Extração de Dados

Revisão Sistemática e Meta-Análise

Marcelo M. Weber & Nicholas A. C. Marino github.com/nacmarino/maR

Recapitulando

- Revisão Sistemática: "é uma síntese da pesquisa disponível em um tópico precisamente definido, usando métodos explícitos para identificar, selecionar, avaliar criticamente, e analisar os resultados relevantes". (Koricheva et al, 2013)
- **Meta-Análise**: "é a análise estatística de uma ampla coleção de resultados de estudos com o propósito de integrar a evidência disponível". (*Glass, 1976*)
- · Uma meta-análise é um componente opcional da revisão sistemática.

Recapitulando

- · Para os trabalhos que forem vistos:
 - Documento todos os passos e decisões;
 - Faça uma lista de todos os trabalhos vistos, com o status e informações relevantes de cada um deles, que os levaram a ser aceitos ou rejeitados.
- · Cada trabalho visto deve receber um número de identificação.
- · Cada linha recebe as informações de uma única observação.
- · Em cada coluna, apenas um tipo de dado.

id_estudo	autor	ano	revista	entra	observacao
1	Fulano et al	2013	Vovo Mafalda	sim	cumpre requisitos
2	Beltrano	2013		sim	cumpre requisitos
3	Primano	2016	Turma da Monica	sim	informacoes no SM
4	Hermano et al	2010		sim	multiplos niveis do tratamento
5	Ciclano & Juvano	2010	Galvalandia	nao	experimento nao replicado

Recapitulando

- · Esperamos que todos estejam nesta fase.
- · Com a lista de trabalhos que vão cumprem os critérios de inclusão, o passo seguinte é a extração dos dados.

Extração de Dados

- · É uma das partes mais importantes de uma revisão sistemática se não a parte mais importante;
- · O tempo gasto aqui é o tempo que você nao vai gastar no futuro;
- · Gaste tempo planejando:
 - O(s) critério(s) de inclusão para a extração de dados.
 - As informações que precisam ser extraídas de cada estudo.
 - O formato que cada variável extraída vai assumir na base de dados.
- · Se estiver na dúvida, revisite o PICO.
- · Documente todas as decisões e escolhas.

Fluxograma de Trabalho

Que informações extrair?

- · O tipo de informação a ser extraída depende da natureza da sua pergunta:
 - Informações básicas sobre o estudo: localidade, coordenadas, clima,...
 - Outras informações sobre o estudo: tamanho da área amostrada, tipo de ecossistema, forma de amostragem, espécies envolvidas,...
 - Informações sobre a manipulação de interesse: desenho aditivo ou substitutivo, níveis da manipulação, espécies adicionadas,...
 - Dados quantitativos: médias, coeficientes de correlação, slopes, erros, tamanho amostral
 - Outras informações relevantes (informações sobre as espécies, informações sobre background do solo,...)

Mas o que são informações relevantes?

- · Na sua cabeça..."tudo pode ser potencialmente importante, e tudo influencia tudo".
 - Mas por quê x, y ou z podem ser importantes?
 - Como você espera que *a* influencie *b*?
- · Foque na sua pergunta a partir dela, você vai ter noção do que é importante extrair.
- · Você está testando uma hipótese...o que a literatura diz sobre ela?
- · Que outros corpos de teoria podem indicar quais informações são importantes?
- · Estar familiarizado com a área que você está revisando é fundamental.

Quais das informações extrair?

- Quando variáveis resposta para um mesmo estudo forem correlacionadas, qual delas você vai preferir?
 - Diferentes medidas de diversidade, densidade ou biomassa;
 - Diferentes formas de medir o fluxo de um gás;
 - Diferentes formas de inferir visitação;
 - Diferentes forma de medida um organismo;
 - ...
- · Quando os dados forem apresentados em diferentes tempos, qual deles você vai usar?
 - Medidas finais: capturam todo o histórico do experimento/observação, mas também pode sofrer influência de outros fatores que não o desejado;
 - Medidas iniciais: capturam a resposta inicial do experimento/observação, mas podem estar sujeitos à influência da estocasticidade e não refletir a tendência à longo prazo;
 - Integrar todas as medidas: estimativa mais robusta, mas muito mais trabalhosa.

Quais das informações extrair?

- · Se houverem múltiplos níveis de um tratamento, qual você vai usar?
 - Gradiente de riqueza, de área, de intensidade, de concentração, de 'idade' das unidades experimentais;
- · Como você encara múltiplas observações a partir do mesmo estudo?
 - Espécies, indivíduos, ambientes,..., populações diferentes avaliadas no mesmo estudo;
 - Observações dependentes por virem do mesmo estudo;
 - Observações independentes por serem 'experimentos' diferentes.

Quais das informações extrair?

