DEVOIR DE VACANCES FIN D'ANNEE - MATHEMATIQUES A RENDRE LE 07 JANVIER 2021

EXERCICE 1

Soit ABC un triangle tel que AB = 4, AC= 6 et BC = 8 (l'unité est le cm). Déterminer et construire :

- 1) L'ensemble (E) des points M du plan tels que $\overrightarrow{AB} \cdot \overrightarrow{AM} = -8$
- 2) L'ensemble (F) des points M du plan tels que $2MA^2 3MB^2 = 93$
- 3) L'ensemble (T) des points M du plan tels $(\overline{2MA} \overline{MB} 2\overline{MC}) \cdot (\overline{MB} + \overline{MC}) = 0$

EXERCICE 2

- a) Soit ABC un triangle isocèle de sommet A. I est le milieu de [BC], H le projeté orthogonal de I sur (AC) et J le milieu de [IH]. Démontrer que les droites (AJ) et (BH) sont perpendiculaires :
- b) a) en s'appuyant sur le produit scalaire.
- c) b) en introduisant le milieu K de [HC] et en démontrant que J est l'orthocentre du triangle AIK.

EXERCICE 3:

On considère dans le plan P un triangle équilatéral ABC de côte a.

- 1. Construire le point D barycentre du système $\{(A; 2), (B; -2), (C; -1)\}$.
- **2.** a. Déterminer \overrightarrow{BA} . \overrightarrow{BC} en fonction de a.
- **b.** Montrer que les droites (AB) et (CD) sont parallèles et que le triangle BCD est rectangle en B.
- **3.** Calculer les distances CD, BD et AD en fonction de a. (indication : $\cos 150^{\circ} = \frac{-\sqrt{3}}{2}$)
- **4.** Pour tout point M du plan, on pose $f(M) = 2MA^2 2MB^2 MC^2$ et on désigne par (F) l'ensemble des points du plan tels que f(M) = 0.
 - a. Vérifier que C appartient à (F).
 - **b.** Exprimer f(M) en fonction de la distance MD et de a.
 - c. Déterminer et construire (F).
- **5.** Pour tout point M du plan on pose $g(M) = 2\overrightarrow{MC} \cdot \overrightarrow{DC} + a^2$
 - **a.** Déterminer l'ensemble (G) des points M du plan tels que $g(M) = a^2$.
 - **b.** Soit I le point d'intersection autre que C des ensembles (F) et (G). Montrer que le triangle CDI est équilatéral.

Passez de bonnes vacances studieuses!