## QF604 MCQ Practice Test 2

Please tick the most suitable answer to each multiple-choice question.

(C) accept [or cannot reject] null of no unit root

(D) accept [or cannot reject] null of unit root.

(A) Normal  $7 \times Z(0,1)$ (B)  $0.5\chi_{14}^2$ (C)  $\chi_{14}^2$ (D) None of the above Q2. Suppose we run an Ordinary Least Square regression of  $Y_i = a + bX_i + e_i$  where  $e_i$  is a white noise that is independent of  $X_i$ . Given sample averages for Y and X are 60 and 8, respectively, and  $\hat{a} = 20$ , what is b? (A) 2.5(B) 5.0 (C) 7.5(D) Indeterminate from the given information. Q3. When a stochastic process  $\{Y_t\}$  is strong-stationary, the following statement is most accurate: (A) all means are constant (B) all moments are constant at every point in time (C) autocorrelation lag k is a function of only variable k. (D) all the above are correct Q4. What is the difference between a trend stationary process and a unit root process? (A) only the unit root process displays increasing volatility (B) only the trend stationary process has deterministic trend (C) only the unit root process has a difference series that is stationary (D) None of the above Q5. Suppose we are testing if  $S_t$  is a unit root or I(1) process, and we perform the following OLS regression  $\Delta S_t = \delta + \theta S_{t-1} + e_t$ , where  $e_t$  is a stationary random variable. Suppose the critical ADF statistic for this case at 1% significance level is -3.44, and the computed  $\hat{\theta} < 0$ 's "t-statistic" is -3.05, then you (A) reject null of no unit root (B) reject null of unit root

Q1. What is  $\chi_7^2$  divided by  $F_{7,14}$  assuming the numerator is independent of all other chi-square variables?

- Q6. If market prices follow random walks, then
  - (A) the market is inefficient
  - (B) stock prices do not have probability distributions
  - (C) one can never make positive profits
  - (D) one can never consistently outperform the market
- Q7. The predictability of stock returns under rational theory is most closely connected with
  - (A) forecasting daily time trend of the stock return
  - (B) forecasting long-term stock return autocorrelations
  - (C) forecasting weekly stock price variations
  - (D) forecasting momentum of stock movements
- Q8. A factor risk premium can be estimated by running
  - (A) Cross-sectional regression on the risk factors
  - (B) Cross-sectional regression on factor loadings
  - (C) Time series regression on the risk factors
  - (D) Time series regression on the factor loadings
- Q9. In a mulitple linear regression, an irrelevant variable was included. Which of the following is most accurate?
  - (A) the estimated coefficients will always be biased downward
  - (B) the estimated coefficients will never be unbiased
  - (C) the estimated coefficient standard errors are typically smaller
  - (D) the estimated coefficient standard errors are typically larger
- Q10. If it is not known if the risk premia change over time, we can estimate them using
  - (A) Fama-French model
  - (B) Fama-McBeth approach
  - (C) Panel regression
  - (D) None of the above
- Q11. Suppose  $Z_t = c_0 + c_1 Y_t + e_t$ , i = 1, 2, ..., N.  $Y_t$  and zero mean  $e_t$  are stochastically independent, and  $e_t$  is autocorrelated, then the generalized least squares (GLS) estimator is
  - (A) unbiased but not efficient
  - (B) unbiased and efficient
  - (C) biased but consistent
  - (D) biased and inefficient

- Q12. Suppose If  $Y_t = c_0 + c_1 X_t + c_2 Z_t + e_t$ , t = 1, 2, ..., T.  $X_t$  and zero mean  $e_t$  are stochastically independent. It is suspected that  $e_t = \rho e_{t-1} + u_t$  where  $\rho \neq 0$  and  $u_t$  is mean zero i.i.d. If you test  $H_0$ :  $\rho = 0$ , Durbin–Watson d-statistic gives 2.48, and at 5% significance level, T = 90, k = 3, the critical values  $D_L = 1.589$ ,  $D_U = 1.726$ , how do you conclude?
  - (A) Reject  $H_0$ , accept positive autocorrelation
  - (B) Reject  $H_0$ , accept negative autocorrelation
  - (C) Accept  $H_0$
  - (D) Inconclusive on  $H_0$
- Q13. When disturbances are heteroskedastic, generalized least squares estimation is preferred to OLS, wherever feasible, because
  - (A) OLS is unbiased
  - (B) OLS is inefficient
  - (C) OLS is inconsistent
  - (D) OLS cannot provide for a test.
- Q14. In selecting different stocks for a common event study e.g. earnings announcement, it is a problem if their calendar dates are clustered together because
  - (A) This will reduce the efficiency of estimation
  - (B) The number of sample points wil be reduced
  - (C) This may introduce unobserved external systematic event not related to the event news
  - (D) None of the above
- Q15. According to the unbiased expectations hypothesis, the following spot-forward relationship of Euros (versus US\$) should hold:

$$F_{t,t+6} = E_t(S_{t+6}) + \pi_{t,t+6},$$

where  $F_{t,t+6}$  is the forward six-month Euros per US\$ at time t, and  $S_{t+6}$  is the future spot rate at t+6 months.  $E_t(.)$  denotes conditional expectation given all market information current at t, and risk premium  $\pi_{t,t+6} = 0$ . Which of the following is a problem with the estimators if you run a regression of  $F_{t,t+6}$  on  $S_{t+6}$ ?

- (A) Nonlinear problem
- (B) Unbiased but inefficient estimators
- (C) Consistent but inefficient estimators
- (D) Not consistent and inefficient estimators
- Q16. In the following correlograms, each bar represents the correlation value on one period in the lags, and the dotted lines represent the two standard deviation bounds. Identify the stochastic process as:





- (A) ARMA(1,1)
- (B) ARMA(1,3)
- (C) White Noise
- (D) ARIMA(1,1,1)
- Q17. In estimating a GARCH model, where conditional variance of zero-mean residual error  $e_t$  is  $h_t = \beta_0 + \beta_1 h_{t-1} + \beta_2 (e_{t-1} \lambda)^2$ , for  $\lambda > 0$ , what is the most plausible set of estimates? ( $\lambda = 0.01$ )

(A) 
$$\beta_0 = 0.025, \, \beta_1 = 0.5, \, \beta_2 = 0.5$$

(B) 
$$\beta_0 = -0.025, \, \beta_1 = 0.8, \, \beta_2 = 0.8$$

(C) 
$$\beta_0 = 0.025, \, \beta_1 = 0.3, \, \beta_2 = 0.65$$

(D) 
$$\beta_0 = -0.025, \, \beta_1 = 0.3, \, \beta_2 = 0.65$$

- Q18. White's HCCME estimator is used in
  - (A) GLS estimation to obtain efficient estimators
  - (B) GLS estimation to obtain unbiasedness
  - (C) OLS estimation to obtain BLUE estimators
  - (D) OLS estimation to obtain test statistic
- Q19. Suppose a first linear regression is  $Y_{1t} = a_0 + a_1 X_t + e_t$  for t = 1, 2, ..., T, and the vector of residual errors has  $T \times T$  covariance matrix  $\Sigma$ . Suppose a second linear regression is  $Y_{2t} = a_0 + a_1 Z_t + v_t$  for t = 1, 2, ..., T, and the vector of residual errors has  $T \times T$  covariance matrix  $\Sigma$ .  $e_t$  and  $v_t$  are independent.

If we form dependent variable vector  $M_{2T\times 1}=(Y_{11},\ldots,Y_{1T},Y_{21},\ldots,Y_{2T})^T$ , and explanatory variable matrix

$$S_{2T \times 2} = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_T & Z_1 & Z_2 & \dots & Z_T \end{pmatrix}^T$$

to run the linear regression, would the GLS estimates of  $a_0, a_1$  be different from the GLS estimates if we run the first and the second regressions separately?

- (A) The combined regression is more efficient due to larger sample
- (B) The combined regression is more efficient because of GLS
- (C) The combined regression is less efficient because of pooled noise
- (D) The combined regression is less efficient because of inversion error
- Q20. In a linear regression model Y = XB + e,  $Y_{N\times 1}$  takes only binary values of 1 or 0, X is a  $N\times 3$  explanatory variable matrix where the first column contains all ones, and e is a N vector of zero mean i.i.d. residual errors. e is non-normal. Let the  $i^{th}$  row of X be  $X_i$ . Suppose  $E(Y_i|X_i) = \frac{e^{X_iB}}{1+e^{X_iB}}$  using logistic regression. If the estimates of B are (0.1, 0.2, 0.05), what is the estimated probability of Y = 1 when  $X_i = (1, 1, 2)$ ?
  - (A) 0.60
  - (B) 0.65
  - (C) 0.70
  - (D) None of the above.

Ans: Q1 (B), Q2 (B), Q3 (D), Q4 (A), Q5 (D), Q6 (D), Q7 (B), Q8 (B), Q9 (D), Q10 (B) Q11 (B), Q12 (B), Q13 (B), Q14 (C), Q15 (D), Q16 (C), Q17 (C), Q18 (D), Q19 (B), Q20 (A)