i.
$$a_1^2 + b_1^2 = c_1^{21}$$

ii.
$$\sum_{i=0}^{n} \sqrt[3]{\frac{a_i + b_i}{c_i}}^2$$

Given a quadratic equation, $ax^2 + bx + c = 0$, then if $\sqrt{b^2 - 4ac} \ge 0$, roots of the equation are real. Else, the roots are complex.

The De Morgan's laws in Set Theory are given in Eq. XXX as follows.

1.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$2. \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Where A and B are Sets, \bar{A} and \bar{B} are the complements of sets A and B, \cup is the Union and \cap is the Intersection operations.

 $^{^{1} {\}rm Pythagoras} \ {\rm Equation}$

 $^{^2\}mathrm{Equation}$ involving Sigma