Контрольная работа по теме «Основы актуарной математики» Инструкция по выполнению работы

- На выполнение работы даётся 2 недели: с 21 мая 2020 г. (четверг) до 4 июня 2020 г. (четверг). Занятие в четверг, 21 мая, посвящается моим ответам на возможные ТЕХНИЧЕСКИЕ вопросы по работе.
- 21 мая, **в 15:00 !!!,** регистрация на лекцию = e-mail с подтверждением получения контрольной.
- Вы можете использовать мои пособия:
 - 1. Г.И.Фалин. *Математические основы теории страхования жизни и пенсионных схем.* 3-е издание: АНКИЛ, Москва, 2007. 304 с. ISBN 978-5-86476-235-6.
 - 2. или 2-е издание: АНКИЛ, Москва, 2002. 262 с. ISBN 5-86476-194-х.
 - 3. Г.И.Фалин, А.И.Фалин. *Актуарная математика в задачах*, 2-е издание: Физматлит, Москва, 2003. 192с. ISBN 5-9221-0451-9.

и конспекты лекций, а также искать информацию в Интернете. Вам нельзя копировать теоретические выкладки и текст (если это необходимо, всё излагаете своими словами).

- Вычисления проводить с использованием Microsoft Excel.
- Вы **ДОЛЖНЫ**:

«Излагать и оформлять решение логически правильно, полно и последовательно, с необходимыми пояснениями.»

Иначе говоря, решения задач должны быть очень подробными, с детальным объяснением всех идей, преобразований, с результатами всех промежуточных вычислений, точными ссылками на известные результаты (ссылаться можно только на упомянутую выше мою книгу). Невыполнение этих требований автоматически означает, что задача не решена.

При совпадении в разных работах достаточно длинных фрагментов рассуждений или вычислений решение соответствующей задачи аннулируется у ВСЕХ вовлечённых сторон.

- Решение набираете:
 - о в Microsoft Word, шрифт Times New Roman 12 pt, line spacing 1.15, формулы с помощью пакета MathType (предпочтительно) или Equation Editor, но сохраняете файл в формате **pdf** у меня чрезвычайно подробные решения вместе с условиями заняли 14 стр. (минус 4 стр. условия = 14 стр. только!!!)
 - о или в LaTex, но сохраняете файл в формате **pdf**.
- Работу выполняете прямо в этом файле (для LaTeX создаёте аналогичный документ; \documentclass{article}). В таблице на первом листе вашей работы вы указываете: ФИО и ответы ко всем задачам (баллы проставляю я).
- Контрольные высылаете мне в четверг 4 июня на почту <u>MoscowMath@mail.ru</u> с указанием темы по следующему образцу: Иванов_Иван-309.

Напоминаю, что ФГОС среднего образования (приказ Минобрнауки №413 от 17 мая 2012) установил следующие требования к результатам обучения в средней школе:

- « II.8.5) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных залач
- II.8.8) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;...»

Токаева Александра	Ответ	Баллов
задача 1	(і) См. решение	
	(іі) См. решение	
	(iii) $_{4 5}q_{[60]+1} \approx 0.0833$	
задача 2	(і) См. решение	
	(ii) $_{2.75}q_{84.5} \approx 0.2547327$	
задача 3	(i) $\mu \approx 0.01798476$	
	(ii) _{0.5} q _{67.25} ≈ 0.008952	
задача 4	ER ≈ 36541.80 py6	
задача 5	P ≈ \$11913.99	
задача 6	Среднее значение ≈ £43498.91	
	Ожидаемое отклонение ≈£22378.07	
задача 7	б) перспективный	
задача 8	£269.90	
задача 9	См. решение	
задача 10	(і) См. решение	
	(іі) См. решение	
	(ііі) См. решение	

- **1** (i) Разъясните смысл обозначения $_{4|5}q_{[60]+1}$. (ii) Что такое таблица АМ92 ?
- (ііі) Вычислите значение величины $_{4|5}q_{[60]+1}$, используя следующий фрагмент таблины AM92.

x	$l_{[x]}$	$l_{[x-1]+1}$	l_x
60	9263.1422	9284.7641	9287.2164
61	9184.9687	9209.6568	9212.7143
62	9097.7405	9125.8818	9129.7170
63	9000.5884	9032.5642	9037.3973
64	8892.5741	8928.8177	8934.8771
65	8772.7359	8813.6881	8821.2612
66	8640.0481	8686.2016	8695.6199
67	8493.5187	8545.3532	8557.0118
68	8332.1396	8390.1611	8404.4916
69	8154.9318	8219.6390	8237.1329
70	7960.9776	8032.8606	8054.0544

- 2 (i) Что такое ELT15 (Females)? Чем она отличается от AM92?
- (ii) Вычислите $_{2.75}q_{84.5}$ используя метод равномерного распределения смертей. База расчётов: ELT15 (Females), фрагмент которой приведён ниже.

x	l_x	$q_{_x}$
84	41736	0.08757
85	38081	0.09731
86	34375	0.10833
87	30651	0.11859
88	27017	0.12860
89	23542	0.14146

- ${f 3}$ (i) Известно, что q_{67} = 17.824‰, а на промежутке [67;68] интенсивность смертности является постоянной величиной. Найдите её.
- (ii) Подсчитайте значение $_{0.5}q_{67.25}$, используя предположение о постоянной интенсивности смертности и результат, полученный в пункте (i).
- **4** Страховой агент получает вознаграждение, если по заключенным им договорам убыточность меньше чем l=70% . Известно, что:
 - 1. убыточность рассчитывается как отношение всех выплаченных страховых возмещений к собранным премиям;
 - 2. агент получает долю от собранной премии, равную $f = \frac{1}{3}$ разности между порогом l = 70% и убыточностью;
 - 3. вознаграждение не платится, если убыточность больше 70%;
 - 4. агент заключил ряд договоров с общей премией P = 500 тыс. рублей;
 - 5. суммарные выплаты L по договорам (в тыс. руб.) распределены по закону Парето со средним 600 и коэффициентом вариации $\sqrt{3}$.

