

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>855.42</u>	<u>4493.19</u>	k
Compressive Load =	4357.77	4700.90	k
Lateral Load =	<u>350.77</u>	2065.63	k
Moment (Weak Axis) =	0.71	0.39	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 108351.0 in-lbs Resisting Force Required = 1641.68 lbs A minimum 132in long x 24in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2736.14 lbs to resist overturning. Minimum Width = Weight Provided = 4785.00 lbs Sliding Force = 476.23 lbs Use a 132in long x 24in wide x 18in tall Friction = 0.4 Weight Required = 1190.57 lbs ballast foundation to resist sliding. Resisting Weight = 4785.00 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 476.23 lbs Cohesion = 130 psf Use a 132in long x 24in wide x 18in tall 22.00 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2392.50 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

 $f'_c = 2500 \text{ psi}$ Length = 8 in

Bearing Pressure

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2 \text{ ft}) = \frac{24 \text{ in}}{4785 \text{ lbs}} \frac{25 \text{ in}}{4984 \text{ lbs}} \frac{26 \text{ in}}{5184 \text{ lbs}} \frac{27 \text{ in}}{5383 \text{ lbs}}$

ASD LC		1.0D ·	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	24 in	25 in	26 in	27 in	24 in	25 in	26 in	27 in	24 in	25 in	26 in	27 in	24 in	25 in	26 in	27 in
FA	1630 lbs	1630 lbs	1630 lbs	1630 lbs	1292 lbs	1292 lbs	1292 lbs	1292 lbs	2057 lbs	2057 lbs	2057 lbs	2057 lbs	-385 lbs	-385 lbs	-385 lbs	-385 lbs
FB	1665 lbs	1665 lbs	1665 lbs	1665 lbs	1544 lbs	1544 lbs	1544 lbs	1544 lbs	2271 lbs	2271 lbs	2271 lbs	2271 lbs	-2064 lbs	-2064 lbs	-2064 lbs	-2064 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	862 lbs	862 lbs	862 lbs	862 lbs	773 lbs	773 lbs	773 lbs	773 lbs	-952 lbs	-952 lbs	-952 lbs	-952 lbs
P _{total}	8081 lbs	8280 lbs	8479 lbs	8679 lbs	7621 lbs	7820 lbs	8020 lbs	8219 lbs	9113 lbs	9312 lbs	9512 lbs	9711 lbs	423 lbs	542 lbs	662 lbs	782 lbs
M	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	3788 lbs-ft	3788 lbs-ft	3788 lbs-ft	3788 lbs-ft	5593 lbs-ft	5593 lbs-ft	5593 lbs-ft	5593 lbs-ft	1736 lbs-ft	1736 lbs-ft	1736 lbs-ft	1736 lbs-ft
е	0.51 ft	0.50 ft	0.49 ft	0.47 ft	0.50 ft	0.48 ft	0.47 ft	0.46 ft	0.61 ft	0.60 ft	0.59 ft	0.58 ft	4.11 ft	3.20 ft	2.62 ft	2.22 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	265.1 psf	263.2 psf	261.5 psf	259.8 psf	252.5 psf	251.1 psf	249.8 psf	248.6 psf	275.6 psf	273.2 psf	271.1 psf	269.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	469.5 psf	459.4 psf	450.1 psf	441.5 psf	440.3 psf	431.4 psf	423.2 psf	415.6 psf	552.9 psf	539.5 psf	527.1 psf	515.6 psf	101.1 psf	75.5 psf	70.8 psf	70.6 psf

Ballast Width

Maximum Bearing Pressure = 553 psf Allowable Bearing Pressure = 1500 psf Use a 132 $\rm in \ long \ x \ 24in \ wide \ x \ 18in \ tall \ ballast \ foundation \ for \ an \ acceptable bearing \ pressure.$

Seismic Design

Overturning Check

 $M_0 = 2039.5 \text{ ft-lbs}$

Resisting Force Required = 2039.47 lbs S.F. = 1.67

Weight Required = 3399.12 lbs Minimum Width = 24 in in Weight Provided = 4785.00 lbs A minimum 132in long x 24in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		24 in			24 in		24 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	274 lbs	671 lbs	226 lbs	926 lbs	2704 lbs	889 lbs	97 lbs	196 lbs	50 lbs	
F _V	221 lbs	217 lbs	224 lbs	164 lbs	159 lbs	174 lbs	222 lbs	219 lbs	222 lbs	
P _{total}	6198 lbs	6595 lbs	6150 lbs	6565 lbs	8344 lbs	6528 lbs	1829 lbs	1928 lbs	1782 lbs	
М	886 lbs-ft	878 lbs-ft	894 lbs-ft	668 lbs-ft	665 lbs-ft	701 lbs-ft	883 lbs-ft	875 lbs-ft	887 lbs-ft	
е	0.14 ft	0.13 ft	0.15 ft	0.10 ft	0.08 ft	0.11 ft	0.48 ft	0.45 ft	0.50 ft	
L/6	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	
f _{min}	160.9 psf	180.0 psf	157.7 psf	207.4 psf	288.6 psf	201.1 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	402.5 psf	419.5 psf	401.5 psf	389.5 psf	469.9 psf	392.4 psf	214.4 psf	213.9 psf	215.0 psf	

Maximum Bearing Pressure = 470 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 24in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.352 k	Maximum Axial Load = 3.405 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>45%</u>	Utilization = $\frac{46\%}{}$
Diagonal Strut		
Maximum Axial Load =	1.433 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>19%</u>	
	A	
		Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

$$\label{eq:main_main_main} \begin{split} & \text{Mean Height, h}_{\text{sx}} = & 40.12 \text{ in} \\ & \text{Allowable Story Drift for All Other} \\ & \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ & 0.802 \text{ in} \\ & \text{Max Drift, } \Delta_{\text{MAX}} = & 0.578 \text{ in} \\ & 0.578 \leq 0.802, \text{ OK.} \end{split}$$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.2 \text{ ksi}$

3.4.16.1

 $Rb/t = S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$ S1 = 1.1 $S2 = C_t$ S2 = 141.0 $\varphi F_L = 1.17 \varphi Fcy$ $\varphi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 126 \\ \mathsf{J} &= & 0.432 \\ & & 221.673 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 28.5 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

Sx =

 $M_{max}St =$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE)})/(1.6b/t) \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14 3.4.14 88.9 in $L_b =$ J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

88.9 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 =$ 29.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F C Y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1 N/A for Weak Direction

3.4.18 7.4 h/t = $Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy$ S1 = 35.2

 $\phi F_L =$

S1 = 35.2
m = 0.68

$$C_0$$
 = 41.067
 Cc = 43.717
 $S2 = \frac{k_1 Bbr}{mDbr}$
S2 = 73.8
 ϕF_L = 1.3 $\phi \gamma F_C \gamma$

43.2 ksi

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

3.4.18

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

 $P_{max} =$

Rev. 11.05.2015

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = 31.4 \text{ ksi}$

$$\varphi F_L = 31.4 \text{ ks}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ks}$$

 $dx = 279836 \text{ mm}^4$
 0.672 in^4

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 27.5 \\ Cc = & 27.5 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ \\ M_{max}Wk = & 1.460 \text{ k-ft} \\ \end{array}$$

24.5

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

SCHLETTER

Compression

3.4.7 λ = 0.57371 0.81 in $S1^* = \frac{Bc - Fcy}{a}$ 1.6Dc* S1* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ S2* = 1.23671 $\phi cc = 0.87952$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$\begin{aligned} \text{h/t} &= & 24.5 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 27.5 \\ \text{Cc} &= & 27.5 \\ S2 &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \text{\phiF}_{\text{L}} &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_{\text{L}} &= & 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

Solution h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

7.72 kips $P_{max} =$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942$$

87.2529

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$(P_{x} \quad \theta_{y})_{F_{x}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

 $S2 = 141.0$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

 $m = 0.65$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$
 $C_0 = 27.5$

$$C_0 = 27.5$$
 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 1.29339$$

$$= 0.81 \text{ in}$$

$$Bc - Fcy$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.76107$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 15.9235 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	V	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-60.802	-60.802	0	0
2	M14	V	-60.802	-60.802	0	0
3	M15	V	-95.545	-95.545	0	0
4	M16	V	-95.545	-95.545	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	138.975	138.975	0	0
2	M14	V	106.548	106.548	0	0
3	M15	V	57.906	57.906	0	0
4	M16	У	57.906	57.906	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65.				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												1

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	371.971	2	1062.298	1	.948	1	.005	1	0	1	0	1
2		min	-502.961	3	-1050.333	3	-65.952	5	297	4	0	1	0	1
3	N7	max	.04	1	1194.956	1	449	12	0	12	0	1	0	1
4		min	085	2	-179.869	3	-269.826	4	543	4	0	1	0	1
5	N15	max	.027	9	3352.132	1	0	9	0	9	0	1	0	1
6		min	-1.153	2	-658.015	3	-258.747	4	528	4	0	1	0	1
7	N16	max	1503.282	2	3616.077	1	0	2	0	2	0	1	0	1
8		min	-1588.946	3	-3456.301	3	-65.638	5	3	4	0	1	0	1
9	N23	max	.04	1	1194.956	1	10.385	1	.022	1	0	1	0	1
10		min	085	2	-179.869	3	-263.112	4	531	4	0	1	0	1
11	N24	max	371.971	2	1062.298	1	048	12	0	12	0	1	0	1
12		min	-502.961	3	-1050.333	3	-66.509	5	3	4	0	1	0	1
13	Totals:	max	2245.901	2	11482.716	1	0	11						
14		min	-2595.261	3	-6574.719	3	-984.268	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	110.403	1	478.768	1	-6.549	12	0	3	.263	1	0	4
2			min	4.788	12	-527.432	3	-169.914	1	013	1	.011	12	0	3
3		2	max	110.403	1	335.539	1	-5.123	12	0	3	.099	4	.524	3
4			min	4.788	12	-371.169	3	-130.692	1	013	1	.005	12	475	1
5		3	max	110.403	1	192.311	1	-3.698	12	0	3	.051	5	.866	3
6			min	4.788	12	-214.907	3	-91.471	1	013	1	042	1	783	1
7		4	max	110.403	1	49.083	1	-2.272	12	0	3	.026	5	1.026	3
8			min	4.788	12	-58.644	3	-52.249	1	013	1	125	1	924	1
9		5	max	110.403	1	97.619	3	847	12	0	3	.004	5	1.003	3
10			min	4.788	12	-94.145	1	-21.214	4	013	1	164	1	897	1
11		6	max	110.403	1	253.882	3	26.194	1	0	3	006	12	.798	3
12			min	4.192	15	-237.373	1	-15.853	5	013	1	156	1	704	1
13		7	max	110.403	1	410.144	3	65.415	1	0	3	004	12	.41	3
14			min	-5.468	5	-380.601	1	-13.648	5	013	1	102	1	344	1
15		8	max	110.403	1	566.407	3	104.637	1	0	3	0	10	.184	1
16			min	-17.444	5	-523.829	1	-11.442	5	013	1	049	4	159	3
17		9	max	110.403	1	722.67	3	143.858	1	0	3	.142	1	.879	1
18			min	-29.42	5	-667.057	1	-9.237	5	013	1	06	5	911	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	110.403	1	878.932	3	183.08	1	.005	14	.332	1	1.74	1
20			min	4.788	12	-810.285	1	-106.219	14	013	1	.01	12	-1.845	3
21		11	max	110.403	1	667.057	1	-4.855	12	.013	1	.142	1	.879	1
22			min	4.788	12	-722.67	3	-143.858	1	0	3	.004	12	911	3
23		12	max	110.403	1	523.829	1	-3.43	12	.013	1	.047	4	.184	1
24			min	4.788	12	-566.407	3	-104.637	1	0	3	003	1	159	3
25		13	max	110.403	1	380.601	1	-2.004	12	.013	1	.021	5	.41	3
26			min	4.788	12	-410.144	3	-65.415	1	0	3	102	1	344	1
27		14	max	110.403	1	237.373	1	579	12	.013	1	001	15	.798	3
28			min	3.827	15	-253.882	3	-26.194	1	0	3	156	1	704	1
29		15	max	110.403	1	94.145	1	13.028	1	.013	1	006	12	1.003	3
30			min	-6.108	5	-97.619	3	-16.569	5	0	3	164	1	897	1
31		16	max	110.403	1	58.644	3	52.249	1	.013	1	004	12	1.026	3
32			min	-18.084	5	-49.083	1	-14.363	5	0	3	125	1	924	1
33		17		110.403	1	214.907	3	91.471	1	.013	1	0	12	.866	3
34			min	-30.061	5	-192.311	1	-12.158	5	0	3	066	4	783	1
35		18		110.403	1	371.169	3	130.692	1	.013	1	.088	1	.524	3
36		10	min	-42.037	5	-335.539	1	-9.952	5	0	3	069	5	475	1
37		19	max	110.403	1	527.432	3	169.914	1	.013	1	.263	1	0	1
38		13	min	-54.013	5	-478.768	1	-7.747	5	0	3	079	5	0	3
39	M14	1	max	63.806	4	503.282	1	-6.727	12	.006	3	.299	1	0	1
40	IVI 14		min	2.036	12	-409.883	3	-174.968	1	01	1	.013	12	0	3
41		2		51.83	4	360.054	1	-5.302	12	.006	3	.013	4	.409	3
42			max	2.036	12		3				1		12		1
		2	min			-291.452		-135.746	1	01		.006		504	
43		3	max	49.846	1	216.826	1	-3.876	12	.006	3	.075	5	.68	3
44		4	min	2.036	12	-173.02	3	-96.525	1	01	1	018	1	84	-
45		4	max	49.846	1	73.598	1	-2.451	12	.006	3	.04	5	.813	3
46		_	min	2.036	12	-54.589	3	-57.303	1	01	1	108	1	-1.01	1
47		5	max	49.846	1	63.842	3	-1.025	12	.006	3	.007	5	.807	3
48			min	2.036	12	-69.63	1	-31.218	4	01	1	152	1	-1.012	1
49		6	max	49.846	1	182.273	3	21.14	1	.006	3	006	12	.664	3
50		_	min	-6.586	5	-212.858	1_	-24.596	5	01	1	15	1	847	1
51		7	max	49.846	1	300.704	3	60.361	1	.006	3	004	12	.382	3
52			min	-18.562	5	-356.087	1_	-22.391	5	01	1	103	1	515	1
53		8	max	49.846	1	419.136	3	99.583	1	.006	3	0	10	0	15
54			min	-30.538	5	-499.315	1_	-20.185	5	01	1	079	4	038	3
55		9	max	49.846	1	537.567	3	138.804	1	.006	3	.13	1	.65	1
56			min	-42.514	5	-642.543	1	-17.98	5	01	1	097	5	596	3
57		10	max	70.182	4	655.998	3	178.026	1	.006	3	.315	1	1.483	1
58			min	2.036	12	-785.771	1	-108.042	14	01	1	.009	12	-1.292	3
59		11	max		4	642.543	1	-4.677	12	.01	1_	.141	4	.65	1
60			min	2.036	12	-537.567	3	-138.804	1	006	3	.003	12	596	3
61		12	max	49.846	1	499.315	1_	-3.251	12	.01	1_	.074	5	0	15
62			min	2.036	12	-419.136	3	-99.583	1	006	3	009	1	038	3
63		13	max	49.846	1	356.087	1	-1.826	12	.01	1	.038	5	.382	3
64			min	2.036	12	-300.704	3	-60.361	1	006	3	103	1	515	1
65		14	max	49.846	1	212.858	1	4	12	.01	1	.006	5	.664	3
66			min	2.036	12	-182.273		-31.909	4	006	3	15	1	847	1
67		15	max	49.846	1	69.63	1	18.082	1	.01	1	005	12	.807	3
68			min	082	15	-63.842	3	-24.744	5	006	3	152	1	-1.012	1
69		16	max	49.846	1	54.589	3	57.303	1	.01	1	003	12	.813	3
70			min	-12.043	5	-73.598	1	-22.538	5	006	3	108	1	-1.01	1
71		17	max	49.846	1	173.02	3	96.525	1	.01	1	0	3	.68	3
72			min	-24.02	5	-216.826	1	-20.333	5	006	3	083	4	84	1
73		18	max	49.846	1	291.452	3	135.746	1	.01	1	.117	1	.409	3
74		10	min	-35.996	5	-360.054	1	-18.127	5	006	3	1	5	504	1
75		19	max		1	409.883	3	174.968	1	.01	1	.299	1	0	1
10		10	IIIax	TU.UTU		TUU.003		177.300		.01		33			

Model Name

Schletter, Inc.HCV

: _ . . . _ .

