11 класс

Задача 1. Трифилярный маятник

Массивное кольцо подвешено на трёх тонких вертикальных нитях длиной L (рис. 11).

- 1. Определите период малых крутильных колебаний кольца относительно оси OO'.
- 2. Насколько изменится период крутильных колебаний, если в центре кольца (точка О) при помощи лёгких спиц расположить тело малых размеров (материальную точку), масса которого равна массе кольна?

 $Указание: При \ \alpha \ll 1$ можно использовать приближённое выражение

$$\cos \alpha \approx 1 - \alpha^2/2$$
.

Задача 2. Заряженная частица в соленоиде

На рисунке 12 изображено сечение длинной прямой катушки (соленоида), радиус витков которой r=10 см. Число витков катушки на 1 метр длины $n = 500 \,\mathrm{m}^{-1}$. По виткам катушки протекает постоянный ток I== 0.1 A (по часовой стрелке).

Через зазор между витками в точке A в катушку влетает заряженная частица, ускоренная разностью потенциалов $U = 10^3 \,\mathrm{B}$. Скорость частицы в точке A направлена вдоль радиуса соленоида. Частица движется внутри соленоида в плоскости, перпендикулярной его оси, и вылетает из соленоида в точке C, расположенной

Рис. 12

под углом $\alpha = 60^{\circ}$ к первоначальному направлению. Определите:

- 1. знак заряда частицы;
- 2. радиус кривизны траектории частицы внутри соленоида;
- 3. удельный заряд частицы (то есть отношение модуля заряда частицы к её массе).

Магнитная постоянная $\mu_0 = 4\pi \cdot 10^{-7}$ (единиц СИ).

Задача 3. Устойчивость поршня

Закрытый снизу тонкостенный цилиндр длиной L=1.50 м установлен вертикально. В верхней части он соединён с другим цилиндром, значительно большего диаметра (рис. 13). В нижнем цилиндре на расстоянии $h_1 = 380$ мм от верхнего края расположен тонкий лёгкий поршень. Над поршнем находится слой ртути высотой $h + \Delta h$, где $\Delta h \ll h$, ниже поршня — гелий под давлением $p_1 = p_0 + \rho_D g h_1$, где $p_0 = 760$ мм.рт.ст. — атмосферное давление, $\rho_{\rm p}=13.6~{\rm г/cm^3}~-$ плотность ртути. Из-за большой разницы диаметров

цилиндров изменением Δh можно пренебречь при смещениях поршня по всей длине нижнего цилиндра.

Из условия задачи следует, что поршень находится в равновесии. Является ли это положение равновесия устойчивым? Существуют ли другие положения равновесия? Если есть, то при каких расстояниях h_i от поршня до верхнего края? Являются ли эти положения равновесия устойчивыми? Можно считать, что при малых изменениях объёма под поршнем температура гелия остаётся постоянной.

Задача 4. Конденсатор с утечкой

Плоский конденсатор ёмкостью C_0 заполнен слабопроводящей слоистой средой с $\varepsilon = 1$, удельное сопротивление которой зависит от расстояния x до одной из пластин по закону $\rho = \rho_0(1 +$ $+\frac{2x}{d}$), где d — расстояние между пластинами конденсатора. Конденсатор подключен к батарее с напряжением U_0 (рис. 14).

Найлите:

- 1. силу тока, протекающего через конденсатор;
- 2. заряды нижней (q_1) и верхней (q_2) пластин конденсатора;
- 3. заряд q внутри конденсатора (т. е. в среде между пластинами);
- 4. электрическую энергию W_3 , запасённую в конденсаторе.

Задача 5. Плоский световод

Вблизи левого торца хорошо отполированной прозрачной пластины, показатель преломления которой n, расположен точечный источник света S (рис. 15). Толщина пластины H=1 см, её длина L=100 см. Свет от источника падает на левый торец пластины под всевозможными углами падения $(0-90^{\circ})$. В глаз наблюдателя попадают как прямые лучи от источника, так и лучи, многократно испытавшие полное отражение на боковых гранях пластины.

- 1. Какое максимальное число отражений может испытать луч от источника, выходящий через правый торец пластины? Решите задачу для двух значений коэффициента преломления: $n_1 = 1.73$, $n_2 = 1.3$.
- 2. Укажите, в каком из этих двух случаев свет частично выходит из пластины через боковые грани.

Рис. 15