

Contents

	0.1	Partia	l Clausal Logic									
		0.1.1	Decided Literals									
		0.1.2	Backtracking									
		0.1.3	Decomposition with respect to the First Decided Literals 9									
		0.1.4	Negation of Clauses									
		0.1.5	Other									
		0.1.6	Extending Entailments to multisets									
		0.1.7	Abstract Clause Representation									
1	NO	NOT's CDCL and DPLL 25										
	1.1	Measu	${ m ure}$									
	1.2	NOT's	s CDCL									
		1.2.1	Auxiliary Lemmas and Measure									
		1.2.2	Initial definitions									
		1.2.3	DPLL with backjumping									
		1.2.4	CDCL									
		1.2.5	CDCL with restarts									
		1.2.6	Merging backjump and learning									
		1.2.7	Instantiations									
	1.3	DPLL	as an instance of NOT									
		1.3.1	DPLL with simple backtrack									
		1.3.2	Adding restarts									
	1.4	Weide	nbach's DPLL									
		1.4.1	Rules									
		1.4.2	Invariants									
		1.4.3	Termination									
		1.4.4	Final States									
		1.4.5	Link with NOT's DPLL									
2	Wei	idenba	ch's CDCL									
	2.1	Weide	nbach's CDCL with Multisets									
		2.1.1	The State									
		2.1.2	CDCL Rules									
		2.1.3	Structural Invariants									
		2.1.4	CDCL Strong Completeness									
		2.1.5	Higher level strategy									
		2.1.6	Termination									
	2.2	Mergi	ng backjump rules									
		2.2.1	Inclusion of the states									
		2.2.2	More lemmas conflict—propagate and backjumping									

		2.2.3 CDCL FW				 	 	 . 256
		2.2.4 FW with strategy				 	 	 . 261
	2.3 Link between Weidenbach's and NOT's CDCL					 	 	 . 294
		2.3.1 Inclusion of the states				 	 	 . 294
		2.3.2 Additional Lemmas between	NOT and W	states .		 	 	 . 298
		2.3.3 More lemmas conflict-propa	gate and backj	jumping		 	 	 . 299
		2.3.4 CDCL FW				 	 	 . 299
	2.4	Incremental SAT solving				 	 	 . 306
		2.4.1 Adding Restarts				 	 	 . 317
3	Implementation of DPLL and CDCL					329		
	3.1	Simple Implementation of the DPL	L and CDCL			 	 	 . 329
		3.1.1 Common Rules				 	 	 . 329
		3.1.2 CDCL specific functions				 	 	 . 332
		3.1.3 Simple Implementation of D	PLL			 	 	 . 334

0.1 Partial Clausal Logic

We here define decided literals (that will be used in both DPLL and CDCL) and the entailment corresponding to it.

 ${\bf theory} \ {\it Partial-Annotated-Clausal-Logic} \\ {\bf imports} \ {\it Partial-Clausal-Logic} \\ {\bf theory} \ {\it Partial-Clausal-Logic} \\ {\it Par$

begin

0.1.1 Decided Literals

Definition

```
{\bf datatype} \ ('v, \ 'mark) \ ann\text{-}lit =
  is-decided: Decided (lit-of: 'v literal)
  is-proped: Propagated (lit-of: 'v literal) (mark-of: 'mark)
lemma ann-lit-list-induct[case-names Nil Decided Propagated]:
  assumes P \mid  and
  \bigwedge L \ xs. \ P \ xs \Longrightarrow P \ (Decided \ L \ \# \ xs) \ {\bf and}
  \bigwedge L \ m \ xs. \ P \ xs \Longrightarrow P \ (Propagated \ L \ m \ \# \ xs)
  shows P xs
  using assms apply (induction xs, simp)
  by (rename-tac a xs, case-tac a) auto
lemma is-decided-ex-Decided:
  is-decided L \Longrightarrow (\bigwedge K. \ L = Decided \ K \Longrightarrow P) \Longrightarrow P
  by (cases L) auto
type-synonym ('v, 'm) ann-lits = ('v, 'm) ann-lit list
definition lits-of :: ('a, 'b) ann-lit set \Rightarrow 'a literal set where
lits-of Ls = lit-of ' Ls
abbreviation lits-of-l :: ('a, 'b) ann-lits \Rightarrow 'a literal set where
\mathit{lits}	ext{-}\mathit{of}	ext{-}\mathit{l}\,\mathit{Ls} \equiv \mathit{lits}	ext{-}\mathit{of}\,\,(\mathit{set}\,\,\mathit{Ls})
```

```
lemma lits-of-l-empty[simp]:
  lits-of \{\} = \{\}
 unfolding lits-of-def by auto
lemma lits-of-insert[simp]:
  lits-of\ (insert\ L\ Ls) = insert\ (lit-of\ L)\ (lits-of\ Ls)
 unfolding lits-of-def by auto
lemma lits-of-l-Un[simp]:
  lits-of (l \cup l') = lits-of l \cup lits-of l'
 unfolding lits-of-def by auto
lemma finite-lits-of-def[simp]:
 finite (lits-of-l L)
 unfolding lits-of-def by auto
abbreviation unmark where
unmark \equiv (\lambda a. \{\#lit\text{-}of a\#\})
abbreviation unmark-s where
unmark-s M \equiv unmark ' M
abbreviation unmark-l where
unmark-l\ M \equiv unmark-s\ (set\ M)
lemma atms-of-ms-lambda-lit-of-is-atm-of-lit-of[simp]:
  atms-of-ms (unmark-lM') = atm-of ' lits-of-lM'
 unfolding atms-of-ms-def lits-of-def by auto
lemma lits-of-l-empty-is-empty[iff]:
 lits-of-lM = \{\} \longleftrightarrow M = []
 by (induct M) (auto simp: lits-of-def)
Entailment
definition true-annot :: ('a, 'm) ann-lits \Rightarrow 'a clause \Rightarrow bool (infix \models a 49) where
 I \models a C \longleftrightarrow (lits\text{-}of\text{-}l\ I) \models C
definition true-annots :: ('a, 'm) ann-lits \Rightarrow 'a clauses \Rightarrow bool (infix \models as 49) where
 I \models as \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models a \ C)
lemma true-annot-empty-model[simp]:
  \neg[] \models a \psi
 unfolding true-annot-def true-cls-def by simp
lemma true-annot-empty[simp]:
  \neg I \models a \{\#\}
 unfolding true-annot-def true-cls-def by simp
lemma empty-true-annots-def[iff]:
  [] \models as \ \psi \longleftrightarrow \psi = \{\}
 unfolding true-annots-def by auto
lemma true-annots-empty[simp]:
 I \models as \{\}
 unfolding true-annots-def by auto
```

```
lemma true-annots-single-true-annot[iff]:
  I \models as \{C\} \longleftrightarrow I \models a C
  unfolding true-annots-def by auto
lemma true-annot-insert-l[simp]:
  M \models a A \Longrightarrow L \# M \models a A
  unfolding true-annot-def by auto
lemma true-annots-insert-l [simp]:
  M \models as A \Longrightarrow L \# M \models as A
  unfolding true-annots-def by auto
lemma true-annots-union[iff]:
  M \models as A \cup B \longleftrightarrow (M \models as A \land M \models as B)
  unfolding true-annots-def by auto
lemma true-annots-insert[iff]:
  M \models as \ insert \ a \ A \longleftrightarrow (M \models a \ a \land M \models as \ A)
  unfolding true-annots-def by auto
Link between \models as and \models s:
{f lemma} true-annots-true-cls:
  I \models as \ CC \longleftrightarrow lits \text{-} of \text{-} l \ I \models s \ CC
  unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
lemma in-lit-of-true-annot:
  a \in lits\text{-}of\text{-}l\ M \longleftrightarrow M \models a \{\#a\#\}
  unfolding true-annot-def lits-of-def by auto
\mathbf{lemma} \ \mathit{true-annot-lit-of-notin-skip} :
  L \# M \models a A \Longrightarrow lit\text{-}of L \notin \# A \Longrightarrow M \models a A
  unfolding true-annot-def true-cls-def by auto
{f lemma}\ true{-}clss{-}singleton{-}lit{-}of{-}implies{-}incl:
  I \models s \ unmark-l \ MLs \Longrightarrow lits-of-l \ MLs \subseteq I
  unfolding true-clss-def lits-of-def by auto
\mathbf{lemma}\ true\text{-}annot\text{-}true\text{-}clss\text{-}cls\text{:}
  MLs \models a \psi \Longrightarrow set (map \ unmark \ MLs) \models p \psi
  unfolding true-annot-def true-clss-cls-def true-cls-def
  by (auto dest: true-clss-singleton-lit-of-implies-incl)
lemma true-annots-true-clss-cls:
  MLs \models as \psi \implies set (map \ unmark \ MLs) \models ps \ \psi
  by (auto
    dest: true\text{-}clss\text{-}singleton\text{-}lit\text{-}of\text{-}implies\text{-}incl
    simp add: true-clss-def true-annots-def true-annot-def lits-of-def true-cls-def
    true-clss-clss-def)
lemma true-annots-decided-true-cls[iff]:
  map\ Decided\ M \models as\ N \longleftrightarrow set\ M \models s\ N
proof
  have *: lit-of 'Decided' set M = set M unfolding lits-of-def by force
  show ?thesis by (simp add: true-annots-true-cls * lits-of-def)
```

```
qed
```

```
lemma true-annot-singleton[iff]: M \models a \{\#L\#\} \longleftrightarrow L \in lits-of-l M
  unfolding true-annot-def lits-of-def by auto
\mathbf{lemma}\ true\text{-}annots\text{-}true\text{-}clss\text{-}clss:
  A \models as \Psi \Longrightarrow unmark-l A \models ps \Psi
  unfolding true-clss-clss-def true-annots-def true-clss-def
  by (auto dest!: true-clss-singleton-lit-of-implies-incl
    simp: lits-of-def true-annot-def true-cls-def)
lemma true-annot-commute:
  M @ M' \models a D \longleftrightarrow M' @ M \models a D
  unfolding true-annot-def by (simp add: Un-commute)
\mathbf{lemma}\ true\text{-}annots\text{-}commute:
  M @ M' \models as D \longleftrightarrow M' @ M \models as D
 unfolding true-annots-def by (auto simp: true-annot-commute)
lemma true-annot-mono[dest]:
  set \ I \subseteq set \ I' \Longrightarrow I \models a \ N \Longrightarrow I' \models a \ N
  using true-cls-mono-set-mset-l unfolding true-annot-def lits-of-def
 by (metis (no-types) Un-commute Un-upper1 image-Un sup.orderE)
lemma true-annots-mono:
  set\ I \subseteq set\ I' \Longrightarrow I \models as\ N \Longrightarrow I' \models as\ N
  unfolding true-annots-def by auto
```

Defined and undefined literals

We introduce the functions *defined-lit* and *undefined-lit* to know whether a literal is defined with respect to a list of decided literals (aka a trail in most cases).

Remark that *undefined* already exists and is a completely different Isabelle function.

```
definition defined-lit :: ('a, 'm) ann-lits \Rightarrow 'a literal \Rightarrow bool
  where
defined-lit I \ L \longleftrightarrow (Decided \ L \in set \ I) \lor (\exists \ P. \ Propagated \ L \ P \in set \ I)
  \vee (Decided (-L) \in set \ I) \vee (\exists \ P. \ Propagated (-L) \ P \in set \ I)
abbreviation undefined-lit :: ('a, 'm) ann-lits \Rightarrow 'a literal \Rightarrow bool
where undefined-lit I L \equiv \neg defined-lit I L
lemma defined-lit-rev[simp]:
  defined-lit (rev\ M)\ L \longleftrightarrow defined-lit M\ L
  unfolding defined-lit-def by auto
lemma atm-imp-decided-or-proped:
  assumes x \in set I
  shows
    (Decided\ (-lit\text{-}of\ x)\in set\ I)
    \vee (Decided (lit - of x) \in set I)
    \vee (\exists l. \ Propagated (- \ lit of \ x) \ l \in set \ I)
    \vee (\exists l. \ Propagated \ (lit\text{-}of \ x) \ l \in set \ I)
  using assms ann-lit.exhaust-sel by metis
```

lemma literal-is-lit-of-decided:

```
assumes L = lit - of x
  shows (x = Decided L) \lor (\exists l'. x = Propagated L l')
  using assms by (cases x) auto
\mathbf{lemma}\ true\text{-}annot\text{-}iff\text{-}decided\text{-}or\text{-}true\text{-}lit:
  defined-lit I \ L \longleftrightarrow (lits-of-l I \models l \ L \lor lits-of-l I \models l \ -L)
  unfolding defined-lit-def by (auto simp add: lits-of-def rev-image-eqI
    dest!: literal-is-lit-of-decided)
lemma consistent-inter-true-annots-satisfiable:
  consistent-interp (lits-of-l I) \Longrightarrow I \models as N \Longrightarrow satisfiable N
  by (simp add: true-annots-true-cls)
lemma defined-lit-map:
  defined-lit Ls L \longleftrightarrow atm\text{-}of \ L \in (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set Ls
 unfolding defined-lit-def apply (rule iffI)
  using image-iff apply fastforce
 by (fastforce simp add: atm-of-eq-atm-of dest: atm-imp-decided-or-proped)
lemma defined-lit-uminus[iff]:
  defined-lit I (-L) \longleftrightarrow defined-lit I L
  unfolding defined-lit-def by auto
\mathbf{lemma}\ \mathit{Decided-Propagated-in-iff-in-lits-of-l}:
  defined-lit I \ L \longleftrightarrow (L \in lits-of-l I \lor -L \in lits-of-l I)
  unfolding lits-of-def by (metis lits-of-def true-annot-iff-decided-or-true-lit true-lit-def)
lemma consistent-add-undefined-lit-consistent[simp]:
  assumes
    consistent-interp (lits-of-l Ls) and
    undefined-lit Ls L
  shows consistent-interp (insert L (lits-of-l Ls))
  using assms unfolding consistent-interp-def by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
lemma decided-empty[simp]:
  \neg defined-lit [] L
  unfolding defined-lit-def by simp
0.1.2
          Backtracking
fun backtrack-split :: ('v, 'm) ann-lits
  \Rightarrow ('v, 'm) ann-lits \times ('v, 'm) ann-lits where
backtrack-split [] = ([], [])
backtrack-split (Propagated L P \# mlits) = apfst ((op \#) (Propagated L P)) (backtrack-split mlits) |
backtrack-split (Decided L # mlits) = ([], Decided L # mlits)
lemma backtrack-split-fst-not-decided: a \in set (fst (backtrack-split l)) \Longrightarrow \neg is-decided a
  by (induct l rule: ann-lit-list-induct) auto
lemma backtrack-split-snd-hd-decided:
  snd\ (backtrack-split\ l) \neq [] \implies is\text{-}decided\ (hd\ (snd\ (backtrack-split\ l)))}
  by (induct l rule: ann-lit-list-induct) auto
lemma backtrack-split-list-eq[simp]:
 fst\ (backtrack-split\ l)\ @\ (snd\ (backtrack-split\ l)) = l
 by (induct l rule: ann-lit-list-induct) auto
```

```
lemma backtrack-snd-empty-not-decided:

backtrack-split M = (M'', []) \Longrightarrow \forall l \in set \ M. \ \neg \ is\text{-decided} \ l

by (metis append-Nil2 backtrack-split-fst-not-decided backtrack-split-list-eq snd-conv)

lemma backtrack-split-some-is-decided-then-snd-has-hd:

\exists l \in set \ M. \ is\text{-decided} \ l \Longrightarrow \exists M' \ L' \ M''. \ backtrack-split \ M = (M'', \ L' \# M')

by (metis backtrack-snd-empty-not-decided list.exhaust prod.collapse)
```

Another characterisation of the result of backtrack-split. This view allows some simpler proofs, since take While and drop While are highly automated:

```
lemma backtrack-split-takeWhile-dropWhile:
backtrack-split M = (takeWhile \ (Not \ o \ is-decided) \ M, \ dropWhile \ (Not \ o \ is-decided) \ M)
by (induction M rule: ann-lit-list-induct) auto
```

0.1.3 Decomposition with respect to the First Decided Literals

In this section we define a function that returns a decomposition with the first decided literal. This function is useful to define the backtracking of DPLL.

Definition

The pattern get-all-ann-decomposition [] = [([], [])] is necessary otherwise, we can call the hd function in the other pattern.

```
fun qet-all-ann-decomposition :: ('a, 'm) ann-lits
 \Rightarrow (('a, 'm) ann-lits \times ('a, 'm) ann-lits) list where
get-all-ann-decomposition (Decided L # Ls) =
 (Decided L \# Ls, []) \# get-all-ann-decomposition Ls
get-all-ann-decomposition (Propagated L P# Ls) =
 (apsnd\ ((op\ \#)\ (Propagated\ L\ P))\ (hd\ (get-all-ann-decomposition\ Ls)))
   \# tl (get-all-ann-decomposition Ls) |
get-all-ann-decomposition [] = [([], [])]
value get-all-ann-decomposition [Propagated A5 B5, Decided C4, Propagated A3 B3,
 Propagated A2 B2, Decided C1, Propagated A0 B0]
Now we can prove several simple properties about the function.
lemma get-all-ann-decomposition-never-empty[iff]:
 get-all-ann-decomposition M = [] \longleftrightarrow False
 by (induct M, simp) (rename-tac a xs, case-tac a, auto)
lemma get-all-ann-decomposition-never-empty-sym[iff]:
 [] = qet\text{-}all\text{-}ann\text{-}decomposition } M \longleftrightarrow False
 using qet-all-ann-decomposition-never-empty[of M] by presburger
\mathbf{lemma}\ get-all-ann-decomposition-decomp:
 hd (get-all-ann-decomposition S) = (a, c) \Longrightarrow S = c @ a
proof (induct S arbitrary: a c)
 case Nil
 then show ?case by simp
next
 case (Cons \ x \ A)
 then show ?case by (cases x; cases hd (get-all-ann-decomposition A)) auto
qed
```

```
\mathbf{lemma} \ \textit{get-all-ann-decomposition-backtrack-split}:
  backtrack-split\ S=(M,M')\longleftrightarrow hd\ (get-all-ann-decomposition\ S)=(M',M)
proof (induction S arbitrary: M M')
 case Nil
 then show ?case by auto
next
 case (Cons\ a\ S)
 then show ?case using backtrack-split-takeWhile-dropWhile by (cases a) force+
\mathbf{lemma} \ \ get-all-ann-decomposition-Nil-backtrack-split-snd-Nil:
  get-all-ann-decomposition S = [([], A)] \Longrightarrow snd (backtrack-split S) = []
 by (simp add: get-all-ann-decomposition-backtrack-split sndI)
This functions says that the first element is either empty or starts with a decided element of
the list.
\mathbf{lemma} \ \textit{get-all-ann-decomposition-length-1-fst-empty-or-length-1}:
 assumes get-all-ann-decomposition M = (a, b) \# [
 shows a = [] \lor (length \ a = 1 \land is\text{-}decided \ (hd \ a) \land hd \ a \in set \ M)
 using assms
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
 case Nil then show ?case by simp
next
 case (Decided L mark)
 then show ?case by simp
 case (Propagated L mark M)
 then show ?case by (cases get-all-ann-decomposition M) force+
qed
\mathbf{lemma} \ \textit{get-all-ann-decomposition-fst-empty-or-hd-in-}M:
 assumes get-all-ann-decomposition M = (a, b) \# l
 shows a = [] \lor (is\text{-}decided (hd a) \land hd a \in set M)
  using assms apply (induct M arbitrary: a b rule: ann-lit-list-induct)
   apply auto[2]
  \mathbf{by} \ (metis \ UnCI \ backtrack-split-snd-hd-decided \ qet-all-ann-decomposition-backtrack-split 
   get-all-ann-decomposition-decomp hd-in-set list.sel(1) set-append snd-conv)
\mathbf{lemma} \ get-all-ann-decomposition\text{-}snd\text{-}not\text{-}decided:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 and L \in set b
 shows \neg is\text{-}decided\ L
 using assms apply (induct M arbitrary: a b rule: ann-lit-list-induct, simp)
 by (rename-tac L' xs a b, case-tac get-all-ann-decomposition xs; fastforce)+
lemma tl-qet-all-ann-decomposition-skip-some:
 assumes x \in set (tl (get-all-ann-decomposition M1))
 shows x \in set (tl (get-all-ann-decomposition (M0 @ M1)))
 using assms
 by (induct M0 rule: ann-lit-list-induct)
    (auto\ simp\ add:\ list.set-sel(2))
{\bf lemma}\ hd-get-all-ann-decomposition-skip-some:
 assumes (x, y) = hd (get-all-ann-decomposition M1)
 shows (x, y) \in set (get-all-ann-decomposition (M0 @ Decided K # M1))
```

```
using assms
proof (induction M0 rule: ann-lit-list-induct)
 then show ?case by auto
next
 case (Decided L M0)
 then show ?case by auto
next
 case (Propagated L C M0) note xy = this(1)[OF\ this(2-)] and hd = this(2)
 then show ?case
   by (cases get-all-ann-decomposition (M0 @ Decided K \# M1))
      (auto dest!: get-all-ann-decomposition-decomp
        arg-cong[of get-all-ann-decomposition - - hd])
qed
\mathbf{lemma}\ \textit{in-get-all-ann-decomposition-in-get-all-ann-decomposition-prepend}:
 (a, b) \in set (get-all-ann-decomposition M') \Longrightarrow
   \exists b'. (a, b' @ b) \in set (qet-all-ann-decomposition (M @ M'))
 apply (induction M rule: ann-lit-list-induct)
   apply (metis append-Nil)
  apply auto
 by (rename-tac L' m xs, case-tac qet-all-ann-decomposition (xs @ M')) auto
\mathbf{lemma}\ in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}decided\text{-}or\text{-}empty:}
 assumes (a, b) \in set (get-all-ann-decomposition M)
 shows a = [] \lor (is\text{-}decided (hd a))
 using assms
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
 case Nil then show ?case by simp
next
 case (Decided 1 M)
 then show ?case by auto
 case (Propagated l mark M)
 then show ?case by (cases get-all-ann-decomposition M) force+
qed
lemma qet-all-ann-decomposition-remove-undecided-length:
 assumes \forall l \in set M'. \neg is\text{-}decided l
 shows length (get-all-ann-decomposition (M' @ M'')) = length (get-all-ann-decomposition M'')
 using assms by (induct M' arbitrary: M" rule: ann-lit-list-induct) auto
\mathbf{lemma} \ \textit{get-all-ann-decomposition-not-is-decided-length}:
 assumes \forall l \in set M'. \neg is\text{-}decided l
 shows 1 + length (get-all-ann-decomposition (Propagated <math>(-L) P \# M))
= length (get-all-ann-decomposition (M' @ Decided L \# M))
using assms get-all-ann-decomposition-remove-undecided-length by fastforce
lemma qet-all-ann-decomposition-last-choice:
 assumes tl (get-all-ann-decomposition (M' @ Decided L \# M)) \neq []
 and \forall l \in set M'. \neg is\text{-}decided l
 and hd (tl (get-all-ann-decomposition (M' @ Decided L \# M))) = (M0', M0)
 shows hd (get-all-ann-decomposition (Propagated (-L) P \# M)) = (M0', Propagated (-L) P \# M0)
 using assms by (induct M' rule: ann-lit-list-induct) auto
```

 $\mathbf{lemma}\ \textit{get-all-ann-decomposition-except-last-choice-equal:}$

```
assumes \forall l \in set M'. \neg is\text{-}decided l
 shows tl (get-all-ann-decomposition (Propagated (-L) P \# M))
= tl \ (tl \ (get-all-ann-decomposition \ (M' @ Decided \ L \ \# \ M)))
 using assms by (induct M' rule: ann-lit-list-induct) auto
lemma get-all-ann-decomposition-hd-hd:
 assumes get-all-ann-decomposition Ls = (M, C) \# (M0, M0') \# l
 shows tl M = M0' @ M0 \land is\text{-}decided (hd M)
 using assms
proof (induct Ls arbitrary: M C M0 M0' l)
 case Nil
 then show ?case by simp
next
 case (Cons a Ls M C M0 M0' l) note IH = this(1) and g = this(2)
 { fix L level
   assume a: a = Decided L
   have Ls = M0' @ M0
     using q a by (force intro: qet-all-ann-decomposition-decomp)
   then have tl\ M = M0' @ M0 \land is\text{-}decided\ (hd\ M) using g\ a by auto
 moreover {
   fix LP
   assume a: a = Propagated L P
   have tl M = M0' @ M0 \land is\text{-}decided (hd M)
     using IH Cons.prems unfolding a by (cases get-all-ann-decomposition Ls) auto
 }
 ultimately show ?case by (cases a) auto
qed
lemma qet-all-ann-decomposition-exists-prepend[dest]:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 shows \exists c. M = c @ b @ a
 using assms apply (induct M rule: ann-lit-list-induct)
   apply simp
 by (rename-tac L' xs, case-tac get-all-ann-decomposition xs;
   auto dest!: arg-cong[of get-all-ann-decomposition - - hd]
     qet-all-ann-decomposition-decomp)+
lemma get-all-ann-decomposition-incl:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 shows set b \subseteq set M and set a \subseteq set M
 using assms get-all-ann-decomposition-exists-prepend by fastforce+
lemma get-all-ann-decomposition-exists-prepend':
 assumes (a, b) \in set (get-all-ann-decomposition M)
 obtains c where M = c @ b @ a
 using assms apply (induct M rule: ann-lit-list-induct)
   apply auto[1]
 by (rename-tac L' xs, case-tac hd (qet-all-ann-decomposition xs),
   auto dest!: get-all-ann-decomposition-decomp simp \ add: list.set-sel(2))+
lemma union-in-get-all-ann-decomposition-is-subset:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 shows set a \cup set b \subseteq set M
 using assms by force
```

```
{\bf lemma}\ Decided\text{-}cons\text{-}in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}append\text{-}Decided\text{-}cons\text{:}}
 \exists M1\ M2.\ (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (c\ @\ Decided\ K\ \#\ c'))
 apply (induction c rule: ann-lit-list-induct)
   apply auto[2]
 apply (rename-tac L xs,
     case-tac hd (get-all-ann-decomposition (xs @ Decided K \# c'))
 apply (case-tac get-all-ann-decomposition (xs @ Decided K \# c'))
 by auto
\mathbf{lemma}\ fst-get-all-ann-decomposition-prepend-not-decided:
 assumes \forall m \in set MS. \neg is\text{-}decided m
 \mathbf{shows} \ set \ (\mathit{map fst} \ (\mathit{get-all-ann-decomposition} \ M))
   = set (map fst (get-all-ann-decomposition (MS @ M)))
   using assms apply (induction MS rule: ann-lit-list-induct)
   apply auto[2]
   by (rename-tac L m xs; case-tac get-all-ann-decomposition (xs @ M)) simp-all
Entailment of the Propagated by the Decided Literal
lemma get-all-ann-decomposition-snd-union:
 set\ M = \bigcup (set\ `snd\ `set\ (get\ -all\ -ann\ -decomposition\ M)) \cup \{L\ | L.\ is\ -decided\ L \land L \in set\ M\}
  (is ?MM = ?UM \cup ?LsM)
proof (induct M rule: ann-lit-list-induct)
 case Nil
 then show ?case by simp
next
 case (Decided L M) note IH = this(1)
 then have Decided L \in ?Ls \ (Decided L \# M) by auto
 moreover have ?U (Decided L \# M) = ?U M by auto
 moreover have ?M M = ?U M \cup ?Ls M using IH by auto
 ultimately show ?case by auto
next
  case (Propagated\ L\ m\ M)
 then show ?case by (cases (get-all-ann-decomposition M)) auto
qed
definition all-decomposition-implies :: 'a literal multiset set
 \Rightarrow (('a, 'm) ann-lits \times ('a, 'm) ann-lits) list \Rightarrow bool where
all-decomposition-implies N S \longleftrightarrow (\forall (Ls, seen) \in set S. unmark-l Ls \cup N \models ps unmark-l seen)
lemma all-decomposition-implies-empty [iff]:
  all-decomposition-implies N \parallel unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-single[iff]:
  all-decomposition-implies N [(Ls, seen)] \longleftrightarrow unmark-l Ls \cup N \models ps unmark-l seen
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-append[iff]:
  all-decomposition-implies N (S @ S')
    \longleftrightarrow (all-decomposition-implies N S \land all-decomposition-implies N S')
  unfolding all-decomposition-implies-def by auto
\textbf{lemma} \ \textit{all-decomposition-implies-cons-pair} [\textit{iff}] :
  all-decomposition-implies N ((Ls, seen) \# S')
   \longleftrightarrow (all-decomposition-implies N [(Ls, seen)] \land all-decomposition-implies N S')
  unfolding all-decomposition-implies-def by auto
```

```
lemma all-decomposition-implies-cons-single[iff]:
  all-decomposition-implies N \ (l \# S') \longleftrightarrow
   (unmark-l (fst l) \cup N \models ps unmark-l (snd l) \land
     all-decomposition-implies N S')
 unfolding all-decomposition-implies-def by auto
\mathbf{lemma}\ \mathit{all-decomposition-implies-trail-is-implied}\colon
 assumes all-decomposition-implies N (get-all-ann-decomposition M)
 shows N \cup \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ M\}
   \models ps\ unmark\ `(\bigcup(set\ `snd\ `set\ (get-all-ann-decomposition\ M))
using assms
proof (induct length (get-all-ann-decomposition M) arbitrary: M)
 case \theta
 then show ?case by auto
next
 case (Suc n) note IH = this(1) and length = this(2) and decomp = this(3)
     (le1) length (get-all-ann-decomposition M) \leq 1
   |(gt1)| length (get-all-ann-decomposition M) > 1
   by arith
  then show ?case
   proof cases
     case le1
     then obtain a b where g: get-all-ann-decomposition M = (a, b) \# []
      by (cases get-all-ann-decomposition M) auto
     moreover {
      assume a = \lceil
       then have ?thesis using Suc.prems g by auto
     moreover {
      assume l: length a = 1 and m: is-decided (hd a) and hd: hd a \in set M
      then have unmark\ (hd\ a) \in \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} by auto
      then have H: unmark - l \ a \cup N \subseteq N \cup \{unmark \ L \ | L. \ is-decided \ L \land L \in set \ M\}
        using l by (cases a) auto
       have f1: unmark-l \ a \cup N \models ps \ unmark-l \ b
        using decomp unfolding all-decomposition-implies-def q by simp
       have ?thesis
        apply (rule true-clss-clss-subset) using f1 H g by auto
     ultimately show ?thesis
      using get-all-ann-decomposition-length-1-fst-empty-or-length-1 by blast
   next
     case gt1
     then obtain Ls\theta \ seen\theta \ M' where
       Ls0: get-all-ann-decomposition M = (Ls0, seen0) \# get-all-ann-decomposition M' and
       length': length (get-all-ann-decomposition M') = n and
       M'-in-M: set M' \subseteq set M
       using length by (induct M rule: ann-lit-list-induct) (auto simp: subset-insertI2)
     let ?d = \bigcup (set 'snd 'set (get-all-ann-decomposition M'))
     let ?unM = \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ M\}
     let ?unM' = \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ M'\}
     {
       assume n = 0
      then have get-all-ann-decomposition M' = [] using length' by auto
       then have ?thesis using Suc.prems unfolding all-decomposition-implies-def Ls0 by auto
```

```
}
 moreover {
   assume n: n > 0
   then obtain Ls1 seen1 l where
     Ls1: get-all-ann-decomposition M' = (Ls1, seen1) \# l
     using length' by (induct M' rule: ann-lit-list-induct) auto
   have all-decomposition-implies N (get-all-ann-decomposition M')
     using decomp unfolding Ls0 by auto
   then have N: N \cup ?unM' \models ps \ unmark-s ?d
     using IH length' by auto
   have l: N \cup ?unM' \subseteq N \cup ?unM
     using M'-in-M by auto
   from true-clss-clss-subset[OF this N]
   have \Psi N: N \cup ?unM \models ps \ unmark-s ?d by auto
   have is-decided (hd Ls0) and LS: tl Ls0 = seen1 @ Ls1
     using get-all-ann-decomposition-hd-hd[of M] unfolding Ls0 Ls1 by auto
   have LSM: seen 1 @ Ls1 = M' using qet-all-ann-decomposition-decomp[of M'] Ls1 by auto
   have M': set M' = ?d \cup \{L \mid L. \text{ is-decided } L \land L \in \text{set } M'\}
     using get-all-ann-decomposition-snd-union by auto
   {
     assume Ls0 \neq [
     then have hd Ls\theta \in set M
       using get-all-ann-decomposition-fst-empty-or-hd-in-M Ls0 by blast
     then have N \cup ?unM \models p \ unmark \ (hd \ Ls\theta)
       using \langle is\text{-}decided \ (hd \ Ls\theta) \rangle by (metis \ (mono\text{-}tags, \ lifting) \ UnCI \ mem\text{-}Collect\text{-}eq
         true-clss-cls-in)
   } note hd-Ls\theta = this
   have l: unmark ' (?d \cup \{L \mid L. is-decided L \land L \in set M'\}) = unmark-s ?d \cup ?unM'
   have N \cup ?unM' \models ps \ unmark \ (?d \cup \{L \mid L. \ is\text{-}decided \ L \land L \in set \ M'\})
     unfolding l using N by (auto simp: all-in-true-clss-clss)
   then have t: N \cup ?unM' \models ps \ unmark-l \ (tl \ Ls\theta)
     using M' unfolding LS LSM by auto
   then have N \cup ?unM \models ps \ unmark-l \ (tl \ Ls\theta)
     using M'-in-M true-clss-clss-subset [OF - t, of N \cup ?unM] by auto
   then have N \cup ?unM \models ps \ unmark-l \ Ls0
     using hd-Ls\theta by (cases Ls\theta) auto
   moreover have unmark-l Ls\theta \cup N \models ps unmark-l seen\theta
     using decomp unfolding Ls\theta by simp
   moreover have \bigwedge M Ma. (M::'a \ literal \ multiset \ set) \cup Ma \models ps \ M
     by (simp add: all-in-true-clss-clss)
   ultimately have \Psi: N \cup ?unM \models ps \ unmark-l \ seen 0
     by (meson true-clss-clss-left-right true-clss-clss-union-and true-clss-clss-union-l-r)
   moreover have unmark ' (set\ seen 0 \cup ?d) = unmark-l\ seen 0 \cup unmark-s\ ?d
     by auto
   ultimately have ?thesis using \Psi N unfolding Ls0 by simp
 ultimately show ?thesis by auto
qed
```

qed

```
{\bf lemma}\ all\text{-}decomposition\text{-}implies\text{-}propagated\text{-}lits\text{-}are\text{-}implied\text{:}}
 assumes all-decomposition-implies N (get-all-ann-decomposition M)
 shows N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} \models ps\ unmark\text{-}l\ M
   (is ?I \models ps ?A)
proof -
 have ?I \models ps \ unmark-s \ \{L \mid L. \ is-decided \ L \land L \in set \ M\}
   by (auto intro: all-in-true-clss-clss)
 using all-decomposition-implies-trail-is-implied assms by blast
 ultimately have N \cup \{unmark \ m \mid m. \ is\text{-}decided \ m \land m \in set \ M\}
   \models ps\ unmark\ `\bigcup (set\ `snd\ `set\ (get-all-ann-decomposition\ M))
     \cup unmark ` \{m \mid m. is-decided m \land m \in set M\}
     by blast
 then show ?thesis
   by (metis (no-types) get-all-ann-decomposition-snd-union[of M] image-Un)
lemma all-decomposition-implies-insert-single:
  all-decomposition-implies N M \Longrightarrow all-decomposition-implies (insert C N) M
 unfolding all-decomposition-implies-def by auto
```

0.1.4 Negation of Clauses

We define the negation of a 'a Partial-Clausal-Logic.clause: it converts it from the a single clause to a set of clauses, wherein each clause is a single negated literal.

```
definition CNot :: 'v \ clause \Rightarrow 'v \ clauses \ \mathbf{where}
CNot \psi = \{ \{\#-L\#\} \mid L. \ L \in \# \psi \}
lemma in-CNot-uminus[iff]:
  shows \{\#L\#\} \in CNot \ \psi \longleftrightarrow -L \in \# \ \psi
  unfolding CNot-def by force
lemma
  shows
    CNot\text{-}singleton[simp]: CNot \{\#L\#\} = \{\{\#-L\#\}\} \text{ and }
    CNot\text{-}empty[simp]: CNot \{\#\} = \{\}  and
    CNot-plus[simp]: CNot (A + B) = CNot A \cup CNot B
  unfolding CNot-def by auto
lemma CNot-eq-empty[iff]:
  CNot\ D = \{\} \longleftrightarrow D = \{\#\}
  unfolding CNot-def by (auto simp add: multiset-eqI)
lemma in-CNot-implies-uminus:
  assumes L \in \# D and M \models as CNot D
 shows M \models a \{\#-L\#\} and -L \in lits\text{-}of\text{-}l\ M
  using assms by (auto simp: true-annots-def true-annot-def CNot-def)
lemma CNot\text{-}remdups\text{-}mset[simp]:
  CNot (remdups-mset A) = CNot A
  unfolding CNot-def by auto
lemma Ball-CNot-Ball-mset[simp]:
  (\forall x \in CNot \ D. \ P \ x) \longleftrightarrow (\forall L \in \# \ D. \ P \ \{\#-L\#\})
```

```
unfolding CNot-def by auto
\mathbf{lemma}\ consistent\text{-}CNot\text{-}not:
  assumes consistent-interp I
  shows I \models s \ CNot \ \varphi \Longrightarrow \neg I \models \varphi
  using assms unfolding consistent-interp-def true-clss-def true-cls-def by auto
\mathbf{lemma}\ total\text{-}not\text{-}true\text{-}cls\text{-}true\text{-}clss\text{-}CNot:
  assumes total-over-m I \{\varphi\} and \neg I \models \varphi
 shows I \models s \ CNot \ \varphi
  using assms unfolding total-over-m-def total-over-set-def true-clss-def true-cls-def CNot-def
   apply clarify
  by (rename-tac x L, case-tac L) (force intro: pos-lit-in-atms-of neg-lit-in-atms-of)+
lemma total-not-CNot:
  assumes total-over-m I \{\varphi\} and \neg I \models s \ CNot \ \varphi
 shows I \models \varphi
  using assms total-not-true-cls-true-clss-CNot by auto
lemma atms-of-ms-CNot-atms-of[simp]:
  atms-of-ms (CNot \ C) = atms-of C
  unfolding atms-of-ms-def atms-of-def CNot-def by fastforce
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}contradiction\text{-}true\text{-}clss\text{-}cls\text{-}false:
  C \in D \Longrightarrow D \models ps \ CNot \ C \Longrightarrow D \models p \ \{\#\}
  unfolding true-clss-cls-def true-clss-cls-def total-over-m-def
  by (metis Un-commute atms-of-empty atms-of-ms-CNot-atms-of atms-of-ms-insert atms-of-ms-union
   consistent-CNot-not insert-absorb sup-bot.left-neutral true-clss-def)
lemma true-annots-CNot-all-atms-defined:
  assumes M \models as \ CNot \ T \ and \ a1: \ L \in \# \ T
  shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
  by (metis assms atm-of-uminus image-eqI in-CNot-implies-uminus(1) true-annot-singleton)
{\bf lemma}\ true\hbox{-}annots\hbox{-}CNot\hbox{-}all\hbox{-}uminus\hbox{-}atms\hbox{-}defined\colon
  assumes M \models as \ CNot \ T \ and \ a1: -L \in \# \ T
  shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
  by (metis assms atm-of-uninus image-eqI in-CNot-implies-uninus(1) true-annot-singleton)
lemma true-clss-clss-false-left-right:
  assumes \{\{\#L\#\}\}\cup B \models p \{\#\}
  shows B \models ps \ CNot \ \{\#L\#\}
  unfolding true-clss-cls-def true-clss-cls-def
proof (intro allI impI)
 \mathbf{fix} I
  assume
   tot: total-over-m I (B \cup CNot \{\#L\#\}) and
   cons: consistent-interp I and
   I: I \models s B
 have total-over-m I(\{\{\#L\#\}\}\cup B) using tot by auto
  then have \neg I \models s insert \{\#L\#\} B
   using assms cons unfolding true-clss-cls-def by simp
  then show I \models s \ CNot \ \{\#L\#\}
   using tot I by (cases L) auto
```

qed

```
\mathbf{lemma} \ true\text{-}annots\text{-}true\text{-}cls\text{-}def\text{-}iff\text{-}negation\text{-}in\text{-}model}:
  M \models as \ CNot \ C \longleftrightarrow (\forall \ L \in \# \ C. \ -L \in lits \text{-}of \text{-}l \ M)
  unfolding CNot-def true-annots-true-cls true-clss-def by auto
lemma true-annot-CNot-diff:
  I \models as \ CNot \ C \Longrightarrow I \models as \ CNot \ (C - C')
 \mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{true-annots-true-cls-def-iff-negation-in-model}\ \mathit{dest}:\ \mathit{in-diffD})
lemma CNot-mset-replicate[simp]:
  CNot (mset\ (replicate\ n\ L)) = (if\ n = 0\ then\ \{\}\ else\ \{\{\#-L\#\}\}\})
  by (induction \ n) auto
lemma consistent-CNot-not-tautology:
  consistent-interp M \Longrightarrow M \models s \ CNot \ D \Longrightarrow \neg tautology \ D
  by (metis atms-of-ms-CNot-atms-of consistent-CNot-not satisfiable-carac' satisfiable-def
   tautology-def total-over-m-def)
lemma atms-of-ms-CNot-atms-of-ms: atms-of-ms (CNot \ CC) = atms-of-ms {CC}
  by simp
lemma total-over-m-CNot-toal-over-m[simp]:
  total-over-m \ I \ (CNot \ C) = total-over-set \ I \ (atms-of C)
  unfolding total-over-m-def total-over-set-def by auto
The following lemma is very useful when in the goal appears an axioms like -L = K: this
lemma allows the simplifier to rewrite L.
lemma uminus-lit-swap: -(a::'a \ literal) = i \longleftrightarrow a = -i
  by auto
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}plus\text{-}CNot:
  assumes
    CC-L: A \models p CC + \{\#L\#\} and
    CNot\text{-}CC: A \models ps \ CNot \ CC
  shows A \models p \{\#L\#\}
  unfolding true-clss-cls-def true-clss-cls-def CNot-def total-over-m-def
proof (intro allI impI)
  \mathbf{fix} I
  assume
   tot: total-over-set I (atms-of-ms (A \cup \{\{\#L\#\}\})) and
    cons: consistent-interp I and
   I:I\models sA
 let ?I = I \cup \{Pos\ P | P.\ P \in atms\text{-}of\ CC \land P \notin atm\text{-}of `I'\}
 have cons': consistent-interp ?I
   using cons unfolding consistent-interp-def
   by (auto simp: uminus-lit-swap atms-of-def rev-image-eqI)
  have I': ?I \models s A
   using I true-clss-union-increase by blast
  have tot-CNot: total-over-m ?I (A \cup CNot \ CC)
   using tot atms-of-s-def by (fastforce simp: total-over-m-def total-over-set-def)
  then have tot-I-A-CC-L: total-over-m ?I (A \cup \{CC + \{\#L\#\}\})
   using tot unfolding total-over-m-def total-over-set-atm-of by auto
  then have ?I \models CC + \#L\# using CC-L cons' I' unfolding true-clss-cls-def by blast
  moreover
   have ?I \models s \ CNot \ CC \ using \ CNot-CC \ cons' \ I' \ tot-CNot \ unfolding \ true-clss-clss-def \ by \ auto
```

```
then have \neg A \models p \ CC
      by (metis (no-types, lifting) I' atms-of-ms-CNot-atms-of-ms atms-of-ms-union cons'
        consistent-CNot-not tot-CNot total-over-m-def true-clss-cls-def)
   then have \neg ?I \models CC using \langle ?I \models s \ CNot \ CC \rangle cons' consistent-CNot-not by blast
  ultimately have ?I \models \{\#L\#\} by blast
  then show I \models \{\#L\#\}
   by (metis (no-types, lifting) atms-of-ms-union cons' consistent-CNot-not tot total-not-CNot
      total-over-m-def total-over-set-union true-clss-union-increase)
qed
lemma true-annots-CNot-lit-of-notin-skip:
 assumes LM: L \# M \models as \ CNot \ A \ and \ LA: \ lit-of \ L \notin \# A \ -lit-of \ L \notin \# A
 shows M \models as \ CNot \ A
 using LM unfolding true-annots-def Ball-def
proof (intro allI impI)
  \mathbf{fix} l
 assume H: \forall x. \ x \in \mathit{CNot}\ A \longrightarrow L \# M \models ax and l: \ l \in \mathit{CNot}\ A
  then have L \# M \models a l by auto
  then show M \models a l \text{ using } LA l \text{ by } (cases L) (auto simp: CNot-def)
 qed
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}union\text{-}false\text{-}true\text{-}clss\text{-}clss\text{-}cnot:
  A \cup \{B\} \models ps \{\{\#\}\} \longleftrightarrow A \models ps \ CNot \ B
  using total-not-CNot consistent-CNot-not unfolding total-over-m-def true-clss-clss-def
  by fastforce
\mathbf{lemma} \ \textit{true-annot-remove-hd-if-notin-vars}:
  assumes a \# M' \models a D and atm\text{-}of (lit\text{-}of a) \notin atms\text{-}of D
 shows M' \models a D
  using assms true-cls-remove-hd-if-notin-vars unfolding true-annot-def by auto
lemma true-annot-remove-if-notin-vars:
  assumes M @ M' \models a D and \forall x \in atms\text{-}of D. x \notin atm\text{-}of `lits\text{-}of\text{-}l M
 shows M' \models a D
  using assms by (induct M) (auto dest: true-annot-remove-hd-if-notin-vars)
lemma true-annots-remove-if-notin-vars:
  assumes M @ M' \models as D and \forall x \in atms-of-ms D. x \notin atm-of `lits-of-l M
  shows M' \models as D unfolding true-annots-def
  using assms unfolding true-annots-def atms-of-ms-def
  by (force dest: true-annot-remove-if-notin-vars)
lemma all-variables-defined-not-imply-cnot:
  assumes
   \forall s \in atms\text{-}of\text{-}ms \{B\}. \ s \in atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ A \ and }
   \neg A \models a B
  \mathbf{shows}\ A \models as\ \mathit{CNot}\ B
  unfolding true-annot-def true-annots-def Ball-def CNot-def true-lit-def
proof (clarify, rule ccontr)
  assume LB: L \in \# B and \neg lits-of-l A \models l - L
  then have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ A
   using assms(1) by (simp add: atm-of-lit-in-atms-of lits-of-def)
  then have L \in lits-of-l A \lor -L \in lits-of-l A
   using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by metis
  then have L \in lits-of-l A using \langle \neg lits-of-l A \models l - L \rangle by auto
```

```
then show False
   using LB assms(2) unfolding true-annot-def true-lit-def true-cls-def Bex-def
qed
lemma CNot-union-mset[simp]:
  CNot (A \# \cup B) = CNot A \cup CNot B
 unfolding CNot-def by auto
0.1.5
          Other
abbreviation no-dup L \equiv distinct \pmod{(\lambda l. atm-of(lit-of l))} L
lemma no-dup-rev[simp]:
 no\text{-}dup \ (rev \ M) \longleftrightarrow no\text{-}dup \ M
 by (auto simp: rev-map[symmetric])
lemma no-dup-length-eq-card-atm-of-lits-of-l:
 assumes no-dup M
 shows length M = card (atm-of 'lits-of-l M)
 using assms unfolding lits-of-def by (induct M) (auto simp add: image-image)
lemma distinct-consistent-interp:
 no-dup M \Longrightarrow consistent-interp (lits-of-l M)
proof (induct M)
 case Nil
 show ?case by auto
next
 case (Cons\ L\ M)
 then have a1: consistent-interp (lits-of-l M) by auto
 have a2: atm-of (lit-of L) \notin (\lambda l. atm-of (lit-of l)) 'set M using Cons.prems by auto
 have undefined-lit M (lit-of L)
   using a2 unfolding defined-lit-map by fastforce
  then show ?case
   using a1 by simp
qed
\mathbf{lemma}\ distinct\text{-} get\text{-} all\text{-} ann\text{-} decomposition\text{-} no\text{-} dup:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 and no-dup M
 shows no-dup (a @ b)
 using assms by force
lemma true-annots-lit-of-notin-skip:
 assumes L \# M \models as \ CNot \ A
 and -lit-of L \notin \# A
 and no-dup (L \# M)
 shows M \models as \ CNot \ A
proof -
 have \forall l \in \# A. -l \in lits\text{-}of\text{-}l \ (L \# M)
   using assms(1) in-CNot-implies-uminus(2) by blast
 moreover
   have atm\text{-}of\ (lit\text{-}of\ L) \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M
     using assms(3) unfolding lits-of-def by force
   then have - lit-of L \notin lits-of-l M unfolding lits-of-def
     by (metis (no-types) atm-of-uminus imageI)
```

```
ultimately have \forall l \in \# A. -l \in lits-of-l M using assms(2) by (metis\ insert-iff list.simps(15)\ lits-of-insert uminus-of-uminus-id) then show ?thesis by (auto\ simp\ add:\ true-annots-def) qed
```

