Графічна інформація

Зображення — це двовимірний, дискретний чи неперервний, розподіл інтенсивності та спектрального складу випромінювання, що несе інформацію про певну проекцію предметів.

- *растрові*, у яких використовують Декартову прямокутну систему координат,
- *векторні,* у яких опис здійснюють у полярній системі координат.
- інші (фрактальні, метафайли).

Гістограма яскравості — розподіл кількості пікселів по величинах їхньої яскравості.

Графічна інформація

Колір

- монохромні,
 - півтонові,
 - кольорові

Графічна інформація

Кольрові схеми

RGB (адитивна схема)

Червоний (R - red), зелений (G - green) та синій (B - blue), кольори називають основними.

СМҮК (субтрактивна схема)

Комбінації з двох основних кольорів з однаковим відносним вкладом називають додатковими кольорами: голубий = зелений + синій (С - суап), пурпурний = червоний + синій (М - magenta) та жовтий = червоний + зелений (Y - yellow). З огляду на неповноту співставлення чутливості ока та схеми RGB субтрактивна схема була доповнена чорним кольором, який у латинській абревіатурі був позначений літерою К (blacK, іноді — Key color), і отримала назву СМҮК, яка добре відома усім, хто стикався з кольоровим друком.

Графічна інформація

Разом з тим у ході багатьох досліджень виявили, що певну частину монохроматичних випромінювань не вдається відтворити за допомогою адитивної схеми *RGB*. На її основі створено декілька модифікацій, зокрема sRGB, AdobeRGB, які дещо збільшували кількість відтворюваних кольорів, однак далі не охоплювали весь діапазон існуючих кольорових стимулів.

Графічна інформація

Система ХҮХ

Графічна інформація

Рівноконтрастні кольорові схеми.

Графічна інформація *нѕв(нѕv)*

Графічна інформація

CIELAB, або *L*a*b**

Графічна інформація

Параметри зображень

Розмір – протяжність у просторі у лінійних чи кутових одиницях.

Роздільна здатність — це кількість поперечних штрихів (ліній) одного кольору (як правило — чорного), які розрізняються як окремі на одиниці довжини даного зображення. Інколи цю характеристику називають лінеатурою зображення, вимірюють у M^{-1} .

Глибина кольору — це відношення максимальної яскравості даного кольору до мінімальної різниці яскравості, яка розрізняється на даному зображенні. У цифрових системах використовуються значення глибин кольору, що дорівнює 2ⁿ (n=1,4,8,16,24,48...) У таких випадках говорять, що глибина кольору становить *n* біт.

Графічна інформація

Формати файлів

Розширення	Формат	Глибина кольору, біт / піксель	Розмір зображення	Метод стиснення	Декілька зображень в файлі
.bmp	Bit MaP	24	2 ¹⁶ *2 ¹⁶	RLE	Hi
.рсх	PiCture for eXchange	24	2 ¹⁶ *2 ¹⁶	RLE	Hi
.gif	Graphic Interchange Format	8	2 ¹⁶ *2 ¹⁶	LZW	Так
.jpg	Joint Photographics Experts Group	24	2 ¹⁶ *2 ¹⁶	JPEG	Hi
.png	Portable Network Graphics	48	2 ³¹ *2 ³¹	LZ77	Hi
.tif	Tagged Image File Format	24	Всього 2 ³²	RLE, LZW, ZIP	Так

СТИСНЕННЯ ДАНИХ

Стиснення даних - це процедура перекодування даних, яка проводиться з метою зменшення їхнього обсягу, розміру, об'єму.

Стиснення базується на усуненні надлишку інформації, яка міститься у вихідних даних. Наприклад, повторення в тексті фрагментів (наприклад, слів мови). Подібний надлишок зазвичай усувається заміною повторюваних послідовностей коротшим значенням. Інший вид надлишковості пов'язаний з тим, що деякі значення в даних, що стискаються, трапляються частіше інших, при цьому можна замінювати дані, що часто трапляються, коротшими кодами, а ті, що рідко, довшими (ймовірнісне стиснення).

Стиснення даних, які не мають властивості надлишку (випадковий сигнал чи шум), неможливе. Також, зазвичай, неможливо стиснути зашифровану інформацію.

СТИСНЕННЯ ДАНИХ

- **Стиснення без втрат** таке стиснення, при якому можливе відновлення вихідних даних без спотворень (*RLE, LZ*, SFC або Huffmann, ...*)
- **Стиснення з втратами** відновлення можливе з певними (допустимими) спотвореннями (*JPEG, MP1-3, H.261-264, MPEG1-4, ...*).