

Introducción a la Ingeniería Electrónica (86.02)

Conceptos básicos

Dispositivo físico

Una placa metálica conductora

Conceptos básicos

Dispositivo físico

Conceptos básicos

Dispositivo físico

Conceptos básicos

Dispositivo físico

Conceptos básicos

Dispositivo físico

Agregamos una pila o fuente

Conceptos básicos

Dispositivo físico

Se conecta una pila entre los extremos de las placas

Conceptos básicos

Dispositivo físico

Se conecta una pila entre los extremos de las placas

Conceptos básicos

Dispositivo físico

Se conecta una pila entre los extremos de las placas

Conceptos básicos

Dispositivo físico

Se conecta una pila entre los extremos de las placas

¿Qué produce la pila al conectarla entre las placas?

Conceptos básicos

Dispositivo físico

Conceptos básicos

Dispositivo físico

La pila realiza trabajo eléctrico moviendo cargas libres

Conceptos básicos

Dispositivo físico

A medida que desplazan cargas, se produce una diferencia de potencial entre las placas

Conceptos básicos

Dispositivo físico

A medida que desplazan cargas, se produce una diferencia de potencial entre las placas

Conceptos básicos

Dispositivo físico

Cuando la diferencia de potencial Vc entre las placas alcanza V0, el proceso se detiene

Conceptos básicos

Dispositivo físico

¿Qué implica que el proceso haya finalizado? ¿Cómo se podría reactivar?

Conceptos básicos

Dispositivo físico

Dejemos la pregunta planteada...

¿Qué implica que el proceso haya finalizado? ¿Cómo se podría reactivar?

Proceso de carga

Proceso de carga

$$Q = \alpha V_c$$

$$Q = \alpha V_c$$

$$Q = CV_c$$

$$Q = \alpha V_c$$

$$Q = CV_c$$

$$C = \frac{Q}{V_c}$$

Proceso de carga

Hasta acá se evidencia el siguiente fenómeno...

$$Q = \alpha V_c$$

$$Q = CV_c$$

$$C = \frac{Q}{V_c}$$

Capacitancia = Es la propiedad del capacitor que representa la energía que el capacitor almacena

Definición de capacidad

Hasta acá se evidencia el siguiente fenómeno...

$$Q = \alpha V_c$$

$$Q = CV_c$$

$$C = \frac{Q}{V_c}$$

La capacitancia **no depende** ni de la carga ni de la tensión aplicada. Depende exclusivamente de la **geometría** y el **material aislante**

C en función de la geometría

Capacitor de placas planas paralelas:

$$C = \epsilon \frac{A}{d}$$

Aunque existen diversas geometrías, en todos los casos la capacidad o capacitancia, **depende** sólo de la **geometría** y el **material aislante**

A = área de las placas

d = distancia entre placas

€ = permitividad. Material "dieléctrico" (aislante)

C en función de la geometría

Unidad de la capacidad

La unidad que indica la capacidad de un capacitor es:

farad
$$[F] = \frac{[C]}{[V]}$$

Unidad de la capacidad

La unidad que indica la capacidad de un capacitor es:

La unidad que indica la capacidad de un capacitor es:

- Generalmente suelen usarse submúltiplos: pF, nF, uF
- No tan habitualmente: mF
- Rara vez: F

Conceptos básicos

Retomemos la pregunta planteada ...

¿Qué implica que el proceso haya finalizado? ¿Cómo se podría reactivar?

Veamos este proceso en vivo

Conceptos básicos

¿Qué implica que el proceso haya finalizado? ¿Cómo se podría reactivar?

