Relations d'équivalence, quotients, premières propriétés des groupes.

1 Exercice 1.

1. Donner un isomorphisme $f: \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$, où \mathbb{S}^1 est le cercle unité de \mathbb{R}^2 et \mathbb{R}/\mathbb{Z} est le groupe quotient de \mathbb{R} par son sous-groupe distingué \mathbb{Z} .

Soient E et F deux ensembles et soit $f: E \to F$ une application.

2. a) Montrer que la relation binaire sur E définie par

$$x \sim y \iff f(x) = f(y)$$

est une relation d'équivalence.

- **b)** On pose $X := E/\sim$. Soit $\pi : E \to X$ l'application canonique. Montrer qu'il existe une unique application $\bar{f} : X \to F$ telle que $f = \bar{f} \circ \pi$.
- c) Montrer que \bar{f} est une bijection sur son image.
- 1. On commence par considérer l'application

$$g: \mathbb{R}/\mathbb{Z} \longrightarrow u^{-1}(\mathbb{S}^1)$$

 $x\mathbb{Z} \longmapsto e^{2\pi i x},$

où $u:\mathbb{C}\to\mathbb{R}^2$ est l'isomorphisme canonique de \mathbb{R}^2 et $\mathbb{C}.$ Montrons trois propriétés.

- ▷ C'est bien défini. En effet, si $k \in \mathbb{Z}$, alors $e^{2i\pi(x+k)} = e^{2i\pi x}$ par a 2π -périodicité de cos et sin.
- ightharpoonup C'est bien un morphisme. En effet, si $x\mathbb{Z},y\mathbb{Z}\in\mathbb{R}/\mathbb{Z},$ alors on a

$$g(x\mathbb{Z} + y\mathbb{Z}) = g((x+y)\mathbb{Z}) = \exp(2i\pi(x+y))$$
$$= \exp(2i\pi x) \cdot \exp(2i\pi y)$$
$$= g(x\mathbb{Z}) \cdot g(y\mathbb{Z}).$$

 \triangleright C'est une bijection. En effet, l'application réciproque est l'application $u^{-1}(\mathbb{S}^1) \ni z \mapsto (\arg z)\mathbb{Z}$.

On en conclut en posant l'isomorphisme $f := u \circ g : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$.

- 2. a) On a trois propriétés à vérifier.
 - \triangleright Comme f(x) = f(x), on a $x \sim x$ quel que soit $x \in E$.
 - \triangleright Si $x \sim y$, alors f(x) = f(y) et donc f(y) = f(x) et on en déduit $y \sim x$.
 - \triangleright Si $x \sim y$ et $y \sim z$, alors f(x) = f(y) = f(z), et on a donc $x \sim z$.
 - b) La fonction f est constante sur chaque classe d'équivalence de E par \sim . On procède par analyse synthèse.
 - ightharpoonup Analyse. Si $\bar{f}: X \to F$ existe, alors $\bar{f}(\bar{x}) = f(x)$ quel que soit $x \in E$, où \bar{x} est la classe d'équivalence de x. L'application \bar{f} est donc unique, car déterminée uniquement par les valeurs de f sur les classes d'équivalences de x.
 - \triangleright Synthèse. On pose $\bar{f}(\bar{x}) := f(x)$, qui est bien définie car f est constante sur les classes d'équivalences de \sim .
 - c) Montrons que $\bar{f}: X \to \text{im } \bar{f}$ est injective et surjective.
 - \triangleright Soient \bar{x} et \bar{y} dans X tels que $\bar{f}(\bar{x}) = \bar{f}(\bar{y})$. Alors, on a f(x) = f(y) et donc $x \sim y$ d'où $\bar{x} = \bar{y}$.
 - \triangleright On a, par définition, im $\bar{f} = \bar{f}(X)$.

D'où, \bar{f} est une bijection sur son image.

