Ici, mini-problèmes: algorithme

1 3 cas

- 1. Pb orienté optimisation et satisfaction des contraintes
- 2. Pb orienté "simulation"
- 3. Pb orienté "Apprentissag et réseaux de neurones"

2 Problème orienté optimisation

2.1 Pb n reines

Input : Tableau n×n TAB a valeurs dans nombres entiers supérieurs ou égaux à 0 TAB[i,j] ...

Output : Un placement de n "reines" sur l'échiquier (marquage de n cases)

tant que on a pas 2 cases marquées sur une même ligne, colonne, diagonales l'argent correspondant aux cases marquées soit maximal

Étape 1 Établier une spécification formelle via un modèle linéaire (PLNE). **modèle linéaire** : calculer un vecteur Z a valeurs dans des nombres (flottants ou entiers). tq (1) pour i dans J > 1..N, Z, doit etre entier (2) pour i dans 1..K, Σ Ak,i, , Zi ?? Bk (3) Maximiser Σ Ci Zi

```
Input :
    N
    J <= (1..N)
    Ak, k = 1..K
    Bk, k = 1..K
    Ci, i = 1..N</pre>
```

Ce qu'il faut savoir : * Les modèles linéaires \rightarrow Beaucoup d'effort des editeurs de logiciels - Bibliothèque dédiées IBM (OSL, CPLEX), XPRESS, GUROBI - Bibliothèques de calcul généraliste MATLAB, SAS, ... - Logiciels de gestion d'entreprises : SAP - Langages : CHIP, Prolog, CP-optimizer * Ces bibliothèques peuvent traiter des modèles avec => 10^5 variables ou contraintes * Rôle renctral en Algo car Beaucoup de Problèmes pratiques peuent être exprimés via ce formalisme

Le cas des n reines Vecteurs inconnu

Z indexe sur les cases de l'echiquier

Z=(Zi,j , i = 1..N, j = 1..N) Entier scrictement entre 0 et 1 (exclues)... Sémantique : Zi,j = 1 \sim on lace une reine en case (i, j) 0 \sim on ne places pas

Quantité a maximum (critere qualité)

```
ΣΤΑΒ[i,j] * Zi,j
i = 1..N
j = 1..N
```

Contraintes

- 1. je veux exactement n reines $\Sigma i, j Zi, j = n$
- 2. Pas + de 1 reine par ligne Pour toute ligne j = 1.. N
 Σ Zi,j =< 1
- 3. Pas + de 1 reine par colonne Pour toute colonne i = 1.. N
 Σ Zi,j =< 1
- 4. Pas + de 1 reine pour une diagonale montante, 2n-1, diagonales montante

```
Pour tout k = -(n-1)..(n-1)
 \Sigma Zi,i+k = < 1 i tq 1 <= i <= n i tq 1 <= i+k <= n
```

2 types d'algos : - exact : Realise exactement la spécification - $approch\acute{e}$: Induisent une marge d'erreur

Prendre en compte temps d'exec et critère de qualité de l'approximation dans le cas d'un algo approché (également la robustesse).

Approché

Remarque : Il faut préciser "appoche" : - J'impose vraiment n-reines (sinon échec) - J'accepte moins de n-reine \rightarrow maximiser l'argent donc pénalités (n - nbres de reines placées)

```
not stop;
tant que not stop faire
   choisir une case libre;
   si echec(choisir)
       alors stop;
   sinon
      placer une reine sur la case choisie;
      déduire le plus de choses possibles;
      mettre à jour stop;
```

 \rightarrow algo glouton avec propagation de contraintes

Déduire des reines imposées, interdites

Exercice: Écrire algorithme pour réalistion ces déductions imposé/interdit → SDD, Algo (on ne prend pas en compte le gains ici)

- $\bullet\,$ Un tableau deux dimensions i,
j où :
 - 0 case interdite
 - -1 case libre
 - 1 case occupée

- Un tableau compteur ligne, en ligne j nbe de case libre
- statut ligne, statutligne[1] = 1, il y a une reine en ligne j
- Idem colonnes:
 - compteur colonnes
 - statut colonnes
- Liste de reines imposées (fait déclencheurs en propagation de contraintes) .
 - couples (i,j) correspond à des cases où une reine est imposée
 - ehec, booleen diagnostiquant les impossibiliftés

Algo:

```
Echec \leftarrow 0;
LISTE + case qi'on vient de choisir dans la boucle principale de l'algo;
Tant que (Not Échec) && (Liste != Nil) Faire
    (i,j) \leftarrow Tête(LISTE);
    LISTE ← Queue(LISTE);
   Pour toute case (i',j') telle que (i = i') || (j = j') || [(i+j) = (i'+j')] || [(i-j)=(i'-j')]
    Si occupé[i',j'] = 1 alors Échec
    Sinon
        Si (occupé[i',j'] = -1) alors
            occupé[i',j'] = 0;
             compteur_lignes[i'] + compteur_lignes[i]-1
             compteur_colonnes[j'] + compteur_colonnes[j]-1
      | Si (compteur_lignes[i] = 0) && (statut_lignes[i'] = 0) alors ÉCHEC;
              Si (compteur_lignes[i'] = 1) && (statut_lignes[0] = 0)
                     soit j0 \leftarrow unique j tq occupé [i',j] = 0;
                     occupé[i',j0] \leftarrow 1;
                     LISTE ← (i', j0).LISTE;
                     statut_lignes[i'] = 1;
                     statut_colonnes[j0] = 1;
                 Fin Si
             Fin Sinon
        Fin si
    Fi Sinon
Fin Tant que
```

Remarque : le schéma peut échouer parce qu'il ne trouve pas une solution estimée acceptable. Il peut aussi renvoyer une solution de qualité médiocre.

