

FIN014 Gestão Financeira para Engenharia de Produção II

PROFa. DRa HELOÍSA BERNARDO

CAPÍTULO 2

Valor do Dinheiro no tempo

NOSSA META

COMPREENDER CONSTRUIR AVALIAR

Compreender como o valor do dinheiro se altera no tempo para

Construir modelos de análise de valor do dinheiro no tempo e

<u>Avaliar</u> alternativas de aplicações de recursos

NOSSAS FERRAMENTAS

Fluxo de Caixa

Saídas (\$) Entradas (\$)

Data Focal

Tempo - Períodos iguais e consecutivos

Taxa de Juros em finanças

Elemento de tomada de decisão

Custo Rentabilidade

Remuneração pelo uso do capital

Quanto 💢 Quando

DEFINIÇÕES

- Quantidade de Capital (C, VP ou PV) Valor investido
- Tempo (n, nper ou t)
- Taxa de juros (i ou taxa) expressa em porcentagem
- Montante (M, VF ou FV): Juros + Capital
- Fluxo de Caixa: Entradas e Saídas de dinheiro ao longo do tempo
- Prestações iguais e consecutivas (PGTO)

Regimes de Capitalização (acumulação de capital ao longo do tempo)

Juros incidem sobre o principal

Juros incidem sobre o principal e sobre os juros

CAPITALIZAÇÃO SIMPES COMPOSTA

$$VF = VP \times (1 + TAXA \times n)$$

$$VP = \frac{VF}{(1 + TAXA \times n)}$$

$$VF = VP \times (1 + TAXA)^n$$

$$VP = \frac{VF}{(1 + TAXA)^n}$$

No excel

n = Prazo

TAXA = Taxa

VP = Valor Presente

VF = Valor Futuro

Quanto vale

Capitalização simples x Capitalização composta

COMO FUNCIONA NA PRÁTICA?

OBSERVAÇÃO IMPORTANTE: SE A CAPITALIZAÇÃO NÃO FOR ESPECIFICADA, CONSIDERAREMOS <u>CAPITALIZAÇÃO COMPOSTA</u>

Um investidor pretende obter ao final de 2 anos o valor de R\$ 15.000. Se aplicar R\$ R\$ 10.000 em um CDB que rende 7,5% ao ano, conseguirá obter o valor pretendido?

Taxa =
$$i = 7,5\%$$
 aa

$$VF = 10.000 \times (1 + 0.075)^2 = 11.556,25$$

Resp: não, a essa taxa terá ao final de 2 anos, \$11.556,25

Taxa =
$$i = 7,5\%$$
 aa

Quanto precisaria investir para obter a quantia pretendida em 2 anos?

$$15.000 = VP \times (1 + 0.075)^2 \Rightarrow VP = 12.979.99$$

Resp: Precisará investir \$ 12.980

Taxa =
$$i = 7,5\%$$
 aa

A que taxa de juros precisaria ser aplicado R\$ 10.000 para que fosse obtido R\$ 15.000 ao final de 2 anos?

VP = 10.000 Taxa e prazo devem estar na mesma unidade de tempo.

$$15.000 = 10.000 \times (1+i)^2 \Rightarrow i = 22.5\%$$

Resp: A taxa de juros precisaria ser de 22,5,% ao ano

Um empréstimo no valor de \$ 15.000,00 é concedido à taxa de juro de 2,23% a.m. Os fluxos de caixa da operação são apresentados ao lado. Qual o valor do fluxo de caixa X?

A prestação X quita o empréstimo, então "zera" o fluxo. Escolher uma data focal e levar todos os fluxos conhecidos para essa data e então encontrar X que resolve o problema.

Podemos, por conveniência escolher t=2 para a nossa data focal. Agora ela será nosso "novo" zero

Colocando todos os fluxos na mesma data focal

Só podemos somas e subtrair fluxos de caixa SE ESTIVEREM NA MESMA DATA

Custo Financeiro e tomada de decisão

Uma empresa precisa de R\$ 15.000 para capital de giro por 3 meses. O gerente do banco ofereceu duas operações com as seguintes taxas:

4% ao mês e não há taxa de abertura de crédito

Valor a pagar no final do contrato: VF=16.872,96

3,5% ao mês mas deve ser pago no contrato uma taxa de abertura de crédito no valor de R\$ 500

Valor a pagar no final do contrato: VF=17.185,13

Qual das duas alternativas é mais vantajosa para a empresa?

A primeira alternativa é mais vantajosa

Taxas Proporcionais – Juros Simples

Duas taxas de juros, expressas em unidades de tempo diferentes são ditas proporcionais quando, incidindo sobre o mesmo principal produzem um mesmo montante, no regime de capitalização simples.

