

Real-time Carbon Neutrality Management And Optimization Using Natural Language Processing

Project ID: 2022-175

This is our team

Ms. Anjali Gamage

Supervisor

Ms. Sanjeevi Chandrasiri

Co-Supervisor

Sathees P. IT19052748

Team Leader

Mathanika M. IT19005218

Team Member

Vishakanan S. IT19001562

Team Member

Vithursan M. IT19033174

Team Member

Content

- • •
- 1. Overall Introduction
 - A. Domain Background
 - в. Terminology
 - c. Current Approaches
- 2. Research Question
- 3. Objectives
 - A. Main Objective
 - в. Specific Objectives
- 4. Overall System Architecture
- 5. Individual Components
- 6. Wrap-up

O1 Overall Introduction

Domain Background - Cause

• • •

How does global warming occur?

Domain Background - Remedy

• • •

How to reduce global warming?

Domain Background— Current Measures

• • •

What are we doing now to reduce Global Warming?

Domain Background— Our Focus

• • •

What is our project focus area?

Domain Background - Benefits

0 0 0

What are the benefits carbon reporting and carbon trading?

- Urges firms to go Carbon Neutral
- Encourages the usage of sustainable energy sources
- Promotes Innovation in developing green solutions

Terminology

- • •
- Carbon Credits
- Carbon Neutrality
- Carbon Offsetting
- Carbon Reporting or Carbon Accounting
- Carbon Trading
- CO₂ Equivalent
- Consumption
- Emission Activity
- Emission Factor
- Emission Source
- Emission Technology
- Global Warming Potential
- Greenhouse Gas (GHG) Carbon dioxide, Methane, Nitrous oxide, Hydrofluorocarbons, etc.

Current Approaches

• • •

What are the current methods of carbon reporting?

- 1. Manual reporting
 - Ledgers and hard copies.
- 2. Spreadsheets
 - Using spreadsheet tools such as MS Excel, etc.
- 3. Emission calculators
 - Commercial emission calculators such as CarbonView, etc.

Current Approaches – Issues

• • •

What are the issues of current approaches?

- Data logging happens at once.
 - No real-time emission status
 - Chances for unexpected results
 - No time to correct mistakes
- Usually done by a single individual or small group of personals
 - Large workload
 - Not Scalable
 - Human error
 - Delay

02 ... Research Question

Research Question

• • •

How to implement

- a **real-time** carbon neutrality management system for corporate organizations and
- help these organizations optimize their emissions to achieve desired emission target?

03 Objectives

Objectives

• • •

Main Objective:

Create a cross-platform mobile application platform for organizations to **manage** and **optimize** their carbon emissions.

Specific Objectives:

- o Gather employee **emission activity** details from employees using a voice assistant.
- Search emission factors and provide ranked results for the emission details gathered.
- Verify and convert values for units provided by the employees to match the units of the selected emission factor.
- Identify the **optimum solution** for the given emission source constraints and alert about any violations of the optimal solution.

U4
Overall System
Architecture

17

Overall System Architecture

O5 Individual Components

Component 1

Emission Records Collection And Parts Extraction

Mathanika M. IT19005218 Data Science

20

Component 1

• • •

Introduction

Proposed Methodology

References

Background

- •
 - What is Voice Assistant?
 - What is Custom Named Entity Recognition (NER)?
 - How does Voice Assistant and NER relate to our system?

Research Gap

• • •

	Research 1 [1]	Research 2 [2]	Research 3 [3]	Research 4 [4]	Our Proposed System
Gather daily emission activity	×	×	×	×	
Calculate real-time emission value	×	×	×	×	
Emission data collection from employees	*		*	*	

Research Problem

- •
 - How to gather daily emission data from employees?
 - How to generate emission report daily?

Specific And Sub Objectives

• • •

Main Objective

• Develop a system that can calculate daily emission value from the real-time emission data of the organization.

Sub Objective

Provide the real-time emission gathering feature.

