Structures discrètes : logique

Table des matières

1	Fon	ctions booléennes	2							
	1.1	Algèbre de Boole	2							
	1.2	Fonctions booléennes	2							
	1.3	Formes normales	3							
2	Cal	cul propositionnel	4							
	2.1	Syntaxe	4							
	2.2	Sémantique	4							
	2.3	Equivalence sémantique	6							
	2.4	Conséquence sémantique	6							
		Conséquence logique (ou déduction)	8							
3	Logique du premier ordre									
	3.1	Syntaxe	9							
	3.2		10							
	3.3		11							
	3.4	•	13							

1 Fonctions booléennes

1.1 Algèbre de Boole

Définition 1 (Algèbre de Boole). Une algèbre de Boole est un tuple

Le projet "Interface graphique pour la Logique en L3" consiste à développer un outil dynamique et robuste pour améliorer l'enseignement de la logique en Licence 3. Ce projet nous a été soumis dans le cadre de L'UE PSAR du master 1 Informatique spécialité SAR. Il est sous la responsabilité de Mr Fabrice Kordon suivit par Mme Béatrice Berard, Mr Mathieu Jaume et Mme Bénédicte Legastelois. $\mathcal{B} = (E, \bot, \top, \lor, \land, \lnot)$ où E est un ensemble, \bot et \top sont deux éléments distincts de E, \lor et \land sont deux opérations binaires, \lnot est une opération unaire, satisfaisant les propriétés suivantes :

- Associativité : pour tous $a, b, c \in E, (a \lor b) \lor c = a \lor (b \lor c)$ et $(a \land b) \land c = a \land (b \land c)$
- Commutativité : pour tous $a, b \in E, a \lor b = b \lor a$ et $a \land b = b \land a$
- Distributivité d'une loi par rapport à l'autre : pour tous $a, b, c \in E$, $(a \lor b) \land c = (a \land c) \lor (b \land c)$ et $(a \land b) \lor c = (a \lor c) \land (b \lor c)$
- Absorption : pour tous $a, b \in E, a \land (a \lor b) = a \text{ et } a \lor (a \land b) = a$
- Idempotence : pour tout $a \in E$, $a \lor a = a$ et $a \land a = a$
- Bornes: pour tout $a \in E$, $a \land \bot = \bot$, $a \lor \bot = a$ et $a \land \top = a$, $a \lor \top = \top$
- Complémentarité : pour tout $a \in E$, $a \wedge \bar{a} = \bot$ et $a \vee \bar{a} = \top$

Exemples.

1. Soit $E = \mathcal{P}(A)$ pour un ensemble A non vide. On définit alors une algèbre de Boole avec :

T	Т	V	\wedge	-
Ø	Α	U	\cap	complémentaire

2. Soit $\mathbb{B} = \{0, 1\}$. On définit alors une algèbre de Boole avec :

Pour les calculs dans \mathbb{B} , on note généralement + pour \vee et . ou rien pour \wedge .

1.2 Fonctions booléennes

Définition 2 (Fonction booléenne). Soit $n \in \mathbb{N}$. Une fonction booléenne à n arguments est une application $f: \mathbb{B}^n \longrightarrow \mathbb{B}$.

Remarque. Si n = 0, il y a deux fonctions constantes : 0, 1. Si n = 1, il y a quatre fonctions : $x \to 0$, $x \to 1$, $x \to x$ et $x \to \bar{x}$. Il y a 2^{2^n} fonctions booléennes à n arguments.

Exemple. Table de vérité de la fonction NAND (à deux arguments), définie par : $NAND(x,y) = \overline{x.y}$.

x	y	NAND(x, y)
0	0	1
0	1	1
1	0	1
1	1	0

Théorème 3. Toute fonction booléenne f à n arguments, $(n \ge 1)$, s'écrit comme combinaison de ses arguments ou de leurs complémentaires avec somme et produit.

Exemple.
$$NAND(x, y) = \bar{x} \cdot \bar{y} + \bar{x} \cdot y + x \cdot \bar{y}$$

Ce théorème se démontre par récurrence sur n, en utilisant le lemme suivant :

Lemme 4. Soit f une fonction booléenne à n arguments. Alors $f(x_1, \ldots, x_n) = x_1 f(1, x_2, \ldots, x_n) + \overline{x_1} f(0, x_2, \ldots, x_n)$

Démonstration. Posons $g(x_1, \ldots, x_n) = x_1 f(1, x_2, \ldots, x_n) + \overline{x_1} f(0, x_2, \ldots, x_n)$ et montrons que f = g, c'est-à-dire que pour tout n-uplet $(x_1, \ldots, x_n), g(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$.

- Si
$$x_1 = 1$$
, $g(x_1, ..., x_n) = f(1, x_2, ..., x_n) = f(x_1, ..., x_n)$
- Si $x_1 = 0$, $g(x_1, ..., x_n) = f(0, x_2, ..., x_n) = f(x_1, ..., x_n)$

Donc f = g.

1.3 Formes normales

Pour une fonction booléenne f à n arguments, on note $b=(b_1,\ldots,b_n)$ un élément de \mathbb{B}^n et $\mathcal{D}_f=\{b\in\mathbb{B}^n/f(b)=1\}.$

Définition 5 (Formes disjonctives et conjonctives).

