

Laboratório - Estudo de condutividade

Química Geral

Arthur Cadore Matuella Barcella

1 de Setembro de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Intro	dução
	1.1.	Objetivos
	1.2.	Condutivímetro
2.	Expe	rimento prático 4
	2.1.	Parte 1 - Tabela de condutividade
	2.2.	Parte 2 - Tabela de condutividade
3.	Ques	tões 6
	3.1.	Por que a água da rede publica de abastecimento tem maior condutividade que a
		água destilada?
	3.2.	É sabido que o cloreto de sódio no estado sólido comporta-se como isolante
		elétrico
		3.2.1. Explique essa afirmação sabendo que o mesmo é representado através de
		modelos como $\mathrm{Na^+Cl^-}$ 6
		3.2.2. Explique usando equações de reações e as teorias de ligação e estrutura
		quimica, a condutividade elétrica e o processo quimico que ocorre quando
		se dissolve cloreto de sódio em agua
		3.2.3. Que espécies iônicas podem ser encontradas na água do mar?
	3.3.	Que espécies quimicas estão presentes em soluções de NaOH e HCl (0,01 M/L)?
		Escreva equações para descrever as reações que produzem tais espécies
	3.4.	Como você classificaria os alcoois etanol e propanol (eletrólitos fortes, fracos ou
		não eletrólitos)? Considere as condutividades registradas para os alcoois puros e
		dissolvidos em água e justifique sua resposta
	3.5.	Descreva e explique em forma de texto e também usando equações de reações
		quimicas, as propriedades de condutividade elétrica do ácido acético glacial e do
		mesmo dissolvido em água. Você classificaria o ácido acético como eletrólito forte,
		fraco ou não eletrólito? Justifique sua resposta.
	3.6.	Você classificaria a sacarose como eletrólito forte, fraco ou não eletrólito?
		Justifique sua resposta.
	3.7.	Comparando os dados obtidos para as medidas de condutividade de ácido acético
		glacial, ácido acético em propanol e ácido acético em ága, explique a influência
		dos solventes nas propriedades químicas dos sistemas e descreva suas respectivas
	0.0	representações através de equações químicas
	3.8.	Comparando qualitativamente a velocidade das reações 11 [30 mL HCl (6 M/L) +
		CaCO ₃] e 12 [30 mL Ácido Acético (6 M/L) + CaCO ₃], explique a relação entre
		as velocidades observadas e os dados de condutividade obtidos para os sistemas
		químicos 9 [60 mL HCl (6 M/L)] e 10 [60 mL Ácido Acético (6 M/L)]. Faça o
		mesmo para as reações 13 [30 mL HCl (6 M/L) + $Zn(s)$] e 14 [30 mL Ácido Acético
		(6 M/L) + Zn(s)], também comparando com as condutividades obtidas nas reações
		9 [60 mL HCl (6 M/L)] e 10 [60 mL Ácido Acético (6 M/L)]
		3.8.1. Reações 11 e 12 ($CaCO_3$ + HCl e $CaCO_3$ + Ácido Acético)
		3.8.2. Reações 13 e 14 (Zn(s) + HCl e Zn(s) + Ácido Acético)

3.9.	Explique, usando equações de reações químicas e as teorias de força e eletrólitos a	ιS
	diferenaçs de condutividade observadas para os reagentes em separado e para os	
	produtos formados nas reações 16 [15 mL HCl (0,01 M/L) + 15 mL NaOH (0,01 M/L	/
	L)] e 17 [30 mL Ácido Acético (0,1 M/L) + 15 mL NH ₃ (0,1 M/L)]	7
3.10	Exlique	7
	3.10.1. Qual o objetivo da prática de estudo da condutividade feita em	
	laboratório?	7
	3.10.2. Como você sabe que está usando corretamente o condutivimetro?	7

1. Introdução

Condutividade é a capacidade de um material conduzir corrente elétrica. Em sistemas de telecomunicações, a condutividade é um fator crítico que afeta a eficiência e a qualidade da transmissão de sinais. Materiais com alta condutividade, como cobre e alumínio, são comumente utilizados em cabos e componentes eletrônicos para garantir uma transmissão eficaz de dados.

1.1. Objetivos

Os objetivos deste laboratório são:

- Compreender os princípios da condutividade elétrica.
- Analisar a condutividade de diferentes materiais.
- Avaliar o impacto da condutividade na transmissão de sinais em sistemas de telecomunicações.

1.2. Condutivímetro

O condutivímetro é um instrumento utilizado para medir a condutividade elétrica de materiais. Ele funciona aplicando uma tensão elétrica ao material e medindo a corrente resultante. A relação entre a tensão e a corrente permite calcular a condutividade do material. Em laboratório, o condutivímetro é uma ferramenta essencial para experimentos que envolvem a análise de propriedades elétricas de diferentes substâncias.

