Topic 7 - Blockchain

Eric Casanovas

Universitat d'Andorra

18th May, 2022

- 2 Structure
- 3 Use Cases
- 4 Bitcoin
- **5** Ethereum

2 Structure

3 Use Cases

4 Bitcoir

6 Ethereun

Introduction

0000000

- A system of recording information in a way that makes it difficult or impossible to change, hack, or cheat the system
- The system consists in a growing list of records (blocks) linked using cryptography
- Each block contains a hash of the previous block
- The technology was popularized in 2008 by Satoshi Nakamoto (Bitcoin)

Introduction II

History I

- First blockchain-like protocol was designed in 1982 by David Chaum
- Some people think that the paper written by David Chaum is the basis of bitcoin
- 1992 Stuart Haber and Scott Stornetta described the first cryptographically secure chain of blocks
- 1998 Nick Szabo works on "Bit Gold" the first decentralised digital currency
- 2008 Satoshi Nakamoto releases Bitcoin whitepaper "A Peer-to-Peer Electronic Cash System"
- 2014 Blockchain 2.0 is born, refering to applications beyond currency
- Today, blockchain technologies have many implementations, but the most widely used is for financial purposes. Bitcoin & Ethereum

- Permissioned vs Permissionless
- Centralized vs Decentralized

Permissioned vs Permissionless

- Permissionless or public blockchains has no access restrictions
- Anyone can send trasactions to this blockchains
- Security relies on incentives
- Permissioned or private blockchains has access restrictions
- One cannot join it unless invited by the network administrators
- Hybrid blockchains can also be considered
- Some of the largest, most known public blockchains are the bitcoin and Ethereum

Introduction

00000000

- Centralized blockchains mean that the whole chain is controlled by a few participants
- This can cause a single point of failure or a 51% attack
- But, centralized blockchains are faster and can reduce costs
- Decentralized blockchains mean that the chain is controlled by a lot of people at the same time
- Decentralized blockchains are considered more secure as there is no single (or few) point of failure and is difficult to perform a 51% attack
- But, it is more expensive for users and slower

Focus

Introduction

• We will focus on decentralized permissionless blockchains!

Structure

- 2 Structure
- 3 Use Cases

Each blockchain has these 4 parts:

- Networking: Everything related to the communication between the nodes (node discovery, information propagation, verification...)
- Consensus: refers to the methodologies used to achieve agreement, trust, and security across a decentralized network (proof of work, proof of stake)
- Data: blocks and transactions
- Applications: smart contracts, decentralized applications, etc.

Consensus

- A fundamental problem in distributed computing
- The goal is to achieve system reliability in the presence of a number of faulty processes
- Some examples:
 - Byzantine Fault or Byzantine Generals Problem
 - PoW
 - PoS
 - etc...

The dilemma assumes that:

- Each general has its own army and is situated in different locations around a city
- They intend to attack, but the generals need to agree on either attacking or retreating
- If all generals retreat or all attack at the same time it's a victory
- Otherwise, soldiers will die
- The idea is to reach consensus and execute all the same action
- What do you think is the solution?

- The solution consists in follow the majority agreement of the *loyal* generals
- The majority is right
- But what happen if:
 - The generals are not loyal (Possible 51% attack)
 - Some messages didn't arrive i.e. System crashes unexpectedly (ignore its vote)

Consensus - PoW I

- Proof of Work is a form of cryptographic proof in which the prover proves to the verifiers that a computational effort has been performed
- This computational effort usually is "reverse a hash" with a given difficulty
- The "winner" receives a reward in compensation for his effort
- PoW is the consensus algorithm used by Bitcoin

Proof of Work Proof of Work is a consensus algorithm that requires a process called mining The miners in a network compete to find a solution to a resource-intensive computer calculation The first miner to find the solution receives a block reward

19 / 52

Consensus - PoW IV

Consensus - PoS I

- Proof of Stake is a consensus mechanisms for blockchains that work by selecting validators in proportion to their quantity of holdings in the associated cryptocurrency
- No necessity of computational power
- The selected validator receives a reward if he have done his job well
- PoS is the consensus algorithm used by many cryptocurrencies and in the future by Ethereum

Consensus - PoS II

Proof of stake

The probability of validating a new block is determined by how large of a stake a person hold.

The validators do not receive a block reward, instead they collect network fees as their reward.

Proof of stake systems can be much more cost and energy efficient than proof of work, but are less proven.

