

NAVODAYA INSTITUTE OF TECHNOLOGY, RAICHUR

DEPARMENT OF COMPUTER SCIENCE & ENGINEERING Cryptography

MODULE 2

258 CHAPTER 8 / RANDOM BIT GENERATION AND STREAM CIPHERS

cryptanalysis. Thus, cryptographic algorithms can serve as the core of PRNGs. Three broad categories of cryptographic algorithms are commonly used to create PRNGs:

- -Symmetric block ciphers: This approach is discussed in Section 8.3.
- -Asymmetric ciphers: The number theoretic concepts used for an asymmetric cipher can also be adapted for a PRNG; this approach is examined in Chapter 10.
- **-Hash functions and message authentication codes:** This approach is examined in Chapter 12.

Any of these approaches can yield a cryptographically strong PRNG. A purpose-built algorithm may be provided by an operating system for general use. For applications that already use certain cryptographic algorithms for encryption or authentication, it makes sense to reuse the same code for the PRNG. Thus, all of these approaches are in common use.

8.2 PSEUDORANDOM NUMBER GENERATORS

In this section, we look at two types of algorithms for PRNGs.

Linear Congruential Generators

A widely used technique for pseudorandom number generation is an algorithm first proposed by Lehmer [LEHM51], which is known as the linear congruential method. The algorithm is parameterized with four numbers, as follows:

m the modulus m 70 a the multiplier 0.6 a.6 m.c the increment 0...c

6 m

The sequence of random numbers $\{X_n\}$ is obtained via the following iterative equation:

$$X_{n+1} = (aX_n + c) \mod m$$

If m, a, c, and X_0 are integers, then this technique will produce a sequence of integers with each integer in the range $0 \dots X_n 6 m$.

The selection of values for a, c, and m is critical in developing a good random number generator. For example, consider a = c = 1. The sequence produced is obviously not satisfactory. Now consider the values a = 7, c = 0, m = 32, and $X_0 = 1$. This generates the sequence $\{7, 17, 23, 1, 7, \text{ etc.}\}$, which is also clearly unsatisfactory. Of the 32 possible values, only four are used; thus, the sequence is said to have a period of 4. If, instead, we change the value of a to 5, then the sequence is $\{5, 25, 29, 17, 21, 9, 13, 1, 5, \text{ etc.}\}$, which increases the period to 8.

We would like m to be very large, so that there is the potential for producing a long series of distinct random numbers. A common criterion is that m be nearly

equal to the maximum representable nonnegative integer for a given computer. Thus, a value of m near to or equal to 2^{31} is typically chosen.

[PARK88] proposes three tests to be used in evaluating a random number generator:

- T_1 : The function should be a full-period generating function. That is, the function should generate all the numbers from 0 through m 1 before repeating.
- T₂: The generated sequence should appear random.
- T₃: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With respect to T_1 , it can be shown that if m is prime and c = 0, then for certain values of a the period of the generating function is m - 1, with only the value 0 missing. For 32-bit arithmetic, a convenient prime value of m is $2^{31} - 1$. Thus, the generating function becomes

$$X_{n+1} = (aX_n) \mod (2^{31} - 1)$$

Of the more than 2 billion possible choices for a, only a handful of multipliers pass all three tests. One such value is $a = 7^5 = 16807$, which was originally selected for use in the IBM 360 family of computers [LEWI69]. This generator is widely used and has been subjected to a more thorough testing than any other PRNG. It is frequently recommended for statistical and simulation work (e.g., [JAIN91]).

The strength of the linear congruential algorithm is that if the multiplier and modulus are properly chosen, the resulting sequence of numbers will be statistically indistinguishable from a sequence drawn at random (but without replacement) from the set 1, 2, c, m-1. But there is nothing random at all about the algorithm, apart from the choice

of the initial value X_0 . Once that value is chosen, the remaining numbers in the sequence follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the parameters are known (e.g., $a = 7^5$, c = 0, $m = 2^{31} - 1$), then once a single number is discovered, all subsequent numbers are known. Even if the opponent knows only that a linear congruential algorithm is being used, knowledge of a small part of the sequence is sufficient to determine the parameters of the algorithm.

Suppose that the opponent is able to determine values for X_0 , X_1 , X_2 , and X_3 . Then

$$X_1 = (aX_0 + c) \mod m$$
$$X_2 = (aX_1 + c) \mod m$$
$$X_3 = (aX_2 + c) \mod m$$

These equations can be solved for a, c, and m.

Thus, although it is nice to be able to use a good PRNG, it is desirable to make the actual sequence used nonreproducible, so that knowledge of part of the sequence on the part of an opponent is insufficient to determine future elements of the sequence. This goal can be achieved in a number of ways. For example, [BRIG79] suggests using an internal system clock to modify the random number stream. One way to use the clock would be to restart the sequence after every N numbers using the current clock value (mod m) as the new seed. Another way would be simply to add the current clock value to each random number (mod m).

260 CHAPTER 8 / RANDOM BIT GENERATION AND STREAM CIPHERS

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom numbers is known as the Blum Blum Shub (BBS) generator (see Figure 8.3), named for its developers [BLUM86]. It has perhaps the strongest public proof of its cryptographic strength of any purpose-built algorithm. The procedure is as follows. First, choose two large prime numbers, p and q, that both have a remainder of 3 when divided by 4. That is,

$$p \ \mathsf{K} \ q \ \mathsf{K} \ 3 (\bmod 4)$$

This notation, explained more fully in Chapter 4, simply means that $(p \mod 4) = (q \mod 4)$ = 3. For example, the prime numbers 7 and 11 satisfy 7 K 11 K 3(mod 4). Let n = p * q. Next, choose a random number s, such that s is relatively prime to n; this is equivalent to saying that neither p nor q is a factor of s. Then the BBS generator produces a sequence of bits B_i according to the following algorithm:

$$X_0 = s^2 \mod n$$

for $i = 1$ to ∞
 $X_i = (X_{i-1})^2 \mod n$
 $B_i = X_i \mod 2$

Thus, the least significant bit is taken at each iteration. Table 8.1 shows an example of BBS operation. Here, n = 192649 = 383 * 503, and the seed s = 101355.

The BBS is referred to as a **cryptographically secure pseudorandom bit generator** (**CSPRBG**). A CSPRBG is defined as one that passes the *next-bit test*, which, in turn, is defined as follows [MENE97]: A pseudorandom bit generator is said to pass the next-bit test if there is not a polynomial-time algorithm¹ that, on input of the first k bits of an output sequence, can predict the (k + 1)st bit with probability significantly greater than 1/2. In other words, given the first k bits of the

Figure 8.3 Blum Blum Shub Block Diagram
8.3 / PSEUDORANDOM NUMBER GENERATION USING A BLOCK CIPHER 261

 Table 8.1
 Example Operation of BBS Generator

i	Xi	_	i	X_i	B_i
0	20749		11	137922	0
			12	123175	1
1	143135		13	8630	0
2	177671	L	14	114386	0
3	97048		15	14863	1
4	89992		16	133015	1
5	174051		17	106065	1
6	80649		18	45870	0
7	45663		19	137171	1
8	69442		20	48060	0

¹ A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

9	186894	0
10	177046	0

sequence, there is not a practical algorithm that can even allow you to state that the next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, the sequence is unpredictable. The security of BBS is based on the difficulty of factoring n. That is, given n, we need to determine its two prime factors p and q.

A popular approach to PRNG construction is to use a symmetric block cipher as the heart of the PRNG mechanism. For any block of plaintext, a symmetric block cipher produces an output block that is apparently random. That is, there are no patterns or regularities in the ciphertext that provide information that can be used to deduce the plaintext. Thus, a symmetric block cipher is a good candidate for building a pseudorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then the security characteristics of the PRNG can be established. Further, many applications already make use of DES or AES, so the inclusion of the block cipher as part of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in NIST SP 800-90A, in the ANSI standard X9.82 (*Random Number Generation*), and in RFC 4086 (*Randomness Requirements for Security*, June 2005). The OFB mode is recommended in X9.82 and RFC 4086.

Figure 8.4 illustrates the two methods. In each case, the seed consists of two parts: the encryption key value and a value V that will be updated after each block of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a 128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented

Table 9.1 Terminology Related to Asymmetric Encryption

Asymmetric Kevs

Two related keys, a public key and a private key, that are used to perform complementary operations, such as encryption and decryption or signature generation and signature verification.

Public Key Certificate

A digital document issued and digitally signed by the private key of a Certification Authority that binds the name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)

A set of policies, processes, server platforms, software and workstations used for the purpose of administering certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06].

Finally, there is a feeling that key distribution is trivial when using public-key encryption, compared to the rather cumbersome handshaking involved with key distribution centers for symmetric encryption. In fact, some form of protocol is needed, generally involving a central agent, and the procedures involved are not simpler nor any more efficient than those required for symmetric encryption (e.g., see analysis in [NEED78]).

This chapter and the next provide an overview of public-key cryptography. First, we look at its conceptual framework. Interestingly, the concept for this technique was developed and published before it was shown to be practical to adopt it. Next, we examine the RSA algorithm, which is the most important encryption/decryption algorithm that has been shown to be feasible for public-key encryption. Other important public-key cryptographic algorithms are covered in Chapter 10.

Much of the theory of public-key cryptosystems is based on number theory. If one is prepared to accept the results given in this chapter, an understanding of number theory is not strictly necessary. However, to gain a full appreciation of public-key algorithms, some understanding of number theory is required. Chapter 2 provides the necessary background in number theory.

Table 9.1 defines some key terms.

9.1 PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS

The concept of public-key cryptography evolved from an attempt to attack two of the most difficult problems associated with symmetric encryption. The first problem is that of key distribution, which is examined in some detail in Chapter 14.

As Chapter 14 discusses, key distribution under symmetric encryption requires either (1) that two communicants already share a key, which somehow has been distributed to them; or (2) the use of a key distribution center. Whitfield Diffie, one of the discoverers of public-key encryption (along with Martin Hellman, both at Stanford University at the time), reasoned that this second requirement negated the very essence of cryptography; the ability to maintain total secrecy over your own communication. As Diffie put it [DIFF88], "what good would it do after all to develop impenetrable cryptosystems, if their users were forced to share their keys with a KDC that could be compromised by either burglary or subpoena?"

The second problem that Diffie pondered, and one that was apparently unrelated to the first, was that of digital signatures. If the use of cryptography was to become widespread, not just in military situations but for commercial and private purposes, then electronic messages and documents would need the equivalent of signatures used in paper documents. That is, could a method be devised that would stipulate, to the satisfaction of all parties, that a digital message had been sent by a particular person? This is a somewhat broader requirement than that of authentication, and its characteristics and ramifications are explored in Chapter 13.

Diffie and Hellman achieved an astounding breakthrough in 1976 [DIFF76 a, b] by coming up with a method that addressed both problems and was radically different from all previous approaches to cryptography, going back over four millennia.²

In the next subsection, we look at the overall framework for public-key cryptography. Then we examine the requirements for the encryption/decryption algorithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but related key for decryption. These algorithms have the following important characteristic.

It is computationally infeasible to determine the decryption key given only knowledge of the cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic.

■ Either of the two related keys can be used for encryption, with the other used for decryption.

A public-key encryption scheme has six ingredients (Figure 9.1a; compare with Figure 3.1).

² Diffie and Hellman first *publicly* introduced the concepts of public-key cryptography in 1976. Hellman credits Merkle with independently discovering the concept at that same time, although Merkle did not publish until 1978 [MERK78]. In fact, the first unclassified document describing public-key distribution and public-key cryptography was a 1974 project proposal by Merkle (http://merkle.com/1974). However, this is not the true beginning. Admiral Bobby Inman, while director of the National Security Agency (NSA), claimed that publickey cryptography had been discovered at NSA in the mid-1960s [SIMM93]. The first documented introduction of these concepts came in 1970, from the Communications-Electronics Security Group, Britain's counterpart to NSA, in a classified report by James Ellis [ELLI70]. Ellis referred to the technique as nonsecret encryption and describes the discovery in [ELLI99].

- Plaintext: This is the readable message or data that is fed into the algorithm as input.
- **Encryption algorithm:** The encryption algorithm performs various transformations on the plaintext.

Figure 9.1 Public-Key Cryptography

■ Public and private keys: This is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption. The exact transformations

performed by the algorithm depend on the public or private key that is provided as input.

- **Ciphertext:** This is the encrypted message produced as output. It depends on the plaintext and the key. For a given message, two different keys will produce two different ciphertexts.
- Decryption algorithm: This algorithm accepts the ciphertext and the matching key and produces the original plaintext.

The essential steps are the following.

- 1. Each user generates a pair of keys to be used for the encryption and decryption of messages.
- 2. Each user places one of the two keys in a public register or other accessible file. This is the public key. The companion key is kept private. As Figure 9.1a suggests, each user maintains a collection of public keys obtained from others.
- 3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice's public key.
- 4. When Alice receives the message, she decrypts it using her private key. No other recipient can decrypt the message because only Alice knows Alice's private key.

With this approach, all participants have access to public keys, and private keys are generated locally by each participant and therefore need never be distributed. As long as a user's private key remains protected and secret, incoming communication is secure. At any time, a system can change its private key and publish the companion public key to replace its old public key.

Table 9.2 summarizes some of the important aspects of symmetric and publickey encryption. To discriminate between the two, we refer to the key used in symmetric encryption as a secret key. The two keys used for asymmetric encryption are referred to as the **public key** and the **private key**. Invariably, the private key is kept secret, but it is referred to as a private key rather than a secret key to avoid confusion with symmetric encryption.

Let us take a closer look at the essential elements of a public-key encryption scheme, using Figure 9.2 (compare with Figure 3.2). There is some source A that produces a message in plaintext, $X = [X_1, X_2, c, X_M]$. The M elements of X are letters in some finite alphabet. The message is intended for destination B. B generates a related pair of keys: a public key, PU_b , and a private key, PR_b . PR_b is known only to B, whereas PU_b is publicly available and therefore accessible by A.

³ The following notation is used consistently throughout. A secret key is represented by K_m , where m is some modifier; for example, K_a is a secret key owned by user A. A public key is represented by PU_a , for user A, and the corresponding private key is PR_a . Encryption of plaintext X can be performed with a secret key, a public key, or a private key, denoted by $E(K_a, X)$, $E(PU_a, X)$, and $E(PR_a, X)$, respectively. Similarly, decryption of ciphertext Y can be performed with a secret key, a public key, or a private key, denoted by $D(K_a, Y)$, $D(PU_a, Y)$, and $D(PR_a, Y)$ Y), respectively.

With the message X and the encryption key PU_b as input, A forms the ciphertext $Y = [Y_1, Y_2, c, Y_N]$:

$$Y = E(PU_b, X)$$

The intended receiver, in possession of the matching private key, is able to invert the transformation:

$$X = D(PR_b, Y)$$

Table 9.2 Conventional and Public-Key Encryption

Conventional Encryption	Public-Key Encryption
1. The same algorithm with the same key is used for encryption and decryption. 2. The sender and receiver must share the algorithm and the key. Needed for Security: 1. The key must be kept secret. 2. It must be impossible or at least impractical to decipher a message if the key is kept secret. 3. Knowledge of the algorithm plus samples of	1. One algorithm is used for encryption and a related algorithm for decryption with a pair of keys, one for encryption and one for decryption. 2. The sender and receiver must each have one of the matched pair of keys (not the same one). 1. One of the two keys must be kept secret. 2. It must be impossible or at least impractical to decipher a message if one of the keys is kept secret. 3. Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine

An adversary, observing Y and having access to PU_b , but not having access to PR_b or X, must attempt to recover X and/or PR_b . It is assumed that the adversary does have knowledge of the encryption (E) and decryption (D) algorithms. If the adversary is interested only in this particular message, then the focus of effort is to

n recover X by generating a plaintext estimate X. Often, however, the adversary is interested in being able to read future messages as well, in which case an attempt is

n

made to recover PR_b by generating an estimate PR_b .

Figure 9.2 Public-Key Cryptosystem: Confidentiality

We mentioned earlier that either of the two related keys can be used for encryption, with the other being used for decryption. This enables a rather different cryptographic scheme to be implemented. Whereas the scheme illustrated in Figure 9.2 provides confidentiality, Figures 9.1b and 9.3 show the use of public-key encryption to provide authentication:

$$Y = E(PR_a, X)$$

$$X = D(PU_a, Y)$$

In this case, A prepares a message to B and encrypts it using A's private key before transmitting it. B can decrypt the message using A's public key. Because the message was encrypted using A's private key, only A could have prepared the message. Therefore, the entire encrypted message serves as a **digital signature**. In addition, it is impossible to alter the message without access to A's private key, so the message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating both author and contents, requires a great deal of storage. Each document must be kept in plaintext to be used for practical purposes. A copy also must be stored in ciphertext so that the origin and contents can be verified in case of a dispute. A more efficient way of achieving the same results is to encrypt a small block of bits that is a function of the document. Such a block, called an authenticator, must have the property that it is infeasible to change the document without changing the authenticator. If the authenticator is encrypted with the sender's private key, it serves as a signature that verifies origin, content, and sequencing. Chapter 13 examines this technique in detail.

Figure 9.3 Public-Key Cryptosystem: Authentication

It is important to emphasize that the encryption process depicted in Figures 9.1b and 9.3 does not provide confidentiality. That is, the message being sent is safe from alteration but not from eavesdropping. This is obvious in the case of a signature based on a portion of the message, because the rest of the message is transmitted in the clear. Even in the case of complete encryption, as shown in Figure 9.3, there is no protection of confidentiality because any observer can decrypt the message by using the sender's public key.

It is, however, possible to provide both the authentication function and confidentiality by a double use of the public-key scheme (Figure 9.4):

$$Z = E(PU_b, E(PR_a,X))$$
$$X = D(PU_a, D(PR_b,Z))$$

In this case, we begin as before by encrypting a message, using the sender's private key. This provides the digital signature. Next, we encrypt again, using the receiver's public key. The final ciphertext can be decrypted only by the intended receiver, who alone has the matching private key. Thus, confidentiality is provided. The disadvantage of this approach is that the public-key algorithm, which is complex, must be exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is otherwise likely to lead to confusion. Public-key systems are characterized by the use of a cryptographic algorithm with two keys, one held private and one available publicly.

Depending on the application, the sender uses either the sender's private key or the receiver's public key, or both, to perform some type of cryptographic

Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy function. In broad terms, we can classify the use of **public-key cryptosystems** into three categories

- Encryption/decryption: The sender encrypts a message with the recipient's public key, and the recipient decrypts the message with the recipient's private key.
- **Digital signature:** The sender "signs" a message with its private key. Signing is achieved by a cryptographic algorithm applied to the message or to a small block of data that is a function of the message.
- **Key exchange:** Two sides cooperate to exchange a session key, which is a secret key for symmetric encryption generated for use for a particular transaction (or session) and valid for a short period of time. Several different approaches are possible, involving the private key(s) of one or both parties; this is discussed in Chapter 10.

Some algorithms are suitable for all three applications, whereas others can be used only for one or two of these applications. Table 9.3 indicates the applications supported by the algorithms discussed in this book.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic algorithm based on two related keys. Diffie and Hellman postulated this system without

demonstrating that such algorithms exist. However, they did lay out the conditions that such algorithms must fulfill [DIFF76b].

- 1. It is computationally easy for a party B to generate a key pair (public key PU_b , private key PR_b).
- 2. It is computationally easy for a sender A, knowing the public key and the message to be encrypted, *M*, to generate the corresponding ciphertext:

$$C = E(PU_b, M)$$

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message:

$$M = D(PR_b, C) = D[PR_b, E(PU_b, M)]$$

4. It is computationally infeasible for an adversary, knowing the public key, PU_b , to determine the private key, PR_b .

Algorithm	Encryption/Decryption	Digital Signature	e Key Exchange	
RSA	Yes	Yes	Yes	
Elliptic Curve	Yes	Yes	Yes	
Diffie-Hellman	No	No	Yes	
DSS	No	Yes	No	

Table 9.3 Applications for Public-Key Cryptosystems

5. It is computationally infeasible for an adversary, knowing the public key, PU_b , and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all public-key applications:

6. The two keys can be applied in either order:

$$M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$$

These are formidable requirements, as evidenced by the fact that only a few algorithms (RSA, elliptic curve cryptography, Diffie–Hellman, DSS) have received widespread acceptance in the several decades since the concept of public-key cryptography was proposed.

Before elaborating on why the requirements are so formidable, let us first recast them. The requirements boil down to the need for a trap-door one-way function. A **one-way**

function⁴ is one that maps a domain into a range such that every function value has a unique inverse, with the condition that the calculation of the function is easy, whereas the calculation of the inverse is infeasible:

$$Y = f(X)$$
 easy $X = f^{-1}(Y)$ infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial time as a function of input length. Thus, if the length of the input is n bits, then the time to compute the function is proportional to n^a , where a is a fixed constant. Such algorithms are said to belong to the class **P**. The term *infeasible* is a much fuzzier concept. In general, we can say a problem is infeasible if the effort to solve it grows faster than polynomial time as a function of input size. For example, if the length of the input is n bits and the time to compute the function is proportional to 2^n , the problem is considered infeasible. Unfortunately, it is difficult to determine if a particular algorithm exhibits this complexity. Furthermore, traditional notions of computational complexity focus on the worst-case or average-case complexity of an algorithm. These measures are inadequate for cryptography, which requires that it be infeasible to invert a function for virtually all inputs, not for the worst case or even average case. A brief introduction to some of these concepts is provided in Appendix W.

We now turn to the definition of a **trap-door one-way function**, which is easy to calculate in one direction and infeasible to calculate in the other direction unless certain additional information is known. With the additional information the inverse can be calculated in polynomial time. We can summarize as follows: A trapdoor one-way function is a family of invertible functions f_k , such that

Y =
$$f_k(X)$$
 easy, if k and X are known $X = f_k^{-1}(Y)$ easy, if k and Y are known

 $X = f_k^{-1}(Y)$ infeasible, if Y is known but k is not known

Thus, the development of a practical public-key scheme depends on discovery of a suitable trap-door one-way function.

Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a bruteforce attack. The countermeasure is the same: Use large keys. However, there is a tradeoff to be considered. Public-key systems depend on the use of some sort of invertible mathematical function. The complexity of calculating these functions may not scale linearly with the number of bits in the key but grow more rapidly than that. Thus, the key size must be large enough to make brute-force attack impractical but small enough for

⁴ Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its argument and maps it to a fixed output. Such functions are used for authentication (see Chapter 11).

practical encryption and decryption. In practice, the key sizes that have been proposed do make brute-force attack impractical but result in encryption/decryption speeds that are too slow for general-purpose use. Instead, as was mentioned earlier, public-key encryption is currently confined to key management and signature applications.

Another form of attack is to find some way to compute the private key given the public key. To date, it has not been mathematically proven that this form of attack is infeasible for a particular public-key algorithm. Thus, any given algorithm, including the widely used RSA algorithm, is suspect. The history of cryptanalysis shows that a problem that seems insoluble from one perspective can be found to have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is, in essence, a probable-message attack. Suppose, for example, that a message were to be sent that consisted solely of a 56-bit DES key. An adversary could encrypt all possible 56-bit DES keys using the public key and could discover the encrypted key by matching the transmitted ciphertext. Thus, no matter how large the key size of the public-key scheme, the attack is reduced to a brute-force attack on a 56-bit key. This attack can be thwarted by appending some random bits to such simple messages.

9.2 THE RSA ALGORITHM

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach to cryptography and, in effect, challenged cryptologists to come up with a cryptographic algorithm that met the requirements for public-key systems. A number of algorithms have been proposed for public-key cryptography. Some of these, though initially promising, turned out to be breakable.⁵

One of the first successful responses to the challenge was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the most widely accepted and implemented general-purpose approach to public-key encryption.

⁵ The most famous of the fallen contenders is the trapdoor knapsack proposed by Ralph Merkle. We describe this in Appendix J.

⁶ Apparently, the first workable public-key system for encryption/decryption was put forward by Clifford Cocks of Britain's CESG in 1973 [COCK73]; Cocks' method is virtually identical to RSA.

The **RSA** scheme is a cipher in which the plaintext and ciphertext are integers between 0 and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 2^{1024} . We examine RSA in this section in some detail, beginning with an explanation of the algorithm. Then we examine some of the computational and cryptanalytical implications of RSA.

