2021 CVPR

RepVGG: Making VGG-style ConvNets Great Again

Xiaohan Ding ^{1*} Xiangyu Zhang ² Ningning Ma ³ Jungong Han ⁴ Guiguang Ding ^{1†} Jian Sun ²

¹ Beijing National Research Center for Information Science and Technology (BNRist); School of Software, Tsinghua University, Beijing, China

² MEGVII Technology

³ Hong Kong University of Science and Technology

⁴ Computer Science Department, Aberystwyth University, SY23 3FL, UK

dxh17@mails.tsinghua.edu.cn zhangxiangyu@megvii.com nmaac@cse.ust.hk jungonghan77@gmail.com dinggg@tsinghua.edu.cn sunjian@megvii.com

结构重参数化

论文下载地址: https://arxiv.org/abs/2101.03697

博文: https://blog.csdn.net/qq_37541097/article/details/125692507

公众号 "阿喆学习小记" 输入RepVGG获取

目录

- ▶ 0前言
- ➤ 1 RepVGG Block详解
- > 2结构重参数化
- ▶ 3模型配置

前言

Figure 1: Top-1 accuracy on ImageNet *vs.* actual speed. Left: lightweight and middleweight RepVGG and baselines trained in 120 epochs. Right: heavyweight models trained in 200 epochs. The speed is tested on the same 1080Ti with a batch size of 128, full precision (fp32), single crop, and measured in examples/second. The input resolution is 300 for EfficientNet-B3 [35] and 224 for the others.

structural re-parameterization technique

RepVGG Block详解

RepVGG Block详解

为什么训练时要采用多分支结构?

Table 6: Ablation studies with 120 epochs on RepVGG-B0. The inference speed w/o re-param (examples/s) is tested with the models before conversion (batch size=128). Note again that all the models have the same final structure.

Identity branch	1×1 branch	Accuracy	Inference speed w/o re-param
		72.39	1810
✓		74.79	1569
	\checkmark	73.15	1230
✓	✓	75.14	1061

RepVGG Block详解

为什么推理时要将多分支模型转换成单路模型?

- 1. 更快
- 2. 省内存
- 3. 更加灵活

Figure 3: Peak memory occupation in residual and plain model. If the residual block maintains the size of feature map, the peak value of extra memory occupied by feature maps will be $2\times$ as the input. The memory occupied by the parameters is small compared to the features hence ignored.

结构重参数化

in_channels=2

out channels=2

Conv2d(no bias)+BN

结构重参数化-融合Conv2d和BN

$$y_i = rac{x_i - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}} \cdot \gamma_i + eta_i$$

第i个通道的值

$$W_{i,:,:,:}' = rac{\gamma_i}{\sigma_i} W_{i,:,:,:}, \quad b_i' = eta_i - rac{\mu_i \gamma_i}{\sigma_i}$$

第i个卷积核的权重

结构重参数化-融合Conv2d和BN

Channel:1

x_1^1	x_2^1	x_3^1
x_4^1	x_5^1	χ_6^1
x_7^1	x_8^1	x_{9}^{1}

Channel:2

x_1^2	χ_2^2	χ_3^2
x_4^2	x_{5}^{2}	x_{6}^{2}
x_7^2	χ_8^2	x_{9}^{2}

Input feature map

k_1^1	k_2^1	k_{3}^{1}
k_4^1	k_5^1	k_6^1
k_{7}^{1}	k_{8}^{1}	k_{9}^{1}

k_1^2	k_{2}^{2}	k_3^2
k_{4}^{2}	k_{5}^{2}	k_{6}^{2}
k_{7}^{2}	k_{8}^{2}	k_{9}^{2}

kernel weight: 1

$$x_{1}^{1} \cdot k_{5}^{1} + x_{2}^{1} \cdot k_{6}^{1} + x_{4}^{1} \cdot k_{8}^{1} + x_{5}^{1} \cdot k_{9}^{1} + x_{1}^{2} \cdot k_{5}^{2} + x_{2}^{2} \cdot k_{6}^{2} + x_{4}^{2} \cdot k_{8}^{2} + x_{5}^{2} \cdot k_{9}^{2}$$
Channel:1

$$\frac{(x_1^1 \cdot k_5^1 + x_2^1 \cdot k_6^1 + x_4^1 \cdot k_8^1 + x_5^1 \cdot k_9^1 + x_1^2 \cdot k_5^2 + x_2^2 \cdot k_6^2 + x_4^2 \cdot k_8^2 + x_5^2 \cdot k_9^2) - \mu_1}{\sqrt{\sigma_1^2 + \epsilon}} \cdot \gamma_1 + \beta_1$$

Channel:1

BN params

Channel:2

Channel:2

Input feature map

Output feature map

结构重参数化-融合Conv2d和BN

$$\frac{(x_1^1 \cdot k_5^1 + x_2^1 \cdot k_6^1 + x_4^1 \cdot k_8^1 + x_5^1 \cdot k_9^1 + \ x_1^2 \cdot k_5^2 + x_2^2 \cdot k_6^2 + x_4^2 \cdot k_8^2 + x_5^2 \cdot k_9^2) - \mu_1}{\sqrt{\sigma_1^2 + \epsilon}} \cdot \gamma_1 + \beta_1$$

$$(x_1^1 \cdot k_5^1 + x_2^1 \cdot k_6^1 + x_4^1 \cdot k_8^1 + x_5^1 \cdot k_9^1 + x_1^2 \cdot k_5^2 + x_2^2 \cdot k_6^2 + x_4^2 \cdot k_8^2 + x_5^2 \cdot k_9^2) \cdot \frac{\gamma_1}{\sqrt{\sigma_1^2 + \epsilon}} + (\beta_1 - \frac{\mu_1 \cdot \gamma_1}{\sqrt{\sigma_1^2 + \epsilon}})$$
 常数项