Component 1

• • •

Introduction

Proposed Methodology

References

Individual System Architecture

Technologies

• • •

Research Part	Technology		
Voice Assistant	Python		
NER	SpaCy		
Deployment	AWS		
Communication	Slack, Zoom		

Requirements

• • •

Work Breakdown Structure

Gantt Chart

Component 1

Introduction

Proposed Methodology

References

32

References

• • •

[1] Erickson LE. Reducing greenhouse gas emissions and improving air quality: Two global challenges. *Environ Prog Sustain Energy*. 2017;36(4):982-988. doi:10.1002/ep.12665

[2] Lebunu Hewage Udara Willhelm Abeydeera 1,*, Jayantha Wadu Mesthrige 2 and Tharushi Imalka Samarasinghalage, "Global Research on Carbon Emissions: A Scientometric Review," Received: 25 June 2019; Accepted: 19 July 2019; Published: 22 July 2019

[3] Edurne Loyarte-López 1,*, Mario Barral 1 and Juan Carlos Morla 2, "Methodology for Carbon Footprint Calculation Towards Sustainable Innovation in Intangible Assets," Received: 30 January 2020; Accepted: 19 February 2020; Published: 21 February 2020

[4] H. Hashim *et al.*, "An Integrated Carbon Accounting and Mitigation Framework for Greening the Industry," *Energy Procedia*, vol. 75, pp. 2993–2998, Aug. 2015, doi: 10.1016/J.EGYPRO.2015.07.609.

Component 2

• • •

Emission Factor Retrieval And Emission Calculation

Sathees P. IT19052748
Data Science

Component 2

• • •

Introduction

Proposed Methodology

Supporting Items

References

Background - Emission Factors

What are emission factors?

- An emission activity can emit different types of GHGs.
 - Carbon dioxide, Methane, Nitrous oxide, Hydrofluorocarbons, etc.
- These have different Global Warming Potential.
- A standard value makes reporting easier.
- CO2 Equivalent is calculated for various Emission Technologies.
- These estimated values are published (Emission standards) by different environmental entities.
- These are usually published every year.
- Firms adopt one of these standards depending on their reporting authority.

Background - Emission Factors

0 0 0

Some popular **Emission Standards**

- Department for Environment, Food and Rural Affairs (DEFRA) UK
- Climate Registry Information System (CRIS) USA and Canada
- Environmental Protection Agency (EPA) USA
- National Greenhouse Accounts (NGA) Australia

Factors by Category

	-				
Back-	70	~		4	٧,
Ca	1.	ш	v	-	
				-	

	Category							
Scope	Level 1	Level 2	Level 3	Level 4	Column Text	UOM	GHG	GHG Conversion
								Factor 2021
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Gross CV	kWh (Gross CV)	kg CO2e	0.22240
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Gross CV	kWh (Gross CV)	kg CH4	0.00017
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Gross CV	kWh (Gross CV)	kg CO2	0.22210
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Gross CV	kWh (Gross CV)	kg N2O	0.00013
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Net CV	kWh (Net CV)	kg CO2e	0.24106
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Net CV	kWh (Net CV)	kg CH4	0.00018
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Net CV	kWh (Net CV)	kg CO2	0.24074
Scope 1	Fuels	Gaseous fuels	Butane		Energy - Net CV	kWh (Net CV)	kg N2O	0.00014
Scope 1	Fuels	Gaseous fuels	Butane		Volume	litres	kg CO2e	1.74529
Scope 1	Fuels	Gaseous fuels	Butane		Volume	litres	kg CH4	0.00129
Scope 1	Fuels	Gaseous fuels	Butane	1 2	Volume	litres	kg CO2	1.74296
Scope 1	Fuels	Gaseous fuels	Butane		Volume	litres	kg N2O	0.00104
Scope 1	Fuels	Gaseous fuels	Butane		Tonnes	tonnes	kg CO2e	3033.32000
Scope 1	Fuels	Gaseous fuels	Butane		Tonnes	tonnes	kg CH4	2.25000
Scope 1	Fuels	Gaseous fuels	Butane		Tonnes	tonnes	kg CO2	3029.26000
Scope 1	Fuels	Gaseous fuels	Butane		Tonnes	tonnes	kg N2O	1.80000
Scope 1	Fuels	Gaseous fuels	CNG		Energy - Gross CV	kWh (Gross CV)	kg CO2e	0.18316
Scope 1	Fuels	Gaseous fuels	CNG		Energy - Gross CV	kWh (Gross CV)	kg CH4	0.00025
Scope 1	Fuels	Gaseous fuels	CNG		Energy - Gross CV	kWh (Gross CV)	kg CO2	0.18282
Scope 1	Fuels	Gaseous fuels	CNG		Energy - Gross CV	kWh (Gross CV)	kg N2O	0.00010
Scope 1	Fuels	Gaseous fuels	CNG		Energy - Net CV	kWh (Net CV)	kg CO2e	0.20297

