

KONGERIKET NORGE

The Kingdom of Norway

RECEIVED
FEB-4 2003
TC 1700 MAIL ROOM

Bekreftelse på patentsøknad nr

Certification of patent application no

1999 6457

Det bekreftes herved at vedheftede dokument er nøyaktig utskrift/kopi av ovennevnte søknad, som opprinnelig inngitt 1999.12.23

It is hereby certified that the annexed document is a true copy of the above-mentioned application, as originally filed on 1999.12.23

2001.03.02

Freddy Strømmen

Freddy Strømmen
Seksjonsleder

Ellen B. Olsen

Ellen B. Olsen

PATENTSTYRET

Styret for det industrielle rettsvern

PATENTSTYRET

ER /ER

23 DES 99 996457

18

Søker: Fridtjov Johansen
Høybråtenvn. 11A
1055 OSLO

Fullmektig: ONSAGERS AS
Postboks 265 Sentrum
N-0103 OSLO

Oppfinner: Fridtjov Johansen
Høybråtenvn. 11A
1055 OSLO

**Oppfinnelsens
tittel:** Miljøvennlig isolasjonsmateriale og fremgangsmåte for
fremstilling av dette

Denne oppfinnelse gjelder et miljøvennlig isolasjonsmateriale, nærmere bestemt en isolasjonsmatte for isolasjon av bygninger, boliger etc. og en fremgangsmåte for å fremstille denne. Matten er allergisikker og nær 100% resirkulerbar.

Bakgrunn

- 5 I dag blir det ofte benyttet matter av stein- eller glassull for isolering av bygninger, boliger og andre byggverk. Begge disse typene isolasjonsmatter er beheftet med miljømessige ulemper.

Glassull blir f.eks. framstilt ved å smelte standard glass som tilsettes noen tilsetningsstoffer som gir glasset en lav varmeledningsevne, for deretter å slynge ut glasset ved hjelp av hurtigroterende viklingsmaskiner til lange tynne tråder.
 10 Trådene samles sammen og bindes ved hjelp av et fenollim til f.eks. isolasjonsmatter med varierende tykkelse og stivhet. Steinull blir produsert på en analog måte, men nå er det en bergart som blir smeltet, tilsatt kalk og slynet ut i hurtigroterende viklingsmaskiner. Også her blir det benyttet et fenollim for å danne
 15 isolasjonsmatter. Begge disse prosessene krever høye temperaturer på mange hundre grader Celsius, og dermed et relativt høyt energiforbruk, og de bruker ikke-fornybare ressurser som henholdsvis stein og sand.

Et kjent problem innen bygningsbransjen er at begge typene isolasjonsmatter kan gi allergireaksjoner, kløe, svie og sår hals, spesielt under arbeid med å legge mattene. I tillegg er fibrene harde og vil til en viss grad penetrere huden slik at mattene stikker og gir ubehag mot bar hud. Slike fiberåler kan gi mye irritasjon og i tillegg være vanskelig å få plukket ut av huden. Dermed bør man benytte åndedrettsvern og heldekkende tekstiler under arbeid med isolasjonsmatter. Dette både kompliserer og fordyrer byggeprosessen.

- 25 Et annet problem er at limet vil etter en tid tørke inn og smuldre opp slik at stein- eller glassfibre i isolasjonsmaterialet vil løsne. Dermed vil det i mange tilfeller sive fibre inn i bygningen gjennom sprekker etc. og forringje inneluften. Det er kjent flere eksempler på at det er funnet uakseptabelt mye glassfibre og/eller steinull-fibre i filtrene til lufteanleggene til f.eks. barneskoler. Det er i dag mistanke om at glassfibre kan ha en kreftfremkallende virkning. En annen konsekvens av at limet forstøves er at isolasjonsmattene vil etter en tid sige sammen, noe som forringjer isolasjonsmaterialets isolasjonsevne. Fra et miljømessig standpunkt er dette uheldig fordi mattene blir dårlig egnet for gjenbruk, og fordi en redusert isolasjon av bygningene resulterer i økt energiforbruk til oppvarming.

