

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS READ INSTRUCTIONS COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
2	
. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERE
THE MOLECULAR STRUCTURE OF BIS (DIMETHYL-	
AMINO)-DIFLUOROSULFURANE: THE FIRST X-	Technical Report, 197
RAY CRYSTAL STRUCTURE OF A FLUOROSULFURAN	TR 78-03
. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(*)
A. H. Cowley, * P. E. Riley,	wassi 76 a see
J. S. Szobota, and M. L. Walker	N00014-76-C-0577
	IS DECEMBED FOR THE PROJECT TAKE
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
Department of Chemistry	
The University of Texas at Austin Austin, Texas 78712	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	13. NUMBER OF PAGES
Department of the Navy	26
MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	C. DECLASSIFICATION/DOWNGRADING
	15a. DECLASSIFICATION/DOWNGRADING
Approved for Public Release: Distri	bution Unlimited
	rom Report) D C
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different for	
Approved for Public Release: Distri 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the appropriate of the approximate of the appro	rom Report) D C
7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the about entered in Block 20, if different for the about entered in Block 20, if different for the about entered in Block 20, if	JAN 30 1979
7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the abetract entered in Blo	JAN 30 1979
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the abetract entered in Block	JAN 30 1979
D. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the abetract entered in Blo	JAN 30 1979
D. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the abetract entered in Blo	JAN 30 1979
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the abetract entered in Block	JAN 30 1979
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the supplementary notes D. KEY WORDS (Continue on reverse side if necessary and identify by block number luorosulfurane, X-ray crystal structure, conding	stereochemistry,
7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the abetract entered in Blo	stereochemistry,
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for the supplementary notes D. KEY WORDS (Continue on reverse side if necessary and identify by block number luorosulfurane, X-ray crystal structure, conding	stereochemistry, F ₂ has been determined ods. The compound

The molecular structure of $(Me_2N)_2SF_2$ has been determined by single crystal X-ray diffraction methods. The compound crystallizes in the monoclinic system, space group C2/c, with a = 11.00 (2) Å, b = 5.693 (6) Å, c = 12.24 (3) Å, β = 92.79 (10)9, and Z = 4. The symmetry of $(Me_2N)_2SF_2$ is C_2 , and the structure is essentially trigonal bipyramidal with the fluorine and Me_2N ligands occupying axial and equatorial sites.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

79 01 29 042

deg.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

respectively. The third equatorial site is occupied by the sulfur "lone pair" which lies along the C, symmetry axis. Since the dihedral angle between the C-N-C and N-S-N planes is 48.2°, the nitrogen lone pairs are disposed approximately midway between the sulfur lone pair and the sulfur-fluorine axial (S-F₂) bonds. The sum of the bond angles around the nitrogen atoms is 342.3°; hence the hybridization at these centers is approximately halfway between sp and sp. The F-S-F bonds are bent toward the sulfur lone pair by 5.3°, and the equatorial N-S-N bond angle is 102.3(1)°. The S-F and S-N bond distances are 1.770(2) Å and 1.648(2) Å, respectively.

Contract NO0014-76-C-0577

Task No. NR 053-612

TECHNICAL REPORT, NO. 78-03

The Molecular Structure of Bis(Dimethylamino)Difluorosulfurane; the First X-ray
Crystal Structure of a Fluorosulfurane

J. S. Szobota g and M. L. Walker

(H) TR-78-03 /

(2) 48 PI

Prepared for Publication

in

1)28 Dec 78

Journal of the American Chemical Society

Department of Chemistry University of Texas at Austin Austin, Texas 78712

December 28, 1978

Reproduction in whole or in part is permitted for any purpose of the United States government

Approved for Public Release: Distribution Unlimited

THE MOLECULAR STRUCTURE OF BIS (DIMETHYLAMINO) DIFLUOROSULFURANE; THE FIRST X-RAY CRYSTAL STRUCTURE OF A FLUOROSULFURANE

A. H. Cowley, * P. E. Riley,

J. S. Szobota, and M. L. Walker

Contribution from the Department of Chemistry,
The University of Texas at Austin,
Austin, Texas 78712
Received

Abstract: The molecular structure of $(Me_2N)_2SF_2$ has been determined by single crystal X-ray diffraction methods. The compound crystallizes in the monoclinic system, space group C2/c, with a = 11.00 (2) Å, b = 5.693 (6) Å, c = 12.24 (3) Å, β = 92.79 (10)°, and Z = 4. The symmetry of $(Me_2N)_2SF_2$ is C_2 , and the structure is essentially trigonal bipyramidal with the fluorine and Me_2N ligands occupying axial and equatorial sites, respectively. The third equatorial site is occupied by the sulfur "lone pair" which lies along the C_2 symmetry axis. Since the dihedral angle between the C-N-C and N-S-N

planes is 48.2°, the nitrogen lone pairs are disposed approximately midway between the sulfur lone pair and the sulfur-fluorine axial (S-F_a) bonds. The sum of the bond angles around the nitrogen atoms is 342.3°; hence the hybridization at these centers is approximately halfway between sp² and sp³. The F_a -S-F_a bonds are bent toward the sulfur lone pair by 5.3°, and the equatorial N-S-N bond angle is 102.3(1)°. The S-F and S-N bond distances are 1.770(2) Å and 1.648(2) Å, respectively.

INTRODUCTION

The sulfuranes, which feature an unshared pair of electrons and a coordination number of four at the sulfur atom, are examples of a broader category of species for which Musher coined the phrase "hypervalent molecules." Bonding models for such molecules have been advanced and discussed for several years. In recent times molecular orbital (MO) calculations have provided useful insights into the nature of the bonding in the model system, SH₄, and the simplest known sulfurane, SF₄.

