Week 11-1: K-Nearest Neighbors (k-NN)

Ekarat Rattagan

April 9, 2025

Supervised Learning: Overview

Regression:

- Linear Regression (LR), Model representation: $\theta^T x$
- Cost Function: Mean Squared Error (MSE)
- Evaluation Metric: MSE

Classification:

- ▶ Logistic Regression, Model representation: $\sigma(\theta^T x)$
- Cost: Negative Log-Likelihood Loss (NLLL)
- Evaluation Metric: Confusion Matrix

k-NN

Assumption: Similar inputs should have similar outputs.

- Model representation: ?
- Cost function: ?
- Evaluation Metric: Confusion Matrix (for classification), MSE (for regression)

Properties:

- ► Non-parametric models
- Lazy learning / instance-based method
- Works for both classification and regression tasks

k-NN Algorithm

- Find the Euclidean distance between the testing data and each training data point.
- 2. Sort the distances from minimum to maximum
- 3. Pick k nearest neighbors
- 4. Use majority vote for classification

Euclidean Distance (L_2) :

$$d(x_i, x_k) = \sqrt{\sum_{j=1}^d (x_{i,j} - x_{k,j})^2}$$

k-NN for Regression and Classification

Sample Data:

Sample	<i>x</i> ₁	<i>X</i> ₂	<i>y</i> 1	<i>y</i> ₂	
S1	1	5	1000	yes	
S2	2	6	1200	yes	
S3	3	1	1100	no	
S4	2	4	2000	yes	
S5	2	5	?	?	

Predict: To estimate the value for S5 using the k-nearest neighbors (k-NN) algorithm, compute the average of the y_1 values for regression tasks and apply a majority vote to the y_2 values for classification tasks.

k-NN with Categorical Data

Example Dataset

Sample	Food	Chat	Fast	Price	Bar	Tip
S1	great	yes	yes	normal	no	yes
S2	great	no	yes	normal	no	yes
S3	mediocre	yes	no	high	no	no
S4	great	yes	yes	normal	yes	yes
S5	great	no	no	normal	no	?

Distance: Hamming Distance Match = 0, Mismatch = 1

Define k = 2, then compute:

- \rightarrow H(S5, S1)
- \blacktriangleright H(S5, S2)
- ► *H*(*S*5, *S*3)
- ► *H*(*S*5, *S*4)
- Choose two nearest neighbors with lowest Hamming distances

Definition: Hamming Distance

Definition

The Hamming distance between two equal-length strings of symbols is the number of positions at which the corresponding symbols are different.

Examples

The symbols may be letters, bits, or decimal digits, among other possibilities. For example, the Hamming distance between:

- •"karolin" and "kathrin" is 3.
- •"karolin" and "kerstin" is 3.
- •"kathrin" and "kerstin" is 4.
- 0000 and 1111 is 4.
- 2173896 and 2233796 is 3.

Ref: https://en.wikipedia.org/wiki/Hamming distance

Tuning the Hyperparameter k

How to choose k?

- ▶ Use odd k values to avoid ties: $k = 1, 3, 5, ..., \sqrt{N}$
- Perform cross-validation using GridSearchCV

Effect of k:

- ▶ *k* too small: overfitting
- k too large: underfitting

Decision Boundaries

Decision boundary

1-nearest neighbours

20-nearest neighbours

Ref: https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Issue 1: Feature Scaling

Problem:

- ► Features with large magnitude dominate distance calculations.
- ightharpoonup Example: Population = 120,000,000 VS Age = 60

Solution: Feature Scaling

- **z-score normalization**: Maps to range (-3,3)
- ▶ Min-max scaling: Maps to range [0,1]

Other Issues in k-NN

Issue 2: Noisy Data

- Solution: Remove outlier data
- Methods: box plots, histograms, Z-score or IQR

Issue 3: Slow Testing Time for Big Data

Solution: Use KD-Trees

Issue 4: Storage Requirements

► Solution: Compression (e.g., ZIP)

Issue 5: Curse of Dimensionality

Solution: ?

Application

- Im2gps: https: //graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
- ▶ Data imputation: https: //www.sciencedirect.com/science/article/pii/ S0164121212001586?casa_token=EQPFMncizwsAAAAA: wF2cst5NhtlUAUHmVEqkg2c8JskyGTFywEUtfUaqSRp6Qi7vux04wG3
- Recommendation system: https://www.sciencedirect. com/science/article/pii/S221083271400026X