- 35 Det er derfor et behov for nye typer isolasjonsmaterialer som kan løse ovennevnte problemer, og som er miljøvennlig både mot mennesker og miljøet forøvrig.

Kjent teknikk

Det er kjent fra bilindustrien å lage isolasjonsmatter for biler ved å rive opp brukte klær til sjoddi og lime dette med akryllim til tynne harde plater. Denne metoden vil imidlertid kun virke for tynne plater da tykke sjoddilag holdt sammen av lim vil unngåelig splittes opp ved behandling. Dessuten vil platene bli for stive til å være praktisk i bruk som bygningsisolasjon.

Oppfinnelsens målsetning

Det er en hovedmålsetning med denne oppfinnelsen å fremskaffe et isolasjonsmateriale som er miljøvennlig under produksjon og bruk.

- 10 Det er også en målsetning med denne oppfinnelsen å fremskaffe et isolasjonsmateriale som er astma- og allergivennlig, både for produksjonsarbeidere og brukere av bygninger som er isolert med produktet.

En ytterligere målsetning med denne oppfinnelsen er å fremskaffe et isolasjonsmateriale som benytter et avfall som råstoff og som kan resirkuleres fullstendig etter endt levetid.

Redegjørelse for oppfinnelsen

Oppfinnelsens målsetninger kan oppnås ved det som framgår av vedlagte krav og det som framgår av nedenstående beskrivelse av oppfinnelsen.

- 20 Oppfinnelsen målsetning kan oppnås ved at isolasjonsmaterialet produseres av brukte tekstiler som rives opp til sjoddi, blandes med en lavtsmeltende polyester til en homogen masse som formes til ønsket form, f.eks. matter og deretter varmebehandles inntil at polyesteren smelter og binder sammen fibrene i sjoddien for å danne isolasjonsmaterialet. Mengde polyester som tilsettes avhenger av ønsket stivhetsgrad på det ferdige produkt, og vil normalt være innenfor 5-50 vekt%, fortrinnsvis 10-30 vekt%, og mest fortrinnsvis 15-20 vekt%.

- 25 Det er også mulig å innblande opptil 30-40 vekt% returpapir/papp i sjoddien. I dette tilfellet blir papiret/pappen opprevet til tilsvarende malegrad som tekstilene for så å bli oppblandet med tekstilfibrene og polyesteren til en homogen masse. Deretter formes massen til ønsket form og varmebehandles inntil at polyesteren smelter og binder sammen fibrene (både papir/papp- og tekstilfibrene) for å danne isolasjonsmaterialet.

- 30 Det kan benyttes alle former for brukte tekstiler. Tekstiler som gir lange fibrer, såsom ull etc. er spesielt egnet, men oppfinnelsen fungerer helt utmerket med tekstiler med kortere fibre, f.eks. bomull og syntetiske tekstiler. På grunn av krav til isolasjonsmaterialers brannbestandighet, bør tekstiler som inneholder

brannfarlige materialer, f.eks. plastmaterialer som oljehyre etc. unngås helt eller delvis. Til denne oppfinnelsen foretrekkes det å bruke innsamlede brukte klær og tekstilrester fra møbelindustrien.

