Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake.

Data import

```
Data produced in 'ms1_prep.Rmd' are loaded.
load("~/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1_v10873_2.RData")
any(sapply(analysislakes$lakedata, function(x){any(is.infinite(x))}))
## [1] FALSE
any(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## [1] TRUE
which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## 7545 7790 7970 8271
     70
          72
               76
                    77
analysislakes$lakeinfo[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),]
        lagoslakeid
##
                             gnis_name nhd_lat nhd_long lake_area_ha
## 7445
               7545
                           Alton Pond 41.44294 -71.71835
                                                              17.843701
               7790
## 7689
                        Watchaug Pond 41.38381 -71.69161
                                                             232.391660
## 7867
                           Yawgoo Pond 41.51113 -71.57300
                                                              60.724131
               7970
## 8165
               8271 Meadow Brook Pond 41.44110 -71.69034
                                                               9.808244
##
        lake_perim_meters nhd_ftype nhd_fcode hu4_zoneid hu12_zoneid
## 7445
                 3746.121
                                 390
                                         39004
                                                   HU4_10
                                                           HU12_16347
## 7689
                 8397.096
                                 390
                                                   HU4_10
                                         39010
                                                           HU12_17513
## 7867
                 3195.857
                                 390
                                         39010
                                                   HU4_10
                                                           HU12_17512
## 8165
                 2030.864
                                 390
                                         39004
                                                   HU4_10
                                                           HU12_17513
##
        state_zoneid elevation_m start
## 7445
             State_8
                          14.3702
                                  1989 2010
## 7689
                          11.1300
                                   1989 2010
             State_8
## 7867
                          36.1000
                                   1989 2010
             State_8
## 8165
                          16.2900
                                  1989 2010
             State_8
dbuff[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))]
## [1] 2500.000 4939.589 2500.000 2500.000
```

analysislakes α lakeinfo<-analysislakes β lakeinfo[!sapply(analysislakes β lakedata, function(x){any(is.na(x) analysislakes β lakedata<-analysislakes β lakedata[!sapply(analysislakes β lakedata, function(x){any(is.na(x) analysislakes}

```
analysislakes$lakeinfo$tslength<-analysislakes$lakeinfo$end-analysislakes$lakeinfo$start+1
source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")
tsranges<-rbind(c(2,4),c(4,Inf),c(2,Inf))
coh.chlaXaccndvi<-NULL
for(lind in 1:length(analysislakes$lakedata)){
  lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
  chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                     norm="powall", sigmethod="fast", nrand=10000)
  for(rind in 1:nrow(tsranges)){
    chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
  coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
colnames(coh.chlaXaccndvi)<-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
tmax=50
res=0.1
tt=seq(1,tmax,res)
p1 < -2
sig1<-sin(seq(0,2*pi*tmax/p1,length.out=length(tt)))</pre>
sig2<-sin(seq(0,2*pi*tmax/p2,length.out=length(tt)))</pre>
comb1 < -sig1 + 0.7 * sig2 + 3.5
comb2 < -sig1 + -0.7 * sig2
laymat<-matrix(1,nrow=2,ncol=3)</pre>
laymat[2,]<-2:4
sig3 < -sig2[tt <= 20]
sig4<-sig3*0.9
sig5 < -sin(seq(-pi/2,2*pi*20/p2-(pi/2),length.out=length(tt[tt<=20])))
sig6 < -sig3 * -1
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig1_pedagogical.tif", uni
     res=300, width=6.5, height=4)
layout(laymat)
par(mar=c(1.5,1.5,2,1.5), mgp=c(1,1,0), oma=c(2,2,0,0))
plot(NA,NA,ylim=c(-2,5.2),xlim=range(tt), xlab="", ylab="", xaxt="n",yaxt="n")
lines(tt,comb1,lwd=2)
```

```
lines(tt,comb2,lwd=2,col="red")
axis(1, at=c(0,10,20,30,40,50), labels=NA)
axis(2, at=c(-1,1.5,4), labels=NA)
mtext("Timescale specific relationship",3,line=0.25)
text(0.4,4.9,"a)",cex=1.2)
plot(NA,NA,ylim=c(-1,1),xlim=c(0,20),xaxt="n",yaxt="n",xlab="",ylab="")
axis(1, at=c(0,10,20), labels=NA)
axis(2, at=c(-1,0,1), labels=NA)
lines(tt[tt<=20],sig3,lwd=2)</pre>
lines(tt[tt<=20],sig4,lwd=2,col="red")</pre>
mtext(expression(paste(phi," = 0")))
text(1,0.9,"b)",cex=1.2)
plot(NA,NA,ylim=c(-1,1),xlim=c(0,20),xaxt="n",yaxt="n",xlab="",ylab="")
axis(1, at=c(0,10,20), labels=NA)
axis(2, at=c(-1,0,1), labels=NA)
lines(tt[tt<=20],sig3,lwd=2)</pre>
lines(tt[tt<=20],sig5,lwd=2,col="red")</pre>
mtext(expression(paste(phi," = ",pi,"/2")))
text(1,0.9,"c)",cex=1.2)
plot(NA,NA,ylim=c(-1,1),xlim=c(0,20),xaxt="n",yaxt="n",xlab="",ylab="")
axis(1, at=c(0,10,20), labels=NA)
axis(2, at=c(-1,0,1), labels=NA)
lines(tt[tt<=20],sig3,lwd=2)</pre>
lines(tt[tt<=20],sig6,lwd=2,col="red")</pre>
mtext(expression(paste(phi," = ",pi)))
text(1,0.9,"d)",cex=1.2)
mtext("Time", 1, outer=T)
mtext("Signal", 2, outer=T)
dev.off()
## pdf
##
#short timescales
quantile(coh.chlaXaccndvi$accndvicoh.ts1)
                     25%
                                 50%
                                            75%
                                                       100%
## 0.06293777 0.26880179 0.36586451 0.49214074 0.92134749
sum(coh.chlaXaccndvi$accndvip.ts1<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.06870229
print(cbind(coh.chlaXaccndvi$lagoslakeid, coh.chlaXaccndvi$accndvip.ts1)[coh.chlaXaccndvi$accndvip.ts1<
##
           [,1]
                       [,2]
           2851 0.03249675
## [1,]
## [2,]
           3370 0.00009999
## [3,]
           6075 0.04199580
           6547 0.00809919
## [4,]
```

```
## [5,]
          7523 0.02039796
## [6,] 28836 0.00679932
## [7,] 72641 0.00629937
## [8,] 133500 0.02809719
   [9,]
           4909 0.03279672
print(cbind(coh.chlaXaccndvi$lagoslakeid, coh.chlaXaccndvi$accndvip.ts2)[coh.chlaXaccndvi$accndvip.ts2<
##
##
   [1,]
           3370 0.01429857
##
   [2,]
           3834 0.00849915
## [3,]
          4243 0.00009999
## [4,]
          4416 0.01069893
## [5,]
          4434 0.02659734
##
   [6,]
          5895 0.02249775
## [7,]
          6199 0.03799620
## [8,]
         7523 0.02549745
## [9,]
          8369 0.03119688
## [10,] 39489 0.04539546
## [11,] 115040 0.00779922
## [12,] 133500 0.02279772
## [13,] 14815 0.00349965
## [14,] 102115 0.00289971
## [15,]
           5463 0.03079692
cor(coh.chlaXaccndvi$accndvicoh.ts1,coh.chlaXaccndvi$accndvicoh.ts2)
## [1] 0.02535991
#long timescales
quantile(coh.chlaXaccndvi$accndvicoh.ts2)
                     25%
                                50%
                                           75%
                                                     100%
## 0.07654579 0.37832224 0.53015425 0.73194394 0.95309993
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.1145038
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
## [1] 0.73992662 -0.90124264 0.53888310 0.27521830 -0.95606597
## [6] 0.52712388 -0.68599147 -0.91773670 -0.29662433 -0.40541240
## [11] -0.22793834 -0.04840174 -0.57269988 -0.52827164 0.88106993
#plotting
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig2_distributions_2019103
     res=300, width=6.5, height=6.5)
par(mar=c(3,3,2,1),mgp=c(1.7,0.5,0),mfrow=c(2,2),cex.main=0.9)
hist(coh.chlaXaccndvi$accndvicoh.ts1, main="Short timescale coherence", xlab="Coherence", ylab="Frequen
text(par() susr[1] + .05, 0.95 * par() susr[4], "a)")
hist(coh.chlaXaccndvi$accndvicoh.ts2, main="Long timescale coherence", xlab="Coherence", ylab="Frequenc
text(par()$usr[1]+.05,0.95*par()$usr[4],"b)")
```

par(mar=c(1,1,2,1))

```
rose(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<0.3], unit="radian", col="lightgrey"
     breaks=c(0,pi/4,pi/2,3*pi/4,pi,5*pi/4,3*pi/2,7*pi/4,2*pi), main="Short timescale phases",
       at=c(0,pi/4,pi/2,3*pi/4,pi,-3*pi/4,-pi/2,-pi/4))
text(0.9*par()$usr[1],0.95*par()$usr[4],"c)")
rose(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<0.3], unit="radian", col="lightgrey"
     breaks=c(0,pi/4,pi/2,3*pi/4,pi,5*pi/4,3*pi/2,7*pi/4,2*pi), main="Long timescale phases",
     at=c(0,pi/4,pi/2,3*pi/4,pi,-3*pi/4,-pi/2,-pi/4))
text(0.9*par()$usr[1],0.95*par()$usr[4],"d)")
dev.off()
## pdf
##
states<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/statesp020 nolakes.shp")
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/statesp020_nolakes.shp", layer: "st
## with 2886 features
## It has 9 fields
## Integer64 fields read as strings: ORDER_ADM
getstates <- c ("Minnesota", "Iowa", "Wisconsin", "Illinois", "Missouri", "Michigan", "Indiana", "Ohio", "
lagosstates<-states[states@data$STATE %in% getstates,]</pre>
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig2_map.tif",units="in",
     res=300, width=3.25, height=2.75)
par(mar=rep(0,4))
plot(lagosstates, main="",bty="o")
points(analysislakes$lakeinfo$nhd_long, analysislakes$lakeinfo$nhd_lat, pch=21, cex=0.45, col="black",b
legend("bottomright",pch=c(0,21),col="black",pt.bg="grey",legend=c("States in LAGOS-NE","Selected lakes
dev.off()
## pdf
##
cohplotdata <-left_join(analysislakes $lakeinfo, coh.chlaXaccndvi, by="lagoslakeid")
pal<-viridis(100)
par(mar=c(1,0,2,0))
plot(lagosstates, main="Lakes by short timescale coherence")
par() $usr
## [1] -98.49241 -65.70056 35.45947 49.92124
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)
```

Lakes by short timescale coherence

plot(lagosstates, main="Lakes by long timescale coherence")
points(cohplotdata\$nhd_long, cohplotdata\$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata\$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)

