Workshop "Robotics & AI"

Pasteur Paris University

Jean-Luc.Charles@ENSAM.EU

June 2022

Welcome to the "Robotic & Al with Python" workshop

A three days workshop to get familiarised with...

- Scientific Python programming
- Robotics programming with Python
- Machine learning with Python
 - Images Classification
 - Objects Detection in images (possibly)

June 2022 – V1.0 2/32

Welcome to the "Robotic & Al with Python" workshop

Get the zip file on github.com/cjlux/Robotics-Al-training-at-PPU:

Extract the Robotics-AI-training-at-PPU-master directory in a convenient place...

June 2022 – V1.0 3/32

Wake up your Python skills...

A programming language

- Proposed in the 90s by Guido van Rossum who chose the name Python in tribute to the Monty Python serie...
- Powerful, compact, visual, interpreted
- Full object oriented
- Multi plateforms: GNU/Linux, Mac OS X, Windows... and more!
- Free: distributed under the PSF(Python Software Foundation) licence

June 2022 – V1.0 4/32

Wake up your Python skills...

We will use two types of IDE (Integrated Development Environment):

for editing native Python files <*.py>

- idlex: the simplest IDE in the world! one editor window & one interpreter window
- Visual Studio Code (a.k.a VSCode or simply "code"): a complete & powerfull free IDE by MicroSoft
- ..

for editing notebook files <*.ipynb>

- Jupyter notebook: Python cells within a web browser
- Jupyter lab: the same, plus some goodies (disk tree navigator panel...)

• ..

June 2022 – V1.0 5/32

Wake up your Python skills...

We will use a **Python Virtual Environment** (PVE) for this workshop:

Benefits of a Python Virtual Environment

- Encapsulation in a dedicated and persistent environment.
- Specific versions of Python and all the needed modules.
- Independence from other Python installation(s) likely to coexist on the same machine.
- Independence from computer updates.
- Can be created, deleted, re-created... easily without impacting other Python installations.
- Simply based on a dedicated disk tree.

June 2022 – V1.0 6/32

000000

Main themes of the Python training session

- Install a Python Virtual Environment for the workshop (possibly prepared in advance...)
- IDE installation & configuration: idlex, jupyter notebook, jupyter lab...
- Get familiar with the main Python object types, key words, useful modules...
- Make some calculus with the numpy module.
- Plot data with the matplotlib module.

June 2022 - V1.0 7/32

Start the Python training session with idlex...

→ All the course material is in the directory 1-Python_training...

Begin with Create a Python Virtual Environnement.pdf

Laptop under Windows

- 1 Install miniconda3 and the (pyml) PVE.
- 2 Create the short-cut (pyml)-idlex on your desktop.
- 3 Doucle-clic on the icon (pyml)-idlex to start idlex

Laptop under Mac or Ubuntu

- 1 Install miniconda3 and the (pyml) PVE.
- Open a terminal, activate the (pyml) PVE and type idlex

you are ready to start the interactive Python training session with me!

June 2022 – V1.0 8/32

Start the Python training session with jupyter lab...

→ All the course material is in the directory 1-Python_training...

Work to start

- [Windows] → Open an Anaconda prompt window [Mac/Linux] → Open a terminal
- Use the command cd (change directory) to go into the Robotics-AI-training-at-PPU-master directory.
- 3 Activate the (pyml) PVE.
- Type the command jupyter lab to get Jupyter in a tab of your web browser...

you are ready to start the the jupyter lab self_training session : see notebooks BasicPythonTraining-1.ipynb and BasicPythonTraining-2.ipynb...

June 2022 – V1.0 9/32

- Poppy Ergo Jr: a small and low cost 6-degree-of-freedom robot arm, easy to build and modify.
- One of the creature of the Poppy Projet
- The robot is Open Source software and hardware
- The documentation is here: docs.poppy-project.org
- Supports multiple programming modes:
 - Visual programming: with snap and scratch for programming initiation in schools
 - textual (object oriented) programming with Python.

June 2022 – V1.0 10/32

- Poppy Ergo Jr is controlled by a Raspberry Pi 3 micro-computer that uses a SD card as a disk to boot a Linux-based operating system.
- The robot software is build upon the Pypot Python module.
- The robot is made of 6 XL-320 servomotors from Robotis.

- Each servomotor embeds an electronic board that receives commands (position, speed, torque...) and communicate with other servos.
- You can chain up several servomotors and command them all from one end of the chain: each motor will pass the orders to the next one.
- By default the RPi3 of the Robot emits a WiFi acces point: you can connect your computer to this WiFi to communicate with the robot.

June 2022 – V1.0 11/32

[Windows] → to reach the robot on the WiFi with the name poppy.local install the *Bonjour/ZeroConf* service with this guide.

