Matrius i Vectors Tardor 2020

4.1 Trobeu sistemes d'equacions dels subespais de \mathbb{R}^4

$$F = \langle (1, 2, 3, 4), (1, 3, 1, 2) \rangle$$

$$H = \langle (1, 2, 3, 4), (1, 2, 1, 2) \rangle.$$

- **4.2** Representem els vectors d'un espai vectorial E per les seves coordenades relatives a una base e_1, e_2, e_3, e_4 .
 - (i) Trobeu valors de a i b per tal que el subespai $F = \langle v_1, v_2, v_3 \rangle$, generat per

$$v_1 = (1, 2, 3, 4), v_2 = (1, 2, 1, 1), v_3 = (a, b, 2, 3)$$

tingui dimensió 2.

- (ii) Escolliu una base de F i amplieu-la a una base \mathfrak{B} de E.
- (iii) Determineu les coordenades dels vectors e_1, e_2, e_3, e_4 en la base \mathfrak{B} de l'apartat anterior.
- **4.3** Determineu la dimensió, una base i equacions dels subespais generats per les següents famílies de vectors de \mathbb{R}^n :

$$A = \{(1,3,2), (1,0,-1) (2,-3,5)\} \subset \mathbb{R}^3,$$

$$B = \{(0,2,-1), (4,3,-2), (4,1,-1)\} \subset \mathbb{R}^3,$$

$$C = \{(1,2,1,3), (2,1,4,3), (1,3,2,1)\} \subset \mathbb{R}^4,$$

4.4 Doneu una base del subespai de \mathbb{R}^4 que té equacions

$$x - 2y + z - t = 0$$
$$2x - 5y - z - t = 0.$$

El mateix pel subespai d'equacions

$$x - 2y + z - t = 0$$
$$2x - 4y - z - t = 0$$

- **4.5** Calculeu la dimensió del subespai de \mathbb{R}^n generat pels vectors $u_1 = (1, 1, 0, \dots, 0), u_2 = (0, 1, 1, 0, \dots, 0), \dots, u_{n-1} = (0, 0, \dots, 1, 1), u_n = (1, 0, \dots, 0, 1).$
- **4.6** Fixada una base $\mathfrak{B} = (e_1, e_2, e_3, e_4)$ d'un espai vectorial E
- (i) Demostreu que $G = \{(x, y, z, t)_{\mathfrak{B}} \in E \mid x+y=z+t=0\}$ és un subespai vectorial de E; calculeu-ne la dimensió i una base.
- (ii) Sigui F el subespai vectorial de E generat per $v_1 = (1,1,0,0)_{\mathfrak{B}}, v_2 = (1,0,1,0)_{\mathfrak{B}}$ i $v_3 = (1,0,0,1)_{\mathfrak{B}}$; trobeu-ne equacions i una base.
- **4.7** Sigui E un espai vectorial. Sigui F un subespai vectorial de E amb base (v_1, \ldots, v_r) . Sigui G un subespai vectorial de E amb equacions $f_1 = 0, \ldots, f_s = 0$. Proveu que $F \subset G$ si, i només si, v_1, \ldots, v_r són solucions del sistema d'equacions $f_1 = 0, \ldots, f_s = 0$.

Matrius i Vectors Tardor 2020

4.8 Sigui E un espai vectorial de dimensió n. Sigui F un subespai vectorial de E amb equacions $f_1 = 0, \ldots, f_r = 0$, sigui G un subespai vectorial de E amb equacions $g_1 = 0, \ldots, g_s = 0$. Proveu que $F \subset G$ si, i només si, el sistema d'equacions $f_1 = 0, \ldots, f_r = 0, g_1 = 0, \ldots, g_s = 0$ té rang F.

- **4.9** Calculeu les dimensions i bases de G + F i de $G \cap F$, on F i G són els subespais de l'exercici 4.6.
- **4.10** Considerem el subespai F de \mathbb{R}^4 generat pels vectors (1,2,3,4), (2,2,2,6), (0,2,4,4) i el subespai G generat per (1,0,-1,2), (2,3,0,1). Determineu les dimensions, una base i equacions dels subespais $F,G,F+G,F\cap G$.
- **4.11** Considereu els següents subespais de \mathbb{R}^4 :

$$F := \langle (1,0,1,0), (0,2,1,0) \rangle, \quad G = \{(x,y,z,t); x-z=y=0\}.$$

Trobeu dimensions, bases i equacions implícites dels subespais $F, G, F \cap G$ i F + G.

