Hydrocarbon

1 Free Radical Reactions

1.1 Reactions Shown by Free Radical

i. Combination

Joining of two radicals, $2^{\circ}, 1^{\circ}$ majorly show combination.

ii. Disproportionation

In case of 3° radical combination is not possible, hence disproportionation occurs.

1.2 Important facts about Free Radicals

- Incomplete octet, 1 unpaired e^-
- Highly unstable
- Paramagnetic
- Can be stabilized by both EDG and EWG.
- Neither a Lewis base nor a Lewis acid.
- sp^2 hybridized.
- Trigonal Planer Geometry.

1° Radical Combination

$$R - \dot{C}H_2$$
 \longrightarrow $R - \dot{C} - \dot{C} - R$

2° Radical Combination

$$R_1$$
 R_2
 H
 R_2
 H
 R_3

3° Radical Disproportionation

2 Wurtz Reaction

2.1 Reaction and Mechanism

2.2 Why dry Et_2O is used instead of moisture?

Water and Sodium metal react vigorously to form Sodium Hydroxide and evolve hydrogen gas, to avoid this reaction taking place dry environment is preferred.

2.3 Why Et_2O is used?

 Et_2O is a PAS, hence it solvates only the cationic part (+).

- i. Free radical or C^- obtained as intermediate.
- ii. Breaking of RX bond is RDS.
- iii. ROR for RX, RI > RBr > RCl
- iv. Stability of $R^{\cdot} \propto ROR$
- v. RF doesn't react.
- vi. CH_4 can never be obtained.
- vii. Only symmetrical even number of ${}^{12}_{6}C$ obtained in very good yield.
- viii. Unsymmetrical compound obtained in very poor yield.

3 Fittig Reaction

3.1 Reaction and Mechanism

Fittig Reaction

4 Ulmann Reaction

Reaction:

4.1 Reaction and Mechanism

Ulmann Reaction

5 Frankland Reaction

5.1 Reaction and Mechanism

Frankland Reaction

6 Wurtz-Fittig Reaction

6.1 Reaction and Mechanism

Wurtz-Fittig Reaction

7 Kolbe's Electrolysis

7.1 Reaction and Mechanism

Kolbe's Electrolysis

KingDraw

- i. C^{\bullet} obtained as intermediate.
- ii. pH of medium increases due to formation of NaOH.
- iii. CO_2 obtained at anode and H_2 at cathode.
- iv. CH_4 can never be obtained.

8 Formation of Grignard's Reagent

8.1 Reaction and Mechanism

Formation of Grignard's Reagent

- i. C^- and C^{\bullet} obtained as intermediate.
- ii. RMgX is also known as Organometallic Compound due to $^{12}_{\ 6}C$ metal bond.
- iii. ROR for $RX,\,RI>RBr>RCl$
- iv. Reaction doesn't occur in RF
- v. Dry Et_2O or THF is used as solvent.

9 Photo Halogenation

9.1 Reaction and Mechanism

Photo Halogenation

Mechanism:
$$X \longrightarrow X$$
 $\longrightarrow X$ $\longrightarrow X$

Reaction: $R \longrightarrow H + X \longrightarrow X \longrightarrow R \longrightarrow X + X \longrightarrow H$

- i. C^{\bullet} obtained as intermediate.
- ii. Example of C^{\bullet} substitution reaction.
- iii. Kinetic isotopic effect is observed.
- iv. Example of Oxidation reaction.
- v. Formation of C^{\bullet} is RDS.
- vi. $ROR \propto Stability of C^{\bullet}$
- vii. ROR for X_2 , $F_2 > Cl_2 > Br_2 > I_2$

10 Reed's Reaction

10.1 Reaction and Mechanism

Reed's Reaction

11 NBS

11.1 Reaction and Mechanism

Reaction:

N-Bromo Succinimide

Mechanism:
$$Br \rightarrow Br$$
 $hv \rightarrow 2Br$
 $R \rightarrow Br$
 $R \rightarrow Br$

KingDraw

- i. Reacts only with Allylic and Benzylic positions.
- ii. C^{\bullet} obtained as intermediate.
- iii. Example of Substitution Reaction.
- iv. Pure NBS is inert, hence, impurity of HBr or Br_2 is added.
- v. Example of Oxidation Reaction.

