Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники
Кафедра электронных вычислительных машин
Отчет по лабораторной работе №2 дисциплины «Организация памяти ЭВМ»
Исследование ассоциативного запоминающего устройства
Выполнил студент группы ИВТ-31 /Крючков И. С./ Проверил /Мельцов В. Ю./

1. Задание

Разработать микропрограмму, выполняющую следующие функции:

- записать 6 чисел. Подобрать Маску и Эталон так, чтобы в АЗУ «совпало» несколько значений (L2=1);
- дописать 7-е число. Подобрать Маску и Эталон так, чтобы в АЗУ «совпало» одно значение;
- дописать 8-е число. Подобрать Маску и Эталон так, чтобы в АЗУ не «совпало» ни одного значения.

2. Функциональная схема

Управляющие сигналы:

- CA вход сигнала записи с MA в RgA по фронту сигнала синхронизации.
 - CI вход сигнала записи с MD в RgI по фронту сигнала синхронизации.
- CM вход сигнала записи с MD в RgM по фронту сигнала синхронизации.
 - ~EO сигнал разрешения выдачи данных из RgO
 - ~RD сигнал чтения данных из АЗУ
 - ~WR сигнал записи данных в АЗУ

Признаки при чтении:

- L0 в АЗУ не найдено слов с данным ассоциативным признаком.
- L1 в АЗУ найдено одно слово с данных ассоциативным признаком.
- L2 в АЗУ найдено более одного слова с данным ассоциативным признаком.

Признаки при записи:

L0- в A3У во все ячейки загружены данные (для всех ячеек признак достоверности данных d=1).

L1 – в АЗУ осталась одна незагруженная ячейка с d = 0.

L2 – в АЗУ имеется более одной незагруженной ячейки с d=0.

Функциональные схема LS1 и LS2 представлена на рисунках 1-3.

Рисунок 1 – Функциональная схема LS1

Рисунок 2 – Функциональная схема LS2 для признаков записи

Рисунок 3 — Функциональная схема LS2 для признаков чтения

3. Граф-схема алгоритма записи и чтения

Граф-схемы алгоритмов записи в АЗУ и чтения из АЗУ представлены на рисунках 4 и 5 соответственно.

Рисунок 4 – Граф-схема записи в A3Y

Рисунок 5 – Граф-схема чтения из АЗУ

4. Текст микропрограммы

Текст микропрограммы представлен на рисунках 6-9

N≗	Адр.	Данные	CM	CI	CA	~E0	~WR	~RD	Комментарии		
00	0	11010111 11110000	0	1	1	1	1	1	w6.1) 1-> RgA, -> RgI		
01	0	00000000 00000000	0	0	0	1	0	1	wr		

Рисунок 6 – Микропрограмма записи в АЗУ

0C	0	00001111 11110000	0	1	0	1	1	1	Etalon
0D	0	00000111 00000000	1	0	0	1	1	1	Maska
0E	0	00000000 00000000	0	0	0	1	1	0	preRead
0F	0	00000000 00000000	0	0	0	1	1	0	r -> Rg0
10	0	00000000 00000000	0	0	0	0	1	1	rd
11	0	00000000 00000000	0	0	0	1	1	0	r -> Rg0
12	0	00000000 00000000	0	0	0	0	1	1	rd

Рисунок 7 – Микропрограмма чтения из АЗУ

N≗	Адр.	Данные	СМ	CI	CA	~E0	~wr	~RD	Комментарии
00	0	11010111 11110000	0	1	1	1	1	1	w6.1) 1-> RgA, -> RgI
01	0	00000000 00000000	0	0	0	1	0	1	wr
02	1	01110001 11000111	0	1	1	1	1	1	w6.2) 1-> RgA, -> RgI
03	1	00000000 00000000	0	0	0	1	0	1	wr
04	2	00101111 10001000	0	1	1	1	1	1	w6.3) 1-> RgA, -> RgI
05	2	00000000 00000000	0	0	0	1	0	1	wr
06	3	11100110 10111101	0	1	1	1	1	1	w6.4) 1-> RgA, -> RgI
07	3	00000000 00000000	0	0	0	1	0	1	wr
08	4	11000001 00110110	0	1	1	1	1	1	w6.5) 1-> RgA, -> RgI
09	4	00000000 00000000	0	0	0	1	0	1	wr
0A	5	11010000 11000111	0	1	1	1	1	1	w6.6) 1-> RgA, -> RgI
0B	5	00000000 00000000	0	0	0	1	0	1	wr
0C	0	00001111 11110000	0	1	0	1	1	1	Etalon
0D	0	00000111 00000000	1	0	0	1	1	1	Maska
0E	0	00000000 00000000	0	0	0	1	1	0	preRead
0F	0	00000000 00000000	0	0	0	1	1	0	r -> RgO
10	0	00000000 00000000	0	0	0	0	1	1	rd
11	0	00000000 00000000	0	0	0	1	1	0	r -> RgO
12	0	00000000 00000000	0	0	0	0	1	1	rd
13	6	00111001 10001001	0	1	1	1	1	1	w 1-> RgA, -> RgI
14	6	00000000 00000000	0	0	0	1	0	1	wr
15	0	01100000 10000000	0	1	0	1	1	1	Etalon
16	0	11100000 10000000	1	0	0	1	1	1	Maska
17	0	00000000 00000000	0	0	0	1	1	0	preRead

Рисунок 8 – Микропрограмма работы с АЗУ

N≗	Адр.	Данные	CM	CI	CA	~E0	~WR	~RD	Комментарии
18	0	00000000 00000000	0	0	0	1	1	0	r -> RgO
19	0	00000000 00000000	0	0	0	0	1	1	rd
1A	7	10111001 01010110	0	1	1	1	1	1	w -> RgA, -> RgI
1B	7	00000000 00000000	0	0	0	1	0	1	wr
1C	0	11001000 00000001	0	1	0	1	1	1	Etalon
1D	0	11101000 10000001	1	0	0	1	1	1	Maska
1E	0	00000000 00000000	0	0	0	1	1	0	preRead

Рисунок 9 – Микропрограмма работы с АЗУ

5. Экранные формы

Экранные формы работы микропрограммы представлены на рисунках 10-11.

Рисунок 10 – Чтение из АЗУ

Рисунок 11 – Запись в АЗУ

6. Вывод

В ходе лабораторной работы были изучен принцип работы ассоциативного запоминающего устройства. Была разработана программа, которая позволяет записывать данные в АЗУ и считывать из АЗУ числа по заданным маскам и эталону.