

Newton's Academy MATHEMATICS AND STATISTICS

Time: 3 Hrs. Max. Marks: 80

General instructions:

The question paper is divided into FOUR sections.

- (1) **Section A:** Q. 1 contains **Eight** multiple choice type of questions, each carrying **Two** marks. Q. 2 contains **Four** very short answer type questions, each carrying **one** mark.
- (2) Section B: Q. 3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- (3) **Section C:** Q. 15 to Q. 26 contain **Twelve** short answer type questions, each carrying **Three** marks. (Attempt any **Eight**)
- (4) **Section D:** Q. 27 to Q. 34 contain **Eight** long answer type questions, each carrying **Four** marks. (Attempt any **Five**)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is not necessary. Only rough sketch of graph is expected.
- (8) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet, e.g. (a)....../(b)....../(c)....../(d)......, etc. No marks shall be given, if <u>ONLY</u> the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

SECTION

Q.1. Select and write the correct answer for the following multiple choice type of questions: [16]

- i. If $p \land q$ is F, $p \rightarrow q$ is F then the truth values of p and q are _____ respectively.
 - (a) T, T
- (b) T, F
- (c) F, T
- (d) F, F
- (2)

- ii. In $\triangle ABC$, if $c^2 + a^2 b^2 = ac$, then $\angle B = \underline{\hspace{1cm}}$.
 - (a) $\frac{\pi}{4}$
- (b) $\frac{\pi}{3}$
- (c) $\frac{\pi}{2}$
- (d) $\frac{\pi}{6}$
- (2)
- iii. The area of the triangle with vertices (1, 2, 0), (1, 0, 2) and (0, 3, 1) in sq. unit is _____.
 - (a) $\sqrt{5}$
- (b) $\sqrt{7}$
- (c) $\sqrt{6}$
- (d) $\sqrt{3}$
- (2)
- iv. If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0) then the point of minimum z = 3x + 2y is _____.
 - (a) (2, 2)
- (b) (0, 10)
- (c) (4,0)
- (d) (3,4)

1

(2)

- v. If y is a function of x and $\log(x + y) = 2xy$, then the value of y'(0) =
 - (a) 2
- (b) 0
- (c) -1
- (d)
- (2)

- vi. $\int \cos^3 x \, \mathrm{d}x = \underline{\qquad}.$
 - (a) $\frac{1}{12}\sin 3x + \frac{3}{4}\sin x + c$

(b) $\frac{1}{12}\sin 3x + \frac{1}{4}\sin x + c$

(c) $\frac{1}{12}\sin 3x - \frac{3}{4}\sin x + c$

(d) $\frac{1}{12}\sin 3x - \frac{1}{4}\sin x + c$

(2)

- vii. The solution of the differential equation $\frac{dx}{dt} = \frac{x \log x}{t}$ is _____
 - (a) $x = e^{ct}$

(b) $x + e^{ct} = 0$

(c) $x = e^t + t$

(d) $xe^{ct} = 0$

viii. Let the probability mass function (p.m.f.) of a random variable X be $P(X = x) = {}^{4}C_{x} \left(\frac{5}{9}\right)^{x} \times \left(\frac{4}{9}\right)^{4-x}$,

for x = 0, 1, 2, 3, 4 then E(X) is equal to _____

(a)
$$\frac{20}{9}$$

(b)
$$\frac{9}{20}$$

(c)
$$\frac{12}{9}$$

(d)
$$\frac{9}{25}$$

[4]

(1)

Q.2. Answer the following questions:

i. Write the joint equation of co-ordinate axes.

ii. Find the values of c which satisfy $|c\vec{u}| = 3$ where $\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}$. (1)

iii. Write $\int \cot x \, dx$. (1)

iv. Write the degree of the differential equation $e^{\frac{dy}{dx}} + \frac{dy}{dx} = x$ (1)

SECTION - B

Attempt any EIGHT of the following questions:

 \mathcal{L} [16]

Q.3. Write inverse and contrapositive of the following statement: If x < y then $x^2 < y^2$ (2)

Q.4. If $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$ is a non singular matrix, then find A^{-1} by elementary row transformations.

