数字图像处理中常用的matlab函数

- Size () 函数
- Zeros () 函数
- Fft2(), ifft2()函数
- Imhist() 函数
- Histeq() 函数
- Imrotate() 函数
- Imnoise() 函数
- Edge() 函数
- Title()函数
- Xlable(),Ylable()函数

• Size () 函数

获取图像矩阵大小。一般是应用于有格式 图像,因无格式(二进制)图像的大小在读入 时已知。

size 函数

```
size(imagematrix)
```

```
>> size(f)
ans =
494 600
```

>>> whos f % whos 查看变量细节
Name Size Bytes Class
f 494x600 296400 uint8 array
Grand total is 296400 elements using 296400 bytes

• Zeros () 函数

零矩阵函数。

例: I=zeros(100,100); %I为100×100的零矩阵, 矩阵 %中元素全为零。

Imshow(I); %显示一个 100×100 的黑方块。

例如作业题1,生成一个外边黑中间一块是白的图像,可以先生成一个全黑的图像,然后在中间作一个双重循环,赋象素值为255或1。

```
I1=zeros(128,128); %生成一个128×128的全黑图像 for i=38:1:90  
    for j=58:1:70  
        I1 (i,j) =255; %或I1(i,j)=1; end end imshow (I1); %I1即为所求图形。
```

图像存储与显示

- 图像存储
- 图像显示

• 图像存储

在Matlab中, 图像是以矩阵形式存储的, 对图像的操作也就是对矩阵的操作。

例: 图像名用f表示,则f表示一个图像矩阵,i代表矩阵的行,j代表矩阵的列。

f(i,j) 代表图像在点(i,j) 的灰度值。

- 图像的显示
 - 图像分为
- 有格式图像:如.bmp格式;.tif 格式;...
- 无格式图像:如.img(以二进制格式存储) 不同的格式显示方式不同。

坐标系约定

in many image processing books

in the Image Processing Toolbox

一幅图像在matlab中的矩阵表示

A digital image can be represented as a MATLAB matrix:

读入图像

imread('filename')

Some examples:

- f=imread('chestxray.jpg');
- f=imread('D:\myimages\chestxray.jpg');
- f=imread('.\myimages\chestxray.jpg');

支持的图像格式

Format	Description	Recognized
Name		Extensions
TIFF	Tagged Image File Format	.tif, .tiff
JPEG	Joint Photographic Experts Group	.jpg, .jpeg
GIF	Graphics Interchange Format	.gif
BMP	Windows Bitmap	.bmp
PNG	Portable Network Graphics	.png
XWD	X Window Dump	.xwd

1、有格式图像显示

```
对有格式图像,可用imread ()函数读入,用imshow ()函数显示。
例: I=imread('d:\image\x.bmp');
或 I=imread ('d:\image\x','bmp');
路径 格式 figure(1);
imshow (I); %显示图像I
axis image %对图像加坐标。
若不能直接对data进行处理 可以进行转换后在处理:
```

• 若不能直接对data进行处理,可以进行转换后在处理; 转换语句: data=uint8(data);

```
>> f=imread('rose_512.tif');
>> imshow(f)
```


- >> f=imread('rose 512.tif');
- >> g=imread('cktboard.tif');
- >> imshow(f), figure, imshow(g)

2、同屏显示多个图像

- 可用subplot(m,n)将图形窗分为m*n个子窗口, 然后取第一、第二... 子窗口显示不同的图像, 实现同屏显示多个图像。例如:
- figure(1);

```
%取2 \times 2个子屏中的第一个子屏
subplot (2,2,1);
```

• • • • •

%显示第一个图像

imshow(I1);

.

%取2×2个子屏中的第四个子屏

subplot(2,2,4);

.

%显示第四个图像

imshow(I4);

- imshow(f, [low,high]) 所有小于或等于low的值显示为黑色; 所有大于或等于high的值显示为白色
- imshow(f, []): 将数组f的最小值设为low 将数组f的最大值设为high **在显示一幅动态范围较小的图像或有正负值的图像非常有用**

保存图像

[colres rowres] contains two integers that give the column and row resolution in dots-per-unit (the default values are [72 72]).

保存图像

```
imwrite(f, 'filename')
```

- imwrite(f, 'patient10_run1', 'tif')
- imwrite(f, 'patient10_run1.tif')

imwrite(f, 'filename.jpg', 'quality', q) %保存JPEG图像的语法

The lower the number q the higher the degradation due to JPEG compression.

保存图像 imwrite(f,'bubbles25.jpg','quality',25);

q = 50

q = 25

= 15

$$q = 5$$

=0

保存图像

• fft2(), ifft2()函数

fft2()函数为二维快速博立叶变换函数; ifft2()函数为二维逆快速博立叶变换函数。 对一幅图像进行博立叶变换后,得到它的频谱。 例:

I2=fft2(I1); %对图像I1进行二维快速博立叶变换 % Fc = fftshift(I1);%频谱中心化 Imshow(I2);%显示频谱图。 I3=ifft2(I2); %对图像I2进行二维逆快速博立

13=1fft2(12); %对图像12进行二维逆快速傳立 % 叶变换, 得到原图像

• Imhist() 函数 图像直方图函数。

例: imhist(I); %显示图像I的直方图;

• Histeq() 函数 直方图均衡化函数。

例:

I1=histeq(I); %对图像I进行直方图均衡化。 Imshow(I1);%显示均衡化后的图像I1 • Imrotate() 函数 : 旋转图像函数;

格式: J = imrotate(I,angle,method)

I: 被旋转图像 J: 旋转后的图像

angle: 旋转角度

method: 可为'nearest'、'bilinear'、'bicubic'

例: I=imread('ic.tif');%读入图像ic.tif

J=imrotate(I,45,'bilinear');%对图像 Ⅰ旋转45度

imshow(I); %显示原图I

figure,imshow(J); %显示旋转后的图像J

• Imnoise() 函数 : 给图像增加噪声。

格式: J=imnoise(I, '噪声类型', 参数);

I:待加噪声图像;

噪声类型: 高斯噪声、盐噪声等:

参数:噪声密度(0--1);

J: 加入噪声的图像。

例: J=imnoise(I, 'salt&pepper', 0.02); %给图象 I 增加盐噪声

• Edge() 函数

边缘检测函数。

J=edge(I,'检测算子 '); %J是对图像I用某算子 %进行边缘检测后的边缘图; %J是二值图像, 即黑、白二色。

例:

J=edge(I,'Roberts'); %用Roberts**算子对图像I进行边缘检测** imshow(J); %显示边缘图

• Title()函数

给图像加标题;

例: title('图像变换结果图'); %图像标题为"图像变换结果图"

Xlable(),Ylable()函数

对图像的X轴、Y轴加标注。

 关于Matlab函数的具体应用,可以查Matlab的Help, Help中有详细的说明。

Matlab和数字 图像处理

图像增强-空间域图像增强

1.1 图像增强-空间域图像增强

g(x, y) = T [f (x, y)]

g=imadjust(f,[low_in high_in],... [low_out high_out],gamma)

1.1 空间域图像增强-图像反转(反色) g1=imadjust(f,[0 1],[1 0]);

1.1 图像显示和计算直方图

f=imread('breast.tif');
imshow(f), imhist(f)

imhist只能对灰度图像画直方图 要先进行彩色转灰度图 L=rgb2gray(L);

1.1 图像增强-直方图均衡

J=histeq(Im); %均衡化

1.1 图像增强-空域滤波

g=imfilter(f,w,filtering_mode,...
boundary_options,size_options)

f:输入图像; w: 滤波掩模; g滤波后图像

filtering_mode:filtering_mode用于指定在滤波过程中是使用"相关"还是"券积"

1.1 图像增强-线性滤波器的生成

w=fspecial('type',parameters)

- fspecial('average',[r c])大小为r*c的矩形平均滤 波器; 默认值为3;
- fspecial('gaussian',[r c], sig) 大小为rxc的高斯低通滤波,默认值为3x3和0.5
- 'log'、' laplacian'等等(help 查询)

1.1 图像增强-线性滤波器的生成

Туре	Syntax and Parameters	
'average'	fspecial('average',[r c]). A rectangular averaging filter of size r×c. The default is 3×3 . A single number instead of [r c] specifies a square filter.	
'disk'	fspecial('disk',r). A circular averaging filter (within a square of size 2r+1) with radius r. The default radius is 5. fspecial('gaussian',[r c],sig). A Gaussian lowpass filter of size r×c and standard deviation sig (positive). The defaults are 3 × 3 and 0.5. A single number instead of [r c] specifies a square filter. fspecial('laplacian',alpha). A 3 × 3 Laplacian filter whose shape is specified by alpha, a number in the range [0, 1]. The default value for alpha is 0.5.	
'gaussian'		
'laplacian'		
'log'	fspecial('log',[r c],sig). Laplacian of a Gaussian (LoG) filter of size rtimesc and standard deviation sig (positive). The defaults are 5 × 5 and 0.5. A single number instead of [r c] specifies a square filter.	

1.1 图像增强-线性滤波器的生成

Type	Syntax and Parameters	
'motion'	fspecial('motion',len,theta). Outputs a filter that, when convolved with an image, approximates linear motion (of a camera with respect to the image) of len pixels. The direction of motion is theta, mesaured in degrees, counterclockwise from the horizontal. The defaults are 9 and 0, which represents a motion of 9 pixels in the horizontal direction.	
' prewitt'	fspecial('prewitt'). Outputs a 3 × 3 Prewitt mask, wv, that approximates a vertical gradient. A mask for the horizontal gradient is obtained by transposing the result: wh=wv'.	
' sobel'	fspecial('sobel'). Outputs a 3 × 3 Sobel mask, sv, that approximates a vertical gradient. A mask for the horizontal gradient is obtained by transposing the result: sh=sv'.	
'unsharp'	fspecial('unsharp',alpha). Outputs a 3×3 unsharp filter. Parameter alpha controls the shape; it must be greater than or equal to 0 and less than or equal to 1.0; the default is 0.2.	

1.1 图像增强-非线性滤波器的生成

G= ordfilt2(f,order,domain)

中值与线性滤波如 均值的结果比较

f: 输入图像

Order:使用邻域的一组元素中的第order个元素来代替f中的每个元素。

Domain:邻域由domain中的非零元素指定

g=ordfilt2(f,median(1:m*n),ones(m,n)); 中值滤波:

g = medfilt2(f,[m n],padopt);%数组[m n]定义了一个大小为mxn的邻域,中值在此邻域上计算。padopt:边界填充选项

1.1 图像增强-非线性滤波器的生成

- >> fn=imread('Fig3.37(a).jpg');
- >> gm=medfilt2(fn);
 >> subplot(2,1,1), imshow(fn)
- >> subplot(2,1,2), imshow(gm)

1.1 图像增强-空域增强-拉普拉斯增强

1.1 图像增强-空域增强-拉普拉斯增强

