$
 $\mathbf{r} \in \partial V$

Green'sche Funktionen:

$$\Delta_{\mathbf{r}} \mathcal{G}(\mathbf{r}, \mathbf{r}') = \frac{1}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}') \quad \mathbf{r}, \mathbf{r}' \in V$$
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0 \quad \text{für} \quad \mathbf{r} \in \partial V \quad \mathbf{r}' \in V$$

Wenn die Green'sche Funktion \mathcal{G} die Bedingungen erfüllt, können wir das Potential so schreiben wie in Gleichung (1).

Bemerkungen:

i) Spezialfälle:

1) V Ladungsfrei
$$(\rho(\mathbf{r}) = 0 \text{ in } V)$$

$$\rightarrow \varPhi(\boldsymbol{r}) = -\varepsilon \int_{\partial V} \mathrm{d}f' \varPhi_0(\boldsymbol{r}) \frac{\partial \mathcal{G}}{\partial n'}(\boldsymbol{r}, \boldsymbol{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = -\varepsilon \Phi_0 \underbrace{\int_{\partial V} \mathrm{d}f' \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')}_{\int \mathrm{d}f' \mathbf{n} \cdot \nabla_{\mathbf{r}'} \mathcal{G}}$$

$$= -\varepsilon \Phi_0 \int \mathrm{d}\mathbf{f}' \cdot \nabla_{\mathbf{r}'} \mathcal{G}$$

$$\stackrel{\mathrm{S.v.G.}}{=} \int_{V} \mathrm{d}^3 \mathbf{r}' \underbrace{\nabla_{\mathbf{r}'} \cdot (\nabla_{\mathbf{r}'} \mathcal{G})}_{\Delta_{\mathbf{r}'} \cdot \mathcal{G} = -\frac{1}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}')}$$

$$= -\frac{1}{\varepsilon_0}$$

$$\Rightarrow \Phi(\mathbf{r}) = \Phi_0$$

2) $V = \mathbb{R}^3$, lokalisierte Ladungsverteilung ρ

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \qquad \int_{\partial V} \cdots \to 0$$

eine spezielle Lösung für \mathcal{G}

ii) \mathcal{G} ist auch die Lösung einer inhomogenen partiellen DGL

$$\mathcal{G}(m{r},m{r}') = \underbrace{\mathcal{G}_s(m{r},m{r}')}_{\substack{ ext{spezielle} \\ ext{L\"osung der} \\ ext{inhomogenen}}} + \underbrace{F(m{r},m{r}')}_{\substack{ ext{L\"osung} \\ ext{zugeh\"origen} \\ ext{homogenen}}}$$

$$egin{align*} \Delta_{m{r'}}\mathcal{G}_s(m{r},m{r'}) &= -rac{1}{arepsilon_0}\delta(m{r}-m{r'}) \ \Delta_{m{r'}}F(m{r},m{r'}) &= 0 \ \ & \mathcal{G}_j(m{r},m{r'}) &= rac{1}{4\piarepsilon_0}rac{1}{|m{r}-m{r'}|} & ext{Laplace anwenden !} \ & \mathcal{G}(m{r},m{r'}) &= rac{1}{4\piarepsilon_0}rac{1}{|m{r}-m{r'}|} &+ rac{F(m{r},m{r'})}{ ext{so w\"{a}hlen, dass}} \ & ext{Randbedingungen erfüllt} \ \end{aligned}$$

 $F(\mathbf{r}, \mathbf{r}')$ so wählen, dass die Randbedingungen erfüllt sind: $\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0$ $\mathbf{r} \in \partial V$.

1.6.4 Greensche Funktion des Dirichlet Randwertproblems einer Ebene

$$\Delta_{m{r}'}\mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0}\delta(m{r}-m{r}')$$
 $m{r},m{r}'\in V$ $m{r}'\in V$ Spiegelladung

Analog: Punktladung "q=1" in r' vor leitender Ebene mit Potential 0

$$\Phi(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) \qquad \tilde{\mathbf{r}}' = (x', y', -z')$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = \frac{1}{q}\Phi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0}\left(\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} - \frac{1}{|\boldsymbol{r}-\tilde{\boldsymbol{r}}'|}\right)$$

Beweis:

$$\Delta_{\mathbf{r}} = \frac{1}{4\pi\varepsilon_{0}} \left(\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} - \Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) = -\frac{1}{\varepsilon_{0}} \delta(\mathbf{r} - \mathbf{r}')$$

$$\parallel \qquad \qquad \parallel$$

$$-4\pi\delta(\mathbf{r} - \mathbf{r}') \qquad -4\pi\delta(\mathbf{r} - \tilde{\mathbf{r}}') = 0$$

1. Teil: ${m r} \in \partial V$: z=0 , 2. Teil = 0: ${m { ilde r}}' \notin V$.

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z')^2}} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (-z)^2}}$$

$$= \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|}$$

$$G(\mathbf{r}, \mathbf{r}') = 0 \quad \mathbf{r} \in \partial V$$

Bemerkung:

i)
$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} + F(\boldsymbol{r}, \boldsymbol{r}')$$