- Det kan benyttes enhver polyester såfremt den er lavtsmeltende, dvs. smelter ved 5 temperaturer under 300°C, helst under 200°C. Det er mest foretrukket å benytte polyestere som smelter i området 150-170°C. Man bør helst unngå å benytte polyestere som har et vesentlig lavere smeltepunkt enn 150°C p.g.a. at isolasjonsmaterialet må tåle lett oppvarming uten fare for at polyesteren mister limeffekten ved at den resmelter og forårsaker en utflytning og/eller 10 sammenpakning av tekstilfibrene. Et annet moment er at jo lavere smeltepunkt, desto større blir damptrykket til polyesteren, og desto mer uønskelig avgassing av polyesteren vil oppstå. Til denne oppfinnelsen er det foretrukket å benytte isotaktisk polypropylen da denne polyesteren har et smeltepunkt rundt 165°C, er fiberdannende og er en meget billig polyester.
- 15 For å gi isolasjonsmaterialet godkjent brannbestandighet, bør det tilsettes brannhemmende midler. Det er gjennomført branntester på matter av isolasjonsmaterialet i henhold til oppfinnelsen ved SINTEF Bygg og miljøteknikk - Norges branntekniske laboratorium som har blitt tilsatt 2,5 kg Station 1 per m³ isolasjonsmasse, noe som tilsvarer 0,25 l/m² for en 10 cm tykk matte. Station 1 er 20 et kommersielt tilgjengelig vannbasert giftfritt brannhemmende middel. Det kan også benyttes andre brannhemmende midler spå fremt de er giftfrie og miljøvennlige. Testene dokumenterer at matter lagd av isolasjonsmaterialet i henhold til oppfinnelsen, tilfredsstiller kriteriene for løs isolasjonsmasse i henhold til standard NT FIRE 035 og i henhold til *Melding HO-1/94, Plast i bygninger* fra 25 Statens bygningstekniske etat. Dette er en standard som gjelder for stort sett alle bygninger. Unntak er bygninger som klassifiseres i brannklasse 4, tiltaksklasse 3 eller risikoklasse 6.

- Det er også gjennomført tester av mattene ved Mycoteam as som viser at isolasjonsmaterialet kan benyttes under normale fuktforhold uten fare for vekst av 30 muggsopp. For anvendelser hvor det er fare ekstra mye fuktighet, kan det selvsagt tilsettes soppmidler til isolasjonsmaterialet.

- Ved at det benyttes brukte tekstiler/tekstilavfall og eventuelt returpapir/papp som rives opp til sjoddi, blir dette isolasjonsmaterialet spesielt miljøvennlig. For det første er råmaterialet resirkulerte materialer som i dag i stor grad enten brennes i 35 søppelanlegg eller deponeres i søppelfyllinger. Dermed bidrar oppfinnelsen til å redusere avfallsmengdene og avgivelse av klimagasser. I Norge kastes 3500-4000 tonn tekstilavfall hvert år. Det er kjent at tekstilavfall vil avggi metangass under forråtnelse. Metangass er en sterk drivhusfremmende gass hvis den slippes ut i

atmosfæren. Også brenning av tekstilavfall avgir klimagasser, i dette tilfellet CO₂. Det er av denne grunn f.eks. innført en lov i Tyskland som pålegger resirkulering av tekstiler, og det jobbes med å få en tilsvarende lov for hele EU-området.

Materialet er også gunstig ved at det krever relativt lite energi under produksjonen.
 5 F.eks. er energibehovet for en isolasjonsmatte i henhold til oppfinnelsen på 1 m² og 15 cm tykkelse ca. 4 kWh, mens for en tilsvarende Glava-matte er energiforbruket på ca. 14 kWh eller 3,5 ganger så mye. Dette er opplagt en betydelig innsparing. I tillegg vil foreliggende oppfinnelse spare energi ved at isolasjonsmatter lagd av dette materialet vil holde på formen i all overskuelig framtid slik at
 10 isolasjonsevnen holdes intakt over meget lange tidsrom. Dette er ikke tilfelle med mange av dagens isolasjonsmaterialer. Dermed vil behovet for energi til oppvarming av bygningene/objektene som benytter isolasjonsmaterialet reduseres i forhold til behovet som dagens isolasjonsmaterialer gir.

I tillegg er isolasjonsmaterialet i henhold til oppfinnelsen vennlig mot brukerne, dvs. bygningsarbeidere og de etterfølgende beboer(ne) ved at materialet er lite astma- og allergifremkallende, avgir nesten ikke helseskadelige gasser og avgir lite støv. Dermed blir isolasjonsmaterialet spesielt egnet for astmatikere og allergikere og vil medvirke til at inneklimaet blir mye bedre for disse. Det er dokumentert flere tilfeller av at dagens isolasjonsmaterialer av typen glass- og/eller steinull vil avggi støv i form av fibre som er helseskadelige. Fibrene avgis spesielt under oppføring av bygget og rester av dette blir liggende i bygget i lang tid tiltross for rengjøring, men kan også avgis over tid ved at limet som holder sammen fibrene til en matte vil etterhvert tørke inn. Den sistnevnte effekten medfører at inneklimaet i bygningen tilføres fiberstøv og at isolasjonsmaterialet tynnes ut/siger sammen slik at bygningens isolasjon svekkes over tid.
 20
 25