Although X-ray crystallographic studies have been performed on several spirocyclic sulfuranes, 5-9 structural information on the acyclic sulfuranes is somewhat sparse. The molecular geometry of SF, has been well established on the basis of microwave spectroscopic 10 and electron diffraction 11 data, and X-ray crystallographic data are available for $(ClC_6H_4)_2SCl_2^{12}$ and $(C_6H_5)_2S[OC(CF_3)_2C_6H_5]_2^{13}$. The present paper is concerned with an X-ray crystallographic investigation of (Me,N),SF,; as well as being the first fluorosulfurane to be studied by Xray diffraction methods, the molecule is of special interest on account of the presence of three proximate lone pairs of electrons. As noted by Chen and Hoffmann 4a, the structures of R,N-substituted sulfuranes "would be of great interest" because of the operation of two competing effects, viz. the tendency of the sulfur and nitrogen lone pairs to avoid each other, and the opposing tendency to maximize dative p-d π-bonding. Additional structural information on sulfuranes is also pertinent to further refinements of the theoretical models to assist in understanding site preferences and bond angle trends. Finally, we note that the structures of dialkylamino-substituted sulfuranes are of practical interest since these compounds are used as fluorinating agents 14 and as precursors to sulfonium cations. 15

EXPERIMENTAL SECTION

The sample of (Me2N)2SF2 was prepared according to the method of Middleton. 14c In order to grow single crystals, small quantities of $(Me_2N)_2SF_2$ were sublimed into 30 capillaries, each of which was sealed off in vacuo. Sublimation was accomplished by heating one end of the capillary with a 60 watt light bulb, while maintaining the other end at ambient temperature. From these samples one satisfactory crystal was obtained. It was transferred in its capillary to a goniometer head and then to a Syntex P2, diffractometer. During the course of all subsequent crystallographic experiments the crystal and its capillary were maintained at -35°C by a stream of cold No. Preliminary X-ray diffraction experiments indicated the monoclinic symmetry of space group Cc (no. 9) or C2/c (no. 15). Crystal data and X-ray diffraction data collection details are summarized in Table I. Processing of the diffraction data (with p = 0.02) was carried out as described previously. 16

SOLUTION AND REFINEMENT OF THE STRUCTURE, A calculated

density of 1.38 g cm⁻³ (see Table I) is consistent with four molecules of $(\text{Me}_2\text{N})_2\text{SF}_2$ per unit cell. Thus, while the molecules would have no crystallographically imposed symmetry in space group Cc, they would be required to reside at sites of either C₁ or C₂ symmetry in space group C2/c. Solution of the structure by standard heavy atom methods and satisfactory refinement by full-matrix least-squares procedures showed the space group to be C2/c and revealed that the molecules occupy sites of C₂ symmetry. The function minimized in refinement is $\Sigma w(|F_0| - |F_c|)^2$, where the weight w is $\sigma(|F_0|)^{-2}$, the reciprocal square of the standard deviation of each observation, $|F_0|$. Neutral atom scattering factors for S, F, N, C¹⁷ and H¹⁸ were used in these calculations, and the real ($\Delta f'$) and imaginary ($\Delta f''$) corrections ¹⁷ for anomalous scattering were applied to the sulfur scattering curve.

Least-squares convergence was attained using only those 656 data with $I_o/\sigma(I_o) > 2.0$ for a structure in which non-hydrogen atoms were refined anisotropically and hydrogen atoms isotropically, with $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o| = 0.057$, $R_w = [\Sigma w(|F_o| - |F_c|)^2/\Sigma w|F_o|^2]^{\frac{1}{2}} = 0.043$ and a standard deviation of an observation of unit weight = $[\Sigma w(|F_o| - |F_c|)^2/(m-s)]^{\frac{1}{2}} = 1.56$, for m = 652 observations and s = 66 variables. Examination of the data near the conclusion of refinement revealed that four reflections (002, 110, 200, 11 $\overline{2}$) were apparently affected by secondary extinction. These reflections were deleted from the data set prior to final least-squares refinement.

In the final cycle of refinement all parameter shifts were less than 0.7% of a corresponding estimated standard deviation (esd) for nonhydrogen atoms and less than 1.7% of an esd for the hydrogen atoms. A final difference Fourier map showed no peak higher than 0.14 e ${\rm \mathring{A}}^{-3}$. For comparison, the heights of the carbon atoms from a previous Fourier map were 2.5 and 3.1 e ${\rm \mathring{A}}^{-3}$.

A listing of computer programs used in this work is provided elsewhere. 16 Atomic positional and thermal parameters with corresponding esd's as estimated from the least-squares inverse matrix are given in Table II. A tabulation of observed and calculated structure factor amplitudes is available. 19

DISCUSSION

The structure of $(Me_2N)_2SF_2$ can be described as essentially trigonal bipyramidal. A stereoview of the molecule and a view approximately down the C_2 symmetry axis are presented in Figures 1 and 2, respectively. The fact that both Me_2N groups occupy equatorial sites and both fluorine ligands occupy axial sites is anticipated on the basis of polarity rules 20 and confirms the structure suggested for this molecule from NMR spectroscopic evidence. 21 The third equatorial site can be considered to be occupied by the sulfur "lone pair" which is collinear with the C_2 axis. 22 Significant aspects of the structure of $(Me_2N)_2SF_2$ are now discussed.

