모터의 기초 지식

Snslab 최영광

목차

- 1. 모터의 정의 및 종류와 특징
- 2. DC 모터 장단점 및 해결 방법
- **3.** DC 모터 특성
- **4.** DC 모터 제어 방식
- 5. 모터 드라이브
- 6. SN754410NE (모터 드라이브)

Part 1, 모터의 정의 및 종류와 특징

	모터의 정의 모터 선택법		모터는 전력 에너지를 받아 동력 에너지로 변환하는 전동기.
			적정 부하 시, 토크와 회전수를 기준으로 선택한다.
			*부하 : 전기를 띠게 하거나 기계적 장치의 동력 에너지를 소비하는 것.
	분류		특징
		Brush 모터	 일반적으로 많이 사용되는 모터, DC 모터 라고 함. 전류를 전환하여 회전 동작.
	DC (직류) 모터 Brushless DC 모터		• 트랜지스터 등의 스위칭 기능을 통해 전기적으로 전류를 전환하여 회전 동작.
		스테핑 모터	 펄스에 동기하여 동작하는 모터, 펄스 모터라고도 함. 정확한 위치 제어 동작을 간단히 실현 가능함.
	분류		특징
A		유도 모터	• 교류를 통해 고정자에 회전 자계 발생, 회전자에 유도 전류가 발생, 상호작용으로 회전.
	AC (직류) 모터	동기 모터	 교류가 만드는 회전 자계를 통해 자극을 지닌 회전자가 흡인, 추정하여 회전. 회전의 속도는 전원 주파수와 동기.

Part 2, DC 모터

	명칭	특징		
	DC 모터	장점	 기동 토크가 큼. 인가 전압에 대하여 회전특성이 직선적으로 비례. 입력 전류에 대하여 출력 토크가 직선적으로 비례하고, 출력 효율이 양호. 가격이 저렴. 	
		단점	 구조적으로 브러쉬와 정류자에 의한 기계식 접점 발생, 정류자와 마찰을 일으켜 수명을 단축시킴. 회전 시 스파크, 회전 소음, 짧은 수명, 특히 스파크는 프로세서로 제어하고자 할 때, 노이즈 발생. 	

▲ DC 모터

정류자 : 금속이 절연체의 양쪽에 붙어 있어 회전축이 반 바퀴 돌 때 마다 코일에 흐르는 전류의

방향을 바꾸어 줌.

정류자에 의해 코일이 같은 방향으로 계속 회전 할 수 있음.

브러쉬 : 모터에 전류공급.

- <u>각 단자 사이에 0.001µF~0.01µF 정도 세라믹 콘덴서 부착</u>하면 어느 정도 해결 가능, 정류자에서 발생하는 스파크가 흡수되어 노이즈를 제어할 수 있음.
- 주의 할 것 : 펄스 폭 변조 제어(PWM : 펄스폭을 바꾸어 DC 모터의 회전수를 바꾸는 방식) 사용할 경우, 주파수가 높은 펄스 신호를 모터에 가하면, 노이즈 대책으로 부착하는 콘덴서 용량이 큰 것을 사용하게 되면, 펄스가 콘덴서로 바이패스(통과)되어 버리기 때문에 그만큼 효율이 떨어짐.
- 완전한 제거가 어렵기 때문에 회로의 전원이나 접지의 배선에 주의해, 컨트롤러에 노이즈가 들어오지 않게 설계하는 것이 필요하고, 가장 확실한 방법은 모터용 전원, 컨트롤러용 전원, 따로 설계하고, 전원의 접지끼리 접속.
- 전원을 같이 할 경우에는 접지, 전원의 배선을 각각 독립하여 설계하고, 근본 전원 1개에만 접속.

Part 5, DC 모터의 특성(T - N)

*토크 : 돌리는 힘

- ▶ 토크에 대해 회전수는 직선적 반비례 관계
- 모터를 빨리 회전 시키려면 전류를 많이 흘려야 함.
- ① 정지하고있을 때 토크가 최대이고 -기동 시 최대 전류 필요.
- ② 기동 된 후 회전수가 높으면 필요전류가 낮아지고 토크도 낮아짐.
- ③ 정상상태 정확하게 모터의 적정 부하 직선 상에 있을 때 가장 효율 좋은 상태로 동작.
- > DC 모터의 회전수가 전압에 비례
- 일정한 토크에서 전압을 가변- 회전 수 제어.
- 토크가 변해도 전압 제어- 회전수가 일정.

Part 6, DC 모터의 특성(T - I)

- 토크에 대해 전류가 직선적으로 비례.
- 큰 힘이 필요 할 때 전류도 많이 흘러야 함.

Part 7, DC 모터 제어 방식

ON/OFF 제어

- TR이 on 되어 모터가 돌고 있는 동안에 모터의 코일에는 에너지가 축적.
- TR이 off되면, 그 에너지를 방출하려고 함.
- 전압이 발생 할 때 모터 코일의 양단에는 +/-가 역방향의 역기전력이 발생.
- 이 전압은 단시간이지만 상당히 높게 되기 때문에 그 상태로는 TR이 파괴.
- ▶ 역기전력 대책
- 다이오드를 추가하고, 코일의 역기전력을 short 시켜, 남아 있는 에너지를 순간적으로 전류로 흘려버려, 역기전력을 억제.
- 역방향 기전력만 short 시키고, 통상 전압에 대해서는 높은 저항 역할을 하므로 아무 일도 하지 않게 됨.