Hence write the inverse of $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (2)

Q.5. Find the cartesian co-ordinates of the point whose polar co-ordinates are $\left(\sqrt{2}, \frac{\pi}{4}\right)$. (2)

Q.6. If $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines and $h^2 = ab \neq 0$ then find the ratio of their slopes. (2)

Q.7. If \bar{a} , \bar{b} , \bar{c} are the position vectors of the points A, B, C respectively and $5\bar{a} + 3\bar{b} - 8\bar{c} = \bar{0}$ then find the ratio in which the point C divides the line segment AB. (2)

Q.8. Solve the following inequations graphically and write the corner points of the feasible region: $2x + 3y \le 6, x + y \ge 2, x \ge 0, y \ge 0$ (2)

Q.9. Show that the function $f(x) = x^3 + 10x + 7$, $x \in \mathbb{R}$ is strictly increasing. (2)

Q.10. Evaluate: $\int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 4x} \, dx$ (2)

Q.11. Find the area of the region bounded by the curve $y^2 = 4x$, the X-axis and the lines x = 1, x = 4 for $y \ge 0$.

Q.12. Solve the differential equation

$$\cos x \cos y \, dy - \sin x \sin y \, dx = 0 \tag{2}$$

Q.13. Find the mean of number randomly selected from 1 to 15.

Q.14. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4. (2)

SECTION - C

Attempt any EIGHT of the following questions:

[24]

Q.15. Find the general solution of $\sin \theta + \sin 3\theta + \sin 5\theta = 0$

(3)

- **Q.16.** If $-1 \le x \le 1$, the prove that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ (3)
- Q.17. If θ is the acute angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$ then prove that

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$
 (3)

- Q.18. Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1 and -3, -4, 1.(3)
- Q.19. Find the shortest distance between lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$. (3)
- **Q.20.** Lines $\vec{r} = (\hat{i} + \hat{j} \hat{k}) + \lambda (2\hat{i} 2\hat{j} + \hat{k})$ and $\vec{r} = (4\hat{i} 3\hat{j} + 2\hat{k}) + \mu (\hat{i} 2\hat{j} + 2\hat{k})$ are coplanar. Find the equation of the plane determined by them. (3)
- **Q.21.** If $y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + \dots + \infty}}}$, then

show that $\frac{dy}{dx} = \frac{\sec^2 x}{2y-1}$.

Find
$$\frac{dy}{dx}$$
 at $x = 0$. (3)

- Q.22. Find the approximate value of sin (30°30′). Give that $1^{\circ} = 0.0175^{\circ}$ and $\cos 30^{\circ} = 0.866^{\circ}$
- **Q.23.** Evaluate $\int x \tan^{-1} x dx$ (3)
- **Q.24.** Find the particular solution of the differential equation $\frac{dy}{dx} = e^{2y} \cos x$, when $x = \frac{\pi}{6}$, y = 0(3)
- **Q.25.** For the following probability density function of a random variable X, find (a) P(X < 1) and (b) P(|X| < 1).

$$f(x) = \frac{x+2}{18} \quad ; \text{ for } -2 < x < 4$$

$$= 0 \quad , \text{ otherwise}$$
(3)

Q.26. A die is thrown 6 times. If 'getting an odd number' is a success, find the probability of at least 5 successes. (3)

SECTION - D

Attempt any FIVE of the following questions:

[20]

(3)

Q.27. Simplify the given circuit by writing its logical expression. Also write your conclusion.

Q.28. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 verify that $A(adjA) = (adjA)A = |A|I$ (4)

(4)

Q.29. Prove that the volume of a tetrahedron with coterminus edges \bar{a} , \bar{b} and \bar{c} is $\frac{1}{6} [\bar{a} \bar{b} \bar{c}]$.

Hence, find the volume of tetrahedron whose coterminus edges are $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{c} = 2\hat{i} + \hat{j} + 4\hat{k}$.

- **Q.30.** Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line $\bar{r} = \left(7\hat{i} + 7\hat{j} + 6\hat{k}\right) + \lambda\left(-2\hat{i} + 2\hat{j} + 3\hat{k}\right)$ (4)
- **Q.31.** If $y = \cos(m \cos^{-1} x)$ then show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} + m^2 y = 0$ (4)
- **Q.32.** Verify Lagrange's mean value theorem for the function $f(x) = \sqrt{x+4}$ on the interval [0, 5].
- **Q.33.** Evaluate: $\int \frac{2x^2 3}{(x^2 5)(x^2 + 4)} dx$ (4)
- **Q.34.** Prove that: $\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a x) dx$ (4)