Weak Convergence and Empirical Processes Chapter 2.6: Uniform Entropy Numbers

Bart Eggen

Leiden University

February 3, 2020

What's on the menu today?

Introduction

VC-Classes

VC-Classes of Functions

Uniform Entropy Number

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(rac{1}{\epsilon}
ight)^V, \quad 0<\epsilon<1$$

Goal

Empirical process converges weakly to some limiting distribution for some class \mathcal{F} of measurable functions

Goal

$$\mathbb{G}_n = \sqrt{n} (\mathbb{P}_n - P) \rightsquigarrow \mathbb{G}, \quad \text{in } \ell^{\infty}(\mathcal{F})$$

$$\mathbb{G}_n = \sqrt{n} (\mathbb{P}_n - P) \rightsquigarrow \mathbb{G}, \quad \text{in } \ell^{\infty}(\mathcal{F})$$

 \mathcal{F} is called a **P-Donsker class**.

Theorem 2.5.2

Let $\ensuremath{\mathcal{F}}$ be a class of measurable functions that satisfies the uniform entropy bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} d\epsilon < \infty,$$

where the supremum is taken over all finitely discrete probability measures with $\|F\|_{Q,2}=\int F^2dQ>0$, where F is an envelope function for $\mathcal{F}.$ Let the classes $\mathcal{F}_\delta=\left\{f-g:f,g\in\mathcal{F},\|f-g\|_{P,2}<\delta\right\}$ and \mathcal{F}_∞^2 be P-measurable for every $\delta>0$. If $P^*F^2<\infty$, then \mathcal{F} is P-Donsker .

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V$$

Uniform Entropy Bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} d\epsilon < \infty$$

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^{V}$$

Uniform Entropy Bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} d\epsilon < \infty$$

Covering number

The **covering number** $N(\epsilon, \mathcal{F}, \|\cdot\|)$ is the minimal number of balls $\{q: \|q-f\| < \epsilon\}$ of radius ϵ needed to cover the set \mathcal{F} .

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V$$

Uniform Entropy Bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} \, d\epsilon < \infty$$

Covering number

The **covering number** $N(\epsilon, \mathcal{F}, \|\cdot\|)$ is the minimal number of balls $\{g: \|g-f\| < \epsilon\}$ of radius ϵ needed to cover the set \mathcal{F} .

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V$$

Uniform Entropy Bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} d\epsilon < \infty$$

Covering number

The **covering number** $N(\epsilon, \mathcal{F}, \|\cdot\|)$ is the minimal number of balls $\{g : \|g - f\| < \epsilon\}$ of radius ϵ needed to cover the set \mathcal{F} .

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V$$

Uniform Entropy Bound

$$\int_0^\infty \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right)} d\epsilon < \infty$$

Envelope function

An **envelope function** of a class \mathcal{F} is any function $x \mapsto F(x)$ such that |f(x)| < F(x), for every $x \in \mathcal{X}$ and $f \in \mathcal{F}$.

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^{V}$$

Uniform Entropy Bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} d\epsilon < \infty$$

Envelope function

An **envelope function** of a class \mathcal{F} is any function $x \mapsto F(x)$ such that $|f(x)| \leq F(x)$, for every $x \in \mathcal{X}$ and $f \in \mathcal{F}$.

Entropy number for $\epsilon > 1$

• For $\epsilon \geq 2$ we have $N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) = 1$

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V$$

Uniform Entropy Bound

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_{2}(Q)\right)} d\epsilon < \infty$$

Envelope function

An **envelope function** of a class \mathcal{F} is any function $x \mapsto F(x)$ such that $|f(x)| \leq F(x)$, for every $x \in \mathcal{X}$ and $f \in \mathcal{F}$.

Entropy number for $\epsilon > 1$

- For $\epsilon \geq 2$ we have $N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) = 1$
- For $1 \le \epsilon < 2$ we have $N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \le 2$

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V$$

Uniform Entropy Bound

$$\int_0^1 \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right)} d\epsilon < \infty$$

Envelope function

An **envelope function** of a class \mathcal{F} is any function $x \mapsto F(x)$ such that $|f(x)| \leq F(x)$, for every $x \in \mathcal{X}$ and $f \in \mathcal{F}$.

Entropy number for $\epsilon > 1$

- For $\epsilon \geq 2$ we have $N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) = 1$
- For $1 \le \epsilon < 2$ we have $N(\epsilon ||F||_{Q,2}, \mathcal{F}, L_2(Q)) \le 2$

Uniform Entropy Bound

$$\int_0^1 \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right)} d\epsilon < \infty$$

Uniform Entropy Bound

$$\int_0^1 \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right)} d\epsilon < \infty$$

Uniform entropy condition

$$\sup_{Q} \log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^{2-\delta}, \quad \delta > 0$$

Uniform Entropy Bound

$$\int_0^1 \sup_{Q} \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right)} d\epsilon < \infty$$

Uniform entropy condition

$$\sup_{Q} \log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^{2-\delta}, \quad \delta > 0$$

Our goal

$$\sup_{Q} N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right) \leq K\left(\frac{1}{\epsilon}\right)^V, \quad \text{for some number } V$$

 \mathcal{C} **picks out** a subset $A \subseteq \{x_1, \dots, x_n\}$ if there exists a $C \in \mathcal{C}$ with $C \cap \{x_1, \dots, x_n\} = A$

 \mathcal{C} shatters $\{x_1, \dots, x_n\}$ if each of its 2^n subsets can be picked out

The **VC-index** $V(\mathcal{C})$ of the class \mathcal{C} is the smallest n for which no set of size n is shattered by \mathcal{C}

VC-index

The **VC-index** of C is defined as

$$V(\mathcal{C}) = \inf\{n : \max_{x_1,\dots,x_n} \Delta_n(\mathcal{C},x_1,\dots,x_n) < 2^n\},$$

where

$$\Delta_{\textit{n}}\left(\mathcal{C}, x_1, \ldots, x_n\right) = \#\left\{\textit{\textbf{C}} \cap \left\{x_1, \ldots, x_n\right\} : \textit{\textbf{C}} \in \mathcal{C}\right\}.$$

A collection of measurable sets $\mathcal C$ is called a **VC-class** if its index is finite.

VC-index

The **VC-index** of C is defined as

$$V(\mathcal{C}) = \inf\{n : \max_{x_1,\dots,x_n} \Delta_n(\mathcal{C},x_1,\dots,x_n) < 2^n\},$$

where

$$\Delta_{\textit{n}}\left(\mathcal{C}, x_1, \dots, x_n\right) = \#\left\{\textit{C} \cap \left\{x_1, \dots, x_n\right\} : \textit{C} \in \mathcal{C}\right\}.$$

A collection of measurable sets $\mathcal C$ is called a **VC-class** if its index is finite.

Convention

The infimum over the empty set is taken to be infinity

Example

Real line

$$C = \{(-\infty, c] : c \in \mathbb{R}\}, \quad \{x_1, x_2\} \subset \mathbb{R}$$

Example

Real line

$$C = \{(-\infty, c] : c \in \mathbb{R}\}, \quad \{x_1, x_2\} \subset \mathbb{R}$$

Combinatorial results

Lemma 2.6.2 (Sauer's lemma)

Let $\{x_1, \ldots, x_n\} \subset \mathcal{X}$. Then the total number of subsets $\Delta_n(\mathcal{C}, x_1, \ldots, x_n)$ picked out by \mathcal{C} is bounded above by the number of subsets of $\{x_1, \ldots, x_n\}$ shattered by \mathcal{C} .

Combinatorial results

Lemma 2.6.2 (Sauer's lemma)

Let $\{x_1,\ldots,x_n\}\subset\mathcal{X}$. Then the total number of subsets $\Delta_n(\mathcal{C},x_1,\ldots,x_n)$ picked out by \mathcal{C} is bounded above by the number of subsets of $\{x_1,\ldots,x_n\}$ shattered by \mathcal{C} .

$$\Delta_n(\mathcal{C},x_1,\ldots,x_n)=\#\left\{C\cap\{x_1,\ldots,x_n\}:C\in\mathcal{C}\right\}$$

Without loss of generality:

$$C = \{\{x_1\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}\$$

Note that this way $|\mathcal{C}| = \Delta_n(\mathcal{C}, x_1, \dots, x_n)$.

Lemma 2.6.2 (Sauer's lemma)

Let $\{x_1, \ldots, x_n\} \subset \mathcal{X}$. Then $|\mathcal{C}|$ is bounded above by the number of subsets of $\{x_1, \ldots, x_n\}$ shattered by \mathcal{C} .

Definition

Call C hereditary if it has the property that $B \in C$ whenever $B \subset C$, for a set $C \in C$.

Note

Each of the sets in a hereditary set is shattered.

Lemma 2.6.2 (Sauer's lemma)

Let $\{x_1, \ldots, x_n\} \subset \mathcal{X}$. Then $|\mathcal{C}|$ is bounded above by the number of subsets of $\{x_1, \ldots, x_n\}$ shattered by \mathcal{C} .

Definition

Call C hereditary if it has the property that $B \in C$ whenever $B \subset C$, for a set $C \in C$.

Note

Each of the sets in a hereditary set is shattered.

Idea

Transform each $\mathcal C$ to a hereditary collection, without changing the cardinality and without increasing the number of shattered sets.

$$\mathcal{C} = \{\{x_1\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

$$C = \{\{x_1\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

Definition

For 1 < i < n and $C \in C$

$$\mathcal{T}_i(C) = egin{cases} C - \{x_i\}, & C - \{x_i\}
otin C, & ext{else}. \end{cases}$$

Definition

For $1 \le i \le n$ and $C \in \mathcal{C}$

$$\mathcal{T}_i(C) = egin{cases} C - \{x_i\}, & C - \{x_i\}
otin C, & ext{else}. \end{cases}$$

Note

ullet T_i is one-to-one, so $|\mathcal{C}| = |T_i(\mathcal{C})|$

Example

$$C = \{\{x_1\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

 $T_1(C) = \{\{x_1\}, \{x_4\}, \{x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$

Definition

For $1 \le i \le n$ and $C \in \mathcal{C}$

$$T_i(C) = egin{cases} C - \{x_i\}, & C - \{x_i\}
otin C, & ext{else}. \end{cases}$$

Note

- T_i is one-to-one, so $|\mathcal{C}| = |T_i(\mathcal{C})|$
 - Every subset $A \subset \{x_1, \dots, x_n\}$ that is shattered by $T_i(\mathcal{C})$ is shattered by \mathcal{C}

Example

$$C = \{\{x_1\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

$$T_1(\mathcal{C}) = \{\{x_1\}, \{x_4\}, \{x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

$$T_1(\mathcal{C}) \text{ shatters } \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_1, x_4\}, \{x_3, x_4\}$$

$$\mathcal{C} = \{\{x_1\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

$$T_1(\mathcal{C}) = \{\{x_1\}, \{x_4\}, \{x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_4\}\}$$

$$(T_2\circ T_1)(\mathcal{C})=\{\{x_1\},\{x_4\},\{x_3\},\{x_3,x_4\},\{x_1,x_3,x_4\}\}$$

$$(T_3 \circ T_2 \circ T_1)(C) = \{\{x_1\}, \{x_4\}, \{x_3\}, \{x_3, x_4\}, \{x_1, x_4\}\}$$

Corollary

Corollary 2.6.3

For a VC-class of sets of index V(C), one has

$$\max_{x_1,\ldots,x_n} \Delta_n(\mathcal{C},x_1,\ldots,x_n) \leq \sum_{j=0}^{V(\mathcal{C})-1} \binom{n}{j}.$$

Consequently, the numbers on the left side grow polynomially of order at most $O\left(n^{V(\mathcal{C})-1}\right)$ as $n \to \infty$.

Most important theorem

Theorem 2.6.4

There exists a universal constant K such that for any VC-class C of sets, any probability measure Q, any $r \ge 1$, and $0 < \epsilon < 1$,

$$N(\epsilon, \mathcal{C}, L_r(Q)) \leq KV(\mathcal{C}) (4e)^{V(\mathcal{C})} \left(rac{1}{\epsilon}
ight)^{r(V(\mathcal{C})-1)}$$

Proof idea

- Prove it for r = 1 and use a simple argument to show for r > 1
- ② Use problem 2.6.3 to show it is enough to check if it holds for empirical type measures
- Use some difficult arguments on the n-dimensional hypercube to obtain a bound on the packing number

Proof parts

• Simple argument for the covering number for general r > 1 if the inequality holds for r = 1

Proof parts

1 Simple argument for the covering number for general r > 1 if the inequality holds for r = 1

Suppose

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq f(\epsilon).$$

Proof parts

① Simple argument for the covering number for general r > 1 if the inequality holds for r = 1

Suppose

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq f(\epsilon).$$

Note that for any $C, D \in C$ we have

$$\|\mathbb{1}_C - \mathbb{1}_D\|_{Q,r} = \left(\int |\mathbb{1}_C - \mathbb{1}_D|^r dQ\right)^{1/r}$$

$$= \left(\int |\mathbb{1}_C - \mathbb{1}_D| dQ\right)^{1/r}$$

$$= \left(\int \mathbb{1}_{(C \cup D) \setminus (C \cap D)} dQ\right)^{1/r}$$

$$= Q^{1/r}(C \triangle D)$$

Proof parts

① Simple argument for the covering number for general r > 1 if the inequality holds for r = 1

Suppose

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq f(\epsilon).$$

Then

$$N(\epsilon, \mathcal{C}, L_r(Q)) = N(\epsilon^r, \mathcal{C}, L_1(Q)) \leq f(\epsilon^r)$$

Proof parts

Use problem 2.6.3 to show that it is enough to check if it holds for empirical type measures

Suppose Q is a measure on a finite set of points y_1, \ldots, y_k such that $Q(\{y_i\}) = l_i/n$ for integers l_1, \ldots, l_k that add up to n. We assume again that each set in $\mathcal C$ is a subset of these points.

$$Q(\{y_1\})=\frac{1}{5}$$

$$Q({y_1}) = \frac{1}{5}$$
 $Q({y_2}) = \frac{2}{5}$

 $Q(\{y_3\})=\frac{2}{5}$

$$Q({y_1}) = \frac{1}{5}$$
 $Q({y_2}) = \frac{2}{5}$

$$Q(\{y_2\})=\frac{2}{5}$$

$$Q(\{y_3\})=\frac{2}{5}$$

$$\mathcal{C} = \{\{y_1\}, \{y_2\}, \{y_1, y_2\}, \{y_2, y_3\}\}$$

$$\mathcal{C} = \{\{y_1\}, \{y_2\}, \{y_1, y_2\}, \{y_2, y_3\}\}$$

$$\widetilde{\mathcal{C}} = \{\{x_1\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4, x_5\}\}$$

$$\mathcal{C} = \{\{y_1\}, \{y_2\}, \{y_1, y_2\}, \{y_2, y_3\}\}$$

$$\widetilde{\mathcal{C}} = \{\{x_1\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4, x_5\}\}$$

Note

The *VC*-index of $\widetilde{\mathcal{C}}$ is the same as \mathcal{C}

Covering number for the new collection $\widetilde{\mathcal{C}}$

Let $C, D \in \mathcal{C}$, then we have $\widetilde{C}, \widetilde{D} \in \widetilde{\mathcal{C}}$. Take $\widetilde{Q}(\{x_i\}) = \frac{1}{n}$ for all 1 < i < n. Then

$$Q(C\triangle D) = \widetilde{Q}(\widetilde{C}\triangle\widetilde{D})$$

Covering number for the new collection $\widetilde{\mathcal{C}}$

Let $C, D \in \mathcal{C}$, then we have $\widetilde{C}, \widetilde{D} \in \widetilde{\mathcal{C}}$. Take $\widetilde{Q}(\{x_i\}) = \frac{1}{n}$ for all 1 < i < n. Then

$$Q(C\triangle D) = \widetilde{Q}(\widetilde{C}\triangle\widetilde{D})$$

Remember

$$\|\mathbb{1}_C - \mathbb{1}_D\|_{Q,1} = Q(C \triangle D)$$

Covering number for the new collection $\widetilde{\mathcal{C}}$

Let $C, D \in \mathcal{C}$, then we have $\widetilde{C}, \widetilde{D} \in \widetilde{\mathcal{C}}$. Take $\widetilde{Q}(\{x_i\}) = \frac{1}{n}$ for all $1 \le i \le n$. Then

$$Q(C\triangle D) = \widetilde{Q}(\widetilde{C}\triangle\widetilde{D})$$

Remember

$$\|\mathbb{1}_C - \mathbb{1}_D\|_{Q,1} = Q(C \triangle D)$$

Conclusion

$$N\left(\epsilon,\widetilde{\mathcal{C}},L_1(\widetilde{Q})\right)=N\left(\epsilon,\mathcal{C},L_1(Q)\right)$$

Proof parts

Use arguments on the n-dimensional hypercube to obtain a bound on the packing number

Proof parts

Use arguments on the *n*-dimensional hypercube to obtain a bound on the packing number

Note

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq D(\epsilon, \mathcal{C}, L_1(Q))$$

$$\mathcal{C} = \{\{x_1\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4, x_5\}, \emptyset\}$$

$$C = \{\{x_1\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4, x_5\}, \emptyset\}$$

$$C_1 = egin{pmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{pmatrix} \quad C_2 = egin{pmatrix} 0 \ 1 \ 1 \ 0 \ 0 \end{pmatrix} \quad C_3 = egin{pmatrix} 1 \ 1 \ 1 \ 0 \ 0 \end{pmatrix} \quad C_4 = egin{pmatrix} 0 \ 1 \ 1 \ 1 \ 1 \end{pmatrix} \quad C_5 = egin{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

$$\mathcal{C} = \{\{x_1\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4, x_5\}, \emptyset\}$$

Note

The collection $\mathcal C$ can be identified with a subset $\mathcal Z$ of the vertices of the n-dimensional hypercube $[0,1]^n$

$$C \longrightarrow \mathcal{Z} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathcal{C} \longrightarrow \mathcal{Z} \longrightarrow egin{pmatrix} 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$I = \{1, 2\}$$
 $\mathcal{Z}_I := \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$

$$C \longrightarrow \mathcal{Z} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$I = \{1, 2\}$$
 $\mathcal{Z}_I := \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$

Note

- \mathcal{Z}_I corresponds to the collection of $C \cap \{x_i : i \in I\}$
- $\{x_1 : i \in I\}$ is shattered of \mathcal{Z}_I consist of all $2^{|I|}$ possible columns
- This is only possible for |I| < V(C), so define V = V(C) 1

Note

We transformed our problem from $\mathcal C$ to $\mathcal Z.$ However, we also need to transform our metric!

$$\|\mathbb{1}_C - \mathbb{1}_D\|_{Q,1} = Q(C \triangle D)$$

Note

We transformed our problem from $\mathcal C$ to $\mathcal Z$. However, we also need to transform our metric!

$$\|\mathbb{1}_C - \mathbb{1}_D\|_{Q,1} = Q(C \triangle D)$$

Hamming metric

Let the vertices $w, z \in \mathcal{Z}$ correspond to the sets $C, D \in \mathcal{C}$ respectively. The *Hamming metric* on \mathcal{Z} is defined by

$$d(w,z) = \frac{1}{n} \sum_{i=1}^{n} |w_j - z_j| = \frac{1}{n} \sum_{i=1}^{n} (w_j - z_j)^2, \quad z, w \in \mathcal{Z}.$$

With this metric we have $Q(C\triangle D) = d(w, z)$.

Note

$$N(\epsilon, C, L_1(Q)) \leq D(\epsilon, C, L_1(Q))$$

Note

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq D(\epsilon, \mathcal{C}, L_1(Q))$$

ϵ -seperation

Fix a maximal ϵ -seperated collection of sets $C \in \mathcal{C}$. For simplicity of notation we assume that \mathcal{C} is ϵ -seperated, so for $C, D \in \mathcal{C}$

$$\|\mathbb{1}_{C} - \mathbb{1}_{D}\|_{Q,1} > \epsilon$$

Note

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq D(\epsilon, \mathcal{C}, L_1(Q))$$

ϵ-seperation

Fix a maximal ϵ -seperated collection of sets $C \in \mathcal{C}$. For simplicity of notation we assume that \mathcal{C} is ϵ -seperated, so for $C, D \in \mathcal{C}$

$$\|\mathbb{1}_{C} - \mathbb{1}_{D}\|_{Q,1} > \epsilon$$

Note

In this way, \mathcal{Z} is also ϵ -seperated using the Hamming distance. For $w, z \in \mathcal{Z}$ corresponding to $C, D \in \mathcal{C}$ we have

$$d(w,z) > \epsilon$$
.

Note

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq D(\epsilon, \mathcal{C}, L_1(Q)) \leq |\mathcal{Z}|$$

ϵ-seperation

Fix a maximal ϵ -seperated collection of sets $C \in \mathcal{C}$. For simplicity of notation we assume that \mathcal{C} is ϵ -seperated, so for $C, D \in \mathcal{C}$

$$\|\mathbb{1}_{C} - \mathbb{1}_{D}\|_{Q,1} > \epsilon$$

Note

In this way, \mathcal{Z} is also ϵ -seperated using the Hamming distance. For $w, z \in \mathcal{Z}$ corresponding to $C, D \in \mathcal{C}$ we have

$$d(w,z) > \epsilon$$
.

Proof

Introducing random variables

Let Z be a random variable with a discrete uniform distribution on the set Z in $[0,1]^n$, so

$$P(Z=z)=\frac{1}{|\mathcal{Z}|},\quad z\in\mathcal{Z}.$$

Proof

Introducing random variables

Let Z be a random variable with a discrete uniform distribution on the set Z in $[0,1]^n$, so

$$P(Z=z)=\frac{1}{|\mathcal{Z}|},\quad z\in\mathcal{Z}.$$

Fix integer

Fix integer $V \le m < n$. Let $I \subseteq \{1, 2, ..., n\}$ such that |I| = m + 1.

Proof

Introducing random variables

Let Z be a random variable with a discrete uniform distribution on the set Z in $[0,1]^n$, so

$$P(Z=z)=\frac{1}{|\mathcal{Z}|}, \quad z\in\mathcal{Z}.$$

Fix integer

Fix integer $V \le m < n$. Let $I \subseteq \{1, 2, ..., n\}$ such that |I| = m + 1.

Lemma 2.6.6

Let Z be an arbitrary random vector taking values in $\mathcal{Z} \subset \{0,1\}^n$ that corresponds to a VC-class \mathcal{C} of subsets of a set of points $\{x_1,\ldots,x_n\}$. Then

$$\sum^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(\mathcal{C}) - 1$$

Introducing random variables

Let Z be a random variable with a discrete uniform distribution on the set Z in $[0,1]^n$, so

$$P(Z=z)=\frac{1}{|\mathcal{Z}|}, \quad z\in\mathcal{Z}.$$

Fix integer

Fix integer $V \le m < n$. Let $I \subseteq \{1, 2, ..., n\}$ such that |I| = m + 1.

