Importing Libraries

```
1 import numpy as np
2 import pandas as pd

1 country = pd.read_csv("/content/Metadata_Country.csv")
2 population = pd.read_csv("/content/country_population.csv")
3 fertility = pd.read_csv("/content/fertility_rate.csv")
4 life_expectancy = pd.read_csv("/content/life_expectancy.csv")
```

Data cleaning on Country Dataset

1 country.head()

₹		Country Code	Region	IncomeGroup	SpecialNotes	TableName	Unnamed: 5
	0	ABW	Latin America & Caribbean	High income	SNA data for 2000-2011 are updated from offici	Aruba	NaN
	1	AFG	South Asia	Low income	Fiscal year end: March 20; reporting period fo	Afghanistan	NaN
	2	AGO	Sub-Saharan Africa	Lower middle income	NaN	Angola	NaN
	3	ALB	Europe & Central Asia	Upper middle income	NaN	Albania	NaN
	4	AND	Europe & Central Asia	High income	WB-3 code changed from ADO to AND to align wit	Andorra	NaN

1 country.tail()

₹	Country Code F		Region	IncomeGroup	SpecialNotes	TableName	Unnamed: 5
	258	XKX	Europe & Central Asia	Lower middle income	WB-3 code changed from KSV to XKX to align wit	Kosovo	NaN
	259	YEM	Middle East & North Africa	Lower middle income	Based on official government statistics and In	Yemen, Rep.	NaN
	260	ZAF	Sub-Saharan Africa	Upper middle income	Fiscal year end: March 31; reporting period fo	South Africa	NaN
	261	ZMB	Sub-Saharan Africa	Lower middle income	The base year is 2010. National accounts data	Zambia	NaN
	262	ZWE	Sub-Saharan Africa	Low income	Fiscal year end: June 30; reporting period for	Zimbabwe	NaN

```
1 # We want only 'Country code', 'Region' and 'TableName' columns.
```

```
→ (263, 3)
```

```
1 #Changing the 'TableName' to 'Country Name'
```

- 1 #Checking data types
- 2 country.dtypes
- Country Code object
 Region object
 Country Name object
 dtype: object

1 country.head()

→ ▼	Country		Code	Region	Country Name
	0		ABW	Latin America & Caribbean	Aruba
	1		AFG	South Asia	Afghanistan
	2		AGO	Sub-Saharan Africa	Angola
	3		ALB	Europe & Central Asia	Albania
	4		AND	Europe & Central Asia	Andorra

1 country.isna().sum()

² country = country[['Country Code','Region','TableName']]

³ country.shape

² country.rename(columns={'TableName': 'Country Name'}, inplace=True)

Country Code Region 46
Country Name dtype: int64

Data cleaning on fertillity dataset

1 fertility.head()

₹		Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965	 2007	2008	2009	2010	2011	2012
	0	Aruba	ABW	Fertility rate, total (births per woman)	SP.DYN.TFRT.IN	4.820	4.655	4.471	4.271	4.059	3.842	 1.763	1.764	1.769	1.776	1.783	1.791
	1	Afghanistan	AFG	Fertility rate, total (births per woman)	SP.DYN.TFRT.IN	7.450	7.450	7.450	7.450	7.450	7.450	 6.460	6.254	6.038	5.816	5.595	5.380
	4 ▮																•

1 fertility.shape

- **→** (264, 61)
- 1 #We don't need 'Indicator Name' and 'Indiactor Code' column
- 2 fertility.drop(['Indicator Name','Indicator Code'],axis=1,inplace=True)
- 1 #Filling the empty values with the mean
- 2 fertility.fillna(fertility.mean(), inplace=True)
- <ipython-input-13-47090a0846a8>:2: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future ver fertility.fillna(fertility.mean(), inplace=True)

1 fertility.head()