Description of the Algorithm

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, with each block having a binary value less than some number n. That is, the block size must be less than or equal to $\log_2(n) + 1$; in practice, the block size is i bits, where $2^i 6 n \dots 2^{i+1}$. Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C.

$$C = M^e \mod n$$

$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

Both sender and receiver must know the value of n. The sender knows the value of e, and only the receiver knows the value of d. Thus, this is a publickey encryption algorithm with a public key of $PU = \{e, n\}$ and a private key of $PR = \{d, n\}$. For this algorithm to be satisfactory for public-key encryption, the following requirements must be met.

- 1. It is possible to find values of e, d, and n such that $M^{ed} \mod n = M$ for all $M \in n$. 2. It is relatively easy to calculate $M^e \mod n$ and $C^d \mod n$ for all values of $M \in n$.
- 3. It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions later. We need to find a relationship of the form

$$M^{ed} \mod n = M$$

The preceding relationship holds if e and d are multiplicative inverses modulo f(n), where f(n) is the Euler totient function. It is shown in Chapter 2 that for p, q prime, f(pq) = (p - 1)1)(q-1). The relationship between e and d can be expressed as

$$ed \bmod f(n) = 1 \tag{9.1}$$

This is equivalent to saying

 $ed K 1 \mod f(n)$

$$d \text{ K } e^{-1} \mod f(n)$$

That is, e and d are multiplicative inverses mod f(n). Note that, according to the rules of modular arithmetic, this is true only if d (and therefore e) is relatively prime to f(n). Equivalently, gcd(f(n), d) = 1. See Appendix R for a proof that Equation (9.1) satisfies the requirement for RSA.

We are now ready to state the RSA scheme. The ingredients are the following:

```
p, q, two prime numbers (private, chosen)

n = pq (public, calculated)

e, with gcd(f(n), e) = 1; 1 \le e \le f(n) (public, chosen)

d \le e^{-1} \pmod{f(n)} (private, calculated)
```

The private key consists of $\{d, n\}$ and the public key consists of $\{e, n\}$. Suppose that user A has published its public key and that user B wishes to send the message M to A. Then B calculates $C = M^e \mod n$ and transmits C. On receipt of this ciphertext, user A decrypts by calculating $M = C^d \mod n$.

Figure 9.5 summarizes the RSA algorithm. It corresponds to Figure 9.1a: Alice generates a public/private key pair; Bob encrypts using Alice's public key; and Alice decrypts using her private key. An example from [SING99] is shown in Figure 9.6. For this example, the keys were generated as follows.

- 1. Select two prime numbers, p = 17 and q = 11.
- 2. Calculate n = pq = 17 * 11 = 187.
- 3. Calculate f(n) = (p-1)(q-1) = 16 * 10 = 160.
- 4. Select e such that e is relatively prime to f(n) = 160 and less than f(n); we choose e = 7.
- 5. Determine d such that $de 1 \pmod{160}$ and d 160. The correct value is d = 23, because 23 * 7 = 161 = (1 * 160) + 1; d can be calculated using the extended Euclid's algorithm (Chapter 2).

The resulting keys are public key $PU = \{7, 187\}$ and private key $PR = \{23, 187\}$. The example shows the use of these keys for a plaintext input of M = 88. For e ncryption, we need to calculate $C = 88^7 \mod 187$. Exploiting the properties of modular arithmetic, we can do this as follows.

```
88<sup>7</sup> mod 187 = [(88<sup>4</sup> mod 187) * (88<sup>2</sup> mod 187)

* (88<sup>1</sup>

mod 187)] mod 187

881 mod 187 = 88

882 mod 187 = 7744 mod 187 = 77

88<sup>4</sup> mod 187 = 59,969,536 mod 187 = 132

88<sup>7</sup> mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11
```

For decryption, we calculate $M = 11^{23} \mod 187$:

```
11^{23} \mod 187 = [(11^1 \mod 187) * (11^2 \mod 187) * (11^4 \mod 187)]
```

We now look at an example from [HELL79], which shows the use of RSA to process multiple blocks of data. In this simple example, the plaintext is an alphanumeric string. Each plaintext symbol is assigned a unique code of two decimal

Key Generation by Alice			
Select p, q	p and q both prime, $p \neq q$		
Calculate $n = p * q$			
Calcuate $f(n) = (p - 1)(q - 1)$			
Select integer e	gcd(f(n), e) = 1; 1 6 e 6 f(n)		
Calculate d	$d ext{ K } e^{-1} \pmod{f(n)}$		
Public key	$PU = \{e, n\}$		
Private key	$PR = \{d, n\}$		

Figure 9.5 The RSA Algorithm

Figure 9.6 Example of RSA Algorithm

digits (e.g., a = 00, A = 26).⁷ A plaintext block consists of four decimal digits, or two alphanumeric characters. Figure 9.7a illustrates the sequence of events for the encryption of multiple blocks, and Figure 9.7b gives a specific example. The circled numbers indicate the order in which operations are performed.

Computational Aspects

We now turn to the issue of the complexity of the computation required to use RSA. There are actually two issues to consider: encryption/decryption and key generation. Let us look first at the process of encryption and decryption and then consider key generation.

(a) General approach

(b) Example

⁷ The complete mapping of alphanumeric characters to decimal digits is at box.com/Crypto7e in the document RSAexample.pdf.

Figure 9.7 RSA Processing of Multiple Blocks

EXPONENTIATION IN MODULAR ARITHMETIC Both encryption and decryption in RSA involve raising an integer to an integer power, mod n. If the exponentiation is done over the integers and then reduced modulo n, the intermediate values would be gargantuan. Fortunately, as the preceding example shows, we can make use of a property of modular arithmetic:

$$[(a \bmod n) * (b \bmod n)] \bmod n = (a * b) \bmod n$$

Thus, we can reduce intermediate results modulo n. This makes the calculation practical.

Another consideration is the efficiency of exponentiation, because with RSA, we are dealing with potentially large exponents. To see how efficiency might be increased, consider that we wish to compute x^{16} . A straightforward approach requires 15 multiplications:

However, we can achieve the same final result with only four multiplications if we repeatedly take the square of each partial result, successively forming (x^2, x^4, x^8, x^{16}) . As another example, suppose we wish to calculate $x^{11} \mod n$ for some integers x and n. Observe that $x^{11} = x^{1+2+8} = (x)(x^2)(x^8)$. In this case, we compute $x \mod n$, $x^2 \mod n$, $x^4 \mod n$, and $x^8 \mod n$ and then calculate $[(x \mod n) * (x^2 \mod n) * (x^8 \mod n)] \mod n$.

More generally, suppose we wish to find the value $a^b \mod n$ with a, b, and m positive integers. If we express b as a binary number $b_k b_{k-1} c$ b_0 , then we have

$$b = a 2i$$

Therefore,

 $\Sigma 2i$

$$ab \mod n = Jq_i 0a(2^i) R \mod n = cq_i Ja(2^i) \mod n R \leq \mod n \ ab = a^b \neq q$$

$$a(2^i)$$

$$b \neq 0$$

$$b \neq 0$$

We can therefore develop the algorithm⁸ for computing $a^b \mod n$, shown in Figure 9.8. Table 9.4 shows an example of the execution of this algorithm. Note that the variable c is not needed; it is included for explanatory purposes. The final value of c is the value of the exponent.

EFFICIENT OPERATION USING THE PUBLIC KEY To speed up the operation of the RSA algorithm using the public key, a specific choice of e is usually made. The most common choice is 65537 (2¹⁶ + 1); two other popular choices are 3 and 17. Each of these choices has only two 1 bits, so the number of multiplications required to perform exponentiation is minimized.

```
c - 0; f - 1 for i - k
downto 0 do c - 2 \times c f
(f \times f) \mod n \ \mathbf{if} \ b_i = 1
          then c - c + 1 f - (f
                \times a) mod n
return f
```

Note: The integer b is expressed as a binary number $b_k b_{k-1} c b_0$.

