ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

() [2-5, 7, 8]. **«** 10 1, 2 « « **«** »,

-2-

», «

»,

I.

						()		
								•	
		,		[1]-[4].		,			
				[1]-[4].					
				,	,				
									•
									•
						«			
								»	
	1.		•						
	2.					,			
		,				·	•		
	3.	,	•				,		•
	4.		•		,	•			
	4.			•	•	-			
()						
	5.		•				•	•	
		-		,				,	
			,		,		•		
			•						
	6.		•						,
			-						
	7.			-					
		,		•					
		-							

8.			•
9			-
10.	, ,	·	,
11.	•		
12.	•	٠	
	,	٠	
13			
14.	;		
15.			
16.			•
17	,	,	
18.	·		
,		,	,

-4-

•

1. [2]
2. [3].

$$z = x + iy, \quad x, y \in \mathbb{R}, \ i^2 = -1. \quad \mathbb{R}$$

$$z = x + iy \qquad (x, y)$$

$$z \qquad \vdots |z| \quad \operatorname{Arg} z \qquad 0x - z \qquad$$

 $\overline{\mathbb{C}}\coloneqq\mathbb{C}\cup\{\infty\}$.

),

∞ (

 \mathbb{C}

```
3.
                                                                                                     [1,§4]
                                    f: A \to \overline{\mathbb{C}}, \qquad A
                                                                                                                           \overline{\mathbb{C}} .
                          \overline{\mathbb{C}} .
                                                                                                                              Z
                         z = x + iy,
                                            x, y, u, v \in \mathbb{R}
u + iv = f(x + iy)
                            \begin{cases} u(x, y) = \text{Re } f(x+iy), \\ v(x, y) = \text{Im } f(x+iy). \end{cases}
                                                                                                                          (2)
                                                                                                  w = f(z)
                                                                                                               \mathbb{R}^2
                                                                                                                         \mathbb{R}^2.
                                                       (2), ...
                                                                                              (2)
                                                                        w = f(z).
                                                                                          .[1,§7].
    4.
                                              w = f(z)
                      w = f(z)
                                                                                                                    Ζ,
                                                   A \in \mathbb{C},
                            f(z+h)-f(z) = Ah + \circ(|h|), h \rightarrow 0.
                                                                                                                          (3)
                                                                        w = f(z)
                                      f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.
                                                                                                                          (4)
```

h $h \rightarrow 0$ (4) Z \mathbb{C} f f=u+iv, **C**-(5) u(x, y), v(x, y)u(x, y), v(x, y)(5) **(**-**C**-Ζ, *z*. w = f(z) - Z_0 , \mathcal{Z}_0 $f(z+h)-f(z) \approx f'(z_0)(z-z_0)$, (6) $f'(z_0) \neq 0$) *z*, z_0 (6) $|f'(z_0)| \approx \frac{|f(z+h) - f(z)|}{|z - z_0|}, \arg f'(z_0) \approx \arg(f(z) - f(z_0)) - \arg(z - z_0)$ (z_0). w = f(z) z_0 , $Df(z_0)(h)$ h

 $\left\{0 < \operatorname{Im} z < 2\pi\right\}$

 \mathcal{W}

$$z = re^{i(\varphi + 2\kappa \pi)}, \quad r > 0, \kappa \in \mathbb{Z},$$

$$Lnz = \ln r + i \arg z + 2\kappa \pi i,$$

$$Lnz \qquad \kappa = 0$$

$$\left\{0 < h_1 < \arg z < h_2 < 2\pi\right\}$$

$$\left\{h_1 < \operatorname{Im} w < h_2\right\}.$$

$$w = \frac{1}{2}\left(z + \frac{1}{z}\right). \qquad \mathbb{C}, \qquad z = 0,$$

$$\left\{|z| < 1\right\} \qquad \left\{|z| > 1\right\}$$

$$\left[-1, 1\right].$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \cos z = \frac{e^{iz} + e^{-iz}}{2}, shz = \frac{e^z - e^{-z}}{2}, chz = \frac{e^z + e^{-z}}{2}.$$

$$(, , ,).$$

$$w = z^{\alpha} := \exp(\alpha Lnz), \alpha \in \mathbb{C}$$

$$\alpha \notin \mathbb{Q}.$$

$$6. \qquad [1, \$9].$$

$$- \qquad f(z) = u + iv,$$

$$\int_{\gamma} f(z)dz := \int_{\gamma} (u + iv)(dx + idy) = \int_{\gamma} (udx - vdy) + i \int_{\gamma} (vdx + udy).$$

