Unicorn Startups

O primeiro passo para ser executado é realizar a importação das bibliotecas necessárias para a execução do projeto. No caso de necessidade de possuir outras bibliotecas, este bloco será responsável por receber todas as bibliotecas.

Aqui, também, foi importado a biblioteca warnings para filtrar alguns avisos.

```
In []: # Importando as bibliotecas
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns

# Ignorar alguns avisos que podem ocorrer
  import warnings
  warnings.filterwarnings('ignore')
```

O próximo passo é realizar a importação do arquivo Startups2021.csv através do pandas, no formato de um DataFrame. Após o carregamento do DataFrame, verificamos que a base de dados em questão possui 936 linhas (dados) e 8 colunas (atributos), através do comando df.shape.

```
In []: # Ler os dados do arquivo 'Startups2021.csv'
df = pd.read_csv('Startups2021.csv')

# Verifica o tamanho da Base de Dados
df.shape
```

```
Out[]: (936, 8)
```

Realizaremos uma primeira visualização da base de dados carregados com o método df.head(), que exibe os primeiros 5 (cinco) registros do DataFrame. Caso deseje exibir mais ou menos valores, basta enviar um valor numério inteiro para o método, como por exemplo df.head(3), que exibe os primeiros 3 (três) registros.

```
In [ ]: # Exibe os primeiros 5 (cinco) registros do DataFrame
df.head()
```

	Unnamed: 0	Company	Valuation (\$B)	Date Joined	Country	City	Industry	Sele
(0	Bytedance	\$140	4/7/2017	China	Beijing	Artificial intelligence	Seq Chi Inve
1	I 1	SpaceX	\$100.3	12/1/2012	United States	Hawthorne	Other	Fou D
2	2 2	Stripe	\$95	1/23/2014	United States	San Francisco	Fintech	Khos Lower
3	3	Klarna	\$45.6	12/12/2011	Sweden	Stockholm	Fintech	Ventı Sequ
4	i 4	Canva	\$40	1/8/2018	Australia	Surry Hills	Internet software & services	Seq Chir Ver
4								•

É importante analisar também, as ultimas linhas do DataFrame. Para isso, podemos utilizar o método df.tail(), que exibe os ultimos 5 (cinco) registros do DataFrame. Caso deseje exibir mais ou menos valores, basta enviar um valor numério inteiro para o método, como por exemplo df.tail(3), que exibe os ultimos 3 (três) registros.

Out[]:

Out[]:	Unnamed (Jnnamed: 0 Company		Date Joined	Country	City	Industry	
	931	931	YipitData	\$1	12/6/2021	United States	New York	Internet software & services	Pa
	932	932	Anyscale	\$1	12/7/2021	United States	Berkeley	Artificial Intelligence	In Fo
	933	933	lodine Software	\$1	12/1/2021	United States	Austin	Data management & analytics	Int B V€
	934	934	ReliaQuest	\$1	12/1/2021	United States	Tampa	Cybersecurity	C
	935	935	Pet Circle	\$1	12/7/2021	Australia	Alexandria	E-commerce & direct-to- consumer	

Antes de prosseguirmos com as análises, realizaremos a alteração no nome das colunas para melhor visualização futura.

- 1. Visualizamos apenas os nomes das colunas através do método df.columns.
- 2. Através do envio de um dicionário na função rename , realizamos a alteração dos nomes das colunas e indicamos, com o parâmetro implace como True para que seja sobrescrito no próprio DataFrame.

```
}, inplace=True)

df.columns
```

Ao visualizar os primeiros dados, é possível verificar que, existem alguns valores que não estão adequados. Para certificar os tipos de dados em cada uma das colunas, executamos o comando abaixo e, comprovamos que os atributos Valor (\$B) não é do tipo float (devido a presença do símbolo \$ antes do valor) e o atributo Data de Adesão não é do tipo date (devido ao formato incorreto de data).

Além destas observações, é possível notar que temos a presença de alguns campos nulos nos atributos Cidade, que possui apenas 921 dados e no atributo Investidores, que possui apenas 935 informações cadastradas. Vale ressaltar que possuimos, na nossa base de dados, **936 linhas**.

