Bayes theorem: posterior is proportional to prior times likelihood

$$\mathbb{P}(t|\mathcal{Y}) \propto \mathbb{P}(t)\mathbb{P}(\mathcal{Y}|t)$$
$$\mathbb{P}(\mathcal{Y})\mathbb{P}(t|\mathcal{Y}) = \mathbb{P}(t)\mathbb{P}(\mathcal{Y}|t).$$

 \mathcal{Y} : data

 Σ_r : rooted splits, i.e. bipartitions

 $\mathcal{F}_{\mathcal{T}}\,:\, \text{Borel } \sigma\text{-algebra on trees}$

 $\pi_{\mathcal{Y}}: \mathcal{F}_{\mathcal{T}} \to [0, \infty)$: unnormalized posterior target measure given \mathcal{Y} . AKA π .

 $\gamma_{\mathcal{Y}}: \mathcal{F}_{\mathcal{T}} \to [0, \infty)$: unnormalized posterior density (think $\mathbb{P}(t)\mathbb{P}(\mathcal{Y}|t)$). AKA γ .

 γ_* : extension of γ to partially-coalesced trees

 $\|\pi\|: \pi(\mathcal{T})$, the total posterior, equal to $\mathbb{P}(\mathcal{Y})$ by Bayes

 $\bar{\pi}$: normalized measure $\pi/\|\pi\|$

 ϕ : test function, here a function from trees to the real line

 $\bar{\pi}(\phi)$: expectation of ϕ with respect to $\bar{\pi}$

s: particle

 $s_{r,k}$: kth particle at generation r (non-uniformly weighted)

 $w_{r,k}$: weight of $s_{r,k},\,\frac{\gamma_*(s_{r,k})}{\gamma_*(\tilde{s}_{r-1,k})q(\tilde{s}_{r-1,k}\to s_{r,k})}$

 $\tilde{s}_{r,k}$: resampled kth particle at generation r (uniformly weighted)

 ν_s : proposal measure starting at s

 $q(s \to s')$: density of ν_s starting at s

 $\rho(s)$: rank or "generation number" of particle s

 $\pi_{r,K}$: (random) empirical measure from running algorithm with K particles

 $\lambda_{r,K}$: (random) measure of the particles proposed at generation r, which is $\pi_{r,K}$ applied to the pre-image of ν

 π_r : (fixed) measure with Radon-Nikodym derivative γ_* at generation r