선형대수학팀

3**팀** 윤지영 이지윤 이수린 임지훈 채희지

INDEX

- 1. 선형대수학의 개념과 필요성
- 2. 벡터와 행렬
- 3. 선형방정식과 선형결합
- 4. 선형변환
- 5. 역행렬과 행렬식
- 6. 아핀변환과 딥러닝

1

선형대수학의 개념과 필요성

1 선형대수학의 개념과 필요성

선형대수학의 개념

'선형대수학'이 뭐라고 생각하세요?

'선형대수학'는 말이죵~

선형성을 연구하는 대수학의 한 분야 기본단위인 행렬과 벡터를 이용하여 문제를 공간적으로 이해 및 처리

i

우리가 다루는 데이터가 2차원 이상의 공간일 때 이를 효율적으로 다루기 위한 언어

1 선형대수학의 개념과 필요성

선형대수학의 필요성

1 선형대수학의 개념과 필요성

선형대수학의 필요성

머신러닝 모델의 알고리즘, 딥러닝 구조도 망찬가질 행렬로 표현 선형대수학은 통계의 기반이기 때문에 병결합으로 표현 데이터 분석에 중요

차원 축소 등의 과정들이 학에 근간을 둠

2

벡터와 행렬

벡터의 의미

벡터 (Vector)

물리적으로 <mark>방향</mark>과 <mark>크기</mark>로 구성 공간상에서는 원점을 중심으로 뻗어가는 화살표와 같이 매칭

벡터의 의미

스칼라 (Scalar)

크기만 나타내는 단위로 일반적으로 상수라고 표현

벡터의 의미

n개의 원소로 이루어진 벡터는 n차원 공간에 있음

벡터의 연산

벡터의 연산은 벡터의 성분(component)끼리 이루어짐

벡터의 연산 법칙

$$V = \begin{bmatrix} a \\ b \end{bmatrix}$$
, $W = \begin{bmatrix} c \\ d \end{bmatrix}$

상수배:
$$\text{cv}=\begin{bmatrix} ca\\cb \end{bmatrix}$$

덧셈: v+w=
$$\begin{bmatrix} a+c\\b+d \end{bmatrix}$$

뺄셈:
$$v-w = \begin{bmatrix} a-c \\ b-d \end{bmatrix}$$

벡터의 기본 연산

 R^n 의 벡터 x, y, z와 스칼라 h, k에 대하여 다음이 성립한다.

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x = 0 + x$$

$$x + (-x) = 0 = (-x) + x$$

$$k(x + y) = kx + ky$$

$$(h + k) x = hx + hy$$

$$(hk) x = h(kx)$$

$$1x = x$$

벡터 연산의 기하학적 이해

상수배

각각의 성분에 c를 곱해주는 형태 벡터의 길이를 c배 늘려주는 형태

C가 양수인지, 음수인지에 따라 벡터의 방향이 바뀜

벡터 연산의 기하학적 이해

덧셈/뺄셈

원점에서부터 u벡터만큼 화살표 방향으로 이동 후 v만큼 이동하면서 생기는 <mark>평행사변형의 대각선</mark>이 u+v 즉, 벡터 w

뺄셈도 덧셈과 같은 방식으로 u벡터만큼 이동 후 -v 만큼 이동하면 벡터 u-v 구할 수 있음

행렬의 개념

행렬 (Matrix)

수나 식을 직사각형 모양의 행과 열로 배열한 것

원소(element): 성분(entry)라고도 불리며 행과 열의 개수를 이용해 크기를 표현

원소(element)
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
 m x n 행렬 m \neq n

$n \times n$ 일 때

정사각행렬 (Square Matrix)

m x n 일 때

직사각행렬 (Rectangular Matrix)

. 정사각행렬 ⊂ 직사각행렬

행렬의 연산

상수배

모든 원소에 같은 상수를 곱함

행렬의 힙

행렬의 곱

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 1 & 2 \end{bmatrix}$$

행렬의 연산

상수바

모든 원소에 **같은 상수**를 곱함

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 4 & 2-5 \\ -1 & 2 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 * 3 & 3 * 3 & -2 * 3 \\ 3 * 3 & 1 * 3 & 2 * 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 9 & -6 \\ 9 & 3 & 6 \end{bmatrix}$$

