DMA: Properties of integers

Laura Mančinska, Institut for Matematiske Fag

UNIVERSITY OF COPENHAGEN

Plan for today

- Quotients, remainders, mod-d function
- Divisors and multiples
- Greatest common divisor (GCD)
- Euclidean Algorithm
- Least common multiple (LCM)
- Primes

Reading: Section 1.4 from KBR

Quotient and remainder

Thm. Let $d \in \mathbb{Z}^+$ be a positive integer. Then for any $m \in \mathbb{Z}$ there exist $0 \le r < d$ and $q \in \mathbb{Z}$ such that m = qd + r

q is called the quotientr is called the remainder

The mod-d function

Let
$$d \in \mathbb{Z}^+, m \in \mathbb{Z}^+$$
. Write m as
$$m = qd + r$$
 for $0 \le r < d, q \in \mathbb{Z}$.

Def. The mod-d function returns the remainder r

$$m \mod d \stackrel{\text{def}}{=} r$$

- mod-d function is implemented in most programming languages
- In F#, python, C: m % d
- Functionality for $m, d \leq 0$ can differ

The mod-d function: Examples

Let
$$d \in \mathbb{Z}^+, m \in \mathbb{Z}^+$$
. Write m as
$$m = qd + r$$
 for $0 \le r < d, q \in \mathbb{Z}$.

Def. The mod-d function returns the remainder r $m \mod d \stackrel{\text{def}}{=} r$

Task: 1) Find the quotient, q, and the remainder, r 2) If m, d > 0, compute $m \mod d$

- m = 12, d = 5
- m = 5, d = 12
- m = -12, d = 5
- m = -5, d = 12

Terminology: divisors, multiples, $d \mid m$

Let
$$d \in \mathbb{Z}^+, m \in \mathbb{Z}$$
. Write m as
$$m = qd + r$$
 for $0 \le r < d, q \in \mathbb{Z}$.

Def. If r = 0, we say that

- m is a multiple of d and
- d is a divisor of m.
- We write $d \mid m$ and say "d divides m"

If $r \neq 0$, we write $d \nmid m$ and say "d does not divide m"

Properties of divisors

Let $m, n \in \mathbb{Z}$, $d \in \mathbb{Z}^+$.

- 1. d|d, 1|m and d|0
- 2. If d|m or d|n then d|(mn)
- 3. If d|m and d|n then d|(m+n)
- 4. If d|m and d|n then d|(m-n)
- 5. (generalizes 3. and 4.)

If d|m and d|n then d|(sm + tn) for any $s, t \in \mathbb{Z}$

6. (transitivity) If d|m and m|n then d|n

Greatest common divisor (GCD)

Let $a, b, d \in \mathbb{Z}^+$. Integer d is a common divisor of a and b if d|a and d|b.

Divisors of 36:

Divisors of 30:

Def.(GCD) We say that d is the greatest common divisor of a and b, denoted GCD(a, b), if d is the largest of the common divisors of a and b.

Task: Determine GCD(36,30)

Euclidean algorithm provides an efficient method for finding GCD(a, b).

What does it mean that findGCD(a, b) is an <u>efficient</u> algorithm?

• Suppose $a \ge b$

Answer: findGCD(a, b) has worst-case running time of

1)
$$O(\text{poly}(\log a))$$

i.e.
$$O((\log a)^k)$$
 for some $k \in \mathbb{Z}^+$

i.e.
$$O(a^k)$$
 for some $k \in \mathbb{Z}^+$

3) $O(2^a)$

Idea behind the Euclidean algorithm

Thm. Let $a, b \in \mathbb{Z}^+$. Assume $a \ge b$. Then Common_divisors $(a, b) = \text{Common_divisors}(a \mod b, b)$ and thus

$$GCD(a, b) = GCD(a \mod b, b)$$

Euclidean algorithm

Let $a, b \in \mathbb{Z}^+$ and $a \ge b$.

Step 1:
$$GCD(a, b) = GCD(a \mod b, b)$$
 $a = q_1b + r_1$

Step 2:
$$GCD(b, r_1) = GCD(b \mod r_1, r_1)$$
 $b = q_2r_1 + r_2$

Step 3:
$$GCD(r_1, r_2) = GCD(r_1 \mod r_2, r_2)$$
 $r_1 = q_3r_2 + r_3$

. . .

Stop when $r_k = 0$

$$GCD(a,b)=r_{k-1}$$

Least common multiple (LCM)

Let $a, b, m \in \mathbb{Z}^+$. Integer m is a common multiple of a and b if a|m and b|m.

Def.(LCM) We say that m is the least common multiple of a and b, denoted LCM(a, b), if m is the smallest of all the common multiples of a and b.

Task: Compute LCM(12,15)

- Multiples of 12:
- Multiples of 15:

Least common multiple (LCM)

Let $a, b, m \in \mathbb{Z}^+$. Integer m is a common multiple of a and b if a|m and b|m.

Def.(LCM) We say that m is the least common multiple of a and b, denoted LCM(a, b), if m is the smallest of all the common multiples of a and b.

Task: Compute LCM(12,15)

Thm. Let $a, b \in \mathbb{Z}^+$. Then

$$LCM(a,b) = \frac{ab}{GCD(a,b)}$$

• How can we find LCM(12,15) more efficiently?

Primes and prime factorization

Def. A positive integer p > 1 is a prime, if its only divisors are p and 1.

Examples: 2, 5, 7, 13, 47

Non-examples: 0, 1, -2, 4, 12, 51

Thm. (Prime factorization) Any $m \in \mathbb{Z}^+$ can be uniquely expressed as

$$m = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$$

Where $p_1 < p_2 < \cdots < p_k$ are primes and all the a_i 's are positive integers.

Prime factorization contains a lot of information

Consider the prime factorization of m:

$$m = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$$

The divisors of m can be written as

$$\mathbf{d} = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$$

where $0 \le b_i \le a_i$ for all i.

Prime factorization and GCD/LCM

Thm. Let $a, b \in \mathbb{Z}^+$ and let

$$a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$$
 and $b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$

be their prime factorizations* with $a_i, b_i \in \mathbb{Z}^+ \cup \{0\}$. Then

GCD(
$$a, b$$
) = $p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_k^{\min(a_k, b_k)}$

$$LCM(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_k^{\max(a_k,b_k)}$$

What we saw today

- Division with remainders: m = qd + r
- Mod-d function (Ex: 17 mod 5 = 2)
- (Common) divisors, (common) multiples
- GCD and LCM and how to calculate them
 - Euclidean algorithm
- Primes and prime factorization