Akbarpour and Li (2018, EC18) Credible Mechanisms

Kyohei OKUMURA

September 10, 2018

1 Motivation

- メカニズムを実際に動かすとき、CPが本当に当初の約束通りの手順で実施するかは怪しい.
 - 例えば、入札者間でのコミュニケーションがない場合、sealed bid SPA において auctioneer は二位価格をこっそり吊り上げて勝者に伝えることで得をできる.
 - 実際にそういった過去の事例もある. (切手販売・オンライン広告であったらしい.)
 - 原因の一例: auctioneer の収入が歩合制 etc.
- 入札者間のコミュニケーションがないオークションは現実でも多い.
 - 電話・手紙・オンラインによる入札: 実際に bid があったのか他者にはわからない.
 - 電波オークションでは、入札者間のコミュニケーションを明示的に禁止。
 - CP が入札額を公表したくない理由: bid の数字を用いて collusion が可能.
 - agents が入札額を公表したくない理由: valuation が他人にバレると後々悪用されるかも.
 - 誰が財を得たのかも公表されないことが多い: 長期的な collusion の可能性. 身元保護 (?)

● 2つの仮定:

- 1. Auctioneer and bidders communicate privately. (No communication among bidders.)
- 2. No watches or stopwatches. (Bidders do not know how many calls the auctioneer made to other bidders.)
- そのような状況で、個々の参加者の誰にもバレないように悪いことをしようとする CP を考える.
- Credible mechanisms: auctioneer がルールから逸脱する気にならないような制度.
- 特に, 有名な3つの auctions (FPA, SPA, AA) について考えてみる.
 - FPA: static, AA: strategy-proof, SPA: static and strategy-proof
 - SPA is seemingly a great mechanism... Why do all three formats persist?
- credible, static, strategy-proof の関係は?

2 Approach

- メカニズム (展開形ゲームの木) と、それに対応する message games というものを考える.
- message game: CP が各参加者と一対一でコミュニケーションを取る。実際のメカニズムの動作を 模倣しながらゲームを進める。
- Auctioneer にとって妥当な逸脱の方法と、メカニズムの信頼性 (credibility) を定義: 各参加者がメカニズムの動作中に観測した出来事が、ありえるメカニズムの動作と矛盾しないか.

3 Contribution

3.1 Main results

Ass. 1. Regular and i.i.d. values; Winner-paying; Auctioneer maximizes revenue.

3.2 Related Literature

Almost the same concept, but restricted to direct (static) mechanisms

- Dequiedt and Martimort (2015, AER), Vertical contracting with informational opportunism.
- This paper: Extensive forms.

Commit to today's auction, not tomorrow's auction

- Milgrom 1987, mcAfee and Vincent 1997, Skreta 2015, Liu et al. 2017
- This paper: Not a repeated game.

Auctions as bargaining games

- McAdams and Schwarz 2007, Vartiainen 2013, Lobel and Paes Leme 2017
- This paper: No 'red-handed' rule-breaking.

4 Model

- Agents: $i \in N$. A mechanism: an extensive game tree G. Outcomes: X.
- $\theta_N \sim \mathcal{D} \in \Delta(\Theta_1, \dots, \Theta_N)$. Each type space is finite: $\Theta_i := \{\theta_i^1, \dots, \theta_i^{K_i}\}$.
- $S_i(I_i, \theta_i) \in A(I_i)$: agent *i*'s strategy. At each info. set, the set of possible action is finite.
- A protocol: (G, S_N) . Utiliry: $u_i : X \times \Theta_N \to \mathbb{R}$.
- agent *i*'s partition of the outcome space: \mathcal{X}_i .
 - e.g.) Each agent can observe only whether he makes a payment and receives the object.
- (G, S_N) : BIC $\stackrel{\Delta}{\Longleftrightarrow}$... (as usual)
- Assume that *G* is pruned. (This is w.l.o.g. when we consider credible and BIC mechanisms.)

Message games

- In each turn, CP either ends the game, or chooses some agent and send him a pair of a message and a set of acceptable replies (m, R); then, the chosen agent sends CP a reply $r \in R$.
- Each agent's strategy: {what they observed, current R} $\rightarrow r \in R$.
- Agent *i*'s observation $o_i(S_0, S_N, \theta_N)$: communication sequence + cell of outcome partition.

The relationship between message games and mechanisms

- CP can run a protocol (G, S_N) as a message game: $m := I_i$, $R := A(I_i)$.
- S_0^G : CP's strategy that runs the protocol (G, S_N) .

Def. 4.1 (Safe deviations). *G*: given. An observation $o_i(S_0, S_N, \theta_N)$ has an **innocent explanation** if

$$\exists \theta'_{-i}; \ o_i(S_0, S_N, \theta_N) = o_i(S_0^G, S_N, (\theta_i, \theta'_{-i}))$$

A CP's strategy S_0 is **safe** if $o_i(S_0, S_N, \theta_N)$ has an innocent explanation for all i and θ_N .

- $S_0^*(S_0^G, S_N)$: the set of safe deviations.
- As long as CP chooses a safe strategy, each agent cannot detect by himself that CP is cheating.