- Une fonction est sous forme normale disjonctive (FND) si elle s'écrit comme une somme de produits de x_i ou $\overline{x_i}$.
- Une fonction est sous forme normale conjonctive (FNC) si elle s'écrit comme produit de sommes de x_i ou $\overline{x_i}$.

Pour une fonction booléenne f à n arguments, une forme normale disjonctive pour f est obtenue par :

$$f(x_1, \ldots, x_n) = \sum_{b \in \mathcal{D}_f} M_b(x_1, \ldots, x_n) \text{ où } M_b(x_1, \ldots, x_n) = x_1' \cdot \cdots \cdot x_n'$$

$$\text{avec } x_i' = \begin{cases} x_i & \text{si } b_i = 1\\ \overline{x_i} & \text{si } b_i = 0 \end{cases}$$

Exemple. Pour la fonction NAND, on a : $NAND(x, y) = \underbrace{\bar{x} \cdot \bar{y}}_{M_{(0,0)}(x,y)} + \underbrace{\bar{x} \cdot y}_{M_{(0,1)}(x,y)} + \underbrace{x \cdot \bar{y}}_{M_{(1,0)}(x,y)}$

Soit f une fonction booléenne à n arguments, une forme normale conjonctive pour f est obtenue par :

$$f(x_1, \ldots, x_n) = \prod_{b \notin \mathcal{D}_f} S_b(x_1, \ldots, x_n) \text{ où } S_b(x_1, \ldots, x_n) = x_1' + \cdots + x_n'$$

$$\text{avec } x_i' = \begin{cases} x_i & \text{si } b_i = 0\\ \overline{x_i} & \text{si } b_i = 1 \end{cases}$$

Exemple. Pour la fonction NAND, on a : $NAND(x, y) = \underbrace{\bar{x} + \bar{y}}_{S_{(1,1)}(x,y)}$

2 Calcul propositionnel

2.1 Syntaxe

Définition 6. Soit \mathcal{P} un ensemble de symboles propositionnels (ou variables propositionnelles). Les formules du calcul propositionnel sont définies inductivement par :

- (B) Si $p \in \mathcal{P}$, alors p est une formule.
- (I) Si F est une formule, alors $\neg F$ est une formule, si F_1 et F_2 sont deux formules, alors $(F_1 \lor F_2)$ et $(F_1 \land F_2)$ sont aussi des formules.

Exemple 1. $F = ((q \land r) \lor \neg p))$ est une formule utilisant les symboles p, q et r.

Définition 7. On définit deux nouvelles opérations \rightarrow et \leftrightarrow par :

$$-F_1 \to F_2 = F_2 \lor \neg F_1$$

- $F_1 \leftrightarrow F_2 = (F_1 \to F_2) \land (F_2 \to F_1)$

Exemple 2. $G = (p \to (p \to q))$ est une formule utilisant les deux symboles p et q.

Remarque 1. Le symbole \supset est parfois utilisé au lieu de \rightarrow pour l'implication et parfois aussi \equiv au lieu de \leftrightarrow .

Remarque 2. Les formules du calcul propositionnel peuvent être vues comme les termes construits avec $F_0 = \mathcal{P}$, $F_1 = \{\neg\}$ et $F_2 = \{\lor, \land, \rightarrow, \leftrightarrow\}$, avec une notation infixe pour les opérateurs binaires, c'est-à-dire par exemple $p \lor q$ au lieu de $\lor (p,q)$.

Exemple 3. $F = \neg p \land ((q \lor r) \to s)$ est une formule sur le sous-ensemble $\{p, q, r, s\}$ de \mathcal{P} , qui peut être représentée (comme un terme) par un arbre.

2.2 Sémantique : interprétation des formules

Exemple. On reprend l'exemple ci-dessus. En associant des valeurs dans $\mathbb{B} = \{0, 1\}$ aux propositions p, q, r et s, on peut obtenir une valeur (également dans \mathbb{B}) pour la formule F, et plus généralement pour toute formule portant sur des propositions de $\{p, q, r, s\}$. Par exemple, l'interprétation $p \mapsto 0, q \mapsto 0, r \mapsto 1, s \mapsto 1$ produit la valeur 1 pour F.

Dans le cas général, une interprétation est une application $I: \mathcal{P} \longrightarrow \mathbb{B}$. A partir d'une telle application, qui associe à chaque proposition de \mathcal{P} une valeur dans $\mathbb{B} = \{0, 1\}$, il est possible de déduire une interprétation de toutes les formules de CP.

Définition 8. Soit $I: \mathcal{P} \longrightarrow \{0, 1\}$ une interprétation des symboles de \mathcal{P} . Le prolongement de I aux formules du calcul propositionnel est l'application encore notée I (au lieu de I^*) de $CP \longrightarrow \{0, 1\}$ définie inductivement par :

(B) Si
$$F = p$$
, alors $I(F) = I(\underline{p})$.
(I) Si $F = \neg G$, alors $I(F) = \overline{I(G)}$,
si $F = F_1 \lor F_2$ alors $I(F) = I(F_1) + I(F_2)$
et si $F = F_1 \land F_2$ alors $I(F) = I(F_1)I(F_2)$.

Ceci correspond bien à interpréter les symboles d'opérations de la façon usuelle : \neg comme la négation, \land comme la conjonction et \lor comme la disjonction.