행렬의 합

크기가 같은 두 행렬에서 **같은 위치**에 있는 원소들의 합

행렬의 곱

모든 원소에 같은 상수를 곱함

$$A + B$$

$$= \begin{bmatrix} 1+2 & 3+4 & -2-5 \\ 3-1 & 1+2 & 2+3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 7 & -7 \\ 2 & 3 & 5 \end{bmatrix}$$

$$AC = \begin{bmatrix} 9 & 11 \\ -3 & 10 \end{bmatrix}$$

행렬의 연산

모든 원소에 같
$$\frac{1}{3}$$
 상숙을 곱함 $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$

$$\begin{array}{c}
AC \\
= \begin{bmatrix} 1 & 3 & -2 \\ 1 & 2 & 13 & 23 \\ -2 & 2 & 13 & 23 \\ -2 & 2 & 1 & 3 & 2 & 2 \\ -2 & 2 & 1 & 3 & 3 & 2 & 2 & 3 \\ 9 & 3 & 11 \\ -3 & 10 \\ = \begin{bmatrix} 3 & 7 & -7 \\ 2 & 3 & 5 \end{bmatrix} \\
= \begin{bmatrix} 3 & 7 & -7 \\ 2 & 3 & 5 \end{bmatrix}
\end{array}$$

$$\begin{array}{c}
B = \begin{bmatrix} 2 & 4 & -5 \\ 1 & -1 & 3 & 2 & 2 & 2 \\ 1 & -1 & 3 & 2 & 2 & 2 & 3 \\ -2 & -1 & 1 & 2 & 2 & 2 & 3 \\ -2 & 3 & 1 & 1 & 2 & 2 & 2 \\ 3 & -1 & 1 & 2 & 2 & 3 \\ \end{array}$$

$$= \begin{bmatrix} 1 + 2 & 3 + 4 & -2 - 5 \\ 3 - 1 & 1 + 2 & 2 + 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 7 & -7 \\ 2 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix}
 B = \begin{bmatrix} 2 & 4 & -5 \\
 1 * -1 + 3 * 2 + 2 * 3 \\
 -2 * -1 + 1 * 2 + 2 * 3
 \end{bmatrix}
 = \begin{bmatrix} 1 + 2 & 3 + 4 & -2 - 5 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 7 & -7 \\ 2 & 3 & 5 \end{bmatrix}$$

행렬의 곱

앞의 **행렬의 열**과 뒤 **행렬의 행**이 같을 때, 원소의 곱의 합

행렬의 종류

한 번 알아보자 ~

행렬의 종류는 행렬의 형태 또는 구성 원소에 따라 종류가 달라짐

영행렬(zero matrix)

모든 원소가 0인 행렬

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

대각행렬 (diagonal matrix)

대각 성분을 제외한 다른 성분이 모두 0인 행렬

$$egin{bmatrix} a_{11} & 0 & 0 \ 0 & a_{22} & 0 \ 0 & 0 & a_{33} \end{bmatrix}$$

단위행렬 (identity matrix)

대각 성분(diagonal)이 모두 1이고 나머지 성분들은 0인 행렬

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

행렬의 종류

한 번 알아보자 ~

행렬의 종류는 행렬의 형태 또는 구성 원소에 따라 종류가 달라짐

전치행렬 (Transpose matrix)

행과 열을 교환하여 얻는 행렬

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

대칭행렬 (Symmetric matrix)

$$A = A^T$$
인 행렬

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 1 \end{bmatrix}$$

3

선형방정식과 선형결합

선형방정식(Linear Equation)

선형방정식 (Linear Equation)

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

하나 이상의 선형방정식 집합은 연립선형방정식

해를 구할 때 문자와 식의 개수가 맞지않거나, 일반화된 해를 찾고 싶을 때 선형방정식 사용

$$\begin{cases} 2x - y = 0 \\ -x + 2y = 3 \end{cases} \text{의 해 구하기: } x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
$$\rightarrow Ax = b \text{의 꼴: } \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
$$\rightarrow \text{일반화: } x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

선형방정식(Linear Equation)

미지수의 개수가 적고,방정식의 개수가 적으면?

