BUDT 730 Data, Models and Decisions

Lecture 20

Decision Trees (III)

Prof. Sujin Kim

Learning Objectives

- Single Stage problem
 - Learn how to implement a decision tree via Precision tree
 - Learn how to conduct a sensitivity analysis in Precision Tree
- Decision Tree
 - Understand how to construct a single stage decision tree
 - Learn how probabilities are used in the decision-making process
- Multi-stage problem
 - Understand how to construct a multi-stage decision tree
 - Learn how conditional probabilities are used in the decision-making process

Precision Tree

PrecisionTree

Decision Trees in Microsoft Excel

Finding the 'Best' Decision

- The best decision is found using *the rollback (folding-back) procedure*
- Start at the end and work your way backwards (from right to the left)
- Precision Tree does this automatically
 - Optimal decision branch is marked TRUE, otherwise FALSE
 - Policy Suggestion produces the optimal tree
 - Risk Profile summarizes the EMV for each decision as well as the probability of each outcome

Ann's Auto Insurance - Part A

- 1. Decision Tree for EMV maximizer
 - Build a tree
 - Generate an optimal tree
 - Perform a sensitivity analysis
- 2. Decision Tree for Exponential EU maximizer
 - Build a tree
 - Generate an optimal tree
 - Perform a sensitivity analysis

How to Read Decision Tree? Ann's Auto Insurance - Part A: Maximizing EMV

Create Optimal decision tree

Go to Decision Analysis -> Policy Suggestion -> Click Optimal Decision Tree

Optimal Decision Tree

EU Maximizer

Suppose Ann's risk attitude is best represented by an exponential utility function with a risk tolerance R = \$10,000. Build a decision tree for this problem.

1. Click the name of the tree. Click 'Utility Function' tab.

EU Maximizer

In-Class Exercise (Quiz 13)

- Create the decision tree for ACME using Precision Tree
 - Use 'New Product_Single Stage_template.xslx'

New Product Decision at ACME

New Product Decision at ACME: Optimal Tree – EMV maximizer

Should ACME finish development and then market the product, or should it stop development at this point and abandon the product?

> Yes!

New Product Decision at ACME: Optimal tree with exponential utility: $u(x) = 1 - e^{-x/5000}$

Should ACME finish development and then market the product, or should it stop development at this point and abandon the product?

> No!

Final Exam

Thursday, December 16, 1:30-3:30pm, VMH 1212

- A seat map will be posted in the morning of December 15.
- Coverage: Lecture 7-21 (from hypothesis test to decision tree), IA4, IA5, IA6 and TA2.
 Relevant quizzes.
- You are allowed to have one sheet of paper with notes (double-sided).
- Scratch papers for calculations will be given in the exam.
- Both notes and scratch papers will be collected after the exam.
- You are NOT allowed to use the book or other notes.
- You need to use Respondus lockdown browser to take the exam.
- You can also use a scientific calculator. You can also use the calculator in lockdown browser.
- The practice final exam will be posted under 'Module' later this week.
- Extra office hours: Tuesday, Dec 14, 10 am-12pm VMH 1333 ATK Classroom

Sensitivity Analysis for Decision Trees

Sensitivity Analysis for Decision Trees

- Some input parameters will be estimates with some level of uncertainty
- It is important to analyze how sensitive our decisions (and EMV or EU) are to various input parameters
- Precision Tree offers several built-in tools to perform one- and two-way sensitivity analysis of decision trees
 - Based on expected value or expected utility

BUDT 730

 Multiple visualizations: sensitivity graph, strategy region, tornado graph, spider graph

17

Ann's Auto Insurance Part A – Sensitivity Analysis

- Perform one-way sensitivity analysis, varying probability of accident from 1% to 2% (with 11 steps), and show the strategy region
 - As the probability <u>increases</u>, the EMV ______
 - O How about the optimal decision?
- Perform one-way sensitivity analysis, varying cost of policy from \$80 \$150 (with 8 steps), and show the strategy region
 - As the cost of policy <u>decreases</u>, the EMV _____
 - O How about the optimal decision?
- Perform two-way sensitivity analysis, varying cost of policy from \$80 \$150 and varying probability of accident from 1% to 2%, and show the strategy region

Ann's Auto Insurance Part A – Sensitivity Analysis

- Perform one-way sensitivity analysis, varying probability of accident from 1% to 2% (with 11 steps), and show the strategy region
 - As the probability <u>increases</u>, the EMV <u>decreases</u>
 - How about the optimal decision? switch from 'No (not buying)' to 'Yes (buying)'
- Perform one-way sensitivity analysis, varying cost of policy from \$80 \$150 (with 8 steps), and show the strategy region
 - As the cost of policy <u>decreases</u>, the EMV ____ increases _____
 - How about the optimal decision? switch from 'No (not buying)' to 'Yes (buying)'
- Perform two-way sensitivity analysis, varying cost of policy from \$80 \$150 and varying probability of accident from 1% to 2%, and show the strategy region

Ann's Auto Insurance Part A – Sensitivity Analysis

Click 'Sensitivity Analysis'

BUDT 730

One-Way Sensitivity-> Add Input -> Select the cell (B5) -> set up the range-> click
 'Sensitivity Graph' and 'Strategy Region'->Click

20

Sensitivity analysis on probability of accident: Strategy Region

Strategy Region Data						
	Input		Yes		No	
	Value	Change (%)	Value	Change (%)	Value	Change (%)
#1	0.01	0.00%	-120	-20.00%	-100	0.00%
#2	0.011	10.00%	-120	-20.00%	-110	-10.00%
#3	0.012	20.00%	-120	-20.00%	-120	-20.00%
#4	0.013	30.00%	-120	-20.00%	-130	-30.00%
#5	0.014	40.00%	-120	-20.00%	-140	-40.00%
#6	0.015	50.00%	-120	-20.00%	-150	-50.00%
#7	0.016	60.00%	-120	-20.00%	-160	-60.00%
#8	0.017	70.00%	-120	-20.00%	-170	-70.00%
#9	0.018	80.00%	-120	-20.00%	-180	-80.00%
#10	0.019	90.00%	-120	-20.00%	-190	-90.00%
#11	0.02	100.00%	-120	-20.00%	-200	-100.00%

Sensitivity analysis on probability of accident: Sensitivity graph

Sensitivity Analysis on cost of policy on cost of policy: Strategy Region

How much is Ann willing to pay for the insurance?

Ann's Auto Insurance Part A – Sensitivity Analysis on probability of accident and cost of policy

Two-Way Sensitivity -> Add Input -> Select the cell (E3) -> set up the range

Sensitivity Analysis on probability of accident and cost

of policy

Sensitivity of Decision Tree 'Ann's Insurance Part A'

Expected Value of Node 'Buy Insurance?' (C14)

Sensitivity Analysis on cost of policy

EU Maximizer

 Perform one-way sensitivity analysis, varying cost of policy from \$120 - \$200 (with 9 steps), and show the strategy region

How much is Ann willing to pay for the insurance?

26

Next ...

- Multistage Decision Tree:
 - o Build a decision tree for Ann's insurance problem
 - Sensitivity Analysis on Ann's insurance
 - New Product Decision at ACME