Proposition 9. Soit I une interprétation. Alors :

1.
$$I(F_1 \to F_2) = I(F_2) + \overline{I(F_1)}$$

2. $I(F_1 \leftrightarrow F_2) = I(F_1).I(F_2) + \overline{I(F_1)}.\overline{I(F_2)}$

Démonstration. Montrons le premier point de la proposition précédente, le point 2. est laissé en exercice.

$$\begin{array}{rcl} I(F_1 \to F_2) &=& I(F_2 \vee \neg F_1) \text{ par d\'efinition de } F_1 \to F_2 \\ &=& I(F_2) + I(\neg F_1) \text{ par d\'efinition de } I(X \vee Y) \\ &=& I(F_2) + \overline{I(F_1)} \text{ par d\'efinition de } I(\neg X) \\ \text{donc } I(F_1 \vee F_2) &=& I(F_2) + \overline{I(F_1)} \end{array}$$

Exemple. Soit $F = \neg p \land ((q \lor r) \rightarrow s)$

$$\begin{array}{rcl} I(F) & = & \overline{I(p)}.I((q\vee r)\to s) \\ & = & \overline{I(p)}.(\overline{I(q\vee r)}+I(s)) \\ & = & \overline{I(p)}.(\overline{I(q)}+I(r)+I(s)) \\ I(F) & = & \overline{I(p)}.(\overline{I(q)}.\overline{I(r)}+I(s)) \text{ d'après les lois de De Morgan} \end{array}$$

On retrouve le fait que si I(p) = 0, I(r) = 1, I(q) = 0 et I(s) = 1, alors I(F) = 1.

Définition 10. Soit F une formule.

- F est valide (ou une tautologie) si pour toute interprétation I, I(F) = 1.
- F est satisfaisable s'il existe une interprétation I telle que I(F) = 1.
- F est non satisfaisable si pour toute interprétation I, I(F) = 0.

Remarque 1. Lorsqu'une interprétation I est telle que I(F) = 1, on note parfois $I \models F$ qui se lit : « I satisfait F » ou « F est vraie pour I ».

Remarque 2. Une formule F est non satisfaisable si et seulement si $\neg F$ est valide.

Exemple. Pour le problème de Kerstin, Pollet et Anne, on considère la formule : $F = A \wedge B \wedge C$ (en omettant les parenthèses puisque l'interprétation de \wedge est associative), avec

 $A = p \to (q \land r), B = \neg p \to q$ et $C = \neg p \to r$. Donc pour toute interprétation I, on a : $I(A) = I(q)I(r) + \overline{I(p)}, I(B) = I(q) + I(p)$ et I(C) = I(r) + I(p). Le problème posé revient à chercher les interprétations I pour lesquelles F est vraie, c'est-à-dire I(F) = 1.

En posant x = I(p), y = I(q), z = I(r), on obtient $I(F) = (yz + \overline{x})(x + y)(x + z)$, on retrouve donc la fonction booléenne : $f(x, y, z) = (yz + \overline{x})(x + y)(x + z)$, pour laquelle on avait vu que f(x, y, z) = yz. Donc I(F) = 1 si et seulement si l'interprétation I est telle que y = I(q) = 1 et z = I(r) = 1. Ainsi, on en déduit que Anne et Pollet iront à la conférence mais qu'on ne sait pas pour Kerstin.

2.3 Equivalence sémantique

Définition 11. Deux formules F et G sont équivalentes, noté $F \sim G$, si pour toute interprétation I, on a: I(F) = I(G).

Remarque 1. La relation \sim sur l'ensemble CP des formules du calcul propositionnel est une relation d'équivalence.

Exemples. Les formules p et $\neg(\neg p)$ sont équivalentes, et en général :

- $-F \sim \neg(\neg F)$
- $F \vee G \sim G \vee F$ (car + est commutatif dans \mathbb{B})
- $--\neg (F \lor G) \sim (\neg F \land \neg G)$

Remarque 2. On obtient des propriétés similaires à l'associativité, l'idempotence, l'absorption, la distributivité, etc. mais avec \sim au lieu de l'égalité. Ainsi, l'ensemble quotient CP/\sim est une algèbre de Boole.

Remarque 3. Sur $\mathcal{P} = \{p_1, \ldots, p_n\}$, une interprétation $I : \mathcal{P} \longrightarrow \mathbb{B}$ peut être identifiée au n-uplet de ses valeurs $I = (I(p_1), \ldots, I(p_n)) \in \mathbb{B}^n$. On peut donc associer à toute formule F sur \mathcal{P} une fonction booléenne $g_F : \mathbb{B}^n \longrightarrow \mathbb{B}$ définie par $g_F(I) = I(F)$. Ainsi :

Proposition 12. L'ensemble des fonctions booléennes est en bijection avec l'ensemble CP/\sim (qui contient les formules du calcul propositionnel à équivalence près).

Exemple. Soit
$$f: \mathbb{B}^2 \longrightarrow \mathbb{B}$$
 $(x, y) \longrightarrow \overline{x+y}$

La formule F de CP qui lui est associée est $\neg(p \lor q)$ sur $\{p,q\}$.

Cette correspondance permet d'associer à toute formule F une formule F' sous forme normale conjonctive (FNC) et une formule F'' sous forme normale disjonctive (FND), qui sont équivalentes à F.