Et ytterligere moment er at isolasjonsmaterialer lagd i henhold til oppfinnelsen er så godt som 100% resirkulerbare. Brukt isolasjonsmateriale er nesten like godt egnet som råstoff til nye isolasjonsmatter som tekstilavfall, og kan utmerket godt innblandes dette under produksjon av isolasjonsmateriale i henhold til oppfinnelsen. Det at materialet kan resirkuleres vil også bidra til å redusere avfallsmengdene som må deponeres. Bygningsbransjen er en stor bidragsyter til avfall for deponering.
 30

Detaljert beskrivelse av oppfinnelsen

Oppfinnelsen vil nå bli beskrevet i større detalj under henvisning til Fig. 1 og et foretrukket utføringseksempel.
 35

Fig. 1 viser et eksempel på en isolasjonsmatte i henhold til oppfinnelsen.

Eksempel på produksjon av en foretrukket isolasjonsmatte

Innsamlede brukte klær, såkalt avfallstøy ble revet i stykker i en Picker 800 maskin. Maskinen skilte også ut knapper, glidelåser, metallspenner etc. fra tekstilrestene. Deretter ble de opprevne tekstilene sendt til en tresylinders sjoddimaskin. Sjoddimaskinen rev opp tekstilrestene ytterligere til tekstilfibrer, såkalt sjoddi. Sjoddi ble sendt til en vektfordeler hvor ca. 15 vekt% polypropylen, basert på massens totalvekt, ble tilsatt sjoddi før den ble tilsatt 2,5 kg brannhemmende middel av merket Station 1 per kubikkmeter tekstilmasse. Etter innveiing ble massen (sjoddi, polyester og brannhemmende middel) sendt til en trommel i vektfordelen hvor massen ble gjennomblåst med luft for å danne en homogen og luftig sjoddi. Deretter ble sjoddimassen sendt til en teppeformer som dannet en matte (se Fig. 1) med dimensjoner $0,15 \times 1,20 \times 0,58 \text{ m}^3$, og som i neste omgang ble sendt til en smelteovn som holdt ca. 170°C . Den høye temperaturen i ovnen forårsaket at polypropylenfibrene i sjoddi smeltet og dermed bandt sammen tekstilfibrene slik at det ble dannet en isolasjonsmatte som har omrent samme stivhet som en Glava glassullmatte. Varmeledningsevnen til matta ble målt til å ligge rundt $0,036\text{-}0,037 \text{ W/mK}$, som er like bra som dagens markedsledende isolasjonsmaterialer.

I tilfeller hvor man også benytter papp/papir som råstoff tilsettes dette i Picker-maskinen. Den har kapasitet til å rive både papp, papir og tekstilavfall. Ellers er fremgangsmåten helt analog med ovenstående eksempel.

Selv om oppfinnelsen er eksemplifisert som en matte med bestemte mål, er det opplagt for en fagmann at isolasjonsmaterialet i henhold til oppfinnelsen lett kan utformes i alle tenkelige geometriske former og med alle tenkelige dimensjoner slik at også disse ligger innefor oppfinnelsens ide. Det er imidlertid foretrukket at for bruk til bygninger, utformes isolasjonsmaterialet til matter som er 1 m lange og hvor bredden ligger innenfor 58-120 cm og tykkelsen ligger innenfor 5-15 cm.