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC			Torque[k-ft]			LC	z-z Mome	
76			min	-47.972	5	-503.282	1	-15.922	5	006	3	119	5	0	3
77	M15	1	max	84.958	5	571.663	1	-6.699	12	.011	1	.298	1	0	2
78			min	-52.531	1	-218.514	3	-174.94	1	005	3	.013	12	0	12
79		2	max	72.982	5	408.168	1	-5.273	12	.011	1	.176	4	.219	3
80			min	-52.531	1	-156.832	3	-135.718	1	005	3	.006	12	572	1
81		3	max		5	244.674	1	-3.848	12	.011	1	.101	5	.366	3
82			min	-52.531	1	-95.15	3	-96.497	1	005	3	018	1	952	1
83		4	max		5	81.179	1	-2.422	12	.011	1	.056	5	.441	3
84		 	min	-52.531	1	-33.467	3	-57.275	1	005	3	108	1	-1.142	1
85		5		37.054	5	28.215	3	997	12	.011	1	.013		.444	3
86		- 5	max	-52.531		-82.316		-39.976			3	152	5		1
			min		1		1		4	005			-	-1.142	
87		6	max		5	89.897	3	21.168	1	.011	1	006	12	.375	3
88		!	min	-52.531	1	-245.811	1	-33.34	5	005	3	15	1	95	1
89		7	max	13.102	5	151.579	3	60.39	1	.011	1	004	12	.234	3
90			min	-52.531	1	-409.306	1	-31.135	5	005	3	103	1	568	1
91		8	max		5	213.261	3	99.611	1	.011	1	0	10	.021	3
92			min		1	-572.801	1	-28.929	5	005	3	103	4	003	9
93		9	max	-2.325	12	274.944	3	138.833	1	.011	1	.13	1	.768	1
94			min	-52.531	1	-736.295	1	-26.724	5	005	3	132	5	263	3
95		10	max	-2.325	12	336.626	3	178.054	1	.011	1	.315	1	1.723	1
96			min	-52.531	1	-899.79	1	-112.502	14	005	3	.01	12	62	3
97		11	max		5	736.295	1	-4.705	12	.005	3	.176	4	.768	1
98			min	-52.531	1	-274.944	3	-138.833	1	011	1	.003	12	263	3
99		12	max	-2.325	12	572.801	1	-3.28	12	.005	3	.098	5	.021	3
100		12	min	-52.531	1	-213.261	3	-99.611	1	011	1	009	1	003	9
101		13			12	409.306	1	-1.854	12	.005	3	.053	5	.234	3
		13	max												
102		4.4	min		1	-151.579	3	-60.39	1	011	1	103	1	<u>568</u>	1
103		14	max		12	245.811	1	429	12	.005	3	.01	5	.375	3
104		4.5	min	-52.531	1	-89.897	3	-40.687	4	011	1	15	1	95	1
105		15	max	-2.325	12	82.316	1	18.054	1_	.005	3	005	12	.444	3
106			min	-54.878	4	-28.215	3	-33.49	5	011	1	152	1	-1.142	1
107		16	max		12	33.467	3	57.275	1	.005	3	003	12	.441	3
108			min	-66.854	4	-81.179	_1_	-31.285	5	011	1	108	1	-1.142	1
109		17	max	-2.325	12	95.15	3	96.497	1	.005	3	0	3	.366	3
110			min	-78.83	4	-244.674	1	-29.079	5	011	1	109	4	952	1
111		18	max	-2.325	12	156.832	3	135.718	1	.005	3	.117	1	.219	3
112			min	-90.806	4	-408.168	1	-26.874	5	011	1	136	5	572	1
113		19	max		12	218.514	3	174.94	1	.005	3	.298	1	0	2
114			min	-102.782	4	-571.663	1	-24.668	5	011	1	166	5	0	5
115	M16	1	max		5	547.349	1	-6.457	12	.011	1	.265	1	0	1
116				-117.155		-205.287		-170.116		008	3		12	0	3
117		2		71.899	5	383.854	1	-5.032	12	.011	1	.133	4	.204	3
118				-117.155		-143.605		-130.895		008	3	.004	12	543	1
119		3	max		5	220.359	1	-3.606	12	.011	1	.075	5	.335	3
		-3							1				1		1
120		1	min		1	-81.923	3	-91.673		008	3	041	_	896	_
121		4	max		5	56.864	1	-2.181	12	.011	1	.041	5	.395	3
122		<u> </u>	min		_	-20.24	3	-52.452	1	008	3	125	1	-1.0 <u>57</u>	1
123		5	max	35.97	5	41.442	3	755	12	.011	1	.01	5	.382	3
124			min		1	-106.631	1	-29.123	4	008	3	163	1	-1.028	1
125		6	max		5	103.124	3	25.991	1	.011	1	006	12	.298	3
126			min	-117.155	1	-270.125	1	-23.668	5	008	3	156	1	809	1
127		7	max	12.018	5	164.806	3	65.213	1	.011	1	004	12	.142	3
128			min	-117.155	1	-433.62	1	-21.462	5	008	3	103	1	398	1
129		8	max	.135	15	226.488	3	104.434	1	.011	1	0	10	.203	1
130			min	-117.155		-597.115	1	-19.257	5	008	3	071	4	087	3
131		9	max		12	288.17	3	143.656	1	.011	1	.141	1	.995	1
132		<u> </u>		-117.155		-760.61	1	-17.051	5	008	3	09	5	387	3
102			1111111	117.100		7 00.01		17.001	J	.000	<u> </u>	.00	, U	.001	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
133		10	max	-4.901	12	349.853	3	182.877	1	.011	1	.332	_1_	1.978	1
134			min	-117.155	1	-924.105	1	-110.145		005	14	.011	12	759	3
135		11	max	604	15	760.61	1	-4.947	12	.008	3	.141	1	.995	1
136			min	-117.155	1	-288.17	3	-143.656	1	011	1	.004	12	387	3
137		12	max	-4.901	12	597.115	1	-3.521	12	.008	3	.069	4	.203	1
138			min	-117.155	1	-226.488	3	-104.434	1	011	1	004	1	087	3
139		13	max	-4.901	12	433.62	1	-2.096	12	.008	3	.034	5	.142	3
140			min	-117.155	1	-164.806	3	-65.213	1	011	1	103	1	398	1
141		14	max	-4.901	12	270.125	1	67	12	.008	3	.001	5	.298	3
142			min	-117.155	1	-103.124	3	-32.41	4	011	1	156	1	809	1
143		15	max	-4.901	12	106.631	1	13.23	1	.008	3	006	12	.382	3
144			min	-117.155	1	-41.442	3	-24.371	5	011	1	163	1	-1.028	1
145		16	max	-4.901	12	20.24	3	52.452	1	.008	3	004	12	.395	3
146			min	-117.155	1	-56.864	1	-22.165	5	011	1	125	1	-1.057	1
147		17	max	-4.901	12	81.923	3	91.673	1	.008	3	0	12	.335	3
148			min	-117.155	1	-220.359	1	-19.96	5	011	1	09	4	896	1
149		18	max	-4.901	12	143.605	3	130.895	1	.008	3	.089	1	.204	3
150		-10	min	-117.155	1	-383.854	1	-17.754	5	011	1	102	5	543	1
151		19	max	-4.901	12	205.287	3	170.116	1	.008	3	.265	1	0	1
152		13	min	-122.506	4	-547.349	1	-15.548	5	011	1	121	5	0	5
153	M2	1	max	1052.51	1	2.07	4	1.029	1	0	3	0	3	0	1
154	IVIZ		min	-937.484	3	.507	15	-62.957	4	0	4	0	1	0	1
155		2	max	1052.89	1	2.037	4	1.029	1	0	3	0	1	0	15
156			min	-937.2	3	.499	15	-63.286	4	0	4	016	4	0	4
157		3		1053.269	1	2.003	4	1.029	1	0	3	0	1	0	15
158		3	min	-936.915	3	.491	15	-63.616	4	0	4	032	4	001	4
159		4	_	1053.648	1	1.97	4	1.029	1	0	3	0	1	0	15
160		4	min	-936.631	3	.483	15	-63.945	4	0	4	049	4	002	4
161		5		1054.027	1	1.937	4	1.029	1	0	3	.001	1	0	15
162		5	min	-936.346	3	.475	15	-64.275	4	0	4	065	4	002	4
163		6		1054.407	<u> </u>	1.903	4	1.029	1	0	3	.003	1	0	15
164		0	min	-936.062	3	.467	15	-64.604	4	0	4	082	4	003	4
165		7	_	1054.786	1	1.87	4	1.029	1	0	3	.002	1	0	15
166			min	-935.777	3	.46	15	-64.934	4	0	4	098	4	003	4
167		8		1055.165	<u>3</u> 1	1.836	4	1.029	1	0	3	.002	1	0	15
168		0	min	-935.493	3	.452	15	-65.263	4	0	4	115	4	004	4
169		9		1055.544	1	1.803	4	1.029	1	0	3	.002	1	0	15
170		9	min	-935.208	3	.444	15	-65.593	4	0	4	132	4	004	4
171		10		1055.924	1	1.77	4	1.029	1	0	3	.002	1	004	15
172		10	min	-934.924	3	.436	15	-65.922	4	0	4	149	4	004	4
173		11		1056.303	1	1.736	4	1.029	1	0	3	.003	1	004	15
174		- 1 1	min	-934.64	3	.428	15	-66.251	4	0	4	166	4	005	4
175		12		1056.682	1	1.703	4	1.029	1	0	3	.003	1	003	15
176		12		-934.355		.42	15	-66.581	4	0	4	183	4	005	4
177		13		1057.061	1	1.669	4	1.029	1	0	3	.003	1	003	15
178		13		-934.071	3	.412	15	-66.91	4	0	4	2	4	006	4
179		14		1057.441	1	1.636	4	1.029	1	0	3	.003	1	002	15
180		14	min	-933.786	3	.405	15	-67.24	4	0	4	217	4	002	4
181		15		1057.82	<u></u>	1.603	4	1.029	1	0	3	.004	1	002	15
182		13	min		3	.397	15	-67.569	4	0	4	234	4	002	4
183		16		1058.199	<u>ა</u> 1	1.569	4	1.029	1	0	3	.004	_ 4 _	007	15
184		10				.389		-67.899	4		4	251	4	002	4
185		17	min		<u>3</u> 1	1.536	1 <u>5</u>	1.029	1	0	3	.004	_ 4 _	007	15
		17		1058.578			15					269			
186		10		<u>-932.933</u>	3	.381		<u>-68.228</u>	4	0	4		4	007	15
187 188		18		1058.958 -932.648	3	1.502	4 15	1.029 -68.558	4	0	3	.004 286	<u>1</u> 4	002	1 <u>5</u>
		10			1	.373				0	3			008 002	15
189		19	шах	1059.337	1	1.469	4	1.029	_1_	0	<u> </u>	.005	<u>1</u>	002	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-932.364	3	.365	15	-68.887	4	0	4	304	4	008	4
191	<u>M3</u>	1_	max	325.624	2	8.008	4	1.335	4	0	3	0	1_	.008	4
192			min	-455.684	3	1.895	15	.004	12	0	4	022	4	.002	15
193		2	max	325.454	2	7.239	4	1.876	4	0	3	0	1_	.005	4
194			min	-455.811	3	1.714	15	.004	12	0	4	021	4	.001	12
195		3	max	325.283	2	6.469	4	2.416	4	0	3	0	1	.002	2
196			min	-455.939	3	1.533	15	.004	12	0	4	02	4	0	3
197		4	max	325.113	2	5.699	4	2.957	4	0	3	0	1	0	2
198			min	-456.067	3	1.352	15	.004	12	0	4	019	4	001	3
199		5	max	324.942	2	4.929	4	3.497	4	0	3	0	1_	0	15
200			min	-456.195	3	1.171	15	.004	12	0	4	018	4	003	6
201		6	max	324.772	2	4.159	4	4.038	4	0	3	0	1	001	15
202			min	-456.322	3	.99	15	.004	12	0	4	016	4	005	6
203		7	max	324.602	2	3.389	4	4.579	4	0	3	0	1	001	15
204			min	-456.45	3	.809	15	.004	12	0	4	014	4	006	6
205		8	max	324.431	2	2.619	4	5.119	4	0	3	0	1	002	15
206			min	-456.578	3	.628	15	.004	12	0	4	012	4	007	6
207		9	max	324.261	2	1.849	4	5.66	4	0	3	0	1	002	15
208			min	-456.706	3	.447	15	.004	12	0	4	01	5	008	6
209		10	max	324.091	2	1.079	4	6.2	4	0	3	0	1	002	15
210			min	-456.833	3	.266	15	.004	12	0	4	007	5	009	6
211		11	max	323.92	2	.34	2	6.741	4	0	3	0	1	002	15
212			min	-456.961	3	002	3	.004	12	0	4	005	5	009	6
213		12	max	323.75	2	096	15	7.281	4	0	3	0	1	002	15
214			min	-457.089	3	463	6	.004	12	0	4	002	5	009	6
215		13	max	323.58	2	277	15	7.822	4	0	3	.001	4	002	15
216		1	min	-457.217	3	-1.233	6	.004	12	0	4	0	12	009	6
217		14	max	323.409	2	458	15	8.362	4	0	3	.005	4	002	15
218			min	-457.344	3	-2.003	6	.004	12	0	4	0	12	008	6
219		15	max	323.239	2	639	15	8.903	4	0	3	.008	4	002	15
220		10	min	-457.472	3	-2.772	6	.004	12	0	4	0	12	007	6
221		16	max	323.069	2	82	15	9.444	4	0	3	.012	4	001	15
222			min	-457.6	3	-3.542	6	.004	12	0	4	0	12	006	6
223		17	max	322.898	2	-1.001	15	9.984	4	0	3	.016	4	0	15
224		1 ''	min	-457.728	3	-4.312	6	.004	12	0	4	0	12	004	6
225		18	max	322.728	2	-1.182	15	10.525	4	0	3	.021	4	0	15
226		10	min	-457.856	3	-5.082	6	.004	12	0	4	0	12	002	6
227		19	max	322.558	2	-1.363	15	11.065	4	0	3	.025	4	0	1
228		13	min	-457.983	3	-5.852	6	.004	12	0	4	0	12	0	1
229	M4	1		1191.889	1	0	1	448	12	0	1	.016	4	0	1
230	IVIT	<u> </u>		-182.169	3	0	1	-268.831	4	0	1	0	12	0	1
231		2		1192.06	1	0	1	448	12	0	1	0	12	0	1
232				-182.041	3	0	1	-268.979		0	1	015	4	0	1
233		3		1192.23	1	0	1	448	12	0	1	0	12	0	1
234			min			0	1	-269.127		0	1	046	4	0	1
235		4		1192.4	1	0	1	448	12	0	1	0	12	0	1
236				-181.785	3	0	1	-269.274		0	1	077	4	0	1
237		5		1192.571	1	0	1	448	12	0	1	0	12	0	1
238		-	min	-181.658	3	0	1	-269.422		0	1	108	4	0	1
239		6		1192.741	1	0	1	448	12	0	1	0	12	0	1
240		U	min		3	0	1	-269.57	4	0	1	139	4	0	1
241		7		1192.911	1		1	448	12		1		12	_	1
241						0	1	-269.717		0	1	17	4	0	1
		0		-181.402	<u>3</u> 1		1				_ •	17	12	0	
243		8		1193.082		0	1	448	12	0	<u>1</u>			_	1
244		0		-181.274	3	0	1	-269.865		0		201	12	0	_
245		9		1193.252	1	0		448	12	0	1	0		0	1
246			min	-181.147	3	0	1	-270.013	4	0	1	232	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1193.423	_1_	0	1	448	12	0	1	0	12	0	1
248			min	-181.019	3	0	1	-270.16	4	0	1	263	4	0	1
249		11	max	1193.593	_1_	0	1	448	12	0	1	0	12	0	1
250			min	-180.891	3	0	1	-270.308	4	0	1	294	4	0	1
251		12	max	1193.763	1	0	1	448	12	0	1	0	12	0	1
252			min	-180.763	3	0	1	-270.455	4	0	1	325	4	0	1
253		13	max	1193.934	1	0	1	448	12	0	1	0	12	0	1
254			min	-180.636	3	0	1	-270.603	4	0	1	356	4	0	1
255		14	max	1194.104	1	0	1	448	12	0	1	0	12	0	1
256			min	-180.508	3	0	1	-270.751	4	0	1	387	4	0	1
257		15		1194.274	1	0	1	448	12	0	1	0	12	0	1
258		1.0	min	-180.38	3	0	1	-270.898	4	0	1	418	4	0	1
259		16		1194.445	1	0	1	448	12	0	1	0	12	0	1
260		10	min		3	0	1	-271.046	4	0	1	449	4	0	1
261		17		1194.615		0	1	448	12	0	1	0	12	0	1
262		11/	min		3	0	1	-271.194	4	0	1	48	4	0	1
263		18		1194.785	1	0	1	448	12	0	1	0	12	0	1
264		10	min	-179.997	3	0	1	-271.341	4	0	1	511	4	0	1
		10			_		1	448	12		1		12		1
265		19		1194.956	1_	0				0		0		0	
266	MC	4	min	-179.869	3	0	1	-271.489	4	0	1	543	4_	0	1
267	M6	1_		3397.957	1_	2.339	2	0	1	0	1	0	4_	0	1
268			min	-3082.058	3_	.261	12	-63.573	4	0	4	0	1_	0	1
269		2		3398.336	1_	2.313	2	0	1	0	1	0	1_	0	12
270			min	-3081.774	3_	.248	12	-63.902	4	0	4	016	4	0	2
271		3		3398.715	1_	2.287	2	0	1	0	1	0	_1_	0	12
272			min	-3081.489	3_	.235	12	-64.232	4	0	4	033	4	001	2
273		4		3399.095	_1_	2.261	2	0	1	0	1	0	_1_	0	12
274			min	-3081.205	3_	.222	12	-64.561	4	0	4	049	4	002	2
275		5		3399.474	_1_	2.235	2	0	1	0	1	0	1_	0	12
276			min	-3080.921	3	.209	12	-64.891	4	0	4	066	4	002	2
277		6		3399.853	_1_	2.209	2	0	1	0	1	0	_1_	0	12
278			min	-3080.636	3_	.196	12	-65.22	4	0	4	082	4_	003	2
279		7		3400.232	_1_	2.183	2	0	1	0	1	0	_1_	0	12
280			min	-3080.352	3	.183	12	-65.55	4	0	4	099	4	003	2
281		8		3400.612	_1_	2.157	2	0	1	0	1	0	_1_	0	12
282			min	-3080.067	3	.165	3	-65.879	4	0	4	116	4	004	2
283		9	max	3400.991	_1_	2.131	2	0	1	0	1	0	_1_	0	12
284			min	-3079.783	3	.146	3	-66.209	4	0	4	133	4	005	2
285		10	max	3401.37	_1_	2.105	2	0	1	0	1	0	1	0	12
286			min	-3079.498	3	.126	3	-66.538	4	0	4	15	4	005	2
287		11	max	3401.749	_1_	2.079	2	0	1	0	1	0	1	0	12
288			min	-3079.214	3	.107	3	-66.868	4	0	4	167	4	006	2
289		12		3402.129	1	2.053	2	0	1	0	1	0	1	0	12
290			min	-3078.929	3	.087	3	-67.197	4	0	4	184	4	006	2
291		13	max	3402.508	1	2.027	2	0	1	0	1	0	1	0	12
292			min	-3078.645	3	.068	3	-67.526	4	0	4	202	4	007	2
293		14	max	3402.887	1	2.001	2	0	1	0	1	0	1	0	3
294			min	-3078.361	3	.048	3	-67.856	4	0	4	219	4	007	2
295		15	max	3403.266	1	1.975	2	0	1	0	1	0	1	0	3
296			min		3	.029	3	-68.185	4	0	4	236	4	008	2
297		16		3403.646	1	1.949	2	0	1	0	1	0	1	0	3
298			min		3	.009	3	-68.515	4	0	4	254	4	008	2
299		17		3404.025	1	1.923	2	0	1	0	1	0	1	0	3
300			min		3	01	3	-68.844	4	0	4	271	4	009	2
301		18		3404.404	1	1.897	2	0	1	0	1	0	1	0	3
302		· ·	min		3	03	3	-69.174	4	0	4	289	4	009	2
303		19		3404.783	1	1.871	2	0	1	0	1	0	1	0	3
				, =											

