Análisis Matemático II

David García Curbelo

Prueba 1

Ejercicio 1. Sean (Ω, \mathcal{A}) un espacio medible y $\{\mu_n\}$ una sucesión de medidas sobre \mathcal{A} . Demostrar:

a) Si $\mu_n \leq \mu_{n+1}$, $\forall n \in \mathbb{N}$, entonces la aplicación $\mu : \mathcal{A} \longrightarrow [0, \infty]$ definida por

$$\mu(A) = \lim_{n \to \infty} \mu_n(A), \quad \forall A \in \mathcal{A}$$

es una medida sobre A.

b) La aplicación $\mu: \mathcal{A} \longrightarrow [0, \infty]$ definida por

$$\mu(A) = \sum_{n=1}^{\infty} \mu_n(A), \quad \forall A \in \mathcal{A}$$

es una medida sobre A.

- a) Para comprobar que la aplicación $\mu: \mathcal{A} \longrightarrow [0, \infty]$ es una medida sobre \mathcal{A} , tenemos que comprobar que se cumplan tanto que $\mu(\emptyset) = 0$ como la σ -aditividad de la medida. Para ello, partiendo de que $\mu_n \leq \mu_{n+1}$, vemos que la sucesión $\{\mu_n\}$ es creciente y acotada (por estar definida en el intervalo $[0,\infty]$) y por tanto convergente. Procedemos a la demostración de las dos propiedades antes nombradas.
 - 1. $\mu(\emptyset) = 0$:

Para que se cumpla dicha propiedad, consideremos el conjunto vacío $A = \emptyset$ en \mathcal{A} , y como sabemos que μ_n es una medida $\forall n \in \mathbb{N}$, podemos afirmar que se cumple $\mu_n(\emptyset) = 0$. Obtenemos por tanto, para $A = \emptyset$

$$\mu(\emptyset) = \mu(A) = \sum_{n=1}^{\infty} \mu_n(A) = \sum_{n=1}^{\infty} \mu_n(\emptyset) = \sum_{n=1}^{\infty} 0 = 0$$

2. σ -aditividad:

Para este apartado, recordamos que μ_n es una medida $\forall n \in \mathbb{N}$, y consideremos $\{A_k\}_{k \in \mathbb{N}}$ una sucesión de elementos de \mathcal{A} disjuntos dos a dos. Veamos por tanto que se verifica la propiedad de σ -aditividad.

$$\mu_n(A) = \sum_k \mu_n(A_k), \quad \forall n \in \mathbb{N}$$

Donde $A=\cup_k A_k, \quad A\in \mathcal{A},$ y donde para cada $n,\, \mu_n$ es una medida.

Como $\{\mu_n\}$ es creciente, la sucesión $\{\mu_n(A)\}\subset\mathbb{R}$ tiene por límite $\mu(A)$ comprendido en el intervalo $[0,+\infty]$. Supongámos primero que la sucesión converge, con $\mu(A)=+\infty$. Pero

1

entonces, para cada $M \in \mathbb{R}$, existe algún $n_0 \leq n$ tal que $\mu_n(A) > M$. Pero entonces existe algún $K \in \mathbb{N}$ tal que

$$M-1 < \sum_{k=1}^K \mu_{n_0}(A_k) \leq \sum_{k=1}^K \mu_n(A_k) \quad \Rightarrow \quad \sum_{k=1}^K \mu(A_k) > M-1 \quad \Rightarrow \quad \sum_{k=1}^\infty \mu(A_k) = +\infty = \mu(A)$$

Para el segundo caso, suponemos ahora que $\mu(A) < +\infty$, y como sabemos que $\{\mu_n\}$ es creciente, tenemos que

$$\mu_n(A) = \sum_k \mu_n(A_k) \quad \Rightarrow \quad \mu_n(A) \le \sum_k \mu(A_k), \quad \forall n \in \mathbb{N}$$

Donde $A \in \mathcal{A}$ viene dado por $A = \cup_k A_k$. Concluimos por tanto que $\mu(A) \leq \sum_k \mu(A_k)$. Demostremos a continuación la desigualdad contraria. Recordemos que $0 \leq \mu_n(A_k) < \infty$, $\forall n, k \in \mathbb{N}$, y que además toda μ_n es medible, con $\{\mu_n\}$ monótona creciente. Por tanto obtenemos

$$\mu(A) \ge \sum_{k=1}^{\infty} \mu_n(A_k) \ge \sum_{k=1}^{K} \mu_n(A_k), \quad \forall n, K \in \mathbb{N}$$

