ADHOC

```
library(ggplot2)
```

1

Create a getNodes function which generates random Nodes.

```
getNodes = function(n){
# n is numeric singleton vector
# Nodes is a matrix with n by 2

Nodes = matrix(runif(2*n,0,100), ncol = 2)
colnames(Nodes) <- c("x","y")
rownames(Nodes) <- 1:n

return(Nodes)
}</pre>
```

Check the getNodes function with random values

```
seeds = vector(length = 5, mode = "list")
set.seed(12345678)

test.node = list()

for (i in 1:5){
    seeds[[i]] = .Random.seed
    node = getNodes(5)
    test.node[[i]] = node
}

test.node
```

```
## [[1]]
##
## 1 87.4493237 52.189195
## 2 28.8790082 39.870544
## 3 94.7211719 96.001960
## 4 88.4520706 81.390361
## 5 0.8678354 9.244898
##
## [[2]]
##
            x
## 1 22.59221 82.44000
## 2 99.31582 86.42073
## 3 22.48521 70.13601
## 4 54.65986 99.46446
## 5 83.73536 56.21510
##
## [[3]]
##
## 1 29.98234 39.87809
```

```
## 2 28.59007 47.91054
## 3 41.23781 75.04288
## 4 40.49474 30.97696
## 5 38.97566 69.44591
## [[4]]
##
             х
## 1 93.313683 24.26854
## 2 6.309057 62.63485
## 3 37.157258 90.39474
## 4 60.657133 69.63902
## 5 95.841602 27.49603
##
## [[5]]
##
             Х
## 1 42.268338 85.154321
## 2 59.756995 24.049858
## 3 2.071166 64.252719
## 4 21.317885 1.449243
## 5 40.160201 76.372598
```

 $\mathbf{2}$

Find the smallest radius Rc. First, Set up a helper function, findTranMat, to find a transition Matrix(Marcov Matrix for random walk).

```
findTranMat = function(mat, R){
  trans.mat = as.matrix(mat)
  trans.mat[trans.mat <= R] = NA
  trans.mat[trans.mat > R] = 0
  trans.mat[is.na(trans.mat)] = 1
  trans.mat = apply(trans.mat, 1, "/", rowSums(trans.mat))
  return(trans.mat)
}
```

Second, find a second largest eigen values since the largest eigen value gives us the trivial solution as well. Set up a helper function, genEigen2() which finds a second largest eigen value.

```
getEigen2 = function(mat){
  eigenvalues = eigen(mat)$values
  SecondLargest = sort(eigenvalues, decreasing = TRUE)[2]
  return(Mod(SecondLargest))
}
```

Third, set up a function findRange() to find the range of Rc

```
findRange = function(mat) {
   Mini = min(mat)
   Maxi = max(mat)
   Min.Max = c(Mini, Maxi)
   names(Min.Max) = c("Lower Bound", "Upper Bound")
   return(Min.Max)
}
```

Set up a function, findRc, to find the smallest radius to make the network fully connected

```
findRc = function(nodes, tol = 0.05){
  mat = dist(nodes)
  lower = findRange(mat)[1]
  upper = findRange(mat)[2]
  midpt = sum(upper, lower) / 2
  while(upper-lower > tol){
    TranMat = findTranMat(mat, midpt)
    EigenValue = round(getEigen2(TranMat), digits = 5)
    if(EigenValue < 1){</pre>
      upper = midpt
    }else{
      lower = midpt
    midpt = sum(upper, lower) / 2
  names(upper) = "The smallest Radius"
  return(upper)
}
```

Check the findRc function with random Node

```
nodes = getNodes(100)
findRc(nodes)
```

The smallest Radius
14.98706

3

Generate 1000 networks and for each find the value for Rc. Examine the distribution of these Rc values.

sample with size n = 20, n = 50, n = 100

```
Rc1 = c()
Rc2 = c()
Rc3 = c()
seeds = vector(length = 2, mode = "list")
set.seed(12345678)
n1 = 20
n2 = 50
n3 = 100
networks1 = vector("list",1000)
networks2 = vector("list",1000)
networks3 = vector("list",1000)
for(i in 1:1000){
  seeds[[i]] = .Random.seed
  networks1[[i]] = getNodes(n1)
 networks2[[i]] = getNodes(n2)
 networks3[[i]] = getNodes(n3)
}
```

```
networks = list(networks1, networks2, networks3)

for(i in 1:1000){
   Rc1[i] = findRc(networks1[[i]])
   Rc2[i] = findRc(networks2[[i]])
   Rc3[i] = findRc(networks3[[i]])
}
Rc = list(Rc1, Rc2, Rc3)
```

As n goes up, the radius of the Rc is getter smaller. Set up a function to visualize the distribution of Rcs.

