CS4495/6495 Introduction to Computer Vision

7B-L1 *Tracking as inference*

Detection vs. tracking

Tracking: We predict the new location of the object in the next frame using estimated dynamics. Then we update based upon measurements.

Tracking as inference

Hidden state (X): True parameters we care about

Measurement (Y): Noisy observation of underlying state

At each time step t, state changes (from X_{t-1} to X_t), and we get a new observation Y_t

Our goal: Recover most likely state X_t given

- All observations seen so far
- Knowledge about dynamics of state transitions

Tracking as inference: Intuition

Steps of tracking

Prediction: What is the next state of the object given past measurements?

$$P(X_t | Y_0 = y_0, ..., Y_{t-1} = y_{t-1})$$

Correction: Compute an updated estimate of the state from prediction and measurements

$$P(X_t | Y_0 = y_0, ..., Y_{t-1} = y_{t-1}, Y_t = y_t)$$

Tracking: The process of propagating this **posterior** distribution of state given measurements across time

Simplifying assumptions

Only the immediate past matters

$$P(X_t | X_0, ..., X_{t-1}) = P(X_t | X_{t-1})$$
 dynamics model

Measurements depend only on the current state

$$P(Y_t | X_0, Y_0, \dots, X_{t-1}, Y_{t-1}, X_t) = P(Y_t | X_t)$$
 observation model

Tracking as induction

Base case:

- Assume we have some initial prior that predicts state in the absence of any evidence: $P(X_0)$
- At the first frame, correct this, given value of $Y_0 = y_0$

Tracking as induction

Given corrected estimate for frame t:

- Predict for frame t+1
- Correct for frame t+1

Tracking as induction

Base case:

- Assume we have some initial prior that predicts state in the absence of any evidence: $P(X_0)$
- At the first frame, correct this, given value of $Y_0 = y_0$

$$P(X_0 | Y_0 = y_0) = \frac{P(y_0 | X_0)P(X_0)}{P(y_0)} \propto P(y_0 | X_0)P(X_0)$$

Bayes rule

Given: $P(X_{t-1}|y_0,...,y_{t-1})$

Guess: $P(X_t|y_0,...,y_{t-1})$

Given:
$$P(X_{t-1}|y_0,...,y_{t-1})$$

Guess:
$$P(X_t|y_0,...,y_{t-1})$$

$$= \int P(X_{t}, X_{t-1} | y_{0}, \dots, y_{t-1}) dX_{t-1}$$

Law of total probability - Marginalization

Given:
$$P(X_{t-1}|y_0, ..., y_{t-1})$$

Guess: $P(X_t|y_0, ..., y_{t-1})$
 $= \int P(X_t, X_{t-1}|y_0, ..., y_{t-1}) dX_{t-1}$

Conditioning on X_{t-1} [recall P(A, B) = P(A|B)P(B)]

 $= \int P(X_t \mid X_{t-1}, y_0, \dots, y_{t-1}) P(X_{t-1} \mid y_0, \dots, y_{t-1}) dX_{t-1}$

Given:
$$P(X_{t-1}|y_0,...,y_{t-1})$$

Guess:
$$P(X_t|y_0, ..., y_{t-1})$$

$$= \int P(X_{t}, X_{t-1} | y_{0}, \dots, y_{t-1}) dX_{t-1}$$

$$= \int P(X_t \mid X_{t-1}, y_0, \dots, y_{t-1}) P(X_{t-1} \mid y_0, \dots, y_{t-1}) dX_{t-1}$$

$$= \int P(X_t | X_{t-1}) P(X_{t-1} | y_0, \dots, y_{t-1}) dX_{t-1}$$

Independence assumption

Given predicted value $P(X_t|y_0,...,y_{t-1})$ and y_t Compute $P(X_t|y_0,...,y_t)$

Given predicted value $P(X_t|y_0, ..., y_{t-1})$ and y_t Compute $P(X_t|y_0, ..., y_t)$ $= \frac{P(y_t|X_t, y_0, ..., y_{t-1})P(X_t|y_0, ..., y_{t-1})}{P(y_t|y_0, ..., y_{t-1})}$

Bayes rule:
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Given predicted value $P(X_t|y_0,...,y_{t-1})$ and y_t Compute $P(X_t|y_0,...,y_t)$ $= \frac{P(y_t | X_t, y_0, ..., y_{t-1}) P(X_t | y_0, ..., y_{t-1})}{P(y_t | y_0, ..., y_{t-1})}$ $= \frac{P(y_t | X_t) P(X_t | y_0, ..., y_{t-1})}{P(y_t | y_0, ..., y_{t-1})}$

Independence assumption (observation y_t depends only on state X_t)

Given predicted value $P(X_t|y_0,...,y_{t-1})$ and y_t Compute $P(X_t|y_0,...,y_t)$ $= \frac{P(y_t | X_t, y_0, ..., y_{t-1}) P(X_t | y_0, ..., y_{t-1})}{P(y_t | y_0, ..., y_{t-1})}$ $= \frac{P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1})}{P(y_{t} | y_{0}, ..., y_{t-1})}$ Really a normalization $= \frac{P(y_t | X_t) P(X_t | y_0, ..., y_{t-1})}{\int P(y_t | X_t) P(X_t | y_0, ..., y_{t-1}) dX_t}$ Conditioning on X_t

Summary: Prediction and correction

Prediction:

$$P(X_t \mid y_0, \dots, y_{t-1}) = \int P(X_t \mid X_{t-1}) P(X_{t-1} \mid y_0, \dots, y_{t-1}) dX_{t-1}$$
 dynamics corrected model estimate from previous step

Summary: Prediction and correction

Correction:

observation predicted model estimate
$$P(X_t \mid y_0, ..., y_{t-1}, y_t) = \frac{P(y_t \mid X_t) P(X_t \mid y_0, ..., y_{t-1})}{\int P(y_t \mid X_t) P(X_t \mid y_0, ..., y_{t-1}) dX_t}$$