[TAM] DASH 2025 Health Check

Welcome to your DASH Health Check!

This notebook is prepared by a Datadog Technical Account Manager (TAM) to review your current implementations and best practices.

Appointment

2 other agenda items are also scheduled for this time.

Show

dbt labs

Wednesday, June 11, 2025

- () 12:00 PM 12:45 PM ET
- O Health Check Room 2
- + Add to calendar

Host

Gaurav Sirdeshpande

Senior Technical Account Manager, Datadog

Attendee

Eric Swanson

Site Reliability Engineer, dbt Labs

Infra and APM Hosts

Infra Hosts by Type

HOST	_TYPE	COUNT	\downarrow share
agent		2,096.39	96.65 %
aws		50.22	2.32 %
azure		10.27	0.47 %
opente	elemetry	7.06	0.33 %
gcp		5.18	0.24 %

Note: based on EUM, add child_org:self to query to see results for current org.

Infra

Infrastructure Monitoring & Tagging - Best Practices

Instrument cloud, on-premise, and VDI hosts with Datadog agent to get:

- Real time telemetry beyond baseline cloud metrics
- · Ability to collect data from installed applications and application runtimes using OOTB integrations
- · Unified monitoring experiences across multi-cloud, hybrid-cloud, and on-premise environments

Tag infrastructure with env to:

- Create operational segmentation that allows users to quickly differentiate performance degradation between production and sandbox environments
- Reuse OOTB dashboards from Datadog that organize signals with env template variables

Follow Unified Service Tagging to:

- Create a consistent nomenclature for hosts, containers, services, and applications across your ecosystem.
- Create a consistent observability attribution framework across signals

Lastly, deploying a consistent **env.value** such as prod, sandbox, qa, test, or clone across tech stacks allow operators to create reusable dashboards, monitors, and deployment templates across different service owners.

Quick links

Infra List	Infra Map	Container View
Infra list - grouped by env	Infra map - grouped by env	Containers - grouped by env
Infra list - hosts without env		Container - containers without env
Infra list - hosts without installed agents		
Infra list - agent versions		
Infra list - hosts with no agent - Grouped		
Prod Hosts with No agent - grouped		

Resource Catalog	Fleet Automation
Resource Catalog - grouped by env	Fleet - agents grouped by env
Resource Catalog - resources without env	Fleet - agents without env

Agent Instrumentation Ratio

Note that agent instrumentation ratio denotes the number of Datadog agents (installed on hosts) reporting back to Datadog in real time compared to the total number of detected hosts/VMs from cloud providers. Ideally, 100% of detected hosts are installed with Datadog agents to get the most out of VM/host monitoring. Hosts that do not need Datadog monitoring can be excluded from detection using resource exclusion filters listed below:

Azure	AWS	GCP
Azure Native Exclusion	AWS Exclusion	GCP Exclusion
Azure Manual Config Exclusion		

7.59.0 2.02k

Datadog recommends you update Datadog Agent with every minor and patch release, or, at a minimum, *monthly*.

Host Agents with "env" Tag

Agent "env" Tag Values

"dbt_env" Tag Values when "env" is missing

DBT_ENV	COUNT	\downarrow share
N/A	24.58	87.53 %
prod	2.50	8.90 %
staging	1.00	3.56 %

"cloud_provider" Tag Values when "env" is missing

CLOUD_PROVIDER	COUNT	\downarrow share
N/A	25.00	93.7 %
aws	1.69	6.3 %

"tenant_type" Tag Values when "env" is missing

Monitoring Kubernetes Clusters

Deploy the Datadog Cluster Agent (DCA) to gain insights into control-plane signals across K8s clusters. DCA monitors the control plane with Kubernetes State Core Metrics that provide insights into real-time states of workloads.

Clusters Monitored by DCA

Monitoring Kubernetes Workloads

Kubernetes workloads should be tagged similarly to allow users to quickly analyze resource utilization and application performance by env, service, and version.

Tagging containers and workloads by version allow direct comparisons between hot-fix versions, incremental releases, canary deployments, and experimentations.

