Exercice 1

1. On donne l'arbre de probabilités :

Compléter avec la notation qui convient : $\dots = 0.18$

2. On donne l'arbre de probabilités :

Compléter avec la notation qui convient : $\dots = 0.66$

3. On donne l'arbre de probabilités :

Compléter avec la notation qui convient : $\dots = 0.87$

4. On donne l'arbre de probabilités :

Compléter avec la notation qui convient : $\dots = 0.73$

5. On donne l'arbre de probabilités :

Compléter avec la notation qui convient : $\dots = 0.34$

6. On donne l'arbre de probabilités :

Compléter avec la notation qui convient : = 0.37

Exercice 2

1. On donne l'arbre de probabilités ci-dessous :

4. On donne l'arbre de probabilités ci-dessous :

Calculer $P(A \cap \overline{B})$.

2. On donne l'arbre de probabilités ci-dessous :

Calculer $P(A \cap \overline{B})$.

5. On donne l'arbre de probabilités ci-dessous :

Calculer $P(\overline{A} \cap \overline{B})$.

 ${\bf 3.}$ On donne l'arbre de probabilités ci-dessous :

Calculer $P(\overline{A} \cap \overline{B})$.

6. On donne l'arbre de probabilités ci-dessous :

Calculer $P(A \cap \overline{B})$.

Calculer $P(A \cap \overline{B})$.

Exercice 1

- 1. Les probabilités conditionnelles se lisent sur la deuxième partie de l'arbre. 0.18 est une probabilité conditionnelle, $P_O(A) = 0.18$.
- 2. Les probabilités conditionnelles se lisent sur la deuxième partie de l'arbre. 0,66 est une probabilité conditionnelle, $P_{\overline{E}}(\overline{F}) = 0,66$.
- 3. Les probabilités conditionnelles se lisent sur la deuxième partie de l'arbre. 0.87 est une probabilité conditionnelle, $P_{\overline{N}}(Y) = 0.87$.
- 4. Les probabilités conditionnelles se lisent sur la deuxième partie de l'arbre. 0.73 est une probabilité conditionnelle, $P_R(O) = 0.73$.
- 5. Les probabilités conditionnelles se lisent sur la deuxième partie de l'arbre. 0,34 est une probabilité conditionnelle, $P_{\overline{V}}(\overline{I}) = 0,34$.
- **6.** Les probabilités conditionnelles se lisent sur la deuxième partie de l'arbre. 0,37 est une probabilité conditionnelle, $P_F(\overline{Q}) = 0,37$.

Exercice 2

- 1. $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}).$ P(A) = 1 - 0.3 = 0.7. $P_A(\overline{B}) = 1 - 0.8 = 0.2.$ Ainsi, $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}) = 0.7 \times 0.2 = 0.14.$
- 2. $P(\overline{A} \cap \overline{B}) = P(\overline{A}) \times P_{\overline{A}}(\overline{B}).$ $P(\overline{A}) = 1 - 0.2 = 0.8.$ $P_{\overline{A}}(\overline{B}) = 1 - 0.8 = 0.2.$ Ainsi, $P(\overline{A} \cap \overline{B}) = P(\overline{A}) \times P_{\overline{A}}(\overline{B}) = 0.8 \times 0.2 = 0.16.$
- 3. $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}).$ P(A) = 1 - 0.2 = 0.8. $P_A(\overline{B}) = 1 - 0.3 = 0.7.$ Ainsi, $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}) = 0.8 \times 0.7 = 0.56.$
- **4.** $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}).$ P(A) = 1 - 0.2 = 0.8. $P_A(\overline{B}) = 1 - 0.4 = 0.6.$ Ainsi, $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}) = 0.8 \times 0.6 = 0.48.$
- 5. $P(\overline{A} \cap \overline{B}) = P(\overline{A}) \times P_{\overline{A}}(\overline{B}).$ $P(\overline{A}) = 1 - 0.6 = 0.4.$ $P_{\overline{A}}(\overline{B}) = 1 - 0.2 = 0.8.$ Ainsi, $P(\overline{A} \cap \overline{B}) = P(\overline{A}) \times P_{\overline{A}}(\overline{B}) = 0.4 \times 0.8 = 0.32.$
- **6.** $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}).$ P(A) = 1 - 0.3 = 0.7. $P_A(\overline{B}) = 1 - 0.2 = 0.8.$ Ainsi, $P(A \cap \overline{B}) = P(A) \times P_A(\overline{B}) = 0.7 \times 0.8 = 0.56.$