Decoder with Enable Input

Ε	X	У	Z	D0	D1	D2	D3	D4	D5	D6	D7
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1
0	X	X	X	0	0	0	0	0	0	0	0

Decoder using Decoder

- Decoders with enable input can be connected together to form a larger decoder circuit
 - Required number of lower order decoders = m2/m1
 - m1- number of outputs of lower order
 - m2 number of outputs of higher order

3x8 Decoder using 2x4 Decoders

хуг	F	у ———		1	D_0 D_1
000	D ₀	z 	\dashv	2 X 4 Decoder	D_1 D_2
001	D_1				D ₃
010	D ₂				l
011	D_3	x —	×		
100	D ₄				D4
101	D ₅		'	2 X 4 Decoder	D5
110	D_6			2 A 4 Decoder	D6
111	D ₇			L	\mathbf{D}_7

Required number of 2x4 decoder to construct a 3x8 decoder = 8/4 = 2

Encoder

- An encoder is a combinational circuit that has 2ⁿ (or fewer) input lines and n output lines. The output lines generate the binary code corresponding to the input value.
- It performs the inverse operation of a decoder
- If the encoder consists of eight inputs the minimum number of output lines is three.
- Block Diagram:

D ₀ — — — — — — — — — — — — — — — — — — —	8 x 3 Encoder	x y z
D ₀		

Truth Table:

D0	D1	D2	D3	D4	D5	D6	D7	x	У	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Encoder

• Functions:

$$x = D_4 + D_5 + D_6 + D_7$$

 $y = D_2 + D_3 + D_6 + D_7$
 $z = D_1 + D_3 + D_5 + D_7$

• Circuit Diagram:

Priority Encoder

- An encoder is a combinational circuit that has 2ⁿ (or fewer) input lines and n output lines. The output lines generate the binary code corresponding to the input value.
- It performs the inverse operation of a decoder
- If the encoder consists of eight inputs the minimum number of output lines is three.
- Block Diagram:

Truth Table:

D0	D1	D2	D3	X	у	Z
0	0	0	0	X	Х	0
1	0	0	0	0	0	1
Х	1	0	0	0	1	1
Х	X	1	0	1	0	1
Х	X	X	1	1	1	1

Priority Encoder

• Simplification:

D_2D_3	00	01	11	10
D_0D_1				
D_0D_1	Х	1		1
01	0	1	1	1
11	0	1	1	1
10	0	1		1

D_2D_3 D_0D_1	00	01	11	10
00	Х	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0

$$x = D_2 + D_3$$

$$y=D_3+D_1D_2'$$

Priority Encoder

• Functions:

$$x = D_2 + D_3$$

 $y = D_3 + D_1 D_2'$
 $V = D_0 + D_1 + D_2 + D_3$

• Circuit Diagram:

