COMPSCI/SFWRENG 2FA3 Discrete Mathematics with Applications II Winter 2020

6 Turing Machines and Computability

William M. Farmer

Department of Computing and Software McMaster University

March 14, 2020

Effective Methods

An effective method is a method for producing an output from a set of inputs such that:

- 1. The method consists of a series of steps in which each step results from executing a precise instruction.
- 2. Each instruction is expressed by a finite number of symbols.
- 3. The number of possible instructions is finite.
- 4. The method succeeds after a finite number of steps.
- 5. The method can be performed mechanically by a human or a machine.

Models of Computation

- A model of computation is a model that describes how an output is computed from a set of inputs.
- Examples:
 - Lambda calculus (Alonzo Church, 1936).
 - Turing machines (Alan Turing, 1937).
 - General recursive functions (Kurt Gödel 1931, Stephen Kleene, 1936).
 - Combinatory logic (Moses Schönfinkel, 1924, Haskell Curry, 1930).
 - Post systems (Emil Post, 1936).
 - Unlimited register machines (John Shepherdson, Howard Sturgis, 1963).
- All of these models are computationally equivalent!

Church-Turing Thesis

- The Church-Turing thesis states that any model of computation equivalent to those listed above captures exactly our intuition of what an effective method is.
- Church and Turing developed this thesis before there were modern computers!
- The Church-Turing thesis implies that any effective method can be implemented in any model of computation equivalent to those listed above.

The Great Limitation Theorems

- First Incompleteness Theorem (Kurt Gödel, 1931). No consistent, sufficiently strong, recursively axiomatizable proof system can prove all the truths of natural number arithmetic.
- Second Incompleteness Theorem (Kurt Gödel, 1931). No consistent, sufficiently strong, recursively axiomatizable proof system can prove its own consistency.
- Undefinability of Truth (Alfred Tarski, 1936). Truth cannot be defined in any sufficiently strong theory.
- Undecidability of First-Order Logic (Alonzo Church, 1936). Validity is undecidable in first-order logic.

Great Limitation Theorems (iClicker)

The great limitation theorems state that there are limits on what can be

- A. Proved.
- B. Computed.
- C. Defined.
- D. All of the above.

Robinson Arithmetic [1/2]

- Let $\Sigma = (\{\mathbb{N}\}, \{0\}, \{S, +, *\}, \emptyset, \tau)$ where $\tau(0) = \mathbb{N}$, $\tau(S) = \mathbb{N} \to \mathbb{N}$, and $\tau(+) = \tau(*) = \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
- Let Γ be the following set of Σ -formulas:
 - 1. $\forall x : \mathbb{N} \cdot 0 \neq S(x)$.
 - 2. $\forall x, y : \mathbb{N} \cdot (S(x) = S(y) \Rightarrow x = y)$.
 - 3. $\forall x : \mathbb{N} \cdot x + 0 = x$.
 - 4. $\forall x, y : \mathbb{N} \cdot x + S(y) = S(x+y)$.
 - 5. $\forall x : \mathbb{N} \cdot x * 0 = 0$.
 - 6. $\forall x, y : \mathbb{N} . x * S(y) = (x * y) + x$.
 - 7. $\forall x : \mathbb{N} . x = 0 \lor \exists y : \mathbb{N} . S(y) = x$.
- Then $Q = (\Sigma, \Gamma)$ is a theory of MSFOL called Robinson arithmetic.
 - ▶ Q is a subtheory of first-order Peano arithmetic.
 - Axiom 7 is used in place of the induction schema.

Robinson Arithmetic [2/2]

- Since Q is
 - 1. very likely to be consistent,
 - 2. "sufficiently strong", and
 - 3. recursively axiomatizable,

the first three great limitation theorems apply to Q. The fourth also applies to Q.

