Predicting mushroom edibility

Overview

Here in this project, we are able to sucessfully predict mushroom edibility based on both unsupervised and supervised learning methods. Result suggest that supervised method has better performance, when using a decision tree, we are able to have almost 100% accuracy, suggesting a promising way to predict mushroom edibility.

Names

- · Tianyi Bian
- Xuhui Liu
- · Yijing Zhang

Research Question

Can we use machine learning algorithems to predict the edibility of mushrooms based on their physical attributes? Can we find which physical attribute contribute the most to the edibility? The physical attributes include shapes, colors, types of cap, gill, stalk and so on.

Background & Prior Work

localhost:8888/lab 1/42

Predicting whether a mushroom is edible is a very interesting and meaningful question. When people are in food shortage or are hiking, mushrooms are an important and delicious food resource. However, some mushrooms are poisonous and very dangerous. We need to figure out a way to find out what mushrooms are edible.

- 1) K-Means Clustering vs. Logistic Regression The first project focus on comparing two methods on predicting whether the mushroom is edible. This project is interesting because it compares supervised and unsupervised leaning in the binary prediction case. Besides, since both method is usually used for quantitative data, but the mushroom characters are almost all categorical data, how they address the problem is also very important.
- 2) Classification (Tensorflow) and Feature Selection The second project focus on the feature selection, which is an important part of our project. Since there are around 22 columns in our dataset, after we do something like one-hot encoding, the number of columns will continue increase, we need to find out a way to reduce the number of feature and figure out the most important feature. So, we need to find a best way to do feature selection. This project uses Chi-Squared Feature Selection which is interesting. We need to refer to that.

References (include links):

- 1) https://www.kaggle.com/minc33/k-means-clustering-vs-logistic-regression)
- 2) https://www.kaggle.com/jl18pg052/classification-tensorflow-and-feature-selection)

Hypothesis

In our study, we hypothesize that there is indeed a relationship between the poison of the mushroom and its cap color, since there is an old saying that says we cannot eat the colored mushroom since they are all poisonous. Stalk-shape and cap shape can also be important features of mushroom since many hikers and travelers judge whether the mushroom is edible by their shapes.

Dataset(s)

We are going to use a dataset called mushroom.csv, which can be found on a Kaggle project. This dataset includes 23 different features about a mushroom, which includes cap-shape, cap-surface, cap-color, and other features. There are a total of 8125 observations in this dataset. These data are stored in a csv file, which is easy for us to import in notebook and analyze with pandas.

link: https://www.kaggle.com/uciml/mushroom-classification (https://www.kaggle.com/uciml/mushroom-cla

Setup

localhost:8888/lab 2/42

In [57]:

```
import numpy as np
import pandas as pd
from IPython.display import Image
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import chi2_contingency
from sklearn.metrics import *
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestClassifier
```

Data Cleaning

1. Import the Dataset

```
In [5]:
```

```
# let pandas display max columns
pd. set_option('display.max_columns', None)
```

In [6]:

```
# first read the csv and look at it
mushroom_df = pd.read_csv("mushrooms.csv")
mushroom_df.head()
```

Out[6]:

	class		cap- surface		bruises	odor	gill- attachment				stalk- shape	stall roc
0	р	х	s	n	t	р	f	С	n	k	е	
1	е	х	s	у	t	а	f	С	b	k	е	
2	е	b	s	w	t	I	f	С	b	n	е	
3	р	х	у	w	t	р	f	С	n	n	е	
4	е	х	s	g	f	n	f	W	b	k	t	
4												•

2. Feature Interpretation

localhost:8888/lab 3/42

In [7]:

```
# We need to understand the meaning of each feature
mushroom_df.columns
```

Out[7]:

localhost:8888/lab 4/42

Attribute Information: (classes: edible=e, poisonous=p)

Here is a picture of structure of mushroom

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

Mushroom cap shape

cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

Mushroom cap surface

cap-color:

brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,red=e,white=w,yellow=y color is encoded by the keys above.

bruises: bruises=t,no=f

example of mushroom bruises

Mushroom bruises

odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,musty=m,none=n,pungent=p,spicy=s odor is encoded by the list above and the features are described.

gill-attachment: attached=a,descending=d,free=f,notched=n

Mushroom gill_attachment

gill-spacing: close=c,crowded=w,distant=d

Mushroom gill_spacing

gill-size: broad=b,narrow=n

size of gill is encoded by the keys above.

gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y

gill color is encoded in a slightly different manner (more colors included) than cap color but the keys are provided.

stalk-shape: enlarging=e,tapering=t

Mushroom stalk shape

stalk-root: bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r,missing=?

