4강_ALU Architecture과 Integer Representation

ALU는 산술논리 연산

Decimal	Unsigned Binary
7	111
6	110
5	101
4	100
3	011
2	010
1	001
0	000

③ n Bit주합에서 의미있는 조합의 개수 : 21

э n Bit 일 때 표현 가능 범위 : 0 → 2ⁿ-1

unsigned integer : 부호없는 정수

이진수, 십진수

음수표현

Integer Representation: Signed Magnitude				
Decimal	Signed Magnitude			
3	011			
2	010			
	001			
(0)	000			
0	100			
-1	101			
-2	110			
-3	111			

MSB 최상위 비트 LSB 최하위 비트

보수 얘기

Integer Representation: 1's Complement					
	Decimal	1's Complement			
	(3	(011)			
	2	/ 010	7		
	1	001			
	0	000			
	0	(111)			
	-1	110	9		
	-2	101			
	(-3)	100			
• n Bit 조합에서 의미있는 조합의 개수: 2 ⁿ⁻¹ → 0 중복					
● n Bit 일 때 표현 가능 범위 : -2 ⁿ⁻¹ +1 ~ 2 ⁿ⁻¹ -1					
 3 음수를 표현하는 방법 : 1의 보수를 취함 2₁₀ → 010₂ -2₁₀ → 101₂ 					

Decimal #로 바꾸는 방법
 Sign Bit가 0이면 → 그대로 Decimal #로 변환(+)
 Sign Bit가 1이면 → 1의 보수를 취하고 Decimal #로 변환(-)

2의 보수

Integer Representation: 2's Complement Decimal 2 010 001 0 000 -001 +001 -1 111 -2 110 101 100 ● Decimal #로 바꾸는 방법 Sign Bit가 0이면 → 그대로 Decimal #로 변환(+) Sign Bit가 1이면 → 2의 보수를 취하고 Decimal #로 변환(-③ Bit Extension : Sign Bit를 추가 $110_2(-2_{10}) \rightarrow 11/10_2(-2_{10}), 010_2(2_{10}) \rightarrow 00/0_2(2_{10})$ ● Overflow/Underflow 고찰

Sign Bit를 추가
110₂(-2₁₀) → 1110₂(-2₁₀), 010₂(2₁₀) → 0010₂(2₁₀)