Lakes by long timescale coherence


```
laymat=matrix(1,nrow=2,ncol=13)
laymat[2,]<-2
laymat[,13]<-3
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/figS1_coherencemap.tif", u
     res=300, width=6.5, height=7.5)
layout(laymat)
par(mar=c(0,0,1.5,0))
plot(lagosstates, main="Short timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1.5, col=pal[round(cohplotdata$accndvicoh
text(0.99*par()$usr[1],0.99*par()$usr[4],"a)",cex=1.5)
plot(lagosstates, main="Long timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1.5, col=pal[round(cohplotdata$accndvicoh
text(0.99*par()$usr[1],0.99*par()$usr[4],"b)",cex=1.5)
par(mar=c(5,1,5,1))
image(matrix(1:100,nrow=1),col=pal,xaxt="n",yaxt="n")
axis(2,at=seq(0,1,0.2))
dev.off()
## pdf
##
dt<-lagosne_load("1.087.3")
```

```
dt.conn<-dt$buffer500m.conn
dt.conn<-dt.conn[,!grepl("sum_lengthm",colnames(dt.conn))]</pre>
dt.conn<-dt.conn[,colnames(dt.conn)!="buffer500m_nhdid"]
dt.chag<-dt$hu12.chag
dt.chag<-dt.chag[,!grepl("_min",colnames(dt.chag))]</pre>
dt.chag<-dt.chag[,!grepl("_max",colnames(dt.chag))]</pre>
dt.chag<-dt.chag[,!grepl("_ha",colnames(dt.chag))]</pre>
dt.chag<-dt.chag[,!colnames(dt.chag)=="borderhu12s"]</pre>
dt.chag$hu12_dep_no3_tavg_mean<-rowMeans(dt.chag[,grepl("hu12_dep_no3",colnames(dt.chag)) &
                                                     grepl("_mean",colnames(dt.chag))])
dt.chag$hu12_dep_no3_tavg_std<-rowMeans(dt.chag[,grepl("hu12_dep_no3",colnames(dt.chag)) &
                                                     grepl("_std",colnames(dt.chag))])
dt.chag$hu12_dep_so4_tavg_mean<-rowMeans(dt.chag[,grepl("hu12_dep_so4",colnames(dt.chag]) &
                                                      grepl("_mean", colnames(dt.chag))])
dt.chag$hu12_dep_so4_tavg_std<-rowMeans(dt.chag[,grepl("hu12_dep_so4",colnames(dt.chag)) &
                                                      grepl("_std", colnames(dt.chag))])
dt.chag$hu12_dep_totaln_tavg_mean<-rowMeans(dt.chag[,grep1("hu12_dep_totaln",colnames(dt.chag)) &
                                                        grepl("_mean", colnames(dt.chag))])
dt.chag$hu12_dep_totaln_tavg_std<-rowMeans(dt.chag[,grepl("hu12_dep_totaln",colnames(dt.chag)) &
                                                        grepl("_std", colnames(dt.chag))])
dt.chag(-dt.chag[,!(grepl("hu12_dep",colnames(dt.chag))) & grepl("_19",colnames(dt.chag)))]
dt.chag<-dt.chag[,!(grepl("hu12_dep",colnames(dt.chag)) & grepl("_20",colnames(dt.chag)))]
dt.chag<-dt.chag[,!(grepl("_std",colnames(dt.chag)))]</pre>
dt.chag<-dt.chag[,!grepl("surficialgeology",colnames(dt.chag))]</pre>
dt.geo<-dt$lakes.geo
dt.geo<-dt$lakes.geo[,!colnames(dt.geo) %in% c("state_zoneid","iws_zoneid","edu_zoneid","county_zoneid"
dt.geo<-dt.geo[,!grepl("_count",colnames(dt.geo))]</pre>
dt.lulc<-dt$hu12.lulc
dt.lulc<-dt.lulc[,!grepl("_ha_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_nlcd1992_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_nlcd2006_",colnames(dt.lulc))]
dt.lulc<-dt.lulc[,!grepl("_nlcd2001_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,colnames(dt.lulc)!="hu12_damdensity_pointsperha"]
dt.lulc<-dt.lulc[,colnames(dt.lulc)!="hu12_damdensity_pointcount"]</pre>
dt.lulc<-dt.lulc[,colnames(dt.lulc)!="hu12_roaddensity_sum_lengthm"]
dt.lulc<-dt.lulc[,!grepl("_min",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_max",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_std",colnames(dt.lulc))]</pre>
depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre>
depth<-depth[depth$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,] #use max depth because it's mo
#qrowing season Chlorophyll-a
chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre>
chla<-chla[chla$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]
gs.chla<-chla[chla$samplemonth %in% 5:9,]
avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)
```

```
#Chlorophyll-a TSI class
\#TSI(CHL) = 9.81 ln(CHL) + 30.6
tsi.chl<-data.frame(lagoslakeid=avg.chla$lagoslakeid, tsi=9.81 * log(avg.chla$chla) + 30.6)
tsi.chl$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>
tsi.chl$tsi.cat[tsi.chl$tsi < 40]<-"oligotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50]<-"mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"
#CV of terrestrial NDVI
cv.accndvi<-NULL
for(lake in 1:length(analysislakes$lakedata)){
  tmp<-analysislakes$lakedata[[lake]] [rownames(analysislakes$lakedata[[lake]])=="avhrrdata",]</pre>
 cv.accndvi<-c(cv.accndvi, sd(tmp)/mean(tmp))</pre>
 # rm(tmp)
}
cv.accndvi<-data.frame(lagoslakeid=as.numeric(names(analysislakes$lakedata)), cv.accndvi=cv.accndvi)
#shoreline development ratio
sdev<-analysislakes$lakeinfo$lake_perim_meters/(2*sqrt(pi*analysislakes$lakeinfo$lake_area_ha*10000))
shoredev<-data.frame(lagoslakeid=analysislakes$lakeinfo$lagoslakeid,shoredev=sdev)</pre>
preds<-analysislakes$lakeinfo[,colnames(analysislakes$lakeinfo) %in% c("lagoslakeid", "end", "start")]
preds$tslength<-preds$end-preds$start + 1</pre>
preds<-left_join(preds, dt.geo, by="lagoslakeid")</pre>
preds<-left_join(preds, dt.conn, by="lagoslakeid")</pre>
preds<-left_join(preds, dt.chag, by="hu12_zoneid")</pre>
preds<-left_join(preds, dt.lulc, by="hu12_zoneid")</pre>
preds<-left_join(preds, avg.chla, by="lagoslakeid")</pre>
preds<-left_join(preds, cv.accndvi, by="lagoslakeid")</pre>
preds<-left_join(preds, depth, by="lagoslakeid")</pre>
preds<-left_join(preds, shoredev, by="lagoslakeid")</pre>
conpreds<-preds[,sapply(preds, is.numeric)]</pre>
cor.conpreds<-cor(conpreds,use="pairwise.complete.obs")</pre>
## Warning in cor(conpreds, use = "pairwise.complete.obs"): the standard
## deviation is zero
preds<-preds[,!colnames(preds) %in% c("hu12_surficialgeology_beach_pct",</pre>
                                        "hu12_surficialgeology_colluv_pct",
                                        "hu12 surficialgeology grus pct",
                                        "hu12_surficialgeology_other_pct",
                                        "hu12_surficialgeology_solif_pct",
                                        "hu12_surficialgeology_till_oth_pct",
                                        "hu12_nlcd2011_pct_0")]
#huc2 and huc4 watershed codes
huc_codes<-read.csv("~/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colClasses = 'character'
```

```
#state info
states<-lagosne_select(table="state", vars=c("state_zoneid","state_name"))</pre>
for(nn in 1:ncol(preds)){
  if(is.factor(preds[,nn])){
    preds[,nn]<-factor(preds[,nn])</pre>
}
#write.csv(colnames(preds), file="~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation
rfdat.cohst<-left join(coh.chlaXaccndvi[,c(10,3)], preds)
## Joining, by = "lagoslakeid"
rfdat.cohst<-rfdat.cohst[,!colnames(rfdat.cohst) %in% c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12
rfdat.cohst<-rfdat.cohst[,!grep1("borderhu12s",colnames(rfdat.cohst))]</pre>
for(nn in 1:ncol(rfdat.cohst)){
  if(is.character(rfdat.cohst[,nn])){
    rfdat.cohst[,nn]<-as.factor(rfdat.cohst[,nn])</pre>
  }
cf.cohst<-party::cforest(accndvicoh.ts1 ~ ., data=rfdat.cohst, controls=cforest_control(ntree=50000,min
varimp.coh.st<-varimp(cf.cohst)</pre>
print(varimp.coh.st[order(varimp.coh.st, decreasing=T)][1:10])
##
                                        cv.accndvi
                                      0.0005710355
##
                                        hu8_zoneid
##
##
                                     0.0005568739
##
                        hu12_dep_totaln_tavg_mean
##
                                     0.0004949402
##
                             hu12_nlcd2011_pct_90
##
                                      0.0001939783
##
                             hu12_nlcd2011_pct_95
##
                                      0.0001609831
  wlconnections_scrubshrubwetlands_shoreline_km
##
                                      0.0001473959
##
          wlconnections_allwetlands_shoreline_km
##
                                      0.0001400305
##
                                  hu12_slope_mean
##
                                      0.0001274735
##
                                    hu12_tri_mean
##
                                     0.0001274102
##
     wlconnections_forestedwetlands_shoreline_km
                                     0.0000901705
##
predcoh.st<-predict(cf.cohst, newdata=rfdat.cohst,type="response")</pre>
cor.test(predcoh.st,rfdat.cohst$accndvicoh.ts1)
```

