Homework 6

Madilyn Simons

1. To prove that "is an associate of" is an equivalence relation on R, we must show that it is reflexive, symmetric, and transitive.

First, since R is a commutative ring, there exists some identity element in R, 1_R , such that $a1_R = a$. We can say that 1_R is a unit since $1_R \dot{1}_R = 1_R$. Since $a1_R = a$, a is an associate of a and "is an associate of" is reflexive.

Next, let $a, b \in R$ such that a is an associate of b. Therefore, there exist some unit, u, in R such that au = b. Since u is a unit, there also exists some unit $v \in R$ such that $uv = 1_R$.

If a = bu, then

$$av = (bu)v$$

$$av = buv$$

$$av = b(uv)$$

$$av = b1_R$$

$$av = b$$

Therefore, b is an associate of a and "is an associate of" is reflexive.

Finally, let a be an associate of b and let b be an associate of c for some elements $a, b, c \in R$. Therefore, a = bu and b = cv for some units $u, v \in R$.

We notice that

$$a = bu$$

$$a = (cv)u$$

$$a = c(vu)$$

We know that vu is a unit because there exists some v^{-1} , $u^{-1} \in R$ such that $vv^{-1} = 1_R$ and $uu^{-1} = 1_R$ since v and u are units. Thus, $(vu)(v^{-1}u^{-1}) = (vv^{-1})(uu^{-1}) = 1_R$ and so vu is a unit. Since vu is a unit, a is an associate of c and "is an associate of" is transitive.