Let us consider the set of m points

$$\mathcal{P} = \{p_1, \dots, p_m\} \subset \mathbb{R}^d$$
.

The problem is to find a center of ball such that the maximum distance between this center and points in \mathcal{P} is minimal, i.e.

$$\bar{p} := \arg \min_{p} \{ \max_{p_i \in \mathcal{P}} \| p_i - p \| \} , \qquad (1)$$

and the radius of this ball is given by the value of maximum distance between the center and points from \mathcal{P} , i.e.

$$r := \max_{p_i \in \mathcal{P}} \|p_i - p\|.$$

Similarly to polytope example (test 03), we will search for a coeficient vector of the convex linear combination

$$p = \sum_{i=1}^{m} \alpha_i p_i$$
, where $\sum_{i=1}^{m} \alpha_i = 1$ and $0 \le \alpha_i \le 1 \ \forall i = 1, \dots, m$.

The reason is that the center of enclosing ball lies in the convex hull of \mathcal{P} (see Schönherr). Afterwards, we denote

$$y := [\alpha_1, \dots, \alpha_m]^T \in \mathbb{R}^m ,$$

$$C := [p_1, \dots, p_m] \in \mathbb{R}^{d,m} ,$$

$$b := [p_1^T p_1, \dots, p_m^T p_m] \in \mathbb{R}^m .$$

The problem (1) can be reformulated to QP. See next lemma.

Lemma 1. The solution of optimization problem

$$\bar{p} := C\bar{y}, \quad \bar{y} := \arg\min_{y \in \Omega_E \cap \Omega_I} y^T C^T C y - b^T C y,$$

where

$$\begin{array}{lcl} \Omega_E & := & \{y \in \mathbb{R}^m : Bx = 1\} \\ \Omega_I & := & \{y \in \mathbb{R}^m : x \geq 0\} \\ B & := & [1, \dots, 1] \in \mathbb{R}^{1,m} \end{array},$$

is equivalent to the solution of the problem (1).

Proof. See Schönherr. The proof is based on KKT optimality conditions.

Moreover, the problem can be homogenized and solved using the same methodology as in *polytope* example (test 03). We solve the problem to obtain the center of ball \bar{p} . Afterwards, the radius can be computed by

$$r = \sqrt{-\bar{p}^T A \bar{p} + 2b^T \bar{p}} \ .$$

Numerical example We work with random data in our benchmark. We generate m = 100 random points from circle

$$\{p\in\mathbb{R}^2:\|p-[1,1]^T\|^2\leq 1\}.$$

Afterwards, we discard the information about the circle and try to find the enclosing ball using the process described above.

Figure 1: Enclosing ball: the solution of the benchmark.