Consensus - PoS III

Introduction

HOW STAKING WORKS IN THE PROOF-OF-STAKE CONSENSUS MECHANISM

Owner stakes their native tokens in staking pools

Algo pseudo-randomly selects next validator

The selected validator

proposes a block of transactions

Other validators verify and approve the transaction

The block is added to the existing blockchain

The validator earns a transaction fee

Source: SEBA Research

Consensus PoS vs PoW II

Consensus PoS vs PoW III

Introduction

Proof of Work VS **Proof of Stake**

Mining capacity depends on computational power

Validating capacity depends on the stake in the network

Miners receive block rewards to solve a cryptographic puzzle

Validators do not receive a block reward, instead, they collect transaction fees as reward

Hackers would need to have a computer powerful than 51% of the network to add a malicious block, leading to 51% attack

Hacker would need to own 51% of all the cryptocurrency on the network, which is practically impossible and therefore, making 51% attacks impossible

Consensus PoS vs PoW IV

Introduction

Validate Cryptocurrency Transactions

PoS Proof of Stake

VS

Proof of Work

The first miner to solve the puzzle (finding a target hash) gets to add a block of transactions and earn rewards.

Owners of the cryptocurrency can stake their coins, then the protocol selects a validator who adds a new block of transactions and earns rewards.

PoS doesn't require validators to purchase specialized equipments or to solve complex equations.

High

PoW requires hardwares and energy, because mining capacity depends largely on a miner's computational power.

Smart Contracts

- Code stored in a blockchain
- Usually public
- Anyone can run this code to perform operations
- The idea is to remove intermediaries
- The most used smart contract platform is ethereum

- Creation of tokens (new currencies on top of the main blockchain)
- Creation of markets
- Trading activities
- Data recording
- Bulk send of transactions

- 1 Introduction
- 2 Structure
- 3 Use Cases

Use Cases

Use Cases I

- The main use case is for financial purposes
- These financial purposes include:
 - Investments
 - Cross-border transactions
 - Trading
 - Payment services
 - And many more...

- Digital voting
- Transparent Budgeting (anti-corruption)
- Digital IDs (passports, marriages...)
- Copyright management
- Proof of ownership of something
- Games
- Art
- Smart contracts (contracts remove intermediaries)

Use Cases III

- And also in cybersecurity!!
 - Decentralizing DNS
 - Decentralize device administration
 - Software verification

Use Cases IV

- 2 Structure
- 3 Use Cases
- 4 Bitcoin
- **5** Ethereur

- A distributed, decentralized digital currency system
- Released by Satoshi Nakamoto 2008
- Nobody knows who is Satoshi Nakamoto
- The first cryptocurrency to appear in the market
- PoW as consensus algorithm
- Maximum of 21.000.000 BTC
- Today there are around 19.000.000 BTC (May 2022)
- UTXO model

Bitcoin III

Bitcoin IV

Bitcoin V

Transactions

Bitcoin Strengths

- Deflationary: store of value as gold
- Decentralized: no banks in the middle of transactions
- Pseudonymous addresses: Bitcoin chain is public, but if you can link address-person you can deanonymize people
- "Low transfer fees": Low fees for sending a large amount of BTC
- Not your keys, not your bitcoins

- Economic concerns: Bubble, non regulated
- Illegal purposes taking advantage of pseudonymity
- Maximum of (more or less) 7 transactions per second
- Not your keys, not your bitcoins
- Energy consumption: see next picture

43 / 52

Bitcoin Criticism II

Ethereum

- 1 Introduction
- 2 Structure
- 3 Use Cases
- **5** Ethereum

- Ethereum is a technology that's home to digital money, global payments, and applications
- Released in 2015 by a group of researchers
- PoW as consensus algorithm but is migrating to PoS
- There is no maximum supply for Sthereum
- Wallet model
- Smart contracts

Ethereum II

Ethereum III

- Decentralized: no banks in the middle of transactions.
- Pseudonymous addresses: Ethereum (as bitcoin) is public, but if you can link address-person you can deanonymize people. But, ZKP...
- Smart Contracts: programs stored in the blockchain DApps (Decentralized Apps)
- Tokens: coins on top of ethereum to pay for services, governance, etc...

- Economic concerns: Bubble, non regulated
- Illegal purposes taking advantage of pseudonymity
- Slow: 15 transactions per second
- Energy consumption: less than bitcoin but considerably high

Ethereum 00000000

Discussion

• What do you think about BTC, ETH and cryptocurrencies?

The END!