Valid Codes & Descriptions for ANNOTATED INFORMATION in 1999 PDP Analytical Results

Annotate Code	Annotated Information	
Q	Residue at below quantifiable level (BQL)	
QV	Residue at <bql> with presumptive violation - No Tolerance</bql>	
QX	Residue at <bql> with presumptive violation - Exceeds Tol.</bql>	
V	Residue with a presumptive violation - No Tolerance	
X	Residue with a presumptive violation - Exceeds Tolerance	

Valid Codes & Descriptions for COMMODITY MARKETING CLAIM on 1999 PDP Samples

Claim Code	Commodity Marketing Claim
NC	No Claim
PD	No Pesticides Detected
PO	Organic
PP	Pesticide Free

Valid Codes & Descriptions for COMMODITIES Sampled/Analyzed by PDP in 1999 (Fresh Product Unless Otherwise Noted)

Commodity Code	Commodity Name	# of Samples Analyzed
AP	Apples	379
AX	Apples-Single Servings	1463
CN	Cantaloupe	831
СР	Pears, Canned	371
CU	Cucumbers	734
CY	Corn Syrup	156
GJ	Grape Juice	714
LT	Lettuce	185
OA	Oats, Rolled/Bran	332
PE	Pears	359
PP	Sweet Bell Peppers	733
PX	Pears-Single Servings	352
SF	Spinach, Frozen	715
ST	Strawberries	650
SZ	Strawberries, Frozen	71
TC	Tomatoes, Canned	368
TO	Tomatoes	366
WS	Winter Squash	246
WZ	Winter Squash, Frozen	100

Valid Codes & Descriptions for COMMODITY TYPE in 1999 PDP Samples

Commod Type Code	Commodity Type
BR	Bran
CA	Canned
CO	Liquid Concentrate
FR	Fresh
FZ	Frozen
OT	Other
RE	Liquid Ready-to-Serve
RO	Rolled

Valid Codes & Descriptions for Concentration/LOD Unit-of-Measure Code

Concen/LOD Unit Code	Concen/LOD Unit Description
В	Parts-per-Billion (ppb)
М	Parts-per-Million (ppm)
Т	Parts-per-Trillion (ppt)

Valid Codes & Descriptions for CONFIRMATION METHOD in 1999 PDP Analytical Results

ConfMethod Code	Confirmation Method
Α	GC/AED-Gas Chrom w/Atomic Emission Detec
D	GC or LC Alternate Detector
HR	GC or LC High Resolution MS
I	GC/IT-Gas Chrom w/lon Trap MS-single stg
L	LC/MS-Liq Chrom w/Mass Spec-single stage
М	GC/MS - single quadropole
MO	Quant. & Confirm. by GC/MS only
Р	LC-AMP - Liquid Chrom Alt. Mobile Phase
Т	GC/MS/MS - Gas Chrom w/Tandem Mass Spec

Valid Codes & Descriptions for COUNTRIES Where PDP 1999 Samples Originated

Country Code	Country Name
150	Argentina
160	Australia
227	Belize
260	Canada
275	Chile
280	China, Peoples Rep. (Com.)
295	Costa Rica
315	Denmark
320	Dominican Republic
325	Ecuador
415	Guatemala
430	Honduras
475	Israel
480	Italy
595	Mexico
630	Netherlands
660	New Zealand
665	Nicaragua
801	South Africa
830	Spain
M01	Brazil / USA
M17	Argentina / Brazil / Spain / USA
M35	Argentina / USA
M47	Argentina / Brazil / USA
M48	Argentina / Brazil / Chile / USA
UNK	Unknown

Valid Codes & Descriptions for DETERMINATIVE METHOD in 1999 PDP Analytical Results

Determin Code	Determinative Method
01	GC/ECD - Electron Capture Detector
02	GC/FPD - Flame Photometric Detector in Phosphorus Mode
05	GC/ELCD - Electrolytic Conductivity Detector in Halogen Mode
07	GC/MS - Gas Chrom w/Mass Spec - single quadrupole
08	GC/IT - Gas Chrom w/ Ion Trap Mass Spec - single stage
11	LC/UV - Liquid Chromatography w/ UV Detector
12	Liquid Chrom w/ POST-Column Derivatization & FL Detector
14	GC/NPD - Phosphorus Mode
15	GC/NPD - Nitrogen Mode
16	GC/NPD - Nitrogen/Phosphorus Detector
19	Liquid Chrom w/ PRE-Column Derivatization & FL Detector
30	GC/ELCD - Electrolytic Conductivity Detector in Sulfur Mode
34	GC/MS/MS - Gas Chrom w/ Tandem Mass Spectrometry
60	GC/XSD - Halogen Specific Detector

Valid Codes & Descriptions for COLLECTION/DISTRIBUTION FACILITY TYPE in 1999 PDP Samples

DistType Code	Collection Facility Type
В	Broker
D	Distribution Center
0	Other Market Type
Р	Processing Plant
S	Storage Facility
Т	Terminal Market
U	Unknown

Valid Codes & Descriptions for EXTRACTION METHOD in 1999 PDP Analytical Results

Extract	
Code	Extraction Method
015	Modified Luke Extraction Method without Cleanup for Multi-Residues & Carbamates
017	Modified Luke Extraction Method with Cleanup for Multi-Residues & Carbamates
550	CDFA Lee et al C-18 Extraction Method
551	CDFA Chlorinated ACN Florisil SPE Extraction Method
552	CDFA MSD Aminopropyl Extraction Method
553	CDFA Carbamate SPE Extraction Method
600	LIB 3217 Extraction Method for Benomyl, MBC and Thiophanate-Methyl
998	OTHER Single-Analysis Methods
999	OTHER Multi-Residue Methods

Valid Codes & Descriptions for PDP Participating LABORATORIES in 1999

Lab Code	Lab Agency Name	Lab City/State
CA1	California Department of Food & Agriculture	Sacramento, CA
FL1	Florida Dept of Agriculture & Consumer Services	Tallahassee, FL
FL2	Florida Dept of Agriculture & Consumer Services #2	Winter Haven, FL
MI1	Michigan Department of Agriculture	East Lansing, MI
NY1	New York Department of Agriculture and Markets	Albany, NY
OH1	Ohio Department of Agriculture	Reynoldsburg, OH
TX1	Texas Department of Agriculture	College Station, TX
US1	USDA, APHIS, National Monitoring Residue Analysis Lab	Gulfport, MS
US2	USDA, AMS, National Science Laboratory	Gastonia, NC
US3	USDA, GIPSA, Technical Services Division	Kansas City, MO
WA1	Washington State Department of Agriculture	Yakima, WA

Valid Codes & Descriptions for MEAN RESULT in 1999 PDP Analytical Results (O, A, and R indicated Positive Detections)

Mean Code	Mean Result Finding
А	Detect - Avg of Original & Re-extract
N	Non-Detect - Original Analysis
NR	Non-Detect - Rerun Analysis
0	Detect - Original Analysis Value
R	Detect - Re-extraction Analysis Value

Valid Codes & Descriptions for Sample ORIGIN Code

Origin Code	Origin of Sample
1	Domestic (U.S.)
2	Imported
3	Unknown origin

Valid Codes & Descriptions for Compounds (PESTICIDES) Analyzed by PDP in 1999

Pest Code	Pesticide Name	Test Class	# of Analysis Results	
001	Aldrin	A	1931	
002	Allethrin	0	332	
011	Captan	A	6237	
014	Chlordanes Total	A	787	
023	Demeton	C	26	
024	Diazinon	C	8749	
028	Dieldrin	A	6796	
032	Diuron	A	640	
033	Anilazine	A	2605	
034	Endrin	A	893	
042	Azinphos methyl	C	9033	
044	Heptachlor	A	5402	
050	Lindane (BHC gamma)	A	6907	
052	Malathion	C	9086	
055	Methoxychlor Total	A	4217	
057	Parathion methyl	C	9101	
063	Ovex	A	26	
065	Parathion ethyl	C	8195	
069	Mevinphos Total	C	3389	
070	Piperonyl butoxide	I	2087	
083	o-Phenylphenol	<u> </u>	5596	
102	Carbaryl	E	7765	
107	Ethion	C	8753	
108	Tetradifon	A	6419	
114	Chlorpropham	E	6575	
117	Disulfoton	C	8930	
124	Coumaphos	C	2704	
125	Diphenylamine (DPA)	F	6419	
126	Folpet	A	5995	
129	Linuron	A	2060	
134	DCPA	A	6575	
143	Heptachlor epoxide	A	5577	
144	Dicloran	A	6575	
147	Tecnazene	A	862	
148	Phorate	C	8691	
149	Simazine	R	6575	
151	Trifluralin	A	6864	
152	Terbacil	A	6419	
156	Ametryn	R	140	
157	Thiabendazole	В	6596	
159	Methomyl	E	7780	
160	Chlorpyrifos	C	8769	
163	Fonofos	C	5912	
164	Chlorothalonil	A	5639	
165	Phosmet	C	7856	
166	Phosalone	C	6239	