Ahora consideremos un $\epsilon > 0$ arbitrario y un K finito dado. Tomamos a continuación un n_0 tal que, para $n \geq n_0$ tenemos $\mu_n(A_k) \geq \mu_n(A_k) - \epsilon 2^{-k}$, para cada k = 1, 2, ..., K. Por tanto obtenemos

$$\sum_{k=1}^{K} \mu_{n_0}(A_k) \ge \sum_{k=1}^{K} \mu(A_k) - \epsilon \quad \Rightarrow \quad \mu(A) \ge \sum_{k=1}^{\infty} \mu(A_k) - \epsilon \ge \sum_{k=1}^{K} \mu(A_k) - \epsilon$$

Como ϵ es un valor arbitrario, concluimos que $\mu(A) \ge \sum_{k=1}^{\infty} \mu(A_k)$, con lo que optenemos la igualdad buscada.

b) Para comprobar que la aplicación $\mu: \mathcal{A} \longrightarrow [0, \infty]$ es una medida sobre \mathcal{A} , podemos ver que la suma de medidas es obviamente una medida, y por tanto

$$\mu_n^* = \sum_{i=1}^n \mu_i$$

es una sucesión creciente de medidas, donde $\mu_n^* \leq \mu_{n+1}^*$. Por el apartado anterior, vemos que

$$\lim_{n} \mu_{n}^{*}(A) = \lim_{n} \sum_{i=1}^{n} \mu_{i}(A) = \sum_{n=1}^{\infty} \mu_{n}(A)$$

se trata de una medida.

Ejercicio 2. Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida completo. Para cada $n \in \mathbb{N}$, sea $f_n : \Omega \longrightarrow \mathbb{R}$ una función medible. Sean $f, g : \Omega \longrightarrow \mathbb{R}$ funciones medibles. Demostrar:

a) Si
$$\{f_n\} \to f$$
 c.p.d. $y \{f_n\} \to g$ c.p.d., entonces $f = g$ c.p.d.

b) Si
$$\{f_n\} \to f$$
 c.p.d. $y f = g$ c.p.d., entonces $\{f_n\} \to g$ c.p.d.

Consideremos los siguientes 3 conjuntos finitos que nos serán útiles en la resolución de los siguientes apartados:

$$Z_1 = \{x \in \Omega; \quad \{f_n(x)\} \nrightarrow f(x)\}$$

$$Z_2 = \{x \in \Omega; \{f_n(x)\} \nrightarrow g(x)\}$$

$$Z_3 = \{x \in \Omega; \quad f(x) \neq g(x)\}$$

a) Suponemos por hipótesis que $\{f_n\}$ converge a g(x) c.p.d y que $\{f_n\}$ converge a f(x) c.p.d. Podemos considerar entonces un $x \in \Omega$ tal que $x \in Z_1^c \cap Z_2^c$, y por tanto tenemos $x \in Z_3^c$. De lo anterior podemos deducir que

$$Z_1^c \cap Z_2^c \subseteq Z_3^c \Rightarrow Z_3 \subseteq Z_1 \cup Z_2$$

Y que, por encontrarse en un espacio de medida completo, concluimos que $\mu(Z_1 \cup Z_2) = 0 \Rightarrow \mu(Z_3) = 0$, y por tanto f(x) = g(x) c.p.d.

b) Para este apartado razonamos de forma similar al anterior. Suponemos por hipótesis que $\{f_n\}$ converge a f(x) c.p.d y que f=g c.p.d. Podemos considerar entonces un $x\in\Omega$ tal que $x\in Z_1^c\cap Z_3^c$, y por tanto tenemos que $x\in\mathbb{Z}_2^c$. Además, de lo anterior podemos deducir que

$$Z_1^c \cap Z_3^c \subseteq Z_2^c \Rightarrow Z_2 \subseteq Z_1 \cup Z_3$$

Y que, por encontrarse en un espacio de medida completo, concluimos que $\mu(Z_1 \cup Z_3) = 0 \Rightarrow \mu(Z_2) = 0$, y por tanto $\{f_n\}$ converge a g(x) c.p.d.

Ejercicio 3. Sean $E \subset \mathbb{R}^N$ un conjunto medible $y \ f : E \longrightarrow [0, \infty[$ una función medible con $\int_E f(x)dx < \infty$. Para cada $n \in \mathbb{N}$, sea $E_n = \{x \in E : ||x|| > n\}$. Probar que E_n es medible y que

$$\lim_{n} \int_{E_n} f(x) \, dx = 0.$$

Para la resolución del primer apartado vamos a considerar una aplicación α definida tal que

$$\alpha: E \longrightarrow \mathbb{R}_0^+$$

 $x \longmapsto \alpha(x) = ||x||$

La cual es claramente medible por ser continua en E. Por el teorema de Hausdorff, como todas las normas son equivalentes en \mathbb{R}^n , no es necesario especificar la norma ya que la demostración se realizará de la misma manera.