PATENTKRAV

1. Miljøvennlig isolasjonsmateriale for isolering av bygninger etc. som ikke inneholder skadelige/irriterende stoffer for mennesker og som ikke avgir skadelige stoffer/støv til bygningenes inneluft,
5 karakterisert ved at isolasjonsmaterialet består av tekstilrester som er revet opptil sjoddi, blandet med en lavtsmeltende polyester i fiberform til en homogen masse som så ble utformet til ønsket form og deretter varmebehandlet inntil at polyesterfibrene smeltet og bandt sammen tekstilfibrene.
2. Isolasjonsmateriale i henhold til krav 1,
10 karakterisert ved at tekstilrestene er innsamlede brukte klær og/eller tekstilavfall fra møbelindustrien.
3. Isolasjonsmateriale i henhold til krav 1-2,
15 karakterisert ved at polyesteren er en hvilken som helst polyester som foreligger i fiberform og som har et smeltepunkt i området 100-300°C, fortrinnsvis i området 150-200°C og mest fortrinnsvis i området 150-170°C.
4. Isolasjonsmateriale i henhold til krav 3,
karakterisert ved at polyesteren er isotaktisk polypropylen.
5. Isolasjonsmateriale i henhold til krav 1-4,
20 karakterisert ved at isolasjonsmaterialet tilsettes et brannhemmende middel for å oppnå godkjent brannbestandighet i henhold til standard NT FIRE 035.
6. Isolasjonsmateriale i henhold til krav 5,
25 karakterisert ved at det brannhemmende midlet er det kommersielt tilgjengelige produkt Station 1 og ved at det tilsettes i en mengde på 2,5 kg per kubikkmeter isolasjonsmateriale.
7. Isolasjonsmateriale i henhold til krav 1-6,
karakterisert ved at sjoddimassen innblandes fra 0 til 40 vekt% resirkulerte papp og/eller papirrester som er revet opp til fiberform.
8. Isolasjonsmateriale i henhold til krav 1-7,
30 karakterisert ved at isolasjonsmaterialet utformes til matter med lengde på 1,20 m, bredde innefor 0,58 - 1,00 m og tykkelse innenfor 5 - 15 cm.

9. Fremgangsmåte for produksjon av et isolasjonsmateriale i henhold til krav 1-8, karakterisert ved at prosessen omfatter trinnene å:

- sende de innsamlede klærne/tekstilrestene til midler for å rive opp i biter og fjerne alle ikke-tekstiler slik som knapper, glidelåser, spenner etc.,
- sende tekstilrestene til en sjoddimaskin som river opp tekstilene ytterligere til enkeltfibre og blander massen til en homogen sjoddi,
- sende de opprevne tekstilrestene til midler for tilsetning av egnet mengde polyester i fiberform, og for gjennomblåse sjoddien og polyestermassen slik at de blandes til en luftig og homogen sjoddi med innblandet polyesterfibre,
- sende sjoddien til midler for å forme sjoddimassen til en matte eller annen geometrisk form med ønsket mål, og
- sende matten til midler for å varmebehandle matten inntil at polyesterfibrene smelter og binder sammen tekstilfibrene.

10. Fremgangsmåte for produksjon av et isolasjonsmateriale i henhold til krav 9, karakterisert ved at det innblandes 15 vekt% isotaktisk

15 polypropylen, basert på total masse, i tekstilrestene, at det innblandes opptil 2,5 kg brannhemmende middel av merke Station 1 per m³ sjoddimasse og at varmebehandlingen innebærer å oppvarme den ferdigformede sjoddimassen til 170°C.

20 11. Fremgangsmåte for produksjon av et isolasjonsmateriale i henhold til krav 9-10,

25 karakterisert ved at tekstilrestene tilsettes papp og/eller papir i en mengde fra 0 til 40 vekt% i første trinn i fremgangsmåten angitt i krav 9, dvs. midlene for å rive opp tekstilrestene og fjerne alle ikke-tekstiler slik som knapper, glidelåser, spenner etc.

SAMMENDRAG

Denne oppfinnelse gjelder et miljøvennlig isolasjonsmateriale, nærmere bestemt en isolasjonsmatte for isolasjon av bygninger, boliger etc.

5 og en fremgangsmåte for å fremstille denne. Matten er allergisikker og nær 100% resirkulerbar, og den kjennetegnes ved at den består av tekstilrester som er revet opptil sjoddi, blandet med en lavtsmeltende polyester i fiberform til en homogen masse, som så ble

10 utformet til ønsket form og deretter varmebehandlet inntil at polyesterfibrene smeltet og bandt sammen tekstilfibrene.

Fig. 1

Figure 1

