The computation of Galois group

IKHAN CHOI

1

In this section, we assume the following setting:

- F is a perfect field,
- f is an irreducible quartic over F,
- E is the splitting of f over F,
- $G = \operatorname{Gal}(E/F)$,
- $H = G \cap V_4$.

Theorem 1.1. There are only five isomorphic types of transitive subgroups of the symmetric group S_4 .

Corollary 1.2. $G \cong S_4, A_4, D_4, V_4, or C_4$.

Proposition 1.3. Two groups A_4 and V_4 are only transitive normal subgroups of S_4 .

Now we define our resolvent polynomial.

Proposition 1.4. Let K be the fixed field of H. Then,

$$K = F(\alpha_1\alpha_2 + \alpha_3\alpha_4, \ \alpha_1\alpha_3 + \alpha_2\alpha_4, \ \alpha_1\alpha_4 + \alpha_2\alpha_3).$$

Definition. Let K be the fixed field of H. A resolvent cubic is a cubic R_3 that has K as the splitting field over F.

Theorem 1.5. We have

- (1) $G \cong S_4$ if R_3 is irreducible and,
- (2) $G \cong A_4$ if R_3 is irreducible and,
- (3) $G \cong D_4$ if R_3 has only one root in K and f is irreducible over K,
- (4) $G \cong C_4$ if R_3 has only one root in K and f is reducible over K,
- (5) $G \cong V_4$ if R_3 splits in K.

Proof. There are five possible cases:

$$(G, H) = (S_4, V_4), (A_4, V_4), (D_4, V_4), (V_4, V_4), (C_4, C_2).$$

We have

$$[K:F] = |G/H|, [E:K] = |H|.$$

If f is reducible over K, then Gal(E/K) is no more a transitive subgroup of S_4 so that $H \neq V_4$ and $G \cong C_4$.

2

