. 1

Technical Report ARWSB-TR-17029

Mechanical Characterization of 3D Woven Carbon Composite

Bryan Whitmore

Andrew Littlefield

September 2017

ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

Weapons Software & Engineering Center

Benét Laboratories

Watervliet, NY 12189

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, aperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) Sept 2017 Technical 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanical Characterization of 3D Woven Carbon Composite **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Bryan Whitmore and Andrew Littlefield **5e. TASK NUMBER** 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT NUMBER U.S. Army ARDEC-WSEC's Benet Laboratories ARWSB-TR-17029 RDAR-WSB Watervliet, NY 12189-4000 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSORING/MONITORING AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report presents the results of testing performed by Intertek on six 3D woven carbon fiber composites. The panels were woven by 3Tex and Textile Engineering and Manufacturing (TEAM). Vacuum Assisted Resin Transfer Molding (VARTM) was performed by the University of Delaware's Center for Composite Materials. Tensile tests were conducted along all three axis, and shear tests were performed on the x and y axis. The Ultimate Tensile Strength (UTS), Young's Modulus, Shear Modulus, and Poisson's Ratio were calculated for each panel. Each panel showed varying degrees of anisotropy, which is typical for composites. This was particularly notable along the z-axis. The quantitative results for the majority of the tests are suspect and should not be considered accurate. This is due to grip slippage and adhesive failure that occurred during the tensile tests. As a result, further characterization of these materials will be necessary.

15. SUBJECT TERMS 3D woven composite						
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES 119	19a. NAME OF RESPONSIBLE PERSON Bryan Whitmore		
a. REPORT U/U U. L. THIS PAGE U				19b. TELEPONE NUMBER (Include area code) (518) 266-4739		

INSTRUCTIONS FOR COMPLETING SF 298

- **1. REPORT DATE.** Full publication date, including day, month, if available. Must cite at lest the year and be Year 2000 compliant, e.g., 30-06-1998; xx-08-1998; xx-xx-1998.
- **2. REPORT TYPE**. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.
- **3. DATES COVERED**. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 Jun 1998; 1-10 Jun 1996; May Nov 1998; Nov 1998.
- **4. TITLE.** Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.
- **5a. CONTRACT NUMBER**. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.
- **5b. GRANT NUMBER.** Enter all grant numbers as they appear in the report, e.g. 1F665702D1257.
- **5c. PROGRAM ELEMENT NUMBER.** Enter all program element numbers as they appear in the report, e.g. AFOSR-82-1234.
- **5d. PROJECT NUMBER.** Enter al project numbers as they appear in the report, e.g. 1F665702D1257: ILIR.
- **5e. TASK NUMBER.** Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.
- **5f. WORK UNIT NUMBER.** Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.
- **6. AUTHOR(S).** Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, Jr.
- 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

- **8. PERFORMING ORGANIZATION REPORT NUMBER.** Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.
- 9. SPONSORING/MONITORS AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.
- **10. SPONSOR/MONITOR'S ACRONYM(S).** Enter, if available, e.g. BRL, ARDEC, NADC.
- **11. SPONSOR/MONITOR'S REPORT NUMBER(S).** Enter report number as assigned by the sponsoring/ monitoring agency, if available, e.g. BRL-TR-829; -215.
- 12. DISTRIBUTION/AVAILABILITY
 STATEMENT. Use agency-mandated
 availability statements to indicate the public
 availability or distribution limitations of the report.
 If additional limitations/restrictions or special
 markings are indicated, follow agency
 authorization procedures, e.g. RD/FRD,
 PROPIN, ITAR, etc. Include copyright
 information.
- **13. SUPPLEMENTARY NOTES.** Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.
- **14. ABSTRACT.** A brief (approximately 200 words) factual summary of the most significant information.
- **15. SUBJECT TERMS.** Key words or phrases identifying major concepts in the report.
- **16. SECURITY CLASSIFICATION.** Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.
- 17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.

Abstract

This report presents the results of testing performed by Intertek on six 3D woven carbon fiber composites. The panels were woven by 3Tex and Textile Engineering and Manufacturing (TEAM). Vacuum Assisted Resin Transfer Molding (VARTM) was performed by the University of Delaware's Center for Composite Materials. Tensile tests were conducted along all three axis, and shear tests were performed on the x and y axis. The Ultimate Tensile Strength (UTS), Young's Modulus, Shear Modulus, and Poisson's Ratio were calculated for each panel. Each panel showed varying degrees of anisotropy, which is typical for composites. This was particularly notable along the z-axis. The quantitative results for the majority of the tests are suspect and should not be considered accurate. This is due to grip slippage and adhesive failure that occurred during the tensile tests. As a result, further characterization of these materials will be necessary.

Table of Contents

Abstract	i
Table of Contents	ii
List of Figures	iii
List of Tables	iii
Introduction	1
Panels	1
Testing	3
Results	4
Conclusion	7
References	7
Appendix I	8
Appendix II	108

List of Figures

Figure 1: 3D Woven Panels1
Figure 2: Properties Comparison6
List of Tables
Table 1: Fiber and resin properties2
Table 2: Panel 001
Table 3: Panel 0042
Table 4: Panel 0052
Table 5: Panel 006
Table 6: Panel 0073
Table 7: Panel 008
Table 8: 001 Properties4
Table 9: 004 Properties4
Table 10: 005 Properties5
Table 11: 006 Properties5
Table 12: 007 Properties5

Table 13: 008 Properties......6

Introduction

3D woven composites, like their more traditional counterparts, consist of reinforcing fibers in a supporting matrix. The defining characteristic of a 3D woven composite is that it includes fibers along the x, y, and z axis. Traditional composites weave fibers only along a single plane. To manufacture parts, these individual weaves or lamina are stacked to achieve the desired properties, and then infused with resin. The through thickness properties are thus comparable to those of the unreinforced matrix. As a result, 2D composites are prone to delamination if subjected to out of plane stresses and are labor intensive to produce. The addition of the z-axis fiber in 3D woven composites addresses these issues. This boosts the interlaminar strength, and allows for the weaving of near net shape parts. The weaves used in 3D composites differ from those used in 2D composites. The warp (lengthwise/y-axis) and fill (transverse/x-axis) fibers are not typically interlaced; this is left to the z-axis fibers. As a result, in plane properties can actually surpass those of 2D woven composites, and fiber crimp is minimized. This type of weave is also more porous, allowing for quicker resin infiltration (1).

Panels

The panels were woven by two companies. 3Tex wove panels one, five, and six. TEAM wove panels four, seven, and eight (Fig 1). 3Tex opted to use Toho Tenax HTS and HTA fibers, while TEAM used T700s fibers. The woven panel preforms underwent vacuum assisted resin transfer molding (VARTM) by the University of Delaware's Center for Composite Materials. Endurance 4505A resin and 4506B hardener were used as the matrix for each panel. Fiber and matrix properties are given in Table 1. Information on the structure and composition of each panel is given in tables 2-7.

Figure 1: 3D woven carbon composite panels produced by 3Tex and Team.

	Toho Tenax HTA	Toho Tenax HTS	T700S 6&12k	Endurance
	40 1k	40 6&12k		4505A w 4506B
Tensile	595	638	711	8.5
Strength (KSI)				
Young's	34.9	34.9	33.4	.4
Modulus (MSI)				

Table 1: Mechanical properties of the fibers and resin (2) (3)(4)

MPT-007-006-001

ЗТех	Architecture	Layers	Fiber	V _f	Panel Thickness
				Volume	(as woven)
				Fraction	
Warp	Orthogonal	6	Toho Tenax HTS 40	.25	.38
			12k		
Fill		7	HTS 40 6k outer	.25	
			HTS 40 12k inner		
Z-axis			HTA 40 1k	.02	

Table 2: Panel 001's structure and composition

MPT-007-006-004

TEAM	Architecture	Fiber	V _f	Panel Thickness (as woven)
Warp	Orthogonal	T700S 12k	.23	.45
Fill			.23	
Z-axis		T700S 6k	.02	

Table 3: Panel 004's structure and composition

MPT-007-006-005

ЗТех	Architecture	Layers	Fiber	V _f	Panel Thickness (as woven)
Warp	Orthogonal	6	Toho Tenax HTS 40 12k	.25	.38
Fill		7	HTS 40 6k for outer HTS 40 12k for inner	.25	
Z-axis			HTA 40 1k	.02	

Table 4: Panel 005's structure and composition

MPT-007-006-006

3Тех	Architecture	Layers	Fiber	V _f	Panel Thickness (as woven)
					(as woveri)
Warp	Orthogonal	8	Toho Tenax HTS 40 12k	.25	.5
Fill		9	HTS 40 6k for outer	.25	
			HTS 40 12k for inner		
Z-axis			HTA 40 1k	.02	

Table 5: Panel 006's structure and composition

MPT-007-006-007

TEAM	Architecture	Fiber	V _f	Panel Thickness (as woven)
Warp	Orthogonal	T700S 12k	.23	.45
Fill			.23	
Z-axis		T700S 6k	.02	

Table 6: Panel 007's structure and composition

MPT-007-006-008

TEAM	Architecture	Fiber	V _f	Panel Thickness (as woven)
Warp	Orthogonal	T700S 12k	.16	.14
Fill			.24	
Z-axis		T700S 6k	.07	

Table 7: Panel 008's structure and composition

Testing

Tensile and shear tests were performed by Intertek in accordance with American Society for Testing and Materials (ASTM) standards. Tensile tests were performed according to ASTM D3039M-14 for the in-plane $x(90^\circ)$ and y axis (0°) , and ASTM D7291M-15 for the throughthickness z axis. The tests were done using an Instron 5985 with hydraulic wedge abrasive grips for the x and y axis, and were bonded to the loading fixtures with Cybercryl 800 for the z axis. Shear tests were done in accordance with ASTM D7078M-12. The Instron 5985 was used for the shear tests as well.

Results

The tensile strength, elastic modulus, shear modulus, and Poisson's ratio for each panel are given in tables 8-13. Figure 2 A-D compares the properties of each panel. The stress strain curves for each test can be found in the appendix.

During all tensile tests, except four, grip slippage occurred. As a result, they were unable to be tested to failure. For these samples, the highest stress achieved was used as an approximation of the tensile strength. The failure mode of every through thickness tensile test involved partial adhesive failure, therefor z-axis tensile strengths are likely inaccurate.

The only panel to not suffer significant slippage during the x and y tests was the 008 panel. This is likely due to it being thinner and thus requiring lower applied loads. 008's Tensile strength is also notably higher in the x and y axis, even though it has the lowest volume fraction of x axis fibers. This may indicate that the strengths of the other panels are actually higher than those reported. 008's z-axis tensile strength is not significantly higher than the other panels. This is despite the fact it has the highest volume fraction of z axis fibers. This indicates that the z axis strengths reported might represent the adhesive used for the test, not the 3d woven composite.

