

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра практической и прикладной информатики (ППИ)

Утверждаю Заведующий кафедрой ППИ

Зуев А.С.

«29» февраля 2024 г.

ЗАДАНИЕ

на выполнение курсовой работы

по дисциплине «Технологии передачи данных»

Студент Стецюк Вячеслав Викторович

Группа ИВБО-08-22

Тема «Проектирование и моделирование канального уровня корпоративной локальновычислительной сети предприятия по ремонту автотранспортных средств»

Исходные данные:

Исходные данные определены предметной областью, указанной в теме проекта и выбранным уровнем проектирования сети передачи данных.

Исходные данные могут уточняться при разработке разделов курсовой работы и составлении соответствующих спецификаций.

Перечень вопросов, подлежащих разработке, и обязательного графического материала:

- 1. Составить техническое задание на корпоративную локально-вычислительную сеть.
- 2. Провести проектирование уровня сети, соответствующего индивидуальному варианту, для основного здания предприятия и его площадок:
- 2.1. При проектировании физического уровня требуется выполнить разработку физической топологии сети с применением и обоснованием резервирования, представить план подключения оборудования, спецификацию устройств, и энергопотребления устройств.
- 2.2. При проектировании канального уровня требуется описать схему виртуальных локальных сетей и режим работы используемых при этом каналов связи (VLAN), а также представить проектные решения для агрегирования каналов и обеспечения надежности сети, в частности описать предложенный механизм предотвращения петель канального уровня.

- 2.3. При проектировании сетевого уровня требуется выполнить и представить планирование адресации сети с использованием протокола IPv4, а также планирование маршрутизации сети, в том числе с использованием одного из протоколов динамической маршрутизации.
- 3. Провести моделирование сети с использованием соответствующих средств моделирования и представить артефакты данного процесса: экранные снимки с выводом соответствующих команд, листинги конфигурации устройств, к отчету о выполнении курсовой работы прикрепить файлы с моделью сети в формате .pkt/.pkz.
- 4. Разработать презентацию с графическими материалами.

~									~	_	
	nok	пп	елс	Га вл	ения	K	зашите	KV	DCORON	работы:	
-	20.00	~~				~~	Secretary we	** 1	PEODORE	Decoor Dr.	

до «24» мая 2024 г.

Задание на курсовую работу выдал

Подпись руководителя (Ф

Зуев А.С. *(ФИО руководителя)*

«29» февраля 2024 г.

Подпись обучающегося

Стецюк В.В. (ФИО обучающегося)

«29» февраля 2024 г.

Задание на курсовую работу получил

СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ	4
ВВЕДЕНИЕ	5
1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ КОРПОРАТИВ	ЗНОЙ
ЛОКАЛЬНО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ	8
1.1 Общие сведения	8
1.2 Цели и назначение создания КЛВС	9
1.2.1 Цель создания КЛВС	9
1.2.2 Назначение создания КЛВС	10
1.3 Характеристика объекта автоматизации	10
1.3.1 Организационная структура предприятия	10
1.3.2 Характеристика автоматизированных рабочих мест (АРМ) и други	X
устройств, подключаемых к КЛВС	11
1.3.3 Характеристика расположения АРМ	11
1.3.4 Характеристика окружения предприятия	13
1.3.5 Характеристика существующей инфраструктуры	13
2 ПЛАНИРОВАНИЕ КАНАЛЬНОГО УРОВНЯ	14
2.1 Планирование виртуальных локальных сетей	14
2.2 Планирование агрегирования каналов	25
2.3 Планирование предотвращения петель канального уровня	25
3 МОДЕЛИРОВАНИЕ КОРПОРАТИВНОЙ ЛОКАЛЬНО-	
ВЫЧИСЛИТЕЛЬНОЙ СЕТИ	27
3.1 Настройка планируемых конфигураций	27
3.2 Тестирование топологии	28
ЗАКЛЮЧЕНИЕ	32
СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ	33

СПИСОК СОКРАЩЕНИЙ

ЛВС – локальная вычислительная сеть;

КЛВС – корпоративная локально-вычислительная сеть;

АХО – Административно-хозяйственный отдел

СКС – структурированная кабельная система;

000 - общество с ограниченной ответственностью;

ОКВЭД – общероссийский классификатор видов экономической деятельности;

ГОСТ – государственный стандарт;

МФУ – многофункциональное устройство;

IP – internet protocol (межсетевой протокол);

МГТС – московская городская телефонная сеть;

АРМ – автоматизированное рабочее место;

VLAN – Virtual Local Area Network (виртуальная локальная компьютерная сеть.);

LACP – Link Aggregation Control Protocol (протокол управления агрегированным каналом);

STP – Spanning Tree Protocol (Протокол связующего дерева);

RSTP – Rapid spanning tree protocol (Скоростной протокол связующего дерева);

ISO – International Organization for Standartization (Интернациональная организация стандартов);

IEC – International Electrotechnical Commission (Международная электротехнической комиссия);

PC – Personal computer (Персональный компьютер)

SW – Switch (Коммутатор)

ВВЕДЕНИЕ

В современном мире, где информационные технологии играют все более значимую роль, эффективная работа предприятия напрямую зависит от качества и надежности его локальной вычислительной сети (ЛВС). Особенно это актуально для компаний, деятельность которых связана с логистикой и перевозкой грузов, где требуется оперативный доступ к информации, контроль за движением транспорта и взаимодействие с клиентами.

