Tempo a disposizione: 50 minuti

QUESITI

- 1. Si descriva la funzione dei comandi **whatis** e **apropos**, evidenziandone le differenze. Si citi inoltre almeno un comando ad essi equivalente.
- 2. Dato il file **pippo** con ACL pari a **-rwxr-xrwx**, indicare come cambiano tali permessi in sequenza all'esecuzione dei seguenti comandi:

chmod 755 pippo chmod a-x+w pippo chmod o-x pippo

- Indicare il comando per listare tutti i file contenuti nella directory /usr/bin che hanno il primo carattere alfabetico minuscolo e terminano con un numero.
- 4. Si supponga che la cwd sia /home/userA. Si disegni l'albero delle directories (e files) generato al termine dell'esecuzione dei seguenti comandi:

touch file1 file2
mkdir dir1
mkdir dir1/dir2
cd dir1
cp ../f* dir2
cd cp f* dir1

- Si scriva una pipeline di comandi che consenta di visualizzare i nomi delle directory contenute nella cwd, comprese quelle nascoste.
- 6. Enunciare la differenza tra i comandi **ps** e **top**, dettagliando l'output prodotto da entrambi.

- 7. Cosa s'intende per *dispatch latency* del CPU-scheduler?
- 8. Due studenti del corso di SO discutono di *page replacement* con LRU approssimato. Gianluigi sostiene che, in assenza di pagine con R=0 e C=0, vanno sostituiti i page frame con R=0 e C=1. Barbara non è d'accordo e sostiene che, sempre in assenza di pagine con R=0 e C=0, vanno sostituiti i page frame con R=0 e C=1. Con chi sei d'accordo e perchè?
- Specificare a cosa è dovuto il risparmio di tempo di un processo *n-threaded* rispetto alla cooperazione di n processi single-threaded.
- 10. Perché, nel gestire un file, si fa distinzione tra **record logico** e **record fisico**? E cosa rappresentano, rispettivamente, il record fisico e il record logico?
- 11. In quale caso è necessario un *DMA controller* e qual è la sua funzione?
- 12. Cosa s'intende per schedulazione fattibile dei sistemi real-time e perché si dice che tale problema appartiene alla classe NP hard?
- 13. Illustrare il contenuto e l'utilità della *Capability List*.

AFFERMAZIONI

Si considerino le seguenti affermazioni.

<u>Nella parte delle risposte ai quesiti</u> si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera. Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

	Affermazione
1	Un processo in tempo reale può essere eseguito in un tempo inferiore al suo <i>computation time</i> .
2	Il DMA è usato non solo per dispositivi ad alta velocità di I/O.
3	Un interrupt sincrono può essere originato soltanto da un evento hardware.
4	Una struttura di directory a grafo aciclico permette solo la condivisione di file.
5	La indicizzazione di un file può richiedere un consistente numero di blocchi-indice.
6	Una Time Synchronized One Time Password è basata su un security token software.
7	Le matrici di accesso a domini di protezione non sono generalmente matrici dense.

ESERCIZI

- 14. Quale dovrà essere la dimensione della memoria di una foto-camera digitale, se essa deve consentire di memorizzare 1X8 foto da 240x480 pixel e 512*(1+W) colori? Scrivere l'espressione in funzione di X e W.
- 15. Si abbia un HD costituito da 200 cilindri, le cui testine siano posizionate sul cilindro 1XY e procedono ad eseguire operazioni di I/O per cilindri crescenti. Ipotizzando un algoritmo di disk scheduling di tipo C-LOOK e supponendo che si abbia una coda di richieste per i seguenti cilindri:

si determini la successione di servizio delle richieste e si stabilisca il tempo di seek complessivo sapendo che il tempo minimo di seek è di 0,1 msec.

16. Le seguenti matrici descrivano lo stato corrente di un sistema in cui sono in esecuzione 5 processi (P0, P1, P2, P3, P4) e sono disponibili 4 tipi di risorse (A, B, C e D) disponibili nel sistema nel rispettivo numero massimo (8, 10, 10, 10) di esemplari. Si attualizzi con i propri valori di X e Y le matrici Allocation e Max e si determini se il sistema è in uno stato ammissibile. Spiegare perché.

Si determini quindi se il sistema si trova in uno stato sicuro. Spiegare perché.

	<u>Allocation</u>	<u> Max</u>
	ABCD	ABCD
P_0	0 0 1 2	0 0 1 2
P_1	1 1 0 0	1 7 5 0
P_2	1 3 2 4	2 3 X 6
P_3	0 2 3 1	0 X 5 2
P_4	5 0 2 2	8 6 Y 5

17. Date la Page Map Table del processo 3X5 riportata, si costruisca da essa la parte interessata della Memory Block Table.

I bit	↑ EPMT	В
1	20	4
0	9	25
Z	13	6
0	17	32
W	22	8
0	18	27
1	32	10
	1 0 Z	1 20 0 9 Z 13 0 17 W 22 0 18

В	Task ID	P	S bit
3			
4			
5			
6			
7			
8			
9			
	3.6	TO 1	T 11

PMT

Memory Block Table

- 18. Quale sarà il numero di pagine di una memoria virtuale che può estendersi fino a X6 Gbyte e che prevede page frame di 6Y Kbyte?
- 19. Si supponga che un processo periodico in tempo reale sia pronto all'istante t=10 sec, che la sua deadline sia pari a 1Y sec e il suo computation time sia di X sec. Se all'istante t=10 sec sorge la necessità di eseguire un processo aperiodico con deadline uguale a quella del periodico con processo e computation 2*(1+W+Z)sec, sarà possibile garantirne la deadline? Motivare la risposta.
- 20. In un file system UNIX-like che pre-alloca 16 blocchi per volta, vi sono, nell'index block, 16 puntatori a blocchi allocati, di cui
 - 13 puntatori diretti a blocchi di dati
 - 1 puntatore al blocco di 1^a indirezione
 - 1 puntatore al blocco di 2^a indirezione
 - 1 puntatore al blocco di 3^a indirezione

Se la dimensione di un blocco è 2^(X-1) Kb, quanti blocchi di dati e quanti di indirezione costituiranno il file dopo 6S560 operazioni di scrittura?

E quale sarà la dimensione del file?

Cognome:	; Nome:	;	matricola:	;	
<u>QUESITI</u>					
Ogni risposta a quesito, se corretta,	equivale a 2 punti, salvo che alt	rimenti specificato.			
1.		8.			
2.		9.			
3.		10.			
4.					
		11.			
5.		12.			
6.		13.			
7.					
'					
<u>AFFERMAZIONI</u>					

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

		SV	SF
	1		
	2		
	3		
	4		

	SV	SF
5		
6		
7		

ESERCIZI

Ogni esercizio correttamente svolto equivale a 2 punti, salvo che altrimenti specificato.

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

 $X = (numero\ di\ lettere\ che\ compongono\ il\ Cognome)$ - 2. $(max\ 9)$

Y = (numero di lettere che compongono il 1° Nome) - 2. (max 9)

W = 1 se Y è pari; W = 0 se Y è dispari;

Z = 1 se X è pari; Z = 0 se X è dispari;

S = (penultima cifra del numero di Matricola).

T = (ultima cifra del numero di Matricola).

14.

15.

16.

 $X = \dots$;

 $Y = \dots$;

 $W=\\ ;$

 $Z = \dots ;$

 $S = \dots$;

 $T = \dots$;

17.

P	I bit	↑ EPMT	В
0	1	20	4
1	0	9	25
2	Z	13	6
3	0	17	32
4	W	22	8
5	0	18	27
6	1	32	10

	3.6	D1 1	7D 11
9			
8			
7			
6			
5			
4			
3			
В	Task ID	P	S bit

PMT

Memory Block Table

18.

19.

20.