(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-257050

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl. ⁴ H 0 4 L 12/18	識別記号	FI H04L 11/18
G06F 13/00 H04L 5/00		G06F 13/00 357Z H04L 5/00
12/56		11/20 1 0 2 A
		審査請求 未請求 請求項の数5 OL (全 11 頁)
(21)出顯番号	特顯平9-59603	(71)出顧人 000004075 ヤマハ株式会社
(22)出顧日 平成9年(1997)3月13		静岡県浜松市中沢町10番1号
		(72)発明者 本山 悟 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内
		(72)発明者 角田 重雄 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内
		(74)代理人 弁理士 高橋 数四郎 (外2名)

(54) 【発明の名称】 サーバコンピュータ

(57)【要約】

【課題】 通信回線の混雑を回避することができ、かつ ユーザに応じて必要なデータを送信することができるサ ーバシステムを提供することを課題とする。

【解決手段】 メイン中継サーバ(12)とミラーサーバ(13)を有するサーバシステムであって、メイン中継サーバは、ユーザからのアクセスを受け付ける受付手段と、自己及びミラーサーバの状況を検出する検出手段と、検出手段により検出されるメイン中継サーバ及びミラーサーバの状況に応じてユーザにデータを自己が送信するかあるいはミラーサーバに送信させるかを判断する判断手段と、ユーザにデータを送信する送信手段とを有する。

【特許請求の範囲】

【請求項1】 ユーザから送信されたユーザ識別子を受 信する受信手段と、

前記受信手段が受信するユーザ識別子に応じて異なるデ ータをユーザに送信する送信手段とを有するサーバコン ピュータ。

【請求項2】 メイン中継サーバとミラーサーバを有す るサーバシステムであって、

前記メイン中継サーバは、ユーザからのアクセスを受け 付ける受付手段と、自己及びミラーサーバの状況を検出 10 であり、MIDIとは性質を異にする。 する検出手段と、前記検出手段により検出されるメイン 中継サーバ及びミラーサーバの状況に応じて前記ユーザ にデータを自己が送信するかあるいはミラーサーバに送 信させるかを判断する判断手段と、前記ユーザにデータ を送信する送信手段とを有するサーバシステム。

【請求項3】 さらに、前記メイン中継サーバは、ユー ザから送信されたユーザ識別子を受信する受信手段を有 し、前記判断手段は、前記受信手段が受信するユーザ識 別子に応じて異なるデータをユーザに送信するかあるい は送信させるかを判断する請求項2記載のサーバシステ 20 **丛**。

【請求項4】 メイン中継サーバと複数のミラーサーバ を有するサーバシステムであって、

前記メイン中継サーバは、ユーザからのアクセスを受け 付ける受付手段と、前記複数のミラーサーバの状況を検 出する検出手段と、前記検出手段により検出される複数 のミラーサーバの状況に応じて前記ユーザにデータを送 信するよういずれかのミラーサーバに指示する指示手段 とを有するサーバシステム。

ザから送信されたユーザ識別子を受信する受信手段を有 し、前記指示手段は、前記受信手段が受信するユーザ識 別子に応じて異なるデータをユーザに送信するように指 示する請求項4記載のサーバシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、データの通信技術 に関し、特に不特定多数のユーザにデータを送信すると とができる通信技術に関する。

[0002]

【従来の技術】電子楽器間の通信の統一規格として、M IDI (music instrumental digitalinterface) 規格 がある。MIDI規格のインターフェースを備えた電子 楽器は、MIDI用ケーブルを用いて、他の電子楽器と 接続することができる。電子楽器は、MIDI用ケーブ ルを介して、MIDIデータを通信することができる。 【0003】例えば、一の電子楽器は、演奏者が演奏し た情報をMIDIデータとして送信し、他の電子楽器 は、当該MIDIデータを受信し、楽音を発音すること ができる。一の電子楽器で演奏すると、他の電子楽器で 50

リアルタイムに発音することができる。

【0004】また、複数の汎用コンピュータを接続する 通信ネットワークでは、種々の情報を通信することがで きる。例えば、コンピュータに接続されているハードデ ィスク等に生の楽音情報やMIDIデータ等の情報を一 度蓄積しておき、通信ネットワークを介して、当該情報 を送信することができる。他のコンピュータは、当該情 報を受信して、ハードディスク等の記憶装置に記憶す る。汎用の通信ネットワークは、情報の通信を行うのみ