₹		Country Name	Country Code	1960	1961	1962	1963	1964	1965	1966	1967	 2007	2008	2009	2010	
	0	Aruba	ABW	4.820000	4.655000	4.471000	4.271000	4.059000	3.842000	3.625000	3.4170	 1.763	1.764	1.769	1.776	1.78
	1	Afghanistan	AFG	7.450000	7.450000	7.450000	7.450000	7.450000	7.450000	7.450000	7.4500	 6.460	6.254	6.038	5.816	5.59
	2	Angola	AGO	7.478000	7.524000	7.563000	7.592000	7.611000	7.619000	7.618000	7.6130	 6.368	6.307	6.238	6.162	6.082
	3	Albania	ALB	6.489000	6.401000	6.282000	6.133000	5.960000	5.773000	5.581000	5.3940	 1.668	1.650	1.646	1.653	1.66
	4	Andorra	AND	5.508217	5.493573	5.495798	5.495507	5.458346	5.415664	5.365999	5.3277	 1.180	1.250	1.190	1.270	2.87
	4															-

1 fertility.tail()

_		Country Name	Country Code	1960	1961	1962	1963	1964	1965	1966	1967	 2007	2008	2009	2010	201
	259	Kosovo	XKX	5.508217	5.493573	5.495798	5.495507	5.458346	5.415664	5.365999	5.3277	 2.430	2.380	2.340	2.290	2.24
	260	Yemen, Rep.	YEM	7.488000	7.531000	7.575000	7.621000	7.665000	7.705000	7.737000	7.7600	 5.090	4.940	4.801	4.674	4.5
	261	South Africa	ZAF	6.041000	6.028000	6.010000	5.986000	5.956000	5.920000	5.878000	5.8320	 2.636	2.619	2.603	2.588	2.57
	262	Zambia	ZMB	7.115000	7.169000	7.214000	7.249000	7.274000	7.291000	7.304000	7.3170	 5.642	5.561	5.478	5.397	5.3′
	4															•

Data cleaning on Population Dataset

1 population.head()

1 population.shape

→ (264, 61)

- 1 #We don't need 'Indicator Name' and 'Indiactor Code' column
- 2 population.drop(['Indicator Name','Indicator Code'],axis=1,inplace=True)
- 1 population.dropna(axis=0, inplace=True)
- 1 population.shape
- **→** (258, 59)
- 1 population = population.round(decimals=0)
- 1 population.head()

	Country Name	Country Code	1960	1961	1962	1963	1964	1965	1966	1967	 2007	
0	Aruba	ABW	54211.0	55438.0	56225.0	56695.0	57032.0	57360.0	57715.0	58055.0	 101220.0	1013
1	Afghanistan	AFG	8996351.0	9166764.0	9345868.0	9533954.0	9731361.0	9938414.0	10152331.0	10372630.0	 26616792.0	272940
2	Angola	AGO	5643182.0	5753024.0	5866061.0	5980417.0	6093321.0	6203299.0	6309770.0	6414995.0	 20997687.0	217594
3	Albania	ALB	1608800.0	1659800.0	1711319.0	1762621.0	1814135.0	1864791.0	1914573.0	1965598.0	 2970017.0	29473
4	Andorra	AND	13411.0	14375.0	15370.0	16412.0	17469.0	18549.0	19647.0	20758.0	 82683.0	838
5 rc	ws × 59 colun	nns										
4												•

Data cleaning on Life Expectancy Dataset

1 life_expectancy.head()

_		Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	196
	0	Aruba	ABW	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	65.662	66.074	66.444	66.787	67.11
	1	Afghanistan	AFG	Life expectancy at birth,	SP.DYN.LE00.IN	32.292	32.742	33.185	33.624	34.06

