

Europäisches Patentamt

European Patent Office Rec'd PCT/PTO 17 JUN 2005

PCT

Office européen des brevets

REC'D 11 FEB 2004

WIPO

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet nº

02080427.4 🗸

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Best Available Copy

Europäisches Patentamt

Office européen des brevets

Anmeldung Nr:

Application no.: 02080 Demande no:

02080427.4

Anmeldetag:

Date of filing: 19.12.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Koninklijke Philips Electronics N.V. Groenewoudseweg 1 5621 BA Eindhoven PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Optical analysis system, spectroscopic analysis system and blood analysis system

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G01B3/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK

Optical analysis system, spectroscopic analysis system and blood analysis system

EPO - DG

1 9. 12. 2002

The invention relates to an optical analysis system for determining an amplitude of a principal component of an optical signal, the optical analysis system comprising a first detector for detecting the optical signal weighted by a first spectral weighting function, and a second detector for detecting the optical signal weighted by a second spectral weighting function.

The invention further relates to a spectroscopic analysis system comprising such an optical analysis system.

The invention further relates to a blood analysis system comprising such an optical analysis system.

10

15

20

25

5

US-B1-6,198,531 discloses an embodiment of an optical analysis system described in the opening paragraph.

The known optical analysis system is part of a spectroscopic analysis system suited for, e.g., analyzing which compounds are comprised at which concentrations in a sample. It is well known that light interacting with the sample carries away information about the compounds and their concentrations. The underlying physical processes are exploited in optical spectroscopic techniques in which light of a light source such as, e.g., a laser, a lamp or light emitting diode is directed to the sample for generating an optical signal which carries this information.

For example, light may be absorbed by the sample. Alternatively or in addition, light of a known wavelength may interact with the sample and thereby generate light at a different wavelength due to, e.g., a Raman process. The transmitted and/or generated light then constitutes the optical signal which may also be referred to as the spectrum. The relative intensity of the optical signal as function of the wavelength is then indicative for the compounds comprised in the sample and their concentrations.

To identify the compounds comprised in the sample and to determine their concentrations the optical signal has to be analyzed. In the known optical analysis system the optical signal is analyzed by dedicated hardware comprising an optical filter. This optical

10

15

20

25

filter has a transmission which depends on the wavelength, i.e. it is designed to weigh the optical signal by a spectral weighting function which is given by the wavelength dependent transmission. The spectral weighting function is chosen such that the total intensity of the weighted optical signal, i.e. of the light transmitted by the filter, is directly proportional to the concentration of a particular compound. This intensity can then be conveniently detected by a detector such as, e.g., a photo-diode. For every-compound a dedicated optical-filter with a characteristic spectral weighting function is used. The optical filter may be, e.g., an interference filter having a transmission constituting the desired weighting function.

For a successful implementation of this analysis scheme it is essential to know the spectral weighting functions. They may be obtained, e.g., by performing a principal component analysis of a set comprising N spectra of N pure compounds of known concentration where N is an integer. Each spectrum comprises the intensity of the corresponding optical signal at M different wavelengths where M is an integer as well. Typically, M is much larger than N. Each spectrum containing M intensities at corresponding M wavelengths constitutes an M dimensional vector whose M components are these intensities. These vectors are subjected to a linear-algebraic process known as singular value decomposition (SVD) which is at the heart of principal component analysis and which is well understood in this art.

As a result of the SVD a set of N eigenvectors z_n with n being a positive integer smaller than N+1 is obtained. The eigenvectors z_n are linear combinations of the original N spectra and often referred to as principal components or principal component vectors. Typically, the principal components are mutually orthogonal and determined as normalized vectors with $|z_n|=1$. Using the principal components z_n , the optical signal of a sample comprising the compounds of unknown concentration may be described by the combination of the normalized principal components multiplied by the appropriate scalar multipliers:

$$x_1z_1+x_2z_2+...+x_nz_n$$

The scalar multipliers x_n with n being a positive integer smaller than N+1 may be considered the amplitudes of the principal components z_n in a given optical signal. Each multiplier x_n can be determined by treating the optical signal as a vector in the M dimensional wavelength space and calculating the direct product of this vector with a principal component vector z_n .