Mushroom stalk_root

localhost:8888/lab 5/42

stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s

Surface type is illustrated in the former part and the location of the surface above the ring is also illustrated in the second picture

stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s

Surface type is illustrated in the former part and the location of the surface below the ring is also illustrated in the second picture

stalk-color-above-ring:

brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y

color is encoded by the keys above.

stalk-color-below-ring:

brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y

color is encoded by the keys above.

veil-type: partial=p,universal=u

Mushroom veils_type

veil-color: brown=n,orange=o,white=w,yellow=y

color is encoded by the keys above.

ring-number: none=n,one=o,two=t

color is encoded by the keys above. In our data cleaning step, the ring number are converted to integers.

ring-type:

cobwebby=c,evanescent=e,flaring=f,large=l,none=n,pendant=p,sheathing=s,zone=z

spore-print-color:

black=k,brown=n,buff=b,chocolate=h,green=r,orange=o,purple=u,white=w,yellow=y

population: abundant=a,clustered=c,numerous=n,scattered=s,several=v,solitary=y

population describes how the mushrooms are clustered

habitat: grasses=g,leaves=l,meadows=m,paths=p,urban=u,waste=w,woods=d

habitat describes where the mushrooms live.

3. Data Type of the features

localhost:8888/lab 6/42

In [8]:

```
mushroom_df.dtypes
```

Out[8]:

class	object
cap-shape	object
cap-surface	object
cap-color	object
bruises	object
odor	object
gill-attachment	object
gill-spacing	object
gill-size	object
gill-color	object
stalk-shape	object
stalk-root	object
stalk-surface-above-ring	object
stalk-surface-below-ring	object
stalk-color-above-ring	object
stalk-color-below-ring	object
veil-type	object
veil-color	object
ring-number	object
ring-type	object
spore-print-color	object
population	object
habitat	object
dtype: object	

They are all string type. Let's determine the type of each varible.

localhost:8888/lab 7/42

Varibles	Туре
class	binary
cap-shape	nominal
cap-surface	nominal
cap-color	nominal
bruises	binary
odor	nominal
gill-attachment	nominal
gill-spacing	nominal
gill-size	nominal
gill-color	nominal
stalk-shape	nominal
stalk-root	nominal
stalk-surface-above-ring	nominal
stalk-surface-below-ring	nominal
stalk-color-above-ring	nominal
stalk-color-below-ring	nominal
veil-type	nominal
veil-color	nominal
ring-number	ordinal
ring-type	nominal
spore-print-color	nominal
population	nominal
habitat	nominal

We are fine with nominal data. So, we only need to do binary encoding to *class* and *bruises* and do ordinal encoding to *ring-number*.

```
In [9]:

# We convert poisonous to 0 and edible to 1
mushroom_df["class"] = mushroom_df["class"].replace({"p":0, "e":1})

In [10]:

# We convert bruises to 1 and no bruises to 0
mushroom_df["bruises"] = mushroom_df["bruises"].replace({"f":0, "t":1})

In [11]:

# We ordinal encoding ring number
mushroom_df["ring-number"] = mushroom_df["ring-number"].replace({"n":0, "o":1, "t":2})
```

localhost:8888/lab 8/42

In [12]:

```
# look at the data again
mushroom_df.head()
```

Out[12]:

	class		cap- surface		bruises	odor	gill- attachment	gill- spacing				stall roc
0	0	х	s	n	1	р	f	С	n	k	е	
1	1	х	s	у	1	а	f	С	b	k	е	
2	1	b	s	w	1	1	f	С	b	n	е	
3	0	x	у	w	1	р	f	С	n	n	е	
4	1	х	s	g	0	n	f	W	b	k	t	
4												•

4. Look at Missing value

In [13]:

```
# Check number of missing value in each column pd.isnull(mushroom_df).sum(axis = 0)
```

Out[13]:

class	0
cap-shape	0
cap-surface	0
cap-color	0
bruises	0
odor	0
gill-attachment	0
gill-spacing	0
gill-size	0
gill-color	0
stalk-shape	0
stalk-root	0
stalk-surface-above-ring	0
stalk-surface-below-ring	0
stalk-color-above-ring	0
stalk-color-below-ring	0
veil-type	0
veil-color	0
ring-number	0
ring-type	0
spore-print-color	0
population	0
habitat	0
dtype: int64	

Good! We don't have any missing value

localhost:8888/lab 9/42

5. Potential problem about the data

We notice that *ring-number* may be 0. If the mushroom doesn't have a ring, what will be the ring type of the mushroom. Let's look at it.

```
In [14]:
```

```
mushroom_df[mushroom_df["ring-number"] == 0]["ring-type"].value_counts()

Out[14]:

n     36
Name: ring-type, dtype: int64
```

They are all none, which is very consistent. So, it is not a problem. However, we should still be careful here if we want to develop a regression model because it implies perfect colinearity.

