Second Assignment: Stock Market-discrete and continuous time models

Silvia Romagnoli

Deadline: 26th March, 2025

1 The "Thank you, Beyonce"'s

Consider the market $\mathcal{M}=(S^0,S^1,\Phi)$ whose prices evolve in discrete time following a four-periods trinomial additive model. Knowing that, $S_0^1=1$, the additive parameters are $u_1=+1.8,\ m_1=+0.2$ and $d_1=-0.4$ in the first two periods while they are incremented of their 1% in the last two periods, and the term structure of spot prices is $\{B(0,1)=0.82; B(0,2)=0.75; B(0,3)=0.72; B(0,4)=0.75\}$, determine:

- 1. the set of martingale measures for S^1 assuming that it pays a dividend at the rate 0.03% at every node except the last one;
- 2. an arbitrage price of a Parisian down in, $H^d = 0.55$ (window up of 2 periods), put written on S^1 with maturity T=4, and strike K=3.2.

2 The Green Hedgers

Consider the foreign asset S^f , whose \mathbb{P} -dynamic is:

$$\frac{\mathrm{d}S_t^f}{S_t^f} = (r_t^f - \delta_t^f)\mathrm{d}t + \sigma_t^f(\mathrm{d}\hat{W}_t + \lambda_t^f\mathrm{d}t)$$

where r_t^f is the foreign risk-free rate, δ_t^f is the stochastic dividend rate payed by S^f and where $(\hat{W})_t$ is the \mathbb{P} -Brownian. Assuming that the interest rates are stochastic, evaluate:

- 1. the price and the hedging strategy in domestic currency of a compo call written on S^f , with strike price K^d , maturity T, assuring the absence of arbitrage opportunities between the two markets;
- 2. the price and the hedging strategy of a quanto put written on S^f , with strike price K^f , maturity T, assuring the absence of arbitrage opportunities between the two markets.

3 The Bondfathers

Given the continuous market $\mathcal{M}=(S^0,S,I,\Phi)$ characterized by the following \mathbb{P} -dynamics of the basic assets:

$$\frac{\mathrm{d}S_t^0}{S_t^0} = r_t \mathrm{d}t$$

$$\frac{\mathrm{d}S_t}{S_t} = (r_t - a_t) \mathrm{d}t + \sigma_t^S (\lambda_t \mathrm{d}t + \mathrm{d}\widehat{W}_t)$$

$$\frac{\mathrm{d}I_t}{I_t} = (r_t - b_t) \mathrm{d}t + \sigma_t^I (\lambda_t \mathrm{d}t + \mathrm{d}\widehat{W}_t)$$

where r_t is the risk-free rate, λ_t is the risk premium on the historical market and $(\widehat{W})_t$ is the \mathbb{P} -Brownian, compute:

1. the price and the hedging strategy of an exchange option whose underlying is I_t exchange for a quantity β of S_t^2 in the market \mathcal{M}^{S^2} whose numeraire is S_t^2 .

4 The martinguys

Let be $\mathcal{M}^d=(S^{0,d},I^d,\Phi)$ the domestic market where the risk-free rate is $r^d=0.01$ and the index I^f evolve (biennial) in discrete time following a multiplicative trinomial model. Assume that $I_0^f=0.018$, the multiplicative parameters are u=1.032, m=1.002 and d=0.79 and the exchange rate from domestic to foreign market is $X_0=0.77$ and evolve (annual) in discrete-time following a 2-period binomial model with parameters u=1.0056 and d=0.077.

Recover a domestic price of a compo put option written on I^f with variable strike price, i.e. $K^d = a \times 0.5$, where a = 1.2 in case of 2 up movements while $a = \sqrt{1.2}$ otherwise, and maturity after 2 years assuring the absence of arbitrage opportunities between the two economies in case $r^f = 0.76r^d$.

5 Group 5

Consider the market $\mathcal{M}^f=(S^{0,f},S^{1,f},\Phi)$ whose assets evolve in discrete time following a two-period multiplicative bino-trino model (1 period binomial-1 period trinomial). Knowing that $S_0^{0,f}=1$, $S_0^{1,f}=1.74$ and the exchange rate from the foreign to the domestic market is $X_0=0.37$, the risk-free rates are $r^d=r^f=0$, it pays a rate of dividend only at maturity equal to 1% of the price and the multiplicative parameters are u=1.072, m=1 and d=0.85 for the evolution of both $S^{1,f}$ and X_t , determine a future price (in domestic currency) of a contract written on the min of $S^{1,f}$ with maturity T=2.

6 The Big Short

Given the continuous market $\mathcal{M}=(S^0,S^1,S^2,\Phi)$ whose \mathbb{P} -dynamics of the basic assets are:

$$\frac{dS_t^0}{S_t^0} = 0.03dt
\frac{dS_t^1}{S_t^1} = (0.03 - 0.01)dt + 0.1(d\hat{W}_t + 0.5dt)
\frac{dS_t^2}{S_t^2} = 0.03dt + 0.5(d\hat{W}_t + 0.5dt)$$

where $S_0^0 = 1$ and $S_0^1 = S_0^2 = 1.8$.

Recover the hedging strategy of a future written on $S_t^1 S_t^2$, with delivery price K = 1.5 and maturity T = 3, through the simple strategy $(\phi)_{\Theta}$ characterized by the following trading dates:

$$\Theta = \{t_0 = 0; t_1 = 1, 5; t_2 = 2\}.$$

Recover a condition for the forwardation settlement of the future and for the incompleteness of the market.

7 Group 7

Consider the market $\mathcal{M}=(S^0,S^1,\Phi)$ whose prices evolve in discrete time following a two-periods trinomial additive model. Knowing that, $S_0^1=1$, the additive parameters are $u_1=+1.7$, $m_1=+0.3$ and $d_1=+0.2$ in the first period while they are incremented of their 1% in the second period, and the term structure of spot prices is $\{B(0,1)=0.83; B(0,2)=0.65\}$, determine:

- 1. the set of martingale measures for S^1 assuming that it pays a dividend at the rate 0.3% at every node;
- 2. an arbitrage price of an asian knock in double barrier $H^d = 0.5, H^u = 1.67$, put written on S^1 with maturity T=2, and strike K=2.37.