Evolutionary Algorithms: Bird's-Eye View

March 5, 2013
Prof. Chang Wook Ahn

Sungkyunkwan Evolutionary Algorithms Lab.
School of Info. & Comm. Eng.
Sungkyunkwan University

Contents

Principle of Evolutionary Algorithms

- > Prologue
- > Principle
- > Conventional Approach
- > Operational Concept
- > Taxonomy

Real-world Applications

- > Combinatorial Problems
- > Communication & Networks
- > Economic Science
- > Game, Art, Music, Design
- > Information Mining, Artificial Creatures

Principle of Evolutionary Algorithms

Prologue (1)

• Where are Evolutionary Algorithms placed?

Prologue (2)

• Where to be Applied?

Problems

Unsol vable

Sol vable

Hilbert's 10th Problem Turing's Halt Problem

••• •••

Untractable

Hamiltonian Path Longest Path

NP-Complete

Tractable

Shortest Path Problem Minimum Spanning Tree

Tractable:

- Solve the problems in a polynomial time; $O(n^k)$, not O(n!) or $O(2^n)$

P: Polynomial

NP: Nondeterministic Polynomial

Principle (1)

- What are Evolutionary Algorithms (EAs) ?
 - > An algorithmic abstraction inspired from the theory of biological evolution, usually implemented on computers, which is employed for resolving problems

Principle (2)

Lessons from Biological Evolution

Implications for applying to computing techs.

Multiple

Surviving

Mixing

Generation

Conventional Approach

What's the Problem of Conventional (Search) Approaches?

Operational Concept

• Main Principle of Evolutionary Algorithms

> Multiple individuals try to cooperatively resolve problems

Taxonomy

Taxonomy of Evolutionary Algorithms

> There are four main categories; GA, GP, ES, EP

Algorithms

- •John Holland (1970's)
- David E. Goldberg (1989)
- Most widely used
- •Generally, genotype is unequal to phenotype
- Genotype to phenotype
- Linear string
- •Semantics: each locus

Genetic Programming

- •John Koza (1990's)
- •General representation (by tree structures)
- Search space: all possible computer programs
- Non-linear string
- Semantics: symbol itself

Evolutionary Programming

- •Lawrence Fogel (1960's)
- Direct representation
- Search space:solutions space itself
- Mutation-only
- No-recombination
- •Evolution by (defined) cdf

Evolutionary Strategies

- •Ingo Rechenberg (1970's)
- Direct representation
- Search space:solutions space itself
- Mutation-primary
- •Recombination-minor
- Evolution by (defined) cdf

Real-World Applications

Classical Combinatorial Problems

Traveling Salesman Problem

Knapsack Problem

- Maximize the amount of profits (e.g., money) while still keeping the overall weight under or equal to a given limit!

Communication & Networks

Multicast Routing

- Minimize the cost of multicast tree while satisfying delay and bandwidth constraints

Resource Allocation

- Maximize resource utilization by fairly distributing wireless resources among the connections

Economic Science

Time-Series Forecasting

- Predicting some future outcomes from a set of historical events
- Stock prediction, Weather forecasting, etc.

Decision in Dilemma

- Choosing a decision in conflict objectives
- Prisoner's dilemma, Game theory, etc.

Game

Evolutionary Checker

- > 8X8 board, 12 checkers for each player
 - Diagonal moves, Jumps are forced, etc.
- > Neural Networks + Evolutionary Prog.
 - Checkerboards are evaluated by NNs
 - NNs and King value are evolved with EP
- > Almost the expert level without knowledge

Video Game: NERO

- > Univ. of Texas at Austin
- > Player's role
 - Train agents for competition
- > No prepackaged or scripted agents
- > Evolve in real-time

Art

What's Evolutionary Art?

- > Technically, it is creating pieces of art through human-computer interaction
- > Computer runs evolutionary algorithms and human applies subjective selection
 - Role of computers: offer choices and create diversity
 - Role of human: make (subjective) choices and reduce diversity
- > Selection (aesthetic/subjective) steers towards implicit user preferences

Evol. Art by Kleiweg

Galapagos by Karl Sims

Other Examples

Music

GenJam (Genetic Jammer)

- > Developed in 1993~94 by Prof. John Al Biles
- > Interactive GA that leans to play jazz solos
- > GemJam's repertoire: Over 250 jazz-style tunes
- Evolving by special fitness operators;e.g., rhythm conformity
- > What can it be done?
 - ✓ Playing full-chorus improvised solos
 - ✓ Listening to trumpet and responds interactively when we trade fours
 - ✓ Engaging in collective improvisation; we both solo simultaneously and GenJam performs a smart echo of improvisation
 - ✓ Listening to me and play the head of a tune and breeds my measures

Source: http://phoenix.inf.upol.cz/~dostal/evm.html

Virtual quintet

MusiGenesis

Design

Structure Design

- > Bridge structure optimization
- > Building structure design

Aviation System Design

- > Airfoil, wing, and antenna designs
- > Space platform structure optimization
- > Jet aircraft model optimization

Information Mining

Clustering

- > Data clustering
- > Text mining
- > Web search

Bioinformatics

- > Drug discovery
- > Protein folding
- > Cancer diagnosis

Artificial Creatures & Robotics

Artificial Creatures

- ➤ <u>eFly</u>, <u>Biomorph</u>, <u>HAL</u>,
- **>** Self-replicating Worms
- > Gozilla, Solitaire

Robotics

- ➤ Humanoid Robots; e.g., e.g., ASIMO
- > Genetic Robots; e.g., Gene
- > Others; e.g., <u>Six-Legged Robot</u> Robot Snake

