Asclepius: Exploring the Feasibility of Remote Cardiac Auscultation Using Earphones

Paper Review by Raheem Idowu - 10/07/25

Outline

What is Asclepius? (System Design and Results)

Why was it made? (Motivation and Background)

How was it made? (Challenges and Contributions)

What's next? (Limitations and Future Work)

Outline

What is Asclepius? (System Design and Results)

Why was it made? (Motivation and Background)

How was it made? (Challenges and Contributions)

What's next? (Limitations and Future Work)

What is Asclepius?

Auscultation = Stethoscope

Cardiac, lung, abdominal

Assess health & function

Asclepius: remote cardiac auscultation

Asclepius Design

Hardware-software solution

\$5 PCB circuit

Use any earphones

No microphone needed (structure reciprocity!)

Results

Mean RMSE 1.34%

Resilient to gender & age

SOTA HeadFi 2x worse

Similar diagnosis performance as stethoscope

Outline

What is Asclepius? (System Design and Results)

Why was it made? (Motivation and Background)

How was it made? (Challenges and Contributions)

What's next? (Limitations and Future Work)

Background: Phonocardiogram

First heart sound (S1)

Second heart sound (S2)

Higher pitched sounds like murmurs

Helps diagnose heart diseases/abnormalities

Motivation

Video visits, pre-screening

More convenient & safer i.e. Covid-19

But in-home stethoscopes expensive (\$500)

Hard to operate for patients

Motivation: Earphones?

Smartphones vs. earphones:

Fewer ambient noises

Easier to operate

More accessible

Outline

What is Asclepius? (System Design and Results)

Why was it made? (Motivation and Background)

How was it made? (Challenges and Contributions)

What's next? (Limitations and Future Work)

Challenges

- 1) Attenuation & multipath from heart to ear (bones, muscles, fat, skin)
- 2) Earphone speaker not optimized as mic
- 3) Impedance matching (device + earphone)

Hardware amplification, denoising (2)

Hardware online impedance matching (3)

On device de-reverberation, segmentation, correction (1)

Hardware amplification, denoising

Hardware online impedance matching

On device de-reverberation, segmentation, correction

Hardware Signal Processing

Operational amplifier

Good freq. response < 1kHz

Bypass capacitors for filtering

Already quite effective

(Only uses left ear - closer to heart)

Hardware amplification, denoising

Hardware online impedance matching

On device de-reverberation, segmentation, correction

Theoretical Background

First some theoretical background

$$E_d = \frac{Z_e + \Delta Z}{Z_e + Z_p + \Delta Z} \cdot E_s$$

can be simplified to

$$E_d = \frac{Z_e + \Delta Z}{Z_e + Z_p} \cdot E_s$$

Impedance Matching

Laptop impedance Z_s != earphone impedance Z_e

Laptop won't measure full E_d

Z_s and Z_e unknown

Use digital potentiometer (SPI)

Conventional Impedance Matching

Can't do conventional impedance matching

(Increase
$$Z_p$$
 so $Z_p + Z_e = Z_s$)

Reduces voltage signal E_d (see eqn.)

Need to tune dynamically instead

$$E_d = \frac{Z_e + \Delta Z}{Z_e + Z_p} \cdot E_s$$

Online impedance matching

Figure 7: (a): received signal power in different impedance Z_p settings. (b): the signal profile in the initial, unmatched state ($E_{recv} = -62 \text{dBm}$); (c): the signal profile in the optimal, unmatched state ($E_{recv} = -25 \text{dBm}$); (d): the signal profile in the fully matched state ($Z_p + Z_e = Z_s$, $E_{recv} = -33 \text{dBm}$).

Online impedance matching

How to find the optimal point? (s_2)

Tune impedance for max PCG SNR

Not heart rate, too slow (1-2Hz)

Solution: Active probing signal from right ear

Probing signal design

Short symbol time (10ms)

10 seconds to get optimal

Ultrasound (17KHz to 22 KHz)

Chirp signal = low power required

Probing signal design

Test Impedance Candidate (range $0-10k\Omega$)

Compute SNR after filtering, convolution (SW?)

Pick one with best SNR

Ultrasound SNR matches PCG SNR

```
Algorithm 1: Online impedance matching
   input :Z_p \leftarrow i_Z_p; \{i_E_{recv}\} \leftarrow \{\};
   output: Optimal matching status;
 1 Function ActiveMatching():
        for i_Z_p \leftarrow 0 to MAX do
             curr\_E_{recv} \leftarrow CompEnergy(i\_Z_p);
             \{i\_E_{recv}\} \leftarrow \text{curr}\_E_{recv};
        end
        opt\_Z_p \leftarrow maxitem(\{i\_E_{recv}\});
        return opt_Z_p;
 8 Function CompEnergy (i):
        capture audio symbol S_i;
        S_i^* \leftarrow BPF(S_i);
        S_i^{**} \leftarrow LPF(S_i^* \cdot f_{tone});
        S_i^+ \leftarrow \text{Conv}(S_i^{**}, template);
        i\_E_{recv} \leftarrow PSD(S_i^+);
13
        return i_E_{recn};
14
```

Hardware schematic (\$5)

Hardware amplification, denoising

Hardware online impedance matching

On device de-reverberation, segmentation, correction

Software Design

Preprocessing

Butterworth low-pass filter (500Hz)

Spike removal (maximum absolute amplitudes)

(Spikes because of friction)

Normalization to [-1, 1]

Segmentation (why?)

De-reverberation (due to multi-path) - Wiener filter (1)

Envelope detector (2) + refinement with hidden Markov Model (3)

Spectrogram Recovery + Waveform Refinement

UNet (6+6) architecture + L1 loss against ground-truth spectrogram

Differential STFT layer + UNet (6+6) + L1 loss (PCG waveform)

Outline

What is Asclepius? (System Design and Results)

Why was it made? (Motivation and Background)

How was it made? (Challenges and Contributions)

What's next? (Limitations and Future Work)

Limitations

Small evaluation set (30)

High RMSE with in-ear headphones

No clinic studies with patients

(pork belly test instead)

Figure 17: Experiment setup.

My Opinion & Ideas for Future Work

Near perfect paper (won best paper)

Combined many different methods

Extend this for other vitals?

Fuse left and right earphones?

Figure 19: Example pathological signals recovered by HeadFi, Asclepius, and ground-truth (Steth.).

Thank you for listening!

Time for Perusall discussion...