Sample Emission Standard – DEFRA 2021

Source: <u>https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting</u>

Background - Emission Calculation

• • •

• Emission for an emission activity can be calculated using the above formula [1], [2]. E.g., Assume the emission factor for a car is $0.1500 \text{ kgCO}_2\text{e/km}$ and we have traveled 4 km using this car,

Emission for this activity = $4 \text{ km} \times 0.1500 \text{ kgCO2e/km}$

= 0.6 kgCO2e

Research Gap

• • •

Researches or Products	Emission Factor Searching	Ad-hoc Emission Factor Searching (Tolerance to Term Variances)	Emission Factor Ranking using Term Similarity	Emission Factor Ranking using Personalization	Emission Calculation
Research A [3]	X	×	X	X	✓
Product A [4]	Х	X	X	X	✓
Product B [5]	Х	X	X	X	✓
Product C [6]	Х	X	X	X	✓
Carbonis	✓	✓	✓	✓	✓

Research Problem

0 0 0

How to implement an emission factor search system? that is,

- Tolerant to variations in the terms,
- Ranks results based on the term similariy, and
- Ranks results based on the **personalization** (user search history).

Specific And Sub Objectives

• • •

Specific Objective:

Search emission factors and provide ranked results for the emission details gathered

Sub Objectives:

- Collect and process emission standard documents
- Create a common emission factor representation
- Implement an emission factor search feature with ranking
- Calculate emission of the emission activities

• • •

Introduction

Proposed Methodology

Supporting Items

Individual System Architecture – Emission Factor Retrieval

Technologies – Available Approaches

- •
 - Technical areas Data Science, Natural Language Processing (NLP), and Information Retrieval (IR).
 - Information Retrieval (IR) algorithms
 - Boolean model: precise queries with operators
 - Extended Boolean model : Boolean model + proximity operators
 - Vector space model (tf-idf): ranking with the importance of terms
 - Probabilistic model (Bayesian networks)
 - Vector space classification (KNN)
 - Machine learning (SVM)
 - Word embeddings (Word vectors) [7] [10]: State-of-the-art, used with word2vec, GloVe Algorithms [8]
 - Personalization approaches
 - Score-based algorithms good for starting
 - Machine learning models

Technologies – Critical Analysis

• • •

Technologies	Ad-hoc Searching	Ranking with Term Similarity	Ranking with Personalization	Development Time	Startup Friendly (Cost, Need for Previous Data)
Boolean model	Х	X	X	Manageable	√
Extended Boolean model	Х	Х	X	Manageable	√
Vector space model	X	X	X	Manageable	√
Probabilistic model	X	X	X	High	✓
Vector space classification	✓	X	X	High	Х
Machine learning models	√	X	X	High	Х
Word embeddings [7] – [10]	✓	✓	Х	Manageable	√

Technologies – Languages, Platforms, And Tools.

- •
 - Languages
 - Python
 - Python libraries
 - Numpy, Pandas, NLTK, Jupyter, etc.
 - Cloud services (AWS)
 - Database (AWS RDS, AWS DocumentDB)
 - Compute (AWS EC2)
 - Backend API (AWS Lambda)
 - File Storage (AWS S3) optional
 - IDE and code editors
 - Visual Studio Code and Pycharm
 - Dbeaver or DataGrip optional

Requirements – Software Requirements

• • •

Functional Requirements (User Stories):

- As an **employee** I want to **retrieve ranked matches of the emission factors** so that I can save time when adding my emission data.
- As an **employee** I want to **get personalized emission factor search results** so that I can get emission factors for my frequent activities faster.
- As an employee I want to calculate my emission so that I can save time.

