Art Of Problem Solving

David Daogaru

Problem

For a certain value of k, the system

$$x + y + 3z = 10,$$

$$-4x + 2y + 5z = 7,$$

$$kx + z = 3$$

has no solutions. What is this value of k? **Solution**

Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ -4 & 2 & 5 \\ k & 0 & 1 \end{bmatrix}$$
 be the matrix of the system and

$$\overline{A} = \begin{bmatrix} 1 & 1 & 3 & 10 \\ -4 & 2 & 5 & 7 \\ k & 0 & 1 & 3 \end{bmatrix}$$
 the extended matrix.

$$As\begin{bmatrix}1&1\\-4&2\end{bmatrix}=6\neq 0$$
 we get that $rankA\in\{2,3\}$

$$det A = 6 - k$$
If $k = 6$ then $rank A = 2$

As
$$\begin{vmatrix} 1 & 1 & 10 \\ -4 & 2 & 7 \\ k & 0 & 3 \end{vmatrix} = 18 - 13k \neq 0$$
 for $k = 6$ so rank $\overline{A} = 3 \neq rankA$

From Kronecker-Capelli we get that the system is incompatible (it has no solutions), so k=6 is a solution.

If $k \neq 6$ then $rankA = rank\overline{A} = 3$ and again from Kronecker-Capelli we have that the system is compatible so there is at least a solution.

Therefore k = 6 is the unique value that makes the system incompatible.

Kronecker-Capelli Theorem

A linear system is compatible if and only if $rankA = rank\overline{A}$

Property $f: R \to R$ a continuous and periodic function, with period T > 0, $a \in R$ and F_0 a primitive for $f|_{[a,a+T]}$. Then, function $F: R \to R$, $F(x) = F_0(x - x)$ kT) + $k(F_0(a+T) - F_0(a))$, $\forall x \in (a+kT, a+(k+1)T)$, $k \in Z$ is a primitive for f. *Proof*: Let $x_0 \in R$. If $k \in Z$ so that $x_0 \in (a + kT, a + (k+1)T)$, then F is differentiable at x_0 and $F'(x_0) = F'_0(x_0 - kT) = f(x_0 - kT) = f(x_0)$. If $x_0 = a + (k + 1)T$, $k \in \mathbb{Z}$, then: $\lim_{x \to x_0, x < x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0, x < x_0} \frac{F_0(x - kT) - F_0(a + T)}{x - kT - (a + T)} = F'_0(a + T) = f(a + T) = f(x_0)$ and $\lim_{x \to x_0, x > x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0, x > x_0} \frac{F_0(x - (k + 1)T) - F_0(a)}{x - (k + 1)T - a} = F'_0(a) = f(a) = f(x_0)$ Then F is differentiable at x_0 and $F'(x_0) = f(x_0)$, $\forall x_0 \in R$, so F is a primitive for f.

Example: Find a primitive on R of function $f: R \to R, f(x) = \sqrt{1 - \sin x}$

Solution: Function f is continuous and periodic with period $T=2\pi$. We have:

$$f(x) = \sqrt{\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)^2} = \left|\sin\frac{x}{2} - \cos\frac{x}{2}\right|.$$

For $x \in \left[\frac{\pi}{2}, \frac{5\pi}{2}\right]$, so $\frac{x}{2} \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ we have $f(x) = \sin \frac{x}{2} - \cos \frac{x}{2}$ and $F_0(x) = -2\cos \frac{x}{2} - 2\sin \frac{x}{2}$ is a primitive of function $f|_{\left[\frac{\pi}{2}, \frac{5\pi}{2}\right]}$. Because $F_0\left(\frac{5\pi}{2}\right) - F_0\left(\frac{\pi}{2}\right) = 4\sqrt{2}$ it results that

 $F: R \to R, F(x) = F_0(x - 2k\pi) + k \cdot 4\sqrt{2}, \forall x \in \left(\frac{\pi}{2} + 2k\pi, \frac{5\pi}{2} + 2k\pi\right] \text{ and } k \in \mathbb{Z},$ is a primitive on R for f.