10

15

20

25

30

The result yields the amplitude x_n of the optical signal in the direction of the normalized eigenvector z_n . The amplitudes x_n correspond to the concentrations of the N compounds.

In the known optical analysis system the calculation of the direct product between the vector representing the optical signal and the eigenvector representing the principal component is implemented in the hardware of the optical analysis system by means of the optical filter. The optical filter has a transmittance such that it weighs the optical signal according to the components of the eigenvector representing the principal component, i.e. the principal component vector constitutes the spectral weighting function. The filtered optical signal can be detected by a detector which generates a signal with an amplitude proportional to the amplitude of the principal component and thus to the concentration of the corresponding compound.

In a physical sense, each principal component is a constructed "spectrum" with a shape in a wavelength range within the optical signal. In contrast to a real spectrum, a principal component may comprise a positive part in a first spectral range and a negative part in a second spectral range. In this case the vector representing this principal component has positive components for the wavelengths corresponding to the first spectral range and negative components for the wavelengths corresponding to the second spectral range.

In an embodiment the known optical analysis system is designed to perform the calculation of the direct product between the vector representing the optical signal and the eigenvector representing the principal component in the hardware in cases where the principal component comprises a positive part and a negative part. To this end, a part of the optical signal is directed to a first filter which weighs the optical signal by a first spectral weighting function corresponding to the positive part of the principal component, and a further part of the optical signal is directed a second filter which weighs the optical signal by a second spectral weighting function corresponding to the negative part of the principal component. The light transmitted by the first filter and by the second filter are detected by a first detector and a second detector, respectively. The signal of the second detector is then subtracted from the signal of the first detector, resulting in a signal with an amplitude corresponding to the concentration.

In another embodiment the known optical analysis system is able to determine the concentrations of a first compound and of a second compound by measuring the amplitudes of a corresponding first principal component and of a second principal component. To this end, a part of the optical signal is directed to a first filter which weighs the optical signal by a first spectral weighting function corresponding to the first principal

component, and a further part of the optical signal is directed a second filter which weighs the optical signal by a second spectral weighting function corresponding to the second principal component. The light transmitted by the first filter and by the second filter are detected by a first detector and a second detector, respectively. The signal of the first detector and of the second detector correspond to the amplitudes of the first principal component and of the second principal component, respectively.

It is a disadvantage of the known optical analysis system that the signal to noise ratio is relatively low.

10

15

20

5

It is an object of the invention to provide an optical analysis system of the kind described in the opening paragraph, which is able to provide a signal with a relatively high signal to noise ratio.

The invention is defined by the independent claims. The dependent claims define advantageous embodiments.

According to the invention the object is realized in that the optical analysis system further comprises a dispersive element for spectrally dispersing the optical signal, and a distribution element for receiving the spectrally dispersed optical signal and for distributing a first part of the optical signal weighted by the first spectral weighting function to the first detector and a second part of the optical signal weighted by the second spectral weighting function to the second detector.

The invention is based on the insight that the signal to noise ratio is relatively low in the known optical analysis system because a significant part of the optical signal is not detected by any of the detectors, but blocked by, e.g., the first optical filter or by the second optical filter. For instance, the optical signal received by the first optical filter comprises all information but the first filter transmits only that part of the optical signal corresponding to the first weighting function whereas the part of the optical signal corresponding to the second weighting function is blocked by the filter. The light blocked by the first optical filter and by the second optical filter is not detected which reduces the signal to noise ratio.

