Nous innovons pour votre réussite!

Examen en Analyse 3

Durée (2 h:00 mn)

Prof. A.Ramadane, Ph.D.

Nous innovons pour votre réussite!

Exercice (3,5 points):

Ecrire sous la forme d'une série de Fourier la fonction

$$f(x) = \begin{cases} 0 & \text{si } -L < x < 0 \\ E \sin(wx) & \text{si } 0 < x < L \end{cases}, \ p = 2L = 2\pi/w, \ L = \pi/w.$$

Exercice (4 points):

Estimer la valeur de

$$f(x) = \int_0^{0.5} \ln (1 + y^2) dy$$

Avec une garantie que l'erreur commise est moindre que 0.01

Problème -1 - (5,5 points):

Dans la théorie d'Einstein de la relativité restreinte, la masse d'un objet en mouvement à la vitesse v est :

$$m = \frac{\mathrm{m_0}}{\sqrt{1 - \frac{\mathrm{v}^2}{\mathrm{c}^2}}}$$

Où m_0 est la masse de l'objet au repos et c, la vitesse de la lumière. L'énergie cinétique de l'objet est la différence entre son énergie totale et son énergie au repos :

$$k = mc^2 - m_0c^2$$

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite!

- a) Montrer que lorsque v est très petit par rapport à c, l'expression de \mathbf{k} s'accorde avec la physique Newtonienne classique $K = \frac{1}{2} m_0 v^2$
- b) Utilisons l'inégalité de Taylor pour estimer la différence entre ces expressions de K lorsque | v | ≤ 100 m/s

Problème- 2- (7 points):

On considère la fonction

$$f(x) = \int_0^x e^{-y^2} dy$$

- a) Donner la série de Taylor de f, notée T(x), autour de a=0.
- b) Evaluer f(1) avec une erreur inférieure à 1/20
- c) Est-ce que T(x) permet d'estimer $f(2\pi)$, Justifier.
- d) Soit $P_n(x)$ le polynôme de Taylor de degré n de f autour de $a=\pi$. Utiliser l'analyse de Taylor pour déterminer une borne supérieure sur l'approximation de f par $P_n(x)$ dans un intervalle quelconque J contenant π
- e) Est-ce que $P_n(x)$ converge vers f(x) pour tout $x \in I$?
- f) En utilisant T(x), évaluer $f(2\pi)$ avec une précision de 6/10