2 Exercice 2. Parties génératrices

- 1. Soit X une partie non vide d'un groupe G. Montrer que $\langle X \rangle$, le sous-groupe de G engendré par X, est exactement l'ensemble des produits finis d'éléments de $X \cup X^{-1}$, où X^{-1} est l'ensemble défini par $X^{-1} := \{x^{-1} \mid x \in X\}$.
- **2.** Montrer que le groupe $(\mathbb{Q}, +)$ n'admet pas de partie génératrice finie.
- **3.** Montrer que $(\mathbb{Q}^{\times}, \times) = \langle -1, p \in \mathbb{P} \rangle$, où \mathbb{P} est l'ensemble des nombres premiers.
- 1. Soit H l'ensemble des produits finis d'éléments de $X \cup X^{-1}$.
 - ▷ L'ensemble H contient X. De plus, H est un groupe. En effet, on a $H \neq \emptyset$ car $e = xx^{-1} \in H$ où $x \in X$. Puis, pour deux produits $x = x_1 \cdots x_n \in H$ et $y = y_1 \cdots y_m \in H$ (où les x_i et les y_j sont des éléments de $X \cup X^{-1}$) on a

$$xy^{-1} = x_1 \cdots x_n y_m^{-1} \cdots y_1^{-1},$$

qui est un produit fini d'éléments de $X \cup X^{-1}$, c'est donc un élément de H. On en conclut que H est un sous-groupe de G contenant H. D'où $H \ge \langle X \rangle$.

 \triangleright Soit K un sous-groupe de G contenant X. D'une part, on sait que $X \cup X^{-1} \subseteq K$. D'autre part, si $x = x_1 \cdots x_n$ où l'on a $x_i \in X \cup X^{-1} \subseteq K$, alors $x \in K$ car K est un groupe. On en déduit que H < K.

Ainsi, H est le plus petit sous-groupe de G contenant X, il est donc égal à $\langle X \rangle$.

2. Supposons, par l'absurde, que $(\mathbb{Q},+) = \langle \frac{p_1}{q_1}, \frac{p_2}{q_2}, \dots, \frac{p_n}{q_n} \rangle$. On pose $Q := \prod_{i=1}^n q_i$, puis on considère $\frac{1}{Q+1} \in \mathbb{Q}$.

Montrons que l'on peut écrire tout élément de $\langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \rangle$ sous la forme $\frac{p}{Q}$. En effet, par la question 1, on considère

$$x := \sum_{i \in I} \varepsilon_i \frac{p_i}{q_i}$$
 avec $\varepsilon_i \in \{-1, 1\}$ et I fini, $-3/14$ -

un élément que lconque du sous-groupe engendré. Et, en mettant au même dénominateur, on obtient $p'/\prod_{i\in I}q_i=x$. On obtient donc bien

 $x = \frac{p' \times \prod_{i \notin I} p_i}{Q},$

où le produit au numérateur contient un nombre fini de termes.

Or, $\frac{1}{Q+1} \in \mathbb{Q}$ ne peut pas être écrit sous la forme p/Q car Q+1 et Q sont premiers entre eux. C'est donc absurde! On en conclut que $(\mathbb{Q}, +)$ n'admet pas de partie génératrice finie.

3. Notons $E := \langle -1, p \in \mathbb{P} \rangle$. Soit $\frac{a}{b}$ un rationnel strictement positif. On suppose a et b positifs. On décompose a et b en produit de nombre premiers :

$$a = \prod_{i \in I} p_i$$
 et $b = \prod_{j \in J} p_j$.

On a donc $a \in E$ et $b \in E$. On en conclut que $\frac{a}{b} \in E$.

Si $\frac{a}{b} \in \mathbb{Q}^{\times}$ est un rationnel tel que a,b<0, on a $\frac{a}{b}=\frac{|a|}{|b|} \in E$ d'après ce qui précède.

Si $\frac{a}{b} \in \mathbb{Q}^{\times}$ est un rationnel négatif, alors on a $\left|\frac{a}{b}\right| \in E$, mais on a donc également $\frac{a}{b} = (-1) \times \left|\frac{a}{b}\right| \in E$.

On en conclut que $\mathbb{Q}^{\times} \subseteq E$ et on a égalité car $E \subseteq \mathbb{Q}^{\times}$ par définition de E comme sous-groupe de \mathbb{Q}^{\times} .

3 Exercice 3. Ordre des éléments d'un groupe

Soient g et h deux éléments d'un groupe G.