0.1.6 Extending Entailments to multisets

We have defined previous entailment with respect to sets, but we also need a multiset version depending on the context. The conversion is simple using the function *set-mset* (in this direction, there is no loss of information).

```
abbreviation true-annots-mset (infix \models asm 50) where
I \models asm \ C \equiv I \models as \ (set\text{-}mset \ C)
abbreviation true-clss-clss-m:: 'v clause multiset \Rightarrow 'v clause multiset \Rightarrow bool (infix \models psm 50)
where
I \models psm \ C \equiv set\text{-}mset \ I \models ps \ (set\text{-}mset \ C)
Analog of [?N \models ps ?B; ?A \subseteq ?B] \implies ?N \models ps ?A
lemma true-clss-clssm-subsetE: N \models psm B \Longrightarrow A \subseteq \# B \Longrightarrow N \models psm A
  using set-mset-mono true-clss-clss-subsetE by blast
abbreviation true-clss-cls-m:: 'a clause multiset \Rightarrow 'a clause \Rightarrow bool (infix \models pm \ 50) where
I \models pm \ C \equiv set\text{-}mset \ I \models p \ C
abbreviation distinct-mset-mset :: 'a multiset multiset \Rightarrow bool where
distinct-mset-mset \Sigma \equiv distinct-mset-set (set-mset \Sigma)
abbreviation all-decomposition-implies-m where
all-decomposition-implies-m A B \equiv all-decomposition-implies (set-mset A) B
abbreviation atms-of-mm :: 'a literal multiset multiset \Rightarrow 'a set where
atms-of-mm U \equiv atms-of-ms (set-mset U)
Other definition using Union-mset
lemma atms-of-mm U \equiv set\text{-mset} ( \bigcup \# image\text{-mset} (image\text{-mset} atm\text{-}of) U )
  unfolding atms-of-ms-def by (auto simp: atms-of-def)
abbreviation true-clss-m:: 'a interp \Rightarrow 'a clause multiset \Rightarrow bool (infix \modelssm 50) where
I \models sm \ C \equiv I \models s \ set\text{-}mset \ C
abbreviation true-clss-ext-m (infix \models sextm 49) where
I \models sextm \ C \equiv I \models sext \ set\text{-mset} \ C
{\bf theory}\ \mathit{CDCL-Abstract-Clause-Representation}
imports Main Partial-Clausal-Logic
begin
type-synonym 'v clause = 'v literal multiset
type-synonym 'v clauses = 'v clause multiset
```

0.1.7 Abstract Clause Representation

We will abstract the representation of clause and clauses via two locales. We expect our representation to behave like multiset, but the internal representation can be done using list or

whatever other representation.

We assume the following:

• there is an equivalent to adding and removing a literal and to taking the union of clauses.

```
locale raw-cls =
  fixes
    mset-cls :: 'cls \Rightarrow 'v \ clause
begin
end
locale raw-ccls-union =
  fixes
    mset-cls :: 'cls \Rightarrow 'v \ clause \ and
    union\text{-}cls:: 'cls \Rightarrow 'cls \Rightarrow 'cls \text{ and }
    remove\text{-}clit :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls
    mset\text{-}ccls\text{-}union\text{-}cls[simp]: mset\text{-}cls\ (union\text{-}cls\ C\ D) = mset\text{-}cls\ C\ \#\cup\ mset\text{-}cls\ D\ and
    remove\text{-}clit[simp]: mset\text{-}cls \ (remove\text{-}clit \ L \ C) = remove\text{1-}mset \ L \ (mset\text{-}cls \ C)
begin
end
Instantiation of the previous locale, in an unnamed context to avoid polluating with simp rules
context
begin
  interpretation list-cls: raw-cls mset
    \mathbf{by} unfold-locales
```

interpretation list-cls: raw-ccls-union mset

union-mset-list remove1

by unfold-locales

interpretation cls-cls: raw-cls id

by unfold-locales (auto simp: union-mset-list ex-mset)

interpretation cls-cls: raw-ccls-union id op $\#\cup$ remove1-mset by unfold-locales (auto simp: union-mset-list) end

Over the abstract clauses, we have the following properties:

- We can insert a clause
- We can take the union (used only in proofs for the definition of *clauses*)
- there is an operator indicating whether the abstract clause is contained or not
- if a concrete clause is contained the abstract clauses, then there is an abstract clause

```
mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss
  assumes
    insert-clss[simp]: mset-clss (insert-clss L C) = mset-clss C + {\#mset-cls L\#} and
    union-clss[simp]: mset-clss (union-clss C D) = mset-clss C + mset-clss D  and
    mset-clss-union-clss[simp]: mset-clss (insert-clss C' D) = {\#mset-clss C'\#} + mset-clss D and
    in\text{-}clss\text{-}mset\text{-}clss[dest]: in\text{-}clss\ a\ C \Longrightarrow mset\text{-}cls\ a \in \#\ mset\text{-}clss\ C\ and
    in\text{-}mset\text{-}clss\text{-}exists\text{-}preimage:}\ b \in \#\ mset\text{-}clss\ C \Longrightarrow \exists\ b'.\ in\text{-}clss\ b'\ C \land mset\text{-}cls\ b'=b\ and
    remove-from-clss-mset-clss[simp]:
      mset\text{-}clss\ (remove\text{-}from\text{-}clss\ a\ C) = mset\text{-}clss\ C - \{\#mset\text{-}cls\ a\#\}\ and
    in-clss-union-clss[simp]:
      in\text{-}clss\ a\ (union\text{-}clss\ C\ D) \longleftrightarrow in\text{-}clss\ a\ C\ \lor\ in\text{-}clss\ a\ D
begin
end
experiment
begin
  fun remove-first where
  remove-first - [] = [] \mid
  remove-first C (C' \# L) = (if mset C = mset C' then L else C' \# remove-first C L)
 lemma mset-map-mset-remove-first:
    mset\ (map\ mset\ (remove-first\ a\ C)) = remove1-mset\ (mset\ a)\ (mset\ (map\ mset\ C))
    by (induction C) (auto simp: ac-simps remove1-mset-single-add)
 interpretation clss-clss: raw-clss id
    id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove1\text{-}mset
    by unfold-locales (auto simp: ac-simps)
 interpretation list-clss: raw-clss mset
    \lambda L. mset\ (map\ mset\ L)\ op\ @\ \lambda L\ C.\ L\in set\ C\ op\ \#
    remove-first
    by unfold-locales (auto simp: ac-simps union-mset-list mset-map-mset-remove-first ex-mset)
end
```

 \mathbf{end}

Chapter 1

NOT's CDCL and DPLL

theory CDCL-WNOT-Measure imports Main List-More begin

The organisation of the development is the following:

- CDCL_WNOT_Measure.thy contains the measure used to show the termination the core of CDCL.
- CDCL_NOT. thy contains the specification of the rules: the rules are defined, and we proof the correctness and termination for some strategies CDCL.
- DPLL_NOT.thy contains the DPLL calculus based on the CDCL version.
- DPLL_W.thy contains Weidenbach's version of DPLL and the proof of equivalence between the two DPLL versions.

1.1 Measure

This measure show the termination of the core of CDCL: each step improves the number of literals we know for sure.

This measure can also be seen as the increasing lexicographic order: it is an order on bounded sequences, when each element is bounded. The proof involves a measure like the one defined here (the same?).

```
definition \mu_C :: nat \Rightarrow nat \Rightarrow nat \ list \Rightarrow nat \ \text{where}
\mu_C \ s \ b \ M \equiv (\sum i=0... < length \ M. \ M!i * b \ (s+i-length \ M))
\begin{array}{l} \text{lemma} \ \mu_C \text{-}Nil[simp]: \\ \mu_C \ s \ b \ [] = 0 \\ \text{unfolding} \ \mu_C \text{-}def \ \text{by} \ auto \\ \\ \text{lemma} \ \mu_C \text{-}single[simp]: \\ \mu_C \ s \ b \ [L] = L * b \ \ (s-Suc \ 0) \\ \text{unfolding} \ \mu_C \text{-}def \ \text{by} \ auto} \\ \\ \text{lemma} \ set\text{-}sum\text{-}atLeastLessThan\text{-}add:} \\ (\sum i=k... < k+(b::nat). \ f \ i) = (\sum i=0... < b. \ f \ (k+i)) \\ \text{by} \ (induction \ b) \ auto} \end{array}
```

```
\mathbf{lemma}\ set\text{-}sum\text{-}atLeastLessThan\text{-}Suc:
 (\sum i=1...<Suc\ j.\ f\ i)=(\sum i=0...<j.\ f\ (Suc\ i))
 using set-sum-atLeastLessThan-add[of - 1 j] by force
lemma \mu_C-cons:
 \mu_C \ s \ b \ (L \# M) = L * b \ \widehat{} \ (s-1 - length M) + \mu_C \ s \ b \ M
proof
 have \mu_C \ s \ b \ (L \# M) = (\sum i = 0... < length \ (L \# M). \ (L \# M)! \ i * b^ (s + i - length \ (L \# M)))
   unfolding \mu_C-def by blast
 also have ... = (\sum i=0..<1. (L\#M)!i*b^(s+i-length (L\#M)))
              + (\sum i=1..< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M)))
    by (rule setsum-add-nat-ivl[symmetric]) simp-all
 finally have \mu_C s b (L \# M) = L * b ^ (s - 1 - length M)
               + (\sum_{i=1}^{i=1} .. < length (L\#M). (L\#M)!i * b^ (s+i - length (L\#M)))
    by auto
 moreover {
   have (\sum i=1...< length (L\#M). (L\#M)!i * b^ (s+i - length (L\#M))) =
         (\sum i=0..< length\ (M).\ (L\#M)!(Suc\ i)*b^(s+(Suc\ i)-length\ (L\#M)))
    {\bf unfolding} \ \mathit{length-Cons} \ \mathit{set-sum-atLeastLessThan-Suc} \ {\bf by} \ \mathit{blast}
   also have ... = (\sum i=0..< length (M). M!i * b^ (s + i - length M))
   finally have (\sum i=1...< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M)))=\mu_C\ s\ b\ M
     unfolding \mu_C-def.
 ultimately show ?thesis by presburger
qed
lemma \mu_C-append:
 assumes s > length (M@M')
 shows \mu_C \ s \ b \ (M@M') = \mu_C \ (s - length \ M') \ b \ M + \mu_C \ s \ b \ M'
proof -
 have \mu_C \ s \ b \ (M@M') = (\sum i = 0... < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   unfolding \mu_C-def by blast
 moreover then have ... = (\sum i=\theta.. < length M. (M@M')!i * b^ (s+i - length (M@M')))
               + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   by (auto intro!: setsum-add-nat-ivl[symmetric])
 moreover
   have \forall i \in \{0.. < length M\}. (M@M')!i * b^{(s+i-length (M@M'))} = M!i * b^{(s-length M')}
     +i-length M)
     using \langle s \geq length \ (M@M') \rangle by (auto simp add: nth-append ac-simps)
    then have \mu_C (s - length M') b M = (\sum i=0.. < length M. (M@M')!i * b^ (s + i - length)
(M@M'))
     unfolding \mu_C-def by auto
 ultimately have \mu_C s b (M@M') = \mu_C (s - length M') b M
               + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
    by auto
 moreover {
   have (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M'))) =
         (\sum i=0..< length\ M'.\ M'!i*b^{(s+i-length\ M')})
    unfolding length-append set-sum-atLeastLessThan-add by auto
   then have (\sum_i = length \ M... < length \ (M@M'). \ (M@M')!i * b^ (s+i-length \ (M@M'))) = \mu_C \ s \ b
M'
     unfolding \mu_C-def .
 ultimately show ?thesis by presburger
```

```
lemma \mu_C-cons-non-empty-inf:
 assumes M-ge-1: \forall i \in set M. i \geq 1 and M: M \neq []
 shows \mu_C \ s \ b \ M \ge b \ \widehat{\ } (s - length \ M)
 using assms by (cases M) (auto simp: mult-eq-if \mu_C-cons)
Copy of ~~/src/HOL/ex/NatSum.thy (but generalized to 0 < k)
lemma sum-of-powers: 0 \le k \Longrightarrow (k-1) * (\sum_{i=0}^{n} i=0... < n. \ k^i) = k^n - (1::nat)
 apply (cases k = 0)
   apply (cases n; simp)
 by (induct n) (auto simp: Nat.nat-distrib)
In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:
lemma \mu_C-bounded-non-degenerated:
 fixes b :: nat
 assumes
   b > \theta and
   M \neq [] and
   M-le: \forall i < length M. M!i < b and
   s \geq length M
 shows \mu_C \ s \ b \ M < b \hat{s}
proof -
 consider (b1) b=1 | (b) b>1 using (b>0) by (cases b) auto
  then show ?thesis
   proof cases
     case b1
     then have \forall i < length M. M!i = 0 using M-le by auto
     then have \mu_C \ s \ b \ M = \theta unfolding \mu_C-def by auto
     then show ?thesis using \langle b > 0 \rangle by auto
   next
     case b
     have \forall i \in \{0..< length M\}. M!i * b^(s+i-length M) \leq (b-1) * b^(s+i-length M)
       using M-le \langle b > 1 \rangle by auto
     then have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ (b-1) * b \ (s+i-length \ M))
        using \langle M \neq | \rangle \langle b > 0 \rangle unfolding \mu_C-def by (auto intro: setsum-mono)
     also
      have \forall i \in \{0.. < length M\}. (b-1) * b^{(s+i-length M)} = (b-1) * b^{(i+k-length M)}
        by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)
       then have (\sum i=0...< length\ M.\ (b-1)*b^ (s+i-length\ M))
        = (\sum i=0..< length\ M.\ (b-1)*\ b^i*\ b^i*\ b^i+\ length\ M))
        by (auto simp add: ac-simps)
     also have ... = (\sum i=0.. < length \ M. \ b^i) * b^k (s - length \ M) * (b-1)
       by (simp add: setsum-left-distrib setsum-right-distrib ac-simps)
     finally have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ b^i) * (b-1) * b^i(s - length \ M)
      by (simp add: ac-simps)
       have (\sum i=0..< length\ M.\ b^i)*(b-1) = b^i(length\ M) - 1
        using sum-of-powers[of b length M] \langle b > 1 \rangle
        by (auto simp add: ac-simps)
     finally have \mu_C \ s \ b \ M \le (b \ \widehat{\ } (length \ M) - 1) * b \ \widehat{\ } (s - length \ M)
      by auto
     also have ... < b \cap (length M) * b \cap (s - length M)
```

```
using \langle b > 1 \rangle by auto
     also have ... = b \hat{s}
      by (metis assms(4) le-add-diff-inverse power-add)
     finally show ?thesis unfolding \mu_C-def by (auto simp add: ac-simps)
   qed
qed
In the degenerate case b = (\theta::'a), the list M is empty (since the list cannot contain any
element).
lemma \mu_C-bounded:
 fixes b :: nat
 assumes
   M-le: \forall i < length M. M!i < b and
   s \geq length M
   b > 0
 shows \mu_C \ s \ b \ M < b \ s
proof -
 consider (M\theta) M = [ | (M) b > \theta  and M \neq [ ]
   using M-le by (cases b, cases M) auto
 then show ?thesis
   proof cases
     case M0
     then show ?thesis using M-le \langle b > 0 \rangle by auto
   next
     case M
     show ?thesis using \mu_C-bounded-non-degenerated [OF M assms(1,2)] by arith
   qed
qed
When b = 0, we cannot show that the measure is empty, since \theta^0 = 1.
lemma \mu_C-base-\theta:
 assumes length M \leq s
 shows \mu_C \ s \ \theta \ M \leq M!\theta
proof -
 {
   assume s = length M
   moreover {
     have (\sum i=\theta...< n.\ M!\ i*(\theta::nat) \cap i) \leq M!\ \theta
      apply (induction n rule: nat-induct)
      by simp (rename-tac n, case-tac n, auto)
   ultimately have ?thesis unfolding \mu_C-def by auto
 moreover
   assume length M < s
   then have \mu_C \ s \ \theta \ M = \theta \ unfolding \ \mu_C - def \ by \ auto \}
 ultimately show ?thesis using assms unfolding \mu_C-def by linarith
qed
lemma finite-bounded-pair-list:
 fixes b :: nat
 (\forall i < length \ xs. \ xs \ ! \ i < b) \land (\forall i < length \ ys. \ ys \ ! \ i < b) \}
```

```
proof -
  have H: \{(ys, xs). \ length \ xs < s \land \ length \ ys < s \land \}
    (\forall i < length \ xs. \ xs \ ! \ i < b) \land (\forall i < length \ ys. \ ys \ ! \ i < b) \}
    \{xs. \ length \ xs < s \land (\forall i < length \ xs. \ xs \ ! \ i < b)\} \times 
    \{xs. \ length \ xs < s \land (\forall i < length \ xs. \ xs ! \ i < b)\}
  moreover have finite \{xs. \ length \ xs < s \land (\forall i < length \ xs. \ xs \mid i < b)\}
    by (rule finite-bounded-list)
  ultimately show ?thesis by (auto simp: finite-subset)
qed
definition \nu NOT :: nat \Rightarrow nat \Rightarrow (nat \ list \times nat \ list) \ set \ \mathbf{where}
\nu NOT \ s \ base = \{(ys, xs). \ length \ xs < s \land length \ ys < s \land \}
  (\forall i < length \ xs. \ xs \mid i < base) \land (\forall i < length \ ys. \ ys \mid i < base) \land
  (ys, xs) \in lenlex less-than
lemma finite-\nu NOT[simp]:
 finite (\nu NOT \ s \ base)
proof -
  have \nu NOT \ s \ base \subseteq \{(ys, xs). \ length \ xs < s \land length \ ys < s \land \}
    (\forall i < length \ xs. \ xs \mid i < base) \land (\forall i < length \ ys. \ ys \mid i < base) \}
    by (auto simp: \nu NOT-def)
  moreover have finite \{(ys, xs). length xs < s \land length ys < s \land
    (\forall i < length \ xs. \ xs \mid i < base) \land (\forall i < length \ ys. \ ys \mid i < base) \}
      by (rule finite-bounded-pair-list)
 ultimately show ?thesis by (auto simp: finite-subset)
qed
lemma acyclic-\nu NOT: acyclic (\nu NOT s base)
  apply (rule acyclic-subset[of lenlex less-than \nu NOT\ s\ base])
    apply (rule wf-acyclic)
  by (auto simp: \nu NOT-def)
lemma wf-\nu NOT: wf (\nu NOT \ s \ base)
  by (rule finite-acyclic-wf) (auto simp: acyclic-\nu NOT)
end
theory CDCL-NOT
imports CDCL-Abstract-Clause-Representation List-More Wellfounded-More CDCL-WNOT-Measure
  Partial-Annotated-Clausal-Logic
begin
```

1.2 NOT's CDCL

1.2.1 Auxiliary Lemmas and Measure

We define here some more simplification rules, or rules that have been useful as help for some tactic

```
lemma no-dup-cannot-not-lit-and-uminus:

no-dup M \Longrightarrow - lit-of xa = lit-of x \Longrightarrow x \in set \ M \Longrightarrow xa \notin set \ M

by (metis atm-of-uminus distinct-map inj-on-eq-iff uminus-not-id')

lemma atms-of-ms-single-atm-of[simp]:

atms-of-ms {unmark L \mid L. \mid P \mid L} = atm-of '{lit-of L \mid L. \mid P \mid L}
```

```
unfolding atms-of-ms-def by force
```

```
lemma atms-of-uminus-lit-atm-of-lit-of:

atms-of \{\#-lit\text{-}of\ x.\ x\in\#\ A\#\}=atm\text{-}of\ `(lit\text{-}of\ `(set\text{-}mset\ A))

unfolding atms-of-def by (auto simp add: Fun.image-comp)

lemma atms-of-ms-single-image-atm-of-lit-of:

atms-of-ms (unmark-s A) = atm-of\ `(lit\text{-}of\ `A)

unfolding atms-of-ms-def by auto
```

1.2.2 Initial definitions

The state

We define here an abstraction over operation on the state we are manipulating.

```
locale dpll-state-ops = fixes trail:: 'st \Rightarrow ('v, unit) \ ann-lits \ and \ clauses_{NOT}:: 'st \Rightarrow 'v \ clauses \ and \ prepend-trail:: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and \ tl-trail:: 'st \Rightarrow 'st \ and \ add-cls_{NOT}:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ and \ remove-cls_{NOT}:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ begin
```

end

NOT's state is basically a pair composed of the trail (i.e. the candidate model) and the set of clauses. We abstract this state to convert this state to other states. like Weidenbach's five-tuple.

```
locale dpll-state =
  dpll-state-ops
    trail\ clauses_{NOT}\ prepend-trail\ tl-trail add-cls_{NOT}\ remove-cls_{NOT} — related to the state
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  assumes
    trail-prepend-trail[simp]:
      \bigwedge st\ L.\ trail\ (prepend-trail\ L\ st) = L\ \#\ trail\ st
    tl-trail[simp]: trail(tl-trailS) = tl(trailS) and
    trail-add-cls_{NOT}[simp]: \land st \ C. \ trail \ (add-cls_{NOT} \ C \ st) = trail \ st \ \mathbf{and}
    trail-remove-cls_{NOT}[simp]: \land st \ C. \ trail \ (remove-<math>cls_{NOT} \ C \ st) = trail \ st \ and
    clauses-prepend-trail[simp]:
      \bigwedge st\ L.\ clauses_{NOT}\ (prepend-trail\ L\ st) = clauses_{NOT}\ st
      and
    clauses-tl-trail[simp]: \land st. clauses_{NOT} (tl-trail st) = clauses_{NOT} st and
    clauses-add-cls_{NOT}[simp]:
      \bigwedge st\ C.\ clauses_{NOT}\ (add\text{-}cls_{NOT}\ C\ st) = \{\#C\#\} + clauses_{NOT}\ st\ \mathbf{and}
    clauses-remove-cls_{NOT}[simp]:
      \bigwedge st\ C.\ clauses_{NOT}\ (remove-cls_{NOT}\ C\ st) = removeAll-mset\ C\ (clauses_{NOT}\ st)
```

begin

```
We define the following function doing the backtrack in the trail:
function reduce-trail-to_{NOT} :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to<sub>NOT</sub> FS =
  (if length (trail S) = length F \vee trail S = [] then S else reduce-trail-to<sub>NOT</sub> F (tl-trail S))
by fast+
termination by (relation measure (\lambda(-, S)). length (trail S))) auto
declare reduce-trail-to_{NOT}.simps[simp\ del]
Then we need several lemmas about the reduce-trail-to<sub>NOT</sub>.
lemma
 shows
 reduce-trail-to<sub>NOT</sub>-Nil[simp]: trail\ S = [] \implies reduce-trail-to<sub>NOT</sub> F\ S = S and
  reduce-trail-to_{NOT}-eq-length[simp]: length(trail S) = length(F) \implies reduce-trail-to_{NOT} FS = S
 by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma reduce-trail-to_{NOT}-length-ne[simp]:
  length\ (trail\ S) \neq length\ F \Longrightarrow trail\ S \neq [] \Longrightarrow
    reduce-trail-to<sub>NOT</sub> F S = reduce-trail-to<sub>NOT</sub> F (tl-trail S)
 by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma trail-reduce-trail-to_{NOT}-length-le:
 assumes length F > length (trail S)
 shows trail (reduce-trail-to<sub>NOT</sub> FS) = []
 using assms by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-Nil[simp]:
  trail (reduce-trail-to_{NOT} [] S) = []
  by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma clauses-reduce-trail-to<sub>NOT</sub>-Nil:
  clauses_{NOT} (reduce-trail-to<sub>NOT</sub> [] S) = clauses_{NOT} S
  by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-drop:
  trail (reduce-trail-to_{NOT} F S) =
   (if \ length \ (trail \ S) \ge length \ F
   then drop (length (trail S) – length F) (trail S)
   else [])
 apply (induction F S rule: reduce-trail-to_{NOT}.induct)
 apply (rename-tac F S, case-tac trail S)
  apply auto
  apply (rename-tac list, case-tac Suc (length list) > length F)
  prefer 2 apply simp
 apply (subgoal-tac Suc (length list) – length F = Suc (length list – length F))
  apply simp
 apply simp
 done
lemma reduce-trail-to<sub>NOT</sub>-skip-beginning:
 assumes trail\ S = F' @ F
```

shows trail (reduce-trail-to_{NOT} FS) = F

```
using assms by (auto simp: trail-reduce-trail-to<sub>NOT</sub>-drop)
lemma reduce-trail-to_{NOT}-clauses[simp]:
  clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F S) = clauses_{NOT} S
  by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-eq-reduce-trail-to<sub>NOT</sub>-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
  apply (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
  by (metis tl-trail reduce-trail-to<sub>NOT</sub>-eq-length reduce-trail-to<sub>NOT</sub>-length-ne reduce-trail-to<sub>NOT</sub>-Nil)
lemma trail-reduce-trail-to_{NOT}-add-cls_{NOT}[simp]:
  no-dup (trail S) \Longrightarrow
    trail\ (reduce-trail-to_{NOT}\ F\ (add-cls_{NOT}\ C\ S)) = trail\ (reduce-trail-to_{NOT}\ F\ S)
  by (rule trail-eq-reduce-trail-to<sub>NOT</sub>-eq) simp
lemma reduce-trail-to_{NOT}-trail-tl-trail-decomp[simp]:
  trail\ S = F' @ Decided\ K \ \# \ F \Longrightarrow
     trail (reduce-trail-to_{NOT} F (tl-trail S)) = F
  apply (rule reduce-trail-to<sub>NOT</sub>-skip-beginning[of - tl (F' @ Decided K # [])])
  by (cases F') (auto simp add:tl-append reduce-trail-to<sub>NOT</sub>-skip-beginning)
lemma reduce-trail-to<sub>NOT</sub>-length:
  length M = length M' \Longrightarrow reduce-trail-to_{NOT} M S = reduce-trail-to_{NOT} M' S
  apply (induction M S rule: reduce-trail-to<sub>NOT</sub>.induct)
  by (simp\ add: reduce-trail-to<sub>NOT</sub>.simps)
abbreviation trail-weight where
trail-weight\ S \equiv map\ ((\lambda l.\ 1 + length\ l)\ o\ snd)\ (get-all-ann-decomposition\ (trail\ S))
As we are defining abstract states, the Isabelle equality about them is too strong: we want the
weaker equivalence stating that two states are equal if they cannot be distinguished, i.e. given
the getter trail and clauses_{NOT} do not distinguish them.
definition state-eq_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow trail \ S = trail \ T \wedge clauses_{NOT} \ S = clauses_{NOT} \ T
lemma state-eq_{NOT}-ref[simp]:
  S \sim S
  unfolding state-eq_{NOT}-def by auto
lemma state\text{-}eq_{NOT}\text{-}sym:
  S \sim T \longleftrightarrow T \sim S
  unfolding state-eq_{NOT}-def by auto
lemma state\text{-}eq_{NOT}\text{-}trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
  unfolding state-eq_{NOT}-def by auto
lemma
  shows
    state-eq_{NOT}-trail: S \sim T \Longrightarrow trail \ S = trail \ T and
    state\text{-}eq_{NOT}\text{-}clauses: S \sim T \Longrightarrow clauses_{NOT} S = clauses_{NOT} T
  unfolding state-eq_{NOT}-def by auto
```

```
lemmas \ state-simp_{NOT}[simp] = state-eq_{NOT}-trail \ state-eq_{NOT}-clauses
lemma reduce-trail-to<sub>NOT</sub>-state-eq<sub>NOT</sub>-compatible:
  assumes ST: S \sim T
 shows reduce-trail-to<sub>NOT</sub> F S \sim reduce-trail-to<sub>NOT</sub> F T
proof -
  have clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F S) = clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F T)
    using ST by auto
 moreover have trail (reduce-trail-to<sub>NOT</sub> F S) = trail (reduce-trail-to<sub>NOT</sub> F T)
    using trail-eq-reduce-trail-to<sub>NOT</sub>-eq[of S T F] ST by auto
 ultimately show ?thesis by (auto simp del: state-simp<sub>NOT</sub> simp: state-eq<sub>NOT</sub>-def)
qed
end
Definition of the operation
Each possible is in its own locale.
locale propagate-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    propagate\text{-}cond :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool
begin
inductive propagate_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool  where
propagate_{NOT}[intro]: C + \{\#L\#\} \in \# clauses_{NOT} S \Longrightarrow trail S \models as CNot C
    \implies undefined-lit (trail S) L
    \implies propagate-cond (Propagated L ()) S
    \implies T \sim prepend-trail (Propagated L ()) S
    \implies propagate_{NOT} S T
inductive-cases propagate_{NOT}E[elim]: propagate_{NOT} S T
end
locale decide-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st
begin
inductive decide_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool where
decide_{NOT}[intro]: undefined-lit (trail S) L \Longrightarrow atm-of L \in atms-of-mm (clauses_{NOT} S)
  \implies T \sim prepend-trail (Decided L) S
  \implies decide_{NOT} \ S \ T
```

```
inductive-cases decide_{NOT}E[elim]: decide_{NOT} S S'
end
locale backjumping-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
inductive backjump where
trail\ S = F' @ Decided\ K \# F
   \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
   \implies C \in \# \ clauses_{NOT} \ S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit \ F \ L
   \implies atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)\ \cup\ atm\text{-}of\ ``(lits\text{-}of\text{-}l\ (trail\ S))
   \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump-conds C C' L S T
   \implies backjump \ S \ T
inductive-cases backjumpE: backjump S T
The condition atm\text{-}of\ L\in atm\text{-}of\text{-}mm\ (clauses_{NOT}\ S)\cup atm\text{-}of\ 'lits\text{-}of\text{-}l\ (trail\ S) is not
implied by the the condition clauses_{NOT} S \models pm C' + \{\#L\#\}  (no negation).
end
1.2.3
            DPLL with backjumping
locale dpll-with-backjumping-ops =
  propagate-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds\ +
  decide-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ +
  backjumping-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ backjump-conds
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool +
  assumes
      bj-can-jump:
      \bigwedge S \ C \ F' \ K \ F \ L.
         inv S \Longrightarrow
         no-dup (trail S) \Longrightarrow
         trail\ S = F' @ Decided\ K \ \# \ F \Longrightarrow
```

 $C \in \# clauses_{NOT} S \Longrightarrow$

```
trail \ S \models as \ CNot \ C \Longrightarrow \\ undefined-lit \ F \ L \Longrightarrow \\ atm-of \ L \in atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ `(lits-of-l \ (F' @ Decided \ K \ \# \ F)) \Longrightarrow \\ clauses_{NOT} \ S \models pm \ C' + \{\#L\#\} \Longrightarrow \\ F \models as \ CNot \ C' \Longrightarrow \\ \neg no-step \ backjump \ S
begin
```

We cannot add a like condition atms-of $C' \subseteq atms-of-ms$ N to ensure that we can backjump even if the last decision variable has disappeared from the set of clauses.

The part of the condition $atm\text{-}of\ L\in atm\text{-}of$ ' lits-of-l (F' @ Decided K # F) is important, otherwise you are not sure that you can backtrack.

Definition

```
We define dpll with backjumping:
inductive dpll-bj :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
bj-decide_{NOT}: decide_{NOT} S S' \Longrightarrow dpll-bj S S'
bj-propagate<sub>NOT</sub>: propagate_{NOT} S S' \Longrightarrow dpll-bj S S' \mid
bj-backjump: backjump \ S \ S' \Longrightarrow dpll-bj \ S \ S'
lemmas dpll-bj-induct = dpll-bj.induct[split-format(complete)]
thm dpll-bj-induct[OF dpll-with-backjumping-ops-axioms]
lemma dpll-bj-all-induct[consumes\ 2, case-names\ decide_{NOT}\ propagate_{NOT}\ backjump]:
 fixes S T :: 'st
  assumes
    dpll-bj S T and
    inv S
    \bigwedge L T. undefined-lit (trail S) L \Longrightarrow atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
      \implies T \sim prepend-trail (Decided L) S
      \implies P S T  and
    \bigwedge C \ L \ T. \ C + \{\#L\#\} \in \# \ clauses_{NOT} \ S \Longrightarrow trail \ S \models as \ CNot \ C \Longrightarrow undefined-lit \ (trail \ S) \ L
      \implies T \sim prepend-trail (Propagated L ()) S
      \implies P S T \text{ and}
    \bigwedge C \ F' \ K \ F \ L \ C' \ T. \ C \in \# \ clauses_{NOT} \ S \Longrightarrow F' @ \ Decided \ K \ \# \ F \models as \ CNot \ C
      \implies trail \ S = F' \ @ \ Decided \ K \ \# \ F
      \implies undefined\text{-}lit \ F \ L
      \implies atm-of L \in atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (F' @ Decided K # F))
      \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
      \implies F \models as \ CNot \ C'
      \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
      \implies P S T
 shows P S T
  \mathbf{apply} \ (induct \ T \ rule: \ dpll-bj-induct[OF \ local.dpll-with-backjumping-ops-axioms])
     apply (rule\ assms(1))
    using assms(3) apply blast
   apply (elim \ propagate_{NOT}E) using assms(4) apply blast
 apply (elim\ backjumpE) using assms(5) \langle inv\ S \rangle by simp
```

Basic properties

```
First, some better suited induction principle lemma dpll-bj-clauses: assumes dpll-bj S T and inv S shows clauses_{NOT} S = clauses_{NOT} T using assms by (induction\ rule:\ dpll-bj-all-induct) auto
```

```
No duplicates in the trail lemma dpll-bj-no-dup:
 assumes dpll-bj S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp add: defined-lit-map reduce-trail-to<sub>NOT</sub>-skip-beginning)
Valuations lemma dpll-bj-sat-iff:
 assumes dpll-bj S T and inv S
 shows I \models sm \ clauses_{NOT} \ S \longleftrightarrow I \models sm \ clauses_{NOT} \ T
 using assms by (induction rule: dpll-bj-all-induct) auto
Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
 assumes
   dpll-bj S T and
   inv S
 shows atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
 using assms by (induction rule: dpll-bj-all-induct) auto
\mathbf{lemma}\ dpll-bj-atms-in-trail:
 assumes
   dpll-bj S T and
   inv S and
   atm\text{-}of \cdot (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S)
 shows atm-of '(lits-of-l (trail T)) \subseteq atms-of-mm (clauses<sub>NOT</sub> S)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms reduce-trail-to_{NOT}-skip-beginning)
lemma dpll-bj-atms-in-trail-in-set:
 assumes dpll-bj S T and
   inv S and
  atms-of-mm (clauses_{NOT} S) \subseteq A and
  atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq A
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma dpll-bj-all-decomposition-implies-inv:
 assumes
   dpll-bj S T and
   inv: inv S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
 using assms(1,2)
proof (induction rule:dpll-bj-all-induct)
 case decide_{NOT}
 then show ?case using decomp by auto
next
 case (propagate_{NOT} \ C \ L \ T) note propa = this(1) and undef = this(3) and T = this(4)
 let ?M' = trail (prepend-trail (Propagated L ()) S)
 let ?N = clauses_{NOT} S
 obtain a y l where ay: get-all-ann-decomposition ?M' = (a, y) \# l
   by (cases get-all-ann-decomposition ?M') fastforce+
 then have M': ?M' = y @ a using get-all-ann-decomposition-decomp[of ?M'] by auto
 have M: get-all-ann-decomposition (trail S) = (a, tl y) \# l
```

```
using ay undef by (cases get-all-ann-decomposition (trail S)) auto
  have y_0: y = (Propagated L()) \# (tl y)
   using ay undef by (auto simp add: M)
  from arg-cong[OF this, of set] have y[simp]: set y = insert (Propagated L ()) (set (tl y))
   by simp
 have tr-S: trail S = tl y @ a
   using arg-cong[OF M', of tl] y_0 M get-all-ann-decomposition-decomp by force
 have a-Un-N-M: unmark-l a \cup set-mset ?N \models ps unmark-l (tl \ y)
   using decomp ay unfolding all-decomposition-implies-def by (simp add: M)+
 moreover have unmark-l a \cup set-mset ?N \models p \{\#L\#\}  (is ?I \models p-)
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p C + \{\#L\#\}
       using propagate<sub>NOT</sub>. prems by (auto dest!: true-clss-clss-in-imp-true-clss-cls)
   next
     have unmark-l ?M' \models ps \ CNot \ C
       \mathbf{using} \ \langle \mathit{trail} \ S \models \mathit{as} \ \mathit{CNot} \ \mathit{C} \rangle \ \mathit{undef} \ \mathbf{by} \ (\mathit{auto} \ \mathit{simp} \ \mathit{add} \text{:} \ \mathit{true-annots-true-clss-clss})
     have a1: unmark-l \ a \cup unmark-l \ (tl \ y) \models ps \ CNot \ C
       using propagate_{NOT}.hyps(2) tr-S true-annots-true-clss-clss
       by (force simp add: image-Un sup-commute)
     then have unmark-l \ a \cup set-mset \ (clauses_{NOT} \ S) \models ps \ unmark-l \ a \cup unmark-l \ (tl \ y)
       using a-Un-N-M true-clss-clss-def by blast
     then show unmark-l a \cup set-mset (clauses<sub>NOT</sub> S) \models ps CNot C
       using a1 by (meson true-clss-clss-left-right true-clss-clss-union-and
         true-clss-union-l-r)
   ged
  ultimately have unmark-l \ a \cup set\text{-mset } ?N \models ps \ unmark-l \ ?M'
   unfolding M' by (auto simp add: all-in-true-clss-clss image-Un)
  then show ?case
   using decomp T M undef unfolding ay all-decomposition-implies-def by (auto simp add: ay)
\mathbf{next}
  case (backjump\ C\ F'\ K\ F\ L\ D\ T) note confl=this(2) and tr=this(3) and undef=this(4) and
    L = this(5) and N-C = this(6) and vars-D = this(5) and T = this(8)
 have decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition F)
   using decomp unfolding tr all-decomposition-implies-def
   by (metis (no-types, lifting) get-all-ann-decomposition.simps(1)
     qet-all-ann-decomposition-never-empty hd-Cons-tl insert-iff list.sel(3) list.set(2)
     tl-qet-all-ann-decomposition-skip-some)
 obtain a b li where F: get-all-ann-decomposition F = (a, b) \# li
   by (cases get-all-ann-decomposition F) auto
  have F = b @ a
   using get-all-ann-decomposition-decomp[of F a b] F by auto
 have a-N-b:unmark-l a \cup set-mset (clauses<sub>NOT</sub> S) \models ps unmark-l b
   using decomp unfolding all-decomposition-implies-def by (auto simp add: F)
 have F-D: unmark-l \ F \models ps \ CNot \ D
   using \langle F \models as \ CNot \ D \rangle by (simp add: true-annots-true-clss-clss)
  then have unmark-l \ a \cup unmark-l \ b \models ps \ CNot \ D
   unfolding \langle F = b \otimes a \rangle by (simp add: image-Un sup.commute)
 have a-N-CNot-D: unmark-l a \cup set-mset (clauses_{NOT} S) \models ps \ CNot \ D \cup unmark-l b
   apply (rule true-clss-clss-left-right)
   using a-N-b F-D unfolding \langle F = b \otimes a \rangle by (auto simp add: image-Un ac-simps)
 have a-N-D-L: unmark-l a \cup set-mset (clauses_{NOT} S) \models p D + \{\#L\#\}
   by (simp \ add: N-C)
```

```
have unmark-l a \cup set-mset (clauses_{NOT} S) \models p {\#L\#} using a-N-D-L a-N-CNot-D by (blast intro: true-clss-cls-plus-CNot) then show ?case using decomp T tr undef unfolding all-decomposition-implies-def by (auto simp add: F) qed
```

