- 1. 给定自然数集 N 的子集: $A = \{1, 2, 7, 8\}$, $B = \{i|i^2 < 50\}$, $C = \{i|i$ 可以被 3 整除且 $0 \le i \le 30\}$, $D = \{i|i = 2^k$ 且 $k \in \mathbb{Z}$, $0 \le k \le 6\}$ 。写出下列集合所包含的所有元素:
 - (1)AU(BU(C \cap D)); (2)A \cap (B \cap (CUD));
 - (3)B-(AUC); (4)($\overline{A} \cup B$) $\cup D_{\circ}$
- 2. 用谓词逻辑演算的方法证明 A-(A-B)=A∩B。
- 3. 用集合恒等式的方法证明 AUB=AU(B-A)。
- 4. 设 $A = \{a, b\}$, 写出集合 $\mathcal{P}(A) \times A$ 的所有元素。
- 5. 设 X={1, 2, 3, 4}, R 是 X 上的二元关系, R={<1, 1>, <3, 1>, <1, 3>, <3, 3>, <3, 2>, <4, 3>, <4, 1>, <4, 2>, <1, 2>}
- (1)画出 R 的关系图。
- (2)写出 R 的关系矩阵。
- (3)说明 R 是否是自反、反自反、对称、传递的。
- 6. 若集合 A 上的二元关系 R 和 S 具有对称性,证明 RoS 对称当且仅当 RoS=SoR。
- 7. 设 R_1 是 A 上的等价关系, R_2 是 B 上的等价关系, $A\neq\emptyset$ 且 $B\neq\emptyset$ 。关系 R 满足:<< x_1 , y_1 >,< x_2 , y_2 >> \in R \Leftrightarrow < x_1 , x_2 > \in R₁ 且< y_1 , y_2 > \in R₂,证明 R 是 A×B 上的等价关系。

- - 15, 18, 21, 24, 27, 30}, D={1, 2, 4, 8, 16, 32, 64}, 所以
 - $(1)A\cup(B\cup(C\cap D))=\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
 - $(2)A\cap(B\cap(C\cup D))=\{1, 2\}$
 - $(3)B-(A\cup C)=\{4, 5\}$
 - $(4)(\overline{A} \cup B) \cup D = N$
- 2. 因为

$$x \in (A \cup B) - C \Leftrightarrow x \in (A \cup B) - C$$

- $\Leftrightarrow x \in (A \cup B) \land x \notin C$
- \Leftrightarrow $(x \in A \lor x \in B) \land x \notin C$
- \Leftrightarrow $(x \in A \land x \notin C) \lor (x \in B \land x \notin C)$
- $\Leftrightarrow x \in (A-C) \lor x \in (B-C)$
- $\Leftrightarrow x \in (A-C) \cup (B-C)$

所以,(AUB)-C=(A-C)U(B-C)。

- 3. $A-(A-B)=A\cap \overline{A-B}=A\cap A\cap \overline{B}=A\cap (\overline{A}\cup B)=(A\cap \overline{A})\cup (A\cap B)=A\cap B$.
- 4. $P(A) \times A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \times \{a, b\} = \{\emptyset, a\}, \emptyset, b\}, \{a\}, a\}, \{a\}, b\}, \{b\}, a\}, \{b\}, b\}, \{a, b\}, a\}, \{a, b\}, b\}$
- 5. (1)R 的关系图如图所示:
 - (2) R 的关系矩阵为:

$$M(R) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- (3)对于 R 的关系矩阵,由于对角线上不全为 1, R 不是自反的;由于对角线上存在非 0
- 元, R 不是反自反的; 由于矩阵不对称, R 不是对称的;

经过计算可得

$$M(R^{2}) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = M(R)$$

所以 R 是传递的。

6. 若 R∘S 对称,则 R∘S=(R∘S)°=S°∘R°=S∘R。

反之,若 R·S=S·R,则(R·S)^c=(S·R)^c=R^c·S^c=R·S,从而 R·S 对称。

7. 对任意的 $\langle x, y \rangle \in A \times B$,由 R_1 是 A 上的等价关系可得 $\langle x, x \rangle \in R_1$,由 R_2 是 B 上的等价关系可得 $\langle y, y \rangle \in R_2$ 。再由 R 的定义,有 $\langle x, y \rangle$, $\langle x, y \rangle \in R$,所以 R 是自反的。

对任意的<x, y>、<u, v> \in A×B,若<x, y>R<u, v>,则<x, u> \in R₁ 且<y, v> \in R₂。由 R₁ 对称得<u, x> \in R₁,由 R₂ 对称得<v, y> \in R₂。再由 R 的定义,有<<u, v>, <<math>x, y>> \in R,即<u, v>R<x, y>,所以 R 是对称的。

对任意的<x, y>、<u, v>、<s, t> \in A×B,若<x, y>R<u, v>且<u, v>R<s, t>, 则<x, u> \in R₁且<y, v> \in R₂, <u, s> \in R₁且<v, t> \in R₂。由<x, u> \in R₁、<u, s> \in R₁及 R₁的传递性得<x, s> \in R₁,由<y, v> \in R₂、<v, t> \in R₂及 R₂的传递性得<y, t> \in R₁。再由 R 的定义,有<<x, y>, <s, t>> \in R,即<x, y>R<s, t>,所以 R 是传递的。

综上可得,R是A×B上的等价关系。