3Tex Panel 001	Tensile Strength (TS) 0°* (KSI/MPa)	TS 90°*	TS Through Thickness (TT) **	Young's Modulus (E) 0° (MSI/GPa)	E 90°	E TT	Shear Modulus (<i>G</i>) 0° (KSI/MPa)	<i>G</i> 90°	Poisson's Ratio (<i>v)</i> 0° (%)	v 90°
1	59.8 / 412	66.1 / 456	2.57 / 17.7	10.0 / 68.9	10.9 / 75.2	1.84 / 12.7	397 / 2737	395 / 2723	0.058	0.0507
2	69.4 / 478	63.7 / 439	2.66 / 18.3	9.84 / 67.8	10.6 / 73.1	2.04 / 14.1	395 / 2723	410 / 2827	0.0426	0.0442
3	81.9 / 565	62.2 / 429	2.80 / 19.3	10.70 / 73.8	11.2 / 77.2	2.00 / 13.8	389 / 2682	398 / 2744	0.0349	0.0459
4			2.72 / 18.8			2.00 / 13.8	389 / 2682	400 / 2758		
5			2.88 / 19.9			2.00 / 13.8	400 / 2758	407 / 2806		
Average	<mark>70.4 / 485</mark>	<mark>64.0 /</mark> 441	<mark>2.73 / 18.8</mark>	10.2 / 70.3	10.9 / 75.2	1.98 / 13.7	<mark>394 / 2717</mark>	402 / 2772	0.0452	0.0469
Std. Dev.	11.1 / 77	2.0 / 14	.12 / .8	.46 / 3.2	.30 / 2.1	.08 / .54	4.9 / 34	6.28 / 43.3	0.0118	0.0034
C.O.V. (%)	16	3	4	4	3	4	1	2	26	7

Table 8: Mechanical properties for panel 001. *grip/**partial adhesive failure occurred

Team Panel 004	Tensile Strength (TS) 0°* (KSI/MPa)	TS 90°*	TS Through Thickness (TT) **	Young's Modulus (E) 0° (MSI/GPa)	E 90°	E TT	Shear Modulus (<i>G</i>) 0° (KSI/MPa)	<i>G</i> 90∘	Poisson's Ratio (<i>v)</i> 0° (%)	v 90°
1	69.7 / 481	48.3 / 333	2.95 / 20.3	8.22 / 56.7	7.46 / 51.4	1.79 / 12.3	436 / 3006	431 / 2972	0.0476	0.0874
2	69.3 / 478	56.4 / 389	3.00 / 20.7	8.25 / 56.9	8.87 / 61.2	1.98 / 13.7	470 / 3241	452 / 3116	0.0697	0.0957
3	67.5 / 465	59.7 / 412	2.80 / 19.3	7.78 / 53.6	8.37 / 57.7	1.68 / 11.6	467 / 3220	452 / 3116	0.054	0.113
4	66.7 / 460	47.4 / 327	2.85 / 19.7	8.00 / 55.2	8.92 / 61.5	1.56 / 10.8	447 / 3082	431 / 2972	0.0553	0.106
5	67.7 / 467	47.1 / 325	2.93 / 20.2	7.81 / 53.8	9.31 / 64.2	1.76 / 12.1	441 / 3041	464 / 3199	0.03	0.136
Average	<mark>68.2 / 470</mark>	<mark>51.8 /</mark> 357	<mark>2.91 / 20.1</mark>	<mark>8.01 / 55.2</mark>	<mark>8.59 / 59.2</mark>	<mark>1.75 / 12.1</mark>	<mark>452 / 3116</mark>	446 / 3075	0.0513	0.108
Std. Dev.	1.27 / 8.76	5.86 / 40.4	.08 / .55	.22 / 1.5	.71 / 4.9	.16 / 1.1	15.4 / 106	14.5 / 100	0.0144	0.019
C.O.V. (%)	2	11	3	3	8	9	3	3	28	17

Table 9: Mechanical properties for panel 004

3Tex Panel 005	Tensile Strength (TS) 0°* (KSI/MPa)	TS 90°	TS Through Thickness (TT) **	Young's Modulus (<i>E)</i> 0° (MSI/GPa)	E 90°	E TT	Shear Modulus (G) 0° (KSI/MPa)	<i>G</i> 90°	Poisson's Ratio (<i>v)</i> 0° (%)	v 90°
1	64.9 / 447	49.7 / 343	2.64 / 18.2	11.0 / 75.8	10.1 / 69.6	2.08 / 14.3	449 / 3096	526 / 3627	0.0446	0.064
2	72.8 / 502	52.4 / 361	2.54 / 17.5	10.9 / 75.2	10.8 / 74.5	1.87 / 12.9	351 / 2420	497 / 3427	0.0638	0.0542
3	74.6 / 514	49.6 / 342	2.54 / 17.5	10.8 / 74.5	10.3 / 71.0	1.91 / 13.2	518 / 3571	511 / 3523	0.0498	0.044
4			2.43 / 16.8			1.96 / 13.5	500 / 3447	529 / 3647		
5			2.32 / 16.0			1.87 / 12.9		506 / 3489		
Average	<mark>70.8 / 488</mark>	<mark>50.6 /</mark> <mark>349</mark>	2.49 / 17.2	10.9 / 75.2	10.4 / 71.7	1.94 / 13.4	455 / 3137	514 / 3544	<mark>0.0527</mark>	0.0541
Std. Dev.	5.16 / 35.6	1.59 / 11	.122 / .841	.10 / .69	.36 / 2.5	.09 / .60	74.9 / 516	13.5 / 93	0.0099	0.01
C.O.V. (%)	7	3	5	1	3	5	16	3	19	18

Table 10: Mechanical properties for panel 005

3Tex Panel 006	Tensile Strength (TS) 0°* (KSI/MPa)	TS 90°	TS Through Thickness (TT) **	Young's Modulus (<i>E)</i> 0° (MSI/GPa)	E 90°	E TT	Shear Modulus (<i>G</i>) 0° (KSI/MPa)	<i>G</i> 90°	Poisson's Ratio (<i>v)</i> 0° (%)	v 90°
1	70.0 / 483	48.7 / 336	2.30 / 15.9	10.8 / 74.5	10.7 / 73.8	1.95 / 13.4	413 / 2848	413 / 2848	0.0665	0.0535
2	75.1 / 518	46.6 / 321	2.53 / 17.4	11.0 / 75.8	11.1 / 76.5	1.94 / 13.4	394 / 2717	391 / 2696	0.0456	0.0579
3	71.1 / 490	44.2 / 305	2.57 / 17.7	10.6 / 73.1	10.9 / 75.2	2.04 / 14.1	381 / 2627	383 / 2641	0.0405	0.0602
4	73.7 / 508	42.0 / 290	2.53 / 17.4	10.7 / 73.8	10.9 / 75.2	2.10 / 14.5	358 / 2468	382 / 2634	0.0454	0.0529
5	75.4 / 520	43.3 / 299	2.40 / 16.5	10.4 / 71.7	10.7 / 73.8	2.07 / 14.3	394 / 2717	375 / 2586	0.0586	0.0449
6	73.9 / 510			11.0 / 75.8					0.0503	
Average	<mark>73.2 / 505</mark>	45.0 / 310	<mark>2.47 / 17.0</mark>	10.8 / 74.5	10.9 / 75.2	2.02 / 13.9	388 / 2675	389 / 2682	0.0512	<mark>0.0539</mark>
Std. Dev.	2.2 / 15	2.7 / 19	.113 / .779	.24 / 1.6	.17 / 1.2	.07 / .50	20.3 / 140	14.7 / 101	0.0097	0.0059
C.O.V. (%)	3	6	5	2	2	4	5	4	19	11

Table 11: Mechanical properties for panel 006

Team Panel 007	Tensile Strength (TS) 0°* (KSI/MPa)	TS 90° *	TS Through Thickness (TT) **	Young's Modulus (<i>E)</i> 0° (MSI/GPa)	E 90°	E TT	Shear Modulus (<i>G</i>) 0° (KSI/MPa)	<i>G</i> 90°	Poisson's Ratio (<i>v)</i> 0° (%)	v 90°
1	71.5 / 493	62.1 / 428	2.35 / 16.2	7.96 / 54.9	8.48 / 58.5	2.16 / 14.9	450 / 3103	478 / 3296	0.0833	0.0727
2	72.3 / 498	69.5 / 479	2.49 / 17.2	7.91 / 54.5	8.46 / 58.3	1.87 / 12.9	441 / 3041	451 / 3110	0.163	0.0481
3	70.2 / 484	67.0 / 462	2.44 / 16.8	7.79 / 53.7	8.77 / 60.5	1.85 / 12.8	449 / 3096	447 / 3082	0.0877	0.0874
4	71.0 / 490	71.8 / 495	2.44 / 16.8	7.86 / 54.2	8.80 / 60.7	2.01 / 13.9	446 / 3075	431 / 2972	0.112	0.104
5	69.9 / 482	71.8 / 495	2.40 / 16.5	7.87 / 54.3	8.39 / 57.8	1.94 / 13.4	452 / 3116	420 / 2896	0.105	0.0566
6	70.9 / 489	71.3 / 492		8.35 / 57.6	8.56 / 59.0				0.105	0.0581
Average	<mark>71.0 / 490</mark>	<mark>68.9 /</mark> 475	<mark>2.42 / 16.7</mark>	<mark>7.96 / 54.9</mark>	<mark>8.58 / 59.2</mark>	1.97 / 13.6	<mark>448 / 3089</mark>	445 / 3068	0.109	0.0712
Std. Dev.	.87 / 6.0	3.8 / 26	0.05 / .34	.20 / 1.4	.17 / 1.2	.13 / .86	4.3 / 30	22 / 152	0.029	0.0213
C.O.V. (%)	1	6	2	3	2	6	1	5	26	30

Table 12: Mechanical properties for panel 007

Team Panel 008	Tensile Strength (TS) 0° (KSI/MPa)	TS 90°	TS Through Thickness (TT) **	Young's Modulus (E) 0° (MSI/GPa)	E 90°	Shear Modulus (<i>G</i>) 0° (KSI/MPa)	<i>G</i> 90∘	Poisson's Ratio (<i>v)</i> 0° (%)	ν 90°
1	112 / 772	76.6 / 528	2.73 / 18.8	9.00 / 62.1	6.29 / 43.4	516 / 3558	511 / 3523	0.0776	0.0748
2	141 / 972	83.9 / 578	2.63 / 18.1	9.34 / 64.4	6.16 / 42.5	540 / 3723	532 / 3668	0.0859	0.0768
3	123 / 848	89.5 / 617	2.67 / 18.4	8.84 / 61.0	6.07 / 41.9	513 / 3537	502 / 3461	0.0746	0.0617
4	139 / 958	78.2 / 539	2.76 / 19.0	9.32 / 64.3	6.17 / 42.5	531 / 3661	475 / 3275	0.084	0.0643
5	125 / 862	78.6 / 542	2.69 / 18.5	9.21 / 63.5	6.09 / 42.0	480 / 3309	442 / 3047	0.0762	0.0728
6	134 / 924			9.05 / 62.4				0.0839	
Average	<mark>129 / 889</mark>	<mark>81.4 /</mark> 561	<mark>2.70 / 18.6</mark>	<mark>9.13 / 62.9</mark>	<mark>6.16 / 42.5</mark>	<mark>516 / 3558</mark>	<mark>492 / 3392</mark>	<mark>0.0804</mark>	<mark>0.0701</mark>
Std. Dev.	11.0 / 76	5.3 / 37	.05 / .34	.20 / 1.4	.08 / .56	22.9 / 158	34.8 / 240	0.0048	0.0067
C.O.V. (%)	9	7	2	2	1	4	7	6	10

Table 13: The mechanical properties of panel 008.

Figure 2: A comparison of each panel's mechanical properties (A) Tensile Strength (B) Young's Modulus (C) Shear Modulus (D) Poisson's Ratio.

Conclusion

Additional mechanical testing of the 3D woven carbon composite panels is required. Most of the tests performed on the 3D woven carbon composites suffered from either grip slippage or adhesive failure. As a result, it is unlikely that the quantitative properties accurately reflect those of the panels. To attain accurate measurements, stronger grips and adhesives will need to be used in future testing. Another solution would be to weave thinner panels, or section them into narrower "dog bones" for testing.

References

- 1. Mohamed, M., and Wetzel, K., "3D Woven Carbon/Glass Hybrid Spar Cap for Wind Turbine Rotor Blade," *Journal of Solar Engineering: Volume 128*, November 2006, pp. 562-573.
- 2. In *Tenax Filament Yarn*. Retrieved from https://www.tohotenax.com/products/tenax%c2%ae-carbon-fiber/tenax%c2%ae-filament-yarn/
- 3. T700S Data Sheet. In Torayca. Retrieved from http://www.toraycfa.com/pdfs/T700SDataSheet.pdf
- 4. CPD Tooling Products Guide. In epoxi. Retrieved from https://www.epoxi.com/composite-polymer-design

Appendix I

P20170093, ASTM D3039, MPT-007-006-001, 0°

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14 Purchase Order #: 4601885344
Project Number : P20170093 Attachments : 1 graph

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 23, 2017

Material / Sample Name : MPT-007-006-004

Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)
Extensometer (Transverse) : 2% based on 1" gage length (Class B1) Calibration Date : October 2016
Instron Model Number : 5985 Calibration Date : January 2017
Measurement Equipment : 308 Calibration Date : January 2017
648. 649 Calibration Date : November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2300

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Max Tensile Stress Achieved (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	69700		8150000	8220000	0.0476
2	69300		8170000	8250000	0.0697
3	67500		7720000	7780000	0.0540
4	66700		7930000	8000000	0.0553
5	67700		7740000	7810000	0.0300
Average	68200		7940000	8010000	0.0513
Std. Dev.	1270		215000	221000	0.0144
C.O.V. (%)	2		3	3	28

Note - Due to high load achieved, specimens were slipping in the grips and were unable to break. Maximum Tensile Stress Achieved is reported instead and Elongation at Break unavailable.

