Selected Topics in Computer Architecture, Computer Networks, and Distributed Systems (Internet of Things) (IN3450)

Dr. Shajulin Benedict shajulin@iitkottayam.ac.in shajulinbenedict@mytum.de

Prof. Dr. Michael Gerndt gerndt@in.tum.de

About me...

- Ph.D on Grid Scheduling in 2008 from AKCE Research Centre, Anna University-Chennai, India.
- PostDoctoral scientist and Guest Professor of Technical University Munich, Germany.
- Principal Investigator (Ongoing)
 - Two projects
 - Rs. 3.56 crores IoT Cloud
 - 20000 Pounds with Cardiff University London and IIT-Ropar.
 - Three projects for Institute
 - Rs. 2 crores SeedFund
 - Rs. 15 lakhs per idea (10 per year) under MSME.
 - DSIR-SIRO status
 - Consultant of BEL, India.
- Principal Investigator (completed)
 - > five funded projects (Rs.17.05 lakhs, Rs. 15.12 L, Rs.4.77 L, Rs.8 L, 10L) Completed!
 - and two German grants (Rs. 4.5 lakhs and Rs. 2.3 lakhs) Completed!.
 - DST-NIMAT Entrepreneurial project (Rs. 3 lakhs) Completed
- Researcher at
 - a TIFAC Core in Network Engineering project (>Rs. 2.5 crore),
 - A German ISAR project (> 5 Partners LRZ, IBM, MaxPlanc, ParTec).
- Project Coordinator for 6 years at SXCCE, a reg. research centre of Anna University-Chennai.
- Recognized Ph.D supervisor of Anna University-Chennai (Ranked 8 in NIRF ranking) Produc Ongoing: 5 Ph.D candidates at IIIT-Kottayam (an institute of national importance of India).

WELCOME TO

IOT COURSE

Syllabus

Evaluation

- Exam
- Bonus (0.3 credits) for 10-15 minutes of webinars (FCFS) – Topics will be shared.
- NOTE: There is no repetition exam!

History of IoT?

- The phrase "Internet of Things" was first used by Kevin Ashton in the title of a presentation made by him at Procter & Gamble (P&G) in 1999.
- The phrase was used to refer to Radio-frequency identification (RFID) gadgets used for tracking consignments.

IoT

- Future internet may consists of
 - millions of computing devices
 - Billions of personal devices or things
 - Trillions of sensors or digitized objects
- Entrepreneurs, business people, and technical aspirants are working on addressing the emerging problems of the Future Internet.
- Open and industry standards exist.
- IoT leads to smarter computing
 - How human life acts in the year 2050? Robots!
 - Knowledge-driven society will be enabled.
 - Cognition-enabled machines and expert system will be a common solution.
 - Devices in home, offices, motels, coffee houses, airport, gyms, hospital, and so forth connect, collaborate, and suggest the future activities.

IoT

- IoT delivers smarter environments.
- Living, working and relaxing environments collaborate each other.
- For eg., If someone wants to print a document, connected things will begin a conversation between the smartphone and a printer; and, the printer automatically prints the document!
- IoT prescribes the shift towards people IT.
- It is considered as disruptive and transformative technologies with the smart synchronization of a galaxy of ICT.

Trends in IT Space

- 20th century was for electricity --:
- 21st century belongs to i) IoT ii) wearable technology, iii) Bigdata, and iv) 3D printing (https://rickscloud.com/tech-trends-in-the-21st-century/).
- There are many transitions happening at IT space
 - Leading to the betterment of IoT

Trends of IoT - Patents

Trends of IoT - Publications

https://www.lens.org/

Investors for IoT

Potential of IoT

- ► The number of internetconnected devices (12.5 billion) surpassed the number of human beings (7 billion) on the planet in 2011
- ➤ According to research firm Gartner, by 2022, the majority of industrial IoT analytics will be performed at the edge, rather than in the cloud, up from less than 10% in 2017
- ▶ The installed base of connected units in both manufacturing and automotive industries is expected to be approximately 0.7 billion each by 2020, according to a Deloitte-Nasscom report on IoT

