

Entwicklung eines programmgesteuerten Exoskelett-Unterstützungsroboters und prototypische Umsetzung als Modell

Diplomarbeit

ausgearbeitet von

Thomas Karanatsios

vorgelegt an der

Fachhochschule Köln Campus Gummersbach Fakultät für Informatik und Ingenieurwissenschaften

im Studiengang

Technische Informatik Matrikelnummer: 11......

Erster Prüfer: Professor Dr. Hartmut Bärwolff

Fachhochschule Köln

Zweiter Prüfer: Professor Dr. Holger Günther

Fachhochschule Köln

Musterhausen, im Mustermonat 2010

Adressen:

Thomas Karanatsios Mustermannstrasse 11 12345 Musterhausen Muster@Muster.com

Professor Dr. Hartmut Bärwolff Fachhochschule Köln Institut für Elektronik und Informationsengineering Steinmüllerallee 1 51643 Gummersbach Baerwolff@gm.fh-koeln.de

Professor Dr. Holger Günther Fachhochschule Köln Institut für Informatik Steinmüllerallee 1 51643 Gummersbach Guenther@gm.fh-koeln.de Kurzfassung 3

Kurzfassung

Hier kommt die Kurzfassung hin

Kurzfassung 4

Abstract

und das Abstract wenn benötigt

Anleitung:

Motivation des Textes: worin liegt die Bedeutung der entsprechenden Forschung, warum sollte der längere Text gelesen werden?

- Fragestellung: welche Fragestellung(en) versucht der Text zu beantworten, was ist der Umfang der Forschung, was sind die zentralen Argumente und Behauptungen?
- Methodologie: welche Methoden/Zugänge nutzt der Autor/die Autorin, auf welche empirische Basis stützt sich der Text?
- Methodologie: welche Methoden/Zugänge nutzt der Autor/die Autorin, auf welche empirische Basis stützt sich der Text?
- Ergebnisse: zu welchen Ergebnissen kam die Forschung, was sind die zentralen Schlussfolgerungen des Textes?
- Implikationen: welche Schlussfolgerungen ergeben sich aus dem Text für die Forschung, was fügt der Text unserem Wissen über das Thema hinzu?

Inhaltsverzeichnis 5

Inhaltsverzeichnis

K	urzfa	ssung	3
Αl	obildu	ıngsverzeichnis	7
Ta	belle	nverzeichnis	8
Αl	okürz	ungsverzeichnis	9
Αı	ufgab	enstellung	11
Vo	orwor	t	12
Ei	nleitu	ing	13
1	1.1	1.1.1 Zweite Überschrift Erste Überschrift 1.2.1 Zweite Überschrift 1.2.2 Zweite Überschrift	15 15 15 15 15 16
2	Mar	ktanalyse	18
3	Ent v 3.1	wicklung des Modells Erstes Unterkapitel	19 19
4	_	Präsentation	21 21 21 21
5	Zus . 5.1 5.2 5.3	ammenfassung und Ausblick Zusammenfassung	22 22 22 22
ıi	torat	urverzeichnis	93

Inhaltsverzeichnis	6
Anhang	25
Erklärung	26
Glossar	27
Index	29

Abbildungsverzeichnis

Abb. 1.1:	Aufbau allgemein	15
Abb. 1.2:	Humanoide Roboter	17

Tabellenverzeichnis

_	_				II.		•	-
	l a	bel	ler	ıve	rze	IC	hr	บร

Tab. 1.1:	Titel																		1	6
Iau. III.	11001																			· U

Abkürzungsverzeichnis

ARM7 Advanced RISC Machines

BA Belastungsantwort

BIC Business Innovation Center CAN Controller Area Network CSR Core Serial Protocol

DFG Deutsche Forschungsgemeinschaft

DOF Degrees of freedom EDR Enhanced Data Rate

EPROM Erasable Programmable Read Only Memory

IBK Initialer Bodenkontakt

IEEE Institute of Electrical and Electronics Engineers

ISC Inter-Integrated Circuit

ISM-Band Industrial, Scientific and Medical Band

ISO International Organization for Standardization

ISw Initiale Schwungphase JARA Japan Robot Association

KG Kniegelenk

KI Künstliche Intelligenz
KOS Koordinatensysteme
LAN Local Area Network
LCD Liquid Crystal Display
LIN Local Interconnect Network

MCU Mikrocontroller Unit
MKS Mehrkörpersystem
MPL Mozilla Public License
MSt Mittlere Standphase

MSw Mittlere Schwungphase

OS Oberschenkel

OTP One Time Programmable
PDA Personal Digital Assistant
Pose Position und Orientierung
PWM Pulse Width Modulation
RAM Random Acess Memory
RIA Robot Institut of America