*역기 전력: 전류의 변화 크기에 비례하는 기전력이 걸려진 전압과 반대방향으로 생기는 전력

회전 방향의 전환 제어

- ➤ H bridge 회로 또는 full bridge 회로
- 단일 전원으로 모터에 가하는 전압의 방향을 바꿀 수 있는 회로.
- ➤ full bridge 회로는 P형 TR 2개와 N형 TR를 2개를 사용하여 구현.
- ➤ full bridge의 TR에서 주의할 점
- 항상 대각에 위치하는 TR을 on 제어하도록 하는 것이므로 절대 상하에 있는 TR을 동시에 on해서는 안됨.
- 만약, 상하의 TR를 on으로 하면, 전원을 short하는 것이 되므로 TR이 망가지게 됨.

회전 방향의 전환 제어

- ➤ full bridge 회로의 동작 구조
- Q1과 Q4의 TR만, 동시에 on,
 모터의 전류는 왼쪽에서 오른쪽으로 흘러 모터는 정전.
- Q2와 Q3만 on하면, 오른쪽에서 왼쪽으로 전류가 흐르므로 모터는 역전.
- Q3와 Q4만 동시에 on하면, 모터의 코일을 short, 모터는 brake.

Q1	Q2	Q3	Q4	모터 제어
OFF	OFF	OFF	OFF	정지
ON	OFF	OFF	ON	정전
OFF	ON	ON	OFF	역전
OFF	OFF	ON	ON	brake

모터의 가변속도 제어

- ▶ 모터에 가해지는 전압을 일정하도록 하는 피드백 회로 구성. 즉, 모터에 가해지는 전압이 OP 앰프에서 제어 전압과 비교되어, 양자가 같게 되도록 TR에서 전압 강하를 제어.
- 이 회로는 간단하고 비교적 안정되게 속도를 제어할 수 있기 때문에 소형 모터 제어에 자주 사용.
- ▶ 최대 결점
- TR에서 전압 강하 분만큼 그대로 발열.
- 전류가 많이 흐르는 모터의 제어에는 적합하지 않음.
- 프로세서 등 디지털 회로로 제어하려면, 제어 전압을 만들기 위해 D/A 변환기(디지털/아날로그 변환)를 사용해야 함.
- 프로세서를 이용하는 디지털 제어에서 간단히 속도를 제어 할 수 있고, 이러한 결점을 보충하기 위해서 나온 방식이 PWM 제어 방식.
 - *PWM: 펄스폭을 바꾸어 DC 모터의 회전수를 바꾸는 방식

Part 10, DC 모터 제어 방식

펄스 폭 변조 제어(PMM제어)

*PWM: 펄스폭을 바꾸어 DC 모터의 회전수를 바꾸는 방식

- 제어용 TR를 일정 시간 간격으로 on/off 하면, 모터 구동 전원 이 on/off됨.
- 이 펄스 형태의 전압으로 DC 모터를 구동하면, 모터에 가해지는 평균 전류는 펄스의 폭에 비례하게 됨.
- 평균 전류의 크기에 회전수나 토크가 비례하기 때문에 결국,
 평균 전류가 펄스의 폭에 의해서 변화하게 됨으로 모터의 회전 속도나 토크가 바뀌게 됨.
- PWM 제어 회로는 일반적인 on/off 회로와 완전히 동일해도 좋기 때문에 간단한 회로로 속도 제어를 디지털로 제어할 수 있다는 점에서 우수.
- 프로세서에 의한 속도 제어에는 대부분 PWM 제어가 사용.
- 회전 방향의 전환도 할 수 있도록, full bridge 회로 구성이 사용됨.

Part 11, 모터 드라이브 (모터 드라이브)

모터 드라이브 정의	모터 드라이브 또는 모터 컨트롤러는 모터를 제어하는 전자 제어장치.
모터 드라이브 사용 목적	DC 모터나 유도모터를 돌리기 위해서는 제어장치 없이 단순히 전기를 연결하기만 하면 되지만, 모터 드라이버를 사용하면 토크제어, 속도제어, 위치제어 등을 정확하게 할 수 있고, 또한 모터 보호 기능도 가질 수 있음.
모터 드라이버 선택	 모터 드라이버 선택 할 때 각 모터에 맞는 모터 드라이버를 사용해야 함. 일반적인 DC모터, BLDC모터, STEP모터, PMSM모터 등 모터 종류마다 모터 드라이버의 종류 또한 많음.

- DC 모터의 경우 Pin은 2개.
- 모터의 Pin에 +와 -를 연결 하는 방법에 따라 모터 방향이 달라짐.
- 정방향과 역방향 제어를 합쳐 정역제어라고 함.
- 소프트웨어적으로 해결 할 수 없는 문제이므로 회로를 만들어서 물리적으로 모터에 가해지는 전압의 극성을 바꿈.

- IN1, IN2에 신호를 입력하여 모터의 회전 방향과 속도를 제어 할 수 있음.
- OUT1, OUT2, OUT3, OUT4를 양쪽 모터에 연결.
- IN1,IN2 어느 쪽에 신호를 입력 하는지에 따라 모터의 회전 방향이 바뀜.
- EN 핀은 모터 동작을 위한 핀, 1을 인가하면 동 작, 0을 인가하면 동작하지 않음.

Q 8LA

감사합니다.