This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

BLANK (USPTO)

119403

INTERNATIONAL APPLICATION PUBL	ISHED	UNDER THE PATENT COOPERATION TREATY (PCI)
(51) International Patent Classification 6:		(11) International Publication Number: WO 98/1078
A61K 38/31, 31/54, 31/155	A2	(43) International Publication Date: 19 March 1998 (19.03.9
(21) International Application Number: PCT	r/IL97/003	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, G
(22) International Filing Date: 10 September 199	97 (10.09.9	
(30) Priority Data:	19 96)	TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GI

IL

COHEN, Yarom [IL/IL]; (71)(72) Applicant and Inventor: Hapragim Street 6, 52960 Ramat Efal (IL).

10 October 1996 (10.10.96)

(74) Agent: DR. YITZHAK HESS & PARTNERS; P.O. Box 6451, 61063 Tel Aviv (IL).

BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF SYNDROME X OF REAVEN

(57) Abstract

The present invention relates to a pharmaceutical composition comprising as active ingredient a compound selected among somatostatin or one of its analogs, diazoxide or one of its analogs, cyclothiazide or one of its analogs and metformin, for the treatment of syndrome X of Reaven (also called "Hyper Insulinemia syndrome" or "The Deadly Quartet").

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM Armenia FI Finland L.T Lithuania SK Slovakia AT Austria FR France L.U Luxembourg SN Senegal AU Australia GA Gabon L.V Latvia SZ Swaziland AZ Azerbaijan GB United Kingdom MC Monaco TD Chad BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo BB Barbados GH Ghana MG Madagascar TJ Tajkistan BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Vict Nam CG Congo KE Ke Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CC Cameroon Republic of Korea PT Portugal CC Cache Republic LC Saint Lucia RU Russian Federation DE Germany LI Lichenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden EE Estonia LR Liberia SG Singapore	AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AU Australia GA Gabon LV Latvia SZ Swaziland AZ Azerbaijan GB United Kingdom MC Monaco TD Chad BA Bosnia and Herzegovina GE Georgia MD Republic of Moklova TG Togo BB Barbados GII Ghana MG Madagascar TJ Tajikistan BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Maii TT Trinsidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe C1 Côte d'Ivoire KP Democratic People's NZ New Zealand CN China KR Republic of Korea PL Poland CC Czecch Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AU Australia GA Gabon LV Latvia SZ Swaziland AZ Azerbaijan GB United Kingdom MC Monaco TD Chad BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo BB Barbados GII Ghana MG Madagascar TJ Tajikistan BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Maii TT Trinkidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CT CM Cameroon Republic of Korea PI Potand CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CC Czecch Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo BB Barbados GH Ghana MG Madagascar TJ Tajikistan BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CM Cameroon Republic of Korea PI. Poland CN China KR Republic of Korea PI. Poland CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ		
BB Barbados GH Ghana MG Madagascar TJ Tajikistan BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Mali TT Triidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CM Cameroon Republic of Korea PI Poland CN China KR Republic of Korea PI Poland CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BB Barbados GII Ghana MG Madagascar TJ Tajikistan BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CM Cameroon Republic of Korea PI Poland CN China KR Republic of Korea PI Poland CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe C1 Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CC Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BB	Barbados	GH	Ghana	MG	Madagascar	T.J		
BG Bulgaria HU Hungary ML Mali TT Trinklad and Tobago BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CI Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PI Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BE	Belgium -	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe C1 Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PI Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BR Brazil IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe C1 Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BG	Bulgaria	. HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BY Belarus IS Iceland MW Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CI Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PI. Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CI Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PI. Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CI Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PI Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe Cl Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe Cl Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CI Côte d'Ivoire KP Democratic People's NZ New Zealand CM Cameroon Republic of Korea PI, Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia	
CM Cameroon Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	2.W	Zimbabwe	
CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CU Cuba KZ Kazakstan RO Romania CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CM	Cameroon		Republic of Korea	PL	Poland			
CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CN	China	KR	Republic of Korea	PT	Portugal			
DE Germany LI Liechtenstein SD Sudan DK Denmark LK Sri Lanka SE Sweden	CU	Cuba	KZ	Kazakstan	RO	Romania			
DK Denmark LK Sri Lanka SE Sweden	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
	DE	Germany	LI	Liechtenstein	SD	Sudan			
EE Estonia LR Liberia · SG Singapore	DK	Denmark	LK	Sri Lanka	SE	Sweden			
	EE	Estonia	LR	Liberia	SG	Singapore			

PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF SYNDROM X OF REAVEN

The present invention relates to a pharmaceutical composition comprising as active ingredient a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazideor one of its analogs (as herein defined) and metformin, for the treatment of syndrome X of Reaven (also called "Hyper Insulinemia syndrome" or "The Deadly Quartet").

Somatostatin and its analogs, e.g. octreotide, are known for the treatment of the reduction of the secretion of Insulin caused by insulimonas. Moreover, they are known for the treatment of certain tumors, gastrointestinal diseases, etc. However, their effectivity for the reduction of the resistance to insulin has so far not been known.

It is also known that Diazoxide, Cyclothiazide and Metformin achieve the reduction of the resistance to Insulin. Moreover, it is known that Metformin is used in the treatment of Diabetes and reduces risk factors in carbovascular diseases in NIDDM.

Diazoxide, Cyclothiazide and Metformin have the following formulae:

- a. Diazoxide: 7-chloro-3-methyl-24-1,2,4-benzothio-diazine 1,1-dioxide.
- b. Cyclothiazide: 3-bicyclo[2.2.1]hept-5-en-2yl-6-chloro 3,4-dihydro-2H-1,2,4-benzothiadiazine 7-sulfonamide 1,1-dioxide.
- c. Metformin: N,N-Dimethylimidodicarbonimide diamide. However, those compounds have so far not been known for the treatment of the risk factors of syndrome X of Reaven.

Syndrome X includes, inter alia, the following risk factors:
a. excessive blood pressure; b. dislipidemia, i.e. increase of
the amount of Triglycerides in the blood, reduction of the amount
of HDL and increase of the amount of LDL, c. excessive blood

coagulation due to Plasminogen Activator Inhibitor-1 (PAI-1) increased in the blood; d. central obesity; e. Glucose intolerances - from ocult Diabetes to overt Diabetes f. increase of Insulin in the blood, i.e. the pancreas secretes more Insulin in order to overcome high Insulin resistance.

All the risk fators of syndrome X of Reaven are, inter alia, caused by a high resistance to Insulin. Thus, apparently said symptoms could be treated simultaneously if there would be a reduction to the resistance to Insulin.

Said risk factors either separately but mostly in combination are decisive factors in the appearance of Ischemic Heart disease, e.g. Angina Pectoris, Myocard Infarct; Cerebral Vascular Diseases and the like.

Until now, all said risk factors had to be treated separately as there was no pharmaceutical composition which could treat simultaneously all of them. However, said separate treatments are not always effective as very often the treatment of one risk factor severes the condition of another risk factor. It has therefore been desirable to find a pharmaceutical composition which can treat simultaneously all the various risk factors which are included in syndrome X of Reaven.

We have now found that due to the fact that the reduction of the resistance to Insulin can be achieved by administering a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazide or one of its analogs (as herein defined) and metformin, said treatment may enable the treatment of all risk factors of syndrome X of Reaven simultaneously.

The present invention thus consists in pharmaceutical preparations for the treatment of the risk factors of syndrome X of Reaven comprising as active ingredient a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazideor one of its analogs (as herein defined) and metformin.

The present invention also comprises the use of a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined),

3

cyclothiazideor one of its analogs (as herein defined) and metformin in the preparation of a pharmaceutical preparation for the treatment of the risk factors of syndrome X of Reaven.

Analogs of somastostatin in connection with the present invention mean any analog compound of somatostatin which biologically activate one or more somastostatin receptors. Said receptors cause the reduction of the resistance to Insulin and thus enable the combined treatment of all risk factors of syndrom X of Reaven and are thus effective in primarily & secondary preventing and/or treating Ischemic Heart disease, such as, Angina Pectoris, Myocard Infarcts; Cerebral Vascular Diseases, etc.

As receptors there should be mentioned, inter alia, the following human somatostatin receptors, which are described in Steven W.J. Lamberts, et al. 1996. Octreotide.. The New England Journal Med. Jan. 25. pp. 246-54. These receptors are:

1. hssTR1

Present in the brain, lung, stomach, jejunum, kidneys, liver and pancreas. It is located on chromosom 14q13. It has 391 amino acids and its formula is given in Yamada et. al., Biochemical and Biophysical Research Communications, 1993, Vol. 195, No. 2., pages 844-852.

2. hssTR2

Present in the brain and in the kidneys, It is located on chromosom 17q24. It has 369 amiono acids and its formula is given in Yamada.

3. hsstr3

Present in the brain and in the pancreas. It is located on chromosome 22q13.1. It has 418 amino acids and its formula is given in Yamada.

4. hssTR4

Present in the brain and in the lung. It is located on chromosome 20. It has 388 amino acids and its molecular weight is 41,867. Its formula is given in Yamada.

5. hSSTR4

Present in the brain, heart, adrenal glands, placenta, pituitary, small intestines and skeletal muscles. It is located on chromosome 20pll.2. It has 364 amino acids,

its molecular weight is 39,176 and its formula is given in Yamada.

All receiptors have common features:

- They have a similarity in the configuration in the seven areas which do extend out of the membrane TM1...TM7)
- Asp-Arg-Tyr at the end of the NH -terminal of the second loop which is in the cell.
- Aspartic acid (Asp) is located in the third loop outside the cell.

