

Audit Report BNBdaddy

February 2023

Type BEP20

Network BSC

Address 0x940c034bb107b5dcbe2c624c1980ceb3b0cb5d9d

Audited by © cyberscope

Table of Contents

Table of Contents	'
Review	3
Audit Updates	3
Source Files	3
Analysis	4
Diagnostics	5
CR - Code Repetition	6
Description	6
Recommendation	6
L02 - State Variables could be Declared Constant	7
Description	7
Recommendation	7
L04 - Conformance to Solidity Naming Conventions	8
Description	8
Recommendation	8
L05 - Unused State Variable	10
Description	10
Recommendation	10
L07 - Missing Events Arithmetic	11
Description	11
Recommendation	11
L13 - Divide before Multiply Operation	12
Description	12
Recommendation	12
L14 - Uninitialized Variables in Local Scope	13
Description	13
Recommendation	13
L19 - Stable Compiler Version	14
Description	14
Recommendation	14
L20 - Succeeded Transfer Check	15
Description	15

Review

Contract Name	BNBDADDY
Compiler Version	v0.8.18+commit.87f61d96
Optimization	200 runs
Explorer	https://bscscan.com/address/0x940c034bb107b5dcbe2c624c1980ceb3b0cb5d9d
Address	0x940c034bb107b5dcbe2c624c1980ceb3b0cb5d9d
Network	BSC
Symbol	BNB DADDY
Decimals	18
Total Supply	99,999,999

Audit Updates

Initial Au	dit	18 Feb 2023	
------------	-----	-------------	--

Source Files

Filename	SHA256
BNBDADDY.sol	df010d1ad4bff46ddc9f9839719234ad91 9b5eac4bc043fb5587326ff86c19d5

Analysis

CriticalMediumMinor / InformativePass

Severity	Code	Description	Status
•	ST	Stops Transactions	Passed
•	OCTD	Transfers Contract's Tokens	Passed
•	OTUT	Transfers User's Tokens	Passed
•	ELFM	Exceeds Fees Limit	Passed
•	ULTW	Transfers Liquidity to Team Wallet	Passed
•	MT	Mints Tokens	Passed
•	ВТ	Burns Tokens	Passed
•	BC	Blacklists Addresses	Passed

Diagnostics

CriticalMediumMinor / Informative

Severity	Code	Description	Status
•	CR	Code Repetition	Unresolved
•	L02	State Variables could be Declared Constant	Unresolved
•	L04	Conformance to Solidity Naming Conventions	Unresolved
•	L05	Unused State Variable	Unresolved
•	L07	Missing Events Arithmetic	Unresolved
•	L13	Divide before Multiply Operation	Unresolved
•	L14	Uninitialized Variables in Local Scope	Unresolved
•	L19	Stable Compiler Version	Unresolved
•	L20	Succeeded Transfer Check	Unresolved

CR - Code Repetition

Criticality	Minor / Informative
Location	BNBDADDY.sol#L601
Status	Unresolved

Description

The contract contains repetitive code segments. There are potential issues that can arise when using code segments in Solidity. Some of them can lead to issues like gas efficiency, complexity, readability, security, and maintainability of the source code. It is generally a good idea to try to minimize code repetition where possible.

The fee is identical to the feeAmount since the feesum is always equal to the feeswap

```
fee = (amount * feesum) / 100;
///
uint256 feeAmount = (amount * feeswap) / 100;
```

Recommendation

The team is advised to avoid repeating the same code in multiple places, which can make the contract easier to read and maintain. The authors could try to reuse code wherever possible, as this can help to reduce the complexity and size of the contract. For instance, the contract could reuse the common code segments in an internal function in order to avoid repeating the same code in multiple places.

L02 - State Variables could be Declared Constant

Criticality	Minor / Informative
Location	BNBDADDY.sol#L450
Status	Unresolved

Description

State variables can be declared as constant using the constant keyword. This means that the value of the state variable cannot be changed after it has been set. Additionally, the constant variables decrease gas consumption of the corresponding transaction.

uint256 private launchtax = 99

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a state variable cannot be changed by any function in the contract. This can be useful for storing values that are important to the contract's behavior, such as the contract's address or the maximum number of times a certain function can be called. The team is advised to add the constant keyword to state variables that never change.

