ASSIGNEMNT-1 PROBABILITY

1

Katherapaka Nikhil EE22BTECH11028*

Question 12.13.3.9

Let E_1 and E_2 be two independent events such that $Pr(E_1) = p_1$ and $Pr(E_2) = p_2$ Describe in words the events whose probabilities are:

- 1) p_1p_2
- 2) $(1-p_1)p_2$
- 3) $1 (1 p_1)(1 p_2)$
- 4) $p_1 + p_2 2p_1p_2$

Solution:

$$Pr(E1) = p_1 Pr(E_2) = p_2$$
1)

$$p_1 p_2 = \Pr(E_1) \Pr(E_2) \tag{1}$$

$$= \Pr(E_1 E_2) \tag{2}$$

So, E_1 and E_2 occur simultaneously.

2)

$$(1 - p_1)(p_2) = \Pr(E'_1) \Pr(E_2)$$

$$= \Pr(E'_1 E_2)$$
(4)

So E_1 does not occur but E_2 occurs.

3)

$$1 - (1 - p_1)(1 - p_2) = 1 - \Pr(E'_1)\Pr(E'_2)$$
(5)
= 1 - \Pr(E'_1 E'_2) (6)
= \Pr(E_1 + E_2) (7)

So, either E_1 or E_2 or both E_1 and E_2 occurs.

4)

$$p_{1} + p_{2} - 2p_{1}p_{2} = \Pr(E_{1}) + \Pr(E_{2}) - 2\Pr(E_{1})\Pr(E_{2})$$

$$= \Pr(E_{1}) + \Pr(E_{2}) - 2\Pr(E_{1}E_{2})$$

$$= \Pr(E_{1} + E_{2}) - \Pr(E_{1}E_{2})$$

$$(10)$$

So, either E_1 or E_2 occurs but not both