CS245: Databases SQL

Vijaya saradhi

Department of Computer Science and Engineering Indian Institute of Technology Guwahati

Cursor - I

Impedance Model Mis-match

- SQL always returns relations
- Other programming languages has data types that are not relations
- These languages cannot hold relations returned by SQL
- C language has pointers; where as SQL do not have any such construct
- As a result, passing data between SQL and other languages is not straightforward
- Mechanisms must be devised to allow the development of programs that use both SQL and other languages

Cursor - I

Impedance Model Mis-match

- Versatile way to connect SQL queries to a host language is with a cursor
- Cursor runs through the tuples of a relation
- This relation can be stored table, or it can be something that is generated by a query

Cursor - I

Details

- SELECT will return a relation
- Returned relation will not be stored
- Often the need to process one row at a time of returned relation arise
- Cursor helps examining one row at a time

Cursor - II

Details

- Assume the returned relation to be a file in itself
- Operations required for reading a file are
 - Declare file pointer
 - Open the file
 - Read one line at a time repeatedly
 - close the file
- Similar tasks are associated with cursor

Cursor - III

```
DECLARE cursor_name CURSOR FOR SELECT statement;

OPEN cursor_name;

FETCH cursor_name INTO variable_list;

CLOSE cursor_name
```

Cursor - Example

Example

```
DELIMITER //
CREATE PROCEDURE f11()
BEGIN
-- Declare variables
        DECLARE i INT DEFAULT 1:
        DECLARE sno INT:
        DECLARE sname char (50);
        DECLARE rating INT DEFAULT 10:
        DECLARE age INT DEFAULT 16;
   Declare cursors
        DECLARE my_first_cursor CURSOR FOR
        SELECT
                Sailors
        FROM
        WHERE
                age > 20 AND rating BETWEEN 5 AND 7:
   Declare cursor handler
        DECLARE CONTINUE HANDLER FOR NOT FOUND SET NO_records = 1;
```

Cursor - Example

Example

Cursor - IV

Scrolling

- Cursor gives us flexibility as how to move through the tuples of the relation
- The default choice is to start at the beginning of the relation and fetch the tuples in order
- Fetch all tuples until end of the relation
- Other orders in which tuples may be fetched
- These options are not available in MySQL yet we will discuss these

Cursor - V

Scrolling

- Instruct the cursor to open in SCROLL model before the keyword CURSOR
- EXEC SQL DECLARE name SCROLL CURSOR FOR MovieExec;
- This will tell SQL that cursor may be used in a manner other than moving in forward direction alone
- The FETCH is responsible for specifying the direction from which the next tuple be obtained
 - FETCH NEXT retrieve next tuple
 - FETCH PRIOR retrieve previous tuple
 - FETCH FIRST retrieve first tuple
 - FETCH LAST retrieve last tuple
 - FETCH ABSOLUTE i specifies the position of the tuple to be fetched from the top of the relation

Manages Relation

Employee	Boss	Salary
Albert	Τ.	1000.00
Bert	Albert	900.00
Chuck	Albert	900.00
Donna	Chuck	800.00
Eddie	Chuck	700.00
Fred	Chuck	600.00

Manages Relation

Anomalies

INSERT Can include cycles in the graph

UPDATE

DELETE

Structural

Insertion Anomaly Example

Employee	Boss	Salary
Albert	上	1000.00
Albert	Fred	100.00
Bert	Albert	900.00
Chuck	Albert	900.00
Donna	Chuck	800.00
Eddie	Chuck	700.00
Fred	Chuck	600.00

Anomalies INSERT Can include cycles in the graph UPDATE UPDATE uppare manager set Employee='Charles' where Employee = 'Chuck'; DELETE Structural

UPDATE Anomaly Example

Employee	Boss	Salary
Albert		1000.00
Bert	Albert	900.00
Charles	Albert	900.00
Donna	Chuck	800.00
Eddie	Chuck	700.00
Fred	Chuck	600.00

In atomic fashion

UPDATE manager set Employee='Charles' where Employee =
'Chuck':

UPDATE manager set Boss='Charles' where Boss = 'Chuck';

Anomalies

INSERT Can include cycles in the graph

DELETE Chuck left the organization. What should be the right way?

Structural

DELETE Anomaly Example Albert Who will lead next? Rert Chuck Fred Donna Eddie

Structural Anomalies

- INSERT INTO Manager (Employee, Boss) VALUES ('a', 'a');
- Create simple cycles
- INSERT INTO Manager (Employee, Boss) VALUES ('b', 'c');
- INSERT INTO Manager (Employee, Boss) VALUES ('c', 'b');

Supervisor-supervisee: Solution - Part I

Modify relation

- Employee details and organization hierarchy must be separated
- Create table for Employee(eid, ename, address)
- Create table for hierarchy Manages(role, eid, boss_eid)
- role should be primary key
- (eid, boss_eid) should be unique
- eid should be foreign key referring Employee
- eid default value should be 0 to indicate vacant position
- eid should not be NULL

Supervisor-supervisee: Solution - Part II

Constraints

- Self boss is not allowed. CHECK(eid <> boss_eid);
- boss_eid and eid should not be 0; CHECK(boss_eid != 0 AND eid != 0)
- Number of nodes in tree: SELECT COUNT(*) FROM Manages
- Number of edges in tree: SELECT COUNT(boss_eid) FROM Manages
- Number of edges = number of nodes 1; CHECK((SELECT COUNT(*) FROM Manages) 1 = (SELECT COUNT(boss_eid) FROM Manages))
- Only one root:

 CHECK(SELECT COUNT(*) FROM Manages where ISNULL(boss_eid) = 1)

Supervisor-supervisee: Solution - Part III

Constraints - Check for Cycles

```
1 CREATE FUNCTION TreeTest() RETURNS CHAR(6)
2 BEGIN ATOMIC
 -- put a copy in a temporary table
        INSERT INTO Tree SELECT eid, boss_id FROM Manages
 -- prune the leaves
          WHILE ((SELECT\ COUNT(*)\ FROM\ Tree)\ -\ 1) = (SELECT\ COUNT(boss_id)\ FROM\ Tree)
          DO
                  DELETE FROM Tree
                -- Check employee is not the boss
10
                WHERE Tree . eid
11
                NOT IN (
13
                         -- Select all the bosses
14
                         SELECT T2. boss_id
15
                        FROM Tree AS T2
16
                        WHERE NOT ISNULL(T2.boss_id)
17
                 );
18
19
      IF NOT EXISTS (SELECT * FROM Tree)
20
     THEN
21
        RETURN ('Tree');
20......ELSE
23 ____RETURN_('Cvcles'):
     END IF:
25 END WHILE:
```

Supervisor-supervisee: Steps

```
Detailed Steps
Iteration #1
Albert Not in {Albert, Albert, Chuck, Chuck, Chuck}? No:
Bert Not in {Albert, Albert, Chuck, Chuck, Chuck}? Yes; Delete
Chuck Not in {Albert, Albert, Chuck, Chuck, Chuck}? No;
Donna Not in {Albert, Albert, Chuck, Chuck}? Yes: Delete
Eddie Not in {Albert, Albert, Chuck, Chuck, Chuck}? Yes; Delete
Fred Not in {Albert, Albert, Chuck, Chuck, Chuck}? Yes; Delete
```

Supervisor-supervisee: Steps

```
Detailed Steps

Iteration #2

Albert NULL
Chuck Albert

Albert Not in {Albert} No;
Chuck Not in {Albert} Yes; Delete
```

Supervisor-supervisee: Steps

```
Detailed Steps

Iteration #3

Albert NULL

Albert Not in {} Yes; Delete
```

Use case

• A common kind of operation on data is that operators cannot be applied infinitely and recursively which are defined using sequence of similar expressions

Use case		
		ſ1
	movie	sequel
	Rocky	Rocky II
	Rocky II	Rocky III
	Rocky III	Rocky IV

Use case - Sequel of Sequel

Select M	I1C1.movie,	M1C2. sequel	l FROM M1 a	s M1C1 JOIN M1 as M1C2 ON M1C1.sequel = M1C2.movie
M	1C1	M1	C2	M1C1.sequel = M1C2.movie
movie	sequel	movie	sequal	Not in M1
Rocky	Rocky II	Rocky	Rocky II	
Rocky	Rocky II	Rocky II	Rocky III	(Rocky, Rocky III)
Rocky	Rocky II	Rocky III	Rocky IV	

Use case - Sequel of Sequel

Select M10	C1.movie, M1	C2. sequel F	ROM M1 as N	M1C1 JOIN M1 as M1C2 ON M1C1.sequel = M1C2.movie
M	1C1	M	LC2	M1C1.sequel = M1C2.movie
movie	sequel	movie	sequal	Not in M1
Rocky	Rocky II	Rocky	Rocky II	
Rocky	Rocky II	Rocky II	Rocky III	(Rocky, Rocky III)
Rocky	Rocky II	Rocky III	Rocky IV	
Rocky II	Rocky III	Rocky	Rocky II	
Rocky II	Rocky III	Rocky II	Rocky III	
Rocky II	Rocky III	Rocky III	Rocky IV	(Rocky II, Rocky IV)

Use case - Sequel of Sequel

Select M1C	1.movie, M10	$^{\circ}$ 2. sequel FR	OM M1 as M	1C1 JOIN M1 as M1C2 ON M1C1.sequel = M1C2.movie
M1	.C1	M1	C2	M1C1.sequel = M1C2.movie
movie	sequel	movie	sequal	Not in M1
Rocky	Rocky II	Rocky	Rocky II	
Rocky	Rocky II	Rocky II	Rocky III	(Rocky, Rocky II)
Rocky	Rocky II	Rocky III	Rocky IV	
Rocky II	Rocky III	Rocky	Rocky II	
Rocky II	Rocky III	Rocky II	Rocky III	
Rocky II	Rocky III	Rocky III	Rocky IV	(Rocky II, Rocky IV)
Rocky III	Rocky IV	Rocky	Rocky II	
Rocky III	Rocky IV	Rocky II	Rocky III	
Rocky III	Rocky IV	Rocky III	Rocky IV	

Perform Join

obtain records which are not in M1 M1C1-M1C2

movie sequel

Rocky Rocky III

Rocky II Rocky IV

Perform Union

Add the new records to M1 to make it M2

	IV.	12	
	movie	sequel	
	Rocky	Rocky II	
	Rocky II	Rocky III	
	Rocky III	Rocky IV	
	Rocky	Rocky III	
	Rocky II	Rocky IV	
V	'ijaya saradhi	CS245: Databa	ses

