

Application
for
United States Letters Patent

To all whom it may concern:

Be it known that Ronald Breslow et al.

have invented certain new and useful improvements in

BETA-CYCLODEXTRIN DIMERS AND PHTHALOCYANINES AND USES THEREOF

of which the following is a full, clear and exact description.

BETA-CYCLODEXTRIN DIMERS AND PHTHALOCYANINES AND USES
THEREOF

5

The invention disclosed herein was made with Government support under grant No. GM-18754 from the National Institutes of Health, U.S. Department of Health and Human Services, and CHE-97-12556 from the 10 National Science Foundation. Accordingly, the U.S. Government has certain rights in this invention.

Background Of The Invention

15

Throughout this application, various publications are referenced in parentheses. Full citations for these references may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entireties 20 are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains.

25

Photodynamic therapy of cancers uses a combination of light-activated drugs (photosensitizers) and laser light to create highly reactive forms of oxygen (singlet oxygen) that destroy tumor cells (Ali et al. 1999, Dougherty et al. 1998, Sternberg et al. 1998). Porphyrinoid dyes are photosensitizers which are 30 widely used in photodynamic therapy. However, one major drawback of these hydrophobic photosensitizers is that they are not selective to tumor tissue because they are transported to every organ by blood lipoproteins of the blood stream (Moser et al., 35 1994). One way to prevent this is to attach the

photosensitizer to cancer-specific antibodies and use cyclodextrin dimers to encapsulate the dye so that it cannot interact with lipoproteins (Ruebner et al., 1996, 1997).

5

Another strategy involves the use of β -cyclodextrin dimers having a cleavable linker between two β -cyclodextrin molecules to deliver the photosensitizer to the tumor site (U.S. Serial No. 09/352,529, filed

10

July 13, 1999, now allowed; Ruebner et al. 1999).

The β -cyclodextrin dimers can serve as hydrophilic carriers for photosensitizers, which can be administered to a subject with cancer. The β -cyclodextrin dimer can be cleaved by light, which can

15

be selectively directed at the tumor site. The dye will then be released and be able to go into tumor cells. After the dimer is cleaved, the concentration of uncleaved β -cyclodextrin dimers at the tumor site will be reduced and more uncleaved β -cyclodextrin dimers will diffuse into the tumor site due to the concentration gradient. In this way, photosensitizer can be concentrated in the tumor without the use of a cancer-specific antibody.

20

25

The phthalocyanine described in U.S. Serial No. 09/352,529, filed July 13, 1999, now allowed, and in Ruebner et al. 1999 was a mixture of eight compounds. The present application discloses phthalocyanines with single well-defined structures, additional β -cyclodextrin dimers that can be used in photodynamic therapy, and phthalocyanines having characteristics that permit efficient cleavage of the β -cyclodextrin dimer-phthalocyanine complex.

30

Summary Of The Invention

The invention provides a composition of matter comprising two β -cyclodextrin molecules and a cleavable linker joining each such β -cyclodextrin, wherein the cleavable linker comprises a carbon-carbon double bond substituted on both ends, wherein the cleavable linker is cleavable by singlet oxygen, and wherein the composition of matter is selected from the group consisting of:

15

and

wherein

= beta-cyclodextrin; and

5

wherein Z is C₁-C₄ alkyl, NH, N(C₁-C₄ alkyl), O, or S.

10

The invention also provides a compound having the structure:

15 wherein X is C₁-C₄ alkyl, NH, N(C₁-C₄ alkyl), O, or S;

wherein R₁ is -CO₂H, -CO₂⁻, -N⁺(CH₃)₃, -SO₃H, or -SO₃⁻; and

wherein R is

where the dashed lines indicate the attachments to X, and where R₂ is C₁-C₃ alkyl.

5

10

Brief Description Of The Figures

FIGURE 1. β -Cyclodextrin dimers with photocleavable linkers as carriers for photosensitizers in the photodynamic therapy of cancers. The linker joining the β -cyclodextrin molecules 1 is cleavable by photoirradiation causing the release of the photosensitizer, which in the case illustrated is phthalocyanine 2.

FIGURE 2. Synthesis of β -cyclodextrin dimers 17 and 18. Detailed description of synthesis is in text.

FIGURE 3. Synthesis of β -cyclodextrin dimer 21. Detailed description of synthesis is in text.

FIGURE 4. Determination of binding constant for β -cyclodextrin dimer 21 with BNS and with phthalocyanine 13. -x-: BNS titration into dimer 21 solution; -o-: BNS titration into phthalocyanine 13:dimer 21 (1:1) solution.

FIGURE 5a-5e. Conversion of β -cyclodextrin dimer 21 to its cleavage product upon irradiation, with phthalocyanine 11, monitored by NMR. Reaction time: a, 30 minutes; b, 60 minutes; c, 90 minutes; d, 120 minutes; e, 150 minutes. Chemical shifts reported in parts per million (ppm) downfield of zero on the delta (δ) scale (x-axis).

Detailed Description Of The Invention

The invention provides a composition of matter comprising two β -cyclodextrin molecules and a cleavable linker joining each such β -cyclodextrin, wherein the cleavable linker comprises a carbon-carbon double bond substituted on both ends, wherein the cleavable linker is cleavable by singlet oxygen, and wherein the composition of matter is selected from the group consisting of:

15

and

wherein

5 = beta-cyclodextrin; and

wherein Z is C₁-C₄ alkyl, NH, N(C₁-C₄ alkyl),
O, or S.

10 In one embodiment of the composition of matter, Z is
S.

15 In one embodiment, the composition of matter has the
structure:

20

In one embodiment, the composition of matter has the structure:

5

In one embodiment, the composition of matter has the structure:

10

β -Cyclodextrin dimers with linkers of different lengths can be used to accommodate different size
15 photosensitizers.

The invention provides a composition which comprises
20 a hydrophilic matrix comprising the any of the compositions of matter disclosed herein and a photosensitizer encapsulated within the matrix. In different embodiments, the photosensitizer is a porphyrin, a phthalocyanine, a naphthalocyanine, a chlorin, a pheophorbide, or a bacteriopheophorbide.

In one embodiment of the composition, the photosensitizer is a phthalocyanine. In one embodiment, the phthalocyanine has the structure:

5 wherein X is C₁-C₄ alkyl, NH, N(C₁-C₄ alkyl), O, or S;

10 wherein R₁ is -CO₂H, -CO₂⁻, -N⁺(CH₃)₃, -SO₃H, or -SO₃⁻; and

15 wherein R is

where the dashed lines indicate the attachments to X, and where R₂ is C₁-C₃ alkyl.

In one embodiment, X is O, and R₁ is -SO₃H.

In one embodiment, the phthalocyanine has the structure:

5

In one embodiment, the phthalocyanine has the structure:

In one embodiment, the phthalocyanine has the structure:

The invention provides a compound having the structure:

5

wherein X is C₁-C₄ alkyl, NH, N(C₁-C₄ alkyl), O, or S;

10 wherein R₁ is -CO₂H, -CO₂⁻, -N⁺(CH₃)₃, -SO₃H, or -SO₃⁻; and

15

wherein R is

15

where the dashed lines indicate the attachments to X, and where R₂ is C₁-C₃ alkyl.

In one embodiment of the compound, X is O, and R₁ is -SO₃H.

5 In one embodiment, the compound has the structure:

In one embodiment, the compound has the structure:

In one embodiment, the compound has the structure:

5 The invention provides a composition which comprises
a hydrophilic matrix comprising:

10 i) any of the compounds disclosed herein
encapsulated within the matrix, and

15 ii) a composition of matter comprising two β-
cyclodextrin molecules and a cleavable
linker joining each such β-cyclodextrin,
wherein the cleavable linker comprises a
carbon-carbon double bond substituted on
one or both ends by an electron rich atom,
and the cleavable linker is cleavable by
singlet oxygen.

20 In different embodiments of the composition, the
electron rich atom is sulfur, oxygen, or nitrogen.

In one embodiment of the composition, the composition of matter is selected from the group consisting of:

and

10

wherein

= beta-cyclodextrin; and

wherein Z is C₁-C₄ alkyl, NH, N(C₁-C₄ alkyl), O, or S.

5

In one embodiment, Z is S.

In one embodiment of the composition, the composition of matter has the structure:

10

In one embodiment of the composition, the composition of matter has the structure:

15

In one embodiment of the composition, the composition of matter has the structure:

5

In one embodiment of any of the compositions disclosed herein, the cleavable linker is cleavable upon exposure to light of a wavelength appropriate for absorption by the photosensitizer. In one embodiment, the photosensitizer is released when the cleavable linker is cleaved.

10 The invention provides a method of killing a tumor cell which comprises contacting the tumor cell with any of the compositions disclosed herein and exposing the composition to light so as to cleave the cleavable linker and release the photosensitizer, wherein absorption of light by the photosensitizer excites the photosensitizer and the tumor cell is killed by singlet oxygen that is formed by energy transfer from the excited photosensitizer.

15 The invention provides a method of killing a tumor cell in a subject which comprises:

- (a) administering any of the compositions disclosed herein to the subject;
- (b) directing light at the tumor cell so as to expose the composition to light and cleave

20
25
30

20054535-1126

the cleavable linker thereby releasing the photosensitizer, wherein absorption of light by the photosensitizer excites the photosensitizer and generates singlet oxygen that is formed by energy transfer from the excited photosensitizer;

- (c) allowing additional composition to diffuse to the tumor cell; and
- (d) repeating steps (b) and (c) until sufficient singlet oxygen is generated to kill the tumor cell.

In one embodiment of any of the methods disclosed herein, the photosensitizer is concentrated at the tumor cell.

In one embodiment of any of the methods disclosed herein, a plurality of converging light beams is used to focus light on the tumor cell.

The compositions of matter and compounds disclosed herein may also be useful in applications other than the photodynamic therapy of cancer.

25 This invention will be better understood from the
Experimental Details which follow. However, one
skilled in the art will readily appreciate that the
specific methods and results discussed are merely
illustrative of the invention as described more fully
30 in the claims which follow thereafter.

Experimental Details

The following Experimental Details are set forth to aid in an understanding of the invention, and are not intended, and should not be construed, to limit in any way the invention set forth in the claims which follow thereafter.

Background

As previously disclosed (U.S. Serial No. 09/352,529, filed July 13, 1999, now allowed; Ruebner et al. 1999) and illustrated in **Figure 1**, β -cyclodextrin dimer **1** and zinc phthalocyanine **2** formed a complex that is soluble in water. On irradiation of the complex in the presence of oxygen, the double bond of **1** is cleaved by singlet oxygen to form two moles of thioformate **4**. Singlet oxygen adds to double bonds to form dioxetanes, which spontaneously fragment to generate carbonyl groups (Adam and Cliento 1983, Bartlett 1976, Clennan and Nagraba 1988, Foote 1971, Frimer 1979, Kearns 1971, Schaap and Zaklika 1979). The addition is particularly favorable for double bonds with electron donor substituents, as in **1**. Since dimeric binding is stronger than the monomeric binding that occurs once the linker is cleaved, **4** then dissociates from **2**. Furthermore, the chain of **4** almost certainly lowers the affinity of the cyclodextrin for the phthalocyanine by tucking back into the cyclodextrin cavity. An analog of **4** with a methyl group in place of the formyl group had an order of magnitude lower affinity for 4-*tert*-butylbenzoic acid than does simple β -cyclodextrin.

Phthalocyanine **2** is in fact a mixture of eight compounds, in which the substituents may be attached 3333 to the four phthalocyanine benzene rings (this is the structure shown, with the first number 5 assigned as position 3 for the position of the sulfonate substituent on **2**), 3233, 3323, 3332, 3223, 3322, 3232, or 3222 (Marcuccio et al. 1985). As described below, the present application discloses 10 phthalocyanines with single well-defined structures. Phthalocyanines were chosen over porphyrins, because phthalocyanines are more stable to oxidation.

Synthesis of zinc phthalocyanines

An overview of the synthesis procedures is described 15 in this section. Details are described in the "Detailed Synthesis" section at the end of "Experimental Details".

Using a standard phthalocyanine synthetic procedure 20 (Leznoff 1989), then incorporation of zinc, compounds **5** and **6** were prepared. Compound **5** is an analog of **2** with four equivalent substituents (it is a mixture of only four isomers since the 3333 isomer is the same as the 2222 isomer). Compound **6** is also an analog of 25 **2** with a carboxyl instead of a sulfonate solubilizing group (again a mixture of eight isomers) (Kliesch et al. 1995).

30

35

R = *tert*-butyl 5
R = CO₂H 6

5

10 To achieve the symmetry that would give a single isomeric zinc phthalocyanine, phthalonitrile 7 was synthesized. This was made by brominating the catechol acetonide (Mitchell and Lai, 1979), then displacing the bromines with CuCN (the Rosenmund-von
15 Braun reaction) (reviewed in Ellis and Romney-Alexander 1987). Conversion to the phthalocyanine with Li in pentanol, then treatment with zinc acetate, afforded compound 8. The elongated hydrophobically substituted 9 was synthesized from the corresponding phthalonitrile, synthesized by
20 converting 3,4-dibromocatechol (Kohn 1951) to its

ketal using 4,4-dimethylcyclohexanone (Meyer et al 1985), then displacing with CuCN. This was converted to the fully symmetrical zinc phthalocyanine **9** in a one-pot procedure with Li and zinc acetate (for an example of such transformation, see Lawrence and Whitten 1996).

