MAT4400: Notes on Linear analysis

Morten Tryti Berg and Isak Cecil Onsager Rukan.

February 16, 2024

3 σ -Algebras

Definition 3.1 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.

5 Uniqueness of Measures

Lemma 5.1. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.2 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Theorem 5.3 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

- 1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.
- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:
- 3. $\mu(A) = \nu(A), \ \forall A \in S.$
- 4. $\mu(G_n) = \nu(G_n) < \infty$.

Then $\mu = \nu$.

6 Existence of Measures

Theorem 6.1 (Carathéodory). Let $S \subset P(X)$ be a semi-ring and $\mu : S \to [0,\infty)$ a pre-measure. Then μ has an extension to a measure μ^* on $\sigma(S)$, i.e. that $\mu(s) = \mu^*(s)$, $\forall s \in \sigma(S)$.

Also, if S contains an exhausting sequence, $S_n \uparrow X$, s.t. $\mu(S_n) < \infty$, then the extension is unique.

7 Measurable Mappings

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathcal{A}) and (X', \mathcal{A}') which respects the measurable structurs, the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathcal{A}) , to (X', \mathcal{A}') .

Definition 7.1. Let (X, \mathcal{A}) , (X', \mathcal{A}') b measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable if the pre-imag of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ is often used to indicate measurability of the map T.

Lemma 7.2. Let (X, A), (x', A') be measurable spaces and let $A' = \sigma(G')$. Then $T: X \to X'$ is A/A'-measurable iff $T^{-1}(G') \subset A$, i.e. if

$$T^{-1}(G') \in \mathcal{A}, \ \forall G' \in \mathcal{G}'.$$
 (2)

Theorem 7.3. Let (X_i, A_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 and A_2/A_3 -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

Corollary 7.4. Every continuous map between metric spaces is a Borel map.

Definition 7.5. (and lemma) Let $(T_i)_{i \in I}$, $T_I : X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, A_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right)$$
(3)

Corollary 7.6. A function $f:(X,\mathcal{B})\to\mathbb{R}$ is measurable if $f((a,+\infty))\in\mathcal{B},\ \forall a\in\mathbb{R}.$

Corollary 7.7. Assume (X, \mathcal{B}) is a measurable space, (Y, d) is a metric space, $(f_n : (X, \mathcal{B}) \to Y)_{n=1}^{\infty}$ is a sequence of measurable maps. Assume this sequence of images $(f_n(x))_{n=1}^{\infty}$ is convergent in $Y \ \forall x \in X$. Define

$$f: X \to Y, \quad by \ f(x) = \lim_{n \to \infty} f_n(x).$$
 (4)

Then f is measurable.

Theorem 7.8. Let (X, A), (X', A') be measurable spaces and $T: X \to X'$ be an A/A'-measurable map. For every measurable μ on (X, A),

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}',$$
 (5)

defines a measure on (X', A').

Definition 7.9. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.10. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.11. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det s^{-1}|\lambda^n = |\det S|^{-1}\lambda^n. \tag{6}$$

Corollary 7.12. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry

8 Measurable Functions

A measurable function is a measurable map $u: X \to \mathbb{R}$ from some measurable space (X, \mathscr{A}) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}^1))$. They play central roles in the theory of integration.

We recall that $u: X \to \mathbb{R}$ is $\mathscr{A}/\mathscr{B}(\mathbb{R}^1)$ -measurable if

$$u^{-1}(B) \in \mathscr{A}, \ \forall B \in \mathscr{B}(\mathbb{R}^1).$$
 (7)

Moreover from a lemma from chapter 7, we actually only need to show that

$$u^{-1}(G) \in \mathcal{A}, \ \forall G \in \mathcal{G} \text{ where } \mathcal{G} \text{ generates } \mathcal{B}(\mathbb{R}^1).$$
 (8)

Proposition 8.1.

- 1 If $f, g: (X, \mathcal{B}) \to \mathbb{C}$ are measurable, then the function f+g, $f \cdot g$, cf, $(c \in \mathbb{C})$ are measurable.
- 2 If $b: \mathbb{C} \to \mathbb{C}$ is Borel and $b: (\mathbb{C}, \mathscr{B}) \to \mathbb{C}$ is measurable, then $b \circ f$ is measurable.
- 3 If $f(x) = \lim_{n \to \infty} f_n(x)$, $x \in X$ and f_n are measurable, then f is measurable.
- 4 If $X = \bigcup_{n=1}^{\infty} A_n$, $(A_n \in \mathscr{B})$, $f|_{A_n} : (A_n, \mathscr{B}_{A_n}) \to \mathbb{C}$ is measurable $\forall n$, then f is measurable.