【0005】MIDI規格は、電子楽器間のリアルタイ ム通信を可能にするが、長距離の通信及び多数ノード間 の通信に適していない。一方、汎用通信ネットワーク は、長距離の通信及び多数ノード間の通信に適している が、電子楽器間のリアルタイム通信を考慮したものでは ない。

【0006】楽音情報のリアルタイム通信を行うと、時 間当たりの情報量が多くなり、通信回線が混雑しやす い。また、1対1通信に比べ、多数のノードに楽音情報 を送信するとなると、さらに通信回線が混雑しやすくな る。通信回線が混雑すると、通信速度の遅れが生じ、リ アルタイムの演奏再生に支障が生じる。

【0007】また、汎用の通信ネットワークでは、ユー ザがサーバコンピュータにアクセスすれば、どんなユー ザでもそのサーバコンピュータから同じデータを受信す ることができる。

【0008】ユーザが所有するコンピュータは、性能又 は記憶容量が必ずしも同じでない。ユーザ所有のコンピ ュータの性能が低かったり記憶容量が少なかったりする 【請求項5】 さらに、前記メイン中継サーバは、ユー 30 と、多量のデータを受信できない場合がある。仮に、デ ータを受信できたとしても、そのデータを記憶すること が困難であったり処理することが困難になる。

> 【0009】例えば、MIDIデータのみを処理すると とは可能であっても、MIDIデータと画像データの両 方を処理することは困難な場合がある。高性能のコンビ ュータを所有するユーザは多量のデータを要求するが、 低性能のコンピュータを所有するユーザは少量のデータ を要求することが多い。しかし、ユーザがその旨を要求 しない限り、サーバコンピュータはどのユーザにも同じ データを送信するので、ユーザにとっては不便である。

> 【0010】また、ユーザに応じて、必要とするデータ の種類が異なることがある。例えば、あるユーザは、M IDIデータと画像データの両方を必要とし、他のユー ザはMIDIデータのみを必要とする場合がある。

> 【0011】さらに、受信するデータの種類に応じてデ ータの値段が異なる場合がある。例えば、MIDIデー タと画像データの両方を受信する場合は高額であり、M IDIデータのみを受信する場合は低額である。ユーザ は、自己の資金に応じて、所望のデータを受信したいと の要求がある。

[0012]

【発明が解決しようとする課題】リアルタイム通信、不 特定多数のユーザとの通信、又は長距離通信を行うと、 時間当たりの情報量が多くなり、通信回線が混雑しやす い。通信回線が混雑すると、通信速度の遅れが生じ、リ アルタイム演奏に支障が生じる。

【0013】また、ユーザの都合に応じて、各ユーザが 必要とするデータが異なるが、サーバコンピュータは、 ユーザを区別せずに同じデータを送信するので、ユーザ が希望するデータを得ることが困難である。

【0014】本発明の目的は、通信回線の混雑を回避す ることができるデータの通信技術を提供することであ る。

【0015】本発明の他の目的は、ユーザに応じて必要 なデータを送信することができる通信技術を提供するこ とである。

[0016]

【課題を解決するための手段】本発明の一観点によれ ば、ユーザから送信されたユーザ識別子を受信する受信 手段と、前記受信手段が受信するユーザ識別子に応じて 20 W (world wide web) サーバ8に供給される。WWWサ 異なるデータをユーザに送信する送信手段とを有するサ ーバコンピュータが提供される。

【0017】ユーザからユーザ識別子を受信すれば、ユ ーザを特定することができるので、ユーザに応じて異な るデータをユーザに送信することができる。

【0018】本発明の他の観点によれば、メイン中継サ ーバとミラーサーバを有するサーバシステムであって、 前記メイン中継サーバは、ユーザからのアクセスを受け 付ける受付手段と、自己及びミラーサーバの状況を検出 する検出手段と、前記検出手段により検出されるメイン 30 タの種類が異なる。例えば、ある中継サーバは、MID 中継サーバ及びミラーサーバの状況に応じて前記ユーザ にデータを自己が送信するかあるいはミラーサーバに送 信させるかを判断する判断手段と、前記ユーザにデータ を送信する送信手段とを有するサーバシステムが提供さ れる。

