Funzione logaritmo

Tabella dei contenuti

Definizione															2
Osservazione															2
Dimostrazione .															3

Definizione

Considerato un ramo di iperbole equilatera di equazione $y=\frac{1}{x}$ per x>0, definiamo la funzione $\log:(0,+\infty)\to\mathbb{R}$ nel modo seguente.

Dato $p \geq 1$ allora log(p) è definito come l'area sottesa dalla funzione $y = \frac{1}{x}$ e contenuta nei vertici (1,1), (1,0), (p,0), (p,1/p).

Contrariamente, dato $p \in (0,1)$, definiamo la funzione come **l'opposto** dell'area sottesa dalla funzione $y = \frac{1}{x}$ e contenuta nei vertici (1,1), (1,0), (p,0), (p,1/p).

 $Nota\ bene$

In sintesi:

- log(p) > 0 se $p \ge 0$ log(p) < 0 se 0 .

Osservazione

Per ogni $p>0,\ log(p)$ è uguale all'area sottesa dalla funzione $y=\frac{1}{x}$ e compresa tra i punti $(1,1),\ (0,0)$ e $(p,\frac{1}{p}).$

Funzione logaritmo

Dimostrazione

Supponiamo $p\geq 1.$ Siano A_1,A_2,A_3,A_4 le aree delle quattro regioni in figura. Allora:

$$A_1+A_2=$$
 Area del triangolo rettangolo OHU
$$=\frac{1\cdot 1}{2}=\frac{1}{2}$$

Mentre:

$$A_2+A_3=$$
 Area del triangolo rettangolo OKP
$$=\frac{p\cdot\frac{1}{p}}{2}=\frac{1}{2}$$

Dunque, data l'area della figura HKPU = $A_3 + A_4$:

$$\begin{array}{ccc} A_1+A_2=A_3+A_2 &\Longrightarrow & A_1=A_3\\ &\Longrightarrow & A_3+A_4=A_1+A_4\\ &\Longrightarrow & A_1+A_4=\text{Area della figura HKPU} & \square \end{array}$$

Funzione logaritmo

