Réduction des endomorphismes

Sauf mention contraire, E, F, \ldots sont des espaces vectoriels sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , de dimension finie ou infinie.

I. Valeurs propres, vecteurs propres

I.1. Généralités

Définition. Soit $f \in \mathcal{L}(E)$. On dit qu'un vecteur x est vecteur propre de f si $x \neq 0_E$ et s'il existe $\lambda \in \mathbb{K}$ tel que $f(x) = \lambda x$.

On dit qu'un nombre $\lambda \in \mathbb{K}$ est valeur propre de f s'il existe un vecteur $x \neq 0_E$ tel que $f(x) = \lambda x$.

Si $x \neq 0_E$, la relation $f(x) = \lambda x$ définit le nombre λ de manière unique. On dit que λ est **la** valeur propre associée au vecteur propre x, et que x est **un** vecteur propre associé à la valeur propre λ .

Proposition I.1. Soit $f \in \mathcal{L}(E)$.

Si x est un vecteur propre de f, alors les vecteurs non nuls de la droite $\operatorname{Vect} x$ sont aussi vecteurs propres de f, associés à la même valeur propre ; la droite $\operatorname{Vect} x$ est donc stable par f.

Réciproquement, si D est une droite stable par f, alors les vecteurs non nuls de D sont vecteurs propres pour f.

Théorème I.2. Soit $f \in \mathcal{L}(E)$. Une famille de vecteurs propres de f, associés à des valeurs propres deux à deux distinctes, est forcément libre; si E est de dimension n, f a donc au plus n valeurs propres distinctes.

Définition. Si E est de dimension finie et $f \in \mathcal{L}(E)$, l'ensemble des valeurs propres de f est appelé **spectre** de f, et noté $\operatorname{Sp}(f)$.

I.2. Sous-espaces propres

Définition. Soit $f \in \mathcal{L}(E)$, admettant une valeur propre λ . L'ensemble $E_{\lambda}(f)$ des vecteurs vérifiant $f(x) = \lambda x$ est appelé sous-espace propre associé à la valeur propre λ pour f.

L'ensemble $E_{\lambda}(f)$ est le noyau de l'endomorphisme $f - \lambda Id_E$; c'est donc un sous-espace de E. En particulier, $E_0(f) = \operatorname{Ker} f$.

Théorème I.3. Soit $f \in \mathcal{L}(E)$, admettant des valeurs propres $\lambda_1, \ldots, \lambda_n$ deux à deux distinctes. Alors, la somme $\sum_{k=1}^n E_{\lambda_k}(f)$ est directe.

En particulier, si E est de dimension finie, alors $\sum_{k=1}^{n} \dim(E_{\lambda_k}(f)) \leq \dim E$.

Proposition I.4. Soit $(f,g) \in \mathcal{L}(E)^2$. Si $f \circ g = g \circ f$, alors les sous-espaces propres de f sont stables par g.

I.3. Valeurs propres d'une matrice carrée

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit qu'un nombre $\lambda \in \mathbb{K}$ est valeur propre de A s'il existe une colonne $X \neq 0$ telle que $AX = \lambda X$. L'ensemble de ces valeurs propres est appelé spectre de A, et noté $\operatorname{Sp}(A)$.

Si $A \in \mathcal{M}_n(\mathbb{R})$, on peut ne s'intéresser qu'à ses valeurs propres réelles, qui forment le spectre réel de A, noté $\operatorname{Sp}_{\mathbb{R}}(A)$; ou à ses valeurs propres complexes, qui forment le spectre complexe, noté $\operatorname{Sp}_{\mathbb{C}}(A)$.

Les valeurs propres de A sont les valeurs propres des endomorphismes représentés par A.

Proposition I.5. Si les matrices A et B sont semblables, alors Sp(A) = Sp(B).

I.4. Polynôme caractéristique

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle **polynôme caractéristique** de A la fonction χ_A définie par $\forall \lambda \in \mathbb{K}$ $\chi_A(\lambda) = \det(\lambda I_n - A)$.

Théorème I.6. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, le polynôme caractéristique de A est un polynôme unitaire de degré n; le coefficient de X^{n-1} vaut $-\operatorname{tr} A$, et celui de X^0 vaut $(-1)^n \det A$.

Proposition I.7. Si deux matrices sont semblables, alors elles ont même polynôme caractéristique.

Définition. Soit $f \in \mathcal{L}(E)$, où E est de dimension finie. On appelle **polynôme** caractéristique de f la fonction χ_f définie par $\forall \lambda \in \mathbb{K}$ $\chi_f(\lambda) = \det(\lambda \operatorname{Id}_E - f)$.