$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \qquad - \qquad (5)$$

$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \qquad - \qquad (5)$$

```
D,
                                                       \int_{\gamma} f(z)dz = 0.
                                                                   . [1, §10].
     7.
                               \partial D .
                                            \infty \notin \overline{D} = D \bigcup \partial D,
D
                                                                                                                                       D
                                        f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(t)}{t - z} dt, z \in D.
                                                                                                                                          (9)
                                                                                                                                      \varphi(t) -
                                                    \Phi(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{\varphi(t)}{t - z} dt
                                                                                       z \notin \partial D
                                                                                            z. f(z)
     8.
                                                            D, ..
                    Κ,
                                                                                   D.
                                                                                                                                  K
                                          . [1,
                                                          §11].
     9.
                                                         \sum_{n=0}^{\infty} c_n (z - z_0)^n,
                                                                                                                                        (10)
        \{c_n\} -
                                                                  R\subset[0,+\infty],
```

```
R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|c_n|}}}.
                                            \left\{ \left| z - z_0 \right| < R \right\}
                                   (10).
                                                                                                      (10)
|z - z_0| = R
                 [1, \S 17]. 
 \{r < |z - z_0| < R\}, 
                                                                                  f(z)
                                      f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n,
                                                                                                                                  (11)
                                   c_n = \frac{1}{2\pi i} \oint_{|z-z_0|=\rho} \frac{f(z)dz}{(z-z_0)^{n+1}}.
                                                                                                                                  (12)
                                                                                                                       f(z).
             (11)
                                                                                                  z_0
\forall n < 0 \ c_n = 0 ,
     11.
                                                                                                         . [1, §14].
                                                 f(z)
                                                                                                              z_0,
f(z_0) = 0.
                                                                    z_0
f(z) = (z - z_0)^n \varphi(z), \qquad n \in \mathbb{N}, \varphi(z_0) \neq 0.
          z_0.
                                                                                                                                f(z),
                                                                                 f(z).
     12.
                                                                                                                       . [1, §18].
             z_0
z_0
```

```
U(z_0) z_0 , f
                              U(z_0)\setminus z_0.
                                                                                              f 	 z \rightarrow z_0.
                                             \lim_{z\to z_0} f(z),
                                                                                                                   (13)
                                                                                                                   (13)
                z_0
           \infty,
                                                                                                           z_0
                               ) n, \lim_{z \to z_0} (z - z_0)^n f(z) = A \neq 0.
              (
                          (13)
                                                                                                                A \in \overline{\mathbb{C}}
                                                     (z_n)_{n=1}^{\infty},
                                      \lim_{n\to\infty} z_n = z_0, \lim_{n\to\infty} f(z_n) = A.
                                             .[1, §28].

f.

0 < |z - z_0| < r.
                                                                                          z_0 \in \mathbb{C}
(11)
f \qquad z_0
     13.
                                                                                     z_1, z_2, \dots, z_N \in D\,,
D,
                                                        \partial D
                                                                           D,
                                       \int_{\partial D} f(z)dz = \sum_{k=1}^{N} \underset{z=z_{k}}{res} f(z),
                                                                                                                   (14)
                                  \partial D
                                                \overline{D}, \qquad \qquad f
              D
                                                                                                          D,
                             a_1,...,a_P,
                                                                                              \partial D
              b_1,...,b_N.
```

$$\frac{1}{2\pi i} \int_{\partial D} \varphi(z) d \ln f(z) = \sum_{k=1}^{N} \varphi(b_k) - \sum_{k=1}^{P} \varphi(a_k),$$

$$\varphi(z) = 1 \qquad :$$

$$\frac{1}{2\pi i} \int_{\partial D} d \ln f(z) = N - P. \qquad (15)$$

$$(15) \qquad \qquad \Rightarrow \qquad ,$$

$$\partial D. \qquad \qquad \partial D. \qquad \partial D. \qquad \partial D. \qquad \qquad \partial$$

```
f(z) = \widetilde{f(z^*)}, z \in D^*
                                                                                      l L
   15.
                                                                               .[1, §33].
                                w = f(z)
                                                    f'(z_0)\neq 0.
                                                                    w_0 = f(z_0).
z = \varphi(w)
                                   . D-
                                                                                   f(D) –
  D
                                                                          G
                                                      D
                               f: D \to G
D.
                                         D
                                                                              \{|z|<1\}.
                            D
                                                        f: D_1 \xrightarrow{} D_2,
D_2,
                                              D_1
                                                               D –
D_1.
                                f,
f: D \to \{|z| < 1\}
                                                                                  \partial D
                                                . [2, §14, §15].
C.
   16.
                                                                                \mathbb{C} ,
                                             [2,
   17.
                                                                             D,
                u=u(x,y)
```

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

.
$$u=u(x,y)$$
 – D , $f:D\to\mathbb{R}$, $u(x,y)=\operatorname{Re} f(x+iy)$.

. [2, §2]. 18.

$$f(z).$$

$$v(z) = \overline{f'(z)}.$$

[7],

2 – 1-4, 23-32; 3: 109-114,116,117,121,126; 4: 131-139,165,166,187; 5: 193,194,203-207,209-212,220-223,229-239, 285-293,299,305-310,338,348-352; 6: 388-391; 7: 412,413,418; 9: 425-434,440-442,452-455,458-460; 10: 11: 505-520; 12: 565-600; 13: 621-635,657-543-548; 665,673-680,682-686.

II.

$$z = -\sqrt{3} + i \qquad z \qquad .$$

$$|z| = \sqrt{x^2 + y^2} \qquad , \quad |-\sqrt{3} + i| = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = 2 \qquad .$$

$$x = -\sqrt{3}, y = 1, \qquad z = -\sqrt{3} + i \qquad II \qquad .$$

$$[4, \quad .14]$$

$$\arg z = \arg tg \frac{y}{x} + \pi \qquad , \quad \arg(-\sqrt{3} + i) = \arg tg \left(-\frac{1}{\sqrt{3}}\right) + \pi =$$

$$= -\frac{\pi}{6} + \pi = \frac{5}{6}\pi.$$

$$Arg(-\sqrt{3} + i) = arg\left(-\sqrt{3} + i\right) + 2k\pi = \frac{5}{6}\pi + 2k\pi, k \in \mathbb{Z}.$$

$$z = r(\cos \varphi + i \sin \varphi), \qquad r = |z|, \qquad \varphi = argz. \qquad z$$

$$z = 2\left(\cos \frac{5}{6}\pi + i \sin \frac{5}{6}\pi\right).$$

$$1*. \qquad z^{(2-4i)}$$

$$z_0 = -1 - i. \qquad z^{\alpha} \qquad [2, 178] \quad Lnz = \ln r + i Argz. \qquad |-1 - i| = \sqrt{2}.$$

$$z_0 = -1 - i \qquad , \qquad Ln(-1 - i) =$$

$$arg(-1 - i) = arg tg1 - \pi = \frac{\pi}{4} - \pi = -\frac{3}{4}\pi. \qquad , Ln(-1 - i) =$$

