ASDL: A Unified Interface for Gradient Preconditioning in PyTorch

Kazuki Osawa¹, Satoki Ishikawa², Rio Yokota², Shigang Li³, and Torsten Hoefler¹

¹: ETH Zurich (Scalable Parallel Computing Lab), ²: Tokyo Institute of Technology, ³: Beijing University of Posts and Telecommunications

Gradient Preconditioning in Deep Learning

Gradient-based optimization **Preconditioned gradient** $\theta_{t+1} \leftarrow \theta_t - \eta P_t g_t$

Parameter

Preconditioning matrix Gradient

How to deal with <u>nonconvexity</u>, <u>stochasticity</u>, and <u>high dimensionality</u> in Deep Learning?

Background & problem: A diverse set of gradient preconditioning methods

1. **Curvature** matrix *C*

Loss sharpness

- Hessian H
- Absolute Hessian Hוגו
- BFGS Hessian $\hat{H}_{
 m bfgs}$
- Gauss-Newton matrix

Gradient covariance

- Fisher information matrix
- FIM est. by MC samples \widehat{F}_{nmc}
- **Gradient 2nd moment**
- Empirical Fisher $F_{\rm emp}$
- Batched empirical Fisher $\widehat{F}_{emp}^{batch}$

2. **Representation** of *C*

Dense/sparse/low-rank

- Matrix-free/Gram **Layer-wise** (block-diagonal)
- Dense/sparse/low-rank Gram/Kronecker-factored
- **Unit-wise** (block-diagonal) Dense/sparse/low-rank
- Element-wise (diagonal) Dense/sparse

3. **Solver** for $Pg \approx C^{-1}g$

- **Local iterative** (matrix-free) Conjugate gradient
 - Krylov subspace
 - Neumann series
 - **Global iterative**
 - Learning by SGD
 - Local/global direct
 - Cholesky inverse/solve

- Eigendecomposition SMW formula
- "KF-io": input-output Kronecker-factored. "KF-dim": dimension-wise Kronecker-factored. "RR": rank reduction. "SMW": Sherman-Morrison-Woodbury formula. "L": local = one mini-batch at one time step. "G": global = multiple mini-batches at multiple time steps. "iter": iterative.

Mathad	1. Curvature matrix C		2. Representation of C		3. Solver for $Pg pprox C^{-1}g$		
Method	type matrix		granularity	format	type	key operations	
LiSSA (Agarwal et al., 2017) PSGD (Li, 2018) Neumann optimizer (Krishnan et al., 2017) Hessian-free (Martens, 2010) KSD (Vinyals & Povey, 2011) L-BFGS (Liu & Nocedal, 1989) SMW-GN (Ren & Goldfarb, 2019)	sharpness sharpness sharpness sharpness sharpness sharpness sharpness	$egin{array}{c} H & & & & & & & & & & & & & & & & & & $	full full full full full full full full	dense dense matrix-free matrix-free matrix-free matrix-free Gram, RR	G iter G iter L iter L iter L iter G iter L direct	Neumann series triangular solve & SGD Neumann series conjugate gradient Krylov subspace method approx. BFGS SMW inverse	
SMW-NG (Ren & Goldfarb, 2019) TONGA (Roux et al., 2008) M-FAC (Frantar et al., 2021) GGT (Agarwal et al., 2019) FANG (Grosse & Salakhutdinov, 2015)	grad 2 nd m grad 2 nd m grad 2 nd m grad 2 nd m grad cov	$\hat{F}_{ ext{emp}}$ $\hat{F}_{ ext{emp}}$ $\hat{F}_{ ext{emp}}^{ ext{batch}}$ $(\hat{F}_{ ext{emp}}^{ ext{batch}})^{1/2}$ $\hat{F}_{n ext{mc}}$	full full full full full	Gram, RR Gram, RR Gram, RR Gram, RR sparse	L direct G direct G direct L/G direct	SMW inverse SMW solve & eigendecomp. SMW solve SMW solve incomplete Cholesky	
PSGD (KF) (Li, 2018) K-BFGS (Goldfarb et al., 2021) K-FAC (Martens & Grosse, 2015) KFLR (Botev et al., 2017) KFRA (Botev et al., 2017) EKFAC (George et al., 2018) SKFAC (Tang et al., 2021) SENG (Yang et al., 2021) TNT (Ren & Goldfarb, 2021) Shampoo (Gupta et al., 2018)	sharpness sharpness grad cov, 2 nd m grad cov grad cov, 2 nd m grad 2 nd m grad 2 nd m grad 2 nd m	$egin{aligned} m{H}_{ \lambda } \ \hat{m{H}}_{ ext{bfgs}} \ \hat{m{F}}_{nmc}, \hat{m{F}}_{ ext{emp}} \ m{F} \ \hat{m{F}}_{nmc}, \hat{m{F}}_{ ext{emp}} \ \hat{m{F}}_{1mc}, \hat{m{F}}_{ ext{emp}} \ \hat{m{F}}_{1mc}, \hat{m{F}}_{ ext{emp}} \ \hat{m{F}}_{emp} \ \hat{m{F}}_{nmc}, \hat{m{F}}_{emp} \ (\hat{m{F}}_{emp})^{1/2} \end{aligned}$	layer	KF-io KF-io KF-io KF-io KF-io KF-io, RR Gram, RR KF-dim KF-dim	G iter G iter L/G direct L/G direct L/G direct L/G direct L/G direct L direct L direct L direct C direct	triangular solve & SGD BFGS Cholesky inverse Cholesky inverse Cholesky inverse & recursion eigendecomp. (or SVD) SMW inverse & reduction SMW inverse & sketching Cholesky inverse eigendecomp.	
unit-wise NG (Ollivier, 2015) TONGA (unit) (Roux et al., 2008)	grad cov, 2 nd m grad 2 nd m	$\hat{F}_{n\mathrm{mc}},\hat{F}_{\mathrm{emp}}$ \hat{F}_{emp}	unit unit	dense Gram, RR	L/G direct G direct	Cholesky inverse SMW solve & eigendecomp.	
AdaHessian (Yao et al., 2020b) SFN (Dauphin et al., 2014) Equilibrated SGD (Dauphin et al., 2015) AdaGrad (Duchi et al., 2011) Adam (Kingma & Ba, 2015)	sharpness sharpness sharpness grad 2 nd m grad 2 nd m	$egin{array}{c} oldsymbol{H}_{ \lambda } \ oldsymbol{H}_{ \lambda } \ (\hat{F}_{\mathrm{emp}}^{\mathrm{batch}})^{1/2} \ (\hat{F}_{\mathrm{emp}}^{\mathrm{batch}})^{1/2} \end{array}$	element element element element	dense dense dense dense	G direct L/G direct L/G direct G direct G direct	element-wise division element-wise division element-wise division element-wise division element-wise division	

- ★: methods to be analyzed in this study
- Each requires algorithm-specific and complex implementations.
- The compute performance, prediction accuracy, and feasibility (time and memory) are highly dependent on neural network architectures and specific training settings.

Automatic Second-order Differentiation Library (ASDL)

Our solution: A unified interface by ASDL

- ASDL offers various implementations and a unified interface for gradient preconditioning in PyTorch (an automatic-differentiation library).
- ASDL enables an easy integration of gradient preconditioning into a training with procedures that are algorithm-independent and as simple (same logical structure) as the standard training pipeline (see the figure on the right.)
- ASDL works with <u>arbitrary deep neural networks</u> defined with basic building blocks (e.g., nn.Linear, nn.Conv2d, nn.BatchNormNd, nn.LayerNorm, nn.Embedding) in PyTorch.

ASDL enables flexible switching and structured comparison of gradient preconditioning methods in DL

Unified interface for gradient preconditioning in PyTorch. XXXGradientMaker ("XXX": algorithm name), offered by ASDL, hides algorithm-specific and complex operations for Pg in a unified way. For training without gradient preconditioning, GradientMaker computes g with the same interface (i.e., no need to switch scripts).

precondition()

Case Studies with ASDL

The ratio of **peak memory** (>= 1) (top) and **throughput [image/s]** (<= 1) (middle, bottom) of gradient preconditioning methods compared to SGD with various mini-batch sizes B and matrix (C and P) update intervals T, measured on a NVIDIA A100 GPU. For the middle row, T=1. For the bottom row, B=128. Missing points are due to the GPU memory limitation.

Sensitivity of the mini-batch size and matrix update interval to the test accuracy (the best value among different learning rates for each pair is shown). The type of the solver ("Global" or "Local") is indicated at the top of each column. For SENG at ViT-tiny, the plot is not shown because it is not feasible with large mini-batch sizes and only B=32 results are available.

The test accuracy for models achieving the best validation accuracy. For each task, the best accuracy is bolded. "w": width. For ResNet18, the results with 20 and 100 epochs are shown (the number of epochs is fixed for the others). SENG consumes lots of memory and is infeasible with MLP-Mixer-base.

