เว็บแอปพลิเคชัน และ ฟาร์มไฮโครโปนิกส์

นายจิรเมช แก้วคำ นางสาวณัฏฐณิชา เจวรัมย์

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิศวกรรมศาสตรบัณฑิต สาขาวิชาเทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ (คอมพิวเตอร์) ภาควิชาเทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ วิทยาลัยเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ พ.ศ.2567

Web Application and Hydroponic Farm

Mr. Jiramet kaewchum Miss Natthanicha Jewaram

Project Report Submitted in Partial Fulfillment of the Requirements

for the Bachelor's Degree of Engineering in

Electronics Engineering Technology (Computer)

Department of Electronics Engineering Technology

College of Industrial Technology

King Mongkut's University of Technology North Bangkok

2024

โดย	: นายจิรเมช แก้วคำ						
	นางสาวณัฎฐณิชา เจวรัมย์						
ที่ปรึกษาปริญญานิพนธ์	: ผู้ช่วยศาสตราจารย์ คร. เลอสรรค์ กิรสมุทรานนท์						
สาขาวิชา	: เทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ (คอมพิวเตอร์)						
ภาควิชา	: เทค โน โลชีวิศวกรรมอิเล็กทรอนิกส์						
ปีการศึกษา	การศึกษา : 2567						
วิทยาลัยเทคโน โลยีอุตส	าหกรรม มหาวิทยาลัยเทค โน โลยีพระจอมเกล้าพระนครเหนือ อนุมัติให้						
	้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรบัณฑิต						
	คณบดีวิทยาลัยเทคโนโลยีอุตสาหกรรม						
(รองศาสตราจ	ารย์ คร. สมิตร ส่งพิริยะกิจ)						
คณะกรรมการสอบปริญ	ญานิพนธ์						
	ประธานกรรมการ						
(ผู้ช่วยศาสตราจารย์ คร.า	พิสิทธิ วิสุทธิเมธิกร)						
DO ASSA M	ระหาทาง กรรมการ						
	เลอสรรค์ กิรสมุทรานนท์)						
(อาจารย์ คำรงเกียรติ แซ่	กรรมการ ถิ้ม)						

หัวข้อปริญญานิพนธ์ : เว็บแอปพลิเคชัน และ ฟาร์มไฮโครโปนิกส์

Ву	: Mr. Jiramet kaewchum						
	Miss Natthanicha Jewaram						
Project Advisor	: Asst. Prof. Dr. Lerson Kirasamuthranon						
Major Field	: Electronics Engineering Technology (Computer)						
Department	: Electronics Engineering Technology						
Academic Year	: 2024						
North Bangkok in I Engineering.	Accepted by the College of Industrial Technology, King Mongkut's University of Technolog North Bangkok in Partial Fulfillment of the Requirements for the Bachelor's Degree o Engineering. Dean of College of Industrial Technology (Assoc. Prof. Dr. Smith Songpiriyakij)						
Project Committee							
(Asst. Prof. Dr. Pisit							
Lerson Kirasa	muthranon Member						
(Asst. Prof. Dr. Lerso	(Asst. Prof. Dr. Lerson Kirasamuthranon)						
	Member						
(Mr. Damrongkiat Lin	m)						

: Web Application and Hydroponic Farm

Project Title

กิตติกรรมประกาศ

โครงงานปริญญานิพนธ์เรื่องเว็บแอปพลิเคชัน และ ฟาร์มไฮโครโปนิกส์ สำเร็จลุล่วงไปได้ด้วยดี เนื่อง ด้วยได้รับความช่วยเหลือเป็นอย่างดีจาก ผู้ช่วยศาสตราจารย์ คร. เลอสรรค์ กิรสมุทรานนท์ อาจารย์ที่ปรึกษา โครงงานปริญญานิพนธ์ ที่ได้ให้คำแนะนำและข้อคิดเห็นต่าง ๆ ของการจัดทำโครงงานปริญญานิพนธ์ และ ช่วยเหลือในการแก้ไขปัญหาต่าง ๆ มาโดยตลอด

ขอกราบขอบพระกุณบุพพการีและมารดาเป็นอย่างสูง ซึ่งให้การสนับสนุนในทุก ๆ ด้าน เป็น แรงผลักดัน และให้กำลังใจแก่ผู้จัดทำเสมอจนสำเร็จการศึกษา ขอขอบพระกุณคณะอาจารย์สาขาเทคโนโลยี วิศวกรรมอิเล็กทรอนิกส์ แขนงคอมพิวเตอร์ทุกท่านที่ได้ประสิทธิ์ประสาทความรู้ และให้ความช่วยเหลือในด้าน เทคนิคหลาย ๆ อย่างเป็นอย่างดี และขอขอบพระกุณทุกท่านผู้มีส่วนเกี่ยวข้องกับความสำเร็จแต่มิได้เอ่ยนามทุก ท่าน มา ณ ที่นี้ด้วย

สุดท้ายนี้ทางคณะผู้จัดทำต้องขอขอบพระคุณท่านกรรมการสอบโครงงานปริญญานิพนธ์ทุกท่านเป็น อย่างสูงที่ได้ช่วยพิจารณาและให้คำแนะนำในการตรวจทานแก้ไข อนุมัติจนโครงงานปริญญานิพนธ์นี้สำเร็จ เป็นไปตามวัตถุประสงค์และขอบเขตที่ตั้งไว้ทุกประการ ซึ่งผู้จัดทำหวังว่าโครงงานปริญญานิพนธ์ฉบับนี้จะเป็น ประโยชน์ต่อผู้ที่จะทำการปลูกผักไฮโดรโปนิกส์

คณะผู้จัดทำ

เว็บแอปพลิเคชัน และ ฟาร์มไฮโดรโปนิกส์

จิรเมช แก้วคำ 1 , ณัฏฐณิชา เจวรัมย์ 1 และ เลอสรรค์ กิรสมุทรานนท์ 2

บทคัดย่อ

การเกษตรมีความสำคัญกับมนุษย์เป็นอย่างมาก โดยเฉพาะการเป็นแหล่งสำหรับผลิตอาหารที่สามารถรองรับประชากร ทั่วโลก ซึ่งมีบทบาทสำคัญในการจัดหาอาหารที่มีคุณภาพและมีประโยชน์แก่มนุษย์ จึงมีผู้คนจำนวนหนึ่งที่มีความสนใจในการ ทำเกษตรในพื้นที่เล็ก ๆ บริเวณบ้านหรือระเบียงของตนเอง เพื่อปลูกพืชผักสวนครัวที่จำเป็นต่อการคำรงชีวิต แต่การคำรงชีวิต ของมนุษย์ในปัจจุบัน มักมีปัญหาในเรื่องของเวลาที่ใช้ในการคูแลพื้นที่การเกษตร เนื่องจากการคูแลพื้นที่การเกษตรนั้น ต้องมี ความละเอียดและซับซ้อน เพื่อให้ผลผลิตออกมาได้อย่างมีคุณภาพ

โครงงานปริญญานิพนธ์นี้เน้นการออกแบบและพัฒนาอุปกรณ์การปลูกฟาร์มไฮโครโปนิกส์ที่สามารถแสดงค่าสถานะ ต่าง ๆ ผ่านเว็บไซต์ที่พัฒนาด้วย Angular เพื่อให้บริการในระบบฟาร์มไฮโครโปนิกส์ โดยมุ่งเน้นการบริหารจัดการส่วนหลัก ๆ ได้แก่ การแสดงผลค่าความชื้น, ค่าอุณหภูมิ, ปริมาณน้ำในถัง, และค่า pH ในน้ำ รวมถึงการสั่งเปิด-ปิดอุปกรณ์ผ่านหน้าเว็บ ใน ส่วนการแจ้งเตือนค่า ผ่านทาง Line Notify และการเก็บข้อมูลใน Firebase สำหรับค่าที่ได้รับจากเซนเซอร์ รวมถึงสถานะเปิด-ปิด ของอุปกรณ์

จากการพัฒนาเว็บแอปพลิเคชันร่วมกับการทำฟาร์มไฮโดรโปนิกส์ โดยมีการสร้างแบบจำลองฟาร์มไฮโดรโปนิกส์ที่ใช้ บอร์ด ESP32 ในการรับค่าและควบคุมอุปกรณ์ต่าง ๆ ภายในฟาร์ม เช่น ไฟ พัดลม ปั๊ม สปริงเกอร์ เซนเซอร์อุณหภูมิ-ความชื้น และเซนเซอร์วัดความเป็นกรด-เบส นอกจากนี้ยังได้พัฒนาเว็บแอปพลิเคชันด้วย Angular และ Node.js เพื่อแสดงผลและให้ผู้ใช้ สามารถควบคุมอุปกรณ์ในฟาร์ม โดยใช้ระบบฐานข้อมูลแบบเรียลไทม์เพื่อให้เว็บและ ESP32 อ่านค่าจากฐานข้อมูลมาแสดงผล และประมวลผล อีกทั้งยังมีการแจ้งเตือนผ่าน Line Notify เมื่อพบว่าค่าต่าง ๆ ผิดปกติหรือตามเวลาที่ตั้งค่าไว้ จากการทดสอบ พบว่าเว็บแอปพลิเคชันสามารถควบคุมอุปกรณ์ในฟาร์มไฮโดรโปนิกส์ได้จริง ช่วยประหยัดเวลาและเพิ่มความสะดวกในการดูแล ฟาร์มของผู้ใช้

คำสำคัญ: Angular, Line Notify, Firebase, Node.js, ESP32

¹นักศึกษา, ²อาจารย์ที่ปรึกษาภาควิชาเทค โน โลยีวิศวกรรมอิเล็กทรอนิกส์,วิทยาลัยเทค โน โลยีอุตสาหกรรม, มหาวิทยาลัยเทค โน โลยีพระจอม เกล้าพระนครเหนือ

Web Application and Hydroponic Farm

Jiramet kaewchum ¹, Natthanicha Jewaram ¹ and Lerson Kirasamuthranon ²

Abstract

Agriculture is crucial for humanity, especially as a source of food production to support the global population. It plays a vital role in providing quality and nutritious food for humans. Consequently, there is a growing interest among some individuals in engaging in agriculture, even in small spaces such as home gardens or balconies, to cultivate essential vegetables necessary for sustenance. However, in today's world, people often face challenges in dedicating time to care for agricultural spaces due to the detailed and complex nature of agricultural maintenance required to ensure high-quality yields.

