Master Thesis:

Generalization of MSP based out-of-distribution detection to intermediate convolutional layers

Praveen Annamalai Nathan nathan@rhrk.uni-kl.de

Reviewers: Prof. Dr. Didier Stricker, DFKI, Kaiserslautern Prof. Dr. Bernt Schiele, MPII, Saarbrücken

Supervisor: Max Maria Losch, MPII, Saarbrücken

Out-of-distribution detection (OOD)

• DNN classifiers perform well. But..

 Overconfident predictions: for samples different from training distribution.

Fundamental requirement:
 out of distribution sample detection

General OOD pipeline

Softmax as a feature for OOD

Softmax probabilities:

- final layer softmax studied in literature.
 E.g. Maximum softmax probability
- Many softmax-based extensions available.
- Competitive to SOTA methods.

What is missing?

Softmax methods does not explore intermediate layers.

What we propose:

- Softmax as an intermediate layer activation.
- Generalization of softmax based OOD methods to intermediate layer.

Motivation-Softmax as intermediate layer activation

Where do we introduce softmax activation?

Replace ReLU after the residual skip connection.

Motivation-Softmax as intermediate layer activation

F(X) + X

- softmax

Height

Channels

How do we apply softmax activation?

Activation along the channel.

Motivation- softmax as intermediate activation

Apply log-softmax instead of softmax

Why?

Classification performance (Model:ResNet-34 Dataset: CIFAR-10)

Softmax activation: 89.75% Log-softmax activation: 93.5% ReLU activation: 94.31%

Log-softmax retains classification performance.

Related work-softmax based methods

Maximum Softmax Probability- MSP [1]

Scoring function: Maximum Softmax probability

ODIN[2]

Improves **MSP** method by:

- Applying softmax temperature scaling.
- Input preprocessing adding small perturbations to input.

$$S_i(\boldsymbol{x};T) = \frac{\exp(f_i(\boldsymbol{x})/T)}{\sum_{j=1}^N \exp(f_j(\boldsymbol{x})/T)},$$

Temperature scaling

Softmax

^[1] Hendrycks, Dan, and Kevin Gimpel. "A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks." ICLR. 2016.

^[2] Liang, Shiyu, Yixuan Li, and R. Srikant. "Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks." ICLR. 2018.

Related work-softmax based methods

Outlier Exposure[3]

- Improves over MSP method.
- Fine-tuning with an auxiliary OOD dataset.
 E.g. 80 Million Tiny images dataset
- Forces auxiliary dataset predictions to be uniform (Entropy Maximization).

Related work-softmax based methods

Additional possibility for log-softmax models

Entropy Minimization:

- cross-entropy@final layer beneficial for MSP method
- Mimic cross-entropy at final layer for intermediate layer log-softmax outputs.
- Reduce entropy per pixel for the log-softmax outputs.
- Entropy loss optimized with cross-entropy loss.

Log-softmax model benchmarking for OOD

Softmax based methods:

MSP@final layer serves as baseline.

Baseline missing for intermediate layer.

Mahalanobis-distance based [4]

- Fit pretrained features by a class conditional Gaussian distribution.
- Scoring function: Mahalanobis distance between a test sample and the closest Gaussian.
- Mahalanobis-ensemble:use feature from five intermediate blocks.
- Mahalanobis score per layer can be used as a baseline for intermediate layers.

OOD evaluation metrics

- OOD methods derive a confidence score. E.g. Softmax based/intermediate feature based.
- Threshold needs to be selected for measuring OOD detection accuracy considering trade off between False Positive and False Negatives allowed.

AUROC: Area under Receiver Operating Characteristic curve.

- Threshold independent metric
- Area under TPR vs FPR for all thresholds.
- Higher the better.

False Positive Rate

Performance comparison of methods from literature

 ODIN/Outlier Exposure improves over MSP.

• Fine tuning methods offer good results.

Mahalanobis method is competitive.

-						- 1.1		
	Network	OOD	AUROC(†)					
	Achitecture (In-Dist: CIFAR10)	dataset	MSP	ODIN	Mahalanobis	Energy Based	MSP+ Outlier Exposure (Fine tuning)	Energy Based (Fine tuning)
		SVHN	$91.89^{[1]}$	$91.96^{[1]}$	97.62 ^{[1]*}	$90.96^{[1]}$	98.6 ^[1]	$99.41^{[1]}$
5	WideResNet	LSUN-crop	95.65 ^[1]	$97.04^{[1]}$	94.15 ^{[1]*}	$98.35^{[1]}$	99.49 ^[1]	$99.32^{[1]}$
		LSUN-resize	$91.37^{[1]}$	94.57 ^[1]	93.23 ^{[1]*}	94.24 ^[1]	98.94 ^[1]	99.39 ^[1]
		SVHN	89.9 ^[2]	$96.7^{[2]}$	99.1 ^[2]	-NA-	-NA-	-NA-
	ResNet-34	LSUN-crop	-NA-	$99.2^{[3]}$	99.3 ^[3]	-NA-	-NA-	-NA-
8		LSUN-resize	$91.0^{[2]}$	$94.1^{[2]}$	99.7 ^[2]	-NA-	-NA-	-NA-

Note: Some values are -NA-(not available) since that configuration is not reported in the literature.

^[1] Weitang Liu et al. "Energy-based Out-of-distribution Detection." NeurIPS '20

^[2] Lee, Kimin et al. "A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks." NeurIPS (2018)

^[3] Yen-Chang Hsu et al. "Generalized ODIN:Detecting Out-of-distribution Image without Learning from Out-of-distribution Data". CVPR '20

Experimental setup

Classifier Architecture: ResNet-34

Residual skip connection based architecture.

Train 2 types of model:

- 1) Baseline ReLU architecture
- 2) Log-softmax architecture

Generalization of log-softmax introduction

- Introduce after all residual layers.
- Log-softmax introduced after 16 residual layers of ResNet-34.

Experimental setup

For log-softmax models:

- Entropy minimization for log-softmax outputs from all blocks.
- Entropy loss added to cross entropy loss with a factor.

$$\mathcal{L} = CE_{loss} + \lambda \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{H_i \times W_i} \sum_{k=1}^{C_i} -s(x_{ijk})log(s(x_{ijk}))}_{\text{Entropy loss}}$$

N - number of layers with log-softmax activation

λ - entropy loss factor

s(.) - softmax

CE_{loss} - Final layer cross entropy loss

Experimental setup - Intermediate layer OOD evaluation

Challenges in direct application of softmax methods for intermediate log-softmax outputs.

- Final layer softmax probabilities are 1-dimensional.
- Intermediate layer log-softmax outputs are 3-dimensional.

Need to define new evaluations for the intermediate block activations.

 Generalize MSP method at final layer by aggregating 3-dimensional outputs.

Experimental setup-Intermediate layer OOD evaluation

Generalization of MSP

Total evaluations – 9 types

- max/min/avg of MSP(Maximum Softmax Probability)
- max/min/avg of MiSP(Minimum Softmax Probability)
- max/min/avg of ASP(Average Softmax Probability)

Cheap: no additional training for OOD detector.

Experimental setup-extension for final layer

Extension possible@final layer:

- Current methods only explore maximum softmax probability@final layer.
- We propose to explore Minimum Softmax Probability(MiSP) as an OOD score.
- Average Softmax Probability(ASP)@final layer not explored since it is constant.

Softmax

Experimental setup-Datasets

In-distribution dataset (Training dataset)

Near out distribution[5]

Far out distribution[5]

LSUN

SVHN

CIFAR-10

CIFAR-100

Results

Log-softmax model benchmark:

- Classification accuracy
- MSP vs MiSP
- Mahalanobis-ensemble vs MiSP

Intermediate layer evaluation

- Mahalanobis per layer vs min of MiSP.
- min of MiSP trends based on dataset distance
- Comparison of aggregation methods vs baseline methods.

Classification Accuracy

- Does softmax activation integrated models retain performance?
- Yes
- Higher entropy loss factor leads to degradation in accuracy.

Network: ResNet34 In-distribution: CIFAR-10					
log-softmax	Entropy Loss Factor	Top-1 accuracy(%)			
-NA-	-NA-	94.31			
yes	0	93.5			
yes	1e-3	93.37			
yes	5e-3	93.09			
yes	1e-2	92.64			
yes	5e-2	92.48			
yes	1e-1	91.92			

OOD evaluation benchmark for log-softmax models

- MiSP better than MSP
- MSP for log-softmax models: comparable
- Entropy minimization: no significant effect.

Network Architecture: ResNet34 In-distribution: CIFAR-10						
Log- softmax	Entropy Loss	Out- distribution	AUROC(↑)			
Solullax	factor	dataset	MSP	MiSP		
-NA-(Baseline)		CIFAR100	84.89	88.19		
		LSUN	93.48	95.66		
		SVHN	92.08	96.54		
yes 0		CIFAR100	85.20	88.39		
		LSUN	88.48	93.53		
		SVHN	90.27	94.70		
yes	1e-2	CIFAR100	83.26	86.23		
		LSUN	89.89	95.32		
		SVHN	92.43	97.41		

OOD evaluation benchmark for log-softmax models

Mahalanobis:

comparable
performance for
baseline and
log-softmax models.

•

 MiSP close to Mahalanobis-ensemble performance.

Network Architecture: ResNet34 In-distribution: CIFAR-10						
Log- softmax	Entropy Loss	Out- distribution	AUROC(↑)			
Solullax	factor			MiSP		
-NA-(B	aseline)	CIFAR100	66.06	88.19		
		LSUN	99.75	95.66		
		SVHN	98.62	96.54		
yes 0		CIFAR100	73.51	88.39		
		LSUN	99.46	93.53		
		SVHN	98.85	94.70		
yes 1e-2		CIFAR100	74.07	86.23		
		LSUN	99.45	95.32		
		SVHN	98.19	97.41		

Results

Log-softmax model benchmark:

- Classification accuracy
- MSP vs MiSP
- Mahalanobis-ensemble vs MiSF

Intermediate layer evaluation

- Mahalanobis per layer vs min of MiSP.
- min of MiSP trends based on dataset distance.
- Comparison of aggregation methods vs baseline methods.

Comparison of aggregation methods with Mahalanobis per layer

- Different layer enable different performances for OOD detection.
- min of MiSP observed to be the best in aggregation methods.

- Mahalanobis performs well for layers in block 1 & 2.
- min of MiSP better than Mahalanobis for final residual blocks.
- Entropy loss model: minor improvements in final block.

Comparison of aggregation methods with Mahalanobis per layer

- Different layer enable different performances for OOD detection.
- Mahalanobis performs well for layers in block 2 & 3.

 min of MiSP better than Mahalanobis for initial and final residual blocks.

min of MiSP trends based on dataset distances

- Initial layers: beneficial for far datasets- SVHN & LSUN
- Final layers: beneficial for near dataset- CIFAR-100
- min of MiSP better for initial layers compared to MiSP@FC for LSUN and SVHN.
- MiSP@FC better for CIFAR100 than min of MiSP at intermediate layer.

Layer

out-distribution datasets

Comparison of aggregation methods vs baseline methods

 The cheap evaluation method min of MiSP have competitive performance with Mahalanobis-ensemble.

Network Architecture: ResNet34 In-distribution: CIFAR-10							
Log- softmax	Entropy Loss	Out- distribution dataset	AUROC(↑)				
Sounax	factor		MSP/ Mahalanobis-ensemble (best)	Intermediate layer aggregatio (best)			
-NA-(Baseline)		CIFAR100	84.89(MSP)	-NA-			
		LSUN	99.75(Mahalanobis)	-NA-			
		SVHN	98.62(Mahalanobis)	-NA-			
yes	0	CIFAR100	85.20(MSP)	86.72(avg of ASP layer4.3)			
		LSUN	99.46(Mahalanobis)	99.76(min of MiSP layer1.2)			
		SVHN	98.85(Mahalanobis)	98.66(min of MiSP layer1.2)			
yes	1e-2	CIFAR100	83.26(MSP)	87.44(min of MiSP layer4.3)			
		LSUN	99.45(Mahalanobis)	99.66(min of MiSP layer1.2)			
		SVHN	98.19(Mahalanobis)	97.89(min of MiSP layer1.1)			

Discussion

- Classifiers with intermediate log-softmax activation retain performance.
- We observe MiSP as a better feature than MSP for OOD detection at final layer.
- This cheap generalization of MSP to intermediate log-softmax outputs, especially min of MiSP, has competitive performance with the Mahalanobis-ensemble method.
- We find early layers of the network are more beneficial for far out-distribution datasets and later layers for near out-distribution datasets.

Discussion

Challenges in adopting the MSP generalization for intermediate layers in an open world setting.

Cannot reuse pretrained networks:
 Architecture should be integrated with log-softmax and retrained.

 min of MiSP spectrum: it is not consistent across datasets. OOD threshold cannot be predefined in an open world setting.

Evaluation:min of MiSP Architecture:ResNet-34+logSoftmax+EL0

Conclusion & Future Work

Developed a softmax based baseline for intermediate layer OOD evaluation.

- Extension of intermediate layer evaluation methods with ODIN/Outlier Exposure.
- Verification for other classifier architectures e.g. WideResNet and DenseNet.
- Further study on why MiSP works.

Thanks! Any questions?

Comparison of aggregation methods with Mahalanobis per layer

In-distribution: CIFAR-10

- Min of MiSP performance drops in block 2 & 3.
- Mahalanobis performs well for layers in block 2 & 3.

- General observation: min of MiSP better than Mahalanobis for initial and final residual blocks.
- Model with entropy loss have minor improvements in final block.

Experiments-min of MiSP trends based on dataset distances

- Introduce mixture datasets to study layer benefits.
- Mix samples from CIFAR-100 and SVHN datasets in some percentages.
- Initial layers gets more benefited for OOD detection as dataset moves from CIFAR-100 to SVHN.

Evaluation:min of MiSP Architecture:ResNet-34+logSoftmax+EL0

Results generalization to CIFAR-100

Classification Performance

Network Architecture: ResNet34 In-distribution: CIFAR-100				
log-softmax	Entropy Loss Factor	Top-1 accuracy(%)		
-NA-	-NA-	75.93		
yes	0	74.25		
yes	1e-2	73.39		

Cifar100 OOD evalaution

Network Architecture: ResNet34 In-distribution: CIFAR-10							
Log- softmax		s distribution	AUROC(↑)				
Soluliax			MSP	Mahalanobis -ensemble	MiSP	Intermediate layer aggregation (best)	
-NA-(Baseline)		CIFAR10	73.31	57.71	72.43	-NA-	
		LSUN	75.15	99.21	78.3	-NA-	
		SVHN	8.50	96.73	94.28	-NA-	
yes	0	CIFAR10	70.56	61.29	70.49	62.5(avg of MiSP layer4.3)	
		LSUN	71.4	99.05	73.69	99.84(min of MiSP layer1.1)	
		SVHN	73.95	97.32	86.59	98.41(min of MiSP layer1.1)	
yes	1e-2	CIFAR10	71.25	57.49	71.44	63.77(min of MiSP layer4.3)	
		LSUN	69.27	98.88	69.36	99.65(min of MiSP layer1.2)	
		SVHN	75.15	96.63	85.53	96.82(min of MiSP layer1.2)	