$$= \ln \sqrt{2} + i\left(-\frac{3}{4}\pi + 2k\pi\right), k \in \mathbb{Z}.$$

$$(-1 - i)^{(2-3i)} = e^{(2-3i)Ln(-1 - i)} =$$

$$= e^{(2-4i)\left(\ln \sqrt{2} + i\left(-\frac{3}{4}\pi + 2k\pi\right)\right)} = e^{(\ln 2 - 3\pi + 8k\pi) + i(-2\ln 2 + 4k\pi - \frac{3}{2}\pi)}, k \in \mathbb{Z}.$$

$$2*. \qquad Re \ f(z) = u(x, y) = x^3 - 3xy^2 + 2y.$$

$$. \qquad u(x, y) \qquad v(x, y) = \ln f(z),$$

$$u(x, y) \qquad v(x, y) = \ln f(z),$$

$$v(x, y) = \ln f(z),$$

$$u(x, y) \qquad v(x, y) = \ln f(z),$$

$$v(x, y) = \ln f(z$$

$$\{|z-z_0|\leq R\}.$$

$$\left\{ \left| z - z_0 \right| = R \right\}.$$

$$z(w_0) = z_0, z(\overline{w_0}) = \infty.$$

$$z - z_0 = \operatorname{Re}^{i\varphi} \frac{w - w_0}{w - w_0},$$

$$z-2=4e^{i\varphi}\frac{w+2-i}{w+2+i}.$$

$$w = \frac{(-2-i)(z-2) - 4e^{i\varphi}(-2+i)}{z - 2 - 4e^{i\varphi}}.$$

arg w'(2)

$$w'(z) = \frac{8ie^{i\varphi}}{(z - 2 - 4e^{i\varphi})^2},$$

$$w'(2) = \frac{2i}{4e^{i\varphi}} = \frac{1}{2}ie^{-i\varphi} = \frac{1}{2}e^{\frac{\pi}{2}i}e^{-i\varphi} = \frac{1}{2}e^{i\left(\frac{\pi}{2}-\varphi\right)}.$$

$$\arg w'(2) = \frac{\pi}{2}, \qquad , \frac{\pi}{2}-\varphi = \frac{\pi}{2} \qquad \varphi = 0.$$

$$w = \frac{(-2-i)(z-2)+8-4i}{z-2-4} = \frac{(-2-i)z+12-2i}{z-6}.$$

$$6*. \qquad \left\{ \left|z+1\right| \le 1 \right\} \qquad \left\{ \left|w+i\right| \le 1 \right\} \qquad ,$$

$$w\left(-\frac{1}{2}\right) = -\frac{2i}{3} \qquad w(-2) = 0.$$

$$z_1 = -\frac{1}{2}$$
 $\{|z+1|=1\},$

$$w_{2}, \qquad w_{1} = -\frac{2i}{3}$$

$$\{|w+i|=1\}. \qquad z_{2}, \qquad z_{1}$$

$$\{|z-a|=R\}\} \qquad [2, .51]:$$

$$z_{2} = a + \frac{R^{2}}{\overline{z_{1}} - a}, \quad z_{2} = 1, w_{2} = -4i.$$

$$\frac{w + \frac{2i}{3}}{w + 4i} \cdot \frac{0 + 4i}{0 + \frac{2i}{3}} = \frac{z + \frac{1}{2}}{z - 1} \cdot \frac{-2 - 1}{-2 + \frac{1}{2}}.$$

$$w = \frac{4i(z + 2)}{4z + 7}.$$

$$w = \frac{4i(z + 2)}{4z + 7}.$$

$$(-\frac{\pi}{2}): w_{1} = ze^{-\frac{\pi}{2}i} = -iz. \qquad \left[\frac{i}{2}, i\right]$$

$$w_{2} = \frac{1}{2}\left(w_{1} + \frac{1}{w_{1}}\right).$$

$$\left[\frac{1}{2}, 1\right] - \left[\frac{1}{2}, 1\right].$$

$$\left[\frac{1}{2}, 1\right]$$

$$\left[\frac{1}{2}, 1\right]$$

$$\left[\frac{1}{2}, 1\right]$$

$$\left[\frac{1}{2}, 1\right]$$

$$w_{2}' = -1 w_{3}' = 0, w_{2}'' = \frac{5}{4} w_{3}'' = \infty, w_{2}''' = 0 w_{3}''' = 1:$$

$$\frac{w_{3} - 0}{w_{3} - \infty} \cdot \frac{1 - \infty}{1} = \frac{w_{2} + 1}{w_{2} - \frac{5}{4}} \cdot \frac{-\frac{5}{4}}{1}.$$

$$w_{3} = \frac{5w_{2} + 5}{-4w_{2} + 5}. w = \sqrt{w_{3}}$$

 $0 \le \arg w_3 \le 2\pi \; ,$

$$w_{1} = -iz; w_{2} = \frac{i - iz^{2}}{2z}; w_{3} = \frac{5}{2} \cdot \frac{i + 2z - iz^{2}}{-2i + 5z + 2iz^{2}}.$$

$$w = \sqrt{\frac{5}{2} \cdot \frac{i + 2z - iz^{2}}{-2i + 5z + 2iz^{2}}}, 0 \le \arg \frac{i + 2z - iz^{2}}{-2i + 5z + 2iz^{2}} \le 2\pi.$$

