ALGEBRA

1. $(sec^2 - 1)(cos^2 - 1)$ is equal to:

(a) $\frac{1}{16}\pi d^2$

(b) $\frac{1}{4}\pi d^2$

(c) $\frac{1}{8}\pi d^2$

(d) $\frac{1}{2}\pi d^2$

(a) -1(b) 1 (c) 0 (d) 2 2. The roots of the equation $x^2 + 3x - 10 = 0$ (1) are:
(a) (2, -5)(b) (-2, 5)(c) (2, 5)(d) (-2, -5)3. What is the area of a semi-circle of diameter 'd'?

4. If a fair coin is tossed twice, find the probability of getting 'atmost one head'.

5. Prove that

$$\frac{\sin A - 2\sin^3 A}{2\cos^3 A - \cos A} = \tan A \tag{2}$$

6. Prove that

$$\sec A (1 - \sin A) (\sec A + \tan A) = 1. \tag{3}$$

 Governing council of a local public development authority of Dehradun decided to build an adventurous playground on the top of a hill, which will have adequate space for parking.

Figure 1: fig

After survey, it was decided to build rectangular playground, with a semi-circular area allotted for parking at one end of the playground. The length and breadth of the rectangular playground are 14 units and 7 units, respectively. There are two quadrants of radius 2 units on one side for special seats.

Based on the above information, answer the following questions:

- (a) What is the total perimeter of the parking area?
- (b) What is the total area of parking and the two quadrants?
- (c) What is the ratio of area of playground to the area of parking area?
- (d) Find the cost of fencing the playground and parking area at the rate of ₹ 2 per unit.