Samenvatting natuurkunde NOVA klas 3 VWO HF5 (aangepaste leerdoelen)

Grootheid		Eenheid	
Astand	x/s	Meter	m
Tijd	t	Seconde	s
Snelheid (velocity)	v	Meter/seconde	m/s
Versnelling (acceleratie)	а	Meter/seconde ²	m/s ²
Kracht	F	Newton	N
Massa	m	Gram	g

Eenparige beweging: een beweging met een constante snelheid.

Eenparig versnelde beweging (versnelling): een beweging met een constante versnelling. **Eenparig vertraagde beweging (vertraging):** een beweging met een constante vertraging.

Diagrammen:

x,t = afstand,tijd

v,t = snelheid,tijd

a,t = acceleratie,tijd (of versnelling,tijd)

De oppervlakte onder een a,t-diagram is het snelheidsverschil/-toename.

De oppervlakte onder een v,t-diagram is de afgelegde afstand.

De richtingscoëfficiënt van een v,t-diagram is de versnelling.

 $a = \Delta v : \Delta t$ $\Delta = eind - begin$

Twee tegenwerkende wrijvingskrachten

- Luchtwrijving
 - Ontstaat doordat je de lucht voor je opzij moet duwen
 - Hangt af van 4 factoren:
 - De **snelheid** *v*. Hoe groter *v* is, hoe meer lucht er opzij geduwd moet worden en dus hoe groter de luchtwrijving wordt.
 - De **dichtheid** ρ . Hoe groter de ρ is van de lucht, hoe meer massa er opzij geduwd moet worden dus hoe groter de luchtwrijving wordt.
 - Het **frontale oppervlak** (A) is het oppervlak dat je van voren ziet (bijv. voorkant auto). Hoe groter het frontale oppervlak, hoe meer lucht er opzij geduwd moet worden en dus hoe groter de luchtwrijving wordt.
 - De C_w-waarde (kwaliteit v/d stroomlijn). Hoe beter de stroomlijn, hoe kleiner de C_w-waarde
- Rolwrijving
 - Ontstaat bijvoorbeeld doordat een voertuig op een weg rijdt, waardoor de banden en de ondergrond vervormen. Hoe groter de vervorming, des te groter de rolwrijving.

 $F_z = zwaartekracht$

F_{voort} = voorwaartse wrijvingskracht (bijv. motor van auto)

 $F_n = normaalkracht$

F_w = lucht- en rolwrijving (achterwaartse wrijvingskracht)

Fres = resultante

Z = zwaartepunt (bijv. in het midden van een auto)

Eerste wet van Newton:

- Als de resultante op een voorwerp 0 N is en het voorwerp beweegt al, dan gaat het met dezelfde snelheid in een rechte baan verder. Staat het voorwerp stil, dan blijft het ook stilstaan.
- Andersom geldt hetzelfde: staat het voorwerp stil of beweegt het eenparig langs een rechte lijn, dan weet je dat de resultante op het voorwerp 0 N is.
- Als de voortstuwende kracht (voorwaartse wrijvingskracht) op een voorwerp groter is dan alle de tegenwerkende krachten samen, beweegt het voorwerp versneld. Bijvoorbeeld: een auto versnelt van 40 naar 80 km/h.
- Als de voortstuwende kracht op een voorwerp kleiner is dan alle tegenwerkende krachten, beweegt het voorwerp vertraagd.

Tweede wet van Newton:

$$F_{res}(F_{net}) = m x a$$

$$F_{res} = F_v - F_w$$

Versnelling voorwerp vrije val berekenen:

 $a = F_z$: m (op aarde is dit 9,81 m/s²)

Reactie-afstand: de afstand die een voorwerp (bijv. auto) in de tijd aflegt voordat er een reactie (op de omgeving o.i.d.) plaatsvindt.

Remafstand: de afstand die een voorwerp (bijv. auto) aflegt gedurende het remmen.

Stopafstand: reactie-afstand + remafstand

Gebruik bij uitwerken V_b als snelheid begin en V_e als snelheid einde!