7

8

9

5

10

Adamantane derivatives bind well to β -cyclodextrin in water (Rekharsky and Inoue 1998), so zinc phthalocyanine **10** was also prepared from the ketal of catechol and 2-adamantanone (Takakis et al. 1992) by the bromination (Metz et al. 1984) and cyanide displacement sequence described herein, with the one-pot Li and Zn²⁺ method of cyclization. Two additional compounds were also prepared with one carboxyl solubilizing group, **11** and **12**, by using a mixture of phthalonitriles and then separating the products. In the same manner the three monosulfonated analogs **13**-**15** were prepared. These compounds are all single isomers.

Finally, the commercially available zinc phthalocyanine **16** (Aldrich Chemical Company, Milwaukee), which is smaller than the other phthalocyanines, was also used in the studies described below.

25

30

5

Synthesis of β -cyclodextrin dimers

Dimer **1** was synthesized as described previously (U.S. Serial No. 09/352,529, filed July 13, 1999, now allowed; Ruebner et al. 1999). Dimers **17** and **18** were prepared as illustrated in **Figure 2** using linker **19** attached to the primary and secondary faces of β -cyclodextrin respectively. To make **19**, disulfide **20** was reduced with sodium in ammonia, and then reacted with *cis*-1,2-dichloroethylene to afford diacid **19**. This was then coupled with 6-deoxy-6-amino- β -cyclodextrin, using dicyclohexylcarbodiimide (DCC) and hydroxybenzotriazole (HOBr), to afford **17**, and coupled with 3-deoxy-3-amino- β -cyclodextrin under the same conditions to afford **18**.

The 3-deoxy-3-amino- β -cyclodextrin was prepared as previously described (Yuan et al. 1998) by preparing the 3-naphthalenesulfonate of β -cyclodextrin, closing it to the 2,3-alloepoxide with base and opening this with sodium azide. Reduction with triphenylphosphine then afforded 3-deoxy-3-amino- β -cyclodextrin, which was coupled with **19** to afford **18**. The ^1H NMR spectrum of the azide showed that the attachment was on carbon 3 of the cyclodextrin, thus affording the product with overall retention of configuration. A small amount of the 2-azido compound was also formed, which was easily removed by chromatography.

Finally, a β -cyclodextrin dimer with a shorter linker was synthesized, compound **21**, as shown in **Figure 3**. 2-Mercaptoethanol was coupled with *cis*-1,2-dichloroethylene, the hydroxyls then converted to bromides with triphenylphosphine dibromide, and the bromines replaced with potassium thioacetate. Then the acetate groups were removed with NaOMe, and the

10054535-111204

dithiolate was directly coupled with 6-deoxy-6-iodo- β -cyclodextrin to afford **21**.

Binding studies

Estimates of likely binding pairs were obtained by MacroModel simulations of the dimers and the phthalocyanines. The distances between the carbons of the two β -cyclodextrins to which the linkers are attached are: **1**, 22 Å; **17**, 20 Å; **18**, 18 Å; **21**, 16 Å.

For the phthalocyanines, distances were measured from the methylated carbons across the ring for **5**, 25 Å; **8**, 17 Å and **9**, 23 Å. For the adamantane derivative **10**, the distance across the entire system, including all the adamantane atoms, was 23 Å. The MacroModel simulations also suggested that the alkene in the linker would be positioned directly above the metal center when the phthalocyanine is bound into the dimer. This would be expected to facilitate desired site-specific oxidation.

Binding constants for a few of the possible pairs were determined by a fluorescence competition method previously used for cyclodextrin dimers, competing the substrate of interest with 2-(*p*-tert-butylanilino)naphthalene-6-sulfonic acid **22**, (termed BNS, Breslow et al. 1989).

BNS is fluorescent when bound into a hydrophobic cavity such as that of a cyclodextrin, but only

weakly fluorescent in water solution. Only the sulfonated phthalocyanines were soluble enough for this method.

5 The binding constant of BNS **22** to each dimer was determined as previously (Breslow et al. 1989, Ruebner et al. 1999) by titrating BNS into a dimer solution in a fluorescence cell, then exciting this solution at 330 nm and measuring the fluorescent emission at 438 nm. The binding constant of phthalocyanine to dimer was measured by titration of BNS into a 1:1 mixture of dimer and phthalocyanine. The double reciprocal plot of change in fluorescent intensity and BNS concentration gives straight lines (for an example of such a plot, see **Figure 4**). The straight lines found for each run show that the dimer and BNS were forming 1:1 complexes (Ruebner et al. 1996). The binding constant of BNS to each dimer is given by $K = \text{intercept/slope}$, and the binding constant of the phthalocyanine can be calculated as $K_I = (K/K' - 1)/[I]$, where K' is the apparent binding constant of BNS to the dimer in presence of phthalocyanine, and $[I]$ is the concentration of phthalocyanine (Ruebner et al. 1996).

25 The binding constants of BNS to the dimers used were as follows: **1**, 1.93×10^5 (reported 1.9×10^5 , Ruebner et al. 1999); **17**, 1.07×10^6 ; **18**, 4.18×10^5 ; **21**, 7.01×10^5 . For the dimers with the phthalocyanines: **1/2**, 2.00×10^6 (reported 2×10^6 , Ruebner et al. 1999); **17/15**, 6.05×10^5 ; **18/14**, 1.94×10^6 ; **18/15**, 1.76×10^6 ; **21/13**, 1.30×10^6 . All units in M^{-1} at ca. 25 °C.

35 As previously reported (Ruebner et al. 1999), there is some evidence that the linker chain in **1** is partly

tucked into one cyclodextrin cavity in water solution, so these binding constants are somewhat diminished as a result. In the ^1H NMR spectrum of 1, the two vinyl protons are equivalent in DMSO solution, but non-equivalent in water. They become equivalent in water when hyodeoxycholic acid is added; this is known to bind strongly into β -cyclodextrin (Yang and Breslow 1997), and would thus be expected to displace the chain. Partial binding of the linker chain of 1 into one of the cyclodextrins in water leads to the non-equivalence, which apparently equilibrates slowly on the NMR time scale. This phenomenon was seen in the ^1H NMR spectra of all four of the cyclodextrin dimers described herein.

Photochemical cleavage

All of the photocleavage reactions were carried out using the same apparatus, as described previously (U.S. Serial No. 09/352,529, filed July 13, 1999, now allowed; Ruebner et al. 1999). A halogen lamp (50 W) was set up with a 540 nm cut-off filter and a focusing lens. The NMR tube in which the reactions were run was placed in the most strongly focused area, and oxygen was bubbled continuously through the solution while the photocleavage reactions were run. To monitor the reactions, ^1H NMR's were taken at regular intervals, whereby the disappearance of the alkene peaks and the appearance of the single formyl peak could be observed.

The dimers were at a concentration of 2.5 mM while the photosensitizers were at 0.14 mM in 5% DMSO-d₆ in D₂O. Typical ^1H NMR traces following the progress of a photocleavage reaction are shown in **Figure 5**. Here

dimer **21** was cleaved using phthalocyanine **11**. It can clearly be seen that the amount of alkene (doublet at ~6.2 ppm) decreases and the formyl peak (singlet at ~8.4 ppm) appears as the reaction progresses, and
5 that no other peaks are seen in this area.

The plots of percent cleavage vs. time were all linear, indicating that the phthalocyanines remain active during the reactions and the light intensity
10 is essentially constant. Furthermore, the NMR tubes were repeatedly removed from the apparatus, wrapped in aluminum foil, and taken to the NMR machine, then returned to the apparatus. The consistency of data indicates that the light flux was consistent
15 throughout the runs. Also, repeats of the **21/13** experiment more than three weeks apart gave values of 5.3 and 5.4 min for 50% cleavage, showing that the photolysis apparatus is stable.

20 Comparison was made of the relative times needed for 50% cleavage of the dimers by various bound phthalocyanines under the conditions above, at ambient temperature (25 °C). The data are listed in Table 1.

Table 1. Times for 50% cleavage of the dimers (min)

	Phthalocyanine									
	2	5	6	8	11	12	13	14	15	16
Dimer 1	7					60			6	
Dimer 17		80	40							
Dimer 18			55					6		
Dimer 21			85	180	55		5.3; 5.4			22% in 180 min

5 The dimers were at a concentration of 2.5 mM while the photosensitizers were
at 0.14 mM in 5% DMSO-d₆ in D₂O.

10 As the data indicate, there is considerable variation
in the effectiveness of the photolytic cleavage
process. Dimer 1 is rapidly cleaved by the
previously made sulfonate sensitizer 2, a mixture of
eight isomers, and also by the well-defined adamantyl
sulfonate sensitizer 15, but not as rapidly by the
corresponding carboxylate 12. Dimer 17 was not
15 rapidly cleaved by either 6, the carboxylate version
of 2, or by 5, the version of 2 with no solubilizing
group.

20 The importance of a solubilizing group is clear.
Sensitizers 5, 8, and 16 have no sulfonate or
carboxylate group, and all their cleavage reactions
are slow. Sensitizers 6, 11, and 12 have only
carboxylate solubilizing groups, and are not as
effective as the sulfonates in 2, 13, 14, and 15. As
25 mentioned above, the high reproducibility of the data
for the 21/13 cleavage reaction, data collected more

than three weeks apart, indicates that these data are reliable. Since the compounds were apparently in solution during these runs, it is likely that the better solubilizing groups produce a faster off rate once the linker is cleaved, permitting the turnovers that are involved in these processes with their excess of dimer over photosensitizer.

Good agreement of the experimental data with the MacroModel information can also be seen here. According to the MacroModel calculations, phthalocyanine **6** would be expected to bind most effectively with dimer **17** and least effectively with dimer **21**. This agrees very well with the experimental data, where the times for 50% cleavage of dimers **17**, **18** and **21** by phthalocyanine **6** are 40, 55 and 85 minutes respectively.

Control reactions were performed. When the oxygen was replaced by argon there was no cleavage, nor any in the absence of the sensitizer under the normal conditions. When the sensitizer was replaced by methylene blue, dimer **1** was cleaved to product **4** with its ¹H NMR peak at 8.4 ppm for the formyl group, but additional peaks were also seen at 10.2 and 7.8 ppm. Apparently singlet oxygen generated this way, rather than in complex **3**, is able to attack the cyclodextrin ring also. As pointed out previously (U.S. Serial No. 09/352,529, filed July 13, 1999, now allowed; Ruebner et al. 1999), this indicates that the singlet oxygen generated in the complex **3** is selectively taken up by the nearby olefin linkage of **1**. After dimer **21** had been completely cleaved by sensitizer **13**, in ca. 10 minutes, irradiation was continued for an additional 20 minutes but produced no further

change in the ^1H NMR of the solution. In accordance with this result, when the cyclodextrin dimer was replaced by β -cyclodextrin and the reaction was run under normal conditions, no oxidation products were observed.

The cleavage of dimers diminishes their affinity for the sensitizers, and not just because the chelate effect is gone. Examination was made of the binding of compound **23**, which mimics the cleavage product **4**,

except with a methyl group replacing the somewhat hydrolytically labile formyl group.

With 4-*tert*-butylbenzoic acid, β -cyclodextrin has a binding constant of $1.7 \times 10^4 \text{ M}^{-1}$, while **23** had a binding constant of only $1.8 \times 10^3 \text{ M}^{-1}$, an order of magnitude less. This difference can be ascribed to the competitive binding of the chain in **23** into the cyclodextrin cavity. It is proposed that the same interaction occurs with cleavage product **4** and related cleavage products from the other dimers.

Concentration of the sensitizer complex into a light beam was achieved using an experiment described previously (Ruenber et al. 1999) in which a tube was shielded with aluminum foil so that only a small section could be irradiated through a window in the foil. Phthalocyanine **13** and dimer **21** were made up in a 1:1 solution in D_2O . A small amount of **13** was insoluble, and removed. The solution was then

irradiated through the window, and after 40 hours sensitizer **13** had precipitated solely in the window, and the ¹H NMR of the solution indicated that all the dimer **21** had been cleaved; all the vinyl protons were 5 gone, replaced by formyl protons of the monomer. Thus, as expected, the dissolved components do diffuse into the light beam, where they undergo the cleavage reaction.

10 Characterization of the dimers and the phthalocyanines.

Dimer **1**: ¹H NMR (300 MHz, DMSO-d₆) δ 8.09 (t, 2H), 6.22 (s, 2H), 5.90-5.60 (m, 28H), 4.95-4.75 (m, 14H), 4.55-4.40 (m, 12H), 3.90-3.45 (m, 56H), 2.77 (t, 4H); 15 MS (FAB) : 2560 (M+2⁺, 10).

