EE 443 Capstone Presentation

Jonathan Wong

Dataset	Baseline	?	?	?	?	?
Full						
0.1						
0.02						
0.005						
Average Ir	mprovement:					

Welcome!

EE 443 Capstone Presentation

Jonathan Wong

Dataset	Baseline	?	?	?	?	?
Full						
0.1						
0.02						
0.005						
Average Improvement:						

Experiment #1: Establishing a Baseline

Motivation:

Establish point of reference for evaluating performance of future experiments.

Procedures:

Architecture Sweep, Hyperparameter Sweep.

Establishing a Baseline: Code

Dataset

```
class BaseDataset(Dataset):
  def __init__(self, datastore, input, image_size=224, da=False):
    if isinstance(input, str):
      with open(input) as f:
       json data = json.load(f)
        self.data = json data['annotations']
    elif isinstance(input, list):
      self.data = input
    self.datastore = datastore
    self.image size = image size
    self.da = da
    self.transform = A.Compose(
       A.ShiftScaleRotate(shift limit=0.05, scale limit=0.15, rotate limit=15, p=0.5),
       A.RGBShift(r shift limit=15, g shift limit=15, b shift limit=15, p=0.5),
       A.RandomBrightnessContrast(p=0.5)
  def len (self):
    return len(self.data)
```

DataLoader

```
def get_dataloaders(dataset, batch_size=16, num_workers=2):
 # Calculate Split
 val split = 0.2 # Hardcoded 20%
 dataset_size = len(dataset)
 indices = list(range(dataset size))
 split = int(np.floor(val split * dataset size))
 # Shuffle Data
 np.random.shuffle(indices)
 # Split Base Dataset into Training and Validation Datasets
 train_indices, val_indices = indices[split:], indices[:split]
 train sampler = SubsetRandomSampler(train indices)
 val sampler = SubsetRandomSampler(val indices)
 # Dataloaders
 train dataloader = DataLoader(dataset, batch size, num workers=num workers, sampler=train sampler)
 val dataloader = DataLoader(dataset, batch size, num workers=num workers, sampler=val sampler)
 return train dataloader, val dataloader
def get test dataloader(datastore, test json):
 testset = BaseDataset(datastore, test json)
 test dataloader = DataLoader(testset, batch size=32, num workers=2)
 return test dataloader
```

• • •

• • •

Establishing a Baseline: Code

Model

```
:lass BaseNet(LightningModule):
 def __init__(self, model_type='efficientnet_b0', lr=4e-4, weighted_loss=None, hist=None, beta=None):
  super().__init__()
   self.save_hyperparameters()
   # Create backbone
   backbone = timm.create model(model type, pretrained=True)
   layers = list(backbone.children())[:-1]
   [fc] = list(backbone.children())[-1:]
   self.feature extractor = nn.Sequential(*layers)
   self.classifer = nn.Linear(fc.in_features, 50)
   # Weighted Loss
  self.weighted loss = WeightedLoss(weighted loss, hist, beta)
   # Metrics
   self.train_acc = torchmetrics.Accuracy()
  self.valid acc = torchmetrics.Accuracy()
   self.test_acc = torchmetrics.Accuracy()
   self.preds = []
   self.labels = []
```

• • •

Architecture, Metrics, Loss Function

Training Script

```
lass Baseline(ExperimentInterface):
def run_experiment(self, args: dict) -> None:
 train_json = str(Path(args['datastore']) / 'train.json')
 test_json = str(Path(args['datastore']) / 'test.json')
 bataset = BaseDataset(args['datastore'], train_json, image_size=args['image_size'], da=args['augment_data'])
 train dataloader, val dataloader = get dataloaders(dataset, batch size=args['batch size'], num workers=args['num workers'])
 test_dataloader = get_test_dataloader(args['datastore'], test_json)
 # 2) Init Model
 if args['weighted_loss'] is not None:
   hist = get_histogram(process_json(train_json))
   model = BaseNet(model type=args['model'], lr=args['lr'], weighted loss=args['weighted loss'], hist=hist, beta=args['beta'])
   model = BaseNet(model_type=args['model'], lr=args['lr'])
 trainer = Trainer(gpus=args['gpus'], max_epochs=args['epochs'],
                   checkpoint callback=True.
                   logger=TensorBoardLogger(save_dir='lightning_logs'))
 # 4) Run Training
 trainer.fit(model, train dataloader, val dataloader)
 trainer.save_checkpoint("training_end.ckpt")
 # 5) Run Inference
 result = trainer.test(model, test_dataloader)
 print(result)
```

