Computação Científica II (EEL7031)

Prof. Erlon Cristian Finardi

E-mail: erlon.finardi@ufsc.br

Objetivo Geral

 □ Desenvolver habilidades para resolver, por meio de métodos numéricos computacionais, problemas matemáticos encontrados na área de engenharia elétrica

Motivações

□ Pilares da ciência clássica e contemporânea

Elementos da Simulação de Sistemas Físicos

Car Crash Simulation

Fluxo de Potência em Sistemas de Energia Elétrica

Falhas em Sistemas de Energia Elétrica

Curto-circuito entre duas fases de uma linha de transmissão

Mercados de Energia Elétrica

Escalas de tempo e mecanismos de decisão

□ Ênfase

✓ Estudar métodos de solução numérica de problemas matemáticos

Tópicos principais

- ✓ Resolução de equações não-lineares (polinomiais e transcendentais)
- ✓ Resolução de sistemas de equações lineares
 - métodos diretos
 - métodos iterativos
- ✓ Interpolação e aproximações polinomiais
- ✓ Integração e diferenciação numérica
- ✓ Resolução numérica de equações diferenciais
- ✓ Teoria de aproximação mínimos quadrados
- ✓ Resolução de sistemas de equações não-lineares

Cronograma

✓ Datas são sujeitas a modificações!

Tópico	Aulas	Horas Aula
	Apresentação da Disciplina	2
1	Resolução de Equações Não Lineares	6
2	Resolução de Sistemas de Equações Lineares - Métodos Diretos	6
	Prova 1 & Aplicação do Trabalho Computacional	
3	Resolução de Sistemas de Equações Lineares - Métodos Iterativos	6
4	Interpolação e Aproximação Polinomial	4
5	Integração e Diferenciação Numérica	6
	Prova 2	
6	Resolução Numérica de Equações Diferenciais	6
7	Teoria de Aproximação por Mínimos Quadrados	2
8	Resolução de Sistemas de Equações Não Lineares	6
	Prova 3	
	Prova de Recuperação	

- □ Procedimentos didáticos
 - ☐ Aulas expositivas
- □ Instrumentos de avaliação
 - □ 3 provas escritas (P1, P2, P3)
 - □ 1 trabalho computacional (T)
 - \square Média Final (MF):

Média das Provas
$$\geq 6 \rightarrow MF = \frac{(1-0,15)}{3}(P1+P2+P3)+0,15 \cdot T$$

Média das Provas $\leq 3 \rightarrow MF = \frac{(1-0,05)}{3}(P1+P2+P3)+0,05 \cdot T$
 $MF = \frac{(1-0,10)}{3}(P1+P2+P3)+0,10 \cdot T$

Prova de recuperação

- ✓ Prova escrita envolvendo o conteúdo pleno do curso
- ✓ Para alunos com frequência suficiente e nota final ≥ 3
- ✓ Média final = (nota final + nota de recuperação) / 2

Bibliografia

- 1. Faires, J. D. & Burden, R. L., Numerical Methods, Third Edition, 2007.
- 2. Cláudio, D. M. & Marins, J. M., Cálculo Numérico Computacional. São Paulo: Ed. Atlas, 2000.
- **3.** Ruggiero, M.A.G. &.Lopes, V.L.R., Cálculo Numérico Aspectos Teóricos e Computacionais, 2a. Edição, Makron Books, 1997.
- 4. Highan, D. J. & Highan, N. J., MatLab Guide, Society for Industrial and Aplied Mathematics, Philadelphia, 2000.

Prof. Erlon Cristian Finardi

E-mail: erlon.finardi@ufsc.br