Note that for job-based clusters or workloads shared between services, version tags may not be intuitive. Consider using Datadog Jobs Monitoring instead for these scenarios.

K8s Containers with "env", "service", and "version" tags (for app-oriented clusters)

K8s containers with "service" tags

K8s containers with "service" tags

K8s containers without "env" tags

30 minute minimum rollup: % of K8s containers without "service" tags by container name

Serverless

AWS Serverless Monitoring - Best Practices

Overview

Understanding billable usage

- Lambda functions incur a baseline cost per active function (including any functions detected through the AWS integration)
- Traced Lambda functions incur additional cost per traced invocation (equiv. to each new top level span)

Instrumentation - performance monitoring

- Install the Lambda integration to get baseline performance metrics across Lambda functions
- Instrument Lambda functions with the Datadog Lambda Extension as a layer or package to gain access to enhanced metrics
- Enable Deployment Tracking to ensure deployment events can be correlated with drift or degraded performance

Instrumentation - Tracing

- Generate traces through the Datadog Lambda Extension
- If X-Ray usage is desired, ensure the Datadog X-Ray integration is installed and DD_MERGE_XRAY_TRACES is configured for the Datadog Lambda Extension

Instrumentation - Logging

- Configure the Datadog Lambda Extension to collect logs
- Ensure logs and traces from Lambda functions are correlated

Instrumentation - Custom Metrics

• Generate custom metrics directly through Datadog Lambda Extension

Analysis and monitoring

- Enhanced lambda metrics are available once functions are instrumented. Leverage these metrics to better understand behaviors like cold starts with additional metadata resolution
- Leverage the Serverless view to understand percentage of functions instrumented. Click into each function to better understand correlated observability signals

Lambda Functions Monitored

Note: based on EUM, add child_org:self to query to see results for current org.

Serverless Invocations (Total vs. Enhanced)

FUNCTIONNAME	\downarrow total invocations	ENHANCED INVOCATIONS
		0 invocations

 Note that function names without enhanced invocations indicate that a Datadog Lambda Extension layer was never installed

Note: based on EUM, add child_org:self to query to see results for current org.

(No data)

Note: based on EUM, add child_org:self to query to see results for current org.

APM

Application Performance Monitoring - Best Practices

Concepts

• Ensure APM users have a firm understanding of trace sampling

Instrumentation

- Instrument applications with APM to get insights into real-time performance
- Correlate your logs and traces to ensure users can quickly navigate between traces and related logs
- Update APM instrumentation to remove legacy instrumentation

Retention (after Datadog ingestion)

- By default, Datadog uses intelligent retention to keep a subset of all ingested spans
- Use custom retention filters to retain an additional percentage of ingested spans this allows you to get detailed analysis of application performance
- Use this guide to fine tune and monitor span retention

Analysis and monitoring

- Adding the tag env and service on monitors will ensure proper correlation with services in the Service Catalog
- Leverage trace metrics to get 100% accurate performance metrics measured at instrumentation
- Add service metadata in Service Catalog to enrich services with operational background and on-call guidance
- Use service scorecards to establish baseline governance and evaluate observability maturity

Span Volume

Note: based on EUM, add child_org:self to query to see results for current org.

Indexed over Ingested Spans (%)

Note: based on EUM, add child_org:self to query to see results for current org.

Service Entry Spans Tagged with "env" and "version"

SERVICE	\downarrow SPANS	% SPANS WITH ENV AND VERSION
		100
		100
		100
		100
		100
		100

APM Services with Logs Correlated

SERVICE	SERVICE COUNT	\downarrow correlation found
		1
		1
		1
		1
		1
		1
		1

Logs

Log Management — Best Practices

Instrumentation

- When possible, emit single line, JSON-formatted logs to ensure proper Datadog ingestion
- Ensure agent-collected logs do not exceed 256 KB, and API collected logs do not exceed 1 MB
- Leverage agent configuration to tailor log collection

Ingestion and Retention

- Ensure application logs are properly parsed by pipelines, which transform and alias attributes to ensure a consistent debugging experience
- Create indexes for critical and/or error logs to support production outages
- Leverage exclusion filters in retention indexes to further refine retention and discard noise
- Leverage sampling within exclusion filters for high volume use cases
- Establish daily quotas for non-critical indexes to reduce overspend
- Use alternate destinations such as Flex Logs and Log Archives for logs that do not need immediate action or advanced visualizations/monitoring

Analysis and Monitoring

- Create a default retention filter with daily quota to analyze new patterns
- Analyze logs using patterns and grouping to understand ingestion/index patterns

Log Events Indexed

DATADOG_INDEX	\downarrow current month	PRIOR MONTH	CHANGE IN %

Note: based on EUM, add child_org:self to query to see results for current org.

