

Equipo docente:

Profesor: Alejandro Clocchiatti

Ayudantes:

Francisco Aros (TM6)

Nicolás Castro (TL4)

TM6: Tutoría del martes en módulo 6

TL4: Tutoría del lunes en módulo 4

Nuestro Semestre 2016-1

			AST0212		CO √	
Sunday 6 Mar 2016 7	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Semana 1			9	10	C1 ✓	12
Semana 2	TL1	¹⁵ TM1	16	17	¹⁸ C2 ✓	← Control 1
Semana 3	TL2	TM2	23	24	²⁵ Feriado	Reparto Tarea :
Semana 4	TL3	²⁹ TM3	30	31	¹Apr C3 ✓	2
Semana 5	TL4	⁵ TM4	6	7	⁸ C4 √	9
Semana 6	TL5	¹² TM5	13	14	¹⁵ C5	← Control 2
Semana 7	TL6	¹⁹ TM6	20	21	²² C6 – SM1	← Reparto T2
Semana 8	TL7	← Entrega	Tarea 1	28	²⁹ C7 – SM2	3.0
Semana 9	TL8	TM8		5	⁶ C8 – SM3	7
\$emana 10	TL9	⊤ Entrega	Tarea 2	12	¹³ C9 – SM4	14
Semana 11	TL10	TM10	10	19	²⁰ C10	21
Semana 12	TL11	^{2⁴} TM11	25	26	²⁷ C11	28
Semana 13	TL12	³¹ TM12	1 Jun	2	Feriado	4
Semana 14	TL13	[*] TM13	8	9	¹⁰ C12	11
Semana 15	TL14	¹⁴ TM14	15	16	¹⁷ C13	18
utorías día lunes	1	21	Tutorías día	martes	24	25
lódulo 4:			Módulo 6:	grantes	1 Jul	2
icolás Castro		ь	Francisco Ar	os	Notas	9 DF Calendar by www.pdfca/endar.com

- 1. Temas pendientes
 - 1. Observaciones desde Santa Martina
- 1. Herramienta Linux de selección de datos en archivos organizados en columnas: *awk*
- 2. Breve repaso de la clase previa
 - 1. Visualización cualitativa de histogramas.
 - 2. Histogramas y funciones de distribución de probabilidad.
 - 3. Uso de la FDP para calcular parámetros de la distribución.

Temas del día: Segunda vuelta sobre FDP constante. Otras FDP que hay que conocer: Poisson y Gauss. Modelos de la realidad, distribución subyacente. Test modelo vs. realidad.

Esta clase (Clase 5):

- 1. Herramienta Linux de selección de datos en archivos organizados en columnas: *awk*
- 2. Repaso de temas críticos de la clase previa
 - 1. FDPs que hay que conocer: Constante, Poisson y Gauss.
 - 2. Modelos de la realidad, distribución subyacente.
 - 3. Test modelo vs. realidad: χ^2 explicado.
 - 4. FDP de χ^2 .
- 3. Viaje sin escalas a la propagación de errores.
- 4. Correlación.

FDP e histogramas de histogramas REPASO

FDP e histogramas de histogramas REPASO

FDP e histogramas de histogramas REPASO

Si clasifico a los números aleatorios en bins más chicos, la FDP que obtengo será la misma, con parámetros diferentes:

FDP de Poisson

La FDP que está detrás de todo esto es la llamada *Distribución de Poisson,* que resulta de contar eventos que suceden en un intervalo (de tiempo o espacio) dado, definido, cuando la probabilidad individual de cada evento es muy baja. Por ejemplo:

- 1. Decaimiento radioactivo de núcleos atómicos por segundo.
- 2. Explosiones de SN en un volumen del universo en un intervalo de tiempo.
- 3. Cantidad de gotas de lluvia que caen en un vaso en un intervalo de tiempo.
- 4. Número de fotones que llegan a un pixel de un CCD en una exposición.
- 5. Cantidad de números aleatorios que caen en un bin específico.

La FDP de Poisson, está dada por:

$$P_{\mu}(\nu) = e^{-\mu} \frac{\mu^{\nu}}{\nu!} ; con \, \mu > 0$$

que es, específicamente, la probabilidad de contar ν eventos en el intervalo dado (la ecuación anterior está normalizada).

Puede mostrarse que para esta FDP $\bar{\nu} = \mu$ y $\sigma_{\nu}^{2} = \mu$, o sea $\sigma_{\nu} = \sqrt{\mu}$.