30

25

According to the invention this reduction of the signal to noise ratio is at least partly avoided. To this end the optical analysis system comprises a dispersive element such as, e.g., a grating or a prism for spectrally dispersing the optical signal. The spectrally dispersed optical signal is received by a distribution element, i.e. different parts of the distribution element receive different wavelengths of the optical signal. For individual

10

15

20

25

30

wavelengths the distribution element is arranged to distribute a first part of the optical signal weighted according to the first spectral weighting function to the first detector and a second part of the optical signal weighted according to the second spectral weighting function to the second detector. Thus instead of partly blocking the optical signal as is done by the first optical filter and the second optical filter of the known optical analysis system, the different parts of the optical signal are directed to different detectors. As a consequence a larger amount of the optical signal is detected, yielding an improved signal to noise ratio.

According to the invention the optical signal is not restricted to optical signals having wavelengths which are visible by the human eye. The optical signal may comprise spectral components in the ultra violet (UV) and/or in the infra red (IR) spectral. Here, the IR spectral range may comprise the near infra red (NIR) and the far infra red (FIR) which has a frequency above 1 THz, and all intermediate wavelengths as well.

According to the invention the principal component is not limited to a pure principal component. Here, a pure principal component refers to a mathematically exact eigenvector for a certain compound. A principal component may also comprise minor contributions from other compounds which may result from imperfections during determining the principal components. A principal component may also correspond to a mixture of several compounds of known concentrations.

In an embodiment the principal component comprises a positive part in a first spectral range and a negative part in a second spectral range, the first part of the optical signal weighted by the first spectral weighting function corresponding to the positive part, the second part of the optical signal weighted by the second spectral weighting function corresponding to the negative part, the first detector and the second detector being coupled to a signal processor arranged to subtract a signal generated by the second detector from a signal generated by the first detector. In this embodiment an optical signal comprising a principal component having a positive part and a negative part can be analyzed with an improved signal to noise ratio. Typically, the first spectral range is free from the second spectral range.

In another embodiment the principal component comprises a first principal component and a second principal component, the first part of the optical signal weighted by the first spectral weighting function corresponding to the first principal component, the second part of the optical signal weighted by the second spectral weighting function corresponding to the second principal component. This optical analysis system is particularly suited for analyzing samples comprising two or more compounds each having a

10

15

20

25

30

corresponding principal component. It provides the concentrations of the two or more compounds with an improved signal to noise ratio.

In yet another embodiment the principal component comprises a first principal component and a second principal component, and the first principal component and/or the second principal component comprises a positive part in a first spectral range and a negative part in a second spectral range.

It is advantageous if the distribution element has a surface for receiving the spectrally dispersed optical signal, the surface comprising a first set of surface elements and a second set of surface elements, the surface elements of the first set being arranged to distribute the spectrally dispersed optical signal to the first detector, the surface elements of the second set being arranged to distribute the spectrally dispersed optical signal to the second detector. In this embodiment, each surface element receives depending on its position and its surface area a certain portion of the spectrally dispersed optical signal. The first weighting function is then determined by the positions and the surface areas of the surface elements of the first set, and the second weighting function is determined by the positions and the surface areas of the surface elements of the second set. The spectrally dispersed optical signal received by the surface may be reflected and/or diffracted by the surface.

Alternatively, it may be transmitted and refracted and/or diffracted.

This embodiment has the advantage that the distribution element can be manufactured relatively easily by, e.g., using a transparent substrate such as e.g. glass substrate which is provided with surface elements by etching and/or polishing. Alternatively, the substrate may be manufactured using an appropriately shaped mold. An additional advantage of a transparent substrate is that the loss of the optical signal is relatively low.

In another embodiment the distribution element comprises an array of liquid crystal cells arranged to form a first set of sub-arrays having refractive index gradients, and a second set of sub-arrays having refractive index gradients, the sub-arrays of the first set being arranged to distribute the spectrally dispersed optical signal to the first detector, the sub-arrays of the second set being arranged to distribute the spectrally dispersed optical signal to the second detector.

The index of refraction of the cell is controlled by applying a voltage to a cell of the liquid crystal array. A sub-array of cells with a refractive index gradient is created by applying different voltages to neighboring cells. The gradient can be adjusted by adjusting the voltages. The spectrally dispersed optical signal is refracted by the refractive index gradients of the sub-arrays. The sub-arrays of the first set refract the optical signal to the first

10

15

20

25

30

detector, and the sub-arrays of the second set refract the optical signal to the second detector. In this embodiment, analogously to the embodiment described above, each sub-array receives depending on its position a certain spectral portion of the spectrally dispersed optical signal. The first weighting function is then determined by the positions and the surface areas of the sub-arrays of the first set, and the second weighting function is determined by the positions and the surface areas of the sub-arrays of the second set.

This embodiment has the advantage that the first spectral weighting function and the second spectral weighting function can be adjusted relatively easily by adjusting the voltages applied to the cells of the liquid crystal array. This is particularly useful because the same distribution element can be used to analyze optical signals comprising different principal components.

It is advantageous if the dispersive element is arranged to disperse the optical signal in a dispersive plane and the optical analysis system further comprises a focussing member for focussing the dispersed optical signal, the focussing member having a first focal distance in the dispersive plane and a second focal distance in a plane perpendicular to the dispersive plane, the first focal distance being different from the second focal distance. In this embodiment the spectrally dispersed optical signal is focussed on the distribution element such that the different spectral components of the optical signal are received by different portions of the distribution element. It is then possible to selectively distribute different wavelengths to different detectors. It is advantageous if the focussing member is arranged to focus the dispersed optical signal in the dispersive plane on the distribution element.

In this embodiment it is further advantageous if the optical analysis system further comprises a further focussing member for focussing the first part of the optical signal on the first detector. This allows one to use a first detector having a relatively small area for detection area for efficiently detecting the first part.

For an efficient detection using detectors with an even smaller detection area it is advantageous if the optical analysis system further comprises a further dispersive element for spectrally recombining the first part of the optical signal prior to focussing the first part on the first detector. The first part of the optical signal distributed by the distribution element is in principle still spectrally dispersed which limits the possibility to focus the first part to a small detection area. By using a further dispersive element, the first part of the optical signal is spectrally recombined which allows for focussing it to a smaller area. Therefore, a smaller first detector placed in this focus can be used. Alternatively, a pinhole or aperture may be placed in this focus to implement a confocal detection scheme.

10

15

20

25

30

These and other aspects of the optical analysis system, the spectroscopic analysis system and the blood analysis system according to the invention will be further elucidated and described with reference to the drawings, in which:

Figs. 1A and 1B are schematic diagrams of the beam paths in the dispersive plane and in a plane perpendicular to the dispersive plane, respectively, of an embodiment of the optical analysis system;

Fig. 2 is a schematic diagram of the beam paths in a plane perpendicular to the dispersive plane of another embodiment of the optical analysis system;

Figs. 3 is a cross-section of an embodiment of the distribution element;

Fig. 4 is a cross-section of another embodiment of the distribution element;

Figs. 5A and 5B are schematic diagrams of the beam paths in the dispersive plane and in a plane perpendicular to the dispersive plane, respectively, of another embodiment of the optical analysis system, the beam paths in the plane perpendicular to the dispersive plane is unfolded for simplicity; and

Fig. 6 is a schematic diagram of a blood analysis system comprising a spectroscopic analysis system having an optical analysis system.

The Figures are not drawn to scale. In general, identical components are denoted by the same reference numerals.

The optical analysis system 1 for determining an amplitude of a principal component of an optical signal, shown in Figs. 1A and 1B comprises a dispersive element 2 for spectrally dispersing the optical signal. The dispersive element 2 is a grating which spectrally disperses the optical signal in a dispersive plane. The beam paths in this dispersive plane are shown in Fig. 1A, the beam paths in a plane perpendicular to the dispersive plane are shown in Fig. 1B. Instead of a grating other dispersive elements such as, e.g., a prism may be used.

