通訊實驗

實驗五:振幅調變器

班級:電子三乙

組別:第六組

學號:110510216、110510224、110510241

姓名:蔡承宏、許朝雄、楊中豪

實驗日期:2019/4/08 星期一天氣霧

第五章:振幅調變器

一、實驗目的

了解振幅調變器的架構。 了解調變深度的意義及如何求得其值。

二、實驗原理

振幅調變簡稱調幅,其已調變之訊號可表示如下:

$$X_{AM}(t) = E(1 + m \cos(2pi*f_mt)) \cos(2*pif_ct)$$

= A(1 + m \cos(2pi*f_mt)) B\cos(2*pif_ct)

F_c:載波的頻率。

E: AM 訊號的振幅。

m:常數,調變深度。

F_M:低頻頻率。

$$m=(P-Q)/(P+Q)$$

三、實驗步驟

實驗一:產生 AM 訊號並求得 m 值

- 1. 利用 TIMS 模組系統組成圖一之方塊圖。
- 2. 把乘法器輸入耦合切換開關切換至 DC 狀態
- 3. 調整 Audio Oscillator 使輸出 1KHz 之餘弦波。
- 4. 加法器 g 增益使輸出振幅為 1V 弦波。
- 5. 加法器 G 增益使直流分量大小等於 1V,如此可調 AM 訊號。
- 6. 觀測出P和Q值,利用公式求出 m 值
- 7 將示波器觀測到的 AM 波形繪入表中。

四、實驗結果(二)

AC 振幅	DC 值	Р	Q	m
1	1	4	0	100
1	1. 5	4	2	33
1	2	6	2	50
2	2	8	0	100
2	2. 5	8	2	60
2	3	8	4	33

AC 振 幅	DC 值	AM 調變波形
1	1	Tek
1	2	Tek
2	2	Tek

2	3	Tek
2	1	Tek
2	1.5	Tek Trig'd M Pos: 0.000s MEASURE CHT
2	1.75	Tek

實驗二:以另外一種架構產生AM並求得m值

- 1. 利用 TIMS 模組系統組成下圖之方塊圖。
- 2. 將相移器的偏移範圍調製 HI。
- 3. 調整 Audio Oscillator 使輸出 1KHz 之餘弦波。
- 4. 加法器 g 增益使輸出振幅為 1V 弦波。
- 5. 加法器 G 增益使直流分量大小等於 1V,使輸出為 1V 的 DSB-SC 訊號。
- 6. 觀測出P和Q值,利用公式求出 m值
- 7. 觀察示波器上波型。

DSB-SC 振幅	載波項振幅	Р	Q	m
1	1	4	0	100
1	1.5	5	1	66. 7
1	2	6	2	50
2	2	8	0	100
2	2.5	8	2	60
2	3	10	2	66. 7

DSB-SC 振幅	載波項振幅	AM 調變波形
1	1	Tek
1	2	Tek 几 ● Stop M Pos: 0.000s MEASURE CHI 描字 33.989 Hz CHI LES CHI 编字 CH2 開閉 语文 CH2 開閉 语文 CH2 開閉 经对价值 無無 CH1 1.00V M 500.04 CH1 / 2.28V S6.14124Hz
2	2	Tek Stop M Post 0.000s MEASURE CHT
2	3	Tek

五、問題討論

- 1. 若乘法器輸入耦合切換開關至 AC 會發生甚麼情況
- A:沒有直流
- 2. 證明(5-3)
- A:m=(Vmax-Vmin)/(Vmax+Vmin)
- 3. m>1 時(5-3)是否有效
- A:没效
- 4. 為何 5-1 不考慮相位 5-4 卻要
- A:少乘上一個 cos 訊號
- 5. 為何 DSB-SC 的相位需要相同
- A:因為基頻是 cos 所以載波是 cos