Utilize your CPU power

Cache optimizations and SIMD instructions

Mario Mulansky

ISC-CNR, Institute for Complex Systems, Florence, Italy

Utilize your CPU power

Cache optimizations and SIMD instructions

Mario Mulansky

ISC-CNR, Institute for Complex Systems, Florence, Italy

Performance

Numerical Simulations:

- Flops Flops
- Actually: Simulation runtime
- Not: DB queries / Requests per second, Response rate, ...

Performance

Numerical Simulations:

- Flops Flops
- Actually: Simulation runtime
- Not: DB queries / Requests per second, Response rate, ...

Performance bounds:

- CPU power Floating point operations per second: Flops/s
- Memory bandwidth

Performance

Numerical Simulations:

- Flops Flops Flops
- Actually: Simulation runtime
- Not: DB queries / Requests per second, Response rate, ...

Performance bounds:

- CPU power Floating point operations per second: Flops/s
- Memory bandwidth

This talk:

- Bandwidth bottleneck
- Example: Numerical algorithm (ODE solver)
- ullet Bandwidth bound o Flops bound
- More speed: Boost.SIMD

Data bandwidth and latency limitation

Modern CPUs: \sim 3 GHz, 1 Op/cycle \rightarrow 3 GFlops/s

Data bandwidth and latency limitation

Modern CPUs: \sim 3 GHz, 1 Op/cycle \rightarrow 3 GFlops/s

Problem: Data transfer from memory to the CPU \sim : 16 GB/s

Example $\mathbf{x} = \mathbf{a} + \mathbf{b}$: 24 Bytes/Operation

 $3 \text{ GFlops/s} \leftrightarrow 72 \text{ GByte/s}$ or $16 \text{ GByte/s} \leftrightarrow 0.7 \text{ GFlop/s}$

Data bandwidth and latency limitation

Modern CPUs: \sim 3 GHz, 1 Op/cycle \rightarrow 3 GFlops/s

Problem: Data transfer from memory to the CPU \sim : 16 GB/s

Example $\mathbf{x} = \mathbf{a} + \mathbf{b}$: 24 Bytes/Operation

 $3~\text{GFlops/s} \leftrightarrow 72~\text{GByte/s} \qquad \text{or} \qquad 16~\text{GByte/s} \leftrightarrow 0.7~\text{GFlop/s}$

Cache

Intel® Core™ i7-3960X Processor Die Detail

Intel Sandy Bridge

Cache	Size	GB/s	Cycles	
L1	32K	350	4	
L2	256K	250	12	
L3	3-6M	100	12-30	
RAM	4-32G	16	20-100	

0

Solve a system of N small, independent ODEs: $\dot{r}_i = f(r_i,t)$ (Parameter study, Monte-Carlo)

Solve a system of N small, independent ODEs: $\dot{r}_i = f(r_i,t)$ (Parameter study, Monte-Carlo)

Two approaches:

- time first: $r_1(t) \rightarrow r_1(t + \Delta t) \rightarrow r_1(t + 2\Delta t) \dots$, then $r_2 \dots$
- vector first: $\mathbf{r}(t) \rightarrow \mathbf{r}(t + \Delta t) \rightarrow \mathbf{r}(t + 2\Delta t) \dots$

Solve a system of N small, independent ODEs: $\dot{r}_i = f(r_i, t)$ (Parameter study, Monte-Carlo)

Two approaches:

- time first: $r_1(t) \rightarrow r_1(t+\Delta t) \rightarrow r_1(t+2\Delta t) \dots$, then r_2 ...
- vector first: $\mathbf{r}(t) \rightarrow \mathbf{r}(t + \Delta t) \rightarrow \mathbf{r}(t + 2\Delta t) \dots$

Solve a system of N small, independent ODEs: $\dot{r}_i = f(r_i, t)$ (Parameter study, Monte-Carlo)

Two approaches:

- time first: $r_1(t) \rightarrow r_1(t+\Delta t) \rightarrow r_1(t+2\Delta t) \dots$, then r_2 ...
- vector first: $\mathbf{r}(t) \rightarrow \mathbf{r}(t + \Delta t) \rightarrow \mathbf{r}(t + 2\Delta t) \dots$

$$\dot{r}_{i} = f_{i}(\mathbf{r}, t)$$

$$= \underbrace{h_{i}(r_{i}, t)}_{\text{local}} + \underbrace{g_{i}(r_{i}, r_{i-1}, r_{i+1}, t)}_{\text{n. n. coupling}}$$

$$\dot{r}_{i} = f_{i}(\mathbf{r}, t)$$

$$= \underbrace{h_{i}(r_{i}, t)}_{\text{local}} + \underbrace{g_{i}(r_{i}, r_{i-1}, r_{i+1}, t)}_{\text{n. n. coupling}}$$

Time discretization \mathbf{r}_t with Δt .