This thesis project focuses on designing and developing a hydroponic farm equipment that can display various status parameters through a website built with Angular. The aim is to provide agricultural services, emphasizing key functionalities such as displaying moisture levels, temperature, water levels in tanks, and pH levels in water. Additionally, it includes the ability to control equipment remotely via the web interface, notifications through Line Notify, and data storage in Firebase for sensor readings and equipment status.

The project involves developing a web application integrated with hydroponic farming, using an ESP₃₂ board to receive and control various equipment within the farm, such as lights, fans, pumps, sprinklers, temperature-humidity sensors, and pH sensors. Additionally, the web application was developed with Angular and Node.js to display and allow users to control farm equipment. A real-time database system is utilized so that the web and ESP₃₂ can fetch data from the database for display and processing. Notifications are sent through Line Notify when values are abnormal or at scheduled times. Testing revealed that the web application effectively controls equipment in the hydroponic farm, saving time and increasing convenience for users in managing their farms.

KeywordsQ Angular, Line Notify, Firebase, Node.js, ESP32.

¹Student, ²Lecturer Department of Electronics Engineering Technology, College of Industrial Technology King Mongkut's University of Technology North Bangkok.

1. บทน้ำ

การเกษตรมีความสำคัญกับมนุษย์เป็นอย่างมาก โดยเฉพาะการเป็นแหล่งสำหรับผลิตอาหารที่สามารถ รองรับประชากรทั่ว โลก ซึ่งมีบทบาทสำคัญในการจัดหา อาหารที่มีคุณภาพและมีประโยชน์แก่มนุษย์ จึงมีผู้คน จำนวนหนึ่งที่มีความสนใจในการทำเกษตรในพื้นที่เล็ก ๆ บริเวณบ้านหรือระเบียงของตนเอง เพื่อปลูกพืชผักสวนครัว ที่จำเป็นต่อการดำรงชีวิต แต่การดำรงชีวิตของมนุษย์ใน ปัจจุบัน มักมีปัญหาในเรื่องของเวลาที่ใช้ในการดูแลพื้นที่ การเกษตร เนื่องจากการดูแลพื้นที่การเกษตรนั้น ต้องมีความ ละเอียดและซับซ้อน เพื่อให้ผลผลิตออกมาได้อย่างมี กณภาพ

โครงงานปริญญานิพนธ์นี้เน้นการออกแบบและพัฒนา
อุปกรณ์การปลูกฟาร์มไฮโครโปนิกส์ที่สามารถแสดงค่า
สถานะต่าง ๆ ผ่านเว็บไซต์ที่พัฒนาด้วย Angular เพื่อ
ให้บริการในระบบฟาร์มไฮโครโปนิกส์ โดยมุ่งเน้นการ
บริหารจัดการส่วนหลัก ได้แก่ การแสดงผลค่าความชื้น, ค่า
อุณหภูมิ, ปริมาณน้ำในถัง, และค่า pH ในน้ำ รวมถึงการสั่ง
เปิด-ปิดอุปกรณ์ผ่านหน้าเว็บ ในส่วนการแจ้งเตือนค่า ผ่าน
ทาง Line Notify และการเก็บข้อมูลใน Firebase สำหรับค่าที่
ได้รับจากเซนเซอร์ รวมถึงสถานะเปิด-ปิดของอุปกรณ์

ฟาร์มไฮโครโปนิกส์นำเทคโนโลยีใหม่ เข้ามาใช้ใน ระบบการเกษตรเพื่อเพิ่มประสิทธิภาพและการควบคุมจาก ระยะไกลในการเพาะปลูกที่แม่นยำและอัตโนมัติมากยิ่งขึ้น การนำ Angular มาใช้ในการพัฒนาเว็บไซต์จะช่วยให้มี ประสิทธิภาพ เข้าถึงข้อมูลได้ง่ายขึ้นและความสามารถใน การปรับแต่ง ส่งผลให้ผู้ใช้งานสามารถใช้งานได้สะควก และมีประสิทธิภาพมากยิ่งขึ้นในการปฏิบัติงานทาง การเกษตรในทุกด้าน เช่น การตรวจสอบ ความชื้นและ อุณหภูมิในโรงเรือน และการควบคุมการให้น้ำและปุ๋ยใน ระบบการเกษตรได้อย่างแม่นยำและมีประสิทธิภาพสูงสุด

2. ทฤษฎีที่เกี่ยวข้อง

2.1 Angular

Angular [1] คือ Frontend Framework ที่ถูกพัฒนาโดย Google ซึ่งใช้สำหรับการพัฒนาเว็บแอปพลิเคชันบนฝั่งของ ใกลเอนต์ โดย Angular มีเป้าหมายในการช่วยให้นักพัฒนา สามารถสร้างแอปพลิเคชันที่มีประสิทธิภาพโดยมีคุณสมบัติ ที่หลากหลาย เช่น การจัดการสถานะของแอปพลิเคชันแบบ เรียลไทม์ (Real-time), การเปลี่ยนแปลงสถานะของข้อมูล โดยไม่ต้องรีเฟรชหน้าเว็บ (Reactive programming), การ จัดการเหตุการณ์ (Event handling), และการเชื่อมต่อกับ เซิร์ฟเวอร์เพื่อรับข้อมูล (API integration) ซึ่งทำให้ Angular เป็นที่นิยมในการพัฒนาเว็บแอปพลิเคชันในปัจจุบัน

Angular เป็นส่วนหนึ่งของ MEAN Stack ซึ่งเป็นชุดของ เฟรมเวิร์กที่มีประสิทธิภาพสำหรับการพัฒนาแอปพลิเคชัน โดย MEAN คือแอครอนิม-เอ็กซ์เพรส-แก้มม่า-แองกูลาร์ โดยมีคุณสมบัติที่ช่วยให้การพัฒนาแอปพลิเคชันเป็นไป อย่างรวดเร็วและมีประสิทธิภาพ แต่ละส่วนประกอบมี ความสัมพันธ์กันอย่างเป็นระบบ โดยที่ Angular จะใช้ สำหรับฝั่งของ ไคลเอนต์ เวิร์กเฟรมเวิร์กแบบอื่น ๆ ที่เป็น ส่วนหนึ่งของ MEAN Stack ได้แก่ MongoDB เป็น ฐานข้อมูลที่ใช้เก็บข้อมูล, Express.js เป็นเฟรมเวิร์กที่ใช้ สำหรับพัฒนาเว็บเซิร์ฟเวอร์ด้วย Node.js และ Node.js เป็น เฟรมเวิร์กสำหรับเขียนโค้ดฝั่งเซิร์ฟเวอร์ด้วย JavaScript

2.2 Firebase

Firebase [2] เป็นแพลตฟอร์มที่รวบรวมเครื่องมือต่าง ๆ สำหรับการจัดการในส่วนของ Backend หรือ Server side ซึ่ง ช่วยให้สามารถพัฒนาแอปพลิเคชันมือถือได้อย่างมี ประสิทธิภาพ โดยลดเวลาและค่าใช้จ่ายของการทำ Server side หรือการวิเคราะห์ข้อมูลได้ด้วยเช่นกัน บริการที่ Firebase มีให้บริการได้แก่

- 2.2.1 Cloud Firestore เป็นบริการฐานข้อมูลที่เป็น ลักษณะ NoSQL ที่ใช้สำหรับเก็บข้อมูลแบบ Realtime Database ซึ่งมีความยืดหยุ่นและประสิทธิภาพสูง
- 2.2.2 Authentication บริการที่ช่วยจัดการการรับรอง ตัวตน (Auth) โดยรองรับหลากหลายวิธีการเข้าสู่ระบบ เช่น email-password, phone, และ social media อื่น ๆ
- 2.2.3 Hosting บริการให้โฮสติ้งสำหรับเว็บไซต์แบบ single-page หรือ landing page ซึ่งช่วยให้ง่ายต่อการจัดการ การ Deploy และมีระบบ Custom Domain รวมถึงการติดตั้ง SSL ให้ด้วย
- 2.2.4 Cloud Functions บริการที่ช่วยให้สร้างและทำงาน กับฟังก์ชันบนเซิร์ฟเวอร์ได้อย่างง่ายดาย โดยสามารถทำงาน ตามเหตุการณ์ที่เกิดขึ้นในระบบ Firebase ได้
- 2.2.5 Storage บริการที่ให้การจัดการเกี่ยวกับการเก็บ ข้อมูลในรูปแบบของไฟล์ เช่น รูปภาพ, วิดีโอ, หรือไฟล์ อื่น ๆ ซึ่งสามารถเข้าถึงได้ผ่าน API หรือ Console
- 2.2.6 Analytics บริการที่ช่วยให้เข้าใจพฤติกรรมของผู้ใช้ และประสิทธิภาพของแอปพลิเคชัน โดยให้ข้อมูลการใช้งาน และการทำธุรกรรมต่าง ๆ
- 2.2.7 Remote Config บริการที่ช่วยให้ปรับแต่งแอปพลิเค ชันของคุณได้โดยที่ไม่ต้องปล่อยเวอร์ชั่นใหม่ โดยสามารถ

ปรับแต่งค่าต่าง ๆ เช่น รูปแบบ UI หรือฟีเจอร์ ใหม่ ๆ ให้กับผู้ใช้ได้ผ่านทางคลาวด์

โดย Firebase ยังมีบริการอื่น ๆ อีกมากมายที่ช่วยให้ นักพัฒนาสามารถพัฒนาและบริหารจัดการแอปพลิเคชันได้ อย่างมีประสิทธิภาพและสะดวกสบาย

2.3 Line Notify

LINE Notify [3] เป็นบริการที่ช่วยให้ผู้ใช้รับข้อความแจ้ง เตือนจากเว็บเซอร์วิสต่าง ๆ ผ่านแอปพลิเคชัน LINE โดย หลังจากทำการเชื่อมต่อกับเว็บเซอร์วิสแล้วผู้ใช้จะได้รับการ แจ้งเตือนผ่านบัญชี LINE Notify ซึ่งสามารถเชื่อมต่อกับ บริการต่าง ๆ