2. Experimento prático

2.1. Parte 1 - Tabela de condutividade

Resultado das medidas de condutividade realizados em sala:

Substância	Condutividade $\mu S/\mathrm{cm}$	Temperatura (°C)
Água Destilada	4,64	23,3
Água de Abastecimento	71,8	21,9
Água mineral	84,00	22,3
Água do mar	43540,0	22,6
NaCL (0,01 M/L)	6960,0	23,3
HcL (0,01 M/L)	39200,0	23,3
NaOH (0,01 M/L)	21210,0	23,4
Etanol	7,18	23,4
Propanol	7,85	23,4
Sacarose	28,24	23,5
Etanol + Água Destilada	8,05	23,4
Propanol + Água Destilada	8,27	23,4

Substância	Condutividade $\mu S/\mathrm{cm}$	Temperatura (°C)	
Ácido Acético (0,1 M/L)	418,08	23,8	
Ácido Acético (6 M/L)	13,68	23,3	
Ácido Acético (17 M/L)	7,94	22,8	

2.2. Parte 2 - Tabela de condutividade

Resultado das medidas de condutividade realizados em sala:

Substância	Condutividade $\mu S/\mathrm{cm}$	Temp. (°C)
30 mL Ácido Acético (17 M/L)	7,94	22,8
15 mL Ácido Acético (17 M/L) + 15 mL Propanol	8,81	22,7
15 mL Ácido Acético (17 M/L) + 15 mL Água	294,1	22,8
60 mL HCl (6 M/L)	182,3	22,8
60 mL Ácido Acético (6 M/L)	6,30	21,5
30 mL HCl (6 M/L) + $CaCO_3$	203100,0	21,6
30 mL Ácido Acético (6 M/L) + ${ m CaCO_3}$	12,73	21,7
30 mL HCl (6 M/L) + Zn(s)	1000-30000	21,7
30 mL Ácido Acético (6 M/L) + Zn(s)	3,74	21,7
15 mL HCl (0,01 M/L) + 15 mL NaOH (0,01 M/L)	2660	21,7
30 mL Ácido Acético $(0,1 \text{ M/L}) + 15 \text{ mL}$ NH $_3$ $(0,1 \text{ M/L})$	2190	21,8

3. Questões

- 3.1. Por que a água da rede publica de abastecimento tem maior condutividade que a água destilada?
- 3.2. É sabido que o cloreto de sódio no estado sólido comporta-se como isolante elétrico.
- 3.2.1. Explique essa afirmação sabendo que o mesmo é representado através de modelos como $\rm Na^+Cl^-$
- 3.2.2. Explique usando equações de reações e as teorias de ligação e estrutura quimica, a condutividade elétrica e o processo quimico que ocorre quando se dissolve cloreto de sódio em agua.
- 3.2.3. Que espécies iônicas podem ser encontradas na água do mar?
- 3.3. Que espécies quimicas estão presentes em soluções de NaOH e HCl (0,01 M/L)? Escreva equações para descrever as reações que produzem tais espécies.
- 3.4. Como você classificaria os alcoois etanol e propanol (eletrólitos fortes, fracos ou não eletrólitos)? Considere as condutividades registradas para os alcoois puros e dissolvidos em água e justifique sua resposta.
- 3.5. Descreva e explique em forma de texto e também usando equações de reações quimicas, as propriedades de condutividade elétrica do ácido acético glacial e do mesmo dissolvido em água. Você classificaria o ácido acético como eletrólito forte, fraco ou não eletrólito? Justifique sua resposta.
- 3.6. Você classificaria a sacarose como eletrólito forte, fraco ou não eletrólito? Justifique sua resposta.
- 3.7. Comparando os dados obtidos para as medidas de condutividade de ácido acético glacial, ácido acético em propanol e ácido acético em ága, explique a influência dos solventes nas propriedades químicas dos sistemas e descreva suas respectivas representações através de equações químicas.

- 3.8. Comparando qualitativamente a velocidade das reações 11 [30 $\rm mL$ HCl (6 M/L) + $\rm CaCO_3$] e 12 [30 $\rm mL$ Ácido Acético (6 M/L) + $\rm CaCO_3$], explique a relação entre as velocidades observadas e os dados de condutividade obtidos para os sistemas químicos 9 [60 $\rm mL$ HCl (6 M/L)] e 10 [60 $\rm mL$ Ácido Acético (6 M/L)]. Faça o mesmo para as reações 13 [30 $\rm mL$ HCl (6 M/L) + $\rm Zn(s)$] e 14 [30 $\rm mL$ Ácido Acético (6 M/L) + $\rm Zn(s)$], também comparando com as condutividades obtidas nas reações 9 [60 $\rm mL$ HCl (6 M/L)] e 10 [60 $\rm mL$ Ácido Acético (6 M/L)]
- 3.8.1. Reações 11 e 12 ($CaCO_3$ + HCl e $CaCO_3$ + Ácido Acético)
- 3.8.2. Reações 13 e 14 (Zn(s) + HCl e Zn(s) + Ácido Acético)
- 3.9. Explique, usando equações de reações químicas e as teorias de força e eletrólitos as diferenaçs de condutividade observadas para os reagentes em separado e para os produtos formados nas reações 16 [15 mL HCl (0,01 M/L) + 15 mL NaOH (0,01 M/L)] e 17 [30 mL Ácido Acético (0,1 M/L) + 15 mL NH₃ (0,1 M/L)]
- 3.10. Exlique
- 3.10.1. Qual o objetivo da prática de estudo da condutividade feita em laboratório?
- 3.10.2. Como você sabe que está usando corretamente o condutivimetro?