

Faculty of engineering Software engineering Dep. 3rd Stage

Computer Graphics

Year program 2022/2023

Prepared by: Akam H. Ahmed

Lecture content

- ► Line Generation Algorithm
- DDA Algorithm
- ▶ Bresenham's Line Generation
- ► Mid-Point Algorithm

Lecture goals

At the end of this lecture you will be able to

- Understand Drawing of line.
- Analyze Drawing Algorithms.
- Apply Drawing line mathematically.

Line Generation Algorithm

- ▶ In computer graphics, popular algorithms used to generate lines are-
- 1. Digital Differential Analyzer (DDA) Line Drawing Algorithm
- 2. Bresenham Line Drawing Algorithm
- 3. Mid Point Line Drawing Algorithm

Line Generation Algorithm

- A line connects two points.
- ► It is a basic element in graphics.
- To draw a line, you need two points between which you can draw a line.
- In the following three algorithms, we refer the one point of line as X0,Y0 and the second point of line as X1,Y1

Given the starting and ending coordinates of a line, **DDA Algorithm** attempts to generate the points between the starting and ending coordinates.

Procedure: Given

Starting coordinates = (X0, Y0)

Ending coordinates = (Xn, Yn)

Step 1: Calculate ΔX , ΔY and M from the given input.

These parameters are calculated as-

$$\Delta X = Xn - X0$$

$$\Delta Y = Yn - Y0$$

$$M = \Delta Y / \Delta X$$

Step 2: Find the number of steps or points in between the starting and ending coordinates.

if (absolute (ΔX) > absolute (ΔY))

Steps = absolute (ΔX) ;

else

Steps = absolute (ΔY) ;

- Step 3: Suppose the current point is (Xp, Yp) and the next point is (Xp+1, Yp+1).
- Find the next point by following the below three cases
- Step 4: Keep repeating Step-03 until the end point is reached or the number of generated new points (including the starting and ending points) equals to the steps count.

- Example 1:Calculate the points between the starting point (5, 6) and ending point (8, 12).
- Solution:

Starting coordinates = (X0, Y0) = (5, 6)

Ending coordinates = (Xn, Yn) = (8, 12)

Step-01: Calculate ΔX , ΔY and M from the given input.

$$dX = Xn - X0 = 8 - 5 = 3$$

$$dY = Yn - Y0 = 12 - 6 = 6$$

$$M = dY / dX = 6 / 3 = 2$$

Step-02:Calculate the number of steps.

abs |dX| < |dY| = 3 < 6, so number of steps = dY = 6

• **Step-03**:As M > 1, so case-03 is satisfied.

Now, Step-03 is executed until Step-04 is satisfied.

Хp	Yp	X _{p+1}	Y _{p+1}	Round off (X _{p+1} , Y _{p+1})
5	6	5.5	7	(6, 7)
		6	8	(6, 8)
		6.5	9	(7, 9)
		7	10	(7, 10)
		7.5	11	(8, 11)
		8	12	(8, 12)

Drawing Points:

- Example 2:Calculate the points between the starting point (5, 6) and ending point (13, 10).
- **Solution:** Given-

Starting coordinates =
$$(X0, Y0) = (5, 6)$$

Ending coordinates =
$$(Xn, Yn) = (13, 10)$$

Step-01: Calculate ΔX , ΔY and M from the given input.

$$dX = Xn - X0 = 13 - 5 = 8$$

$$dY = Yn - Y0 = 10 - 6 = 4$$

$$M = dY / dX = 4 / 8 = 0.50$$

Step-02: Calculate the number of steps.

As
$$|dX| > |dY| = 8 > 4$$
, so number of steps = $dX = 8$

• Step-03:

As M < 1, so case-01 is satisfied.

Now, Step-03 is executed until Step-04 is satisfied.

X _p	Yp	X _{p+1}	Y _{p+1}	Round off (X _{p+1} , Y _{p+1})
5	6	6	6.5	(6, 7)
		7	7	(7, 7)
		8	7.5	(8, 8)
		9	8	(9, 8)
		10	8.5	(10, 9)
		11	9	(11, 9)
		12	9.5	(12, 10)
		13	10	(13, 10)

• Plotting points.

- Example 3:Calculate the points between the starting point (1, 7) and ending point (11, 17).
- **Solution:** Given-

Starting coordinates = (X0, Y0) = (1, 7)

Ending coordinates = (Xn, Yn) = (11, 17)

Step-01: Calculate ΔX , ΔY and M from the given input.

$$dX = Xn - X0 = 11 - 1 = 10$$

$$dY = Yn - Y0 = 17 - 7 = 10$$

$$M = dY / dX = 10 / 10 = 1$$

Step-02: Calculate the number of steps.

As |dX| = |dY| = 10 = 10, so number of steps = dX = dY = 10

• Step-03:

As M = 1, so case-02 is satisfied.

Now, Step-03 is executed until Step-04 is satisfied.

Xp	Yp	X _{p+1}	Y _{p+1}	Round off (X _{p+1} , Y _{p+1})
1	7	2	8	(2, 8)
		3	9	(3, 9)
		4	10	(4, 10)
		5	11	(5, 11)
		6	12	(6, 12)
		7	13	(7, 13)
		8	14	(8, 14)
		9	15	(9, 15)
		10	16	(10, 16)
		11	17	(11, 17)

• Plotting points.

The advantages of DDA Algorithm are:

- It is a simple algorithm.
- It is easy to implement.
- It avoids using the multiplication operation which is costly in terms of time complexity.

The disadvantages of DDA Algorithm are:

- There is an extra overhead of using round off() function.
- Using round off() function increases time complexity of the algorithm.
- Resulted lines are not smooth because of round off() function.
- The points generated by this algorithm are not accurate.

Given the starting and ending coordinates of a line.

Bresenham Line Drawing Algorithm attempts to generate the points between the starting and ending coordinates.

Procedure: Given

Starting coordinates = (X0, Y0)

Ending coordinates = (Xn, Yn)

Step-01:

Calculate dX and dY from the given input.

These parameters are calculated as

$$dX = Xn - X0$$

$$dY = Yn - Y0$$

Step-02:Calculate the decision parameter Pk.

It is calculated as-

 $Pk = 2\Delta Y - \Delta X$

Step-03:

Suppose the current point is (Xk, Yk) and the next point is (Xk+1, Yk+1).

Find the next point depending on the value of decision parameter Pk.

Follow the below two cases

Step-04:

Keep repeating Step-03 until the end point is reached or number of iterations equals to $(\Delta X-1)$ times.

- Example 1:Calculate the points between the starting coordinates (9, 18) and ending coordinates (14, 22).
- **Solution:** Given-

Starting coordinates = (X0, Y0) = (9, 18)

Ending coordinates = (Xn, Yn) = (14, 22)

Step-01: Calculate ΔX and ΔY from the given input.

$$\Delta X = Xn - X0 = 14 - 9 = 5$$

$$\Delta Y = Yn - Y0 = 22 - 18 = 4$$

Step-02: Calculate the decision parameter.

$$Pk = 2\Delta Y - \Delta X = 2 \times 4 - 5 = 3$$

So, decision parameter Pk = 3

• Step-03:As $Pk \ge 0$, so case-02 is satisfied.

Thus,

$$Pk+1 = Pk + 2\Delta Y - 2\Delta X = 3 + (2 \times 4) - (2 \times 5) = 1$$

$$Xk+1 = Xk + 1 = 9 + 1 = 10$$

$$Yk+1 = Yk + 1 = 18 + 1 = 19.$$

Similarly, Step-03 is executed until the end point is reached or number of iterations equals to 4 times.

(Number of iterations = $\Delta X - 1 = 5 - 1 = 4$)

P _k	P _{k+1}	X _{k+1}	Y _{k+1}
		9	18
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

P _k	P _{k+1}	X _{k+1}	Y _{k+1}
		9	18
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

• Example 2:Calculate the points between the starting coordinates (20, 10) and ending coordinates (30, 18).

Solution: Given-

Starting coordinates = (X0, Y0) = (20, 10)

Ending coordinates = (Xn, Yn) = (30, 18)

• **Step-01**: Calculate ΔX and ΔY from the given input.

$$\Delta X = Xn - X0 = 30 - 20 = 10$$

$$\Delta Y = Yn - Y0 = 18 - 10 = 8$$

Step-02: Calculate the decision parameter.

$$Pk = 2\Delta Y - \Delta X = 2 \times 8 - 10 = 6$$

So, decision parameter Pk = 6

• Step-03:As $Pk \ge 0$, so case-02 is satisfied.

Thus,

$$Pk+1 = 6 + (2 \times 8) - (2 \times 10) = 2$$

$$Xk+1 = Xk + 1 20 + 1 = 21$$

$$Yk+1 = Yk + 1 = 10 + 1 = 11$$

Similarly, Step-03 is executed until the end point is reached or number of iterations equals to 9 times.

(Number of iterations = $\Delta X - 1 = 10 - 1 = 9$)

P _k	P _{k+1}	X _{k+1}	Y _{k+1}
		20	10
6	2	21	11
2	-2	22	12
-2	14	23	12
14	10	24	13
10	6	25	14
6	2	26	15
2	-2	27	16
-2	14	28	16
14	10	29	17
10	6	30	18

P _k	P _{k+1}	X _{k+1}	Y _{k+1}
		20	10
6	2	21	11
2	-2	22	12
-2	14	23	12
14	10	24	13
10	6	25	14
6	2	26	15
2	-2	27	16
-2	14	28	16
14	10	29	17
10	6	30	18

Advantages of Bresenham Line Drawing Algorithm:

- It is easy to implement.
- * It is fast and incremental.
- It executes fast but less faster than DDA Algorithm.
- * The points generated by this algorithm are more accurate than DDA Algorithm.
- It uses fixed points only.

Disadvantages of Bresenham Line Drawing Algorithm:

- * Though it improves the accuracy of generated points but still the resulted line is not smooth.
- This algorithm is for the basic line drawing.
- It can not handle diminishing jaggies.