- **1.** a) Montrer que g est d'ordre fini si et seulement s'il existe $n \in \mathbb{N}^*$ tel que $g^n = e$.
 - **b)** Montrer que si g est d'ordre fini, alors son ordre est le plus petit entier $n \in \mathbb{N}^*$ tel que $g^n = e$. Montrer, de plus, que pour $m \in \mathbb{Z}$, $g^m = e$ si et seulement si l'ordre de g divise m.
- **2.** Montrer que les éléments g, g^{-1} et hgh^{-1} ont même ordre.

- 3. Montrer que gh et hg ont même ordre.
- **4.** Soit $n \in \mathbb{N}$. Exprimer l'ordre de g^n en fonction de celui de g.
- **5.** On suppose que g et h commutent et sont d'ordre fini m et n respectivement.
 - a) Exprimer l'ordre de gh lorsque $\langle g \rangle \cap \langle h \rangle = \{e\}.$
 - **b)** Même question lorsque m et n sont premiers entre eux.
 - c) (Plus difficile) On prend m et n quelconques. Soient $a := \min\{\ell \in \mathbb{N}^* \mid g^{\ell} \in \langle h \rangle\}$ et $b \in \mathbb{N}$ tel que $g^a = h^b$. Démontrer que l'ordre de gh est $an/\operatorname{pgcd}(n, (a+b))$.
- 6. En considérant

$$A := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad et \qquad B := \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix},$$

montrer que le produit de deux éléments d'ordre fini ne l'est pas forcément.

4 Exercice 4.

Soit G un groupe.

- 1. On suppose que tout élément g de G est d'ordre au plus 2. Montrer que G est commutatif.
- **2.** Montrer que G est commutatif si et seulement si l'application $g \mapsto g^{-1}$ est un morphisme de groupes.
- 1. Pour tout $g \in G$, on a $g^2 = e$. Ainsi, pour tout $g \in G$, on a g est son propre inverse. Ceci permet de calculer

$$gh = g^{-1}h = g^{-1}h^{-1} = (hg)^{-1} = hg,$$

d'où G est commutatif.

2. On note $\phi: q \mapsto q^{-1}$, et on procède par équivalence.

$$G$$
 est commutatif $\iff \forall g, h \in G, \quad gh = hg$

$$\iff \forall g, h \in G, \quad (gh)^{-1} = (hg)^{-1}$$

$$\iff \forall g, h \in G, \quad (gh)^{-1} = g^{-1}h^{-1}$$

$$\iff \forall g, h \in G, \quad \phi(gh) = \phi(g) \ \phi(h)$$

$$\iff \phi \text{ est un morphisme.}$$

$$-5/14 -$$

5 Exercice 5.

Soit $\phi: G_1 \to G_2$ un morphisme de groupes, et soit $g \in G_1$ d'ordre fini. Montrer que $\phi(g)$ est d'ordre fini et que son ordre divise l'ordre de g.

On utilise habilement l'exercice 3: pour tout $h \in G$, $h^m = e$ si et seulement si l'ordre de h divise m. Soit n l'ordre de g (qui est fini car G_1 d'ordre fini). Ainsi,

$$(\phi(g))^n = \phi(g^n) = \phi(e_1) = e_2.$$

On en déduit donc que $\phi(g)$ est d'ordre fini et qu'il divise $n = \operatorname{ord} g$.

6 Exercice 6.

Soient G_1 et G_2 des groupes, et $\phi: G_1 \to G_2$ un morphisme de groupes.

- 1. Soient H_1 (resp. H_2) un sous-groupe de G_1 (resp. G_2). Montrer que $\phi(H_1)$ (resp. $\phi^{-1}(H_2)$) est un sous-groupe de G_2 (resp. G_1).
- **2.** Montrer que H_2 est un sous-groupe distingué de G_2 , alors $\phi^{-1}(H_2)$ est un sous-groupe distingué de G_1 .
- 3. Montrer que si ϕ est surjective, l'image d'un sous-groupe distingué de G_1 par ϕ est un sous-groupe distingué de G_2 .
- **4.** Donner un exemple d'un morphisme de groupes $\phi: G_1 \to G_2$ et de sous-groupe distingué $H_1 \triangleleft G_1$ tel que $\phi(H_1)$ n'est pas distingué dans G_2 .
- 1. Remarquons que $e_2 \in \phi(H_1) \neq \emptyset$ et que $e_1 \in \phi^{-1}(H_2) \neq \emptyset$ car on a $\phi(e_1) = e_2$. Pour $a, b \in \phi(H_1)$, on sait qu'il existe $x, y \in H_1$ tels que $\phi(x) = a$ et $\phi(y) = b$. Alors,