2 pistes d'améliorations :

- 1. On garde le schéma glouton et on le rend non déterministe ("randomize"), de façon à pouvoir l'executer plusieurs fois de suite. Fixe le nb de N "réplications", pour i = 1..N faire Executer l'algo glouton (non déterministe); récuperer le "meilleur" résultat obtenu; Question : comment est-ce que je rends mon algo "non déterministe"? Algo courant (deterministe) Itération courante : Cases imposées interdites, Libres (Random avec proba si prob supérieure premier sinon deuxieme meilleur)
- 2. À l'issue de l'execution de l'algo glouton, on récupère une solution REINE (ex : vecteur indexe sur les cases et à valeurs en [0,1]) On essaie alors d'ameliorer cette solution en lui appliquant des opérateurs de "Transformation locale" (local search)

(...) Schéma GRASP

```
Pour i = 1..N (Replication) Faire
   Creer une solution REINE via
   la procédure gloutonne "randomizée";
   not stop;
   tant que not stop;
   Appliquer a reine l'opérateur 0 pour une valeur ad hoc de parametre;
      mettre à jour stop;
Consinier le meilleur objet REINE obtenu;
```

Pour mettre en oeuvre ce schema, il me faut définir le (ou les) opératur 0+ la façon d'aleer chercher les bonnes valeurs de paramètres

Ici difficultés (liée au fait qu'il y a beaucoup de contrainessur l'obet cherché) \rightarrow j'ai du mal à définir un opératuer 0 qui s'applique à un placement REINE satisfaisant les contraintes et qui le maintienne dans les contraines

Question améliorer?

1ère Approche, replication

2° approche, on applique sur l'objet REINE produit par l'algo glouton une boucle dite de transformation locale ("local search") :

```
not stop;
tant que not stop faire
    perturber REINE;
```

Cette 2° approche repose sur le design "d'operateurs", c'est à dire de prcédures TRANSFO(Reine,) Reine : adresse, : valeur.

Opérateurs génériques Build/Destroy

- J'enleve p reines parmi les n reines placées (p ~ x\% · n)
- Je me retrouve avec q = n-p (ou un peu moins) reines placées; J'applique la propagation de contraintes de ces q reines (j'interdis et impose des cases)

• Je relance le procede glouton "randomise" à partir de la situation obtenue

```
l'objet RBIND transforme de ? de ces 3 étapes
L'opérateur BUILD.DESTROY ainsi défini, prend comme paramètre.
BUILD.DESTROY(Reine, )
Questions sous-jacentes

1. Comment je choisis p et les reines de la liste ?

2. Qu'est ce qu'on met derriere "Tant que not stop faire perturber (Reine)"
?

Question 1
```

```
Fixer les idées →

n = 100

L'objet REINE est un vecteur a taille 10000

À chaque etape p = 20 (20%) → on enlève 20 reines
Pas possibilité d'enumerer toutes les possibilités
```

- 1. Possibilité : Enlever les reines qui ont été placées en 1°
- 2. Possibilité: Enlver les reines faibles (qui portent le moins d'argent)

 ${\bf NB}$: Il est souhaitable de génerer plusieurs paquets de p reines à faire a les tester tous et selectionner le + approprié.

Je peux mixer les 2 critères Spécification de la boucle "local search"

not stop; solcour ← reine; tant que not stop faire

```
not stop 1;
Tant que not stop 1 faire
  generer un paquet de reines à enlever; // (on peut générer eventuellement tous les paquet
  Tester l'application de BUILD.DESTROY(REINE, ); // Utilise une copie de REINE
    Si OK(Tester) alors
        stop1;
    Appliquer BUILD.DESTROY(Reine, );
    Sinon mettre à jour stop1;
```

Reste à préciser

 $\tt OK(Tester) \sim Dans$ quelles conditions j'estime que le paquet de reines à retirer justifie l'application de BUILD.DESTROY(Reine,)