Dimer **17**: ¹H NMR (300 MHz, DMSO-d₆) δ 7.68 (bs, 2H), 6.16 (s, 2H), 5.80-5.67 (m, 28H), 4.81 (m, 14H), 4.47 (m, 14H), 3.62-3.32 (m, 84H), 2.72-2.66 (m, 4H), 20 2.21-2.10 (m, 4H), 1.84-1.66 (m, 4H); MS (MALDI) m/z (%) 2517 (M+1+Na⁺, 5).

Dimer **18**: ¹H NMR (300 MHz, DMSO-d₆) δ 7.90 (bs, 2H), 6.20 (s, 2H), 5.99 (d, J = 6.1, 2H), 5.79-5.61 (m, 25H), 4.82-4.75 (m, 14H), 4.50-4.45 (m, 14H), 3.62-3.32 (m, 84H), 2.73 (m, 4H), 2.26-2.23 (m, 4H), 1.82-1.79 (m, 4H); MS (MALDI) m/z (%) 2516 (M+Na⁺, 15).

Dimer **21**: TLC R_f 0.13 7:7:5 i-PrOH:Ethyl 30 Acetate:Water; ¹H NMR (300 MHz, DMSO-d₆) δ 6.24 (s, 2H), 5.78-5.67 (m, 28H), 4.84 (s, 14H), 4.49-4.43 (m, 12H), 3.87-3.30 (m, 80H), 3.05-2.64 (m, 12H).

Zinc phthalocyanine **2**: TLC R_f 0.24 20% MeOH (10% 35 NH₃):CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 9.45-9.30 (m,

4H), 8.92-8.73 (m, 4H), 7.89-7.81 (m, 3H), 7.70-7.61 (m, 8H), 7.45-7.35 (m, 8H), 1.47-1.41 (m, 27H); MS (FAB) m/z (%) 1193 ($M+H^+$, 5); λ_{max} (nm) 678.

5 Zinc phthalocyanine **5**: TLC R_f 0.67 10% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 8.72-7.78 (m, 8H), 7.60-7.51 (m, 4H), 7.38-7.07 (m, 16H), 1.55-1.42 (m, 36H); MS (FAB) m/z (%) 1170 ($M+H^+$, 2); λ_{max} (nm) 680.

10 Zinc phthalocyanine **6**: ¹H NMR (300 MHz, CDCl₃) δ 9.22-8.60 (m, 8H), 8.25-7.35 (m, 20H), 1.46-1.35 (m, 27H); MS (FAB) m/z (%) 1157 ($M+H^+$, 5).

15 Zinc phthalocyanine **8**: ¹H NMR (300 MHz, CDCl₃) δ 7.15-7.05 (m, 8H), 1.81-1.73 (m, 24H); MS (APCI) m/z (%) 864 (M^+ , 4); λ_{max} (nm) 667.

20 Zinc phthalocyanine **9**: ¹H NMR (300 MHz, CDCl₃) δ 8.15 (bs, 8H), 2.35 (bs, 16H), 1.88 (bs, 16H), 1.24 (s, 26H); MS (FAB) m/z (%) 1137 ($M+H^+$, 6), 1136 (M^+ , 5); λ_{max} (nm) 669.

25 Zinc phthalocyanine **10**: TLC R_f 0.80 10% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 8.60 (bs, 8H), 1.61-2.67 (m, 56H); MS (FAB) m/z (%) 1235 ($M+H^+$, 5); λ_{max} (nm) 668.

30 Zinc phthalocyanine **11**: TLC R_f 0.24 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 8.71 (m, 4H), 8.13-8.01 (m, 5H), 7.71-7.23 (m, 4H), 5.76 (s, 1H), 1.96 (s, 18H); MS (FAB) m/z (%) 930 ($M+H^+$, 2) 929 (M^+ , 2); λ_{max} (nm) 666.

Zinc phthalocyanine **12**: TLC R_f 0.25 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 9.38-9.33 (m, 1H), 8.94-8.90 (m, 1H), 8.58-8.42 (m, 4H), 8.16 (d, J = 8.4, 2H), 8.04-7.92 (m, 1H), 7.58 (s, 1H), 7.49 (d, J = 8.7, 2H), 7.27 (s, 1H), 2.33-1.73 (m, 42H); MS (FAB) m/z (%) 1205 (M⁺, 0.5); λ_{max} (nm) 667.

Zinc phthalocyanine **13**: TLC R_f 0.20 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 9.42-9.36 (m, 1H), 8.72-8.50 (m, 4H), 8.41-8.21 (m, 1H), 7.78 (d, J = 8.7, 2H), 7.64-7.53 (m, 1H), 7.32 (d, J = 9.0, 2H), 7.25 (s, 1H), 7.11 (s, 1H), 1.98-1.95 (m, 6H), 1.71-1.65 (m, 12H); MS (FAB) m/z (%) 966 (M+H⁺, 1.5), 965 (M⁺, 1.5); λ_{max} (nm) 665.

Zinc phthalocyanine **14**: TLC R_f 0.21 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 9.38-9.28 (m, 1H), 8.89-8.82 (m, 1H), 8.67-8.49 (m, 4H), 7.82 (d, J = 7.5, 2H), 7.37 (d, J = 8.1, 2H), 7.25 (d, J = 7.2, 1H), 7.03 (s, 1H), 6.87 (d, J = 7.5, 1H), 2.27 (bs, 4H), 1.96 (bs, 4H), 1.74 (bs, 4H), 1.49 (bs, 4H), 1.22-0.74 (m, 26H); MS (FAB) m/z (%) 1171 (M⁺, 30); λ_{max} (nm) 666.

Zinc phthalocyanine **15**: TLC R_f 0.25 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 9.378 (bs, 2H), 8.93-8.85 (m, 1H), 8.70-8.52 (m, 3H), 7.80 (d, J = 7.5, 2H), 7.54 (s, 1H), 7.50 (d, J = 9.9, 1H), 7.37 (d, J = 7.5, 2H), 7.05 (s, 1H), 2.26-1.72 (m, 42H); MS (FAB) m/z (%) 1243 (M⁺, 10); λ_{max} (nm) 667.

Details of Binding studies

Monomer 23 with p-tert-butylbenzoic acid

β -cyclodextrin (CD) monomer 23 (6.4 mg, 0.005 mmol) was dissolved in 0.20 M pH 9.0 $\text{Na}_2\text{CO}_3/\text{NaHCO}_3$ buffer (5.00 mL) to make a 1.0 mM solution. p-tert-Butylbenzoic acid (11.0 mg, 0.062 mmol) was dissolved in 6.16 mL of the same buffer to make a 10.0 mM solution. Both solutions were degassed under reduced pressure with a sonicator for 5 minutes immediately prior to the binding study. The β -CD monomer 23 solution (2.50 mL) was put into the sample cell compartment of an Omega microcalorimeter, whereas the p-tert-butylbenzoic acid was loaded in a 250 μL syringe and then assembled onto the calorimeter. The system was equilibrated until RMS error was less than 5×10^{-3} with the syringe spinning at 400 rpm. The p-tert-butylbenzoic acid solution was then injected into the cell in 25 injections (10 μL , 7 seconds per injection). The time interval between injections was set to be 4 minutes. Injection data were automatically collected by the computer, and the data was analyzed by ORIGIN software with the single-binding-site model. Two trials were performed.

	Trial 1	Trial 2
Binding constant:	$1.8 \pm 0.2 \times 10^3 \text{ M}^{-1}$	$1.8 \pm 0.2 \times 10^3 \text{ M}^{-1}$
Binding ratio:	0.91 ± 0.07	0.99 ± 0.07

Binding of β -cyclodextrin to p-tert-butylbenzoic acid

β -Cyclodextrin (4.0 mg, 0.0035 mmol) was dissolved in 0.20 M pH 9.0 $\text{Na}_2\text{CO}_3/\text{NaHCO}_3$ buffer (3.53 mL) to make a 1.0 mM solution. p-tert-butylbenzoic acid (10.0 mg, 0.056 mmol) was dissolved in 5.60 mL of the same buffer to make a 10.0 mM solution. Both solutions

were degassed under reduced pressure with a sonicator for 5 minutes immediately prior to the binding study. The β -Cyclodextrin solution (2.50 mL) was put into the sample cell compartment of the microcalorimeter, 5 whereas the p-tert-butyl-benzoic acid was loaded in a 250 μ L syringe and then assembled onto the calorimeter. The whole setup was equilibrated until RMS error was less than 5×10^{-3} with the syringe spinning at 400 rpm. The p-tert-butyl-benzoic acid 10 solution was then injected into the cell in 25 injections (10 μ L, 7 seconds per injection). The time interval between injections was set to be 4 minutes. Injection data were automatically collected by the computer, and the data was analyzed by ORIGIN 15 software with the single-binding-site model. Binding constant: $1.7 \pm 0.2 \times 10^4 \text{ M}^{-1}$.

Representative binding study of a phthalocyanine to a cyclodextrin dimer.

20 Three solutions were made:

- i) β -cyclodextrin dimer **21** (0.20 mg , $8.18 \times 10^{-8} \text{ mol}$) was dissolved in degassed water (250 mL).
- ii) BNS **22** (0.14 mg , $3.94 \times 10^{-7} \text{ mol}$) was dissolved in degassed water (4.00 mL).
- iii) β -cyclodextrin dimer **21** (0.40 mg , $1.64 \times 10^{-7} \text{ mol}$) and phthalocyanine **13** ($1.64 \times 10^{-7} \text{ mol}$) were dissolved in a mixture of methanol (1 mL) and water (0.1 mL). This mixture was stirred in the dark for 1 h. The solution was then concentrated under vacuum and then placed under high-vacuum for 18 h. The resulting material 25 was dissolved in degassed water (500 mL).

The binding constant for BNS to cyclodextrin dimer **21** was determined by the fluorescence emission method. Cyclodextrin dimer **21** solution (3.00 mL) was added to a fluorescence cell and was excited at 330 nm and the emission at 418 nm was measured. Five additions of BNS solution (10 μ L) were made, with a measurement being taken after each one. The area under the peak between 400 and 500 nm was measured for each addition. The experiment was run in duplicate.

10

The binding constant for phthalocyanine **13** to dimer **21** was determined by the fluorescence emission method. 1:1 Dimer: phthalocyanine solution (3.00 mL) was added to a fluorescence cell. This solution was excited at 330 nm and the emission at 418 nm was measured. Five additions of BNS solution (10 μ L) were made, with a measurement being taken after each one. The experiment was run in duplicate. The data are plotted in **Figure 4**.

20

Representative photocleavage procedure

To a solution of β -cyclodextrin dimer **17** (5.9 mg, 2.35×10^{-6} mol) and potassium carbonate (2 mg) in D_2O (1.00 mL) was added a 3 mM solution of phthalocyanine **6** (0.17 mg, 1.50×10^{-7} mol) in $DMSO-d_6$ (50 μ L). This solution was transferred to an NMR tube and was irradiated with a halogen lamp (50 W) with a cut-off filter to exclude wavelengths below 540 nm. During irradiation, oxygen was bubbled through the solution. The reaction was monitored by 1H NMR, by observance of the disappearance of the alkene peaks and the appearance of the formyl peak. Whenever the 1H NMR was taken, the NMR tube was completely shielded from light using an aluminum foil cover during

RECEIVED
JULY 26 2001

transportation to the NMR room. The results of a typical run are shown in **Figure 5**.

Representative precipitation experiment procedure

5 β -Cyclodextrin dimer **21** (2.4 mg, 1.00×10^{-6} mol), potassium carbonate (0.5 mg) and phthalocyanine **13** (0.97 mg, 1.00×10^{-6} mol) were dissolved in a mixture of methanol (1 mL) and D₂O (0.1 mL). The mixture was stirred in the dark for 1 h. The solvents were
10 removed under vacuum and the resulting solid was placed under high vacuum for 18 h. The residue was treated with D₂O (1.00 mL) and stirred in the dark for 2 h, during which time everything appeared to have dissolved. The solution was then filtered through a
15 cotton wool plug and transferred to an NMR tube. The tube was covered in aluminum foil except for an area approximately 0.5 cm wide, which was left uncovered, through which the solution could be seen. Oxygen was bubbled through the solution for 5 min while the
20 solution was kept in the dark. The solution was then placed on its side and was irradiated with a halogen lamp (50 W) with a cut-off filter to exclude wavelengths below 540 nm. The solution was re-saturated with oxygen, in the same manner as above,
25 after 18 h.

Detailed Synthesis

30 In the Detailed Synthesis section only, the numbering of structures differs from that in the remainder of the application since many more numbered structures are included here. The corresponding numbers are as follows: remainder of application: (Detailed
35 Synthesis) - 1:(2), 2:(1), 5:(14), 6:(17), 7:(22),

8: (24), 9: (29), 10: (34), 11: (35), 12: (36), 13: (39),
14: (40), 15: (41), 16: (42), 17: (43), 18: (44), 19: (45),
20: (46), 21: (67), 22: (74), 23: (71).