$$ab^{-1} = \phi(x) \ \phi(y)^{-1} = \phi(\underbrace{xy^{-1}}_{\in H_1}) \in \phi(H_1),$$

d'où $\phi(H_1)$ est un sous-groupe de G_2 . Pour $a, b \in \phi^{-1}(H_2)$, on sait que $\phi(a), \phi(b) \in H_2$ Alors, on a

$$\phi(ab^{-1}) = \underbrace{\phi(a)}_{\in H_2} \underbrace{\phi(b)^{-1}}_{\in H_2} \in H_2,$$

$$- 6/11 - \underbrace{6/11}_{\in H_2}$$

d'où $ab^{-1} \in \phi^{-1}(H_2)$ et donc $\phi(H_1)$ est un sous-groupe de G_2 .

2. Supposons $H_2 \triangleleft G_2$ et montrons que $\phi^{-1}(H_2) \triangleleft G_2$. Soit un élément $g \in G_1$ quelconque, et soit $h \in \phi^{-1}(H_2)$. Alors,

$$\phi(ghg^{-1}) = \phi(g) \ \phi(h) \ \phi(g)^{-1} \in H_2,$$

car $\phi(h) \in H_2$ et que $H_2 \triangleleft G_2$. Ainsi, $ghg^{-1} \in \phi^{-1}(H_2)$. On a donc $g \phi^{-1}(H_2) g^{-1} \subseteq \phi^{-1}(H_2)$, quel que soit $g \in G_1$. On en déduit que $\phi^{-1}(H_2)$ est distingué dans G_1 .

3. Suppsons ϕ surjective, on a donc l'égalité $\phi(G_1) = G_2$. Supposons de plus que $H_1 \triangleleft G_1$. Montrons que $\phi(H_1)$ est un sous-groupe distingué de G_2 . Soit $g \in G_2 = \phi(G_1)$ quelconque, et soit un élément $h \in \phi(H_1)$. Il existe donc $x \in G_1$ et $y \in H_1$ deux éléments tels que $\phi(y) = h$ et $\phi(x) = g$. Ainsi

$$ghg^{-1} = \phi(x) \phi(y) \phi(x)^{-1} = \phi(xyx^{-1}) \in \phi(H_1)$$

car H_1 distingué dans G_1 et donc $xyx^{-1} \in H_1$. Ainsi $\phi(H_1) \triangleleft G_2$.

4. On considère le morphisme

$$f: (\mathbb{R}, +) \longrightarrow (\mathrm{GL}_2(\mathbb{R}), \cdot)$$

 $x \longmapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix},$

et le sous-groupe distingué $\mathbb{R} \triangleleft \mathbb{R}$. On a

$$\forall x \in \mathbb{R} \setminus \{0\}, \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{M \in \mathrm{GL}_2(\mathbb{R})} \underbrace{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}}_{f(x)} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{M^{-1} \in \mathrm{GL}_2(\mathbb{R})} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \not\in f(\mathbb{R}).$$

Ainsi, $f(\mathbb{R}) \not \subset GL_2(\mathbb{R})$.

7 Exercice 7.

Soit G un groupe et soient H, K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si on a $H \subseteq K$ ou $K \subseteq H$.

On procède par double implications.

- \triangleright « \Longrightarrow ». Supposons que $H \cup K$ soit un sous-groupe de G. Par l'absurde, supposons que $H \not\subseteq K$ et $K \not\subseteq H$. Il existe donc deux éléments $h \in H \setminus K$ et $k \in K \setminus H$. Considérons $hk \in H \cup K$.
 - Si $hk \in H$, alors $h^{-1}(hk) \in H$ et donc $k \in H$, absurde!
 - Si $hk \in K$, alors $(hk)k^{-1} \in K$ et donc $h \in K$, absurde!