. z=0 , $w_1=\infty$,

$$(w_1 = \infty).$$

_ ,

$$z' = -2 \to w_1' = 0, z'' = 0 \to w_1'' = \infty,$$

 $z''' = 2 \rightarrow w_1^{m'} = \pi i$

$$\frac{w_1 - 0}{w_1 - \infty} \cdot \frac{1}{\pi i} = \frac{z + 2}{z - 0} \cdot \frac{2 - 0}{2 + 2}.$$

$$w \quad z, \quad w_1 = \pi i \frac{z + 2}{2z}.$$

$$z \quad w_1,$$

$$\{|z + 1| = 1\} \quad \{\operatorname{Im} z = 0\},$$

$$\{|z - 1| = 1\} - \{\operatorname{Im} z = \pi\},$$

$$w = e^{w_1},$$

$$z, \quad w = \exp\left\{\pi i \frac{z + 2}{2z}\right\}.$$

$$9^* \quad \int_{L} f(z) dz, \quad f(z) = z \operatorname{Im} z^2, \quad L - y = x^2, \quad a = 0, b = l + i.$$

$$f(z) = 2x^2 y + i2xy^2, \quad (8)$$

$$I = \int_{L} f(z) dz = \int_{L} 2x^2 y dx - 2xy^2 dy + i \int_{L} 2xy^2 dx + 2x^2 y dy.$$

$$I = \int_{0}^{1} (2x^2 x^2 - 2xx^4 2x) dx + i \int_{0}^{1} (2xx^4 + 2x^2 x^2 2x) dx = -\frac{6}{35} + i.$$

$$10^* \quad \sum_{n=0}^{\infty} (\sin in) z^n.$$

$$\rho = \overline{\lim_{n \to \infty}} \sqrt[n]{\sin in} = \overline{\lim_{n \to \infty}} \sqrt[n]{\frac{1}{2}} (e^n - e^{-n}) = \lim_{n \to \infty} \left(\frac{1}{2}\right)^{\frac{1}{n}} \cdot \lim_{n \to \infty} e\left(1 - e^{-2n}\right)^{\frac{1}{n}} = e.$$

$$R = \rho^{-1} = e^{-1}.$$

11*.
$$z=0$$

 $f(z) = \sin^4 z + \cos^4 z$.

 $\cos z$,

$$f(z) = \sin^4 z + \cos^4 z = \left(\frac{1 - \cos 2z}{2}\right)^2 + \left(\frac{1 + \cos 2z}{2}\right)^2 = \frac{1}{2} + \frac{1}{2}\cos^2 2z =$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} (1 + \cos 4z) = \frac{3}{4} + \frac{1}{4}\cos 4z.$$

 $\sin^4 z + \cos^4 z = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{4n-2}}{(2n)!} z^{2n}, z \in \mathbb{C}.$

12*.

$$f(z) = \frac{z + 6 - 6i}{(z - 2i)(z + 3 - 4i)}$$

$$)D_{1} = \{|z| < 2\}; b)D_{2} = \{2 < |z| < 5\}; c)D_{3} = \{|z| > 5\}.$$

$$f(z) = \frac{2}{z - 2i} - \frac{1}{z + 3 - 4i},$$
(16)

|z| < 2, ,

$$\frac{2}{z-2i} = -\frac{1}{i\left(1-\frac{z}{2i}\right)} = -\frac{1}{i}\sum_{n=0}^{\infty} \left(\frac{z}{2i}\right)^n = -\sum_{n=0}^{\infty} \frac{z^n}{2^n i^{n+1}}, \left|\frac{z}{2i}\right| < 1.$$
 (17)

|z| > 2,

$$\frac{2}{z-2i} = \frac{2}{z\left(1-\frac{2i}{z}\right)} = \frac{2}{z} \sum_{n=0}^{\infty} \left(\frac{2i}{z}\right)^n = \sum_{n=0}^{\infty} \frac{2^{n+1}i^n}{z^{n+1}}, \left|\frac{2i}{z}\right| < 1.$$

$$|z| < 5$$
(18)

$$\frac{1}{z+3-4i} = \frac{1}{(3-4i)\left(1+\frac{z}{3-4i}\right)} = \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{(3-4i)^{n+1}}, \left|\frac{z}{3-4i}\right| < 1, \tag{19}$$

|z| > 5,

$$\frac{1}{z+3-4i} = \frac{1}{z\left(1+\frac{3-4i}{z}\right)} = \sum_{n=0}^{\infty} \frac{(-1)^n (3-4i)^n}{z^{n+1}}, \left|\frac{3-4i}{z}\right| < 1.$$
 (20)

)
$$D_1:\{|z|<2\}$$
 (16), (17), (19) $f(z)$

$$f(z) = -\sum_{n=0}^{\infty} \left[\frac{1}{2^n i^{n+1}} + \frac{(-1)^n}{(3-4i)^{n+1}} \right] z^n.$$

b) $D_2 = \{2 < |z| < 5\}$ f(z) (16), (18), (19)

$$f(z) = \sum_{n=0}^{\infty} \frac{2^{n+1}i^n}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{(3-4i)^{n+1}}.$$

c)
$$D_3 = \{|z| > 5\}$$
 (16), (18), (20) $f(z)$

Z.

$$f(z) = \sum_{n=0}^{\infty} \frac{\left[2^{n+1}i^n - (-1)^n (3-4i)^n\right]}{z^{n+1}}.$$

*13**.

$$f(z) = \frac{\left(z^{10} + 1\right)\sin\frac{1}{z - 1}}{z(z + i)^3(z - 2i)^2},$$

.

$$g(z) = \frac{1}{f(z)} = \frac{z(z+i)^3 (z-2i)^2}{\left(z^{10}+1\right) \sin \frac{1}{z-1}}$$

$$z_1 = 0, z_2 = 2i, z_3 = -i$$
,
$$f(z)$$

$$\begin{split} z_1 &= 0, z_2 = 2i, z_3 = -i \\ z_4 &= 1 \\ & sin \frac{1}{z-1}, \\ f_1(z) \\ z_4 &= 1 \\ \vdots \\ f_1(z) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{1}{(z-1)^{2n+1}}. \\ & \vdots \\ z_4 &= 1 \\ & \vdots \\ \lim_{z \to 1} f(z) = b, \quad b \in \mathbb{C}, \quad z_4 &= 1 \\ \vdots \\ \vdots \\ h &= \infty, \quad z_4 &= 1 \\ \vdots \\ h &= \infty, \quad z_4 &= 1 \\ \vdots \\ \lim_{z \to 1} f(z) &= \lim_{z \to 1} f(z) \cdot \frac{z(z+i)^3(z-2i)^2}{z^{10}+1} = \lim_{z \to 1} \frac{z(z+i)^3(z-2i)^2}{z^{10}+1} \lim_{z \to 1} f(z) = \\ &= \frac{(1+i)^3(1-2i)^2}{2} \lim_{z \to 1} f(z) = (7+i) \lim_{z \to 1} f(z) = (7+i)b, \\ \vdots \\ \lim_{z \to 1} \frac{1}{z-1}, \quad z_4 &= 1 \\ \sin \frac{1}{z-1}, \quad z_4 &= 1 \\ \vdots \\ f(z). \quad z_4 &= 1 \\ \vdots \\ f($$

