Harbor seals analysis

Kyra Bankhead

2022-12-14

In this markdown I will:

- 1. Find the best distribution to use for GLMs.
- 2. Run GLMS and AICs to find the most appropriate model and predictors.
- 3. Create visualization graphs for each site.

Check for Appropriate Distribution

Negative binomial or poisson would be the best fit. Let's check if the mean is equal to the variance and if there is zero inflation.

full.data<-read.csv("../data/full.data.csv")
require(performance)</pre>

Loading required package: performance

```
var(full.data$seals)
## [1] 299.2771
mean(full.data$seals)
## [1] 14.12258
# Make sure overdispersion is detected with full model
mod<- glm(seals ~ site*noise + month + tide + time, data = full.data, family = "poisson")
check_overdispersion(mod)
## # Overdispersion test
##
##
          dispersion ratio =
                                6.737
##
     Pearson's Chi-Squared = 997.052
##
                   p-value = < 0.001
## Overdispersion detected.
# Check for zero inflation
check_zeroinflation(mod)
## # Check for zero-inflation
##
##
      Observed zeros: 14
##
     Predicted zeros: 0
##
               Ratio: 0.00
## Model is underfitting zeros (probable zero-inflation).
```

The variance is way higher than the mean which was confirmed by the Pearson chi-squared test. Additionally there was zero-inflation present in the model. Therefore the Poisson distribution is not applicable here and we will continue with the negative binomial distribution.

Create GLMs and find best model with AICc

To test whether noise affects the number of seals hauled-out by site, I will insert an interaction between noise level and site.

Looks like the best model will contain month, noise, site and time as predictors. This is the summary of that model:

```
##
## Call:
  glm.nb(formula = seals ~ site * noise + month + time, data = full.data,
##
       init.theta = 1.738579161, link = log)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -2.9338 -0.8665 -0.1937
                               0.4408
                                         2.4225
##
```

```
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        8.31830
                                   1.07277
                                             7.754 8.90e-15 ***
                       -3.62238
                                   1.25922
                                           -2.877 0.00402 **
## sitewaterfront
## noise
                       -0.06368
                                   0.02554
                                            -2.493 0.01266 *
## month
                       -0.18974
                                   0.04597
                                           -4.127 3.67e-05 ***
## time
                       -0.05820
                                   0.02795 -2.082 0.03733 *
                                   0.02923
                                             2.051 0.04028 *
## sitewaterfront:noise 0.05995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Negative Binomial(1.7386) family taken to be 1)
##
      Null deviance: 319.08 on 154 degrees of freedom
##
## Residual deviance: 183.65 on 149 degrees of freedom
## AIC: 1059.3
##
## Number of Fisher Scoring iterations: 1
##
##
##
                Theta: 1.739
##
            Std. Err.: 0.250
##
   2 x log-likelihood: -1045.269
```

- Month and time are significant predictors for how many harbor seals haul-out.
- Site and noise are significant predictors for the number of harbor seals hauled-out. The effect of noise on the number of seals haul-out depends on what site they are located in.

Use model output to predict response variable

```
## noise site phat
## 1 49.07 marina 17.034396
## 2 49.07 waterfront 8.595981
```

In the output above, we see that the predicted number of seals hauled-out for the Marina is about 17.03, holding noise level at its mean. The predicted number of events for the Waterfront is lower at 8.60.