Strain measurements beyond modulus or yield (if present) may have been calculated using a software algorithm after extensometer removal.

Note - Specimens contained voids

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone: (413) 499-0983 Fax: 499-2339 http://www.ptli.com

Project Number

Customer

Attention Analyst

Tensile Report Page 2 of 2

Tensile Properties of Polymer Matrix Composite Materials Testing Test Method

ASTM D3039/D3039M-14 Purchase Order #: 4601885344

P20170093

US Army RDECOM-ARDEC Benet Labs

Andrew Littlefield

M. Brady

January 23, 2017 Date

Nadcap

Material / Sample Name MPT-007-006-004 Ply Orientation / Stacking Sequence 0° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.014	0.3874	No Break
2	10	1.004	0.3885	No Break
3	10	1.003	0.3942	No Break
4	10	1.001	0.3894	No Break
5	10	1.003	0.3937	No Break

First Character	Second	Character	Third Char	racter	
Failure Type	Code	Failure Area	Area Code Failure		Code
Angled	А	Inside Grip/Tab	1	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	w	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	М	Middle	М
Longitudinal Splitting	S	Various	V	Various	V
Explosive	X	Unknown	U	Unknown	U
Other	0				

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

P20170093, ASTM D3039, MPT-007-006-004, 0°

1/23/2017 3:32:49 PM

Testing : **Tensile Properties of Polymer Matrix Composite Materials**Test Method : ASTM D3039/D3039M-14 - **Modified number of specimens**

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs Attachments : 1 graph

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 23, 2017

Material / Sample Name : MPT-007-006-005

Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)

Extensometer (Transverse)

Instron Model Number

Measurement Equipment

for Practice E 83: Modulus (Class B-1)

2% based on 1" gage length (Class B1)

5985

Calibration Date: October 2016

Calibration Date: January 2017

Calibration Date: January 2017

Calibration Date: November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2300

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Nominal Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	64900		10800000	11000000	0.0446
2	72800		10700000	10900000	0.0638
3	74600		10500000	10800000	0.0498
Average	70800		10700000	10900000	0.0527
Std. Dev.	5160		153000	100000	0.0099
C.O.V. (%)	7		1	1	19

Note - Due to high load achieved, specimens were slipping in the grips. Tensile Strengths are approximate and Elongation at Break unavailable.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone: (413) 499-0983 Fax: 499-2339 http://www.ptli.com

Project Number

Customer

Attention Analyst

Date

Tensile Report Page 2 of 2

Testing : **Tensile Properties of Polymer Matrix Composite Materials**Test Method : ASTM D3039/D3039M-14 - **Modified number of specimens**

P20170093

Purchase Order #: 4601885344

: US Army RDECOM-ARDEC Benet Labs

Andrew Littlefield

M. Brady

: January 23, 2017

Nadcap™
Non Metallic Materials Testing

Material / Sample Name : MPT-007-006-005
Ply Orientation / Stacking Sequence : 0° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.004	0.3289	LIB
2	10	1.005	0.3313	LIB
3	10	1.007	0.3312	LIB

First Character	Second (Character	Third Cha	racter	
Failure Type Co		Failure Area	Code	Failure Location	Code
Angled	А	Inside Grip/Tab	T.	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	w	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	M	Middle	M
Longitudinal Splitting	S	Various	V	Various	V
Explosive	X	Unknown	U	Unknown	U
Other	0				

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone: (413) 499-0983 Fax: 499-2339 http://www.ptli.com

P20170093, ASTM D3039, MPT-007-006-005, 0°

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14 - **Modified thickness variation** 1
Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs Attachments : 1 graph

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 24, 2017

Material / Sample Name : MPT-007-006-006
Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)
Extensometer (Transverse) : 2% based on 1" gage length (Class B1) Calibration Date : October 2016
Instron Model Number : 5985 Calibration Date : January 2017
Measurement Equipment : 308 Calibration Date : January 2017
Measurement Equipment : 648, 649 Calibration Date : November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2300

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Max Stress Achieved (PSI)	Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	70000			10600000	10800000	0.0665
2 ¹	75100			10700000	11000000	0.0456
3		71100		10400000	10600000	0.0405
4		73700		10500000	10700000	0.0454
5	75400			10200000	10400000	0.0586
6		73900		10900000	11000000	0.0503
Average Std. Dev.	73500	72900		10600000 243000	10800000 235000	0.0512 0.0097
C.O.V. (%)				2	2	19

Note - Due to high load achieved, all specimens slipped in the grips. Tensile Strength is approximate and Elongation at Break unavailable.

Strain measurements beyond modulus or yield (if present) may have been calculated using a software algorithm after extensometer removal.

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14 - **Modified thickness variation**

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Analyst : M. Brady

Date : January 24, 2017

Material / Sample Name : MPT-007-006-006
Ply Orientation / Stacking Sequence : 0° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.001	0.3929	No Break
2 ¹	10	1.001	0.3841	No Break
3	10	1.003	0.3829	LIT
4	10	1.002	0.3812	LIT
5	10	1.003	0.3836	No Break - Maxed Grip Capabilities
6	10	1.002	0.3740	LIT

First Character		Second Character		Third Char	racter
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	А	Inside Grip/Tab	1	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	T
Grip/Tab	G	<1W From Grip/Tab	W	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	М	Middle	М
Longitudinal Splitting	S	Various	V	Various	V
Explosive	Х	Unknown	U	Unknown	U
Other	0				

P20170093, ASTM D3039, MPT-007-006-006, 0°

1/24/2017 12:52:20 PM

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs Attachments : 1 graph

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 24, 2017

Material / Sample Name : MPT-007-006-007

Ply Orientation / Stacking Sequence : 0° / Not provided

Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)

Extensometer (Transverse): 2% based on 1" gage length (Class B1)

Instron Model Number: 5985

Measurement Equipment: 308

648, 649

Calibration Date: October 2016

Calibration Date: January 2017

Calibration Date: January 2017

Calibration Date: November 2016

Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2300

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Grip Type / Jaw Type

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Max Stress Achieved (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	71500		7890000	7960000	0.0833
2	72300		7850000	7910000	0.163
3	70200		7720000	7790000	0.0877
4	71000		7800000	7860000	0.112
5	69900		7790000	7870000	0.105
6	70900		8310000	8350000	0.105
Average	71000		7890000	7960000	0.109
Std. Dev.	871		212000	201000	0.029
C.O.V. (%)	1		3	3	26

Note - Due to high load achieved, all specimens slipped in the grips. Tensile Strength is approximate and Elongation at Break unavailable.

Tensile Properties of Polymer Matrix Composite Materials Testing

Test Method ASTM D3039/D3039M-14

Project Number P20170093 Purchase Order #: 4601885344

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Analyst M. Brady

Date January 24, 2017

Material / Sample Name MPT-007-006-007 Ply Orientation / Stacking Sequence 0° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.008	0.4024	No Break - Maxed Grip Capabilites
2	10	1.004	0.3995	No Break - Maxed Grip Capabilites
3	10	1.009	0.4092	No Break - Maxed Grip Capabilites
4	10	1.005	0.4062	No Break - Maxed Grip Capabilites
5	10	1.010	0.4107	No Break - Maxed Grip Capabilites
6	10	1.002	0.4084	No Break - Maxed Grip Capabilites

First Character		Second Character		Third Character	
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	Α	Inside Grip/Tab	I	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	w	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	M	Middle	M
Longitudinal Splitting	S	Various	V	Various	V
Explosive	X	Unknown	U	Unknown	U
Other	0				

P20170093, ASTM D3039, MPT-007-006-007, 0°

1/24/2017 2:14:35 PM

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14 Purchase Order #: 4601885344
Project Number : P20170093 Attachments : 1 graph

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 23, 2017

Material / Sample Name : MPT-007-006-008
Ply Orientation / Stacking Sequence : 0° / Not provided

Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)
Extensometer (Transverse) : 2% based on 1" gage length (Class B1) Calibration Date : October 2016
Instron Model Number : 5985 Calibration Date : January 2017
Measurement Equipment : 308 Calibration Date : January 2017
648. 649 Calibration Date : November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2000

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	112000		9000000	9000000	0.0776
2	141000	2.37	9330000	9340000	0.0859
3	123000	2.18	8880000	8840000	0.0746
4	139000	2.34	9350000	9320000	0.0840
5	125000	2.10	9220000	9210000	0.0762
6	134000	2.37	9060000	9050000	0.0839
Average	129000	2.27	9140000	9130000	0.0804
Std. Dev.	11000	0.12	190000	197000	0.0048
C.O.V. (%)	9	5	2	2	6

Note - The extensometer slipped on specimen 1. Elongation at break unavailable.

Strain measurements beyond modulus or yield (if present) may have been calculated using a software algorithm after extensometer removal.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone: (413) 499-0983 Fax: 499-2339 http://www.ptli.com

Project Number

Customer

Attention Analyst

Tensile Report Page 2 of 2

Testing **Tensile Properties of Polymer Matrix Composite Materials** Test Method

ASTM D3039/D3039M-14

P20170093

Purchase Order #: 4601885344

US Army RDECOM-ARDEC Benet Labs

Andrew Littlefield

M. Brady

January 23, 2017 Date

Nadcap

Material / Sample Name MPT-007-006-008 Ply Orientation / Stacking Sequence 0° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.003	0.1120	LWT
2	10	1.008	0.1077	LAV
3	10	1.004	0.1077	LMV
4	10	1.007	0.1075	M(LA)MV
5	10	1.005	0.1045	ĹMV
6	10	1.006	0.1099	LAB

First Character		Second Character		Third Character	
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	Α	Inside Grip/Tab	1	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	W	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	М	Middle	М
Longitudinal Splitting	S	Various	V	Various	V
Explosive	X	Unknown	U	Unknown	U
Other	0		_		

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone: (413) 499-0983 Fax: 499-2339 http://www.ptli.com

P20170093, ASTM D3039, MPT-007-006-008, 0°

Testing Tensile Properties of Polymer Matrix Composite Materials Test Method

ASTM D3039/D3039M-14 - Modified number of specimens **Project Number** P20170093 Purchase Order #: 4601885344

US Army RDECOM-ARDEC Benet Labs Customer

Attention Andrew Littlefield

M. Brady Analyst

Date January 25, 2017 Nadcap

MPT-007-006-001 Material / Sample Name Ply Orientation / Stacking Sequence 90° / Not provided

Average Ply Thickness Not provided

Extensometer (Axial) 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1) Calibration Date: October 2016 2% based on 1" gage length (Class B1) Extensometer (Transverse) Calibration Date : October 2016 Instron Model Number 5985 Calibration Date: January 2017 Measurement Equipment 308 Calibration Date: January 2017 648, 649 Calibration Date: November 2016

Hydraulic Wedge / abrasive grit Grip Type / Jaw Type

Grip Pressure (PSI) 2300

Alignment Results / Date < 8% / January 16, 2017

Sampling Rate (data points/s) 20

Cross-Head Speed 0.05 in/min Conditioning Unconditioned Moisture Content Unknown

Specimen Preparation Machined by Intertek PTL using a diamond grit wet saw

23°C ± 2°C / 50% ± 10% RH **Test Conditions**

ASTM D3039 specifies that strength, elongation, modulus and Poisson's Significance

ratio be reported to 3 significant figures.

Test Number	Nominal Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	66100		10800000	10900000	0.0507
2	63700		10500000	10600000	0.0442
3	62200		10800000	11200000	0.0459
Average	64000		10700000	10900000	0.0469
Std. Dev.	1970		173000	300000	0.0034
C.O.V. (%)	3		2	3	7

Note - Due to high load achieved, specimens were slipping in the grips. Tensile Strengths are approximate and Elongation at Break unavailable.

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14 - **Modified number of specimens**Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 25, 2017

Material / Sample Name : MPT-007-006-001
Ply Orientation / Stacking Sequence : 90° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.006	0.3361	*
2	10	1.007	0.3364	*
3	10	1.005	0.3354	*

^{*} Specimen ends were crushed by the test grips; no failure in tension.