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
167	Aldicarb	E	6589
168	Aldicarb sulfone	E	7449
169	Aldicarb sulfoxide	E	7449
170	Methamidophos	C	8545
171	Dimethoate	C	8755
172	Chlordane trans	A	1028
173	Chlordane cis	A	1014
174	Captafol	A	848
175	Ethoprop	C	872
176	Tetrachlorvinphos	C	8768
177	Fenthion	C	2658
178	Omethoate	C	8544
180	Carbofuran	E	7780
181	Metribuzin	F	140
189	Phorate sulfone	C	8598
190	Phorate sulfoxide	C	4802
192	Benomyl	В	2757
195	Methiocarb	E	3623
197	Methidathion	C	8769
200	EPTC	P	332
202	Carbophenothion	C	2704
203	Phosphamidon	C	8746
204	Acephate	C	8564
205	Terbufos	C	8753
208	Malathion oxygen analog	C	2880
216	Disulfoton sulfone	C	8930
217	DEF (Tribufos)	C	2548
222	Permethrin cis	0	5682
223	Permethrin trans	0	5682
224	Profenofos	C	3597
226	Demeton-S sulfone	C	2690
227	Alachlor	A	156
228	Cyanazine	R	156
230	Pendimethalin	F	156
231	Iprodione metabolite isomer	A	282
233	Amitraz	F	207
235	Chlorpyrifos methyl	C	3036
236	Fenamiphos	C	8739
245	Oxydemeton methyl sulfone	C	8597
249	Prometryn	R	156
253	Dicofol o,p'	A	971
253	Dicofol p,p'	A	6561
264	Propiconazole	L	472
275	Methoxychlor p,p'	A	2674
276	Methoxychlor olefin	A	452
283	Metolachlor	A	488
304		A	6574
304	Quintozene (PCNB) Atrazine	R	6575
315		F	26
313	Dinocap	Г Г	20

Pest Code	Pesticide Name	Test Class	# of Analysis Results	
321	Hexachlorobenzene (HCB)	A	6530	
330	Diphenamid	F	1675	
338	Dichlorvos (DDVP)	C	9025	
349		A	862	
	Oxychlordane			
351	Pentachloroaniline (PCA)	A	652	
370	Parathion oxygen analog Phenthoate	C	2862 297	
377		·	1071	
382	1-Naphthol	E	_	
387	Pentachlorobenzene (PCB)	A	6468	
391	Fenitrothion	С	2704	
395	Diazinon oxygen analog	С	2548	
512	3-Hydroxycarbofuran	E	7781	
529	Vinclozolin	A	6548	
537	Oxamyl	E	7433	
538	Ethion di oxon	С	2548	
539	Permethrin Total	0	893	
540	Pronamide	A	6419	
546	Fenvalerate	0	6575	
547	Azinphos ethyl	С	1910	
558	Demeton-S	С	26	
562	Pirimiphos methyl	С	4303	
578	Mevinphos Z	С	5177	
579	Mevinphos E	С	5363	
580	Pirimicarb	E	297	
593	Procymidone	A	893	
596	Norflurazon	A	6419	
597	Cypermethrin	0	2252	
604	Imazalil	N	6358	
607	Metalaxyl	F	3426	
608	Triadimefon	L	6300	
609	Sulprofos	С	2672	
614	Coumaphos oxygen analog	С	2704	
616	Chlorfenvinphos alpha	С	2548	
617	Chlorfenvinphos beta	С	2704	
623	Propargite	I	6574	
624	Tetrahydrophthalimide (THPI)	A	469	
626	Iprodione	A	6574	
638	Triadimenol	L	488	
648	Fenitrothion oxygen analog	C	2548	
675	Propachlor	A	156	
679	Myclobutanil	L	6575	
692	Fonofos oxygen analog	C	5755	
713	Oxyfluorfen	A	862	
713	Esfenvalerate	0	4853	
714	Norflurazon desmethyl	A	6419	
720	Ethalfluralin	A	847	
745	Fenamiphos sulfone	C	8613	
745	Fenamiphos sulfoxide	C	4306	
	· · · · · · · · · · · · · · · · · · ·	F		
768	Allidochlor	-	267	

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
779	Parathion methyl oxygen analog	С	2880
781	Cyfluthrin	0	847
807	Acetochlor	Α	156
808	Fenpropathrin	0	855
858	Ethiofencarb	E	297
900	Endosulfan I	Α	6882
901	Endosulfan II	Α	6883
902	Endosulfan sulfate	Α	6875
903	BHC alpha	Α	1194
904	BHC beta	А	1160
905	BHC delta	Α	771
906	DDT p,p'	Α	4550
907	DDT o,p'	Α	1514
908	DDD p,p'	А	4323
909	DDD o,p'	Α	862
910	DDE p,p'	Α	6867
911	DDE o,p'	Α	832
928	Phorate oxygen analog	С	2548
930	Bifenthrin	0	1755
948	Abamectin	D	364
963	Terbufos sulfone	С	8754
966	Phorate oxygen analog sulfone	С	2548
967	Imidacloprid	А	332
A39	Lambda cyhalothrin total	0	592
A46	Oxadixyl	F	332
A58	Tebuconazole	L	332
AAG	Lambda cyhalothrin S ester	0	460
AAX	Ethion mono oxon	С	2548

Valid Codes & Descriptions for QUANTITATION METHOD in 1999 PDP Analytical Results

Quantitate Code	Quantitation Method
Н	Standard NOT In Matrix
M	Standard In Matrix
MU	Standard In Matrix (Unvalidated Residue)

Valid Codes & Descriptions for All 50 STATES (plus Washington D.C. and Puerto Rico)

State			
Code	State		
AK	Alaska		
AL	Alabama		
AR	Arkansas		
AZ	Arizona		
CA	California		
СН	Check Sample		
CK	Check Sample		
CO	Colorado		
CT	Connecticut		
DC	Washington D.C.		
DE	Delaware		
FL	Florida		
GA	Georgia		
HI	Hawaii		
IA	lowa		
ID	Idaho		
IL	Illinois		
IN	Indiana		
KS	Kansas		
KY	Kentucky		
LA	Louisiana		
MA	Massachusetts		
MD	Maryland		
ME	Maine		
MI	Michigan		
MN	Minnesota		
MO	Missouri		
MS	Mississippi		
MT	Montana		
NC	North Carolina		
ND	North Dakota		
NE	Nebraska		
NH	New Hampshire		
NJ	New Jersey		
NM	New Mexico		
NV	Nevada		
NY	New York		
OH	Ohio		
OK	Oklahoma		
OR	Oregon		
PA	Pennsylvania		
PR	Puerto Rico		

State Code	State		
RI	Rhode Island		
SC	South Carolina		
SD	South Dakota		
TN	Tennessee		
TX	Texas		
US	United States (exact State not available)		
UT	Utah		
VA	Virginia		
VT	Vermont		
WA	Washington		
WI	Wisconsin		
WV	West Virginia		
WY	Wyoming		

Valid Codes & Descriptions for TEST (COMPOUND) CLASS in 1999 PDP Analytical Results

Test Class Code	Test (Compound) Class		
А	Halogenated		
В	Benzimidazole		
С	Organophosphorus		
D	Avermectin		
Е	Carbamate		
F	Organonitrogen		
I	Other Compounds		
L	Conazoles / Triazoles		
N	Imidazoles		
0	Pyrethroids		
Р	Thiocarbamates		
R	Triazines		

EPA Tolerance Levels for Commodity/Pesticide Pairs Analyzed by PDP in 1999

Tolerance Level Code: NT = No Tolerance Established

NA = Not Applicable

Commod	Pest	EPA Tolerance	Units		
Code	Code	Level	pp_	Note	Comment
AP	024	0.5	M	,	
AP	042	2.0	M		
AP	052	8	M		
AP	057	1	M		
AP	065	1	M		
AP	102	10.0	М		
AP	107	NT	М		
AP	117	NT	М		
AP	124	NT	М		
AP	148	NT	М		
AP	159	1	М		
AP	160	1.5	М		
AP	163	NT	М		
AP	165	10	М		
AP	166	10.0	М		
AP	167	NT	М		
AP	168	NT	М		
AP	169	NT	М		
AP	170	0.05	М		
AP	171	2	М		
AP	176	NT	М		
AP	177	NT	М		
AP	178	2	M		
AP	180	NT	M		
AP	189	NT	M		
AP	190	NT	M		
AP	197	0.05	М		
AP	202	NT	М		
AP	203	1	М		
AP	204	0.02	М		
AP	205	NT	М		
AP	208	8	М		
AP	216	NT	М		
AP	217	NT	M		
AP	224	NT	M		
AP	226	NT	M		
AP	235	NT	М		
AP	236	0.25	M		
AP	245	1	M		
AP	338	0.5	М		

AP	370	1	M	
AP	391	NT	М	
AP	395	0.5	M	
AP	512	NT	М	
AP	537	2	М	
AP	538	NT	M	
AP	562	NT	М	
AP	578	NT	М	
AP	579	NT	M	
AP	609	NT	M	
AP	614	NT	M	
AP	616	NT	M	
AP	617	NT	М	
AP	648	NT	M	
AP	692	NT	М	
AP	745	0.25	M	
AP	746	0.25	М	
AP	779	1	М	
AP	928	NT	M	
AP	963	NT	M	
AP	966	NT	M	
AP	AAX	NT	M	
AX	024	0.5	М	
AX	042	2.0	M	
AX	052	8	M	
AX	057	1	М	
AX	065	1	M	
AX	102	10.0	M	
AX	107	NT	M	
AX	117	NT	M	
AX	124	NT	M	
AX	148	NT	M	
AX	159	1	М	
AX	160	1.5	М	
AX	163	NT	М	
AX	165	10	М	
AX	166	10.0	М	
AX	167	NT	М	
AX	168	NT	М	
AX	169	NT	М	
AX	170	0.05	M	
AX	171	2	М	
AX	176	NT	М	
AX	177	NT	М	
AX	178	2	М	
AX	180	NT	М	
AX	189	NT	M	

