BRAC University

Department of Computer Science and Engineering

Semester: Spring 2023
Course Code: CSE460
Course Title: VLSI Design
Final Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 30 minutes
Date: 8th May 2023

Set A

Student ID:	Name:	Section:
	1	1

[Answer any **THREE** questions out of **FOUR**. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

4.CO3	Consider a CMOS inverter in a 45 nm 1 V process, where the pMOS transistor has 3 times width of the nMOS transistor. The ratio of electron mobility to hole mobility is 3:2 , and the threshold voltages are $\mathbf{IV}_{tp}\mathbf{I} = \mathbf{V}_{tn} = 0.2 \mathbf{V}$. Assume all other parameters are the same for botransistors.				
	(a)	Calculate the beta ratio (r) of the inverter.			
	(b)	Determine the inverter threshold voltage (V_{inv}) .			
	(c)	Draw an approximate transfer characteristic curve (V_{out} vs V_{in}) for the inverter.			
	(d)	Plot the I_{ds} vs. V_{ds} curve for the nMOS using the following values of V_{ds} . Given, $V_{gs} = 0.4 \text{ V}$, and $\beta_n = 120 \mu\text{A}/\text{V}^2$. Evaluate $V_{ds(sat)}$ and show the value of $V_{ds(sat)}$ in the plot. $V_{ds} = 0.10 \text{ V} = 0.15 \text{ V} = 0.20 \text{ V} = 0.25 \text{ V}$	[6]		