Another possiblely inconsistence in the dataset may be the *stalk-color-above-ring* and *stalk-color-below-ring*. Let's check whether they are consistent if the *ring-number* is zero.

```
In [15]:
```

```
df = mushroom_df[mushroom_df["ring-number"] == 0]
  (df["stalk-color-above-ring"] == df["stalk-color-below-ring"]).all()
```

Out[15]:

True

```
In [16]:
```

```
df["stalk-color-above-ring"].value_counts()
```

Out[16]:

```
c 36
```

Name: stalk-color-above-ring, dtype: int64

We showed that they are consistent, but a key point to notice is that all mushrooms without rings have cinnamon color which is another perfect colinearity.

We do similar test to stalk-surface-above-ring and stalk-surface-below-ring.

```
In [17]:
```

```
(df["stalk-surface-above-ring"] == df["stalk-surface-below-ring"]).all()
Out[17]:
```

False

localhost:8888/lab 10/42

```
In [18]:
```

```
df[["stalk-surface-above-ring", "stalk-surface-below-ring", "ring-number"]].head()
```

Out[18]:

	stalk-surface-above-ring	stalk-surface-below-ring	ring-number
6415	k	у	0
6668	k	у	0
6855	k	у	0
6945	k	у	0
6991	k	у	0

Here is a strange point: why the mushrooms have different surfaces below and above the ring given that the mushrooms do not have a ring. We will try to figure it out in the future.

Data Analysis & Results (EDA)

In this section, we are mainly going to take a look at every column in the dataframe (i.e., every different feature of the mushroom). Moreover, we are going to observe the relationship between these features and the poisonousness; and the potential relationship between features, to avoid colinearity.

1. Basic summary statistics

```
In [19]:
```

```
mushroom_df["class"]. value_counts(normalize = True)
```

Out[19]:

```
1 0. 517971
0 0. 482029
```

Name: class, dtype: float64

We observe that the number of poisonous mushrooms and edible mushrooms is about the same

2. Contingency Tables

In this section, we are going to establish contingency tables of each feature with the class, and visualize them with barplots. Again, remember that value 1 means edible and value 0 means poisonous.

(1) cap-shape

localhost:8888/lab 11/42

In [20]:

```
ct_cap_shape = pd.crosstab(mushroom_df['cap-shape'], mushroom_df['class'], margins = False, norm
alize=True)
ct_cap_shape.plot(kind="bar", rot=0)
```

Out[20]:

<AxesSubplot:xlabel='cap-shape'>

From this graph, we can observe that $\,\mathrm{f1at}\,$ and $\,\mathrm{convex}\,$ cap shape behaves relatively indifferent between poison and edible, and $\,\mathrm{be11}\,$, $\,\mathrm{knobbed}\,$ cap shape behaves relatively significant different between poison and edible. $\,\mathrm{conica1}\,$ and $\,\mathrm{sunken}\,$ have too small sample size that we cannot observe.

We will add this feature to our model. We can do some feature enginearing to retain only three variable in the columns such as bell, knobbed, and not bell nore knobbed.

(2) cap-surface

localhost:8888/lab 12/42

In [21]:

```
ct_cap_surface = pd.crosstab(mushroom_df['cap-surface'], mushroom_df['class'], margins = False,
normalize=True)
ct_cap_surface.plot(kind="bar", rot=0)
```

Out[21]:

<AxesSubplot:xlabel='cap-surface'>

From this graph, we can observe that fibrous, scaly, and smooth cap surface behaves relatively significant between poison and edible. grooves have too small sample size that we cannot observe.

We will add this feature to our model. We can do feature engineering like fibrous or not.

(3) cap-color

As the old saying says, don't eat colorful mushrooms. lets see how mushrooms are seperated by color.

localhost:8888/lab 13/42

In [22]:

```
ct_cap_color = pd.crosstab(mushroom_df['cap-color'], mushroom_df['class'], margins = False, norm
alize=True)
ct_cap_color.plot(kind="bar", rot=0)
```

Out[22]:

<AxesSubplot:xlabel='cap-color'>

From this graph, we can observe that buff, red, gray, brown, pink, white, and yellow cap color behaves relatively significant between poison and edible. cinnamon, green, and purple have too small sample size that we cannot observe.

We will add this feature to our model.

(4) bruises

localhost:8888/lab 14/42

In [23]:

```
ct_bruises = pd.crosstab(mushroom_df['bruises'], mushroom_df['class'], margins = False, normaliz
e=True)
ct_bruises.plot(kind="bar", rot=0)
```

Out[23]:

<AxesSubplot:xlabel='bruises'>

From this graph, we can observe that there is significant difference between poison and edible on whether mushrooms has bruises.