5 Solvents, drying reagents and inorganic salts were obtained from Aldrich Chemical Company or Fisher Scientific Company and used without further purification unless otherwise specified. β -cyclodextrin was obtained from American Maize Company. THF and CH_2Cl_2 were dried by distillation under argon from Na. Benzophenone and calcium hydride respectively. Anhydrous DMF was obtained from Aldrich in SureSeal™ bottles. Argon was obtained from Matheson.

15 ^1H NMR spectra were recorded on Bruker DMX 300, 400 or 500 MHz or Varian VXR 400 MHz instruments with the residue solvent peaks as the reference signal. TMS (tetramethyl silane) was used as internal reference for the measurements in CDCl_3 . ^{13}C spectra were recorded on Varian VXR 300 MHz or Bruker DMX 300 MHz instruments. All chemical shifts were reported in parts per million (ppm) downfield of zero on the delta (δ) scale.

25 Mass spectra were recorded on a Nermag R-10-10 spectrometer for CI and EI spectra, or a Jeol JMS-DX-303 HF instrument for FAB spectra. Infrared spectra were recorded on a Perkin-Elmer 1600 Fourier Transform spectrometer. Ultraviolet/Visible (UV-vis) spectra were recorded on a Varian CARY 1E spectrometer. Microcalorimetric titrations were performed on an OMEGA calorimeter. Melting points were determined using MelTemp capillary melting

point apparatus and were uncorrected. Cyclodextrin products were dried by a VirTis Sentry Lyophiliser.

Analytical thin layer chromatography (TLC) was performed on 0.25 mm precoated silica gel plates with 254 nm fluorescence indicator from EM science. Compounds were visualised under UV light or by TLC staining solutions. All cyclodextrin compounds were stained with anisaldehyde stain (a solution of p-anisaldehyde (9.2 mL), glacial acetic acid (3.7 mL) and concentrated H₂SO₄ (12.5 mL) in 190 proof ethanol (340 mL), and then heated until the blue-gray spots appear.

Silica gel column chromatography was performed with 230-400 mesh silica from EM science. All reverse phase column chromatography was performed using homemade C-18 reverse phase silica gel. The compounds containing β -cyclodextrins were dissolved in water and loaded onto the column, then eluted with the linear gradient of solvent systems described.

All reactions were performed under an atmosphere of argon unless otherwise specified.

25

Cystamine (4.00 g, 17.7 mmol) was dissolved in a mixed solvent system of dioxane/water (1:1) (30 mL), followed by the addition of sodium hydroxide (1.40 g, 35.4 mmol). Boc₂O (8.20 g, 38.8 mmol) was added after the solution was cooled to 0 °C. The solution was warmed to 25 °C and stirred for 30 min. After a few minutes a precipitate appeared. The solvent was

removed under reduced pressure and the residue was dissolved in ethyl acetate. The insoluble parts (salts) were removed by filtration, and the filtrate was washed with 1 M HCl (10 mL), water (10 mL), and 1 M NaOH (10 mL), then dried (MgSO_4). Concentration of the solution gave [2-(2-tert-butyloxycarbonylaminoethylsulfanyl)-ethyl]carbamic acid tert-butyl ester 7 (6.40 g, 86%) as a white solid. Mp 105 °C; ^1H NMR (300 MHz, DMSO-d_6) δ 6.95 (t, $J = 5.4$, 2H), 3.16-3.23 (m, 4H), 2.51 (t, $J = 7.0$, 4H), 1.37 (s, 18H); ^{13}C NMR δ 155.5, 77.7, 37.6, 28.2; MS (APCI) m/z (%) 353 ($\text{M}+\text{H}^+$, 20).

Diamide 7 (2.00 g, 5.60 mmol) was placed in a small 3-necked-flask which was evacuated and backfilled with argon 3 times. Ammonia (30 mL) was condensed into the flask using a cold trap. Pieces of sodium metal were added to the flask until the blue colour remained. The solution was stirred for 30 minutes, and more sodium was added if the blue colour disappeared. A minimum amount of solid ammonium chloride was added to quench the reaction until the solution became colourless. *cis*-1,2-Dichloroethylene (0.41 mL, 5.50 mmol) was added with a syringe. The reaction was stirred for 4 hours and then the ammonia was evaporated at 25 °C. The remaining solid was dissolved in a mixture of water (10 mL) and ethyl acetate (10 mL). The ethyl acetate phase was separated, washed with water (10 mL), dried (MgSO_4) and concentrated to afford {2-[2-(2-tert-butyloxycarbonylamino-ethylsulfanyl)-vinylsulfanyl]-ethyl}carbamic acid tert-butyl ester 8 (2.2g, yield=

96%). The product was pure enough for further reactions. Mp 124 °C; ^1H NMR (300 MHz, DMSO-d₆) δ 6.95 (t, 2H), 6.20 (s, 2H), 3.06-3.12 (m, 4H), 2.74 (t, J = 7.5, 4H), 1.36 (s, 9H); ^{13}C NMR δ 155.4, 123.0, 77.8, 32.6, 28.2; MS (APCI) m/z (%) 379 (M+H⁺, 50).

To a solution of the Boc protected linker **8** (0.50 g, 1.30 mmol) in dioxane (8 mL) was added a solution of HCl in dioxane (10 mL) and the solution was stirred at 25 °C for 1 h. After filtration, the crude product was dissolved in methanol, and precipitated with CH₂Cl₂. The product was filtered and dried to give 2-[2-(2-aminoethylsulfanyl)-vinylsulfanyl]-ethylamine **5** as the di-hydrochloric acid salt (0.28 g, 86%) as a white solid. Mp 155 °C; ^1H NMR (300 MHz, MeOH-d₄) δ 6.31 (s, 2H), 3.15 (t, J = 7.0, 4H), 3.01 (t, J = 7.5, 4H); ^{13}C NMR δ 124.9, 40.6, 31.7; MS (APCI) m/z (%) 179 (M+H⁺, 65).

To a solution of diamine **5** (0.20 g, 0.80 mmol) in 0.1 M sodium hydroxide aqueous solution (40 mL) was added a solution of iodoacetic anhydride (0.78 g, 2.20 mmol) in 1,2-dichloroethane (10 mL). The mixture was vortexed for 2 minutes. The product was formed as a white precipitate and was filtered out by a frit funnel. The solid was washed with water (10 mL) and dried to produce 2-iodo-N-(2-{2-[2-(2-iodoacetylamino)ethylsulfanyl]vinylsulfanyl}-ethyl)-acetamide **9** (0.34 g, 85%) as a white solid. Mp 129 °C

¹H NMR (300 MHz, DMSO-d₆) δ 8.45 (bs, 2H), 6.25 (s, 2H), 3.64 (s, 4H), 3.25 (m, 4H), 2.88 (t, J = 6.3, 4H).

5

A solution of diamide **9** (0.22 g, 0.43 mmol) and potassium thioacetate (0.11 g, 0.95 mmol) in methanol (80 mL) was evacuated and purged with argon for three times, and then stirred at 50 °C for 4 hours. The methanol was removed under vacuum and the residue was extracted with ethyl acetate (20 mL) and water (20 mL). The organic phase was washed with water (10 mL), dried (MgSO₄), and concentrated to give thioacetic acid *S*-[(2-{2-[2-(2-acetylsulfanyl-acetyl)amino}-ethylsulfanyl)-vinylsulfanyl]-ethylcarbamoyl)methyl ester **4** (0.15 gm, 84%) as a white solid. Mp 129 °C; ¹H NMR (300 MHz, MeOH-d₄) δ 6.18 (s, 2H), 3.61 (s, 4H), 3.37 (t, J = 6.8, 4H), 2.80 (t, J = 7.0, 4H), 2.46 (s, 6H); ¹³C NMR δ 195.5, 168.3, 124.7, 39.6, 33.6, 33.0, 30.3; MS (APCI) m/z (%) 411 (M+H⁺, 100).

25

Dithioacetate **4** (0.20 g, 0.58 mmol) and potassium hydroxide (0.10 g, 1.79 mmol) were dissolved in methanol (100 mL). The solution was evacuated and purged with argon three times. The solution was 5 stirred at 50 °C for 10 minutes and then the methanol was removed under vacuum. The residue was dissolved in DMF (40 mL) and 6-monoiodo- β -cyclodextrin (1.00 g, 8.04 mmol) was added. The reaction was stirred at 50 °C for 18 h, then poured into acetone (1 L). The 10 resultant precipitate was filtered and purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 20-80%). This gave pure dimer **2** (0.23 g, 22%) as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 8.09 (t, 2H), 6.22 (s, 2H), 5.90-5.60 (m, 28H), 4.95-4.75 (m, 14H), 4.55-4.40 (m, 12H), 3.90-3.45 (m, 56H), 15 2.77 (t, 4H); MS (FAB): 2560 (M+2⁺, 10).

20

To a solution of 4-tert-butylphenol **10** (2.26 g, 15.0 mmol) in dry DMSO (15 mL) was added 4-nitrophthalonitrile **11** (1.30 g, 7.50 mmol) and 25 potassium carbonate (2.07 g, 15.0 mmol). The reaction was stirred for 20 h at 25 °C. The crude product was precipitated by pouring the solution into 150 mL of cold dilute HCl (5 mL of 37% HCl in 150 mL of water), filtered and washed with water until the 30 washings were neutral pH. The crude product was

dissolved in CH_2Cl_2 (100 mL) and washed with 5% NaOH solution (5 x 75 mL) and water (75 mL). The resulting solution was dried (MgSO_4), filtered and concentrated to give 4-(4-tert-butyl-phenoxy)-

5 phthalonitrile **12** (1.52 g, 73%) as a white solid.

TLC R_f 0.22 1:4 Ethyl acetate:hexanes; Mp 122°C (lit.^x 120°C); ¹H NMR (300 MHz, CDCl_3) δ 7.72 (dd, J = 7.3, 1.9, 2H), 7.47 (dd, J = 6.7, 2.2, 2H), 7.27 (s, 1H), 7.24 (d, J = 2.6, 1H), 7.00 (dd, J = 6.7, 1.1, 2H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl_3) δ 162.1, 151.1, 149.4, 135.4, 127.5, 121.4, 121.3, 120.1, 117.5, 115.5, 115.1, 108.5, 34.6, 31.4; MS (APCI) m/z (%) 277 ($M+\text{H}^+$, 5).

15

20 To a solution of lithium pentyloxide (prepared from reaction of lithium (25 mg) with pentanol (4.0 mL), at 140 °C was added dinitrile **12** (0.25 g, 0.91 mmol). The reaction mixture was heated to 140 °C for 3 h.

The mixture was allowed to cool and the solution was concentrated. The resulting dark mass was dissolved in DMF containing a small amount of methanolic KOH (10 mL) and poured into acetone (10 mL). The precipitate was filtered, treated with concentrated HCl (10 mL), dissolved in acetone (75 mL) and treated with dilute ammonia (75 mL). The resulting precipitate was filtered and dried to afford pure phthalocyanine **13** (57 mg, 23%) as a blue/green solid.

A mixture of phthalocyanine **13** (57 mg, 5.15×10^{-5} mol) and zinc acetate dihydrate (25 mg, 1.14×10^{-4} mol) in DMF (7 mL) was heated at 70 °C for 20 h. The DMF was removed under vacuum and the resulting solid washed with water (10 mL). TLC analysis (0.2% MeOH (10% NH₃) : CHCl₃) showed there to be no other compounds in

the resulting solid. The product **14** was isolated as a blue/green solid (60 mg, 100%). TLC R_f 0.67 10% MeOH (10% NH₃) : CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 8.72-7.78 (m, 8H), 7.60-7.51 (m, 4H), 7.38-7.07 (m, 16H), 5 1.55-1.42 (m, 36H; MS (FAB) *m/z* (%) 1170 (M+H⁺, 2); λ_{max} (nm) 680.

16

10 To a suspension of K₂CO₃ (3.50 g, 25 mmol) in dry DMSO (30 mL) was added 4-nitrophthalonitrile **11** (2.00 g, 11.5 mmol) and p-hydroxybenzoic acid (2.36 g, 17.1 mmol). Further K₂CO₃ (3.50 g, 25 mmol) were added after 3 h and after 24 h. The suspension was stirred at 25 °C for 5 days. The suspension was added to water (600 mL) and the pH was adjusted to 1 using concentrated HCl. The resulting precipitate was recrystallised from methanol (50 mL) to give pure 4-15 (3,4-dicyano-phenoxy)-benzoic acid **16** (2.65 g, 87%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.7, 1H), 8.03 (d, *J* = 8.8, 2H), 7.94 (d, *J* = 2.5, 1H), 7.54 (dd, *J* = 8.7, 2.5, 1H), 7.27 (d, *J* = 8.8, 2H); MS (APCI) *m/z* (%) 297 (M+MeOH⁺, 60).

