

Graph

Prof. Seungchul Lee Industrial AI Lab.

Graph (or Network)

- Abstract relations, topology, or connectivity
- Graphs G = (V, E)
 - V: a set of vertices (nodes)
 - E: a set of edges (links, relations)
 - weight (edge property)
 - distance in a road network
 - strength of connection in a personal network

Graph (or Network)

- Graphs can be directed or undirected
- Graphs model any situation where you have objects and pairwise relationships (symmetric or asymmetric) between the objects

Vertex	tex Edge		
People	like each other	undirected	
People	is the boss of	directed	
Tasks	cannot be processed at the same time	undirected	
Computers	have a direct network connection	undirected	
Airports	planes flies between them	directed	
City	can travel between them	directed	

Graph Representation

- Question
 - How to represent a graph for a computer to understand it
- Any guess?
 - Adjacent matrix
- Graph can be represented as adjacency matrix A
 - Adjacency matrix A indicates adjacent nodes for each node

Adjacent Matrix

• Undirected graph G = (V, E)

Let computers to understand a structure of graph

$$V = \{1, 2, \dots, 7\}$$

$$E = \{\{1, 2\}, \{1, 6\}, \{2, 3\}, \{3, 4\}, \{3, 6\}, \{3, 7\}, \{4, 7\}, \{5, 6\}\}$$

$$\text{Adjacency list} = \left\{ \begin{array}{l} \text{adj}(1) = \{2,6\} \\ \text{adj}(2) = \{1,3\} \\ \text{adj}(3) = \{2,4,6,7\} \\ \text{adj}(4) = \{3,7\} \\ \text{adj}(5) = \{6\} \\ \text{adj}(6) = \{1,3,5\} \\ \text{adj}(7) = \{3,4\} \end{array} \right.$$

$$\text{Adjacency matrix (symmetric) } A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Adjacent Matrix

• Directed graph G = (V, E)

Let computers to understand a structure of graph

$$V = \{1, 2, \dots, 7\}$$

 $E = \{\{1, 2\}, \{1, 6\}, \{2, 3\}, \{3, 4\}, \{3, 7\}, \{4, 7\}, \{6, 3\}, \{6, 5\}\}$

$$\label{eq:Adjacency list} \text{Adjacency list} = \left\{ \begin{array}{ll} \text{adj}(1) &= \{2,6\} \\ \text{adj}(2) &= \{3\} \\ \text{adj}(3) &= \{4,7\} \\ \text{adj}(4) &= \{7\} \\ \text{adj}(5) &= \phi \\ \text{adj}(6) &= \{3,5\} \\ \text{adj}(7) &= \phi \end{array} \right.$$

$$\text{Adjacency matrix (symmetric) } A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

sparse

Directed graph

Undirected graph

• Directed graph

Undirected graph

- Directed graph G = (V,E)
 - $V = \{0,1,2,3,4,5\}$
 - Adjacency list

$$Adj(0) = \{1, 2\}$$

 $Adj(1) = \{2, 3\}$
 $Adj(2) = \{4\}$
 $Adj(3) = \{5\}$
 $Adj(4) = \{3, 5\}$
 $Adj(5) = \emptyset$

• Q: draw the corresponding directed graph

- Directed graph G = (V,E)
 - $V = \{0,1,2,3,4,5\}$
 - Adjacency list

$$Adj(0) = \{1, 2\}$$

 $Adj(1) = \{2, 3\}$
 $Adj(2) = \{4\}$
 $Adj(3) = \{5\}$
 $Adj(4) = \{3, 5\}$
 $Adj(5) = \emptyset$

• Q: draw the corresponding directed graph

Degree

- Degree of undirected graph
 - the degree of vertex in a graph is the number of edges connected to it
 - denote the degree of vertex i by d_i
 - for an undirected graph of n vertices

$$d_i = \sum_{j=1}^n A_{ij}$$

Degree matrix D of adjacent matrix A

$$D = \operatorname{diag}\{d_1, d_2, \cdots\}$$

Example

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad \Rightarrow \qquad D = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Self-Connecting Edges

