MAP 569 Machine Learning II

Christophe Giraud

PC3

RKHS

1/21

Reproducing Kernel Hilbert Spaces

2 / 21 RKHS

Today

- Motivations
- RKHS
- Applications

Motivations

Reproducing Kernel Hilbert Spaces

Goal: to represent the data in a new space \mathcal{H} , possibly of infinite dimension.

Why?

- to "delinearize" an algorithm
- to "vectorialize" data

DIVIS F / 21

Example: delinearization 1/4

Example: delinearization 2/4

With a linear classifier: poor result

SVM classification plot

Example: delinearization 3/4

Recipe: apply a linear classifier in a "feature space" ${\mathcal H}$

Example: delinearization 4/4

With a linear classifier in a suitable ${\cal H}$

SVM classification plot

Example: vectorialization of data

How can we handle texts or molecules?

Examples:

- words in email for spam filters. Word = sequence of variable length.
- proteins for drugs. Proteins = sequence of variable length in the alphabet of 20 amino-acid.
 - Insulin: FVNQHLCGSHLVEALYLVCGERGFFYTPKA
- complex molecules for medicine. Molecule = graph.

Example: sequences of proteins

Active proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQQQQQQQQQIEA... MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW... MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...

Inactive proteins:

MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG... MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG... MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP.....

Example: complex molecules

12/21 12 / 21

RKHS

Reproducing kernel

To a function $\phi: \mathcal{X} \to \mathcal{H}$ in an Hilbert space \mathcal{H} , we can associate a "kernel" $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by

$$k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$

Property: for all $x_1, ..., x_n \in \mathcal{X}$, the matrix $K = [k(x_i, x_j)]_{i,j=1,...,n}$ is positive semi-definite. Proof?

□ > <□ > □ > □ > □ </

14/21

RKHS: theory 1/3

Let \mathcal{X} be a set.

Notion 1: positive kernel

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **positive kernel** if

- k is symmetric: k(x, y) = k(y, x) for all $x, y \in \mathcal{X}$,
- For all $N \in \mathbb{N}$, $x_1, \ldots, x_N \in \mathcal{X}$ the matrix $K = [k(x_i, x_i)]_{i,i=1,\ldots,n}$ is positive semi-definite.

RKHS: theory 2/3

Notion 2: RKHS

An Hilbert space \mathcal{H} of functions from \mathcal{X} to \mathbb{R} is called a **Reproducing Kernel Hilbert Space**, if there exists a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that

- \bullet $k(x,\cdot) \in \mathcal{H}$ for all $x \in \mathcal{X}$
- 2 Reproduction property: for all $x \in \mathcal{X}$ and $f \in \mathcal{H}$

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}$$

What is the value of $\langle k(x,.), k(y,.) \rangle_{\mathcal{H}}$?

16/21 16 / 21

RKHS: théorie 3/3

Theorem (Aronszajn, 1950)

There is a bijection between RKHS and positive kernels

Why?

Geometric picture

The mapping $\phi: \mathcal{X} \to \mathcal{H}$ defined by $\phi(x) = k(x, \cdot)$ fulfills

$$k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$

Examples

Examples of kernels: in \mathbb{R}^d .

- linear kernel: $k(x, y) = \langle x, y \rangle$
- Gaussian kernel: $k(x, y) = \exp(-|x y|_2^2/2\sigma^2)$
- histogram kernel: $k(x, y) = \min(x, y)$
- exponential kernel: $k(x, y) = \exp(-|x y|_2/\sigma)$
- sigmoidal kernel: $k(x, y) = \tanh(a\langle x, y \rangle + b)$

Not positive!!

etc.

18/21

18 / 21

Exercise:

Let us consider the Sobolev space

$$\mathcal{H} = \{ f : [0,1] \to \mathbb{R}, \text{ cont., d\'erivable p.p., } f' \in L^2([0,1]), \ f(0) = 0 \}$$

endowed with the Hilbert norm

$$|f|_{\mathcal{H}}=\sqrt{\int_0^1(f')^2}.$$

① Prove that if \mathcal{H} is a RKHS with kernel k, then for all $x \in [0,1]$ we have

$$f(x) = \int_0^1 f'(y) \frac{\partial}{\partial y} k(x, y) dy$$
 and $f(x) = \int_0^1 f'(y) \mathbf{1}_{\{y \le x\}} dy$.

- ② What is the kernel k associated to \mathcal{H} ?
- **3** What is the shape of $\phi(x) = k(x, .)$?

<ロ > ← □

MAP 569 Machine Learning II RKHS

Geometric picture

The mapping $\phi: \mathcal{X} \to \mathcal{H}$ defined by $\phi(x) = k(x, \cdot)$ fulfills

$$k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Kernel for words/strings

Spectral kernel: basic kernel for words build from an alphabet A.

For $x \in \bigcup_n A^n$ and $s \in A^d$ we set

 $N_s(x)$ = number of occurrence of s in x

Spectral kernel

For $x, y \in \bigcup_n A^n$

$$k(x,y) = \sum_{s \in \mathcal{A}^d} N_s(x) N_s(y)$$

Is it positive? how can we compute it efficiently?

21 / 21