TFY4115 Fysikk (MTEL/MTTK/MTNANO)

Løsningsforslag for "Matteøving" 1 - NANO

Oppgave 1.

Vi skal regne ut de fire andrederiverte av funksjonen $f(x,y) = \sin(x+y^2)$ og sjekke at de to "kryssleddene" er like:

$$\frac{\partial f}{\partial x} = \cos(x+y^2) \qquad \qquad \frac{\partial f}{\partial y} = 2y\cos(x+y^2)$$

$$\frac{\partial^2 f}{\partial x^2} = -\sin(x+y^2) \qquad \qquad \frac{\partial^2 f}{\partial y^2} = 2\cos(x+y^2) - 4y^2\sin(x+y^2)$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\cos(x+y^2)\right) = -2y\sin(x+y^2) \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(2y\cos(x+y^2)\right) = -2y\sin(x+y^2).$$

Vi ser at rekkefølgen ikke spiller noen rolle, dvs vi kan derivere først mh
py og deretter mhpx, eller omvendt, svaret blir det samme.

Oppgave 2.

Vi har et terreng omkring en fjelltopp som kan beskrives med høydefunksjonen

$$h(x,y) = h_0 \frac{e^{-x^2/a^2}}{1 + y^2/a^2}$$

der h_0 er en konstant og lik høyden på fjelltoppen, mens a også er en konstant og angir en "karakteristisk lengde" for hvor raskt høyden endrer seg i dette terrenget.

a Vi ser vel uten videre at maksimal høyde er i origo, $h(0,0) = h_0$.

b Vi skal finne ut i hvilken retning terrenget er brattest i posisjonen (a, a). Da må vi regne ut gradienten til h i (a, a) siden gradienten nettopp peker i den retningen h øker raskest. Vi trenger da de partiellderiverte av h mhp x og y:

$$\frac{\partial h}{\partial x} = \left(-\frac{2x}{a^2}\right) h_0 \frac{e^{-x^2/a^2}}{1 + y^2/a^2}$$

$$\frac{\partial h}{\partial y} = \left(-\frac{2y}{a^2}\right) h_0 \frac{e^{-x^2/a^2}}{(1 + y^2/a^2)^2}$$

Vi setter inn (x, y) = (a, a) og finner

$$\vec{\nabla}h(a,a) = \hat{x}\frac{\partial h}{\partial x}(a,a) + \hat{y}\frac{\partial h}{\partial y}(a,a)$$

$$= \left(-\frac{2}{a}\right)h_0\frac{e^{-1}}{2}\hat{x} + \left(-\frac{2}{a}\right)h_0\frac{e^{-1}}{4}\hat{y}$$

$$= -\frac{h_0}{2ea}(2\hat{x} + \hat{y})$$

Det betyr at i posisjonen (a, a) peker $-\vec{\nabla} h$ i en retning [2, 1] gitt ved vinkelen

$$\tan \alpha = \frac{1}{2} \quad \Rightarrow \quad \alpha = \arctan \frac{1}{2} \simeq 27^{\circ}$$

i forhold til x-aksen (som er f.eks. østover). Terrenget avtar raskest i denne retningen og stiger raskest i den motsatte retningen.

c Vi skal vil slutt påvise at origo virkelig er en fjelltopp. Da må vi ha $\vec{\nabla} h = 0$ i origo, samt at de andrederiverte må være negative.

La oss ikke skrive alt dette ut i detalj, men derimot se litt nærmere på det vi har. Vi ser at x-komponenten av ∇h er proporsjonal med x, og dermed lik null i x = 0. Tilsvarende er y-komponenten av ∇h proporsjonal med y, og dermed lik null i y = 0. Altså er origo et stasjonært punkt. Videre ser vi at de andrederiverte mhp x og y, dvs det vi kalte "kryssleddene", begge vil bli proporsjonale med faktoren xy, slik at disse er lik null i origo.

Vi står igjen med $\partial^2 h/\partial x^2$ og $\partial^2 h/\partial y^2$:

$$\frac{\partial^2 h}{\partial x^2} = \left(-\frac{2}{a^2}\right)h + x^2 \cdot (\dots) ,$$

$$\frac{\partial^2 h}{\partial y^2} = \left(-\frac{2}{a^2}\right)\frac{h}{(1+y^2/a^2)} + y^2 \cdot (\dots)$$

Følgelig har vi negativ krumning i origo, og det er et maksimumspunkt.

Figuren viser to "snitt" gjennom fjelltoppen, hhv xh-planet (heltrukken linje) og yh-planet (stiplet linje). Legg merke til at eksponentialfunksjonen går raskest mot null.

Oppgave 3.

Newtons 2. lov gir diffligningen som skal løses:

$$ma = m\frac{\mathrm{d}v}{\mathrm{d}t} = -bv + mg\sin\theta = -b\left(v - \frac{mg\sin\theta}{b}\right)$$

Vi ganger med $dt/m(v-mg\sin\theta/b)$ på begge sider:

$$\frac{\mathrm{d}v}{v - mg\sin\theta/b} = -\frac{b}{m}\mathrm{d}t$$

Integrasjon fra t = 0 til t gir

$$\ln\left[\left(v(t) - mg\sin\theta/b\right] - \ln\left[v(0) - mg\sin\theta/b\right]\right) = -\frac{bt}{m}$$

Eksponentiering på begge sider gir så, med v(0) = 0,

$$\frac{v(t) - mg\sin\theta/b}{-mg\sin\theta/b} = e^{-t/\tau}$$

der vi har innført "tidskonstanten" $\tau \equiv m/b$. Ordner vi litt finner vi endelig

$$v(t) = \tau g \sin \theta \left(1 - e^{-t/\tau} \right).$$

Merk at vi oppnår en maksimal hastighet etter "lang tid", $t \gg \tau$. Da er friksjonskraften bv og tyngdekraftens komponent langs skråplanet $mg\sin\theta$ like store (men motsatt rettet) slik at total kraft er null:

$$v_{\max} = \tau g \sin \theta = \frac{mg \sin \theta}{b}.$$

Posisjonen (målt langs skråplanet) x(t) finner vi ved å integrere hastigheten (med x(0) = 0):

$$x(t) = x(0) + \int_0^t v(t)dt$$
$$= \tau gt \sin \theta - \tau^2 g \sin \theta \left(1 - e^{-t/\tau}\right)$$

Oppgave 4.

Arealet mellom kurvene $x=0, x=\pi/4, y=\sin x$ og $y=\cos x$ er:

$$A = \int_0^{\pi/4} dx \int_{\sin x}^{\cos x} dy$$
$$= \int_0^{\pi/4} dx (\cos x - \sin x)$$
$$= \Big|_0^{\pi/4} (\sin x + \cos x)$$
$$= \frac{\sqrt{2}}{2} - 0 + \left(\frac{\sqrt{2}}{2} - 1\right)$$
$$= \sqrt{2} - 1$$

Oppgave 5.

Arealet mellom de to parablene $x^2 - 4$ og $-x^2 + 4$ skal bestemmes. Vi innser at vi må integrere fra x = -2 til x = 2:

 $A = \int_{-2}^{2} dx \int_{x^{2} - 4}^{-x^{2} + 4} dy = \int_{-2}^{2} dx (8 - 2x^{2}) = \left[8x - \frac{2}{3}x^{3} \right]_{-2}^{2} = \frac{64}{3}.$

Til slutt skal vi finne volumet av objektet vi får når dette dreies omkring y-aksen. Hvis vi tenker oss en tynn søyle i posisjon x, med bredde dx og høyde $8-2x^2$, og roterer denne en hel runde rundt y-aksen, skulle vi få et tynt sylinderskall med volum $\mathrm{d}V = \mathrm{d}x \cdot (8-2x^2) \cdot 2\pi x.$

Dette må integreres fra x = 0 til x = 2 for å få med hele volumet:

$$V = \int dV = \int_0^2 dx \cdot (8 - 2x^2) \cdot 2\pi x = 2\pi \left[4x^2 - \frac{1}{2}x^4 \right]_0^2 = 2\pi [16 - 8] = 16\pi.$$

Oppgave 6.