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-3076.938	3	049	3	-69.503	4	0	4	307	4	01	2
305	M7	1	max	1366.332	2	8.022	6	1.196	4	0	1	0	1	.01	2
306			min	-1430.375	3	1.882	15	0	1	0	4	022	4	0	3
307		2	max	1366.162	2	7.252	6	1.737	4	0	1	0	1	.007	2
308			min	-1430.503	3	1.701	15	0	1	0	4	021	4	001	3
309		3	max	1365.992	2	6.482	6	2.277	4	0	1	0	1	.005	2
310			min	-1430.631	3	1.52	15	0	1	0	4	02	4	003	3
311		4	max	1365.821	2	5.712	6	2.818	4	0	1	0	1	.002	2
312			min	-1430.758	3	1.339	15	0	1	0	4	019	4	004	3
313		5	max		2	4.942	6	3.358	4	0	1	0	1	0	2
314			min	-1430.886	3	1.158	15	0	1	0	4	018	4	005	3
315		6	max	1365.481	2	4.172	6	3.899	4	0	1	0	1	001	15
316			min	-1431.014	3	.977	15	0	1	0	4	016	4	006	3
317		7	max	1365.31	2	3.402	6	4.439	4	0	1	0	1	001	15
318			min	-1431.142	3	.796	15	0	1	0	4	015	4	006	3
319		8	max	1365.14	2	2.632	6	4.98	4	0	1	0	1	002	15
320			min	-1431.27	3	.615	15	0	1	0	4	013	4	007	4
321		9	max	1364.97	2	1.883	2	5.52	4	0	1	0	1	002	15
322			min	-1431.397	3	.388	12	0	1	0	4	011	4	008	4
323		10	max	1364.799	2	1.283	2	6.061	4	0	1	0	1	002	15
324			min	-1431.525	3	.077	3	0	1	0	4	008	4	009	4
325		11	max	1364.629	2	.683	2	6.602	4	0	1	0	1	002	15
326			min	-1431.653	3	373	3	0	1	0	4	005	4	009	4
327		12	max	1364.459	2	.083	2	7.142	4	0	1	0	1	002	15
328			min	-1431.781	3	823	3	0	1	0	4	003	4	009	4
329		13	max	1364.288	2	29	15	7.683	4	0	1	0	4	002	15
330			min	-1431.908	3	-1.273	3	0	1	0	4	0	1	009	4
331		14	max	1364.118	2	471	15	8.223	4	0	1	.004	4	002	15
332			min	-1432.036	3	-1.988	4	0	1	0	4	0	1	008	4
333		15	max	1363.948	2	652	15	8.764	4	0	1	.007	4	002	15
334			min	-1432.164	3	-2.758	4	0	1	0	4	0	1	007	4
335		16	max	1363.777	2	833	15	9.304	4	0	1	.011	4	001	15
336			min	-1432.292	3	-3.528	4	0	1	0	4	0	1	006	4
337		17		1363.607	2	-1.014	15	9.845	4	0	1	.015	4	001	15
338			min	-1432.419	3	-4.298	4	0	1	0	4	0	1	004	4
339		18	max	1363.437	2	-1.195	15	10.385	4	0	1	.02	4	0	15
340			min	-1432.547	3	-5.068	4	0	1	0	4	0	1	002	4
341		19	max	1363.266	2	-1.376	15	10.926	4	0	1	.024	4	0	1
342			min	-1432.675	3	-5.838	4	0	1	0	4	0	1	0	1
343	M8	1	max	3349.066	1	0	1	0	1	0	1	.015	4	0	1
344			min	-660.314	3	0	1	-261.502	4	0	1	0	1	0	1
345		2		3349.236	1	0	1	0	1	0	1	0	1	0	1
346				-660.187	3	0	1	-261.649	4	0	1	015	4	0	1
347		3		3349.407	1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-261.797	4	0	1	045	4	0	1
349		4	max	3349.577	1	0	1	0	1	0	1	0	1	0	1
350				-659.931	3	0	1	-261.945	4	0	1	075	4	0	1
351		5		3349.747	1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-262.092	4	0	1	105	4	0	1
353		6		3349.918	1	0	1	0	1	0	1	0	1	0	1
354				-659.675	3	0	1	-262.24	4	0	1	135	4	0	1
355		7		3350.088	1	0	1	0	1	0	1	0	1	0	1
356				-659.548		0	1	-262.388		0	1	165	4	0	1
357		8		3350.258	1	0	1	0	1	0	1	0	1	0	1
358		Ĭ	min		3	0	1	-262.535	-	0	1	196	4	0	1
359		9		3350.429	1	0	1	0	1	0	1	0	1	0	1
360				-659.292	3	0	1	-262.683		0	1	226	4	0	1
										_					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		11 1	LC		
361		10		3350.599	1	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-659.164	3	0	1	-262.831	4_	0	1_	256	4	0	1
363		11	max		1	0	1	0	1_1	0	<u>1</u> 1	0	1_4	0	1
364		12		-659.037	<u>3</u>	0	1	-262.978	<u>4</u> 1	0	1	286 0	1	0	1
365 366		12	max	3350.94 -658.909	3	0	1	0 -263.126	4	0	1	316	4	0	1
		12	min				1			_	1		1	0	1
367 368		13	max		<u>1</u> 3	0	1	0 -263.273	<u>1</u> 4	0	1	347	4	0	1
		14	min	-658.781 3351.281	<u>ა</u> 1	0	1		_ 4 _	0	1		1	0	1
369		14			3		1	0	4	-	1	277		0	1
370 371		15	min	-658.653	<u>ာ</u> 1	0	1	<u>-263.421</u>	<u>4</u> 1	0	1	377 0	1	0	1
372		10	min	3351.451 -658.526	3	0	1	-263.569	4	0	1	407	4	0	1
373		16		3351.621	1	0	1	0	1	0	+	0	1	0	1
374		10		-658.398	3	0	1	-263.716	4	0	1	437	4	0	1
375		17		3351.792	<u> </u>	0	1	0	1	0	1	0	1	0	1
376		17	min	-658.27	3	0	1	-263.864	4	0	1	468	4	0	1
377		18		3351.962	<u> </u>	0	1	0	1	0	1	0	1	0	1
378		10	min	-658.142	3	0	1	-264.012	4	0	1	498	4	0	1
379		19		3352.132	<u> </u>	0	1	0	1	0	1	0	1	0	1
380		19	min	-658.015	3	0	1	-264.159	4	0	1	528	4	0	1
381	M10	1	max	1052.51	1	1.983	6	041	12	0	1	0	1	0	1
382	IVITO		min	-937.484	3	.448	15	-63.503	4	0	5	0	3	0	1
383		2	max		1	1.949	6	041	12	0	1	0	10	0	15
384			min	-937.2	3	.44	15	-63.832	4	0	5	016	4	0	6
385		3		1053.269	1	1.916	6	041	12	0	1	0	12	0	15
386				-936.915	3	.432	15	-64.162	4	0	5	033	4	0	6
387		4		1053.648	1	1.882	6	041	12	0	1	0	12	0	15
388		_	min	-936.631	3	.424	15	-64.491	4	0	5	049	4	001	6
389		5		1054.027	1	1.849	6	041	12	0	1	0	12	0	15
390			min	-936.346	3	.416	15	-64.82	4	0	5	066	4	002	6
391		6		1054.407	1	1.816	6	041	12	0	1	0	12	0	15
392			min	-936.062	3	.409	15	-65.15	4	0	5	082	4	002	6
393		7		1054.786	1	1.782	6	041	12	0	1	0	12	0	15
394				-935.777	3	.401	15	-65.479	4	0	5	099	4	003	6
395		8		1055.165	1	1.749	6	041	12	0	1	0	12	0	15
396			min	-935.493	3	.393	15	-65.809	4	0	5	116	4	003	6
397		9		1055.544	1	1.715	6	041	12	0	1	0	12	0	15
398			min	-935.208	3	.385	15	-66.138	4	0	5	133	4	004	6
399		10		1055.924	1	1.682	6	041	12	0	1	0	12	0	15
400				-934.924	3	.377	15	-66.468	4	0	5	15	4	004	6
401		11		1056.303	1	1.649	6	041	12	0	1	0	12	001	15
402			min	-934.64	3	.369	15	-66.797	4	0	5	167	4	005	6
403		12		1056.682	1	1.615	6	041	12	0	1	0	12	001	15
404				-934.355	3	.362	15	-67.127	4	0	5	184	4	005	6
405		13		1057.061	1	1.582	6	041	12	0	1	0	12	001	15
406				-934.071	3	.354	15	-67.456	4	0	5	201	4	005	6
407		14	max	1057.441	1	1.548	6	041	12	0	1	0	12	001	15
408				-933.786	3	.346	15	-67.786	4	0	5	219	4	006	6
409		15		1057.82	1	1.515	6	041	12	0	1	0	12	001	15
410				-933.502	3	.338	15	-68.115	4	0	5	236	4	006	6
411		16		1058.199	1	1.482	6	041	12	0	1	0	12	001	15
412				-933.217	3	.33	15	-68.445	4	0	5	254	4	007	6
413		17		1058.578	1	1.448	6	041	12	0	1	0	12	002	15
414				-932.933	3	.322	15	-68.774	4	0	5	271	4	007	6
415		18		1058.958	1	1.415	6	041	12	0	1	0	12	002	15
416				-932.648	3	.314	15	-69.103	4	0	5	289	4	007	6
417		19		1059.337	1	1.381	6	041	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

