

## МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б. Н. Ельцина»

# ВЫДЕЛЕНИЕ ТРЕНДОВОЙ СОСТАВЛЯЮЩЕЙ ВРЕМЕННОГО РЯДА

Методические указания к выполнению практического задания № 3

Екатеринбург 2020



### Содержание

| Вве | дение                          | 3  |
|-----|--------------------------------|----|
|     |                                |    |
|     |                                |    |
| 1.  | Задание на лабораторную работу | 3  |
|     |                                |    |
|     |                                |    |
| 2.  | Требования к оформлению отчета | 11 |



#### Введение

На этой лабораторной работе мы впервые приступаем к декомпозиции временных рядов на простейшие компоненты, одной из которых является **тренд**. В ходе работы студентами будут изучены такие способы построения кривых тренда, как регрессионные методы подгонки, методы скользящего сглаживания, и другие.

#### 1. Задание на лабораторную работу

Результатом выполнения лабораторной работы является оформленный отчет в виде *Jupyter*-тетради, в котором должны быть представлены и отражены все нижеперечисленные пункты:

1) Сначала импортируйте в свой код нужные библиотеки, функции и т.д. import numpy as np import numpy.random as rand import matplotlib.pyplot as plt import pandas as pd from scipy import signal import scipy.stats as stats from statsmodels.tsa import api as tsa

%matplotlib inline

2) В зависимости от своего варианта, который определяется по последним двум цифрам студ. билета, из таблицы 1 на следующих страницах создать временной ряд из столбца (всего 24 точки). ВР определен на временном интервале от 0 до 1 (далее переменная **t**). Для загрузки своего варианта из табл. файла используйте:

```
import pandas as pd
table = pd.read_excel('for_lab3.xlsx')
variant = 13  # номер варианта, например, 13
X = np.array(table.values[variant-1][1:])
print(X)
```



| 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 1,65  | 23,46 | 0,54  | 30,42 | 20,89 | 12,60 | 3,54  | 15,48 |
| 2,59  | 14,86 | 2,16  | 30,56 | 20,11 | 18,92 | 7,81  | 9,29  |
| 6,18  | 20,14 | 5,39  | 29,90 | 16,41 | 17,08 | 12,83 | 8,26  |
| 6,26  | 21,59 | 3,48  | 21,67 | 18,95 | 15,51 | 6,73  | 5,45  |
| 6,44  | 18,98 | 4,54  | 26,31 | 21,43 | 8,97  | 6,29  | 10,49 |
| 7,16  | 21,77 | 7,99  | 28,13 | 16,54 | 14,52 | 15,88 | 14,47 |
| 10,56 | 20,27 | 7,95  | 24,06 | 11,55 | 12,77 | 12,27 | 9,46  |
| 10,93 | 16,86 | 7,01  | 20,55 | 14,39 | 12,96 | 7,84  | 8,79  |
| 9,53  | 16,23 | 9,89  | 24,35 | 20,66 | 5,55  | 10,71 | 12,96 |
| 10,64 | 18,55 | 12,35 | 18,12 | 15,31 | 11,09 | 14,60 | 15,37 |
| 17,43 | 14,87 | 12,91 | 18,69 | 9,34  | 9,23  | 17,48 | 11,82 |
| 14,72 | 11,98 | 14,42 | 14,88 | 11,39 | 5,03  | 12,97 | 11,34 |
| 15,50 | 14,41 | 14,13 | 11,66 | 11,34 | 2,15  | 11,34 | 20,84 |
| 15,01 | 13,42 | 18,67 | 19,83 | 10,07 | 8,95  | 23,82 | 16,58 |
| 17,83 | 10,44 | 16,95 | 14,10 | 5,95  | 8,04  | 19,97 | 12,47 |
| 18,43 | 8,26  | 15,84 | 10,16 | 4,59  | 5,68  | 11,51 | 7,05  |
| 17,69 | 8,86  | 19,23 | 10,08 | 8,74  | 0,14  | 18,07 | 15,08 |
| 19,80 | 9,53  | 22,05 | 5,82  | 9,96  | 5,85  | 22,11 | 16,97 |
| 22,64 | 6,88  | 22,59 | 8,46  | 3,03  | 4,21  | 23,12 | 13,51 |
| 22,86 | 4,10  | 21,15 | 5,50  | 3,17  | 2,56  | 15,52 | 13,45 |
| 21,56 | 7,61  | 23,98 | 3,60  | 4,45  | 0,08  | 20,03 | 16,55 |
| 22,16 | 4,92  | 26,45 | 8,44  | 4,06  | 3,87  | 24,36 | 18,47 |
| 25,82 | 1,79  | 29,80 | 3,04  | 0,16  | 1,10  | 27,02 | 21,73 |
| 26,50 | 0,10  | 27,41 | 0,00  | 1,52  | 0,85  | 21,31 | 14,04 |



