4 i 5. TESTY STATYSTYCZNE

Definicja. <u>Hipotezą statystyczną</u> nazywamy przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie pobranej próbki.

PRZYKŁADY:

- 1. Wysuwamy hipotezę, że badana cecha ma rozkład normalny.
- 2. Wiemy, że badana cecha ma rozkład normalny o nieznanej wartości średniej μ i znanym odchyleniu standardowym $\sigma = 1$. Wysuwamy hipotezę, że $\mu = 5$.
- 3. Dane są dwa zbiory obserwacji, np. wysokości plonów uzyskane podczas naważenia nawozem A i nawozem B.
 - (a) Wysuwamy hipotezę, że oba zbiory można traktować jako pochodzące z populacji o tym samym rozkładzie.
 - (b) Z wcześniejszych badań wiemy, że zbiory te można traktować jako pochodzące z populacji o rozkładach normalnych odpowiednio $\mathcal{N}(\mu_1, \sigma_1)$ i $\mathcal{N}(\mu_2, \sigma_2)$, gdzie parametry μ_1, μ_2, σ_1 i σ_2 są nieznane, ale takie, że $\sigma_1 = \sigma_2$. Wysuwamy przypuszczenie, że średnia wartość plonów przy nawożeniu nawozem A jest większa niż średnia wartość plonów przy nawożeniu nawozem B (tzn. że $\mu_1 > \mu_2$).

Definicja. Hipotezy, które dotyczą wyłącznie wartości parametru lub parametrów rozkładu badanej cechy nazywamy <u>hipotezami</u> <u>parametrycznymi</u>. Hipotezy, które nie są hipotezami parametrycznymi nazywamy <u>hipotezami nieparametrycznymi</u>.

W powyższym przykładzie hipotezy 2 i 3(b) są parametryczne, natomiast hipotezy 1 i 3(a) są nieparametryczne.

Definicja. <u>Hipotezą prostą</u> nazywamy hipotezę, która jednoznacznie określa rozkład badanej cechy. <u>Hipotezą złożoną</u> nazywamy hipotezę, która określa całą grupę rozkładów.

Hipoteza z przykładu 2 jest hipotezą prostą. Pozostałe hipotezy są złożone.

W praktyce rozważamy dwie hipotezy: hipotezę zerową (będziemy ją oznaczać H_0) i hipotezę alternatywną (tą będziemy oznaczać H_1). Jeśli odrzucamy hipotezę zerową, to przyjmujemy hipotezę alternatywną i na odwrót.

PRZYKŁAD:

Wiemy, że wysokość plonów przy nawożeniu starą metodą ma rozkład normalny o średniej 5 i odchyleniu standardowym 1: $\mathcal{N}(5,1)$ i że wysokość plonów przy nawożeniu nową metodą ma rozkład normalny o tym samym odchyleniu standardowym $\sigma=1$ ale o nieznanej średniej μ : $\mathcal{N}(\mu,1)$. Chcemy sprawdzić czy nowa metoda zwiększyła średnią wysokość plonów.

W tym celu będziemy testować $H_0: \mu = 5$ przeciwko $H_1: \mu > 5$.

Przeprowadzamy eksperyment losowy. Wynik takiego eksperymentu to wektor losowy $\mathbb{X} = (X_1, X_2, \dots, X_n)$ o wartościach w \mathbb{R}^n .

Definicja. Statystyką testową nazywamy funkcję $\delta(X_1, X_2, ..., X_n)$, która służy do weryfikacji H_0 przeciwko H_1 . Zbiór wszystkich możliwych wartości funkcji δ dzielimy na dwa rozłączne zbiory W i W' takie, że:

- jeśli $\delta(x_1, x_2, \dots, x_n) \in W$, to H_0 odrzucamy,
- jeśli $\delta(x_1, x_2, \dots, x_n) \in W'$, to H_0 przyjmujemy.

W nazywamy zbiorem krytycznym testu (zbiorem odrzuceń H_0).