선형방정식 (Linear Equation) 단순 가감법 or 대입법 사용 가능

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

해를 구할 때 문자와 식의 개수가 맞지않거나, 일반화된 해를 찾고 싶을 때 선형방정식 사용

미지수/방정식의 개수가 늘어나면?

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$
 $\left\{ a_{21}^x x_1^y + a_{22}^y x_2^y + \cdots + a_{2n}^y x_n^{-\frac{1}{2}} b_2^{0} \right\}$ $\left\{ a_{21}^x x_1^y + a_{22}^y x_2^y + \cdots + a_{2n}^y x_n^{-\frac{1}{2}} b_2^{0} \right\}$ \vdots $a_{m1}^x x_1 + a_{m2}^x x_2 + \cdots + a_{mn}^y x_n^{-\frac{1}{2}} b_n^{0}$ \rightarrow 일반화: $x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

Elementary Row Operation (ERO)

Elementary Row Operation (ERO)

- ① 두 행을 교환한다
- ② 행에 대한 상수배
- ③ 행에 대한 상수배를 진행한 후 다른 행과 더한다

고차원 선형시스템의 해를 쉽게 구할 수 있음

두 행 교환

$$\xrightarrow{x + y + 2z = 2}$$

$$\xrightarrow{2x + y - z = 1}$$

행에 대한 상수배

$$x + y + 2z = 2$$

$$\times 2$$

$$2x + 2y + 4z = 4$$

상수배 후 더하기

$$2x + 2y + 4z = 4$$

$$-1(2x + y - z) = -1$$

$$y + 5z = 3$$

행렬사다리꼴 (Row Echelon Form, REF)

행렬사다리꼴 (Row Echelon Form)

ERO를 이용해 계단형으로 간단히 만든 선형시스템

확장행렬 (Argumented Matrix)

$$\begin{cases} x_1 + 0x_2 + 2x_3 + 5x_4 = 6 \\ 0x_1 + 4x_2 + 3x_3 + 5x_4 = 1 \\ 0x_1 + 0x_2 + 2x_3 + 3x_4 = 5 \\ 0x_1 + 0x_2 + 0x_3 + 2x_4 = 7 \end{cases}$$

Row Echelon Form, REF

$$\begin{bmatrix} 1 & 0 & 2 & 5 & 6 \\ 0 & 4 & 3 & 5 & 1 \\ 0 & 0 & 2 & 3 & 5 \\ 0 & 0 & 0 & 2 & 7 \end{bmatrix}$$

행렬사다리꼴 성립 조건

REF의 세 가지 조건

- ① 0으로만 구성된 행은 0이 아닌 값이 존재하는 행보다 아래에 위치
- ② 각 행의 leading entry는 해당 행의 위에 있는 leading entry보다 오른쪽에 위치
 - ③ 열 내에서 leading entry보다 아래에 있는 값들은 모두 0

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

행렬사다리꼴 성립 조건

REF의 세 가지 조건

① 0으로만 구성된 행은 0이 아닌 값이 존재하는 행보다 아래에 위치

- ② 각 행의 leading entry는 해당 행의 위에 있는 leading entry보다 오른쪽에 위치
 - ③ 열 내에서 leading entry보다 아래에 있는 값들은 모두 0

행이 모두 0으로 구성되지 않았다면, 그 행에서 첫 번째로 나타나게 되는 0이 아닌 수를 의미

1일 경우 모든 열에 최대 1개 존재

 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

Reduced Row Echelon Form, RREF

Reduced Row Echelon Form (RREF)

행렬사다리꼴 조건에 **2가지 조건 추가** 모든 행렬에 하나씩 존재

④ 0으로만 구성되지 않은 행의

| leading entry가 1이다 (leading 1)

 $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

⑤ 각각의 **leading 1**은 해당 열에서 유일한 0이 아닌 값이다.

