ROADMAP

1. Project Background

Project Background

Scholastic Travel Company (STC)

This is an educational tourism firm, which has the ability to coordinate the numerous details associated. The contract renewal opportunities would begin for customers who had gone on an STC trip in 2012.

Based on past experiences models could be constructed to predict whether or not a customer would book again in 2013.with this model marketing strategy can be adjusted to save cost and improve yield.

2. Problem Statement

Problem Statement

Prediction Task and Available Data

Predict which customers would book with STC in the 2013-14 school year.

For training the model we can use the data from 2012-13 school year. The sample size is nearly 2400 groups.

Due to the extensive numbers of columns we took the approach of selecting them based on their type (Numerical &...) over the next slides we will perform data cleaning, data processing, data visualization as well as method selection for our forecasting.

The methods which we used are Random Forest, Decision Tree, KNN, Logistic Regression & SVC. We will calculate the accuracy and we will select the best one accordingly.

3. Data Preprocessing

Data Cleaning

1. Missing Data

ID	0	Total.Discount.Pax	0	NumberOfMeetingswithParents	0
Program.Code	0	Initial.System.Date	8	FirstMeeting	337
From.Grade	127	Poverty.Code	599	LastMeeting	337
To.Grade	150	Region	0	DifferenceTraveltoFirstMeeting	337
Group.State	0	CRM.Segment	4	DifferenceTraveltoLastMeeting	337
Is.Non.Annual.	0	School.Type	0	SchoolGradeTypeLow	0
Days	0	Parent.Meeting.Flag	0	SchoolGradeTypeHigh	0
Travel.Type	0	MDR.Low.Grade	68	SchoolGradeType	0
Departure.Date	0	MDR.High.Grade	68	DepartureMonth	0
Return.Date	0	Total.School.Enrollment	91	GroupGradeTypeLow	0
Deposit.Date	0	Income.Level	62	GroupGradeTypeHigh	0
Special.Pay	1919			GroupGradeType	0
Tuition	0	EZ.Pay.Take.Up.Rate	0	MajorProgramCode	0
FRP.Active	0	School.Sponsor	0	SingleGradeTripFlag	0
FRP.Cancelled	0	SPR.Product.Type	0	FPP.to.School.enrollment	91
FRP.Take.up.percent.	0	SPR.New.Existing	0	FPP.to.PAX	0
Early.RPL	673	FPP	0	Num.of.Non_FPP.PAX	0
Latest.RPL	19	Total.Pax	0	SchoolSizeIndicator	91
Cancelled.Pax	0	SPR.Group.Revenue	0	Retained.in.2012.	0

df1 = df1.dropna(axis = 0)

All the missing values are eliminated

Data Cleaning

2.Duplicates

df1.duplicated()				
0	False			
1	False			
2	False			
4	False			
5	False			
2381	False			
2382	False			
2384	False			
2385	False			
2388	False			
Length:	2141,	dtype:	bool	

Drop

Based on the length comparison, there is no duplicate.

Data Cleaning

Step 3: Fix structural errors. ...

Step 4: Filter unwanted outliers. ...

Step 5: Validate and QA.

Encoding objects to numerical data

```
def object to int(dataframe series):
    if dataframe series.dtype=='object':
        dataframe series = LabelEncoder().fit transform(dataframe series)
    return dataframe series
df2 = df1.apply(lambda x: object to int(x))
df2.head()
   index Program.Code From.Grade To.Grade Group.State Is.Non.Annual. Days Travel.Type Departure.Date Return.Date ... GroupGradeTypeLow GroupGra
                                                                                                         0 ...
       0
                   13
                             4.0
                                      4.0
                                                                                              0
                             8.0
                                      8.0
                              8.0
                             6.0
                                      8.0
                             10.0
                                      12.0
5 rows x 49 columns
```


Exploratory Data Analysis

Distribution of predicted participation in 2012

Churn distribution

School Enrolment VS Departure Month

Total.Pax VS
Departure
Month

Program code distribution

Retained=01

Program code distribution

HD program will participate Most at school trips

Program code distribution

Retained=0

Program code distribution

Public School Students will participate the most in school trip

5. Feature Engineering

Correlation

Target Value Correlation

In this section we have calculated the correlation with the target value which is Retained column.