Plot distribution of Rcs.

plotRc(Rc1, Rc2, Rc3, title = "Compare Rc for 1000 networks with different size\nRc1 with size of 20, R

Compare Rc for 1000 networks with different size Rc1 with size of 20, Rc2 with size of 50, Rc3 with size of 100

Plot Histogram of Rcs with summary.

Histogram of Rc of 1000 Networks

Rc of 1000 networks with size 20

Hist1

```
##
    [1] 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
##
## $counts
          1 13 52 104 150 152 140 113 90 67 40 27 15 13
   [1]
## [18]
              2
          3
##
## $density
   [1] 0.0005 0.0065 0.0260 0.0520 0.0750 0.0760 0.0700 0.0565 0.0450 0.0335
## [11] 0.0200 0.0135 0.0075 0.0065 0.0035 0.0035 0.0020 0.0015 0.0010
##
## $mids
   [1] 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
##
##
## $xname
## [1] "Rc1"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

Histogram of Rc of 1000 Networks

Hist2

```
## $breaks
    [1] 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
##
## $counts
        40 201 258 224 127 82 39
##
                                    12
                                          9
                                                  1
                                                      1
                                                                      1
##
## $density
   [1] 0.0200 0.1005 0.1290 0.1120 0.0635 0.0410 0.0195 0.0060 0.0045 0.0020
## [11] 0.0005 0.0005 0.0000 0.0000 0.0000 0.0005
##
## $mids
   [1] 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
##
##
## $xname
## [1] "Rc2"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
Hist3 = hist(Rc3, breaks = 20, col = "green",
            xlab = "Rc of 1000 networks with size 100",
```

Histogram of Rc of 1000 Networks

Rc of 1000 networks with size 100

${\tt Hist3}$

```
## $breaks
    [1] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
##
## $counts
             86 182 234 170 125 65 39
##
   [1]
         13
                                        31
                                             23
                                                 11
                                                     11
                                                                   2
## [18]
          0
##
## $density
   [1] 0.013 0.086 0.182 0.234 0.170 0.125 0.065 0.039 0.031 0.023 0.011
## [12] 0.011 0.004 0.003 0.002 0.000 0.000 0.000 0.001
##
## $mids
##
    [1] 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5
## [15] 26.5 27.5 28.5 29.5 30.5
##
## $xname
## [1] "Rc3"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
```

Set up min, median, mean, and max values for Rc

```
Min = c()
Median = c()
Mean = c()
Max = c()
for (i in 1:3){
  Min[i] = min(Rc[[i]])
 Median[i] = median(Rc[[i]])
 Mean[i] = mean(Rc[[i]])
 Max[i] = max(Rc[[i]])
}
i = c()
j = c()
k = c()
1 = c()
for (h in 1:3){
  i[h] = which(abs(Rc[[h]] - Min[h]) == min(abs(Rc[[h]] - Min[h])))[1]
  j[h] = which(abs(Rc[[h]] - Median[h]) == min(abs(Rc[[h]] - Median[h])))[1]
  k[h] = which(abs(Rc[[h]] - Mean[h]) == min(abs(Rc[[h]] - Mean[h])))[1]
  l[h] = which(abs(Rc[[h]] - Max[h]) == min(abs(Rc[[h]] - Max[h])))[1]
}
```

4

Plots of Rc with the four values(min, median, mean, max)

Plots of Rc with the min

```
mindf = list()
connected = list()
connections = list()
for (h in 1:3){
  mindf[[h]] = data.frame(networks[[h]][i[h]])
  comb = combn(nrow(mindf[[h]]), 2)
  connected[[h]] = comb[,which(as.numeric(dist(data.frame(networks[[h]][i[h]]))) <= Rc[[h]][i[h]])]</pre>
  connections[[h]] = data.frame(
    from = mindf[[h]][connected[[h]][1, ], 1:2],
    to = mindf[[h]][connected[[h]][2, ], 1:2]
  names(connections[[h]]) = c("x1", "y1", "x2", "y2")
color = c("pink", "blue", "green")
title = c("Plots of the Min Rc with size of 20", "Plots of the Min Rc with size of 50", "Plots of the M
for (h in 1:3){
  plot =
    ggplot(mindf[[h]], aes(x = mindf[[h]]$x, y = mindf[[h]]$y)) +
    geom_point(col = "black", size = 3) +
    geom_segment(data = connections[[h]],
```