O período e a taxa devem estar sempre na mesma unidade!!!!

- 1. Determine a taxa trimestral proporcional à 21% a.a.
- 2. Determine a taxa mensal proporcional à 36% a.a.
- 3. Determine a taxa mensal proporcional à 0,9% a.d.

Equivalência de taxa de juros

Duas taxas, expressas em unidades de tempo distintas, são ditas equivalentes quando, incidindo sobre o mesmo capital, produzem um mesmo valor futuro no regime de capitalização composta;

Exemplo: 5% ao mês equivale a 79,586% ao ano.

Convenção:

Juro Exato: Considera ano com 365 dias

Juro Comercial: ano com 360 dias e mês com 30 dias

taxas variáveis e taxa real

LEITURA OBRIGATÓRIA: capítulo 5

Assaf Neto, Alexandre **Matemática financeira: edição universitária** / Alexandre Assaf Neto. – São Paulo: Atlas, 2017.

Acessar:

https://www.ibge.gov.br/estatisticas/ economicas/precos-e-custos/9256indice-nacional-de-precos-aoconsumidor-amplo.html?=&t=o-que-e

$$i_{acum} = [(1 + i_1) \times (1 + i_2) \times (1 + i_3) \times \cdots] - 1$$

$$r = \frac{\left(1 + i_{efetiva}\right)}{\left(1 + i_{inflação}\right)} - 1$$

$$i_{m \in dia} = (1 + i_t)^{1/n} - 1$$

https://blog.nubank.com.br/cdi-

СЫ	2020/	
Mês/ano	Índice (em %)	Acumulada +1
Janeiro	0,38%	1,003800
Fevereiro	0,29%	1,006711
Março	0,34%	1,010134
Abril	0,28%	1,012962
Maio	0,24%	1,015393
Junho	0,21%	1,017526
Julho	0,19%	1,019459
Agosto	0,16%	1,021090
n (nr de meses)		8
Taxa acumulada		2,10901%

0,26123%

CDI

Taxa Real (inflação pelo IGPM)	-6,870%
Taxa real média (IGPM)	-0,886%
Taxa Real (inflação pelo IPCA)	1,400%
Taxa real média (IPCA)	0,174%

https://www.portalbrasil.net/ig

IGPIVI	pm/		
Mês/ano	Índice	(em %)	Acumulada +1
jan/20		0,48%	1,004800
fev/20		-0,04%	1,004398
mar/20		1,24%	1,016853
abr/20		0,80%	1,024987
mai/20		0,28%	1,027857
jun/20		1,56%	1,043892
jul/20		2,23%	1,067171
ago/20		2,74%	1,096411
n (nr de meses)		·	8
Taxa acumulada			9,64112%

Taxa Média	1,15717%
------------	----------

https://www.ibge.gov.br/estatis ticas/economicas/precos-e-

IPCA custos

ICDM

11 C/ \	castos		
Mês/ano	Índice	(em %)	Acumulada +1
jan/20	ס	0,21%	1,002100
fev/20	ס	0,25%	1,004605
mar/20	ס	0,07%	1,005308
abr/20	ס	-0,31%	1,002192
mai/20	ס	-0,38%	0,998384
jun/20)	0,26%	1,000979
jul/20	ס	0,36%	1,004583
ago/20	כ	0,24%	1,006994
n (nr de meses)			8
Taxa acumulada	Э.		0,69940%

Taxa Média	0,08716%
------------	----------

Séries Uniformes de Pagamentos

Financiamento

Um banco financia uma máquina a taxa de juros de 3,1% a.m. em 35 parcelas iguais sem entrada. Se a máquina custa à vista R\$ 50.000 qual o valor de cada parcela?

Perpetuidade

Valor Presente de uma série infinita de pagamentos constantes

Perpetuidade com crescimento

Valor Presente de uma série infinita de pagamentos constantes a uma taxa de de crecimento constante (nesse caso g=2%)

Perpetuidades - exemplo

Para todas as situações, considere que o retorno esperado pelo mercado é de 12% ao ano e você deve calcular o preço máximo a pagar nesse investimento para obter no mínimo a rentabilidade esperada pelo mercado.

- A) Um determinado ativo apresenta como retorno fluxos de caixa perpétuos no valor de \$ 200 a partir do ano 1.
- (por exemplo, espera-se que uma ação pague dividendos "perétuos" de \$200. Nesse caso ela formula teríamos o valor justo da ação – o valor justo de qualquer ativo é dado pelo valor presente dos benefícios futuros e os benefícios futuros no caso de uma ação são os dividendos)
- B) Considere agora uma taxa de crescimento de 3% ao ano nos mesmos dados do problema anterior
- C) Considere agora que fluxos de caixa perpétuos no valor de \$ 200 serão pagos **A PARTIR DO TERCEIRO ANO DE INVESTMENTO**.