Use case - Sequel of Sequel of Sequel

Perform (M21 \leftarrow M2 Join M1) followed by (M2 Union M21)

movie sequel Rocky Rocky II
Rocky Rocky II
Rocky II Rocky III
Rocky III Rocky IV
Rocky Rocky III
Rocky II Rocky IV
M1
movie sequel
Rocky Rocky II
Rocky II Rocky III
Rocky III Rocky IV

)se case	- Sequel	of Sequel	or Seque	er
		M1-	M2	
movie	sequel	movie	sequal	Not in M2
Rocky	Rocky II	Rocky	Rocky II	
Rocky	Rocky II	Rocky II	Rocky III	(Rocky, Rocky III)
Rocky	Rocky II	Rocky III	Rocky IV	
Rocky II	Rocky III	Rocky	Rocky II	
Rocky II	Rocky III	Rocky II	Rocky III	
Rocky II	Rocky III	Rocky III	Rocky IV	(Rocky II, Rocky IV)
Rocky III	Rocky IV	Rocky	Rocky II	,
Rocky III	Rocky IV	Rocky II	Rocky III	
Rocky III	Rocky IV	Rocky III	Rocky IV	(Rocky, Rocky IV)
Rocky	Rocky III	Rocky	Rocky II	
Rocky	Rocky III	Rocky II	Rocky III	
Rocky	Rocky III	Rocky III	Rocky IV	
Rocky II	Rocky IV	Rocky	Rocky II	
Rocky II	Rocky IV	Rocky II	Rocky III	
Rocky II	Rocky IV	Rocky III	Rocky IV	

Use case - Sequel of Sequel of Sequel

Rocky

Rocky II

Recursion

Use case - Sequel of Sequel of Sequel

Perform (M21 \leftarrow M2 Join M1) followed by (M2 Union M21)

M2				
movie	sequel			
Rocky	Rocky II			
Rocky II	Rocky III			
Rocky III	Rocky IV			
Rocky	Rocky III			
Rocky II	Rocky IV			
M1				
movie	sequel			

movie	sequel
Rocky	Rocky II
Rocky II	Rocky III
Rocky III	Rocky IV

	-		•	*	
		M	1-M2		ŀ
movie	sequel	movie	sequal	Not in M2	t
Rocky	Rocky II	Rocky	Rocky II		Г
Rocky	Rocky II	Rocky II	Rocky III	(Rocky, Rocky III)	ı
Rocky	Rocky II	Rocky III	Rocky IV		

Rocky III

Rocky IV

(Rocky, Rocky IV

Rocky

Rocky

Rocky II

Rocky II

Use case - Sequel of Sequel of Sequel

Perform (M21 \leftarrow M2 Join M1) followed by (M2 Union M21)

M2					
movie	sequel				
Rocky	Rocky II				
Rocky II	Rocky III				
Rocky III	Rocky IV				
Rocky	Rocky III				
Rocky II	Rocky IV				
M1					
movie	sequel				
Rocky	Rocky II				
Rocky II	Rocky III				
Rocky III	Rocky IV				

Use case - Sequel of Sequel of Sequel M1-M2 Not in M2 movie movie sequel segual Rocky II Rocky Rocky II Rocky Rocky Rocky II Rocky II Rocky III (Rocky, Rocky III) Rocky Rocky II Rocky III Rocky IV Rocky Rocky II Rocky Rocky III Rocky Rocky II Rocky II Rocky IV (Rocky, Rocky IV) Rocky II Rocky III Rocky Rocky II Rocky II Rocky III Rocky II Rocky III Rocky III Rocky II Rocky III Rocky IV (Rocky II, Rocky IV) Rocky II Rocky III Rocky Rocky III Rocky II Rocky III Rocky II Rocky IV

Use case - Sequel of Sequel of Sequel

Perform (M21 \leftarrow M2 Join M1) followed by (M2 Union M21)

M	[2				
movie	sequel				
Rocky	Rocky II				
Rocky II	Rocky III				
Rocky III	Rocky IV				
Rocky	Rocky III				
Rocky II	Rocky IV				
M1					
movie	sequel				
Rocky	Rocky II				
Rocky II	Rocky III				
Rocky III	Rocky IV				

		M2	M1-I		
	Not in M2	sequal	movie	sequel	movie
		Rocky II	Rocky	Rocky II	Rocky
cky III)	(Rocky, Rock	Rocky III	Rocky II	Rocky II	Rocky
		Rocky IV	Rocky III	Rocky II	Rocky
		Rocky III	Rocky	Rocky II	Rocky
ocky IV)	(Rocky, Roc	Rocky IV	Rocky II	Rocky II	Rocky
		Rocky II	Rocky	Rocky III	Rocky II
		Rocky III	Rocky II	Rocky III	Rocky II
Rocky IV	(Rocky II, R	Rocky IV	Rocky III	Rocky III	Rocky II
ony 1	(100011) 11, 10	Rocky III	Rocky	Rocky III	Rocky II
		Rocky IV	Rocky II	Rocky III	Rocky II
		Rocky II	Rocky	Rocky IV	Rocky III
		Rocky III	Rocky II	Rocky IV	Rocky III
Rocky IV	(Rocky III, I	Rocky IV	Rocky III	Rocky IV	Rocky III
The stage of	(,, -	Rocky IV	Rocky	Rocky IV	Rocky III
		Rocky IV	Rocky II	Rocky IV	Rocky III

C----1 -f C----1 -f C-----1

Recursion: Sequel of Sequel of Sequel

Perform Join

obtain records which are not in M2M1-M2

> movie sequel

Rocky Rocky IV

Perform Union

Add the new records to M2 to make it M31/1/3

MIO				
movie	sequel			
Rocky	Rocky II			
Rocky II	Rocky III			
Rocky III	Rocky III			
Rocky	Rocky III			
Rocky II	Rocky IV			
Rocky	Rocky IV			

Recursion: Sequel of Sequel of Sequel?

