Math 539 Notes

Henry Xia

February 4, 2020

Contents

1	Introduction	1
	1.1 Notation	1
	1.2 Riemann-Stieltjes Integral	2
2	Dirichlet Series	3
	2.1 Dirichlet convolutions	6
	2.2 Meromorphic continuation of $\zeta(s)$	Ć
3	Elementary Estimates for Arithmetic Functions	11
	3.1 Prime number estimates	13

1 Introduction

Motivating questions (some statistics):

- the "probability" that a random number has some property
- the "distribution" of some given multiplicative/additive function

Idea: we can answer the question for $\{1, ..., \lfloor x \rfloor\}$ for some parameter x. Then, take the limit $x \to \infty$ for all natural numbers.

1.1 Notation

Let $g(x) \ge 0$.

Definition 1.1.1. O(g(x)) means some unspecified function u(x) such that $|u(x)| \le cg(x)$ for some constant c > 0.

Example 1.1.2. Show that $e^{2x} - 1 = 2x + O(x^2)$ for x = [-1, 1].

Proof. Observe that $f(z) = e^{2z} - 1 - 2z$ is analytic (and entire) and has a double zero at z = 0 (one can check that f(z) = f'(z) = 0. Hence, $g(z) = (e^{2z} - 1 - 2z)/z^2$ has a removable singularity at z = 0, whence g is analytic and entire. Let $C = \max\{|g(z)| : |z| \le 1\}$. Then

$$|g(z)| \le C \implies |e^{2z} - 1 - 2z| \le C|z^2| \implies e^{2z} - 1 - 2z = O(|z|^2).$$

Exercise 1.1.3. Show that $\sqrt{x+1} = \sqrt{x} + O(1/\sqrt{x})$ for $x \in [1, \infty)$.

Definition 1.1.4. $f(x) \ll g(x)$ means f(x) = O(g(x)).

Exercise 1.1.5. Suppose that $f_1 \ll g_1, f_2 \ll g_2$, then $f_1 + f_2 \ll \max\{g_1, g_2\}$. \checkmark

Exercise 1.1.6. Let f, g be continuous on $[0, \infty)$, and $f \ll g$ on $[123, \infty)$. Show that $f \ll g$ on $[0, \infty)$.

Definition 1.1.7. $f(x) \sim g(x)$ means $\lim \frac{f(x)}{g(x)} = 1$.

Definition 1.1.8. f(x) = o(g(x)) means $\lim \frac{f(x)}{g(x)} = 0$.

Definition 1.1.9. $f(x) = O_y(g(x))$ means f, g depend on some parameter y, and the implicit constant depends on y.

Exercise 1.1.10. For any $A, \epsilon > 0$, show that $(\log x)^A \ll_{A,\epsilon} x^{\epsilon}$.

1.2 Riemann-Stieltjes Integral

Appendix A in the book.

Definition 1.2.1. Some definitions for partitions

- 1. Let $\underline{x} = \{x_0, ..., x_N\}$ be a partition of [c, d] if $c = x_0 < \cdots < x_N = d$.
- 2. The mesh size $m(\underline{x}) = \max_{1 \le i \le N} x_i x_{i-1}$.
- 3. Sample points $\xi_j \in [x_{j-1}, x_j]$.

Definition 1.2.2 (Riemann-Stieltjes Integral). Given two functions f(x) and g(x), define the Riemann-Stieltjes integral as

$$\int_{c}^{d} f(x) \ dg(x) = \lim_{m(\underline{x}) \to 0} \sum_{j=1}^{N} f(\xi_{j}) (g(x_{j}) - g(x_{j-1})).$$

Remark 1.2.3. Setting g(x) = x gives the Riemann integral.

Theorem 1.2.4. Let f(x) have bounded variation and let g(x) be continuous on [c,d], or vice versa. Then $\int_c^d f(x) dg(x)$ exists.

Remark 1.2.5. If a function is piecewise monotone, then it has bounded variation.

Example 1.2.6. Given a sequence $a_{nn\in\mathbb{N}}$, define the summatory function $A(x) = \sum_{n \leq x} a_n$. Then, on any [c,d], A(x) is bounded, piecewise continuous and piecewise monotone. Hence, the Riemann-Stieltjes integral exists when g is continuous.

Remark 1.2.7. We present 3 facts that we will use.

1. If A(x) is the summatory function as above, and f(x) is continuous, then

$$\int_{c}^{d} f(x) \ dA(x) = \sum_{c < n \le d} a_n f(n).$$

2. (Integration by parts). If the integrals exist, then

$$\int_{c}^{d} f(x) \ dg(x) = f(x)g(x)|_{c}^{d} - \int_{c}^{d} g(x) \ df(x).$$

3. If f(x) is continuously differentiable, then

$$\int_{c}^{d} g(x) df(x) = \int_{c}^{d} g(x)f'(x) dx.$$

Example 1.2.8 (Summation by parts). Consider $\sum_{n \leq y} \frac{a_n}{n}$. Let f(x) = 1/x, then we can write

$$\sum_{n \le y} \frac{a_n}{n} = \sum_{n \le y} a_n \cdot \frac{1}{n} = \int_0^y \frac{1}{x} dA(x) = \frac{1}{x} A(x) \Big|_0^y - \int_0^y A(x) d\left(\frac{1}{x}\right) = \frac{A(y)}{y} - \int_0^y A(x) \frac{1}{x^2} dx.$$

The final manipulation that we want to get is

$$\sum_{n \le y} a_n f(n) = A(y) f(y) - \int_0^y A(x) f'(x) \, dx. \tag{1}$$

2 Dirichlet Series

A Dirichlet series is $\sum_{n=1}^{\infty} a_n n^{-s}$. Facts about Dirichlet series:

- converge in some right half-plane $\{s \in \mathbb{C} : \Re s > R\}$ for some R (possibly $R = \pm \infty$).
- Sometimes converge conditionally. Example: $\sum_{n=1}^{\infty} (-1)^n/n^{1/2}$.
- $(\sum_{n=1}^{\infty} a_n n^{-s})(\sum_{n=1}^{\infty} b_n n^{-s}) = \sum_{n=1}^{\infty} c_n n^{-s}$ where $c = \sum_{de=n} a_d b_e = \sum_{d|n} a_d b_{e/d}$. (multiplicative convolution)

Some notation: for $s \in \mathbb{C}$, we write $s = \sigma + it$, that is σ is the real part of s, and t is the imaginary part of s. Note that if x > 0, then $|x^s| = |x^\sigma| |x^{it}| = |x^\sigma| |e^{it \log x}| = |x^\sigma|$.

