DEVOIR SURVEILLÉ N°7

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 –

Partie I -

Notons E le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} de classe C^{∞} et $D: f \in E \mapsto f'$. Il est clair que D est un endomorphisme de E.

1. Déterminer le noyau et l'image de D.

$$\text{Soient } f_1: t \in \mathbb{R} \mapsto e^t, \, f_2: t \in \mathbb{R} \mapsto e^{-t/2} \sin \left(\frac{t\sqrt{3}}{2} \right) \text{ et } f_3: t \in \mathbb{R} \mapsto e^{-t/2} \cos \left(\frac{t\sqrt{3}}{2} \right).$$

Nous noterons $\mathcal{B} = (f_1, f_2, f_3)$ et G le sous-espace vectoriel de E engendré par \mathcal{B} .

Nous allons montrer que \mathcal{B} est une famille libre de vecteurs de E .

Soient a, b et c des réels tels que $af_1 + bf_2 + cf_3$ soit la fonction nulle.

2. L'étudiante Antoinette observe que $af_1(t) + bf_2(t) + cf_3(t) = 0$ pour tout réel t. Elle choisit (adroitement) trois valeurs de t, obtient un système de trois équations à trois inconnues a, b et c, qu'elle résout ; il ne lui reste plus qu'à conclure.

Faites comme elle!

3. L'étudiante Lucie propose d'exploiter le développement limité à l'ordre 2 de la fonction $af_1+bf_2+cf_3$ au voisinage de 0.

Faites comme elle!

4. L'étudiante Nicole décide de s'intéresser au comportement de $af_1(t) + bf_2(t) + cf_3(t)$ lorsque t tend vers $+\infty$.

Faites comme elle!

La famille $\mathcal B$ est donc une base de G et ce sous-espace est de dimension 3.

5. Montrer que G est stable par D c'est-à-dire que $D(G) \subset G$.

Nous noterons \widehat{D} l'endomorphisme de G induit par D, c'est-à-dire l'endomorphisme de G défini par $\widehat{D}(f) = D(f)$ pour $f \in G$.

- **6.** Montrer que $\widehat{D}^3 = Id_G$.
- 7. En déduire que \widehat{D} est un automorphisme de G et exprimer $(\widehat{D})^{-1}$ en fonction de \widehat{D} .

Partie II -

Nous nous intéressons dans cette partie à l'équation différentielle y'''=y, que nous noterons (\mathcal{E}) . Une solution sur \mathbb{R} de (\mathcal{E}) est une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} , trois fois dérivable sur \mathbb{R} , vérifiant f'''(t)=f(t) pour tout $t\in\mathbb{R}$.

- **1.** Montrer que toute solution f de (\mathcal{E}) est C^{∞} .
 - Notons $T = D^3 Id_F$, où Id_F est l'identité de E, et $D^3 = D \circ D \circ D$.
 - Le noyau de T est donc l'ensemble des solutions de (\mathcal{E})
- 2. Montrer que G est contenu dans le noyau de T.

Nous allons établir l'inclusion inverse ; ainsi, G sera exactement l'ensemble des solutions de (\mathcal{E}) .

Soit f une solution de (\mathcal{E}) ; nous noterons g = f'' + f' + f.

- 3. Montrer que q est solution de l'équation différentielle y' = y.
- 4. Décrivez rapidement l'ensemble des solutions à valeurs réelles de l'équation différentielle y' y = 0.
- **5.** Résolvez l'équation différentielle y'' + y' + y = 0. Vous donnerez une base de l'ensemble des solutions à valeurs réelles.
- **6.** Soit $\lambda \in \mathbb{R}$. Décrivez l'ensemble des solutions à valeurs réelles de l'équation différentielle $y'' + y' + y = \lambda e^t$.
- 7. Et maintenant, concluez!

Exercice 1.★

Soit E un \mathbb{R} -espace vectoriel de dimension $n \ge 2$. On dit qu'un sous-espace vectoriel F de E est *stable* par un endomorphisme f de E si $f(F) \subset F$.

- **1.** Soit $f \in \mathcal{L}(E)$ tel que $f^{n-1} \neq \mathbf{0}$ et $f^n = \mathbf{0}$ où $\mathbf{0}$ désigne l'endomorphisme nul de E.
 - **a.** Montrer qu'il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Montrer que, pour un tel vecteur x, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est une base de E.

Dans toute la suite de l'exercice, f est un endomorphisme de E tel que $f^{n-1} \neq \mathbf{0}$ et $f^n = \mathbf{0}$ et x un vecteur de E tel que $f^{n-1}(x) \neq \mathbf{0}$.

- 2. Pour k un entier tel que $1\leqslant k\leqslant n,$ on pose $F_k=\text{vect}\left((f^{n-i}(x))_{1\leqslant i\leqslant k}\right)$
 - **a.** Déterminer la dimension de F_k.
 - **b.** Montrer que $F_k = Ker(f^k) = Im(f^{n-k})$.
 - **c.** Montrer que F_k est stable par f.
- 3. Soit F un sous-espace vectoriel stable par f. On suppose que F est de dimension k avec $1 \leqslant k \leqslant n-1$. On note \tilde{f} l'endomorphisme de F défini par : $\forall y \in F$, $\tilde{f}(y) = f(y)$.
 - **a.** Montrer qu'il existe un entier $p \ge 1$ tel que $\tilde{f}^{p-1} \ne \tilde{\mathbf{0}}$ et $\tilde{f}^p = \tilde{\mathbf{0}}$ où $\tilde{\mathbf{0}}$ désigne l'endomorphisme nul de F.
 - **b.** Soit $y \in F$ tel que $\tilde{f}^{p-1}(y) \neq 0$. Que peut-on dire de la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$? En déduire que $\tilde{f}^k = \tilde{\mathbf{0}}$.
 - **c.** Montrer que $F = \text{Ker } f^k$.
 - d. Déterminer tous les sous-espaces vectoriels stables par f.
- **4.** On veut déterminer tous les endomorphismes g de E qui commutent avec f, c'est-à-dire tels que $f \circ g = g \circ f$.
 - **a.** Soit g un endomorphisme de E. Montrer qu'il existe un unique n-uplet de nombres réels $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$ tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

b. En déduire que si g commute avec f alors,

$$g=\alpha_0\operatorname{Id}_E+\alpha_1f+\cdots+\alpha_{n-1}f^{n-1}$$

où $\alpha_0,\alpha_1,\dots,\alpha_{n-1}$ sont les réels définis à la question précédente.

c. Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de $\mathcal{L}(\mathsf{E})$ et préciser sa dimension.