Adding *I* is to add self-connecting edges

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad \Rightarrow \qquad A + I = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \qquad \Rightarrow \qquad \tilde{D} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$


```
D = np.array(A_self.sum(1)).flatten()
D = np.diag(D)

print(D)

[[4. 0. 0. 0.]
  [0. 2. 0. 0.]
  [0. 0. 3. 0.]
  [0. 0. 0. 3.]]
```

Neighborhood Normalization

- Some nodes have many edges, but some don't
 - Adding *I* is to add self-connecting edges
 - Considering neighboring nodes in the normalized weights
 - To prevent numerical instabilities and vanishing/exploding gradients in order for the model to converge
- (First attempt) Normalized \tilde{A}
 - It is not symmetric.

$${ ilde A}={ ilde D}^{-1}(A+I)$$

$$A+I=egin{bmatrix}1&1&1&1\1&1&0&0\1&0&1&1\1&0&1&1\end{bmatrix}\qquad\Rightarrow\qquad ilde{D}=egin{bmatrix}4&0&0&0\0&2&0&0\0&0&3&0\0&0&0&3\end{bmatrix}$$

[[0.25	0.25	0.25	0.25
[0.5	0.5	0.	0.
[0.33333333	0.	0.33333333	0.33333333]
[0.33333333	0.	0.33333333	0.33333333]]

Neighborhood Normalization

- Some nodes have many edges, but some don't
 - Adding *I* is to add self-connecting edges
 - Considering neighboring nodes in the normalized weights
 - To prevent numerical instabilities and vanishing/exploding gradients in order for the model to converge
- Normalized \tilde{A}
 - Now it is symmetric.
 - (Skip the details)

$${ ilde A} = { ilde D}^{-1/2} (A+I) { ilde D}^{-1/2}$$

$$A+I=egin{bmatrix}1&1&1&1&1\1&1&0&0\1&0&1&1\1&0&1&1\end{bmatrix}$$

$$ilde{A} = ilde{D}^{-1/2} (A+I) ilde{D}^{-1/2} \hspace{1cm} A+I = egin{bmatrix} 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \end{bmatrix} \hspace{1cm} \Rightarrow \hspace{1cm} ilde{D} = egin{bmatrix} 4 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix}$$


```
from scipy.linalg import fractional matrix power
D half norm = fractional matrix power(D, -0.5)
```

```
[[0.5
 [0.
 [0.
 Γ0.
                                      0.57735027]]
```

```
0.35355339 0.28867513 0.28867513]
[0.35355339 0.5
                       0.33333333 0.333333333]
[0.28867513 0.
[0.28867513 0.
                       0.33333333 0.33333333]]
```

NetworkX

- https://networkx.org/
- Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks

import networkx as nx

```
G = nx.Graph()

G.add_nodes_from([1, 2, 3, 4])
G.add_edges_from([(1,2), (1,3), (2,3), (3,4)])

# plot a graph
pos = nx.spring_layout(G)

nx.draw(G, pos, node_size = 500)
nx.draw_networkx_labels(G, pos, font_size = 10)
plt.show()
```


NetworkX

Adjacency matrix

```
A = nx.adjacency_matrix(G)
print(A)
print(A.todense())
```

```
(0, 1) 1
(0, 2) 1
(1, 0) 1
(1, 2) 1
(2, 0) 1
(2, 1) 1
(2, 3) 1
(3, 2) 1
[[0 1 1 0] [1 0 1 0] [1 1 0 1] [0 0 1 0]]
```


Graph Neural Networks

Prof. Seungchul Lee Industrial AI Lab.

Graph Data

- Characteristic of graph data
 - A graph contains relationships between data

Dependency of Graph Data

- Adjacency Matrix
 - Graph data represent this dependency by adjacency matrix
 - $A_{ij} = 1$ if there is a link from node i to node j
 - $A_{ij} = 0$ otherwise

Connection between CNN and GCN

- GCNs perform similar operations where the model learns the features by inspecting neighboring nodes
- The major difference
 - CNNs are specially built to operate on regular structured data
 - GCNs operate for the graph data that the number of nodes connections vary and the nodes are unordered

Kernel

Adjacent matrix and Kernel

Basics of GCN

- Similar to CNN, GCN updates each node with their adjacent nodes
- Unlike CNN, each node of GCN has different number of adjacent nodes
 - Indicate adjacent nodes of each node by adjacency matrix A

aggregate

Basics of GCN

- 1) Message: information passed by neighboring nodes to the central node
- 2) Aggregate: collect information from neighboring nodes
- 3) Update: embedding update by combining information from neighboring nodes and from itself