```
aes(x = x1, y = y1, xend = x2, yend = y2), col = color[h]) +
labs(x = "X-coordinate", y = "Y-coordinate", title = title[h])
print(plot)
}
```

Plots of the Min Rc with size of 20

Plots of the Min Rc with size of 50

Plots of Rc with the median

```
mindf = list()
connected = list()
connections = list()
for (h in 1:3){
  mindf[[h]] = data.frame(networks[[h]][j[h]])
  comb = combn(nrow(mindf[[h]]), 2)
  connected[[h]] = comb[,which(as.numeric(dist(data.frame(networks[[h]][j[h]]))) <= Rc[[h]][j[h]])]</pre>
  connections[[h]] = data.frame(
    from = mindf[[h]][connected[[h]][1, ], 1:2],
    to = mindf[[h]][connected[[h]][2, ], 1:2]
  names(connections[[h]]) = c("x1", "y1", "x2", "y2")
color = c("pink", "blue", "green")
title = c("Plots of the Median Rc with size of 20", "Plots of the Median Rc with size of 50", "Plots of
for (h in 1:3){
  plot =
    ggplot(mindf[[h]], aes(x = mindf[[h]]$x, y = mindf[[h]]$y)) +
    geom_point(col = "black", size = 3) +
    geom_segment(data = connections[[h]],
                 aes(x = x1, y = y1, xend = x2, yend = y2), col = color[h]) +
    labs(x = "X-coordinate", y = "Y-coordinate", title = title[h])
  print(plot)
}
```

Plots of the Median Rc with size of 20

Plots of Rc with mean

```
mindf = list()
connected = list()
connections = list()
for (h in 1:3){
  mindf[[h]] = data.frame(networks[[h]][k[h]])
  comb = combn(nrow(mindf[[h]]), 2)
  connected[[h]] = comb[,which(as.numeric(dist(data.frame(networks[[h]][k[h]]))) <= Rc[[h]][k[h]])]</pre>
  connections[[h]] = data.frame(
    from = mindf[[h]][connected[[h]][1, ], 1:2],
    to = mindf[[h]][connected[[h]][2, ], 1:2]
  names(connections[[h]]) = c("x1", "y1", "x2", "y2")
color = c("pink", "blue", "green")
title = c("Plots of the Mean Rc with size of 20", "Plots of the Mean Rc with size of 50", "Plots of the
for (h in 1:3){
  plot =
    ggplot(mindf[[h]], aes(x = mindf[[h]]$x, y = mindf[[h]]$y)) +
    geom_point(col = "black", size = 3) +
    geom_segment(data = connections[[h]],
                 aes(x = x1, y = y1, xend = x2, yend = y2), col = color[h]) +
    labs(x = "X-coordinate", y = "Y-coordinate", title = title[h])
  print(plot)
```

Plots of the Mean Rc with size of 20

Plots of Rc with the largest

```
mindf = list()
connected = list()
connections = list()
for (h in 1:3){
  mindf[[h]] = data.frame(networks[[h]][l[h]])
  comb = combn(nrow(mindf[[h]]), 2)
  connected[[h]] = comb[,which(as.numeric(dist(data.frame(networks[[h]][1[h]]))) <= Rc[[h]][1[h]])]</pre>
  connections[[h]] = data.frame(
    from = mindf[[h]][connected[[h]][1, ], 1:2],
    to = mindf[[h]][connected[[h]][2, ], 1:2]
  names(connections[[h]]) = c("x1", "y1", "x2", "y2")
color = c("pink", "blue", "green")
title = c("Plots of the Largest Rc with size of 20", "Plots of the Largest Rc with size of 50", "Plots
for (h in 1:3){
  plot =
    ggplot(mindf[[h]], aes(x = mindf[[h]]$x, y = mindf[[h]]$y)) +
    geom_point(col = "black", size = 3) +
    geom_segment(data = connections[[h]],
                 aes(x = x1, y = y1, xend = x2, yend = y2), col = color[h]) +
    labs(x = "X-coordinate", y = "Y-coordinate", title = title[h])
  print(plot)
}
```

Plots of the Largest Rc with size of 20

Plots of the Largest Rc with size of 50