Work to do for the Robotics session:

- Locate the number n (1 to 6) written on the base of the robot
- Power the RPi3: the green LED will blink for a while...
- Wait for the WiFi SSID Poppy-Hotspot-n to appear...
- Select the Poppy-Hotspot-n and connect your laptop with the key poppyproject
- Launch a web browser (preferably Chrome or Chromium) and open the URL poppy.local: you get the Poppy home page

June 2022 – V1.0 12/32

Work to do for the Robotics session:

- Clic on My Document: you get the jupyter notebook main page
- Open the directory Python notebooks
- Open the notebook PPU_2022June.ipynb...follow the guide...

June 2022 – V1.0 13/32

 Scientific Python
 Robotics
 AI
 ML
 NN
 Dense NN
 Conv. NN
 Video links
 bibliography

 ○○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 <t

Machine learning with Pythor

Historical aspects...

(crédit : developer.nvidia.com/deep-learning)

June 2022 – V1.0 14/32

Artificial Intelligence?

Artificial Intelligence ¹: remains an ambiguous term with multiple definitions

- "...the science of making computers do things that require intelligence when done by humans." Alan Turing, 1940
- "the field of study that gives computers the ability to learn without being explicitly programmed." Arthur Samuel, 1960
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." Tom Mitchell, 1997
- Notion of intelligent agent or rational agent "...agent that acts in such a way as to reach the best solution or, in an uncertain environment, the best predictable solution."

June 2022 – V1.0 15/32

¹ first used in 1956 by John McCarthy, researcher at Stanford during the Dartmouth conference

Artfificial Intelligences?

Strong Al

- Aims to design systems that think exactly like humans.
- May help explain how humans think...
- We're still far away... do we really want to go that far?

Weak Al

- Aims to design systems that can "behave" like humans.
- Tells us nothing about how humans think.
- We're already there... We use it every day!
 facial recognition, voice recognition, anti-spam, translation...

June 2022 – V1.0 16/32

Conv. NN

Machine Learning and Al

Page from medium.com/machine-learning-for-humans/...

Machine learning ⊆ artificial intelligence

ARTIFICIAL INTELLIGENCE

Design an intelligent agent that perceives its environment and makes decisions to maximize chances of achieving its goal. Subfields: vision, robotics, machine learning, natural language processing, planning, ...

MACHINE LEARNING

Gives "computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

Classification, regression

LEARNING

Clustering, dimensionality reduction, recommendation

REINFORCEMENT

Reward maximization

Machine Learning for Humans in ...

June 2022 - V1.0

Machine Learning and Al

Several approaches can be used to design *Machine Learning* algorithms:

- Genetic programming
- Bayesian inference
- Fuzzy logic
- Neural Networks
- ..

The following deals only with Artificial Neural Network.

June 2022 – V1.0 18/32

cientific Python Robotics AI ML NN Dense NN Conv. NN Video links bibliograph

Artificial neuron

A artificial neuron:

- receives the input data $(x_i)_{i=1..n}$ affected by the **weights** $(w_i)_{i=1..n}$ (weights)
- calculates the **weighted sum** of its entries minus the bias $\sum_i w_i x_i b$

• outputs a **activation** $f(\sum_i w_i x_i - b)$, computed with an activation function f (generally non-linear).

June 2022 – V1.0 19/32

Artificial neuron

The activation function of a neuron:

- introduces a non-linear behavior,
- sets the range of the neuron output, for example [-1,1], [0,1] or even $[0,\infty[$.

The bias b sets the activation threshold of the neuron.

June 2022 – V1.0 20/32

Neural networks studied

 Neural networks are more or less complex assemblies of artificial neurons.

- Two architectures are studied for image classification:
 - The Dense Neura Network (DNN), simple, generalist, can provide fairly good score.
 - The more complex Convolutional Neural Network (CNN), specialized in image processing, up to a score of 99%.

June 2022 – V1.0 21/32

Data used to train networks

MNIST: bank of 70000 labeled images

- grayscale images 28 × 28 pixels.
- 60000 training images and 10000 test images.

June 2022 – V1.0 22/32

Scientific Python Robotics AI ML NN Dense NN Conv. NN Video links bibliography

1 - Dense Neural Network

Each matrix $28 \times 28 \sim$ normalized vector of 784 components float $\in [0;1]$.

Structure of the network:

- An Input layer sets the size of network inputs to 784 values.
 It has no neurons.
- A Hidden layer of 784 neurons (we could have more, or less...), receives the input data. It is connected to the next layer.
- An Output layer of 10 neurons (1 neuron for each digit to be recognized).