2) Message Aggregation from Local Neighborhood

$$h_u^{(k+1)} = oxed{\operatorname{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)}$$

$$H^{(k+1)} = igg| AH^{(k)}$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{h_1}{h_2} \\ \frac{h_3}{h_4} \end{bmatrix}$$
 aggregate

3) Update

$$h_u^{(k+1)} = ext{UPDATE}\left(igg| ext{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)
ight)$$

$$H^{(k+1)} = \sigma \left(egin{array}{c} AH^{(k)} \, W_{
m neigh}^{(k)}
ight)$$

update

Further Improvements

$$h_u^{(k+1)} = ext{UPDATE}\left(iggl[AGGREGATE\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)
ight)$$

$$H^{(k+1)} = \sigma \left(egin{array}{c} AH^{(k)} \, W_{
m neigh}^{(k)}
ight)$$

- Message Passing with Self-Loops
 - As a simplification of the neural message passing approach, it is common to add self-loops to the input graph and omit the explicit update step

$$egin{aligned} h_u^{(k+1)} &= ext{UPDATE}\left(h_u^{(k)}, ext{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)
ight) \ &= ext{UPDATE}\left(ext{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u) \cup \{u\}
ight\}
ight)
ight) \end{aligned}$$

$$H^{(k+1)} = \sigma\left(\left(A+I
ight)H^{(k)}\,W^{(k)}
ight)$$

Further Improvements

$$h_u^{(k+1)} = ext{UPDATE}\left(iggl[AGGREGATE\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)
ight)$$

$$H^{(k+1)} = \sigma \left(egin{array}{c} AH^{(k)} \, W_{
m neigh}^{(k)}
ight)$$

- Message Passing with Self-Loops
 - As a simplification of the neural message passing approach, it is common to add self-loops to the input graph and omit the explicit update step

$$egin{aligned} h_u^{(k+1)} &= ext{UPDATE}\left(h_u^{(k)}, ext{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)
ight) \ &= ext{UPDATE}\left(ext{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u) \cup \{u\}
ight\}
ight)
ight) \end{aligned}$$

$$H^{(k+1)} = \sigma\left(\left(A+I
ight)H^{(k)}\,W^{(k)}
ight)$$

- Neighborhood Normalization
 - The most basic neighborhood aggregation operation simply takes the sum of the neighbor embedding.
 - One issue with this approach is that it can be unstable and highly sensitive to node degrees.
 - One solution to this problem is to simply normalize the aggregation operation based upon the degrees of the nodes involved.
 - The simplest approach is to just take a weighted average rather than sum.

$$egin{aligned} ilde{A} &= D^{-1/2}AD^{-1/2} + I \ &pprox ilde{D}^{-1/2}(A+I) ilde{D}^{-1/2} \end{aligned} \qquad ext{where } ilde{D} ext{ is the degree matrix of } A+I \end{aligned}$$

Message Passing

$$H^{(k+1)} = \sigma \left(egin{array}{c} AH^{(k)} \, W_{
m neigh}^{(k)}
ight)$$

$$\Rightarrow \quad \sigma \left(\left[\begin{array}{c} \\ \\ \end{array} \right] \right) \quad \Rightarrow \quad \left[\begin{array}{c} \\ \\ \end{array} \right]$$

1) Message Passing with Self-Loops $h_u^{(k+1)} = \text{UPDATE}\left(h_u^{(k)}, \text{AGGREGATE}\left(\left\{h_v^{(k)}, \forall v \in \mathcal{N}(u)\right\}\right)\right)$

$$h_u^{(k+1)} = ext{UPDATE}\left(h_u^{(k)}, ext{AGGREGATE}\left(\left\{h_v^{(k)}, orall v \in \mathcal{N}(u)
ight\}
ight)
ight)$$

$$H^{(k+1)} = \sigma \left(AH^{(k)} \, W_{ ext{self}}^{(k)} + AH^{(k)} \, W_{ ext{neigh}}^{(k)}
ight)$$

$$\Rightarrow \quad \sigma \left(\left[\begin{array}{c} \\ \\ \end{array} \right] \right) \quad \Rightarrow \quad \left[\begin{array}{c} \\ \\ \end{array} \right]$$

