Магнитные моменты легких ядер. Ядерный магнитный резонанс.

Григорий Чирков

30 ноября 2016 г.

1 Теория

1.1 Связь магнитного и механического моментов ядра

Согласно квантовой механике, полный момент количества движения ядра \vec{M} принимает целые или полуцелые значения (в единицах \hbar). Для четного числа нуклонов M=0,1,2,..., а для нечетного M=1/2,3/2,...

Ядро также обладает магнитным моментом $\vec{\mu}$, связанным с \vec{M} . Отношение γ магнитного момента к механическому называется гиромагнитным отношением:

$$\vec{\mu} = \gamma \vec{M}.\tag{1}$$

Зачастую, вместо γ используют более простую величину, g-фактор. Он также является отношением магнитного момента к механическому, но при этом магнитный момент измеряется в ядерных магнетонах Бора ($\mu_{\rm g}=e\hbar/2m_pc$), а механический момент – в единицах \hbar :

$$g = \frac{\mu/\mu_{\mathfrak{R}}}{M/\hbar} = \frac{\mu}{\mu_{\mathfrak{R}}} \frac{\hbar}{M} = \frac{\hbar}{\mu_{\mathfrak{R}}} \gamma. \tag{2}$$

Отсюда

$$\vec{\mu} = \frac{\mu_{\text{H}}}{\hbar} g \vec{M}. \tag{3}$$

Квадрат момента импульса \vec{M} определяется формулой

$$\vec{M}^2 = \hbar^2 I(I+1),\tag{4}$$

где I – целое или полуцелое число, называемое спином ядра.

1.2 Магнитный момент ядра

Проекция момента импульса на любую ось также квантуется. Для проекции момента \vec{M} квантовая механика дает формулу

$$M_z = m\hbar,$$
 (5)

где m — некоторое целое или полуцелое число. Набор всевозможных значений m определяется условием

$$-I < m < +I, \tag{6}$$

причем последовательные возможные значения m отличаются друг от друга на единицу. Проецируя M и μ на направление вектора B, и применяя формулы (3) и (5), получаем:

$$\vec{\mu_B} = \frac{\mu_{\rm H}}{\hbar} g \vec{M_B} = \mu_{\rm H} g m. \tag{7}$$

Наибольшее значение μ_B равно $\mu_{\rm g} g I$. Его принято называть магнитным моментом ядра.

1.3 Ядро в магнитном поле

В магнитном поле энергетические уровни ядра расщепляются. Расстояние между двумя соседними компонентами расщепившегося уровня находится с помощью (7):

$$\Delta E = B\Delta \mu_B = B\mu_{\rm g} q \Delta m = B\mu_{\rm g} q. \tag{8}$$

1.4 **SMP**

Между компонентами расщепившегося уровня могут происходить электромагнитные переходы. Энергия квантов при этом строго определена выражением (8), и поэтому явление носит резонансный характер. Частота излучения определяется обычным способом:

$$\nu = \frac{\Delta E}{h} = B\mu_{\rm H}g/h. \tag{9}$$

Возбуждение переходов между компонентами расщепившегося ядерного уровня носит название ядерного магнитного резонанса (ЯМР).

1.5 Измерение д-фактора

В данной работе g-фактор определяется с помощью явления ЯМР. Изменяя частоту переменного магнитного поля, мы можем найти положение максимума поглощения, т.е. частоту резонанса. По этому максимуму определяется g-фактор из соотношения (9).

2 Экспериментальная установка

Рис. 1: Схема установки

Исследуемый образец обозначен цифрой 2. Образец помещен внутрь катушки, входящей в состав генератора. Генератор представляет собой часть индикаторной установки 1. Магнитное поле в образце создается с помощью электромагнита 4. Основное магнитное поле создается с помощью катушек 5, питаемых постоянным током. Величина тока регулируется реостатом R и измеряется амперметром A. Небольшое дополнительное поле, генерирующее электромагнитные кванты, возбуждается модулирующими катушками 6, присоединенными к сети переменного тока через трансформатор 3. Напряжение на катушках регулируется потенциометром 8.

3 Ход работы

- 1. Для образца с водой:
 - (а) Найти резонансую частоту поглощения излучения
 - (b) С помощью датчика Холла определить магнитное поле в зазоре электромагнита
- 2. Повторить пункты выше для других образцов

4 Результаты и их обработка

Все экспериментальные данные и вычисленные значения сведены в таблицу ниже.

Вещество	ν, MHz	B, mT	g-фактор	$\mu, \mu_{\scriptscriptstyle \mathtt{A}}$	$\mu_{ ext{табл}}, \mu_{ ext{я}}$
Вода	9.983	230	$5.7 \pm 0.3 \; (4\%)$	2.9 ± 0.2	2.79
Резина	10.000	230	$5.7 \pm 0.3 \; (4\%)$	2.9 ± 0.2	2.79
Тефлон	9.990	250	$5.3 \pm 0.2 \; (4\%)$	2.7 ± 0.1	2.63
Дейтерий	3.481	530	$0.86 \pm 0.02 \; (2\%)$	0.86 ± 0.02	0.857

Расчет *q*-фактора сделан по формуле

$$g_{\rm s} = \frac{h\nu}{\mu_{\rm s}B},\tag{10}$$

а магнитного момента — по формуле (7). При подсчете погрешностей учтено, что $\sigma_B=10mT, \sigma_{\nu}=1kHz$. Все табличные данные взяты из справочника физических величин(под ред. И.К. Кикоина).

5 Вывод

В проделанном эксперименте было изучено явление ядерно-магнитного резонанса. В ходе работы была получена осциллограмма резонансной кривой, резонансные значения магнитного поля и частоты внешнего излучения. На основе полученных данных были расчитаны *g*-факторы и магнитные моменты ядер водорода, дейтерия и фтора. Все полученные значения сходятся с табличными в пределах погрешности.