Trilogy and more?

- Repeating above steps: Perform M3 Join M1
- Perform M3 Union (records (M3 Join M1) not in M3) to obtain M4
- These two steps yields no new records. The recursion terminates

Datalog

Formulation

- FollowOn(x, y) \leftarrow M1(x, y)
- FollowOn(x, y) \leftarrow M1(x, z) AND FollowOn(z, y)

Airlines Database

Graph & Table

Figure 10.5: A map of some airline flights

airline	from	to	departs	arrives
UA	SF	DEN	930	1230
AA	SF	DAL	900	1430
UA	DEN	CHI	1500	1800
UA	DEN	DAL	1400	1700
AA	DAL	CHI	1530	1730
AA	DAL	NY	1500	1930
AA	CHI	NY	1900	2200
UA	CHI	NY	1830	2130

Datalog: Recursive Programming

Recursive Rules

- \bigcirc Reaches(x, y) \leftarrow Flights(a, x, y, d, r)
- 2 Reaches(x, y) \leftarrow Reaches(x, z) AND Reaches(z, y)

Flights						
airline	$_{ m from}$	to	departs	arrives		
UA	SF	DEN	0930	1230		
AA	SF	DAL	0900	1430		
UA	DEN	$_{\mathrm{CHI}}$	1500	1800		
UA	DEN	DAL	1400	1700		
AA	DAL	$_{\mathrm{CHI}}$	1530	1730		
AA	DAL	NY	1500	1930		
AA	$_{\mathrm{CHI}}$	NY	1900	2200		
UA	CHI	NY	1830	2130		

Recursive Rules

- \bullet Reaches(x, y) \leftarrow Flights(a, x, y, d, r)
- 2 Reaches(x, y) \leftarrow Reaches(x, z) AND Reaches(z, y)

Flights				
airline	from	to	departs	arrives
UA	$_{ m SF}$	DEN	0930	1230
AA	$_{ m SF}$	DAL	0900	1430
UA	DEN	$_{\mathrm{CHI}}$	1500	1800
UA	DEN	DAL	1400	1700
AA	DAL	$_{\mathrm{CHI}}$	1530	1730
AA	DAL	NY	1500	1930
AA	$_{\mathrm{CHI}}$	NY	1900	2200
UA	CHI	NY	1830	2130

Round # 1		
Rea	ches	
x y		
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	$_{\mathrm{CHI}}$	
DEN	DAL	
DAL	$_{\mathrm{CHI}}$	
DAL	NY	
CHI	NY	

Recursive Rules

lacktriangledown Reaches(x, y) \leftarrow Reaches(x, y) AND Reaches(z, y)

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
$_{ m SF}$	DEN	$_{ m SF}$	DEN
$_{ m SF}$	DEN	$_{ m SF}$	DAL
$_{ m SF}$	$_{ m DEN}$	DEN	CHI
$_{ m SF}$	$_{ m DEN}$	$_{ m DEN}$	DAL
$_{ m SF}$	DEN	DAL	CHI
$_{ m SF}$	DEN	$_{ m DAL}$	NY
$_{ m SF}$	DEN	CHI	NY

Roun	d # 1
Rea	ches
x	У
SF	DEN
$_{ m SF}$	$_{ m DAL}$
DEN	CHI
DEN	DAL
$_{\mathrm{DAL}}$	$_{\rm CHI}$
DAL	NY
$_{\rm CHI}$	NY

Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
$_{ m SF}$	DEN	$_{ m SF}$	DEN
$_{ m SF}$	DEN	$_{ m SF}$	DAL
$_{ m SF}$	DEN	DEN	CHI
$_{ m SF}$	$_{ m DEN}$	$_{ m DEN}$	DAL
$_{ m SF}$	DEN	DAL	CHI
$_{ m SF}$	DEN	$_{ m DAL}$	NY
$_{ m SF}$	DEN	CHI	NY

Round # 1		
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
$_{ m DEN}$	CHI	
DEN	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
$_{\rm CHI}$	NY	
Round #2		
SF	CHI	

Recursive Rules

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
$_{ m SF}$	DAL	SF	DEN
$_{ m SF}$	DAL	$_{ m SF}$	DAL
$_{ m SF}$	DAL	DEN	CHI
$_{ m SF}$	DAL	DEN	DAL
$_{ m SF}$	$_{ m DAL}$	$_{ m DAL}$	CHI
$_{ m SF}$	DAL	DAL	NY
$_{ m SF}$	DAL	CHI	NY

Round # 1		
Read	ches	
x	У	
SF	DEN	
SF	DAL	
DEN	CHI	
DEN	DAL	
$_{\mathrm{DAL}}$	CHI	
DAL	NY	
$_{\rm CHI}$	NY	
Round #2		
SF	CHI	
$_{ m SF}$	NY	

Recursive Result

Reach	es R1	Reach	ies R2
R1.x	R1.z	R2.z	R2.y
DEN	CHI	$_{ m SF}$	DEN
DEN	CHI	$_{ m SF}$	DAL
DEN	CHI	DEN	CHI
DEN	CHI	DEN	DAL
DEN	CHI	DAL	CHI
DEN	CHI	DAL	NY
DEN	CHI	CHI	NY

