1.2 1) La fonction polynomiale f(x) = 2x - 1 est définie pour tout nombre réel : $D_f = \mathbb{R}$.

Le signe de la fonction f est évident : $-\frac{\frac{1}{2}}{+}$

Le graphe de la fonction f est donné par l'équation y = f(x) = 2x - 1. Il s'agit donc de la droite de pente 2 et d'ordonnée à l'origine -1.

2) La fonction polynomiale $f(x) = -\frac{1}{3}x + 2$ est définie pour tout nombre réel : $D_f = \mathbb{R}$.

Le graphe de la fonction f obéit à l'équation $y = f(x) = -\frac{1}{3}x + 2$: il s'agit de la droite de pente $-\frac{1}{3}$ et d'ordonnée à l'origine 2.

3) La fonction $f(x) = x^2 - 2x$ est définie sur l'ensemble des nombres réels, puisqu'elle est polynomiale : $D_f = \mathbb{R}$.

 $f(x) = x^2 - 2x = x(x-2)$

Le graphe de la fonction f, fonction polynomiale du deuxième degré, est une parabole.

4) La fonction $f(x) = -x^2 + 1$ est polynomiale, si bien que $D_f = \mathbb{R}$. $f(x) = -x^2 + 1 = 1 - x^2 = (1+x)(1-x)$

	_	1 1	L
1+x	_	+	+
1-x	+	+	_
f	_	+	_

Le graphe de la fonction f, fonction polynomiale du deuxième degré, est une parabole.

5) $f(x) = |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

La valeur absolue d'un nombre est toujours définie : $D_f = \mathbb{R}$.

Par définition $|x| \ge 0$: $\xrightarrow{+} \xrightarrow{0} \xrightarrow{+}$ Lorsque $x \ge 0$, alors f(x) = x correspond à la droite de pente 1 passant par l'origine; lorsque x < 0, alors f(x) = -x correspond à la droite de pente -1 passant par l'origine.

6) La fonction $f(x) = \sqrt{x+2}$ n'est définie que si l'argument de la racine carrée est positif ou nul, c'est-à-dire si $x+2 \ge 0$ ou encore $x \ge -2$. On a ainsi $D_f = [-2; +\infty[$.

Vu que $\sqrt{x+2} = 0 \iff x+2 = 0$ et que $\sqrt{x+2} > 0$ pour tout x > -2,

on obtient le signe suivant : -2

