# Protocoles Cryptographiques



# PLAN

# **INTRODUCTION**

Buts

TLS

PKI







# PROTOCOLES *vs.* PRIMITIVES

#### PRIMITIVES

- opérations de transformations sur les données
- des garanties sont fournies sur les transformations possibles et impossibles

## PROTOCOLES CRYPTOGRAPHIQUES

- séquence de messages dont le contenu a été produit par l'application de primitives cryptographiqes
- un protocole cryptographique a un but, qui est une assurance donnée à un participant s'il respecte les règles du protocole

## SUITE DU COURS

- buts habituels
- notation simple pour les protocoles cryptographiques
- analyse basique d'un protocole cryptographique







# PLAN

INTRODUCTION

Витѕ

TLS

PKI







# ANALYSE D'UNE COMMUNICATION



#### **COMMUNICATION À TRAVERS INTERNET**

- par défaut, aucune sécurité sur Internet
- protocole cryptographique = mise en place d'un canal protégeant les communications du reste d'Internet (séparation)
- Buts possibles :
  - intégrité : pas d'écriture sur le canal à partir d'Internet
  - confidentialité : pas de lecture sur le canal à partir d'Internet







# FORMULATION LOCALE DES BUTS

#### EXPRESSION DES BUTS

- selon les protocoles, le pair n'est pas toujours connu
- un sujet ne doit poser des buts que sur ses actions propres

## PSEUDONYMES ET IDENTITÉ

- identité : identifiant global d'un sujet
- > pseudonyme : identifiant local (à une exécution du protocole) d'un sujet :
  - numéro de session d'un client
  - hôte et ports de communication
  - pseudonyme obtenu par un protocole dédié
- identité cas particulier de pseudonyme (utilisation d'une identité globale dans une session)







# BUTS POUR LES PROTOCOLES CRYPTOGRAPHIQUES

## INTÉGRITÉ

- d'après les niveaux d'intégrité, seulement lors de la réception de messages par un sujet
- contenu a priori inconnu : la propriété se réduit à demander que le message a été envoyé par sujet désigné
- identité inconnue : utilisation possible de pseudonymes

## CONFIDENTIALITÉ

- d'après les niveaux de confidentialité, seulement lors de l'émission de messages par un sujet
- dans ce cas, la propriété se réduit à demander que le message ne puisse être connu que par des sujets désignés
- identité inconnue : utilisation possible de pseudonymes







# AUTHENTIFICATION

## PREUVE D'AUTHENTIFICATION

- environnement distribué
- authentification repose sur une preuve
- la preuve ne peut être que le message reçu, ou une partie de ce message

# CHALLENGE/RÉPONSE

- déjà vu pour les protocoles de transmission de mot de passe
- un sujet crée une valeur aléatoire r
- la présence de cette valeur dans un message doit garantir son origine







# REJEU (REPLAY)

#### BUT D'AUTHENTIFICATION NAÏF

A authentifie B en se basant sur la preuve Na si, quand A reçoit un message contenant Na, ce message a précédement été envoyé par B

## REJEU

rejouer un message signifie, pour un attaquant :

- enregistrer le déroulement du protocole
- réutiliser ces messages pour se faire passer pour un des participants

## FORMULATION NAÏVE ET REJEU

- lors d'un rejeu, le message reçu a été précédement envoyé par l'auteur légitime
- pour l'authentification, il faut compter le nombre de fois que le message a été envoyé/reçu







# **BUTS D'AUTHENTIFICATION**

#### **AUTHENTIFICATION FAIBLE**

A authentifie B en se basant sur la preuve Na si, quand A reçoit un message contenant Na, ce message a précédement été envoyé par B

#### **AUTHENTIFICATION FORTE**

A authentifie B en se basant sur la preuve Na si, le message contenant Na a été reçu par A moins souvent qu'il n'a été envoyé par B







# CONFIDENTIALITÉ

## BESOIN D'AUTHENTIFICATION

- l'information envoyée est destinée à certaines personnes
- il faut donc avoir la certitude de l'identité (ou de son pseudonyme) d'un pair avant de lui envoyé une donnée confidentielle

## BUT DE CONFIDENTIALITÉ

Une partie d'un message envoyé par A ne peut être lue que par  $B_1, \ldots, B_n$ 







# SPÉCIFICATION SIMPLIFIÉE D'UN PROTOCOLE

## PARTIES UTILISÉES

CONNAISSANCES INITIALES: pour chaque sujet, une liste de valeurs connues

**ÉCHANGE**: une suite de communications

- 1.  $A \rightarrow B : M_1$ 2.  $B \rightarrow A : M_2$ 
  - :

BUTS : la description des buts de confidentialité et d'authentification

## NOTE

Pour simplifier, on utiliser {\_}\_ pour le chiffrement symétrique, asymétrique, et la signature digitale. La clef utilisée indique l'opération utilisée.







# PLAN

INTRODUCTION

Buts

TLS

PKI







# **HISTORIQUE**

## SSL

- débuts d'internet
- protocole proposé par Netscape (adresses https)
- plusieurs versions (v1,v2,v3)
- toutes buggées

# TLS

- standardisation IETF de SSL
- TLS 1.0 = SSL v3 (sauf détails mineurs)
- version courante 1.2 (théorie), 1.1 en pratique







# FONCTIONNEMENT DE TLS

## NÉGOCIATION

- le client et le serveur s'entendent sur la version à utiliser et sur les algorithmes à utiliser dans les phases suivantes
- risque: attaque demandant d'utiliser une version buggée

# RENDEZ-VOUS (HANDSHAKE)

- phase d'authentification
- négociation d'un contexte de sécurité (clef secrète)

# UTILISATION

- chiffrement symétrique des messages échangés basé sur le contexte de sécurité
- on chiffre le flux de message, pas les messages individuels

## FIN/RENÉGOCIATION

- lorsque la période de validité du contexte de sécurité se termine
- ou à la demande d'un des 2 participants









# **N**ÉGOCIATION

### **NÉGOCIATION INITIALE**

- dans le protocole HTTP, demande de changement du protocole de transport (client ou serveur, mot-clef Connection)
- valeurs du champ upgrade : algorithmes supportés par le navigateur, par ordre de préférence

GET /hello.txt HTTP/1.1

Host: www.example.com

Connection: upgrade

Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11







# Rendez-vous (Handshake)

#### **PRINCIPE**

- protocole d'authentification mutuelle, utilisation de certificats (voir plus loin)
- Diffie-Hellman le plus utilisé
- lacktriangle mais beaucoup d'implémentations ( $\sim$  90%) avec de mauvais paramètres

# PROTOCOLE DE DIFFIE-HELLMAN

A connait A, B, g, N, Na, et B connait A, B, g, N, Nb (Na, Nb aléatoires)

- 1.  $A \rightarrow B: g^{Na} \mod N$
- 2.  $B \rightarrow A: g^{Nb} \mod N$

But :  $g^{Na \times Nb} \mod N$  est connu seulement de A et B







# EXPLICATIONS DIFFIE-HELLMAN

#### CALCUL DU SECRET

- $ightharpoonup g^{Na imes Nb} \mod N = g^{Na^{Nb}} \mod N$
- $ightharpoonup g^{Na \times Nb} \mod N = g^{Nb^{Na}} \mod N$

# ROBUSTESSE (JEU)

- on doit au joueur soit :
  - $\triangleright$   $(g^{Na} \mod N, g^{Nb} \mod N, g^{Na \times Nb} \mod N)$
  - $\triangleright$   $(g^{Na} \mod N, g^{Nb} \mod N, g^r \mod N)$ , où r est un nombre aléatoire
- le joueur gagne si il devine correctement quel choix a été fait
- Hypothèse de Diffie-Hellman Décisionnel (DDH) : aucun joueur (machine de Turing) réaliste ne peut faire mieux que pile ou face
- ➤ Si un observateur peut calculer une partie du secret à partir de l'échange, il peut faire mieux que une chance sur deux







# UTILISATION

## CHIFFREMENTS DE FLUX

- ▶ soit chiffrement type Vernam, avec clair ⊕ nombre aléatoire
- soit chiffrement par bloc : la même clef est toujours utilisée, mais le block précédent est pris en compte
- ▶ il y a une attaque générique sur les chiffrements par blocs (mais faible probabilité de succès)

## **ALGORITHMES UTILISÉS**

- par block : RCA, 3DES (seuls disponibles sur XP), AES,...
- par flux : Salsa, Chacha, blowfish,...







# PLAN

INTRODUCTION

Buts

TLS

PKI







# RETOUR SUR DIFFIE-HELLMAN

#### PAS D'AUTHENTIFICATION!

- ▶ un attaquant C peut s'immiscer dans un échange entre A B pour le remplacer par deux échanges A C et C B
- on parle d'attaque par un intermédiaire (man-in-the-middle)
- ll y a bien un secret partagé, mais on ne sait pas avec qui

## AJOUT DE L'AUTHENTIFICATION

- pour authentifier la session, les messages sont signés par le client et le serveur en :
  - utilisant une clef de signature
  - la clef de validation correspondante est envoyée en même temps
- problème : comment relier la clef à une identité?







# **CERTIFICATS**

## **CERTIFICAT**

Un certificat est un document signé digitalement par un sujet.

## **UTILISATION**

- un sujet s'engage sur la véracité d'informations en signant ces informations
- ≥ 2 cas possibles :
  - soit le lecteur connait la clef de validation permettant de valider la signature
  - soit le lecteur doit obtenir la preuve que la clef à utiliser pour la validation est bien celle du sujet





# INFRASTRUCTURES DE CLEFS PUBLIQUES

#### BUT: PROPAGATION DE LA CONFIANCE

- confiance : ensemble de certificats justifié par des certificats connus du lecteur
- http: justification existe = cadenas vert, pas de justification = cadenas rouge/avertissement

#### CONFIANCE DANS LES NAVIGATEURS

- chaque navigateur a une liste des certificats reconnus (certificats racines pour la confiances)
- pour être accepté, un site Internet doit obtenir un certificat qui peut être validé pour un certificat racine







# UTILITÉ ET FRAGILITÉ

#### PROBLÈME D'INITIALISATION

il faut avoir confiance dans les entreprises qui émettent des certificats racines

## **EXEMPLE: NAVIGATEURS D'ENTREPRISE**

- des sociétés sont spécialisées dans l'émission de "faux" certificats
- ces certificats sont mis par des entreprises dans le navigateur de leurs employés
- celà permet à la société émettrice d'intercepter les communications https des employés (attaque Man-in-the-Middle par la société)
- avantage/désavantage : une entreprise a accès à l'historique de navigation de ses salariés
- Certificate Transparency : effort pour permettre aux internautes de savoir si les certificats qu'ils acceptent ont été réellement émis par le site





