Lite Transformer with Long-Short Range Attention

Zhanghao Wu*, Zhijian Liu*, Ji Lin, Yujun Lin, Song Han

Massachusetts Institute of Technology

77 Massachusetts Avenue, 38-344 Cambridge, MA, 02139 https://hanlab.mit.edu

Modern NLP is EXPENSIVE

Figure: Parameter numbers of modern NLP models

NLP models are huge — much larger than mobile settings

AutoML is EXPENSIVE

Figure: The design cost measured in CO2 emission (lbs)

Auto-ML's huge searching cost raises environmental concerns on CO2.

Transformer Framework

A Different View

A Different View of Transformer Block

Is Bottleneck Effective for 1-D Attention?

Base Transformer Block

The FFN takes more than a half of the computation.

Flattened Transformer

Flattened Transformer Block

Attentions take major computation, leaving larger space for optimization.

What does Attention Learn?

What does Attention Learn?

Attention captures both sparse global context and diagonal local information.

Motivated by Hardware Design

• Specialization is the key in efficient hardware design (e.g. FPGA accelerators)

Base Transformer is Redundant

Long-Short Range Attention (LSRA)

Lite Transformer

• Our Lite Transformer performs well on machine translation (a), abstractive summarization, and language modeling (b).

Lite Transformer vs AutoML

	#Params	#Mult-Adds	BLEU	GPU Hours	CO ₂ Emission (lbs)	Cloud Cost (\$)	
Transformer	2.8M	87M	21.3	1.0×10^2	2.6×10^{1}	$$2.3 \times 10^2$	
Evolved Transformer [AutoML]	3.0M	94M	22.0	2.2× 10 ⁶	6.3× 10 ⁵	\$5.5× 10 ⁶	
Lite Transformer (Ours) [LSRA]	2.9M	90M	22.5 (+0.5)	1.1× 10 ²	3.2× 10 ¹	\$2.8×10 ²	20000× Reduction

Better Performance

Further Compress Lite Transformer by 18.2x

• Our Lite Transformer is orthogonal to general model compression techniques.

Lite Transformer with Long-Short Range Attention