Round # 1				
Rea	ches			
x	У			
$_{ m SF}$	DEN			
$_{ m SF}$	DAL			
DEN	CHI			
DEN	DAL			
DAL	CHI			
DAL	NY			
$_{\rm CHI}$	NY			
Round #2				
SF	CHI			
$_{ m SF}$	NY			
DEN	NY			

Recursive Result

Reach	es R1	Reach	ies R2
R1.x	R1.z	R2.z	R2.y
DEN	DAL	$_{ m SF}$	DEN
DEN	DAL	$_{ m SF}$	DAL
DEN	DAL	DEN	CHI
DEN	DAL	DEN	DAL
$_{ m DEN}$	$_{ m DAL}$	$_{ m DAL}$	CHI
DEN	$_{\mathrm{DAL}}$	DAL	NY
DEN	DAL	CHI	NY

Roun	d # 1	
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	CHI	
DEN	DAL	
DAL	CHI	
DAL	NY	
$_{\rm CHI}$	NY	
Round #2		
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	
DEN	CHI	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DEN	DAL	SF	DEN
DEN	DAL	$_{ m SF}$	$_{ m DAL}$
DEN	DAL	DEN	$_{ m CHI}$
DEN	DAL	DEN	DAL
$_{ m DEN}$	$_{ m DAL}$	$_{ m DAL}$	CHI
$_{ m DEN}$	$_{\mathrm{DAL}}$	DAL	NY
DEN	DAL	CHI	NY

Round # 1		
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
$_{ m DEN}$	CHI	
DEN	DAL	
DAL	CHI	
DAL	NY	
$_{\rm CHI}$	NY	
Round #2		
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DAL	CHI	SF	DEN
DAL	$_{ m CHI}$	$_{ m SF}$	DAL
DAL	$_{ m CHI}$	DEN	CHI
DAL	CHI	DEN	DAL
DAL	CHI	DAL	CHI
DAL	CHI	DAL	NY
$_{ m DAL}$	CHI	CHI	NY

Round # 1		
Rea	ches	
x	У	
SF	DEN	
$_{ m SF}$	DAL	
DEN	$_{\rm CHI}$	
DEN	DAL	
DAL	CHI	
DAL	NY	
$_{\rm CHI}$	NY	
Round #2		
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DAL	NY	SF	DEN
DAL	NY	$_{ m SF}$	DAL
DAL	NY	DEN	CHI
DAL	NY	DEN	DAL
DAL	NY	DAL	CHI
DAL	NY	DAL	NY
DAL	NY	CHI	NY

Round # 1		
Read	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	CHI	
DEN	DAL	
DAL	$_{\rm CHI}$	
$_{ m DAL}$	NY	
CHI	NY	
Round #2		
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
CHI	NY	$_{ m SF}$	DEN
CHI	NY	$_{ m SF}$	DAL
CHI	NY	DEN	CHI
CHI	NY	DEN	DAL
CHI	NY	DAL	CHI
CHI	NY	DAL	NY
CHI	NY	CHI	NY

Roune	d # 1	
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	$_{\rm CHI}$	
DEN	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
CHI	NY	
Round #2		
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reach	ies R1	Reach	es R2
R1.x	R1.z	R2.z	R2.y
SF	DEN	$_{ m SF}$	DEN
$_{ m SF}$	DEN	$_{ m SF}$	DAL
$_{ m SF}$	DEN	DEN	CHI
$_{ m SF}$	$_{ m DEN}$	$_{ m DEN}$	DAL
$_{ m SF}$	DEN	DAL	CHI
SF	DEN	DAL	NY
$_{ m SF}$	DEN	CHI	NY
SF	DEN	DAL	CHI
$_{ m SF}$	DEN	DAL	NY
SF	DEN	CHI	NY

Round # 2		
Rea	ches	
x	У	
SF	DEN	
$_{ m SF}$	DAL	
$_{ m DEN}$	CHI	
DEN	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
$_{\rm CHI}$	NY	
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
$_{ m SF}$	DAL	$_{ m SF}$	DEN
$_{ m SF}$	$_{ m DAL}$	$_{ m SF}$	DAL
$_{ m SF}$	DAL	DEN	CHI
$_{ m SF}$	$_{ m DAL}$	DEN	DAL
$_{ m SF}$	$_{ m DAL}$	$_{ m DAL}$	CHI
$_{ m SF}$	$_{\mathrm{DAL}}$	$_{\mathrm{DAL}}$	NY
$_{ m SF}$	DAL	CHI	NY
SF	DAL	DAL	CHI
$_{ m SF}$	DAL	DAL	NY
$_{ m SF}$	DAL	CHI	NY

Roun	Round # 2		
Rea	ches		
x	У		
SF	DEN		
SF	DAL		
DEN	CHI		
DEN	$_{\mathrm{DAL}}$		
DAL	$_{\rm CHI}$		
DAL	NY		
$_{\rm CHI}$	NY		
SF	CHI		
$_{ m SF}$	NY		
DEN	NY		

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DEN	$_{ m CHI}$	$_{ m SF}$	DEN
DEN	$_{ m CHI}$	$_{ m SF}$	DAL
DEN	CHI	DEN	CHI
DEN	$_{ m CHI}$	DEN	DAL
DEN	CHI	DAL	CHI
DEN	CHI	DAL	NY
$_{ m DEN}$	CHI	CHI	NY
DEN	CHI	DAL	CHI
DEN	CHI	DAL	NY
DEN	CHI	CHI	NY

