6. Confronto di successioni infinite

Le successioni di termini generali

$$\log_a n$$
 n^{α} a^n $n!$ n^n $(a > 1, \alpha > 0)$

sono ordinate in ordine di infinito crescente, ciò significa che

$$\lim_{n\to\infty}\frac{\log_a n}{n^\alpha}=\lim_{n\to\infty}\frac{n^\alpha}{a^n}=\lim_{n\to\infty}\frac{a^n}{n!}=\lim_{n\to\infty}\frac{n!}{n^n}=0.$$

Quindi nei limiti che seguono occorre osservare qual è l'infinito di ordine superiore.

Esempi

a)
$$\lim_{n\to\infty}\frac{n^4}{5^n}=0$$
; b) $\lim_{n\to\infty}\frac{n^n}{n!}=+\infty$; c) $\lim_{n\to\infty}\frac{\log_3 n}{4^n}=0$;

d)
$$\lim_{n\to\infty}\frac{n!-4^n}{2^n-n^n}$$

mettendo in evidenza a numeratore e denominatore gli infiniti di ordine più elevato, si ha:

$$\lim_{n \to \infty} \frac{n! - 4^n}{2^n - n^n} = \lim_{n \to \infty} \frac{n! \left(1 - \frac{4^n}{n!}\right)}{n^n \left(\frac{2^n}{n^n} - 1\right)} = -\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Esercizi

(gli esercizi con asterisco sono avviati)

Calcolare i seguenti limiti:

1)
$$\lim_{n \to \infty} \frac{n^n + n}{5^n}$$
 *2) $\lim_{n \to \infty} \frac{n^{n+1} + 3^n}{n!}$

3)
$$\lim_{n \to \infty} \frac{\log_3 n + \sin n}{\sqrt[3]{n}}$$
 4)
$$\lim_{n \to \infty} \frac{e^n - \sin n}{n^2}$$

5)
$$\lim_{n \to \infty} \frac{\log_2 n}{n^3}$$
 6) $\lim_{n \to \infty} \frac{2n^2 + n!}{2^n (n+1)!}$

7)
$$\lim_{n \to \infty} \frac{\sqrt[5]{n^3 + n^4}}{7^n}$$
 *8) $\lim_{n \to \infty} \frac{\log \frac{1}{n}}{n}$

9)
$$\lim_{n\to\infty} \frac{3^n + n^3}{5^n + n^n}$$
 10) $\lim_{n\to\infty} \frac{e^{n^2} + n}{ne^n + n^2}$

11)
$$\lim_{n\to\infty} \frac{n^n + \log n}{2^n}$$
 12)
$$\lim_{n\to\infty} \frac{\log_2 n - 2^n}{n^4 + n^n}$$

*13)
$$\lim_{n \to \infty} \frac{2^n - 5^n}{4^n + 6^n}$$
 14) $\lim_{n \to \infty} \frac{n^2 - 5^n}{n^4 + 5^n}$

*15)
$$\lim_{n\to\infty} \frac{(-3)^n + 5^n}{(-4)^{n+1} + 5^{n+1}}$$
 16) $\lim_{n\to\infty} \frac{2^n + n!}{(n+1)!}$

17)
$$\lim_{n \to \infty} \frac{n^{n^2 + n!}}{3^n + n^3}$$
 18) $\lim_{n \to \infty} \frac{n^n (n^2 + \log n)}{2n! n^2}$

*19)
$$\lim_{n\to\infty} \frac{n^{n-2} + (n-3)^n}{n^n - n!}$$
 20)
$$\lim_{n\to\infty} \frac{n^{n-4} + (n-1)^n}{5n^n - 2n!}$$

* 21)
$$\lim_{n\to\infty} \frac{n^n + 3^n}{6^{n\log_6 n} - n!}$$

* 22)
$$\lim_{n\to\infty} \frac{(2n)!}{n^n}$$
;