Figure 9.8 Algorithm for Computing $a^b \mod n$

Table 9.4 Result of the Fast Modular Exponentiation Algorithm for $a^b \mod n$, where a = 7, b = 560= 1000110000, and n = 561

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
c	1	2	4	8	17	35	70	140	280	560
f	7	49	157	526	160	241	298	166	67	1

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a simple attack. Suppose we have three different RSA users who all use the value e = 3 but have unique values of n, namely (n_1, n_2, n_3) . If user A sends the same encrypted message M to all three users, then the three ciphertexts are $C_1 = M^3 \mod n_1$, $C_2 = M^3 \mod n_2$, and C_3 $= M^3 \mod n_3$. It is likely that n_1, n_2 , and n_3 are pairwise relatively prime. Therefore, one can use the Chinese remainder theorem (CRT) to compute $M^3 \mod (n_1 n_2 n_3)$. By the rules of the RSA algorithm, M is less than each of the n_i ; therefore M^3 6 $n_1n_2n_3$. Accordingly, the attacker need only compute the cube root of M^3 . This attack can be countered by adding a unique pseudorandom bit string as padding to each instance of M to be encrypted. This approach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm (Figure 9.5) requires that during key generation the user selects a value of e that is relatively prime to

⁸ The algorithm has a long history; this particular pseudocode expression is from [CORM09].

f(n). Thus, if a value of e is selected first and the primes p and q are generated, it may turn out that $gcd(f(n), e) \neq 1$. In that case, the user must reject the p, q values and generate a new p, q pair.

EFFICIENT OPERATION USING THE PRIVATE KEY We cannot similarly choose a small constant value of d for efficient operation. A small value of d is vulnerable to a brute-force attack and to other forms of cryptanalysis [WIEN90]. However, there is a way to speed up computation using the CRT. We wish to compute the value $M = C^d \mod n$. Let us define the following intermediate results:

$$V_p = C^d \mod p \ V_q = C^d \mod q$$

Following the CRT using Equation (8.8), define the quantities

$$X_p = q * (q^{-1} \mod p) X_q = p * (p^{-1} \mod q)$$

The CRT then shows, using Equation (8.9), that

$$M = (V_p X_p + V_q X_q) \bmod n$$

Furthermore, we can simplify the calculation of V_p and V_q using Fermat's theorem, which states that $a^{p-1} K 1 \pmod{p}$ if p and a are relatively prime. Some thought should convince you that the following are valid.

 $V_p = C_d \mod p = C_d \mod(p-1) \mod p$ $V_q = C_d \mod q = C_d \mod(q-1) \mod q$ The quantities $d \mod (p-1)$ and $d \mod (q-1)$ can be precalculated. The end result is that the calculation is approximately four times as fast as evaluating $M = C^d \mod n$ directly [BONE02].

KEY GENERATION Before the application of the public-key cryptosystem, each participant must generate a pair of keys. This involves the following tasks.

- \blacksquare Determining two prime numbers, p and q.
- Selecting either *e* or *d* and calculating the other.

First, consider the selection of p and q. Because the value of n = pq will be known to any potential adversary, in order to prevent the discovery of p and q by exhaustive methods, these primes must be chosen from a sufficiently large set (i.e., p and q must be large numbers). On the other hand, the method used for finding large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, so some other means of tackling the problem is needed. The procedure that is generally used is to pick at random an odd number of the desired order of magnitude and test whether that number is prime. If not, pick successive random numbers until one is found that tests prime.

A variety of tests for primality have been developed (e.g., see [KNUT98] for a description of a number of such tests). Almost invariably, the tests are probabilistic. That is, the test will merely determine that a given integer is *probably* prime. Despite this lack of certainty, these tests can be run in such a way as to make the probability as close to 1.0 as desired. As an example, one of the more efficient and popular algorithms, the Miller-Rabin algorithm, is described in Chapter 2. With this algorithm and most such algorithms, the procedure for testing whether a given integer n is prime is to perform some calculation that involves n and a randomly chosen integer a. If n "fails" the test, then n is not prime. If n "passes" the test, then n may be prime or nonprime. If n passes many such tests with many different randomly chosen values for a, then we can have high confidence that n is, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

- 1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).
- 2. Pick an integer a 6 n at random.
- 3. Perform the probabilistic primality test, such as Miller–Rabin, with a as a parameter. If n fails the test, reject the value n and go to step 1.
- 4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is performed relatively infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a prime number is found. A result from number theory, known as the prime n umber theorem, states that the primes near N are spaced on the average one every $\ln(N)$ integers. Thus, on average, one would have to test on the order of ln(N) integers before a prime is found. Actually, because all even integers can be immediately rejected, the correct figure is ln(N)/2. For example, if a prime on the order of magnitude of 2^{200} were sought, then about $\ln(2^{200})/2$ = 70 trials would be needed to find a prime.

Having determined prime numbers p and q, the process of key generation is completed by selecting a value of e and calculating d or, alternatively, selecting a value of d and calculating e. Assuming the former, then we need to select an e such that gcd(f(n), e)= 1 and then calculate $d \times e^{-1} \pmod{f(n)}$. Fortunately, there is a single algorithm that will, at the same time, calculate the greatest common divisor of two integers and, if the gcd is 1, determine the inverse of one of the integers modulo the other. The algorithm, referred to as the extended Euclid's algorithm, is explained in Chapter 2. Thus, the procedure is to generate a series of random numbers, testing each against f(n) until a number relatively prime to f(n) is found. Again, we can ask the question: How many random numbers must we test to find a usable number, that is, a number relatively prime to f(n)? It can be shown easily that the probability that two random numbers are relatively prime is about 0.6; thus, very few tests would be needed to find a suitable integer (see Problem 2.18).

The Security of RSA

Five possible approaches to attacking the RSA algorithm are

- **Brute force:** This involves trying all possible private keys.
- Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes.
- **Timing attacks:** These depend on the running time of the decryption algorithm.
- Hardware fault-based attack: This involves inducing hardware faults in the processor that is generating digital signatures.
- Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

The defense against the brute-force approach is the same for RSA as for other cryptosystems, namely, to use a large key space. Thus, the larger the number of bits in d, the better. However, because the calculations involved, both in key generation and in encryption/decryption, are complex, the larger the size of the key, the slower the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

THE FACTORING PROBLEM We can identify three approaches to attacking RSA mathematically.

- 1. Factor n into its two prime factors. This enables calculation of f(n) = (p-1) * (q-1), which in turn enables determination of $d \times e^{-1} \pmod{f(n)}$.
- 2. Determine f(n) directly, without first determining p and q. Again, this enables determination of $d \times e^{-1} \pmod{f(n)}$.
- 3. Determine d directly, without first determining f(n).

Most discussions of the cryptanalysis of RSA have focused on the task of f actoring n into its two prime factors. Determining f(n) given n is equivalent to factoring n [RIBE96]. With presently known algorithms, determining d given e and n appears to be at least as time-consuming as the factoring problem [KALI95]. Hence, we can use factoring performance as a benchmark against which to evaluate the security of RSA.

For a large *n* with large prime factors, factoring is a hard problem, but it is not as hard as it used to be. A striking illustration of this is the following. In 1977, the three inventors of RSA dared *Scientific American* readers to decode a cipher they printed in Martin Gardner's "Mathematical Games" column [GARD77]. They offered a \$100 reward for the return of a plaintext sentence, an event they predicted might not occur for some 40 quadrillion years. In April of 1994, a group working over the Internet claimed the prize after only eight months of work [LEUT94]. This challenge used a public key size (length of *n*) of 129 decimal digits, or around 428 bits. In the meantime, just as they had done for DES, RSA Laboratories had issued challenges for the RSA cipher with key sizes of 100, 110, 120, and so on, digits. The latest challenge to be met is the RSA-768 challenge with a key length of 232 decimal digits, or 768 bits. Table 9.5 shows the results.