5 To a suspension of benzoic acid dinitrile **16** (0.19 g, 0.73 mmol) and *tert*-butyl dinitrile (0.30 g, 1.08 mmol) in pentanol (10 mL) at 140 °C was added lithium (0.10 g, 14.5 mmol) and the mixture was stirred at 140°C for 15 min. Once cooled to 25 °C, glacial acetic acid (30 mL) was added, the resultant precipitate was centrifuged and washed with water (10 mL). The products were dissolved in DMF (30 mL), zinc acetate dihydrate (0.12 g, 0.55 mmol) was added and the reaction was heated at 80 °C for 15 h. The solution was cooled to 25 °C, the DMF was removed under vacuum and the resulting solid was washed with water (20 mL). This solid was dissolved in the minimum volume of DMF and was purified by column chromatography on silica, starting with an eluent of

10

15

diethyl ether:DMF 98:2. Once the first fraction, the tetra-*tert*-butyl phthalocyanine **14**, had come off, the eluent was very slowly changed to pure DMF. The next fraction to come off was the desired complex **17**, which was isolated as a blue/green solid (88 mg, 21%). ^1H NMR (300 MHz, CDCl_3) 9.22-8.60 (m, 8H), 8.25-7.35 (m, 20H), 1.46-1.35 (m, 27H); MS (FAB) m/z (%) 1157 ($\text{M}+\text{H}^+$, 5).

To a solution of catechol **18** (11.00 g, 0.10 mol) in glacial acetic acid (50 mL) at 0 °C was very slowly added a solution of bromine (11 mL, 34 g, 0.21 mol) in glacial acetic acid (50 mL). This mixture was stirred at 25 °C for 18 h and after this TLC (60:40 Hexane:Ethyl Acetate) suggested that there was little starting catechol **18** left. The HBr and glacial acetic acid were removed by distillation under water-pump vacuum. The dark residue was quenched with ice water (350 mL). The resulting precipitate was filtered, dried in vacuum and recrystallised from benzene to give three crops of crystals, giving 4,5-dibromocatechol **19** (15.37 g, 57%) as a white solid. TLC R_f 0.34 2:3 Ethyl acetate:hexanes; Mp 110 - 111°C (lit.^x 119-121°C); ^1H NMR (300 MHz, CDCl_3) δ 7.14 (s, 2H), 5.30 (s, 2H) ^{13}C NMR (75 MHz, CDCl_3) δ ; MS (APCI) m/z (%) 265 ($\text{M}-\text{H}^+$, 25).

To a mixture of 4,5-dibromocatechol **19** (10.72 g, 0.04 mol) and P_2O_5 (1.14 g, 8.00 mmol) in toluene (20 mL) heated at 75 °C was added dropwise acetone (5.90 mL, 0.08 mol). During the addition, every 30 min P_2O_5 (1.14 g, 8.00 mmol) was added, for 2 h (4 portions). The mixture was then stirred for 1 h. Once cooled to 25 °C, the viscous oil was poured into 25% NaOH in water (25 mL), after which a white precipitate was seen to form. This precipitate was dissolved by addition of water (50 mL) to the solution. The aqueous layer was washed with water (3 x 50 mL), dried ($MgSO_4$) and concentrated to yield pure 5,6-dibromo-2,2-dimethyl-benzo[1,3]dioxole **20** (1.13 g, 9%) as a white solid. TLC R_f 0.63 1:4 Ethyl acetate:hexanes; Mp 93 - 94 °C; 1H NMR (300 MHz, $CDCl_3$) δ 6.97 (s, 2H), 1.66 (s, 6H); ^{13}C NMR (75 MHz, $CDCl_3$) δ 147.9, 120.2, 114.7, 113.1, 25.9.

20

To a mixture of catechol **18** (11.00 g, 0.10 mol) and P_2O_5 (2.84 g, 20 mmol) in toluene (50 mL) at 75 °C was added dropwise acetone (14.7 mL, 0.2 mol) over 2 h. After the addition had been started, P_2O_5 (2.84 g, 20 mmol) was added to the reaction mixture every 30 min, total 3 portions. After 2 h, further acetone (7.3 mL, 0.1 mol) was added dropwise. The reaction was then stirred for a further 1 h and was then cooled to

25 °C. The organic solution was carefully decanted and to this was added 25% NaOH in water (15 mL). The organic layer was separated, washed with water (2 x 20 mL) and concentrated. The resulting oil was
5 distilled under high vacuum to give 1,2-isopropylidenedioxybenzene (2,2-dimethylbenzo[1,3]dioxole) **21** (5.00 g, 33%) as a clear liquid. ¹H NMR (300 MHz, CDCl₃) δ 6.80-6.72 (m, 4H), 1.67 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 147.4, 121.1,
10 117.4, 108.5, 25.9; MS (APCI) *m/z* (%) 265 (M-H⁺, 25).

To a solution of 1,2-isopropylidenedioxybenzene **21** (4.80 g, 31.9 mmol) in DMF (60 mL) was added portionwise N-bromosuccinimide (11.94 g, 67.1 mmol)
15 at 25 °C. The light yellow solution was stirred at 25 °C for 24 h. The solution was then poured into water (600 mL) and extracted with CH₂Cl₂ (7 x 150 mL). The combined organic extracts were washed with water (4 x 300 mL), dried (MgSO₄), filtered and concentrated.
20 The resulting solid was recrystallised from warm benzene to give pure 5,6-dibromo-2,2-dimethylbenzo[1,3]dioxole **20** (4.94 g, 50%) as a white solid. TLC R_f 0.63 1:4 Ethyl acetate:hexanes; Mp 93 - 94 °C;
25 ¹H NMR (300 MHz, CDCl₃) δ 6.97 (s, 2H), 1.66 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 147.9, 120.2, 114.7, 113.1, 25.9.

A mixture of **20** (4.94 g, 16.0 mmol), CuCN (5.77 g, 654.2 mmol) in dry DMF (65 mL) was heated to 155 °C
5 for 5h. The dark mixture was treated with ammonia water (250 mL) and stirred for 30 min. The mixture was then filtered, washed with water (100 mL) and dried in air for 18 h. The resulting solid was extracted with diethyl ether using a Soxlet extractor
10 for 3 days. The solvent was then removed and the residue twice recrystallised from benzene to give
2,2-dimethylbenzo[1,3]dioxole-5,6-dicarbonitrile **22**
15 (1.58 g, 49%) as a white solid. Mp 202 - 203 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.06 (s, 2H), 1.77 (s, 6H; MS (APCI) *m/z* (%) 265 (M+MeOH⁺, 70), 233 (M+MeOH⁺, 100), 218 (M+H₂O⁺, 20), 201 (M+H⁺, 4).

To a solution of 3,4-dicyano-1,2-isopropylidenedioxybenzene **22** (0.20 g, 1.00 mmol) in pentanol (4 mL) at 140 °C was added lithium (0.10 g, 14.5 mmol). The reaction was heated at 140 °C for 2 h, cooled and glacial acetic acid (15 mL) added. The solvents were then removed under vacuum. The light green solid was dissolved in DMF (30 mL), treated with zinc acetate dihydrate (0.11 g, 0.50 mmol) and heated at 65 °C for 15 h. The green coloured solution was concentrated and washed with water (10 mL). TLC (10% MeOH (10% NH₃):CHCl₃) showed there still to be some starting unmetallated phthalocyanine left. This solid was dissolved in DMF (30 mL) and was treated with zinc acetate dihydrate (0.11 g, 0.50 mmol) and potassium carbonate (0.08 g, 0.55 mmol) (to aid complexation). This mixture was heated at 65 °C for 20 h. The green coloured solution was cooled to 25 °C and concentrated under vacuum. The resulting solid was dissolved in CHCl₃ (30 mL) and carefully added to a silica column packed in CHCl₃. The eluent was gradually changed to 10% MeOH (10% NH₃):CHCl₃ which gave more pure, but not completely pure material. The fractions containing the desired material were concentrated and dissolved in CHCl₃ (20 mL). This solution was carefully added to a silica column packed in CHCl₃. The eluent was gradually changed to 1.5% MeOH (10% NH₃):CHCl₃ and then very slowly changed to 5% MeOH (10% NH₃):CHCl₃. Early fractions contained the desired product but were strongly contaminated with impurities. Subsequent fractions contained the pure compound, affording pure phthalocyanine **24** (0.13 g, 60%) as a green solid. ¹H NMR (300 MHz, CDCl₃) δ 7.15-7.05 (m, 8H), 1.81-1.73 (m, 24H); MS (APCI) m/z (%) 864 (M⁺, 4); λ_{max} (nm) 667.

26

A mixture of 4,4-dimethyl-2-cyclohexenone **25** (5.00 g, 40.26 mmol) and 10% Pd/C (0.10 g) in pentane (70 mL) was hydrogenated at 5 °C at 1 atmosphere of H₂. The reaction was allowed to warm to 25 °C for 18 h. The mixture was filtered through Celite, concentrated to 15 mL and cooled in an i-PrOH-dry ice bath. Filtration afforded 4,4-dimethylcyclohexanone **26** (2.60 g, 51%) as a white fluffy solid. ¹H NMR (300 MHz, CDCl₃) δ 2.35 t, *J* = 7.0, 4H), 1.67 (t, *J* = 7.0, 4H), 1.10 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 212.6, 39.2, 38.0, 29.9, 27.5; MS (APCI) *m/z* (%) 159 (M+MeOH⁺, 20), 127 (M+H⁺, 100).

15

27

A solution of 3,4-dibromocatechol **19** (2.00 g, 7.46 mmol) and 4,4-dimethylcyclohexanone **26** (0.94 g, 7.46 mmol) in toluene (22 mL) containing p-toluene sulfonic acid mono-hydrate (0.074 g, 0.39 mmol) was set up with a Dean-Stark head, and was heated at 130 °C for 15 h. Once cooled to 25 °C, the solution was washed with aqueous NaHCO₃ solution (10 mL), water (10 mL), dried (MgSO₄), filtered and concentrated. The mixture was shown by ¹H NMR to still contain catechol, and so the mixture was dissolved in diethyl ether (25

mL). This solution was washed with 10% NaOH solution (3 x 20 mL), water (20 mL), dried ($MgSO_4$), filtered and concentrated. The resulting yellow solid was recrystallised from hexanes to give 4,5-dibromo-1,2-di-O-(4',4'-dimethylcyclohexylidene)catechol **27** (0.71 g, 25%). Mp 126 -127 °C; 1H NMR (300 MHz, $CDCl_3$) δ 6.97 (s, 2H), 1.91 t, J = 6.0, 4H), 1.51 (t, J = 6.0, 4H), 0.99 (s, 6H); ^{13}C NMR (75 MHz, $CDCl_3$) δ 147.9, 121.3, 114.5, 113.1, 35.7, 31.4, 29.3, 27.8; MS (EI) m/z (%) 376 (M^+ , 100), 314 (50), 304 (50).

A mixture of **27** (0.64 g, 1.70 mmol), CuCN (0.61 g, 6.81 mmol) in DMF (7 mL) was heated to 150 °C for 5h. The mixture was then cooled to 25 °C, treated with ammonia water (25 mL) and stirred for 30 min. The mixture was filtered, washed with water (10 mL) and air dried for 18 h. The resulting solid was extracted with diethyl ether using a Soxlet extractor for 3 days. The solvent was then evaporated to produce **28** (1.58 g, 49%) as a white solid. Mp 159 °C; 1H NMR (300 MHz, $CDCl_3$) δ 7.05 (s, 2H), 1.97 (s, 4H), 1.56 (s, 4H), 1.02 (s, 6H); ^{13}C NMR (75 MHz, $CDCl_3$) δ 151.4, 124.4, 115.8, 112.5, 110.0, 35.5, 31.5, 29.3, 27.7; MS (EI) m/z (%) 268 (M^+ , 100), 252 (30), 212 (70), 197 (100).

To a solution of **28** (90 mg, 0.33 mmol) and anhydrous zinc acetate (30 mg, 0.16 mmol) in pentanol (2 mL) at 5 140 °C was added lithium (33 mg, 4.75 mmol). This mixture was heated at 140 °C for 17 h. The reaction was cooled to 25 °C, solvent was removed under vacuum and washed with water (10 mL). The resulting solid was dissolved in CHCl₃ and purified on a silica column 10 (CHCl₃ - 1% MeOH (10% NH₃) : CHCl₃) to give the desired phthalocyanine **29** (55 mg, 60%) as a blue/green solid.
¹H NMR (300 MHz, CDCl₃) δ 8.15 (bs, 8H), 2.35 (bs, 16H), 1.88 (bs, 16H), 1.24 (*s, 26H); MS (FAB) *m/z* (%) 1137 (M+H⁺, 6), 1136 (M⁺, 5); λ_{\max} (nm) 669.