- · Como você encara dados do mesmo experimento/localidade apresentados em múltiplos estudos?
 - *Salami Science*: mesmo experimento apresentado como uma série de artigos (normalmente) de menor impacto;
 - *Pão Francês*: pequenos experimentos repetidos inúmeras vezes, podendo ser mais ou menos similares entre si;
 - *De volta para o futuro*: resultados do mesmo trabalho descrito anteriormente, mas agora com *x* anos/meses/semanas/dias a mais de coleta.
- Se o estudo for multifatorial, como você extrai os dados do controle e tratamento?
 - Por exemplo, você quer saber qual o efeito da adição de nutrientes em uma variáveis resposta x, e um estudo manipula a concentração de nutrientes (baixa vs alta) e o disturbio (baixo vs alto) de forma fatorial.
 - Uma opção é usar os níveis do outro fator como uma 'realidade' pararela: para cada um dos níveis do distúrbio, você vai ter um medida da adição de nutrientes;
 - Outra opção é selecionar um dos níveis do segundo fator e trabalhar apenas com ela, para simplificar as coisas e reduzir ruído.
 - Se esta for a sua pergunta, você também pode usar uma medida de effect size bifatorial (ou multifatorial, mas aqui complica a interpretação).

Como registrar cada informação?

- · Regra de ouro: uma observação por linha, um tipo de dado por coluna.
- · Você não precisa registrar todas as informações em uma única tabela eu, particularmente, sugiro usar uma estrutura de base de dados.
- · Informações da inclusão do estudo:

id_estudo	autor	ano	revista	entra	observacao
1	Fulano et al	2013	Vovo Mafalda	sim	cumpre requisitos
2	Beltrano	2014	Tio Patinhas	sim	cumpre requisitos
3	Primano	2016	Turma da Monica	sim	informacoes no SM
4	Hermano et al	2010	Mickey	sim	multiplos niveis do tratamento
5	Ciclano & Juvano	2010	Galvalandia	nao	experimento nao replicado

Informações extraídas dos trabalhos selecionados:

id_estudo	pais	especie	manipulacao	concentracao_n	concentracao_p
1	Brasil	araucaria angustifolia	np	50	50
2	Patopolis	theobroma cacao	n	50	0
3	Sao Paulo	handroanthus albus	n	50	0
4	Disneylandia	a cecropia hololeuca	np	25	100

Dados quantitativos

- É a parte principal para quem vai fazer uma meta-análise.
- · É a etapa da extração de dados que consumirá mais tempo de todo o processo.
- · Importante registrar de onde veio cada dado extraído para a meta-análise.
- · Mais importante ainda é determinar a qualidade do que você está extraindo: garbage in, garbage out.

Dados quantitativos

- 1. Medida do Efeito:
 - · Valores de 'média' para cada observação/tratamento;
 - · Coeficientes de Correlação ou Slopes de Regressão;
 - · Valores de resultados positivos e negativos;
 - · Outras métricas.
- 2. Uma estimativa de erro (é fácil converter entre elas):
 - · Variância;
 - · Desvio Padrão;
 - · Erro Padrão;
 - · Intervalo de Confiança.
- 3. Tamanho Amostral.

Dados quantitativos

· Exemplo de uma tabela de dados quantitativos extraídos.

id_estudo	fonte	media_contro	le erro_contro	le n_controle	tipo_erro_controle
1	Tabela 1	10	3.2	12	se
2	Figure 2a	6	2.1	10	sd
3	Texto	8	1.9	14	ci
4	Mat Sup Fig	1 20	0.4	20	se
media_tra	tamento e	rro_tratamento	n_tratamento	tipo_erro_trata	mento boxplot
18)	2.5	12	se	nao
12		0.9	10	sd	sim
10		1.5	14	ci	nao
21		0.6	20	se	nao

E se faltar algum dado quantitativo?

- · Pode ocorrer por diversos motivos, dentre eles:
 - Dados foram apresentados muito mal (bad reporting);
 - Dados não foram apresentados seguindo o desenho experimental;
 - Dados não foram apresentados.
- · O que fazer:
 - Entrar em contato com o(s) autor(es) do trabalho: nem sempre é o desejável, tampouco é garantia de conseguir os dados.
 - Tentar algum tipo de imputação dos dados: você usa relações existentes na base de dados para 'predizer' qual é o valor que foi perdido.
 - Excluir observação da base de dados: não é o desejável, mas é o que precisa ser feito às vezes;
 - Usar uma medida de tamanho de efeito alternativa.
- Existe o que fazer se dados forem apresentados como Boxplot!

Como tirar dados de boxplot?