In []: # Verifica o tipo de informação armazenada em cada uma das colunas do DataFrame
df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 936 entries, 0 to 935
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype
0	Id	936 non-null	int64
1	Empresa	936 non-null	object
2	Valor (\$B)	936 non-null	object
3	Data de Adesão	936 non-null	object
4	Pais	936 non-null	object
5	Cidade	921 non-null	object
6	Setor	936 non-null	object
7	Investidores	935 non-null	object

dtypes: int64(1), object(7)
memory usage: 58.6+ KB

Observe que, ao realizar a contagem dos campos nulos do DataFrame, temos que faltam 15 cidades e 1 investidor que possuem valores nulos. A partir daí, cabe ao Analista verificar a importância destes dados, pois, existem diferentes métodos para lidar com a falta destes dados.

```
In [ ]: # Verifica os campos nulos
df.isnull().sum()
```

```
Out[ ]: Id
                            0
                            0
        Empresa
        Valor ($B)
                            0
        Data de Adesão
                            0
        Pais
                            0
        Cidade
                          15
        Setor
                            0
        Investidores
                            1
        dtype: int64
```

Uma outra forma de visualização destes dados é através de um gráfico. Podemos utilizar o Seaborn para exibir algumas informações sobre estes dados. Cada um dos traços em branco representa um dado (ou conjunto de dados) que são nulos.

```
In [ ]: # Gráfico
   plt.figure(figsize=(15,6))
   plt.title('Análise de Campos Nulos')
   sns.heatmap(df.isnull(), cbar=False);
```


Opção 1: Realizar a remoção da Coluna que possui os dados nulos

Através do comando pandas.DataFrame.drop conseguimos realizar a exclusão da coluna Cidade e Investidores do DataFrame. Caso queira que esta alteração passe para o DataFrame, adiciona-se o parâmetro inplace=True.

No código abaixo, primeiramente, foi removido a coluna Cidade atribuindo a uma segunda variável e, posteriormente, com o parâmetro inplace=True, realizou-se a retirada da coluna Investidores.

Vale ressaltar que, este método só está sendo utilizado por questões de **estudos** e não é indicado para o nosso caso, visto que perde-se cerca de **24,78%** de todos os dados do DataFrame ao excluir as colunas Cidade e Investidores.

```
In []: # Remove a coluna 'Cidade' do DataFrame df e atribui a um novo DataFrame (df_aux df_aux = df.drop('Cidade', axis=1)

# Remove a coluna 'Investidores' do DataFrame df_aux e atribui a alteração diret df_aux.drop('Investidores', axis=1, inplace=True)

# Exibe as colunas do df_aux, agora, sem a coluna 'Cidade' df_aux.columns

Out[]: Index(['Id', 'Empresa', 'Valor ($B)', 'Data de Adesão', 'Pais', 'Setor'], dtype = 'object')

In []: # Verifica os campos nulos do novo DataFrame que está sem a coluna 'Cidade' df_aux.isnull().sum()
```

```
Out[]: Id 0
Empresa 0
Valor ($B) 0
Data de Adesão 0
Pais 0
Setor 0
dtype: int64
```

Opção 2. Realizar a remoção da Linha que possui os dados nulos

Esta opção já pode ser utilizada para o nosso caso. A perda das linhas podem não gerar perdas significativas **dependendo da futura aplicação**, visto que, para alguns recursos de inteligência artificial, tais dados podem significar a identificação de novos padrões ou auxiliar na métrica do algoritmo.

De forma geral, a remoção de dados de um DataFrame quase sempre não é aconselhada pois podemos perder informações valiosas com a exclusão.

Dado a ressalva, para realizar a remoção de uma linha que possui dados faltantes, utilizaremos, junto com o comando pandas.DataFrame.drop , uma busca por valores nulos em cada uma das colunas, conforme exemplo abaixo.

```
In [ ]: # Realiza uma cópia do DataFrame inicial para não haver alterações nele
        df_aux = df.copy(deep=True)
        # Remove as Linhas (index) que possuem valores nulos (NaN) na coluna 'Cidade' e
        df_aux.drop(df_aux.loc[pd.isnull(df_aux['Cidade'])].index, inplace=True)
        # Remove as linhas (index) que possuem valores nulos (NaN) na coluna 'Cidade' e
        df_aux.drop(df_aux.loc[pd.isnull(df_aux['Investidores'])].index, inplace=True)
        # Exibe o novo tamanho do DataFrame
        df aux.shape
Out[]: (920, 8)
In [ ]: # Verifica os campos nulos do novo DataFrame que está sem a coluna 'Cidade'
        df_aux.isnull().sum()
Out[ ]: Id
        Empresa
                          0
        Valor ($B)
                          0
        Data de Adesão 0
        Pais
        Cidade
        Setor
        Investidores
        dtype: int64
```

