```
In [1]: import pandas as pd
import numpy as np
df = pd.read_csv("airquality (1).csv")
df
```

Out[1]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	1	41.0	190.0	7.4	67	5	1	High
1	2	36.0	118.0	8.0	72	5	2	High
2	3	12.0	149.0	12.6	74	5	3	Low
3	4	18.0	313.0	11.5	62	5	4	NaN
4	5	NaN	NaN	14.3	56	5	5	High
148	149	30.0	193.0	6.9	70	9	26	Low
149	150	NaN	145.0	13.2	77	9	27	Low
150	151	14.0	191.0	14.3	75	9	28	High
151	152	18.0	131.0	8.0	76	9	29	Medium
152	153	20.0	223.0	11.5	68	9	30	Low

153 rows × 8 columns

In [2]: df.isnull().sum()

Out[2]: Unnamed: 0 0 0zone 37 Solar.R 7 Wind 2 Temp 0 Month 0 Day 0 Humidity 8 dtype: int64

```
In [3]: df = df.drop(['Unnamed: 0'], axis=1)
df
```

Out[3]:

	Ozone	Solar.R	Wind	lemp	Month	рау	Humidity
0	41.0	190.0	7.4	67	5	1	High
1	36.0	118.0	8.0	72	5	2	High
2	12.0	149.0	12.6	74	5	3	Low
3	18.0	313.0	11.5	62	5	4	NaN
4	NaN	NaN	14.3	56	5	5	High
148	30.0	193.0	6.9	70	9	26	Low
149	NaN	145.0	13.2	77	9	27	Low
150	14.0	191.0	14.3	75	9	28	High
151	18.0	131.0	8.0	76	9	29	Medium
152	20.0	223.0	11.5	68	9	30	Low

153 rows × 7 columns

```
In [4]: df.isnull().sum()
```

```
Out[4]: Ozone 37
Solar.R 7
Wind 2
Temp 0
Month 0
Day 0
Humidity 8
dtype: int64
```

```
In [8]: df['Ozone'].fillna(df['Ozone'].mean(), inplace=True)
    df['Solar.R'].fillna(df['Solar.R'].mean(), inplace=True)
    df['Wind'].fillna(df['Wind'].mean(), inplace=True)
```

```
In [9]: df['Humidity'] = df['Humidity'].fillna(df['Humidity'].mode()[0])
```

In [10]: df

Out[10]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.00000	190.000000	7.4	67	5	1	High
1	36.00000	118.000000	8.0	72	5	2	High
2	12.00000	149.000000	12.6	74	5	3	Low
3	18.00000	313.000000	11.5	62	5	4	High
4	42.12931	185.931507	14.3	56	5	5	High
148	30.00000	193.000000	6.9	70	9	26	Low
149	42.12931	145.000000	13.2	77	9	27	Low
150	14.00000	191.000000	14.3	75	9	28	High
151	18.00000	131.000000	8.0	76	9	29	Medium
152	20.00000	223.000000	11.5	68	9	30	Low

153 rows × 7 columns

In [11]: df.isnull().sum()

Out[11]: Ozone

Solar.R 0 Wind 0 Temp 0 Month 0 Day 0 Humidity dtype: int64

In [12]: df.describe()

Out[12]:

	Ozone	Solar.R	Wind	Temp	Month	Day
count	153.000000	153.000000	153.000000	153.000000	153.000000	153.000000
mean	42.129310	185.931507	9.945033	77.882353	6.993464	15.803922
std	28.693372	87.960267	3.520648	9.465270	1.416522	8.864520
min	1.000000	7.000000	1.700000	56.000000	5.000000	1.000000
25%	21.000000	120.000000	7.400000	72.000000	6.000000	8.000000
50%	42.129310	194.000000	9.700000	79.000000	7.000000	16.000000
75%	46.000000	256.000000	11.500000	85.000000	8.000000	23.000000
max	168.000000	334.000000	20.700000	97.000000	9.000000	31.000000

```
Out[14]: Ozone
                       float64
                       float64
          Solar.R
          Wind
                       float64
          Temp
                         int64
          Month
                         int64
          Day
                         int64
          Humidity
                        object
          dtype: object
In [15]:
          from sklearn.preprocessing import LabelEncoder
          lb = LabelEncoder()
In [16]:
          df["Humidity"] = lb.fit_transform(df["Humidity"])
Out[16]:
                 Ozone
                          Solar.R Wind Temp Month Day Humidity
            0 41.00000 190.000000
                                                             0
                                         67
                                                5
                                   7.4
                                                     1
            1 36.00000 118.000000
                                   8.0
                                         72
                                                5
                                                    2
                                                             0
            2 12.00000 149.000000
                                  12.6
                                                5
                                         74
                                                    3
                                                             1
            3 18.00000 313.000000
                                  11.5
                                         62
                                                5
                                                    4
                                                             0
            4 42.12931 185.931507
                                                5
                                                    5
                                  14.3
                                         56
                                                             n
           148 30.00000 193.000000
                                   6.9
                                         70
                                                9
                                                    26
                                                             1
           149 42.12931 145.000000
                                  13.2
                                         77
                                                9
                                                    27
                                                             1
           150 14.00000 191.000000
                                  14.3
                                         75
                                                9
                                                    28
                                                             0
           151 18.00000 131.000000
                                   8.0
                                         76
                                                9
                                                    29
                                                             2
          152 20.00000 223.000000
                                  11.5
                                         68
                                                9
                                                    30
                                                             1
          153 rows × 7 columns
          x = df.iloc[:, [0, 3]].values
In [17]:
          y = df['Humidity']
          from sklearn.model_selection import train_test_split
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
In [19]:
          from sklearn.linear_model import LogisticRegression
          model = LogisticRegression()
          model.fit(x_train, y_train)
Out[19]: LogisticRegression()
In [20]:
          pred = model.predict(x_test)
          pred
Out[20]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2,
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0])
```

In [14]: df.dtypes

In [21]: from sklearn.metrics import classification_report
 print(classification_report(y_test, pred))

	precision	recall	f1-score	support
Θ	0.35	0.80	0.49	15
1	0.00	0.00	0.00	14
2	0.00	0.00	0.00	10
accuracy			0.31	39
macro avg	0.12	0.27	0.16	39
weighted avg	0.14	0.31	0.19	39

In []: