fortiss

PID Controller

Runtao Duan June 13, 2019

PID Controller

What is PID?

- a control loop feedback algorithm
- widely used in industrial control systems requiring continuously control
- applies a correction based on Proportional, Integral and Derivative terms

PID Controller

Why do we use PID?

- applies accurate and responsive correction to a control function
- control any process which has a measurable output,
 e. g. speed, steering angle

How does the PID work?

where error value e(t) = desired setpoint r(t) - measured process variable y(t)

Proportional term

is proportional to the current error value,

$$P_{\mathrm{out}} = K_{\mathrm{p}} e(t).$$

where K_p is proportional gain constant

- Large Error
 >> output control large
 No Error
 >> no corrective response
- Using proportional control alone
 >> a steady-state error

Proportional term

Response of PV with change of K_p over time

Integral term

- eliminate the steady-state error
- add a control effect due to the historic cumulative value of the error
- is proportional to both the magnitude of the error and the duration of the error.

$$I_{
m out} = K_{
m i} \int_0^t e(au) \, d au.$$

where K_i is integral gain constant

Integral term

- eliminates the steady-state error that occurs with a pure P controller (+)
- K_i too high
 >> can cause the current value
 to overshoot the setpoint value (-)

Response of PV with change of K_i over time

Derivative term

- reduce the effect of a suden-change error considering the rate of error change
- is proportional to the slope of the error over time

$$D_{
m out} = K_{
m d} rac{de(t)}{dt}.$$

where K_d is derivative gain constant

Derivative term

 improves settling time and stability of the system

 The more rapid the change, the greater the controlling or dampening effect

Response of PV with change of K_d over time

Mathematical form of PID

$$u(t) = ext{MV}(t) = K_{ ext{p}} e(t) + K_{ ext{i}} \int_0^t e(au) \, d au + K_{ ext{d}} rac{de(t)}{dt},$$

where

 $K_{
m p}$ is the proportional gain, a tuning parameter,

 $K_{
m i}$ is the integral gain, a tuning parameter,

 $K_{
m d}$ is the derivative gain, a tuning parameter,

 $e(t) = \mathrm{SP} - \mathrm{PV}(t)$ is the error (SP is the setpoint, and PV(t) is the process variable),

t is the time or instantaneous time (the present),

au is the variable of integration (takes on values from time 0 to the present t).

PID in AF3

- can be separatly used,
 e. g. PI, PD, P or I controller
- coefficent already defined in data dictionary

 COEFFICIENT_CONTROLLER_D(): double 	double	Coefficient for the differential part in the motor value controller
COEFFICIENT_CONTROLLER_F(): double	double	Coefficient for the feed forward part in the motor value controller
 COEFFICIENT_CONTROLLER_I(): double 	double	Coefficient for the integral part in the motor value controller
 COEFFICIENT_CONTROLLER_MAX_ERROR_SUM(): double 	double	The maximum error integral in the PID controller
 COEFFICIENT_CONTROLLER_P(): double 	double	Coefficient for the proportional part in the motor value controller
 COEFFICIENT_LK_CONTROLLER_D(): double 	double	Coefficient for the differential part in the lane keeping controller
 COEFFICIENT_LK_CONTROLLER_I(): double 	double	Coefficient for the integral part in the lane keeping controller
 COEFFICIENT_LK_CONTROLLER_P(): double 	double	Coefficient for the proportional part in the lane keeping controller
 COEFFICIENT_LK_FEED_FORWARD(): double 	double	Coefficient for the feed forward control

PID in ACC

PID in Lane Keeping

