Generative or Discriminative? Getting the Best of Both Worlds

October 19, 2024

Getting the Best of Generative and Discriminative

The problem

Predicting an unknown target **c** given input features **x**.

Two Approaches:

- ▶ **Discriminative Models:** Learn the conditional distribution $p(\mathbf{c}|\mathbf{x})$ directly. They model the boundary between classes or regression relationships.
- ▶ **Generative Models:** Learn the joint distribution $p(\mathbf{x}, \mathbf{c})$ and use Bayes' theorem to infer $p(\mathbf{c}|\mathbf{x})$. They can generate synthetic data and handle missing information.

The solution

- A principled framework that combines generative and discriminative models.
- ► This framework improves generalization performance, particularly when labeled data is scarce.

Generative vs Discriminative Models

- 1) Left: Generative model $p(\mathbf{x}, \mathbf{c})$,
- Right: Discriminative model p(c|x)

This paper discusses how to use a Bayesian approach to find automatically the appropriate trade-off between the generative and discriminative extremes.