Termination

```
Using a proper measure lemma length-get-all-ann-decomposition-append-Decided:
 length (get-all-ann-decomposition (F' @ Decided K \# F)) =
   length (get-all-ann-decomposition F')
   + length (get-all-ann-decomposition (Decided K \# F))
   - 1
 by (induction F' rule: ann-lit-list-induct) auto
lemma take-length-get-all-ann-decomposition-decided-sandwich:
 take (length (get-all-ann-decomposition F))
     (map\ (f\ o\ snd)\ (rev\ (get-all-ann-decomposition\ (F'\ @\ Decided\ K\ \#\ F))))
    map \ (f \ o \ snd) \ (rev \ (get-all-ann-decomposition \ F))
proof (induction F' rule: ann-lit-list-induct)
 case Nil
 then show ?case by auto
 case (Decided K)
 then show ?case by (simp add: length-get-all-ann-decomposition-append-Decided)
 case (Propagated L m F') note IH = this(1)
 obtain a b l where F': get-all-ann-decomposition (F' @ Decided K # F) = (a, b) # l
   by (cases get-all-ann-decomposition (F' @ Decided K \# F)) auto
 have length (get-all-ann-decomposition F) – length l = 0
   using length-get-all-ann-decomposition-append-Decided of F' K F
   unfolding F' by (cases get-all-ann-decomposition F') auto
 then show ?case
   using IH by (simp \ add: F')
qed
lemma length-get-all-ann-decomposition-length:
 length (get-all-ann-decomposition M) \leq 1 + length M
 by (induction M rule: ann-lit-list-induct) auto
{\bf lemma}\ length-in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}bounded\text{:}
 assumes i:i \in set (trail-weight S)
 shows i \leq Suc \ (length \ (trail \ S))
proof -
 obtain a b where
   (a, b) \in set (get-all-ann-decomposition (trail S)) and
   ib: i = Suc (length b)
   using i by auto
 then obtain c where trail S = c @ b @ a
   using get-all-ann-decomposition-exists-prepend' by metis
 from arg-cong[OF this, of length] show ?thesis using i ib by auto
qed
```

Well-foundedness The bounds are the following:

- 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the list. As get-all-ann-decomposition appends an possibly empty couple at the end, adding one is needed.
- 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of elements, where adding one is necessary for the same reason as for the bound on the list, and one is needed to have a strict bound.

```
abbreviation unassigned-lit :: 'b literal multiset set \Rightarrow 'a list \Rightarrow nat where
 unassigned-lit N M \equiv card (atms-of-ms N) - length M
lemma dpll-bj-trail-mes-increasing-prop:
 fixes M :: ('v, unit) \ ann-lits \ and \ N :: 'v \ clauses
 assumes
   dpll-bj S T and
   inv S and
   NA: atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A \ and
   MA: atm\text{-}of \text{ '} lits\text{-}of\text{-}l \text{ (trail } S) \subseteq atms\text{-}of\text{-}ms \text{ A} \text{ and }
   n-d: no-dup (trail S) and
   finite: finite A
 shows \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
   > \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
 using assms(1,2)
proof (induction rule: dpll-bj-all-induct)
 case (propagate_{NOT} \ C \ L) note CLN = this(1) and MC = this(2) and undef - L = this(3) and T = this(3)
this(4)
 have incl: atm-of 'lits-of-l (Propagated L () # trail S) \subseteq atms-of-ms A
   using propagate_{NOT} dpll-bj-atms-in-trail-in-set bj-propagate<sub>NOT</sub> NA MA CLN
   by (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
 have no-dup: no-dup (Propagated L () \# trail S)
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: get-all-ann-decomposition (trail S) = (a, b) \# l
   by (cases get-all-ann-decomposition (trail S)) auto
 have b-le-M: length b \leq length (trail S)
   using get-all-ann-decomposition-decomp[of trail S] by (simp add: M)
 have finite (atms-of-ms A) using finite by simp
 then have length (Propagated L () \# trail S) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
   by (simp add: card-mono)
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L d \# b))
   using b-le-M by auto
 then show ?case using T undef-L by (auto simp: latm M \mu_C-cons)
next
 case (decide_{NOT} L) note undef-L = this(1) and MC = this(2) and T = this(3)
 have incl: atm-of 'lits-of-l (Decided L # (trail S)) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set bj-decide_{NOT} decide_{NOT}. decide_{NOT}. decide_{NOT}. hyps] NA MA
MC
   by auto
 have no-dup: no-dup (Decided L \# (trail S))
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: get-all-ann-decomposition (trail S) = (a, b) \# l
```

```
\mathbf{by}\ (\mathit{cases}\ \mathit{get-all-ann-decomposition}\ (\mathit{trail}\ S))\ \mathit{auto}
 then have length (Decided L # (trail S)) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
   by (simp add: card-mono)
 show ?case using T undef-L by (simp add: \mu_C-cons)
next
 case (backjump C F' K F L C' T) note undef-L = this(4) and MC = this(1) and tr-S = this(3)
and
   L = this(5) and T = this(8)
 have incl: atm-of 'lits-of-l (Propagated L () \# F) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set NA MA L by (auto simp: tr-S)
 have no-dup: no-dup (Propagated L () \# F)
   using defined-lit-map n-d undef-L tr-S by auto
 obtain a b l where M: qet-all-ann-decomposition (trail S) = (a, b) \# l
   by (cases get-all-ann-decomposition (trail S)) auto
 have b-le-M: length b < length (trail S)
   using get-all-ann-decomposition-decomp[of trail S] by (simp add: M)
 have fin-atms-A: finite (atms-of-ms A) using finite by simp
 then have F-le-A: length (Propagated L () \# F) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
   by (simp add: card-mono)
 have tr-S-le-A: length (trail\ S) \le card\ (atms-of-ms\ A)
   using n-d MA by (metis fin-atms-A card-mono no-dup-length-eq-card-atm-of-lits-of-l)
 obtain a b l where F: get-all-ann-decomposition F = (a, b) \# l
   by (cases get-all-ann-decomposition F) auto
 then have F = b @ a
   using qet-all-ann-decomposition-decomp[of Propagated L () \# F a
     Propagated L() \# b] by simp
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L () \# b))
    using F-le-A by simp
 obtain rem where
   rem:map\ (\lambda a.\ Suc\ (length\ (snd\ a)))\ (rev\ (get-all-ann-decomposition\ (F'\ @\ Decided\ K\ \#\ F)))
   = map (\lambda a. Suc (length (snd a))) (rev (qet-all-ann-decomposition F)) @ rem
   using take-length-qet-all-ann-decomposition-decided-sandwich of F \lambda a. Suc (length a) F' K
   unfolding o-def by (metis append-take-drop-id)
 then have rem: map (\lambda a. Suc (length (snd a)))
     (get-all-ann-decomposition (F' @ Decided K \# F))
   = rev \ rem \ @ \ map \ (\lambda a. \ Suc \ (length \ (snd \ a))) \ ((get-all-ann-decomposition \ F))
   by (simp add: rev-map[symmetric] rev-swap)
 have length (rev rem @ map (\lambda a. Suc (length (snd a))) (get-all-ann-decomposition F))
        \leq Suc (card (atms-of-ms A))
   using arg-cong[OF rem, of length] tr-S-le-A
   length-get-all-ann-decomposition-length[of\ F'\ @\ Decided\ K\ \#\ F]\ tr-S\ {f by}\ auto
 moreover
   { \mathbf{fix} \ i :: nat \ \mathbf{and} \ xs :: 'a \ list
     have i < length \ xs \Longrightarrow length \ xs - Suc \ i < length \ xs
     then have H: i < length \ xs \implies rev \ xs \ ! \ i \in set \ xs
      using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
   } note H = this
   have \forall i < length \ rem. \ rev \ rem! \ i < card (atms-of-ms \ A) + 2
     using tr-S-le-A length-in-get-all-ann-decomposition-bounded[of - S] unfolding tr-S
     by (force simp add: o-def rem dest!: H intro: length-get-all-ann-decomposition-length)
```

```
ultimately show ?case
   using \mu_C-bounded[of rev rem card (atms-of-ms A)+2 unassigned-lit A l] T undef-L
   by (simp add: rem \mu_C-append \mu_C-cons F tr-S)
qed
lemma dpll-bj-trail-mes-decreasing-prop:
 assumes dpll: dpll-bj S T and inv: inv S and
  N-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
  M-A: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
  nd: no\text{-}dup \ (trail \ S) \ \mathbf{and}
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
              -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ T)
          <(2+card\ (atms-of-ms\ A))\ \widehat{\ }\ (1+card\ (atms-of-ms\ A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
proof -
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 have M'-A: atm-of 'lits-of-l (trail T) \subseteq atms-of-ms A
   by (meson M-A N-A dpll dpll-bj-atms-in-trail-in-set inv)
  have nd': no-dup (trail T)
   using \langle dpll-bj \mid S \mid T \rangle \mid dpll-bj-no-dup \mid nd \mid inv \mid by \mid blast
  { fix i :: nat and xs :: 'a list
   have i < length xs \Longrightarrow length xs - Suc i < length xs
     by auto
   then have H: i < length \ xs \implies xs \mid i \in set \ xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  } note H = this
 have l-M-A: length (trail\ S) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
  have l-M'-A: length (trail\ T) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd')
 have l-trail-weight-M: length (trail-weight T) \leq 1 + card (atms-of-ms A)
    using l-M'-A length-qet-all-ann-decomposition-length[of trail T] by auto
  have bounded-M: \forall i < length (trail-weight T). (trail-weight T)! i < card (atms-of-ms A) + 2
   using length-in-qet-all-ann-decomposition-bounded of - T l-M'-A
   by (metis (no-types, lifting) H Nat.le-trans add-2-eq-Suc' not-le not-less-eq-eq)
  from dpll-bj-trail-mes-increasing-prop[OF dpll inv N-A M-A nd fin-A]
 have \mu_C ?s ?b (trail-weight S) < \mu_C ?s ?b (trail-weight T) by simp
 moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight T) \leq ?b \hat{} ?s by auto
  ultimately show ?thesis by linarith
qed
lemma wf-dpll-bj:
 assumes fin: finite A
 shows wf \{(T, S), dpll-bj S T\}
   \land atms-of-mm (clauses<sub>NOT</sub> S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no\text{-}dup \ (trail \ S) \land inv \ S
  (is wf ?A)
proof (rule wf-bounded-measure[of -
       \lambda-. (2 + card (atms-of-ms A))^{(1 + card (atms-of-ms A))}
       \lambda S. \ \mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)])
```

```
\mathbf{fix} \ a \ b :: 'st
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 assume ab: (b, a) \in ?A
  have fin-A: finite (atms-of-ms\ A)
   using fin by auto
 have
   dpll-bj: dpll-bj a b and
   N-A: atms-of-mm (clauses_{NOT} \ a) \subseteq atms-of-ms A and
   M-A: atm-of ' lits-of-l (trail\ a) \subseteq atms-of-ms\ A and
   nd: no-dup (trail a) and
   inv: inv a
   using ab by auto
 have M'-A: atm-of 'lits-of-l (trail b) \subseteq atms-of-ms A
   by (meson M-A N-A (dpll-bj a b) dpll-bj-atms-in-trail-in-set inv)
  have nd': no-dup (trail b)
   using \langle dpll-bj \ a \ b \rangle \ dpll-bj-no-dup \ nd \ inv \ by \ blast
  { fix i :: nat and xs :: 'a list
   have i < length xs \Longrightarrow length xs - Suc i < length xs
     by auto
   then have H: i < length \ xs \implies xs \ ! \ i \in set \ xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  } note H = this
 have l-M-A: length (trail\ a) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
  have l-M'-A: length (trail\ b) < card\ (atms-of-ms\ A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd')
  have l-trail-weight-M: length (trail-weight b) \le 1 + card (atms-of-ms A)
    using l-M'-A length-get-all-ann-decomposition-length[of trail b] by auto
  have bounded-M: \forall i < length (trail-weight b). (trail-weight b)! i < card (atms-of-ms A) + 2
   using length-in-get-all-ann-decomposition-bounded [of - b] l-M'-A
   by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
     le-imp-less-Suc less-eq-Suc-le nth-mem)
  from dpll-bj-trail-mes-increasing-prop[OF dpll-bj inv N-A M-A nd fin]
 have \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b) by simp
  moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s by auto
  ultimately show ?b \cap ?s \leq ?b \cap ?s \wedge
         \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s \wedge
         \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b)
   \mathbf{by} blast
qed
```

Normal Forms

We prove that given a normal form of DPLL, with some structural invariants, then either N is satisfiable and the built valuation M is a model; or N is unsatisfiable.

Idea of the proof: We have to prove tat satisfiable $N, \neg M \models as N$ and there is no remaining step is incompatible.

- 1. The decide rule tells us that every variable in N has a value.
- 2. The assumption $\neg M \models as N$ implies that there is conflict.
- 3. There is at least one decision in the trail (otherwise, M would be a model of the set of clauses N).
- 4. Now if we build the clause with all the decision literals of the trail, we can apply the backjump rule.

The assumption are saying that we have a finite upper bound A for the literals, that we cannot do any step no-step dpll-bj S

```
theorem dpll-backjump-final-state:
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
    no-dup (trail S) and
   finite A and
   inv: inv S and
   n-s: no-step dpll-bj S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
  let ?N = set\text{-}mset (clauses_{NOT} S)
 let ?M = trail S
  consider
     (sat) satisfiable ?N and ?M \models as ?N
   \mid (sat') \ satisfiable ?N \ and \neg ?M \models as ?N
    (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v literal set where
       I \models s ?N  and
       cons: consistent-interp I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     let ?I = I \cup \{P | P. P \in lits\text{-}of\text{-}l ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
     let ?O = \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
     have cons-I': consistent-interp ?I
       using cons using (no\text{-}dup\ ?M) unfolding consistent\text{-}interp\text{-}def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark-l ?M)
       using tot atm-I-N unfolding total-over-m-def total-over-set-def
       by (fastforce simp: image-iff lits-of-def)
     have \{P \mid P. P \in lits\text{-}of\text{-}l ? M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ? O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ? N \rangle true-clss-union-increase by force
```

```
have tot': total-over-m ?I (?N \cup ?O)
 using atm-I-N tot unfolding total-over-m-def total-over-set-def
 by (force simp: lits-of-def elim!: is-decided-ex-Decided)
have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of-l ?M
 proof (rule ccontr)
   assume ¬ ?thesis
   then obtain l :: 'v where
     l-N: l \in atms-of-ms ?N and
     l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of\text{-}l ?M
     by auto
   have undefined-lit ?M (Pos l)
     using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
        atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
   from bj-decide_{NOT}[OF\ decide_{NOT}[OF\ this]] show False
     using l-N n-s by (metis\ literal.sel(1)\ state-eq_{NOT}-ref)
 qed
have ?M \models as CNot C
 apply (rule all-variables-defined-not-imply-cnot)
 using \langle C \in set\text{-}mset \ (clauses_{NOT} \ S) \rangle \langle \neg \ trail \ S \models a \ C \rangle
    atms-N-M by (auto dest: atms-of-atms-of-ms-mono)
have \exists l \in set ?M. is\text{-}decided l
 proof (rule ccontr)
   let ?O = \{unmark\ L\ | L.\ is\text{-}decided\ L\ \land\ L\in set\ ?M\ \land\ atm\text{-}of\ (lit\text{-}of\ L)\notin atms\text{-}of\text{-}ms\ ?N\}
   have \vartheta[iff]: \Lambda I. total-over-m I (?N \cup ?O \cup unmark-l ?M)
     \longleftrightarrow total\text{-}over\text{-}m \ I \ (?N \cup unmark\text{-}l \ ?M)
     unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
   assume ¬ ?thesis
   then have [simp]: \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\}
     = \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
     by auto
   then have ?N \cup ?O \models ps \ unmark-l \ ?M
     using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
   then have ?I \models s \ unmark-l \ ?M
     using cons-I'I'-N tot-I' (?I \models s ?N \cup ?O) unfolding \vartheta true-clss-clss-def by blast
   then have lits-of-l ?M \subseteq ?I
     unfolding true-clss-def lits-of-def by auto
   then have ?M \models as ?N
     using I'-N \lor C \in ?N \lor \neg ?M \models a C \lor cons-I' atms-N-M
     by (meson \ \langle trail \ S \models as \ CNot \ C \rangle \ consistent-CNot-not \ rev-subsetD \ sup-ge1 \ true-annot-def
        true-annots-def true-cls-mono-set-mset-l true-clss-def)
   then show False using M by fast
  qed
from List.split-list-first-propE[OF\ this] obtain K::'v\ literal\ and
  F F' :: ('v, unit) \ ann-lits \ \mathbf{where}
 M-K: ?M = F' @ Decided K # F and
 nm: \forall f \in set \ F'. \ \neg is\text{-}decided \ f
 unfolding is-decided-def by (metis (full-types) old.unit.exhaust)
let ?K = Decided K :: ('v, unit) ann-lit
have ?K \in set ?M
 unfolding M-K by auto
let ?C = image\text{-}mset\ lit\text{-}of\ \{\#L \in \#mset\ ?M.\ is\text{-}decided\ L \land L \neq ?K\#\} :: 'v\ clause
let ?C' = set\text{-}mset \ (image\text{-}mset \ (\lambda L::'v \ literal. \{\#L\#\}) \ (?C + unmark \ ?K))
have ?N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\} \models ps\ unmark\text{-}l\ ?M
 using all-decomposition-implies-propagated-lits-are-implied [OF decomp].
```

```
moreover have C': ?C' = \{unmark \ L \ | L. \ is\text{-decided} \ L \land L \in set \ ?M\}
 \mathbf{unfolding}\ \mathit{M-K}\ \mathbf{by}\ \mathit{standard}\ \mathit{force} +
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark-l \ ?M
 by auto
have N-M-False: ?N \cup (\lambda L. \ unmark \ L) ' (set ?M) \models ps \{\{\#\}\}
 using M \triangleleft ?M \models as \ CNot \ C \triangleleft \ \langle C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
 true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def
   true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
have undefined-lit F \ K \ using \langle no\text{-}dup \ ?M \rangle \ unfolding \ M\text{-}K \ by \ (simp \ add: defined-lit-map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark-l ?M = ?N \cup unmark-l ?M
       unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right[OF N-C-M, of \{\{\#\}\}\}] N-M-False unfolding A by auto
 have ?N \models p image\text{-mset uminus } ?C + \{\#-K\#\}
   unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup \{image-mset\ uminus\ ?C+ \{\#-K\#\}\})) and
       cons: consistent-interp I and
       I \models s ?N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases K) auto
     have \{a \in set \ (trail \ S). \ is\text{-}decided \ a \land a \neq Decided \ K\} =
       set\ (trail\ S)\cap\{L.\ is\ decided\ L\wedge L\neq Decided\ K\}
      by auto
     then have tot': total-over-set I
        (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}decided L \land L \neq Decided K\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
     { \mathbf{fix} \ x :: ('v, unit) \ ann-lit}
       assume
         a3: lit-of x \notin I and
         a1: x \in set ?M and
         a4: is\text{-}decided \ x \ \mathbf{and}
         a5: x \neq Decided K
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \vee Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
       moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
         by simp
       ultimately have - lit-of x \in I
         using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1)
     \} note H = this
     have \neg I \models s ?C'
       using \langle ?N \cup ?C' \models ps \{ \{ \# \} \} \rangle tot cons \langle I \models s ?N \rangle
       unfolding true-clss-clss-def total-over-m-def
       by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
     then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
       unfolding true-clss-def true-cls-def using (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       by (auto dest!: H)
```

```
qed
      moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
        using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
      ultimately have False
        using bj-can-jump[of S F' K F C - K
          image-mset\ uminus\ (image-mset\ lit-of\ \{\#\ L:\#\ mset\ ?M.\ is-decided\ L\land L\ne Decided\ K\#\}\}
          \langle C \in ?N \rangle n-s \langle ?M \models as\ CNot\ C \rangle bj-backjump inv \langle no\text{-}dup\ (trail\ S) \rangle unfolding M-K by auto
        then show ?thesis by fast
    qed auto
qed
end — End of dpll-with-backjumping-ops
locale dpll-with-backjumping =
  dpll-with-backjumping-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} inv
    backjump\text{-}conds\ propagate\text{-}conds
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    propagate\text{-}conds :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool
 assumes dpll-bj-inv: \bigwedge S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T
begin
\mathbf{lemma}\ rtranclp-dpll-bj-inv:
 assumes dpll-bj^{**} S T and inv S
 shows inv T
  using assms by (induction rule: rtranclp-induct)
    (auto simp add: dpll-bj-no-dup intro: dpll-bj-inv)
lemma rtranclp-dpll-bj-no-dup:
  assumes dpll-bj^{**} S T and inv S
  and no-dup (trail S)
  shows no-dup (trail T)
  using assms by (induction rule: rtranclp-induct)
  (auto simp add: dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}atms\text{-}of\text{-}ms\text{-}clauses\text{-}inv:
  assumes
    dpll-bj^{**} S T and inv S
  shows atms-of-mm (clauses<sub>NOT</sub> S) = atms-of-mm (clauses<sub>NOT</sub> T)
  using assms by (induction rule: rtranclp-induct)
    (auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)
lemma rtranclp-dpll-bj-atms-in-trail:
  assumes
    dpll-bj^{**} S T and
    inv S and
    atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S)
  shows atm-of ' (lits-of-l (trail\ T)) \subseteq atms-of-mm (clauses_{NOT}\ T)
```

```
using assms apply (induction rule: rtranclp-induct)
  using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto
lemma rtranclp-dpll-bj-sat-iff:
 assumes dpll-bj^{**} S T and inv S
 shows I \models sm \ clauses_{NOT} \ S \longleftrightarrow I \models sm \ clauses_{NOT} \ T
  using assms by (induction rule: rtranclp-induct)
   (auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-atms-in-trail-in-set:
 assumes
   dpll-bj^{**} S T and
   inv S
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of ' (lits-of-l (trail S)) \subseteq A
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
  using assms by (induction rule: rtranclp-induct)
  (auto dest: rtranclp-dpll-bj-inv
   simp: dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}all\text{-}decomposition\text{-}implies\text{-}inv\text{:}}
 assumes
   dpll-bj^{**} S T and
   inv S
   all-decomposition-implies-m (clauses<sub>NOT</sub> S) (qet-all-ann-decomposition (trail S))
 shows all-decomposition-implies-m (clauses NOT T) (get-all-ann-decomposition (trail T))
  using assms by (induction rule: rtranclp-induct)
   (auto intro: dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
  \{(T, S), dpll-bj^{++} S T\}
   \land atms-of-mm (clauses<sub>NOT</sub> S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
    \subseteq \{(T, S). \ dpll-bj \ S \ T \land atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
       \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land no-dup (trail S) \land inv S}<sup>+</sup>
    (is ?A \subset ?B^+)
proof standard
 \mathbf{fix} \ x
 assume x-A: x \in ?A
 obtain S T::'st where
   x[simp]: x = (T, S) by (cases x) auto
 have
   dpll-bj<sup>++</sup> S T and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
   no-dup (trail S) and
    inv S
   using x-A by auto
  then show x \in ?B^+ unfolding x
   proof (induction rule: tranclp-induct)
     case base
     then show ?case by auto
   next
     case (step T U) note step = this(1) and ST = this(2) and IH = this(3)[OF this(4-7)]
       and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)
```

```
have [simp]: atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
       using step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv by fastforce
      have no-dup (trail T)
       using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
      moreover have atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}ms\ A
       by (metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set
          tranclp-into-rtranclp)
      moreover have inv T
        using inv local.step rtranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
      ultimately have (U, T) \in ?B using ST N-A M-A inv by auto
      then show ?case using IH by (rule trancl-into-trancl2)
   qed
qed
lemma wf-tranclp-dpll-bj:
  assumes fin: finite A
  shows wf \{(T, S). dpll-bj^{++} S T
   \land atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
  \mathbf{using} \ \textit{wf-trancl}[\textit{OF} \ \textit{wf-dpll-bj}[\textit{OF} \ \textit{fin}]] \ \textit{rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl}
  by (rule wf-subset)
lemma dpll-bj-sat-ext-iff:
  dpll-bj \ S \ T \Longrightarrow inv \ S \Longrightarrow I \models sextm \ clauses_{NOT} \ S \longleftrightarrow I \models sextm \ clauses_{NOT} \ T
  by (simp add: dpll-bj-clauses)
lemma rtranclp-dpll-bj-sat-ext-iff:
  dpll-bj^{**} S T \Longrightarrow inv S \Longrightarrow I \models sextm \ clauses_{NOT} S \longleftrightarrow I \models sextm \ clauses_{NOT} T
  by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)
theorem full-dpll-backjump-final-state:
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
   full: full \ dpll-bj \ S \ T \ \mathbf{and}
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   \mathit{atms\text{-}trail} \colon \mathit{atm\text{-}of} \mathrel{``lits\text{-}of\text{-}l} \mathrel{(trail\ S)} \subseteq \mathit{atms\text{-}of\text{-}ms}\ A \; \mathbf{and}
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
    decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
  \lor (trail \ T \models asm \ clauses_{NOT} \ S \land satisfiable \ (set\text{-}mset \ (clauses_{NOT} \ S)))
proof -
  have st: dpll-bj^{**} S T and no-step dpll-bj T
   using full unfolding full-def by fast+
  moreover have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
   using atms-S inv rtranclp-dpll-bj-atms-of-ms-clauses-inv st by blast
  moreover have atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
     using atms-S atms-trail inv rtranclp-dpll-bj-atms-in-trail-in-set st by auto
  moreover have no-dup (trail T)
   using n-d inv rtranclp-dpll-bj-no-dup st by blast
  moreover have inv: inv T
   \mathbf{using} \ inv \ rtranclp\text{-}dpll\text{-}bj\text{-}inv \ st \ \mathbf{by} \ blast
  moreover
   have decomp: all-decomposition-implies-m (clauses_{NOT} T) (get-all-ann-decomposition (trail T))
      using \langle inv S \rangle decomp rtranclp-dpll-bj-all-decomposition-implies-inv st by blast
```

```
ultimately have unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
   using \langle finite \ A \rangle dpll-backjump-final-state by force
 then show ?thesis
   by (meson (inv S) rtranclp-dpll-bj-sat-iff satisfiable-carac st true-annots-true-cls)
qed
{\bf corollary}\ full-dpll-backjump-final-state-from-init-state:
 fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
 assumes
   full: full dpll-bj S T and
   trail S = [] and
   clauses_{NOT} S = N and
   inv S
 shows unsatisfiable (set-mset N) \vee (trail T \models asm \ N \land satisfiable (set-mset N))
 using assms\ full-dpll-backjump-final-state[of\ S\ T\ set-mset\ N] by auto
lemma tranclp-dpll-bj-trail-mes-decreasing-prop:
 assumes dpll: dpll-bj<sup>++</sup> S T and inv: inv S and
 N-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
 M-A: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
 n-d: no-dup (trail S) and
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
          < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)
 using dpll
proof (induction)
 case base
 then show ?case
   using N-A M-A n-d dpll-bj-trail-mes-decreasing-prop fin-A inv by blast
 case (step T U) note st = this(1) and dpll = this(2) and IH = this(3)
 have atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
   using rtranclp-dpll-bj-atms-of-ms-clauses-inv by (metis dpll-bj-clauses dpll-bj-inv inv st
 then have N-A': atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
    using N-A by auto
 moreover have M-A': atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
   by (meson M-A N-A inv rtranclp-dpll-bj-atms-in-trail-in-set st dpll
     tranclp.r-into-trancl tranclp-into-rtranclp tranclp-trans)
 moreover have nd: no-dup (trail T)
   by (metis inv n-d rtranclp-dpll-bj-no-dup st tranclp-into-rtranclp)
 moreover have inv T
   by (meson dpll dpll-bj-inv inv rtranclp-dpll-bj-inv st tranclp-into-rtranclp)
 ultimately show ?case
   using IH dpll-bj-trail-mes-decreasing-prop[of T U A] dpll fin-A by linarith
qed
end — End of dpll-with-backjumping
```

1.2.4 CDCL

In this section we will now define the conflict driven clause learning above DPLL: we first introduce the rules learn and forget, and the add these rules to the DPLL calculus.

Learn and Forget

 $T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow$

Learning adds a new clause where all the literals are already included in the clauses.

```
locale learn-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    learn\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool
begin
inductive learn: 'st \Rightarrow 'st \Rightarrow bool where
learn_{NOT}-rule: clauses_{NOT} S \models pm C \Longrightarrow
  atms-of\ C\subseteq atms-of-mm\ (clauses_{NOT}\ S)\cup atm-of\ `(lits-of-l\ (trail\ S))\Longrightarrow
  learn\text{-}cond\ C\ S \Longrightarrow
  T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
  learn S T
inductive-cases learn_{NOT}E: learn S T
lemma learn-\mu_C-stable:
  assumes learn S T and no-dup (trail S)
  shows \mu_C A B (trail-weight S) = \mu_C A B (trail-weight T)
  using assms by (auto elim: learn_{NOT}E)
Forget removes an information that can be deduced from the context (e.g. redundant clauses,
tautologies)
locale forget-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool
inductive forget_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool  where
forget_{NOT}:
  removeAll\text{-}mset\ C(clauses_{NOT}\ S) \models pm\ C \Longrightarrow
  forget\text{-}cond\ C\ S \Longrightarrow
  C \in \# clauses_{NOT} S \Longrightarrow
```

```
forget_{NOT} S T
inductive-cases forget_{NOT}E: forget_{NOT} S T
lemma forget-\mu_C-stable:
  assumes forget_{NOT} S T
  shows \mu_C A B (trail-weight S) = \mu_C A B (trail-weight T)
  using assms by (auto elim!: forget_{NOT}E)
end
locale learn-and-forget_{NOT} =
  learn-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ learn-cond\ +
  forget-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
inductive learn-and-forget<sub>NOT</sub> :: 'st \Rightarrow 'st \Rightarrow bool
where
lf-learn: learn S T \Longrightarrow learn-and-forget_{NOT} S T
lf-forget: forget_{NOT} S T \Longrightarrow learn-and-forget_{NOT} S T
end
Definition of CDCL
locale conflict-driven-clause-learning-ops =
  dpll-with-backjumping-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    inv\ backjump\text{-}conds\ propagate\text{-}conds\ +
  learn-and-forget_{NOT} trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} learn-cond
    forget-cond
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
inductive cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
c-dpll-bj: dpll-bj S S' \Longrightarrow cdcl_{NOT} S S'
c-learn: learn S S' \Longrightarrow cdcl_{NOT} S S'
c-forget<sub>NOT</sub>: forget<sub>NOT</sub> S S' \Longrightarrow cdcl_{NOT} S S'
lemma cdcl_{NOT}-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
    dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ and
```

```
learning:
     \bigwedge C \ T. \ clauses_{NOT} \ S \models pm \ C \Longrightarrow
     atms-of\ C\subseteq atms-of-mm\ (clauses_{NOT}\ S)\cup atm-of\ `(lits-of-l\ (trail\ S))\Longrightarrow
     T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
     PST and
   forgetting: \bigwedge C T. removeAll-mset C (clauses<sub>NOT</sub> S) \models pm C \Longrightarrow
     C \in \# clauses_{NOT} S \Longrightarrow
      T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow
     PST
 shows P S T
 using assms(1) by (induction rule: cdcl_{NOT}.induct)
  (auto intro: assms(2, 3, 4) elim!: learn_{NOT}E forget<sub>NOT</sub>E)+
lemma cdcl_{NOT}-no-dup:
 assumes
   cdcl_{NOT} S T and
   inv S and
   no-dup (trail S)
  shows no-dup (trail T)
  using assms by (induction rule: cdcl_{NOT}-all-induct) (auto intro: dpll-bj-no-dup)
Consistency of the trail lemma cdcl_{NOT}-consistent:
  assumes
   cdcl_{NOT} S T and
   inv S and
   no-dup (trail S)
  shows consistent-interp (lits-of-l (trail T))
  using cdcl_{NOT}-no-dup[OF\ assms]\ distinct-consistent-interp by fast
The subtle problem here is that tautologies can be removed, meaning that some variable can
disappear of the problem. It is also means that some variable of the trail might not be present
in the clauses anymore.
lemma cdcl_{NOT}-atms-of-ms-clauses-decreasing:
 assumes cdcl_{NOT} S Tand inv S and no-dup (trail S)
 shows atms-of-mm (clauses_{NOT} T) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
  using assms by (induction rule: cdcl_{NOT}-all-induct)
   (auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)
lemma cdcl_{NOT}-atms-in-trail:
  assumes cdcl_{NOT} S Tand inv S and no-dup (trail\ S)
 and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S)) \subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
 using assms by (induction rule: cdcl_{NOT}-all-induct) (auto simp add: dpll-bj-atms-in-trail)
lemma cdcl_{NOT}-atms-in-trail-in-set:
 assumes
    cdcl_{NOT} S T and inv S and no-dup (trail S) and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
    atm\text{-}of ' (lits-of-l (trail S)) \subseteq A
  shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
 using assms
 by (induction rule: cdcl_{NOT}-all-induct)
    (simp-all add: dpll-bj-atms-in-trail-in-set dpll-bj-atms-of-ms-clauses-inv)
lemma cdcl_{NOT}-all-decomposition-implies:
```

```
assumes cdcl_{NOT} S T and inv S and n-d[simp]: no-dup (trail\ S) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
   all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
  using assms(1,2,4)
proof (induction rule: cdcl_{NOT}-all-induct)
 case dpll-bj
 then show ?case
    using dpll-bj-all-decomposition-implies-inv n-d by blast
next
 case learn
 then show ?case by (auto simp add: all-decomposition-implies-def)
 case (forget_{NOT} \ C \ T) note cls\text{-}C = this(1) and C = this(2) and T = this(3) and iniv = this(4)
and
   decomp = this(5)
 show ?case
   unfolding all-decomposition-implies-def Ball-def
   proof (intro allI, clarify)
     assume (a, b) \in set (get-all-ann-decomposition (trail T))
     then have unmark-l \ a \cup set\text{-}mset \ (clauses_{NOT} \ S) \models ps \ unmark-l \ b
       using decomp T by (auto simp add: all-decomposition-implies-def)
     moreover
      have a1:C \in set\text{-}mset \ (clauses_{NOT} \ S)
         using C by blast
       have clauses_{NOT} T = clauses_{NOT} (remove\text{-}cls_{NOT} \ C \ S)
       using T state-eq<sub>NOT</sub>-clauses by blast
       then have set-mset (clauses<sub>NOT</sub> T) \models ps set-mset (clauses<sub>NOT</sub> S)
         using a1 by (metis (no-types) clauses-remove-cls<sub>NOT</sub> cls-C insert-Diff order-refl
         set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert)
     ultimately show unmark-l a \cup set-mset (clauses<sub>NOT</sub> T)
       \models ps \ unmark-l \ b
       using true-clss-clss-generalise-true-clss-clss by blast
   qed
qed
Extension of models lemma cdcl_{NOT}-bj-sat-ext-iff:
 assumes cdcl_{NOT} S Tand inv S and n-d: no-dup (trail S)
 shows I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
 using assms
proof (induction rule: cdcl_{NOT}-all-induct)
 case dpll-bj
 then show ?case by (simp add: dpll-bj-clauses)
 case (learn C T) note T = this(3)
  \{ \text{ fix } J \}
   assume
     I \models sextm\ clauses_{NOT}\ S and
     tot: total-over-m J (set-mset (\{\#C\#\} + clauses_{NOT} S)) and
     cons: consistent-interp J
   then have J \models sm\ clauses_{NOT}\ S unfolding true-clss-ext-def by auto
   moreover
     with \langle clauses_{NOT} | S \models pm | C \rangle have J \models C
```

```
using tot cons unfolding true-clss-cls-def by auto
   ultimately have J \models sm \{ \#C\# \} + clauses_{NOT} S by auto
  then have H: I \models sextm (clauses_{NOT} S) \Longrightarrow I \models sext insert C (set-mset (clauses_{NOT} S))
   unfolding true-clss-ext-def by auto
  show ?case
   apply standard
     using T n-d apply (auto\ simp\ add:\ H)[]
   using T n-d apply simp
   by (metis Diff-insert-absorb insert-subset subsetI subset-antisym
     true-clss-ext-decrease-right-remove-r)
next
  case (forget_{NOT} \ C \ T) note cls\text{-}C = this(1) and T = this(3)
  \{ \mathbf{fix} \ J \}
   assume
     I \models sext \ set\text{-}mset \ (clauses_{NOT} \ S) - \{C\} \ and
     I \subseteq J and
     tot: total-over-m J (set-mset (clauses<sub>NOT</sub> S)) and
     cons: consistent-interp J
   then have J \models s \ set\text{-}mset \ (clauses_{NOT} \ S) - \{C\}
     unfolding true-clss-ext-def by (meson Diff-subset total-over-m-subset)
   moreover
     with cls-C have J \models C
       using tot cons unfolding true-clss-cls-def
       by (metis Un-commute forget_{NOT}.hyps(2) insert-Diff insert-is-Un order-reft
         set-mset-minus-replicate-mset(1))
   ultimately have J \models sm \ (clauses_{NOT} \ S) by (metis \ insert-Diff-single \ true-clss-insert)
 then have H: I \models sext \ set\text{-mset} \ (clauses_{NOT} \ S) - \{C\} \Longrightarrow I \models sextm \ (clauses_{NOT} \ S)
   unfolding true-clss-ext-def by blast
 show ?case using T by (auto simp: true-clss-ext-decrease-right-remove-r H)
end — end of conflict-driven-clause-learning-ops
CDCL with invariant
locale conflict-driven-clause-learning =
  conflict-driven-clause-learning-ops +
 assumes cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT} S T \Longrightarrow inv S \Longrightarrow inv T
sublocale dpll-with-backjumping
 apply unfold-locales
 using cdcl_{NOT}.simps\ cdcl_{NOT}.inv by auto
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
 by (induction rule: rtranclp-induct) (auto simp add: cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-no-dup:
 assumes cdcl_{NOT}^{**} S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: rtranclp-induct) (auto intro: cdcl_{NOT}-no-dup rtranclp-cdcl_{NOT}-inv)
```

```
lemma rtranclp-cdcl_{NOT}-trail-clauses-bound:
 assumes
    cdcl: cdcl_{NOT}^{**} S T and
   inv: inv S and
   n-d: no-dup (trail S) and
   atms-clauses-S: atms-of-mm (clauses<sub>NOT</sub> S) \subseteq A and
    atms-trail-S: atm-of '(lits-of-l (trail S)) \subseteq A
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A \land atms\text{-}of\text{-}mm\ (clauses_{NOT}\ T)\subseteq A
 using cdcl
proof (induction rule: rtranclp-induct)
 case base
 then show ?case using atms-clauses-S atms-trail-S by simp
 case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
 have inv T using inv st rtranclp-cdcl_{NOT}-inv by blast
 have no-dup (trail\ T)
   using rtranclp-cdcl_{NOT}-no-dup[of S T] st cdcl_{NOT} inv n-d by blast
  then have atms-of-mm (clauses_{NOT} \ U) \subseteq A
   using cdcl_{NOT}-atms-of-ms-clauses-decreasing [OF cdcl_{NOT}] IH n-d \langle inv | T \rangle by fast
  moreover
   have atm\text{-}of '(lits\text{-}of\text{-}l (trail U)) \subseteq A
     using cdcl_{NOT}-atms-in-trail-in-set[OF cdcl_{NOT}, of A] \langle no\text{-}dup \ (trail \ T) \rangle
     by (meson atms-trail-S atms-clauses-S IH \langle inv T \rangle cdcl<sub>NOT</sub>)
 ultimately show ?case by fast
qed
{\bf lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}all\text{-}decomposition\text{-}implies:}
  assumes cdcl_{NOT}^{**} S T and inv S and no-dup (trail S) and
    all-decomposition-implies-m (clauses_{NOT} S) (get-all-ann-decomposition (trail S))
 shows
    all-decomposition-implies-m (clauses_{NOT} T) (get-all-ann-decomposition (trail T))
  using assms by (induction)
  (auto intro: rtranclp-cdcl_{NOT}-inv cdcl_{NOT}-all-decomposition-implies rtranclp-cdcl_{NOT}-no-dup)
lemma rtranclp-cdcl_{NOT}-bj-sat-ext-iff:
  assumes cdcl_{NOT}^{**} S Tand inv S and no-dup (trail S)
 shows I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
  using assms apply (induction rule: rtranclp-induct)
 using cdcl_{NOT}-bj-sat-ext-iff by (auto intro: rtranclp-cdcl_{NOT}-inv rtranclp-cdcl_{NOT}-no-dup)
definition cdcl_{NOT}-NOT-all-inv where
cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (finite A \land inv S \land atms-of-mm \ (clauses_{NOT} S) \subseteq atms-of-ms \ A
   \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land no-dup (trail S))
lemma cdcl_{NOT}-NOT-all-inv:
  assumes cdcl_{NOT}^{**} S T and cdcl_{NOT}-NOT-all-inv A S
 shows cdcl_{NOT}-NOT-all-inv A T
 using assms unfolding cdcl_{NOT}-NOT-all-inv-def
 by (simp\ add:\ rtranclp-cdcl_{NOT}-inv\ rtranclp-cdcl_{NOT}-no-dup\ rtranclp-cdcl_{NOT}-trail-clauses-bound)
abbreviation learn-or-forget where
learn-or-forget S T \equiv learn S T \vee forget_{NOT} S T
lemma rtranclp-learn-or-forget-cdcl_{NOT}:
  learn-or-forget^{**} S T \Longrightarrow cdcl_{NOT}^{**} S T
```

```
lemma learn-or-forget-dpll-\mu_C:
 assumes
   l-f: learn-or-forget** S T and
   dpll: dpll-bj \ T \ U \ {\bf and}
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
      -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight U)
    < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
      -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
    (is ?\mu U < ?\mu S)
proof -
 have ?\mu S = ?\mu T
   using l-f
   proof (induction)
     case base
     then show ?case by simp
   next
     case (step \ T \ U)
     moreover then have no-dup (trail\ T)
       using rtranclp-cdcl_{NOT}-no-dup[of\ S\ T]\ cdcl_{NOT}-NOT-all-inv-def inv
       rtranclp-learn-or-forget-cdcl_{NOT} by auto
     ultimately show ?case
       using forget-\mu_C-stable learn-\mu_C-stable inv unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
   ged
 moreover have cdcl_{NOT}-NOT-all-inv A T
    \mathbf{using}\ \mathit{rtranclp-learn-or-forget-cdcl}_{NOT}\ \mathit{cdcl}_{NOT}\text{-}\mathit{NOT-all-inv}\ \mathit{l-f}\ \mathit{inv}\ \mathbf{by}\ \mathit{blast}
 ultimately show ?thesis
   using dpll-bj-trail-mes-decreasing-prop[of T U A, OF dpll] finite
   unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
qed
lemma infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain:
 assumes
    \bigwedge i. \ cdcl_{NOT} \ (f \ i) \ (f(Suc \ i)) \ and
   inv: cdcl_{NOT}-NOT-all-inv A (f 0)
 shows \exists j. \forall i \geq j. learn-or-forget (f i) (f (Suc i))
proof (induction (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
    -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))
   arbitrary: f
   rule: nat-less-induct-case)
 case (Suc n) note IH = this(1) and \mu = this(2) and cdcl_{NOT} = this(3) and inv = this(4)
 consider
     (dpll-end) \exists j. \ \forall i \geq j. \ learn-or-forget \ (f \ i) \ (f \ (Suc \ i))
     (dpll\text{-}more) \neg (\exists j. \forall i \geq j. learn\text{-}or\text{-}forget (f i) (f (Suc i)))
   by blast
  then show ?case
   proof cases
     {\bf case}\ dpll\text{-}end
     then show ?thesis by auto
   next
     case dpll-more
     then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
       by blast
```

```
obtain i where
  \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
 \forall k < i. learn-or-forget (f k) (f (Suc k))
 proof -
    obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
      using j by auto
    then have \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\} \neq \{\}
      by auto
    let ?I = \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
    let ?i = Min ?I
    have finite ?I
     by auto
    have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
      using Min-in[OF \langle finite ?I \rangle \langle ?I \neq \{\} \rangle] by auto
    moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
      using Min.coboundedI[of \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i)\}
        (f(Suc\ i)), simplified
     by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land less-imp-le
        dual-order.trans not-le)
    ultimately show ?thesis using that by blast
 qed
\mathbf{def}\ g \equiv \lambda n.\ f\ (n + Suc\ i)
have dpll-bj (f i) (g \theta)
 using \neg learn (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i)) \land cdcl_{NOT} \ cdcl_{NOT} \ cdcl_{NOT}
 g-def by auto
{
 \mathbf{fix} \ j
 assume j \leq i
 then have learn-or-forget^{**} (f \ \theta) (f \ j)
   apply (induction j)
    apply simp
    by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
      \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \rangle
then have learn-or-forget** (f \ \theta) \ (f \ i) by blast
then have (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (q 0))
  <(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
    -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))
 using learn-or-forget-dpll-\mu_C[of \ f \ 0 \ f \ i \ g \ 0 \ A] \ inv \ \langle dpll-bj \ (f \ i) \ (g \ 0) \rangle
 unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
moreover have cdcl_{NOT}-i: cdcl_{NOT}^{**} (f \theta) (g \theta)
  using rtranclp-learn-or-forget-cdcl_{NOT}[of f \ 0 \ f \ i] \ \langle learn-or-forget** (f \ 0) \ (f \ i) \rangle
  cdcl_{NOT}[of\ i] unfolding g-def by auto
moreover have \bigwedge i.\ cdcl_{NOT}\ (g\ i)\ (g\ (Suc\ i))
 using cdcl_{NOT} g-def by auto
moreover have cdcl_{NOT}-NOT-all-inv A (g \theta)
 using inv cdcl_{NOT}-i rtranclp-cdcl_{NOT}-trail-clauses-bound g-def cdcl_{NOT}-NOT-all-inv by auto
ultimately obtain j where j: \bigwedge i. i \ge j \implies learn-or-forget (g i) (g (Suc i))
  using IH unfolding \mu[symmetric] by presburger
show ?thesis
 proof
    {
      \mathbf{fix} \ k
     assume k \ge j + Suc i
```

```
then have learn-or-forget (f k) (f (Suc k))
              using j[of k-Suc \ i] unfolding g-def by auto
          then show \forall k \ge j + Suc \ i. \ learn-or-forget \ (f \ k) \ (f \ (Suc \ k))
            by auto
        qed
   \mathbf{qed}
next
  case \theta note H = this(1) and cdcl_{NOT} = this(2) and inv = this(3)
 show ?case
    proof (rule ccontr)
      assume ¬ ?case
      then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
        by blast
      obtain i where
        \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i)) and
       \forall k < i. learn-or-forget (f k) (f (Suc k))
          obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
            using j by auto
          then have \{i.\ i \leq i_0 \land \neg\ learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i))\} \neq \{\}
          let ?I = \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
          let ?i = Min ?I
          have finite ?I
            by auto
          have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
            using Min-in[OF \langle finite?I \rangle \langle ?I \neq \{\} \rangle] by auto
          moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
            using Min.coboundedI[of \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i)\}
              (f(Suc\ i)), simplified
            by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land\ less-imp-le
              dual-order.trans not-le)
          ultimately show ?thesis using that by blast
        qed
      have dpll-bj (f i) (f (Suc i))
        using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
        \mathbf{by} blast
        \mathbf{fix} \ j
       assume j \leq i
        then have learn-or-forget** (f \ \theta) \ (f \ j)
          apply (induction j)
          apply simp
          by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
            \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \lor)
      then have learn-or-forget^{**} (f \ \theta) (f \ i) by blast
      then show False
       using learn-or-forget-dpll-\mu_C[of f \ 0 \ f \ i \ f \ (Suc \ i) \ A] inv \ 0
        \langle dpll-bj \ (f \ i) \ (f \ (Suc \ i)) \rangle unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
    qed
qed
```

