- Some NP-complete problems:
 - SATISFIABILITY
 - 0/1 Knapsack
 - PARTITION
 - Two-Processor Non-Preemptive Schedule Length
 - CLIQUE : An undirected graph G=(V, E) and a positive integer $J \le |V|$

Question: Does G contain a clique (complete subgraph) of size J or more?

Proving NP-Completeness Results

• Example 1 : Show that the PARTITION problem is NP-C (NP-complete).

Given a known NP-C problem - Sum of Subset Problem (SS), show that PARTITION problem is NP-C.

SS Problem

Instance: Given a finite set $A = \{a_1, a_2, ..., a_n\}$ of n positive numbers & a positive number M.

Question : Is there a subset $A' \subseteq A$ such that $\Sigma A' = M$

PARTITION Problem

Instance : Given a finite set $B=\{b_1, b_2, ..., b_m\}$ of m positive integers.

Question : Is there a subset B' \subseteq B such that Σ B' = Σ (B-B')

(1) Show that: PARTITION is in NP

step#1: guess a subset B' of B (use one guess statement for each element) O(m)

step#2: verify Σ B' = Σ (B-B')? O(m)

Total O(m)

(2) Show that: $SS \propto PARTITION$

Given an arbitrary instance of SS,

i.e.
$$A = \{a_1, a_2, ..., a_n\}$$
 and M,

Construct an instance of PARTITION as follows:

B={
$$b_1$$
, b_2 , ..., b_n , b_{n+1} , b_{n+2} } of m = n+2 positive numbers where

$$b_{i} = a_{i} \text{ for } 1 \le i \le n$$

$$b_{n+1} = M + 1$$

$$b_{n+2} = \Sigma A + (1 - M)$$

Note: Σ b_i = 2 Σ A + 2. Also, the transformation can be done in polynomial time (based on input size of A & M)

To show the transformation is correct: The SS problem has a solution if and only if the PARTITION problem has a solution.

➤ If SS problem has a solution, then the PARTITION problem has a solution

assume A' is the solution for SS problem then

$$Z' = A' \cup \{b_{n+2}\}$$
 and $Z-Z' = A-A' \cup \{b_{n+1}\}$
 $\Sigma Z' = M + \Sigma A + (1 - M) = \Sigma A + 1 = \Sigma (Z-Z')$

➤ If the PARTITION problem has a solution then the SS problem has a solution

if Z' is the solution then $\Sigma Z' = \Sigma A + 1$

- \rightarrow exactly one of b_{n+2} or $b_{n+1} \in Z'$
- \rightarrow if $b_{n+2} \in Z'$ then $Z' \{b_{n+2}\} = A'$ and $\Sigma A' = M$ if $b_{n+1} \in Z'$, then use Z Z' to obtain A'