Our case

Apply the lemma to Z_l :

$$\sum_{i \in I} \mathbb{E}\left[\mathsf{Var}\left(Z_i | Z_{I - \{i\}} \right) \right] \leq V$$

$$\sum_{i\in I}\mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{I-\{i\}}\right)\right]\leq V$$

$$\sum_{\substack{I\subseteq\{1,\dots,n\}\\|I|=m+1}}\sum_{i\in I}\mathbb{E}\left[\text{Var}\left(Z_i|Z_{I-\{i\}}\right)\right]\leq \sum_{\substack{I\subseteq\{1,\dots,n\}\\|I|=m+1}}V$$

$$\sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}}\sum_{i\notin J}\mathbb{E}\left[\text{Var}\left(Z_{i}|Z_{J}\right)\right]\leq\binom{n}{m+1}V$$

$$\sum_{J\subseteq \{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\mathsf{Var}\left(Z_i|Z_J\right)\right]\leq \binom{n}{m+1}V$$

|J|=m

$$\sum_{J\subseteq \{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\text{Var}\left(Z_i|Z_J\right)\right]\leq \binom{n}{m+1}V$$

|J|=m

Remember

Z is uniformly distributed on the set $\mathcal Z$

Remember

Z is uniformly distributed on the set Z

Consequence

 $Z|Z_J = s$ is uniformly distributed over the set of columns $z \in \mathcal{Z}$ with $z_J = s$. Call N_s the number of these columns.

Remember

Z is uniformly distributed on the set \mathcal{Z}

Consequence

 $Z|Z_J = s$ is uniformly distributed over the set of columns $z \in \mathcal{Z}$ with $z_{J} = s$. Call N_s the number of these columns.

Define

Let W and \tilde{W} be independent random vectors defined on a common probability space distributed uniformly over these columns.

Remember

 $\mathcal Z$ is $\epsilon\text{-seperated}$

Remember

 \mathcal{Z} is ϵ -seperated

Consequence

If $W \neq \tilde{W}$, we have $d(W, \tilde{W}) > \epsilon$. This event happens with probability $1 - 1/N_s$. Else, $d(W, \tilde{W}) = 0$.

Distance

 $d(W, \tilde{W}) > \epsilon$ with probability $1 - 1/N_s$

Distance

$$d(W, \tilde{W}) > \epsilon$$
 with probability $1 - 1/N_s$

$$\sum_{i \notin J} \operatorname{Var} (Z_i | Z_J = s) = \frac{1}{2} \sum_{i=1}^n \left(2\mathbb{E} \left[W_i^2 \right] - 2\mathbb{E} \left[W_i \right]^2 \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \left(\mathbb{E} \left[W_i^2 \right] + \mathbb{E} \left[\tilde{W}_i^2 \right] - 2\mathbb{E} \left[W_i \right] \mathbb{E} \left[\tilde{W}_i \right] \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[\left(W_i - \tilde{W}_i \right)^2 \right]$$

Distance

 $d(W, \tilde{W}) > \epsilon$ with probability $1 - 1/N_s$

$$\sum_{i \notin J} \operatorname{Var} \left(Z_i | Z_J = s \right) = \frac{1}{2} \sum_{i=1}^n \left(2\mathbb{E} \left[W_i^2 \right] - 2\mathbb{E} \left[W_i \right]^2 \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \left(\mathbb{E} \left[W_i^2 \right] + \mathbb{E} \left[\tilde{W}_i^2 \right] - 2\mathbb{E} \left[W_i \right] \mathbb{E} \left[\tilde{W}_i \right] \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[\left(W_i - \tilde{W}_i \right)^2 \right]$$

Remember

$$d(w,z) = \frac{1}{n} \sum_{i=1}^{n} |w_j - z_j| = \frac{1}{n} \sum_{i=1}^{n} (w_j - z_j)^2, \quad z, w \in \mathcal{Z}.$$

Distance

$d(W, \hat{W}) > \epsilon$ with probability $1 - 1/N_s$

$$\sum_{i \notin J} \text{Var} (Z_i | Z_J = s) = \frac{1}{2} \sum_{i=1}^n \left(2\mathbb{E} \left[W_i^2 \right] - 2\mathbb{E} \left[W_i \right]^2 \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \left(\mathbb{E} \left[W_i^2 \right] + \mathbb{E} \left[\tilde{W}_i^2 \right] - 2\mathbb{E} \left[W_i \right] \mathbb{E} \left[\tilde{W}_i \right] \right)$$

$$= \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[\left(W_i - \tilde{W}_i \right)^2 \right]$$

$$= \frac{1}{2} n \mathbb{E} \left[d(W, \tilde{W}) \right]$$

$$\geq \frac{1}{2} n \epsilon \left(1 - \frac{1}{N_s} \right)$$

$$\sum_{J\subseteq \{1,...,n\}} \mathbb{E}\left[\sum_{i\notin J} \mathsf{Var}\left(Z_i|Z_J\right)\right] \leq \binom{n}{m+1} V$$

|J|=m

$$\sum_{i \in I} \operatorname{Var}(Z_i | Z_J = s) \ge \frac{1}{2} n \epsilon \left(1 - \frac{1}{N_s} \right)$$

$$\sum_{J\subseteq\{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\operatorname{Var}\left(Z_{i}|Z_{J}\right)\right]\leq\binom{n}{m+1}V$$

$$\sum_{i \neq J} \operatorname{Var}\left(Z_i | Z_J = s\right) \geq \frac{1}{2} n \epsilon \left(1 - \frac{1}{N_s}\right)$$