AX	190	NT	М		
AX	197	0.05	М		
AX	202	NT	М		
AX	203	1	М		
AX	204	0.02	М		
AX	205	NT	М		
AX	208	8	М		
AX	216	NT	М		
AX	217	NT	М		
AX	224	NT	М		
AX	226	NT	М		
AX	235	NT	М		
AX	236	0.25	М		
AX	245	1	M		
AX	338	0.5	M		
AX	370	1	М		
AX	391	NT	M		
AX	395	0.5	M		
AX	512	NT	М		
AX	537	2	M		
AX	538	NT	M		
AX	562	NT	M		
AX	578	NT	М		
AX	579	NT	М		
AX	609	NT	М		
AX	614	NT	M		
AX	616	NT	M		
AX	617	NT	M		
AX	648	NT	M		
AX	692	NT	M		
AX	745	0.25	M		
AX	746	0.25	M		
AX	779	1	M		
AX	928	NT	M		
AX	963	NT	M		
AX	966	NT	М		
AX	AAX	NT	М		
CN	011	25	М		
CN	014	0.1	М	AL	Action Level
CN	024	0.75	М		
CN	028	0.1	М	AL	Action Level
CN	033	NT	М		
CN	042	2.0	М		
CN	044	0.02	М	AL	Action Level
CN	050	3	М	AL	Action Level
CN	052	8	М		
CN	055	14	M		

CN	057	1	M		
CN	065	<u>'</u> 1	M		
CN	069	0.5	M		changed 6/26
CN	083	10	M		onangoa o/20
CN	102	10	M		melon
CN	107	NT	M		moiori
CN	108	1	M		
CN	114	NT	M		
CN	117	NT	M		
CN	125	NT	M		
CN	126	15	M		
CN	134	1	M		
CN	143	0.02	M	AL	Action Level
CN	144	NT	M	712	7 totion Lovei
CN	148	NT	M		
CN	149	NT	M		
CN	151	0.05	M		
CN	152	NT	M		
CN	157	15.0	M		
CN	159	0.2	M		
CN	160	NT	M		
CN	163	NT	M		
CN	164	5	M		
CN	165	NT	M		
CN	166	NT	M		
CN	167	NT	M		
CN	168	NT	M		
CN	169	NT	M		
CN	170	0.5	M		
CN	171	1	M		
CN	176	NT	M		
CN	178	1	M		
CN	180	0.2	M		
CN	189	NT	M		
CN	190	NT	M		
CN	192	1.0	M		melon
CN	195	NT	M		
CN	197	NT	M		
CN	203	NT	M		
CN	204	0.02	M		
CN	205	NT	M		
CN	216	NT	M		
CN	222	3.0	M		
CN	223	3.0	M		
CN	236	NT	M		
CN	245	0.3	M		
CN	253	5	M		

CN	254	5	М		changed 6/26
CN	275	14	M		
CN	304	NT	M		
CN	305	NT	M		
CN	321	NT	M		
CN	330	NT	M		
CN	338	0.5	M		
CN	382	10	M		
CN	387	NT	M		
CN	512	0.2	M		
CN	529	NT	M		
CN	537	2.0	M		
CN	540	NT	M		
CN	546	1.0	M		
CN	547	2.0	M		
CN	562	NT	M		
CN	578	0.5	M		changed 6/26
CN		0.5	M		changed 6/26 changed 6/26
CN	579 596	0.5 NT	M		changed 6/26
CN	604	NT	M		
CN	607	1.0	M		accombit 0.4
CN	608	0.3	M		cucurbit = 0.1
CN	623	NT	M		
CN	626	NT	M		
CN	679	0.5	M		
CN	692	NT	M		
CN	714	0.05	M		
CN	720	NT	M		1.0/00
CN	745	NT	M		changed 6/26
CN	746	NT	M		
CN	900	2.0	M		f & v = 2
CN	901	2.0	M		
CN	902	2.0	M		
CN	906	0.1	M	AL	Action Level
CN	908	0.1	M	AL	Action Level
CN	910	0.1	M	AL	Action Level
CN	963	NT	M		
СР	011	25	M		
CP	014	0.1	M	AL	Action Level
СР	024	0.5	M		
СР	028	0.03	M	AL	Action Level
СР	033	NT	M		
CP	042	2.0	M		
CP	044	0.01	M	AL	Action Level
CP	050	1	M	AL	Action Level
CP	052	8	M		
CP	055	14	M		

СР	057	1	M		
CP	065	1	M		
CP	069	NT	M		
CP	083	25.0	M		
CP	102	10.0	M		
CP	102	NT	M		
CP	107	5	M		
CP	114	NT	M		
CP	117	NT	M		
CP	125	10	M		
CP	126	NT	M		
CP	134	NT	M	A 1	A (* 1 1
CP	143	0.01	M	AL	Action Level
CP	144	NT	M		
CP	148	NT	M		
CP	149	0.25	M		
СР	151	NT	M		
CP	152	0.1	M		
CP	157	10	M		
CP	159	4.0	M		
CP	160	0.05	M		
CP	163	NT	M		
CP	164	NT	M		
CP	165	10	M		
CP	166	10.0	M		
CP	167	NT	M		
CP	168	NT	M		
CP	169	NT	M		
CP	170	0.05	М		
CP	171	2	M		
CP	175	NT	M		
CP	176	NT	M		
CP	178	2	М		
CP	180	NT	М		
CP	189	NT	М		
CP	190	NT	М		
СР	195	NT	М		
CP	197	0.05	М		
CP	203	NT	M		
CP	204	0.02	M		
CP	205	NT	M		
CP	216	NT	M		
CP	222	3.0	M		
CP	223	3.0	M		
CP	236	NT	M		
CP	245	0.3	M		
CP	253	5	M		
		<u> </u>	141		

СР	254	5	M		changed 6/26
CP	275	14	M		5.14.1.g 5 4 5/25
СР	304	NT	М		
СР	305	NT	М		
CP	321	NT	М		
CP	330	NT	M		
CP	338	0.5	M		
CP	351	NT	М		
CP	387	NT	М		
CP	512	NT	M		
СР	529	NT	M		
СР	537	2.0	M		
СР	540	0.1	M		
СР	546	2.0	M		
СР	547	2.0	M		
СР	578	NT	M		
СР	579	NT	M		
CP	596	0.1	M		
CP	597	NT	M		
CP	604	NT	M		
CP CP	607	NT 1.0	M		
CP	608 623	NT	M		
CP	626	NT	M		
CP	679	NT	M		
CP	692	NT	M		
CP	714	0.05	M		
CP	720	0.1	M		
CP	745	NT	M		
CP	746	NT	M		
СР	900	2.0	M		
СР	901	2.0	М		
СР	902	2.0	М		
CP	906	0.1	М	AL	Action Level
CP	907	0.1	М	AL	Action Level
CP	908	0.1	M	AL	Action Level
СР	910	0.1	М	AL	Action Level
СР	963	NT	М		
CU	001	0.1	М	AL	cucurb
CU	011	25	M		
CU	014	0.1	M	AL	Action Level
CU	023	NT	M		
CU	024	0.75	M		
CU	028	0.1	M	AL	Action Level
CU	033	NT	M		
CU	034	NT	M		
CU	042	2.0	M		

CU	044	0.00	N.4	ΛΙ	A ation Layed
	044	0.02	M	AL	Action Level
CU	050	3	M	AL	Action Level
CU	052	8	M		
CU	055	14	M		
CU	057	1	M		
CU	063	NT	M		
CU	065	1	М		
CU	069	0.2	M		
CU	070	NT	М		
CU	083	10	M		
CU	102	10	M		
CU	107	NT	M		
CU	108	1	M		
CU	114	NT	M		
CU	117	NT	M		changed 6/26
CU	125	NT	M		
CU	126	15	M		
CU	129	NT	M		
CU	134	1	M		
CU	143	0.02	М	AL	Action Level
CU	144	5	М		
CU	148	NT	М		
CU	149	NT	М		
CU	151	0.05	М		
CU	152	NT	М		
CU	157	NT	М		
CU	159	0.2	М		
CU	160	0.05	М		
CU	163	NT	М		
CU	164	5	М		
CU	165	NT	М		
CU	166	NT	М		
CU	167	NT	М		
CU	168	NT	М		
CU	169	NT	М		
CU	170	1.0	М		
CU	171	NT	М		
CU	172	0.1	М	AL	Action Level
CU	173	0.1	M	AL	Action Level
CU	174	NT	M		-
CU	175	0.02	M		
CU	176	NT	M		
CU	178	NT	M		
CU	180	0.2	M		
CU	189	NT	M		
CU	190	NT	M		
CU	192	1.0	M		Carbendazim value
	102	1.0	1 7 1		Jai

CU	195	NT	M	
CU	197	NT	M	
CU	203	NT	M	
CU	204	0.02	M	
CU	205	NT	M	
CU	216	NT	M	changed 6/26
CU	222	3.0	M	
CU	223	3.0	M	
CU	224	NT	М	
CU	236	NT	М	
CU	245	1	М	
CU	254	5	М	
CU	275	14	М	
CU	304	NT	М	
CU	305	NT	М	
CU	315	NT	М	
CU	321	NT	М	
CU	330	NT	М	
CU	338	0.5	М	
CU	351	NT	М	
CU	387	NT	М	
CU	512	0.2	М	
CU	529	1.0	М	
CU	537	2.0	М	
CU	539	3.0	М	
CU	540	NT	М	
CU	546	0.5	М	
CU	547	2.0	М	
CU	558	NT	М	
CU	562	NT	М	
CU	578	0.2	М	
CU	579	0.2	М	
CU	593	NT	М	
CU	596	NT	М	
CU	597	NT	М	
CU	604	NT	М	
CU	607	1.0	М	
CU	608	0.3	М	cucurbit = 0.1
CU	623	NT	M	
CU	626	NT	М	
CU	679	0.5	M	
CU	692	NT	M	
CU	714	0.05	M	
CU	720	NT	M	
CU	745	NT	M	
CU	746	NT	M	
			1 111	1