Musimy dobrze skonstruować statystykę testową i rozsądnie dobrać zbiór krytyczny, tak by podejmować decyzje zgodne z rzeczywistością. Jednak, ponieważ decyzje podejmujemy jedynie na podstawie próbki, nie mamy całkowitej informacji o badanej populacji i w związku z tym zawsze jesteśmy narażeni na popełnienie błędu - podjęcie decyzji niezgodnej z rzeczywistością. Dokładniej, możemy popełnić jeden z dwóch błędów:

- 1. odrzucić H_0 w sytuacji, gdy jest ona prawdziwa (tzw. <u>błąd pierwszego rodzaju</u>);
- 2. przyjąć H_0 w sytuacji, gdy jest ona fałszywa (tzw. <u>błąd drugiego rodzaju</u>).

Chcielibyśmy by prawdopodobieństwa obu tych błędów były jak najmniejsze. Niestety, gdy przy ustalonej statystyce testowej, zmieniamy W tak by malał błąd pierwszego rodzaju, to błąd drugiego rodzaju rośnie i na odwrót. Postępujemy zatem tak:

• ustalamy z góry maksymalną wartość prawdopodobieństwa błędu pierwszego rodzaju, oznaczamy tą wartość α i nazywamy ją poziomem istotności testu (zwyczajowo przyjmuje się $\alpha = 0,01$ lub $\alpha = 0,05$, czasami $\alpha = 0,1$);

 \bullet zbiór krytyczny W wyznaczamy tak by prawdopodobieństwo błędu pierwszego rodzaju nie przekraczało α i by prawdopodobieństwo błędu drugiego rodzaju było możliwie najmniejsze.

Zapisujemy to symbolicznie:

$$\underbrace{P(\delta(X_1,X_2,\ldots,X_n)\in W|H_0)}_{\text{prawdop. blędu pierwszego rodzaju}} \leq \alpha \quad \text{i}$$

$$\underbrace{P(\delta(X_1,X_2,\ldots,X_n)\notin W|H_1)}_{\text{prawdop. blędu drugiego rodzaju}} - \text{możliwie najmniejsze}$$

Definicja. Moc testu parametrycznego (power of the test) to funkcja zmiennej θ (gdzie θ to badany parametr) dana wzorem

$$\beta(\theta) = P(\underbrace{\delta(X_1, X_2, \dots, X_n)}_{\text{statystyka testowa}} \in W|\theta) = \text{prawdop. odrzucenia } H_0 \text{ w sytuacji, gdy nieznany parametr przyjmuje wartość } \theta.$$

Jeśli $H_0: \theta = \theta_0$, to $\beta(\theta_0) = P(\delta(X_1, X_2, \dots, X_n) \in W | \theta_0) = P(\delta(X_1, X_2, \dots, X_n) \in W | H_0) = \text{prawdopodobieństwo błędu pierwszego rodzaju.}$

```
Natomist jeśli H_1: \theta = \theta_1, to wówczas \beta(\theta_1) = P(\delta(X_1, X_2, \dots, X_n) \in W | \theta_1) = P(\delta(X_1, X_2, \dots, X_n) \in W | H_1) = 1 - P(\delta(X_1, X_2, \dots, X_n) \notin W | H_1) = 1 - prawdopodobieństwo błędu drugiego rodzaju.
```

Definicja. Najmniejszy poziom istotności, przy którym zaobserwowana wartość statystyki testowej prowadzi do odrzucenia H_0 , nazywamy p-wartością (p-value) przeprowadzonego testu. Tzn.

p – value $\leq \alpha \implies$ odrzucamy H_0 , p – value $> \alpha \implies$ nie ma podstaw do odrzucenia H_0 (przyjmujemy H_0).

TESTY PARAMETRYCZNE

Podstawowe statystyki próbkowe i funkcje w R wyliczające te statystyki średnia z próby: $\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$, wariancja z próby: $s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{x})^2$ > mean(dane) > var(dane)

Oznaczenia p	oodstawowych kwantyli	i funkcje w R wyliczając	ce te kwantyle
dla rozkładu normalnego	dla rozkładu t-Studenta	dla rozkładu chi-kwadrat	dla rozkładu F-Snedecora
z_{lpha}	$t_{lpha,n}$	$\chi^2_{\alpha,n}$	$F(\alpha, n, m)$
$> \operatorname{qnorm}(\alpha)$	$> \operatorname{qt}(\alpha, n)$	$> qchisq(\alpha, n)$	$qf(\alpha, n, m)$

777 01 11 11					
· -		dniej na poziomie istotności α			
UWAGA : jeżeli wyznaczone wartości statystyk (Z lub T) należą do odpowiednich zbiorów krytycznych, to H_0 odrzucamy.					
Model I. $X \sim N(\mu, \sigma), \mu$ - nieznane, σ - zna	ne. Hipoteza zerowa H_0 :	$\mu = \mu_0$. Statystyka testowa $Z = \frac{\overline{x} - \mu_0}{\sigma} \sqrt{n}$.			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna			
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$			
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny			
$W = \left(-\infty; -z_{1-\alpha/2}\right) \cup \left\langle z_{1-\alpha/2}; +\infty\right)$	$W = \langle z_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -z_{1-\alpha})$ zerowa $H_0: \mu = \mu_0$. Statystyka testowa $T = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$.			
Model II (t.test). $X \sim N(\mu, \sigma), \mu$ - nieznan	e, σ - nieznane. Hipoteza z	zerowa $H_0: \mu = \mu_0$. Statystyka testowa $T = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$.			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna			
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$			
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny			
$W = \left(-\infty; -t_{1-\alpha/2, n-1}\right) \cup \left\langle t_{1-\alpha/2, n-1}; +\infty\right)$	$W = \langle t_{1-\alpha,n-1}; +\infty \rangle$	Zbiór krytyczny $W = (-\infty; -t_{1-\alpha,n-1})$ erowa $H_0: \mu = \mu_0$. Statystyka testowa $Z = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$.			
$oxed{\mathbf{Model III.}}$ X ma rozkład dowolny (próba d	uża $n \ge 100$). Hipoteza ze	erowa $H_0: \mu = \mu_0$. Statystyka testowa $Z = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$.			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna			
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$			
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny			
$W = \left(-\infty; -z_{1-\alpha/2}\right) \cup \left\langle z_{1-\alpha/2}; +\infty\right)$	$W = \langle z_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -z_{1-\alpha})$			
$H_1: \mu \neq \mu_0 \qquad H_1: \mu > \mu_0$ Zbiór krytyczny $W = (-\infty; -z_{1-\alpha/2}) \cup \langle z_{1-\alpha/2}; +\infty \rangle \qquad W = \langle z_{1-\alpha}; +\infty \rangle$ Model IV (prop.test). X ma rozkład dwupunktowy $P(X = 1) = p, P(X = 1)$		$P(X=0) = q = 1 - p, p - \text{nieznane}, n\hat{p} \ge 5 \text{ i } n\hat{q} \ge 5,$			
gdzie $\hat{p} = \frac{k}{n} = \frac{\text{ilość sukcesów}}{\text{ilość prób}}, \hat{q} = 1 - \hat{p}.$					
Hipoteza zerowa $H_0: p=p_0$. Statystyka testowa $Z=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$.					
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna			
$H_1: p \neq p_0$	$H_1: p > p_0$	$H_1: p < p_0$			
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny			
$W = \left(-\infty; -z_{1-\alpha/2}\right) \cup \left\langle z_{1-\alpha/2}; +\infty\right)$	$W = \langle z_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -z_{1-\alpha})$			
$W = (-\infty; -z_{1-\alpha/2}) \cup \langle z_{1-\alpha/2}; +\infty \rangle$ $W = \langle z_{1-\alpha}; +\infty \rangle$ $W = (-\infty; -z_{1-\alpha})$ Jeśli w modelu IV nie jest spełnione założenie, że $n\hat{p} \geq 5$ i $n\hat{q} \geq 5$, to zamiast prop.test używamy testu dokładnego					
binom.test.					