We will add this feature to our model.

(5) odor

localhost:8888/lab 15/42

In [24]:

```
ct_odor = pd.crosstab(mushroom_df['odor'], mushroom_df['class'], margins = False, normalize=True
)
ct_odor.plot(kind="bar", rot=0)
```

Out[24]:

<AxesSubplot:xlabel='odor'>

From this graph, we can observe that all categories in mushroom odors behaves relatively significant between poison and edible.

We will add this feature to our model.

(6) gill-attachment

localhost:8888/lab 16/42

In [25]:

```
ct_gill_attachment = pd.crosstab(mushroom_df['gill-attachment'], mushroom_df['class'], margins =
False, normalize=True)
ct_gill_attachment.plot(kind="bar", rot=0)
```

Out[25]:

<AxesSubplot:xlabel='gill-attachment'>

From this graph, we can observe that all categories in gill-attachment behaves relatively indifferent between poison and edible.

We will **NOT** add this feature to our model.

(7) gill-spacing

localhost:8888/lab 17/42

In [26]:

```
ct_gill_spacing = pd.crosstab(mushroom_df['gill-spacing'], mushroom_df['class'], margins = False
, normalize=True)
ct_gill_spacing.plot(kind="bar", rot=0)
```

Out[26]:

<AxesSubplot:xlabel='gill-spacing'>

From this graph, we can observe that all categories in gill-spacing behaves relatively significant between poison and edible.

We will add this feature to our model.

(8) gill-size

localhost:8888/lab 18/42

In [27]:

```
ct_gill_size = pd.crosstab(mushroom_df['gill-size'], mushroom_df['class'], margins = False, norm
alize=True)
ct_gill_size.plot(kind="bar", rot=0)
```

Out[27]:

<AxesSubplot:xlabel='gill-size'>

From this graph, we can observe that all categories in gill-size behaves relatively significant between poison and edible.

We will add this feature to our model.

(9) gill-color

localhost:8888/lab 19/42

In [28]:

```
ct_gill_color = pd.crosstab(mushroom_df['gill-color'], mushroom_df['class'], margins = False, no
rmalize=True)
ct_gill_color.plot(kind="bar", rot=0)
```

Out[28]:

<AxesSubplot:xlabel='gill-color'>

From this graph, we can observe that all categories in gill-color behaves relatively significant between poison and edible.

We will add this feature to our model.

(10) stalk-shape

localhost:8888/lab 20/42

In [29]:

```
ct_stalk_shape = pd.crosstab(mushroom_df['stalk-shape'], mushroom_df['class'], margins = False,
normalize=True)
ct_stalk_shape.plot(kind="bar", rot=0)
```

Out[29]:

<AxesSubplot:xlabel='stalk-shape'>

From this graph, we can observe that all categories in stalk-shape behaves relatively indifferent between poison and edible.

We will **NOT** add this feature to our model.

(11) stalk-root

localhost:8888/lab 21/42

In [30]:

```
ct_stalk_root = pd.crosstab(mushroom_df['stalk-root'], mushroom_df['class'], margins = False, no
rmalize=True)
ct_stalk_root.plot(kind="bar", rot=0)
```

Out[30]:

<AxesSubplot:xlabel='stalk-root'>

From this graph, we can observe that except bulbous, which is relatively indifferent between poison and edible, all other categories in stalk-root behaves relatively indifferent between poison and edible.

We will add this feature to our model.

(12) stalk-surface-above-ring

localhost:8888/lab 22/42

In [31]:

```
ct_stalk_sar = pd.crosstab(mushroom_df['stalk-surface-above-ring'], mushroom_df['class'], margins
= False, normalize=True)
ct_stalk_sar.plot(kind="bar", rot=0)
```

Out[31]:

<AxesSubplot:xlabel='stalk-surface-above-ring'>

From this graph, we can observe that except scaly, which has too small sample size to follow, all other categories in stalk-surface-above-ring behaves relatively indifferent between poison and edible.

We will add this feature to our model.

(13) stalk-surface-below-ring

localhost:8888/lab 23/42

In [32]:

```
ct_stalk_sbr = pd.crosstab(mushroom_df['stalk-surface-below-ring'], mushroom_df['class'], margins
= False, normalize=True)
ct_stalk_sbr.plot(kind="bar", rot=0)
```

Out[32]:

<AxesSubplot:xlabel='stalk-surface-below-ring'>

From this graph, we can observe that all categories in stalk-surface-below-ring behaves relatively significant between poison and edible.