lemma wf- $cdcl_{NOT}$ -no-learn-and-forget-infinite-chain:

```
assumes
   no-infinite-lf: \bigwedge f j. \neg (\forall i \geq j. learn-or-forget (f i) (f (Suc i)))
  shows wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT} \text{-}NOT\text{-}all\text{-}inv \ A \ S\}
   (is wf \{(T, S). \ cdcl_{NOT} \ S \ T \land ?inv \ S\})
  unfolding wf-iff-no-infinite-down-chain
proof (rule ccontr)
  assume \neg \neg (\exists f. \forall i. (f (Suc i), f i) \in \{(T, S). cdcl_{NOT} S T \land ?inv S\})
  then obtain f where
   \forall i. \ cdcl_{NOT} \ (f \ i) \ (f \ (Suc \ i)) \land \ ?inv \ (f \ i)
   by fast
  then have \exists j. \ \forall i \geq j. \ learn-or-forget (f i) (f (Suc i))
   using infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain [of f] by meson
  then show False using no-infinite-lf by blast
qed
lemma inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl__{NOT}-and-inv:
  cdcl_{NOT}^{++} S T \land cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (\lambda S T. cdcl_{NOT} S T \land cdcl_{NOT}-NOT-all-inv A
S)^{++} S T
  (is ?A \land ?I \longleftrightarrow ?B)
proof
  assume ?A \land ?I
  then have ?A and ?I by blast+
  then show ?B
   apply induction
     apply (simp add: tranclp.r-into-trancl)
   by (subst tranclp.simps) (auto intro: cdcl_{NOT}-NOT-all-inv tranclp-into-rtranclp)
next
  assume ?B
  then have ?A by induction auto
 moreover have ?I using \langle ?B \rangle translpD by fastforce
  ultimately show ?A \land ?I by blast
qed
lemma wf-tranclp-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
  assumes
    no-infinite-lf: \bigwedge f j. \neg (\forall i \geq j. learn-or-forget (f i) (f (Suc i)))
  shows wf \{(T, S), cdcl_{NOT}^{++} \mid S \mid T \land cdcl_{NOT}^{-}, NOT^{-}, all^{-}inv \mid A \mid S\}
  \textbf{using} \ \textit{wf-trancl}[OF \ \textit{wf-cdcl}_{NOT} - \textit{no-learn-and-forget-infinite-chain}[OF \ \textit{no-infinite-lf}]] \\
  apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl_{NOT}-and-inv)
lemma cdcl_{NOT}-final-state:
  assumes
   n-s: no-step cdcl_{NOT} S and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S and
    decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail \ S \models asm \ clauses_{NOT} \ S \land satisfiable \ (set\text{-mset} \ (clauses_{NOT} \ S)))
proof -
  have n-s': no-step\ dpll-bj\ S
   using n-s by (auto simp: cdcl_{NOT}.simps)
  show ?thesis
   apply (rule dpll-backjump-final-state[of SA])
   using inv decomp n-s' unfolding cdcl_{NOT}-NOT-all-inv-def by auto
qed
```

```
lemma full-cdcl_{NOT}-final-state:
 assumes
   full: full cdcl_{NOT} S T and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S and
   n-d: no-dup (trail S) and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \lor (trail \ T \models asm \ clauses_{NOT} \ T \land satisfiable \ (set\text{-}mset \ (clauses_{NOT} \ T)))
proof -
 have st: cdcl_{NOT}^{**} S T and n-s: no-step cdcl_{NOT} T
   using full unfolding full-def by blast+
 have n-s': cdcl_{NOT}-NOT-all-inv A T
   using cdcl_{NOT}-NOT-all-inv inv st by blast
 moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
   using cdcl_{NOT}-NOT-all-inv-def decomp inv rtranclp-cdcl_{NOT}-all-decomposition-implies st by auto
  ultimately show ?thesis
   using cdcl_{NOT}-final-state n-s by blast
qed
end — end of conflict-driven-clause-learning
```

Termination

To prove termination we need to restrict learn and forget. Otherwise we could forget and relearn the exact same clause over and over. A first idea is to forbid removing clauses that can be used to backjump. This does not change the rules of the calculus. A second idea is to "merge" backjump and learn: that way, though closer to implementation, needs a change of the rules, since the backjump-rule learns the clause used to backjump.

Restricting learn and forget

```
{\bf locale}\ conflict \hbox{-} driven \hbox{-} clause \hbox{-} learning \hbox{-} learning \hbox{-} before \hbox{-} back jump \hbox{-} only \hbox{-} distinct \hbox{-} learnt =
  dpll-state trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} +
  conflict-driven-clause-learning\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
     inv backjump-conds propagate-conds
  \lambda C S. \ distinct-mset C \land \neg tautology \ C \land \ learn-restrictions C S \land \Box
    (\exists F \ K \ d \ F' \ C' \ L \ trail \ S = F' @ Decided \ K \ \# \ F \land C = C' + \{\#L\#\} \land F \models as \ CNot \ C'\}
       \land C' + \{\#L\#\} \notin \# clauses_{NOT} S)
  \lambda C S. \neg (\exists F' F K d L. trail S = F' @ Decided K \# F \land F \models as CNot (remove 1-mset L C))
    \land forget-restrictions C S
    for
     trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
     remove\text{-}cls_{NOT}:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
     inv :: 'st \Rightarrow bool  and
     backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ and
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
     learn-restrictions\ forget-restrictions: 'v\ clause \Rightarrow 'st \Rightarrow bool
\mathbf{lemma}\ cdcl_{NOT}\text{-}learn\text{-}all\text{-}induct[consumes\ 1,\ case\text{-}names\ dpll\text{-}bj\ learn\ forget_{NOT}]};
  fixes S T :: 'st
```

```
assumes cdcl_{NOT} S T and
    dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ and
    learning:
      \bigwedge C \ F \ K \ F' \ C' \ L \ T. \ clauses_{NOT} \ S \models pm \ C \Longrightarrow
        atms-of\ C\subseteq atms-of-mm\ (clauses_{NOT}\ S)\cup atm-of\ `(lits-of-l\ (trail\ S))\Longrightarrow
        distinct-mset C \Longrightarrow
        \neg tautology C \Longrightarrow
        learn-restrictions C S \Longrightarrow
        trail\ S = F' @ Decided\ K \ \# \ F \Longrightarrow
        C = C' + \{\#L\#\} \Longrightarrow
        F \models as \ CNot \ C' \Longrightarrow
        C' + \{\#L\#\} \notin \# clauses_{NOT} S \Longrightarrow
        T \sim add\text{-}cls_{NOT} \ C \ S \Longrightarrow
        P S T and
    forgetting: \bigwedge C T. removeAll-mset C (clauses<sub>NOT</sub> S) \models pm C \Longrightarrow
      C \in \# clauses_{NOT} S \Longrightarrow
      \neg (\exists F' \ F \ K \ L. \ trail \ S = F' @ Decided \ K \ \# \ F \land F \models as \ CNot \ (C - \{\#L\#\})) \Longrightarrow
      T \sim remove\text{-}cls_{NOT} CS \Longrightarrow
     forget-restrictions C S \Longrightarrow
      PST
    shows P S T
  using assms(1)
  apply (induction rule: cdcl_{NOT}.induct)
    apply (auto dest: assms(2) simp add: learn-ops-axioms)[]
  apply (auto elim!: learn-ops.learn.cases[OF learn-ops-axioms] dest: assms(3))[]
  apply (auto elim!: forget-ops.forget_{NOT}.cases[OF\ forget-ops-axioms]\ dest!:\ assms(4))
  done
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
  apply (induction rule: rtranclp-induct)
  apply simp
  using cdcl_{NOT}-inv unfolding conflict-driven-clause-learning-def
  conflict-driven-clause-learning-axioms-def by blast
lemma learn-always-simple-clauses:
  assumes
    learn: learn S T and
    n-d: no-dup (trail S)
  shows set-mset (clauses_{NOT} T - clauses_{NOT} S)
    \subseteq simple\text{-}clss \ (atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S) \cup atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S))
proof
  fix C assume C: C \in set\text{-}mset (clauses_{NOT} \ T - clauses_{NOT} \ S)
  have distinct-mset C \neg tautology \ C using learn C \ n\text{-}d by (elim \ learn_{NOT}E; \ auto) +
  then have C \in simple\text{-}clss (atms-of C)
    using distinct-mset-not-tautology-implies-in-simple-clss by blast
  moreover have atms-of C \subseteq atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of 'lits-of-l (trail S)
    using learn C n-d by (elim learn NOTE) (auto simp: atms-of-ms-def atms-of-def image-Un
      true-annots-CNot-all-atms-defined)
  moreover have finite (atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of 'lits-of-l (trail S))
     by auto
  ultimately show C \in simple-clss (atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of 'lits-of-l (trail S))
    using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
qed
definition conflicting-bj-clss S \equiv
```

```
\{C+\{\#L\#\}\mid C\ L.\ C+\{\#L\#\}\in\#\ clauses_{NOT}\ S\land\ distinct\text{-mset}\ (C+\{\#L\#\})\}
  \wedge \neg tautology (C + \{\#L\#\})
    \land (\exists F' \ K \ F. \ trail \ S = F' @ Decided \ K \# F \land F \models as \ CNot \ C) \}
lemma conflicting-bj-clss-remove-cls_{NOT}[simp]:
  conflicting-bj-clss\ (remove-cls_{NOT}\ C\ S) = conflicting-bj-clss\ S - \{C\}
  unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-remove-cls_{NOT} '[simp]:
  T \sim remove-cls_{NOT} \ C \ S \Longrightarrow conflicting-bj-clss \ T = conflicting-bj-clss \ S - \{C\}
  unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-add-cls_{NOT}-state-eq:
  assumes
    T: T \sim add\text{-}cls_{NOT} C' S and
    n-d: no-dup (trail S)
  shows conflicting-bj-clss T
    = conflicting-bj-clss S
     \cup (if \exists C L. C' = C + \#L\# \} \land distinct\text{-mset} (C + \#L\# \}) \land \neg tautology (C + \#L\# \})
    \land (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \ \land F \models as \ CNot \ C)
     then \{C'\} else \{\})
proof -
  \mathbf{def}\ P \equiv \lambda C\ L\ T.\ distinct\text{-mset}\ (C + \{\#L\#\}) \land \neg\ tautology\ (C + \{\#L\#\}) \land \neg
   (\exists F' \ K \ F. \ trail \ T = F' \ @ \ Decided \ K \ \# \ F \land F \models as \ CNot \ C)
  have conf: \Lambda T. conflicting-bj-clss T = \{C + \#L\#\} \mid CL. C + \#L\#\} \in \# clauses_{NOT} T \land PC
L T
   unfolding conflicting-bj-clss-def P-def by auto
 have P-S-T: \bigwedge C L. P C L T = P C L S
   using T n-d unfolding P-def by auto
  have P: conflicting-bj-clss T = \{C + \#L\#\} \mid C L. C + \#L\#\} \in \# clauses_{NOT} S \land P C L T\} \cup \#L
    \{C + \{\#L\#\} \mid CL. \ C + \{\#L\#\} \in \# \{\#C'\#\} \land P \ CL \ T\}
   using T n-d unfolding conf by auto
 moreover have \{C + \#L\#\} \mid CL. C + \#L\#\} \in \# clauses_{NOT} S \land PCLT\} = conflicting-bj-clss
   using T n-d unfolding P-def conflicting-bj-clss-def by auto
  moreover have \{C + \#L\#\} \mid CL. C + \#L\#\} \in \# \#C'\#\} \land PCLT\} =
    (if \exists C L. C' = C + \{\#L\#\} \land P C L S then \{C'\} else \{\})
   using n-d T by (force simp: P-S-T)
  ultimately show ?thesis unfolding P-def by presburger
qed
lemma conflicting-bj-clss-add-cls_{NOT}:
  no\text{-}dup\ (trail\ S) \Longrightarrow
  conflicting-bj-clss (add-cls_{NOT} C'S)
   = conflicting-bj-clss S
     \cup (if \exists C L. C' = C + \{\#L\#\} \land distinct\text{-mset} (C + \{\#L\#\}) \land \neg tautology (C + \{\#L\#\})
    \land (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \ \land F \models as \ CNot \ C)
    then \{C'\} else \{\}
  using conflicting-bj-clss-add-cls_{NOT}-state-eq by auto
lemma conflicting-bj-clss-incl-clauses:
   conflicting-bj-clss\ S \subseteq set-mset\ (clauses_{NOT}\ S)
  unfolding conflicting-bj-clss-def by auto
lemma finite-conflicting-bj-clss[<math>simp]:
 finite\ (conflicting-bj-clss\ S)
```

```
using conflicting-bj-clss-incl-clauses of S rev-finite-subset by blast
lemma learn-conflicting-increasing:
  no\text{-}dup\ (trail\ S) \Longrightarrow learn\ S\ T \Longrightarrow conflicting-bj\text{-}clss\ S \subseteq conflicting-bj\text{-}clss\ T
  apply (elim\ learn_{NOT}E)
 by (subst conflicting-bj-clss-add-cls_{NOT}-state-eq[of T]) auto
abbreviation conflicting-bj-clss-yet b S \equiv
  3 \hat{b} - card (conflicting-bj-clss S)
abbreviation \mu_L :: nat \Rightarrow 'st \Rightarrow nat \times nat where
  \mu_L \ b \ S \equiv (conflicting-bj\text{-}clss\text{-}yet \ b \ S, \ card \ (set\text{-}mset \ (clauses_{NOT} \ S)))
lemma remove1-mset-single-add-if:
  remove1-mset L(C + \{\#L'\#\}) = (if L = L' then C else remove1-mset L(C + \{\#L'\#\}))
  by (auto simp: multiset-eq-iff)
{\bf lemma}\ do-not\text{-}forget\text{-}before\text{-}backtrack\text{-}rule\text{-}clause\text{-}learned\text{-}clause\text{-}untouched\text{:}}
  assumes forget_{NOT} S T
  shows conflicting-bj-clss S = conflicting-bj-clss T
  using assms apply (elim forget_{NOT}E)
  apply rule
  apply (subst conflicting-bj-clss-remove-cls_{NOT} '[of T], simp)
  apply (fastforce simp: conflicting-bj-clss-def remove1-mset-single-add-if split: if-splits)
  apply fastforce
  done
lemma forget-\mu_L-decrease:
  assumes forget_{NOT}: forget_{NOT} S T
  shows (\mu_L \ b \ T, \mu_L \ b \ S) \in less-than < lex > less-than
proof -
  have card (set-mset (clauses<sub>NOT</sub> S)) > 0
   using forget_{NOT} by (elim\ forget_{NOT}E) (auto simp: size-mset-removeAll-mset-le-iff\ card-gt-0-iff)
  then have card\ (set\text{-}mset\ (clauses_{NOT}\ T)) < card\ (set\text{-}mset\ (clauses_{NOT}\ S))
   using forget_{NOT} by (elim\ forget_{NOT}E) (auto simp:\ size-mset-removeAll-mset-le-iff)
  then show ?thesis
   unfolding do-not-forget-before-backtrack-rule-clause-learned-clause-untouched [OF\ forget_{NOT}]
   by auto
qed
lemma set-condition-or-split:
  \{a. (a = b \lor Q \ a) \land S \ a\} = (if \ S \ b \ then \ \{b\} \ else \ \{\}) \cup \{a. \ Q \ a \land S \ a\}
  by auto
lemma set-insert-neq:
  A \neq insert \ a \ A \longleftrightarrow a \notin A
 by auto
lemma learn-\mu_L-decrease:
  assumes learnST: learn S T and n-d: no-dup (trail S) and
   A: atms-of-mm (clauses_{NOT} S) \cup atm-of 'lits-of-l (trail S) \subseteq A and
  fin-A: finite A
  shows (\mu_L \ (card \ A) \ T, \mu_L \ (card \ A) \ S) \in less-than <*lex*> less-than
proof -
```

have [simp]: (atms-of-mm ($clauses_{NOT}$ T) \cup atm-of ' lits-of-l (trail T))

 $= (atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ `lits-of-l \ (trail \ S))$

```
using learnST n-d by (elim\ learn_{NOT}E) auto
then have card\ (atms-of-mm\ (clauses_{NOT}\ T) \cup atm-of\ `its-of-l\ (trail\ T))
 = card (atms-of-mm (clauses_{NOT} S) \cup atm-of `lits-of-l (trail S))
 by (auto intro!: card-mono)
then have 3:(3::nat) \hat{} card (atms-of-mm\ (clauses_{NOT}\ T) \cup atm-of\ '\ lits-of-l\ (trail\ T))
 = 3 \ \widehat{} \ card \ (atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ \widehat{} \ lits-of-l \ (trail \ S))
 by (auto intro: power-mono)
moreover have conflicting-bj-clss S \subseteq conflicting-bj-clss T
 using learnST n-d by (simp add: learn-conflicting-increasing)
moreover have conflicting-bj-clss S \neq conflicting-bj-clss T
 using learnST
 proof (elim\ learn_{NOT}E,\ goal\text{-}cases)
   case (1 C) note clss-S = this(1) and atms-C = this(2) and inv = this(3) and T = this(4)
   then obtain F K F' C' L where
     tr-S: trail S = F' @ Decided K # F and
     C: C = C' + \{\#L\#\} \text{ and }
     F: F \models as \ CNot \ C' and
     C\text{-}S:C' + \{\#L\#\} \notin \# clauses_{NOT} S
     by blast
   moreover have distinct-mset C \neg tautology C using inv by blast+
   ultimately have C' + \{\#L\#\} \in conflicting-bj-clss\ T
     using T n-d unfolding conflicting-bj-clss-def by fastforce
   moreover have C' + \{\#L\#\} \notin conflicting-bj\text{-}clss \ S
     using C-S unfolding conflicting-bj-clss-def by auto
   ultimately show ?case by blast
 qed
moreover have fin-T: finite (conflicting-bj-clss T)
 using learnST by induction (auto simp add: conflicting-bj-clss-add-cls_{NOT})
ultimately have card (conflicting-bj-clss T) \geq card (conflicting-bj-clss S)
 using card-mono by blast
moreover
 have fin': finite (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
 have 1:atms-of-ms (conflicting-bj-clss T) \subseteq atms-of-mm (clauses_{NOT} T)
   unfolding conflicting-bj-clss-def atms-of-ms-def by auto
 have 2: \bigwedge x. x \in conflicting-bj-clss T \Longrightarrow \neg tautology x \land distinct-mset x
   unfolding conflicting-bj-clss-def by auto
 have T: conflicting-bj-clss T
 \subseteq simple\text{-}clss (atms\text{-}of\text{-}mm (clauses_{NOT} T) \cup atm\text{-}of `lits\text{-}of\text{-}l (trail T))
   by standard (meson 1 2 fin' (finite (conflicting-bj-clss T)) simple-clss-mono
     distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)
moreover
 then have #: 3 \hat{} card (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
     \geq card (conflicting-bj-clss T)
```

```
unfolding conflicting-bj-clss-def by auto
have T: conflicting-bj-clss T
\subseteq simple-clss (atms-of-mm (clauses_{NOT} T) \cup atm-of 'lits-of-l (trail T))
by standard (meson 1 2 fin' \( \) \( \) finite (conflicting-bj-clss T) \( \) simple-clss-mono distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)

moreover

then have \#: 3 ^ card (atms-of-mm (clauses_{NOT} T) \cup atm-of 'lits-of-l (trail T))
\geq card (conflicting-bj-clss T)
by (meson Nat.le-trans simple-clss-card simple-clss-finite card-mono fin')
have atms-of-mm (clauses_{NOT} T) \cup atm-of 'lits-of-l (trail T) \subseteq A
using learn_{NOT}E[OF learnST] A by simp

then have 3 ^ (card A) \geq card (conflicting-bj-clss T)
using \# fin-A by (meson simple-clss-card simple-clss-finite
simple-clss-mono calculation(2) card-mono dual-order.trans)
ultimately show ?thesis
using psubset-card-mono[OF fin-T]
unfolding less-than-iff lex-prod-def by clarify
(meson \( \) conflicting-bj-clss S \neq conflicting-bj-clss T\)
```

```
\langle conflicting\text{-}bj\text{-}clss\ S\subseteq conflicting\text{-}bj\text{-}clss\ T\rangle\\ diff\text{-}less\text{-}mono2\ le\text{-}less\text{-}trans\ not\text{-}le\ psubset}I) \mathbf{qed}
```

We have to assume the following:

- *inv S*: the invariant holds in the inital state.
- A is a (finite finite A) superset of the literals in the trail atm-of ' lits-of-l ($trail\ S$) \subseteq $atms\text{-}of\text{-}ms\ A$ and in the clauses atms-of-mm ($clauses_{NOT}\ S$) \subseteq $atms\text{-}of\text{-}ms\ A$. This can the the set of all the literals in the starting set of clauses.
- no-dup (trail S): no duplicate in the trail. This is invariant along the path.

```
definition \mu_{CDCL} where
\mu_{CDCL} A T \equiv ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T),
          conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ T,\ card\ (set-mset\ (clauses_{NOT}\ T)))
lemma cdcl_{NOT}-decreasing-measure:
 assumes
   cdcl_{NOT} S T and
   inv: inv S  and
   atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-lits: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows (\mu_{CDCL} \ A \ T, \mu_{CDCL} \ A \ S)
          \in less-than <*lex*> (less-than <*lex*> less-than)
  using assms(1)
proof induction
 case (c-dpll-bj\ T)
 from dpll-bj-trail-mes-decreasing-prop[OF this(1) inv atm-clss atm-lits n-d fin-A]
 show ?case unfolding \mu_{CDCL}-def
   by (meson in-lex-prod less-than-iff)
next
  case (c\text{-}learn\ T) note learn = this(1)
 then have S: trail\ S = trail\ T
   using inv atm-clss atm-lits n-d fin-A
   by (elim\ learn_{NOT}E) auto
  show ?case
   using learn-\mu_L-decrease OF learn n-d, of atms-of-ms A atm-clss atm-lits fin-A n-d
   unfolding S \mu_{CDCL}-def by auto
  case (c\text{-}forget_{NOT} \ T) note forget_{NOT} = this(1)
 have trail S = trail\ T using forget_{NOT} by induction auto
 then show ?case
   using forget-\mu_L-decrease[OF\ forget_{NOT}] unfolding \mu_{CDCL}-def by auto
lemma wf-cdcl_{NOT}-restricted-learning:
 assumes finite A
 shows wf \{(T, S).
   (atms-of-mm\ (clauses_{NOT}\ S)\subseteq atms-of-ms\ A\wedge atm-of\ `flits-of-l\ (trail\ S)\subseteq atms-of-ms\ A
   \land no-dup (trail S)
   \wedge inv S)
```

```
\land \ cdcl_{NOT} \ S \ T \ \}
 by (rule wf-wf-if-measure' [of less-than <*lex*> (less-than <*lex*> less-than)])
    (auto intro: cdcl_{NOT}-decreasing-measure[OF - - - - assms])
definition \mu_C' :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}' :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}' A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) * (1+3 \cap (atms-of-ms\ A)) *
 + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
 + \ card \ (set\text{-}mset \ (clauses_{NOT} \ T))
lemma cdcl_{NOT}-decreasing-measure':
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atms-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows \mu_{CDCL}' A T < \mu_{CDCL}' A S
 using assms(1)
proof (induction rule: cdcl_{NOT}-learn-all-induct)
 case (dpll-bj\ T)
  then have (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A T
   <(2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ S
   using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
   unfolding \mu_C'-def by blast
  then have XX: ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) + 1
   \leq (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A S
  from mult-le-mono1[OF this, of <math>(1 + 3 \cap card (atms-of-ms A))]
 have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) *
     (1 + 3 \cap card (atms-of-ms A)) + (1 + 3 \cap card (atms-of-ms A))
   \leq ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     * (1 + 3 \cap card (atms-of-ms A))
   unfolding Nat.add-mult-distrib
   by presburger
  moreover
   have cl-T-S: clauses_{NOT} T = clauses_{NOT} S
     using dpll-bj.hyps inv dpll-bj-clauses by auto
   \mathbf{have}\ conflicting\text{-}bj\text{-}clss\text{-}yet\ (\mathit{card}\ (\mathit{atms\text{-}of\text{-}ms}\ A))\ S\ <\ 1+\ 3\ \widehat{\ }\mathit{card}\ (\mathit{atms\text{-}of\text{-}ms}\ A)
   by simp
  ultimately have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
     * (1 + 3 \cap card (atms-of-ms A)) + conflicting-bj-clss-yet (card (atms-of-ms A)) T
   <((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ S)*(1+3 \cap card\ (atms-of-ms\ A))
A))
   by linarith
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
       * (1 + 3 \hat{} card (atms-of-ms A))
     + conflicting-bj-clss-yet (card (atms-of-ms A)) T
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
       * (1 + 3 \cap card (atms-of-ms A))
     + conflicting-bj-clss-yet (card (atms-of-ms A)) S
```

```
by linarith
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
     * (1 + 3 \cap card (atms-of-ms A)) * 2
   + conflicting-bj-clss-yet (card (atms-of-ms A)) T*2
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     *(1 + 3 \cap card (atms-of-ms A)) * 2
   + conflicting-bj-clss-yet (card (atms-of-ms A)) S*2
   by linarith
  then show ?case unfolding \mu_{CDCL}'-def cl-T-S by presburger
next
  case (learn C F' K F C' L T) note clss-S-C = this(1) and atms-C = this(2) and dist = this(3)
   and tauto = this(4) and learn-restr = this(5) and tr-S = this(6) and C' = this(7) and
   F-C = this(8) and C-new = this(9) and T = this(10)
 have insert C (conflicting-bj-clss S) \subseteq simple-clss (atms-of-ms A)
   proof -
     have C \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
      using C'
      by (metis (no-types, hide-lams) Un-subset-iff simple-clss-mono
        contra-subset D \ dist \ distinct-mset-not-tautology-implies-in-simple-clss
        dual\text{-}order.trans\ atms\text{-}C\ atms\text{-}clss\ atms\text{-}trail\ tauto)
     moreover have conflicting-bj-clss S \subseteq simple-clss (atms-of-ms A)
      proof
        \mathbf{fix} \ x :: \ 'v \ clause
        assume x \in conflicting-bj-clss S
        then have x \in \# clauses_{NOT} S \wedge distinct\text{-}mset \ x \wedge \neg \ tautology \ x
          unfolding conflicting-bj-clss-def by blast
        then show x \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
          by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
            distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
            set-rev-mp)
      qed
     ultimately show ?thesis
      by auto
   qed
  then have card (insert C (conflicting-bj-clss S)) \leq 3 \widehat{} (card (atms-of-ms A))
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-card simple-clss-finite
     card-mono fin-A)
  moreover have [simp]: card (insert C (conflicting-bj-clss S))
   = Suc (card ((conflicting-bj-clss S)))
   by (metis (no-types) C' C-new card-insert-if conflicting-bj-clss-incl-clauses contra-subsetD
     finite-conflicting-bj-clss)
  moreover have [simp]: conflicting-bj-clss (add-cls_{NOT} \ C \ S) = conflicting-bj-clss \ S \cup \{C\}
   using dist tauto F-C by (subst conflicting-bj-clss-add-cls<sub>NOT</sub>[OF n-d]) (force simp: C' tr-S n-d)
  ultimately have [simp]: conflicting-bj-clss-yet (card\ (atms-of-ms\ A))\ S
   = Suc\ (conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ (add-cls_{NOT}\ C\ S))
     by simp
 have 1: clauses_{NOT} T = clauses_{NOT} (add-cls_{NOT} \ C \ S) using T by auto
 have 2: conflicting-bj-clss-yet (card (atms-of-ms A)) T
   = conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls_{NOT} C S)
   using T unfolding conflicting-bj-clss-def by auto
 have 3: \mu_C ' A T = \mu_C ' A (add\text{-}cls_{NOT} \ C \ S)
   using T unfolding \mu_C'-def by auto
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A (add-cls_{NOT} C S))
   * (1 + 3 \cap card (atms-of-ms A)) * 2
   = ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
   * (1 + 3 \cap card (atms-of-ms A)) * 2
```

```
using n-d unfolding \mu_C'-def by auto
 moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls<sub>NOT</sub> CS)
       * 2
     + card (set\text{-}mset (clauses_{NOT} (add\text{-}cls_{NOT} CS)))
     < conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
     + \ card \ (set\text{-}mset \ (clauses_{NOT} \ S))
     by (simp \ add: C' \ C\text{-}new \ n\text{-}d)
 ultimately show ?case unfolding \mu_{CDCL}'-def 1 2 3 by presburger
next
 case (forget_{NOT} \ C \ T) note T = this(4)
 have [simp]: \mu_C' A (remove-cls_{NOT} C S) = \mu_C' A S
   unfolding \mu_C'-def by auto
 have forget_{NOT} S T
   apply (rule forget_{NOT}.intros) using forget_{NOT} by auto
  then have conflicting-bj-clss T = conflicting-bj-clss S
   using do-not-forget-before-backtrack-rule-clause-learned-clause-untouched by blast
 moreover have card (set-mset (clauses_{NOT} T)) < card (set-mset (clauses_{NOT} S))
   by (metis T card-Diff1-less clauses-remove-cls_{NOT} finite-set-mset forget<sub>NOT</sub>.hyps(2)
     order-refl set-mset-minus-replicate-mset(1) state-eq_{NOT}-clauses)
  ultimately show ?case unfolding \mu_{CDCL}'-def
   using T \langle \mu_C' A \text{ (remove-cls}_{NOT} C S \rangle = \mu_C' A S \rangle by (metis (no-types) add-le-cancel-left
     \mu_C'-def not-le state-eq<sub>NOT</sub>-trail)
qed
lemma cdcl_{NOT}-clauses-bound:
 assumes
   cdcl_{NOT} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
 shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (clauses_{NOT} \ S) \cup simple-clss A
 using assms
proof (induction rule: cdcl_{NOT}-learn-all-induct)
  then show ?case using dpll-bj-clauses by simp
next
  case forget_{NOT}
 then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def by auto
  case (learn C F K d F' C' L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
  T = this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
 have atms-of C \subseteq A
   using atms-C atms-clss-S atms-trail-S by fast
  then have simple-clss (atms-of C) \subseteq simple-clss A
   by (simp add: simple-clss-mono)
 then have C \in simple\text{-}clss A
   using finite dist tauto by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
 then show ?case using T n-d by auto
qed
lemma rtranclp-cdcl_{NOT}-clauses-bound:
 assumes
   cdcl_{NOT}^{**} S T and
```

```
inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
 shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (clauses_{NOT} \ S) \cup simple-clss A
 using assms(1-5)
proof induction
 case base
 then show ?case by simp
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
   inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
 have inv T
   using rtranclp-cdcl_{NOT}-inv st inv by blast
 moreover have atms-of-mm (clauses<sub>NOT</sub> T) \subseteq A and atm-of 'lits-of-l (trail T) \subseteq A
   using rtranclp-cdcl_{NOT}-trail-clauses-bound [OF st] inv atms-clss-S atms-trail-S n-d by auto
 moreover have no-dup (trail T)
  using rtranclp-cdcl_{NOT}-no-dup[OF\ st\ \langle inv\ S\rangle\ n-d] by simp
  ultimately have set-mset (clauses<sub>NOT</sub> U) \subseteq set-mset (clauses<sub>NOT</sub> T) \cup simple-clss A
   using cdcl_{NOT} finite n-d by (auto simp: cdcl_{NOT}-clauses-bound)
 then show ?case using IH by auto
qed
lemma rtranclp-cdcl_{NOT}-card-clauses-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
 shows card (set-mset (clauses<sub>NOT</sub> T)) \leq card (set-mset (clauses<sub>NOT</sub> S)) + 3 \hat{} (card A)
  using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite by (meson Nat.le-trans
   simple-clss-card\ simple-clss-finite\ card-Un-le\ card-mono\ finite-UnI
   finite-set-mset nat-add-left-cancel-le)
lemma rtranclp-cdcl<sub>NOT</sub>-card-clauses-bound':
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows card \{C|C, C \in \# clauses_{NOT} T \land (tautology C \lor \neg distinct-mset C)\}
   \leq card \{C|C. C \in \# clauses_{NOT} S \land (tautology C \lor \neg distinct\text{-mset } C)\} + 3 \cap (card A)
   (is card ?T \leq card ?S + -)
 using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite
proof -
 have ?T \subseteq ?S \cup simple\text{-}clss A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by force
  then have card ?T \leq card (?S \cup simple-clss A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
```

```
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{card-simple-clauses-bound} :
  assumes
    cdcl_{NOT}^{**} S T and
    inv S and
    NA: atms-of-mm \ (clauses_{NOT} \ S) \subseteq A \ \mathbf{and}
   MA: atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows card (set\text{-}mset (clauses_{NOT} T))
  \leq card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct\text{-mset } C)\} + 3 \cap (card \ A)
   (is card ?T \leq card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite
proof -
  have \bigwedge x. \ x \in \# \ clauses_{NOT} \ T \Longrightarrow \neg \ tautology \ x \Longrightarrow distinct-mset \ x \Longrightarrow x \in simple-clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by (metis (no-types, hide-lams) Un-iff NA
      atms-of-atms-of-ms-mono simple-clss-mono contra-subsetD subset-trans
      distinct-mset-not-tautology-implies-in-simple-clss)
  then have set-mset (clauses_{NOT} \ T) \subseteq ?S \cup simple-clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by auto
  then have card(set\text{-}mset\ (clauses_{NOT}\ T)) \leq card\ (?S \cup simple\text{-}clss\ A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local finite nat-add-left-cancel-le)
qed
definition \mu_{CDCL}'-bound :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-bound A S =
  ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))) * (1 + 3 ^ card (atms-of-ms A)) * 2
    + 2*3 \cap (card (atms-of-ms A))
    + \ card \ \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct\text{-}mset \ C)\} + 3 \ \widehat{\ } (card \ (atms\text{-}of\text{-}ms \ A))
lemma \mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[simp]:
  \mu_{CDCL}'-bound A (reduce-trail-to<sub>NOT</sub> MS) = \mu_{CDCL}'-bound A S
  unfolding \mu_{CDCL}'-bound-def by auto
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>:
  assumes
    cdcl_{NOT}^{**} S T and
    inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \text{ } (lits\text{-}of\text{-}l \text{ } (trail \text{ } S)) \subseteq atms\text{-}of\text{-}ms \text{ } A \text{ } \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A) and
    U: U \sim reduce-trail-to<sub>NOT</sub> M T
  shows \mu_{CDCL}' A U \leq \mu_{CDCL}'-bound A S
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
    \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
   by auto
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
       * (1 + 3 \cap card (atms-of-ms A)) * 2
   \leq (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A)) * (1 + 3 ^ card (atms-of-ms A)) * 2
   using mult-le-mono1 by blast
  moreover
```

```
have conflicting-bj-clss-yet (card (atms-of-ms A)) T*2 \le 2*3 and (atms-of-ms A)
     by linarith
  moreover have card (set-mset (clauses_{NOT} U))
     \leq card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct\text{-mset } C)\} + 3 \cap card \ (atms\text{-}of\text{-ms} \ A)
   using rtranclp-cdcl_{NOT}-card-simple-clauses-bound [OF assms(1-6)] U by auto
  ultimately show ?thesis
    unfolding \mu_{CDCL}'-def \mu_{CDCL}'-bound-def by linarith
qed
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}^{**} S T and
   inv S and
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of '(lits\text{-}of\text{-}l (trail S)) \subseteq atms\text{-}of\text{-}ms A and
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A)
  shows \mu_{CDCL}' A T \leq \mu_{CDCL}'-bound A S
proof -
  have \mu_{CDCL}' A (reduce-trail-to<sub>NOT</sub> (trail T) T) = \mu_{CDCL}' A T
   unfolding \mu_{CDCL}'-def \mu_{C}'-def conflicting-bj-clss-def by auto
 then show ?thesis using rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[OF assms, of - trail T]
    state-eq_{NOT}-ref by fastforce
qed
lemma rtranclp-\mu_{CDCL}'-bound-decreasing:
  assumes
    cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite[simp]: finite\ (atms-of-ms\ A)
  shows \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
  have \{C.\ C \in \#\ clauses_{NOT}\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\}
   \subseteq \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg \ distinct\text{-mset} \ C)\} \ (\mathbf{is} \ ?T \subseteq ?S)
   proof (rule Set.subsetI)
     fix C assume C \in ?T
     then have C-T: C \in \# clauses_{NOT} T and t-d: tautology C \vee \neg distinct\text{-mset } C
     then have C \notin simple\text{-}clss (atms\text{-}of\text{-}ms A)
       by (auto dest: simple-clssE)
     then show C \in ?S
       using C-T rtranclp-cdcl_{NOT}-clauses-bound[OF assms] t-d by force
   qed
  then have card \{C.\ C \in \#\ clauses_{NOT}\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\} \le
    card \{C. C \in \# clauses_{NOT} S \land (tautology C \lor \neg distinct\text{-mset } C)\}
   by (simp add: card-mono)
  then show ?thesis
   unfolding \mu_{CDCL}'-bound-def by auto
qed
end — end of conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt
```

1.2.5 CDCL with restarts

Definition

```
locale restart-ops =
  fixes
     cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    restart :: 'st \Rightarrow 'st \Rightarrow bool
begin
inductive cdcl_{NOT}-raw-restart :: 'st \Rightarrow 'st \Rightarrow bool where
cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-raw-restart S T \mid
restart \ S \ T \Longrightarrow cdcl_{NOT}\text{-}raw\text{-}restart \ S \ T
end
{\bf locale}\ conflict \hbox{-} driven \hbox{-} clause \hbox{-} learning \hbox{-} with \hbox{-} restarts =
  conflict-driven-clause-learning\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
     inv backjump-conds propagate-conds learn-cond forget-cond
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate-conds :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow bool and
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
\mathbf{lemma} \  \, cdcl_{NOT}\text{-}iff\text{-}cdcl_{NOT}\text{-}raw\text{-}restart\text{-}no\text{-}restarts\text{:}
  cdcl_{NOT} \ S \ T \longleftrightarrow restart ops.cdcl_{NOT} -raw-restart \ cdcl_{NOT} \ (\lambda - -. \ False) \ S \ T
  (is ?C S T \longleftrightarrow ?R S T)
proof
  fix S T
  assume ?CST
  then show ?R \ S \ T by (simp \ add: restart-ops.cdcl_{NOT}-raw-restart.intros(1))
next
  \mathbf{fix}\ S\ T
  assume ?R \ S \ T
  then show ?CST
    apply (cases rule: restart-ops.cdcl_{NOT}-raw-restart.cases)
    using \langle ?R \ S \ T \rangle by fast+
qed
lemma cdcl_{NOT}-cdcl_{NOT}-raw-restart:
  cdcl_{NOT} \ S \ T \Longrightarrow restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} restart S \ T
  by (simp add: restart-ops.cdcl<sub>NOT</sub>-raw-restart.intros(1))
end
```

Increasing restarts

To add restarts we needs some assumptions on the predicate (called $cdcl_{NOT}$ here):

 \bullet a function f that is strictly monotonic. The first step is actually only used as a restart to

clean the state (e.g. to ensure that the trail is empty). Then we assume that $(1::'a) \leq f$ n for $(1::'a) \leq n$: it means that between two consecutive restarts, at least one step will be done. This is necessary to avoid sequence. like: full – restart – full – ...

