Zermelo-Fraenkel set theory is inconsistent

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209
E-mail: cafeinst@msn.com, BS"D

Abstract: In this note, we prove that Zermelo-Fraenkel set theory is inconsistent by proving, using Zermelo-Fraenkel set theory, the false statement that any algorithm that determines that an $n \times n$ matrix over \mathbb{F}_2 , the finite field of order 2, is nonsingular must run in exponential time.

Disclaimer: This article was authored by Craig Alan Feinstein in his private capacity. No official support or endorsement by the U.S. Government is intended or should be inferred.

Let M_n be the set of $n \times n$ matrices over \mathbb{F}_2 . And let $f_i: M_n \to \{0,1\}$, for $i=1,\ldots,m$, be m functions with the following special property: For any $j \in \{1,\ldots,m\}$, there exist at least two $n \times n$ matrices, A and B, such that $f_i(A) = f_i(B) = 1$ for each $i = 1,\ldots,j-1,j+1,\ldots,m$, but $f_j(A) = 0$ and $f_j(B) = 1$. We shall now prove, using Zermelo-Fraenkel set theory [1], the following theorem, that we shall afterwards show is false:

Theorem: Let $A \in M_n$. It is necessary for any algorithm that determines that $f_i(A) = 1$ for each i = 1, ..., m to compute $f_i(A)$ for each i = 1, ..., m, which takes at least m steps.

Proof: We use induction on m: For m = 0, the theorem is true vacuously.

Assume true for m = k. We shall prove true for m = k + 1: Let Q be an algorithm that determines that $f_i(A) = 1$ for each i = 1, ..., k + 1. Then Q determines that $f_i(A) = 1$ for each i = 1, ..., k, so by the induction hypothesis, it is necessary for Q to compute $f_i(A)$ for each i = 1, ..., k, which takes at least k steps. By the special property of the functions f_i given above, Q cannot determine that $f_{k+1}(A) = 1$ from the fact that $f_i(A) = 1$ for each i = 1, ..., k; thus, it is necessary for Q to also compute $f_{k+1}(A)$ in order to determine that $f_{k+1}(A) = 1$, which takes at least another step. Hence, it is necessary for Q to compute $f_i(A)$ for each i = 1, ..., k + 1, which takes at least k + 1 steps. \square

We can easily see that the above theorem is false when we let $m = 2^n - 1$ and we define functions $f_i : M_n \to \{0,1\}$, where each $i \in \{1,\ldots,m\}$ corresponds to a vector $\mathbf{x} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}$ via a one-to-one and onto function $g : \{1,\ldots,m\} \to \mathbb{F}_2^n \setminus \{\mathbf{0}\}$, such that $f_{g^{-1}(\mathbf{x})}(A) = 0$ if and only if $A\mathbf{x} = \mathbf{0}$. In this situation, it is not necessary

for an algorithm to perform at least $m = 2^n - 1$ steps in order to determine that $f_i(A) = 1$ for each i = 1, ..., m, since determining that $f_i(A) = 1$ for each i = 1, ..., m is equivalent to determining that A is nonsingular and it is possible to determine in polynomial-time that a matrix A is nonsingular via Gaussian elimination [2]. Hence, since we have proven, using Zermelo-Fraenkel set theory, a statement that is known to be false, we can conclude that Zermelo-Fraenkel set theory is inconsistent.

References

- [1] Weisstein, Eric W. "Zermelo-Fraenkel Set Theory." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Zermelo-FraenkelSetTheory.html
- [2] Weisstein, Eric W. "Gaussian Elimination." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/GaussianElimination.html