CU	901	2.0	М		
CU	902	2.0	M		
CU	906	0.1	M	AL	Action Level
CU	907	0.1	M	AL	Action Level
CU	908	0.1	M	AL	Action Level
CU	910	0.1	M	AL	Action Level
CU	930	0.1	M	AL	Action Level
CU	963	NT	M		
CU	A39	0.01	M		
CY	011	NA	M		Not Papartad
CY	011	NA NA	M		Not Reported
CY			M		Not Reported
	028	NA			Not Reported
CY	042	NA	M		Not Reported
CY	044	NA	M		Not Reported
CY	050	NA	M		Not Reported
CY	052	NA	M		Not Reported
CY	055	NA	M		Not Reported
CY	057	NA	M		Not Reported
CY	065	NA	M		Not Reported
CY	070	NA	M		Not Reported
CY	102	NA	M		Not Reported
CY	107	NA	M		Not Reported
CY	114	NA	M		Not Reported
CY	124	NA	M		Not Reported
CY	129	NA	M		Not Reported
CY	134	NA	M		Not Reported
CY	143	NA	M		Not Reported
CY	144	NA	M		Not Reported
CY	147	NA	M		Not Reported
CY	148	NA	M		Not Reported
CY	149	NA	M		Not Reported
CY	151	NA	M		Not Reported
CY	156	NA	M		Not Reported
CY	157	NA	M		Not Reported
CY	159	NA	M		Not Reported
CY	160	NA	M		Not Reported
CY	163	NA	М		Not Reported
CY	165	NA	М		Not Reported
CY	166	NA	М		Not Reported
CY	167	NA	М		Not Reported
CY	168	NA	М		Not Reported
CY	169	NA	М		Not Reported
CY	171	NA	М		Not Reported
CY	172	NA	М		Not Reported
CY	173	NA	М		Not Reported
CY	175	NA	М		Not Reported
CY	176	NA	М		Not Reported

CY	177	NA	M	Not Reported
CY	180	NA	M	Not Reported
CY	181	NA	M	Not Reported
CY	197	NA	M	Not Reported
CY	202	NA	M	Not Reported
CY	203	NA	M	Not Reported
CY	205	NA NA	M	Not Reported
CY	222	NA	M	Not Reported
CY	223	NA NA	M	Not Reported
CY	224	NA NA	M	Not Reported
CY	226	NA	M	Not Reported
CY	227	NA	M	Not Reported
CY	228	NA NA	M	Not Reported
CY	230	NA NA	M	Not Reported
CY	235	NA	M	Not Reported
CY	236	NA	M	Not Reported
CY	249	NA NA	M	Not Reported
CY	254	NA NA	M	Not Reported
CY	264	NA NA	M	Not Reported
CY	276	NA	M	Not Reported
CY	283	NA	M	Not Reported
CY	304	NA	M	Not Reported
CY	305	NA NA	M	Not Reported
CY	321	NA NA	M	Not Reported
CY	338	NA NA	M	Not Reported
CY	349	NA NA	M	Not Reported
CY	387	NA NA	M	Not Reported
CY	391	NA NA	M	Not Reported
CY	512	NA NA	M	Not Reported
CY	529	NA NA	M	Not Reported
CY	537	NA NA	M	Not Reported
CY		NA NA	M	·
CY	546			Not Reported
	562	NA	M	Not Reported
CY	579	NA	M	Not Reported
CY	604	NA	M	Not Reported
CY	607	NA	M	Not Reported
CY	609	NA	M	Not Reported
CY	614	NA	M	Not Reported
CY	617	NA	M	Not Reported
CY	623	NA	M	Not Reported
CY	626	NA	M	Not Reported
CY	638	NA	M	Not Reported
CY	675	NA	M	Not Reported
CY	679	NA	M	Not Reported
CY	713	NA	M	Not Reported
CY	714	NA	M	Not Reported
CY	721	NA	M	Not Reported

CY	746	NA	М		Not Reported
CY	781	NA	М		Not Reported
CY	807	NA	М		Not Reported
CY	900	NA	М		Not Reported
CY	901	NA	M		Not Reported
CY	902	NA	М		Not Reported
CY	903	NA	М		Not Reported
CY	904	NA	М		Not Reported
CY	906	NA	М		Not Reported
CY	907	NA	М		Not Reported
CY	908	NA	М		Not Reported
CY	909	NA	М		Not Reported
CY	910	NA	М		Not Reported
CY	911	NA	М		Not Reported
CY	930	NA	М		Not Reported
CY	963	NA	М		Not Reported
CY	A39	NA	М		Not Reported
CY	AAG	NA	М		Not Reported
GJ	011	50	М		·
GJ	014	0.1	М	AL	Action Level
GJ	024	0.75	М		
GJ	028	NT	М		
GJ	033	NT	М		
GJ	042	5.0	М		all fruits
GJ	044	0.01	М	AL	Action Level
GJ	050	1	М	AL	Action Level
GJ	052	8	М		
GJ	055	14	М		
GJ	057	1	М		
GJ	065	1	M		
GJ	069	0.5	M		
GJ	083	NT	M		
GJ	102	10	М		
GJ	107	NT	M		
GJ	108	5	М		
GJ	114	NT	M		
GJ	117	NT	М		
GJ	125	NT	М		
GJ	126	25	М		
GJ	134	NT	М		
GJ	143	0.01	М	AL	Action Level
GJ	144	10	М		
GJ	148	NT	М		
GJ	149	0.25	М		
GJ	151	0.05	М		
GJ	152	NT	М		
GJ	157	NT	М		

GJ	159	5	M	
GJ	160	0.5	M	
GJ	163	NT	М	
GJ	164	NT	M	
GJ	165	10	М	
GJ	166	10.0	М	
GJ	167	NT	М	
GJ	168	NT	М	
GJ	169	NT	M	
GJ	170	0.05	M	
GJ	171	1	M	
GJ	176	NT	М	
GJ	178	1	М	
GJ	180	0.2	М	
GJ	189	NT	М	
GJ	190	NT	M	
GJ	195	NT	М	
GJ	197	NT	М	
GJ	203	NT	М	
GJ	204	0.02	М	
GJ	205	NT	М	
GJ	216	NT	М	
GJ	222	NT	М	
GJ	223	NT	М	
GJ	236	0.10	М	
GJ	245	0.1	М	
GJ	253	5	М	
GJ	254	5	М	
GJ	275	14	М	
GJ	304	NT	М	
GJ	305	NT	M	
GJ	321	NT	М	
GJ	330	NT	М	
GJ	338	0.5	M	
GJ	382	10	M	
GJ	387	NT	M	
GJ	512	0.2	M	
GJ	529	NT	M	
GJ	537	NT	M	
GJ	540	0.1	M	
GJ	546	0.05	M	
GJ	547	5.0	M	
GJ	562	NT	M	
GJ	578	0.5	M	
GJ	579	0.5	M	
GJ	596	0.1	M	
	604	NT	M	

GJ	607	2.0	М		
GJ	608	1.0	M		
GJ	623	10	M		
GJ	626	60.0	M		
GJ	679	1.0	M		
GJ	692	NT	M		
GJ	714	0.05	M		
GJ	720	0.1	M		
GJ	745	0.10	M		
GJ	746	0.10	M		
GJ	900	2.0	M		f & v = 2
GJ	901	2.0	M		
GJ	902	2.0	M		
GJ	906	0.05	M	AL	Action Level
GJ	908	0.05	M	AL	Action Level
GJ	910	0.05	M	AL	Action Level
GJ	963	NT	M		7.00.00.
LT	011	100	M		
LT	024	0.7	М		
LT	028	0.03	М	AL	Action Level
LT	042	NT	М		
LT	044	0.01	М	AL	Action Level
LT	050	3	М	AL	Action Level
LT	052	8	М		
LT	055	14	М		
LT	057	1	М		
LT	065	1	М		
LT	069	0.5	М		
LT	083	NT	М		
LT	102	10	М		leafy veg
LT	107	NT	М		
LT	108	NT	М		
LT	114	NT	М		
LT	117	0.75	М		changed 6/26
LT	125	NT	М		
LT	126	50	М		
LT	134	2	М		
LT	143	0.01	М	AL	Action Level
LT	144	10	М		
LT	148	NT	М		
LT	149	NT	М		
LT	151	0.05	М		
LT	152	NT	М		
LT	157	NT	M		
LT	159	5	M		
LT	160	1	M		
LT	164	NT	M		