Problem
$$\int_{-1}^{3} \frac{x}{x^3+1} dx$$

Solution

The integral does not converge

$$\frac{x}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$$

Indefinite integral : $\frac{x}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$ We want the following relation to be true in order to establish the equality from above

$$A(x^{2} - x + 1) + (Bx + C)(x + 1) = x (A + B)x^{2} + (-A + B + C)x + (A + C) = x$$

 $A(x^{2} - x + 1) + (Bx + C)(x + 1) = x (A + B)x^{2} + (-A + B + C)x + (A + C) = x$ So we have the system $\begin{cases} A + B = 0 \\ -A + B + C = 1 \end{cases}$ with solutions: $A = -\frac{1}{3}$ A + C = 0

$$B = \frac{1}{3}$$

$$C = \frac{1}{3} \text{ So the fraction is rewritten as: } \frac{x+1}{3(x^2-x+1)} - \frac{1}{3(x+1)} I = \int \frac{x+1}{3(x^2-x+1)} - \frac{1}{3(x+1)} = \frac{1}{3} \left(\int \frac{x}{x^2-x+1} + \int \frac{1}{x^2-x+1} - \int \frac{1}{x+1} \right)$$

$$I = \frac{1}{3} \left(\frac{1}{2} \cdot \int \frac{2x-1+1}{x^2-x+1} + \int \frac{1}{x^2-x+1} - \int \frac{1}{x+1} \right)$$

$$I = \frac{1}{3} \left(\frac{1}{2} \cdot \int \frac{\frac{d}{dx}(x^2-x+1)}{x^2-x+1} + \frac{1}{2} \cdot \int \frac{1}{x^2-x+1} + \int \frac{1}{x^2-x+1} - \int \frac{1}{x+1} \right)$$

$$I = \frac{1}{3} \left(\frac{1}{2} \ln|x^2 - x + 1| + \frac{3}{2} \int \frac{1}{x^2-x+1} - \ln|x + 1| \right)$$

$$I = \frac{1}{3} \left(\ln|x^2 - x + 1| - 2\ln|x + 1| + 3 \int \frac{1}{x^2-x+1} \right)$$

$$\frac{1}{3} \left(\int \frac{x}{x^2 - x + 1} + \int \frac{1}{x^2 - x + 1} - \int \frac{1}{x + 1} \right)$$

$$I = \frac{1}{3} \left(\frac{1}{2} \cdot \int \frac{2x - 1 + 1}{x^2 - x + 1} + \int \frac{1}{x^2 - x + 1} - \int \frac{1}{x + 1} \right)$$

$$I = \frac{1}{3} \left(\frac{1}{2} \cdot \int \frac{\frac{d}{dx}(x^2 - x + 1)}{x^2 - x + 1} + \frac{1}{2} \cdot \int \frac{1}{x^2 - x + 1} + \int \frac{1}{x^2 - x + 1} - \int \frac{1}{x + 1} \right)$$

$$I = \frac{1}{3} \left(\frac{1}{2} \ln|x^2 - x + 1| + \frac{3}{2} \int \frac{1}{x^2 - x + 1} - \ln|x + 1| \right)$$

$$I = \frac{1}{6} \left(ln|x^2 - x + 1| - 2ln|x + 1| + 3 \int \frac{1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} \right)$$

$$I = \frac{1}{6} \left(ln|x^2 - x + 1| - 2ln|x + 1| + 2\sqrt{3} \cdot arctan\frac{2x - 1}{\sqrt{3}} \right) + C$$
When we try to compute $F(-1)$ we obtain $ln\ 0$ which does not exist.