First Character		Second Character		Third Cha	racter
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	Α	Inside Grip/Tab	- I	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	w	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	M	Middle	M
Longitudinal Splitting	S	Various	V	Various	V
Explosive	Х	Unknown	U	Unknown	U
Other	0				

P20170093, ASTM D3039, MPT-007-006-001, 90°

1/25/2017 9:36:13 AM

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 23, 2017

Attachments: 1 graph

Material / Sample Name : MPT-007-006-004
Ply Orientation / Stacking Sequence : 90° / Not provided

Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)

Extensometer (Transverse) : 2% based on 1" gage length (Class B1)

Instron Model Number : 5985 Calibration Date : October 2016

Measurement Equipment : 308 Calibration Date : January 2017

648, 649 Calibration Date : January 2017

Calibration Date : November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2300

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Max Stress Achieved (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	48300		7340000	7460000	0.0874
2	56400		8740000	8870000	0.0957
3	59700		8240000	8370000	0.113
4	47400		8650000	8920000	0.106
5	47100		8900000	9310000	0.136
Average	51800		8370000	8590000	0.108
Std. Dev.	5860		627000	713000	0.019
C.O.V. (%)	11		7	8	17

Note - Due to high load achieved, specimens were slipping in the grips. Maximum Tensile Stress Achieved is reported instead and Elongation at Break unavailable.

Note: specimens contained voids.

Test

Number

1

2

3

4

5

Tensile Report Page 2 of 2

ACCREDITED Cert. No. 0619.01

Nadcap

Testing **Tensile Properties of Polymer Matrix Composite Materials** Test Method

ASTM D3039/D3039M-14

Project Number P20170093 Purchase Order #: 4601885344

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Analyst M. Brady

Date January 23, 2017

Material / Sample Name MPT-007-006-004

Ply Orientation / Stacking Sequence 90° / Not provided

1.003

1.013

0.3847

0.3785

10

10

First Character		Second Character		Third Character	
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	А	Inside Grip/Tab	T	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	w	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	M	Middle	M
Longitudinal Splitting	S	Various	V	Various	V
Explosive	Х	Unknown	U	Unknown	U
Other	0				

^{*} Specimen ends were crushed by the test grips; no failure in tension.

P20170093, ASTM D3039, MPT-007-006-004, 90°

1/25/2017 10:21:59 AM

Tensile Report Page 1 of 2

Testing Tensile Properties of Polymer Matrix Composite Materials Test Method ASTM D3039/D3039M-14 - Modified number of specimens

P20170093 Purchase Order #: 4601885344

Project Number US Army RDECOM-ARDEC Benet Labs Customer

Attention Andrew Littlefield

M. Brady Analyst

Date January 25, 2017

MPT-007-006-005 Material / Sample Name Ply Orientation / Stacking Sequence 90° / Not provided

Average Ply Thickness Not provided

2% based on 50mm gage length. Meets minimum requirements Extensometer (Axial)

Calibration Date: October 2016 for Practice E 83: Modulus (Class B-1) 2% based on 1" gage length (Class B1) Extensometer (Transverse) Calibration Date : October 2016 Instron Model Number Calibration Date: January 2017 5985 Measurement Equipment 308 Calibration Date: January 2017 648, 649 Calibration Date: November 2016

Hydraulic Wedge / abrasive grit Grip Type / Jaw Type

Grip Pressure (PSI) 2300

Alignment Results / Date < 8% / January 16, 2017

Sampling Rate (data points/s) 20

Cross-Head Speed 0.05 in/min Conditioning Unconditioned Moisture Content Unknown

Specimen Preparation Machined by Intertek PTL using a diamond grit wet saw

23°C ± 2°C / 50% ± 10% RH **Test Conditions**

ASTM D3039 specifies that strength, elongation, modulus and Poisson's Significance

ratio be reported to 3 significant figures.

Test Number	Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	49700	1.01	10000000	10100000	0.0640
2	52400	1.27	10600000	10800000	0.0542
3	49600	1.05	10200000	10300000	0.0440
Average	50600	1.11	10300000	10400000	0.0541
Std. Dev.	1590	0.14	306000	361000	0.0100
C.O.V. (%)	3	13	3	3	18

Tensile Report Page 2 of 2

Testing : Tensile Properties of Polymer Matrix Composite Materials
Test Method : ASTM D3039/D3039M-14 - Modified number of specimens

: ASTM D3039/D3039M-14 - Modified number of specimens
 : P20170093 Purchase Order #: 4601885344

Project Number : P20170093 Customer : US Army RDECOM-ARDEC Benet Labs

Attention : US Army RDECOM-ARDEC Benet L

Analyst : M. Brady

Date : January 25, 2017

Material / Sample Name : MPT-007-006-005
Ply Orientation / Stacking Sequence : 90° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	0.948	0.3286	GIT
2	10	1.006	0.3303	GIB
3	10	1.007	0.3311	GIT

First Character		Second Character		Third Character	
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	Α	Inside Grip/Tab	1	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	w	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	М	Middle	M
Longitudinal Splitting	S	Various	V	Various	V
Explosive	X	Unknown	U	Unknown	U
Other	0				

P20170093, ASTM D3039, MPT-007-006-005, 90°

1/25/2017 9:15:43 AM

Tensile Report Page 1 of 2

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs Attachments : 1 graph
Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 24, 2017

Material / Sample Name : MPT-007-006-006
Ply Orientation / Stacking Sequence : 90° / Not provided

Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)

Extensometer (Transverse) : 2% based on 1" gage length (Class B1)

Instron Model Number : 5985 Calibration Date : October 2016

Measurement Equipment : 308 Calibration Date : January 2017

648, 649 Calibration Date : November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 2300

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	48700	0.923	10600000	10700000	0.0535
2	46600	0.633	11000000	11100000	0.0579
3	44200	0.472	10900000	10900000	0.0602
4	42000		10900000	10900000	0.0529
5	43300	0.491	10600000	10700000	0.0449
Average	45000	0.63	10800000	10900000	0.0539
Std. Dev.	2680	0.21	187000	167000	0.0059
C.O.V. (%)	6	33	2	2	11

Note - The extensometer slipped on specimen 4 before removal. Elongation at Break unavailable.

Strain measurements beyond modulus or yield (if present) may have been calculated using a software algorithm after extensometer removal.

Tensile Report Page 2 of 2

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 24, 2017

Material / Sample Name : MPT-007-006-006
Ply Orientation / Stacking Sequence : 90° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	8	1.003	0.3711	LIT
2	8	1.003	0.3818	LIT
3	8	1.002	0.3761	LIT
4	8	1.003	0.3808	LIT
5	8	1.003	0.3793	LIT

First Character		Second Character		Third Cha	Third Character	
Failure Type	Code	Failure Area	Code	Failure Location	Code	
Angled	А	Inside Grip/Tab	1	Bottom	В	
Edge Delamination	D	At Grip/Tab	Α	Тор	Т	
Grip/Tab	G	<1W From Grip/Tab	w	Left	L	
Lateral	L	Gage	G	Right	R	
Multi-mode	M (xys)	Multiple Areas	M	Middle	M	
Longitudinal Splitting	S	Various	V	Various	V	
Explosive	Х	Unknown	U	Unknown	U	
Other	0					

P20170093, ASTM D3039, MPT-007-006-006, 90°

1/24/2017 3:46:10 PM

Tensile Report Page 1 of 2

Madcap

Testing Tensile Properties of Polymer Matrix Composite Materials

Test Method ASTM D3039/D3039M-14

Project Number P20170093 Purchase Order #: 4601885344 Attachments: 1 graph

US Army RDECOM-ARDEC Benet Labs Customer

Andrew Littlefield Attention Analyst M. Brady

Date January 24, 2017

Average Ply Thickness Not provided

Extensometer (Axial) 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1) Calibration Date: October 2016 2% based on 1" gage length (Class B1) Extensometer (Transverse) Calibration Date: October 2016 Instron Model Number 5985 Calibration Date: January 2017 308 Measurement Equipment Calibration Date: January 2017 648, 649 Calibration Date: November 2016

Grip Type / Jaw Type Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) 2300

Alignment Results / Date < 8% / January 16, 2017

Sampling Rate (data points/s) 20

Cross-Head Speed 0.05 in/min Conditioning Unconditioned Moisture Content Unknown

Specimen Preparation Machined by Intertek PTL using a diamond grit wet saw

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Significance ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Max Stress Achieved (PSI)	Tensile Strength (PSI)	Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1		62100	1.82	8470000	8480000	0.0727
2		69500		8450000	8460000	0.0481
3		67000		8770000	8770000	0.0874
4	71800			8800000	8800000	0.104
5	71800			8370000	8390000	0.0566
6	71300			8540000	8560000	0.0581
Average Std. Dev. C.O.V. (%)	71600	66200		8570000 178000 2	8580000 170000 2	0.0712 0.0213 30

Note - Due to high load achieved, specimens 2 through 6 slipped in the grips. Tensile Strength is approximate and Elongation at Break unavailable.

> Strain measurements beyond modulus or yield (if present) may have been calculated using a software algorithm after extensometer removal.

Tensile Report Page 2 of 2

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14

Project Number : P20170093 Purchase Order #: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M. Brady
Date : January 24, 2017

Material / Sample Name : MPT-007-006-007
Ply Orientation / Stacking Sequence : 90° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	10	1.006	0.3956	LIB
2	10	1.004	0.4031	LIB
3	10	1.009	0.4006	LIB
4	10	1.006	0.4017	No Break - Maxed Grip Capabilites
5	10	1.006	0.4014	No Break - Maxed Grip Capabilites
6	10	1.009	0.4029	No Break - Maxed Grip Capabilites

First Character		Second Character		Third Character	
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	Α	Inside Grip/Tab	1	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	T
Grip/Tab	G	<1W From Grip/Tab	W	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	М	Middle	М
Longitudinal Splitting	S	Various	V	Various	V
Explosive	X	Unknown	U	Unknown	U
Other	0				

P20170093, ASTM D3039, MPT-007-006-007, 90°

1/24/2017 3:21:00 PM

Tensile Report Page 1 of 2

Testing : Tensile Properties of Polymer Matrix Composite Materials

Test Method : ASTM D3039/D3039M-14 Purchase Order #: 4601885344
Project Number : P20170093 Attachments : 1 graph

Project Number : P20170093 Customer : US Army RDE0

Customer : US Army RDECOM-ARDEC Benet Labs
Attention : Andrew Littlefield

Analyst : M. Brady

Date : January 23, 2017

Material / Sample Name : MPT-007-006-008

Ply Orientation / Stacking Sequence : 90° / Not provided

Ply Orientation / Stacking Sequence : 90° / Not provided
Average Ply Thickness : Not provided

Extensometer (Axial) : 2% based on 50mm gage length. Meets minimum requirements

for Practice E 83: Modulus (Class B-1)
Extensometer (Transverse) : 2% based on 1" gage length (Class B1) Calibration Date : October 2016
Instron Model Number : 5985 Calibration Date : January 2017
Measurement Equipment : 308 Calibration Date : January 2017
648. 649 Calibration Date : November 2016

Grip Type / Jaw Type : Hydraulic Wedge / abrasive grit

Grip Pressure (PSI) : 200

Alignment Results / Date : < 8% / January 16, 2017

Sampling Rate (data points/s) : 20

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL using a diamond grit wet saw

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D3039 specifies that strength, elongation, modulus and Poisson's

ratio be reported to 3 significant figures.

