Predicting Loan Defaults

Kenneth Chee, Chen Wanlun, Fong Yew Loong, Tan Jiaqi

Problem Statement

Source of Data

Data

 Loan data for all loans issued through the period 2008 to 2011.

Contains over 50 dimensions and 20,000 observations!

Variables

- Dependent Variable:
 - Loan status Charged Off or Fully Paid.

- Independent Variable:
 - Quantitative: Loan Amount, Number of accounts the borrowers is now delinquent, employment length (and more!)
 - Categorical: Term of Loan, Purpose of Loan

Original dataset with 51 variables

Removed 30 variables

21 variables remaining

- Variables with no predictive value (all observations with same value):
 - Eg. Loan application type, Policy code, Initial list status, Payment plan
- Variables with sparse data (only a handful of observations with values recorded):
 - Eg. Months since most recent rating, Months since last delinquency, Months since last record

- Variables with all NAs:
 - Eg. URL
- Variables with text data:
 - Eg. Description by borrower of loan, Title of loan
- Variables with address data:
 - Zipcode is censored so data not meaningful
- Variables with meaningless data for future predictions:
 - Eg. Issue date

- Variables with data that borrower/bank cannot know before taking up loan:
 - Eg. Last payment date, Total payment to date,
 Principal received to date
- Variables that assume loanee has already defaulted:
 - Eg. Recoveries, Collection Recovery Fee
- Other variables:
 - Subgrade (already part of grade categories)
 - Earliest Credit Line (irrelevant)

Data Cleaning – Dealing with Categorical Variables

Transformation into dummies

Data Cleaning – Dealing with Percentage Variables

Transformation into numeric

```
In [4]: df3['int rate']
Out[4]: 0
                   10.65%
                   15.27%
         2
                   15.96%
                   7.90%
                   18.64%
                   21.28%
         6
                   12.69%
         7
                   13.49%
                   10.65%
                   16.29%
         10
                   15.27%
         11
                   6.03%
         12
                   11.71%
         13
                   6.03%
         14
                   12.42%
         15
                   11.71%
```

```
In [75]: df3['int_rate'] = df3['int_rate'].replace({'\%':''}, regex = True)
df3['revol_util'] = df3['revol_util'].replace({'\%':''}, regex = True)
```

Data Cleaning – Dealing with Large Variables

Scaling variables

	df3['annual_inc']= df3['annual_inc']/1000 df3.head()												
	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	emp_length	home_ownership	annual_inc	verification_status	loan_status	
3	5000	5000	4975.0	36 months	10.65	162.87	В	10+ years	RENT	24.000	Verified	C	
	1 2500	2500	2500.0	60 months	15.27	59.83	С	< 1 year	RENT	30.000	Source Verified	9	
	2 2400	2400	2400.0	36 months	15.96	84.33	С	10+ years	RENT	12.252	Not Verified	(
19	3 5000	5000	5000.0	36 months	7.90	156.46	Α	3 years	RENT	36.000	Source Verified	(
	4 3000	3000	3000.0	36 months	18.64	109.43	E	9 years	RENT	48.000	Source Verified	Ó	

Data Cleaning – Others

Scaling variables

	df3['annual_inc']= df3['annual_inc']/1000 df3.head()												
	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	emp_length	home_ownership	annual_inc	verification_status	loan_status	
3	5000	5000	4975.0	36 months	10.65	162.87	В	10+ years	RENT	24.000	Verified	C	
	1 2500	2500	2500.0	60 months	15.27	59.83	С	< 1 year	RENT	30.000	Source Verified	9	
	2 2400	2400	2400.0	36 months	15.96	84.33	С	10+ years	RENT	12.252	Not Verified	(
19	3 5000	5000	5000.0	36 months	7.90	156.46	Α	3 years	RENT	36.000	Source Verified	(
	4 3000	3000	3000.0	36 months	18.64	109.43	E	9 years	RENT	48.000	Source Verified	Ó	

Dropping rows with NA values

```
In [ ]: df3_perf = df3_perf.dropna(axis=0, how='any')
df3_perf.head()
```

Data Cleaning – Standardisation of variables

- Important for feature selection later
- Need to determine which are most important variables

```
In [455]: from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X_final)
```

Data Exploration – Correlation Plot

Data Exploration – Correlation Plot

- Defaulting most positively correlated to:
 - Installment
 - Incidents of deliquency
 - No of open credit lines
- Defaulting most negatively correlated to:
 - Short term loans
 - Good loan grades

Lasso Features Selection

Insignificant features like Verified, OWN

Cross Validation

Across 3 folds

Combining categories

- Combined non-significant variables with significant ones
 - E.g. home ownership, verification status

Combining categories

- Dropped reference categories for dummies
 - No value-add

```
df3_term=pd.get_dummies(df3['term'])
df3_term = df3_term.drop([' 60 months'],1)

df3_term.head()

36 months
0     1
1     0
2     1
3     1
4     1
```

Validating Revised Categories

All variables significant

Cross Validation 2

Baseline Logistic Model

Optimise using Ridge regularisation

False Positive Rate

```
best alpha=alphas[np.argmax(scores)]
# Generate ROC for LR with 12 penalty and C=best alpha
fpr,tpr,roc auc, thresholds = generate auc(X,y,LogisticRegression,C=best alpha,penalty='12')
def generate ROCplot(fpr,tpr,label,roc auc):
    plt.clf()
    plt.plot(fpr, tpr, '.-',label='ROC curve (area = %0.2f)' % roc auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic')
    plt.legend(loc="lower right")
    plt.show()
# Plots ROC
generate ROCplot(fpr,tpr,'LR',roc auc)
Area under the ROC curve: 0.691122
              Receiver operating characteristic
  1.0
  0.8
Frue Positive Rate
   0.2

    ROC curve (area = 0.69)

                              0.6
                                              1.0
```