| 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 12,19 | 23,75 | 18,47 | 76,88 | 8,48  | 24,78 | 3,07  | 10,22 |
| 8,41  | 28,00 | 14,87 | 69,88 | 10,43 | 22,55 | 6,26  | 10,06 |
| 14,68 | 33,01 | 21,51 | 74,55 | 18,97 | 30,85 | 7,46  | 13,34 |
| 8,64  | 16,78 | 9,07  | 59,75 | 6,37  | 23,88 | 6,48  | 11,92 |
| 32,94 | 18,16 | 16,02 | 72,21 | 9,86  | 27,78 | 1,64  | 8,81  |
| 22,61 | 20,05 | 11,12 | 66,85 | 1,29  | 12,71 | 5,41  | 8,10  |
| 45,92 | 3,18  | 23,45 | 69,91 | 13,23 | 25,25 | 6,18  | 12,51 |
| 23,63 | 16,11 | 6,45  | 68,05 | 8,50  | 25,70 | 16,93 | 11,16 |
| 18,59 | 21,66 | 14,21 | 72,59 | 11,68 | 34,44 | 2,71  | 8,77  |
| 36,22 | 20,16 | 8,18  | 42,83 | 10,17 | 23,18 | 6,94  | 4,87  |
| 50,10 | 24,71 | 14,50 | 67,04 | 14,18 | 29,81 | 8,35  | 10,57 |
| 46,22 | 15,63 | 3,86  | 56,63 | 2,79  | 22,26 | 11,59 | 10,37 |
| 23,63 | 16,27 | 10,14 | 61,10 | 26,63 | 22,97 | 5,98  | 6,88  |
| 47,30 | 18,99 | 9,99  | 44,88 | 15,69 | 16,37 | 10,77 | 9,13  |
| 40,03 | 21,12 | 14,47 | 52,90 | 20,32 | 22,82 | 14,71 | 10,31 |
| 56,53 | 8,34  | 0,65  | 46,03 | 17,28 | 14,19 | 14,66 | 7,13  |
| 38,41 | 14,96 | 8,97  | 46,72 | 22,87 | 16,40 | 11,77 | 3,52  |
| 51,47 | 17,17 | 2,47  | 46,48 | 23,80 | 7,23  | 27,10 | 0,14  |
| 6,29  | 20,24 | 12,58 | 31,63 | 28,81 | 13,05 | 9,69  | 6,35  |
| 35,41 | 8,31  | 3,12  | 21,72 | 28,59 | 4,63  | 22,31 | 5,30  |
| 67,79 | 12,36 | 6,81  | 21,40 | 35,68 | 3,19  | 19,73 | 1,46  |
| 74,21 | 14,59 | 0,43  | 11,40 | 35,72 | 4,55  | 25,88 | 1,09  |
| 79,12 | 21,72 | 4,65  | 10,06 | 39,44 | 0,94  | 29,00 | 2,40  |
| 45,10 | 28,69 | 5,91  | 0,42  | 40,04 | 11,07 | 32,18 | 1,92  |



| 17    | 18    | 19   | 20    | 21    | 22   | 23    | 24   |
|-------|-------|------|-------|-------|------|-------|------|
| 11,54 | 0,54  | 6,86 | 11,43 | 10,41 | 4,89 | 15,45 | 5,93 |
| 0,80  | 4,33  | 3,91 | 7,60  | 7,70  | 3,10 | 11,94 | 3,88 |
| 12,76 | 3,73  | 6,66 | 12,15 | 10,39 | 5,19 | 11,93 | 5,08 |
| 11,18 | 5,18  | 6,38 | 10,39 | 10,73 | 1,02 | 18,66 | 5,98 |
| 8,90  | 2,50  | 8,35 | 11,44 | 12,31 | 6,25 | 12,69 | 7,77 |
| 8,49  | 3,72  | 6,16 | 10,94 | 9,58  | 5,06 | 10,01 | 6,67 |
| 11,38 | 4,78  | 7,68 | 13,54 | 11,53 | 5,96 | 8,81  | 6,55 |
| 10,93 | 5,72  | 7,12 | 11,87 | 11,55 | 6,27 | 10,86 | 6,27 |
| 9,40  | 3,69  | 8,61 | 13,35 | 13,98 | 6,56 | 11,49 | 8,23 |
| 9,30  | 4,80  | 5,87 | 11,72 | 10,07 | 6,43 | 10,78 | 6,61 |
| 12,43 | 6,35  | 7,76 | 13,58 | 11,44 | 6,45 | 10,38 | 7,40 |
| 11,03 | 6,89  | 7,07 | 10,56 | 11,00 | 6,26 | 13,07 | 7,48 |
| 10,88 | 6,38  | 8,37 | 11,04 | 11,16 | 7,00 | 10,81 | 8,08 |
| 11,33 | 5,93  | 8,69 | 8,96  | 9,49  | 4,51 | 12,73 | 7,00 |
| 13,86 | 9,17  | 6,83 | 11,38 | 10,41 | 5,93 | 12,11 | 6,16 |
| 14,98 | 9,31  | 6,17 | 9,26  | 9,15  | 6,53 | 15,74 | 5,73 |
| 12,66 | 4,07  | 6,98 | 9,38  | 8,48  | 6,98 | 17,71 | 7,23 |
| 12,98 | 9,47  | 3,84 | 8,04  | 5,41  | 8,96 | 15,31 | 3,86 |
| 18,09 | 12,28 | 4,75 | 10,98 | 6,44  | 5,78 | 11,15 | 5,63 |
| 17,49 | 13,32 | 4,05 | 7,95  | 6,15  | 5,87 | 18,12 | 5,66 |
| 14,97 | 9,87  | 4,88 | 7,67  | 3,17  | 6,21 | 20,81 | 5,71 |
| 14,42 | 12,73 | 0,51 | 4,69  | 0,47  | 3,33 | 19,90 | 2,62 |
| 21,29 | 16,73 | 2,60 | 7,16  | 1,80  | 5,21 | 19,15 | 3,89 |
| 20,66 | 17,05 | 0,90 | 4,17  | 1,26  | 4,63 | 22,43 | 3,44 |



- 3) Построить график заданного ряда.
- 4) Рассчитать регрессионную модель тренда первого порядка, то есть линейный тренд  $\tau(t) = \beta_0 + \beta_1 t$ . Для этого:
- 5) Сначала произвести оценку регрессионной модели  $y = X\beta$ . Для этого потребуется в матричном виде решить эту систему линейных уравнений.

6) Для линейного тренда 
$$X = \begin{vmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_N \end{vmatrix}, y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{vmatrix}, \beta = \begin{vmatrix} \beta_0 \\ \beta_1 \end{vmatrix}.$$

7) Для решения Вам пригодится функция:

B = np.linalg.lstsq(X,Y)

8) Из этого результата **В** коэффициенты находятся в нулевом элементе. Построим получившийся тренд:

9) Кроме матричных расчетов в Python, несомненно, существуют и готовые функции построения регрессионных кривых. Воспользуемся ими из нескольких библиотек.



10) На основе построения полиномиальных кривых из **numpy**:

```
bb = np.polyfit(t, Y, 1) # полиномиальная кривая 1-го порядка

plt.figure(figsize = (10, 5))

plt.plot(t, Y)

plt.plot(t, bb[1] + bb[0]*t, 'r') # Внимание! Коэф. β в другом порядке

plt.show()
```

Чтобы не ошибиться в порядке коэффициентов, лучше использовать функцию **poly1d**:

```
p = np.poly1d(bb) # создаем экземпляр полинома
plt.figure(figsize = (10, 5))
plt.plot(t, Y)
# считаем значения полинома на заданной временной сетке
plt.plot(t, p(t), 'g')
plt.show()
```

