Fertilizantes

Nome: Matheus Amaral Moes

Disciplina: Análise de Séries Temporais

Professor: Alvaro Villarinho

Matrícula:

Load Data

```
df = read_excel("Fertilizantes.xlsx")
# Converter para timeseries com frequencia mensal
ts.total = ts(df$consumo, frequency = 12, start = c(1998,1))

# Separar em treino e teste
ts.train = window(ts.total,end = c(2017,12))
ts.test = window(ts.total, start = c(2018, 1))
```

Plot data

```
autoplot(ts.total) + ggtitle("Fertilizantes Entregues ao mercado")+
ylab("mil toneladas")
```

Fertilizantes Entregues ao mercado


```
ggseasonplot(ts.total, year.labels = TRUE, year.label.left = TRUE)+
ggtitle("Entrega ao Mercado") +
ylab("Entrega ao mercado em mil toneladas") + xlab("Mês")
```

Entrega ao Mercado


```
ggseasonplot(ts.total, polar=TRUE) +
  ylab("Entrega ao mercado em mil toneladas") +
  ggtitle("Entrega ao Mercado")
```

Entrega ao Mercado

Boxplot-Entrega de Fertilizantes-BR-1998-2019

Lag Plot

Indica a sozanalidade a cada 12 meses

gglagplot(ts.total)

Auto Correlation Function (AFC)

```
ggAcf(ts.total)
```

Series: ts.total 0.9 -

Decomposição

Modelos

```
plot_forecast = function(modelo, nome_modelo, train_set, test_set, tslm = FALSE){
  if (tslm){
    modelo = fitted(modelo)
  autoplot(train_set) +
  autolayer(modelo, series = paste("Previsão", nome_modelo)) +
  autolayer(test_set, series = "Realizado") +
  xlab("Data") +
  ylab("Consumo") +
  ggtitle("Fertilizantes") +
  guides(colour = guide_legend(title = "Série"))
```

Transformação Box Cox

Naive

```
fit.naive = naive(ts.train, h = 21)
plot_forecast(fit.naive, 'Naive', ts.train, ts.test)
```


checkresiduals(fit.naive)

Ljung-Box test

data: Residuals from Naive method Q* = 755.72, df = 24, p-value < 2.2e-16

```
Model df: 0. Total lags used: 24
```

```
accuracy(fit.naive, ts.test)
```

```
ME
                             RMSE
                                       MAE
                                                 MPE
                                                         MAPE
                                                                  MASE
Training set
              6.485356 457.5677 362.7699 -2.723405 20.42512 1.271487
Test set
            582.714286 1174.7456 922.1429 9.265054 28.66327 3.232057
                  ACF1 Theil's U
Training set 0.4258930
            0.7784592 1.428229
ts.test %>% tsCV(forecastfunction=rwf, drift=TRUE, h=1) -> e
# RMSE
e^2 %>% mean(na.rm=TRUE) %>% sqrt()
```

[1] 676.972

```
# Cross Validation para diferentes horizontes de previsão
e <- tsCV(ts.total, forecastfunction=naive, h=15)
# Compute the MSE values and remove missing values
mse <- colMeans(e^2, na.rm = T)
# Plot the MSE values against the forecast horizon
data.frame(h = 1:15, MSE = mse) %>%
    ggplot(aes(x = h, y = MSE)) + geom_point()
```


Seasonal Naive

```
fit.seasonal_naive = snaive(ts.train, h = 21)
plot_forecast(fit.seasonal_naive, 'Seasonal Naive', ts.train, ts.test)
```


2015

2020

2010

Data

checkresiduals(fit.seasonal_naive)

2000

Residuals from Seasonal naive method

2005

Ljung-Box test

data: Residuals from Seasonal naive method Q* = 267.28, df = 24, p-value < 2.2e-16

Model df: 0. Total lags used: 24

accuracy(fit.seasonal_naive, ts.test)