ROM Read only Memory SG Sprunggelenk

SIG Special Interest Group SOC System on a Chip

SPI Serial Peripheral Interface

SPP	Serial Port Profile
SRD	Short Range Devices
TCP	Tool Center Point
TD	Touch Down
ТО	Take Off

TSt Terminale Standphase
TSw Terminale Schwungphase
USB Universal Serial Bus

UV Ultra Violet

VDI Verein Deutscher Ingenieure

VSw Vor-Schwungphase

WLAN Wireless Local Area Network WPAN Wireless Personal Area Network

Aufgabenstellung

Die Idee an einem Unterstützungs-Roboter für gehbehinderte Menschen zu forschen, entstand durch das medial wachsende Interesse an Laufrobotern. Diese sind bereits im Entertainmentbereich z. B. bei Spielzeugen gängig, werden aber inzwischen auch vermehrt für Militärzwecke eingesetzt....

Vorwort 12

Vorwort

Das Vorwort ist optional.

Einleitung 13

Einleitung

" $A\rho\chi\eta$ ημισυ παντος Der Anfang ist die Hälfte des Ganzen." (Vgl.[Ari35])

Roboter¹

Bei Rädern und Ketten ist dies hingegen nicht der Fall, Sie brauchen großflächige Stützpunkte.

Das bedeutet, dass letztere Arten der Fortbewegung einen ununterbrochenen Kontakt zum Boden benötigen. (Vgl.[JZ03])

Dadurch wurden die im Verlauf der Evolution optimierten Konstruktionen von Beinen, das Zusammenspiel von Sensorik und Aktorik und die Steuerung von Gehbewegungen weitestgehend analysiert und dienten somit dem besseren Verständnis der Laufmotorik².

An dieser Stelle sei darauf hingewiesen, dass dieses Forschungsgebiet einen stark interdisziplinären Charakter besitzt...

¹Der Begriff Roboter (tschechisch: robot) wurde von Josef und Karel Capek Anfang des 20. Jahrhunderts durch die Science-Fiction-Literatur geprägt. Der Ursprung liegt im slawischen Wort robota, welches mit Arbeit, Fronarbeit oder Zwangsarbeit übersetzt werden kann. 1921 beschrieb Karel Capek in seinem Theaterstück R.U.R. in Tanks gezüchtete menschenähnliche künstliche Arbeiter. Mit seinem Werk greift Capek das klassische Motiv des Golems auf. Heute würde man Capeks Kunstgeschöpfe als Androiden bezeichnen. Vor der Prägung dieses Begriffes wurden Roboter zum Beispiel in den Werken von Stanislaw Lem als Automaten oder Halbautomaten bezeichnet.

²Die Laufmotorik beinhaltet die Bewegungsfunktion und deren Lehre, die Fähigkeit des Körpers sich kontrolliert zu bewegen, die Gesamtheit der vom zentralen Nervensystem kontrollierten Bewegungen des Körpers im Gegensatz zu den unwillkürlichen Reflexen des Körpers und die Unterscheidung in Grob- und Feinmotorik

Einleitung 14

${\bf Kapitel\"{u}bersicht}$

Grundlagen 15

1 Grundlagen

1.1 Erste Überschrift

Hier schreiben

1.1.1 Zweite Überschrift

Hier schreiben

Dritte Überschrift

hier kann Kursiv geschrieben werden

1.2 Erste Überschrift

1.2.1 Zweite Überschrift

Text....(siehe Abb. 1.1)

Abbildung 1.1: Aufbau und Komponenten von Robotern

Dritte Überschrift

- Die Bewegungsform der Achsen
- Anzahl und Anordnung der Achsen
- Die Formen des Arbeitsraums

 \dots Arm zu strecken. (Vgl.[RS02])

Grundlagen 16

1.2.2 Zweite Überschrift

Dritte Überschrift

Hier Text einfügen Roboterfuß befindet homogene 4 x 4 Matrix:

$$T = \begin{pmatrix} Ax & Ay & Az & 0 \\ Bx & By & Bz & 0 \\ Cx & Cy & Cz & 0 \\ Px & Py & Pz & 1 \end{pmatrix}$$
(1.1)

$$(\theta, d, a, \alpha) \tag{1.2}$$

verschiedene Matrizen:

$$T = \begin{pmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & \arccos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & \arcsin \theta \\ 0 & \sin \alpha & \cos \alpha & d \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (1.3)

$$T = \begin{pmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & \arccos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & \arcsin \theta \\ 0 & \sin \alpha & \cos \alpha & d \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$^{n-1}T_n = \begin{pmatrix} \cos \theta_n & -\sin \theta_n \cos \alpha_n & \sin \theta_n \sin \alpha_n & a_n \cos \theta_n \\ \sin \theta_n & \cos \theta_n \cos \alpha_n & -\cos \theta_n \sin \alpha_n & a_n \sin \theta_n \\ 0 & \sin \alpha_n & \cos \alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(1.3)$$

$$T = T_1 T_2 T_3 T_4 T_5 T_{tcp} (1.5)$$

Text...(Siehe Tab. 1.1)

