Experimental Protocols

Last update on 10/23/2013

♦ Small scale bleaching protocol

Objective

To synchronize worms at L1 stage using a 1.5 mL centrifuge tube

- Procedure
 - Before beginning, check plates for gravid adults and eggs
 * must be at this stage to bleach
 - 2. Add 1 mL M9 buffer to each well in a plate
 - 3. Wash plate with Pasteur pipette
 - 4. Transfer worm solution to 1.5 mL Ependorf centrifuge tube
 - 5. Centrifuge at 3000 rpm for 30 seconds
 - 6. Aspirate to 0.3 ml
 - 7. Add 500 µL of 1M NaOH
 - 8. Add 200 µL of bleach directly from bottle
 - 9. Vortex immediately
 - * Vortex every minute until worms crack open and begin to dissolve
 - 10. Centrifuge at 300 rpm for 30 seconds
 - 11. Aspirate above pellet
 - 12. QS to 1 mL
 - 13. Vortex
 - 14. Centrifuge at 3000 rpm for 30 seconds
 - 15. Repeat steps 10-13 three times
 - 16. Aspirate to 0.2 mL
 - 17. Add 2 mL of M9 buffer to one well of the sterile 6-well plate
 - 18. Add 2 μ L of 5 mg/mL cholesterol to well
 - * Do not flame cholesterol
 - 19. Use New Pasteur pipette to mix and transfer worm solution to well
 - * Do not allow worm solution to go above neck of Pasteur pipette
 - 20. Incubate at 20°C overnight

♦ FUdR Dosing

Objective

FUdR dosing prevents eggs from hatching, allowing the synchronization of the life cycle of the worm population to be maintained.

- Procedure
 - 1. Calculate the amount of FUdR and deionized water needed for the experiment.
 - Desired concentration is 25 µmol FUdR/L agar
 - If using a 10 g/L FUdR stock solution, this corresponds to 3.69 μ L for 6 mL total volume (the volume of a well in a 6-well plate)
 - For reference, this calculation is how the 3.69 μ L is obtained: (25 μ mol/L)(6 mL)(1 L/10³ mL)(1 mol/10⁶ μ mol)(246.2 g/mol)(1 L/10 g) (10⁶ μ L/L) = 3.69 μ L 10 g/L FUdR per 6 mL
 - To prepare diluted FUdR solution: 3.69 μ L of 10 g/L FUdR + 96.31 μ L water \rightarrow 100 μ L FUdR solution for a single dosage in a well.
 - 2. Calculate the number of wells needed for the experiment with some extra
 - 3. Prepare diluted FUdR solution for dosing multiple wells
 - 4. Dose 100 μL onto each well in a 6-well plate at L4

♦ Lifespan assay

Day 0

- Conduct the small scale bleaching protocol to isolate eggs from gravid worms
- Incubate the eggs overnight at 20°C in M9 solution containing cholesterol

Day 1

- Concentrate hatched L1 using a centrifuge
- Transfer ~70 worms into each well in a 6-well NGM plated seeded with OP50
- Incubate the worms at 20°C

Day 3 (worms at L4)

- Dosed the plate with FUdR at 25 $\mu mol/L$ agar to prevent eggs from hatching Day 4 \sim
 - Scan plates every day

♦ Locomotion assay with food

This assay was conducted in conjunction with the lifespan assay.

Day 0

- Conduct the small scale bleaching protocol to isolate eggs from gravid worms
- Incubate the eggs overnight at 20°C in M9 solution containing cholesterol

Day 1

- Concentrate hatched L1 using a centrifuge
- Transfer ~70 worms into each well in a 6-well NGM plated seeded with OP50
- Incubate the worms at 20°C

Day 3 (worms at L4)

- Dosed the plate with FUdR at 25 μ mol/L agar to prevent eggs from hatching Day 4 (worms at 1 day of adulthood)
 - Take videos for 30 seconds for each well

♦ Locomotion assay without food

Day 0

- Conduct the small scale bleaching protocol to isolate eggs from gravid worms
- Incubate the eggs overnight at 20°C in M9 solution containing cholesterol

Day 1

- Concentrate hatched L1 using a centrifuge
- Transfer 100 worms into each well in a 6-well NGM plated seeded with OP50
- Incubate the worms at 20°C

Day 4 (worms at 1 day of adulthood)

- Rinse the worms with cold S-basal solution three times and then transfer to unseeded 6-well NGM plates
- Wait approximately 20 minutes
- Take videos for 30 seconds for each well

♦ Body size assay

Day 0

- Conduct the small scale bleaching protocol to isolate eggs from gravid worms
- Incubate the eggs overnight at 20°C in M9 solution containing cholesterol

Day 1

- Concentrate hatched L1 using a centrifuge
- Transfer 100 worms into each well in a 6-well NGM plated seeded with OP50

- Incubate the worms at 20°C

Day 4 (worms at 1 day of adulthood)

- Collect worms from each well with M9 solution and transfer to unseeded 6-well plates
- Kill the worms by adding 20 μL of 1 M sodium azide into each well
- Scan the plates

♦ Egg laying experiment

Day 0

- Conduct the small scale bleaching protocol to isolate eggs from gravid worms
- Incubate the eggs overnight at 20°C in M9 solution containing cholesterol

Day 1

- Concentrate hatched L1 using a centrifuge
- Transfer 100 worms into each well in a 6-well NGM plated seeded with OP50
- Incubate the worms at 20°C

Day 3

- Incubate E. coli OP50 bacteria overnight

Day 4 (worms at 1 day of adulthood)

- Prepare seeded 24-well plates prior to the egg laying experiment
 - 1. Dry 24-well NGM plates for 10 min in a fume hood
 - 2. Drop 5 µL OP50 on each well
 - 3. Dry the plate for 5 min in a fume hood
- Conduct the egg laying experiment using worms at 28 hr from L4 larval stage
 - 1. Drop 700 μL M9 onto a well in a 6-well plate and transfer worms into a centrifuge tube
 - 2. Leave the tube for a while in an ice box until worms are precipitated
 - 3. Aspirate up to 100 μL
 - 4. Vortex the tube and take 10 μ L worm solution from the tube and drop ~10 worms onto a well in a 24-well plate seeded with OP50
 - 5. Incubate at 20°C for 90 min
 - 6. Drop 15 μ L sodium azide on a well to kill worms and dry it for a while. Eight multiple wells were used for each strain.
 - 7. Store the plate at 4°C if you want to scan the plate later
 - 8. Scan the plate