1

NCERT 11.9.5 Q4

EE23BTECH11038 - Rohith Madhani*

Question: Find the sum of all numbers between 200 and 400 which are divisible by 7.

Solution:

Parameter	Description	Value
x(n)	<i>n</i> th term of the AP	(x(0)+nd)u(n)
x(0)	1 st term of the AP	?
x(l)	last term of the AP	?
y(n)	Sum of n terms of the AP	x(n)*u(n)
d	Common Difference of the AP	7

TABLE 0 Input parameters

To calculate the first number between 200 and 400 divisible by 7 we can use modulo and calculate the remainder when 200 is divided by 7.

$$\implies 200 mod 7 = 4$$
 (1)

$$(200+3)mod7 = 4+3 \tag{2}$$

$$203mod7 = 0 (3)$$

$$\therefore x(0) = 203$$
 (4)

Similarly for last number between 200 and 400 divisible by 7 we can use modulo and calculate the remainder when 400 is divided by 7.

$$\implies 400 mod 7 = 1 \tag{5}$$

$$(400 - 1) mod 7 = 1 - 1 \tag{6}$$

$$399mod7 = 0 \tag{7}$$

$$x(l) = 399$$
 (8)

From (??)

$$X(z) = \frac{203}{1 - z^{-1}} + \frac{7 \cdot z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
 (13)

$$\because v(n) = x(n) * u(n)$$
 (14)

$$Y(z) = X(z)U(z) \tag{15}$$

$$Y(z) = \frac{203}{(1 - z^{-1})^2} + \frac{7 \cdot z^{-1}}{(1 - z^{-1})^3}; |z| > 1$$
 (16)

Using Contour integration for inverse Z transform,

$$y(28) = \frac{1}{2\pi j} \oint_{c} Y(z)z^{27}dz$$

$$= \frac{1}{2\pi j} \int \frac{203 \cdot z^{29}}{(z-1)^{2}}dz + \frac{1}{2\pi j} \int \frac{7 \cdot z^{29}}{(z-1)^{3}}dz$$
(18)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
(19)

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{203 \cdot z^{29}}{(z - 1)^2} \right)$$
 (20)

$$= 203 \times 29 = 5887 \tag{21}$$

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{7 \cdot z^{29}}{(z - 1)^3} \right)$$
 (22)

$$=\frac{7\times29\times28}{2!}=2842\tag{23}$$

$$\implies y(28) = R_1 + R_2 \tag{24}$$

$$y(28) = 8729$$
 (25)

To calculate the number of terms in the AP,

$$x(l) = x(0) + 7l (9)$$

$$399 = 203 + 7l \tag{10}$$

$$\implies l = 28 \tag{11}$$

$$\therefore x(n) = (203 + 7n)u(n) \tag{12}$$

Fig. 0. $y(n) = 199.5n + 3.5n^2$