Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 11

Abgabe: Freitag, 02.07.2021, 09:15 Uhr

Aufgabe 1 (Nullstellenmengen).

(6 Punkte)

Sei $A := \mathbb{C}[X,Y]/(Y-X^2)$ und $\mathfrak{m} := (\overline{X},\overline{Y})$ das von den Restklassen von X und Y erzeugte Ideal von A.

- (a) Bestimmen Sie alle Maximalideale von A.
- (b) Zeigen Sie, dass ein Isomorphismus $A_{\mathfrak{m}} \cong \{\overline{f}/\overline{g} \in \operatorname{Quot}(A) \mid f,g \in \mathbb{C}[X,Y], g(0,0) \neq 0\}$ von Ringen existiert.
- (c) Zeigen Sie, dass $\mathfrak{m}/\mathfrak{m}^2$ kanonisch die Struktur eines C-Vektorraumes hat und bestimmen Sie dessen Dimension.

Aufgabe 2 (Proendliche Gruppen).

(6 Punkte)

Sei G eine kompakte (und damit auch hausdorffsche) topologische Gruppe. Zeigen Sie:

- (a) Jede offene Untergruppe ist von endlichem Index.
- (b) Angenommen, jede offene Teilmenge M von G mit $1 \in M$ enthält einen offenen Normalteiler (eine solche Gruppe nennt man *proendlich*). Dann ist jede abgeschlossene Untergruppe H von G der Durchschnitt aller sie enthaltenden offenen Untergruppen von G:

$$\overline{H} = \bigcap_{\substack{U \subset G \text{ offen} \\ H \subset U}} U \ .$$

Aufgabe 3 (Nüchterne Räume).

(5 Punkte)

Sei X ein topologischer Raum. Ein Punkt $\eta \in X$ heißt *generischer Punkt*, falls $X = \overline{\{\eta\}}$ (d. i. der Abschluss von $\{\eta\}$ in X). Wir nennen X *nüchtern*, falls jede irreduzible¹ und abgeschlossene Teilmenge von X einen eindeutigen generischen Punkt (bzgl. der Unterraumtopologie von X) hat; in anderen Worten: für jede irreduzible und abgeschlossene Teilmenge Z von X existiert genau ein Punkt $\eta \in Z$, so dass $Z = \overline{\{\eta\}}$. Zeigen Sie:

- (a) Hat X die Eigenschaft T_2 , so ist X nüchtern.
- (b) Ist X nüchtern, so hat X die Eigenschaft T_0 .
- (c) Hat X die Eigenschaft T_0 und hat jede abgeschlossene Teilmenge von X einen generischen Punkt, so ist X nüchtern, d. h. die generischen Punkte sind bereits eindeutig.
- (d) Hat X die Eigenschaft T_1 , so muss X nicht notwendig nüchtern sein.
- (e) Ist X nüchtern, so muss es nicht notwendig die Eigenschaft T_1 haben.

Aufgabe 4 (Trennungseigenschaften der Zariski-Topologie²).

(6 Punkte)

Sei *A* ein kommutativer Ring mit Eins. Zeigen Sie:

- (a) Der topologische Raum Spec(A) ist nüchtern (siehe Aufgabe 3).
- (b) Ist A noethersch, so sind folgende Eigenschaften äquivalent:
 - (1) Spec(A) erfüllt T_2 .
- (2) Spec(A) erfüllt T_1 .
- (3) A ist artinsch.
- (4) $\operatorname{Spec}(A)$ ist endlich und diskret.

¹Siehe Blatt 10, Aufgabe 10, Aufgabe 4.

²Diese Aufgabe ist Teil einer Serie von Aufgaben über das Spektrum eines Ringes.

Zusatzaufgabe 5 (Produkt und projektiver Limes topologischer Räume). (6 Punkte) Sei $(T_i)_{i \in I}$ eine Familie topologischer Räume. Zeigen Sie:

(a) Das Produkt $P := \prod_{i \in I} T_i$ mit der Produkttopologie (Definition 23.15) erfüllt die Universaleigenschaft eines Produktes in der Kategorie der topologischen Räume, d. h. für jeden topologischen Raum X und für jede Familie $(f_i : X \to T_i)_{i \in I}$ von stetigen Abbildungen existiert eine eindeutig bestimmte stetige Abbildung $f : X \to P$, so dass $f_i = p_i \circ f$ für alle $i \in I$, wobei $p_i : P \to T_i$ die kanonische Projektion bezeichne.

Sei $(T_i, (\varphi_{i,j}: T_i \to T_i)_{i \le j \in I})_{i \in I}$ ein projektives System topologischer Räume. Zeigen Sie:

(b) Der projektive Limes $T:=\varprojlim_{i\in I}T_i$ mit der Unterraumtopologie der Produkttopologie (Definition 23.16) erfüllt die Universaleigenschaft eines projektiven Limes in der Kategorie der topologischen Räume, d. h. für jeden topologischen Raum X und für jede Familie $(g_i\colon X\to T_i)_{i\in I}$ von stetigen Abbildungen derart, dass $g_i=\varphi_{i,j}\circ g_j$ für alle $i\le j$ in I, existiert eine eindeutig bestimmte stetige Abbildung $g\colon X\to T$, so dass $g_i=q_i\circ g$ für alle $i\in I$, wobei $q_i\colon T\to T_i$ die kanonische Projektion bezeichne.