1. THE CONFORMATIONS OF THE ME2N GROUPS. Particular

interest focuses on the nitrogen geometries and the stereochemical relationships between the ${\rm Me_2N}$ groups and the sulfur "lone pair". Chen and ${\rm Hoffmann}^{4a}$ in their theoretical analysis of the model sulfurane, ${\rm H_2NSH_3}$, have pointed out that dative π -bonding from filled N(2p) orbitals favors conformation 1, while repulsion between the nitrogen and sulfur lone pairs

favors conformation 2. Interestingly, in the case of $(\text{Me}_2\text{N})_2\text{SF}_2$ the Me₂N groups exhibit a dihedral angle approximately midway between 1 and 2 (Table III and Figure 2), presumably as a compromise between these factors. It is also noteworthy that, since the sum of the bond angles around nitrogen is 342.3°, the hybridization is approximately halfway between sp² and sp³. This observation may be rationalized by appeal to our theoretical studies of other systems containing two or more lone pairs, such as the aminophosphines. ²³ For example, in the case of H_2NPH_2 it was demonstrated that the nitrogen geometry is trigonal planar when the nitrogen and phosphorus lone pairs occupy orbitals

which are orthogonal, but approximately tetrahedral when the lone pairs are eclipsed. Applying these principles to (Me,N),SF, one would anticipate a trigonal planar nitrogen geometry in conformation 3 and an approximately tetrahedral conformation in 4.

Clearly, the fact that $(Me_2N)_2SF_2$ adopts a conformation intermediate between 3 and 4 implies that the response of nitrogen geometry to inter-lone pair angle is monotonic. The deduction that the nitrogen geometry in $(Me_2N)_2SF_2$ is influenced by the sulfur lone pair rather than other structural features is supported by the observation that in the closely analogous fluorophosphorane, $(Me_2N)_3PF_2$, 5, the nitrogen geometries are,

within experimental error, trigonal planar. 24

The two shortest intermolecular methyl . . . methyl distances in this crystal structure are 3.571 (6) and 3.963 (6) Å. The van der Waals methyl . . . methyl contact distance is 4.00 Å. However, since all intermolecular H . . . H distances are greater than 2.60 Å and since the van der Waals H . . . H contact distance is ~2.0 Å, 26 there are no methyl . . . methyl interactions in this crystal structure which have a significant effect upon the geometry of the Me₂N groups.

2. THE AXIAL (HYPERVALENT) BONDS. The fact that the F-S-F bonds are bent toward the sulfur lone pair (by 5.3°) is noteworthy. To our knowledge, the only other case where this occurs is in the chlorosulfurane, 6.12 Since short

intermolecular S....Cl and S-Cl....Cl-S contacts were observed in the crystal structure, the distortion in 6 seems best attributed to crystal packing effects. That the bending of S-F bonds toward the lone pair of electrons of the sulfur atom in (Me,N),SF, is also due to intermolecular interactions rather than electronic effects has been considered. Two rather short F... C contacts of 3.319 (5) and 3.524 (5) A (from two neighboring molecules) occur, with corresponding F...H distances of 2.40 (4) and 2.56 (4) A. These values may be compared to the sums of the van der Waals radii of 3.35 A for F and C atoms, 25 and 2.35 A for F and H atoms. 25,26 The C-H···F angles are 167(3) and 152 (2)° (close to linearity) and, as may be seen in Figure 3, these C-H···F interactions appear to be attractive rather than repulsive. Hence, the possibility that the small bending of the S-F bonds toward the lone pair of the sulfur atom may be due partially or wholly to weak attractive intermolecular forces cannot be dismissed.

From an electronic standpoint, it would be reasonable to ascribe the observed F_a -S- F_a angle to repulsions between the fluorine ligands and the nitrogen lone pairs. Alternatively, Chen and Hoffmann have presented a perturbational MO argument to the effect that at a fixed equatorial bond angle, θ_1 , (see 7) the axial bond angle, θ_2 , will increase with increasing disparity in electronegativity between the axial and equatorial ligands. This argument is consistent with the fact that for SF_4 θ_2 = 173.1°, while for $(Me_2N)_2SF_2$ θ_2 = 185.3°.

It is clear that, while the relatively small θ_1 value for $(\text{Me}_2\text{N})_2\text{SF}_2$ is understandable on this basis, the general correlation between θ_1 and the electronegativity of the atoms at axial positions is poor.

8

Finally, one other trend predicted by Chen and Hoffmann 4a --namely that θ_1 should decrease as the axial bond distances increase - is not borne out by the available data in Table IV.

ACKNOWLEDGMENT, The authors are grateful to the Office of Naval Research (Contract N000014-76-C-0577, Task No. NR 053-612) for financial support and to the National Science

3. THE EQUATORIAL BONDS, The S-N bond distances (equal by symmetry) for $(Me_2N)_2SF_2$ are 1.648 Å and thus substantially less than the sum of the covalent radii for sulfur and nitrogen $(1.75 \text{ Å}).^{25}$ This is perhaps not surprising since the covalent radius for nitrogen is predicated on the assumption of tetrahedral geometry. Furthermore, expansion of the C-N-C angle is expected to impart more N(2s) character to the bonds, thereby shortening them. The only other crystallographically characterized sulfurane with S-N bonds is the interesting spirocyclic species, 8.9 Obviously, here the nitrogen atoms are in axial positions and, as expected, these hypervalent S-N bonds are considerably longer (average, 1.898 Å) than the equatorial S-N bonds in $(Me_2N)_2SF_2$.

Chen and Hoffmann 4a and Paul, Martin, and Perozzi 13 have independently suggested that, for sulfurane substitution by more electronegative ligands at the axial sites, a smaller equatorial bond angle, θ_1 , is probable. The available structural data bearing on this point are summarized in Table IV.

Foundation for purchase of the Syntex P2₁ diffractometer (Grant No. GP-37028). We also wish to thank Professor Raymond E. Davis for his interest and assistance in this work.

