CME 241 Assignment-2

Halil Ibrahim Gulluk ID: 06454540

February 14, 2022

Snakes and Ladders: In this problem, we model snakes and ladders game. States can be modeled as the cell that our player sits on. Namely, $s_t = k$, where t stands for the time step and k is the cell number.

For each k = 0, 1, 2, ..., 100, transition probabilities are as follows:

$$\mathcal{P}(k, k+i) = 1/6$$
 for $i = 1, 2, 3, 4, 5, 6$ (1)

Note that for states $s_t \ge 100$, we can say that it is equivalent to the state $s_t = 100$. Namely, states $s_t \ge 100$ stands for the state $s_t = 100$, which is the terminal state.

Note that in the game, there is no states like $s_t = 1$ or $s_t = 4$, because when the player arrives to the cell-1 or cell-4 it actually goes to the cell-38 or cell-14 directly. So, we need to say that state $s_t = 1$ stands for the state $s_t = 38$; or state $s_t = 4$ stands for the state $s_t = 14$.

There are multiple of these situations which is described in the code.

We initialize the game for n = 10000 time and get a probability distribution of the time steps required to finish the game, which is provided below.

Figure 1

Frog Puzzle Suppose we have n steps. And the expected number of the frog steps is a_n . We know that $a_0 = 0$, $a_1 = 1$ and $a_2 = \frac{3}{2}$. Let's consider a_{n+1} , we have n+1 different

first step to 0, 1, 2, ..., n with equal probabilities. Then,

$$a_{n+1} = \frac{1}{n+1}(1+a_0) + \frac{1}{n+1}(1+a_1) + \dots + \frac{1}{n+1}(1+a_n) = 1 + \frac{1}{n+1}(a_0 + a_1 + \dots + a_n)$$
(2)

$$(n+1)a_{n+1} - (n+1) = a_0 + ..a_n (3)$$

If we write $n \longrightarrow n-1$ in the last equation we get,

$$na_n - n = a_0 + ..a_{n-1} (4)$$

If we subtract the last two equations we get

$$a_{n+1} - a_n = \frac{1}{n+1} \Longrightarrow a_n = 1 + \frac{1}{2} + \frac{1}{3} \cdots + \frac{1}{n}$$
 (5)

Reward Process: In order to calculate the expected dice rolls, we can say that we gain a reward $r_t = 1$ if our dice is in the set $\{1, 2, 3, 4, 5\}$, and $r_t = 0$ if it is 6. It is because in the game, if we roll 6, then we do not roll it again, it rolls automatically, so no need to count the first roll. I implemented it in the code.