DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

PhD Qualifier Examination, Paper I

Total time: 3 Hours March 08, 2011 Maximum Marks: 120

Answer ALL the parts

Part A: Discrete Mathematics

Answer ALL questions

- A.1 Prove by induction that there are at most 2^h leaves in a binary tree of height h. (6)
- A.2 For a given set A, consider the relation

$$R = \{(x, y) \mid x \in \mathcal{P}(A), y \in \mathcal{P}(A) \text{ and } x \subseteq y\},\$$

where $\mathcal{P}(A)$ denotes the power set of the set A. Show that R is a partial order relation.

- A.3 (a) How many numbers between 1 and 10,000 are not divisible by 6, nor by 9, nor by 14?
 - (b) There are ten pairs of shoes in a closet. If eight shoes are chosen at random, what is the probability that no complete pair of shoes is chosen? (7)

(6)

(7)

- A.4 (a) Let *n* lines be drawn on the plane so that no two lines are parallel and no three lines meet at a single point. Find a recurrence relation for *the number of infinite regions* created by the given lines, and solve the recurrence. (8)
 - (b) How many solutions are there to the equation

$$x_1 + x_2 + x_3 + x_4 = 17$$
,

where x_1, x_2, x_3, x_4 are non-negative integers?

Part B: Algorithms

Answer ALL questions

- B.1 A sorted array A with n elements is cyclically right-shifted by k positions. For example, the sorted array 3, 9, 11, 12, 17 cyclically right-shifted by 2 positions is the array 12, 17, 3, 9, 11. You are given the right-shifted array A (and n), but not k. Design an algorithm to find out the maximum element of A in $O(\log n)$ time. (12)
- B.2 You are given an unsorted array $A = \{a_1, a_2, \dots, a_n\}$ of n elements and a target sum T. Your task is to locate two elements a_i, a_j in A (with $i \neq j$) such that $a_i + a_j$ is as large as possible, but no larger than T. Consider the following O(n)-time greedy algorithm to solve this problem.

Initialize
$$i=1, j=2$$
, and $S=a_1+a_2$.
For $k=3,4,\ldots,n$, repeat the following two steps: If $a_i+a_k\leq T$ and $a_i+a_k>S$, then assign $j:=k$, and $S:=a_i+a_k$. If $a_j+a_k\leq T$ and $a_j+a_k>S$, then assign $i:=k$, and $S:=a_j+a_k$. If $S>T$, return failure, else return (a_i,a_j) .

Prove or disprove: The above greedy algorithm always outputs the pair (a_i, a_j) with the maximum possible sum $a_i + a_i \le T$. (10)

- B.3 You are given a directed acyclic graph G = (V, E) and two vertices $u, v \in V$. Design an O(|E|)-time algorithm to compute the number of paths from u to v. (12)
- B.4 (a) Let P_1, P_2 be computational problems. What is meant by the statement: " P_1 is polynomial-time reducible to P_2 "? (3)
 - (b) Given an algorithm A to solve a computational problem P, when can it be said that A is a time-optimal algorithm for P? (3)

Part C: Formal Languages and Automata Theory

Answer ANY FOUR questions

- C.1 (a) Find a string of *minimum* length in $\{a,b\}^*$ not in the language corresponding to the regular expression $(a^* + b^*)(a^* + b^*)(a^* + b^*)$. (3)
 - (b) Give a regular grammar for the language

$$L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ does } not \text{ contain the substring } 000 \}.$$
 (7)

- C.2 Give a DFA for recognizing all strings over $\Sigma = \{0, 1\}$ with at most one pair of consecutive 0's and at most one pair of consecutive 1's. (10)
- C.3 Show that the language $L = \{0^m 1^n 0^m \mid m, n \ge 0\}$ is not regular. (10)
- C.4 (a) Give a CFG G over the alphabet $\Sigma = \{a, b\}$ such that

$$L(G) = \{ x \in \Sigma^* \mid n_a(x) > n_b(x) \},$$

where $n_a(x)$ denotes the number of a's in x, and $n_b(x)$ denotes the number of b's in x. (6)

(b) Given that "if L_1, L_2 are CFLs, then $L_1 \cup L_2$ is a CFL", give a CFG for the language

$$\{x \in \{a,b\}^* \mid n_a(x) \neq n_b(x)\}.$$
 (4)

- C.5 (a) Describe a PDA (an automaton with one pushdown store) for accepting (both even- and odd-length) palindromes. Briefly explain its working by giving the steps of computation—it is NOT necessary to give the state transition diagram.
 - (b) Define undecidable languages. Give an example of an undecidable language—there is NO need to justify the undecidability of the language in your example. (3)