

Laboratorium fizyki doświadczalnej

Ćwiczenie T-08

Wyznaczenie współczynnika przewodnictwa cieplnego gipsu

Spis treści

1. Cel ćwiczenia	3
2. Zagrożenia	3
3. Wstępne zalecenia	3
4. Metoda pomiaru	3
5. Przebieg pomiaru	5
6. Kolejność czynności	5
7. Wskazówki do raportu	7
Przykładowe pytania	9
Literatura	10

Opracowanie instrukcji (autorzy): Elżbieta Staryga, Łukasz Piskorski

Modernizacja i konserwacja stanowiska: Tomasz Wojtatowicz, Artur Kesler

1. Cel ćwiczenia

Celem ćwiczenia jest:

- 1. Zapoznanie się ze zjawiskiem przewodnictwa cieplnego ciał.
- 2. Poznanie jednej z metod pomiaru współczynnika przewodnictwa cieplnego.
- 3. Wyznaczenie wartości współczynnika przewodnictwa cieplnego dla gipsu.
- 4. Poznanie metod analizy danych eksperymentalnych i sposobów wyznaczania niepewności pomiarowych.

2. Zagrożenia

Tabela 0. Rodzaje zagrożeń i możliwość ich występowania podczas wykonywania ćwiczenia.

· · · · · · · · · · · · · · · · · · ·				
rodzaj zagrożenia	brak	małe	średnie	duże
elektryczne		+		
optyczne	+			
mechaniczne (w tym akustyczne, hałas)	+			
polem elektromagnetycznym (poza widmem optycznym)	+			
biologiczne	+			
radioaktywne (jonizujące)	+			
chemiczne	+			
termiczne (w tym wybuch i pożar)		+		

3. Wstępne zalecenia

Przed przystąpieniem do wykonywania eksperymentu należy zapoznać się z niniejszą instrukcją i opanować następujący materiał teoretyczny:

- 1. Pojęcie temperatury, ciepła, energii wewnętrznej [1, 2].
- 2. Przewodnictwo cieplne i prawa nim rządzące [1–3].
- 3. Metody wyznaczania współczynnika przewodnictwa cieplnego [4].
- 4. Statystyczna ocena niepewności pomiaru (metoda typu A) [5–7].
- 5. Ocena niepewności metoda typu B [5–7].
- 6. Pomiar pośredni, prawo propagacji niepewności [5–7].
- 7. Niepewność rozszerzona [5–7].

4. Metoda pomiaru

Zastosowana metoda pomiaru współczynnika przewodnictwa cieplnego λ wymaga nadania odpowiedniego kształtu próbce badanej substancji. W ćwiczeniu próbka gipsu ma kształt cylindra o długości L i średnicy zewnętrznej D. Walec jest wydrążony. W wydrążeniu zamontowano grzejnik elektryczny (rys. 1). Grzejnik jest zasilany z zasilacza stabilizowanego. Miernik wbudowany w zasilacz pozwala określić natężenie prądu I płynącego przez grzejnik oraz napięcie U pod jakim płynie prąd. Moc P wydzielaną w grzejniku powodującym ogrzewanie walca z gipsu można obliczyć ze wzoru

$$P = U \cdot I. \tag{1}$$

Moc *P* jest równa ilości ciepła przechodzącej przez powierzchnię boczną cylindra w ciągu jednostki czasu. Zostaje ona odprowadzana do otoczenia, ponieważ cylinder nie jest izolowany cieplnie i stygnie. Ściany podstawy cylindra są osłonięte i zakłada się, że ciepło nie wydostaje się przez nie na zewnątrz.

Rys. 1. Schemat zestawu pomiarowego. Rysunek ilustruje przekrój przez próbkę i przykładowe położenie sondy termometru w bocznej ścianie gipsowego cylindra.