Definition 8.2. Given a measurable space (X, \mathcal{B}) , a measurable function $f: (X, \mathcal{B}) \to \mathbb{C}$ is called simple if

$$f(x) = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}(x), \tag{9}$$

for some $c_k \in \mathbb{C}$, $A_k \in \mathcal{B}$, where 1 is the characteristic function,

$$\mathbb{1}_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$
 (10)

The representation of simple function is **not** unique. We denote the standard representation of f by

$$f(x) = \sum_{n=0}^{N} z_n \mathbb{1}_{B_n}(x), \quad N \in \mathbb{N}, \ z_n \in \mathbb{R}, \ B_n \in \mathscr{A}, \ X = \bigcup_{n=1}^{N} B_n, \ \text{ for } B_n \cap B_m = \emptyset, \ n \neq m.$$
(11)

The set of simple functions is denoted $\mathcal{E}(\mathscr{A})$ of \mathcal{E} .

Definition 8.3. Assume μ is a measure on (X, \mathcal{B}) . Given a *positive* simple function

$$f = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}, \quad (c_k \ge 0).$$
 (12)

We define

$$\int_{X} f d\mu = \sum_{k=1}^{n} c_{k} \mu(A_{k}) \in [0, +\infty].$$
 (13)

We also denote this by $I_{\mu}(f)$.

Lemma 8.4. This is well defined, that is, $\int_x f d\mu$ does not depend on the presentation of the simple function f.

Properties 8.5. For every positive simple function

1
$$\int_{X} cf d\mu = c \int_{X} f d\mu$$
, for only $c \ge 0$

$$2 \int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu.$$

Corollary 8.6. If $f \geq g \geq 0$ are simple functions, then

$$\int_{X} f d\mu \ge \int_{X} g d\mu. \tag{14}$$

Definition 8.7. If $f: X \to [0, +\infty)$ is measurable, then we define

$$\int_{X} f d\mu = \sup \left\{ \int_{X} g d\mu : f \ge g \ge 0, \ g \text{ is simple} \right\}$$
 (15)

Remark. This means that any measurable function can be approximated by simple functions.

Properties 8.8. Measurable functions like this have the following properties

 $1 \int_X cf d\mu = c \int_X f d\mu, \quad \forall c \ge 0.$

2 If $f \ge g \ge 0$, then $\int_X f d\mu \ge \int_X g d\mu$ for any measurable g, f.

3 If $f \ge 0$ is simple, then $\int_X f d\mu$ is the same value as obtained before.

To advance in measure theory we consider measurable functions

$$f: X \to [0, +\infty].$$

Measurability is understood w.r.t the σ -algebra $\mathscr{B}([0,+\infty])$ generated by $\mathscr{B}([0,+\infty))$ and $\{+\infty\}$. In other words, $A \subset [0,+\infty] \in B([0,+\infty])$ iff $A \cap [0,+\infty) \in \mathscr{B}([0,+\infty))$.

Remark. Hence $f: X \to [0, +\infty]$ is measurable iff $f^{-1}(A)$ is measurable $\forall A \in \mathscr{B}([0, +\infty))$.

Definition 8.9. For measurable functions $f_X \to [0, +\infty]$, we define

$$\int_X f d\mu = \sup \left\{ \int_x g d\mu : f \ge g \ge 0 : g \text{ is simple} \right\} \in [0, +\infty].$$
 (16)

Theorem 8.10. Monotone convergence theorem Assume (X, \mathcal{B}, μ) is a measure space, $(f)_{n=1}^{\infty}$ is an increasing sequence of measurable positive functions $f_n: X \to [0, +\infty]$. Define $f(x) = \lim_{n \to \infty} f_n(x)$. Then f is measurable and

$$\int_{X} f d\mu = \lim_{n \to \infty} \int_{X} f_n d\mu. \tag{17}$$

Theorem 8.11. Assume (X, \mathcal{B}) is a measurable space and $f: X \to [0, +\infty]$ is measurable. Then there are simple functions g_n , s.t.

$$0 < q_1 < q_2 < \dots$$
, $q_n(x) \to f(x)$, $\forall x \in X$.

Moreover, if f is bounded, we can choose g_n s.t. the convergence is uniform, that is,

$$\lim_{n \to \infty} \sup_{x \in X} |g_n(x) - f(x)| = 0.$$
 (18)

10 Integrals of Measurable Functions

We have defined our integral for positive measurable functions, i.e. functions in $\mathcal{M}^+(\mathscr{A})$. To extend our integral to not only functions in $\mathcal{M}^+(\mathscr{A})$ we first notice that

$$u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A}) \Leftrightarrow u = u^+ - u^-, \ u^+, u^- \in \mathcal{M}_{\overline{\mathbb{R}}}^+,$$
 (19)

i.e. that every measurable function can be written as a sum of **positive** measurable functions.

Definition 10.1 (μ -integrable). A function $u: X \to \overline{\mathbb{R}}$ on (X, \mathscr{A}, μ) is μ -integrable, if it is $\mathscr{A}/\mathscr{B}(\overline{\mathbb{R}})$ -measurable and if $\int u^+ d\mu$, $\int u^- d\mu < \infty$ (recall the definition for the integral of positive measurable functions). Then

$$\int ud\mu := \int u^+ d\mu - \int u^- d\mu \in (-\infty, \infty)$$
 (20)

is the $(\mu$ -)integral of u. We write $\mathcal{L}^1(\mu)$ for the set of all real-valued μ -integrable functions 1 .