Test Number	Tensile Strength (PSI)	Nominal Elongation At Break (%)	Chord Modulus 0.1% - 0.3% (PSI)	Tensile Modulus (Young's) (PSI)	Poisson's Ratio 0.1% - 0.3%
1	76600	2.14	6130000	6290000	0.0748
2	83900	2.11	6210000	6160000	0.0768
3	89500	2.32	6070000	6070000	0.0617
4	78200	2.18	6230000	6170000	0.0643
5	78600	2.01	6050000	6090000	0.0728
Average	81400	2.15	6140000	6160000	0.0701
Std. Dev.	5310	0.11	80700	86500	0.0067
C.O.V. (%)	7	5	1	1	10

Strain measurements beyond modulus or yield (if present) may have been calculated using a software algorithm after extensometer removal.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone: (413) 499-0983 Fax: 499-2339 http://www.ptli.com

Tensile Report Page 2 of 2

Testing **Tensile Properties of Polymer Matrix Composite Materials** Test Method

ASTM D3039/D3039M-14

P20170093

Purchase Order #: 4601885344 US Army RDECOM-ARDEC Benet Labs

Andrew Littlefield

M. Brady

January 23, 2017

Nadcap

Material / Sample Name

Project Number

Customer

Attention

Analyst

Date

Ply Orientation / Stacking Sequence

MPT-007-006-008

90° / Not provided

Test Number	Length (in)	Width (in)	Thickness (in)	Failure Code
1	7	1.004	0.1063	LAT
2	7	1.006	0.1048	LIT
3	7	1.007	0.1077	LIB
4	7	1.005	0.1077	LIT
5	7	1.008	0.1075	LIT

First Character		Second Character		Third Char	racter
Failure Type	Code	Failure Area	Code	Failure Location	Code
Angled	А	Inside Grip/Tab	I	Bottom	В
Edge Delamination	D	At Grip/Tab	Α	Тор	Т
Grip/Tab	G	<1W From Grip/Tab	W	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	M (xys)	Multiple Areas	М	Middle	М
Longitudinal Splitting	S	Various	V	Various	V
Explosive	Х	Unknown	U	Unknown	U
Other	0				

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

P20170093, ASTM D3039, MPT-007-006-008, 90°

1/23/2017 1:31:56 PM

Shear Properties Report Page 1 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady Attachments : 2 graphs

Date : January 23, 2017

Material : MPT-007-006-001
Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness (in) : Not provided

Average Ply Thickness (in) : Not provided
Specimen Preparation : Machined by Intertek PTL

Instron Model Number:5985Last Calibration Date : January 2017Measurement Equipment:308, 492Last Calibration Date : January 2017Data Acquisition:Vishay A2 Signal ConditionerLast Calibration Date : May 2015

Sampling Rate (data points/s) : 2

Conditioning : Unconditioned Moisture Content : Unknown

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Cross-Head Speed (in/min) : 0.05

Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD439

Lead Wire Resistance (Ω , nominal) :

Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.190	0.3326	6920	397000	4180	HGN
2	1.191	0.3344	6910	395000	4180	HGN
3	1.190	0.3358	6940	389000	4170	HGN
4	1.194	0.3440	6800	389000	4140	HGN
5	1.195	0.3241	6920	400000	4220	HGN
		Average	6900	394000	4180	
		Std. Dev.	56	4900	29	
		C.O.V. (%)	1	1	1	

^{*:} Chord modulus taken from 0.2% to 0.6%

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

BURGLES FRANKS TELUBRARIAN LODAR OLD TELEBRIS DIE 1900EN DAT DIE FALDINGE DIE DE DE LIEUEN DA WIRDE DIES DIE DER DE BEREITEN. DIE DRAFFRED DE DE BEREITEN DE BEREI

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 23, 2017

Material : MPT-007-006-001
Ply Orientation / Stacking Sequence : 0° / Not provided

V-Notched Rail Shear Test Failure Codes

	7 1101011	ca itali olicai ici	ot i allalo oca		
First Character		Second C	haracter	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code
Horizontal Cracking	Н	Gage section	G	Bottom	В
Vertical Cracking	V	Notch region	N	Тор	Т
Angled Cracking	Α	Side region	S	Left	L
Edge Crushing	E	Multiple areas	М	Right	R
Multi-mode	M(xyz)	Various	V	Between Notches	N
Other	0	Unknown	U	Adjacent to Notches	Α
				Top and/or bottom edge	Е
				Various	V
				Unknown	U

P20170093, ASTM D7078, MPT-007-006-001, 0°

P20170093, ASTM D7078, MPT-007-006-001, 0°

Shear Properties Report Page 1 of 2

Nadcap*

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady Attachments : 2 graphs
Date : January 23, 2017

Material : MPT-007-006-001
Ply Orientation / Stacking Sequence : 90° / Not provided

Average Ply Thickness (in) : Not provided

Specimen Preparation : Machined by Intertek PTL

Instron Model Number:5985Last Calibration Date : January 2017Measurement Equipment:308, 492Last Calibration Date : January 2017Data Acquisition:Vishay A2 Signal ConditionerLast Calibration Date : May 2015

Sampling Rate (data points/s) : 2

Conditioning : Unconditioned Moisture Content : Unknown

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Cross-Head Speed (in/min) : 0.05

Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal) : 1

Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.203	0.3281	7100	395000	4220	HGN
2	1.197	0.3260	7130	410000	4340	HGN
3	1.196	0.3271	7140	398000	4210	HGN
4	1.194	0.3372	6930	400000	4190	HGN
5	1.198	0.3295	6970	407000	4240	HGN
		Average Std. Dev. C.O.V. (%)	7050 97 1	402000 6280 2	4240 59 1	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 23, 2017

Nadcap™ Non Metallic Materials Testing

Material : MPT-007-006-001
Ply Orientation / Stacking Sequence : 90° / Not provided

V-Notched Rail Shear Test Failure Codes

	7 1101011	ca itali olicai ici	ot i allalo oca		
First Character		Second C	haracter	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code
Horizontal Cracking	Н	Gage section	G	Bottom	В
Vertical Cracking	V	Notch region	N	Тор	Т
Angled Cracking	Α	Side region	S	Left	L
Edge Crushing	E	Multiple areas	М	Right	R
Multi-mode	M(xyz)	Various	V	Between Notches	N
Other	0	Unknown	U	Adjacent to Notches	Α
				Top and/or bottom edge	Е
				Various	V
				Unknown	U

P20170093, ASTM D7078, MPT-007-006-001, 90°

P20170093, ASTM D7078, MPT-007-006-001, 90°

Shear Properties Report Page 1 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady Attachments : 2 graphs

Date : January 27, 2017

Material : MPT-007-006-004
Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness (in) : Not provided

Specimen Preparation : Machined by Intertek PTL

Instron Model Number:5985Last Calibration Date : January 2017Measurement Equipment:308, 492Last Calibration Date : January 2017Data Acquisition:Vishay A2 Signal ConditionerLast Calibration Date : May 2015

Sampling Rate (data points/s) : 20

Conditioning : Unconditioned Moisture Content : Unknown

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Cross-Head Speed (in/min) : 0.05

Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal) :

Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.207	0.3766	8660	436000	5320	HGN
2	1.203	0.3674	8920	470000	5290	HGN
3	1.198	0.3863	8840	467000	5330	HGN
4	1.201	0.4002	8240	447000	5010	HGN
5	1.193	0.3766	7810	441000	4810	HGN
		Average Std. Dev. C.O.V. (%)	8490 464 5	452000 15400 3	5150 232 5	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 27, 2017

Nadcap

Material : MPT-007-006-004
Ply Orientation / Stacking Sequence : 0° / Not provided

V-Notched Rail Shear Test Failure Codes

	7 1101011	ca itali olicai ici	ot i allalo oca		
First Character		Second C	haracter	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code
Horizontal Cracking	Н	Gage section	G	Bottom	В
Vertical Cracking	V	Notch region	N	Тор	Т
Angled Cracking	Α	Side region	S	Left	L
Edge Crushing	E	Multiple areas	М	Right	R
Multi-mode	M(xyz)	Various	V	Between Notches	N
Other	0	Unknown	U	Adjacent to Notches	Α
				Top and/or bottom edge	Е
				Various	V
				Unknown	U

P20170093, ASTM D7078, MPT-007-006-004, 0°

P20170093, ASTM D7078, MPT-007-006-004, 0°

Shear Properties Report Page 1 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady Attachments : 2 graphs

Date : January 27, 2017

Material : MPT-007-006-004
Ply Orientation / Stacking Sequence : 90° / Not provided
Average Ply Thickness (in) : Not provided

Specimen Preparation : Machined by Intertek PTL

Instron Model Number:5985Last Calibration Date : January 2017Measurement Equipment:308, 492Last Calibration Date : January 2017Data Acquisition:Vishay A2 Signal ConditionerLast Calibration Date : May 2015

Sampling Rate (data points/s) : 20

Conditioning : Unconditioned Moisture Content : Unknown

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Cross-Head Speed (in/min) : 0.05

Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal) : 1

Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.203	0.3969	7890	431000	4760	HGN
2	1.200	0.3981	7810	452000	4930	HGN
3	1.201	0.3918	8060	452000	5030	HGN
4	1.205	0.3726	8200	431000	4910	HGN
5	1.205	0.3802	8190	464000	5050	HGN
		Average	8030	446000	4940	
		Std. Dev.	176	14500	116	
		C.O.V. (%)	2	3	2	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 27, 2017

Material : MPT-007-006-004
Ply Orientation / Stacking Sequence : 90° / Not provided

V-Notched Rail Shear Test Failure Codes

	7 1101011	ca itali olicai ici	ot i allalo oca		
First Character		Second C	haracter	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code
Horizontal Cracking	Н	Gage section	G	Bottom	В
Vertical Cracking	V	Notch region	N	Тор	Т
Angled Cracking	Α	Side region	S	Left	L
Edge Crushing	E	Multiple areas	М	Right	R
Multi-mode	M(xyz)	Various	V	Between Notches	N
Other	0	Unknown	U	Adjacent to Notches	Α
				Top and/or bottom edge	Е
				Various	V
				Unknown	U

P20170093, ASTM D7078, MPT-007-006-004, 90°

P20170093, ASTM D7078, MPT-007-006-004, 90°

Shear Properties Report Page 1 of 2

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method Test Method

ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344

Attachments: 2 graphs Analyst R. Martin / M. Brady Date January 23, 2017

Material MPT-007-006-006 Ply Orientation / Stacking Sequence 0° / Not provided Not provided Average Ply Thickness (in)

Specimen Preparation Machined by Intertek PTL

Instron Model Number 5985 Last Calibration Date: January 2017 308, 492 Measurement Equipment Last Calibration Date: January 2017 Vishay A2 Signal Conditioner Last Calibration Date: May 2015 **Data Acquisition**

Sampling Rate (data points/s)

Conditioning Unconditioned Moisture Content Unknown

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Cross-Head Speed (in/min) 0.05

Strain Gage Model / Batch No. CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal)

Significance ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.196	0.4036	6680	413000	4150	HGN
2	1.195	0.3901	6690	394000	4020	HGN
3	1.194	0.3913	6620	381000	3950	HGN
4	1.191	0.3803	6600	358000	3800	HGN
5	1.197	0.3826	6750	394000	4070	HGN
		Average Std. Dev.	6670 60	388000 20300	4000 133	
		C.O.V. (%)	1	5	3	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 23, 2017

Material : MPT-007-006-006
Ply Orientation / Stacking Sequence : 0° / Not provided

V-Notched Rail Shear Test Failure Codes

	V-NOLCI	led Rail Shear Tes	t ranure Coc	ies		
First Character		Second Ch	naracter	Third Character		
Failure Type	Code	Failure Area	Code	Location	Code	
Horizontal Cracking	Н	Gage section	G	Bottom	В	
Vertical Cracking	V	Notch region	N	Тор	Т	
Angled Cracking	Α	Side region	S	Left	L	
Edge Crushing	E	Multiple areas	M	Right	R	
Multi-mode	M(xyz)	Various	٧	Between Notches	N	
Other	0	Unknown	U	Adjacent to Notches	Α	
				Top and/or bottom edge	E	
				Various	V	
				Unknown	U	

P20170093, ASTM D7078, MPT-007-006-006, 0°

P20170093, ASTM D7078, MPT-007-006-006, 0°

1/23/2017 11:38:23 AM

Shear Properties Report Page 1 of 2

Nadcap

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344 Attachments: 2 graphs Analyst R. Martin / M. Brady

Date January 23, 2017

Material MPT-007-006-006 Ply Orientation / Stacking Sequence 90° / Not provided

Not provided Average Ply Thickness (in)

Specimen Preparation Machined by Intertek PTL

Instron Model Number 5985 Last Calibration Date: January 2017 308, 492 Measurement Equipment Last Calibration Date: January 2017 Vishay A2 Signal Conditioner Last Calibration Date: May 2015 **Data Acquisition**

Sampling Rate (data points/s)

Conditioning Unconditioned Moisture Content Unknown

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Cross-Head Speed (in/min) 0.05

Strain Gage Model / Batch No. CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal)

Significance ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.190	0.3868	6790	413000	4180	HGN
2	1.190	0.3812	6570	391000	4100	HGN
3	1.191	0.3814	6510	383000	3930	HGN
4	1.197	0.3769	6540	382000	3930	HGN
5	1.199	0.3791	6530	375000	3980	HGN
		Average Std. Dev. C.O.V. (%)	6590 115 2	389000 14700 4	4020 111 3	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 23, 2017

Material : MPT-007-006-006
Ply Orientation / Stacking Sequence : 90° / Not provided

