Basic Concepts of Linear Algebra

Basic Concepts of Linear Algebra

Linear Systems

Application of Homogeneous System: Conic Sections and Quadric Surfaces

Matrix

Linear Independence and Non-singular Matrix

Matrix Inverse and Properties

The Existence of Inverses

Ill-Conditioned Matrix

Partitioned Matrix (Block Matrix)

Linear Systems

Def. Equivalent linear systems

Two systems of linear equations on u unknowns are **equivalent** provided that they have the same set of solutions

Def. Raw Operations

The following operations, performed on the rows of a matrix, are called **elementary row operations**:

- 1. Interchange two rows.
- 2. Multiply a row by a **nonzero** scalar.
- 3. Add a constant multiple of one row to another.

Def. Raw Equivalent

We say two matrices with same shape, B and C, are **raw equivalent** if one can be obtained from the other by a sequence of elementary row operations.

Corollary. Suppose $[A|\vec{b}]$ and $[C|\vec{d}]$ are augmented matrices with same shape. If these two augmented matrices are row equivalent matrices, then the two systems are also equivalent.

Def. Echelon Form

An $m \times n$ matrix B is in **Echelon Form** if:

- 1. All rows whose elements are all zero are at the bottom of the matrix.
- 2. In every nonzero row, the first nonzero entry is 1.
- 3. If the (i + 1)-st row contains nonzero entries, then the 1-st non-zero entry is in a column to the right of the first nonzero entry in the i-th row.

Def. Reduced Echelon Form

A matrix that is in echelon form is also in **reduced echelon form** provided that the first nonzero entry in any row is the **only** nonzero entry in its **column**.

Note: The reduced echelon form of a linear system is unique.

Def. Inconsistent System

If a linear system whose augmented matrix $[A|\vec{b}]$ is in reduced echelon form and the last nonzero row of it has its leading 1 in the last column, then the linear system is inconsistent and has no solution.

Th. Let $A=[C|\vec{d}\,]$ be an matrix whose shape is [m, n+1] in reduced echelon form, where $[C|\vec{d}\,]$ represents a consistent system. Let A have $r\leq m$ nonzero rows. Then $r\leq n$ and in the solution of the system there are n-r variables that can be assigned arbitrary values.

Corollary. Consider an $(m \times n)$ system of linear equations. If m < n, then either the system is inconsistent or it has infinitely many solutions.

Def. Homogeneous System

A $(m \times n)$ system of linear equation given below in called a **homogeneous system** of linear equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = 0$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = 0$$

$$\dots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = 0$$
(13)

Remark. Homogeneous system always has a solution $x_i = 0 \ \forall i$ and this solution is called **trivial solution** or zeros solution, and other solution is called a **nontrivial solution**.

Th. A homogeneous system of linear equations with shape $m \times n$ always has infinitely many **nontrivial solutions** when m < n. [From the corollary above]

Application of Homogeneous System: Conic Sections and Quadric Surfaces

An interesting application of homogeneous equations involves the quadratic equation in two variables.

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0 (1)$$

If the equation above has real solutions, then the graph is a curve in the xy-plane. If at least one of a, b and c is nonzero, the resulting graph is known as a **conic section**.

Matrix

Def. Matrix Product

Scalar Definition

Let $A=(a_{i,j})$ be an $(m\times n)$ matrix, and let $B=(b_{i,j})$ be an $(r\times s)$ matrix. If n=r, then the product AB is the matrix $(m\times s)$ matrix defined by:

$$(AB)_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} \tag{2}$$

Vector Definition

Lemma. Let $A = [\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n]$, where for each $j, 1 \leq j \leq n$, \mathbf{A}_j denotes the j-th column vector of A with shape $(m \times 1)$. And let vector \mathbf{x} with shape $(n \times 1)$, we have:

$$A\mathbf{x} = x_1 \mathbf{A}_1 + x_2 \mathbf{A}_2 + \dots + x_n \mathbf{A}_n \tag{3}$$

Let $A=[{\bf A}_1,{\bf A}_2,\ldots,{\bf A}_n]$ with shape $(m\times n)$ and $B=[{\bf B}_1,{\bf B}_2,\ldots,{\bf B}_s]$ with shape $(n\times s)$, we have

$$AB = A[\mathbf{B}_1, \mathbf{B}_2, \dots, \mathbf{B}_s] = [A\mathbf{B}_1, A\mathbf{B}_2, \dots, A\mathbf{B}_s]$$

$$\tag{4}$$

Dot Product Definition

Let $A=[\alpha_1^T;\alpha_2^T;\cdots;\alpha_m^T]$ be an $(m\times n)$ matrix with row vector α_i^T . And $B=[\mathbf{B}_1,\mathbf{B}_2,\ldots,\mathbf{B}_s]$ with shape $(n\times s)$, the product AB is matrix:

$$(AB)_{i,j} = \alpha_i^T \mathbf{B}_j \tag{5}$$

Matrix Definition

Let $A = [\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n]$ and $B = [\beta_1^T; \beta_2^T; \dots; \beta_n^T]$, we have:

$$AB = \sum_{k=1}^{n} \mathbf{A}_{k} \beta_{k}^{T}$$

$$(\mathbf{A}_{k} \beta_{k}^{T})_{i,j} = A_{i,k} B_{k,j}$$

$$(6)$$

Prop. Properties of Matrix Operations

- 1. A + B = B + A
- 2. (A + B) + C = A + (B + C)
- 3. \exists unique matrix O with shape $(m \times n)$ that A + O = A for any matrix A with shape $(m \times n)$.
- 4. Given an $(m \times n)$ matrix A, there exists a unique matrix P with shape $(m \times n)$ s.t. A+P=O
- 5. Given matrices A,B,C with shape $(m\times n),(n\times p),(p\times q)$, we have (AB)C=A(BC)
- 6. r, s are scalars, we have r(sA) = (rs)A
- 7. r(AB) = (rA)B = A(rB)
- 8. With valid shape, we have (A + B)C = AC + BC
- 9. With valid shape, we have A(B+C)=AB+AC
- 10. (r+s)A = rA + sA
- 11. r(A + B) = rA + rB

Def. Transpose of a Matrix

If $A=(a_{i,j})$ is an $(m\times n)$ matrix, then the **transpose** of A, denoted as A^T , is the $(n\times m)$ matrix $A^T=(b_{i,j})$ and $b_{j,i}=a_{i,j}$.