Total Values Correlation

In the next slide we have calculated all columns correlation together. In this strategy we will consider before having the first Retained forecast made by the company team. This approach allows us to consider new columns for our forecasting.

df1.corr()['Retained.in.2012.']

index	-0.142795
From.Grade	0.085849
To.Grade	-0.194510
Is.Non.Annual.	-0.410288
Days	-0.037605
Tuition	-0.114570
FRP.Active	0.249512
FRP.Cancelled	0.061124
FRP.Take.up.percent.	-0.023139
Cancelled.Pax	0.042182
Total.Discount.Pax	0.204881
CRM.Segment	-0.001991
Parent.Meeting.Flag	-0.027961
MDR.High.Grade	-0.122477
Total.School.Enrollment	0.114613
EZ.Pay.Take.Up.Rate	-0.009721
School.Sponsor	0.120232
FPP	0.255944
Total.Pax	0.254632
SPR.Group.Revenue	-0.114570
NumberOfMeetingswithParents	-0.063132
SingleGradeTripFlag	0.483699
FPP.to.School.enrollment	0.061485
FPP.to.PAX	0.156437
Num.of.Non FPP.PAX	0.204881
Retained.in.2012.	1.000000
Name: Retained.in.2012 dtv	ne: float64

Total Values Correlation

Correlation greater than 0.3

We have considered correlation for all columns which are greater than 0.3, these columns with high value are the fundamental data for forecasting.

```
target_corr=abs(corr)
positive_corr_target=target_corr[target_corr>(0.3)]
positive_corr_target
```

	index	Program.Code	From.Grade	To.Grade	Group.State	Is.Non.Annual.	Days	Travel.Type	Departure.Date	Return.Date	
index	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.980376	0.982706	
Program,Code	NaN	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	:27
From.Grade	NaN	NaN	1.000000	0.395149	NaN	NaN	NaN	NaN	NaN	NaN	
To.Grade	NaN	NaN	0.395149	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	122
Group.State	NaN	NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	NaN	
Is.Non.Annual.	NaN	NaN	NaN	NaN	NaN	1.000000	NaN	NaN	NaN	NaN	36
Days	NaN	NaN	NaN	NaN	NaN	NaN	1.0	NaN	NaN	NaN	-
Travel.Type	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	NaN	NaN	223
Departure.Date	0.980376	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.000000	0.998517	
Return.Date	0.982706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.998517	1.000000	-0
Deposit.Date	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	- 2
Tuition	0.544229	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.568451	0.568583	
FRP.Active	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	3
FRP.Cancelled	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	88
FRP.Take.up.percent.	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	37
Latest.RPL	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

PCA Method

Principal Component Analysis (PCA) is a linear dimensionality reduction technique that can be utilized for extracting information from a high-dimensional space by projecting it into a lower-dimensional sub-space.

Numerical Values

Categorical Nominal

Categorical Ordinal

Random Forest Set Accuracy & Importance

Numerical Values

Categorical Nominal

Categorical Ordinal

```
Ran Frst num = RandomForestClassifier(criterion = 'gini')
Ran Frst num.fit(x train num, y train num)
prediction test num = Ran Frst num.predict(x test num)
```

Ran Frst nom = RandomForestClassifier(criterion = 'gini') Ran Frst nom.fit(x train nom, y train nom) print('test set accuracy: ', round(Ran Frst num.score(x te print('test set accuracy: ', round(Ran_Frst_nom.score(x t print('test set accuracy: ', round(Ran_Frst_ord.score(x_text)) prediction test nom = Ran Frst nom.predict(x test nom) print (metrics.accuracy_score(y_test_num, prediction_test_print (metrics.accuracy_score(y_test_nom, prediction_test_print (metrics.a

Ran Frst ord = RandomForestClassifier(criterion = 'gini Ran Frst ord.fit(x train ord, y train ord) prediction test ord = Ran Frst ord.predict(x test ord) test set accuracy: 67.03

test set accuracy: 65.79

test set accuracy: 68.12

	column	Importance
7	Total.School.Enrollment	0.134040
1	Tuition	0.100596
10	Total.Pax	0.099381
11	SPR.Group.Revenue	0.098916
8	FPP	0.091825
2	FRP.Active	0.090517
4	FRP.Take.up.percent.	0.087160
9	EZ.Pay.Take.Up.Rate	0.081571
5	Cancelled.Pax	0.064434
3	FRP.Cancelled	0.053996
0	Days	0.035950
6	Total.Discount.Pax	0.031841
12	Num.of.Non_FPP.PAX	0.029772

	column	Importance
6	Income.Level	0.256318
1	Group.State	0.171280
8	SPR.New.Existing	0.115795
9	DepartureMonth	0.103796
4	CRM.Segment	0.090081
0	Program.Code	0.082118
3	Region	0.069634
5	School.Type	0.058236
2	Travel.Type	0.025623
10	MajorProgramCode	0.015835
7	SDD Broduct Type	0.011223

	column	Importance
3	SchoolSizeIndicator	0.397511
1	${\bf SchoolGrade Type High}$	0.229594
0	SchoolGradeTypeLow	0.207750
2	${\sf GroupGradeTypeHigh}$	0.165145

Random Forest Performance Measures

Numerical Values

Categorical Ordinal

print(classif	ication_repo	rt(y_test	_num, predi	iction_test_	num)
	precision	recall	f1-score	support	
0	0.57	0.51	0.54	252	
1	0.71	0.75	0.73	391	
accuracy			0.66	643	
macro avg	0.64	0.63	0.63	643	
weighted avg	0.65	0.66	0.65	643	

print(classif	ication_repo	rt(y_test	_ord, pred	iction_test_o	rd))
	precision	recall	f1-score	support	
0	0.61	0.44	0.51	252	
1	0.69	0.82	0.75	391	
accuracy			0.67	643	
macro avg	0.65	0.63	0.63	643	
weighted avg	0.66	0.67	0.66	643	

Categorical Nominal

<pre>print(classification_report(y_test_nom, prediction_test_nom))</pre>					
	precision	recall	f1-score	support	
0	0.61	0.54	0.57	252	
1	0.72	0.77	0.75	391	
accuracy			0.68	643	
macro avg	0.66	0.66	0.66	643	
weighted avg	0.68	0.68	0.68	643	

Random Forest - Numerical

RANDOM FOREST CONFUSION MATRIX


```
- y_rfpred_prob = Ran_Frst_num.predict_proba(x_test_num)[:,1]
fpr_rf, tpr_rf, thresholds = roc_curve(y_test_num, y_rfpred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rf, tpr_rf, label='Random Forest',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest ROC Curve',fontsize=16)
plt.show();
```


Random Forest - Categorical nominal

Random Forest - Categorical Ordinal

RANDOM FOREST CONFUSION MATRIX


```
y_rfpred_prob = Ran_Frst_ord.predict_proba(x_test_ord)[:,1]
fpr_rf, tpr_rf, thresholds = roc_curve(y_test_ord, y_rfpred_prob)
plt.plot([0, 1], [0, 1], 'k--' )
plt.plot(fpr_rf, tpr_rf, label='Random Forest',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest ROC Curve',fontsize=16)
plt.show();
```


Logistic Regression Set Accuracy & Importance

Numerical Values

lr model num = LogisticRegression() lr model num.fit(x train num,y train num) accuracy lr = lr_model_num.score(x_test_num,y_test_num) accuracy lr = lr_model_nom.score(x_test_nom,y_test_nom) print("Logistic Regression accuracy is :",accuracy lr)

Logistic Regression accuracy is: 0.6625194401244168

```
plt.bar([x for x in range(len(importance))], impor
plt.show()
Feature: 0. Score: -0.01946
Feature: 1. Score: -0.01988
Feature: 2, Score: 0.74870
Feature: 3, Score: 0.00295
Feature: 4, Score: -0.17115
Feature: 5, Score: -0.18250
Feature: 6, Score: -0.09463
Feature: 7, Score: 0.30149
Feature: 8, Score: 0.20295
Feature: 9, Score: -0.02853
Feature: 10, Score: 0.17827
Feature: 11, Score: -0.01988
Feature: 12, Score: -0.09463
  0.4
  0.2
  0.0
```

Categorical Nominal

```
lr model nom = LogisticRegression()
lr model nom.fit(x train nom,y train nom)
print("Logistic Regression accuracy is :",accuracy lr)
```

Logistic Regression accuracy is: 0.7200622083981337

```
importance = lr_model_nom.coef_[0]
# summarize feature importance
for i.v in enumerate(importance):
print('Feature: %0d, Score: %.5f' % (i,v))
# plot feature importance
plt.bar([x for x in range(len(importance))], impor
plt.show()
Feature: 0. Score: -0.09206
Feature: 1, Score: -0.04159
Feature: 2, Score: 0.16464
Feature: 3, Score: 0.03596
Feature: 4, Score: 0.03006
Feature: 5, Score: 0.08643
Feature: 6, Score: 0.28856
Feature: 7, Score: 0.07723
Feature: 8, Score: -0.68954
Feature: 9, Score: 0.11609
Feature: 10, Score: -0.19579
 -0.2
 -0.4
 -0.6
```

Categorical Ordinal

```
lr model ord = LogisticRegression()
lr model ord.fit(x train ord,y train ord)
accuracy lr = lr model ord.score(x test ord,y test ord)
print("Logistic Regression accuracy is :",accuracy lr
```

Logistic Regression accuracy is: 0.6018662519440124

```
importance = 1r model ord.coef [0]
# summarize feature importance
for i.v in enumerate(importance):
print('Feature: %0d, Score: %.5f' % (i,v))
# plot feature importance
plt.bar([x for x in range(len(importance))], import
plt.show()
```

```
Feature: 0, Score: -0.04817
Feature: 1, Score: 0.08621
Feature: 2, Score: 0.13236
Feature: 3, Score: -0.14117
```


Logistic Regression Performance Measures

Numerical Values

<pre>lr_pred_num= lr_model_num.predict(x_test_num)</pre>
report = classification_report(y_test_num,lr_pred_num)
print(report)

	precision	recall	f1-score	support
0 1	0.60 0.69	0.43 0.81	0.50 0.75	252 391
accuracy macro avg weighted avg	0.64 0.65	0.62 0.66	0.66 0.62 0.65	643 643 643

Categorical Ordinal

lr_pred_ord= lr_model_ord.predict(x_test_ord)
report = classification_report(y_test_ord,lr_pred_ord)
print(report)

	precision	recall	f1-score	support
0	0.44	0.06	0.10	252
1	0.61	0.95	0.74	391
accuracy			0.60	643
macro avg	0.53	0.51	0.42	643
weighted avg	0.54	0.60	0.49	643

lr_pred_nom= lr_model_nom.predict(x_test_nom)
report = classification_report(y_test_nom,lr_pred_nom)
print(report)

Categorical Nominal

	precision	recall	f1-score	support
0	0.67	0.55	0.61	252
1	0.74	0.83	0.78	391
accuracy			0.72	643
macro avg	0.71	0.69	0.69	643
weighted avg	0.72	0.72	0.71	643

Logistic Regression - Numerical

LOGISTIC REGRESSION CONFUSION MATRIX


```
y_pred_prob = lr_model_num.predict_proba(x_test_num)[:,1]
fpr, tpr, thresholds = roc_curve(y_test_num, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--' )
plt.plot(fpr, tpr, label='Logistic Regression',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve',fontsize=16)
plt.show();
```


Logistic Regression - Categorical nominal

LOGISTIC REGRESSION CONFUSION MATRIX


```
y_pred_prob = lr_model_nom.predict_proba(x_test_nom)[:,1]
fpr, tpr, thresholds = roc_curve(y_test_nom, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--' )
plt.plot(fpr, tpr, label='Logistic Regression',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve',fontsize=16)
plt.show();
```


Logistic Regression - Categorical Ordinal

Decision Tree Classifier

Numerical Values

Categorical Nominal

Categorical Ordinal

```
ft_model_num = DecisionTreeClassifier()
it model num.fit(x train num,y train num)
predictdt y = dt model num.predict(x test num)
accuracy dt = dt model num.score(x test num,y test num)
print("Decision Tree accuracy is :",accuracy dt)
```

Decision Tree accuracy is: 0.5972006220839814

```
ft model nom = DecisionTreeClassifier()
it model nom.fit(x_train_nom,y_train_nom)
predictdt y = dt model nom.predict(x test nom)
accuracy dt = dt model nom.score(x test nom,y test nom)
print("Decision Tree accuracy is :",accuracy dt)
```

Decision Tree accuracy is : 0.6314152410575428

accuracy_dt = dt_model_ord.score(x_test_ord,y_test_nom print("Decision Tree accuracy is :",accuracy_dt)	dt_model_o predictdt_	rd = DecisionTreeClassifier() rd.fit(x train_ord,y_train_ord) y = dt model_ord.predict(x_test_ord)

	column	Importance
7	Total.School.Enrollment	0.141710
8	FPP	0.140401
9	EZ.Pay.Take.Up.Rate	0.112105
4	FRP.Take.up.percent.	0.092000
11	SPR.Group.Revenue	0.088798
1	Tuition	0.086640
5	Cancelled.Pax	0.080409
2	FRP.Active	0.076043
10	Total.Pax	0.051245
3	FRP.Cancelled	0.040121
0	Days	0.035062
6	Total.Discount.Pax	0.033305
12	Num.of.Non_FPP.PAX	0.022163

	column	Importance
6	Income.Level	0.245462
1	Group.State	0.185536
8	SPR.New.Existing	0.135755
4	CRM.Segment	0.099613
9	DepartureMonth	0.091706
3	Region	0.072737
5	School.Type	0.066883
0	Program.Code	0.064012
2	Travel.Type	0.026414
7	SPR.Product.Type	0.008015
10	MajorProgramCode	0.003867

	column	Importance
3	SchoolSizeIndicator	0.361570
0	SchoolGradeTypeLow	0.328902
2	GroupGradeTypeHigh	0.164866
1	${\sf SchoolGradeTypeHigh}$	0.144662

