Osnove mikroprocesorske elektronike

Vaja 11: AD pretvornik

V sklopu priprave na vajo ste poskrbeli za *inicializacijo strojne opreme*, ki je potrebna, da lahko merimo pozicijo osi "joysticka": AD pretvornik ste nastavili za delo v DMA načinu ter nastavili proženje AD pretvorbe s pomočjo časovnika. V sklopu vaje pa boste sedaj poskrbeli še za implementacijo funkcionalnosti "joysticka" na sistemskem nivoju: definirali boste ustrezne podatkovne strukture, poskrbeli za kalibracijo osi "joysticka" ter pripravili funkcijo, ki iz "surovih meritev" pozicije osi "joysticka" izračuna *relativno* pozicijo osi.

Naloge vaje

1. Novemu projektu dodajte modula joystick.c in joystick.h, znotraj katerega bomo v sklopu vaje implementirali sistemski modul za delo z "joystickom".

Modula najdete v mapi "predloge". Dodajte ju v projektno mapo znotraj podmape "System" na ustrezno mesto.

2. Definirajte <u>podatkovno strukturo</u>, ki bo hranila vse potrebne parametre za delo z ''joystickom''.

Definirali jo boste s pomočjo naslednjih korakov:

- a) definirajte naštevni *tip* joystick_axes_enum_t, kjer boste *definirali imena vseh osi* "joysticka" (angl. axes). Definicijo umestite v datoteko joystick.h.
- b) Definirajte naštevni *tip* joystick_buttons_enum_t, kjer boste *definirali ime edine tipke* "joysticka" JOY BTN FIRE. Definicijo umestite v datoteko joystick.h.
- c) Definirajte *tip* "handle" strukture <code>joystick_handle_t</code>, ki pa bo hranila vse potrebne parametre za delo z "joystickom".

Definiciji tipa dodajte sledeče podatkovne strukture:

- position_raw[] tabela, kamor bo DMA enota shranjevala "surove" rezultate AD pretvorbe (angl. raw measurements), torej meritve pozicije osi "joysticka";
- position_raw_min[] tabela, kjer bomo hranili informacijo o *najmanjšem* odklonu osi "joysticka",
- position_raw_max[] tabela, kjer bomo hranili informacijo o *največjem* odklonu osi "joysticka",
- position_raw_range[] tabela, kjer bomo hranili informacijo o *razponu* odklona osi "joysticka" (angl. axis range).
- d) Na podlagi zgornjega tipa definirajte *globalno* spremenljivko joystick, ki pa bo naša "handle" struktura za "joystick".

3. Definirajte dolžino medpomnilnika za shranjevanje informacije o pritisnjenih tipkah ''joysticka''.

Poskrbite, da bo dolžina medpomnilnika za tipke "joysticka" nastavljena na 16.

4. Poskrbite za inicializacijo "joystick" modula znotraj JOY init() funkcije.

Pri inicializaciji boste poskrbeli za sledeče stvari:

- a) za tipko "joysticka" specificirate, na kateri GPIO pin in port je priključena,
- b) smiselno nastavite začetne vrednosti sistemskih spremenljivk "joysticka",
- c) shranite kazalca na "handle" strukturi za časovnik in AD pretvornik, ki sta potrebni, če želimo ti dve periferni enoti upravljati s HAL funkcijami,
- d) inicializirate medpomnilnik za tipke "joysticka",
- e) izvedete kalibracijo AD pretvornika s pomočjo HAL funkcije,
- f) zaženete AD pretvornik v DMA načinu,
- g) zaženete časovnik, da prične s štetjem,
- h) počakate toliko časa, da bo časovnik zagotovo že sprožil prvo AD pretvorbo.

5. Dopolnite implementacijo funkcij, ki so povezane z osmi ''joysticka''.

Funkcije, ki implementirajo funkcionalnost povezano s tipkami "joysticka" so že implementirane, saj ste se s takim problemom že srečali tekom oživljanja tipkovnice.

Vaša naloga je, da dokončate implementacijo funkcij, ki so povezane z meritvijo pozicije osi "joysticka". To pa pomeni, da morate dopolniti sledeči funkciji:

a) JOY calibrate() – funkcija, ki poskrbi za kalibracijo "joysticka". Znotraj te funkcije poskrbite, da se zabeležijo ekstremni odkloni za posamezne osi "joysticka".

O ideji kalibracije "joysticka" "joysticka" si lahko preberete v poglavju spodaj.

b) JOY get axis position() - funkcija, ki vrne relativno pozicijo osi "joysticka". Relativno pozicijo podaja v smislu procentualnega deleža celotnega razpona odklona osi.

O ideji izračuna relativne pozicije "joysticka" si lahko preberete v poglavju spodaj.

6. Stestirajte in demonstrirajte delovanje "joysticka" s pomočjo testnih funkcij.

Delovanje "joysticka" boste stestirali s pomočjo pomožne "debug" funkcije JOY SCI send status(), ki na serijski vmesnik SCI izpiše stanje ključnih sistemskih spremenljivk "joysticka" ter trenutno relativno lego osi "joysticka". S to funkcijo boste lahko spremljali sistemske spremenljivke "joysticka" v realnem času med kalibracijo in po njej.