$$I = \frac{1}{6} \left(\ln|x^2 - x + 1| - 2\ln|x + 1| + 2\sqrt{3} \cdot \arctan\frac{2x - 1}{\sqrt{3}} \right) + C$$

Problem

Evaluate: $\int_0^\infty \frac{x^3}{1+x^6} dx$

Solution

Using the formula for $x^{2n} + y^{2n}$ we obtain $1 + x^6 = (x^2 + \sqrt{3}x + 1)(x^2 + 1)(x^2 - \sqrt{3}x + 1)$ so the fraction can be written as: $\frac{x}{6(x^2-\sqrt{3}x+1)}-\frac{x}{3(x^2+1)}+\frac{x}{6(x^2+\sqrt{3}x+1)}$

General way: $\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \int \frac{2ax}{a^2x + bx + c} dx = \frac{1}{2a} \int \frac{2ax + b - b}{ax^2 + bx + c} dx = \frac{1}{2a} \int \frac{2ax + b}{ax^2 + bx + c} dx - \frac{1}{2a} \int \frac{2ax + b}{ax^2 + bx + c} dx$ $\frac{b}{2a} \int \frac{1}{ax^2 + bx + c} dx$

$$\frac{1}{2a} \int \frac{2ax+b}{ax^2+bx+c} dx = \frac{1}{2a} \int \frac{\frac{d}{dx}(ax^2+bx+c)}{ax^2+bx+c} dx = \frac{1}{2a} ln|ax^2+bx+c| + C$$

$$\int \frac{1}{ax^2+bx+c} dx = \int \frac{1}{a(x+\frac{b}{2a})^2 + \frac{-\Delta}{4a}} dx = \frac{1}{a} \int \frac{1}{(x+\frac{b}{2a})^2 + \frac{-\Delta}{4a^2}} dx$$

$$\frac{1}{a} \int \frac{1}{t^2 - \frac{\Delta}{4a^2}} dt$$

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} tan^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} ln \left| \frac{x - a}{x + a} \right| + C \text{ or } -\frac{1}{a} coth^{-1} \frac{x}{a}$$

Substituting $x+\frac{b}{2a}=t$ we get $\frac{1}{a}\int\frac{1}{t^2-\frac{\Delta}{4a^2}}dt$ If $\Delta<0$ we use the following formula $\int\frac{1}{x^2+a^2}dx=\frac{1}{a}tan^{-1}\frac{x}{a}+C$ If $\Delta>0$ we use the following formula $\int\frac{1}{x^2-a^2}dx=\frac{1}{2a}ln\left|\frac{x-a}{x+a}\right|+C \text{ or } -\frac{1}{a}coth^{-1}\frac{x}{a}$ Finally, using the above formulas, we compute the definite integrals to get: $\lim_{x\to\infty}I-F(0)=0-\left(\frac{-1}{\sqrt{3}}\cdot tan^{-1}(\sqrt{3})\right)=\frac{\pi}{3\sqrt{3}}$

Problem

Evaluate: $\int \frac{1}{\sin x + \tan x} dx$

Solution

$$sinx = \frac{2tan(\frac{x}{2})}{1+tan^2\frac{x}{2}} cosx = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}} \text{ So } tanx = \frac{2tan(\frac{x}{2})}{1-tan^2\frac{x}{2}} I = \int \frac{1}{sinx+tanx} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}}}{\frac{1}{1+tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}}}{\frac{1}{1+tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}}}{\frac{1}{1+tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}}}{\frac{1}{1+tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}}}{\frac{1}{1+tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac{1}{\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} + \frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}}}{\frac{1}{1+tan^2\frac{x}{2}}} dx = \int \frac{1}{\frac{1}{sinx+tanx}} dx = \int \frac$$