The optical analysis system further comprises a focussing member 3 for focussing the dispersed optical signal. The focussing member 3 has a first focal distance in the dispersive plane shown in Fig. 1A and a second focal distance in a plane perpendicular to the dispersive plane shown in Fig. 1B. In this embodiment the focussing member 3 is cylinder lens which focuses the dispersed optical signal in the dispersive plane, but not in the

10

15

20

25

30

plane perpendicular to the dispersive plane. The first focal distance F_1 is different from the second focal distance F_2 which is infinite. In alternative embodiments the focussing member 3 is an aspherical lens having two finite focal distances F_1 and F_2 . Alternatively, the focussing member may be an aspherical mirror.

The focussing member 3 is arranged to focus the dispersed optical signal in the dispersive plane on the distribution element 4. In the dispersive plane, rays of different wavelengths are focussed on different parts of the distribution element 4. In Figs. 1A and 1B two rays of different wavelengths are depicted as an example by a dashed and by a dashed double dotted line, respectively.

The distribution element 4 receives the spectrally dispersed optical signal and distributes a first part of the optical signal weighted by the first spectral weighting function to a first detector 5 and a second part of the optical signal weighted by the second spectral weighting function to a second detector 6. Embodiments of the distribution element 4 are shown in Figs. 3 and 4 and will be discussed below. The first detector 5 and the second detector 6 may be any type detector suited to detect light. They may be, e.g., two separate photo diodes or a split detector.

In the embodiment shown in Figs. 1A and 1B the optical signal comprises a principal component having a positive part in a first spectral range and a negative part in a second spectral range. A particular ray of a wavelength λ_1 of the first spectral range and a particular ray of a wavelength λ_2 of the second spectral range are depicted by the dashed line and the dashed double dotted line, respectively. The first part of the optical signal weighted by the first spectral weighting function corresponds to the positive part and is detected by the first detector 5. The second part of the optical signal weighted by the second spectral weighting function corresponds to the negative part and is detected by the second detector 6. The first detector 5 and the second detector 6 are coupled to a signal processor 7 arranged to subtract a signal generated by the second detector 6 from a signal generated by the first detector 5.

In another embodiment the principal component comprises a first principal component and a second principal component where the first part of the optical signal weighted by the first spectral weighting function corresponds to the first principal component and the second part of the optical signal weighted by the second spectral weighting function corresponds to the second principal component. When the first spectral weighting function and the second spectral weighting function do not overlap, the optical analysis system shown in Figs. 1A and 1B may be used. However, when the first spectral weighting function and the

10

15

20

25

30

second spectral weighting function at least partly overlap, it is required that the optical signal of a particular wavelength is partly detected by the first detector 5 and partly by the second detector 6. The beam paths in the dispersive plane may in this embodiment be identical to that shown in Fig. 1A. The beam paths in the plane perpendicular to the dispersive plane is shown in Fig. 2. The wavelength depicted by the dashed line is partly detected by the first detector 5 and by the second detector 6. The same holds for the wavelength depicted by the dashed double dotted line. For all wavelengths the relative amounts detected by the two detectors 5 and 6 is determined by the two spectral weighting functions. As will be explained below the distribution element 4 is designed to distribute the optical signal to the two detectors 5 and 6 accordingly.

In the embodiment shown in Fig. 3, the distribution element 4 is a transparent glass substrate which has a surface 10 for receiving the spectrally dispersed optical signal. The surface 10 comprises a first set of surface elements 11 and a second set of surface elements 12. The surface elements 11 of the first set are arranged to distribute the spectrally dispersed optical signal to the first detector 5, corresponding rays are depicted by a dotted line. The surface elements 12 of the second set are arranged to distribute the spectrally dispersed optical signal to the second detector 6, corresponding rays are depicted by a dashed dotted line. In the embodiment of Fig. 3 the surface elements 11 of the first set are mutually substantially parallel and tilted with respect to the surface elements 12 of the second set, which are mutually substantially parallel as well. This is advantageous in cases where the distribution element 4 is situated substantially in the focal plane of the focussing member 3. However, it is not essential according to the invention. In an alternative embodiment, not shown, the distribution element comprises a substrate with concave and/or convex surface in which the surface elements are integrated. In this embodiment the distribution element may be integrated with the focussing member 3 or with the further focussing member 8.