Titel:

Tabelle 1.1: Titel

Überschrift 1	Überschrift 2
Text	Text
	Text
Text	Text
	Text

Grundlagen 17

Abbildung 1.2: Humanoide Roboter Links der Aibo von Honda rechts der Roboter von Toyota

Bild-Quellen:(http://de.wikipedia.org/wiki/Humanoider_Roboter) Sichtung: 17.09.2010

In Abb. 1.2 sind...Text

Kraft **F**, der Masse **m** und der Beschleunigung **a** kann mit der daraus resultieren Formel die Kraft, die wirkt, berechnet werden:

$$F = m * a \tag{1.6}$$

Folglich ist die Kraft das Produkt von Masse und Beschleunigung. SI-Einheit der Kraft:

$$[F] = kg * \frac{m}{s^2} = Newton(N)$$
 (1.7)

$$M = F * l = F * r * \sin \alpha \tag{1.8}$$

SI-Einheit des Drehmomentes:

$$[M] = Newtonmeter(N * m) \tag{1.9}$$

Marktanalyse 18

2 Marktanalyse

Aufbau siehe Kapitel 1

3 Entwicklung des Modells

Aufbau siehe Kapitel 1

3.1 Erstes Unterkapitel

- 1. Text
 - Text
- 2. Text
 - Text
- 3. Text
 - Text

Zuerst erfolgt zum besseren Verständnis die Deklarierung der verwendeten Variablen

```
die Motoren des rechten Beines werden wie in dem bisher
   // verwendeten Schema zugewiesen
3
   // Hüfte (C), Knie (B) und Fussgelenk (A)
   public static Motor motorHip = new Motor(MotorPort.C);
   public static Motor motorKnee = new Motor(MotorPort.B);
   public static Motor motorAnkle = new Motor(MotorPort.A);
   public static boolean sensorReached1 = false;
9
   // der Ultraschallsensor wird an Port S1 erwartet
   public static UltrasonicSensor sonicSensor1 =
10
11
                 new UltrasonicSensor (SensorPort.S1);
12
13
   //Der TouchSensor wird an Port S2 erwartet und wird zum iterieren
   // durch einen Bewegungsablauf verwendet
   public static TouchSensor touchSensor =
                 new TouchSensor(SensorPort.S2);
16
```

- 1. Item 1
- 2. Item 2
- 3. Item 3
- \rightarrow Item 1
- \rightarrow Item 2
- \rightarrow Item 3

Ergebnisse 21

4 Ergebnisse

4.1 Präsentation

Aufbau siehe Kapitel 1

4.2 Schwierigkeiten

 Text

4.3 Auswertungen

Text

5 Zusammenfassung und Ausblick

5.1 Zusammenfassung

Text

5.2 Ausblick auf zukünftige Arbeiten

 Text

5.3 Schlusswort

Text

Literatur verzeichnis 23

Literaturverzeichnis

- [Ari35] Aristoteles: *Politik 5*, v.Chr. 335. 4. 1303 b 29.
- [JZ03] JZ, JENS ZIEGLER: Evolution von Laufrobotersteuerungen mit Genetischer Programmierung, 2003. https://eldorado.tu-dortmund.de/handle/2003/2743. Sichtung: 20.07.2010.
- [RS02] RS, ROLAND STENZEL: Steuerungsarchitekturen für autonome mobile Roboter, 2002. http://darwin.bth.rwth-aachen.de/opus3/volltexte/2002/408/pdf/Stenzel_Roland.pdfSichtung: 04.09.2010 oder im Anhang(CD).

Anhang 25

Inhalt Anhang

Auf der mitgelieferten CD befindliche Dateien:

- 1. Video der Ergebnisse des entwickelten Transmovers
- 2. Marktanalyse
 - BIC Analyse
 - Fragebögen befragter Betroffener
- 3. Skizzen und Entwürfe
 - Skizze
 - Entwurf LEGO Designer
- 4. Programmablaufpläne
- 5. Excel Datei Auswertung Winkelmessung
- 6. Sequenzdiagramme
- 7. Quellcodes
 - Winkeleinmessung
 - Transmover LabVIEW Programme
 - Transmover JAVA Programme
 - Wii Remote Programme

Erklärung 26

Erklärung

Ich versichere, die von mir vorgelegte Arbeit selbständig verfasst zu haben.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben.

Die Arbeit hat nach meinem Wissen mit gleichem Inhalt noch keiner anderen Prüfungsbehörde vorgelegen.

