

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1
		9

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
<i>/</i>	1	0	0
OR	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

Senac

Circuitos Lógicos

Meio Subtrador - Half Subtractor

Iremos seguir os mesmos passos da construção do nosso circuito meio somador. Vamos começar com a nossa tabela verdade.

Isolamos cada lado das saídas...

O valor emprestado chamamos de borrow (empréstimo)

Α

В

D

A B D B

0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Saida S = A'B + AB'

Saida
$$S = A + B$$

Saida B = A'B

Meio Subtrador - Half Subtractor

Juntando os dois circuitos que descobrimos obtemos o circuito do Meio Subtrador.

Esse circuito é capaz de realizar o cálculo de subtração de um bit por outro. Porém quando existe empréstimo de 1 bit, o bit que empresta também deve ser subtraído em uma unidade. Nesse circuito isso não é levado em consideração.

Por esse motivo chamamos ele de meio subtrador.

Subtrator Completo – Full Subtractor

Α	В	B_{in}	Diff	B _{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Dif = $(A \oplus B) \oplus Bin$ **Bout** = A'.Bin + A'.B + B.Bin

Subtrator Completo – Full Subtractor

Α	В	B_{in}	Diff	B_out
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Dif = $(A \oplus B) \oplus Bin$ **Bout** = A'.Bin + A'.B + B.Bin

Circuito reduzido com portas XOR

Subtrator Completo – Full Subtractor

Da mesma forma que no somador completo, no subtrador completo, para subtrair os binários basta cascatear diversos subtradores de acordo com o tamanho dos bits.

Multiplexadores (MUX)

Multiplexador (MUX) é um *switch* (interruptor) que tem mais do que uma porta de entrada (input/source) e uma saída única (output/destination)

Multiplexadores (MUX)

Circuito lógico que recebe diversas entradas e seleciona uma delas para transferir a saída.

- O controle é feito por uma entrada de seleção.
- Por exemplo:
 - Seleção $(S_1S_0) = 00$, seleciona Saída = I_0
 - Seleção $(S_1S_0) = 01$, seleciona Saída = I_1
 - ❖ Seleção (S_1S_0) = 10, seleciona Saída = I_2
 - ❖ Seleção (S_1S_0) = 11, seleciona Saída = I_3

Em geral para 2ⁿ entradas, existem n varáveis de seleção.

Aplicações:

- Em roteamento de dados
- Funções lógicas combinacionais.

Multiplexador 2x1 (MUX)

O mais simples de todos

Quais são suas características?

- Quantidade de entradas = 2
- Quantidade de saídas = 1
- ❖ Bits de seleção = 1

Tabela Verdade

	Entradas		
S	l ₁	I ₀	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

	00	01	11	10
0	0	1	1	2
1	4	5	1 7	1 6

$$F = S'|_0 + S|_1$$

Representação Gráfica:

Nosso Circuito

Tabela de Funcionamento

Entradas	Saída
S	F
0	I _o
1	l.

Multiplexador 4x1 (MUX)

Um pouco mais complexo

Quais são suas características?

- Quantidade de entradas = 4
- Quantidade de saídas = 1
- ❖ Bits de seleção = 2

Representação Gráfica:

Tabela de Funcionamento

Entradas		Saída
S ₁	S ₀	F
0	0	I _o
0	1	
1	0	l ₂
1	1	- ₃

Projeto do MUX 4x1

- Nosso circuito tem 6 entradas e Tabela verdade de 64 linhas!!!
- Vamos expandir o funcionamento básico do MUX 2x1.

Multiplexador 4x1 (MUX)

Um pouco mais complexo

Quais são suas características?

- Quantidade de entradas = 4
- Quantidade de saídas = 1
- ❖ Bits de seleção = 2

Representação Gráfica:

Tabela de Funcionamento

Entradas		Saída
S ₁	S ₀	F
0	0	I _o
0	1	l ₁
1	0	l ₂
1	1	l ₃

$$F = I_0S_1'S_0' + I_1S_1'S_0 + I_2S_1S_0' + I_3S_1S_0$$

Nosso Circuito Não Simplificado

Senac

Circuitos Lógicos

Multiplexador 4x1 (MUX)

Podemos simplificar ele.

Representação Gráfica:

Tabela de Funcionamento

Entradas		Saída
S ₁	S ₀	F
0	0	I _o
0	1	l ₁
1	0	l ₂
1	1	l ₃

Nosso Circuito Simplificado

$$F = I_0S_1'S_0' + I_1S_1'S_0 + I_2S_1S_0' + I_3S_1S_0$$

Multiplexador 4x1 (MUX)

Podemos simplificar ele.

Representação Gráfica:

$$F = I_0S_1'S_0' + I_1S_1'S_0 + I_2S_1S_0' + I_3S_1S_0$$

Tabela de Funcionamento

Entradas		Saída
S ₁	S ₀	F
0	0	I _o
0	1	l ₁
1	0	l ₂
1	1	- l ₃

Resumindo: No multiplexador, cada entrada é multiplicada pelo mintermo que corresponde à condição no qual aquela entrada deve passar para saída.

Multiplexador 8x1 (MUX)

Um pouco mais complexo

Quais são suas características?

- Quantidade de entradas = 8
- Quantidade de saídas = 1
- ❖ Bits de seleção = 3

Tabela de Funcionamento

Entra	adas		Saída
S ₂	S ₁	S ₀	F
0	0	0	Io
0	0	1	l ₁
0	1	0	l ₂
0	1	1	l ₃
1	0	0	I ₄
1	0	1	I ₅
1	1	0	I ₆
1	1	1	l ₇

Projeto do MUX 8x1

- Vamos utilizar o mesmo principio do 4x1
- Iremos obter a expressão lógica a partir da tabela verdade.

Representação Gráfica:

Multiplexador 8x1 (MUX)

Podemos simplificar ele.

$$F = I_0S_2'S_1'S_0' + I_1S_2'S_1'S_0 + I_2S_2'S_1S_0'$$

$$+ I_3S_2'S_1S_0 + I_4S_2S_1'S_0' + I_5S_2S_1'S_0$$

$$+ I_6S_2S_1S_0' + I_7S_2S_1S_0$$

Tabela de Funcionamento

Entra	adas		Saída
S ₂	S ₁	S ₀	F
0	0	0	I _o
0	0	1	l ₁
0	1	0	l ₂
0	1	1	l ₃
1	0	0	I ₄
1	0	1	l ₅
1	1	0	I ₆
1	1	1	I ₇

Representação Gráfica:

Multiplexador 8x1 (MUX)

Tabela de Funcionamento

Entra	adas		Saída
S ₂	S ₁	S ₀	F
0	0	0	I _o
0	0	1	l ₁
0	1	0	
0	1	1	l ₃
1	0	0	I ₄
1	0	1	I ₅
1	1	0	l ₆
1	1	1	I ₇

Representação Gráfica:

ATÉ A PRÓXIMA AULA!