 $F(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|}$
 $\Delta_{\boldsymbol{r}} F(\boldsymbol{r}, \boldsymbol{r}') = 0$

ii) Symmetrie der Greenschen Funktion (Reziprozitätsrelation):

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}')=\mathcal{G}(\boldsymbol{r}',\boldsymbol{r})$$

 \rightarrow formale Lösung des Randwertproblems für eine beliebige Ladungsverteilung und Randwerte $\Phi_0(\mathbf{r})$ in der Ebene:

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'} \qquad \Phi_{0}(x, y, 0) \xrightarrow{z} \Phi \equiv 0$$

$$\rho \equiv 0 \quad \Rightarrow \quad \Phi(\mathbf{r}) = \varepsilon_{0} \int_{\sqrt{x^{2} + y^{2}} \leq R} dy' dx' \Phi_{0}(x', y', 0) \frac{\partial \mathcal{G}}{\partial n'} \qquad x$$

1.6.5 Separation der Variablen und Entwicklung nach orthogonalen Funk-

Eine allgemeine Methode zur Lösung partieller DGL.

Zur Vereinfachung: Laplace.Gl $\Delta \Phi = 0 + \text{Randbedingung}$

Verbindung zur Poisson-Gl: $\Delta \varPhi({\bm r}) = -\frac{1}{\varepsilon_0} \rho({\bm r})$

$$\Phi(\mathbf{r}) = \Phi_s(\mathbf{r}) + \Phi_{
m hom} \qquad \Phi(\mathbf{r}) = rac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' rac{
ho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \Phi_{
m hom}$$

Motivation: 1-Dim Randwertproblem

Randbedingungen:

$$\begin{split} \varPhi(0) &= c_1 = \varPhi_1 \qquad \varPhi(l_x) = \varPhi_1 + c_2 l_x = \varPhi_2 \\ &\to c_2 = \frac{\varPhi_2 - \varPhi_1}{l_x} \quad \to \quad \varPhi(x) = \varPhi_1 + \frac{\varPhi_2 - \varPhi_1}{l_x} x \\ &\Rightarrow \pmb{E} = -\nabla \varPhi = -\frac{\varPhi_2 - \varPhi_1}{l_x} \pmb{e}_x \end{split}$$

2-Dim Randwertproblem

Wir suchen:
$$\Phi = \Phi(x, y)$$
 mit $\rho = 0$

$$0 = \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2}$$

Randbedingungen:

i)
$$\Phi(\mathbf{r}) = 0$$

$$y = 0$$

ii)
$$\Phi(\mathbf{r}) = 0$$
 $x = 0$

$$x = 0$$

iii)
$$\Phi(\mathbf{r}) = 0$$
 $x = l_x$

$$x = l_x$$

iv)
$$\Phi(\mathbf{r}) = \Phi_R(x)$$
 $y = l_y$

$$y = l$$

Separations ansatz: $\varPhi(x,y) = f(x)g(y)$

$$0 = \Delta \Phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(x)g(y)$$
$$= \frac{\partial^2 f}{\partial x^2} g(y) + f(x) \frac{\partial^2 g}{\partial y^2}$$
$$= \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}y^2}$$

$$0 = \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} \qquad \left| \cdot \frac{1}{f g} \right|$$

umformen:

$$\Rightarrow \underbrace{\frac{1}{f(x)} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}}_{\mathrm{Fkt. \, von}x} = -\underbrace{\frac{1}{g(y)} \frac{\mathrm{d}^2 g}{\mathrm{d}y^2}}_{\mathrm{Fkt. \, von}y} = \mathrm{const.} = -\alpha^2$$

$$\frac{\mathrm{d}^2 f}{\mathrm{d}x^2} = -\alpha^2 f(x) \quad \text{mit } e^{i\alpha x} \qquad \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} = \alpha^2 g(y) \quad \text{mit } e^{\alpha y}$$

$$e^{i\alpha x} \Rightarrow f(x) = a\sin(\alpha x) + b\cos(\alpha x)$$
 $e^{\alpha y} \Rightarrow g(x) = c\sinh(\alpha y) + d\cosh(\alpha y)$

$$\Phi(x,y) = f(x) \cdot g(y)$$

Randbedingungen:

i)
$$0 = \Phi(x,0) = f(x) \cdot d \implies d = 0$$

ii)
$$0 = \Phi(0, y) = b \cdot g(y) \implies b = 0$$

$$\Rightarrow \Phi(x,y) = a\sin(\alpha x)c\sinh(\alpha y) = A\sin(\alpha x)\sinh(\alpha y)$$

iii)
$$0 = \Phi(l_x, y) = A \sin(\alpha l_x) \sinh(\alpha y) \to \sin(\alpha l_x) = 0 \quad \Rightarrow \quad \alpha = \frac{n\pi}{l_x} \qquad n \in \mathbb{Z}(\text{oder } n \in \mathbb{N})$$