Note

Z is uniformly distributed over \mathcal{Z} and there are N_s columns with $z_J = s$:

$$P(Z_J = s) = \frac{N_s}{|\mathcal{Z}|}$$

$$\sum_{J\subseteq\{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\operatorname{Var}\left(Z_{i}|Z_{J}\right)\right]\leq\binom{n}{m+1}V$$

$$\mathbb{E}\left[\sum_{j \notin J} \operatorname{Var}\left(Z_{i} | Z_{J}\right)\right] \geq \sum_{s \in \mathcal{Z}_{i}} \frac{N_{s}}{|\mathcal{Z}|} \frac{1}{2} n \epsilon \left(1 - \frac{1}{N_{s}}\right)$$

$$\sum_{J\subseteq\{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\mathsf{Var}\left(Z_i|Z_J\right)\right]\leq \binom{n}{m+1}V$$

$$\sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}} \mathbb{E}\left[\sum_{i\notin J} \operatorname{Var}\left(Z_i|Z_J\right)\right] \geq \sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}} \sum_{s\in\mathcal{Z}_j} \frac{N_s}{|\mathcal{Z}|} \frac{1}{2} n\epsilon \left(1 - \frac{1}{N_s}\right)$$

$$\sum_{J\subseteq \{1,\ldots,n\}} \mathbb{E}\left[\sum_{i\notin J} \text{Var}\left(Z_i|Z_J\right)\right] \leq \binom{n}{m+1} V$$

$$\sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}}\mathbb{E}\left[\sum_{i\notin J}\mathsf{Var}\left(Z_i|Z_J\right)\right]\geq \binom{n}{m}\frac{1}{2}n\epsilon-\frac{1}{2}n\epsilon\sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}}\sum_{s\in\mathcal{Z}_j}\frac{1}{|\mathcal{Z}|}$$

$$\sum_{J\subseteq\{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\operatorname{Var}\left(Z_{i}|Z_{J}\right)\right]\leq\binom{n}{m+1}V$$

$$\sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}} \mathbb{E}\left[\sum_{i\notin J} \operatorname{Var}\left(Z_i|Z_J\right)\right] \geq \binom{n}{m} \frac{1}{2} n\epsilon - \frac{1}{2} n\epsilon \sum_{\substack{J\subseteq\{1,\ldots,n\}\\|J|=m}} \frac{|\mathcal{Z}_J|}{|\mathcal{Z}|}$$

|J|=m

$$\sum_{J\subseteq\{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\operatorname{Var}\left(Z_{i}|Z_{J}\right)\right]\leq\binom{n}{m+1}V$$

$$\sum_{J\subseteq \{1,\ldots,n\}} \mathbb{E}\left[\sum_{i\notin J} \text{Var}\left(Z_i|Z_J\right)\right] \geq \binom{n}{m} \frac{1}{2} n\epsilon - \frac{1}{2} n\epsilon \binom{n}{m} \frac{\overline{|\mathcal{Z}_J|}}{|\mathcal{Z}|}$$

$$\sum_{J\subseteq\{1,\ldots,n\}}\mathbb{E}\left[\sum_{i\notin J}\operatorname{Var}\left(Z_{i}|Z_{J}\right)\right]\leq\binom{n}{m+1}V$$

$$\sum_{\substack{J\subseteq\{1,\ldots,n\}\\ |J|=m}} \mathbb{E}\left[\sum_{i\notin J} \operatorname{Var}\left(Z_i|Z_J\right)\right] \geq \binom{n}{m} \frac{1}{2} n\epsilon \left(1 - \frac{\overline{|Z_J|}}{|Z|}\right)$$

$$\binom{n}{m}\frac{1}{2}n\epsilon\left(1-\frac{\overline{|\mathcal{Z}_J|}}{|\mathcal{Z}|}\right)\leq \binom{n}{m+1}V$$

$$\binom{n}{m}\frac{1}{2}n\epsilon\left(1-\frac{\overline{|\mathcal{Z}_J|}}{|\mathcal{Z}|}\right)\leq \binom{n}{m+1}V$$

 $N(\epsilon, \mathcal{C}, L_1(Q)) \leq D(\epsilon, \mathcal{C}, L_1(Q)) \leq |\mathcal{Z}|$

$$|\mathcal{Z}| \leq \frac{\overline{|\mathcal{Z}_J|}n\epsilon(m+1)}{n\epsilon(m+1) - 2nV + 2mV} \leq \frac{\overline{|\mathcal{Z}_J|}\epsilon(m+1)}{\epsilon(m+1) - 2V}$$

$$|\mathcal{Z}| \leq \frac{\overline{|\mathcal{Z}_J|} n \epsilon (m+1)}{n \epsilon (m+1) - 2nV + 2mV} \leq \frac{\overline{|\mathcal{Z}_J|} \epsilon m}{\epsilon m - 2V}$$

Corollary 2.6.3

For a VC-class of sets of index V(C), one has

$$\max_{x_1,\dots,x_n} \Delta_n(\mathcal{C},x_1,\dots,x_n) \leq \sum_{j=0}^{V(\mathcal{C})-1} \binom{n}{j} \leq \left(\frac{n \cdot e}{V(\mathcal{C})-1}\right)^{V(\mathcal{C})-1}.$$

Corollary 2.6.3

For a VC-class of sets of index V(C), one has

$$\max_{x_1,\ldots,x_n} \Delta_n(\mathcal{C},x_1,\ldots,x_n) \leq \sum_{i=0}^{V(\mathcal{C})-1} \binom{n}{j} \leq \left(\frac{n \cdot e}{V(\mathcal{C})-1}\right)^{V(\mathcal{C})-1}.$$

Note

 \mathcal{Z}_I corresponds to the collection of $C \cap \{x_i : i \in I\}$

Corollary 2.6.3

For a VC-class of sets of index V(C), one has

$$\max_{x_1,\ldots,x_n} \Delta_n(\mathcal{C},x_1,\ldots,x_n) \leq \sum_{i=0}^{V(\mathcal{C})-1} \binom{n}{j} \leq \left(\frac{n \cdot e}{V(\mathcal{C})-1}\right)^{V(\mathcal{C})-1}.$$

Note

 \mathcal{Z}_I corresponds to the collection of $C \cap \{x_i : i \in I\}$

Consequence

$$|\mathcal{Z}| \leq \frac{\overline{|\mathcal{Z}_J|} \epsilon m}{\epsilon m - 2V} \leq \frac{\sum_{j=0}^V \binom{m}{j} \epsilon m}{\epsilon m - 2V} \leq \left(\frac{e}{V}\right)^V \frac{m^{V+1} \epsilon}{m \epsilon - 2V}$$

Optimatization

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq |\mathcal{Z}| \leq \left(\frac{e}{V}\right)^V \frac{m^{V+1}\epsilon}{m\epsilon - 2V}$$

Optimatization

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq |\mathcal{Z}| \leq \left(\frac{e}{V}\right)^V \frac{m^{V+1}\epsilon}{m\epsilon - 2V}$$

Optimal m

Differentiating gives $m = 2(V + 1)/\epsilon$ as the optimal solution.