.
: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-932.364	3	.307	15	-69.433	4	0	5	307	4	008	6
419	M11	1	max	325.624	2	7.955	6	1.293	4	0	1_	0	12	.008	6
420			min	-455.684	3	1.859	15	081	1	0	4	022	4	.002	15
421		2	max	325.454	2	7.185	6	1.833	4	0	1	0	12	.005	2
422			min	-455.811	3	1.678	15	081	1	0	4	021	4	0	15
423		3	max	325.283	2	6.415	6	2.374	4	0	1	0	12	.002	2
424			min	-455.939	3	1.497	15	081	1	0	4	02	4	0	3
425		4	max	325.113	2	5.645	6	2.914	4	0	1	0	12	0	2
426			min	-456.067	3	1.316	15	081	1	0	4	019	4	001	3
427		5	max	324.942	2	4.875	6	3.455	4	0	1	0	12	0	15
428			min	-456.195	3	1.135	15	081	1	0	4	018	4	003	4
429		6	max	324.772	2	4.105	6	3.995	4	0	1	0	12	001	15
430			min	-456.322	3	.954	15	081	1	0	4	016	4	005	4
431		7	max	324.602	2	3.335	6	4.536	4	0	1	0	12	002	15
432			min	-456.45	3	.773	15	081	1	0	4	014	4	006	4
433		8	max	324.431	2	2.565	6	5.076	4	0	1	0	12	002	15
434			min	-456.578	3	.592	15	081	1	0	4	012	4	008	4
435		9	max	324.261	2	1.795	6	5.617	4	0	1	0	12	002	15
436			min	-456.706	3	.411	15	081	1	0	4	01	4	009	4
437		10	max	324.091	2	1.025	6	6.157	4	0	1	0	12	002	15
438			min	-456.833	3	.23	15	081	1	0	4	008	4	009	4
439		11	max	323.92	2	.34	2	6.698	4	0	1	0	12	002	15
440			min	-456.961	3	002	3	081	1	0	4	005	4	01	4
441		12	max	323.75	2	132	15	7.239	4	0	1	0	12	002	15
442			min	-457.089	3	516	4	081	1	0	4	002	4	009	4
443		13	max	323.58	2	313	15	7.779	4	0	1	.001	5	002	15
444			min	-457.217	3	-1.286	4	081	1	0	4	0	1	009	4
445		14	max	323.409	2	494	15	8.32	4	0	1	.005	5	002	15
446			min	-457.344	3	-2.056	4	081	1	0	4	0	1	008	4
447		15	max	323.239	2	675	15	8.86	4	0	1	.008	5	002	15
448		'	min	-457.472	3	-2.826	4	081	1	0	4	0	1	007	4
449		16	max	323.069	2	856	15	9.401	4	0	1	.012	4	001	15
450		1.0	min	-457.6	3	-3.596	4	081	1	0	4	0	1	006	4
451		17	max	322.898	2	-1.037	15	9.941	4	0	1	.016	4	001	15
452			min	-457.728	3	-4.366	4	081	1	0	4	0	1	004	4
453		18	max	322.728	2	-1.218	15	10.482	4	0	1	.02	4	0	15
454			min	-457.856	3	-5.136	4	081	1	0	4	0	1	002	4
455		19	max	322.558	2	-1.399	15	11.022	4	0	1	.025	4	0	1
456			min	-457.983	3	-5.906	4	081	1	0	4	0	1	0	1
457	M12	1		1191.889	1	0	1	10.774	1	0	1	.015	4	0	1
458	14112			-182.169		0	1	-263.097		0	1	0	1	0	1
459		2		1192.06	1	0	1	10.774	1	0	1	0	1	0	1
460		_	min		3	0	1	-263.245		0	1	015	4	0	1
461		3		1192.23	1	0	1	10.774	1	0	1	.002	1	0	1
462				-181.913	3	0	1	-263.392	4	0	1	045	4	0	1
463		4		1192.4	<u> </u>	0	1	10.774	1	0	1	.003	1	0	1
464		7		-181.785	3	0	1	-263.54	4	0	1	075	4	0	1
465		5		1192.571	1	0	1	10.774	1	0	1	.004	1	0	1
466				-181.658	3	0	1	-263.688		0	1	106	4	0	1
467		6		1192.741	<u> </u>	0	1	10.774	1	0	1	.006	1	0	1
468		U		-181.53	3	0	1	-263.835		0	1	136	4	0	1
469		7		1192.911	<u> </u>	0	1	10.774	1	0	1	.007	1	0	1
470			min		3	0	1	-263.983		0	1	166	4	0	1
471		8		1193.082	<u>ာ</u> 1	0	1	10.774	1	0	1	.008	1	0	1
471		0		-181.274	3	0	1	-264.131	4	0	1	196	4	0	1
473		9		1193.252	<u> </u>	0	1	10.774	1	0	1	.009	1	0	1
		9					1		_				_		1
474			THILL	-181.147	3	0		-264.278	4	0	1	227	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1193.423	_1_	0	1	10.774	1	0	_1_	.011	_1_	0	1
476			min	-181.019	3	0	1	-264.426	4	0	_1_	257	4	0	1
477		11	max	1193.593	_1_	0	1	10.774	1	0	_1_	.012	_1_	0	1
478			min		3	0	1	-264.574	4	0	1	287	4	0	1
479		12	max	1193.763	_1_	0	1	10.774	1	0	_1_	.013	_1_	0	1
480			min	-180.763	3	0	1	-264.721	4	0	1_	318	4	0	1
481		13	max	1193.934	_1_	0	1	10.774	1	0	<u>1</u>	.014	<u>1</u>	0	1
482			min	-180.636	3	0	1	-264.869	4	0	1	348	4	0	1
483		14	max	1194.104	_1_	0	1	10.774	1	0	_1_	.016	_1_	0	1
484			min	-180.508	3	0	1	-265.016	4	0	1	379	4	0	1
485		15	max	1194.274	1_	0	1	10.774	1	0	1	.017	1	0	1
486			min	-180.38	3	0	1	-265.164	4	0	1	409	4	0	1
487		16	max	1194.445	1_	0	1	10.774	1	0	1	.018	1	0	1
488			min	-180.252	3	0	1	-265.312	4	0	1	44	4	0	1
489		17	max	1194.615	1	0	1	10.774	1	0	1	.019	1	0	1
490			min	-180.124	3	0	1	-265.459	4	0	1	47	4	0	1
491		18	max	1194.785	1	0	1	10.774	1	0	1	.02	1	0	1
492			min	-179.997	3	0	1	-265.607	4	0	1	501	4	0	1
493		19	max	1194.956	1	0	1	10.774	1	0	1	.022	1	0	1
494			min	-179.869	3	0	1	-265.755	4	0	1	531	4	0	1
495	M1	1	max	I I	1	527.417	3	53.993	5	0	1	.263	1	0	3
496			min	-7.747	5	-477.413	1	-110.272	1	0	3	079	5	013	1
497		2	max	170.408	1	526.407	3	55.234	5	0	1	.205	1	.24	1
498		_	min	-7.518	5	-478.759	1	-110.272	1	0	3	05	5	278	3
499		3	max	270.972	3	529.086	1	-3.271	15	0	3	.147	1	.481	1
500		T .	min	-168.14	2	-376.383	3	-109.505	1	0	1	022	5	544	3
501		4	max	271.34	3	527.74	1	-2.435	15	0	3	.089	1	.202	1
502			min	-167.65	2	-377.393	3	-109.505	1	0	1	024	5	345	3
503		5	max	271.707	3	526.394	1	-1.6	15	0	3	.031	1	003	15
504			min	-167.16	2	-378.402	3	-109.505	1	0	1	026	5	146	3
505		6	max	272.075	3	525.048	1	764	15	0	3	001	12	.054	3
506			min	-166.67	2	-379.412	3	-109.505	1	0	1	032	4	354	1
507		7	max	272.442	3	523.702	1	.072	15	0	3	004	12	.254	3
508			min	-166.18	2	-380.421	3	-109.505	1	0	1	084	1	631	1
509		8	max	272.81	3	522.356	1	1.208	5	0	3	004	12	.455	3
510		-	min	-165.69	2	-381.431	3	-109.505	1	0	1	142	1	907	1
511		9	max	283.327	3	34.91	2	50.345	5	0	9	.083	1	.533	3
512		1 9	min	-96.386	2	.406	15	-159.38	1	0	3	13	5	-1.033	1
513		10	max		3	33.564	2	51.587	5		9	0	12	.518	3
514		10	min	-95.896	2		5	-159.38	1	0	3	104	4	-1.043	1
		11		284.062		22 219		52.828		_		004	•		
515		11			3	32.218	2		5	0	9		<u>12</u>	.504	3
516		12	min	-95.406	2	-1.674 245.484	3	-159.38	5	0	3	093 .14	4	-1.052	1
517		12	max		3			145.058		0	1		<u>1</u> 5	.438	3
518		10	min		5	-559.156	1	-106.911		0	3	194		928	
519		13			3_	244.474	3	146.299	5	0	1	.084	1	.309	3
520		4.4	min		5	-560.502	1	-106.911		0	3	117	5	633	1
521		14	max		_3_	243.464	3	147.54	5	0	1	.027	1	.18	3
522		4.5	min	-58.143	5	-561.848	1	-106.911	1	0	3	04	5_	337	1
523		15		295.635	3_	242.455	3	148.782	5	0	1_	.038	5	.052	3
524		4.0	min	-57.915	5	-563.194	1_	-106.911	1	0	3	029	<u>1</u>	04	1
525		16	max		3_	241.445	3	150.023		0	1	.117	5	.257	1
526			min	-57.686	_5_	-564.54	1	-106.911		0	3	085	<u>1</u>	076	3
527		17	max		3_	240.436	3	151.265	5	0	1	.197	<u>5</u>	.556	1
528			min		5	-565.886	1	-106.911		0	3	142	1_	203	3
529		18	max		5	549.971	1	-4.901	12	0	5	.173	_5_	.279	1
530				-170.603	1	-204.316	3	-123.832		0	1_	203	1	1	3
531		19	max	15.548	5	548.625	1	-4.901	12	0	5	.121	5	.008	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

E22	Member	Sec	min	Axial[lb]						Torque[k-ft]		y-y Mome	LC 1		LC 1
532	N/E	4		-170.113	1	-205.326	3	-122.591	4	0	1			011	
533	<u>M5</u>	1_	max	366.151	1_	1757.808	3	95.218	5_	0	1_	0	1	.025	1
534			min	12.562	12	-1612.422	1_	0	1_	0	4	179	4	0	3
535		2	max	366.641	_1_	1756.798	3_	96.459	5	0	1	0	1	.876	1
536			min	12.807	12	-1613.768	1_	0	_1_	0	4_	129	4	928	3
537		3	max	872.047	3_	1627.177	_1_	39.76	_4_	0	_4_	0	1	1.689	1
538			min	-616.978	2	-1217.22	3	0	1_	0	1_	079	4	-1.819	3
539		4	max	872.415	3_	1625.83	_1_	41.002	4	0	4	0	1	.831	1
540			min	-616.488	2	-1218.23	3	0	1	0	1	058	4	-1.176	3
541		5	max	872.782	3	1624.484	1	42.243	4	0	4	0	1	.009	9
542			min	-615.999	2	-1219.239	3	0	1	0	1	036	4	533	3
543		6	max	873.15	3	1623.138	1	43.485	4	0	4	0	1	.11	3
544			min	-615.509	2	-1220.249	3	0	1	0	1	013	5	883	1
545		7	max		3	1621.792	1	44.726	4	0	4	.01	4	.755	3
546			min	-615.019	2	-1221.259	3	0	1	0	1	0	1	-1.74	1
547		8	max	873.884	3	1620.446	1	45.967	4	0	4	.034	4	1.399	3
		0		-614.529	2	-1222.268	3	0	1	0	1	_	1	-2.595	1
548			min						_		•	0			
549		9	max	892.441	3_	115.629	2	161.685	4_	0	1	0	1	1.613	3
550			min	-472.562	2	.407	15	0	1_	0	1_	18	4	-2.935	1
551		10	max	892.808	3_	114.283	2	162.926	_4_	0	_1_	0	1_	1.56	3
552			min	-472.072	2	.001	15	0	_1_	0	1_	094	5	-2.968	1
553		11	max	893.175	3_	112.937	2	164.168	4_	0	<u>1</u>	0	1_	1.509	3
554			min	-471.582	2	-1.497	6	0	1_	0	1	01	5	-3	1
555		12	max	911.825	3	782.703	3	204.184	4	0	1	0	1	1.323	3
556			min	-329.629	2	-1744.624	1	0	1	0	4	279	4	-2.673	1
557		13	max	912.193	3	781.693	3	205.425	4	0	1	0	1	.911	3
558			min	-329.139	2	-1745.97	1	0	1	0	4	17	4	-1.752	1
559		14	max	912.56	3	780.684	3	206.667	4	0	1	0	1	.498	3
560		17		-328.649	2	-1747.316	1	0	1	0	4	062	4	83	1
561		15	max	912.927	3	779.674	3	207.908	4	0	1	.048	4	.146	2
562		13		-328.159	2	-1748.662	1	0	1	0	4	0	1	004	13
		16							-	_					
563		16	max	913.295	3_	778.665	3	209.15	4_	0	1	.158	4	1.015	1
564		4-7	min	-327.669	2	-1750.008	1_	0	_1_	0	4_	0	1_	324	3
565		17		913.662	3	777.655	3	210.391	4	0	_1_	.268	4	1.939	1
566			min	-327.179	2	-1751.354	1_	0	1_	0	4	0	1	735	3
567		18	max	-12.989	12	1857.169	_1_	0	_1_	0	4_	.277	4	1.002	1
568			min	-366.251	_1_	-698.937	3	-35.971	5	0	1_	0	1	384	3
569		19	max	-12.744	12	1855.823	1_	0	_1_	0	4	.26	4	.023	1
570			min	-365.761	1	-699.947	3	-34.729	5	0	1	0	1	015	3
571	M9	1	max	169.918	1	527.417	3	110.272	1	0	3	011	12	0	3
572			min	6.549	12	-477.413	1	4.788	12	0	4	263	1	013	1
573		2	max		1	526.407	3	110.272	1	0	3	009	12	.24	1
574			min	6.794	12	-478.759	1	4.788	12	0	4	205	1	278	3
575		3		270.972	3	529.086	1	109.505	1	0	1	006	12	.481	1
576			min	-168.14	2	-376.383	3	4.721	15	0	3	147	1	544	3
577		4	max	271.34	3	527.74	1	109.505	1	0	1	004	12	.202	1
578		-		-167.65		-377.393	3	4.745	12	0	3	089	1	345	3
			min		2										
579		5		271.707	3	526.394	1	109.505	1	0	1	001	12	003	15
580				-167.16	2	-378.402	3	4.745	12	0	3	036	4	146	3
581		6	max		3_	525.048	1_	109.505	1_	0	1_	.026	1_	.054	3
582				-166.67	2	-379.412	3	4.745	12	0	3	024	5	354	1
583		7	max		3	523.702	_1_	109.505	<u>1</u>	0	_1_	.084	1	.254	3
584			min	-166.18	2	-380.421	3	4.745	12	0	3	017	5	631	1
585		8	max		3	522.356	1	109.505	1	0	1	.142	1	.455	3
586			min	-165.69	2	-381.431	3	4.745	12	0	3	011	5	907	1
587		9	max		3	34.91	2	159.38	1	0	3	004	12	.533	3
588			min	-96.386	2	.412	15	6.779	12	0	9	158	4	-1.033	1
										_					