Theorem 2.0.1 (thm 1.1). Let $\alpha(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ be a Dirichlet series. Suppose that $s_0 \in \mathbb{C}$ is such that $\alpha(s_0)$ converges. Then $\alpha(s)$ converges uniformly in the sector

$$S = \{ s \in \mathbb{C} : \sigma \ge \sigma_0, |t - t_0| \le H |\sigma - \sigma_0| \}$$

for any H > 0.

Proof. WLOG, let $s_0 = 0$, otherwise we can do a change of variables. Let $A(x) = \sum_{n < x} a_n = \alpha(0) - R(x)$. Then, for $\sigma > 0$,

$$\sum_{M < n \le N} a_n n^s = \int_M^N x^{-s} \ dA(x) = \int_M^N x^{-s} \ d(\alpha(0) - R(x))$$

$$= \int_M^N x^{-s} \ d\alpha(0) - \int_M^N x^{-s} \ dR(x) = -\int_M^N x^{-s} \ dR(x)$$

$$= -x^{-s} R(x) \Big|_M^N + \int_M^N R(x) \ d(x^{-s})$$

$$= R(M) M^{-s} - R(N) N^{-s} - s \int_M^N R(x) x^{-s-1} \ dx.$$

Note that $R(N)N^{-s} \to 0$ as $N \to \infty$, and that $R(x)x^{-s-1} \ll x^{-\sigma-1}$. Hence, letting $N \to \infty$ gives

$$\sum_{M < n} a_n n^{-s} = R(M) M^{-s} - s \int_M^\infty R(x) x^{-s-1} \ dx \to 0 \text{ as } M \to \infty.$$

Now, choose M large such that $|R(x)| < \epsilon$ for all $x \ge M$. Then,

$$\left| \sum_{n>M} a_n n^{-s} \right| \le \epsilon M^{-\sigma} + |s| \int_M^\infty \epsilon x^{-\sigma - 1} dx$$

$$= \epsilon M^{-\sigma} + |s| \epsilon x^{-\sigma} \frac{1}{-\sigma} \Big|_M^\infty$$

$$= \epsilon M^{-\sigma} + |s| \epsilon \frac{M^{-\sigma}}{\sigma} = \frac{\epsilon}{M^{\sigma}} \left(1 + \frac{|s|}{\sigma} \right).$$

Since $s \in S$, we have

$$|s| = \sqrt{\sigma^2 + t^2} \le \sqrt{\sigma^2 + |H\sigma|^2} = \sigma\sqrt{1 + H^2},$$

so $\left|\sum_{n>M} a_n n^{-s}\right| \leq \epsilon (1+\sqrt{1+H^2})$ as $M\to\infty$. Observe that the latter only depends on H, so the convergence is uniform.

Corollary 2.0.2. If $\alpha(s_0)$ converges, then $\alpha(s)$ converges for all s with $\sigma > \sigma_0$.

Corollary 2.0.3. If $\alpha(s_0)$ diverges, then $\alpha(s)$ diverges for all s with $\sigma < \sigma_0$.

Remark 2.0.4. The Dirichlet series $\alpha(s)$ has an abscissa of convergence σ_c such that $\alpha(s)$ converges if $\sigma > \sigma_c$, and diverges if $\sigma < \sigma_c$. It is allowed to have $\sigma_c = \pm \infty$. Furthermore, $\alpha(s)$ converges locally uniformly right of σ_c and each $a_n n^{-s}$ is analytic, whence $\alpha(s)$ is analytic. (Conway; Theorem VII.2.1; p.147)

Remark 2.0.5. Observe that $\int_1^N x^{-s} dA(x) = \sum_{1 < n \le N} a_n n^{-s} = \sum_{n=2}^N a_n n^{-s}$. Sometimes we write \int_1^N to include the 1.

Theorem 2.0.6 (thm 1.3). Let $\alpha(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ have an abscissa of convergence $\sigma_c \geq 0$. Then for $\sigma > \sigma_c$, we have $\alpha(s) = s \int_1^{\infty} A(x) x^{-s-1} dx$. Moreover,

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} = \sigma_c.$$

Proof. Observe that

$$\sum_{n=1}^{N} a_n n^{-s} = \int_{1^{-}}^{N} x^{-s} dA(x) = x^{-s} A(x) \Big|_{1^{-}}^{N} - \int_{1^{-}}^{N} A(x) d(x^{-s})$$
$$= A(N) N^{-s} - \int_{1^{-}}^{N} A(x) (-sx^{-s-1} dx) = A(N) N^{-s} + s \int_{1}^{N} A(x) x^{-s-1} dx.$$

Observe that in the last line, we can replace 1^- with 1 because the integrand is bounded. Define $\phi = \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}$. We compare this to σ_c .

Let $\sigma = \phi + \epsilon$ for some $\varepsilon > 0$. Then $\frac{\log |A(x)|}{\log x} < \phi + \frac{\varepsilon}{2}$ for large x, so $A(x) \ll x^{\phi + \varepsilon/2}$. Then, $A(N)N^{-s} \ll N^{\phi + \varepsilon/2}N^{-(\phi + \varepsilon)} = N^{-\varepsilon/2}$. Hence,

$$\int_N^\infty A(x) x^{-\sigma-1} \ dx \ll \int_N^\infty x^{-\phi+\varepsilon/2} x^{-(\phi+\varepsilon+1)} \ dx = \int_N^\infty x^{-1-\varepsilon/2} \ dx \ll N^{-\varepsilon/2}.$$

It follows that

$$\sum_{n=1}^{N} a_n n^{-s} = O(N^{-\varepsilon/2}) + s \left(\int_{1}^{\infty} A(x) x - s - 1 \, dx + O(N^{-\varepsilon/2}) \right).$$

Let $N \to \infty$ gives $s \int_1^\infty A(x) x^{-s-1} dx$ converges. Hence $\sigma_c \le \phi$. Conversely, let $\sigma_0 = \sigma_c + \varepsilon$, and let $R_0(x) = \sum_{n>x} a_n n^{-\sigma_0} = \alpha(\sigma_0) - \sum_{n< x} a_n n^{-\sigma_0}$. Observe that

$$A(N) = -R_0(N)N^{\sigma_0} + \sigma_0 \int_0^N R_0(x)x^{\sigma_0 - 1} dx.$$

Since $\alpha(0)$ converges, $R_0(x) = o(1)$ so $R_0(x) \ll 1$. Then

$$A(N) \ll 1 \cdot N^{\sigma_0} + \sigma_0 \int_0^N 1 \cdot x^{\sigma_0 - 1} dx = N^{\sigma_0} + N^{\sigma_c} \ll N^{\sigma_0} = N^{\sigma_c + \varepsilon}.$$

Hence
$$\frac{\log |A(x)|}{\log x} \ll \frac{(\sigma_c + \varepsilon) \log x}{\log x} = \sigma_c + \varepsilon$$
, so $\phi \leq \sigma_c + \varepsilon$. Take $\varepsilon \to 0$, so $\phi \leq \sigma_c$.