	105	NIT	NA	I
LT	165	NT	M	
LT	166	NT	M	
LT	167	NT	M	
LT	168	NT	M	
LT	169	NT	M	
LT	170	1.0	M	
LT	171	2	M	
LT	176	NT	M	
LT	178	2	M	
LT	180	NT	M	
LT	189	NT	M	
LT	195	NT	M	
LT	197	NT	M	
LT	203	NT	M	
LT	204	10	M	
LT	205	NT	M	
LT	216	0.75	M	changed 6/26
LT	222	20.0	M	
LT	223	20.0	M	
LT	236	NT	М	
LT	245	2	M	
LT	253	NT	M	
LT	254	NT	М	
LT	275	14	М	
LT	304	NT	M	
LT	305	NT	M	
LT	321	NT	M	
LT	330	NT	M	
LT	338	0.5	M	
 LT	387	NT	M	
LT	512	NT	M	
LT	529	10.0	M	
LT	537	NT	M	
LT	540	1.0	M	
LT	546	0.05	M	
LT	547	NT	M	
LT				
LT	578 579	0.5	M	
LT		0.5		
	596	NT	M	
LT	604	NT 5.0	M	
LT	607	5.0	M	
LT	608	NT	M	
LT	623	NT	M	
LT	626	25.0	M	
LT	679	NT	M	
LT	714	5.0	M	
LT	720	NT	M	

	745	NIT	D 4		
LT	745	NT	M		
LT	900	2.0	M		
LT	901	2.0	M		
LT	902	2.0	M		
LT	906	0.5	M	AL	Action Level
LT	908	0.5	M	AL	Action Level
LT	910	0.5	M	AL	Action Level
LT	963	NT	M		
OA	001	0.03	M	AL	Action Level
OA	002	2	M		
OA	028	0.03	М	AL	Action Level
OA	032	1	М		
OA	042	0.2	М		
OA	044	0.01	М	AL	Action Level
OA	050	0.1	М	AL	Action Level
OA	052	8	М		
OA	057	1	M		
OA	065	1	M		
OA	070	8	M		
OA	102	NT	M		
OA	117	0.75	M		
OA	129	NT	M		
OA	143	0.01	M	AL	Action Level
OA	151	0.05	M	AL	Action Level
OA	151	1	M		
OA	180	0.1	M		
OA	200	NT	M		
		8	M		
OA	208				
OA	216	0.75	M		
OA	235	6.0	M		
OA	264	0.1	M		
OA	275	2	M		
OA	283	0.1	M		
OA	338	0.5	M		
OA	370	1	M		
OA	382	NT	M		
OA	512	0.1	M		
OA	607	0.2	M		
OA	638	0.05	M		
OA	779	1	M		
OA	900	0.1	M		
OA	901	0.1	М		
OA	902	0.1	М		
OA	903	0.05	М	AL	Action Level
OA	904	0.05	М	AL	Action Level
OA	905	0.05	М		
OA	906	0.5	М	AL	Action Level

OA	908	0.5	M	AL	Action Level
OA	910	0.5	M	AL	Action Level
OA	967	0.05	M		
OA	A46	0.1	М		
OA	A58	0.05	М		
PE	011	25	М		
PE	014	0.1	М	AL	Action Level
PE	024	0.5	M	7.=	7.0
PE	028	0.03	M	AL	Action Level
PE	033	NT	M	/L	Action Level
PE					
	042	2.0	M	A.1	A .: 1
PE	044	0.01	M	AL	Action Level
PE	050	1	M	AL	Action Level
PE	052	8	M		
PE	055	14	M		
PE	057	1	M		
PE	065	1	M		
PE	069	NT	М		
PE	083	25.0	М		
PE	102	10.0	М		
PE	107	NT	M		
PE	108	5	M		
PE	114	NT	M		
PE	117	NT	M		
PE	125	10	M		
PE	126	NT	M		
PE	134	NT	M	Α.Ι	Antina Laval
PE	143	0.01	M	AL	Action Level
PE	144	NT	M		
PE	148	NT	M		
PE	149	0.25	M		
PE	151	NT	M		
PE	152	0.1	M		
PE	157	10	М		
PE	159	4.0	М		
PE	160	0.05	М		
PE	163	NT	М		
PE	164	NT	M		
PE	165	10	M		
PE	166	10.0	M		
PE	167	NT	M		
PE	168	NT	M		
PE	169	NT	M		
PE	170	0.05	M		
PE	171	2	M		
PE	175	NT	M		
PE	176	NT	M		

PE	178	2	M	
PE	180	NT	M	
PE	189	NT	M	
PE	190	NT	M	
PE	195	NT	M	
PE	197	0.05	M	
PE	203	NT	M	
PE	204	0.02	M	
PE	205	NT	M	
PE	216	NT	M	
PE	222	3.0	M	
PE	223	3.0	M	
PE	236	NT	M	
PE	245	0.3	M	
PE	253	5	M	
PE	254	5	M	changed 6/26
PE	275	14	M	onanged 0/20
PE	304	NT	M	
PE	305	NT	M	
PE	321	NT	M	
PE	330	NT	M	
PE	338	0.5	M	
PE	351	NT	M	
PE	387	NT	M	
PE	512	NT	M	
PE	529	NT	M	
PE	537	2.0	M	
PE	540	0.1	M	
PE	546	2.0	M	
PE	547	2.0	M	
PE	578	NT	M	
PE	579	NT	M	
PE	596	0.1	M	
PE	596	NT	M	
PE	604	NT	M	
PE	607	NT	M	
PE	608	1.0	M	
PE	623	NT	M	
PE	626	NT	M	
PE	679	NT	M	
PE	692	NT	M	
PE	714	0.05	M	
PE	714	0.05	M	
PE	745	NT	M	
PE PE	746	NT	M	
	900	2.0	M	
PE	901	2.0	M	

PE	902	2.0	M		
PE	906	0.1	M	AL	Action Level
PE	907	0.1	M	AL	Action Level
PE	908	0.1	М	AL	Action Level
PE	910	0.1	М	AL	Action Level
PE	963	NT	М		
PP	001	0.05	М	AL	Action Level
PP	011	25	М		
PP	024	0.5	M		
PP	028	0.05	M	AL	Action Level
PP	032	1	M	/ (_	/ CHOIT LEVE!
PP	033	NT	M		
PP	034	NT	M		
PP					
	042	0.3	M	A 1	Astion Lovel
PP	044	0.01	M	AL	Action Level
PP	050	1	M	AL	Action Level
PP	052	8	М		pepper = 0.5
PP	055	14	M		
PP	057	1	M		
PP	065	1	M		
PP	069	0.25	M		
PP	070	NT	М		
PP	083	10	М		
PP	102	10	М		for peppers= 5
PP	107	NT	М		
PP	108	NT	М		
PP	114	NT	М		
PP	117	0.1	М		vegetables = 0.5
PP	124	NT	М		
PP	125	NT	M		
PP	126	NT	M		
PP	129	NT	M		
PP	134	2	M		
PP	143	0.01	M	AL	Action Level
PP	143	NT	M	AL	ACIION LEVEI
PP	147	NT	M		
PP	148	NT	M		
PP	149	NT	M		
PP	151	0.05	M		
PP	152	NT	M		
PP	157	NT	М		
PP	159	2	М		pepper =1
PP	160	1.0	М		peppers =0.5
PP	163	0.1	М		
PP	164	NT	М		
PP	165	NT	М		
PP	166	NT	М		

PP	167	NT	M		
PP	168	NT	M		
PP	169	NT	M		
PP	170	1.0	M		
PP	171	2	M		pepper = 1
PP	172	0.1	M	AL	Action Level
PP	173	0.1	M	AL	Action Level
PP	174	NT	M		
PP	176	NT	M		
PP	177	NT	M		
PP	178	2	M		pepper = 1
PP	180	0.2	М		
PP	189	NT	М		
PP	190	NT	М		
PP	192	0.2	М		
PP	195	NT	М		
PP	197	NT	М		
PP	202	NT	М		
PP	203	NT	М		pepper = 0.2
PP	204	4.0	М		
PP	205	NT	М		
PP	208	8	М		
PP	216	0.1	М		
PP	217	NT	М		
PP	222	1.0	М		pepper = 1
PP	223	1.0	М		pepper = 1
PP	224	NT	М		
PP	226	NT	М		
PP	231	NT	М		
PP	233	NT	М		
PP	235	NT	М		peppers = 0.5
PP	236	0.6	М		
PP	245	0.75	М		
PP	253	5	М		pepper = 1
PP	254	5	М		pepper = 1
PP	275	14	М		
PP	276	14	М		
PP	304	0.1	М		
PP	305	NT	M		
PP	321	0.1	М		
PP	330	0.1	M		
PP	338	0.5	M		
PP	349	0.1	M	AL	Action Level
PP	370	1	M		
PP	377	NT	M		
PP	382	10	M		
PP	387	0.1	M		

PP	391	NT	М		pepper = 0.1
PP	395	0.5	М		
PP	512	0.2	М		
PP	529	3.0	М		
PP	537	3	М		
PP	538	NT	М		
PP	539	1.0	M		pepper = 1
PP	540	NT	М		
PP	546	1.0	М		
PP	547	0.3	M		
PP	562	NT	M		pepper = 1
PP	578	0.25	М		
PP	579	0.25	М		
PP	580	NT	М		
PP	593	NT	М		pepper = 5
PP	596	NT	М		
PP	597	NT	M		pepper = 0.5
PP	604	NT	М		
PP	607	1.0	М		pepper = 1
PP	608	NT	М		
PP	609	NT	М		
PP	614	NT	М		
PP	616	NT	М		
PP	617	NT	М		
PP	623	NT	M		
PP	624	25	М		
PP	626	NT	М		
PP	648	NT	M		
PP	679	1.0	М		
PP	692	0.1	М		
PP	713	NT	M		
PP	714	0.05	M		
PP	720	NT	М		
PP	721	NT	М		
PP	745	0.6	М		
PP	746	0.6	М		
PP	768	NT	М		
PP	779	1	М		
PP	781	0.50	М		
PP	808	NT	М		
PP	858	NT	М		
PP	900	2.0	М		f & v = 2
PP	901	2.0	М		
PP	902	2.0	М		
PP	903	0.05	М	AL	Action Level
PP	904	0.05	М	AL	Action Level
PP	905	0.05	М		

