Relative Definierbarkeit

Definition. Sei σ eine Signatur und \mathcal{K} eine Klasse von σ -Strukturen.

Eine Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar, wenn es einen Satz $\psi \in \text{FO}[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \psi \}$$

Wir schreiben $\mathsf{Mod}_{\mathcal{K}}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$

Sprachen als Modellklassen. Sei \mathfrak{W} die Klasse aller σ_{Σ} -Wortstrukturen.

Dann ist $L \subseteq \Sigma^+$ FO-definierbar gdw. es $\varphi \in FO[\sigma_{\Sigma}]$ gibt mit

$$\{\mathcal{W}_w : w \in \mathcal{L}\} = \mathsf{Mod}_{\mathfrak{W}}(\varphi).$$

Beispiel. Ist die Sprache

$$\mathcal{L}_{\mathsf{EVEN-}a} := \{ w \in \{ a, b \}^+ : w \text{ enthält eine gerade Anzahl } as \}$$

FO-definierbar in 2007?

Stephan Kreutzer Logik 16 / 93 WS 2022/2023

Die Klasse Even<

Beispiel. Ist die Sprache

$$\mathcal{L}_{\mathsf{EVEN-}a} := \{ w \in \{a, b\}^+ : w \text{ enthält eine gerade Anzahl as } \}$$

FO-definierbar in **2017**?

Vereinfachung. Ob $w \in \mathcal{L}_{EVEN-a}$ hängt nur von den vorkommenden as ab.

Es reicht daher, Wörter über dem Alphabet $U := \{a\}$ zu betrachten, d.h.

$$\sigma_U$$
-Wortstrukturen $\mathcal{W}:=(W,\leq^{\mathcal{W}},P_a^{\mathcal{W}})$ mit $P_a^{\mathcal{W}}=W.$

Da $P_a^{\mathcal{W}}=W$, können wir die Relation $P_a^{\mathcal{W}}$ ignorieren und nur die lineare Ordnung $(W,\leq^{\mathcal{W}})$ betrachten.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 17 / 93

Die Klasse Even<

Beispiel. Ist die Sprache

$$\mathcal{L}_{\mathsf{EVEN-}a} := \{ w \in \{ a, b \}^+ : w \text{ enthält eine gerade Anzahl as } \}$$

FO-definierbar in 2017?

Vereinfachung. Ob $w \in \mathcal{L}_{FVFN-a}$ hängt nur von den vorkommenden as ab.

Es reicht daher, Wörter über dem Alphabet $U := \{a\}$ zu betrachten, d.h.

$$\sigma_U$$
-Wortstrukturen $\mathcal{W} := (W, \leq^{\mathcal{W}}, P_a^{\mathcal{W}})$ mit $P_a^{\mathcal{W}} = W$.

Da $P_{2}^{\mathcal{W}} = W$, können wir die Relation $P_{2}^{\mathcal{W}}$ ignorieren und nur die lineare Ordnung $(W, \leq^{\mathcal{W}})$ betrachten.

Die Klasse EVEN<. Die Frage, ob $\mathcal{L}_{\text{EVFN}_{-2}}$ FO-definierbar ist, reduziert sich auf die FO-Definierbarkeit der Klasse

$$EVEN_{<} := \{(A, \leq) : A \text{ ist endlich und gerader Länge } \}$$

in der Klasse O aller endlichen linearen Ordnungen.

Stephan Kreutzer Logik 17 / 93 WS 2022/2023

Beispiele dieses Abschnitts

Frage 1: Kann man in FO zählen?

Ist die Klasse

$$EVEN_{\leq} := \{(A, \leq) : A \text{ ist endlich und gerader Länge } \}$$

in der Klasse O aller endlichen linearen Ordnungen FO-definierbar?

Das ist letztlich die Frage, ob die Prädikatenlogik zählen kann.

Frage 2: Erreichbarkeit.

```
Signatur \sigma := \{E, s, t\}
s, t Konstantensymbole
```

E 2-stelliges Relationssymbol

Ist folgende Klasse FO-definierbar?

REACH := {
$$\mathcal{A} : \mathcal{A} \sigma$$
-Struktur, es gibt einen Pfad von $s^{\mathcal{A}}$ nach $t^{\mathcal{A}}$ }.

Dahinter steht die Frage, ob die Prädikatenlogik Schleifenkonstrukte oder Rekursion ausdrücken kann.

Stephan Kreutzer Logik WS 2022/2023 18 / 93

Zusammenfassung

Definition.

Sei σ eine Signatur und \mathcal{C} eine Klasse \mathcal{C} von σ -Strukturen.

- 1. \mathcal{C} wird axiomatisiert durch eine Menge $\Phi \subseteq \mathsf{FO}[\sigma]$, oder Φ ist ein *Axiomensystem* für \mathcal{C} , wenn $\mathcal{C} = \mathsf{Mod}(\Phi)$.
- 2. \mathcal{C} ist FO-axiomatisierbar, wenn $\mathcal{C} = \mathsf{Mod}(\Phi)$ für eine Menge $\Phi \subseteq \mathsf{FO}[\sigma]$.
- 3. $\mathcal C$ ist FO-definierbar, oder endlich axiomatisierbar, wenn $\mathcal C = \mathsf{Mod}(\varphi)$ für einen einen Satz $\varphi \in \mathsf{FO}[\sigma]$.
 - Äquivalent. $\mathcal{C} = \mathsf{Mod}(\Phi)$ für eine endlich Menge $\Phi \subseteq \mathsf{FO}[\sigma]$.
- 4. Eine Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar, wenn es einen Satz $\psi \in \mathsf{FO}[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \psi \}$$

Wir schreiben $Mod_{\mathcal{K}}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$

Stephan Kreutzer Logik WS 2022/2023 19 / 93

11.2 Der Quantorenrang von Formeln

Der Quantorenrang einer Formel

Definition. Der *Quantorenrang* $q\mathbf{r}(\psi)$ einer Formel $\psi \in FO$ ist induktiv definiert durch:

- $qr(\psi) := 0$ für quantorenfreie Formeln ψ
- $\operatorname{qr}(\neg \psi') := \operatorname{qr}(\psi')$

$$\quad \cdot \ \operatorname{qr}((\varphi * \psi)) := \max \{\operatorname{qr}(\varphi), \operatorname{qr}(\psi)\} \ \operatorname{für} \ * \in \{\lor, \land, \rightarrow, \leftrightarrow\} \ _$$

$$\cdot \operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) = 1 + \operatorname{qr}(\varphi)$$

Der Quantorenrang ist also die maximale *Schachtelungstiefe* der Quantoren in einer Formel.

Stephan Kreutzer Logik WS 2022/2023 21 / 93

Der Quantorenrang einer Formel

Definition. Der *Quantorenrang* $q\mathbf{r}(\psi)$ einer Formel $\psi \in FO$ ist induktiv definiert durch:

- $qr(\psi) := 0$ für quantorenfreie Formeln ψ
- $qr(\neg \psi') := qr(\psi')$
- $\bullet \ \operatorname{qr}((\varphi * \psi)) := \max \{\operatorname{qr}(\varphi), \operatorname{qr}(\psi)\} \ \operatorname{für} \ * \in \{\vee, \wedge, \rightarrow, \leftrightarrow\}$
- $qr(\exists x \varphi) = qr(\forall x \varphi) = 1 + qr(\varphi)$

Der Quantorenrang ist also die maximale *Schachtelungstiefe* der Quantoren in einer Formel.

Beispiel.

•
$$\operatorname{qr}(\exists x \forall y (x = y \lor R(x, y, z))) = 2$$

•
$$\operatorname{qr}\left(\exists x \left(\exists z T(x) \lor \forall y R(x, y, z)\right)\right) = 2$$

•
$$\operatorname{qr}\left(\left(\forall z \neg E(x, z) \lor \forall z E(z, x)\right)\right) = 1$$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 21 / 93

Zahl paarweise nicht-äquivalenter Formeln

Definition. Wir nennen eine Signatur σ relational, wenn σ nur Relationssymbole enthält.

Lemma. Sei σ eine endliche relationale Signatur.

Für alle $m, k \ge 0$ gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in \mathsf{FO}[\sigma]$ vom Quantorenrang $\le m$.

Stephan Kreutzer Logik WS 2022/2023 22 / 93

Zahl paarweise nicht-äquivalenter Formeln

Definition. Wir nennen eine Signatur σ relational, wenn σ nur Relationssymbole enthält.

Lemma. Sei σ eine endliche relationale Signatur.

Für alle m, k > 0 gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1,\ldots,x_k) \in FO[\sigma]$ vom Quantorenrang $\leq m$.

Folgerung. Für m > 0 (und k = 0) sei

$$Qr_m := \{ \varphi \in FO[\sigma] : qr(\varphi) \leq m \}$$

und

$$\equiv_m := \{ (\varphi, \psi) : \varphi, \psi \in Qr_m \text{ und } \psi \equiv \varphi \}.$$

Dann ist \equiv_m eine Äquivalenzrelation auf Qr_m mit endlichem Index.

Stephan Kreutzer Logik 22 / 93 WS 2022/2023

Ein nützliches, wenn auch etwas technisches Lemma

Lemma. Sei σ eine endliche relationale Signatur.

Für alle m, k > 0 gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in FO[\sigma]$ vom Quantorenrang $\leq m$.

Stephan Kreutzer Logik WS 2022/2023 23 / 93

Ein nützliches, wenn auch etwas technisches Lemma

Lemma. Sei σ eine endliche relationale Signatur.

Für alle m, k > 0 gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in FO[\sigma]$ vom Quantorenrang $\leq m$.

Definition. Sei $\Phi \subseteq FO[\sigma]$. Die Klasse $BK(\Phi)$ der Booleschen Kombinationen von Φ ist die kleinste Klasse für die gilt:

- $\bullet \Phi \subseteq BK(\Phi)$
- $(\phi \land \psi)$, $(\phi \lor \psi)$, $\neg \phi \in BK(\Phi)$ für alle $\phi, \psi \in BK(\Phi)$

Stephan Kreutzer Logik 23 / 93 WS 2022/2023

Ein nützliches, wenn auch etwas technisches Lemma

Lemma. Sei σ eine endliche relationale Signatur.

Für alle m, k > 0 gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in FO[\sigma]$ vom Quantorenrang $\leq m$.

Definition. Sei $\Phi \subseteq FO[\sigma]$. Die Klasse $BK(\Phi)$ der Booleschen Kombinationen von Φ ist die kleinste Klasse für die gilt:

- $\Phi \subseteq BK(\Phi)$
- $(\phi \land \psi)$, $(\phi \lor \psi)$, $\neg \phi \in BK(\Phi)$ für alle $\phi, \psi \in BK(\Phi)$

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I}, \mathcal{J} σ -Interpretationen.

Wenn $\mathcal{I} \models \varphi$ gdw. $\mathcal{I} \models \varphi$ für alle $\varphi \in \Phi$. dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in BK(\Phi)$.

Logik 23 / 93 WS 2022/2023

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I} , \mathcal{J} σ -Interpretationen.

Wenn $\mathcal{I} \models \varphi$ gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in BK(\Phi)$.

Beweis. Für jedes $\theta \in \Phi$ führen wir eine Aussagenvariable X_{θ} ein.

Stephan Kreutzer Logik WS 2022/2023 24 / 93

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I} . \mathcal{J} σ -Interpretationen.

Wenn
$$\mathcal{I} \models \varphi$$
 gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in \mathcal{BK}(\Phi)$.

Beweis. Für jedes $\theta \in \Phi$ führen wir eine Aussagenvariable X_{θ} ein.

Sei nun $\psi \in BK(\Phi)$. Wir übersetzen ψ in eine aussagenlogische Formel ψ_{AI} , indem wir jede Unterformel $\theta \in \Phi$ von ψ durch X_{θ} ersetzen.

Stephan Kreutzer Logik WS 2022/2023 24 / 93

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I} , \mathcal{J} σ -Interpretationen.

Wenn
$$\mathcal{I} \models \varphi$$
 gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in \mathcal{BK}(\Phi)$.

Beweis. Für jedes $\theta \in \Phi$ führen wir eine Aussagenvariable X_{θ} ein.

Sei nun $\psi \in BK(\Phi)$. Wir übersetzen ψ in eine aussagenlogische Formel ψ_{AL} , indem wir jede Unterformel $\theta \in \Phi$ von ψ durch X_{θ} ersetzen.

Beispiel. Sei
$$\Phi := \{P(x), E(x, y), \exists z (E(x, z) \land E(z, y))\}$$
 und
$$\psi(x, y) := (P(x) \land E(x, y)) \lor (\neg P(x) \land \exists z (E(x, z) \land E(z, y))).$$

$$\mathsf{Dann}\ \psi_{\mathsf{AL}} := \left(X_{P(x)} \land X_{E(x,y)} \right) \lor \left(\neg X_{P(x)} \land X_{\exists z (E(x,z) \land E(z,y))} \right)$$

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I} , \mathcal{J} σ -Interpretationen.

Wenn $\mathcal{I} \models \varphi$ gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in BK(\Phi)$.

Beweis. Für jedes $\theta \in \Phi$ führen wir eine Aussagenvariable X_{θ} ein.

Sei nun $\psi \in BK(\Phi)$. Wir übersetzen ψ in eine aussagenlogische Formel ψ_{AL} , indem wir jede Unterformel $\theta \in \Phi$ von ψ durch X_{θ} ersetzen.

 \mathcal{I} und \mathcal{J} induzieren Belegungen $\beta_{\mathcal{I}}$, $\beta_{\mathcal{J}}$ für ψ_{AL} wie folgt:

$$eta_{\mathcal{I}}(X_{ heta}) := 1 ext{ gdw. } \mathcal{I} \models \theta \\ eta_{\mathcal{I}}(X_{ heta}) := 1 ext{ gdw. } \mathcal{J} \models \theta \end{aligned}$$
 für alle $\theta \in \Phi$.

Beispiel. Sei $\Phi := \{P(x), E(x, y), \exists z (E(x, z) \land E(z, y))\}$ und

$$\psi(x,y) := \big(P(x) \land E(x,y)\big) \lor \big(\neg P(x) \land \exists z (E(x,z) \land E(z,y))\big).$$

 $\mathsf{Dann}\ \psi_{\mathsf{AL}} := \left(X_{P(x)} \land X_{E(x,y)} \right) \lor \left(\neg X_{P(x)} \land X_{\exists z (E(x,z) \land E(z,y))} \right)$

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I}_{\bullet} , \mathcal{I}_{\bullet} -Interpretationen.

Wenn
$$\mathcal{I} \models \varphi$$
 gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in \mathcal{BK}(\Phi)$.

Beweis. Für jedes $\theta \in \Phi$ führen wir eine Aussagenvariable X_{θ} ein.

Sei nun $\psi \in BK(\Phi)$. Wir übersetzen ψ in eine aussagenlogische Formel ψ_{AI} , indem wir jede Unterformel $\theta \in \Phi$ von ψ durch X_{θ} ersetzen.

 \mathcal{I} und \mathcal{J} induzieren Belegungen $\beta_{\mathcal{I}}$, $\beta_{\mathcal{I}}$ für ψ_{AI} wie folgt:

$$eta_{\mathcal{I}}(X_{ heta}) := 1 ext{ gdw. } \mathcal{I} \models \theta \\ eta_{\mathcal{I}}(X_{ heta}) := 1 ext{ gdw. } \mathcal{J} \models \theta \end{aligned}$$
 für alle $\theta \in \Phi$.

Nach Konstruktion gilt (*):

$$\mathcal{I} \models \psi$$
 gdw. $\beta_{\mathcal{I}} \models \psi_{\mathsf{AL}}$ und $\mathcal{J} \models \psi$ gdw. $\beta_{\mathcal{I}} \models \psi_{\mathsf{AL}}$.

Stephan Kreutzer Logik 24 / 93 WS 2022/2023

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und \mathcal{I}_{\bullet} , \mathcal{I}_{\bullet} -Interpretationen.

Wenn $\mathcal{I} \models \varphi$ gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, dann $\mathcal{I} \models \psi$ gdw. $\mathcal{J} \models \psi$ für alle $\psi \in BK(\Phi)$.

Beweis. Für jedes $\theta \in \Phi$ führen wir eine Aussagenvariable X_{θ} ein.

Sei nun $\psi \in BK(\Phi)$. Wir übersetzen ψ in eine aussagenlogische Formel ψ_{AI} , indem wir jede Unterformel $\theta \in \Phi$ von ψ durch X_{θ} ersetzen.

 \mathcal{I} und \mathcal{J} induzieren Belegungen $\beta_{\mathcal{I}}$, $\beta_{\mathcal{I}}$ für ψ_{AI} wie folgt:

$$\begin{array}{l} \beta_{\mathcal{I}}(\mathsf{X}_{\theta}) := 1 \text{ gdw. } \mathcal{I} \models \theta \\ \beta_{\mathcal{J}}(\mathsf{X}_{\theta}) := 1 \text{ gdw. } \mathcal{J} \models \theta \end{array} \text{ für alle } \theta \in \Phi.$$

Nach Konstruktion gilt (*):

 $\mathcal{I} \models \psi$ gdw. $\beta_{\mathcal{I}} \models \psi_{\mathsf{Al}}$ und $\mathcal{J} \models \psi$ gdw. $\beta_{\mathcal{J}} \models \psi_{\Delta 1}$.

Da $\mathcal{I} \models \varphi$ gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$, folgt $\beta_{\mathcal{I}} = \beta_{\mathcal{I}}$ und (wegen (*)):

$$\mathcal{I} \models \psi$$
 gdw. $\beta_{\mathcal{I}} \models \psi_{\mathsf{AL}}$ gdw. $\beta_{\mathcal{J}} \models \psi_{\mathsf{AL}}$ gdw. $\mathcal{J} \models \psi$.

Stephan Kreutzer Logik 24 / 93 WS 2022/2023

Erweiterung des Lemmas

Lemma. Sei $\Phi \subseteq FO[\sigma]$ endlich. Dann gibt es nur endlich viele paarweise nicht-äquivalente Formeln in $BK(\Phi)$.

Beweis. Wie zuvor definieren wir

Wie eben gilt für alle $\psi \in BK(\Phi)$ und σ -Interpretationen \mathcal{I} :

$$\mathcal{I} \models \psi$$
 gdw. $\beta_{\mathcal{I}} \models \psi_{\mathsf{AL}}$.

Falls also $\psi_{AL} \equiv \psi'_{AL}$, dann auch $\psi \equiv \psi'$.

Wir wissen bereits, dass es nur endlich viele paarweise nicht-äquivalente aussagenlogische Formeln über der Variablenmenge V gibt.

Also gibt es nur endlich viele paarweise nicht-äquivalente Formeln in $BK(\Phi)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 25 / 93

Notation. Sei X eine Menge und \overline{y} ein Tupel.

Wir schreiben $\overline{y} \subseteq X$ als Abkürzung für " $y_i \in X$ für alle i".

Lemma. Sei σ eine endliche relationale Signatur.

Für alle $m, k \ge 0$ gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in \mathsf{FO}[\sigma]$ vom Quantorenrang $\le m$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 26 / 93

Notation. Sei X eine Menge und \overline{y} ein Tupel.

Wir schreiben $\overline{y} \subseteq X$ als Abkürzung für " $y_i \in X$ für alle i".

Lemma. Sei σ eine endliche relationale Signatur.

Für alle $m, k \geq 0$ gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in \mathsf{FO}[\sigma]$ vom Quantorenrang $\leq m$.

Beweis. Für alle $m, k \geq 0$ sei $\mathcal{L}_{m,k}$ eine maximale Menge paarweise nichtäquivalenter Formeln $\psi(\overline{y})$ mit Quantorenrang $\leq m$ und $\overline{y} \subseteq \{x_1, \dots, x_k\}$.

Zu zeigen ist also, dass $\mathcal{L}_{m,k}$ für alle $m, k \geq 0$ endlich ist.

Wir führen den Beweis per Induktion über m.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 26 / 93

Die Zahl vaarweise nicht-äquivalenter Formeln

Lemma. Sei σ eine endliche relationale Signatur.

Für alle m, k > 0 gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1, \dots, x_k) \in FO[\sigma]$ vom Quantorenrang $\leq m$.

Beweis. Für alle $m, k \geq 0$ sei $\mathcal{L}_{m,k}$ eine maximale Menge paarweise nichtäquivalenter Formeln $\psi(\overline{y})$ mit Quantorenrang $\leq m$ und $\overline{y} \subseteq \{x_1, \dots, x_k\}$.

Zu zeigen ist also, dass $\mathcal{L}_{m,k}$ für alle $m,k \geq 0$ endlich ist.

Wir führen den Beweis per Induktion über m.

Induktionsverankerung. Sei m = 0 (und k beliebig).

Da σ endlich und relational ist, existieren nur endlich viele verschiedene atomare Formeln $\psi(y_1, \ldots, y_r)$ mit $\overline{y} \subset \{x_1, \ldots, x_k\}$.

```
Beispiel. \sigma := \{E, P\}
X = \{x_1, x_2\} \ (k = 2)
Atomare Formeln:
E(x_1, x_2), E(x_1, x_1),
E(x_2, x_1), E(x_2, x_2),
P(x_1), P(x_2)
```

Stephan Kreutzer Logik WS 2022/2023

Die Zahl paarweise nicht-äquivalenter Formeln

Lemma. Sei σ eine endliche relationale Signatur.

Für alle $m,k\geq 0$ gibt es nur endlich viele paarweise nicht-äquivalente Formeln $\psi(x_1,\ldots,x_k)\in \mathsf{FO}[\sigma]$ vom Quantorenrang $\leq m$.

Beweis. Für alle $m, k \geq 0$ sei $\mathcal{L}_{m,k}$ eine maximale Menge paarweise nichtäquivalenter Formeln $\psi(\overline{y})$ mit Quantorenrang $\leq m$ und $\overline{y} \subseteq \{x_1, \dots, x_k\}$.

Zu zeigen ist also, dass $\mathcal{L}_{m,k}$ für alle $m, k \geq 0$ endlich ist.

Wir führen den Beweis per Induktion über m.

Induktionsverankerung. Sei m = 0 (und k beliebig).

Da σ endlich und relational ist, existieren nur endlich viele verschiedene atomare Formeln $\psi(y_1, \ldots, y_r)$ mit $\overline{y} \subseteq \{x_1, \ldots, x_k\}$.

Aus dem vorherigen Lemma folgt, dass es nur endlich viele paarweise nicht-äquivalente quantorenfreie Formeln $\psi(\overline{y})$ mit $\overline{y} \subseteq \{x_1, \dots, x_k\}$ gibt.

Lemma. Sei $\Phi \subseteq FO[\sigma]$ endlich. Es gibt nur endlich viele paarweise nicht-äquivalente Formeln in $BK(\Phi)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 26 / 93

Beweis des Lemmas

Induktionsvoraussetzung. Für alle $k \geq 0$ ist $\mathcal{L}_{m-1,k}$ endlich.

Induktionsschritt. Sei $k \ge 0$ beliebig. Wir müssen die Aussage nun für Formeln $\psi(x_1, \ldots, x_k) \in \mathcal{L}_{m,k}$ mit Quantorenrang $\le m$ beweisen.

 $\mathcal{L}_{m,k}$: max. Menge paarweise nicht-äquiv. Formeln $\psi(x_1,\ldots,x_k)$ mit $\operatorname{qr}(\psi) \leq m$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 27 / 93

Induktions voraus setzung. Für alle k > 0 ist $\mathcal{L}_{m-1,k}$ endlich.

Induktionsschritt. Sei k > 0 beliebig. Wir müssen die Aussage nun für Formeln $\psi(x_1, \dots, x_k) \in \mathcal{L}_{m,k}$ mit Quantorenrang $\leq m$ beweisen.

Beobachtung. Formeln $\varphi(x_1, \ldots, x_k)$ mit Quantorenrang m sind Boolesche Kombinationen von

- Formeln $\psi \in \mathcal{L}_{m-1,k}$ mit Quantorenrank < m und
- Formeln der Form $\exists y \psi$ oder $\forall y \psi$, wobei $\operatorname{gr}(\psi) < m$.

 $\mathcal{L}_{m,k}$: max. Menge paarweise nicht-äquiv. Formeln $\psi(x_1,\ldots,x_k)$ mit $qr(\psi) \leq m$.

Induktions voraus setzung. Für alle k > 0 ist $\mathcal{L}_{m-1,k}$ endlich.

Induktionsschritt. Sei k > 0 beliebig. Wir müssen die Aussage nun für Formeln $\psi(x_1, \dots, x_k) \in \mathcal{L}_{m,k}$ mit Quantorenrang $\leq m$ beweisen.

Beobachtung. Formeln $\varphi(x_1,\ldots,x_k)$ mit Quantorenrang m sind Boolesche Kombinationen von

- Formeln $\psi \in \mathcal{L}_{m-1,k}$ mit Quantorenrank < m und
- Formeln der Form $\exists y \psi$ oder $\forall y \psi$, wobei $\operatorname{qr}(\psi) < m$.

Beispiel. Sei m=2.

$$\varphi := E(x_1, x_2) \vee \neg \exists x_1 \forall y P(x_1, y) \vee \exists z \big(\forall x_2 E(z, x_2) \vee \exists x_3 (P(x_3) \wedge E(z, x_2)) \big)$$

 $\mathcal{L}_{m,k}$: max. Menge paarweise nicht-äquiv. Formeln $\psi(x_1,\ldots,x_k)$ mit $gr(\psi) < m$.

Beweis des Lemmas

Induktionsvoraussetzung. Für alle $k \geq 0$ ist $\mathcal{L}_{m-1,k}$ endlich.

Induktionsschritt. Sei $k \geq 0$ beliebig. Wir müssen die Aussage nun für Formeln $\psi(x_1, \ldots, x_k) \in \mathcal{L}_{m,k}$ mit Quantorenrang $\leq m$ beweisen.

Beobachtung. Formeln $\varphi(x_1,\ldots,x_k)$ mit Quantorenrang m sind Boolesche Kombinationen von

- Formeln $\psi \in \mathcal{L}_{m-1,k}$ mit Quantorenrank < m und
- Formeln der Form $\exists y\psi$ oder $\forall y\psi$, wobei $\operatorname{qr}(\psi) < m$.

Konsequenz.

Da $\exists y\psi \equiv \exists x_{k+1}\psi[y/x_{k+1}]$ und $\forall y\psi \equiv \forall x_{k+1}\psi[y/x_{k+1}]$ für alle $y \notin X$, können wir O.B.d.A. annehmen, dass φ eine Bool. Komb. von Formeln

- 1. $\psi \in \mathcal{L}_{m-1,k}$ und Formeln
- 2. $\exists z \psi$ oder $\forall z \psi$ mit $z \in \{x_1, \dots, x_k, x_{k+1}\}$ und $\psi \in \mathcal{L}_{m-1, k+1}$.

Sei
$$\mathcal{L}' := \mathcal{L}_{m-1,k} \cup \{\exists z \psi, \forall z \psi : z \in \{x_1, \dots, x_{k+1}\}, \psi \in \mathcal{L}_{m-1,k+1}\}.$$

 $\mathcal{L}_{m,k}$: max. Menge paarweise nicht-äquiv. Formeln $\psi(x_1,\ldots,x_k)$ mit $\operatorname{qr}(\psi) \leq m$.

Beweis des Lemmas

Induktionsvoraussetzung. Für alle $k \geq 0$ ist $\mathcal{L}_{m-1,k}$ endlich.

Induktionsschritt. Sei $k \geq 0$ beliebig. Wir müssen die Aussage nun für Formeln $\psi(x_1, \dots, x_k) \in \mathcal{L}_{m,k}$ mit Quantorenrang $\leq m$ beweisen.

Konsequenz.

Da $\exists y\psi \equiv \exists x_{k+1}\psi[y/x_{k+1}]$ und $\forall y\psi \equiv \forall x_{k+1}\psi[y/x_{k+1}]$ für alle $y \notin X$, können wir O.B.d.A. annehmen, dass φ eine Bool. Komb. von Formeln

- 1. $\psi \in \mathcal{L}_{m-1,k}$ und Formeln
- 2. $\exists z \psi$ oder $\forall z \psi$ mit $z \in \{x_1, \dots, x_k, x_{k+1}\}$ und $\psi \in \mathcal{L}_{m-1, k+1}$.

Sei
$$\mathcal{L}' := \mathcal{L}_{m-1,k} \cup \{\exists z \psi, \forall z \psi : z \in \{x_1, \dots, x_{k+1}\}, \psi \in \mathcal{L}_{m-1,k+1}\}.$$

Nach IV sind $\mathcal{L}_{m-1,k}$, $\mathcal{L}_{m-1,k+1}$ und daher auch \mathcal{L}' endlich.

Aus vorherigem Lemma folgt, dass $BK(\mathcal{L}')$ und somit $\mathcal{L}_{m,k}$ endlich ist.

 $\mathcal{L}_{m,k}$: max. Menge paarweise nicht-äquiv. Formeln $\psi(x_1,\ldots,x_k)$ mit $\operatorname{qr}(\psi) \leq m$.

Lemma. Sei $\Phi \subseteq FO[\sigma]$ endlich. Es gibt nur endlich viele paarweise nicht-äquivalente Formeln in $BK(\Phi)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 27 / 93

Zusammenfassung

Quantorenrang. Max. Schachtelungstiefe der Quantoren.

Lemma. Sei σ eine endliche relationale Signatur.

Für alle $m, k \ge 0$ gibt es nur endlich viele paarweise nicht-äquivalente

Formeln $\psi(x_1, \ldots, x_k) \in FO[\sigma]$ vom Quantorenrang $\leq m$.

Definition. Sei $\Phi \subseteq FO[\sigma]$. Die Klasse $BK(\Phi)$ der Booleschen

Kombinationen von Φ ist die kleinste Klasse für die gilt:

•
$$\Phi \subseteq BK(\Phi)$$

•
$$(\varphi \land \psi)$$
, $(\varphi \lor \psi)$, $\neg \varphi \in BK(\Phi)$ für alle $\varphi, \psi \in BK(\Phi)$

Lemma. Sei $\Phi \subseteq FO[\sigma]$ und $\mathcal{I}, \mathcal{J} \sigma$ -Interpretationen.

Wenn
$$\mathcal{I} \models \varphi$$
 gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$,

$$\mathsf{dann}\ \mathcal{I} \models \psi\ \mathsf{gdw}.\ \mathcal{J} \models \psi\quad \mathsf{für\ alle}\ \psi \in \mathit{BK}(\Phi)\ .$$

Lemma. Sei $\Phi \subseteq FO[\sigma]$ endlich. Dann gibt es nur endlich viele paarweise nicht-äquivalente Formeln in $BK(\Phi)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 28 / 93

11.3 Elementare Äquivalenz

Wiederholung: Erreichbarkeit in der Prädikatenlogik

Signatur. $\sigma := \{E, s, t\}$ E 2-stelliges Rel.symb, s, t Konstantensymb.

Frage. Ist folgende Klasse FO-definierbar?

REACH := $\{A : A \sigma$ -Struktur, es gibt einen Pfad von s^A nach

Versuch einer Antwort.

- 1. Direktflug: $\varphi_1 := E(s, t)$
- 2. Ein Stopp : $\varphi_2 := \exists x_1 (E(s, x_1) \land E(x_1, t))$
- 3. Zwei Stopps : $\varphi_3 := \exists x_1 \exists x_2 \Big(E(s, x_1) \land E(x_1, x_2) \land E(x_2, t) \Big)$

Beobachtung. Für jede feste Zahl von Stopps existiert eine Formel.

Stephan Kreutzer Logik

Frage. Ist folgende Klasse FO-definierbar?

REACH :=
$$\{A : A \sigma$$
-Struktur, es gibt einen Pfad von s^A nach $t^A \}$.

Behauptung. Es gibt keinen Satz der Prädikatenlogik, der REACH definiert.

Stephan Kreutzer Logik WS 2022/2023 31 / 93

Frage. Ist folgende Klasse FO-definierbar?

REACH :=
$$\{A : A \sigma$$
-Struktur, es gibt einen Pfad von s^A nach $t^A \}$.

Behauptung. Es gibt keinen Satz der Prädikatenlogik, der REACH definiert.

In anderen Worten.

Es existiert kein $\varphi \in FO[\sigma]$, so dass für alle $\mathcal{A} \in REACH$ gilt: $\mathcal{A} \models \varphi$ und für alle $\mathcal{B} \notin REACH$ gilt: $\mathcal{B} \not\models \varphi$.

für alle $\varphi \in FO[\sigma]$ gibt es ein $\mathcal{A} \in REACH$ mit $\mathcal{A} \not\models \varphi$ oder es existiert ein $\mathcal{B} \notin REACH$ mit $\mathcal{B} \models \varphi$.

Stephan Kreutzer Logik WS 2022/2023 31 / 93

Frage. Ist folgende Klasse FO-definierbar?

REACH := {
$$\mathcal{A} : \mathcal{A} \sigma$$
-Struktur, es gibt einen Pfad von $s^{\mathcal{A}}$ nach $t^{\mathcal{A}}$ }.

Behauptung. Es gibt keinen Satz der Prädikatenlogik, der REACH definiert.

In anderen Worten.

Es existiert kein
$$\varphi \in FO[\sigma]$$
, so dass für alle $\mathcal{A} \in REACH$ gilt: $\mathcal{A} \models \varphi$ und für alle $\mathcal{B} \notin REACH$ gilt: $\mathcal{B} \not\models \varphi$.

für alle
$$\varphi \in FO[\sigma]$$
 gibt es ein $\mathcal{A} \in REACH$ mit $\mathcal{A} \not\models \varphi$ oder es existiert ein $\mathcal{B} \notin REACH$ mit $\mathcal{B} \models \varphi$.

Beweisversuch. Wir wollen zeigen, dass es für jeden Satz $\varphi \in FO[\sigma]$ zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gibt, so dass

1.
$$A \in REACH$$
, $B \notin REACH$ (d.h. in A ex. ein Weg von s nach t, in B aber nicht.)

2.
$$\mathcal{A} \models \varphi$$
 und $\mathcal{B} \models \varphi$ oder aber $\mathcal{A} \not\models \varphi$ und $\mathcal{B} \not\models \varphi$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 31 / 93

Behauptung. Kein FO-Satz definiert

REACH :=
$$\{A : A \sigma$$
-Struktur, es gibt einen Pfad von s^A nach $t^A \}$.

Beweisversuch. Zeige, dass es für alle $\varphi \in FO[\sigma]$ σ -Strukturen \mathcal{A}, \mathcal{B} gibt, mit

- 1. $A \in REACH$, $B \notin REACH$ (in A ex. Weg von s nach t, in B nicht.)
- 2. $\mathcal{A} \models \varphi$ und $\mathcal{B} \models \varphi$ oder aber $\mathcal{A} \not\models \varphi$ und $\mathcal{B} \not\models \varphi$

Problem. Wir müssen für jedes $\varphi \in FO[\sigma]$ neue Strukturen finden.

Stephan Kreutzer Logik WS 2022/2023 32 / 93

Erreichbarkeit in der Prädikatenlogik

Behauptung. Kein FO-Satz definiert

REACH :=
$$\{A : A \sigma$$
-Struktur, es gibt einen Pfad von s^A nach $t^A \}$.

Beweisversuch. Zeige, dass es für alle $\varphi \in FO[\sigma]$ σ -Strukturen \mathcal{A}, \mathcal{B} gibt, mit

- 1. $A \in REACH$, $B \notin REACH$ (in A ex. Weg von s nach t, in B nicht.)
- 2. $A \models \varphi$ und $B \models \varphi$ oder aber $A \not\models \varphi$ und $B \not\models \varphi$

Problem. Wir müssen für jedes $\varphi \in FO[\sigma]$ neue Strukturen finden.

Besser. Zeige: es gibt σ -Strukturen \mathcal{A}, \mathcal{B} , so dass für alle $\varphi \in FO[\sigma]$

- 1. $\mathcal{A} \in \mathsf{REACH}$, $\mathcal{B} \notin \mathsf{REACH}$ (in \mathcal{A} ex. Weg von s nach t, in \mathcal{B} nicht.)
- 2. $\mathcal{A} \models \varphi \text{ und } \mathcal{B} \models \varphi$ oder aber $\mathcal{A} \not\models \varphi \text{ und } \mathcal{B} \not\models \varphi$

Stephan Kreutzer Logik 32 / 93 WS 2022/2023

Definition. Zwei σ -Strukturen \mathcal{A} , \mathcal{B} sind elementar äquivalent, geschrieben $\mathcal{A} \equiv \mathcal{B}$, wenn für alle σ -Sätze ψ gilt:

$$\mathcal{A} \models \psi \iff \mathcal{B} \models \psi$$

Zeige. Es ex. $A \in Reach$, $B \notin Reach$ s.d. für alle φ: $A \models φ$, $B \models φ$ oder $A \not\models φ$, $B \not\models φ$.

Stephan Kreutzer Logik WS 2022/2023 33 / 93

Elementare Äquivalenz

Definition. Zwei σ -Strukturen \mathcal{A}, \mathcal{B} sind elementar äquivalent, geschrieben $\mathcal{A} \equiv \mathcal{B}$, wenn für alle σ -Sätze ψ gilt:

$$\mathcal{A} \models \psi \iff \mathcal{B} \models \psi$$

Zeige. Es ex. $A \in Reach$, $B \notin Reach$ s.d. für alle φ : $\mathcal{A} \models \varphi, \mathcal{B} \models \varphi$ oder $\mathcal{A} \not\models \varphi, \mathcal{B} \not\models \varphi$.

Besser. Zeige: es gibt σ -Strukturen \mathcal{A}, \mathcal{B} , so dass für alle $\varphi \in FO[\sigma]$

- 1. $\mathcal{A} \in \mathsf{REACH}$. $\mathcal{B} \notin \mathsf{REACH}$ (in \mathcal{A} ex. Weg von s nach t. in \mathcal{B} nicht.)
- 2. $A \models \varphi \text{ und } B \models \varphi$ oder aber $A \not\models \varphi \text{ und } B \not\models \varphi$
- 3. $A \equiv B$.

Stephan Kreutzer Logik WS 2022/2023 33 / 93 Definition. Zwei σ -Strukturen \mathcal{A} , \mathcal{B} sind elementar äquivalent, geschrieben $\mathcal{A} \equiv \mathcal{B}$, wenn für alle σ -Sätze ψ gilt:

Zeige. Es ex.
$$\mathcal{A} \in Reach$$
, $\mathcal{B} \notin Reach$ s.d. für alle φ : $\mathcal{A} \models \varphi$, $\mathcal{B} \models \varphi$ oder $\mathcal{A} \not\models \varphi$, $\mathcal{B} \not\models \varphi$.

$$\mathcal{A} \models \psi \iff \mathcal{B} \models \psi$$

Besser. Zeige: es gibt σ -Strukturen \mathcal{A}, \mathcal{B} , so dass für alle $\varphi \in FO[\sigma]$

- 1. $\mathcal{A} \in \mathsf{REACH}$, $\mathcal{B} \notin \mathsf{REACH}$ (in \mathcal{A} ex. Weg von s nach t, in \mathcal{B} nicht.)
- 2. $A \models \varphi \text{ und } B \models \varphi$ oder aber $A \not\models \varphi \text{ und } B \not\models \varphi$
- 3. $A \equiv B$.

Problem. Solche Strukturen \mathcal{A} , \mathcal{B} kann es nicht geben.

Nach Voraussetzung enthält A einen $s^A - t^A$ -Pfad

$$P = (s = v_0, v_1, \cdots, v_n = t).$$

Also
$$\mathcal{A} \models \psi_k := \exists x_0 \exists x_1 \cdots \exists x_n (x_0 = s \land x_n = t \land \bigwedge_{n \le i \le n} E(x_i, x_{i+1})).$$

Aus $A \equiv B$ folgt $B \models \psi_k$ und daher existiert auch in B ein $s^B - t^B$ -Pfad.

Erinnerung. Der Quantorenrang $qr(\psi)$ einer Formel $\psi \in FO$ ist die maximale Schachtelungstiefe der Quantoren.

Definition. Sei $m \in \mathbb{N}$.

Zwei σ -Strukturen \mathcal{A} , \mathcal{B} sind m-äquivalent, geschrieben $\mathcal{A} \equiv_m \mathcal{B}$, wenn für alle σ -Sätze ψ mit Quantorenrang $\operatorname{qr}(\psi) \leq m$ gilt:

$$\mathcal{A} \models \psi \iff \mathcal{B} \models \psi$$

Beobachtung. $A \equiv B$ genau dann, wenn $A \equiv_m B$ für alle $m \in \mathbb{N}$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 34 / 93

m-Äquivalenz

Definierbarkeit in der Prädikatenlogik. *m*-Äquivalenz eignet sich oft besser als elementare Äquivalenz zum Beweis der Nicht-Definierbarkeit bestimmter Aussagen.

Behauptung. Kein FO-Satz definiert

 $\mathsf{REACH} := \{ \mathcal{A} : \mathcal{A} \ \sigma\text{-Struktur, es gibt einen Pfad von } s^{\mathcal{A}} \ \mathsf{nach} \ t^{\mathcal{A}} \ \}.$

Beweisansatz. Es reicht, für alle $m \ge 0$ zwei σ -Strukturen

$$A_m, B_m$$
 zu finden, so dass
$$A_m \in \text{REACH aber } B_m \notin \text{REACH und}$$

$$A_m \equiv_m B_m$$

Definition. Sei $m \in \mathbb{N}$. \mathcal{A}, \mathcal{B} m-äquivalent, $\mathcal{A} \equiv_m \mathcal{B}$, wenn $\mathcal{A} \models \psi \iff \mathcal{B} \models \psi$ für alle ψ mit $\operatorname{qr}(\psi) < m$.

Lemma. Sei σ eine Signatur und \mathcal{C} , \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle $m \geq 1$ σ -Strukturen $\mathcal{A}_m, \mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $\mathcal{A}_m \in \mathcal{C}$ aber $\mathcal{B}_m
 otin \mathcal{C}$
- $A_m \equiv_m B_m$,

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der \mathcal{C} in \mathcal{K} definiert.

Definition. \mathcal{K} Klasse von σ -Strukturen. Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar, wenn es $\psi \in \mathsf{FO}[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

$$\mathsf{Mod}_{\mathcal{K}}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$$

Am Bm

 Stephan Kreutzer
 Logik
 WS 2022/2023
 36 / 93

Lemma. Sei σ eine Signatur und \mathcal{C} , \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle $m \geq 1$ σ -Strukturen $\mathcal{A}_m, \mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $\mathcal{A}_m \in \mathcal{C}$ aber $\mathcal{B}_m \notin \mathcal{C}$
- $\mathcal{A}_m \equiv_m \mathcal{B}_m$,

dann gibt es keinen Satz $\varphi \in \mathsf{FO}[\sigma]$ der $\mathcal C$ in $\mathcal K$ definiert.

Beweis (durch Widerspruch).

Ang., es gäbe $\varphi \in FO[\sigma]$ mit $Mod_{\mathcal{K}}(\varphi) = \mathcal{C}$.

Definition. \mathcal{K} Klasse von σ -Strukturen. Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar, wenn es $\psi \in \mathsf{FO}[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

$$\mathsf{Mod}_\mathcal{K}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 36 / 93

Lemma. Sei σ eine Signatur und \mathcal{C}, \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle $m \geq 1$ σ -Strukturen $\mathcal{A}_m, \mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $A_m \in \mathcal{C}$ aber $\mathcal{B}_m \notin \mathcal{C}$
- $A_m \equiv_m B_m$

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der \mathcal{C} in \mathcal{K} definiert.

Beweis (durch Widerspruch).

Ang., es gäbe $\varphi \in FO[\sigma]$ mit $Mod_{\mathcal{K}}(\varphi) = \mathcal{C}$.

Sei $m := \operatorname{qr}(\varphi)$. Betrachte \mathcal{A}_m , \mathcal{B}_m .

Definition. \mathcal{K} Klasse von σ -Strukturen. Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar. wenn es $\psi \in FO[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

$$\mathsf{Mod}_\mathcal{K}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$$

Stephan Kreutzer Logik 36 / 93 WS 2022/2023

Lemma. Sei σ eine Signatur und \mathcal{C}, \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle $m \geq 1$ σ -Strukturen $\mathcal{A}_m, \mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $A_m \in \mathcal{C}$ aber $\mathcal{B}_m \notin \mathcal{C}$
- $A_m \equiv_m B_m$

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der \mathcal{C} in \mathcal{K} definiert.

Beweis (durch Widerspruch).

Ang., es gäbe $\varphi \in FO[\sigma]$ mit $Mod_{\mathcal{K}}(\varphi) = \mathcal{C}$.

Sei $m := \operatorname{qr}(\varphi)$. Betrachte \mathcal{A}_m , \mathcal{B}_m .

Nach Voraussetzung gilt $A_m \in \mathcal{C}$ und somit $A_m \models \varphi$.

Definition. \mathcal{K} Klasse von σ -Strukturen. Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar. wenn es $\psi \in FO[\sigma]$ gibt, so dass $\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$

 $\mathsf{Mod}_{\mathcal{K}}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$

Stephan Kreutzer Logik WS 2022/2023 36 / 93

Lemma. Sei σ eine Signatur und \mathcal{C} , \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle $m \geq 1$ σ -Strukturen $\mathcal{A}_m, \mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $\mathcal{A}_m \in \mathcal{C}$ aber $\mathcal{B}_m \notin \mathcal{C}$
- $\mathcal{A}_m \equiv_m \mathcal{B}_m$,

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der $\mathcal C$ in $\mathcal K$ definiert.

Beweis (durch Widerspruch).

Ang., es gäbe $\varphi \in FO[\sigma]$ mit $Mod_{\mathcal{K}}(\varphi) = \mathcal{C}$.

Sei $m := \operatorname{qr}(\varphi)$. Betrachte \mathcal{A}_m , \mathcal{B}_m .

Nach Voraussetzung gilt $A_m \in C$ und somit $A_m \models \varphi$.

Da aber $A_m \equiv_m \mathcal{B}_m$, gilt auch $\mathcal{B}_m \models \varphi$.

Definition. \mathcal{K} Klasse von σ -Strukturen. Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar, wenn es $\psi \in \mathsf{FO}[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

$$\mathsf{Mod}_\mathcal{K}(\varphi) := \{\mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi\}.$$

Stephan Kreutzer Logik WS 2022/2023 36 / 93

Lemma. Sei σ eine Signatur und \mathcal{C} , \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle $m \geq 1$ σ -Strukturen $\mathcal{A}_m, \mathcal{B}_m \in \mathcal{K}$ gibt, so dass

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der \mathcal{C} in \mathcal{K} definiert.

Beweis (durch Widerspruch).

Ang., es gäbe $\varphi \in \mathsf{FO}[\sigma]$ mit $\mathsf{Mod}_\mathcal{K}(\varphi) = \mathcal{C}$.

Sei $m := \operatorname{qr}(\varphi)$. Betrachte \mathcal{A}_m , \mathcal{B}_m .

Nach Voraussetzung gilt $\mathcal{A}_m \in \mathcal{C}$ und somit $\mathcal{A}_m \models \varphi$.

Da aber $A_m \equiv_m \mathcal{B}_m$, gilt auch $\mathcal{B}_m \models \varphi$.

Widerspruch zu $\mathcal{B}_m \notin \mathcal{C}$.

Definition. \mathcal{K} Klasse von σ -Strukturen.

Klasse $\mathcal{C}\subseteq\mathcal{K}$ ist in \mathcal{K} FO-definierbar, wenn es $\psi\in\mathrm{FO}[\sigma]$ gibt, so dass

$$C = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

 $\mathsf{Mod}_{\mathcal{K}}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 36 / 93

m-Äquivalenz

Wir erweitern die elementare und *m*-Äquivalenz noch auf Strukturen mit ausgezeichneten Elementen und Formeln mit freien Variablen.

Definition. Seien A, B σ -Strukturen und $\overline{a} \in A^k$, $\overline{b} \in B^k$.

1. $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ sind m-äquivalent, geschrieben $(\mathcal{A}, \overline{a}) \equiv_m (\mathcal{B}, \overline{b})$, wenn für alle σ -Formeln $\psi(\overline{x})$ mit Quantorenrang $\operatorname{qr}(\psi) \leq m$ und freien Variablen $\overline{x} := x_1, \ldots, x_k$ gilt:

$$\mathcal{A} \models \psi[\overline{a}] \iff \mathcal{B} \models \psi[\overline{b}].$$

2. (A, \overline{a}) und (B, \overline{b}) sind elementar äquivalent, geschrieben $(A, \overline{a}) \equiv (B, \overline{b})$, wenn für alle σ -Formeln $\psi(\overline{x})$ und freien Variablen $\overline{x} := x_1, \dots, x_k$ gilt:

$$\mathcal{A} \models \psi[\overline{a}] \iff \mathcal{B} \models \psi[\overline{b}].$$

Stephan Kreutzer Logik WS 2022/2023 37 / 93

Wiederholung: m-Äquivalenz und Definierbarkeit

Lemma. Sei σ eine Signatur und \mathcal{C}, \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle m > 0 σ -Strukturen \mathcal{A}_m , $\mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $\mathcal{A}_m \in \mathcal{C}$ aber $\mathcal{B}_m \notin \mathcal{C}$
- $A_m \equiv_m B_m$.

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der \mathcal{C} in \mathcal{K} definiert.

Frage. Wie kann man denn zeigen, dass $\mathcal{A} \equiv_m \mathcal{B}$?

Definition. Sei $m \in \mathbb{N}$ und $\overline{a} \in A^k, \overline{b} \in B^k$ $(\mathcal{A}, \overline{a}) \equiv_m (\mathcal{B}, \overline{b})$, wenn $\mathcal{A} \models \psi[\overline{a}] \iff \mathcal{B} \models \psi[\overline{b}]$ für alle $\psi(\overline{x})$ mit $qr(\psi) < m$.

Definition. K Klasse von σ -Strukturen.

Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar. wenn es $\psi \in FO[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

$$\mathsf{Mod}_\mathcal{K}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$$

Stephan Kreutzer Logik 41 / 93 WS 2022/2023

11.4 Partielle Isomorphismen

Frage. Wie kann man denn zeigen, dass $A \equiv_m \mathcal{B}$?

 Stephan Kreutzer
 Logik
 WS 2022/2023
 42 / 93

Partielle Isomorphismen

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Stephan Kreutzer Logik WS 2022/2023 42 / 93

Partielle Isomorphismen

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Vereinbarung. Zur Vereinfachung der Notation betrachten wir in diesem Abschnitt nur relationale Signaturen, d.h. Signaturen, in denen nur Relationssymbole vorkommen.

Definition. Sei σ eine (relationale) Signatur.

Ein partieller Isomorphismus zwischen zwei σ -Strukturen \mathcal{A} , \mathcal{B} ist eine injektive Abbildung $h: A' \to B$, für ein $A' \subseteq A$, so dass für alle $R \in \sigma \cup \{=\}$ und alle $a_1, ..., a_k \in A'$, wobei k = ar(R),

$$(a_1,\ldots,a_k)\in R^{\mathcal{A}}$$
 gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}$.

Stephan Kreutzer Logik

WS 2022/2023

Partielle Isomorphismen

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Vereinbarung. Zur Vereinfachung der Notation betrachten wir in diesem Abschnitt nur relationale Signaturen, d.h. Signaturen, in denen nur Relationssymbole vorkommen.

Definition. Sei σ eine (relationale) Signatur.

Ein <u>partieller Isomorphismus</u> zwischen zwei σ -Strukturen \mathcal{A} , \mathcal{B} ist eine injektive Abbildung $h: \mathcal{A}' \to \mathcal{B}$, für ein $\mathcal{A}' \subseteq \mathcal{A}$, so dass für alle $R \in \sigma \cup \{=\}$ und alle $a_1, ..., a_k \in \mathcal{A}'$, wobei k = ar(R),

$$(a_1,\ldots,a_k)\in R^{\mathcal{A}}$$
 gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}$.

Somorphismus $h: A \cong \mathcal{B}$. $h: A \to B$ bijektiv, so dass für alle $R \in \sigma$ mit k = ar(R) und $a_1, \ldots, a_k \in A^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw.

$$(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$$

Stephan Kreutzer

Sei $\sigma := \{E\}$ und seien \mathcal{A}, \mathcal{B} wie folgt gegeben:

$$\mathcal{A}$$
: 1 — 2 — 3 — 4

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^{\mathcal{A}}$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^{\mathcal{B}}.$

Die Abbildung $\pi: 2 \mapsto a, 3 \mapsto b, 4 \mapsto d$ ein partieller Isomorphismus zwischen \mathcal{A} und \mathcal{B} .

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}$

Stephan Kreutzer Logik WS 2022/2023 43 / 93

Die Abbildung $\pi: 2 \mapsto a, 3 \mapsto b, 4 \mapsto d$ ein partieller Isomorphismus zwischen \mathcal{A} und \mathcal{B} .

Die Abbildung definiert durch $\pi: 2 \mapsto a, 3 \mapsto b, 4 \mapsto c$ ist jedoch kein partieller Isomorphismus zwischen \mathcal{A} und \mathcal{B} .

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^{\mathcal{A}}$ $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}$

Sei
$$\sigma := \{<\}$$
, $\mathcal{A} := (\mathbb{N}, <^{\mathcal{A}})$ und $\mathcal{B} := (\mathbb{Z}, <^{\mathcal{B}})$.

$$(\mathbb{Z}, <)$$

$$(\mathbb{N}, <)$$

$$(\mathbb{N}, <)$$
Frage. Was sind die partiellen Isomorphismen zwischen \mathcal{A} und \mathcal{B} ?
$$(\mathbb{Q}, \mathbb{Z}) \subseteq \mathbb{N}$$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 44 / 93

 \longmapsto \longmapsto \longmapsto $(\mathbb{N},<)$

Beispiele zu partiellen Isomorphismen

Sei
$$\sigma := \{<\}$$
, $\mathcal{A} := (\mathbb{N}, <^{\mathcal{A}})$ und $\mathcal{B} := (\mathbb{Z}, <^{\mathcal{B}})$.

Frage. Was sind die partiellen Isomorphismen zwischen
$$A$$
 und B ?

Antwort. Alle Abbildungen $\pi: \mathbb{N} \to \mathbb{Z}$ die ordnungserhaltend sind.

D.h. wenn π die Menge $A' \subseteq \mathbb{N}$ auf $B' \subseteq \mathbb{Z}$ abbildet und

$$A = a_1 < a_2 < \cdots < a_n$$

dann gilt

$$\pi(a_1) < \pi(a_2) < \cdots < \pi(a_n).$$

Stephan Kreutzer Logik WS 2022/2023 44 / 93

0-Äauivalenz

Lemma. Sei σ eine relationale Signatur, $\mathcal{A}, \mathcal{B} \sigma$ -Strukturen,

$$\overline{a} := a_1, \ldots, a_k \in A^k \text{ und } \overline{b} := b_1, \ldots, b_k \in B^k.$$

Dann sind folgende Aussagen äquivalent:

1. Die Abbildung

ist ein partieller Isomorphismus.

2. Für alle atomaren Formeln $\psi(x_1, \ldots, x_k)$ gilt:

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $\mathcal{B} \models \psi[\overline{b}]$

3. Für alle quantorenfreien Formeln $\psi(x_1, \ldots, x_k)$ gilt:

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $\mathcal{B} \models \psi[\overline{b}]$

4. $(A, \overline{a}) \equiv_0 (B, \overline{b})$

0-Äauivalenz

Lemma. Sei σ eine relationale Signatur, $\mathcal{A}, \mathcal{B} \sigma$ -Strukturen,

$$\overline{a} := a_1, \ldots, a_k \in A^k \text{ und } \overline{b} := b_1, \ldots, b_k \in B^k.$$

Dann sind folgende Aussagen äquivalent:

$$h: \quad \{a_1,\ldots,a_k\} \quad o \quad \{b_1,\ldots,b_k\} \ a_i \qquad \mapsto \qquad b_i \qquad \text{ für alle } 1 \leq i \leq k$$

ist ein partieller Isomorphismus.

Für alle atomaren Formeln $\psi(x_1, \ldots, x_k)$ gilt:

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $\mathcal{B} \models \psi[\overline{b}]$

 $\mathcal{A} \models \psi[\overline{a}] \quad \text{gdw.} \quad \mathcal{B} \models \psi[\overline{b}]$ 3. Für alle quantorenfreien Formeln $\psi(x_1, \dots, x_k)$ gilt:

Beweis $(1) \Rightarrow (2)$

Voraussetzung. $\overline{a} \in A^k, \overline{b} \in B^k$ und $h: \{a_1, \dots, a_k\} \to \{b_1, \dots, b_k\}$ mit $h(a_i) := b_i$ für alle 1 < i < k ist ein partieller Isomorphismus.

Sei $\psi(x_1,\ldots,x_k)$ atomar. Zu zeigen: $\mathcal{A}\models\psi[\overline{a}]$ gdw. $\mathcal{B}\models\psi[\overline{b}]$.

I emma.

Folgende Aussagen äquivalent:

- 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom. 2. $\psi(x_1, \ldots, x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1,\ldots,x_k)$ quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$
4. $(\mathcal{A}, \overline{a}) \equiv_{\mathbf{0}} (\mathcal{B}, \overline{b})$

Stephan Kreutzer Logik WS 2022/2023 46 / 93

Beweis $(1) \Rightarrow (2)$

Voraussetzung, $\overline{a} \in A^k, \overline{b} \in B^k$ und $h: \{a_1, \dots, a_k\} \to \{b_1, \dots, b_k\}$ mit $h(a_i) := b_i$ für alle $1 \le i \le k$ ist ein partieller Isomorphismus.

Sei
$$\psi(x_1,\ldots,x_k)$$
 atomar. Zu zeigen: $\mathcal{A}\models\psi[\overline{a}]$ gdw. $\mathcal{B}\models\psi[\overline{b}]$.

Da ψ atomar gilt $\psi := R(x_{i_1}, \dots, x_{i_i})$ oder $\psi := x_i = x_i$.

Wir betrachten hier den Fall $\psi := R(x_{i_1}, \dots, x_{i_i})$.

Lemma

Folgende Aussagen äquivalent:

- 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.
- 2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3.
$$\psi(x_1,\ldots,x_k)$$
 quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$
 4. $(\mathcal{A}, \overline{a}) \equiv_0 (\mathcal{B}, \overline{b})$

Beweis
$$(1) \Rightarrow (2)$$

Voraussetzung. $\overline{a} \in A^k$, $\overline{b} \in B^k$ und $h : \{a_1, \dots, a_k\} \to \{b_1, \dots, b_k\}$ mit $h(a_i) := b_i$ für alle $1 \le i \le k$ ist ein partieller Isomorphismus.

Sei
$$\psi(x_1,\ldots,x_k)$$
 atomar. Zu zeigen: $\mathcal{A}\models\psi[\overline{a}]$ gdw. $\mathcal{B}\models\psi[\overline{b}]$.

Da ψ atomar gilt $\psi := R(x_{i_1}, \dots, x_{i_i})$ oder $\psi := x_i = x_j$.

Wir betrachten hier den Fall $\psi := \overset{\circ}{R}(x_{i_1}, \ldots, x_{i_j}).$

Es gilt
$$A \models \psi[\overline{a}]$$
 gdw. $(a_{i_1}, \ldots, a_{i_i}) \in R^A$ Semantik von FO

Lemma.

Folgende Aussagen äquivalent:

- 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.
- 2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1, \ldots, x_k)$ quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Beweis $(1) \Rightarrow (2)$

Voraussetzung, $\overline{a} \in A^k, \overline{b} \in B^k$ und $h: \{a_1, \dots, a_k\} \to \{b_1, \dots, b_k\}$ mit $h(a_i) := b_i$ für alle $1 \le i \le k$ ist ein partieller Isomorphismus.

Sei
$$\psi(x_1,\ldots,x_k)$$
 atomar. Zu zeigen: $\mathcal{A}\models\psi[\overline{a}]$ gdw. $\mathcal{B}\models\psi[\overline{b}]$.

Da ψ atomar gilt $\psi := R(x_{i_1}, \dots, x_{i_i})$ oder $\psi := x_i = x_i$.

Wir betrachten hier den Fall $\psi := R(x_{i_1}, \dots, x_{i_i})$.

Es gilt

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $(a_{i_1}, \dots, a_{i_j}) \in R^{\mathcal{A}}$ Semantik von FO gdw. $(b_{i_1}, \dots, b_{i_r}) \in R^{\mathcal{B}}$ Definition partieller Isomorphismen

Lemma

Folgende Aussagen äquivalent:

- 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.
- 2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3.
$$\psi(x_1,\ldots,x_k)$$
 quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$$

4. $(\mathcal{A}, \overline{a}) \equiv_0 (\mathcal{B}, \overline{b})$

Stephan Kreutzer Logik 46 / 93 WS 2022/2023

Beweis
$$(1) \Rightarrow (2)$$

Voraussetzung, $\overline{a} \in A^k, \overline{b} \in B^k$ und $h: \{a_1, \dots, a_k\} \to \{b_1, \dots, b_k\}$ mit $h(a_i) := b_i$ für alle $1 \le i \le k$ ist ein partieller Isomorphismus.

Sei
$$\psi(x_1,\ldots,x_k)$$
 atomar. Zu zeigen: $\mathcal{A}\models\psi[\overline{a}]$ gdw. $\mathcal{B}\models\psi[\overline{b}]$.

Da ψ atomar gilt $\psi := R(x_{i_1}, \dots, x_{i_i})$ oder $\psi := x_i = x_i$.

Wir betrachten hier den Fall $\psi := R(x_{i_1}, \dots, x_{i_i})$.

Es gilt

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $(a_{i_1}, \dots, a_{i_j}) \in R^{\mathcal{A}}$ Semantik von FO gdw. $(b_{i_1}, \dots, b_{i_j}) \in R^{\mathcal{B}}$ Definition partieller Isomorphismen gdw. $\mathcal{B} \models \psi[\overline{b}]$.

Lemma

Folgende Aussagen äquivalent:

- 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.
- 2. $\psi(x_1,\ldots,x_k)$ atomar: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

3.
$$\psi(x_1,...,x_k)$$
 quantorenfrei:

.
$$\psi(x_1,\ldots,x_k)$$
 quantorenfrei: $\mathcal{A}\models\psi[\overline{a}]\;\; \mathsf{gdw}.\; \mathcal{B}\models\psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Logik 46 / 93 WS 2022/2023

Beweis $(2) \Rightarrow (3)$

Voraussetzung. Für alle atomaren Formeln $\psi(x_1, ..., x_k)$ gilt $\mathcal{A} \models \psi[\overline{a}]$ gdw. $\mathcal{B} \models \psi[\overline{b}]$.

Zu Zeigen. Die gleiche Aussage gilt für alle quantorenfreien Formeln.

Lemma.

Folgende Aussagen äquivalent: 1. $h: A' \rightarrow B'$ mit $h(a_i) = b_i$

ist partieller Isom. 2. $\psi(x_1, ..., x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3.
$$\psi(x_1, \ldots, x_k)$$
 quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

$$4. (A, \overline{a}) \equiv_0 (B, \overline{b})$$

Lemma BK. Sei $\Phi \subseteq FO[\sigma]$ und seien $\mathcal{I}, \mathcal{J} \sigma$ -Interpretationen.

Wenn

$$\mathcal{I} \models \varphi$$
 gdw. $\mathcal{J} \models \varphi$ f.a. $\varphi \in \Phi$,

dann

$$\mathcal{I} \models \psi$$
 gdw. $\mathcal{J} \models \psi$ f.a. $\psi \in \mathit{BK}(\Phi)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 47 / 93

Beweis
$$(2) \Rightarrow (3)$$

Voraussetzung. Für alle atomaren Formeln $\psi(x_1, ..., x_k)$ gilt $\mathcal{A} \models \psi[\overline{a}]$ gdw. $\mathcal{B} \models \psi[\overline{b}]$.

Zu Zeigen. Die gleiche Aussage gilt für alle quantorenfreien Formeln.

Beweis. Die Aussage folgt sofort aus Lemma BK.

Lemma.

Folgende Aussagen äquivalent:

1.
$$h: A' \rightarrow B' \text{ mit } h(a_i) = b_i$$
 ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1, \ldots, x_k)$ quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Lemma BK. Sei $\Phi \subseteq FO[\sigma]$ und seien $\mathcal{I}, \mathcal{J} \sigma$ -Interpretationen.

Wenn

$$\mathcal{I} \models \varphi$$
 gdw. $\mathcal{J} \models \varphi$ f.a. $\varphi \in \Phi$,

dann

$$\mathcal{I} \models \psi$$
 gdw. $\mathcal{J} \models \psi$ f.a. $\psi \in BK(\Phi)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 47 / 93

Beweis
$$(3) \Rightarrow (1)$$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Lemma

Folgende Aussagen äquivalent: 1. $h: A' \to B'$ mit $h(a_i) = b_i$

ist partieller Isom. 2. $\psi(x_1,\ldots,x_k)$ atomar:

4. $(\mathcal{A}, \overline{a}) \equiv_{0} (\mathcal{B}, \overline{b})$

k = ar(R)

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

Partieller Isomorphismus
$$h$$
. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit

und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$

 $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

Beweis
$$(3) \Rightarrow (1)$$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Injektivität von h: wenn $a_i \neq a_j$, dann $h(a_i) \neq h(a_j)$.

Sei also i < j mit $a_i \neq a_j$.

Lemma.

Folgende Aussagen äquivalent: 1. $h: A' \rightarrow B'$ mit $h(a_i) = b_i$ ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1, \ldots, x_k)$ quantorenfrei:

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$$

4. $(\mathcal{A}, \overline{a}) \equiv_{0} (\mathcal{B}, \overline{b})$

Partieller Isomorphismus h. $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R) und $a_1, \ldots, a_k \in A'^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^B$.

Beweis
$$(3) \Rightarrow (1)$$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Injektivität von h: wenn $a_i \neq a_j$, dann $h(a_i) \neq h(a_j)$.

Sei also i < j mit $a_i \neq a_j$.

Dann gilt
$$A \models (\neg x_i = x_j)[\bar{a}].$$

$$(x_i + x_j) \left[x_i / c_i, x_j / a_j \right]$$

Lemma.

Folgende Aussagen äquivalent: 1. $h: A' \rightarrow B'$ mit $h(a_i) = b_i$ ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1, ..., x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R) und $a_1, \ldots, a_k \in A'^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^B$.

Beweis
$$(3) \Rightarrow (1)$$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Injektivität von h: wenn $a_i \neq a_j$, dann $h(a_i) \neq h(a_j)$.

Sei also i < j mit $a_i \neq a_j$.

Dann gilt $\mathcal{A} \models (\neg x_i = x_j)[\overline{a}].$

Aus der Voraussetzung folgt daher $\mathcal{B} \models (\neg x_i = x_j)[\overline{b}]$ und somit $b_i \neq b_i$ d.h. $h(a_i) \neq h(a_i)$.

Lemma.

Folgende Aussagen äquivalent: 1. $h: A' \rightarrow B'$ mit $h(a_i) = b_i$ ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw.} \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1, ..., x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}]$ gdw. $\mathcal{B} \models \psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R) und $a_1, \dots, a_k \in A'^k$ gilt: $(a_1, \dots, a_k) \in R^A$ gdw. $(h(a_1), \dots, h(a_k)) \in R^B$. Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Relationserhaltung: für alle r-stelligen $R \in \sigma \cup \{=\}$ und $1 \le i_1, \ldots, i_r$ gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}}$$
 gdw. $(b_{i_1},\ldots,b_{i_r})\in R^{\mathcal{B}}$.

Lemma.

Folgende Aussagen äquivalent: 1. $h: A' \rightarrow B'$ mit $h(a_i) = b_i$

2. $\psi(x_1,\ldots,x_k)$ atomar:

ist partieller Isom.

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1, ..., x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R) und $a_1, \ldots, a_k \in A'^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^B$.

Beweis $(3) \Rightarrow (1)$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Relationserhaltung: für alle r-stelligen $R \in \sigma \cup \{=\}$ und $1 < i_1, \ldots, i_r$ gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}}$$
 gdw. $(b_{i_1},\ldots,b_{i_r})\in R^{\mathcal{B}}$.

Sei also $R \in \sigma$ und $1 < i_1, \dots, i_r < k$ wie zuvor. Es gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}}$$

Lemma

Folgende Aussagen äquivalent: 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1,\ldots,x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$

 $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

Beweis $(3) \Rightarrow (1)$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Relationserhaltung: für alle r-stelligen $R \in \sigma \cup \{=\}$ und $1 < i_1, \ldots, i_r$ gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}}$$
 gdw. $(b_{i_1},\ldots,b_{i_r})\in R^{\mathcal{B}}$.

Sei also $R \in \sigma$ und $1 < i_1, \dots, i_r < k$ wie zuvor. Es gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}} \quad \text{gdw. } \mathcal{A}\models R(x_{i_1},\ldots,x_{i_r})[\overline{a}]$$

Lemma

Folgende Aussagen äquivalent: 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \;\; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1,\ldots,x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

Stephan Kreutzer Logik WS 2022/2023 48 / 93

Beweis $(3) \Rightarrow (1)$

Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Relationserhaltung: für alle r-stelligen $R \in \sigma \cup \{=\}$ und $1 \leq i_1, \ldots, i_r$ gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}}$$
 gdw. $(b_{i_1},\ldots,b_{i_r})\in R^{\mathcal{B}}$.

Sei also $R \in \sigma$ und $1 < i_1, \dots, i_r < k$ wie zuvor. Es gilt:

$$\begin{split} (a_{i_1}, \dots, a_{i_r}) \in R^{\mathcal{A}} &\quad \text{gdw. } \mathcal{A} \models R(x_{i_1}, \dots, x_{i_r})[\overline{a}] \\ &\quad \text{gdw. } \mathcal{B} \models R(x_{i_1}, \dots, x_{i_r})[\overline{b}] \end{split}$$

Lemma

Folgende Aussagen äquivalent: 1. $h: A' \to B'$ mit $h(a_i) = b_i$ ist partieller Isom.

2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1,\ldots,x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

$$4. \ (\mathcal{A}, \overline{a}) \equiv_{\mathbf{0}} (\mathcal{B}, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$

 $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

Stephan Kreutzer Logik WS 2022/2023 48 / 93 Voraussetzung. Für alle quantorenfreien Formeln $\psi(\overline{x})$ gilt

$$\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}].$$

Zu Zeigen. Abb. h mit $h(a_i) = b_i$, $1 \le i \le k$, ist part. Isomorphismus.

Relationserhaltung: für alle r-stelligen $R \in \sigma \cup \{=\}$ und $1 \leq i_1, \ldots, i_r$ gilt:

$$(a_{i_1},\ldots,a_{i_r})\in R^{\mathcal{A}}$$
 gdw. $(b_{i_1},\ldots,b_{i_r})\in R^{\mathcal{B}}$.

Sei also $R \in \sigma$ und $1 < i_1, \dots, i_r < k$ wie zuvor. Es gilt:

$$(a_{i_1}, \ldots, a_{i_r}) \in R^{\mathcal{A}}$$
 gdw. $\mathcal{A} \models R(x_{i_1}, \ldots, x_{i_r})[\overline{a}]$ gdw. $\mathcal{B} \models R(x_{i_1}, \ldots, x_{i_r})[\overline{b}]$ gdw. $(b_{i_1}, \ldots, b_{i_r}) \in R^{\mathcal{B}}$.

Lemma

Folgende Aussagen äquivalent: 1. $h: A' \to B'$ mit $h(a_i) = b_i$

ist partieller Isom. 2. $\psi(x_1,\ldots,x_k)$ atomar:

$$\mathcal{A} \models \psi[\overline{a}] \; \mathsf{gdw}. \; \mathcal{B} \models \psi[\overline{b}]$$

3. $\psi(x_1,\ldots,x_k)$ quantorenfrei: $\mathcal{A} \models \psi[\overline{a}] \text{ gdw. } \mathcal{B} \models \psi[\overline{b}]$

4.
$$(A, \overline{a}) \equiv_0 (B, \overline{b})$$

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}$

0-Äquivalenz

Lemma. Sei σ eine relationale Signatur, $\mathcal{A}, \mathcal{B} \sigma$ -Strukturen,

$$\overline{a} := a_1, \ldots, a_k \in A^k \text{ und } \overline{b} := b_1, \ldots, b_k \in B^k.$$

Dann sind folgende Aussagen äquivalent:

1. Die Abbildung

ist ein partieller Isomorphismus.

2. Für alle atomaren Formeln $\psi(x_1, \ldots, x_k)$ gilt:

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $\mathcal{B} \models \psi[\overline{b}]$

3. Für alle quantorenfreien Formeln $\psi(x_1, \ldots, x_k)$ gilt:

$$\mathcal{A} \models \psi[\overline{a}]$$
 gdw. $\mathcal{B} \models \psi[\overline{b}]$

4. $(A, \overline{a}) \equiv_0 (B, \overline{b})$

Frage. Wie kann man denn zeigen, dass $\mathcal{A} \equiv_m \mathcal{B}$?

Antwort für m = 0. Partielle Isomorphismen.

Vereinbarung. Zur Vereinfachung der Notation betrachten wir in diesem Abschnitt nur relationale Signaturen, d.h. Signaturen, in denen nur Relationssymbole vorkommen.

Definition. Sei σ eine (relationale) Signatur.

Ein partieller Isomorphismus zwischen zwei σ -Strukturen \mathcal{A}, \mathcal{B} ist eine iniektive Abbildung $h: A' \to B$, für ein $A' \subseteq A$, so dass für alle $R \in \sigma \cup \{=\}$ und alle $a_1, ..., a_k \in A'$, wobei k = ar(R),

$$(a_1,\ldots,a_k)\in R^{\mathcal{A}}$$
 gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}$.

Isomorphismus $h: \overline{A} \cong \overline{B}$. $h: A \rightarrow B$ bijektiv, so dass für alle $R \in \sigma$ mit k = ar(R)und $a_1, \ldots, a_k \in A^k$ gilt: $(a_1,\ldots,a_k)\in R^A$ gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

Stephan Kreutzer Logik WS 2022/2023

Wiederholung: m-Äquivalenz und Definierbarkeit

Lemma. Sei σ eine Signatur und \mathcal{C}, \mathcal{K} Klassen von σ -Strukturen.

Wenn es für alle m > 1 σ -Strukturen \mathcal{A}_m , $\mathcal{B}_m \in \mathcal{K}$ gibt, so dass

- $\mathcal{A}_m \in \mathcal{C}$ aber $\mathcal{B}_m \notin \mathcal{C}$
- $A_m \equiv_m B_m$.

dann gibt es keinen Satz $\varphi \in FO[\sigma]$ der \mathcal{C} in \mathcal{K} definiert.

Frage. Wie kann man denn zeigen, dass $\mathcal{A} \equiv_m \mathcal{B}$?

Definition. Sei $m \in \mathbb{N}$ und $\overline{a} \in A^k, \overline{b} \in B^k$ $(\mathcal{A}, \overline{a}) \equiv_m (\mathcal{B}, \overline{b})$, wenn $\mathcal{A} \models \psi[\overline{a}] \iff \mathcal{B} \models \psi[\overline{b}]$ für alle $\psi(\overline{x})$ mit $qr(\psi) < m$.

Definition. K Klasse von σ -Strukturen.

Klasse $\mathcal{C} \subseteq \mathcal{K}$ ist in \mathcal{K} FO-definierbar. wenn es $\psi \in FO[\sigma]$ gibt, so dass

$$\mathcal{C} = \{ \mathcal{A} \in \mathcal{K} : \mathfrak{A} \models \psi \}.$$

$$\mathsf{Mod}_\mathcal{K}(\varphi) := \{ \mathcal{A} \in \mathcal{K} : \mathcal{A} \models \varphi \}.$$

Stephan Kreutzer Logik WS 2022/2023

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

Partieller Isomorphismus
$$h$$
.
 $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit $k = ar(R)$ und $a_1, \ldots, a_k \in A'^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^B$.

Formel.

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$
$$R(x): "x \text{ ist rot"}$$

Stephan Kreutzer Logik WS 2022/2023 53 / 93

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

Partieller Isomorphismus
$$h$$
.
 $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit $k = ar(R)$ und $a_1, \ldots, a_k \in A'^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^B$.

Formel.

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$

$$R(x): ,, x \text{ ist rot"}$$

Stephan Kreutzer Logik WS 2022/2023 53 / 93

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

Partieller Isomorphismus
$$h$$
.
 $h: A' \subseteq A \to B' \subseteq B$ injektiv, so dass für alle $R \in \sigma \cup \{=\}$ mit $k = ar(R)$ und $a_1, \ldots, a_k \in A'^k$ gilt: $(a_1, \ldots, a_k) \in R^A$ gdw. $(h(a_1), \ldots, h(a_k)) \in R^B$.

Formel.

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$
$$R(x): ,, x \text{ ist rot}^{"}$$

Stephan Kreutzer Logik WS 2022/2023 53 / 93

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

aber

 $\mathcal{B} \not\models \varphi$.

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$

$$R(x): "x \text{ ist rot"}$$

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

aber

 $\mathcal{B} \not\models \varphi$.

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$
$$R(x): "x \text{ ist rot"}$$

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

aber

 $\mathcal{B} \not\models \varphi$.

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$
$$R(x): "x \text{ ist rot"}$$

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

aber

 $\mathcal{B} \not\models \varphi$.

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$

$$R(x): "x \text{ ist rot"}$$

Frage. Wie kann man denn zeigen, dass $A \equiv_m B$?

Antwort für m = 0. Partielle Isomorphismen.

Antwort für m > 0?

Behauptung. $A \models \varphi$

aber

 $\mathcal{B} \not\models \varphi$.

Partieller Isomorphismus h. $h: A' \subseteq A \rightarrow B' \subseteq B$ injektiv. so dass für alle $R \in \sigma \cup \{=\}$ mit k = ar(R)und $a_1, \ldots, a_k \in A^{\prime k}$ gilt: $(a_1,\ldots,a_k)\in R^A$ gdw. $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$

$$\varphi := \exists x \big(R(x) \land \forall y \, E(x, y) \big)$$
$$R(x): "x \text{ ist rot"}$$

Seien σ eine relationale Signatur, $m, k \in \mathbb{N}$, \mathcal{A} , \mathcal{B} σ -Strukturen und $\overline{a}' := a'_1, \ldots, a'_k \in A^k, \ \overline{b}' := b'_1, \ldots, b'_k \in B^k.$

Spieler und deren Ziele.

Das *m*-Runden Ehrenfeucht-Fraïssé Spiel $\mathfrak{G}_m(\mathcal{A}, \overline{a}', \mathcal{B}, \overline{b}')$ wird von zwei Spielern, dem Herausforderer (H) und der Duplikatorin (D), gespielt.

Duplikatorins Ziel: Zeige, dass $(A, \overline{a}') \equiv_m (B, \overline{b}')$

Notation.

Ist k = 0 so schreiben wir kurz $\mathfrak{G}_m(\mathcal{A}, \mathcal{B})$.

Stephan Kreutzer Logik

Die Regeln des Spiels. Eine Partie des Spiels besteht aus m Runden.

In Runde i = 1, ..., m:

- 1. Herausforderer wählt ein Element $a_i' \in A$ oder $b_i' \in B$.
- 2. Danach antwortet die Duplikatorin. Hat der Herausforder $a_i' \in A$ gewählt, wählt die Duplikatorin $b_i' \in B$.

Anderenfalls wählt sie $a'_i \in A$.

Herausforderer:

 $(\mathcal{A}, \overline{a}') \not\equiv_m (\mathcal{B}, \overline{b}').$

$$(\mathcal{A}, \overline{a}') \equiv_m (\mathcal{B}, \overline{b}').$$

Die Regeln des Spiels. Eine Partie des Spiels besteht aus m Runden.

In Runde $i = 1, \dots, m$:

- 1. Herausforderer wählt ein Element $a_i^{\prime} \in A$ oder $b_i^{\prime} \in B$.
- 2. Danach antwortet die Duplikatorin. Hat der Herausforder $a_i \in A$ gewählt, wählt die Duplikatorin $b_i \in B$.

Anderenfalls wählt sie $a_i' \in A$.

Herausforderer:

 $(\mathcal{A}, \overline{a}') \not\equiv_m (\mathcal{B}, \overline{b}').$

$$(\mathcal{A}, \overline{a}') \equiv_m (\mathcal{B}, \overline{b}').$$

Die Regeln des Spiels. Eine Partie des Spiels besteht aus m Runden.

In Runde i = 1, ..., m:

- 1. Herausforderer wählt ein Element $a_i' \in A$ oder $b_i' \in B$.
- 2. Danach antwortet die Duplikatorin. Hat der Herausforder $a_i' \in A$ gewählt, wählt die Duplikatorin $b_i' \in B$.

Anderenfalls wählt sie $a'_i \in A$.

Herausforderer:

 $(\mathcal{A}, \overline{a}') \not\equiv_m (\mathcal{B}, \overline{b}').$

$$(\mathcal{A}, \overline{a}') \equiv_m (\mathcal{B}, \overline{b}').$$

Die Regeln des Spiels. Eine Partie des Spiels besteht aus *m* Runden.

In Runde i = 1, ..., m:

- 1. Herausforderer wählt ein Element $a'_i \in A$ oder $b'_i \in B$.
- 2. Danach antwortet die Duplikatorin. Hat der Herausforder $a_i' \in A$ gewählt, wählt die Duplikatorin $b_i' \in B$.

Anderenfalls wählt sie $a'_i \in A$.

Herausforderer:

 $(\mathcal{A}, \overline{a}') \not\equiv_m (\mathcal{B}, \overline{b}').$

$$(\mathcal{A}, \overline{a}') \equiv_m (\mathcal{B}, \overline{b}').$$

Die Regeln des Spiels. Eine Partie des Spiels besteht aus m Runden.

In Runde i = 1, ..., m:

- 1. Herausforderer wählt ein Element $a_i' \in A$ oder $b_i' \in B$.
- 2. Danach antwortet die Duplikatorin. Hat der Herausforder $a_i' \in A$ gewählt, wählt die Duplikatorin $b_i' \in B$.

Anderenfalls wählt sie $a'_i \in A$.

Herausforderer:

 $(\mathcal{A}, \overline{a}') \not\equiv_m (\mathcal{B}, \overline{b}').$

$$(\mathcal{A}, \overline{a}') \equiv_m (\mathcal{B}, \overline{b}').$$

Die Regeln des Spiels. Eine Partie des Spiels besteht aus m Runden.

In Runde i = 1, ..., m:

- 1. Herausforderer wählt ein Element $a'_i \in A$ oder $b'_i \in B$.
- 2. Danach antwortet die Duplikatorin. Hat der Herausforder $a_i' \in A$ gewählt, wählt die Duplikatorin $b_i' \in B$.

Anderenfalls wählt sie $a'_i \in A$.

Gewinnbedingung. Nach Runde *m* wird der Gewinner ermittelt:

Die Duplikatorin hat gewonnen, wenn die Abbildung

$$h: a'_1 \mapsto b'_1, \ldots, a'_k \mapsto b'_k, a_1 \mapsto b_1, \ldots, a_m \mapsto b_m$$

ein partieller Isomorphismus von \mathcal{A} nach \mathcal{B} ist.

Herausforderer:

 $(\mathcal{A}, \overline{a}') \not\equiv_m (\mathcal{B}, \overline{b}').$

Duplikatorin:

 $(\mathcal{A}, \overline{a}') \equiv_m (\mathcal{B}, \overline{b}').$

Herausforderer gewinnt $\mathfrak{G}_2(G,H)$ für die Graphen

Stephan Kreutzer

Logik

WS 2022/2023

56 / 93

Herausforderer gewinnt $\mathfrak{G}_2(G, H)$ für die Graphen

indem er in Runde 1 den mittleren Knoten a₁ in G wählt.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 56 / 93

Herausforderer gewinnt $\mathfrak{G}_2(G, H)$ für die Graphen

indem er in Runde 1 den mittleren Knoten a₁ in G wählt.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 56 / 93

Herausforderer gewinnt $\mathfrak{G}_2(G, H)$ für die Graphen

indem er in Runde 1 den mittleren Knoten a1 in G wählt.

In Runde 2 wählt der dann einen Knoten b_2 in H, der nicht zu Knoten b_1 benachbart ist.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 56 / 93

Herausforderer gewinnt $\mathfrak{G}_2(G, H)$ für die Graphen

indem er in Runde 1 den mittleren Knoten a1 in G wählt.

In Runde 2 wählt der dann einen Knoten b_2 in H, der nicht zu Knoten b_1 benachbart ist.

Stephan Kreutzer Logik WS 2022/2023 56 / 93

Frage. Wer gewinnt $\mathfrak{G}_2(G', H')$?

 Stephan Kreutzer
 Logik
 WS 2022/2023
 57 / 93

Frage. Wer gewinnt $\mathfrak{G}_2(G', H')$?

Duplikatorin gewinnt $\mathfrak{G}_2(G',H')$, denn in beiden Graphen gibt es zu jedem Knoten sowohl einen Nachbarn als auch einen Nicht-Nachbarn.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 57 / 93

Frage. Wer gewinnt $\mathfrak{G}_2(G', H')$?

Duplikatorin gewinnt $\mathfrak{G}_2(G', H')$, denn in beiden Graphen gibt es zu jedem Knoten sowohl einen Nachbarn als auch einen Nicht-Nachbarn.

Herausforderer gewinnt $\mathfrak{G}_3(G', H')$, da es in G' drei Knoten gibt, die paarweise nicht benachbart sind.

Stephan Kreutzer Logik WS 2022/2023 57 / 93

Gewinnen? Was bedeutet es eigentlich, dass Duplikatorin das Spiel $\mathfrak{G}_2(\mathcal{A}, \mathcal{B})$ gewinnt? Eigentlich gewinnt Sie ja nur eine Partie!

Vielleicht hat Herausforderer ja nicht besonders schlau gespielt?

 Stephan Kreutzer
 Logik
 WS 2022/2023
 58 / 93

Gewinnen? Was bedeutet es eigentlich, dass Duplikatorin das Spiel $\mathfrak{G}_2(\mathcal{A},\mathcal{B})$ gewinnt? Eigentlich gewinnt Sie ja nur eine Partie!

Vielleicht hat Herausforderer ja nicht besonders schlau gespielt?

Strategie: Abbildung, die für jede Runde und jeden möglichen Spielstand den nächsten Zug der Spieler:in angibt.

Gewinnstrategie: Strategie, mit der die Spieler:in jede Partie gewinnt, egal wie die Gegenspieler:in zieht.

Stephan Kreutzer Logik WS 2022/2023 58 / 93

Gewinnen? Was bedeutet es eigentlich, dass Duplikatorin das Spiel $\mathfrak{G}_2(\mathcal{A},\mathcal{B})$ gewinnt? Eigentlich gewinnt Sie ja nur eine Partie!

Vielleicht hat Herausforderer ja nicht besonders schlau gespielt?

Strategie: Abbildung, die für jede Runde und jeden möglichen Spielstand den nächsten Zug der Spieler:in angibt.

Gewinnstrategie: Strategie, mit der die Spieler:in jede Partie gewinnt, egal wie die Gegenspieler:in zieht.

Lemma (determinierte Spiele). In jedem Spiel $\mathfrak{G}_m(\mathcal{A}, \mathcal{B})$ hat genau eine der beiden Spieler:innen eine Gewinnstrategie.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 58 / 93

- Gewinnen? Was bedeutet es eigentlich, dass Duplikatorin das Spiel $\mathfrak{G}_2(\mathcal{A},\mathcal{B})$ gewinnt? Eigentlich gewinnt Sie ja nur eine Partie!
 - Vielleicht hat Herausforderer ja nicht besonders schlau gespielt?
- Strategie: Abbildung, die für jede Runde und jeden möglichen Spielstand den nächsten Zug der Spieler:in angibt.
- Gewinnstrategie: Strategie, mit der die Spieler:in jede Partie gewinnt, egal wie die Gegenspieler:in zieht.
- Lemma (determinierte Spiele). In jedem Spiel $\mathfrak{G}_m(\mathcal{A}, \mathcal{B})$ hat genau eine der beiden Spieler:innen eine Gewinnstrategie.
- Das Spiel gewinnen. Hat eine der beiden Spieler:innen eine Gewinnstrategie, dann sagen wir, dass sie das Spiel gewinnt.

Stephan Kreutzer Logik WS 2022/2023 58 / 93