	dotyczącej jednej wariancji na poz	
UWAGA: jeżeli wyznaczona wartość sta	tystyki χ^2 należy do odpowiedniego zbi	ioru krytycznego, to H_0 odrzucamy.
Model. $X \sim N(\mu, \sigma), \mu$ - nieznane, σ - n	ieznane. Hipoteza zerowa $H_0: \sigma^2 = \sigma_0^2$. Statystyka testowa $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$.
Hipoteza alternatywna $H_1: \sigma^2 \neq \sigma_0^2$	Hipoteza alternatywna $H_1: \sigma^2 > \sigma_0^2$	Hipoteza alternatywna $H_1: \sigma^2 < \sigma_0^2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(0, \chi_{\alpha/2; n-1}^2\right) \cup \left\langle \chi_{1-\alpha/2; n-1}^2; +\infty \right)$	$W = \left\langle \chi^2_{1-\alpha;n-1}; +\infty \right)$	$W = \left(0; \chi^2_{\alpha; n-1}\right)$

Weryfikacja hipotezy do	otyczącej równości dwóch wariancji na poziomie istotności α
UWAGA: jeżeli wyznaczona wartość s	tatystyki F należy do zbioru krytycznego W , to H_0 odrzucamy.
Model I. (test F: var.test)	
	σ_1,σ_2 - nieznane; dysponujemy niezależnymi próbami losowymi z tych populacji.
Hipoteza zerowa $H_0: \sigma_1^2 = \sigma_2^2$. Statysty	vka testowa $F = s_1^2/s_2^2$ (w liczniku jest większa z wariancji).
Hipoteza alternatywna $H_1: \sigma_1^2 \neq \sigma_2^2$	Hipoteza alternatywna $H_1: \sigma_1^2 > \sigma_2^2$
Zbiór krytyczny	Zbiór krytyczny
$W = \langle F(1 - \alpha/2, n_1 - 1, n_2 - 2); +\infty \rangle$	$W = \langle F(1-\alpha, n_1-1, n_2-2); +\infty \rangle$