R-K algorithms:
$$\mathbf{r}_t \to \mathbf{r}_{t+\Delta t}$$
 with s stages $j=1\dots s$.

at each stage:

$$\mathbf{k}^{j} = \mathbf{f}(\mathbf{r}', t')$$

$$\mathbf{r}' = \mathbf{r}_{t} + \sum_{n < j} a_{j,n} \mathbf{k}^{n} \Delta t$$

$$\dot{r}_i = f_i(\mathbf{r}, t)$$

$$= \underbrace{h_i(r_i, t)}_{\text{local}} + \underbrace{g_i(r_i, r_{i-1}, r_{i+1}, t)}_{\text{n. n. coupling}}$$

Time discretization \mathbf{r}_t with Δt .

R-K algorithms: $\mathbf{r}_t \to \mathbf{r}_{t+\Delta t}$ with s stages $j = 1 \dots s$.

at each stage:

$$\mathbf{k}^{j} = \mathbf{f}(\mathbf{r}', t')$$

 $\mathbf{r}' = \mathbf{r}_{t} + \sum_{n < j} a_{j,n} \mathbf{k}^{n} \Delta t$

r ₁	r ₂	r ₃	r_N	stage s

$$\dot{r}_i = f_i(\mathbf{r}, t)$$

$$= \underbrace{h_i(r_i, t)}_{\text{local}} + \underbrace{g_i(r_i, r_{i-1}, r_{i+1}, t)}_{\text{n. n. coupling}}$$

Time discretization \mathbf{r}_t with Δt .

R-K algorithms: $\mathbf{r}_t \to \mathbf{r}_{t+\Delta t}$ with s stages $j=1\dots s$.

at each stage:

$$\mathbf{k}^{j} = \mathbf{f}(\mathbf{r}', t')$$

 $\mathbf{r}' = \mathbf{r}_{t} + \sum_{n < j} a_{j,n} \mathbf{k}^{n} \Delta t$

Problem: Coupling prevents "time first" approach

Coupling: only "vector first"?

Coupling: only "vector first"?

Clustering!

Coupling: only "vector first"?

Clustering!

Coupling: only "vector first"?

Clustering!

s iterations for each cluster at once ightarrow better cache usage

Price: additional overlap computations

Coupling: only "vector first"?

Clustering!

s iterations for each cluster at once \rightarrow better cache usage

Price: additional overlap computations

Optimal granularity?

Coupling: only "vector first"?

Clustering!

s iterations for each cluster at once \rightarrow better cache usage

Price: additional overlap computations

Optimal granularity? \sim Cache size... Measure!

Coupled Rössler systems, $N=2^{20}\approx 10^6$ (24 MB)

Intel Xeon E5-2690 @ 3.8GHz, Intel Compiler 15.0.0

Coupled Rössler systems, $N=2^{20}\approx 10^6$ (24 MB)

Intel Xeon E5-2690 @ 3.8GHz, Intel Compiler 15.0.0

Coupled Rössler systems, $N=2^{20}\approx 10^6$ (24 MB)

Intel Xeon E5-2690 @ 3.8GHz, Intel Compiler 15.0.0

Coupled Rössler systems, $N=2^{20}\approx 10^6$ (24 MB)

Intel Xeon E5-2690 @ 3.8GHz, Intel Compiler 15.0.0

Bandwidth bound → Flops/s bound

Increase Flops/s: SIMD instructions

SIMD: Single Instruction Multiple Data

Additional registers and instructions in modern CPUs

Increase Flops/s: SIMD instructions

SIMD: Single Instruction Multiple Data

Additional registers and instructions in modern CPUs Compilers try to use those automatically Often, explicit SIMD code improve Flops/s significantly Only helpful, if algorithm is Flops bound!

Boost.SIMD

(not yet official Boost library)

- Abstraction of SIMD instructions: (SSE3, SSE4.1, SSE4.2, AVX, FMA4, AltiVec, Intel MIC).
- Fundamental ingredient: SIMD registers \rightarrow SIMD pack.
- Expression template for optimization possibilities.
- Keep container-iterator-algorithm abstraction.

- Abstraction of SIMD instructions: (SSE3, SSE4.1, SSE4.2, AVX, FMA4, AltiVec, Intel MIC).
- Fundamental ingredient: SIMD registers \rightarrow SIMD pack.
- Expression template for optimization possibilities.
- Keep container—iterator—algorithm abstraction.

simd::pack<T>

- pack<T,N> SIMD register with N elements of T.
- pack<T> automatically chooses N from available hardware.
- T must be integral, e.g. int,float,double...
- N must be power of 2.