1 life_expectancy.shape

3

4

Country Name

Year Population dtype: int64 a

Albania

Andorra

```
→ (264, 61)
1 #We don't need 'Indicator Name' and 'Indiactor Code' column
2 life_expectancy.drop(['Indicator Name','Indicator Code'],axis=1,inplace=True)
1 life expectancy = life expectancy.fillna(life expectancy.mean()).round(decimals=0)
   <ipython-input-26-55c4c1a08fc7>:1: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future ver
      life_expectancy = life_expectancy.fillna(life_expectancy.mean()).round(decimals=0)
1 life_expectancy.dropna(axis=0, inplace=True)
1 life_expectancy.head()
\overline{2}
           Country
                   Country
                                                                                                 2010 2011 2012 2013 2014 2015
                            1960
                                 1961 1962 1963 1964 1965 1966 1967 ... 2007 2008 2009
                                                                                                                                    201€
             Name
                      Code
     0
            Aruba
                      ABW
                             66.0
                                   66.0
                                         66.0
                                              67.0
                                                    67.0
                                                          67.0
                                                                68.0
                                                                      68.0
                                                                                 75.0
                                                                                      75.0
                                                                                            75.0
                                                                                                  75.0
                                                                                                        75.0
                                                                                                              75.0
                                                                                                                    75.0
                                                                                                                          76.0
                                                                                                                               76.0
                                                                                                                                     76.0
                                                                                                              62.0
                                                                                                                          63.0
     1
       Afghanistan
                       AFG
                             32 0
                                  33.0
                                        33.0
                                              34 0
                                                    34 0
                                                          34 0
                                                                35.0
                                                                      35.0
                                                                                60.0
                                                                                      60.0
                                                                                            61.0
                                                                                                  61.0
                                                                                                        62.0
                                                                                                                    62.0
                                                                                                                               63.0
                                                                                                                                     64 (
     2
            Angola
                      AGO
                             33.0
                                   34.0
                                         34.0
                                              34.0
                                                    35.0
                                                          35.0
                                                                35.0
                                                                      36.0
                                                                                55.0
                                                                                       56.0
                                                                                            57.0
                                                                                                  58.0
                                                                                                        59.0
                                                                                                              60.0
                                                                                                                    60.0
                                                                                                                          61.0
                                                                                                                                     62.0
```

Melt and Merge Function of Python

AI B

AND

62.0

53.0

63.0

54.0

64 0

54.0

65.0

55.0

65.0

55.0

66.0

56.0

66.0

56.0

66.0

57.0

76.0

69.0

76.0

70.0

76.0

70.0

77.0

70.0

77.0

71.0

77.0

71.0

78.0

71.0

78.0

72.0

78.0

72.0

78 (

72.0

```
1 #Years present in the data are present in row wise format we want it in column format
   2 years = [str(i) for i in range(1960,2017)]
   3 print(vears)
 🔂 ['1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1975', '1
   1 # Melt function on population data
   2 df_population = pd.melt(population,
   3
                                       id_vars='Country Name',
   4
                                        value_vars=years,
                                       var_name='Year',
   5
                                        value_name='Population')
   6
   7 df population
₹
                                        Country Name Year
                                                                                                         Population
                        0
                                                                                                                    54211 0
                                                                Aruba
                                                                                      1960
                                                                                                             8996351.0
                        1
                                                                                      1960
                                                 Afghanistan
                        2
                                                             Angola
                                                                                      1960
                                                                                                             5643182.0
                        3
                                                                                                             1608800.0
                                                            Albania
                                                                                      1960
                        4
                                                                                                                     13411.0
                                                           Andorra
                                                                                      1960
                   14701
                                                                                  2016
                                                                                                             1816200.0
                                                            Kosovo
                   14702
                                             Yemen, Rep.
                                                                                     2016
                                                                                                         27584213.0
                  14703
                                                South Africa
                                                                                    2016
                                                                                                          56015473.0
                   14704
                                                             Zambia
                                                                                    2016
                                                                                                           16591390.0
                  14705
                                                                                  2016
                                                                                                         16150362 0
                                                    7imhahwe
               14706 rows × 3 columns
   1 df population.isna().sum()
```

Merging the Country and Population data

```
1 country_and_population = pd.merge(country,df_population,how='left',on='Country Name')
```

1 country_and_population

₹	Country Co		Region	Country Name	Year	Population
	0	ABW	Latin America & Caribbean	Aruba	1960	54211.0
	1	ABW	Latin America & Caribbean	Aruba	1961	55438.0
	2	ABW	Latin America & Caribbean	Aruba	1962	56225.0
	3	ABW	Latin America & Caribbean	Aruba	1963	56695.0
	4	ABW	Latin America & Caribbean	Aruba	1964	57032.0
	14202	ZWE	Sub-Saharan Africa	Zimbabwe	2012	14710826.0
	14203	ZWE	Sub-Saharan Africa	Zimbabwe	2013	15054506.0
	14204	ZWE	Sub-Saharan Africa	Zimbabwe	2014	15411675.0
	14205	ZWE	Sub-Saharan Africa	Zimbabwe	2015	15777451.0
	14206	ZWE	Sub-Saharan Africa	Zimbabwe	2016	16150362.0

14207 rows × 5 columns

→ -	Country Code	Year	Fertility Rate
0	ABW	1960	4.820000
1	AFG	1960	7.450000
2	AGO	1960	7.478000
3	ALB	1960	6.489000
4	AND	1960	5.508217
15043	XKX	2016	2.060000
15044	YEM	2016	3.995000
15045	ZAF	2016	2.458000
15046	ZMB	2016	4.981000
15047	ZWE	2016	3.760000

15048 rows × 3 columns

```
1 df_fertility.isna().sum()
```

```
Country Code 0
Year 0
Fertility Rate 0
dtype: int64
```

		Country Code	Year	Life Expectancy
	0	ABW	1960	66.0
	1	AFG	1960	32.0
	2	AGO	1960	33.0
	3	ALB	1960	62.0
	4	AND	1960	53.0
	15043	XKX	2016	72.0
	15044	YEM	2016	65.0
	15045	ZAF	2016	63.0
	15046	ZMB	2016	62.0
	15047	ZWE	2016	61.0

15048 rows × 3 columns

1 df_life_expectancy.isna().sum()

Country Code
Year

Life Expectancy
dtype: int64

Merging Fertility and Life expectancy data

1 fertility_and_life_expectancy=pd.merge(df_fertility, df_life_expectancy, how='left', on=['Country Code', 'Year'])
2 fertility_and_life_expectancy

		Country Code	Vear	Fortility Rate	Life Expectancy
		country couc	icai	Terefiley Race	Life Expectancy
	0	ABW	1960	4.820000	66.0
	1	AFG	1960	7.450000	32.0
	2	AGO	1960	7.478000	33.0
	3	ALB	1960	6.489000	62.0
	4	AND	1960	5.508217	53.0
	15043	XKX	2016	2.060000	72.0
	15044	YEM	2016	3.995000	65.0
	15045	ZAF	2016	2.458000	63.0
	15046	ZMB	2016	4.981000	62.0
	15047	ZWE	2016	3.760000	61.0

15048 rows × 4 columns

Merging all four dataset i.e country, population, fertility, life_expectancy

```
1 # Merge country_and_population and fertility_and_life_expectancy
2 df2 = pd.merge(country_and_population, fertility_and_life_expectancy, how='left', on=['Country Code', 'Year'])
3 df2 = df2[['Country Name', 'Country Code', 'Region', 'Year', 'Population', 'Fertility Rate', 'Life Expectancy']]
4 df2
```

₹		Country Name	Country Code	Region	Year	Population	Fertility Rate	Life Expectancy
	0	Aruba	ABW	Latin America & Caribbean	1960	54211.0	4.820	66.0
	1	Aruba	ABW	Latin America & Caribbean	1961	55438.0	4.655	66.0
	2	Aruba	ABW	Latin America & Caribbean	1962	56225.0	4.471	66.0
	3	Aruba	ABW	Latin America & Caribbean	1963	56695.0	4.271	67.0
	4	Aruba	ABW	Latin America & Caribbean	1964	57032.0	4.059	67.0
	14202	Zimbabwe	ZWE	Sub-Saharan Africa	2012	14710826.0	3.996	57.0
	14203	Zimbabwe	ZWE	Sub-Saharan Africa	2013	15054506.0	3.957	58.0
	14204	Zimbabwe	ZWE	Sub-Saharan Africa	2014	15411675.0	3.903	59.0
	14205	Zimbabwe	ZWE	Sub-Saharan Africa	2015	15777451.0	3.836	60.0
	14206	Zimbabwe	ZWE	Sub-Saharan Africa	2016	16150362.0	3.760	61.0

1 df2.dtypes

₹	Country Name Country Code Region Year Population Fertility Rate	object object object float64 float64
	'	float64 float64

14207 rows × 7 columns

1 df2.isna().sum()

₹	Country Name Country Code Region Year Population Fertility Rate Life Expectancy	0 0 2342 14 14 14
	dtype: int64	14

1 df2.dropna(axis=0, inplace=True)

1 df2.describe()

_		Population	Fertility Rate	Life Expectancy
	count	1.185600e+04	11856.000000	11856.000000
	mean	2.442365e+07	4.049458	63.815115
	std	1.014951e+08	1.955316	11.040307
	min	4.279000e+03	0.827000	19.000000
	25%	4.774162e+05	2.243000	57.000000
	50%	4.140050e+06	3.758000	66.000000
	75%	1.308559e+07	5.804000	72.000000
	max	1.378665e+09	8.866000	85.000000

Final Data

```
1 #Final Data
```

² print("Final data after cleaning and Merging")

³ df2

→ Final data after cleaning and Merging

	Country Name	Country Code	Region	Year	Population	Fertility Rate	Life Expectancy
0	Aruba	ABW	Latin America & Caribbean	1960	54211.0	4.820	66.0
1	Aruba	ABW	Latin America & Caribbean	1961	55438.0	4.655	66.0
2	Aruba	ABW	Latin America & Caribbean	1962	56225.0	4.471	66.0
3	Aruba	ABW	Latin America & Caribbean	1963	56695.0	4.271	67.0
4	Aruba	ABW	Latin America & Caribbean	1964	57032.0	4.059	67.0
14202	Zimbabwe	ZWE	Sub-Saharan Africa	2012	14710826.0	3.996	57.0
14203	Zimbabwe	ZWE	Sub-Saharan Africa	2013	15054506.0	3.957	58.0
14204	Zimbabwe	ZWE	Sub-Saharan Africa	2014	15411675.0	3.903	59.0
14205	Zimbabwe	ZWE	Sub-Saharan Africa	2015	15777451.0	3.836	60.0
14206	Zimbabwe	ZWE	Sub-Saharan Africa	2016	16150362.0	3.760	61.0
11856 rows × 7 columns							

^{11656 10}WS × 7 COIUIIII

→ (11856, 7)

Data Visualization

- 1 import matplotlib.pyplot as plt
- 2 import seaborn as sns
- 3 import plotly.express as px
- 4 import plotly.graph_objects as go
- 5 from ipywidgets import interact
- 1. Creating line chart to show population trends over time w.r.to Country

¹ df2.shape

¹ df2.to_csv('Merged_data.csv', index=False)

```
1 countries = df2['Country Name'].unique()
    3 # Create an empty figure
    4 fig = go.Figure()
   6 # Add traces for each country
    7 for country in countries:
    8
                       country_data = df2[df2['Country Name'] == country]
   9
                       fig.add_trace(go.Scatter(x=country_data['Year'], y=country_data['Population'], mode='lines+markers', name=country_data['Year'], y=country_data['Year'], y=country_data['Year'], mode='lines+markers', name=country_data['Year'], y=country_data['Year'], y=country_data['Year'], mode='lines+markers', name=country_data['Year'], y=country_data['Year'], y=country_data['Year'], mode='lines+markers', name=country_data['Year'], y=country_data['Year'], y=country_data['Year'], y=country_data['Year'], mode='lines+markers', name=country_data['Year'], y=country_data['Year'], y=country_data['Year'], mode='lines+markers', name=country_data['Year'], y=country_data['Year'], mode='lines+markers', name=country_data['Year'], mode='lines+markers', name='lines+markers', name='lines+markers', name='lines+markers', name='lines+markers', n
10
11 fig.update_layout(
                      title='Population Trends Over Time',
12
13
                       xaxis=dict(title='Year'),
14
                      yaxis=dict(title='Population'),
15
                       showlegend=True,
16
                       updatemenus=[
17
                                    {
18
                                                   'buttons': [
19
                                                                {
20
                                                                               'method': 'update',
21
                                                                              'label': country,
                                                                              'args': [{'y': [df2[df2['Country Name'] == country]['Population']], 'name': country}]
22
23
                                                                } for country in countries
24
                                                  ],
25
                                                   'direction': 'down',
                                                   'showactive': True,
26
                                                   'x': 0.5,
27
                                                   'xanchor': 'center',
28
29
                                                   'y': 1.15,
                                                   'yanchor': 'top'
30
31
                                     }
32
                       ]
33)
34
35 # Show the plot
36 fig.show()
₹
```


Created filter on Country to show population trends over time w.r.to Country

```
1 def plot_population(country):
      country_data = df2[df2['Country Name'] == country]
      plt.figure(figsize=(22, 6)) # Adjust figure size to accommodate the longer x-axis labels
 3
      plt.plot(country_data['Year'], country_data['Population'],color='magenta', marker='o', linestyle='-', label=cour
 4
 5
      plt.title('Population Change Over Time')
      plt.xlabel('Year')
 6
      plt.ylabel('Population')
 7
 8
      plt.legend(loc='upper left') # Change the legend position if needed
 9
      plt.xticks(rotation=50) # Rotate x-axis labels for better readability
10
      plt.grid(True)
11
      plt.show()
12
13 # Get unique countries
14 countries = df2['Country Name'].unique()
16 # Create interactive plot using ipywidgets
17 interact(plot_population, country=countries);
\rightarrow
```


Created filter on Country to show Life Expectancy trends over time w.r.to Country

```
1 def life_expectancy_rate(country):
      country_data = df2[df2['Country Name'] == country]
 3
      plt.figure(figsize=(22, 6))
      plt.plot(country_data['Year'], country_data['Life Expectancy'],color='green', marker='o', linestyle='-', label=c
 4
 5
      plt.title('Life Expectancy Rate Change Over Time')
 6
      plt.xlabel('Year')
      plt.ylabel('Life Expectancy Rate')
 7
      \verb|plt.legend(loc='upper left')| # Change the legend position if needed|
 8
      plt.xticks(rotation=50) # Rotate x-axis labels for better readability
 9
10
      plt.grid(True)
11
      plt.show()
12
13 # Get unique countries
14 countries = df2['Country Name'].unique()
15
16 # Create interactive plot using ipywidgets
17 interact(life_expectancy_rate, country=countries);
```


Created filter on Country to show Fertility Rate trends over time w.r.to Country

```
1 def fertility_rate(country):
      country_data = df2[df2['Country Name'] == country]
2
 3
      plt.figure(figsize=(22, 6))
      plt.plot(country_data['Year'], country_data['Fertility Rate'],color='red', marker='o', linestyle='-', label=cour
 4
      plt.title('Fertility Rate Rate Change Over Time')
5
      plt.xlabel('Year')
plt.ylabel('Fertility Rate')
6
 7
8
      plt.legend(loc='upper left') # Change the legend position if needed
9
      plt.xticks(rotation=50) # Rotate x-axis labels for better readability
10
      plt.grid(True)
11
       plt.show()
12
13 # Get unique countries
14 countries = df2['Country Name'].unique()
15
16 # Create interactive plot using ipywidgets
17 interact(fertility_rate, country=countries);
<del>_</del>
```



```
1 # Fertility rate vs life expectancy
 2 px.scatter(df2,
              x="Fertility Rate",
3
4
              y="Life Expectancy",
 5
              animation_frame="Year",
 6
              animation_group="Country Code",
 7
              size="Population",
              size_max=float("180"),
8
 9
              hover_name="Country Name",
10
              color="Region",
11
              template="plotly",
              labels={'Region'},
12
13
              range_x=[0,10],
14
              range_y=[10,90],
              title='Fertility Rate vs Life Expectancy')
15
\rightarrow
```

Fertility Rate vs Life Expectancy

Bar plot showing region wise population

```
1 region_population = df2.groupby('Region')['Population'].sum().reset_index()
2
 3 # Define colors for each region
4 colors = ["orange", "red", "green", "blue", "purple", 'magenta', 'cyan'] # Example colors, you can define your own
6 # Create a Plotly bar plot with customized colors
 7 fig = go.Figure(go.Bar(
      x=region_population['Region'],
8
9
      y=region_population['Population'],
10
      marker_color=colors
11))
12
13 # Update layout
14 fig.update_layout(
      title='Population by Region',
16
      xaxis=dict(title='Region'),
      yaxis=dict(title='Population'),
17
18
      showlegend=False
19)
20
21 # Show the plot
22 fig.show()
```


Population by Region

Country wise Life expectancy over the years

Country wise Fertility Rate over the years

1 #scatter graph for population and fertility rate

2 px.scatter(df2, x="Year", y=["Population", "Fertility Rate"], color="Region", color_continuous_scale='bluered', titl

 $\overline{\Rightarrow}$

Population and Fertility Rate by Region