We will add this feature to our model.

(14) stalk-color-above-ring

localhost:8888/lab 24/42

In [33]:

```
ct_stalk_car = pd.crosstab(mushroom_df['stalk-color-above-ring'], mushroom_df['class'], margins =
False, normalize=True)
ct_stalk_car.plot(kind="bar", rot=0)
```

Out[33]:

<AxesSubplot:xlabel='stalk-color-above-ring'>

From this graph, we can observe that except <code>cinnamon</code>, which has too small sample size to follow, all other categories in stalk-color-above-ring behaves relatively indifferent between poison and edible.

We will add this feature to our model.

(15) stalk-color-below-ring

localhost:8888/lab 25/42

In [34]:

```
ct_stalk_cbr = pd.crosstab(mushroom_df['stalk-color-below-ring'], mushroom_df['class'], margins =
False, normalize=True)
ct_stalk_cbr.plot(kind="bar", rot=0)
```

Out[34]:

<AxesSubplot:xlabel='stalk-color-below-ring'>

From this graph, we can observe that except <code>cinnamon</code>, which has too small sample size to follow, all other categories in stalk-color-above-ring behaves relatively indifferent between poison and edible.

We will add this feature to our model.

Remark

We have noticed that the graph of contingency table of stalk-color-above-ring and stalk-color-below-ring are exactly the same. So we are going to check their colinearity in the next section.

localhost:8888/lab 26/42

In [35]:

mushroom_df[['stalk-color-below-ring', 'stalk-color-above-ring']]

Out[35]:

	stalk-color-below-ring	stalk-color-above-ring
0	w	w
1	w	w
2	w	w
3	w	W
4	w	w
8119	0	0
8120	0	0
8121	0	0
8122	w	w
8123	0	0

8124 rows × 2 columns

(16) veil-type

In [36]:

```
ct_veil_type = pd.crosstab(mushroom_df['veil-type'], mushroom_df['class'], margins = False, norm
alize=True)
ct_veil_type.plot(kind="bar", rot=0)
```

Out[36]:

<AxesSubplot:xlabel='veil-type'>

localhost:8888/lab 27/42

```
In [37]:
```

```
mushroom_df[mushroom_df['veil-type'] != 'p']
```

Out[37]:

```
class cap- cap- cap- bruises odor gill- gill- gill- gill- stalk- stalk shape surface color attachment spacing size color shape room
```

We have realized that there is only one category in $veil^{-type}$. Therefore, we will **NOT** add this feature to model.

(17) veil-color

In [38]:

```
ct_veil_type = pd.crosstab(mushroom_df['veil-color'], mushroom_df['class'], margins = False, nor
malize=True)
ct_veil_type.plot(kind="bar", rot=0)
```

Out[38]:

<AxesSubplot:xlabel='veil-color'>

From this graph, we have noticed that brown, orange, and yellow have too small sample size to follow, and white is relatively indifferent between poison and edible.

We will NOT add this feature to model.

(18) ring-number

localhost:8888/lab 28/42

In [39]:

```
ct_ring_number = pd.crosstab(mushroom_df['ring-number'], mushroom_df['class'], margins = False,
normalize=True)
ct_ring_number.plot(kind="bar", rot=0)
```

Out[39]:

<AxesSubplot:xlabel='ring-number'>

From this graph, we have noticed that $\ 0$, $\ 2$ have too small sample size to follow, and $\ 1$ is relatively indifferent between poison and edible.

We will **NOT** add this feature to model.

(19) ring-type

In [40]:

```
ct_ring_type = pd.crosstab(mushroom_df['ring-type'], mushroom_df['class'], margins = False, norm
alize=True)
ct_ring_type.plot(kind="bar", rot=0)
```

Out[40]:

<AxesSubplot:xlabel='ring-type'>

localhost:8888/lab 29/42

From this graph, we can observe that except flaring and none, which has too small sample size to follow, all other categories in spore-print-color behaves relatively indifferent between poison and edible.

We will add this feature to our model.

(20) spore-print-color

In [41]:

```
ct_spc = pd.crosstab(mushroom_df['spore-print-color'], mushroom_df['class'], margins = False, no
rmalize=True)
ct_spc.plot(kind="bar", rot=0)
```

Out[41]:

<AxesSubplot:xlabel='spore-print-color'>

From this graph, we can observe that except buff, orange, green, purple, and yellow, which has too small sample size to follow, all other categories in spore-print-color behaves relatively indifferent between poison and edible.

We will add this feature to our model.