The receptors which are especially important in reducing the Insulin resistance are receptors 2 and 5, also but less receptor 3. Receptors 1 and 4 are less important in this respect.

The use of somatostatin is not always satisfactory as it is effective only for a short time. Therefore the use of Octreoide, the most known analog of somatostatin or of another long acting Somatostatin, is preferred.

The analogs of somastostatin should comprise the chain D-Trp-Lys. Said chain constitute the critical core of the active analogs and is essential for the activation of the receptors.

Most analogs comprise the chain Phe-D-Trp-Lys.

Many analogs comprise the chain Phe-D-Trp-Lys-Thr being present in positions 7 - 10 of Somatostatin 14.

Suitable analogs of somatostatin being part of the pharmaceutical composition according to the present invention are, for example,:

- Octreotide.
- Vapreotide.
- 3. Lanreotide.
- 4. Cyclopeptide somatostatin analogues selected among :

Cyclo[Pro-Phe-D-Trp-Lys-Thr-Phe]

Cyclo[N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe]

Cyclo[Pro-Ala-D-Trp-Lys-Thr-Phe]

Cyclo[Pro-Tyr-D-Trp-Lys-Thr-Phe]

Cyclo[Pro-Phe-D-Trp-Lys-,-aminobutyric-Phe]

Cyclo[N-Me-Ala-Phe-D-Trp-Lys-Thr-Phe]

Cyclo[Pro-Phe-D-Trp-Lys-Val-Phe]

Cyclo[D-Ala-D-Phe-D-Trp-L-Lys-D-Thr-N-Me-D-Phe]

5

```
(Bzl = (a)
    Cyclo[Pro-Phe-D-Trp-Lys-Thr(Bzl)]
     Cyclo[Pro-Phe-D-Trp-Lys-Thr-Phe]
     Cyclo[Pro-D-Phe-D-Trp-Lys-Thr(Bzl)]
     Cyclo[Ahep-Lys-Asn-Phe-Phe-Trp-Lys-Thr-
                                                        (Ahep = (b)
     Tyr-Thr-Ser]
     Cyclo[Ahep-Phe-D-Trp-Lys-Thr(Bzl)]
     Cyclo[Ahep-Phe-D-Trp-Lys-Thr]
     Cyclo[Ahep-Phe-D-Trp-Lys-Ser(Bzl)]
                                                        (Ahex = (c)
     Cyclo(Ahex-Phe-D-Trp-Lys-Thr(Bzl))
                                                        (Aoct = (d)
     Cyclo[Aoct-Phe-D-Trp-Lys-Thr(Bzl)]
     Cyclo[Ala-Cys-Phe-D-Trp-Lys-Thr-Cys]
                Bzl = benzyl
           (a)
               Ahep = 7-aminoheptanoyl
           (b)
               Ahex = 6-aminohexanoyl
           (c)
                Aoct = 8-amino-octanoyl;
           (d)
     D-Phe-[Cys-Phe-D-Trp-Lys-Thr-Cys]-Thr-ol
5.
     D-Nal-[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH<sub>2</sub>
                                                         (Nal = (1)
6.
     D-Phe-[Cys-Tyr-D-Trp-Lys-Val-Cys]-Nal-NH<sub>2</sub>
7.
     D-Phe-[Cys-Tyr-D-Trp-Lys-Thr-Cys]-Nal-NH<sub>2</sub>
8.
     D-Phe-[Cys-Tyr-D-Trp-Lys-Abu-Cys]-Nal-NH<sub>2</sub>
                                                         (Abu = (2)
9.
     D-Phe-[Cys-Tyr-D-Trp-Lys-Ser-Cys]-Nal-NH<sub>2</sub>
10.
     D-Nal-[Cys-Tyr-D-Trp-Lys-Val-Cys]-Nal-NH<sub>2</sub>
11.
                                                         (Ahep = (3)
     c(Ahep-Trp-D-Trp-Lys-Thr-Phe)
12.
     {\tt D-Phe-Cpa-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH_2}
                                                         (Cpa = (4))
13.
     D-Phe-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH<sub>2</sub>
14.
     D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2
15.
     D-Phe-Phe-Phe-D-Trp-Lys-Val-Phe-Thr-NH2
16.
      D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH<sub>2</sub>
17.
      D-Phe-Ala-Phe-D-Trp-Lys-Ala-Nal-NH<sub>2</sub>
18.
      {\tt D-Phe-Phe-Phe-D-Trp-Lys-Val-Phe-Thr-NH_2}
19.
      D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2
20.
      D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH<sub>2</sub>
21.
```

- (1) Nal L-3(2-naphthyl)alanine
- (2) Abu $L-\alpha$ -amino-n-butyric acid
- (3) Ahep 7, aminoheptanoic acid
- (4) Cpa L-p-chlorophenylalanine

22. Polypeptides of the formula:

X-Lys-Asn-Phe-Phe-A-Lys-Thr-Phe-Thr-Ser-Y wherein A is L- or D-Trp,

X is H-(Aeg) m-Cys- or H-(Aeg) m-Ala-Gly-Cys-,

Y is $-Cys-(Aeg)_n-OH$ or

X and Y taken together are a 2-aminoethyl-glycyl group in the ring position and

m and n are 0, 1, 2, provided that

m and n are at least 1,

and their cyclic disulfide derivatives.

23. A peptide of the formula:

Bmp represents the desaminocysteine radical,

x represents Asn,

trp represents D-Trp that may be substituted in the benzene ring by a halogen atom, and

represents the radical of an alpha-(lower alkyl)amino-(lower alkyl)-carboxylic acid having a minimum of 4 and a maximum of 8 carbon atoms, in which the two lower alkyl radicals can be connected to one another witha single C-C bond, an oxygen atom or a sulphur (II) atom.

24. Cyclic octapeptides of the formula

Asn-Phe-Phe-Trp-Lys-Thr-Phe-Gaba(Ar)
5 6 7 8 9 10 11 12

in which

Trp represents L-Trp or D-Trp, in which the benzene ring may be substituted by a fluorine atom, and

Gaba(Ar) represents the residue of a -aminobutyric acid substituted by a cyclic hydrocarbyl radical Ar selected from the group consisting of cyclohexyl; phenyl optionally substituted by halogen, nitro or phenoxy; and naphthyl

optionally substituted by halogen.

25. A compound of formula H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-R₃

-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-R₁₈-R₁₉-Phe-Phe-D

-Trp-Lys-Thr- R_{25} - R_{26} - R_{27} - R_{28} -OH wherein R_8 is

Met or Leu, R_{13} is Lys or des R_{18} , R_{1} , is Asn or

des R_{19} , R_{25} is Phe or Tyr, R_{26} is Thr or des

 $R_{26}\,,\ R_{27}$ is Ser or D-Ser and R_{28} is D-Cys or Cys.

26. A compound of formula H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-R₈-Ala-Pro

-Arg-Glu-Arg-Lys-Ala-Gly-Cys-R₁₈-R₁₉-Phe-Phe-D-Trp-Lys

 $-Thr-R_{25}-R_{26}-R_{27}-R_{28}-OH$ wherein R_8 is Met or

Leu, R_{18} is Lys or des $R_{\text{18}},\ R_{\text{19}}$ is Asn or des

 R_{19} , R_{25} is Phe or Tyr, R_{26} is Thr or des R_{26} ,

 R_{27} is Ser or D-Ser and R_{28} is D-Cys or Cys, or the linear version thereof where the disulfide bridge is replaced by hydrogen.

27. A cyclic hexapeptide of the formula

-X - Phe-D-Trp-Lys-Y-Phe-

in which X represents the radical of an L-aminoacid of the formula

in which A and B are identical or different and denote alkyl

having 1 to 3 carbon atoms, or A and B together represent a saturated, unsaturated or aromatic monocyclic or bicyclic structure having 3 to 6 carbon atoms,

n denotes 0 or 1, and

Y represents an aliphatic or aromatic L-aminoacid the side-chair of which can be hydroxylated, said amino acid being selected from the group consisting of L-alanine, L-serine, L-valine, L-leucine, L-isoleucine, L-phenylalanine and L-tyrosine.

28. An N-acyl-polypeptide of formula,

wherein

"Acyl" is a group of formula $R^{1}CO-$ wherein R^{1} is $C_{1/20}$ alkyl or phenyl; a group of formula $R^{11}SO_{2}-$ wherein R^{11} is $C_{1/20}-$ alkyl, phenyl or tolyl; a group

RIII

N-CO- wherein

RIV.

