第二讲 向量的乘法

内积

- 1.内积的概念与性质
- 2.内积的坐标形式

▶ 外 积

- 1.外积的概念与性质
- 2.外积的坐标形式

混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义

内容小结

二、外积

1. 外积的概念

引例. 设O 为杠杆L 的支点,有一个与杠杆夹角为 θ 的力 \vec{F} 作用在杠杆的 P点上,则力 \vec{F} 作用在杠杆上的力矩是一个向量 \vec{M} :

定义 设 \vec{a} , \vec{b} 的夹角为 θ ,定义

称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的 外积. 记作

$$\vec{c} = \vec{a} \times \vec{b}$$

引例中的力矩 $\vec{M} = \vec{OP} \times \vec{F}$

2. 外积的性质

- (1) $\vec{a} // \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0}$;
- (2) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$, 特别 $\vec{a} \times \vec{a} = \vec{0}$, $\vec{0} \times \vec{a} = \vec{0}$;
- (3) $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b});$
- (4) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$.

例1 设 $\|\vec{a}\| = 3$, $\|\vec{b}\| = 4$, 且 $\vec{a} \perp \vec{b}$, 求 $\|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\|$.

解 $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = (\vec{a} \times \vec{a}) - (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{a}) - (\vec{b} \times \vec{b})$ = $2(\vec{b} \times \vec{a})$

几何意义

$$||\vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \sin \langle \vec{a}, \vec{b} \rangle$$

$$= ||\vec{a}|| h$$

$$\vec{a}$$

= 以 \vec{a} , \vec{b} 为邻边的平行四边形面积.

主要内容

外积(向量积)

1. 概念; 2. 性质.

练习 设向量 \vec{m} , \vec{n} , \vec{p} 两两垂直,符合右手规则,且 $||\vec{m}||=4$, $||\vec{n}||=2$, $||\vec{p}||=3$,计算 $(\vec{m}\times\vec{n})\cdot\vec{p}$.

答案: 24.