2) Neighborhood Normalization

$$egin{align} H^{(k+1)} &= \sigma\left(\left(ilde{D}^{-1/2}(A+I) ilde{D}^{-1/2}
ight)H^{(k)}\,W^{(k)}
ight) \ &= \sigma\left(ilde{A}H^{(k)}\,W^{(k)}
ight) \end{split}$$

Q: Which One Is Trainable?

$$egin{align} H^{(k+1)} &= \sigma \left(\left(ilde{D}^{-1/2} (A+I) ilde{D}^{-1/2}
ight) H^{(k)} \, W^{(k)}
ight) \ &= \sigma \left(ilde{A} H^{(k)} \, W^{(k)}
ight) \end{split}$$

Finally Graph Convolutional Networks

Multi-layer Graph Convolutional Network (GCN)

$$H^{(k+1)} = \sigma\left((A+I)\,H^{(k)}\,W^{(k)}\right) \qquad \qquad \text{Self-loops}$$

$$\downarrow \downarrow \qquad \qquad \qquad \qquad \\ H^{(k+1)} = \sigma\left(\left(\tilde{D}^{-1/2}(A+I)\tilde{D}^{-1/2}\right)H^{(k)}\,W^{(k)}\right) \qquad \qquad \text{Neighborhood Normalization}$$

$$= \sigma\left(\tilde{A}H^{(k)}\,W^{(k)}\right) \qquad \qquad \tilde{A} = D^{-1/2}AD^{-1/2} + I \\ \approx \tilde{D}^{-1/2}(A+I)\tilde{D}^{-1/2}$$

Finally Graph Convolutional Networks

Multi-layer Graph Convolutional Network (GCN)

$$egin{align} H^{(k+1)} &= \sigma \left(\left(A + I
ight) H^{(k)} \, W^{(k)}
ight) \ &\downarrow \ &\ H^{(k+1)} &= \sigma \left(\left(ilde{D}^{-1/2} (A + I) ilde{D}^{-1/2}
ight) H^{(k)} \, W^{(k)}
ight) \ &= \sigma \left(ilde{A} H^{(k)} \, W^{(k)}
ight) \ \end{split}$$

Feature Vector Updates

```
A = nx.adjacency_matrix(G).todense()
                                           A*H
                                           matrix([[-1],
[[0 1 1 1 0 0]
                                                    1],
 [1 0 1 0 0 0]
                                                     1],
 [1 1 0 0 0 0]
                                                    1],
 [100011]
                                                   [-1],
 [0 0 0 1 0 1]
                                                   [-1]])
 [0 0 0 1 1 0]]
H = np.matrix([1,0,0,-1,0,0]).T
[[ 1]
 [ 0]
 [ 0]
 [-1]
 [ 0]
```


[0]]

Feature Vector Updates

```
A = nx.adjacency_matrix(G).todense()

[[0 1 1 1 0 0 0]
    [1 0 1 0 0 0 0]
    [1 1 0 0 0 0]
    [1 0 0 0 1 1]
    [0 0 0 1 0 1]
    [0 0 0 1 1 0]]

H = np.matrix([1,0,0,-1,0,0]).T

[[ 1]
    [ 0]
    [ 0]
    [ 0]
    [ 0]
    [ 0]
    [ 0]
    [ 0]
```


Feature Vector Updates

```
A = nx.adjacency_matrix(G).todense()

[[0 1 1 1 0 0]
    [1 0 1 0 0 0]
    [1 1 0 0 0 0]
    [1 0 0 0 1 1]
    [0 0 0 1 0 1]
    [0 0 0 1 1 0]]

H = np.matrix([1,0,0,-1,0,0]).T

[[ 1]
    [ 0]
    [ 0]
    [-1]
    [ 0]
    [ 0]
    [ 0]
```

```
D = np.array(A_self.sum(1)).flatten()
D = np.diag(D)

D_half_norm = fractional_matrix_power(D, -0.5)

A_self = np.asmatrix(A_self)
D_half_norm = np.asmatrix(D_half_norm)

A_half_norm = D_half_norm*A_self*D_half_norm

A_half_norm*H
```