Definition 2.0.7. The abscissa of absolute convergence is $\sigma_a = \inf \{ \sigma \in \mathbb{R} : \sum_{n=1}^{\infty} |a_n| n^{-\sigma} \text{ converges} \}.$

Example 2.0.8. Let $\eta(s) = \sum_{n=1}^{\infty} (-1)^{n-1} n^{-s}$. Observe that $\sigma_c = 0$ by the alternating series test. However, we only have absolute convergence when $\sigma > 1$, so the abscissa of absolute convergence is $\sigma_a = 1$.

Remark 2.0.9. When $a_n \geq 0$ for all $n \in \mathbb{N}$, we have $\sigma_c = \sigma_a$.

Theorem 2.0.10 (thm 1.4). For any Dirichlet series $\alpha(s)$, we have $\sigma_c \leq \sigma_a \leq \sigma_c + 1$.

Proof. The first inequality is trivial.

Let $\sigma = \sigma_c + 1 + \varepsilon$ where $\varepsilon > 0$. We show that $\alpha(\sigma)$ converges absolutely. Note that $\alpha(s)$ converges at $s = \sigma_c + \varepsilon/2$, that is

$$a_n n^{-(\sigma_c + \varepsilon/2)} = o(1) \implies a_n n^{-(\sigma_c + \varepsilon/2)} \ll 1.$$

Then,

$$\sum_{n=1}^{\infty} |a_n| \, n^{-(\sigma_c + 1 + \varepsilon)} = \sum_{n=1}^{\infty} \left| a_n n^{-(\sigma_c + \varepsilon/2)} \right| n^{-(1 + \varepsilon/2)} \ll \sum_{n=1}^{\infty} n^{-(1 + \varepsilon/2)} \ll 1.$$

It follows that $\alpha(\sigma)$ converges absolutely for all $\varepsilon > 0$.

Theorem 2.0.11 (Landau's Theorem (thm 1.7)). Let $\alpha(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ with $\sigma_c < \infty$. If $a_n \ge 0$ for each $n \in \mathbb{N}$. Then, $\alpha(s)$ has a singularity at $s = \sigma_c$.

Proof. Suppose that there does not exist a singularity at $s = \sigma_c$. Then, there exists an analytic continuation of α to $C = \{s \in \mathbb{C} : |s - \sigma_c| < \delta\}$.

Let $z = \sigma_c - \frac{1}{4}\delta$ and let $w = \sigma_c + \frac{3}{4}\delta$. Let $D = \{s \in \mathbb{C} : |s - w| < \frac{5}{4}\delta\}$. Observe that $D \subset C \cup \{s \in \mathbb{C} : \sigma > 0\}$, so α has an analytic continuation to D. Let P(s) be the power series of α

centered at w. Observe that $z \in D$, so it suffices to show that $P(z) = \alpha(z)$, whence we contradict the assumption that the abscissa of convergence is σ_c . Note that

$$\begin{split} P(z) &= \sum_{k=0}^{\infty} \frac{\alpha^{(k)}(w)}{k!} (z-w)^k \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} (z-w)^k \sum_{n=1}^{\infty} a_n (-\log n)^k n^{-w} \qquad \text{we can differentiate termwise for } \alpha^{(k)}(w) \\ &= \sum_{k=1}^{\infty} \frac{1}{k!} (w-z)^k \sum_{n=1}^{\infty} a_n (\log n)^k n^{-w} \qquad \text{where the terms are all nonnegative} \\ &= \sum_{n=1}^{\infty} a_n n^{-w} \sum_{k=1}^{\infty} \frac{1}{k!} (w-z)^k (\log n)^k \\ &= \sum_{n=1}^{\infty} a_n n^{-w} e^{(w-z)\log n} = \sum_{n=1}^{\infty} a_n n^{-z}. \end{split}$$

It follows that $\alpha(z)$ converges left of σ_c , which is a contradiction.

2.1 Dirichlet convolutions

Motivating question: are these calculations legitimate?

•
$$\zeta(s)^2 = \sum_{l,m=1}^{\infty} (lm)^{-s} = \sum_{n=1}^{\infty} d(n)n^{-s}$$
.

•
$$\zeta(s) = \prod_{p \text{ prime}} (1 + p^{-s} + p^{-2s} + \cdots) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$
.

Definition 2.1.1. Let $a = \{a_n\}$, $b = \{b_n\}$ be sequences. The Dirichlet/multiplicative convolution a * b by $c = \{c_n\}$ where $c_n = \sum_{de=n} a_d b_e = \sum_{d|n} a_d b_{n/d}$.

Theorem 2.1.2 (thm 1.8). Let $\alpha(s) = \sum_{n=1}^{\infty} a_n n^{-s}$, let $\beta(s) = \sum_{n=1}^{\infty} b_n n^{-s}$, and let $\gamma(s) = \sum_{n=1}^{\infty} c_n n^{-s}$. If $s \in \mathbb{C}$ is such that $\alpha(s)$ and $\beta(s)$ converge absolutely, and if c = a * b, then $\gamma(s)$ converges absolutely and $\gamma(s) = \alpha(s)\beta(s)$.

Example 2.1.3. Observe that d(n) = (1 * 1)(n).

Example 2.1.4. Let $M(s) = \sum_{n=1}^{\infty} \mu(n) n^{-s}$, where μ is the Möbius function which defined as

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not square free} \\ 1 & \text{if } n \text{ has an even number of prime divisors} \\ -1 & \text{if } n \text{ has an odd number of prime divisors} \end{cases}.$$

Equivalently, we can define μ as the function that satisfies

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}.$$

Observe that $M(s)\zeta(s) = \sum_{n=1}^{\infty} (\mu * 1)(n)n^{-s} = 1$ for $\sigma > 1$, since $(\mu * 1)(n) = \sum_{d|n} \mu(d)$. It follows that $M(s) = 1/\zeta(s)$.

Since the abscissa of convergence of M is $\sigma_c = 1$, we get that $\zeta(s)$ has no zeroes when $\sigma > 1$.

