Introducción a Haskell

Programación Avanzada UNRC Pablo Castro

El Lenguaje Haskell

Haskell fue introducido en 1987 con el objetivo de introducir un lenguaje funcional moderno

- Hugs, es un interprete de Haskell muy usado, se puede obtener en www.haskell.org/hugs
- Glasgow Haskell, es un compilador para Haskell se puede obtener en http://www.haskell.org/ghc/.

En la materia utilizaremos **Hugs**.

Tipos Básicos de Haskell

Haskell tiene un conjunto rico de tipos básicos de datos

- Booleanos, tipos de booleanos con las operaciones lógicas,
- Int: Enteros de precisión fija,
- Char: 'a', 'b', 'c', etc
- Integer: Enteros de precisión variables,
- Float: Números reales.

Escribimos: E::T < Cuando E es de tipo T

El Tipo Bool

El tipo Bool tiene dos valores true y false, y las siguientes operaciones:

```
• && :: Bool->Bool->Bool
```

• || :: Bool->Bool->Bool

not :: Bool->Bool

Cualquier función: f::A->Bool es llamado predicado, y puede utilizarse con estas operaciones.

El Tipo Char

El tipo char contiene los valores 'a', 'b', 'c', ... etc, y las siguientes funciones:

- ord::Char -> Int convierte caracteres a enteros.
- chr::Int -> Char convierte enteros a caracteres.

Los Strings se modelan como una lista de chars.

Sistema de Números

Haskell tiene varios tipos numéricos:

- Int, enteros con precisión limitada [-2²⁹,2²⁹).
- Integer, enteros con precision variable,
- Float, reales 3.14159
- Double, reales con doble precisión.

Tenemos funciones de conversión entre ellos, por ejemplo:

fromInteger

Permite convertir un entero a otro tipo numérico

luplas

Usando los tipos básicos podemos construir tuplas y listas. Dados tipos A y B:

Por ejemplo: (True, 1):: (Bool, Int)

Devuelve el primer fst::(a,b)->a< componente snd::(a,b)->b Devuelve el segundo componente

Operaciones:

Listas

Dado un cualquier tipo a

Donde:

- [] es la lista vacía
- x:xs es la lista con x a la cabeza y luego xs a la cola

Todos los elementos de la lista son del mismo tipo.

Funciones sobre Listas

Algunas funciones útiles sobre listas:

- head::[a]->a, devuelve la cabeza de la lista.
- last::[a]->a, devuelve el último elemento.
- tail::[a]->[a], devuelve la cola de la lista.
- ++::[a]->[a]->[a], concatena dos listas.

Funciones

Dados dos tipos a y b:

Por ejemplo:

Las funciones de alto orden son aquellas que toman como parámetros funciones o retornan funciones

.:
$$(b->c)->(a->b)->(a->c)$$

$$\begin{cases} Definir la composición de funciones \end{cases}$$

Definición de Funciones

Una función se puede definir por casos:

```
sign : Int->Int
sign x | x>=0=1
        | x < 0 = -1
```

```
También por pattern matching:
```

```
take :: Int->[a]->[a]
```

Toma los primeros n elementos de una lista

```
take 0 \times s = []
take n [] = []
take n (x:xs) = x:take (n-1) xs
              Se pueden usar los constructores de los tipos
```

Funciones Estrictas

La expresión:

undefined :: a representa un "error" de tipo a

Una función f:: $a_0->a_1->a_2->...->a_n$ se dice estricta en el parámetro i si:

 $f x_0 x_1 \dots x_{i-1}$ undef $x_{i+1} \dots x_n = undef$

Por ejemplo:

True && b = b
False && = False

Es estricta en su primer parámetro

Polimorfismo

Consideremos la siguiente función:

```
drop::Int->[a]->[a]
drop n [] = []
drop 0 xs = xs
drop n (x:xs) = drop (n-1) xs
```

En [a], a puede ser cualquier tipo, se llama variable de tipos, y drop se dice que es polimorfica.

Patrones de Recursión

Consideremos la función:

$$sum [] = 0$$

$$sum (x:xs) = x+sum xs$$

Si ejecutamos esta función para [1,..,n] obtenemos:

De la misma forma podríamos reemplazar el + por *

$$1*(2*(3*(...*n))$$

Patrones de Recursión

Podemos generalizar esto para una operación @

Para $[X_0, X_1, ..., X_n]$ calculamos

$$X_0@ (X_1@ (...@X_n))$$

Esto se define por medio de la función foldr:

Ejemplo: foldr @ e $[X_0, X_1, X_2] = X_0@(X_1@(X_2@e))$

Ejemplos

- sum xs = foldr (+) 0 xs
- mult xs = foldr (*) 1 xs
- conj xs = foldr (&) true xs
- disj xs = foldr (||) false xs

Todas estas funciones son asociativas, es decir, no importa como asociemos, pero:

foldr
$$(-)$$
 0 xs \prec No es asociativa

Foldl, Asociando a la Izquierda

También podríamos haber asociado a la izquierda:

```
sum n [] = n
sum n (x:xs) = sum (n+x) xs
```

Si ejecutamos sum 0 [1,2,3] obtenemos:

$$((0+1)+2)+3$$
 Es decir, asocia a la izquierda

Este patrón se computa con fold1:

```
foldl :: (a->b->a)->a->[b]->a
foldl f z [] = z
foldl f z x:xs = foldl f (f z x) xs
```

