

Bases de Datos 1

- Licenciatura e Ingeniería en Informática
- 2do. año

Diseño de Bases de Datos Relacionales

Objetivos

- Generar un conjunto de esquemas de relaciones con un mínimo de redundancia.
- Facilitar la recuperación de información

¿Cómo lo logramos?

 Llevando el conjunto de esquemas de relaciones a una forma normal adecuada.

• Dependencia de Datos

- Dependencias funcionales (simples o complejas mvds)
 - Me servirán para reconocer redundancias y actuar en consecuencia.
- Restricciones sobre las instancias de relaciones posibles.
- Definir como dependerán los atributos entre sí.

Problemas de Diseño

- Redundancia
 - Guardar información repetida

PROVEEDOR	DOMICILIO	ARTICULO	PRECIO
Acme Corp.	Cuareim 1522	Monitor VGA	450
Acme Corp.	Cuareim 1522	Monitor Herc	120
Computronix	Yaguarón 9786	Monitor VGA	470

- •Inconsistencia potencial (anomalías de actualización)
 - Si tenemos redundancia, en el caso de una actualización habrá que actualizar en todos los lugares donde aparece el dato a modificar.

update	por	otro	dom	icilio
- A				

PROVEEDOR	DOMICILIO /	ARTICULO	PRECIO
Acme Corp.	Cuareim 1522	Monitor VGA	450
Acme Corp.	Cuareim 1522	Monitor Herc	120
Computronix	Yaguarón 9786	Monitor VGA	470

J

Problemas de Diseño

- Anomalías de inserción
 - La no independencia de ciertos datos, en caso de inserción, nos obliga a colocar valores nulos.

PROVEEDOR	DOMICILIO	ARTICULO	PRECIO
Acme Corp.	Cuareim 1522	Monitor VGA	450
Acme Corp.	Cuareim 1522	Monitor Herc	120
Computronix	Yaguarón 9786	Monitor VGA	470
PC_UDE	21 de set. 2741	?	?

- Anomalías de borrado
 - Si borramos datos de un esquema que posee información particular que debería independiente, perderemos datos importantes.

PROVEEDOR	DOMICILIO	ARTICULO	PRECIO
Acme Corp.	Cuareim 1522	Monitor VGA	450
Acme Corp.	Cuareim 1522	Monitor Herc	120
Computronix	Yaguarón 9786	Monitor VGA	470

los datos de Computronix se pierden

Definición

```
Sea RS = (ATR,DMN,dom,M,SC)
X, Y conjuntos de atributos tomados de ATR
```

X->Y sobre PRS Para toda t1, t2 en prs / t1[X]=t2[X] -> t1[Y]=t2[Y]

X->Y

X determina Y o bien Y es determinado por X

•Implicación lógica de dependencias

Sea RS = (ATR,DMN,dom,M,SC) SC contiene dependencias funcionales y X->Y dependencia funcional

$$SC = \{X->Y\}$$

SC implica lógicamente a X->Y si cada instancia r de RS que satisface las dependencias funcionales de SC también satisface X->Y

Implicación lógica de restricciones

Sea PRS=(ATR,DMN,dom) y SC su conjunto de todas las restricciones (o dependencias) que pueden definirse sobre PRS. SC1 y SC2 subconjuntos de SC

SC1|=SC2 si cada instancia posible de PRS que satisface SC1 también satisface SC2

SC1 es equivalente a SC2, SC1<=>SC2 si SC1|=SC2 y SC2|=SC1

Conjunto clausura de restricciones

SC* el conjunto de todas las dependencias funcionales implicadas por SC

$$SC^* = \{X->Y \mid SC \mid = X->Y\}$$
 Conjunto clausura de SC

Teorema

Sea RS = (ATR,DMN,dom,M,SC) y X->Y una df de SC Sea r una instancia de la relación RS

$$r = \pi(r, XY) * \pi(r, X(ATR - Y)).$$

- Puedo descomponer la relación original en dos relaciones que podrán ser unidas por join.

