Titanic - a Machine Learning Case Study-Solutions

August 25, 2017

1 Titanic: a Machine Learning Case Study

by Dr. Kristian Rother

This tutorial is available under the conditions of the Creative Commons Attribution Share-alike License 4.0

1.1 Goal

We would like to utilize passenger data to predict whether or not they will survive a trip on the Titanic.

1.2 Part 1: Boarding

1.2.1 1.1 Importing Python Libraries

Import a few Python libraries typically used in Machine Learning:

```
In [1]: import pandas as pd # handling of tabular data
    import numpy as np # number crunching
    import pylab as plt # plotting
```

In [2]: %matplotlib inline

1.2.2 1.2. Load passenger data

Use pandas to load the file train.csv.

```
In [3]: df = pd.read_csv('train.csv')
```

You can find a detailed documentation of the dataset on www.kaggle.com/c/titanic.

1.2.3 1.3. Inspect the data

Show the contents of the pandas DataFrame.

In [4]: df

Out[4]:		PassengerId	Survived	Pclass	\
	0	1	0	3	•
	1	2	1	1	
	2	3	1	3	
	3	4	1	1	
	4	5	0	3	
	5	6	0	3	
	6	7	0	1	
	7	8	0	3	
	8	9	1	3	
	9	10	1	2	
	10	11	1	3	
	11	12	1	1	
	12	13	0	3	
	13	14	0	3	
	14	15	0	3	
	15	16	1	2	
	16	17	0	3	
	17	18	1	2	
	18	19	0	3	
	19	20	1	3	
	20	21	0	2	
	21	22	1	2	
	22	23	1	3	
	23	24	1	1	
	24	25	0	3	

25	26	1	3
26	27	0	3
27	28	0	1
28	29	1	3
29	30	0	3
• •	• • •	• • •	
861	862	0	2
862	863	1	1
863	864	0	3
864	865	0	2
865	866	1	2
866	867	1	2
867	868	0	1
868	869	0	3
869	870	1	3
870	871	0	3
871	872	1	1
872	873	0	1
873	874	0	3
874	875	1	2
875	876	1	3
876	877	0	3
877	878	0	3
878	879	0	3
879	880	1	1
880	881	1	2
881	882	0	3
882	883	0	3
883	884	0	2
884	885	0	3
885	886	0	3
886	887	0	2
887	888	1	1
888	889	0	3
889	890	1	1
890	891	0	3