Alternative solution

$$\begin{split} &sec(x) = \frac{1}{sin(x) + tan(x)} dx = \int \frac{sec(x)tan(x)}{tan^2(x) + sec(x)tan^2(x)} dx \\ &Preparing to substitute with $u(x) = sec(x)$, we rewrite the integral using $tan^2(x) = sec^2(x) - 1$
$$&I = \int \frac{sec(x)tan(x)}{sec^2 - 1 + sec^3(x) - sec(x)} dx = \int \frac{sec(x)tan(x)}{(sec(x) - 1)(1 + sec(x))^2} dx \\ du &= tan(x)sec(x) \\ &I = \int \frac{1}{(u - 1)(u + 1)^2} du \\ &\text{Using partial fractions we have:} \\ &I = \int \left(-\frac{1}{4(u + 1)} - \frac{1}{2(u + 1)^2} + \frac{1}{4(u - 1)} \right) du \\ &I = -\frac{1}{4} \int \frac{1}{u + 1} du - \frac{1}{2} \int \frac{1}{(u + 1)^2} du + \frac{1}{4} \int \frac{1}{u - 1} du \\ &I = -\frac{1}{4} ln(u + 1) + \frac{1}{2} \cdot \frac{1}{u + 1} + \frac{1}{4} ln(u - 1) + C \\ &I = -\frac{1}{4} ln(sec(x) + 1) + \frac{1}{2} \cdot \frac{1}{sec(x) + 1} + \frac{1}{4} ln(sec(x) - 1) + C \\ &\text{To obtain an alternative form:} \\ &I = \frac{(sec(x) + 1) ln(sec(x) - 1) - (sec(x) + 1) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{sec(x) ln(sec(x) - 1) + ln(sec(x) + 1) - ln(sec(x) + 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) + 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) - 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) - 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{ln(tan^2(\frac{x}{2})) + sec(x) ln(sec(x) - 1) - sec(x) ln(sec(x) - 1) + 2}{4sec(x) + 4} + C \\ &I = \frac{$$$$

To make the natural logarithm exist we should use the absolute value for the fraction and since it's always negative we should consider it $\frac{1-\cos(x)}{\cos(x)+1}$

Problem

Evaluate:

$$\int x * arcsin(x) dx$$

Solution

By parts: $\int (x \cdot arcsin(x))dx = \frac{x^2}{2} \cdot arcsin(x) - \int \frac{x^2}{2} \cdot \frac{1}{\sqrt{1-x^2}}dx$ Then we make the notation: $I = -\int \frac{x^2}{2} \cdot \frac{1}{\sqrt{1-x^2}}dx = -\frac{1}{2}\int \frac{x^2}{\sqrt{1-x^2}}dx$ We take into consideration that: $\frac{d}{dx}\sqrt{1-x^2} = -\frac{x}{\sqrt{1-x^2}}$ Therefore: $I = \frac{1}{2}\int x(\frac{d}{dx}\sqrt{1-x^2})dx$ By parts we have: $I = \frac{1}{2} \cdot x\sqrt{1-x^2} - \frac{1}{2}\int \sqrt{1-x^2}dx$ Which is $\frac{1}{2} \cdot x\sqrt{1-x^2} - \frac{1}{2}\int \frac{1-x^2}{\sqrt{1-x^2}}dx$ So, $I = \frac{1}{2} \cdot x\sqrt{1-x^2} - \frac{1}{2}\int \frac{1}{\sqrt{1-x^2}}dx + \frac{1}{2}\int \frac{x^2}{\sqrt{1-x^2}}dx$ $I = \frac{1}{2}(x\sqrt{1-x^2} - arcsin(x)) - I$ $2I = \frac{1}{2}(x\sqrt{1-x^2} - arcsin(x)) + C$ So the result is: $\int (x \cdot arcsin(x))dx = \frac{x^2}{2} \cdot arcsin(x) + \frac{1}{4}(x\sqrt{1-x^2} - arcsin(x)) + C$ Or: $\frac{2x^2-1}{4} \cdot arcsin(x) + \frac{1}{4}x\sqrt{1-x^2} + C$