 $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

가우스 - 조던 소거법 (Gauss - Jordan Elimination)

가우스 - 조던 소거법

ERO를 통해 선형시스템을 RREF로 변환해 연립방정식의 해를 구하는 방법

- ① 성분이 모두 0인 행렬을 가장 아래에 위치
- ② 첫 번째 열의 수가 0이 아닌 행을 제일 위에 위치
- ③ 다른 행의 첫 번째 열의 수가 0이 되도록 첫 번째 행을 상수배하여 다른 행에 더함
- ④ 첫 번째 행과 열을 제외한 나머지 부분에 대해서 위의 과정을 반복
- ⑤ 한 개의 열에 최대 1개의 leading 1만 존재하도록 아래에서부터 거꾸로 ERO를 진행

가우스 - 조던 소거법 (Gauss - Jordan Elimination)

가우스 - 조던 소거법

모든 행렬에서 항상 깔끔하게 해를

구할 수 있을까?

항상 성립하지는 않음 배하여 다른 행에 더함

선형시스템에서의 해집합

선형시스템에서의 세 가지 상황

- 1) 해집합이 단 하나만 존재 (Unique Solution)
- 2) 해집합이 무수히 많이 존재 (Infinitely many solution)
- 3) 해집합이 존재하지 않음 (No solution)

해 존재

(consistent)

해 존재 X

(inconsistent)

해집합이 단 하나만 존재

해집합이 무수히 많음

시각화

해집합 존재 x

선형시스템에서의 해집합

선형시스템에서의 세 가지 상황

- 1) 해집합이 단 하나만 존재 (Unique Solution)
- 2) 해집합이 무수히 많이 존재 (Infinitely many solution)
- 3) 해집합이 존재하지 않음 (No solution)

해 존재 (consistent)

해 존재 X

(inconsistent)

해집합이 단 하나만 존재

시각화 해집합이 무수히 많음

해집합 존재 x

선형시스템에서의 해집합

해를 깔끔하게 구할 수 있는 경우 ▮

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = 4 \end{cases}$$

Pivot column

leading 1을 포함하고 있는 열

각 행별로 leading 1을 얻을 수 있는 경우 해를 깔끔하게 구할 수 없는 경우

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \\ 0 = 4 \end{cases}$$
 inconsistent)

Free column

Pivot을 포함하고 있지 않은 열

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \end{cases}$$
 해가 무수히 많음 (consistent)

선형시스템에서의 해집합

해를 깔끔하게 구할 수 있는 경우

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = 4 \end{cases}$$

Pivot column leading 1을 포함하고 있는 열

> 각 행별로 leading 1을 얻을 수 있는 경우

해를 깔끔하게 구할 수 없는 경우

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \\ 0 = 4 \end{cases}$$
 inconsistent)

Pivot을 포함하고 있지 않은 열

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \end{cases}$$
 해가 무수히 많음
$$x_3 \text{ is free}$$
 (consistent)

선형결합(Linear Combination)

선형결합(Linear Combination)

벡터들을 스칼라배와 벡터 덧셈을 통해 조합한 새로운 벡터를 얻는 연산

$$Ax = [a_1 \ a_2 \cdots a_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

span : *a*의 조합

2차원 벡터공간의 모든 벡터는 (0,1)과 (1,0)의 조합을 통해 표현 가능 'Ax = b'의 해가 존재한다 = a의 조합으로 b를 표현할 수 있다

4

선형변환

4 선형변환

선형변환(Linear Transformation)

선형변환 (Linear Transformation)

$$R^n$$
에서 R^m 으로 변환하는 T 가 ① $T(u+v)=T(u)+T(v)/②T(ku)=kT(u)$ 를 만족할 때, 이를 선형변환이라고 함

정의역으로부터 하나의 화살표만 나가야 한다는 함수의 특징 또한 똑같이 적용

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Ax = b의 해를 찾는 것 A를 곱했을 때 b로 변환되는 벡터 x를 찾는 것

선형변환(Linear Transformation)

선형변환 (Linear Transformation)

$$R^n$$
에서 R^m 으로 변환하는 T가 ① $T(u + v) = T(u) + T(v) / ② $T(ku) = k T(u)$ 를 만족할 때, 이를 선형변환이라고 함$

변환의 4가지 예시

Translation의 경우, 선형 변환이 아님!

