4.1
$$\mathbb{E}[g^{2}(Y)] \cdot \mathbb{E}[X^{2}]$$

= $\sum_{y \in Y} P_{Y}(y)g^{2}(y) - \sum_{x \in X} P_{X}(x)x^{2}$

= $\sum_{y \in Y} P_{Y}(y)(\mathbb{E}[x|Y=y])^{2} - \sum_{x \in X} \sum_{y \in Y} P_{x|Y}(x|y)x^{2}$

= $\sum_{y \in Y} P_{Y}(y)(\mathbb{E}[x|Y=y])^{2} - \sum_{x \in X} P_{x|Y}(x|y)x^{2}$

= $\sum_{y \in Y} P_{Y}(y)(\mathbb{E}[x|Y=y])^{2} - \sum_{x \in X} P_{x|Y}(x|y)x^{2}$

= $\sum_{y \in Y} P_{Y}(y)(\mathbb{E}[x|Y=y])^{2} - \mathbb{E}[x^{2}|Y=y]$

= $\sum_{y \in Y} P_{Y}(y) \cdot (-V_{\alpha x}[x|Y=y])$

 $\mathbb{E}[9^2(Y)] \leq \mathbb{E}[X^2]$

4.2 (a).
$$\phi(x) = f(x) \phi_1$$

$$\Rightarrow \phi_1 = \frac{\phi(x)}{f(x)}$$

$$= constant$$

$$= 1(x)$$

(b).
$$\phi(x) = f(x)/P_{x}(x)$$

$$\Rightarrow f(x) = \frac{\phi(x)}{\sqrt{P_{x}(x)}}$$

$$\mathbb{E}[f(x)] = \sum_{x \in x} P_{x}(x) f^{2}(x)$$

$$= \sum_{x \in x} P_{x}(x) \frac{\phi^{2}(x)}{P_{x}(x)}$$

$$= \sum_{x \in x} \phi^{2}(x)$$

$$= ||\phi||^{2}$$

(c).
$$E[f_1(x) f_2(x)] = \sum_{x \in X} \frac{P_x(x)}{\sqrt{R_x \omega_x} P_x(x)} \phi_1(x) \phi_2(x)$$

$$= \sum_{x \in X} \phi_1(x) \phi_2(x)$$

$$= \langle \phi_1, \phi_2 \rangle$$

4.3 (a). Because S₁, S₂ are independent, $P(S_1, S_2) = \frac{1}{27} \exp(-\frac{S_1^2 + S_2^2}{2})$

(b). Based on (a), define
$$S = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$

$$P(S_1, S_2) = \frac{1}{2\pi} \exp(-\frac{S^TS}{2})$$
Define $X = \begin{bmatrix} X_1 \\ Y_2 \end{bmatrix} = AS$

$$P(S_1, Y_2) = P_S(A^TX)|A^T|$$

$$= \frac{1}{2\pi} \exp(-\frac{X^T(A^T)^TA^TX}{2})|A^T|$$

$$= \frac{1}{2\pi} \exp(-\frac{X^T(A^T)^TA^TX}{2})$$

which means the joint density is the same for any orthogonal mixing matrix. In the case of Gaussian variables, ICA can only determine the mixing matrix up to an orthogonal that transformation. So the Gaussian variables are problem.

4.4. (a)

$$E - step: \frac{\int_{\mathbb{R}^{4}} (X = x_1)^2 |Z = 2| \int_{\mathbb{R}^{4}} (X = x_1)^2 |Z = 2| \int_{\mathbb{R}^{4}} (Z = 2| X = 7|) = \frac{\int_{\mathbb{R}^{4}} (X = x_1)^2 |Z = 2| \int_{\mathbb{R}^{4}} (X = x_1)^2 |Z = 2| \int_{\mathbb{R}^{4}} (x_1 - x_2)^2 |Z = 2| \int_{\mathbb{R}^{4}}$$

 $=\frac{\phi_{a}(t)\exp(-\frac{1}{2}(x_{1}-\mu_{a}^{(t)}))}{(2\pi)^{\frac{1}{2}}}\exp(x_{1}-\mu_{a}^{(t)})}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-x_{1})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-x_{1})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$ $=\frac{(2\pi)^{\frac{1}{2}}}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}\frac{g_{a}(x_{1}-\mu_{a}^{(t)})}{[g_{a}(x_{1}-\mu_{a}^{(t)})]}$