Teorema

Sea RS = (ATR,DMN,dom,M,SC) y SC un conjunto de dfs. Sean X e Y conjuntos de atributos de ATR. Para toda instancia r de la relación RS tenemos

$$r = \pi(r, XY) * \pi(r, X(ATR - Y)).$$

Entonces X->Y & SC* o X->(ATR-Y) & SC*

- Axiomas de Armstrong
 - Son axiomas que nos permiten deducir nuevas dependencias funcionales.
 - Con las tres primeras reglas podemos hacer todas las inferencias válidas.

Dependencias triviales:

- X → Y siempre que Y ⊂ X
- X → Ø

- Axiomas de Armstrong
 - Regla 1 REFLEXIVA

$$\{\} \mid = X \rightarrow Y, \text{ si } Y \subset X$$

• Regla 2 - AUMENTACIÓN

$$\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$$

Regla 3 – TRANSITIVA

$$\{X \rightarrow Y, Y \rightarrow Z\} = X \rightarrow Z$$

Regla 4 – UNION

$$\{X \rightarrow Y, X \rightarrow Z\} \mid = X \rightarrow YZ$$

Regla 5 - INTERSECCION

$$\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow Y \cap Z$$

- Axiomas de Armstrong
 - Regla 6 REDUCCION

$$\{X \rightarrow Y\} = X \rightarrow Y - X$$

Regla 7 - AUMENTACIÓN GENERALIZADA

$$\{X \rightarrow Y\} \mid = W \rightarrow V$$
, si $X \subset W$ y $V \subset XY$

Regla 8 - FRAGMENTACIÓN

$$\{X \rightarrow Y\} \mid = X \rightarrow A, \text{ si } A \subset Y$$

Regla 9 - TRANSITIVA GENERALIZADA

$$\{X \rightarrow Y, U \rightarrow V\} \models W \rightarrow Z, \text{ si } U \subset XY, X \subset W \text{ y } Z \subset VW$$

Determinantes (claves)

Sea RS un esquema de relación ATR = {A1,A2,...AN} SC un conjunto de restricciones con dfs

El conjunto X es determinante o clave si:

- X -> ATR está en SC*
- Para ningún Y incluido en X ocurre que Y->ATR está en SC* (condición de minimalidad).

Clave candidata

- Conjunto mínimo de atributos que determinan funcionalmente a todos los atributos del esquema.
- Designaremos a una de ellas como clave primaria.

- Superclave
 - Cualquier superconjunto propio de una clave
 - -Toda clave es superclave
- Lema
 - Si se deduce X->Y a partir de SC usando axiomas de Armstrong, entonces X->Y se cumple para cualquier instancia posible de RS en las cuales las dfs de SC sean verdaderas.

Clausura de Atributos X+

Sea SC un conjunto de dfs sobre el conjunto de atributos ATR y X un conjunto de atributos de ATR

X+ será el conjunto de atributos A tales que SC|=X->A utilizando las reglas de inferencia.

X->Y pertenece a SC* si y sólo si Y está incluido en X+

Algoritmo de Cálculo de X+:

```
ENTRADA: Conjunto de atributos X y conjunto de dependencias SC.

SALIDA: X+ (Clausura de X respecto a SC)

Resultado := X

Mientras (Resultado cambió)

Para cada dependencia Y → Z en SC

Si Y ⊂ Resultado

Resultado := Resultado ∪ Z

FinSi

FinPara

FinMientras
```


Clausura de Atributos X+

- Un conjunto de atributos X es superclave si su clausura X+ contiene a todos los atributos del esquema.
- Una clave de será el conjunto de atributos que sus miembros no aparecen a la derecha de las dfs.

$$A+ = \{A,D\}$$

 $B+ = \{B,E,F\}$
 $(A,B)+ = \{A,B,D,E,F,C\}$

Obs. (A,B)+ no es la unión de las clausuras de los elementos del conjunto.

Cubrimientos

Equivalencia de conjuntos de dfs

Sean F y G conjuntos de dependencias funcionales.

F es equivalente a G si F* = G* (F cubre a G - y G cubre a F)

<u>Algoritmo</u>

ENTRADA: F y G (conjuntos de dfs)

SALIDA: VERDADERO si cada fd de F está en G*

PARA CADA Y-->Z en F

Calcular Y+ según G

SI Z no es subconjunto de Y+

RETORNAR (FALSO)

FINSI

FINPARA

RETORNAR (VERDADERO)

- Con el algoritmo probaré si G cubre a F. Debo repetirlo para saber si F cubre a G.
- Lema: Existirá un conjunto G que cubra a F que sus dfs contienen un único atributo a la derecha.

Cubrimiento Minimal

- Un conjunto F de dependencias funcionales es minimal si:
 - El lado derecho de cada df es un único atributo
 - Convertimos todas las dfs a dependencias con un único atributo a la derecha
 - Para ninguna X->Y en F y siendo Z < Xse cumple que F {X->Y} U {Z->Y} es equivalente a F
 - Trato de eliminar atributos redundantes a la izquierda.
 - Para ninguna X->Y en F se cumple que F {X->Y} es equivalente a F

Verificar para cada df si puedo encontrar un conjunto equivalente sin ella, entonces la elimino.

Teorema

 Todo conjunto SC de dfs es equivalente a un conjunto SC' minimal.

Cubrimiento Minimal

• SC = {AB->C, B->D,D->GC,CG->H}

Paso 1: Pasar las dependencias con varios atributos a la derecha a un sólo atributo.

 $SCpaso1 = \{AB->C,B->D,D->G,D->C,CG->H\}$ Paso2: Atributos redundantes (Verifico AB->C y CG->H)

 $A + = \{A\} B + = \{B, D, G, C, H\}$

 $C+ = \{C\}$ $G+ = \{G\}$ no redundantes (no llego sin el otro a H)

A sólo no determina a C, por lo que B no es redundante

B sólo determina a C, no necesita de A.

 $SCpaso2 = \{B->C,B->D,D->G,D->C,CG->H\}$

Paso3: Dependencias redundantes

Debo verificar para cada dependencia si no es redundante.

B->C es redundante? SCpaso3'={B->D,D->G,D->C,CG->H}

B+(sobre SCpaso3') ={B,D,G,C,H} llego a C, por lo tanto <u>ES</u>

redundante. Sigo con SCpaso3'.

B->D es redundante? SCpaso3"={D->G,D->C,CG->H}

B+(sobre SCpaso3")={B} no es redundante. Sigo con SCpaso3'.

D->G es redundante? Scpaso3'''={B->D,D->C,ČG->H}

D+(sobre SCpaso3''')={D,C} no es redundante. Sigo con Scpaso3' D->C es redundante? SCpaso3'''={B->D,D->G,CG->H}

D+(sobre SCpaso3'"')={D,G} no es redundante. Sigo con Scpaso3'

CG->H es redundante? SCpaso3""={B->D,D->G,D->C}

CG+(sobre SCpaso3'''') = {C,G} no es redundante. Sigo con Scpaso3'

 $SCpaso3 = \{B->D,D->G,D->C,CG->H\}$

Descomposición de esquemas

Sea un esquema de relación RS = (ATR,DMN,dom,M,SC) Sea un esquema de base de datos DS=(PDS,DM,SDC) con PDS = {RSi=(ATRi,DMNi,domi,Mi,SCi) | i=1..k}

Descomposición con Join Sin Pérdida

- ATRi incluido o igual a ATR, i=1..k
- ATR1 U ATR2 U ... U ATRk = ATR
- DM expresa que DS es una representación de la relación RS con significado M
- SDC = Ø.
- Para cada instancia r de RS el join natural de las proyecciones sobre los ATRi es r.

