NTNU

Institutt for matematiske fag

TMA4100 Matematikk 1 eksamen 18.08.06

Løsningsforslag

 $\boxed{\mathbf{1}}$ Grenseverdien er ubestemt av formen "0/0". To gangers bruk av L'Hôpitals regel gir

$$\lim_{x\to\pi/2}\frac{1-\sin x}{1+\cos 2x} = \lim_{\substack{\uparrow \\ \text{L'Hôp.}}}\frac{-\cos x}{-2\sin 2x} = \lim_{\substack{\uparrow \\ \text{L'Hôp.}}}\frac{\sin x}{-4\cos 2x} = \frac{1}{4}.$$

 $\fbox{2}$ a) Den gitte rekken er en sum av to geometriske rekker. Ved å bruke summeformelen $\sum_{n=0}^{\infty} ar^n = a/(1-r)$ for geometriske rekker med |r| < 1, får vi

$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n + \sum_{n=0}^{\infty} 5\left(\frac{1}{3}\right)^n = \frac{1}{1 - 2/3} + \frac{5}{1 - 1/3} = 3 + \frac{15}{2} = \frac{21}{2}.$$

b) Ved forholdstesten er konvergensradien R gitt ved

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\arctan(n+1)}{\arctan n} = \frac{\pi/2}{\pi/2} = 1.$$

For $x = \pm 1$ får vi rekkene

$$\sum_{n=1}^{\infty} \frac{1}{\arctan n} \qquad \text{og} \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{\arctan n}.$$

Begge rekkene divergerer ifølge n-teleddstesten for divergens siden $\lim_{n\to\infty} \arctan n = \pi/2$.

 $\fbox{\bf 3}$ Den gitte differensialligningen er separabel, og kan (for $2y-3\neq 0$) skrives

$$\frac{2}{2y-3}\frac{dy}{dx} = \frac{2x}{x^2+1}.$$

Ved integrasjon får vi $\ln |2y - 3| = \ln (x^2 + 1) + C$. Det gir

$$2y - 3 = C_1(x^2 + 1)$$

der $C_1 = \pm e^C$. Innsetting av initialbetingelsen y(0) = 1 gir $C_1 = -1$. Løsningen blir altså

$$2y - 3 = -(x^2 + 1)$$
 dvs. $y = 1 - \frac{x^2}{2}$.

f 4 a) Arealet A av rektangelet R er grunnlinjen ganget med høyden:

$$A = (9-t)\sqrt{t} = 9t^{1/2} - t^{3/2}, \qquad 0 \le t \le 9.$$

For t=0 og for t=9 er A=0. Maksimumsverdien oppnås derfor i et punkt i det åpne intervallet (0,9) der dA/dt=0. Derivasjon gir

$$\frac{dA}{dt} = \frac{9}{2}t^{-1/2} - \frac{3}{2}t^{1/2} = \frac{9}{2\sqrt{t}} - \frac{3}{2}\sqrt{t} = \frac{9-3t}{2\sqrt{t}}.$$

Følgelig får arealet sin største verdi når t=3 (eneste mulighet), og $A_{\max}=6\sqrt{3}$.

b) Et kvadrat med side t har areal t^2 . Vi må følgelig løse ligningen $(9-t)\sqrt{t}=t^2$ med hensyn på t. Etter forkorting med \sqrt{t} kan ligningen skrives

$$t^{3/2} + t - 9 = 0.$$

Vi innfører $f(t) = t^{3/2} + t - 9$ og bruker Newtons metode:

$$t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)} = t_n - \frac{t_n^{3/2} + t_n - 9}{\frac{3}{2}t_n^{1/2} + 1} = \frac{t_n^{3/2} + 18}{3t_n^{1/2} + 2}.$$

Vi kan starte med $t_0 = 4.5$ (midt i intervallet). Avrundet til fire desimaler får vi

$$t_1 = 3.2934,$$
 $t_2 = 3.2208,$ $t_3 = 3.2205.$

Svaret er følgelig t = 3.22.

[5] a) Differensialligningen er $y' = x + y^2$. Ifølge Eulers metode med skrittlengde h = 0.1 er $y(x_n) \approx y_n$ der x_n og y_n er definert rekursivt ved

$$x_{n+1} = x_n + 0.1,$$
 $y_{n+1} = y_n + 0.1(x_n + y_n^2),$ $n = 0, 1, 2, \dots$

Fra initialbetingelsen y(0) = 1 får vi $x_0 = 0$ og $y_0 = 1$. Da blir

$$x_1 = 0.1, y_1 = 1.1,$$
 $x_2 = 0.2, y_2 = 1.231,$ $x_3 = 0.3, y_3 = 1.4025361.$

Følgelig er $y(0.3) \approx y_3 = 1.403$ (avrundet til tre desimaler).

b) Vi har gitt y(0) = 1, og av differensialligningen følger y'(0) = 1. Deriverer vi differensialligningen med hensyn på x, får vi

$$y''(x) = 1 + 2y(x)y'(x).$$

Det gir y''(0) = 3. Taylorpolynomet $P_2(x)$ til y(x) om x = 0 er altså

$$P_2(x) = 1 + x + \frac{3}{2}x^2.$$

Følgelig er $P_2(0.3) = 1.435$.

6 Kurven $y = 3x - x^2$ skjærer x-aksen i 0 og 3. Ved å bruke sylinderskallmetoden får vi

$$V = \int_{*}^{**} 2\pi r \, dA = 2\pi \int_{0}^{3} (x+1)(3x-x^{2}) \, dx$$
$$= 2\pi \int_{0}^{3} (2x^{2} + 3x - x^{3}) \, dx = 2\pi \left[\frac{2}{3}x^{3} + \frac{3}{2}x^{2} - \frac{1}{4}x^{4} \right]_{0}^{3} = \frac{45}{2}\pi.$$

7 Vi kan uttrykke buelengden til kurven y = f(x) som et integral, og har da gitt at

$$\int_{1}^{u} \sqrt{1 + [f'(x)]^2} \, dx = \frac{1}{3}u^3 + u - \frac{4}{3} \qquad \text{(for } u \ge 1\text{)}.$$

Ved derivasjon med hensyn på u får vi

$$\sqrt{1 + [f'(u)]^2} = u^2 + 1.$$

Det gir

$$[f'(u)]^2 = u^4 + 2u^2$$
 dvs. $f'(u) = \pm u\sqrt{u^2 + 2u^2}$

Her må vi velge fortegnet + siden f skal være ikkenegativ. Ved integrasjon får vi

$$f(u) = \frac{1}{3}(u^2 + 2)^{3/2} + C.$$

Betingelsen f(1) = 0 gir $C = -\sqrt{3}$. Med x som fri variabel blir dermed svaret

$$f(x) = \frac{1}{3}(x^2 + 2)^{3/2} - \sqrt{3}.$$