UPEC

Automne 2023

Mesure et Probabilités Travaux Dirigés 1

BUT. Rappels d'Analyse.

Exercice 1. Soient A et B deux ensembles dans \mathbb{R} . On définit leur addition $A + B := \{x + y : x \in A, y \in B\}.$

Exercice 2. Soient A et B deux ensembles dans \mathbb{R} .

- Montrer que $\sup(A \cup B) \ge \sup(A)$.
- Montrer que

$$\sup(A \cup B) = \max(\sup(A), \sup(B)).$$

— Qu'en est-il pour $\sup(A \cap B)$?

Exercice 3. Pour tout entier positif n, on pose

$$a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)}.$$

En utilisant que $\frac{1}{n\cdot(n+1)}=\frac{1}{n}-\frac{1}{(n+1)}$ montrer que (a_n) est une suite de Cauchy, et conclure la convergence de la suite

$$b_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

Exercice 4. Pour tout entier positif n, on pose

$$\alpha_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

Montrer que (α_n) n'est pas une suite de Cauchy.

Exercice 5. Soit une série de terme génétal $u_n > 0$. Montrer que l'ordre dans lequel on somme les termes n'a pas d'importance.

Exercice 6. Si la série de terme génétal u_n est absolument convergente, montrer que pour toute bijection $\varphi : \mathbb{N} \to \mathbb{N}$, la série $(u_{\varphi(n)})$ est absolument convergente.

Exercice 7. Montrer que $\mathbb{N} \times \mathbb{N}$ est dénombrable.