FEATURE SELECTION AND CLASSIFICATION OF HUMAN BRAIN MRI

Contents

- Motivation
- Problem Statement
- **Contributions**
- Background and Literature Review
- Proposed Approach
- > Experimental Setup and Results

Motivation

- •Brain Abnormality ⇒ life threatening.
- Human experts
 - Time consuming
 - Subjective
 - Expensive.

Problem Statement

- ✓ To propose an optimum subset of features that can distinguish normal and abnormal Human Brain MRI scans.
- ✓ To introduce a system for classification based on the selected subset of features which is better than the already existing systems.

Contributions

- (i) Different texture families are combined for MRI classification.
- (ii) GA swarm intelligence ⇒ for feature selection, better than traditional statistical approaches.
- (iii) Comparison between proposed classifier and existing research.
- (iv) Research paper is about to be submitted.

Background & Literature Review

Features for Image Classification

Features

A set of variables believed to carry discriminating and characterizing information about the objects under consideration.

Common Types of Features

- Color
- Edge
- Shape
- Texture

Most distinguishing feature *[1]

[1] J.Juntu, A. M. De Schepper, P.Van Dyck, D.Van Dyck, J. Gielen, P.M. Parizel, and J. Sijbers, "Classification of Soft Tissue Tumors By Machine Learning Algorithms". INTECH 2011

Why Texture Features?

- Texture information can improve accuracy of Brain MRI classification.[1-2]
- Combination of texture features from different families can lead to better classification performance .[3]

^[1] J.Juntu, A. M. De Schepper, P. Van Dyck, D. Van Dyck, J. Gielen, P.M. Parizel, and J. Sijbers, "Classification of Soft Tissue Tumors By Machine Learning Algorithms". 2011

^[2] De Schepper, A., Vanhoenacker, F., Parizel, P. & Gielen, J. (eds) (2005). Imaging of Soft Tissue Tumors, 3rd edn, Springer.

^[3] M. A. García, D. Puig, "Improving Texture Pattern Recognition by Integration of Multiple Texture Feature Extraction Methods", pp. 7-10, 2002.

Texture Feature Families

- Du Buf et al [6] compared
 - GLCM
 - Fractal
 - Michell'
 - Knutsson's
 - Laws'
 - Unser's
 - curvilinear integration

GLCM found to be best

[6] J.M.H. du Buf, M. Kardan, and M. Spann. Texture feature performance for image segmentation. Pattern Recognition, 23(3/4):291-309

Texture Feature Families

- Weszka et al [7] compared
 - Fourier power spectrum
 - GLCM
 - first-order statistics.

GLCM found to be best

- R. Porter et al [8] compared
 - Wavelet Transform
 - Gabor Filter
 - Gaussian Markov Random Fields

Wavelet found best

- [7] J. Weszka, C. Dyer and A. Rosenfeld, A comparative study of texture measures for terrain classification, *IEEE Trans. Syst. Man. Cybernet. SMC-6*, 269-285′(1976).
- [8] R. Porter and N. Canagarajah. Robust rotation-invariant texture classication: wavelet, gabor filter and gmrf based schemes. Vision, Image and Signal Processing, IEE Proceedings -, 144(3):180 {188, jun 1997.

Gray Level Co-occurrence Matrix (GLCM)

Contains a count of number of times a given feature occurs in a particular spatial relation to another feature.

• For a given distance d four angular GLCMs (θ = 0, 45, 90 and 135 degrees).

EXAMPLE

➤ Grey level co-occurrence matrix

GLCM Features

- GLCM Features, using d=1 and four angles (θ = 0, 45, 90 and 135 degrees).
- Calculating mean, range and variance of GLCM to avoid direction dependency (Haralick et al)
- 17 x 3 = 51 features

$$M_{T}(d) = \frac{1}{N_{\theta}} \sum_{\theta} T(d, \theta)$$

$$R_T(d) = {}^{max}_{\theta}[T(d,\theta)] - {}^{min}_{\theta}[T(d,\theta)]$$

$$V_T^2(d) = \frac{1}{N_{\theta}} \sum_{\theta} [T(d, \theta) - M_T(d)]^2$$

Wavelet Transform

Provides a multi-scale analysis of an image.