【0019】例えば、メイン中継サーバの負荷が大きく なったり回線状態が悪くなったりしたときには、ユーザ へのデータ送信をミラーサーバに任せることができるの で、回線の混雑や通信の遅れを軽減させることができ る。

【0020】本発明の他の観点によれば、メイン中継サ ーバと複数のミラーサーバを有するサーバシステムであ って、前記メイン中継サーバは、ユーザからのアクセス を受け付ける受付手段と、前記複数のミラーサーバの状 況を検出する検出手段と、前記検出手段により検出され る複数のミラーサーバの状況に応じて前記ユーザにデー タを送信するよういずれかのミラーサーバに指示する指 示手段とを有するサーバシステムが提供される。

[0021]

【発明の実施の形態】図1は、楽音情報及び画像情報の 通信ネットワークを示す図である。

【0022】演奏会場1には、MIDI楽器2、カメラ 4、エンコーダ3、5、及びルータ6が備えられる。演 奏会場1では、演奏者がMIDI楽器2を演奏する。M IDI楽器2は、演奏者の演奏操作に応じてMIDIデ ータを生成し、エンコーダ3に供給する。エンコーダ3 は、MIDIデータを所定のデータ形式で、ルータ6を 介してインターネット上にパケット送信する。

【0023】カメラ4は、演奏者が演奏している様子を 10 撮影し、その様子を画像データとしてエンコーダ5に供 給する。エンコーダ5は、画像データを所定のデータ形 式で、ルータ6を介してインターネット上にパケット送 信する。

【0024】ルータ6は、以下に示すインターネットを 介して、MIDIデータ及び画像データを送信する。当 該データは、電話回線又は専用回線を通り、ルータ6か らメインサーバ7に供給され、さらに複数の中継サーバ 12, 13a, 13b, ・・・に供給され、さらにWW ーバ8は、いわゆるプロバイダである。

【0025】以下、中継サーバ12をメイン中継サーバ と呼び、中継サーバ13a, 13b, ・・・の個々又は 全てを総称してミラーサーバ13と呼ぶ。メイン中継サ ーバ12は中継サーバを代表するサーバであり、ミラー サーバ13はメイン中継サーバ12と同様な動作を行う サーバである。

【0026】メイン中継サーバ12と各々のミラーサー バ13は、それぞれユーザに送信することができるデー I データと画像データを送信することができ、他の中継 サーバは、MIDIデータのみを送信することができ

【0027】ユーザは、自己が所有するホームコンピュ ータの性能、自己が受けたいサービスの程度、又はデー タ受信に対する対価を支払えるか否か等に応じて、ラン クを決めることができる。例えば、あるランクでは画像 データとMIDIデータの受信のサービスを受けること ができ、他のランクではMIDIデータのみの受信のサ 40 ービスを受けることができる。

【0028】ユーザは、予めメイン中継サーバ12又は 送信者(サービス提供者) にランクを指定してサービス の提供を申請すれば、ユーザIDを受け取ることができ る。メイン中継サーバ12は、ユーザ I D とランクを関 連付けて記憶する。

【0029】ユーザA~ユーザDは、例えば、表1に示 すユーザ I D、パスワード、ランクが与えられる。

[0030]

【表1】

ユーザ名	ユーザID	パスワード	ランク
ユーザA	147	music	ランクA
ユーザB	258	dog	ランクB
ユーザC	369	хуг	ランクC
ユーザD	000	guest	ランク2

【0032】ランクAは、例えば動画の画像データとMIDIデータの受信のサービスを受けることができる。ランクBは、例えば静止画の画像データとMIDIデータの受信のサービスを受けることができる。ランクCは、例えばMIDIデータのみの受信のサービスを受けることができる。ランクZは、ゲスト用のランク(試聴用のランク)であり、ユーザ登録しているか否かにかかわらず、任意のユーザが受けられるサービスのランクである。ランクZは、例えば時間制限付きのデータの受信、又は一部の演奏バートのMIDIデータのみの受信のサービスを受けることできる。

【0033】また、ランクに応じて、音質に差を付けて MIDIデータを送信したり、画質に差を付けて画像データを送信してもよい。具体的には、MIDIデータや 30 画像データの一部を間引いたり、MIDIデータを一部 の演奏パートに限定したり、単位時間当たりに送信する 画像の枚数を減らすことができる。