Outra forma de eliminar as linhas que possuem, ao menos, um valor nulo é através do método dropna().

```
In [ ]: # Realiza uma cópia do DataFrame inicial para não haver alterações nele
    df_aux = df.copy(deep=True)
# Remove as linhas que possuem ao menos um valor nulo (NaN)
```

```
df_aux.dropna(inplace=True)
        # Exibe o novo tamanho do DataFrame
        df_aux.shape
Out[]: (920, 8)
In [ ]: # Verifica os campos nulos do novo DataFrame que está sem a coluna 'Cidade'
        df_aux.isnull().sum()
Out[]: Id
        Empresa
                         а
        Valor ($B)
        Data de Adesão 0
        Pais
        Cidade
                        0
        Setor
        Investidores
        dtype: int64
```

Opção 3. Substituir os valores faltantes pela média de valores da Coluna

Para os casos de variáveis do tipo numéricas, esta abordagem torna-se bem simples, bastando realizar a média numérica de acordo com os dados da coluna e substituir os valores faltantes (NaN) pela média.

Já para dados Categóricos, isso passa a ser uma abordagem complexa. Para essa base de dados, é inviável realizar tal substituição, visto que os atributos que estão com falta de dados, são do tipo categóricos e são relevantes para a consistência dos dados.

Opção 4. Alterar cada um dos dados manualmente através da obtenção das informações

Para uma base de dados "pequena" com poucas faltas, seria uma ótima abordagem completar a base de dados através da obtenção das informações faltantes, sendo esta, a melhor abordagem de todas. Porém, nem sempre este requisito é atendido, devido a falta de informações disponíveis ou, dependendo da quantidade de dados faltantes, da inviabilidade de obter tais informações.

Para verificar quais linhas possuem os dados faltantes e para simular a incerção destes dados no DataFrame, basta filtrar de acordo com a coluna desejada, conforme já realizado anteriormente.

```
In [ ]: # Realiza uma cópia do DataFrame inicial para não haver alterações nele
    df_aux = df.copy(deep=True)

# Exibe as Linhas (index) que possuem ao menos um valor nulo (NaN) no DataFrame
    df_aux[df_aux.isna().any(axis=1)]
```

Out[]:

	Id	Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Invest
11	11	FTX	\$25	7/20/2021	Hong Kong	NaN	Fintech	S Thoma
192	192	HyalRoute	\$3.5	5/26/2020	Singapore	NaN	Mobile & telecommunications	Kua
399	399	Advance Intelligence Group	\$2	9/23/2021	Singapore	NaN	Artificial intelligence	Visi Capit Ve Zhe
572	572	Trax	\$1.3	7/22/2019	Singapore	NaN	Artificial intelligence	Inve Manag Boyu (
677	677	Amber Group	\$1.1	6/21/2021	Hong Kong	NaN	Fintech	Tiger Manag Tiger E DC
682	682	Carousell	\$1.1	9/15/2021	Singapore	NaN	E-commerce & direct-to-consumer	500 R Ve Golde
710	710	LinkSure Network	\$1	1/1/2015	China	Shanghai	Mobile & telecommunications	
735	735	WeLab	\$1	11/8/2017	Hong Kong	NaN	Fintech	S Capita ING, <i>I</i> Entre
812	812	PatSnap	\$1	3/16/2021	Singapore	NaN	Internet software & services	S Capita S
840	840	Moglix	\$1	5/17/2021	Singapore	NaN	E-commerce & direct-to-consumer	V∈ \ H
843	843	Matrixport	\$1	6/1/2021	Singapore	NaN	Fintech	Dra (() Partne
848	848	Carro	\$1	6/14/2021	Singapore	NaN	E-commerce & direct-to-consumer	Innov8