Entonces, si la tasa de ocurrencia es R (probabilidad del evento por unidad de intervalo), entonces $\mu=RT$, donde T es el largo del intervalo. Estas ecuaciones aclaran todas las coincidencias anteriores.

Esta clase de análisis provee una herramienta muy buena para testear el software que estamos usando y asegurarnos que hace lo que dice que hace:

¡No todos los generadores de números al azar que andan por ahí son buenos!

REPASO

Una forma de presentar la FDP de Gauss podría ser "la distribución que se obtiene a partir de la de Poisson, en el límite $\mu \gg 1$ ". Otra es jugar con las distribuciones de números con FDP constante: ¿Qué sucede si los sumamos? ¿Cómo es la FDP de $x_N = \sum_{i=1}^N x_i$, si cada uno de los x_i tiene FDP cte distribuida en (0,1)?

Parece haber algún secreto escondido ¿no?

Teorema del Límite Central

Si x_1 , x_2 , ..., x_N son variables aleatorias independientes, y cada una de ellas tiene una FDP arbitraria $P_i(x_i)$, con valor medio μ_i y dispersión σ^2_i entonces

$$x_N=rac{\sum_{i=1}^N x_i-\sum_{i=1}^N \mu_i}{\sqrt{\sum_{i=1}^N \sigma^2_i}}$$
 , se aproxima a una distribución normal para $N o\infty$.

$$\lim_{N\to\infty} P(x_N) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

El caso que mostré es un caso particular de esto, ya que las P_i son siempre la misma PDF, y por lo tanto $\mu_i = \mu = 0.5$ y $\sigma_i = \sigma = 1/\sqrt{12}$.

REPASO

Teorema del Límite Central

Entonces, para el caso específico de nuestra variable x_N ,

$$\sum_{i=1}^{N} \mu_i = N * \mu = N * \frac{1}{2}$$

$$\sum_{i=1}^{N} \sigma_i^2 = \sigma \sqrt{N} = \sqrt{\frac{N}{12}}$$

entonces

$$x_N = \frac{\sum_{i=1}^N x_i - N/2}{\sqrt{N/12}}$$
, se aproxima a una

distribución normal para $N \to \infty$.

$$\lim_{N\to\infty} P(x_N) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$\sum_{i=1}^{N} x_i \to \left(\frac{1}{\sqrt{N/12}\sqrt{2\pi}} e^{-\frac{(x-N/2)^2}{2}} \right)$$

$$P(x_{10}) = N(5, \sqrt{10/12}) = \frac{1}{\sqrt{5\pi/3}} e^{-\frac{(x-5)^2}{2\sqrt{5/6}}} \qquad P(x_{10}') = 10^6 N(0, 1) = \frac{10^6}{\sqrt{2\pi}} e^{-\frac{x'^2}{2}}$$

$$P(x_{10}') = 10^6 N(0,1) = \frac{10^6}{\sqrt{2\pi}} e^{-\frac{x'^2}{2}}$$

La transformación a un histograma de FDP Gaussiano de N(0,1) todavía no está completa porque el número de casos sigue reflejando la población de 10^6 números. Para corregir esto, dividimos las cuentas del histograma final por 10^6 .

$$N(0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$N(\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

La forma anterior es la más general de la distribución normal:

$$N(\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

forma que también está normalizada de forma que su integral en el espacio completo de definición de la probabilidad, $(-\infty, \infty)$ es 1:

$$P_{(-\infty < x < \infty)} = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

La FDP de Gauss puede usarse para predecir la probabilidad de que un valor de x esté en un cierto rango de la variable (x_1, x_2) :

$$P_{(x_1 < x < x_2)} = \frac{1}{\sigma \sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{x_1}^{x_2} N(\mu, \sigma) dx$$

La forma usual de llevar a cabo ese cálculo es convirtiendo la $N(\mu, \sigma)$ en N(0,1) con el cambio de variables $x' = (x - \mu)/\sigma$

$$P_{(x_1 < x < x_2)} = \frac{1}{\sqrt{2\pi}} \int_{x'_1}^{x'_2} e^{-\frac{x^2}{2}} dx = Erf(x'_2) - Erf(x'_1)$$

donde *Erf(x)* es

$$Erf(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{x^2}{2}} dx$$

La erf(x) nos permite calcular un primer "modelo de la realidad" para comparar con nuestras observaciones o con nuestra imaginación.