Po dostatecznie długim czasie ogrzewania, w cylindrycznej próbce wytwarza się stan dynamicznej równowagi. W tym stanie rozkład temperatury w walcu jest ustalony. Najwyższa temperatura panuje na wewnętrznej powierzchni cylindra, a najniższa na zewnętrznej powierzchni cylindra. Znajomość wartości temperatury w gipsowym cylindrze w dwóch różnych odległościach od jego osi pozwala wyznaczyć współczynnik przewodnictwa cieplnego λ ze wzoru [8]

$$\lambda = \frac{P \cdot \ln\left(\frac{r_2}{r_1}\right)}{2\pi \cdot L\left(T_{r_1} - T_{r_2}\right)},\tag{2}$$

gdzie: T_{r_1} i T_{r_2} – wartości temperatury odpowiednio w odległości r_1 i r_2 ($r_1 < r_2$) od osi cylindra w warunkach stabilizacji temperatury.

Pomiaru temperatury należy dokonać przy użyciu termometru elektronicznego na najczulszym zakresie. Sondy termometrów umieszcza się niewielkich otworkach o różnej głębokości h wywierconych w bocznej powierzchni cylindra. Odległość r czujnika sondy od środka walca można wyznaczyć dla poszczególnych otworów z zależności:

$$r_i = \frac{D}{2} - h_i \,, \tag{3}$$

gdzie *i* przyjmuje wartości od 1 do 2.

Podstawiając wzory (1) i (3) do zależności (2) można otrzymać wyrażenie

$$\lambda = \frac{U \cdot I \cdot \ln\left(\frac{\frac{D}{2} - h_2}{\frac{D}{2} - h_1}\right)}{2\pi \cdot L\left(T_{r_1} - T_{r_2}\right)}.$$
(4)

5. Przebieg pomiaru

W pierwszym etapie eksperymentu należy osiągnąć stan ustalonego rozkładu temperatury w próbce, czyli w cylindrze gipsowym. W tym celu należy rozgrzewać próbkę przez odpowiednio długi czas używając grzejnika o stałej mocy. Aby mieć kontrolę nad procesem ogrzewania należy w wybranych punktach cylindra dokonywać pomiaru temperatury w zależności od czasu. Sondy termometru umieszczone są w dwóch otworach (prowadzący zajęcia dokona wyboru otworów). Należy włączyć zasilacz, ustalić napięcie na około 35 V, odczytać wartość natężenia prądu, po czym włączyć mierniki temperatury i sekundomierz. Co 2 minuty odczytywać wartości temperatury T wskazywane przez mierniki i czas τ jaki upłynął od włączenia ogrzewania. Warto w trakcie trwania eksperymentu sporządzać orientacyjny wykres funkcji $T(\tau)$. Stan ustalony zostanie osiągnięty, gdy temperatura przestanie zauważalnie zmieniać się w czasie. Uwaga: Należy zwrócić uwagę, aby nie wytwarzać przeciągu, powiewu i podmuchu powietrza itp., co może zakłócać przebieg pomiaru.

W stanie równowagi cieplnej cylindra gipsowego (grzejnik pozostaje włączony i podtrzymuje stan równowagi cieplnej) należy wykonać kilkanaście pomiarów temperatury w zależności od czasu (pomiaru czasu i temperatury dokonujemy od chwili włączenia grzałki, nie przerywając eksperymentu). Wykreślenie wykresu $T(\tau)$ i jego analiza w zakresie stanu równowagi cieplnej pozwoli na obliczenie wartości ustabilizowanej temperatury T_{r_1} dla otworu w odległości r_1 i wartości ustabilizowanej temperatury T_{r_2} dla otworu w odległości r_2 od osi cylindra.

6. Kolejność czynności

1. W bocznej ścianie cylindra z gipsu wydrążone zostały trzy otwory o różnej głębokości. W każdym otworze została zamontowana na stałe sonda umożliwiająca pomiar temperatury na termometrze elektronicznym. Zanotować w tabeli 1 głębokości poszczególnych otworów oraz średnicę i długość walca z gipsu. Zanotować oznaczenia otworów, dla których będzie dokonany pomiar $T(\tau)$.

