

Motivation

Automated Driving (AD)

- brings ...
 - safety
 - efficiency
 - availability
 - comfort

SAE levels for AD

Challenges

- Data amounts
 - \sim 10 TB/h for AD \rightarrow \sim 10 ZB to release
- Open Context
 - What is relevant?

Agenda

State of the art **Research Questions Data Reduction** Relevance Method **Evaluation** ? Results Outlook

State of the art

Data reduction for AD

Lossy or Lossless

- **Low-Level features**
 - e.g. Pixel
 - Technology far advanced
- **High-Level features**
 - Simple methods (Triggering)
 - Missing use of domain knowledge for AD

Research Questions

1. How can the open context present in automated driving be addressed in data reduction?

2. How can relevance be formally defined to facilitate its use in data reduction?

3. What is the impact of this data reduction method on the performance of subsequent use cases?

Relevance: Method

General Relevance Model (GRM)

Abstract description using ontologies

Specific Relevance Model (SRM)

Use Case specific implementation details

Relevance: Method

Proof of Concept

- Perception relevance for collision free driving
- Three principles
 - 1. Worst-Case assumption
 - 2. Superposition

Relevance: Evaluation

Validation Concept

- Reference: human driver
- Compare Ego prediction with different information
- Aggregation of prediction errors
- Cramer-von Mises Test:

Data Reduction: Method

Concept

- Reduction by abstraction
- Expansion by "plausible lie"
- Relevant information left unaltered

Data Reduction: Evaluation

- Impact on Neural Nets
 - Inference | Training
 - Object detection | Semantic segmentation
- 5 datasets for evaluation

Data Reduction: Evaluation

Inference

- Proposed method D_{Synth}:
 - Small impact on performance
- Alternative method D_{Blackened}:
 - Large impact on performance

→ "Plausible lie" of irrelevant information essential for inferenz

Semantic segmentation (mIoU)

	\mathbb{D}_{Full}	\mathbb{D}_{Synth}	$\mathbb{D}_{Blackened}$
Relevant Ø	0,823	0,819	0,37
Irrelevant Ø	0,79	> 0,72	-
Ø	0,81	0,78	-

Object detection (mAP₅₀)

	\mathbb{D}_{Full}	\mathbb{D}_{Synth}	$\mathbb{D}_{Blackened}$
Relevant Ø	0,373	0,369	0,14

Data Reduction: Evaluation

TECHNISCHE UNIVERSITÄT DARMSTADT

Training

- X Semantic segmentation
- ✓ Object detection
- → Dependent on Use Case

→ "Plausible lie" of irrelevant informatio essential for training

Results

Inclusion of domain-specific relevance

- → Control of information losses
- → Effective management of performance losses

2. Description of relevance?

Ontological models

- → Adaptive modeling for different relevance concepts
- → Derivation of relevance from knowledge representation

3. Impact on performance?

- → Suitability for inference and training of neural networks
- → Dependence on the use case

Outlook

- Common representation of various sensor modalities
- Enhanced understanding of use case dependency

Relevance modeling

- Establishment of differentiated relevance consideration in AD
- Standardized concepts and nomenclature for relevance in AD

Application

- Previously "laboratory conditions"
- Possible application modes?
- Transferability/scaling to industrial application?

Thank you

Kai Storms

Funded by:

