Esercizio 1

Il mesone π^0 è stato scoperto inviando fotoni energetici su un bersaglio di protoni, tramite la reazione:

$$\gamma p \rightarrow \pi^0 p$$

- 1. Calcolare l'energia minima del fotone affinché questa reazione ha luogo (ignorare l'impulso di Fermi dei protoni del bersaglio);
- 2. Mettersi nelle configurazione di soglia e calcolare:
 - A. La velocità β_{cm} del centro di massa nel laboratorio;
 - B. L'energia del fotone nel sistema di riferimento del centro di massa.

[
$$m(p) = 938 \text{ MeV}, m(\pi^0) = 135 \text{ MeV}]$$

Esercizio 2

Un fascio di pioni π - con impulso nel laboratorio di 2.00 GeV decade in volo tramite:

$$\pi^- \rightarrow \mu^- \nu_\mu$$

Calcolare:

- 1. L'angolo massimo θ_{max} formato nel laboratorio dal μ^- con la direzione di volo del π^- , e l'energia del μ^- in corrispondenza di θ_{max} ;
- 2. L'energia massima E_{max} del μ^- nel laboratorio, e l'angolo che forma con il π^- quando assume E_{max} ;
- 3. Il cammino percorso in media nel laboratorio dal μ^- prima di decadere, nella configurazione di E_{max} .

$$[m(\pi^{-}) = 140 \text{ MeV}; m(\mu^{-}) = 105 \text{ MeV}; m(\nu_{\mu}) = 0, \tau_{0}(\mu^{-}) = 2.2 \cdot 10^{-6} \text{ s}]$$