N. April Fools' Problem (medium)

time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

The marmots need to prepare k problems for HC^2 over n days. Each problem, once prepared, also has to be printed.

The preparation of a problem on day i (at most one per day) costs a_i CHF, and the printing of a problem on day i (also at most one per day) costs b_i CHF. Of course, a problem cannot be printed before it has been prepared (but doing both on the same day is fine).

What is the minimum cost of preparation and printing?

Input

The first line of input contains two space-separated integers n and k ($1 \le k \le n \le 2200$). The second line contains n space-separated integers $a_1, ..., a_n$ () — the preparation costs. The third line contains n space-separated integers $b_1, ..., b_n$ () — the printing costs.

Output

Output the minimum cost of preparation and printing k problems — that is, the minimum possible sum $a_{i_1}+a_{i_2}+\ldots+a_{i_k}+b_{j_1}+b_{j_2}+\ldots+b_{j_k}$, where $1 \leq i_1 < i_2 < \ldots < i_k \leq n$, $1 \leq j_1 < j_2 < \ldots < j_k \leq n$ and $i_1 \leq j_1$, $i_2 \leq j_2$, ..., $i_k \leq j_k$.

Example

```
input

8 4
3 8 7 9 9 4 6 8
2 5 9 4 3 8 9 1

output

32
```

Note

In the sample testcase, one optimum solution is to prepare the first problem on day 1 and print it on day 1, prepare the second problem on day 2 and print it on day 4, prepare the third problem on day 3 and print it on day 5, and prepare the fourth problem on day 6 and print it on day 8.