Homework 4

Metric and Topological Spaces

John Möller

Contents	
----------	--

1 Exercises 1

1 Exercises

Problem 1.1 (7.2). Give an example of two topologies $\mathcal{T}_1, \mathcal{T}_2$ on the same set such that neither contains the other.

Solution 1.1.1. Sierpinski spaces will provide an example. Let $X = \{0, 1\}$. Let $\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1\}\}$ and let $\mathcal{T}_2 = \{\emptyset, \{1\}, \{0, 1\}\}$.

Both \mathcal{T}_1 and \mathcal{T}_2 are topologies on X, but neither contains each other since $\mathcal{T}_1 \cap \mathcal{T}_2 = \{\emptyset, \{0, 1\}\}$ is not equal to either \mathcal{T}_1 or \mathcal{T}_2 .

Problem 1.2 (7.3). Show that the intersection of two topologies on the same set X is also a topology on X, but that their union may or may not be a topology. Does the first result extent to the intersection of an arbitrary family of topologies on X?

Solution 1.2.1. Let $\{\mathcal{T}_i\}_{i\in I}$ be any collection of topologies on X and define

$$\mathcal{T} = \left(\bigcap_{i \in I} \mathcal{T}_i\right).$$

Consider any $j \in I$. Obviously $\mathcal{T} \subseteq \mathcal{T}_j$. Since \mathcal{T}_j is collection of subsets of X that means \mathcal{T} is also a collection of subsets of X.

Since for all $i \in I$ \mathcal{T}_i is a topology that means $X, \emptyset \in \mathcal{T}_i$ for all $i \in I$ which means that $X, \emptyset \in \mathcal{T}$. Thus the first axiom of a topological space is fullfilled.

Let $U, V \in \mathcal{T}$. Since $\mathcal{T} \subseteq \mathcal{T}_i$ for all $i \in I$ we have that $U, V \in \mathcal{T}_i$ for all $i \in I$. Since \mathcal{T}_i are topologies (on X) for all $i \in I$, we have from the second axiom that $U \cap V \in \mathcal{T}_i$ for all $i \in I$ which means that

$$U \cap V \in \left(\bigcap_{i \in I} \mathcal{T}_i\right) = \mathcal{T}.$$

Thus \mathcal{T} fullfills the second axiom of being a topological space.

Let $\{U_j\}_{j\in J}$ be a collection of sets $U_j\in \mathcal{T}$. This must mean that for all $j\in J$, $U_j\in \mathcal{T}_i$ for all $i\in I$. From the third axiom of topological spaces this implies that $(\bigcup_{j\in J} U_j)\in \mathcal{T}_i$ for all $i\in I$ which means that

$$\left(\bigcup_{j\in J} U_i\right) \in \left(\bigcap_{i\in I} \mathcal{T}_i\right) = \mathcal{T}.$$

thus we have shown that \mathcal{T} fullfills the third axiom of being a topological space on X. We have thus shown all axioms and \mathcal{T} is a topological space on X. Which mean the intersection of an arbitrary collection of topologies on X is a topology on X. To prove the case that the intersection of 2 topologies is a topology we let $I = \{1, 2\}$.

Problem 1.3 (8.1). Prove proposition 8.6.

Solution 1.3.1. a: We want to prove that $id_X: X \to X$ is continuous. Let $U \subseteq X$ be open. Then $id_X^{-1}(U) = U$ which is open by assumption.

b: Let $c \in Y$ and define $f: X \to Y$ as f(x) = c for all $x \in X$. Let $U \subseteq Y$ be open. If U contains c then $f^{-1}(U) = X$ which is open. If U does not contain c, then there are

no values of X that get mapped to U (since all go to c), which means that $f^{-1}(U) = \emptyset$ which is also open. Thus we have shown that given that U is open $f^{-1}(U)$ will also be open.

- c: Let $U \subseteq Y$ be open. Since $f^{-1}(U)$ is a subset of X and all subsets of X are open under the discrete topology, then $f^{-1}(U)$ will be open.
- d: Let $U \subseteq Y$ be open. This means $U = \emptyset$ or U = Y. Assume $U = \emptyset$, then $f^{-1}(U) = \emptyset$ which is open in X. Assume U = Y then $f^{-1}(U) = X$ which is open in X.

Problem 1.4 (10.5). Suppose that (A, \mathcal{T}_A) is a subspace of space (X, \mathcal{T}) and that $V \subseteq X$ is closed in X. Prove that $V \cap A$ is closed in (A, \mathcal{T}_A) .

Solution 1.4.1. If V is closed in X then $X \setminus V$ is open in X. Since A was a subspace then that means that $A \cap (X \setminus V)$ is open in A. According to exercise 2.2 this is equal to $A \setminus (V \cap A)$ which is thus open. The complement of this in A is $V \cap A$, which is thus closed.

Problem 1.5 (10.6). Suppose that (A, \mathcal{T}_A) is a subspace of a topological space (X, \mathcal{T}) and that $W \subseteq A$.

- a: If W is open in A, and A is open in X, prove W is open in X.
- b: If W is closed in A and A is closed in X the prove W is closed in X.

Solution 1.5.1. a: If W is open in A then there exists an open set U of X such that $U \cap A = W$. If A is open in X then the second topology axiom says $U \cap A = W$ is open in X.

b:

If W is closed in A there exists an open U in A such that $A \setminus U = W$. There exists an open V in X such that $U = V \cap A$. Thus $W = A \setminus (V \cap A)$, and we can rewrite this with exercise 2.2 as $W = A \cap (X \setminus V)$ so if A is closed in X then this is a intersection of closed sets in X which Proposition 9.4 says is also a closed set.