T1C02 - Les solutions aqueuses

E. Machefer

10 janvier 2024

1 Notion de concentration

1.1 Solution, solvant et solutédefinition

Définitions

Une solution est un mélange liquide homogène composé :

- d'un **solvant** : composant majoritaire du mélange
- d'un soluté : espèce dispersée dans le solvant

Remarque

On parle de solution aqueuse lorsque le solvant est de l'eau.

Exemple

Une limonade est une solution aqueuse ayant pour principaux solutés le sucre, le dioxyde de carbone et l'acide citrique.

1.2 Concentration massique, concentration molairedefinition

Définition

La concentration en masse, ou titre massique, d'un soluté est définie par le rapport de la masse m_S de soluté dissous dans le volume V de solution

$$c_{\rm m} = \frac{m_S}{V}$$

où m_S s'exprime en g, V en L, et c_m en g · L⁻¹ selon les unités usuelles.

Remarque

La concentration en masse de soluté et la masse volumique s'expriment dans la même unité mais ne représentent pas la même chose :

- masse volumique masse de l'ensemble d'une substance
- concentration en masse masse de soluté dans l'ensemble

2 Préparation de solution par dissolution

2.1 Définition

La dissolution d'un soluté dans un solvant est la mise en solution d'une espèce chimique pure solide, liquide ou gazeuse dans un solvant.

2.2 Protocole

Pour préparer une solution de volume V contenant un soluté en concentration en masse c_m

- 1. Peser avec une balance du soluté de masse $m=c_m\times V$
- 2. Verser à l'aide d'un entonnoir le soluté dans une fiole jaugée de volume V
- 3. Rincer à l'aide de solvant l'entonnoir et la coupelle
- 4. Remplir jusqu'aux deux tiers de solvant la fiole jaugée

- 5. Agiter lattéralement
- 6. Remplir la fiole jusqu'au trait de jauge, boucher puis homogénéiser la solution

3 Préparation de solution par dilution

3.1 Définition

La dilution d'une solution correspond à l'ajout de solvant dans la solution.

La solution obtenue, appelée solution fille, a une concentration en masse plus faible que la solution initiale, appelée solution mère.

3.2 Protocole

Étapes de préparation d'une solution aqueuse par dilution

- 1. Verser de la solution mère dans un bécher
- 2. Conditionner la pipette jaugée en aspirant de la solution mère au delà du trait de jauge
- 3. Ajuster le bas du ménisque au trait de jauge
- 4. Introduire le prélèvement dans une fiole jaugé du volume souhaité V_1
- 5. Remplir d'eau distillée aux deux tiers puis agiter latéralement
- 6. Compléter jusqu'au trait de jauge avec l'eau distillée et mélanger pour homogénéiser la solution

Remarque

La masse de soluté reste la même avant et après la dilution. Soit une solution mère S_0 de concentration $c_m{}^0$ et une solution fille S_1 de concentration $c_m{}^1$

$$c_m{}^0 \times V_0 = c_m{}^1 \times V_1$$

3.3 Facteur de dilution

Définition

On appelle **facteur de dilution** (F) le rapport entre la concentration en masse de la solution mère et de la solution fille

$$F = t_m / t_f$$

ce facteur de dilution est toujours supérieur à 1.

Exemple:

Pour diluer 5 fois une solution mère de concentration en masse $c_m{}^0=10.0~g/L$ et obtenir un volume $V_f=100.0~mL$ de solution fille, la concentration de la solution fille est

$$c_{\rm m}^{1} = c_{\rm m}^{0}/F = 10.0 / 5 = 2.0 \text{ g/L},$$

le volume de solution mère à prélever est donc

$$V_m = c_m^1 \times V_1/c_m^0$$

= 2.0 \times 100.0 \times 10^{-3}/10.0
= 2.0 \times 10^{-2}L,

 $\underline{\text{soit}}$ 20 mL.

4 Exercices

4.1 Exercice:

prouver que le facteur de dilution peut s'écrire $F=V_f/V_m$

4.2 Exercices du manuelexercice

Application du cours

- 12 et 17 p 43
- 21 et 23 p. 44

S'entraîner

- 30 et 31 p 46
- 33 p 47

Préparation au DS

- 36 et 37 p48

4.3 CorrectionsPROF

ex 21 p 44

- 1. La formule $V_{\rm m}=F/V_{\rm f}$ est fausse
- 2. $V_f = F \times V_m$

ex 23 p 44 exercice

$$\begin{split} V_m &= x \\ V_f &= x + 7x = 8x \\ F &= V_f/V_m = 8 \end{split}$$

ex 30 p 46 exercice

- 1. $c_m = m/V = 0.23 / 0.150 = 1.53 g/L$
- 2. $c_{\rm m} < 1.8~{\rm g/L}$ donc le lait est frais.

ex 31 p 46 exercice

1. $S_1:m_1=6~\mathrm{g},\,V_1=0.75~\mathrm{L},\,t_m=60~\mathrm{g}$ / L

2.
$$S_m : V_m = 1/3 * 0.75 = 0.25 L$$

3.
$$S_f:t_f=t_m$$
 / $F=t_m$ * V_m / $V_f=60$ * 0.25 / 0.75 = 20 g/L

ex 37 p 48 exercice

 $t_{\rm m}=12.0~{\rm mg/L}$

Solution fille	S_1	S_2	S_3	S_4
$V_{\rm m}~({\rm mL})$	13.3	10.0	5.0	2.5
$V_{\rm f}~({ m mL})$	20.0	20.0	20.0	20.0
F	1.5	2.0	4.0	8.0
$t_{\rm f}~({ m mg/L})$	8.0	6.0	3.0	1.5

$$\begin{split} 1. \ t_f &= 3.0 \ mg/L = m_3 \ / \ V_f = t_m \ ^* \ V_m \ / \ V_f \\ V_m &= t_f \ ^* \ V_f \ / \ t_m = 5.0 \ mL \\ F &= V_f \ / \ V_m = 20.0 \ / \ 5.0 = 4 \end{split}$$

- 2. Pipette jaugée, fiole jaugée, bécher
- 3. $t_1 > t_{E131}/10 > t_2$ $10 * t_1 > t_{E131} > 10 * t_2$ $80.0 > t_{E131} > 60.0$
- 4. En augmentant le nombre de solutions pour faire l'échelle de teinte