Perpetuidades - exemplo

	A)	B)	C)
FC1	200	200	200
g	0	2%	0%
taxa	12%	12%	12%
VP	R\$1.666,67	R\$2.000,00	R\$1.328,66
VP em t2			R\$1.666,67

SISTEMAS DE AMORTIZAÇÃO DE EMPRÉSTIMOS

SISTEMA DE AMORTIZAÇÃO CONSTANTE

SISTEMA PRICE

Tabela SAC

Amortizações constantes e prestações decrescentes

Amortização =
$$\frac{PV}{n}$$

$$J_t = \frac{PV}{n} \times (n - t - 1)$$

$$PMT_t = \frac{PV}{n} \times [1 + (n - t - 1) \times i]$$

 $saldo devedor_t = saldo devedor_{t-1} - amortização$

Tabela SAC

Valor do financiamento: R\$12.000

Taxa de juros : 1% ao mês

Prazo: 12 meses

Mês	amortização	juros	prestação	saldo devedor
0				12.000,0
1	946,2	120,0	1.066,2	11.053,8
2	955,6	110,5	1.066,2	10.098,2
3	965,2	101,0	1.066,2	9.133,0
4	974,9	91,3	1.066,2	8.158,1
5	984,6	81,6	1.066,2	7.173,5
6	994,5	71,7	1.066,2	6.179,1
7	1.004,4	61,8	1.066,2	5.174,7
8	1.014,4	51,7	1.066,2	4.160,2
9	1.024,6	41,6	1.066,2	3.135,6
10	1.034,8	31,4	1.066,2	2.100,8
11	1.045,2	21,0	1.066,2	1.055,6
12	1.055,6	10,6	1.066,2	0,0
Total	12.000,0	794,2	12.794,2	

Tabela PRICE

Valor do financiamento: R\$12.000

Taxa de juros : 1% ao mês

Prazo: 12 meses

Mês	amortização	juros	prestação	saldo devedor
0				12.000,0
1	946,2	120,0	1.066,2	11.053,8
2	955,6	110,5	1.066,2	10.098,2
3	965,2	101,0	1.066,2	9.133,0
4	974,9	91,3	1.066,2	8.158,1
5	984,6	81,6	1.066,2	7.173,5
6	994,5	71,7	1.066,2	6.179,1
7	1.004,4	61,8	1.066,2	5.174,7
8	1.014,4	51,7	1.066,2	4.160,2
9	1.024,6	41,6	1.066,2	3.135,6
10	1.034,8	31,4	1.066,2	2.100,8
11	1.045,2	21,0	1.066,2	1.055,6
12	1.055,6	10,6	1.066,2	0,0
Total	12.000,0	794,2	12.794,2	

SAC X PRICE

Os sistemas são equivalentes, os juros pagos referem-se à utilização do dinheiro.

SAC

PRICE

				saldo					
Mês	amortização	juros	prestação	devedor	Mês	amortização	juros	prestação	C
0				12.000,0	0				•
1	1.000,0	120,0	1.120,0	11.000,0	1	946,2	120,0	1.066,2	
2	1.000,0	110,0	1.110,0	10.000,0	2	955,6	110,5	1.066,2	1
3	1.000,0	100,0	1.100,0	9.000,0	3	965,2	101,0	1.066,2	
4	1.000,0	90,0	1.090,0	8.000,0	4	974,9	91,3	1.066,2	
5	1.000,0	80,0	1.080,0	7.000,0	5	984,6	81,6	1.066,2	
6	1.000,0	70,0	1.070,0	6.000,0	6	994,5	71,7	1.066,2	
7	1.000,0	60,0	1.060,0	5.000,0	7	1.004,4	61,8	1.066,2	
8	1.000,0	50,0	1.050,0	4.000,0	8	1.014,4	51,7	1.066,2	
9	1.000,0	40,0	1.040,0	3.000,0	9	1.024,6	41,6	1.066,2	
10	1.000,0	30,0	1.030,0	2.000,0	10	1.034,8	31,4	1.066,2	
11	1.000,0	20,0	1.020,0	1.000,0	11	1.045,2	21,0	1.066,2	
12	1.000,0	10,0	1.010,0	0,0	12	1.055,6	10,6	1.066,2	
Total	12.000,0	780,0	12.780,0		Total	12.000,0	794,2	12.794,2	