On en déduit que $H \subseteq K$ ou $K \subseteq H$.

 \triangleright « \iff ». Sans perte de généralité, supposons $H\subseteq K$. Ainsi, on a $H\cup K=K$ qui est un sous-groupe de G.

8 Exercice 8. Classes à gauche et classes à droite

Soit H un sous-groupe G un groupe G. Montrer que l'on a une bijection canonique $G/H \to H\backslash G$.

On note $S^{-1}=\{s^{-1}\mid s\in S\}$ pour un sous-ensemble S de G. Alors nous avons l'égalité $(aH)^{-1}=Ha^{-1}$ et $(Ha)^{-1}=a^{-1}H$. En effet,

$$(aH)^{-1} = \{ah \mid h \in H\}^{-1} \qquad (Ha)^{-1} = \{ha \mid h \in H\}^{-1}$$

$$= \{(ah)^{-1} \mid h \in H\} \qquad = \{(ha)^{-1} \mid h \in H\}$$

$$= \{ha^{-1} \mid h \in H\} \qquad = \{a^{-1}h \mid h \in H\}$$

$$= Ha^{-1} \qquad = a^{-1}H.$$

Il existe donc une bijection canonique

$$f: G/H \longrightarrow H\backslash G$$
$$aH \longmapsto (aH)^{-1} = Ha^{-1}.$$

9 Exercice 9. Normalisateur

Soit $H \leq G$ un sous-groupe d'un groupe G. On dit que x normalise si $xHx^{-1} = H$. On note $N_G(H)$ l'ensemble des éléments de G qui normalisent H. C'est le normalisateur de H dans G.

- 1. Montrer que $N_G(H)$ est le plus grand sous-groupe de G contenant H et dans lequel H est distingué.
- **2.** En déduire que H est distingué dans G si et seulement si on a l'égalité $G = N_G(H)$.
- 1. Commençons par montrer que $N_G(H)$ est un sous-groupe de G contenant H.
 - ightharpoonup L'élément neutre normalise H, car $eHe^{-1}=H$. D'où, le normalisateur de H est non vide.
 - \triangleright Soient x et y deux éléments qui normalisent H. Alors, xy normalise H:

$$(xy)H(xy)^{-1} = xyHy^{-1}x^{-1} = xHx^{-1} = H.$$

 \triangleright Soit $x \in G$ qui normalise H. Alors x^{-1} normalise H:

$$x^{-1}Hx = H \iff Hx = xH \iff H = xHx^{-1},$$

et cette dernière condition est vérifiée car x normalise H.

 \triangleright Soit $h \in H$. Alors h normalise H. En effet,

$$hHh^{-1} = Hh^{-1} = H$$
,

 $\operatorname{car} h^{-1} \in H$ et puis $\operatorname{car} h \in H$.

On en conclut que $N_G(H)$ est un sous-groupe de G contenant H.

Par définition de $N_G(H)$, on a que $H \triangleleft N_G(H)$: quel que soit x qui normalise H, on a (par définition) $xHx^{-1} = H$.

Il ne reste plus qu'à montrer que tout sous-groupe $N \supseteq H$ tel que $H \triangleleft N$ vérifie $N \subseteq \mathrm{N}_G(H)$. Soit N un tel sous-groupe, et un élément $x \in N$. Ainsi $xHx^{-1} = H$, d'où x normalise H. On a donc bien l'inclusion $N \subseteq \mathrm{N}_G(H)$.

Ceci démontre bien que $N_G(H)$ est le plus grand sous-groupe de G contenant H et dans lequel H y est distingué.

2. D'une part, si H est distingué dans G, alors le plus grand sous-groupe de G contenant H et dans lequel H est distingué est G.

D'autre part, si $G = N_G(H)$, alors tout élément $x \in G$ vérifie l'égalité $xHx^{-1} = H$ et donc $H \triangleleft G$.

10 Exercice 10. Construction de \mathbb{Q}

Soit $E := \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. On définit $\sim \sup E \ par \ (a,b) \sim (a',b')$ dès lors que ab' = a'b.

