微分積分学・同演習 A

演習問題 1

- 1. (1) $X_1 = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$
 - (2) $X_2 = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\}$
 - (3) $X_3 = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{2}{3}, \frac{2}{5}, \frac{3}{4}, \frac{3}{5}, \frac{4}{5} \right\}$
- 2. (1) $ax^2 + bx + c \ (a, b, c \in \mathbb{R})$
 - (2) $ax^2 + bx a b \ (a, b \in \mathbb{R})$
 - (3) $x^3/3 + x^2/2 + c \ (c \in \mathbb{R})$
- 3. $(右辺)^2-(左辺)^2\geq 0$ を確認すればよい . (1) $(右辺)^2-(左辺)^2=2(|ab|-ab)$ であるが , 絶対値の定義より $|ab|\geq ab$ が成り立つ . (2) $(右辺)^2-(左辺)^2=2(|ab|-ab)$ なので , (1) と同じ .
- 4. 左辺から式変形する.

(右辺) =
$$\frac{n!}{(j-1)!(n-j+1)!} + \frac{n!}{j!(n-j)!} = \frac{n!}{(j-1)!(n-j)!} \left(\frac{1}{n-j+1} + \frac{1}{j}\right).$$

ここで $rac{1}{n-j+1} + rac{1}{j} = rac{n+1}{j(n+1-j)}$ なので ,

(右辺) =
$$\frac{n!}{(j-1)!(n-j)!} \cdot \frac{n+1}{j(n+1-j)} = \frac{(n+1)!}{j!(n+1-j)!} = \binom{n+1}{j} = (左辺).$$

- 5. $(x+1)^n = \sum_{i=1}^n \binom{n}{i} x^i$ を利用する.
 - (1) 上式において x=1 を代入する . (2) 上式において x=-1 を代入する .
- 6^{\dagger} (1) 任意の正の数 $\varepsilon>0$ に対してある自然数 N が存在して , $n\geq N$ を満たす任意の自然数 n に対して $|a_n-\alpha|<\varepsilon$ が成立する .
 - (2) ある正の数 $\varepsilon>0$ が存在して ,どんな自然数 N に対しても $n\geq N$ かつ $|a_n-\alpha|\geq \varepsilon$ となる自然数 n が存在する .
- 7^{\dagger} 実数 a に対して [a] を , a を超えない最大の整数とする . 任意の正数 ε が与えられた とする .
 - $(1)\ N=[\sqrt[3]{3/arepsilon}]+1$ とすれば , $n\geq N$ のとき , $n^3\geq N^3\geq 3/arepsilon$ であるので , $3/n^3<arepsilon$ となる .
 - (2) $N=[-\log arepsilon]+1$ とすれば , $n\geq N$ のとき $e^{-n}\leq e^{-N}<arepsilon$.

- (3) $N=[-\log \varepsilon/\log 2]+1$ とすれば , $n\geq N$ のとき $1/2^n<1/2^N<\varepsilon$ である.よって , $|1-(1-1/2^n)|=1/2^n<\varepsilon$.
- 8. 背理法を用いる:もし $\alpha \neq 0$ とすれば α は非負の数であることより $\alpha > 0$ であるが,このとき $\varepsilon = \alpha/2$ に対しては $\alpha < \varepsilon$ が成立していない.これは任意の正の数 ε に対して $\alpha < \varepsilon$ を満たすことに矛盾する.よって $\alpha = 0$ でなければならない.