References and Notes

- (1) J. I. Musher, Angew. Chem. Int. Ed. Engl., 3, 54 (1969).
- (2) (a) R. J. Hach and R. E. Rundle, J. Am. Chem. Soc., 73, 4321 (1951); (b) R. E. Rundle, ibid., 35, 112 (1963);
 (c) R. E. Rundle, Surv. Prog. Chem., 1, 81 (1963);
 (d) G. C. Pimentel, J. Chem. Phys., 19, 446 (1951);
 (e) E. E. Havinga and E. H. Wiebenga, Recl. Trav. Chim. Pays -Bas, 73, 724 (1959); (f) R. J. Gillespie, Inorg. Chem., 5, 1634 (1966); (g) J. Chem. Phys., 37, 2498 (1962); (h) Can. J. Chem., 39, 318 (1961); (i) K. J. Wynne, "Sulfur Research Trends," Mardi Gras Symposium, 3d, Loyola University, 1971, p. 150.
- (3) (a) R. Gleiter and A. Veillard, Chem. Phys. Lett., 37,
 33 (1976); (b) G. M. Schwenzer and H. F. Schaeffer III,
 J. Am. Chem. Soc., 97, 1391 (1975).
- (4) (a) M. M. L. Chen and R. Hoffmann, J. Am. Chem. Soc., 98, 1647 (1976); (b) V. B. Koutecky and J. I. Musher, Theo. Chim. Acta, 33, 227 (1974); (c) N. Rösch, V. H. Smith, and M.-H. Whangbo, Inong. Chem., 15, 1768 (1976); (d) P. J. Hay, J. Am. Chem. Soc., 99, 1003 (1977); (e) R. D. Brown and J. B. Peel, Aust. J. Chem., 21, 2605, 2617 (1968);

- (f) L. Radom and H. F. Schaeffer, III, Aust. J. Chem., 28, 2069 (1975); (g) A. H. Cowley, M. Lattman, and M. L. Walker, submitted for publication.
- (5) (a) J. Kapovits and A. Kálmán, Chem. Commun., 649 (1971);
 (b) A. Kálmán, K. Sasvári, and I. Kapovits, Acta Crystallogr.,
 B 29, 355 (1971).
- (6) E. F. Perozzi, J. C. Martin, and I. C. Paul, J. Am. Chem. Soc., 96, 6735 (1974).
- (7) L. J. Adzima, E. N. Duesler, and J. C. Martin, J. Org. Chem., 42, 4001 (1977).
- (8) K. C. Hodges, D. Schomburg, J.-V. Weiss, and R. Schmutzler, J. Am. Chem. Soc., 99, 6096 (1977).
- (9) L. J. Adzima, C. C. Chiang, I. C. Paul, and J. C. Martin, J. Am. Chem. Soc., 100, 953 (1978).
- (10) M. W. Tolles and W. D. Gwinn, J. Chem. Phys., 36, 1119 (1962).
- (11) (a) K. Kimura and S. H. Bauer, J. Chem. Phys., 39, 3172
 (1963); (b) V. C. Ewing and L. E. Sutton, Trans, Faraday
 Soc., 59, 1241 (1963).

- (12) N. C. Baenzinger, R. E. Buckles, R. J. Maner, and T. D. Simpson, ibid., 91, 5749 (1969).
- (13) (a) I. C. Paul, J. C. Martin, and E. F. Perozzi, J. Am. Chem. Soc., 93, 6674 (1971); (b) ibid., 94, 5010 (1972).
- (14) (a) L. N. Markovski, V. E. Pashinnik, and A. V. Kirsanov, Synthesis, 787 (1973); (b) L. N. Markovski and V. E. Pashinnik, ibid, 801 (1975); (c) W. J. Middleton, J. Org. Chem., 40, 574 (1975).
- (15) A. H. Cowley, D. J. Pagel, and M. L. Walker, J. Am. Chem. Soc., 100, 7065 (1978).
- (16) P. E. Riley and R. E. Davis, Acta Crystallogr., Sect. B, 32, 381 (1976).
- (17) "International Tables for X-ray Crystallography", Vol IV, Kynoch Press, Birmingham, England, 1974.
- (18) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
- (19) Supplementary material.
- (20) E. L. Muetterties and R. A. Schunn, Q. Rev. Chem. Soc., 20, 245 (1966).

- (21) (a) G. C. Demitras, R. A. Kent, and A. G. MacDiarmid,
 Chem. Ind. (London), 41, 1712 (1964); (b) G. C. Demitras
 and A. G. MacDiarmid, Inorg. Chem., 6, 1903 (1967);
 (c) S. P. von Halasz and O. Glemser, Chem. Ber., 103,
 594 (1970); (d) ibid., 104, 1247 (1971).
- (22) The nature of the sulfur "lone pair" in SF₄ and its cognates is not a simple matter. For a discussion of this aspect see, for example, reference 4g.
- (23) (a) I. G. Csizmadia, A. H. Cowley, M. W. Taylor, L. M. Tel, and S. Wolfe, Chem. Commun., 1147 (1972); (b) A. H. Cowley, M. W. Taylor, M.-H. Whangbo, and S. Wolfe, ibid., 838 (1976);
 (c) I. G. Csizmadia, A. H. Cowley, M. W. Taylor, and S. Wolfe, ibid., 432 (1974); (d) A. H. Cowley, D. J. Mitchell, M.-H. Whangbo, and S. Wolfe, submitted for publication.
- The sum of angles at each nitrogen atom is 357.4 ± 2.4°.

 The dihedral angle between each CNC plane and the equatorial plane is 70.1 ± 2.7°. See H. Oberhammer and R. Schmutzler,

 J. Chem. Soc. Dalton Trans., 1454 (1976). The conformation

 5 was predicted earlier on the basis of UV photoelectron spectroscopic measurements. See A. H. Cowley, M. J. S.