Gummersbach, 14. Oktober 2010

Thomas Karanatsios

Glossar 27

Glossar

Autonom das Programm welches implementiert ist arbeitet weitgehend

unabhängig von Benutzer eingriffen.

Biometrie Die Biometrie auch Biometrik genannt beschäftigt sich mit

Messungen an Lebewesen und den dazu erforderlichen Mess-

und Auswerteverfahren.

Bionisch Adjektiv zur Beschreibung eines Organismus, dessen biolo-

gische Grundlage durch technische Möglichkeiten verbessert

wurde.

Degrees of freedom (DOF) bedeutung Freiheitsgrade = Der Freiheitsgrad be-

zeichnet einen Parameter eines Systems. Die Eigenschaft, ein Freiheitsgrad zu sein, ergibt sich für einen Parameter daraus, Mitglied in einer Menge von Parametern zu sein, die das Sys-

tem beschreiben.

Deliberativ Deliberativ = erwägen, überlegen, sich entscheiden, beschlie-

ßen ist eine semantische Funktion Verbmodus des Konjunktivs z. B. im Lateinischen (coniunctivus deliberativus), die eine überlegende Rückfrage als Reaktion auf eine Aufforde-

rung ausdrückt.

Dynamik Eine Dynamik steht für, das Teilgebiet der Mechanik, das

sich mit der Wirkung von Kräften befasst

Endeffektor Als Endeffektor wird in der Robotik das letzte Element einer

kinematischen Kette bezeichnet. Bei Industrierobotern kann es sich hierbei zum Beispiel um eine Einheit zum Schweißen von Autokarosserien oder allgemein um einen einfachen Greifer handeln. Der im englischen als TCP (Tool Center Point) bezeichnete ausgezeichnete Punkt am Ende der kinematischen Kette ist das Zielsystem, für das die aus der gestellten Aufgabe resultierenden Positionierunganforderungen gelten. Aufgaben spezifisch kann der TCP dabei auch außerhalb des Roboters liegen, Beispiele wären der Fokus eines gegriffenen Lasers oder auch die Mitte des gerade trans-

portierten Objekts.

Glossar 28

Dorsalextension steht für die Bewegung in den Zehengelenken in Richtung

Fußrücken.

Extension Die Extension (von lat. extensio "Streckung") ist die Stre-

ckung eines Gelenkes. Die gegenläufige Bewegung wird als

Flexion bezeichnet.

Exoskelett ist eine Stützstruktur für einen Organismus,

das eine stabile äußere Hülle um diesen bildet.

Energy Harversting Als Energy Harvesting (wörtlich übersetzt Energie-Ernten)

bezeichnet man die Erzeugung von Strom aus Quellen wie Umgebungstemperatur, Vibrationen oder Luftströmungen. Die Industrie entwickelt bereits heute Energiequellen für drahtlose Sensornetzwerke oder Anwendungen wie etwa Fernbedienungen an schwer erreichbaren Stellen. Energy Harvesting vermeidet bei Drahtlostechnologien Einschränkungen durch kabelgebundene Stromversorgung oder

Batterien.

Flexion Die gegenläufige Bewegung zur Extension wird als Flexion

bezeichnet.

In der Physik ist ein Inertialsystem (von lat. iners "untätig,

träge") ein Koordinatensystem, in dem sich kräftefreie Körper geradlinig, gleichförmig bewegen. In einem Inertialsystem gilt also das newtonsche Trägheitsgesetz in seiner einfachsten Form, nach der kräftefreie Körper ihre Geschwindigkeit in Betrag und Richtung beibehalten und Beschleunigungen proportional zur anliegenden Kraft erfolgen. Der Begriff Inertialsystem wurde erstmals von Ludwig Lange (1885)

verwendet.

Inhibition Das Wort Inhibition (lat. inhibere "unterbinden", "anhal-

ten"; veraltend Inhibierung, deutsch Hemmung, Antonym Desinhibition, Desinhibierung) bezeichnet: in der Neurobiologie eine Abnahme der Erregbarkeit von Nervenzellen, siehe Inhibition (Neuron) in der Ethologie die Blockierung einer Verhaltensweise durch innere oder äußere Faktoren, siehe Bedingte Hemmung in der Digitaltechnik bezeichnet die Inhibition eine Schaltung aus einem UND- und einem NICHT-

Glied, siehe Inhibition (Digitaltechnik)

Ipsilateral Ipsilateral bedeutet "auf derselben Körperseite oder -hälfte

gelegen". Das Gegenteil von ipsilateral ist kontralateral.

Index 29

Index

Aktorik, 13

einfügen, 16

Laufmotorik, 13

Sensorik, 13

Widmung 30

Widmung

Die Widmung ist optional! Text

In Liebe, Euer Sohn