##

Pearson's product-moment correlation

deviance residuals -0.4 -0.2 0.0 0.2 0.4 theoretical quantiles

Histogram of residuals

Response vs. Fitted Values


```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 12 iterations.
## The RMS GCV score gradient at convergence was 5.16565e-08 .
## The Hessian was positive definite.
## Model rank = 101 / 101
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                       edf k-index p-value
## s(cv.accndvi)
                                9.00 1.00
                                              0.88
                                                     0.055 .
## s(hu12_dep_totaln_tavg_mean) 9.00 1.00
                                              1.05
                                                     0.615
## s(hu12_nlcd2011_pct_90)
                                9.00 1.00
                                              1.23
                                                     0.990
```

```
## s(hu12_nlcd2011_pct_95)
                                9.00 1.48
                                             1.22
                                                    0.995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
concurvity(gam.cohst,full=F)$estimate
##
                                        para s(cv.accndvi)
## para
                                1.000000e+00 6.059830e-29
## s(cv.accndvi)
                                5.021612e-26 1.000000e+00
## s(hu12_dep_totaln_tavg_mean) 8.759603e-24 1.086538e-01
## s(hu12 nlcd2011 pct 90)
                                7.915962e-25 8.910736e-02
## s(hu12_nlcd2011_pct_95)
                                5.473439e-25 7.304589e-02
##
                                s(hu12_dep_totaln_tavg_mean)
## para
                                                4.287652e-26
## s(cv.accndvi)
                                                7.547220e-02
                                                1.000000e+00
## s(hu12_dep_totaln_tavg_mean)
## s(hu12_nlcd2011_pct_90)
                                                1.067223e-01
## s(hu12_nlcd2011_pct_95)
                                                2.211129e-01
                                s(hu12_nlcd2011_pct_90)
## para
                                           4.859488e-28
## s(cv.accndvi)
                                           1.066378e-01
                                           2.134301e-01
## s(hu12_dep_totaln_tavg_mean)
## s(hu12_nlcd2011_pct_90)
                                           1.000000e+00
## s(hu12_nlcd2011_pct_95)
                                           1.626272e-01
##
                                s(hu12_nlcd2011_pct_95)
## para
                                           1.559485e-27
## s(cv.accndvi)
                                           7.299190e-02
## s(hu12 dep totaln tavg mean)
                                           9.052390e-02
## s(hu12_nlcd2011_pct_90)
                                           6.931528e-02
## s(hu12_nlcd2011_pct_95)
                                           1.000000e+00
summary(gam.cohst)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## accndvicoh.ts1 ~ s(cv.accndvi) + hu8_zoneid + s(hu12_dep_totaln_tavg_mean) +
##
       s(hu12_nlcd2011_pct_90) + s(hu12_nlcd2011_pct_95)
##
## Parametric coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.66607
                              0.16815
                                          3.961 0.000199 ***
## hu8_zoneidHU8_13 -0.46394
                                 0.20628 -2.249 0.028156 *
## hu8 zoneidHU8 141 -0.35966
                                 0.18774 -1.916 0.060122
                                 0.25377 -1.284 0.204159
## hu8_zoneidHU8_142 -0.32575
## hu8 zoneidHU8 143 -0.30654
                                 0.16304 -1.880 0.064907
## hu8 zoneidHU8 160 -0.41906
                                 0.21050 -1.991 0.051029
## hu8 zoneidHU8 161 -0.33585
                                 0.15666 -2.144 0.036078 *
## hu8_zoneidHU8_163 -0.38638
                                 0.17314 -2.232 0.029357 *
## hu8_zoneidHU8_164 -0.24380
                                 0.24363 -1.001 0.320968
## hu8_zoneidHU8_165 -0.22857
                                 0.21579 -1.059 0.293725
## hu8_zoneidHU8_167 0.09318
                                 0.20545
                                           0.454 0.651800
## hu8_zoneidHU8_168 -0.38464
                                 0.21313 -1.805 0.076097 .
```

```
-1.779 0.080305
## hu8 zoneidHU8 169 -0.43064
                                  0.24210
                                           -0.557 0.579829
## hu8_zoneidHU8_170 -0.10694
                                  0.19211
## hu8 zoneidHU8 173 -0.35952
                                  0.23783
                                           -1.512 0.135825
## hu8_zoneidHU8_177 -0.36422
                                  0.26648
                                           -1.367 0.176750
## hu8_zoneidHU8_181 -0.49226
                                  0.25888
                                           -1.901 0.062000
## hu8 zoneidHU8 186 -0.25460
                                  0.26503
                                           -0.961 0.340553
## hu8 zoneidHU8 204 -0.18662
                                  0.18704
                                           -0.998 0.322372
## hu8_zoneidHU8_23 -0.25930
                                  0.21928
                                           -1.183 0.241617
## hu8_zoneidHU8_24 -0.39770
                                  0.23049
                                           -1.725 0.089546
## hu8_zoneidHU8_256 -0.13672
                                  0.19874
                                           -0.688 0.494138
## hu8_zoneidHU8_325 -0.55321
                                  0.20123
                                           -2.749 0.007866 **
## hu8_zoneidHU8_331 -0.67101
                                  0.24964
                                           -2.688 0.009272 **
## hu8_zoneidHU8_335 -0.41596
                                  0.19304
                                           -2.155 0.035172 *
## hu8_zoneidHU8_343 -0.25784
                                  0.21306
                                           -1.210 0.230914
## hu8_zoneidHU8_346 -0.59853
                                  0.23267
                                           -2.572 0.012570 *
## hu8_zoneidHU8_350 -0.19939
                                           -0.828 0.411118
                                  0.24091
## hu8_zoneidHU8_370 -0.13870
                                  0.23707
                                           -0.585 0.560677
## hu8 zoneidHU8 382 -0.49275
                                  0.23041
                                           -2.139 0.036515
## hu8_zoneidHU8_39 -0.41626
                                  0.24259
                                           -1.716 0.091296
## hu8_zoneidHU8_40 -0.38443
                                  0.22590
                                           -1.702 0.093939
## hu8_zoneidHU8_428 -0.32358
                                  0.22284
                                           -1.452 0.151643
## hu8 zoneidHU8 429 0.08399
                                  0.23477
                                            0.358 0.721779
## hu8_zoneidHU8_431 -0.15119
                                  0.25480
                                           -0.593 0.555153
## hu8 zoneidHU8 434 -0.22451
                                  0.24506
                                           -0.916 0.363242
## hu8 zoneidHU8 435 -0.15210
                                  0.23628
                                           -0.644 0.522179
## hu8_zoneidHU8_436 -0.17288
                                  0.26281
                                           -0.658 0.513156
## hu8_zoneidHU8_437 -0.16545
                                  0.25617
                                           -0.646 0.520818
                                           -0.979 0.331307
## hu8_zoneidHU8_440 -0.25435
                                  0.25972
## hu8_zoneidHU8_449 -0.34913
                                  0.22649
                                           -1.541 0.128414
## hu8_zoneidHU8_452 -0.24126
                                  0.24067
                                           -1.002 0.320106
## hu8_zoneidHU8_453 -0.06632
                                  0.19838
                                           -0.334 0.739287
## hu8_zoneidHU8_456 -0.55425
                                  0.22728
                                           -2.439 0.017693 *
## hu8_zoneidHU8_481 -0.14888
                                  0.24776
                                           -0.601 0.550136
## hu8_zoneidHU8_484 -0.18386
                                  0.25027
                                           -0.735 0.465386
## hu8_zoneidHU8_49 -0.22461
                                  0.19239
                                           -1.168 0.247585
## hu8_zoneidHU8_491 -0.36769
                                  0.23348
                                           -1.575 0.120513
## hu8 zoneidHU8 492 0.06696
                                  0.20996
                                            0.319 0.750894
                                           -1.277 0.206497
## hu8_zoneidHU8_493 -0.29583
                                  0.23167
## hu8_zoneidHU8_494 0.13104
                                  0.21678
                                            0.604 0.547784
## hu8_zoneidHU8_495 -0.18891
                                           -0.778 0.439494
                                  0.24275
## hu8 zoneidHU8 501 0.21839
                                  0.25218
                                            0.866 0.389892
## hu8_zoneidHU8_507 -0.33116
                                  0.22758
                                           -1.455 0.150787
## hu8 zoneidHU8 51
                     -0.05103
                                  0.25899
                                           -0.197 0.844448
## hu8_zoneidHU8_59
                     -0.31527
                                  0.19029
                                           -1.657 0.102738
## hu8_zoneidHU8_61
                     -0.24905
                                  0.21948
                                           -1.135 0.260971
## hu8_zoneidHU8_73
                     -0.23908
                                  0.22671
                                           -1.055 0.295815
## hu8_zoneidHU8_74
                     -0.27462
                                  0.23530
                                           -1.167 0.247755
## hu8_zoneidHU8_75
                     -0.10783
                                  0.24346
                                           -0.443 0.659420
## hu8_zoneidHU8_76
                     -0.13279
                                  0.29684
                                           -0.447 0.656234
## hu8_zoneidHU8_81
                     -0.43415
                                  0.20523
                                           -2.115 0.038517
## hu8_zoneidHU8_83
                                  0.25942
                     -0.32212
                                           -1.242 0.219148
## hu8_zoneidHU8_84
                     -0.23217
                                  0.24338
                                           -0.954 0.343923
## hu8_zoneidHU8_96
                                  0.23228
                                            0.070 0.944063
                      0.01637
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
##
                                   edf Ref.df
                                                   F p-value
## s(cv.accndvi)
                                 1.000
                                        1.000
                                              0.997 0.322058
## s(hu12_dep_totaln_tavg_mean) 1.000 1.000 3.010 0.087775 .
## s(hu12_nlcd2011_pct_90)
                                       1.000 0.004 0.948613
                                 1.000
                                 1.478 1.791 13.352 0.000823 ***
## s(hu12_nlcd2011_pct_95)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.287
                         Deviance explained = 66.5%
## GCV = 0.04542 Scale est. = 0.021145 n = 130
plot(rfdat.cohst$accndvicoh.ts1, predict(gam.cohst, rfdat.cohst))
                                                                                   0
      0.8
predict(gam.cohst, rfdat.cohst)
                                                                 000
      9.0
                                           00
                     00
      0.4
                                                                  0
                 O WOODO
      0.2
               0
                        0.2
                                                        0.6
                                        0.4
                                                                        8.0
                                   rfdat.cohst$accndvicoh.ts1
rfdat.cohlt<-left_join(coh.chlaXaccndvi[,c(10,6)], preds)
## Joining, by = "lagoslakeid"
rfdat.cohlt<-rfdat.cohlt[,!colnames(rfdat.cohlt) %in% c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12
rfdat.cohlt<-rfdat.cohlt[,!grepl("borderhu12s",colnames(rfdat.cohlt))]</pre>
for(nn in 1:ncol(rfdat.cohlt)){
  if(is.character(rfdat.cohlt[,nn])){
    rfdat.cohlt[,nn]<-as.factor(rfdat.cohlt[,nn])
  }
}
cf.cohlt<-party::cforest(accndvicoh.ts2 ~ ., data=rfdat.cohlt, controls=cforest_control(ntree=50000,min
varimp.coh.lt<-varimp(cf.cohlt)</pre>
print(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)][1:10])
```

```
##
                                        hu8 zoneid
##
                                      1.224867e-03
##
                              hu12_nlcd2011_pct_52
##
                                      9.141534e-04
##
                                        cv.accndvi
##
                                      4.451874e-04
    hu12_prism_ppt_30yr_normal_800mm2_annual_mean
##
                                      1.450424e-04
##
##
   wlconnections_allwetlands_contributing_area_ha
##
                                      1.447590e-04
##
      wlconnections_forestedwetlands_shoreline_km
##
                                      1.362169e-04
##
                              hu12_nlcd2011_pct_95
                                      1.257159e-04
##
##
           wlconnections_allwetlands_shoreline_km
##
                                      9.856973e-05
##
                            hu12_dep_so4_tavg_mean
##
                                      8.810665e-05
##
                    hu12_groundwaterrecharge_mean
##
                                      7.183743e-05
predcoh.lt<-predict(cf.cohlt, newdata=rfdat.cohlt,type="response")</pre>
cor.test(predcoh.lt,rfdat.cohlt$accndvicoh.ts2)
##
##
    Pearson's product-moment correlation
##
## data: predcoh.lt and rfdat.cohlt$accndvicoh.ts2
## t = 16.474, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
  0.7589455 0.8717201
## sample estimates:
##
         cor
## 0.8232956
lwgt<-preds$tslength/mean(preds$tslength)</pre>
gam.cohlt<-gam(accndvicoh.ts2 ~ hu8_zoneid + s(hu12_nlcd2011_pct_52) + s(cv.accndvi) +
                 s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean) +
                 s(wlconnections_allwetlands_contributing_area_ha), data=rfdat.cohlt, gamma=1, weights=
gam.check(gam.cohlt)
```