 Dewar, D. W. Goodman, and J. R. Schweiger, J. Am. Chem. Soc.,

 95, 6506 (1973).

- (25) L. Pauling "The Nature of the Chemical Bond", 3rd Edition,
 Cornell University Press, Ithaca, New York, 1960.
- (26) W. H. Baur, Acta Crystallogr., Sect. B, 28, 1456 (1972).

Table I. Crystallographic Summary

Crystal Data at -35°Ca

•			
a, A	11.00 (2)	Systematic	$hkl_0h+k=2n+1$
6, A	5,693 (6)	absences	hOl, $l = 2n + 1$
c, A	12.24 (3)		0k0, k = 2n + 1
β, deg	92.79 (10)		
V, A^3	766 (6)	Crystal	Monoclinic
Mω	158.22	system	
d b calcd g c	m^{-3} 1.38	Space	Cc (no. 9) or
7	4	group ^c	C2/c (no. 15)
F(000).	336	Empirical	
electron		formula	$^{C}_{4}^{H}_{12}^{F}_{2}^{N}_{2}^{S}$

Data Collection at -35°Cd

Radiation	(MoKa),	A
Mode		
Scan range	9	

Background

Scan rate, deg min-1 Check reflections

2θ range, leg
Total reflections measured

0.71069 w scan Symmetrically over 1.25° about Ka_{1.2} maximum Offset 1.0 and -1.0° in ω from $K\alpha_{1,2}$ maximum Variable, 2.0 - 5.0 4 remeasured after every 96 reflections; analysise of these data indicated a steady decline in intensity by ca. 9% at the conclusion of data collection. A correction for this effect was applied.

4.0 - 60.0

1112

Table I. continued ...

^aUnit cell parameters were obtained by least-squares refinement of the setting angles of 41 reflections with $13.0 < 2\theta < 19.6^{\circ}$. ^b Due to air-sensitivity an experimental density was not determined. ^c Shown by successful refinement to be C2/c (see text). ^d Syntex P2₁ autodiffractometer equipped with a graphite monochromator and a Syntex LT-1 inert-gas low-temperature delivery system. ^e W. H. Henslee and R. E. Davis, Acta Crystallogn., Sect. B, 31, 1511 (1975).

Table II. Fractional Coordinates and Anisotropic (X 10^4) and Isotropic Thermal Parameters for the Atoms of (Me₂N)₂SF₂. a

•	•	H (1,	H (1,	H (1,	Atomb	C(2)	C(1)	N	দ	S	Atom
2) -0		3) 0	2) 0	1) 0		0.0476 (4)	0.2013	0.0965	0.0977	0	×
-0.028 (0.103 (0.232 (0.186 (0.264 (×	(4)	(3)	(2)	(2)		
(4)	(4)		(3)	(3)		0.3311	0.0240	0.1542	-0.0417	-0.0273	y
0.410	0.434	-0.103	-0.068	0.135	y	1 (7)		2 (4)	7 (4)	3 (2)	y
	(7)			(7)		0.3868	0.3620	0.3133	0.1395	1/4	N
0.354	0.394	0.312	0.428	0.372	2			3 (2)	5 (2)		
3	(3)	(3)	(3)	(3)		91 (63 (51 (103 (76 (в ₁₁
6.0		5.1	4.8	5.2	В	(4) 2		(2) 2			
(10)	(12)	(9)	(9)	(10)	A ²	271 (13)	297 (14)	203 (9)	653 (12)	167 (4)	B22
								44 (2)			в _{3.3}
						14 (7)	6 (6)	-4 (4)	126 (4)	0	в ₁₂
								-4 (2)			в в 13
						-32 (5)	0 (6)	-10 (3)	-95 (4)	0	β ₂₃

^aSee Figure 1 for identity of the atoms. Numbers in parentheses throughout the table are the parameter. The anisotropic temperature factor is $\exp[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}\ell^2+2\beta_{12}hk+2\beta_{13}h\ell]$ estimated standard deviations in the units of the least significant digits for the corresponding + 2823kl)].b it is bound. The sequence number of a hydrogen atom corresponds to that of the carbon atom to which

Table III. Selected Geometric Parameters for (Me₂N)₂SF₂ with
Estimated Standard Deviations in Parentheses. Coordinates of primed atoms are related to the coordinates of the corresponding unprimed atoms of
Table II by the operation -x, y, ½-z.

Bond Distances (A)

S-F	1.770	(2)
S-N	1.648	
N-C(1)	1.479	(5)
N-C(2)	1.470	(5)

Bond Angles (deg)

F-S-F'	174.7	(1)
N-S-N'	102.3	(1)
N-S-F	94.1	(1)
N-S-F'	89.2	(1)
S-N-C(1)	110.6	(2)
S-N-C(2)	118.1	(2)
C(1)-N-C(2)	113.1	(3)

Dihedral Angles (deg)

C(1)-N-C(2) and N-S-N' planes 48.2° N-S-N' and F-S-F' planes 86.9° C(1)-N-C(2) and F-S-F' planes 105.2°

Table IV. Equatorial Bond Angles ($\boldsymbol{\theta}_1$), and Axial Bond Distances for Sulfuranes

Sulfurane	0 ₁ (deg) ^a	Axial Bond Distance (A)
SF ₄	101.6 ^b	1.64 ^b
(Me ₂ N) ₂ SF ₂	102.3 ^c	1.77 ^c
φ ₂ s[oc(o)(cF ₃) ₂] ₂	104.4 ^d	1.889, 1.916 ^d
CF 3 F O	104.6 ^e	1.754, 1.756 ^e
CF ₃		
	107.8 ^f	1.83 ^f
0		

Table IV continued...