- Metatheorems about Q:
 - 1. Q is finitely axiomatizable.
 - Q is incomplete and every consistent recursively axiomatizable extension of Q is incomplete (i.e., Q is essentially incomplete).
 - 3. Consistency is not provable in Q nor in any consistent recursively axiomatizable extension of Q.
 - 4. Truth is not definable in Q.
 - 5. Q is undecidable and every consistent extension of Q is undecidable (i.e., Q is essentially undecidable).

W. M. Farmer

Turing Machine: Informal Description

 A deterministic, one-tape Turing machine (TM) has the following components:

- 2. State: $q \in Q$.
- 3. Program: δ , a transition function.
- The tape is two way, read/write, and semi-infinite.
 - ► Tape is used for input, output, and memory.
 - ▶ The input string $a_0 a_1 a_2 \cdots a_n$ is finite.
 - Tape is an unbounded, sequentially accessed memory.
- The program is deterministic.
 - Takes the current tape symbol and state as input.
 - Produces a new tape symbol and state and left/right tape position change as output.

Turing Machines: Formal Definition [1/4]

- A deterministic, one-tape Turing machine (TM) is a tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ where:
 - 1. Q is a finite set of elements called states.
 - 2. Σ is a finite of symbols called the input alphabet.
 - 3. $\Gamma \supseteq \Sigma$ is a finite of symbols called the tape alphabet.
 - 4. $\vdash \in \Gamma \setminus \Sigma$ is the left endmarker.
 - 5. $\Box \in \Gamma \setminus \Sigma$ is the blank symbol.
 - 6. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function.
 - 7. $s \in Q$ is the start state.
 - 8. $t \in Q$ is the accept state.
 - 9. $r \in Q$ is the reject state.
- For all $p \in Q$, $b \in \Gamma$, δ must satisfy the conditions:
 - 1. $\delta(p,\vdash)=(q,\vdash,R)$ for some $q\in Q$
 - 2. $\delta(t, b) = (t, c, d)$ for some $c \in \Gamma$ and $d \in \{L, R\}$.
 - 3. $\delta(r, b) = (r, c, d)$ for some $c \in \Gamma$ and $d \in \{L, R\}$.

Example 1

• Let $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ be the TM where:

$$Q = \{s, q, t, r\}.$$

$$\Sigma = \{a, b\}.$$

$$\Gamma = \Sigma \cup \{\vdash, \downarrow\}.$$

 δ is defined by the following table:

• M accepts the regular language $\{a^mb^n \mid m, n \geq 0\}$.

Acceptance and Rejection (iClicker)

A Turing machine will either accept or reject an input string. Is this statement true or false?

- A. True.
- B. False.

Turing Machines: Formal Definition [2/4]

- A configuration of M is a triple $(q, y_{\square}^{\omega}, n)$ where $q \in Q$, $y \in \Gamma^*$, and $n \ge 0$.
- The configuration (q, z, n) describes M in state q with tape contents z and read/write head at position n.
- Configurations are denoted by $\alpha, \beta, \gamma, \ldots$
- The start configuration on an input $x \in \Sigma^*$ is the configuration

$$(s, \vdash x_{\lrcorner}^{\omega}, 0).$$

Turing Machines: Formal Definition [3/4]

- The next configuration relation $\alpha \xrightarrow{1}_{M} \beta$ is defined by:
 - 1. $(p,z,n) \xrightarrow{1}_{M} (q, \operatorname{sub}_{b}^{n}(z), n-1)$ if $\delta(p,z_n) = (q,b,L)$.
 - 2. $(p,z,n) \xrightarrow{1} (q, \operatorname{sub}_b^n(z), n+1)$ if $\delta(p,z_n) = (q,b,R)$.
- $\alpha \xrightarrow{n} \beta$ and $\alpha \xrightarrow{*} \beta$ are defined by;
 - 1. $\alpha \xrightarrow{0} \alpha$.
 - 2. $\alpha \xrightarrow{n+1}^{M} \beta$ if there is some γ such that $\alpha \xrightarrow{n}^{M} \gamma \xrightarrow{1}^{M} \beta$.
 - 3. $\alpha \xrightarrow{n} \beta$ if there is some $n \ge 0$ such that $\alpha \xrightarrow{n} \beta$.
- $\alpha \xrightarrow{*} \beta$ is the reflexive, transitive closure of $\alpha \xrightarrow{1} \beta$.