- a measure μ : it should decrease under the assumptions bound-inv, whenever a $cdcl_{NOT}$ or a restart is done. A parameter is given to μ : for conflict- driven clause learning, it is an upper-bound of the clauses. We are assuming that such a bound can be found after a restart whenever the invariant holds.
- we also assume that the measure decrease after any $cdcl_{NOT}$ step.
- \bullet an invariant on the states $cdcl_{NOT}$ -inv that also holds after restarts.
- it is not required that the measure decrease with respect to restarts, but the measure has to be bound by some function μ -bound taking the same parameter as μ and the initial state of the considered $cdcl_{NOT}$ chain.

```
locale cdcl_{NOT}-increasing-restarts-ops =
  restart-ops cdcl_{NOT} restart for
    restart :: 'st \Rightarrow 'st \Rightarrow bool and
     cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool +
  fixes
    f :: nat \Rightarrow nat and
    bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
    \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
    \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat
  assumes
    f: unbounded f and
    f-ge-1:\bigwedge n. n \ge 1 \implies f n \ne 0 and
    bound-inv: \bigwedge A \ S \ T. \ cdcl_{NOT}-inv \ S \Longrightarrow bound-inv \ A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow bound-inv \ A \ T and
     cdcl_{NOT}-measure: \bigwedge A \ S \ T. \ cdcl_{NOT}-inv S \Longrightarrow bound-inv A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow \mu \ A \ T < \mu
A S  and
    measure-bound2: \bigwedge A T U. cdcl_{NOT}-inv T \Longrightarrow bound-inv A T \Longrightarrow cdcl_{NOT}^{**} T U
        \implies \mu \ A \ U \leq \mu \text{-bound } A \ T \ \text{and}
    measure-bound4: \bigwedge A \ T \ U. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T \Longrightarrow cdcl_{NOT}^{**} \ T \ U
        \implies \mu-bound A \ U \leq \mu-bound A \ T and
     cdcl_{NOT}-restart-inv: \bigwedge A\ U\ V.\ cdcl_{NOT}-inv U\Longrightarrow restart\ U\ V\Longrightarrow bound-inv A\ U\Longrightarrow bound-inv
A V
     exists-bound: \bigwedge R S. cdcl_{NOT}-inv R \Longrightarrow restart R S \Longrightarrow \exists A bound-inv A S and
    cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-inv T and
    cdcl_{NOT}-inv-restart: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow restart S T \Longrightarrow cdcl_{NOT}-inv T
begin
lemma cdcl_{NOT}-cdcl_{NOT}-inv:
  assumes
     (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
    cdcl_{NOT}-inv S
  shows cdcl_{NOT}-inv T
  using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-inv)
lemma cdcl_{NOT}-bound-inv:
  assumes
    (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
```

```
cdcl_{NOT}-inv S
   bound-inv A S
 shows bound-inv A T
 using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv:
 assumes
   cdcl_{NOT}^{**} S T and
   cdcl_{NOT}-inv S
 shows cdcl_{NOT}-inv T
 using assms by induction (auto intro: cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-bound-inv:
 assumes
   cdcl_{NOT}^{**} S T and
   bound\text{-}inv\ A\ S\ \mathbf{and}
   cdcl_{NOT}-inv S
 shows bound-inv A T
  using assms by induction (auto intro:bound-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-comp-n-le:
 assumes
   (cdcl_{NOT} \widehat{\hspace{1em}} (Suc\ n))\ S\ T and
   bound\text{-}inv\ A\ S
   cdcl_{NOT}-inv S
 shows \mu A T < \mu A S - n
 using assms
proof (induction n arbitrary: T)
 case \theta
 then show ?case using cdcl_{NOT}-measure by auto
 \mathbf{case}\ (\mathit{Suc}\ n)\ \mathbf{note}\ \mathit{IH} = \mathit{this}(1)[\mathit{OF}\ -\ \mathit{this}(3)\ \mathit{this}(4)]\ \mathbf{and}\ \mathit{S-T} = \mathit{this}(2)\ \mathbf{and}\ \mathit{b-inv} = \mathit{this}(3)\ \mathbf{and}
 obtain U: 'st where S-U: (cdcl_{NOT} \cap (Suc\ n)) S U and U-T: cdcl_{NOT} U T using S-T by auto
 then have \mu A U < \mu A S - n using IH[of U] by simp
 moreover
   have bound-inv A U
     using S-U b-inv cdcl_{NOT}-bound-inv c-inv by blast
   then have \mu A T < \mu A U using cdcl_{NOT}-measure [OF - - U-T] S-U c-inv cdcl_{NOT}-cdcl_{NOT}-inv
by auto
 ultimately show ?case by linarith
qed
lemma wf-cdcl_{NOT}:
 wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT}\text{-}inv \ S \land bound-inv \ A \ S\} \ (\textbf{is} \ wf \ ?A)
 apply (rule wfP-if-measure2[of - - \mu A])
 using cdcl_{NOT}-comp-n-le[of \theta - - A] by auto
lemma rtranclp-cdcl_{NOT}-measure:
 assumes
    cdcl_{NOT}^{**} S T and
   bound-inv A S and
   cdcl_{NOT}-inv S
 shows \mu A T \leq \mu A S
 using assms
proof (induction rule: rtranclp-induct)
```

```
case base
 then show ?case by auto
  case (step T U) note IH = this(3)[OF\ this(4)\ this(5)] and st = this(1) and cdcl_{NOT} = this(2)
and
    b-inv = this(4) and c-inv = this(5)
 have bound-inv A T
   by (meson\ cdcl_{NOT}-bound-inv rtrancl_{p}-imp-relpowp st\ step.prems)
 moreover have cdcl_{NOT}-inv T
   using c-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv st by blast
 ultimately have \mu A U < \mu A T using cdcl_{NOT}-measure [OF - - cdcl_{NOT}] by auto
 then show ?case using IH by linarith
qed
lemma cdcl_{NOT}-comp-bounded:
 assumes
   bound-inv A S and cdcl_{NOT}-inv S and m \geq 1 + \mu A S
 shows \neg (cdcl_{NOT} \ \widehat{} \ m) \ S \ T
  using assms cdcl_{NOT}-comp-n-le[of m-1 S T A] by fastforce
    • f n < m ensures that at least one step has been done.
inductive cdcl_{NOT}-restart where
restart-step: (cdcl_{NOT} \widehat{\ } m) \ S \ T \Longrightarrow m \ge f \ n \Longrightarrow restart \ T \ U
   \Rightarrow cdcl_{NOT}\text{-}restart\ (S,\ n)\ (U,\ Suc\ n)\ |
restart-full: full1 cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-restart (S, n) (T, Suc n)
\mathbf{lemmas}\ cdcl_{NOT}\text{-}with\text{-}restart\text{-}induct = cdcl_{NOT}\text{-}restart.induct[split\text{-}format(complete),
  OF\ cdcl_{NOT}-increasing-restarts-ops-axioms]
\mathbf{lemma}\ cdcl_{NOT}\text{-}restart\text{-}cdcl_{NOT}\text{-}raw\text{-}restart:
  cdcl_{NOT}-restart S T \Longrightarrow cdcl_{NOT}-raw-restart** (fst S) (fst T)
proof (induction rule: cdcl_{NOT}-restart.induct)
 case (restart-step m \ S \ T \ n \ U)
  then have cdcl_{NOT}^{**} S T by (meson \ relpowp-imp-rtranclp)
  then have cdcl_{NOT}-raw-restart** S T using cdcl_{NOT}-raw-restart.intros(1)
   rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart] by blast
 moreover have cdcl_{NOT}-raw-restart T U
   using \langle restart \ T \ U \rangle \ cdcl_{NOT}-raw-restart.intros(2) by blast
  ultimately show ?case by auto
next
 case (restart\text{-}full\ S\ T)
 then have cdcl_{NOT}^{**} S T unfolding full 1-def by auto
 then show ?case using cdcl_{NOT}-raw-restart.intros(1)
    rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart]\ \mathbf{by}\ auto
qed
lemma cdcl_{NOT}-with-restart-bound-inv:
 assumes
    cdcl_{NOT}-restart S T and
   bound-inv \ A \ (fst \ S) and
   cdcl_{NOT}-inv (fst S)
 shows bound-inv \ A \ (fst \ T)
  using assms apply (induction rule: cdcl_{NOT}-restart.induct)
   prefer 2 apply (metis rtranclp-unfold fstI full1-def rtranclp-cdcl<sub>NOT</sub>-bound-inv)
```

```
lemma cdcl_{NOT}-with-restart-cdcl_{NOT}-inv:
  assumes
    cdcl_{NOT}-restart S T and
    cdcl_{NOT}-inv (fst S)
  shows cdcl_{NOT}-inv (fst \ T)
  using assms apply induction
    apply (metis cdcl_{NOT}-cdcl_{NOT}-inv cdcl_{NOT}-inv-restart fst-conv)
   apply (metis fstI full-def full-unfold rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
  done
lemma rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv:
    cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S)
  shows cdcl_{NOT}-inv (fst T)
  using assms by induction (auto intro: cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-with-restart-bound-inv:
  assumes
    cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S) and
    bound-inv A (fst S)
  shows bound-inv A (fst T)
  using assms apply induction
  apply (simp\ add: cdcl_{NOT}-cdcl_{NOT}-inv\ cdcl_{NOT}-with-restart-bound-inv)
  using cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv by blast
lemma cdcl_{NOT}-with-restart-increasing-number:
  cdcl_{NOT}-restart S \ T \Longrightarrow snd \ T = 1 + snd \ S
  by (induction rule: cdcl_{NOT}-restart.induct) auto
locale \ cdcl_{NOT}-increasing-restarts =
  cdcl_{NOT}-increasing-restarts-ops restart cdcl_{NOT} f bound-inv \mu cdcl_{NOT}-inv \mu-bound +
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    f :: nat \Rightarrow nat and
    restart :: 'st \Rightarrow 'st \Rightarrow bool and
    bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
    \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
    cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
    \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat +
    measure-bound: \bigwedge A \ T \ V \ n. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T
      \implies cdcl_{NOT}\text{-restart }(T, n) \ (V, Suc \ n) \implies \mu \ A \ V \leq \mu\text{-bound } A \ T \ \text{and}
    cdcl_{NOT}-raw-restart-\mu-bound:
      cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
```

by $(metis\ cdcl_{NOT}\text{-}bound\text{-}inv\ cdcl_{NOT}\text{-}cdcl_{NOT}\text{-}inv\ cdcl_{NOT}\text{-}restart\text{-}inv\ fst\text{-}conv)$

```
begin
lemma rtranclp\text{-}cdcl_{NOT}\text{-}raw\text{-}restart\text{-}\mu\text{-}bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu-bound A \ V \leq \mu-bound A \ T
  apply (induction rule: rtranclp-induct2)
  apply simp
  by (metis cdcl_{NOT}-raw-restart-\mu-bound dual-order.trans fst-conv
   rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (cases rule: cdcl_{NOT}-restart.cases)
    apply simp
   using measure-bound relpowp-imp-rtrancly apply fastforce
  by (metis full-def full-unfold measure-bound2 prod.inject)
lemma rtranclp-cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (induction rule: rtranclp-induct2)
   apply (simp add: measure-bound2)
  by (metis dual-order trans fst-conv measure-bound2 r-into-rtranclp rtranclp.rtrancl-refl
   rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv
   rtranclp-cdcl_{NOT}-raw-restart-\mu-bound)
lemma wf-cdcl_{NOT}-restart:
  wf \{(T, S). \ cdcl_{NOT}\text{-restart} \ S \ T \land cdcl_{NOT}\text{-inv} \ (fst \ S)\}\ (is \ wf \ ?A)
proof (rule ccontr)
 assume ¬ ?thesis
  then obtain g where
    g: \bigwedge i. \ cdcl_{NOT}-restart (g\ i)\ (g\ (Suc\ i)) and
   cdcl_{NOT}-inv-g: \bigwedge i. \ cdcl_{NOT}-inv (fst \ (g \ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
   apply (induct-tac i)
     apply simp
     by (metis Suc-eq-plus1-left add.commute add.left-commute
        cdcl_{NOT}-with-restart-increasing-number g)
  then have snd - g - \theta: \bigwedge i. i > \theta \Longrightarrow snd(g i) = i + snd(g \theta)
   by blast
  have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
     not-bounded-nat-exists-larger not-le le-iff-add)
  \{ \text{ fix } i \}
   have H: \bigwedge T Ta m. (cdcl_{NOT} \curvearrowright m) T Ta \Longrightarrow no-step cdcl_{NOT} T \Longrightarrow m = 0
     \mathbf{apply}\ (\mathit{case-tac}\ m)\ \mathbf{by}\ \mathit{simp}\ (\mathit{meson}\ \mathit{relpowp-E2})
   have \exists T m. (cdcl_{NOT} \curvearrowright m) (fst (g i)) T \land m \geq f (snd (g i))
     using g[of i] apply (cases rule: cdcl_{NOT}-restart.cases)
       apply auto
     using g[of Suc \ i] \ f-ge-1 apply (cases rule: cdcl_{NOT}-restart.cases)
     apply (auto simp add: full1-def full-def dest: H dest: tranclpD)
```

 $\implies \mu$ -bound $A \ V \le \mu$ -bound $A \ T$

```
using H Suc-leI leD by blast
  \} note H = this
  obtain A where bound-inv A (fst (g 1))
    using g[of \ \theta] \ cdcl_{NOT}-inv-g[of \ \theta] apply (cases rule: cdcl_{NOT}-restart.cases)
      {\bf apply} \ (\textit{metis One-nat-def } \textit{cdcl}_{NOT}\text{-}\textit{inv exists-bound } \textit{fst-conv relpowp-imp-rtranclp}
        rtranclp-induct)
      using H[of 1] unfolding full1-def by (metis One-nat-def Suc-eq-plus1 diff-is-0-eq' diff-zero
        f-ge-1 fst-conv le-add2 relpowp-E2 snd-conv)
 let ?j = \mu-bound A (fst (g 1)) + 1
  obtain j where
    j: f (snd (g j)) > ?j and j > 1
    using unbounded-f-g not-bounded-nat-exists-larger by blast
     fix i j
     have cdcl_{NOT}-with-restart: j \geq i \implies cdcl_{NOT}-restart** (g \ i) \ (g \ j)
       apply (induction j)
         apply simp
       by (metis q le-Suc-eq rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-reft)
  } note cdcl_{NOT}-restart = this
  have cdcl_{NOT}-inv (fst (g (Suc \theta)))
    by (simp \ add: \ cdcl_{NOT} - inv-g)
  have cdcl_{NOT}-restart** (fst (g\ 1), snd\ (g\ 1)) (fst (g\ j), snd\ (g\ j))
    using \langle j > 1 \rangle by (simp \ add: \ cdcl_{NOT}\text{-}restart)
  have \mu A (fst (g \ j)) \leq \mu-bound A (fst (g \ 1))
    apply (rule rtranclp-cdcl_{NOT}-raw-restart-measure-bound)
    using \langle cdcl_{NOT}\text{-}restart^{**} \ (fst \ (g \ 1), \ snd \ (g \ 1)) \ (fst \ (g \ j), \ snd \ (g \ j)) \rangle apply blast
        apply (simp\ add:\ cdcl_{NOT}-inv-g)
       using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle apply simp
    done
  then have \mu \ A \ (fst \ (g \ j)) \le ?j
    by auto
  have inv: bound-inv A (fst (g j))
    using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle \langle cdcl_{NOT}\text{-}inv \ (fst \ (g \ (Suc \ 0))) \rangle
    \langle cdcl_{NOT}\text{-}restart^{**}\ (\textit{fst}\ (\textit{g}\ \textit{1}),\ \textit{snd}\ (\textit{g}\ \textit{1}))\ (\textit{fst}\ (\textit{g}\ \textit{j}),\ \textit{snd}\ (\textit{g}\ \textit{j}))\rangle
    rtranclp-cdcl_{NOT}-with-restart-bound-inv by auto
  obtain T m where
    cdcl_{NOT}-m: (cdcl_{NOT} \stackrel{\frown}{\frown} m) (fst (g j)) T and
    f-m: f (snd (g j)) <math>\leq m
    using H[of j] by blast
  have ?j < m
    using f-m j Nat.le-trans by linarith
  then show False
    using \langle \mu \ A \ (fst \ (g \ j)) \leq \mu \text{-bound} \ A \ (fst \ (g \ 1)) \rangle
    cdcl_{NOT}-comp-bounded[OF inv cdcl_{NOT}-inv-g, of ] cdcl_{NOT}-inv-g cdcl_{NOT}-m
    \langle ?j < m \rangle by auto
qed
lemma cdcl_{NOT}-restart-steps-bigger-than-bound:
  assumes
    cdcl_{NOT}-restart S T and
    bound-inv A (fst S) and
    cdcl_{NOT}-inv (fst S) and
    f (snd S) > \mu-bound A (fst S)
  shows full1 cdcl_{NOT} (fst S) (fst T)
  using assms
```

```
proof (induction rule: cdcl_{NOT}-restart.induct)
  case restart-full
  then show ?case by auto
next
  case (restart-step m S T n U) note st = this(1) and f = this(2) and bound-inv = this(4) and
   cdcl_{NOT}-inv = this(5) and \mu = this(6)
  then obtain m' where m: m = Suc m' by (cases m) auto
 have \mu A S - m' = 0
   using f bound-inv cdcl_{NOT}-inv \mu m rtranclp-cdcl_{NOT}-raw-restart-measure-bound by fastforce
 then have False using cdcl_{NOT}-comp-n-le[of m' S T A] restart-step unfolding m by simp
 then show ?case by fast
qed
lemma rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl<sub>NOT</sub>:
 assumes
   inv: cdcl_{NOT}-inv S and
   binv: bound-inv A S
  shows (\lambda S \ T. \ cdcl_{NOT} \ S \ T \land \ cdcl_{NOT}\text{-}inv \ S \land \ bound-inv \ A \ S)^{**} \ S \ T \longleftrightarrow cdcl_{NOT}^{**} \ S \ T
   (is ?A^{**} S T \longleftrightarrow ?B^{**} S T)
  apply (rule iffI)
   using rtranclp-mono[of ?A ?B] apply blast
 apply (induction rule: rtranclp-induct)
   using inv binv apply simp
 by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdcl_{NOT}-bound-inv
   rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma no-step-cdcl_{NOT}-restart-no-step-cdcl_{NOT}:
 assumes
   n-s: no-step cdcl_{NOT}-restart S and
   inv: cdcl_{NOT}-inv (fst S) and
   binv: bound-inv A (fst S)
 shows no-step cdcl_{NOT} (fst S)
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain T where T: cdcl_{NOT} (fst S) T
   by blast
 then obtain U where U: full (\lambda S T. cdcl_{NOT} S T \wedge cdcl_{NOT}-inv S \wedge bound-inv A S) T U
    using wf-exists-normal-form-full[OF wf-cdcl_{NOT}, of A T] by auto
 moreover have inv-T: cdcl_{NOT}-inv T
   using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle \ cdcl_{NOT}-inv inv by blast
  moreover have b-inv-T: bound-inv A T
   using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle binv bound-inv inv by blast
  ultimately have full\ cdcl_{NOT}\ T\ U
   using rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl<sub>NOT</sub> rtranclp-cdcl_{NOT}-bound-inv
   rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv unfolding full-def by blast
  then have full1\ cdcl_{NOT}\ (fst\ S)\ U
   using T full-fullI by metis
  then show False by (metis n-s prod.collapse restart-full)
qed
\mathbf{end}
```

1.2.6 Merging backjump and learning

 $\begin{array}{l} \textbf{locale} \ \ cdcl_{NOT} \text{-}merge\text{-}bj\text{-}learn\text{-}ops = } \\ \ \ decide\text{-}ops \ trail \ clauses_{NOT} \ \ prepend\text{-}trail \ tl\text{-}trail \ add\text{-}cls_{NOT} \ \ remove\text{-}cls_{NOT} \ + \\ \end{array}$

```
forget-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond\ +
  propagate-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool +
 fixes backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow bool
begin
We have a new backjump that combines the backjumping on the trail and the learning of the
used clause (called C'' below)
inductive backjump-l where
backjump-l: trail S = F' @ Decided K \# F
   \implies no\text{-}dup \ (trail \ S)
   \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F (add-cls_{NOT} C'' S))
   \implies C \in \# clauses_{NOT} S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit\ F\ L
   \implies atm-of L \in atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of '(lits-of-l (trail S))
   \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
   \implies C'' = C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump-l\text{-}cond\ C\ C'\ L\ S\ T
   \implies backjump-l \ S \ T
Avoid (meaningless) simplification in the theorem generated by inductive-cases:
declare reduce-trail-to<sub>NOT</sub>-length-ne[simp del] Set.Un-iff[simp del] Set.insert-iff[simp del]
inductive-cases backjump-lE: backjump-l S T
thm backjump-lE
\mathbf{declare}\ \mathit{reduce-trail-to}_{NOT}\text{-}\mathit{length-ne}[\mathit{simp}]\ \mathit{Set.Un-iff}[\mathit{simp}]\ \mathit{Set.insert-iff}[\mathit{simp}]
inductive cdcl_{NOT}-merged-bj-learn :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>: decide_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>: propagate_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-backjump-l: backjump-l S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub>: forget_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
\mathbf{lemma}\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}no\text{-}dup\text{-}inv\text{:}
  cdcl_{NOT}-merged-bj-learn S \ T \Longrightarrow no-dup (trail \ S) \Longrightarrow no-dup (trail \ T)
  apply (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
      using defined-lit-map apply fastforce
    using defined-lit-map apply fastforce
   apply (force simp: defined-lit-map elim!: backjump-lE)[]
  using forget_{NOT}.simps apply auto[1]
  done
end
locale \ cdcl_{NOT}-merge-bj-learn-proxy =
  cdcl_{NOT}-merge-bj-learn-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
```

propagate-conds forget-cond

```
\lambda C\ C'\ L'\ S\ T. backjump-l-cond C\ C'\ L'\ S\ T
    \land distinct\text{-mset} (C' + \{\#L'\#\}) \land \neg tautology (C' + \{\#L'\#\})
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT}:: 'v\ clause \Rightarrow 'st \Rightarrow 'st\ \mathbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool +
  fixes
    inv :: 'st \Rightarrow bool
  assumes
     bj-merge-can-jump:
     \bigwedge S \ C \ F' \ K \ F \ L.
       inv S
       \implies trail \ S = F' @ Decided \ K \# F
       \implies C \in \#\ clauses_{NOT}\ S
       \implies trail \ S \models as \ CNot \ C
       \implies undefined\text{-}lit \ F \ L
       \implies atm-of L \in atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of '(lits-of-l (F' @ Decided K # F))
       \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
       \implies F \models as \ CNot \ C'
       \implies \neg no\text{-step backjump-l } S and
     cdcl-merged-inv: \bigwedge S T. cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow inv T
begin
abbreviation backjump-conds:: v \ clause \Rightarrow v \ clause \Rightarrow v \ literal \Rightarrow st \Rightarrow t \Rightarrow bool
backjump\text{-}conds \equiv \lambda C \ C' \ L' \ S \ T. \ distinct\text{-}mset \ (C' + \{\#L'\#\}) \land \neg tautology \ (C' + \{\#L'\#\})
Without additional knowledge on backjump-l-cond, it is impossible to have the same invariant.
sublocale dpll-with-backjumping-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
  inv backjump-conds propagate-conds
proof (unfold-locales, goal-cases)
  case 1
  \{ \text{ fix } S S' \}
    assume bj: backjump-l S S' and no-dup (trail S)
    then obtain F' K F L C' C D where
      S': S' \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F (add-cls_{NOT} D S))
        and
      tr-S: trail S = F' @ Decided K # F and
      C: C \in \# clauses_{NOT} S and
      tr-S-C: trail S \models as CNot C and
      undef-L: undefined-lit F L and
      atm-L:
       atm\text{-}of\ L \in insert\ (atm\text{-}of\ K)\ (atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \cup atm\text{-}of\ `(lits\text{-}of\text{-}l\ F' \cup lits\text{-}of\text{-}l\ F))
      cls-S-C': clauses_{NOT} S \models pm C' + {\#L\#} and
      F-C': F \models as \ CNot \ C' and
      dist: distinct-mset (C' + \{\#L\#\}) and
      not-tauto: \neg tautology (C' + \{\#L\#\}) and
      cond: backjump-l-cond C C' L S S'
      D = C' + \{ \#L\# \}
```

```
by (elim backjump-lE) metis
    interpret\ backjumping-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
    backjump\text{-}conds
      by unfold-locales
    have \exists T. backjump S T
      apply rule
      apply (rule backjump.intros)
               using tr-S apply simp
              apply (rule state-eq_{NOT}-ref)
             using C apply simp
            using tr-S-C apply simp
          using undef-L apply simp
         using atm-L tr-S apply simp
        using cls-S-C' apply simp
       using F-C' apply simp
      using dist not-tauto cond apply simp
      done
    }
  then show ?case using 1 bj-merge-can-jump by meson
qed
end
locale \ cdcl_{NOT}-merge-bj-learn-proxy2 =
  cdcl_{NOT}-merge-bj-learn-proxy trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds forget-cond backjump-l-cond inv
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    inv :: 'st \Rightarrow bool
begin
sublocale conflict-driven-clause-learning-ops trail clauses<sub>NOT</sub> prepend-trail tl-trail add-cls_{NOT}
  remove-cls_{NOT} inv backjump-conds propagate-conds
  \lambda C -. distinct-mset C \wedge \neg tautology C
  forget-cond
 by unfold-locales
end
locale \ cdcl_{NOT}-merge-bj-learn =
  cdcl_{NOT}-merge-bj-learn-proxy2 trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds forget-cond backjump-l-cond inv
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
```

```
backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   inv :: 'st \Rightarrow bool +
  assumes
    dpll-merge-bj-inv: \bigwedge S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T and
    learn-inv: \bigwedge S \ T. \ learn \ S \ T \Longrightarrow inv \ S \Longrightarrow inv \ T
begin
sublocale
   conflict-driven-clause-learning\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
    inv backjump-conds propagate-conds
    \lambda C -. distinct-mset C \wedge \neg tautology C
    forget-cond
  apply unfold-locales
  using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> cdcl-merged-inv learn-inv
  by (auto simp add: cdcl_{NOT}.simps dpll-merge-bj-inv)
lemma backjump-l-learn-backjump:
  assumes bt: backjump-l S T and inv: inv S and n-d: no-dup (trail S)
  shows \exists C' L D. learn S (add-cls_{NOT} D S)
   \wedge D = (C' + \{\#L\#\})
   \land backjump (add\text{-}cls_{NOT} D S) T
   \land atms-of (C' + \{\#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
proof -
  obtain C F' K F L l C' D where
    tr-S: trail S = F' @ Decided K # F and
     T: T \sim prepend-trail (Propagated L l) (reduce-trail-to_{NOT} F (add-cls_{NOT} D S)) and
     C-cls-S: C \in \# clauses_{NOT} S and
     tr-S-CNot-C: trail <math>S \models as \ CNot \ C and
     undef: undefined-lit F L and
    atm-L: atm-of L \in atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S)) and
     clss-C: clauses_{NOT} S \models pm D  and
    D: D = C' + \{\#L\#\}
    F \models as \ CNot \ C' and
     distinct: distinct-mset D and
    not-tauto: \neg tautology D
    using bt inv by (elim backjump-lE) simp
   have atms-C': atms-of C' \subseteq atm-of ' (lits-of-l F)
    by (metis\ D(2)\ atms-of-def\ image-subsetI\ true-annots-CNot-all-atms-defined)
   then have atms-of (C' + \#L\#) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
    using atm-L tr-S by auto
   moreover have learn: learn S (add-cls<sub>NOT</sub> D S)
    apply (rule learn.intros)
        apply (rule clss-C)
      using atms-C' atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
    apply standard
     apply (rule distinct)
     apply (rule not-tauto)
     apply simp
    done
   moreover have bj: backjump (add-cls<sub>NOT</sub> D S) T
    apply (rule backjump.intros)
    using \langle F \models as \ CNot \ C' \rangle C-cls-S tr-S-CNot-C undef T distinct not-tauto n-d D
    by (auto simp: tr-S state-eq_{NOT}-def simp del: state-simp_{NOT})
   ultimately show ?thesis using D by blast
```

```
qed
```

```
lemma cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl<sub>NOT</sub>:
  cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow no\text{-}dup \ (trail \ S) \Longrightarrow cdcl_{NOT}^{++} S \ T
\mathbf{proof}\ (induction\ rule:\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn.induct)
 case (cdcl_{NOT}-merged-bj-learn-decide_{NOT} T)
  then have cdcl_{NOT} S T
   using bj-decide_{NOT} cdcl_{NOT}.simps by fastforce
  then show ?case by auto
next
 case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 then have cdcl_{NOT} S T
   using bj-propagate<sub>NOT</sub> cdcl_{NOT}.simps by fastforce
 then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-forget_{NOT} T)
  then have cdcl_{NOT} S T
    using c-forget_{NOT} by blast
  then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bt = this(1) and inv = this(2) and
  obtain C':: 'v clause and L:: 'v literal and D:: 'v clause where
    f3: learn \ S \ (add-cls_{NOT} \ D \ S) \ \land
      backjump \ (add-cls_{NOT} \ D \ S) \ T \ \land
      atms-of (C' + \#L\#) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of 'lits-of-l (trail S) and
    D: D = C' + \{\#L\#\}
    using n-d backjump-l-learn-backjump[OF bt inv] by blast
  then have f_4: cdcl_{NOT} S (add-cls_{NOT} D S)
    using n-d c-learn by blast
  have cdcl_{NOT} (add-cls_{NOT} D S) T
    using f3 n-d bj-backjump c-dpll-bj by blast
  then show ?case
    using f4 by (meson tranclp.r-into-trancl tranclp.trancl-into-trancl)
qed
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}** S T \land inv T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-)] and
   inv = this(4) and n-d = this(5)
 have cdcl_{NOT}^{**} T U
   using cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}[OF\ cdcl_{NOT}]\ IH
    rtranclp-cdcl_{NOT}-no-dup inv n-d by auto
  then have cdcl_{NOT}^{**} S U using IH by fastforce
 moreover have inv U using n-d IH \langle cdcl_{NOT}^{***} \mid T \mid U \rangle rtranclp-cdcl<sub>NOT</sub>-inv by blast
 ultimately show ?case using st by fast
qed
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}** S T
  using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
```

```
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-inv:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow inv T
  using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
definition \mu_C' :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}'-merged :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-merged A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T)*2 + card\ (set-mset\ (clauses_{NOT})
T))
lemma cdcl_{NOT}-decreasing-measure':
 assumes
    cdcl_{NOT}-merged-bj-learn S T and
   inv: inv S and
   atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-trail: atm-of 'lits-of-l (trail S) \subset atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
  shows \mu_{CDCL}'-merged A T < \mu_{CDCL}'-merged A S
  using assms(1)
proof induction
  case (cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> T)
 have clauses_{NOT} S = clauses_{NOT} T
   using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>.hyps by auto
 moreover have
   (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    <(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
      -\mu_C \ (1 + card \ (atms-of-ms \ A)) \ (2 + card \ (atms-of-ms \ A)) \ (trail-weight \ S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
   using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> fin-A atm-clss atm-trail n-d inv
   by (simp-all\ add:\ bj-decide_{NOT}\ cdcl_{NOT}-merged-bj-learn-decide_{NOT}.hyps)
  ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
  case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 have clauses_{NOT} S = clauses_{NOT} T
   using cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps
   by (simp\ add:\ bj\text{-}propagate_{NOT}\ inv\ dpll\text{-}bj\text{-}clauses)
  moreover have
   (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    < (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
   using inv n-d atm-clss atm-trail fin-A by (simp-all add: bj-propagate<sub>NOT</sub>
     cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps)
  ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
 case (cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> T)
 have card\ (set\text{-}mset\ (clauses_{NOT}\ T)) < card\ (set\text{-}mset\ (clauses_{NOT}\ S))
   using \langle forget_{NOT} \ S \ T \rangle by (metis card-Diff1-less clauses-remove-cls_{NOT} finite-set-mset
     forget_{NOT}.cases\ linear\ set-mset-minus-replicate-mset(1)\ state-eq_{NOT}-def)
```

```
moreover
   have trail\ S = trail\ T
     using \langle forget_{NOT} \ S \ T \rangle by (auto elim: forget_{NOT} E)
   then have
     (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
       -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
= (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
       -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
     by auto
 ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
 case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj-l = this(1)
 obtain C' L D where
   learn: learn S (add-cls<sub>NOT</sub> D S) and
   bj: backjump (add-cls_{NOT} D S) T and
   atms-C: atms-of (C' + \{\#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of (lits-of-l (trail S)) and
   D: D = C' + \{\#L\#\}
   using bj-l inv backjump-l-learn-backjump [of S] n-d atm-clss atm-trail by blast
 have card-T-S: card (set-mset (clauses<sub>NOT</sub> T)) \leq 1 + card (set-mset (clauses<sub>NOT</sub> S))
   using bj-l inv by (force elim!: backjump-lE simp: card-insert-if)
   ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   < ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A))
         (trail-weight\ (add-cls_{NOT}\ D\ S)))
   apply (rule dpll-bj-trail-mes-decreasing-prop)
       using bj bj-backjump apply blast
      using cdcl_{NOT}. c-learn cdcl_{NOT}-inv inv learn apply blast
     using atms-C atm-clss atm-trail D apply (simp add: n-d) apply fast
     using atm-trail n-d apply simp
    apply (simp add: n-d)
   using fin-A apply simp
   done
 then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S))
   using n-d by auto
 then show ?case
   using card-T-S unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by linarith
qed
lemma wf-cdcl_{NOT}-merged-bj-learn:
 assumes
   fin-A: finite A
 shows wf \{(T, S).
   (inv\ S \land atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \subseteq atms\text{-}of\text{-}ms\ A \land atm\text{-}of\ 'lits\text{-}of\text{-}l\ (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T
 apply (rule wfP-if-measure[of - - \mu_{CDCL}'-merged A])
 using cdcl_{NOT}-decreasing-measure' fin-A by simp
lemma tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp:
 assumes
```

```
cdcl_{NOT}-merged-bj-learn^{++} S T and
    inv: inv S and
    atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
  shows (T, S) \in \{(T, S).
   (inv\ S \land atms-of-mm\ (clauses_{NOT}\ S) \subseteq atms-of-ms\ A \land atm-of\ `itis-of-l\ (trail\ S) \subseteq atms-of-ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T}<sup>+</sup> (is - \in ?P^+)
  using assms(1)
proof (induction rule: tranclp-induct)
  case base
  then show ?case using n-d atm-clss atm-trail inv by auto
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
  have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using st cdcl_{NOT} inv n-d atm-clss atm-trail inv by auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
      using inv st cdcl_{NOT} n-d atm-clss atm-trail inv by auto
  moreover have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
   using rtranclp-cdcl_{NOT}-trail-clauses-bound[OF \langle cdcl_{NOT}^{***} | S | T \rangle inv n-d atm-clss atm-trail]
   by fast
  moreover have atm\text{-}of ' (lits\text{-}of\text{-}l (trail\ T)) \subset atms\text{-}of\text{-}ms\ A
   \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{trail-clauses-bound}[\mathit{OF} \ \langle \mathit{cdcl}_{NOT}^{***} \ \mathit{S} \ \mathit{T} \rangle \ \mathit{inv} \ \mathit{n-d} \ \mathit{atm-clss} \ \mathit{atm-trail}]
   by fast
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
  ultimately have (U, T) \in P
   using cdcl_{NOT} by auto
  then show ?case using IH by (simp add: trancl-into-trancl2)
qed
lemma wf-tranclp-cdcl_{NOT}-merged-bj-learn:
  assumes finite A
  shows wf \{(T, S).
   (inv\ S \land atms-of-mm\ (clauses_{NOT}\ S) \subseteq atms-of-ms\ A \land atm-of\ `itis-of-l\ (trail\ S) \subseteq atms-of-ms\ A
   \land no\text{-}dup \ (trail \ S))
   \land cdcl_{NOT}-merged-bj-learn<sup>++</sup> S T}
  apply (rule wf-subset)
  apply (rule wf-trancl[OF wf-cdcl_{NOT}-merged-bj-learn])
  using assms apply simp
  using tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp[OF - - - - - \langle finite \ A \rangle] by auto
lemma backjump-no-step-backjump-l:
  backjump \ S \ T \Longrightarrow inv \ S \Longrightarrow \neg no\text{-step backjump-l } S
  apply (elim backjumpE)
  apply (rule bj-merge-can-jump)
   apply auto[7]
  by blast
\mathbf{lemma}\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}final\text{-}state\text{:}}
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
```

```
n-s: no-step cdcl_{NOT}-merged-bj-learn S and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
 let ?N = set\text{-}mset (clauses_{NOT} S)
 let ?M = trail S
 consider
     (sat) satisfiable ?N and ?M \modelsas ?N
     (sat') satisfiable ?N and \neg ?M \modelsas ?N
    (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v literal set where
       I \models s ?N  and
       cons: consistent-interp\ I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subset atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     let ?I = I \cup \{P | P. P \in lits\text{-}of\text{-}l ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
     let ?O = \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
     have cons-I': consistent-interp ?I
       using cons using (no-dup ?M) unfolding consistent-interp-def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark-l ?M)
       using tot atms-of-s-def unfolding total-over-m-def total-over-set-def
       by (fastforce simp: image-iff)
     have \{P \mid P. P \in lits\text{-}of\text{-}l ? M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ? O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ? N \rangle true-clss-union-increase by force
     have tot': total-over-m ?I (?N \cup ?O)
       using atm-I-N tot unfolding total-over-m-def total-over-set-def
       by (force simp: lits-of-def elim!: is-decided-ex-Decided)
     have atms-N-M: atms-of-ms ?N \subseteq atm-of 'lits-of-l ?M
       proof (rule ccontr)
         assume ¬ ?thesis
         then obtain l :: 'v where
           l-N: l \in atms-of-ms ?N and
          l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of\text{-}l ?M
          by auto
         have undefined-lit ?M (Pos l)
           using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
             atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.set(1))
         have decide_{NOT} S (prepend-trail (Decided (Pos l)) S)
           by (metis \langle undefined\text{-}lit ? M \text{ (Pos l)} \rangle decide_{NOT}.intros l\text{-}N \text{ literal.sel(1)}
```

```
state-eq_{NOT}-ref)
      then show False
        using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> n-s by blast
    qed
  have ?M \models as CNot C
  apply (rule all-variables-defined-not-imply-cnot)
    using atms-N-M \ (C \in ?N) \ (\neg ?M \models a \ C) \ atms-of-atms-of-ms-mono[OF \ (C \in ?N)]
    by (auto dest: atms-of-atms-of-ms-mono)
  have \exists l \in set ?M. is\text{-}decided l
    proof (rule ccontr)
      \textbf{let } ?O = \{unmark \ L \ | L. \ is-decided \ L \land L \in set \ ?M \land atm-of \ (lit-of \ L) \notin atms-of-ms \ ?N\}
      have \vartheta[iff]: \Lambda I. total-over-m I (?N \cup ?O \cup unmark-l ?M)
        \longleftrightarrow total\text{-}over\text{-}m\ I\ (?N\ \cup unmark\text{-}l\ ?M)
        unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
      assume ¬ ?thesis
      then have [simp]: \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\}
= \{unmark\ L\ | L.\ is\text{-}decided\ L\land L\in set\ ?M\land atm\text{-}of\ (lit\text{-}of\ L)\notin atms\text{-}of\text{-}ms\ ?N\}
        by auto
      then have ?N \cup ?O \models ps \ unmark-l \ ?M
        using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
      then have ?I \models s \ unmark-l \ ?M
        using cons-I' I'-N tot-I' (?I \models s ?N \cup ?O) unfolding \vartheta true-clss-clss-def by blast
      then have lits-of-l ?M \subseteq ?I
        unfolding true-clss-def lits-of-def by auto
      then have ?M \models as ?N
        using I'-N \lor C \in ?N \lor \lnot ?M \models a C \lor cons-I' atms-N-M
        by (meson \ \langle trail \ S \models as \ CNot \ C \rangle \ consistent-CNot-not \ rev-subsetD \ sup-ge1 \ true-annot-def
           true-annots-def true-cls-mono-set-mset-l true-clss-def)
      then show False using M by fast
    qed
  from List.split-list-first-propE[OF\ this] obtain K:: 'v\ literal\ and\ d::\ unit\ and
     F F' :: ('v, unit) \ ann-lits \ \mathbf{where}
    M-K: ?M = F' @ Decided K # F and
    nm: \forall f \in set F'. \neg is\text{-}decided f
    unfolding is-decided-def by (metis (full-types) old.unit.exhaust)
  let ?K = Decided K::('v, unit) ann-lit
  have ?K \in set ?M
    unfolding M-K by auto
  let C = image-mset\ lit-of\ \{\#L \in \#mset\ M.\ is-decided\ L \land L \neq R \} :: 'v\ clause
  let ?C' = set\text{-}mset \ (image\text{-}mset \ (\lambda L::'v \ literal. \{\#L\#\}) \ (?C + unmark \ ?K))
  have ?N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\} \models ps\ unmark\text{-}l\ ?M
    \textbf{using} \ \textit{all-decomposition-implies-propagated-lits-are-implied} [\textit{OF} \ \textit{decomp}] \ \textbf{.}
  moreover have C': ?C' = \{unmark \ L \ | L. \ is\text{-decided} \ L \land L \in set \ ?M\}
    unfolding M-K apply standard
      apply force
    by auto
  ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark-l ?M
  have N-M-False: ?N \cup (\lambda L. \ unmark \ L) ' (set ?M) \models ps \{\{\#\}\}
    using M \triangleleft ?M \models as \ CNot \ C \triangleleft \ \langle C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
    true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def
      true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
```

have undefined-lit F K using (no-dup ?M) unfolding M-K by $(simp\ add:\ defined$ -lit-map)

```
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark-l ?M = ?N \cup unmark-l ?M
       unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right [OF N-C-M, of \{\{\#\}\}] N-M-False unfolding A by auto
   qed
 have ?N \models p \ image-mset \ uminus \ ?C + \{\#-K\#\}
   unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix} I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup {image-mset uminus ?C+ {#- K#}})) and
       cons: consistent-interp I and
       I \models s ?N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases K) auto
     have \{a \in set \ (trail \ S). \ is\text{-}decided \ a \land a \neq Decided \ K\} =
      set (trail\ S) \cap \{L.\ is\text{-decided}\ L \land L \neq Decided\ K\}
      by auto
     then have tot': total-over-set I
        (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}decided L \land L \neq Decided K\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
     { \mathbf{fix} \ x :: ('v, unit) \ ann-lit}
       assume
         a3: lit-of x \notin I and
         a1: x \in set ?M and
         a4: is\text{-}decided \ x \ \mathbf{and}
         a5: x \neq Decided K
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
       moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
         by simp
       ultimately have - lit-of x \in I
         using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1)
     \} note H = this
     have \neg I \models s ?C'
       using \langle ?N \cup ?C' \models ps \{ \{\#\} \} \rangle tot cons \langle I \models s ?N \rangle
       unfolding true-clss-clss-def total-over-m-def
       by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
     then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
       unfolding true-clss-def true-cls-def Bex-def
       using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
       by (auto dest!: H)
moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
 using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
ultimately have False
 using bj-merge-can-jump[of S\ F'\ K\ F\ C\ -K
   image-mset\ uminus\ (image-mset\ lit-of\ \{\#\ L:\#\ mset\ ?M.\ is-decided\ L\land L\ne Decided\ K\#\}\}
   \langle C \in ?N \rangle n-s \langle ?M \models as \ CNot \ C \rangle bj-backjump inv unfolding M-K
   by (auto simp: cdcl_{NOT}-merged-bj-learn.simps)
 then show ?thesis by fast
```

```
\mathbf{qed} auto
qed
lemma full-cdcl_{NOT}-merged-bj-learn-final-state:
 fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
 assumes
   full: full cdcl_{NOT}-merged-bj-learn S T and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
proof -
 have st: cdcl_{NOT}-merged-bj-learn** S T and n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full-def by blast+
  then have st: cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv n-d by auto
  have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and atm-of 'lits-of-l (trail \ T) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st inv n-d atms-S atms-trail] by blast+
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup inv n-d st by blast
  moreover have inv T
   using rtranclp-cdcl_{NOT}-inv inv st by blast
 moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-all-decomposition-implies inv st decomp n-d by blast
  ultimately show ?thesis
   using cdcl_{NOT}-merged-bj-learn-final-state[of T A] \langle finite \ A \rangle n-s by fast
qed
```