2.4 Conséquence sémantique

Définition 13. Pour deux formules F et G, on dit que G est conséquence de F, ou que F satisfait G, noté $F \models G$ si pour toute interprétation I, si I(F) = 1, alors I(G) = 1.

Proposition 14. F satisfait G ssi $(F \rightarrow G)$ est valide.

Démonstration. Montrons l'équivalence des négations, c'est-à-dire : F ne satisfait pas G ssi $(F \to G)$ n'est pas valide.

- Si F ne satisfait pas G, alors, par définition, il existe une interprétation I telle que I(F) = 1 et I(G) = 0. Pour cette interprétation I, on a $I(F \to G) = \overline{I(F)} + I(G) = 0$, donc $(F \to G)$ n'est pas valide.
- Réciproquement, si $(F \to G)$ n'est pas valide, alors il existe une interprétation I telle que $I(F \to G) = 0$, avec $I(F \to G) = \overline{I(F)} + I(G)$. Pour que la somme soit nulle, il faut que I(F) = 1 et I(G) = 0, donc F ne satisfait pas G.

Conclusion : F satisfait G ssi $(F \to G)$ est valide.

Proposition 15. F est équivalente à G ssi $F \leftrightarrow G$ est valide.

La démonstration reprend le schéma précédent, elle est laissée en exercice. On peut aussi vérifier que $F \sim G$ ssi $F \models G$ et $G \models F$ et utiliser la proposition précédente.

On étend les définitions de la conséquence sémantique \models à des ensembles de formules.

Définition 16. Soit $\mathcal{F} = \{F_1, \ldots, F_n\}$ un ensemble fini de formules et G une formule.

- On dit que \mathcal{F} est satisfaisable s'il existe une interprétation I telle que pour toute formule $F \in \mathcal{F}$, on ait I(F) = 1. Donc \mathcal{F} est satisfaisable si la formule $\bigwedge_{i=1}^{n} F_i$ est satisfaisable.
- On note $\mathcal{F} \models G$ si $\bigwedge_{i=1}^n F_i \models G$, c'est-à-dire : pour toute interprétation I, si pour toute formule $F \in \mathcal{F}$, I(F) = 1, alors I(G) = 1.

Exemple. Montrer que $\mathcal{H} = \{p, p \to q, \neg q\}$ n'est pas satisfaisable.

Définition 17. Un séquent est une paire (\mathcal{F}, G) où \mathcal{F} est un ensemble de formules et G une formule. Le séquent (\mathcal{F}, G) est valide si $\mathcal{F} \models G$.

Exemple. Soient $\mathcal{F} = \{p, p \to q\}$ et G = q, on vérifie que (\mathcal{F}, G) est un séquent valide.

Montrons que pour toute interprétation I, si pour toute $F \in \mathcal{F}$, I(F) = 1, alors I(G) = 1. Ceci revient à montrer $(p) \land (p \rightarrow q) \models q$.

Supposons $I(p) = I(p \to q) = 1$. Or $I(p \to q) = \overline{I(p)} + I(q) = 1$. Mais comme I(p) = 1, on a $\overline{I(p)} = 0$ et I(q) = 1. Ainsi, (\mathcal{F}, G) est un séquent valide.

Remarque. Soit \mathcal{F}' l'ensemble obtenu en remplaçant dans \mathcal{F} un des F_i par F_i' tel que $F_i \sim F_i'$. Alors :

- \mathcal{F} est satisfaisable ssi \mathcal{F}' est satisfaisable et
- (\mathcal{F}, G) est valide ssi (\mathcal{F}', G) est valide.

Proposition 18. Soit \mathcal{H} un ensemble de formules, et F, G deux formules. On a les équivalences suivantes :

- 1. $\mathcal{H} \models G \ ssi \ \mathcal{H} \cup \{\neg G\} \ est \ non \ satisfaisable.$
- 2. $\mathcal{H} \cup \{F\} \models G \ ssi \ \mathcal{H} \models (F \rightarrow G)$

Démonstration. 1. On démontre l'équivalence des négations.

- Supposons $\mathcal{H} \cup \{\neg G\}$ satisfaisable. Alors il existe une interprétation I telle que I(F) = 1 pour toute formule F de \mathcal{H} et $I(\neg G) = 1$, donc I(G) = 0. Donc on n'a pas $\mathcal{H} \models G$.
- Réciproquement, supposons que $\mathcal{H} \models G$ est faux. Alors il existe une interprétation I telle que I(F) = 1 pour toute F de \mathcal{H} et I(G) = 0. Alors $I(\neg G) = 1$ donc I satisfait $\mathcal{H} \cup \{\neg G\}$.
- 2. Montrons cette proposition à l'aide d'équivalences.

$$\mathcal{H} \cup \{F\} \models G \text{ ssi } \mathcal{H} \cup \{F, \neg G\} \text{ non satisfaisable d'après } (1.)$$

ssi $\mathcal{H} \cup \{\neg(F \to G)\} \text{ non satisfaisable}$
ssi $\mathcal{H} \models (F \to G) \text{ encore par } (1.)$

2.5 Conséquence logique (ou déduction)

Définition 19. Un séquent (\mathcal{F}, G) est dit prouvable, noté $\mathcal{F} \vdash G$, s'il est obtenu après un nombre fini d'applications des six règles suivantes, où \mathcal{H} est un ensemble de formules, \mathcal{F} et G des formules :

- (a) Utilisation d'une hypothèse : si $F \in \mathcal{H}$, alors $\mathcal{H} \vdash F$
- (b) Augmentation d'hypothèse : si $G \notin \mathcal{H}$ et $\mathcal{H} \vdash F$, alors $\mathcal{H} \cup \{G\} \vdash F$
- (c) Modus ponens : $si \mathcal{H} \vdash (F \rightarrow G) et \mathcal{H} \vdash F$, alors $\mathcal{H} \vdash G$
- (d) Retrait d'hypothèse (synthèse) : si $\mathcal{H} \cup \{F\} \vdash G$, alors $\mathcal{H} \vdash (F \rightarrow G)$
- (e) Double négation : $\mathcal{H} \vdash F$ ssi $\mathcal{H} \vdash \neg \neg F$
- (f) Absurde: $si \mathcal{H} \cup \{F\} \vdash G \ et \mathcal{H} \cup \{F\} \vdash \neg G, \ alors \mathcal{H} \vdash \neg F$

Exemple. Preuve de la démonstration par contraposée :

On veut prouver : $p \to q \vdash (\neg q \to \neg p)$

- 1. $\{p \to q, \neg q, p\} \vdash p \text{ d'après a}$
- 2. $\{p \to q, \neg q, p\} \vdash \neg q \text{ d'après a}$
- 3. $\{p \to q, \neg q, p\} \vdash p \to q \text{ d'après a}$
- 4. $\{p \to q, \neg q, p\} \vdash q$ d'après c) appliquée à 1 et 3
- 5. $\{p \to q, \neg q\} \vdash \neg p$ d'après f) sur 2 et 4
- 6. $\{p \to q\} \vdash (\neg q \to \neg p)$ d'après d)

Théorème 20. Un séquent (\mathcal{F}, G) est valide ssi il est prouvable.

Remarque. Signification des deux sens de l'équivalence :

— Sens \Rightarrow : Complétude - Ce qui est vrai peut être prouvé.

— Sens ← : Correction/adéquation : Ce qui peut être prouvé est vrai.

Principe de la démonstration de correction. Par induction sur la longueur de la preuve. A partir d'un séquent valide, en appliquant une des six règles a), ..., f) on obtient un nouveau séquent valide.

Par exemple avec la règle a):

On suppose que $\mathcal{F} \vdash G$ a été obtenu par la règle a), donc : $G \in \mathcal{F}$. Si I est une interprétation telle que I(F) = 1 pour toute formule F de \mathcal{F} , alors I(G) = 1 puisque $G \in \mathcal{F}$, donc $\mathcal{F} \models G$ et le séquent est valide.

3 Logique du premier ordre

La logique du premier ordre enrichit le calcul propositionnel en utilisant :

- des termes construits avec des variables et des fonctions,
- des formules construites à partir de relations sur les termes, avec des opérateurs booléens et des quantifications sur les variables.

Par exemple $F: \forall x \exists y R(x, y)$ est une formule de la logique du 1er ordre. Dans cette formule, x et y sont des variables et R(x, y) est une formule atomique construite en utilisant une relation binaire R.

- Si F est interprétée sur les entiers naturels, avec pour R la relation <, on obtient : Pour tout entier x, il existe un entier y strictement plus grand que x, ce qui exprime que l'ensemble des entiers naturels n'a pas d'élément maximal.
- Si F est interprétée sur l'ensemble des personnes avec pour R la relation défnie par R(x,y) si y est la mère de x, la formule exprime que toute personne a une mère.
- Si F est interprétée dans les mondes de Tarski, avec pour R la relation LeftOf, elle exprime que tout objet est à gauche d'un autre objet.

3.1 Syntaxe

On considère un ensemble $\mathcal G$ de symboles de fonctions et un ensemble $\mathcal R$ de symboles de relations. En particulier, on notera :

- $\mathcal{C} = \mathcal{G}_0$ l'ensemble des symboles de fonctions sans argument, c'est-à-dire les constantes,
- $\mathcal{P} = \mathcal{R}_0$ l'ensemble des symboles de relations d'arité nulle, c'est-à-dire les propositions (du calcul propositionnel), qui seront interprétées dans $\mathbb{B} = \{0, 1\}$.

On considère aussi un ensemble X de variables et on définit les termes et les formules de la logique du premier ordre associés à $\mathcal{G} \cup \mathcal{R} \cup X$.

Définition 21 (Termes avec variables). L'ensemble $T(\mathcal{G}, X)$ des termes est défini inductivement par :

- (B) toute constante de C est un terme et toute variable de X est un terme,
- (I) si $f \in \mathcal{G}$ a n arguments et si t_1, \ldots, t_n sont des termes, alors $f(t_1, \ldots, t_n)$ est un terme.

Définition 22 (Formules). Les formules de la logique du premier ordre sur G et R sont définies inductivement par :

- (B) si $R \in \mathcal{R}$ a n arguments et si t_1, \ldots, t_n sont des termes, alors $R(t_1, \ldots, t_n)$ est une formule dite atomique,
- (I) si F et G sont des formules alors $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \to G)$ sont des formules, Si x une variable alors $\forall xF$ et $\exists xF$ sont des formules.

Par exemple, dans la formule $\forall x \forall y (R(f(x,y),a) \rightarrow (R(x,a) \land R(y,a)))$, on trouve les termes a (constante), x, y (variables) et f(x,y), pour une fonction f à deux arguments, ainsi qu'une relation binaire R. On pourra par la suite interpréter cette formule dans \mathbb{N} , avec l'addition pour f, l'égalité pour R, et la valeur 0 pour a.