(21) population

localhost:8888/lab 30/42

In [42]:

```
ct_population = pd.crosstab(mushroom_df['population'], mushroom_df['class'], margins = False, no
rmalize=True)
ct_population.plot(kind="bar", rot=0)
```

Out[42]:

<AxesSubplot:xlabel='population'>

From this graph, we can observe that all categories in <code>population</code> behaves relatively significant between poison and edible.

We will add this feature to our model.

(22) habitat

localhost:8888/lab 31/42

In [43]:

```
ct_habitat = pd.crosstab(mushroom_df['habitat'], mushroom_df['class'], margins = False, normaliz
e=True)
ct_habitat.plot(kind="bar", rot=0)
```

Out[43]:

<AxesSubplot:xlabel='habitat'>

From this graph, we can observe that all categories in habitat behaves relatively significant between poison and edible.

We will add this feature to our model.

(23) Summary of included features

localhost:8888/lab 32/42

After viewing the contingency tables, we are going to choose the listed features:

- · cap-shape
- · cap-surface
- · cap-color
- bruises
- odor
- · gill-spacing
- · gill-size
- · gill-color
- · stalk-root
- · stalk-surface-above-ring
- · stalk-surface-below-ring
- · stalk-color-above-ring
- stalk-color-below-ring
- ring-type
- · spore-print-color
- · population
- habitat

2. Possible Colinearity

In [44]:

```
In [45]:
```

```
col_lst = list(mushroom_df_feature_reduced1.columns)
```

We use chi-square test for independence to calculate the chi-square statistics for any pair of variables.

In [46]:

```
out_array = np. zeros(shape=(len(col_lst), len(col_lst)))
for i in range(len(col_lst)):
    for j in range(len(col_lst)):
        test_df = pd. crosstab(index=mushroom_df[col_lst[i]], columns=mushroom_df[col_lst[j]])
        stat = chi2_contingency(test_df)[0]
        out_array[i][j] = stat
```

```
In [47]:
```

```
dependent_matrix = pd. DataFrame(out_array)
```

localhost:8888/lab 33/42

In [48]:

```
dependent_matrix.index = col_lst
dependent_matrix.columns = col_lst
```

The results are showed in the following table

In [49]:

dependent_matrix

Out[49]:

	cap-shape	cap-surface	cap-color	bruises	odor	gill-spac
cap- shape	40620.000000	1011.493003	1193.768578	530.776681	2448.503052	54.2298
cap- surface	1011.493003	24372.000000	1236.828958	146.695811	1385.708498	929.3379
cap-color	1193.768578	1236.828958	73116.000000	384.838070	7164.821147	1299.5552
bruises	530.776681	146.695811	384.838070	8119.883087	3548.535179	726.9427
odor	2448.503052	1385.708498	7164.821147	3548.535179	64992.000000	1500.5049
gill- spacing	54.229876	929.337926	1299.555299	726.942784	1500.504960	8116.6170
gill-size	977.206565	625.211042	1796.936323	1108.124760	4703.776083	94.7076
gill-color	2245.151613	1617.494297	5832.239102	3435.836879	9898.449462	862.0908
stalk-root	4215.114824	2412.976732	4824.721663	2650.937973	12481.423734	2692.4019
stalk- surface- above- ring	624.355608	506.230074	1610.732543	2687.718334	4224.863722	1553.330(
stalk- surface- below- ring	307.051665	699.333029	2497.777181	2609.306376	6271.550490	1398.2793
stalk- color- above- ring	1871.870085	1553.528443	4970.170076	1897.013460	13172.786758	1307.3366
stalk- color- below- ring	1179.404895	1615.400201	5068.393964	1973.232800	12967.365435	1145.5275
ring-type	1408.359529	1230.827400	10120.742122	4797.865583	15782.980493	684.7086
spore- print-color	2558.981366	1318.851622	5335.212074	3046.673704	10211.837811	773.6759
population	2364.712278	1674.019157	3798.735391	733.968760	5709.118137	3689.9744
habitat	2985.912206	1535.547169	5205.101254	2289.963040	6675.138401	2391.8990
4						•

localhost:8888/lab 34/42

We visualize the result. The effect is similar to the correlation matrix. The brighter color means more dependency.

In [47]:

```
plt.imshow(dependent_matrix, cmap='hot', interpolation='nearest')
plt.show()
```


We will pay attention to those pair of vairables with high dependency.

Prediction Model

1. Unsupervised learning

We will look at the natural clusters generated by unsupervised learning algorithm in this section. We will compare these clusters with edibility of these mushrooms.

