

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: IT-501

DESIGN & ANALYSIS OF ALGORITHMS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

Choose the correct alternatives for the following :

$$10 \times 1 = 10$$

- i) The functions f & g are non-negative functions. The function f(n) = O(g(n)) if and only if there exist positive constants $c \& n_0$ such that for all $n, n \ge n_0$.
 - a) $f(n) \leq C^* g(n)$
 - b) $f(n) = C^* g(n)$
 - c) $f(n) \ge C^* g(n)$
 - d) $f(n)! = C^* g(n)$.

CS/B.TECH/IT/ODD SEM/SEM-5/IT-501/2016-17

- ii) Which of the following shows the correct relationship among some of the more common computing times on algorithms?
- a) $O(\log n) < O(n) < O(n^* \log n) < O(2^n) < O(n^2)$
- b) $O(n) < O(\log n) < O(n^* \log n) < O(2^n) < O(n^2)$
- c) $O(n) < O(\log n) < O(n^* \log n) < O(n^2) < O(2^n)$
- d) $O(\log n) < O(n) < O(n^* \log n) < O(n^2) < O(2^n)$.
 - iii) The recurrence relation $T(n) = 2T(\frac{n}{2}) + n$ is satisfied by
 - a) $T(n) = O(n^2)$
 - b) $T(n) = O(\log(\log n))$
 - c) $T(n) = O(n \log n)$
 - d) $T(n) = O(n^2 \log n)$.
 - iv) What is the type of the algorithm used in solving the 8 Queens problem?
 - a) Greedy
 - b) Dynamic
 - c) Branch and Bound
 - d) Backtracking.

5/50102

2

- v) Which of the sorting algorithm does not have a worst case running time of $O(n^2)$?
 - a) Selection sort
 - b) Insertion sort
 - c) Merge sort
 - d) Quick sort.
- vi) The running time of quick sort depends heavily on the selection of
 - a) No. of inputs
 - b) Size of elements
 - Arrangement of elements in array

100

- d) Pivot element.
- vii) Which is not a feasible solution for the following job sequence problem?

Item:

2 3

Profit:

10 15 27

Deadline:

2 1 2

a) (1,4)

b) (2,4)

c) (4,3)

- d) (1,2).
- viii) The running time of Kruskal's algorithm for MST is

3

a) O(E)

- b) O(V)
- c) $O(E \log V)$
- d) All of these.

Turn over

CS/B.TECH/IT/ODD SEM/SEM-5/IT-501/2016-17

ix) Find an optimal parenthesization of a matrix chain product whose sequence of dimension s is

a) 156

b) 154

c) 158

- d) 157.
- The running time of Strassen's algorithm for matrix multiplication is
 - a) θ (n
- $\theta(n)$ b) $\theta(n^3)$
 - c) $\theta(n^2)$
- d) $\theta (n^{2\cdot 81})$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- Discuss Job sequencing problem with deadline with an example.
- 3. Write down the differences between:

 $2 \times 2\frac{1}{2}$

 $3 \times 5 = 15$

- a) Prim's and Kruskal's algorithm
- b) fractional and 0/1 Knapsack problem.
- 4. Find the best and worst case complexities of Quick sort.
- Define different asymptotic notations with graphical representation.
- 6. What is the union-find algorithm? Explain with an example.

5/50102

4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) What are the basic characteristics of Dynamic Programming?
 - b) Find the minimum number of operations required for the following matrix chain multiplication using dynamic programming:

$$A(10 \times 20) * B(20 \times 50) * C(50 \times 1) * D(1 \times 100)$$

c) Find the optimal solution using greedy criteria for a knapsack having capacity 60 kg for the following list of items having values and weights as shown in table

ltem	Weight	Profit
11	5	30
12	10	20
13	20	100
14	30	90
15	40	160

5+5+5

| Turn over

CS/B.TECH/IT/ODD SEM/SEM-5/IT-501/2016-17

 a) Consider the following map and convert it into a planar graph and draw the state space tree to colour the graph with four (R, G, B and Y) colours.

b) State Master's theorem and apply it to solve the following recurrence equation:

$$T(n) = 3T\left(\frac{n}{2}\right) + n.$$

- c) What are the basic characteristics of Greedy
 Approach?

 5+5+5
- a) Find out the time complexity of Insertion sort from the algorithm.
 - b) Compare between BFS and DFS.
 - c) Write the algorithm of Quick sort. Then find the average case time complexity of the algorithm.

- 10. a) Write the algorithm for solving N-Queen problem.
 - b) Discuss Bellman-Ford algorithm for Single Source Shortest path problem.
 - c) Explain max-flow min-cut theorem with an example. 5+5+5

5/50102

6

5

11. Write short notes on any three of the following topics:

 3×5

- a) P, NP, NPH and NPC class problems
- b) 15 puzzle problem
- c) Travelling Salesman Problem
- d) Approximation Algorithm
- e) KMP string matching algorithm.