东华大学 2017-2018 学年第一学期线性代数 A 试卷 A 答案

踏实学习, 弘扬正气; 诚信做人, 诚实考试; 作弊可耻, 后果自负。

H			班号	_姓名		学号		考试教室	
	试题	_		111	四	五	六	七	总分
	得分								

一. 填空题(每小题 4 分, 满分 40 分)

3. 设三阶方阵
$$A,B$$
 满足关系式 $A^{-1}BA = 6A + BA$,且 $A = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{bmatrix}$ 则

$$B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \underline{\qquad \qquad }.$$

4. 矩阵
$$A = \begin{bmatrix} 2 & 4 & 0 \\ -1 & 0 & -3 \\ 2 & 2 & 3 \end{bmatrix}$$
的秩为 2...

5. 设
$$A, B$$
 均为 n 阶矩阵, $|A| = 2, |B| = -3$,则 $|2A^*B^{-1}| = __- - \frac{2^{2n-1}}{3}$ _____

6. 正交矩阵的行列式为 **1 或-1**

7. 、设A,B,C为n阶方阵,且ABC=E,则必有BCA=E

8. 已知二次型
$$f = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$$
为正定二次型的条件为 $-2 < t < 1$

9. 已知
$$\beta = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}$$
 是矩阵 $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & 0 & 3 \end{bmatrix}$ 的特征向量,则 $a = \underbrace{0, -1}$

10. 设矩阵
$$A = \begin{bmatrix} -a & b \\ b & a \end{bmatrix}$$
, 其中 $a > b > 0$, $a^2 + b^2 = 1$, 则 A 为 正交 矩阵.

二. (10 分) 设三阶实对称矩阵
$$A$$
 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, 对应于 λ_1 的特征向量为 $\xi_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$,

求 A。

解:对应于 $\lambda_2 = \lambda_3 = 1$,于两个线性无关的特征向量 ξ_2, ξ_3 ,它们都与 ξ_1 正交.

所以,
$$A = T\Lambda T^T = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \dots 3$$
分

三、(10 分) 已知 $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$,且 $A^2 - AB = I$,其中 I 为三阶单位阵,求矩阵 B.

解: 由
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
可求 $|A| = -1 \neq 0$ 2 分

可求得:
$$A^{-1} = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \dots 2 分$$

$$\nabla A^2 - AB = A(A - B) = I \dots 2$$

所以
$$A-B=A^{-1}$$
,即 $B=A-A^{-1}=\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 4 分

四、(10 分)已知 \mathbb{R}^3 中的向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量组 $\beta_1=\alpha_1-k\alpha_2$, $\beta_2=\alpha_2+\alpha_3$, $\beta_3 = \alpha_3 + k\alpha_1$ 线性相关,求 k 的值。

解: 设 $\lambda_1, \lambda_2, \lambda_3$ 是一组不全为零的数, $\lambda_1\beta_1 + \lambda_2\beta_2 + \lambda_3\beta_3 = 0$ 2 分

即方程组
$$\begin{cases} \lambda_1 + k\lambda_3 = 0 \\ \lambda_2 - k\lambda_1 = 0 \text{ 有非零解............ 2 分} \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

五、(12分) 设矩阵
$$A,B$$
 相似,且 $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$

- (1) 求 a, b 的值。
- (2) 求可逆矩阵 P 使得 $P^{-1}AP = B$

(2) 求可逆矩阵
$$P$$
 使得 $P^{1}AP = B$
解: (1) A 的特征多项式为 $|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - a \end{vmatrix}$

由 A,B 相似可知, A,B 有相同的特征值 $\lambda_1 = b, \lambda_2 = 2$, ,代入上式可以得到 $a = 5, \ldots 3$ 分 同时 $|\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$,所以, b = 6 3 分

(2)
$$\lambda_1 = 6$$
, 时,解线性方程组 $(6I - A)x = 0$ 得基础解系 $\xi_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ 1 分

$$\lambda_2 = \lambda_3 = 2$$
 时,得基础解系 $\xi_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ $\xi_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ 2 分

$$\lambda_2 = \lambda_3 = 2 \text{ 时, 得基础解系 } \xi_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \xi_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \dots 2 \text{ 分}$$

$$\diamondsuit P = (\xi_1, \xi_2, \xi_3) = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -1 & 0 \\ 3 & 0 & -1 \end{bmatrix}, 则有 P^{-1}AP = B \text{ 3 分}$$

六、(12 分) λ 取何値时方程组 $\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$ 无解? 有唯一解? 有无穷多解? 并在无穷 $4x_1 + 5x_2 - 5x_3 = -1$

多解时写出方程组的通解。

解:
$$\begin{bmatrix} 2 & \lambda & -1 & 1 \\ \lambda & -1 & 1 & 2 \\ 4 & 5 & -5 & -1 \end{bmatrix} : \begin{bmatrix} 2 & \lambda & -1 & 1 \\ \lambda+2 & \lambda-1 & 0 & 3 \\ -6 & -5\lambda+5 & 0 & -6 \end{bmatrix} : \begin{bmatrix} 2 & \lambda & -1 & 1 \\ \lambda+2 & \lambda-1 & 0 & 3 \\ 5\lambda+4 & 0 & 0 & 9 \end{bmatrix}$$
(或 者 行 列 式 为 零 计 算 :
$$\begin{vmatrix} 2 & \lambda & -1 \\ \lambda & 5 & -5 \end{vmatrix} = \begin{vmatrix} 2 & \lambda & \lambda-1 \\ \lambda & -1 & 1 \\ \lambda & 5 & -5 \end{vmatrix} = \begin{vmatrix} 2 & \lambda & \lambda-1 \\ \lambda & 5 & 0 \end{vmatrix} = (\lambda-1)(5\lambda+4) = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -\frac{4}{5}$$

当 $\lambda = -\frac{4}{5}$ 时,原方程无解。……..3分

当 $\lambda \neq 1$ 且 $\lambda \neq -\frac{4}{5}$ 时,原方程有唯一解。......3分

当 $\lambda=1$ 时,原方程有无穷多解。......3分

其通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + k \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} (k 为任意实数) \dots 3 分$$

七、(6 分) A,B 均为n阶矩阵,AB=0,求证: 秩 A+秩 $B \le n$ 。 解:线性方程组AX=0,当秩A=r时,基础解系为n-r个.......2分 $\pm AB = A(b_1, b_2...b_n) = (Ab_1, Ab_2...Ab_n) = 0 \Rightarrow Ab_j = 0 \\ (j = 1, 2, ...n) \\ \dots \\ 2 \\$

即 B 的列均为 AX = 0 的解, 即秩 $B \le n - r$, 亦即秩 $A + \Re B \le n \dots 2$ 分