$$z_{0} = 0 - \sum_{z=0}^{\infty} \frac{1}{z(e^{z}-1)} = \lim_{z \to 0} \frac{1}{(2-1)!} \left(\frac{z^{2}}{z(e^{z}-1)}\right)' = \lim_{z \to 0} \frac{e^{z}-1-ze^{z}}{(e^{z}-1)^{2}} = \lim_{z \to 0} \frac{1}{(e^{z}-1)^{2}} = \lim_{z \to 0} \frac{1+z+\frac{z^{2}}{2}+\circ(z^{2})-1-z-z^{2}}{z^{2}(1+\circ(1))} = -\frac{1}{2}$$

$$\lim_{z \to 1} \frac{1+z+\frac{z^{2}}{2}+\circ(z^{2})-1-z-z^{2}}{z^{2}(1+\circ(1))} = -\frac{1}{2}$$

$$\lim_{z \to 1} \frac{1}{z(e^{z}-1)} = \frac{\left(\frac{1}{z}\right)}{\left(e^{z}-1\right)'} \bigg|_{z=i2k\pi} = -\frac{i}{2k\pi}.$$

$$15^{*}. \qquad 1 = \int_{c} \frac{z^{3}dz}{(z^{2}+1)^{2}}, \qquad C - |z| = 2.$$

$$\lim_{z \to 1} \frac{1}{z} = i, z_{2} = -i, \qquad [2, 145]$$

$$\lim_{z \to i} \frac{1}{z} = 2\pi i (res f(z) + res f(z)).$$

$$f(z) \qquad [2, 145]$$

$$res f(z) = \frac{1}{(2-1)!} \lim_{z \to i} \left[(z-i)^{2} \frac{z^{3}}{(z^{2}+1)^{2}} \right]' = \lim_{z \to i} \left[\frac{z^{3}}{(z+i)^{2}} \right]' = \frac{1}{2},$$

$$res f(z) = \frac{1}{(2-1)!} \lim_{z \to -i} \left[(z+i)^{2} \frac{z^{3}}{(z^{2}+1)^{2}} \right]' = \lim_{z \to -i} \left[\frac{z^{3}}{(z-i)^{2}} \right]' = \frac{1}{2}.$$

$$\lim_{z \to -i} \left[\frac{1}{2} + \frac{1}{2} \right] = 2\pi i.$$

$$II. \qquad [2, 148]$$

$$\begin{split} \mathop{res}_{z=i} f(z) + \mathop{res}_{z=-i} f(z) + \mathop{res}_{z=\infty} f(z) = 0, & \mathrm{I} = -2\pi i \mathop{res}_{z=\infty} f(z). \\ f(z) \sim \frac{1}{z} & z \to \infty, & z = \infty \\ f(z) & \mathop{res}_{z=\infty} f(z) = -1. \\ & z = \pi i. \end{split}$$

16*.
$$I = \int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 4)}$$

.

$$R(z) = \frac{1}{(z^2 + 1)(z^2 + 4)}$$

$$z_1 = i \quad z_2 = 2i.$$

$$z \to \infty, \qquad [3, ... 274]$$

$$\int_{-\infty}^{\infty} R(z)dz = 2\pi i \sum_{\text{Im } z_k > 0} \underset{z=z_k}{\text{res }} f(z), \qquad \text{I} = 2\pi i (\underset{z=i}{\text{res }} R(z) + \underset{z=2i}{\text{res }} R(z)).$$

$$res_{z=i} R(z) = \lim_{z \to i} \left[(z-i) \frac{1}{(z^2+1)(z^2+4)} \right] = \frac{1}{6i},$$

$$res_{z=2i} R(z) = \lim_{z \to 2i} \left[(z-2i) \frac{1}{(z^2+1)(z^2+4)} \right] = -\frac{1}{12i}, \qquad \text{I} = \frac{\pi}{6}.$$

 $I = \int_{-\infty}^{\infty} \frac{x \sin 2x dx}{x^2 + 9}.$

$$F(z) = \frac{z}{z^2 + 9} \to 0 \qquad 0 \le \arg z \le \pi, \qquad F(z)$$

[1, .241]

$$I = Im \left(2\pi i \operatorname{res} \frac{ze^{i2z}}{z^{2} + 9} \right) = Im \left(2\pi i \frac{ze^{i2z}}{\left(z^{2} + 9\right)'} \bigg|_{z = 3i} \right) = Im \left(2\pi i \frac{e^{-6}}{2} \right) = \pi e^{-6}.$$

III.

(0,1,2,3,4,5,6,7,8,9)

1

00-09. , z

00.	$-\sqrt{3}+i3$,	05.	$\sqrt{15}-i\sqrt{5}$,
01.	$-\sqrt{5}-i\sqrt{5}$,	06.	$-\sqrt{7}+i\sqrt{7}$,
02.	$-\sqrt{6}+i\sqrt{6}$,	07.	$-\sqrt{6}-i\sqrt{2}$,
03.	$-3-i\sqrt{3}$,	08.	$\sqrt{3}-i\sqrt{3}$,
04.	$-\sqrt{6}-i3\sqrt{2}$,	09.	$\sqrt{2}-i\sqrt{6}$.