• 와 같이 상수항 *b*를 포함⁶

f(x) = ax + b와 같이 상수항 b를 포함하므로 선형의 조건을 만족하지 않음

선형변환(Linear Transformation)

정의역에서 원소 두 개를 뽑아 선형결합해 나오는 함수(벡터) = 선형 결합을 나중에 적용했을 때의 함수 값

1) 공간 위의 모든 직선은 변환 이후에도 직선2) 원점은 변환 이후에도 그대로 원점

선형변환의 기하학적 의미

원래 좌표계를 오른쪽으로 회전 후 늘린 형태

기저 벡터(basis vector, 빨간색): 좌표계의 기본 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

변환전

초록색 벡터를 기저 벡터의 선형결합으로 표현: $1\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

변환된 기저 벡터: [2], [1]

변환된 초록색 벡터는 $1\begin{bmatrix} 2\\-1\end{bmatrix}+3\begin{bmatrix} 1\\2\end{bmatrix}=\begin{bmatrix} 5\\5\end{bmatrix}$

선형변환의 기하학적 의미

하나의 행렬이 하나의 Transformation을 설명

→ 두 행렬의 곱은 두 번 변환을 적용

A: 공간 90도 회전 / B: 공간을 좌우로 뒤집음

AB = 공간을 좌우로 뒤집을 다음, 90도 회전시키는 선형 변환 BA = 공간을 90도 회전시킨 다음, 좌우로 뒤집는 선형 변환

선형변환의 기하학적 의미

하나의 행렬이 하나의 Transformation을 설명

→ 두 행렬의 곱은 두 번 변환을 적용

A: 공간 90도 회전 / B: 공간을 좌우로 뒤집음

AB = 공간을 지으로 되지을 다음 이도 되지 않는 생활 **행렬 연산에서 교환 법칙이 성립하지 않음!** BA = 공간을 90도 회전시킨 다음, 좌우로 뒤집는 선형

5

역행렬과 행렬식

역행렬의 기하학적 의미

역행렬

A의 선형변환 (linear transformation)을 다시 되돌리는 행렬 A⁻¹

① 행렬 A

② 역행렬 A⁻¹

예시

① <mark>벡터 X</mark>가 벡터 b로 선형변환

$$Ax = b$$

$$\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

② 벡터 b가 <mark>벡터 X로</mark> 선형변환

$$A^{-1} b = x$$

$$\begin{bmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

역행렬의 기하학적 의미

역행렬의 기하학적 의미

공간을 **압축시키**는 선형 변환을 가한 경우

2차원에서 1차원으로 압축된 벡터가

어떤 2차원 벡터로 다시 변환되는지 알 수 없음

(함수: 하나의 x벡터는 특정 y벡터로만 반환되어야함)

Ax = b의 해가 유일하지 않다

역행렬의 기하학적 의미

행렬식의 기하학적 의미

행렬식 (Determinant)

선형 변환을 할 때 선형 변환이 공간을 얼마나 변환시키는지에 대한 정보 제공

① 행렬식의 값: 변환의 크기

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\exists 0 : 1$$

$$\exists 0 : 6$$

② 행렬식의 부호 : 변환의 방향

특수한 행렬의 행렬식

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

아무것도 하지 않는 행렬, 공간의 크기도 그대로 유지 det AB = det A * det B

B에서의 변화율에 A에서의 변화율 적용, AB에서의 변화율과 동일

$$det A = 0$$

역행렬이 존재하지 않는 행렬, 즉 공간을 압축시키는 행렬 $\det A^{-1} = 1 / \det A$

행렬 A로 확대/축소된 공간을 반대로 축소/확대

6

아핀변환과 딥러닝

이동변환과 아핀변환

아핀 변환

y = Ax + b

ু선형 변환

평행이동 (서청서 V

(선형성 X)

예시

① 선형 변환에
$$\begin{bmatrix} c \\ d \end{bmatrix}$$
 를 추가

$$\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$$

선형변환

$$a\begin{bmatrix}2\\-1\end{bmatrix} + b\begin{bmatrix}1\\2\end{bmatrix} + 1\begin{bmatrix}c\\d\end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & c \\ -1 & 2 & d \end{bmatrix} \begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$$

이동변환과 아핀변환

아핀 변환 평행이동으로 인해 원점이 변하기 때문에

선형성을 만족하지 못함!