11) На основе линейной регрессии из scipy.stats:

```
out = stats.linregress(t, Y)
print(out)  # выведет все коэффициенты и статистику регрессии
plt.figure(figsize = (10, 5))
plt.plot(t, Y)  # строим график кривой вместе с трендом
plt.plot(t, out.intercept + out.slope*t, 'r')
plt.show()
```



12) На основе подгонки кривых **curve\_fit** из **scipy.optimize**:

def func(t, b0, b1): # описываем функцию тренда

**return b0 + b1 \* t** # линейный тренд с 2 параметрами

from scipy.optimize import curve\_fit

**popt, pcov = curve\_fit(func, t, Y)** # проводим подгонку МНК

print(popt) # получаем коэффициенты b0 & b1

**print(pcov)** # ковариационная матрица ошибок подгонки

13) На основе библиотеки **sklearn**:

from sklearn.linear\_model import LinearRegression

reg = LinearRegression().fit(t.reshape(-1,1), Y)

print(reg.coef\_) # здесь выведется линейный коэффициент b1

print(reg.intercept\_) # здесь выведется коэффициент b0 (смещение)

print(reg.score(t.reshape(-1,1), Y))

# здесь будет выведена «оценка» (равная R^2) полученной регрессии,

чем ближе она к 1.0, тем лучше тренд

14) На основе **statsmodel**:

import statsmodels.api as sm

x\_ = sm.add\_constant(t.reshape(-1,1)) # создаем простую модель

# вида 
$$\tau(t) = \beta_0 + \beta_1 t$$

 $smm = sm.OLS(Y, x_)$  # используем Метод Наименьших Квадратов

# (MHK) (Ordinary Least Squares = OLS)

res = smm.fit() # подгоняем параметры модели по МНК

print(res.params) # получаем результирующие коэффициенты



- 15) Пример, приведенный выше, гораздо ближе по своей реализации уже к методам **машинного обучения**: сначала задается «форма» решаемой задачи, затем определяется метод ее решения и уже самим решением занимается ЭВМ.
- 16) Удостоверьтесь, что во всех реализациях получились одинаковые коэффициенты линейного тренда.
- 17) Аналогичным образом постройте модель тренда **второй** и **третьей** степени. Также постройте модель **экспоненциального** тренда:  $\tau(t) = \beta_0 e^{\beta_t t}$  Учтите, что не все приведенные выше методы для этого подойдут.
- 18) Все найденные тренды разной степени и модели нанесите на один график. Удостоверьтесь, что получились правильные результаты.
- 19) Теперь построим тренд методом сглаживания. Для этого напишите следующую функцию:

```
def smooth(x, window_len):
    if window_len<3:
        return x
    s=np.r_[2*x[0]-x[window_len-1::-1], x, 2*x[-1]-x[-1:-window_len:-1]]
    w=np.ones(window_len, 'd')
    y=np.convolve(w/w.sum(), s, mode='same')
    return y[window_len:-window_len+1]</pre>
```

20) Затем вызовите эту функцию для сглаживания ряда, например: Smoothed\_data = smooth(Y, 3) # сглаживание по 3 точкам



- 21) Постройте тренды, полученные методом скользящего сглаживания по **трем, семи** и **одиннадцати** точкам. Постройте каждый из них **отдельно**, но вместе с исходным ВР (то есть всего 3 рисунка по 2 графика в каждом).
- 22) Постройте **собственную функцию** сглаживания по трем точкам, на основе формул из лекции 4.
- 23) Постройте **собственную функцию** сглаживания по семи точкам, на основе формул из лекции 4.
- 24) Сравните получившиеся результаты тренды должны получиться одинаковыми (отличия могут возникнуть только по краям временного интервала).
- 25) Наконец, постройте тренд методом экспоненциального сглаживания, самостоятельно подобрав его параметр (который лежит в диапазоне от 0 до 1).
- 26) Не забудьте в отчет-тетрадь добавить необходимые рисунки.

### 2. Требования к оформлению отчета

Отчет в Jupyter-тетради должен обязательно содержать: номер лабораторной работы, ФИО студента, номер варианта (либо студенческий номер), номер группы, результаты выполнения работы с комментариями студента (комментарии пишутся после #) и изображениями.