Movimento Harmônico Amortecido

Douglas Ribas de Mattos Henrique de Moraes Boldorini Marcos Cordeiro da Silva

Movimentos Amortecidos estão em todo Lugar!

Modelo Geral do Movimento Harmônico Amortecido

O Movimento oscilador amortecido é um sistema dissipativo!

Um pouco de Matemática

$$\frac{d^2y}{dt^2} = -\frac{k}{m}y - \frac{\rho}{m}\frac{dy}{dt} + g$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 $\gamma = \frac{b}{m}$

$$y(t) = Ae^{-\frac{\gamma}{2}t}cos(\omega t + \varphi) + A_0$$

Tipos de Amortecimento

- **Critico:** $\gamma = \omega$ O sistema retorna para o estado estável tão rapidamente quanto possível sem oscilar
- Subcrítico: γ < ω O sistema oscila (com uma frequência levemente diferente que o do caso não amortecido) com a amplitude gradualmente decrescendo a zero
- **Supercrítico:** $\gamma > \omega$ o sistema nem sequer chega a oscilar, $\gamma > \omega$ representa uma situação de elevado amortecimento.

Amortecimento

Subcrítico:
$$\frac{\gamma}{2} < \omega_0$$

Supercrítico:
$$\frac{\gamma}{2} > \omega_0$$

Crítico:
$$\frac{\gamma}{2} = \omega_0$$

Medindo a constante K da mola

Massa $(kg) \pm 0,0001$	Peso $(N) \pm 0,00098$	Deformação $(m) \pm 0,001$	
0,0502	0,4913	0,0555	
0,0213	0,2084	0,0170	
0,0401	0,3924	0,0425	
0,0316	0,3092	0,0335	
0,0615	0,6019	0,0740	

$$k = 7, 10 \pm 0, 17 \frac{N}{m}$$

Medindo p, que depende da área de contato e da viscosidade do fluido

Usando a fórmula de Leith (trabalho publicado em 1987) para a forca de arrasto, onde **dn** é o diâmetro de uma esfera cuja área é projetada a mesma área e **ds** é o diâmetro de uma esfera cuja superfície efetiva é a mesma do objeto

$$F_{rm} = -3\pi c(\frac{1}{3}d_p + \frac{2}{3}d_s)v$$

$$b = 300\pi c \left(\frac{1}{3}d_p + \frac{2}{3}d_s\right) \Rightarrow b = 300\pi 0,0008903 \left(\frac{1}{3}0,019 + \frac{2}{3}0,0134\right) \Rightarrow b = 0,01281kgs^-1$$

Vamos Testar!

 Com o programa Tracker conseguimos registrar 1856 frames (quadros)do tempo x posição do centro da massa m durante a oscilação amortecida (subcrítica)

Parâmetros fornecido pelo WebRoot

Frequência ω	7.992±0.0012
Constante γ de amortecimento	0.1274±0.00093

Parâmetros medidos experimentalmente

Frequência ω(rad/s)	8.3968±0.1005
Coeficiente γ de amortecimento	0.1273±0.0095

Massa do objeto $(kg) \pm 0,0001$	0,1007
Constante elástica da mola $(\frac{N}{m}) \pm 0, 17$	7,10
Área da extremidade $(m^2) \pm 0,0000597$	0,0002835
Viscosidade da água $(Pa \times s)$	0,0008903
Aceleração da gravidade $(\frac{m}{s^2})$	9,7864

THE END

