

Bioinformatics Workflow - From aligned reads to peaks -

Peak calling: where is the signal? Medizinische Fakultät Heidelberg

Signal ("treatment")

Peak calling: where is the signal? Medizinische Fakultät Heidelberg

MCF-7 genome

The MCF-7 genome harbors 21 high-level CNAs, summarized in Table 1. Remarkably, many of the previously reported regions of genetic alteration split into multiple segments upon tiling resolution analysis. The 1p13 amplification described previously [40] in fact divides into three distinct segments of high-level amplifications: a 1,300 kb segment at 1p13.3, containing only two genes, those encoding arginine N-methyltransferase-6 (*PMRT6*) and netrin G1 (*NTNG1*);

Peak calling: where is the signal? Medizinische Fakultät Heidelberg

Alignability track

- mappability issue: alignability track shows, how many times a read from a given position in the genome would align
 - a = 1: read from this genomic locus would ONLY align to this position
 - a = 1/n: read from this position could align to n alternative positions in the genome
- usually only unambiguous reads are kept in the alignment: positions with a < 1 contain no reads at all!

Availability of a control sample is mandatory !!

- → mock IP with unspecific antibody
- → sequencing of input (=naked) DNA

Signal to noise ratio

- Good ChIP-seq experiment:
 - high enrichment of signal in few regions
 - low/no enrichment in most regions
- Test this unequal distribution using a Lorenz Curve: cumulative distribution of the signal

even distribution: cumulative curve is a straight line Good for society / Bad for ChIP-seq

unequal distribution: cumulative curve has sharp kink Bad for society / Good for ChIP-seq

Signal to noise ratio

Procedure

- bin genome into 10 kb regions
- count reads in each bin from input (Xi)
 and signal (Yi)
- total number of reads is Mx and My
- order Xi and Yi from smallest to largest
 → X(i) Y(i)
- plot:

$$p_j = \sum_{i=1}^{j} Y_{(i)} / M_{\gamma}; q_j = \sum_{i=1}^{j} X_{(i)} / M_{\chi}$$

- The more diagonal, the more uniform the signal is (input, bad chip)
- The more bent, the more focal the signal (good chip)

[Diaz et al., deepTools]

Signal to noise ratio

Mostly noise in both datasets

→ scaling factor using the reads
in this range

Treatment contains signal!

Peak calling (single-end)

- Tag shifting vs tag extension (single-end)
 - read locations do not represent the actual binding site
 - fragment length d can be estimated from strand asymmetry
 - reads can be elongated to a size of d
 - or: reads can be shifted by length *d/2*

Read shifting

All reads are shifted by d/2

Read extension

All reads are extended to length d

Statistical model

- Goal : determine enriched regions
- sliding window across the genome
- at each location, determine the enrichment of the signal vs. background using a Poisson distribution to model expectation
- retain regions below P-value threshold

Reminder: Poisson distribution

- Measures the number of events in a time period for a given rate of events
- Example: number of reads aligning randonly in a region of size w
- Rate needs to be constant and independent of previous window!

$$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

 λ = average reads per window

Step 1 : estimate fragment length d

- slide a window of length BANDWIDTH
- retain windows with MFOLD enrichment of treatment / background
- plot average + / strand read densities in these windows
- estimate d

> MFOLD enrichment

- Step 2 : identification of local noise parameter
 - slide a window of size 2*d across treatment and input
 - at each position, estimate parameter λ_{local} (= mean number of read per kb) of **Poisson distribution**

estimate parameter λ_{local} over different ranges, take max.

- Step 3 : identification of enriched/peak regions
 - determine regions with P-values < PVALUE
 - determine summit position inside enriched regions as max density

- Step 4 : estimating FDR
 - positive peaks (P-values)
 - swap treatment and input; call negative peaks (P-value)

Peak calling

MACS2: typical command

```
macs2 callpeak \
  --treatment IP.bam \
  --control input.bam \
  --name CTCF \
  --format BAM \
  --keep-dup all \
  --gsize 2.7e9 \
  --qvalue 0.01 \
  --outdir CTCF
```

bam file with IP

bam file with input

name of the experiment (choose freely!)

