§1 Lecture 1

We begin with the definition of probability.

Definition 1.1 (**Probability**). A mathematical model about random experiments.

In this class, we fix the notation $\Omega, \mathcal{F}, \mathbb{P}$. We say that Ω is our "sample space" or the set of all possible outcomes. For example, if our experiment was flipping a coin, then $\Omega = \{H, T\}$. It is also important to note that Ω can be countably or uncountably infinite. For example, our experiment might be picking a positive integer in which $\Omega = \mathbb{N}$. Or our experiment might be throwing a dart at a board in which Ω would be uncountably infinite.

We define \mathcal{F} to be the set of all events, mathematically speaking it's a σ algebra. We can define an event to be a subset of Ω . For example, if our experiment is flipping two coins, then an event could be that the first coin is heads - the precise event would then be $\{HH, HT\}$ (notice that both HH and HT are in Ω .

Another interesting example might be where we roll a die as our experiment. Then we could say an event is rolling an *even* number that's greater than 4. The precise event would be $\{4,6\}$. Notice, however, that we can actually write this event as the intersection of two events. That is

- 1. Rolling an even number : $\{2, 4, 6\}$.
- 2. Rolling a number greater than $4: \{4, 5, 6\}$.

Then the intersection of these two events is exactly our event of rolling an even number greater than 4.

Remark 1.2. When we say one event A happens, it means we get some outcome $\omega \in \Omega$ s.t. $\omega \in A$. If $\omega \notin A$, then A doesn't happen.

Remark 1.3. We can also do set operations on events. That is if A and B are events, then we can say that the event of A or B happening is exactly $A \cup B$.

Definition 1.4. We define the complement of event A to be $A^c = \{\omega \in \Omega : \omega \notin A\}$.

Remark 1.5. If Ω is finite, then one possible choice of \mathcal{F} is $\mathcal{F} = 2^{\Omega}$.

Note that 2^{Ω} is defined to be the *power set* of Ω , or the "set of all subsets of Ω ".

One more thing to note, but not terribly important for this class is that if Ω is infinite, then $\mathcal{F} \neq 2^{\Omega}$.

Finally, we define \mathbb{P} to be a function from \mathcal{F} to the closed interval [0,1]. That is, $\mathbb{P}: \mathcal{F} \to [0,1]$. Notice that this means we can only talk about the probability of one event.

If we want to talk about the probability of some outcome ω , then formally we would define the event $\{\omega\}$ and ask what is $\mathbb{P}(\{\omega\})$.

Recall that we said that \mathcal{F} is a " σ algebra". Here we define it formally.

Definition 1.6. Let Ω be a set. We say that \mathcal{F} is a σ algebra of Ω if it satisfies:

- 1. $\emptyset \in \mathcal{F}$
- 2. If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- 3. If $A \in \mathcal{F}$, then $A^c \in F$ (recall that A^c is the *complement* if A)

Now just from these three properties, we can, in fact, prove that if $A_1, A_2, \dots, A_n \in \mathcal{F}$, then $\bigcap_{i=1}^n A_i \in \mathcal{F}$ as well.