Given the starting and ending coordinates of a line.

Mid Point Line Drawing Algorithm attempts to generate the points between the starting and ending coordinates.

Procedure: Given

Starting coordinates = (X0, Y0)

Ending coordinates = (Xn, Yn)

Step-01:

Calculate ΔX and ΔY from the given input.

These parameters are calculated as-

$$\Delta X = Xn - X0$$

$$\Delta Y = Yn - Y0$$

Step-02:Calculate the value of initial decision parameter and ΔD .

These parameters are calculated as-

Dinitial =
$$2\Delta Y - \Delta X$$

$$\Delta D = 2(\Delta Y - \Delta X)$$

Step-03:

Keep repeating Step-03 until the end point is reached.

For each Dnew value, follow the above cases to find the next coordinates.

• Example 1:Calculate the points between the starting coordinates (20, 10) and ending coordinates (30, 18).

Solution: Given-

Starting coordinates =
$$(X0, Y0) = (20, 10)$$

Ending coordinates =
$$(Xn, Yn) = (30, 18)$$

Step-01: Calculate ΔX and ΔY from the given input.

$$\Delta X = Xn - X0 = 30 - 20 = 10$$

$$\Delta Y = Yn - Y0 = 18 - 10 = 8$$

Step-02: Calculate Dinitial and ΔD as-

Dinitial =
$$2\Delta Y - \Delta X = 2 \times 8 - 10 = 6$$

$$\Delta D = 2(\Delta Y - \Delta X) = 2 \times (8 - 10) = -4$$

• **Step-03:**As Dinitial >= 0, so case-02 is satisfied.

Thus,

$$Xk+1 = Xk + 1 = 20 + 1 = 21$$

$$Yk+1 = Yk + 1 = 10 + 1 = 11$$

Dnew = Dinitial +
$$\Delta D = 6 + (-4) = 2$$

Similarly, Step-03 is executed until the end point is reached.

D _{initial}	D _{new}	X _{k+1}	Y _{k+1}
		20	10
6	2	21	11
2	-2	22	12
-2	14	23	12
14	10	24	13
10	6	25	14
6	2	26	15
2	-2	27	16
-2	14	28	16
14	10	29	17
10		30	18

D _{initial}	D _{new}	X _{k+1}	Y _{k+1}
		20	10
6	2	21	11
2	-2	22	12
-2	14	23	12
14	10	24	13
10	6	25	14
6	2	26	15
2	-2	27	16
-2	14	28	16
14	10	29	17
10		30	18

• Example 2:Calculate the points between the starting coordinates (5, 9) and ending coordinates (12, 16).

Solution: Given-

Starting coordinates = (X0, Y0) = (5, 9)

Ending coordinates = (Xn, Yn) = (12, 16)

Step-01: Calculate ΔX and ΔY from the given input.

$$\Delta X = Xn - X0 = 12 - 5 = 7$$

$$\Delta Y = Yn - Y0 = 16 - 9 = 7$$

Step-02: Calculate Dinitial and ΔD as-

Dinitial =
$$2\Delta Y - \Delta X = 2 \times 7 - 7 = 7$$

$$\Delta D = 2(\Delta Y - \Delta X) = 2 \times (7 - 7) = 0$$

• **Step-03:**As Dinitial >= 0, so case-02 is satisfied. Thus,

$$Xk+1 = Xk + 1 = 5 + 1 = 6$$

$$Yk+1 = Yk + 1 = 9 + 1 = 10$$

Dnew = Dinitial +
$$\Delta D = 7 + 0 = 7$$

Similarly, Step-03 is executed until the end point is reached.

D _{initial}	D _{new}	X _{k+1}	Y _{k+1}
		5	9
7	7	6	10
7	7	7	11
7	7	8	12
7	7	9	13
7	7	10	14
7	7	11	15
7		12	16

D _{initial}	D _{new}	X _{k+1}	Y _{k+1}
		5	9
7	7	6	10
7	7	7	11
7	7	8	12
7	7	9	13
7	7	10	14
7	7	11	15
7		12	16

Advantages of Mid Point Line Drawing Algorithm:

- Accuracy of finding points is a key feature of this algorithm.
- It is simple to implement.
- It uses basic arithmetic operations.
- It takes less time for computation.
- The resulted line is smooth as compared to other line drawing algorithms.

Disadvantages of Mid Point Line Drawing Algorithm:

- This algorithm may not be an ideal choice for complex graphics and images.
- In terms of accuracy of finding points, improvement is still needed.
- There is no any remarkable improvement made by this algorithm.

References.

- ▶ Hughes, John F., van Dam, Andries, McGuire, Morgan, Sklar, David F., Foley, James D., Feiner, Steven and Akeley, Kurt. Computer Graphics: Principles and Practice. 3 Upper Saddle River, NJ: Addison-Wesley, 2013.
- ▶ Gambetta, G. (2021). Computer Graphics From Scratch: A programmer's introduction to 3D rendering.
- ► "Computer Graphics." Tutorialspoint. Accessed October 20, 2022. https://www.tutorialspoint.com/computer_graphics/index.asp.

End

Thank you