

critical points as defined by the gradient

$$\mathbf{v}(\mathbf{x}_0) = \mathbf{0}$$
 with $\mathbf{v}(\mathbf{x}_0 \pm \boldsymbol{\epsilon}) \neq \mathbf{0}$

Repelling node R_1 , $R_2 > 0$ $I_1 = I_2 = 0$

Saddle point $R_1 < 0, R_2 > 0$ $I_1 = I_2 = 0$

Attracting node R_1 , $R_2 < 0$ $I_1 = I_2 = 0$

- integral lines of the gradient
- → follow the steepest ascend
- → perpendicular to isocontours

- integral lines of the gradient
- → follow the steepest ascend
- perpendicular to isocontours

- started at saddle points
- extremal structures

- integral lines of the gradient started at saddle points
- → follow the steepest ascend
- perpendicular to isocontours

- extremal structures

- integral lines of the gradient started at saddle points
- → follow the steepest ascend
 extremal structures
- perpendicular to isocontours

- integral lines of the gradient
- started at saddle points
- extremal structures

- global structures
 we cannot decide locally, whether a
 point is on a separatrix or not.
- parallel computation limited