Examenul de bacalaureat national 2014 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Model

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- **1.** Dependența de temperatură a rezistivității electrice a unui metal este dată de relația $\rho = \rho_0 (1 + \alpha \cdot t)$. Unitatea de măsură în S.I. a coeficientului termic al rezistivității α este:
- **a.** $\Omega \cdot \mathsf{K}^{-1}$
- **b.** K⁻¹
- **d.** $\Omega \cdot m$

(3p)

- 2. În graficul din figura alăturată este reprezentată dependența tensiunii aplicate la bornele unui rezistor de intensitatea curentului prin acesta. Valoarea rezistenței electrice a rezistorului este:
- **a.** $30k\Omega$
- **b.** $3k\Omega$
- c. 30Ω
- d. 3Ω

- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, rezistența electrică a unui conductor metalic, omogen, de secțiune constantă poate fi exprimată prin relația:

- **b.** $R = \rho \cdot \ell \cdot S$ **c.** $R = \frac{\rho \cdot S}{\ell}$
- (3p)
- **4.** Pe soclul unui bec sunt înscrise valorile $P_n = 100 \,\mathrm{W}$ şi $U_n = 220 \,\mathrm{V}$. Valoarea rezistenţei becului în regim de funcționare normală este:
- a. $2,2\Omega$
- **b.** $45.45\,\Omega$
- c. 484Ω
- (3p)
- 5. O baterie alimentează un consumator. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, mărimea fizică a cărei valoare nu depinde de rezistența consumatorului este:
- a. E
- **b**. *U*
- **c.** *u*

d. /

(3p)

II. Rezolvaţi următoarea problemă:

O baterie formată prin gruparea în serie a două surse cu tensiunile electromotoare $E_1 = 4 \text{ V}$ şi $E_2 = 3.6 \text{ V}$ şi rezistențele interioare egale $r_1 = r_2 = 2 \Omega$, alimentează o grupare mixtă de rezistoare având rezistenţele electrice $R_1 = R_2 = 10\Omega$, respectiv $R_3 = 9.5\Omega$. Circuitul este reprezentat schematic în figura alăturată. Ampermetrul montat în circuit are rezistența internă $R_A=0.5\,\Omega$. Scala ampermetrului are 100 de

diviziuni, iar indicația maximă a scalei este $I_{\rm max}=1~{\rm A}$. Neglijând rezistența electrică a conductoarelor de legătură, determinați: a. rezistența electrică echivalentă a circuitului exterior bateriei;

- **b.** intensitatea curentului electric prin rezistorul R_1 ; c. numărul diviziunii în dreptul căreia s-a oprit acul ampermetrului;
- d. intensitatea curentului prin rezistorul R_1 , dacă, din greșeală sursa având $E_2 = 3,6 \text{ V}$ se conectează cu polaritate inversă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

- La bornele unui generator electric este conectat un consumator cu rezistența electrică $R = 18 \Omega$. Randamentul circuitului este $\eta = 90\%$. Un voltmetru ideal, conectat la bornele generatorului, indică tensiunea U = 9 V. Determinați:
- a. valoarea tensiunii electromotoare a generatorului;
- **b.** energia disipată de rezistor în timp de 50 min ;
- c. valoarea rezistenței R' a unui alt consumator care, legat în paralel cu primul, determină ca puterea electrică debitată de generator în circuitul exterior să fie maximă;
- **d.** puterea consumată de rezistorul R' în condițiile punctului **c.**