Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-225. Вариант 3

1. Пусть
$$z = \frac{\sqrt{3}}{2} - \frac{i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\sqrt{3} + i}$ имеет аргумент $-\frac{43\pi}{24}$.

2. Решить систему уравнений:

$$\begin{cases} x(-2+10i) + y(8-10i) = 118+34i \\ x(-15+13i) + y(5+6i) = 169-63i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 10x^5 + 12x^4 136x^3 183x^2 + 686x 870$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 1 + i$, $x_2 = -5 + 2i$, $x_3 = -5$.
- 4. Даны 3 комплексных числа: -29-6i, 10+25i, 3-7i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2i, z_2 = \sqrt{3} i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z-2| < 3\\ |arg(z+1)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-3, 0, 3), b = (6, -5, -9), c = (-3, 7, 7). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-9, -3, -1) и плоскость P: -26x + 18y 14z + 404 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(14, -8, -4), $M_1(-2, -6, 8)$, $M_2(-8, -2, 8)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -10x - 31y + 14z + 267 = 0\\ -6x - 12y + 10z + 40 = 0 \end{cases} \qquad L_2: \begin{cases} -4x - 19y + 4z - 952 = 0\\ 14x + 10y + 2z + 800 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.