10-19. z^{α} z_0 .

10.	$z_0 = -\sqrt{6} + i2\sqrt{3}, \alpha = 3 - 2i,$	15.	$z_0 = \sqrt{30} - i\sqrt{10}, \alpha = 2 + i,$
11.	$z_0 = 2 - i2\sqrt{3}, \alpha = -1 + 3i,$	16.	$z_0 = -\sqrt{3} - i3, \alpha = 1 - 2i,$
12.	$z_0 = \sqrt{2} - i\sqrt{2}, \alpha = -3 + i,$	17.	$z_0 = -3\sqrt{2} - i\sqrt{6}, \alpha = 2 + 3i,$
13.	$z_0 = -2\sqrt{3} - i2, \alpha = 1 + 2i,$	18.	$z_0 = -\sqrt{5} + i\sqrt{5}, \alpha = 3 + 2i,$
14.	$z_0 = -\sqrt{5} + i\sqrt{5}, \alpha = 2 - i,$	19.	$z_0 = -\sqrt{6} - i\sqrt{6}, \alpha = 2 - 3i.$

20-29. f(z) = u(x,y).

20.	$u = 12x^2y^2 - 2x^4 - 2y^4 - 2xy,$	25.	$u = 2x^3y - 2xy^3 - xy,$
21.	$u = 4xy^3 - 4x^3y - 4x^2 + 4y^2,$	26.	$u = 3x^4 + 3y^4 - 18x^2y^2 + 18x$
22.	$u = x^4 + y^4 - 6x^2y^2 + 6xy,$	27.	$u = 3x^3y - 3xy^3 - 3y,$

23.	$u = x^3y - xy^3 + x^2 - y^2,$	28.	$u = 6x^2y^2 - x^4 - y^4 - 4x,$
24.	$u = 2x^4 + 2y^4 - 12x^2y^2 - 2x^2 + 2y^2,$	29.	$u = 3xy^3 - 3x^3y + 4y.$

30-39. E w=f(z):

30.	$E = \{ z > 1\}, f = \frac{z - 2i}{z + 1},$	35.	E = $\{\text{Re } z < -1\}, f = \frac{z}{2z-1},$
31.	$E = \{Re z > 2\}, f = \frac{2z}{z+4},$	36.	$E = \{ z > 2\}, f = \frac{z+2i}{z-2i},$
32.	$E = \{ z < 3\}, f = \frac{z+i}{z+3i},$	37.	E = $\{\text{Im } z > 1\}, f = \frac{z - 2i}{z + i},$
33.	$E = \{\text{Re } z > 1\}, f = \frac{z}{z+2},$	38.	$E = \{ z < 3\}, f = \frac{z + 2i}{z - 3i},$
34.	E = { $ z < 1$ }, $f = \frac{z + 2i}{z - i}$,	39.	E = $\{\text{Im } z < -1\}, f = \frac{z - 2i}{z + 2i}.$

40-49.

 z_1, z_2, z_3 $w_1, w_2, w_3.$

	z_1	z_2	<i>Z</i> ₃	w_1	w_2	w_3
40.	-3	i	8	-i	-2 <i>i</i>	-3
41.	1	2i	8	3 <i>i</i>	-1	-2 <i>i</i>
42.	-1	-2 <i>i</i>	8	-1	i	-2
43.	1	-2 <i>i</i>	8	-2 <i>i</i>	-2	3 <i>i</i>
44.	-2	i	8	-2 <i>i</i>	-3	1
45.	2	i	8	2i	-1	3
46.	-2	- <i>i</i>	8	i	2	-3 <i>i</i>
47.	3	i	8	-3 <i>i</i>	-i	2

48.	-3	-i	8	3 <i>i</i>	-2	i
49.	3	-i	8	2i	3	-i

50-59.

 $\{|z-z_0| < R\}$

 z_0

 $w_0 \quad \arg w'(z_0) = \alpha$.

	R	z_0	w_0	α
50.	3	2i	1+ <i>i</i>	$-\pi$
51.	2	-2	-3+ <i>i</i>	$\frac{3\pi}{2}$
52.	3	-2 <i>i</i>	-1+i	$-\frac{\frac{\pi}{2}}{2}$ $-\frac{3\pi}{2}$
53.	2	3	4+i	$-\frac{3\pi}{2}$
54.	3	3 <i>i</i>	-4+i	$\frac{\pi}{2}$
55.	2	1	1+i	$-\frac{\pi}{2}$
56.	3	i	2+i	$-\frac{3\pi}{2}$
57.	2	-1	-1+i	π
58.	3	-i	-2+ <i>i</i>	$\frac{3\pi}{2}$
59.	2	2	3+ <i>i</i>	$\frac{\pi}{2}$

60-69.

$$\{|z-z_0| \le 2\}$$

 $\left\{ \left| w - w_0 \right| \le 2 \right\}$

$$w(z_1) = w_1, \ w(t_1) = \tau_1, \qquad z_1, w_1 -$$

$$z_1, w_1$$

 t_1, τ_1 -

	z_0	w_0	z_1	w_1	t_1	$ au_1$
60.	2 <i>i</i>	-3	$\frac{i}{2}$	-4	4i	-5
61.	-2	-3 <i>i</i>	$-\frac{5}{2}$	-4 <i>i</i>	-4	-i
62.	-2 <i>i</i>	3	$-\frac{3i}{2}$	4	0	1
63.	3	i	$\frac{5}{2}$	2i	1	3 <i>i</i>

64.	3 <i>i</i>	-1	$\frac{3i}{2}$	-2	5i	-3
65.	-3	-i	$-\frac{5}{2}$	-2 <i>i</i>	-5	i
66.	i	-2	$\frac{i}{2}$	-3	3 <i>i</i>	-4
67.	-1	-2 <i>i</i>	$-\frac{3}{2}$	-i	-3	0
68.	-i	2	$-\frac{i}{2}$	1	i	0
69.	2	2i	$\frac{3}{2}$	i	0	4 <i>i</i>

70-79.

70.	$\{ z >1\}\setminus\{(1,2]\},$	75.	$\left\{ \left z\right <1\right\} \setminus \left\{ \left(-1,-\frac{1}{3}\right]\right\},$
71.	$\left\{ \left z\right <1\right\} \setminus \left\{ \left(-1,-\frac{1}{2}\right]\right\},$	76.	$\{ z >1\}\setminus\{[-3i,-i)\},$
72.	$\{ z >1\}\setminus\{[-2i,-i)\},$	77.	$\{ z <1\}\setminus\left\{\left[\frac{i}{3},i\right)\right\},$
73.	$\{ z <1\}\setminus\left\{\left[\frac{1}{2},1\right)\right\},$	78.	$\{ z >1\}\setminus\{(i,2i]\},$
74.	$\{ z >1\}\setminus\{[-2,-1)\},$	79.	$\left\{\left z\right <1\right\}\setminus\left\{\left[-\frac{i}{2},-i\right)\right\}.$

80-89.

$$\{|z-z_1|\leq R\},\{|z-z_2|\leq R\}.$$

80.	$z_1 = 4, z_2 = 6, R = 1,$	85.	$z_1 = 0, z_2 = 6i, R = 3,$
81.	$z_1 = -3, z_2 = -5, R = 1,$	86.	$z_1 = 0, z_2 = 4, R = 2,$
82.	$z_1 = i, z_2 = 5i, R = 2,$	87.	$z_1 = -2, z_2 = -4, R = 1,$
83.	$z_1 = 1, z_2 = 7, R = 3,$	88.	$z_1 = 2i, z_2 = 6i, R = 2,$
84.	$z_1 = -1, z_2 = -5, R = 2,$	89.	$z_1 = -i, z_2 = -3i, R = 1.$

90-99.
$$\int_{L} f(z)dz \qquad f(z)$$

$$L = \left\{ y = x^{3} \right\}, \qquad a=0 \quad b=-1-i.$$

90.	$f = z \operatorname{Re} z^2,$	95.	$f = \overline{z} \operatorname{Re} z$,
91.	$f = z^2 \operatorname{Re} z,$	96.	$f = \overline{z} \operatorname{Im} z$,
92.	$f = z^2 \operatorname{Im} z,$	97.	$f = \operatorname{Im} z^3,$

93.	$f=z^2\cdot\overline{z},$	98.	$f = \operatorname{Re} z^3,$
94.	$f = \overline{z^2} \cdot z,$	99.	$f = \left(z + \overline{z}\right)z.$

100-109.

$$\sum_{n=0}^{\infty} a_n z^n.$$

100.	$a_n = \left(\frac{1+i}{2}\right)^n \cdot n,$	105.	$a_n = (2n+i)\cdot 2^n,$
101.	$a_n = (2-i)^n \cdot n,$	106.	$a_n = (n+2i)\cdot 3^n,$
102.	$a_n = (1 - 2i)^n \cdot n,$	107.	$a_n = (i-2n)\cdot 2^n,$
103.	$a_n = \frac{\left(2+i\right)^n}{n},$	108.	$a_n = (2i - n) \cdot 3^n,$
104.	$a_n = \frac{\left(1+2i\right)^n}{n},$	109.	$a_n = (ni+1) \cdot 4^n.$

110-119.

$$z_0 = 0$$

f(z).

	3		
110.	$f(z) = \cos^3 z,$	115.	$f(z) = \ln\left(z^2 - z - 2\right),$
111.	$f(z) = \sin^3 z ,$	116.	$f(z) = \ln\left(z^2 + z - 2\right),$
112.	$f(z) = e^z \sin 2z,$	117.	$f(z) = \ln\left(z^2 + 2z - 3\right),$
113.	$f(z) = e^z \cos 2z,$	118.	$f(z) = \ln\left(z^2 \cdot 2z - 3\right),$
114.	$f(z) = e^{2z} shz,$	119.	$f(z) = \ln\left(z^2 + 3z - 4\right).$

120-129. f(z) D_1, D_2, D_3 .

	f(z)	D_1	D_2	D_3
120.	$\frac{3z+5}{(z-1)(z+3)}$	z < 1	1 < z < 3	z > 3
121.	$\frac{z-8i}{(z+2i)(z-3i)}$	z < 2	2 < z < 3	z > 3
122.	$\frac{3z-4+2i}{(z+i)(z-4)}$	z < 1	1< z <4	z > 4
123.	$\frac{z+10+2i}{(z-2i)(z+5)}$	z < 2	2 < z < 5	z > 5
124.	$\frac{z-6i+1}{(z-1)(z+3)}$	z < 1	1< z <3	z > 3
125.	$\frac{z+12+6i}{(z-3i)(z+4)}$	z < 3	3< z <4	z > 4
126.	$\frac{2z - 14i}{(z - i)(z + 5i)}$	z <1	1< z <5	z > 5
127.	$\frac{2z+2i-1}{(z-1)(z+2i)}$	z < 1	1< z <2	z > 2
128.	$\frac{z-12-8i}{(z-2i)(z+4)}$	z < 2	2 < z < 4	z > 4
129.	$\frac{3z+3+8i}{(z+3)(z+4i)}$	z < 3	3 < z < 4	z > 4

130-139.

f(z),

130 $f(z) = \frac{\left(z^{12} + 10z^4 + 2\right)\sin\frac{1}{z - 3}}{z^2(z + 5)^3 \left(z^2 + 9\right)}$	135	$f(z) = \frac{\left(z^{11} + z + 5\right)e^{\frac{1}{z+2}}}{z(z-2i)^3 \left(z+3i\right)^4}$
---	-----	---