1.1 K-mode Algorithm

We will implement a K-mode algorithm in this section. We set K = 2.

```
In [50]:
```

```
y = mushroom_df["class"]
```

In [51]:

```
X = mushroom_df_feature_reduced1
```

In [112]:

```
inits = X. sample(2) # Generate the random initialization
```

localhost:8888/lab 35/42

```
In [51]:
```

```
def calculate_rank(matrix, centers):
    disimilarity_score_lst_0 = []
    disimilarity_score_lst_1 = []

for i in range(matrix.shape[0]):
        disimilarity_score_lst_0.append((matrix.iloc[i, :] != centers.iloc[0,:]).sum())
        disimilarity_score_lst_1.append((matrix.iloc[i, :] != centers.iloc[1,:]).sum())

    disimilarity_matrix = pd.DataFrame({"disimilarity_score_0":disimilarity_score_lst_0, "disimilarity_score_1":disimilarity_score_lst_1})

    rank = disimilarity_matrix.idxmin(axis = 1)
    return rank
```

In [52]:

```
def calculate_centers(matrix, rank):
    matrix_with_rank = matrix.assign(rank = rank)
    centers = matrix_with_rank.groupby("rank").aggregate(lambda x: x.value_counts().index[0])
    return centers
```

In [113]:

```
tracker = 0
centers = inits
while True:
    rank = calculate_rank(X, centers)
    new_centers = calculate_centers(X, rank)
    if ((centers.iloc[0, :] != new_centers.iloc[0, :]).sum() <=0) and ((centers.iloc[1, :] != ne
w_centers.iloc[1, :]).sum() <=0):
        break
    else:
        centers = new_centers
    tracker = tracker + 1
    print(tracker)</pre>
```

2 3 4

1

In [114]:

```
y_predict = rank.replace({"disimilarity_score_0":0, "disimilarity_score_1":1})
```

In [116]:

```
(y == y_predict).mean()
```

Out[116]:

0.8911866075824717

localhost:8888/lab 36/42

In [119]:

```
cm = confusion_matrix(y, y_predict)
```

In [121]:

```
disp = ConfusionMatrixDisplay(cm, ["Most", "Least"])
disp.plot()
```

Out[121]:

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1dff1f18430>

In [124]:

```
tn, fp, fn, tp = cm.ravel()
(tn, fp, fn, tp)
```

Out[124]:

(3100, 816, 68, 4140)

2. Supervised learning

2.1 Decision Tree

localhost:8888/lab 37/42

```
In [182]:
```

```
X. head()
```

Out[182]:

	cap- shape	cap- surface	cap- color	bruises	odor	gill- spacing	gill- size	gill- color	stalk- root		stalk- surface- below- ring	colc
0	х	s	n	1	р	С	n	k	е	s	s	
1	х	s	у	1	а	С	b	k	С	s	s	
2	b	s	W	1	1	С	b	n	С	s	s	
3	х	у	W	1	р	С	n	n	е	s	s	
4	х	s	g	0	n	W	b	k	е	s	s	

```
→
```

In [54]:

```
# We will use one-hot encoding to convert all the categorical variables to dummy variables
ohe = OneHotEncoder()
# drop first to avoid perfect colinearity
OneHotEncoder(drop='first')
ohe.fit(X)
out = ohe.transform(X).toarray()
```

In [137]:

```
# We convert 17 features to 105 dummy variables which is reasonable out.shape
```

Out[137]:

(8124, 105)

In [174]:

```
# Here, we use train test split, with test set size to be 0.2
X_train, X_test, y_train, y_test = train_test_split(out, y, test_size=0.2, random_state=94)
```

In [175]:

```
clf = DecisionTreeClassifier(random_state=94)
```

In [176]:

```
clf.fit(X_train, y_train)
```

Out[176]:

DecisionTreeClassifier(random_state=94)

localhost:8888/lab 38/42

In [177]:

```
# predict training set
y_train_predict = clf.predict(X_train)
```

In [178]:

```
# predict test set
y_test_predict = clf.predict(X_test)
```

In [179]:

```
# training set accuracy is 100%
(y_train_predict == y_train).mean()
```

Out[179]:

1.0

In [180]:

```
# test set accuracy is 100%. So, there is no sign of overfit
(y_test_predict == y_test).mean()
```

Out[180]:

1.0

2.2 Random Forest

The Decision Tree Classifier reaches a perfect accuracy in predicting mushroom edibility.

