The Waldschmidt constant for squarefree monomial ideals

Alexandra Seceleanu

(joint with C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Van Tuyl, T. Vu)

University of Nebraska-Lincoln

In this talk we'll focus on a squarefree monomial ideal I with primary decomposition $I = \bigcap_{i=1}^s P_i = \bigcap (x_{i_1}, \dots, x_{i_{t_i}})$.

In this talk we'll focus on a squarefree monomial ideal I with primary decomposition $I = \bigcap_{i=1}^s P_i = \bigcap (x_{i_1}, \dots, x_{i_{t_i}})$.

Algebra

- symbolic powers
- initial degree (alpha)
- Waldschmidt constant

In this talk we'll focus on a squarefree monomial ideal I with primary decomposition $I = \bigcap_{i=1}^s P_i = \bigcap (x_{i_1}, \dots, x_{i_{t_i}})$.

Algebra

- symbolic powers
- initial degree (alpha)
- Waldschmidt constant

Combinatorics

- hypergraph
- (hyper-vertex) coloring
- fractional chromatic number

In this talk we'll focus on a squarefree monomial ideal I with primary decomposition $I = \bigcap_{i=1}^s P_i = \bigcap (x_{i_1}, \dots, x_{i_{t_i}})$.

Algebra

- symbolic powers
- initial degree (alpha)
- Waldschmidt constant

Linear Programming

Combinatorics

- hypergraph
- (hyper-vertex) coloring
- fractional chromatic number

Symbolic powers

Definition

The *n*-th **symbolic power** $I^{(n)}$ of an ideal $I \subset R$ is

$$I^{(n)} = \bigcap_{P \in \mathsf{Ass}(I)} I^n R_P \cap R$$

If I has no embedded primes then

$$I^{(n)} = \bigcap_{P \in \mathsf{Ass}(I)} P^n R_P \cap R = \bigcap_{P \in \mathsf{Ass}(I)} P^{(n)}$$

If I has no embedded primes and every P is a complete intersection

$$I^{(n)} = \bigcap_{P \in \mathsf{Ass}(I)} P^n$$

Growth of the α -invariant

Definition

For a homogeneous ideal J we denote by $\alpha(J)$ the smallest degree of an element in a minimal set of homogeneous generators for J.

Measuring the growth for symbolic powers:

- $\alpha(I^{(m)})$ measures the growth of the degrees of elements in $I^{(n)}$
- ullet $lpha(I^{(m)})$ is a sub-additive function: since $I^{(m_1+m_2)}\supseteq I^{(m_1)}I^{(m_2)}$,

$$\alpha(I^{(m_1+m_2)}) \leq \alpha(I^{(m_1)}) + \alpha(I^{(m_2)})$$

• given a subadditive function, $\lim_{n\to\infty}\frac{\alpha(I^{(m)})}{m}=\inf\frac{\alpha(I^{(m)})}{m}$ exists.

Waldschmidt constant

Definition

Given any homogeneous ideal I, the Waldschmidt constant of I is

$$\hat{\alpha}(I) := \lim_{n \to \infty} \frac{\alpha(I^{(n)})}{n}.$$

- since $\alpha(I^{(n)}) \leq n\alpha(I)$, we have $\hat{\alpha}(I) \leq \alpha(I)$
- by Ein-Lazarsfeld-Smith, Hochster-Huneke, if e = big-height(I)

$$I^{(em)} \subseteq I^{m},$$

$$\alpha(I^{(em)}) \geq m\alpha(I)$$

$$\hat{\alpha}(I) \geq \frac{\alpha(I)}{e}$$

Computing $\hat{\alpha}$ for a squarefree monomial ideal

Example:
$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z)$$

$$x^{a}y^{b}z^{c} \in I^{(n)} = (x, y)^{n} \cap (x, z)^{n} \cap (y, z)^{n}$$

$$\Leftrightarrow \begin{cases} a + b \ge n \\ a + c \ge n \\ b + c \ge n \\ a, b, c \ge 0 \end{cases} \Leftrightarrow \begin{cases} \frac{a}{n} + \frac{b}{n} \ge 1 \\ \frac{a}{n} + \frac{c}{n} \ge 1 \\ \frac{b}{n} + \frac{c}{n} \ge 1 \\ \frac{a}{n}, \frac{b}{n}, \frac{c}{n} \ge 0 \end{cases}$$