Optimatization

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq |\mathcal{Z}| \leq \left(\frac{e}{V}\right)^V \frac{m^{V+1}\epsilon}{m\epsilon - 2V}$$

Optimal m

Differentiating gives $m = 2(V + 1)/\epsilon$ as the optimal solution.

Note

- Discretizing m changes the upper bound only by a constant factor
- $V \leq m < n$
- n depends on Q, but we can make this arbitrarily large

Optimatization

$$N(\epsilon, \mathcal{C}, L_1(Q)) \leq |\mathcal{Z}| \leq \left(\frac{e}{V}\right)^V \frac{m^{V+1}\epsilon}{m\epsilon - 2V}$$

Optimal m

Differentiating gives $m = 2(V + 1)/\epsilon$ as the optimal solution.

Note

- Discretizing *m* changes the upper bound only by a constant factor
- $V \leq m < n$
- *n* depends on *Q*, but we can make this arbitrarily large

Bound

$$N\left(\epsilon,\mathcal{C},L_1(Q)
ight) \leq K(V+1)(4e)^V \left(rac{1}{\epsilon}
ight)^V$$

Lemma 2.6.6

Lemma 2.6.6

Let Z be an arbitrary random vector taking values in $\mathcal{Z} \subset \{0,1\}^n$ that corresponds to a VC-class \mathcal{C} of subsets of a set of points $\{x_1,\ldots,x_n\}$. Then

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(\mathcal{C}) - 1$$

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(\mathcal{C}) - 1$$

Probabilities

 $Z_i|Z_j, j \neq i$ means that Z can only have two values. Call these v and w, where $v_i = 0$ and $w_i = 1$. Write p(z) := P(Z = z), then $Z_i = 1$ or 0 with probabilities

$$p := \frac{p(w)}{p(w) + p(v)}$$
 $1 - p = \frac{p(v)}{p(w) + p(v)}$

$$\sum_{i=1}^{n} \mathbb{E}\left[\text{Var}\left(Z_{i} | Z_{j}, j \neq i \right) \right] \leq V(\mathcal{C}) - 1$$

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(C) - 1$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i} | Z_{j}, j \neq i \right) \right] \leq V(\mathcal{C}) - 1$$

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i} | Z_{j}, j \neq i \right) \right] \leq V(\mathcal{C}) - 1$$

Notation

Let \mathcal{E} be all edges in the graph and \mathcal{E}_i be the set of edges that cross the *i*th dimension.

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(\mathcal{C}) - 1$$

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] = \sum_{i=1}^{n} \sum_{\{v,w\} \in \mathcal{E}_{i}} (p(v) + p(w)) \cdot p(1-p)$$

$$= \sum_{\{v,w\} \in \mathcal{E}} p(v) \cdot p(w)$$

$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(\mathcal{C}) - 1$

$$\sum_{i=1}^{n} \mathbb{E} \left[\text{Var} \left(Z_{i} | Z_{j}, j \neq i \right) \right] = \sum_{\{v, w\} \in \mathcal{E}} p(v) \cdot p(w)$$
$$= \sum_{v \in \mathcal{Z}} \sum_{\{v, w\} \in \tilde{\mathcal{E}}} p(v) \cdot p(w)$$

$$\sum_{i=1}^{n} \mathbb{E} \left[\text{Var} \left(Z_i | Z_j, j \neq i \right) \right] = \sum_{\{v, w\} \in \mathcal{E}} p(v) \cdot p(w)$$
$$= \sum_{v \in \mathcal{Z}} \sum_{\{v, w\} \in \tilde{\mathcal{E}}} p(v) \cdot p(w)$$

Problem 2.6.5 shows that $\tilde{\mathcal{E}}$ can be formed such that

$$\sum_{(v,w)\in\tilde{\mathcal{E}}}1\leq V(\mathcal{C})-1,\quad v\in\mathcal{Z}$$

$$\sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}\left(Z_{i}|Z_{j}, j \neq i\right)\right] \leq V(\mathcal{C}) - 1$$

$$\sum_{i=1}^{n} \mathbb{E} \left[\text{Var} \left(Z_{i} | Z_{j}, j \neq i \right) \right] = \sum_{\{v, w\} \in \mathcal{E}} p(v) \cdot p(w)$$

$$= \sum_{v \in \mathcal{Z}} \sum_{(v, w) \in \tilde{\mathcal{E}}} p(v) \cdot p(w)$$

$$\leq \sum_{v \in \mathcal{Z}} p(v) \cdot (V(\mathcal{C}) - 1)$$

$$= V(\mathcal{C}) - 1$$

VC-Classes of Functions

Theorem 2.6.4

There exists a universal constant K such that for any VC-class $\mathcal C$ of sets, any probability measure Q, any $r \geq 1$, and $0 < \epsilon < 1$,

$$N(\epsilon, \mathcal{C}, L_r(Q)) \leq KV(\mathcal{C})(4e)^{V(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{C})-1)}.$$

VC-Classes of Functions

Theorem 2.6.4

There exists a universal constant K such that for any VC-class \mathcal{C} of sets, any probability measure Q, any $r \geq 1$, and $0 < \epsilon < 1$,

$$N(\epsilon, \mathcal{C}, L_r(Q)) \leq KV(\mathcal{C})(4e)^{V(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{C})-1)}.$$

Question

Can we also find such a result for function classes?