L04 - Conformance to Solidity Naming Conventions

Criticality	Minor / Informative
Location	BNBDADDY.sol#L65,67,409,448,453,615,694,703,710,721
Status	Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code. Adhering to a style guide can help improve the readability and maintainability of the Solidity code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

- 1. Use camelCase for function and variable names, with the first letter in lowercase (e.g., myVariable, updateCounter).
- 2. Use PascalCase for contract, struct, and enum names, with the first letter in uppercase (e.g., MyContract, UserStruct, ErrorEnum).
- 3. Use uppercase for constant variables and enums (e.g., MAX_VALUE, ERROR_CODE).
- 4. Use indentation to improve readability and structure.
- 5. Use spaces between operators and after commas.
- 6. Use comments to explain the purpose and behavior of the code.
- 7. Keep lines short (around 120 characters) to improve readability.

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

L05 - Unused State Variable

Criticality	Minor / Informative
Location	BNBDADDY.sol#L466
Status	Unresolved

Description

An unused state variable is a state variable that is declared in the contract, but is never used in any of the contract's functions. This can happen if the state variable was originally intended to be used, but was later removed or never used.

Unused state variables can create clutter in the contract and make it more difficult to understand and maintain. They can also increase the size of the contract and the cost of deploying and interacting with it.

```
mapping(address => uint256) private _lastSell
```

Recommendation

To avoid creating unused state variables, it's important to carefully consider the state variables that are needed for the contract's functionality, and to remove any that are no longer needed. This can help improve the clarity and efficiency of the contract.

L07 - Missing Events Arithmetic

Criticality	Minor / Informative
Location	BNBDADDY.sol#L700,713
Status	Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a contract. They are often used to notify external parties or clients about events that have occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that all required events are included. It's also a good idea to test the contract to ensure that all events are being properly triggered and logged.

```
tokenLiquidityThreshold = new_amount * 10**decimals()
deadline = _deadline
```

Recommendation

By including all required events in the contract and thoroughly testing the contract's functionality, the contract ensures that it performs as intended and does not have any missing events that could cause issues with its arithmetic.

L13 - Divide before Multiply Operation

Criticality	Minor / Informative
Location	BNBDADDY.sol#L640,642,649
Status	Unresolved

Description

It is important to be aware of the order of operations when performing arithmetic calculations. This is especially important when working with large numbers, as the order of operations can affect the final result of the calculation. Performing divisions before multiplications may cause loss of prediction.

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses to specify the order of operations. The basic rule is that the multiplications should be prior to the divisions.

L14 - Uninitialized Variables in Local Scope

Criticality	Minor / Informative
Location	BNBDADDY.sol#L570,571,573
Status	Unresolved

Description

Using an uninitialized local variable can lead to unpredictable behavior and potentially cause errors in the contract. It's important to always initialize local variables with appropriate values before using them.

uint256 feeswap
uint256 feesum
Taxes memory currentTaxes

Recommendation

By initializing local variables before using them, the contract ensures that the functions behave as expected and avoid potential issues.

L19 - Stable Compiler Version

Criticality	Minor / Informative
Location	BNBDADDY.sol#L3
Status	Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified version (i.e., any version that is a higher minor or patch version) can be used to compile the contract. The version lock is a mechanism that allows the author to specify a minimum version of the Solidity compiler that must be used to compile the contract code. This is useful because it ensures that the contract will be compiled using a version of the compiler that is known to be compatible with the code.

```
pragma solidity ^0.8.17;
```

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked pragma version ensures that the contract will not be deployed with an unexpected version. An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler should be configured to the lowest version that provides all the required functionality for the codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support) environment.

L20 - Succeeded Transfer Check

Criticality	Minor / Informative
Location	BNBDADDY.sol#L743
Status	Unresolved

Description

According to the ERC20 specification, the transfer methods should be checked if the result is successful. Otherwise, the contract may wrongly assume that the transfer has been established.

```
IBEP20(tokenAdd).transfer(owner(), amount)
```

Recommendation

The contract should check if the result of the transfer methods is successful. The team is advised to check the SafeERC20 library from the Openzeppelin library.

Functions Analysis

Contract	Туре	Bases		
	Function Name	Visibility	Mutability	Modifiers
Context	Implementation			
	_msgSender	Internal		
	_msgData	Internal		
IBEP20	Interface			
	totalSupply	External		-
	balanceOf	External		-
	transfer	External	✓	-
	allowance	External		-
	approve	External	✓	-
	transferFrom	External	✓	-
IBEP20Metada ta	Interface	IBEP20		
	name	External		-
	symbol	External		-
	decimals	External		-
BEP20	Implementation	Context, IBEP20, IBEP20Meta data		
		Public	✓	-
	name	Public		-
	symbol	Public		-
	decimals	Public		-

	totalSupply	Public		-
	balanceOf	Public		-
	transfer	Public	✓	-
	allowance	Public		-
	approve	Public	1	-
	transferFrom	Public	✓	-
	increaseAllowance	Public	✓	-
	decreaseAllowance	Public	1	-
	_transfer	Internal	1	
	_tokengeneration	Internal	√	
	_approve	Internal	1	
Address	Library			
	sendValue	Internal	1	
Ownable	Implementation	Context		
		Public	1	-
	owner	Public		-
	renounceOwnership	Public	1	onlyOwner
	transferOwnership	Public	1	onlyOwner
	_setOwner	Private	1	
IFactory	Interface			
	createPair	External	1	-
IRouter	Interface			
	factory	External		-
	WETH	External		-
	addLiquidityETH	External	Payable	-

	swapExactTokensForETHSupportingF eeOnTransferTokens	External	✓	-
BNBDADDY	Implementation	BEP20, Ownable		
		Public	1	BEP20
	approve	Public	1	-
	transferFrom	Public	1	-
	increaseAllowance	Public	1	-
	decreaseAllowance	Public	1	-
	transfer	Public	1	-
	_transfer	Internal	1	
	Liquify	Private	1	lockTheSwap
	swapTokensForETH	Private	1	
	addLiquidity	Private	1	
	updateLiquidityProvide	External	1	onlyOwner
	updateLiquidityTreshhold	External	1	onlyOwner
	EnableTrading	External	1	onlyOwner
	updatedeadline	External	1	onlyOwner
	updateMarketingWallet	External	1	onlyOwner
	updateExemptFee	External	1	onlyOwner
	bulkExemptFee	External	1	onlyOwner
	rescueBNB	External	✓	onlyOwner
	rescueBSC20	External	✓	onlyOwner
		External	Payable	-

Inheritance Graph

Flow Graph

Summary

Bnbdaddy is an interesting project that has a friendly and growing community. The Smart Contract analysis reported no compiler error or critical issues. The contract Owner can access some admin functions that can not be used in a malicious way to disturb the users' transactions. There is also a limit of max 1% fees.

Disclaimer

The information provided in this report does not constitute investment, financial or trading advice and you should not treat any of the document's content as such. This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may copies be delivered to any other person other than the Company without Cyberscope's prior written consent. This report is not nor should be considered an "endorsement" or "disapproval" of any particular project or team. This report is not nor should be regarded as an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Cyberscope to perform a security assessment. This document does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors' business, business model or legal compliance. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report represents an extensive assessment process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk Cyberscope's position is that each company and individual are responsible for their own due diligence and continuous security Cyberscope's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies and in no way claims any guarantee of security or functionality of the technology we agree to analyze. The assessment services provided by Cyberscope are subject to dependencies and are under continuing development. You agree that your access and/or use including but not limited to any services reports and materials will be at your sole risk on an as-is where-is and as-available basis Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could include false positives false negatives and other unpredictable results. The services may access and depend upon multiple layers of third parties.

About Cyberscope

Cyberscope is a blockchain cybersecurity company that was founded with the vision to make web3.0 a safer place for investors and developers. Since its launch, it has worked with thousands of projects and is estimated to have secured tens of millions of investors' funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io