А. Минимум на стеке

2 секунды, 256 мегабайт

Вам требуется реализовать структуру данных, выполняющую следующие операции:

- 1. Добавить элемент x в конец структуры.
- 2. Удалить последний элемент из структуры.
- 3. Выдать минимальный элемент в структуре.

Входные данные

В первой строке входного файла задано одно целое число n — количество операций ($1 \leq n \leq 10^6$). В следующих n строках заданы сами операции. В i-ой строке число t_i — тип операции (1, если операция добавления. 2, если операция удаления. 3, если операция минимума). Если задана операция добавления, то через пробел записано целое число x — элемент, который следует добавить в структуру ($-10^9 \leq x \leq 10^9$). Гарантируется, что перед каждой операцией удаления или нахождения минимума структура не пуста.

Выходные данные

Для каждой операции нахождения минимума выведите одно число — минимальный элемент в структуре. Ответы разделяйте переводом строки.

Входные данные 1 2 1 3 1 -3 3 2 3 2 3 Выходные данные -3 2 2

В. Шарики

2 секунды, 256 мегабайт

В одной компьютерной игре игрок выставляет в линию шарики разных цветов. Когда образуется непрерывная цепочка из трех и более шариков одного цвета, она удаляется из линии. Все шарики при этом сдвигаются друг к другу, и ситуация может повториться.

Напишите программу, которая по данной ситуации определяет, сколько шариков будет сейчас уничтожено. Естественно, непрерывных цепочек из трех и более одноцветных шаров в начальный момент может быть не более одной.

Входные данные

Даны количество шариков в цепочке (не более 10^5) и цвета шариков (от 0 до 9, каждому цвету соответствует свое целое число).

Выходные данные

Требуется вывести количество шариков, которое будет уничтожено.

В	ΧC	Д	НЬ	ıe	данные
5	1	3	3	3	2

выходные данные	
3	
входные данные	
10 3 3 2 1 1 1 2 2 3 3	
выходные данные	
10	

С. Астроград

1 секунда, 256 мегабайт

В Астрополисе прошел концерт популярной группы Астроград. За пару дней до концерта перед кассой выстроилась огромная очередь из людей, желающих туда попасть. Изначально очередь была пуста. В каждый из n моментов времени происходило следующее:

- 1. В очередь пришел новый человек с уникальным номером id, он встает в очередь последним.
- Человеку, стоящему спереди очереди, удалось купить билет. Он уходит.
- Человеку, стоящему последнему в очереди, надоело ждать. Он уходит.
- 4. Человек с уникальным номером q хочет знать, сколько людей стоит в очереди спереди него.
- 5. Очередь хочет знать, человек с каким уникальным номером стоит сейчас первым и задерживает всех.

Вам необходимо написать программу, которая умеет обрабатывать описанные события.

Входные данные

В первой строке дано целое число n $(1 \le n \le 10^5)$ — количество событий. В каждой из следующих n строк дано описание событий: номер события, а также число id $(1 \le id \le 10^5)$ для событий типа 1 и число q для событий типа 4. События происходили в том порядке, в каком они описаны во входном файле. Гарантируется корректность всех событий.

Выходные данные

Выведите ответы для событий типа 4 и 5 в том порядке, в каком они описаны во входном файле.

```
    входные данные

    7
    1
    1
    5

    1
    3
    3
    2
    1
    2
    4
    2

    Выходные данные
    1
    0
    0
    0
```

В примере из условия происходили следующие события:

- 1. В очередь пришел человек с id = 1. Очередь: [1]
- 2. Первым в очереди стоит человек с id = 1. Очередь: [1]
- 3. В очередь пришел человек с id = 3. Очередь: [1, 3]

- 4. Последнему в очереди надоело стоять и он уходит. Очередь: [1]
 5. Первому в очереди удалось купить билет и он уходит. Очередь: []
 6. В очередь пришел человек с id = 2. Очередь: [2]
 7. q = 2 хочет знать, сколько человек стоит перед ним. Очередь: [2]
 - D. Гоблины и шаманы

2 секунды, 256 мегабайт

Гоблины Мглистых гор очень любят ходить к своим шаманам. Так как гоблинов много, к шаманам часто образуются очень длинные очереди. А поскольку много гоблинов в одном месте быстро образуют шумную толпу, которая мешает шаманам проводить сложные медицинские манипуляции, последние решили установить некоторые правила касательно порядка в очереди.