1.2.7 Instantiations

end

In this section, we instantiate the previous locales to ensure that the assumption are not contradictory.

```
locale cdcl_{NOT}-with-backtrack-and-restarts = conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} inv backjump-conds propagate-conds learn-restrictions forget-restrictions for clauses_{NOT}:: 'st \Rightarrow ('v, unit) ann-lits and clauses_{NOT}:: 'st \Rightarrow 'v clauses and clauses_{NOT}:: 'st \Rightarrow 'v clauses and stl-trail:: 'st \Rightarrow 'st and stl-trail:: 'stl-trail:: 'stl-trail::
```

```
assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \implies f n \geq 1 and
    inv\text{-restart:} \land S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-trail-to}_{NOT} \ ([]::'a \ list) \ S \Longrightarrow inv \ T
begin
lemma bound-inv-inv:
  assumes
    inv S and
    n-d: no-dup (trail S) and
    atms-clss-S-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atms-trail-S-A:atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A and
    finite A and
    cdcl_{NOT}: cdcl_{NOT} S T
  shows
    atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and
    atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A and
    finite A
proof -
  have cdcl_{NOT} S T
    using \langle inv S \rangle cdcl_{NOT} by linarith
  then have atms-of-mm (clauses_{NOT}\ T) \subseteq atms-of-mm (clauses_{NOT}\ S) \cup atm-of 'lits-of-l (trail\ S)
    \mathbf{by} \ (meson \ conflict\text{-}driven\text{-}clause\text{-}learning\text{-}ops.cdcl_{NOT}\text{-}atms\text{-}of\text{-}ms\text{-}clauses\text{-}decreasing}
      conflict-driven-clause-learning-ops-axioms n-d)
  then show atms-of-mm (clauses<sub>NOT</sub> T) \subseteq atms-of-ms A
    using atms-clss-S-A atms-trail-S-A by blast
next
  show atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
    by (meson (inv S) atms-clss-S-A atms-trail-S-A cdcl_{NOT} cdcl_{NOT}-atms-in-trail-in-set n-d)
next
 \mathbf{show}\ \mathit{finite}\ \mathit{A}
    using \langle finite \ A \rangle by simp
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S cdcl_{NOT} f
  \lambda A S. atms-of-mm (clauses<sub>NOT</sub> S) \subseteq atms-of-ms A \wedge atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \wedge
 \mu_{CDCL}' \lambda S. inv S \wedge no\text{-}dup (trail S)
 \mu_{CDCL} '-bound
 apply unfold-locales
          apply (simp add: unbounded)
          using f-ge-1 apply force
        using bound-inv-inv apply meson
        apply (rule cdcl_{NOT}-decreasing-measure'; simp)
        apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound; simp)
       apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing; simp)
      apply auto[]
    apply auto[]
  using cdcl_{NOT}-inv cdcl_{NOT}-no-dup apply blast
  using inv-restart apply auto[]
  done
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound:
    cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
    cdcl_{NOT}-inv:
```

```
inv T
     no-dup (trail T) and
    bound-inv:
     atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
     atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq\ atms\text{-}of\text{-}ms\ A
     finite A
  shows \mu_{CDCL}' A V \leq \mu_{CDCL}'-bound A T
  using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
  case (1 m S T n U) note U = this(3)
  show ?case
   apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[of S T])
        using \langle (cdcl_{NOT} \ \widehat{\ } \ m) \ S \ T \rangle apply (fastforce dest!: relpowp-imp-rtranclp)
       using 1 by auto
next
  case (2 S T n) note full = this(2)
 show ?case
   apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound)
   using full 2 unfolding full1-def by force+
qed
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
    cdcl_{NOT}-inv:
     inv T
     no-dup (trail T) and
   bound-inv:
     atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
     atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
 shows \mu_{CDCL}'-bound A \ V \leq \mu_{CDCL}'-bound A \ T
  using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
  case (1 m S T n U) note U = this(3)
  have \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
    apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
        using \langle (cdcl_{NOT} \ \widehat{} \ m) \ S \ T \rangle apply (fastforce dest: relpowp-imp-rtranclp)
       using 1 by auto
  then show ?case using U unfolding \mu_{CDCL}'-bound-def by auto
  case (2 S T n) note full = this(2)
  show ?case
   apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
   using full 2 unfolding full1-def by force+
qed
sublocale cdcl_{NOT}-increasing-restarts - - - - -
   \lambda S \ T. \ T \sim reduce-trail-to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}' \ cdcl_{NOT}
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
  apply unfold-locales
```

```
using cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound apply simp
  using cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound apply simp
  done
lemma cdcl_{NOT}-restart-all-decomposition-implies:
  assumes cdcl_{NOT}-restart S T and
   inv (fst S) and
   no-dup (trail (fst S))
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S)) (get-all-ann-decomposition (trail (fst S)))
 shows
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T)) (get-all-ann-decomposition (trail (fst T)))
 using assms apply (induction)
 using rtranclp-cdcl_{NOT}-all-decomposition-implies by (auto dest!: tranclp-into-rtranclp
   simp: full1-def)
lemma rtranclp-cdcl_{NOT}-restart-all-decomposition-implies:
 assumes cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and
   n-d: no-dup (trail (fst S)) and
   decomp:
     all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S)) (get-all-ann-decomposition (trail (fst S)))
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T)) (get-all-ann-decomposition (trail (fst T)))
 using assms(1)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case using decomp by simp
\mathbf{next}
  case (step T u) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast
 moreover have no-dup (trail\ (fst\ T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv[OF\ st] inv n-d by blast
 ultimately show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies r IH n-d by fast
qed
lemma cdcl_{NOT}-restart-sat-ext-iff:
 assumes
   st: cdcl_{NOT}-restart S T and
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
 shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
 using assms
proof (induction)
 case (restart\text{-}step \ m \ S \ T \ n \ U)
 then show ?case
   using rtranclp-cdcl_{NOT}-bj-sat-ext-iff n-d by (fastforce dest!: relpowp-imp-rtranclp)
next
 case restart-full
 then show ?case using rtranclp-cdcl<sub>NOT</sub>-bj-sat-ext-iff unfolding full1-def
 by (fastforce dest!: tranclp-into-rtranclp)
qed
lemma rtranclp-cdcl_{NOT}-restart-sat-ext-iff:
 fixes S T :: 'st \times nat
```

```
assumes
   st: cdcl_{NOT}\text{-}restart^{**} \ S \ T \ \mathbf{and}
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
  shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
  using st
proof (induction)
 case base
 then show ?case by simp
next
 case (step T U) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast+
 moreover have no-dup (trail\ (fst\ T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv rtranclp-cdcl_{NOT}-no-dup st inv n-d by blast
 ultimately show ?case
   using cdcl_{NOT}-restart-sat-ext-iff[OF r] IH by blast
qed
theorem full-cdcl_{NOT}-restart-backjump-final-state:
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
   full: full cdcl_{NOT}-restart (S, n) (T, m) and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A and
   \mathit{inv} \colon \mathit{inv} \ S \ \mathbf{and}
   decomp: all-decomposition-implies-m (clauses_{NOT} S) (get-all-ann-decomposition (trail S))
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (lits-of-l (trail T) \models sextm clauses<sub>NOT</sub> S \wedge satisfiable (set-mset (clauses<sub>NOT</sub> S)))
proof -
 have st: cdcl_{NOT}\text{-}restart^{**} (S, n) (T, m) and
   n-s: no-step cdcl_{NOT}-restart (T, m)
   using full unfolding full-def by fast+
  have binv-T: atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
   atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
   using rtranclp-cdcl<sub>NOT</sub>-with-restart-bound-inv[OF st, of A] inv n-d atms-S atms-trail
   by auto
  moreover have inv-T: no-dup (trail T) inv T
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by auto
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-restart-all-decomposition-implies [OF st] inv n-d
   decomp by auto
  ultimately have T: unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
   using no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of (T, m) A] n-s
   cdcl_{NOT}-final-state[of T A] unfolding cdcl_{NOT}-NOT-all-inv-def by auto
 have eq-sat-S-T:\bigwedge I. I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
   using rtranclp-cdcl_{NOT}-restart-sat-ext-iff[OF st] inv n-d atms-S
       atms-trail by auto
 have cons-T: consistent-interp (lits-of-l (trail T))
   using inv-T(1) distinct-consistent-interp by blast
  consider
     (unsat) unsatisfiable (set-mset (clauses_{NOT} T))
   (sat) trail T \models asm clauses_{NOT} T  and satisfiable (set-mset (clauses_{NOT} T))
```

```
using T by blast
  then show ?thesis
    proof cases
      case unsat
      then have unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
        using eq-sat-S-T consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
        unfolding satisfiable-def by blast
      then show ?thesis by fast
    next
      case sat
      then have lits-of-l (trail T) \models sextm clauses<sub>NOT</sub> S
        using rtranclp-cdcl_{NOT}-restart-sat-ext-iff [OF st] inv n-d atms-S
        atms-trail by (auto simp: true-clss-imp-true-cls-ext true-annots-true-cls)
      moreover then have satisfiable (set-mset (clauses<sub>NOT</sub> S))
          using cons-T consistent-true-clss-ext-satisfiable by blast
      ultimately show ?thesis by blast
    qed
qed
end — end of cdcl_{NOT}-with-backtrack-and-restarts locale
The restart does only reset the trail, contrary to Weidenbach's version where forget and restart
are always combined. But there is a forget rule.
locale\ cdcl_{NOT}-merge-bj-learn-with-backtrack-restarts =
  cdcl_{NOT}-merge-bj-learn trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    \lambda C C' L' S T. distinct-mset (C' + \{\#L'\#\}) \wedge backjump-l-cond C C' L' S T
    propagate\text{-}conds\ forget\text{-}conds\ inv
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    inv :: 'st \Rightarrow bool and
    forget\text{-}conds :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
  \mathbf{fixes}\ f::\ nat \Rightarrow\ nat
  assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \Longrightarrow f n \geq 1 and
    inv\text{-restart:} \land S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-trail-to}_{NOT} \ [] \ S \Longrightarrow inv \ T
begin
definition not-simplified-cls A = \{ \# C \in \# A. \text{ tautology } C \vee \neg \text{distinct-mset } C \# \}
lemma simple-clss-or-not-simplified-cls:
  assumes atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    x \in \# clauses_{NOT} S and finite A
  shows x \in simple\text{-}clss (atms\text{-}of\text{-}ms A) \lor x \in \# not\text{-}simplified\text{-}cls (clauses_{NOT} S)
proof -
  consider
      (simpl) \neg tautology x  and distinct-mset x
    | (n\text{-}simp) \ tautology \ x \lor \neg distinct\text{-}mset \ x
    by auto
  then show ?thesis
```

```
proof cases
      case simpl
      then have x \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
       by (meson assms atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
          distinct-mset-not-tautology-implies-in-simple-clss finite-subset
          subsetCE)
      then show ?thesis by blast
    next
      case n-simp
      then have x \in \# not-simplified-cls (clauses<sub>NOT</sub> S)
        using \langle x \in \# \ clauses_{NOT} \ S \rangle unfolding not-simplified-cls-def by auto
      then show ?thesis by blast
    qed
qed
lemma cdcl_{NOT}-merged-bj-learn-clauses-bound:
  assumes
    cdcl_{NOT}-merged-bj-learn S T and
    inv: inv S and
    atms-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atms-trail: atm-of '(lits-of-l (trail S)) \subseteq atms-of-ms A and
    n-d: no-dup (trail S) and
    fin-A[simp]: finite\ A
  shows set-mset (clauses<sub>NOT</sub> T) \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
    \cup simple-clss (atms-of-ms A)
  using assms
proof (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
  case cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>
  then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
  case cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>
  then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
  case cdcl_{NOT}-merged-bj-learn-forget_{NOT}
  then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def
    by (force elim!: forget_{NOT}E dest: simple-clss-or-not-simplified-cls)
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj = this(1) and inv = this(2) and
    atms-clss = this(3) and atms-trail = this(4) and n-d = this(5)
  have cdcl_{NOT}^{**} S T
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
    using bj inv cdcl_{NOT}-merged-bj-learn.simps n-d by blast+
  have atm\text{-}of '(lits\text{-}of\text{-}l (trail T)) \subseteq atms\text{-}of\text{-}ms A
    \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\mathit{-trail-clauses-bound}[\mathit{OF} \ \langle \mathit{cdcl}_{NOT}^{***} \ S \ T \rangle] \ \mathit{inv} \ \mathit{atms-trail} \ \mathit{atms-clss}
    n-d by auto
  have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
    \mathbf{using}\ rtranclp\text{-}cdcl_{NOT}\text{-}trail\text{-}clauses\text{-}bound[OF\ \langle cdcl_{NOT}^{**}*\ S\ T\rangle\ inv\ n\text{-}d\ atms\text{-}clss\ atms\text{-}trail]}
    by fast
  moreover have no-dup (trail T)
    \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{no-dup}[\mathit{OF} \ \langle \mathit{cdcl}_{NOT}^{}^{**} \ \mathit{S} \ \mathit{T} \rangle \ \mathit{inv} \ \mathit{n-d}] \ \mathbf{by} \ \mathit{fast}
  obtain F' K F L l C' C D where
    tr-S: trail S = F' @ Decided K # F and
    T: T \sim prepend-trail \ (Propagated \ L \ l) \ (reduce-trail-to_{NOT} \ F \ (add-cls_{NOT} \ D \ S)) and
    C \in \# clauses_{NOT} S and
```

```
trail S \models as CNot C  and
   undef: undefined-lit FL and
   clauses_{NOT} S \models pm C' + \{\#L\#\}  and
    F \models as \ CNot \ C' and
   D: D = C' + \{\#L\#\} \text{ and }
    dist: distinct-mset (C' + \{\#L\#\}) and
    tauto: \neg tautology (C' + \{\#L\#\}) and
    backjump-l-cond C C' L S T
   using \langle backjump-l \ S \ T \rangle apply (elim\ backjump-lE) by auto
  have atms-of C' \subseteq atm-of ' (lits-of-l F)
   using \langle F \models as\ CNot\ C' \rangle by (simp\ add:\ atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
     atms-of-def image-subset-iff in-CNot-implies-uminus(2))
  then have atms-of (C'+\{\#L\#\}) \subseteq atms-of-ms A
   using T \land atm\text{-}of \land lits\text{-}of\text{-}l \ (trail \ T) \subseteq atms\text{-}of\text{-}ms \ A \land tr\text{-}S \ undef \ n\text{-}d \ by \ auto
  then have simple-clss (atms-of (C' + \{\#L\#\})) \subseteq simple-clss (atms-of-ms A)
   apply - by (rule simple-clss-mono) (simp-all)
  then have C' + \{\#L\#\} \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
   using distinct-mset-not-tautology-implies-in-simple-clss[OF dist tauto]
   by auto
  then show ?case
    using T inv atms-clss undef tr-S n-d D by (force dest!: simple-clss-or-not-simplified-cls)
qed
lemma cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
  assumes cdcl_{NOT}-merged-bj-learn S T
  shows (not-simplified-cls (clauses<sub>NOT</sub> T)) \subseteq \# (not-simplified-cls (clauses<sub>NOT</sub> S))
  using assms apply induction
  prefer 4
  unfolding not-simplified-cls-def apply (auto elim!: backjump-lE forget<sub>NOT</sub>E)[3]
  by (elim backjump-lE) auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
  assumes cdcl_{NOT}-merged-bj-learn** S T
  shows (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ T)) \subseteq \#\ (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ S))
  using assms apply induction
   apply simp
  by (drule\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}not\text{-}simplified\text{-}decreasing})\ auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound:
  assumes
    cdcl_{NOT}-merged-bj-learn** S T and
    inv S and
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atm\text{-}of \text{ } (lits\text{-}of\text{-}l \text{ } (trail \text{ } S)) \subseteq atms\text{-}of\text{-}ms \text{ } A \text{ } \mathbf{and}
   n-d: no-dup (trail S) and
   finite[simp]: finite A
  shows set-mset (clauses<sub>NOT</sub> T) \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
   \cup simple-clss (atms-of-ms A)
  using assms(1-5)
proof induction
  case base
  then show ?case by (auto dest!: simple-clss-or-not-simplified-cls)
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
    inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
```

```
have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by blast
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-inv st n-d by blast
  moreover
   have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and
     atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
     using rtranclp-cdcl_{NOT}-trail-clauses-bound [OF st'] inv atms-clss-S atms-trail-S n-d
     by blast+
 moreover moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
  ultimately have set-mset (clauses_{NOT} U)
   \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> T)) \cup simple-clss (atms-of-ms A)
   using cdcl_{NOT} finite cdcl_{NOT}-merged-bj-learn-clauses-bound
   by (auto intro!: cdcl_{NOT}-merged-bj-learn-clauses-bound)
  moreover have set-mset (not-simplified-cls (clauses<sub>NOT</sub> T))
   \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
   using rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing [OF\ st] by auto
  ultimately show ?case using IH inv atms-clss-S
   by (auto dest!: simple-clss-or-not-simplified-cls)
qed
abbreviation \mu_{CDCL}'-bound where
\mu_{CDCL}'-bound A T \equiv ((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))) * 2
    + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses_{NOT} T)))
    + 3 \hat{} card (atms-of-ms A)
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card:
  assumes
    cdcl_{NOT}-merged-bj-learn** S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
 shows \mu_{CDCL}'-merged A T \leq \mu_{CDCL}'-bound A S
proof -
 have set-mset (clauses_{NOT} \ T) \subseteq set-mset (not-simplified-cls(clauses_{NOT} \ S))
   \cup simple-clss (atms-of-ms A)
   using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound[OF assms].
  moreover have card (set-mset (not-simplified-cls(clauses<sub>NOT</sub> S))
     \cup simple-clss (atms-of-ms A))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-card card-Un-le finite
     nat-add-left-cancel-le)
  ultimately have card (set-mset (clauses_{NOT} T))
   \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ S))) + 3 \ \widehat{} \ card \ (atms\text{-}of\text{-}ms \ A)
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-finite card-mono
     finite-UnI finite-set-mset local.finite)
  moreover have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) * 2
   \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) * 2
 ultimately show ?thesis unfolding \mu_{CDCL}'-merged-def by auto
qed
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S
```

```
cdcl_{NOT}-merged-bj-learn f
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged
   \lambda S. \ inv \ S \ \land \ no\text{-}dup \ (trail \ S)
  \mu_{CDCL}'-bound
  apply unfold-locales
            using unbounded apply simp
            using f-ge-1 apply force
           apply (blast dest!: cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl<sub>NOT</sub> tranclp-into-rtranclp
             rtranclp-cdcl_{NOT}-trail-clauses-bound)
          apply (simp\ add: cdcl_{NOT}-decreasing-measure')
         using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card apply blast
         apply (drule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
         apply (auto simp: card-mono set-mset-mono)[]
      apply simp
     apply auto
    using cdcl_{NOT}-merged-bj-learn-no-dup-inv cdcl-merged-inv apply blast
   apply (auto simp: inv-restart)[]
   done
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound:
 assumes
   cdcl_{NOT}\text{-}restart\ T\ V
   inv (fst T) and
   no-dup (trail (fst T)) and
   atms-of-mm (clauses_{NOT} (fst \ T)) \subseteq atms-of-ms A and
   \mathit{atm\text{-}of} ' \mathit{lits\text{-}of\text{-}l} (\mathit{trail} (\mathit{fst} \mathit{T})) \subseteq \mathit{atms\text{-}of\text{-}ms} \mathit{A} and
   finite A
 shows \mu_{CDCL}'-merged A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
 using assms
proof induction
 case (restart-full\ S\ T\ n)
 show ?case
   unfolding fst-conv
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card)
   using restart-full unfolding full1-def by (force dest!: tranclp-into-rtranclp)+
next
  case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and atms-clss = this(6) and atms-trail = this(7) and finite = this(8)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply - by (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}) auto
 have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
 have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st'] inv atms-clss atms-trail n-d
  then have atms-of-mm (clauses_{NOT} \ U) \subseteq atms-of-ms A
   using U by simp
 have not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> T)
   using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \mid T \rangle by auto
```

```
moreover have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
    using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ \widehat{} \ m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    by auto
  have (set\text{-}mset\ (clauses_{NOT}\ U))
    \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A)
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound)
        apply simp
        using \langle inv \ U \rangle apply simp
      using \langle atms\text{-}of\text{-}mm \ (clauses_{NOT} \ U) \subseteq atms\text{-}of\text{-}ms \ A \rangle apply simp
      using U apply simp
     using U apply simp
    using finite apply simp
    done
  then have f1: card (set-mset (clauses<sub>NOT</sub> U)) \leq card (set-mset (not-simplified-cls (clauses<sub>NOT</sub> U))
    \cup simple-clss (atms-of-ms A))
    by (simp add: simple-clss-finite card-mono local.finite)
  moreover have set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A)
    \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S)) \cup simple-clss (atms-of-ms A)
    using U-S by auto
  then have f2:
    card (set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A))
      \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S)) \cup simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
    \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{simple-clss-finite}\ \mathit{card-mono}\ \mathit{local.finite})
  moreover have card (set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
     \cup simple-clss (atms-of-ms A))
    \leq card (set\text{-}mset (not\text{-}simplified\text{-}cls (clauses_{NOT} S))) + card (simple\text{-}clss (atms\text{-}of\text{-}ms A))
    using card-Un-le by blast
  moreover have card (simple-clss (atms-of-ms A)) \leq 3 \hat{} card (atms-of-ms A)
    using atms-of-ms-finite simple-clss-card local.finite by blast
  ultimately have card (set-mset (clauses_{NOT} U))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
    bv linarith
  then show ?case unfolding \mu_{CDCL}'-merged-def by auto
qed
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}-restart T V and
    no-dup (trail (fst T)) and
    inv (fst T) and
    fin: finite A
  shows \mu_{CDCL}'-bound A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
  using assms(1-3)
proof induction
  case (restart-full S T n)
  have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
    using \langle full1 \ cdcl_{NOT}-merged-bj-learn S \ T \rangle unfolding full1-def
    by (auto dest: tranclp-into-rtranclp)
  then show ?case by (auto simp: card-mono set-mset-mono)
next
```

```
case (restart-step m S T n U) note st = this(1) and U = this(3) and n-d = this(4) and
    inv = this(5)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
    using inv n-d apply - by (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub>) auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
  have not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> T)
   using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \ [] \ T \rangle by auto
  moreover have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
   using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ \widehat{} \ m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
  then show ?case by (auto simp: card-mono set-mset-mono)
qed
sublocale cdcl_{NOT}-increasing-restarts - - - - - f
  \lambda S \ T. \ T \sim reduce-trail-to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
     \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged cdcl_{NOT}-merged-bj-learn
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \lambda A T. ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))) * 2
    + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses_{NOT} T)))
    + 3 \hat{} card (atms-of-ms A)
  apply unfold-locales
    using cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound apply force
   using cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound by fastforce
lemma cdcl_{NOT}-restart-eq-sat-iff:
  assumes
    cdcl_{NOT}-restart S T and
    no-dup (trail (fst S))
    inv (fst S)
  shows I \models sextm \ clauses_{NOT} \ (fst \ S) \longleftrightarrow I \ \models sextm \ clauses_{NOT} \ (fst \ T)
  using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
  case (restart-full\ S\ T\ n)
  then have cdcl_{NOT}-merged-bj-learn** S T
   by (simp add: tranclp-into-rtranclp full1-def)
  then show ?case
   using rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-full.prems(1,2)
    rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub> by auto
  case (restart-step m \ S \ T \ n \ U)
  then have cdcl_{NOT}-merged-bj-learn** S T
   by (auto simp: tranclp-into-rtranclp full1-def dest!: relpowp-imp-rtranclp)
  then have I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
   using rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-step.prems(1,2)
   rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
```

```
moreover have I \models sextm\ clauses_{NOT}\ T \longleftrightarrow I \models sextm\ clauses_{NOT}\ U
   using restart-step.hyps(3) by auto
 ultimately show ?case by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-eq-sat-iff:
 assumes
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S))
 shows I \models sextm \ clauses_{NOT} \ (fst \ S) \longleftrightarrow I \ \models sextm \ clauses_{NOT} \ (fst \ T)
 using assms(1)
proof (induction rule: rtranclp-induct)
  case base
 then show ?case by simp
next
  case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
 have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl<sub>NOT</sub>-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
  then have I \models sextm\ clauses_{NOT}\ (fst\ T) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ U)
   using cdcl_{NOT}-restart-eq-sat-iff cdcl by blast
  then show ?case using IH by blast
qed
lemma cdcl_{NOT}-restart-all-decomposition-implies-m:
 assumes
   cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-ann-decomposition (trail (fst S)))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
     (get-all-ann-decomposition\ (trail\ (fst\ T)))
  using assms
proof induction
  case (restart-full S T n) note full = this(1) and inv = this(2) and n-d = this(3) and
   decomp = this(4)
 have st: cdcl_{NOT}-merged-bj-learn** S T and
   n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full1-def by (fast dest: tranclp-into-rtranclp)+
 have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by auto
 have inv T
   using rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv[OF\ st]\ inv\ n-d by auto
  then show ?case
   using rtranclp-cdcl_{NOT}-all-decomposition-implies [OF - - n-d decomp] st' inv by auto
next
 case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and decomp = this(6)
 show ?case using U by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-all-decomposition-implies-m:
  assumes
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-ann-decomposition (trail (fst S)))
```

```
shows all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
     (get-all-ann-decomposition\ (trail\ (fst\ T)))
 using assms
proof induction
  case base
  then show ?case using decomp by simp
next
  case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)[OF\ this(4-)] and
    inv = this(4) and n-d = this(5) and decomp = this(6)
 have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
 then show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies-m[OF cdcl] IH by auto
lemma full-cdcl_{NOT}-restart-normal-form:
 assumes
   full: full cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-ann-decomposition (trail (fst S))) and
   atms-cls: atms-of-mm (clauses<sub>NOT</sub> (fst S)) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail (fst S)) \subseteq atms-of-ms A and
   fin: finite A
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
   \vee lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
proof
 have inv-T: inv (fst T) and n-d-T: no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using full inv n-d unfolding full-def by blast+
 moreover have
   atms-cls-T: atms-of-mm (clauses_{NOT} (fst T)) \subseteq atms-of-ms A and
   atms-trail-T: atm-of ' lits-of-l (trail (fst T)) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-with-restart-bound-inv[of S T A] full atms-cls atms-trail fin inv n-d
   unfolding full-def by blast+
  ultimately have no-step cdcl_{NOT}-merged-bj-learn (fst T)
   apply -
   apply (rule no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of - A])
      using full unfolding full-def apply simp
     apply simp
   using fin apply simp
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
   (get-all-ann-decomposition\ (trail\ (fst\ T)))
   \mathbf{using}\ \mathit{rtranclp-cdcl}_{NOT}\mathit{-restart-all-decomposition-implies-m}[\mathit{of}\ S\ T]\ \mathit{inv}\ \mathit{n-d}\ \mathit{decomp}
   full unfolding full-def by auto
  ultimately have unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst T)))
   \vee trail (fst T) \models asm clauses<sub>NOT</sub> (fst T) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst T)))
   apply (rule cdcl_{NOT}-merged-bj-learn-final-state)
   using atms-cls-T atms-trail-T fin n-d-T fin inv-T by blast+
  then consider
     (unsat) unsatisfiable (set-mset (clauses_{NOT} (fst T)))
     (sat) trail (fst T) \models asm clauses_{NOT} (fst T)  and satisfiable (set-mset (clauses_{NOT} (fst T)))
   by auto
  then show unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
   \vee lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
```

```
proof cases
     case unsat
     then have unsatisfiable (set\text{-}mset (clauses_{NOT} (fst S)))
       unfolding satisfiable-def apply auto
       \mathbf{using}\ rtranclp\text{-}cdcl_{NOT}\text{-}restart\text{-}eq\text{-}sat\text{-}iff\lceil of\ S\ T\ \rceil\ full\ inv\ n\text{-}d
       consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
       unfolding satisfiable-def full-def by blast
     then show ?thesis by blast
   next
     case sat
     then have lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst T)
       using true-clss-imp-true-cls-ext by (auto simp: true-annots-true-cls)
     then have lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S)
       using rtranclp-cdcl<sub>NOT</sub>-restart-eq-sat-iff[of S T] full inv n-d unfolding full-def by blast
     moreover then have satisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
       using consistent-true-clss-ext-satisfiable distinct-consistent-interp n-d-T by fast
     ultimately show ?thesis by fast
   qed
qed
corollary full-cdcl_{NOT}-restart-normal-form-init-state:
   init-state: trail\ S = []\ clauses_{NOT}\ S = N and
   full: full cdcl_{NOT}-restart (S, \theta) T and
   inv: inv S
 shows unsatisfiable (set-mset N)
   \vee lits-of-l (trail (fst T)) \models sextm N \wedge satisfiable (set-mset N)
 using full-cdcl<sub>NOT</sub>-restart-normal-form[of (S, \theta) T] assms by auto
end
end
theory DPLL-NOT
imports CDCL-NOT
begin
```

1.3 DPLL as an instance of NOT

1.3.1 DPLL with simple backtrack

We are using a concrete couple instead of an abstract state.

```
locale dpll-with-backtrack
begin
inductive backtrack :: ('v, unit) \ ann-lits \times 'v clauses
\Rightarrow ('v, unit) \ ann-lits \times 'v clauses \Rightarrow bool where
backtrack-split (fst \ S) = (M', L \# M) \Rightarrow is-decided L \Rightarrow D \in \# \ snd \ S
\Rightarrow fst \ S \models as \ CNot \ D \Rightarrow backtrack \ S \ (Propagated \ (- \ (lit\text{-}of \ L)) \ () \# M, \ snd \ S)
inductive-cases backtrackE[elim]: \ backtrack \ (M, N) \ (M', N')
lemma backtrack-is-backjump:
fixes M \ M' :: \ ('v, unit) \ ann-lits
assumes
backtrack: \ backtrack \ (M, N) \ (M', N') \ and
no-dup: (no-dup \circ fst) \ (M, N) \ and
decomp: \ all-decomposition-implies-m \ N \ (get-all-ann-decomposition M)
```

```
shows
      \exists C F' K F L l C'.
         M = F' @ Decided K \# F \land
         M' = Propagated \ L \ l \ \# \ F \land N = N' \land C \in \# \ N \land F' \ @ \ Decided \ K \ \# \ F \models as \ CNot \ C \land
         undefined-lit\ F\ L\ \land\ atm-of\ L\ \in\ atms-of-mm\ N\ \cup\ atm-of\ ``lits-of-l\ (F'\ @\ Decided\ K\ \#\ F)\ \land
         N \models pm C' + \{\#L\#\} \land F \models as CNot C'
proof -
 let ?S = (M, N)
 let ?T = (M', N')
 obtain F F' P L D where
   b-sp: backtrack-split M = (F', L \# F) and
   is-decided L and
   D \in \# \ snd \ ?S \ and
   M \models as \ CNot \ D \ \mathbf{and}
   bt: backtrack ?S (Propagated (- (lit-of L)) P \# F, N) and
   M': M' = Propagated (- (lit-of L)) P \# F and
   [simp]: N' = N
  using backtrackE[OF backtrack] by (metis backtrack fstI sndI)
 let ?K = lit - of L
 let ?C = image\text{-}mset\ lit\text{-}of\ \{\#K \in \#mset\ M.\ is\text{-}decided\ K \land K \neq L\#\} :: 'v\ clause
 let ?C' = set\text{-}mset \ (image\text{-}mset \ single \ (?C+\{\#?K\#\}))
 obtain K where L: L = Decided K using (is-decided L) by (cases L) auto
 have M: M = F' @ Decided K \# F
   using b-sp by (metis L backtrack-split-list-eq fst-conv snd-conv)
  moreover have F' @ Decided K \# F \models as \ CNot \ D
   using \langle M \models as \ CNot \ D \rangle unfolding M.
 moreover have undefined-lit F(-?K)
   using no-dup unfolding M L by (simp add: defined-lit-map)
 moreover have atm\text{-}of\ (-K) \in atm\text{-}of\text{-}mm\ N \cup atm\text{-}of\ 'lits\text{-}of\text{-}l\ (F'\ @\ Decided\ K\ \#\ F)
   by auto
 moreover
   have set-mset N \cup ?C' \models ps \{\{\#\}\}\
     proof -
       have A: set-mset N \cup ?C' \cup unmark-l M =
         set-mset N \cup unmark-l M
         unfolding M L by auto
       have set-mset N \cup \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-decided } L \land L \in set M\}
           \models ps \ unmark-l \ M
         using all-decomposition-implies-propagated-lits-are-implied [OF decomp].
       moreover have C': ?C' = \{\{\#lit\text{-}of L\#\} \mid L. \text{ is-}decided } L \land L \in set M\}
         unfolding M L apply standard
           apply force
         using IntI by auto
       ultimately have N-C-M: set-mset N \cup ?C' \models ps \ unmark-l \ M
       have set-mset N \cup (\lambda L. \{\#lit\text{-of }L\#\}) \text{ '} (set M) \models ps \{\{\#\}\}\}
         unfolding true-clss-clss-def
         proof (intro allI impI, goal-cases)
           case (1 I) note tot = this(1) and cons = this(2) and I-N-M = this(3)
           have I \models D
             using I-N-M \langle D \in \# \ snd \ ?S \rangle unfolding true-clss-def by auto
           moreover have I \models s \ CNot \ D
             using \langle M \models as \ CNot \ D \rangle unfolding M by (metis 1(3)) \langle M \models as \ CNot \ D \rangle
               true-annots-true-cls true-cls-mono-set-mset-l true-cls-def
               true-clss-singleton-lit-of-implies-incl\ true-clss-union)
```

```
ultimately show ?case using cons consistent-CNot-not by blast
        qed
     then show ?thesis
        using true-clss-clss-left-right[OF N-C-M, of \{\{\#\}\}\}] unfolding A by auto
    ged
 have N \models pm \ image\text{-}mset \ uminus \ ?C + \{\#-?K\#\}
    unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
    proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (set-mset N \cup \{image-mset\ uminus\ ?C + \{\#-\ ?K\#\}\})) and
        cons: consistent-interp\ I and
        I \models sm N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
        using cons tot unfolding consistent-interp-def L by (cases K) auto
     have \{a \in set \ M. \ is\text{-}decided \ a \land a \neq Decided \ K\} =
        set M \cap \{L. \text{ is-decided } L \land L \neq Decided K\}
        by auto
     then have
        tI: total-over-set\ I\ (atm-of\ `lit-of\ `(set\ M\cap \{L.\ is-decided\ L\wedge L\neq Decided\ K\}))
        using tot by (auto simp add: L atms-of-uminus-lit-atm-of-lit-of)
     then have H: \bigwedge x.
          \textit{lit-of } x \notin I \Longrightarrow x \in \textit{set } M \Longrightarrow \textit{is-decided } x
          \implies x \neq Decided \ K \implies -lit \text{-} of \ x \in I
        proof -
          \mathbf{fix} \ x :: ('v, unit) \ ann-lit
         assume a1: x \neq Decided K
         assume a2: is-decided x
         assume a3: x \in set M
         assume a4: lit-of x \notin I
         have atm\text{-}of\ (lit\text{-}of\ x) \in atm\text{-}of\ `lit\text{-}of\ `
            (set\ M\cap \{m.\ is\ decided\ m\land m\neq Decided\ K\})
           using a3 a2 a1 by blast
          then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
            using tI unfolding total-over-set-def by blast
         then show - lit-of x \in I
            using a4 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
              literal.sel(1,2)
        qed
     have \neg I \models s ?C'
        using \langle set\text{-}mset\ N\cup ?C' \models ps\ \{\{\#\}\}\rangle\ tot\ cons\ \langle I \models sm\ N\rangle
        unfolding true-clss-clss-def total-over-m-def
        by (simp add: atms-of-uninus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
     then show I \models image\text{-}mset\ uminus\ ?C + \{\#-\ lit\text{-}of\ L\#\}
        unfolding true-clss-def true-cls-def
        using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
        unfolding L by (auto dest!: H)
    qed
moreover
 have set F' \cap \{K. \text{ is-decided } K \land K \neq L\} = \{\}
    \mathbf{using}\ backtrack\text{-}split\text{-}fst\text{-}not\text{-}decided[of\text{-}M]\ b\text{-}sp\ \mathbf{by}\ auto
 then have F \models as \ CNot \ (image-mset \ uminus \ ?C)
     unfolding M CNot-def true-annots-def by (auto simp add: L lits-of-def)
ultimately show ?thesis
 using M' \langle D \in \# snd ?S \rangle L by force
```

qed

```
lemma backtrack-is-backjump':
 fixes M M' :: ('v, unit) ann-lits
 assumes
   backtrack: backtrack S T and
   no-dup: (no-dup \circ fst) S and
   decomp: all-decomposition-implies-m \ (snd \ S) \ (get-all-ann-decomposition \ (fst \ S))
   shows
       \exists\; C\; F'\; K\; F\; L\; l\; C'.
         fst S = F' @ Decided K \# F \land
         T = (Propagated \ L \ l \ \# \ F, \ snd \ S) \land C \in \# \ snd \ S \land fst \ S \models as \ CNot \ C
         \land undefined-lit F L \land atm-of L \in atms-of-mm (snd S) \cup atm-of 'lits-of-l (fst S) \land
         snd S \models pm C' + \{\#L\#\} \land F \models as CNot C'
 apply (cases S, cases T)
 using backtrack-is-backjump[of fst S and S fst T and T] assms by fastforce
sublocale dpll-state
 fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
 \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
 by unfold-locales (auto simp: ac-simps)
sublocale backjumping-ops
 fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
 \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset\ C\ N) \lambda---S\ T.\ backtrack\ S\ T
 by unfold-locales
\mathbf{thm} \quad \textit{reduce-trail-to}_{NOT}\text{-}\textit{clauses}
lemma reduce-trail-to<sub>NOT</sub>:
 reduce-trail-to<sub>NOT</sub> FS =
   (if \ length \ (fst \ S) \ge length \ F
   then drop (length (fst S) – length F) (fst S)
   else [],
   snd S) (is ?R = ?C)
proof -
 have ?R = (fst ?R, snd ?R)
   by (cases reduce-trail-to<sub>NOT</sub> FS) auto
 also have (fst ?R, snd ?R) = ?C
   by (auto simp: trail-reduce-trail-to_{NOT}-drop)
 finally show ?thesis.
qed
lemma backtrack-is-backjump":
 fixes M M' :: ('v, unit) \ ann-lits
 assumes
   backtrack: backtrack S T and
   no\text{-}dup: (no\text{-}dup \circ fst) \ S \ \text{and}
   decomp: all-decomposition-implies-m (snd S) (get-all-ann-decomposition (fst S))
   shows backjump S T
proof -
 obtain C F' K F L l C' where
    1: fst S = F' @ Decided K \# F and
   2: T = (Propagated \ L \ l \ \# \ F, \ snd \ S) and
   \beta \colon C \in \# \ snd \ S \ \mathbf{and}
   4: fst \ S \models as \ CNot \ C \ and
   5: undefined-lit F L and
```

```
6: atm\text{-}of\ L\in atm\text{-}of\text{-}mm\ (snd\ S)\cup atm\text{-}of\ `its\text{-}of\text{-}l\ (fst\ S)\ and
    7: snd S \models pm C' + \{\#L\#\} \text{ and }
   8: F \models as \ CNot \ C'
  using backtrack-is-backjump'[OF assms] by force
 show ?thesis
   apply (cases S)
   using backjump.intros[OF 1 - - 4 5 - - 8, of T] 2 backtrack 1 5 3 6 7
   by (auto simp: state-eq_{NOT}-def trail-reduce-trail-to<sub>NOT</sub>-drop
     reduce-trail-to<sub>NOT</sub> simp\ del:\ state-simp_{NOT})
qed
lemma can-do-bt-step:
  assumes
    M: fst \ S = F' @ Decided \ K \# F  and
    C \in \# \ snd \ S \ \mathbf{and}
    C: fst \ S \models as \ CNot \ C
  shows \neg no-step backtrack S
proof -
 obtain L G' G where
   backtrack-split (fst S) = (G', L \# G)
   unfolding M by (induction F' rule: ann-lit-list-induct) auto
 moreover then have is-decided L
    by (metis\ backtrack-split-snd-hd-decided\ list.distinct(1)\ list.sel(1)\ snd-conv)
 ultimately show ?thesis
    using backtrack.intros[of S G' L G C] \langle C \in \# \text{ snd } S \rangle C unfolding M by auto
qed
end
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping-ops
   fst snd \lambda L (M, N). (L \# M, N)
  \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True
 apply unfold-locales
 by (metis (mono-tags, lifting) case-prod-beta comp-def dpll-with-backtrack.backtrack-is-backjump"
   dpll-with-backtrack.can-do-bt-step)
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping
   fst snd \lambda L (M, N). (L \# M, N)
  \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True
 apply unfold-locales
 using dpll-bj-no-dup dpll-bj-all-decomposition-implies-inv apply fastforce
 done
context dpll-with-backtrack
begin
{f lemma} wf-tranclp-dpll-inital-state:
 assumes fin: finite A
 shows wf \{((M'::('v, unit) \ ann\text{-}lits, N'::'v \ clauses), ([], N))|M' \ N' \ N.
    dpll-bj^{++} ([], N) (M', N') \land atms-of-mm N \subseteq atms-of-ms A}
  using wf-tranclp-dpll-bj[OF assms(1)] by (rule wf-subset) auto
```

```
{\bf corollary}\ \mathit{full-dpll-final-state-conclusive}:
 fixes M M' :: ('v, unit) ann-lits
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows unsatisfiable (set-mset N) \vee (M' \models asm N \wedge satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of ([],N) (M',N') set-mset N by auto
corollary full-dpll-normal-form-from-init-state:
 fixes M M' :: ('v, unit) \ ann-lits
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows M' \models asm \ N \longleftrightarrow satisfiable (set-mset \ N)
proof -
 have no-dup M'
   using rtranclp-dpll-bj-no-dup[of([], N)(M', N')]
   full unfolding full-def by auto
  then have M' \models asm N \implies satisfiable (set-mset N)
   using distinct-consistent-interp satisfiable-carac' true-annots-true-cls by blast
 then show ?thesis
  using full-dpll-final-state-conclusive[OF full] by auto
qed
{\bf interpretation}\ conflict \hbox{-} driven \hbox{-} clause \hbox{-} learning \hbox{-} ops
   fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True \lambda- -. False \lambda- -. False
 by unfold-locales
interpretation conflict-driven-clause-learning
   fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True \lambda- -. False \lambda- -. False
 apply unfold-locales
 using cdcl_{NOT}-all-decomposition-implies cdcl_{NOT}-no-dup by fastforce
lemma cdcl_{NOT}-is-dpll:
  cdcl_{NOT} \ S \ T \longleftrightarrow dpll-bj \ S \ T
 by (auto simp: cdcl_{NOT}.simps\ learn.simps\ forget_{NOT}.simps)
Another proof of termination:
lemma wf \{(T, S). dpll-bj S T \wedge cdcl_{NOT}-NOT-all-inv A S\}
  unfolding cdcl_{NOT}-is-dpll[symmetric]
 \mathbf{by}\ (\mathit{rule}\ \mathit{wf-cdcl}_{NOT}\text{-}\mathit{no-learn-and-forget-infinite-chain})
 (auto simp: learn.simps forget<sub>NOT</sub>.simps)
end
```

1.3.2 Adding restarts

This was mainly a test whether it was possible to instantiate the assumption of the locale.