- Information:
 - Horizontal(HL) details.
 - Vertical(LH) details.
 - Diagonal(HH) details.
 - Approximation(LL)

Wavelet Transform

- 4-channels or sub-bands per each scale of decomposition.
- Total of 12 features are extracted.

Feature Selection

Feature subset selection is a process of selecting a subset of features from a large number of features such that the selected features are powerful enough to discriminate effectively among different classes.

Methods for MRI feature selection

Meta-heuristic

- A. Genetic Algorithm[5]
- B. Particle Swarm Optimization.

Genetic Algorithm

- > Same behavior as natural selection of individuals.
- ➤ Based on the principle of Darwin theory "Survival of fittest".
- ➤ Used GA for the selection of optimal features.

Genetic algorithm

There are five phases

- ➤ Initial population
- > Tournament selection
- **>** Selection
- **Crossover**
- **►** Mutation
- > Fitness function

Initial population

- > Begins with randomly generated states .
- ➤ These stats are satisfactory to the problem

					_
1	1	0	0	0	0 0 1
1	0	1	1	0	1 0 1
1	1	0	1	0	0 0 1
1	0	0	1	0	1 1 0
					-
-					•
-					•
-					•
-					•
_1	1	1	1	0	111

N*M N=size of population M=number of features

Fitness function

- > The fitness function evaluates the fitness of individuals.
- A good fitness function should return better state.
- ➤ The fitness function give a score to each state.
- ➤ The probability of being chosen for reproduction depends on the fitness state.
- Fitness function KNN/SVM

selection

- > Two pairs are selected at random to reproduce
- ➤ They are selected based on their fitness function score.
- ➤ One may be selected more than once or one may not be selected at all.

Crossover

Crossover causes different characteristics to be passed to the offspring from the parents.

p1: 0001001110010010

p2: 1010001001000011

After crossover

0001001101000011

Note :crossover probability taken =0.5

1010001010010010

Mutation

- Mutation = Growth of genes
- ➤ In our case, It means flipping of bits.

```
1000100110 Mutation prob = 0.2
0100100110
```

Flow chart:
GA for
Feature
Selection

Figure 2: flow Chart of Feature selection (GA)

Machine Learning Classifiers

- Classifier: An algorithm which adjusts its parameters to find the correct decision boundaries –through a learning algorithm using a training dataset.
- Error: Incorrect labeling of the data by the classifier.
- Training Performance: The ability/performance of the classifier in correctly identifying the classes of the training data, which it has already seen.
- Generalization (Test Performance): The performance of the classifier in identifying the classes of previously unseen data.

Classifiers

- J.Juntu at el [1] compared
 - Neural Network Classifier
 - Decision trees Classifier
 - Parzen Classifier
 - KNN
 - SVM

SVM proved to be best

^[1] J.Juntu, A. M. De Schepper, P.Van Dyck, D.Van Dyck, J. Gielen, P.M. Parizel, and J. Sijbers, "Classification of Soft Tissue Tumors By Machine Learning Algorithms". 2011

KNN Classifier

- 1. Measure distance to all points.
- 2. Find closest "k" points.
- 3. Assign majority class.

$$euclidean\ distance = \sqrt{(a'-a)^2 + (b'-b)^2}$$

- Nearest neighbour is red classify 'a' as red
- ➤ For K=1

- 2 out of 3 nearest neighbours are green classify a as green
- \rightarrow For K=3

We always consider Odd instances in Euclidean circle.

SVM Classifier

- A supervised classifier.
- Maps features to a higher dimensional space .
- Learns a maximum-margin hyper-plane from labeled training samples of different classes.
- Hyper-plane serves as a boundary between classes.
- Kernels:
 - Linear
 - Polynomial

Proposed Approach

Why Preprocessing?

