Übungsblatt 11

Aufgabe 41 (3+2).

$$y' = \cos y, \quad y(0) = 0$$

- (i) Überprüfen Sie, dass die Voraussatzungen für Picard-Lindelöf erfüllt sind. Welches Existenzintervall für die Lösung erhalten Sie aus Picard-Lindelöf. Stellen Sie die Approximationen der Picard-Iterationen y_0, \ldots, y_3 auf und rechnen Sie, dort wo möglich, die Integrale aus.
- (ii) Berechnen Sie die Lösung der Differentialgleichung direkt. Hinweis: Substitution $u=\tan\frac{y}{2}$. Außerdem ist $\cos(\arctan u)=\frac{1}{\sqrt{u^2+1}}$ (Warum?)

Aufgabe 42.

$$y' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} y, \quad y(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (i) Lösen Sie diese Differentialgleichung mit Hilfe der Theorie zu lineare Systemen mit konstanten Koeffizienten.
- (ii) Benutzen Sie Picard-Iteration um die Approximationen y_0,\ldots,y_3 explizit zu bestimmen.

Aufgabe 43. Lösen Sie mit der Theorie zu linearen Systemen

$$y' + \sin(x) y = \sin^3(x).$$

Aufgabe 44. Sei $\omega_0 > 0, \rho \geq 0$, Lösen Sie

$$y''(t) + 2\rho y'(t) + \omega_0^2 y(t) = 0$$

und skizzieren Sie die Lösung jeweils (es treten qualitativ verschiedene Lösungen auf). 1

Abgabe am Mittwoch 13.07.21 bis 14 Uhr

 $^{^{1}}$ Für $\rho = 0$ ist das die (ungedämpfte) Schwingungsgleichung. $\rho > 0$ entspricht einer gedämpften Schwingung. Hier betrachen wir nur die homogene Gleichung. Eine Inhomogenität (also ein F(t) auf der rechten Seite, würde einer externen zeitabhängigen Kraft entsprechen (erzwungene Schwingung)).

Analysis II Blatt 11

Lorenz Bung

lorenz.bung@students.uni-freiburg.de

Matr. - Nr. 5113060

Vincent Wilhelms Matr. - Nr. 4909980

vincent.wilhelms@gmail.com