

O relacijskih poizvedovalnih jezikih

- Relacijska algebra in relacijski račun formalna poizvedovalna jezika...
 - Relacijska algebra visoko-nivojski postopkovni jezik,
 - Relacijski račun nepostopkovni ali deklarativni jezik.
- Formalno ekvivalentna.
- Relacijsko popolni jeziki

Relacijska algebra...

- Vhod in izhod relacijske algebre so relacije.
- Vhodne relacije se ne spremenijo!
- Možno gnezdenje izrazov.

Operacije relacijske algebre...

- Relacijska algebra vsebuje pet osnovnih operacij:
 - Selekcija,
 - Projekcija,
 - Kartezijski produkt
 - Unija in
 - Razlika.
- S temi operacijami se izvede večina poizvedb.
- Možne so tudi izpeljane operacije:
 - Stik,
 - Presek in
 - količnik.

Selekcija

 $\sigma_{\text{predikat}}(R)$

 Deluje na enojni relaciji R; vrne relacijo, ki vsebuje samo tiste nterice (vrstice) iz relacije R, ki zadoščajo določenemu pogoju (predikat).

Projekcija

$$\Pi_{s1,\ldots,sn}$$
 (R)

- Deluje na enojni relaciji R; vrne relacijo, ki vsebuje samo tiste atribute (stolpce), ki so določeni s seznamom.
- Projekcija eliminira duplikate.

Primer selekcije

- Izpiši vse artikle z zalogo manjšo od 2
- $\sigma_{\text{zaloga} < 2}(R)$

Šifra	Naziv	Zaloga
A10	Telovadni copati Nike	10
A12	Trenerka Bali	4
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

Šifra	Naziv	Zaloga
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

Primer projekcije

- Izpiši nazive in zalogo vseh artiklov
- $\Pi_{\text{naziv, zaloga}}(\mathbf{R})$

Šifra	Naziv	Zaloga
A10	Telovadni copati Nike	10
A12	Trenerka Bali	4
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

Naziv	Zaloga
Telovadni copati Nike	10
Trenerka Bali	4
Moška jakna QuickSilver	1
Ženska jakna QuickSilver	0

Primer selekcije in projekcije

- Izpiši šifre artiklov z zalogo manjšo od 2
- $\Pi_{\text{šifra}}(\sigma_{\text{zaloga}<2}(R))$

Šifra	Naziv	Zaloga
A10	Telovadni copati Nike	10
A12	Trenerka Bali	4
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

Unija

- Unija dveh relacij R in S je relacija, ki vsebuje vse n-terice (vrstice) relacije R in relacije S.
- Operacija eliminira duplikate.
- R in S se morata ujemati po atributih in podatkovnih tipih.
 - R(ime: text, EMSO: num(13)) ∪ S (priimek: text, starost: int)

Primer unije

Izpiši vsa mesta, kjer se nahajajo skladišča ali stranke

• $\Pi_{\text{kraj}}(R) \cup \Pi_{\text{kraj}}(S)$

R=ARTIKEL

Šifra	Naziv	Kraj
A10	Telovadni copati Nike	LJ
A12	Trenerka Bali	MB
BC80	Moška jakna QuickSilver	LJ
X12	Ženska jakna QuickSilver	GO

S=STRANKA

Šifra	Naziv	Kraj
S1	Novak Janez	LJ
S2	Krašna Miha	CE
S3	Bele Simon	PO
S4	Šuc Vilma	GO

Kraj

11

Razlika

R — S

- Razlika med relacijama R in S (R-S) vrne relacijo, ki vsebuje samo tiste n-terice (vrstice), ki so v R in jih ni v S.
- R in S se morata ujemati po atributih in njihovih podatkovnih tipih.
 - R(ime: text, EMSO: int) S (priimek: text, starost: int)

Presek

- Presek med relacijama R in S ($R \cap S$) vrne relacijo, ki vsebuje tiste n-terice (vrstice), ki se nahajajo v obeh relacijah.
- R in S se morata ujemati po atributih in njihovih podatkovnih tipih.
 - R(ime: text, EMSO: num(13)) S (priimek: text, starost: int)

Kartezijski produkt

$$R \times S$$

 Kartezijski produkt relacij R in S vrne vse možne kombinacije med n-tericami (vrsticami) relacije R in n-tericami (vrsticami) relacije S.

Primer kartezijskega produkta

- Izpiši šifre, nazive in količino artiklov, ki se pojavljajo na računih
- $(\Pi_{\text{šifra,naziv}}(R)) \times (\Pi_{\text{šifra artikla, količina}}(S))$

R=ARTIKEL

Šifra	Naziv	Zaloga
A10	Telovadni copati Nike	10
A12	Trenerka Bali	4
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

S=RAČUN

Račun	Šifra artikla	Količina
15/05	A10	1
15/05	X12	1

Šifra	Naziv	Šifra artikla	Količina
A10	Telovadni copati Nike	A10	1
A10	Telovadni copati Nike	X12	1
A12	Trenerka Bali	A10	1
A12	Trenerka Bali	X12	1
BC80	Moška jakna QuickSilver	A10	1
BC80	Moška jakna QuickSilver	X12	1
X12	Ženska jakna QuickSilver	A10	1
X12	Ženska jakna QuickSilver	X12	1

Stične operacije...

- Kartezijski produkt s selekcijo združimo v eno operacijo, ki jo imenujemo stik.
- Stik je ena najbolj časovno kompleksnih operacij s stališča implementacije v relacijskih SUPB; eden ključnih "krivcev" za probleme z učinkovitostjo.

Stične operacije...

- Obstaja več vrst stičnih operacij:
 - Stik Theta (Theta join)
 - Ekvistik (Equijoin) poseben primer stika Theta)
 - Naravni stik (Natural join)
 - Odprti stik (Outer join)
 - Delni stik (Semijoin)

Stik Theta (θ stik)...

$$R\bowtie_F S$$

- Stik Theta med relacijama R in S vrne n-terice (vrstice), ki zadoščajo predikatu F kartezijskega produkta R in S.
- Predikat F je oblike R.ai θ S.bi, kjer je θ primerjalna operacija $(<, \le, >, \ge, (=) \ne)$.

Če se omejimo na enakost, dobimo EKVISTIK!

Primer ekvistika

- Izpiši šifre, nazive in količino artiklov, ki se pojavljajo na računih, kjer je šifra artikla na računu enaka šifri artikla v artiklu
- $(\Pi_{\text{šifra, naziv}}(R)) \bowtie_{\text{R.šifra} = \text{S.šifra artikla}} (\Pi_{\text{šifra artikla, količina}}(S))$

R=ARTIKEL

Šifra	Naziv	Zaloga
A10	Telovadni copati Nike	10
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

S=RAČUN

Račun	Šifra artikla	Količina
15/05	A10	1
15/05	X12	1

Šifra	Naziv	Šifra artikla	Količina
A10	Telovadni copati Nike	A10	1
X12	Ženska jakna QuickSilver	X12	1

Naravni stik

		R⋈S

- Naravni stik relacij R in S je posebna vrsta ekvistika prek skupnih atributov relacij R in S.
- Pri vsakem stiku se vzame le en primerek skupnega atributa.

Primer naravnega stika

- Izpiši šifre, nazive in količino artiklov, ki se pojavljajo na računih, kjer je šifra artikla na računu enaka šifri artikla v artiklu
- $(\Pi_{\text{šifra, naziv}}(R)) \bowtie (\Pi_{\text{šifra, količina}}(S))$

Šifra	Naziv	Zaloga
A10	Telovadni copati Nike	10
A12	Trenerka Bali	4
BC80	Moška jakna QuickSilver	1
X12	Ženska jakna QuickSilver	0

Račun	Šifra	Količina
15/05	A10	1
15/05	X12	1

Šifra	Naziv	Količina
A10	Telovadni copati Nike	1
X12	Ženska jakna QuickSilver	1

Odprti stik

- Odprti stik omogoča, da prikažemo tudi n-terice (vrstice), ki nimajo vrednosti v stičnem atributu (stolpcu).
- Obstajata levo odprti in desno odprti stik.

L	J
В	С
1	х
1	У
3	Z
	<i>B</i> 1 1

7	$T \bowtie_{C}$	U
Α	В	С
a a	1 1	x y
b	2	

• Levo odprti stik med relacijama R in S je stik, kjer so n-terice relacije R, ki nimajo para v S z enakim stičnim atributom, vključene v rezultat.

Primer odprtega stika

- Izpiši osebe in njihova začasna prebivališča
- $(\Pi_{\text{Priimek in ime}}, PTT (R)) \searrow S$

R=OSEBA

ID	Priimek in ime	PTT
1	Kante Janez	5270
2	Tratnik Jože	5000
3	Mali Mihael	
4	Brecelj Jana	1000

S=KRAJ

PTT	Naziv
1000	Ljubljana
5000	Nova Gorica
5270	Ajdovščina

Priimek in ime	PTT	Naziv zač. preb.
Kante Janez	5270	Ajdovščina
Tratnik Jože	5000	Nova Gorica
Mali Mihael		
Brecelj Jana	1000	Ljubljana

Delni stik

 Delni stik predstavlja relacijo, ki vsebuje tiste n-terice (vrstice) relacije R, ki nastopajo v stiku z relacijo S po stolpcu F.

Primer delnega stika

- Izpiši vse podrobnosti o artiklih, ki se nahajajo v skladišču v Ljubljani
- $R \triangleright_{R.skladišče = S.šifra} (\sigma_{šifra = 'LJ'}(S))$

R=ARTIKEL

S=SKLADIŠČE

Šifra	Naziv	Skladišče	Dobavitelj	Zaloga
A10	Telovadni copati Nike	LJ	Nike	10
BC80	Moška jakna QuickSilver	LJ	Karma	1
X12	Ženska jakna QuickSilver	GO	Karma	0

Šifra	Kraj
LJ	Ljubljana, Tržaška 33
MB	Maribor, Prešernov trg 2
GO	Nova Gorica, Cankarjeva 2

Šifra	Naziv	Skladišče	Dobavitelj	Zaloga
A10	Telovadni copati Nike	LJ	Nike	10
BC80	Moška jakna QuickSilver	LJ	Karma	1

Količnik

R/S

 Količnik med relacijama R in S vrne relacijo z atributi C, ki jo sestavljajo n-terice (vrstice) iz R, ki ustrezajo kombinaciji vsake nterice v S.

Primer količnika

- Izpiši vse kupce, ki so kupili vse izdelke dobavitelja Karma.
- $(\Pi_{\text{šifra,kupec}}(R)) / (\Pi_{\text{šifra artikla}}(\sigma_{\text{dobavitelj} = \text{`Karma'}}(S)))$

 $\Pi_{\text{šifra, kupec}}$ (R)

Šifra	Kupec
A10	K1
A12	K1
BC80	K2
X12	K3
A10	K3
BC80	K3
BC80	K4
X12	K4
A12	K5

Agregatne operacije

$$\Gamma_{AL}(R)$$

- Agregat Γ_{AL} aplicira seznam agregatnih funkcij AL na relaciji R in vrne takó agregirano relacijo.
- AL vsebuje enega ali več parov (<agregatna funkcija>, <atribut>).
- Osnovne agregatne funkcije so COUNT, SUM, AVG, MIN in MAX.

Primer agregatnih operacij

- Kakšna je povprečna cena artiklov v skladišču?
- ρ_R (AvgCena) $\Gamma_{AVG Cena}$ ($\sigma_{Zaloga > 0}$ (R))

Operacija ρ_R (ime) Op poimenuje atribut, ki ga dobimo z operacijami Op nad relacijo R, z imenom ime

Šifra	Naziv	Skladišče	Cena	Zaloga
A10	Telovadni copati Nike	LJ	17.990	10
A12	Trenerka Bali	MB	6.750	4
BC80	Moška jakna QuickSilver	LJ	14.290	1
X12	Ženska jakna QuickSilver	GO	14.290	0

Združevalne operacije

$$_{GA} \Gamma_{AL}(R)$$

- Združevalne operacije združijo n-terice relacije R tako, da jih grupirajo po atributih GA.
- Relacija, ki jo tako pridobimo, vsebuje atribute GA ter vrednosti, ki jih pridobimo z apliciranjem agregatov iz AL nad vsako posamezno skupino iz GA.

Primer združevalnih operacij

- Izpiši vrednosti posameznih računov?
- ρ_R (račun,SkupnaCena)

 $\Gamma_{\text{SUM cena*količina}}\left(\mathbf{R}\right)$

R=RAČUN

ŠifraR	Šifra artikla	Količina	Cena
1/05	X12	1	12.000
1/05	XC80	2	5.000
1/05	Z55	3	4.500
2/05	X12	2	12.000
2/05	Y15	3	550
3/05	HH8	2	50.000
3/05	X12	1	12.000
3/05	XXZ4	1	990

račun	SkupnaCena
1/05	35.500
2/05	25.650
3/05	112.990

Vaja...

 Napiši relacijsko shemo za hranjenje podatkov o hotelski verigi Across.

Opis: hotelska veriga Across ima v lasti večje število hotelov, lociranih po celem svetu. Za vsak hotel bi želeli vedeti vsaj:

- kakšen naziv ima,
- kje je lociran,
- koliko sob ima na voljo,
- kakšen je tip posamezne sobe (eno posteljna, dvoposteljna...),
- kakšna je cena posamezne sobe,
- imena, priimke in naslove gostov, ki so oziroma so bili v posameznem hotelu in sobi,
- podatke o rezervacijah (poteklih in trenutno veljavnih).

Vaja...

- Imamo naslednje relacije:
 - Hotel (hotelNo, hotelName, address)
 - Room (roomNo, hotelNo, type, price)
 - Booking (hotelNo, guestNo, dateFrom, dateTo, roomNo)
 - Guest (guestNo, guestName, guestAddress)
- Opiši relacije, ki jih pridobimo z naslednjimi operacijami relacijske algebre:
 - $\sigma_{\text{Hotel.hotelNo}=\text{Room.hotelNo}}(\text{Hotel} \times \text{Room}))$
 - $\Pi_{\text{hotelName}}(\text{Hotel}\bowtie_{\text{Hotel.hotelNo}} = \text{Room.hotelNo}(\sigma_{\text{price}} > 50(\text{Room})))$
 - Guest \bowtie ($\sigma_{\text{dateTo} \geq \text{`}1.1.2002\text{'}}(\text{Booking})$)
 - $\Pi_{guestName}$ (Booking $\bowtie_{Booking.guestNo=Guest.guestNo}$ Guest) / $\Pi_{hotelNo}$ ($\sigma_{address='London'}$ (Hotel))

Kaj so ključi

Vaja

- Z uporabo relacijske algebre naredite pogled, ki bo vključeval vse podatke o sobah iz Grosvenor hotela, razen podatka o ceni.
- $\Pi_{\text{roomNo, hotelNo, type}}(\text{Room}\bowtie_{\text{hotelNo}}(\sigma_{\text{hotelName='Grosvenor Hotel'}}(\text{Hotel})))$
- Kaj je prednost takšnega pogleda?