ME RMSE MAE MPE MAPE MASE
Training set 84.11842 386.4534 285.3114 2.053698 16.213822 1.0000000
Test set 149.00000 353.1331 252.6190 3.614895 9.052387 0.8854152
ACF1 Theil's U

Training set 0.6910538 NA
Test set -0.0642013 0.5585835

Drift Method

```
fit.drift = rwf(ts.train, h = 21, drift=TRUE)
plot_forecast(fit.drift, 'Drift Method', ts.train, ts.test)
```

Fertilizantes

checkresiduals(fit.drift)

Residuals from Random walk with drift

Ljung-Box test

data: Residuals from Random walk with drift Q* = 755.72, df = 23, p-value < 2.2e-16

Model df: 1. Total lags used: 24

accuracy(fit.drift, ts.test)

Holt Winther Aditivo

```
fit.HWA = hw(ts.train, seasonal = "additive", h = 21)
plot_forecast(fit.HWA, 'HW Aditivo', ts.train, ts.test)
```


checkresiduals(fit.HWA)

Ljung-Box test

data: Residuals from Holt-Winters' additive method Q* = 44.44, df = 8, p-value = 4.698e-07

Model df: 16. Total lags used: 24

accuracy(fit.HWA, ts.test)

ME RMSE MAE MPE MAPE MASE
Training set -6.732527 235.7490 177.3663 -1.845077 10.65438 0.6216586
Test set 10.773607 444.7325 344.3640 -4.764962 13.46534 1.2069759

ACF1 Theil's U

Training set 0.01524887 NA
Test set 0.60033259 0.7347298

Holt Winther Multiplicativo

```
fit.HWM <- hw(ts.train, seasonal = "multiplicative", h = 21)
plot_forecast(fit.HWM, 'HW Multiplicativo', ts.train, ts.test)</pre>
```

Fertilizantes

checkresiduals(fit.HWM)

Ljung-Box test

data: Residuals from Holt-Winters' multiplicative method Q* = 296.95, df = 8, p-value < 2.2e-16

Model df: 16. Total lags used: 24

accuracy(fit.HWM, ts.test)

ME RMSE MAE MPE MAPE MASE ACF1
Training set -31.64425 321.7064 240.876 -7.286976 16.200865 0.8442565 0.6941948
Test set -20.18829 311.6655 239.485 -2.836586 8.754973 0.8393811 0.2452657
Theil's U
Training set NA
Test set 0.5216854

Dummy

```
fit.dummy <- tslm(ts.total ~ trend + season + bizdays(ts.total) + easter(ts.total))
plot_forecast(fit.dummy, 'HW Multiplicativo', ts.train, ts.test, tslm = TRUE)</pre>
```


Breusch-Godfrey test for serial correlation of order up to 24

data: Residuals from Linear regression model LM test = 156.21, df = 24, p-value < 2.2e-16

checkresiduals(fit.fourier)

Residuals from Linear regression model

Breusch-Godfrey test for serial correlation of order up to 24

data: Residuals from Linear regression model
LM test = 156.21, df = 24, p-value < 2.2e-16</pre>

accuracy(fitted(fit.fourier), ts.test)

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set 33.21546 407.9278 319.9621 -3.560641 12.24497 0.6258391 0.6743043

arima.ts <- auto.arima(ts.train)
arima.ts</pre>

Series: ts.train

ARIMA(0,0,3)(0,1,2)[12] with drift

Coefficients:

sigma^2 estimated as 49661: log likelihood=-1559.33 AIC=3132.65 AICc=3133.16 BIC=3156.66

ts.train %>%

Arima(order=c(0,0,3), seasonal=c(0,1,2), include.drift = TRUE) %>%
residuals() %>% ggtsdisplay()

Residuals from ARIMA(0,0,3)(0,1,2)[12] with drift

Ljung-Box test

data: Residuals from ARIMA(0,0,3)(0,1,2)[12] with drift Q* = 16.705, df = 18, p-value = 0.5435

Model df: 6. Total lags used: 24

```
prev.Arima <- fit.Arima %>% forecast(h = 21)
prev.Arima
```

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		2390.252	2104.619	2675.885	1953.414	2827.090
Feb	2018		2284.539	1923.159	2645.919	1731.855	2837.222
Mar	2018		1946.680	1554.358	2339.002	1346.675	2546.685
Apr	2018		1831.652	1428.473	2234.831	1215.044	2448.261
May	2018		2564.853	2161.675	2968.032	1948.245	3181.462
Jun	2018		2937.756	2534.577	3340.935	2321.147	3554.365
Jul	2018		3385.411	2982.233	3788.590	2768.803	4002.020
Aug	2018		3919.714	3516.535	4322.893	3303.105	4536.323
Sep	2018		4088.122	3684.943	4491.301	3471.513	4704.731
Oct	2018		3748.366	3345.188	4151.544	3131.758	4364.973
Nov	2018		3203.144	2799.968	3606.320	2586.540	3819.749
Dec	2018		2422.801	2019.630	2825.973	1806.204	3039.399
Jan	2019		2479.934	2064.037	2895.832	1843.874	3115.995
Feb	2019		2364.509	1941.146	2787.872	1717.031	3011.986
Mar	2019		2114.740	1687.871	2541.610	1461.900	2767.580
Apr	2019		2005.195	1577.035	2433.356	1350.380	2660.010
May	2019		2658.362	2230.201	3086.522	2003.547	3313.177
Jun	2019		3026.497	2598.337	3454.658	2371.682	3681.312
Jul	2019		3459.950	3031.789	3888.110	2805.135	4114.765
Aug	2019		3961.424	3533.264	4389.585	3306.609	4616.239
Sep	2019		4124.930	3696.769	4553.090	3470.115	4779.745

prev.Arima %>% autoplot()

Forecasts from ARIMA(0,0,3)(0,1,2)[12] with drift

accuracy(fit.naive, ts.test)

ME RMSE MAE MPE MAPE MASE

Training set 6.485356 457.5677 362.7699 -2.723405 20.42512 1.271487

Test set 582.714286 1174.7456 922.1429 9.265054 28.66327 3.232057

ACF1 Theil's U

Training set 0.4258930 NA Test set 0.7784592 1.428229

accuracy(fit.seasonal_naive, ts.test)

ME RMSE MAE MPE MAPE MASE

Training set 84.11842 386.4534 285.3114 2.053698 16.213822 1.0000000

Test set 149.00000 353.1331 252.6190 3.614895 9.052387 0.8854152

ACF1 Theil's U

Training set 0.6910538 NA

Test set -0.0642013 0.5585835

accuracy(fit.drift, ts.test)

ME RMSE MAE MPE MAPE MASE

Training set 8.466449e-14 457.5218 362.0537 -3.130732 20.43960 1.268977

Test set 5.113754e+02 1130.8064 897.5384 6.679907 28.52849 3.145820

ACF1 Theil's U

Training set 0.4258930 NA

Test set 0.7791228 1.403644

accuracy(fit.HWA, ts.test)

ME RMSE MAE MPE MAPE MASE

Training set -6.732527 235.7490 177.3663 -1.845077 10.65438 0.6216586

Test set 10.773607 444.7325 344.3640 -4.764962 13.46534 1.2069759

ACF1 Theil's U

Training set 0.01524887

Test set 0.60033259 0.7347298

accuracy(fit.HWM, ts.test)

ME RMSE MAE MPE MAPE MASE ACF1

Training set -31.64425 321.7064 240.876 -7.286976 16.200865 0.8442565 0.6941948

Test set -20.18829 311.6655 239.485 -2.836586 8.754973 0.8393811 0.2452657

Theil's U

Training set NA

Test set 0.5216854