$$\to \Phi_n(x, y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_y}\right)$$

iv)
$$\Phi(x, l_y) = \Phi_R(x)$$

$$\Rightarrow \Phi_R(x) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi l_y}{l_x}\right) \qquad \forall x \in [0, l_y]$$

im allgemeinen ist dies nicht möglich, aber da es sich um eine lineare DGL ($\Delta \Phi = 0$) handelt:

ightarrow Linearkombinationen von Lösungen sind auch Lösungen

Ansatz für allgemeine Lösung:

$$\Phi(x,y) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

Der Ansatz erfüllt $\Delta \Phi = 0$ und erfüllt die Randbedingungen i), ii), iii). Um iv) zu erfüllen fordern wir:

$$\Phi_R(x) \stackrel{!}{=} \underbrace{\sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right)}_{\text{Entwicklung}} \underbrace{\sinh\left(\frac{n\pi l_y}{l_x}\right)}_{\text{const.}}$$

Der erste Teil des Ausdrucks entspricht der Entwicklung von $\Phi_R(x)$ nach Funktionen sin $\left(\frac{n\pi x}{l_x}\right)$ also einer Fourier-Reihe.

Bestimmung von A_n : Multipliziere mit $\sin\left(\frac{n\pi x}{l_x}\right)$ $m \in \mathbb{N}$ und danach Integration:

$$\int_{0}^{l_{x}} dx \sin\left(\frac{m\pi x}{l_{x}}\right) \varPhi_{R}(x) = \sum_{n=1}^{\infty} A_{n} \sinh\left(\frac{m\pi l_{y}}{l_{x}}\right) \int_{0}^{l_{x}} dx \underbrace{\sin\left(\frac{m\pi x}{l_{x}}\right) \sin\left(\frac{n\pi x}{l_{x}}\right)}_{=\frac{l_{x}}{2}\delta_{nm}}$$

$$= A_{m} \frac{l_{x}}{2} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right)$$

$$A_{m} = \frac{2}{l_{x} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right)} \int_{0}^{l_{x}} dx \sin\left(\frac{n\pi x}{l_{x}}\right) \varPhi_{R}(x)$$

in $\Phi(x,y)$ einsetzen

Wiederholung

$$\Delta \Phi(\mathbf{r}) = 0 + \text{Randbedingungen}$$

$$\Phi = \Phi(x, y) = f(x)g(y)$$

$$\Phi_n(x, y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

$$n \in \mathbb{N}$$

$$\Phi(x, y) = \sum_n A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

$$A_n = \frac{2}{l_x \sinh\left(\frac{n\pi l_y}{l_x}\right)} \int_0^{l_x} \mathrm{d}x \, \sin\left(\frac{n\pi x}{l_x}\right) \Phi_R(x)$$

Zu dem Problem gehört die Skizze aus Abschnitt 1.6.5: 2-Dim Randwertproblem.

Vollständige Orthonormale Funktionensysteme (VONS) 1.6.6

Betrachte Funktionen g(x), h(x) auf $I = [a, b] \subset \mathbb{R}$

$$h,g: I \to \mathbb{R} (\mathbb{C})$$

Skalar
produkt: $(g,h) = \int_a^b \mathrm{d}x \ g^*(x)h(x)$
(g,h) = 0: g und h orthogonal, (g,g) = 1: g normiert

Norm: $||g|| = \sqrt{(g,g)}$

Ein abzählbarer Satz von Funktionen $\{f_n\} = \{f_1, f_2, \dots\}$

Heißt orthonormiert falls: $(f_m, f_n) = \delta_{nm} \rightarrow \underline{\text{Orthonormalsystem}}$

 $\underline{\text{Vollständigkeit: Ein Satz von Funktionen heißt}} \; \underline{\text{Vollständig (VONS})} \; \text{falls} \; \underline{\text{jede}} \; \text{quadratintegrable}^1$

Funktion $g: I \to \mathbb{R}(\mathbb{C})$ in der Form $g(x) = \sum_{n=1}^{\infty} a_n f_n(x)$ dargestellt werden kann. Genauer: $\lim_{n \to \infty} \int_a^b \mathrm{d}x \mid g(x) - \sum_{n=1}^{\infty} a_n f_n(x) \mid = 0$

Genauer:
$$\lim_{n \to \infty} \int_a^b dx \mid g(x) - \sum_{n=1}^{\infty} a_n f_n(x) \mid 0$$

Bestimmung der Koeffizient a_n :

$$g(x) = \sum_{n} a_n f_n(x) \qquad \left| \int dx \ f_m^*(x) \right|$$

$$\int_a^b dx \ f_m^*(x) g(x) = \sum_{n=1}^\infty \underbrace{\int_a^b dx \ f_m^*(x) f_n(x)}_{=\delta_{nm}} = a_m$$

$$g(x) = \sum_{n} a_n f_n(x) = \sum_{n} (f_n, g) f_n(x)$$

$$= \sum_{n} \int_a^b dx' \ f_n^*(x') g(x') f_n(x)$$

$$= \int_a^b dx' \ g(x') \underbrace{\sum_{n=1}^\infty f_n(x) f_n^*(x')}_{=\delta(x-x')}$$