Si el modelo de la realidad correcto es una distribución $N(\mu, \sigma)$, entonces el valor esperado, $n_{e,j}$, de casos que caerán en el intervalo de ancho Δx centrado en x_j será:

$$n_{e,j} = N_T \{ Erf(x_j + \Delta x/2) - Erf(x_j - \Delta x/2) \}$$

donde N_T es el número total de casos (es decir, la suma total del histograma).

FDP de Gauss como modelo de la realidad

Habiendo hecho esto puedo desarrollar un test cuantitativo para medir cuán diferente es el histograma observado del que predice el modelo. El test que vamos a usar es el llamado χ^2 , que se construye sumando los cuadrados de las diferencias entre las cuentas real, observadas, y las predichas por el modelo, esperadas, bin a bin, normalizadas por las cuentas esperadas. Hay razones fundadas para proponer y usar este estimador, pero por esta clase sólo tomaremos nota de la receta:

$$\chi^{2} = \sum_{j=1}^{M} \frac{(n_{o,j} - n_{e,j})^{2}}{n_{e,j}}$$

 $n_{o,j}$ es el número de casos observados en el bin j, $n_{e,j}$ es el número de casos esperados en el bin j, calculados como se indica en la imagen previa, de acuerdo a la distribución $N(\mu,\sigma)$, donde μ y σ son el valor medio y la dispersión (o desviación estándar), medidas para el histograma que estamos tratando de representar, y la suma se extiende a los M bins que tenga el histograma.

i Qué es χ^2 ?

$$\chi^2 = \sum_{j=1}^{M} (n_{o,j} - n_{e,j})^2$$
 ?

Es necesario normalizar las diferencias para medir las desviaciones de manera imparcial.

$$\chi^2 = \sum_{j=1}^{M} \left(\frac{n_{o,j} - n_{e,j}}{\sigma_{e,j}} \right)^2$$

¿Cuál es un buen modelo para σ_e ?

El número de cuentas en cada bin sigue una distribución de Poisson, con valor medio μ y $\sigma=\sqrt{\mu}$. En este caso $n_{e,j}=\mu$ (cte.), \forall j, pero esto es propiedad de la PDF, no del proceso que llena los bins.

El proceso de llenar bins con números sacados al azar una distribución subyacente sigue <u>siempre</u> una FDP de Poisson. μ (y σ) dependerán en general del bin.

 $pepo10 ; N_T = 1000000 ; Bin = 0.04$

i Qué es χ^2 ?

En buena medida, esto es lo que ya veíamos en la figura anterior. Las diferencias $|n_o-n_e|$ siguen, aproximadamente la forma $\sqrt{n_e}$. Tenemos entonces:

$$\chi^{2} = \sum_{j=1}^{M} \left(\frac{n_{o,j} - n_{e,j}}{\sigma_{e,j}} \right)^{2}$$

$$\chi^{2} = \sum_{j=1}^{M} \left(\frac{n_{o,j} - n_{e,j}}{\sqrt{n_{e,j}}} \right)^{2}$$

$$\chi^{2} = \sum_{j=1}^{M} \frac{\left(n_{o,j} - n_{e,j} \right)^{2}}{n_{e,j}}$$

Esta última es la expresión que había puesto como "receta" al final de la clase pasada.

¿ Qué podemos esperar de χ^2 ?

$$\chi^{2} = \sum_{j=1}^{M} \left(\frac{n_{o,j} - n_{e,j}}{\sigma_{e,j}} \right)^{2} = \sum_{j=1}^{M} \chi_{j}^{2}$$

Esperamos, en principio, que el valor de promedio de $(n_{o,j}-n_{e,j})$ esté bien representado por $\sigma_{e,j}$. Por lo tanto el valor esperado de cada uno de los sumandos del χ^2 es $(n_{o,j}-n_{e,j})\approx 1$. Si $\chi^2 \gg M$ deberíamos concluir que el modelo de la realidad que codificamos dentro de los $n_{e,j}$ no es una buena representación de los datos. Por otro lado, si tuviéramos $\chi^2 \ll M$ deberíamos concluir que estamos ajustando la realidad por encima de la expectación estadística (el típico caso de algo "demasiado bueno para ser cierto").

$$\chi_0^2 = 92.86$$
; $M = 92$

Fin de ppt de Clase 5