• • •

Dataset, DataLoader, Trainer

Establishing a Baseline: Architecture Sweep

Establishing a Baseline: Architecture Sweep

Results

Model Name	Test Accuracy	# Parameters
efficientnet_b2	0.804	10 M
resnet50d	0.793	22 M
efficientnet_b1	0.7892	8 M
efficientnet_b0	0.788	5 M
densenet121	0.770	20 M
resnet50	0.758	22 M
resnet34d	0.730	20 M

Selected **efficientnet0** architecture as baseline.

Least parameters for highest accuracy for quick training times.

Analysis:

- Models with more hyperparameters tend to overfit
- EfficientNet family is most accurate for the least parameters, hence its name!

Establishing a Baseline: Hyperparameter Sweep

Validation Accuracy


```
train.py \
--datastore grid:cifar50-imbalance-01:2 \
--model efficientnet_b0 \
--batch_size "[16, 32, 64, 128]" \
--lr "[1e-5, 4e-4, 8e-3, 2e-3]"
```

Establishing a Baseline: Hyperparameter Sweep

Results

Repeat sweep for each dataset...

Dataset	Test Accuracy
Full	0.792
0.1	0.7296
0.02	0.6304
0.005	0.5446

Analysis:

• Provided the most optimal hyperparameters, accuracy of model decreases by approximately 10% on with each imbalanced dataset.

Sub-Optimal Hyperparameters had extremely low learning rates and large batch sizes. Ex: (bs = 512, lr = 1e-5)

Establishing a Baseline: How about Data Augmentation?

Dataset	Baseline	?	?	?	?	?
Full	0.792					
0.1	0.7296					
0.02	0.6304					
0.005	0.5446					
Average Improvement:						

Experiment 1 Complete!

Dataset	Baseline	Artificial Balancing	?	?	?	?
Full	0.792					
0.1	0.7296					
0.02	0.6304					
0.005	0.5446					
Average	Improvement:					

Experiment #2: Artificial Balancing

Motivation:

Shape the training dataset match the uniform test distribution.

Procedures:

Downsampling and Upsampling with Data Augmentation.

Artificial Balancing: Implementation

Algorithm:

- 1) Calculate Histogram
- 2) Calculate Sampling Rate: Threshold Value / Count

Ex: Threshold Value = 300

(Class = 0, Count = 500) => 300/500 => 0.6

(Class = 20, Count = 100) => 300/100 => 3

For decimal values, we generate a random number and perform down/up sampling if the number lies with the [0-0.x] range.

3) Iterate through dataset applying sampling rate.

Artificial Balancing: Implementation

Algorithm:

- 1) Calculate Histogram
- 2) Calculate Sampling Rate: Threshold Value / Count

Ex: Threshold Value = 300

(Class = 0, Count = 500) => 300/500 => 0.6(Class = 20, Count = 100) => 300/100 => 3

For decimal values, we generate a random number and perform down/up sampling if the number lies with the [0-0.x] range.

3) Iterate through dataset applying sampling rate.

Threshold Value is also configurable and factored into hyperparameter sweep. In general, a low threshold produced higher performance, in which benefits of upsampling balanced benefits of downsampling.

Artificial Balancing: Training


```
train.py \
--datastore grid:cifar50-balanced-0005:4 \
--batch_size 128 \
--lr 2e-3 \
--epochs 10 Performs Better!
```

Artificial Balancing: Training

Results

Repeat Balancing for each dataset...

Dataset	Test Accuracy
Full	N/A
0.1	0.733
0.02	0.6788
0.005	0.5688

All exceed previous accuracy!

Dataset	Baseline	Artificial Balancing	?	?	?	?
Full	0.792					
0.1	0.7296	0.733				
0.02	0.6304	0.6788				
0.005	0.5446	0.5688				
Average Improvement:		0.024				

Experiment 2 Complete!