12 Electrophilic Addition Reaction

12.1 Reaction and Mechanism

Electrophilic Addition Reaction

X has lone pair

X does not have lone pair

$$R \xrightarrow{H} CH_2 + X \xrightarrow{\delta^+} Y$$

$$R \xrightarrow{KingDraw}$$
KingDraw

12.2 Reaction Observations

12.3 X doesn't have lone pair

- i. C^+ obtained as intermediate.
- ii. Rearrangement can occur.

$12.4 \quad X$ has lone pair

- i. Non Classical Carbocation (NCC or Cyclohalonium ion) obtained as intermediate.
- ii. No Rearrangement.

12.5 Reagent Table

Reagent	E^+	Nu^-	Path
HCl, HBr, HI	H^+	Cl^-, Br^-, I^-	X does not lone pair
DCl	D^+	Cl^-	X does not lone pair
$H^{+}/H_{2}O, H_{3}O^{+}, \text{dil.}H_{2}SO_{4}$	H^+	OH^-	X does not lone pair
ROH/H^+	H^+	OR^-	X does not lone pair
$RCOOH/H^+$	H^+	$RCOO^-$	X does not lone pair
X_2/CCl_4	X^+	<i>X</i> -	X has lone pair
Br_2/H_2O or $HOBr$	Br^+	Br^-, OH^-	X has lone pair
Br_2/H_2O in Brine	Br^+	Br^-, OH^-, Cl^-	X has lone pair
NOCl (Tilden Reagent)	NO^+	Cl^-	X has lone pair
IN_3	I^+	N_3^-	X has lone pair

12.6 KCP and TCP

KCP Kinetically Controlled Product 1, 2- Product is assumed to be KCP Fast Rate Favors at low temperature $(-80, -40, 0^{\circ}C)$

TCP
Thermodynamically Controlled Product
Can be 1,2 and 1,4
Stable Product
Favors high temperature

13 Oxymercuration Demercuration

13.1 Reaction and Mechanism

Oxymercuration Demercuration Reaction

- i. Markonikov addition.
- ii. No rearrangment.
- iii. Both Syn and anti addition.
- iv. OM is anti additon, DM involves C^{\bullet} , hence both syn and anti addition.
- v. Metal Hg^{\bullet} is obtained.

14 Iodolactonization

14.1 Reaction and Mechanism

lodolactonization

15 Kuchrov's Reaction

15.1 Reaction and Mechanism

Kuchrov's Reaction

Reaction:
$$R = \frac{1 \% \text{ HgSO}_4}{\text{dil. H}_2\text{SO}_4}$$

Mechanism: $R = \frac{1 \% \text{ HgSO}_4}{\text{Hg}}$

KingDraw

- i. Example of Electrophilic Additon Reaction.
- ii. NCC type intermediate is obtaied.
- iii. Involves tautomerism.
- iv. Mixed carbony are obtaied.

16 Kharasch Effect

16.1 Reaction and Mechanism

Kharash Effect

- i. C^{\bullet} obtained as intermediate.
- ii. Example of C^{\bullet} addition Reaction.
- iii. Anti-markonikov addition
- iv. Only HBr shows peroxide effect (Kharasch Effect).

17 Catalytic Hydrogenation

17.1 Reaction and Mechanism

Catalytic Hydrogenation

Reaction:
$$R_4$$
 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_6 R_6 R_7 R_8 R_8 R_9 R_9

Kiligbiaw

- i. Example of additon and Redox reaction.
- ii. syn additon
- iii. Example of surface phenomenon and involvs 4 MCTS.
- iv. $Pd/BaSO_4$ a.k.a Lindlar's Catalyst and Quinoline is added as poison.
- v. In case of conjugated diene, 1,4addition takes place due to 6 MCTS.
- vi. Reactivity, $C-S \text{ bond } > \text{Alkyne} > Ar-NO_2 > R-COCl > \text{Alkene} > RCHO > \\ RCOR > Benzene^* > RCOOH^* < acid derivative^* * require heat \\ \propto \frac{1}{\text{Steric Hindrance}}$

$$\propto \frac{1}{\text{Stability of Alkene}}$$

18 Rosenmund Reaction

on hold

19 Hydroboration Oxidation

19.1 Reaction and Mechanism

Hydroboration Oxidation

Reaction:

Reaction:

$$\frac{1. \quad B_2H_6 + (THF)}{2. \quad H_2O_2 + NaOH}$$

Mechanism:

 $\frac{\delta^+}{\delta^-} = \frac{\delta^-}{\delta^-} = \frac{\delta^+}{\delta^-} = \frac{R^+}{R^+} = \frac$

19.2 Reagent Table

Reactant	Reagent	Product
$R_3'B$	$H_2O_2/NaOH$	3R'OH
	H_2O	3R'H
	RCOOH	3R'H
	Cl_2	3R'Cl

- i. Sys addition.
- ii. Anti-markonikov addition.
- iii. Involvs 4MCTS.
- iv. In case of acid or water, reduction occurs.
- v. Generally, 3 mol. alkene is required for 1 mol. BH_3
- vi. 9-BBN, Sia_2BH is used for selective addition on less crowded terminal alkene.

20 Birch Reduction

20.1 Reaction and Mechanism

Birch Reduction

Reaction:
$$R \longrightarrow R'$$
 $Na + NH_3(I)$ $EtOH$

- i. $Na/NH_3(l)$ is a blue color solution.
- ii. Both C^{\bullet} and C^{-} obtained as intermediate.
- iii. ROH is used as proton source.
- iv. Terminal Alkyne will not give alkene, acid base reaction will occur.
- v. In case of substituted benzene, more stable alkene is major product.

21 Oxidation of Alkene

Oxidation of Alkene

22 Soda Lime Decarboxylation

22.1 Reaction and Mechanism

Soda Lime Decarboxilation

- i. 3:1 of NaOH and CaO taken respectively.
- ii. C^- obtaied as intermediate.
- iii. $ROR \propto Stability of C^-$
- iv. a.k.a Oakwood Degradation

23 Ozonolysis

23.1 Reaction and Mechanism

Ozonolysis

24 Reactions of Hot $KMnO_4$

Reactions of Hot KMnO₄

- KingDraw
- i. If Benzylic $^{12}_{6}C$ has any $-H,=,\equiv$ present then it will convert to benzoic acid.
- ii. If there are multiple rings present in a compound, then the ring with more electron density will oxidize first.

25 Hydrolysis of Carbides

- i. Hydrolysis of a Carbide results in formation of a Hydrocarbon and Hydroxide.
- ii. Hydrolysis is a non redox reaction, Hence,
 - oxidation state of $^{12}_{\ 6}C$ in carbide = oxidation state of $^{12}_{\ 6}C$ in hydrocarbon.
 - Oxidation state of Metal in Carbide = Oxidation of metal in Hydroxide
- iii. The suffix -ide in Carbide indicates that oxidation state of $^{12}_{\ 6}C<0$ i.e. it is an anion.

26 Aromatization Reactions

26.1 Reaction of Alkyne inside Red Hot Fe Tube

onhold

27 Electrophilic Aromatic Substitution

27.1 Reaction and Mechanism

Electrophilic Aromatic Substitution

KingDraw

- i. σ complex obtained as intermediate.
- ii. Formation of arenium ion is RDS.
- iii. Rate law, $ROR = k[Ar H][E^+]$
- iv. Bimolecular Reaction

- v. $ROR \propto Stability of C^+$
- vi. EDG will increase the rate.
- vii. Reaction can be reversible and irreversible.

27.3 Reversiblity of EAS

EAS can be Reversible if,

- E^+ is very stable [Alkylation (tert-Butyl cation), Iodination (I^+)]

27.4 Reativity and Orientation

- Reacitvity is decided by net effect of E.
- Orientation is decided by stability of σ complex.
- Reactivity, EDG > Robinhood > EWG
- EDG are o, p directing.
- EWG are m directing.
- \bullet Robinhood are o, p directing.