Invest	Setor	Cidade	Pais	Data de Adesão	Valor (\$B)	Empresa	ld	
Ve Golde								
Ve E Pi	Fintech	NaN	Singapore	7/1/2021	\$1	bolttech	861	861
Vent Asia, Fo	Fintech	NaN	Singapore	7/13/2021	\$1	NIUM	872	872
Andr Hc DST IDG	E-commerce & direct-to-consumer	NaN	Hong Kong	9/2/2021	\$1	Cider	885	885
B Mor Ve Dyı	Supply chain, logistics, & delivery	NaN	Singapore	9/27/2021	\$1	Ninja Van	897	897

Ao analisar os dados faltantes, podemos verificar que a Base de Dados possui erros no processo de incersão dos dados. Observe que na coluna "Pais" encontramos valores como "Hong Kong", sendo estes, cidades e não países.

Para analisar mais prontamente esta base de dados, será necessário verificar os dados categóricos por agrupamento.

```
In [ ]: df.groupby('Pais')['Id'].count()
```

Out[]:	Pais	
	Argentina	1
	Australia	6
	Austria	2
	Belgium	2
	Bermuda	1
	Brazil	15
	Canada	15
	Chile	1
	China	169
	Colombia	2
	Croatia	1
	Czech Republic	1
	Denmark	2
	Estonia	1
	Finland	2
	France	19
	Germany	23
	Hong Kong	7
	India	51
	Indonesia	4
	Indonesia,	1
	Ireland	3
	Israel -	21
	Japan	6
	Lithuania	1
	Luxembourg	1
	Malaysia	1
	Mexico	5 5
	Netherlands	1
	Nigeria	3
	Norway Philippines	2
	Santa Clara	1
		1
	Senegal Singapore	11
	South Africa	2
	South Korea	11
	Spain	4
	Sweden	4
	Switzerland	4
	Thailand	2
	Turkey	2
	United Arab Emirates	3
	United Kingdom	37
	United States	477
	United States,	1
	Vietnam	1
	Name: Id, dtype: int64	

Realização de Algumas alterações nos campos

- 1. Modificou-se as vezes em que 'United States,' aparecia, removendo a vírgula
- 2. Idem item anterior para Indonesia
- 3. Onde aparecia Hong Kong como país, foi atribuido como cidade
- 4. Alterou o país Hong Kong por China

```
In [ ]: df.loc[df['Pais'] == 'United States,', 'Pais'] = 'United States'
        df.loc[df['Pais'] == 'Indonesia,', 'Pais'] = 'Indonesia'
        df.loc[df['Pais'] == 'Hong Kong', 'Cidade'] = 'Hong Kong'
        df.loc[df['Pais'] == 'Hong Kong', 'Pais'] = 'China'
In [ ]: df.groupby('Pais')['Id'].count()
Out[]: Pais
        Argentina
                                   1
        Australia
                                   6
        Austria
                                   2
        Belgium
                                   2
        Bermuda
                                   1
        Brazil
                                  15
        Canada
                                  15
        Chile
                                  1
        China
                                 176
        Colombia
                                   2
        Croatia
                                   1
        Czech Republic
                                   1
        Denmark
                                   2
        Estonia
                                   1
        Finland
                                  2
                                  19
        France
        Germany
                                  23
        India
                                  51
        Indonesia
                                  5
        Ireland
                                   3
                                  21
        Israel
        Japan
                                   6
        Lithuania
                                   1
        Luxembourg
                                   1
        Malaysia
                                   1
        Mexico
                                   5
                                   5
        Netherlands
                                   1
        Nigeria
        Norway
                                   3
        Philippines
                                   2
        Santa Clara
                                   1
        Senegal
                                  1
                                  11
        Singapore
        South Africa
                                  2
        South Korea
                                  11
        Spain
                                   4
                                   4
        Sweden
        Switzerland
                                   4
        Thailand
                                   2
        Turkey
                                   2
        United Arab Emirates
                                  3
        United Kingdom
                                  37
        United States
                                 478
        Vietnam
                                   1
        Name: Id, dtype: int64
In [ ]: df[df.isna().any(axis=1)]
```

