CORRIGÉ DU CONTRÔLE : COLORATION D'UN GRAPHE

Partie I. Détermination des voisins des sommets

Question 1.

Question 2. Lorsque s est supérieur à tous les éléments de la liste L, cette dernière doit être parcourue dans son entier; si n désigne la longueur de L, la complexité de cette fonction est un O(n).

Ouestion 3.

Partie II. Un algorithme de bonne coloration d'un graphe

Question 4. L'algorithme décrit dans l'énoncé va colorer les sommets de *Gex2* de la façon suivante :

- le sommet 0 se voit attribuer la couleur 1;
- le sommet 1 se voit attribuer la couleur 1;
- le sommet 2 se voit attribuer la couleur 2;
- le sommet 3 se voit attribuer la couleur 2:
- le sommet 4 se voit attribuer la couleur 3;
- le sommet 5 se voit attribuer la couleur 3.

Cette coloration n'est pas optimale, car deux couleurs suffisent si on attribue aux sommets 0, 2 et 4 la couleur 1 et aux sommets 1, 3 et 5 le couleur 2.

Question 5. La fonction suivante utilise une fonction auxiliaire couleur qui détermine la première couleur disponible pour colorer un sommet.

Partie III. Définition du nombre chromatique de G

Question 6. Un graphe ayant n sommets possède à l'évidence une bonne n-coloration : il suffit d'attribuer au sommet k la couleur k+1. Ceci prouve que $EC(G) \neq \emptyset$ et donc que cet ensemble possède un plus petit élément nbc(G). Il reste à prouver que pour tout $p \geqslant nbc(G)$ il existe une bonne p-coloration de G : c'est évident si on observe qu'une bonne p-coloration est aussi une bonne p-coloration pour tout $p \geqslant p$.

Question 7. Un graphe G n'ayant aucune arête peut être coloré à l'aide d'une seule couleur, donc nbc(G) = 1. De plus, toute coloration est une bonne coloration, donc une bonne p-coloration est une application quelconque de [0, n(G) - 1] vers [1, p]. Ainsi, $fc(G, p) = p^{n(G)}$.

Question 8. Dans le cas d'un graphe complet, tout sommet doit être d'une couleur différente de tous les autres, ce qui nécessite n(G) couleurs. Ainsi, nbc(G) = n(G).

Lorsque p < n(G), on a donc fc(G, p) = 0; lorsque $p \ge n(G)$, une bonne p-coloration est une application injective de [0, n(G) - 1] vers [1, p] et ainsi $fc(G, p) = \frac{p!}{(p - n(G))!}$.

Question 9. Les sommets 0, 3 et 4 sont tous trois voisins donc doivent posséder une couleur différente; ainsi $nbc(Gex1) \ge 3$. Mais si on attribue aux sommets 0, 1 et 2 la couleur 1, au sommet 3 la couleur 2 et au sommet 4 la couleur 3, on obtient une bonne coloration de Gex1, donc nbc(Gex1) = 3.

Si p < 3, on a fc(Gex1, p) = 0; si $p \ge 3$ il faut choisir 3 couleurs distinctes pour colorer les sommets 0, 3 et 4, puis choisir une couleur différente de celle du sommet 3 pour colorer le sommet 1, et enfin colorer d'une couleur quelconque le sommet 2, ce qui donne : fc(Gex1, p) = $p(p-1)(p-2) \times (p-1) \times p = p^2(p-1)^2(p-2)$.

Partie IV. Les applications H et K

Question 10. On peut remarquer que le premier voisin de s est le premier élément de la liste triée de ses voisins ; d'où :

```
let prem_voisin graph s = hd (voisins graph s) ;;
```

Dans le cas d'un sommet isolé, cette fonction déclenchera l'exception Failure "hd".

Question 11.

Question 12.

Question 13.

Partie V. Fonction $f_{\mathbb{C}}(\mathbf{G}, p)$ et polynôme chromatique

Question 14. Pour passer d'un graphe G au graphe H(G), on se contente d'ôter des arêtes, donc toute bonne coloration de G est aussi une bonne coloration de H(G). D'où : $BC(G, p) \subset BC(H(G), p)$.

Question 15. BC(H(G), p) \ BC(G, p) est l'ensemble des bonnes colorations de H(G) qui ne sont pas des colorations de G, donc des colorations pour lesquelles les sommets s_1 et s_2 ont la même couleur. Ils sont donc en bijection avec les bonnes colorations de K(G):

```
\operatorname{card}\operatorname{BC}(\operatorname{K}(\operatorname{G}),p)=\operatorname{card}\operatorname{BC}(\operatorname{H}(\operatorname{G}),p)\setminus\operatorname{BC}(\operatorname{G},p).
```

Puisque $BC(G, p) \subset BC(H(G), p)$, card $BC(H(G), p) \setminus BC(G, p) = card BC(H(G), p) - card BC(G, p)$ et l'égalité s'écrit :

$$f_{\rm C}({\rm G},p) = f_{\rm C}({\rm H}({\rm G}),p) - f_{\rm C}({\rm K}({\rm G}),p).$$

Question 16. Pour un graphe sans arêtes nous savons que $f_C(G, p) = p^{n(G)}$; pour un graphe avec des arêtes on applique la formule précédente. Cet algorithme se termine car les graphes H(G) et K(G) ont un nombre d'arêtes strictement inférieur à celui de G.

Question 17. Raisonnons par récurrence sur le nombre d'arêtes d'un graphe :

- lorsque G n'a pas d'arêtes, $f_C(G, p) = p^{n(G)}$ est bien un polynôme en p de degré n(G);
- lorsque G a des arêtes, $f_C(G, p) = f_C(H(G), p) f_C(K(G), p)$ et par hypothèse de récurrence, $f_C(H(G), p)$ est un polynôme en p de degré n(G) et $f_C(K(G), p)$ un polynôme en p de degré n(G) 1, donc $f_C(G, p)$ est la restriction d'un polynôme en p de degré n(G).

Partie VI. Calcul du polynôme $P_C(G, p)$ et de nbc(G)

Question 18. On se contente de traiter le cas où $\deg Q < \deg P$:

```
let difference p q =
let r = copy_vect p in
for i = 0 to vect_length q - 1 do
  r.(i) <- r.(i) - q.(i)
done;
r ;;</pre>
```

Question 19. Commençons par rédiger une fonction définissant le polynôme X^n :

```
let monome n =
let p = make_vect (n + 1) 0 in
p.(n) <- 1;
p ;;</pre>
```

On définit ensuite :

Question 20. Il suffit d'appliquer la méthode de Horner :

Question 21. Le nombre chromatique d'un graphe est le plus petit entier n'étant pas racine du polynôme $P_C(G)$. Ceci conduit à la définition suivante :