KNN Classification

Numerical Values

Categorical Nominal

Categorical Ordinal

```
knn_model_num = KNeighborsClassifier(n_neighbors = 3)
knn_model_num.fit(x_train_num,y_train_num)
predicted_y = knn_model_num.predict(x_test_num)
accuracy_knn = knn_model_num.score(x_test_num,y_test_num)
print("KNN accuracy:",accuracy_knn)
```

KNN accuracy: 0.6516329704510109

```
knn model nom = KNeighborsClassifier(n_neighbors = 11)
knn model nom.fit(x train nom,y train nom)
predicted y = knn model nom.predict(x test nom)
accuracy knn = knn model nom.score(x test nom,y test nom)
print("KNN accuracy:",accuracy_knn)
KNN accuracy: 0.7200622083981337
```

knn_model_ord = KNeighborsClassifier(n_neighbors = 11)
knn_model_ord.fit(x_train_ord,y_train_ord)
predicted_y = knn_model_ord.predict(x_test_ord)
accuracy_knn = knn_model_ord.score(x_test_ord,y_test_ord)
print("KNN accuracy:",accuracy_knn)
KNN accuracy: 0.6671850699844479

Selected Columns Based On Analysis

By considering different methods of classification and prediction with their amount of accuracy, we tried to filter the most important columns which are effective on our target value.

Numerical

- · Total school enrollment
- · FPP
- · Total Pax
- · SPR Group Revenue
- · Income Level

Nominal

- SPR New Existing
- · Group State
- · Is Non Annual
- · Single Grade Trip Flag
- Departure Month

* These columns are selected by analyzing the pair plot and the correlations

Ordinal

SchoolGradeTypeHigh

PCA Method

Random Forest Performance Measures

```
Ran_Frst_slt = RandomForestClassifier(criterion = 'gini')
Ran_Frst_slt.fit(x_train_slt, y_train_slt)

print('test set accuracy: ', round(Ran_Frst_slt.score(x_test_slt, y_test_slt)*100, 2))
prediction_test_slt = Ran_Frst_slt.predict(x_test_slt)
print (metrics.accuracy_score(y_test_slt, prediction_test_slt))
```

0.84

643

test set accuracy: 83.83

weighted avg

<pre>print(classification_report(y_test_slt, prediction_test_slt))</pre>					
	precision	recall	f1-score	support	
0	0.80	0.79	0.79	252	
1	0.87	0.87	0.87	391	
accuracy			0.84	643	
macro avg	0.83	0.83	0.83	643	

0.84

```
df_result = pd.DataFrame()
df_result['column'] = x_train_slt.columns
df_result['Importance'] = Ran_Frst_slt.feature_importances_
df_result.sort_values('Importance',ascending=False)
```

	column	Importance
3	SPR.Group.Revenue	0.130503
0	Total.School.Enrollment	0.130295
8	SingleGradeTripFlag	0.128867
1	FPP	0.117846
7	Is.Non.Annual.	0.110747
2	Total.Pax	0.105142
4	Income.Level	0.078639
5	SPR.New.Existing	0.077950
6	Group.State	0.063173
9	DepartureMonth	0.037317
10	SchoolGradeTypeHigh	0.019520

Random Forest

RANDOM FOREST CONFUSION MATRIX

Decision Tree Performance Measures

```
dt_model_slt = DecisionTreeClassifier()
dt_model_slt.fit(x_train_slt,y_train_slt)
predictdt_y = dt_model_slt.predict(x_test_slt)
accuracy_dt = dt_model_slt.score(x_test_slt,y_test_slt)
print("Decision Tree accuracy is :",accuracy_dt)
```