June 2022 – V1.0 23/32

- In the intermediate layers the activation function relu often favors the learning of the network ² algorithm.
- Classification (last layer) uses the softmax function:

Activation function softmax

- The activation of neuron k is $Y_k = e^{y_k}/\sum_i e^{y_i}$ with $y_k = \sum_i \omega_i x_i b$ calculated by the neuron k.
- The outputs of the neurons are interpreted as probabilities in the interval [0,1].

The neuron with the greatest probability (activation) gives the response of the network by its associated label.

June 2022 – V1.0 24/32

² avoids the *vanishing gradient* that appears in the *back propagation*

One-hot encoding of labels

Purpose: to put the image labels in the format of the network output

- Image labels: integers from 0 to 9.
- Network output: vector of 10 float in the interval [0,1] calculated by the softmax functions of the 10 output neurons.
- one-hot coding of an ordered collection of N unique elements:

chiffre	Y_i^\prime : vecteur one-hot
0	[1000000000]
1	[0 1 0 0 0 0 0 0 0 0]
2	[0 0 1 0 0 0 0 0 0 0]
3	[0 0 0 1 0 0 0 0 0 0]
4	[0 0 0 0 1 0 0 0 0 0]
5	[0 0 0 0 0 1 0 0 0 0]
6	[0 0 0 0 0 0 1 0 0 0]
7	[0 0 0 0 0 0 0 1 0 0]
8	[0 0 0 0 0 0 0 0 1 0]
9	[0000000001]

- each element is coded by a vector of N null components except one.
- the *ith* element ~ vector with a 1 for *ith* component.

The *one-hot* encoding of labels '0' to '9' results in a 10-component vector, like the one computed by the neural network.

June 2022 – V1.0 25/32

Error function: *Cross entropy error*

- An image processed by the network \sim vector Y of 10 float to compare to the *hot-one* encoding Y' of the label of the image.
- We use the error (or loss) function *cross entropy* adapted to the coding *one-hot*: $e(Y, Y') = -\sum_{i} Y_{i}^{'} log(Y_{i})$

June 2022 – V1.0 26/32

Optimization and Back Propagation

- During the learning phase an optimization algorithm calculates the gradient of the loss function relative to the network weights.
- The Back Propagation algorithm modifies the weights of the network layer by layer thanks to the gradient of the loss function, iterating from the last layer to the first layer.
- Examples of optimization algorithm used:
 - Gradient Descent (GD)
 - Stochastic Gradient Descent (SGD)
 - Adam (enhanced version of gradient descent)...

The module tf.keras.optimizers offers Python implementation of several optimization algorithms.

June 2022 – V1.0 27/32

Visualization of gradient descent algorithm iterations for an ultra-simple loss function with only 2 variables:

(source: github.com/Jaewan-Yun/optimizer-visualization)

back propagation algorithm explanation video:

June 2022 – V1.0 28/32

Implementation for the workshop

- The three notebooks ML1_MNIST.ipynb, ML2_DNN.ipynb and ML3_DNNipynb target the skill:
 - load and pre-process MNIST images,
 - build a dense neural network.
 - train the network to recognize MNIST images,
 - evaluate and operate the trained network.
- The Python modules used to create and train the neural networks are tensorflow and keras.
- Scores obtained with dense networks can reach 98% success in the most favorable cases.

June 2022 – V1.0 29/32

2 - Convolutional Neural Network

To significantly improve the success score, it is necessary to switch to networks specialized in image processing: **convolutional neural networks** (RNC), or *Convolutional Neural Network (CNN)*.

Implementation for the workshop

- The notebook ML4_CNN.ipynb targets the skills:
 - build a convolutional neural network inspired by the LeNet5 network (one of the first RNCs proposed by Yann LeCun et al. in the 90s),

Yann Lecun et al., 1998, "Gradient-based learning applied to document recognition", Proceedings of the IEEE. 86 (11)

- train the network to recognize MNIST images,
- evaluate and operate the trained network.

June 2022 – V1.0 30/32

Scientific Python Robotics AI ML NN Dense NN Conv. NN Video links bibliography

Vidéographie

How machines learn

8/ Local: "Gradient descent how neural networks learn web

4/ Local: "What is backpropagation really doing .webm

June 2022 – V1.0 31/32

Biliographie

- Intelligence Artificielle, 3e édition, PEARSON Education, 2010, ISBN: 2-7440-7455-4, aima.cs.berkeley.edu
- [2] What is artificial intelligence (AI), and what is the difference between general AI and narrow AI?, Kris Hammond, 2015 www.computerworld.com/article/2906336/what-is-artificial-intelligence.html
- [3] Stanford Encyclopedia of Philosophy, plato.stanford.edu/entries/artificial-intelligence
- [4] Deep Learning., Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016), MIT Pres, ISBN 9780262035613

June 2022 – V1.0 32/32