

Can Finetuning Overcome Racial Bias In Face Recognition Models?

Linh Tran, Christopher Kanan

University of Rochester

MOTIVATION

Most face datasets are racially unbalanced.

Figure 1. Dataset Racial Distributions in Popular Datasets [1]

Face recognition models are racially-biased, even with balanced training data (Table 1).

OVERVIEW

- Critical period: the initial training period when model learns exceptionally quickly [2].
- Warm-starting: when training, model is introduced to a subset of the training data before seeing all training data [3].

Hypothesis: racial bias could be mitigated:

- I. Warm-starting the model with subset of data of under-performing races in the first few epochs.
- 2. Fine-tuning single-race model using uniform data.

WARM-STARTING EXPERIMENT

(*) Feature Extraction Architecture: VGGm-11 or ResNet-18

Results of Warm-starting on underperforming races: Asian and African

Figure 1. Model's accuracy on different races during training

Control	None	Race	Epoch	Race & Epoch
P-Values (Baseline vs WS-African)	0.8874	0.8462	0.3022	0.1157
P-Values (Baseline vs WS-Asian)	0.0408*	0.0412*	0.0482*	0.0485*

Table 2. Relative Accuracy to Caucasian by Epoch and Race

CONTINUAL LEARNING EXPERIMENT

(*) Feature Extraction Architecture: VGGm-11 or ResNet-18

Figure 2. Model's accuracy on different races during fine-tuning

DATASETS

Fig 2. BUPT-BalancedFace [5]

BUPT-BalancedFace [5]:

- 7000 identities/race

RFW: Racial Faces in The Wild [6]:

- 3000 identities/race

*statistically significant at 5%

REFERENCES

- 1. Sumsion A, Torrie S, Lee D-J, Sun Z. Surveying Racial Bias in Facial Recognition: Balancing Datasets and Algorithmic Enhancements. Electronics. 2024; 13(12):2317. https://doi.org/10.3390/electronics13122317
- 2. Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks. 2018.261
- 3. Jordan T. Ash and Ryan P. Adams. On warm-starting neural network training, 2020. URL https://arxiv.org/abs/1910.08475.266
- 4. German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.01.012. URL
- https://www.sciencedirect.com/science/article/pii/S0893608019300231.298
- 5. Mei Wang, Weihong Deng. Mitigating Bias in Face Recognition using Skewness-Aware Reinforcement Learning. CVPR2020.
- 6. Mei Wang, Weihong Deng, Jiani Hu, Xunqiang Tao, Yaohai Huang. Racial Faces in the Wild: Reducing Racial Bias by Information Maximization Adaptation Network. ICCV2019.