Tabela 1. Wartości parametrów cylindra i wydrążonych w nim otworów.

Parametry	otwór A	otwór B	otwór C	Uwagi
h [mm]	12,0	8,0	4,0	
<i>D</i> [cm]		4,05		
L [cm]		19,5		
$\Delta_{t} h [mm]$				
$\Delta_{t}D$ [cm]				
$\Delta_{t} L [mm]$				

Objaśnienia: h – głębokość otworu, D – średnica walca z gipsu, L – długość walca, $\Delta_t h$, $\Delta_t D$, $\Delta_t L$ – niepewności tablicowe podanych wartości.

- 2. Podłączyć mierniki temperatury do sond. Włączyć mierniki temperatury. Wybrać najczulszy zakres pomiaru.
- 3. Podłączyć zasilacz do badanej próbki gipsu. Włączyć zasilacz.
- 4. Ustawić wartość napięcia U na około 35 V, odczytać i zapisać wartość natężenia prądu I. Określić niepewności tych wielkości. Zanotować klasy miernika natężenia prądu $k_{\rm A}$ i miernika napięcia $k_{\rm V}$ oraz zakresy pomiarowe $I_{\rm max}$ i $U_{\rm max}$ przyrządów, na których odczytano wartości natężenia prądu i napięcia. Zapisać nazwę mierników i ich producenta. Wartości zapisać w tabeli 2.

Tabela 2. Wartości wielkości zmierzonych w eksperymencie.

Wielkość	Wartość	Wielkość	Wartość	Uwagi
<i>U</i> [V]		<i>I</i> [A]		
$k_{ m V}$		k_{A}		
$U_{ m max}$		I_{max}		
$\Delta_{\mathrm{p}}U$ [V]		$\Delta_{\mathrm{p}}I$ [A]		
$\Delta_{\rm e}U$ [V]		$\Delta_{\mathrm{e}}I$ [A]		

Objaśnienia: $\Delta_{\rm p}U$, $\Delta_{\rm p}I$ – niepewności wzorcowania [6], $\Delta_{\rm e}U$, $\Delta_{\rm e}I$ – niepewności eksperymentatora.

- 5. Rozpocząć pomiar czasu przy użyciu sekundomierza i pomiar temperatury.
- 6. Co 2 minuty notować temperaturę t wskazywaną przez miernik i czas τ jaki upłynął od chwili włączenia zasilacza, czyli rozpoczęcia ogrzewania gipsowego walca. Odczytane wartości temperatury zapisać również w kelwinach. Wyniki zapisać w tabeli (patrz tabela 3). Ustabilizowane wartości temperatury dla wybranej pary otworów należy w dalszych obliczeniach utożsamiać z temperaturami T_{r_1} i T_{r_2} występującymi np. we wzorze (4). Przy ustalaniu powiązań pomiędzy temperaturami, należy pamiętać, że odległości r_1 i r_2 , odpowiadające temperaturom T_{r_1} i T_{r_2} muszą spełniać zależność $r_1 < r_2$.

Tabela 3. Wyniki pomiaru temperatury gipsu od czasu dla różnych położeń sondy pomiarowej.

	Politica o .						
	głębokość otworu A		głębokość otworu B		głębokość	otworu C	Uwagi
	$h_{\rm A}$ [mm]		$h_{\rm B}$ [mm]		$h_{\rm C}$ [mm]		
τ [s]	t_{A} [°C]	$T_{\rm A}$ [K]	$t_{ m B}$ [°C]	$T_{\rm B}$ [K]	$t_{C}\left[^{\circ}C\right]$	$T_{\rm C}$ [K]	
:	ŧ	:	ŧ	:	ŧ	i	

- 7. Wskazane jest w trakcie trwania pomiarów nanoszenie punktów pomiarowych na wykresie $T(\tau)$.
- 8. Pomiary należy kontynuować do czasu, aż temperatura gipsowego cylindra ustali się (tj. w kilku lub kilkunastu ostatnich punktach pomiarowych temperatura niemal nie będzie zmieniała się w czasie pomiaru).
- 9. Oszacować niepewność wzorcowania i niepewność eksperymentatora dla pomiaru temperatury i pomiaru czasu. Wyniki zapisać w tabeli 4.