$$\pi(r,ATR1)^* \pi(r,ATR2)^*...^* \pi(r,ATRk) = r$$

Algoritmo JSP Join Sin Pérdida

Algoritmo

- Crear una matriz S con una fila i por cada relación Ri en la descomposición y una columna j por cada atributo Aj en Ri
- Hacer S(i,j) = bij para todas las entradas de la matriz
- Para cada fila i que represente el esquema de relación Ri
 Para cada columna j que representa al atributo Aj
 Si Ri incluye a Aj entonces S(i,j)=aj
- Repetir hasta no modificar más S

Para cada df X->Y en F

Igualar los símbolos en los atributos de Y para aquellas filas que coinciden en los atributos de X

 Si una fila tiene todos los símbolos a, la descomposición es JSP, en caso contrario no lo es.

Ej: Algoritmo JSP Join Sin Pérdida

$$D = \{R1,R2,R3\}$$
 $SC = \{A->B,C->(D,E),(A,C)->F\}$

 $R = \{A,B,C,D,E,F\}$

$$R1 = \{A,B\}$$

$$R2 = \{C,D,E\}$$
 Paso1 -

		Α	В	С	D	E	F
	R1	b11	b12	b13	b14	b15	b16
•	R2	b21	b22	b23	b24	b25	b26
	R3	b31	b32	b33	b34	b35	b36

 $R3 = \{A,C,F\}$

		А	В	O	D	Е	F
D 0	R1	a1	a2	b13	b14	b15	b16
Paso 2 -	R2	b21	b22	a3	a4	a5	b26
	R3	a1	b32	a3	b34	b35	a6

Paso 3 -

A->B						
	Α	В	С	D	E	F
R1	a1	a2	b13	b14	b15	b16
R2	b21	b22	a3	a4	a5	b26
R3	a1	b32 a2	a3	b34	b35	а6

Paso 4 -

C->(D,E)						
	Α	В	С	D	E	F
R1	a1	a2	b13	b14	b15	b 16
R2	ь21	b22	a3	a4	a5	b26
R3	a1	a2	а3	b34 a4	b35 a5	a6

Join Sin Pérdida

Teorema

Sea {RS1,RS2} una descomposición del esquema RS = (ATR,DMN,dom,M,SC).

La descomposición es join sin pérdida con respecto a SC si y sólo si, o bien se cumple

o bien se cumple

Preservación de dependencias

- Además es deseable que no se pierdan dependencias luego de las descomposiciones.
- Proyección de dfs

Sea RS=(ATR,DMN,dom,M,SC) donde SC es un conjunto de dfs. Sea ATRi incluido o igual a ATR.

Una proyección del conjunto de dfs SC sobre ATRi es un conjunto Sci que es lógicamente equivalente a {X->Y | X->Y pertenece a SC* y XY está incluido o es igual a ATRi}

πfd(SC,ATRi)

Preservación de dependencias

Sea RS=(ATR,DMN,dom,M,SC) Una descomposición d = {RS1,RS2,...,RSk}

La descomposición d preserva dependencias de SC si la unión de todas las dependencias en $\pi fd(SC,ATRi)$

con i k ⊆ implica lógicamente a todas las dfs de SC

Preservación de dependencias

```
Algoritmo [Test de preservación]

ENTRADA: RS = (ATR,DMN,dom,M,SC) y {RS1,...,RSk} (descomposición de RS)

SALIDA: VERDADERO si la descomposición preserva fds

PARA CADA X-->Y en SC

Z:= X

MIENTRAS Z cambió

/* Agregar a Z los atributos comunes de RSi con la clausura de los atributos comunes de Z y RSi (i=1..k) */

Z:= Z U ((Z ∩ RSi)+ ∩ RSi), i=1..k

FINMIENTRAS

SI Y >= Z /* ¿Y no es subconjunto propio de Z? */

RETORNAR (FALSO)

FINSI

FINPARA

RETORNAR (VERDADERO)
```