Por hipótesis, vemos que $\alpha^{-1}(]n,\infty[)=E_n, \quad \forall n\in\mathbb{N}.$ Como $]n,\infty[$ es un conjunto medible en \mathbb{R} , obtenemos que el conjunto E_n es un conjunto medible para todo $n\in\mathbb{N}$, como queríamos demostrar.

Para el segundo apartado, buscamos demostrar la veracidad de la igualdad $\lim_n \int_{E_n} f(x) dx = 0$. Para ello, consideremos la sucesión de conjuntos $\{E_n\}_n$, la cual vemos que se trata de una sucesión decreciente (es decir, $E_{n+1} \subseteq E_n$ para todo $n \in \mathbb{N}$), y por tanto la sucesión $\{\lambda(E_n)\}_n$ también lo es, donde λ es una medida tal que $\lambda: E_n \to [0, \infty]$. Por ello, podemos ver que la sucesión $\{\lambda(E_n)\}_n$ está acotada inferiormente por 0, y por ello, al ser una sucesión monótona y acotada, sabemos que es convergente, y que por tanto

$$\lim_{n} \lambda(E_n) = 0$$

Y por tanto, concluimos que $\{\lambda(E_n)\}_n$ tiende a un conjunto de medida nula. Como bien sabemos, la integral de una función f(x) medible definida en un conjunto E_n dado, se puede definir como la medida del recinto de la función restringido al conjunto E_n

$$\lim_{n} \int_{E_n} f(x) \, dx = \lim_{n} \lambda(R_n(f))$$

Donde R_n (recinto) viene dado por $R_n = \{(x,y) \mid x \in E_n, \ 0 < y < f(x)\}$, y por lo tanto obtenemos que

$$\lim_{n} \lambda(R_n(f)) = \lambda\left(\{(x, y) \, / \, x \in \lim_{n} E_n, \, 0 < y < f(x) \} \right)$$

Y como sabemos que $\lim_n E_n$ es un conjunto de medida nula, tenemos que R es un conjunto vacío, y por ser λ una medida, la medida de un conjunto vacío es 0 por definición, y por lo tanto obtenemos

$$\lim_{n} \int_{E_n} f(x) \, dx = 0$$

Ejercicio 4.Para cada $n \in \mathbb{N}$, sea $f_n :]0, \pi[\longrightarrow \mathbb{R}$ definida por

$$f_n(x) = \frac{\sin^2(nx)}{n\sin(x)}, \quad \forall \, 0 < x < \pi$$

- a) Estudiar la convergencia puntual y uniforme de $\{f_n\}$ en $]0,\pi[$.
- b) Calcular $\int_a^b f_n(x)dx$, donde $0 < a < b < \pi$.
- a) Procedemos a la resolución del primer apartado. Estudiaremos primero su convergencia puntual y posteriormente su convergencia uniforme de la sucesión. Sabemos que la sucesión de funciones dada $\{f_n\}$ convergerá puntualmente en el intervalo $]0,\pi[\subset \mathbb{R}$ si para cada $x\in]0,\pi[$ la sucesión es convergente a una misma función. Para ello consideramos el límite

$$\lim_{n\to\infty} \{f_n\}, \quad n\in\mathbb{N}$$

Sabemos que $0 < \sin(x) < 1$ y $0 < \sin^2(nx) < 1$, con $x \in]0, \pi[$, particularmente $\sin(x) \neq 0$. Por ello, es fácil ver que

$$\{f_n\} \longrightarrow \lim_{n \to \infty} \frac{\sin^2(nx)}{n\sin(x)} = 0, \quad \forall \, 0 < x < \pi.$$

Luego podemos afirmar que la sucesión $\{f_n\}$ converge puntualmente a la función $f(x) = 0, \forall x \in]0, \pi[$, donde f(x) es una función $f:]0, \pi[\longrightarrow \mathbb{R}$ continua, y por tanto medible.

Estudiamos ahora su convergencia uniforme. Partiendo de que sabemos que la sucesión de funciones $\{f_n\}$ converge puntualmente, sabremos si dicha sucesión converge uniformemente a f(x) si

$$\lim_{n \to \infty} \sup \{ |f_n(x) - f(x)| \} = 0, \quad x \in]0, \pi[$$

Pero como la función f(x) es constante nula, lo que tenemos que estudiar es $\lim_{n\to\infty} \sup\{|f_n(x)|\} = 0$. (Observemos también que $f_n \geq 0$ para todo $x \in]0,\pi[$). Estudiemos dicha convergencia uniforme (y por tanto, el límite antes mencionado) en dos intervalos separados: los itnervalos]0,a] y $[a,\pi[$.