A striking fact about the progress reflected in Table 9.5 concerns the method used. Until the mid-1990s, factoring attacks were made using an approach known as the quadratic sieve. The attack on RSA-130 used a newer algorithm, the generalized number field sieve (GNFS), and was able to factor a larger number than RSA-129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in computing power and the continuing refinement of factoring algorithms. We have seen that the move to a different algorithm resulted in a tremendous speedup. We can expect further refinements in the GNFS, and the use of an even better algorithm is also a possibility. In fact, a related algorithm, the special number field sieve (SNFS),

Table 9.5 Progress in RSA Factorization

Number of Decimal Digits	Number of Bits	Date Achieved
100	332	April 1991
110	365	April 1992
120	398	June 1993
129	428	April 1994
130	431	April 1996
140	465	February 1999
155	512	August 1999
160	530	April 2003
174	576	December 2003
200	663	May 2005
193	640	November 2005
232	768	December 2009

can factor numbers with a specialized form considerably faster than the generalized number field sieve. Figure 9.9 compares the performance of the two algorithms. It is reasonable to expect a breakthrough that would enable a general factoring performance in about the same time as SNFS, or even better [ODLY95]. Thus, we need to be careful in choosing a key size for RSA. The team that produced the 768-bit factorization [KLEI10] observed that factoring a 1024-bit RSA modulus would be about a thousand times harder than factoring a 768-bit modulus, and a 768-bit RSA modulus is several thousands times harder to factor than a 512-bit one. Based on the amount of time between the 512-bit and 768-bit factorization successes, the team felt it to be reasonable to expect that the 1024-bit RSA moduli could be factored well within the next decade by a similar academic effort. Thus,

they recommended phasing out usage of 1024-bit RSA within the next few years (from 2010).

Figure 9.9 MIPS-years Needed to Factor

In addition to specifying the size of n, a number of other constraints have been suggested by researchers. To avoid values of n that may be factored more easily, the algorithm's inventors suggest the following constraints on p and q.

- 1. *p* and *q* should differ in length by only a few digits. Thus, for a 1024-bit key (309 decimal digits), both *p* and *q* should be on the order of magnitude of 1075 to 10100.
- 2. Both (p-1) and (q-1) should contain a large prime factor.

3. gcd(p-1, q-1) should be small.

In addition, it has been demonstrated that if $e \in n$ and $d \in n^{1/4}$, then d can be easily determined [WIEN90].

TIMING ATTACKS If one needed yet another lesson about how difficult it is to a ssess the security of a cryptographic algorithm, the appearance of timing attacks provides a stunning one. Paul Kocher, a cryptographic consultant, demonstrated that a snooper can determine a private key by keeping track of how long a computer takes to decipher messages [KOCH96, KALI96b]. Timing attacks are applicable not just to RSA, but to other public-key cryptography systems. This attack is alarming for two reasons: It comes from a completely unexpected direction, and it is a ciphertextonly attack.

A **timing attack** is somewhat analogous to a burglar guessing the combination of a safe by observing how long it takes for someone to turn the dial from number to number. We can explain the attack using the modular exponentiation algorithm of Figure 9.8, but the attack can be adapted to work with any implementation that does not run in fixed time. In this algorithm, modular exponentiation is accomplished bit by bit, with one modular multiplication performed at each iteration and an additional modular multiplication performed for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an extreme case. Suppose the target system uses a modular multiplication function that is very fast in almost all cases but in a few cases takes much more time than an entire average modular exponentiation. The attack proceeds bit-by-bit starting with the leftmost bit, b_k . Suppose that the first j bits are known (to obtain the entire exponent, start with j = 0 and repeat the attack until the entire exponent is known). For a given ciphertext, the attacker can complete the first j iterations of the **for** loop. The operation of the subsequent step depends on the unknown exponent bit. If the bit is set, $d \in (a + a) \mod n$ will be executed. For a few values of a and a, the modular multiplication will be extremely slow, and the attacker knows which these are. Therefore, if the observed time to execute the decryption algorithm is always slow when this particular iteration is slow with a 1 bit, then this bit is assumed to be 1. If a number of observed execution times for the entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme timing variations, in which the execution time of a single iteration can exceed the mean execution time of the entire algorithm. Nevertheless, there is enough variation to make this attack practical. For details, see [KOCH96].

Although the timing attack is a serious threat, there are simple countermeasures that can be used, including the following.

- **Constant exponentiation time:** Ensure that all exponentiations take the same amount of time before returning a result. This is a simple fix but does degrade performance.
- Random delay: Better performance could be achieved by adding a random delay to the exponentiation algorithm to confuse the timing attack. Kocher points out that if

defenders don't add enough noise, attackers could still succeed by collecting additional measurements to compensate for the random delays.

■ **Blinding:** Multiply the ciphertext by a random number before performing exponentiation. This process prevents the attacker from knowing what ciphertext bits are being processed inside the computer and therefore prevents the bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. The private-key operation $M = C_d \mod n$ is implemented as follows.

- 1. Generate a secret random number r between 0 and n 1.
- 2. Compute $C' = C(r^e) \mod n$, where *e* is the public exponent.
- 3. Compute $M' = (C')^d \mod n$ with the ordinary RSA implementation.
- 4. Compute $M = M'r^{-1} \mod n$. In this equation, r^{-1} is the multiplicative inverse of r mod n; see Chapter 2 for a discussion of this concept. It can be demonstrated that this is the correct result by observing that $r^{ed} \mod n = r \mod n$.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

FAULT-BASED ATTACK Still another unorthodox approach to attacking RSA is reported in [PELL10]. The approach is an attack on a processor that is generating RSA digital signatures. The attack induces faults in the signature computation by reducing the power to the processor. The faults cause the software to produce invalid signatures, which can then be analyzed by the attacker to recover the private key. The authors show how such an analysis can be done and then demonstrate it by extracting a 1024-bit private RSA key in approximately 100 hours, using a commercially available microprocessor.

The attack algorithm involves inducing single-bit errors and observing the results. The details are provided in [PELL10], which also references other proposed hardware faultbased attacks against RSA.

This attack, while worthy of consideration, does not appear to be a serious threat to RSA. It requires that the attacker have physical access to the target machine and that the attacker is able to directly control the input power to the processor. Controlling the input power would for most hardware require more than simply controlling the AC power, but would also involve the power supply control hardware on the chip.

CHOSEN CIPHERTEXT ATTACK AND OPTIMAL ASYMMETRIC ENCRYPTION PADDING The basic RSA algorithm is vulnerable to a **chosen ciphertext attack** (CCA). CCA is defined as an attack in which the adversary chooses a number of ciphertexts and is then given the corresponding plaintexts, decrypted with the target's private key. Thus, the adversary could select a plaintext, encrypt it with the target's public key, and then be able to get the plaintext back by having it decrypted with the private key. Clearly, this provides the adversary with no new information. Instead, the adversary exploits properties of RSA and selects blocks of data that, when processed using the target's private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following property of RSA:

$$E(PU, M_1) * E(PU, M_2) = E(PU, [M_1 * M_2])$$
 (9.2)

We can decrypt $C = M^e \mod n$ using a CCA as follows.

- 1. Compute $X = (C * 2^e) \mod n$.
- 2. Submit *X* as a chosen ciphertext and receive back $Y = X^d \mod n$.

But now note that

$$X = (C \bmod n) * (2^e \bmod n)$$
$$= (M^e \bmod n) * (2^e \bmod n)$$
$$= (2M)^e \bmod n$$

Therefore, $Y = (2M) \mod n$. From this, we can deduce M. To overcome this simple attack, practical RSA-based cryptosystems randomly pad the plaintext prior to encryption. This randomizes the ciphertext so that Equation (9.2) no longer holds. However, more sophisticated CCAs are possible, and a simple padding with a random value has been shown to be insufficient to provide the desired security. To counter such attacks, RSA Security Inc., a leading RSA vendor and former holder of the RSA patent, recommends modifying the plaintext using a procedure known as **optimal asymmetric encryption padding** (OAEP). A full discussion of the threats and OAEP are beyond our scope; see [POIN02] for an introduction and [BELL94] for a thorough analysis. Here, we simply summarize the OAEP procedure.

Figure 9.10 depicts OAEP encryption. As a first step, the message M to be encrypted is padded. A set of optional parameters, *P*, is passed through a hash function, H.⁹ The output is then padded with zeros to get the desired length in the overall data block (DB). Next, a random seed is generated and passed through another hash function, called the mask generating function (MGF). The resulting hash value is bitby-bit XORed with DB to produce a maskedDB. The maskedDB is in turn passed through the MGF to form a hash that is XORed with the seed to produce the maskedseed. The concatenation of the maskedseed and the maskedDB forms the encoded message EM. Note that the EM includes the padded message, masked by the seed, and the seed, masked by the maskedDB. The EM is then encrypted using RSA.

⁹ A hash function maps a variable-length data block or message into a fixed-length value called a hash code. Hash functions are discussed in depth in Chapter 11.