Decision Tree accuracy is : 0.7045101088646968

df_result = pd.DataFrame()
df_result['column'] = x_train_slt.columns
df_result['Importance'] = dt_model_slt.feature_importances
df_result.sort_values('Importance',ascending=False)

	precision	recall	f1-score	support
0	0.62	0.65	0.63	252
1	0.77	0.74	0.75	391
accuracy			0.70	643
macro avg	0.69	0.70	0.69	643
weighted avg	0.71	0.70	0.71	643

	column	Importance
8	SingleGradeTripFlag	0.220323
0	Total.School.Enrollment	0.169439
3	SPR.Group.Revenue	0.129071
2	Total.Pax	0.107700
7	Is.Non.Annual.	0.094287
4	Income.Level	0.080431
1	FPP	0.068919
9	DepartureMonth	0.045399
6	Group.State	0.043543
5	SPR.New.Existing	0.037825
10	SchoolGradeTypeHigh	0.003063

KNN Performance Measures

```
knn_model_slt = KNeighborsClassifier(n_neighbors = 11)
knn_model_slt.fit(x_train_slt,y_train_slt)
predicted_y = knn_model_slt.predict(x_test_slt)
accuracy_knn = knn_model_slt.score(x_test_slt,y_test_slt)
print("KNN accuracy:",accuracy_knn)
KNN accuracy: 0.8258164852255054
```

Logistic Regression Performance Measures

```
lr_model_slt = LogisticRegression()
lr_model_slt.fit(x_train_slt,y_train_slt)
accuracy_lr = lr_model_slt.score(x_test_slt,y_test_slt)
print("Logistic Regression accuracy is :",accuracy_lr)
Logistic Regression accuracy is : 0.8304821150855366
```

```
lr pred slt= lr model slt.predict(x test slt)
report = classification report(y test slt, lr pred slt)
print(report)
                           recall f1-score
              precision
                                               support
                   0.81
                             0.73
                                       0.77
                                                   252
                   0.84
                             0.89
                                       0.86
                                                   391
                                       0.83
                                                   643
    accuracy
                   0.83
                             0.81
                                       0.82
   macro avg
                                                   643
weighted avg
                   0.83
                             0.83
                                       0.83
                                                   643
```

```
importance = 1r model slt.coef [0]
for i,v in enumerate(importance):
print('Feature: %0d, Score: %.5f' % (i,v))
plt.bar([x for x in range(len(importance))], impor
plt.show()
Feature: 0, Score: 0.17513
Feature: 1, Score: 0.58996
Feature: 2, Score: -0.07515
Feature: 3, Score: -0.05454
Feature: 4, Score: 0.04857
Feature: 5, Score: -0.63537
Feature: 6, Score: -0.03346
Feature: 7, Score: -0.82938
Feature: 8, Score: 0.55794
Feature: 9, Score: 0.09406
Feature: 10, Score: 0.11328
  0.4
  0.2
  0.0
 -0.2
 -0.4
 -0.6
 -0.8
```

Logistic Regression

LOGISTIC REGRESSION CONFUSION MATRIX


```
model1=LogisticRegression().fit(x_train_slt,y_train_slt)
y_pred_prob = lr_model_slt.predict_proba(x_test_slt)[:,1]
fpr, tpr, thresholds = roc_curve(y_test_slt, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Logistic Regression',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve',fontsize=16)
plt.show();
```


SVC Performance Measures

```
svc_model = SVC(random_state = 1)
svc_model.fit(x_train_slt,y_train_slt)
predict_y = svc_model.predict(x_test_slt)
accuracy_svc = svc_model.score(x_test_slt,y_test_slt)
print("SVM accuracy is :",accuracy_svc)
```

SVM accuracy is: 0.8273716951788491

WHAT IS SVC?

A support vector machine is a supervised machine learning algorithm that can be used for both classification and regression tasks. The Support vector machine classifier works by finding the hyperplane that maximizes the margin between the two classes.

print(classification_	report(y test	slt,	predict y))
			F / /

	precision	recall	f1-score	support
0 1	0.83 0.83	0.70 0.91	0.76 0.86	252 391
accuracy macro avg weighted avg	0.83 0.83	0.81 0.83	0.83 0.81 0.82	643 643 643

83.83%

Based on below comparison Random Forest method is showing the highest accuracy thus our forecasting is

based on it.

Method	Accuracy		
Random Forest	83.83%		
Decision Tree	70.45%		
KNN	82.58%		
Logistic Regression	83.04%		
SVC	82.73%		

Forecasting

prediction=pd.DataFrame(Ran_Frst_slt.predict(x_train_slt))
prediction

1495 1498 rows × 1 columns