- Abstraction of SIMD instructions: (SSE3, SSE4.1, SSE4.2, AVX, FMA4, AltiVec, Intel MIC).
- Fundamental ingredient: SIMD registers \rightarrow SIMD pack.
- Expression template for optimization possibilities.
- Keep container—iterator—algorithm abstraction.

simd::pack<T>

- pack<T,N> SIMD register with N elements of T.
- pack<T> automatically chooses N from available hardware.
- T must be integral, e.g. int,float,double...
- N must be power of 2.
- Operations available +,-,*,/
- Math functions available: pow,abs,sqrt,log10,...

Quick Example: vector addition $\mathbf{x} = \alpha \cdot \mathbf{a} + \mathbf{b}$

```
typedef vector < double > vec;

double alpha;
vec x(N), a(N), b(N);

for (int n=0; n < x. size(); ++n)
    x[n] = alpha * a[n] + b[n];</pre>
```

Quick Example: vector addition $\mathbf{x} = \alpha \cdot \mathbf{a} + \mathbf{b}$

```
typedef vector < double > vec;

double alpha;
vec x(N), a(N), b(N);

for (int n=0; n < x.size(); ++n)
   x[n] = alpha * a[n] + b[n];</pre>
```

```
typedef simd::pack<double> pack; // automatic size
typedef vector<pack, simd::allocator<pack> > vec;
static const size_t pack_size = pack::static_size;
static const int M = N/pack_size;

double alpha;
vec x(M), a(M), b(M);

for(int n=0; n<x.size(); ++n)
    x[n] = alpha * a[n] + b[n];</pre>
```

Algorithm does not change

```
for(int n=0; n<x.size(); ++n)
  x[n] = alpha * a[n] + b[n];</pre>
```

even more clear:

```
transform(a, b, x, [alpha](double a_n, double b_n)
{return alpha * a_n + b_n;}
```

Algorithm does not change

```
for(int n=0; n<x.size(); ++n)
  x[n] = alpha * a[n] + b[n];</pre>
```

even more clear:

```
transform(a, b, x, [alpha](double a_n, double b_n)
{return alpha * a_n + b_n;}
```

With Boost.SIMD: change typdefs, don't touch algorithm.

SIMD for ODE Simulation

ODE iteration $\mathbf{r}_t \to \mathbf{r}_{t+\Delta t}$: some sort of transform

Abstraction Boost.odeint provides:

- generic algorithms
- container independent implementation
- exchangeable backends

```
typedef vector<double> state_type;
state_type x(N);
odeint::runge_kutta4<state_type> rk4;
odeint::integrate_const(rk4, roessler, x, 0.0, T, dt);
```

SIMD for ODE Simulation

ODE iteration $\mathbf{r}_t \to \mathbf{r}_{t+\Delta t}$: some sort of transform

Abstraction Boost.odeint provides:

- generic algorithms
- container independent implementation
- exchangeable backends

SIMD Performance Results

 ${\sf Boost.odeint} + {\sf Boost.SIMD}$

SIMD Performance Results

Boost.odeint + Boost.SIMD

SIMD Performance Results

Boost.odeint + Boost.SIMD

Size Dependence

Summary + Conclusions

- Granularity \rightarrow data transfer \searrow , BW bound \rightarrow Flops/s bound.
- Increase Op/cycle via SIMD \rightarrow total performance gain 3x.
- Known for stencil computations: space- and time-blocking.

Summary + Conclusions

- Granularity \rightarrow data transfer \searrow , BW bound \rightarrow Flops/s bound.
- Increase Op/cycle via SIMD \rightarrow total performance gain 3x.
- Known for stencil computations: space- and time-blocking.

Take-home-message:

- Data size > L2 cache size → introduce granularity.
- Write generic algorithms, substitute Boost.SIMD.
- Source code: https://github.com/mariomulansky/olsos
- \bullet C++ with Boost.odeint and Boost.SIMD \sim 200 lines of code.

Summary + Conclusions

- ullet Granularity o data transfer \searrow , BW bound o Flops/s bound.
- Increase Op/cycle via SIMD \rightarrow total performance gain 3x.
- Known for stencil computations: space- and time-blocking.

Take-home-message:

- Data size > L2 cache size → introduce granularity.
- Write generic algorithms, substitute Boost.SIMD.
- Source code: https://github.com/mariomulansky/olsos
- \bullet C++ with Boost.odeint and Boost.SIMD \sim 200 lines of code.

www.odeint.com