$310\,$ Chapter 9 / Public-Key Cryptography and RSA

P = encoding parameters

M = message to be encoded

H = hash function

DB = data block

MGF = mask generating function

EM = encoded message

Figure 9.10 Encryption Using Optimal Asymmetric Encryption Padding (OAEP)

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

- Define Diffie-Hellman key exchange.
- Understand the man-in-the-middle attack.
- Present an overview of the Elgamal cryptographic system.
- Understand elliptic curve arithmetic.
- Present an overview of elliptic curve cryptography.
- Present two techniques for generating pseudorandom numbers using an asymmetric cipher.

This chapter begins with a description of one of the earliest and simplest PKCS: Diffie—Hellman key exchange. The chapter then looks at another important scheme, the Elgamal PKCS. Next, we look at the increasingly important PKCS known as elliptic curve cryptography. Finally, the use of public-key algorithms for pseudorandom number generation is examined.

10.1 DIFFIE-HELLMAN KEY EXCHANGE

The first published public-key algorithm appeared in the seminal paper by Diffie and Hellman that defined public-key cryptography [DIFF76b] and is generally referred to as Diffie–Hellman key exchange. ¹⁰ A number of commercial products employ this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages. The algorithm itself is limited to the exchange of secret values.

The Diffie–Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. Briefly, we can define the discrete logarithm in the following way. Recall from Chapter 2 that a primitive root of a prime number p is one whose powers modulo p generate all the integers from 1 to p - 1. That is, if a is a primitive root of the prime number p, then the numbers

a
$$\operatorname{mod} p$$
, $a^2 \operatorname{mod} p$, c, $a^{p-1} \operatorname{mod} p$

are distinct and consist of the integers from 1 through p - 1 in some permutation.

For any integer b and a primitive root a of prime number p, we can find a

¹⁰ Williamson of Britain's CESG published the identical scheme a few months earlier in a classified document [WILL76] and claims to have discovered it several years prior to that; see [ELL199] for a discussion.

b K $a^i \pmod{p}$ where $0 \dots i \dots (p-1)$

10.1 / DIFFIE-HELLMAN KEY EXCHANGE 315

The exponent i is referred to as the **discrete logarithm** of b for the base a, mod p. We express this value as $dlog_{a,p}(b)$. See Chapter 2 for an extended discussion of discrete logarithms.

The Algorithm

Figure 10.1 summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there are two publicly known numbers: a prime number q and an integer a that is a primitive root of q. Suppose the users A and B wish to create a shared key.

User A selects a random integer X_A 6 q and computes $Y_A = a^{X_A} \mod q$.

Similarly, user B independently selects a random integer X_B 6 q and computes $Y_B = \mathsf{a}^{X_B} \mod q$. Each side keeps the X value private and makes the Y value available publicly to the other side. Thus, X_A is A's private key and Y_A is A's corresponding public key, and similarly for B. User A computes the key as $K = (Y_B)^{X_A} \mod q$ and user B computes the key as $K = (Y_A)^{X_B} \mod q$. These two calculations produce identical results:

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$	Bob calculates shared
secret key $K = (YB)^{-1} A \mod q$	secret key $K = (Y_A)^{-1}B \mod q$

Figure 10.1 The Diffie-Hellman Key Exchange

$$K = (Y_B)^{X_A} \bmod q$$

$$= (\mathsf{a}^{X_B} \bmod q)^{X_A} \bmod q$$

=
$$(a^{X_B})^{X_A} \mod q$$
 by the rules of modular arithmetic

$$= a^{X_B X_A} \mod q$$

$$= (\mathsf{a}^{X_A})^{X_B} \bmod q$$

$$= (\mathsf{a}^{X_A} \bmod q)^{X_B} \bmod q$$

$$= (Y_A)^{X_B} \mod q$$

The result is that the two sides have exchanged a secret value. Typically, this secret value is used as shared symmetric secret key. Now consider an adversary who can observe the key exchange and wishes to determine the secret key K. Because X_A and X_B are private, an adversary only has the following ingredients to work with: q, a, Y_A , and Y_B . Thus, the adversary is forced to take a discrete logarithm to determine the key. For example, to determine the private key of user B, an adversary must compute

$$X_B = dlog_{a,q}(Y_B)$$

The adversary can then calculate the key *K* in the same manner as user B calculates it. That is, the adversary can calculate *K* as

$$K = (Y_A)^{X_B} \bmod q$$

The security of the Diffie-Hellman key exchange lies in the fact that, while it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms. For large primes, the latter task is considered infeasible.

Here is an example. Key exchange is based on the use of the prime number q = 353 and a primitive root of 353, in this case a = 3. A and B select private keys $X_A = 97$ and $X_B = 233$, respectively. Each computes its public key:

A computes $Y_A = 3^{97} \mod 353 = 40$.

B computes $Y_B = 3^{233} \mod 353 = 248$.

After they exchange public keys, each can compute the common secret key:

A computes
$$K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$$
. B computes $K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160$.

We assume an attacker would have available the following information:

$$q = 353$$
; a = 3; $Y_A = 40$; $Y_B = 248$

In this simple example, it would be possible by brute force to determine the secret key 160. In particular, an attacker E can determine the common key by discovering a solution to the equation $3^a \mod 353 = 40$ or the equation $3^b \mod 353 = 248$. The brute-force approach is to calculate powers of 3 modulo 353, stopping when the result equals either 40 or 248. The desired answer is reached with the exponent value of 97, which provides $3^{97} \mod 353 = 40$.

With larger numbers, the problem becomes impractical.

10.1 / DIFFIE-HELLMAN KEY EXCHANGE 317

Key Exchange Protocols

Figure 10.1 shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose that user A wishes to set up a connection with user B and use a secret key to encrypt messages on that connection. User A can generate a one-time private key X_A , calculate Y_A , and send that to user B. User B responds by generating a private value X_B , calculating Y_B , and sending Y_B to user A. Both users can now calculate the key. The necessary public values q and a would need to be known ahead of time. Alternatively, user A could pick values for q and a and include those in the first message.

As an example of another use of the Diffie–Hellman algorithm, suppose that a group of users (e.g., all users on a LAN) each generate a long-lasting private value X_i (for user i) and calculate a public value Y_i . These public values, together with global public values for q and a, are stored in some central directory. At any time, user j can access user i's public value, calculate a secret key, and use that to send an encrypted message to user A. If the central directory is trusted, then this form of communication provides both confidentiality and a degree of authentication. Because only i and j can determine the key, no other user can read the message (confidentiality). Recipient i knows that only user j could have created a message using this key (authentication). However, the technique does not protect against replay attacks.

Man-in-the-Middle Attack

The protocol depicted in Figure 10.1 is insecure against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The attack proceeds as follows (Figure 10.2).

- 1. Darth prepares for the attack by generating two random private keys X_{D1} and X_{D2} and then computing the corresponding public keys Y_{D1} and Y_{D2} .
- 2. Alice transmits Y_A to Bob.
- 3. Darth intercepts Y_A and transmits Y_{D1} to Bob. Darth also calculates $K2 = (Y_A)^{X_{D2}} \mod q$.
- **4.** Bob receives Y_{D1} and calculates $K1 = (Y_{D1})^{X_B} \mod q$.

- 5. Bob transmits Y_B to Alice.
- 6. Darth intercepts Y_B and transmits Y_{D2} to Alice. Darth calculates $K1 = (Y_B)^{X_{D1}} \mod q$.
- 7. Alice receives Y_{D2} and calculates $K2 = (Y_{D2})^{X_A} \mod q$.

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share secret key *K*1 and Alice and Darth share secret key *K*2. All future communication between Bob and Alice is compromised in the following way.

- 1. Alice sends an encrypted message M: E(K2, M).
- 2. Darth intercepts the encrypted message and decrypts it to recover M.
- 3. Darth sends Bob E(K1, M) or $E(K1, M^{=})$, where $M^{=}$ is any message. In the first case, Darth simply wants to eavesdrop on the communication without altering it. In the second case, Darth wants to modify the message going to Bob.

Figure 10.2 Man-in-the-Middle Attack

The key exchange protocol is vulnerable to such an attack because it does not authenticate the participants. This vulnerability can be overcome with the use of digital signatures and public-key certificates; these topics are explored in Chapters 13 and 14.