ผู้ใช้สามารถรับการแจ้งเตือนเกี่ยวกับสถานะหรือ เหตุการณ์ต่าง ๆ ที่เกิดขึ้นในบริการที่เชื่อมต่อ ทำให้สามารถ ติดตามสถานะหรือข้อมูลที่สำคัญ ได้อย่างรวดเร็ว สะควกสบาย และยังสามารถรับการแจ้งเตือนทางกลุ่มได้อีก ด้วย ทำให้การสื่อสารและการติดตามสถานะเป็นไปอย่างมี ประสิทธิภาพ

2.4 REST API

REST (Representational State Transfer) API [4] คือการ สร้าง API ประเภท RESTful web services ซึ่งจัดเป็น Web Service รูปแบบหนึ่งที่ทำงานอยู่บนพื้นฐานของโปรโตคอล HTTP และ HTTPS ประกอบด้วย Request และ Response ตามรูปแบบของ HTTP ที่รับส่งข้อมูลหรือเนื้อหาในรูปแบบ ของ XML, SOAP, JSON

REST API นั้นทำงานโดยใช้พื้นฐานของโปรโตกอล HTTP ดังนั้นแต่ละ Method ของ HTTP จึงนำมาใช้งานใน

สาขาวิชาเทคโนโลชีวิศวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

REST API โดยนักพัฒนา API จะเขียนโปรแกรมให้ API นั้นประมวลผลกับข้อมูลตามความหมายของ HTTP Method

- GET หมายถึง อ่านข้อมูล
- POST หมายถึง สร้างข้อมูลใหม่
- PUT หมายถึง การแก้ไขข้อมูลทั้งหมด
- PATCH หมายถึง การแก้ไขข้อมูลบางส่วน
- DELETE หมายถึง ลบข้อมูล

API (Application Programming Interface) เป็นช่องทาง ในการเชื่อมต่อเพื่อแลกเปลี่ยนข้อมูลกันระหว่างแอปพลิเค ชัน การพัฒนา API ที่ได้รับความนิยมในปัจจุบันจะพัฒนา โดยทำงานในรูปแบบที่เรียกว่า "REST API" (RESTful web services)

JSON (JavaScript Object Notation) เป็นรูปแบบการ แลกเปลี่ยนหรือรับส่งข้อมูลในระบบคอมพิวเตอร์หรือแอป พลิเคชัน ในอดีตการแลกเปลี่ยนหรือรับส่งข้อมูลนั้นจะใช้ รูปแบบ XML แต่เนื่องจาก XML มีโครงสร้างที่ซับซ้อนและ มีขนาดใหญ่จึงมีการเปลี่ยนมาใช้ JSON แทน คุณสมบัติของ JSON เป็นไฟล์ประเภทข้อความ (Text) มีโครงสร้างคำสั่งที่ มนุษย์สามารถอ่าน-เขียนแล้วเข้าใจได้เลย อีกทั้งยังมีขนาด เล็ก น้ำหนักเบา เป็นมาตรฐานกลางของทุกภาษา สำหรับ การแลกเปลี่ยนข้อมูลข้ามแพลตฟอร์มบนระบบปฏิบัติการที่ แตกต่างกัน

2.5 Cron-Job

Cron-Job [5] เป็นคุณสมบัติพื้นฐานของระบบปฏิบัติการ Linux จัดว่าเป็นระบบปฏิบัติการยูนิกซ์ประเภทหนึ่ง สามารถใช้คุณสมบัติ Cron-Job นี้ เพื่อกำหนดช่วงเวลาการ ทำงานของภาษา PHP หรือ script ใด ๆ โดยอัตโนมัติได้โดย ปกติแล้วการที่ภาษาที่เป็น Server Side ต่าง ๆ จะสามารถเริ่ม ทำงานได้ จะต้องอาศัย User ในการเริ่มทำงานซึ่งต้องเปิด เบราว์เซอร์หน้าเว็บไซต์นั้น ๆ ก่อน ถึงจะสามารถทำงาน คำสั่งต่าง ๆ ภายใน script file นั้นได้โดยเราสามารถใช้ กวามสามารถของ Cron-Job ในการสั่งให้ไฟล์ทำงานได้ โดยไม่ต้องอาศัยการเปิดหน้าเว็บไซต์

2.6 Microsoft Azure

Microsoft Azure [6] คือ บริการคลาวค์ที่ถูกสร้างขึ้นโดย Microsoft ใช้สำหรับสร้าง จัดการ หรือปรับใช้แอปพลิเคชัน และบริการต่าง ๆ ให้ตอบสนองกับความต้องการของธุรกิจ ได้อย่างรวดเร็วผ่านเครือข่ายทั่วโลกของ Microsoft รวมถึง การบริการและเครื่องมือที่หลากหลายตั้งแต่การประมวลผล ข้อมูล การจัดเก็บข้อมูล ตลอดจนความสามารถในการ วิเคราะห์ข้อมูล

Microsoft Azure ให้บริการต่าง ๆ รวมถึงเครื่องเสมือนที่
เก็บข้อมูล และฐานข้อมูล ซึ่งสามารถใช้ในการสร้างและ
เรียกใช้แอปพลิเคชัน บริการเหล่านี้สามารถเข้าถึงได้ผ่าน
พอร์ทัล Azure อินเทอร์เฟซบนเว็บ หรือผ่าน Azure API
และเครื่องมือบรรทัดคำสั่ง ปรับใช้แอปพลิเคชันกับ Azure
ได้โดยใช้วิธีการต่าง ๆ รวมถึงการอัปโหลดโค้ด การบรรจุ
กอนเทนเนอร์ หรือเทมเพลตที่สร้างไว้ล่วงหน้า

2.7 ESP32

ESP32 [7] เป็นบอร์คใมโครคอนโทรลเลอร์ที่พัฒนาโดย Espressif Systems ซึ่งมีความสามารถหลากหลายที่เหมาะ สำหรับการพัฒนาโปรเจกต์ IoT และโปรเจกต์ที่ต้องการการ เชื่อมต่อใร้สายและการควบคุมที่ยืดหยุ่นได้ดี มีคุณสมบัติ ดังนี้

สาขาวิชาเทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

- CPU Dual-core Tensilica LX6 microprocessor ที่
 ความเร็ว 240 MHz
- ไฟเลี้ยง 3.3V (ตัวบอร์ครับแรงคัน 5V ได้ มีเร็กกูเลเตอร์)
- รองรับการเชื่อมต่อรอมภายนอกสูงสุด 16MB
- ทำงานได้ที่อุณหภูมิ -40°C ถึง 125°C
- พอร์ตดิจิทัล มีทั้งหมด 36 พอร์ต GPIO
- รองรับการเชื่อมต่อกับเซนเซอร์และอุปกรณ์ต่างๆ ผ่าน SPI, I2C, UART, ADC, DAC
- การเชื่อมต่อไร้สาย รองรับ Wi-Fi 802.11 b/g/n/e/i,
 Bluetooth v4.2 BR/EDR และ BLE (Bluetooth Low Energy)

2.8 เซนเซอร์วัดอุณหภูมิและความชื้นสัมพัทธ์ DHT22

DHT22 เป็น เซนเซอร์วัดอุณหภูมิและความชื้นสัมพัทธ์ ในอากาศ [8] มีความแม่นยำใช้งานง่าย มีคุณสมบัติ ดังนี้

- ย่านการวัดอุณหภูมิ -40 ถึง 80 องศาเซลเซียส
- ความแม่นยำในการวัดอุณหภูมิ ±0.5 องศาเซลเซียส
- ย่านการวัคความชื้นสัมพัทธ์ 0% ถึง 100%
- ความแม่นยำในการวัดความชื้นสัมพัทธ์ ±2% ถึง
 ±5% RH
- ย่านไฟเลี้ยง 3.3V 6V กระแสสูงสุด 2.5mA
- คาบเวลาในการวัด (ต่ำสุด) ทุกๆ 2 วินาที
- เซนเซอร์ให้สัญญาณเอาต์พุตแบบคิจิทัล และต้อง
 ต่อตัวต้านทาน Pull-up

รูปที่ 1 เป็นรูปร่างภายนอกและขาสัญญาณของเซนเซอร์ DHT22โดย +VCC , GND เป็นขาไฟเลี้ยง และขา Data ต่อ เข้ากับพอร์ตอินพุตแบบดิจิทัลของไมโครคอนโทรลเลอร์

รูปที่ 1 รูปร่าง และสายสัญญาณของเซนเซอร์วัดอุณหภูมิ

และความชื้นสัมพัทธ์

2.9 เซนเซอร์ระดับน้ำ

XKC-Y25 [9] เป็นเซนเซอร์ตรวจจับของเหลวแบบไม่ สัมผัส ภาชนะที่ติดตั้งต้องไม่ใช่โลหะ มีความไวสูง และมี ความทนทาน สามารถใช้งานได้ในสภาพแวดล้อมที่ หลากหลาย มีคุณสมบัติ ดังนี้

- ไฟเลี้ยง 5-24 V DC ที่กระแสสูงสุด 5 mA
- อุณหภูมิในการทำงาน -20 ถึง 100 องศาเซลเซียส
- ความถี่ในการตอบสนอง น้อยกว่า 500 มิลลิวินาที
- ขาเอาต์พุตเซนเซอร์เป็นแบบ NPN ให้สัญญาณ ลอจิก 1 เมื่อเซนเซอร์ตรวจจับไม่พบของเหลว และ เกิดลอจิก 0 เมื่อตรวจพบเจอของเหลว

รูปที่ 2 เป็นรูปร่างภายนอกและสายสัญญาณของ เซนเซอร์ XKC-Y25 โดย VCC และ GND เป็นขาต่อ ไฟเลี้ยง ส่วนขา OUT เป็นเอาต์พุตต่อคิจิทัลอินพุตของ ไมโครคอนโทรลเลอร์

สาขาวิชาเทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

รูปที่ 2 เซนเซอร์ระดับน้ำ XKC-Y25

2.10 โมดูลเซนเซอร์วัดค่า pH

โมคูลเซนเซอร์วัคค่า pH [10] ใช้วัคค่าความเป็นกรค-ค่าง ของสารละลาย ซึ่งมักใช้ในงานเกษตรกรรม การควบคุม คุณภาพน้ำ การทคลองทางเคมี และการทำระบบไฮโครโป นิกส์ โมคูลนี้ให้สัญญาณอนาลีอกซึ่งจะเชื่อมต่อกับอนาลีอก อินพุตของไมโครคอนโทรลเลอร์โคยเซนเซอร์วัคค่า pH มีคุณสมบัติ ดังนี้