Sulfurane	θ ₁ (deg) ^a	Axial Bond Distance (A)
CF ₃ CF ₃	107.6, 108.1 ^{g, h}	1.832, 1.819 ^{g, h} 1.831, 1.816 ^{g, h}
CH3 CH3 CF3 CF3	108.1 ⁱ	1.713, 1.955

Table IV continued...

Sulfurane	(deg)a	Axial Bond Distance (A
N-CH CH3 CH3 CH3 CH3	104.7 ⁵	1.897, 1.899
(C1C ₅ H ₄) ₂ SC1 ₂	108.6 ^k	2.259, 2.323
^a 0 1 is defined in 7 ^b Reference 10		^j Reference 9 ^k Reference 12
^c Present work		
d _{Reference} 13		
eReference 8		
f Reference 5		
Reference 6'		
h Two crystallographically molecules per unit cell.	independent	
Reference 7		

K	L	FOBS	FCAL	K	L	FOBS	FCAL	K	L	FOBS	FCAL	K	L	FOBS	FCAL
4	-5	176	187	1	-5	70	51	5	-11	4	16*	0	14	120	133
4	-4	182	183	i	-4	704	700	5	-10	39	19*	ő	16	4	20*
4	-3	137	136	i	-3	193	184	5	-9	124	115	2	-16	54	56*
4	-5	33	28*	i	-2	322	309	5	-8	47	18*	5	-15	35	87*
4	-1	137	135	i	-1	340	326	5	-7	174	179	5	-14	130	125
			67				137	5		157	155	5	-13		38*
4	0	66 283	285	1	0	161	384	5	-6 -5	124	134	2	-12	43	111
	_			1	1				-4					106	
4	5	268	267	1	2	953	989 619	5		204	208	5	-11	3	11*
4	3	240	235	1	3	655		5	-3	159	168	2	-10	3	3*
4		349	341	1	4	692	663	5	-2	76	70	2	-9	59	58*
4	5	27	53*	1	5	149	140	5	-1	200	212	2	-8	100	92
4	6	218	207	1	6	58	42	5	0	57	41#	2	-7	3	4.
4	7	64	55	1	7	71	44	5	1	110	107	2	-6	382	380
4	8	123	114	1	8	41	16#	5	2	177	170	2	-5	125	95
4	9	157	157	1	9	46	1*	5	3	44	3#	2	-4	364	343
4	10	85	95	1	10	322	328	5	4	155	150	2	-3	5	16*
4	11	176	187	1	11	42	3*	5	5	47	63#	2	-2	2	94#
4	12	33	52#	1	12	309	307	5	6	3	45#	2	-1	212	206
4	13	14	65#	1	13	21	48*	5	7	136	142	2	0	172	161
4	14	4	17*	1	14	97	103	5	8	72	60	2	1	281	261
6	-11	36	12*	1	15	28	3*	5	9	103	118	2	2	805	802
6	-10	31	15*	1	16	22	20#	5	10	125	107	2	3	365	322
6	-9	95	70	3	-15	27	46#	5	11	82	104	2	4	526	516
6	-8	56	40#	3	-14	144	151	5	12	22	72*	2	5	307	294
6	-7	139	135	3	-13	4	23*	7	-7	14	46*	2	6	3	47*
6	-6	85	81	3	-12	77	90	7	-6	81	79	2	7	3	18*
6	-5	124	115	3	-11	3	21*	7	-5	60	710	2	8	29	45*
6	-4	108	118	3	-10	46	59#	7	-4	85	96	2	9	153	156
6	-3	93	90	3	-9	130	119	7	-3	56	75#	2	10	213	207
6	-2	151	164	3	-8	182	164	7	-2	4	40#	2	11	38	39*
6	-1	131	152	3	-7	161	180	7	-1	72	85	2	15	160	164
6	0	111	113	3	-6	218	209	7	0	4	5*	2	13	97	96
6	1	179	181	3	-5	78	72	7	1	111	127	2	14	78	70
6	2	47	1*	3	-4	65	66	7	2	37	16*	2	15	68	70*
6	3	111	116	3	-3	72	51	7	3	124	129	4	-14	81	105
6	4	3	2#	3	-2	2	18#	7	4	4	17#	4	-13	36	41*
6	5	80	55	3	-1	98	82	7	5	87	86	4	-12	94	107
6	6	72	69	3	0	230	229	7	6	4	3*	4	-11	7	27*
6	7	79	63	3	1	266	263	7	7	79	79	4	-10	34	15*
6	8	44	51*	3	2	499	468		# H		4 ***	4	-9	28	20*
6	9		104	3	3	267	266	0	-16	81	80	4	-8	3	16#
6	10	81	23	3	4	528	530	0	-14	32	61#	4	-7	151	163
6	11	88	107	3	5	157	146	0	-12	3	53*	4	-6	159	150
	* H		3 ***	3	6	278	279	0	-10	53	45#	4	-5	284	299
1	-16	49	65#	3	7		57*	0	-8	423	413	4	-4	153	147
1	-15	4	9#	3	8	31	31*	0	-6	695	676	4	-3	161	153
1	-14	115	116	3	9	68	49	0	-4	444	430	4	-2	48	54#
1	-13	67	76	3	10	54	33*	0	-2	45	7#	4	-1	70	55
1	-12	74	53	3	11	70	72	0	0	2	61#	4	0	197	186
1	-11	118	102	3	12	124	121	0	2	354	335	4	1	37	61#
1	-10	58	65*	3	13	32	66#	0	4	509	504	4	2	372	374
1	-9	43	21*	3	14	72	86	0	6	256	250	4	3	183	169
1	-8	230	212	3	15	43	32*	0	8	113	117	4	4	265	264
1	-7	44	21*	5	-13	52	26*	0	10	254	264	4	5	102	112
1	-6	824	817	5	-12	57	68#	0	12	311	321	4	6	59	33*