Example 2.1.5 (Möbius Inversion Formula). Write $F(s) = \sum_{n=1}^{\infty} f(n) n^{-s}$ and $G(s) = \sum_{n=1}^{\infty} g(n) n^{-s}$. Then

$$F(s)\zeta(s) = G(s) \iff F(s) = \frac{G(s)}{\zeta(s)} = G(s)M(s)$$

$$(f*1)(n) = g(n) \iff f(n) = (g*\mu)(n)$$

$$\sum_{d|n} f(n) = g(n) \iff f(n) = \sum_{d|n} g(d)\mu\left(\frac{n}{d}\right).$$
(2)

Example 2.1.6. It is known that $\sum_{d|n} \phi(d) = n$. This gives $(\phi * 1)(n) = \sum_{d|n} \phi(d) = n$. Then, for $\sigma > 2$, we have

$$\left(\sum_{n=1}^{\infty} \phi(n)n^{-s}\right) \left(\sum_{n=1}^{\infty} n^{-s}\right) = \sum_{n=1}^{\infty} n \cdot n^{-s} = \zeta(s-1).$$

This gives $\sum_{n=1}^{\infty} \phi(n) n^{-s} = \zeta(s-1)/\zeta(s)$.

Exercise 2.1.7. Let $\sigma_1(n) = \sum_{d|n} d$. Show that $\sum_{n=1}^{\infty} \sigma_1(n) n^{-s} = \zeta(s-1)\zeta(s)$.

Definition 2.1.8. A function f is multiplicative if f(m)f(n) = f(mn) if gcd(m,n) = 1.

Definition 2.1.9. A number n is y-friable if $p \mid n \implies p \leq y$.

Theorem 2.1.10 (thm 1.9). Let f be a multiplicative function, and let $F(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$. If $\sum_{n=1}^{\infty} |f(n)| n^{-\sigma}$ converges, we have the Euler product

$$F(s) = \prod_{p \ prime} (1 + f(p)p^{-s} + f(p^2)p^{-2s} + \cdots).$$

Proof. Let $\sigma > \sigma_a$. Then, for all p, we have

$$\left|1+f(p)p^{-s}+f(p^2)p^{-2s}+\cdots\right| \le 1+\left|f(p)\right|p^{-s}+\left|f(p)\right|p^{-2s}+\cdots \le \sum_{n=1}^{\infty}\left|f(n)\right|n^{-s}.$$

Since the above converges, we can rearrange the finite product

$$\prod_{p < y} (1 + f(p)p^{-s} + f(p^2)p^{-2s} + \cdots) = \sum_{n \text{ y-friable}} f(n)n^{-s}.$$

Now, we can compute

$$\left| F(s) - \prod_{p \le y} (1 + f(p)p^{-s} + f(p^2)p^{-2s} + \cdots) \right| = \left| F(s) - \sum_{n \text{ y-friable}} f(n)n^{-s} \right|$$

$$= \left| \sum_{n \text{ not y-friable}} f(n)n^{-s} \right|$$

$$\leq \sum_{n > y} |f(n)| n^{-s} = o(1).$$

The tail goes to 0, so the theorem is proved.

Remark 2.1.11. Almost the same proof shows that the Euler product converges absolutely. In particular, it is nonzero (unless an individual factor is zero). Note that the convergence of a product is defined as the convergence of the sum of logs.

Example 2.1.12. Note that μ is multiplicative, so $M(s) = \prod_{p \text{ prime}} (1 - p^{-s})$.

Property 2.1.13. If f and g are multiplicative, then f * g is also multiplicative (If F(s) and G(s) have Euler products, the F(s)G(s) also has an Euler product).

Property 2.1.14. Dirichlet convolutions are associative, that is (f * g) * h = f * (g * h).

Definition 2.1.15. Let $\omega(n)$ be the number of distinct prime factors of n.

Definition 2.1.16. Let $\Omega(n)$ be the number of prime factors of n counting with multiplicity.

Definition 2.1.17 (Liouville lambda function). Let $\lambda(n) = (-1)^{\Omega(n)}$. Note that $\lambda(n) = \mu(n)$ if and only if n is squarefree.

Example 2.1.18. Find an Euler product for $L(s) = \sum_{n=1}^{\infty} \lambda(n) n^{-s}$.

Solution: First, note that $\lambda(n)$ is totally multiplicative, that is $\lambda(mn) = \lambda(m)\lambda(n)$ for all $m, n \in \mathbb{N}$ (not just when (m, n) = 1). Also, $\sum_{n=1}^{\infty} |\lambda(n)n^{-s}| = \sum_{n=1}^{\infty} n^{-\sigma}$ converges when $\sigma > 1$. So, for $\sigma > 1$, by theorem 2.1.10,

$$L(s) = \prod_{\substack{p \text{ prime} \\ p \text{ prime}}} \left(1 + \lambda(p)p^{-s} + \lambda(p^2)p^{-2s} + \cdots \right)$$
$$= \prod_{\substack{p \text{ prime} \\ p \text{ prime}}} \left(1 - p^{-s} + p^{-2s} - \cdots \right)$$
$$= \prod_{\substack{p \text{ prime} \\ p \text{ prime}}} \left(1 + p^{-s} \right)^{-1}.$$

Exercise 2.1.19. Show that $L(s) = \frac{\zeta(2s)}{\zeta(s)}$.

Remark 2.1.20. If f(n) is totally multiplicative, then

$$\sum_{n=1}^{\infty} f(n)n^{-s} = \prod_{p} \left(1 + f(p)p^{-s} + f(p^2)p^{-2s} + \cdots \right)$$
$$= \prod_{p} \left(1 + f(p)p^{-s} + f(p)^2 p^{-2s} + \cdots \right)$$
$$= \prod_{p} \left(1 - f(p)p^{-s} \right)^{-1}.$$

Definition 2.1.21 (von Mangoldt Lambda function). Define the von Mangoldt Lambda function as

$$\Lambda(n) = \begin{cases} \log p & n = p^r \text{ for some prime } p \\ 0 & \text{otherwise} \end{cases}.$$

Remark 2.1.22. Recall that $\zeta(s) = \prod_p (1 - p^{-s})^{-1}$ for $\sigma > 1$, so we can take logarithms.

$$\log \zeta(s) = \sum_{p} \log(1 - p^{-s})^{-1} = \sum_{p} \left(p^{-s} + \frac{1}{2} p^{-2s} + \frac{1}{3} p^{-3s} + \dots \right).$$

This is a Dirichlet series which we can differentiate term by term, hence

$$\frac{\zeta'(s)}{\zeta(s)} = \frac{d}{ds} \sum_{p} \left(p^{-s} + \frac{1}{2} p^{-2s} + \frac{1}{3} p^{-3s} + \cdots \right)$$

$$= \sum_{p} \left((-\log p) p^{-s} + \frac{1}{2} (-2\log p) p^{-2s} + \cdots \right)$$

$$= -\sum_{n=1}^{\infty} \Lambda(n) n^{-s}.$$

2.2 Meromorphic continuation of $\zeta(s)$

Example 2.2.1. We prove that $\eta(s) = (1 - 2^{1-s})\zeta(s)$ in two different ways (for $\sigma > 1$).