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	283.694	3	33.564	2	159.38	1	0	3	.001	1	.518	3
590			min	-95.896	2	.006	15	6.779	12	0	9	103	4	-1.043	1
591		11	max	284.062	3	32.218	2	159.38	1	0	3	.085	1	.504	3
592			min	-95.406	2	-1.628	6	6.779	12	0	9	066	5	-1.052	1
593		12	max	294.532	3	245.484	3	181.718	4	0	3	006	12	.438	3
594			min	-56.866	10	-559.156	1	4.456	12	0	1	242	4	928	1
595		13	max	294.9	3	244.474	3	182.96	4	0	3	004	12	.309	3
596			min	-56.458	10	-560.502	1	4.456	12	0	1	146	4	633	1
597		14	max	295.267	3	243.464	3	184.201	4	0	3	001	12	.18	3
598			min	-56.049	10	-561.848	1	4.456	12	0	1	049	4	337	1
599		15	max	295.635	3	242.455	3	185.443	4	0	3	.049	4	.052	3
600			min	-55.641	10	-563.194	1	4.456	12	0	1	.001	12	04	1
601		16	max	296.002	3	241.445	3	186.684	4	0	3	.147	4	.257	1
602			min	-55.233	10	-564.54	1	4.456	12	0	1	.004	12	076	3
603		17	max	296.37	3	240.436	3	187.925	4	0	3	.246	4	.556	1
604			min	-54.824	10	-565.886	1	4.456	12	0	1	.006	12	203	3
605		18	max	-6.702	12	549.971	1	117.281	1	0	1	.241	4	.279	1
606			min	-170.603	1	-204.316	3	-85.252	5	0	3	.008	12	1	3
607		19	max	-6.457	12	548.625	1	117.281	1	0	1	.265	1	.008	3
608			min	-170.113	1	-205.326	3	-84.011	5	0	3	.011	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rota	ate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.104	1	.005	3 8.29	9e-3	1) NC	1	NC	1
2			min	601	4	012	3	002	2 -9.94	46e-4	3	NC	1	NC	1
3		2	max	0	1	.276	3	.045	1 9.58	3e-3	1	NC	5	NC	2
4			min	601	4	137	1	02	5 -1.02	27e-3	3	873.478	3	5820.473	1
5		3	max	0	1	.51	3	.109	1 1.08	88e-2	1	NC	5	NC	3
6			min	601	4	328	1	023	5 -1.0	6e-3	3	482.732	3	2366.068	1
7		4	max	0	1	.652	3	.164	1 1.21	7e-2	1	NC	5	NC	3
8			min	601	4	436	1	016	5 -1.09	92e-3	3	379.716	3	1560.321	1
9		5	max	0	1	.684	3	.192	1 1.34	6e-2	1	NC	5	NC	3
10			min	601	4	445	1	003	5 -1.12	25e-3	3	361.995	3	1325.627	1
11		6	max	0	1	.61	3	.186	1 1.47	'5e-2	1	NC	5	NC	3
12			min	601	4	359	1	.008	15 -1.15	57e-3	3	405.178	3	1369.4	1
13		7	max	0	1	.451	3	.147	1 1.60	5e-2	1	NC	5	NC	3
14			min	601	4	199	1	.01	10 -1.18	39e-3	3	544.018	3	1738.62	1
15		8	max	0	1	.25	3	.087	1 1.73	84e-2	1	NC	4	NC	3
16			min	601	4	011	9	.003	10 -1.22	22e-3	3	962.584	3	2983.755	1
17		9	max	0	1	.172	1	.027	4 1.86	3e-2	1	NC	4	NC	1
18			min	601	4	.005	15	003	10 -1.25	54e-3	3	3181.716	3	9442.513	4
19		10	max	0	1	.25	1	.015	3 1.99	2e-2	1	NC	3	NC	1
20			min	601	4	015	3	01	2 -1.28	37e-3	3	1724.338	1	NC	1
21		11	max	0	12	.172	1	.026	1 1.86	3e-2	1	NC	4	NC	1
22			min	601	4	.005	15	016	5 -1.25	54e-3	3	3181.716	3	NC	1
23		12	max	0	12	.25	3	.087		84e-2	1	NC	4	NC	3
24			min	601	4	011	9	016	5 -1.22	22e-3	3	962.584	3	2983.755	1
25		13	max	0	12	.451	3	.147	1 1.60	5e-2	1	NC	5	NC	3
26			min	601	4	199	1	005	5 -1.18	39e-3	3	544.018	3	1738.62	1
27		14	max	0	12	.61	3	.186	1 1.47	'5e-2	1	NC	5	NC	3
28			min	601	4	359	1	.006		57e-3	3	405.178	3	1369.4	1
29		15	max	0	12	.684	3	.192	1 1.34	6e-2	1	NC	5	NC	3
30			min	601	4	445	1	.013	12 -1.12	25e-3	3	361.995	3	1325.627	1
31		16	max	0	12	.652	3	.164	1 1.21	7e-2	1	NC	5	NC	3
32			min	601	4	436	1	.011	12 -1.09	92e-3	3	379.716	3	1560.321	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			
33		17	max	0	12	.51	3	.109	1	1.088e-2	_1_	NC	5_	NC	3
34			min	601	4	328	1	.008	12	-1.06e-3	3	482.732	3	2366.068	
35		18	max	0	12	.276	3	.045	1	9.583e-3	1	NC	_5_	NC	2
36			min	601	4	137	1	.003		-1.027e-3	3	873.478	3_	5820.473	
37		19	max	0	12	.104	1	.005	3	8.29e-3	1_	NC	_1_	NC	1
38	N444	4	min	<u>601</u>	4	012	3	002	2	-9.946e-4	3	NC NC	1_	NC NC	1
39	M14	1	max	0	1	.157	3	.004	3	5.21e-3	1_	NC	1_	NC NC	1
40		1	min	461	1	338 427	3	002	2	-2.842e-3	3	NC NC	<u>1</u> 5	NC NC	1
41		2	max	0	4	.427	1	.032	1	6.276e-3	1			NC 8462.901	2
43		3	min	<u>461</u> 0	1	704 .654	3	028 .088	1	-3.475e-3 7.342e-3	<u>3</u> 1	689.717 NC	<u>1</u> 15	NC	3
44		3	max	461	4	-1.016	1	034	5	-4.109e-3	3	371.767	1	2935.23	1
45		4	max	<u>401</u> 0	1	.809	3	<u>034</u> .141	1	8.408e-3	1	NC	15	NC	3
46		4	min	461	4	-1.24	1	022	5	-4.742e-3	3	279.664	1	1815.246	
47		5	max	0	1	.878	3	.171	1	9.475e-3	1	9260.991	15	NC	3
48			min	461	4	-1.355	1	003	5	-5.376e-3	3	247.84	1	1489.237	1
49		6	max	0	1	.86	3	.17	1	1.054e-2	1	9228.063	15	NC	3
50		Ť	min	461	4	-1.363	1	.012		-6.009e-3	3	245.926	1	1504.66	1
51		7	max	0	1	.773	3	.136	1	1.161e-2	1	NC	15	NC	3
52			min	461	4	-1.281	1	.009	10	-6.643e-3	3	267.338	1	1880.483	
53		8	max	0	1	.645	3	.081	1	1.267e-2	1	NC	15	NC	3
54			min	461	4	-1.145	1	.003	10	-7.276e-3	3	312.495	1	3185.145	
55		9	max	0	1	.522	3	.039	4	1.374e-2	1	NC	15	NC	1
56			min	461	4	-1.008	1	003	10	-7.91e-3	3	376.146	1	6528.983	4
57		10	max	0	1	.465	3	.014	3	1.481e-2	1	NC	5	NC	1
58			min	461	4	944	1	009	2	-8.543e-3	3	416.396	1	NC	1
59		11	max	0	12	.522	3	.025	1	1.374e-2	1	NC	15	NC	1
60			min	461	4	-1.008	1	028	5	-7.91e-3	3	376.146	1	9298.292	5
61		12	max	0	12	.645	3	.081	1	1.267e-2	1_	NC	15	NC	3
62			min	461	4	-1.145	1	032	5	-7.276e-3	3	312.495	1_	3185.145	
63		13	max	0	12	.773	3	.136	1	1.161e-2	1	NC	<u>15</u>	NC	3
64			min	461	4	-1.281	1	02	5	-6.643e-3	3	267.338	_1_	1880.483	
65		14	max	0	12	.86	3	17	1	1.054e-2	_1_	9227.713	<u>15</u>	NC	3
66			min	<u>461</u>	4	<u>-1.363</u>	1	0		-6.009e-3	3	245.926	_1_	1504.66	1
67		15	max	0	12	.878	3	.171	1	9.475e-3	1_	9260.55	<u>15</u>	NC	3
68		10	min	<u>461</u>	4	<u>-1.355</u>	1	.011	12	-5.376e-3	3	247.84	1_	1489.237	1
69		16	max	0	12	.809	3	.141	1	8.408e-3	1_	NC 070.004	<u>15</u>	NC 4045-040	3
70		47	min	461	4	-1.24	1	.009	12	-4.742e-3	3	279.664	1_	1815.246	
71 72		17	max	0	12	.654	3	.088	1	7.342e-3	1	NC	<u>15</u> 1	NC 2935.23	3
73		10	min max	461 0	12	<u>-1.016</u> .427	3	.007 .04	12	-4.109e-3 6.276e-3	3	371.767 NC	5	NC	2
74		10	min	461	4	704	1	.001	10	-3.475e-3		689.717	1	6290.567	
75		19		<u>401</u> 0	12	.157	3	.004	3	5.21e-3	1	NC	1	NC	1
76		19	min	461	4	338	1	002	2	-2.842e-3		NC	1	NC	1
77	M15	1	max	0	12	.16	3	.004	3	2.391e-3	3	NC	1	NC	1
78	IVITO		min	381	4	338	1	001	2	-5.319e-3	1	NC	1	NC	1
79		2	max	0	12	.327	3	.032	1	2.927e-3	3	NC	5	NC	2
80			min	381	4	741	1	039	5	-6.413e-3	1	625.842	1	6217.04	5
81		3	max	0	12	.47	3	.088	1	3.464e-3	3	NC	15	NC	3
82		Ť	min	381	4	-1.083	1	048	5	-7.507e-3	1	338.12	1	2927.322	1
83		4	max	0	12	.575	3	.141	1	4.e-3	3	NC	15	NC	3
84			min	381	4	-1.325	1	034	5	-8.602e-3	1	255.374	1	1811.456	
85		5	max	0	12	.632	3	.172	1	4.537e-3	3	9271.126	15	NC	3
86			min	381	4	-1.445	1	008	5	-9.696e-3	1	227.726		1486.423	
87		6	max	0	12	.642	3	.17	1	5.073e-3	3	9240.17	15	NC	3
88			min	381	4	-1.443	1	.012	12	-1.079e-2	1	228.098	1	1501.713	
89		7	max	0	12	.613	3	.137	1	5.61e-3	3	NC	15	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	<u>381</u>	4	-1.34	1	.009	10 -1.188e-2	1	251.484	1_	1875.966	
91		8	max	0	12	.558	3	.082	1 6.146e-3	3	NC	<u>15</u>	NC NC	3
92			min	<u>381</u>	4	<u>-1.178</u>	1	.003	10 -1.298e-2	1_	300.125	1_	3172.736	
93		9	max	0	12	.502	3	.048	4 6.683e-3	3	NC 070.070	<u>15</u>	NC FOAC OFF	1
94		10	min	<u>381</u>	1	-1.017	3	003 .013	10 -1.407e-2	1_	370.876 NC	1_	5216.355 NC	1
96		10	max	0 381	4	.475 942	1	008	3 7.219e-3 2 -1.517e-2	<u>3</u>	417.223	<u>5</u>	NC NC	1
97		11	min max	361 0	1	<u>942</u> .502	3	.026	1 6.683e-3	3	NC	15	NC NC	1
98			min	381	4	-1.017	1	038	5 -1.407e-2	1	370.876	1	6656.508	_
99		12	max	<u>361</u> 0	1	.558	3	.082	1 6.146e-3	3	NC	15	NC	3
100		12	min	381	4	-1.178	1	044	5 -1.298e-2	1	300.125	1	3172.736	
101		13	max	0	1	.613	3	.137	1 5.61e-3	3	NC	15	NC	3
102			min	381	4	-1.34	1	029	5 -1.188e-2	1	251.484	1	1875.966	
103		14	max	0	1	.642	3	.17	1 5.073e-3	3	9239.911	15	NC	3
104			min	381	4	-1.443	1	002	5 -1.079e-2	1	228.098	1	1501.713	1
105		15	max	0	1	.632	3	.172	1 4.537e-3	3	9270.801	15	NC	3
106			min	381	4	-1.445	1	.011	12 -9.696e-3	1	227.726	1	1486.423	1
107		16	max	0	1	.575	3	.141	1 4.e-3	3	NC	15	NC	3
108			min	381	4	-1.325	1	.009	12 -8.602e-3	1	255.374	1	1811.456	1
109		17	max	0	1	.47	3	.088	1 3.464e-3	3	NC	15	NC	3
110			min	381	4	-1.083	1	.006	12 -7.507e-3	1	338.12	1	2927.322	1
111		18	max	0	1	.327	3	.051	4 2.927e-3	3	NC	5	NC	2
112			min	381	4	741	1	.001	10 -6.413e-3	1	625.842	1	4933.914	4
113		19	max	0	1	.16	3	.004	3 2.391e-3	3	NC	_1_	NC	1
114			min	381	4	338	1	001	2 -5.319e-3	1	NC	1	NC	1
115	M16	1_	max	0	12	.101	1	.004	3 4.182e-3	3_	NC	_1_	NC	1
116			min	15	4	053	3	001	2 -7.768e-3	1_	NC	<u>1</u>	NC	1
117		2	max	0	12	.046	3	.045	1 4.961e-3	3	NC	5	NC	2
118			min	15	4	183	2	03	5 -8.932e-3	1_	903.216	<u>1</u>	5858.432	1
119		3	max	0	12	.124	3	.108	1 5.739e-3	3	NC	_5_	NC	3
120		1	min	<u>15</u>	4	4	1	037	5 -1.01e-2	1_	502.941	1_	2373.555	
121		4	max	0	12	.166	3	.163	1 6.517e-3	3	NC 404,000	5	NC	3
122		-	min	<u>15</u>	4	527	1	027	5 -1.126e-2	1_	401.223	1_	1562.425	1
123		5	max	<u> </u>	12	.167	3	.192	1 7.296e-3 5 -1.243e-2	3	NC 392.146	<u>5</u> 1	NC 1325.463	3
124 125		6	min max	<u>15</u> 0	12	<u>542</u> .126	3	009 .186	5 -1.243e-2 1 8.074e-3	<u>1</u> 3	NC	5	NC	3
126		0	min	15	4	448	2	.008	15 -1.359e-2	1	460.021	1	1366.906	
127		7	max	<u>15</u> 0	12	.054	3	.147	1 8.852e-3	3	NC	5	NC	3
128		+-	min	15	4	28	2	.011	10 -1.475e-2	1	685.959	1	1730.643	
129		8	max	0	12	.001	13	.087	1 9.631e-3	3	NC	3	NC	3
130		T .	min	15	4	073	2	.004	10 -1.592e-2				2949.907	1
131		9	max	0	12	.153	1	.035	4 1.041e-2	3	NC	4	NC	2
132			min	15	4	109	3	002	10 -1.708e-2	1	4478.613	3	7222.543	
133		10	max	0	1	.242	1	.011	3 1.119e-2	3	NC	5	NC	1
134			min	15	4	143	3	008	2 -1.825e-2	1	1784.603	1	NC	1
135		11	max	0	1	.153	1	.027	1 1.041e-2	3	NC	4	NC	2
136			min	15	4	109	3	024	5 -1.708e-2	1	4478.613	3	9967.315	1
137		12	max	0	1	.001	13	.087	1 9.631e-3	3	NC	3	NC	3
138			min	15	4	073	2	025	5 -1.592e-2	1	1615.383	2	2949.907	1
139		13	max	0	1	.054	3	.147	1 8.852e-3	3	NC	5	NC	3
140			min	15	4	28	2	012	5 -1.475e-2	1	685.959	1	1730.643	
141		14	max	0	1	.126	3	.186	1 8.074e-3	3	NC	5	NC	3
142			min	15	4	448	2	.006	15 -1.359e-2	1	460.021	1	1366.906	1
143		15	max	0	1	.167	3	.192	1 7.296e-3	3	NC	5	NC	3
144			min	15	4	542	1	.011	12 -1.243e-2	1	392.146	1	1325.463	
145		16	max	0	1	.166	3	.163	1 6.517e-3	3	NC	5	NC	3
146			min	15	4	527	1	.009	12 -1.126e-2	1	401.223	1_	1562.425	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		
147		17	max	0	1	.124	3	.108	1	5.739e-3	3	NC	5	NC	3
148			min	149	4	4	1	.007	12	-1.01e-2	1	502.941	1_	2373.555	1
149		18	max	.001	1	.046	3	.046	4	4.961e-3	3	NC	5	NC	2
150			min	149	4	183	2	.003	10	-8.932e-3	1	903.216	1	5519.972	4
151		19	max	.001	1	.101	1	.004	3	4.182e-3	3	NC	1	NC	1
152			min	149	4	053	3	001	2	-7.768e-3	1	NC	1	NC	1
153	M2	1	max	.006	1	.003	2	.008	1	1.381e-3	5	NC	1	NC	2
154	1412		min	005	3	007	3	565	4	-2.289e-4	1	NC	1	97.93	4
155		2	max	.005	1	.003	2	.008	1	1.483e-3	5	NC	1	NC	2
156			min	005	3	006	3	519	4	-2.135e-4	1	NC	1	106.669	4
157		3		.005	1	.002	2	.007	1	1.585e-3	5	NC	1	NC	2
		3	max								-				
158		-	min	004	3	006	3	473	4	-1.981e-4	<u>1</u>	NC NC	1_	117.053	4
159		4	max	.005	1	.002	2	.006	1	1.687e-3	_5_	NC		NC .	2
160			min	004	3	006	3	427	4	-1.827e-4	1_	NC	1_	129.513	4
161		5	max	.004	1	.001	2	.006	1	1.788e-3	_5_	NC	_1_	NC	2
162			min	004	3	006	3	383	4	-1.674e-4	<u>1</u>	NC	1_	144.631	4
163		6	max	.004	1	0	2	.005	1	1.89e-3	5_	NC	<u>1</u>	NC	1
164			min	004	3	006	3	339	4	-1.52e-4	1	NC	1	163.217	4
165		7	max	.004	1	0	2	.004	1	1.992e-3	5	NC	1	NC	1
166			min	003	3	005	3	297	4	-1.366e-4	1	NC	1	186.42	4
167		8	max	.003	1	0	15	.004	1	2.094e-3	5	NC	1	NC	1
168			min	003	3	005	3	256	4	-1.212e-4	1	NC	1	215.917	4
169		9	max	.003	1	0	15	.003	1	2.2e-3	4	NC	1	NC	1