Credible mechanisms

• The protocol (G, S_N) is credible if there is no profitable safe deviation for CP.

e.g. 4.1. The trees below illustrates the mechanism that is not credible:

Assume that $\Omega_1 := \{\{a,b\}, \{c\}\}, \Omega_2 = \Omega_3 = \{\{a\}, \{b\}, \{c\}\}, \text{ and } \theta_N := \{l_1, r_2, r_3\}.$ If CP loves the outcome a, CP has a profitable safe deviation.

5 Preliminary

- To use extensive forms, discretize Myerson 1981.
- In discrete settings, the analogue of continuous settings holds: the expected revenue is closely connected to virtual valuations.
- $u_i^{G,S_N}(k,k')$: the expected payoff of agent i with his true type θ_i^k when he behaves as if his type is $\theta_i^{k'}$ under the protocol (G,S_N) .

Def. 5.1 (Virtual valuation, Regular distribution).

$$\eta_i(\theta_i^k) := \left(\theta_i^k - \frac{1 - F_i(\theta_i^k)}{f_i(\theta_i^k)}\right) (\theta_i^{k+1} - \theta_i^k).$$

• $F_N := (F_i)_i$ is regular if η_i is strictly increasing for all i.

Def. 5.2 (optimal mechanisms). *The mechanism* (G, S_N) *is optimal if it maximizes the expected revenue subject to the following conditions:*

- $IC: (G, S_N)$ is BIC.
- Voluntary participation: $\forall i \exists S_i$; i does not win and has a zero transfer.

Prop. 5.1 (Elkind(2007)). (G, S_N) is optimal iff

- 1. PCs bind for the lowest type: $\forall i, u_i^{G,S_N}(1,1) = 0$.
- 2. ICs bind locally downward: $\forall i \ \forall k \geq 2$; $u_i^{G,S_N}(k,k) = u_i^{G,S_N}(k,k-1)$.
- 3. The allocation maximizes virtual value: $\forall \theta_N$;
 - $\max_i \eta_i(\theta_i) > 0 \implies y^{G,S_N}(\theta_N) \in \operatorname{argmax}_i \eta_i(\theta_i)$.
 - $\eta_i(\theta_i) < 0 \implies i \neq y^{G,S_N}(\theta_N)$.

If (G, S_N) is optimal, its expected revenue coincides with the expected virtual valuation of the winner: [要確認]

$$\pi(G, S_N) = \mathbb{E}_{\theta_n} \left[\sum_{i \in N} y^{G, S_N}(\theta_N) \eta_i(\theta_i) \right]$$

Prop. 5.2 (the expected revenue \simeq the expected virtual value). *If* (G, S_N) *is BIC, then*

$$0 \leq \mathbb{E}_{\theta_n} \left[\sum_{i \in N} y^{G, S_N}(\theta_N) \eta_i(\theta_i) \right] - \pi(G, S_N) - \sum_{i \in N} u_i^{G, S_N}(1, 1) \leq \max_i \max_{2 \leq k \leq K_i} \{\theta_i^k - \theta_i^{k-1}\}$$

6 Results

Ass. 2. F_N : regular, symmetric. Auctions are winner-paying. $\theta_1 \leq 0$. $\theta^1 < \cdots < \theta^K$.

6.1 Quasi-FPAs and credible static auctions.

Def. 6.1 (quasi-FPA). A quasi-FPA is a static mechanism that can have at most one special agent. If there is no special agent, it is a normal FPA. If there is a special agent i^* with a posted price p^* , he can surely win if he bids p^* . (NB: Even if p^* is not the highest bid among all bidders, CP should allocate the object to i^* .)

Thm. 6.1 (The characterization of credible and static auctions.). *Suppose the auction* (G, S_N) *is BIC and winner-paying. Then,*

$$(G, S_N)$$
 is credible and static \iff (G, S_N) is a quasi FPA.

Proof. \Leftarrow): Easy.

 \Rightarrow) First, observe that if the mechanism is credible and agent i have chances to win when he chooses an action a, the possible payment is uniquely determined; otherwise CP can improve his payoff safely. Hence, each action corresponds to a unique payment $b_i(a)$, and it can be regarded as agent i's bid.

Case (i): There is a special agent i^* with a posted price p^* , and i^* bids p^* . If there is a special agent i^* , who can surely obtain the object if he bids p^* . Suppose i^* bids p^* . CP should allocate the object to i^* ; there is no profitable safe deviation for CP. This is a quasi-FPA. (NB: Since the protocol is BIC, $p^* := \max_{a \in A(I_i)} b_i(a)$.)

Case (ii): There is no special agent, or i^* does not bid p^* . In this case, it is best for CP to allocate the object to the highest bidder. This is also a (quasi-)FPA.

Prop. 6.1 (There is an almost-optimal FPA. p^* cannot be very low.). Let $\varepsilon := \max_{2 \le k} \{\theta^k - \theta^{k-1}\}$.

- There is an ε -optimal FPA with reserve $\rho^* := \min_k \{\theta^k \mid \eta_i(\theta^k) > 0\}$.
- If a quasi-FPA is BIC and maximizes virtual value, then p^* (if it exists) is at least $\max_i b_i(S_i(I_i, \theta^{K-2}))$.