* 23)
$$\lim_{n\to\infty} \left(1 + \frac{n^2}{n^n}\right)^{n!}$$

$$24) \lim_{n\to\infty} \left(1+\frac{2}{n!}\right)^{n^n}$$

*25)
$$\lim_{n\to\infty} \sqrt[n]{n}$$

26)
$$\lim_{n \to \infty} \sqrt[n]{n^2 + 1}$$

Soluzioni

1. S.
$$+\infty$$
;

* 2. S.
$$+\infty$$
; $(\lim_{n\to\infty}\frac{n^{n+1}+3^n}{n!}=\lim_{n\to\infty}\frac{n^{n+1}}{n!}+\lim_{n\to\infty}\frac{3^n}{n!}=+\infty+0=+\infty)$;

3. S.
$$0$$
; **4. S.** $+\infty$; **5. S.** 0 ; **6. S.** 0 ; **7. S.** 0 ;

*8. S. 0;
$$(\lim_{n\to\infty}\frac{\log\frac{1}{n}}{n}=\lim_{n\to\infty}\frac{-\log n}{n}=0)$$
;

9. S. 0; **10.** S.
$$+\infty$$
; **11.** S. $+\infty$; **12.** S. 0;

*13. S. 0;
$$\left(\frac{2^n-5^n}{4^n+6^n} = \frac{5^n\left(\left(\frac{2}{5}\right)^n-1\right)}{6^n\left(\left(\frac{4}{6}\right)^n+1\right)} \dots\right);$$

14. S.
$$-1$$
;

*15. S.
$$\frac{1}{5}$$
; $\left(\lim_{n\to\infty}\frac{(-3)^n+5^n}{(-4)^{n+1}+5^{n+1}} = \lim_{n\to\infty}\frac{5^n\left(\left(-\frac{3}{5}\right)^n+1\right)}{5^{n+1}\left(\left(-\frac{4}{5}\right)^{n+1}+1\right)} = \frac{1}{5}\right)$;

16. S. 0; **17.** S.
$$+\infty$$
; **18.** S. $+\infty$;

19. S.
$$\frac{1}{e^3}$$
;

$$(\lim_{n\to\infty} \frac{n^{n-2} + (n-3)^n}{n^n - n!} = \lim_{n\to\infty} \frac{n^n \left(\frac{1}{n^2} + \left(1 - \frac{3}{n}\right)^n\right)}{n^n \left(1 - \frac{n!}{n^n}\right)} = e^{-3} \text{ , poich\'e} \lim_{n\to\infty} \left(1 - \frac{3}{n}\right)^n = \lim_{n\to\infty} \left[\left(1 + \frac{1}{-\frac{n}{3}}\right)^{-\frac{n}{3}}\right]^{-3} = e^{-3} \text{); }$$

20.S.
$$\frac{1}{5e}$$
;

*21. S. 1;
$$\left(\lim_{n\to\infty}\frac{n^n+3^n}{6^{n\log_6 n}-n!}=\lim_{n\to\infty}\frac{n^n+3^n}{n^n-n!}=1\right)$$
;

L. Mereu – A. Nanni Successioni numeriche

*22. S.
$$+\infty$$
; $(\frac{(2n)!}{n^n} = \frac{2n}{n} \cdot \frac{2n-1}{n} \cdot ... \cdot \frac{n+1}{n} \cdot n! > n!)$;

*23 S. 1;
$$\left(\lim_{n\to\infty}\left(1+\frac{n^2}{n^n}\right)^{n!}=\lim_{n\to\infty}\left[\left(1+\frac{1}{n^{n-2}}\right)^{n^{n-2}}\right]^{\frac{n!}{n^{n-2}}}=e^0=1$$
 poiché $\lim_{n\to\infty}\frac{n!}{n^{n-2}}=0$);

24. S.+∞;

*25. S. 1 ; (
$$\sqrt[n]{n} = e^{\log \sqrt[n]{n}} = e^{\frac{\log n}{n}}$$
 ...);

*26 S. 1;
$$(\sqrt[n]{n^2+1}=e^{\frac{1}{n}log(n^2+1)}...)$$
;