Turing Machines: Formal Definition [4/4]

- M accepts $x \in \Sigma^*$ if, for some y and n, $(s, \vdash x_{\rightharpoonup}^{\omega}, 0) \xrightarrow{*} (t, y_{\dashv}^{\omega}, n)$.
- M rejects $x \in \Sigma^*$ if, for some y and n, $(s, \vdash x_{\lrcorner}^{\omega}, 0) \xrightarrow{*}_{M} (r, y_{\lrcorner}^{\omega}, n)$.
- M halts on $x \in \Sigma^*$ if it accepts or rejects x.
- M loops on $x \in \Sigma^*$ if it neither accepts nor rejects x.
- *M* is total if it halts on all inputs.
- L(M) is the set of strings accepted by M.
- A language is recursively enumerable (r.e.) if it is L(M) for some TM M.
- A language is recursive if it is L(M) for some total TM M.

Example 2

• Let $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ be the TM where:

$$Q=\{s,q_1,\ldots,q_{10},t,r\}.$$
 $\Sigma=\{a,b,c\}.$ $\Gamma=\Sigma\cup\{\vdash,\llcorner,\dashv\}.$ δ is defined on p. 212 of D. Kozen, Automata and Computability.

- M accepts the non-context-free language $\{a^nb^nc^n \mid n \geq 0\}$.
- *M* does the following:
 - 1. Checks to see if the input has the form $a^*b^*c^*$.
 - 2. Overwrites the first _ with a ⊢.
 - 3. Scans left and right between \vdash and \dashv erasing one a, one b, and one c on each pass.
 - 4. Continues until there are no occurrences of a, b, or c
 - 5. Accepts or rejects appropriately.

Recursive and Recursively Enumerable Sets

- Let $A \subseteq \Sigma^*$.
- Proposition 1. If A is recursive, then $\sim A$ is also recursive.
- Proposition 2. If A and $\sim A$ are r.e., then A is recursive.
- The decision problem " $x \in A$?" is:
 - Decidable iff A is recursive.
 - ► Semidecidable iff *A* is r.e.
 - Undecidable iff A is nonrecursive.
- Theorem 1. If A is r.e., then there is a Turing machine that will enumerate the members of A.

Closure under Complement (iClicker)

Which of the following statements is true?

- A. If A is a regular language, then so is $\sim A$.
- B. If A is a context-free language, then so is $\sim A$.
- C. If A is a recursive language, then so is $\sim A$.
- D. If A is an r.e. language, then so is $\sim A$.

Different Kinds and Uses of Turing Machines

- There are many equivalent definitions of a Turing machine:
 - 1. With two-way tapes.
 - 2. With multiple tapes.
 - 3. With two-dimensional tapes.
 - 4. With multiple heads.
 - 5. Nondeterministic Turing machines.
- Turing machines can be used in different ways to:
 - 1. Decide a decision problem.
 - 2. Semidecide a decision problem.
 - 3. Compute a total function.
 - 4. Compute a partial function.
 - 5. Enumerate a set of values.

Modern Computers (iClicker)

What is the main characteristic of a modern computer?

- A. Can store and manipulate massive amounts of data with great speed and accuracy.
- B. Can access or control a large variety of peripheral devices.
- C. Can store and run programs.
- D. Implemented using electronic technology.

A Universal Turing Machine

- Fix an encoding scheme over {0,1} for Turing machines (over any alphabet) such that:
 - 1. Each TM M is represented by a string $s_M \in \{0,1\}^*$.
 - 2. Each input string x to M is represented by a string $s_x \in \{0,1\}^*$.
- It is then possible to construct a universal Turing machine
 U such that:
 - 1. U accepts $s_M \# s_X$ if M accepts x.
 - 2. *U* rejects $s_M \# s_x$ if *M* rejects *x*.
 - 3. *U* loops on $s_M \# s_x$ if *M* loops on *x*.
 - 4. U rejects y#z if it is not the case that y is a valid encoding of a TM M and z is a valid encoding of a string over M's alphabet.
- A universal Turing machine can thus simulate any Turing machine!

