A Book of Abstract Algebra (2nd Edition)

Chapter AB, Problem 10E	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Prove that the following are true for any integers a, b, and c:

If d|ab and d|cb and gcd(a, c) = 1, then d|b.

Step-by-step solution

	Step 1 of 2	
Objective:-		
The objective is to prove if	$d \mid ab \text{ and } d \mid cb \text{ and } \gcd(a,c) = 1, then } d \mid b.$	
Comment		

Step 2 of 2

Proof:-

Let suppose $d \mid ab$ and $d \mid cb$.

Then there exist number k and I such that:-

$$ab = kd$$
(1)
 $cb = ld$ (2)

Let gcd(a,c)=1, then integers a and c are relatively prime.

Let us consider the theorem.

Theorem:-Any two nonzero integers r and s have a unique positive greatest common divisor t, Moreover, t is equal to a "Linear combination" of r and s. That is,

t = kr + ls for some integer k and l

Let us suppose gcd(a,c)=1. Then by above theorem:-

Thus, d is a factor of kd(m+n) that is a factor of b. Hence, d divides b that is $d \mid b$.

Proved

Comment

Chegg For Good College Marketing Corporate Development

COMPANY

About Chegg

Investor Relations

Join Our Affiliate Program Media Center

Site Map

LEGAL & POLICIES

Advertising Choices Cookie Notice **General Policies** Intellectual **Property Rights** Terms of Use Global Privacy

Policy Honor Code Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks eTextbooks Flashcards

Learn Chegg Math Solver

Mobile Apps

Sell Textbooks Solutions Manual Study 101 Textbook Rental **Used Textbooks**

Digital Access Codes

Chegg Money

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service Give Us Feedback Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription **Return Your Books**

Textbook Return

Policy