Proof. Note that we need to construct a set of feasible actions in a quasi-FPA with reserve $ρ^*$ so that (G, S_N) is ε-optimal.

First, consider the SPA with reserve ρ^* . It is best for each agent to bid truthfully. Let $\bar{b}_i(\theta_i)$ be the payment for type θ_i agent conditional on winning. (If agent i never wins with type θ_i , $\bar{b}_i(\theta_i) := -1$.)

Next, we construct the desirable FPA G with reserve ρ^* . Let $\overline{b}_i(\theta_i) \in A(I_i)$. Suppose that every agent i bid $\overline{b}_i(\theta_i)$. In this case, the strategy profile $S_N := (\overline{b}_i(\theta_i))_{i \in N, \theta_i \in \Theta_i}$ is BIC under G; otherwise, in a SPA with a sufficiently fine action space, there is a profitable deviation that allows an agent to obtain strictly better payoff compared to the payoff he can obtain under truthful bidding. Note that, in (G, S_N) , PCs for the lowest types bind.

Observe that (G, S_N) maximizes the expected virtual value, though G may not satisfy the locally downward ICs condition. Then, by Prop.5.2,

$$0 \leq \underbrace{\mathbb{E}_{\theta_n} \left[\sum_{i \in N} y^{G,S_N}(\theta_N) \eta_i(\theta_i) \right]}_{\text{the exp. rev. under } (G,S_N)} - \underbrace{\pi(G,S_N)}_{\text{the exp. rev. under } (G,S_N)} \leq \max_{2 \leq k \leq K_i} \{\theta_i^k - \theta_i^{k-1}\}$$

The second part follows from the symmetry of F_N and BIC.

6.2 Ascending auctions and credible strategy-proof auctions.

Def. 6.2 (Ascending auctions). (omitted.)

Thm. 6.2 (credible + SP = AA, assuming the auction is optimal). Assume the protocol (G, S_N) is optimal. Then,

$$(G, S_N)$$
 is credible and strategy-proof \iff (G, S_N) is an AA.

Sketch of the proof. \Leftarrow) Assume (G, S_N) is an AA. SP is ok. Suppose toward contradiction that (G, S_N) is not credible. Then, there is a profitable safe deviation for CP S_0' . Observe that S_N is a best reply even if CP announces that he will commit to S_0' , that is, for all agent i, the mechanism proceeds as if the other agents' types are different from the reported ones. The corresponding protocol (G', S_N') has strictly higher expected revenue than (G, S_N) ; this contradicts the optimality of (G, S_N) .

 \Rightarrow) One major feature of AA: at each history, the action of all types' that might win in the future pools. If their action does not pool, CP has a profitable safe deviation. (To show this statement, they develop a smart algorithm.)

6.3 The Auction Trilemma

Cor. 6.1 (The Auction Trilemma). *Assume* F_N *is regular and symmetric, and* (G, S_N) *is BIC and winner-paying.*

- 1. Suppose there exists i and θ_i , θ_i' such that $t_i^{G,S_N}(\theta_i) > t_i^{G,S_N}(\theta_i') \geq 0$. If (G,S_N) is optimal, it cannot be static, credible and strategy-proof at the same time.
- 2. Let $\varepsilon := \max_{k \ge 2} \{\theta^k \theta^{k-1}\}$. There exist ε -optimal auctions with some reserve ρ^* that satisfy one of the following properties:
 - static and strategy-proof (SPA)
 - static and credible (FPA)
 - strategy-proof and credible (AA)

Proof. We can show the second part by the same argument as in Prop.6.1: Observe that, with reserve $\rho^* := \max_i \{ \theta^k \mid \eta_i(\theta^k) > 0 \}$, these auctions maximize the virtual value of winner, and PC for the lowest types bind.

The first part: By Thm.6.1, if the auction is static and credible, it is a quasi-FPA. By the assumption, i has no less than two possible bids; each bid should win with positive probability because we consider pruned mechanisms. Therefore, for some type profile, i can win by the lower bid; strategy-proofness cannot hold.

Cor. 6.2 (Strategy-proofness holds only for one side.). *Assume* F_N : regular and symmetric, and (G, S_N) is orderly and optimal. Suppose the optimal reserve $\rho^* < \theta^{K-2}$. In the messaging game restricted to $S_0^*(S_0^G, S_N)$, either of the followings holds:

- 1. $\exists S'_N$; S_0^G is not a BR to S'_N .
- 2. $\exists i \in N \ \exists S'_{N\setminus\{i\}}; S_i \text{ is not BR to } (S_0^G, S'_{N\setminus\{i\}}).$

Proof. Case (i) (G, S_N) is not credible: For S_N , S_0^G is not BR. (The first one holds.)

Case (ii) (G, S_N) **is not strategy-proof:** The second one holds.

Case (iii) (G, S_N) is credible and strategy-proof: Since it is optimal, it is an AA. Fix some i and consider the strategy profile such that i stays until the price hits θ^K and other agents quits before the reserve is met. CP apparently has a profitable safe deviation.