Green Lagrange Strain Tensor

We calculate the strain tensor if a unit cell with initial lattice parameter a_1 , b_1 , c_1 , α_1 , β_1 , and γ is changed to a_2 , b_2 , c_2 , α_2 , β_2 , and $\gamma + \Delta \gamma$.

For simplicity and 2D materials we take $\alpha_1 = 90^\circ$, $\beta_1 = 90^\circ$, and $c_1 = c_2$.

Out[3]//MatrixForm=

$$\begin{pmatrix} a_1 & \cos[\gamma] & b_1 & 0 \\ 0 & \sin[\gamma] & b_1 & 0 \\ 0 & 0 & c_1 \end{pmatrix}$$

Out[6]//MatrixForm=

$$\left(\begin{array}{ccc} a_2 & \text{Cos} \left[\gamma + \triangle \gamma \right] \ b_2 & 0 \\ 0 & \text{Sin} \left[\gamma + \triangle \gamma \right] \ b_2 & 0 \\ 0 & 0 & c_2 \end{array} \right)$$

In[7]:= (*Deformation Gradient*)

Out[9]//MatrixForm=

$$\left(\begin{array}{ccc} \frac{a_2}{a_1} & -\frac{\text{Cot}\left[\gamma\right] \ a_2}{a_1} + \frac{\text{Cos}\left[\gamma + \Delta\gamma\right] \ \text{Csc}\left[\gamma\right] \ b_2}{b_1} & 0 \\ 0 & \frac{\text{Csc}\left[\gamma\right] \ \text{Sin}\left[\gamma + \Delta\gamma\right] \ b_2}{b_1} & 0 \\ 0 & 0 & \frac{c_2}{c_1} \end{array} \right)$$

Out[11]//DisplayForm=

$$\frac{1}{2} \left(\begin{array}{c} -1 + \frac{a_2^2}{a_1^2} & \frac{Csc\left[\gamma\right] \ a_2 \ (-Cos\left[\gamma\right] \ a_2 \ b_1 + Cos\left[\gamma + \Delta\gamma\right] \ a_1 \ b_2)}{a_1^2 \ b_1} & 0 \\ \frac{Csc\left[\gamma\right] \ a_2 \ (-Cos\left[\gamma\right] \ a_2 \ b_1 + Cos\left[\gamma + \Delta\gamma\right] \ a_1 \ b_2)}{a_1^2 \ b_1} - 1 + \frac{Csc\left[\gamma\right]^2 \ Sin\left[\gamma + \Delta\gamma\right]^2 \ b_2^2}{b_1^2} + \left(\frac{Cot\left[\gamma\right] \ a_2}{a_1} - \frac{Cos\left[\gamma + \Delta\gamma\right] \ Csc\left[\gamma\right] \ b_2}{b_1}\right)^2 & 0 \\ 0 & 0 & -1 + \frac{c_2^2}{c_1^2} \end{array} \right)$$

In[12]:= (*For Simplicity let use also take $\gamma = \frac{\pi}{2} *$)

$${\tt DisplayForm} \Big[\frac{1}{2} \; {\tt MatrixForm} \Big[{\tt Simplify} \Big[{\tt GLDouble} \; /. \; \Big\{ {\tt Y} \to \frac{\pi}{2} \Big\} \Big] \Big] \Big]$$

Out[12]//DisplayForm=

$$\frac{1}{2} \begin{pmatrix} -1 + \frac{a_2^2}{a_1^2} & -\frac{\sin\left[\triangle\gamma\right] a_2 b_2}{a_1 b_1} & \emptyset \\ -\frac{\sin\left[\triangle\gamma\right] a_2 b_2}{a_1 b_1} & -1 + \frac{b_2^2}{b_1^2} & \emptyset \\ \emptyset & \emptyset & -1 + \frac{c_2^2}{c_1^2} \end{pmatrix}$$

In[13]:= (*For hexagonal cell let use also take $\gamma = \frac{\pi}{3} *$)

$$DisplayForm \Big[\frac{1}{2} \ MatrixForm [Simplify [GLDouble /. \{ a_2 \rightarrow a_1, \ \gamma \rightarrow \pi \ / \ 3, \ \Delta \gamma \rightarrow \emptyset, \ c_2 \rightarrow c_1 \}] \] \Big] \\$$

Out[13]//DisplayForm=

$$\frac{1}{2} \begin{pmatrix} 0 & \frac{-b_1 + b_2}{\sqrt{3} \ b_1} & 0 \\ \frac{-b_1 + b_2}{\sqrt{3} \ b_1} & -\frac{2 \ (b_1^2 + b_1 \ b_2 - 2 \ b_2^2)}{3 \ b_1^2} & 0 \end{pmatrix}$$