Time Complexity

Mohammed Rizin Unemployed

March 20, 2025

1 Time Complexity

1.1 Simple For Loop

```
Algorithm 1 Simple for loop

for i \leftarrow 0 to n-1 do

....STMT....
end for
```

Time complexity: O(n).

1.2 Simple Reverse Loop

```
Algorithm 2 Simple reverse loop

for i \leftarrow n down to 1 do

....STMT....
end for
```

Time complexity: O(n).

1.3 For Loop with Step

```
Algorithm 3 Simple for loop with step for i \leftarrow 0 to n-1 step 2 do ....STMT.... end for
```

Time complexity: O(n) (as n/2 is asymptotically O(n)).

1.4 Nested Loops

Time complexity: $O(n^2)$.

i	j	STMT	Total STMT	Total Time	Time Complexity
0	0	1	1	1	1
1	0	1	2	3	3
1	1	1	3	6	6
2	0	1	4	10	10
2	1	1	5	15	15
2	2	1	6	21	21

The total number of executions is n(n+1)/2, so the time complexity is $O(n^2)$.

1.5 Summation Loop

Algorithm 5 Summation loop

```
p \leftarrow 0
for i \leftarrow 1 while p \le n do
p \leftarrow p + i
end for
```

i	p	STMT	Total STMT	Total Time	Time Complexity
1	1	1	1	1	1
2	3	1	2	3	3
3	6	1	3	6	6
4	10	1	4	10	10
5	15	1	5	15	15
6	21	1	6	21	21
1:	:	:	:	:	:
k	$\frac{k(k+1)}{2}$	1	k	$\frac{k(k+1)}{2}$	$\frac{k(k+1)}{2}$

Assuming $p \leq n$:

$$p = \frac{k(k+1)}{2},$$

$$\frac{k(k+1)}{2} > n,$$

$$k^2 > n,$$

$$k > \sqrt{n}.$$

Time complexity: $O(\sqrt{n})$.

1.6 Multiplication Loop

Algorithm 6 Multiplication loop

 $\label{eq:constraint} \begin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{while} \ i \leq n \ \mathbf{step} \ 2 \cdot i \ \ \mathbf{do} \\ ... Statement... \\ \mathbf{end} \ \mathbf{for} \end{array}$

step	i
1	2
2	4
3	8
4	16
5	32
:	:
k	2^k

This stops when i > n:

i.e.
$$2^k > n$$
,
$$\log_2 2^k > \log_2 n$$

$$k \cdot \log_2 2 > \log_2 n$$

$$k > \log_2 n$$

Time complexity: $O(\log_2 n)$.

However, If you notice log function, which gives both float and integer values, then should we take floor or ceil of the floating point value.

n = 8
1
2
4
8 < 8 fails !!
So in total we could execute it for 3 iterations, $\log_2 8 = 3$

n = 10
1
2
4
8
16 < 8 fails !!
So in total we could execute it for 4 iterations. $\log_2 10 = 3.32$
$ceil(\log_2 10) = 4$

1.7 Division Loop

Algorithm 7 For Loop with Division

for
$$i \leftarrow n$$
 while $i \ge n$ step $\frac{i}{2}$ do Statement end for

step	i
1	n
2	$\frac{n}{2}$
3	$\frac{\tilde{n}}{2^2}$
4	$\frac{\tilde{n}}{23}$
5	$ \begin{array}{c} \frac{\overline{n}}{2^2} \\ \frac{n}{2^3} \\ \frac{n}{2^4} \end{array} $
	-
:	:
k	$\frac{n}{2^{k-1}}$
k+1	$\frac{n}{2k}$

$$\begin{aligned} \frac{n}{2^{k-1}} &< 1 \\ 2^{k-1} &> n \\ k-1 &> \log_2 n \\ k &> \log_2 n - 1 \end{aligned}$$

This algorithm is $O(\log_2 n)$