【0034】さらに、ホールでコンサートを行うことを 想定し、ユーザを種々の席に割り当てることができる。 ユーザの席の位置に応じて、音のバランスや画像の内容 に差を設けて、演奏データ又は画像データを送信するこ とができる。

【0035】演奏会場においてコンサートを行う場合、*

*コンサートの主催者は、コンサートの定員を決めて、ユーザにチケットを発行することができる。チケットには、例えばランクA (特等席)、ランクB (普通席)、ランクC (立見席)等のランクをつけることができる。【0036】ユーザは、ホームコンピュータ9を用いて、WWWサーバ8を通してメイン中継サーバ12にアクセスすれば、インターネットで上記のMIDIデータ又は画像データを受信することができる。

20 【0037】具体的には、ユーザは、まずメイン中継サーバ12にアクセスし、ユーザIDとパスワードを入力する。メイン中継サーバ12は、入力されたユーザIDを識別し、表1を参照してユーザのランクを判断する。【0038】メイン中継サーバ12は、ユーザのランクに応じて、自己又はミラーサーバ13の中でそのランクの処理が可能なもののいずれかにユーザを振り分ける。ユーザは、自己のランクに応じて所望のデータを中継サーバのいずれかから受信することができる。

【0039】さらに、メイン中継サーバ12は、負荷状 態又は回線状態に応じて、自己又はミラーサーバ13の いずれかにユーザを振り分ける。ユーザは、負荷が軽い 又は回線状態が良好な中継サーバからデータを受信する ことができる。

【0040】メイン中継サーバ12とミラーサーバ13 a, 13bは、例えば、表2に示す対応ランク、負荷状態、回線状態である。

【0041】 【表2】

	対応ランク	負荷状態	回線状態
メイン中継サーバ	全ランク	60%	良好
ミラーサーバ13a	全ランク	40%	やや混雑
ミラーサーバ13b	ランクC以下	80%	良好

【0042】対応ランクとは、表1に示したランクA~ ンクを示す。メイン中継サーバ12とミラーサーバ13 ランクZのうちでそのサーバが対応することができるラ 50 aは、全ランクに対応することができる。すなわち、当

該サーバ12と13aは、画像データとMIDIデータ の両方を処理することができるサーバであることを意味 する。ミラーサーバ13bは、ランクC以下のランクに 対応することができる。すなわち、当該サーバ13b は、MIDIデータのみを処理することができるサーバ であることを意味する。

【0043】中継サーバ12、13aは、4人のユーザ A~ユーザDからのアクセスを同時に受け付けることが でき、各ユーザにランクの異なるデータを供給すること ができる。すなわち、各中継サーバは、全てのユーザに 10 同じデータを供給するのではなく、ユーザIDを識別す ることにより、ユーザに応じたデータを供給することが できる。

【0044】負荷状態は、そのサーバにアクセスしてい るユーザ数(回線数)に相当する。中継サーバ12.1 3は、自己にアクセス中のユーザ数が多ければ負荷が大 きいと判断し、自己にアクセス中のユーザ数が少なけれ ば負荷が小さいと判断する。また、アクセス中のランク の程度を考慮し、アクセス中のユーザのランクが高いも のについては負荷に重み付けをして、負荷を計算しても 20 よい。具体的には、アクセス中であるランクの程度の累 計を計算して、負荷の大きさを判断することができる。 メイン中継サーバ12は、負荷が小さい自己又はミラー サーバ13にユーザを振り分けることができる。

【0045】回線状態は、中継サーバ12又は13にア クセスする回線が混雑しているか否かを示す。中継サー バ12又は13の負荷が軽い場合であっても、ホームコ ンピュータ9と中継サーバ12, 13の間の回線(中継 地点を含む)が混雑する場合がある。回線状態が良好で あれば、通信に遅れがなく、スムーズな通信を行うこと 30 音質を下げることはない。 ができる。回線状態が混雑していれば、通信に遅れが生 じやすく、スムーズな通信を行うことが困難である。メ イン中継サーバ12は、回線状態が良好な自己又はミラ ーサーバ13にユーザを振り分けることができる。

【0046】例えば、中継サーバ12又は13がテスト データをホームコンピュータ9に送信し、そのテストデ ータを送り返してもらい、そのテストデータの通信の往 復時間を計測することにより、回線状態を調べることが できる。往復時間が基準値よりも長いときには回線が混 雑しており、基準値よりも短いときには良好であると判 40 断することができる。数カ所のホームコンピュータにつ いての往復時間を計測し、その平均値をとれば、より確 実な回線状態を判断することができる。

【0047】ユーザは、負荷が軽くかつ回線状態が良好 なメイン中継サーバ12又はミラーサーバ13からデー タを受信することができるので、通信の混雑を回避する ことができ、通信の遅れを軽減することができる。

【0048】ホームコンピュータ9は、ディスプレイ装 置と内蔵又は外付けのMIDI音源を有し、ディスプレ イ装置に画像データに基づく画像を表示し、MIDI音 50 又は回線状態に応じて、適正な中継サーバ12又は13

源にMIDIデータに基づく楽音信号を生成させること ができる。MIDI音源は、楽音信号を音声出力装置1 1に出力する。音声出力装置11は、当該楽音信号に応 じて発音する。演奏会場1で演奏される演奏音と同等の 音が音声出力装置11からリアルタイムで発音される。 【0049】また、ホームコンピュータ9の外部に、M IDI音源10を接続すれば、ホームコンピュータ9 は、MIDI音源10に楽音信号を生成させ、音声出力 装置11から発音させることができる。

【0050】なお、ユーザにとっては、画像データより もMIDIデータの方が重要な情報であるので、画像デ ータよりもMIDIデータを優先して処理を行う。画像 データは、画質が悪く、コマ数が少なくてもさほど気に ならないが、MIDIデータに基づく楽音は高品質が要 求される。

【0051】ユーザは、自宅のホームコンピュータ9を インターネットに接続すれば、誰でも演奏を聴くことが できる。さらに、ユーザは、演奏会場1に赴かなくて も、自宅にいながらディスプレイ装置で演奏会場1の模 様を見ながら、リアルタイムで演奏を聴くことができ る。例えば、演奏会場1でコンサートを行った場合に は、不特定多数人が自宅でそのコンサートを楽しむこと ができる。

【0052】演奏会場からMIDIデータを自宅に送信 することにより、演奏者が複数のユーザのそれぞれの自 宅で電子楽器を演奏しているかのような状況を作り出す ことができる。

【0053】また、インターネットでは、生の楽音情報 ではなく、MIDIデータを通信するので、雑音により

【0054】図2は、図1の通信ネットワークをより広 範囲にした通信ネットワークを示す。図1では、1つの WWWサーバ8により構成されるネットワークの例を示 したが、図2では、複数のWWWサーバ(以下、プロバ イダと呼ぶ)8により構成されるネットワークの例を示 す。プロバイダ8は複数ある。それらのプロバイダ8は 相互に接続されている。各プロバイダ8には、それぞれ 複数のホームコンピュータ(以下、クライアントと呼 ぶ) 9が接続されている。

【0055】クライアント9は、種々のプロバイダ8を 通って、中継サーバ12又は13に接続される。 すなわ ち、クライアント9と中継サーバ12,13を結ぶ経路 は1通りではなく複数ある。どの経路を通過するかによ り、回線状態が異なる。すなわち、ある中継サーバ13 の負荷状態が大きくてもその中継サーバ13の回線状態 が良好な場合がある。逆に、ある中継サーバ13の負荷 状態が小さくてもその中継サーバ13の回線状態が混雑 する場合がある。

【0056】メイン中継サーバ12は、負荷状態及び/

にクライアント9を振り分けることができる。クライア ント9は、通信の混雑が少なく、通信の遅れがない中継 サーバ12又は13からデータを受信することができ る。

【0057】図3は、エンコーダ3、5及びクライアン トタのハードウエアの構成を示す図である。メイン中継 サーバ12及びミラーサーバ13は、図3のハードウエ アと同様な構成を有するが、音源28及びMIDIイン ターフェース30は必ずしも必要でない。これらは、汎 用コンピュータを用いることができる。

【0058】バス31には、キーボードやマウス等の入 力装置26、表示器27、MIDI音源28、インター ネットを行うための通信インターフェース29、MID Iインターフェース30、RAM21、ROM22、C PU23、外部記憶装置25が接続されている。

【0059】入力装置26は、種々の設定を指示すると とができる。表示器27は、種々の設定情報や画像を表 示することができる。音源28は、MIDIデータを基 にして楽音信号を生成する。

【0060】通信インターフェース29は、インターネ 20 ットにより、MIDIデータ及び画像データを送受信す るためのインターフェースである。MIDIインターフ ェース30は、外部に対してMIDIデータを送受信す るためのインターフェースである。

【0061】外部記憶装置25は、例えばハードディス クドライブ、フロッピーディスクドライブ、CD-RO Mドライブ、光磁気ディスクドライブ等であり、MID I データ、画像データ又はコンピュータプログラム等を 記憶することができる。

【0062】ROM22は、コンピュータプログラムや 30 各種パラメータを記憶することができる。

【0063】RAM21は、バッファやレジスタ等のワ ーキングエリアを有し、ROM21や外部記憶装置25 に記憶されている内容をコピーして記憶することができ る。CPU23は、ROM22又はRAM21に記憶さ れているコンピュータプログラムに従って、各種演算ま たは処理を行う。CPU23は、タイマ24から時間情 報を得ることができる。

【0064】RAM21は、エンコーダ3,5、クライ アント9、中継サーバ12、13により異なる。図4 (A)は、エンコーダとクライアントのRAMの構成を 示す。RAM21は、キーオンバッファ21aと音源設 定バッファ21bを有する。キーオンバッファ21a は、MIDIデータ中のキーオンイベントを格納し、音 源設定バッファ21bは、MIDIデータ中の音源設定 情報を格納する。

【0065】図4(B)は、中継サーバ12, 13のR AMの構成を示す。RAM21は、ユーザ情報記憶領域 21 cと中継サーバ情報記憶領域21 dを有する。ユー ザ情報記憶領域21cは、上記の表1に示すユーザ情報 50 て、適切な中継サーバを1つ決定する。まず、ユーザラ

を記憶する領域であり、中継サーバ情報記憶領域21 d は上記の表2に示す中継サーバ情報を記憶する領域であ る。

10

【0066】次に、クライアント9のハードウエアを説 明する。ユーザが入力装置26を用いて、メイン中継サ ーバ12のアドレスを入力し、その後ユーザID及びパ スワードを入力することにより、メイン中継サーバ12 にアクセスすることができる。また、表示器27は受信 した画像データを基に演奏会場の模様(画像)を表示 10 し、MIDI音源28は受信したMIDIデータを基に 楽音信号を生成し、外部に出力する。

【0067】図5は、メイン中継サーバ12が行う処理 を示すフローチャートである。ステップSA1では、新 規のクライアントの接続があるか否かをチェックする。 クライアントは、ユーザが操作するコンピュータであ る。ユーザがメイン中継サーバのアドレス(URL)を クライアントに入力することにより、クライアントをメ イン中継サーバに接続することができる。当該接続がな ければ、新規な接続があるまで待つ。接続があれば、ス テップSA2へ進む。

【0068】ステップSA2では、ユーザIDとパスワ ードの入力をクライアントに指示する。クライアント は、ユーザに入力を促す。ユーザは、ユーザIDとパス ワード(表1)をクライアントに入力することができ

【0069】ステップSA3では、ユーザIDとパスワ ードの入力があるか否かをチェックする。ユーザIDと パスワードは、予めメイン中継サーバに登録されてい る。ユーザIDとバスワードが一致すれば入力があった と判断する。入力がなければ、ステップSA2へ戻り、 入力を指示する。入力があれば、ステップSA4へ進 Ċ.

【0070】ステップSA4では、ユーザが入力したユ ーザIDとパスワードを受け付け、ユーザIDを基に、 又はユーザIDとパスワードを基に、ユーザランクを判 定する。この判定は、RAMに格納されている表1のデ ータを基に行われる。

【0071】ステップSA5では、各中継サーバ12, 13の負荷状態を検出してデータ送信の可否を判定す る。負荷状態と回線状態の両方を検出してデータ送信の 可否を判定してもよい。検出された負荷状態及び回線状 態は、表2の形式でRAMに格納される。負荷状態が小 さく回線状態が良好な中継サーバ12.13がデータ送 信可能であると判定することができる。

【0072】ステップSA6では、当該判定したユーザ ランクとデータ送信の可否を基に、どの中継サーバ1 2, 13に新規のクライアントを振り分けるかを決定す る。この決定は、RAMに格納されている表2のデータ を用いて、ユーザランクと負荷状態と回線状態に応じ

