PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re U.S. Patent Application) 20/04 20/04	
Applicant: Takeo Oita		
Serial No.) I hereby certify that this paper is being deposited w the United States Postal Service as EXPRESS MAIL an envelope addressed to: Assistant Commissioner	in
Filed: January 7, 2002	Patents, Washington, D.C. 20231, on January 7, 200 Express Label No.: EL. 846222941US Signature:	
For: SYNCHRONOUS SIGNAL GENERATOR	EXPRESS.WCM Appr. February 20, 1998	
Art Unit:))	

CLAIM FOR PRIORITY

Assistant Commissioner for Patents Washington, DC 20231

Sir:

Applicant claims foreign priority benefits under 35 U.S.C. § 119 on the basis of the foreign application identified below:

Japanese Patent Application No. 2001-007977, filed January 16, 2001.

A certified copy of the priority document is enclosed.

Respectfully submitted,

GREER, BURNS & CRAIN, LTD.

By

Patrick G. Burns

Registration No. 29,367

January 7, 2002
300 South Wacker Drive
Suite 2500
Chicago, IL 60606
(312) 360-0080
Customer Number: 24978
F:DATAIWP601503166084PRIORITY.

JAPAN PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application: January 16, 2001

Application Number: Patent Application

No. 2001-007977

Applicant(s): NIHON DEMPA KOGYO CO., LTD.

December 14, 2001

Commissioner,

Japan Patent Office Kozo OIKAWA

Certificate No. 2001-3109225

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 1月16日

出 願 番 号 Application Number:

特願2001-007977

出 顧 人 Applicant(s):

日本電波工業株式会社

2001年12月14日

特許庁長官 Commissioner, Japan Patent Office

特2001-007977

【書類名】 特許願

【整理番号】 P2000113

【提出日】 平成13年 1月16日

【あて先】 特許庁長官 及川耕造 殿

【発明者】

【住所又は居所】 埼玉県狭山市大字上広瀬1275番地の2

日本電波工業株式会社 狭山事業所内

【氏名】 追田 武雄

【特許出願人】

【識別番号】 000232483

【氏名又は名称】 日本電波工業株式会社

【代表者】 代表取締役社長 竹内 敏晃

【手数料の表示】

【予納台帳番号】 015923

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】明細書

【発明の名称】同期信号発生器

【特許請求の範囲】

【請求項1】発振周波数をfとした水晶発振器からの正弦波となる出力をパルス変換器によって矩形波状のパルスに変換してなる同期信号発生器であって、前記水晶発振器からの正弦波となる出力を、前記発振周波数 f と中心周波数 f が同一周波数のフィルタを通し、前記パルス変換器に入力したことを特徴とする同期信号発生器。

【請求項2】前記フィルタは水晶フィルタであって、前記水晶発振器と周波数温 度特性を同一とした請求項1の同期信号発振器。

【請求項3】前記水晶発振器と前記水晶フィルタとに使用される水晶片は同一切 断角度である請求項2の同期信号発生器。

【請求項4】前記発振周波数 f は前記水晶発振器の基本波成分 f 1からなる請求項1の水晶発振器1。

【請求項5】前記パルス変換器は相補出力型ドライバI Cである請求項1の同期信号発生器。

【発明の詳細な説明】

[0001]

【産業上の技術分野】

本発明は水晶発振器を用いた同期信号発生器を産業上の技術分野とし、特に同期信号のジッター(時間的な揺らぎ)を抑止した同期信号発生器に関する。

[0002]

【従来の技術】

(発明の背景) 同期信号発生器はコンピュータ等の信号を時間的に制御するパルス発生源として知られている。このようなものの一つに、水晶発振器の正弦波出力をパルスに変換するものがあり、近年では信号の同期を確実にするためにジッターを小さくすることが求められている。

[0003]

(従来例の一例)第4図は一従来例を説明する同期信号発生器のブロック回路図

である。

同期信号発生器は、水晶発振器 1 とパルス変換器 2 とからなる。水晶発振器 1 は水晶振動子 3 と発振回路部 4 からなり、例えばコルピッツ型の発振回路を形成する。水晶振動子 3 は例えば A T カットとした水晶片からなり、これを励振する電極等を形成して図示しない密閉容器内に封入される。 A T カットの水晶片 (水晶振動子 3) は厚みに反比例して振動周波数 (共振周波数) が高くなり、第 5 図に示したように基本波成分 f 1に対して高調波成分 f s (f 2~fn) が発生する。

[0004]

