Vetores no Plano e no Espaço

- 1) Dados os vetores no plano R^2 , $\mathbf{u} = 2\mathbf{i} 5\mathbf{j} \in \mathbf{v} = \mathbf{i} + \mathbf{j}$, pede-se determinar:
 - a) o vetor soma u + v
 - b) o módulo do vetor u + v
 - c) o vetor diferença **u v**
 - d) o vetor $3 \mathbf{u} 2 \mathbf{v}$
 - e) o produto interno u.v
- 2) A figura abaixo é constituída de nove quadrados congruentes (de mesmo tamanho).

Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

$$\begin{array}{lll} a)\overrightarrow{AB} = \overrightarrow{OF} & f)\overrightarrow{AO} = \overrightarrow{MG} & k)\overrightarrow{AB} \perp \overrightarrow{EG} & p) \mid \overrightarrow{AC} \mid = \mid \overrightarrow{FP} \mid \\ b)\overrightarrow{AM} = \overrightarrow{PH} & g)\overrightarrow{KN} = \overrightarrow{FI} & I)\overrightarrow{AM} \perp \overrightarrow{BL} & q) \overrightarrow{|F|} = \overrightarrow{|MF|} \\ c)\overrightarrow{BC} = \overrightarrow{OP} & h)\overrightarrow{AC} /\!\!\!/ \overrightarrow{HI} & m)\overrightarrow{PE} \perp \overrightarrow{EC} & r) \mid \overrightarrow{AJ} \mid = \mid \overrightarrow{AC} \mid \\ d)\overrightarrow{BL} = -\overrightarrow{MC} & i)\overrightarrow{JO} /\!\!\!/ \overrightarrow{LD} & n)\overrightarrow{PN} \perp \overrightarrow{NB} & s) \overrightarrow{|AO|} = 2 \overrightarrow{|NP|} \\ \overrightarrow{e})\overrightarrow{DE} = -\overrightarrow{ED} & j)\overrightarrow{AJ} /\!\!\!/ \overrightarrow{FG} & o)\overrightarrow{PN} \perp \overrightarrow{AM} & t) \mid \overrightarrow{AM} \mid = \mid \overrightarrow{BL} \mid \\ \end{array}$$

3) Com base na figura do exercício1, determinar os vetores abaixo, expressandoos com origem no ponto A:

4) Determine x para que se tenha $\overrightarrow{AB} = \overrightarrow{CD}$, sendo A (x,1), B(4,x+3), C(x,x+2) e D(2x,x+6).

- 5) Dadas as coordenadas, x=4, y=-12, de um vetor \vec{v} do \Re^3 , calcular sua terceira coordenada z, de maneira que $||\vec{v}|| = 13$.
- 6) Achar um vetor \vec{x} de módulo igual a 4 e de mesmo sentido e direção que o vetor $\vec{v} = 6\vec{i} - 2\vec{i} - 3\vec{k}$.
- 7) Sendo $\vec{u} = (2,3,1) e \vec{v} = (1,4,5)$. Calcular:
 - a) ū∙ṽ

- b) $(\vec{u} \vec{v})$ c) $(\vec{u} + \vec{v})^2$ d) $(3\vec{u} 2\vec{v})^2$ e) $(2\vec{u} 3\vec{v}) \cdot (\vec{u} + 2\vec{v})$
- 8) Sendo $\vec{a} = (2,-1,1), \vec{b} = (1,-2,-2) \vec{c} = (1,1,-1)$. Calcular um vetor $\vec{v} = (x,y,z)$, tal que $\vec{v} \cdot \vec{a} = 4$. $\vec{v} \cdot \vec{b} = -9$ e $\vec{v} \cdot \vec{c} = 5$.
- 9) Determinar o valor de x para que os vetores $\vec{v}_1 = x \vec{i} 2 \vec{j} + 3 \vec{k}$ e $\vec{v}_2 = 2 \vec{i} \vec{j} + 2 \vec{k}$, sejam ortogonais.
- 10) Decomponha o vetor $\vec{v} = (-1, 2, -3)$ em dois vetores $\vec{a} = \vec{b}$, tais que $\vec{a} // \vec{w} = \vec{b}$ $\perp \vec{w}$, com $\vec{w} = (2,1,-1)$.
- 11) Dados os vetores $\vec{u} = (-1,3,2), \vec{v} = (1,5,-2)$ e $\vec{w} = (-7,3,1)$. Calcule as coordenadas dos vetores:
 - a) $\vec{u} \times \vec{v}$

b) $\vec{v} \times \vec{w}$

c) $\vec{v} \times (\vec{u} \times \vec{w})$

d) $(\vec{v} \times \vec{u}) \times \vec{w}$

- $e)(\vec{u} + \vec{v}) \times (\vec{u} + \vec{w})$
- f) $(\vec{u} \vec{w}) \times \vec{w}$
- 12) Ache \vec{u} tal que $||\vec{u}|| = 3\sqrt{3}$ e \vec{u} é ortogonal a $\vec{v} = (2,3,-1)$ e a $\vec{w} = (2,-4,6)$. Dos \vec{u} encontrados, qual forma ângulo agudo com o vetor (1,0,0).
- 13) Dados os vetores $\vec{u} = (1, -1, 1)$ e $\vec{v} = (2, -3, 4)$, calcular:
 - a) A área do paralelogramo de determinado por \vec{u} e \vec{v} ;
 - b) A altura do paralelogramo relativa à base definida pelo vetor \vec{u} .
- 14) Qual é o valor de x para que os vetores $\vec{a} = (3, -x, -2)$, $\vec{b} = (3, 2, x)$ e $\vec{c} = (1, -3, 1)$ sejam coplanares.
- 15) Sejam os vetores $\vec{u} = (1,1,0), \vec{v} = (2,0,1)$ e $\vec{w}_1 = 3\vec{u} 2\vec{v}, \vec{w}_2 = \vec{u} + 3\vec{v}$ e $\vec{w}_3 = \vec{i} + \vec{j} - 2\vec{k}$. Determinar o volume do paralelepípedo definido por \vec{w}_1 , \vec{w}_2 e w₃.