- ย่านการวัดค่า pH 0 ถึง 14
- ความแม่นยำ ±0.1 pH
- ความละเอียด 0.01 pH
- แหล่งจ่าย 5V DC ที่กระแสไฟฟ้าสูงสุด 10mA
- เวลาตอบสนอง น้อยกว่า 1 นาที (ขึ้นอยู่กับ สภาพแวคล้อม)
- ขา PO เชื่อมต่อกับพอร์ตอนาล็อกของ ใมโครคอนโทรลเลอร์ ขา PO จะให้แรงคัน 0-5V และแปรตามแบบเชิงเส้นกับค่า pH (0-14)

รูปที่ 3 เป็นโมคูลวัคค่า pH ประกอบด้วยโพรบและวงจร ปรับสภาพสัญญาณ โคยขา VCC และ GND คือไฟเลี้ยง เซนเซอร์และวงจร ส่วนขา PO เป็นเอาต์พุต

รูปที่ 3 รูปร่าง และสายสัญญาณของเซนเซอร์ pH

รูปที่ 4 โครงสร้างรวมของระบบ

3. วิธีการดำเนินงาน

การพัฒนาระบบควบคุมฟาร์มไฮโครโปนิกส์ ประกอบ ไปด้วย 2 ส่วนหลัก คือ ระบบไมโครคอนโทรลเลอร์ ควบคุม ฟาร์มไฮโครโปนิกส์ และเว็บแอปพลิเคชัน เพื่อการ สั่งงาน และแสดงสถานะของฟาร์มไฮโครโปนิกส์ โคยมี รายละเอียดในแต่ละส่วนดังนี้

3.1 หลักการทำงานโดยรวมของระบบ

จากโครงสร้างระบบรูปที่ 4 ฮาร์ดแวร์ควบคุมฟาร์ม ประกอบด้วย บอร์ดใมโครคอนโทรลเลอร์ ESP32 2 ชุด ชุคควบคุม 1# ทำหน้าที่สั่งงานควบคุมการเปิด-ปิด อุปกรณ์ในฟาร์ม ได้แก่ สปริงเกอร์, หลอดไฟ, พัดลม และ มอเตอร์ปั๊มน้ำ นอกจากนั้นจะนำค่าสถานะเซนเซอร์ใน ฟาร์มที่ได้รับจากชุดควบคุม 2# ไปบันทึกบนฐานข้อมูล Firebase ในส่วนของการสั่งเปิดปิดอุปกรณ์ของชุดควบคุม 1# จะเป็นไปตามการสั่งงานผ่านเว็บแอปพลิเคชันของ ผู้ใช้งานระบบ โดยคำสั่งของผู้ใช้งานจะถูกบันทึกลงบน Firebase เพื่อเป็นเงื่อนไขการควบคุมของชุดควบคุม 1# ชุดควบคุม 2# จะเชื่อมต่อกับเซนเซอร์วัดระดับน้ำ เซนเซอร์วัดค่า pH และเซนเซอร์วัดค่าอุณหภูมิ-ค่าความชื้น โดยค่าที่อ่านได้จากเซนเซอร์นั้นชุดควบคุม 2# จะส่งต่อไป ยังชุดควบคุม 1# ดังที่กล่าวมาข้างต้น

เว็บแอปพลิเคชันนอกจากจะถูกใช้เพื่อการสั่งงานระบบ โดยผู้ใช้งานแล้ว ยังมีหน้าจอสำหรับการแสดงสถานะต่างๆ ของอุปกรณ์ในฟาร์ม และมีการแสดงสถานะฟาร์มตามค่าที่ เซนเซอร์วัดค่า ได้ซึ่งถูกบันทึกบนฐานข้อมูล Firebase สำหรับรายละเอียดการออกแบบและการทำงานของทั้ง 3 ส่วนที่กล่าวมาจะมีรายละเอียดคังต่อ ไปนี้

3.2 อุปกรณ์ในโรงเรือนและหลักการทำงาน

ระบบปลูกผักในปริญญานิพนธ์นี้เป็นระบบแบบน้ำวน มี แผนผังโรงเรือนดังรูปที่ 5 มีส่วนประกอบสำคัญ คือ

- R1 รางน้ำที่ใช้ปลูกผัก
- T2 ถังบรรจุสารอาหารและมีปั๊ม P5 เพื่อนำสารอาหาร ใปเติมใบถังพักบ้ำ T1

- T3 ถังบรรจุปุ๋ยและมีปั๊ม P6 เพื่อนำปุ๋ยไปเติมในถังพัก น้ำ T1
- T4 ถังบรรจุสารเพิ่มค่า pH และมีปั๊ม P7 เพื่อนำสารเพิ่ม ค่า pH ไปเติมในถังพักน้ำ T1
- T5 ถังบรรจุสารลดค่า pH และมีปั๊ม P8 เพื่อนำสารลดค่า pH ไปเติมในถังพักน้ำ T1
- T6 ถังบรรจุน้ำ และมีปั๊ม P9 เพื่อนำน้ำไปยังสปริงเกอร์
 เพื่อรดน้ำพืชภายในโรงเรือน
- T7 ถังบรรจุชีวภัณฑ์ และมีปั๊ม P10 เพื่อนำชีวภัณฑ์ไป สปริงเกอร์เพื่อรดน้ำพืชภายในโรงเรือน
- T1 ถังพักน้ำที่บรรจุน้ำที่มีการปรับค่า pH และผสม สารอาหารเพื่อนำไปเลี้ยงผักในฟาร์มและวนกลับมาใน ถังนี้ใหม่ ในถังนี้มีปั๊ม
 P1 ปั๊มสำหรับเติมน้ำเข้าถัง
 - P2 เป็นปั๊มเพื่อระบายน้ำออกจากถัง P3 เป็นปั๊มที่นำน้ำในถังพักไปเลี้ยงผัก
 - P4 เป็นปั๊มเพื่อกวนน้ำและสารอาหารต่างๆในถัง ให้เข้ากับ

ตั้งแต่ถัง T2 ถึง T7 เราจะเติมสารต่าง ๆ ได้โดยการ กวบกุมการจ่ายผ่านหน้าเว็บไซต์ ซึ่งมีตัวเลือกให้เลือกเติม สารในปริมาณ 250 หรือ 500 มิลลิลิตร

ภายในโรงเรือนมีการติดตั้งอุปกรณ์ตรวจวัดต่างๆ ได้แก่ เซนเซอร์วัดอุณหภูมิและความชื้นสัมพัทธ์บริเวณข้างพัดลม เซนเซอร์วัดระดับน้ำ 2 ตัว บริเวณถังใหญ่ และโมคูล เซนเซอร์วัดค่า pH ภายในถัง T1 เพื่อใช้ในการตรวจสอบ สภาพแวดล้อมภายในโรงเรือน อุณหภูมิ ความชื้น ระดับน้ำ และค่า pH ของน้ำในถัง

รูปที่ 5 แผนผัง โรงเรือน

3.3 การทำงานส่วนฮาร์ดแวร์ของระบบ

ระบบทำงานโดยใช้บอร์ด ESP32 เป็นตัวกลางในการ
เชื่อมต่อกับ Firebaseเพื่อควบคุมการทำงานของปั๊มน้ำผ่าน
เว็บแอปพลิเคชัน บอร์ด ESP32 จะทำการเก็บรวบรวมข้อมูล
จากเซนเซอร์ต่างๆ เช่น อุณหภูมิ ความชื้น และสถานะของ
รีเลย์ แล้วส่งข้อมูลเหล่านี้ไปยัง Firebase เมื่อมีการ
เปลี่ยนแปลงข้อมูลบน Firebase เช่น การสั่งเปิด-ปิดปั๊มน้ำ
บอร์ด ESP32 จะรับคำสั่งนั้นมาและทำการควบคุมรีเลย์ให้
ทำงานตามที่กำหนด

รูปที่ 6 ใดอะแกรมของอุปกรณ์

จากรูปที่ 6 ใช้บอร์ค ESP32 จำนวนสองตัวในการทำงาน ร่วมกัน โดยทั้งสองบอร์คจะสื่อสารกันผ่านพอร์ตอนุกรม เพื่อแบ่งหน้าที่ในการทำงาน ดังนี้

3.3.1 ESP32 ตัวที่ 1

ผังงานการทำงานของ ESP32 ตัวที่ 1 แสดงคังรูปที่ 7 การทำงานเริ่มต้นจาก ไมโครคอนโทรลเลอร์ ESP32 เชื่อมต่อเครือข่าย Wi-Fi เพื่อเชื่อมต่ออินเทอร์เน็ตและ เชื่อมต่อกับ Firebase จากนั้นอ่านข้อมูลเวลาจาก NTP และ อ่านข้อมูลเซนเซอร์ต่าง ๆ จาก ESP32 ตัวที่ 2 เพื่ออัปเดต ข้อมูลเซนเซอร์ใน Firebase และข้อมูลจาก Firebase จะถูก นำมาใช้สั่งการเปิด-ปิดรีเลย์ อีกทั้งยังมีการตรวจสอบว่ามี การกดปุ่มรีเซ็ต WiFi เป็นเวลา 5 วินาทีหรือไม่ เพื่อทำการ เชื่อมต่อ WiFi ใหม่ หากไม่มีการกดปุ่มรีเซ็ต WiFi ระบบจะ วนกลับไปอ่านข้อมูลเซนเซอร์ต่าง ๆ จาก ESP32 ตัวที่ 2 ต่อไป

รูปที่ 7 ผังงานการทำงานของ ESP32 ตัวที่ 1

```
void Wifi_Reset() {
  if (digitalRead(SWrwf) == LOW) {
    Serial.println("Wifi Reset? watting 55..");
    delay(5000);
  if (digitalRead(SWrwf) == LOW) {
      delay(10);
      Serial.println("wifi Reset Setting ..OK");
      wm.resetSettings();
      ESP.restart();
    }
}
```

รูปที่ 8 Code ตรวจสอบการรีเซ็ค WiFi

3.3.2 ESP32 ตัวที่ 2

รูปที่ 9 ผังงานการทำงานของ ESP32 ตัวที่ 2

ผังงานการทำงานของ ESP32 ตัวที่ 2 แสดงดังรูปที่ 9 มีหน้าที่อ่านค่าเซนเซอร์ต่าง ๆ ได้แก่ เซนเซอร์ระดับน้ำ 2 ตัว, เซนเซอร์ความชื้นและอุณหภูมิ, และเซนเซอร์ pH เมื่อ อ่านค่าเซนเซอร์เสร็จแล้ว จะตรวจสอบว่ามีการร้องขอ ข้อมูลจาก ESP32 ตัวที่ 1 หรือไม่ หากมีการร้องขอ จะทำ การส่งข้อมูลค่าเซนเซอร์ต่าง ๆ ไปให้ ESP32 ตัวที่ 1 คัง รูปที่ 10 จากนั้นจึงวนกลับไปอ่านค่าเซนเซอร์ต่าง ๆ ใหม่ ต่อไป

```
serialEvent();
if (sendFlag) {
   String data = "";

   data += waterstatehigh ? "1" : "0";
   data += "|";
   data += waterstatelow ? "1" : "0";
   data += "|";
   data += t;
   data += t;
   data += t;
   data += pHValue;
   Serial.println(data);
   sendFlag = false;
}
```

รูปที่ 10 Code ESP32 ตัวที่ 2 ส่งค่าเซนเซอร์ต่าง ๆ ให้ ESP32 ตัวที่ 1

3.4 การทำงานของเว็บแอปพลิเคชัน

เว็บแอปพลิเคชันจะแบ่งออกเป็นทั้งหมด 2 ส่วน ได้แก่ ด้านการทำงานของผู้ใช้งาน และด้านการทำงานของ เซิร์ฟเวอร์

3.4.1 ด้านการทำงานของผู้ใช้งาน

- 3.4.1.1 ผู้ใช้งานต้องทำการถงทะเบียน และ Login เข้าสู่ ระบบ เพื่อเข้าใช้งานเว็บแอปพลิเคชัน
- 3.4.1.2 เมื่อเข้ามาที่หน้าแรก ระบบจะแสดงความชื้น อุณหภูมิ ค่าของ pH และระดับน้ำในถังของฟาร์มไฮโดรโป นิกส์ ซึ่งค่าต่าง ๆ นี้เป็นการอ่านข้อมูลที่จาก ESP32 นั้นส่ง มาเก็บไว้ที่ Realtime Database

3.4.1.3 การเปิด-ปิดการใช้งานอุปกรณ์ ผู้ใช้สามารถสั่ง เปิด-ปิดการใช้งานของอุปกรณ์ได้ตามระยะเวลาหรือ

ปริมาณที่ต้องการได้ผ่านทางหน้าเว็บแอปพลิเคชัน สถานะการทำงานจะถูกส่งไปเก็บไว้ที่ฐานข้อมูล เพื่อให้ ESP32 สามารถอ่านข้อมูลไปใช้ในการสั่งการไปยังอุปกรณ์ ต่างๆ ภายในโรงเรือน อุปกรณ์ที่สามารถเปิด-ปิดการใช้งาน ได้ ได้แก่ พัดลม, ไฟ, ปั๊มน้ำเข้าถังใหญ่, ปั๊มน้ำทิ้งในถัง ใหญ่, ปั๊มถังปุ๋ย, ปั๊มถังสารอาหาร, ปั๊มถังเพิ่มค่า pH,ปั๊มถัง ลดค่า pH, ปั๊มพ่นน้ำ และปั๊มพ่นชีวภัณฑ์

3.4.1.4 การเลือกเติมสารตามปริมาณ ผู้ใช้งานสามารถ เลือกเติมสารตามปริมาณที่กำหนดได้ โดยปริมาณที่เติมได้มี 2 ปริมาณ คือ 250 มิลลิลิตร และ 500 มิลลิลิตร เมื่อผู้ใช้ทำ การเลือกปริมาณที่ต้องการเติม ข้อมูลจะถูกส่งไปยังฐานข้อมูล เมื่อ Esp32 ได้รับข้อมูล จะทำการสั่งให้อุปกรณ์ที่ต้องการใช้งานทำงาน เมื่อทำงานครบตามปริมาณที่เลือกไว้อุปกรณ์ก็จะหยุดทำงานโดยอัตโนมัติ อุปกรณ์ที่สามารถเติมตามปริมาณที่กำหนดได้ ได้แก่ ปั้มถังปุ๋ย, ปั๊มถังสารอาหาร, ปั๊มถังเพิ่มค่า pH, ปั๊มถังลดค่า pH, ปั๊มพ่นน้ำ และปั๊มพ่น

ชีวภัณฑ์ โดยมีข้อจำกัดคือสามารถเติมได้สูงสุดทีละ 3 อย่าง พร้อมกัน เพราะ ESP32 มีข้อจำกัดในการเรียกใช้รัน tasks หลายๆอันพร้อมกัน

3.4.1.5 การตั้งเวลาการทำงานของอุปกรณ์ต่าง ๆ ผู้ใช้ สามารถกำหนดเวลาการทำงานของอุปกรณ์ต่าง ๆ ได้ ซึ่ง เวลาที่ผู้ใช้ตั้งค่านี้จะถูกส่งไปยังฝั่งเซิร์ฟเวอร์เพื่อนำไป ประมวลผลต่อไป อุปกรณ์ที่สามารถตั้งเวลาในการทำงาน ได้ คือ ถังปุ๋ย, ถังสารอาหาร, ถังเพิ่มค่า pH, ถังลดค่า pH, ที่ พ่นน้ำ และที่พ่นชีวภัณฑ์

3.4.2 ด้านการทำงานของเซิร์ฟเวอร์ แบ่งออกเป็น 2 ส่วน คือ

3.4.2.1 การตั้งค่าเวลาการทำงานของอุปกรณ์ สามารถทำ ได้ผ่านทางเว็บแอปพลิเคชัน โดยผู้ใช้สามารถกำหนดเวลา ได้ตามความต้องการ ข้อมูลเวลาที่ตั้งค่าถูกส่งผ่าน API และ แปลงเป็นรูปแบบ Cron-Job เมื่อถึงเวลาที่กำหนดใน Cron-Job ระบบจะเรียกใช้งาน API อีกตัวหนึ่งเพื่อเปลี่ยน สถานะการทำงานของอุปกรณ์ตามที่ผู้ใช้ตั้งไว้ นอกจากนี้ ผู้ใช้ยังสามารถยกเลิกการทำซ้ำของ Cron-Job ได้ผ่านทาง หน้าเว็บแอปพลิเคชัน

รูปที่ 11 การตั้งเวลาเปิดใช้งานอุปกรณ์

3.4.2.2. การแจ้งเตือนโดยใช้ Line Notify เป็นฟังก์ชัน สำหรับผู้ใช้ที่ต้องการรับการแจ้งเตือน เมื่อค่าอุณหภูมิ ความชื้น และค่า pH ที่วัดได้จากภายในฟาร์มมีความผิดปกติ ซึ่งอาจทำให้มีผลต่อการเจริญเติบโตของผัก โดยผู้ใช้ต้องเข้า กลุ่ม Line ผ่าน QR Code ที่หน้า Home ของ เว็บแอปพลิเคชัน เพื่อรับการแจ้งเตือน สำหรับในฝั่งของเซิร์ฟเวอร์มี การ ใช้ Cronjob.org ในการเรียก API ให้ทำงานโดยการ ตรวจสอบค่าต่างๆใน Firebase ว่ามีความผิดปกติหรือไม่

หากพบความผิดปกติระบบจะทำการแจ้งเตือนให้กับผู้ใช้ ค่าที่ระบบจะตรวจสอบ ได้แก่

- อุณหภูมิสูงกว่า 30 องศาเซลเซียส
- ความชื้นสูงกว่า 80% หรือความชื้นต่ำกว่า 40%
- ค่า pH สูงกว่า 8 หรือ ค่า pH ต่ำกว่า 3

ในส่วนของการทำงานเพื่อการแจ้งเตือนนี้มีโครงสร้างดังรูป ที่ 12 และมีการตั้งค่าต่าง ๆ ดังนี้

รูปที่ 12 การแจ้งเตือน โดยใช้ Line Notify

รูปที่ 13 การตั้งค่าภายใน Cronjob

1. ทำการตั้งค่าภายใน Cronjob.org ใส่ URL ของ API ที่ ต้องการเรียกใช้งานและตั้งค่าเวลาให้ ทำงานทุก 5 นาที ดัง รูปที่ 13

```
app.get("/noti", async (req, res) => {
 let datatem = new FormData();
 let temperature = rdb.ref("Temperature");
  temperature.once("value", (e) => {
    const temperatureValue = e.val();
    if (temperatureValue > 35) {
      datatem.append(
        "message",
        "ขณะนี้อุณหภูมิสูงกว่า 35 องศา อุณหภูมิของท่านคือ " +
          temperatureValue +
           องศา"
      let config = {
       method: "post",
       maxBodyLength: Infinity,
        url: "https://notify-api.line.me/api/notify",
          Authorization: "Bearer iU2H524KfuGVWmHTXZHYTsg1haf6QUZc90fHoW8H7qZ",
          ...datatem.getHeaders(),
       },
       data: datatem,
      };
      axios
        .request(config)
        .then((response) => {
         console.log(JSON.stringify(response.data));
        .catch((error) => {
         console.log(error);
       });
 });
```

รูปที่ 14 ตัวอย่างการเขียน API ส่วนของการแจ้งเตือน

2. สำหรับการทำงานของ API มีการเชื่อมเข้ากับ Firebase เพื่อทำการเช็กค่าต่าง ๆ ที่ถูกวัดจากฟาร์มไฮโดรโปนิกส์ จากตัวอย่างรูปที่ 14 ตัวแปรที่มีชื่อว่า Temperature จะถูก อ่านค่าจาก Firebase เพื่อนำไปตรวจสอบเงื่อนใขว่าอุณหภูมิ มีค่าสูงกว่าที่กำหนดหรือไม่ หากสูงกว่าก็จะมีการแจ้งเตือน ไปยังผู้ใช้งาน

3.4 ระบบฐานข้อมูล

ระบบฐานข้อมูลใช้ Realtime Database ของ Firebase ที่ เก็บข้อมูลในรูปแบบ JSON เพื่อให้สามารถรับส่งค่าได้แบบ เรียลไทม์ โดยทางฝั่งของหน้าเว็บและฝั่งของ ESP 32 จะ สามารถเรียกอ่านข้อมูลมาแสดงและประมวลผลได้ทันที ภายในฐานข้อมูลจะเก็บสถานะการทำงานของอุปกรณ์ เวลา ที่ถูกตั้งค่า รวมถึงปริมาณต่าง ๆ ที่จะถูกอ่านเพื่อไปใช้ใน การสั่งงานผ่านอุปกรณ์ ESP32 และนำไปประมวลผลอื่น ๆ ต่อไป

รูปที่ 15 เป็นการเก็บข้อมูลในรูปแบบ JSON ซึ่งจะเก็บค่า ต่าง ๆ สำหรับแสดงผล ได้แก่ อุณหภูมิ ความชื้น และความ เป็นกรด-เบส สำหรับค่า Quantity เป็นการเก็บค่าปริมาณ ของสารที่ผู้ใช้งานเลือกในหน้าเว็บ เพื่อให้ EPS32 สามารถ อ่านค่านี้ ไปใช้ในการจับเวลาให้อุปกรณ์ทำการเติมสารลง ในถังตามปริมาณที่ผู้ใช้งานตั้งค่าไว้ การเก็บค่าสถานะการ ทำงานของอุปกรณ์จะถูกเก็บไว้ใน Relay State นอกจากนี้มี การเก็บค่าเวลาไว้สำหรับแสดงผลบนหน้าเว็บ และ Water State ซึ่งเป็นการเก็บระดับของน้ำในถังเพื่อให้ผู้ใช้งาน สามารถรู้ปริมาณของน้ำในถังได้

นอกจากนี้มีการเก็บค่าที่วัดจากเซนเซอร์วัดความชื้นและ อุณหภูมิ รวมถึงค่าที่วัดได้จากเซนเซอร์วัด pH โดยในทุก ๆ 1 ชั่วโมง ค่าต่าง ๆ จะถูกเก็บไว้ในฐานข้อมูล โดยรูปที่ 16 คือตัวอย่างข้อมูลที่ได้จากเซนเซอร์ จากนั้นจะนำข้อมูล เหล่านี้มาสร้างเป็นกราฟ เพื่อให้เห็นถึงการเปลี่ยนแปลงของ อุณหภูมิ ความชื้น และค่า pH บนหน้าเว็บแอปพลิเคชัน

```
"Humidity": 63,
"Temperature": 30,
"pHValue": 6.78.
quantityFT": 0,
quantityMB": 0,
 quantityphdown": 0,
"quantityphup": 0,
'quantitysprinklerfertilizers": 0,
"quantitysprinklerwater": 0,
"relaystate": {
  fan": true,
 "fertilizers": false,
 "led": true,
 "microbial": false
 "pumpStirring": false,
 "pumpUP": true,
 "pumpphDown": false,
  'pumpphUP": false,
 "pumpwater": false,
  'sprinklerfertilizers": false,
 "sprinklerwater": false,
 "valve": false
"timeFT": ""
"timeMB": ""
"timePHD": ""
"timePHU": ""
"timeSFT": "",
"timeSWT": ""
"waterstatehigh": false,
"waterstatelow": true
```

รูปที่ 15 ข้อมูลที่ถูกเก็บในรูปแบบ JSON

```
"logSensor": [
    null,
    {
        "humidity": 70,
        "ph": 6.538,
        "temperature": 25,
        "timestamp": "2024-6-26 7:21:12"
    },
    {
        "humidity": 69,
        "ph": 6.653,
        "temperature": 26,
        "timestamp": "2024-6-26 8:21:12"
    },
]
```

รูปที่ 16 ข้อมูลที่วัดได้จากเซนเซอร์

4. ผลการดำเนินงาน

จากการคำเนินการออกแบบและพัฒนาการเว็บแอป พลิเคชันฟาร์มไฮโครโปนิกส์ ระบบสามารถทำงานได้ตาม ขอบเขตที่กำหนด โดยมีผลการทดสอบ ส่วนต่างๆ ดังต่อไปบี้

สาขาวิชาเทคโนโลยีวิสวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

4.1 การทำงานของตัวอุปกรณ์

ในปริญญานิพนธ์ได้สร้างเครื่องต้นแบบชุดฟาร์มไฮโคร โปนิกส์ ดังรูปที่ 17 และฮาร์ดแวร์ส่วนควบคุมดังรูปที่ 18

รูปที่ 17 เครื่องต้นแบบชุคฟาร์มไฮโครโปนิกส์

รูปที่ 18 ฮาร์ดแวร์ส่วนควบคุม

4.1.1 การวัดระดับน้ำในถังเก็บน้ำ

การทดลองนี้จะทำการใช้ เซนเซอร์วัดระดับน้ำ XKC-Y25 จำนวน 2 ตัวเข้ากับถังเกีบน้ำ เพื่อทำการทดสอบว่า สามารถตรวจจับน้ำในถังได้หรือไม่

รูปที่ 19 การติดตั้งเซนเซอร์ตรวจจับระดับน้ำ

ขั้นตอนการทดลอง

อุปกรณ์ที่ใช้ในการทคสอบ มีคังนี้

- จำนวนเซนเซอร์ที่ใช้: 2 ตัว
- ถังเก็บน้ำ ขนาค 5 ลิตร: 1 ถัง

ขั้นตอนการทดลองที่ 1

- 1. ติดตั้ง เซนเซอร์ตัวที่ 1 ที่ก้นถัง และติดตั้งเซนเซอร์ ตัวที่ 2 สูงจากก้นถังเป็นระยะ 10 ซม.ดังรูปที่ 19
- 2. เขียนโปรแกรมอ่านค่าจากเซนเซอร์และแสดงผล บน Serial Monitor ของโปรแกรม Arduino IDE เติมน้ำทีละ 1 ลิตรและทำการบันทึกค่าที่เซนเซอร์ วัดได้ และบันทึกผล

ผลการทดลอง

ในที่นี้จะอ่านค่าสถานะจากหน้าจอ Serial Monitor ของ โปรแกรม Arduino IDE ซึ่งจะปรากฏสถานะเซนเซอร์ ดังรูปที่ 20 จากค่าบนหน้าจอนี้ และค่าปริมาณน้ำที่เติมในถัง นำมาเขียนเป็นผลการทดลองดังตารางที่ 1

รูปที่ 20 ค่าการวัดระดับน้ำในถังจากเซนเซอร์

จากผลการทคลองในตารางที่ 1 สังเกตได้ว่าค่าเซนเซอร์ ทั้ง 2 ตัวสามารถตรวจจับน้ำได้ เมื่อน้ำอยู่ระดับเดียวกับขอบ ล่างของเซนเซอร์ ขณะเดียวกันนี้ข้อมูลทั้งสองค่าก็จะถูกส่ง มาบันทึกในฐานข้อมูล Firebase และมีการนำไปแสดงบน หน้าเว็บดังรูปที่ 21

ตารางที่ 1 ผลการวัดค่าระดับน้ำในถัง

น้ำที่	เซนเซอร์	เซนเซอร์	แสดงผลหน้า
เติม	ระดับน้ำ	ระคับน้ำ	ເວັ້ນ
	(low)	(high)	
0	low	low	ต่ำกว่า 10 %
1	high	low	ต่ำกว่า 80 %
2	high	low	ต่ำกว่า 80 %
3	high	low	ต่ำกว่า 80 %
4	high	high	มากกว่า 80 %
5	high	high	มากกว่า 80 %

ระดับน้ำในถัง **ต่ำกว่า 80 %**

รูปที่ 21 ผลการวัดค่าระดับน้ำในถังที่แสดงบนหน้าเว็บ

โดยรูปที่ 21 ส่วนของภาพระดับน้ำในถัง สื่อถึงการติด เซนเซอร์วัดระดับน้ำทั้งสองตัว และข้อความที่แสดงบน หน้าเว็บจะถูกเปลี่ยนไปตามค่าที่วัดได้จากเซนเซอร์จาก ตารางที่ 1

4.1.2 การวัดความชื้นและอุณหภูมิภายในโรงเรือน

เป็นการทดสอบ วัดความชื้นและอุณหภูมิด้วยเซนเซอร์
DHT22 เทียบกับมิเตอร์วัดความชื้นและอุณหภูมิที่มีจำหน่าย
ในท้องตลาดเพื่อตรวจสอบ ว่ามีค่าใกล้เคียงกันหรือ ไม่
รวมถึงดูการเปลี่ยนแปลงของค่าความชื้นและอุณหภูมิเมื่อมี
การเปลี่ยนแปลง

รูปที่ 22 เซนเซอร์วัดความชื้นและอุณหภูมิ

ขั้นตอนการทดลอง

อุปกรณ์ที่ใช้ในการทคสอบ มีคังนี้

• จำนวนเซนเซอร์ที่ใช้: 1 ตัว

• จำนวนมิเตอร์ที่ใช้ในการวัดเทียบค่า : 1 เครื่อง

• กระบอกฉีดละอองน้ำ: 1 กระบอก

• ใคร์เป่าผม : 1 เครื่อง

ขั้นตอนการทคลองที่ 1

- 1. ติดตั้งเซนเซอร์ตามรูปที่ 22 เพื่อทดสอบวัดความชื้น และอุณหภูมิภายในโรงเรือน
- 2. เขียนโปรแกรมเพื่ออ่านค่าเซนเซอร์แสดงผลบน Serial Monitor ของโปรแกรม Arduino IDE
- 3. ใช้กระบอกฉีดละอองน้ำและทำการบันทึกค่าที่ เซนเซอร์วัดได้

ດວັນກໍາ	°C	32.80	Temperature:	do	63.00	Humidity:	->	15:19:48.245	
	"C	30.10	Temperature:	ş	91.00	Humidity:	->	15:19:58.258	
ດວັນກ່ວ	°C	31.30	Temperature:	do	67.00	Humidity:	->	15:20:08.249	
	"C	30.60	Temperature:	do	71.00	Humidity:	->	15:20:18.280	
ครั้งที่ 3	°C	33.50	Temperature:	do	56.00	Humidity:	->	15:20:28.265	
1130113	°C	32.40	Temperature:	do	64.00	Humidity:	->	15:20:38.235	

รูปที่ 23 ค่าที่เซนเซอร์วัดความชื้นและอุณหภูมิอ่านค่าได้

ตารางที่ 2 ผลการทดลอง DHT22 โดยการฉีดละอองน้ำ

การ	ก่อนฉีดล	ะอองน้ำ	หลังฉีดละ	ะอองน้ำ
ทคลอง	ความชื้น	อุณหภูมิ	ความชื้น	อุณหภูมิ
(ครั้ง)	(%RH)	(°C)	(%RH)	(°C)
1	90	29.0	91	30.1
2	69	30.0	71	30.6
3	63	31.0	64	32.4

ขั้นตอนการทดลองที่ 2

- ติดตั้งเซนเซอร์ตามรูปที่ 22 เพื่อทดสอบวัดความชื้น และอุณหภูมิภายในโรงเรือน
- 2. เขียนโปรแกรมเพื่ออ่านค่าเซนเซอร์แสดงผลบน Serial Monitor ของโปรแกรม Arduino IDE
- 3. ใช้ใคร์เป่าผมเป่าลมร้อนใส่เซนเซอร์ DHT22 และ ทำการบันทึกค่าที่เซนเซอร์วัดได้

ครั้งที่ 1	°C	31.80	Temperature:	olo	63.00	Humidity:	->	19:32:47.467
in promotion in	°C	36.70	Temperature:	de	49.00	Humidity:	->	19:32:57.468
กรุ้ามี ว	°C	32.40	Temperature:	olo	64.00	Humidity:	->	19:33:07.455
riouti Z	°C	41.60	Temperature:	olo	37.00	Humidity:	->	19:33:17.456
2.1.	°C	38.00	Temperature: Temperature:	olo	71.00	Humidity:	->	19:33:27.461
ASUN 3	°C	39.10	Temperature:	do	43.00	Humidity:	->	19:33:37.434

รูปที่ 24 ค่าที่เซนเซอร์วัดความชื้นและอุณหภูมิอ่านค่าได้

ตารางที่ 3 ผลการทคลอง วัดค่าอุณหภูมิและความชื้น

การ	ก่อนใช้	ใคร์เป่า	หลังใช้ไ	คร์เป่า
ทคลอง	ความชื้น	อุณหภูมิ	ความชื้น	อุณหภูมิ
(ครั้ง)	(%RH)	(°C)	(%RH)	(°C)
1	63	31.8	49	36.7
2	64	32.4	37	41.6
3	71	38.0	43	39.1

ผลการทดลอง

ในที่นี้จะอ่านค่าสถานะจากหน้าจอ Serial Monitor ของ โปรแกรม Arduino IDE จะปรากฏสถานะเซนเซอร์บน หน้าจอคังรูปที่ 23 จากการทคลองที่ 1 และคังรูปที่ 24 จาก การทคลองที่ 2 และนำค่าความชื้นและอุณหภูมิที่วัดได้มา เขียนเป็นผลการทคลองที่ 1 คังตารางที่ 2 และการทคลองที่ 2 ดังตารางที่ 3

จากผลการทดลองในตารางที่ 2 และ 3 พบว่า เมื่อ เซนเซอร์สัมผัสกับละอองน้ำ ค่าความชื้นจะเพิ่มขึ้น และเมื่อ ได้รับความร้อนจากไดร์เป่าผม ค่าอุณหภูมิของเซนเซอร์ก็จะ สูงขึ้น

ขั้นตอนการทดลองที่ 3

- ทำการทคสอบความถูกต้องของเซนเซอร์ โดยการ ทคสอบเซนเซอร์ วัคความชื้นและอุณหภูมิเทียบกับ มิเตอร์ภายในโรงเรือน
- 2. เขียนโปรแกรมเพื่ออ่านค่าการเปลี่ยนแปลงของ เซนเซอร์และแสดงผลบน Serial Monitor ของ โปรแกรม Arduino IDE ซึ่งจะแสดงผลหน้าจอ ตัวอย่างดังรูปที่ 24
- บันทึกค่าความชื้นและอุณหภูมิที่อ่านได้จาก เซนเซอร์เทียบกับมิเตอร์ดังรูปที่ 25 แล้วบันทึกผล ลงในตารางที่ 4 และพล็อตเป็นกราฟดังรูปที่ 26 และรูปที่ 27

19:57:51.070	->	Humidity:	64.00	olo	Temperature:	32.80	°C	ครั้งที่ 1
19:58:01.086	->	Humidity:	68.00	οlo	Temperature:	33.30	°C	ครั้งที่ 2
19:58:11.095	->	Humidity:	59.00	οlo	Temperature:	36.50	°C	ครั้งที่ 3
19:58:21.107	->	Humidity:	60.00	оlо	Temperature:	35.00	°C	ครั้งที่ 4
19:58:31.098	->	Humidity:	61.00	ф	Temperature:	34.80	°C	ครั้งที่ 5
19:58:41.101	->	Humidity:	69.00	ş	Temperature:	39.50	°c	ดรั้าที่ 6

รูปที่ 24 ค่าที่เซนเซอร์วัคความชื้นและอุณหภูมิอ่านค่าได้

รูปที่ 25 มิเตอร์วัดค่าความชื้นและอุณหภูมิ

ตารางที่ 4 ผลการทดสอบเซนเซอร์วัดความชื้นและอุณหภูมิ

การ	ค่าที่ระบ	บวัดได้	ค่าที่มิเตอ	ร์วัดได้
ทคสอบ	ความชื้น	ความชื้น อุณหภูมิ		อุณหภูมิ
(ครั้งที่)	(%RH)	(°C)	(%RH)	(°C)
1	64	32.80	62	30.1
2	68	33.3	66	32.1
3	59	36.5	56	33.8
4	60	35	58	33.2
5	61	34.8	60	32.1
6	69	39.5	66	37.7

รูปที่ 26 กราฟผลการวัคค่าความชื้น

รูปที่ 27 กราฟผลการวัดค่าอุณหภูมิ

ผลการทดลอง

จากตารางที่ 4 สังเกตได้ว่าค่าเซนเซอร์วัดความชื้นและ อุณหภูมิเมื่อเทียบกับมิเตอร์มีเปอร์เซ็นต์ค่าผิดพลาดสัมบูรณ์ เฉลี่ย (MAPE) อยู่ที่ประมาณ 3.41% ซึ่งแสดงให้เห็นว่าค่าที่ วัดได้จากเซนเซอร์มีความใกล้เคียงกับค่าจริงที่วัดได้จาก มิเตอร์ ค่าผิดพลาดนี้อยู่ในระดับที่ยอมรับได้สำหรับการวัด

4.1.3 การวัดค่า PH ในถึงเก็บน้ำ

เป็นการทดสอบเซนเซอร์วัดค่า pH เทียบกับมิเตอร์วัดค่า pH ที่มีจำหน่ายในท้องตลาดเพื่อตรวจสอบว่ามีค่าใกล้เคียง กับหรือไม่

รูปที่ 28 ทคสอบเซนเซอร์วัดค่า pH

ขั้นตอนการทดลอง

อุปกรณ์ที่ใช้ในการทคสอบ มีคังนี้

• จำนวนเซนเซอร์ที่ใช้: 1 ตัว

• จำนวนมิเตอร์ที่ใช้ในการวัดเทียบค่า : 1 เครื่อง

ถ้วยน้ำ : 1 ถ้วย

ขั้นตอนการทคลอง

- เติมน้ำ 200 มิลลิลิตรลงในถ้วยแล้วเติมสารปรับ pH
 นิลลิลิตรลงในถ้วย
- 2. จุ่มหัววัดค่าลงไปในน้ำ ดังรูปที่ 28

- 3. เขียนโปรแกรมเพื่ออ่านค่าการเปลี่ยนแปลงของ เซนเซอร์และแสดงผลบน Serial Monitor ของ โปรแกรม Arduino IDE ซึ่งจะแสดงผลหน้าจอ ตัวอย่างคังรูปที่ 29
- 4. บันทึกค่า pH ที่อ่านได้จากเซนเซอร์ แล้วเทียบกับ มิเตอร์วัดค่า pH ดังรูปที่ 30 แล้วบันทึกผลลงใน ตารางที่ 5 และพล็อตเป็นกราฟดังรูปที่ 31

```
20:20:20.047 -> phvoltage = 1.70 ph = 7.21

20:20:24.289 -> phvoltage = 1.69 ph = 7.17

20:20:29:524 -> phvoltage = 1.70 ph = 7.21

20:20:31.679 -> phvoltage = 1.69 ph = 7.17

20:20:34.195 -> phvoltage = 1.68 ph = 7.13

20:20:36.298 -> phvoltage = 1.70 ph = 7.21

20:20:39.287 -> phvoltage = 1.70 ph = 7.21
```

รูปที่ 29 ค่าที่อุปกรณ์วัดค่า pH อ่านค่าได้

รูปที่ 30 ทคสอบมิเตอร์วัคค่า pH

ตารางที่ 5 ผลการทดสอบวัดค่า pH ของสารตัวอย่าง และ มิเตอร์วัดค่า pH

ตัวอย่าง	ค่าที่ได้จาก	ค่าที่วัดด้วยมิเตอร์
ของเหลว	เซนเซอร์	
1	7.50	7.61
2	6.92	7.04
3	6.63	6.71
4	5.94	6.04
5	6.80	6.92
6	6.78	6.88

รูปที่ 31 กราฟผลการวัดค่า pH ของสารตัวอย่าง

ผลการทดลอง

จากผลการทคลองในตารางที่ 5 สังเกตได้ว่าค่าเซนเซอร์ วัคค่า pH เมื่อเทียบกับมิเตอร์มีเปอร์เซ็นต์ค่าผิดพลาด สัมบูรณ์เฉลี่ย (MAPE) อยู่ที่ประมาณ 1.56% ซึ่งแสดงให้ เห็นว่าค่าที่วัดได้จากเซนเซอร์มีความใกล้เคียงกับค่าจริงที่ วัดได้จากมิเตอร์ ค่าผิดพลาดนี้อยู่ในระดับที่ยอมรับได้ สำหรับการวัด ทำให้เซนเซอร์นี้มีความน่าเชื่อถือในการใช้ งาน

4.2 การทำงานของเว็บแอปพลิเคชัน

การทำงานของเว็บแอปพลิเคชันสามารถแบ่งการทำงาน ได้ ดังนี้

4.2.1 หน้าเข้าสู่ระบบและสมัครสมาชิก

ก่อนเริ่มต้นเข้าใช้งานเว็บแอปพลิเคชัน ผู้ใช้งานจะต้อง สมัครสมาชิกเพื่อเข้าใช้งานคังรูปที่ 32 เมื่อสมัครสมาชิก เรียบร้อย จะสามารถเข้าสู่ระบบได้ คังรูปที่ 33 สาขาวิชาเทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