170			min	003	3	005	3	218	4	-1.058e-4	1	NC	1	254.23	4
171		10	max	.003	1	<u>.005</u>	15	.003	1	2.307e-3	4	NC	1	NC	1
172		10	min	002	3	005	3	181	4	-9.046e-5	1	NC	1	305.306	4
		11					15					NC	•	NC	
173		11	max	.002	1	0		.002	1	2.414e-3	4		1_		1
174		40	min	002	3	004	3	147	4	-7.508e-5		NC NC	1_	375.604	4
175		12	max	.002	1	0	15	.002	1	2.522e-3	4_	NC	1_	NC 470.000	1
176		4.0	min	002	3	004	3	<u>116</u>	4	-5.97e-5	1_	NC	1_	476.302	4
177		13	max	.002	1	0	15	.001	1	2.629e-3	4	NC	_1_	NC	1
178			min	002	3	003	3	088	4	-4.432e-5	_1_	NC	1_	628.163	4
179		14	max	.002	1	0	15	0	1	2.737e-3	_4_	NC	_1_	NC	1
180			min	001	3	003	3	063	4	-2.894e-5	1_	NC	1_	873.462	4
181		15	max	.001	1	0	15	0	1	2.844e-3	4	NC	1_	NC	1
182			min	001	3	002	3	042	4	-1.356e-5	1	NC	1	1309.768	4
183		16	max	0	1	0	15	0	1	2.952e-3	4	NC	1	NC	1
184			min	0	3	002	3	025	4	-2.295e-7	3	NC	1	2207.274	4
185		17	max	0	1	0	15	0	1	3.059e-3	4	NC	1	NC	1
186			min	0	3	001	6	012	4	5.437e-7	12	NC	1	4570.601	4
187		18	max	0	1	0	15	0	1	3.167e-3	4	NC	1	NC	1
188			min	0	3	0	6	004	4	1.219e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	004	1	3.274e-3	4	NC	1	NC	1
190		19	min	0	1	0	1	0	1	1.895e-6	12	NC	1	NC	1
	MO	1			1		1		1				•		
191	<u>M3</u>	1	max	0	_	0	-	0		-6.018e-7	12	NC NC	1	NC NC	1
192			min	0	1	0	1	0	1	-7.707e-4	4	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.016	4	1.079e-5	_1_	NC	1	NC NC	1
194			min	0	2	002	6	0	12	-8.724e-5	5_	NC	1_	NC	1
195		3	max	0	3	0	15	.03	4	5.999e-4	4	NC	1_	NC	1
196			min	0	2	003	6	0	12	1.511e-6	12	NC	1_	NC	1
197		4	max	0	3	001	15	.044	4	1.285e-3	4	NC	1_	NC	1
198			min	0	2	005	6	0	12	2.568e-6	12	NC	1	8617.972	4
199		5	max	0	3	002	15	.057	4	1.97e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	3.624e-6	12	NC	1	7390.55	5
201		6	max	.001	3	002	15	.069	4	2.656e-3	4	NC	1	NC	1
202			min	0	2	009	6	0	12	4.681e-6	12	NC	1	6848.374	_
203		7	max	.001	3	002	15	.081	4	3.341e-3	4	NC	1	NC	1
200			παλ	.001		.002	10	.001		0.0-10-0		110		110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
204			min	0	2	01	6	0	12	5.737e-6	12	9082.49	6	6718.377	5
205		8	max	.002	3	002	15	.092	4	4.026e-3	4	NC	1_	NC	1
206			min	001	2	011	6	0	12	6.794e-6	12	8115.637	6	6912.69	5
207		9	max	.002	3	003	15	.102	4	4.712e-3	4	NC	2	NC	1
208			min	001	2	012	6	0	12	7.85e-6	12	7539.713	6	7437.247	5
209		10	max	.002	3	003	15	.112	4	5.397e-3	4	NC	2	NC	1
210			min	001	2	013	6	0	12	8.907e-6	12	7253.115	6	8379.469	5
211		11	max	.002	3	003	15	.121	4	6.082e-3	4_	NC	3	NC	1_
212			min	002	2	013	6	0	12	9.963e-6	12	7213.156	6	9948.217	5
213		12	max	.002	3	003	15	.13	4	6.767e-3	4	NC	2	NC	1_
214			min	002	2	012	6	0	12	1.102e-5	12	7419.628	6	NC	1
215		13	max	.003	3	003	15	.14	4	7.453e-3	4_	NC	_1_	NC	1_
216			min	002	2	012	6	0	12	1.208e-5	12	7916.766	6	NC	1
217		14	max	.003	3	002	15	.149	4	8.138e-3	4	NC	1_	NC	1
218			min	002	2	011	6	0	12	1.313e-5	12	8816.602	6	NC	1
219		15	max	.003	3	002	15	.158	4	8.823e-3	4	NC	1_	NC	1
220			min	002	2	009	6	0	12	1.419e-5	12	NC	1	NC	1
221		16	max	.003	3	001	15	.168	4	9.508e-3	4	NC	1	NC	1
222			min	002	2	008	1	0	12	1.525e-5	12	NC	1	NC	1
223		17	max	.004	3	0	15	.179	4	1.019e-2	4	NC	1	NC	1
224			min	003	2	006	1	0	12	1.63e-5	12	NC	1	NC	1
225		18	max	.004	3	0	15	.19	4	1.088e-2	4	NC	1	NC	1
226			min	003	2	005	1	0	12	1.736e-5	12	NC	1_	NC	1
227		19	max	.004	3	0	5	.202	4	1.156e-2	4	NC	1	NC	1
228			min	003	2	003	1	0	12	1.842e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	12	2.055e-5	1	NC	1	NC	3
230			min	0	3	004	3	202	4	-7.457e-4	4	NC	1	122.815	4
231		2	max	.003	1	.002	2	0	12	2.055e-5	1	NC	1	NC	3
232			min	0	3	004	3	186	4	-7.457e-4	4	NC	1	133.654	4
233		3	max	.003	1	.002	2	0	12	2.055e-5	1	NC	1	NC	3
234			min	0	3	004	3	169	4	-7.457e-4	4	NC	1	146.547	4
235		4	max	.002	1	.002	2	0	12	2.055e-5	1	NC	1	NC	2
236			min	0	3	003	3	153	4	-7.457e-4	4	NC	1	162.029	4
237		5	max	.002	1	.002	2	0	12	2.055e-5	1	NC	1	NC	2
238			min	0	3	003	3	137	4	-7.457e-4	4	NC	1	180.826	4
239		6	max	.002	1	.002	2	0	12	2.055e-5	1	NC	1	NC	2
240			min	0	3	003	3	122	4	-7.457e-4	4	NC	1	203.947	4
241		7	max	.002	1	.002	2	0	12	2.055e-5	1	NC	1	NC	2
242			min	0	3	003	3	107	4	-7.457e-4	4	NC	1	232.821	4
243		8	max	.002	1	.001	2	0	12	2.055e-5	1	NC	1	NC	2
244			min	0	3	002	3	092	4	-7.457e-4	4	NC	1	269.534	4
245		9	max	.002	1	.001	2	0	12	2.055e-5	1	NC	1	NC	2
246			min	0	3	002	3	078	4	-7.457e-4	4	NC	1	317.228	4
247		10	max	.001	1	.001	2	0	12	2.055e-5	1	NC	1	NC	2
248			min	0	3	002	3	065	4	-7.457e-4	4	NC	1	380.811	4
249		11	max	.001	1	.001	2	0	12	2.055e-5	1	NC	1	NC	1
250			min	0	3	002	3	053	4	-7.457e-4	4	NC	1	468.318	4
251		12	max	.001	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
252			min	0	3	002	3	042	4	-7.457e-4	4	NC	1	593.643	4
253		13	max	0	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
254			min	0	3	001	3	032	4	-7.457e-4	4	NC	1	782.581	4
255		14	max	0	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
256			min	0	3	001	3	023	4	-7.457e-4	4	NC	1	1087.614	4
257		15	max	0	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
258			min	0	3	0	3	015	4	-7.457e-4	4	NC	1	1629.735	4
259		16	max	0	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
260			min	0	3	0	3	009	4	-7.457e-4	4	NC	1	2743.456	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
262			min	0	3	0	3	004	4	-7.457e-4	4	NC	1	5669.297	4
263		18	max	0	1	0	2	0	12	2.055e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-7.457e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.055e-5	1	NC	1	NC	1
266		1	min	0	1	0	1	0	1	-7.457e-4	4	NC	1	NC	1
267	M6	1	max	.018	1	.015	2	0	1	1.456e-3	4	NC	3	NC	1
268	IVIO		min	016	3	021	3	57	4	0	1	3798.219	2	97.044	4
269		2	max	.017	1	.013	2	0	1	1.556e-3	4	NC	3	NC	1
270			min	015	3	02	3	524	4	0	1	4177.663	2	105.705	4
271		3		.016	1	.012	2	<u>524</u> 0	1	1.656e-3	4	NC	3	NC	1
		3	max												
272			min	015	3	019	3	477	4	0	1	4637.452	2	115.997	4
273		4	max	.015	1	.011	2	0	1	1.757e-3	4	NC Tool of	1_	NC 100 0 17	1
274			min	014	3	017	3	431	4	0	1_	5201.234	2	128.347	4
275		5	max	.014	1	.009	2	0	1	1.857e-3	_4_	NC	_1_	NC	_1_
276			min	013	3	016	3	386	4	0	1_	5902.349	2	143.331	4
277		6	max	.013	1	.008	2	0	1	1.957e-3	4	NC	<u>1</u>	NC	1
278			min	012	3	015	3	342	4	0	1	6789.041	2	161.754	4
279		7	max	.012	1	.007	2	0	1	2.057e-3	4	NC	1	NC	1
280			min	011	3	014	3	3	4	0	1	7933.294	2	184.754	4
281		8	max	.011	1	.006	2	0	1	2.157e-3	4	NC	1	NC	1
282			min	01	3	013	3	259	4	0	1	9446.524	2	213.992	4
283		9	max	.01	1	.005	2	0	1	2.257e-3	4	NC	1	NC	1
284			min	009	3	012	3	22	4	0	1	NC	1	251.972	4
285		10	max	.009	1	.004	2	0	1	2.358e-3	4	NC	1	NC	1
286		10	min	008	3	011	3	183	4	0	1	NC NC	1	302.607	4
287		11		.008	1	.003	2	<u>105</u> 0	1	2.458e-3		NC	1	NC	1
			max							0	4		1		
288		40	min	007	3	<u>01</u>	3	149	4			NC NC		372.302	4
289		12	max	.007	1	.002	2	0	1	2.558e-3	4	NC	1_	NC 470.445	1
290		10	min	006	3	008	3	117	4	0	_1_	NC	1	472.145	4
291		13	max	.006	1	.001	2	0	1	2.658e-3	4	NC	_1_	NC	1
292			min	005	3	007	3	089	4	0	_1_	NC	_1_	622.731	4
293		14	max	.005	1	0	2	0	1	2.758e-3	4	NC	_1_	NC	1_
294			min	005	3	006	3	064	4	0	1	NC	1_	866.002	4
295		15	max	.004	1	0	2	0	1	2.859e-3	4	NC	1	NC	1
296			min	004	3	005	3	043	4	0	1	NC	1	1298.785	4
297		16	max	.003	1	0	2	0	1	2.959e-3	4	NC	1	NC	1
298			min	003	3	004	3	025	4	0	1	NC	1	2189.298	4
299		17	max	.002	1	0	2	0	1	3.059e-3	4	NC	1	NC	1
300			min	002	3	002	3	012	4	0	1	NC	1	4535.364	4
301		18	max	.001	1	0	2	0	1	3.159e-3	4	NC	1	NC	1
302			min	0	3	001	3	004	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.259e-3	4	NC	1	NC	1
304		13	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1		0	1	0	1	0	1	0	1	NC	1	NC	1
	IVI /		max	0	1	0	1	0	1	-7.655e-4	4	NC NC	1	NC NC	1
306		2	min						-						
307		2	max	0	3	0	15	.016	4	0	1	NC NC	1	NC	1
308			min	0	2	002	3	0	1	-9.605e-5	4_	NC	1_	NC	1
309		3	max	.001	3	0	15	.03	4	5.734e-4	4	NC	1_	NC	1
310			min	001	2	004	3	0	1	0	<u>1</u>	NC	1_	NC	1
311		4	max	.002	3	001	15	.044	4	1.243e-3	4	NC	_1_	NC	1_
312			min	002	2	006	3	0	1	0	1	NC	1_	8138.135	4
313		5	max	.003	3	002	15	.057	4	1.912e-3	4	NC	1	NC	1
314			min	003	2	008	3	0	1	0	1	NC	1	6944.786	4
315		6	max	.003	3	002	15	.069	4	2.582e-3	4	NC	1	NC	1
316			min	003	2	009	3	0	1	0	1	NC	1	6403.42	4
317		7	max	.004	3	002	15	.08	4	3.251e-3	4	NC	1	NC	1
<u> </u>		 	,an	.001		.002			<u> </u>	3.20100	_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	I.C.
318			min	004	2	01	4	0	1	0	1	9173.392	4	6243.857	4
319		8	max	.005	3	003	15	.091	4	3.92e-3	4	NC	1	NC	1
320			min	005	2	012	4	0	1	0	1	8190.612	4	6376.054	4
321		9	max	.006	3	003	15	.101	4	4.59e-3	4	NC	1	NC	1
322			min	005	2	013	4	0	1	0	1	7604.587	4	6793.991	4
323		10	max	.006	3	003	15	.11	4	5.259e-3	4	NC	_1_	NC	1
324			min	006	2	013	4	0	1	0	1	7311.699	4	7557.96	4
325		11	max	.007	3	003	15	.12	4	5.929e-3	4	NC	_1_	NC	1
326			min	007	2	013	4	0	1	0	1	7268.238	4	8817.35	4
327		12	max	.008	3	003	15	.129	4	6.598e-3	4	NC	1_	NC	1
328			min	007	2	013	4	0	1	0	<u>1</u>	7473.546	4	NC	1
329		13	max	.008	3	003	15	137	4	7.268e-3	4_	NC	1_	NC NC	1
330		4.4	min	008	2	012	4	0	1	0	1_	7971.852	4_	NC NC	1
331		14	max	.009	3	003	15	.146	4	7.937e-3	4	NC	1_	NC	1
332		4.5	min	009	2	011	4	0	1	0	1_	8875.695	4_	NC NC	1
333		15	max	.01	3	002	15	.155	4	8.606e-3	4	NC NC	1_	NC NC	1
334		16	min	009	3	<u>011</u>	15	<u> </u>	1	0 2760 2	1_1	NC NC	<u>1</u> 1	NC NC	1
335		16	max	.01 01	2	002 01	15	.165	1	9.276e-3	<u>4</u> 1	NC NC	1	NC NC	1
337		17	min	.011	3	01 001	15	.175	4	9.945e-3	4	NC NC	1	NC NC	1
338		17	max min	011	2	001 009	1	0	1	0	1	NC NC	1	NC NC	1
339		18	max	.012	3	009	15	.185	4	1.061e-2	4	NC	1	NC	1
340		10	min	011	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.013	3	0	15	.197	4	1.128e-2	4	NC	1	NC	1
342		10	min	012	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.011	2	0	1	0	1	NC	1	NC	1
344	1710		min	002	3	013	3	197	4	-7.953e-4	4	NC	1	126.119	4
345		2	max	.008	1	.01	2	0	1	0	1	NC	1	NC	1
346			min	001	3	012	3	181	4	-7.953e-4	4	NC	1	137.253	4
347		3	max	.007	1	.009	2	0	1	0	1	NC	1	NC	1
348			min	001	3	011	3	165	4	-7.953e-4	4	NC	1	150.497	4
349		4	max	.007	1	.009	2	0	1	0	1	NC	1	NC	1
350			min	001	3	01	3	149	4	-7.953e-4	4	NC	1	166.4	4
351		5	max	.006	1	.008	2	0	1	0	1	NC	1	NC	1
352			min	001	3	01	3	134	4	-7.953e-4	4	NC	1	185.709	4
353		6	max	.006	1	.008	2	0	1	0	1	NC	1	NC	1
354			min	001	3	009	3	118	4	-7.953e-4	4	NC	1	209.458	4
355		7	max	.005	1	.007	2	0	1	0	1	NC	_1_	NC	1
356			min	001	3	008	3	104	4	-7.953e-4	4	NC	1	239.117	4
357		8	max	.005	1	.006	2	00	1_	0	1	NC	_1_	NC	1_
358			min	0	3	008	3	09	4	-7.953e-4		NC	1_	276.829	4
359		9	max	.004	1	.006	2	0	1	0	1	NC	1	NC	1
360		4.0	min	0	3	007	3	076	4	-7.953e-4	4_	NC	1_	325.819	4
361		10	max	.004	1	.005	2	0	1	0	1	NC	1_	NC 004 404	1
362		4.4	min	0	3	006	3	063	4	-7.953e-4	4	NC	1_	391.131	4
363		11	max	.004	1	.005	2	0	1	0	1	NC	1	NC 101.017	1
364		40	min	0	3	006	3	052	4	-7.953e-4	4_	NC NC	1_	481.017	4
365		12	max	.003	1	.004	2	0	1	0	1_1	NC	1_	NC COO 75	1
366		40	min	0	3	005	3	041	4	-7.953e-4	4_	NC NC	1_	609.75	4
367		13	max	.003	1	.004	2	0	1	7.0520.4	1_1	NC NC	1	NC	1
368		4 4	min	0	3	004	3	031	4	-7.953e-4	4	NC NC	1	803.827	4
369		14	max	.002	1	.003	2	0	1	7.0520.4	1_1	NC NC	1_1	NC	1
370		4.5	min	0	3	003	3	022	4	-7.953e-4	4_	NC NC	1_1	1117.158	
371		15	max	.002	1	.002	2	0	1	7.0520.4	1_1	NC NC	1	NC	1
372		16	min	001	3	003	3	<u>015</u>	4	-7.953e-4	4	NC NC		1674.03	1
373		16	max	.001	1	.002	2	0	1	7.0520.4	1_1	NC NC	1_1	NC	
374			min	0	3	002	3	009	4	-7.953e-4	4	NC	1_	2818.067	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

