

Introduction to Cryptography and Security Collision Resistance

Slides are taken from Dan Boneh's Course

Outline

- 1 Introduction
- ② Generic birthday attack
- 3 The Merkle-Damgard Paradigm
- 4 HMAC: a MAC from SHA-256
- **5** Timing attacks on MAC verification

Collision Resistance

Definition

Let H: M → T be a hash function where |M| ≫ |T|.
 A collision for H is a pair m₀, m₁ ∈ M such that:

$$H(m_0) = H(m_1)$$
 and $m_0 \neq m_1$

 A function H is collision resistant if for all (explicit) "efficient" algorithms A:

$$Adv_{CR}[A, H] = Pr[A \text{ outputs collision for } H]$$
 is "negligible".

Example

SHA-256 (outputs 256 bits)

MACs from Collision Resistance

- Let I = (S, V) be a MAC for short messages over (K, M, T).
- Let $H: M^{big} \to M$ be a collision resistant hash function.
- We define $I^{big} = (S^{big}, V^{big})$ over (K, M^{big}, T) as follows:

$$S^{big}(k,m) = S(k, \ \textcolor{red}{H(m)}\) \quad ; \quad V^{big}(k,m,t) = V(k, \ \textcolor{red}{H(m)}\ ,t)$$

Theorem

If I is a secure MAC and H is collision resistant, then I^{big} is a secure MAC.

Example

 $S(k, m) = AES_{2\text{-block-cbc}}(k, SHA-256(m))$ is a secure MAC.

MACs from Collision Resistance

$$S^{big}(k,m) = S(k,H(m)) \quad ; \quad V^{big}(k,m,t) = V(k,H(m),t) \label{eq:Sbig}$$

Collision resistance is necessary for security:

Suppose adversary can find $m_0
eq m_1$ such that

$$H(m_0) = H(m_1).$$

Then S^{big} is insecure under a 1-chosen message attack:

- **1** adversary asks for $t \leftarrow S(k, m_0)$
- 2 output (m_1, t) as forgery

Protecting file integrity using C.R. hash

When user downloads package, can verify that contents are valid

- If H collision resistant then attacker cannot modify package without detection
- no key needed (public verifiability), but requires read-only space

Outline

- 1 Introduction
- 2 Generic birthday attack
- 3 The Merkle-Damgard Paradigm
- 4 HMAC: a MAC from SHA-256
- 5 Timing attacks on MAC verification

Generic attack on C.R. functions

- Let $H: M \to \{0,1\}^n$ be a hash function $(|M| \gg 2n)$
- Generic algorithm to find a collision in time $O(2^{n/2})$ hashes:

Algorithm

- **1** Choose $2^{n/2}$ random messages in $M: m_1, \ldots, m_{2^{n/2}}$ (distinct w.h.p)
- **2** For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0, 1\}^n$
- **3** Look for a collision $(t_i = t_j)$. If not found, got back to step 1.

The birthday paradox

Let $r_1, \ldots, r_n \in \{1, \ldots, B\}$ be independent identically distributed integers.

Theorem

When $n = 1.2 \times B^{1/2}$ then $\Pr[\exists i \neq j : r_i = r_j] \ge 1/2$.

$B = 10^{6}$

Generic attack

Let $H: M \to \{0,1\}^n$. Collision finding algorithm:

1 Choose $2^{n/2}$ random elements in M:

$$m_1,\ldots,m_{2^{n/2}}$$

- **2** For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0, 1\}^n$
- **3** Look for a collision $(t_i = t_j)$. If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions

Crypto++ 5.6.0 [Wei Dai]

Function	Digest size (bits)	Speed (MB/sec)	Generic attack time
SHA-1	160	153	280
SHA-256	256	111	2128
SHA-512	512	99	2256
Whirlpool	512	57	2256

Best known collision finder for SHA-1 requires 2^{51} hash evaluations

Quantum Collision Finder

	Classical algo	Quantum algo
Block cipher		
$E: K \times X \rightarrow X$	O(K)	$O(\mathcal{K} ^{1/2})$
exhaustive search		
Hash function		
$H:M\to T$	$O(T ^{1/2})$	$O(T ^{1/3})$
collision finder		