Theorem 10.2. Let $u \in \mathcal{M}_{\overline{\mathbb{D}}}(\mathscr{A})$, then the following conditions are equivalent:

- (i) $u \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (ii) $u^+, u^- \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (iii) $|u| \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu)$.
- (iv) $\exists w \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ with $w \ge 0$ s.t. $|u| \le w$.

Theorem 10.3 (Properties the μ -integral). The μ -integral has the following properties: homogeneous, additive, and:

(i)
$$\min\{u, v\}, \max\{u, v\} \in \mathcal{L}^{1}_{\overline{\mathbb{D}}}(\mu)$$
 (lattice property)

(ii)
$$u \le v \Rightarrow \int u d\mu \le \int v d\mu$$
 (monotone)

(iii)
$$\left| \int u d\mu \right| \le \int |u| d\mu$$
 (triangle inequality)

Remark. If $u(x) \pm v(x)$ is defined in $\overline{\mathbb{R}}$ for all $x \in X$ then we can exclude $\infty - \infty$ and the theorem above just says that the integral is linear:

$$\int (au + bv)d\mu = a \int ud\mu + b \int vd\mu.$$
 (21)

This is always true for real-valued $u, v \in \mathcal{L}^1(\mu) = \mathcal{L}^1_{\mathbb{R}}(\mu)$, making $\mathcal{L}^1(\mu)$ a vector space with addition and scalar multiplication defined by

$$(u+v)(x) := u(x) + v(x), (a \cdot u)(x) := a \cdot u(x),$$
 (22)

and

$$\int ...d\mu : \mathcal{L}^1(\mu) \to \mathbb{R}, \ u \mapsto \int u d\mu, \tag{23}$$

is a positive linear functional.

¹In words, we extend our integral to positive measurable functions by noticing that we can write every measurable function as a sum of positive measurable functions, something that we do know how to integrate. We don't want to run into the problem of $\infty - \infty$, thus we require the integral of the positive and negative parts to both (separately) be less than infinity.

11 Null sets and the "Almost Everywhere"

Definition 11.1. A $(\mu$ -)null set $N \in \mathcal{N}_{\mu}$ is a measurable set $N \in \mathcal{A}$ satisfying

$$N \in \mu \Leftrightarrow N \in \mathscr{A} \text{ and } \mu(N) = 0.$$
 (24)

This can be used generally about a 'statement' or 'property', but we will be interested in questions like 'when is u(x) equal to v(x)', and we answer this by saying

$$u = v \text{ a.e.} \Leftrightarrow \{x : u(x) \neq v(x)\} \text{ is (contained in) a } \mu\text{-null set.,}$$
 (25)

i.e.

$$u = v \quad \mu$$
-a.e. $\Leftrightarrow \mu\left(\left\{x : u(x) \neq v(x)\right\}\right) = 0$. (26)

The last phrasing should of course include that the set $\{x: u(x) \neq v(x)\}$ is in \mathscr{A} , but this can be trivially seen.

Theorem 11.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then:

- (i) $\int |u| d\mu = 0 \Leftrightarrow |u| = 0 \text{ a.e. } \Leftrightarrow \mu \{u \neq 0\} = 0,$
- (ii) $\mathbb{1}_N u \in \mathcal{L}^{\frac{1}{m}}(\mu) \ \forall \ N \in \mathcal{N}_{\mu},$
- (iii) $\int_N u d\mu = 0.$

Corollary 11.3. Let $u = v \mu$ -a.e. Then

- (i) $u, v \ge 0 \Rightarrow \int u d\mu = \int v d\mu$,
- (ii) $u \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu) \Rightarrow v \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu) \text{ and } \int u d\mu = \int v d\mu.$

Corollary 11.4. If $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A}), v \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu) \text{ and } v \geq 0 \text{ then}$

$$|u| \le v \ a.e. \ \Rightarrow u \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu).$$
 (27)

Proposition 11.5 (Markow inequality). For all $u \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu)$, $A \in \mathscr{A}$ and c > 0

$$u\left(\{|u| \ge c\} \cap A\right) \le \frac{1}{c} \int_{A} |u| d\mu,\tag{28}$$

if A = X, then (obviosly)

$$u\{|u| \ge c\} \le \frac{1}{c} \int |u| d\mu. \tag{29}$$

Corollary 11.6. If $u \in \mathcal{L}^{1}_{\overline{R}}(\mu)$, then μ is a.e. \mathbb{R} -vaued. In particular, we can find a version $\tilde{u} \in \mathcal{L}^{1}(\mu)$ s.t. $\tilde{u} = u$ a.e. and $\int \tilde{u} d\mu = \int u d\mu$