¹Falls $\int dx |g(x)|^2$ existiert

da $\int_a^b \mathrm{d}x' g(x') = g(x)$

Vollständigkeitsrelation

$$\sum_{n=1}^{\infty} f_n(x) f_n^*(x') = \delta(x - x')$$

Beispiele:

1)

$$f_n(x) = \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$

Bedeutung der einzelnen Terme $(f_n, f_m) = \delta_{nm}$

 $g: \quad I \to \mathbb{R} \quad g(0))0 = g(l)$

$$g(x) = \sum_{n} a_n \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right)$$

2) Fourierreihe: $\{f_n\}$: n = 0: $\frac{1}{\sqrt{l}}$

$$n \in \mathbb{N}: \qquad \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l}\right) \quad ; \qquad \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$
$$g(x) = a_0 \frac{1}{\sqrt{l}} + \sum_{n=1}^{\infty} \left[a_n \sqrt{\frac{2}{l}} \sin\left(\frac{2\pi x}{l}\right) + b_n \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \right]$$

1.6.7 Laplace-Gleichung in Kugelkoordinaten

Separationsansatz:

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

1. Term:

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}\left(\not r\frac{U(r)}{\not r}P(\cos\theta)Q(\varphi)\right)=P(\cos\theta)Q(\varphi)\frac{1}{r}\frac{\mathrm{d}^2U}{\mathrm{d}r^2}$$

$$\Rightarrow 0 = PQ\frac{1}{r}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} + UQ\frac{1}{r^3\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right) + UP\frac{1}{r^3\sin^2\theta}\frac{\mathrm{d}^2Q}{\mathrm{d}\varphi^2} \qquad \bigg| \cdot \frac{r^3\sin^2\theta}{UPQ} \\ \Rightarrow \underbrace{-r^2\sin^2\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} - \sin\theta\frac{1}{P}\frac{\mathrm{d}^2}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabhängig von }\varphi} = \underbrace{\frac{1}{Q}\frac{\mathrm{d}^2Q}{\mathrm{d}\varphi^2}}_{\text{unabhängig von }r,\theta} \\ = \underbrace{-r^2\sin^2\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} - \sin\theta\frac{1}{P}\frac{\mathrm{d}^2}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabhängig von }r,\theta} = \underbrace{-r^2\sin^2\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} - \sin\theta\frac{1}{P}\frac{\mathrm{d}^2U}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabhängig von }\varphi} = \underbrace{-r^2\sin^2\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} - \sin\theta\frac{1}{P}\frac{\mathrm{d}^2U}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabhängig von }\varphi} = \underbrace{-r^2\sin^2\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} - \sin\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2}}_{\text{unabhängig von }\varphi} = \underbrace{-r^2\sin^2\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2} - \sin\theta\frac{1}{U}\frac{\mathrm{d}^2U}{\mathrm{d}r^2}}_{\text{unabhängig von }\varphi}$$

für Q:

i)

$$\frac{\mathrm{d}^2 Q}{\mathrm{d}\omega^2} + m^2 Q = 0$$

Lösung:

$$\begin{split} Q(\varphi) &= e^{im\varphi} = \cos(m\varphi) + i\sin(m\varphi) \\ Q(\varphi + 2\pi) &= Q(\varphi) \quad e^{im(\varphi + 2\pi)} = e^{im\varphi} \quad \Rightarrow \quad m = \mathbb{Z} \\ \frac{r^2}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} + \frac{1}{P\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P}{\mathrm{d}\theta}\right) = \frac{m^2}{\sin^2\theta} \\ \frac{r^2}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} &= -\underbrace{\frac{1}{P\sin\theta} \frac{\mathrm{d}P}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabh. von } V} = \text{const..} := \lambda \end{split}$$

ii)

$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U(r) = 0$$

 \rightarrow Lösung für $\lambda = l(l+1)$ (Warum das eine Lösung ist, wird in iii) erklärt)

$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

 \rightarrow Spezielle Lösung für m=0:

$$\Phi(r,\theta) = \frac{U(r)}{r} P_l(\cos\theta) = (a_l r^l + b_l r^{-l-1}) P_l(\cos\theta)$$

allg. Lösung: $\Delta \Phi = 0$ für $\frac{\partial \Phi}{\partial \varphi} = 0$

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} (a_l r^l + b_l r^{-l-1}) P_l(\cos \theta)$$
durch Randbedingungen festgelegt

iii)
$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$$

$$x := \cos \theta \quad P(x) : \text{ DGL für } P(x) \quad \frac{\mathrm{d}}{\mathrm{d}\theta} P(x(\theta)) = \frac{\mathrm{d}P}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin \theta \frac{\mathrm{d}P}{\mathrm{d}x}$$

$$\mathrm{d}x = -\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta}$$

$$\Rightarrow -\frac{\mathrm{d}}{\mathrm{d}x} \left(-\sin^2 \theta \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Zugeordnete Legendresche DGL