Prop.

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(AB)^T = B^T A^T$$

3.
$$(A^T)^T = A$$

Def. Symmetric Matrix

A matrix A is symmetric if $A = A^T$

Prop. Q^TQ is **always** a symmetric matrix.

Def. Skew Symmetric Matrix

A square matrix, $A = (a_{i,j})$, is called skew symmetric if $A^T = -A$.

Linear Independence and Non-singular Matrix

Def. Linear Combination

If $A = [\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n]$, we call $x_1 \mathbf{A}_1 + x_2 \mathbf{A}_2 + \cdots + x_n \mathbf{A}_n$ a linear combination of the vectors $\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n$.

Th. System of linear equations A**x** = **b** is consistent if and only if **b** if a linear combination of the columns of A.

Note. Here \mathbf{x} is variable and unknown.

Remark. Homogeneous system $A\mathbf{x} = \theta$ always has a trivial solution $\mathbf{x} = \theta$.

Def. Linearly Independence

A set of m-dimensional vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is said to be **linearly independent** if the **only** solution to the vector equation

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_p \mathbf{v}_p = \theta$$
or
$$V\mathbf{a} = \theta \text{ where } V = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p]$$
(7)

is the trivial solution $a_1 = a_2 = \cdots = a_p = 0$.

The set of vectors is said to be **linearly dependent** if it is not linearly independent. That is, the set is linearly dependent if we can find a non-trivial solution to the equation above.

Remark. If a set of vectors has zero vector, then this set of vector must be linearly dependent.

Th. Let $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ be a set of vectors in \mathbb{R}^m . If p > m, then this set is linearly dependent. Else if $p \leq m$, this set of vectors may be either linearly independent or linearly dependent.

Def. Non-singular Matrix

An $(n \times n)$ matrix A is **nonsingular** if the only solution to $A\mathbf{x} = \theta$ is its trivial solution. Otherwise A is singular matrix.

Corollary. The $(n \times n)$ matrix $A = [\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n]$ is nonsingular matrix if and only if the set of vector $\{\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n\}$ is linearly independent.

Th. Let A be an $(n \times n)$ matrix. The equation $A\mathbf{x} = \mathbf{b}$ has **unique** solution for any $(n \times 1)$ column vector \mathbf{b} if and only if A is nonsingular.

Matrix Inverse and Properties

Def. Matrix Inverse

Let A be an $(n \times n)$ matrix. We say that A is **invertible** if we can find an $(n \times n)$ matrix A^{-1} s.t.:

$$A^{-1}A = AA^{-1} = I. (8)$$

The matrix A^{-1} is called an inverse for A.

Note. If A is invertible, then A^{-1} is unique.

The Existence of Inverses

Lemma. Let P, Q and R be $(n \times n)$ square matrix s.t. PQ = R. We have

$$(P \text{ is singular}) \lor (Q \text{ is singular}) \to (R \text{ is singular})$$

$$(9)$$

Th. Let A be an $(n \times n)$ matrix. Then A is invertible if and only if A is nonsingular.

Th. Let A be an $(n \times n)$ matrix. Then A is nonsingular if and only if A is row equivalent to I.

Prop. Properties of Matrix Inverse

Let A and B be $(n \times n)$ matrices, each of which has an inverse. Then:

- 1. A^{-1} has an inverse and $(A^{-1})^{-1} = A$.
- 2. AB has an inverse, and $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. If $k \neq 0$, then kA has an inverse and $(kA)^{-1} = (1/k)A^{-1}$.
- 4. A^{T} has an inverse and $(A^{T})^{-1} = (A^{-1})^{T}$.

Th. Let A be an $(n \times n)$ matrix. The following are equivalent:

- 1. A is nonsingular.
- 2. The column vectors of A are linearly independent.
- 3. $A\mathbf{x} = \mathbf{b}$ always has a unique solution.
- 4. *A* is invertible.
- 5. A is row equivalent to I.

Ill-Conditioned Matrix

In applications the equation $A\mathbf{x} = \mathbf{b}$ often serves as a mathematical model for a physical problem. In these cases it is important to know whether solutions to this system are sensitive to small changes in the right-hand side \mathbf{b} . If small changes in \mathbf{b} can lead to relatively large changes in the solution \mathbf{x} , then the matrix A is called **ill-conditioned**.

Ill-conditioned matrix usually has large scale inverse.

Partitioned Matrix (Block Matrix)

A matrix A is a (2 x 2) **block matrix** if it is represented in the form:

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \tag{10}$$

Note that the matrix A need not be a square matrix. The partition can have any shape.

Now suppose matrix B is also a (2 x 2) block matrix given by:

$$B = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} \tag{11}$$

with all submatrix products valid, we have:

$$AB = \begin{bmatrix} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\ A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4 \end{bmatrix}$$
 (12)