Source: Deloitte-Nasscom report on IoT

RESEARCHANDMARKETS

\$169.39 Billion Worldwide IoT Services Industry to 2030 - Identify Growth Segments for Investment

March 01, 2022 06:23 ET | Source: Research and Markets

Source: iot-now.com

The Internet of Things (IoT) Market 2019-2030

Future Investors

- Bosch is investing Rs1,700 crore in India as it focuses on IoT and artificial intelligence.
- Tata Communications is investing about \$100 million in IoT, with a focus on smart cities, utilities and people safety.
- Reliance Jio Infocomm has launched an NB-IoT (narrow-band IoT) network, with commercial network available in Mumbai, while Bharti Airtel Ltd is in talks with US telco Verizon for a broad partnership around IoT.
- Constantly watch: <u>https://www.iottechexpo.com/europe/</u> (Upcoming in Sep 2022 in Amsterdam)

Global Scenario of IoT

https://www.forbes.com/

Leading Global Project Domains

- Smart Cities (23%), Connected Industry (17%) and Connected Buildings (12%) are the top three IoT projects (in progress).
- The chart shows that nearly half of the Smart City projects (45%) are in Europe, while the Americas lead in the area of Connected Health, with 55% of global projects...
- There are variations in this chart depending on the flow of funds and industrial interests.

IoT Platforms

0%

10%

- 29% of developers favor Microsoft's Azure IoT Suite as the platform for their IoT projects, with Google Cloud IT second (24%), and Amazon AWS IoT third (19%).
- AWS was more popular with respondents from smaller organizations.
- Googe's Cloud IoT is being adopted more by employees in larger companies.

30%

20%

IoT Patents

Indian Institute of Information Technology

OLIALCOMM

ERICSSON

Qualcom... 29,623

Samsung ... 25,762

lbm 19,106 Ericsson T... 10,666

Microsoft

Microsoft

AT&T

Microsoft ... 9,876

Microsoft ... 9,182

At & T lp I Lp 6,897

As on 28.4.2022 (lens.org)

1,764 1,722 1,614 1,522 1,372 1,241 1,091 1,053 1,045 2,000 1,500 904 887 784 1,000 500 0 PANISONIC CHIMA PHILIPS CISCO LICENT MICROSOFT

s-images.forbes.com/louiscolumbus/files/2018/06/IoT-Patent-Map.jpg

Patent Holder

How IT contributed to IoT?

- Trends in IT space that contributed IoT domain,
 - Enterprise transformation
 - New business model
 - Many solutions are service-enabled ones...
 - BigData is becoming a crucial insight...
 - Software defined cloud environments...
 - Support for the diversity of data sources
 - Wearables, open/web data, media, industrial control data

IoT Working Space / Domains

Enterprise space

Embedded space

Mobile Space

Cloud space

Social space

IoT – Key Drivers for enterprise transformation

- Infrastructure optimization
- Process excellence
- Architecture modernization
- Technology adaption and adoption
- Leverage data toward actionable insights
- Device ecosystem
 - create slim device
 - Integrate with cloud
 - Eg. Thinkspeak, www.idigi.com
- Digitization and distribution
- Extreme and deeper connectivity

Popular M2M applications

Smart Energy
Smart Health Care
Smart HomeSecurity
Smart cargo handling
Smart Traffic management
Smart inventory and management
Smart cash payment
Smart tracking
Smart displays
Smart manufacturing
Smart Asset Management
Smart Retailing – a distribution process

IoT Challenges and Research Domains

Challenges

- How to handle large volume of data? (DATA)
- How to address a large number of devices/things?
- Elasticity in compute servers, storage and network connectivity. (i.e., scalable INFRASTRUCTURE)
- How to improve the energy efficiency of batteries?