$$y = Ax + b$$

$$T(u+v) = T(u) + T(v)$$

평행이동
(선형성 X)

$$T(X) = AX + \mathbf{k}$$
일때, 선형변환

예시

$$T(au + bv)$$

$$= Aau + Abv + k$$

$$\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$$

$$T(au) + T(bv)$$

① 선형 변환에
$$= {}^{C}_{d}A(\overline{au}+bv) \oplus k$$
ine \overline{au} bin $= i(A\overline{au}+k) + (Abva+rik)$

$$= Aau + Abv + k$$

$$= Aau + Abv + 2k$$

$$= \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 \\ b \end{bmatrix} \begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$$

아핀 변화

이동변환과 아핀변환

아핀 변환

Bias 항이 추가되면서 input이 2차원 \rightarrow 3차원으로 변환

아핀 변환은 Non-Square Matrix를 통해 3차원 input을 2차원 output으로 바꿔 줌

예시

① 선형 변환에
$$\begin{bmatrix} c \\ d \end{bmatrix}$$
 를 추가

$$\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$$

$$a\begin{bmatrix} 2 \\ -1 \end{bmatrix} + b\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1\begin{bmatrix} c \\ d \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & c \\ -1 & 2 & d \end{bmatrix} \begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$$

딥러닝 개념

딥러닝

머신 러닝의 일종으로, 여러 개의 노드를 가진 층 (Layer)을 쌓아서 학습
Input layer와 hidden layer를 거침

활성화 함수로 입력 값 예측 손실 함수로 예측 값과 실제의 오차 측정 손실함수 바탕으로 가중치 업데이트

선형대수학의 활용

인풋 레이어에 있는 인풋 값 x 가중치 + bias Wx + b는 아핀 변환의 Ax+ b 구조와 유사

딥러닝 개념

딥러닝

머신 러닝의 일종으로, 여러 개의 노드를 가진 층 (Layer)을 쌓아서 학습 Input layer와 hidden layer를 거침

활성화 함수로 입력 값 예측 손실 함수로 예측 값과 실제의 오차 측정 손실함수 바탕으로 가중치 업데이트

입력층(Input Layer) 은닉층(Hidden Layer) 출력층(Output Layer)

선형대수학의 활용

인풋 레이어에 있는 인풋 값 x 가중치 + bias Wx + b는 아핀 변환의 Ax+ b 구조와 유사

아핀변환과 딥러닝

선형대수학 딥러닝 적용 예시

아핀변환과 딥러닝

4개의 초록색 ● 노드가 벡터 성분 값을 받음

● 노드: Bias

■■■항:각 노드에서 뻗어나가는 가중치

4개의 초록색 ● 노드가 벡터 성분 값을 받음

4개의 특성을 가진 데이터를 포함한 4차원 벡터가 들어옴

가중치 행렬 \times *input* 벡터 + *bias* $\rightarrow Wx + b$ (아핀 변환의 형태)

● 노드: Bias

■■■항:각 노드에서 뻗어나가는 가중치

아핀변환과 딥러닝

증강시킨(Augmented) 행렬을 이용하여 linear transformation 형태로 나타낼 수도 있음

아핀변환과 딥러닝

[56, 231, 24, 2, 1] 벡터에 가중치 행렬을 통한 Linear Transformation이 가해짐으로써 다음 층으로 전달

> 가중치를 계속 업데이트 해 나가는 것이 딥러닝의 학습 과정

아핀변환과 딥러닝

활성화함수를 이용하여 가중치를 업데이트 '비선형' 활성화 함수를 바탕으로 네트워크를 구성

아핀변환과 딥러닝

그래서 왜 비선형 함수를 바탕으로 네트워크를 구성하는 건데!

f(x) = kx를 선형 함수, g(x) = ax + b를 비선형함수라고 하면 f(x)로 n번 층을 쌓는다고 해도 $k^n x$ 임으로, k^n 을 한번 적용하는 것과 차이가 없음

----> 여러 hidden layer를 쌓고 가중치를 업데이트하는 이점이 없어짐

sigmoid, ReLU와 같은 비선형 활성화 함수를 이용해, 층을 쌓는 과정에 의미를 부여

자세한 내용은 딥러닝팀 참고!

다음 주 예고

- 1. 공간(Space)
- 2. 노름과 내적
 - 3. 직교성
- 4. 사상(Projection)
 - 5. 회귀적용