Out[]:		ld	Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Invest
	192	192	HyalRoute	\$3.5	5/26/2020	Singapore	NaN	Mobile & telecommunications	Kua
	399	399	Advance Intelligence Group	\$2	9/23/2021	Singapore	NaN	Artificial intelligence	Visi Capit Ve Zhe
	572	572	Trax	\$1.3	7/22/2019	Singapore	NaN	Artificial intelligence	Inve Manag Boyu (
	682	682	Carousell	\$1.1	9/15/2021	Singapore	NaN	E-commerce & direct-to-consumer	500 R V∈ Gold€
	710	710	LinkSure Network	\$1	1/1/2015	China	Shanghai	Mobile & telecommunications	
	812	812	PatSnap	\$1	3/16/2021	Singapore	NaN	Internet software & services	S Capita S Pa
	840	840	Moglix	\$1	5/17/2021	Singapore	NaN	E-commerce & direct-to-consumer	Ve \ H
	843	843	Matrixport	\$1	6/1/2021	Singapore	NaN	Fintech	Dra ((\ Partne
	848	848	Carro	\$1	6/14/2021	Singapore	NaN	E-commerce & direct-to-consumer	Innov8 Ve Golde
	861	861	bolttech	\$1	7/1/2021	Singapore	NaN	Fintech	Ve E Pa
	872	872	NIUM	\$1	7/13/2021	Singapore	NaN	Fintech	Vent Asia, Fo

	ld	Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Invest
								В
897	897	Ninja Van	\$1	9/27/2021	Singapore	NaN	Supply chain, logistics, & delivery	Mor Ve Dyı

Como opção escolhida, resolveu-se remover as linhas (rows) que possuem dados nulos da base de dados.

In []: # Remove as Linhas que possuem ao menos uma informação vazia
df.dropna(inplace=True, ignore_index=True)

Exibe o tamanho da base de dados após a remoção das Linhas
df.shape

Out[]: (924, 8)

In []: # Exibe as linhas que possuem dados nulos. Observe que não há informações exibid
df[df.isna().any(axis=1)]

Out[]: Id Empresa Valor (\$B) Data de Adesão Pais Cidade Setor Investidores

In []: # Exibe os primeiros 5 (cinco) registros do DataFrame
df.head()

Out[]:		ld	Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Investidores
	0	0	Bytedance	\$140	4/7/2017	China	Beijing	Artificial intelligence	Sequoia Capital China, SIG Asia Investments, S
	1	1	SpaceX	\$100.3	12/1/2012	United States	Hawthorne	Other	Founders Fund, Draper Fisher Jurvetson, Rothen
	2	2	Stripe	\$95	1/23/2014	United States	San Francisco	Fintech	Khosla Ventures, LowercaseCapital, capitalG
	3	3	Klarna	\$45.6	12/12/2011	Sweden	Stockholm	Fintech	Institutional Venture Partners, Sequoia Capita
	4	4	Canva	\$40	1/8/2018	Australia	Surry Hills	Internet software & services	Sequoia Capital China, Blackbird Ventures, Mat
	4								+

Vamos analisar o campo Setor. Observe que, temos o termo 'Fintech' aparecendo 187 vezes e o termo 'Fintech', digitado incorretamente, aparecendo uma única vez.

Realizaremos a mudança do termo para o correto.

```
In [ ]: # Exibe os valores únicos por Setor
        df['Setor'].value_counts()
Out[]: Setor
         Fintech
                                                187
         Internet software & services
                                                 166
         E-commerce & direct-to-consumer
                                                 99
         Artificial intelligence
                                                 67
         Health
                                                  63
         Other
                                                  51
         Supply chain, logistics, & delivery
                                                  50
         Cybersecurity
                                                  41
                                                  36
         Data management & analytics
         Mobile & telecommunications
                                                  35
         Hardware
                                                  32
         Auto & transportation
                                                  29
         Edtech
                                                  27
         Consumer & retail
                                                  23
         Travel
                                                  13
         Artificial Intelligence
                                                  4
                                                   1
         Finttech
         Name: count, dtype: int64
In [ ]: df.loc[df['Setor'] == 'Finttech', 'Setor'] = 'Fintech'
        df['Setor'].value_counts()
Out[]: Setor
                                                188
         Fintech
         Internet software & services
                                                166
         E-commerce & direct-to-consumer
                                                 99
         Artificial intelligence
                                                  67
         Health
                                                  63
         Other
                                                  51
         Supply chain, logistics, & delivery
                                                  50
         Cybersecurity
                                                  41
         Data management & analytics
                                                  36
         Mobile & telecommunications
                                                  35
                                                  32
         Hardware
         Auto & transportation
                                                  29
         Edtech
                                                  27
         Consumer & retail
                                                  23
         Travel
                                                  13
         Artificial Intelligence
                                                  4
         Name: count, dtype: int64
```