 R^{III} and R^{IV} are each independently hydrogen or C_{1+10} alkyl; or biotinyl,

A is hydrogen or Cinalkyl,

>N-CH(Z)-CO- is an (L)- or (D)-phenylalanine residue optionally ring-substituted by NO_2 , or an (L) or (D)-norleucine residue,

whereby

Z in N-CH(Z)-CO- represents the remainder of said residue, B is -Phe- optionally ring-substituted by NO_2 ,

wherein R_4 is hydrogen or a group of formula $-CH(R_4)-X_4$

R₅ is CH₃CH(OH)-, i-butyl or benzyl
X is a group of formula -COOR₁,
-CH₂OR₂ or

wherein R_1 , R_4 and R_7 are each hydrogen or $C_{1\cdot 3}$ alkyl, and

 R_2 is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester,

the group $-CH(R_5)-X$ having the (D)- or (L)-configuration, and

 Y_1 and Y_2 are each hydrogen or together represent a direct bond, whereby the residue resides in the 2- and 7-position each indepen-dently have the (L) - or (D) -configuration, and with the proviso that:

- i) (L)- and/or (D)-cysteine residues are present at the 2- and 7-positions only.
- A polypeptide of the formula 29.

wherein

A is C_{1+12} alkyl, C_{7+10} phenylalkyl or a group of formula RCO-, whereby

- is hydrogen, C_{1-11} alkyl, phenyl or i) R C_{7+10} phenylalkyl, or
- ii) RCO- is a) an L- or D-phenylalanine residue optionally ring-substituted by halogen and/or $C_{1\cdot 3}$ alkyl,
 - b) H-Asn-, or
 - c) H-Nle-Asn-,

the α -amino group of amino acid residues a) and b) and the N-terminal amino group of dipeptide residues c) being optionally monoor $di-C_{1\cdot 12}$ alkylated,

A' is hydrogen or, when A is C_{1+12} alkyl or C_{7-10} phenylalkyl, also C_{1-12} alkyl or C_{7-10} phenylalkyl,

- B is -Phe-optionally ring-substituted by halogen and/or $C_{1 \rightarrow 1}$ alkyl,
- C is -(L) or -(D) -Trp- optionally α -N-methylated and optionally benzene-ring-substituted by halogen and/or C_{1} -jalkyl,
- D is -Lys- optionally $\alpha-N-methylated$ and optionally $\Sigma-N-C_{1+3}-alkylated$,
- E is -Thr- or -Ala- each in (D)- or (L)-form and each being optionally $\alpha\text{-N-methylated},$

F is a group of formula $-COOR_1$, $-CH_2OR_2$, -CO-N R_4 or

wherein R_i is hydrogen or C_{i+1} alkyl,

- R_2 is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester,
- R_{2} is hydrogen, C_{1+3} alkyl, phenyl or C_{7+10} -phenylalkyl,
- R_4 is hydrogen, $C_{1\cdot 3}$ alkyl or, when R_3 is hydrogen or methyl, also a group of formula $-CH(R_5)-X$,
- R_5 is hydrogen, $-(CH_2)_2$ -OH, $-(CH_2)_3$ -OH, $-CH_2$ -OH, $-CH(CH_3)$ -OH, isobutyl or benzyl
- X is a group of formula $-COOR_1$, $-CH_2OR_2$ or

wherein

 R_1 and R_2 have the meanings given above,

 R_6 is hydrogen or $C_{1\cdot 3}$ alkyl and

 R_7 is hydrogen, $C_{1..3}$ alkyl, phenyl or $C_{7..10}$ phenylalkyl,

the group $-CH(R_s)-X$ having the D- or L+ configuration, and Y_1 and Y_2 are each hydrogen or together represent a direct

1.

bond, whereby the residues in the 1- and 6-position each independently have the L- or D-configuration.

30. A compound of formula

A'
$$CH_2-S-Y_1$$
 Y_2-S-CH_2 $N-CH-CO-B-C-D-E-NH-CH-G$

wherein

- A is C_{1+12} alkyl, C_{7+10} phenylalkyl or a group of formula RCO-, whereby
- i) R is hydrogen, C_{i+11} alkyl, phenyl or C_{7+10} phenylalkyl or
- ii) RCO- is
 - a) an L- or D-phenylalanine residue optionally ring-substituted by F, Cl, Br, No₂, NH₂, OH, C₁₋₃alkyl and/or C₁₋₃alkoxy;
 - b) the residue of a natural or synthetic α -a-mino acid other than defined under a) above or of a corresponding D-amino acid, or
 - a dipeptide residue in which the individual amino acid residues are the same or different and are selected from those defined under a) and/or b) above,

C_{1.8}alkanoyl,

A' is hydrogen,

 Y_1 and Y_2 represent together a direct bond or each of Y_1 and Y_2 is independently hydrogen or a radical of formulae (1) to (5).

```
wherein
```

R_a is methyl or ethyl

R_b is hydrogen, methyl or ethyl

m is a whole number from 1 to 4

n is a whole number from 1 to 5

 R_c is $(C_{1\cdot6})$ alkyl

 R_d represents the substituent attached to the

lpha-carbon atom of a natural or synthetic lpha-

amino acid (including hydrogen)

 R_e is $(C_{1.5})$ alkyl

 R_{a}' and R_{b}' are independently hydrogen, methyl or ethyl,

 R_s and R_s are independently hydrogen, halogen,

 (C_{i+3}) alkyl or (C_{i+3}) alkoxy,

p is 0 or 1,

q is 0 or 1, and

r is 0, 1 or 2,

B is -Phe- optionally ring-substituted by halogen,

 NO_2 , NH_2 , OH, $C_{1\cdot 3}$ alkyl and/or $C_{1\cdot 3}$ alkoxy (including

pentafluoroalanine), or ß-naphthyl-Ala

C is (L)-Trp- or (d)-Trp- optionally α -N-methylated

and optionally benzene-ring-substituted by halo-

gen, NO_2 , NH_2 OH, $C_{1\cdot 3}$ alkyl and/or $C_{1\cdot 3}$ alkoxy,

D is Lys, Lys in which the side chain contains 0 or

S in B-position, βF -Lys or δF -Lys, optionally α -N-methylated, or a 4-aminocyclohexylAla or 4-

aminocyclohexylGly, residue

E is The, Ser, Val, Phe, Ile or an aminoisobutyric

or aminobutyric acid residue

G is a group of formula

-COOR₇, -CH₂OR₁₀, -CON
$$R_{12}$$
 or

wherein

 R_7 is hydrogen or $C_{1/3}$ alkyl,

Ric	is hydrogen or the residue of a physiologically
	acceptable, physiologically hydrolysable ester,
R_{11}	is hydrogen, $C_{1.0}$, alkyl, phenyl or $C_{7.10}$ phenyl-alkyl,
R ₁₂	is hydrogen, $C_{i\rightarrow}$ alkyl or a group of formula
	$-CH(R_{13})-X_1$,
R_1 ,	is CH_2OH , - $(CH_2)_2$ -OH, - $(CH_2)_3$ -OH, or - $CH(CH_3)$ OH or
* -	represents the substituent attached to the $lpha-$

carbon atom of a natural or synthetic α -amino acid (including hydrogen) and

 X_1 is a group of formula -COOR, -CH₂OR₁₀ or

wherein

 R_7 and R_{10} have the meanings given above,

 R_{14} is hydrogen or $C_{1\cdot 3}$ alkyl and

 R_{15} is hydrogen, $C_{1...}$ alkyl, phenyl or

 C_{7+10} phenylalkyl, and

 R_{16} is hydrogen or hydroxy,

with the proviso that

when R_{12} is $-CH(R_{13})-X_1$ then R_{11} is hydrogen or methyl,

wherein the residues B, D and E have the L-configuration, and the residues in the 2-and 7-position and any residues Y_1 4) and Y_2 4) each independently have the (L)- or (D)- configuration.

31. A somatostatin analog selected from the compounds of the following formulae

wherein W is one of X and Z Y is each of R_1 and R_2

S or $(CH_2)_s$ where s is 0, 1 or 2; is S and the other is S or CH_2 ; S or $(CH_2)_t$ where t is 0, 1 or 2; independently of the other, is $C_{1.5}$ alkyl, benzyl, benzyl having one or two $C_{1.5}$ alkyl, halogen, hydroxy, amino, nitro, and/or $C_{1.5}$ alkoxy substituents, or $C_{1.5}$ alkyl substituted with 5- or 6-membered heterocyclic ring;

R, is	3-indolymethyl, either unsubstituted or
	having C_{i+5} alkyl, C_{i+5} alkoxy or halogen
	substitution;

$$R_5$$
 is $C_{1.5}$ alkyl, benzyl, or benzyl having a $C_{1.5}$ alkyl, halogen, hydroxy, amino, nitro, and/or $C_{1.5}$ alkoxy substituent,

compounds of Formula

wherein

A is C_{1+12} alkyl, C_{7+10} phenylalkyl or a group of formula RCO-, whereby

- i) R is hydrogen, C_{1-11} alkyl, phenyl or C_{7-10} phenylalkyl,
- ii) RCO-is

or

- a) an L- or D-phenylalanine residue optionally ring-substituted by F, Cl, Br, NO_2 , NH_2 , OH, C_1 , alkyl and/or C_1 , alkoxy
- b) the residue of a natural α-amino acid other than defined under a) above or of a corresponding D-amino acid, or
- c) a dipeptide residue in which the individual amino acid residues are the same or different and are selected from those defined under a) and/or b) above, the α -amino group or amino acid residues a) and b) and the N-terminal amino group of dipeptide residues c) being optionally mono- or di-C_{1·12} alkylated,
- A' is hydrogen or, when A is C_{1-12} alkyl or C_{7-10} phenylalkalso C_{1-12} alkyl or C_{7-10} phenylalkyl,
- Y_1 and Y_2 represent together a direct bond or each of Y_1 and Y_2 is independently hydrogen or a radical of the formulae

wherein Ra is methyl or ethyl

 $R_{\scriptscriptstyle D}$ is hydrogen, methyl or ethyl

m is a whole number from 1 to 4

n is a whole number from 1 to 5

 R_c is (C_{1-6}) alkyl

(4)

 $R_{\rm d}$ represents the substituent attached to the $\alpha\text{-carbon}$ atom of a natural $\alpha\text{-amino}$ acid (including hydrogen)

(5)

 R_{n} is $(C_{1.5})$ alkyl

 R_{a}^{\prime} and R_{b}^{\prime} are independently hydrogen, methyl or ethyl,

 R_0 and R_0 are independently hydrogen, halogen, $(C_{1\cdot 3})$ alkyl or $(C_{1\cdot 3})$ alkoxy,

p is 0 or 1,

q is 0 or 1, and

r is 0, 1 or 2,

- B is -Phe- optionally ring-substituted by halogen, No_2 , NH_2 , OH, $C_{1\cdot 3}$ alkyl and/or $C_{1\cdot 3}$ alkoxy, or naphthylalanine.
- C is (L)-Trp- or (D)-Trp- optionally α -N-methylated and optionally benzene-ring-substituted by halogen, No₂, NH₂, OH, C_{1·3} alkyl and/or C_{1·3} alkoxy,
- D is -Lys-, ThiaLys, F-Lys, &F-Lys or Orn, optionally α -N-methylated, or a 4-aminocyclohexyl Ala or 4-aminocyclohexyl Gly residue,
- E is Thr, Ser, Val, Phe, Ile or an aminoisobutyric acid residue

A.

