Введение в математическую статистику. Оценивание параметров распределения.

Леонид Иосипой

Программа «Математика для анализа данных» Центр непрерывного образования, ВШЭ

2 июня 2021

• Организационная информация

• Теория оценивания

• Сравнение оценок

• Методы построения оценок

Организационная информация

- 1. О курсе/о себе
- 2. Время занятий/Перерывы
- 3. Теория/Практика/Python
- 4. Домашние задания/Google Classroom
- Сайт

В статистике данные часто рассматриваются как реализация выборки из некоторого распределения, известного с точностью до одного или нескольких параметров.

При таком подходе для определения распределения, наиболее подходящего для описания данных, достаточно уметь оценивать значения неизвестных параметров по реализации выборки.

Теория оценивания

Пример

Пусть $\theta > 0$ — неизвестное число. Ниже даны координаты x_i десяти точек, взятых из равномерного распределения на $[0, \theta]$.

3.5 3.2 25.6 8.8 11.6 26.6 18.2 0.4 12.3 30.1

Попробуйте угадать значение параметра θ .

С формальной точки зрения мы имеем дело со следующей задачей:

- $> x_1, \ldots, x_n$ это реализация независимых равномерно распределенных на отрезке $[0, \theta]$ случайных величин X_i ;
- ▶ $\theta \in \Theta = (0, +\infty)$ это неизвестный параметр;
- необходимо оценить θ по реализации выборки x_1, \ldots, x_n наиболее точно.

Задача оценивания параметров в общем случае.

- ▶ $x_1, ..., x_n$ это реализация выборки (независимых и одинаково распределенных случайных величин) из функции распределения $F_{\theta}(u)$;
- ▶ $\theta \in \Theta$ это неизвестный параметр, а $\{F_{\theta}(u), \theta \in \Theta\}$ некоторое семейство функций распределения;
- \blacktriangleright задача состоит в том, чтобы оценить (восстановить) θ по реализации выборки x_1, \ldots, x_n наиболее точно.

Будем оценивать θ с помощью функций $\widehat{\theta}(x_1, \ldots, x_n)$ от n переменных x_1, \ldots, x_n , которые мы будем называть оценками или статистиками.

Подставляя в оценку $\widehat{\theta}$ реализацию выборки x_1,\ldots,x_n , мы получим число — оценку неизвестного параметра θ .

3.5 3.2 25.6 8.8 11.6 26.6 18.2 0.4 12.3

Для приведенного выше эксперимента в качестве оценок неизвестного параметра θ можно использовать:

- 1. $\widehat{\theta}_1(x_1,\ldots,x_n) = 35$;
- 2. $\widehat{\theta}_2(x_1,\ldots,x_n) = 2x_7$:
- 3. $\widehat{\theta}_3(x_1,...,x_n) = \max\{x_1,...,x_n\};$
- 4. $\widehat{\theta}_4(x_1,\ldots,x_n) = 2 \frac{x_1 + \ldots + x_n}{x_n}$.

- ▶ Какая из этих оценок точнее?
- ▶ Каким образом вообще можно сравнивать оценки?

Оценка $\widehat{\theta}(x_1,\ldots,x_n)$ параметра θ называется несмещенной, если

$$\mathbb{E}_{ heta}\left[\widehat{ heta}(X_1,\ldots,X_n)
ight]= heta$$
 для всех $heta\in\Theta$.

Здесь индекс θ у математического ожидания \mathbb{E}_{θ} означает, что мы считаем математическое ожидание случайной величины $\widehat{\theta}(X_1,\ldots,X_n)$, где X_i распределены согласно $F_{\theta}(x)$.

Несмещенность означает, что при многократном вычислении оценки на разных наборах данных среднее арифметическое полученных оценок будет стремится к истинному значению параметра θ .

1. Является ли $\widehat{\theta}_1(x_1,...,x_n) = 35$ несмещенной?

Нет, не является, так как

$$\mathbb{E}_{\theta}\big[\widehat{\theta}_1(X_1,\ldots,X_n)\big] = \mathbb{E}_{\theta}[35] = 35.$$

Ho $35 \neq \theta$ для всех $\theta \in (0; +\infty)$.

Сравнение оценок

2. Является ли $\hat{\theta}_2(x_1,...,x_n) = 2x_7$ несмещенной?