Non-Functional Requirements:

- Speed or performance response time
- Size Use less resources
- Scalability Scaled to new factor standards
- Ease of use No need of training or education
- Reliablity Available as much as possible

Requirements – System & personal Requirements

System Hardware Requirements (Minimum):

- User device Any IOS or Android devices with 1GB of RAM, 200MB of ROM, microphone, and internet connectivity.
- Backend Server Windows or Linux servers with 8GB RAM, and 30GB storage.
- Databases 200MB storage.

Personal Requirements:

- Domain knowledge from industry expert
- Guidance and support from supervisor, co-supervisor, and lecturers

Work Breakdown Structure

3/2/2022

Research Project - Timeline

Read-only view, generated on 24 Ian 2022

Gantt Chart

• • •

Introduction

Proposed Methodology

Supporting Items

References

3/2/2022

Commercialization

- •
 - Can be sold as a separate module
 - Target Clients small, medium, large scale business firms and industries
 - Marketing paradigm B2B marketing
 - How can we promote this product?
 - Content based inbound marketing
 - Social media marketing
 - Search engine optimization (SEO)
 - Search engine marketing (Google Adsense)
 - Industry events (expos)
 - Referral programs (affiliate programs)

Budget – Development Expenses

0 0 0

Component	Cost (USD)	Cost (LKR)*
Cloud compute server (AWS EC2)	25.00	4950.00
Serverless Backend service (AWS Lambda) – free tier	0.00	0.00
NoSQL document database (AWS DocumentDB) – free tier	0.00	0.00
Relational database (AWS RDS) – free tier	0.00	0.00
Other cloud services - shared	30.00	5940.00
Total	55.00	10890.00

^{*}Used USD to LKR conversion rate of 198 Rs. on 3/2/2022

Budget – Operational Expenses

• • •

Component	Cost (USD)	Cost (LKR)*
Cloud compute server (AWS EC2)	30.00	5940.00
Serverless Backend service (AWS Lambda)	20.00	3960.00
NoSQL document database (AWS DocumentDB)	25.00	4950.00
Relational database (AWS RDS)	15.00	2970.00
Total	90.00	17820.00

^{*}Used USD to LKR conversion rate of 198 Rs. on 3/2/2022

• • •

Introduction

Proposed Methodology

Supporting Items

- • •
- [1] Brander, M., Gillenwater, M., & Ascui, F. (2018). Creative accounting: A critical perspective on the market-based method for reporting purchased electricity (scope 2) emissions. *Energy Policy*, *112*, 29–33. https://doi.org/10.1016/J.ENPOL.2017.09.051
- [2] Jayathunga, R. D. S., & Dulani, M. H. N. K. T. (2016). A GUIDE for CARBON FOOTPRINT ASSESSMENT CLIMATE CHANGE SECRETARIAT MINISTRY OF MAHAWELI DEVELOPMENT AND ENVIRONMENT The Climate Change Secretariat Ministry of Mahaweli Development and Environment.
- [3] Tranberg, B., Corradi, O., Lajoie, B., Gibon, T., Staffell, I., & Andresen, G. B. (2019). Real-time carbon accounting method for the European electricity markets. *Energy Strategy Reviews*, 26, 100367. https://doi.org/10.1016/J.ESR.2019.100367
- [4] CarbonView Carbon reporting made easy. (n.d.). Retrieved January 24, 2022, from https://carbon-view.com/
- [5] Simplified Carbon Reporting with Turbo CarbonTM | UL. (n.d.). Retrieved January 24, 2022, from https://www.ul.com/services/digital-applications/simplified-co2-reporting
- [6] Carbon Management & Reporting Sphera. (n.d.). Retrieved January 24, 2022, from https://sphera.com/carbon-management-reporting/
- [7] Ganguly, D., Roy, D., Mitra, M., & Jones, G. J. F. (2015). A word embedding based generalized language model for information retrieval. SIGIR 2015 Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 795–798. https://doi.org/10.1145/2766462.2767780