Особую значимость проектирование КЛВС приобретает для предприятий, занимающихся проектированием домов. В этой сфере важно не только быстро и эффективно обрабатывать большие объемы проектной документации, но и обеспечивать бесперебойный доступ к специализированным программам для архитектурного и инженерного проектирования, таким как Architect 3D, ArchiCAD и КОМПАС-Строитель. Данные программы требуют значительных вычислительных ресурсов и устойчивого сетевого соединения для совместной работы сотрудников над проектами в режиме реального времени, а также установки обновлений или дополнений.

Таким образом, проектирование КЛВС является ключевой составляющей развития современного бизнеса в сфере строительства. Созданная КЛВС позволит повысить производительность труда, улучшить взаимодействие сотрудников и заказчиков и обеспечить защиту данных.

Объектом исследования курсового проекта является корпоративная локально-вычислительная сеть.

Предметом исследования курсового проекта являются особенности проектирования и моделирования корпоративной локально-вычислительной сети.

Целью курсового проекта является проектирование и моделирование КЛВС для предприятия по разработке проектов индивидуальных домов, ориентированных на различные потребности клиентов. Для достижения поставленной цели необходимо выполнить следующие задачи:

- Планирование виртуальных локальных сетей.
- Планирование маршрутизации между виртуальными локальными сетями.
- Планирование агрегирования каналов.
- Планирование протокола связующего дерева.

Для выполнения курсовой работы будут использованы следующие методы исследования:

- метод изучения и анализа литературы: поиск и изучение информации, связанной с КЛВС в разных источниках;
- метод классификаций: классификация определенных требований к
 КЛВС по общепринятым признакам;
- сравнительный анализ: сопоставление различных технологий и решений для выбора оптимальной конфигурации КЛВС;
- метод моделирование: создание и тестирование КЛВС использованием специализированного программного обеспечения;
- метод описания: описание хода работы и полученных результатов в курсовой работе.

Для выполнения курсовой работы по проектированию КЛВС будут использованы следующие инструментальные средства:

- Cisco Packet Tracer симулятор сети передачи данных;
- LibreOffice офисный пакет.

Для выполнения курсовой работы будут использованы следующие основные источники информации:

- нормативные документы и стандарты (ГОСТ, ISO/IEC и другие) [2,3];
- учебные и методические пособия по проектированию и эксплуатации вычислительных сетей;
- статьи и исследования в области ИТ;

— документация и руководства по использованию симулятора сети передачи данных Cisco Packet Tracer.

В работе будут отражены этапы обзора современных методов и технологий планирования канального уровня локальной вычислительной сети, анализ существующих решений, проектирование, моделирование и описание корпоративной сети с учетом выбранных методов и инструментов.

1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ КОРПОРАТИВНОЙ ЛОКАЛЬНО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

1.1 Общие сведения

Заказчик поручает Исполнителю разработку Проекта и монтаж СКС ЛВС (структурированная кабельная система локальной вычислительной сети), активного и пассивного оборудования. По запросу Заказчика Исполнитель предоставляет на согласование совместно со спецификацией на оборудование и сметными расчетами стоимости монтажных и проектных работ предварительный Рабочий проект СКС в любом графическом формате.

Полное наименование автоматизированной системы: корпоративная локально-вычислительная сеть (КЛВС).

Заказчик — ООО «БРУКЛЭНДС». ОКВЭД 50.10 — Торговля автотранспортными средствами и мотоциклами, их техническое обслуживание и ремонт.

Исполнитель – ООО «Овощные технологии».

Перечень документов, на основании которых создается КЛВС – договор об оказании услуг №33421, техническое задание на КЛВС от компании Фруктовые технологии, действующие нормативные документы:

- 1. ГОСТ Р 53246-2008 «Системы кабельные структурированные. Проектирование основных узлов системы. Общие требования»;
- 2. ГОСТ Р 53245-2008 «Системы кабельные структурированные. Монтаж основных узлов системы»;
- 3. ISO/IEC 11801:2002 (вторая редакция) «Информационные технологии структурированных кабельных систем для помещений заказчика».

Плановые сроки начала и окончания работ -c 09.03.2024 по 09.06.2024.

1.2 Цели и назначение создания КЛВС

1.2.1 Цель создания КЛВС

Основными целями работ являются:

- организация надежной производительной и отказоустойчивой локальной вычислительной сети для взаимодействия средств вычислительной техники, телекоммуникационных и периферийных устройств;
- обеспечение эффективного обмена информацией между различными подразделениями компании;
- повышение оперативности работы сотрудников за счет улучшения доступа к ресурсам и инструментам, ускорение обмена информацией и оптимизация процессов взаимодействия между участниками бизнеса;
- улучшение управления складскими операциями: ЛВС позволяет отслеживать перемещение товаров, контролировать запасы и оптимизировать процессы хранения и отгрузки;
- оптимизация маршрутов и управление транспортом: ЛВС может использоваться для отслеживания транспортных средств, планирования оптимальных маршрутов доставки и управления логистическими процессами;
- обеспечение безопасности и контроля доступа: ЛВС помогает контролировать доступ к информации о грузах, складских запасах и других логистических данных, обеспечивая безопасность и конфиденциальность информации.

1.2.2 Назначение создания КЛВС

Назначением создания КЛВС является организация автоматизируемой передачи данных между устройствами сотрудников, что достигается за счёт соединения устройств сотрудников, а также благодаря предоставления им возможности выхода в Интернет сеть.

1.3 Характеристика объекта автоматизации

1.3.1 Организационная структура предприятия

Описание организационной структуры предприятия представлено на диаграмме (Рисунок 1.1).

