# Representación temporal de alertas **ZTF**

Profesor: Pablo Estévez

**Estudiantes:** Juan Pablo Contreras

Pascual Marcone

Sebastian Guzman Ayudante:

### Motivación

#### ALERCE es un broker de alertas astronómicas:

- Existe una gran cantidad de datos
- Interés en detección de transientes efímeros en alza
- Oportunidad para aplicar Machine Learning

#### Objetivo del proyecto:

- Replicar AutoEncoder: Convolucional + Recurrente
- Clasificar y comparar los resultados con literatura
- Mejorar los modelos existentes

## Revisión de Literatura

### Bases de datos: Diferencia de imágenes



Fig. 1. Examples of simulated stellar transients (positive class). [1]



## Arquitectura del Modelo



## Arquitectura del Modelo: VAE

<u>Variational AutoEncoder</u>: CNN no supervisada + Modelo Generativo[1]



Encoder (CNN): Input imágen 21x21p

- 4 capas convolucionales:
  - o 1era y 3era: paso de 1
  - o 2da y 4ta: paso de 2
- 1 capa conectada completamente (FCL)
  - Estima el promedio y la varianza

## Arquitectura del Modelo: VAE

### <u>Decoder</u>: Input variables latentes z

- 1 capa conectada completamente (FCL)
  - o 36 Neuronas
- 6 capas convolucionales
  - o Todas con paso de 1
  - Aumentan la dimensionalidad hasta 21x21



## Arquitectura del Modelo

• Función de pérdida: Evidence Lower Bound (ELBO)

Función de activación: ReLU

• Normalización: Por Lotes (Batch)

$$\mathcal{L}_{ELBO}(x) = \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x^{(i)}|z^{(i,l)})$$
$$-\frac{1}{2} \sum_{c=1}^{K} \gamma_{c} \sum_{j=1}^{J} (\log \sigma_{c}^{2}|_{j} + \frac{\sigma^{2}|_{j}}{\sigma_{c}^{2}|_{j}} + \frac{(\mu|_{j} - \mu_{c}|_{j})^{2}}{\sigma_{c}^{2}|_{j}})$$
$$+ \sum_{c=1}^{K} \gamma_{c} \log \frac{\pi_{c}}{\gamma_{c}} + \frac{1}{2} \sum_{j=1}^{J} (1 + \log \sigma^{2}|_{j}),$$

• Función de Costo: Error Cuadrático Medio (MSE)

### **Aumentación**



Se utiliza invarianza rotacional para simular diferentes orientaciones de objetos astronómicos Se busca aumentar el tamaño el conjunto de datos para el entrenamiento de forma artificial, creando variaciones de forma artificial



### Visualización de Base de Datos

- stamps\_dataset corresponde al dataset con imagenes, template y la diferencia
- Otros datasets contienen features (excepto uno)

```
stamps_dataset -- (123227, 5, 21, 21)
                                           dataset 1 21 -- (72710, 21, 21, 3)
Train
                                              - Train
   - labels
                                                  images
   images

 features

 template

                                                 - oid
 difference
                                                 - class
validation
                                                validation
   - labels

 images

    images
                                                   features

 template

                                                  - oid
   - difference
                                                  - class
                                                Test
    - labels
                                                   images
     images
                                                  - features
     template
                                                  - oid

 difference

                                                 - class
```

#### Nombramiento en código

- dataset\_1\_\*
  - stamp\_dataset\_21\_new
  - stamp\_dataset\_jun\_allwi se\_45...
  - td\_ztf\_stamp\_17\_06\_20
- dataset\_2\_\*
  - stamp\_dataset\_28
  - stamp\_dataset\_45
  - stamp\_dataset\_only\_im ages 63

### 5stamps\_dataset



clases: 0, 1, 2

data shape: (123227, 5, 21, 21)

#### dataset 1



clases: 0, 1, 2, 3, 4

data shape: (72710, X, X, 3)

resoluciones: 21x21, 45x45, 63x63

### dataset\_2



data shape: (50594, X, X, 3)

resoluciones: 28x28, 45x45, 63x63

## Siguientes pasos

- 1. Balanceado de Base de Datos
- 2. Comenzar implementación modelo VAE
- 3. Comenzar a entrenar el modelo con con la base de datos
- 4. Analizar resultados y analizar posibles casos de sobrerregularización [1]

## Bibliografía

- [1] Astorga, N., Huijse, P., Estévez, P. A., Forster, F. (2018, July). Clustering of Astronomical Transient Candidates Using Deep Variational Embedding. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE
- [2] Carrasco-Davis, Rodrigo, et al. "Alert Classification for the ALeRCE Broker System: The Real-time Stamp Classifier." arXiv preprint arXiv:2008.03309 (2020).
- [4] Carrasco-Davis, Rodrigo, et al. "Deep Learning for Image Sequence Classification of Astronomical Events". arXiv preprint arXiv:1807.03869 (2018)