F is a group of formula $-COOR_7$, $-CH_2OR_{10}$, -CON or R_{12}

wherein R, is hydrogen or C, alkyl,

 R_{10} is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester, R_{11} is hydrogen, C_{1-1} alkyl, phenyl or C_{7-10} -phenylalkyl,

 R_{12} is hydrogen, $C_{1\cdot 3}$ alkyl or a group of formula- $CH(R_{13})-X_1$,

 R_1 , is CH_2OH , $-(CH_2)_2-OH$, $-(CH_2)_3-OH$, or $-CH(CH_3)OH$

represents the substituent attached to the α -carbon atom of anatural α -amino acid (including hydrogen) and X_1 is a group of formula $-COOR_7$, $-CH_2OR_{10}$ or

wherein

 R_7 and R_{10} have the meanings given above,

R14 is hydrogen or C1.3alkyl and

 R_{15} is hydrogen, $C_{1\cdot 3}$ alkyl, phenyl or $C_{7\cdot 10}$ phenylalkyl, and

R₁₆ is hydrogen or hydroxy,

with the proviso that

when R_{12} is $-CH(R_{13})-X_1$ then R_{11} is hydrogen or methyl, wherein the residues B, D and E have the L-configuration, and the residues in the 2- and 7-position and any residues Y_1 4) and Y_2 4) each independently have the (L)- or (D)-configuration

and compounds of the following formulae

NMe-Phe-His-(D) Trp-Lys-Val-Ala.

32. Somatostatin analogs

I,II, X = N-terminus anchor; Y = C-terminus anchor, G-I or its alc; wherein at least I of X, Y = C cationic anchor; D = P he Tyr, 3-(p-fluorophenyl) alanine or 3 (p-chlorophenyl) alanine residue; E = Lys, $Lys(R^1)$; $R^1 = C_{1-8}$ (fluoro) alkyl; F = T hr, V al, S er; G = D or L-T hr, P he, or 3-(2-naphthyl) alanine residue; I = OH, NH_2 , NHR^1 .

Peptides $RR^1NCHR^2CONHCH(CH_2SR^4)CO-Phe-Trp-Lys-X-NHCHR^3CH_2SR^5$ [R = inorg. or org. acyl group, R^1 = H, alkyl, NCHR²CO moiety = I.

Me(CH₂)₈CO-D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol I or D-Phe (optionally ring substituted by halo, NO₂, OH, alkyl. alkoxy); Phe, Trp, (D or L), may be ring substituted by NO₂, NH₂, OH, alkyl, alkoxy; Lys may be α -N-methylated and Σ -N-alkylated; X = D- or L- α -amino acid residue optionally α -N-methylated; R³ = CO₂H, CH₂OH, carbamoyl, R⁴ = R⁵ = H, R⁴R⁵ = bond]

34. H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-X-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-

35. H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-Leu-Ala-Pro-Arg-Glu-Arg-Lys
-Ala-Gly-

Cys-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Tyr-Thr-Ser-Cys-OH

Said compounds (34 and 35) appear in Chemical Abstracts 98, 1983 1 43839 q

- 36. c(Spacer-Phe-D-Trp-Lys-Thr)
 - Spacer may stand for:
 - a) $R, S-\delta-Bn-o-AMPA$
 - b) $R-\alpha-Bn-NMe-o-AMPA$
 - c) Phe-Pro

Said cmpounds and similar ones appear in Brecx et al., Lett. Pept. Sci.1995, 2 (3/4): 165-8, "Somatostatin analogs contai- ning 0-amino methyl phenyl acetic acid as a bridge unit"; and Tourwe, Lett. Pept. Sci. 1995, 2 (3/4): 182-6, "Conformation directed design of cyclic Somatostatin containing a BVI-turn mimetic".

- 37. H₂N-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH
- 38. H₂N-Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH
- 39. D-B-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2
- 40. Ac-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2
- 41. D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Trp-NH₂
- 42. D-Trp-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH₂
- 43. D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂
- 44. D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH₂
- 45. 3-(2-naphthyl)-D-Ala-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂
- 46. c(Aha-Phe-p-Cl-Phe-D-Trp-Lys-Thr-Phe)
 Aha = 7 -amino heptanoic acid.

Analogs of Diazoxide and Cyclothiazide are compounds which affect the receptor being adenosine 5'- triphosphate sensitive K channels.

Suitable analogs of Diazoxide and of Cyclothiazide are indicated, for example, in a paper of Bertolino et al., appearing in Receptor-Channels 1993 1(4):267-78 "Modulation of AMPA/Kainate Receptors by Analogs of diazoxide and cyclothiazide in thin

slices of rat hippocampus". However, the analogs which may be used in the pharmaceutical composition according to the present invention are not restricted to the analogs given in said paper and any other analog having the proper properties may be used.

The pharmaceutical preparation according to the present invention may also comprise additional compounds such as compounds having an additional pharmaceutical effect, carriers, solvents, emulgamators, etc.

In view of the fact that diazoxide sometimes has undesired salt and water retention, which may be relieved by certain thiazide diuretics, e.g. 6-chloro-2H-1,2,4-benzothiadiazine-7sulfonamide 1,1-dioxide (Chlorothiazide); 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide (Hydrochlort-6-chloro-3-(dichloromethyl)-3,4-dihydro-2H-1,2,4benzothiadiazine-7-sulfonamide 1,1-dioxide (Trichlormethiazide); or 6-chloro-3,4-di-hydro-2-methyl-3[(2,2,2-trifluoroethyl)thiome-1,1-dioxide thyl]-2H-1,2,4-benzothiadiazine-7-sulfonamide (Polythiazide), the pharmaceutical compositions according to the present invention may comprise, in addition to Diazoxide and/or one of its analogs, as an additional compound having a pharmaceutical effect, one or more of the above thiazides or a thiazide having similar properties. Said thiazide diuretics may prevent the salt and water retention.

The present invention also comprises a method for the treatment of the risk factors of syndrome X of Reaven by applying to a patient a pharmaceutically effective dosage of a pharmaceutical preparation according to the present invention comprising a pharmaceutically effective dosage of a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazide or one of its analogs (as herein defined) and metformin.

Said dosage should preferably not exceed $50\mu g/kg/day$ of the active ingredient (calculated on Octreotide), preferably not exceeding $40\mu/kg/day$. Said dosage is given in any suitable manner. It may be given as one portion once a day or even in two days or more when given in slow release form, or being divided into 3-4 dosages which are applied in equal periods of time for Octreotide, or 1 - 2 times a day for analogs with a higher $t^{\frac{1}{2}}$.

A. S. . .

269

27

Said dosage should preferably not exceed 8 mg/kg/day in the treatment of the active ingredient (calculated on diazoxide) in adults, and preferably not exceed 15/mg/day in the treatment of children. The amount of Metformin applied should preferably not exceed 2.5 g/day divided into 2 - 3 portions.

Should any of the above thiazide diuretics be added the added amounts are, for example, the following:

Chlorothiazide: 500 - 2000 mg a day;

Hydrochlorothiazide: 50 - 200 mg a day; Trichloromethiazide: 12.5 - 50 mg a day;

Polythiazide: 1- 4 mg a day.

Said dosage has to be re-calculated on the basis of the analog being the active ingredient. Moreover, the exact dosages have to be adapted to the condition of the patients and to its specific properties e.g. weight, age, etc.

The composition may be administered in various manners. This depends in particular on the analog being the active ingredient. Thus octreotide is advantageously injected sub-cutaneously as a saline solution. Cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe) is advantageously administered per os.

The treatment is performed, as indicated above, against the risk factors of syndrome X of Reaven, in particular against the following diseases in order to primarily and secondarily prevent and to treat:

- A. 1. Ischemic Heart diseases, e.g. Angina Pectoris and Myocard Infarcts;
 - 2. Cerebral vascular diseases in order to prevent Transient Ischemic attack (TIA) and Cerebrovascular accident (CVA);
 - 3. Intermittent Claudication;
 - 4. Ischemic Bowel disease; and
 - 5. Impotence due to a Periferal vascular disease.
- B. Prevent excessive blood coagulation (high PAI-1 in the blood) in order to primarily prevent MI, CVA, Renal vein trombosis, etc.
- C. Lower body weight (which is also a risk factor for high blood pressure, Glucose Intolerance, etc.)
 Said diseases are mainly caused, as indicated above, by a

high resistance to Insulin.