K	L	FOBS	FCAL	K	L	FOBS	FCAL	K	L	FOBS	FCAL	K	L	FOBS	FCAL
1	-14	19	69*	3	12	149	161	2	-5	125	119	6	5	62	79*
i	-13	42	26*	3	13	4	37#	2	-4	192	194	6	6	55	66*
1	-12	169	167	5	-11	84	100	2	-3	282	295	**		= 9	
1	-11	52	58*	5	-10	82	62	2	-2	212	202		-14	61	41*
ī	-10	128	128	5	-9	95	86	2	-1	128	132		-13	51	4*
ī	-9	88	98	5	-8	51	28#	2	ō	179	184	i	-12	74	43
1	-8	49	16*	5	-7	60	18*	2	i	96	124	i	-11	49	15*
1	-7	3	39*	5	-6	16	32*	2	ż	142	132	i	-10	93	84
1	-6	80	69	5	-5	44	17#	2	3	56	86*	i	-9	3	14*
1	-5	179	171	5	-4	95	74	2	4	118	111	i	-8	121	116
1	-4	300	298	5	-3	42	720	2	5	48	43*	1	-7	65	77
1	-3	141	151		-2	79	87	2	6	171	163	ī	-6	58	31*
1	-2	319	312	5	-1	95	65	2	7	70	67	ī	-5	98	89
1	-1	105	95	5	0	95	78	2	8	163	157	1	-4	49	22*
1	0	16	55#	5	1	86	58	2	9	87	69	1	-3	48	59*
1	1	98	90	5	2	77	67	2	10	93	116	1	-2	113	159
1	2	9	26#	5	3	132	130	2	11	99	91	1	-1	39	41*
1	3	67	68	5	4	95	81	2	12	112	105	1	0	360	379
1	4	374	362	5	5	167	178	2	13	68	62*	1	1	15	28*
1	5	126	121	5	6	111	110	4	-12	50	64	1	2	271	280
1	6	483	468	5	7	120	125	4	-11	94	81	1	3	126	138
1	7	3	10*	5	8	74	86	4	-10	4	29*	1	4	85	69
1	8	232	232	5	9	75	62	4	-9	4	32*	1	5	19	37*
1	9	78	74	5	10	4	38*	4	-8	92	86	1	6	96	94
1	10	3	21*	7	-3	18	60#	4	-7	37	4*	1	7	122	118
1	11	42	29*	7	-2	4	5#	4	-6	85	113	1	8	184	182
1	12	7	39*	7	-1	58	88*	4	-5	48	2*	1	9	97	101
1	13	43	32*	7	0	46	55*	4	-4	95	107	1	10	111	130
1	14	99	114	7	1	90	106	4	-3	3	52*	1	11	7	21*
3	-14	4	8*	7	2	4	40#	4	-2	130	118	1	12	46	48*
3	-13	4	42#	*	* H	= 8		4	-1	139	128	1	13	4	16*
3	-12	70	47	0		67	48*	4	0	155	115	3	-12	4	16*
3	-11	3	25#	0	-12	129	138	4	1	107	130	3	-11	66	58*
3	-10	86	92	0	-10	152	176	4	5	77	76	3	-10	62	89#
3	-9	28	1*	0	-8	27	30*	4	3	65	61	3	-9	40	41*
3	-8	55	15*	0	-6	54	60*	4	4	53	49*	3	-8	121	139
3	-7	10	28#	0	-4	130	123	4	5	104	95	3	-7	41	16*
3		23	9#	0		268	267	4	6	59	65*	3	-6	93	113
3	-5		104	0	0	105	127	4	7	162	161	3	-5	72	29
3	-4	322	324	0	2	201	203	4	8	90	100	3	-4	93	104
3	-3		164	0	4	427	430	4	9	63	85*	3	-3	124	144
3	-2	465	471	0	6	324	328	4	10	99	106	3	-2	98	112
3	-1	91	119	0	8	93	89	4	11	33	19#	3	-1	120	123
3	0	105	112	0	10	7	44#	6	-7	58	12*	3	0	98	92
3	1	47	21*	0	12	73	90 65#	6	-6	21	15*	3	1	25	82
3	3	71	69	0	14	38	65*	6	-5	55	1*	3	2	80	82
3	3	54	50*	2	-14	27	26*	6	-4	39	1*	3 3 3 3 3	3	3	10-
3	4	168	157	2	-13	23	15*	6	-3	51	69*	3	4	71	65
3	5	88	90	5 5 5	-12	64	54*	6	-2	4	23*	3	5	89	80
3	6	200	199	2	-11	30	31*	6	-1	111	116	3	6	68	57
3	7 8	106	98	2	-10	3	54#	6	0	56	27*	3	7	104	118
3	9		45	5	-9	3	6#	6	1	91	84	3	8	116	128
3 3 3 3 3 3 3 3 3 3 3 3 3	10	80 71	85 57	2	-8 -7	83 46	74 33*	6	2	78 83	77 59	3	9	69	73
3	11	53	55*	2		124	131	6	3	113	121	3	10	175	186 30*
3	11	23	224	-	-0	124	121	0	4	113	151	3	11	41	304

					((C	NS (EH	25F2					PAGE	6	OF	6
K	L	FOBS	FCAL	K	L	FOBS	FCAL	K	L	FOBS	FCAL	K	L	FOBS	FCAL
0	0	4	13*	2	-4	69	17	2	2	91	101	,	-3	4	9*
0	5	60	88*	2	-3	41	16*	2	3	43	834	i	-2	4	37*
0	4	4	44#	2	-2	28	9*	2	4	70	81	i	-1	4	33*
0	6	4	4#	2	-1	21	3*	2	5	63	324	1	ō	67	32
2	-6	4	42*	2	0	53	58*	***	H	= 15	***	ī	1	4	33*
5	-5	53	3#	2	1	47	66*	1	-4	4	294	i	2	4	16*

Figure 1. Stereoview of the $({\rm Me_2N})_2{\rm SF}_2$ molecule, illustrating the atom numbering scheme. Nonhydrogen atoms are shown as ellipsoids of 30% probability and hydrogen atoms as spheres of radius 0.1 Å.