Подсчитайте ожидаемое вознаграждение R.

- **5** Страховщик только что заключил с человеком в возрасте x=80 дискретный договор временного страхования жизни на срок n=10 лет со страховой суммой $SA=\$100\,000$. По условиям договора страхователь вносит постоянную премию P в начале каждого года действия договора. Рассчитайте эту премию при следующих предположениях:
 - 1. расходы и другие нагрузки не учитываются;
 - 2. остаточное время жизни застрахованного описывается законом Мэкама с параметрами $A_{x}=0.0001,~B_{x}=0.1,~\alpha_{x}=0.075;$
 - 3. для дисконтирования используется кривая доходности y_t , значения которой приведены в следующей таблице:

\mathcal{Y}_1	\mathcal{Y}_2	y_3	\mathcal{Y}_4	${\cal Y}_5$	\mathcal{Y}_6	\mathcal{Y}_7	\mathcal{Y}_8	\mathcal{Y}_9	\mathcal{Y}_{10}
3.2%	3.5%	3.8%	4.1%	4.3%	4.5%	4.6%	4.7%	4.8%	4.8%

- **6** Договор смешанного страхования жизни на 10 лет гарантирует выплату страховой суммы £100,000 в случае смерти застрахованного до истечения срока действия договора и выплату £50,000, если застрахованный проживёт эти 10 лет. Подсчитайте среднее значение современной стоимости обязательств страховщика по этому договору и стандартное отклонение от среднего. Техническая основа расчётов: постоянная интенсивность смертности $\mu_x = 0.03$ на протяжении всего срока действия договора, годовая процентная ставка, используемая для дисконтирования, равна 5%.
- 7 Порядок формирования страховых резервов по страхованию жизни, утвержденный приказом Министерства финансов Российской Федерации от 09.04.2009 № 32н «Об утверждении Порядка формирования страховых резервов по страхованию жизни», предусматривает, что при расчете математического резерва допускается применение (при любых обстоятельствах):
 - а) ретроспективного метода;
 - б) перспективного метода;
 - в) как перспективного, так и ретроспективного методов.
- г) метода, используемого для расчета выкупных сумм, выплачиваемых страхователю при расторжении договора страхования по виду страхования.
- **8** Мужчина в возрасте x = 55 лет заключил 3-х летний договор страхования жизни. Если застрахованный умирает на протяжении действия договора, то страховая сумма SA = £150,000 выплачивается в очередную годовщину заключения договора; если же застрахованный доживает до окончания договора, то страховщик не платит ничего. Премия в размере P = £900 платится в начале каждого года действия договора. Заключение и поддержание договора требуют следующих расходов: начальные расходы £260 в момент заключения договора, периодические расходы в размере £70 в начале второго и третьего года (если договор всё ещё действует).

Предполагая, что смертность описывается таблицей AM92 (её фрагмент приведён ниже), а для дисконтирования используется техническая процентная ставка i=3%, вычислите ожидаемый доход страховщика при заключении договора.

Permanent Assurances, males, combined - AM92 two years select: values of $q_{\scriptscriptstyle [x-t]+t}$						
Age	Duration 0	Duration 1	Durations 2+			
x	$q_{[x]}$	$q_{\scriptscriptstyle [x-1]+1}$	$q_{[x-t]+t} = q_x$			
55	0.003358	0.004363	0.004469			
56	0.003742	0.004903	0.005025			
57	0.004171	0.005507	0.005650			

9 Пусть при $t \in [x,x+n]$ интенсивность смертности μ_t можно представить в виде $\mu_t = \frac{t+b}{a}$, где a>0 и b — некоторые константы (т.е. на этом промежутке функция μ_t линейна и возрастает). Докажите, что

$$\overline{a}_{x:\overline{n}|} = \sqrt{2\pi a} \exp\left\{\frac{A^2}{2}\right\} \left(\Phi\left(A + \frac{n}{\sqrt{a}}\right) - \Phi(A)\right),$$

где $A = \frac{x + b + a\delta}{\sqrt{a}}$, а Φ — стандартная гауссовская функция распределения.

- **10** (i) Определите термин «проспективный резерв» (prospective reserve) применительно к договору страхования жизни.
- (ii) Сформулируйте условия, которые достаточны для того, чтобы проспективный резерв был равен ретроспективному резерву.

Страховая компания заключает договор пожизненного страхования с человеком, возраст которого ровно x лет (число x — натуральное). Премии платятся в начале каждого года на протяжении всего срока действия договора, а страховая сумма S выплачивается немедленно после смерти застрахованного. Никаких расходов в связи с договором нет.

(iii) Покажите, что при выполнении условий, упомянутых в пункте (ii), в любой момент времени t (число t — натуральное) проспективный резерв равен ретроспективному резерву.