Diagonalization

• Theorem 2 (Georg Cantor, 1891). There does not exist a bijection $f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ (i.e., there is an uncountable set).

Proof. The proof is by diagonalization. Assume f exists. Then f can be displayed as an infinite two-dimensional matrix:

	0	1	2	3	4	5	
f(0)	1	0	0	1	0	0	
f(1)	1	1	0	1	1	0	
f(2)	0	0	0	1	1	1	
f(3)	0	1	1	1	1	1	
f(4)	1	0	0	1	0	0	
f(5)	0	1	1	1	0	1	
:			:				٠.,

Let D be the set represented by the sequence b_0, b_1, b_2, \ldots where

$$b_m = \begin{cases} 0 & \text{if } m \in f(m) \\ 1 & \text{if } m \notin f(m) \end{cases}$$

Then $f(n) \neq D$ for all $n \in \mathbb{N}$ — which is a contradiction!

Halting Problem [1/3]

- The halting problem is the problem of deciding whether a given Turing machine will halt on a given input.
- Proposition 3. The halting problem is semidecidable.
 Proof. Any universal Turing machine semidecides the halting problem.
- Theorem 3 (Turing, 1937). The halting problem is undecidable.

Proof. The proof is by diagonalization.

Let $x \in \{0,1\}^*$. If x is the encoding of a Turing machine whose input alphabet is $\{0,1\}$, then let M_x be that machine; otherwise, let M_x be some trivial Turing machine that immediately halts on all strings in $\{0,1\}^*$.

Halting Problem [2/3]

Assume that K is a total Turing machine such that:

- 1. K accepts x # y if M_x halts on y.
- 2. K rejects x # y if M_x loops on y.

Now consider the following infinite two-dimensional matrix:

	ϵ	0	1	00	01	10	
M_{ϵ}	L	Н	Н	L	Н	Н	
M_0	L	L	Η	L	L	Н	
M_1	Н	Η	Н	L	L	L	
M_{00}	Н	L	L	L	L	L	
M_{01}	L	Η	Η	L	Н	Н	
M_{10}	Н	L	L	L	Н	L	
÷			:				$\langle \cdot, \cdot \rangle$

H means M_x halts on y, while L means M_x loops on y.

Halting Problem [3/3]

Let D be the Turing machine that on an input $x \in \{0,1\}^*$, runs K on x # x, accepting if K rejects and loops if K accepts.

Then $D = M_x$ for some $x \in \{0,1\}^*$. Therefore,

$$D$$
 halts on x iff K rejects $x \# x$ iff M_x loops on x iff D loops on x

which is a contradiction!

Reduction

- Let $A \subseteq \Sigma^*$ and $B \subseteq \Pi^*$.
- A (many-one) reduction of A to B is a total computable function

$$\sigma: \Sigma^* \to \Pi^*$$
 such that, for all $x \in \Sigma^*$, $x \in A$ iff $\sigma(x) \in B$.

- A is reducible to B, written $A \leq_m B$, if there is a reduction of A to B.
- Theorem 4
 - 1. If $A \leq_m B$ and B is r.e., then A is r.e.
 - 2. If $A \leq_m B$ and B is recursive, then A is recursive.

Undecidable Problems

- There are many undecidable problems.
- The main techniques for showing that problems are undecidable are:
 - 1. Diagonalization.
 - 2. Reduction.
- If " $x \in A$?" is an undecidable problem, then we can show that " $x \in B$?" is an undecidable problem by reducing A to B.
 - ► The reduction establishes that, if *B* is recursive, then *A* must be recursive by Thm 4.2, which is a contradiction.