Figure: Q(I)

$$\hat{\alpha}(I) = \min \left\{ \frac{a}{n} + \frac{b}{n} + \frac{c}{n} | \left(\frac{a}{n}, \frac{b}{n}, \frac{c}{n} \right) \in \mathcal{Q}(I) \right\} = \frac{3}{2}$$

A linear programming approach

Lemma (BCGHJNSVV)

Let $I = P_1 \cap P_2 \cap \ldots \cap P_s$ be a squarefree monomial ideal and

$$A_{i,j} = \begin{cases} 1 & \text{if } x_j \in P_i \\ 0 & \text{if } x_j \notin P_i. \end{cases}$$

Then $\hat{\alpha}(I)$ is the optimum value of the LP minimize $\mathbf{1}^T \mathbf{y}$ subject to $A\mathbf{y} \geq \mathbf{1}$ and $\mathbf{y} \geq \mathbf{0}$.

In particular, for a monomial ideal, $\hat{\alpha}(I) \in \mathbb{Q}$.

Waldschmidt constant computed

- ... in two ways
 - as a limit

$$\hat{\alpha}(I) = \lim_{n \to \infty} \frac{\alpha(I^{(n)})}{n} = \inf_{n \to \infty} \frac{\alpha(I^{(n)})}{n}$$

These two quantities are equal by our theorem.

Enter hypergraphs

Definition

There is a 1-to-1 corespondence between hypergraphs H = (V, E) and squarefree monomial ideals I(H) given by

$$\{x_{i_1},\ldots,x_{i_t}\}\in E\iff x_{i_1}\cdots x_{i_t} \text{ is a minimal generator of } I(H).$$

Fractional chromatic number

Fractional chromatic number defined

- ... in two ways
 - If H is a hypergraph with maximal independent sets $\{W_1,\ldots,W_t\}$, the fractional chromatic number $\chi_f(H)$ is the optimum value for

where
$$B_{i,j} = \begin{cases} 1 & \text{if } x_i \in W_j \\ 0 & \text{if } x_i \notin W_j. \end{cases}$$

$$2 \chi_f(H) = \lim_{b \to \infty} \frac{\chi_b(G)}{b} = \inf_b \frac{\chi_b(G)}{b}.$$

These two quantities are equal by general machinery.

Waldschmidt – fractional chromatic duality

WALDSCHMIDT CONSTANT

If $I = P_1 \cap P_2 \cap \ldots \cap P_s$, then $\hat{\alpha}(I) =$ the optimum value for

where
$$A_{i,j} = \begin{cases} 1 & \text{if } x_j \in P_i \\ 0 & \text{if } x_j \notin P_i. \end{cases}$$

FRACTIONAL CHROMATIC

If H is a hypergraph with maximal independent sets $\{W_1,\ldots,W_t\}$, $\chi_f(H)=$ the optimum value for

where
$$B_{i,j} = egin{cases} 1 & ext{if } x_i \in W_j \ 0 & ext{if } x_i
ot\in W_j. \end{cases}$$

Theorem (Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, S., Van Tuyl, Vu)

$$\widehat{\alpha}(I) = \frac{\chi_f(H(I))}{\chi_f(H(I)) - 1}.$$

Consequences

Corollary (BCGHJNSVV)

Let G be a graph with chromatic number $\chi(G)$ and clique number $\omega(G)$ (thus $\omega(G) \leq \chi_f(G) \leq \chi(G)$).

(i) Then

$$\frac{\chi(G)}{\chi(G)-1} \leq \widehat{\alpha}(I(G)) \leq \frac{\omega(G)}{\omega(G)-1}.$$

- (ii) If G is a perfect graph, then $\widehat{\alpha}(I(G)) = \frac{\chi(G)}{\chi(G)-1}$.
- (iii) If G is a complete k-partite graph, then $\widehat{\alpha}(I(G)) = \frac{k}{k-1}$.
- (iv) If G is bipartite, then $\widehat{\alpha}(I(G)) = 2$.
- (v) If $G = C_{2n+1}$ is an odd cycle, then $\widehat{\alpha}(I(C_{2n+1})) = \frac{2n+1}{n+1}$.
- (vi) If $G = C_{2n+1}^c$, then $\widehat{\alpha}(I(G)) = \frac{2n+1}{2n-1}$.