Artificial Balancing is labor-intensive and not a scalable solution. Can we do better?

Data	set	Baseline	Artificial Balancing	Weighted Loss	?	?	?
Full		0.792					
0.1		0.7296	0.733				
0.02		0.6304	0.6788				
0.005	,	0.5446	0.5688				
Average Improvement:		0.024					

Experiment #3: Weighted Loss

Motivation:

Emulate uniform training distribution without artificially balancing dataset.

Procedures:

Weighted Loss Equations

Weighted Loss: Implementation

Equations:

Inverse Number of Samples (INS)

$$w_{n,c} = \frac{1}{Number\ of\ Samples\ in\ Class\ c}$$

Inverse Square Number of Samples (ISNS)

$$w_{n,c} = \frac{1}{\sqrt[2]{Number\ of\ Samples\ in\ Class\ c}}$$

Effective Number of Samples (ENS)

$$w_{n,c} = \frac{1}{E_{n_c}}$$
 $E_{n_c} = \frac{1 - \beta^{n_c}}{1 - \beta}$

Code:

```
Weighted Loss Functions
class WeightedLoss:
 def __init__(self, weighted_loss, hist, beta=None):
   # Store arguments, Calculate Normalized Weights
   if weighted loss == "ins":
     weights = torch.tensor([1.0 / sample_count for sample_count in hist.values()])
     self.weight_map = weights / torch.sum(weights)
   elif weighted loss == "isns":
     weights = torch.sqrt(torch.tensor([1.0 / sample_count for sample_count in hist.values()]))
     self.weight_map = weights / torch.sum(weights)
   elif weighted loss == "ens":
     sample_counts = torch.tensor(list(hist.values()))
     e_numerator = 1.0 - torch.pow(beta, sample_counts)
     e denominator = 1.0 - beta
     weights = e denominator / e numerator
     self.weight map = weights / torch.sum(weights)
   else: # Identity
     self.weight map = torch.ones(50)
   # Store weights inside Cross Entropy Module
   self.loss = nn.CrossEntropyLoss(weight=self.weight_map.cuda())
 def _ call__(self, logits, labels):
   return self.loss(logits, labels)
                                                  Simply Pass Weight Vectors
```

to PyTorch Module

"Class-Balanced Loss Based on Effective Number of Samples", CVPR'19

Weighted Loss: Loss Function Sweep

Weighted Loss: Loss Function Sweep

Results

Repeat Balancing for each dataset...

Dataset	Test Accuracy
Full	N/A
0.1	0.7458
0.02	0.6798
0.005	0.5352

Average	0.019
Improvement:	

0.01 Dataset trained on ins, isns, and ens loss functions. Comparable performance, no one weighted loss function is better in this case.

All exceed previous accuracy!

Dataset	Baseline	Artificial Balancing	Weighted Loss	?	?	?
Full	0.792					
0.1	0.7296	0.733	0.7458			
0.02	0.6304	0.6788	0.6798			
0.005	0.5446	0.5688	0.5352			
Average Improvement:		0.024	0.019			

Experiment 3 Complete!

Weighted Loss serves as good substitute to Artificial Balancing.

Data	set	Baseline	Artificial Balancing	Weighted Loss	Bagging	?	?
Full		0.792					
0.1		0.7296	0.733	0.7458			
0.02		0.6304	0.6788	0.6798			
0.005	5	0.5446	0.5688	0.5352			
	Average Improvement:		0.024	0.019			

Experiment #4: Ensemble Training, Bagging

Motivation:

Combine multiple model copies to form more robust predictor.

Procedures:

Balanced Dataset Creation

Bagging: Implementation

Dataset Curation

Algorithm:

- 1) Compute Histogram on Training Dataset
- 2) Compute number of bags based on threshold value (max // threshold)
- 3) Split Dataset on Median
- 4) Copy samples in minority class to each bag
- 5) Deal out remaining samples from randomly shuffled majority class

Comments:

- DA worsens class

Bagging: Implementation

Code

```
def create_bags(args, imbalanced_json):
  # 1) Load Data
  entries = process_json(imbalanced_json)
  # 2) Calculate Number of Learners
                                       1) Calculate Histogram
  hist = get histogram(entries)
  num_bags = max(hist.values()) // args['threshold']
                                                       2) Compute Number of Bags
  # 3) Create Datasets
  majority, minority = split_histogram(hist, entries, args['threshold'])
  random.shuffle(majority) # need shuffle the deck!
                                                       3) Split Histogram into Majority/Minority Classes
  bags = []
  for start in range(num_bags):
    current_bag = majority[start::num_bags] + minority
                                                           4) Shuffle and deal out decks
    bags.append(BaseDataset())
  return bags
```

Bagging: Implementation

Code

```
class ModelEnsemble(LightningModule):
 def _ init (self, models):
   super().__init_()
   # Create Models
                            1) Accept List of Trained Models
   self.models = models
   # For Metrics
   self.test acc = torchmetrics.Accuracy()
   self.preds = []
   self.labels = []
 def forward(self, x):
   prediction = torch.zeros(50).cuda()
                                         2) Forward Pass performs simple average over softmax output
   weight = 1.0 / len(self.models)
   for model in self.models:
     model.eval()
     prediction = prediction + (weight * F.softmax(model(x), dim=1))
   return prediction
```

Bagging: Training

Bagging: Training

Results

Repeat Balancing for each dataset...

Dataset	Test Accuracy	Average Learner Accuracy
Full	N/A	N/A
0.1	0.7350	0.72
0.02	0.6760	0.65
0.005	0.5454	0.53

Each learner descends down objective function in different directions and ends up at different loss. Combined learners make for stronger predictor.

Bagging: Training

Results

Repeat Balancing for each dataset...

Dataset	Test Accuracy	Average Learner Accuracy
Full	N/A	N/A
0.1	0.7350	0.72
0.02	0.6760	0.65
0.005	0.5454	0.53

Potential to learn more with more data.

Datas	set	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	?	?
Full		0.792					
0.1		0.7296	0.733	0.7458	0.7350		
0.02		0.6304	0.6788	0.6798	0.6760		
0.005	5	0.5446	0.5688	0.5352	0.5454		
	Average Improvement:		0.024	0.019	0.015		

Experiment 4 Complete!

Ensemble Techniques show promise with more data. Let's give each model more data.

Datas	set	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	Stacking	.
Full		0.792					
0.1		0.7296	0.733	0.7458	0.7350		
0.02		0.6304	0.6788	0.6798	0.6760		
0.005	5	0.5446	0.5688	0.5352	0.5454		
Average Improvement:		0.024	0.019	0.015			

Experiment #5: Ensemble Training, Stacking

Motivation:

Apply ensemble techniques to entire dataset. Additionally, create more diverse ensemble of learners.

Procedures:

Model Architecture Ensemble.

Stacking: Implementation

Code

```
hps full = {'batch size': 128, "lr": 2e-3, "epochs": 5,
            "weighted loss": None, "output dir": 'stacking-01'}
 # 0) For reference
seed.seed everything(1)
# 1) Init Ensemble Components
model types = ['efficientnet b0', 'efficientnet b1', 'efficientnet b2']
trainer = Trainer(gpus=1, max epochs=hps full['epochs'], logger=TensorBoardLogger(save dir=hps full['output dir']))
dataset = BaseDataset(train json)
# 2) Train Models
models = []
for i in range(3):
 train dataloader, val dataloader = get dataloaders(dataset, batch size=hps full['batch size'])
  test dataloader = get test dataloader(test json)
 hist = get histogram(process json(train json))
  index = i % len(model types)
  model = BaseNet(model type=model types[index], lr=hps full['lr'], weighted loss=hps full['weighted loss'], hist=hist)
  trainer = Trainer(gpus=1, max epochs=hps full['epochs'], logger=TensorBoardLogger(save dir=hps full['output dir']))
  trainer.fit(model, train dataloader, val dataloader)
 models.append(model)
  trainer.test(model, test dataloader)
 3) Combine Models and Inference
test dataloader = get test dataloader(test json)
for model in models:
 if torch.cuda.is available():
   model.cuda()
ensemble = ModelEnsemble(models)
trainer.test(ensemble, test dataloader)
```

Same training procedure as bagging, except for two changes:

- Each model trains on entire dataset
- 2) Each model is initialized under different model architecture.

