O klasifikaciji stanj v markovskih verigah

Anej Rozman

Fakulteta za matematiko in fiziko

Šibka lastnost Markova

Trditev: Šibka lastnost Markova

Naj bo $X_0, X_1, ...$ markovska veriga s prehodno matriko p(i,j) in naj bo $P((X_0, X_1, ..., X_m) \in C) > 0$, kjer je $C \subseteq S^{m+1}$ (S je množica stanj). Potem sledi, da je $X_m, X_{m+1}, ...$ pogojno na dogodek $\{(X_0, X_1, ..., X_m) \in C\}$, spet markovska veriga z isto prehodno matriko p(i,j).

Dokaz.

$$P((X_{m}, X_{m+1}, ..., X_{m+n}) \in D, X_{m+n} = i, X_{m+n+1} = j \mid (X_{0}, X_{1}, ..., X_{m}) \in C) =$$

$$= \frac{P((X_{0}, X_{1}, ..., X_{m}) \in C, (X_{m}, X_{m+1}, ..., X_{m+n}) \in D, X_{m+n} = i, X_{m+n+1} = j)}{P((X_{0}, X_{1}, ..., X_{m}) \in C)} =$$

$$= \frac{P((X_{0}, X_{1}, ..., X_{m}) \in C, (X_{m}, X_{m+1}, ..., X_{m+n}) \in D, X_{m+n} = i) \cdot p(i, j)}{P((X_{0}, X_{1}, ..., X_{m}) \in C)} =$$

$$= P((X_{m}, X_{m+1}, ..., X_{m+n}) \in D, X_{m+n} = i \mid (X_{0}, X_{1}, ..., X_{m}) \in C) \cdot p(i, j)$$

Posledica 1

Posledica 1

Naj bo $X_0, X_1, ...$ markovska veriga s prehodno matriko p(i,j). Potem je $X_m, X_{m+1}, ...$ spet markovska veriga z isto prehodno matriko.

Dokaz.

Dokaz sledi neposredno iz iz prejšnje trditve, saj če za množico $C \subseteq S^{m+1}$ vzamemo kar celoten S^{m+1} , potem velja

$$P(X_m = i, X_{m+1} = j \mid (X_0, X_1, ..., X_m) \in C) =$$

$$= P(X_m = i, X_{m+1} = j) =$$

$$= P(X_m = i) \cdot p(i, j).$$

Posledica 2

Posledica 2

Naj bo $X_0, X_1, ...$ markovska veriga s prehodno matriko p(i,j) in naj bo $P(X_0 = x) > 0$, kjer je $x \in S$. Potem je $X_0, X_1, ...$ pogojno na $X_0 = x$ spet markovska veriga z isto prehodno matriko.

Dokaz.

Tokrat za množico C lahko vzamemo $C = \{(x, s_1, ..., s_m), s_1, ..., s_m \in S\}$, potem pa se dogodek $\{(X_0, X_1, ..., X_m) \in C\}$ ujema z dogodkom $\{X_0 = x\}$.

Markovska veriga brez začetne porazdelitve

- (Ω, \mathcal{F}) merljiv prostor
- S prostor stanj
- $[p(i,j)]_{i,j\in S}$ prehodna matrika
- $X_0, X_1, ... : \Omega \rightarrow S$ slučajne spremenljivke
- P_x verjetnostne preslikave na (Ω, \mathcal{F})
- Za vsak $x \in S$ velja $P_x(X_0 = x) = 1$
- Za vsak $x \in S$ je $X_0, X_1, ...$ glede na P_x markovska veriga s prehodno matriko p(i,j)

Čas ustavljanja

Definicija: Čas ustavljanja

Za markovsko verigo $X_0, X_1, ...$ slučajno spremenljivko T z vrednostmi v $\mathbb{N}_0 \cup \{\infty\}$ imenujemo **čas ustavljanja**, če velja, da je za poljuben n dogodek $\{T = n\}$ odvisen le od slučajnih spremenljivk $\{X_0, X_1, ..., X_n\}$. Torej obstaja taka množica C_n , da je $\{T = n\} = \{(X_0, X_1, ..., X_n) \in C_n\}$

Krepka lastnost Markova

Trditev: Krepka lastnost Markova

Naj bo $X_0, X_1, ...$ markovska veriga s prehodno matriko p(i,j). Naj bo T čas ustavljanja in $B \subseteq S$ in $P(X_T \in B) > 0$. Potem je $X_T, X_{T+1}, ...$ pogojno na $\{X_T \in B\}$ spet markovska veriga z isto prehodno matriko.

Dokaz.

$$\begin{split} &P((X_T, X_{T+1}, ..., X_{T+n}) \in C, X_{T+n} = i, X_{T+n+1} = j \mid X_T \in B) = \\ &= \frac{1}{P(X_T \in B)} \cdot P(X_T \in B, (X_T, X_{T+1}, ..., X_{T+n}) \in C, X_{T+n} = i, X_{T+n+1} = j) = \\ &= \frac{1}{P(X_T \in B)} \cdot \sum_{m=0}^{\infty} P(T = m, X_m \in B, (X_m, X_{m+1}, ..., X_{m+n}) \in C, X_{m+n} = i, X_{m+n+1} = j) = \\ &= \frac{1}{P(X_T \in B)} \cdot \sum_{m=0}^{\infty} P(T = m, X_m \in B, (X_m, X_{m+1}, ..., X_{m+n}) \in C, X_{m+n} = i) \cdot p(i, j) = \\ &= \frac{1}{P(X_T \in B)} \cdot P(X_T \in B, (X_T, X_{T+1}, ..., X_{T+n}) \in C, X_{T+n} = i) \cdot p(i, j) = \end{split}$$

 $= P((X_T, X_{T+1}, ..., X_{T+n}) \in C, X_{T+n} = i \mid X_T \in B) \cdot p(i, j)$

Čas prvega in k-tega povratka

Definicija: Čas prvega povratka

Slučajno spremenljivko $T_s = min\{n \ge 1, X_n = s\}$, kjer je $s \in S$ začetno stanje ($X_0 = s$), imenujemo **čas prvega povratka**, torej čas, ko se markovska veriga prvič ponovno vrne v stanje s.

Definicija: Čas k-tega povratka

Slučajno spremenljivko $T_s^k = min\{n > T_s^{k-1}, X_n = s\}$, kjer je $s \in S$ začetno stanje ($X_0 = s$), imenujemo **čas** k-tega povratka, torej čas, ko se markovska veriga k-tič ponovno vrne v stanje s

Minljiva in povrnljiva stanja

Definicija: minljivo stanje

Stanje $s \in S$ je **minljivo**, če velja, da ko začnemo markovsko verigo v tem stanju, se s pozitivno verjetnostjo zgodi, da se veriga nikoli več ne vrne vanj.

Torej $P_s(T_s = \infty) > 0$ oziroma $P_s(T_s < \infty) < 1$.

Definicija: povrnljivo stanje

Stanje $s \in S$ je **povrnljivo**, če velja, da ko začnemo markovsko verigo v tem stanju, se bo veriga skoraj gotovo vrnila vanj.

Torej $P_s(T_s = \infty) = 0$ oziroma $P_s(T_s < \infty) = 1$.

Kockarjev propad

Zgled: Kockarjev propad

Primer kockarjevega propada za N=4.

Socialna mobilnost

Zgled: Socialna mobilnost

Naj bo X_n družbeni položaj družine v n-ti generaciji, ki je lahko 1 = nizek, 2 = srednji in 3 = visok. Naj bo markovska veriga $X_0, X_1, ...$ predstavljena z naslednjo tabelo oz. matriko.

	1	2	3
1	,7	,2	,1
2	,3	,5	,2
3	,2	,4	,4

Socialna mobilnost

Dokazujemo, da je

$$P_s(T_s = \infty) = 0$$

$$\{T_s = \infty\} = \{X_1 \neq s, X_2 \neq s, \dots\}.$$

Definiramo množice

$$A_n := \{X_1 \neq s, X_2 \neq s, ..., X_n \neq s\}$$

za katere velja

$$A_1 \supseteq A_2 \supseteq \dots \quad in \quad \bigcap_{n=1}^{\infty} A_n = \{T_s = \infty\}.$$

Za $\forall t \in S$ velja

$$P_s(A_{n-1} \cap \{X_n = t, X_{n+1} = s\}) =$$

$$= P_s(A_{n-1} \cap \{X_n = t\}) \cdot p(t, s) \ge$$

$$\ge 0.1 \cdot P_s(A_{n-1} \cap \{X_n = t\})$$

Socialna mobilnost

Ker neenakost velja za vsak t, če seštejemo verjetnosti po vseh $t \in S \setminus \{s\}$, se ta ohrani in velja

$$P_s(A_{n-1} \cap \{X_n \neq s, X_{n+1} = s\}) \ge$$

 $\ge 0.1 \cdot P_s(A_{n-1} \cap \{X_n \neq s\}).$

Torej velja

$$P_s(A_n \cap \{X_{n+1} = s\}) \ge 0.1 \cdot P_s(A_n).$$

Neenakost uporabimo pri naslednji oceni

$$P_s(A_{n+1}) = P_s(A_n) - P_s(A_n \cap \{X_{n+1} = s\}) \le 0.9 \cdot P_s(A_n)$$

in velja, da je

$$P_s(A_n) < 0.9^n$$

in ko $n \to \infty$ gre $P_s(A_n) \to 0$.

Lastnost minljivih in povrnljivih stanj

Trditev:

Naj bo T_s čas prvega povratka v stanje s in T_s^k čas k-tega povratka. Potem velja

$$P_s(T_s^k < \infty) = (P_s(T_s < \infty))^k$$

Dokaz.

Dokaz temelji na krepki lastnosti Markova.

$$\{T_s^k < \infty\} \subseteq \{T_s < \infty\}$$

$$P_s(T_c^k < \infty) = P_s(T_s < \infty) \cdot P_s(T_c^k < \infty \mid T_s < \infty)$$

pogojno na $\{T_s<\infty\}=\{X_{T_s}=s\}$ je $X_{T_s},X_{T_{s+1}},\dots$ spet markovska veriga s prehodno matriko p(i,j), ki se začne v s.

Zato je

$$P_s(T_s^k < \infty \mid T_s < \infty) = P_s(T_s^{k-1} < \infty)$$

$$P_s(T_s^k < \infty) = P_s(T_s < \infty) \cdot P_s(T_s^{k-1} < \infty)$$

Z indukcijo se potem dokončno pokaže, da $P_s(T_s^k < \infty) = (P_s(T_s < \infty))^k$.

Lastnost minljivih in povrnljivih stanj

Minljiva stanja

Če je stanje minljivo, potem velja, da se markovska veriga vrne vanj le končno mnogokrat.

$$P_s(\bigcup_{k=1}^{\infty} \{T_s^k = \infty\}) = 1 \iff P_s(\bigcap_{k=1}^{\infty} \{T_s^k < \infty\}) = 0$$

Povrnljiva stanja

Če je stanje povrnljivo, potem velja, da se markovska veriga vrne vanj neskončno mnogokrat.

$$P_s(\bigcap_{k=1}^{\infty} \{T_s^k < \infty\}) = 1 \iff P_s(\bigcup_{k=1}^{\infty} \{T_s^k = \infty\}) = 0$$