Lenguajes y Compiladores

1er Parcial 2024 - 3 de mayo de 2024

- Decidí si las siguientes afirmaciones son verdaderas o no. Justificá tu decisión.
 - (a) Sea $P = (A, \sqsubseteq, \sqcup)$ un predominio. Entonces $P' = (A, \supseteq, sup')$ también es un predominio. Si respondés que si, indicá cuál es la operación sup'.
 - (b) Sea $D = (A, \sqsubseteq, \sqcup, \bot)$ un dominio. Entonces $P' = (A, \supseteq, sup')$ es un predominio. Si respondés que sí, indicá cuál es la operación sup'.
 - (c) Sean D un dominio y P un predominio; sea $f\colon P\to D$ una función continua. Entonces $f_{\perp}\colon P_{\perp}\to D$ es la menor función continua y estricta de P_{\perp} a D.
- 2. Considerá la siguiente ecuación recursiva:

$$h(x) = \begin{cases} (2,1) & \text{si } x = 1\\ g'_x h(x-2) & \text{si } x > 1 \end{cases}$$

Allí g'_x es la extensión estricta de $g_x(m,n) = (2*m, x*n)$.

Sea $F: (\mathbb{N} \to (\mathbb{N} \times \mathbb{N})_{\perp}) \to (\mathbb{N} \to (\mathbb{N} \times \mathbb{N})_{\perp})$ el funcional asociado a esa ecuación.

- (a) ¿Cuál es la menor solución para esa ecuación recursiva?
 - (b) Proponé $f: \mathbb{N} \to (\mathbb{N} \times \mathbb{N})_{\perp}$ que sea solución para la ecuación pero mayor estricta que la menor.
- 3. Considerá el lenguaje imperativo simple con IO. Proponé tres programas distintos e_0, e_1, e_2 tales que
 - (a) $\bot \sqsubset \llbracket c_0 \rrbracket \sqsubseteq \llbracket c_1 \rrbracket$ y
 - (b) $[c_0] \subseteq [c_2] y$
 - (c) que tanto $[\![c_1]\!]$ como $[\![c_2]\!]$ sean elementos maximales distintos y
 - (d) para todo σ , $[c_1] \sigma = \iota_{out} \langle k, \omega \rangle$, para algunos k y ω (que pueden depender de σ).
- 4. Probá o refutá los siguientes enunciados. Justificá tu respuesta.
 - (a) En el lenguaje imperativo simple. Si $x \not\in FA(c)$, entonces $c \equiv \mathbf{newvar} \, x := e \ln c$.
 - (b) En el lenguaje imperativo simple con fallas. Si $x \notin FV(c)$, entonces $c \equiv \mathbf{newvar} x := e \ln c$.
 - (c) En el lenguaje imperativo con input y output

 $newvar x := x in ?x; newvar y := x in !y \equiv newvar y := y in ?y; !y$