

Árvores de Decisão e Random Forest

Árvores de Decisão

Árvores de Decisão

- Aprendizado Supervisionado
- Representação mais interpretável do conhecimento
- Hierarquia de decisões
- Utiliza a estratégia dividir para conquistar

Árvores de Decisão

Uma pessoa quer aprender sobre Árvores de Decisão

Presta atenção na aula do Data :) Não presta atenção na aula :(Faz uma declaração e toma uma decisão baseada se a declaração é verdadeira ou falsa

Como montar?

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Como montar?

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Quão bem alho prevê?

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Quão bem palidez prevê?

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Comparativo

Comparativo

- Nenhum dos três faz um trabalho perfeito de predição!
- Como prosseguir?
- Como compará-los?

- Entropia
- Ganho de Informação
- Impureza Gini
- Métodos numericamente similares

Impureza Gini de um nó:
1 - (probabilidade de "sim")² - (probabilidade de "não")²

Vampiro
não: 3 | sim: 0

Vampiro
não: 2 | sim: 2

Impureza Gini de um nó:
= 1 - (probabilidade de "sim")² - (probabilidade de "não")²
= 1 - (0/3)² - (3/3)²
= 1 - 0 - 1
= 0

vampiro
não: 3 | sim: 0

vampiro
não: 2 | sim: 2

Impureza Gini de um nó:

= $1 - (\text{probabilidade de "sim"})^2 - (\text{probabilidade de "não"})^2$

 $= 1 - (2/4)^2 - (2/4)^2$

 $= 1 - (\frac{1}{4}) - (\frac{1}{4})$

= (1/2)

= 0.5

Sombra Impureza Gini de um nó: = 1 - $(\text{probabilidade de "sim"})^2$ - $(\text{probabilidade de "não"})^2$ $= 1 - (1/1)^2 - (0/1)^2$ Sim Não = 1 - 1 - 0= 0vampiro vampiro Impureza: 0 vampiro não: 2 | sim: 2 Impureza: 0.5

Impureza Gini total: média ponderada das impurezas Pesos: (quantidade de pessoas no nó/total de pessoas) = (%) * 0 + (4/8) * 0.5 + (1/8) * 0

 $= 0 + (\frac{1}{4}) + 0$

= (1/4)

= 0.25

Impureza: 0.5

Comparativo

Sombra prevê melhor

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Sombra prevê melhor

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Fazemos tudo novamente:)

Sombra	Alho	Palidez	Vampiro
?	Sim	Pálido	Não
Sim	Sim	Rosado	Não
?	Não	Rosado	Sim
Não	Não	Comum	Sim
?	Não	Comum	Sim
Sim	Não	Pálido	Não
Sim	Não	Comum	Não
?	Sim	Rosado	Não

Fazemos tudo novamente:)

Sombra	Alho	Palidez	Vampiro	
?	Sim	Pálido	Não	
Sim	Sim	Rosado	Não	
?	Não	Rosado	Sim	
Não	Não	Comum	Sim	
?	Não	Comum	Sim	
Sim	Não	Pálido	Não	
Sim	Não	Comum Não		
?	Sim	Rosado	Não	

Árvore quase pronta

É preciso atribuir valores de saída para cada nó folha

De maneira geral a saída é a categoria com a maior quantidade de "votos"

Árvore de Decisão

- Com a árvore pronta se alguém novo aparece, consigamos prever se é um vampiro ou não!
- Mas, ...

Métodos de Conjunto de Árvores

Por que precisamos combinar árvores?

- **Decision Trees** são fáceis de construir, fáceis de usar e fáceis de interpretar, PORÉM são **imprecisas**.
- Além disso, sofrem com uma alta variância.
- Então, combinamos muitos **modelos simples** para obter um **modelo único** e potencialmente poderoso.

Referências

Building, using and evaluating, clearly explained!!!

https://www.youtube.com/watch?v =J4Wdy0Wc_xQ&ab_channel=Stat QuestwithJoshStarmer

https://www.statlearning.com/

- https://www.youtube.com/watch?v=x WhPwHZF4c0&ab_channel=Stanford Online
- https://www.youtube.com/watch?v=tjy
 ovL1rRRU&ab channel=DataMListic
- https://www.youtube.com/watch?v=G
 M3CDQfQ4sw&ab channel=Udacity
- https://towardsdatascience.com/intro duction-to-boosted-trees-2692b6653b 53
- https://aws.amazon.com/pt/what-is/bo osting/
- https://towardsmachinelearning.org/b
 oosting-algorithms/
- https://mathchi.medium.com/weak-le arners-strong-learners-for-machine-le arning-e73e32f86ebd

Métodos

- Bagging
- Random Forest
- Boosting
- Bayesian Additive Regression
 Trees

Métodos

- Bagging
- Random Forest
- Boosting
- Bayesian Additive Regression Trees

* O maior foco da aula será em Bagging/Random Forest

Métodos

- Bagging
- Random Forest
- Boosting
- Bayesian Additive Regression Trees

* O maior foco da aula será em Bagging/Random Forest

* Alguns desses métodos não são específicos para árvores, mas estão presentes nesse contexto.

Bagging e Random Forest

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

1. Criar um Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
---------------	------------------------	---------------------	--------	------------------

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes

Chest Pain	Good Blood Circ	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

* Este é o ponto que diferencia o bagging de uma random forest.

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Sendo **p** o número total de features no dataset.

Bagging:

$$M = \rho$$

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Sendo **p** o número total de features no dataset.

Random Forest:

 $M < \rho$

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Obs: A escolha para M é arbitrária, mas geralmente é utilizado M = √p

Por que usar um subconjunto das features?

"Suponha que haja um preditor muito forte no conjunto de dados, juntamente com vários outros preditores moderadamente fortes. Então, na coleção de "bagged trees", a maioria ou todas as árvores usarão esse forte preditor na divisão superior. Consequentemente, todas as árvores ensacadas serão bastante semelhantes entre si."

" isso significa que o bagging **não levará a uma redução substancial na variância** sobre uma única árvore neste cenário."

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Nesse caso, foi escolhido aleatoriamente Good Blood Circulation e Blocked Arteries como candidatos para a raiz da árvore.

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good 3lood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

2. Criar uma decision tree com um número M de features(ou colunas).

Chest Pain	Good Blood Circ.	Blocked Arteries		Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

3. Repete o processo várias vezes

Bagging e Random Forest Como usar?

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	No	168	

Como usar?

Como Avaliar?

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Quando estávamos construindo o Bootstrapped Dataset, essa foi uma linha que ficou de fora.

Como Avaliar?

	nest ain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
1	No	No	No	125	No
١	⁄es	Yes	Yes	180	Yes
١	⁄es	Yes	No	210	No
١	⁄es	No	Yes	167	Yes

Out-of-Bag Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	No	210	No

Como Avaliar?

Out-of-Bag Dataset

Neste caso, possui apenas uma entrada;

 Cerca de 1/3 das entradas não são selecionadas e vão para o out-of-bag dataset.

Como Avaliar?

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes

Como Avaliar?

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes

Como Avaliar?

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes

Como Avaliar?

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes

A proporção de amostras out-of-bag que estão incorretas é chamada de **Out-of-Bag Error**

- O erro de uma única árvore é muito grande;
- À medida que aumenta o número de árvores, o erro diminui e depois estabiliza;
- Usar um valor muito grande de B não levará ao overfitting.

"Eles (Random Forest) não conseguem lidar com erros (se houver) criados por suas árvores de decisão individuais. Devido ao aprendizado paralelo, se uma árvore de decisão cometer um erro, todo o modelo de floresta aleatória comete esse erro. "

https://towardsdatascience.com/introduction-to-boosted-trees-2692b6653b53

- Novas árvores são formadas considerando os erros das árvores nas rodadas anteriores.
- Aprendizado Sequencial
- Processo iterativo
- São usados principalmente para reduzir viés e variância.

• Transforma árvores de decisão fracas (chamadas de **weak** learners) em strong learners;

 Transforma árvores de decisão fracas (chamadas de weak learners) em strong learners;

Model 1,2,..., N are individual models (e.g. decision tree)

https://www.youtube.com/watch?v=tjy0yL1rRRU&ab_channel=DataMListic

Algoritmos famosos:

- AdaBoost (Adaptive Boosting)
- Gradient Boosting
- XGBoost (Extreme Gradient Boosting)
- LightGBM (Light Gradient Boosting Machine)
- CatBoost (Categorical Boosting)

Pode sofrer overfitting, então cuidado com seus hiperparâmetros;

"O BART está relacionado a ambas as abordagens: cada árvore é construída de forma aleatória como em bagging e florestas aleatórias, e cada árvore tenta capturar sinais ainda não contabilizados pelo modelo atual, como no boosting."

Há dois componentes para esta perturbação:

- Podemos mudar a estrutura da árvore adicionando ou podando ramos(branch).
- 2. Podemos **alterar a previsão** em cada nó terminal da árvore

(c): Possibility #2 for $\hat{f}_k^b(X)$

(b): Possibility #1 for $\hat{f}_k^b(X)$

(d): Possibility #3 for $\hat{f}_k^b(X)$

Dúvidas?