Рисунок 1.1 – Схема отделов предприятия

1.3.2 Характеристика автоматизированных рабочих мест (APM) и других устройств, подключаемых к КЛВС

В главном офисе расположено 103 типовых персональных рабочих компьютеров, каждый из которых подключается посредством проводного соединения. Также в главном офисе находятся 36 МФУ, 37 IP-телефонов и 12 IP-камер.

В филиале расположено 26 типовых персональных рабочих компьютеров, каждый из которых подключается посредством проводного соединения. Также в главном офисе находятся 11 МФУ, 15 IP-телефонов и 10 IP-камер.

1.3.3 Характеристика расположения АРМ

На Рисунке 1.2 представлен план головного офиса предприятия.

Рисунок 1.2 - План помещений предприятия штаб-квартиры

На Рисунке цифрами отмечены следующие отделы:

- служба безопасности (1);
- бухгалтерия (2);
- административно-хозяйственный отдел (3);
- отдел маркетинга (4);

- ИТ отдел(серверная) (5);
- отдел кадров (6);
- отдел продаж (7);
- отдел закупок (8);
- отдел по работе с клиентами (9);
- генеральный директор (10);
- холл (11).

На Рисунке 1.3 представлен план филиала предприятия.

Рисунок 1.3 - План помещений предприятия филиала

На рисунке цифрами отмечены следующие точки:

- директор филиала (1);
- отдел продаж (2)
- отдел закупок (3);
- отдел по работе с клиентами (4);
- бухгалтерия (5);
- служба безопасности (6);
- отдел по ремонту автомобилей (7);

Холл(8).

1.3.4 Характеристика окружения предприятия

Главный офис компании расположен в городе Москва, район — Береговой проезд, улица Первомайская, дом 99. До метро «Библиотека имени Ленина» 340 метров. В шаговой доступности торговый центр, парковка, кафе, отели и ряд различных магазинов.

Филиал предприятия же расположен в Московской области, город Химки, Пролетарская улица, дом 5. Рядом находятся бизнес-центры, продуктовые магазины и парковочные места.

1.3.5 Характеристика существующей инфраструктуры

На предприятия присутствует система энергоснабжения. В Таблице 1.1 представлена сводка о энергоснабжении на предприятии.

Интернет-провайдерами, предоставляющим услуги доступа к сети Интернет, являются МГТС и Ростелеком.

Таблица 1.1 – Спецификация площадок размещения оборудования

№	Площадка	Количество площадок	Энергоснабжение	Перечень провайдеров и скорость каналов связи
1	Главный офис	1	2 ввода 50 КВт	Ростелеком (1 Гбит/с), МГТС (1 Гбит/с)
2	Филиал	1	1 ввод 25 КВт	Ростелеком (1 Гбит/с)

В предприятии подведена, но не подключена, кабельная система к сетевым устройствам.

На предприятии присутствует система пожаротушения. В качестве огнетушащего вещества используется Фторкетон ФК-5-1-12 (сухая вода). Данный тип огнетушащего вещества полностью безопасен для человека и способен погасить очаг возгорания, не повредив при этом оборудование.

2 ПЛАНИРОВАНИЕ КАНАЛЬНОГО УРОВНЯ

2.1 Планирование виртуальных локальных сетей

Следующий этап планирования производится на уровне 2 – проектирование виртуальных локальных сетей. Виртуальные локальные сети можно разделить на сервисные VLAN, управляющие VLAN и взаимосвязанные VLAN.

В работе требуется описать преимущества и причины использования данной технологии в сетях передачи данных.

При проектировании сервисной виртуальной локальной сети следует руководствоваться тем, что она предназначена для обеспечения доступности сервисов для пользователей. Данные VLAN можно назначать на основе следующих критериев:

- назначение VLAN по географическому местоположению;
- назначение VLAN по логической области;
- назначение VLAN в зависимости от структуры персонала;
- назначение VLAN по типу услуги.

Требуется выбрать оптимальный критерий/критерии и произвести планирование сервисных VLAN для каждой площадки предприятия.

При проектировании управляющей VLAN следует руководствоваться тем, что данные VLAN используются для удаленного доступа к устройствам и управления ими. В большинстве случаев коммутаторы уровня 2 используют адреса виртуального интерфейса VLAN в качестве адресов управления. Рекомендуется, чтобы все коммутаторы в одной сети уровня 2 использовали одну и ту же управляющую VLAN, а их IP-адреса управления находились в одном сегменте сети.

При проектировании взаимосвязанных VLAN следует руководствоваться тем, что она нужна для соединения устройств при переходе с уровня агрегации на уровень ядра. При отсутствии уровня ядра речь идет о выходном уровне. Данные VLAN требуется при использовании способа маршрутизации между VLAN с использованием коммутаторов уровня агрегации.

Планирование VLAN для главного офиса представлено в Таблице 2.1 при условии того, что используется маршрутизация между VLAN с использованием коммутаторов уровня агрегации.

Таблица 2.1 — Результат планирования VLAN для главного офиса

ID	Наименование	Описание				
VLAN						
10	IT	Объединение IT-отдела SW_5.1_L3, SW_5.2,				
		SW_5.3_L3				
11	SAL	Объединение отдела продаж SW_7.1- SW_7.2				
12	BUY	Объединение отдела закупок SW_8.1-SW_8.2				
13	ADM	Объединение отдела АХО SW_3				
14	MAR	Объединение отдела маркетинга SW_4				
15	SEC	Объединение отдела службы безопасности SW_1				
16	ACC	Объединение отдела бухгалтерии SW_2				
17	FR	Объединение отдела кадров SW_6				
18	MAIN	Объединение отдела дирекции SW_10_D_L2,				
		SW_10.1_D_L3, SW_10_D_L3				
20	CL	Объединение отдела по работе с клиентами SW_11				
50	CAM	VLAN для камер				
60	PH	VLAN для IP-телефонов				
100	controlVLAN	CONTROL VLAN				
601	Vlan1	VLAN взаимодействия между R_1 и SW_1_Agg				
602	Vlan2	VLAN взаимодействия между R_1 и SW_2_Agg				
603	Vlan3	VLAN взаимодействия между R_1 и SW_3_Agg				
604	Vlan4	VLAN взаимодействия между SW_1_Agg и SW_2_Agg				
605	Vlan5	VLAN взаимодействия между SW_1_Agg и SW_4_Agg				
606	Vlan6	VLAN взаимодействия между SW_3_Agg и SW_4_Agg				
607	Vlan7	VLAN взаимодействия между SW_2_Agg и SW_3_Agg				

Планирование VLAN для филиала выполняется по аналогии и представлено в Таблице 2.2.

Таблица 2.2 — Результат планирования VLAN для филиала

ID	ID Наименование Описание			
VLAN				
10	HOST	Кабинет директора SW 1		
11	ACC	Объединение отдела бухгалтерии SW 5		
12	SEC	Объединение отдела охраны SW 6		
13	SERV	Объединение отдела по ремонту автомобилей SW 7		

Продолжение таблицы 2.2

14	CL	Объединение отдела работы с клиентами SW_4
15	SAL	Объединение отдела продаж SW_2
16	BUY	Объединение отдела закупок SW_3
50	CAM	VLAN для камер
60	PH	VLAN для IP-телефонов
100	controlVlan	CONTROL VLAN
600	Vlan1	VLAN взаимодействия между R_1 и SW_1.1_Agg
601	Vlan2	VLAN взаимодействия между R_1 и SW_1.2_Agg

Маршрутизация между VLAN будет осуществляться с помощью коммутаторов L3 уровня агрегации, так как использование подхода Router-on-a-stick будет излишне нагружать коммутатор в данной сети.

Следует упомянуть, что у большинства вендоров виртуальная локальная сеть под номером один, является сетью по умолчанию и не рекомендована к использованию. Также нужно обратить внимание на именование VLAN, у большей части вендоров есть возможность привязывать названия в настройках виртуальных локальных сетей для удобства конфигурирования и использования. После формирования основных виртуальных локальных сетей была описана конфигурация для последующей настройки, с добавлением столбцов с планом подключений. Планирование главного офиса представлено в Талице 2.3. Столбы VLAN: Access и Trunk описывают настройки для конечных типов портов устройств.

Таблица 2.3 – План подключений оборудования по портам в главном офисе

Название устройства	Порт	Описание подключения	Access	Trunk
SW_5.1_IT_L3_DAIKON	GigabitEthernet 0/1 – 0/4	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5 – 0/8	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19 – 0/16	PC_1_DAIKON –	10	-
		PC_8_DAIKON		
SW_5.3_IT_L3_DAIKON	GigabitEthernet 0/1 − 0/4	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5 – 0/8	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19 – 0/16	PC_9_DAIKON –	10	-
		PC_16_DAIKON		
SW_5.2_IT_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_4_DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_1_DAIKON –	10	-
		PRINTER_4_DAIKON		
	FastEthernet 0/9	IPCAMERA_1_DAIKON	50	-
SW_7.1_SAL_DAIKON	GigabitEthernet 0/1	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_4_DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_1_DAIKON –	11	-
		PRINTER_4_DAIKON		
	FastEthernet 0/9 – 0/16	PC_1_DAIKON –	11	-
		PC_8_DAIKON		
	FastEthernet 0/17	IPCAMERA_1_DAIKON		-
			50	
SW_7.2_SAL_DAIKON	GigabitEthernet 0/1	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1 - 0/4	IPTELEPHONE_5_DAIKON –	60	-
		IPTELEPHONE_8_DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_5_DAIKON –	11	-
		PRINTER_8_DAIKON		
		17		

1рооолжение таолицы 2.5	FastEthernet 0/9 – 0/16	PC 9 DAIKON –	11	-
		PC 16 DAIKON	11	
SW 8.1 BUY DAIKON	GigabitEthernet 0/1	SW 1 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW 3 Agg L3 DAIKON	_	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE 1 DAIKON –	60	-
		IPTELEPHONE 4 DAIKON		
	FastEthernet 0/5 – 0/8	PRINTER 1 DAIKON –	12	-
		PRINTER 4 DAIKON		
	FastEthernet 0/9 – 0/16	PC_1_DAIKON-	12	-
		PC_8_DAIKON		
	FastEthernet 0/17	IPCAMERA_1_DAIKON	50	-
SW_8.2_BUY_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_5_DAIKON -	60	-
		IPTELEPHONE_8_DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_5_DAIKON –	12	-
		PRINTER_8_DAIKON		
	FastEthernet 0/9 – 0/16	PC_9_DAIKON –	12	-
		PC_16_DAIKON		
SW_3_ADM_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE_1_DAIKON	60	-
	FastEthernet 0/2	PRINTER_1_DAIKON	13	-
	FastEthernet $0/3 - 0/13$	PC_1_DAIKON –	13	-
		PC_11_DAIKON		
	FastEthernet 0/14	IPCAMERA_1_DAIKON	50	-
SW_4_MAR_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1 – 0/4	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_4_DAIKON		
	FastEthernet 0/5 – 0/8	PRINTER_1_DAIKON –	14	-
		PRINTER _4_DAIKON		