Delovanje tipke "joysticka" boste lahko preizkusili s funkcijo JOY button demo(), ki jo je potrebno malenkost dopolniti.

DODATNA NALOGA – Test "joysticka" s prižiganjem LEDice

V sklopu funkcije JOY LED demo () spišite testno kodo, ki "premika prižgano LEDico" od LED7 do LED0 glede na trenutno relativno pozicijo osi "joysticka".

Dodatna pojasnila

Delo s HAL knjižnico in "handle" strukture za periferne enote

Do sedaj smo za upravljanje perifernih enot mikrokrmilnika pretežno uporabljali le nizko-nivojske funkcije LL knjižnice. Funkcije LL knjižnice so implementirane tako, da periferno enoto upravljajo neposredno na nivoju registrov. Funkcije HAL knjižnice pa uporabijo višje-nivojski pristop in vpeljejo uporabo "handle" strukture za upravljanje periferne enote. Če pogledate v datoteko main.c, boste našli odsek, kjer so definirane vse "handle" strukture, ki jih potrebujemo, če želimo upravljati periferne enote s pomočjo HAL knjižnice. Poglejte izsek spodaj.

HAL knjižnica uporablja idejo "handle" strukture na podoben način, kot smo "handle" strukture uporabljali mi pri implementaciji sistemskih modulov Miškota.

O kalibraciji osi "joysticka" in izračunu relativne pozicije osi

"Joystick" je vhodna naprava (angl. input device), ki omogoča vnos informacije s pomočjo pozicije oziroma orientacije krmilne ročice. Krmilna ročica se pri dvo-osnemu "joysticku" nahaja v nevtralni centralni legi in jo lahko odmaknemo v dveh smereh, ki jih tipično označujemo kot osi koordinatnega sistema in jih zato poimenujemo X in Y (glejte sliko spodaj).

odklona vzdolž osi

Detekcija odklona ročice vzdolž posamezne osi (angl. axis, množina angl. axes) je izvedena s pomočjo potenciometrov (glejte sliko zgoraj). "Joystick" je v smislu električnega vezja zgolj par spremenljivih uporovnih delilnikov. Sedaj pa premislimo, kaj je potrebno storiti pri procesu kalibracije osi "joysticka".

Kalibracija osi "joysticka"

Pri kalibraciji osi "joysticka" želimo pravzaprav ugotoviti ekstremni vrednosti analognega signala, ki ga proizvede potenciometer posamezne osi, torej *minimalno* in *maksimalno* vrednost signala. Na ta način dobimo informacijo, v katerem območju se bodo gibale meritve pozicije osi "joysticka", ko bomo "joystick" uporabljali. Tekom kalibracije je zato potrebno ročico "joysticka" potiskati v skrajne lege in med tem beležiti vrednosti skrajno ležečih meritev.

Idejo kalibracije ponazarja spodnja skica. Rdeče točke v koordinatni ravnini predstavljajo "surove meritve" (angl. raw measurements) pozicij obeh osi "joysticka". Pod terminom "surove meritve" mislimo vrednost, ki jo dobimo ob analogno-digitalni pretvorbi analognega signala. Ker imamo v našem primeru opravka z 12-bitnim AD pretvornikom, lahko torej za surove meritve pričakujemo ne-predznačene celoštevilske vrednosti na intervalu od 0 do 4095. Tekom kalibracije želimo poiskati vrednosti meritev v skrajnih legah osi in tako določiti parametre X MIN, X MAX ter Y MIN, Y MAX. Ko so skrajne lege osi znane, pa lahko določimo tudi razpon odklona posameznih osi (angl. range), torej parametra X RANGE ter Y RANGE. Vse te parametre bomo potrebovali, ko bomo želeli izračunati trenutno relativno pozicijo osi "joysticka".

Izračun *relativne* pozicije osi

Sedaj pa poglejmo še, kako iz trenutne <u>surove</u> meritve pozicije osi ob pomoči kalibracijskih parametrov določimo trenutno relativno pozicijo osi. Razložimo to na primeru meritve X osi s pomočjo spodnje skice.

Trenutni absolutni odklon osi ΔX določimo kot razliko med trenutno "surovo" meritvijo odmika ter minimalno vrednostjo odmika,

$$\Delta X = X_{\text{RAW}} - X_{\text{MIN}}.$$

Trenutni relativni odklon osi pa dobimo, če ta absolutni odklon izrazimo kot procentualni delež razpona celotnega odklona osi, torej

$$\Delta X_{\text{REL}} = \frac{\Delta X}{X_{\text{RANGE}}} \cdot 100 \% = \frac{X_{\text{RAW}} - X_{\text{MIN}}}{X_{\text{RANGE}}} \cdot 100 \%$$

In taka relativna pozicija osi "joysticka" je informacija, ki jo je smiselno vpeljati pri delu z "joystickom". V nevtralni legi tako pričakujemo vrednosti relativne pozicije v okolici 50, v skrajnih legah pa vrednosti okoli 0 oziroma 100.