Лекция 2

Операционные усилители

Цель лекции:

Изучение операционного усилителя.

План лекции:

- 1. Принцип построения, характеристики и параметры ОУ.
- 2. Инвертирующий и неинвертирующий усилители.
- 3. Инвертирующий сумматор.
- 4. Избирательные усилители

Операционный усилитель (ОУ) относится к УПТ с большим коэффициентом усиления, имеющим дифференциальный вход и один общий выход. Условное обозначение ОУ показано на рис. 1. Один из входов усилителя $U_{(+)}$ называется **неинвертирующим**, а второй $U_{(-)}$ – **инвертирующим**. При подаче сигнала на неинвертирующий вход выходной сигнал совпадает по фазе с входным сигналом (сигналы синфазны). Если подать сигнал на инвертирующий вход, то выходной сигнал будет повернут на 180° относительно входного сигнала (сигналы противофазны).

ОУ характеризуется большим коэффициентом усиления: $K_U \approx 10^4 - 10^6$. Основу ОУ составляет дифференциальный каскад (ДУ), применяемый в качестве входного каскада усилителя (рис. 2). Усилитель напряжения (УН), обеспечивает основное усиление по напряжению. Выходным каскадом ОУ обычно служит эмиттерный повторитель (ЭП), имеющий низкое выходное сопротивление и обеспечивающий требуемую нагрузочную способность всей схемы.

Рис. 1. Условное обозначение ОУ.

Рис. 2. Структурная схема ОУ

Передаточную характеристику ОУ $U_{\text{вых}} = f(U_{\text{вх}})$ представляют в виде двух кривых, относящихся к инвертирующему и неинвертирующему входам (рис. 3). Передаточная характеристика ОУ содержит одну линейную область и две области насыщения.

Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного) либо закрытого транзистора выходного каскада. При изменении напряжения входного сигнала на этих участках выходное напряжение усилителя остается постоянным и определяется максимальными выходными напряжениями $U^{\dagger}_{\text{вых.}max}, U^{\dagger}_{\text{вых.}max}$.

Рис. 3. Передаточные характеристики ОУ

Идеальный операционный усилитель имеет бесконечно большое входное сопротивление, вследствие чего $I_{\rm Bx} {\to} 0$; нулевое выходное сопротивление, обладает бесконечно большим и частотно независимым коэффициентом усиления $K_{\rm Z} {\to} {\to}$, коэффициент передачи синфазного сигнала (поданного одновременно на два входа) близок к нулю $K_{\rm C} {\to} {\to} 0$ и выполняется условие баланса: при $U_{\rm Bx} = 0$ и $U_{\rm Bhx} = 0$.

Основные схемы включения ОУ

Обычно ОУ используется для усиления сигналов только в сочетании с отрицательной обратной связью.

Инвертирующий усилитель представляет собой ОУ, охваченный цепью параллельной ООС по напряжению (рис. 4), которая осуществляется резистором обратной связи $R_{\rm OC}$. Коэффициент усиления усилителя с ОС задается делителем напряжения $R_{\rm OC}$ и $R_{\rm I}$.

Параметры схемы определим с помощью уравнения токов для узла A. Если принять, что сопротивление входа бесконечно велико ($R_{\rm BX} o 0$), то

входной ток ОУ будет стремиться к нулю $(I_{\rm OY} o 0)$, а ток $I_{\rm BX}$ будет определяться только током ОС: $I_{\rm BX} = I_{\rm OY}$. Отсюда

$$\frac{U_{\rm BX} - U_0}{R_1} = \frac{U_{\rm BMX} - U_0}{R_{\rm OC}}.$$
 (1)

При коэффициенте усиления ОУ $K_{U_{\rm OY}} o \infty$ напряжение на входе будет $U_0 = \frac{U_{\rm BЫX}}{K_{U_{\rm OY}}} o 0$, тогда выражение (3.7) преобразуется к виду:

$$\frac{U_{\text{BX}}}{R_1} = -\frac{U_{\text{BbIX}}}{R_{\text{OC}}}.$$
 (2)

Таким образом, что коэффициент усиления схемы инвертирующего усилителя с отрицательной обратной связью можно рассчитать по формуле:

$$K_{U(OC)} = \frac{U_{BLIX}}{U_{BX}} = -\frac{R_{OC}}{R_1}.$$
 (3)

Знак «минус» указывает на инверсию выходного сигнала.

Рис. 4. Схема инвертирующего усилителя на ОУ

Коэффициент усиления идеального инвертирующего ОУ не зависит от величины коэффициента усиления самого ОУ, а определяется только параметрами пассивной части схемы, т.е. величинами резисторов в цепи ОС.

Неинвертирующий усилитель представляет собой ОУ, охваченный цепью последовательной ООС по напряжению (рис. 5). ООС включена между выходом и инвертирующим входом.

Рис. 5. Схема неинвертирующего усилителя

При этом инвертирующий вход заземляется через резистор R_1 , а входной сигнал подается на неинвертирующий вход ОУ. Коэффициент обратной связи в этой схеме равен:

$$\beta = \frac{R_1}{R_1 + R_{OC}}.\tag{4}$$

Поскольку для линейной части характеристики напряжение между входами достаточно мало $(U_0 \to 0)$, входное напряжение связано с

выходным напряжением соотношением $U_{\rm BX} = U_{\rm BMX} \, \frac{R_1}{R_1 + R_{\rm OC}}$. Отсюда коэффициент усиления неинвертирующего усилителя

$$K_{U(OC)} = \frac{U_{BLIX}}{U_{BX}} = 1 + \frac{R_{OC}}{R_1}$$
 (5)

т.е. $K_{U({
m OC})}$ определяется лишь отношением сопротивлений $(R_1+R_2)/R_1$ и не зависит от K_U .

Как следует из формулы 5, следует, что коэффициент усиления неинвертирующего усилителя не может быть меньше единицы, тогда как для коэффициента усиления инвертирующего усилителя такого ограничения не существует.

Инвертирующий сумматор предназначен для суммирования величин входных напряжений (рис. 6). Схема выполнена на базе инвертирующего усилителя с числом входных параллельных ветвей, равных количеству сигналов, предназначенных для сложения.

Принцип работы аналогового сумматора основан на суммировании токов входных сигналов, протекающих через одинаковые резисторы R_i . При $R_{\rm BX_{OC}} >> R_i, \ I_{\rm BX_{OY}} \to 0, \ I_1 + I_2 + I_3 + ... = I_{\rm OC}$. Поскольку напряжение U_0 между входами ОУ пренебрежимо мало, то сумма входных токов, протекающих по $R_{\rm OC}$, создает на нем напряжение, равное $U_{\rm BMX}$:

$$U_{\text{BMX}} = -(I_1 + I_2 + I_3)R_{\text{OC}}.$$
 (6)

Поставим вместо токов их выражения $\frac{U_{{\rm BX}_i}}{R_i}$ и, приняв $R_{{
m OC}}=R_1=R_2=R_3$, получим

$$U_{\text{BMX}} = -\left(\frac{U_{\text{BX1}}}{R_1} + \frac{U_{\text{BX2}}}{R_2} + \frac{U_{\text{BX3}}}{R_3}\right) R_{\text{OC}} = -\left(U_{\text{BX1}} + U_{\text{BX2}} + U_{\text{BX3}}\right)$$
(7)

Рис. 6. Схема инвертирующего сумматора

То есть выходной сигнал схемы равен сумме входных сигналов с обратным знаком.

Интегратор — схема, выполняющая математическую операцию интегрирования. Интегратор выполняется на базе инвертирующего ОУ, в которой резистор $R_{\rm OC}$ заменен на конденсатор (рис. 7).

Известно, что заряд на конденсаторе Q и ток через него i_C определяются выражениями:

$$Q = C \cdot U, \quad i_C = \frac{dQ}{dt}. \tag{8}$$

С учетом этих соотношений, для интегратора, получим:

$$i_{\rm C} = C \left(\frac{dU_{\rm BMX}}{dt} \right). \tag{9}$$

Для идеального ОУ $i_{\rm C} = U_{\rm BX}/R_1$ и $i_1 = i_{\rm OC}$, отсюда:

$$\frac{U_{\text{BX}}}{R_1} = -C \frac{dU_{\text{BbIX}}}{dt},\tag{10}$$

или в интегральной форме:

$$U_{\text{BMX}} = -\frac{1}{RC} \int_{0}^{t} U_{\text{BX}} dt + U_{\text{BMX}0} , \qquad (11)$$

где $U_{\rm Bыx0}$ — выходное напряжение при t=0. Таким образом, значение напряжения на выходе интегратора пропорционально интегралу от входного напряжения.

Если входное напряжение постоянно, то выражение (11) принимает вид:

$$U_{\text{Bbix}} = -\frac{U_{\text{Bx}}}{R_1 C} t. \tag{12}$$

Уравнение (12) описывает линию с наклоном - $(U_{\rm BX}/R_1{\rm G})$. Выходное напряжение будет нарастать линейно до тех пор, пока ОУ не перейдет в режим насыщения.

Интеграторы широко используются при построении генераторов линейно изменяющегося напряжения.

Рис. 7. Схема интегратора на ОУ

Избирательные усилители

Избирательные усилители предназначены для усиления сигналов в узкой полосе частот. Их частотная характеристика должна обеспечивать требуемое усиление в заданной полосе частот и достаточно крутой спад усиления вне этой полосы. По принципу действия избирательные усилители делятся на: резонансные и усилители с ОС.

Резонансный усилитель. В резонансных усилителях в качестве нагрузки применяется параллельный колебательный LC-контур, имеющий большое сопротивление на резонансной частоте f_0 и малое – для других частот.

Схема однокаскадного резонансного усилителя показана на рис. рис. 8. Резонансный усилитель содержит три основных элемента: усилительный элемент, источник питания и резонансную цепь (фильтр) с цепями связи УЭ с последующим каскадом. В качестве активного элемента используется биполярный транзистор. Связь с последующим усилительным каскадом или нагрузкой может осуществляться через разделительный конденсатор

(как в приведенной схеме) или трансформатор, первичная обмотка которого определяет индуктивность L колебательного контура.

Рис. 8. Схема резонансного усилителя с параллельным LC-контуром.

АЧХ резонансного усилителя приведена на рис.3.a. (Лекция 1). Подбором элементов C и Lконтур настраивается на частоту усиливаемого сигнала.

На резонансной частоте $f = \frac{1}{2\pi\sqrt{LC}}$ сопротивление колебательного контура оказывается наибольшим, поэтому коэффициент усиления будет максимален. Благодаря этому усиливается лишь напряжение одной частоты, а напряжения других частот подавляются. Полоса пропускания избирательного усилителя равна $2\Delta f = f_{\rm B} - f_{\rm H}$.

Усилитель собран на транзисторе VT n-p-n-типа по схеме с ОЭ. В качестве коллекторной нагрузки используется параллельный колебательный контур, состоящий из катушки индуктивности L и конденсатора C. С помощью резисторов R1, R2 и R9 задаётся необходимый режим усилителя по постоянному току. Цепочка R_3G используется для стабилизации точки покоя

за счёт введения последовательной отрицательной обратной связи по постоянному току. G_{p1} и G_{p2} — разделительные конденсаторы. Нагрузкой усилителя служит резистор $R_{\rm H}$. На резонансной частоте f_0 сопротивление контура является чисто активным, а коэффициент усиления K_u усилителя, принимает своё максимальное значение.