Unveiling the Rich and Diverse Universe of Subsecond Astrophysics through LSST Star Trails

David Thomas, Steven Kahn, Federica Bianco, Željko Ivezić, Claudia Raiteri, Andrea Possenti, Colin Burke, Bob Blum, George Jacoby

May 2018

Abstract

We present a unique method that allows the LSST to scan the sky for stellar variability on short timescales. The operational component of the strategy requires LSST to take star trail images. The image processing component uses deep learning to sift for transient events on timescales down to 10 ms. We advocate for enabling this observing mode with LSST, as coupling this capability with the LSST's unrivaled 319.5 m²deg² etendue will produce the first optical survey of the universe on these timescales. We explain how this data will advance both planned lines of investigation and enable new research in the areas of stellar flares, cataclysmic variables, active galactic nuclei, Kuiper Belt objects, gamma-ray bursts, and fast radio bursts.

1 White Paper Information

The corresponding author is David Thomas (dthomas5@stanford.edu).

- 1. **Science Category:** We introduce a mechanism that enables the LSST to provide new data with higher time resolution that not only enhances existing investigations, but allows LSST to contribute to new science use cases that generally lie within the categories: *Exploring the Transient Optical Sky*, *Mapping the Milky Way*, and *Taking an Inventory of the Solar System*.
- 2. **Survey Type Category:** This strategy could be implemented as a *Mini-survey*, or inserting occasional star trail images into the main *Wide-Fast-Deep* survey.
- 3. Observing Strategy Category: While different fields are conducive to different aspects of our method for example, searching open clusters for flare stars it is largely agnostic of where the telescope is pointed. Furthermore, our proposal can be trivially interleaved with the main LSST survey.

2 Scientific Motivation

Subsecond photometry provides particularly valuable insights for studies of compact objects and for studies of occultations, eclipses, and transits. In case of compact objects, such as stellar mass black holes, white dwarfs and neutron stars, high-speed observations are required because their dynamical timescales range from milliseconds in black holes and neutron stars to seconds in white dwarfs. In case of extrinsic variability, such as occultations and eclipses, increased time resolution typically corresponds to an increased spatial resolution. Subsecond photometry to faint brightness levels can thus open new parameter space in studies of a wide range of astrophysical phenomena including active galactic nuclei (AGN), stellar flares, exoplanets, Kuiper Belt objects (including their atmospheres), fast radio bursts (FRBs), gamma-ray bursts (GRBs), X-ray binaries, polars, symbiotic stars, cataclysmic variables, asteroid sizes, and might as well discover new sources of photometric variability (e.g., Ďurech et al. 2011; Kanbach et al. 2014; Gandhi et al. 2016).

Unfortunately, subsecond photometry to faint brightness levels is technically challenging, especially if large sky coverage is also desired. Conventional optical telescopes rely on charge-coupled devices (CCDs) which typically take at least several seconds to read out. This readout time limits the time resolution they can achieve and precludes them from efficient high-time-resolution investigations. Furthermore, the special instruments that can image optical bands at high speeds have fields of view that are typically a few arcminutes, or less than 1/1000th of the LSST field of view. We present here a method that allows the LSST to explore the subsecond universe at an unprecendented combination of depth and sky coverage.

This proposal relies on a key insight originally from Howell & Jacoby (1986) and further developed in Thomas & Kahn (2018): star trail images are a conduit to achieving subsecond photometry of stellar sources. In star trail images, the tracking is turned off so the telescope rotates with the Earth during the exposure. Stellar sources are stretched into coherent linear trails, which show how the flux of the sources changes throughout the exposure. Figure 1 shows a simulated LSST star trail image with a one second exposure time. We then train a deep neural network to scan these large, unorthodox images and detect variability. We assess the performance of our technique on visits and corresponding images that the network was not trained on (Figure 3 shows the results). The results are competitive with the state of the art (Dhillon et al., 2016). Below we elaborate on three specific science cases for LSST.

Outer Solar System: The catalog of Solar System objects that live beyond Neptune is largely incomplete below 10 km in diameter, due to the extreme faintness of the reflected sunlight on these distant objects beyond 50 AU. The distribution of these objects at the kilometer size range is crucial for testing planetary formation and evolution models (e.g. Kenyon & Bromley 2004). A promising method for observing small and remote Outer Solar System objects is through their rare ($\sim 10^{-3}$ per star per year) and brief (~ 200 ms) stellar occultations (Zhang et al., 2013). These rare, but highly informative detections require a survey with both a large field of view and high time resolution imaging (Bianco et al., 2009). Taking star trail images with the LSST would constrain the size distribution and number density of KBOs and Oort cloud objects, leading to further constraints on Solar System

evolution models.