Vamos realizar o mesmo procedimento no campo 'Empresa'. Observe que a empresa 'Bolt' aparece duas vezes, vamos observar as linhas em questão. É possível verificar que a empresa em questão segue dois Setores distintos e possue investidores distintos, o que não indica provavel equívoco na inserção dos dados. O melhor meio seria através de pesquisas sobre estas informações.

```
In [ ]: # Exibe os valores únicos por Empresa
df['Empresa'].value_counts()
```

```
Out[]: Empresa
         Bolt
                             2
         Bytedance
                             1
         Project44
                             1
         Tealium
         Public
                             1
         Voodoo
                             1
         Uptake
         KeepTruckin
                             1
         Skydance Media
                             1
         Pet Circle
                             1
         Name: count, Length: 923, dtype: int64
In [ ]:
         df.loc[df['Empresa'] == 'Bolt']
Out[]:
                                       Data de
                              Valor
                                                  Pais
                                                          Cidade
                                                                          Setor Investidores
                Id Empresa
                                       Adesão
                               ($B)
                                                                                     Activant
                                                                                 Capital, Tribe
                                                United
                                                             San
                                $6 10/8/2021
          94
                94
                        Bolt
                                                                        Fintech
                                                                                      Capital,
                                                 States Francisco
                                                                                      General
                                                                                      Atlantic
                                                                                         Didi
                                                                                     Chuxing,
                                                                        Auto &
         141 141
                        Bolt $4.75 5/29/2018 Estonia
                                                           Tallinn
                                                                                     Diamler,
                                                                  transportation
                                                                                         TMT
                                                                                  Investments
```

Tratamento de Dados

Vamos observar algumas informações relacionadas aos tipos de dados nas colunas. Observe que existe o campo ID, que não adiciona informações pertinentes ao sistema. Podemos remover esta coluna sem perda. Além disso, a coluna 'Valor (\$B)' está no tipo 'object' e não do tipo numérico. Assim como ocorre com 'Data de Adesão', que não está no tipo date.

```
no tipo date.
In [ ]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 924 entries, 0 to 923
       Data columns (total 8 columns):
        #
            Column
                           Non-Null Count Dtype
       ---
        0
            Ιd
                            924 non-null
                                            int64
        1
            Empresa
                           924 non-null
                                           object
           Valor ($B)
                            924 non-null
                                            object
        3
           Data de Adesão 924 non-null
                                            object
        4
            Pais
                          924 non-null
                                            object
        5
           Cidade
                          924 non-null
                                            object
            Setor
                            924 non-null
        6
                                            object
            Investidores
                            924 non-null
                                            object
       dtypes: int64(1), object(7)
```

memory usage: 57.9+ KB

Com o comando head() é possível ter um vislumbre dos dados. Veja que, o campo 'Valor (\$B)' possui um símbolo de cifrão no início do número. Antes de converter para tipo flutuante (double, float), é necessário remover este símbolo.

Tn	Г	٦.	df.head()
T-11	L		ui ·iieau()

Investidores	Setor	Cidade	Pais	Data de Adesão	Valor (\$B)	Empresa	ld	
Sequoia Capital China, SIG Asia Investments, S	Artificial intelligence	Beijing	China	4/7/2017	\$140	Bytedance	0	0
Founders Fund, Draper Fisher Jurvetson, Rothen	Other	Hawthorne	United States	12/1/2012	\$100.3	SpaceX	1	1
Khosla Ventures, LowercaseCapital, capitalG	Fintech	San Francisco	United States	1/23/2014	\$95	Stripe	2	2
Institutional Venture Partners, Sequoia Capita	Fintech	Stockholm	Sweden	12/12/2011	\$45.6	Klarna	3	3
Sequoia Capital China, Blackbird Ventures, Mat	Internet software & services	Surry Hills	Australia	1/8/2018	\$40	Canva	4	4
•								4

df.head()

