

1 Finding Limits Graphically

1.
$$\begin{cases} f(1) = \\ \lim_{x \to 1^{-}} f(x) = \\ \lim_{x \to 1^{+}} f(x) = \\ \lim_{x \to 1} f(x) = \end{cases}$$

4.
$$\begin{cases} f(4) = \\ \lim_{x \to 4^{-}} f(x) = \\ \lim_{x \to 4^{+}} f(x) = \\ \lim_{x \to 4} f(x) = \end{cases}$$

7.
$$\begin{cases} f(7) = \\ \lim_{x \to \mathbf{7}^{-}} f(x) = \\ \lim_{x \to \mathbf{7}^{+}} f(x) = \\ \lim_{x \to \mathbf{7}} f(x) = \end{cases}$$

2.
$$\begin{cases} f(2) = \\ \lim_{x \to \mathbf{2}^{-}} f(x) = \\ \lim_{x \to \mathbf{2}^{+}} f(x) = \\ \lim_{x \to \mathbf{2}} f(x) = \end{cases}$$

5.
$$\begin{cases} f(5) = \\ \lim_{x \to \mathbf{5}^{-}} f(x) = \\ \lim_{x \to \mathbf{5}^{+}} f(x) = \\ \lim_{x \to \mathbf{5}} f(x) = \end{cases}$$

3.
$$\begin{cases} f(3) = \\ \lim_{x \to 3^{-}} f(x) = \\ \lim_{x \to 3^{+}} f(x) = \\ \lim_{x \to 3} f(x) = \end{cases}$$

6.
$$\begin{cases} f(6) = \\ \lim_{x \to \mathbf{6}^{-}} f(x) = \\ \lim_{x \to \mathbf{6}^{+}} f(x) = \\ \lim_{x \to \mathbf{6}} f(x) = \end{cases}$$

2 Infinite Limits and Limits at Infinity

8.
$$\begin{cases} g(8) = \\ \lim_{x \to \mathbf{8}^{-}} g(x) = \\ \lim_{x \to \mathbf{8}^{+}} g(x) = \\ \lim_{x \to \mathbf{8}} g(x) = \end{cases}$$

10.
$$\begin{cases} g(10) = \\ \lim_{x \to \mathbf{10}^{-}} g(x) = \\ \lim_{x \to \mathbf{10}^{+}} g(x) = \\ \lim_{x \to \mathbf{10}} g(x) = \end{cases}$$

12.
$$\begin{cases} g(12) = \\ \lim_{x \to \mathbf{12}^{-}} g(x) = \\ \lim_{x \to \mathbf{12}^{+}} g(x) = \\ \lim_{x \to \mathbf{12}} g(x) = \end{cases}$$

9.
$$\begin{cases} g(9) = \\ \lim_{x \to \mathbf{9}^{-}} g(x) = \\ \lim_{x \to \mathbf{9}^{+}} g(x) = \\ \lim_{x \to \mathbf{9}} g(x) = \end{cases}$$

11.
$$\begin{cases} g(11) = \\ \lim_{x \to 11^{-}} g(x) = \\ \lim_{x \to 11^{+}} g(x) = \\ \lim_{x \to 11} g(x) = \end{cases}$$

13.
$$\lim_{x \to -\infty} g(x) =$$

$$14. \lim_{x \to +\infty} g(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = \lim_{x \to +$$

$$f(x) = 1/x^{2}$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = |x|$$

$$f(0) =$$

$$\lim_{x \to 0^{-}} f(x) =$$

$$\lim_{x \to 0^{+}} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

18.
$$f(x) = \sqrt[3]{x}$$

$$f(0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to -\infty} f$$

 $\lim f(x) =$

 $x \rightarrow +\infty$

$$f(x) = x^{3}$$

$$f(0) =$$

$$\lim_{x \to 0^{-}} f(x) =$$

$$\lim_{x \to 0^{+}} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

 $x \to +\infty$

$$f(x) = e^{x}$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

21.
$$f(x) = \ln(x)$$

$$f(x) = \ln f(0) = 1$$

$$f(0) = \lim_{x \to \mathbf{0}^{-}} f(x) = 1$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) = 1$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) = 1$$

$$\lim_{x \to -\infty} f(x) = 1$$

$$\lim_{x \to -\infty} f(x) = 1$$

$$\lim_{x \to +\infty} f(x) = 1$$

$$f(x) = \cos(x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

 $x \rightarrow +\infty$

$$f(x) = \frac{\sin(x)}{x}$$

$$f(0) = \lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = \lim_{x$$

3 Identify Continuity/Discontinuity at a Point

27.	We say $f(x)$ is	if $\lim_{x \to a} f(x)$ exists and equals $f(a)$	
	0 0 () =		
		$x \rightarrow a$	

- 28. We say f(x) has a _____ at x = a if $\lim_{x \to a} f(x)$ exists and does not equal f(a).
- 29. We say f(x) has a ______ if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are unequal.
- 30. We say f(x) has an _____ if either $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ equals either ∞ or $-\infty$.
- 31. The function f(x) is **continuous at** x =______
- 32. The function f(x) is has a removable discontinuity at x =______.
- 33. The function f(x) is has a jump discontinuity at x =______.
- 34. The function f(x) is has an **infinite discontinuity at** $x = \underline{\hspace{1cm}}$.

4 Identify Left and Right Continuity at a Point

- 35. We say f(x) is ______ if $\lim_{x\to a^-} f(x)$ exists and equals f(a).
- 36. We say f(x) is ______ if $\lim_{x\to a^+} f(x)$ exists and equals f(a).
- 37. The function f(x) is left continuous at x =______.
- 38. The function f(x) is **right continuous at** x =______

5 Continuity on an Interval

We say f(x) is **continuous on** (a, b) if f(x) is continuous at x = c for all c in (a, b).

39. We say f(x) is **continuous on** [a, b] if f(x) is continuous at x = c for all c in (a, b),

and _____ and ____

- 40. We say f(x) is **continuous everywhere** if f(x) is continuous at x = c for all c in ______.
- 41. We say f(x) is **continuous** if it is continuous on every open interval in ______
- 42. Find the union of all open intervals (a, b) such that f(x) is **continuous on (a, b)**. Use interval notation.
- 43. The function f(x) fails to be **continuous** (on every open interval in its domain). It fails at $x = \underline{\hspace{1cm}}$