Recent Progress in Genealogies of Sequential Monte Carlo Algorithms

Suzie Brown

University of Warwick with Paul Jenkins, Adam Johansen & Jere Koskela

15 December 2019

2/22

Induced genealogy

Mathematical formulation

- ► Population of *N* particles
- ▶ Sample $n \le N$ terminal particles

Mathematical formulation

- ► Population of *N* particles
- ▶ Sample $n \le N$ terminal particles
- lacktriangle Describe genealogy by a partition-valued stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t

Mathematical formulation

- ▶ Population of *N* particles
- ▶ Sample $n \le N$ terminal particles
- lacktriangle Describe genealogy by a partition-valued stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t
- lacktriangle At time 0, the partition of $\{1,\ldots,n\}$ consisting of singletons: $G_0^{(n,N)}=\{\{1\},\ldots,\{n\}\}$
- ▶ The only possible non-identity transitions are those that merge blocks

Kingman's *n*-coalescent

Kingman's *n*-coalescent

- n terminal particles
- Continuous time
- Each pair of lineages coalesces at rate 1
- ▶ No other (> pair) mergers allowed

Notation

- $> w_t^{(i)} =$ weight of particle i in generation t
- family size $v_t^{(i)} =$ number of offspring of particle i in generation t

Notation

- $> w_t^{(i)} =$ weight of particle i in generation t
- family size $v_t^{(i)} =$ number of offspring of particle i in generation t
- lacktriangle pair merger probability $c_{N}(t)=rac{1}{N(N-1)}\sum_{i=1}^{N}v_{t}^{(i)}(v_{t}^{(i)}-1)$

Notation

- $\mathbf{w}_t^{(i)} =$ weight of particle i in generation t
- family size $v_t^{(i)} =$ number of offspring of particle i in generation t
- lacktriangle pair merger probability $c_{\mathcal{N}}(t) = rac{1}{\mathcal{N}(\mathcal{N}-1)} \sum_{i=1}^{\mathcal{N}} v_t^{(i)} (v_t^{(i)} 1)$
- ightharpoonup time scale $au_N(t)=$ inverse of $c_N(t)$

A convergence theorem¹

Suppose:

$$egin{aligned} \mathbb{E}[c_{N}(t)] &
ightarrow 0 \ \mathbb{E}\left[\sum_{r= au_{N}(s)+1}^{ au_{N}(t)} D_{N}(r)
ight] &
ightarrow 0 \ \mathbb{E}\left[\sum_{r= au_{N}(s)+1}^{ au_{N}(t)} c_{N}(r)^{2}
ight] &
ightarrow 0 \ \mathbb{E}[au_{N}(t)- au_{N}(s)] &\leq C_{t,s}N \end{aligned}$$

Then the rescaled genealogical process $(G_{\tau_N(t)}^{(n,N)})_{t\geq 0}$ converges to Kingman's coalescent in the sense of finite-dimensional distributions as $N\to\infty$.

¹Koskela, Jenkins, Johansen, Spanò. Ann Stat, to appear.

A simplified statement

A simplified statement

Suppose there exists a deterministic sequence $(b_N)_{N\in\mathbb{N}}$ uniform in $t\geq 1$ such that $b_N\to 0$.

$$\frac{1}{N(N-1)(N-2)}\sum_{i=1}^{N}\mathbb{E}_{t}[v_{t}^{(i)}(v_{t}^{(i)}-1)(v_{t}^{(i)}-2)] \leq b_{N}\frac{1}{N(N-1)}\sum_{i=1}^{N}\mathbb{E}_{t}[v_{t}^{(i)}(v_{t}^{(i)}-1)]$$

Then the rescaled genealogical process $(G_{\tau_N(t)}^{(n,N)})_{t\geq 0}$ converges to Kingman's coalescent in the sense of finite-dimensional distributions as $N\to\infty$.