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Spezialfall: Zylindersymmetrische Probleme: \varPhi unabhängig von φ

 \boldsymbol{E}_0

$$\rightarrow$$
 Legendre-Polynome

$$\frac{\partial \Phi}{\partial \varphi} = 0, \quad Q(\varphi) = e^{im\varphi} \Rightarrow m = 0 \Rightarrow Q(\varphi) = 1$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \lambda P(x) = 0$$

Legendresche DGL

$$(1 - x^2)\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}P}{\mathrm{d}x} + \lambda P(x) = 0$$

Potenzreihenansatz: $P(x) = \sum_{k=0}^{\infty} a_k x^k$

- \rightarrow Fließbach
- $\rightarrow\,$ Legendre Polynome
- \rightarrow relevante Lösung nur für $\lambda = l(l+1) \qquad l \in \mathbb{N}_0$

Wiederholung

Laplace-Gleichung in Kugelkoordinaten

$$\Delta \Phi = 0 \qquad \Phi(r, \theta, \varphi)$$

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

i)
$$\frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2} + m^2 Q = 0 \qquad m \in \mathbb{Z}$$

$$\to Q(\varphi) = e^{im\varphi}$$

ii)
$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U = 0 \qquad \lambda = l(l+1) \quad l \in \mathbb{N}_0$$

$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

iii)
$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$$

Zylindersymmetrische Probleme: $\frac{d\Phi}{d\varphi} = 0 \quad \rightarrow \quad m = 0$

- $\rightarrow P_l(\cos\theta)$: Legendre-Polynome
- \rightarrow allgemeine Lösung:

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-l-1} \right) P_l(\cos \theta)$$

Beispiel: Leitende Kugel im homogenen Feld

Die Frage ist jetzt was ist das äußere Potential und das äußere $\boldsymbol{E} ext{-Feld}$:

$$\Phi(\mathbf{r})$$
 für $|\mathbf{r}| > R$ $\rightarrow \mathbf{E}(\mathbf{r})$

Lösung des Randwertproblems $\Delta \Phi(\mathbf{r}) = 0$ für $|\mathbf{r}| > R$ mit der **Randbedingungen**:

$$\Phi(\mathbf{r}) = \Phi_0 \text{ für } |\mathbf{r}| = R$$

$$\Phi(\mathbf{r}) \xrightarrow{|\mathbf{r}| \to \infty} -E_0 z + \text{const.} = -E_0 r \cos \theta + \Phi_1$$

Aufgrund der Zylindersymmetrie des Problems ist Φ eine Funktion von θ und r: $\Phi(r,\theta)$

$$\to \Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-l-1} \right) P_l(\cos \theta)$$

i) r = R

$$\Phi(R,\theta) = \sum_{l=0}^{\infty} \left(a_l R^l + b_l R^{-l-1} \right) P_l(\cos \theta)$$

$$\stackrel{!}{=} \Phi_0 \cdot 1 = \Phi_0 P_0(\cos \theta)$$

an Beide Seiten Multiplizieren $\text{wir} \int_{-1}^1 \mathrm{d}(\cos\theta) P_n(\cos\theta)$ für $n=0,1,2,3,\ldots$

$$\sum_{l=0}^{\infty} \left(a_l R^l + \frac{b_l}{R^{l+1}} \right) \underbrace{\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta) P_l(\cos\theta)}_{\delta_{nl} \frac{2}{2n+1}} = \Phi_0 \underbrace{\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta) P_l(\cos\theta)}_{\delta_{n0} \frac{2}{2n+1} = 2\delta_{n_0}}$$

$$\Rightarrow \sum_{l=0}^{\infty} \frac{2}{2l+1} \left(a_l R^l + \frac{b_l}{R^{l+1}} \right) \delta_{nl} = 2\Phi_0 \delta_{n0} \qquad n = 0, 1, 2, \dots$$

$$\underline{n=0:} \qquad 2 \left(a_0 R^0 + \frac{b_0}{R} \right) = 2\Phi_0 \qquad \Rightarrow b_0 = R(\Phi_0 - a_0)$$

$$\underline{n\neq 0:} \qquad \frac{2}{2n+1} \left(a_n R^n + \frac{b_n}{R^{n+1}} \right) = 0 \quad \Rightarrow b_n = R^{2n+1} a_n$$

ii) $r \to \infty$

$$\Phi(r) \to -E_0 r \cos \theta + \Phi_1$$

$$= -E_0 r P_1(\cos \theta) + \Phi_1 P_0(\cos \theta) \stackrel{r \to \infty}{\longleftarrow} \sum_{l=0}^{\infty} \left(a_l r^l + \frac{b_l}{R^{l+1}} \right) P_l(\cos \theta)$$

