

标准模组 Pro2_AM-01-S710 设计指导 V1.3

目录

1、	前言	3
	1.1 说明	3
	1.2 相关文档	3
2、	模组功能概述	4
3、	模组电路设计指南	8
	3.1 电源设计	8
	3.2 模拟 MIC	
	3.3 数字 MIC	
	3.4 Speaker 电路 AEC 电路	
	3.5 AEC 电路	
	3.6 UART 串口电路	
	3.6 SPI 接口	
	3.7 I2C 接口	
	3.8 PWM 接口	
	3.9 红外接口	
	3.10 ADC 按键电路	
4、	模组天线设计指南	
•	4.1 模组天线	
	4.2 天线布局建议	
5.	音频结构设计指南	
	PCB 设计注意事项	
٥,	6.1 模组 PCB 封装	
	6.2 模组使用环境	
	6.3 散热设计	
	U.J 形	44

1、前言

1.1 说明

本文阐述了 AM-01-S710 语音模块典型电路应用设计,布局参考以及应用环境等方面的信息。在本文档和其他相关文档的帮助下,开发者可快速理解 AM-01-S71X 的硬件功能并进行产品硬件开发。

1.2 相关文档

标准模组 Pro2_AM-01-S71X 规格书-V0. 3. docx AM-01-S71X 参考设计. pdf AM-01-S71X PCB decal. dxf

2、模组概述

标准模组 Pro2(AM-01-S710)是天猫精灵推出的最新在线语音模组。该模组使用 RTOS 系统,集成高性能 WiFi+BLE 模块,集成 PCB 板载天线,支持 IEEE 802.11 b/g/n 的 WiFi 协议和 BLE MESH。模组具有 I2C、SPI、UART、PWM 等各种接口,可以外接显示屏、红外、LED 等各种外设。模组主要适用于智能家电、智能家居等众多智能物联网应用。通过"天猫精灵 APP"连接 WiFi,可实现语音控制和 MESH 应用。

2.1 模组的型号

模组型号	差异点	备注
AM-01-S710	板载天线	S710/S730 模组分别存在有屏
AM-01-S730	外置天线(模组带一代天线座)	和无屏两个版本。有屏与无屏 在模组硬件上没有区别,主要 是 GPIO 配置成不同的功能接 口。

2.2 有屏&无屏 GPIO 分配

有屏版本和无屏版本的默认 GPIO 分配定义如下面表格所示。

Pin 序号	Pin Name	有屏版本默	认分配	无屏版本默认分配	
2	GPIO22/LCM_RESET	LCM_RESET	LCD 接口	GPI02_2	通用 GPIO
4	GPI011/LCM_CS	LCM_CS	LCD 接口	GPI01_1	通用 GPIO
5	GPI010/LCM_CLK	LCM_CLK	LCD 接口	GPI01_0	通用 GPIO
6	GPIOO1/LCM_DIO/D MIC DATA	LCD_DIO	LCD 接口	DMIC_DAT A	数字 MIC
7	GPIOOO/LCM_DCN/D -MIC CLK	LCM_DCN	LCD 接口	DMIC_CLK	数字 MIC
8	LED1/PWM1	LCD 背光	LCD 接口	LED1	红灯 PWM
10	GPADC1	GPADC1	通用 ADC	GPADC1	通用 ADC
15	KEY_SENSE/ADC_KE Y	ADC_KEY	模拟按键	ADC_KEY	模拟按键
18	GPIO35/PWM2/IR_R X	TP_INT	TP 接口	PWM2	绿灯 PWM
19	GPIO34/PWM3/IR_T X	TP_RST	TP 接口	PWM3	蓝灯 PWM
20	GPIO31/AMP_EN	AMP_EN	喇叭 PA 使能	AMP_EN	喇叭 PA 使 能

