پرسش ۱: [محاسبات كامپيوترى زمان تقريبي باسخگويي ۱۵ دقيقه]

یک کامپیوتر با قابلیت پردازش اعداد معیزشناور ۳۲ بیتی داریم. مقدار عددی عدد میزشناور ذخیره شده در کلمه ۳۲ بیتی داریم. مقدار کوچکترین و بزرگترین عدد مثبت قابل نمایش در این ماشین را به دست آورید. توجه داشته باشید که در این سیستم نمایش اعداد نرمال نیستند.

ID	Value	
0	$\left(\frac{1}{2}-b_{31}\right)\left(1+\sum_{l=0}^{25}2^{l-26}b_l\right)2^{s}$	$S = -16 + \sum_{i=26}^{30} 2^{i-26} b_i$
1	$\left(\frac{1}{2} - b_{31}\right) \left(1 + \sum_{l=0}^{24} 2^{l-25} b_l\right) 2^{s}$	$S = -32 + \sum_{i=25}^{30} 2^{i-25} b_i$
2	$\left(\frac{1}{2} - b_{31}\right) \left(1 + \sum_{i=0}^{23} 2^{i-24} b_i\right) 2^{s}$	$S = -64 + \sum_{i=24}^{30} 2^{i-24} b_i$
3	$\left(\frac{1}{2} - b_{31}\right) \left(1 + \sum_{i=0}^{22} 2^{i-23} b_i\right) 2^{s}$	$S = -128 + \sum_{i=23}^{30} 2^{i-23} b_i$

8: -64 (-00-0) Ole (-1) Offer *

1 (-00-0) Ole (-1) Offer *

1 (-00-0) Ole (-1) Offer *

1 (-00-0) Ole (-1) Ol

$$\frac{1}{2} \times 1 \times 2^{-64} \leq 2^{-65}$$

كرونكريمي نقالع مسب

: Cur sto otres 11. 1 . We is with * 8= -64+127.63 celo anie ~ x CWYK 1 4 D: Cins Circle A $\frac{1}{2}(2-2^{-24}) + 2^{63} = (1-2^{-25}) + 2^{63}$ = 263 _ 238 Can die certer

پرسش ۲: [معاسبات کامپیوتری، زمان تقریبی پاسخگویی ۱۵ دقیقه]

تقسيم دو عدد علامت دار مثبت داده شده را انجام دهيد.

1111/0000110000

مقسوم (مبنای ۲):

111010 مقسوم علیه (مبنای ۲):

_					
1					- 1
١.	0	1	0	0	٦
	, ~	•	1		

+223

+23

+215

+21

Dividend

Step

P

(P)

S e SA

Divisor

+219

+22

3

+227

+24

ер	E	Α	Q
		110000	111110
8h1		000110	111110
sub		1001001	
Cen	Ď	101111	
Add		010111	
	-	000110	
3 hl		101100	111100
sub		101001	
600	0	110110	
Add		111010	
		001101	
341		110110	111000
3116		100101	
Ge1	1	000100	
20=1			111001
shi		001001	110010
Sub		101001	
Cc "	0	110010	
Add		010111	
		001001	,

Step		E	A	Q
(2)	3hi		110010	100100
40	sub		101001	
	Goo	0	111100	
5	Add		111010	
	-		010011	
(20)	341		111001	00000
	sub		101001	
	Gel	١,	0 10000	
C	Qoc			100100
				,
			- · · · ·	

خارج قسمت (مبنای ۱۰): باقیمانده (مبنای ۱۰): 1001001 010000

خارج قسمت (مبنای ۲): باقیمانده (مبنای ۲):

پرسش ۳: [معماری مجموعه دستورات پردازنده، زُمان تقریبی پاسخگریی ۱۵ دقیقه]

برنامهی زیررا به اسمبلی RISC-V بنویسید. A و B دو آرایهی ۱۰۰ عنصری از اعداد صحیح ۴۲ بیتی بدونعلامت هستند.

ID	0	1
	sum = 0;	sum = 0;
	for (i=0; i<100; i++)	for (i=0; i<100; i++)
	if (A[i] < B[i])	if (A[i] > B[i])
	sum += A[i];	sum += A[i];
	else	else
	sum += B[i];	sum += B[i];
ID	¥ 80 (2)	3
	sum = 0; SI	sum = 0;
	for (i=99; i>=0; i)	for (i=99; i>=0; i)
	if (A[i] < B[i])	if (A[i] > B[i])
	sum += A[i];	sum += A[i];
	else	else
	sum += B[i];	sum += B[i];

add 30, Zero, zero Swm =0 SI, Zero, 396; 1 50 addi SI, Tero, END_LOOP; de Gibect belt > Chour cins la to, A(S1) C1, B(S1) la to, ti, IF Culle Condició Coltu 80,50, t) add IF 62 END-IF J 80,80, to add END_IR: addi 4-112,12 100P END-LOOP:

Certie 18 de de

پرسش ۴: [طراحی. پردازنده، زمان تقریبی پاسخگویی ۴۰ دقیقه]

الف- شکل زیر پیادهسازی Single-Cycle مسیر داده و کنترلر پردازنده ی RISC-V را نشان می دهد. حداقل تغییرات لازم را در مسیر داده و کنترلر اعمال کنید تا پردازنده توانایی اجرای دستور lui data_20bit را داشته باشد. برای این دستور از تالب U-Type استفاده کنید. مقدار تمام سیگنالهای کنترلی را مشخص کنید.

Con K de de

ب- شکل زیر پیادهسازی Single-Cycle مسیر داده و کنترلر پردازنده ی RISC-V را نشان می ذهد. حداقل تغییرات لازم را در مسیر داده و کنترلر اعمال کنید تا پردازنده توانایی اجرای دستور jmp_ind adr(rs1) را داشته باشد. این دستور به آدرس ذخیره شده در خانهای از حافظه به آدرس rs1+adr پرش می کند. برای این دستور از قالب I-Type استفاده کنید. مقدار تمام سبگنالهای کنترلی را مشخص کنید.

del

1