PP	906	0.1	М	AL	Action Level
PP	907	0.1	М	AL	Action Level
PP	908	0.1	М	AL	Action Level
PP	909	0.1	М	AL	Action Level
PP	910	0.1	М	AL	Action Level
PP	911	0.1	М		
PP	928	NT	М		
PP	930	NT	М		
PP	963	NT	М		
PP	966	NT	М		
PP	A39	0.01	М		
PP	AAG	0.01	М		
PP	AAX	NT	М		
PX	024	0.5	М		
PX	042	2.0	М		
PX	052	8	М		
PX	057	1	М		
PX	065	1	М		
PX	069	NT	М		
PX	107	NT	М		
PX	117	NT	М		
PX	148	NT	М		
PX	160	0.05	М		
PX	163	NT	М		
PX	165	10	М		
PX	166	10.0	М		
PX	170	0.05	М		
PX	171	2	М		
PX	175	NT	М		
PX	176	NT	М		
PX	178	2	М		
PX	189	NT	М		
PX	190	NT	М		
PX	197	0.05	М		
PX	203	NT	М		
PX	204	0.02	M		
PX	205	NT	М		
PX	216	NT	М		
PX	236	NT	М		
PX	245	0.3	М		
PX	338	0.5	М		
PX	547	2.0	М		
PX	578	NT	М		
PX	579	NT	М		
PX	692	NT	М		
PX	745	NT	М		
PX	963	NT	М		

SF	001	0.05	М	AL	Action Level
SF	011	100	М		
SF	024	0.7	М		
SF	028	0.05	М	AL	Action Level
SF	032	NT	М		
SF	033	NT	М		
SF	034	NT	M		
SF	042	2.0	M		
SF	044	0.01	M	AL	Action Level
SF	050	1	M	AL	Action Level
SF	052	8	M	/ (_	71011011 20101
SF	055	14	M		
SF	057	1	M		
SF	065	<u></u>	M		
SF	069	1.0	M		
SF		NT			
SF SF	070 083	NT	M		
SF SF	102	12	M		
SF					
	107	NT	M		
SF	108	NT	M		
SF	114	NT 0.75	M		
SF	117	0.75	M		vegetables = 0.5
SF	124	NT	M		
SF	125	NT	M		
SF	126	NT	M		
SF	129	NT	M		
SF	134	NT	M		
SF	143	0.01	M	AL	Action Level
SF	144	NT	M		
SF	147	NT	M		
SF	148	NT	M		
SF	149	NT	M		
SF	151	0.05	М		
SF	152	NT	М		
SF	157	NT	М		
SF	159	6	М		
SF	160	NT	М		
SF	163	0.1	М		
SF	164	NT	М		
SF	165	NT	М		
SF	166	NT	М		
SF	167	NT	М		
SF	168	NT	М		
SF	169	NT	M		
SF	170	0.05	M		
SF	171	2	M		
SF	172	0.1	M	AL	Action Level
J .					

SF	173	0.1	М	AL	Action Level
SF	174	NT	М		
SF	175	NT	М		
SF	176	NT	М		
SF	177	NT	М		
SF	178	2	М		
SF	180	NT	М		
SF	189	NT	М		
SF	190	NT	М		
SF	195	NT	М		
SF	197	NT	М		
SF	202	NT	М		
SF	203	NT	М		
SF	204	0.02	М		
SF	205	NT	М		
SF	208	8	М		
SF	216	0.75	М		
SF	217	NT	М		
SF	222	20.0	М		
SF	223	20.0	М		
SF	224	NT	М		
SF	226	NT	М		
SF	231	NT	М		
SF	233	NT	М		
SF	235	NT	М		
SF	236	NT	М		
SF	245	NT	М		
SF	253	NT	М		
SF	254	NT	М		
SF	276	14	М		
SF	304	NT	М		
SF	305	NT	М		
SF	321	NT	М		
SF	330	NT	М		
SF	338	0.5	М		
SF	349	0.1	М	AL	Action Level
SF	351	NT	М		
SF	370	1	М		
SF	377	NT	М		
SF	387	NT	М		
SF	391	NT	М		
SF	395	0.7	М		
SF	512	NT	М		
SF	529	NT	М		
SF	537	NT	М		
SF	538	NT	М		
SF	539	20.0	М		

SF	540	NT	M		
SF	546	NT	М		
SF	547	2.0	М		
SF	562	NT	М		
SF	578	1.0	М		
SF	579	1.0	М		
SF	580	NT	М		
SF	593	NT	М		
SF	596	NT	М		
SF	597	NT	М		
SF	604	NT	М		
SF	607	5.0	М		
SF	608	NT	М		
SF	609	NT	М		
SF	614	NT	М		
SF	616	NT	М		
SF	617	NT	М		
SF	623	NT	М		
SF	624	100	М		
SF	626	NT	М		
SF	648	NT	М		
SF	679	NT	М		
SF	692	0.1	M		
SF	713	NT	M		
SF	714	0.05	M		
SF	720	NT	M		
SF	721	NT	M		
SF	745	NT	М		
SF	746	NT	M		
SF	768	NT	М		
SF	779	1	M		
SF	781	NT	M		
SF	808	NT	M		
SF	858	NT	M		
SF	900	2.0	M		f & v = 2
SF	901	2.0	M		
SF	902	2.0	M		
SF	903	0.05	M	AL	Action Level
SF	904	0.05	M	AL	Action Level
SF	905	0.05	M		
SF	906	0.5	M	AL	Action Level
SF	907	0.5	M	AL	Action Level
SF	908	0.5	M	AL	Action Level
SF	909	0.5	M	AL	Action Level
SF	910	0.5	M	AL	Action Level
SF	911	0.5	M		
SF	928	NT	M		

SF	930	NT	M		
SF	963	NT	M		
SF	966	NT	M		
SF	A39	0.01	M		
SF	AAG	0.01	M		
SF	AAX	NT	M		
ST	001	0.05	M	AL	Action Level
ST	011	25	M	7 12	7 (011011 2010)
ST	023	NT	M		
ST	024	0.5	M		
ST	028	0.05	M	AL	Action Level
ST	032	NT	M		
ST	033	NT	M		
ST	034	NT	M		
ST	042	2.0	М		
ST	044	0.01	М	AL	Action Level
ST	050	1	М	AL	Action Level
ST	052	8	М		
ST	055	14	М		
ST	057	1	М		
ST	063	NT	М		
ST	065	1	M		
ST	069	1.0	М		
ST	070	NT	М		
ST	083	NT	М		
ST	102	10	M		
ST	107	NT	М		
ST	108	5	М		
ST	114	NT	M		
ST	117	NT	M		
ST	124	NT	M		
ST	125	NT	M		
ST	126	25	M		
ST	129	NT	M		
ST	134	2	M		
ST	143	0.01	M	AL	Action Level
ST	144	NT	M		
ST	147	NT	М		
ST	148	NT	M		
ST	149	0.25	M		
ST	151	NT	M		
ST	152	0.1	M		
ST	157	5.0	M		
ST	159	2	M		
ST	160	0.2	M		
ST	163	0.1	M		
ST	164	NT	M		

ST	165	NT	M		
ST	166	NT	М		
ST	167	NT	М		
ST	168	NT	М		
ST	169	NT	М		
ST	170	0.05	М		
ST	171	NT	М		
ST	172	0.1	М	AL	Action Level
ST	173	0.1	М	AL	Action Level
ST	174	NT	М		
ST	175	NT	М		
ST	176	NT	М		
ST	177	NT	М		
ST	178	NT	М		
ST	180	0.2	М		
ST	189	NT	М		
ST	190	NT	М		
ST	192	5.0	М		
ST	195	NT	M		
ST	197	NT	М		
ST	202	NT	M		
ST	203	NT	М		
ST	204	0.02	М		
ST	205	NT	М		
ST	208	8	М		
ST	216	NT	М		
ST	217	NT	М		
ST	222	NT	M		
ST	223	NT	M		
ST	224	NT	M		
ST	226	NT	M		
ST	231	15	M		
ST	233	NT	M		
ST	235	NT	M		
ST	236	0.6	M		
ST	245	2	M		
ST	253	5	M		
ST	254	5	М		
ST	276	14	M		
ST	304	NT	M		
ST	305	NT	M		
ST	315	NT	M		
ST	321	NT	M		
ST	330	1	M		
ST	338	0.5	M		
ST	349	0.1	M	AL	Action Level
ST	351	NT	M		

O-T	070		2.4	
ST	370	1	M	
ST	377	NT	M	
ST	387	0.1	M	
ST	391	NT	M	
ST	395	0.5	M	
ST	512	0.2	M	
ST	529	10	M	
ST	537	NT	M	
ST	538	NT	M	
ST	539	NT	M	
ST	540	NT	M	
ST	546	0.05	М	
ST	547	2.0	М	
ST	558	NT	М	
ST	562	NT	М	
ST	578	1.0	М	
ST	579	1.0	M	
ST	580	NT	M	
ST	593	NT	M	
ST	596	NT	M	
ST	597	NT	M	
ST	604	NT	M	
ST	607	10.0	M	
ST	608	NT	M	
ST	609	NT	M	
ST	614	NT	M	
ST	616	NT	M	
ST	617	NT	M	
ST		NT		
	623		M	
ST	624	25	M	
ST	626	15 N.T.	M	
ST	648	NT	M	
ST	679	0.5	M	
ST	692	0.1	M	
ST	713	0.05	M	section 18
ST	714	0.05	M	
ST	720	NT	M	
ST	721	NT	M	
ST	745	0.6	M	
ST	746	0.6	M	
ST	768	NT	M	
ST	779	1	М	
ST	781	NT	М	
ST	808	2.0	М	
ST	858	NT	М	
ST	900	2.0	М	f & v = 2
ST	901	2.0	М	

ST	902	2.0	М		
ST	903	0.05	М	AL	Action Level
ST	904	0.05	М	AL	Action Level
ST	905	0.05	М		
ST	906	0.1	М	AL	Action Level
ST	907	0.1	М	AL	Action Level
ST	908	0.1	М	AL	Action Level
ST	909	0.1	М	AL	Action Level
ST	910	0.1	М	AL	Action Level
ST	911	0.1	М		
ST	928	NT	М		
ST	930	3.00	М		
ST	963	NT	М		
ST	966	NT	М		
ST	A39	0.01	М		
ST	AAG	0.01	М		
ST	AAX	NT	M		
SZ	001	0.05	М	AL	Action Level
SZ	011	25	М		
SZ	024	0.5	М		
SZ	028	0.05	М	AL	Action Level
SZ	033	NT	М		
SZ	034	NT	М		
SZ	042	2.0	М		
SZ	044	0.01	М	AL	Action Level
SZ	050	1	М	AL	Action Level
SZ	052	8	М		
SZ	055	14	М		
SZ	057	1	М		
SZ	065	1	М		
SZ	069	1.0	М		
SZ	070	NT	М		
SZ	083	NT	М		
SZ	102	10	М		
SZ	107	NT	М		
SZ	108	5	М		
SZ	114	NT	М		
SZ	117	NT	М		
SZ	125	NT	М		
SZ	126	25	М		
SZ	129	NT	М		
SZ	134	2	М		
SZ	143	0.01	М	AL	Action Level
SZ	144	NT	М		
SZ	148	NT	М		
SZ	149	0.25	М		
SZ	151	NT	М		

SZ	152	0.1	M	
SZ	157	5.0	M	
SZ	159	2	M	
SZ	160	0.2	M	
SZ	163	0.2	M	
SZ	164	NT	M	
SZ	165	NT	M	
SZ	166	NT	M	
SZ	167	NT	M	
SZ	168	NT	M	
SZ	169	NT	M	
SZ	170	0.05	M	
SZ	171	NT	M	
SZ	174	NT	M	
SZ	175	NT	M	
SZ	176	NT	M	
SZ	178	NT	M	
SZ	180	0.2	M	
SZ	189	NT	M	
SZ	190	NT	M	
SZ	192	5.0	М	
SZ	195	NT	M	
SZ	197	NT	M	
SZ	203	NT	М	
SZ	204	0.02	М	
SZ	205	NT	M	
SZ	216	NT	M	
SZ	222	NT	M	
SZ	223	NT	М	
SZ	224	NT	M	
SZ	236	0.6	M	
SZ	245	2	M	
SZ	254	5	M	
SZ	304	NT	M	
SZ	305	NT	M	
SZ	321	NT	M	
SZ	330	1	M	
SZ	338	0.5	M	
SZ	351	NT	M	
SZ	387	0.1	M	
SZ	512	0.1	M	
SZ	529	10	M	
SZ	537	NT	M	
SZ	539	NT	M	
SZ	540	NT	M	
			M	
SZ	546	0.05		
SZ	547	2.0	M	

SZ	562	NT	M		
SZ	578	1.0	M		
		1.0	M		
SZ	579				
SZ	593	NT	M		
SZ	596	NT	M		
SZ	597	NT	M		
SZ	604	NT	M		
SZ	608	NT	M		
SZ	623	NT	M		
SZ	626	15	M		
SZ	679	0.5	M		
SZ	692	0.1	M		
SZ	714	0.05	M		
SZ	720	NT	M		
SZ	745	0.6	М		
SZ	808	2.0	М		
SZ	900	2.0	М		f & v = 2
SZ	901	2.0	М		
SZ	902	2.0	М		
SZ	906	0.1	М	AL	Action Level
SZ	907	0.1	М	AL	Action Level
SZ	908	0.1	М	AL	Action Level
SZ	910	0.1	М	AL	Action Level
SZ	930	3.00	М		
SZ	963	NT	M		
TC	001	0.05	M	AL	Action Level
TC	011	25	M	7.=	7.00.0 =0.10.
TC	024	0.75	M		
TC	028	0.05	M	AL	Action Level
TC	033	NT	M	/ _	7 totion Lovei
TC	034	NT	M		
TC	042	2.0	M		
TC	044	0.01	M	AL	Action Level
TC	050	3	M	AL	Action Level
TC	050	8	M	//L	ACION LEVEI
TC	052	8 14	M		
TC	057	1	M		
TC	065	1	M		
TC	069	0.2	M		
TC	070	8	M		
TC	083	10	M		
TC	102	10	M		
TC	107	NT	M		
TC	108	1	M		
TC	114	NT	M		
TC	117	0.75	M		
TC	124	NT	M		

TC	125	NT	M		
TC	126	25	M		
TC	129	NT	М		
TC	134	1	M		
TC	143	0.01	M	AL	Action Level
TC	144	5	M		
TC	147	NT	M		
TC	148	NT	M		
TC	149	NT	M		
TC	151	0.05	M		
TC	152	NT	M		
TC	157	NT	M		
TC	159	1	M		
TC	160	0.5	M		
TC	163	0.1	M		
TC	164	5	М		
TC	165	NT	М		
TC	166	NT	М		
TC	167	NT	М		
TC	168	NT	М		
TC	169	NT	М		
TC	170	1.0	М		0.01 tree TO
TC	171	2	М		
TC	172	0.1	М	AL	Action Level
TC	173	0.1	М	AL	Action Level
TC	174	15	М		
TC	176	NT	М		
TC	177	NT	М		
TC	178	2	М		
TC	180	NT	M		
TC	189	NT	M		
TC	190	NT	M		
TC	195	NT	M		
TC	197	NT	M		
TC	202	NT	M		
TC	203	NT	M		
TC	204	0.02	M		0.5 for tree TO
TC	204	NT	M		0.0 101 1166 10
TC	208	8	M		
TC	216	0.75	M		
TC	217	NT	M		
TC	222	2	M		
TC	223	2	M		
TC	223	NT	M		
TC		NT			
TC	226	NT	M		
	231				
TC	233	NT	M		

TC	235	NT	М		
TC	236	NT	M		
TC	245	NT	M		
TC	253	5	M		
TC	254	5	M		
TC	275	14	M		
TC	276	14	M		
TC	304	0.1	M		
TC	305	NT	M		
TC	321	0.1	M		
TC	330	0.1	M		
TC	338	0.5	M		
TC	349	0.1	М	AL	Action Level
TC	370	1	М		
TC	377	NT	М		
TC	382	10	М		
TC	387	NT	М		
TC	391	NT	М		
TC	395	0.75	М		
TC	512	NT	М		
TC	529	NT	М		
TC	537	2	M		
TC	538	NT	M		
TC	539	2	M		
TC	540	NT	M		
TC	546	1.0	M		
TC	547	2.0	M		
TC	562	NT	M		
TC	578	0.2	M		
TC	579	0.2	M		
TC	580	NT	M		
TC					
	593	NT	M		
TC	596	NT	M		
TC	597	NT	M		
TC	604	NT	M		
TC	607	1.0	M		
TC	608	NT	M		
TC	609	NT	M		
TC	614	NT	M		
TC	616	NT	M		
TC	617	NT	M		
TC	623	NT	M		
TC	624	25	М		
TC	626	NT	М		
TC	648	NT	M		
TC	679	0.3	М		
TC	692	0.1	M		

TC	713	NT	М		
TC	714	0.05	М		
TC	720	NT	М		
TC	721	NT	М		
TC	745	NT	М		
TC	746	NT	М		
TC	768	NT	М		
TC	779	1	М		
TC	781	0.20	М		
TC	808	0.6	М		
TC	858	NT	М		
TC	900	2.0	М		f & v = 2
TC	901	2.0	М		
TC	902	2.0	М		
TC	903	0.05	М	AL	Action Level
TC	904	0.05	М	AL	Action Level
TC	905	0.05	М		
TC	906	0.05	М	AL	Action Level
TC	907	0.05	М	AL	Action Level
TC	908	0.05	М	AL	Action Level
TC	909	0.05	М	AL	Action Level
TC	910	0.05	М	AL	Action Level
TC	911	0.05	М		
TC	928	NT	М		
TC	930	NT	М		
TC	963	NT	М		
TC	966	NT	М		
TC	A39	0.1	М		
TC	AAG	0.1	М		
TC	AAX	NT	М		
TO	001	0.05	М	AL	Action Level
TO	011	25	М		
TO	024	0.75	М		
TO	028	0.05	М	AL	Action Level
TO	032	NT	М		
TO	033	NT	М		
TO	034	NT	М		
TO	042	2.0	М		
TO	044	0.01	М	AL	Action Level
TO	050	3	М	AL	Action Level
TO	052	8	М		
TO	055	14	М		
TO	057	1	М		
TO	065	1	М		
TO	069	0.2	М		
TO	070	8	М		
TO	083	10	М		