	Name	Sex	Age	SibSp	\
0	Braund, Mr. Owen Harris	male	22.0	1	
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	
2	Heikkinen, Miss. Laina	female	26.0	0	
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	
4	Allen, Mr. William Henry	male	35.0	0	
5	Moran, Mr. James	male	NaN	0	
6	McCarthy, Mr. Timothy J	male	54.0	0	
7	Palsson, Master. Gosta Leonard	male	2.0	3	
8	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	
9	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	

```
10
                        Sandstrom, Miss. Marguerite Rut
                                                            female
                                                                     4.0
                                                                               1
11
                                Bonnell, Miss. Elizabeth
                                                            female
                                                                    58.0
                                                                               0
                         Saundercock, Mr. William Henry
                                                                    20.0
                                                                               0
12
                                                              male
                             Andersson, Mr. Anders Johan
                                                                    39.0
13
                                                              male
                                                                               1
14
                   Vestrom, Miss. Hulda Amanda Adolfina
                                                           female
                                                                    14.0
                                                                               0
                       Hewlett, Mrs. (Mary D Kingcome)
15
                                                            female
                                                                    55.0
                                                                               0
16
                                    Rice, Master. Eugene
                                                              male
                                                                      2.0
                                                                               4
17
                           Williams, Mr. Charles Eugene
                                                              male
                                                                     NaN
                                                                               0
18
     Vander Planke, Mrs. Julius (Emelia Maria Vande...
                                                            female
                                                                    31.0
                                                                               1
19
                                 Masselmani, Mrs. Fatima
                                                            female
                                                                     NaN
                                                                               0
20
                                    Fynney, Mr. Joseph J
                                                                    35.0
                                                                               0
                                                              male
21
                                   Beesley, Mr. Lawrence
                                                              male
                                                                    34.0
                                                                               0
22
                             McGowan, Miss. Anna "Annie"
                                                                               0
                                                            female
                                                                    15.0
                            Sloper, Mr. William Thompson
23
                                                              male
                                                                    28.0
                                                                               0
24
                          Palsson, Miss. Torborg Danira
                                                            female
                                                                     8.0
                                                                               3
     Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...
25
                                                            female
                                                                    38.0
                                                                               1
26
                                 Emir, Mr. Farred Chehab
                                                                               0
                                                              male
                                                                     NaN
27
                         Fortune, Mr. Charles Alexander
                                                                    19.0
                                                                               3
                                                              male
                          O'Dwyer, Miss. Ellen "Nellie"
                                                                               0
28
                                                            female
                                                                     NaN
29
                                     Todoroff, Mr. Lalio
                                                                               0
                                                              male
                                                                     NaN
                                                               . . .
                                                                      . . .
. .
861
                             Giles, Mr. Frederick Edward
                                                              male
                                                                    21.0
                                                                               1
862
     Swift, Mrs. Frederick Joel (Margaret Welles Ba...
                                                            female
                                                                    48.0
                                                                               0
                      Sage, Miss. Dorothy Edith "Dolly"
863
                                                            female
                                                                     NaN
                                                                               8
864
                                  Gill, Mr. John William
                                                                    24.0
                                                                               0
                                                              male
                                Bystrom, Mrs. (Karolina)
                                                                    42.0
                                                                               0
865
                                                            female
                           Duran y More, Miss. Asuncion
866
                                                                    27.0
                                                                               1
                                                            female
867
                   Roebling, Mr. Washington Augustus II
                                                              male
                                                                    31.0
                                                                               0
868
                             van Melkebeke, Mr. Philemon
                                                              male
                                                                     NaN
                                                                               0
869
                        Johnson, Master. Harold Theodor
                                                              male
                                                                     4.0
                                                                               1
870
                                                                    26.0
                                       Balkic, Mr. Cerin
                                                              male
                                                                               0
871
      Beckwith, Mrs. Richard Leonard (Sallie Monypeny)
                                                            female
                                                                    47.0
                                                                               1
872
                                Carlsson, Mr. Frans Olof
                                                              male
                                                                    33.0
                                                                               0
                             Vander Cruyssen, Mr. Victor
                                                                               0
873
                                                              male
                                                                    47.0
874
                  Abelson, Mrs. Samuel (Hannah Wizosky)
                                                            female
                                                                    28.0
                                                                               1
875
                       Najib, Miss. Adele Kiamie "Jane"
                                                            female
                                                                    15.0
                                                                               0
876
                          Gustafsson, Mr. Alfred Ossian
                                                              male
                                                                    20.0
                                                                               0
877
                                    Petroff, Mr. Nedelio
                                                              male
                                                                    19.0
                                                                               0
                                      Laleff, Mr. Kristo
878
                                                              male
                                                                     NaN
                                                                               0
879
         Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)
                                                            female
                                                                    56.0
                                                                               0
880
          Shelley, Mrs. William (Imanita Parrish Hall)
                                                                               0
                                                            female
                                                                    25.0
                                                                               0
881
                                      Markun, Mr. Johann
                                                                    33.0
                                                              male
                           Dahlberg, Miss. Gerda Ulrika
                                                                    22.0
                                                                               0
882
                                                            female
                                                                               0
883
                          Banfield, Mr. Frederick James
                                                              male
                                                                    28.0
884
                                  Sutehall, Mr. Henry Jr
                                                              male
                                                                    25.0
                                                                               0
885
                   Rice, Mrs. William (Margaret Norton)
                                                            female
                                                                    39.0
                                                                               0
886
                                   Montvila, Rev. Juozas
                                                              male
                                                                    27.0
                                                                               0
887
                           Graham, Miss. Margaret Edith
                                                                               0
                                                            female
                                                                    19.0
```

