Nom:....

Le sujet est constitué d'un exercice et d'un QCM. Il est demandé de remplir le QCM directement sur votre feuille et de le rendre avec votre copie. Pensez à mettre votre nom sur le sujet! Un barême est donné à titre indicatif.

1 Parties positives et négatives du cosinus (15 points)

Soient $f,g:\mathbb{R}\to\mathbb{R}$ les fonctions définies pour tout $t\in\mathbb{R}$ par

$$f(t) = \frac{\cos t + |\cos t|}{2}, \qquad g(t) = \frac{\cos t - |\cos t|}{2}$$

- 1. (a) Dessiner le graphe de la fonction f entre -2π et 2π (on veillera à noter précisément les valeurs clés sur le dessin). Quelle est la régularité de f? Calculer les coefficients de Fourier de f.
 - (b) Étudier la convergence de la série de Fourier de f. En déduire que

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 - 1} = \frac{\pi - 2}{4}, \qquad \sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$

(c) (⋆) En déduire que

$$\sum_{n=0}^{\infty} \frac{1}{16n^2 + 16n + 3} = \frac{\pi}{8}$$

Indication : On pourra considérer la somme des deux sommes précédentes.

(d) Montrer que

$$\sum_{n=1}^{+\infty} \frac{1}{(4n^2 - 1)^2} = \frac{\pi^2 - 8}{16}$$

- 2. (a) Dessiner le graphe de la fonction g entre -2π et 2π (on veillera à noter précisément les valeurs clés sur le dessin). Quelle est la régularité de g?
 - (b) Montrer que pour tout $t \in \mathbb{R}$, on a $f(t) + g(t) = \cos(t)$. En déduire les coefficients de Fourier de g.
- 3. Soit $h: \mathbb{R} \to \mathbb{R}$ la fonction définie pour $t \in \mathbb{R}$ par $h(t) = \frac{\sin t + |\sin t|}{2}$. Calculer les coefficients de Fourier de h.

Indication: On pourra utiliser que $\sin(t) = \cos(t - \pi/2)$.

2 QCM (6 points)

Questions	Réponses
Que vaut $\sin \frac{14\pi}{3}$?	$\square \frac{\sqrt{3}}{2}$
	$\Box -\frac{\sqrt{3}}{2}$
	\square $\frac{1}{2}$
	\Box $-\frac{1}{2}$
Si $n \in \mathbb{Z}$, que vaut	$\square (-1)^n$
$\sin(n\pi)$?	
	$\Box 0 \text{ si } n = 2k, \text{ et } (-1)^k \text{ si } n = 2k+1$
	$\Box \ (-1)^k \text{ si } n = 2k, \text{ et } 0 \text{ si } n = 2k+1$
Si $n \in \mathbb{Z}$, que vaut	$\square (-1)^n$
$\cos(n\pi)$?	
	$\Box 0 \text{ si } n = 2k, \text{ et } (-1)^k \text{ si } n = 2k+1$
	$\Box \ (-1)^k \text{ si } n = 2k, \text{ et } 0 \text{ si } n = 2k+1$
Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique paire. Alors	\square pour tout $n \in \mathbb{N}$, $a_n(f) = 0$.
	\square pour tout $n \in \mathbb{N}^*$, $b_n(f) = 0$.
	\square on ne peut rien affirmer.
Si $g(t) = \cos^2 t$ pour	$\square \ a_0(g) = 1$
tout $t \in \mathbb{R}$, alors	$\square \ a_0(g) = \frac{1}{2}$
	$\Box \ a_0(g) = 0$
Si $h(t) = \sin(\sin t)$ pour	$\square \ a_0(h) = 1$
tout $t \in \mathbb{R}$, alors	$\square \ a_0(h) = \frac{1}{2}$
	$\square \ a_0(h) = 0$