目录

1	算法	基础	2
	1.1	数据 (data), 数据元素 (element), 数据项 (item)	2
	1.2	逻辑结构 & 物理结构	2
	1.3	算法 (algorithm)	2
	1.4	算法复杂度 (complexity)	3
2	线性	表 (linear list)	4
	2.1	顺序表 (sequential list)	4
	2.2	链表 (linked list)	4
		2.2.1 循环链表 (circular linked lists)	4
		2.2.2 双链表 (doubly list)	4
		2.2.3 双循环链表 (doubly linked list)	4
	2.3	三链表	5
	2.4	相关问题	5
	2.5	栈 (stack)	6
		2.5.1 存储方式	6
		2.5.2 基础操作	6
		2.5.3 应用	6
	2.6	队列 (queue)	7
	2.7	串	7
	2.8	数组	7
	2.9	广义表	7
	2.10	hash 表	7
3	树		8
	3.1	二叉树	8
		3.1.1 哈夫曼树基本概念	8
		3.1.2 哈夫曼树构建方法	8
		3.1.3 哈夫曼编码	8
		3.1.4 哈夫曼树应用	8
	3.2	堆	8
		3.9.1 堆的概念	8

		3.2.2	堆的	创致	赴					 									8
		3.2.3	堆的	插入	Ţ	和#	删图	涂		 									8
		3.2.4	应用							 									8
	3.3	平衡查	找树							 									9
	3.4	多路查	找树							 									9
	3.5	堆 (大,	小顶	(堆)						 									9
	3.6	字典树								 									9
	3.7	并查集					•			 									9
4	冬																		10
5	查找																		11
6	排序																		12

1 算法基础

1.1 数据 (data), 数据元素 (element), 数据项 (item)

- 数据 (data): 客观事物的抽象表示, 即所有能被输入到计算机中并被计算机处理的符号.
- 数据元素 (element): 数据的基本单位, 常备当做一个整体进行处理, 但一个数据元素可能包含多个数据项. 如个人信息统计中的一个词条 (包含姓名, 性别等).
- 数据项 (item): 数据不可分割的最小单位. 当一个数据元素由多个数据项组成时, 位串中各个数据项对应的子位串称作数据域 (field)
- 数据对象 (data object): 数据元素的集合. 如"全体整数","全体字母"等.
- 数据结构 (data structure): 指相互之间存在特定关系的数据元素的集合. 常见的数据结构如: 集合, 线性结构 (第2章), 树形结构 (第3章), 图 状结构或网状结构 (第4章).

1.2 逻辑结构 & 物理结构

- 逻辑结构: 描述数据元素之间的逻辑关系.
- 物理结构 (存储结构): 描述数据结构在计算机中的表示 (映象). 存储结构又可以分为顺序存储结构和链式存储结构.

1.3 算法 (algorithm)

- 算法性质:
 - 输入输出
 - 可行性
 - 确定性
 - 有穷性
 - 正确性

• 算法基本思想:

- 1. 分治法
- 2. 动态规划
- 3. 贪心算法
- 4. 回溯法
- 5. 分支界限法

1.4 算法复杂度 (complexity)

- 1. 时间复杂度 & 空间复杂度
 - 时间复杂度
 - 大 O 记号: 时间复杂度 T(n) 的上界.
 - 大 Ω 记号: 时间复杂度 T(n) 的下界.
 - 大 Θ 记号: 对于规模 n, 时间复杂度 T(n) 与 $\Theta(h(n)$ 同阶¹.
 - 空间复杂度
- 2. 复杂度分析:
 - 常数 O(1): 固定次数的操作, 与 n 无关.
 - 线性 O(n): 比如 n 次循环.
 - 对数 O(logn): 如果每执行一次, 规模 n 都衰减一半, 会形成对数 复杂度.
 - 幂函数 $O(n^k)$: 比如 k 重嵌套的 n 次循环.
 - 指数 $O(2^n)$

 $^{^{1}}$ 当 n 足够大, 有 $T(n) = \Theta(h(n))$

2 线性表 (linear list)

线性表是 n 个数据元素的有限序列.

