BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Computación Matemática

Programa de Asignatura: Aprendizaje Bayesiano

Código: MCOM 22202

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Aprendizaje Bayesiano
Ubicación:	Segundo o Tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

2. NEVIOIONEO I AOTOALIZACIONEO		
Autores:	Dr. Abraham Sánchez López Dra. Lourdes Sandoval Solís Dr. Pedro García Juárez Dra. Rosa García Tamayo	
Fecha de diseño:	Noviembre 2012	
Fecha de la última actualización:	No aplica, Materia nueva	
Revisores:	No aplica, Materia nueva	
Sinopsis de la revisión y/o actualización:	No aplica, Materia nueva	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS:

General:

El alumno conocerá y aplicará el aprendizaje bayesiano y con modelos ocultos de Markov.

Específicos:

- 1. El alumno aprenderá los conceptos básicos del aprendizaje artificial.
- 2. El alumno conocerá el ambiente metodológico del aprendizaje.
- 3. El alumno conocerá y aplicará las técnicas de aprendizaje de las redes bayesianas.
- 4. El alumno conocerá y aplicará las técnicas de aprendizaje con modelos ocultos de Markov.

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

4. CONTENIDO

l lucide d	Contenido Temático/Actividades de		
Unidad	aprendizaje		
I. Introducción al	1.1 Introducción		
aprendizaje	1.2 Del aprendizaje natural al aprendizaje artificial		
	1.3 Los conceptos básicos del aprendizaje		
	1.4 La inducción como un juego entre espacios		
II. El ambiente	2.1 El espacio de datos del aprendizaje		
metodológico del	2.2 El espacio de hipótesis de aprendizaje		
aprendizaje	2.3 Clasificación y regresión		
	2.4 Las distribuciones de probabilidad y el		
	teorema de Bayes		
	2.5 Árboles de decisión y jerarquía de		
	conceptos 2.6 Redes bayesianas y los modelos gráficos		
	2.7 Las cadenas de Markov y los modelos		
	ocultos de Markov		
III. Aprendizaje de	3.1 Las redes de inferencia bayesiana		
redes bayesianas	3.1.1 Definiciones y notaciones		
100000000000000000000000000000000000000	3.1.2 La d-separación		
	3.1.3 Definición formal de una red		
	bayesiana		
	3.2 Las inferencias en las redes bayesianas		
	(esquemas de inferencia)		
	3.3 El aprendizaje de las redes bayesianas		
	3.3.1 Aprendizaje con estructura conocida		
	y datos completos		
	3.3.2 Aprendizaje con estructura		
	desconocida y datos completos		
	3.3.3 Aprendizaje en presencia de datos		
	incompletos		
	3.3.4 Aprendizaje con estructura conocida y datos incompletos		
	3.3.5 Aprendizaje con estructura		
	desconocida y datos incompletos		
	3.4 Aplicaciones		
IV. Aprendizaje con	4.1 Los modelos de Markov observables		
modelos ocultos de	4.2 Los modelos ocultos de Markov(MOM)		
Markov	4.2.1 Definición		
	4.2.2 Notaciones		
	4.2.3 Tipos de MOM		

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

Unidad	Contenido Temático/Actividades de aprendizaje
	 4.3 Los MOM como reglas de clasificación de secuencias 4.4 Evaluación de la probabilidad de observación 4.5 Aplicaciones

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

Básica	Complementaria
1 Adrian Darwiche "Modeling and reasoning with Bayesian networks", Cambridge University Press, 2009. 2 Richard E.Neapolitan.: "Leaming Bayesian networks", Ed.Prentice Hall, 2003. 3Andrew Gelman John B.Carlin, Hal S. Stem and Donald B. Rubín.: "Bayesian data analysis", Second Edition, Ed. Chapman& Hal/CRC Texts in Statistical Science, 2003. 4Daphne Koller and Nir Friedman.: "Probabilistic graphical models: Principies and Techniques", Toe MIT Press, 2009.	5Christopher M. Bishop.: "Pattem recognition and machine leaming", Springer Verlag, 2007. 6 William M. Bolstad.: "Introduction to Bayesian Statistics", Ed. Wiley - Interscience, 2ª edition, 2007. 7Tom M. Mitchell.: "Machine leaming", Ed. McGraw-Hill Science, 1 edition, 1997.

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	40%
Participación en clase	
Tareas	20%
Exposiciones	
Simulaciones	
 Trabajo de investigación y/o de 	
intervención	
 Prácticas de laboratorio 	
Visitas guiadas	
Reporte de actividades académicas y	
culturales	
Proyecto final	40%
Otros	
Total	100%