

Automação ACI

TIC | ENTRETENIMENTO | AGRO

Automação ACI - Piloto

Paulo Latado Consultor em Telecom

Giullia Rodrigues

Graduanda em Ciência da Computação. Estagiária em P&D - Brain

Álvaro Latado Analista em Telecom

Gabriel Ribeiro

Graduando em Ciência da Computação. Estagiário em P&D - Brain

Expectativa

A ideia é **automatizar** um processo que é demorado e trabalhoso que assumiu dentro da Algar Telecom um alto nível de responsabilidade e criticidade

Essa automação se torna interessante pois irá trazer vários benefícios em termos de custo, eficiência, escalabilidade e segurança para o negócio da empresa.

Como objetivo final, temos a grande possibilidade de **diminuir a incidência de erros humanos** e dependência de profissionais específicos treinados para a execução de uma determinada tarefa.

Adicionalmente, a Automação ACI irá prover uma **velocidade muito maior na execução das configurações** de serviços de configuração do APIC.

Sumário

- 1. Introdução: Conceitos básicos
- 2. Os 3 Cenários
- 3. Benefícios
- 4. Evolução da PoC
- 5. Cronograma de trabalho

IntroduçãoConceitos básicos

Introdução

Funcionamento

O ACI é a estrutura de roteamento para criação e gerência de **redes** virtuais, e também a aplicação de **políticas** de segurança e o monitoramento de integridade da Cisco ACI. O gerenciador APIC possui várias features interessantes, entre elas:

- Aplicação de políticas de rede
- Provisionamento baseado em modelo de dados
- Integração com outras tecnologias (VMWare, OpenStack, Azure, etc)
- Inventário e configuração
- Análise da saúde dos objetos
- Gerenciamento da performance de falhas, eventos, etc
- Várias outras

Introdução

Estrutura de implementação

O Front-end foi desenvolvido utilizando JavaScript e ReactJS e os parâmetros assinalados no front-end são passados para um arquivo vars que serve como parâmetro para o ansible criar os objetos no APIC.

TIC ENTDETENIMENTO

Cenário Antigo: Configuração de um projeto médio no DC

- DC convencional (Não SDN)
- Configurações switch por switch (CLI)
 - Edições por linha de comando
- SLA de configurações: **12 horas no total** (Referência: CSI 2016)

Cenário Atual: Configuração de um projeto médio no DC

- DC SDN
- Configurações em console única (GUI)
- SLA de configurações: 04 horas no total
 - DC Telco somente um associado

Interface Cisco APIC

Cenário Futuro: Configuração de um projeto médio no DC

- Automação dos Objetos repetitivos (Portal Web)
- SLA de configurações: 60 minutos no total
- (10 minutos de aplicação dos scripts)

TIC

Tempo para executar as configurações:

12h->4h->1h

3 Benefícios

Benefícios

- <u>Eficiência</u>: Diminuição nos prazos de entregas em até 60% e otimização dos custos onde serão gastos menos h.h. (horas homem)
- Resiliência: Diminuição de erros humanos cometidos durante processos manuais
- <u>Flexibilidade</u>: Facilidade na execução de processos reduzindo a dependência profissionais específicos
- Agilidade: Aumento na interação com os processos que envolvem o APIC.

Etapas e seus Objetos

Etapa l **Etapa II Etapa III Etapa IV Tenant** Domain **VRF VLAN Pool** L3Out **EPG** Switch Profile **AAEP** Contracts BD **IPG** AP Interface Profile

Versão 2

Etapa I

Tenant

VRF

EPG

BD

AP

Etapa II

Domain

VLAN Pool

AAEP

IPG

Interface Profile

Etapa III

L3Out Contracts

Etapa IV

Switch Profile

Sobre os Objetos

Etapa l

Tenant VRF EPG BD AP

Tenant	Unidade de isolamento do ponto de vista da política, mas que não representa uma rede privada.
VRF	Virtual Routing and Forwarding (VRF) é uma rede de tenants.
EPG	Objeto mais importante no modelo de políticas. Contém a coleção dos endpoints, que são dispositivos que são conectados a rede diretamente ou indiretamente.
BD	É um conjunto de portas lógicas que compartilham as mesmas características de flooding ou broadcast.
AP	Define as políticas, serviços e relações entre os Endpont Groups (EPGs).

Sobre os Objetos

Etapa II

Domain
VLAN Pool
AAEP
IPG
Interface Profile

Domain	Objeto que restringe onde o Tenant pode implantar o workload.
VLAN Pool	O VLAN é um domínio de broadcast particionado e isolado em uma rede de computadores na camada de enlace de dados. O VLAN Pool é o conjunto desses domínios.
AAEP	O Attachable Access Entity Profile é usado para agrupar diversos Domains baseado nos requisitos similares dos mesmos. Agrupando os objetos Domain, o Fabric sabe onde estão os diversos dispositivos dentro do APIC.
IPG	O interface policy groups é basicamente um grupo de políticas que serão utilizadas para configurar a interface dos switches
Interface Profile	Tem a função de casar uma porta ou intervalo de portas com um IPG específico

ENTRETENIMEN

Sobre os Objetos

Etapa III

L3Out Contracts

L3Out	É um conjunto de configurações que define a conectividade fora do ACI por roteamento.
Contracts	Fornecem uma maneira do administrador do ACI controlar o fluxo de tráfego dentro do ACI entre os EPGs.

Sobre os Objetos

Etapa IV

Switch Profile

Switch Profile Especificam de qual folha do ACI o Interface Profile selecionará as Interfaces do APIC.

Versão 1

Etapa I

Tenant VRF EPG BD AP

- Difícil Leitura e Manutenção de Código
- Ausência de Comentários
- Interface "Não Amigável"

CNITOCTONINGCATO

Página Inicial

Tenant

VRF

EPG

BD

AP

Domain

Próximos passos

Projeto

- Em andamento, a prospecção de parceiros para:
 - Proposta de orçamento
 - Avaliação dos custos
 - Cálculo de ganhos

- Encaminhamento de propostas:
 - Golden Gate
 - Kyros
 - Neppo

Big Picture

Ganhos com a solução

Redução de horas

Tempo para profissional planejar melhor as atividades

Número de incidentes

Status

- Etapa I:
 - Back-end desenvolvido e validado
 - Front-end desenvolvido e aprimorado
- Etapa II:
 - Back-end em desenvolvimento
 - Front-end em desenvolvimento Objeto
 Domain já desenvolvido e aprimorado
 - Início da geração da documentação
- Análise de custos e ganhos de projeto com dados hipotéticos

Próximos passos

- Etapa I:
 - Validação em ambiente de teste
 - Validação em ambiente de produção
 - Previsão: 2 semanas
- Etapa II:
 - Continuar geração da documentação
 - Desenvolvimento do Front-End e Back-end dos objetos da Etapa II
 - Validação em ambiente de teste
 - Validação em ambiente de produção
 - Previsão: 8 semanas
- Orçamento com fornecedor da solução completa
- Análise de custos e ganhos de projeto com dados reais
- Avaliação da comunicação em Ansible com a aplicação
- Implantação do ambiente de homologação

ALGARTELECOM.COM.BR

TIC | ENTRETENIMENTO | AGRO