15

A mixture of catechol **18** (4.03 g, 36.6 mmol), 2-adamantanone **30** (5.00 g, 33.3 mmol) and p-toluene sulfonic acid mono-hydrate (0.13 g) in benzene (125 mL) was heated at 80 °C for 22 h. The solution was cooled to 25 °C and washed successively with 10% NaOH solution (3 x 50 mL), water (50 mL), dried (MgSO_4), filtered and concentrated. The resulting light yellow solid was recrystallised from benzene to give 1,2-di-O-(adamantylidene)catechol **31** (6.77 g, 84%) as an off-white solid. Mp 130 °C (lit.^x 126 -127 °C); ¹H NMR (300 MHz, CDCl_3) δ 6.75 (s, 4H), 2.18-1.75 (m, 14H); ¹³C NMR (75 MHz, CDCl_3) δ 147.7, 120.8, 108.4, 37.1, 36.7, 34.4, 26.7; MS (FAB) m/z (%) 242 (M^+ , 95).

A solution of **31** (2.42 g, 10 mmol) in CCl_4 (10 mL) cooled to 0 °C was treated with Br_2 (3.20 g, 1.02 mL, 20 mmol) dissolved in CCl_4 (1 mL). The mixture was stirred at 0 °C for 30 min. The mixture was diluted with CHCl_3 (29 mL) and washed with 10% aqueous NaOH solution (2 x 20 mL), water (20 mL), dried (MgSO_4), filtered and concentrated. The resulting solid was recrystallised twice from hexanes to give pure 4,5-dibromo-1,2-di-O-(adamantylidene)catechol **32** (1.92 g, 48%) as a white solid. TLC R_f 0.75 1:19 Ethyl acetate:hexanes; Mp 195 °C; ¹H NMR (300 MHz, CDCl_3) δ 6.99 (s, 2H), 2.16-1.75 (m, 14H); ¹³C NMR (75 MHz, CDCl_3) δ 148.2, 124.0, 114.3, 113.0, 36.9, 36.8, 34.3, 26.5; MS (FAB) m/z (%) 400 (M^+ , 25).

A mixture of **32** (1.43 g, 3.57 mmol) and CuCN (1.28 g, 14.30 mmol) in DMF (15 mL) was heated to 150 °C for 3 h. The mixture was then cooled to 25 °C, treated with ammonia water (50 mL) and stirred for 30 min. The mixture was filtered, washed with water (10 mL) and air dried for 18 h. The resulting solid was extracted with dithyl ether using a Soxlet extractor for 3 days. The solvent was then evaporated and the resulting solid was recrystallised from warm benzene to give 4,5-dicyano-1,2-di-O-(adamantylidene)catechol **33** (0.48 g, 46%) as a green solid. Mp 210 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.06 (s, 2H), 2.21-1.79 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) δ 151.6, 127.2, 115.8, 112.4, 109.9, 37.0, 36.7, 34.2, 26.3; MS (FAB) m/z (%) 315 (M+Na⁺, 10), 293 (M+H⁺, 20).

To a solution of phthalonitrile **33** (0.24 g, 0.82 mmol) and anhydrous zinc acetate (75 mg, 0.41 mmol) in pentanol (5 mL) at 140 °C was added lithium (80 mg, 11.5 mmol). The solution was heated at 140 °C for 18 h. The solution was then cooled to 25 °C and TLC analysis (10% MeOH (10% NH₃):CHCl₃) showed there to be only the desired phthalocyanine **34** present. TLC R_f 0.80 10% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 8.60 (bs, 8H), 1.61-2.67 (m, 56H); MS (FAB) m/z (%) 1235 (M+H⁺, 5); λ_{max} (nm) 668.

To a solution of 3,4-dicyano-1,2-isopropylidenedioxybenzene **22** (0.21 g, 1.08 mmol), **16** (0.19 g, 0.73 mmol) and anhydrous zinc acetate (0.10 g, 0.55 mmol) in pentanol (10 mL) at 140 °C was added lithium (100 mg, 14 mmol). The reaction was heated at 140 °C for 20 h, cooled to 25 °C and concentrated under vacuum. The resulting solid was dissolved in the minimum volume of DMF and added to a silica column packed using diethyl ether:DMF 98:2. The

eluent diethyl ether:DMF 98:2 was used until all of the first compound to come off the column had come off. The eluent was then very gradually changed to DMF. At this time the next fraction came off, which contained the desired compound.

5 3:1 Mixed phthalonitrile **35** (72 mg, 22%) was isolated as a blue/green solid. TLC R_f 0.24 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 8.71 (m, 4H), 8.13-8.01 (m, 5H), 7.71-7.23 (m, 4H), 5.76 (s, 1H), 1.96 (s, 18H); MS (FAB) m/z (%) 930 (M+H⁺, 2) 929 (M⁺, 2); λ_{max} (nm) 666.

10

15 To a solution of phthalonitrile **33** (0.12 g, 0.41 mmol), **16** (72 mg, 0.28 mmol) and anhydrous zinc acetate (38 mg, 0.21 mmol) in pentanol (4 mL) at 140 °C was added lithium (40 mg, 5.30 mmol). The reaction was heated at 140 °C for 17 h, the solution was then cooled to 25 °C and the solvent removed under vacuum.

20 The resulting solid was dissolved in the minimum volume of DMF and added to a silica column packed

using diethyl ether:DMF 98:2. The eluent diethyl ether:DMF 98:2 was used until all of the first compound to come off the column had come off. The eluent was then very gradually changed to DMF. At 5 this time the next fraction came off, which contained the desired compound which was slightly contaminated. The relevant fractions were concentrated, the resulting solid was dissolved in the minimum volume of DMF and added to a silica column packed using 10 diethyl ether:DMF 98:2. The eluent diethyl ether:DMF 98:2 was used until all of the first compound to come off the column had come off. The eluent was then very gradually changed to DMF. 3:1 Mixed 15 phthalonitrile **36** (68 mg, 41%) was isolated as a blue/green solid. TLC R_f 0.25 20% MeOH (10% NH₃):CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 9.38-9.33 (m, 1H), 8.94-8.90 (m, 1H), 8.58-8.42 (m, 4H), 8.16 (d, J = 8.4, 2H), 8.04-7.92 (m, 1H), 7.58 (s, 1H), 7.49 (d, J = 8.7, 2H), 7.27 (s, 1H), 2.33-1.73 (m, 42H); MS 20 (FAB) *m/z* (%) 1205 (M⁺, 0.5); λ_{max} (nm) 667.

38

To a solution of 4-nitrophthalonitrile **11** (1.73 g, 10.00 mmol) in dry DMSO (20 mL) was added 4-hydroxy 25 benzenesulfonic acid sodium salt dihydrate (3.98 g, 15.0 mmol), potassium carbonate (2.07 g, 15.00 mmol) and 4 Å molecular sieves. Further potassium carbonate (2.07 g, 15.00 mmol) was added after 4 h. The reaction was stirred for 3 days. The mixture was 30 poured into water (150 mL) and the pH of the solution adjusted to 0 using HCl. The solution was then

carefully evaporated until a precipitate was seen to form. The resulting solid was filtered and washed with ethanol (50 mL) to give pure 4-(3,4-dicyano-phenoxy)-benzenesulfonic acid **38** (2.10 g, 70%) as a white solid. TLC R_f 0.67 7:7:5 i-PrOH:Ethyl Acetate:Water; ^1H NMR (300 MHz, DMSO- d_6) δ 8.11 (d, J = 8.7, 1H), 7.86 (J = 2.5, 1H), 7.72 (ap. dt, J = 8.7, 2.6, 2H), 7.41 (dd, J = 8.7, 2.6, 1H), 7.14 (ap. dt, J = 8.7, 2.6, 2H); MS (FAB) m/z (%) 299 (M-H $^+$, 100).

To a solution of 3,4-dicyano-1,2-isopropylidenedioxybenzene **22** (0.105 g, 0.53 mmol), **38** (0.11 g, 0.37 mmol) and anhydrous zinc acetate (50 mg, 0.28 mmol) in pentanol (5 mL) at 140 °C was added lithium (50 mg, 7 mmol). The reaction was heated at 140 °C for 22 h, then cooled to 25 °C and concentrated under vacuum. The resulting solid was dissolved in a mixture of MeOH:DMF:10% ammonium formate buffer (65:25:10), the same solvent mixture was also used to pack a reverse-phase silica column. The reaction mixture was eluted with this system,

yielding some fractions containing improved purity product. These were concentrated, dissolved in the same MeOH:DMF:10% ammonium formate buffer (65: 25: 10), the same solvent mixture was also used to pack a reverse-phase silica column. The product could now be isolated pure **39** (75 mg, 44%). TLC R_f 0.20 20% MeOH (10% NH₃) : CHCl₃; ¹H NMR (300 MHz, DMSO-d₆) δ 9.42-9.36 (m, 1H), 8.72-8.50 (m, 4H), 8.41-8.21 (m, 1H), 7.78 (d, J = 8.7, 2H), 7.64-7.53 (m, 1H), 7.32 (d, J = 9.0, 2H), 7.25 (s, 1H), 7.11 (s, 1H), 1.98-1.95 (m, 6H), 1.71-1.65 (m, 12H); MS (FAB) *m/z* (%) 966 (M+H⁺, 1.5), 965 (M⁺, 1.5); λ_{max} (nm) 665.

15

To a solution of **28** (50 mg, 0.186 mmol), **38** (38 mg, 0.125 mmol) and anhydrous zinc acetate (17 mg, 0.093 mmol) in pentanol (2 mL) at 140 °C was added lithium (17 mg, 2.43 mmol). The reaction was heated at 140 °C 20 for 18 h, cooled to 25 °C and concentrated under vacuum. The resulting solid was dissolved in a

mixture of MeOH: DMF: 10% ammonium formate buffer (60: 20: 20), the same solvent mixture was also used to pack a reverse-phase silica column. The column was eluted with this system, which allowed the more
5 polar compounds to come off whilst leaving the desired compound still on the column. Once the more polar compounds had finished coming off the solvent system was changed to MeOH: DMF: THF (55: 25: 20) and this gave almost pure product. These fractions were
10 concentrated, dissolved in the MeOH:DMF:10% ammonium formate buffer (60: 20: 20), the same solvent mixture was also used to pack a reverse-phase silica column. The column was eluted with this system, which allowed the more polar compounds to come off whilst leaving
15 the desired compound still on the column. Once the more polar compounds had finished coming off, the solvent system was changed to MeOH: DMF: THF (55: 25: 20) and this gave pure phthalocyanine **40** (26 mg, 36%) as a blue/green solid. TLC R_f 0.21 20% MeOH (10%
20 NH_3) : $CHCl_3$; 1H NMR (300 MHz, DMSO- d_6) δ 9.38-9.28 (m, 1H), 8.89-8.82 (m, 1H), 8.67-8.49 (m, 4H), 7.82 (d, J = 7.5, 2H), 7.37 (d, J = 8.1, 2H), 7.25 (d, J = 7.2, 1H), 7.03 (s, 1H), 6.87 (d, J = 7.5, 1H), 2.27 (bs, 4H), 1.96 (bs, 4H), 1.74 (bs, 4H), 1.49 (bs, 4H),
25 1.22-0.74 (m, 26H); MS (FAB) m/z (%) 1171 (M^+ , 30); λ_{max} (nm) 666.

To a solution of **33** (54 mg, 0.186 mmol), **38** (38 mg, 0.125 mmol) and anhydrous zinc acetate (17 mg, 0.093 mmol) in pentanol (2 mL) at 140 °C was added lithium (17 mg, 2.43 mmol). The reaction was heated at 140 °C for 4 h, then cooled to 25 °C and concentrated under vacuum. The resulting solid was dissolved in a mixture of MeOH: DMF: 10% ammonium formate buffer (60: 20: 20), the same solvent mixture was also used to pack a reverse-phase silica column. The column was eluted with this solvent system, which allowed the more polar compounds to come off whilst leaving the desired compound still on the column. Once the more polar compounds had finished coming off, the solvent system was changed to MeOH: DMF: THF (55: 25: 20), and this gave pure phthalocyanine **41** (30 mg, 39%) as a blue/green solid. TLC R_f 0.25 20% MeOH (10% NH_3):CHCl₃; ¹H NMR (300 MHz, DMSO- d_6) δ 9.378 (bs, 2H), 8.93-8.85 (m, 1H), 8.70-8.52 (m, 3H), 7.80 (d, J = 7.5, 2H), 7.54 (s, 1H), 7.50 (d, J = 9.9, 1H), 7.37

(d, $J = 7.5$, 2H), 7.05 (s, 1H), 2.26-1.72 (m, 42H);
MS (FAB) m/z (%) 1243 (M^+ , 10); λ_{max} (nm) 667.