Remarque 1. Les formules du calcul propositionnel sont des cas particuliers de cet ensemble.

Remarque 2. Les formules peuvent être représentées par des arbres.

3.2 Variables libres et liées

Définition 23 (Variables d'un terme ou d'une formule).

- 1. Les variables d'un terme sont définies inductivement par :
 - $Var(x) = \{x\} \ si \ x \in X \ et \ Var(c) = \emptyset \ si \ c \in \mathcal{C},$
 - $-Var(f(t_1,\ldots,t_n)) = \bigcup_{i=1}^n Var(t_i) \text{ pour un terme } f(t_1,\ldots,t_n).$
- 2. Les variables d'une formule sont définies inductivement par :
 - $Var(R(t_1,...,t_n)) = \bigcup_{i=1}^n Var(t_i)$ pour une formule atomique,
 - si F et G sont des formules, x est une variable et $* \in \{\land, \lor, \rightarrow\}$, alors : $Var(\neg F) = Var(F), Var(F*G) = Var(F) \cup Var(G), Var(\exists xF) = Var(\forall xF) = Var(F) \cup \{x\}.$

Remarque. Les variables et les constantes n'ayant pas d'argument, elles n'ont pas de descendant et sont toujours en position de feuilles dans l'arbre associé à une formule.

Définition 24 (Variables libres et liées).

- Dans l'arbre d'une formule F, une feuille d'étiquette $x \in X$ est une occurrence libre de x s'il n'y a aucun quantificateur $\forall x$ ou $\exists x$ dans les ascendants de cette feuille. Sinon, l'occurrence est dite liée.
- Une variable est libre dans une formule F si elle a **au moins** une occurrence libre dans cette formule. Elle est liée dans une formule si elle n'est pas libre dans cette formule.

On note L(F) l'ensemble des variables libres dans F et $B(F) = Var(F) \setminus L(F)$ l'ensemble des variables liées dans F (B pour bound en anglais).

Par exemple, dans la formule F ci-dessus, en considérant les feuilles de gauche à droite, l'occurrence de x est libre, l'occurrence de z est liée, puis les deux occurrences de y sont liées tandis que les deux occurrences de z sont libres.

Par conséquent, $L(F) = \{x, z\}$ et $B(F) = \{y\}$

Définition 25 (Formule close). Une formule est dite close si elle n'a aucune variable libre.

Proposition 26. Les variables libres d'une formule sont définies inductivement par :

- (B) $L(R(t_1, \ldots, t_n)) = \bigcup_{i=1}^n Var(t_i)$
- (I) Pour F et G deux formules,

$$--L(\neg F) = L(F) \ et \ L(F \star G) = L(F) \cup L(G) \ pour \ \star \in \{\land, \ \lor, \ \rightarrow\}$$

$$-L(\forall xF) = L(\exists xF) = L(F) \setminus \{x\}$$

3.3 Sémantique

Pour interpréter les formules, on va considérer une structure \mathcal{M} , donnée par :

- un domaine D,
- pour toute fonction f de \mathcal{G} à n arguments, une fonction $f_D \colon D^n \longrightarrow D$
- Pour toute relation R de \mathcal{R} à n arguments, une relation $R_D \subseteq D^n$

En particulier, une constante a correspond à un élément a_D de D et une proposition p (relation sans argument) correspond à un élément de $\mathbb{B} = \{0, 1\}$.

On note $\mathcal{M} = (D, (f_D)_{f \in \mathcal{G}}, (R_D)_{R \in \mathcal{R}})$ une telle structure.

Exemple 1. Dans la structure $\mathcal{M} = (\mathbb{R}, 0, 1, +, \times, =)$, le domaine est $D = \mathbb{R}$, l'ensemble des nombres réels, les fonctions sont : les constantes 0 et 1, l'addition, la multiplication et il y a un seul prédicat qui est l'égalité.

Le terme $((x \odot x) \oplus x) \oplus a$ peut être interprété sur ce domaine, avec $a_{\mathbb{R}} = 1$, $\oplus_{\mathbb{R}}$ est l'addition, $\odot_{\mathbb{R}}$ est la multiplication. Il représente donc le polynôme P défini par $P(x) = x^2 + x + 1$. Considérons maintenant la formule atomique $F \colon Q(((x \odot x) \oplus x) \oplus a, b)$. En interprétant le prédicat binaire Q comme l'égalité et avec $b_{\mathbb{R}} = 0$, cette formule s'interpréte comme un prédicat unaire avec x comme variable libre : P(x) = 0.

La formule $\exists x F$ correspond alors à l'énoncé : le polynôme P a une racine dans \mathbb{R} .

Exemple 2. Lorsque \mathcal{M} décrit une base de données, les requêtes sont des formules.

Définition 27. Pour une structure \mathcal{M} avec domaine D, une valuation est une application $v: X \longrightarrow D$.

