<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>3-Projeto de Controlador de Avanço-Atraso pelo Método do Lugar das Raízes</u>

/ <u>Questionário sobre Projeto de Controlador de Avanço-Atraso por Lugar das Raízes</u>

Ir	niciado em	domingo, 4 jul 2021, 23:30		
	Estado	Finalizada		
Concluída em		domingo, 4 jul 2021, 23:31		
	Tempo	58 segundos		
е	mpregado			
	Notas	2,4/3,0		
	Avaliar	8,2 de um máximo de 10,0(82 %)		
Questão 1				
Correto				
Atingiu 1,0	de 1,0			
✓ a.✓ b.	redução do	dor de avanço-atraso é usualmente empregado quando deseja-se melhoria na resposta transitória do sistema e erro em regime permanente dor de avanço-atraso altera o lugar das raízes do sistema compensado. Com isso, é possível se obter os polos de		
		ada desejados para definir a resposta transitória almejada para o sistema. Esse compensador também eleva as de erro estático do sistema. Com isso o erro em regime permanente é reduzido.		
c.		nos os polos de malha fechada dominantes desejados para o sistema compensado, uma vez que são os dominantes, transitória do sistema já está definida e não depende dos demais polos e zeros do sistema em malha fechada.		
d.	indicadore	s polos de malha fechada dominantes obtidos ao final do projeto do controlador de avanço-atraso obtém-se os s de desempenho do sistema compensado (sobressinal e tempo de acomodação) e sempre saberemos como o se comportar.		

Questão $\mathbf 2$ Parcialmente correto
Atingiu 0,5 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{4}{s(s+1)(s+2)}$. Deseja-se projetar um controlador de avanço-atraso C(s) para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 10% e tempo de acomodação de 5 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo rampa deve ser de 0,05. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta = 0.591$

🗸 . A frequência natural destes polos deve ser $\omega_n =$

1.354

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-0.800

✓ ± j

~

A contribuição angular que o termo de avanço do compensador deve inserir no lugar das raízes é $\phi=$

68.150

✓ graus.

Considerando que o zero do termo de avanço do compensador esteja em s=-1, seu polo deve estar em s=

-6.181

~ .

O ganho do termo de avanço do compensador projetado é $K_c =$

3.015

v .

Para atender a especificação de erro em regime permanente, a constante de erro estático de velocidade do sistema compensado deve ser $\hat{\mathcal{K}}_{v}=$

20

 $\checkmark s^{-1}$. Logo, o parâmetro β do termo de atraso do controlador vale

20.474

~

Considerando que o zero do termo de atraso do controlador esteja em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 06 o polo do termo de atraso deve estar em s=-0, 07 o polo do termo de atraso deve estar em s=-0, 07 o polo do termo de atraso deve estar em s=-0, 08 o polo do termo de atraso de a

X

Com o controlador de avanço-atraso projetado, o sistema em malha fechada tem polos dominantes em $s_{1,2}=$

× ±*j*

f X . O sobressinal teórico associado a estes polos é $M_p=$

 $f{x}$ % enquanto o tempo de acomodação teórico associado é de $t_s=$

× segundos.

Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fec	:hada, o so	bressinal do sistema compensado é de $M_p=$		
$lpha$ % enquanto o seu tempo de acomodação é de $t_s=$				
× segundos.				
Supondo que seja tolerável uma variação de até 50% sobre o sobressinal e tempo de acomodação especificados no problema, você				
julga necessário um reprojeto do controlador para atender as especificações?	Não	×		

Questão 3

Parcialmente correto

Atingiu 0,9 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s(s+4)}$. Deseja-se projetar um controlador C(s) para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo rampa deve ser de 0,2. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos. Caso seja necessário um termo de atraso no controlador, considere que o zero deste termo está em s=-0.1. Neste caso, também considere a modificação do lugar das raízes devido ao termo de atraso e obtenha os novos polos de malha fechada nesse novo lugar das raízes mantendo o coeficiente de amortecimento dos polos de malha fechada originalmente desejados.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0.690

ullet . A frequência natural destes polos deve ser $\omega_n=$

2.899

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $\emph{s}_{1,2} =$

-2.000

✓ ± j

~

Considerando a função de transferência do controlador obtido, tem-se que:

a) O ganho do controlador é Kc=

8.402

v;

b) O polinômio do numerador do controlador é:

✓ s²+

1

✓ 5+ 0.100

v ;

c) O polinômio do denominador do controlador é:

0

✓ s²+

✓ 5+ 0.050

X .

Para a implementação deste controlador pode-se utilizar um circuito de controlador de: Atraso

traso

→ Script Python

Seguir para...