прооблистие тиолицы 2.3				
	FastEthernet 0/9-0/19	PC 1 DAIKON -	14	-
		PC_11_DAIKON		
	FastEthernet 0/20	IPCAMERA 1 DAIKON	50	-
SW_1 SEC_DAIKON	GigabitEthernet 0/1	SW 2 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE 1 DAIKON	60	-
	FastEthernet $0/2 - 0/10$	PC_1_DAIKON -	15	-
		PC_9_DAIKON		
	FastEthernet 0/11	IPCAMERA_1_DAIKON	50	-
SW_2_ACC_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_1_DAIKON -	-	60
		IPTELEPHONE_4_DAIKON		
	FastEthernet 0/5 – 0/8	PRINTER_1_DAIKON –	16	-
		PRINTER_4_DAIKON		
	FastEthernet 0/9-0/19	PC_1_DAIKON –	16	-
		PC_11_DAIKON		
	FastEthernet 0/20	IPCAMERA_1_DAIKON	50	-
SW_6_FR_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/3$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_3_DAIKON		
	FastEthernet $0/4 - 0/6$	PRINTER_1_DAIKON –	17	-
		PRINTER _3_DAIKON		
	FastEthernet $0/7 - 0/12$	PC_1_DAIKON –	17	-
		PC_6_DAIKON		
	FastEthernet 0/13	IPCAMERA_1_DAIKON	50	-
SW_9/11_HC_L3_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100

Прооолжение таолицы 2.3				
	FastEthernet $0/1 - 0/3$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_3_DAIKON		
	FastEthernet $0/4 - 0/6$	PRINTER_1_DAIKON –	20	-
		PRINTER _3_DAIKON		
	FastEthernet $0/7 - 0/12$	PC_1_DAIKON –	20	-
		PC_6_DAIKON		
	FastEthernet $0/13 - 0/15$	IPCAMERA_1_DAIKON -	50	-
		IPCAMERA_3_DAIKON		
SW_10_D_L2_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE_1_DAIKON	60	-
	FastEthernet 0/2	PRINTER_1_DAIKON	18	-
	FastEthernet 0/3	IPCAMERA_1_DAIKON	50	-
SW_10_D_L3_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/3	PC_1_DAIKON	18	-
SW_1_Agg_L3_DAIKON	GigabitEthernet 0/1 –0/4	SW_5.5_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5 –0/8	SW_5.3_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9 – 0/12	SW_5.4_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet $0/13 - 0/16$	SW_5.1_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/17	SW_7.1_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/18	SW_7.2_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19	SW_7.3_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/20	SW_7.4_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/21	SW_8.1_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/22	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/23	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/24	R_1_DAIKON	-	601

Прооолжение таолицы 2.5				
SW_3_Agg_L3_DAIKON	GigabitEthernet 0/1 –0/4	SW_5.5_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5 –0/8	SW_5.3_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet $0/9 - 0/12$	SW_5.4 IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/13 – 0/16	SW 5.1 IT L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/17	SW 7.1 SAL DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/18	SW 7.2 SAL DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19	SW_7.3_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/20	SW_7.4_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/21	SW_8.1_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/22	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/23	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/24	R_1_DAIKON	-	603
SW_2_Agg_L3_DAIKON	GigabitEthernet 0/1	SW_8.2_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_5.2_IT_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/3	SW_3_ADM_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/4	SW_4_MAR_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5	SW_1.1_SEC_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/6	SW_2_ACC_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/7	SW_6_FR_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/8	SW_9/11_HC_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9	SW_10_D_L2_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/10	SW_10.1_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/11	SW_10_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/12	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/13	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/14	R_1_DAIKON	-	602
SW_4_Agg_L3_DAIKON	GigabitEthernet 0/1	SW_8.2_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_5.2_IT_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/3	SW_3_ADM_DAIKON	-	10-20, 50, 60, 100

прооолжение таолицы 2.5				
	GigabitEthernet 0/4	SW_4_MAR_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5	SW_1.1_SEC_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/6	SW_2_ACC_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/7	SW_6_FR_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/8	SW_9/11_HC_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9	SW_10_D_L2_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/10	SW_10.1_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/11	SW_10_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/12	SW_1_Agg_L3_DAIKON	-	-
	GigabitEthernet 0/13	SW_3_Agg_L3_DAIKON	-	-
	GigabitEthernet 0/14	R_1_DAIKON	-	604
R_1_DAIKON	GigabitEthernet 0/1	SW_1_Agg_L3_DAIKON	-	-
	GigabitEthernet 0/2	SW_2_Agg_L3_DAIKON	-	-
	GigabitEthernet 0/3	SW_3_Agg_L3_DAIKON	-	-
	GigabitEthernet 0/4	SW_4_Agg_L3_DAIKON	-	-

По аналогии планирование филиала представлено в Таблице 2.4

Таблица 2.4 – План подключений оборудования по портам в филиале

Название устройства	Порт	Описание подключения		VLAN	
			Access	Trunk	
R_1_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	600	
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	601	
SW_1.1_Agg_L3_DAIKON	GigabitEthernet0/1	R_1_DAIKON	-	-	
	GigabitEthernet0/2	SW_6/7/8_SSH_L3_DAIKON	-	10-16, 50, 60, 100	
	GigabitEthernet0/3	SW_5_A_L3_DAIKON	-	10-16, 50, 60, 100	
	GigabitEthernet0/4	SW_1_H_L2_DAIKON	-	10-16, 50, 60, 100	
	GigabitEthernet0/5	SW_2_SAL_DAIKON	-	10-16, 50, 60, 100	
	GigabitEthernet0/6	SW_3_BUY_DAIKON	-	10-16, 50, 60, 100	
	GigabitEthernet0/7	SW_4_CL_DAIKON	-	10-16, 50, 60, 100	
	GigabitEthernet0/1	R_1_DAIKON	-	601	
SW_1.2_Agg_L3_DAIKON	GigabitEthernet0/2	SW_6/7/8_SSH_L3_DAIKON	-	10-16, 50, 60, 100	

