Алгебра логики

- > Основные понятия
- > Логические операции
- > Законы алгебры логики

Основные понятия

Определение 1. Высказывание — это повествовательное предложение, в отношении которого можно судить о его истинности либо ложности.

Определение 2. Высказывание называется простым, если никакая его часть сама по себе не является высказыванием.

Определение 3. Переменной в алгебре логики называется объект, имеющий уникальное имя, и значением которого может являться любое простое высказывание.

Определение 4. Логическим выражением называется объект, состоящий из логических переменных и логических операций и имеющий значение *истина*, либо *пожь*. Процесс построения логического выражения по сложному высказыванию называется формализацией высказывания.

Логические операции

Названия операции	Возможные обозначения
Отрицание, инверсия.	
	_,], ¬
Конъюнкция, логическое умно-	&, ∧, · , по аналогии с ал-
жение, операция И, операция AND.	гебраическим умножением
	может никак не обозначаться
Дизъюнкция, нестрогая дизъюнк-	, ∨ , +
ция, логическое сложение, операция	
ИЛИ, операция OR.	
Строгая дизьюнкция, раздели-	\oplus , Δ
тельная дизьюнкция, исключающее	
ИЛИ, сложение по модулю 2.	
Эквивалентность, эквиваленция,	⇔,≡
равенство, равнозначность.	
Импликация, следование, след-	\Rightarrow , \rightarrow
ствие	

Таблицы истинности

Таблица истинности для конъюнкции

Первый операнд	Второй операнд	Значение операции
0	0	0
0	1	0
1	0	0
1	1	1

Таблица истинности для дизьюнкции

Первый операнд	Второй операнд	Значение операции
0	0	0
0	1	1
1	0	1
1	1	1

Таблица истинности для строгой дизьюнкции

Первый операнд	Второй операнд	Значение операции
0	0	0
0	1	1
1	0	1
1	1	0

Таблицы истинности

Таблица истинности для эквивалентности

Первый операнд	Второй операнд	Значение операции
0	0	1
0	1	0
1	0	0
1	1	1

Таблица истинности для импликации.

Первый операнд	Второй операнд	Значение операции
0	0	1
0	1	1
1	0	0
1	1	1

Таблица истинности для отрицания

Значение операнда	Значение операции
0	1
1	0

Формализация

Логическая операция	Логические связки в русском языке
Отрицание	Неверно что
Конъюнкция	и, а, но, а также, при этом, одновремен-
	но с этим, хотя
Дизъюнкция	Или
Строгая дизъюнкция	или, либо
Эквивалентность	Тогда и только тогда когда, необходимо
	и достаточно чтобы
Импликация	если то, необходимо чтобы, достаточно
	чтобы

Законы алгебры логики

Определение 5. Логические выражения, зависящие от одних и тех же логических переменных, называются *равносильными*, если на любом наборе значений переменных они принимают одинаковое значение

- 1) Отрицание
- 2) Конъюнкция
- 3) Дизъюнкция, строгая дизъюнкция, эквивалентность
- 4) Импликация

1) Законы поглощения констант

$$x \vee 0 = x$$
, $x \& 1 = x$;

2) Законы поглощения переменных

$$x \vee 1 = 1$$
, $x \& 0 = 0$;

3) Законы идемпотентности

$$x \& x = x, \quad x \lor x = x;$$

4) Закон двойного отрицания

$$x = x$$
;

5) Закон противоречия

$$x \& x = 0;$$

6) Закон исключённого третьего

$$x \vee x = 1$$
;

7) Законы коммутативности

$$x & y = y & x,$$

 $x \lor y = y \lor x;$

8) Законы ассоциативности

$$(x \& y) \& z = x \& (y \& z),$$

 $(x \lor y) \lor z = x \lor (y \lor z);$

9) Законы дистрибутивности

$$x & (y \lor z) = (x & y) \lor (x & z),$$

 $x \lor (y & z) = (x \lor y) & (x \lor z);$

10) Законы де Моргана

$$\frac{\overline{x \& y} = \overline{x} \vee \overline{y}}{\overline{x \vee y} = \overline{x} \& \overline{y}};$$

11) Загоны поглощения (не путать с аксиомами поглощения переменных нулём или единицей)

$$x \lor (x \& y) = x;$$

 $x \& (x \lor y) = x.$

12) Закон преобразования импликации

$$x \rightarrow y = x \lor y$$

Задание

Доказать законы алгебры логики, построив таблицы истинности

1. Упростите логические выражения:

a)
$$A \cdot B \cdot A \cdot B + B$$
;

$$6)(A+B)\cdot(\overline{A}+\overline{B});$$

$$B) A + A \cdot B + A \cdot C;$$

$$\Gamma$$
) $A + \overline{A} \cdot B + \overline{A} \cdot C$;

$$\mathbf{\pi}$$
) $A \cdot (A + B + C)$;

e)
$$A \cdot B + B + A \cdot B$$
;

$$\Re (\overline{A} + B) \cdot \overline{C} \cdot (C + A \cdot \overline{B});$$

3)
$$\overline{A} \cdot \overline{C} + A \cdot B + \overline{A} \cdot C + A \cdot \overline{B}$$
;

$$\mathbf{M}$$
) $A \cdot (\overline{B} \cdot \overline{C} + B \cdot C) + A \cdot (B \cdot \overline{C} + \overline{B} \cdot C)$.

2. Упростите логические выражения:

a)
$$A \cdot (\overline{B} + C)$$
;

6)
$$(A+\overline{B})+\overline{(A+B)}+A\cdot B$$
;

B)
$$A + (A + B) + A \cdot B$$
;

$$\Gamma$$
) $(A+\overline{B}+\overline{C});$

и)
$$(A+B)\cdot (\overline{A}+B)\cdot (\overline{A}+\overline{B})$$
.

$$\mathbf{\pi}$$
) $(A+B)\cdot A\cdot B$;

e)
$$A + \overline{B \cdot C} + \overline{(A + B + C)}$$
;

ж)
$$(A+B+C)\cdot \overline{(\overline{A}\cdot\overline{B})}+C$$
;

3)
$$A \cdot (\overline{C} + \overline{B}) + (\overline{A} + B) \cdot C + A \cdot C$$
;

3. Упростите логические выражения:

a)
$$(A \to C) \cdot C$$
;

$$\Gamma$$
) $(\overline{A} \to (B \to \overline{C}));$

6)
$$(\overline{A} \to \overline{B}) + (\overline{A} \to B) + A \cdot B;$$

д)
$$(\overline{A} \to B) \cdot (\overline{A \to B});$$

B)
$$A + (\overline{A} \rightarrow B) + (\overline{A} + \overline{B});$$

e)
$$A + \overline{B \cdot \overline{C}} + (A \to \overline{\overline{B} \cdot C})$$
.