- **1.** Montrer que \sim est un relation d'équivalence sur E. Si $(a,b) \in E$, on note $\frac{a}{b}$ son image dans E/\sim .
- **2.** Munir E/\sim d'une structure de corps telle que $\mathbb Z$ s'injecte dans le corps E/\sim .
- **3.** Similairement, pour un corps k, construire k(X) à partir de l'ensemble k[X].
- 4. Construire \mathbb{Z} à partir de \mathbb{N} .
- 1. On a trois propriétés à vérifier.
 - \triangleright Si $(a,b) \in E$, alors ab = ab donc $(a,b) \sim (a,b)$.
 - \triangleright Si $(a,b) \sim (a',b')$, alors ab' = a'b et donc $(a',b') \sim (a,b)$.
 - \triangleright Si $(a,b) \sim (a',b')$ et $(a',b') \sim (a'',b'')$, alors

$$a'ab'b'' = a'a'bb'' = a'ba'b'' = a'ba''b',$$

et donc a'b'(ab'' - a''b) = 0. Par anneau intègre, on a une disjonction de cas :

- $\sin a' = 0$, alors a = a'' = 0;
- $\operatorname{si} b' = 0$, alors **absurde** car $b' \in \mathbb{Z} \setminus \{0\}$;
- si ab'' a''b = 0, alors on a ab'' = a''b.

Dans les deux cas, on obtient bien $(a, b) \sim (a'', b'')$.

- 2. On munit E/\sim de deux opérations « \oplus » et « \otimes ».
 - \triangleright On pose l'opération $\frac{a}{b} \oplus \frac{c}{d} := \frac{ad+bc}{bd}$ qui est bien définie car, si l'on a $(a,b) \sim (a',b')$, alors

$$(ad + bc, bd) \sim (a'd + b'c, b'd) \iff (ad + bc)b'd = (a'd + b'c)bd$$

 $\iff ab'd^2 = a'bd^2.$

ce qui est vrai car $(a,b) \sim (a',b')$. On peut procéder symétriquement pour $(c',d') \sim (c,d)$.

 \triangleright On pose l'opération $\frac{a}{b} \otimes \frac{c}{d} := \frac{ac}{bd}$ qui est bien définie car, si l'on a $(a,b) \sim (a',b')$, alors

$$(ac, bd) \sim (a'c, b'd) \iff acb'd = a'cbd,$$

ce qui est vrai car $(a,b) \sim (a',b')$. On peut procéder symétriquement pour $(c',d') \sim (c,d)$.

Montrons que $(E/\sim, \oplus, \otimes)$ est un corps.

 \triangleright La loi \oplus est associative : on a

$$\frac{a}{b} \oplus \left(\frac{c}{d} \oplus \frac{e}{f}\right) = \left(\frac{a}{b} \oplus \frac{c}{d}\right) \oplus \frac{e}{f} = \frac{adf + cbf + ebd}{bdf},$$

par associativité de +.

- ▷ La loi ⊕ est commutative par commutativité de +.
- \triangleright La loi \oplus possède un élément neutre $\frac{0}{1} \in E/\sim$.
- \triangleright Tout élément $\frac{a}{b}$ possède un symétrique $\left(\frac{-a}{b}\right)$ pour \oplus par rapport à $\frac{0}{1}.$
- \triangleright La loi \otimes est associative : on a

$$\tfrac{a}{b} \otimes \left(\tfrac{c}{d} \otimes \tfrac{e}{f} \right) = \left(\tfrac{a}{b} \otimes \tfrac{c}{d} \right) \otimes \tfrac{e}{f} = \tfrac{ace}{bdf},$$

par associativité de ×.

- ▷ La loi \otimes est distributive par rapport à \oplus , par distributivité de \times par rapport à +.
- ▷ La loi \otimes possède un élément neutre $\frac{1}{1} \in E/\sim$ pour \otimes .
- ▷ Tout élément non nul $\frac{a}{b}$ possède un inverse $\frac{b}{a}$ par rapport à $\frac{1}{1}$.

On en conclut que $(E/\sim, \oplus, \otimes)$ est un corps.