format of input files (BAM = single-end; BAMPE = paired-end)

should duplicate read be kept? (auto / all)

effective (= mappable) genome size

FDR threshold to call a peak

output directory

Hands on: ChIP-seq peak calling with MACS2

https://hdsu-bioquant.github.io/chipatac2020/05_CHIP_PeakCalling.html

Bioinformatics Workflow - From aligned reads to signal tracks -

From reads to signal

Single-end sequencing

- Reads are extended to 3' to the estimated/provided fragment length
- Read counts are computed for each bin
- Counts are normalized
 - RPGC: reads per genomic content (normalize to 1x coverage)
 - RPKM: reads per kilobase per million reads per bin
- Tool :

bedtools genomecov

or: bamCoverage

From reads to signal


```
bamCoverage \
--bam CTCF.bam \
--outFileName CTCF.bw \
--outFileFormat bigwig \
--normalizeUsing RPKM \
--ignoreDuplicates \
--centerReads \
--binSize 200 \
--numberOfProcessors 4
```

output should be in bedgraph format
input bam file
fragment extension to 200bp
sort by chromosome and start coordinate; write to output
file

Resolution = 200bp

Generating signal

How can we obtained a single signal track in which the background is subtracted?

- naive subtraction: treatment input is not possible, because of different sequencing depth
- Simple solution: scale library by total number of reads (library size) and perform a relative scaling

$$r = \frac{N_{ctrl}}{N_{IP}} \qquad \longrightarrow \qquad S_{IP,norm} = r \cdot S_{IP}$$

Input: M = 12 million reads

Problem: signal influences scaling factor
 More signal (but equal noise) → artificial noise over-estimation

Input

Signal

area = number of reads = 10 + 4 + 4 = 18

Scaling by library size: upscale input by 18/10 = 1.8

Signal estimated noise level

area = number of reads = 10 + 4 + 4 = 18

Noise level is over-estimated due to signal

Mask regions containing signal prior to scaling

Linear regression by excluding peak regions (PeakSeq)

[Figure adapted from Rozowsky et al]

PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls

Joel Rozowsky¹, Ghia Euskirchen², Raymond K Auerbach³, Zhengdong D Zhang¹, Theodore Gibson Robert Bjornson⁴, Nicholas Carriero⁴, Michael Snyder^{1,2} & Mark B Gerstein^{1,3,4}

- Signal extraction scaling algorithm (SES, Diaz. et al, 2012)
- Use fingerprint plots to distinguish background noise range / signal range
- Normalize only over the number of reads in the background range

$$r_{back} = \frac{N_{ctrl} \in back}{N_{IP} \in back} \longrightarrow S_{IP,norm} = r_{back} \cdot S_{IP}$$

Quality control

Medizinische Fakultät Heidelberg Heatmap of signal at promoters

Qualitative QC:

- check your favorite gene / region in IGV
- heatmap of signal (e.g. at gene promoters)

Specific gene locus

Quality control

- Quantitative QC:
 - fraction of reads in peaks (FRiP) / SPOT : measures the fraction of reads that fall into the determined peak regions

$$FRiP = \frac{reads \in peaks}{total\ reads}$$

- → dependent on the type of ChIP (TF/histone)
- PCR Bottleneck coefficient (PBC) : measure of library complexity

ENCODE quality measures

	Treatment	N_uniq map reads	SPOT	РВС
IE3	None	23,262,787	0.7548	0.85
IE3	None	24,258,921	0.7129	0.87
IE3	None	25,830,582	0.7734	0.83
IE3	None	24,999,787	0.7708	0.83
IE3	None	27,183,786	0.841	0.75
IE3	None	18,723,894	0.7507	0.82
IE3	None	27,941,205	0.6917	0.79
IE3	None	20,608,672	0.8515	0.82
IE3	None	26,921,405	0.7402	0.84
IE3	None	27,322,283	0.7315	0.85
IE3	None	25,331,375	0.7984	0.82
IE3	None	21,265,457	0.7222	0.86
ME3	None	10,992,065	0.2188	0.97
VIE3	None	14,241,301	0.2238	0.97
ME3	None	14,371,730	0.2897	0.96
VIE3	None	14,363,395	0.2608	0.96
IE3	None	12,020,401	0.7748	0.9
IE3	None	16,286,127	0.7362	0.86
VIE3	None	15,677,477	0.1573	0.95
VIE3	None	13,552,847	0.1529	0.97
ME3	None	12,224,320	0.1934	0.98

From reads to coverage

Hands on: signal tracks and QC

https://hdsu-bioquant.github.io/chipatac2020/07_CHIP_QC.html

https://hdsu-bioquant.github.io/chipatac2020/08_CHIP_bigwig.html