Unsupervised Learning: Neighbor Embedding

憑藉原來空間中每個點與鄰居之間的關係來做降維

Manifold Learning

高維空間的低維空間

Euclidean Distance結果是錯的

應該要先降維到二維平面在用euclidean Suitable for clustering or following supervised learning

照理說藍色的點距離黃色較近,然而距離紅色之euclidean distance較小

Locally Linear Embedding (LLE)

 w_{ij} represents the relation between x^i and x^j

Find a set of w_{ij} minimizing

利用鄰居linear combination出Xi

$$\sum_{i} \left\| x^{i} - \sum_{j} w_{ij} x^{j} \right\|_{2}$$

將xi降維至zi,將xj降維至zj

利用minimize找出wij

Then find the dimension reduction results z^i and z^j based on w_{ij}

先找出wij後固定住,找出zi以及zj

LLE

Keep w_{ij} unchanged

Original Space

找出一組zi,zj, 可以利用wij以及zj組合出zi Find a set of z^i minimizing

New (Low-dim) Space

LLE

原來data的domain

 x^i, x^j w_{ij} W_{ij} zi,zj的關係 xi,xj的關係

Source of image: http://feetsprint

http://feetsprint.blogspot.tw/2016

/02/blog-post_29.html

LLE

Lawrence K. Saul, Sam T. Roweis, "Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds", JMLR, 2013

選 K 個鄰居,做manifold learning(展開)

上例為S型的manifold

Laplacian Eigenmaps

Graph-based approach

衡量兩筆data間的距離用euclidean distance未必是好的量測

用graph中有沒有相連來定義距離做降維

Distance defined by graph approximate the distance on manifold

Construct the data points as a *graph*

Laplacian Eigenmaps
$$w_{i,j} = \begin{cases} \text{similarity} \\ \text{If connected} \\ \text{0} \text{ otherwise} \end{cases}$$

semi-supervised

• Review in semi-supervised learning: If x^1 and x^2 are close in a high density region, \hat{y}^1 and \hat{y}^2 are probably the same.

$$L = \sum_{y \in \mathcal{T}} C(y^r, \hat{y}^r) + \lambda S$$

As a regularization term

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2 = y^T L y$$
在graph上相連的兩個點越近越好

S evaluates how smooth your label is L: $(R+U) \times (R+U)$ matrix

Graph Laplacian

$$L = D - W$$

unsupervise的情況

Laplacian Eigenmaps

找出zi以及zj,能夠minimize S

• Dimension Reduction: If x^1 and x^2 are close in a high density region, z^1 and z^2 are close to each other.

```
兩個constrain:
1. minimize S
2. Span
S = \frac{1}{2} \sum_{i,j} w_{i,j} \left(z^i - z^j\right)^2
wij已知,找zi,zj
然而若zi,zj都是0即可minimize
How about z^i = z^j = \mathbf{0}?
```

Giving some constraints to z:

因此要加入一些constrain: Span{z1...zn}
If the dim of z is M, Span{ z^1 , z^2 , ... z^N } = R^M

Spectral clustering: clustering on z

Belkin, M., Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. *Advances in neural information processing systems* . 2002

因此原本不像的東西也有可能被擺在一起

T-distributed Stochastic Neighbor Embedding (t-SNE)

- Problem of the previous approaches
 - Similar data are close, but different data may collapse

t-SNE

高維的點做低微的視覺化

相似度計算可以與降維前不同的evaluation matrix

Compute similarity between all pairs of x: $S(x^i, x^j)$ 相似度

Compute similarity between all pairs of z: $S'(z^i, z^j)$

$$P(x^{j}|x^{i}) = \frac{S(x^{i}, x^{j})}{\sum_{k \neq i} S(x^{i}, x^{k})}$$
降維前相似度歸依化的分佈

$$Q(z^j|z^i) = rac{S'(z^i,z^j)}{\sum_{k
eq i} S'(z^i,z^k)}$$
降維後相似度歸依化的分佈

xi與其他data point的相似度

Find a set of z making the two distributions as close as possible

KL divergence 計算降維前後distribution的相似度

$$L = \sum_{i} KL(P(*|x^{i})||Q(*|z^{i}))$$
 利用gradient descend更新參數

由於都做過normalization,因此在算KL不需要擔心不同evaluation之間scale不同的問題

$$= \sum_{i} \sum_{j} P(x^{j}|x^{i}) log \frac{P(x^{j}|x^{i})}{Q(z^{j}|z^{i})}$$

t-SNE —Similarity Measure

原本的evaluation

$$S(x^i, x^j)$$

$$= exp\left(-\left\|x^{i} - x^{j}\right\|_{2}\right)$$
distance \text{F\text{\text{\$\mathcal{E}\$}}} \text{\$\mathcal{E}\$}

SNE:

$$S'(z^i, z^j) = exp\left(-\left\|z^i - z^j\right\|_2\right)$$

t-SNE:

$$S'(z^i, z^j) = 1/1 + ||z^i - z^j||_2$$

t-SNE

- 先做PCA降維後再做dimension reduction

 Good at visualization

To learn more ...

- Locally Linear Embedding (LLE): [Alpaydin, Chapter 6.11]
- Laplacian Eigenmaps: [Alpaydin, Chapter 6.12]
- t-SNE
 - Laurens van der Maaten, Geoffrey Hinton,
 "Visualizing Data using t-SNE", JMLR, 2008
 - Excellent tutorial: https://github.com/oreillymedia/t-SNE-tutorial