この例では、水晶発振器1の発振周波数fは水晶振動子3に起因した基本波成分f1とし、出力波形は概ね正弦波(この出力を正弦波出力とする)となる。但し、水晶振動子3と水晶発振器1の基本波成分f1及び高調波成分fsの周波数は多少のずれがある。パルス変換器2は例えば相補出力型ドライバICからなり、水晶発振器1からの正弦波出力を矩形状とした正負のパルスに変換する。通常では、水晶発振器1の正弦波出力はアンプ5によって増幅された後、パルス変換器2に入力される。

[0005]

【発明が解決しようとする課題】

(従来技術の問題点)しかしながら、上記構成の同期信号発生器では、パルス発生器による出力(パルス波形)にジッターを生ずる問題があった。すなわち、水晶発振器1の発振周波数 f は基本波成分 f 1を主とするものの、偶数時及び奇数時の高調波成分 f sを含む(前第5図)。このため、発振周波数 f は基本波成分f 1のみによる理想的な正弦波(理想正弦波とする)にはならず、高調波成分 f s による歪みを生じる。換言すると、高調波成分 f s が基本波成分 f 1に対して小さいほど、水晶発振器1の正弦波出力は理想正弦波に近接する。

[0006]

そして、パルス発生器は、正弦波が有する高調波成分 f sのレベルに応じたジッターを伴い、矩形状のパルスを生ずる。要するに、パルス発生器は、入力される正弦波が理想的なほど、即ち高調波成分 f sのレベルが基本波成分 f 1に対して小さいほど、ジッターの少ないパルスを出力する。しかし、水晶発振器 1 は、発

振出力中に基本波成分 f 1を主として、少なからず高調波成分 f sを含む。したがって、パルス発生器の出力からジッターを消失することは不可避な問題があった

[0007]

(発明の目的)本発明は水晶発振器の正弦波を理想正弦波に近接して、ジッター の小さなパルスを出力する同期信号発生器を提供することを目的とする。

[0008]

【課題を解決するための手段】

(着目点)本発明は、水晶発振器による正弦波出力中の基本波成分 f 1に対する 高調波成分 f sのレベルを相対的に小さくすれば、正弦波出力は理想正弦波に近 接し、パルス変換器の出力であるパルスはジッターが小さくなる点に着目した。

[0009]

(解決手段)本発明は、水晶発振器の正弦波出力を、中心周波数 f が発振周波数 f と同一周波数のフィルタを通し、パルス変換器に入力したことを基本的な解決 手段とする (請求項1)。

[0010]

【作用】

本発明では、水晶発振器からの正弦波出力を、中心周波数 f が発振周波数 f と同一周波数のフィルタを通す。したがって、基本は成分 f 1に対して高調波成分 f s が抑圧された正弦波出力を得る。以下、本発明の一実施例を説明する。

[0011]

【実施例】

第1図は、本発明の一実施例を説明する同期信号発振器のブロック回路図である。なお、前従来例図と同一部分には同番号を付与してその説明は簡略又は省略する。

同期信号発生器は、前述のように水晶振動子3及び発振回路部4からなり、発振 周波数 f を基本波成分 f 1とした水晶発振器 1 と、正弦波出力をアンプ5を介し て正負のパルスに変換する相補出力型ドライバICとしたパルス変換器 2 とから なる。そして、この実施例では、水晶発振器 1 とパルス変換器 2 との間に水晶フ ィルタ6を挿入する。

[0012]

水晶フィルタ6は水晶片に入出力電極を形成して密閉容器に封入され、入力に対して規定領域の周波数(規定通過周波数)のみを出力する。ここでの水晶フィルタ6は、規定通過周波数の中心周波数fを発振周波数fと同一にする。すなわち、中心周波数fは、正弦波出力中の基本波成分f1とする。そして、水晶フィルタ6を形成する水晶片は、水晶振動子3を形成するATカットの水晶片と同一切断角度とする。

[0013]

そして、水晶発振器1の正弦波出力は、中心周波数fを基本波成分f1とした水晶フィルタ6に入力される。水晶フィルタ6は、発振周波数f(基本波成分f1)を中心とした周波数領域を通過させる。そして、通過後の正弦波出力は、前述のようにアンプ5によって増幅された後、パルス変換器2に入力されて正負のパルスを出力する。

[0014]

このような構成であれば、水晶フィルタ6を通過後の正弦波出力は、高調波成分 f sが除去されて基本波成分が支配的になる。すなわち、正弦波出力は、第2図 に示したように、基本波成分f1に対し、水晶フィルタ6を通さない場合に比較 して、高調波成分f s をさらに抑圧した周波数スペクトラムとなる。これにより、水晶フィルタ6を通過後の正弦波出力は、高調波による歪みの少ない理想正弦 波に近接する。したがって、パルス変換器2は、基本波成分を主とした理想正弦 波が入力されるので、ジッターの小さなパルスを出力する。