Τ0	400	10			
TO	102	10	M		
TO	107	NT	M		
TO	108	1	M		
TO	114	NT	M		
TO	117	0.75	М		
ТО	124	NT	M		
TO	125	NT	M		
TO	126	25	M		
TO	129	NT	M		
TO	134	1	M		
TO	143	0.01	M	AL	Action Level
TO	144	5	M		
TO	147	NT	M		
TO	148	NT	M		changed 6/26
TO	149	NT	M		
TO	151	0.05	M		
TO	152	NT	М		
TO	157	NT	M		
TO	159	1	М		
TO	160	0.5	М		
TO	163	0.1	М		
TO	164	5	М		
TO	165	NT	М		
TO	166	NT	М		
TO	167	NT	М		
TO	168	NT	М		
TO	169	NT	М		
TO	170	1.0	М		0.01 tree TO
TO	171	2	М		
TO	172	0.1	М	AL	Action Level
TO	173	0.1	М	AL	Action Level
TO	174	15	М		
TO	176	NT	М		
TO	177	NT	М		
TO	178	2	М		
TO	180	NT	M		
TO	189	NT	M		changed 6/26
TO	190	NT	M		changed 6/26
TO	195	NT	M		5syou 0,20
TO	197	NT	M		
TO	202	NT	M		
TO	203	NT	M		
TO	204	0.02	M		0.5 for tree TO
TO	205	NT	M		0.0 101 1100 10
TO	208	8	M		
TO	216	0.75	M		
TO	217	NT	M		
10	411	INI	IVI		

TO	222	2	М		
TO	223	2	М		
TO	224	NT	М		
TO	226	NT	М		
TO	235	NT	М		
TO	236	NT	М		
TO	245	NT	М		
TO	253	5	М		
TO	254	5	М		
TO	275	14	М		
TO	304	0.1	М		
TO	305	NT	М		
TO	321	0.1	М		
TO	330	0.1	М		
TO	338	0.5	М		
TO	349	0.1	M	AL	Action Level
TO	370	1	M	7 ()	7 (01.011 20 01
TO	382	10	M		
TO	387	NT	M		
TO	391	NT	M		
TO	395	0.75	M		
TO	512	NT	M		
TO	529	NT	M		
TO	537	2	M		
TO	538	NT	M		
TO	539	2	M		
TO	540	NT	M		
TO	546	1.0	M		
TO	547	2.0	M		
TO	562	NT	M		
TO					
	578	0.2	M		
TO	579	0.2	M		
TO	593	NT	M		
TO	596	NT	M		
TO	597	NT	M		
TO	604	NT	M		
TO	607	1.0	M		
TO	608	NT	M		
TO	609	NT	M		
TO	614	NT	M		
TO	616	NT	M		
TO	617	NT	M		
TO	623	NT	M		
TO	624	25	M		
TO	626	NT	M		
TO	648	NT	M		
TO	679	0.3	M		

TO	692	0.1	М		
TO	713	NT	M		
TO	714	0.05	M		
TO	720	NT	M		
TO	721	NT	M		
TO	745	NT	M		
TO	746	NT	M		
TO	779	1	M		
TO	781	0.20	M		
TO	808	0.20	M		
TO	900	2.0	M		f & v = 2
					1 & V = 2
TO	901	2.0	M		
TO	902	2.0	M	Δ1	A a Cara Lavas
TO	903	0.05	M	AL	Action Level
TO	904	0.05	M	AL	Action Level
TO	905	0.05	M		A (: : :
TO	906	0.05	M	AL	Action Level
ТО	907	0.05	M	AL	Action Level
ТО	908	0.05	M	AL	Action Level
ТО	909	0.05	M	AL	Action Level
TO	910	0.05	M	AL	Action Level
TO	911	0.05	M		
TO	928	NT	M		
TO	930	NT	M		
TO	948	0.01	M		
TO	963	NT	M		
TO	966	NT	M		
TO	A39	0.1	M		
TO	AAG	0.1	М		
TO	AAX	NT	М		
WS	011	25	М		
WS	014	0.1	М	AL	Action Level
WS	024	0.75	М		
WS	028	0.1	М	AL	Action Level
WS	033	NT	М		
WS	042	NT	M		vegetables
WS	044	0.01	M	AL	Action Level
WS	050	3	M	AL	Action Level
WS	052	8	M	, <u>, , , , , , , , , , , , , , , , , , </u>	7.00.011 20101
WS	055	14	M		
WS	057	1	M		
WS	065	1	M		
WS	069	NT	M		
WS	083	NT	M		
WS	102	10 NT	M		
WS	107	NT	M		
WS	108	1	M		

WS	114	NT	M		
WS	117	NT	M		vegetables = 0.5
WS	125	NT	M		
WS	126	NT	M		
WS	134	1	М		
WS	143	0.01	M	AL	Action Level
WS	144	NT	M		
WS	148	NT	M		
WS	149	NT	M		
WS	151	NT	M		
WS	152	NT	M		
WS	157	1	M		
WS	159	0.2	M		
WS	160	NT	M		
WS	163	NT	М		
WS	164	5	М		
WS	165	NT	М		
WS	166	NT	М		
WS	167	NT	М		
WS	168	NT	М		
WS	169	NT	М		
WS	170	0.05	М		
WS	171	NT	М		
WS	176	NT	М		
WS	178	NT	М		
WS	180	0.6	М		
WS	189	NT	М		
WS	190	NT	М		
WS	195	NT	М		
WS	197	NT	М		
WS	203	NT	М		
WS	204	0.02	М		
WS	205	NT	М		
WS	216	NT	М		vegetables = 0.5
WS	222	NT	М		
WS	223	NT	М		
WS	236	NT	М		
WS	245	0.3	М		
WS	254	5	M		
WS	275	14	М		
WS	304	NT	М		
WS	305	NT	М		
WS	321	NT	М		
WS	330	NT	М		
WS	338	0.5	M		
WS	382	10	M		
WS	387	NT	M		

WS	512	0.6	M		
WS	529	NT	М		
WS	537	2.0	М		
WS	540	NT	М		
WS	546	1.0	М		
WS	547	NT	М		
WS	562	NT	М		
WS	578	NT	М		
WS	579	NT	М		
WS	596	NT	М		
WS	604	NT	М		
WS	607	1.0	М		
WS	608	NT	М		
WS	623	NT	М		
WS	626	NT	М		
WS	679	0.3	М		
WS	692	NT	М		
WS	714	0.05	М		
WS	720	NT	М		
WS	745	NT	М		
WS	746	NT	М		
WS	900	2.0	М		f & v = 2
WS	901	2.0	М		
WS	902	2.0	М		
WS	906	0.1	М	AL	Action Level
WS	908	0.1	М	AL	Action Level
WS	910	0.1	М	AL	Action Level
WS	963	NT	М		
WZ	011	25	М		
WZ	014	0.1	М	AL	Action Level
WZ	024	0.75	М		
WZ	028	0.1	М	AL	Action Level
WZ	033	NT	М		
WZ	042	NT	М		vegetables
WZ	044	0.01	М	AL	Action Level
WZ	050	3	М	AL	Action Level
WZ	052	8	M		
WZ	055	14	М		
WZ	057	1	M		
WZ	065	1	М		
WZ	069	NT	M		
WZ	083	NT	М		
WZ	102	10	М		
WZ	107	NT	М		
WZ	108	1	М		
WZ	114	NT	М		
WZ	117	NT	М		vegetables = 0.5

WZ	125	NT	M		
WZ	126	NT	M		
WZ	134	1	M		
WZ	143	0.01	M	AL	Action Level
WZ	144	NT	M		
WZ	148	NT	M		
WZ	149	NT	M		
WZ	151	NT	M		
WZ	152	NT	M		
WZ	157	1	M		
WZ	159	0.2	M		
WZ	160	NT	M		
WZ	163	NT	M		
WZ	164	5	M		
WZ	165	NT	M		
WZ	166	NT	M		
WZ	167	NT	M		
WZ	168	NT	M		
WZ	169	NT	M		
WZ	170	0.05	M		
WZ	171	NT	M		
WZ	176	NT	M		
WZ	178	NT	M		
WZ	180	0.6	M		
WZ	189	NT	M		
WZ	190	NT	M		
WZ	195	NT	M		
WZ	197	NT	M		
WZ	203	NT	M		
WZ	204	0.02	M		
WZ	205	NT	M		
WZ	216	NT	M		vegetables = 0.5
WZ	222	NT	M		
WZ	223	NT	M		
WZ	236	NT	M		
WZ	245	0.3	M		
WZ	254	5	M		
WZ	275	14	M		
WZ	304	NT	M		
WZ	305	NT	M		
WZ	321	NT	M		
WZ	338	0.5	M		
WZ	382	10	M		
WZ	387	NT	M		
WZ	512	0.6	M		
WZ	529	NT	M		
WZ	537	2.0	M		

WZ	963	NT	M		
WZ	910	0.1	M	AL	Action Level
WZ	908	0.1	M	AL	Action Level
WZ	906	0.1	M	AL	Action Level
WZ	902	2.0	М		
WZ	901	2.0	М		
WZ	900	2.0	М		f & v = 2
WZ	746	NT	М		
WZ	745	NT	М		
WZ	720	NT	M		
WZ	714	0.05	М		
WZ	692	NT	М		
WZ	679	0.3	М		
WZ	626	NT	М		
WZ	623	NT	М		
WZ	608	NT	М		
WZ	607	1.0	М		
WZ	604	NT	М		
WZ	596	NT	M		
WZ	579	NT	М		
WZ	578	NT	М		
WZ	562	NT	М		
WZ	547	NT	М		
WZ	546	1.0	М		
WZ	540	NT	M		