C'est aussi le polynôme caractéristique de la matrice de f dans n'importe quelle base; les résultats du Théorème ?? se traduisent donc de manière immédiate sur les endomorphismes (avec $n = \dim E$).

Théorème I.8. Un nombre $\lambda \in \mathbb{K}$ est valeur propre d'une matrice A (respectivement d'un endomorphisme f) si et seulement si λ est racine de son polynôme caractéristique.

Proposition I.9. Si $T = (t_{ij}) \in \mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire, alors $\chi_T = \prod_{i=1}^n (X - t_{ii})$; en particulier, les valeurs propres de T sont ses coefficients diagonaux.

Théorème I.10. Soit $f \in \mathcal{L}(E)$ et F un sous-espace de E stable par f; soit \overline{f} l'endomorphisme induit par f sur F. Alors, le polynôme caractéristique de \overline{f} divise celui de f; et, pour tout $\lambda \in \operatorname{Sp}(\overline{f})$, le sous-espace propre $F_{\lambda}(\overline{f})$ est égal à $E_{\lambda}(f) \cap F$.

I.5. Multiplicité

Définition. Si λ est valeur propre d'une matrice ou d'un endomorphisme, on appelle **multiplicité** de la valeur propre λ , la multiplicité de la racine λ dans le polynôme caractéristique.

Théorème I.11. Soit $f \in \mathcal{L}(E)$ admettant une valeur propre λ . Alors, la dimension du sous-espace propre $E_{\lambda}(f)$ est inférieure ou égale à la multiplicité de la valeur propre λ .

II. Diagonalisation

II.1. Définition

Définition. Un endomorphisme f de E est dit diagonalisable s'îl existe une base de E constituée de vecteurs propres pour f; cela équivaut à dire qu'îl existe une base de E dans laquelle la matrice de f est diagonale.

Une matrice carrée est dite diagonalisable si elle est semblable à une matrice diagonale.

Diagonaliser un endomorphisme, c'est déterminer une base de vecteurs propres pour cet endomorphisme; diagonaliser une matrice carrée A, c'est déterminer une matrice inversible P et une matrice diagonale D telles que $P^{-1}AP = D$.

II.2. Diagonalisation et sous-espaces propres

Théorème II.1. Soit $f \in \mathcal{L}(E)$; notons $\lambda_1, \ldots, \lambda_p$ les valeurs propres de f, et E_1, \ldots, E_p les sous-espaces propres associés. Il y a équivalence entre les trois propriétés :

- i. f est diagonalisable;
- **ii.** $E = \sum_{i=1}^{p} E_i$;
- iii. dim $E = \sum_{i=1}^{p} \dim E_i$.

Théorème II.2. Un endomorphisme $f \in \mathcal{L}(E)$ est diagonalisable si et seulement s'il vérifie les deux propriétés :

• le polynôme caractéristique χ_f est scindé;

• la dimension de chaque sous-espace propre de f est égale à la multiplicité de la valeur propre associée.

Corollaire II.3. Soit f un endomorphisme d'un espace de dimension n. Alors, f est diagonalisable dans chacun des cas suivants :

- i. f admet n valeurs propres distinctes.
- ii. χ_f est scindé à racines simples.

II.3. Matrices symétriques réelles

Théorème II.4. Toute matrice symétrique réelle est diagonalisable.

III. Polynômes d'endomorphismes

III.1. Généralités

Si f est un endomorphisme et $k \in \mathbb{N}^*$, on note f^k l'endomorphisme $f \circ \cdots \circ f$, composé de k facteurs égaux à f; par convention, $f^0 = \text{Id}$.

Définition. Soient $f \in \mathcal{L}(E)$, et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. On note P(f) l'endomorphisme $P(f) = \sum_{k=0}^{n} a_k f^k = a_0 \mathrm{Id}_E + a_1 f + a_2 f^2 + \cdots + a_n f^n$.

Proposition III.1. Soient $f \in \mathcal{L}(E)$, $(P,Q) \in \mathbb{K}[X]^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. Alors $\circ [\lambda P + \mu Q](f) = \lambda P(f) + \mu Q(f)$; $\circ [PQ](f) = P(f) \circ Q(f)$.

Soit $f \in \mathcal{L}(E)$; l'ensemble d'endomorphismes $\{P(f) ; P \in \mathbb{K}[X]\}$ est donc une sous-algèbre de $\mathcal{L}(E)$, qui sera notée $\mathbb{K}[f]$; l'application $\Phi : \mathbb{K}[X] \longrightarrow \mathcal{L}(E)$, $P \longmapsto P(f)$ est un morphisme d'algèbres, donc en particulier une application linéaire, dont l'image est $\mathbb{K}[f]$.