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values


```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 11 iterations.
## The RMS GCV score gradient at convergence was 3.51053e-08 .
## The Hessian was positive definite.
## Model rank = 101 / 101
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                                            edf k-index
                                                        k'
## s(hu12_nlcd2011_pct_52)
                                                      9.00 1.65
                                                                   0.96
## s(cv.accndvi)
                                                                   0.96
                                                      9.00 1.00
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
                                                                   0.96
                                                      9.00 1.52
## s(wlconnections_allwetlands_contributing_area_ha) 9.00 2.56
                                                                   0.91
                                                      p-value
## s(hu12_nlcd2011_pct_52)
                                                         0.23
## s(cv.accndvi)
                                                         0.28
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
                                                         0.29
## s(wlconnections_allwetlands_contributing_area_ha)
                                                         0.11
concurvity(gam.cohlt,full=F)$estimate
```

```
## para
## para 1.000000e+00
## s(hu12_nlcd2011_pct_52) 2.639051e-25
## s(cv.accndvi) 9.137579e-26
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean) 6.743208e-24
## s(wlconnections_allwetlands_contributing_area_ha) 2.093031e-22
## s(hu12_nlcd2011_pct_52)
```

```
5.584223e-28
## para
## s(hu12_nlcd2011_pct_52)
                                                                 1.000000e+00
## s(cv.accndvi)
                                                                 3.658879e-02
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
                                                                 1.193729e-01
## s(wlconnections_allwetlands_contributing_area_ha)
                                                                 2.844090e-02
##
                                                      s(cv.accndvi)
## para
                                                       1.933866e-28
## s(hu12_nlcd2011_pct_52)
                                                       5.282735e-02
## s(cv.accndvi)
                                                       1.000000e+00
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
                                                       1.841519e-01
## s(wlconnections_allwetlands_contributing_area_ha)
                                                       1.829351e-02
                                                      s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
## para
                                                                                           1.731286e-26
## s(hu12_nlcd2011_pct_52)
                                                                                           1.295185e-01
## s(cv.accndvi)
                                                                                           1.750324e-01
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
                                                                                           1.000000e+00
## s(wlconnections_allwetlands_contributing_area_ha)
                                                                                           6.266707e-02
##
                                                      s(wlconnections_allwetlands_contributing_area_ha)
## para
                                                                                            2.606193e-27
## s(hu12_nlcd2011_pct_52)
                                                                                            2.741690e-02
## s(cv.accndvi)
                                                                                            5.964451e-02
## s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean)
                                                                                            1.904579e-01
## s(wlconnections_allwetlands_contributing_area_ha)
                                                                                            1.000000e+00
summary(gam.cohlt)
##
## Family: gaussian
## Link function: identity
## Formula:
  accndvicoh.ts2 ~ hu8_zoneid + s(hu12_nlcd2011_pct_52) + s(cv.accndvi) +
       s(hu12_prism_ppt_30yr_normal_800mm2_annual_mean) + s(wlconnections_allwetlands_contributing_area
##
## Parametric coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                                            2.633
## (Intercept)
                      0.75889
                                 0.28821
                                                    0.0109 *
## hu8_zoneidHU8_13 -0.41434
                                 0.58974 -0.703
                                                    0.4852
## hu8_zoneidHU8_141 -0.12373
                                 0.24014 - 0.515
                                                    0.6084
## hu8_zoneidHU8_142 0.09404
                                 0.37317
                                            0.252
                                                    0.8019
## hu8_zoneidHU8_143 -0.21479
                                 0.24318 -0.883
                                                    0.3808
## hu8_zoneidHU8_160 0.09694
                                 0.29600
                                            0.328
                                                    0.7445
## hu8_zoneidHU8_161 -0.07240
                                 0.21834
                                          -0.332
                                                    0.7414
## hu8_zoneidHU8_163 -0.02368
                                 0.24539
                                          -0.097
                                                    0.9235
## hu8 zoneidHU8 164 -0.40819
                                  0.32336
                                          -1.262
                                                    0.2119
                                 0.30887
## hu8_zoneidHU8_165 0.31112
                                            1.007
                                                    0.3180
## hu8 zoneidHU8 167 -0.13308
                                 0.26109
                                          -0.510
                                                    0.6122
## hu8_zoneidHU8_168 -0.13017
                                  0.29557
                                          -0.440
                                                    0.6613
## hu8_zoneidHU8_169 0.04436
                                 0.27899
                                            0.159
                                                    0.8742
## hu8_zoneidHU8_170 0.01939
                                 0.22945
                                            0.084
                                                    0.9330
## hu8_zoneidHU8_173 0.05803
                                            0.184
                                 0.31537
                                                    0.8546
## hu8_zoneidHU8_177 -0.54188
                                 0.37206 - 1.456
                                                    0.1507
## hu8_zoneidHU8_181 -0.16975
                                 0.36886 -0.460
                                                    0.6471
## hu8_zoneidHU8_186 -0.56225
                                 0.35602 - 1.579
                                                    0.1198
## hu8_zoneidHU8_204 -0.03407
                                 0.26828 -0.127
                                                    0.8994
```

```
## hu8 zoneidHU8 23 -0.35935
                                           -0.557
                                  0.64457
                                                     0.5794
## hu8_zoneidHU8_24
                     -0.22661
                                  0.62488
                                           -0.363
                                                     0.7182
## hu8 zoneidHU8 256 -0.74020
                                  0.49793
                                           -1.487
                                                     0.1426
## hu8_zoneidHU8_325
                      0.21175
                                  0.44703
                                            0.474
                                                     0.6375
## hu8_zoneidHU8_331
                      0.24622
                                  0.49654
                                            0.496
                                                     0.6219
## hu8 zoneidHU8 335
                     0.15394
                                  0.41083
                                            0.375
                                                     0.7093
## hu8 zoneidHU8 343 -0.32168
                                  0.23180
                                           -1.388
                                                     0.1706
## hu8_zoneidHU8_346
                      0.19840
                                  0.47132
                                            0.421
                                                     0.6754
## hu8_zoneidHU8_350
                      0.04084
                                  0.29586
                                            0.138
                                                     0.8907
## hu8_zoneidHU8_370
                      0.07754
                                  0.39777
                                            0.195
                                                     0.8461
## hu8_zoneidHU8_382
                      0.22620
                                  0.30015
                                            0.754
                                                     0.4542
## hu8_zoneidHU8_39 -0.14051
                                  0.49483
                                           -0.284
                                                     0.7775
## hu8_zoneidHU8_40 -0.47570
                                           -0.749
                                  0.63494
                                                     0.4568
## hu8_zoneidHU8_428 -0.32976
                                  0.46624
                                           -0.707
                                                     0.4823
## hu8_zoneidHU8_429 -0.45029
                                  0.57492
                                           -0.783
                                                     0.4367
## hu8_zoneidHU8_431 0.05843
                                  0.46905
                                            0.125
                                                     0.9013
## hu8_zoneidHU8_434 -0.67415
                                           -1.286
                                  0.52419
                                                     0.2036
## hu8 zoneidHU8 435 -0.79011
                                  0.52619
                                           -1.502
                                                     0.1387
## hu8_zoneidHU8_436 -0.14853
                                  0.52906
                                           -0.281
                                                     0.7799
## hu8_zoneidHU8_437 -0.51404
                                  0.55209
                                           -0.931
                                                     0.3557
## hu8_zoneidHU8_440 -0.06096
                                  0.47189
                                           -0.129
                                                     0.8977
## hu8_zoneidHU8_449 -0.50624
                                  0.66210
                                           -0.765
                                                     0.4476
## hu8 zoneidHU8 452 -0.69661
                                  0.62973
                                           -1.106
                                                     0.2733
## hu8 zoneidHU8 453 -0.50435
                                  0.59240
                                           -0.851
                                                     0.3981
## hu8_zoneidHU8_456 -0.27104
                                  0.68837
                                           -0.394
                                                     0.6952
## hu8_zoneidHU8_481 -0.63306
                                  0.51366
                                           -1.232
                                                     0.2228
## hu8_zoneidHU8_484 -0.07017
                                  0.47309
                                           -0.148
                                                     0.8826
## hu8_zoneidHU8_49 -0.57253
                                           -1.023
                                  0.55954
                                                     0.3105
## hu8_zoneidHU8_491 -1.10149
                                  0.71445
                                           -1.542
                                                     0.1286
## hu8_zoneidHU8_492 -0.60067
                                  0.60326
                                           -0.996
                                                     0.3236
## hu8_zoneidHU8_493 -0.81884
                                  0.59296
                                           -1.381
                                                     0.1727
## hu8_zoneidHU8_494 -0.20877
                                  0.57390
                                           -0.364
                                                     0.7174
## hu8_zoneidHU8_495 -0.29560
                                  0.66121
                                           -0.447
                                                     0.6565
## hu8_zoneidHU8_501 -0.57169
                                           -1.020
                                  0.56034
                                                     0.3119
## hu8_zoneidHU8_507 -0.25710
                                  0.63610
                                           -0.404
                                                     0.6876
## hu8_zoneidHU8_51
                     -0.60603
                                  0.64522
                                           -0.939
                                                     0.3515
## hu8 zoneidHU8 59
                     -0.57307
                                  0.61762
                                           -0.928
                                                     0.3574
## hu8_zoneidHU8_61
                     -0.18705
                                  0.58375
                                           -0.320
                                                     0.7498
## hu8_zoneidHU8_73
                     -0.54316
                                  0.57005
                                           -0.953
                                                     0.3447
## hu8_zoneidHU8_74
                     -0.62987
                                           -0.994
                                  0.63392
                                                     0.3246
## hu8_zoneidHU8_75
                     -0.28072
                                  0.58793
                                           -0.477
                                                     0.6348
## hu8_zoneidHU8_76
                     -0.30280
                                  0.61228
                                           -0.495
                                                     0.6228
## hu8 zoneidHU8 81
                     -0.79225
                                  0.52637
                                           -1.505
                                                     0.1378
## hu8_zoneidHU8_83
                     -0.69823
                                  0.64291
                                           -1.086
                                                     0.2820
## hu8_zoneidHU8_84
                     -0.59714
                                  0.63175
                                           -0.945
                                                     0.3485
## hu8_zoneidHU8_96
                     -0.19036
                                  0.60584
                                           -0.314
                                                     0.7545
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
##
                                                                         F
                                                         edf Ref.df
## s(hu12_nlcd2011_pct_52)
                                                       1.654
                                                              2.086 1.337
## s(cv.accndvi)
                                                       1.000
                                                              1.000 2.072
## s(hu12 prism ppt 30yr normal 800mm2 annual mean) 1.522 1.893 0.343
```


rfdat.cohlt\$accndvicoh.ts2

```
##
         wlconnections_openwaterwetlands_shoreline_km
##
                                          0.0036115389
   buffer500m streamdensity headwaters density mperha
##
                                          0.0029414252
##
##
                                                   chla
##
                                          0.0021518812
##
      buffer500m streamdensity streams density mperha
##
                                          0.0017242667
   wlconnections_openwaterwetlands_contributing_area_
##
                                          0.0017159523
##
                                  hu12_nlcd2011_pct_21
                                          0.0016690333
##
##
                                hu12_dep_no3_tavg_mean
                                          0.0006145133
##
##
                      hu12_roaddensity_density_mperha
##
                                          0.0003925408
##
                                  hu12_nlcd2011_pct_43
##
                                          0.0002946801
##
       wlconnections_allwetlands_contributing_area_ha
##
                                          0.0002103607
pred.cosphi.st<-predict(cf.cosphist, newdata=rfdat.phist,type="response")</pre>
cor.test(pred.cosphi.st,cos(rfdat.phist$accndviphi.ts1))
##
    Pearson's product-moment correlation
##
## data: pred.cosphi.st and cos(rfdat.phist$accndviphi.ts1)
## t = 10.23, df = 37, p-value = 2.463e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.7464346 0.9243592
## sample estimates:
        cor
## 0.859523
#sine
cf.sinphist<-party::cforest(sin(accndviphi.ts1) ~ ., data=rfdat.phist,
                          controls=cforest_control(ntree=50000,mincriterion = 0.9,mtry=3))
varimp.sinphi.st<-varimp(cf.sinphist)</pre>
print(varimp.sinphi.st[order(varimp.sinphi.st, decreasing=T)][1:10])
## buffer500m streamdensity headwaters density mperha
##
                                            0.010017274
##
                                hu12_dep_so4_tavg_mean
##
                                            0.007667561
##
      buffer500m_streamdensity_streams_density_mperha
##
                                            0.006856405
##
                                hu12_dep_no3_tavg_mean
##
                                            0.005219028
##
                         hu12_damdensity_pointspersqkm
##
                                            0.004444435
##
        hu12_prism_ppt_30yr_normal_800mm2_annual_mean
##
                                            0.003206801
##
                                      hu12_runoff_mean
```

```
0.003003752
##
                                                                                                                                           hu4_zoneid
##
                                                                                                                                        0.002132984
##
##
                                                                             hu12_groundwaterrecharge_mean
                                                                                                                                        0.001955628
##
##
                                                                                                          hu12_nlcd2011_pct_21
                                                                                                                                        0.001909523
##
pred.sinphi.st<-predict(cf.sinphist, newdata=rfdat.phist,type="response")</pre>
cor.test(pred.sinphi.st,sin(rfdat.phist$accndviphi.ts1))
##
##
         Pearson's product-moment correlation
##
## data: pred.sinphi.st and sin(rfdat.phist$accndviphi.ts1)
## t = 8.4605, df = 37, p-value = 3.55e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6673868 0.8975239
## sample estimates:
                             cor
## 0.8119335
lwgt<-preds$tslength[coh.chlaXaccndvi$accndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslen
#cosine
gam.cosphist<-gam(cos(accndviphi.ts1) ~ s(wlconnections_openwaterwetlands_shoreline_km) +
                                                       s(buffer500m_streamdensity_headwaters_density_mperha) +
                                                data=rfdat.phist, gamma=1, weights=lwgt)
gam.check(gam.cosphist)
```

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

0.41

para

2.090337e-0

```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 18 iterations.
## The RMS GCV score gradient at convergence was 6.535151e-08 .
## The Hessian was positive definite.
## Model rank = 28 / 28
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                                                edf k-index
                                                            k'
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                          9.00 1.00
                                                                       1.16
## s(buffer500m_streamdensity_headwaters_density_mperha) 9.00 1.00
                                                                       1.07
## s(chla)
                                                          9.00 1.93
                                                                       1.00
                                                          p-value
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                             0.78
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                             0.53
```

```
concurvity(gam.cosphist, full=F)$estimate
```

s(buffer500m_streamdensity_headwaters_density_mperha)

s(chla)

##

```
## s(chla)
                                                                                             8.865244e-0
##
                                                         s(buffer500m_streamdensity_headwaters_density_n
## para
## s(wlconnections_openwaterwetlands_shoreline_km)
## s(buffer500m_streamdensity_headwaters_density_mperha)
## s(chla)
##
                                                               s(chla)
                                                         2.003688e-27
## para
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                         9.679937e-02
## s(buffer500m_streamdensity_headwaters_density_mperha) 3.007850e-01
## s(chla)
                                                          1.000000e+00
summary(gam.cosphist)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cos(accndviphi.ts1) ~ s(wlconnections_openwaterwetlands_shoreline_km) +
       s(buffer500m_streamdensity_headwaters_density_mperha) + s(chla)
##
##
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 0.1566
                            0.1050 1.491
## Approximate significance of smooth terms:
                                                           edf Ref.df
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                         1.000 1.000 2.722
## s(buffer500m_streamdensity_headwaters_density_mperha) 1.000 1.000 4.536
## s(chla)
                                                         1.927 2.316 2.172
                                                         p-value
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                           0.1083
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                          0.0406 *
## s(chla)
                                                           0.1043
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.186
                         Deviance explained = 27.3%
## GCV = 0.47882 Scale est. = 0.41674
```

9.092

1.000

4.930

plot(cos(rfdat.phist\$accndviphi.ts1), predict(gam.cosphist, rfdat.phist))

Histogram of residuals

-1.5 -0.5 0.5 1.0 1.5 Residuals

Response vs. Fitted Values

##

```
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 17 iterations.
## The RMS GCV score gradient at convergence was 4.469946e-08.
## The Hessian was positive definite.
## Model rank = 28 / 28
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                                            k' edf k-index
## s(buffer500m_streamdensity_headwaters_density_mperha) 9.00 3.55
                                                         9.00 1.00
                                                                       0.81
## s(hu12_dep_so4_tavg_mean)
## s(hu12_damdensity_pointspersqkm)
                                                         9.00 1.00
                                                          p-value
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                             0.50
## s(hu12_dep_so4_tavg_mean)
                                                             0.08 .
## s(hu12_damdensity_pointspersqkm)
                                                             0.66
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
concurvity(gam.sinphist,full=F)$estimate
                                                                  para
## para
                                                          1.000000e+00
## s(buffer500m_streamdensity_headwaters_density_mperha) 1.103094e-21
## s(hu12_dep_so4_tavg_mean)
                                                          1.670584e-26
## s(hu12_damdensity_pointspersqkm)
                                                         4.263181e-23
##
                                                         s(buffer500m streamdensity headwaters density
                                                                                                   3.790
## para
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                                                                   1.000
                                                                                                   5.309
## s(hu12_dep_so4_tavg_mean)
## s(hu12_damdensity_pointspersqkm)
                                                                                                   1.854
##
                                                         s(hu12_dep_so4_tavg_mean)
## para
                                                                       2.708298e-29
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                                       4.495375e-01
## s(hu12_dep_so4_tavg_mean)
                                                                       1.000000e+00
## s(hu12_damdensity_pointspersqkm)
                                                                       4.367652e-01
##
                                                         s(hu12_damdensity_pointspersqkm)
                                                                              1.894220e-25
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                                              1.926165e-01
## s(hu12_dep_so4_tavg_mean)
                                                                              3.954777e-01
## s(hu12_damdensity_pointspersqkm)
                                                                              1.000000e+00
summary(gam.sinphist)
##
## Family: gaussian
## Link function: identity
##
## sin(accndviphi.ts1) ~ s(buffer500m_streamdensity_headwaters_density_mperha) +
##
       s(hu12_dep_so4_tavg_mean) + s(hu12_damdensity_pointspersqkm)
##
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept) -0.07683
                             0.09714 -0.791
                                                 0.435
##
## Approximate significance of smooth terms:
                                                               edf Ref.df
##
                                                                               F
## s(buffer500m_streamdensity_headwaters_density_mperha) 3.552 4.272 1.746
## s(hu12_dep_so4_tavg_mean)
                                                             1.000 1.000 1.280
## s(hu12 damdensity pointspersqkm)
                                                             1.000 1.000 0.461
                                                             p-value
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                               0.152
## s(hu12_dep_so4_tavg_mean)
                                                               0.266
## s(hu12_damdensity_pointspersqkm)
                                                               0.502
## R-sq.(adj) = 0.254
                          Deviance explained = 36.6%
## GCV = 0.43076 Scale est. = 0.35649
plot(sin(rfdat.phist$accndviphi.ts1), predict(gam.sinphist, rfdat.phist))
      0.5
                                                                                    <u></u>0
predict(gam.sinphist, rfdat.phist)
                                                                    0
                                                                        0
                                           0
                                                    0
                                                                                     00
                              0
                                                             0
                                                       00
                  0
      0.0
                                      0
                                                             0
              0
                                 0
                                                                   0
                          0
                                        0
                0
                          0
                       0
                                                                                    0
      S
      Ó.
                     0
                             0
               0
                      0
      0
                         0
            -1.0
                              -0.5
                                                 0.0
                                                                   0.5
                                                                                     1.0
                                  sin(rfdat.phist$accndviphi.ts1)
rfdat.philt<-left_join(coh.chlaXaccndvi[,c(10,5)], preds)
## Joining, by = "lagoslakeid"
rfdat.philt<-rfdat.philt[,!colnames(rfdat.philt) %in%
                             c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12_zoneid", "tslength", "county
rfdat.philt<-rfdat.philt[,!grepl("borderhu12s",colnames(rfdat.philt))]</pre>
rfdat.philt<-rfdat.philt[coh.chlaXaccndvi$accndvip.ts2<0.3,]
for(nn in 1:ncol(rfdat.philt)){
  if(is.character(rfdat.philt[,nn])){
    rfdat.philt[,nn]<-as.factor(rfdat.philt[,nn])</pre>
  }
}
```

#cosine

```
cf.cosphilt<-party::cforest(cos(accndviphi.ts2) ~ ., data=rfdat.philt,</pre>
                          controls=cforest control(ntree=50000,mincriterion = 0.9,mtry=3))
varimp.cosphi.lt<-varimp(cf.cosphilt)</pre>
print(varimp.cosphi.lt[order(varimp.cosphi.lt, decreasing=T)][1:10])
##
                                             hu4 zoneid
                                            0.011242853
##
##
                                             hu6 zoneid
                                            0.009603132
##
##
                                       hu12_slope_mean
##
                                            0.007261197
##
                                         hu12_tri_mean
##
                                            0.006826300
##
                                  hu12_nlcd2011_pct_90
##
                                            0.004997338
##
                                  hu12_nlcd2011_pct_41
                                            0.004453411
##
##
  buffer500m_streamdensity_headwaters_density_mperha
##
                                            0.004395259
##
                             hu12_dep_totaln_tavg_mean
##
                                            0.004302371
##
                                             hu8 zoneid
                                            0.003799415
## buffer500m_streamdensity_midreaches_density_mperha
                                            0.002683593
pred.cosphi.lt<-predict(cf.cosphilt, newdata=rfdat.philt,type="response")</pre>
cor.test(pred.cosphi.lt,cos(rfdat.philt$accndviphi.ts2))
##
##
    Pearson's product-moment correlation
##
## data: pred.cosphi.lt and cos(rfdat.philt$accndviphi.ts2)
## t = 10.436, df = 43, p-value = 2.327e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7361460 0.9132678
## sample estimates:
         cor
## 0.8467179
cf.sinphilt<-party::cforest(sin(accndviphi.ts2) ~ ., data=rfdat.philt,</pre>
                          controls=cforest control(ntree=50000,mincriterion = 0.9,mtry=3))
varimp.sinphi.lt<-varimp(cf.sinphilt)</pre>
print(varimp.sinphi.lt[order(varimp.sinphi.lt, decreasing=T)][1:10])
##
                                             hu4 zoneid
##
                                            0.015237229
##
                                             hu6 zoneid
                                            0.010382363
##
##
                                  hu12_nlcd2011_pct_82
##
                                           0.008137326
```

```
##
                                            hu8 zoneid
                                           0.007785586
##
##
                                  hu12_nlcd2011_pct_21
##
                                           0.005314177
## wlconnections_openwaterwetlands_contributing_area_
                                           0.003765287
##
##
         wlconnections_openwaterwetlands_shoreline_km
                                           0.003187586
##
##
               {\tt wlconnections\_allwetlands\_shoreline\_km}
##
                                           0.002555512
##
                                  hu12_nlcd2011_pct_11
##
                                           0.002021439
##
          wlconnections_forestedwetlands_shoreline_km
                                           0.001808104
##
pred.sinphi.lt<-predict(cf.sinphilt, newdata=rfdat.philt,type="response")</pre>
cor.test(pred.sinphi.lt,sin(rfdat.philt$accndviphi.ts2))
##
##
   Pearson's product-moment correlation
## data: pred.sinphi.lt and sin(rfdat.philt$accndviphi.ts2)
## t = 10.353, df = 43, p-value = 2.984e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7330286 0.9121372
## sample estimates:
         cor
## 0.8447901
lwgt<-preds$tslength[coh.chlaXaccndvi$accndvip.ts2<0.3]/mean(preds$tslength[coh.chlaXaccndvi$accndvip.t
#cosine
gam.cosphilt<-gam(cos(accndviphi.ts2) ~ hu4_zoneid + s(hu12_slope_mean) +</pre>
                 s(hu12_nlcd2011_pct_90),
               data=rfdat.philt, gamma=1, weights=lwgt)
gam.check(gam.cosphilt)
```

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

concurvity(gam.cosphilt,full=F)\$estimate


```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 12 iterations.
## The RMS GCV score gradient at convergence was 8.687603e-08.
## The Hessian was positive definite.
## Model rank = 40 / 40
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                 edf k-index p-value
                             k'
## s(hu12_slope_mean)
                           9.00 1.00
                                         1.31
                                                 0.94
## s(hu12_nlcd2011_pct_90) 9.00 4.49
                                         0.94
                                                 0.31
```

```
##
                                    para s(hu12_slope_mean)
## para
                            1.000000e+00
                                                5.626002e-29
## s(hu12_slope_mean)
                                                1.000000e+00
                            4.786705e-26
## s(hu12_nlcd2011_pct_90) 3.163661e-25
                                                1.223702e-01
##
                            s(hu12_nlcd2011_pct_90)
## para
                                       1.774799e-27
## s(hu12_slope_mean)
                                       2.439443e-01
## s(hu12_nlcd2011_pct_90)
                                       1.000000e+00
```

summary(gam.cosphilt)

##
Family: gaussian
Link function: identity

```
##
## Formula:
## cos(accndviphi.ts2) ~ hu4_zoneid + s(hu12_slope_mean) + s(hu12_nlcd2011_pct_90)
## Parametric coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                            0.30536 -0.613 0.54786
## (Intercept)
                   -0.18714
## hu4_zoneidHU4_12 -0.33067
                               0.47342 -0.698 0.49406
## hu4 zoneidHU4 16 0.72647
                               0.48301
                                        1.504 0.15039
## hu4_zoneidHU4_18 0.52995
                               0.49544
                                        1.070 0.29930
## hu4_zoneidHU4_25 -0.64913
                               0.40954
                                       -1.585 0.13085
## hu4_zoneidHU4_27
                   0.14844
                               0.49095
                                        0.302 0.76594
## hu4_zoneidHU4_29
                   1.00467
                               0.36172
                                        2.778 0.01265 *
                                        3.241 0.00466 **
## hu4_zoneidHU4_30
                   1.25402
                               0.38694
## hu4_zoneidHU4_32 0.26735
                                        0.708 0.48815
                               0.37751
## hu4_zoneidHU4_33 0.08305
                               0.52170
                                        0.159
                                               0.87535
## hu4_zoneidHU4_35 1.78804
                               0.50304
                                        3.554 0.00235 **
## hu4 zoneidHU4 36 1.23219
                               0.47379
                                        2.601 0.01835 *
                                        0.797 0.43602
                               0.34390
## hu4_zoneidHU4_4
                    0.27415
## hu4 zoneidHU4 5
                    0.36503
                               0.46342
                                        0.788 0.44141
## hu4_zoneidHU4_51 -0.53839
                               0.55972 -0.962 0.34920
## hu4 zoneidHU4 54 0.34948
                               0.54579
                                       0.640 0.53025
## hu4_zoneidHU4_60 0.09461
                               0.35678
                                       0.265 0.79398
## hu4 zoneidHU4 63 -1.04778
                               0.52845 -1.983 0.06331 .
## hu4 zoneidHU4 64 -0.87465
                               0.54104 -1.617 0.12384
## hu4_zoneidHU4_65 -0.55797
                               0.52403 -1.065 0.30145
## hu4_zoneidHU4_67 -0.87794
                               0.69085 -1.271 0.22042
## hu4_zoneidHU4_7 -0.45327
                               0.45150 -1.004 0.32909
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                                           F p-value
                            edf Ref.df
## s(hu12_slope_mean)
                          1.000 1.000 10.093 0.00520 **
## s(hu12_nlcd2011_pct_90) 4.492 5.327 5.264 0.00307 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.682
                        Deviance explained = 87.3%
## GCV = 0.35027 Scale est. = 0.13628
plot(cos(rfdat.philt$accndviphi.ts2), predict(gam.cosphilt, rfdat.philt))
```


Resids vs. linear pred.

Histogram of residuals

##
Method: GCV Optimizer: magic

Response

```
## Smoothing parameter selection converged after 16 iterations.
## The RMS GCV score gradient at convergence was 9.021055e-08.
## The Hessian was positive definite.
## Model rank = 40 / 40
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
                           k' edf k-index p-value
## s(hu12_nlcd2011_pct_82)
                                     1.19
                                              0.87
## s(hu12_nlcd2011_pct_21)
                            9
                                              0.57
concurvity(gam.sinphilt,full=F)$estimate
##
                                   para s(hu12_nlcd2011_pct_82)
## para
                           1.000000e+00
                                                    9.241976e-26
## s(hu12_nlcd2011_pct_82) 7.966017e-24
                                                    1.000000e+00
## s(hu12_nlcd2011_pct_21) 3.596625e-25
                                                    1.469472e-01
                           s(hu12_nlcd2011_pct_21)
## para
                                      3.569289e-28
## s(hu12_nlcd2011_pct_82)
                                      2.085543e-01
## s(hu12_nlcd2011_pct_21)
                                      1.000000e+00
summary(gam.sinphilt)
##
## Family: gaussian
## Link function: identity
## Formula:
## sin(accndviphi.ts2) ~ hu4 zoneid + s(hu12 nlcd2011 pct 82) +
       s(hu12_nlcd2011_pct_21)
##
##
## Parametric coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     0.71856
                                0.46879
                                          1.533
                                                   0.1403
## hu4_zoneidHU4_12 -0.86381
                                0.55846 - 1.547
                                                   0.1369
## hu4_zoneidHU4_16 -1.31844
                                0.79102 - 1.667
                                                   0.1104
                                         -2.070
## hu4_zoneidHU4_18 -1.67325
                                0.80817
                                                  0.0509 .
## hu4_zoneidHU4_25 -1.05635
                                0.57354 - 1.842
                                                   0.0797
## hu4_zoneidHU4_27 -0.04563
                                1.00959 -0.045
                                                   0.9644
## hu4 zoneidHU4 29 -1.01752
                                0.58301 - 1.745
                                                   0.0956 .
                                0.65170 -2.164
## hu4_zoneidHU4_30 -1.41049
                                                   0.0421 *
## hu4_zoneidHU4_32 -0.42915
                                0.62146 -0.691
                                                   0.4974
## hu4_zoneidHU4_33 -0.82743
                                0.55940 - 1.479
                                                   0.1540
## hu4_zoneidHU4_35 -0.23449
                                0.95633 -0.245
                                                   0.8087
## hu4_zoneidHU4_36 0.08427
                                0.95827
                                          0.088
                                                  0.9308
## hu4_zoneidHU4_4 -1.32548
                                0.58349 - 2.272
                                                  0.0337 *
## hu4 zoneidHU4 5 -1.20527
                                0.65070 - 1.852
                                                   0.0781 .
## hu4_zoneidHU4_51 -1.50451
                                0.74801 - 2.011
                                                   0.0573 .
## hu4_zoneidHU4_54 -0.28087
                                0.77874 -0.361
                                                   0.7220
## hu4_zoneidHU4_60 -0.27171
                                0.64760 -0.420
                                                   0.6791
## hu4_zoneidHU4_63 -1.45096
                                0.77839 - 1.864
                                                   0.0764 .
## hu4_zoneidHU4_64 -1.55263
                                0.77223 -2.011
                                                   0.0574 .
## hu4_zoneidHU4_65 0.29763
                                0.75187
                                          0.396
                                                   0.6962
```

```
## hu4_zoneidHU4_67 -0.42789
                                0.75233 -0.569
                                                  0.5756
## hu4_zoneidHU4_7
                     0.08444
                                0.65527
                                          0.129
                                                  0.8987
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  Approximate significance of smooth terms:
##
                           edf Ref.df
                                          F p-value
## s(hu12_nlcd2011_pct_82)
                             1
                                    1 0.381
                                              0.544
## s(hu12_nlcd2011_pct_21)
                             1
                                    1 1.023
                                              0.323
##
## R-sq.(adj) = 0.325
                         Deviance explained = 67.8%
## GCV = 0.84873 Scale est. = 0.39608
plot(sin(rfdat.philt$accndviphi.ts2), predict(gam.sinphilt, rfdat.philt))
```


save.image(file="~/Box Sync/NSF EAGER Synchrony/Data/results_20191106.RData")

print(varimp.coh.st[order(varimp.coh.st, decreasing=T)][1:10])

```
cv.accndvi
##
##
                                      0.0005710355
##
                                        hu8_zoneid
                                      0.0005568739
##
##
                        hu12_dep_totaln_tavg_mean
##
                                      0.0004949402
##
                             hu12_nlcd2011_pct_90
##
                                      0.0001939783
##
                             hu12_nlcd2011_pct_95
##
                                      0.0001609831
##
   wlconnections_scrubshrubwetlands_shoreline_km
##
                                      0.0001473959
##
          wlconnections_allwetlands_shoreline_km
##
                                      0.0001400305
```

```
##
                                  hu12_slope_mean
##
                                     0.0001274735
                                    hu12 tri mean
##
##
                                     0.0001274102
##
     wlconnections_forestedwetlands_shoreline_km
##
                                     0.0000901705
ltxt.st<-c("cv(NDVI)","HUC-8 sub-basin","total N deposition","% woody wetlands","% herbaceous wetlands"</pre>
           "shrub wetlands shoreline", "all wetlands shoreline", "slope", "topographic roughness", "foreste
print(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)][1:10])
##
                                        hu8 zoneid
##
                                      1.224867e-03
##
                              hu12_nlcd2011_pct_52
##
                                      9.141534e-04
##
                                         cv.accndvi
##
                                      4.451874e-04
##
    hu12_prism_ppt_30yr_normal_800mm2_annual_mean
##
                                      1.450424e-04
   wlconnections_allwetlands_contributing_area_ha
##
                                       1.447590e-04
      wlconnections_forestedwetlands_shoreline_km
##
##
                                      1.362169e-04
##
                              hu12_nlcd2011_pct_95
                                      1.257159e-04
##
##
           wlconnections_allwetlands_shoreline_km
                                      9.856973e-05
##
##
                            hu12_dep_so4_tavg_mean
##
                                      8.810665e-05
##
                    hu12_groundwaterrecharge_mean
##
                                      7.183743e-05
ltxt.lt<-c("HUC-8 sub-basin","% shrub/scrub","cv(NDVI)", "annual precipitation", "all wetlands contrib. a
           "forested wetlands shoreline", "% woody wetlands", "all wetlands shoreline", "sulfate deposition
           "groundwater recharge")
print(varimp.cosphi.st[order(varimp.cosphi.st, decreasing = T)][1:10])
##
         wlconnections_openwaterwetlands_shoreline_km
##
                                           0.0036115389
   buffer500m_streamdensity_headwaters_density_mperha
                                           0.0029414252
##
##
                                                   chla
##
                                           0.0021518812
##
      buffer500m_streamdensity_streams_density_mperha
##
                                           0.0017242667
##
   wlconnections openwaterwetlands contributing area
##
                                           0.0017159523
##
                                  hu12_nlcd2011_pct_21
##
                                           0.0016690333
##
                                hu12_dep_no3_tavg_mean
##
                                           0.0006145133
##
                       hu12_roaddensity_density_mperha
```

