고제염소의 소금생산량예측모형에 대하여

박경일, 리성진

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《지구우에 존재하는 모든 생명체와 자연현상은 대양의 영향을 크게 받고있습니다.》 (《김정일전집》제3권 380폐지)

태양활동이 지구생물권과 기상현상들에 미치는 영향에 대하여서는 잘 알려져있다. 그러한 영향은 장기적이고 통계적인 수많은 단순주기들의 합성으로 해석되고있다.[1]

1. 대양활동지수를 통한 소금생산량예측모형의 가능성

먼저 기제염소의 소금생산량자료와 태양활동을 특징짓는 kp지수사이의 련관성을 확증하였다.

ㄱ제염소의 1970년부터 2014년까지의 소금생산량과 같은 시기의 kp지수사이의 련관성을 보기 위하여 두 시계렬의 주기성을 비교해보았다.

Matlab를 리용하여 프로그람을 작성하고 두 시계렬의 주기성을 비교해본 결과는 그

그림 1. 소금생산량과 kp지수의 주기성 1,2는 각각 kp지수와 소금생산량

그림 1에서 보는바와 같이 두 시계렬의 주기성은 매우 류사하다. 특히 세기가 가장 큰 기본주기의 주기성이 10년정도이며 세기가 좀 약한 5년 정도의 주기성도 모양이 비슷하다. 이 그림을 통하여 소금생산량은 태양활동의 영향을 받으며 태양활동지수를 리용하여 소금생산량을 예측할수 있다는것을 알수 있다.

2. 소금생산량예측모형

론문에서는 2차원자기회귀모형을 리용하여 기 제염소의 소금생산량을 예측할수 있는 모형을 제 기하고 그 정확도를 평가하였다.

소금생산량이 일정한 주기성을 가지고있는것 으로 하여 이 하나의 시계렬만으로도 예측모형을 세울수 있다. 그러나 앞에서도 본바와 같이 kp지 수는 소금생산량과 밀접한 련관이 있으며 주기적

측면에서 볼 때 소금생산량과 많은 공통점을 가지고있으므로 이것을 리용하여 소금생산 량예측의 정확성을 보다 더 높일수 있다.

 $x_2(t)$ 를 소금생산량자료, $x_1(t)$ 를 kp지수라고 하자.

2차원자기회귀모형에 의한 소금생산량은 다음과 같이 표시된다.

$$x_2(j) = \sum_{p=1}^{2} \sum_{k=1}^{M} b_{2p}(k) x_p(j-k)$$
 (1)

2차원자기회귀모형의 알고리듬은 다음과 같다.[2]

- ① 먼저 차수 M을 선정한다. 차수 M은 시계렬자료의 개수에 따라 적당히 선정하는데 론문에서는 M=50으로 설정하였다.
 - ② 다음의 식에 의하여 행렬 X와 F를 결정한다.

$$X_{pq} = \sum_{j=M+1}^{N} \begin{pmatrix} x_p(j-1)x_q(j-1) & x_p(j-2)x_q(j-1) & \cdots & x_p(j-M)x_q(j-1) \\ x_p(j-1)x_q(j-2) & x_p(j-2)x_q(j-2) & \cdots & x_p(j-M)x_q(j-2) \\ & \cdots & & \cdots & & \cdots \\ x_p(j-1)x_q(j-M) & x_p(j-2)x_q(j-M) & \cdots & x_p(j-M)x_q(j-M) \end{pmatrix}$$
(2)

$$F_{pq} = \sum_{j=M+1}^{N} \begin{pmatrix} x_p(j)x_q(j-1) \\ x_p(j)x_q(j-2) \\ \vdots \\ x_p(j)x_q(j-M) \end{pmatrix}$$
(3)

③ 행렬 X와 F를 리용하여 다음의 식에 의해 행렬 B_{21} 과 B_{22} 의 값을 계산한다.

$$\begin{bmatrix}
[B_{21}] \\
[B_{22}]
\end{bmatrix} = \begin{bmatrix}
B_{21}(1) \\
\vdots \\
B_{21}(M) \\
B_{22}(1) \\
\vdots \\
B_{22}(M)
\end{bmatrix} = \begin{bmatrix}
X_{11} & X_{21} \\
X_{12} & X_{22}
\end{bmatrix}^{-1} \begin{bmatrix} F_{21} \\
F_{22}
\end{bmatrix} \tag{4}$$

④ 예보값을 계산한다.

$$x_2(j)(j \ge N+1) = \sum_{p=1}^{2} \sum_{k=1}^{M} B_{2p}(k) x_p(j-k)$$
 (5)

리용할 시계렬자료는 앞에서와 마찬가지로 기제염소의 1970년부터 2014년까지의 월별소금생산량자료와 대응하는 kp지수자료인데 시계렬예측의 정확성을 평가하기 위 하여 1970년부터 2013년까지의 월별소금생산량자료를 리용하여 2014년의 소금생산량

을 예측하고 그 값을 2014년의 실지 소 금생산량자료와 비교하여 평가하였 다.(그림 2)

그림 2에서 점선으로 표시된 곡선은 실지 소금생산량곡선이며 실선으로 표시 된 곡선은 예보생산량곡선이다. 그림에서 알수 있는바와 같이 앞선 1년에 해당한 예보생산량곡선은 실지 생산량곡선과 거 의 일치한다.

모형의 정확도를 구체적으로 평가하 기 위하여 2012년까지의 자료를 리용하여

그림 2. 실지 소금생산량과 2014년 소금생산량의 예보값

예측값과 2013년자료를 비교하고 2011년까지의 자료를 리용하여 2012년자료와의 비교를 진행하는 방법으로 5개의 예측값을 실제값과 비교하였다.(표)

	11	_	7-1	$\overline{}$	11
Ħ.	н	ш	12	П	۱ŀ

년	실제값/t	예측값/t	오차/%
2010	73 169	69 137	5.8
2011	42 108	40 119	4.9
2012	68 483	67 498	1.5
2013	111 928	111 534	3.4
2014	60 137	61 028	1.8

오차가 점점 커지는 리유는 시계렬자료개수가 많지 못하기때문이다.

이 결과는 kp지수를 리용한 2차원자기회귀모형이 소금생산량을 예보할수 있는 적합한 모형이라는것을 보여준다.

맺 는 말

ㄱ제염소의 소금생산량의 주기성을 분석한데 기초하여 태양활동인자의 하나인 kp지수를 통하여 소금생산량을 미리 예보할수 있는 2차원자기회귀모형을 제기하였다.

참 고 문 헌

- [1] G. S. Tsitsiashvili et al.; Efficient Algorithms of Time Series Processing and Their Applications, Nova Science Publishers, 126~148, 2008.
- [2] P. J. Brockwell et al.; Time Series Theory and Methods, Springer, 254~268, 2016.

주체108(2019)년 12월 5일 원고접수

On the Model of Forecasting the Salt Production in 7 Salt Works

Pak Kyong Il, Ri Song Jin

In this paper we have analyzed the effects of solar activities on production of salt and suggested 2-dimensional autoregressive model to forecast salt production by using a factor of solar activities, kp factor.

Keywords: salt, forecast