Outline

- 1 Introduction
- ② Generic birthday attack
- 3 The Merkle-Damgard Paradigm
- 4 HMAC: a MAC from SHA-256
- 5 Timing attacks on MAC verification

Collision resistance: review

- Let $H: M \to T$ be hash function $(|M| \gg |T|)$.
- A **collision** for H is a pair $m_0, m_1 \in M$ such that:

$$H(m_0) = H(m_1)$$
 and $m_0 \neq m_1$

- Goal: collision resistant (C.R.) hash functions
- Step 1: given C.R. function for short messages, construct C.R. function for long messages

The Merkle-Damgard iterated construction

- Given a (compression) function $h: T \times X \rightarrow T$,
- we obtain $H: X^{\leq L} \to T$ where H_i are chaining variables and
- PB is padding block

$$1000 \cdots || \overbrace{\mathsf{msg len}}^{64 \; \mathsf{bit}}$$

If no space for PB, then add another block.

The Merkle-Damgard iterated construction

Theorem

If the compression function h is collision resistant, then H is collision resistant.

Compression Functions from Block Cipher

- Let $E: K \times \{0,1\}^n \to \{0,1\}^n$ a block cipher.
- The Davies-Meyer compression function:

$$h(H, m) = E(m, H) \oplus H$$

Theorem

Suppose E is an ideal cipher (collection of |K| random permutations.). Finding a collision h(H,m)=h(H',m') takes $O(2^{n/2})$ evaluations of (E,D).

Question

Suppose we define

$$h(H, m) = E(m, H).$$

Then the resulting h(.,.) is not collision resistant.

To build a collision (H, m) and (H', m') choose random (H, m, m') and construct H' as follows:

- **1** H' = D(m', E(m, H))
- **2** H' = E(m', D(m, H))
- 3 H' = E(m', E(m, H))
- **4** H' = D(m', D(m, H))

Other block cipher constructions

Let $E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ for simplicity.

Miyaguchi-Preneel:

- $h(H, m) = E(m, H) \oplus H \oplus m$ (Whirlpool)
- $h(H, m) = E(H \oplus m, m) \oplus m$

total of 12 variants like this

Other natural variants are insecure:

$$h(H, m) = E(m, H) \oplus m$$

Case study: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2

Outline

- 1 Introduction
- ② Generic birthday attack
- 3 The Merkle-Damgard Paradigm
- 4 HMAC: a MAC from SHA-256
- **5** Timing attacks on MAC verification

The Merkle-Damgard iterated construction

Theorem

If h collision resistant, then H collision resistant.

Question

Can we use H(.) to directly build a MAC?

HMAC in pictures

- Similar to the NMAC PRF.
- Main difference: the two keys k_1, k_2 are dependent.

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about h(.,.)
- Security bounds similar to NMAC: Need $q^2/|T|$ to be negligible ($q \ll |T|^{1/2}$)

In TLS: must support HMAC-SHA1-96

Outline

- 1 Introduction
- ② Generic birthday attack
- 3 The Merkle-Damgard Paradigm
- 4 HMAC: a MAC from SHA-256
- 5 Timing attacks on MAC verification

Warning: verification timing attacks

Example: Keyczar crypto library (Python) [simplified]

```
def Verify(key, msg, sig_bytes):
    return HMAC(key, msg) == sig_bytes
```

The problem: `==' implemented as a byte-by-byte comparison

Comparator returns false when first inequality found

Warning: verification timing attacks

Timing attack: to compute tag for target message m do:

- Query server with random tag.
- 2 Loop over all possible first bytes and query server. Stop when verification takes a little longer than in step 1.
- 3 Repeat for all tag bytes until valid tag found.

Defense #1

Make string comparator always take same time (Python):

```
return false if sig_bytes has wrong length
result = 0
for x, y in zip( HMAC(key,msg) , sig_bytes):
    result |= ord(x) ^ ord(y)
return result == 0
```

Can be difficult to ensure due to optimizing compiler.

Defense #2

Make string comparator always take same time (Python) :

```
def Verify(key, msg, sig_bytes):
    mac = HMAC(key, msg)
    return HMAC(key, mac) == HMAC(key, sig_bytes)
```

Attacker doesn't know values being compared.

Lesson

Don't implement crypto yourself!

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you!