4,4'-Dithioldibutyric acid (2.00g, 8.38 mmol) was
5 placed in a three-neck flask and was evacuated and
purged with argon three times. Liquid ammonia (100
mL) was condensed into the flask using a cold trap.
10 Sodium metal pieces were added until the blue colour
remained. This solution was then stirred for 40 min
and sodium pieces were added if the colour faded out.
The reaction was quenched with the addition of the
minimum amount of ammonium chloride, then *cis*-1,2-
15 dichloroethylene (0.82 g, 8.38 mmol) was added and
the reaction was stirred for 4 h. The ammonia was
allowed to evaporate off, then the residue was
dissolved in water (50 mL) and the solution
neutralised using dilute HCl. The mixture was then
15 filtered and dried under vacuum which gave pure 4-[2-
(3-carboxy-propylsulfonyl)-vinylsulfanyl]-butyric
acid **45** (1.99 g, 90%) as a white solid. Mp 120 °C; ^1H
NMR (300 MHz, CDCl_3) δ 12.11 (2, 2H), 6.19 (s, 2H),
2.71 (t, $J = 7.2$, 4H), 2.30 (t, $J = 7.2$, 4H), 1.75
(t, $J = 7.2$, 4H); ^{13}C NMR (75 MHz, CDCl_3) δ 174.0,
20 123.0, 32.3, 32.1, 25.5.

25

β-Cyclodextrin **47** (40.0 g, 35.3 mmol) was dissolved in hot water (900 mL) (80 °C), then cooled down to 25 °C while being vigorously stirred. p-Toluenesulfonyl imidazole (15.60 g, 70.2 mmol) was added as finely ground powder. The suspension was stirred for 2 h. Sodium hydroxide (18 g) was dissolved in water (50 mL) and the solution was added to the reaction mixture over a period of 20 minutes. After stirring for another 10 minutes, the mixture was filtered through a frit funnel. The reaction was quenched with ammonium chloride (48.2 g), and the solution was concentrated to about half of its volume. After cooling at 0 °C for an hour, the precipitate was filtered and washed with water (50 mL), acetone (50 mL), then lyophilized to afford the desired product **48** (25 g, 52%) as a white solid. ^1H NMR (300 MHz, DMSO-d₆) δ 7.24 (d, 2H), 7.43 (d, 2H), 5.60-5.83 (m, 14H), 4.74-4.90 (m, 7H), 4.30-4.53 (m, 6H), 4.29 (dd, 1H), 3.40-3.73 (m, 28H), 2.41 (s, 3H).

6-Monotosyl-β-cyclodextrin **48** (2.00 g, 1.57 mmol) and sodium azide (2.04 g, 31.4 mmol) were dissolved in DMF (20 mL) and heated to 80 °C for 10 h. The reaction was then cooled to 25 °C and poured into acetone (1 L). The resultant precipitate was

filtered and purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH :H₂O 0-80%). This gave pure 6-mono-azido- β -cyclodextrin **49** (1.60 g, 91%) as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 5.80-5.62 (m, 13H), 5.60 (d, 1H), 4.87 (d, 1H), 4.85-4.78 (m, 6H), 4.55-4.40 (m, 6H), 3.80-3.46 (m, 28H), 3.46-3.20 (m, overlap with water peak).

To a solution of 6-mono-azido- β -cyclodextrin **49** (1.00 g, 0.86 mmol) in DMF (20 mL) was added triphenylphosphine (0.50 g, 1.9 mmol) and the reaction was stirred at 90 °C for 18 h. The reaction mixture was then cooled to 25 °C and poured into acetone (1 L). The precipitate was then filtered, washed with acetone (100 mL) and dissolved in water (10 mL). After lyophilisation, the desired 6-monoamino- β -cyclodextrin **50** (0.85 g, 86%) was isolated as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 5.90-5.55 (m, 14H), 4.89 (d, 1H), 4.88-4.75 (m, 6H), 4.60-4.35 (m, 6H), 3.75-3.49 (m, 26H), 3.03 (m, 1H), 2.80 (m, 1H); MS (FAB) m/z (%) 1134 (M+H⁺, 10).

β-Cyclodextrin **47** (20.0 g, 7.6 mmol) was dissolved in a mixture of water (150 mL) and MeCN (50 mL) and its pH was adjusted to 12.0 using 4.0 M NaOH aqueous solution. The solution was heated to 40 °C and was stirred vigorously. 2-Naphthalenesulphonyl chloride (10 g, 44.1 mmol) was added, and the mixture was stirred for another two minutes until its pH dropped to 7. The mixture was then filtered, and the filtrate was diluted with water (1 L) and loaded onto a reverse phase silica column. After elution with water-methanol liner gradient (0 - 80% MeOH/H₂O), 3-mononaphthalenesulfonyl-β-cyclodextrin **51** (3.20 g, 16%) was obtained as a white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 8.68 (s, 1H), 8.21 (d, 1H), 8.14 (d, 1H), 8.06 (d, 1H), 7.98 (d, 2H), 7.79-7.67 (m, 2H), 6.02 (d, 1H), 5.88-5.60 (m, 10H), 5.51 (d, 1H), 4.97-4.75 (m, 7H), 4.68 (t, 1H), 4.60-4.48 (m, 5H), 4.34 (t, 1H), 4.16 (d, 1H), 3.88-3.42 (m, 28H), 3.42-3.15 (m, overlap with water peak).

2-Mononaphthalenesulfonyl- β -cyclodextrin **51** (3.20 g, 2.43 mmol) was dissolved in 10% Na₂CO₃ aqueous solution (50 mL) and was stirred at 50 °C for 10 hours. The mixture was loaded on a reverse phase silica column and was eluted with water-methanol gradient (0 - 80% MeOH/H₂O). The fractions containing the desired product was collected and methanol was removed under reduced pressure to give β -cyclodextrin monoalloepoxide **52** (3.00 g, 96%) as a white solid. ¹H NMR (400 MHz, DMSO- d₆) δ 5.90-5.45 (m, 9H, 5.33 (bs, 1H), 5.23 (d, 1H), 5.19 (d, 1H), 5.07 (bs, 1H), 4.88-4.73 (m, 6H), 4.60 (t, 1H), 4.56-4.32 (m, 6H), 3.90 (d, 1H), 3.82-3.41 (m, 28H), 3.41-3.13 (m, overlap with water peak).

β -Cyclodextrin monoalloepoxide **52** (2.00 g, 1.79 mmol) and sodium azide (0.50 g, 7.69 mmol) were dissolved dry DMF (20 mL) and heated to 90 °C for 18 h. The DMF was removed under vacuum and the residue was dissolved in water, loaded on a reverse phase silica column, and eluted slowly and very carefully with water-methanol linear gradient (methanol 20-80%, v/v). Two fractions (about 1:3) that contained cyclodextrin were collected and the methanol was removed under reduced pressure. The major fraction contained the desired 2-monoazido- β -cyclodextrin **53** (1.20 g, 60%) as a white solid. ¹H NMR (400 MHz, DMSO- d₆) δ 5.90-5.50 (m, 11H), 4.95-4.77 (m, 7H),

4.67 (d, 1H), 4.62-4.42 (m, 7H), 3.83 (bs, 1H), 3.80-3.65 (m, 28H), 3.65-3.30 (m, overlap with water peak).

54

5

2-Monoazido- β -cyclodextrin **53** (1.00 g, 0.86 mmol) and triphenylphosphine (0.50 g, 1.90 mmol) were dissolved in DMF (20 mL). The reaction mixture was stirred at 90 °C for 18 h, then poured into acetone (1 L). After filtration, the solid was washed with acetone (50 mL) and dissolved in the minimum volume of water. 2-Amino- β -cyclodextrin **54** (0.92 g, 93%) was obtained as a white solid after lyophilisation. ^1H NMR (400 MHz, D_2O) δ 5.00-4.91 (m, 7H), 3.91-3.68 (m, 28H), 3.60-3.42 (m, 28H), 3.26 (t, 1H).

43

To a solution of 2-amino β -cyclodextrin **54** (0.50 g, 0.44 mmol) in DMF (20 mL) was added **45** (60 mg, 0.22 mmol), 1-hydroxybenzotriazole (HOBT) (89 mg, 0.66 mmol) and 1,3-dicyclohexylcarbodiimide (DCC) (0.14 g, 0.66 mmol). The mixture was then heated at 60 °C for 18 h and then poured into acetone (1 L). The

resultant precipitate was filtered and purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 20-80%). This gave pure dimer **43** (0.23 g, 42%) as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 7.68 (bs, 2H), 6.16 (s, 2H), 5.80-5.67 (m, 28H), 4.81 (m, 14H), 4.47 (m, 14H), 3.62-3.32 (m, 84H), 2.72-2.66 (m, 4H), 2.21-2.10 (m, 4H), 1.84-1.66 (m, 4H); MS (MALDI) *m/z* (%) 2517 (M+Na⁺, 5).

5

10

To a solution of 6-amino β-cyclodextrin **50** (0.50 g, 0.44 mmol) in DMF (20 mL) was added **45** (60 mg, 0.22 mmol), 1-hydroxybenzotriazole (HOBT) (89 mg, 0.66 mmol) and 1,3-dicyclohexylcarbodiimide (DCC) (0.14 g, 0.66 mmol). The mixture was then heated at 60 °C for 18 h and then poured into acetone (1 L). The resultant precipitate was filtered and purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 20-80%). This yielded pure dimer **44** (0.22 g, 40%) as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 7.90 (bs, 2H), 6.20 (s, 2H), 5.99 (d, *J* = 6.1, 2H), 5.79-5.61 (m, 26H), 4.82-4.75 (m, 14H), 4.50-4.45 (m, 14H), 3.62-3.32 (m, 84H), 2.73 (m, 4H), 2.26-2.23 (m, 4H), 1.82-1.79 (m, 4H); MS (MALDI) *m/z* (%) 2516 (M+Na⁺, 15).

15

20

25

A solution of 6-monotoluenesulfonyl- β -cyclodextrin **48** (20.00 g, 16.8 mmol) and KI (2.00 g, 12.1 mmol) were dissolved in DMF (100 mL). The reaction mixture was
5 stirred under argon at 50 °C for 18 h, and then poured into acetone (1 L). The product was filtered out by frit funnel and washed with acetone, then dissolved in water and lyophilized to give 6-moniodo
10 β -cyclodextrin **55** as product (17.05 g, 90%) as a white solid. ^1H NMR (300 MHz, DMSO-d₆) δ 5.83-5.60 (m, 14H), 4.90-4.78 (m, 7H), 4.57-4.40 (m, 6H), 3.94-
3.54 (m, 28H).

15 To a solution of diacetate (55 mg, 0.13 mmol) in MeOH (2.5 mL) was added a 25% weight solution of NaOMe in MeOH (0.063 g, 0.29 mmol) and this solution was stirred at 25 °C for 1.25 h. To this solution was then added a solution of 6-moniodo β -cyclodextrin **55**
20 (0.26 g, 0.21 mmol) in DMF (7 mL) and this solution was heated at 50 °C for 20 h. Upon addition of the cyclodextrin solution the reaction mixture was seen to turn cloudy. This cloudiness had disappeared

after 20 h of heating at 50 °C. This solution was cooled to 25 °C and concentrated. The resulting solid was purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 0-80%). This gave some pure dimer along with some fractions containing impure material. The relevant impure fractions were collected, concentrated and were further purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 0-60%). Overall, this afforded the desired dimer **2** (94 mg, 35%) as a white solid. TLC R_f 0.05
7:7:5 i-PrOH:Ethyl Acetate:Water; ¹H NMR (300 MHz, DMSO-d₆) δ 8.12-.8.08 (m, 2H), 6.22 (s, 2H), 5.80-5.68 (m, 26H), 4.82 (m, 14H), 4.57-4.46 (m, 12H), 3.77-3.33 (m, 84H), 2.85-2.62 (m, 12H); MS (MALDI) m/z (%) 2517 (M+Na⁺, 5).

A solution of ethanedithiol **59** (3.50 mL, 41.75 mmol) and acetic anhydride (4.00 mL, 41.75 mmol) in pyridine (10 mL) and CH₂Cl₂ (10 mL) was stirred at 25 °C for 18 h. The solvents were removed under vacuum and the resulting oil distilled under high-vac to yield pure thioacetic acid *S*-[2-(2-acetylsulfanyl-ethyl)disulfanyl]-ethyl ester **60** (2.20 g, 39%) as a clear liquid. TLC R_f 0.42 1:9 Ethyl Acetate:Hexanes; ¹H NMR (300 MHz, CDCl₃) δ 3.13-3.06 (m, 2H), 2.75-2.67 (m, 2H), 2.36 (s, 3H), 1.62 (t, J = 8.5, 1H).

To a solution of mono-acetate **60** (1.03 g, 7.56 mmol) in CH₂Cl₂ (8 mL) and 10% K₂CO₃ in water (8 mL) was slowly added bromine (0.61 g, 0.20 mL, 3.78 mmol). After complete addition the organic layer was separated and the aqueous layer was washed with CH₂Cl₂ (2 x 15 mL). The combined organic layers were dried (MgSO₄) and concentrated to give thioacetic acid *S*-[2-(2-acetylsulfanyl-ethyldisulfanyl)-ethyl] ester **61** (0.90 g, 88%) as a yellow oil. TLC R_f 0.20 1:9 Ethyl Acetate:Hexanes; ¹H NMR (300 MHz, CDCl₃) δ 3.24-3.19 (m, 4H), 2.90-2.84 (m, 4H), 2.36 (s, 6H); MS (FAB) m/z (%) 271 (M+H⁺, 30), 270 (M+H⁺, 20).