889		00111100011, 1111001	Behr.	Mr. Karl	Howell	male
890				ey, Mr. I		
				,		
	Parch	Ticket	Fare	Ca	abin Emb	arked
0	0	A/5 21171	7.2500		NaN	S
1	0	PC 17599	71.2833		C85	С
2	0	STON/02. 3101282	7.9250		NaN	S
3	0	113803	53.1000	(C123	S
4	0	373450	8.0500		NaN	S
5	0	330877	8.4583		NaN	Q
6	0	17463	51.8625		E46	S
7	1	349909	21.0750		NaN	S
8	2	347742	11.1333		NaN	S
9	0	237736	30.0708		NaN	С
10	1	PP 9549	16.7000		G6	S
11	0	113783	26.5500	(C103	S
12	0	A/5. 2151	8.0500		NaN	S
13	5	347082	31.2750		NaN	S
14	0	350406	7.8542		NaN	S
15	0	248706	16.0000		NaN	S
16	1	382652	29.1250		NaN	Q
17	0	244373	13.0000		NaN	S
18	0	345763	18.0000		NaN	S
19	0	2649	7.2250		NaN	С
20	0	239865	26.0000		NaN	S
21	0	248698	13.0000		D56	S
22	0	330923	8.0292		NaN	Q
23	0	113788	35.5000		A6	S
24	1	349909	21.0750		NaN	S
25	5	347077	31.3875		NaN	S
26	0	2631	7.2250		NaN	С
27	2	19950	263.0000	C23 C25		S
28	0	330959	7.8792		NaN	Q
29	0	349216	7.8958		NaN	S
861	0	28134	11.5000		NaN	S
862	0	17466	25.9292		D17	S
863	2	CA. 2343	69.5500		NaN	S
864	0	233866	13.0000		NaN	S
865	0	236852	13.0000		NaN	S
866	0	SC/PARIS 2149	13.8583		NaN	C
867	0	PC 17590	50.4958		A24	S
868	0	345777	9.5000		NaN	S
869	1	347742	11.1333		NaN	S
870	0	349248	7.8958		NaN	S
871	1	11751	52.5542		D35	S
872	0	695	5.0000	B51 B53	B55	S

Johnston, Miss. Catherine Helen "Carrie" female

NaN

26.0

32.0

1

0

0

888

873	0	345765	9.0000	NaN	S
874	0	P/PP 3381	24.0000	NaN	C
875	0	2667	7.2250	NaN	C
876	0	7534	9.8458	NaN	S
877	0	349212	7.8958	NaN	S
878	0	349217	7.8958	NaN	S
879	1	11767	83.1583	C50	C
880	1	230433	26.0000	NaN	S
881	0	349257	7.8958	NaN	S
882	0	7552	10.5167	NaN	S
883	0	C.A./SOTON 34068	10.5000	NaN	S
884	0	SOTON/OQ 392076	7.0500	NaN	S
885	5	382652	29.1250	NaN	Q
886	0	211536	13.0000	NaN	S
887	0	112053	30.0000	B42	S
888	2	W./C. 6607	23.4500	NaN	S
889	0	111369	30.0000	C148	C
890	0	370376	7.7500	NaN	Q

[891 rows x 12 columns]

```
In [5]: df['Survived'].value_counts()
```

Out[5]: 0 549 1 342

Name: Survived, dtype: int64

1.2.4 Challenge

Examine the distribution of values in two other columns of the dataset using the value_counts() function.

1.3 Part 2: The Beauty of the Sea

1.3.1 2.1 Draw a histogram

Create a histogram grouping the passengers by age:

In [8]: df['Age'].hist()

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8f7610ea90>

1.3.2 Challenge

Explain the following line.

In [9]: df[df['Survived']==1]['Age'].hist()

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8f73970128>

1.3.3 2.2 Bar plot

Create a bar plot that groups the passenger class by survival:

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8f738965c0>

1.3.4 Challenge

Create another bar plot, this time group the bars by gender.

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8f73789d30>

1.3.5 2.3 Hypotheses

Collect ideas which **features** of passengers increase their chances of survival and which decrease them. Only after that start building a model.

Observations:

- children are more likely to survive
- passengers from class 1+2 are more likely to survive
- women are more likely to survive

1.4 Part 3: Collision Course

1.5 3.1 Data wrangling

At this point we need to clean and reshape the data a bit.

- Remove all columns but "Pclass", "Age", "Sex" and "Survived".
- Remove all lines containing missing data.
- Convert all **input features** to a matrix X.
- Convert the **target column** to an 1D-array y.