Продолжение таблицы 2.4				
	GigabitEthernet0/3	SW_5_A_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/4	SW_1_H_L2_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/5	SW_2_SAL_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/6	SW 3 BUY DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/7	SW 4 CL DAIKON	-	10-16, 50, 60, 100
SW_5_A_L3_DAIKON	GigabitEthernet0/1	SW 1.1 Agg L3 DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW 1.2 Agg L3 DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1–0/2	IPTELEPHONE 1 DAIKON	60	-
		IPTELEPHONE 2 DAIKON		
	FastEthernet 0/3 – 0/4	PRINTER_1_DAIKON –	11	-
		PRINTER_2_DAIKON		
	FastEthernet 0/5–0/7	PC_1_DAIKON –	11	-
		PC_3_DAIKON		
	FastEthernet 0/8	IPCAMERA_1_DAIKON	50	-
SW_6/7/8_SSH_L3_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1–0/2	IPTELEPHONE_1_DAIKON	60	-
		_		
		IPTELEPHONE_2_DAIKON		
	FastEthernet 0/3–0/8	PC_1_DAIKON –	12, 13	-
		PC_6_DAIKON		
	FastEthernet $0/9 - 0/13$	IPCAMERA_1_DAIKON -	50	-
		IPCAMERA_5_DAIKON		
SW_1_H_L2_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE_1_DAIKON	60	-
	FastEthernet 0/2	PRINTER_1_DAIKON	10	-
	FastEthernet 0/3	PC_1_DAIKON	10	-
	FastEthernet 0/4	IPCAMERA_1_DAIKON	50	-
SW_4_CL_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	_	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100

11рооолжение таолицы 2.4				
	FastEthernet 0/1–0/4	IPTELEPHONE_1_DAIKON	60	-
		IPTELEPHONE 4 DAIKON		
	FastEthernet 0/5–0/6	PRINTER_1_DAIKON –	14	-
		PRINTER_2_DAIKON		
	FastEthernet 0/7–0/10	PC_1_DAIKON -	14	-
		PC_4_DAIKON		
	FastEthernet 0/11	IPCAMERA_1_DAIKON	50	-
SW 2 SAL DAIKON	GigabitEthernet0/1	SW 1.1 Agg L3 DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW 1.2 Agg L3 DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1–0/3	IPTELEPHONE_1_DAIKON	60	-
		_		
		IPTELEPHONE_3_DAIKON		
	FastEthernet 0/4–0/6	PRINTER_1_DAIKON –	15	-
		PRINTER_3_DAIKON		
	FastEthernet 0/7–0/12	PC_1_DAIKON -	15	-
		PC_6_DAIKON		
	FastEthernet 0/13	IPCAMERA_1_DAIKON	50	-
SW_3_BUY_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1–0/3	IPTELEPHONE_1_DAIKON	60	-
		_		
		IPTELEPHONE_3_DAIKON		
	FastEthernet 0/4–0/6	PRINTER_1_DAIKON –	16	-
		PRINTER_3_DAIKON		
	FastEthernet 0/7–0/12	PC_1_DAIKON -	16	-
		PC_6_DAIKON		
	FastEthernet 0/13	IPCAMERA_1_DAIKON	50	-

2.2 Планирование агрегирования каналов

Следующий шаг – планирование агрегирования каналов.

Для основного офиса необходимо провести агрегирование каналов для коммутаторов:

- SW 1 Agg L3 DAIKON[GigabitEthernet1/0/1-8]
- SW_5.1_IT_L3_DAIKON [GigabitEthernet1/0/3-10]
- SW_3_Agg_L3_DAIKON[GigabitEthernet1/0/3-10]
- SW 5.3 IT L3 DAIKON [GigabitEthernet1/0/3-10]

Для агрегирования каналов был выбран протокол EtherChannel. Этот протокол позволяет объединять несколько физических интерфейсов в логический канал для повышения пропускной способности и надежности сети.

При настройке режима балансировки нагрузки во всех случаях будет использоваться балансировка по IP-адресам источника и назначения.

Для филиалов необходимость проводить агрегирование каналов для коммутаторов отсутствует.

2.3 Планирование предотвращения петель канального уровня

Петли канального уровня (или петли трафика) возникают в сетях передачи данных, когда пакеты данных начинают циркулировать между устройствами канального уровня в сети без достижения конечной цели. Для предотвращения перегруженности сетей, вызванной бесконечной циркуляций кадров используется протокол STP.

Поскольку в рамках данной работы планирование производится с использованием оборудования Сіsco будет использован проприетарный протокол Сіsco Rapid-PVST, основанный на RSTP. RSTP является усовершенствованием

протокола STP и обеспечивает быструю конвергенцию топологии сети. И STP, и RSTP имеют один недостаток: все VLAN в локальной сети используют одно связующее дерево. В условиях данного варианта топологии этот недостаток не будет являться проблемой, так как балансировка VLAN в данной сети не требуется, поскольку с каждого коммутатора уровня доступа трафик передаётся только на один коммутатор уровня агрегации.

В сети центрального офиса SW_1_Agg_L3_DAIKON будет являться корневым мостом и иметь приоритет 0. SW_2_Agg_L3_DAIKON будет иметь промежуточный приоритет 4098. SW_3_Agg_L3_DAIKON и SW_4_Agg_L3_DAIKON будут являться резервным корневыми мостами и иметь приоритет 8192.