Tabela 4. Wartości wielkości stosowanych do określenia niepewności pomiarów.

Wielkość	Wartość	Wielkość	Wartość	Uwagi
$\Delta_{\rm p}T$ [K]		$\Delta_{\rm p} \tau [s]$		
$\Delta_{\rm e}T$ [K]		$\Delta_{\rm e} \tau [{\rm s}]$		

Objaśnienia: $\Delta_{\rm p}T$, $\Delta_{\rm p}\tau$ – niepewności wzorcowania; $\Delta_{\rm e}T$, $\Delta_{\rm e}\tau$ – niepewności eksperymentatora.

- 10. Wyłączyć zasilacz. Wyłączyć termometry elektroniczne.
- 11. Uporządkować stanowisko pomiarowe.

7. Wskazówki do raportu

Sprawozdanie powinno zawierać:

- 1. Sformułowanie celu eksperymentu.
- 2. Krótki opis metody pomiaru współczynnika przewodnictwa cieplnego (bez wymieniania wykonywanych czynności).
- 3. Tabele z wartościami zmierzonych wielkości.
- 4. Tabele z informacjami umożliwiającymi wyznaczenie niepewności pomiarowych mierzonych wielkości.
- 5. Wzory zastosowane w obliczeniach.
- 6. Wykres zależności temperatury gipsowego cylindra od czasu ogrzewania. Zależności $T(\tau)$, dla dwóch różnych odległości czujnika sondy od osi cylindra, umieścić na jednym wykresie. Zaznaczyć na wykresie niepewności pomiarowe dla czasu i temperatury [6]:

$$u(\tau) = u_{\rm B}(\tau) = \sqrt{\frac{\left(\Delta_{\rm p}\tau\right)^2}{3} + \frac{\left(\Delta_{\rm e}\tau\right)^2}{3}},\tag{5}$$

$$u(T) = u_{\rm B}(T) = \sqrt{\frac{\left(\Delta_{\rm p}T\right)^2}{3} + \frac{(\Delta_{\rm e}T)^2}{3}}.$$
 (6)

- 7. Analizę wykresów, w szczególności przedziału czasu, w którym nastąpiła stabilizacja temperatury. Dla poszczególnych otworów wyróżnić na wykresie punkty eksperymentalne, dla których w przybliżeniu $T(\tau)=$ const.
- 8. Obliczenia wartości średnich dla temperatury T_{r_1} i temperatury T_{r_2} z zakresu stabilizacji. Obliczenie niepewności standardowych metodą typu A dla tych wielkości [6]

$$u_{\mathcal{A}}(T_{r_1}) = \sqrt{\frac{\sum_{i=1}^{n_1} (T_{r_{1,i}} - \overline{T_{r_1}})^2}{n_1(n_1 - 1)}},\tag{7}$$

$$u_{A}(T_{r_{2}}) = \sqrt{\frac{\sum_{i=1}^{n_{2}} (T_{r_{2,i}} - \overline{T_{r_{2}}})^{2}}{n_{2}(n_{2} - 1)}},$$
(8)

gdzie: n_1 – liczba punktów eksperymentalnych o ustabilizowanej temperaturze T_{r_1} , n_2 – liczba punktów eksperymentalnych o ustabilizowanej temperaturze T_{r_2} .