$$\Rightarrow \sum_{l=0}^{\infty} \left(a_l r^l + \frac{b_l}{R^{l+1}} \right) \delta_{nl} \frac{2}{2n+1} \stackrel{r \to \infty}{\longrightarrow} 2\Phi_1 \delta_{n0} - E_0 r \delta_{n1} \frac{2}{2n+1} = 2\Phi_1 \delta_{n0} - \frac{2}{3} E_0 r \delta_{n1} \qquad n = 0, 1, 2, \dots$$

$$\underline{n = 0} : \quad \left(a_0 + \frac{b_0}{r} \right) 2 \stackrel{r \to \infty}{\longrightarrow} 2\Phi_1 \qquad \Rightarrow \qquad a_0 = \Phi_1$$

$$\underline{n = 1} : \quad \left(a_1 r + \frac{b_1}{r^2} \right) \frac{2}{\beta} \stackrel{r \to \infty}{\longrightarrow} -\frac{2}{\beta} E_0 r \qquad \Rightarrow \qquad a_1 = E_0$$

$$\underline{n > 1} : \quad \left(a_n r^n + \frac{b_n}{r^{n+1}} \right) \frac{2}{2n+1} \stackrel{r \to \infty}{\longrightarrow} \Rightarrow \qquad a_n = 0$$

Potential einer Kugel im homogenen E-Feld

$$\rightarrow \Phi(r,\theta) = \Phi_1 + (\Phi_0 - \Phi_1)\frac{R}{r} - E_0 r \cos\theta + E_0 \frac{R^3}{r^2} \cos\theta$$

Diskussion der Bedeutung der einzelnen Terme:

- \bullet Φ_1 ist eine Konstante die auf das Potential keine physikalische Auswirkung hat.
- $-E_0r\cos\theta$ ist das Potential des äußeren Feldes.
- $\Phi_0 \Phi_1$ ist das Potential einer möglichen Gesamtladung auf der Kugel.
- $E_0 \frac{R^3}{r^2} \cos \theta$ ist der Beitrag der Ladungsverschiebung auf der Kugel. Also das Potential der Influenzierten Ladungen.

Eine Kugel mit Ladung Q ohne äußeres Feld $(E_0 = 0)$:

Eine ungeladene Kugel: $Q = 0 \longrightarrow \Phi_1 = \Phi_0$

$$\rightarrow \left[\Phi(r,\theta) = \Phi_0 - E_0 r \cos \theta + E_0 \frac{R^3}{r^2} \cos \theta \right]$$

Lösung für $m \neq 0$ (Potenzreihenansatz)

 \rightarrow Zugeordnete Legendre-Polynome

$$P_l^m(x)$$
 $x = \cos \theta$

• Allgemeine Struktur:

$$P_l^m \sim (1-x^2)^{|m|/2} \times \text{ Polynom } (l-|m|) \text{ten Grades}$$

Zusammenfassung der Funktionen:

$$P, \theta$$
 in Produkt: $P_l^m(\cos \theta)Q_m(\varphi)$

 \Rightarrow Kugelflächenfunktionen

$$\mathcal{Y}_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$

$$l = 0, 1, 2, \dots \qquad m = 0, \pm 1, \pm 2, \dots, \pm l \qquad \theta \in [0, \pi] \qquad \varphi \in [0, 2\pi]$$

Allgemeine Lösung der Laplace-Gleichung in Kugelkoordinaten:

$$\Phi(r,\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(a_{lm} r^{l} + \frac{b_{lm}}{r^{l+1}} \right) \mathcal{Y}_{lm}(\theta,\varphi)$$

$$\Delta \Phi = 0$$

1.7 Multipolentwicklung

Beliebige endlich große Ladungsverteilung

$$q = \int \mathrm{d}^3 r'
ho(m{r}')$$
 $m{r} \gg R \quad \Phi(m{r}) pprox rac{1}{4\piarepsilon_0} rac{q}{r}$

$$\rho(\mathbf{r}) = \begin{cases} \text{beliebig} & r < R \\ 0 & r > R \end{cases}$$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \mathrm{d}^3 r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Für $r>R: |{m r}'|<|{m r}| o$ Taylorentwicklung von $\frac{1}{|{m r}-{m r}'|}$ in ${m r}' o$ d.h. in x_1',x_2',x_3'

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(x_1 - x_1'^2) + (x_2 - x_2'^2) + (x_3 - x_3'^2)}} \qquad \mathbf{r} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Taylorentwicklung:

$$f(\mathbf{r}') = f(x_1', x_2', x_3') = f(0, 0, 0) + \sum_{i=1}^{3} x_i' \frac{\partial f}{\partial x_i}(0) + \frac{1}{2} \sum_{i,j=1}^{3} x_i' x_j' \frac{\partial^2 f}{\partial x_i' \partial x_j'}(0) + \dots$$