В сети филиала коммутатор SW_1_Agg_L3_DAIKON будет являться корневым мостом и иметь приоритет 0. SW_1.2_Agg_L3_DAIKON будет являться резервным корневым мостом и иметь приоритет 4096.

3 МОДЕЛИРОВАНИЕ КОРПОРАТИВНОЙ ЛОКАЛЬНО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

3.1 Настройка планируемых конфигураций

Для настройки VLAN требуется произвести настройку на коммутаторах как уровня агрегации, так и уровня доступа. Для этого в первую очередь командой «vlan n» в режиме конфигурации задаётся номер VLAN, где «n» здесь и далее номер очередного VLAN. Далее дополнительно можно задать имя VLAN с помощью команды «name имя». Затем была проведена конфигурация портов каждого коммутатора. Для начала необходимо перейти на интерфейс командой «int GigabitEthernet 0/0/i», где вместо «GigabitEthernet» может быть указан «FastEthernet», для соответствующей настройки, a вместо необходимого порта. Далее необходимо настроить тип порта с помощью команды «switchport mode», где в конце команды указывается один из двух вариантов «access» или «trunk». При настройке «access» типа порта так же необходимо, с помошью команды «switchport access vlan n» установить номер соответствующего VLAN. Так же стоит упомянуть, что для настройки VLAN взаимодействия необходимо в первую очередь перевести порт в режим «trunk», а затем ввести команду «switchport trunk native vlan n».

Для планирования агрегирования каналов была реализована ручная настройка. Для этого на обоих устройствах, реализующих агрегирование каналов в первую очередь, в режиме конфигураций, был создан логический интерфейс командой «int port-channel k», где k – номер логического интерфейса. Сразу после этого данный «port-channel» был переведён в «trunk» режим, соответствующей командой, описанной выше. Затем необходимо описать физические интерфейсы, входящие в агрегирование с помощью команды «int range gigabitEthernet 1/0/a-b», где а и b начало и конец соответственно. Далее, с помощью команды «channel-

group k mode on» было задано к какому логическому интерфейсу относятся порты.

Для планирования предотвращения петель канального уровня был использован протокол Rapid-PVST. В первую очередь, для его настройки, его необходимо включить. Делается это с помощью команды «spanning-tree mode rapid-pvst» в режиме конфигурации. Далее необходимо, с помощью команды «spanning-tree vlan n priority m» задать номер VLAN и приоритет «m» текущего устройства в дереве для него. Так же дополнительно можно задать командой «spanning-tree vlan n root» тип приоритетности устройства в дереве, где значениями могут выступать «primary» или «secondary».

3.2 Тестирование топологии

Топология сети центрального офиса представлена на Рисунке 3.1.

Рисунок 3.1 – Топология центрального офиса

В Листинге 3.1 приведен отрывок конфигурации коммутатора SW_1_Agg_L3_DAIKON, с указанием настроек технологий VLAN, агрегирования и Rapid-PVST.

Листинг 3.1 – Отрывок конфигурации SW 1 Agg L3 DAIKON

```
spanning-tree mode rapid-pvst
spanning-tree vlan 10-12 priority 0
!
!
!
!
!
```

```
interface Port-channel1
switchport trunk allowed vlan 10,100
 switchport mode trunk
interface Port-channel2
switchport trunk allowed vlan 10,100
 switchport mode trunk
interface GigabitEthernet1/0/1
switchport trunk allowed vlan 10,100
 switchport mode trunk
channel-group 1 mode on
interface GigabitEthernet1/0/2
switchport trunk allowed vlan 10,100
switchport mode trunk
channel-group 1 mode on
interface GigabitEthernet1/0/3
switchport trunk allowed vlan 10,100
switchport mode trunk
channel-group 1 mode on
interface GigabitEthernet1/0/4
switchport trunk allowed vlan 10,100
switchport mode trunk
channel-group 1 mode on
interface GigabitEthernet1/0/5
 switchport trunk allowed vlan 10,100
 switchport mode trunk
channel-group 2 mode on
interface GigabitEthernet1/0/6
 switchport trunk allowed vlan 10,100
 switchport mode trunk
channel-group 2 mode on
interface GigabitEthernet1/0/7
switchport trunk allowed vlan 10,100
 switchport mode trunk
channel-group 2 mode on
interface GigabitEthernet1/0/8
switchport trunk allowed vlan 10,100
switchport mode trunk
channel-group 2 mode on
interface GigabitEthernet1/0/9
switchport trunk allowed vlan 11,100
switchport mode trunk
interface GigabitEthernet1/0/10
switchport trunk allowed vlan 11,100
switchport mode trunk
interface GigabitEthernet1/0/11
switchport trunk allowed vlan 12,100
switchport mode trunk
interface GigabitEthernet1/0/12
switchport trunk native vlan 604
```

```
switchport trunk allowed vlan 10-20,50,60,100
switchport mode trunk
!
interface GigabitEthernet1/0/13
switchport trunk native vlan 605
switchport trunk allowed vlan 10-20,50,60,100
switchport mode trunk
!
interface GigabitEthernet1/0/14
switchport trunk native vlan 601
switchport mode trunk
!
```

В Листинге 3.2 представлен элемент конфигурации коммутатора уровня доступа SW_5.1_IT_L3_DAIKON, с демонстрацией настроенных портов с «access» VLAN.

Листинг 3.2 – Элемент конфигурации коммутатора SW_5.1_IT_L3_DAIKON

```
interface GigabitEthernet1/0/1
  switchport access vlan 10
  switchport mode access
!
interface GigabitEthernet1/0/2
  switchport access vlan 10
  switchport mode access
!
```

В Листинге 3.3 представлен вывода SW_1_Agg_L3_DAIKON, с использованием команды «sh etherchannel summary», содержащий информацию о настройке технологии агрегирования каналов.

