Contrôle des chaînes de Markov 2008/09, En vue du partiel.

Le jeu Googol

Soit θ une v.a. de loi de Pareto $\mathcal{P}a(\alpha,1)$. La loi de Pareto $\mathcal{P}a(\alpha,x)$ est la loi sur \mathbb{R} de densité

$$f(\theta) = \alpha x^{\alpha} \theta^{-\alpha - 1} \mathbb{I}_{\theta > x}$$

où $\theta > 0$ et $x \in \mathbb{R}$. Soient $X_1, ..., X_n$ des v.a. qui conditionnellement à θ sont i.i.d. avec loi uniforme sur $[0, \theta]$. Soit $M_0 = X_0 = 1$ et pour j = 1, ..., n soit $M_j = \max{(X_0, ..., X_j)} = \max{(M_{j-1}, X_j)}$. On observe les $\{X_j\}_{j=0,...,n}$ une à la fois et on peut s'arrêter à tout moment. Quand on s'arrête on gagne si la dernière v.a. X_j observée est la plus grande parmi toutes les $\{X_j\}_{j=0,...,n}$ $(X_0$ comprise). On veut maximiser la probabilité de victoire parmi tous les t.a. associés à la filtration $\{\mathcal{F}_k\}_{k=1,...,n}$ engendrée par les $\{X_k\}_{k=1,...,n}$.

- a) Les v.a. $X_1, ..., X_n$ sont elles indépendantes?
- b) Montrer que la loi conditionnelle de θ sachant $X_1, ..., X_k$ est $\mathcal{P}a(k+\alpha, M_k)$.
- c) Montrer que $Y_k = \mathbb{P}(X_k = M_n | X_1, ..., X_k) = ((k + \alpha)/(n + \alpha)) \mathbb{I}_{X_k = M_k}$.
- d) Montrer que $\mathbb{P}(X_k = M_k | X_1, ..., X_{k-1}) = 1/(\alpha + k)$ et donc que $\{X_k = M_k\}$ est indépendant de \mathcal{F}_{k-1} .
- e) Montrer que l'on peut donc écrire la probabilité de victoire en s'arrêtant au t.a. T comme $\mathbb{E}[Y_T]$.
- f) Montrer par un calcul explicite que $\mathbb{E}[Z_n|\mathcal{F}_{n-1}]$ est une constante.
- g) Montrer par induction que $\mathbb{E}[Z_{k+1}|\mathcal{F}_k] = \mathbb{E}[Z_{k+1}]$ pour tout k = 1, ..., n-1.
- h) Montrer que $\mathbb{E}[Z_k], k=1,...,n$ est une fonction decroissante de k.
- i) Montrer qu'une stratégie d'arrêt optimale est de laisser passer r-1 nombres et ensuite de s'arrêter au premier $j \ge r$ tel que $X_j = M_j$, où r est un entier compris entre 1 et n-1. Soit T_r cette règle d'arrêt.
- j) Montrer que

$$\mathbb{P}(X_{T_r} = M_n) = \frac{r - 1 + \alpha}{n + \alpha} \sum_{j=r}^{n} \frac{1}{j - 1 + \alpha}$$

et donc que la règle d'arrêt optimale est T_r où r est la valeur qui maximise cette expression.