##

0.0003925408

```
##
                                  hu12_nlcd2011_pct_43
##
                                          0.0002946801
##
       wlconnections allwetlands contributing area ha
                                          0.0002103607
##
ltxt.cosphist<-c("open wetlands shoreline", "headwaters density", "stream density", "mean chlorophyll-a",
              "% developed open space", "open wetlands contrib. area", "all wetlands contrib. area", "roa
              "% pasture/hay")
print(varimp.sinphi.lt[order(varimp.sinphi.lt, decreasing = T)][1:10])
##
                                            hu4 zoneid
##
                                           0.015237229
                                            hu6_zoneid
##
##
                                           0.010382363
##
                                  hu12_nlcd2011_pct_82
##
                                           0.008137326
##
                                            hu8_zoneid
##
                                           0.007785586
##
                                  hu12_nlcd2011_pct_21
                                           0.005314177
##
##
   wlconnections_openwaterwetlands_contributing_area_
##
                                           0.003765287
##
         wlconnections_openwaterwetlands_shoreline_km
##
                                           0.003187586
##
               wlconnections_allwetlands_shoreline_km
##
                                           0.002555512
##
                                  hu12 nlcd2011 pct 11
##
                                           0.002021439
##
          wlconnections forestedwetlands shoreline km
##
                                           0.001808104
ltxt.sinphilt<-c("HUC-4 subregion", "HUC-6 basin", "% cultivated crops", "HUC-8 sub-basin", "% developed op
                 "open wetlands contrib. area", "all wetlands contrib. area", "% open water", "all wetland
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig4_varimp_top10.tif",uni
par(mfrow=c(2,2), mar=c(4,11,1,1), cex.main=0.9, cex.axis=0.9)
barplot(rev(varimp.coh.st[order(varimp.coh.st, decreasing=T)][1:10]),names.arg=rev(ltxt.st),las=2,main=
barplot(rev(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)][1:10]),names.arg=rev(ltxt.lt),las=2,main=
barplot(rev(varimp.cosphi.st[order(varimp.cosphi.st, decreasing=T)][1:10]),names.arg=rev(ltxt.cosphist)
        main=expression(paste("b) Short timescale cosine(",phi,")",sep="")), horiz=T)
barplot(rev(varimp.sinphi.lt[order(varimp.sinphi.lt, decreasing=T)][1:10]),names.arg=rev(ltxt.sinphilt)
        main=expression(paste("d) Long timescale sine(",phi,")",sep="")), horiz=T)
dev.off()
## pdf
##
     2
```

```
## Make geographic variation images
huc4_bdys<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/HU4.shp")
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/HU4.shp", layer: "HU4"
## with 65 features
## It has 13 fields
## Integer64 fields read as strings: GNIS_ID
huc8_bdys<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/HU8.shp")
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/HU8.shp", layer: "HU8"
## with 511 features
## It has 13 fields
## Integer64 fields read as strings: GNIS_ID
cohst_huc8<-data.frame(ZoneID=names(gam.cohst$coefficients)[grep1("hu8_zoneid",names(gam.cohst$coeffici
                       coeff=gam.cohst$coefficients[grepl("hu8_zoneid",names(gam.cohst$coefficients))])
rownames(cohst_huc8)<-c()</pre>
cohst_huc8$ZoneID<-substring(cohst_huc8$ZoneID,11)</pre>
cohlt_huc8<-data.frame(ZoneID=names(gam.cohlt$coefficients)[grep1("hu8_zoneid",names(gam.cohlt$coeffici
                      coeff=gam.cohlt$coefficients[grepl("hu8_zoneid",names(gam.cohlt$coefficients))])
rownames(cohlt_huc8)<-c()</pre>
cohlt_huc8$ZoneID<-substring(cohlt_huc8$ZoneID,11)</pre>
sinphilt_huc4<-data.frame(ZoneID=names(gam.sinphilt$coefficients)[grep1("hu4_zoneid",names(gam.sinphilt
                      coeff=gam.sinphilt$coefficients[grepl("hu4_zoneid",names(gam.sinphilt$coefficient
rownames(sinphilt_huc4)<-c()</pre>
sinphilt_huc4$ZoneID<-substring(sinphilt_huc4$ZoneID,11)</pre>
# lagosstates outline<-lagosstates</pre>
# lagosstates outline@data$dissolve<-rep(1,length(lagosstates outline))
\# lagosstates\_outline < -gUnaryUnion(lagosstates\_outline,id=lagosstates\_outline@data$dissolve)
# huc4_bdys<-raster::intersect(huc4_bdys,lagosstates_outline)</pre>
# huc8_bdys<-raster::intersect(huc8_bdys,lagosstates_outline)</pre>
# huc_codes <- read.csv("/Users/jonathanwalter/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", co
# huc_codes<-huc_codes[huc_codes$hu4_zoneid %in% analysislakes$lakeinfo$hu4_zoneid,]
huc_bdys_cohst<-huc8_bdys[huc8_bdys$ZoneID %in% cohst_huc8$ZoneID,]
huc_bdys_cohst@data<-left_join(huc_bdys_cohst@data, cohst_huc8)
## Joining, by = "ZoneID"
## Warning: Column `ZoneID` joining factor and character vector, coercing into
## character vector
huc_bdys_cohlt<-huc8_bdys[huc8_bdys$ZoneID %in% cohlt_huc8$ZoneID,]
huc_bdys_cohlt@data<-left_join(huc_bdys_cohlt@data, cohlt_huc8)
## Joining, by = "ZoneID"
## Warning: Column `ZoneID` joining factor and character vector, coercing into
## character vector
```

```
huc_bdys_sinphilt<-huc4_bdys[huc4_bdys$ZoneID %in% sinphilt_huc4$ZoneID,]
huc_bdys_sinphilt@data<-left_join(huc_bdys_sinphilt@data, sinphilt_huc4)
## Joining, by = "ZoneID"
## Warning: Column `ZoneID` joining factor and character vector, coercing into
## character vector
scale1_100<-function(x){</pre>
  x1 < -x-min(x) + 1/100
  x1 < -round(x1/max(x1)*100)
 return(x1)
#make smaller images that we can insert into the main figure
bight=6.5
bigwd=6.5
lagosstates_prj<-spTransform(lagosstates, proj4string(huc8_bdys))</pre>
# png("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5b_hu8_cohst.png", uni
       res=300, width=biqwd/5, height=biqht/4)
\# par(mar=c(0,0,2,0))
\# plot(huc_bdys_cohst,bty="o",xlab="HU8 watershed", col=pal[scale1_100(huc_bdys_cohst$coeff)],xlim=c(-9)
# lines(lagosstates_prj, lwd=0.5)
\# par(fig=c(0.2,0.8,0.875,1), new=T, mar=c(.5,0,0.2,0), tcl=-0.15, mgp=c(1,0.2,0))
# image(matrix(1:100,ncol=1),col=pal[1:100], xaxt="n", yaxt="n")
\# axis(1,at=c(0,0.25,0.5,0.75,1),labels=round(seq(min(huc_bdys_cohst$coeff), max(huc_bdys_cohst$coeff),
# dev.off()
# png("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5i_hu8_cohlt.png", uni
       res=300, width=bigwd/5, height=bight/4)
# par(mar=c(0,0,2,0))
\#\ plot(huc\_bdys\_cohlt,bty="o",xlab="HU8\ watershed",\ col=pal[scale1\_100(huc\_bdys\_cohlt$coeff)],xlim=c(-9)
# lines(lagosstates prj, lwd=0.5)
\# par(fig=c(0.2,0.8,0.875,1), new=T, mar=c(.5,0,0.2,0), tcl=-0.15, mgp=c(1,0.2,0))
# image(matrix(1:100,ncol=1),col=pal[1:100], xaxt="n", yaxt="n")
# axis(1,at=c(0,0.25,0.5,0.75,1),labels=round(seq(min(huc_bdys_cohlt$coeff), max(huc_bdys_cohlt$coeff),
# dev.off()
#
# pnq("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fiq5n_hu4_sinphilt.pnq",
       res=300, width=biqwd/5, height=biqht/4)
\# par(mar=c(0,0,2,0))
# plot(huc_bdys_sinphilt,bty="o",xlab="HU4 watershed", col=pal[scale1_100(huc_bdys_sinphilt$coeff)],xli
# lines(lagosstates_prj, lwd=0.5)
\# par(fig=c(0.2,0.8,0.875,1), new=T, mar=c(.5,0,0.2,0), tcl=-0.15, mgp=c(1,0.2,0))
# image(matrix(1:100,ncol=1),col=pal[1:100], xaxt="n", yaxt="n")
\# axis(1,at=c(0,0.25,0.5,0.75,1),labels=round(seq(min(huc_bdys_sinphilt$coeff), max(huc_bdys_sinphilt$coeff)
# dev.off()
#
# panel5b<-readPNG("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1 CoherenceSpatialVariation/fig5b hu8 co
# panel5i<-readPNG("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5i_hu8_co
# panel5n<-readPNG("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5n_hu4_si
```

```
# mar1<-c(3,1.5,0.5,1)
# fudge=1/40
# tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5_gamfits.tif",units=
\# par(mfrow=c(4,5), mgp=c(1.5,0.5,0), oma=c(0,2.5,0,0), mar=mar1)
# plot(qam.cohst,select=1,residuals=T,ruq=FALSE,shade=T,cex=2,xlab="cv(NDVI)",ylab="short coherence")
\# \ plot(NA,NA,xlim=c(0,1),ylim=c(0,1),xaxs="i",ylab="",xlab="HUC-8 \ sub-basin",xaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",y
\# rasterImage(image=panel5b, xleft=1e-2, ybottom=1e-2, xright=1-1e-2, ytop=1-1e-2)
# plot(gam.cohst,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="total N deposition",ylab="")
# plot(gam.cohst,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% woody wetlands",ylab="")
# plot(qam.cohst,select=4,residuals=T,ruq=FALSE,shade=T,cex=2,xlab="% herbaceous wetld.",ylab="")
# plot(gam.cosphist,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="open wetlands shoreline",ylab="s
# plot(gam.cosphist,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="headwaters density",ylab="")
# plot(gam.cosphist,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="mean chlorophyll-a",ylab="")
# plot.new()
# plot.new()
\# \ plot(NA,NA,xlim=c(0,1),ylim=c(0,1),xaxs="i",yaxs="i",ylab="",xlab="HUC-8 \ sub-basin",xaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",yaxt="n",y
\# rasterImage(image=panel5i,xleft=1e-2,ybottom=1e-2,xright=1-1e-2,ytop=1-1e-2)
# plot(gam.cohlt,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% shrub/scrub",ylab="long coherence
\# plot(gam.cohlt,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="cv(NDVI)",ylab="",ylim=c(-1,1))
# plot(qam.cohlt,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="annual precipitation",ylab="")
 \textit{\# plot(gam.cohlt,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="all wetld. contrib. area",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab
\# plot (NA, NA, xlim=c(0,1), ylim=c(0,1), xaxs="i", yaxs="i", ylab="", xlab="HUC-4 sub-region", xaxt="n", yaxt="n", yaxt="n
\# rasterImage(image=panel5n,xleft=1e-2,ybottom=1e-2,xright=1-1e-2,ytop=1-1e-2)
# plot(gam.sinphilt,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% pasture",ylab="")
 \textit{\# plot(gam.sinphilt,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="\%" developed-open space",ylab="") } \\
# mtext("Partial residuals",2,outer=T,line=1.2,cex=0.8)
# mtext("sin(long phase)",2,at=1/8+fudge,outer=T,line=0,cex=0.7)
# mtext("long coherence",2,at=1/8+1/4+fudge,outer=T,line=0,cex=0.7)
# mtext("cos(short phase)",2,at=1/8+2/4+fudge,outer=T,line=0,cex=0.7)
# mtext("short coherence",2,at=1/8+3/4+fudge,outer=T,line=0,cex=0.7)
# dev.off()
## try out landscape orientation
bight=5.5
bigwd=9
lagosstates_prj<-spTransform(lagosstates, proj4string(huc8_bdys))</pre>
png("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5b_hu8_cohst_lscp.png",
                   res=300, width=bigwd/5, height=bight/4)
par(mar=c(0,0,1,0))
plot(huc_bdys_cohst,bty="o",xlab="HU8 watershed", col=pal[scale1_100(huc_bdys_cohst$coeff)],xlim=c(-918
                   ylim=c(1454000,3012981),lwd=0.5)
```

```
lines(lagosstates_prj,lwd=0.5)
par(fig=c(0.25,0.75,0.855,1), new=T, mar=c(.5,0,0.2,0), tcl=-0.15, mgp=c(1,0.05,0))
image(matrix(1:100,ncol=1),col=pal[1:100], xaxt="n", yaxt="n")
axis(1,at=c(0,0.25,0.5,0.75,1),labels=round(seq(min(huc_bdys_cohst$coeff), max(huc_bdys_cohst$coeff), l
dev.off()
## pdf
##
png("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5i_hu8_cohlt_lscp.png",
     res=300, width=bigwd/5, height=bight/4)
par(mar=c(0,0,1,0))
plot(huc bdys cohlt,bty="o",xlab="HU8 watershed", col=pal[scale1 100(huc bdys cohlt$coeff)],xlim=c(-918
     ylim=c(1454000,3012981),lwd=0.5)
lines(lagosstates_prj,lwd=0.5)
par(fig=c(0.25,0.75,0.855,1), new=T, mar=c(.5,0,0.2,0), tcl=-0.15, mgp=c(1,0.05,0))
image(matrix(1:100,ncol=1),col=pal[1:100], xaxt="n", yaxt="n")
axis(1,at=c(0,0.25,0.5,0.75,1),labels=round(seq(min(huc_bdys_cohlt$coeff), max(huc_bdys_cohlt$coeff), l
dev.off()
## pdf
##
png("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1 CoherenceSpatialVariation/fig5n hu4 sinphilt lscp.png
     res=300, width=bigwd/5, height=bight/4)
par(mar=c(0,0,1,0))
plot(huc_bdys_sinphilt,bty="o",xlab="HU4 watershed", col=pal[scale1_100(huc_bdys_sinphilt$coeff)],xlim=
     ylim=c(1454000,3012981),lwd=0.5)
lines(lagosstates_prj,lwd=0.5)
par(fig=c(0.25,0.75,0.855,1), new=T, mar=c(.5,0,0.2,0), tcl=-0.15, mgp=c(1,0.2,0))
image(matrix(1:100,ncol=1),col=pal[1:100], xaxt="n", yaxt="n")
axis(1,at=c(0,0.25,0.5,0.75,1),labels=round(seq(min(huc_bdys_sinphilt$coeff), max(huc_bdys_sinphilt$coe
dev.off()
## pdf
##
panel5b<-readPNG("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5b_hu8_cohs
panel5i<-readPNG("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5i_hu8_cohl
panel5n<-readPNG("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5n_hu4_sinp
mar1 < -c(3, 1.5, 0.5, 0.2)
fudge=1/34
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig5_gamfits_landscape.tif
par(mfrow=c(4,5),mgp=c(1.5,0.5,0), oma=c(0,2.5,0,0.5),mar=mar1,tcl=-0.3)
plot(gam.cohst,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="cv(NDVI)",ylab="short coherence")
plot(NA,NA,xlim=c(0,1),ylim=c(0,1),xaxs="i",yaxs="i",ylab="",xlab="HUC-8 sub-basin",xaxt="n",yaxt="n",m
rasterImage(image=panel5b,xleft=1e-2,ybottom=1e-2,xright=1-1e-2,ytop=1-1e-2)
plot(gam.cohst,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="total N deposition",ylab="")
plot(gam.cohst,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% woody wetlands",ylab="")
plot(gam.cohst,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% herbaceous wetld.",ylab="")
plot(gam.cosphist,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="open wetlands shoreline",ylab="sho
```

```
plot(gam.cosphist,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="headwaters density",ylab="")
plot(gam.cosphist,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="mean chlorophyll-a",ylab="")
plot.new()
plot.new()
plot(NA,NA,xlim=c(0,1),ylim=c(0,1),xaxs="i",yaxs="i",ylab="",xlab="HUC-8 sub-basin",xaxt="n",yaxt="n",m
rasterImage(image=panel5i,xleft=1e-2,ybottom=1e-2,xright=1-1e-2,ytop=1-1e-2)
plot(gam.cohlt,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% shrub/scrub",ylab="long coherence",
plot(gam.cohlt,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="cv(NDVI)",ylab="",ylim=c(-1,1))
plot(gam.cohlt,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="annual precipitation",ylab="")
plot(gam.cohlt,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="all wetld.contrib.area",ylab="",ylinestate | plot(gam.cohlt,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="all wetld.contrib.area",ylab="",ylinestate | plot(gam.cohlt,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="all wetld.contrib.area",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab="",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",ylab=",yl
plot(NA,NA,xlim=c(0,1),ylim=c(0,1),xaxs="i",yaxs="i",ylab="",xlab="HUC-4 sub-region",xaxt="n",yaxt="n",
rasterImage(image=panel5n,xleft=1e-2,ybottom=1e-2,xright=1-1e-2,ytop=1-1e-2)
plot(gam.sinphilt,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% pasture",ylab="")
plot(gam.sinphilt,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% developed-open space",ylab="")
mtext("Partial residuals",2,outer=T,line=1.2,cex=0.8)
mtext(expression(paste("long sin(",phi,")",sep="")),2,at=1/8+fudge,outer=T,line=0,cex=0.7)
mtext("long coherence",2,at=1/8+1/4+fudge,outer=T,line=0,cex=0.7)
mtext(expression(paste("short cos(",phi,")",sep="")),2,at=1/8+2/4+fudge,outer=T,line=0,cex=0.7)
mtext("short coherence",2,at=1/8+3/4+fudge,outer=T,line=0,cex=0.7)
dev.off()
## pdf
##
```