Check for Robustness

- Generalizable across 5 random folds
 - AUC ROC of around 0.69-0.70

```
regr2 = LogisticRegression(C=best_alpha,penalty='12')
regr2.fit(X_train,y_train)
from sklearn.model_selection import cross_val_score
scores2 = cross_val_score(regr2, X_train, y_train, cv=5, scoring = "roc_auc")
scores2
array([ 0.69191326,  0.70022915,  0.70510038,  0.69118042,  0.69397267])
```

Selection Method - AUC ROC

- Binary Classifier
- Drawbacks of Using Prediction Accuracy
- Separate Distributions instead

Support Vector Machine

- 3 Parameters to select:
 - Penalization term for 'Slackness'
 - Kernel
 - Coefficient on Kernel
- GridsearchCV to find parameters
- Operating time: O(nfeatures x nobservations^3)

Support Vector Machine

Smaller training set rbf kernel < Larger training set linear kernel

Random Forest

1 parameter: Optimal depth

```
In [73]: scores=[]
          depths = range(1,50)
          for n in depths:
              fpr, tpr, roc auc, thresholds= generate auc(X,y,RandomForestClassifier, max depth=n, random state=42)
              scores.append(roc auc)
          n opt=depths[np.argmax(scores)]
          plt.plot(depths,scores)
          plt.show()
          print('Optimal Decision Tree Depth: %.10f' % n_opt)
           0.69
           0.68
           0.67
           0.66
           0.65
           0.64
           0.63
           0.62
                        10
         Optimal Decision Tree Depth: 8.0000000000
```

Random Forest

- Result

```
# Generate ROC
In [76]:
         fpr,tpr,roc_auc, thresholds = generate_auc(X,y,RandomForestClassifier, max_depth=n_opt, random_state=42)
         def generate ROCplot(fpr,tpr,label,roc auc):
             plt.clf()
             plt.plot(fpr, tpr, '.-',label='ROC curve (area = %0.2f)' % roc_auc)
             plt.plot([0, 1], [0, 1], 'k--')
             plt.xlim([0.0, 1.0])
             plt.ylim([0.0, 1.1])
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title('Receiver operating characteristic')
             plt.legend(loc="lower right")
             plt.show()
         # PLots ROC
         generate_ROCplot(fpr,tpr,'LR',roc_auc)
         print("Area under the ROC curve : %f" % roc auc)
```



```
In [77]: # Cross Validate model
from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf, X, y, cv=5, scoring="roc_auc")
scores

Out[77]: array([ 0.69228543,  0.67787542,  0.6776415 ,  0.65840256,  0.68749189])
```

Area under the ROC curve : 0.688219

Boosting

2 parameters: Depth and Learning rate

```
In [82]: scores = []
depths = range(1,7)
for n in depths:
    fpr, tpr, roc_auc, thresholds = generate_auc(X, y, GradientBoostingClassifier, max_depth = n, random_state = 42)
    scores.append(roc_auc)

Learning rate: 0.0025
Accuracy score (training): 0.8495
Accuracy score (validation): 0.8533

plt.plot(depths,scores)
plt.show()
print("Optimal Boosting Tree Depth:", n_opt)
Learning rate: 0.005
Accuracy score (training): 0.8548
Accuracy score (validation): 0.8529
```


Optimal Boosting Tree Depth: 5

```
Learning rate: 0.0025
Accuracy score (training): 0.8495
Accuracy score (validation): 0.8533
Learning rate: 0.005
Accuracy score (training): 0.8548
Accuracy score (validation): 0.8529
Learning rate: 0.01
Accuracy score (training): 0.8623
Accuracy score (validation): 0.8520
Learning rate: 0.02
Accuracy score (training): 0.8737
Accuracy score (validation): 0.8529
Learning rate: 0.025
Accuracy score (training): 0.8805
Accuracy score (validation): 0.8526
Learning rate: 0.05
Accuracy score (training): 0.9136
Accuracy score (validation): 0.8484
Learning rate: 0.1
Accuracy score (training): 0.9634
Accuracy score (validation): 0.8473
```

Boosting

- Highest AUC ROC (although generally comparable)
- Out of curiosity...AUC vs Prediction Accuracy

```
Confusion Matrix:
         [[4500
                   3]
          771
                   3]]
         Classification Report
                      precision
                                   recall f1-score
                                                      support
                           0.85
                                     1.00
                                               0.92
                                                          4503
                           0.50
                                     0.00
                                               0.01
                                                          774
         avg / total
                           0.80
                                     0.85
                                               0.79
                                                          5277
In [86]: scores gb = gb.decision function(X test)
         fpr_gb, tpr_gb, _ = roc_curve(y_test, scores_gb)
         roc auc gb = auc(fpr gb, tpr gb)
         print("Area under ROC curve = {:0.4f}".format(roc auc gb))
         Area under ROC curve = 0.6967
In [87]: from sklearn.externals import joblib
         joblib.dump(gb, 'loan boosting.pkl')
Out[87]: ['loan_boosting.pkl']
```

Thank you