Research Domains / Topics

- Energy efficient device architectures
- Elastic IoT infrastructures
- Highly optimized communication protocol design
- Data duplication and compression techniques
- Data reliability
- Data security

Subsets of IoT Domain

Industrial Internet of Things (IIoT)

Consumer Internet of Things (CloT)

Social Internet of Things (SIoT)

Semantic Internet of Things (SIoT)

Productization-Internet of Things (PIoT)

Industrial IoT (IIoT)

- IIoT applies embedded intelligence and network connectivity of IoT devices to improve systems or products.
- Few industrial sectors
 - Eg. Car manufacturing,
 - 3D printing companies,
 - Manufacturing sector
 - Smart buildings

•

- Case study @ Cognizant:
- https://www.youtube.com/watch?v=SkaNBfUzov0

Industry 4.0

- How the system of industry is changing? Automation
 - Industry 4.0 is the name given to the current trend of automation and data exchange in manufacturing technologies.
- Industry 4.0 is based on Germany
- Industrial Internet is based on the USA.
- Industry 4.0
 - Fourth industrial revolution
 - First three revolution
 - First (18th century)
 — water and steam power engines revolutionized production
 - Second (Early19th century) electrical engines/power revolutionized production (eg. Belt conveyors powered by electricity)
 - Third (Mid 19th century) Electronics and IT (Programmable controllers)
 - Fourth industrial revolution via. IoT connections (Eg. Siemens)

Challenges of Existing Manufacturers

Siemens captured opinions from manufacturers around 11 countries to understand the challenges of existing manufacturers. They are...

- Digital skills digital production or maintanence.
- Access to finance for the scale of businesses
- Creating a culture of collaboration.
- Data and cyber security.
- Specialized strategic management and planning capabilities.

Industry 4.0

- In the future, industrial businesses will build global networks to connect their machinery, factories, and warehousing facilities – known as Cyber-Physical-Systems (CPS).
- CPS will take shape of smart factories, smart machines, smart storage facilities, smart supply chains.
- Labors are monitored using sophisticated wearables.

Use case...

- Predictive maintenance
 - Based on the identifiable sensor values, machines are predicted and prevented.

- Spare-Parts replacement
 - Availability of spares

Industry 4.0 for Customers vs. Industries

- For customers
 - Customized solution at affordable prizes
- For industries
 - Highly flexible mass production based on market changes.
- In the future, the product life cycle will be smaller than imagined today due to Industry 4.0

Benefits Industry 4.0 promises for SME

SME – Small to Medium Enterprise benefits from Industry4.0 via.

- Succeeding in competitions
- Increased productivitiy
- Increased revenue
- Optimization of manufacturing processes
- Development of exponential technologies (ie. IoT, RFID,...)
- Delivery of better customer service.

Building blocks of Industry 4.0

Consumer IoT (CIoT)

- Wearables, gadgets, portables, implantables, handhelds, consoles, appliances, instruments and utensils are the IoT products in this category.
- Nest's CamSurveillance create safer home.
 - We are entering into the connected era!
- Challenge:
 - How to bind several heterogeneous devices from different manufacturers?
- Kaa project (<u>www.kaaproject.org</u>) is an opensource loT middleware platform for managing, collecting, analyzing, and acting on the connected devices.

Popular Wearable Applications in Healthcare

- Prevention of diseases and maintenance of health
 - Fall identification and prevention
 - Mental status monitoring (stress patterns of children or employees)
 - To check hypertension or blood pressure.
- It can suggest medical decision making processes.
 - For diabetic patients, cancer patients, stroke patients, and so forth.
- Weight control applications
 - Suggesting physical exercise (apt ones)
- Physical activity monitoring
 - For athletes, to suggest training pattern.
 - Textiles that warm up during chilly days (e.g. Polar Seal)
- Improves the quality of patient monitoring

Wearable Devices

- Wearable devices can be attached to shoes, eyeglasses, earrings, clothing, gloves and watches.
- Skin-attachable devices
- A smartphone is typically used to collect information and transmit it to a remote server for storage and analysis.