I IALL GENIE					
22	GPI020/UART1_RX/ I2C_SCL	I2C_SCL	TP 接口	UART1_RX	业务串口
23	GPIO21/UART1_TX/ I2C_SDA	I2C_SDA	TP 接口	UART1_TX	业务串口
25	V-MIC/MICBIAS_A	V-MIC	模拟 MIC 电源	V-MIC	模拟MIC电 源
27	MIC1_N/A_MIC1_N	MIC1_N	模拟MIC1	MIC1_N	模拟 MIC1
28	MIC1_P/A_MIC1_P	MIC1_P	模拟MIC1	MIC1_P	模拟 MIC1
31	MIC2_N/A_MIC2_N	MIC2_N	模拟 MIC2	MIC2_N	模拟 MIC2
32	MIC2_P/A_MIC2_P	MIC2_P	模拟 MIC2	MIC2_P	模拟 MIC2
34	MIC3_N/SPK_AEC	MIC3_N	AEC 输入	MIC3_N	AEC 输入
35	MIC3_P/SPK_AEC	MIC3_P	AEC 输入	MIC3_P	AEC 输入
37	LOUT_RP	LOUT_RP	Audio 输 出右声道	LOUT_RP	Audio 输出 右声道
38	LOUT_RN	LOUT_RN	Audio 输 出右声道	LOUT_RN	Audio 输出 右声道
40	LOUT_LN	LOUT_LP	Audio 输 出左声道	LOUT_LP	Audio 输出 左声道
41	LOUT_LP	LOUT_LN	Audio 输 出左声道	LOUT_LN	Audio 输出 左声道
43	UARTO_RX	UARTO_RX	固件加载 串口	UARTO_RX	固件加载 串口
44	UARTO_TX	UARTO_TX	固件加载 串口	UARTO_TX	固件加载 串口

2.3 无屏应用

如 2.2 表格中 GPIO 分配,模组无屏应用时接口*1如下:

- 模拟 MIC 接口,支持外接 2 路模拟 MIC
- 数字 MIC 接口,支持外接 2 路数字 MIC
- 2 个 Line-out 接口,mono 输出
- 2路 UART接口, UARTO用于软件加载, UART1用于外接业务扩展
- 1路 SPI接口
- 7 个 GPIO 口,其中 IO 口支持 3 个 PWM 和一个 ADC
- 3路 PWM 接口,可以用于外接 LED 指示灯。也可用于外接红外 TX/RX
- 1路 ADC 按键接口,可以实现 3 颗按键输入功能

模组采用 3.8V 供电,具有宽供电范围 3.1~5.5V (建议的供电档位 3.3V、3.8V、5.0V)。模组的内部原理框图如图 1 所示。

注*1: 部分接口共用 GPIO, 详细 GPIO 引脚分配见模组规格书。

2.4 有屏应用

如 2.2 表格中 GPIO 分配,在有屏应用下模组具有如下接口*1:

- 模拟 MIC 接口,支持外接 2 路模拟 MIC
- 2 个 Line-out 接口,仅支持 mono 输出
- 1路 UART接口, UARTO用于软件加载,
- 1路 SPI 接口,用于外接 SPI 接口显示屏
- 1路 I2C接口,可用于外接各种 I2C接口设备,如触摸屏等
- 3路 PWM 接口,用于显示屏背光控制等
- 1路 ADC 按键接口,可以实现 3颗按键输入功能

模组采用 3.8V 供电,具有宽供电范围 3.1~5.5V (建议的供电档位 3.3V、3.8V、5.0V)。模组的内部原理框图如图 1 所示。

注*1: 部分接口共用 GPIO,详细 GPIO 引脚分配见模组规格书。

3、模组电路设计指南

本小节将详细介绍各接口功能的电路电路设计注意事项。

3.1 电源设计

AM-01-S710 模组通过 VBAT 管脚供电,采用 3. 8V 供电,具有宽供电范围 3. 1~5. 5V(建议的供电档位 3. 3V、3. 8V、5. 0V)。

引脚序号	引脚定义	类型	功能描述	电压(V)
12	V-BAT1	Р	模组供电输入,3V~4.2V 输入	3. 1 [~] 5. 5
13	V-BAT2	Р	模组供电输入,3V~4.2V 输入	3. 1 [~] 5. 5
2	VIO	Р	VIO 电压对外输出,默认配置为	3. 3
3	V10		3. 3V	

本模组的理论功耗约为待机 0.6W,工作 0.78W。平均工作电流约为 3.8V/210mA,峰值工作电流约为 3.8V/1.2A。建议使用 1.5A 以上 DCDC 进行供电。

