class NeuralNetwork(input_size, output_size, hidden_layers_sizes,
activation

Parameters

- input size: Number of featurs in an input
- output_size: Number of output classes
- hidden_layer_sizes: list, The ith element represents the number of units (preceptrons) in the ith hidden layer.
- activation_funtion: Type of nonlinearity to be used for every perceptron except the output_layer.
 - logistic: the logistic sigmoid function, returns $f(x) = 1 / (1 + \exp(-x))$.
 - \circ tanh: the hyperbolic tan function, returns $f(x) = \tanh(x)$.
 - relu: the rectified linear unit function, returns f(x) = max(0, x)

Note: Always use sigmoid as the non linearity for the output layer.

For e.g NeuralNetwork(500, 2, [100, 10]) represents a neural network work that takes in an input of size 500 and classifies it into one of the two output_categories. It consist of two hidden layers with 100 and 10 pereptrons respectively.

Functions

1. train(X, y, batch_size, η_0 , max_iterations)

Parameters

- X: the input data, shape (n_samples, n_features)
- y: The target values (class labels in classification)
- batch_size: batch size for sgd
- **η**₀: initial learning rate
- max_interation: maximum number of iterations
- 2. predict(X): predict using the model

Parameters - **X**: the input data, shape (n_samples, n_features)