Листинг 3.3 – Результат команды «sh etherchannel summary» на SW 1 Agg L3 DAIKON

```
P - in port-channel
       I - stand-alone s - suspended
       H - Hot-standby (LACP only)
                  S - Layer2
       R - Layer3
                      f - failed to allocate aggregator
       U - in use
       u - unsuitable for bundling
       w - waiting to be aggregated
       d - default port
Number of channel-groups in use: 2
Number of aggregators:
Group Port-channel Protocol
                               Ports
                              Gig1/0/1(P) Gig1/0/2(P) Gig1/0/3(P) Gig1/0/4(P))
      Po1 (SU)
```

В Листинге 3.4 представлен вывода SW_1_Agg_L3_DAIKON, с использованием команд «sh spanning-tree summary», содержащий сводку информации о настройке технологии реализующей предотвращение петель канального уровня.

Листинг 3.4 – Результат команды «sh spanning-tree» на SW 1 Agg L3 DAIKON

Switch is in rapid-pvst mode											
Root bridge for: VLAN0010 sw sal sw 8.1 buy VLAN0601 VLAN0604											
Extended system ID is enabled Portfast Default is disabled											
					PortFast BPDU Guard Default is disabled Portfast BPDU Filter Default is disabled Loopguard Default is disabled						
EtherChannel misco											
UplinkFast		disabled									
BackboneFast		disabled									
Configured Pathcos	_										
Name	Blocking	Listening	Learning	Forwarding	STP Active						
 VLAN0001		0	0	9	16						
VLAN0010	5	0	0	11	16						
VLAN0011	13	0	0	3	16						
VLAN0012	13	0	0	3	16						
VLAN0013	13	0	0	3	16						
VLAN0014	13	0	0	3	16						
VLAN0015	13	0	0	3	16						
VLAN0016	13	0	0	3	16						
VLAN0017	13	0	0	3	16						
VLAN0018	13	0	0	3	16						
VLAN0020	13	0	0	3	16						
VLAN0050	13	0	0	3	16						
VLAN0060	13	0	0	3	16						
VLAN0100	0	0	0	16	16						
VLAN0601	15	0	0	1	16						
VLAN0604	14	0	0	2	16						
VLAN0605	14	0	0	2	16						

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был разработан проект корпоративной локально-вычислительной сети (ЛВС) для предприятия, осуществляющего деятельность по перевозке грузов специализированными автотранспортными средствами. Проект был выполнен с учетом специфических потребностей предприятия, включая обеспечение бесперебойной работы информационных систем, контроль за движением транспорта и эффективное взаимодействие с клиентами.

В разделе «Техническое задание» были определены общие сведения о проекте, цели и назначение создания корпоративной локально-вычислительной сети, а также проведена характеристика объекта автоматизации, включая организационную структуру предприятия, характеристики устройств и расположения АРМ, окружения предприятия и существующей инфраструктуры.

В разделе «Планирование канального уровня» было проведено планирование виртуальных локальных сетей, агрегирования каналов и предотвращения петель канального уровня. Далее было осуществлено планирование сетевого уровня, включая создание IP-плана, планирование избыточности шлюза по умолчанию, назначение адресации и планирование маршрутизации.

В результате проектирования была разработана оптимальная архитектура ЛВС, основанная на выбранной топологии, технологиях передачи данных и системах безопасности.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

- 1. 71 Деятельность в области архитектуры и инженерно-технического проектирования; технических испытаний, исследований и анализа [Электронный ресурс]. 2014. URL: https://www.consultant.ru/document/cons_doc_LAW_163320/2eabb9140931e0c7b1d b44c633845aca26287e15/ (Дата обращения: 05.06.2024).
- 2. Система разработки и постановки продукции на производство. Техническое задание. Требования к содержанию и оформлению: национальный стандарт Российской Федерации: дата введения 2017-09-01 / Федеральное агентство по техническому регулированию. Изд. официальное. Москва: Стандартинформ, 2016. 27 с.
- 3. Пожаротушение для ЦОД [Электронный ресурс] URL: https://habr.com/ru/articles/595117/ (Дата обращения 26.11.23).
- 4. Модель OSI это просто [Электронный ресурс]// Режим доступа: https://wiki.merionet.ru/articles/model-osi-eto-prosto (Дата обращения 05.06.2024).
- 5. Виктор Олифер Наталья Олифер Компьютерные сети, принципы, технологии, протоколы Текст: непосредственный 2020. С. 1-628.
- 6. Cicso. VLAN Configuration, Cisco Catalyst PON Series Switches [Электронный pecypc]. 2020. URL: https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_pon/software/configurat ion_guide/vlan/b-gpon-config-vlan/configuring_vlan.html (Дата обращения: 05.06.2024).
- 7. Building a LACP port-channel between Cisco and Huawei switch [Электронный ресурс]. 2018. URL: https://aboutnetworks.net/building-a-lacp-port-channel-between-cisco-and-huawei-switch/ (Дата обращения: 05.06.2024).
- 8. Cisco. Configuring Rapid PVST+ [Электронный ресурс]. 2011. URL: https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5000/sw/layer2/503 _n1_1/Cisco_n5k_layer2_config_gd_rel_503_N1_1_chapter9.html#:~:text=Rapid%2

0per%20VLAN%20Spanning%20Tree,(STP)%20mode%20on%20the%20switch (Дата обращения: 05.06.2024).