In Fig. 3 the distribution element 4 is shown in cross section in a plane parallel to the dispersive plane. The part of distribution element 4 shown enlarged in the upper right part of Fig. 3 receives a first wavelength range of the optical signal. Because the surface elements 11 of the first set and the surface elements 12 of the second set have the same surface areas in a projection perpendicular to the propagation direction of the spectrally dispersed optical signal, 50 % of the optical signal in the first wavelength range is distributed to the first detector 5 and 50 % to the second detector 6, respectively.

The part of distribution element 4 shown enlarged in the lower right part of Fig. 3 receives a second wavelength range of the optical signal. Because of the surface areas

10

15

20

25

30

of the surface elements 11 and of the surface elements 12 seen in a projection perpendicular to the propagation direction of the spectrally dispersed optical signal, 50 % of the optical signal in the second wavelength range is distributed to the first detector 5 and 25 % to the second detector 6, respectively. The surface 10 of the distribution element 4 further comprises a third set of surface elements 13 which may direct 25 % of the optical signal with the wavelength of the second spectral component of a third detector or to beam dump where it is absorbed. In this embodiment the surface elements 13 are mutually parallel, but alternatively they may have any other orientation as well as long as they do not distribute the optical signal to the first detector 5 or the second detector 6. The surface elements 13 may be useful in some cases to satisfy the normalization condition of the principal component vector. In this embodiment the first spectral weighting function and the second spectral weighting function are determined by the positions and the surface areas of the surface elements 11 and the surface elements 12.

In another embodiment, not shown, the distribution element 4 is similar that shown in Fig. 3 but the spectrally dispersed optical signal is not refracted as in Fig. 3, but reflected.

The glass substrate shown in Fig. 3 is an optical element which refracts the spectrally dispersed optical signal because its optical thickness d, i.e. the index of refraction n multiplied by the geometrical thickness t, d = t n, is a function of the position. Substantially the same pattern of the optical thickness d can be obtained in an alternative embodiment shown in Fig. 4. Instead of a glass substrate the distribution element 4 comprises an array 20 of liquid crystal elements arranged to create substantially the same pattern of the index of refraction n. To this end a first set of sub-arrays 21 having mutually parallel refractive index gradients, and a second set of sub-arrays 22 having mutually parallel refractive index gradients are formed. The refractive index gradients of the first set are tilted with respect to the refractive index gradients of the second set. Analogously to the distribution element with the surface 10 with surface elements 11 and 12, it is not essential that the refractive index gradients are mutually parallel. The index of refraction n of each column C is controlled by the voltage V applied to the cells of the column as is shown in the upper right corner of Fig. 4. The sub-arrays 21 of the first set are arranged to distribute the spectrally dispersed optical signal to the first detector 5, corresponding rays are depicted by a dotted line. The sub-arrays 22 of the second set are arranged to distribute the spectrally dispersed optical signal to the second detector 6, corresponding rays are depicted by a dashed dotted line. In this embodiment the position and the surface area of the sub-arrays 21 and 22 of the first set and

10

15

20

25

30

the second set, respectively, determines the first spectral weighting function and the second spectral weighting function.

In the embodiment shown in Figs. 1A, 1B and 2, the optical analysis system 1 further comprises a further focussing member 8 for focussing the first part of the optical signal on the first detector 5. In the embodiment of Figs. 1A, 1B and 2 the further focussing member 8 is a lens. Alternatively or in addition, a focussing mirror may be used.