Corollaire III.2. Si $f \in \mathcal{L}(E)$ et $(P,Q) \in \mathbb{K}[X]^2$, alors $P(f) \circ Q(f) = Q(f) \circ P(f)$.

Corollaire III.3. Si $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$, alors $\operatorname{Ker} P(f)$ et $\operatorname{Im} P(f)$ sont des sous-espaces stables par f.

III.2. Polynômes de matrices

Définition. Soient $A \in \mathcal{M}_n(\mathbb{K})$, et $P = \sum_{k=0}^n a_k X^k \in \mathbb{K}[X]$. On note P(A) la matrice carrée $P(A) = \sum_{k=0}^n a_k A^k = a_0 I_n + a_1 A + a_2 A^2 + \dots + a_n A^n$.

Proposition III.4. Si $A = \operatorname{Mat}_{\mathcal{B}}(f)$, alors $P(A) = \operatorname{Mat}_{\mathcal{B}}(P(f))$.

Corollaire III.5. Si les matrices A et B sont semblables, et si $P \in \mathbb{K}[X]$, alors P(A) et P(B) sont semblables.

III.3. Lemme des noyaux

Théorème III.6 (Lemme des noyaux). Soient $f \in \mathcal{L}(E)$ et $(P,Q,R) \in \mathbb{K}[X]^3$. Si P = QR, et si Q et R sont premiers entre eux, alors $\operatorname{Ker} P(f) = \operatorname{Ker} Q(f) \oplus \operatorname{Ker} R(f)$.

Corollaire III.7. Soient $f \in \mathcal{L}(E)$ et $(P_1, \dots, P_n) \in \mathbb{K}[X]^n$. Si P_1, \dots, P_n sont deux à deux premiers entre eux et $P = \prod_{k=1}^n P_k$, alors $\operatorname{Ker} P(f) = \bigoplus_{k=1}^n \operatorname{Ker} P_k(f)$.

III.4. Polynômes annulateurs

Définition. Soient $f \in \mathcal{L}(E)$, et $P \in \mathbb{K}[X]$. On dit que P est un **polynôme** annulateur de f si P(f) = 0; de même, si $A \in \mathcal{M}_n(\mathbb{K})$ et P(A) = 0, on dit que P est un polynôme annulateur de la matrice A.

Proposition III.8. Si les matrices A et B sont semblables, alors elles ont les mêmes polynômes annulateurs.

Dans la suite, on notera $\mathcal{A}(f)$ l'ensemble des polynômes annulateurs de f.

Proposition III.9. Si $f \in \mathcal{L}(E)$, alors $\mathcal{A}(f)$ est un sous-espace vectoriel de $\mathbb{K}[X]$, absorbant pour la multiplication : si $A \in \mathcal{A}(f)$ et $B \in \mathbb{K}[X]$, alors $AB \in \mathcal{A}(f)$.

Théorème III.10. Soit $f \in \mathcal{L}(E)$. Si $\mathcal{A}(f) \neq \{0\}$, alors il existe un et un seul polynôme π_f ayant les propriétés suivantes :

- $\circ \pi_f$ est unitaire et appartient à $\mathcal{A}(f)$;
- \circ tout élément de $\mathcal{A}(f)$ est un multiple de π_f .

L'espace $\mathcal{A}(f)$ est alors exactement l'ensemble des multiples de π_f ; π_f est appelé le **polynôme minimal** de f. Il n'existe que si $\mathcal{A}(f) \neq \{0\}$.

III.5. Étude de $\mathbb{K}[f]$

Théorème III.11. Soit $f \in \mathcal{L}(E)$.

- \triangleright Si $\mathcal{A}(f) = \{0\}$, alors l'application $P \longmapsto P(f)$ est un isomorphisme de $\mathbb{K}[X]$ dans $\mathbb{K}[f]$. En particulier, $\mathbb{K}[f]$ est un sous-espace de dimension infinie de $\mathcal{L}(E)$; ce cas ne peut donc pas se produire si E est de dimension finie.
- \triangleright Si $\mathcal{A}(f) \neq \{0\}$, et si le polynôme minimal π_f de f est de degré d, alors l'application $P \longmapsto P(f)$ est un isomorphisme de $\mathbb{K}_{d-1}[X]$ dans $\mathbb{K}[f]$. En particulier, $\mathbb{K}[f]$ est un sous-espace de dimension d de $\mathcal{L}(E)$, et $(1, f, f^2, \ldots, f^{d-1})$ en constitue une base.