V-Notched Rail Shear Test Failure Codes

		ou man omour roo			
First Character		Second Cl	haracter	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code
Horizontal Cracking	Н	Gage section	G	Bottom	В
Vertical Cracking	٧	Notch region	N	Тор	Т
Angled Cracking	Α	Side region	S	Left	L
Edge Crushing	E	Multiple areas	M	Right	R
Multi-mode	M(xyz)	Various	٧	Between Notches	N
Other	0	Unknown	U	Adjacent to Notches	Α
				Top and/or bottom edge	Е
				Various	V
				Unknown	U

P20170093, ASTM D7078, MPT-007-006-006, 90°

1/23/2017 1:24:10 PM

P20170093, ASTM D7078, MPT-007-006-006, 90°

Shear Properties Report Page 1 of 2

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344

Attachments: 2 graphs Analyst R. Martin / M. Brady

Date January 27, 2017

Material MPT-007-006-007 Ply Orientation / Stacking Sequence 0° / Not provided

Not provided Average Ply Thickness (in) Specimen Preparation Machined by Intertek PTL

Instron Model Number 5985 Last Calibration Date: January 2017 308, 492 Measurement Equipment Last Calibration Date: January 2017 Vishay A2 Signal Conditioner Last Calibration Date: May 2015 **Data Acquisition**

Sampling Rate (data points/s)

Conditioning Unconditioned Moisture Content Unknown

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Cross-Head Speed (in/min) 0.05

Strain Gage Model / Batch No. CEA-06-250UW-350 / A86AD633

Lead Wire Resistance (Ω , nominal)

Significance ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.201	0.4203	8600	450000	5240	HGN
2	1.201	0.4292	8530	441000	5290	HGN
3	1.200	0.4347	8230	449000	5220	HGN
4	1.203	0.4339	8550	446000	5310	HGN
5	1.199	0.4299	8540	452000	5170	HGN
		Average Std. Dev. C.O.V. (%)	8490 148 2	448000 4300 1	5250 56 1	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344

Analyst R. Martin / M. Brady Date January 27, 2017

Material MPT-007-006-007 Ply Orientation / Stacking Sequence 0° / Not provided

V-Notched Rail Shear Test Failure Codes

	V-INOICI	ieu Kaii Sileai Tes	t Failule Cot	163		
First Character		Second Ch	naracter	Third Characte	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code	
Horizontal Cracking	Н	Gage section	G	Bottom	В	
Vertical Cracking	٧	Notch region	N	Тор	Т	
Angled Cracking	Α	Side region	S	Left	L	
Edge Crushing	E	Multiple areas	М	Right	R	
Multi-mode	M(xyz)	Various	V	Between Notches	N	
Other	0	Unknown	U	Adjacent to Notches	Α	
				Top and/or bottom edge	E	
				Various	V	
				Unknown	U	

P20170093, ASTM D7078, MPT-007-006-007, 0°

P20170093, ASTM D7078, MPT-007-006-007, 0°

Shear Properties Report Page 1 of 2

Nadcap

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344
Analyst : R. Martin / M. Brady Attachments : 2 graphs

Date : January 27, 2017

Material : MPT-007-006-007
Ply Orientation / Stacking Sequence : 90° / Not provided

Average Ply Thickness (in) : Not provided

Specimen Preparation : Machined by Intertek PTL

Instron Model Number:5985Last Calibration Date : January 2017Measurement Equipment:308, 492Last Calibration Date : January 2017Data Acquisition:Vishay A2 Signal ConditionerLast Calibration Date : May 2015

Sampling Rate (data points/s) : 2

Conditioning : Unconditioned Moisture Content : Unknown

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Cross-Head Speed (in/min) : 0.05

Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD633

Lead Wire Resistance (Ω , nominal) :

Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.204	0.4255	8350	478000	5090	HGN
2	1.194	0.4369	8190	451000	4930	HGN
3	1.207	0.4373	8150	447000	4880	HGN
4	1.198	0.4410	8100	431000	4770	HGN
5	1.192	0.4430	7960	420000	4870	HGN
		Average Std. Dev. C.O.V. (%)	8150 142 2	445000 22100 5	4910 117 2	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344

Analyst R. Martin / M. Brady Date January 27, 2017

Material MPT-007-006-007 Ply Orientation / Stacking Sequence 90° / Not provided

V-Notched Rail Shear Test Failure Codes

	7 1101011	ca itali olicai ici	ot i allalo oca		
First Character		Second Character		Third Character	
Failure Type	Code	Failure Area	Code	Location	Code
Horizontal Cracking	Н	Gage section	G	Bottom	В
Vertical Cracking	V	Notch region	N	Тор	Т
Angled Cracking	Α	Side region	S	Left	L
Edge Crushing	E	Multiple areas	М	Right	R
Multi-mode	M(xyz)	Various	V	Between Notches	N
Other	0	Unknown	U	Adjacent to Notches	Α
				Top and/or bottom edge	Е
				Various	V
				Unknown	U

P20170093, ASTM D7078, MPT-007-006-007, 90°

P20170093, ASTM D7078, MPT-007-006-007, 90°

Shear Properties Report Page 1 of 2

Nadcap

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344 Attachments: 2 graphs Analyst R. Martin / M. Brady

Date January 20, 2017

Material MPT-007-006-008 Ply Orientation / Stacking Sequence 0° / Not provided

Not provided Average Ply Thickness (in)

Specimen Preparation Machined by Intertek PTL

Instron Model Number 5985 Last Calibration Date: January 2017 308, 492 Measurement Equipment Last Calibration Date: January 2017 Vishay A2 Signal Conditioner Last Calibration Date: May 2015 **Data Acquisition**

Sampling Rate (data points/s)

Conditioning Unconditioned Moisture Content Unknown

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Cross-Head Speed (in/min) 0.05

Strain Gage Model / Batch No. CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal)

Significance ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.210	0.1097	9210	516000	5900	HNV
2	1.212	0.1060	9720	540000	6210	HNV
3	1.210	0.1070	9410	513000	5900	HNV
4	1.209	0.1051	9690	531000	6080	HNV
5	1.208	0.1089	8980	480000	5560	HNV
		Average Std. Dev. C.O.V. (%)	9400 316 3	516000 22900 4	5930 245 4	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344

Analyst R. Martin / M. Brady Date January 20, 2017

Material MPT-007-006-008 Ply Orientation / Stacking Sequence 0° / Not provided

V-Notched Rail Shear Test Failure Codes

	V-INOICI	ieu Kaii Sileai Tes	t Failule Cot	163		
First Character		Second Ch	naracter	Third Characte	Third Character	
Failure Type	Code	Failure Area	Code	Location	Code	
Horizontal Cracking	Н	Gage section	G	Bottom	В	
Vertical Cracking	٧	Notch region	N	Тор	Т	
Angled Cracking	Α	Side region	S	Left	L	
Edge Crushing	E	Multiple areas	М	Right	R	
Multi-mode	M(xyz)	Various	V	Between Notches	N	
Other	0	Unknown	U	Adjacent to Notches	Α	
				Top and/or bottom edge	E	
				Various	V	
				Unknown	U	

P20170093, ASTM D7078, MPT-007-006-008, 0°

P20170093, ASTM D7078, MPT-007-006-008, 0°

Shear Properties Report Page 1 of 2

Nadcap

Testing Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method ASTM D7078/D7078M-12

Project Number P20170093

Customer US Army RDECOM-ARDEC Benet Labs

Attention Andrew Littlefield Purchase Order #: 4601885344 Attachments: 2 graphs Analyst R. Martin / M. Brady

Date January 20, 2017

Material MPT-007-006-008 Ply Orientation / Stacking Sequence 90° / Not provided

Not provided Average Ply Thickness (in) Specimen Preparation Machined by Intertek PTL

Instron Model Number 5985 Last Calibration Date: January 2017 308, 492 Measurement Equipment Last Calibration Date: January 2017 Vishay A2 Signal Conditioner Last Calibration Date: May 2015 **Data Acquisition**

Sampling Rate (data points/s)

Conditioning Unconditioned Moisture Content Unknown

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Cross-Head Speed (in/min) 0.05

Strain Gage Model / Batch No. CEA-06-250UW-350 / A86AD438

Lead Wire Resistance (Ω , nominal)

Significance ASTM D7078 specifies that strength, strain and modulus be reported to three significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	0.2% Offset Shear Strength (PSI)	Failure Mode/Location
1	1.207	0.1086	9010	511000	5920	HNV
2	1.207	0.1049	8890	532000	5970	HNV
3	1.206	0.1111	8460	502000	5660	HNV
4	1.209	0.1098	8520	475000	5600	HNV
5	1.207	0.1138	7940	442000	5190	HNV
		Average Std. Dev.	8560 421	492000 34800	5670 311	
		C.O.V. (%)	5	7	5	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Rail Shear Method

Test Method : ASTM D7078/D7078M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield Purchase Order #: 4601885344

Analyst : R. Martin / M. Brady
Date : January 20, 2017

Material : MPT-007-006-008
Ply Orientation / Stacking Sequence : 90° / Not provided

V-Notched Rail Shear Test Failure Codes

First Character		Second Character		Third Character					
Failure Type	Code	Failure Area	Code	Location	Code				
Horizontal Cracking	Н	Gage section	G	Bottom	В				
Vertical Cracking	V	Notch region	N	Тор	Т				
Angled Cracking	Α	Side region	S	Left	L				
Edge Crushing	E	Multiple areas	М	Right	R				
Multi-mode	M(xyz)	Various	V	Between Notches	N				
Other	0	Unknown	U	Adjacent to Notches	Α				
				Top and/or bottom edge	Е				
				Various	V				
				Unknown	U				

P20170093, ASTM D7078, MPT-007-006-008, 90°

P20170093, ASTM D7078, MPT-007-006-008, 90°

Shear Properties Report Page 1 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Beam Method

Test Method : ASTM D5379/D5379M-12 Modified number of specimens

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs Purchase Order #: 4601885344
Attention : Andrew Littlefield Attachments : 2 graphs

Attention : Andrew Littlefield
Analyst : R. Martin / M. Brady
Date : January 24, 2017

Material : MPT-007-006-005
Ply Orientation / Stacking Sequence : 0° / Not provided
Average Ply Thickness : Not provided

Measurement Equipment ID : 308, 492 Calibration Date : January 2017

Strain Gage Model / Batch No. : EA-06-125TK-350/E / A86AD992

Instron Model Number : 5985 Calibration Date : January 2017
Data Acquisition : Vishay A2 Signal Conditioner Calibration Date : May 2015

Sampling Rate : 2

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D5379 specifies that strength, strain, and modulus be reported to 3 significant figures.

Test Number	Width (in)	Thickness (in)	Shear Stress at 5% Shear Strain (PSI)	Shear Modulus* (PSI)	Failure Codes
1	0.455	0.3283	7720	449000	HGN
2	0.434	0.3260	7390	351000	HGN
3	0.453	0.3273	7710	518000	HGN
4	0.451	0.3262	7920	500000	HGN
		Average	7690	455000	
		Std. Dev.	219	74900	
		C.O.V. (%)	3	16	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Beam Method

Test Method : ASTM D5379/D5379M-12 Modified number of specimens

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs Purchase Order #: 4601885344

Attention : Andrew Littlefield Attachments : 2 graphs
Analyst : R Martin / M Brady

 Analyst
 :
 R. Martin / M. Brady

 Date
 :
 January 24, 2017

Material : MPT-007-006-005
Ply Orientation / Stacking Sequence : 0° / Not provided

V-Notched Beam Shear Test Failure Codes

Trotonou Bouin onour root runaro obuco								
First Character		haracter	Third Character					
Code	Failure Area	Code	Location	Code				
Н	Gage section	G	Bottom	В				
V	Notch region	N	Тор	Т				
Α	Side region	S	Left	L				
E	Multiple areas	М	Right	R				
M(xyz)	Various	V	Between Notches	N				
0	Unknown	U	Adjacent to Notches	Α				
			Top and/or bottom edge	E				
			Various	V				
			Unknown	U				
	Code H V A E M(xyz)	Second C Code Failure Area H Gage section V Notch region A Side region E Multiple areas M(xyz) Various	Second Character	Second Character Third Characte Code Failure Area Code Location H Gage section G Bottom V Notch region N Top A Side region S Left E Multiple areas M Right M(xyz) Various V Between Notches O Unknown U Adjacent to Notches Top and/or bottom edge Various				

P20170093, ASTM D5379, MPT-007-006-005, 0°

P20170093, ASTM D5379, MPT-007-006-005, 0°

Shear Properties Report Page 1 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Beam Method

Test Method : ASTM D5379/D5379M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs Purchase Order #: 4601885344
Attention : Andrew Littlefield Attachments : 2 graphs

Attention : Andrew Littlefield
Analyst : R. Martin / M. Brady
Date : January 24, 2017

Calibration Date: January 2017

Material : MPT-007-006-005
Ply Orientation / Stacking Sequence : 90° / Not provided

Average Ply Thickness : Not provided Measurement Equipment ID : 308, 492

Strain Gage Model / Batch No. : EA-06-125TK-350/E / A86AD992

Instron Model Number : 5985 Calibration Date : January 2017
Data Acquisition : Vishay A2 Signal Conditioner Calibration Date : May 2015

Sampling Rate : 2

Cross-Head Speed : 0.05 in/min
Conditioning : Unconditioned
Moisture Content : Unknown

Specimen Preparation : Machined by Intertek PTL Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D5379 specifies that strength, strain, and modulus be reported to 3 significant figures.