Round $\# 2$			
Rea	Reaches		
x	У		
$_{ m SF}$	DEN		
$_{ m SF}$	DAL		
DEN	CHI		
DEN	DAL		
DAL	CHI		
DAL	NY		
$_{\rm CHI}$	NY		
SF	CHI		
$_{ m SF}$	NY		
DEN	NY		

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DEN	DAL	$_{ m SF}$	DEN
DEN	DAL	$_{ m SF}$	DAL
DEN	DAL	DEN	CHI
DEN	DAL	DEN	DAL
DEN	$_{ m DAL}$	$_{ m DAL}$	CHI
$_{ m DEN}$	$_{\mathrm{DAL}}$	DAL	NY
DEN	$_{ m DAL}$	CHI	NY
DEN	DAL	DAL	CHI
$_{ m DEN}$	$_{\mathrm{DAL}}$	DAL	NY
DEN	DAL	CHI	NY

Round # 2		
Reaches		
x	У	
SF	DEN	
$_{ m SF}$	DAL	
$_{ m DEN}$	CHI	
DEN	DAL	
DAL	CHI	
DAL	NY	
$_{\rm CHI}$	NY	
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DAL	CHI	$_{ m SF}$	DEN
DAL	CHI	$_{ m SF}$	DAL
DAL	$_{ m CHI}$	DEN	CHI
DAL	$_{ m CHI}$	DEN	DAL
DAL	$_{ m CHI}$	DAL	CHI
DAL	$_{ m CHI}$	DAL	NY
DAL	CHI	CHI	NY
DAL	CHI	DAL	CHI
DAL	CHI	DAL	NY
$_{ m DAL}$	CHI	CHI	NY

Round # 2		
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	$_{\rm CHI}$	
$_{ m DEN}$	DAL	
DAL	CHI	
DAL	NY	
$_{\rm CHI}$	NY	
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
DAL	NY	$_{ m SF}$	DEN
DAL	NY	$_{ m SF}$	DAL
DAL	NY	DEN	CHI
DAL	NY	DEN	DAL
DAL	NY	DAL	CHI
DAL	NY	DAL	NY
DAL	NY	CHI	NY
DAL	NY	DAL	CHI
DAL	NY	DAL	NY
DAL	NY	CHI	NY

Round # 2		
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	$_{\rm CHI}$	
DEN	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
CHI	NY	
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reach	ies R1	Reach	ies R2
R1.x	R1.z	R2.z	R2.y
CHI	NY	$_{ m SF}$	DEN
CHI	NY	$_{ m SF}$	DAL
CHI	NY	DEN	CHI
CHI	NY	DEN	DAL
$_{ m CHI}$	NY	DAL	CHI
CHI	NY	DAL	NY
CHI	NY	CHI	NY
CHI	NY	DAL	CHI
CHI	NY	DAL	NY
CHI	NY	CHI	NY

Round $\# 2$		
Reaches		
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
$_{ m DEN}$	CHI	
DEN	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
CHI	NY	
$_{ m SF}$	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reaches R1		Reaches R2	
R1.x	R1.z	R2.z	R2.y
$_{ m SF}$	CHI	$_{ m SF}$	DEN
$_{ m SF}$	CHI	$_{ m SF}$	DAL
$_{ m SF}$	$_{ m CHI}$	DEN	CHI
$_{ m SF}$	CHI	DEN	DAL
$_{ m SF}$	$_{ m CHI}$	DAL	CHI
$_{ m SF}$	CHI	DAL	NY
$_{ m SF}$	CHI	CHI	NY
SF	CHI	DAL	CHI
$_{ m SF}$	CHI	$_{ m DAL}$	NY
$_{ m SF}$	CHI	CHI	NY

Round $\# 2$		
Rea	ches	
x	У	
SF	DEN	
$_{ m SF}$	DAL	
DEN	CHI	
$_{ m DEN}$	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
$_{\rm CHI}$	NY	
$_{ m SF}$	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Result

Reach	es R1	Reach	ies R2
R1.x	R1.z	R2.z	R2.y
SF	NY	$_{ m SF}$	DEN
$_{ m SF}$	NY	$_{ m SF}$	DAL
SF	NY	DEN	CHI
$_{ m SF}$	NY	DEN	DAL
$_{ m SF}$	NY	DAL	CHI
$_{ m SF}$	NY	DAL	NY
SF	NY	CHI	NY
SF	NY	DAL	CHI
SF	NY	DAL	NY
SF	NY	CHI	NY

Round # 2				
Rea	ches			
x	У			
$_{ m SF}$	DEN			
$_{ m SF}$	DAL			
$_{ m DEN}$	$_{\rm CHI}$			
$_{ m DEN}$	DAL			
DAL	$_{\rm CHI}$			
DAL	NY			
$_{\rm CHI}$	NY			
SF	CHI			
$_{ m SF}$	NY			
DEN	NY			

Recursive Result

Reach	es R1	Reach	es R2
R1.x	R1.z	R2.z	R2.y
DEN	NY	$_{ m SF}$	DEN
DEN	NY	$_{ m SF}$	DAL
DEN	NY	DEN	CHI
DEN	NY	DEN	DAL
DEN	NY	DAL	CHI
DEN	NY	DAL	NY
DEN	NY	CHI	NY
DEN	NY	DAL	CHI
DEN	NY	DAL	NY
DEN	NY	CHI	NY