Proposition 28. Etant données une structure \mathcal{M} associée à $\mathcal{G} \cup \mathcal{R}$, avec domaine D, et une valuation $v: X \longrightarrow D$, la valeur d'un terme $v^*(t) \in D$ est définie inductivement par :

- (B) $v^*(a) = a_D$ pour une constante a et $v^*(x) = v(x)$ pour une variable $x \in X$,
- (I) Si $t = f(t_1, \ldots, t_n)$ pour une fonction f à n arguments et des termes t_1, \ldots, t_n , alors $v^*(t) = f_D(v^*(t_1), \ldots, v^*(t_n))$.

Remarque. A chaque $v: X \longrightarrow \mathcal{D}$, on associe $v^*: T(\mathcal{G}, X) \longrightarrow \mathcal{D}$ $t \longmapsto v^*(t)$

Définition 29. Soient \mathcal{M} une structure de domaine $D, v: X \longrightarrow D$ une valuation, $x \in X$ une variable et $a_{\mathcal{D}} \in \mathcal{D}$.

La valuation $v' = v[x \mapsto a_D]$ est définie par : $\begin{cases} v'(y) = v(y) & \text{si } y \neq x \\ v'(x) = a_D \end{cases}$

Exemple. On considère $X = \{x, y, z, w\}$ et $D = \mathbb{N}$.

Déterminer $v_1 = v[z \to 3]$ et $v_2 = v_1[x \to 1]$ pour la valuation v définie par :

$$v: \begin{cases} x \mapsto 2 \\ y \mapsto 8 \\ z \mapsto 7 \\ w \mapsto 14 \end{cases}$$

Définition 30. On définit la valuation (ou valeur de vérité, ou interprétation) d'une formule F, notée $\hat{v}(F)$, inductivement par :

- (B) $Si\ F = R(t_1, \ldots, t_n), \ alors\ \hat{v}(F) = 1 \ ssi\ (v^*(t_1), \ldots, v^*(t_n)) \in R_D$
- (B) Pour deux formules F et G, et une variable x,

$$-\hat{v}(\neg F) = \overline{\hat{v}(F)}$$

$$-\hat{v}(F \wedge G) = \hat{v}(F)\hat{v}(G)$$

$$-\hat{v}(F \vee G) = \hat{v}(F) + \hat{v}(G)$$

$$-\hat{v}(F \to G) = \frac{\langle \underline{v} \rangle}{\hat{v}(F)} + \hat{v}(G)$$

$$-\hat{v}(\forall xF) = 1$$
 ssi pour toute $a_D \in D$, $v[\widehat{x \mapsto a_D}](F) = 1$

$$-\hat{v}(\exists xF) = 1 \text{ ssi il existe } a_D \in D \text{ tel que } v[x \mapsto a_D](F) = 1$$

Exemple 1. Soit $F: Q(((x \odot x) \oplus x) \oplus a, b)$, la formule considérée précédemment, avec le même modèle, et la valuation v telle que v(x) = 2. Alors $\hat{v}(F) = 0$. De plus, comme aucune valeur de x ne peut être racine, on a aussi $\hat{v}(\exists x F) = 0$.

Exemple 2. Soit F = R(f(x), g(y)) et la structure $\mathcal{M} = (\mathbb{N}, f_{\mathbb{N}}, g_{\mathbb{N}}, \leqslant)$, avec $f_{\mathbb{N}}(n) = n+1$ et $g_{\mathbb{N}}(n) = n+3$, et soit v_0 la valuation définie par : $v_0 \begin{cases} x \mapsto 4 \\ y \mapsto 3 \end{cases}$

$$-v_0^*(f(x)) = f_{\mathbb{N}}(v_0(x)) = f_{\mathbb{N}}(4) = 5$$

$$-v_0^*(g(y)) = g_{\mathbb{N}}(v_0(y)) = 6$$

Ainsi, $\hat{v}_0(F) = 1$ car $5 \le 6$ et, plus généralement, si v est une valuation quelconque, $\hat{v}(F) = 1$ ssi $v(x) + 1 \le v(y) + 3$.

Définition 31.

- 1. Etant données une formule F et une structure \mathcal{M} ,
 - (a) F est satisfaisable pour \mathcal{M} , s'il existe une valuation v telle que $\hat{v}(F) = 1$.
 - (b) F est valide pour \mathcal{M} , si pour toute valuation v, $\hat{v}(F) = 1$. On dit alors que \mathcal{M} est un modèle de F (noté $\mathcal{M} \models F$).
- 2. Et ant donnée une formule F:
 - (a) F est satisfaisable s'il existe une structure M telle que F est satisfaisable pour M.
 - (b) F est valide (ou universellement valide), si pour toute structure \mathcal{M} , F est valide pour \mathcal{M} .

Remarque. Le problème 2.a est indécidable.

Le problème 1.a est décidable pour des structures finies. C'est le cas par exemple pour la satisfaisabilité d'une requête dans une base de données.

Proposition 32. Il existe un algorithme qui prend en entrée une structure finie \mathcal{M} et une formule du premier ordre F, et qui décide s'il existe une valuation v telle que $\hat{v}(F) = 1$.

Pour les structures infinies, c'est plus compliqué:

— Pour $\mathcal{M}_1 = (\underbrace{\mathbb{N}}_D, \underbrace{0, 1, +, \times, \exp}_{\mathcal{G}}, \underbrace{=}_{\mathcal{R}})$, la satisfaisabilité (d'une formule du pre-

mier ordre) est indécidable.

Dommage...: $\exists n \exists x \exists y \exists z (x^n + y^n = z^n) \land (n \geqslant 3)$

— Pour $\mathcal{M}_2 = (\mathbb{N}, 0, 1, +, \times, =)$, le problème est également indécidable.