Build 2-layer GCN using ReLU as the Activation Function

```
W1 = np.random.randn(1, 4) # input: 1 -> hidden: 4
W2 = np.random.randn(4, 2) # hidden: 4 -> output: 2
def relu(x):
    return np.maximum(0, x)
def gcn(A, H, W):
    D = np.diag(np.array(A_self.sum(1)).flatten())
    D_half_norm = fractional_matrix_power(D, -0.5)
    H_new = D_half_norm*A_self*D_half_norm*H*W
    return relu(H new)
H1 = H
H2 = gcn(A, H1, W1)
H3 = gcn(A, H2, W2)
print(H3)
```

```
[[0. 0.07472825]
[0. 0.08628875]
[0. 0.08628875]
[0.12632564 0. ]
[0.14586829 0. ]
```


Readout: Permutation Invariance

- Adjacency matrix can be different even though two graph has the same network structure
 - Even if the edge information between all nodes is the same, the order of values in the matrix may be different due to rotation and symmetry
- Readout layer makes this permutation invariant by multiplying MLP
- Node-wise summation

$$Z_{G} = \tau \left(\sum_{i \in G} MLP\left(H_{i}^{(L)}\right) \right)$$

Graph-level representation vector r

Finally Graph Convolutional Networks

- Similar to convolutional neural network
- Multiple graph convolution layers

GCN as Message Passing Framework

Tasks for Graph Neural Network

• 3 GNN applications

Task 1: node classification

Task 2: edges prediction

Task 3: graph classification

List of GNN Python Libraries

- PyTorch Geometric
 - PyG
 - Built upon PyTorch
- Deep Graph Library (DGL)
 - Based on PyTorch, TensorFlow or Apache MXNet.

- Graph Nets
 - DeepMind's library for building graph networks in Tensorflow and Sonnet

- Spektral
 - Based on the Keras API and TensorFlow 2

Lab 1: Node Classification using Graph Convolutional Networks

- CORA dataset
 - This dataset is the MNIST equivalent in graph learning
- The CORA dataset consists of 2708 scientific publications classified into one of seven classes.
 - Case_Based: 298
 - Genetic_Algorithms: 418
 - Neural_Networks: 818
 - Probabilistic_Methods: 426
 - Reinforcement_Learning: 217
 - Rule_Learning: 180
 - Theory: 351
- The citation network consists of 5429 links.
- Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary.
- The dictionary consists of 1433 unique words.

```
H shape: (2708, 1433)
The number of nodes (N): 2708
The number of features (F) of each node: 1433
The number of classes: 7
```

CORA dataset

- 2708 nodes of papers
- 5429 edges by citation
- 7 classes

Graph G and Normalized Adjacency Matrix A

```
G = nx.Graph(name = 'Cora')
G.add_nodes_from(nodes)
G.add_edges_from(edge_list)
```

```
A = nx.adjacency_matrix(G)

I = np.eye(A.shape[-1])
A_self = A + I

D = np.diag(np.array(A_self.sum(1)).flatten())
D_half_norm = fractional_matrix_power(D, -0.5)

A_half_norm = D_half_norm * A_self * D_half_norm

A_half_norm = np.array(A_half_norm)
H = np.array(H)
```

GCN Model

```
H in = tf.keras.layers.Input(shape = (F, ))
A_in = tf.keras.layers.Input(shape = (N, ))
graph_conv_1 = spektral.layers.GraphConv(channels = 16,
                                         activation = 'relu')([H in, A in])
graph_conv_2 = spektral.layers.GraphConv(channels = 7,
                                         activation = 'softmax')([graph_conv_1, A_in])
model = tf.keras.models.Model(inputs = [H_in, A_in], outputs = graph_conv_2)
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-2),
              loss = 'categorical crossentropy',
              weighted metrics = ['acc'])
model.summary()
```


Train and Evaluation

Train

Evaluation

Low Dimensional Mapping

• T-SNE

Learning Resources for Graph Neural Networks

- Stanford Course: CS224W Machine Learning with Graphs by Prof. Jurij Leskovec
- Github Repository: Collection of Recent GNN Papers
- Graph Neural Network Papers With Code
- Books
 - Network Science by Albert-László Barabási
 - Graph Representation Learning Book by William L. Hamilton