1.5.1 Challenge

View the dataset as a table before and after the data wrangling step.

```
In [14]: X, y
Out[14]: (array([[ 3., 22.],
                 [ 1., 38.],
                [ 3.,
                        26.],
                 . . . ,
                 [ 1.,
                       19.],
                 [ 1.,
                        26.],
                 [ 3., 32.]]),
         array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,
                 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0,
                0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
                0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
                1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
                1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,
                0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
                0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
                1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
                1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0,
```

1.5.2 3.2 Create a Training/Test set

Split the data into a training and a test set:

1.5.3 Question

• Why do we need to create a separate test set?

Answer: To check our model on *independent* data.

1.6 Part 4: Modeling and Prediction

1.6.1 4.1 Build a logistic regression model

Create a Machine Learning model using logistic regression and fit it with the training data:

1.6.2 4.2 Evaluate the model

Calculate the accuracy of the model for the training data:

```
In [18]: m.score(Xtrain, ytrain)
Out[18]: 0.69719626168224302
With a skewed dataset, a confusion matrix is more robust:
```

1.6.3 Challenge

Calculate the accuracy for the test data as well. Explain the differences.

```
In [20]: m.score(Xtest, ytest)
Out[20]: 0.70949720670391059
```

1.6.4 Question

Is this a good result? Why or why not?

Answer:

- 70% is better than a random coin toss 8505)
- 70% is only a bit better than always predicting "will not survive" (which gives 60% because the data is skewed)
- We still have a lot more data to use, so there is room for improvement!

1.6.5 4.3 More features

We will add more data to the prediction: gender. To use the data, we need to convert it to numbers using **one-hot encoding**.

Out[21]:		female	male	
	0	0	1	
	1	1	0	
	2	1	0	
	3	1	0	
	4	0	1	
	6	0	1	
	7	0	1	
	8	1	0	
	9	1	0	
	10	1	0	
	11	1	0	
	12	0	1	
	13	0	1	
	14	1	0	
	15	1	0	
	16	0	1	
	18	1	0	
	20	0	1	
	21	0	1	
	22	1	0	
	23	0	1	
	24	1	0	
	25	1	0	
	27	0	1	
	30	0	1	
	33	0	1	
	34	0	1	
	35	0	1	
	37	0	1	
	38	1	0	
	 856			
	856 057	1	0	
	857	0	0	
	858	1		
	860	0	1	
	861	0	1	
	862	1	0	
	864	0	1	
	865	1	0	
	866	1	0	

```
867
           0
                  1
869
           0
                  1
870
           0
                  1
871
           1
                  0
           0
872
                  1
873
           0
                  1
874
           1
                  0
875
           1
                  0
876
           0
                  1
877
           0
                  1
879
           1
                  0
880
           1
                  0
881
           0
                  1
882
           1
                  0
883
           0
                  1
884
                  1
885
           1
                  0
886
           0
                  1
887
           1
                  0
889
           0
                  1
890
           0
                  1
```

[714 rows x 2 columns]

Of course, we need to add the column to the input table (one is enough).

```
In [22]: cleaned['female'] = gender['female']
```

1.6.6 Challenge

Re-run the prediction above using the additional feature. How does the accuracy change?

```
In [23]: X = cleaned[['Pclass', 'Age', 'female']]
    X = X.values

y = cleaned[['Survived']]
y = y.values.ravel()

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=42)

m = LogisticRegression()
m.fit(Xtrain, ytrain)

Out[23]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

In [24]: m.score(Xtrain, ytrain)
```

```
Out[24]: 0.80186915887850463
In [25]: m.score(Xtest, ytest)
Out[25]: 0.78212290502793291
```

1.6.7 4.4 Try a Random Forest Model

Let's try a different model: The Random Forest (an **ensemble of decision trees**)

```
In [27]: from sklearn.ensemble import RandomForestClassifier
    m = RandomForestClassifier()
```

1.6.8 Challenge

Fit the Random Forest model to the training data yourself and evaluate it on the test set.

Compare how the following parameters affect prediction quality:

Limiting the complexity of a model is called **regularization**

1.7 Part 5: Prediction

Create a data set for additional passengers and predict whether they will survive:

1.7.1 Challenge

There is (at least) one error in the definition of the data for prediction. Can you find and fix it?

```
In [36]: # swapped order of values, hard to spot.
    leo = np.array([[3, 22, 0]])
    kate = np.array([[1, 25, 1]])

    print(m.predict(leo))
    print(m.predict(kate))
[0]
[1]
In []:
```