Trabalho avaliativo do processo de mineração de dados - parte final

Alunos: Iago Batista Antunes Leobas, Francisco Raphael F. de Araujo, Gabriel Teixeira.

Disciplina: Mineração de Dados

Data: 26/09/2022

```
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/card_transdata.csv")
```

Verificação do Dataset e iniciando ações de limpeza caso haja necessidade...

<pre>data.head()</pre>					
₽	(distance_from_home	distance_from_last_transaction	ratio_to_median_purchase_pric	
	0	57.877857	0.311140	1.94594	
	1	10.829943	0.175592	1.29421	
	2	5.091079	0.805153	0.42771	
	3	2.247564	5.600044	0.36266	
	4	44.190936	0.566486	2.22276	
	1			•	
<pre>print(data.shape)</pre>					
	(701	072, 8)			

```
onlycredit = data[(data['used_chip'] == 1.0)]
print(onlycredit.shape)
     (245436, 8)
onlyonline = onlycredit[(onlycredit['online_order'] == 1.0)]
print(onlyonline.shape)
     (159743, 8)
onlyonline.isnull().any().any()
     False
X = onlyonline.drop(['fraud'], axis=1)
Y = onlyonline['fraud']
print(X, Y)
              distance_from_home
                                   distance_from_last_transaction
     3
                         2.247564
                                                           5.600044
     4
                       44.190936
                                                           0.566486
     10
                       14.263530
                                                           0.158758
                       13.592368
                                                           0.240540
     11
     15
                      179.665148
                                                           0.120920
     . . .
                                                                 . . .
     701052
                        5.901801
                                                           0.110441
     701057
                        0.350711
                                                           0.562992
     701063
                        3.000823
                                                           0.148435
     701065
                         2.602851
                                                           1.275756
     701070
                        3.353519
                                                           0.089108
              ratio_to_median_purchase_price repeat_retailer used_chip \
     3
                                     0.362663
                                                             1.0
                                                                         1.0
     4
                                     2.222767
                                                             1.0
                                                                         1.0
     10
                                     1.136102
                                                             1.0
                                                                         1.0
     11
                                     1.370330
                                                             1.0
                                                                         1.0
                                     0.535640
     15
                                                             1.0
                                                                         1.0
     . . .
                                                             . . .
                                                                         . . .
                                     3.303179
     701052
                                                             1.0
                                                                         1.0
     701057
                                     0.727901
                                                             0.0
                                                                         1.0
     701063
                                     0.467753
                                                             1.0
                                                                         1.0
     701065
                                     7.307051
                                                             1.0
                                                                         1.0
     701070
                                     0.343640
                                                             1.0
                                                                         1.0
              used_pin_number online_order
     3
                           0.0
                                          1.0
     4
                           0.0
                                          1.0
     10
                           0.0
                                          1.0
     11
                           0.0
                                          1.0
     15
                           1.0
                                          1.0
     . . .
                           . . .
                                          . . .
     701052
                           0.0
                                          1.0
     701057
                           0.0
                                          1.0
     701063
                           1.0
                                          1.0
     701065
                           0.0
                                          1.0
                                                                                             В
     701070
                           0.0
                                          1.0
```

```
[159743 rows x 7 columns] 3
                                  0.0
         0.0
10
         0.0
11
         0.0
15
         0.0
        . . .
701052 0.0
701057
        0.0
701063 0.0
701065 1.0
701070
         0.0
Name: fraud, Length: 159743, dtype: float64
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state = 42,
```

Imprimindo a acurácia dos testes

```
lr = LogisticRegression(max_iter=1000)
lr.fit(X_train, Y_train)
pred = lr.predict(X_test)
acc = accuracy_score(Y_test, pred)

f'Acurácia:{acc * 100:.2f}'

    'Acurácia:99.29'

only_real = onlyonline.fraud
only_total = onlyonline.drop(['fraud'], axis=1)
only_total
```

 ${\tt distance_from_home} \quad {\tt distance_from_last_transaction} \quad {\tt ratio_to_median_purchase}$

Realizando provisões e imprimindo os primeiros 30 resultados

```
pred = lr.predict(only_total)

only_val = pd.DataFrame({'real':only_real, 'previsao':pred})

only_val.head(n=30)
```

	real	previsao
3	0.0	0.0
4	0.0	0.0
10	0.0	0.0
11	0.0	0.0
15	0.0	0.0
28	$\cap \cap$	Λ Λ

Comparando os valores da previsão com os valores reais

```
only_val.previsao.value_counts()

0.0   145650
1.0   14093
Name: previsao, dtype: int64

only_val.real.value_counts()

0.0   144670
1.0   15073
Name: real, dtype: int64
```

Histograma da Razão da transação do preço de compra para o preço de compra mediano

```
import plotly.express as px
px.histogram(onlyonline, x = 'ratio_to_median_purchase_price')
```


Criando a coluna credit_and_online para facilitar a

 visualização, dessa forma unindo informações de 3 colunas: "used_chip", "used_pin_number" e "online_order"

data				
		distance_from_home	distance_from_last_transaction	ratio_to_median_purchase
	0	57.877857	0.311140	1.
	1	10.829943	0.175592	1.
	2	5.091079	0.805153	0.
	3	2.247564	5.600044	0.
	4	44.190936	0.566486	2.
	701067	14.760684	0.256367	0.
	701068	15.453180	0.251033	1.
	701069	2.131753	9.002525	1.
	701070	3.353519	0.089108	0.
	701071	3.682917	0.652274	0.
	701072 rd	ows × 9 columns		
	1			•
<pre>data2 = data[data.credit_and_online != 'no']</pre>				

data2

	distance_from_home	distance_from_last_transaction	ratio_to_median_purchase
15	179.665148	0.120920	0.
51	43.281314	3.367793	0.
55	24.268906	0.136521	1.
98	6.136181	2.579574	1.
138	5.169928	0.534060	1.
700792	54.018855	0.215318	0.
700843	11.077239	3.175977	2.
700848	3.687145	9.964012	1.
700962	5.914416	0.008577	0.
701063	3.000823	0.148435	0.
15909 rows × 9 columns			

data2 = data2.drop([('used_chip')], axis=1)
data2

	distance_trom_home	distance_trom_last_transaction	ratio_to_median_purchase
15	179.665148	0.120920	0.
51	43.281314	3.367793	0.
55	24.268906	0.136521	1.
98	6.136181	2.579574	1.
138	5.169928	0.534060	1.
700792	54.018855	0.215318	0.
700843	11.077239	3.175977	2.
700848	3.687145	9.964012	1.
700962	5.914416	0.008577	0.
701063	3.000823	0.148435	0.
15909 rov	vs × 8 columns		,
4			>

data2 = data2.drop([('used_pin_number')], axis=1)
data2

	distance_from_home	distance_from_last_transaction	ratio_to_median_purchase
15	179.665148	0.120920	0.
51	43.281314	3.367793	0.
55	24.268906	0.136521	1.
98	6.136181	2.579574	1.
138	5.169928	0.534060	1.
700792	54.018855	0.215318	0.
700843	11.077239	3.175977	2.
700848	3.687145	9.964012	1.
700962	5.914416	0.008577	0.
701063	3.000823	0.148435	0.
= data2.dron([('online order')]. axis=1)			

data2 = data2.drop([('online_order')], axis=1)
data2

	distance_from_home	distance_from_last_transaction	ratio_to_median_purchase
15	179.665148	0.120920	0.
51	43.281314	3.367793	0.
55	24.268906	0.136521	1.
98	6.136181	2.579574	1.
138	5.169928	0.534060	1.
700792	54.018855	0.215318	0.
700843	11.077239	3.175977	2.
700848	3.687145	9.964012	1.
700962	5.914416	0.008577	0.
701063	3.000823	0.148435	0.
15909 rov	vs × 6 columns		
4			+

print(data2.shape)

(15909, 6)

Resposta para Hipótese 2

"Os usuários geralmente fazem compras online em lugares familiares, ou em casa ou no trabalho, por isso compras realizadas longe de casa ou muito distante da última compra são suspeitas."

histograma da distância da compra em relação a casa do usuário

```
import plotly.express as px
px.histogram(onlyonline, x = 'distance_from_home')
```


Double-click (or enter) to edit

histograma da distância da compra em relação a última compra realizada

E

```
import plotly.express as px
px.histogram(onlyonline, x = 'distance_from_last_transaction')
```



```
import matplotlib.pyplot as plt
data2.plot.scatter('distance_from_home', 'distance_from_last_transaction')
```


Representação com outliers para melhor visualizar os registros que destoam da média de valor médio gasto.

Dessa forma é notótio que os registros se concentram em até 5 vezes mais o valor médio de compra.

Respondendo nossa hipótese nº 3 "Usamos o Ratio_to_median_purchase_price que nos revela a mediana do preço médio de compra. Com isso, consideramos que a grande maioria das compras devem ser até 10 vezes o valor de compra médio de cada usuário. Pois assim, conseguimos separar compras que estão distantes do normal das transações."

```
sns.boxplot(data2['ratio_to_median_purchase_price'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:

Pass the following variable as a keyword arg: x. From version 0.12, the only valid power than the control of th

Arvore de decisão

```
from sklearn.tree import DecisionTreeClassifier
```

```
arvore = DecisionTreeClassifier(criterion='entropy')
arvore.fit(X_train, Y_train)
```

DecisionTreeClassifier(criterion='entropy')

```
arvore.feature_importances_
```

array([1.48997107e-02, 2.58654101e-02, 8.49040540e-01, 1.49223520e-04,

0.00000000e+00, 1.10045116e-01, 0.00000000e+00])

```
from sklearn import tree
figura, eixos = plt.subplots(nrows = 1, ncols = 1, figsize = (10,10))
tree.plot_tree(arvore)
```

→ Fase de Associação

Text(0.15384615384615385. 0.583333333333334. 'entrony = 0.0\nsamnles = Definição das regras: criar a comparação das colunas: used_chip, used_pin_number, online_order e fraud

ratio_to_median_purchase_price repeat_retailer 0.535640 1.0 0.676058 1.0

51 0.676058 1.0 **55** 1.501788 1.0

98 1.494087 1.0

138 1.348866 1.0

15909

15

```
registros = []
for i in range(0, 100):
    registros.append([str(data3.values[i,j]) for j in range(0, 2)])
len(registros)
```

100

```
singleItemFrequency = {}
for item in listOfItems:
    frequency = 0
    for i in range(len(registros)):
        if(item in registros[i]):
            frequency += 1
    singleItemFrequency[item] = frequency
print(singleItemFrequency)
     {'0.5356404825310114': 1, '1.0': 90, '0.6760582745829428': 1, '1.5017878561262346': 1
supportThreshold = sThreshold / len(registros)
print("Suporte mínimo: ", supportThreshold)
     Suporte mínimo: 0.001
afterCleaning = {}
for key, value in singleItemFrequency.items():
    if(value > supportThreshold):
        afterCleaning[key] = value
print (afterCleaning)
     {'0.5356404825310114': 1, '1.0': 90, '0.6760582745829428': 1, '1.5017878561262346': 1
def is_in_array(item1, item2, tocheck):
    for i in range(len(tocheck)):
        if item1 in tocheck[i] and item2 in tocheck[i]:
            return True
    return False
itemFrequency = []
for item1 in listOfItems:
    for item2 in listOfItems:
        if(item1 == item2):
            continue
        frequency = 0
        isIn = is in array(item1, item2, itemFrequency)
        if (isIn):
            continue
        for i in range(len(registros)):
            if(item1 and item2 in registros[i]):
                frequency += 1
        itemFrequency.append([item1,item2,frequency])
```

```
print(itemFrequency)

[['0.5356404825310114', '1.0', 90], ['0.5356404825310114', '0.6760582745829428', 1],

twoItemsAfterCleaning = []

for i in range(len(itemFrequency)):
    if(itemFrequency[i][2] > supportThreshold):
        twoItemsAfterCleaning.append(itemFrequency[i])
print (twoItemsAfterCleaning)

[['0.5356404825310114', '1.0', 90], ['0.5356404825310114', '0.6760582745829428', 1],

for item in twoItemsAfterCleaning:
    value = singleItemFrequency[item[0]]
    if value <= 0:
        value = 1
    confiance = (item[2]/numberOfTransactions)/value
print ("confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação já confiança da comparação da Media Das Compras daquele usuario e se essa transação ja confiança da comparação da Media Das Compras daquele usuario e se essa transação ja confiança da comparação da Media Das Compras da
```

Algoritmo de Clusterização - KMeans

Utilizaremos nesse processo de agrupamento e análise, as colunas (distance_from_home, distance_from_last_transaction).

Essas colunas foram selecionadas, baseado na hipótese que compras realizada muito distante da casa do cliente e que tambem foi distante da última compra efetuada foge do comum de uma transação não fraudulenta.

```
V = data2.drop([('ratio_to_median_purchase_price'),('repeat_retailer'),('fraud'),('credit_
V = V.iloc[:,[0,1]].values #Deixando somente os dados brutos

V = pd.DataFrame(V) #conversao em data frame para realizar estracao utilizando (sample)

V = V.sample(200) #Extração randomica para retirada de amostra de 200 casos.

print(V.shape) #Confirmacao de tamanho de novo data com amostra de 200
```

(200, 2)

```
print(V.iloc[0:6,:]) #verificando dados existente separados
```

```
0 1
14466 123.940520 0.253659
2658 0.952618 0.782716
9619 5.651673 0.387412
5593 6.786892 0.412772
1463 7.665412 1.325145
14521 32.853787 0.213621
```

Após preparação de dados

→ Realizacao de Verificação

```
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

kmeans = KMeans(n_clusters=3, init = 'random', random_state = 1)
y_kmeans = kmeans.fit_predict(V)

plt.scatter(V.iloc[:,1], V.iloc[:,0])
```

<matplotlib.collections.PathCollection at 0x7fad0c5f5850>


```
kmeans = KMeans(n_clusters = 3, init = 'k-means++', n_init = 10, max_iter = 300)
pred_y = kmeans.fit_predict(V)
```

```
plt.scatter(V.iloc[:,1], V.iloc[:,0], c = pred_y) #posicionamento dos eixos x e y
plt.grid()
plt.xlim(0, 150) #range do eixo x
plt.ylim(0, 400) #range do eixo y
```

plt.scatter(kmeans.cluster_centers_[:,1],kmeans.cluster_centers_[:,0], s = 70, c = 'red')
plt.show()

Colab paid products - Cancel contracts here

• ×