- 1. Approche : OK si l'application de l'operateur ameliore REINE (place plus de reine ou fait gagner + d'argent) (Descente ou Hill-climbing)
- 2. Approche : OK toujours vrai \rightarrow je genere 1 paquet et j'applique (Marche aléatoire ou Random Walk)

```
→ Approche mixte : Recul simulé, Tabou, Genetique
   (...)
   Rappel
   Exploration en Arbre (méthode exacte) \rightarrow en largeur, liste de noeud créés :
pb + décisions prises, placement de reines ; liste de triplés ( (de signe +/-),i,j)
   ex: Imposé reine en case (2,3) Interdire en (5,4) \rightarrow {(+,2,3),(-,5,4)}
   Variable de controle de l'exploration en largeur de l'arbre : LISTE : Liste
de noeuds
   ex : LIST : \{\{+,2,3\},\{+,5,4\}\} \leftarrow Noeud 1, \{(+,2,3),(-5,4),\{(-,2,3)\}\}
   Squelette de l'Algo
*SDD* : LISTE,
                  REINE COUR,
                  VAL_COUR, (meilleurs objets obtenus)
                  OCCUPE[n][n] : de 1..n, 0/1/-1,
                  libre_col, libre_lig, statut_col, statut_lig
Initialisation
    OCCUPÉ ← 1;
    LISTE ← {nil}; not stop;
    REINE_COUR ← Indéfini;
    VAL_COUR ← -∞
Corps Algorithme
    Tant que (not stop) && (LISTE nil) faire
         N + Tete(LISTE); // Liste de cases imposées / interdites
         LISTE ← Queue(LISTE);
      Remplir OCCUPÉ, libre_col, ... via l'algo de déduction (prop de contraintes)
         Choisir une case (i0,j0) libre
         Généer les 2 noeuds
             n1 \leftarrow (+,i0,j0) \cdot N; n2 \leftarrow (-,i0,j0);
         En utilisant une copie a OCCUPÉ, appliquer le precessus de déduction a la décsion (+i0, j
         Si succes, mois, aucune case de libre, on a une vraie solution et on cose sa valeur = vale
             Idem avec N2;
   Principe: variable la plus contrainte
   Question: "Mettre n1 ou n2 dans LISTE"
   Est-ce qu'il y a un ordre pour les éléments de LISTE?
```

R'eponse: On va essayer de noter les noeuds, à l'aide d'un procédé d'estimation optimiste. (Banch / Bound) \to LISTE sera alors ordonnée par notes décroissantes

Je calcule une valeur VAL en tenant compte de de certaines contraintes "faciles" et en delaissant les contraintes "difficiles" (lignes, diagonales)

 $\mathrm{VAL}>=\mathrm{La}$ valeur du meilleur placement compatible ? le noeud (Estimation optimiste)

Mecanismes de filtrage induits

- Règle destructive VAL <= VALCOUR $\mid=$ Couper \sim j'élimine le noeud
- Règle constructive Si la solution associée à VAL satisfait les contraintes difficiles, aors elles se??

Adaptation de l'algorithme REINE à l'utilisation de Estimation optimiste LISTE devient une liste de couples (noeud, valeur) 1. Reste identique 2. Si n1 (n2) débouche sur un succès et des cases libres après propagation \rightarrow je calcule la note VAL1 de n1 (idem pour N2) et j'applique le me filtrage : * Si v1 <= VALCOUR alors Exit n1 * si v1 > VALCOUR, ET le placement induit satisfait toutes les contraintes \rightarrow Je mets à jour REINE_COUR et Exit n1; * Sinon j'insère (n1, val1) dans liste de façon à garder liste ordonné pour VAl1 décroissant (idem n2)

STOP ? quand la note cal du 1e element dans liste est <= VALCOUR

3 Problème orienté "simulation" Problème orienté simulation

A,B,C postes de travail

Produits (A), (B)

Produit (A), (B) arrivent "aléatoirement" \to L_A, L_B, lois d'arrivées On connait des durées de traitement pour (A), (B) sur A,B,C T_A, T_B, T^C_A, T^C_B aléatoires

 \rightarrow On se fait une idée : - Taux de perte - durée d'attente - Taille des buffers à augmenter ?

 NB : Ce n'est pas un poste d'assemblage, mais une machine de transformation

Questions à poser * Est-ce qu'on a observé des dysfonctionnements ? * Quels sont les enjeux économiques de ces dysfonctionnements ? * Données quatifiées * stock : $S_A = 10$; $S_B = 7$; $S_C = 13$ * Dans la simulation faut-il prévoir (Ici non pour tout car pas réel) * Maintenance préventive * set-up (màj de la machine chaque fois qu'elle change de tâche) * Relais liés aux changements d'activités humaines * Quantifier les lois L_A, L_B d'arrivées des objets A et B

Plusieurs options - Rythme d'arrivée presque deterministe... - Rythme d'arrivée avec grosses variations * L'intervalle de temps devient une variable aléatoire avec sa moyenne, variance, sa loi... - Il peut y avoir des correlations entre ces intervalles, et des correlations entre ces intervalles et les instants. (compliqués)

Avec une loi L_A ~ Proba qu'un objet A arrive entre 2 instants t et t+1 ~ 0·3 L_B ~ 0·2 * Idem pour les durées => on va supposier ici $T_A \sim Proba$ que l'objet A étant strictement à l'instant t, il soit fini à l'instant t+1 = 0·4...