Round $\# 2$		
Rea	ches	
x	У	
$_{ m SF}$	DEN	
$_{ m SF}$	DAL	
DEN	$_{\rm CHI}$	
DEN	DAL	
DAL	$_{\rm CHI}$	
DAL	NY	
$_{\rm CHI}$	NY	
SF	CHI	
$_{ m SF}$	NY	
DEN	NY	

Recursive Rules

- Difference between Departure time at next hop and arrival time should be at least 100 minutes
- 2 Connects(x, y, d, r) \leftarrow Flights(a, x, y, d, r)
- 3 Connects(x, y, d, r) \leftarrow Connects(a, x, z, d, t1) AND Connects(a, z, y, t2, r) AND t1 \leq t2 100

		Flight	S	
airline	from	to	$_{ m departs}$	arrives
UA	SF	DEN	0930	1230
AA	$_{ m SF}$	DAL	0900	1430
UA	DEN	$_{\rm CHI}$	1500	1800
UA	DEN	DAL	1400	1700
AA	DAL	CHI	1530	1730
AA	DAL	NY	1500	1930
AA	$_{\rm CHI}$	NY	1900	2200
UA	CHI	NY	1830	2130

Conn	ects	
У	d	r
Roun	d #1	
DEN	0930	1230
$_{\mathrm{DAL}}$	0900	1430
$_{\rm CHI}$	1500	1800
$_{\mathrm{DAL}}$	1400	1700
$_{\rm CHI}$	1530	1730
NY	1500	1930
NY	1900	2200
Roun	d #2	
CHI	0900	1730
$_{\rm CHI}$	0930	1800
DAL	0930	1700
NY	1500	2200
NY	1530	2130
NY	1530	2200
	Round DEN DAL CHI DAL CHI NY Round CHI CHI DAL NY ROUND CHI CHI DAL NY NY	Y

Recursive Rules

- Find those pairs of cities (x, y) in which only UA operates but not AA
- 2 UAReaches(x, y) \leftarrow Flights(a, x, y, d, r)
- 3 UAReaches(x, y) \leftarrow UAReaches(x, z) AND UAReaches(z, y)
- AAReaches(x, y) ← Flights(a, x, y, d, r)
- 6 UAOnly(x, y) ← UAReaches(x, y) AND NOT AAReaches(x, y)

		Flight	S	
airline	from	to	departs	arrives
UA	SF	DEN	0930	1230
AA	$_{ m SF}$	DAL	0900	1430
UA	DEN	CHI	1500	1800
UA	DEN	DAL	1400	1700
AA	DAL	$_{\rm CHI}$	1530	1730
AA	DAL	NY	1500	1930
AA	CHI	NY	1900	2200
UA	CHI	NY	1830	2130

UAReaches		UAOnly	
x	у	x	У
SF	DEN	SF	DEN
$_{ m SF}$	DAL	DEN	DAL
$_{ m SF}$	CHI	DEN	$_{\rm CHI}$
$_{ m SF}$	NY	DEN	NY
DEN	DAL		
DEN	$_{\rm CHI}$		
DEN	NY		
CHI	NY		
AAR	eaches		
SF	DAL		
$_{ m SF}$	$_{\rm CHI}$		
CE -	NIV		J = 1

SQL: Recursive Programming

- SQL has grown to be an expressive data-oriented language
- Intentionally it has not been designed as a general-purpose programming language
- SQL does not loop forever.
- Any SQL query is expected to terminate, regardless of size/contents of the input tables
- SQL queries are evaluated efficiently

SQL: Addition of recursion

Expressive

 SQL becomes a Turing-complete language thus a general-purpose programming lanuagge

Efficiency

No longer queries are guaranteed to terminate.

SQL: WITH RECURSIVE

Recursive common table expression (CTE)

```
WITH RECURSIVE T(c1, c2, \ldots, ck) — common schema of q\theta and q.(.) AS( q0 — base case query, evaluated once UNION [ALL]  q0(T) = recursive \ query \ refers \ to \ T \ itself ) = evaluated \ repeatedly  q(T) — final post processing query
```

SQL: WITH RECURSIVE

Initial query

Forms the base result set of the CTE structure. The initial query part is referred to as an anchor member.

Recursive query

References to the CTE name, therefore, it is called a recursive member. The recursive member is joined with the anchor member by UNION or UNION ALL

Termination

A termination condition that ensures the recursion stops when the recursive member returns no row

SQL: WITH RECURSIVE

Step 1

Separate the members into anchor and recursive members

Step 2

Execute the anchor member to form the base result set R0. Use this base result set for next iteration

Step 3

Execute the recursive member with Ri result set as input and make Ri+1 as an output

Step 4

Repeat step 3 till recursive member returns an empty result set

Step 5

Combine result sets from R0 to Rn using UNION [ALL] operator

Example - 01

Recursive Rules

- Reaches(x, y) \leftarrow Flights(a, x, y, d, r)
- 2 Reaches(x, y) \leftarrow Reaches(x, z) AND Reaches(z, y)

Recursive SQL Query

```
WITH RECURSIVE Reaches (frm, to) -- T(c1, c2)

AS(

(SELECT frm, to FROM Flights) -- q0

UNION

(SELECT R1.frm, R2.to
FROM Reaches AS R1, Reaches AS R2
WHERE R1.to = R2.frm
)
)
SELECT * FROM Reaches;
```

- Customize input handling with MySQL works with SQL statements. However, application programs customize
 input methods for the users.
- Validate input provided by the user input sanity check is important which result in a cleaner SQL statements.
- Generate inputs automatically some application might not even involve human users example when an input to MySQL is generated from a program
- Customize output MySQL output is unformatted. Depending on the application and the context, output
 customization is necessary for various use cases

- Work around constraints imposed by the nature of SQL itself SQL scripts consist of a set of statements executed one at a time from beginning to end with minimal error checking.
 - In general the requirement for tasks that involve master-detail relationships and have complex output-formatting requirements.
- Integrate MySQL into any application client programming interface gives the means to benefit the capability of a database to provide information.