Markad		MNIST			CIFAR-10				
Method	MLP (w=128)	MLP (w=512)	MLP (w=2048)	ResNet18	WideResNet28	ViT-tiny	MLP-Mixer-base		
SGD	98.9	99.1	99.2	91.2 / 95.7	96.7	97.8	97.2		
AdamW	98.7	99.0	99.1	89.9 / 94.8	96.0	97.9	97.7		
PSGD (KF)	98.9	99.1	99.2	93.3 / 96.2	96.6	98.0	97.5		
K-BFGS	98.7	98.9	99.0	91.4 / 95.7	96.5	97.7	97.5		
K-FAC (1mc)	98.8	99.2	99.2	93.6 / 96.1	96.9	97.4	97.7		
SENG	98.8	99.0	99.1	91.6 / 95.8	96.6	97.7	-		
Shampoo	98.8	99.1	99.2	92.5 / 96.1	96.9	98.0	97.4		

Key observations

- SENG achieves a high throughput w/ a low memory cost w/ a small mini-batch (and vice versa). For PSGD, K-BFGS, K-FAC, and Shampoo, memory and throughput ratios improve w/ a large minibatch (Shampoo is particularly slow for most networks otherwise).
- Increasing the matrix update interval significantly improves the throughput, but the degree of speedup depends on methods.
- "Global" methods (PSGD, K-BFGS, Shampoo) tend to perform better w/ a smaller mini-batch size while a "Local" one (K-FAC) tends to perform better w/ a larger mini-batch size.
- The best test accuracy for each task is achieved by one of the gradient preconditioning methods, but the best performing method depends on the task.

https://github.com/kazukiosawa/asd

Preconditioned gradient
$$\theta_{t+1} \leftarrow \theta_t - \eta P_t g_t$$

Parameter

Preconditioning matrix Gradient

Automatic Second-order Differentiation Library for **Gradient Preconditioning** in Deep Learning

Gradient-based optimization

Preconditioned gradient

$$\theta_{t+1} \leftarrow \theta_t - \eta P_t g_t$$

Parameter

Preconditioning matrix Gradient

- ✓ Supports <u>various gradient preconditioning methods</u>
- ✓ Supports <u>various deep neural networks</u> in PyTorch
- ✓ Easy integration into a PyTorch training script
- ✓ Easy switching of gradient preconditioning methods

utomatic **S**econd-order Differentiation Library for Gradient Preconditioning

$$\theta_{t+1} \leftarrow \theta_t - \eta P_t g_t$$
 in PyTorch

$$\theta_{t+1} \leftarrow \theta_t - \eta P_t g_t$$
 in PyTorch

for Gradient Preconditioning

$$\theta_{t+1} \leftarrow \theta_t - \eta P_t g_t$$
 in PyTorch

Title of research poster in 55pt should not exceed two lines

Author Name, Author Name, Author Name, Author Name, Author Name

Headline in 34pt should not extend beyond 2-3 lines

This section is an example of a paragraph. When creating sections, regardless of whether you're putting in text or images, always try to align to the edges of the yellow guidelines. This poster canvas is broken into 3 columns, and aligning to the edges will make it much easier for viewers to differentiate sections and read information. The same is true of horizontal spaces between sections, try to space them equally and with a good amount of breathing room in between each.

- Bulleted list item

Section header in 34pt font

Optional section descriptor in 21pt font

This section is an example of a paragraph. When creating sections, regardless of whether you're putting in text or images, always try to align to the edges of the yellow guidelines. This poster canvas is broken into 3 columns, and aligning to the edges will make it much easier for viewers to differentiate sections and read information.

Optional caption for images, charts, and graphs

Section header in 34pt font

Optional section descriptor in 21pt font

This section is an example of a paragraph. When creating sections, regardless of whether you're putting in text or images, always try to align to the edges of the yellow guidelines. This poster canvas is broken into 3 columns, and aligning to the edges will make it much easier for viewers to differentiate sections and read information.

Optional caption for images, charts, and graphs

Section header in 34pt font

Optional section descriptor in 21pt font

This section is an example of a paragraph. When creating sections, regardless of whether you're putting in text or images, always try to align to the edges of the yellow guidelines.

References

References in 14pt font

Homer W Simpson (2013). "Donuts taste good." In: IEEE 13th Internation Conference on Data Mining. IEEE, pp. 405-409

Marge Simpson (2010). "Blue hair looks nice.". In: Nature communications 1, p.

Bart Simpson (2013). "Hello". In: IEEE Simpsons.

Marge Simpson et al. (2013). "Lorem Ipsum." In: Advances in Neural Information Processing Systems 26. Ed. by Christopher J. C. Burges et al., pp. 27–29.