In the embodiment shown in Figs. 5A and 5B, the optical analysis system 1 further comprises a further dispersive element 9 for spectrally recombining the first part of the optical signal prior to focussing the first part on the first detector 5. In this embodiment the optical signal enters the optical analysis system 1 from a point source 14 which may be, e.g., a pinhole in a confocal detection scheme. The optical analysis system 1 comprises a lens 15 for collimating the optical signal, and a dispersive element 2, which is a grating, and a focussing member 3, which is a cylinder lens, analogously to the optical analysis system 1 shown in Figs. 1A, 1B and 2. Focussing member 3 is arranged to focus the dispersed optical signal on distribution element 4. In this embodiment distribution element 4 shown in Fig. 3 is arranged to reflect the dispersed optical signal back towards the focussing member 3 for recollimation. The re-collimated optical signal is then still spectrally dispersed which limits the possibility to focus it to a relatively small spot size. To spatially recombine the optical signal it is sent to the further dispersive element 9 which in this embodiment is the dispersive element 3, i.e. the dispersive element 3 and the further dispersive element 9 are integrated in one grating. The spectrally recombined optical signal weighted by the first spectral weighting function and the spectrally recombined optical signal weighted by the second spectral weighting function are focussed on the first detector 5 and the second detector 6 by lens 15.

In another embodiment, not shown, the distribution element 4 is transmitting and refracting the spectrally dispersed optical signal and the further dispersive element 9 is arranged to spectrally recombine the optical signal weighted by the first spectral weighting function prior to focusing it on the first detector 5.

The blood analysis system 40 shown in Fig. 6 comprises a spectroscopic analysis system 30. The spectroscopic analysis system 30 comprises a light source 31 for illuminating a sample 32. The light source 31 may be, e.g., a light emitting diode, a lamp or a laser. In this embodiment the sample 32 is a blood vessel in a finger of a hand. The blood vessel is illuminated by a diode to generate an optical signal having a principal component with an amplitude. This optical signal may be, e.g., a Raman signal having distinct components indicative for distinct blood compounds such as, e.g., glucose, lactate,

10

15

20

25

cholesterol, oxy-hemoglobin and/or desoxy-hemoglobin. Each of the compounds has a corresponding principal component. To analyze the concentrations of these compounds, the spectroscopic analysis system 30 comprises an optical analysis system 1 for determining the amplitude of the principal component of the optical signal as described above.

To determine the concentrations of the compounds, the signals generated by the first detector 5 and the second detector 6 are further processed by a signal processor 41 of blood analysis system 40. Signal processor 41 has a memory comprising amplitudes of the principal components and the corresponding concentrations of the compounds. The concentrations derived from the amplitudes of the principal component are displayed by a display element 42.

In summary, the optical analysis system (1) is arranged to determine an amplitude of a principal component of an optical signal. The optical analysis system (1) comprises a first detector (5) for detecting the optical signal weighted by a first spectral weighting function, and a second detector (6) for detecting the optical signal weighted by a second spectral weighting function. For an improved signal to noise ratio, the optical analysis system (1) further comprises a dispersive element (2) for spectrally dispersing the optical signal, and a distribution element (4) for receiving the spectrally dispersed optical signal and for distributing a first part of the optical signal weighted by the first spectral weighting function to the first detector (5) and a second part of the optical signal weighted by the second spectral weighting function to the second detector (6). The spectroscopic analysis system (30) and the blood analysis system (40) each comprise an optical analysis system (1) according to the invention.

It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of other elements or steps than those listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.