รูปที่ 32 หน้าลงทะเบียน

รูปที่ 33 หน้าเข้าสู่ระบบ

4.2.2 การแสดงผลข้อมูลต่าง ๆ ภายในโรงเรือน

หลังจากที่ผู้ใช้งานเข้าสู่ระบบเรียบร้อย จะถูกนำมาที่หน้า Home โดยหน้านี้จะเป็นการแสดงผลข้อมูลต่าง ๆ ได้แก่ อุณหภูมิ ความชื้น ค่า pH และระดับน้ำถัง ดังรูปที่ 34 รวมถึง จะมี QR Code ให้เข้าร่วมกลุ่มไลน์เพื่อรับการแจ้งเตือนการ ทำงานของอุปกรณ์ต่าง ๆ ในโรงเรือน

ร**ูปที่ 34** หน้าการแสดงผลข้อมูลต่าง ๆ ภายในโรงเรือน

นอกจากนี้มีการแสดงผลของกราฟที่แสดงให้เห็นถึงการ เปลี่ยนแปลงของอุณหภูมิ ความชื้น และค่า pH ทุก ๆ 1 ชั่วโมง โดยผู้ใช้งานสามารถเลือกวันที่ที่ต้องการดูกราฟได้ ดังรูปที่ 35

ร**ูปที่ 35** การแสดงผลข้อมูลการเปลี่ยนแปลงของอุณหภูมิ ความชื้น และค่า pH

รูปที่ 36 กราฟแสดงผลการเปลี่ยนแปลงของอุณหภูมิ

รูปที่ 37 กราฟแสดงผลการเปลี่ยนแปลงของความชื้น

ร**ูปที่ 38** กราฟแสดงผลการเปลี่ยนแปลงของค่า pH

4.2.3 การเปิดปิดการใช้งานอุปกรณ์

ผู้ใช้สามารถกดเปิดปิดอุปกรณ์ต่าง ๆ ผ่านทางเว็บแอป พลิเคชันนี้ได้ ดังรูปที่ 39

รูปที่ 39 หน้าเปิดปิดการใช้งานอุปกรณ์

4.2.4 การเติมสารต่าง ๆ ตามปริมาณ

ผู้ใช้สามารถเลือกเติมน้ำ ปุ๋ย สารอาหาร สารเพิ่มและลด ค่า pH ตามปริมาณดังรูปที่ 40 เพื่อสั่งงานให้เติมสารตาม ปริมาณที่เลือกระหว่าง 250 ml และ 500 ml

รูปที่ 40 หน้าเติมสารต่าง ๆ ตามปริมาณ

4.2.5 การตั้งค่าเวลาในการเปิดใช้งานอุปกรณ์

ในหน้าตั้งค่าเวลาดังรูปที่ 41 นี้ ไว้สำหรับผู้ใช้งานที่ ต้องการตั้งค่าเวลาในการเปิดใช้งานอุปกรณ์ล่วงหน้าหรือ ต้องการให้ทำซ้ำในช่วงเวลานี้เป็นประจำ โดยผู้ใช้งาน สามารถยกเลิกการตั้งค่าเวลานี้ได้

รูปที่ 41 หน้าตั้งค่าเวลาในการเปิดใช้งานอุปกรณ์

4.2.6 การใช้งานสปริงเกอร์

ในหน้านี้ ดังรูปที่ 42 และ 43 จะเป็นการสั่งการทำงาน ของสปริงเกอร์ที่พ่นน้ำและสารอาหาร ซึ่งจะเป็นการรวม การทำงานตั้งแต่ข้อที่ 4.2.3 - 4.2.5 คือ

- เปิด-ปิดสปริงเกอร์ได้ตามที่ต้องการ
- เปิดสปริงเกอร์ได้ตามปริมาณที่ต้องการเปิด
- กำหนดเวลาในการเปิดล่วงหน้าหรือเปิดเป็นประจำ

รูปที่ 42 หน้าการใช้งานสปริงเกอร์

รูปที่ 43 หน้าการใช้งานสปริงเกอร์

4.2.7 การแจ้งเตือน

เมื่อผู้ใช้งานเข้าร่วมกลุ่ม ไลน์ดังรูปที่ 44 จะมีการแจ้ง เตือนจากระบบดังรูปที่ 45 ดังนี้

- ถึงเวลาเริ่มเปิดใช้พ่นน้ำ
- ถึงเวลาเริ่มเปิดใช้พ่นพ่นปุ๋ย
- ถึงเวลาเริ่มเติมสารเพิ่มค่า pH
- ถึงเวลาเริ่มเติมสารลดค่า pH
- ถึงเวลาเริ่มเติมปุ๋ย
- ถึงเวลาเริ่มเติมสารอาหาร
- อุณหภูมิสูงกว่า 30 องศา
- ความชื้นสูงกว่า 80% หรือ ความชื้นต่ำกว่า 40%
- ค่า pH สูงกว่า 8 หรือ ค่า pH ต่ำกว่า 3

รูปที่ 44 QR Code ของไลน์เพื่อรับการแจ้งเตือน

รูปที่ 45 ตัวอย่างการตั้งค่าแจ้งเตือน

5. สรุปผล

โครงงานปริญญานิพนธ์ฉบับนี้ได้นำเสนอการพัฒนาเว็บ แอปพลิเคชันร่วมกับการทำฟาร์มไฮโดรโปนิกส์ โดยการ สร้างแบบจำลองฟาร์มไฮโดรโปนิกส์ที่มีบอร์ด ESP32 ช่วย ในการรับค่าและควบคุมการทำงานอุปกรณ์ต่าง ๆ ภายใน ฟาร์ม ได้แก่ ไฟ พัคลม ปั๊ม สปริงเกอร์ เซนเซอร์อุณหภูมิ-ความชื้น และเซนเซอร์วัดความเป็นกรด-เบส รวมถึงมีการ พัฒนาเว็บแอปพลิเคชันด้วย Angular และ Node.js เพื่อใช้ ในการแสดงผลต่างๆ และ ให้ผู้ใช้งานสามารถสั่งการทำงาน ของอุปกรณ์ภายในฟาร์ม นอกจากนี้มีการใช้งานระบบ ฐานข้อมูลแบบเรียลไทม์ เพื่อให้หน้าเว็บและ ESP32 สามารถอ่านค่าจากฐานข้อมูลไปใช้แสดงผลและ ประมวลผลต่อ รวมถึงสามารถแจ้งเตือนเมื่อพบว่าอุณหภูมิ ความชื้น ความเป็นกรดเบส มีความผิดปกติและแจ้งเตือน ผ่าน Line Notify เมื่อถึงเวลาการเปิดใช้งานอุปกรณ์ต่างๆ ภายในฟาร์มที่ผู้ใช้งานตั้งค่าไว้จากการทดสอบการใช้เว็บ แอปพลิเคชันร่วมกับฟาร์มไฮโครโปนิกส์พบว่าสามารถ ควบคุมอุปกรณ์ต่างๆ ภายในฟาร์มไฮโดรโปนิกส์ได้ ซึ่งช่วย ให้ประหยัดเวลาและช่วยในการอำนวยความสะควกให้กับ ผู้ใช้งานในการดูแลฟาร์มไฮโครโปนิกส์

6. เอกสารอ้างอิง

- [1] Angular. (2567). [ออนไลน์]. [สืบค้นเมื่อ 17 กุมภาพันธ์ 2567]. จาก
 https://perjerz.medium.com/angular
- [2] Firebase. (2567). [ออนไลน์]. [สีบค้นเมื่อ 17 กุมภาพันธ์ 2567]. จาก https://medium.com/jed-ng/firebase

- [3] Line Notify. (2567). [ออนไลน์]. [สืบค้นเมื่อ 22 กุมภาพันธ์ 2567]. จาก https://notify-bot.line.me/th
- [4] REST API. (2567). [ออนไลน์]. [สืบคันเมื่อ 22 กุมภาพันธ์ 2567]. จาก
 https://kongruksiam.medium.com/
- [5] Cron Job. (2559). [ออนไลน์]. [สีบค้นเมื่อ 28 กุมภาพันธ์ 2567]. จาก https://www.codebee.co.th/
- [6] Microsoft Azure. (2566).] [ออนไลน์]. [สืบค้นเมื่อ 28 กุมภาพันธ์ 2567]. จาก https://appmaster.io/
- [7] ESP32. (2567). [ออนไลน์]. [สืบค้นเมื่อ 28 กุมภาพันธ์ 2567]. จากhttps://www.artronshop.co.th/article/51/esp32
- [8] เซนเซอร์วัดอุณหภูมิและความชื้นสัมพัทธ์ DHT22 (2567). [ออนไลน์]. [สืบค้นเมื่อ 28 กุมภาพันธ์ 2567]. จาก
- [9] เซนเซอร์ระดับน้ำ XKC-Y25. (2567). [ออนใลน์].
 [สืบค้นเมื่อ 28 กุมภาพันธ์ 2567]. จาก
 https://www.allnewstep.com/product/5/

https://www.analogread.com/product/169/

[10] โมคูลเซนเซอร์ pH (2567). [ออนไลน์]. [สืบค้นเมื่อ28 กุมภาพันธ์ 2567] จากhttps://www.cybertice.com/product/3449/

ประวัติผู้จัดทำ

ชื่อ-นามสกุล : นายจิรเมธ แก้วคำ

อีเมล : s6303051623063@email.kmutnb.ac.th

ประวัติการศึกษา

พ.ศ. 2563 หลักสูตรประกาศนียบัตรวิชาชีพ สาขางานอิเล็กทรอนิกส์

วิทยาลัยเทคนิคเชียงราย

ปัจจุบัน เทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

วิทยาลัยเทคโนโลยีอุตสาหกรรม

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

ประวัติผู้จัดทำ

ชื่อ-นามสกุล : นางสาวณัฏฐณิชา เจวรัมย์

อีเมล : s6303051623161@email.kmutnb.ac.th

ประวัติการศึกษา

พ.ศ. 2563 ระดับมัธยมศึกษาตอนปลาย แผนการเรียนวิทยาศาสตร์-คณิตศาสตร์

โรงเรียนเทพศิรินทร์ นนทบุรี

ปัจจุบัน เทคโนโลยีวิศวกรรมอิเล็กทรอนิกส์ แขนงวิชาคอมพิวเตอร์

วิทยาลัยเทคโนโลยีอุตสาหกรรม

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