- 9. Obliczenia wartości współczynnika przewodnictwa cieplnego dla gipsu ze wzoru (4).
- 10. Rachunek niepewności pomiarowych. Wyznaczyć złożoną niepewność standardową wyznaczonej wartości współczynnika przewodnictwa cieplnego $u_{\rm c}(\lambda)$ korzystając ze wzoru [6]:

$$u_{c}^{2}(\lambda) = c_{U}^{2}u^{2}(U) + c_{I}^{2}u^{2}(I) + c_{D}^{2}u^{2}(D) + c_{h_{2}}^{2}u^{2}(h_{2}) + c_{h_{1}}^{2}u^{2}(h_{1}) + c_{L}^{2}u^{2}(L) + c_{T_{1}}^{2}u^{2}(T_{r_{1}}) + c_{T_{2}}^{2}u^{2}(T_{r_{2}}),$$

$$(9)$$

gdzie:

$$c_{U} = \frac{I \cdot \ln \left(\frac{\frac{D}{2} - h_{2}}{\frac{D}{2} - h_{1}}\right)}{2\pi \cdot L(T_{r_{1}} - T_{r_{2}})} = \frac{\lambda}{U},$$
(10)

$$c_{I} = \frac{U \cdot \ln \left(\frac{\frac{D}{2} - h_{2}}{\frac{D}{2} - h_{1}}\right)}{2\pi \cdot L(T_{r_{1}} - T_{r_{2}})} = \frac{\lambda}{I},$$
(11)

$$c_D = \frac{U \cdot I}{2\pi \cdot L(T_{r_1} - T_{r_2})} \cdot \frac{2(h_1 - h_2)}{(2h_1 - D)(D - 2h_2)},\tag{12}$$

$$c_{h_2} = \frac{U \cdot I}{2\pi \cdot L(T_{r_1} - T_{r_2})} \cdot \frac{2}{2h_2 - D},\tag{13}$$

$$c_{h_1} = \frac{U \cdot I}{2\pi \cdot L(T_{r_1} - T_{r_2})} \cdot \frac{2}{D - 2h_1},\tag{14}$$

$$c_{L} = -\frac{U \cdot I \cdot \ln\left(\frac{D}{\frac{D}{2} - h_{2}}\right)}{2\pi \cdot L^{2}\left(T_{r_{1}} - T_{r_{2}}\right)} = -\frac{\lambda}{L},$$
(15)

$$c_{T_1} = -\frac{U \cdot I \cdot \ln\left(\frac{\frac{D}{2} - h_2}{\frac{D}{2} - h_1}\right)}{2\pi \cdot L(T_{r_1} - T_{r_2})^2} = -\frac{\lambda}{T_{r_1} - T_{r_2}},$$
(16)

$$c_{T_2} = \frac{U \cdot I \cdot \ln\left(\frac{\frac{D}{2} - h_2}{\frac{D}{2} - h_1}\right)}{2\pi \cdot L(T_{r_1} - T_{r_2})^2} = \frac{\lambda}{T_{r_1} - T_{r_2}},$$
(17)

$$u(U) = u_{\rm B}(U) = \sqrt{\frac{(\Delta_{\rm p} U)^2}{3} + \frac{(\Delta_{\rm e} U)^2}{3}},$$
 (18)

$$u(I) = u_{\rm B}(I) = \sqrt{\frac{(\Delta_{\rm p}I)^2}{3} + \frac{(\Delta_{\rm e}I)^2}{3}},$$
 (19)

$$u(D) = u_{\rm B}(D) = \sqrt{\frac{(\Delta_{\rm t} D)^2}{3}},$$
 (20)

$$u(h) = u_{\rm B}(h) = \sqrt{\frac{(\Delta_{\rm t} h)^2}{3}},$$
 (21)

$$u(L) = u_{\rm B}(L) = \sqrt{\frac{(\Delta_{\rm t}L)^2}{3}},$$
 (22)

$$u(T_{r_1}) = \sqrt{u_A^2(T_{r_1}) + u_B^2(T_{r_1})} = \sqrt{u_A^2(T_{r_1}) + \frac{(\Delta_p T_{r_1})^2}{3} + \frac{(\Delta_e T_{r_1})^2}{3}}, \quad (23)$$

$$u(T_{r_2}) = \sqrt{u_A^2(T_{r_2}) + u_B^2(T_{r_2})} = \sqrt{u_A^2(T_{r_2}) + \frac{(\Delta_p T_{r_2})^2}{3} + \frac{(\Delta_e T_{r_2})^2}{3}}.$$
 (24)