Да, является, так как для произвольного $\theta \in (0; +\infty)$

$$\mathbb{E}_{\theta}[\widehat{\theta}_{2}(X_{1},\ldots,X_{n})] = \mathbb{E}_{\theta}[2X_{7}] = 2 \cdot \frac{\theta}{2} = \theta.$$

Несмещенность

3. Является ли $\hat{\theta}_3(x_1,...,x_n) = \max\{x_1,...,x_n\}$ несмещенной?

Нет, не является, так как, ввиду того, что $\mathbb{P}(X_i = \theta) = 0$ для всех i = 1, ..., n, max $\{X_1, ..., X_n\} < \theta$ с вероятностью 1.

Следовательно,

$$\mathbb{E}_{\theta}[\widehat{\theta}_{3}(X_{1},\ldots,X_{n})] = \mathbb{E}_{\theta}[\max\{X_{1},\ldots,X_{n}\}] < \mathbb{E}_{\theta}[\theta] = \theta.$$

4. Является ли $\widehat{\theta}_4(x_1, \dots, x_n) = 2 \frac{x_1 + \dots + x_n}{n}$ несмещенной?

Да, является, так как для произвольного $\theta \in (0; +\infty)$

$$\mathbb{E}_{\theta} [\widehat{\theta}_{4}(X_{1}, \dots, X_{n})] = \mathbb{E}_{\theta} \left[2 \frac{X_{1} + \dots + X_{n}}{n} \right]$$

$$= \frac{2}{n} \cdot \mathbb{E}_{\theta} [X_{1} + \dots + X_{n}]$$

$$= \frac{2}{n} \cdot n \cdot \frac{\theta}{2}$$

$$= \theta$$

Результаты проверки на несмещенность:

$$\widehat{\theta}_1(x_1, \dots, x_n) = 35;$$

$$\widehat{\theta}_2(x_1, \dots, x_n) = 2x_7;$$

$$\widehat{\theta}_3(x_1, \dots, x_n) = \max\{x_1, \dots, x_n\};$$

$$\widehat{\theta}_4(x_1, \dots, x_n) = 2 \frac{x_1 + \dots + x_n}{n}.$$

Состоятельность

Оценка $\widehat{\theta}(x_1,\ldots,x_n)$ параметра θ называется состоятельной, если для всех $\theta\in\Theta$

$$\widehat{ heta}(X_1,\ldots,X_n)\stackrel{\mathbb{P}_ heta}{ o} heta$$
 при $n o\infty$.

Здесь $\stackrel{\mathbb{P}_{\theta}}{\to}$ обозначает «сходимость по вероятности»: для любого $\varepsilon>0$

$$\mathbb{P}_{ heta}ig(ig|\widehat{ heta}(X_1,\ldots,X_n)- hetaig|>arepsilonig) o 0$$
 при $n o\infty.$

Состоятельность оценки означает концентрацию оценки около истинного значения параметра с ростом размера выборки n (что устремив $n \to \infty$, оценка сойдется к истинному значению параметра θ).

1. Является ли $\widehat{\theta}_1(x_1,...,x_n)=35$ состоятельной?

Hет, не является, так как, например, для heta=34 и arepsilon=0.1

$$\mathbb{P}(\left|\widehat{\theta}_1(X_1,\ldots,X_n)-\theta\right|>\varepsilon)=\mathbb{P}(\left|35-34\right|>0.1)=1\not\to 0.$$

2. Является ли $\hat{\theta}_2(x_1,...,x_n) = 2x_7$ состоятельной?

Het, не является, так как для произвольного $\varepsilon < \theta$

$$\mathbb{P}ig(ig|\widehat{ heta}_2(X_1,\dots,X_n)- hetaig|>arepsilonig)=\mathbb{P}ig(ig|2X_7- hetaig|>arepsilonig) \ =\mathbb{P}ig(X_7<rac{ heta-arepsilon}{2}$$
 или $X_7>rac{ heta+arepsilon}{2}ig) \ = Const
eq 0.$

3. Является ли $\widehat{\theta}_3(x_1,\dots,x_n)=\max\{x_1,\dots,x_n\}$ состоятельной? Да, является, так как

$$\mathbb{P}ig(ig|\widehat{ heta}_3(X_1,\dots,X_n)- hetaig|>arepsilonig) = \mathbb{P}ig(ig|\max\{X_1,\dots,X_n\}- hetaig|>arepsilonig) \ = \mathbb{P}ig(\max\{X_1,\dots,X_n\}< heta-arepsilonig) \ = \mathbb{P}ig(X_i< heta-arepsilon$$
 для всех $i=1,\dots,nig) \ = igg(rac{ heta-arepsilon}{ heta}igg)^n o 0,$

так как число в скобке строго меньше 1.