075	Member	Sec	T	x [in]	LC	y [in]	LC	z [in]			LC	,		(n) L/z Ratio	
375		17	max	0	1	.001	2	0	1	7.050- 4	1_4	NC NC	1	NC	1
376		40	min	0	3	<u>001</u>	3	004	4	-7.953e-4	4_	NC NC	1_	5823.589	4
377		18	max	0	1	0	2	0	1	7.0525.4	1_1	NC NC	1_	NC NC	1
378		10	min	0	3	0	3	001	4	-7.953e-4	4	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0 -7.953e-4	1_1	NC NC	1	NC NC	1
380	N440	4	min	0		0		0			4_	NC NC		NC NC	_
381	M10	1	max	.006	1	.003	2	0	12	1.461e-3	4	NC NC	1	NC 07.454	2
382			min	005	3	007	3	<u>57</u>	4	1.026e-5	12	NC NC	1_	97.154	4
383		2	max	.005	1	.003	2	0	12	1.561e-3	4	NC	1_	NC 405.005	2
384			min	005	3	006	3	523	4	9.588e-6	12	NC NC	1_	105.825	4
385		3	max	.005	1	.002	2	0	12	1.66e-3	4	NC NC	1	NC 440.400	2
386			min	004	3	006	3	477	4	8.913e-6	12	NC NC	1_	116.129	4
387		4	max	.005	1	.002	2	0	12	1.759e-3	4	NC NC	1	NC 100,100	2
388		_	min	004	3	006	3	<u>431</u>	4	8.237e-6	12	NC	1	128.493	4
389		5	max	.004	1	.001	2	0	12	1.859e-3	4	NC	1_	NC 4.40, 405	2
390			min	004	3	006	3	386	4	7.562e-6	12	NC NC	1_	143.495	4
391		6	max	.004	1	0	2	0	12	1.958e-3	4	NC	1	NC 404.000	1
392		-	min	004	3	006	3	342	4	6.886e-6	12	NC NC	1_	161.939	4
393		7	max	.004	1	0	2	0	12	2.057e-3	4	NC	1	NC	1
394			min	003	3	005	3	299	4	6.211e-6	12	NC	1_	184.965	4
395		8	max	.003	1	0	2	0	12	2.156e-3	4	NC	1	NC	1
396			min	003	3	005	3	258	4	5.535e-6	12	NC	1_	214.238	4
397		9	max	.003	1	0	2	0	12	2.256e-3	4	NC	1	NC	1
398		1.0	min	003	3	005	3	219	4	4.86e-6	12	NC	1	252.262	4
399		10	max	.003	1	0	10	0	12	2.355e-3	4	NC	1	NC	1
400			min	002	3	005	3	183	4	4.184e-6	12	NC	1_	302.957	4
401		11	max	.002	1	001	15	0	12	2.454e-3	_4_	NC	_1_	NC	1
402			min	002	3	004	3	148	4	3.509e-6	12	NC	_1_	372.735	4
403		12	max	.002	1	001	15	0	12	2.553e-3	4	NC	_1_	NC	1
404			min	002	3	004	3	117	4	2.834e-6	12	NC	_1_	472.698	4
405		13	max	.002	1	0	15	0	12	2.653e-3	_4_	NC	_1_	NC	1
406			min	002	3	003	3	089	4	2.158e-6	12	NC	_1_	623.467	4
407		14	max	.002	1	0	15	0	12	2.752e-3	_4_	NC	_1_	NC	1
408			min	001	3	003	4	064	4	1.483e-6	12	NC	1_	867.04	4
409		15	max	.001	1	0	15	0	12	2.851e-3	4	NC	1	NC	1
410		10	min	001	3	003	4	043	4	8.072e-7	12	NC	1_	1300.372	4
411		16	max	0	1	0	15	0	12	2.951e-3	_4_	NC	1	NC	1
412			min	0	3	002	4	025	4	-1.823e-6	_1_	NC	_1_	2192.056	4
413		17	max	0	1	0	15	0	12	3.05e-3	_4_	NC	_1_	NC	1
414		10	min	0	3	002	4	012	4	-1.72e-5	_1_	NC	1_	4541.398	4
415		18	max	0	1	0	15	0	12		4	NC	_1_	NC	1
416		10	min	0	3	0	4	004	4	-3.258e-5	_1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	3.248e-3	4_	NC	1_	NC	1
418			min	0	1	0	1	0	1	-4.796e-5		NC	1_	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	1.508e-5		NC	1	NC	1
420			min	0	1	0	1	0	1	-7.626e-4		NC	1_	NC	1
421		2	max	0	3	0	15	.016	4	-4.548e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-9.11e-5	4_	NC	1_	NC	1
423		3	max	0	3	0	15	.03	4	5.804e-4	_4_	NC	_1_	NC	1
424			min	0	2	004	4	0	1	-3.666e-5	1_	NC	_1_	NC	1
425		4	max	0	3	001	15	.044	4	1.252e-3	4_	NC	1	NC	1
426			min	0	2	006	4	0	1	-6.253e-5		NC	1_	8372.29	4
427		5_	max	0	3	002	15	.057	4	1.923e-3	_4_	NC	1_	NC	1
428			min	0	2	007	4	001	1	-8.84e-5	_1_	NC	1_	7167.02	4
429		6	max	.001	3	002	15	.069	4	2.595e-3	4_	NC	1_	NC	1
430			min	0	2	009	4	001	1	-1.143e-4		NC	1_	6632.812	4
431		7	max	.001	3	003	15	.08	4	3.266e-3	4	NC	_1_	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	0	2	011	4	002	1	-1.401e-4	1_	8763.091	4	6496.338	
433		8	max	.002	3	003	15	.09	4	3.938e-3	4	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.66e-4	<u>1</u>	7851.293	4_	6670.169	4
435		9	max	.002	3	003	15	.101	4	4.609e-3	4	NC	2	NC	1
436		40	min	001	2	013	4	002	1	-1.919e-4	1_	7310.332	4_	7156.402	4
437		10	max	.002	3	003	15	.11	4	5.281e-3	4	NC	2	NC	1
438		44	min	001	2	013	4	003	1	-2.178e-4	1_	7045.48	4	8032.673	
439		11	max	.002	3	003	15	.119	4	5.952e-3	4	NC 7047.540	3_	NC 0405.704	1
440		40	min	002	2	014	4	003	1	-2.436e-4	1_	7017.546	4	9485.761	4
441		12	max	.002	3	003	15	.128	4	6.624e-3 -2.695e-4	4	NC	<u>2</u> 4	NC NC	1
442		13	min	002	3	013 003	15	004 .137	4		1_1	7227.833 NC	1	NC NC	1
444		13	max min	.003 002	2	003 013	4	004	1	7.295e-3 -2.954e-4	<u>4</u> 1	7720.54	4	NC NC	1
444		14	max	.002	3	013 003	15	.146	4	7.967e-3	4	NC	1	NC NC	1
446		14	min	002	2	003 011	4	005	1	-3.212e-4	1	8605.859	4	NC	1
447		15	max	.003	3	002	15	.155	4	8.638e-3	4	NC	1	NC	1
448		10	min	002	2	002	4	005	1	-3.471e-4	1	NC	1	NC	1
449		16	max	.002	3	002	15	.165	4	9.31e-3	4	NC	1	NC	1
450		10	min	002	2	008	4	006	1	-3.73e-4	1	NC	1	NC	1
451		17	max	.004	3	002	15	.175	4	9.981e-3	4	NC	1	NC	1
452		<u> </u>	min	003	2	006	1	007	1	-3.989e-4	1	NC	1	NC	1
453		18	max	.004	3	0	15	.186	4	1.065e-2	4	NC	1	NC	1
454			min	003	2	005	1	007	1	-4.247e-4	1	NC	1	NC	1
455		19	max	.004	3	0	15	.198	4	1.132e-2	4	NC	1	NC	1
456			min	003	2	003	1	008	1	-4.506e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.008	1	-9.827e-7	12	NC	1	NC	3
458			min	0	3	004	3	198	4	-7.564e-4	4	NC	1	125.492	4
459		2	max	.003	1	.002	2	.007	1	-9.827e-7	12	NC	1	NC	3
460			min	0	3	004	3	182	4	-7.564e-4	4	NC	1	136.566	4
461		3	max	.003	1	.002	2	.007	1	-9.827e-7	12	NC	1_	NC	3
462			min	0	3	004	3	166	4	-7.564e-4	4	NC	1_	149.74	4
463		4	max	.002	1	.002	2	.006	1	-9.827e-7	12	NC	1_	NC	2
464			min	0	3	003	3	15	4	-7.564e-4	4	NC	1_	165.559	4
465		5	max	.002	1	.002	2	.005	1	-9.827e-7	12	NC	_1_	NC	2
466			min	0	3	003	3	134	4	-7.564e-4	4_	NC	1_	184.765	4
467		6	max	.002	1	.002	2	.005	1	-9.827e-7	12	NC	_1_	NC	2
468		<u> </u>	min	0	3	003	3	<u>119</u>	4	-7.564e-4	4	NC	1_	208.389	4
469		7	max	.002	1	.002	2	004	1	-9.827e-7	12	NC	1_	NC	2
470			min	0	3	003	3	104	4	-7.564e-4	4_	NC	1_	237.891	4
471		8	max	.002	1	.001	2	.004	1	-9.827e-7	12	NC NC	1_	NC 075 400	2
472			min		3	002	3	09		-7.564e-4		NC NC	1	275.403	4
473		9	max	.002	3	.001	2	.003	1	-9.827e-7	<u>12</u>	NC NC	1_1	NC 224 424	2
474		10	min	0		002	2	077	1	-7.564e-4	4	NC NC	<u>1</u> 1	324.134	4
475 476		10	max	.001	3	.001	3	.003	4	-9.827e-7	12	NC NC	1	NC 390.1	2
477		11	min max	.001	1	002 .001	2	064 .002	1	-7.564e-4 -9.827e-7	<u>4</u> 12	NC NC	1	389.1 NC	1
478			min	0	3	002	3	052	4	-7.564e-4	4	NC	1	478.51	4
479		12	max	.001	1	<u>002</u> 0	2	.002	1	-7.304e-4 -9.827e-7	12	NC	1	NC	1
480		12	min	0	3	002	3	041	4	-7.564e-4	4	NC	1	606.561	4
481		13	max	0	1	<u>002</u> 0	2	.001	1	-7.304e-4 -9.827e-7	12	NC	1	NC	1
482		13	min	0	3	001	3	031	4	-7.564e-4	4	NC	1	799.608	4
483		14	max	0	1	<u>001</u> 0	2	<u>031</u> 0	1	-7.304e-4 -9.827e-7	12	NC	1	NC	1
484		14	min	0	3	001	3	022	4	-7.564e-4	4	NC	1	1111.274	
485		15	max	0	1	0	2	<u>022</u> 0	1	-9.827e-7	12	NC	1	NC	1
486		10	min	0	3	0	3	015	4	-7.564e-4	4	NC	1	1665.182	4
487		16	max	0	1	0	2	<u>013</u> 0	1	-9.827e-7	12	NC	1	NC	1
488		1.0	min	0	3	0	3	009	4	-7.564e-4	4	NC	1	2803.118	
100			111111				U	.000	т.	7.0070 4		110			

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio Lo		LC
489		17	max	0	1	0	2	0	1	-9.827e-7	12	NC 1	NC	1
490			min	0	3	0	3	004	4	-7.564e-4	4	NC 1	5792.566	4
491		18	max	0	1	0	2	0	1	-9.827e-7	12	NC 1	NC	1
492			min	0	3	0	3	001	4	-7.564e-4	4	NC 1	NC	1
493		19	max	0	1	0	1	0	1	-9.827e-7	12	NC 1	NC	1
494		1	min	0	1	0	1	0	1	-7.564e-4	4	NC 1		1
495	M1	1	max	.005	3	.104	1	.601	4	1.789e-2	1	NC 1		1
496			min	002	2	012	3	0	12	-2.138e-2		NC 1		1
497		2	max	.005	3	.051	1	.583	4	9.28e-3	4	NC 3		1
498				002	2	005	3	006	1	-1.058e-2	3	2165.657		1
		3	min						4					
499		3	max	.005	3	.007	3	.565		1.48e-2	4			1
500			min	002	2	007	1	009	1	-1.703e-4	_1_	1035.487 1		5
501		4	max	.005	3	.03	3	.547	4	1.303e-2	_4_	NC 5		1
502			min	002	2	073	1	008	1	-3.77e-3	3	646.418 1	000 1100 1	5
503		5	max	.005	3	.059	3	.528	4	1.126e-2	4	NC 1		1
504			min	002	2	144	1	005	1	-7.436e-3	3	462.187 1	3984.534	5
505		6	max	.005	3	.091	3	.51	4	1.483e-2	1	NC 1	5 NC	1
506			min	002	2	212	1	002	1	-1.11e-2	3	361.418 1	3323.935	5
507		7	max	.005	3	.122	3	.49	4	1.983e-2	1	9683.113 1		1
508			min	002	2	274	1	0	12	-1.477e-2	3	302.285 1		4
509		8	max	.005	3	.149	3	.47	4	2.483e-2	1	8599.544 1		1
510			min	002	2	324	1	0	12	-1.844e-2		267.459 1		4
511		9	max	.004	3	.166	3	.448	4	2.735e-2	1	8034.912 1		1
512		9	min	002	2	355	1	0	1	-1.845e-2	3	249.386 1		
		10												
513		10	max	.004	3	.172	3	.424	4	2.821e-2	1_	7863.026 1		1
514		4.4	min	002	2	365	1	0	12	-1.605e-2	3	243.973 1		4
515		11	max	.004	3	.168	3	.397	4	2.907e-2	_1_	8034.713 1		1
516			min	002	2	354	1	0	12	-1.365e-2	3_	249.685 1		4
517		12	max	.004	3	.154	3	.369	4	2.745e-2	_1_	8599.09 1		1
518			min	001	2	323	1	001	1	-1.13e-2	3	268.396 1		4
519		13	max	.004	3	.131	3	.337	4	2.207e-2	_1_	9682.242 1	5 NC	1
520			min	001	2	272	1	0	1	-9.045e-3	3	304.61 1	3072.219	4
521		14	max	.004	3	.101	3	.303	4	1.67e-2	1	NC 1	5 NC	1
522			min	001	2	209	1	0	12	-6.789e-3	3	366.436 1		4
523		15	max	.004	3	.069	3	.268	4	1.132e-2	1	NC 1		1
524			min	001	2	14	1	0	12	-4.534e-3	3	472.581 1		4
525		16	max	.004	3	.035	3	.234	4	9.788e-3	4	NC 5		1
526		10	min	001	2	069	1	0	12	-2.279e-3		668.425		1
		17			3				4	1.082e-2		NC 5		1
527		17	max	.004	_	.002	3	.203			4			1
528		40	min	001	2	004	2	0	12	-2.319e-5		1085.519 1		
529		18	max	.004	3	.051	1	.175	4	1.047e-2	1	NC 4		1
530			min	<u>001</u>	2	026	3	0	12			2293.134 1		1
531		19	max	.004	3	.101	1	.149	4	2.073e-2	_1_	NC 1		1
532			min	001	2	053	3	001	1	-7.378e-3	3	NC 1		1
533	M5	1	max	.015	3	.25	1	.601	4	0	<u>1</u>	NC 1	NC	1
534			min	01	2	015	3	0	1	-3.194e-6	4	NC 1	NC	1
535		2	max	.015	3	.122	1	.587	4	7.587e-3	4	NC 5	NC NC	1
536			min	01	2	006	3	0	1	0	1	894.793 1	NC	1
537		3	max	.015	3	.023	3	.57	4	1.494e-2	4	NC 1		1
538		Ť	min	01	2	023	1	0	1	0	1	418.512 1		4
539		4	max	.015	3	.085	3	.551	4	1.217e-2	4	9121.389 1		1
540			min	01	2	2	1	0	1	0	1	254.125 1		4
		5			3	<u>∠</u> .171	3	_	4	9.406e-3				1
541		- S	max	.015				.531			4	6386.097 1		_
542			min	01	2	393	1	0	1	0	1_	177.731 1	0	
543		6	max	.015	3	.267	3	.511	4	6.638e-3	4_	4918.289 1		1
544			min	009	2	586	1	0	1	0	_1_	136.739 1	0= 1001	4
545		7	max	.014	3	.361	3	.49	4	3.87e-3	4	4070.301 1	5 NC	1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	<u>Sec</u>		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio LC		
546			min	009	2	761	1	0	1	0	1_	113.057 1	2902.83	4
547		8	max	.014	3	.441	3	.469	4	1.103e-3	4_	3577.093 15		1
548			min	009	2	901	1	0	1	0	1_	99.283 1	2613.008	4
549		9	max	.014	3	.492	3	.448	4	0	_1_	3324.108 15	NC	1
550			min	009	2	989	1	0	1	-2.008e-6	5	92.223 1	2393.332	4
551		10	max	.013	3	.51	3	.424	4	0	_1_	3247.878 15		1
552			min	009	2	-1.019	1	0	1	-1.923e-6	5	90.12 1	2364.423	4
553		11	max	.013	3	.498	3	.397	4	0	1_	3324.175 15	NC	1
554			min	008	2	989	1	0	1	-1.839e-6	5	92.343 1	2437.367	4
555		12	max	.013	3	.455	3	.37	4	7.742e-4	4	3577.254 15		1
556			min	008	2	898	1	0	1	0	1	99.68 1	2560.733	4
557		13	max	.012	3	.385	3	.338	4	2.718e-3	4	4070.636 15	NC	1
558			min	008	2	754	1	0	1	0	1	114.087 1	3023.902	4
559		14	max	.012	3	.298	3	.302	4	4.662e-3	4	4918.955 15	NC	1
560			min	008	2	575	1	0	1	0	1	139.056 1	4187.971	4
561		15	max	.012	3	.2	S	.266	4	6.606e-3	4	6387.428 15	NC	1
562			min	008	2	38	1	0	1	0	1	182.75 1	7394.309	4
563		16	max	.012	3	.101	3	.23	4	8.55e-3	4	9124.194 15	NC	1
564			min	008	2	186	1	0	1	0	1	265.339 1	NC	1
565		17	max	.011	3	.008	3	.197	4	1.049e-2	4	NC 15	NC	1
566			min	008	2	013	1	0	1	0	1	445.705 1	NC	1
567		18	max	.011	3	.125	1	.171	4	5.329e-3	4	NC 5	NC	1
568			min	008	2	072	3	0	1	0	1	967.484 1	NC	1
569		19	max	.011	3	.242	1	.15	4	0	1	NC 1	NC	1
570		1.0	min	008	2	143	3	0	1	-1.591e-6	4	NC 1	NC	1
571	M9	1	max	.005	3	.104	1	.601	4	2.138e-2	3	NC 1	NC	1
572	1010		min	002	2	012	3	001	1	-1.789e-2	1	NC 1	NC	1
573		2	max	.005	3	.051	1	.586	4	1.058e-2	3	NC 3	NC	1
574			min	002	2	005	3	0	12	-8.699e-3	1	2165.657 1	NC	1
575		3	max	.005	3	.007	3	.569	4	1.49e-2	4	NC 5	NC	1
576		-	min	002	2	007	1	0	12	-1.681e-5	10	1035.487 1	6065.74	4
577		4	max	.005	3	.03	3	.551	4	1.168e-2	5	NC 5	NC	1
578			min	002	2	073	1	0	12	-4.83e-3	1	646.418 1	4497.108	_
579		5	max	.005	3	.059	3	.531	4	8.77e-3	5	NC 15		1
580		-	min	002	2	144	1	0	12	-9.831e-3	1	462.187 1	3707.015	
581		6	max	.005	3	.091	3	.511	4	1.11e-2	3	NC 15		1
582		0	min	002	2	212	1	0	12	-1.483e-2	1	361.418 1	3222.143	-
		7		.005	3	.122	3	.49			3			1
583		-	max		2	274		49 0	1	1.477e-2 -1.983e-2			2877.185	
584		0	min	002			1				1	002.200 .		1
585		8	max	.005	3	.149 324	3	.469	1	1.844e-2	3	8585.214 15 267.459 1		
586			min	002				0	_	-2.483e-2				
587		9	max	.004	3	.166	3	.448	4	1.845e-2	3_	8021.697 15		1
588		40	min	002	2	<u>355</u>	1	0	12	-2.735e-2	1_	249.386 1	2388.947	4
589		10	max	.004	3	.172	3	.424	4	1.605e-2	3_	7850.139 15		1
590		44	min	002	2	365	1	0	1	-2.821e-2	1_	243.973 1	2349.411	4
591		11	max	.004	3	.168	3	.397	4	1.365e-2	3	8021.509 15		1
592		10	min	002	2	354	1	0	1	-2.907e-2	1_	249.685 1	2420.049	
593		12	max	.004	3	<u>.154</u>	3	.369	4	1.13e-2	3_	8584.861 15		1
594			min	001	2	323	1	0	12	-2.745e-2	1_	268.396 1	2580.198	
595		13	max	.004	3	.131	3	.337	4	9.045e-3	3_	9666.043 15		1
596			min	001	2	272	1	0	12	-2.207e-2	1_	304.61 1	3073.776	
597		14	max	.004	3	.101	3	.302	4	6.789e-3	3	NC 15		1
598			min	001	2	209	1	002	1	-1.67e-2	1_	366.436 1	4163.073	5
599		15	max	.004	3	.069	3	.266	4	6.177e-3	5	NC 15		1
600			min	001	2	14	1	005	1	-1.132e-2	1	472.581 1	6758.695	
601		16	max	.004	3	.035	3	.23	4	8.323e-3	5	NC 5	NC	1
602			min	001	2	069	1	008	1	-5.95e-3	1	668.425 1	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.002	3	.198	4	1.053e-2	4	NC	5	NC	1
604			min	001	2	004	2	008	1	-5.752e-4	1	1085.519	1	NC	1
605		18	max	.004	3	.051	1	.172	4	4.944e-3	5	NC	4	NC	1
606			min	001	2	026	3	006	1	-1.047e-2	1	2293.134	1	NC	1
607		19	max	.004	3	.101	1	.15	4	7.378e-3	3	NC	1	NC	1
608			min	001	2	053	3	0	12	-2.073e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.