Weryfik	acje hipotez dotyczących	Weryfikacje hipotez dotyczących dwóch średnich na poziomie istotności α
\mathbf{UWAGA} : jeżeli wyznaczone wartości statystyk (Z lub T) należą do odpowiednich zbiorów krytycznych, to H_0 odrzucamy	T) należą do odpowiednich	zbiorów krytycznych, to H_0 odrzucamy.
Model I. $X \sim N(\mu_1, \sigma_1)$, $Y \sim N(\mu_2, \sigma_2)$, μ_1, μ_2 - micz Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $Z = -$	eznane, σ_1, σ_2 - znane; dysp $\sqrt{\frac{x-y}{v_1^2+\sigma_2^2}}$.	Model I. $X \sim N(\mu_1, \sigma_1)$, $Y \sim N(\mu_2, \sigma_2)$, μ_1, μ_2 - nieznane, σ_1, σ_2 - znane; dysponujemy niezależnymi próbami losowymi z tych populacji. Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $Z = \frac{x - y}{\sqrt{\frac{\sigma_1^2}{\sigma_1^2 + \frac{\sigma_2^2}{\sigma_2^2}}}}$.
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1\neq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -z_{1-\alpha/2}) \cup \langle z_{1-\alpha/2}; +\infty)$	$W = \langle z_{1-\alpha}; +\infty \rangle$	$W=(-\infty;-z_{1-\alpha})$
Model II.(unpaired t-test: t.test(,paired=FALSE,var.equal=TRUE))	SE, var.equal=TRUE))	
$X \sim N(\mu_1, \sigma_1), Y \sim N(\mu_2, \sigma_2), \mu_1, \mu_2$ - nieznane, σ_1, σ_2	r_2 - nieznane, ale takie, że σ	$X \sim N(\mu_1, \sigma_1)$, $Y \sim N(\mu_2, \sigma_2)$, μ_1, μ_2 - nieznane, σ_1, σ_2 - nieznane, σ_1 etakie, że $\sigma_1 = \sigma_2$; dysponujemy niezależnymi próbami losowymi z tych populacji.
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $T=$		
	$\sqrt{\frac{n_1+n_2-2}{n_1+n_2-2}}\left(\frac{1}{n_1}+\frac{1}{n_2}\right)$	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty, -t_{1-\alpha/2, n_1+n_2-2}) \cup \langle t_{1-\alpha/2, n_1+n_2-2}; +\infty \rangle$	$W = \langle t_{1-\alpha, n_1+n_2-2}; +\infty \rangle$	$W = (-\infty, -t_{1-\alpha, n_1 + n_2 - 2})$
Jeśli w modelu II nie jest spełnione założenie, że σ_1 =	= σ_2 , to zamiast t.test(,pain	Jeśli w modelu II nie jest spełnione założenie, że $\sigma_1 = \sigma_2$, to zamiast t.test(,paired=FALSE, var.equal=TRUE) należy użyć t.test(,paired=FALSE, var.equal=FALSE)
Model III.(paired t-test: t.test(, paired=TRUE)	E))	
$X-Y\sim N(\mu,\sigma), \mu,\sigma$ - nieznane. Dysponujemy parami obserwacji, gdzie pary są wzajemnie niezależne.	i obserwacji, gdzie pary sa	vza jemnie niezależne.
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $T = \frac{\overline{z}}{z} \sqrt{n}$, gdzie $z_i = x_i$	$= \frac{\overline{z}}{\sqrt{n}} \sqrt{n}, \text{ gdzie } z_i = x_i - y_i, i = 1$	$-y_i, i=1,2,\ldots,n.$
Hipoteza alternatywna		Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -t_{1-\alpha/2, n-1}) \cup \langle t_{1-\alpha/2, n-1}; +\infty)$	$W = \langle t_{1-\alpha, n-1}; +\infty \rangle$	$W=(-\infty;-t_{1-\alpha,n-1})$
Model IV. Cechy X, Y mają rozkłady dowolne $(n_1 \ge 100, n_2 \ge 100), \mu_1$,	$100, n_2 \ge 100), \ \mu_1, \mu_2, \sigma_1,$	$\mu_2, \sigma_1, \sigma_2$ - nieznane; dysponujemy niezależnymi próbami losowymi z tych populacji.
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $Z=$	$\sqrt{\frac{x-y}{n+\frac{s^2}{n^2}}}.$	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -z_{1-\alpha/2}) \cup \langle z_{1-\alpha/2}; +\infty)$	$W = \langle z_{1-\alpha}; +\infty \rangle$	$W=(-\infty;-z_{1-\alpha})$
Model V (prop.test). Cechy X, Y mają rozkłady dwupunktowe, $P(X=1)$	wupunktowe, $P(X = 1) = p_1$	$=1-P(X=0), P(Y=1)=p_2=1$
$ i n_1(1-\hat{p}_1) \ge 5 i n_2 \hat{p}_2 \ge 5 i n_2(1-\hat{p}_2) \ge 5.$		
Hipoteza zerowa $H_0: p_1 = p_2$. Statystyka testowa $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{1\overline{g}}}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 = \frac{k_2}{n_2}$, $\overline{p} = \frac{k_1 + k_2}{n_1 + n_2}$, $\overline{q} = 1 - \overline{p}$, $n = \frac{n_1 n_2}{n_1 + n_2}$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{pq}}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 = \frac{\hat{p}_1}{\sqrt{pq}}$	$\frac{k_2}{n_2}$, $\bar{p} = \frac{k_1 + k_2}{n_1 + n_2}$, $\bar{q} = 1 - \bar{p}$, $n = \frac{n_1 n_2}{n_1 + n_2}$.
Hipoteza alternatywna	V_n Hipoteza alternatywna	Hipoteza alternatywna
$H_1:p_1 \neq p_2$	$H_1:p_1>p_2$	$H_1:p_1 < p_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -z_{1-\alpha/2}) \cup \langle z_{1-\alpha/2}; +\infty)$	$W = \langle z_{1-\alpha}; +\infty \rangle$	$W=(-\infty;-z_{1-\alpha})$
Jeśli w modelu V nie jest spełnione założenie, że n_1, n_2	12 są wystarczająco duże, to	Jeśli w modelu V nie jest spełnione założenie, że n_1, n_2 są wystarczająco duże, to zamiast prop. test należy zastosować dokładny test Fishera fisher. test oparty na
rozkiadzie inpergeometrycznym.		