11. Wyznaczenie i zapisanie wartości współczynników wrażliwości c_{x_j} , a także udziałów niepewności $\left|c_{x_j}\right|u(x_j)$. Wyniki zapisać w tabeli 5. **Uwaga:** W tabeli 5 każdą wartość należy zapisać z odpowiednią dla niej jednostką.

Tabela 5. Zbiorcze wyniki dotyczące wartości niepewności pomiaru.

x_j	c_{x_j}	$u(x_j)$	$\left c_{x_{j}}\right u(x_{j})$	Uwagi

Na podstawie analizy wartości zamieszczonych w tabeli 5, określić, które wielkości i w jakim stopniu wpływają na wartość niepewności pomiaru wyznaczonej wielkości.

- 12. Obliczenie wartości niepewności rozszerzonej $U(\lambda)$. Przyjąć wartość współczynnika rozszerzenia k=2.
- 13. Końcowe zapisy wyników pomiaru współczynnika przewodnictwa cieplnego dla gipsu w postaci: $\lambda = ...(...) \frac{W}{m \cdot K}$, $\lambda = (... \pm ...) \frac{W}{m \cdot K}$.
- 14. Dyskusję dotyczącą przebiegu eksperymentu. Opisać zjawiska, które mogły być źródłem błędów podczas wykonywania eksperymentu. Należy porównać wyznaczoną wartość współczynnika przewodnictwa cieplnego gipsu z wartościami tablicowymi (wartości te należy zapisać w sprawozdaniu wraz z podaniem źródła literaturowego).
- 15. Zapisać czy cel ćwiczenia został osiągnięty. Jeśli cel nie został osiągnięty, napisać dlaczego.

Przykładowe pytania

1. Podać definicję temperatury i jej jednostki.

- 2. Czym różnią się pojęcia: energia wewnętrzna ciała i ciepło?
- 3. Wymień i opisz sposoby wymiany ciepła.
- 4. Omów przewodnictwo cieplne i podaj prawa nim rządzące.
- 5. Wyprowadzić wzór wykorzystywany w ćwiczeniu do wyznaczenia współczynnika przewodnictwa cieplnego.
- 6. Podać definicję współczynnika przewodnictwa cieplnego, jego jednostki i typowe wartości dla różnych klas substancji.
- 7. Wymień metody pomiaru współczynnika przewodnictwa cieplnego.
- 8. Omówić ocenę niepewności metodą typu A i B.
- 9. Omówić pomiar pośredni i prawo propagacji niepewności.

Literatura

- [1] M. Skorko, Fizyka, PWN, Warszawa, 1973.
- [2] S. J. Ling, J. Sanny, W. Moebs, *Fizyka dla szkół wyższych*, tom 2, Katalyst Education, 2018. https://openstax.org/details/books/fizyka-dla-szkół-wyższych-tom-2
- [3] J. Karniewicz, T. Sokołowski, *Podstawy fizyki laboratoryjnej*, skrypt PŁ, Łódź, 1996.
- [4] H. Szydłowski, Pracownia fizyczna wspomagana komputerem, PWN, Warszawa, 2003.
- [5] J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 2012.
- [6] Ł. Piskorski, *Wyznaczanie niepewności pomiarów*, skrypt Politechniki Łódzkiej, Łódź, 2019.
- [7] A. Zięba, Analiza danych w naukach ścisłych i technice, PWN, Warszawa, 2014.
- [8] Materiały pomocnicze załączone do instrukcji.