The present invention will now be illustrated with reference to the following experiment (all injections are given into the hollow space of the Peritoneum):

60 fat male rats of the Zucker species, aged 7 weeks having an average weight of 225 g. 54 rats of same are divided into 3 groups:

Group A receives injections of Octreotide in a 0.9% NaCl saline solution in a high dosage $(40\mu g/kg/day)$;

Group B receives injections of Octreotide in a 0.9% NaCl saline solution in a low dosage (20 μ g/kg/day); and

Group C the control group, receives an injection of a 0.9% saline solution. The volume of the 0.9% NaCl is identical with the volume being injected into Group A and B (At the beginning of the tests the rats have approximately the identical weight and they therefore receive the identical volume of injections).

All rats receive the same amount of Food (Pair Fed). Said amount is chosen according to the group eating the lowest amount. Thus, the influence of the drug is isolated.

The rats are located in a room changing light and darkness in order to simulate natural surroundings, as in general they eat in darkness. The rats drink water freely.

The rats are weighed twice a week. At the end of the experiment the rate change of the weight is being calculated. The amount of food eaten per week is measured and the amount eaten each day is calculated. (The influence of the Octreotide on the amount of food eaten by the rats is not checked. They eat the identical amount of food.)

Six rats are tested before the beginning of the experiment. Six rats from each group are separated after 2 weeks, 4 weeks and 8 weeks and an Intra-Peritoneal Glucose Tolerance Test (GTT 1.0g Glucose/kg BW) is performed after a fast of 12 hours during which the rats do not receive any medicament or food.

Blood is taken from the Supra-orbital sinus with slow anaesthesia with ${\rm CO}_2$.

At zero time, i.e. before the Glucose load 2 cc of blood are taken from each rat.

½ cc of blood is put into a test tube which contains Heparin

15.4

and the concentrations of Glucose and Insulin are determined; and

 $1\frac{1}{2}$ cc of blood is put into a test tube which contains Na_2EDTA 0.1% and the concentrations of Cholesterol, Triglycerides, HDL and LDL are determined.

At 15, 30 and 60 minutes after the Glucose load, 2 cc of blood is taken from each rat and put into a test tube which contains Heparin and the concentrations of Glucose and Insulin are determined.

After the Glucose tolerance test each tested rat "leaves" the experiment.

The materials used in the experiments:

Octreoide manufactured by Sandoz Basel.

0.9% NaCl

30% Glucose

Not sterilized food for mice and rats manufactured by Kopolk, Petach Tikva. Catalogue No. 19510. Gross energy 3,950 kCal/kg. Digestibality energy of the food in rats 3,150 kCal/kg.

The laboratory tests are performed as follows:

- 1. Glucose is tested by the Glucose Oxidase method in a kit of Boehringer Mannheim called Glucose GOD-Perid Method 2 \times 300ml catalogue No. 124028. The test is performed on the day or the following day on which the blood is taken.
- 2. The Insulin is tested by the Radio Immuno Assay (RIA) by a SB INSIK-5 kit of Sorin Biomedica.

The method is performed by the general method known for the test of Insulin by said kit.

3. The total Cholesterol is tested by the CHOD-PAP method. The total cholesterol comprises VLDL + LDL + HDL. The kit with which the test is performed is manufactured by Boehringer Mannheim and the cholesterol reagent is MPA3 catalogue No. 236691 4 x 500ml.

The HDL is tested by precipitating LDL and VLDL with Heparin MnCl₂ and then the total cholesterol is tested. VLDL is calculated by T.G./5. LDL is calculated by the formula

LDL = total cholesterol - (VLDL + HDL)

4. The Triglycerides are being tested by the peridochrom T.G. GPO-PAP method. The kit is manufactured by Boehringer

Mannheim and the reagent has catalogue No. 701904 15 x 32ml.

The data received are worked up by standard methods for this purpose. The results show that the Insulin resistance is significantly lowered, there is an increase in the level of HDL and a decrease in the level of LDL and of the Triglycerides. A decrease in the rate of weight gain of young obese rats is observed, which implies a decrease in the weight of adult obese rats.

The Insulin resistance (Insulin Sensitivity Index) is determined using the dynamic test - the Glucose Tolerance Test (GTT). An integration of the area under the curve (AUC) of Glucose and Insulin in the period of $1\frac{1}{2}$ hours is measured and the determination of the ratio between them gives a good estimate of the Insulin resistance.

claims:

.

- 1. A pharmaceutical composition for the treatment of the risk factors of syndrome X of Reaven comprising as active ingredient a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazideor one of its analogs (as herein defined) and metformin.
- A pharmaceutical composition comprising an additional compound.
- 3. A pharmaceutical composition comprising an additional compound having an additional pharmaceutical effect.
- 4. A pharmaceutical composition according to Claim 2 or 3 wherein the additional compound is selected among carriers, solvents and emulgamators.
- 5. A pharmaceutical composition according to any of Claims 1 to 4, wherein the analog of somatostatin is Octreotide.
- 6. A pharmaceutical composition according to any of Claims 1 to 4, wherein the analog of somatostatin is Vapreotide.
- 7. A pharmaceutical composition according to any of Claims 1 to 4, wherein the analog of somatostatin is Lanreotide.
- 8. A pharmaceutical composition according to any of Claims 1 to 4, wherein the analogs of somatostatin are Cyclopeptide somatostatin analogues selected among:

```
Cyclo[Pro-Phe-D-Trp-Lys-Thr-Phe]
Cyclo[N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe]
Cyclo[Pro-Ala-D-Trp-Lys-Thr-Phe]
Cyclo[Pro-Tyr-D-Trp-Lys-Thr-Phe]
Cyclo[Pro-Phe-D-Trp-Lys-&-aminobutyric-Phe]
Cyclo[N-Me-Ala-Phe-D-Trp-Lys-Thr-Phe]
Cyclo[Pro-Phe-D-Trp-Lys-Val-Phe]
Cyclo[D-Ala-D-Phe-D-Trp-L-Lys-D-Thr-N-Me-D-Phe]
                                              (Bzl = (a)
Cyclo[Pro-Phe-D-Trp-Lys-Thr(Bzl)]
Cyclo[Pro-Phe-D-Trp-Lys-Thr-Phe]
Cyclo[Pro-D-Phe-D-Trp-Lys-Thr(Bzl)]
Cyclo(Ahep-Lys-Asn-Phe-Phe-Trp-Lys-Thr-
                                              (Ahep = (b)
Tyr-Thr-Ser]
Cyclo[Ahep-Phe-D-Trp-Lys-Thr(Bzl)]
```

Cyclo[Ahep-Phe-D-Trp-Lys-Thr]

10.

14.

```
Cyclo(Ahep-Phe-D-Trp-Lys-Ser(Bzl) }
                                                    (Ahex = (C)
    Cyclo(Ahex-Phe-D-Trp-Lys-Thr(Bzl))
                                                    (Aoct = (d)
    Cyclo[Aoct-Phe-D-Trp-Lys-Thr(Bzl)]
    Cyclo[Ala-Cys-Phe-D-Trp-Lys-Thr-Cys]
              Bzl = benzyl
          (a)
          (b) Ahep = 7-aminoheptanoyl
          (c) Ahex = 6-aminohexanoyl
               Aoct = 8-amino-octanoyl;
          (d)
    A pharmaceutical composition according to any of Claims 1 to
    4, wherein the somatostatin analog is:
    D-Phe-[Cys-Phe-D-Trp-Lys-Thr-Cys]-Thr-ol
    A pharmaceutical composition according to any of Claims 1 to
     4, wherein the somatostatin analog is:
    D-Nal-[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2
                                                   (Nal = (1)
    A pharmaceutical composition according to any of Claims 1 to
11.
     4, wherein the somatostatin analog is:
     D-Phe-[Cys-Tyr-D-Trp-Lys-Val-Cys]-Nal-NH<sub>2</sub>
     A pharmaceutical composition according to any of Claims 1 to
12.
     4, wherein the somatostatin analog is:
     D-Phe-[Cys-Tyr-D-Trp-Lys-Thr-Cys]-Nal-NH<sub>2</sub>
    A pharmaceutical composition according to any of Claims 1 to
13.
     4, wherein the somatostatin analog is:
     D-Phe-[Cys-Tyr-D-Trp-Lys-Abu-Cys]-Nal-NH<sub>2</sub>
                                                     (Abu = (2)
     A pharmaceutical composition according to any of Claims 1 to
     4, wherein the somatostatin analog is:
     D-Phe-[Cys-Tyr-D-Trp-Lys-Ser-Cys]-Nal-NH<sub>2</sub>
     A pharmaceutical composition according to any of Claims 1 to
15.
     4, wherein the somatostatin analog is:
     D-Nal-[Cys-Tyr-D-Trp-Lys-Val-Cys]-Nal-NH<sub>2</sub>
     A pharmaceutical composition according to any of Claims 1 to
16.
      4, wherein the somatostatin analog is:
                                                     (Ahep = (3)
     c(Ahep-Trp-D-Trp-Lys-Thr-Phe)
      A pharmaceutical composition according to any of Claims 1 to
17.
      4, wherein the somatostatin analog is:
      D-Phe-Cpa-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH2
                                                     (Cpa = (4)
      A pharmaceutical composition according to any of Claims 1 to
 18.
```

4, wherein the somatostatin analog is: D-Phe-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH₂ 19. A pharmaceutical composition according to any of Claims 1 to

- 4, wherein the somatostatin analog is: D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2
- 20. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

D-Phe-Phe-D-Trp-Lys-Val-Phe-Thr-NH₂

- 21. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH₂
- 22. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Ala-Phe-D-Trp-Lys-Ala-Nal-NH₂
- 23. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Phe-Phe-D-Trp-Lys-Val-Phe-Thr-NH₂
- 24. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH₂
- 25. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH2
- 26. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are polypeptides of the formula:

X-Lys-Asn-Phe-Phe-A-Lys-Thr-Phe-Thr-Ser-Y wherein A is L- or D-Trp,

X is $H-(Aeg)_m-Cys-$ or $H-(Aeg)_m-Ala-Gly-Cys-$,

Y is $-Cys-(Aeg)_n-OH$ or

X and Y taken together are a 2-aminoethyl-glycyl group in the ring position and

m and n are 0, 1, 2, provided that

m and n are at least 1,

and their cyclic disulfide derivatives.

27. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are peptides of the formula:

\(\bar{\pi}\)

Bmp-Lys-X-Phe-Phe-trp-Lys-Thr-Phe-Thr-Y-Cys-OH

3 4 5 6 7 8 9 10 11 12 13 14

in which

Bmp represents the desaminocysteine radical,

X represents Asn,

trp represents D-Trp that may be substituted in the benzene ring by a halogen atom, and

represents the radical of an alpha-(lower alkyl)amino-(lower alkyl)-carboxylic acid having a minimum of 4 and a maximum of 8 carbon atoms, in which the two lower alkyl radicals can be connected to one another with a single C-C bond, an oxygen atom or a sulphur (II) atom.

28. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are cyclic octapeptides of the formula

Asn-Phe-Phe-Trp-Lys-Thr-Phe-Gaba(Ar)

in which

Trp represents L-Trp or D-Trp, in which the benzene ring may be substituted by a fluorine atom, and

Gaba(Ar) represents the residue of a d-aminobutyric acid substituted by a cyclic hydrocarbyl radical Ar selected from the group consisting of cyclohexyl; phenyl optionally substituted by halogen, nitro or phenoxy; and naphthyl optionally substituted by halogen.

29. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are compounds of formula H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-R₈

-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-R₁₈-R₁₉-Phe-Phe-D

-Trp-Lys-Thr-R₂₅-R₂₆-R₂₇-R₂₃-OH wherein R₈ is

ø.

Met or Leu, R_{18} is Lys or des R_{18} , R_{19} is Asn or

des R_{19} , R_{25} is Phe or Tyr, R_{26} is Thr or des

 R_{26} , R_{27} is Ser or D-Ser and R_{29} is D-Cys or Cys.

30. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are compounds of formula H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-R₉-Ala-Pro

-Arg-Glu-Arg-Lys-Ala-Gly-Cys-R₁₈-R₁₉-Phe-Phe-D-Trp-Lys

-Thr-R₂₅-R₂₆-R₂₇-R₂₈-OH wherein R₈ is Met or

Leu, R_{18} is Lys or des R_{18} , R_{19} is Asn or des

 $R_{19}\,,\ R_{-25}$ is Phe or Tyr, R_{26} is Thr or des $R_{26}\,,$

 R_2 , is Ser or D-Ser and R_{28} is D-Cys or Cys, or the linear version thereof where the disulfide bridge is replaced by hydrogen.

31. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are cyclic hexapeptides of the formula

-X - Phe-D-Trp-Lys-Y-Pher

in which X represents the radical of an L-aminoacid of the formula

in which A and B are identical or different and denote alkyl having 1 to 3 carbon atoms, or A and B together represent a saturated, unsaturated or aromatic monocyclic or bicyclic structure having 3 to 6 carbon atoms,

n denotes 0 or 1, and

Y represents an aliphatic or aromatic L-aminoacid the side-

chair of which can be hydroxylated, said amino acid being selected from the group consisting of L-alanine, L-serine, L-valine, L-leucine, L-isoleucine, L-phenylalanine and L-tyrosine.

32. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are N-acyl-polypeptides of formula,

wherein

"Acyl" is a group of formula $R^{i}CO-$ wherein R^{i} is $C_{1\cdot 20}$ alkyl or phenyl; a group of formula $R^{ii}SO_{2}-$ wherein R^{ii} is $C_{1\cdot 20}-$ alkyl, phenyl or tolyl; a group

$$R^{III}$$
 N-CO- wherein

 R^{III} and R^{IV} are each independently hydrogen or $C_{1+10} \text{alkyl};$ or biotinyl,

A is hydrogen or $C_{i\rightarrow}$ alkyl,

>N-CH(Z)-CO- is an (L)- or (D)-phenylalanine residue optionally ring-substituted by NO_2 , or an (L)- or (D)-norleucine residue,

whereby

Z in >N-CH(Z)-CO- represents the remainder of said residue,

B is -Phe- optionally ring-substituted by NO_2 ,

F is a group of formula

wherein R_4 is hydrogen or a group of formula $-CH(R_5)-X$,

wherein R_1 , R_4 and R_7 are each hydrogen or $C_{1\cdot 3}$ alkyl, and

R₂ is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester,

the group $-CH(R_s)-X$ having the (D)- or (L)-configuration, and

 Y_1 and Y_2 are each hydrogen or together represent a direct bond, whereby the residue resides in the 2- and 7-position each independently have the (L)- or (D)-configuration, and with the proviso that:

- i) (L)- and/or (D)-cysteine residues are present at the 2- and 7-positions only.
- 33. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are polypeptides of the formula

wherein

A is $C_{1\cdot 12}$ alkyl, $C_{7\cdot 10}$ phenylalkyl or a group of formula RCO-, whereby

- i) R is hydrogen, $C_{1.11}$ alkyl, phenyl or $C_{7.10}$ phenylalkyl, or
- ii) RCO- is a) an L- or D-phenylalanine residue optionally ring-substituted by halogen and/or C1.3alkyl,
 - b) H-Asn-, or
 - c) H-Nle-Asn-,

the α -amino group of amino acid residues a) and b) and the N-terminal amino group of dipeptide residues c) being optionally monoor di- C_{1+12} alkylated,

- A' is hydrogen or, when A is C_{1-12} alkyl or C_{7-10} phenylalkyl, also C_{1-12} alkyl or C_{7-10} phenylalkyl,
- B is -Phe-optionally ring-substituted by halogen and/or Canalkyl,
- C is -(L)- or -(D)-Trp- optionally α -N-methylated and optionally benzene-ring-substituted by halogen and/or $C_{1\cdot3}$ alkyl,
- D is -Lys- optionally α -N-methylated and optionally Σ -N-C₁₋₃-alkylated,
- E is -Thr- or -Ala- each in (D)- or (L)-form and each being optionally α -N-methylated,

wherein R_i is hydrogen or $C_{i ext{-}i}$ alkyl,

- R_2 is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester,
- R_3 is hydrogen, C_{i+3} alkyl, phenyl or C_{7+10} -phenylalkyl,
- R_4 is hydrogen, $C_{1\cdot 3}$ alkyl or, when R_3 is hydrogen or methyl, also a group of formula $-CH(R_5)-X$,
- R_5 is hydrogen, $-(CH_2)_2-OH$, $-(CH_2)_3$ -OH, $-CH_2-OH$, $-CH(CH_3)-OH$, isobutyl or benzyl
- X is a group of formula $-COOR_1$, $-CH_2OR_2$ or

wherein

 R_1 and R_2 have the meanings given above,

 R_6 is hydrogen or $C_{1..1}$ alkyl and

 R_7 is hydrogen, $C_{1\cdot 1}$ alkyl, phenyl or $C_{7\cdot 10}$ phenylalkyl,

(3)

the group $-CH(R_s)-X$ having the D- or L- configuration, and Y_1 and Y_2 are each hydrogen or together represent a direct bond, whereby the residues in the 1- and 6-position each independently have the L- or D-configuration.

34. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is a compound of formula

A wherein

WO 98/10786

- A is $C_{1\rightarrow12}$ alkyl, $C_{7\rightarrow10}$ phenylalkyl or a group of formula RCO-, whereby
- i) R is hydrogen, C_{1-11} alkyl, phenyl or C_{7-10} phenylalkyl or
- ii) RCO- is
 - a) an L- or D-phenylalanine residue optionally ring-substituted by F, Cl, Br, No₂, NH₂, OH, C₁₋₃alkyl and/or C₁₋₃alkoxy;
 - b) the residue of a natural or synthetic α -a-mino acid other than defined under a) above or of a corresponding D-amino acid, or
 - a dipeptide residue in which the individual amino acid residues are the same or different and are selected from those defined under a) and/or b) above,

 C_{1-8} alkanoyl,

A' is hydrogen,

(1)

 Y_1 and Y_2 represent together a direct bond or each of Y_1 and Y_2 is independently hydrogen or a radical of formulae (1) to (5).