30

12

ンクのデータを送信可能な中継サーバ12, 13を決定 し、さらにその中から負荷状態及び回線状態が良好な中 継サーバ12, 13を決定する。

11

【0073】ステップSA7では、当該決定した中継サーバにクライアントを接続させ、その中継サーバにデータの送信を指示する。クライアントは、当該中継サーバから所定のランクのデータをスムーズに受信することができる。その後、ステップSA1に戻り、新たなクライアントの接続を待つ。

【0074】 このフローチャートは、新規な接続があっ 10 たクライアントを振り分ける処理である。次に、回線状態の悪化、又はクライアントからの要求により、接続中のクライアントを他のサーバに振り分ける処理を説明する。

【0075】図6は、メイン中継サーバ12が行う上記の処理を示すフローチャートである。このフローチャートは、接続中であるクライアントに対して行う処理である。

【0076】ステップSB1では、クライアントよりデータ中断の障害がある旨のクレームを受け付けた中継サ 20 ーバがあるか否かをチェックする。クライアントの受信状態が悪いときには、ユーザがクライアント上の特定のスイッチを押すことにより、その旨のクレームをサーバに知らせることができる。クレームを受け付けた中継サーバがあるときにはステップSB10へ進み、そのような中継サーバがないときにはステップSB2へ進む。

【0077】ステップSB2では、クライアントへのデータの通信状況に問題がある中継サーバがあるか否かをチェックする。具体的には、各中継サーバの回線状態を検出し、回線状態に問題があるか否かをチェックする。問題のある中継サーバがあるときにはステップSB10へ進み、問題のある中継サーバがないときにはステップSB3へ進む。

【0078】ステップSB10では、問題のある中継サーバを含めてクライアントのユーザランクをサービス可能な全ての中継サーバの状況を調べる。負荷状態及び回線状態に余裕のある中継サーバについては、新たに接続可能なクライアント数を調べる。すなわち、その中継サーバに振り分け可能なクライアント数を調べる。

【0079】ステップSB11では、MIDIデータ (演奏データ)が2秒以上通信されていないことを確認 する。演奏中に急に中継サーバが切り換わると、演奏が 中断されてしまうので、MIDIデータが途切れている ときに中継サーバを切り換える必要がある。

【0080】ステップSB12では、問題のある中継サーバから余裕のある他の中継サーバへクライアントを接続し直す。ステップSB1においてクライアントからクレームを受け付けた場合にはそのクライアントを接続し直す。ステップSB2において中継サーバが問題を検出した場合にはサンプル的にピックアップしたクライアン

ト(往復時間を計測して実際に回線状態を調べたクライアントが望ましい)を、ステップSB10で調べた接続可能なクライアント数だけその中継サーバに接続し直す。その後、ステップSB1へ戻り、上記の処理を繰り返す。

【0081】ステップSB3では、負荷状態フラグUが 1か否かをチェックする。フラグUは、0であれば負荷 の小さい中継サーバが少なくと1つはあることを示し、 1であれば負荷の小さい中継サーバが1つもないことを 示す。初期状態では、クライアントの接続数が0であ り、負荷が小さいので、フラグUは0である。

【0082】フラグUが0であるときには、ステップSB4へ進む。ステップSB4では、各中継サーバの負荷 状態を検出し、各ユーザランクの中継サーバのクライア ントの接続数が限界に達したか(又は近い)か否かをチェックする。

【0083】接続数が限界に達していなければ、新規なクライアントを受け付けることができるので、ステップSB1に戻り、上記の処理を繰り返す。接続数が限界に達すれば、ステップSB8へ進み、新規なクライアントの受け付けを中断する。その後、ステップSB9においてフラグUを1にセットし、ステップSB1に戻る。

【0084】ステップSB3においてフラグUが1であると判断されたときには、ステップSB5へ進む。ステップSB5は、各中継サーバの負荷状態を検出し、各中継サーバの負荷状態に余裕ができたか否かをチェックする。

【0085】負荷状態に余裕ができていないときには、フラグUを1のままにして、ステップSB1に戻る。負荷状態に余裕ができたときには、ステップSB6へ進み、フラグUを0にセットする。その後、ステップSB7において、新規のクライアントの受け付けを開始し、ステップSB1に戻る。

【0086】本実施例は、インターネットを用いることにより、演奏会場における演奏情報(MIDIデータ)及び演奏映像(画像データ)を、不特定多数のユーザに供給することができる。ユーザは、演奏会場に赴かなくても、自宅にいながらリアルタイムでMIDIデータ及び画像データを得ることができる。

