Symbolic LTL_f Synthesis

Shufang Zhu ¹, Lucas M. Tabajara ², Jianwen Li ², Geguang Pu ¹, Moshe Y. Vardi ²

¹East China Normal University, ²Rice University

Introduction

- ► Linear Temporal Logic (LTL)
- Extensively used in AI and CS [BK, AAAI'96; CGV, KR'02; GV, ECP'99]
- ▶ LTL_f: LTL over *finite* traces
- Many AI problems of interest reduce to LTL_f synthesis [De Giacomo & Vardi, IJCAI'15]

LTL_f

LTL_f formulas

- ightharpoonup a set $\mathcal P$ of propositional symbols
- closed under
 - ▶ boolean connectives, Negation(\neg), And(\land), Or(\lor)
 - temporal operators, Next(X), Until(U), Eventually(F), Release(R), Globally(G)

Note: Same syntax, different semantics

- LTL: GFp means that p holds infinitely often
- ▶ LTL_f: GFp means that p holds at the last point

LTL_f Synthesis

Given:

 LTL_f formula ϕ over \mathcal{P}

- ▶ Input variables: X
- ightharpoonup Output variables: ${\cal Y}$

Obtain:

Strategy $g:(2^{\mathcal{X}})^*\to 2^{\mathcal{Y}}$, a function from past history of inputs (in $2^{\mathcal{X}}$) to outputs

- At each instant, return an output (in $2^{\mathcal{Y}}$)
- ▶ **Goal**: trace [inputs & outputs] satisfy ϕ

Classical Solution to LTL_f Synthesis

[De Giacomo & Vardi, IJCAI'15]: Reduction to DFA games

For an LTL_f formula ϕ over \mathcal{P} , traces $(\phi) \subseteq (2^{\mathcal{P}})^*$.

- ▶ [De Giacomo & Vardi, IJCAl'13]: A conversion from an LTL_f formula ϕ to a DFA A_{ϕ} such that L(A_{ϕ})=traces(ϕ).
- ► [Kupferman & Vardi, 2001]: Conversion to DFA may incur a doubly exponential blow-up in the worst case.

Given an LTL_f formula ϕ over $\mathcal{P} = \mathcal{X} \cup \mathcal{Y}$, the corresponding DFA game is described as a tuple $\mathcal{G} = (2^{\mathcal{X} \cup \mathcal{Y}}, S, s_0, \delta, F)$.

DFA Games: Example

- ► Environment: X
- ightharpoonup Controller: ${\cal Y}$
- Controller wins: accepting state reached

Controller winning strategy $g: S \mapsto 2^{\mathcal{Y}}$

Solving DFA Games

DFA Games:

- ▶ Controller: Chooses outputs in $2^{\mathcal{Y}}$.
- ▶ Environment: Chooses inputs in $2^{\mathcal{X}}$.
- Goal: Construct a word accepted by DFA.

DFA Game Solving

- ▶ **Realizability:** Does the controller have a winning strategy?
- **Synthesis:** Compute a winning strategy for the controller.

Our Contribution

- Reduction of LTL_f synthesis to LTL synthesis
 - 1. Translate LTL_f formula to an equi-realizable LTL formula
 - 2. Use LTL synthesis tool
- ▶ First direct tool for LTL_f synthesis
 - 1. A symbolic framework of LTL_f synthesis
 - 2. Leveraging Boolean-synthesis techniques from CAD
- ▶ Symbolic framework outperforms conversion to LTL synthesis

Symbolic LTL_f Synthesis

We introduce a symbolic framework for LTL_f synthesis:

- Construct DFA symbolically represented by BDDs using MONA ¹ [Henriksen et al., TACAS'95]
- 2. Solve DFA game using BDD techniques
 - Compute fixpoint of winning states of the DFA
 - ► Synthesize winning strategy using a Boolean-synthesis procedure

¹MONA: A tool for monadic second-order logic on words

Symbolic DFA Representation

DFA can be symbolically encoded using BDDs.

- ► State variables $\mathcal{Z} = \{z_0, \dots, z_k\}, k = \log n$
- •
- ▶ k BDDs for transition function

BDD for z_0

BDD for z_1

Solving a DFA Game Symbolically

Perform the fixpoint computation using BDDs:

- lacksquare Set of winning states represented by BDD W over $\mathcal Z$
- ▶ Set of pairs (winning state, winning output) represented by BDD T over $\mathcal{Z} \cup \mathcal{Y}$

Realizability:

▶ Check if $W(Z_0) = 1$

Synthesis:

▶ Construct strategy $\tau: 2^{\mathcal{Z}} \to 2^{\mathcal{Y}}$ such that if W(Z) = 1 then $T(Z, \tau(Z)) = 1$ (Boolean synthesis) [Fried, Tabajara & Vardi, CAV'16]

Experimental Evaluation

- Large synthetic dataset:
 - Random conjunctions from 100 base cases (industrial patterns)
 - ► Number of conjuncts: *I*
 - Number of variables: n
 - ▶ 200 LTL_f formulas for each (I, n)
- ▶ The symbolic approach is implemented in a tool **Syft**.
- ▶ LTL synthesis tool **Acacia**+ [Bohy et al., CAV'12].

Symbolic Framework vs. Conversion to LTL synthesis

DFA Construction dominates Synthesis

Conclusions

- \triangleright First implementation of a synthesis framework for LTL_f synthesis
- Experiments demonstrate advantages of symbolic approach
- Potential for further improvement in DFA construction