Simbología y esquemáticos del componente

Símbolo general

$$c +$$

Tecnologías y encapsulados

Formatos y tecnologías

Especificaciones

Electrolíticos

Altos valores de capacidad (típico: 1~5000uF) Altas pérdidas en DC Mal funcionamiento en altas frecuencias Tolerancias altas (dispersión del valor nominal)

Cerámicos

Bajos valores de capacidad (1pF-1uF) Buen funcionamiento en altas frecuencias Muy económicos

104 = **10** x 10⁴ pF = 100 nF

Poliéster

Valores intermedios (1nF-15uF) Buen funcionamiento en altas y bajas frec. Relativamente económicos

Ruptura dieléctrica y polaridad

MÁXIMA TENSIÓN DE TRABAJO

RUPTURA DIELÉCTRICA

Super capacitores

Ventajas

- Capacidad tremendamente elevada (hasta 5000 F)
- Permite corrientes de carga y descarga alta
- No contienen productos químicos ácidos o corrosivos

Limitaciones

- Baja energía (sólo una fracción de una batería regular)
- Alta autodescarga;
- Baja tensión(2.3-2.75V)
- Muy caros

Video Algo sobre capacitores

¿Cómo se comporta a lo largo del tiempo?

Relación corriente-tensión

Relación entre carga y diferencia de potencial (que define la Capacidad)

$$C = \frac{\Delta Q}{\Delta V} \longrightarrow \Delta Q = C\Delta V$$

Relación corriente-tensión

Relación entre carga y diferencia de potencial (que define la Capacidad)

$$C = \frac{\Delta Q}{\Delta V} \longrightarrow \Delta Q = C\Delta V$$

Consideremos la variación en $q(t) = C \, v_c(t)$ el tiempo

Relación corriente-tensión

Relación entre carga y diferencia de potencial (que define la Capacidad)

$$C = \frac{\Delta Q}{\Delta V} \longrightarrow \Delta Q = C\Delta V$$

Consideremos la variación en el tiempo

$$q(t) = C v_c(t)$$

Derivemos respecto del tiempo

$$\frac{dq(t)}{dt} = C \frac{dv_c(t)}{dt}$$

Relación corriente-tensión

Relación entre carga y diferencia de potencial (que define la Capacidad)

$$C = \frac{\Delta Q}{\Delta V} \longrightarrow \Delta Q = C\Delta V$$

Consideremos la variación en $q(t) = C \, v_{c}(t)$ el tiempo

Derivemos respecto del tiempo

$$\frac{dq(t)}{dt} = C \frac{dv_c(t)}{dt}$$

La relación entre tensión y corriente en un capacitor está dada por la siguiente Ec.

$$i(t) = C \frac{dv_c(t)}{dt}$$

$$C = \int_{-\infty}^{\infty} v_{c}(t)$$

¿El capacitor tiene un comportamiento lineal? ¿Por qué?

$$i(t) = C \frac{dv_c(t)}{dt}$$

¿El capacitor tiene un comportamiento lineal? ¿Por qué?

$$i(t) = C \frac{dv_c(t)}{dt}$$

Sí, porque la diferenciación es una operación lineal

Respuesta transitoria

Al comienzo analizamos el siguiente circuito:

Al comienzo analizamos el siguiente circuito:

Ahora consideremos un caso más realista ...

Carga de de un capacitor

Carga de de un capacitor

Se plantea el siguiente circuito:

Incluímos un resistor en serie.

Carga de de un capacitor

Carga de de un capacitor

Carga de de un capacitor

Carga de de un capacitor

Se plantea el siguiente circuito:

¿Qué va a pasar si cerramos la llave?

Suponer condiciones iniciales nulas (capacitor descargado en t=0).

Se plantea el siguiente circuito:

$$v(t) = v_R(t) + v_c(t)$$

Carga de de un capacitor

$$v(t) = v_R(t) + v_c(t)$$

$$v(t) = i(t)R + v_c(t)$$

$$i(t) = C rac{dv_C(t)}{dt}$$
 iPero ya sabemos cuanto vale $i(t)$!

Carga de de un capacitor

Analicemos las ecuaciones del circuito ...

$$v(t) = v_R(t) + v_c(t)$$

$$v(t) = i(t)R + v_c(t)$$

$$i(t) = C rac{dv_C(t)}{dt}$$
 ¡Pero ya sabemos cuanto vale $\emph{i(t)}$!

Nos queda una ecuación diferencial de primer orden:

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

Preguntas...

¿Cuál será la solución de la ecuación diferencial?

¿Qué forma de onda está excitando al circuito?

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

Experimento

Experimento 1

- 1. Se carga el capacitor (con la llave abierta)
- 2. Se cierra la llave y se observa la descarga

https://youtu.be/upI70zKloCQ