10.4 ELLIPTIC CURVE CRYPTOGRAPHY

The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiple addition is the counterpart of modular exponentiation. To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where $Q, P \in E_P(a, b)$ and $k \in P$. It is relatively easy to calculate Q given k and P, but it is hard to determine k given Q and P. This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom. com). Consider the group $E_{23}(9,17)$. This is the group defined by the equation $y^2 \mod 23 = (x^3 + 9x + 17) \mod 23$. What is the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)? The brute-force method is to compute multiples of P until Q is found. Thus,

$$P = (16,5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10);$$

 $6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5)$

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9. In a real application, k would be so large as to make the bruteforce approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick a large integer q, which is either a prime number p or an integer of the form 2^m , and elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This defines the elliptic group of points $E_q(a, b)$. Next, pick a base point $G = (x_1, y_1)$ in $E_p(a, b)$ whose order is a very large value n. The **order** n of a point G on an elliptic curve is the smallest positive integer n such that nG = 0 and G are parameters of the cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as follows (Figure 10.7).

- 1. A selects an integer n_A less than n. This is A's private key. A then generates a public key $P_A = n_A * G$; the public key is a point in $E_a(a, b)$.
- 2. B similarly selects a private key n_B and computes a public key P_B .
- 3. A generates the secret key $k = n_A * P_B$. B generates the secret key $k = n_B * P_A$.

The two calculations in step 3 produce the same result because

$$n_A * P_B = n_A * (n_B * G) = n_B * (n_A * G) = n_B * P_A$$

To break this scheme, an attacker would need to be able to compute k given G and kG, which is assumed to be hard.

As an example, ¹¹ take p = 211; $E_p(0, -4)$, which is equivalent to the curve $y^2 = x^3 - 4$; and G = (2, 2). One can calculate that 240G = O. A's private key is $n_A = 121$, so A's public key is $P_A = 121(2, 2) = (115, 48)$. B's private key is $n_B = 203$, so B's public key is 203(2, 3)= (130, 203). The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a session key for conventional encryption, then a single number must be generated. We could simply use the x coordinates or some simple function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been analyzed in the literature. In this subsection, we look at perhaps the simplest. The first task in this system is to encode the plaintext message m to be sent as an (x, y) point P_m .

332 CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

¹¹ Provided by Ed Schaefer of Santa Clara University.

Global Public Elements				
$\mathrm{E}_q(a,b)$	elliptic curve with parameters a , b , and q , where q is a prime or an integer of the form 2^m			
G	point on elliptic curve whose order is large value <i>n</i>			
	User A Key Generation			
Select private r	Select private n_A $n_A \in n$			
Calculate publi	$P_A = n_A * G$			
	User B Key Generation			
Select private n	n_B 6 n			
Calculate publi	$c P_B = n_B * G$			
	Calculation of Secret Key by User A			
$K = n_A * P_B$				

Calculation of Secret Key by User B

 $K = n_B * P_A$

Figure 10.7 ECC Diffie–Hellman Key Exchange

It is the point P_m that will be encrypted as a ciphertext and subsequently decrypted. Note that we cannot simply encode the message as the x or y coordinate of a point, because not all such coordinates are in $E_q(a, b)$; for example, see Table 10.1. Again, there are several approaches to this encoding, which we will not address here, but suffice it to say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a point G and an elliptic group $E_q(a, b)$ as parameters. Each user A selects a private key n_A and generates a public key $P_A = n_A * G$.

To encrypt and send a message P_m to B, A chooses a random positive integer k and produces the ciphertext C_m consisting of the pair of points:

$$C_m = \{kG, P_m + kP_B\}$$

Note that A has used B's public key P_B . To decrypt the ciphertext, B multiplies the first point in the pair by B's private key and subtracts the result from the second point:

$$P_m + kP_B - n_B(kG) = P_m + k(n_BG) - n_B(kG) = P_m$$

10.4 / ELLIPTIC CURVE CRYPTOGRAPHY 333

Table 10.3 Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis (NIST SP-800-57)

Symmetric Key Algorithms	Diffie-Hellman, Digital Signature Algorithm	RSA (size of <i>n</i> in bits)	ECC (modulus size in bits)
80	L = 1024 N = 160	1024	160–223
112	L = 2048 N = 224	2048	224–255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512+

Note: L = size of public key, N = size of private key.

A has masked the message P_m by adding kP_B to it. Nobody but A knows the value of k, so even though P_b is a public key, nobody can remove the mask kP_B . However, A also includes a "clue," which is enough to remove the mask if one knows the private key n_B . For an attacker to recover the message, the attacker would have to compute k given G and kG, which is assumed to be hard.

Let us consider a simple example. The global public elements are q = 257; $E_q(a, b) = E_{257}(0, -4)$, which is equivalent to the curve $y^2 = x^3 - 4$; and G = -4

(2, 2). Bob's private key is $n_B = 101$, and his public key is $P_B = n_B G = 101(2, 2) = (197, 167)$. Alice wishes to send a message to Bob that is encoded in the elliptic point $P_m = (112, 26)$. Alice chooses random integer k = 41 and computes kG = 100

$$41(2, 2) = (136, 128), kP_B = 41(197, 167) = (68, 84)$$
and $P_m + kP_B = (112, 26)$

+ (68, 84) = (246, 174). Alice sends the ciphertext $C_m = (C_1, C_2) = \{(136, 128), (246, 174)\}$ to Bob. Bob receives the ciphertext and computes $C_2 - n_B C_1 = (246, 174) - 101(136, 128) = (246, 174) - (68, 84) = (112, 26)$.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. This is referred to as the elliptic curve logarithm problem. The fastest known technique for taking the elliptic curve logarithm is known as the Pollard rho method. Table 10.3, from NIST SP

800-57 (*Recommendation for Key Management—Part 1: General*, September 2015), compares various algorithms by showing comparable key sizes in terms of computational effort for cryptanalysis. As can be seen, a considerably smaller key size can be used for ECC compared to RSA.

Based on this analysis, SP 800-57 recommends that at least through 2030, acceptable key lengths are from 3072 to 14,360 bits for RSA and 256 to 512 bits for ECC. Similarly, the European Union Agency for Network and Information Security (ENISA) recommends in their 2014 report (*Algorithms, Key Size and Parameters report*—2014, November 2014) minimum key lengths for future system of 3072 bits and 256 bits for RSA and ECC, respectively.

334 CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

Analysis indicates that for equal key lengths, the computational effort required for ECC and RSA is comparable [JURI97]. Thus, there is a computational advantage to using ECC with a shorter key length than a comparably secure RSA.

We noted in Chapter 8 that because a symmetric block cipher produces an apparently random output, it can serve as the basis of a pseudorandom number generator (PRNG). Similarly, an asymmetric encryption algorithm produces apparently random output and can be used to build a PRNG. Because asymmetric algorithms are typically much slower than symmetric algorithms, asymmetric algorithms are not used to generate open-ended PRNG bit streams. Rather, the asymmetric approach is useful for creating a pseudorandom function (PRF) for generating a short pseudorandom bit sequence.

In this section, we examine two PRNG designs based on pseudorandom functions.

PRNG Based on RSA

For a sufficient key length, the RSA algorithm is considered secure and is a good candidate to form the basis of a PRNG. Such a PRNG, known as the Micali–Schnorr PRNG [MICA91], is recommended in the ANSI standard X9.82 (*Random Number Generation*) and in the ISO standard 18031 (*Random Bit Generation*).

The PRNG is illustrated in Figure 10.8. As can be seen, this PRNG has much the same structure as the output feedback (OFB) mode used as a PRNG (see Figure 8.4b and the portion of Figure 7.6a enclosed with a dashed box). In this case, the encryption algorithm is RSA rather than a symmetric block cipher. Also, a portion of the output is fed back to the next iteration of the encryption algorithm and the remainder of the output is used as pseudorandom bits. The motivation for this separation of the output into two distinct parts is so that the pseudorandom bits from one stage do not provide input to the next stage. This separation should contribute to forward unpredictability.

significant bits significant bits significant bits

 $z_1 = k$ least $z_2 = k$ least $z_3 = k$ least significant bits significant bits

Figure 10.8 Micali–Schnorr Pseudorandom Bit Generator