Proof 1. For $\sigma > 1$, $\eta(s)$ converges absolutely, so

$$\eta(s) = 1^{-s} + (2^{-s} - 2 \cdot 2^{-s}) + 3^{-s} + (4^{-s} - 2 \cdot 4^{-s}) + \cdots
= (1^{-s} + 2^{-s} + 3^{-s} + \cdots) - 2(2^{-s} + 4^{-s} + \cdots)
= \zeta(s) - 2 \cdot 2^{-s} \zeta(s)
= (1 - 2^{1-s}) \zeta(s).$$

Proof 2. Note that $(-1)^{n-1}$ is multiplicative, and its value at p^r equals -1 if p=2 and 1 if $p\geq 3$. Thus,

Note that $\zeta(s) = (1 - 2^{1-s})^{-1}\eta(s)$, and $\eta(s)$ converges when $\sigma > 0$. Hence, this is a meromorphic continuation of $\zeta(s)$ to $\sigma > 0$. Note that $(1 - 2^{1-s})^{-1}\eta(s)$ has singularities when $1 - 2^{1-s} = 0$, that is $s = 1 + \frac{2\pi i}{\log 2}$.

Exercise 2.2.2. Show that $\zeta(s)$ has a simple pole at s=1 with residue 1.

Theorem 2.2.3 (thm 1.12). For $\sigma > 0$ and $s \neq 1$, we can write

$$\zeta(s) = \sum_{n \le x} n^{-s} + \frac{x^{1-s}}{s-1} + \frac{\{x\}}{x^s} - s \int_x^\infty \{u\} u^{-s-1} \ du.$$
 (3)

Proof. For $\sigma > 1$, we have

$$\sum_{n>x} n^{-s} = \int_{x}^{\infty} u^{-s} \ d(\lfloor u \rfloor)$$

$$= \int_{x}^{\infty} u^{-s} \ du - \int_{x}^{\infty} u^{-s} \ d(\{u\})$$

$$= \frac{u^{1-s}}{1-s} \Big|_{x}^{\infty} - \left(\{u\}u^{-s} \Big|_{x}^{\infty} - \int_{x}^{\infty} \{u\} \ d(u^{-s}) \right)$$

$$= \frac{x^{1-s}}{s-1} + \frac{\{x\}}{x^{s}} - s \int_{x}^{\infty} \{u\}u^{-s-1} \ du.$$

Let $\varepsilon > 0$, then for $\sigma > \varepsilon$, we have

$$\left| \int_{x}^{\infty} \{u\} u^{-s-1} \ du \right| \le \int_{x}^{\infty} 1 \cdot u^{-\sigma - 1} \ du = \frac{x^{-\sigma}}{\sigma}.$$

Note that this is uniform for $\sigma > \varepsilon$, so we have analyticity. Then, we conclude that the equation 3 holds for all $\sigma > 0$ by the uniqueness of analytic continuation.

Remark 2.2.4. We can use a similar method to show that $\zeta(s)$ is defined for all $s \in \mathbb{C} \setminus \{1\}$.

Corollary 2.2.5. When x = 1, we have

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_{1}^{\infty} \{u\} u^{-s-1} \ du,$$

so $\zeta(s) - \frac{1}{s-1}$ has a removable singularity at s=1 with value

$$C_0 = 1 - \int_1^\infty \{u\} u^{-2} \ du.$$

Then, by DCT, we get $\zeta(s) = \frac{1}{s-1} + C_0 + O(|s-1|)$.

Corollary 2.2.6. We can rearrange to get

$$\begin{split} \sum_{n \le x} n^{-s} &= \zeta(s) - \frac{x^{1-s}}{s-1} - \frac{\{x\}}{x^s} + s \int_x^\infty \{u\} u^{-s-1} \ du \\ &= \zeta(s) + \frac{x^{1-s}}{1-s} + O\left(\frac{1}{x^\sigma} + |s| \int_x^\infty 1 \cdot u^{-\sigma-1} \ du\right) \\ &= \zeta(s) + \frac{x^{1-s}}{1-s} + O\left(\frac{1}{x^\sigma} + \frac{|s|}{\sigma} \frac{1}{x^\sigma}\right). \end{split}$$

Hence, we get asymptotics for $\sum_{n \le x} n^{-\alpha}$.

$$\sum_{n \le x} \frac{1}{n^{\alpha}} = \begin{cases} O(x^{1-\alpha}) & \text{if } 0 < \alpha < 1 \\ \zeta(\alpha) + O(x^{1-\alpha}) & \text{if } \alpha > 1 \end{cases}.$$

Corollary 2.2.7. Let s = 1, then

$$\sum_{n \le x} \frac{1}{n} = \int_{1^{-}}^{x} \frac{1}{t} d \lfloor t \rfloor = \int_{1^{-}}^{x} \frac{1}{t} dt - \int_{1^{-}}^{x} \frac{1}{t} d\{t\}$$

$$= \log x - \frac{\{t\}}{t} \Big|_{1^{-}}^{x} + \int_{1}^{x} \{t\} \frac{1}{t^{2}} dt$$

$$= \log x - \frac{\{x\}}{x} + 1 - \int_{1}^{x} \{t\} \frac{1}{t^{2}} dt$$

$$= \log x + 1 - \int_{1}^{\infty} \{t\} t^{-2} dt + \int_{x}^{\infty} \{t\} t^{-2} dt - \frac{\{x\}}{x}$$

$$= \log x + C_{0} + O\left(\frac{1}{x}\right).$$

Note that an error of 1/x is the best approximation with a smooth function (because we can't get better than the jumps).