40 【0087】なお、ユーザは、クライアント上の特定のキーを押すことにより、演奏会場に「アンコール」や「ブーイング」等の観客としての反応を送信してもよい。それらの反応は、演奏による楽音と共に、MIDIデータとして演奏会場からユーザに送信することができる。ユーザは、演奏による楽音の他、観客の反応も聴くことができるので、コンサートの雰囲気を味わうことができる。

レームを受け付けた場合にはそのクライアントを接続し 【0088】ユーザは、自己が所有するクライアントの 直す。ステップSB2において中継サーバが問題を検出 性能、自己が受けたいサービスの程度、又はデータ受信 した場合にはサンプル的にピックアップしたクライアン 50 に対する対価を支払えるか否か等に応じて、ランクを決

1

めることができる。そのランクは、ユーザIDに対応付けられる。中継サーバは、ユーザIDを識別することにより、ユーザに応じたランクのデータを供給することができる。

13

【0089】各中継サーバは、自己の負荷状態と回線状態を検出することができる。メイン中継サーバは、各中継サーバの負荷状態及び回線状態に応じて、クライアントの接続を振り分ける。ユーザは、負荷が軽くかつ回線状態が良好な中継サーバからデータを受信することができる。通信の混雑は回避され、通信の遅れは軽減される。

【0090】中継サーバは、負荷状態と回線状態以外に、各中継サーバの故障等の障害を検出して、その検出結果に応じてクライアントの接続を振り分けてもよい。ある中継サーバに障害が生じた場合にも、他の中継サーバがそれをサポートすることができる。

【0091】なお、メイン中継サーバ12は、クライアントからアクセスされると、複数のミラーサーバ13のうちのいずれかに振り分けるようにしてもよい。この場合、ミラーサーバ13のうちのいずれかがクライアント 20 に送信することになり、メイン中継サーバ12は送信を行わない。

【0092】また、図1において、メインサーバ7は、必ずしも必要でない。その場合、中継サーバ12, 13が実質的なサーバとなり、中継する機能を必ずしも持たない。中継サーバ12, 13は、通常のサーバと特別な差異を持たない。

【0093】本実施例は、インターネットに限定されない。例えば、IEEE1394規格のデジタルシリアル 通信や通信衛星等の他の通信にも適用することができ

【0094】以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。

[0095]

*【発明の効果】以上説明したように、本発明によれば、 ユーザ識別子によりユーザを特定することができるの で、各ユーザが望むデータを送信することができる。 【0096】また、状況に応じて、メイン中継サーバと

ミラーサーバを切り換えて、データをユーザに送信する ことができるので、回線の混雑や通信の遅れを軽減させ ることができる。

【図面の簡単な説明】

【図1】 楽音情報及び画像情報の通信ネットワークを 10 示す図である。

【図2】 図1の通信ネットワークをより広範囲にした 通信ネットワークを示す図である。

【図3】 エンコーダ、ホームコンピュータ及び中継サーバのハードウエアの構成を示す図である。

【図4】 図4(A)はエンコーダ及びクライアントの RAMの構成を示す図であり、図4(B)は中継サーバ のRAMの構成を示す図である。

【図5】 メイン中継サーバが行う処理を示すフローチャートである。

20 【図6】 メイン中継サーバが行う他の処理を示すフローチャートである。

【符号の説明】

1 演奏会場、 2 MIDI楽器、 3, 5 x ンコーダ、 4 カメラ、 6 ルータ、 7 8 WWWサーバ、 メインサーバ、 9ホームコ ンピュータ、 10 MIDI音源、 11 音声 出力装置、12 メイン中継サーバ、 13 ミラー 21 RAM、21a キーオンバッフ サーバ、 21b 音源設定情報バッファ、 ーザ情報記憶領域、 21d 中継サーバ情報記憶領 22 ROM, 23 CPU タイマ、 25 外部記憶装置、 26入力装置、 27 表示器、 29 インタ

27 表示器、 28 音源、 29 インタ ーネット用インターフェース、 30 MIDIイン ターフェース、 31 バス

[図3]

*

コンピュータ

【図1】

通信ネットワーク

[図4]

RAM

(A) エンコーダ、クライエント

(B) 中継サーバ

【図5】

【図2】

[図6]