Test Number	Width (in)	Thickness (in)	5% Shear Strain (PSI)	Shear Modulus* (PSI)	Failure Codes
1	0.452	0.3372	7570	526000	HGN
2	0.448	0.3258	7690	497000	HGN
3	0.448	0.3205	7730	511000	HGN
4	0.453	0.3277	7650	529000	HGN
5	0.451	0.3370	7430	506000	HGN
		Average	7610	514000	
		Std. Dev.	119	13500	
		C.O.V. (%)	2	3	

^{*:} Chord modulus taken from 0.2% to 0.6%

Shear Properties Report Page 2 of 2

Testing : Shear Properties Of Composite Materials By The V-Notched Beam Method

Test Method : ASTM D5379/D5379M-12

Project Number : P20170093

Customer : US Army RDECOM-ARDEC Benet Labs Purchase Order #: 4601885344

Attention : Andrew Littlefield Attachments : 2 graphs

Analyst : R. Martin / M. Brady
Date : January 24, 2017

Material : MPT-007-006-005
Ply Orientation / Stacking Sequence : 90° / Not provided

V-Notched Beam Shear Test Failure Codes

Trotonou Bouin onour root runaro obuco								
First Character		haracter	Third Character					
Code	Failure Area	Code	Location	Code				
Н	Gage section	G	Bottom	В				
V	Notch region	N	Тор	Т				
Α	Side region	S	Left	L				
E	Multiple areas	М	Right	R				
M(xyz)	Various	V	Between Notches	N				
0	Unknown	U	Adjacent to Notches	Α				
			Top and/or bottom edge	E				
			Various	V				
			Unknown	U				
	Code H V A E M(xyz)	Second C Code Failure Area H Gage section V Notch region A Side region E Multiple areas M(xyz) Various	Second Character	Second Character Third Characte Code Failure Area Code Location H Gage section G Bottom V Notch region N Top A Side region S Left E Multiple areas M Right M(xyz) Various V Between Notches O Unknown U Adjacent to Notches Top and/or bottom edge Various				

P20170093, ASTM D5379, MPT-007-006-005, 90°

P20170093, ASTM D5379, MPT-007-006-005, 90°

Flatwise Tensile Report Page 1 of 1

Through-Thickness "Flatwise" Tensile Strength and Elastic Modulus of a Testing

Fiber-Reinforced Polymer Matrix Composite Material

ASTM D7291/D7291M-15 Test Method

Project Number P20170093 Purchase Order: 4601885344

US Army RDECOM-ARDEC Benet Labs Customer

Attention Andrew Littlefield Analyst M.Brady / K. Schuman

February 6, 2017 Date

Nadcap

Material / Sample Name MPT-007-006-006 Ply Orientation / Stacking Sequence Not provided Average Ply Thickness Not provided

Sample Preparation Machined by Intertek PTL using a diamond grit wet saw.

Post-bond machining performed by an approved outside source

Attachments: 2 Graphs

May

Flatwice

Sample Bonding Bonded to loading fixtures using Cybercryl 800

Tab Dimensions 1.0" diameter

Tab Material Steel Instron Model Number 5985

Calibration Date: January 2017 Measurement Equipment 509, 306 Calibration Date: January 2017

Strain Gage Model Number HBM 1-LY71-3/350

Strain Gage Orientation 180°

Alignment Results Self-aligning grips used.

Cross-Head Speed (in/min) 0.005 Sampling Rate (data points/s) 20

Conditioning Unconditioned

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Sample Diameter (in)	Load Achieved (lbs)	Tensile Stress (PSI)	Modulus 0.027% - 0.055% (PSI)	Failure Mode
1.000	1810	2300	1950000	SA (Cohesive)
0.999	1980	2530	1940000	SA (Cohesive)
0.999	2020	2570	2040000	SA (Cohesive)
0.999	1980	2530	2100000	SA (Cohesive)
1.001	1890	2400	2070000	SA (Cohesive)
Average	1940	2470	2020000	
Std Dev	85	113	71764	
C.O.V. (%)	4	5	4	
	Diameter (in) 1.000 0.999 0.999 0.999 1.001 Average Std Dev	Sample Diameter (in) Load Achieved (lbs) 1.000 1810 0.999 1980 0.999 2020 0.999 1980 1.001 1890 Average Std Dev 85	Sample Diameter (in) Load Achieved (Ibs) Tensile Stress (PSI) 1.000 1810 2300 0.999 1980 2530 0.999 2020 2570 0.999 1980 2530 1.001 1890 2400 Average Std Dev 85 113	Diameter (in) Achieved (lbs) Stress (PSI) 0.027% - 0.055% (PSI) 1.000 1810 2300 1950000 0.999 1980 2530 1940000 0.999 2020 2570 2040000 0.999 1980 2530 2100000 1.001 1890 2400 2070000 Average Std Dev 85 113 71764

Failure Mode

SG - along a single plane within the gage section of the specimen

MG - along multiple planes within the gage section of the specimen

SA - partly through the specimen surface ply or plies and partly through the adhesive

AB - adhesive failure along bond line

Note: The (SA) and (AB) failure modes are not acceptable failure modes and the strength data shall be noted as invalid.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastic Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-006

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-006

Flatwise Tensile Report Page 1 of 1

Testing Through-Thickness "Flatwise" Tensile Strength and Elastic Modulus of a

Fiber-Reinforced Polymer Matrix Composite Material

Test Method ASTM D7291/D7291M-15

Project Number P20170093 Purchase Order: 4601885344

US Army RDECOM-ARDEC Benet Labs Customer

Attention Andrew Littlefield

Analyst R. Martin / M.Brady Attachments: 2 Graphs

Date February 10, 2017 Nadcap

Material / Sample Name MPT-007-006-001 Not provided Ply Orientation / Stacking Sequence

Average Ply Thickness Not provided

Sample Preparation Machined by Intertek PTL using a diamond grit wet saw. Post-bond machining performed by an approved outside source

Bonded to loading fixtures using Cybercryl 800

Tab Dimensions 1.0" diameter

Tab Material Steel

Sample Bonding

Instron Model Number 5985 Calibration Date: January 2017 Measurement Equipment 509, 308 Calibration Date: January 2017

Strain Gage Model Number HBM 1-LY71-3/350

Strain Gage Orientation

Alignment Results Self-aligning grips used.

Cross-Head Speed (in/min) 0.005 Sampling Rate (data points/s) 20

Unconditioned Conditioning

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Significance ASTM D7291 specifies that stress and modulus be reported to 3 significant figures.

Test Number	Sample Diameter (in)	Maximum Load Achieved (Ibs)	Flatwise Tensile Stress (PSI)	Tensile Modulus 0.040% - 0.080% (PSI)	Failure Mode
1	0.999	2020	2570	1840000	SA (Cohesive)
2	1.001	2090	2660	2040000	SA (Cohesive)
3	1.000	2200	2800	2000000	SA (Cohesive)
4	1.001	2140	2720	2000000	SA (Cohesive)
5	0.999	2260	2880	2000000	SA (Cohesive)
	Average	2140	2730	1980000	
	Std Dev	93	120	78000	
	C.O.V. (%)	4	4	4	

Failure Mode

SG - along a single plane within the gage section of the specimen

MG - along multiple planes within the gage section of the specimen

SA - partly through the specimen surface ply or plies and partly through the adhesive

AB - adhesive failure along bond line

Note: The (SA) and (AB) failure modes are not acceptable failure modes and the strength data shall be noted as invalid.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-001

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-001

Flatwise Tensile Report Page 1 of 1

Testing : Through-Thickness "Flatwise" Tensile Strength and Elastic Modulus of a

Fiber-Reinforced Polymer Matrix Composite Material

Test Method : ASTM D7291/D7291M-15

Project Number : P20170093 Purchase Order: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M.Brady / K. Schuman Attachments: 2 Graphs

Date : February 21, 2017

Nadcap^M
Non Metallic Materials Testing

Material / Sample Name : MPT-007-006-004

Ply Orientation / Stacking Sequence : Not provided Average Ply Thickness : Not provided

Fabrication Process : Unknown (prepared by customer)

Sample Preparation : Machined by Intertek PTL using a diamond grit wet saw.

Post-bond machining performed by an approved outside source

Sample Bonding : Bonded to loading fixtures using Cybercryl 800

Tab Dimensions : 1.0" diameter

Tab Material : Steel Instron Model Number : 5985

nstron Model Number : 5985 Calibration Date : January 2017

Measurement Equipment : 308, 648 Calibration Date : January 2017, November 2016

Strain Gage Model Number : HBM 1-LY71-3/350

Strain Gage Orientation : 180°

Alignment Results : Self-aligning grips used.

Cross-Head Speed (in/min) : 0.005 Sampling Rate (data points/s) : 20

Conditioning : Unconditioned

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D7291 specifies that stress and modulus be reported to 3 significant figures.

Test Number	Sample Diameter (in)	Maximum Load Achieved (lbs)	Flatwise Tensile Stress (PSI)	Tensile Modulus 0.048% - 0.095% (PSI)	Failure Mode
1	0.997	2300	2950	1790000	SA (Cohesive)
2	1.001	2360	3000	1980000	SA (Cohesive)
3	0.999	2190	2800	1680000	SA (Cohesive)
4	0.997	2220	2850	1560000	SA (Cohesive)
5	1.000	2300	2930	1760000	SA (Cohesive)
	Average	2270	2910	1750000	
	Std Dev	68	80	155000	
	C.O.V. (%)	3	3	9	

Failure Mode

SG - along a single plane within the gage section of the specimen

MG - along multiple planes within the gage section of the specimen

SA - partly through the specimen surface ply or plies and partly through the adhesive

AB - adhesive failure along bond line

Note: The (SA) and (AB) failure modes are not acceptable failure modes and the strength data shall be noted as invalid.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

Flatwice

Max

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-004

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-004

Flatwise Tensile Report Page 1 of 1

Testing : Through-Thickness "Flatwise" Tensile Strength and Elastic Modulus of a

Fiber-Reinforced Polymer Matrix Composite Material

Test Method : ASTM D7291/D7291M-15

Project Number : P20170093 Purchase Order: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs

Attention : Andrew Littlefield

Analyst : M.Brady Attachments: 2 Graphs

Date : February 23, 2017

Nadcap™ Non Metallic Materials Testing

Material / Sample Name : MPT-007-006-005

Ply Orientation / Stacking Sequence : Not provided Average Ply Thickness : Not provided

Fabrication Process : Unknown (prepared by customer)

Sample Preparation : Machined by Intertek PTL using a diamond grit wet saw.

Post-bond machining performed by an approved outside source

Sample Bonding : Bonded to loading fixtures using Cybercryl 800

Tab Dimensions : 1.0" diameter

Tab Material : Steel Instron Model Number : 5985

Instron Model Number: 5985Calibration Date : January 2017Measurement Equipment: 308, 618Calibration Date : January 2017

Strain Gage Model Number : HBM 1-LY71-3/350

Strain Gage Orientation : 180°

Alignment Results : Self-aligning grips used.

Cross-Head Speed (in/min) : 0.005 Sampling Rate (data points/s) : 20

Conditioning : Unconditioned

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Significance : ASTM D7291 specifies that stress and modulus be reported to 3 significant figures.