Three Model Architectures selected were EfficientNets 0-2.

Stacking: Training

Training Loss

Validation Accuracy

Unlike Bagging, which had a variable number of learners for each balanced sub-dataset, all datasets using stacking had 3 learners corresponding to each model architecture.

Stacking: Training

Results

Repeat Balancing for each dataset...

Dataset	Test Accuracy	Average Learner Accuracy
Full	N/A	N/A
0.1	0.7720	0.7335
0.02	0.6614	0.6360
0.005	0.5626	0.5436

Average Improvement:

0.030

More data produces stronger learner base.

300

Dataset	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	Stacking	?
Full	0.792					
0.1	0.7296	0.733	0.7458	0.7350	0.7720	
0.02	0.6304	0.6788	0.6798	0.6760	0.6614	
0.005	0.5446	0.5688	0.5352	0.5454	0.5626	
Average Improvement:		0.024	0.019	0.015	0.030	

Experiment 5 Complete!

All that is left is to turn on individual model balancing.

Dataset	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	Stacking	?
Full	0.792					
0.1	0.7296	0.733	0.7458	0.7350	0.7720	
0.02	0.6304	0.6788	0.6798	0.6760	0.6614	
0.005	0.5446	0.5688	0.5352	0.5454	0.5626	
Average Improvement:		0.024	0.019	0.015	0.030	

Experiment #6: Ensemble Training, Stacking with Weighted Loss

Motivation:

Combine successes of weighted loss and stacking ensemble technique.

Procedures:

Simply repeat last experiment turning on weighted loss!

Stacking with Weighted Loss: Training

Results

Repeat Balancing for each dataset...

Dataset	Test Accuracy	Average Learner Accuracy
Full	N/A	N/A
0.1	0.7933	0.7482
0.02	0.7253	0.6935
0.005	0.6218	0.5997

Average	0.079
Improvement:	

Stacking: 0.1

Dataset	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	Stacking	Stacking / WL
Full	0.792					
0.1	0.7296	0.733	0.7458	0.7350	0.7720	0.7933
0.02	0.6304	0.6788	0.6798	0.6760	0.6614	0.7253
0.005	0.5446	0.5688	0.5352	0.5454	0.5626	0.6218
Average Improvement:		0.024	0.019	0.015	0.030	0.079

Experiment 6 Complete!

Datas	set	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	Stacking	Stacking / WL
Full		0.792					
0.1		0.7296	0.733	0.7458	0.7350	0.7720	0.7933
0.02		0.6304	0.6788	0.6798	0.6760	0.6614	0.7253
0.005	5	0.5446	0.5688	0.5352	0.5454	0.5626	0.6218
Average Improvement:		0.024	0.019	0.015	0.030	0.079	

Best Results

Dataset	Baseline Accuracy	Maximum Accuracy	Improvement	Modeling Technique
0.1	0.7296	0.793	0.064	Stacking/WL
0.02	0.6304	0.725	0.095	Stacking/WL
0.005	0.5446	0.622	0.077	Stacking/WL

Model Name	Test Accuracy	# Parameters
efficientnet_b2	0.804	10 M
resnet50d	0.793	22 M
efficientnet_b1	0.7892	8 M
efficientnet_b0	0.788	5 M
densenet121	0.770	20 M
resnet50	0.758	22 M
resnet34d	0.730	20 M

Model Ensemble = 23 M ResNet50 = 22 M!

Best Results

Dataset	Baseline Accuracy	Maximum Accuracy	Improvement	Modeling Technique
0.1	0.7296	0.793	0.064	Stacking/WL
0.02	0.6304	0.725	0.095	Stacking/WL
0.005	0.5446	0.622	0.077	Stacking/WL

Dataset	Baseline	Artificial Balancing	Weighted Loss	Bagging / WL	Stacking	Stacking / WL
Full	0.792					
0.1	0.7296	0.733	0.7458	0.7350	0.7720	0.7933
0.02	0.6304	0.6788	0.6798	0.6760	0.6614	0.7253
0.005	0.5446	0.5688	0.5352	0.5454	0.5626	0.6218
Average Ir	nprovement:	0.024	0.019	0.015	0.030	0.079

Thank You!