(2)

WO 98/10786 PCT/IL97/00301

34

. 🞕

-CO-NH-CH-COOR_e -CO-(NH)_p-
$$\begin{bmatrix} R_a \\ C \\ R_b \end{bmatrix}$$
 (CH₂)_r

(4)

wherein

R_a is methyl or ethyl

 $R_{\rm b}$ is hydrogen, methyl or ethyl

m is a whole number from 1 to 4

n is a whole number from 1 to 5

 R_c is $(C_{1.6})$ alkyl

 R_d represents the substituent attached to the α -carbon atom of a natural or synthetic α -

amino acid (including hydrogen)

 R_e is $(C_{1.5})$ alkyl

 R_{a}' and R_{b}' are independently hydrogen, methyl or ethyl,

R_s and R₉ are independently hydrogen, halogen,

 $(C_{1 \mapsto 3})$ alkyl or $(C_{1 \mapsto 3})$ alkoxy,

p is 0 or 1,

q is 0 or 1, and

r is 0, 1 or 2,

B is -Phe- optionally ring-substituted by halogen, NO_2 , NH_2 , OH, $C_{1\cdot 3}$ alkyl and/or $C_{1\cdot 3}$ alkoxy (including

pentafluoroalanine), or B-naphthyl-Ala

is (L)-Trp- or (d)-Trp- optionally α -N-methylated and optionally benzene-ring-substituted by halo-

gen, NO_2 , NH_2 OH, $C_{1\cdot 3}$ alkyl and/or $C_{1\cdot 3}$ alkoxy,

D is Lys, Lys in which the side chain contains 0 or

S in β -position, F-Lys or δ F-Lys, optionally α -N-methylated, or a 4-aminocyclohexylAla or 4-

aminocyclohexylGly residue

E is The, Ser, Val, Phe, Ile or an aminoisobutyric

or aminobutyric acid residue

G is a group of formula

ø.

$$-COOR_7$$
, $-CH_2OR_{10}$, $-CON$
 R_{12}
or

wherein

 R_{i} is hydrogen or C_{i-1} alkyl,

 R_{10} is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester,

 R_{11} is hydrogen, $C_{1.9}$ alkyl, phenyl or $C_{7.10}$ phenyl-alkyl,

 R_{12} is hydrogen, $C_{1\cdot 3}$ alkyl or a group of formula

 $-CH(R_{13})-X_{14}$

is CH_2OH , - $(CH_2)_2$ -OH, - $(CH_2)_3$ -OH, or - $CH(CH_3)OH$ or represents the substituent attached to the α -carbon atom of a natural or synthetic α -amino acid (including hydrogen) and

 X_1 is a group of formula $-COOR_7$, $-CH_2OR_{10}$ or

wherein

 $R_{\scriptscriptstyle 7}$ and $R_{\scriptscriptstyle 10}$ have the meanings given above,

 R_{14} is hydrogen or C_{11} , alkyl and

R₁₅ is hydrogen, C₁₋₃alkyl, phenyl or

 C_{7+10} phenylalkyl, and

R₁₆ is hydrogen or hydroxy,

with the proviso that

when R_{12} is $-CH(R_{13})-X_1$ then R_{11} is hydrogen or methyl,

wherein the residues B, D and E have the L-configuration, and the residues in the 2-and 7-position and any residues Y_1 4) and Y_2 4) each independently have the (L)- or (D)- configuration.

35. A pharmaceutical composition according to any of Claims 1 to 4, wherein the analog is a somatostatin analog selected from the compounds of the following formulae

wherein

W is

one of X and Z

Y is

 R_{a}

each of R₁ and R₂

S or $(CH_2)_s$ where s is 0, 1 or 2; is S and the other is S or CH_2 ; S or $(CH_2)_s$ where t is 0, 1 or 2;

independently of the other, is $C_{1.5}$ alkyl, benzyl, benzyl having one or two $C_{1.5}$ alkyl, halogen, hydroxy, amino, nitro, and/or $C_{1.5}$ alkoxy substituents, or $C_{1.5}$ alkyl substituted with 5- or 6-

membered heterocyclic ring;

R, is 3-indolymethyl, either unsubstituted or

having C_{i+5} alkyl, C_{i+5} alkoxy or halogen

substitution;

 C_{1-5} alkyl, C_{1-5} hydroxyalkyl, benzyl,

carboxy- $(C_{1.5}$ alkyl), amino $(C_{1.5}$ alkyl) or benzyl having a $C_{1.5}$ alkyl, halogen, hydroxy, amino, nitro and/or $C_{1.5}$ alkoxy

substituent;

 R_5 is C_{1-5} alkyl, benzyl, or benzyl having a C_{1-5} alkyl, halogen, hydroxy, amino,

nitro, and/or $C_{1.5}$ alkoxy substituent,

compounds of formula

wherein

A is $C_{1\cdot 12}$ alkyl, $C_{7\cdot 10}$ phenylalkyl or a group of formula RCO-, whereby

- i) R is hydrogen, $C_{1\cdot 11}$ alkyl, phenyl or $C_{7\cdot 10}$ phenylalkyl, or
- ii) RCO-is
- a) an L- or D-phenylalanine residue optionally ringsubstituted by F, Cl, Br, NO₂, NH₂, OH, C₁₋₃ alkyl and/or C₁₋₃ alkoxy
- b) the residue of a natural α -amino acid other than defined under a) above or of a corresponding D-amino acid, or
- c) a dipeptide residue in which the individual amino acid

residues are the same or different and are selected from those defined under a) and/or b) above, the α -amino group or amino acid residues a) and b) and the N-terminal amino group of dipeptide residues c) being optionally mono- or di-C₁₋₁₂ alkylated,

A' is hydrogen or, when A is C_{1+12} alkyl or C_{7+10} phenylalk-also C_{1+12} alkyl or C_{7+10} phenylalkyl,

 Y_1 and Y_2 represent together a direct bond or each of Y_1 and Y_2 is independently hydrogen or a radical of the formulae

The formulae

$$R_a$$
 $-CO-C-(CH_2)_m-H$
 R_b

(1)

(2)

 CH_2
 CH_2

(4)

wherein Ra is methyl or ethyl

 R_b is hydrogen, methyl or ethyl

m is a whole number from 1 to 4

n is a whole number from 1 to 5

 R_c is $(C_{1.6})$ alkyl

 R_d represents the substituent attached to the α -carbon atom of a natural α -amino acid (including hydrogen)

 R_e is $(C_{1.5})$ alkyl

 R_{a}' and R_{b}' are independently hydrogen, methyl or ethyl,

 R_s and R_s are independently hydrogen, halogen, $(C_{1\cdot 3})$ alkyl or $(C_{1\cdot 3})$ alkoxy,

p is 0 or 1,

q is 0 or 1, and

r is 0, 1 or 2,

B is -Phe- optionally ring-substituted by halogen, No_2 , NH_2 ,

WO 98/10786 PCT/IL97/00301

OH, C_{i+1} alkyl and/or C_{i+1} alkoxy, or naphthylalanine.

- C is (L)-Trp- or (D)-Trp- optionally α -N-methylated and optionally benzene-ring-substituted by halogen, No₂, NH₂, OH, C₁₋₃ alkyl and/or C₁₋₃ alkoxy,
- D is -Lys-, ThiaLys, F-Lys, δ F-Lys or Orn, optionally α -N-methylated, or a 4-aminocyclohexyl Ala or 4-aminocyclohexyl Gly residue,
- E is Thr, Ser, Val, Phe, Ile or an aminoisobutyric acid residue

wherein R7 is hydrogen or C1.3alkyl,

 R_{10} is hydrogen or the residue of a physiologically acceptable, physiologically hydrolysable ester,

 R_{11} is hydrogen, $C_{1\cdot 1}$ alkyl, phenyl or $C_{7\cdot 10}$ -phenylalkyl, R_{12} is hydrogen, $C_{1\cdot 1}$ alkyl or a group of formula-CH(R_{13})- X_1 ,

 R_{13} is CH_2OH , $-(CH_2)_2-OH$, $-(CH_2)_3-OH$, or $-CH(CH_3)OH$ or represents the substituent attached to the α -carbon atom of anatural α -amino acid (including hydrogen) and X_1 is a group of formula $-COOR_7$, $-CH_2OR_{10}$ or

wherein

 R_7 and R_{10} have the meanings given above,

 R_{14} is hydrogen or $C_{1\cdot 3}$ alkyl and

 R_{15} is hydrogen, $C_{1\cdot 1}$ alkyl, phenyl or $C_{7\cdot 10}$ phenylalkyl, and R_{16} is hydrogen or hydroxy,

with the proviso that

when R_{12} is $-CH(R_{13})-X_1$ then R_{11} is hydrogen or methyl,

, 😘

wherein the residues B, D and E have the L-configuration, and the residues in the 2- and 7-position and any residues Y_1 4) and Y_2 4) each independently have the (L)- or (D)-configuration and compounds of the following formulae

36. A pharmaceutical composition according to any of Claims 1 to 4, wherein the analogs are Somatostatin analogs

X-Cys-Lys-Asn-Phe-D-o-Trp-E-F-Phe-Thr-Ser-Cys-Y II I,II, X = N-terminus anchor; Y = C-terminus anchor, G-I or its alc; wherein at least I of X, Y = cationic anchor; D = Phe Tyr, 3-(p-fluorophenyl) alanine or 3 (p-chlorophenyl) alanine residue; E = Lys, Lys(R^1); R^1 = C_{1-8} (fluoro) alkyl; F = Thr, Val, Ser; G = D- or L-Thr, Phe, or 3-(2-naphthyl) alanine residue; I = OH, NH₂, NHR¹.

37. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analogs are peptides: RR¹NCHR²CONHCH(CH₂SR⁴)CO-Phe-Trp-Lys-X-NHCHR³CH₂SR⁵

[R = inorg. or org. acyl group, R¹ = H, alkyl, NCHR²CO moiety = I.

Me(CH₂)₈CO-D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol I or D-Phe (optionally ring substituted by halo, NO₂, OH, alkyl. alkoxy); Phe, Trp, (D or L), may be ring substituted by NO₂, NH₂, OH, alkyl, alkoxy; Lys may be α -N-methylated and Σ -N-alkylated; X = D- or L- α -amino acid residue optionally α -N-methylated; R³ = CO₂H, CH₂OH, carbamoyl, R⁴ = R⁵ = H, R⁴R⁵

1.25

= bond]

A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-X-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly

Cys-X¹-x²-Phe-Phe-D-Trp-Lys-Tys-Thr-X³-X⁴-X⁵-X⁶-OH

39. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

H-Ser-Ala-Asn-Ser-Asn-Pro-Ala-Leu-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-

Cys-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Tyr-Thr-Ser-Cys-OH

40. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is c(Spacer-Phe-D-Trp-Lys-Thr)

Spacer may stand for:

- a) $R, S-\delta-Bn-o-AMPA$
- b) $R-\alpha-Bn-NMe-o-AMPA$
- c) Phe-Pro
- 41. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

 H₂N-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH
- 42. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

 H₂N-Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH
- 43. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatim analog is: D-β-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂
- 44. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

 Ac-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2
- 45. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Trp-NH₂
- 46. A pharmaceutical composition according to any of Claims 1 to

- 4, wherein the somatostatin analog is: D-Trp-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH₂
- 47. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂
- 48. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

 D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH₂
- 49. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is: 3-(2-naphthyl)-D-Ala-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂
- 50. A pharmaceutical composition according to any of Claims 1 to 4, wherein the somatostatin analog is:

 c(Aha-Phe-p-Cl-Phe-D-Trp-Lys-Thr-Phe)

 Aha = 7 -amino heptanoic acid.
- 51. A pharmaceutical composition according to any of Claims 1 to 4, wherein the active ingredient is diazoxide and comprises in addition a thiazide selected among chlorothiazide, hydrochlorothiazide, trichloromethiazide and polythiazide.
- 52. A method for the treatment of symptoms of syndrome X by applying to a patient a pharmaceutical composition according to any of Claims 1 to 51 comprising a pharmaceutically effective dosage of a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazideor one of its analogs(as herein defined) and metformin.
- 53. A method according to Claim 52, wherein the pharmaceutically effective dosage (calculated on octreotide) does not exceed $50\mu/kg/day$.
- 54. A method according to Claim 53, wherein said dosage does not exceed $40\mu/kg/day$.
- 55. A method according to any of Claims 52 to 54 wherein the analog is Octreotide which is applied in the form of an injection in a 0.9% saline solution.
- 56. A method according to Claim 52, wherein said dosage does not exceed 8 mg/kg/day in the treatment of the active ingredient (calculated on diazoxide) in adults, and does not exceed 15/mg/day in the treatment of children.

- 57. A method according to Claim 52, wherein the amount of metformin applied does not exceed 2.5 g/day divided into 2 -3 portions.
- 58. Use of a compound selected among somatostatin or one of its analogs (as herein defined), diazoxide or one of its analogs (as herein defined), cyclothiazide or one of its analogs(as herein defined) and metformin in a preparation for the treatment of the risk factors of syndrome X of Reaven substantially as described in the specification.

THIS PAGE BLANK (USPIU)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/10786 A3A61K 38/31, 31/54, 31/155 (43) International Publication Date: 19 March 1998 (19.03.98) PCT/IL97/00301 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (21) International Application Number: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK. (22) International Filing Date: 10 September 1997 (10.09.97) LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, (30) Priority Data: KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, 119250 12 September 1996 (12.09.96) IL 119403 10 October 1996 (10.10.96) IL BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). COHEN, Yarom [IL/IL]; (71)(72) Applicant and Inventor: Hapragim Street 6, 52960 Ramat Efal (IL). (74) Agent: DR. YITZHAK HESS & PARTNERS; P.O. Box 6451, Published 61063 Tel Aviv (IL). With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (88) Date of publication of the international search report: 27 August 1998 (27.08.98)

(54) Title: PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF SYNDROME X OF REAVEN

(57) Abstract

The present invention relates to a pharmaceutical composition comprising as active ingredient a compound selected among somatostatin or one of its analogs, diazoxide or one of its analogs, cyclothiazide or one of its analogs and metformin, for the treatment of syndrome X of Reaven (also called "Hyper Insulinemia syndrome" or "The Deadly Quartet").

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	A Drawing	12.0	S:-	LS	Lagada	CT.	01-
AL	Albania	ES	Spain		Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Ļatvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ľT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal	rtugal	
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Internation Application No

PCT/IL 97/00301 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 A61K38/31 A61H A61K31/54 A61K31/155 According to International Patent Classification (IPC) or to both national classification and IPC B FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 A61K C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. PHILLIPS R.E. ET AL: "Effectiveness of Х 1-50, SMS 201-995, a synthetic, long-acting 52-55,58 somatostatin analogue, in treatment of quinine-induced hyperinsulinaemia" LANCET THE, vol. 1, 1986, LONDON GB, pages 713-715, XP002053032 see the whole document BOYLE P.J. ET AL: "Octeotride reverses Х 1-50, hyperinsulinaemia and prevents 52-55,58 hypoglycemia induced by sulfonilurea overdoses" JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM. vol. 76, no. 3, 1993, pages 752-756, XP002053033 see the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention *E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 09.07.98 2 March 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

2

Fax: (+31-70) 340-3016

Fernandez y Branas, F

0 (01)		PC1/1E 97/00301		
Category °	citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.		
х	CARRETTA, R. ET AL: "Reduction of blood pressure in obese hyperinsulinaemic hypertensive patients during somatostatin infusion" JOURNAL OF HYPERTENSION SUPPLEMENT, vol. 7, 1989, pages s196-s197, XP002053034 see the whole document	1-50, 52-55,58		
x	KIRK, J.M.W. ET AL: "Somatostatin analogue in short term management of hyperinsulinism" ARCHIVES OF DISEASE IN CHILDHOOD, vol. 63, no. 12, 1988, page 14931494 XP002053035 see the whole document	1-50, 52-55,58		
X	BLUMING A.Z. ET AL: "Successful treatment of unstable angina in malignant carcinoid syndrome using the long acting somatostatin analogue SMS 201-995 (sandostatin)" THE AMERICAN JOURNAL OF MEDICINE, vol. 85, 1988, pages 872-874, XP002053036 see the whole document	1-50, 52-55,58		
Х	US 4 100 153 A (GARSKY V.M.) 1978 see the whole document	1-50, 52-55,58		
X	US 4 159 263 A (GARSKY VICTOR M) 26 June 1979 see the whole document	1-50, 52-55,58		
X	EP 0 374 089 A (SANDOZ AG) 20 June 1990 see the whole document	1-50		
Α	RAYNOR K ET AL: "Cloned somatostatin receptors: identification of subtype-selective peptides and demostration of high affinity binding of linear peptides" MOLECULAR PHARMACOLOGY, vol. 43, no. 6, June 1993, pages 838-844, XP000676382	1-50, 52-55,58		
A	RAYNOR K ET AL: "Characterization of cloned somatostatin receptors SSTR4 and SSTR5" MOLECULAR PHARMACOLOGY, vol. 44, no. 2, August 1993, pages 385-392, XP000644418 see the whole document	1-50, 52-55,58		

2

Internatic Application No
PCT/IL 97/00301

(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication, where appropriate, of the relevant passages	 Relevant to claim No.
A	SIRTORI C.R. ET AL: "Re-evaluation of a biguanide, Metformin: mechanism of action and tolerability" PHARMACOLOGICAL RESEARCH, vol. 30, no. 3, 1994, pages 187-228, XP002053037 see the whole document	
A	SMITH U.: "Clinical and therapeutical aspects of the insulin resistance syndrome" CARDIOVASCULAR RISK FACTORS, vol. 3, no. 1, 1993, pages 67-73, XP002053038 see the whole document	
A	GUILLAUME G. ET AL: "Syndrome X et médecine générale" REVUE MEDICALE DE BRUXELLES, vol. 16, no. 2, 1995, XP002053039 see the whole document	
		·

International application No. PCT/IL 97/00301

INTERNATIONAL SEARCH REPORT

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1 (partially), 2-50 (completely), 52 (partially), 53-55 (completely), 58 (partially)

Pharmaceutical compositions for the treatment of the risk factors of syndrome X of Reaven comprising Somatostatin or one of its analogs; Uses of the said Somatostatin compositions.

Pharmaceutical compositions for the treatment of the risk factors of syndrome X of Reaven comprising diazoxide or one of its analogs; Uses of the said diazoxide compositions.

3. Claims: 1 (partially), 52 (partially), 58 (partially)

Pharmaceutical compositions for the treatment of the risk factors of syndrome X of Reaven comprising cyclothiazide or one of its analogs; Uses of the said cyclothiazide compositions

4. Claims: 1 (partially), 52(partially), 57 (completely), 58 (partially)

Pharmaceutical compositions for the treatment of the risk factors of syndrome X of Reaven comprising Metformin; uses of the said metformin compositions.

Information on patent family members

PCT/IL 97/00301

	Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
	US 4100153 A	11-07-78 NONE			
	US 4159263 A	26-06-79	NONE		
	EP 0374089 A	20-06-90	AU 4453589 A BE 1003762 A CH 680571 A DE 3937539 A DK 562289 A FR 2638968 A GB 2225532 A,B IT 1237437 B JP 2149528 A NL 8902785 A SE 8903764 A	17-05-90 09-06-92 30-09-92 31-05-90 12-05-90 18-05-90 06-06-90 04-06-93 08-06-90 01-06-90 09-07-90	
i				~	