3.2 模拟 MIC

AM-01-S710 具有 3 个 MIC 输入接口,其中 MIC1、MIC2 接口用于连接 2 个模拟 MIC, MIC3 接口是 AEC 输入端口。

引脚序号	引脚定义	类型	功能描述
25	V-MIC/MICBIAS_A	Р	模拟 MIC 的 MIC_Bias 输出
26	GND10	_	模组 GND
27	MIC1_N/A_MIC1_N	ΑI	模拟 MIC1 的 N 输入
28	MIC1_P/A_MIC1_P	ΑI	模拟 MIC1 的 P 输入
29	GND11	-	模组 GND
30	GND12	-	模组 GND
31	MIC2_N/A_MIC2_N	ΑI	模拟 MIC2 的 N 输入
32	MIC2_P/A_MIC2_P	ΑI	模拟 MIC2 的 P 输入
33	GND13	_	模组 GND
24	MIC3 N/SPK AEC	ΑI	模拟 MIC3 的 N 输入, SPK AEC 输入
34	MICS_N/SPK_AEC		N
35	MIC3 P/SPK AEC	ΑI	模拟 MIC3 的 P 输入, SPK AEC 输入
აე	MICO_F/ SFK_AEC		P

为确保语音识别效果,模拟 MIC 的单体规格选型建议如下表所示:

	日 677777876,1天	以 MIO 时中产规恒起主定以第一次///小·
序号	参数	规格要求
1	灵敏度	模拟 mic: -38+/-1dBV@94dBSPL, 1KHz;
2	信噪比	典型值 63dB(A)
3	频响	以 1KHz 频点为基准点,频响波动〈1.5dB@200Hz~ 3KHz,〈3.5dB@3KHz~8KHz
4	失真	THD<1% @110dBSPL,1KHz; THD<10%@120dBSPL,1KHz
5	相位	两 mic 相位差在 100~10KHz 小于+/-10 度

3.3 数字 MIC

AM-01-S710 具有 1 个 PDM 接口, 双数字 MIC 设计。 为确保语音识别效果,建议数字 MIC 选型参考如下指标:

序号	参数	规格要求
1	灵敏度	数字 mic: -26+/-1dBFS@94dBSPL, 1KHz。
2	信噪比	典型值 63dB(A)
3	频响	以 1KHz 频点为基准点,频响波动 <1.5dB@200Hz~3KHz,
	27.11	<3.5dB@3KHz∼8KHz
4	失真	THD<1% @110dBSPL, 1KHz; THD<10%@120dBSPL, 1KHz
5	相位	两 mic 相位差在 100~10KHz 小于+/-10 度

AM-01-S710 具有 1 个 PDM 接口,双数字 MIC 设计。该 PDM 接口与显示屏接口 复用 GPIO,因此在有屏版本软件不支持数字 MIC。

引脚序号	引脚定义	类型	功能描述	电压
	GPIOO1/LCM DIO	I/0	GPI00_1,用于显示屏的	VIO
6	/DMIC DATA		LCM_DIO, 或数字麦克	
	/DMIC DATA		DMIC_DATA	
7	GPI000/LCM_DCN	I/0	GPI00_0,用于显示屏的	VIO
1	/D-MIC CLK		LCM_DCN,或数字麦克DMIC_CLK	

layout 时, clock 和 data 信号线做包地处理; clock 信号线上串接的 0 欧电阻靠近模组放置; data 信号线上的 0 欧姆靠近数字 MIC 放置。原理图设计时预留 clock 和 data 信号线的对地电容,目的是 EMC 整改。原理图和 layout 参考如下:

3.4 Speaker 电路

模组支持模拟音频输出,有两路模拟音频输出 PIN 脚,分别是 LOUT_R 和 LOUT_L。 但两路音频输出目前暂不支持立体声输出,输出的是相同的单声道信号。用户可以使用 任意一组信号,没有区别。

引脚序号	引脚定义	类型	功能描述
36	GND14	-	模组 GND
37	LOUT RP	AO	音频右声道 DAC 差分输出,
31	LOUI_KF	AU	Lineout_RP
38	LOUT RN	AO	音频右声道 DAC 差分输出,
30	LOUI_KN	AU	Lineout_RN
39	GND15	_	模组 GND
40	I OUT I N	4.0	音频左声道 DAC 差分输出,
40	LOUT_LN	AO	Lineout_LP
41	I OUT I D	AO	音频左声道 DAC 差分输出,
41	LOUT_LP	AU	Lineout_LN
42	GND16	_	模组 GND