- • •
- [8] Zamani, H., & Bruce Croft, W. (2017). Relevance-basedword embedding. SIGIR 2017 Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 505–514. https://doi.org/10.1145/3077136.3080831
- [9] Yang, X., Lo, D., Xia, X., Bao, L., & Sun, J. (2016). Combining Word Embedding with Information Retrieval to Recommend Similar Bug Reports. *Proceedings International Symposium on Software Reliability Engineering, ISSRE*, 127–137. https://doi.org/10.1109/ISSRE.2016.33
- [10] Hu, D., Chen, M., Wang, T., Chang, J., Yin, G., Yu, Y., & Zhang, Y. (2018). Recommending Similar Bug Reports: A Novel Approach Using Document Embedding Model. *Proceedings Asia-Pacific Software Engineering Conference, APSEC, 2018-December*, 725–726. https://doi.org/10.1109/APSEC.2018.00108

• • •

Unit Verification And Unit Conversion

Vishakanan S. IT19001562
Data Science

Introduction

Proposed Methodology

Background

- •
 - What is unit verification?
 - What is unit conversion?
 - How do unit verification and conversion work?
 - What role does unit verification and conversion play in calculating the carbon emission rate?

Research Gap

• • •

	Unit Convertor	Research A	Research B	Our Proposed System
Unit verification	X	X	X	
Calculate real-time emission value	×			
Conversion user friendliness		×	×	
Input data via voice	×	×	×	
Emission data collection from employees	×		×	
Low budget		×	×	

Research Problem

• • •

 How can we identify whether the input is an emission factor unit or not?

• What should we need to do if the input is not in an emission factor unit?

Specific And Sub Objectives

• • •

Main objective

 Verify and convert values for units provided by the employees to match the units of the selected emission factor.

Sub objectives

- Implementing text classification model with natural language processing to verify the difference in input units and units in the emission factor.
- Creating a unit conversion system if the provided units' classes are different.

• • •

Introduction

Proposed Methodology

Individual System Architecture

Technologies

- - PYTHON
 - AWS
 - KERAS
 - TENSORFLOW

Requirements

0 0 0

Work Breakdown Structure

Unit verification and conversion for emission calculation using text classification.

69

Gantt Chart

Introduction

Proposed Methodology

References

71

- •
 - [1] Guidance on how to measure and report your greenhouse gas emissions. Department for Environment, Food and Rural Affairs., 2009, pp. 20-22.
 - [2] Carbon Footprint of an Organization: a Tool for Monitoring Impacts on Global Warming, Department of Agricultural Engineering, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya, 81100, Sri Lanka. 2017
 - [3] Estimation of renal function in the intensive care unit: the covert concepts brought to light Sham Sunder, Rajesh Jayaraman*, Himanshu Sekhar Mahapatra, Satyanand Sathi, Venkata Ramanan, Prabhu Kanchi, Anurag Gupta, Sunil Kumar Daksh and Pranit Ram, 2014
 - [4] Android based Conversion and Estimation Application, March 2016
 - [5] Measurement Context Extraction from Text: Discovering Opportunities and Gaps in Earth Science, Kyle Hundman1, Chris A. Mallmann1,2
 - [6] Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm
 - [7] How to Extract Unit of Measure in Scientific Documents?, KDIR 2013
 - [8] Natural Language Processing Techniques for Extracting and Categorizing Finding Measurements in Narrative Radiology Reports, 2015

• • •

Emission Optimization

Vithursan M. IT19033174
Software Engineering

Introduction

Proposed Methodology

Supporting Items

References

3/2/2022

Background

- •
 - Greenhouse gas (GHG) emissions have continuously grown since the 19th century [1].
 - Every country around the world have formed policies and agreements to limits the increasing emissions of greenhouse gases.
- As well as every organization must carry out reducing carbon emission. They have many emission sources and also have a desired emission goal for reducing emission.

Research Gap

• • •

	Research A (EnOpt)[5]	Research B [4]	Research C [6]	Proposed system
Sent alert to user when emission violate threshold	X	X	X	
Find optimum threshold value				
customized by the user according to their requirement changes.	X	X	X	

Research Problem

- •
 - How to find the threshold values for each emission sources?
 - How to maintain the carbon emission level without exceeding the limit?
 - How to notify to Business Analyst when carbon credit exceed?
 - Governments defined a limit for carbon emissions to each organization called as carbon credit [2].
 It's a difficult task to them maintain that carbon credit limit continuously.
 - No way to identify whether each emission sources exceed the carbon credit or not [3]. So need to compare carbon emission and target emission.

Specific And Sub Objectives

• • •

Specific objective
 Identify the optimum solution for the given emission source constraints using Optimization Algorithms and sent alert about any violations of the optimal solution.

Sub Objectives

- 1. Implementing a custom emission optimization module Using the constraints on emission sources as the input.
 - o Obtain usage constraints on different emission sources of the organization from the business analyst (BA).
 - Implement an optimization model using an appropriate optimization algorithm to find the minimum solution for the given emission sources constraints.
 - Let BA configure and choose a suitable optimal solution.
 - Create thresholds on different emission sources according to the chosen optimal solution.
- 2. Creating an alert framework to provide alerts about the breaches of the thresholds added by the optimal solution.
 - During the addition of a new emission record, check whether any thresholds provided by the optimal solution are violated
 - Send alerts to the BAs about any threshold violations
- 3. Implement a mobile application using React Native and expo cli. React Native will be used to implement a cross-platform mobile application and expo cli will be used to access get hardware components such as mic and speaker.

• • •

Introduction

Proposed Methodology

Supporting Items

References

Individual System Architecture

80

Technologies

- •
 - React Native
 - Python
 - AWS

Requirements

Work Breakdown Structure

0 0 0

Gantt Chart

• • •

Introduction

Proposed Methodology

Supporting Items

References

Commercialization

- 0 0 0
 - Targeting market in developed countries.
 - Develop a public relations and news media strategy.
 - Develop a pricing strategy with packages.
 - Use social media marketing strategies

Budget

• • •

Resource Type	Amount (USD)	Amount (LKR)
Hosting mobile App	\$50	10000.00
Internet usage	\$25	5000.00
AWS	\$20	4000.00
Other costs	\$15	3000.00
Total	\$110	22000.00

• • •

Introduction

Proposed Methodology

Supporting Items

References

References

0 0 0

[1] William F Lamb, Thomas Wiedmann, Julia Pongratz, Robbie Andrew, Monica Crippa, Jos G J Olivier, Dominik Wiedenhofer "A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018" *Environmental Research Letters, Volume 16, Number 7*, Published on 29 June 2021, Published by: IOP Publishing Ltd available at: https://iopscience.iop.org/article/10.1088/1748-9326/abee4e

[2] M. Roelfsema et al., "Taking stock of national climate policies to evaluate implementation of the Paris Agreement", *Nature Communications*, vol. 11, no. 1, 2020. Available at: https://www.nature.com/articles/s41467-020-15414-6?fbclid=lwAR1drArL9ReoJl2zgqjmdxJNoBsM4zRJna-JHIGWkzTka7d4NB4fdz0nCrE.

[3] B. Tranberg, O. Corradi, B. Lajoie, T. Gibon, I. Staffell and G. Andresen, "Real-time carbon accounting method for the European electricity markets", *Energy Strategy Reviews*, vol. 26, p. 100367, 2019. Available: https://www.sciencedirect.com/science/article/pii/S2211467X19300549.

[4] Kazi Mostafa, Innchyn Her, "Stabilization wedges as a tool of engineering optimization, with an example of CO2 emission control", vol. 1, 2010. available at: https/ieeexplore.ieee.org/document/5533732

[5] E. T. Lau, Q. Yang, G. A. Taylor, A. B. Forbes, P. Wright, V. N. Livina, "Optimization of carbon emissions in smart grids", 2014, ISBN:978-1-4799-6557-1, available at: https/ieeexplore.ieee.org/document/6934796

[6] Kailong Zhou, Xin Chen, Weihua Cao, "Optimization Method for Carbon Efficiency in the Green Manufacturing of Sinter Ore and its Application", 2018, ISBN: 1934-1768, available at: https/ieeexplore.ieee.org/document/8483152

06 Wrap-up

