

Simon Hirländer

Tutorial RL4AA

POMDPs and non stationarity

 To find a proper state we have to solve the <u>additional prediction problem</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}, \dots)$

 In the non-stationary, finite horizon formulation the MDP has the form $(S, A, \{P\}_h, \{r\}_h, H, \rho_0) \Rightarrow \text{Value-functions } Q_h(s, a) \text{ get time depended}$ ⇒ similar form of Bellman equations

• We can incorporate time into state e.g. $\tilde{s} = (s, h) \Rightarrow$ standard MDP

 Generally Bellman equation nice in discounted, stationary formulation ⇒ this is what we usually see and most libraries build on this formulation

POMDPs and non stationarity

- To find a proper state we have to solve the <u>additional prediction problem</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2} \dots)$
- In the non-stationary, finite horizon formulation the MDP has the form $(S,A,\{P\}_h,\{r\}_h,H,\rho_0)\Rightarrow$ Value-functions $Q_h(s,a)$ get time depended \Rightarrow similar form of Bellman equations
- We can incorporate time into state e.g. $\tilde{s} = (s, h) \Rightarrow$ standard MDP
- Generally Bellman equation nice in discounted, stationary formulation ⇒
 this is what we usually see and most libraries build on this formulation

The entire problem

17