> Skull removing

Pre Processing Flow Chart

Step 1:

Original MRI Scan

After Division

Step 2,3

After Removing Skull (Merged)

HOLES

Step 4,5&6

After Removing Holes

Product of Original & B/W

Stripped Part

Comparison

Original

After Processing

Proposed Approach

- Hybrid Machine Learning and Swarm Intelligence
 - Combine different texture feature calculation methods
 - Apply Swarm Intelligence to select features
 - Use selected features in a Machine Learning setup for classification
 - Propose a hybrid classifier with optimal efficiency and performance

Proposed Approach

Over all system

Classifiers used

- Two Different Classifiers are evaluated
 - 1). K Nearest Neighbors (KNN)
 - 2). Support Vector Machine (SVM)

10 Fold validation

- Each data set is divided in 10 equal parts.
- 9 parts are selected for training.
- One part is used for testing.
- The process is repeated 10 times to compute mean accuracy.

EXPERIMENTAL RESULTS

System Setup

Datasets

Dataset 1). Harvard Medical School (60 image samples, size 256 x 256).(1)

Sample images Dataset

Results

Results
GA-KNN
K=1,K=3,
K=5
Harvard
Dataset

Sr. No.	Accuracy	Number of features	Value of K	Features
1	86.6 %	2	K=3	Diff_entropy(r), Variance(v)
2	93.34 %	3	K=1	Diff_entropy(m), Mean_y(m), Deviation_x(r)
3	96.67%	2	K=5	Variance(r), entropy(r)
4	70%	12	K=5	All wavelet features.
5	75%	51	K=5	All GLCM features.
6	70%	63	K=5	All features (GLCM + Wavelet).
7	66.67%	12	K=3	All wavelet features.
8	76.67 %	51	K=3	All GLCM features.
9	66.7 %	63	K=3	All features (GLCM + Wavelet).
10	71.66 %	12	K=1	All wavelet features.
11	86.67 %	51	K=1	All GLCM features.
12	71.67 %	63	K=1	All features (GLCM + Wavelet).

GRAPH FOR K=1

Confussion matrix(3 feature set,KNN,K=1)

	Normal	Abnormal	
Normal	18	2	90%
Abnormal	2	38	95%
	90%	95%	93.3%

	Sr. No.	Efficiency	Number of features	Features
	1	96.67%	2	Homogeneity(m),sum_average(m)
Results GA-SVM Polynomial degree-3	2	95%	15	Diff_entropy(m), contrast(m),mean_y(m),diss similarity(r), homogeneity(r), maximum probability, inertia(r),difference entropy(r), sum average(r),variance(r),entropy(r) ,contrast(r),energy(r),homogeneity(v),energy(v))
	3	92%	51	All GLCM features
	4	81.67	12	All Wavelet Transform Features.
	5	96.67	63	All Features (GLCM+Wavelet)

FOR POLYDEGREE 3

Feature 63 SVM, polynomial degree 3

Normal **Abnormal** Normal 100% 20 0 Abnormal 38 95% 2 96.67% 90.9% 100%

No. features 98.34% Difference entropy(m), mean_y(m), 3 1 diviation_x(r) Shape(m), Difference 95% 12 2 entropy(m),contrast(m),diviation_y(m), mean_y(m), homogeneity (r), diviation_x(r) ,sum entropy(v)variance(v), mean(sym2_1D), varience 4(db5_1D) 96.67% All GLCM features 3 51 8o% All Wavelet Transform Features. 12 4 All Features (GLCM+Wavelet) 96.67 63 5

Features

Results GA-SVM Linear

Sr.

Efficiency

Number of

SVM-LINEAR

Confussion matrix(3 feature set linear)

	Normal	Abnormal	
Normal	20	O	100%
Abnormal	1	39	97.5
	95.23%	100%	98.34%

Best Results Summary

Sr. No.	Accuracy	Number of features	SVM Kernel
1	98.34 %	3	SVM-Linear
2	93.34 %	3	K= 1
3	86.67 %	2	K=3
4	96.67 %	2	K=5
5	96.67 %	2	SVM-Polynomial Degree 3