Para el primer intervalo [0,a] tomemos una sucesión x_n dada por $x_n=\frac{1}{n}$, con lo que obtenemos

$$f_n(1/n) = \frac{\sin^2(1)}{n\sin(1/n)}$$

Si estudiamos el límite para esta sucesión cuando n tiende a infinito, vemos que converge a $\sin^2(1) \neq 0$, con lo que podemos deducir que, al haber al menos un x para el que la sucesión no converge a 0, no hay convergencia uniforme en el intervalo [0, a], con $0 < a < \pi$.

Análogamente, consideremos ahora el intervalo $[a, \pi[$ y estudiemos su convergencia uniforme. Para ello basta tomar $x_n = \pi - \frac{1}{n}$, para el cual vemos que

$$f_n(\pi - 1/n) = \frac{\sin^2(\pi n - 1)}{n\sin(\pi - 1/n)} = \frac{(\sin(\pi n)\cos(1) - \sin(1)\cos(\pi n))^2}{n\sin(\pi - 1/n)}$$

y es claro que si estudiamos el límite para esta sucesión cuando n tiende a infinito, podemos ver que converge a $\sin^2(1) \neq 0$, con lo que podemos deducir que, al haber al menos un x para el que la sucesión no converge a 0, no hay convergencia uniforme en el intervalo $[a, \pi[$, con $0 < a < \pi]$.

Por lo tanto, como para ninguno de los dos intervalos anteriores hay convergencia uniforme, tenemos que estudiar la convergencia uniforme en intervalos de la forma [a,b] con $0 < a < b < \pi$. Como sabemos que $\sin x > 0$ para todo $x \in [a,b]$, y siendo éste un intervalo cerrado y acotado, por

el teorema de Weierstrass podemos afirmar que existe un máximo absoluto en dicho intervalo, es decir, existe un $M \in [a, b]$ tal que $\sin(M) \ge \sin x$, $\forall x \in]0, \pi[$. Por tanto deducimos que

$$0 \le f_n(x) = \frac{\sin^2(nx)}{n\sin(x)} \le \frac{\sin^2(nx)}{n\sin(M)}$$

Además, como $\sin^2(nx) \le 1$, podemos ver que

$$0 \le f_n(x) \le \frac{\sin^2(nx)}{n\sin(M)} \le \frac{1}{n\sin(M)}$$

Claramente vemos que $\lim_{n\to\infty} \frac{1}{n\sin(M)} = 0$, y por lo tanto podemos afirmar que hay convergencia uniforme de $f_n(x)$ en intervalos de la forma [a,b] con $0 < a < b < \pi$.

b) Para el segundo apartado consideramos

$$\lim_{n} \int_{a}^{b} \frac{\sin^{2}(nx)}{n\sin(x)} dx$$

Sabemos por el apartado anterior que $\{f_n\} \to 0$. Busquemos a continuación una función g(x) tal que $|f_n(x)| \le g(x)$ para todo $n \in \mathbb{N}$. (Tengamos en cuenta para los próximos pasos que $\sin(x) \le 1 \Rightarrow \frac{1}{\sin(x)} \ge 1$. Además, también es fácil deducir a partir de esto que $\sin^2(nx) \le 1$)

$$\left| \frac{\sin^2(nx)}{n \sin(x)} \right| = \frac{\sin^2(nx)}{n |\sin(x)|} \le \frac{\sin^2(nx)}{n \sin^2(x)} \le \frac{1}{n \sin^2(x)} \le \frac{1}{\sin^2(x)} = g(x)$$

La cual vemos que se trata de una función integrable, y que por acotar superiormente al valor absoluto de nuestra sucesión $f_n \quad \forall n \in \mathbb{N}$, podemos decir que toda función de nuestra sucesión $\{f_n\}$ es integrable. Entonces, por el Teorema de la convergencia dominada de Lebesgue podemos afirmar que

$$\lim_{n} \int_{E} f_{n}(x)dx = \int_{E} \lim_{n} f_{n}(x)dx = \int_{E} f(x)dx$$

Siendo f(x) la función a la que converge nuestra sucesión $\{f_n\}$, la cual sabemos que f(x) = 0, y E un conjunto medible, que en nuestro caso es el intervalo [a,b]. Si particularizamos a nuestro ejemplo obtenemos

$$\int_a^b f(x) dx = \int_a^b 0 \, dx = 0 \quad \Longrightarrow \quad \lim_n \int_a^b \frac{\sin^2(nx)}{n \sin(x)} dx = 0, \quad 0 < a < b < \pi.$$