M. Step:

$$\begin{array}{l}
\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{n=2}^{\infty} \sum_{j=1}^{\infty} \sum_{n=2}^{\infty} \sum_{j=1}^{\infty} \sum_{n=2}^{\infty} \sum_{j=1}^{\infty} \sum_{n=2}^{\infty} \sum_{j=1}^{\infty} \sum_{n=2}^{\infty} \sum_{j=1}^{\infty} \sum_{n=2}^{\infty} \sum_{n=2}^{\infty$$

$$\frac{\partial J(\theta)}{\partial J J_{2}} = \sum_{i=1}^{m} P_{\theta} \omega (z=z|X=\lambda_{i}) (\lambda_{i}-J J_{2})$$

$$= 0$$

$$\therefore J_{2}^{(n+1)} = \sum_{i=1}^{m} P_{\theta}^{(n)} [z=z|X=\lambda_{i}] \lambda_{i}$$

$$= \sum_{i=1}^{m} P_{\theta}^{(n)} [z=z|X=\lambda_{i}]$$

To compute
$$\phi_{z}^{(H)}$$
, max $J(\theta)$

using Lagrange method

$$L(\theta) = J(\theta) - c\left(\sum_{z \in Z} \varphi_z - 1\right)$$

$$\frac{\partial L}{\partial \phi_z} = \frac{\sum_{i=1}^{n} P_{\theta} w_i (Z=z|X=y_i)}{\phi_z} - C = 0$$

$$\therefore \oint_{Z}^{\text{(t-1)}} = \frac{\sum_{i=1}^{m} p_{\theta}^{\text{(t-1)}}(Z=Z|X=X_{i})}{\sum_{i=1}^{m} \sum_{j=1}^{m} p_{\theta}^{\text{(t-1)}}(Z=Z|X=X_{i})}$$

Compared with K-means, they both have 2 steps. First step is to assign and second step is to update parameters. But in the first step, mixed Gaussian assign "softly" instead of just assign x to the closest cluster. In the second step, the form of the updated centroid is quite similar, but K-means do not need to compute p(z).

4.5 Define $V_1(B)$, $V_2(B)$, ..., $V_n(B)$ are the corresponding eigenvectors of B, and they are orthonormal. For any $V \in \mathbb{R}^n$, can find $V = \sum_{i=1}^n V_i(B)$

$$\frac{V^{TB}V}{||V||^{2}} = \frac{(\pi_{1}V_{1}(B) + \dots + V_{n}(B) \times_{n})^{T} (\times_{1}\lambda_{1}(B)V_{1}(B) + \dots + \times_{n}\lambda_{n}(B)V_{n}(B))}{\chi_{1}^{2} + \chi_{2}^{2} + \dots + \chi_{n}^{2}}$$

$$= \frac{\chi_{1}^{2}\lambda_{1}(B) + \dots + \chi_{n}^{2}\lambda_{n}(B)}{\chi_{1}^{2} + \dots + \chi_{n}^{2}\lambda_{n}(B)}$$

$$\lambda_{n}(B) = \frac{\lambda_{n}(B)(X_{1}^{2} + \dots + X_{n}^{2})}{X_{1}^{2} + \dots + X_{n}^{2}} \leq \frac{V^{T}BV}{||V||^{2}} \leq \frac{\lambda_{1}(B)(X_{1}^{2} + \dots + X_{n}^{2})}{X_{1}^{2} + \dots + X_{n}^{2}} = \lambda_{1}(B)$$

$$\begin{split} \lambda_{k}(A+B) &= \min \left\{ \max_{U} \left\{ \frac{\sqrt{(A+B)V}}{1|V||^{2}} \middle| V \in U \text{ and } V \neq 0 \right\} \middle| \dim(U) = n + 1 - k \right\} \\ &= \min \left\{ \max_{U} \left\{ \frac{\sqrt{(A+B)V}}{1|V||^{2}} \middle| V \in U \text{ and } V \neq 0 \right\} \middle| \dim(U) = n + 1 - k \right\} \\ &\leq \min \left\{ \max_{U} \left\{ \frac{\sqrt{(A+V)}}{1|V||^{2}} + \lambda_{1}(B) \middle| V \in U \text{ and } V \neq 0 \right\} \middle| \dim(U) = n + 1 + k \right\} \\ &= \lambda_{k}(A) + \lambda_{1}(B). \end{split}$$

Also, $\lambda_{K}(A+B)$ $\lambda_{K}(A) = \lambda_{K}(A+B+C-B)$ $\leq \lambda_{K}(A+B) + \lambda_{1}(-B)$ $= \lambda_{K}(A+B) - \lambda_{n}(B)$ $\lambda_{K}(A+B) \geq \lambda_{K}(A) + \lambda_{n}(B)$ Finally, $\lambda_{K}(A) + \lambda_{n}(B) \leq \lambda_{K}(A) + \lambda_{1}(B)$