Remark 2.2.8. Note that C_0 is Euler's constant, that is

$$C_0 = \lim_{x \to \infty} \left(\sum_{n \le x} \frac{1}{n} - \log x \right) \approx 0.577.$$

3 Elementary Estimates for Arithmetic Functions

Motivating question: what is the expectation of $\frac{\phi(n)}{n}$? Note that $(\phi * 1)(n) = n$, so by Möbius inversion,

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d} \implies \frac{\phi(n)}{n} = \sum_{d|n} \frac{\mu(d)}{d}.$$

Then, we get

$$\sum_{n \le x} \frac{\phi(n)}{n} = \sum_{n \le x} \sum_{d \mid n} \frac{\mu(d)}{d} = \sum_{d \le x} \frac{\mu(d)}{d} \left\lfloor \frac{x}{d} \right\rfloor = \sum_{d \le x} \frac{\mu(d)}{d} \left(\frac{x}{d} + O(1) \right).$$

Hence, dividing by x gives

$$\frac{1}{x} \sum_{n \le x} \frac{\phi(n)}{n} = \sum_{d \le x} \frac{\mu(d)}{d^2} + O\left(\frac{1}{x} \sum_{d \le x} \left| \frac{\mu(d)}{d} \right| \right)$$

$$= \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} + O\left(\sum_{d > x} \left| \frac{\mu(d)}{d^2} \right| + \frac{1}{x} \sum_{d \le x} \left| \frac{\mu(d)}{d} \right| \right)$$

$$= \frac{1}{\zeta(2)} + O\left(\sum_{d > x} \frac{1}{d^2} + \frac{1}{x} \sum_{d \le x} \frac{1}{d} \right)$$

$$= \frac{1}{\zeta(2)} + O\left(\frac{\log x}{x}\right).$$

Example 3.0.1. Estimate the number of square-free numbers up to x. Let $Q(x) = \sum_{n \leq x} \mu(n)^2$. Note that $\mu(n)^2$ is the indicator function for square-free numbers.

Lemma 3.0.2. Define g(d) as

$$g(d) = \begin{cases} \mu(m) & \text{if } d = m^2 \text{ for some } m \in \mathbb{N} \\ 0 & \text{if } d \text{ is not a square} \end{cases}.$$

Then $\mu^2 = 1 * q$.

Proof 1. Let k^2 be the largest square divisor of n. Then

$$\mu(n)^{2} = \begin{cases} 1 & \text{if } k = 1\\ 0 & \text{if } k > 1 \end{cases}$$
$$= \sum_{d|k} \mu(d) = \sum_{\substack{d|n\\ d = m^{2}}} \mu(m) = \sum_{\substack{d|n\\ d = m^{2}}} g(d).$$

Exercise 3.0.3 (Proof 2). Show that $\sum_{n=1}^{\infty} \mu(n)^2 n^{-s} = \frac{\zeta(s)}{\zeta(2s)}$ and $\sum_{n=1}^{\infty} g(n) n^{-s} = \frac{1}{\zeta(2s)}$.

Exercise 3.0.4 (Proof 3). Show that $\mu(n)^2 = \sum_{d|n} g(d)$ by Möbius inversion, along with the fact that every $n \in \mathbb{N}$ can be uniquely written as $n = a^2b$ where b is square-free.

We can approximate Q(x) as follows.

$$Q(x) = \sum_{n \le x} \mu(n)^2 = \sum_{n \le x} \sum_{d|n} g(d) = \sum_{d \le x} g(d) \left(\frac{x}{d} + O(1)\right) = x \sum_{d \le x} \frac{g(d)}{d} + O\left(\sum_{d \le x} \left|\frac{g(d)}{d}\right|\right)$$

$$= x \sum_{m \le \sqrt{x}} \frac{\mu(m)}{m^2} + O\left(\sum_{m \le \sqrt{x}} |\mu(m)|\right) \quad \text{by the definition of } g$$

$$= x \left(\frac{1}{\zeta(2)} + O\left(\frac{1}{\sqrt{x}}\right)\right) + O(\sqrt{x})$$

$$= \frac{x}{\zeta(2)} + O(\sqrt{x})$$

Definition 3.0.5. The density of $A \subset \mathbb{N}$ is

$$\delta(A) = \lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : n \in A \}.$$

Exercise 3.0.6. Show $\forall y \geq 1$ that

$$\# \{n \le x : p \le y \implies p^2 \nmid n\} = x \prod_{p \le y} \left(1 - \frac{1}{p^2}\right) + O_y(1).$$

The general method we get from the above is as follows. Let $A(x) = \sum_{n \le x} a_n$ and $B(x) = \sum_{n \le x} b_n$. Define c = a * b and $C(x) = \sum_{n \le x} c_n$. Then,

$$C(x) = \sum_{n \le x} \sum_{d|n} a_d b_{n/d} = \sum_{d \le x} \sum_{\substack{n \le x \\ d|n}} a_d b_{n/d}$$
$$= \sum_{d \le x} a_d \sum_{l \le x/d} b_l = \sum_{d \le x} a_d B\left(\frac{x}{d}\right).$$

Example 3.0.7. Let $a_n = b_n = 1$ and $c_n = d(n)$. Then,

$$\sum_{n \le x} d(n) = C(x) = \sum_{d \le x} a_d B\left(\frac{x}{d}\right)$$

$$= \sum_{n \le x} \left\lfloor \frac{x}{d} \right\rfloor = \sum_{d \le x} \left(\frac{x}{d} + O(1)\right) = x \sum_{d \le x} \frac{1}{d} + O(x)$$

$$= x \left(\log x + C_0 + O\left(\frac{1}{x}\right)\right) + O(x) = x \log x + O(x).$$

Remark 3.0.8. Note that

$$x \log x - x = \int_{1}^{x} \log t \ dt < \sum_{n \le x} \log n < \int_{1}^{x+1} \log t \ dt = (x+1) \log(x+1) - (x+1).$$

Exercise 3.0.9. For $x \geq 2$, we have $\sum_{n \leq x} \log x = x \log x - x + O(\log x)$.

Then, $\sum_{n\leq x} d(n) \sim x \log x \sim \sum_{n\leq x} \log n$, so we say d(n) has average order $\log n$. Note that example 3.0.7 does not give a very good error term. This is because $B\left(\frac{x}{d}\right)$ gives a poor approximation when x/d is small. Instead, we can use Dirichlet's Hyperbola Method:

$$C(x) = \sum_{d \le y} a_d B\left(\frac{x}{d}\right) + \sum_{l \le x/y} b_l A\left(\frac{x}{l}\right) - A(y) B\left(\frac{x}{y}\right). \tag{4}$$

Now we can improve example 3.0.7 as follows.

$$\sum_{n \le x} d(n) = \sum_{d \le y} \left\lfloor \frac{x}{d} \right\rfloor + \sum_{l \le x/y} \left\lfloor \frac{x}{l} \right\rfloor - \lfloor y \rfloor \left\lfloor \frac{x}{y} \right\rfloor$$

$$= x \left(\log y + C_0 + O\left(\frac{1}{y}\right) \right) + O(y) + x \left(\log \frac{x}{y} + C_0 + O\left(\frac{y}{x}\right) \right) + O\left(\frac{x}{y}\right)$$

$$- y \frac{x}{y} + O(y) + O\left(\frac{x}{y}\right) + O(1)$$

$$= x \log x + (2C_0 - 1)x + O\left(y + \frac{x}{y}\right)$$

$$= x \log x + (2C_0 - 1)x + O\left(\sqrt{x}\right).$$

3.1 Prime number estimates

We can think of the von Mangoldt Lambda function as a prime indicator function because proper prime powers are rare, so they should not influence the main term. Let $\Psi(x) = \sum_{n \leq x} \Lambda(n)$. Note that the Prime Number Theorem is equivalent to

$$\Psi(x) \sim x$$
.

Recall that $\Psi(s) = -\frac{\zeta'(s)}{\zeta(s)}$. Since $-\frac{\zeta'}{\zeta}(s)\zeta(s) = -\zeta'(s)$, we get

$$\Lambda * 1 = \log \implies \Lambda = \log * \mu \implies \Lambda(n) = \sum_{d \mid n} \mu(d) \log \left(\frac{n}{d}\right).$$

Exercise 3.1.1. Show that $\Lambda(n) = -\sum_{d|n} \mu(d) \log(d)$.

Note that for $x \geq 2$, we get

$$\sum_{n \le x} \log n = \sum_{n \le x} \sum_{d|n} \Lambda(d) = \sum_{d \le x} \Lambda(d) \left\lfloor \frac{x}{d} \right\rfloor$$
 (5)

$$\sum_{n \le x} \log n = x \log x - x + O(\log x). \tag{6}$$

Call these two equations [x]. Now, replace x with x/2 in [x] and call it [x/2]. Let $E(t) = \lfloor t \rfloor - 2 \lfloor t/2 \rfloor$. Taking [x] - 2[x/2] gives

LHS:
$$(x \log x - x + O(\log x)) - 2\left(\frac{x}{2}\log\frac{x}{2} - \frac{x}{2} + O(\log x)\right) = (\log 2)x + O(\log x)$$

RHS: $\sum_{d \le x} \Lambda(d) \lfloor x \rfloor d - 2\sum_{d \le x} \Lambda(d) \lfloor \frac{x}{2d} \rfloor = \sum_{d \le x} \Lambda(d)E\left(\frac{x}{d}\right).$

This gives the bounds

$$\Psi(x) - \Psi\left(\frac{x}{2}\right) = \sum_{\frac{x}{2} \leq d \leq x} \Lambda(d) \leq \sum_{d \leq x} \Lambda(d) E\left(\frac{x}{d}\right) \leq \sum_{d \leq x} \Lambda(d) = \Psi(x).$$

Immediately we get

$$\Psi(x) \ge \sum_{d \le x} \Lambda(d) E\left(\frac{x}{d}\right) = (\log 2)x + O(\log x). \tag{7}$$

With some calculation, we get

$$\Psi(x) = \left(\Psi(x) - \Psi\left(\frac{x}{2}\right)\right) + \left(\Psi\left(\frac{x}{2}\right) - \Psi\left(\frac{x}{4}\right)\right) + \cdots$$

$$\leq \left(\left(\log 2\right)x + O(\log x)\right) + \left(\left(\log 2\right)\frac{x}{2} + O(\log x)\right) + \cdots$$

$$= \left(2\log 2\right)x + O\left(\log^2(x)\right) \tag{8}$$

Chebyshev took [x] - [x/2] - [x/3] - [x/5] + [x/30] to get the bounds

$$0.9212x + O(\log x) \le \Psi(x) \le 1.1056x + O(\log^2 x).$$

Definition 3.1.2. We write $f \approx g$ if $f \ll g$ and $g \ll f$. We say "f is of the same order of magnitude as g".

Therefore, $\Psi(x) \approx x$.

Exercise 3.1.3 (a weak version of Bertrand's Postulate). Note that $\sum_{x < n \le 2x} \Lambda(n) = \Psi(2x) - \Psi(x) \gg x$. Then,

$$\# \{p : x$$

Theorem 3.1.4 (Mertens). For $x \ge 2$,

1.
$$\sum_{n \le x} \frac{\Lambda(n)}{n} = \log x + O(1).$$

2.
$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1)$$
.

3.
$$\sum_{p \le x} \frac{1}{p} = \log \log x + b + O\left(\frac{1}{\log x}\right).$$

4.
$$\prod_{p \le x} \left(1 - \frac{1}{p}\right)^{-1} = e^c \log x + O(1).$$

Proof of (a). Note that equations 5 and 6 give

$$x \log x + O(x) = \sum_{d \le x} \Lambda(d) \left\lfloor \frac{x}{d} \right\rfloor = x \sum_{d \le x} \frac{\Lambda(d)}{d} + O\left(\sum_{d \le x} \Lambda(d)\right)$$
$$= x \sum_{d \le x} \frac{\Lambda(d)}{d} + O(x).$$

Dividing by x gives the desired result.

Proof of (b). Note that

$$\sum_{n \le x} \frac{\Lambda(n)}{n} - \sum_{p \le x} \frac{\log p}{p} = \sum_{\substack{p^r \le x \\ r \ge 2}} \frac{\log p}{p^r} \le \sum_{p \le x} \log p \sum_{r=2}^{\infty} \frac{1}{p^r}$$
$$= \sum_{p \le x} (\log p) \cdot \frac{1}{p(p-1)} \ll \sum_{p=1}^{\infty} \frac{p^{\varepsilon}}{p^2} = O(1).$$

Proof of (d). Write $R(x) = \sum_{p \le x} \frac{\log p}{p} - \log x$, so $R(x) \ll 1$ and $R(2^-) = -\log 2$. Then,

$$\begin{split} \sum_{p \leq x} \frac{1}{p} &= \int_{2^{-}}^{x} \frac{1}{\log u} \; d\left(\sum_{p \leq u} \frac{\log p}{p}\right) \\ &= \int_{2^{-}}^{x} \frac{1}{\log u} \; d(\log u) + \int_{2^{-}}^{x} \frac{1}{\log u} \; dR(u) \\ &= \int_{2^{-}}^{x} \frac{1}{u \log u} \; du + \frac{R(u)}{\log u} \Big|_{2^{-}}^{x} - \int_{2^{-}}^{x} R(u) \; d\left(\frac{1}{\log u}\right) \\ &= \log \log u \Big|_{2^{-}}^{x} + \frac{R(x)}{\log x} - \frac{R(2^{-})}{\log 2} + \int_{2^{-}}^{x} R(u) \frac{1}{u \log^{2} u} \; du \\ &= \log \log x - \log \log 2 + 1 + O\left(\frac{1}{\log x}\right) + \int_{2}^{\infty} \frac{R(u)}{u \log^{2} u} + O\left(\int_{x}^{\infty} \frac{|R(u)|}{u \log^{2} u} \; du\right) \\ &= \log \log x + \left(1 - \log \log 2 + \int_{2}^{\infty} \frac{R(u)}{u \log^{2} u} \; du\right) + O\left(\frac{1}{\log x}\right). \end{split}$$

Proof of (e). Note that $\log(1-t)^{-1}-t\ll |t|^2$ for $|t|\leq \frac{1}{2}$ by power series. Hence

$$S = \sum_{p>x} \log\left(1 - \frac{1}{p}\right)^{-1} - \frac{1}{p} \ll \sum_{p>x} \left(\frac{1}{p}\right)^2 \le \sum_{n>x} \frac{1}{n^2} \ll \frac{1}{x}.$$

Note that S exists and

$$\sum_{p \le x} \log \left(1 - \frac{1}{p} \right)^{-1} = \sum_{p \le x} \frac{1}{p} + S + \sum_{p > x} \left(\log \left(1 - \frac{1}{p} \right)^{-1} - \frac{1}{p} \right)$$
$$= \log \log x + b + O\left(\frac{1}{\log x} \right) + S + O\left(\frac{1}{x} \right)$$
$$= \log \log x + c + O\left(\frac{1}{\log x} \right).$$

Note that $e^t = 1 + O(|t|)$ by power series, so

$$\begin{split} \prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} &= \exp\left(\sum_{p \leq x} \log\left(1 - \frac{1}{p}\right)^{-1}\right) = \exp\left(\log\log x + c + O\left(\frac{1}{\log x}\right)\right) \\ &= \log x \cdot e^c \cdot e^{O(1/\log x)} = e^c \log x \left(1 + O\left(\frac{1}{\log x}\right)\right) \\ &= e^c \log x + O(1). \end{split}$$

Remark 3.1.5. Note that in theorem 3.1.4, we have $c = C_0$ and $b = C_0 - \sum_p \sum_{k \geq 2} \frac{1}{kp^k}$.

Proposition 3.1.6. The average order of $\omega(n) = \#\{p : p|w\}$ is $\log \log n$.

Proof. We can compute

$$\sum_{n \le x} \omega(n) = \sum_{n \le x} \sum_{p|n} 1 = \sum_{p \le x} \sum_{\substack{n \le x \\ p|n}} 1 = \sum_{p \le x} \left\lfloor \frac{x}{p} \right\rfloor = x \sum_{p \le x} \frac{1}{p} + O\left(\sum_{p \le x} 1\right)$$
$$= x \log \log x + O(x).$$

Exercise 3.1.7. Check that $\sum_{n \leq x} \log \log n \sim x \log \log x$.

Definition 3.1.8. The variance of f(n) is

$$\lim_{x \to \infty} \sum_{n \le x} (f(n) - g(x))^2$$

where g(x) is $g(x) = \frac{1}{x} \sum_{n \le x} f(n)$.

Now we compute the variance of $\omega(n)$.

Lemma 3.1.9. We show that

$$\sum_{n \le x} \omega(n)^2 \le x (\log \log x)^2 + O(x \log \log x).$$

Proof.

$$\sum_{n \le x} \omega(n)^2 = \sum_{n \le x} \left(\sum_{p|n} 1\right) \left(\sum_{q|n} 1\right) = \sum_{p \le x} \sum_{q \le x} \sum_{\substack{n \le x \\ p|n \\ q|n}} 1$$

$$= \sum_{p \le x} \sum_{\substack{q \le x \\ q \ne p}} \left\lfloor \frac{x}{pq} \right\rfloor + \sum_{p \le x} \left\lfloor \frac{p}{x} \right\rfloor$$

$$\le \sum_{p \le x} \sum_{\substack{q \le x \\ q \ne p}} \frac{x}{pq} + \sum_{p \le x} \frac{x}{p} = x \left(\sum_{p \le x} \frac{1}{p}\right)^2 + x \sum_{p \le x} \frac{1}{p}$$

$$= x \left(\log\log x + O(1)\right)^2 + O\left(x\log\log x\right).$$

Proposition 3.1.10. The variance of $\omega(n)$ is $\ll \log \log x$.

Proof.

$$\sum_{n \le x} (\omega(n) - \log \log x)^2 = \sum_{n \le x} \omega(n)^2 - 2(\log \log x) \sum_{n \le x} \omega(n) + (\log \log x)^2 \sum_{n \le x} 1$$

$$= \sum_{n \le x} \omega(n)^2 - 2(\log \log x) (x \log \log x + O(x)) + (x + O(1)) (\log \log x)^2$$

$$\leq (x(\log \log x)^2 + O(x \log \log x)) - (x \log \log x)^2 + O(x \log \log x).$$

Corollary 3.1.11. It follows that

$$S = \#\left\{n \le x : |\omega(n) - \log\log x| > (\log\log x)^{\frac{1}{2} + \varepsilon}\right\} \ll \frac{x}{(\log\log x)^{2\varepsilon}}.$$

Proof.

$$\sum_{\substack{n \le x \\ n \in S}} 1 \le \sum_{n \le x} \left(\frac{|\omega(n) - \log \log x|}{(\log \log x)^{\frac{1}{2} + \varepsilon}} \right)^2$$

$$= \frac{1}{(\log \log x)^{1 + 2\varepsilon}} \sum_{n \le x} (\omega(n) - \log \log x)^2$$

$$\ll \frac{x \log \log x}{(\log \log x)^{1 + 2\varepsilon}}.$$

Exercise 3.1.12 (Hardy-Ramanujan). Show that

$$\#\left\{n \leq x: |\omega(n) - \log\log n| > (\log\log n)^{\frac{1}{2} + \varepsilon}\right\} \ll \frac{x}{(\log\log x)^{2\varepsilon}} = o(x).$$

It follows that the natural density is 0.

Exercise 3.1.13. Do the above computations for $\Omega(n)$.

Exercise 3.1.14. Prove that $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$.

From Hardy-Ramanujan, for almost all $n \in \mathbb{N}$,

$$(1 - \delta)\log\log n \le \omega(n) \le \Omega(n) \le (1 + \delta)\log\log n,$$
$$(\log n)^{(1 - \delta)\log 2} = 2^{(1 - \delta)\log\log n} \le d(n) \le 2^{(1 + \delta)\log\log n} = (\log n)^{(1 + \delta)\log 2}.$$

So for most $n \in \mathbb{N}$, we have $d(n) \approx (\log n)^{\log 2}$, but the average order of d(n) is $\log n$.