Exercise 1. (If you have seen closed subschemes) Let X be a scheme.

- (i) Show that there exists a unique reduced closed subscheme X_{red} of X such that any morphism $T \to X$ with T reduced factors through $X_{red} \to X$.
- (ii) Show that $X_{red} \to X$ is surjective, and that X_{red} is the smallest closed subscheme of X with this property (in other words, if a closed subscheme Z of X is such that $Z \to X$ is surjective, then $X_{red} \to X$ factors through Z).
- **Exercise 2.** (i) Let $f: Y \to X$ be a scheme morphism, x a point of X, and $f^{-1}x = Y \times_X \operatorname{Spec} k(x)$ the scheme-theoretic fibre of f over x. Show that the underlying set of $f^{-1}x$ is the set-theoretic fibre $\{y \in Y | f(y) = x\}$.
 - (ii) Let $f: X \to S$ and $g: Y \to S$ be two scheme morphisms. Show that the underlying set of $Y \times_S X$ is

$$\{(x,y,l)|x\in X,y\in Y \text{ with } f(x)=g(y)=:s, \text{ and } l\in \operatorname{Spec}(k(x)\otimes_{k(s)}k(y))\}.$$

Exercise 3. (More difficult) Let k be a field, and $f: \mathbb{A}^1_k \to \mathbb{A}^1_k$ a morphism. Let S be the subset of points $x \in \mathbb{A}^1_k$ such that the scheme-theoretic fibre $f^{-1}x$ is a disjoint union of spectra of separable field extensions of k(x). Show that S is open in \mathbb{A}^1_k .