131	$f(z) = \frac{\left(z^8 - 5z + 1\right)\cos\frac{1}{z + i}}{\left(z - 1\right)(z + 3)^2\left(z + 6\right)^4}$	136	$f(z) = \frac{\left(z^{14} - 2z^7 + 4\right)\sin\frac{1}{z - 2}}{\left(z + 2\right)^2 \left(z - 3\right)^3 \left(z + 4\right)^4}$
132	$f(z) = \frac{\left(z^9 - 6z^4 + 5\right)e^{\frac{1}{z-i}}}{\left(z - 3i\right)^2(z + 2i)^2(z + 4)^3}$	137	$f(z) = \frac{\left(z^{11} - 6z^3 + 2\right)\cos\frac{1}{z + 2i}}{z^5(z+i)^2(z-2i)}$
133	$f(z) = \frac{\left(z^{12} + 6z^6 + 1\right)\sin\frac{1}{z+1}}{z^4(z+5)^2(z-4i)}$	138	$f(z) = \frac{\left(z^8 + 5z^2 + 1\right)e^{\frac{1}{z - 2i}}}{\left(z^3 + z^2\right)^2\left(z + 2i\right)}$
134	$f(z) = \frac{\left(z^{10} - 2z^5 + 1\right)\cos\frac{1}{z - 2}}{z^3(z - 6)^2(z + i)^4}$	139	$f(z) = \frac{\left(z^{13} - 5z^6 + 4\right)\sin\frac{1}{z+3}}{\left(z^2 + 4\right)^3 \left(z^2 + 1\right)^2}$

140-149. f(z)

•

140.	$f(z) = \frac{\sin z}{\left(z - 2i\right)^2 (z - 1)},$	145.	$f(z) = \frac{\cos z}{(z+i)^2(z-2)},$
141.	$f(z) = \frac{\cos z}{\left(z+2i\right)^2(z+1)},$	146.	$f(z) = \frac{e^{2z}}{\left(z+3i\right)\left(z+1\right)^2},$
142.			$f(z) = \frac{e^{i2z}}{\left(z - 3i\right)^2 (z - 1)},$

143.
$$f(z) = \frac{\cos z}{(z+2i)(z+1)^2}$$
, 148. $f(z) = \frac{e^z}{(z+3i)^2(z-2)}$, 144. $f(z) = \frac{\sin 2z}{(z+i)(z-2)^2}$, 149. $f(z) = \frac{e^{iz}}{(z+3i)(z-2)^2}$,

150-159.
$$\int_C f(z)dz, \qquad C -$$

150.	$\int_{ z =2} \frac{dz}{(z^2-3)^2 (z+4)^2},$	155.	$\int_{ z =4}^{2z^4dz} \frac{2z^4dz}{(z^2+9)^2(z-5)},$
151.	$\int_{ z =3} \frac{dz}{(z^2+3)^2 (z-5)^2},$	156.	$\int_{ z =3} \frac{dz}{(z+5)^2 (z^2-4)^2},$
152.	$\int_{ z =3}^{1} \frac{z^4 dz}{(z^2 - 1)^2 (z + 4)},$	157.	$\int_{ z =4}^{3z^4dz} \frac{3z^4dz}{(z^2-9)^2(z+5)},$
153.	$\int_{ z =2}^{1} \frac{2z^4 dz}{(z^2-1)^2 (z-3)^2},$		$\int_{ z =2}^{\infty} \frac{dz}{(z^2-2)^2 (z+3)^2},$
154.	$\int_{ z =3} \frac{dz}{(z^2+4)(z-4)^2},$	159.	$\int_{ z =4}^{2z^4dz} \frac{2z^4dz}{(z^2+9)^2(z-6)^2}.$

$$\int_{-\infty}^{\infty} R(x) dx$$

160.
$$R(x) = \frac{x+3}{\left(x^2 - 4x + 5\right)\left(x^2 + 4x + 29\right)},$$
161.
$$R(x) = \frac{4x - 7}{\left(x^2 - 2x + 17\right)\left(x^2 + 2x + 10\right)},$$

162.
$$R(x) = \frac{8x - 27}{\left(x^2 - 10x + 29\right)\left(x^2 - 2x + 2\right)},$$
163.
$$R(x) = \frac{2x - 9}{\left(x^2 - 4x + 29\right)\left(x^2 + 2x + 2\right)},$$
164.
$$R(x) = \frac{3x + 4}{\left(x^2 - 2x + 5\right)\left(x^2 + 4x + 13\right)},$$
165.
$$R(x) = \frac{6x - 5}{\left(x^2 + 4x + 5\right)\left(x^2 - 2x + 10\right)},$$
166.
$$R(x) = \frac{-2x + 4}{\left(x^2 + 4x + 13\right)\left(x^2 + 2x + 17\right)},$$
167.
$$R(x) = \frac{2x - 27}{\left(x^2 - 4x + 29\right)\left(x^2 - 2x + 2\right)},$$
168.
$$R(x) = \frac{3x - 4}{\left(x^2 + 2x + 5\right)\left(x^2 - 4x + 13\right)},$$
169.
$$R(x) = \frac{8x + 15}{\left(x^2 - 2x + 10\right)\left(x^2 + 6x + 25\right)}.$$

$$\int_{-\infty}^{\infty} f(x)dx.$$

170.	$f(x) = \frac{\sin x}{x^2 + 2x + 4},$	175.	$f(x) = \frac{\cos 3x}{x^2 - 2x + 4},$
	cos r	176.	$f(x) = \frac{\sin 2x}{x^2 + 4x + 6},$
172.	$f(x) = \frac{\sin 2x}{x^2 + 2x + 6},$		$f(x) = \frac{\cos 2x}{x^2 - 2x + 8},$

173.	$f(x) = \frac{\cos 2x}{x^2 - 4x + 8},$	178.	$f(x) = \frac{\sin x}{x^2 - 2x + 6},$
	l sim 2		$f(x) = \frac{\cos x}{x^2 - 2x + 8}.$