4.12 Considerem el següents vectors de \mathbb{R}^6 :

$$\begin{array}{lll} u_1 := (1,1,0,0,0,0), & u_2 := (1,0,1,0,0,0), & u_3 := (1,0,0,1,0,0), \\ v_1 := (0,1,1,0,0,0), & v_2 := (0,1,0,1,0,0), & v_3 := (0,1,0,0,1,0), \\ w_1 := (0,0,1,1,0,0), & w_2 := (0,0,1,0,1,0), & w_3 := (0,0,1,0,0,1). \end{array}$$

Siguin

$$F := \langle u_1, u_2, u_3 \rangle, \quad G := \langle v_1, v_2, v_3 \rangle, \quad H := \langle w_1, w_2, w_3 \rangle.$$

Trobeu bases de $(F \cap G) + H$, de $(F \cap H) + G$ i de $(H \cap G) + F$.

4.13 Considerem a \mathbb{R}^4 els subespais vectorials donats per

$$H = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y + z = 0, y + z + t = 0, x + 2z + t = 0\},$$

$$F_a = \langle (1, 1, 2, 1), (0, 2, 0, 1), (-1, 3, a, 1) \rangle.$$

- (i) Trobeu bases de cada un d'ells, segons els valors del paràmetre a.
- (ii) Trobeu equacions per F_a , segons els valors de a.
- (iii) Trobeu els subespais $H \cap F_a$ i $H + F_a$ en cada cas. Doneu-los per equacions implícites i determineu bases de cada un d'ells.
- **4.14** En un espai vectorial de dimensió quatre, representats els seus vectors per les seves coordenades en una base prèviament fixada, es consideren els subespais:

$$\begin{split} F = &< (1, -3, 2, 4), (2, 0, 1, 2) > \\ G = &< (3, 1, 1, 2), (1, -1, 1, 2), (1, 3, -1, 2) > \\ H = &< (2, 0, 1, 2), (1, -1, 1, 2), (1, 3, 0, 2) > \end{split}$$

i el subespai T d'equacions

$$2x - 2y - 2z - t = 0$$
$$x - y - t = 0.$$

Determine quines inclusions hi ha entre ells.

Matrius i Vectors Tardor 2020

4.15 Trobeu quines condicions ha de complir un vector $(a,b,c) \in \mathbb{R}^3$ per tal que

$$\mathbb{R}^3 = \langle (1, 2, 0), (1, 0, -1) \rangle \oplus \langle (a, b, c) \rangle.$$

- **4.16** Considerem, per a cada $a \in \mathbb{R}$, el conjunt de vectors $E_a = \{(x, y, z) \in \mathbb{R}^3 \mid ax y + z = 0\}$.
 - (i) Demostreu que, per a tot a, E_a és un subespai vectorial de \mathbb{R}^3 .
- (ii) Determineu per a quins valors de a es compleix $\mathbb{R}^3 = E_a \oplus \langle (1,1,1) \rangle$.
- **4.17** Considerem els següents vectors de \mathbb{R}^4

$$v_1 = (1, 0, 1, 0), v_2 = (1, 0, 0, 0), v_3 = (1, 0, -1, 1), v_4 = (2, 0, 0, 1).$$

Comproveu quines de les sumes

$$\langle v_1, v_2 \rangle + \langle v_3, v_4 \rangle, \langle v_1, v_3 \rangle + \langle v_2, v_4 \rangle, \langle v_1, v_4 \rangle + \langle v_2, v_3 \rangle$$

són sumes directes i quines no.

- **4.18** Considerem el subespai F de \mathbb{R}^4 generat pels vectors (1, -1, 2, 3), (2, 1, -3, 0), (3, 3, -8, -3). Doneu dos complementaris diferents de F en \mathbb{R}^4 .
- **4.19** Considerem els subespais de \mathbb{R}^4 , F = <(1, 2, -2, -1) i G amb equació 2x + y + 2z = 0. Comproveu que $F \subset G$ i doneu un complementari de F en G.
- **4.20** Siguin F, G i H tres subespais vectorials d'un espai vectorial E.
- (i) Determineu $\dim(F+G+H)$ en funció de $\dim F$, $\dim G$, $\dim H$, $\dim((F+G)\cap H)$ i $\dim(F\cap G)$.
- (ii) Siguin $(u_1, \ldots, u_r), (v_1, \ldots, v_s), (w_1, \ldots, w_t)$ bases de F, G i H, respectivament. Proveu que $(u_1, \ldots, u_r, v_1, \ldots, v_s, w_1, \ldots, w_t)$ és base de F+G+H si, i només si $(F+G)\cap H=\{\vec{0}\}$ i $F\cap G=\{\vec{0}\}$.