A solution of 2-mercaptopropanoic acid **64** (11.14 g, 10.00 mL, 0.14 mol) and NaOH (5.79 g, 0.145 mol) in EtOH (40 mL) was stirred at 0 °C for 30 min. To this solution was added dropwise a solution of *cis*-1,2-dichloroethylene (6.91 g, 5.48 mL, 0.07 mol) in EtOH (5 mL). This solution was heated at 80 °C for 18 h. This mixture was cooled to 25 °C, diluted with water (100 mL) and washed with diethyl ether (3 x 50 mL). The combined organic layers were washed with water (2 x 75 mL), dried (MgSO₄) and concentrated to give the crude product. This was purified by column chromatography on silica (75% ethyl acetate/hexanes - ethyl acetate) to give pure 2-[2-(2-hydroxyethylsulfanyl)-vinylsulfanyl] ethanol **63** (9.10 g, 72%) as a light yellow liquid. IR (ν) 3334, 2920, 2866, 1544, 1409, 1283, 1046, 1011, 841, 638; ¹H NMR (300 MHz, CDCl₃) δ 6.17 (s, 2H), 3.78 (ap. q, J = 6.0, 4H), 2.91 (t, J = 5.4, 4H), 2.34 (bt, J = 5.4, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 124.9, 61.4, 37.4; MS (FAB) m/z (%) 180 (M⁺, 100).

To a 0 °C solution of triphenylphosphine (6.55 g, 24.96 mmol) in CH₂Cl₂ (15 mL) was carefully added bromine (2.93 g, 0.94 mL, 18.3 mmol). This was warmed to 25 °C and diluted with CH₂Cl₂ (60 mL). To this cloudy solution was added a solution of **63** (1.50 g, 8.32 mmol) in CH₂Cl₂ (8 mL), during which time the solution became clear. This mixture was stirred at 25 °C for 2 h. The mixture was then concentrated to give a white solid. This solid was washed with hexanes (20 mL) and diethyl ether (3 x 20 mL). These were combined and concentrated to give 1,2-bis(2-bromoethylsulfanyl)-ethene **65** as an ~1:1 mixture with triphenyl phosphine oxide (yield of dibromide = 2.40 g, 95%). IR (ν) 3053, 3010, 1589, 1546, 1476, 1432, 1195, 1120, 747, 721, 664, 619; ¹H NMR (300 MHz, CDCl₃) δ 6.14 (s, 2H), 3.47 (t, J = 7.8, 4H), 3.10 (t, J = 7.8, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 124.4, 35.9, 30.2; MS (FAB) m/z (%) 305 (M+H⁺, 10).

To a solution of dibromide **65** /triphenyl phosphine oxide ~1:1 mixture (1.20 g of dibromide, 3.92 mmol) in DMF (15 mL) was added potassium thioacetate (2.24 g, 19.6 mmol) and this mixture was heated to 80 °C for 24 h. The resulting dark mixture was then cooled to 25 °C poured into water (150 mL) and extracted with

diethyl ether (4×50 mL). The combined organic layers were dried (MgSO_4) and concentrated to give the crude product. This was purified by column chromatography on silica (15% ethyl acetate/hexanes) to give pure thioacetic acid $S\text{-}\{2\text{-[2-(2-acetylsulfanyl-ethylsulfanyl-vinylsulfanyl]ethyl]ester}$ **66** (0.54 g, 47%) as an off white solid. TLC R_f 0.28 15:85 Ethyl Acetate:Hexanes; Mp 58°C; ^1H NMR (300 MHz, CDCl_3) δ 65.24 (s, 2H), 3.12-3.07 (m, 4H), 2.90-2.84 (m, 4H), 2.35 (s, 6H); ^{13}C NMR (75 MHz, CDCl_3) δ 195.3, 124.2, 33.8, 30.7, 29.9; MS (APCI) m/z (%) 295 (M-H^+ , 100), 270 (M+H^+).

To a solution of diacetate **66** (0.15 g, 0.51 mmol) in MeOH (9 mL) was added 25% weight solution of NaOMe in MeOH (0.24 g, 0.26 mL, 1.11 mmol) and this solution was stirred at 25 °C for 2 h. To this solution was added a solution of 6-monoiodo β -cyclodextrin **55** (1.00 g, 0.80 mmol) in DMF (30 mL) and this solution was heated at 50 °C for 20 h. Upon addition of the cyclodextrin solution the reaction mixture was seen to turn cloudy. This cloudiness had disappeared after 20 h of heating at 50 °C. This solution was cooled to 25 °C and concentrated under vacuum. The resulting solid was purified by reverse-phase column using a $\text{H}_2\text{O}/\text{MeOH}$ solvent gradient (MeOH 0-80%). This gave some pure dimer along with some fractions containing impure material. The relevant impure fractions were collected, concentrated and were

further purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 0-60%). The mixed fractions appeared to be contaminated with of 6-monoiodo β-cyclodextrin **55** and in an attempt to remove this the concentrated mixed fractions were dissolved in 10% NaOH aqueous solution (10 mL) and heated to 60 °C for 3 days. The solution was then cooled to 25 °C, pH adjusted to 7 using dilute HCl and filtered. The resulting solution was purified by reverse-phase column using a H₂O/MeOH solvent gradient (MeOH 0-50%). Overall, this afforded the desired dimer **67** (0.35 g, 36%) as a white solid. TLC R_f 0.13
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455

To a solution of 1-azido-2-methylsulfanyl-ethane **69** (1.00 g; 8.6 mmol; 1.0 eq.) and triphenylphosphine (2.24 g; 8.6 mmol; 1.0 eq.) in THF (30 mL), was added water (0.15 mL; 8.6 mmol; 1.0 eq.). The reaction mixture was heated to 35 °C for 3 h, after which it was cooled to 25 °C and then to 0 °C. To this mixture was added freshly distilled triethylamine (1.8 mL; 12.9 mmol; 1.5 eq.). Chloroacetyl chloride (1.46 g; 12.9 mmol; 1.5 eq.) was then added dropwise, and the resulting reaction mixture was allowed to warm to 25 °C. Potassium thioacetate (4.90 g; 43 mmol; 5.0 eq.) was then added to the reaction mixture, which was then heated to 50 °C for 18 h. The solution was then concentrated under reduced pressure, and the residue was purified by column chromatography on silica (gradient: 100% CH₂Cl₂ to 10% MeOH/CH₂Cl₂) to give thioacetic acid *S*-[(methylsulfanyl-ethyl carbamoyl)-methyl]ester **70** (1.20 g, 67%) as an off-white solid. R_f = 0.85 (10% MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 6.68 (bs, 1H), 3.56 (s, 2H), 3.44 (m, 2H), 2.62 (t, *J* = 6.5, 2H), 2.41 (s, 3H), 2.10 (s, 3H).

25

30

5 To a solution of **70** (0.50 g; 2.41 mmol; 30.0 eq.) in MeOH (50 mL) was added NaOH (0.20 g; 5.0 mmol; 62.2 eq.). The resulting mixture was stirred at 50 °C for 10 minutes. TLC showed the disappearance of the starting thioacetate and an appearance of a new spot at R_f = 0.65 (10% MeOH/CH₂Cl₂). The solution was concentrated under reduced pressure. To this residue was added a mixture of β -CD-6-I (0.10 g; 0.08 mmol; 1.0 eq.) and K₂CO₃ (55 mg; 0.4 mmol; 5.0 e.q.) in DMF (20 mL). The reaction flask was evacuated and backfilled with argon three times. The mixture was heated to 55 °C for 24 h. Water (180 mL) was then added to the reaction mixture. This mixture was filtered and was then purified by reverse phase column chromatography eluted with MeOH/H₂O mixture (linear gradient 80% H₂O - 80% MeOH). The methanol of the fractions that contained the product was removed under reduced pressure, and the residual aqueous solution was lyophilized. This gave monomer **71** (80 mg, 78%) as a white solid. R_f = 0.56 (7:7:7:4 iPrOH: EtOAc: H₂O: NH₄OH); ¹H NMR (300 MHz, D₂O) δ 5.05-4.90 (m, 7H), 4.10-3.17 (m, 44H), 2.85 (m, 2H), 2.59 (t, J = 6.6, 2H), 2.14 (s, 3H).

References

Adam, W. and Cliento, G. (1983) *Angew. Chem., Int. Ed. Engl.* 22: 529-542.

5

Ali, H., van Lier, J.E. (1999) *Chem. Rev.* 99: 2379-2450.

Bartlett, P. D. (1976) *Chem. Soc. Rev.* 79: 149-163.

10

Breslow, R., Greenspoon, N., Guo, T., Zarzycki, R. (1989) *J. Am. Chem. Soc.* 111: 8296-8297.

Breslow, R., Ruebner, A., Yang, Z. A HYDROPHILIC CARRIER FOR PHOTORESENSITIZERS THAT CLEAVES WHEN THEY CATALYZE THE FORMATION OF SINGLET OXYGEN, U.S. Serial No. 09/352,529, filed July 13, 1999, now allowed.

Clennan, E.L. and Nagraba, K. (1988) *J. Am. Chem. Soc.* 110: 4312-4318.

Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J., Peng, Q. (1998) Photodynamic therapy. *J. Natl. Cancer Inst.* 90: 889-905.

25

Ellis, G., Romney-Alexander, T. (1987) *Chem. Rev.* 87: 779-794.

Foote, C.S. (1971) *Pure Appl. Chem.* 27: 635-645.

Frimer, A.A. (1979) *Chem. Rev.* 79: 359-387.

Kearns, D.R. (1971) *Chem. Rev.* 71: 395-427.

35

Kliesch, H., A. Weitemeyer, S. Muller, and D. Wöhrle
(1995) *Liebigs Ann* 1269-1273.

5 Kohn, M. (1951) *J. Am. Chem. Soc.* 73: 480.

Lawrence, D.S., Whitten, D.G. (1996) *Photochemistry and Photobiology* 64(6): 923-935.

10 Leznoff, C. C. (1989) *Syntheses of Metal-Free Substituted Phthalocyanines*, In: Leznoff, C. C. and Lever, A. B. P., Eds., VCH: New York, Vol. 1, pp 6-20.

15 Marcuccio, S.M., Svirskaya, P.I., Greenberg, S., Lever, A.B.P., Leznoff, C.C., Tomer, K.B. (1985) *Can. J. Chem.* 63: 3057-3069.

20 Metz, J., Schneider, O., Hanack, M. (1984) *Inorg. Chem.* 23: 1065-1071.

Meyer, W.L., Brannon, M.J., Burgos, C.G., Goodwin, T.E., Howard, R.W. (1985) *J. Org. Chem.* 50: 438-447.

25 Mitchell, M., Lai, Y.H., Williams, R. V. (1979) *J. Am. Chem. Soc.* 101: 4733-4735.

Moser, J.G., A. Heuermann, P. Oehr, H. Scheer, A. Vervoorts, and S. Andrees (1994) *SIPE. Conf. Proc.* 92: 2325.

30 Rekharsky, M.V., Inoue, Y. (1998) *Chem. Rev.* 98: 1875-1917.

Ruebner, A., D. Kirsch, S. Andrees, W. Decker, B. Roeder, B. Spengler, R. Kaufmann, and J.G. Moser

(1997) Dimeric cyclodextrin carriers with high binding affinity to porphyrinoid photosensitizers. *Journal of Inclusion Phenomena and Molecular Recognition in Chemistry* 27: 69-84.

5 Ruebner, A., J.G. Moser, D. Kirsch, B. Spengler, S. Andrees, and S. Roehrs (1996) Synthesis of β -cyclodextrin dimers as carrier systems for photodynamic therapy of cancer. In: Szejtli, J. and L. Szente (Eds.), *Proceedings of the Eight International Symposium on Cyclodextrins*, Kluwer Academic Publishers, pp 77-80.

10 Ruebner, A., Yang, Z., Leung, D., Breslow, R. (1999) A cyclodextrin dimer with a photocleavable linker as a possible carrier for the photosensitizer in photodynamic tumor therapy. *Proceedings of the National Academy of Science* 96(26): 14692-14693.

15 Schaap, A.P. and Zaklika, K. A. (1979) in Wasserman, H. H.; Murray, R. W. *Singlet Oxygen*; Academic Press: New York, pp 173-242.

20 Sternberg, E.D., Dolphin, D., Brückner, C. (1998) Porpyhrin-based photosensitizers for use in photodynamic therapy. *Tetrahedron* 54: 4151-4202.

25 Takakis, I.M., Hadjimihalakis, P.M., Tsantali, G.G., Pilini, H. (1992) *J. Heterocyclic Chem.* 29: 123-128.

30 Yang, Z., Breslow, R. (1997) *Tetrahedron Lett.* 38: 6171-6172.

35 Yuan, D., Dong, S.D., Breslow, R. (1998) *Tetrahedron Lett.* 62: 847-855.