

# UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL FACULDADE DE COMPUTAÇÃO

Sistemas Digitais

Ricardo Ribeiro do Santos

# MAYKON KAZUHIRO FALCÃO TAMANAHA HEMANUELA GABRIELA GUTIERREZ FERNANDES LUÍS MIGUEL TABORDA FIALHO

Implementando Simulador RISC-V

CAMPO GRANDE - MS 30/04/2025



## 1 INTRODUÇÃO

O RISC-V foi criado em 2010 pelo Professor Krste Asanović e os estudantes de graduação Yunsup Lee e Andrew Waterman, como parte do Laboratório de Computação Paralela na Universidade da Califórnia em Berkeley, que estava sob direção do Professor David Patterson (RISC-V International, 2025). RISC-V é uma arquitetura de conjunto de instruções - ISA *Open Source*, ou seja, está disponível publicamente para uso e modificação.

O presente trabalho consiste no desenvolvimento de um simulador de instruções RISC-V, uma ISA amplamente utilizada em sistemas embarcados e aplicações acadêmicas. Nesse sentido, o simulador foi projetado para interpretar e executar instruções RISC-V a partir de arquivos de entrada, simulando o comportamento de registradores e memória. Por isso, o objetivo deste trabalho é proporcionar uma ferramenta educacional para o estudo e compreensão do funcionamento interno de processadores baseados na arquitetura RISC-V.

#### 2 OBJETIVOS

Este trabalho foi desenvolvido visando desenvolver um simulador da arquitetura RISC-V, capaz de interpretar e executar instruções nos formatos R, I, U e S, conforme especificado na documentação oficial da ISA RISC-V.

O programa deve receber como entrada um arquivo de texto contendo instruções RISC-V válidas, realizar o processamento sequencial, simular as operações nos registradores assim como na memória, e por fim, gerar um arquivo de saída com o estado final dos registradores utilizados e das posições de memória modificadas.

O simulador resultante deve interpretar as instruções de addi, add, lui e sw, permitindo a realização de operações aritméticas e armazenamento de dados. Outras instruções existentes em um simulador completo não estão incluídas.

Como exemplo, o seguinte conjunto de instruções deve ser corretamente executado:

```
addi t1, zero, 10  # t1 = 10

addi t2, zero, 20  # t2 = 20

add t3, t1, t2  # t3 = t1 + t2 = 30

Iui t4, 0x10000  # t4 = 0x10000000

sw t3, 0(t4)  # memória[t4] = t3
```

A saída esperada após a execução desse código é:

```
t1 = 10t2 = 20
```



```
t3 = 30

t4 = 268435456

mem(268435456) = 30
```

Esse simulador visa apoiar o aprendizado e a compreensão prática da arquitetura RISC-V, possibilitando a experimentação com instruções ao nível de máquina de forma acessível e didática.

#### 3 METODOLOGIA

A implementação do simulador foi realizada em C++, sendo dividida em cinco partes:

- Registradores (Registers): Representam os 32 registradores da arquitetura RISC-V, que permitem a leitura e escrita de valores.
- Memória (Memory): Simula a memória principal, utilizando um mapa para armazenar valores associados a endereços.
- Instruções (Instruction): Implementa a lógica para interpretar e executar diferentes formatos de instruções RISC-V, como R, I, S e U.
- Simulador (Simulator): Coordena a execução das instruções, gerencia o contador de programa (PC\_counter) e exibe o estado final dos registradores e da memória.
- Parser (Parser): Responsável por ler e formatar os arquivos de entrada, removendo comentários e espaços desnecessários.

O fluxo de execução do simulador pode ser descrito em três passos:

- 1. O arquivo de entrada contendo as instruções é lido e processado pelo parser.
- 2. As instruções são armazenadas em um vetor e executadas sequencialmente pelo simulador.
- 3. Após a execução, o estado dos registradores e da memória é exibido.





Figura 1 – Fluxograma do código

### **4 RESULTADOS**

Para testar o simulador, foram usados dois arquivos de texto, sendo eles de título  ${\tt entrada1.txt}$  e  ${\tt entrada2.txt}$ , ambos contendo instruções RISC-V válidas. Os resultados obtidos comprovam que o simulador consegue interpretar e executar correta-

mente as instruções, atualizando os valores dos registradores e da memória conforme o esperado.

# EXEMPLO DE EXECUÇÃO COM ENTRADA1.TXT:

## Instruções:

```
addi t1, zero, 10  # t1 = 10

addi t2, zero, 20  # t2 = 20

add t3, t1, t2  # t3 = t1 + t2 = 30

lui t4, 0x10000  # t4 = 0x10000000 = 268435456

sw t3, 0(t4)  # memória[268435456] = 30
```

## Estado final dos registradores:

- t1 = 10
- t2 = 20
- t3 = 30
- t4 = 268435456

### Estado final da memória:

• mem(268435456) = 30

# EXEMPLO DE EXECUÇÃO COM ENTRADA2. TXT:

## Instruções:

```
addi t1, zero, 5 # t1 = 5
addi t2, zero, 7 # t2 = 7
add t3, t1, t2 # t3 = t1 + t2 = 12
Iui t4, 0x10000 # t4 = 0x10000000 = 268435456
sw t3, 0(t4) # memória[268435456] = 12
```

## **Estado final dos registradores:**

- t1 = 5
- t2 = 7
- t3 = 12
- t4 = 268435456

### Estado final da memória:

• mem(268435456) = 12



Podemos concluir que os resultados confirmam que o simulador desenvolvido é funcional e atende aos requisitos propostos.

### 5 CONCLUSÕES

Neste trabalho, foi desenvolvido um simulador de instruções RISC-V. Pela observação dos resultados, podemos dizer que este trabalho resultou em uma ferramenta educacional e eficaz para a execução e análise de instruções no modelo RISC-V.

Assim, permitindo a visualização do estado dos registradores e da memória após sua execução, de modo a facilitar a compreensão sobre o funcionamento interno de processadores que se baseiam nessa arquitetura.

É possível a continuidade e expansão desse trabalho para incluir mais instruções e suportes a outros tipos de entrada.

### **REFERÊNCIAS**

cplusplus.com. **C++ Reference Manual**. 2025. <a href="https://cplusplus.com/">https://cplusplus.com/</a>>. Acesso em: 20 abr. 2025.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design RISC-V Edition: The Hardware Software Interface. [S.I.]: Morgan Kaufmann, 2017. Acesso em: 20 abr. 2025.

RISC-V International. **RISC-V Overview**. 2025. <a href="https://riscv.org/about/">https://riscv.org/about/</a>>. Acesso em: 20 abr. 2025.

STALLINGS, W. **Arquitetura e Organização de Computadores**. [S.I.]: Pearson, 2018. Livro-texto sobre arquitetura de computadores.

WATERMAN, A.; ASANOVIĆ, K. The RISC-V Instruction Set Manual, Volume I: User-Level ISA. [S.I.]: RISC-V Foundation, 2019. Acesso em: 20 abr. 2025.