Finalement, on considère l'injection

$$f: \mathbb{Z} \hookrightarrow E/\sim$$
$$k \longmapsto \frac{k}{1}.$$

C'est bien une injection car, si $\frac{k}{1} = \frac{k'}{1}$, alors $k \times 1 = k' \times 1$ et donc k = k'. On a, de plus, que f est un morphisme de groupes $(\mathbb{Z}, +) \to (E/\sim, \oplus)$:

$$f(k) \oplus f(k') = \frac{k}{1} \oplus \frac{k'}{1} = \frac{k+k'}{1} = f(k+k').$$

- 11/14 -

3. On pose $F := \mathbb{k}[X] \times (\mathbb{k}[X] \setminus \{0_{\mathbb{k}[X]}\})$, et la relation

$$(P,Q) \sim (P',Q') \iff PQ' = P'Q.$$

Cette relation est une relation d'équivalences (comme pour la question précédente, et car \mathbbm{k} est un anneau intègre). On pose ensuite $\mathbbm{k}(X) := F/\sim$. Comme dans la question précédente, on peut donner une structure de corps avec les mêmes définitions (en replaçant les entiers par des polynômes de \mathbbm{k}). Les propriétés découlent toutes du fait que $(\mathbbm{k}, +, \times)$ est un corps.

4. On pose $Z:=\mathbb{N}^2/\sim$, où la relation d'équivalence \sim est définie par

$$(a,b) \sim (a',b') \iff a+b'=b+a'.$$

11 Exercice 11.

Soit $E:=\mathbb{C}[X]$ le \mathbb{C} -espace vectoriel des polynômes à coefficients dans \mathbb{C} et $P\in\mathbb{C}[X]$ un polynôme de degré $d\in\mathbb{N}^*$.

- **1.** Montrer que l'ensemble $(P) := \{QP \mid Q \in \mathbb{C}[X]\}$ est un sous- \mathbb{C} -espace vectoriel de $\mathbb{C}[X]$.
- **2.** Déterminer un isomorphisme entre $\mathbb{C}[X]/(P)$ et le \mathbb{C} -espace vectoriel $\mathbb{C}_{d-1}[X]$ des polynômes de degrés inférieurs à d-1 de $\mathbb{C}[X]$.
- **3.** Montrer que la multiplication dans $\mathbb{C}[X]$ induit une structure de \mathbb{C} -algèbre sur $\mathbb{C}[X]/(P)$.

12 Exercice 12.

Soit G un groupe et H un sous-groupe strict de G. Montrer que l'on a l'égalité $\langle G \setminus H \rangle = G$.

13 Exercice 13.

Soit G un groupe fini. Montrer que G contient un élément d'ordre 2 si et seulement si son cardinal est pair. Montrer de plus que, dans ce cas là, il en contient un nombre impair.

14 Exercice 14.

Soit G un groupe et \sim une relation d'équivalence sur G. On suppose que G/\sim est un groupe, et que la projection canonique $\pi:G\to G/\sim$ est un morphisme de groupes.

Montrer qu'il existe un sous-groupe distingué $H \triangleleft G$ tel que pour tous éléments $x,y \in G, \ x \sim y$ si et seulement si $xy^{-1} \in H$.

15 Exercice **15**.

Soit G un groupe et S_G l'ensemble des sous-groupes de G.

- 1. Démontrer que si G est fini, alors S_G est fini.
- **2.** Supposons S_G fini. Démontrer que tous les éléments de G sont d'ordre fini, en déduire que G est fini.
- **3.** On ne suppose plus que S_G est fini. Si tous les éléments de G sont d'ordre fini, est-ce que G est fini?

Table des matières

Relations d'équivalence, quotients, premières propriétes	
des groupes.	
1	Exercice 1
2	Exercice 2. Parties génératrices
3	Exercice 3. Ordre des éléments d'un groupe
4	Exercice 4
5	Exercice 5
6	Exercice 6
7	Exercice 7 7
8	Exercice 8. Classes à gauche et classes à droite 8
9	Exercice 9. Normalisateur
10	Exercice 10. Construction de \mathbb{Q}
11	Exercice 11
12	Exercice 12
13	Exercice 13
14	Exercice 14
15	Exercice 15