 Hozo et al, 2005, BMC Medical Research Technology, Estimating the mean and variance from the median, range, and the size of a sample

Para a média a partir do boxplot

```
    Se o n < 25:</li>
    mn_small <- (a+2*m+b)/4</li>
    Se o n > 25:
    mn_with_n <- (a+2*m+b)/4+(a-2*m+b)/(4*n)</li>
```

Para a variância a partir do boxplot

Se o n < 15
s_form <- ((((a-(2*m)+b)^2)/4)+((b-a)^2))/12
sd_form <- sqrt(s_form)
Se o 15 < n < 70
s_range_4 <- (b-a)/4
Se o n > 70
s_range_6 <- (b-a)/6

Como tirar os dados a partir de figuras?

- · Tradicionalmente, isto era feito com um paquímetro.
- Existem softwares grátis que te permitem determinar as coordenadas de cada 'ponto' em uma figura (exemplo, mas existem muito mais):
 - ImageJ
 - DataThief (vou mostrar esse daqui a pouco)
 - WebPlotDigitizer
 - GraphClick
- · O pacote *metagear* no R também tem uma ferramenta que serve para determinar os pontos em uma figura digitalizada.

E se houver mais de uma observação para um mesmo estudo?

- · Se, por algum motivo, você vai usar múltiplas observações a partir do mesmo estudo, a forma de entrada de dados é a mesma que a descrita anteriormente.
- · A regra de ouro continua valendo sempre.
- · A observação deve receber o mesmo número de identificação para a identidade do estudo.

id_estudo	autor	ano	revista	observacao	pais	especie	manipulacao	concentracao_n
1	Fulano et al	2013	Vovo Mafalda	cumpre requisitos	Brasil	araucaria angustifolia	np	50
2	Beltrano	2014	Tio Patinhas	cumpre requisitos	Patopolis	theobroma cacao	n	50
3	Primano	2016	Turma da Monica	informacoes no SM	Sao Paulo	handroanthus albus	n	50
4	Hermano et a	2010	Mickey	multiplos niveis do tratamento[Disneylandia	cecropia hololeuca	np	25
4	Hermano et a	2010	Mickey	multiplos niveis do tratamento[Disneylandia	cecropia hololeuca	'n	25

Devemos dividir esforços?

- · Se você é desconfiado, cricri, ou gosta de carregar o mundo nas costas, não.
- · Se você acredita nos outros, sabe o valor de trabalhar em equipe, ou quer agilizar o processo, sim.
- · No fim das contas, a escolha depende do tamanho da meta-análise e das pessoas disponíveis para ajudar.
- É importante registrar quem extraiu os dados de que trabalho.
- · Existe um método para determinar o grau de concordância entre revisores.

Kappa assessment

· Observado: grau de concordância entre dois revisores.

	Aceito	Rejeitado	Tota
Aceito	35	20	55
Rejeitado	5	9	14
Total	40	29	69

· Esperado ao acaso: (Σ Linha * Σ Coluna)/ Σ Total

	Aceito	Rejeitado	Tota
Aceito	31.88	23.11	55
Rejeitado	8.11	5.88	14
Total	40.00	29.00	69

- · Número de vezes em que ambos concordaram:
 - Observado: 35 + 9 = 44
 - Ao acaso: 31.88 + 5.88 = 37.76

Kappa assessment

 K = (concordância observada - concordância esperada)/(numero total de observacoes - concordânca esperada)

```
(44 - 37.76)/(69 - 37.76)
## [1] 0.1997439
```

- · Baixa concordância entre revisores merece atenção.
- · Documente todas as decisões e escolhas, e relate:
 - se extração de dados foi feita por uma única pessoa ou uma equipe;
 - se feito por uma equipe, como você lidou com um possível viés individual.

Resumindo

- · O planejamento da extração de dados é fundamental para o sucesso da sua revisão sistemática ou meta-análise: o tempo gasto aqui é tempo bem gasto;
- · A sua pergunta vai guiar grande parte da escolha das informações a serem extraídas;
- · Ao criar sua planilha da revisão sistemática ou meta-análise tente aproveitar ao máximo da estrutura de uma base de dados;
- · Não se esqueça da regra de ouro: uma linha, uma observação; uma coluna, um tipo informação.
- · O mais importante: documente todas as decisões e escolhas que você fizer aqui.

Literatura Recomendada

- 1. Hozo et al, 2005, BMC Medical Research Technology, Estimating the mean and variance from the median, range, and the size of a sample
- 2. Borer et al, 2009, Bull Ecol Soc Am, Some simple guidelines for effective data management
- 3. Zimmerman, 2008, Sci Tech Human Val, New knowledge from old data the role of standards in the sharing and reuse of ecological data
- 4. Whitlock, 2010, Trends Ecol Evol, Data archiving in ecology and evolution best practices
- 5. Curtis et al, 2013, Extraction and critical appraisal of data, In: Handbook of meta-analysis in ecology and evolution (Capítulo 5)