Indexed Logs by Status

STATUS	COUNT	\downarrow share
info	7.26G	90.76 %
ok	365.94M	4.57 %
warn	264.02M	3.30 %
error	96,395.7k	1.20 %
debug	12,939.0k	0.16 %
alert	200.4k	0.00 %
critical	16.3k	0.00 %
notice	8.0k	1e-4 %
emergency	1.4k	1.8e-5 %

Log Events Excluded

Note: based on EUM, add child_org:self to query to see results for current org.

DATADOG_INDEX DATADOG_INDEX DATADOG INDEX INGESTED EVENTS 29.63G events 11.98G events 2.78G events 0.89G events 1.17M events

Note: based on EUM, add child_org:self to query to see results for current org.

Logs Truncated by Service

RUM

Real User Monitoring - Best Practices

Instrumentation

- Connecting RUM to APM allows Datadog to correlate RUM events to backend APM traces. This drastically reduce debugging lead time as problematic UI interactions quickly linked to backend errors
- Label sessions with user or equivalent metadata/attributes after authentication to efficiently analyze user behavior
- Leverage RUM Sampling to control the amount of user sessions that are being forwarded to the Datadog platform

Analysis and monitoring

- Ensure teams use consistent attribute convention across applications instrumentation and custom attributes allow stakeholders to quickly identify end users and establish trends based on attributes
- Ensure teams understand how RUM functions and how to troubleshoot initialization
- Generate metrics from RUM sessions within the Datadog platform for analysis of user behavior beyond 30 days (default RUM retention)

RUM Sessions by Application

RUM Async Request Events with APM Traces

RUM Sessions with User IDs

Mobile RUM

Enrich RUM Data

- Sessions enriched with custom attributes provide more insights into execution context and ownership. Some examples of added information are: user ID, user email, customer tier, feature flags
- Label sessions with user metadata after users authenticate in order to track user journeys and the impact of errors
- Ensure teams use consistent attribute convention across application custom attributes to allow stakeholders to quickly identify end users and establish trends based on attributes
- Add Feature Flag information to help investigate if any change you introduce is impacting your user experience or negatively affecting performance
- De-obfuscate your stack traces and setup Crash Reporting to get comprehensive crash reports and error trends
- Ensure RUM-instrumented applications follow the same convention to provide clear domain-driven analysis for users across multiple apps

Connect Telemetry

- Connecting RUM to APM allows Datadog to correlate RUM events to backend APM traces, drastically reduce debugging lead time as problematic UI interactions quickly linked to backend errors
- Configure the traceSampler parameter to keep a defined percentage of the backend traces
- Connecting RUM to Logs allows Datadog to correlate RUM events to application logs, providing more context on the application activity
- Apply Unified Service Tagging on your applications to ensure accurate telemetry correlation and enabled deployment tracking

Sessions tagged with "env", "service", and "version"

APPLICATION NAME	\downarrow sessions	% WITH ENV, SERVICE, AND VERSION
		100
		100
		100
		100
		100
		7-

RUM Data Security

- Mobile RUM tracking is only run upon user consent. Review your applications compliance requirements with GDPR and similar policies and implement tracking consent as required
- The RUM client token is used to match data from the end user to a specific RUM application in Datadog. It is unencrypted and visible from the client side of an application. Because the client token is only used to send data to Datadog, there is no risk of data loss due to this token; however, Datadog recommends good client

token management to avoid other kinds of misuse, including regularly rotating the client token to ensure that it is only used by your application

Sampling & Data Retention

- By default, data retention for production environments is 30 days for sessions, views, actions, errors, and session recordings and 15 days for resources and long tasks
- Review the guide Best Practices for RUM Sampling and set a sample rate for sessions and session replay
- Consider creating custom metrics from RUM data to retain data and analyze trends over 15 months
- RUM ensures availability of data when user devices are offline. In low-network areas, or when the device
 battery is too low, all RUM events are first stored on the local device in batches. They are sent as soon as the
 network becomes available, and the battery is high enough to ensure the RUM SDK does not impact the
 end user's experience. If the network is not available while your application is in the foreground, or, if an
 upload of data fails, the batch is kept until it can be sent successfully

Custom Metrics

Best Practices

- Metrics with a high cardinality compared to the other often highlights a misconfiguration
- Use Datadog's supported integrations instead of OpenMetrics or Prometheus metrics scraping to avoid unnecessary billing
- Leverage Metrics without Limits to decouple time series ingestion from indexation allowing better control on what metrics tags are queryable and billable
- Use Billing Summary to review custom metrics costs
- Add monitors and dashboards to track estimated usage metrics for anomalies in usage
- Datadog charges based on the monthly **average** of unique custom metrics submitted to the Datadog Infrastructure service per hour

Top Custom Metrics Cardinality by Name

METRIC_NAME	METRIC VOLUME	\downarrow % TOTAL VOLUME	% PREV MONTH

Note: based on EUM, add child_org:self to query to see results for current org.

Custom Metric Volume by Namespace

Note: based on EUM, add child_org:self to query to see results for current org.

Example Monitor for Custom Metric Cardinality Spike

Below outlines an example monitor for custom metric cardinality, using a change condition: Example JSON of monitor:


```
"name": "Monitor cardinality increased for {{metric_name.name}}",
"type": "query alert",
"query": "change(sum(last_1d),last_1w):sum:datadog.estimated_usage.metrics.custom.by_metric{*} by
{metric_name} > 10000",
"message": "@example_user@example_org.com \n@slack-example_governance_channel
\n\n{{#is_alert}}\nAverage cardinality has increased by over 10,000 for {{metric_name.name}} in the past
day compared to the last week.\nPlease review cardinality on this dashboard
link:\n\f{{is\_alert}}\n\f{{\#is\_warning}}\
{{metric_name.name}} in the past day compared to the last week.\\nPlease review cardinality on this
dashboard link:\n{{/is_warning}}",
"tags": [],
"options": {
 "thresholds": {
  "critical": 10000,
  "warning": 5000
 },
 "notify_audit": false,
 "on_missing_data": "default",
 "include_tags": true,
 "new_group_delay": 60
}
}
```

Monitors

Monitoring — Best Practices

- Leverage Dynamic Handles to alert appropriate teams
- Consider using Alert Grouping with Multi-Alert to segment recipients monitoring the same metric. This allows a single monitor to potentially replace dozens of similar monitors
- Tagging monitors with env and service ensures that monitors are correlated with the relevant APM services
- Add governance for monitor tagging with monitor tag policies
- Reduce noise floor by removing unnecessary or deprecated monitors
- Monitors muted for 15+ days should be reviewed for sanitization or removal
- Use the OOTB Monitor Quality tool to gain insights into potential improvements

Monitors with Alerts

MONITOR ID	EVENT NAME	↓ ALERTS
		32,939
		2,886
		1,818
		1,806
		1,208
		973
		916

Alerts by Notification Recipient

MONITOR NOTIFICATIONS	↓ ALERTS

Dashboards

Dashboards — Best Practices

- Increase dashboard widget density and reuse with template variables
- Add addition event context to time series widgets with event overlays
- Leverage pre-built dashboards installed by integrations
- Work with your CSM/TAM to get a report of unused dashboards
- Leverage the Datadog Workshop for self-guided onboarding

Resources

- Datadog Foundational Enablement
- Datadog Learning Center
- Datadog Documentation
- Datadog Blog

• Datadog Services and Enablement

Observability Maturity

Interested in collaborating with Datadog on measuring your observability maturity? Let us know!

Screenshot 2025-06-06 at 12.42.51 PM.png