结构重参数化-将1x1卷积转换成3x3卷积

结构重参数化-将1x1卷积转换成3x3卷积

Channel:1

Channel:2

x_1^1	x_2^1	χ_3^1
x_{4}^{1}	x_5^1	χ_6^1
x_7^1	x_8^1	χ_9^1

 $x_1^2 x_2^2 x_3^2$

 $x_4^2 | x_5^2 | x_6^2$

 $x_7^2 \mid x_8^2 \mid x_9^2$

 k_1^1

 k_{1}^{2}

Input feature map

origin kernel weight: 1 stride=1, pad=0

converted kernel weight: 1 stride=1, pad=1

结构重参数化-将BN转换成3x3卷积

结构重参数化-将BN转换成3x3卷积

Channel:1

χ_1^1	χ_2^1	x_3^1
x_{4}^{1}	x_{5}^{1}	x_6^1
x_{7}^{1}	x_8^1	χ_9^1

Channel:2

x_1^2	x_2^2	χ_3^2
x_{4}^{2}	x_{5}^{2}	x_{6}^{2}
x_{7}^{2}	x_{8}^{2}	χ_9^2

Input feature map

0	0	0
0	1	0
0	0	0

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0

0	0	0
0	1	0
0	0	0

kernel weight: 1

kernel weight: 2

stride=1, pad=1

x_1^1	χ^1_2	x_3^1
x_{4}^{1}	x_{5}^{1}	x_6^1
x_{7}^{1}	x_{8}^{1}	x_9^1

x_1^2	x_2^2	x_3^2
χ_4^2	x_{5}^{2}	x_{6}^{2}
x_{7}^{2}	x_{8}^{2}	x_{9}^{2}

Output feature map

结构重参数化-多分支融合

结构重参数化-多分支融合

$$O = (I \otimes K_1 + B_1) + (I \otimes K_2 + B_2) + (I \otimes K_3 + B_3)$$

= $I \otimes (K_1 + K_2 + K_3) + (B_1 + B_2 + B_3)$

⊗:表示卷积运算

结构重参数化

- > 减少参数
- ▶ 加速推理

模型配置

2	Top-1	Speed	Params (M)	Theo	Wino
Model				FLOPs	MULs
				(B)	(B)
RepVGG-A0	72.41	3256	8.30	1.4	0.7
ResNet-18	71.16	2442	11.68	1.8	1.0
RepVGG-A1	74.46	2339	12.78	2.4	1.3
RepVGG-B0	75.14	1817	14.33	3.1	1.6
ResNet-34	74.17	1419	21.78	3.7	1.8
RepVGG-A2	76.48	1322	25.49	5.1	2.7
RepVGG-B1g4	77.58	868	36.12	7.3	3.9
EfficientNet-B0	75.11	829	5.26	0.4	5 -
RepVGG-B1g2	77.78	792	41.36	8.8	4.6
ResNet-50	76.31	719	25.53	3.9	2.8
RepVGG-B1	78.37	685	51.82	11.8	5.9
RegNetX-3.2GF	77.98	671	15.26	3.2	2.9
RepVGG-B2g4	78.50	581	55.77	11.3	6.0
ResNeXt-50	77.46	484	24.99	4.2	4.1
RepVGG-B2	78.78	460	80.31	18.4	9.1
ResNet-101	77.21	430	44.49	7.6	5.5
VGG-16	72.21	415	138.35	15.5	6.9
ResNet-152	77.78	297	60.11	11.3	8.1
ResNeXt-101	78.42	295	44.10	8.0	7.9

Table 2: Architectural specification of RepVGG. Here $2 \times 64a$ means stage2 has 2 layers each with 64a channels.

Stage	Output size	RepVGG-A	RepVGG-B
1	112×112	$1 \times \min(64, 64a)$	$1 \times \min(64, 64a)$
2	56×56	$2 \times 64a$	$4 \times 64a$
3	28×28	$4 \times 128a$	$6 \times 128a$
4	14×14	$14 \times 256a$	$16 \times 256a$
5	7×7	$1 \times 512b$	$1 \times 512b$

Table 3: RepVGG models defined by multipliers a and b.

Name	Layers of each stage	a	b
RepVGG-A0	1, 2, 4, 14, 1	0.75	2.5
RepVGG-A1	1, 2, 4, 14, 1	1	2.5
RepVGG-A2	1, 2, 4, 14, 1	1.5	2.75
RepVGG-B0	1, 4, 6, 16, 1	1	2.5
RepVGG-B1	1, 4, 6, 16, 1	2	4
RepVGG-B2	1, 4, 6, 16, 1	2.5	5
RepVGG-B3	1, 4, 6, 16, 1	3	5

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]

沟通方式

1.github

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

2.bilibili

https://space.bilibili.com/18161609/channel/index

3.CSDN

https://blog.csdn.net/qq_37541097/article/details/103482003