Dommage... : $\exists x P(x) = 0$ où P est un polynôme.

— Mais pour $\mathcal{M}_3 = (\mathbb{R}, +, \times, <)$, le problème est décidable!

Exemples de modèles. Tout ensemble E muni d'une relation binaire R_E réflexive est un modèle de la formule F_1 : $\forall x \ R(x,x)$.

Tout ensemble ordonné $\mathcal{M}=(E,\preceq)$ est un modèle de la formule $F_1 \wedge F_2 \wedge F_3$ avec F_1 comme ci-dessus et :

 $F_2: \ \forall x \ \forall y \ ((R(x,y) \land R(y,x)) \rightarrow x = y)$ $F_3: \ \forall x \ \forall y \ \forall z \ ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$

3.4 Propriétés sémantiques

Définition 33. Soit \mathcal{M} une structure, F et G deux formules.

- $-F \models G \text{ si, pour toute valuation } v \text{ de } \mathcal{M}, \text{ si } \hat{v}(F) = 1, \text{ alors } \hat{v}(G) = 1.$
- F et G sont équivalentes, noté $F \sim G$ si pour toute structure \mathcal{M} et pour toute valuation v, $\hat{v}(F) = \hat{v}(G)$

Remarques.

- On note parfois $\models_{\mathcal{M}}$ au lieu de \models lorsqu'il y a ambiguïté sur la structure considérée.
- Comme pour le calcul propositionnel, $F \sim G$ ssi pour toute structure \mathcal{M} , on a : $F \models G$ et $G \models F$.
- On a toutes les équivalences du calcul propositionnel :

 $\neg (F \lor G) \sim \neg F \land \neg G, \ \neg \neg F \sim F, \ \dots$

— On voudrait des équivalences plus « riches », qui impliquent les variables.

Proposition 34. Soit F une formule. On a l'équivalence suivante :

$$\neg \forall x F \sim \exists x \neg F$$

 $D\acute{e}monstration$. Soit \mathcal{M} une structure et v une valuation. On a :

$$\hat{v}(\neg \forall xF) = 1$$
 ssi $\hat{v}(\forall xF) = 0$
ssi il existe $a \in \mathcal{D}$ tq $\widehat{v[x \to a]}(F) = 0$
ssi il existe $a \in \mathcal{D}$ tq $\widehat{v[x \to a]}(\neg F) = 1$
ssi $\hat{v}(\exists x \neg F) = 1$

Lemme 35. Soit \mathcal{M} une structure, v_1 et v_2 deux valuations.

- 1. Si t est un terme tel que $v_1|_{Var(t)} = v_2|_{Var(t)}$ (v_1 et v_2 coïncident sur Var(t)), alors $v_1^*(t) = v_2^*(t)$
- 2. Si F est une formule telle que $v_1|_{L(F)} = v_2|_{L(F)}$ (v_1 et v_2 coïncident sur les variables libres de F), alors $\hat{v_1}(F) = \hat{v_2}(F)$

Exemple pour un terme. Soit t = g(x, y) et deux valuations v_1 et v_2 telles que $v_1(x) = v_2(x)$ et $v_1(y) = v_2(y)$.

Alors
$$v_1^*(t) = g_{\mathcal{D}}(v_1(x), v_1(y)) = g_{\mathcal{D}}(v_2(x), v_2(y)) = v_2^*(t)$$
.

Remarque. Ce lemme exprime que la valeur de vérité d'une formule ne dépend que des valeurs de ses variables libres. Par exemple, la valeur de la formule $F: \forall x R(y, x)$ ne dépend que de y.

Corollaire 36 (Conséquences). Si F est une formule close (c'est-à-dire une formule sans variable libre), alors $\hat{v}(F)$ est constante, indépendante de v.

Ainsi, F et $\forall xF$ sont équivalentes si x n'est pas libre dans F. De $m\hat{e}me$, $F \sim \exists xF$ si $x \notin L(F)$.

Exemple. Soit $F: \forall x \exists y R(x, y)$ interprétée avec pour \mathcal{D} l'ensemble des personnes et R la relation définie par R(x,y) si « y est la mère de x ». Alors, pour toute valuation v, $\hat{v}(F) = 1$.

Rappel : D'après la définition inductive de L(F), on a : $L(\forall xF) = L(F) \setminus \{x\} = L(F)$ si x n'est pas libre dans F. Démontrons la propriété : si $x \notin L(F)$ alors $F \sim \forall xF$.

On se rappelle tout d'abord que, d'après la définition inductive de L(F), on a : $L(\forall xF) = L(F) \setminus \{x\} = L(F)$ si x n'est pas libre dans F.

Soit maintenant v une valuation. On a par définition de $\hat{v}(\forall xF)$:

$$\hat{v}(\forall xF) = 1$$
 si pour tout $a \in \mathcal{D}$, $\widehat{v[x \to a]}(F) = 1$.

Mais v et $v[x \to a]$ coïncident partout sauf sur x, donc elles coïncident sur $L(F) = L(\forall xF)$ d'après ce qui précède.

Donc d'après le lemme : $\hat{v}(F) = \widehat{v(x \to a)}(F) = 1$, et on obtient bien $\hat{v}(F) = \hat{v}(\forall x F)$.