=> file medline caplus biosis scisearch embase
COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST

4.61 5ESSION 5.03

FILE 'MEDLINE' ENTERED AT 14:48:54 ON 15 JUL 2003

FILE 'CAPLUS' ENTERED AT 14:48:54 ON 15 JUL 2003

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 14:48:54 ON 15 JUL 2003 COPYRIGHT (C) 2003 BIOLOGICAL ABSTRACTS INC.(R)

FILE 'SCISEARCH' ENTERED AT 14:48:54 ON 15 JUL 2003 COPYRIGHT 2003 THOMSON ISI

FILE 'EMBASE' ENTERED AT 14:48:54 ON 15 JUL 2003 COPYRIGHT (C) 2003 Elsevier Science B.V. All rights reserved.

=> s paps synthetase and (dna or rna or nucleic acid)
2 FILES SEARCHED...

L1 37 PAPS SYNTHETASE AND (DNA OR RNA OR NUCLEIC ACID)

=>

=> dup rem l1

PROCESSING COMPLETED FOR L1

L2 20 DUP REM L1 (17 DUPLICATES REMOVED)

=> s 12 and human

L3 15 L2 AND HUMAN

=> d 13 ibib ab 1-15

L3 ANSWER 1 OF 15 MEDLINE

ACCESSION NUMBER: 2003256125 MEDLINE

DOCUMENT NUMBER: 22664512 PubMed ID: 12781330

TITLE: Pharmacogenetics of human 3'-phosphoadenosine

5'-phosphosulfate synthetase 1 (PAPSS1): gene resequencing,

sequence variation, and functional genomics.

AUTHOR: Xu Zhen-Hua; Thomae Bianca A; Eckloff Bruce W; Wieben Eric

D; Weinshilboum Richard M

CORPORATE SOURCE: Department of Molecular Pharmacology and Experimental

Therapeutics, Mayo Medical School-Mayo Clinic-Mayo

Foundation, Rochester, MN 55905, USA.

CONTRACT NUMBER: R01 GM28157 (NIGMS)

R01 GM35720 (NIGMS) U01 GM61388 (NIGMS)

SOURCE: BIOCHEMICAL PHARMACOLOGY, (2003 Jun 1) 65 (11) 1787-96.

Journal code: 0101032. ISSN: 0006-2952.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200307

ENTRY DATE: Entered STN: 20030604

Last Updated on STN: 20030709 Entered Medline: 20030708

AB 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy "sulfate donor" for reactions catalyzed by sulfotransferase (SULT) enzymes. The strict requirement of SULTs for PAPS suggests that PAPS synthesis might influence the rate of sulfate conjugation. In humans, PAPS is synthesized from ATP and SO(4)(2-) by two isoforms of PAPS

synthetase (PAPSS): PAPSS1 and PAPSS2. As a step toward pharmacogenetic studies, we have resequenced the entire coding sequence of the human PAPSS1 gene, including exon-intron splice junctions, using DNA samples from 60 Caucasian-American and 58 African-American subjects. Twenty-one genetic polymorphisms were observed-1 insertion-deletion event and 20 single nucleotide polymorphisms (SNPs)-including two non-synonymous coding SNPs (cSNPs) that altered the following amino acids: Arg333Cys and Glu531Gln. Twelve pairs of these polymorphisms were tightly linked, and a total of twelve unequivocal haplotypes could be identified-two that were common to both ethnic groups and ten that were ethnic-specific. The Arg333Cys polymorphism, with an allele frequency of 2.5%, was observed only in DNA samples from Caucasian subjects. The Glu531Gln polymorphism was rare, with only a single copy of that allele in a DNA sample from an African-American subject. Transient expression in mammalian cells showed that neither of the non-synonymous cSNPs resulted in a change in the basal level of enzyme activity measured under optimal assay conditions. However, the Glu531Gln polymorphism altered the substrate kinetic properties of the enzyme. The Gln531 variant allozyme had a 5-fold higher K(m) value for SO(4)(2-) than did the wild-type allozyme and displayed monophasic kinetics for Na(2)SO(4). The wild-type allozyme (Glu531) showed biphasic kinetics for that substrate. These observations represent a step toward testing the hypothesis that genetic variation in PAPS synthesis catalyzed by PAPSS1 might alter in vivo sulfate conjugation.

L3 ANSWER 2 OF 15 MEDLINE

ACCESSION NUMBER: 2002199115 MEDLINE

DOCUMENT NUMBER: 21929363 PubMed ID: 11931653
TITLE: Transcriptional regulation of human

3'-phosphoadenosine 5'-phosphosulphate synthase 2.

AUTHOR: Shimizu Chikara; Fuda Hirotoshi; Lee Young C; Strott

Charles A

CORPORATE SOURCE: Section on Steroid Regulation, Endocrinology and

Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-4510,

U.S.A.

SOURCE: BIOCHEMICAL JOURNAL, (2002 Apr 15) 363 (Pt 2) 263-71.

Journal code: 2984726R. ISSN: 0264-6021.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200205

ENTRY DATE: Entered STN: 20020405

Last Updated on STN: 20020517 Entered Medline: 20020516

AΒ Sulphonation is a fundamental process that is essential for normal growth and development as well as maintenance of the internal milieu. The universal sulphonate donor molecule essential for all sulphoconjugation reactions is adenosine 3'-phosphate 5'-phosphosulphate (PAPS), which is produced from ATP and inorganic sulphate by the action of bifunctional PAPS synthase. There are two isozymes encoded by genes located on chromosome 4 (PAPS synthase 1) and chromosome 10 (PAPS synthase 2). promoter for PAPS synthase 2 contains neither a TATAAA nor a CCAAT box, although a consensus initiator motif is present. Three human cell lines were used to examine promoter activity after transfection with various lengths of the 5'-flanking region of the PAPS synthase 2 gene fused to a reporter gene. Proximal promoter activity was located between bp -84 and bp -124 upstream of the purported transcription start site. This region contains two GC/GT boxes that are essential for full promoter activity, as indicated by deletion analysis and supported further by mutagenesis. A nuclear extract of SW13 cells, which highly express PAPS synthase 2, contained proteins that bound to probes possessing promoter-specific GC/GT boxes. Furthermore, the presence of specificity

protein (Sp) 1, Sp2 and Sp3 proteins in the nuclear extract was confirmed by supershift analysis. Co-transfection experiments using SL2 cells yielded additional support for the involvement of Sp1 in transcriptional regulation of the PAPS synthase 2 gene; the involvement of Sp2 and/or Sp3 remains to be clarified further.

L3 ANSWER 3 OF 15

MEDLINE

ACCESSION NUMBER:

2002051595 MEDLINE

DOCUMENT NUMBER:

21635880 PubMed ID: 11773860

TITLE:

Human 3'-phosphoadenosine 5'-phosphosulfate
synthetase 2 (PAPSS2) pharmacogenetics: gene resequencing,

genetic polymorphisms and functional characterization of

variant allozymes.

AUTHOR:

Xu Zhen-Hua; Freimuth Robert R; Eckloff Bruce; Wieben Eric;

Weinshilboum Richard M

CORPORATE SOURCE:

Department of Molecular Pharmacology and Experimental

Therapeutics, Mayo Medical School-Mayo Clinic-Mayo

Foundation, Rochester, MN 55905, USA.

CONTRACT NUMBER:

RO1 GM28157 (NIGMS)

RO1 GM35720 (NIGMS) UO1 GM61388 (NIGMS)

SOURCE:

PHARMACOGENETICS, (2002 Jan) 12 (1) 11-21.

Journal code: 9211735. ISSN: 0960-314X.

PUB. COUNTRY:

England: United Kingdom

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200203

ENTRY DATE:

Entered STN: 20020125

Last Updated on STN: 20020326

Entered Medline: 20020325 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the sulfate donor AB cosubstrate for all sulfotransferase (SULT) enzymes. SULTs catalyze the sulfate conjugation of many endogenous and exogenous compounds, including drugs and other xenobiotics. In humans, PAPS is synthesized from adenosine 5'-triphosphate (ATP) and inorganic sulfate (SO2-4) by two isoforms, PAPSS1 and PAPSS2. Rare mutations that inactivate PAPSS2 are associated with human spondyloepimetaphyseal dysplasia and murine brachymorphism. To determine whether more common genetic polymorphisms that do not completely inactivate the enzyme might be one factor responsible for individual differences in sulfate conjugation, we previously cloned the human PAPSS2 gene. In the present studies, we 'resequenced' all twelve PAPSS2 exons and splice junctions, as well as approximately 500 bp of the 5'-flanking region, using 90 Polymorphism Discovery Resource (PDR) DNA samples from the Coriell Cell Repository. Twenty-two single nucleotide polymorphisms (SNPs) were observed, including four nonsynonymous coding region SNPs (cSNPs) that altered the following amino acids: Glu10Lys, Met281Leu, Val291Met and Arg432Lys. We also observed four insertions/deletions, including one sample that was homozygous for an 81-bp deletion in the 5'-flanking region 286 bp upstream from the site of transcription initiation. Transient expression studies showed that two of the nonsynonymous cSNPS, those that resulted in Glu10Lys and Val291Met alterations in encoded amino acids, showed significant decreases in levels of PAPSS activity. In the case of Glu10Lys, decreased activity was paralleled by a decrease in immunoreactive protein, while the Val291Met allozyme displayed a significant decrease in affinity for both ATP and Na2SO4 when compared to 'wild-type' enzyme, but without a significant alteration in level of immunoreactive protein. It will now be possible to test the hypothesis that these common, functionally significant PAPSS2 genetic polymorphisms might contribute to variations in sulfate conjugation in vivo.

L3 ANSWER 4 OF 15 MEDLINE

DOCUMENT NUMBER: 21455682 PubMed ID: 11571655

Conserved synteny between the Fugu and human PTEN TITLE:

locus and the evolutionary conservation of vertebrate PTEN

function.

Yu W P; Pallen C J; Tay A; Jirik F R; Brenner S; Tan Y H; **AUTHOR:**

Venkatesh B

CORPORATE SOURCE: Institute of Molecular and Cell Biology, 30 Medical Drive,

Singapore 117609, Republic of Singapore.

ONCOGENE, (2001 Sep 6) 20 (39) 5554-61. SOURCE:

Journal code: 8711562. ISSN: 0950-9232.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals GENBANK-AF325922 OTHER SOURCE:

ENTRY MONTH: 200110

ENTRY DATE: Entered STN: 20010926

> Last Updated on STN: 20011015 Entered Medline: 20011011

AΒ Mutations of PTEN, which encodes a protein-tyrosine and lipid phosphatase, are prevalent in a variety of human cancers. The human genome 'draft' sequence still lacks organization and much of the PTEN and adjacent loci remain undefined. The pufferfish, Fugu rubripes, by virtue of having a compact genome represents an excellent template for rapid vertebrate gene discovery. Sequencing of 56 kb from the Fugu pten (fpten) locus identified four complete genes and one partial gene homologous to human genes. Genes neighboring fpten include a PAPS synthase (fpapss2) differentially expressed between non-metastatic/metastatic human carcinoma cell lines, an inositol phosphatase (fminpp1) and an omega class glutathione-S-transferase (fgsto). We have determined the order of human BAC clones at the hPTEN locus and that the locus contains hPAPSS2 and hMINPP1 genes oriented as are their Fugu orthologs. Although the human genes span 500 kb, the Fugu genes lie within only 22 kb due to the compressed intronic and intergenic regions that typify this genome. Interestingly, and providing striking evidence of regulatory element conservation between widely divergent vertebrate species, the compact 2.1 kb fpten promoter is active in human cells. Also, like hPTEN, fpten has a growth and tumor suppressor activity in human glioblastoma cells, demonstrating conservation of protein function.

L3 ANSWER 5 OF 15 MEDLINE

2001511193 ACCESSION NUMBER: MEDLINE

DOCUMENT NUMBER: 21442636 PubMed ID: 11558903

TITLE: Identification of sequence polymorphisms in two

sulfation-related genes, PAPSS2 and SLC26A2, and an association analysis with knee osteoarthritis.

AUTHOR: Ikeda T; Mabuchi A; Fukuda A; Hiraoka H; Kawakami A;

Yamamoto S; Machida H; Takatori Y; Kawaguchi H; Nakamura K;

Ikegawa S

SNP Research Center, RIKEN (The Institute of Physical and CORPORATE SOURCE:

> Chemical Research, University of Tokyo, Japan. JOURNAL OF HUMAN GENETICS, (2001) 46 (9) 538-43.

Journal code: 9808008. ISSN: 1434-5161.

PUB. COUNTRY: Japan

SOURCE:

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200112

Entered STN: 20010918 ENTRY DATE:

> Last Updated on STN: 20020122 Entered Medline: 20011204

AB Osteoarthritis (OA) is one of the most common musculoskeletal disorders and is characterized by degeneration of articular cartilage. Sulfation of extracellular matrix proteins in articular cartilage is an important step

in maintaining normal cartilage metabolism. Two sulfation-related genes have been reported as the causal genes of severe chondrodysplasias: mutations in PAPSS2 (3'-phosphoadenosine 5'-phosphosulfate synthase 2) cause spondylo-epimetaphyseal dysplasia (SEMD), and mutations in SLC26A2 (solute carrier family 26, member 2) cause diastrophic dysplasia. Given their critical roles in cartilage metabolism and the severe phenotypes that result from mutations in these genes, we examined PAPSS2 and SLC26A2 as candidate susceptibility loci for OA. We identified sequence polymorphisms in the coding and core promoter regions of these genes and analyzed their potential association with knee OA within the Japanese population. Ten sequence polymorphisms were detected in PAPSS2 and five in SLC26A2. An association analysis showed suggestive association of one minor polymorphism in the promoter region of SLC26A2. This 4-bp adenine deletion allele, del4A, was over-represented in knee OA (P = 0.043, odds ratio = 3.43) and is thought to confer a minor susceptibility to knee OA within the Japanese population. Haplotype analysis showed no evidence of association with the two genes, however, excluding them as major susceptibility loci for knee OA.

L3 ANSWER 6 OF 15 MEDLINE

ACCESSION NUMBER: 2001329633 MEDLINE

DOCUMENT NUMBER: 21290674 PubMed ID: 11396968
TITLE: Transcriptional regulation of human

3'-phosphoadenosine 5'-phosphosulfate synthase 1.

AUTHOR: Shimizu C; Fuda H; Lee Y C; Strott C A

CORPORATE SOURCE: Section on Steroid Regulation, Endocrinology and

Reproduction Research Branch, NICHD, National Institutes of

Health, Bethesda, Maryland 20892, USA.

SOURCE: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (2001

Jun 15) 284 (3) 763-70.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200108

ENTRY DATE: Entered STN: 20010806

Last Updated on STN: 20010806 Entered Medline: 20010802

AB Sulfonation, which is essential for normal growth, development and maintenance of the internal milieu, requires the universal sulfonate donor molecule 3'-phosphoadenosine 5'-phosphosulfate (PAPS) produced from ATP and inorganic sulfate by two bifunctional PAPS synthase isozymes. The gene for PAPS synthase 1 containing neither a TATA nor a CCAAT box was found to be under the influence of the Spl family of transcription factors. Multiple GC/GT boxes are present in the proximal promoter region and deletion analysis implicated their involvement in transcription, a finding supported by mutational analysis of specific GC/GT boxes. Nuclear extract of SW13 cells, which highly express PAPS synthase 1, contains proteins that bind to probes possessing specific GC/GT boxes; furthermore, the presence of Sp1, Sp2, and Sp3 proteins in nuclear extracts was confirmed by supershift analysis. Cotransfection experiments using SL2 cells yielded additional support for the involvement of Sp1 in transcriptional regulation of the PAPS synthase 1 gene; the involvement of Sp2 and/or Sp3 is presently unclear.

L3 ANSWER 7 OF 15 MEDLINE

ACCESSION NUMBER: 2000026854 MEDLINE

DOCUMENT NUMBER: 20026854 PubMed ID: 10559207

TITLE: Genomic organization of the mouse and human genes

encoding the ATP sulfurylase/adenosine 5'-phosphosulfate

kinase isoform SK2.

AUTHOR: Kurima K; Singh B; Schwartz N B

CORPORATE SOURCE: Department of Pediatrics, University of Chicago, Chicago,

Illinois 60637, USA.

CONTRACT NUMBER: AR-19622 (NIAMS)

HD-17332 (NICHD)

SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (1999 Nov 19) 274 (47)

33306-12.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF172857; GENBANK-AF172859;

GENBANK-AF172860; GENBANK-AF172861; GENBANK-AF172862; GENBANK-AF172863; GENBANK-AF172864; GENBANK-AF172865; GENBANK-AF172866; GENBANK-AF173361; GENBANK-AF173362; GENBANK-AF173363; GENBANK-AF173364; GENBANK-AF173365

ENTRY MONTH: 199912

ENTRY DATE: Entered STN: 20000113

Last Updated on STN: 20000113 Entered Medline: 19991214

AB Mammalian ATP sulfurylase/adenosine 5'-phosphosulfate (APS) kinase consists of kinase and sulfurylase domains, and catalyzes two sequential reactions to synthesize the universal sulfate donor, phosphoadenosine phosphosulfate (PAPS). In simpler organisms, the ATP sulfurylase and APS kinase reactions are catalyzed by separate enzymes encoded by two or three genes, suggesting that a fusion of separate genes during the course of evolution generated the bifunctional enzyme. We have characterized the genomic structure of the PAPS synthetase SK2 isoform genes for mouse (MSK2) and human (HSK2) and analyzed the possible fusion region. The MSK2 and HSK2 genes exhibit a common structure of 13 exons, including a 15-nucleotide alternatively spliced exon 8. Enzyme activities of several bacterially expressed exon assemblages showed exons 1-6 encode APS kinase, while exons 6-13 encode ATP sulfurylase. The MSK2 construct without the exon 6-encoded peptide showed no kinase or sulfurylase activity, demonstrating that exon 6 encodes sequences required for both activities. Exon 1 and its 5'-flanking sequence are highly divergent between the two species, and intron 1 of the HSK2 gene contains a region similar to the MSK2 promoter sequence, suggesting that it may be the remnant of a now-superceded regulatory region. The HSK2 promoter contains a GC-rich region, not present in the mouse promoter, and has few transcription factor binding sites in common with MSK2. These differences in the two promoter regions suggest that species-specific mechanisms regulate expression of the SK2 isoform.

L3 ANSWER 8 OF 15 MEDLINE

ACCESSION NUMBER: 1998236023 MEDLINE

DOCUMENT NUMBER: 98236023 PubMed ID: 9576487

TITLE: Sulfation in high endothelial venules: cloning and

expression of the human PAPS

synthetase.

AUTHOR: Girard J P; Baekkevold E S; Amalric F

CORPORATE SOURCE: Laboratoire de Biologie Moleculaire Eucaryote du CNRS,

Toulouse, France.. girard@ibcg.biotoul.fr FASEB JOURNAL, (1998 May) 12 (7) 603-12.

Journal code: 8804484. ISSN: 0892-6638.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

SOURCE:

FILE SEGMENT: Priority Journals
OTHER SOURCE: GENBANK-Y10387

ENTRY MONTH: 199805

ENTRY DATE: Entered STN: 19980529

Last Updated on STN: 19980529 Entered Medline: 19980521

AB High endothelial venules (HEVs) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support

high levels of lymphocyte extravasation from the blood. Studies with chlorate, a metabolic inhibitor of sulfation, had previously revealed that production of PAPS (3'-phosphoadenosine-5'-phosphosulfate), the high-energy donor of sulfate, is required for sulfation and high-affinity recognition of HEV sialomucins GlyCAM-1 and CD34 by the lymphocyte homing receptor L-selectin. Here, we report the molecular characterization of a novel 2.5 kb human cDNA from MECA-79+ HEV-derived endothelial cells that encodes the target of chlorate, PAPS synthetase, a multifunctional enzyme containing domains for both ATP sulfurylase and adenosine-5'-phosphosulfate kinase. Functional expression of the isolated cDNA in Chinese hamster ovary cells results in high levels of PAPS synthesis, which is abolished by treatment of the transfected cells with chlorate. Northern blot analysis reveals a wide tissue distribution of PAPS synthetase mRNA in the human body, suggesting that human PAPS synthetase may be important for sulfation not only of HEV sialomucins, but also of many other molecules, including mucins such as the P-selectin ligand PSGL-1, proteoglycans, hormones, neurotransmitters, drugs, and xenobiotics.

L3 ANSWER 9 OF 15 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:777664 CAPLUS

DOCUMENT NUMBER:

137:277250

TITLE:

Differentially-expressed and up-regulated

polynucleotides and polypeptides in breast cancer and

their diagnostic and therapeutic uses

INVENTOR(S):

Sun, Zairen; Jay, Gilbert

PATENT ASSIGNEE(S):

Origene Technologies, Inc, USA

SOURCE:

PCT Int. Appl., 65 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

```
PATENT NO.
                         KIND
                                 DATE
                                                   APPLICATION NO. DATE
     WO 2002078642
                         A2
                                 20021010
                                                  WO 2002-US9990 20020401
          W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
               CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
               GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
               PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU,
               TJ, TM
          RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,
               CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,
               BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                               US 2001-279678P P 20010330
                                               US 2001-293218P P 20010525
```

The present invention relates to all facets of novel polynucleotides, the polypeptides they encode, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drug discovery, therapy, clin. medicine, forensic, etc. The 269 human polynucleotides are differentially expressed in cancers, esp. breast cancers, and are therefore are useful in variety of ways, including, but not limited to, as mol. markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, detg. predisposition to, etc., diseases and conditions, such as cancer and other cell-cycle diseases, esp. relating to breast. The identification of specific genes, and groups of genes, expressed in a pathway physiol. relevant to cancer permits the definition of disease pathways and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clin. applications.

ANSWER 10 OF 15 CAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2002:616256 CAPLUS DOCUMENT NUMBER: 137:181594 Dominant-negative variants of human protein TITLE: kinases that inhibit the phosphorylation activity of their active enzyme isoforms INVENTOR(S): Levine, Zurit; Bernstein, Jeanne PATENT ASSIGNEE(S): Compugen Ltd., Israel U.S. Pat. Appl. Publ., 170 pp., Cont.-in-part of U.S. SOURCE: Ser. No. 724,676. CODEN: USXXCO DOCUMENT TYPE: Patent English LANGUAGE: FAMILY ACC. NUM. COUNT: PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE ----------____________ US 2001-771161 US 2002110811 **A1** 20020815 20010126 IL 2000-135619 A 20000512 PRIORITY APPLN. INFO.: A 20000615 IL 2000-136776 US 2000-724676 A2 20001128 AB The present invention concerns 91 nucleic acid sequences and amino acid sequences of variants of various human kinases, i.e. of sequences which inhibit activity of kinases in a dominant manner. The variants lack a domain or region required for phosphorylation, and thus may be dominant-neg. kinases obtained by alternative splicing of known original sequences of the kinase genes. novel dominant-neg. kinase variants of the invention are not merely artificially truncated forms, fragments or mutations of known genes, but rather novel sequences which naturally occur within the body of individuals. The invention also concerns pharmaceutical compns. and detection methods using these sequences. ANSWER 11 OF 15 CAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2001:320060 CAPLUS DOCUMENT NUMBER: 134:339179 TITLE: Nucleic acids and proteins associated with cancer as antitumor targets INVENTOR(S): Burmer, Glenna C.; Brown, Joseph P.; Pritchard, David PATENT ASSIGNEE(S): Lifespan Biosciences, Inc., USA SOURCE: PCT Int. Appl., 98 pp. CODEN: PIXXD2 DOCUMENT TYPE: Patent LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
PATENT NO.
                  KIND DATE
                                        APPLICATION NO. DATE
     ------
                                         -----
    WO 2001030964 A2
                           20010503
                                         WO 2000-US29126 20001020
    WO 2001030964
                     A3 20010809
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
            HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
            LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
            SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
            CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
    AU 2001013397
                     A5 20010508
                                         AU 2001-13397
                                                          20001020
PRIORITY APPLN. INFO.:
                                       US 1999-161232P P 19991022
                                       US 2000-693783 A 20001019
                                       WO 2000-US29126 W 20001020
```

This invention relates to the discovery of nucleic acids assocd. with cell AB proliferation, neoplasia, cell transformation, malignant tumor formation and metastasis and uses therefor. The present invention provides a method for cancer diagnosing by detecting the overexpression or the underexpression of a cancer-assocd. mRNA in the tissue of interest, preferably in liver, breast, prostate, kidney and colon. In another aspect, the invention provides methods for arresting cancer and a method for identifying a modulators of cancer development.

ANSWER 12 OF 15 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2000:115030 CAPLUS

DOCUMENT NUMBER:

132:275908

TITLE:

Human 3'-Phosphoadenosine 5'-Phosphosulfate Synthetase 1 (PAPSS1) and PAPSS2: Gene Cloning, Characterization and Chromosomal Localization

AUTHOR(S):

Xu, Zhen-Hua; Otterness, Diane M.; Freimuth, Robert R.; Carlini, Edward J.; Wood, Thomas C.; Mitchell, Steve; Moon, Eunpyo; Kim, Ung-Jin; Xu, Jing-Ping; Siciliano, Michael J.; Weinshilboum, Richard M.

CORPORATE SOURCE:

Department of Molecular Pharmacology and Experimental

Therapeutics, Mayo Medical School/Mayo Graduate School/Mayo Clinic, Rochester, MN, 55905, USA

SOURCE:

Biochemical and Biophysical Research Communications

(2000), 268(2), 437-444 CODEN: BBRCA9; ISSN: 0006-291X

PUBLISHER:

Academic Press

Journal English

DOCUMENT TYPE: LANGUAGE:

Sulfate conjugation is an important pathway in the metab. of a large no. of exogenous and endogenous compds. These reactions are catalyzed by sulfotransferase (SULT) enzymes that utilize 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfate donor. PAPS is synthesized from ATP and inorg. sulfate by PAPS synthetase (PAPSS). Two sep. PAPSS cDNAs, PAPSS1 and PAPSS2, have been identified in human tissues. We have cloned and characterized the genes for human PAPSS1 and PAPSS2 to make it possible to study the pharmacogenomics of these enzymes. Both genes consisted of 12 exons with virtually identical exon-intron splice junction locations. All splice junctions conformed to the "GT-AG" rule. The total length of PAPSS1 was approx. 108 kb, while that of PAPSS2 was greater than 37 kb. The 5'-flanking region of PAPSS1 did not include a TATA box sequence near the site of transcription initiation, but PAPSS2 had a TATA motif located 21 bp upstream from the site of transcription initiation. Northern blot anal. showed that the major PAPSS1 and PAPSS2 transcripts were approx. 2.7 and 4.2 kb in length, resp. PAPSS1 mapped to human chromosome band 4q24 while PAPSS2

mapped to 10q22-23 by fluorescence in situ hybridization anal. Cloning and structural characterization of PAPSS1 and PAPSS2 will make it possible to perform mol. genetic and pharmacogenomic studies of these important

REFERENCE COUNT:

enzymes in humans. (c) 2000 Academic Press. THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 13 OF 15 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER:

2002:368932 BIOSIS

PREV200200368932

32

DOCUMENT NUMBER: TITLE:

AUTHOR (S):

Tissue distribution and functional analysis of the

bifunctional ATP sulfurylase/APS kinase family in mouse. Cortes, Mauricio (1); Singh, Bhawani; Kurima, Kiyoto;

Deyrup, Andrea; Schwartz, N. B.

CORPORATE SOURCE:

(1) Biochemistry and Molecular Biology, University of Chicago, 5841 S.Maryland Ave, M.C 5058, Chicago, IL, 60637

SOURCE:

FASEB Journal, (March 20, 2002) Vol. 16, No. 4, pp. A551.

http://www.fasebj.org/. print.

Meeting Info.: Annual Meeting of the Professional Research

Scientists on Experimental Biology New Orleans, Louisiana,

USA April 20-24, 2002

ISSN: 0892-6638.

DOCUMENT TYPE:

Conference English

LANGUAGE:

Sulfation, an important post-translational modification of numerous molecules requires the synthesis of the high-energy sulfate donor,

phosphoadenosine-phosphosulfate (PAPS). In higher organisms, the synthesis

of PAPS is catalyzed by a single bifunctional enzyme, PAPS synthetase (SK). We have identified a gene family encoding two SK isoforms in mouse and human. Northern blot analysis and in situ hybridization studies, and immunohistochemical localization using isoform specific antibodies have demonstrated different tissue expression of the two isoforms. SK1 is predominantly expressed in the brain, and kidney while SK2 is predominantly expressed in cartilage. In vitro activity assays of each isoform show comparable distribution pattern. The functional similarity and unique tissue specificity of these two isoforms suggests non-redundant roles and that different regulatory elements may control the temporal and spatial expression of SK isoforms critical for

ANSWER 14 OF 15 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: DOCUMENT NUMBER:

normal development.

2001:363670 BIOSIS PREV200100363670

TITLE:

Preparation of highly pure 3'-phosphoadenosine-5'-phosphosulfate (PAPS) using recombinant human

PAPS synthetase and purification by ion

exchange high performance liquid chromatography. Muckel, E. (1); Landsiedel, R. (1); Glatt, H. R. (1)

AUTHOR (S): CORPORATE SOURCE:

(1) German Institute for human Nutrition,

Arthur-Scheunert-Allee 114-116, 14558, Bergholz-Rehbruecke

Germany

SOURCE:

Naunyn-Schmiedeberg's Archives of Pharmacology, (2001) Vol.

363, No. 4 Supplement , pp. R137. print.

Meeting Info.: 42nd Spring Meeting of the German Society for Experimental and Cllinical Pharmacology and Toxicology

Mainz, Germany March 13-15, 2001 ISSN: 0028-1298.

DOCUMENT TYPE:

Conference English

LANGUAGE: SUMMARY LANGUAGE:

English

ANSWER 15 OF 15 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: DOCUMENT NUMBER:

1999:311342 BIOSIS PREV199900311342

TITLE:

Molecular cloning of a novel human PAPS

synthetase which is differentially expressed in metastatic and non-metastatic colon carcinoma cells.

AUTHOR (S):

Franzon, Vicki L.; Gibson, Mark A.; Hatzinikolas, George; Woollatt, Erica; Sutherland, Grant R.; Cleary, Edward G.

CORPORATE SOURCE:

(1) Department of Pathology, University of Adelaide,

Adelaide, SA, 5005 Australia

SOURCE:

International Journal of Biochemistry & Cell Biology, (May,

1999) Vol. 31, No. 5, pp. 613-626.

ISSN: 1357-2725.

DOCUMENT TYPE:

Article

LANGUAGE:

English

SUMMARY LANGUAGE:

English

Subtractive hybridisation was used to select for genes which are differentially expressed between a highly metastatic human colon carcinoma cell line, KM12SM, and the isogenetic non-metastatic cell line, KM12C. This led to the isolation of cDNA clones for a novel human adenosine 5'-phosphosulphate kinase/ATP sulphurylase (PAPS synthetase). Northern hybridisation revealed a single 4.2 kb mRNA

species which showed an approximately 20-fold higher level of expression in the non-metastatic cell line than in the metastatic cell line. The overlapping cDNA clones together covered 3,774 bp including the entire coding region of 1,842 bp encoding a protein of 614 amino acids (calculated molecular mass of 69,496 Da). The protein contains consensus sequences for APS kinase and ATP sulphurylase, in its amino- and carboxy-terminal regions, respectively, as well as other sequences that are highly conserved amongst ATP sulphurylases and APS kinases. Interestingly, consensus sequences for GTPase activity were also identified, indicating that enzyme activity may be regulated by an intrinsic GTPase mechanism. Overall the new protein is 78% homologous with a previously described human PAPS synthetase (PAPSS1) indicating that we have identified the second member of a gene family which we have provisionally named PAPSS2. The gene locus for PAPSS2 was identified on chromosome 10 at 10q23.1-q23.2. This locus has synteny with the mouse brachymorphic gene recently identified as a PAPS synthetase (SK2). PAPSS2 appears to be the human homologue of this gene and thus PAPSS2 is likely to be important in human skeletogenesis.

=> s 12 and mouse

L4 4 L2 AND MOUSE

=> d 14 1-4 ibib ab

L4 ANSWER 1 OF 4 MEDLINE

ACCESSION NUMBER: 2000026854 MEDLINE

DOCUMENT NUMBER: 20026854 PubMed ID: 10559207

TITLE: Genomic organization of the mouse and human genes

encoding the ATP sulfurylase/adenosine 5'-phosphosulfate

kinase isoform SK2.

AUTHOR: Kurima K; Singh B; Schwartz N B

CORPORATE SOURCE: Department of Pediatrics, University of Chicago, Chicago,

Illinois 60637, USA.

CONTRACT NUMBER: AR-19622 (NIAMS)

HD-17332 (NICHD)

SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (1999 Nov 19) 274 (47)

33306-12.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF172857; GENBANK-AF172859;

GENBANK-AF172860; GENBANK-AF172861; GENBANK-AF172862; GENBANK-AF172863; GENBANK-AF172864; GENBANK-AF172865; GENBANK-AF172866; GENBANK-AF173361; GENBANK-AF173362; GENBANK-AF173363; GENBANK-AF173364; GENBANK-AF173365

ENTRY MONTH: 199912

ENTRY DATE: Entered STN: 20000113

Last Updated on STN: 20000113 Entered Medline: 19991214

AB Mammalian ATP sulfurylase/adenosine 5'-phosphosulfate (APS) kinase consists of kinase and sulfurylase domains, and catalyzes two sequential reactions to synthesize the universal sulfate donor, phosphoadenosine phosphosulfate (PAPS). In simpler organisms, the ATP sulfurylase and APS kinase reactions are catalyzed by separate enzymes encoded by two or three genes, suggesting that a fusion of separate genes during the course of evolution generated the bifunctional enzyme. We have characterized the genomic structure of the PAPS synthetase SK2 isoform genes for mouse (MSK2) and human (HSK2) and analyzed the possible fusion region. The MSK2 and HSK2 genes exhibit a common structure of 13 exons, including a 15-nucleotide alternatively spliced exon 8. Enzyme activities of several bacterially expressed exon

assemblages showed exons 1-6 encode APS kinase, while exons 6-13 encode ATP sulfurylase. The MSK2 construct without the exon 6-encoded peptide showed no kinase or sulfurylase activity, demonstrating that exon 6 encodes sequences required for both activities. Exon 1 and its 5'-flanking sequence are highly divergent between the two species, and intron 1 of the HSK2 gene contains a region similar to the MSK2 promoter sequence, suggesting that it may be the remnant of a now-superceded regulatory region. The HSK2 promoter contains a GC-rich region, not present in the mouse promoter, and has few transcription factor binding sites in common with MSK2. These differences in the two promoter regions suggest that species-specific mechanisms regulate expression of the SK2 isoform.

ANSWER 2 OF 4 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: DOCUMENT NUMBER:

2002:368932 BIOSIS PREV200200368932

TITLE:

Tissue distribution and functional analysis of the bifunctional ATP sulfurylase/APS kinase family in

AUTHOR (S):

Cortes, Mauricio (1); Singh, Bhawani; Kurima, Kiyoto;

Deyrup, Andrea; Schwartz, N. B.

CORPORATE SOURCE:

(1) Biochemistry and Molecular Biology, University of

Chicago, 5841 S.Maryland Ave, M.C 5058, Chicago, IL, 60637

SOURCE:

FASEB Journal, (March 20, 2002) Vol. 16, No. 4, pp. A551.

http://www.fasebj.org/. print.

Meeting Info.: Annual Meeting of the Professional Research Scientists on Experimental Biology New Orleans, Louisiana,

USA April 20-24, 2002

ISSN: 0892-6638.

DOCUMENT TYPE:

Conference English

LANGUAGE:

Sulfation, an important post-translational modification of numerous molecules requires the synthesis of the high-energy sulfate donor, phosphoadenosine-phosphosulfate (PAPS). In higher organisms, the synthesis

of PAPS is catalyzed by a single bifunctional enzyme, PAPS synthetase (SK). We have identified a gene family encoding two SK isoforms in mouse and human. Northern blot analysis and in situ hybridization studies, and immunohistochemical localization using isoform specific antibodies have demonstrated different tissue expression of the two isoforms. SK1 is predominantly expressed in the brain, and kidney while SK2 is predominantly expressed in cartilage. In vitro activity assays of each isoform show comparable distribution pattern. The functional similarity and unique tissue specificity of these two isoforms suggests non-redundant roles and that different regulatory elements may control the temporal and spatial expression of SK isoforms critical for normal development.

ANSWER 3 OF 4 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: DOCUMENT NUMBER:

1999:311342 BIOSIS PREV199900311342

TITLE:

Molecular cloning of a novel human PAPS

synthetase which is differentially expressed in

metastatic and non-metastatic colon carcinoma cells.

Franzon, Vicki L.; Gibson, Mark A.; Hatzinikolas, George; AUTHOR(S):Woollatt, Erica; Sutherland, Grant R.; Cleary, Edward G.

(1)

CORPORATE SOURCE:

(1) Department of Pathology, University of Adelaide,

Adelaide, SA, 5005 Australia

SOURCE:

International Journal of Biochemistry & Cell Biology, (May,

1999) Vol. 31, No. 5, pp. 613-626.

ISSN: 1357-2725.

DOCUMENT TYPE:

Article LANGUAGE: English

SUMMARY LANGUAGE: English

Subtractive hybridisation was used to select for genes which are AΒ differentially expressed between a highly metastatic human colon carcinoma cell line, KM12SM, and the isogenetic non-metastatic cell line, KM12C. This led to the isolation of cDNA clones for a novel human adenosine 5'-phosphosulphate kinase/ATP sulphurylase (PAPS synthetase). Northern hybridisation revealed a single 4.2 kb mRNA species which showed an approximately 20-fold higher level of expression in the non-metastatic cell line than in the metastatic cell line. The overlapping cDNA clones together covered 3,774 bp including the entire coding region of 1,842 bp encoding a protein of 614 amino acids (calculated molecular mass of 69,496 Da). The protein contains consensus sequences for APS kinase and ATP sulphurylase, in its amino- and carboxy-terminal regions, respectively, as well as other sequences that are highly conserved amongst ATP sulphurylases and APS kinases. Interestingly, consensus sequences for GTPase activity were also identified, indicating that enzyme activity may be regulated by an intrinsic GTPase mechanism. Overall the new protein is 78% homologous with a previously described human PAPS synthetase (PAPSS1) indicating that we have identified the second member of a gene family which we have provisionally named PAPSS2. The gene locus for PAPSS2 was identified on chromosome 10 at 10q23.1-q23.2. This locus has synteny with the mouse brachymorphic gene recently identified as a PAPS synthetase (SK2). PAPSS2 appears to be the human homologue of this gene and thus PAPSS2 is likely to be important in human skeletogenesis.

L4 ANSWER 4 OF 4 EMBASE COPYRIGHT 2003 ELSEVIER SCI. B.V.

ACCESSION NUMBER:

2003016481 EMBASE

TITLE:

Identification and functional characterization of the novel

BM-motif in the murine phosphoadenosine phosphosulfate (

PAPS) synthetase.

AUTHOR:

Singh B.; Schwartz N.B.

CORPORATE SOURCE:

N.B. Schwartz, Dept. of Pediatrics, University of Chicago, MC 5058, 5841 S. Maryland Ave., Chicago, IL 60637, United

States. n-schwartz@uchicago.edu

SOURCE:

Journal of Biological Chemistry, (3 Jan 2003) 278/1

(71-75). Refs: 16

ISSN: 0021-9258 CODEN: JBCHA3

COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article

FILE SEGMENT:

029 Clinical Biochemistry

LANGUAGE: English SUMMARY LANGUAGE: English

PAPS synthetase (SK) catalyzes the two sequential reactions of phosphoadenosine phosphosulfate (PAPS) synthesis. A functional motif in the kinase domain of mouse SK, designated the BM-motif ((86) LDGDNhRxhh(N/S)(K/R)(97)), was defined in the course of identifying the brachymorphic (bm) defect. Sequence comparison and the secondary structure predicted for APS kinase suggest that the BM-motif consists of a DGD-turn sequence flanked by other conserved residues. Mutational analysis of the DGD-turn revealed that a flexible and neutral amino acid is preferred at residue 88, that negatively charged residues are strictly required at positions 87 and 89, and that the active site is rigid. The reduction in kinase activity for all DGD-turn mutants, except G88A, was much less severe than the reduction in overall activity, indicating that the BM-motif may also be playing a role in adenosine phosphosulfate (APS) channeling. Two switch mutations, LD86DL and DN89ND, designed to test the positional constraints of Asp(87) and Asp(89), exhibited complete loss of both kinase and overall activities, while LD86DL also exhibited a significant (60%) loss of reverse sulfurylase activity, suggesting that this peptide region is interacting with the sulfurylase domain as well as functioning in the kinase reaction. Other residues targeted for mutational analysis were the highly conserved flanking Asn(90), Arg(92), and Lys(97). N90A resulted in a partial (30%)

loss in kinase and overall activities, R92A exhibited total loss of kinase and overall activities, and K97A had no effect on any of the three activities. The complexity of the bifunctional SK in catalyzing the kinase reaction and channeling APS is illustrated by the strict requirements of this novel structural motif in the kinase active site.

```
=> d his
```

(FILE 'HOME' ENTERED AT 14:47:45 ON 15 JUL 2003)

FILE 'MEDLINE, CAPLUS, BIOSIS, SCISEARCH, EMBASE' ENTERED AT 14:48:36 ON 15 JUL 2003

FILE 'MEDLINE, CAPLUS, BIOSIS, SCISEARCH, EMBASE' ENTERED AT 14:48:54 ON 15 JUL 2003

L1 37 S PAPS SYNTHETASE AND (DNA OR RNA OR NUCLEIC ACID)

L2 20 DUP REM L1 (17 DUPLICATES REMOVED)

L3 15 S L2 AND HUMAN L4 4 S L2 AND MOUSE

=> s l1 and 1990-1999/py

L5 16 L1 AND 1990-1999/PY

=> dup rem 15

PROCESSING COMPLETED FOR L5

L6 6 DUP REM L5 (10 DUPLICATES REMOVED)

=> d l6 1-6 ibib ab

L6 ANSWER 1 OF 6 MEDLINE DUPLICATE 1

ACCESSION NUMBER: 2000026854 MEDLINE

DOCUMENT NUMBER: 20026854 PubMed ID: 10559207

TITLE: Genomic organization of the mouse and human genes encoding

the ATP sulfurylase/adenosine 5'-phosphosulfate kinase

isoform SK2.

AUTHOR: Kurima K; Singh B; Schwartz N B

CORPORATE SOURCE: Department of Pediatrics, University of Chicago, Chicago,

Illinois 60637, USA.

CONTRACT NUMBER: AR-19622 (NIAMS)

HD-17332 (NICHD)

SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (1999 Nov 19)

274 (47) 33306-12.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF172857; GENBANK-AF172858; GENBANK-AF172859;

GENBANK-AF172860; GENBANK-AF172861; GENBANK-AF172862; GENBANK-AF172863; GENBANK-AF172864; GENBANK-AF172865; GENBANK-AF172866; GENBANK-AF173361; GENBANK-AF173362;

GENBANK-AF173363; GENBANK-AF173364; GENBANK-AF173365

ENTRY MONTH: 199912

ENTRY DATE: Entered STN: 20000113

Last Updated on STN: 20000113 Entered Medline: 19991214

AB Mammalian ATP sulfurylase/adenosine 5'-phosphosulfate (APS) kinase consists of kinase and sulfurylase domains, and catalyzes two sequential reactions to synthesize the universal sulfate donor, phosphoadenosine phosphosulfate (PAPS). In simpler organisms, the ATP sulfurylase and APS kinase reactions are catalyzed by separate enzymes encoded by two or three genes, suggesting that a fusion of separate genes during the course of evolution generated the bifunctional enzyme. We have characterized the genomic structure of the PAPS synthetase SK2 isoform

genes for mouse (MSK2) and human (HSK2) and analyzed the possible fusion region. The MSK2 and HSK2 genes exhibit a common structure of 13 exons, including a 15-nucleotide alternatively spliced exon 8. Enzyme activities of several bacterially expressed exon assemblages showed exons 1-6 encode APS kinase, while exons 6-13 encode ATP sulfurylase. The MSK2 construct without the exon 6-encoded peptide showed no kinase or sulfurylase activity, demonstrating that exon 6 encodes sequences required for both activities. Exon 1 and its 5'-flanking sequence are highly divergent between the two species, and intron 1 of the HSK2 gene contains a region similar to the MSK2 promoter sequence, suggesting that it may be the remnant of a now-superceded regulatory region. The HSK2 promoter contains a GC-rich region, not present in the mouse promoter, and has few transcription factor binding sites in common with MSK2. These differences in the two promoter regions suggest that species-specific mechanisms regulate expression of the SK2 isoform.

ANSWER 2 OF 6 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.DUPLICATE 2

ACCESSION NUMBER:

1999:236336 BIOSIS

DOCUMENT NUMBER:

PREV199900236336

TITLE:

Activity and stability of recombinant bifunctional

rearranged and monofunctional domains of ATP-sulfurylase

and adenosine 5'-phosphosulfate kinase.

AUTHOR (S):

Deyrup, Andrea T.; Krishnan, Srinivasan; Singh, Bhawani;

Schwartz, Nancy B. (1)

CORPORATE SOURCE:

(1) Dept. of Pediatrics, University of Chicago, 5841 S.

Maryland Ave., Chicago, IL, 60637 USA

SOURCE:

Journal of Biological Chemistry, (April 16, 1999)

Vol. 274, No. 16, pp. 10751-10757.

ISSN: 0021-9258.

DOCUMENT TYPE:

Article English

LANGUAGE: SUMMARY LANGUAGE: English

Murine adenosine 3'-phosphate 5'-phosphosulfate (PAPS) synthetase consists of a COOH-terminal ATP-sulfurylase domain covalently linked through a nonhomologous intervening sequence to an NH2-terminal adenosine 5'-phosphosulfate (APS) kinase domain forming a bifunctional fused protein. Possible advantages of bifunctionality were probed by separating the domains on the cDNA level and expressing them as monofunctional proteins. Expressed protein generated from the ATP-sulfurylase domain alone was fully active in both the forward and reverse sulfurylase assays. APS kinase-only recombinants exhibited no kinase activity. However, extension of the kinase domain at the COOH terminus by inclusion of the 36 residue linker region restored kinase activity. An equimolar mixture of the two monofunctional enzymes catalyzed the overall reaction (synthesis of PAPS from ATP + SO42-) comparably to the fused bifunctional enzyme. The importance of the domain order and organization was demonstrated by generation of a series of rearranged recombinants in which the order of the two active domains was reversed or altered relative to the linker region. The critical role of the linker region was established by generation of recombinants that had the linker deleted or rearranged relative to the two active domains. The intrinsic stability of the various recombinants was also investigated by measuring enzyme deactivation as a function of time of incubation at 25 or 37 degreeC. The expressed monofunctional ATP-sulfurylase, which was initially fully active, was unstable compared with the fused bifunctional wild type enzyme, decaying with a t1/2 of 10 min at 37 degreeC. Progressive extension by addition of kinase sequence at the NH2-terminal side of the sulfurylase recombinant eventually stabilized sulfurylase activity. Sulfurylase activity was significantly destabilized in a time-dependent manner in the rearranged proteins as well. In contrast, no significant deactivation of any truncated kinase-containing recombinants or misordered kinase recombinants was observed at either temperature. It would therefore appear that fusion of the two enzymes enhances the intrinsic stability of the sulfurylase only.

ANSWER 3 OF 6 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.DUPLICATE 3

ACCESSION NUMBER: 1999:311342 BIOSIS DOCUMENT NUMBER: PREV199900311342

Molecular cloning of a novel human PAPS TITLE:

synthetase which is differentially expressed in

metastatic and non-metastatic colon carcinoma cells.

Franzon, Vicki L.; Gibson, Mark A.; Hatzinikolas, George; AUTHOR(S): Woollatt, Erica; Sutherland, Grant R.; Cleary, Edward G.

CORPORATE SOURCE: (1) Department of Pathology, University of Adelaide,

Adelaide, SA, 5005 Australia

International Journal of Biochemistry & Cell Biology, (SOURCE:

May, 1999) Vol. 31, No. 5, pp. 613-626.

ISSN: 1357-2725.

DOCUMENT TYPE:

Article English

LANGUAGE: SUMMARY LANGUAGE: English

Subtractive hybridisation was used to select for genes which are differentially expressed between a highly metastatic human colon carcinoma cell line, KM12SM, and the isogenetic non-metastatic cell line, KM12C. This led to the isolation of cDNA clones for a novel human adenosine 5'-phosphosulphate kinase/ATP sulphurylase (PAPS

synthetase). Northern hybridisation revealed a single 4.2 kb mRNA species which showed an approximately 20-fold higher level of expression in the non-metastatic cell line than in the metastatic cell line. The overlapping cDNA clones together covered 3,774 bp including the entire coding region of 1,842 bp encoding a protein of 614 amino acids (calculated molecular mass of 69,496 Da). The protein contains consensus sequences for APS kinase and ATP sulphurylase, in its amino- and carboxy-terminal regions, respectively, as well as other sequences that are highly conserved amongst ATP sulphurylases and APS kinases. Interestingly, consensus sequences for GTPase activity were also identified, indicating that enzyme activity may be regulated by an intrinsic GTPase mechanism. Overall the new protein is 78% homologous with a previously described human PAPS synthetase (PAPSS1) indicating that we have identified the second member of a gene family which we have provisionally named PAPSS2. The gene locus for PAPSS2 was identified on chromosome 10 at 10q23.1-q23.2. This locus has synteny with

the mouse brachymorphic gene recently identified as a PAPS synthetase (SK2). PAPSS2 appears to be the human homologue of this gene and thus PAPSS2 is likely to be important in human skeletogenesis.

ANSWER 4 OF 6 L6 MEDLINE DUPLICATE 4

ACCESSION NUMBER: 1998236023 MEDLINE DOCUMENT NUMBER: 98236023 PubMed ID: 9576487

TITLE: Sulfation in high endothelial venules: cloning and

expression of the human PAPS synthetase

Girard J P; Baekkevold E S; Amalric F AUTHOR:

CORPORATE SOURCE: Laboratoire de Biologie Moleculaire Eucaryote du CNRS,

Toulouse, France.. girard@ibcg.biotoul.fr

SOURCE: FASEB JOURNAL, (1998 May) 12 (7) 603-12.

Journal code: 8804484. ISSN: 0892-6638.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-Y10387 199805 ENTRY MONTH:

ENTRY DATE: Entered STN: 19980529

> Last Updated on STN: 19980529 Entered Medline: 19980521

AR High endothelial venules (HEVs) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. Studies with

chlorate, a metabolic inhibitor of sulfation, had previously revealed that production of PAPS (3'-phosphoadenosine-5'-phosphosulfate), the high-energy donor of sulfate, is required for sulfation and high-affinity recognition of HEV sialomucins GlyCAM-1 and CD34 by the lymphocyte homing receptor L-selectin. Here, we report the molecular characterization of a novel 2.5 kb human cDNA from MECA-79+ HEV-derived endothelial cells that encodes the target of chlorate, PAPS synthetase, a multifunctional enzyme containing domains for both ATP sulfurylase and adenosine-5'-phosphosulfate kinase. Functional expression of the isolated cDNA in Chinese hamster ovary cells results in high levels of PAPS synthesis, which is abolished by treatment of the transfected cells with chlorate. Northern blot analysis reveals a wide tissue distribution of PAPS synthetase mRNA in the human body, suggesting that human PAPS synthetase may be important for sulfation not only of HEV sialomucins, but also of many other molecules, including mucins such as the P-selectin ligand PSGL-1, proteoglycans, hormones, neurotransmitters, drugs, and xenobiotics.

DUPLICATE 5

ANSWER 5 OF 6 MEDLINE

ACCESSION NUMBER: 1998092112 MEDLINE

DOCUMENT NUMBER: 98092112 PubMed ID: 9431815

TITLE: cDNA sequence and expression pattern of the Drosophila

melanogaster PAPS synthetase gene: a

new salivary gland marker.

Jullien D; Crozatier M; Kas E AUTHOR:

CORPORATE SOURCE: Laboratoire de Biologie Moleculaire Eucaryote, C.N.R.S.

U.P.R. 9006, Toulouse, France.

SOURCE: MECHANISMS OF DEVELOPMENT, (1997 Nov) 68 (1-2)

179-86.

Journal code: 9101218. ISSN: 0925-4773.

PUB. COUNTRY: Ireland

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-Y12861

ENTRY MONTH:

Entered STN: 19980312 ENTRY DATE:

199803

Last Updated on STN: 19990129 Entered Medline: 19980305

AB PAPS synthetase is a bifunctional enzyme containing both ATP sulfurylase and APS kinase activities required for the biosynthesis of PAPS, the sulfate donor in sulfation reactions. Here we report the sequence of the Drosophila melanogaster PAPS synthetase, the first gene implicated in the sulfation pathway to be described in that organism, and the characterization of its specificity of expression in embryos. Whole-mount in situ hybridization reveals that DmPAPSS is a novel salivary gland marker. At the end of embryogenesis, expression of DmPAPSS is also observed at the entry and exit of the gut and the posterior spiracles. We discuss the possibility that the pattern of expression of the DmPAPSS gene might reflect a major role for sulfation in mucus biosynthesis at the end of Drosophila embryogenesis.

ANSWER 6 OF 6 L6 MEDLINE DUPLICATE 6

ACCESSION NUMBER: 96096529 MEDLINE

DOCUMENT NUMBER: 96096529 PubMed ID: 8522184

A multifunctional Urechis caupo protein, PAPS TITLE:

synthetase, has both ATP sulfurylase and APS kinase

activities.

AUTHOR: Rosenthal E; Leustek T

CORPORATE SOURCE: Kewalo Marine Laboratory, University of Hawaii, Honolulu

GENE, (1995 Nov 20) 165 (2) 243-8. ∨ SOURCE:

Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE) LANGUAGE:

English

FILE SEGMENT:

Priority Journals

OTHER SOURCE:

GENBANK-D33155; GENBANK-L39001; GENBANK-T09181

ENTRY MONTH:

199601

ENTRY DATE:

Entered STN: 19960219

Last Updated on STN: 19960219

Entered Medline: 19960122

AB The synthesis of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) from inorganic sulfate and ATP requires two enzymes, ATP sulfurylase (SUL) and adenosine-5'-phosphosulfate kinase (KIN). In bacteria, fungi, yeast and plants, the two enzymes are present on separate polypeptide chains. We have identified the first animal gene coding for these enzymes. In the marine worm, Urechis caupo (Uc), both SUL and KIN are present on a single polypeptide chain. This protein, which we call PAPS synthetase (PAPSS), is able to complement yeast mutants lacking either enzyme. The Uc PAPSS mRNA is present in oocytes, but is not translated until after fertilization. At least three adult tissues, gut, ceolomocytes and body wall, also contain the mRNA, but at lower concentrations than are found in embryos. Partial sequences of a similar gene from Caenorhabditis elegans (Ce) were detected in a search of the GenBank expressed sequence tag database. Comparison of these Uc and Ce PAPSS sequences with the sequences of cloned genes from non-animal organisms strongly suggests that the animal genes evolved through the fusion of the SUL- and KIN-encoding genes from lower organisms.

=> d his

(FILE 'HOME' ENTERED AT 14:47:45 ON 15 JUL 2003)

FILE 'MEDLINE, CAPLUS, BIOSIS, SCISEARCH, EMBASE' ENTERED AT 14:48:36 ON 15 JUL 2003

FILE 'MEDLINE, CAPLUS, BIOSIS, SCISEARCH, EMBASE' ENTERED AT 14:48:54 ON 15 JUL 2003

37 S PAPS SYNTHETASE AND (DNA OR RNA OR NUCLEIC ACID)

L2 20 DUP REM L1 (17 DUPLICATES REMOVED)

L3 15 S L2 AND HUMAN

L4 4 S L2 AND MOUSE

L5 16 S L1 AND 1990-1999/PY

L6 6 DUP REM L5 (10 DUPLICATES REMOVED)

=> log

L1

ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF

LOGOFF? (Y)/N/HOLD:y

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 51.90 56.93

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

SINCE FILE TOTAL
ENTRY SESSION
CA SUBSCRIBER PRICE

-2.60
-2.60

STN INTERNATIONAL LOGOFF AT 14:56:31 ON 15 JUL 2003

WEST

End of Result Set

Generate Collection Print

L9: Entry 3 of 3

File: USPT

May 1, 2001

US-PAT-NO: 6225100

DOCUMENT-IDENTIFIER: US 6225100 B1

** See image for Certificate of Correction **

TITLE: Arylsulfotransferase

DATE-ISSUED: May 1, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Maurina-Brunker; Julie Appleton WI Grund; Alan D. Manitowoc WI

US-CL-CURRENT: 435/193; 435/183, 530/350

CLAIMS:

What is claimed is:

- 1. An isolated Clostridium arysulfotransferase comprising the following characteristics:
- a. a total molecular weight of about 320 kD;
- b. 4 subunits having a molecular weight of about 80 kD each;
- c. an optimum pH for sulfation activity at about 8.2;
- d. a specific activity of greater than about 15.0 units per milligram of protein;
- e. an ability to maintain greater than about 40% activity for about 2 weeks when stored at 4.degree. C. without being immobilized or otherwise protected; and
- f. an ability to use aryl sulfates selected from the group consisting of p-nitrophenylsulfate, p-acetylphenylsulfate, 4-methylumbelliferyl sulfate, estrone sulfate, p-nitrocatechol sulfate, phenolphthalein sulfate and indoxyl sulfate, as sulfate donors.
- 2. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase is a naturally occurring Clostridium innocuum arylsulfotransferase.
- 3. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase is isolated from Clostridium innocuum 554 ATCC 55803.
- 4. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase catalyzes the transfer of a sulfate group to cholecystokinin-8 with a yield of greater than about 35% within about 6 hours.
- 5. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase catalyzes the transfer of a sulfate group to cholecystokinin-8 with a yield of greater than about 45% within about 6 hours.

- 6. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase catalyzes the transfer of a sulfate group to cholecystokinin-8 with a yield of greater than 55% within about 6 hours.
- 7. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase sulfates a sulfate acceptor selected from the group consisting of a phenolic compound and a tyrosylpeptide.
- 8. The arylsulfotransferase of claim 7, wherein said sulfate acceptor is a phenolic compound selected from the group consisting of tyrosine, tyrosine methyl ester, tyramine, phenol, catechol, catechin, methyl p-hydroxybenzoate, 4-methylumbelliferone and methyl paraben.
- 9. The arylsulfotransferase of claim 7, wherein said sulfate acceptor is a tyrosylpeptide selected from the group consisting of cholecystokinin-8, kyotorphin, dermorphin, physalaemin, proctolin, angiotensin I, caerulein, arg8 vasopressin, hirudin(54-65) and leu enkephalin.
- 10. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase maintains greater than about 60% activity at 4.degree. C. for about 2 weeks without being immobilized or otherwise protected.
- 11. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase maintains greater than about 80% activity at 4.degree. C. for about 2 weeks without being immobilized or otherwise protected.
- 12. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase has a donor substrate specificity for p-nitrophenylsulfate as a substrate donor of greater than about 60% activity, wherein 100% activity is measured using p-acetylphenylsulfate as a substrate donor, and wherein tyramine is a sulfate acceptor.
- 13. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase has a donor substrate specificity for indoxyl sulfate as a substrate donor of greater than about 3% activity, wherein 100% activity is measured using p-acetylphenylsulfate as a substrate donor, and wherein tyramine is a sulfate acceptor.
- 14. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase does not use 3'-phosphoadenosine-5'-phosphosulfate as a sulfate donor.
- 15. The arylsulfotransferase of claim 1, wherein said arylsulfotransferase has a donor substrate specificity for estrone sulfate as a substrate donor of greater than about 5% activity, wherein 100% activity is measured using p-acetylphenylsulfate as a substrate donor, and wherein tyramine is a sulfate acceptor.

Generate Collection

Print

Search Results - Record(s) 1 through 3 of 3 returned.

☐ 1. Document ID: US 20030104001 A1

L9: Entry 1 of 3

File: PGPB

Jun 5, 2003

PGPUB-DOCUMENT-NUMBER: 20030104001

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030104001 A1

TITLE: Mycobacterial sulfation pathway proteins and methods of use thereof

PUBLICATION-DATE: June 5, 2003

INVENTOR-INFORMATION:

NAME CITY

STATE COUNTRY RULE-47

Bertozzi, Carolyn R. Williams, Spencer J.

Mougous, Joseph D.

Berkeley Berkeley CA US

CA US El Cerrito CA US

US-CL-CURRENT: 424/190.1; 435/193, 435/252.3, 435/320.1, 435/69.3, 536/23.2

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KWIC Draw. Desc

☐ 2. Document ID: US 6255088 B1

L9: Entry 2 of 3

File: USPT

Jul 3, 2001

US-PAT-NO: 6255088

DOCUMENT-IDENTIFIER: US 6255088 B1

** See image for Certificate of Correction **

TITLE: Enzymatic sulfation of biomolecules

DATE-ISSUED: July 3, 2001

INVENTOR-INFORMATION:

NAME CITY

STATE

Wong; Chi-Huey

Rancho Santa Fe

CA

ZIP CODE

COUNTRY

Burkart; Michael D.

Arlington

TX

US-CL-CURRENT: 435/130; 435/101, 435/193, 435/257.3, 435/320.1, 536/23.2

Title Citation Front Review Classification Date Reference Sequences Attachments Claims KWIC Draw, Desc Image

☐ 3. Document ID: US 6225100 B1

L9: Entry 3 of 3

File: USPT

May 1, 2001

US-PAT-NO: 6225100

DOCUMENT-IDENTIFIER: US 6225100 B1

** See image for Certificate of Correction **

TITLE: Arylsulfotransferase

DATE-ISSUED: May 1, 2001

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Maurina-Brunker; Julie

Appleton

WI

COONIKI

Grund; Alan D.

Manitowoc

ИТ

WI

US-CL-CURRENT: 435/193; 435/183, 530/350

Full mage	Title Citation F	Front Review	Classification	Date	Reference	Sequences	Attachments	Claims	KMC	Draws D
			Generat	e Coll	ection	Print				
	Terms				Do	cumen	ts			
	3'-phosphoadenosine-5'-phosphosulfate.clm.									

Display Format: - Change Format

Previous Page

Next Page

WEST Search History

DATE: Tuesday, July 15, 2003

Set Name side by side	Query	Hit Count	Set Name result set
•	LUR=YES; OP=ADJ		result set
L9	3'-phosphoadenosine-5'-phosphosulfate.clm.	3	L9
·L8	3'-phosphoadenosine-5'-phosphosulfate synthetase	0	L8
L7	paps synthetase	6	L7
L6	L2 and paps synthetase	0	L6
L5	gene specific same antibody binding fragment	0	L5
L4	gene specific adj15 antibody binding fragment	0	L4
L3	gene specific adj5 antibody binding fragment .	0	L3
L2	gene specific and antibody binding fragment	95	L2
DB=USI	PT,PGPB,JPAB,EPAB,DWPI; PLUR=YES; OP=ADJ		
L1	gene specific antibody binding fragment	0	L1

END OF SEARCH HISTORY

WEST

Generate Collection Print

L10: Entry 1 of 2

File: PGPB

Jun 5, 2003

PGPUB-DOCUMENT-NUMBER: 20030104001

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030104001 A1

TITLE: Mycobacterial sulfation pathway proteins and methods of use thereof

PUBLICATION-DATE: June 5, 2003

INVENTOR - INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Bertozzi, Carolyn R.	Berkeley	CA	US	
Williams, Spencer J.	Berkeley	CA	US	
Mougous, Joseph D.	El Cerrito	CA	US	

US-CL-CURRENT: $\underline{424}/\underline{190.1}$; $\underline{435}/\underline{193}$, $\underline{435}/\underline{252.3}$, $\underline{435}/\underline{320.1}$, $\underline{435}/\underline{69.3}$, $\underline{536}/\underline{23.2}$

CLAIMS:

What is claimed is:

- 1. An isolated polynucleotide comprising a nucleotide sequence encoding a mycobacterial sulfation pathway polypeptide.
- 2. The isolated polynucleotide according to claim 1, wherein the sulfation pathway polypeptide is selected from the group consisting of a sulfotransferase, an ATP sulfurylase, an adenylyl phosphosulfate reductase, a 3'-phosphoadenosine-5'-phosphosulfate reductase, an adenylyl phosphosulfate kinase, a sulfatase, and a sulfate transporter.
- 3. The polynucleotide according to claim 1, wherein said sulfation pathway polypeptide is a sulfotransferase that comprises a motif selected from the group consisting of a 5'-phosphosulfate binding loop, a 3'-phosphate binding motif, and a conserved RYEDL motif.
- 4. The polynucleotide according to claim 1, wherein said sulfation pathway polypeptide is a sulfotransferase having an amino acid sequence as set forth in any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 13, 15, 17, 18, 19, 21, 23, and 25.
- 5. The polynucleotide according to claim 1, wherein said sulfation pathway polypeptide is an APS reductase having an amino acid sequence as set forth in any one of SEQ ID NOs: 27, 28, and 29.
- 6. The polynucleotide according to claim 1, wherein said sulfation pathway polypeptide is an $\frac{APS\ kinase}{a}$ having an amino acid sequence as set forth in one or SEQ ID NOs:31 and 32.
- 7. A recombinant vector comprising a polynucleotide according to claim 1.
- 8. A host cell comprising a recombinant vector according to claim 7.
- 9. An isolated mycobacterial sulfation pathway polypeptide.

- 10. The isolated polypeptide according to claim 9, wherein the sulfation pathway polypeptide is selected from the group consisting of a sulfotransferase, and ATP sulfurylase, an adenylyl phosphosulfate reductase, a 3'-phosphoadenosine-5'-phosphosulfate reductase, an adenylyl phosphosulfate kinase, a sulfatase, and a sulfate transporter.
- 11. The isolated polypeptide according to claim 9, wherein said sulfation pathway polypeptide is a sulfotransferase that comprises a motif selected from the group consisting of a 5'-phosphosulfate binding loop, a'3'-phosphate binding motif, and a conserved RYEDL motif.
- 12. A genetically modified mycobacterium, wherein said genetically modified mycobacterium comprises a modified sulfation pathway gene, such that said sulfation pathway gene does not direct expression of a sulfation pathway polypeptide, wherein said genetically modified mycobacterium is avirulent.
- 13. An immunogenic composition comprising a genetically modified mycobacterium according to claim 12; and a buffer.
- 14. A pharmaceutical composition comprising a genetically modified mycobacterium according to claim 12; and a pharmaceutically acceptable excipient.
- 15. An in vitro cell-free method of identifying an agent that reduces an activity of a mycobacterial sulfation pathway polypeptide, the method comprising: a) contacting a mycobacterial sulfation pathway polypeptide with a test agent; and b) determining the effect, if any, of the test agent on an activity of the sulfation pathway polypeptide.
- 16. The method according to claim 15, wherein said mycobacterial sulfation pathway polypeptide is a sulfotransferase, and wherein said determining step comprises: i) combining said sulfotransferase with a labeled sulfate donor and an acceptor molecule; and ii) determining the amount of labeled sulfate transferred from the donor to the acceptor molecule, wherein a reduction in the amount of labeled sulfate in the acceptor molecule, compared to a control in the absence of the test agent, indicates that the test agent reduces activity of the sulfotransferase.
- 17. An agent identified by the method according to claim 16.
- 18. The agent according to claim 16, wherein said agent reduces viability and/or virulence of a mycobacterium.
- 19. A method of treating a mycobacterial infection in a mammal, comprising administering to the mammal a therapeutically effective amount of an agent that reduces an activity of a mycobacterial sulfation pathway polypeptide.
- 20. The method according to claim 19, wherein the mycobacterial infection is Mycobacterium tuberculosis.
- 21. A method of reducing the viability of a mycobacterium, comprising contacting the mycobacterium with an agent that reduces an activity of a mycobacterial sulfation pathway polypeptide.
- 22. A method of reducing virulence of a mycobacterium, comprising contacting the mycobacterium with an agent that reduces an activity of a mycobacterial sulfation pathway polypeptide.
- 23. A method of increasing an immune response to a pathogenic mycobacterium in a host, comprising administering to the host an immunogenic composition according to claim 13.
- 24. An in vitro method for identifying an agent that inhibits an activity of a mycobacterial sulfation pathway enzyme, the method comprising: a) culturing a first and a second bacterial cell in separate cultures in the presence of a test agent, wherein the first bacterial cell and the second bacterial cell contain a defect in the sulfation pathway enzyme, and wherein the second bacterial cell is transfected with a polynucleotide comprising a nucleotide sequence that encodes and expresses a mycobacterial sulfation pathway enzyme that complements the defect in the sulfation

pathway enzyme; and b) comparing the growth of the first bacterial culture with the growth of the second bacterial culture, wherein a reduction of growth in the second bacterial culture relative to the first bacterial culture indicates that the agent specifically inhibits the mycobacterial sulfation pathway enzyme.

End of Result Set

Print **Generate Collection**

L10: Entry 2 of 2

File: USPT

Jul 6, 1999

US-PAT-NO: 5919673

DOCUMENT-IDENTIFIER: US 5919673 A

TITLE: One-pot enzymatic sulfation process using 3'-phosphoadenosine-5'-phosphosulfate and recycled phosphorylated adenosine intermediates

DATE-ISSUED: July 6, 1999

INVENTOR - INFORMATION:

CITY ZIP CODE COUNTRY STATE

Wong; Chi-Huey

Rancho Sante Fe

CA

Lin; Chun-Hung

San Diego

CA

Shen; Gwo-Jenn

Carlsbad

US-CL-CURRENT: 435/130; 435/101, 435/52, 435/92

CLAIMS:

We claim:

- 1. A process for using 3'-phosphoadenine-5'-phosphosulfate (PAPS) in an enzyme-catalyzed sulfation of an acceptor with recycling of phosphorylated adenosine intermediates that comprises the steps of:
- (a) admixing the following ingredients in an aqueous medium containing magnesium and potassium ions within a single vessel to form an aqueous reaction medium
- (i) 3'-nucleotidase or 3'(2'),5'-bisphosphate nucleotidase;
- (ii) ATP sulfurylase;
- (iii) APS kinase;
- (iv) pyrophosphorylase;
- (v) a sulfotransferase;
- (vi) at least one adenine-containing compound selected from the group consisting of ATP, ADP, AMP, APS, PAPS and PAP;
- (vii) sulfate ion;
- (viii) an ATP-regenerating system comprising a phosphate donor and a phosphorylating enzyme; and
- (ix) a sulfate acceptor for said sulfotransferase

the concentration of said sulfate ion being greater than the concentration of all of said adenine-containing compound, and the activity of said 3'-nucleotidase being less than that of the enzymes of (ii) - (v); and

maintaining said aqueous reaction medium at a pH value of about 5 to about 10 at a temperature of about zero degrees C to about 40.degree. C. for a time period sufficient for said acceptor to be sulfated.

- 2. The process according to claim 1 including the further step of recovering the sulfated acceptor.
- 3. The process according to claim 1 wherein said ATP-regenerating system comprises myokinase, pyruvate kinase and phospho(enol)pyruvate.
- 4. The process according to claim 1 wherein said sulfotransferase is chondroitin transferase.
- 5. The process according to claim 1 wherein said sulfotransferase is hydroxysteroid sulfotransferase.
- 6. The process according to claim 1 wherein said sulfotransferase is ${\tt NodH}$ sulfotransferase.

Generate Collection

Print

Search Results - Record(s) 1 through 2 of 2 returned.

☐ 1. Document ID: US 20030104001 A1

L10: Entry 1 of 2

File: PGPB

Jun 5, 2003

PGPUB-DOCUMENT-NUMBER: 20030104001

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030104001 A1

TITLE: Mycobacterial sulfation pathway proteins and methods of use thereof

PUBLICATION-DATE: June 5, 2003

INVENTOR-INFORMATION:

NAME

CITY Berkeley STATE

RULE-47

Bertozzi, Carolyn R. Williams, Spencer J.

Berkeley

CA

CA

COUNTRY

Mougous, Joseph D.

El Cerrito

CA

US US

US

US-CL-CURRENT: <u>424/190.1</u>; <u>435/193</u>, <u>435/252.3</u>, <u>435/320.1</u>, <u>435/69.3</u>, <u>536/23.2</u>

Full Title Citation Front Review Classification Date Reference Sequences Attachments Image

☐ 2. Document ID: US 5919673 A

L10: Entry 2 of 2

File: USPT

Jul 6, 1999

US-PAT-NO: 5919673

DOCUMENT-IDENTIFIER: US 5919673 A

TITLE: One-pot enzymatic sulfation process using 3'-phosphoadenosine-5'-phosphosulfate and recycled phosphorylated adenosine intermediates

DATE-ISSUED: July 6, 1999

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Wong; Chi-Huey

Rancho Sante Fe

CA

Lin; Chun-Hung

San Diego

CA

Shen; Gwo-Jenn

Carlsbad

CA

US-CL-CURRENT: <u>435/130</u>; <u>435/101</u>, <u>435/52</u>, <u>435/92</u>

Title Citation Front Review Classification Date Reference Sequences Attachments

KWMC | Drawn Desc

Generate Collection Print

Terms	Documents
atp sulfurylase and aps kinase.clm.	2

Display Format: - Change Format

Previous Page Next Page

WEST Search History

DATE: Tuesday, July 15, 2003

Set Name side by side	Query	Hit Count	Set Name result set
DB=; PB	LUR=YES; OP=ADJ		
L10	atp sulfurylase and aps kinase.clm.	2	L10
L9	3'-phosphoadenosine-5'-phosphosulfate.clm.	3	L9
L8	3'-phosphoadenosine-5'-phosphosulfate synthetase	0	L8
L7	paps synthetase	6	L7
L6	L2 and paps synthetase	0	L6
L5	gene specific same antibody binding fragment	0	L5
L4	gene specific adj15 antibody binding fragment	0	L4
L3	gene specific adj5 antibody binding fragment	0	L3
L2	gene specific and antibody binding fragment	95	L2
DB = USI	PT,PGPB,JPAB,EPAB,DWPI; PLUR=YES; OP=ADJ		
L1	gene specific antibody binding fragment	0	L1

END OF SEARCH HISTORY