Parcial 2 - Lenguajes 2014

1. Sea $\Sigma = \{a, b\}$. Pruebe que el conjunto

$$\{(x,\alpha,\beta)\in\omega\times\Sigma^{*2}\mid x=y^2$$
para algún $y\in\mathbb{N}$ o $x+|\alpha|=|\beta|\}$

es Σ -PR.

2. Sea $\Sigma = \{a,b\}$, y sea $F: \omega \times \Sigma^* \to \omega$ definida por

$$F(x,\alpha) := \text{el menor } t \in \omega \text{ tal que } t^3 \ge x^{|\alpha|}.$$

pruebe que F es $\Sigma\text{-PR}.$

- 3. V o F, justifique.
 - (a) Sean $g: \omega \times \omega \to \omega$ y $f: \{\diamondsuit\} \to \omega$. Entonces,

$$R(f,g) \circ Suc = g \circ (R(f,g), p_1^{1,0}).$$

- (b) $\lambda xy[x+y] = \lambda yx[x+y]$.
- (c) Sea $\Sigma=\{a,b\}$ y $L\subseteq \Sigma^*$. Si $\omega\times\{2\}\times L$ es $\Sigma\text{-PR}$ entonces L es $\Sigma\text{-PR}$.
- (d) Sean $g: \omega^3 \to \omega$ y $f: \omega \to \omega$. Entonces, $Im(R(f,g)) = Im(f) \cup Im(g)$.

En cada ejercicio enuncie completos los resultados del teórico que utilice.