In [52]:

```
# Check for the features
X. head()
```

Out[52]:

	cap- shape	cap- surface	_	ormses	odor					stalk- surface- above- ring	stalk- surface- below- ring	
0	х	s	n	1	р	С	n	k	е	s	s	
1	х	s	у	1	а	С	b	k	С	s	s	
2	b	s	w	1	1	С	b	n	С	s	s	
3	х	у	w	1	р	С	n	n	е	s	s	
4	х	s	g	0	n	W	b	k	е	s	s	
4												•

localhost:8888/lab 39/42

In [55]:

```
# Train-test split: with test size to be 0.25
X_train, X_test, y_train, y_test = train_test_split(out, y, test_size=0.25, random_state=30)
```

In [59]:

```
# Training the machine learning model using random forest
# Create the model with 100 trees
clf = RandomForestClassifier(n_estimators = 100, bootstrap = True)
# Fit on training data
model_mushroom = clf.fit(X_train, y_train)
```

In [60]:

Correct Prediction (%) for mushrooms: 100.0

In [61]:

```
# Run the code to view the classification report metrics

report = classification_report(y_test, model_mushroom.predict(X_test))
print(report)
```

	precision	recall	f1-score	support
0 1	1.00 1.00	1.00 1.00	1.00 1.00	933 1098
accuracy macro avg	1.00	1.00	1.00 1.00	2031 2031
weighted avg	1.00	1.00	1.00	2031

From our accuracy score and the classification report, we can see that the Random Forest model also achieves a perfect accuracy (100%) in predicting mushroom accuracy.

We thought this might be a conincidence of reaching a 100% accuracy. Therefore, we changed the number of trees in forest in the RandomForestClassification Model and try again with this model.

In [62]:

```
# Training the machine learning model using random forest
# Create the model with 100 trees
clf = RandomForestClassifier(n_estimators = 50, bootstrap = True)

# Fit on training data
model_mushroom = clf.fit(X_train, y_train)
```

localhost:8888/lab 40/42

```
In [ ]:
```

In [63]:

```
# Run the code to view the classification report metrics

report = classification_report(y_test, model_mushroom.predict(X_test))
print(report)
```

	precision	recall	f1-score	support
0	1.00 1.00	1.00 1.00	1. 00 1. 00	933 1098
accuracy			1.00	2031
macro avg	1.00	1.00	1.00	2031
weighted avg	1.00	1.00	1.00	2031

The result is still 100% accuracy. Therefore, we can confidently say the Random Forest model also achieves a perfect accuracy in predicting mushroom accuracy.

Ethics & Privacy

First of all, this model might have some unintended consequences. For example, knowing that this model can provide extra information on the edibility of the mushrooms. One might choose to eat mushroom when there is absolutely no need for him to take the mushroom.(e.g. When one has enough food but just want one more course on his dinner table). Considering that even our prediction shows 100% accurate rate for our test set, the modle can still be wrong if new types of mushrooms are found. Moreover, our k mode classifying model have more false positive prediction on the edibility which this prediction might increase health risk by misidendifying a poisonous mushroom as edible. Moreover, some mushroom feature might not be very distinct for non-specialist to recognize.(For example a spicy smell might be misunderstanded as a pungent smell.And our model havely relays on such feature to make predcitions.) Therefore our prediction might fail to cover all people. Since our project focus on the study of mushrooms instead of on objects that are more related to people, its quite unlikely for personal information to leak. However, it is still possible to make inferences about personal information based on where poisonous mushrooms are located.

Conclusion & Discussion

localhost:8888/lab 41/42

Results In our project, we are able to first explore the data and find some interesting knowledge about mushroom edibility. For example, we can see that based on the contingency graph, mushroom odor, gill color and bruises are all strong predictors for mushroom edibility. For example, from this dataset, all mushroom that has a buff gill color are poisonous. Based on these strong associations we found in our dataset, we are able to exclude some features out of our prediction model. We also to found internal correlation between different mushroom features, for example ring type might be correlated to odor, which is very interesting and might inspire some evolutionary biology research on why these two intuitively unrelated features are correlated. We then generate prediction models based on both unsupervised/supervised learning method. We are able to see that supervised learning method has a better performance than the unsupervised learning method, and in this prediction, both a decision tree and a random forest approach can achieve 100% prediction accuracy, which serves as a very competent model in predicting mushroom edibility. Discussion Although we are able to achieve perfect accuracy in our prediction model, there is still few considerations we need to think about. For example, there is over 10000 types of mushrooms in the world and our data set only includes about 8000 which is only half of them. So there is still possibility that our prediction model might fail to include some important features for the other 5000 mushrooms that are not in our dataset. Moreover, currently our model uses 17 features for the prediction, however if we think practically, one is nearly impossible to correctly identify all the 17 features. Therefore, we might need to introduce some error prone feature to our model as well as trying to further reduce the features that is needed for the model such that we are able to still make correct prediction but with fewer number of features needed.

Team Contributions

Xuhui liu: decision tree coding, data cleaning, data finding, feature explination. Yijing Zhang:random Forest coding, generating contigency table, research hypothesis write up Tianyi Bian: Compling all code, conclusion & discussion, and video presentation.

localhost:8888/lab 42/42