FoldI

Por ejemplo:

```
fold: (+) 0 [X_0, X_1, X_2] = ((0+X_0)+X_1)+X_2
```

Foldl vs Foldr:

- Evalúan igual si f es asociativa y su dos parámetros tienen el mismo tipo sobre listas finitas
- Si la función f no es estricta en su segundo parámetro, entonces foldr puede funcionar para listas infinitas

Ejemplo:

```
foldr (&&) false [false, false, ...] = false
foldl (&&) false [false, false, ...] stack overflow
```

Map

Map, dada una función y una lista aplica esa función a cada elemento de la lista

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : (map f xs)
```

Es decir:

```
map f [X_0, X_1, X_2, ..., X_n] = [f X_0, f X_1, ..., f X_n]
```

Por ejemplo:

```
map (*2) [1,2,3,4,5] = [2,4,6,8,10]
```

Filter

Dada una lista filtra los elementos de la lista usando un predicado:

```
filter :: (a->Bool)->[a]->[a]
filter f [] = []
filter f (x:xs) = (f x):(filter f xs)
```

Por ejemplo:

Puede funcionar para listas infinitas

```
filter (isEven) [1,2,3,4,5] = [2,4]
```

Listas por Comprensión

En conjuntos podemos hacer:

$$\{2 * x \mid x \in \{0, 1, 2, 3, 4\}\}$$

En Haskell tenemos listas por compresión, por ejemplo:

$$[2*x | x<-[0,1,2,3,4]]$$
Generador

Retorna la lista:

Listas por Comprensión

Podemos tener muchos generadores:

$$[(x,y) \mid x<-[0,1,2],y<-[2,3,4]]$$

Devuelve:

```
[(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)]
```

Podemos utilizar guardas para filtrar elementos:

$$[x \mid x < -[0..], isEven x]$$

Devuelve:

$$[0, 2, 4, 6, 8, 10, \dots]$$

Ejemplos

Declarando Tipos Nuevos

Podemos definir nuevos tipos con el constructor type:

También por ejemplo:

type Pos =
$$(Int, Int) < Posiciones en un tablero$$

Y podemos usar este tipo nuevo:

type Board = [Pos]
$$\leq$$
 Un ta

Un tablero es una lista de posiciones

Tipos Nuevos

Podemos definir tipos con nuevos valores:

```
data Bool = False|True
```

Y se pueden definir tipos inductivos

```
data Nat = Zero|Succ Nat
```

Definen los naturales por medio de dos constructores:

```
Zero::Nat y Succ::Nat->nat
```

Cuyos valores son:

```
Zero, Succ Zero, Succ (Succ Zero), ...
```

Árboles Binarios

Los árboles binarios son un tipo de datos muy útil:

```
Data Tree a = Nil | Node (Tree a) a (Tree a)

Hijo izquierdo Hijo derecho
```

Un ejemplo de función sobre árboles:

```
size:: Tree a->Int
size Nil = 0
size (Node hi r hd) = 1+size hi+size hd
```

Clases en Haskell

Solo está bien definida si

Una operación se dice sobrecargada si puede utilizarse para varios tipos.

```
elem x [] = False elem x (y:ys) | x==y = True | otherwise = elem x ys
```

Una **clase** en Haskell define una colección de tipos que tienen una operación en común

Clases en Haskell

La clase que tiene la igualdad se define:

```
Todos los tipos que instancien esta clase deben tener la igualdad definida
```

Por ejemplo, para decir que Nat pertenecen a Eq:

```
instance (Eq a) => Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ n == Succ m = n == m
```

Ejemplo Clases

En el ejemplo anterior el perfil de la función sería:

Otras clases importantes:

- Show: provee una función para mostrar por pantalla,
- Ord: provee relaciones de orden,

Quicksort

Quicksort en Pascal:

```
Procedure QSort(numbers : Array of Integer; left : Integer; right : Integer);
Var
         pivot, l_ptr, r_ptr : Integer;
Begin
        I ptr := left;
        r_ptr := right;
        pivot := numbers[left];
        While (left < right) do
         Begin
                  While ((numbers[right] >= pivot) AND (left < right)) do
                           right := right - 1;
                  If (left <> right) Then
                  Begin
                           numbers[left] := numbers[right];
                           left := left + 1;
                  End:
                  While ((numbers[left] <= pivot) AND (left < right)) do
                           left := left + 1;
                  If (left <> right) Then
                  Begin
                           numbers[right] := numbers[left];
                           right := right - 1;
                  End;
         End;
        numbers[left] := pivot;
        pivot := left;
        left := I_ptr;
        right := r_ptr;
        If (left < pivot) Then
                 QSort(numbers, left, pivot-1);
        If (right > pivot) Then
                  QSort(numbers, pivot+1, right);
End:
```

QuickSort en Haskell

Permite un nivel de abstracción más alto

Cambiando el Orden de Evaluación

Muchas veces cambiar el orden de ejecución puede mejorar la eficiencia de las funciones

Acumula en el parámetro

sum n (x:xs) = sum (n+x) xs

Podemos mejorar el uso del espacio mediante \$!

Evaluación en Haskell

Haskell usa evaluación lazy.

Cada expresión es representa en memoria con punteros.

Por ejemplo: cuad (1+2) se representa:

Evaluación en Haskell

Las definiciones son representadas como reglas:

Ejemplo de evaluación:

