

# Hierarchical Clustering

#### An Application on Wholesale Market Data

Aarjav Sethi Apurv Chaudhary Harshvardhan Pradeep Charan Tamanna Gupta

IPM 2016-21 Batch

#### TABLE OF CONTENTS

- 1. Introduction
- 2. Problem
- 3. Hierarchical Clustering
- 4. Application

Introduction

#### **DESCRIPTION OF DATA**

Data Source: University of California, Irvine's Machine Learning Repository

| Attribute    | Annual Spending/Description   | Туре       |
|--------------|-------------------------------|------------|
| FRESH        | Fresh Products                | Continuous |
| MILK         | Milk Products                 | Continuous |
| GROCERY      | Grocery Products              | Continuous |
| FROZEN       | Frozen Products               | Continuous |
| DETERGENTS   | Detergents and Paper Products | Continuous |
| DELICATESSEN | Delicatessen Products         | Continuous |
| CHANNEL      | Horeca or Retail Channel      | Nominal    |
| REGION       | Lisnon, Oporto or Other       | Nominal    |

#### **PLOTS**

## Histograms and Boxplots for descriptive knowhow of data



### PARALLEL COORDINATE PLOT



# Problem

#### **STATEMENT**

PROBLEM: *Group* wholesale customers on the basis of their buying patterns

METHOD: Use *Hierarchical Clustering* to group based on "similar" buying patterns

#### MOTIVATION

Using *Unsupervised Learning Methods* to group data without any previously known attributes of such groups

Assume these values are output of some internal function unknown to us

#### K-means VS Hierarchical

- Complexity: O(n) and  $O(n^2)$
- · Consistency: K-means renders different results with every run
- No previously known k!

**Hierarchical Clustering** 

#### **METHOD**

Builds *clusters*, i.e. groups that have maximum similarity with each other in the same cluster and maximum dissimilarity with other clusters

Results in hierarchy of clusters

#### Agglomerative

"bottom up" approach; each starts in its own cluster and then merged as we move up the hierarchy

#### **Divisive**

"top down" approach; all observations start in one cluster, and splits as one moves down the hierarchy

#### MEASURING SIMILARITY

#### How to measure similarity between two clusters?

Euclidean Distance

$$d_0^2 = (\mathbf{x}_1 - \mathbf{x}_2)^T (\mathbf{x}_1 - \mathbf{x}_2)$$

Correlation Distance

$$d_0 = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1) \cdot Var(X_2)}}$$
 (Pearson's Correlation Coefficient)

#### MEASURING SIMILARITY

#### Examples

- Similarity based on Sizes: grouping based on buying sizes; grouping which fruits are larger in size and which are smaller
- Similarity based on Attributes: grouping based on buying patterns; grouping which fruits are edible and which aren't

#### MEASURING DISTANCE - LINKAGES

How to measure distance between a cluster and a point of another cluster?

- · Single minimum of all possible distances; chaining effects
- Complete maximum of all possible distances; no chaining; affected by outliers
- Average unweighted average; compromise b/w single and complete
- Centroid average of points in the cluster then distance is calculated

#### **UNDERSTANDING LINKAGES**

### An Example

Consider clusters -  $\{1,4\}$  and  $\{2\}$ 

| Linkage  | Calculation             | Distance |
|----------|-------------------------|----------|
| Single   | $min\{(2-1),(4-2)\}$    | 1        |
| Complete | $\max\{(2-1),(4-2)\}$   | 2        |
| Average  | $\frac{(2-1)+(4-2)}{2}$ | 1.5      |
| Centroid | $\frac{1+4}{2} - 2$     | 0.5      |

#### **DENDROGRAMS**

A *tree based* diagram to represent *hierarchies* of the hierarchical clustering

#### Example



**Application** 

# Dendrograms

#### DENDROGRAM FOR SINGLE-EUCLIDEAN



#### **DENDROGRAM FOR COMPLETE-EUCLIDEAN**



#### **DENDROGRAM FOR AVERAGE-EUCLIDEAN**



#### **DENDROGRAM FOR CENTROID-EUCLIDEAN**



#### **DENDROGRAM FOR SINGLE-CORRELATION**



#### DENDROGRAM FOR COMPLETE-CORRELATION



#### **DENDROGRAM FOR AVERAGE-CORRELATION**



#### DENDROGRAM FOR CENTROID-CORRELATION



#### CHOOSING DISTANCE AND SIMILARITY MEASURE FOR POST ANALYSIS

Distance Measure average over single, complete and centroid

Similarity Measure correlation as we wanted to find customers with similar buying pattern rather than size of customers

#### NUMBER OF CLUSTERS

### Choose three clusters for further analysis.











### **TANGLEGRAM**



Conclusion

#### THANK YOU!

Thank you all for you presence and sir, for this opportunity!

**Questions?**