Vincent Edwards

 M
t. San Antonio College, Physics 4B, CRN 42240 May 8, 2023

 $R_2 = 40 \ \Omega$

1. Purpose

The goal of the exercise was to use Kirchhoff's rules to analyze 7 different circuits and calculate current, voltage, and power for each circuit element. For the first 4 circuits, the voltage and current calculations were compared to results obtained using an online circuit simulator.

2. Results

The following sections contain the theoretical voltage, current, and power for each circuit element for each of the 7 circuits. In addition, there is an annotated circuit diagram for each circuit. In each case, the voltage across a resistor was calculated with V = IR, and the power dissipated by a circuit element with P = VI.

2.1. Circuit 1

Figure 1. Circuit 1

Table 1. Circuit 1 V, I, and P

	V (V)	<i>I</i> (A)	P (W)
$\overline{\mathcal{E}_1}$	12.0	0.0440	0.527
R_1	4.84	0.0440	0.213
R_2	1.76	0.0440	0.0773
R_3	1.98	0.0440	0.0869
R_4	3.43	0.0440	0.151

$$\begin{split} \mathbf{L}_1: \mathcal{E}_1 - I_1R_1 - I_1R_2 - I_1R_3 - I_1R_4 &= 0 \\ I_1 &= \frac{\mathcal{E}_1}{R_1 + R_2 + R_3 + R_4} \\ I_1 &= 0.0440 \ \mathrm{A} \end{split}$$

2.2. Circuit 2

Figure 2. Circuit 2

Table 2. Circuit 2 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	9.00	0.403	3.63
R_1	9.00	0.106	0.953
R_2	9.00	0.225	2.02
R_3	9.00	0.0720	0.648

$$J_1: I_{\mathcal{E}_1} = I_1 + I_2 + I_3$$
 $I_1 + I_2 + I_3 - I_{\mathcal{E}_1} = 0$
 $L_1: \mathcal{E}_1 - I_1 R_1 = 0$

 $I_1R_1 = \mathcal{E}_1$

$$L_2$$
: $\mathcal{E}_1 - I_2 R_2 = 0$ $I_2 R_2 = \mathcal{E}_1$

$$L_3:$$
 $\mathcal{E}_1 - I_3 R_3 = 0$ $I_3 R_3 = \mathcal{E}_1$

$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ R_1 & 0 & 0 & 0 \\ 0 & R_2 & 0 & 0 \\ 0 & 0 & R_3 & 0 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_{\mathcal{E}_1} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathcal{E}_1 \\ \mathcal{E}_1 \\ \mathcal{E}_1 \end{bmatrix}$$

 $I_1 = 0.106 \text{ A}$

 $I_2 = 0.225 \text{ A}$

 $I_3 = 0.0720 \text{ A}$

 $I_{\mathcal{E}_1} = 0.430 \text{ A}$

2.3. Circuit 3

Circuit 3

Figure 3. Circuit 3

Table 3. Circuit 3 V, I, and P

	V (V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	11.0	0.212	2.34
R_1	11.0	0.0815	0.896
R_2	5.24	0.131	0.686
R_3	5.76	0.0703	0.405
R_4	5.76	0.0607	0.350

$${\cal J}_1$$
 :
$$I_{\mathcal E_1}=I_1+I_2$$

$$I_1+I_2-I_{\mathcal E_1}=0$$

$$J_2$$
: $I_2 = I_3 + I_4$
$$I_2 - I_2 - I_4 = 0$$

$$L_1:$$
 $\mathcal{E}_1 - I_1 R_1 = 0$ $I_1 R_1 = \mathcal{E}_1$

$$L_2: \mathcal{E}_1 - I_2 R_2 - I_3 R_3 = 0$$

 $I_2 R_2 + I_3 R_3 = \mathcal{E}_1$

$$L_3: \mathcal{E}_1 - I_2 R_2 - I_4 R_4 = 0$$
$$I_2 R_2 + I_4 R_4 = \mathcal{E}_1$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & -1 & 0 \\ R_1 & 0 & 0 & 0 & 0 \\ 0 & R_2 & R_3 & 0 & 0 \\ 0 & R_2 & 0 & R_4 & 0 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_{\mathcal{E}_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \mathcal{E}_1 \\ \mathcal{E}_1 \\ \mathcal{E}_1 \end{bmatrix}$$

$$I_1 = 0.0815 \text{ A}$$
 $I_2 = 0.131 \text{ A}$
 $I_3 = 0.0703 \text{ A}$
 $I_4 = 0.0607 \text{ A}$
 $I_{\mathcal{E}_1} = 0.212 \text{ A}$

2.4. Circuit 4

Circuit 4

Figure 4. Circuit 4

Table 4. Circuit 4 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	10.0	0.0613	0.613
R_1	2.80	0.0280	0.0783
R_2	1.33	0.0333	0.0443
R_3	2.73	0.0333	0.0907
R_4	1.26	0.0280	0.0353
R_5	5.94	0.0613	0.364

$$J_1: I_5 = I_1 + I_2$$

$$I_1 + I_2 - I_5 = 0$$

$$L_1: \mathcal{E}_1 - I_1 R_1 - I_1 R_4 - I_5 R_5 = 0$$

$$I_1(R_1 + R_4) + I_5 R_5 = \mathcal{E}_1$$

$$L_2: \mathcal{E}_1 - I_2 R_2 - I_2 R_3 - I_5 R_5 = 0$$

$$I_2(R_2 + R_3) + I_5 R_5 = \mathcal{E}_1$$

$$\begin{bmatrix} 1 & 1 & -1 \\ R_1 + R_4 & 0 & R_5 \\ 0 & R_2 + R_3 & R_5 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ \mathcal{E}_1 \\ \mathcal{E}_1 \end{bmatrix}$$