Social/Semantic/Productization

Social IoT

- It addresses the establishment of social relationships among interacting objects.
- Web2.0 sites such as Facebook, Google+, LinkedIn, and so forth are popular social internet of things.
- These sites extract our likes, dislikes, updates, and interactions.

Semantic IoT

- Semantics are applied within connected devices.
- Defining, modifying and interpreting data
- (Deals with the language and syntax of metadata)
- (contextualized, Personalized, Tailor-made solutions)

Productization IoT

- Deals with the customization of the sensor applications.
- Preferably, using 3D printers and solutions.

IOT for Education

Foreign language translation

Connected smart classrooms, smart experiments

Collaborative learning

Support to dis-abled students

IOT for Education (Indirect)

Three Basic Building blocks of IoTs

Sensors

- Senses different parameters
- Eg. Temperature, lighting conditions

Network

 Connections (may be via. cloud or distributed systems)

Actuators

 Necessary actions are taken place here.

IoT – Air-Quality Monitoring Architecture

Sensors

- A device which detects or measures a physical property and records, indicates, or otherwise responds to it is called as sensors – Oxford dictionary
- A few sensors
 - Obstacle detection sensors
 - Camera detection sensors
 - Smoke detection sensors
- Sensors can be of
 - different shapes and sizes (big or small) and
 - Different properties (chemical or mechanical or electrical or electronic or light...)
- Designing sensors and fabricating them are tougher than applying sensors for different applications.
- Sensors convert a form of input to the other form of energy. Eg. Sound sensor converts sound to electrical

Features of a sensor

Sensors are sensitive to the measurable property.

They are immeasurable to the other measurable properties.

i.e., a temperature sensor does not sense light energy.

They do not influence the measured property.

i.e., a temperature sensor does not increase the temperature of a room.

Resolution of a sensor

- The resolution of a sensor is the smallest change that a sensor can detect while measuring its property.
- More the resolution --- More the accuracy or precision

Classes of Sensors

Types of sensors

Sensor Deviations

- Deviations are prone to sensors.
- Hence, there is a maximum and minimum value for any measurable property.
- The sensitivity of a sensor under real conditions may differ from the value specified – named as SENSITIVITY ERROR.
- If the output signal differs from the correct value by a constant, the sensor has an OFFSET ERROR or BIAS.

Linear vs. Non-Linear Transfer function

- Sensors, generally, have a linear behavior (ie. Transfer function w.r.t input and output).
- Non-linearity is the deviation of the sensors' transfer function.
- If the output signal of a sensor slowly changes over time (over months or years), it is termed as a *DRIFT*.
- DRIFT is caused due to the malfunction of sensors.
- NOISE is a random deviation of the signal that varies in time.
- HYSTERISIS ERROR are error due to the impact of the previous measured values (ie. Historical errors are accumulated in the recent values).

Actuators

- Actuators perform actions.
 - Eg. Relay switch an electromechanical switch (for powering On or OFF)
 - Eg. Solenoid controls the flow of water / liquid.
- Actuator is a component that moves or controls the mechanism of a system.
- An actuator requires a control signal to act on an environment.
- 2types: Linear vs. Rotary actuators
 - Linear moves in a linear direction.
 - Rotary moves in a circular motion.
- https://www.youtube.com/watch?v=OKyZFuc4WKI

Types of actuators

- Hydraulic actuators
 - Hydraulic power is utilized to perform mechanical action.
- Pneumatic actuators
 - Air is utilized to perform mechanical action
- Electric actuators
 - Electric power is utilized to perform actions
 - Eg. Electric signal to control solenoid valves.
- Thermal or magnetic actuator
 - Thermal or magnetic energies are utilized to perform mechanical actions.
- Mechanical actuators
 - Mechanical power is utilized...

min ()