[0015]

また、この実施例では、水晶振動子3と水晶フィルタ6とに使用される水晶片の 切断角度を同一にする。したがって、水晶振動子3を用いた水晶発振器1と水晶 フィルタ6との周波数温度特性を基本的に同一にする。この例では、常温近傍(27℃)に変曲点を有し、低温側に最大値を高温側に最小値を有する三次曲線と する(第3図)。

[0016]

なお、水晶発振器 1 の周波数温度特性は温度によって発振周波数 f が変化し、水晶フィルタ 6 は中心周波数 f が変化する。また、水晶発振器 1 及び水晶フィルタ 6 は例えばコンデンサ等の他の素子も使用し、これらの周波数温度特性も加味されるので、切断角度が同一であっても両者の周波数温度特性は全くの同一にはならない。但し、殆どの場合、両者の周波数温度特性は水晶片の切断角度に依存する。

[0017]

これにより、温度が変化しても、発振周波数 f と中心周波数 f は同様に変化する。すなわち、温度変化による発振周波数 f (基本波成分 f 1) の変化に中心周波数 f が追従するので、基本波成分 F 1に対する高調波成分 f s の相対的なレベル差を一定に維持する。したがって、温度が変化しても、理想正弦波を得られてジッターの小さいパルスを供給できる。

[0018]

【他の事項】

[0019]

また、フィルタは水晶フィルタ6として水晶発振器1の周波数温度特性を同一としたが、例えば弾性表面波素子を用いた所謂SAWフィルタであってもよい。基本的には、公称周波数(通常では常温25度C)としての発振周波数fと中心周波数fを同一とし、発振周波数fに対する高調波成分fsを抑圧するものであればよい。

[0020]

また、水晶発振器 1 と水晶フィルタ 6 との各水晶片の切断角度を同一として概ね 同一となる周波数温度特性を得たが、例えば温度補償回路によって両者の周波数 温度特性を一致させてもよく、結果として同一の周波数温度特性が得られればよ 410

[0021]

要するに、本発明では、水晶発振器1の正弦波出力をフィルタによって理想正弦 波に近接させ、これによりジッターの小さいパルスを得るのが趣旨であって、こ のような趣旨に基づいた適宜自在な変更による同期信号発生器は、本発明の技術 的な範囲に包含される。

[0022]

【発明の効果】

本発明は、水晶発振器の正弦波出力を、中心周波数 f が発振周波数 f と同一周波数のフィルタを通してパルス変換器に入力したので、水晶発振器の正弦波を理想正弦波に近接して、ジッターの小さなパルスを出力する同期信号発生器を提供できる。

【図面の簡単な説明】

【図1】

本発明の一実施例を説明する同期信号発生器のブロック回路図である。

【図2】

本発明の一実施例による作用を説明する周波数スペクトラム図である。

【図3】

本発明の一実施例に適用する水晶振動子の周波数温度特性図である。

【図4】

従来例を説明する同期信号発生器のブロック回路図である。

【図5】

従来例による問題点を説明する周波数スペクトラム図である。

【符号の説明】

1 水晶発振器、2 パルス発生器、3 水晶振動子、4 発振回路部、5 アンプ、6 水晶フィルタ. 【書類名】

図面

【図1】

【図2】

【図3】

【図4】

特2001-007977

【書類名】要約書

【目的】水晶発振器の正弦波を理想正弦波に近接して、ジッターの小さなパルス を出力する同期信号発生器を提供する。

【構成】発振周波数を f とした水晶発振器からの正弦波となる出力をパルス変換器によって矩形波状のパルスに変換してなる同期信号発生器であって、前記水晶発振器からの正弦波となる出力を、前記発振周波数 f と中心周波数 f が同一周波数のフィルタを通し、前記パルス変換器に入力した構成とする。前記フィルタは水晶フィルタであって、前記水晶発振器と周波数温度特性を同一とする。前記水晶発振器と前記水晶フィルタとに使用される水晶片は同一切断角度とする。前記発振周波数 f は前記水晶発振器の基本波成分 f 1とする。前記パルス変換器は相補出力型ドライバICとする。

【選択図】図1

出願人履歷情報

識別番号

[000232483]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

東京都渋谷区西原1丁目21番2号

氏 名

日本電波工業株式会社