Состоятельность

4. Является ли $\hat{\theta}_4(x_1,...,x_n) = 2 \frac{x_1 + ... + x_n}{n}$ состоятельной?

Да, является, так как, согласно закону больших чисел,

$$\frac{X_1+\ldots+X_n}{n}\stackrel{\mathbb{P}_\theta}{\to} \mathbb{E}_\theta[X]=\frac{\theta}{2}.$$

Следовательно,

$$2 \xrightarrow{X_1 + \ldots + X_n} \xrightarrow{\mathbb{P}_{\theta}} \theta$$
.

Состоятельность

Результаты проверки на несмещенность и состоятельность:

	$ \widehat{\theta}_1 $	$\widehat{\theta}_2$	$\widehat{\theta}_3$	$\widehat{ heta}_4$
Несмещенность	-	+	-	+
Состоятельность	-	-	+	+

$$\widehat{\theta}_1(x_1, \dots, x_n) = 35;$$

$$\widehat{\theta}_2(x_1, \dots, x_n) = 2x_7;$$

$$\widehat{\theta}_3(x_1, \dots, x_n) = \max\{x_1, \dots, x_n\};$$

$$\widehat{\theta}_4(x_1, \dots, x_n) = 2 \frac{x_1 + \dots + x_n}{n}.$$

Методы построения оценок

Перейдем теперь к методам построения оценок. Известно много таких методов: метод моментов, метод максимального правдоподобия, метод спейсингов и т.д.

Основная идея любого метода построения оценок: чтобы оценить d неизвестных параметров модели, нам необходимо составить d уравнений на них.

Чтобы упростить формулировки и обозначения, мы будем считать, что неизвестный параметр многомерный: $\theta \in \Theta \subset \mathbb{R}^d$

Метод моментов: d уравнений на неизвестные параметры получаются приравниваем первых d теоретических моментов к их эмпирическим аналогам.

Пусть дана реализация выборки x_1, \ldots, x_n из некоторого распределения X с неизвестным многомерным параметром θ .

(Teoperuveckum) моментом k-го порядка случайной величины X называется величина

$$A_k = \mathbb{E}[X^k].$$

Выборочным моментом k-го порядка случайной величины Xназывается величина

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k.$$

В методе моментов в качестве уравнений на неизвестные параметры берутся следующие уравнения:

$$\begin{cases} A_1 = a_1, \\ A_2 = a_2, \\ \vdots \\ A_d = a_d. \end{cases} \iff \begin{cases} \mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i, \\ \mathbb{E}[X^2] = \frac{1}{n} \sum_{i=1}^{n} x_i^2, \\ \vdots \\ \mathbb{E}[X^d] = \frac{1}{n} \sum_{i=1}^{n} x_i^d. \end{cases}$$

Теоретический момент зависит от неизвестных параметров модели, а выборочный момент — от известных нам данных.

Эти уравнения имеют смысл, так как если моменты вплоть до порядка d существуют, то в силу закона больших чисел

$$a_k \stackrel{\mathbb{P}_{\theta}}{\rightarrow} A_k, \quad k = 1, \dots, d.$$

Задача

Пусть x_1, \ldots, x_n – реализация выборки из распределения Бернулли $Ber(\theta)$ с неизвестным параметром успеха $\theta \in [0,1]$. Оценить θ с помощью метода моментов.

Решение. Найдем теоретический и эмпирический первые моменты

$$A_1 = \mathbb{E}[X] = 0 \cdot (1 - \theta) + 1 \cdot \theta = \theta,$$

$$a_1 = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Из уравнения $A_1=a_1$ находим по методу моментов оценку

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Задача

Пусть x_1, \ldots, x_n — реализация выборки из экспоненциального распределения $Exp(\theta)$ с неизвестным параметром $\theta > 0$. Оценить θ с помощью метода моментов.

Решение. Найдем теоретический и эмпирический первые моменты

$$A_1 = \int_0^{+\infty} u \cdot \theta e^{-\theta u} du = \left(-u e^{-\theta u}\right) \Big|_0^{\infty} + \int_0^{+\infty} e^{-\theta u} du = \frac{1}{\theta},$$

$$a_1 = \frac{1}{n} \sum_{i=1}^n x_i.$$

Из уравнения $A_1 = a_1$ находим по методу моментов оценку

$$\widehat{\theta} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_i}.$$

Спасибо за внимание!