Acionador automático de lâmpadas via RF

Projetista: Leonardo Persike Martins

Email: <u>Leonardo.Persike.Martins@gmail.com</u>

Descrição de funcionamento

O equipamento em questão se trata de um conjunto de dispositivos cujo comportamento baseia-se em um sensor de barreira, utilizado para a detecção de objetos que interrompem um feixe de luz infravermelha. Quando acionado, o dispositivo base envia um sinal de acionamento via rádio frequência para um totem contendo uma lâmpada, acionando assim a mesma por um determinado período de tempo. No caso do sistema em questão, foi planejada a utilização de dois totens, os quais serão acionados de forma aleatória e exclusiva (apenas um totem por vez).

Sumário

Acionador automático de lâmpadas via RF Descrição de funcionamento		
Sumário	1	
Lista de componentes	2	
Ferramentas necessárias	3	
Diagrama de conexões	4	
Sensor de barreira - Receptor	4	
Sensor de barreira - Transmissor	4	
Totem Luz	4	
Instruções adicionais	5	
Totem de luz	5	
Transmissor e receptor RF	5	
Antena	5	
Programação do microcontrolador	6	
Preparando a interface Arduino	6	
Programando	6	
Baixando o código	6	
Preparação do sistema	7	
Inserindo código no relé	7	
Clonando código do controle no Arduino	7	

Lista de componentes

Os seguintes itens fazem parte de um sistema completo com 2 totens de luz:

Item	Qtd.	Link	Descrição	
Placa Arduíno Nano	1	<u>Arduíno</u>	Módulo contendo microcontrolador que servirá como inteligência do sistema.	
Módulo Transmissor RF 433MHz	1	Módulo RF	Módulo RF que opera como um controle.	
Antena 433MHz	1	Antena 433MHz	Antena para ser soldada no módulo RF de forma a aumentar o alcance do mesmo.	
Módulo Relé 2 (ou mais) canais controlado por RF	2	<u>Relé</u>	Relés conectados aos totens de luz, de forma a receber e interpretar o sinal, acionando e desligando as luzes.	
Módulo conversor de tensão 12V para 5V	1	Conversor	Conversor para reduzir a tensão da bateria para 5V, de forma a alimentar os microcontroladores.	
Sensor de barreira 12V	1	<u>Sensor</u> <u>Barreira</u>	Sensor de barreira para detectar a passagem do veículo.	
Bateria 12V	4	<u>Bateria</u>	Bateria para alimentar os sistemas.	
Módulo carregador de bateria 12V	4	<u>Carregador</u>	Módulo para carregamento das baterias.	
Fonte 12V	4	Fonte 12V	Fonte para carregar as baterias diretamente pela tomada.	
Refletor LED 12V	2	Refletor	Refletores que serão colocados nos totens.	
Chave Liga/Desliga	4	Chave on off	Botão para ligar e desligar o sistema.	
Conectores rápidos	8	Conector	Conector 2 vias para distribuição de cabos internamente.	
Jumpers	2	<u>Jumpers</u>	Jumpers necessários para a interconexão entre componentes.	
Cabo PP 2 vias	2	Cabo PP	Cabo 2.5mm (ou mais grosso) para distribuir a alimentação do sistema	
Par de garras jacaré	1	<u>Garras</u>	Garras jacaré para conexão da bateria.	

Ferramentas necessárias

As seguintes ferramentas são necessárias para a montagem dos equipamentos.

Item	Link	Descrição
Ferro de solda	<u>Ferro</u>	Utilizado para soldar as garras jacarés nos cabos que vão para a bateria.
Estanho	<u>Estanho</u>	Utilizado para soldar as garras jacarés nos cabos que vão para a bateria.
Alicate corte	<u>Alicate</u>	Utilizado para descascar os cabos.
Chave philips	<u>Kit</u>	Utilizado para conectar os cabos aos conectores das placas.

Diagrama de conexões

Os seguintes diagramas podem ser utilizados como referência para a montagem e cabeamentos dos sistemas. A utilização de conectores é opcional, porém recomendada para facilitar a troca de componentes caso necessário.

Sensor de barreira - Receptor

Sensor de barreira - Transmissor

Totem Luz

Instruções adicionais Totem de luz

O sistema tem a capacidade de acionamento de quatro totens de luz diferentes, devido a placa de relé conter 4 relés. Portanto, a conexão dos refletores devem seguir o seguinte diagrama:

Totem 1

Totem 2

Totem 3

Totem 4

Transmissor e receptor RF

A seguinte imagem identifica os componentes:

Receptor à esquerda. Transmissor à direita.

Antena

De forma a melhorar o alcance do módulo RF, é possível realizar a soldagem de uma antena simples no pino "ANT" do módulo transmissor, conforme indica a imagem a seguir:

Programação do microcontrolador Preparando a interface Arduino

Para a programação dos microcontroladores será utilizada a interface de desenvolvimento (IDE) Arduino, que pode ser obtida através do seguinte link:

https://www.arduino.cc/en/software
 Downloads

Programando

Para programar o microcontrolador é necessário uma conexão USB entre o dispositivo e o computador. Note que a programação pode ser feita antes de montar o sistema, facilitando assim o acesso ao conector USB da placa.

Baixando o código

- Abrir o site: https://github.com/LeoPersike/ProjetoAcionamentoLampadasRF
- Faça o download dos códigos clicando em "Code"->"Download Zip"
- Em seguida extraia o arquivo e abra a pasta "acionadorRF"
- Abra o software "Arduino" ou dê dois cliques no arquivo "acionadorRF.ino"

Programando o Arduino

- Conecte o Arduino com o cabo USB no PC
- Selecionar a placa arduino Nano: "Tools" -> "Board: xxx" -> Arduino Nano
- Selecionar a porta em que o dispositivo está conectado: "Tools" -> "Port" -> "COM X"
- Clicar em "Sketch" -> "Upload"
- A seguinte mensagem deverá aparecer:

Done uploading.

Sketch uses 4538 bytes (14%) of program storage space. Maximum is 30720 bytes.

Global variables use 465 bytes (22%) of dynamic memory, leaving 1583 bytes for local variables. Maximum is 2048 bytes.

Preparação do sistema

Inserindo código no relé

Caso o relé forneça a opção de gravar códigos de novos controles, é possível fazer a gravação do código que já se encontra inserido no arduino. Para isto, ligue apenas o sistema "Sensor de barreira - Receptor", o qual irá ficar simulando o aperto dos botões do controle. Em seguida, realize o procedimento de gravação de novo código no relé. No caso do relé utilizado neste projeto, as instruções são:

- Pressione o push-button presente na placa até que o led comece a piscar
- Pressione uma tecla do controle remoto
- O led irá piscar 2 vezes, indicando que a tecla foi gravada corretamente e está associada à 1 dos relés da placa
- Refaça o procedimento para as outra teclas do controle remoto
- Para apagar todos os códigos gravados, pressione o push-button por 8 segundos até que o led se apague

Se for utilizado um modelo diferente do apresentado neste documento, procure a informação de como gravar novos códigos no manual do mesmo.

Clonando código do controle no Arduino

Importante: apenas realize esse procedimento caso o relé não aceite gravação de novos códigos! Caso contrário, o arduino já possui um código para ser utilizado.

Caso o relé não ofereça possibilidade de gravação de novos códigos, é possível clonar o controle que já está cadastrado utilizando o arduino. Para isto, você deverá montar o seguinte sistema:

Em seguida, você deverá gravar o arduino com o seguinte arquivo:

- Abrir o site: https://github.com/LeoPersike/ProjetoAcionamentoLampadasRF
- Faça o download dos códigos clicando em "Code"->"Download Zip"
- Em seguida extraia o arquivo e abra a pasta "cloneRF"
- Abra o software "Arduino" ou dê dois cliques no arquivo "cloneRF.ino"
- Prossiga com a programação conforme explicado no capítulo anterior

- Em seguida você deverá abrir o monitor serial através do menu "Tools" ->
 "Serial Monitor"
- Aproxime o controle do módulo RF e aperte o primeiro botão. O código e parâmetros do primeiro deverão aparecer na tela
- Em seguida, aperta o segundo botão
- A imagem a seguir demonstra o resultado esperado:

```
© COM10

Decimal: 1452321 (24Bit) Binary: 0001011000101001001001001001001001 Tri-State: not applicable PulseLength: 286 microseconds Protocol: 1
Raw data: 8892,276,872,276,880,272,872,860,300,268,876,856,300,848,308,280,868,276,880,276,868,852,304,280,880,844,308,268,880,27

Decimal: 1452322 (24Bit) Binary: 00010110001010010010010010010 Tri-State: not applicable PulseLength: 285 microseconds Protocol: 1
Raw data: 8896,276,860,312,852,280,868,880,268,288,872,876,276,864,292,296,864,312,840,272,868,864,284,296,872,80,236,84,836,204,
```

Neste caso os parâmetros do controle utilizado foram os seguintes:

- Botão A:

Código: 000101100010100100100001

- Pulse length: 286

Protocol: 1

Botão B:

Código: 00010110001010010010010

Pulse length: 286

Protocol: 1

Descoberta a codificação do controle, é preciso alterar o código do arduino para simular o mesmo. Para isto, abra o arquivo "acionadorRF.ino" e altere as seguintes linhas conforme os parâmetros que foram encontrados:

```
/* Codificacao do controle */
#define BOTAO_1 "100101001110111110100001"
#define BOTAO_2 "100101001110111110100010"
#define PULSE_LENGTH 374
#define PROTOCOL 1
```

Pronto. Agora basta você programar o arduíno com a nova codificação e o arduino irá simular o controle que já está cadastrado no relé.