Zuerst berechnen wir die einzelnen Terme:

$$f(\mathbf{r}') = \frac{1}{|\mathbf{r} - \mathbf{r}'|} : f(0) = \frac{1}{r} \qquad \frac{\partial f}{\partial x_i'} = \frac{(x_i - x_i')}{|\mathbf{r} - \mathbf{r}'|^3} \Big|_0 = \frac{x_i}{r^3} \qquad \frac{\partial^2 f}{\partial x_i' x_j'}(0) = \dots = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5}$$

Für $|\boldsymbol{r}| < |\boldsymbol{r}'|$:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r \rho(\mathbf{r}') \left\{ \frac{1}{r} + \sum_{i=1}^3 \frac{x_i' x_i}{r^3} + \frac{1}{2} \sum_{i,j} x_i' x_j' \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} + \dots \right\}$$

Den letzten (mit einem Pfeil markierten) Term schauen wir uns jetzt noch einmal genauer an.

$$\sum_{i,j} x_i' x_j' r^2 \delta_{ij} = r^2 \sum_{i=r'^2} x_i'^2 = r^2 r'^2 = r'^2 \sum_{i} x_i^2 = \sum_{i,j} r'^2 x_i x_j \delta_{ij}$$

Somit können wir den letzten Term umschreiben als:

$$\sum_{i,j} x_i' x_j' \frac{(3x_i x_j - r^2 \delta_{ij})}{r^5} = \sum_{i,j} x_i x_j \frac{(3x_i' x_j' - r'^3 \delta_{ij})}{r^5}$$

Das Potential unserer Ladungsverteilung im externen E-Feld ergibt sich dann als:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{1}{r} \underbrace{\int d^3r' \rho(\mathbf{r}')}_{q \text{ Gesamtladung (Monopol)}} + \sum_{i=1}^{3} \frac{x_i}{r^3} \underbrace{\int d^3r' x_i' \rho(\mathbf{r}')}_{p_i \text{ Dipolmoment }} + \frac{1}{2} \sum_{i,j} \frac{x_i x_j}{r^5} \underbrace{\int d^3r' \rho(\mathbf{r}') (3x_i' x_j' - r'^2 \delta_{ij})}_{=: Q_{ij} \text{ Quadrupolmoment }} + \dots \right\}$$

$$\Rightarrow \varPhi(m{r}) = rac{1}{4\piarepsilon_0} \left\{ rac{q}{r} + rac{m{r}\cdotm{p}}{r^3} + rac{1}{2}\sum_{i,j}rac{x_ix_j}{r^5}Q_{ij} + \ldots
ight\}$$

Diskussion:

i) Monopol

$$egin{aligned} arPhi_M(m{r}) &= rac{1}{4\piarepsilon_0}rac{q}{r} & \propto rac{1}{r} ext{ dominiert für } q
eq 0 \ \\ & o m{E}_M(m{r}) = -m{\nabla}arPhi_M = rac{q}{4\piarepsilon_0}rac{m{r}}{r^3} & \propto rac{1}{r^2} \end{aligned}$$

ii) Dipol

$$\Phi_D(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{r} \cdot \mathbf{p}}{r^3} \qquad \propto \frac{1}{r^2}$$

Das elektrische Feld:

$$\boldsymbol{E}_D = -\boldsymbol{\nabla}\Phi_D$$

$$\nabla_{\boldsymbol{r}} \left(\boldsymbol{p} \cdot \frac{\boldsymbol{r}}{r^3} \right) : \frac{\partial}{\partial x} \left(p_x \frac{x}{r^3} + p_y \frac{y}{r^3} + p_z \frac{z}{r^3} \right) = \left(\frac{p}{r^3} - 3p_x \frac{xx}{r^5} - 3p_y \frac{yx}{r^5} - 3p_z \frac{zx}{r^5} \right)$$

$$= \frac{p_x}{r^3} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^5} x$$

$$\frac{\partial}{\partial y} (\dots) = \frac{p_y}{r^3} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^5} y$$

$$\frac{\partial}{\partial z} (\dots) = \frac{p_z}{r^3} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^5} z$$

$$\Rightarrow \nabla_{\boldsymbol{r}} \left(\boldsymbol{p} \cdot \frac{\boldsymbol{r}}{r^5} \right) = \frac{\boldsymbol{p}}{r^3} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^5} \boldsymbol{r}$$

$$\boldsymbol{E}_D = -\nabla \Phi_D = \frac{1}{4\pi\varepsilon_0} \left[\frac{3(\boldsymbol{p} \cdot \boldsymbol{r})\boldsymbol{r}}{r^5} - \frac{\boldsymbol{p}}{r^4} \right] \qquad \propto \frac{1}{r^3} \quad \boldsymbol{r} \neq 0$$

Beispiel für die Realisierung eines Dipols:

Punktladungen: $q_0, -q_0$ in r_+, r_-

Gesamtladung: $q = q_0 - q_0 = 0$

$$\Phi_M(\mathbf{r}) \equiv 0$$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_0}{|\mathbf{r} - \mathbf{r}_+|} - \frac{q_0}{|\mathbf{r} - \mathbf{r}_i|} \right) = \frac{1}{4\pi\varepsilon_0} \left(\frac{\mathbf{r} \cdot \mathbf{p}}{r^3} + \dots \right)$$

$$\rho(\mathbf{r}') = q_0 \delta(\mathbf{r}' - \mathbf{r}_+) - q_0 \delta(\mathbf{r}' - \mathbf{r}_-)$$

$$\mathbf{p} = \int d^3 r' \rho(\mathbf{r}') \mathbf{r}' = q_0 \mathbf{r}_+ - q_0 \mathbf{r}_- = q_0 \mathbf{d}$$

mehrere Punktladungen q_i in \mathbf{r}_i

$$ightarrow oldsymbol{p} = \sum_i q_i oldsymbol{r}_i$$

iii) Quadrupolmoment

$$Q_{ij} = \int d^3r' \rho(\mathbf{r}') (3x_i'x_j' - r'^3\delta_{ij})$$

Quadrupoltensor
$$Q = \begin{pmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{pmatrix}$$

Eigenschaften

- i) Spurfrei: $\operatorname{tr}(Q) = \sum_i Q_{ij} = 0 \quad \Rightarrow$ mindestens 2 unabhängige Elemente
- ii) Symmetrisch: $Q_{ij} = Q_{ji} \implies 3$ unabhängige Elemente
- \Rightarrow 5 unabhängige Elemente

Ableitung in Kugelkoordinaten

 \Rightarrow Sphärische Multipolmomente

1.7.1 Multipolentwicklung der Energie der Ladungsverteilung im äußeren Feld

Energie:

$$W = \int d^3r \rho(\mathbf{r}) \Phi(\mathbf{r})$$
 (1.1)

Wir stellen uns vor, das \boldsymbol{E} -Feld wird von sehr weit entfernten Ladungen erzeugt. Wir machen somit also die Annahme, dass sich $\Phi(\boldsymbol{r})$ in dem Gebiet,wo $\rho(\boldsymbol{r})$ sich nur wenig ändert.

 \rightarrow Taylorentwicklung von $\Phi(r)$ um r=0

$$\Phi(\mathbf{r}) = \Phi(0) + \mathbf{r} \cdot \nabla \Phi(0) + \frac{1}{2} \sum_{i,j} x_i x_j \frac{\partial^2 \Phi}{\partial x_i \partial x_j}(0) + \dots$$

$$= \Phi(0) - \mathbf{r} \cdot \mathbf{E}(0) - \underbrace{\frac{1}{2} \sum_{i,j} x_i x_j \frac{\partial E_j}{\partial x_i}(0)}_{= \frac{1}{6} \sum_{i,j} (3x_i x_j - r^2 \delta_{ij}) \frac{\partial E_j}{\partial x_i}(0)$$

Dies gilt, da:

$$\sum_{i,j} r^2 \delta_{ij} \frac{\partial E_j}{\partial x_i}(0) = r^2 \underbrace{\sum_i \frac{\partial E_i}{\partial x_i}(0)}_{\nabla \cdot E(0) = 0}$$

 $oldsymbol{
abla} \cdot oldsymbol{E} = 0$ gilt, da $oldsymbol{E}$ ein äußeres Feld ist. Damit erhalten wir dann für die Energie mit Formel

(1.1):

Wechselwirkungsenergie zweier Dipole

Betrachte 2 Punktdipole p_1, p_2 in r_1, r_2 p_2 erzeugt am Ort r_1 das äußereFeld

$$\begin{split} \boldsymbol{E}(\boldsymbol{r}_1) &= \frac{1}{4\pi\varepsilon_0} \left[\frac{3(\boldsymbol{p}_2 \cdot \boldsymbol{r}_{12})\boldsymbol{r}_{12}}{r_{12}^5} - \frac{\boldsymbol{p}_2}{r_{12}^3} \right] \\ \rightarrow W &= -\boldsymbol{p}_1 \cdot \boldsymbol{E}(\boldsymbol{r}_1) = \frac{1}{4\pi\varepsilon_0} \left[\frac{\boldsymbol{p}_1 \cdot \boldsymbol{p}_2}{r_{12}^3} - \frac{3(\boldsymbol{p}_2 \cdot \boldsymbol{r}_{12})(\boldsymbol{p}_1 \cdot \boldsymbol{r}_{12})}{r_{15}^5} \right] \qquad \propto \frac{1}{r_{12}^3} \end{split}$$

Je nach Orientierung der Dipole ist diese Wechselwirkung anziehend oder abstoßend. z.B.: $p_1, p_2 \perp r_{12}$

$$\rightarrow W = \frac{1}{4\pi\varepsilon_0} \frac{\boldsymbol{p}_1 \cdot \boldsymbol{p}_2}{r_{12}^3} \begin{cases} > 0 & \uparrow \uparrow & \text{abstoßend} \\ < 0 & \uparrow \downarrow & \text{anziehend} \end{cases}$$