Fast Radio Bursts: Fast Radio Bursts – extragalactic radio transients of millisecond duration – have a prominent occurrence rate but their nature remains unsettled, with many tens of models proposed (e.g. Pen 2018 and Kulkarni et al 2014 for reviews). A large variety of FRB models leave open the possibility that the optical emission will come in the form of a short burst of duration comparable to that of the radio burst (milliseconds to tens of milliseconds). This range can be uniquely explored with LSST star trails. The expected occurrence rate is 2/week. According to convservative estimates the upper limits and having optical luminosity of the order of ten times that of the 1-3Gpc distant host galaxy.

This consideration naturally leads to suggest that the most effective operational set-up for using the star trail methodology in the search for the FRB optical counterparts will be for LSST to shadow the field-of-view of the experiments looking for FRBs in the radio band, or vice-versa. Indeed the useful FoV of LSST is comparable to that of some of the current and future radio experiments.

Blazars: Blazars are a special class of AGN exhibiting extreme variability properties through their relativistic jets which are close to the line of sight from Earth. Some blazars are always bright, and among those we find sources that are believed to be the origin of highenergy neutrinos, which have been detected by IceCube (e.g. Righi et al. 2018, MNRAS, in press, arXiv:1807.04299). We expect that every time a high-energy neutrino is revealed, the source will be observed in a flaring state. Assessing this multimessenger correlation will have important theoretical implications. Other blazars are usually below the saturation limit, but can exceed it during strong activity periods, when they are especially worth of a broad-band multi-wavelength follow-up, usually from the radio band to the γ rays (e.g. Raiteri et al. 2012, A&A, 545, A48). Indeed, the multiwavelength approach is the unique way to shed light on the emitting jet physics. Though an optical follow-up of the most remarkable flaring states should be organized with smaller telescopes, the large number of objects (of the order of one hundred) that we expect to observe brighter than the saturation limit in every LSST whole-sky map would make removal of saturation from LSST images highly valuable. A dedicated white paper by Claudia Rateiri describes a survey which includes star trail images to survey blazars and FRBs.

M-dwarf Flares: foo.

Figure 1: Left: a star trail image corresponding to a 1 second exposure on a single LSST CCD in the 'r' filter. Middle: zoom-in of a single star trail that is in the green box region in the full image. Right: zoom-in of the extra flux due to the burst.

Figure 2: Image processing pipeline.

3 Technical Description

Describe your survey strategy modifications or proposed observations. Please comment on each observing constraint below, including the technical motivation behind any constraints. Where relevant, indicate if the constraint applies to all requested observations or a specific subset. Please note which constraints are not relevant or important for your science goals.

3.1 Taking Star Trail Images

The key element of our proposal is taking star trail exposures with the telescope tracking turned off, or strategically commanded to produce a similar effect. The rotation of the telescope during the exposure with respect to the field produces trails. The trails allow us to see how sources change throughout an exposure.

Figure 3: Detection accuracy and performance limits for 1s star trails.

Star trail images require new signal analysis to optimize exposure times. Consider the simple scenario of the signal to noise ratio for a single LSST pixel that a source trails over. Let A be the 100 μm^2 area of the pixel; N be the flux from the source deposited in the pixel; S be the flux from the sky background; S be the readout noise; S be the 14 ms time the source spends over a single pixel; S be the exposure time. Then the signal to noise ratio for resolving a trail amongst the background is:

$$SNR_{trail} = \frac{N \cdot t_{pixel}}{\sqrt{N \cdot t_{pixel} + S \cdot A \cdot t_{exp} + R^2 \cdot A}}$$

There are additional signal to noise analyses that depend on the signature we are sifting for: bursts, occultations, or gradual changes in flux. These all share the $t_{exp}^{-1/2}$ dependence, which shows that **shorter exposures provide stronger signal**. The operation of the shutter provides a physical lower bound that constrains the minimal exposure time.

The shutter consists of two sets of flat, sliding plates on opposite sides of the focal plane. During each exposure the plates on one side are drawn back to initiate the exposure and the plates on the other side are pulled over to end the exposure. This double act ensures

exposure time uniformity across the focal plane. The minimal exposure time is attained by closing the second set of shutter plates immediately after the opposing set of plates finish opening. The exposure time is one second, but the total shutter operation time is two seconds. Two more seconds are required to read out the CCDs and complete the cycle. Thus the minimum exposure cycle is four seconds with a 25% duty cycle. While this provides the strongest signal, many applications are better served by a higher duty cycle. We envision three primary modes of operation:

- Short Trail: Taking one second exposures to optimize for signal power and time resolution.
- Long Trail: Taking 15 second exposures to optimize for duty cycle.
- Strategic Anti-Tracking: In theory tracking not only be turned off to induce rotation, but strategically controlled to extend trails further and achieve even higher time resolution.

We have simulated both short and long trails with high fidelity simulations. In each case, we trained deep neural networks to detect bursts in a range of conditions. The detection efficiency for the short trails is shown in Figure 3 and for the long trails in Figure 4.

Figure 4: Detection accuracy and performance limits for 15s star trails.

3.2 Constraints

• Footprint. There are two modes of footprints. The first mode is to occassionally take short trail images. These observations can be interleaved with the main Wide-Fast-Deep survey. It is especially efficient to take short trail images in the middle of a long slew. This shaves 2 seconds off the full cycle time, because the readout can occur while the telescope continues its slewing, and brings the total time cost to the main survey down to 2 seconds. The average LSST slew in the OpSim minion_1016 run is 6.5 seconds and 2% of the simulated observations have a slew time longer than 30 seconds. Inserting a short trail image on just half of these longer slews would meet our science goals and could lead to new discoveries.

The other mode is a dedicated minisurvey with long trail images. This would be allocated across a small subset of days. This works best for detecting FRBs because we could shadow the LSST with a radio telescope and confirm any discovered optical counterparts.

For both modes it is best to stay in the galactic latitude range $5^{o} < |b| < 30^{o}$. The sky brightness washes out the trails for visits too close to the galactic plane and there are fewer sources at higher galactic latitudes (Figure 5). The length of star trails is related to the declination by $l = 3.75 \cdot \cos(\delta)$ arcminutes per second (or $71 \cdot \cos(\delta)s^{-1}$ LSST pixels pixels per second). Visits close to the equatorial plane give the longest trails and best time resolution.

There are many synergies in taking star trails of fields that have been previously observed with other surveys. The Kepler K2 fields (Howell et al., 2014) are a good choice because the sources have short cadence lightcurves for many sources and the fields have been extensively studied in other wavelengths as well (Smith et al., 2016).

- Image Quality. Star trail images are sensitive to the image quality and seeing, measured by the size of the PSF, particularly in the direction transverse to the trails. When the flux of a source is spread out in the transverse direction, the signal decreases. In practice, the performance of the networks we have developed to process star trail images are far more sensitive to the sky background. Thus while good seeing is important, it is not crucial.
- Sky Brightness. The SNR for resolving trails is proportional to $S^{-1/2}$, where S is sky brightness (described in Section 3.1). A 4 times brighter sky background reduces the SNR by a factor of 2, which can dramatically alter the number of trails that can be resolved. Star trail imaging is very sensitive to sky brightness.
- Total Number of Visits. Star trail science consists of searching large expanses of sky for rare events. The number of detected events grows linearly with time. Hence the total number of star trail images, or time on the sky, is important.

- Distribution of Visits Over Time and Within a Night. We would like to shadow the LSST with radio telescopes to synchronize FRB detections on nights where lots of star trail images will be taken. Thus, allocating the star trail visits in a small subset of nights is best.
- Filter Choice. We use the 'r' filter in our experiments because it has the best signal strength. The filter has a high transmission efficiency and intersection with stellar SEDs.
- Exposure Constraints. We described the limits on exposure time in Section 3.1. The primary trade-off is between signal power and duty cycle. The minimal exposure time is one second, which offers the strongest signal and lowest duty cycle. We have also tested 15 second exposures, which have a great duty cycle and weaker signal.

Properties	Importance
Image quality	2
Sky brightness	1
Individual image depth	3
Co-added image depth	3
Number of exposures in a visit	3
Total number of visits	1
Distributing visits within a small subset of nights	2
Long-term gaps between visits	3

Table 1: Summary of the relative importance of various survey strategy constraints. Each constraint is ranked (1) very important, (2) somewhat important, or (3) not important.

4 Performance Evaluation

The LSST star trail science use cases follow a common template. They use the LSST's large field to search for rare transient events. These events lead either to follow up observations of individual sources, such as an exomoon discovery, or contribute to statistics, such as predicting the number density of small Kuiper Belt objects. Thus, the primary performance metric is a product of the number objects of interest within the field of view times the total time they are exposed in the survey. We sum the weighted contributions from each science in the total performance metric P,

$$P = \sum_{s \in Science} t_s w_s \sum_{f \in Field} N_s(f)$$

where t_s is the exposure time for science s, w_s is the relative weight of the science application normalized so that $\sum_{s \in Science} w_s = 1$, and $N_s(f)$ is the number of sources for science s in field f.

Figure 5: The predicted number of stars in the LSST field of view at different galactic latitudes. The counts come from CatSim queries.

The relative weights of the aforementioned science applications is a subject of future work. The number of sources $N_s(f)$ depends on the detection limits of our star trail image processing (Figures 3 and 4). A simple, practical, and data efficient way these limits can be translated to real images is by injecting a small set of real images with simulated variability. This allows us to estimate the limits that govern $N_s(f)$ with a small amount of data.

5 Special Data Processing

We aim to process the data within 48 hours of an exposure. The data will be in the Data Access Center within 24 hours and can be downloaded via the LSST Science Platform. The remaining 24 hours are more than enough to apply the special data processing.

After the instrument signature removal task has been applied, these images must be processed by a custom transient detection pipeline. Our work to date has used neural networks for this task. The network can classify a single 80x80 pixel 1s star trail crop in 0.6ms on a Xeon E5-2640 v4 CPU connected to a NVIDIA Tesla P100 GPU via PCIe. Figure 5 shows that there will be $\mathcal{O}(10^4)$ trails to classify at a typical LSST galactic latitude.

Thus, a single GPU setup could process a full LSST image in $\mathcal{O}(30)$ seconds. The crops are processed independently, which allows us to reduce the speed by approximately a factor of 1/M where M is the number of GPUs. After processing the star trails, we need to store the details - the crop and some metadata - of detected transient events. We expect detections to be rare enough (< 1/10,000) that the required storage will be trivial. Thus a single GPU workstation would provide sufficient computational processing and disk space for the survey we are proposing.

Star trail imaging will also require invoking LSST telescope commands to toggle the tracking. As we continue to validate star trail imaging and do small surveys at other telescopes, we will be implementing and employing similar commands. We do not envision this being a significant burden.

6 Future Work

The primary goal of this white paper is to bring star trail imaging and its potential to the attention of the LSST Science Advisory Committee and broader LSST community. Star trail imaging offers a bold new opportunity that the LSST, with its enormous etendue, is uniquely positioned to capture.

We submitted a proposal for imaging four Kepler K2 fields with star trails with the Dark Energy Camera in the 2019A NOAO observing period. We will measure how various stellar variability detection methods translate to real data. It will also give us experience programmatically operating telescopes in this manner. Star trail images will also be taken during the LSST commissioning, which will provide further practice and initial science opportunities.

References

- Bianco, F. B., Protopapas, P., McLeod, B. A., et al. 2009, The Astronomical Journal, 138, 568, doi: 10.1088/0004-6256/138/2/568
- Dhillon, V. S., Marsh, T. R., Bezawada, N., et al. 2016, in Proc. SPIE, Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 9908
- Gandhi, P., Littlefair, S. P., Hardy, L. K., et al. 2016, Monthly Notices of the Royal Astronomical Society, 459, 554, doi: 10.1093/mnras/stw571
- Howell, S. B., & Jacoby, G. H. 1986, 98, 802, doi: 10.1086/131828
- Howell, S. B., Sobeck, C., Haas, M., et al. 2014, Publications of the Astronomical Society of the Pacific, 126, 398, doi: 10.1086/676406
- Kanbach, G., Rau, A., & Słowikowska, A. 2014, Contributions of the Astronomical Observatory Skalnate Pleso, 43, 216

- Kenyon, S. J., & Bromley, B. C. 2004, The Astronomical Journal, 128, 1916, doi: 10.1086/ 423697
- Smith, K. L., Boyd, P. T., Mushotzky, R., et al. 2016, in AAS/High Energy Astrophysics Division, Vol. 15, AAS/High Energy Astrophysics Division #15, 106.05
- Thomas, D., & Kahn, S. 2018, The Astrophysical Journal, 868, doi: 10.3847/0004-637X/830/1/27
- Durech, J., Kaasalainen, M., Herald, D., et al. 2011, Icarus, 214, 652, doi: 10.1016/j.icarus.2011.03.016
- Zhang, Z.-W., Lehner, M. J., Wang, J.-H., et al. 2013, The Astronomical Journal, 146, 14, doi: 10.1088/0004-6256/146/1/14