Out[]:		ld	Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Investidores
	0	0	Bytedance	140.0	4/7/2017	China	Beijing	Artificial intelligence	Sequoia Capital China, SIG Asia Investments, S
	1	1	SpaceX	100.3	12/1/2012	United States	Hawthorne	Other	Founders Fund, Draper Fisher Jurvetson, Rothen
	2	2	Stripe	95.0	1/23/2014	United States	San Francisco	Fintech	Khosla Ventures, LowercaseCapital, capitalG
	3	3	Klarna	45.6	12/12/2011	Sweden	Stockholm	Fintech	Institutional Venture Partners, Sequoia Capita
	4	4	Canva	40.0	1/8/2018	Australia	Surry Hills	Internet software & services	Sequoia Capital China, Blackbird Ventures, Mat

In []: # Exibir as informações das colunas
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 924 entries, 0 to 923
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Id	924 non-null	int64
1	Empresa	924 non-null	object
2	Valor (\$B)	924 non-null	float64
3	Data de Adesão	924 non-null	object
4	Pais	924 non-null	object
5	Cidade	924 non-null	object
6	Setor	924 non-null	object
7	Investidores	924 non-null	object

dtypes: float64(1), int64(1), object(6)

memory usage: 57.9+ KB

Conversão da coluna 'Data de Adesão' para o formato correto de data

	ld	Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Investidores
0	0	Bytedance	140.0	2017- 04-07	China	Beijing	Artificial intelligence	Sequoia Capital China, SIG Asia Investments, S
1	1	SpaceX	100.3	2012- 12-01	United States	Hawthorne	Other	Founders Fund, Draper Fisher Jurvetson, Rothen
2	2	Stripe	95.0	2014- 01-23	United States	San Francisco	Fintech	Khosla Ventures, LowercaseCapital, capitalG
3	3	Klarna	45.6	2011- 12-12	Sweden	Stockholm	Fintech	Institutional Venture Partners, Sequoia Capita
4	4	Canva	40.0	2018- 01-08	Australia	Surry Hills	Internet software & services	Sequoia Capital China, Blackbird Ventures, Mat

In []: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 924 entries, 0 to 923
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Id	924 non-null	int64
1	Empresa	924 non-null	object
2	Valor (\$B)	924 non-null	float64
3	Data de Adesão	924 non-null	<pre>datetime64[ns]</pre>
4	Pais	924 non-null	object
5	Cidade	924 non-null	object
6	Setor	924 non-null	object
7	Investidores	924 non-null	object

dtypes: datetime64[ns](1), float64(1), int64(1), object(5)

memory usage: 57.9+ KB

Agora, removeremos o campo 'ld', visto que é um número sequencial e não traz informações pertinentes.

```
In [ ]: # Remove a coluna 'Id' do DataFrame df e atribui a alteração diretamente no próp
    df.drop('Id', axis=1, inplace=True)

df.head()
```

Out[]:		Empresa	Valor (\$B)	Data de Adesão	Pais	Cidade	Setor	Investidores
	0	Bytedance	140.0	2017- 04-07	China	Beijing	Artificial intelligence	Sequoia Capital China, SIG Asia Investments, S
	1	SpaceX	100.3	2012- 12-01	United States	Hawthorne	Other	Founders Fund, Draper Fisher Jurvetson, Rothen
	2	Stripe	95.0	2014- 01-23	United States	San Francisco	Fintech	Khosla Ventures, LowercaseCapital, capitalG
	3	Klarna	45.6	2011- 12-12	Sweden	Stockholm	Fintech	Institutional Venture Partners, Sequoia Capita
	4	Canva	40.0	2018- 01-08	Australia	Surry Hills	Internet software & services	Sequoia Capital China, Blackbird Ventures, Mat

Com os dados já padronizados, antes de seguirmos com análises exploratórias dos dados, realizaremos o processo de exportação do DataFrame.

```
In [ ]: # Exportar o DataFrame para um arquivo CSV
df.to_csv('Startups2021_tratado.csv', index=False, encoding='utf-8')
```