音频模拟输出为差分信号,分别是 LOUT_RP、LOUT_RN, 以及 LOUT_LP、LOUT_LN。 参考设计如下图所示:

参考:外部模拟 PA 参考电路

参考: 音频模拟输出差分信号走线

注 1:该参考设计为 5V 供电,驱动额定功率为 2W/4 欧姆的喇叭。若需要增大喇叭功率,需要提高 PA 的供电电压。

扬声器选型及音腔设计:

- 1)扬声器选型时需要重点关注的参数:额定阻抗、额定功率、实际使用功率、失真 (100Hz~8KHz)、频响,具体参数需要根据产品定义需求确定,无固定值要求,同时需要根据功放输出功率选择适配的扬声器型号;
- 2) 音腔设计根据产品定义需求确定音腔设计方案:密闭箱(带或不带被动辐射器)、导向箱等,以及相关的音腔尺寸和形状等;
- 3) 扬声器功率同时需要满足最大音量时 mic 信号不截幅的要求,具体测试方法参照《天猫精灵木星商业化产品声学准入&准出测试标准 V1.0》,如果 mic 信号有截幅,需要降低扬声器响度或将扬声器位置远离 mic 以满足不截幅的测试要求。

3.5 AEC 电路

模组需要 AEC 回路,把 PA 端输出的音频信号通过 AEC 回路回传到模组。默认使用 MIC3 接口作为 AEC 回路信号。

引脚序号	引脚定义	类型	功能描述
34	MIC3_N/SPK_AEC	AΙ	模拟 MIC3 的 N 输入, SPK AEC 输入 N
35	MIC3_P/SPK_AEC	ΑI	模拟 MIC3 的 P 输入, SPK AEC 输入 P

下图的参考设计为 5V PA 供电时的参考。若采用 PA 采用其他供电电压的供电,需要调整下图中的 R202 和 R203 的分压电阻^{注1}。

AEC 调整方法:

整个音频链路的数学模型如下图:

从上面的数学模型来看, $V_{\text{\tiny AEC}}$ 只与放大器的放大倍数 $G_{\text{\tiny p}}$ 和分压电路的 K 有关系,与 PA 的负载无关。

模组内对 AEC 回路采集增益和模组 LineOut 输出的增益,软件已固定。所以 V_{in} 和 V_{AEC} 相对是固定的。以参考设计为例, G_p =4, $K=\frac{1}{21}$,所以 V_{AEC} = $\frac{4}{21}$ V_{in} 。如果在最终产品中要调整放大器的放大倍数 G_p ,就需要根据上面的公式调整 K,让 V_{AEC} = $\frac{4}{21}$ V_{in} 。

3.6 UART 串口电路

AM-01-S710 模组有两组 UART 端口, UARTO 用于固件加载和软件调试, UART1 是业务 串口,可以用于外部串口设备。

固件加载时,底板上需要将 UARTO_TX、UARTO_RX、GND 三个信号预留装备测试点。 PC 机通过 USB 接口,经 USB/串口转换板连接到底板的对应测试点,进行固件加载。

引脚序号	引脚定义	类型	功能描述	电压
43	UARTO RX	I/0	串口 0 的 RX, 用于加载固件, 及	VIO
45	UARTO_RA		串口调试打印	
4.4	UARTO_TX	I/0	串口 0 的 TX, 用于加载固件, 及	VIO
44			串口调试打印	
22	GPI020/UART1_RX	I/0	GPIO2 O, UART1 RX, I2C SCL	VIO
22	/I2C_SCL		GF102_0, UARTI_RX, 12C_SCL	
23	GPIO21/UART1_TX	I/0	GPIO2 1, UART1 RX, I2C SDA	VIO
۷۵	/I2C_SDA		GF102_1, UNINTI_RA, 120_SDA	

UARTO 是调试串口,速率为 1.5M。UART1 是功能复用串口,速率为 115200。

注: 若采用插座的形式进行 UART 通信设计时,请在 TX 和 RX 上增加 ESD 设计。

3.6 SPI 接口

AM-01-S710 具有 1 个 SPI 接口,可以用来连接 SPI 接口的显示屏。SPI 的时钟速率 典型值是 26MHz,最高是 52MHz。当只有写操作时(SPI pin 都是输出,没有输入),比 如驱动 LCD 屏,最高可以达到 80MHz。

SPI 接口使用 PIN4/5/6/7 这四个管脚。

S. C.						
引脚序号	引脚定义	类型	型 功能描述			
4	GPIO11/LCM_CS	I/0	GPIO1_1,用于显示屏的 LCM_CS	VIO		
5	GPIO10/LCM_CLK	I/0	GPI01_0, 用于显示屏的 LCM_CLK	VIO		
6	GPIO01/LCM_DIO	I/0	GPI00_1,用于显示屏的 LCM_DIO,	VIO		
0	/DMIC DATA		或数字麦克 DMIC_DATA			
7	GPIOOO/LCM_DCN	I/0	GPIOO_O,用于显示屏的 LCM_DCN,	VIO		
1	/D-MIC CLK		或数字麦克 DMIC_CLK			

SPI 显示屏的参考设计如下图所示:

3.7 I2C 接口

AM-01-S710 具有 1 个 I2C Master 接口,可以用来连接 I2C 设备,如 TP 等。I2C 的速率配置为 100KHz。

I2C 接口使用 PIN22 和 PIN23,与 UART1 接口属于共用 PIN,在使用 I2C 时需要软件配置成 I2C 功能。

引脚序号 引	脚定义 类型	功能描述	电压
--------	-----------	------	----

22	GPI020/UART1_RX/I2C_SCL	I/0	GPIO2_0, UART1_RX, I2C_SCL	VIO
23	GPIO21/UART1_TX/I2C_SDA	I/0	GPIO2_1, UART1_RX, I2C_SDA	VIO

I2C 建议外部使用 4.7k 上拉到 I0 电源。如下是接 TP 的参考设计。

3.8 PWM 接口

AM-01-S710 具有 3 个 PWM 接口,可以用来控制呼吸灯、控制 LCD 背光等。

引脚序号	引脚定义	类型	功能描述	电压
8	LED1/PWM1	I/0	PWM1 输出,上电默认弱上拉输出	VIO
18	GPI035/PWM2/IR_RX	I/0	GPIO3_5, PWM2 输出, IR_RX	VIO
19	GPIO34/PWM3/IR_TX	I/0	GPIO3_4, PWM3 输出, IR_TX	VIO

PIN8 是 PWM1, 需要注意该管脚在开机默认是内部弱上拉输出。

PIN18、P19 分别是 PWM2 和 PWM3 输出,默认低电平。此两管脚同时兼容红外收发功能,PIN18 可以作为红外的 IR_RX 输入,PIN19 可以作为红外的 IR_TX 输出。

PWM2/3 的控制 LED 灯参考电路如下图所示:

PWM1 由于默认内部弱上拉,如果在上电瞬间不想亮灯,则需要对控制逻辑进行反向。例如下图的参考设计中,使用 2 个 NPN 管进行反向逻辑控制。

3.9 红外接口

AM-01-S710 具有红外收发接口,可以在外接红外发射管和红外接收管实现红外功能。 IR RX 与 PWM2 复用 PIN18, IR TX 与 PWM3 复用 PIN19。

引脚序号	引脚定义	类型	功能描述	电压
18	GPI035/PWM2/IR_RX	I/0	GPIO3_5, PWM2 输出, IR_RX	VIO
19	GPIO34/PWM3/IR_TX	I/0	GPIO3_4,PWM3 输出,IR_TX	VIO

红外发射的参考电路如下图所示。需要根据红外发射管的 VF 电压和 IF 电流计算合适的串联电阻,并考虑串联电阻的功率。

IR 发射电路设计时,在电源端口需加载储能电容至少 10uF, 防止 IR 发射时引起电源电压波动。另外采用的 NPN 三极管,需要过大电流,且 Cbe 电容较小的三极管,避免引起信号失真多大,影响 IR 控制精度。

红外接收采用 38KHz 载波的红外接收器,参考电路如下图所示。接收信号的高电平 需与 3. 3V 的 PIN 脚电压等级匹配。

3.10 ADC 按键电路

AM-01-S710 具有 1 个 ADC KEY 接口,可以实现 3 颗按键识别。 ADC 的识别范围是 0~0.3VI0,即 0~0.99V。

目前设置的 3 档分别是 0.9V、0.6V、0.27V。软件里面的按键分档也是按这三个档,建议分压电路按如下参考设计进行。

在没有按键按下时,R320和R321形成分压,输出超过0.99V,达到满量程,此时检测>0.95V,无按键。

SW301 按下,此时输出端电压 0.9V

SW302 按下,此时输出端电压 0.6V

SW303 按下,此时输出端电压 0.27V。

4、模组天线设计指南

4.1 模组天线

模组上的板载天线为WiFi&BT 天线。 WiFi 板载天线的效率约60%,可作为整机测试结果的参考。

参考: 板载天线在 Demo 板上 S 参数

参考: 板载天线在 Demo 板上 2D 图注: 此数据来源于 demo 板

4.2 天线布局建议

- 1)模组应该放置在 PCB 板边,天线朝 PCB 板外,要保证天线周围没导电质或介电质,远离金属制品和五金材料,电池,液晶显示器,排线等。
- 2)模组在 PCB 板上的位置,需远离干扰源。避免主控的电磁波辐射干扰得到 WiFi/BT 的接收。
- 3) 板载天线, PCB 天线应预留足够的避空区。左右需要净空至少 6mm 以上。天线区域要全部净空。

注:为了不影响模组的 WiFi/BT 性能,主板设计时需考虑主板端的电磁波辐射的控制,要做好切断辐射路径和屏蔽辐射源的措施,以及主板飞出的排线需做屏蔽措施。

5、音频结构设计指南

- 1) MIC 收声孔整体结构设计需顺滑,双 MIC 的 PCB 上的间距采用 3cm。
- 2) MIC 的收声孔长度(外表面到 MIC 单体面的孔表面的距离): 收声孔直径 < 2:1; 一般比值建议在 1-1.5 之间。
 - 3) 2mic 在同一个面上, mic 孔直接露在表面, 不要有其他结构遮挡;
 - 4) 产品外壳进声孔开孔孔径大于 \$\psi\$1mm;
 - 5) mic 孔位置距离外壳开孔位置(非直线距离)声学路径<6.0mm;
 - 6) 进声通道密封,在 200Hz~8KHz 各频点进声孔堵和不堵频响相差 20dB 以上;

注: MIC 间距为两个 MIC 的收音孔中心之间的距离

6、PCB设计注意事项

6.1 模组 PCB 封装

*封装备注:

- 1)中间散热焊盘钢网设计请参照图示分为多个独立的方形钢网设计,避免整块钢网面积太大,过回流焊时锡膏聚集顶起芯片,影响芯片信号管脚焊接;
- 2) 中间散热焊盘请铺满地网络铜箔,并在钢网间隔区域尽量多打地孔,以保证散热效果。

6.2 模组使用环境

模组的布局上远离发热高的热源,注重散热设计。避免散热片摆放在模组正上面。

参数	名称	最小值	典型值	最大值	単位
存储温度	_	-40	_	85	$^{\circ}\mathbb{C}$
工作温度	_	-20	_	65	$^{\circ}\mathbb{C}$

6.3 散热设计

如前文功耗描述,本模组工作态平均功耗约 0.78W。

模组的工作环境温度为-20~60℃,无论在何种温度下使用都需要确保模组表面屏蔽 盖温度不超过 70℃ (超过 70℃可能会对射频性能有一定影响)。

建议的一些散热设计如下:

- 1) 按照建议的 PCB 封装设计底部散热 PAD。
- 2) 散热 PAD 接主地,做通孔到底层,通孔数量建议 9*9 以上
- 3) PCB 背面对应散热 PAD 的区域,建议露铜刷点阵锡膏
- 4) PCB 板上其他发热器件,如 Speaker PA、DCDC等,尽量远离模组,建议保持 20mm以上距离
 - 5) 双层板尽量保障一面 PCB 做完整 GND 层,并多加 GND 过孔
 - 6) 适当增加 PCB 板面积对散热有帮助 (90*60mm)
 - 7) 在2) 基础上在 PCB 底层增加散热片,能较大程度改善发热。