Subgraphs

Subgraph

The subgraph of a function $f:\mathcal{X}\to\mathbb{R}$ is the subset of $\mathcal{X}\times\mathbb{R}$ given by

$$\{(x,t): t < f(x)\}$$

Subgraphs

Subgraph

The *subgraph* of a function $f: \mathcal{X} \to \mathbb{R}$ is the subset of $\mathcal{X} \times \mathbb{R}$ given by

$$\{(x, t) : t < f(x)\}$$

Subgraphs

Subgraph

The *subgraph* of a function $f: \mathcal{X} \to \mathbb{R}$ is the subset of $\mathcal{X} \times \mathbb{R}$ given by

$$\{(x, t) : t < f(x)\}$$

VC-Class

A collection $\mathcal F$ of measurable functions is called a VC-class, if the collection of all subgraphs of the functions in $\mathcal F$ forms a VC-class of sets in $\mathcal X \times \mathbb R$.

Main Theorem

Theorem 2.6.7

For a VC-class of functions with measurable envelope function F and $r \ge 1$, one has for any probability measure Q with $\|F\|_{Q,r} > 0$,

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)},$$

for a universal constant K and $0 < \epsilon < 1$.

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F}) (16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

Collection of sets

Let C be the collection of subgraphs C_f of functions $f \in \mathcal{F}$.

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

Collection of sets

Let C be the collection of subgraphs C_f of functions $f \in \mathcal{F}$.

Goal

$$N(\epsilon 2QF, \mathcal{F}, L_1(Q)) o N(\epsilon, \mathcal{C}, L_1(P))$$

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)
ight) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(rac{1}{\epsilon}
ight)^{r(V(\mathcal{F})-1)}$$

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

$$f(x) \wedge g(x) \leq t \leq f(x) \wedge g(x) + |f(x) - g(x)|, \quad x \in \mathcal{X}$$

$$Q imes \lambda(C_f \Delta C_g) = \int_{\mathcal{X}} \int_{\mathbb{R}} \mathbb{1}_{\{t: f(x) \wedge g(x) \leq t \leq f(x) \wedge g(x) + |f(x) - g(x)|\}} d\lambda(t) dQ(x)$$

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

$$Q \times \lambda(C_f \Delta C_g) = \int_{\mathcal{X}} \int_{\mathbb{R}} \mathbb{1}_{\{t: f(x) \wedge g(x) \leq t \leq f(x) \wedge g(x) + |f(x) - g(x)|\}} d\lambda(t) dQ(x)$$

$$= \int_{\mathcal{X}} |f(x) - g(x)| dQ(x)$$

$$= Q(|f - g|)$$

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

F is an envelope function so $|f(x)| \le F(x)$ for all $x \in \mathcal{X}$.

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

F is an envelope function so $|f(x)| \le F(x)$ for all $x \in \mathcal{X}$.

Measure

Renormalize $Q \times \lambda$ to a probability measure on the set $\{(x,t): |t| \leq F(x)\}$

F is an envelope function so $|f(x)| \le F(x)$ for all $x \in \mathcal{X}$.

Measure

Renormalize $Q \times \lambda$ to a probability measure on the set $\{(x,t): |t| \leq F(x)\}$

Total mass

$$Q \times \lambda(\{(x,t): |t| \leq F(x)\}) = 2Q(F)$$

$$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

F is an envelope function so $|f(x)| \le F(x)$ for all $x \in \mathcal{X}$.

Measure

Renormalize $Q \times \lambda$ to a probability measure on the set $\{(x,t): |t| \leq F(x)\}$

Total mass

$$Q \times \lambda(\{(x,t): |t| \le F(x)\}) = 2Q(F)$$

So $P := \frac{Q \times \lambda}{2Q(F)}$ is a probability measure on $\{(x, t) : |t| \le F(x)\}$.

$N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq \mathit{KV}(\mathcal{F}) (16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$

Covering numbers

$$Q(|f-g|) = Q \times \lambda(C_f \Delta C_g) = 2Q(F) \cdot P(C_f \Delta C_g)$$

$$Q(|f-g|) = Q \times \lambda(C_f \Delta C_g) = 2Q(F) \cdot P(C_f \Delta C_g)$$

 $N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$

Conclusion

Proof

$$N(\epsilon QF, \mathcal{F}, L_1(Q)) = N(\epsilon/2, \mathcal{C}, L_1(P)) \leq KV(\mathcal{F}) \left(\frac{8e}{\epsilon}\right)^{V(\mathcal{F})-1}$$

 $Q(|f-g|) = Q \times \lambda(C_f \Delta C_g) = 2Q(F) \cdot P(C_f \Delta C_g)$

 $N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$

Proof

Conclusion
$$N(\epsilon QF, \mathcal{F}, L_1(Q)) = N(\epsilon/2, \mathcal{C}, L_1(P)) \le KV(\mathcal{F}) \left(\frac{8e}{\epsilon}\right)^{V(\mathcal{F})-1}$$

$$\epsilon \|F\|_{Q,1} = \epsilon Q(|F|) \ge \epsilon Q(F)$$

 $Q(|f-g|) = Q \times \lambda(C_f \Delta C_g) = 2Q(F) \cdot P(C_f \Delta C_g)$

 $\epsilon \|F\|_{Q,1} = \epsilon Q(|F|) \ge \epsilon Q(F)$

 $N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right) \leq KV(\mathcal{F})(16e)^{V(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$

Proof

Rest of the proof

For r > 1, us a measure R with density $\frac{F^{r-1}}{OF^{r-1}}$ such that

$$Q|f-g|^r < 2^{r-1}R|f-g|QF^{r-1}$$