Due Jun 30, 11:59 PM CST

=

•	Congratulations! You passed!		Cata in 1th
	Latest Submission recei 4 4 Q dd 25.71%	To pass 80% or higher	Go to next item
ı. u	Submit your assignment sing Image Generator, how do you label images? Due Jun 30, 11:59 PM CST Attempts 3 every 8 hours TensorFlow figures it out from the contents		Try agai n / 1 poir
	It's based on the directory the image is contained in Receive grade It's based on the file name To Pass 80% or higher You have to manually do it	85.71%	ew Feedback your highest score
	 ✓ Correct That's right! The directory of the image is the label. △ Like		
. V	hat method on the Image Generator is used to normalize the	e image?	1 / 1 poi
	Rescale_image		
	normalize_image		
(rescale		
(normalize		
	✓ Correct You've got it! This is the correct method for normalizing	images.	
. н	ow did we specify the training size for the images?		0 / 1 poi
	The target_size parameter on the training generator		
	The target_size parameter on the validation generator		
(The training_size parameter on the training generator		
	The training_size parameter on the validation generator		
	⊗ Incorrect It seems like the obvious answer, but unfortunately this	is incorrect.	
. v	Then we specify the input_shape to be (300, 300, 3), what doe	es that mean?	1 / 1 poi
	Every Image will be 300x300 pixels, and there should be 3	Convolutional Layers	
	There will be 300 images, each size 300, loaded in batches	s of 3	
(Every Image will be 300x300 pixels, with 3 bytes to define	color	
	There will be 300 horses and 300 humans, loaded in batches of 3		
	✓ Correct Nailed it! input_shape specifies image resolution.		
. If	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?		1 / 1 poi
	O No risk, that's a great result		
	O You're underfitting on your validation data		
	O You're overfitting on your validation data		
(You're overfitting on your training data		
	○ Correct Great job! The analysis corresponds too closely to the tr data.	aining data, and may therefore fail to fit add	litional
i. C	Convolutional Neural Networks are better for classifying images like horses and humans because:		1 / 1 poi
	There's a wide variety of horses		
	 Correct Way to go! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction. 		

You've got it! CNNs are better in this case as they are independent from prior knowledge and human

 \bigcirc Correct