Vi skal bestemme Taylorrekkene til noen kjente funksjoner:

 \mathbf{a}

$$\sin x = \sin 0 + x \cos 0 - \frac{1}{2}x^2 \sin 0 - \frac{1}{2 \cdot 3}x^3 \cos 0 + \dots$$

$$= x - \frac{1}{2 \cdot 3}x^3 + \dots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

b

$$\cos x = \cos 0 - x \sin 0 - \frac{1}{2}x^2 \cos 0 + \frac{1}{2 \cdot 3}x^3 \sin 0 + \dots$$

$$= 1 - \frac{1}{2}x^2 + \dots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

 \mathbf{c}

$$(1+x)^{\alpha} = 1 + x\alpha + \frac{1}{2}x^{2}\alpha(\alpha - 1) + \frac{1}{2 \cdot 3}x^{3}\alpha(\alpha - 1)(\alpha - 2) + \dots$$

$$= \sum_{n=0}^{\infty} {\alpha \choose n} x^{n}$$

$$\text{med } {\alpha \choose n} = \frac{\alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - (n-1))}{n!}$$

 \mathbf{d}

$$\ln(1+x) = \ln 1 + x \frac{1}{1+0} - \frac{1}{2}x^2 \frac{1}{(1+0)^2} + \frac{2}{2 \cdot 3}x^3 \frac{1}{(1+0)^3} + \dots$$
$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots$$
$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

Oppgave 7.

Vi skal bestemme Ω til andre orden i den lille parameteren ε/Ω_0 :

$$\Omega = -\varepsilon + \sqrt{\Omega_0^2 + \varepsilon^2} = -\varepsilon + \Omega_0 \sqrt{1 + \frac{\varepsilon^2}{\Omega_0^2}}$$

Vi kan nå bruke Taylorrekke **c** ovenfor, med $\alpha = 1/2$ og $x = \varepsilon^2/\Omega_0^2 \ll 1$, og skrive

$$\sqrt{1 + \frac{\varepsilon^2}{\Omega_0^2}} \approx 1 + \frac{1}{2} \frac{\varepsilon^2}{\Omega_0^2}$$

Dermed:

$$\Omega \approx -\varepsilon + \Omega_0 + \Omega_0 \cdot \frac{1}{2} \frac{\varepsilon^2}{\Omega_0^2}$$

$$= \Omega_0 - \varepsilon + \frac{\varepsilon^2}{2\Omega_0}$$

$$= \Omega_0 \left(1 - \frac{\varepsilon}{\Omega_0} + \frac{1}{2} \frac{\varepsilon^2}{\Omega_0^2} \right)$$

Med oppgitte tall har vi:

$$\epsilon = \frac{2\pi}{T_{\rm d}} = \frac{2\pi}{26, 8 \cdot 3600 \, \rm s} = 6, 5 \cdot 10^{-5} \, \rm s^{-1}$$

$$\Omega_0 = \sqrt{\frac{g}{L}} = \sqrt{\frac{9, 81}{25, 0}} \, \rm s^{-1} = 0, 626 \, s^{-1}$$

$$\frac{\epsilon}{\Omega_0} = 1, 0 \cdot 10^{-4} \ll 1 \quad \text{(nesten ubetydelig)}$$

$$\frac{\epsilon^2}{\Omega_0^2} = 1, 0 \cdot 10^{-8} \quad \text{(helt uten betydning)}$$

Neste ledd i summen vil være "av orden" $\varepsilon^3/\Omega_0^3 \approx 1, 0\cdot 10^{-12}$.

Oppgave 8.

Kulas høyde over likevektspunktet er

$$h = L - L\cos\theta = L(1 - \cos\theta).$$

For små θ kan vi bruke Taylorrekke **b** ovenfor: $\cos\theta\approx 1-\frac{1}{2}\theta^2$. Dermed er

$$E_{\rm p}=mgh=mgL(1-\cos\theta)\approx mgL\left(1-(1-\frac{1}{2}\theta^2)\right)=\frac{1}{2}mgL\theta^2;$$
altså så lenge $\theta\ll 1.$