III.6. Théorème de Cayley-Hamilton

Théorème III.12 (de Cayley-Hamilton). En dimension finie, le polynôme caractéristique d'un endomorphisme f, est un polynôme annulateur de f.

Corollaire III.13. Le polynôme minimal d'un endomorphisme divise son polynôme caractéristique.

IV. Diagonalisation et polynômes

IV.1. Valeurs propres et polynômes

Proposition IV.1. Soient $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. Si x est vecteur propre de f, associé à la valeur propre λ , alors il est aussi vecteur propre de P(f), associé à la valeur propre $P(\lambda)$.

Proposition IV.2. Soient $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X] \setminus \{0\}$. Si P(f) = 0, alors les valeurs propres de f sont racines de P.

Théorème IV.3. Soit $f \in \mathcal{L}(E)$ admettant un polynôme minimal. Les valeurs propres de f sont alors exactement les racines de π_f dans \mathbb{K} .

IV.2. Diagonalisation et polynômes annulateurs

Théorème IV.4. Un endomorphisme est diagonalisable si et seulement si il admet un polynôme annulateur scindé à racines simples.

Dans ce cas, le polynôme $\prod_{\lambda \in \mathrm{Sp}(f)} (X - \lambda)$ est en particulier annulateur.

Corollaire IV.5. Un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.

IV.3. Diagonalisation d'un endomorphisme induit

Proposition IV.6. Si l'endomorphisme f admet un sous-espace stable F, alors le polynôme minimal de l'endomorphisme induit par f sur F, divise le polynôme minimal de f.

Corollaire IV.7. Si f est diagonalisable et F est un sous-espace stable par f, alors l'endomorphisme induit par f sur F est diagonalisable.

V. Trigonalisation

V.1. Endomorphismes nilpotents

Définition. Un endomorphisme f (respectivement une matrice carrée A) est dit nilpotent(e) s'il existe $k \in \mathbb{N}^*$ tel que $f^k = 0$ (respectivement $A^k = 0$).

L'indice de nilpotence de f (respectivement A) est alors le plus petit $k \in \mathbb{N}^*$ vérifiant $f^k = 0$ (respectivement $A^k = 0$).

Proposition V.1. L'indice de nilpotence d'un endomorphisme de E est inférieur ou égal à dim E. L'indice de nilpotence d'une matrice de $\mathcal{M}_n(\mathbb{K})$ est inférieur ou égal à n.

Théorème V.2. Une matrice carrée est nilpotente si et seulement si elle est semblable à une matrice triangulaire stricte (c'est-à-dire une matrice triangulaire dont tous les coefficients diagonaux sont nuls).

V.2. Sous-espaces caractéristiques

Définition. Soit $f \in \mathcal{L}(E)$ ayant un polynôme caractéristique **scindé**; posons $\chi_f = \prod_{k=1}^p (X - \lambda_k)^{q_k}$, où les λ_k sont des scalaires deux à deux distincts, et les q_k sont dans \mathbb{N}^* . On appelle **sous-espaces** caractéristiques de f, les sous-espaces $F_k = \text{Ker}(f - \lambda_k \text{Id}_E)^{q_k}$.

Les sous-espaces caractéristiques sont des noyaux de polynômes en f: ils sont donc stables par f.

Théorème V.3. Avec les hypothèses et notations précédentes, $E = \bigoplus_{k=1}^{p} F_k$.

V.3. Endomorphismes trigonalisables

Définition. Un endomorphisme f est dit **trigonalisable** s'il existe une base de E dans laquelle la matrice de f est triangulaire.

 $\label{lem:condition} \textit{Une matrice carr\'ee est dite trigonalisable si elle est semblable \`a une matrice triangulaire.}$

Théorème V.4. Un endomorphisme est nilpotent si et seulement s'il est trigonalisable et a pour seule valeur propre 0.

Théorème V.5. Si le polynôme caractéristique de la matrice carrée A est scindé, alors A est semblable à une matrice diagonale par blocs, dans laquelle chaque bloc diagonal est triangulaire et a ses termes diagonaux égaux.

Théorème V.6. Un endomorphisme est trigonalisable si et seulement si son polynôme caractéristique est scindé.

Proposition V.7. Si le polynôme caractéristique de f est scindé, la dimension de chaque sous-espace caractéristique est égale à la multiplicité de la valeur propre correspondante.

V.4. Relations entre coefficients et valeurs propres

Théorème V.8. Si le polynôme caractéristique de f est scindé, alors :

- la trace de f est égale à la somme de ses valeurs propres, comptées avec leur multiplicité;
- le déterminant de f est égal au produit de ses valeurs propres, comptées avec leur multiplicité.