- Use a web server to provide enhanced access to MySQL
- Use MySQL to enhance the capabilities of web server

Available APIs for MySQL

- MySQL server has low-level native client-server protocol that defines how client programs establish connections and how to communicate using the established connections
- Clients can use this protocol at various levels of abstraction

Levels of Abstraction

- MySQL provides a client library written in the C programming language
- This enables to access MySQL databases from withint any C program
- MySQL interfaces for other languages can link the C client library into the language processor.
- The client library thus provides the means whereby MySQL bindings for other languages can be built on top of the C API.
- This type of interfaces exists for Perl, PHP, Python, Ruby, C++, Tcl and others

APIs

- The C client library API is the primary programming interface to MySQL. It is used to implement the standard clients in the MySQL distribution such as mysql, mysqladmin and mysqldump
- The PHP API is a server-side scripting language that provides convenient way of embedding programs in Web pages.

Embedded SQL - PHP - 01

Required package for ubuntu

To use MySQL with PHP, install php-mysql package in ubuntu as sudo apt-get install php-mysql

Embedded SQL - PHP - 02

General structure

- Establish a database connection
- Embedded SQL statements
- Fire SQL queries (to database through established connection)
- Close connection

Primary key vs temporal key

Example Schema

- eid and pcn stand for primary key
- Only in the absence of timed attributes
- start_date and end_date are included in the relation
- No employee can have a particular position twice at the same time.
- eid, pcn, start_date, end_date not a primary key

eid	pcn	$start_date$	end_date
123	900225	01-Jan-1996	01-June-1996
123	900225	01-Apr-1996	01-Oct-1996

Primary key vs temporal key

```
CREATE TABLE Incumbents (eid INT, pcn INT, start_date date,
        end_date date,
        CHECK(
                NOT EXISTS (
                        SELECT
                        FROM
                                 Incumbents as II
                        WHERE
                                 1 <
                         (SELECT COUNT(eid)
                         FROM
                                 Incumbents as I2
                         WHERE I1.eid = I2.eid
                         AND
                                I1.pcn = I2.pcn
                         AND
                                Il.start_date < I2.end_date
                         AND
                                I2.start_date < I1.end_date)
                AND NOT EXISTS
                        SELECT *
                        FROM
                                Incumbents AS II
                        WHERE
                                I1.eid is null OR I1.pcn is null
```

Example queries involving time

Query involving time

Provide the salary and position history of all employees

Salary history is in Sal_History table.

Position is in Incumbents table.

SELECT eid, amount, pcn, SH.start_date, SH.end_date

FROM Sal_History AS SH
JOIN Incumbents AS I
ON SH.eid = I.eid

WHERE I.start_date <= SH.start_date

AND SH.end_date <= I.end_date


```
SELECT
        eid, amount, pcn, SH.start_date, I.end_date
```

FROM Sal_History AS SH

JOIN Incumbents AS I ON SH.eid = I.eid

WHERE SH.start_date >= I.start_date

AND I.end_date <= SH.end_date

AND SH. start_date <= I.end_date

SELECT eid, amount, pcn, I.start_date, SH.end_date

FROM Sal_History AS SH

JOIN Incumbents AS I

 \mathbf{ON} SH. eid = I. eid

WHERE I.start_date > SH.start_date

AND SH and date (- I and date Vijava saradhi CS245; Databases

SELECT eid, amount, pcn, I.start_date, I.end_date

FROM Sal_History AS SH

JOIN Incumbents AS I

SH.eid = I.eidON

WHERE I.start_date > SH.start_date

AND I and data <- SH and data ◆□▶ ◆□▶ ◆□▶ ◆□ ◆○○○

Full query

Provide the salary and position history of all employees

```
SELECT
        eid, amount, pcn, SH.start_date, SH.end_date
FROM
        Sal_History AS SH
JOIN
        Incumbents AS I
ON
        SH.eid = I.eid
WHERE
        I.start_date <= SH.start_date
AND
        SH.end_date <= I.end_date
    UNION
SELECT
        eid, amount, pcn, SH.start_date, I.end_date
FROM
        Sal_History AS SH
JOIN
        Incumbents AS I
ON
        SH eid = I eid
        SH.start_date >= I.start_date
WHERE
AND
        Lend_date <= SH.end_date
AND
        SH.start_date <= I.end_date
    UNION
SELECT
        eid . amount . pcn . I . start_date . SH . end_date
FROM
        Sal_History AS SH
JOIN
        Incumbents AS I
ON
        SH.eid = I.eid
WHERE
        L start date > SH start date
AND
        SH.end_date <= I.end_date
AND
        I. start_date < SH.end_date
    UNION
SELECT
        eid, amount, pcn, I.start_date, I.end_date
FROM
        Sal History AS SH
JOIN
        Incumbents AS I
ON
        SH eid - I eid
```