▶ We replace four conditions with one

- ▶ We replace four conditions with one
- ▶ We remove condition 4, which we know is not a necessary condition

- ▶ We replace four conditions with one
- ▶ We remove condition 4, which we know is not a necessary condition
- ▶ We remove conditions 2 and 3, which contain awkward mixed moments

- ▶ We replace four conditions with one
- ▶ We remove condition 4, which we know is not a necessary condition
- ▶ We remove conditions 2 and 3, which contain awkward mixed moments
- ▶ We can verify the new condition in more complicated cases...

Resampling schemes

Problem: (stochastically) map weights $(w_t^{(1)}, \dots, w_t^{(N)})$ to family sizes $(v_t^{(1)}, \dots, v_t^{(N)})$.

Resampling schemes

Problem: (stochastically) map weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to family sizes $(v_t^{(1)}, \ldots, v_t^{(N)})$. Desirable properties:

- ▶ Number of particles constant $\sum_{i=1}^{N} v_t^{(i)} = N$
- lacktriangle Equal weights after resampling $w_{t+}^{(i)}=1/N$
- ightharpoonup Unbiased $\mathbb{E}[v_t^{(i)}|w_t^{(i)}]=\mathit{Nw}_t^{(i)}$

Corollary: multinomial resampling

Consider an SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probablity distribution $h(\cdot)$.

Under multinomial resampling, the rescaled genealogies converge to Kingman's coalescent.

Let X > 0.

 $Y: \mathbb{R}_+ \to \mathbb{N}$ is a *stochastic rounding* of X if Y takes the values

$$Y \mid X = egin{cases} \lfloor X
floor & ext{with probability } 1 - X + \lfloor X
floor \\ \lfloor X
floor + 1 & ext{with probability } X - \lfloor X
floor \end{cases}$$

Let $X \geq 0$.

 $Y: \mathbb{R}_+ \to \mathbb{N}$ is a *stochastic rounding* of X if Y takes the values

$$Y \mid X = egin{cases} \lfloor X
floor & ext{with probability } 1 - X + \lfloor X
floor \\ \lfloor X
floor + 1 & ext{with probability } X - \lfloor X
floor \end{cases}$$

Can generalise to multivariate case, with marginals $Y_i \mid X_i$ as above.

- $ightharpoonup X_i = Nw_t^{(i)}$
- $\mathbf{v}_t^{(i)} = Y_i$
- ightharpoonup Constraint $Y_1 + \cdots + Y_N = N$

²Gerber, Whiteley, Chopin. Ann Stat. 2019.

- $ightharpoonup X_i = Nw_t^{(i)}$
- $\triangleright v_t^{(i)} = Y_i$
- ightharpoonup Constraint $Y_1 + \cdots + Y_N = N$
- ► Examples: systematic resampling, residual-stratified resampling, SSP resampling²,...

²Gerber, Whiteley, Chopin. Ann Stat. 2019.

Corollary: stochastic rounding -based resampling

Consider an SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$

$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probablity distribution $h(\cdot)$.

Under stochastic rounding -based resampling, the rescaled genealogies converge to Kingman's coalescent.

Conditional SMC

- ► Used for SMC updates in particle MCMC³
- ► Given a fixed "immortal trajectory", conditioned to survive all transition and resampling steps

³Andrieu, Doucet, Holenstein. JRSSB, 2010.

Corollary: conditional SMC

Consider a conditional SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probablity distribution $h(\cdot)$.

Under multinomial resampling, the rescaled genealogies converge to Kingman's coalescent.

What about finite *N*?

As $N \to \infty$ but sample size n fixed, probability of sampling immortal line vanishes, so its effect isn't seen in the limit

What about finite N?

- As $N \to \infty$ but sample size n fixed, probability of sampling immortal line vanishes, so its effect isn't seen in the limit
- ▶ For finite *N* we have more interesting behaviour
- Depends how "typical" the immortal trajectory is

Summary

- ▶ Genealogies can provide insight into performance of SMC algorithms
- ▶ We provide simple conditions for asymptotically Kingman genealogies
- Satisfied by stochastic rounding -based resampling
- Satisfied by conditional SMC with multinomial resampling...
- ▶ ... but this hides some interesting pre-limiting behaviour