2.1 顺序表 (sequential list)

顺序表: 用一组地址连续的存储单元依次存储线性表的数据元素. 定义: 组织形式: 结构特征: 类型说明: 操作:

- 1. 插入
- 2. 删除
- 3. 按值查找
- 1. 静态顺序表 2. 动态顺序表

2.2 链表 (linked list)

组织形式: 结构特征: 类型说明: 判空方法: 附加头结点 & 不加附加头结点区别操作:

- 1. 插入
- 2. 删除
- 3. 按值查找

2.2.1 循环链表 (circular linked lists)

结构特点: [插入][删除]

2.2.2 双链表 (doubly list)

有无头节点.

2.2.3 双循环链表 (doubly linked list)

结构特点: [插入][删除] 有无头结点

2.3 三链表

2.4 相关问题

1. 链表的倒序 2. 无头链表的删除和插入 3. 链表带环问题

2.5 栈 (stack)

定义: 特征:

2.5.1 存储方式

- 顺序存储
- 链式存储

2.5.2 基础操作

基本操作:

- 1. 创建
- 2. 初始化
- 3. 扩容
- 4. 出入栈
- 5. 取栈顶元素
- 6. 获取规模
- 7. 判空

栈的基本运算.1. 创建 2. 初始化 3. 扩容.4. 出入栈 5. 取栈顶元素 6 获取规模, 判空两种存储结构上的基本运算

2.5.3 应用

- 数制转换
- 括号匹配
- 行编辑
- 迷宫
- 表达式求值

2.6 队列 (queue)

定义:特征:队列的基本运算.1. 创建 2. 初始化.3. 出入栈 4. 队头元素 5. 队尾元素.6 获取规模, 判空两种存储结构上的基本运算顺序队列循环队列 优先级队列队列的应用

2.7 串

串的模式匹配算法 (朴素算法); 串的 KMP 算法.

2.8 数组

2.9 广义表

2.10 hash 表

1. 概念 2. 冲突和解决办法 1. 哈希函数 2. 哈希冲突-开散列 3. 哈希冲突-闭散列 3. 哈希表变形 1. 哈希表变形-位图 2. 哈希表变形-布隆过滤器

3 树

定义: 术语和基本概念. 性质: 存储方法;

3.1 二叉树

定义; 存储方法: 性质: 基本操作:1. 创建 2. 遍历 (递归和非递归)3. 增删查改删

相关问题: 后序遍历. 线索化二叉树二叉链表 (binary linked list) 存储方法, 结点 (node) 结构和类型定义遍历方法 x3: 树和二叉树的转换. 哈夫曼树的构造方法.

- 3.1.1 哈夫曼树基本概念
- 3.1.2 哈夫曼树构建方法
- 3.1.3 哈夫曼编码
- 3.1.4 哈夫曼树应用
- 3.2 堆
- 3.2.1 堆的概念
- 3.2.2 堆的创建
 - 1. 大堆 2. 小堆
- 3.2.3 堆的插入和删除
- 3.2.4 应用
 - 1. 优先级队列 2. 最大的前 K 个数字 3. 堆排序

- 3.3 平衡查找树
- 3.4 多路查找树
- 3.5 堆 (大, 小顶堆)
- 3.6 字典树
- 3.7 并查集

4 图

定义, 性质: 存储结构:

- 1. 邻接矩阵
- 2. 邻接表

图的遍历;

- 1. 深度优先
- 2. 广度优先

算法:

- 1. 最小生成树
- 2. 拓扑排序
- 3. 关键路径
- 4. 最短路径

5 查找

- 1. 顺序表的查找算法
- 2. 有序表的查找算法 1. 二分查找 2. 插值查找 3. 斐波那契查找
- 3. 线性索引查找 1. 稠密查找 2. 分块查找 3. 倒排索引
- 4. 哈希查找
- 5. 树表查找 1. 二叉树查找 2. 平衡查找树 1. 平衡二叉树 (AVL) 2. 红黑树 3. 多路树查找 1.2-3 树 2.2-3-4 树 3.B 树 4.B+ 树 5.B* 树
- 6. 散列表的查找算法 1. 散列函数 2. 冲突处理

6 排序

- 1. 插入排序 1. 直接插入法 2. 希尔算法
- 2. 选择排序 1. 简单选择排序 2. 堆排序
- 3. 交换排序 1. 冒泡排序 2. 快速排序
- 4. 归并排序
- 5. 桶排序
- 6. 计数排序
- 7. 基数排序

内部排序方法比较外部排序方法: