# Lecture 15 — Performance Models and Tuning

Prof. Brendan Kochunas

NERS/ENGR 570 - Methods and Practice of Scientific Computing (F20)



### Outline

- Performance Model Development--Dense Matrix-Vector Multiply
- Latency Based Execution Time Model (Important for Lab 08)
- Serial Architecture Performance Tuning
- (Time Permitting) Advanced Optimizations
  - What Optimized BLAS actually does

# Learning Objectives: By the end of Today's Lecture you should be able to

- (Knowledge) describe what algorithmic properties influence an algorithm's performance
- (Knowledge) describe how hardware properties influence performance
- (Skill) develop and analyze a simple performance model to predict the performance of a low-level algorithm/computational kernel
- (Knowledge) be able to describe general techniques to "tune" the performance of code



# Review of Lecture 14 Concepts

### Motivation for Performance

- We can run more simulations in less time, and therefore get results quicker, learn quicker, publish quicker, graduate quicker, etc.
- While some common algorithms have been optimized, not every algorithm has, and perhaps for your problem/algorithm this is an area of research.
  - However, many of the same techniques can be employed for various algorithms.

| Matrix Size | myDGEMM | OpenBLAS | MKL   |
|-------------|---------|----------|-------|
| 100         | 0.001   | 0.064    | 0.002 |
| 500         | 0.068   | 0.069    | 0.007 |
| 1000        | 0.559   | 0.291    | 0.034 |
| 2000        | 6.160   | 0.749    | 0.231 |
| 4000        | 50.341  | 2.822    | 1.682 |
|             |         |          |       |

30x!

### What is performance?

### What does it mean for a code to be fast?

- The real metric: Time
- Derived metrics
  - FLOPS = FLoating Point OPerations per Second
  - Bandwidth = data per unit time (sort of like a flow rate)
  - Latency = Minimum time for data to travel from point A to point B
- Theoretical Peak Performance
  - *Very* difficult to achieve in practice
  - Can be computed from hardware specs
- Do things efficiently in time

#### How do you get fast code?

- First: Choose the right algorithm
- <u>Second</u>: Understand how to express that algorithm in the programming language
- Third: Understand how the source code will get mapped to the hardware
- Fourth: Tune the code to the hardware
- A lot of this can be done with pen and paper

### Things to keep in mind about architecture



|       | Register | L1    | L2    | L3       | DRAM       | Disk  | Таре |
|-------|----------|-------|-------|----------|------------|-------|------|
| Size  | < 1 KB   | ~1KB  | 1 MB  | 10's MB  | 1-100's GB | ТВ    | РВ   |
| Speed | < 1ns    | <1 ns | ~1 ns | ~1-10 ns | 10-100 ns  | 10 ms | ~10s |

### Fundamental Performance Model Concept

Execution time = time to perform arithmetic + <u>time to move data</u>

# Understanding Performance

### Peak Performance

- Example: Intel Haswell
  - What is the maximum FLOPs per cycle?
    - Need to look at SIMD information on processor
    - If we have AVX it supports a 256-bit vector so it can operate on 4 doubles
  - Does it support a fused multiply add (FMA instruction)?
    - Yes, so the chip can execute 4 FMA instructions (8 FLOPs) at once
  - How many vector units does it have?
    - Apparently it has 2 vector units... so now we're at 16 FLOPs at once
  - How many cycles to execute an FMA instruction (which is two operations)?
    - Not always easy to find... common to assume 1 cycle.
      - However there may be other limiting factors such as latency (5 cycles in this case)
  - What is the clock speed (cycles per second)? 2.50 GHz
    - Well with AVX it appears to be 2.1 GHz
  - How many cores does it have? 12
- 16 FLOPs/cycle × 2.5e9 cycles/second × 12 cores = 480 GFLOPS
  - 16 FLOPs ÷ 5 cycle × 2.1e9 cycles/second × 12 cores = **80 GFLOPS**
- Another derived metric is fraction of theoretical peak

#### Two Lessons from this:

- 1. This should be an easy calculation
- 2. Finding the right information can get quite complicated
- Best to provide references

   e.g. document or presentation

   from the manufacturer

### Algorithm Performance

- Not all algorithms are created equally
  - e.g. Big-O notation  $O(n^2)$  vs  $O(n \log n)$
- Not all implementations (algorithms really) are created equally
  - Can have "same" implementations with vastly different performance
- Very few algorithms allow you to achieve sustained performance at a significant fraction of the theoretical peak
- Let's go through an example

### Simple Performance Model

- Assume just 2 levels of memory in hierarchy: fast memory and slow memory
- Consider a model to predict execution time for some set of operations

$$T = Ft_F + t_M L$$

• Minimum possible time is  $Ft_F$  when all data is in fast memory

F= # of FLOPs L=# of loads  $t_E$  = time for flop

 $t_M$ = time for memory load/store

T =execution time

Can also rewrite as

 $t_{M}/t_{F}$  is machine balance  $\rightarrow$  key to machine efficiency Generally  $t_{F} << t_{M}$ 

$$T = Ft_F \left( 1 + \underbrace{t_M}_{t_F} \underbrace{L}_{F} \right)$$

F/L=q is computational efficiency  $\rightarrow$  key to algorithm efficiency Larger q means time is closer to minimum.

 $q \ge t_M / t_F$  to get at least *half* of the peak speed!

### Matrix-Vector Multiply



### Analysis of Matrix-Vector Multiply

- Assume all data for variables starts in slow memory
  - L = number of slow memory loads & stores
  - F = number of arithmetic operations
  - q =

### Plug-n-Chug

- Some real data
  - From Flux  $t_M$  =8 ns (assuming L3 access time) and assume  $t_F$  = 0.3 ns (1 cycle)

| $T-2n^2t$      | (<br>1 ⊥ | $t_{M}$ | $\frac{1}{2}$    |
|----------------|----------|---------|------------------|
| $T = 2n^2 t_F$ |          | $t_F$   | $\left[2\right]$ |

|           | Clock | Peak    | Mem Lat (Min, Max) |       | Linesize | t_m/t_f |
|-----------|-------|---------|--------------------|-------|----------|---------|
|           | MHz   | Mflop/s | cycles             |       | Bytes    |         |
| Ultra 2i  | 333   | 667     | 38                 | 66    | 16       | 24.8    |
| Ultra 3   | 900   | 1800    | 28                 | 200   | 32       | 14.0    |
| Pentium 3 | 500   | 500     | 25                 | 60    | 32       | 6.3     |
| Pentium3N | 800   | 800     | 40                 | 60    | 32       | 10.0    |
| Power3    | 375   | 1500    | 35                 | 139   | 128      | 8.8     |
| Power4    | 1300  | 5200    | 60                 | 10000 | 128      | 15.0    |
| Itanium1  | 800   | 3200    | 36                 | 85    | 32       | 36.0    |
| Itanium2  | 900   | 3600    | 11                 | 60    | 64       | 5.5     |

machine balance (q must be at least this for ½ peak speed)

Table B.1 and B.2 from R. Vuduc Dissertation: <a href="http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf">http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf</a>

### Generalization of Performance Models

Latency based execution time model for "Single Processor"

$$T = Ft_F + \alpha_1 L + \sum_{j=1}^{\kappa-1} (\alpha_{j+1} - \alpha_j) M_j + (\alpha_{mem} - \alpha_{\kappa}) M_{\kappa}$$

F= # of FLOPs
L=# of loads
α = cache access latency
M = cache misses

T =execution time

|       | Register | L1    | L2    | L3       | DRAM       | Disk  | Таре |
|-------|----------|-------|-------|----------|------------|-------|------|
| Size  | < 1 KB   | ~1KB  | 1 MB  | 10's MB  | 1-100's GB | ТВ    | РВ   |
| Speed | < 1ns    | <1 ns | ~1 ns | ~1-10 ns | 10-100 ns  | 10 ms | ~10s |

Most generally when dealing with complex kernels

$$T = \sum_{i} N_{i}t_{i}$$
  $N_{i} = \text{Number of operations of type } i$   
 $t_{i} = \text{time to execute operation of type } i$ 

### Roofline Models

 Visual representation of performance relating arithmetic intensity (q) and hardware performance limits

$$q = \frac{F}{L}$$



# Optimization & Tuning

### Things people say about Optimization

- "We should forget about small efficiencies, say about 97% of the time: *premature optimization is the root of all evil*. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will *be wise to look carefully at the critical code; but only after that code has been identified*"
  - Donald Knuth
- "You're bound to be unhappy if you optimize everything"
  - Donald Knuth
- "The best optimization you will ever have is to have your program go from not working to working"
  - paraphrasing

### Common Optimization Techniques

- Before you program
  - Choose the best algorithm
    - e.g. choose known fastest converging algorithms or algorithms with asymptotically small operation counts
  - Choose the best way to express this algorithm in a programming language
    - Perform algebra to minimize operations or minimize memory traffic and communication
    - Design data structures around computational kernels & maximize cache locality
- As you are programming
  - compiler optimization flags
  - choose best operators (remove unnecessary FLOPs)
  - loop unrolling (pipelining & vectorization)
  - remove conditionals (lets compiler optimize loops better)
  - function tabulation (remove unnecessary FLOPs)
  - Mixed Precision

### Compiler flags

| GCC compiler option             | Meaning                                                                                                                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -00                             | Reduce compilation time and make debugging produce the expected results. This is the default.                                                                                                                                                       |
| -01                             | compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time. (favors size of executable)                                                                                 |
| -02                             | Performs nearly all supported optimizations that do not involve a space-speed tradeoff. Includes all -01 optimizations                                                                                                                              |
| -03                             | Highest level of optimization. Includes all -02 optimizations                                                                                                                                                                                       |
| -Ofast                          | Disregard strict standards complianceOfast enables all -O3 optimizations. It also enables optimizations that are not valid for all standard-compliant programs.                                                                                     |
| -0g                             | Optimizations safe for debugging                                                                                                                                                                                                                    |
| -fipa-pta                       | Perform interprocedural pointer analysis and interprocedural modification and reference analysis. This option can cause excessive memory and compile-time usage on large compilation units. It is not enabled by default at any optimization level. |
| -funsafe-math-<br>optimizations | Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards.                                                                                                  |

### Choosing Data Structures and Loop Ordering

- Always make loops "stride-1" access to achieve best cache performance
  - Note this is not always possible for every algorithm.
- Looping structure should determine order of indexes in your variables.

#### Fortran loops should index "in-out"

```
DO k=1,n
DO j=1,n
DO i=1,n
A(i,j,k)

in — out
ENDDO
ENDDO
ENDDO
```

#### C/C++ loops should index "out-in"

```
for( i=0; i<n; i++ ) {
  for( j=0; j<n; j++) {
    for( k=0; k<n; k++ ) {
        A[i][j][k]
        out ← in
    }
}</pre>
```

### **Operator Choice**

- Avoid exponentiation
  - Polynomial evaluation
    - e.g. Correlations for material properties, Semi-empirical models for coefficients

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

$$P(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + a_4 x)))$$

```
t2=t**2.0 !slowest
t2=t**2 !slow
t2=t*t !fastest
```

#### When its unavoidable

```
c=a**b
c=EXP(b*LOG(x)) !may be faster
```

Division is allegedly more expensive than multiplication

### Expose Independent Operations

- Hide instruction latency
  - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
  - Balance the instruction mix (e.g. what functional units are available?)

```
f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
```

### Exploit Multiple Registers

 Reduce demands on memory bandwidth by pre-loading into local variables

### Loop Unrolling

- Compilers are not necessarily very good (or not as good as we'd like sometimes) at interpreting how to optimize loops
  - So compilers will do this if right flags are provided and loops are "clear" enough to compiler

```
subroutine lngth1(n,a,s)
  integer :: n
  real(8) :: s,a(n)
  integer :: i
  s=0.d0
  do i=1,n
      s=s+a(i)*a(i)
  enddo
endsubroutine
```

```
!works correctly only if the array size is a multiple of 4
subroutine lngth4(n,a,s)
 integer :: n
 real(8) :: s,a(n)
 integer :: i
 real(8) :: t1, t2, t3, t4
 t1=0.d0; t2=0.d0; t3=0.d0; t4=0.d0
 do i=1, n-3, 4
   t1=t1+a(i)*a(i)
    t2=t2+a(i+1)*a(i+1)
    t3=t3+a(i+2)*a(i+2)
    t4=t4+a(i+3)*a(i+3)
  enddo
  s=t.1+t.2+t.3+t.4
                           Unrolled to a depth of 4
endsubroutine
```

### Loop Unrolling (2)

- Exploits vector instructions and pipelining
- Cannot be done to arbitrary size
  - Registers will get overloaded
  - Size should be "register-blocked" or "cache-blocked".
- Can use *padding* to avoid remainder loops.

```
subroutine lngth4(n,a,s)
  integer :: n
  real(8) :: s,a(n)
  integer :: i
  real(8) :: t1, t2, t3, t4, tr
  t1=0.d0; t2=0.d0; t3=0.d0; t4=0.d0; tr=0.d0
  do i=1, n-3, 4
    t1=t1+a(i)*a(i)
    t2=t2+a(i+1)*a(i+1)
    t3=t3+a(i+2)*a(i+2)
    t4=t4+a(i+3)*a(i+3)
  enddo
  do j=n-MOD(n,4)+1,n
    tr=tr+a(j)*a(j) !in practice need "remainder"
  enddo
  s=t1+t2+t3+t4+tr
endsubroutine
```

### Remove conditionals from loops

- Loops that have branching constructs are usually not optimized by compiler
  - Set all even indices to 0 and all odd indices to 1

```
DO i=1,SIZE(a)
   IF(MOD(i,2 == 1)) THEN
    a(i)=1
   ELSE
    a(i)=0
   ENDIF
ENDDO
```

```
DO i=1,SIZE(a),2
   a(i)=1
ENDDO

DO i=2,SIZE(a),2
   a(i)=0
ENDDO
```

```
DO i=1,SIZE(a)-1,2
   a(i)=1
   a(i+1)=0

ENDDO

IF(MOD(SIZE(a),2) == 1) &
   a(SIZE(a))=1
```

### Removing False Dependencies

• Using local variables, reorder operations to remove false

dependencies

```
a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;
```

false read-after-write hazard between a[i] and b[i+1]

- With some compilers, you can declare a and b unaliased.
  - Done via "restrict pointers", compiler flag, or pragma.

### Function tabulation

- Some special functions (exponential, logarithm, gamma function, error function, etc.)
  - Require many FLOPs to evaluate to double precision.
- Tabulate function and linearly interpolate result
  - Introduces interpolation error.
  - Error is generally proportional to of table size
  - If evaluating the table A LOT, want table to be small enough to fit into cache
- In some cases, we can accept interpolation error because we do not know physical value to double precision (e.g. 15 digits) accuracy.





### Mixed Precision

- Not all data should be expressed as double precision
  - Using single precision data means you are "moving" less data.
  - Can reduce storage required coefficients (if you have a lot of data here)
- Target opportunities for introducing single precision:
  - Preconditioners in Krylov methods
  - Coefficients (when based on experimental measurement) are not necessarily known to double precision
    - Geometry data
    - Material compositions
- Avoid the pitfall of losing robustness in iterative methods by making iterates single precision. Iterates and coefficient matrices should always be double precision.

#### **GPU Specs**

#### **SPECIFICATIONS**



### More advanced techniques

- Memory blocking
- Cache oblivious ordering
- Communication Avoiding Algorithms (State of the Art)

#### **Naïve Matrix Multiply**

```
 \begin{aligned} &\{\text{implements } C = C + A^*B\} \\ &\text{for } i = 1 \text{ to } n \\ &\{\text{read row } i \text{ of } A \text{ into fast memory}\} \\ &\text{for } j = 1 \text{ to } n \\ &\{\text{read } C(i,j) \text{ into fast memory}\} \\ &\{\text{read column } j \text{ of } B \text{ into fast memory}\} \\ &\text{for } k = 1 \text{ to } n \\ &C(i,j) = C(i,j) + A(i,k) * B(k,j) \\ &\{\text{write } C(i,j) \text{ back to slow memory}\} \end{aligned}
```

Algorithm has  $2*n^3 = O(n^3)$ Flops and operates on  $3*n^2$  words of memory

q potentially as large as  $2*n^3 / 3*n^2 = O(n)$ 



### Memory Blocking (Tiling)

• Idea: improve computational intensity and temporal locality of data.

```
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where block size for i = 1 to N for j = 1 to N {read block C(i,j) into fast memory} for k = 1 to N {read block A(i,k) into fast memory} {read block A(i,k) into fast memory} {read block A(i,k) into fast memory} A(i,k) into fast memory} A(i,k) into fast memory} {read block A(i,k) into fast memory}
```



### Analysis of Blocked Matrix Multiply

- Recall:
  - m is amount memory traffic between slow and fast memory
  - matrix has nxn elements, and NxN blocks each of size bxb
  - f is number of floating point operations, 2n<sup>3</sup> for this problem
  - q = f / m is our measure of algorithm efficiency in the memory system
- So

```
m = N^*n^2 read each block of B N³ times (N^3 * b^2 = N^3 * (n/N)^2 = N^*n^2)
+ N*n² read each block of A N³ times
+ 2n² read and write each block of C once
= (2N + 2) * n^2
So computational intensity q = f / m = 2n^3 / ((2N + 2) * n^2)
```

 $\approx$  n / N = b for large n

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2) Larger block size = more efficient Limit: All three blocks from A,B,C must fit into fast memory

Assume fast memory size  $M_{fast}$   $3b^2 \leq M_{fast}$  , so  $q \approx b \leq (M_{fast}/3)^{1/2}$ 

### Cache Oblivious Algorithms

- Typically implemented as recursive algorithms and recursive data structures
- Tiled algorithm requires finding good block size (will depend on hardware)
- Cache Oblivious Algorithms offer an alternative
  - Idea is to order things in memory to minimize latency with multiple levels of memory hierarchy.
  - Make use of Space Filling Curves

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{pmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix}$$
 • the recursive law any cache size Disadvantages:

$$= \begin{pmatrix} \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21} & \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22} \\ \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21} & \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22} \end{pmatrix}$$

#### Advantages:

the recursive layout works well for

#### Disadvantages:

- The index calculations to find A[i,i] are expensive
- Implementations switch to columnmajor for small sizes



**Z-Order Space Filling Curve** 

### Summary of Serial Optimizations

- Details of machine are important for performance
  - Processor and memory system (not just parallelism)
  - What to expect? Use understanding of hardware limits
- Machines have memory hierarchies
  - 100s of cycles to read from DRAM (main memory)
  - Caches are fast (small) memory that optimize average case
- There is parallelism hidden within processors
  - Pipelining, SIMD, etc

- Data locality is at least as important as computation
  - Temporal: re-use of data recently used
  - Spatial: using data nearby that recently used
- Can rearrange code/data to improve locality
  - Goal: minimize communication = data movement
- Performance intensive code should be written clearly for compiler (not for humans)