CLAIMS:

5

25

EPO - DG 1

19. 12. 2002

- 1. An optical analysis system for determining an amplitude of a principal component of an optical signal, the optical analysis system comprising:
- a first detector for detecting the optical signal weighted by a first spectral weighting function, and
- a second detector for detecting the optical signal weighted by a second spectral weighting function, characterized in further comprising:
- a dispersive element for spectrally dispersing the optical signal, and
 a distribution element for receiving the spectrally dispersed optical signal and
 for distributing a first part of the optical signal weighted by the first spectral weighting
 function to the first detector and a second part of the optical signal weighted by the second
 spectral weighting function to the second detector.
- 2. An optical analysis system as claimed in Claim 1, wherein the principal component comprises a positive part in a first spectral range and a negative part in a second spectral range, the first part of the optical signal weighted by the first spectral weighting function corresponding to the positive part, the second part of the optical signal weighted by the second spectral weighting function corresponding to the negative part, the first detector and the second detector being coupled to a signal processor arranged to subtract a signal generated by the second detector.
 - 3. An optical analysis system as claimed in Claim 1, wherein the principal component comprises a first principal component and a second principal component, the first part of the optical signal weighted by the first spectral weighting function corresponding to the first principal component, the second part of the optical signal weighted by the second spectral weighting function corresponding to the second principal component.
 - 4. An optical analysis system as claimed in Claim 1, wherein the distribution element has a surface for receiving the spectrally dispersed optical signal, the surface

comprising a first set of surface elements and a second set of surface elements, the surface elements of the first set being arranged to distribute the spectrally dispersed optical signal to the first detector, the surface elements of the second set being arranged to distribute the spectrally dispersed optical signal to the second detector.

5

10

30

- 5. An optical analysis system as claimed in Claim-1, wherein the distribution—element comprises an array of liquid crystal elements arranged to form a first set of sub-arrays having refractive index gradients, and a second set of sub-arrays having refractive index gradients, the sub-arrays of the first set being arranged to distribute the spectrally dispersed optical signal to the first detector, the sub-arrays of the second set being arranged to distribute the spectrally dispersed optical signal to the second detector.
- 6. An optical analysis system as claimed in Claim 1, wherein the dispersive element is arranged to disperse the optical signal in a dispersive plane and the optical analysis system further comprises a focusing member for focusing the dispersed optical signal, the focusing member having a first focal distance in the dispersive plane and a second focal distance in a plane perpendicular to the dispersive plane, the first focal distance being different from the second focal distance.
- 7. An optical analysis system as claimed in Claim 6, characterized in further comprising a further focussing member for focussing the first part of the optical signal on the first detector.
- 8. An optical analysis system as claimed in Claim 7, characterized in further comprising a further dispersive element for spectrally recombining the first part of the optical signal prior to focusing the first part on the first detector.
 - 9. A spectroscopic analysis system comprising:
 - a light source for illuminating a sample and thereby generating an optical signal having a principal component with an amplitude, and
 - an optical analysis system for determining the amplitude of the principal component of the optical signal as claimed in Claim 1.

10. A blood analysis system comprising a spectroscopic analysis system as claimed in Claim 9.

18.12.2002

ABSTRACT:

EPO - DG 1 19. 12. 2002

92)

The optical analysis system (1) is arranged to determine an amplitude of a principal component of an optical signal. The optical analysis system (1) comprises a first detector (5) for detecting the optical signal weighted by a first spectral weighting function, and a second detector (6) for detecting the optical signal weighted by a second spectral weighting function. For an improved signal to noise ratio, the optical analysis system (1) further comprises a dispersive element (2) for spectrally dispersing the optical signal, and a distribution element (4) for receiving the spectrally dispersed optical signal and for distributing a first part of the optical signal weighted by the first spectral weighting function to the first detector (5) and a second part of the optical signal weighted by the second spectral weighting function to the second detector (6). The spectroscopic analysis system (30) and the blood analysis system (40) each comprise an optical analysis system (1) according to the invention.

Fig. 1

5

10

FIG. 1B

FIG. 2

BEST AVAILABLE COPY

2/5

FIG. 3

BEST AVAILABLE COPY

BEST AVAILABLE COPY

4/5

FIG. 5A

FIG. 5B

FIG. 6

BEST AVAILABLE COPY

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.