Test Number	Sample Diameter (in)	Maximum Load Achieved (lbs)	Flatwise Tensile Stress (PSI)	Tensile Modulus 0.033% - 0.067% (PSI)	Failure Mode
1	1.000	2080	2640	2080000	SA (Cohesive)
2	1.001	2000	2540	1870000	SA (Cohesive)
3	1.000	1990	2540	1910000	SA (Cohesive)
4	1.000	1910	2430	1960000	SA (Cohesive)
5	1.001	1830	2320	1870000	SA (Cohesive)
	Average	1960	2490	1940000	
	Std Dev	95	122	87600	
	C.O.V. (%)	5	5	5	

Failure Mode

SG - along a single plane within the gage section of the specimen

MG - along multiple planes within the gage section of the specimen

SA - partly through the specimen surface ply or plies and partly through the adhesive

AB - adhesive failure along bond line

Note: The (SA) and (AB) failure modes are not acceptable failure modes and the strength data shall be noted as invalid.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

Max

Flatwice

P20170093, ASTM D7291 Flatwise Tensile, MPT-007-006-005

Flatwise Tensile Report Page 1 of 1

Testing Through-Thickness "Flatwise" Tensile Strength and Elastic Modulus of a

Fiber-Reinforced Polymer Matrix Composite Material

ASTM D7291/D7291M-15 Test Method

Project Number P20170093 Purchase Order: 4601885344

Customer US Army RDECOM-ARDEC Benet Labs Attention Andrew Littlefield

Analyst M.Brady Attachments: 2 Graphs

Date February 24, 2017 Nadcap

Material / Sample Name MPT-007-006-007 Ply Orientation / Stacking Sequence Not provided

Average Ply Thickness Not provided

Sample Preparation Machined by Intertek PTL using a diamond grit wet saw.

Post-bond machining performed by an approved outside source

Sample Bonding Bonded to loading fixtures using Cybercryl 800

Tab Dimensions 1.0" diameter

Tab Material Steel

Instron Model Number 5985 Calibration Date: January 2017 Measurement Equipment 648 Calibration Date: November 2016 Measurement Equipment Calibration Date: January 2017 308

Strain Gage Model Number HBM 1-LY71-3/350

Strain Gage Orientation 180°

Alignment Results Self-aligning grips used.

Cross-Head Speed (in/min) 0.005 Sampling Rate (data points/s) 20

Unconditioned Conditionina

Test Conditions 23°C ± 2°C / 50% ± 10% RH

Test Number	Sample Diameter (in)	Maximum Load Achieved (Ibs)	Max Flatwise Tensile Stress (PSI)	Flatwise Tensile Modulus 0.034% - 0.068% (PSI)	Failure Mode
1	1.000	1850	2350	2160000	SA (Cohesive)
2	1.000	1950	2490	1870000	SA (Cohesive)
3	0.998	1910	2440	1850000	SA (Cohesive)
4	1.000	1920	2440	2010000	SA (Cohesive)
5	1.000	1890	2400	1940000	SA (Cohesive)
	Average	1900	2420	1970000	
	Std Dev	37	52	125000	
	C.O.V. (%)	2	2	6	

Failure Mode

SG - along a single plane within the gage section of the specimen

MG - along multiple planes within the gage section of the specimen

SA - partly through the specimen surface ply or plies and partly through the adhesive

AB - adhesive failure along bond line

Note: The (SA) and (AB) failure modes are not acceptable failure modes and the strength data shall be noted as invalid.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

Flatwise Tensile Report Page 1 of 1

Testing : Through-Thickness "Flatwise" Tensile Strength and Elastic Modulus of a

Fiber-Reinforced Polymer Matrix Composite Material

Test Method : ASTM D7291/D7291M-15

Project Number : P20170093 Purchase Order: 4601885344

Customer : US Army RDECOM-ARDEC Benet Labs
Attention : Andrew Littlefield

Analyst : M. Brady Attachments: 1 Graph

Date : February 27, 2017

Nadcap"

Material / Sample Name : MPT-007-006-008
Ply Orientation / Stacking Sequence : Not provided
Average Ply Thickness : Not provided

Sample Preparation : Machined by Intertek PTL using a diamond grit wet saw.

Post-bond machining performed by an approved outside source

Sample Bonding : Bonded to loading fixtures using Cybercryl 800

Tab Dimensions : 1.0" diameter

Tab Material : Steel

Instron Model Number: 5985Calibration Date : January 2017Measurement Equipment: 648Calibration Date : November 2016Measurement Equipment: 308Calibration Date : January 2017

Alignment Results : Self-aligning grips used.

Cross-Head Speed (in/min) : 0.005 Sampling Rate (data points/s) : 20

Conditioning : Unconditioned

Test Conditions : $23^{\circ}\text{C} \pm 2^{\circ}\text{C} / 50\% \pm 10\% \text{ RH}$

Test Number	Sample Diameter (in)	Maximum Load Achieved (lbs)	Max Flatwise Tensile Stress (PSI)	Failure Mode
1	0.999	2140	2730	SA (Cohesive)
2	1.000	2070	2630	SA (Cohesive)
3	1.000	2100	2670	SA (Cohesive)
4	1.001	2170	2760	SA (Cohesive)
6	1.000	2110	2690	SA (Cohesive)
	Average	2120	2700	
	Std Dev	38	51	
	C.O.V. (%)	2	2	

Failure Mode

SG - along a single plane within the gage section of the specimen

MG - along multiple planes within the gage section of the specimen

SA - partly through the specimen surface ply or plies and partly through the adhesive

AB - adhesive failure along bond line

Note: The (SA) and (AB) failure modes are not acceptable failure modes and the strength data shall be noted as invalid.

Intertek Plastics Technology Laboratories reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Intertek Plastics Technology Laboratories name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities identical or similar materials, products or processes. The liability of Intertek Plastics Technology Laboratories with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

Appendix II

3Tex Panels

For the flat plates

- 0.5" thick 8 warp/9 fill layer fabric, 22 dpi, 11 ppi
- 0.38" thick 6 warp/7 fill layer fabric, 22 dpi, 11 ppi

	Yarn	V _f
Warp	Toho Tenax HTS 12k	25%
Fill	2 Toho Tenax HTS 6k in layers 1 and 9 2 Toho Tenax HTS 12k in all other layers	25%
Z	Toho Tenax HTS 1k	
	Total	52%

I believe that this is what is now known as HTS40 with a Tensile Strength of 4400 MPa and a modulus of 240 GPa

TEAM Panels

Parameter	0030-01BP	0030-01FC
Description	Base Weave - Backplate	Base Weave - Facesheet
Weave Architecture	Orthogonal	Othogonal
Warp and Fill Fiber ¹	T700 12K	T700 12K
Z Fiber	T700 6K	T700 6K
Thickness (as woven)	0.45"	0.14"
Fiber Volume ²	47% @ 0.45" thick	47% @ 0.14" thick
X:Y:Z Ratio ²	48:48:05	34:51:15

¹multiple ends of 12K used in each site

I believe that this is what is now known as T700S with a Tensile Strength of 4900 MPa and a modulus of 230 GPa

²fiber volume and x:y:z ratio are estimates based on TEAM Inc. unit cell model

ID# Size

MPT-007-006-001 20.75" x 9.875" x 3/8"

MPT-007-006-004 23.75" x 11.25" x 0.5"

MPT-007-006-005 10.25" x 10" x 3/8"

MPT-007-006-006 20" x 21.5" x 3/8"

MPT-007-006-007 22" x 23.5" x 3/8"

MPT-007-006-008 22" x 24.5" x 1/8"

Purpose: Layup and infuse a 3D carbon panel woven by 3TEX with Endurance 4505A epoxy resin.

Ply orientation/rosette: As shown below, the 90° fibers are aligned with the panel Width.

- Endurance 4505A resin, Endurance 4506B hardener.
- (1) 3TEX Base Plate Test Panel: 20.5" in the warp fiber direction x 9.9" in the transverse direction
- (1) Bleederlease B (Green Peel Ply) 21" x 10.5"
- (1) white distribution media 19.5"x 9"
- (1) Dahltex Breather Ply SP (membrane) for rapping the vacuum line: 140" x 5"
- (4) strips of Bleeder lease B (green peel ply): (2) 32"x 6.5" and (2) 32" x 11.5", see figure below.
- (4) strips of N10 breather: 32"x 2", see figure below.
- Tacky Tape, Cloth Tape, Nylon Bagging Film, 1/2" spiral tubing etc...

Purpose: Layup and infuse a 3D carbon panel woven by Team with Endurance 4505A epoxy resin.

Ply orientation/rosette: As shown below, the 90° fibers are aligned with the panel Width.

I. Materials List

- Endurance 4505A resin, Endurance 4506B hardener.
- (1) Team Base Plate Test Panel: 24.25" in the warp fiber direction x 11.5" in the transverse direction
- (1) Dahltex Breather Ply SP (membrane) for rapping the vacuum line: 140" x 5"
- (4) strips of Bleeder lease B (green peel ply): (2) 32" x 10.75" and (2) 32" x 4.5", see figure below.
- (4) strips of N10 breather: 32"x 2", see figure below.
- (1) White DM: 1" x 1"
- (1) Bleaderlease B (green Peel Ply): 2" x 2"
- Tacky Tape, Cloth Tape, Nylon Bagging Film, 1/2" spiral tubing etc...

Engineer: Dan Molligan 03/11/2013

Purpose: Layup and infuse a 3D carbon panel woven by 3TEX with Endurance 4505A epoxy resin.

Ply orientation/rosette: As shown below, the 90° fibers are aligned with the panel Width.

- Endurance 4505A resin, Endurance 4506B hardener.
- (1) 3TEX Base Plate Test Panel: 10.4" in the warp fiber direction x 10" in the transverse direction
- (1) Dahltex Breather Ply SP (membrane) for rapping the vacuum line: 140" x 5"
- (1) Bleeder lease B (green peel ply): (1) 32" x 32", see figure below.
- (4) strips of N10 breather: 32"x 2", see figure below.
- Tacky Tape, Cloth Tape, Nylon Bagging Film, 1/2" spiral tubing etc...

Purpose: Layup and infuse a 3D carbon panel woven by 3TEX with Endurance 4505A epoxy resin.

Ply orientation/rosette: As shown below, the 90° fibers are aligned with the panel Width.

- Endurance 4505A resin, Endurance 4506B hardener.
- (1) 3TEX Base Plate Test Panel: 0.4" thick x 22" in the warp fiber direction x 19.75" in the transverse direction
- (1) Bleederlease B (Green Peel Ply) 32" x 32"
- (1) white distribution media 21"x 18.75"
- (1) Dahltex Breather Ply SP (membrane) for rapping the vacuum line: 140" x 5"
- (4) strips of N10 breather: 32"x 2", see figure below.
- Tacky Tape, Cloth Tape, Nylon Bagging Film, 1/2" spiral tubing etc...

Purpose: Layup and infuse a 3D carbon panel woven by TEAM with Endurance 4505A epoxy resin.

Ply orientation/rosette: As shown below, the 90° fibers are aligned with the panel Width.

- Endurance 4505A resin, Endurance 4506B hardener.
- (1) TEAM Base Plate Test Panel: 0.43" thick x 23.5" in the warp fiber direction x 23.5" in the transverse direction
- (1) Bleederlease B (Green Peel Ply) 32" x 32"
- (1) white distribution media 22.5"x 22.5"
- (1) Dahltex Breather Ply SP (membrane) for rapping the vacuum line: 140" x 5"
- (4) strips of N10 breather: 32"x 2", see figure below.
- Tacky Tape, Cloth Tape, Nylon Bagging Film, 1/2" spiral tubing etc...

Purpose: Layup and infuse a 3D carbon panel woven by TEAM with Endurance 4505A epoxy resin.

Ply orientation/rosette: As shown below, the 90° fibers are aligned with the panel Width.

- Endurance 4505A resin, Endurance 4506B hardener.
- (1) TEAM Base Plate Test Panel: 0.14" thick x 22.75" in the warp fiber direction x 24.5" in the transverse direction
- (1) Bleederlease B (Green Peel Ply) 32" x 32"
- (1) white distribution media 21.75"x 23.5"
- (1) Dahltex Breather Ply SP (membrane) for rapping the vacuum line: 140" x 5"
- (4) strips of N10 breather: 32"x 2", see figure below.
- Tacky Tape, Cloth Tape, Nylon Bagging Film, 1/2" spiral tubing etc...