Обычные гоблины при посещении шаманов должны вставать в конец очереди. Привилегированные же гоблины, знающие особый пароль, встают ровно в ее середину, причем при нечетной длине очереди они встают сразу за центром.

Так как гоблины также широко известны своим непочтительным отношением ко всяческим правилам и законам, шаманы попросили вас написать программу, которая бы отслеживала порядок гоблинов в очереди.

Входные данные

В первой строке входных данный записано число N (1 \leq N \leq 5·10⁵) - количество запросов к программе. Следующие N строк содержат описание запросов в формате:

- "+ і" гоблин с номером і ($1 \le i \le N$) встает в конец очереди.
- "* і" привилегированный гоблин с номером і встает в середину очереди.
- ,,-" первый гоблин из очереди уходит к шаманам. Гарантируется, что на момент такого запроса очередь не пуста.

Выходные данные

Для каждого запроса типа ,,-" программа должна вывести номер гоблина, который должен зайти к шаманам.

входные данные							
7							
+ 1							
+ 2							
-							
+ 3							
+ 4							
-							
-							
выходные данные							
1							
2							
3							

Е. Постфиксная запись

1 секунда, 256 мегабайт

В постфиксной записи (или обратной польской записи) операция записывается после двух операндов. Например, сумма двух чисел A и В записывается как A В +. Запись В С + D * обозначает привычное нам (В + С) * D, а запись A В С + D * + означает A + (В + С) * D. Достоинство постфиксной записи в том, что она не требует скобок и дополнительных соглашений о приоритете операторов для своего чтения.

Дано выражение в обратной польской записи. Определите его значение.

Входные данные

В единственной строке записано выражение в постфиксной записи, содержащее однозначные числа и операции +, -, *. Строка содержит не более 100 чисел и операций.

Выходные данные

вхолные ланные

Необходимо вывести значение записанного выражения. Гарантируется, что результат выражения, а также результаты всех промежуточных вычислений по модулю меньше 2^{31} .

входные данные
8 9 + 1 7 - *
выходные данные
-102

F. Сортировка стеком

1 секунда, 256 мегабайт

Exemisio Hamisio
5
5 3 1 2 4
выходные данные
push
push
push
pop
push
pop
pop
push
pop
pop

входные данные 3 2 3 1 выходные данные impossible

G. Система непересекающихся множеств

2 секунды, 256 мегабайт

Реализуйте систему непересекающихся множеств. Вместе с каждым множеством храните минимальный, максимальный элемент в этом множестве и их количество.

Входные данные

Первая строка входного файла содержит n — количество элементов в носителе ($1 \le n \le 300\,000$). Далее операций с множеством. Операция get должна возвращать минимальный, максимальный элемент в соответствующем множестве, а также их количество.

Выходные данные

Выведите последовательно результат выполнения всех операций get.

```
входные данные
union 1 2
get 3
get 2
union 2 3
get 2
union 1 3
get 5
union 4 5
get 5
union 4 1
get 5
выходные данные
3 3 1
1 2 2
1 3 3
5 5 1
4 5 2
1 5 5
```

Н. Подсчет опыта

2 секунды, 64 мегабайта

В очередной онлайн игре игроки, как обычно, сражаются с монстрами и набирают опыт. Для того, чтобы сражаться с монстрами, они объединяются в кланы. После победы над монстром, всем участникам клана, победившего его, добавляется одинаковое число единиц опыта. Особенностью этой игры является то, что кланы никогда не распадаются и из клана нельзя выйти. Единственная доступная операция — объединение двух кланов в один.

Поскольку игроков стало уже много, вам поручили написать систему учета текущего опыта игроков.

Входные данные

В первой строке входного файла содержатся числа n ($1 \le n \le 200000$) и m $1 \le m \le 200000$ — число зарегистрированных игроков и число запросов.

В следующих m строках содержатся описания запросов. Запросы бывают трех типов:

- join X Y объединить кланы, в которые входят игроки X и Y (если они уже в одном клане, то ничего не меняется).
- add X V добавить V единиц опыта всем участникам клана, в который входит игрок X ($1 \le V \le 100$).
- get X вывести текущий опыт игрока X.

Изначально у всех игроков 0 опыта и каждый из них состоит в клане, состоящим из него одного.

Выходные данные

Для каждого запроса get X выведите текущий опыт игрока X.

```
входные данные

3 6
add 1 100
join 1 3
add 1 50
get 1
get 2
get 3

выходные данные

150
0
50
```