$$I_1 = 0.0280 \text{ A}$$

$$I_2 = 0.0333 \text{ A}$$

$$I_5 = 0.0613 \text{ A}$$

2.5. Circuit 5

Circuit 5

Figure 5. Circuit 5

Table 5. Circuit 5 V, I, and P

	, ,	
V (V)	<i>I</i> (A)	P(W)
14.0	0.0750	1.05
5.00	0.0750	0.375
2.62	0.0750	0.197
3.00	0.0750	0.225
3.38	0.0750	0.253
	14.0 5.00 2.62 3.00	14.0 0.0750 5.00 0.0750 2.62 0.0750 3.00 0.0750

$$L_1: \mathcal{E}_1 - I_1 R_1 - I_1 R_2 - \mathcal{E}_2 - I_1 R_3 = 0$$

$$I_1 = \frac{\mathcal{E}_1 - \mathcal{E}_2}{R_1 + R_2 + R_3}$$

$$I_1 = 0.0750 \text{ A}$$

2.6. Circuit 6

Figure 6. Circuit 6

Table 6. Circuit 6 V, I, and P

	V (V)	<i>I</i> (A)	P (W)
$\overline{\mathcal{E}_1}$	40.0	2.11	84.6
\mathcal{E}_2	10.0	0.343	3.43
R_1	24.3	0.971	23.6
R_2	13.7	0.343	4.70
R_3	40.0	1.14	45.7
R_4	15.7	0.629	9.88
R_5	12.0	0.343	4.11

$$J_1$$
:
$$I_{\mathcal{E}_1} = I_1 + I_3$$

$$I_1 + I_3 - I_{\mathcal{E}_1} = 0$$

$$J_2$$
:
$$I_1 = I_2 + I_4$$

$$I_1 - I_2 - I_4 = 0$$

$$L_1$$
:
$$\mathcal{E}_1 - I_3 R_3 = 0$$
$$I_3 R_3 = \mathcal{E}_1$$

L₂:
$$-I_1R_1 - I_4R_4 + I_3R_3 = 0$$

 $I_1R_1 - I_3R_3 + I_4R_4 = 0$

$$L_3: \mathcal{E}_2 - I_2 R_2 - I_2 R_5 + I_4 R_4 = 0$$

 $I_2 (R_2 + R_5) - I_4 R_4 = \mathcal{E}_2$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & R_3 & 0 & 0 \\ R_1 & 0 & -R_3 & R_4 & 0 \\ 0 & R_2 + R_5 & 0 & -R_4 & 0 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_{\mathcal{E}_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \mathcal{E}_1 \\ 0 \\ \mathcal{E}_2 \end{bmatrix}$$

$$I_1 = 0.971 \text{ A}$$
 $I_2 = 0.343 \text{ A}$
 $I_3 = 1.14 \text{ A}$
 $I_4 = 0.629 \text{ A}$
 $I_{\mathcal{E}_1} = 2.11 \text{ A}$

2.7. Circuit 7

Circuit 7 (It is recommended to solve this circuit using a matrix.)

Figure 7. Circuit 7

Table 7. Circuit 7 V, I, and P

(W)
(**)
0
99
67
47
67
09
90
179

$$J_{1}: \qquad I_{1} = I_{2} + I_{3}$$

$$I_{1} - I_{2} - I_{3} = 0$$

$$J_{2}: \qquad I_{2} + I_{7} = I_{6}$$

$$I_{2} - I_{6} + I_{7} = 0$$

$$J_{3}: \qquad I_{3} = I_{5} + I_{7}$$

$$I_{3} - I_{5} - I_{7} = 0$$

$$L_{1}: \qquad \mathcal{E}_{1} - I_{1}R_{1} - I_{3}R_{3} - I_{5}R_{5} = 0$$

$$I_{1}R_{1} + I_{3}R_{3} + I_{5}R_{5} = \mathcal{E}_{1}$$

L₃:
$$-I_5R_5 + I_6R_6 + I_7R_7 = 0$$
$$I_5R_5 - I_6R_6 - I_7R_7 = \mathcal{E}_2$$

 $L_2: -I_2R_2 - I_2R_4 + I_7R_7 + I_3R_3 = 0$

 $I_2(R_2 + R_4) - I_3R_3 - I_7R_7 = 0$

$$\begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 & 0 & -1 \\ R_1 & 0 & R_3 & R_5 & 0 & 0 \\ 0 & R_2 + R_4 & -R_3 & 0 & 0 & -R_7 \\ 0 & 0 & 0 & R_5 & -R_6 & -R_7 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \mathcal{E}_1 \\ 0 \\ 0 \end{bmatrix}$$

$$I_1 = 0.200 \text{ A}$$

 $I_2 = 0.0646 \text{ A}$
 $I_3 = 0.135 \text{ A}$
 $I_5 = 0.119 \text{ A}$
 $I_6 = 0.0806 \text{ A}$
 $I_7 = 0.0160 \text{ A}$

3. Conclusion

4. Citations

[1] Karen Schnurbusch, Physics 4B Lab Book, Mt. San Antonio College, 2023, pp. 71-74.

[2] Karen Schnurbusch, Physics 4B Equations, Mt. San Antonio College, 2023, pp. 4, 5.