Capstone Design 1

Presentation 2

잘했조

Professor Choi Seibum

20100048 Kim Hyungkyu

20140013 Ko Geonhee

20140929 Pouya

20140425 Lee ahyoung

20150314 Park Sungbin

20150352 Park Jinwook

20150915 Ailian Chi

Designing vacuum system

- vacuum cleaner

Designing vacuum system

- vacuum pipe

Designing vacuum system

- releasing balls

Designing suspension system - first design

Designing suspension system - second design

Designing suspension system

- 1:8 scale

- ▶ We assumed about 3 kg for the whole robot
- ► The weight of a car is about 1500kg
 - ► 1:8 scale suspension will support about 1500/(8³)≈3 kg

Designing suspension system

- Preventing the pitching motion

Designing suspension system

- Experiment
- Vibration reduction experiment video

Camera video with No suspension

Camera video with suspension

Designing the cooling system

OpenCV PART

OpenCV

- Main Problems and Potential Solutions
 - Problem : Overlapping detection of the balls
 - Possible reasons :
 - Thresholding
 - Edge detector
 - False detection due to variety of light intensity

Solutions

Change the order of the main algorithm and move thresholding to later stages (Thresholding)

► Enhance the Accuracy by changing the boundary values

Work in Progress

Editing the code in order to address the multiple detection problem in ROS

Increase the correspondence between the contour and the ball

LabVIEW PART

1.LabVIEW part

- Apply Real time Application
 - ► Runs automatically when power is on

- Set byte size
 - ▶ 4 float data -> 16 byte
- Select moving motions
 - ▶ 4 motion forward, CW rotation, CCW rotation, suction

2. LabVIEW part

Float Data[4]

ROS PART

0. Overview of algorithm

1. Integration with OpenCV part

- Integration of ball_detect_node.cpp in ROS and main.cpp in OpenCV
- Process for sending camera image
 - Publisher: my_publisher
 - Message: camera image
 - Subscriber: ball_detect
- Process for sending ball position
 - ► Publisher: ball_detect
 - Message: ball position
 - Subscriber: data_integrate

2. Integration with LabVIEW part

- ► TCP/IP socket communication
- With a xbox-controller,
 - Client socket: xbox_ctrl
 - Message "float data[24]"
 - Server socket: myRIO
- Without a xbox-controller,
 - Client socket: data_integrate
 - Message "float data[3]"
 - Server socket: myRIO

4. Suction with Xbox

Final Video, Suction with ROS

5. Future Work

- Make the cooling system and balls releasing system
- Servo motor control
 - Storage Control
 - ▶ Use myRIO
- Suction motor control
 - On and off
 - ▶ Use motor drive
- Path planning
 - ▶ Algorithm to move our robot when no ball is detected.