Figure 2. A view of the $(\text{Me}_2\text{N})_2\text{SF}_2$ molecule showing the idealized dispositions of the lone pairs of electrons of the nitrogen atoms. The lone pairs, indicated as small blank spheres, have been placed along the axes which pass through the N atoms and are normal to the S. C. C. planes.

Figure 3. Stereoview of the immediate environment of a $(Me_2N)_2SF_2$ molecule. Each molecule is surrounded by eight other molecules at nonhydrogen contact distances of 3.6-3.85 Å in an approximately square antiprismatic arrangement of molecules. Nonhydrogen atoms are shown as ellipsoids of 30% probability and hydrogen atoms as spheres of radius 0.1 Å.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. ples		No. Coples
Office of Naval Research		Defense Documentation Center	
800 North Quincy Street		Building 5, Cameron Station	
Arlington, Virginia 22217		Alexandria, Virginia 22314	12
Attn: Code 472	2		
		U.S. Army Research Office	
ONR Branch Office		P.O. Box 1211	
536 S. Clark Street		Research Triangle Park, N.C. 277	09
Chicago, Illinois 60605		Attn: CRD-AA-IP	1
Attn: Dr. George Sandoz	1		
		Naval Ocean Systems Center	
ONR Branch Office		San Diego, California 92152	
715 Broadway		Attn: Mr. Joe McCartney	1
New York, New York 10003			
Attn: Scientific Dept.	1	Naval Weapons Center	
		China Lake, California 93555	
ONR Branch Office		Attn: Dr. A. B. Amster	
1030 East Green Street		Chemistry Division	1
Pasadena, California 91106			
Attn: Dr. R. J. Marcus	1	Naval Civil Engineering Laborato	ry
		Port Hueneme, California 93401	
ONR Area Office		Attn: Dr. R. W. Drisko	1
One Hallidie Plaza, Suite 601		Duefeesen W. P. Weeklen	
San Francisco, California 94102	1	Professor K. E. Woehler	
Attn: Dr. P. A. Miller	1	Department of Physics & Chemistr	У
OND Branch Office		Naval Postgraduate School	1
ONR Branch Office		Monterey, California 93940	-
Building 114, Section D 666 Summer Street		Dr. A. L. Slafkosky	
Boston, Massachusetts 02210		Scientific Advisor	
Attn: Dr. L. H. Peebles	1	Commandant of the Marine Corps	
Attil. Di. E. II. Teedles		(Code RD-1)	
Director, Naval Research Laborato	rv	Washington, D.C. 20380	1
Washington, D.C. 20390	- ,	Habitangton, 200, 2000	
Attn: Code 6100	1	Office of Naval Research	
		800 N. Quincy Street	
The Assistant Secretary of the Na	vy	Arlington, Virginia 22217	
(R, E&S)		Attn: Dr. Richard S. Miller	1
Department of the Navy			
Room 4E736, Pentagon		Naval Ship Research and Developm	ent
Washington, D.C. 20350	1	Center	
		Annapolis, Maryland 21401	
Commander, Naval Air Systems Comm	and	Attn: Dr. G. Bosmajian	
Department of the Navy		Applied Chemistry Division	n 1
Washington, D.C. 20360			
Attn: Code 310C (H. Rosenwasser)	1	Naval Ocean Systems Center	
		San Diego, California 91232	
		Attn: Dr. S. Yamamoto, Marine	
		Sciences Division	1

TECHNICAL REPORT DISTRIBUTION LIST, 053

	No. Copies	No Copi	es
Dr. R. N. Grimes University of Virginia Department of Chemistry Charlottsville, Virginia 22901	1	Dr. M. H. Chisholm Department of Chemistry Indiana University Bloomington, Indiana 47401	
Dr. M. Tsutsui Texas A&M University Department of Chemistry College Station, Texas 77843	1	Dr. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154	
Dr. M. F. Hawthorne University of California Department of Chemistry Los Angeles, California 90024	1	Dr. T. Marks Northwestern University Department of Chemistry Evanston, Illinois 60201	
Dr. D. B. Brown University of Vermont Department of Chemistry Burlington, Vermont 05401	1	Dr. G. Geoffrey Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802	. 1
Dr. W. B. Fox Naval Research Laboratory Chemistry Division Code 6130 Washington, D.C. 20375	1	Dr. J. Zuckerman University of Oklahoma Department of Chemistry Norman, Oklahoma 73019	
Dr. J. Adcock University of Tennessee Department of Chemistry Knoxville, Tennessee 39716	1	Professor O. T. Beachley Department of Chemistry State University of New York Buffalo, New York 14214	
Dr. W. Hatfield University of North Carolina Department of Chemistry Chapel Hill, North Carolina 27	514 1	Professor P. S. Skell Department of Chemistry The Pennsylvania State University University Park, Pennsylvania 16802	1
Dr. D. Seyferth Massachusetts Institute of Technology Department of Chemistry		Professor K. M. Nicholas Department of Chemistry Boston College Chestnut Hill, Massachusetts 02167	1
Cambridge, Massachusetts 02139	1		