 ${\bf locale}\ dpll\text{-}with backtrack\text{-}and\text{-}restarts =$

```
dpll-with-backtrack +
 \mathbf{fixes}\ f::\ nat \Rightarrow\ nat
 assumes unbounded: unbounded f and f-ge-1:\bigwedge n. n \ge 1 \implies f n \ge 1
begin
 sublocale cdcl_{NOT}-increasing-restarts
 fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
   \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset\ C\ N) f \lambda(-, N) S. S = ([], N)
  \lambda A \ (M,\ N). \ atms-of-mm \ N \subseteq atms-of-ms \ A \wedge atm-of \ `lits-of-l \ M \subseteq atms-of-ms \ A \wedge finite \ A
   \land all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda A \ T. \ (2+card \ (atms-of-ms \ A)) \ \widehat{\ } \ (1+card \ (atms-of-ms \ A))
              -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T) dpll-bj
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda A -. (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
 apply unfold-locales
        apply (rule unbounded)
       using f-ge-1 apply fastforce
       {\bf apply} \ (smt \ dpll-bj-all-decomposition-implies-inv \ dpll-bj-atms-in-trail-in-set
         dpll-bj-clauses id-apply prod.case-eq-if)
      apply (rule dpll-bj-trail-mes-decreasing-prop; auto)
     apply (rename-tac\ A\ T\ U,\ case-tac\ T,\ simp)
    apply (rename-tac A T U, case-tac U, simp)
   using dpll-bj-clauses dpll-bj-all-decomposition-implies-inv dpll-bj-no-dup by fastforce+
end
end
theory DPLL-W
imports Main Partial-Clausal-Logic Partial-Annotated-Clausal-Logic List-More Wellfounded-More
 DPLL-NOT
begin
```

1.4 Weidenbach's DPLL

1.4.1 Rules

```
type-synonym 'a dpll_W-ann-lit = ('a, unit) ann-lit type-synonym 'a dpll_W-ann-lits = ('a, unit) ann-lits type-synonym 'v dpll_W-state = 'v dpll_W-ann-lits × 'v clauses abbreviation trail :: 'v dpll_W-state \Rightarrow 'v dpll_W-ann-lits where trail \equiv fst abbreviation clauses :: 'v dpll_W-state \Rightarrow 'v clauses where clauses \equiv snd inductive dpll_W :: 'v dpll_W-state \Rightarrow 'v dpll_W-state \Rightarrow bool where clauses \subseteq snd inductive dpll_W :: 'v dpll_W-state \Rightarrow 'v dpll_W-state \Rightarrow bool where clauses \subseteq snd inductive clauses \subseteq snd indu
```

1.4.2 Invariants

```
lemma dpll_W-distinct-inv:
assumes dpll_W S S'
and no-dup (trail S)
```

```
shows no-dup (trail S')
 using assms
proof (induct rule: dpll_W.induct)
 case (decided L S)
 then show ?case using defined-lit-map by force
next
 case (propagate \ C \ L \ S)
 then show ?case using defined-lit-map by force
next
 case (backtrack S M' L M D) note extracted = this(1) and no-dup = this(5)
 show ?case
   using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
qed
lemma dpll_W-consistent-interp-inv:
 assumes dpll_W S S'
 and consistent-interp (lits-of-l (trail S))
 and no-dup (trail S)
 shows consistent-interp (lits-of-l (trail S'))
 using assms
proof (induct rule: dpll_W.induct)
 case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and decided = this(2) and D = this(4) and
    cons = this(5) and no-dup = this(6)
 have no-dup': no-dup M
   by (metis (no-types) backtrack-split-list-eq distinct.simps(2) distinct-append extracted
     list.simps(9) map-append no-dup snd-conv)
  then have insert (lit-of L) (lits-of-l M) \subseteq lits-of-l (trail S)
   using backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
  then have cons: consistent-interp (insert (lit-of L) (lits-of-l M))
   using consistent-interp-subset cons by blast
 moreover
   have lit-of L \notin lits-of-l M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] extracted
     unfolding lits-of-def by force
 moreover
   have atm\text{-}of\ (-lit\text{-}of\ L) \notin (\lambda m.\ atm\text{-}of\ (lit\text{-}of\ m)) 'set M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by force
   then have -lit-of L \notin lits-of-lM
     unfolding lits-of-def by force
 ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)
lemma dpll_W-vars-in-snd-inv:
 assumes dpll_W S S'
 and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (clauses\ S)
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S'))\subseteq atms\text{-}of\text{-}mm\ (clauses\ S')
 using assms
proof (induct rule: dpll<sub>W</sub>.induct)
 case (backtrack S M' L M D)
  then have atm\text{-}of\ (lit\text{-}of\ L) \in atms\text{-}of\text{-}mm\ (clauses\ S)
   using backtrack-split-list-eq[of trail S, symmetric] by auto
  moreover
   have atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
     using backtrack(5) by simp
   then have \bigwedge xb. xb \in set \ M \Longrightarrow atm\text{-}of \ (lit\text{-}of \ xb) \in atm\text{-}of\text{-}mm \ (clauses \ S)
     using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
```

```
unfolding lits-of-def by auto
  ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma atms-of-ms-lit-of-atms-of: atms-of-ms ((\lambda a. \{\#lit-of \ a\#\}) \ 'c) = atm-of \ 'lit-of \ 'c
  unfolding atms-of-ms-def using image-iff by force
theorem 2.8.2 page 73 of Weidenbach's book
lemma dpll_W-propagate-is-conclusion:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 shows all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S'))
 using assms
proof (induct rule: dpll_W.induct)
 case (decided\ L\ S)
 then show ?case unfolding all-decomposition-implies-def by simp
  case (propagate C L S) note inS = this(1) and cnot = this(2) and IH = this(4) and undef =
this(3) and atms-incl = this(5)
 let ?I = set (map (\lambda a. \{\#lit\text{-}of a\#\}) (trail S)) \cup set\text{-}mset (clauses S)
 have ?I \models p C + \{\#L\#\} by (auto simp add: inS)
 moreover have ?I \models ps\ CNot\ C using true-annots-true-clss-cls cnot by fastforce
 ultimately have ?I \models p \{\#L\#\} using true-clss-cls-plus-CNot[of ?I \ C \ L] in by blast
   assume get-all-ann-decomposition (trail\ S) = []
   then have ?case by blast
  }
 moreover {
   assume n: get-all-ann-decomposition (trail S) \neq []
   have 1: \bigwedge a b. (a, b) \in set (tl (get-all-ann-decomposition (trail S)))
     \implies (unmark-l \ a \cup set\text{-}mset \ (clauses \ S)) \models ps \ unmark-l \ b
     using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set-set(2) n)
   moreover have 2: \land a \ c. \ hd \ (qet-all-ann-decomposition \ (trail \ S)) = (a, c)
     \implies (unmark-l a \cup set-mset (clauses S)) \models ps (unmark-l c)
     by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single
       list.collapse n)
   moreover have \beta: \bigwedge a c. hd (get-all-ann-decomposition (trail S)) = (a, c)
     \implies (unmark-l \ a \cup set-mset \ (clauses \ S)) \models p \ \{\#L\#\}
     proof -
       \mathbf{fix} \ a \ c
       assume h: hd (get-all-ann-decomposition (trail S)) = (a, c)
       have h': trail S = c @ a using get-all-ann-decomposition-decomp h by blast
      have I: set (map (\lambda a. \{\#lit\text{-}of a\#\}) \ a) \cup set\text{-}mset (clauses S)
         \cup unmark-l c \models ps \ CNot \ C
         using \langle ?I \models ps \ CNot \ C \rangle unfolding h' by (simp add: Un-commute Un-left-commute)
      have
         atms-of-ms (CNot C) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#}) a) \cup set-mset (clauses S))
         atms-of-ms (unmark-l c) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#})) a)
          \cup set-mset (clauses S))
          apply (metis CNot-plus Un-subset-iff atms-of-atms-of-ms-mono atms-of-ms-CNot-atms-of
            atms-of-ms-union in S sup. cobounded I2)
         using in S atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h')
       then have unmark-l a \cup set-mset (clauses S) \models ps CNot C
```

```
using true-clss-clss-left-right[OF - I] h 2 by <math>auto
       then show unmark-l a \cup set-mset (clauses S) \models p \{\#L\#\}
         by (metis (no-types) Un-insert-right in Sinsert I1 mk-disjoint-insert in S
           true-clss-cls-in true-clss-cls-plus-CNot)
     qed
   ultimately have ?case
     by (cases hd (get-all-ann-decomposition (trail S)))
        (auto simp: all-decomposition-implies-def)
  }
 ultimately show ?case by auto
next
 case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and decided = this(2) and D = this(3) and
   cnot = this(4) and cons = this(4) and IH = this(5) and atms\text{-}incl = this(6)
 have S: trail\ S = M' @ L \# M
   using backtrack-split-list-eq[of trail S] unfolding extracted by auto
 have M': \forall l \in set M'. \neg is-decided l
   using extracted backtrack-split-fst-not-decided of - trail S by simp
 have n: get-all-ann-decomposition (trail S) \neq [] by auto
  then have all-decomposition-implies-m (clauses S) ((L \# M, M')
          \# tl (get-all-ann-decomposition (trail S)))
   by (metis (no-types) IH extracted get-all-ann-decomposition-backtrack-split list.exhaust-sel)
  then have 1: unmark-l (L \# M) \cup set-mset (clauses S) \models ps(\lambda a.\{\#lit\text{-}of a\#\}) 'set M'
   by simp
  moreover
   have unmark-l\ (L \# M) \cup unmark-l\ M' \models ps\ CNot\ D
     by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append
       true-annots-true-clss-clss)
   then have 2: unmark-l (L \# M) \cup set\text{-mset} (clauses S) \cup unmark-l M'
       \models ps \ CNot \ D
     by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)
  ultimately
   have set (map \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ (L \# M)) \cup set\text{-}mset \ (clauses \ S) \models ps \ CNot \ D
     using true-clss-clss-left-right by fastforce
   then have set (map \ (\lambda a. \{\#lit\text{-}of \ a\#\}) \ (L \# M)) \cup set\text{-}mset \ (clauses \ S) \models p \ \{\#\}
     \mathbf{by}\ (\mathit{metis}\ (\mathit{mono-tags},\ \mathit{lifting})\ \mathit{D}\ \mathit{Un-def}\ \mathit{mem-Collect-eq}
       true-clss-clss-contradiction-true-clss-cls-false)
   then have IL: unmark-l M \cup set-mset (clauses S) \models p \{\#-lit\text{-of }L\#\}
     using true-clss-clss-false-left-right by auto
 show ?case unfolding S all-decomposition-implies-def
   proof
     \mathbf{fix} \ x \ P \ level
     assume x: x \in set (get-all-ann-decomposition)
       (fst (Propagated (- lit-of L) P \# M, clauses S)))
     let ?M' = Propagated (-lit-of L) P \# M
     let ?hd = hd (get-all-ann-decomposition ?M')
     let ?tl = tl (get-all-ann-decomposition ?M')
     have x = ?hd \lor x \in set ?tl
       using x
       by (cases get-all-ann-decomposition ?M')
          auto
     moreover {
       assume x': x \in set ?tl
       have L': Decided (lit-of L) = L using decided by (cases L, auto)
       have x \in set (get-all-ann-decomposition (M' @ L # M))
         using x' get-all-ann-decomposition-except-last-choice-equal [of M' lit-of L P M]
         L' by (metis\ (no\text{-}types)\ M'\ list.set\text{-}sel(2)\ tl\text{-}Nil)
```

```
\models ps \ unmark-l \ seen
        using decided IH by (cases L) (auto simp add: S all-decomposition-implies-def)
     }
     moreover {
       assume x': x = ?hd
       have tl: tl (get-all-ann-decomposition (M' @ L \# M)) \neq []
        proof -
          have f1: \ \ \ ms. \ length \ (get-all-ann-decomposition \ (M' @ ms))
            = length (get-all-ann-decomposition ms)
            by (simp add: M' get-all-ann-decomposition-remove-undecided-length)
          have Suc\ (length\ (get-all-ann-decomposition\ M)) \neq Suc\ 0
            by blast
          then show ?thesis
            using f1 decided by (metis (no-types) qet-all-ann-decomposition.simps(1) length-tl
              list.sel(3) \ list.size(3) \ ann-lit.collapse(1))
        qed
       obtain M0'M0 where
        L0: hd (tl (get-all-ann-decomposition (M' @ L \# M))) = (M0, M0')
        by (cases hd (tl (get-all-ann-decomposition (M' @ L \# M))))
       have x'': x = (M0, Propagated (-lit-of L) P # M0')
        unfolding x' using get-all-ann-decomposition-last-choice tl M' L0
        by (metis\ decided\ ann-lit.collapse(1))
       obtain l-get-all-ann-decomposition where
        get-all-ann-decomposition (trail S) = (L \# M, M') \# (M0, M0') \#
          l-qet-all-ann-decomposition
        using qet-all-ann-decomposition-backtrack-split extracted by (metis (no-types) L0 S
          hd-Cons-tl \ n \ tl)
       then have M = M0' @ M0 using get-all-ann-decomposition-hd-hd by fastforce
       then have IL': unmark-l M0 \cup set-mset (clauses S)
        \cup unmark-l\ M0' \models ps \{\{\#-\ lit\text{-}of\ L\#\}\}
        using IL by (simp add: Un-commute Un-left-commute image-Un)
       moreover have H: unmark-l\ M0 \cup set\text{-}mset\ (clauses\ S)
        \models ps \ unmark-l \ M0'
        using IH x" unfolding all-decomposition-implies-def by (metis (no-types, lifting) L0 S
          list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)
       ultimately have case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set\text{-mset} (clauses S)
        \models ps \ unmark-l \ seen
        using true-clss-clss-left-right unfolding x'' by auto
     ultimately show case x of (Ls, seen) \Rightarrow
       unmark-l Ls \cup set-mset (snd (?M', clauses S))
        \models ps \ unmark-l \ seen
       unfolding snd-conv by blast
   qed
qed
theorem 2.8.3 page 73 of Weidenbach's book
theorem dpll_W-propagate-is-conclusion-of-decided:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 shows set-mset (clauses S') \cup {{#lit-of L#} |L. is-decided L \land L \in set (trail S')}
   \models ps \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ `\bigcup (set \ `snd \ `set \ (get\text{-}all\text{-}ann\text{-}decomposition \ (trail \ S')))
  using all-decomposition-implies-trail-is-implied [OF dpll_W-propagate-is-conclusion [OF assms]].
```

then have case x of $(Ls, seen) \Rightarrow unmark-l Ls \cup set\text{-mset} (clauses S)$

```
lemma only-propagated-vars-unsat:
 assumes decided: \forall x \in set M. \neg is\text{-decided } x
 and DN: D \in N and D: M \models as CNot D
 and inv: all-decomposition-implies N (get-all-ann-decomposition M)
 and atm-incl: atm-of 'lits-of-l M \subseteq atms-of-ms N
 shows unsatisfiable N
proof (rule ccontr)
 assume \neg unsatisfiable N
 then obtain I where
   I: I \models s N \text{ and }
   cons: consistent-interp I and
   tot: total-over-m I N
   unfolding satisfiable-def by auto
  then have I-D: I \models D
   using DN unfolding true-clss-def by auto
 have l0: \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-decided }L \land L \in set M\} = \{\} \text{ using decided by } auto
 have atms-of-ms (N \cup unmark-l M) = atms-of-ms N
   using atm-incl unfolding atms-of-ms-def lits-of-def by auto
 then have total-over-m I(N \cup (\lambda a. \{\#lit\text{-of } a\#\}) `(set M))
   using tot unfolding total-over-m-def by auto
  then have I \models s (\lambda a. \{\#lit\text{-}of a\#\}) ' (set M)
   using all-decomposition-implies-propagated-lits-are-implied[OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
  then have IM: I \models s \ unmark-l \ M \ by \ auto
   \mathbf{fix}\ K
   assume K \in \# D
   then have -K \in lits-of-l M
     by (auto split: if-split-asm
       intro: allE[OF\ D[unfolded\ true-annots-def\ Ball-def],\ of\ \{\#-K\#\}])
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl by fastforce
 then have \neg I \models D using cons unfolding true-cls-def consistent-interp-def by auto
 then show False using I-D by blast
qed
lemma dpll_W-same-clauses:
 assumes dpll_W S S'
 shows clauses S = clauses S'
 using assms by (induct rule: dpll<sub>W</sub>.induct, auto)
lemma rtranclp-dpll_W-inv:
 assumes rtranclp \ dpll_W \ S \ S'
 and inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 and consistent-interp (lits-of-l (trail S))
 and no-dup (trail S)
 shows all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S'))
 and atm-of 'lits-of-l (trail S') \subseteq atms-of-mm (clauses S')
 and clauses S = clauses S'
 and consistent-interp (lits-of-l (trail S'))
 and no-dup (trail S')
```

```
using assms
proof (induct rule: rtranclp-induct)
  case base
 show
   all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
   atm-of ' lits-of-l (trail S) \subseteq atms-of-mm (clauses S) and
   clauses S = clauses S and
   consistent-interp (lits-of-l (trail S)) and
   no-dup (trail S) using assms by auto
next
  case (step S' S'') note dpll_W Star = this(1) and IH = this(3,4,5,6,7) and
   dpll_W = this(2)
 moreover
   assume
     inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
     atm-incl: atm-of ' lits-of-l (trail S) \subseteq atms-of-mm (clauses S) and
     cons: consistent-interp (lits-of-l (trail S)) and
     no-dup (trail S)
  ultimately have decomp: all-decomposition-implies-m (clauses S')
   (get-all-ann-decomposition (trail S')) and
   atm-incl': atm-of ' lits-of-l (trail S') \subseteq atms-of-mm (clauses S') and
   snd: clauses S = clauses S' and
   cons': consistent-interp (lits-of-l (trail S')) and
   no-dup': no-dup (trail S') by blast+
  show clauses S = clauses S'' using dpll_W-same-clauses [OF dpll_W] and by metis
 show all-decomposition-implies-m (clauses S'') (get-all-ann-decomposition (trail S''))
   using dpll_W-propagate-is-conclusion[OF dpll_W] decomp atm-incl' by auto
 show atm-of 'lits-of-l (trail S'') \subseteq atms-of-mm (clauses S'')
   using dpll_W-vars-in-snd-inv[OF dpll_W] atm-incl atm-incl' by auto
 show no-dup (trail S'') using dpll_W-distinct-inv[OF dpll_W] no-dup' dpll_W by auto
 show consistent-interp (lits-of-l (trail S''))
   using cons' no-dup' dpll_W-consistent-interp-inv[OF dpll_W] by auto
qed
definition dpll_W-all-inv S \equiv
  (all-decomposition-implies-m (clauses S) (qet-all-ann-decomposition (trail S))
 \land atm\text{-}of \text{ '} lits\text{-}of\text{-}l (trail S) \subseteq atms\text{-}of\text{-}mm (clauses S)
 \land consistent-interp (lits-of-l (trail S))
 \land no-dup (trail S))
lemma dpll_W-all-inv-dest[dest]:
 assumes dpll_W-all-inv S
 shows all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 and consistent-interp (lits-of-l (trail S)) \land no-dup (trail S)
 using assms unfolding dpllw-all-inv-def lits-of-def by auto
lemma rtranclp-dpll_W-all-inv:
 assumes rtranclp \ dpll_W \ S \ S'
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-inv[OF\ assms(1)] unfolding dpll_W-all-inv-def\ lits-of-def\ by\ blast
lemma dpll_W-all-inv:
 assumes dpll_W S S'
```

```
and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-all-inv by blast
lemma rtranclp-dpll_W-inv-starting-from-\theta:
 assumes rtranclp \ dpll_W \ S \ S'
 and inv: trail\ S = []
 shows dpll_W-all-inv S'
proof -
 have dpll_W-all-inv S
   using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
 then show ?thesis using rtranclp-dpll<sub>W</sub>-all-inv[OF assms(1)] by blast
qed
lemma dpll_W-can-do-step:
 assumes consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set M) \subseteq atms-of-mm N
 shows rtranclp\ dpll_W\ ([],\ N)\ (map\ Decided\ M,\ N)
 using assms
proof (induct M)
 case Nil
  then show ?case by auto
next
 case (Cons\ L\ M)
  then have undefined-lit (map Decided M) L
   unfolding defined-lit-def consistent-interp-def by auto
 moreover have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ N\ using\ Cons.prems(3)} by auto
  ultimately have dpll_W (map Decided M, N) (map Decided (L # M), N)
   using dpll_W.decided by auto
 moreover have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-mm N
   using Cons. prems unfolding consistent-interp-def by auto
 ultimately show ?case using Cons.hyps by auto
qed
definition conclusive-dpll<sub>W</sub>-state (S:: 'v dpll<sub>W</sub>-state) \longleftrightarrow
  (trail\ S \models asm\ clauses\ S \lor ((\forall\ L \in set\ (trail\ S).\ \neg is\text{-}decided\ L)
 \land (\exists C \in \# clauses S. trail S \models as CNot C)))
theorem 2.8.6 page 74 of Weidenbach's book
lemma dpll_W-strong-completeness:
 assumes set M \models sm N
 and consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set\ M)\subseteq atms\text{-}of\text{-}mm\ N
 shows dpll_{W}^{**} ([], N) (map Decided M, N)
 and conclusive-dpll_W-state (map Decided M, N)
proof -
 show rtrancly dpll_W ([], N) (map Decided M, N) using dpll_W-can-do-step assms by auto
 have map Decided M \models asm \ N \ using \ assms(1) \ true-annots-decided-true-cls by auto
 then show conclusive-dpll<sub>W</sub>-state (map Decided M, N)
   unfolding conclusive-dpll_W-state-def by auto
qed
theorem 2.8.5 page 73 of Weidenbach's book
lemma dpll_W-sound:
```

```
assumes
   rtranclp dpll_W ([], N) (M, N) and
   \forall S. \neg dpll_W (M, N) S
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
 let ?M' = lits - of - lM
 assume ?A
 then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
 ultimately show ?B by auto
next
 assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have (\exists L. \ undefined-lit \ M \ L \land \ atm-of \ L \in atms-of-mm \ N) \lor (\exists D \in \#N. \ M \models as \ CNot \ D)
        obtain D :: 'a \ clause \ where \ D : D \in \# \ N \ and \ \neg \ M \models a \ D
          using n unfolding true-annots-def Ball-def by auto
        then have (\exists L. undefined-lit M L \land atm-of L \in atms-of D) \lor M \models as CNot D
           unfolding true-annots-def Ball-def CNot-def true-annot-def
           using atm-of-lit-in-atms-of true-annot-iff-decided-or-true-lit true-cls-def by blast
        then show ?thesis
          by (metis Bex-def D atms-of-atms-of-ms-mono rev-subsetD)
      ged
     moreover {
      assume \exists L. undefined-lit M L \land atm\text{-}of L \in atms\text{-}of\text{-}mm \ N
       then have False using assms(2) decided by fastforce
     moreover {
      assume \exists D \in \#N. M \models as CNot D
      then obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D by auto
        assume \forall l \in set M. \neg is\text{-}decided l
        moreover have dpll_W-all-inv ([], N)
          using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
        ultimately have unsatisfiable (set-mset N)
          using only-propagated-vars-unsat[of M D set-mset N] DN MD
          rtranclp-dpll_W-all-inv[OF\ assms(1)] by force
        then have False using \langle ?B \rangle by blast
       }
       moreover {
        assume l: \exists l \in set M. is\text{-}decided l
        then have False
          using backtrack[of(M, N) - - D]DNMD assms(2)
            backtrack-split-some-is-decided-then-snd-has-hd[OF l]
          by (metis\ backtrack-split-snd-hd-decided\ fst-conv\ list.distinct(1)\ list.sel(1)\ snd-conv)
       ultimately have False by blast
     ultimately show False by blast
    qed
qed
```

1.4.3 Termination

```
definition dpll_W-mes M n =
  map \ (\lambda l. \ if \ is\ decided \ l \ then \ 2 \ else \ (1::nat)) \ (rev \ M) \ @ \ replicate \ (n - length \ M) \ 3
lemma length-dpll_W-mes:
 assumes length M \leq n
 shows length (dpll_W - mes\ M\ n) = n
 using assms unfolding dpll_W-mes-def by auto
lemma distinct card-atm-of-lit-of-eq-length:
 assumes no-dup S
 shows card (atm\text{-}of ' lits\text{-}of\text{-}l S) = length S
 using assms by (induct S) (auto simp add: image-image lits-of-def)
lemma dpll_W-card-decrease:
 assumes dpll: dpll_W S S' and length (trail S') \leq card vars
 and length (trail S) \leq card vars
 shows (dpll_W-mes (trail\ S')\ (card\ vars),\ dpll_W-mes (trail\ S)\ (card\ vars))
   \in lexn \{(a, b). a < b\} (card vars)
 using assms
proof (induct rule: dpll_W.induct)
 case (propagate \ C \ L \ S)
 have m: map (\lambda l. if is\text{-}decided \ l \ then \ 2 \ else \ 1) \ (rev \ (trail \ S))
      @ replicate (card vars - length (trail S)) 3
    = map (\lambda l. if is\text{-}decided l then 2 else 1) (rev (trail S)) @ 3
       \# replicate (card vars - Suc (length (trail S))) 3
    using propagate.prems[simplified] using Suc-diff-le by fastforce
  then show ?case
   using propagate.prems(1) unfolding dpll_W-mes-def by (fastforce simp add: lexn-conv assms(2))
next
 case (decided \ S \ L)
 have m: map (\lambda l. if is-decided l then 2 else 1) (rev (trail S))
     @ replicate (card vars - length (trail S)) 3
   = map (\lambda l. if is\text{-}decided l then 2 else 1) (rev (trail S)) @ 3
     \# replicate (card vars - Suc (length (trail S))) 3
   using decided.prems[simplified] using Suc-diff-le by fastforce
 then show ?case
   using decided.prems unfolding dpll_W-mes-def by (force simp add: lexn-conv assms(2))
next
  case (backtrack\ S\ M'\ L\ M\ D)
 have L: is-decided L using backtrack.hyps(2) by auto
 have S: trail\ S = M' @ L \# M
   using backtrack.hyps(1) backtrack-split-list-eq[of trail S] by auto
 show ?case
   using backtrack.prems L unfolding dpll_W-mes-def S by (fastforce simp add: lexn-conv assms(2))
qed
theorem 2.8.7 page 74 of Weidenbach's book
lemma dpll_W-card-decrease':
 assumes dpll: dpll_W S S'
 and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 and no-dup: no-dup (trail S)
 shows (dpll_W-mes (trail\ S')\ (card\ (atms-of-mm\ (clauses\ S'))),
        dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
proof -
```

```
have finite (atms-of-mm (clauses S)) unfolding atms-of-ms-def by auto
 then have 1: length (trail S) \leq card (atms-of-mm (clauses <math>S))
   using distinct card-atm-of-lit-of-eq-length [OF no-dup] atm-incl card-mono by metis
 moreover
   have no-dup': no-dup (trail S') using dpll dpll_W-distinct-inv no-dup by blast
   have SS': clauses S' = clauses S using dpll by (auto dest!: dpll<sub>W</sub>-same-clauses)
   have atm-incl': atm-of 'lits-of-l (trail S') \subseteq atms-of-mm (clauses S')
     using atm-incl dpll dpll_W-vars-in-snd-inv[OF dpll] by force
   have finite (atms-of-mm (clauses S'))
     unfolding atms-of-ms-def by auto
   then have 2: length (trail S') \leq card (atms-of-mm (clauses S))
     using distinct card-atm-of-lit-of-eq-length [OF no-dup'] atm-incl' card-mono SS' by metis
 ultimately have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S))),
     dpll_W-mes (trail S) (card (atms-of-mm (clauses S))))
   \in lexn \{(a, b). \ a < b\} \ (card \ (atms-of-mm \ (clauses \ S)))
   using dpll_W-card-decrease [OF assms(1), of atms-of-mm (clauses S)] by blast
 then have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S))),
        dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
   unfolding lex-def by auto
 then show (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S'))),
       dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
   using dpll_W-same-clauses [OF assms(1)] by auto
qed
lemma wf-lexn: wf (lexn \{(a, b), (a::nat) < b\} (card (atms-of-mm (clauses S))))
proof -
 have m: \{(a, b), a < b\} = measure id by auto
 show ?thesis apply (rule wf-lexn) unfolding m by auto
qed
lemma dpll_W-wf:
 wf \{(S', S). dpll_W - all - inv S \wedge dpll_W S S'\}
 apply (rule wf-wf-if-measure' OF wf-lex-less, of - -
        \lambda S. \ dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))])
 using dpll_W-card-decrease' by fast
lemma dpll_W-tranclp-star-commute:
 \{(S', S).\ dpll_W - all - inv\ S \land dpll_W\ S\ S'\}^+ = \{(S', S).\ dpll_W - all - inv\ S \land tranclp\ dpll_W\ S\ S'\}
   (is ?A = ?B)
proof
 \{ \text{ fix } S S' \}
   assume (S, S') \in ?A
   then have (S, S') \in ?B
     by (induct rule: trancl.induct, auto)
 then show ?A \subseteq ?B by blast
 { fix S S'
   assume (S, S') \in ?B
   then have dpll_W^{++} S' S and dpll_W-all-inv S' by auto
   then have (S, S') \in ?A
     proof (induct rule: tranclp.induct)
      case r-into-trancl
      then show ?case by (simp-all add: r-into-trancl')
```

```
next
       case (trancl-into-trancl S S' S'')
       then have (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ \ by \ blast
       moreover have dpll_W-all-inv S'
         \mathbf{using}\ rtranclp-dpll_W-all-inv[OF\ tranclp-into-rtranclp[OF\ trancl-into-trancl.hyps(1)]]
         trancl-into-trancl.prems by auto
       ultimately have (S'', S') \in \{(pa, p), dpll_W - all - inv p \land dpll_W p pa\}^+
         using \langle dpll_W-all-inv S' \rangle trancl-into-trancl.hyps(3) by blast
       then show ?case
         using \langle (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ \rangle by auto
     qed
  }
 then show ?B \subseteq ?A by blast
lemma dpll_W-wf-tranclp: wf \{(S', S). dpll_W-all-inv S \wedge dpll_W^{++} S S'\}
  unfolding dpll_W-tranclp-star-commute[symmetric] by (simp add: dpll_W-wf wf-trancl)
lemma dpll_W-wf-plus:
  shows wf \{(S', ([], N)) | S'. dpll_W^{++} ([], N) S'\} (is wf ?P)
 apply (rule wf-subset [OF \ dpll_W \text{-wf-tranclp}, \ of \ ?P])
  using assms unfolding dpll_W-all-inv-def by auto
1.4.4
           Final States
Proposition 2.8.1: final states are the normal forms of dpll_W
lemma dpll_W-no-more-step-is-a-conclusive-state:
 assumes \forall S'. \neg dpll_W S S'
 shows conclusive-dpll_W-state S
proof -
  have vars: \forall s \in atms\text{-}of\text{-}mm \ (clauses \ S). \ s \in atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S)
   proof (rule ccontr)
     assume \neg (\forall s \in atms\text{-}of\text{-}mm \ (clauses \ S). \ s \in atm\text{-}of \ `its\text{-}of\text{-}l \ (trail \ S))
     then obtain L where
        L-in-atms: L \in atms-of-mm (clauses S) and
        L-notin-trail: L \notin atm-of ' lits-of-l (trail\ S) by metis
     obtain L' where L': atm\text{-}of\ L' = L\ by\ (meson\ literal.sel(2))
     then have undefined-lit (trail S) L'
       unfolding Decided-Propagated-in-iff-in-lits-of-l by (metis L-notin-trail atm-of-uninus imageI)
     then show False using dpll_W.decided \ assms(1) \ L-in-atms \ L' by blast
   qed
  show ?thesis
   proof (rule ccontr)
     assume not-final: ¬ ?thesis
     then have
        \neg trail S \models asm clauses S  and
       (\exists L \in set \ (trail \ S). \ is\text{-}decided \ L) \lor (\forall C \in \#clauses \ S. \neg trail \ S \models as \ CNot \ C)
       unfolding conclusive-dpll_W-state-def by auto
     moreover {
       assume \exists L \in set \ (trail \ S). is-decided L
       then obtain L M' M where L: backtrack-split (trail S) = (M', L \# M)
         using backtrack-split-some-is-decided-then-snd-has-hd by blast
       obtain D where D \in \# clauses S and \neg trail S \models a D
         using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
       then have \forall s \in atms\text{-}of\text{-}ms \{D\}. s \in atm\text{-}of \text{ } its\text{-}of\text{-}l \text{ } (trail S)
```

```
using vars unfolding atms-of-ms-def by auto
       then have trail S \models as \ CNot \ D
         using all-variables-defined-not-imply-cnot [of D] \langle \neg trail \ S \models a \ D \rangle by auto
       moreover have is-decided L
         using L by (metis backtrack-split-snd-hd-decided list.distinct(1) list.sel(1) snd-conv)
       ultimately have False
         using assms(1) dpll_W.backtrack\ L\ \langle D\in\#\ clauses\ S\rangle\ \langle trail\ S\models as\ CNot\ D\rangle by blast
     moreover {
       assume tr: \forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C
       obtain C where C-in-cls: C \in \# clauses S and trC: \neg trail S \models a C
         using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
       have \forall s \in atms\text{-}of\text{-}ms \{C\}. s \in atm\text{-}of \text{ '} lits\text{-}of\text{-}l (trail S)
         using vars \langle C \in \# clauses S \rangle unfolding atms-of-ms-def by auto
       then have trail S \models as \ CNot \ C
         by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)
       then have False using tr C-in-cls by auto
     ultimately show False by blast
   qed
qed
lemma dpll_W-conclusive-state-correct:
 assumes dpll_W^{**} ([], N) (M, N) and conclusive-dpll_W-state (M, N)
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
 let ?M' = lits - of - lM
 assume ?A
 then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
  ultimately show ?B by auto
next
 assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have no-mark: \forall L \in set M. \neg is-decided L \exists C \in \# N. M \models as CNot C
       using n assms(2) unfolding conclusive-dpll_W-state-def by auto
     moreover obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D using no-mark by auto
     ultimately have unsatisfiable (set-mset N)
       using only-propagated-vars-unsat rtranclp-dpll_W-all-inv[OF\ assms(1)]
       unfolding dpll_W-all-inv-def by force
     then show False using \langle ?B \rangle by blast
   qed
qed
1.4.5
          Link with NOT's DPLL
interpretation dpll_{W-NOT}: dpll-with-backtrack.
declare dpll_W-_{NOT}.state-simp_{NOT}[simp\ del]
lemma state-eq_{NOT}-iff-eq[iff, simp]: dpll_{W-NOT}.state-eq_{NOT} S T \longleftrightarrow S = T
 unfolding dpll_{W-NOT}.state-eq<sub>NOT</sub>-def by (cases S, cases T) auto
lemma dpll_W-dpll_W-bj:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W S T
```

```
shows dpll_W-_{NOT}.dpll-bj S T
  using dpll inv
 apply (induction rule: dpll_W.induct)
   apply (rule dpll_W-_{NOT}.bj-propagate_{NOT})
   apply (rule dpll_{W-NOT}.propagate<sub>NOT</sub>.propagate<sub>NOT</sub>; simp?)
   apply fastforce
  apply (rule dpll_{W-NOT}. bj-decide<sub>NOT</sub>)
  apply (rule dpll_{W-NOT}.decide_{NOT}.decide_{NOT}; simp?)
  apply fastforce
 apply (frule\ dpll_{W-NOT}.backtrack.intros[of - - - -],\ simp-all)
 apply (rule dpll_W-_{NOT}.dpll-bj.bj-backjump)
 apply (rule dpll_W-_{NOT}. backtrack-is-backjump'',
   simp-all\ add:\ dpll_W-all-inv-def)
 done
lemma dpll_W-bj-dpll:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W-NOT. dpll-bj S T
 shows dpll_W S T
 using dpll
 apply (induction rule: dpll_{W-NOT}.dpll-bj.induct)
   apply (elim \ dpll_W-_{NOT}.decide_{NOT}E, cases \ S)
   apply (frule decided; simp)
  apply (elim\ dpll_{W-NOT}.propagate_{NOT}E,\ cases\ S)
  apply (auto intro!: propagate[of - - (-, -), simplified])[]
 apply (elim \ dpll_{W-NOT}.backjumpE, cases \ S)
 by (simp\ add:\ dpll_W.simps\ dpll-with-backtrack.backtrack.simps)
lemma rtranclp-dpll_W-rtranclp-dpll_W-NOT:
 assumes dpll_W^{**} S T and dpll_W-all-inv S
 shows dpll_{W-NOT}.dpll-bj^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: rtranclp-dpll_W-all-inv\ dpll_W-dpll_W-bj\ rtranclp.rtrancl-into-rtrancl)
lemma rtranclp-dpll-rtranclp-dpll_W:
 assumes dpll_{W-NOT}.dpll-bj^{**} S T and dpll_{W}-all-inv S
 shows dpll_W^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: dpll_W-bj-dpll rtranclp.rtrancl-into-rtrancl <math>rtranclp-dpll_W-all-inv)
lemma dpll-conclusive-state-correctness:
 assumes dpll_{W^{-}NOT}.dpll-bj^{**} ([], N) (M, N) and conclusive-dpll_{W^{-}state} (M, N)
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N)
proof -
 have dpll_W-all-inv ([], N)
   unfolding dpll_W-all-inv-def by auto
 show ?thesis
   apply (rule dpll_W-conclusive-state-correct)
     apply (simp add: \langle dpll_W - all - inv ([], N) \rangle assms(1) rtranclp-dpll-rtranclp-dpll<sub>W</sub>)
   using assms(2) by simp
qed
end
theory CDCL-W-Level
```

Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the function after reversing.

```
abbreviation count-decided :: ('v, 'm) ann-lits \Rightarrow nat where
count-decided l \equiv length (filter is-decided l)
abbreviation get-level :: ('v, 'm) ann-lits \Rightarrow 'v literal \Rightarrow nat where
get-level S L \equiv length \ (filter \ is-decided \ (drop While \ (\lambda S. \ atm-of \ (lit-of \ S) \neq atm-of \ L) \ S))
lemma get-level-uminus: get-level M(-L) = get-level ML
 by auto
lemma atm-of-notin-get-rev-level-eq-0[simp]:
 assumes atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M
 shows get-level M L = 0
 using assms by (induct M rule: ann-lit-list-induct) auto
lemma get-level-ge-0-atm-of-in:
 assumes get-level M L > n
 shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 using assms by (induct M arbitrary: n rule: ann-lit-list-induct) fastforce+
In get-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is not
in the beginning (resp. the end).
lemma qet-rev-level-skip[simp]:
 assumes atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M
 shows get-level (M @ M') L = get-level M' L
 using assms by (induct M rule: ann-lit-list-induct) auto
If the literal is at the beginning, then the end can be skipped
lemma get-rev-level-skip-end[simp]:
 assumes atm\text{-}of\ L\in atm\text{-}of\ '\ lits\text{-}of\text{-}l\ M
 shows get-level (M @ M') L = get-level M L + length (filter is-decided M')
 using assms by (induct M' rule: ann-lit-list-induct) (auto simp: lits-of-def)
lemma get-level-skip-beginning:
 assumes atm\text{-}of L' \neq atm\text{-}of (lit\text{-}of K)
 shows get-level (K \# M) L' = get-level M L'
 using assms by auto
lemma get-level-skip-beginning-not-decided[simp]:
 assumes atm-of L \notin atm-of ' lits-of-l S
 and \forall s \in set \ S. \ \neg is - decided \ s
 shows get-level (M @ S) L = get-level M L
 using assms apply (induction S rule: ann-lit-list-induct)
   apply auto[2]
 apply (case-tac atm-of L \in atm-of 'lits-of-l M)
 apply (auto simp: image-iff lits-of-def filter-empty-conv dest: set-dropWhileD)
 done
```

```
lemma get-level-skip-in-all-not-decided:
 fixes M :: ('a, 'b) ann-lits and L :: 'a literal
 assumes \forall m \in set M. \neg is\text{-}decided m
 and atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 shows get-level ML = 0
 using assms by (induction M rule: ann-lit-list-induct) auto
\mathbf{lemma}\ \textit{get-level-skip-all-not-decided}[\textit{simp}] \colon
 fixes M
 assumes \forall m \in set M. \neg is\text{-}decided m
 shows get-level M L = 0
 using assms by (auto simp: filter-empty-conv dest: set-dropWhileD)
abbreviation MMax\ M \equiv Max\ (set\text{-}mset\ M)
the \{\#0::'a\#\} is there to ensures that the set is not empty.
definition get-maximum-level :: ('a, 'b) ann-lits \Rightarrow 'a literal multiset \Rightarrow nat
get-maximum-level M D = MMax (\{\#0\#\} + image-mset (get-level M) D)
\mathbf{lemma} \ get\text{-}maximum\text{-}level\text{-}ge\text{-}get\text{-}level\text{:}
  L \in \# D \Longrightarrow get\text{-}maximum\text{-}level\ M\ D \ge get\text{-}level\ M\ L
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-empty[simp]:
  get-maximum-level M \{\#\} = 0
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-exists-lit-of-max-level:
  D \neq \{\#\} \Longrightarrow \exists L \in \# D. \ get\text{-level} \ M \ L = get\text{-maximum-level} \ M \ D
 unfolding get-maximum-level-def
 \mathbf{apply} \ (induct \ D)
  apply simp
 by (rename-tac D x, case-tac D = \{\#\}) (auto simp add: max-def)
lemma get-maximum-level-empty-list[simp]:
  get-maximum-level []D = 0
  unfolding get-maximum-level-def by (simp add: image-constant-conv)
lemma get-maximum-level-single[simp]:
  get-maximum-level M \{ \#L\# \} = get-level M L
 unfolding get-maximum-level-def by simp
lemma get-maximum-level-plus:
  get-maximum-level M (D + D') = max (get-maximum-level M D) (get-maximum-level M D')
 by (induct D) (auto simp add: get-maximum-level-def)
{\bf lemma} \ \textit{get-maximum-level-exists-lit}:
 assumes n: n > 0
 and max: qet-maximum-level MD = n
 shows \exists L \in \#D. get-level M L = n
proof
 have f: finite (insert 0 ((\lambda L. get-level M L) 'set-mset D)) by auto
  then have n \in ((\lambda L. \ get\text{-level} \ M \ L) \ `set\text{-mset} \ D)
   using n \max Max-in[OF f] unfolding get-maximum-level-def by simp
  then show \exists L \in \# D. get-level ML = n by auto
```

```
lemma get-maximum-level-skip-first[simp]:
 assumes atm-of L \notin atms-of D
 shows get-maximum-level (Propagated L C \# M) D = get-maximum-level M D
  using assms unfolding get-maximum-level-def atms-of-def
   atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
 by (smt atm-of-in-atm-of-set-in-uminus qet-level-skip-beginning image-iff ann-lit.sel(2)
   multiset.map-cong\theta)
{f lemma}\ get{-}maximum{-}level{-}skip{-}beginning:
 assumes DH: \forall x \in atms\text{-}of D. x \notin atm\text{-}of `lits\text{-}of\text{-}l c
 shows get-maximum-level (c @ H) D = get-maximum-level H D
proof -
 have (qet\text{-}level\ (c\ @\ H)) 'set-mset D=(qet\text{-}level\ H)'set-mset D
   apply (rule image-cong)
    apply simp
   using DH unfolding atms-of-def by auto
 then show ?thesis using DH unfolding get-maximum-level-def by auto
qed
lemma get-maximum-level-D-single-propagated:
  get-maximum-level [Propagated x21 x22] D = 0
 unfolding get-maximum-level-def by (simp add: image-constant-conv)
\mathbf{lemma} \ \textit{get-maximum-level-skip-un-decided-not-present}:
 assumes
   \forall L \in \#D. \ atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M \ and }
   \forall m \in set M. \neg is\text{-}decided m
 shows qet-maximum-level (M @ aa) D = qet-maximum-level aa D
 using assms unfolding get-maximum-level-def by simp
lemma get-maximum-level-union-mset:
  get-maximum-level M (A \# \cup B) = get-maximum-level M (A + B)
 unfolding get-maximum-level-def by (auto simp: image-Un)
lemma count-decided-rev[simp]:
  count-decided (rev M) = count-decided M
 by (auto simp: rev-filter[symmetric])
lemma count-decided-ge-get-level[simp]:
  count-decided M \ge get-level M L
 by (induct M rule: ann-lit-list-induct) (auto simp add: le-max-iff-disj)
\mathbf{lemma}\ count\text{-}decided\text{-}ge\text{-}get\text{-}maximum\text{-}level:
  count-decided M \ge get-maximum-level M D
 \mathbf{using}\ \textit{get-maximum-level-exists-lit-of-max-level}\ \mathbf{unfolding}\ \textit{Bex-def}
 by (metis get-maximum-level-empty count-decided-ge-get-level le0)
fun get-all-mark-of-propagated where
get-all-mark-of-propagated [] = []
get-all-mark-of-propagated (Decided - \# L) = get-all-mark-of-propagated L
get-all-mark-of-propagated (Propagated - mark \# L) = mark \# get-all-mark-of-propagated L
lemma get-all-mark-of-propagated-append[simp]:
  get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A @ get-all-mark-of-propagated B
```

Properties about the levels

```
lemma atm-lit-of-set-lits-of-l:
 (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set xs = atm\text{-}of 'lits-of-l xs
 unfolding lits-of-def by auto
lemma le-count-decided-decomp:
 assumes no-dup M
 shows i < count\text{-}decided\ M \longleftrightarrow (\exists\ c\ K\ c'.\ M = c\ @\ Decided\ K\ \#\ c' \land\ get\text{-}level\ M\ K = Suc\ i)
   (is ?A \longleftrightarrow ?B)
proof
 assume ?B
 then obtain c K c' where
   M = c @ Decided K \# c'  and get-level M K = Suc i
 then show ?A using count-decided-ge-get-level[of K M] by auto
next
 assume ?A
 then show ?B
   using \langle no\text{-}dup \ M \rangle
   proof (induction M rule: ann-lit-list-induct)
     case Nil
     then show ?case by simp
     case (Decided L M) note IH = this(1) and i = this(2) and n-d = this(3)
     then have n-d-M: no-dup M by simp
     show ?case
      proof (cases i < count\text{-}decided M)
        case True
        then obtain c K c' where
          M: M = c @ Decided K \# c'  and lev-K: get-level M K = Suc i
          using IH n-d-M by blast
        show ?thesis
          apply (rule exI[of - Decided L \# c])
          apply (rule\ exI[of\ -\ K])
          apply (rule exI[of - c'])
          using lev-K n-d unfolding M by auto
      next
        {f case} False
        show ?thesis
          apply (rule exI[of - []])
          apply (rule\ ext[of\ -\ L])
          apply (rule\ exI[of\ -\ M])
          using False i by auto
      qed
     next
      case (Propagated L mark' M) note i = this(2) and n-d = this(3) and IH = this(1)
      then obtain c K c' where
        M: M = c @ Decided K \# c'  and lev-K: get-level M K = Suc i
        by auto
      show ?case
        apply (rule exI[of - Propagated L mark' # c])
        apply (rule\ exI[of\ -\ K])
        apply (rule\ ext[of - c'])
```

```
 \begin{array}{c} \textbf{using } \textit{lev-K } \textit{n-d } \textbf{unfolding } \textit{M} \textbf{ by } (\textit{auto } \textit{simp: } \textit{atm-lit-of-set-lits-of-l}) \\ \textbf{qed} \\ \textbf{qed} \\ \\ \textbf{end} \\ \textbf{theory } \textit{CDCL-W} \\ \textbf{imports } \textit{CDCL-Abstract-Clause-Representation } \textit{List-More } \textit{CDCL-W-Level Wellfounded-More} \\ \textbf{begin} \end{array}
```

Chapter 2

Weidenbach's CDCL

The organisation of the development is the following:

- CDCL_W.thy contains the specification of the rules: the rules and the strategy are defined, and we proof the correctness of CDCL.
- CDCL_W_Termination.thy contains the proof of termination.
- CDCL_W_Merge.thy contains a variant of the calculus: some rules of the raw calculus are always applied together (like the rules analysing the conflict and then backtracking). We define an equivalent version of the calculus where these rules are applied together. This is useful for implementations.
- CDCL_WNOT.thy proves the inclusion of Weidenbach's version of CDCL in NOT's version. We use here the version defined in CDCL_W_Merge.thy. We need this, because NOT's backjump corresponds to multiple applications of three rules in Weidenbach's calculus. We show also the termination of the calculus without strategy.

We have some variants build on the top of Weidenbach's CDCL calculus:

- CDCL_W_Incremental.thy adds incrementality on the top of CDCL_W.thy. The way we are doing it is not compatible with CDCL_W_Merge.thy, because we add conflicts and the CDCL_W_Merge.thy cannot analyse conflicts added externally, because the conflict and analyse are merged.
- CDCL_W_Restart.thy adds restart. It is built on the top of CDCL_W_Merge.thy.

2.1 Weidenbach's CDCL with Multisets

declare $upt.simps(2)[simp \ del]$

2.1.1 The State

We will abstract the representation of clause and clauses via two locales. We here use multisets, contrary to CDCL_W_Abstract_State.thy where we assume only the existence of a conversion to the state.

 $locale state_W - ops =$

```
fixes
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ and
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    init-state :: 'v clauses \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st
abbreviation hd-trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lit where
hd-trail S \equiv hd (trail S)
definition clauses :: 'st \Rightarrow 'v \ clauses \ where
clauses S = init-clss S + learned-clss S
abbreviation resolve-cls where
resolve\text{-}cls\ L\ D'\ E \equiv remove1\text{-}mset\ (-L)\ D'\ \#\cup\ remove1\text{-}mset\ L\ E
```

end

We are using an abstract state to abstract away the detail of the implementation: we do not need to know how the clauses are represented internally, we just need to know that they can be converted to multisets.

Weidenbach state is a five-tuple composed of:

- 1. the trail is a list of decided literals;
- 2. the initial set of clauses (that is not changed during the whole calculus);
- 3. the learned clauses (clauses can be added or remove);
- 4. the maximum level of the trail;
- 5. the conflicting clause (if any has been found so far).

There are two different clause representation: one for the conflicting clause ('v CDCL-Abstract-Clause-Representation for conflicting clause) and one for the initial and learned clauses ('v CDCL-Abstract-Clause-Representation for clause). The representation of the clauses annotating literals in the trail is slightly different: being able to convert it to 'v CDCL-Abstract-Clause-Representation.clause is enough (needed for function hd-trail below).

There are several axioms to state the independence of the different fields of the state: for example, adding a clause to the learned clauses does not change the trail.

```
\begin{array}{c} \mathbf{locale} \ state_W = \\ state_W\text{-}ops \end{array}
```

```
— functions about the state:
    — getter:
 trail init-clss learned-clss backtrack-lvl conflicting
  cons-trail tl-trail add-learned-cls remove-cls update-backtrack-lvl
  update-conflicting
    — Some specific states:
  init-state
 restart-state
for
  trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
 init-clss :: 'st \Rightarrow 'v clauses and
 learned-clss :: 'st \Rightarrow 'v clauses and
 backtrack-lvl :: 'st \Rightarrow nat and
 conflicting :: 'st \Rightarrow 'v clause option and
 cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
 tl-trail :: 'st \Rightarrow 'st and
 add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
 remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
  update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
  update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
 init-state :: 'v clauses \Rightarrow 'st and
 restart-state :: 'st \Rightarrow 'st +
assumes
  trail-cons-trail[simp]:
    \bigwedge L st. trail (cons-trail L st) = L # trail st and
  trail-tl-trail[simp]: \land st. trail (tl-trail st) = tl (trail st) and
 trail-add-learned-cls[simp]:
    \bigwedge C st. trail (add-learned-cls C st) = trail st and
  trail-remove-cls[simp]:
    \bigwedge C st. trail (remove-cls C st) = trail st and
 trail-update-backtrack-lvl[simp]: \land st \ C. \ trail \ (update-backtrack-lvl \ C \ st) = trail \ st \ and
 trail-update-conflicting[simp]: \bigwedge C \ st. \ trail \ (update-conflicting \ C \ st) = trail \ st \ and
  init-clss-cons-trail[simp]:
    \bigwedge M st. init-clss (cons-trail M st) = init-clss st
    and
  init-clss-tl-trail[simp]:
    \bigwedge st. \ init\text{-}clss \ (tl\text{-}trail \ st) = init\text{-}clss \ st \ \mathbf{and}
  init-clss-add-learned-cls[simp]:
    \bigwedge C st. init-clss (add-learned-cls C st) = init-clss st and
  init-clss-remove-cls[simp]:
    \bigwedge C st. init-clss (remove-cls C st) = removeAll-mset C (init-clss st) and
  init-clss-update-backtrack-lvl[simp]:
    \bigwedge st\ C.\ init-clss\ (update-backtrack-lvl\ C\ st) = init-clss\ st\ and
  init-clss-update-conflicting[simp]:
    \bigwedge C st. init-clss (update-conflicting C st) = init-clss st and
 learned-clss-cons-trail[simp]:
    \bigwedge M st. learned-clss (cons-trail M st) = learned-clss st and
 learned-clss-tl-trail[simp]:
    \wedge st.\ learned\text{-}clss\ (tl\text{-}trail\ st) = learned\text{-}clss\ st\ and
 learned-cls-add-learned-cls[simp]:
```

```
\bigwedge C st. learned-clss (add-learned-cls C st) = \{\# C\#\} + learned-clss st and
   learned-clss-remove-cls[simp]:
     \bigwedge C st. learned-clss (remove-cls C st) = removeAll-mset C (learned-clss st) and
   learned-clss-update-backtrack-lvl[simp]:
     \bigwedge st\ C.\ learned-clss (update-backtrack-lvl C\ st) = learned-clss st and
   learned-clss-update-conflicting[simp]:
     \bigwedge C st. learned-clss (update-conflicting C st) = learned-clss st and
   backtrack-lvl-cons-trail[simp]:
     \bigwedge M st. backtrack-lvl (cons-trail M st) = backtrack-lvl st and
   backtrack-lvl-tl-trail[simp]:
     \wedge st.\ backtrack-lvl\ (tl-trail\ st) = backtrack-lvl\ st\ and
   backtrack-lvl-add-learned-cls[simp]:
     \bigwedge C st. backtrack-lvl (add-learned-cls C st) = backtrack-lvl st and
   backtrack-lvl-remove-cls[simp]:
     \bigwedge C st. backtrack-lvl (remove-cls C st) = backtrack-lvl st and
    backtrack-lvl-update-backtrack-lvl[simp]:
     \wedge st \ k. \ backtrack-lvl \ (update-backtrack-lvl \ k \ st) = k \ and
    backtrack-lvl-update-conflicting[simp]:
     \bigwedge C st. backtrack-lvl (update-conflicting C st) = backtrack-lvl st and
   conflicting-cons-trail[simp]:
     \bigwedge M st. conflicting (cons-trail M st) = conflicting st and
    conflicting-tl-trail[simp]:
     \wedge st. conflicting (tl-trail st) = conflicting st and
   conflicting-add-learned-cls[simp]:
     \bigwedge C st. conflicting (add-learned-cls C st) = conflicting st
     and
   conflicting-remove-cls[simp]:
     \bigwedge C st. conflicting (remove-cls C st) = conflicting st and
    conflicting-update-backtrack-lvl[simp]:
     \bigwedge st\ C.\ conflicting\ (update-backtrack-lvl\ C\ st) = conflicting\ st\ and
    conflicting-update-conflicting[simp]:
     \bigwedge C st. conflicting (update-conflicting C st) = C and
   init-state-trail[simp]: \bigwedge N. trail (init-state N) = [] and
    init-state-clss[simp]: \bigwedge N. init-clss (init-state N) = N and
    init-state-learned-clss[simp]: \bigwedge N. learned-clss(init-state N) = \{\#\} and
    init-state-backtrack-lvl[simp]: \bigwedge N. backtrack-lvl (init-state N) = 0 and
   init-state-conflicting[simp]: \bigwedge N. conflicting (init-state N) = None and
   trail-restart-state[simp]: trail (restart-state S) = [] and
   init-clss-restart-state[simp]: init-clss (restart-state S) = init-clss S and
   learned-clss-restart-state[intro]:
     learned-clss (restart-state S) \subseteq \# learned-clss S and
   backtrack-lvl-restart-state[simp]: backtrack-lvl (restart-state S) = 0 and
    conflicting-restart-state[simp]: conflicting (restart-state S) = None
begin
lemma
 shows
    clauses-cons-trail[simp]:
     clauses (cons-trail M S) = clauses S  and
   clss-tl-trail[simp]: clauses (tl-trail S) = clauses S and
   clauses-add-learned-cls-unfolded:
```

```
clauses (add-learned-cls US) = {\#U\#} + learned-clss S + init-clss S
     and
    clauses-update-backtrack-lvl[simp]: clauses (update-backtrack-lvl k S) = clauses S and
    clauses-update-conflicting [simp]: clauses (update-conflicting D(S) = clauses(S) and
    clauses-remove-cls[simp]:
      clauses (remove-cls \ C \ S) = removeAll-mset \ C \ (clauses \ S) and
    clauses-add-learned-cls[simp]:
       clauses (add-learned-cls C S) = {\# C \#} + clauses S and
    clauses-restart[simp]: clauses (restart-state S) \subseteq \# clauses S and
    clauses-init-state[simp]: clauses (init-state N) = N
   by (auto simp: ac-simps replicate-mset-plus clauses-def intro: multiset-eqI)
abbreviation state :: 'st \Rightarrow ('v, 'v clause) ann-lits \times 'v clauses \times 'v clauses
  \times nat \times 'v clause option where
state\ S \equiv (trail\ S,\ init-clss\ S,\ learned-clss\ S,\ backtrack-lvl\ S,\ conflicting\ S)
abbreviation incr-lvl :: 'st \Rightarrow 'st where
incr-lvl\ S \equiv update-backtrack-lvl\ (backtrack-lvl\ S + 1)\ S
definition state\text{-}eq::'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow state \ S = state \ T
lemma state-eq-ref[simp, intro]:
  S \sim S
  unfolding state-eq-def by auto
lemma state-eq-sym:
  S \sim T \longleftrightarrow T \sim S
  unfolding state-eq-def by auto
lemma state-eq-trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
  unfolding state-eq-def by auto
lemma
  shows
    state-eq-trail: S \sim T \Longrightarrow trail S = trail T and
   state-eq-init-clss: S \sim T \Longrightarrow init-clss S = init-clss T and
   state-eq-learned-clss: S \sim T \Longrightarrow learned-clss S = learned-clss T and
   state-eq-backtrack-lvl: S \sim T \Longrightarrow backtrack-lvl: S = backtrack-lvl: T and
    state-eq-conflicting: S \sim T \Longrightarrow conflicting S = conflicting T and
   state-eq-clauses: S \sim T \Longrightarrow clauses \ S = clauses \ T and
   state-eq-undefined-lit: S \sim T \Longrightarrow undefined-lit (trail S) L = undefined-lit (trail T) L
  unfolding state-eq-def clauses-def by auto
\mathbf{lemma}\ state\text{-}eq\text{-}conflicting\text{-}None:
  S \sim T \Longrightarrow conflicting \ T = None \Longrightarrow conflicting \ S = None
  unfolding state-eq-def clauses-def by auto
```

We combine all simplification rules about $op \sim$ in a single list of theorems. While they are handy as simplification rule as long as we are working on the state, they also cause a *huge* slow-down in all other cases.

 $\begin{array}{l} \textbf{lemmas} \ state\text{-}simp[simp] = state\text{-}eq\text{-}trail \ state\text{-}eq\text{-}init\text{-}clss \ state\text{-}eq\text{-}learned\text{-}clss \ state\text{-}eq\text{-}backtrack\text{-}lvl \ state\text{-}eq\text{-}conflicting \ state\text{-}eq\text{-}clauses \ state\text{-}eq\text{-}undefined\text{-}lit \ state\text{-}eq\text{-}conflictinq\text{-}None \end{array}$

```
\mathbf{lemma}\ atms-of\text{-}ms\text{-}learned\text{-}clss\text{-}restart\text{-}state\text{-}in\text{-}atms\text{-}of\text{-}ms\text{-}learned\text{-}clss}I[intro]:
 x \in atms-of-mm (learned-clss (restart-state S)) \Longrightarrow x \in atms-of-mm (learned-clss S)
 by (meson atms-of-ms-mono learned-clss-restart-state set-mset-mono subsetCE)
function reduce-trail-to :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to F S =
  (if \ length \ (trail \ S) = length \ F \lor trail \ S = [] \ then \ S \ else \ reduce-trail-to \ F \ (tl-trail \ S))
by fast+
termination
 by (relation measure (\lambda(\cdot, S). length (trail S))) simp-all
declare reduce-trail-to.simps[simp del]
lemma
 shows
   reduce-trail-to-Nil[simp]: trail S = [] \implies reduce-trail-to F S = S and
   reduce-trail-to-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to F S = S
 by (auto simp: reduce-trail-to.simps)
lemma reduce-trail-to-length-ne:
  length\ (trail\ S) \neq length\ F \Longrightarrow trail\ S \neq [] \Longrightarrow
   reduce-trail-to F S = reduce-trail-to F (tl-trail S)
 by (auto simp: reduce-trail-to.simps)
lemma trail-reduce-trail-to-length-le:
 assumes length F > length (trail S)
 shows trail (reduce-trail-to F(S) = []
 using assms apply (induction F S rule: reduce-trail-to.induct)
 by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irreft trail-tl-trail
   reduce-trail-to.simps)
lemma trail-reduce-trail-to-Nil[simp]:
  trail (reduce-trail-to [] S) = []
 apply (induction []::('v, 'v clause) ann-lits S rule: reduce-trail-to.induct)
 by (metis length-0-conv reduce-trail-to-length-ne reduce-trail-to-Nil)
lemma clauses-reduce-trail-to-Nil:
  clauses (reduce-trail-to [] S) = clauses S
\mathbf{proof} (induction [] S rule: reduce-trail-to.induct)
  then have clauses (reduce-trail-to ([::'a\ list)\ (tl-trail Sa)) = clauses (tl-trail Sa)
   \vee trail Sa = []
   by fastforce
 then show clauses (reduce-trail-to ([::'a\ list)\ Sa) = clauses Sa
   by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-tl-trail
     reduce-trail-to-length-ne)
qed
lemma reduce-trail-to-skip-beginning:
 assumes trail\ S = F' @ F
 shows trail (reduce-trail-to F S) = F
 using assms by (induction F' arbitrary: S) (auto simp: reduce-trail-to-length-ne)
lemma clauses-reduce-trail-to[simp]:
  clauses (reduce-trail-to F S) = clauses S
```

```
apply (induction F S rule: reduce-trail-to.induct)
 by (metis clss-tl-trail reduce-trail-to.simps)
lemma conflicting-update-trail[simp]:
  conflicting (reduce-trail-to F S) = conflicting S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-tl-trail reduce-trail-to.simps)
lemma backtrack-lvl-update-trail[simp]:
  backtrack-lvl (reduce-trail-to F S) = backtrack-lvl S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis backtrack-lvl-tl-trail reduce-trail-to.simps)
lemma init-clss-update-trail[simp]:
  init-clss (reduce-trail-to F(S) = init-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis init-clss-tl-trail reduce-trail-to.simps)
lemma learned-clss-update-trail[simp]:
  learned-clss (reduce-trail-to F(S) = learned-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis learned-clss-tl-trail reduce-trail-to.simps)
lemma conflicting-reduce-trail-to[simp]:
  conflicting (reduce-trail-to F(S) = None \longleftrightarrow conflicting(S = None)
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-update-trail map-option-is-None)
lemma trail-eq-reduce-trail-to-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to\ F\ S) = trail\ (reduce-trail-to\ F\ T)
 apply (induction F S arbitrary: T rule: reduce-trail-to.induct)
 by (metis trail-tl-trail reduce-trail-to.simps)
lemma reduce-trail-to-state-eq_{NOT}-compatible:
 assumes ST: S \sim T
 shows reduce-trail-to F S \sim reduce-trail-to F T
 have trail (reduce-trail-to F(S)) = trail (reduce-trail-to F(T))
   using trail-eq-reduce-trail-to-eq[of S T F] ST by auto
  then show ?thesis using ST by (auto simp del: state-simp simp: state-eq-def)
qed
lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
  trail\ S = F'\ @\ Decided\ K\ \#\ F \Longrightarrow (trail\ (reduce-trail-to\ F\ S)) = F
 apply (rule reduce-trail-to-skip-beginning of - F' @ Decided K \# []])
 by (cases F') (auto simp add:tl-append reduce-trail-to-skip-beginning)
lemma reduce-trail-to-add-learned-cls[simp]:
  trail\ (reduce-trail-to\ F\ (add-learned-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-remove-learned-cls[simp]:
  trail\ (reduce-trail-to\ F\ (remove-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
```

lemma reduce-trail-to-update-conflicting[simp]:

```
trail\ (reduce-trail-to\ F\ (update-conflicting\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-backtrack-lvl[simp]:
 trail\ (reduce-trail-to\ F\ (update-backtrack-lvl\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-length:
 length M = length M' \Longrightarrow reduce-trail-to MS = reduce-trail-to M'S
 apply (induction M S rule: reduce-trail-to.induct)
 by (simp add: reduce-trail-to.simps)
\mathbf{lemma}\ trail\text{-}reduce\text{-}trail\text{-}to\text{-}drop:
 trail (reduce-trail-to F S) =
   (if length (trail S) > length F
   then drop (length (trail S) – length F) (trail S)
   else [])
 apply (induction F S rule: reduce-trail-to.induct)
 apply (rename-tac F S, case-tac trail S)
  apply auto
 apply (rename-tac list, case-tac Suc (length list) > length F)
  prefer 2 apply (metis diff-is-0-eq drop-Cons' length-Cons nat-le-linear nat-less-le
    reduce-trail-to-eq-length trail-reduce-trail-to-length-le)
 apply (subgoal-tac Suc (length list) – length F = Suc (length list – length F))
 by (auto simp add: reduce-trail-to-length-ne)
lemma in-get-all-ann-decomposition-trail-update-trail[simp]:
 assumes H: (L \# M1, M2) \in set (get-all-ann-decomposition (trail S))
 shows trail (reduce-trail-to M1 S) = M1
proof -
 obtain K where
   L: L = Decided K
   using H by (cases L) (auto dest!: in-get-all-ann-decomposition-decided-or-empty)
 obtain c where
   tr-S: trail S = c @ M2 @ L \# M1
   using H by auto
 show ?thesis
   by (rule reduce-trail-to-trail-tl-trail-decomp[of - c @ M2 K])
    (auto simp: tr-SL)
qed
lemma conflicting-cons-trail-conflicting[simp]:
 assumes undefined-lit (trail\ S)\ (lit-of L)
 shows
   conflicting (cons-trail L(S) = None \longleftrightarrow conflicting(S = None)
 using assms conflicting-cons-trail[of L S] map-option-is-None by fastforce+
lemma conflicting-add-learned-cls-conflicting[simp]:
 conflicting (add-learned-cls CS) = None \longleftrightarrow conflicting S = None
 by fastforce+
lemma conflicting-update-backtracl-lvl[simp]:
 conflicting (update-backtrack-lvl k S) = None \longleftrightarrow conflicting S = None
 using map-option-is-None conflicting-update-backtrack-lvl[of k S] by fastforce+
end — end of state_W locale
```

2.1.2 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules

```
locale conflict-driven-clause-learning_W =
  state_W
     — functions for the state:
       — access functions:
    trail init-clss learned-clss backtrack-lvl conflicting
        - changing state:
    cons\text{-}trail\ tl\text{-}trail\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
    update-conflicting
       — get state:
    init-state
    restart\text{-}state
  for
     trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v \ clause \ option \ {\bf and}
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ and
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    init-state :: 'v clauses \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st
begin
inductive propagate :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
propagate-rule: conflicting S = None \Longrightarrow
  E \in \# clauses S \Longrightarrow
  L \in \# E \Longrightarrow
  trail \ S \models as \ CNot \ (E - \{\#L\#\}) \Longrightarrow
  undefined-lit (trail\ S)\ L \Longrightarrow
  T \sim cons-trail (Propagated L E) S \Longrightarrow
  propagate S T
inductive-cases propagateE: propagateS T
inductive conflict :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict-rule:
  conflicting S = None \Longrightarrow
  D \in \# \ clauses \ S \Longrightarrow
  trail \ S \models as \ CNot \ D \Longrightarrow
  T \sim update\text{-}conflicting (Some D) S \Longrightarrow
  conflict \ S \ T
inductive-cases conflictE: conflict S T
inductive backtrack :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
```

```
backtrack\text{-}rule\text{:}
  conflicting S = Some D \Longrightarrow
  L \in \# D \Longrightarrow
  (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (trail\ S)) \Longrightarrow
  get-level (trail S) L = backtrack-lvl S \Longrightarrow
  get-level (trail S) L = get-maximum-level (trail S) D \Longrightarrow
  get-maximum-level (trail S) (D - \{\#L\#\}) \equiv i \Longrightarrow
  get-level (trail S) K = i + 1 \Longrightarrow
  T \sim cons-trail (Propagated L D)
        (reduce-trail-to M1
          (add-learned-cls D
             (update-backtrack-lvl\ i
               (update\text{-}conflicting\ None\ S)))) \Longrightarrow
  backtrack \ S \ T
inductive-cases backtrackE: backtrack S T
thm backtrackE
inductive decide :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
decide-rule:
  conflicting S = None \Longrightarrow
  undefined-lit (trail S) L \Longrightarrow
  atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S) \Longrightarrow
  T \sim cons-trail (Decided L) (incr-lvl S) \Longrightarrow
  decide S T
inductive-cases decideE: decide S T
inductive skip :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
skip-rule:
  trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
   conflicting S = Some E \Longrightarrow
   -L \notin \# E \Longrightarrow
   E \neq \{\#\} \Longrightarrow
   T \sim tl-trail S \Longrightarrow
   skip S T
inductive-cases skipE: skip S T
get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D = k \vee k = 0 (that was in a previous
version of the book) is equivalent to get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D
= k, when the structural invariants holds.
inductive resolve :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
resolve-rule: trail S \neq [] \Longrightarrow
  hd-trail S = Propagated L E \Longrightarrow
  L \in \# E \Longrightarrow
  conflicting S = Some D' \Longrightarrow
  -L \in \# D' \Longrightarrow
  get-maximum-level (trail S) ((remove1-mset (-L) D')) = backtrack-lvl S \Longrightarrow
  T \sim update\text{-}conflicting (Some (resolve\text{-}cls L D' E))
    (tl\text{-}trail\ S) \Longrightarrow
  resolve S T
```

 $\mathbf{inductive\text{-}cases}\ \mathit{resolveE} \colon \mathit{resolve}\ S\ T$

```
inductive restart :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
restart: state S = (M, N, U, k, None) \Longrightarrow \neg M \models asm clauses S
  \implies T \sim restart\text{-}state S
  \implies restart \ S \ T
inductive-cases restartE: restart S T
We add the condition C \notin \# init\text{-}clss S, to maintain consistency even without the strategy.
inductive forget :: 'st \Rightarrow 'st \Rightarrow bool where
forget-rule:
  conflicting S = None \Longrightarrow
  C \in \# learned\text{-}clss \ S \Longrightarrow
  \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
  C \notin set (get-all-mark-of-propagated (trail S)) \Longrightarrow
  C \notin \# init\text{-}clss S \Longrightarrow
  T \sim remove\text{-}cls \ C \ S \Longrightarrow
  forget S T
inductive-cases forgetE: forget S T
inductive cdcl_W-rf :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: restart S T \Longrightarrow cdcl_W-rf S T
forget: forget S T \Longrightarrow cdcl_W-rf S T
inductive cdcl_W-bj :: 'st \Rightarrow 'st \Rightarrow bool where
skip: skip \ S \ S' \Longrightarrow cdcl_W - bj \ S \ S'
resolve: resolve S S' \Longrightarrow cdcl_W-bj S S'
backtrack: backtrack \ S \ S' \Longrightarrow cdcl_W \text{-bj} \ S \ S'
inductive-cases cdcl_W-bjE: cdcl_W-bj S T
inductive cdcl_W-o :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
decide: decide \ S \ S' \Longrightarrow cdcl_W \text{-}o \ S \ S' \mid
bj: cdcl_W-bj S S' \Longrightarrow cdcl_W-o S S'
inductive cdcl_W :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
\textit{propagate: propagate } S \ S' \Longrightarrow \ cdcl_W \ S \ S' \mid
conflict: conflict S S' \Longrightarrow cdcl_W S S'
other: cdcl_W-o S S' \Longrightarrow cdcl_W S S'
rf: cdcl_W - rf S S' \Longrightarrow cdcl_W S S'
lemma rtranclp-propagate-is-rtranclp-cdcl_W:
  propagate^{**} S S' \Longrightarrow cdcl_{W}^{**} S S'
  apply (induction rule: rtranclp-induct)
    apply simp
  apply (frule propagate)
  using rtranclp-trans[of cdcl_W] by blast
lemma cdcl_W-all-rules-induct[consumes 1, case-names propagate conflict forget restart decide skip
    resolve backtrack]:
  fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
    propagate: \bigwedge T. propagate S T \Longrightarrow P S T and
    conflict: \bigwedge T. conflict S T \Longrightarrow P S T and
    forget: \bigwedge T. forget S \ T \Longrightarrow P \ S \ T and
```

```
restart: \bigwedge T. restart S T \Longrightarrow P S T and
    decide: \bigwedge T. \ decide \ S \ T \Longrightarrow P \ S \ T \ and
    skip: \bigwedge T. \ skip \ S \ T \Longrightarrow P \ S \ T \ and
    resolve: \bigwedge T. resolve S T \Longrightarrow P S T and
    \mathit{backtrack} : \bigwedge T. \ \mathit{backtrack} \ S \ T \Longrightarrow P \ S \ T
  shows P S S'
  using assms(1)
proof (induct S' rule: cdcl<sub>W</sub>.induct)
  case (propagate S') note propagate = this(1)
  then show ?case using assms(2) by auto
next
  case (conflict S')
  then show ?case using assms(3) by auto
  case (other S')
  then show ?case
    proof (induct rule: cdcl_W-o.induct)
      case (decide\ U)
      then show ?case using assms(6) by auto
    next
      case (bj S')
      then show ?case using assms(7-9) by (induction rule: cdcl_W-bj.induct) auto
    \mathbf{qed}
\mathbf{next}
  case (rf S')
  then show ?case
    by (induct rule: cdcl<sub>W</sub>-rf.induct) (fast dest: forget restart)+
qed
lemma cdcl_W-all-induct consumes 1, case-names propagate conflict forget restart decide skip
    resolve backtrack]:
  fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
    propagateH: \bigwedge C \ L \ T. \ conflicting \ S = None \Longrightarrow
        C \in \# \ clauses \ S \Longrightarrow
       L \in \# C \Longrightarrow
       trail \ S \models as \ CNot \ (remove1\text{-}mset \ L \ C) \Longrightarrow
       undefined-lit (trail\ S)\ L \Longrightarrow
        T \sim cons-trail (Propagated L C) S \Longrightarrow
        P S T and
    conflictH: \bigwedge D \ T. \ conflicting \ S = None \Longrightarrow
       D \in \# \ clauses \ S \Longrightarrow
       trail \ S \models as \ CNot \ D \Longrightarrow
        T \sim update\text{-}conflicting (Some D) S \Longrightarrow
        P S T and
    forgetH: \bigwedge C \ T. \ conflicting \ S = None \Longrightarrow
      C \in \# learned\text{-}clss S \Longrightarrow
      \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
      C \notin set (get-all-mark-of-propagated (trail S)) \Longrightarrow
      C \notin \# init\text{-}clss S \Longrightarrow
      T \sim remove\text{-}cls \ C \ S \Longrightarrow
      PST and
    restartH: \bigwedge T. \neg trail \ S \models asm \ clauses \ S \Longrightarrow
      conflicting S = None \Longrightarrow
      T \sim restart\text{-}state \ S \Longrightarrow
```

```
PST and
    decideH: \bigwedge L \ T. \ conflicting \ S = None \Longrightarrow
      undefined-lit (trail S) L \Longrightarrow
      atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)\Longrightarrow
      T \sim cons\text{-trail} (Decided L) (incr-lvl S) \Longrightarrow
      PST and
    skipH: \bigwedge L \ C' \ M \ E \ T.
      trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
      conflicting S = Some E \Longrightarrow
      -L \notin \# E \Longrightarrow E \neq \{\#\} \Longrightarrow
      T \sim tl-trail S \Longrightarrow
      PST and
    resolveH: \land L \ E \ M \ D \ T.
      trail\ S = Propagated\ L\ E\ \#\ M \Longrightarrow
      L \in \# E \Longrightarrow
      hd-trail S = Propagated L E \Longrightarrow
      conflicting S = Some D \Longrightarrow
      -L \in \# D \Longrightarrow
      get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S \Longrightarrow
      T \sim update\text{-}conflicting
        (Some\ (resolve\text{-}cls\ L\ D\ E))\ (tl\text{-}trail\ S) \Longrightarrow
      P S T and
    backtrack H\colon \bigwedge L\ D\ K\ i\ M1\ M2\ T.
      conflicting S = Some D \Longrightarrow
      L \in \# D \Longrightarrow
      (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (trail\ S)) \Longrightarrow
      get-level (trail S) L = backtrack-lvl S \Longrightarrow
      get-level (trail S) L = get-maximum-level (trail S) D \Longrightarrow
      get-maximum-level (trail S) (remove1-mset L D) \equiv i \Longrightarrow
      get-level (trail S) K = i+1 \Longrightarrow
      T \sim cons-trail (Propagated L D)
            (reduce-trail-to M1
               (add-learned-cls D
                 (update-backtrack-lvl i
                   (update\text{-}conflicting\ None\ S)))) \Longrightarrow
       PST
  shows P S S'
  using cdcl_W
proof (induct S S' rule: cdcl<sub>W</sub>-all-rules-induct)
  case (propagate S')
  then show ?case
    by (auto elim!: propagateE intro!: propagateH)
next
  case (conflict S')
  then show ?case
    by (auto elim!: conflictE intro!: conflictH)
next
  case (restart S')
  then show ?case
    by (auto elim!: restartE intro!: restartH)
next
  case (decide\ T)
  then show ?case
    by (auto elim!: decideE intro!: decideH)
\mathbf{next}
  case (backtrack S')
```

```
then show ?case by (auto elim!: backtrackE intro!: backtrackH
    simp del: state-simp simp add: state-eq-def)
next
  case (forget S')
  then show ?case by (auto elim!: forgetE intro!: forgetH)
next
  case (skip S')
  then show ?case by (auto elim!: skipE intro!: skipH)
next
  case (resolve S')
  then show ?case
   by (cases trail S) (auto elim!: resolveE intro!: resolveH)
lemma cdcl_W-o-induct[consumes 1, case-names decide skip resolve backtrack]:
 fixes S :: 'st
 assumes cdcl_W: cdcl_W-o S T and
    decideH: \land L \ T. \ conflicting \ S = None \Longrightarrow undefined-lit \ (trail \ S) \ L
      \implies atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S)
      \implies T \sim cons\text{-trail (Decided L) (incr-lvl S)}
      \implies P S T  and
   skipH: \bigwedge L \ C' \ M \ E \ T.
      trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
      conflicting S = Some E \Longrightarrow
      -L \notin \# E \Longrightarrow E \neq \{\#\} \Longrightarrow
      T \sim tl-trail S \Longrightarrow
      PST and
    resolveH: \land L \ E \ M \ D \ T.
      trail\ S = Propagated\ L\ E\ \#\ M \Longrightarrow
      L \in \# E \Longrightarrow
      hd-trail S = Propagated L E \Longrightarrow
      conflicting S = Some D \Longrightarrow
      -L \in \# D \Longrightarrow
      get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S \Longrightarrow
      T \sim update\text{-}conflicting
        (Some (resolve-cls \ L \ D \ E)) \ (tl-trail \ S) \Longrightarrow
      P S T and
    backtrackH: \bigwedge L D K i M1 M2 T.
      conflicting S = Some D \Longrightarrow
      L \in \# D \Longrightarrow
      (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (trail\ S)) \Longrightarrow
      get-level (trail S) L = backtrack-lvl S \Longrightarrow
      get-level (trail S) L = get-maximum-level (trail S) D \Longrightarrow
      get-maximum-level (trail S) (remove1-mset L D) \equiv i \Longrightarrow
      get-level (trail S) K = i + 1 \Longrightarrow
      T \sim cons-trail (Propagated L D)
               (reduce-trail-to M1
                 (add-learned-cls D
                   (update-backtrack-lvl i
                      (update\text{-}conflicting\ None\ S)))) \Longrightarrow
       PST
  shows P S T
  using cdcl_W apply (induct T rule: cdcl_W-o.induct)
  using assms(2) apply (auto elim: decideE)[1]
  apply (elim\ cdcl_W-bjE\ skipE\ resolveE\ backtrackE)
   apply (frule skipH; simp)
```

```
apply (cases trail S; auto elim!: resolveE intro!: resolveH)
 apply (frule backtrackH; simp)
 done
thm cdcl_W-o.induct
lemma cdcl_W-o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
  fixes S T :: 'st
 assumes
   cdcl_W-o S T and
   \bigwedge T. decide S T \Longrightarrow P S T and
   \bigwedge T. backtrack S T \Longrightarrow P S T and
   \bigwedge T. skip S T \Longrightarrow P S T and
   \bigwedge T. resolve S T \Longrightarrow P S T
 shows P S T
 using assms by (induct T rule: cdcl_W-o.induct) (auto simp: cdcl_W-bj.simps)
lemma cdcl_W-o-rule-cases consumes 1, case-names decide backtrack skip resolve]:
 fixes S T :: 'st
 assumes
   cdcl_W-o S T and
   decide\ S\ T \Longrightarrow P and
   backtrack \ S \ T \Longrightarrow P \ {\bf and}
   skip S T \Longrightarrow P and
   resolve S T \Longrightarrow P
 shows P
 using assms by (auto simp: cdcl_W-o.simps cdcl_W-bj.simps)
```

2.1.3 Structural Invariants

Properties of the trail

We here establish that:

- the consistency of the trail;
- the fact that there is no duplicate in the trail.

```
lemma backtrack-lit-skiped:
```

```
assumes
    L: get-level (trail S) L = backtrack-lvl S and
    M1: (Decided \ K \ \# \ M1, \ M2) \in set \ (get-all-ann-decomposition \ (trail \ S)) and
    no-dup: no-dup (trail S) and
    bt-l: backtrack-lvl S = length (filter is-decided (trail S)) and
    lev-K: get-level (trail S) K = i + 1
  shows atm-of L \notin atm-of ' lits-of-l M1
proof (rule ccontr)
  let ?M = trail S
  assume L-in-M1: \neg atm\text{-}of\ L \notin atm\text{-}of\ ``lits\text{-}of\text{-}l\ M1"
  obtain c where
    Mc: trail S = c @ M2 @ Decided K \# M1
    using M1 by blast
  have atm\text{-}of\ L \notin atm\text{-}of ' lits\text{-}of\text{-}l\ c and atm\text{-}of\ L \notin atm\text{-}of ' lits\text{-}of\text{-}l\ M2 and
    atm\text{-}of\ L \neq atm\text{-}of\ K and Kc:\ atm\text{-}of\ K \notin atm\text{-}of ' lits-of-l c and
    KM2: atm\text{-}of \ K \notin atm\text{-}of \ ' \ lits\text{-}of\text{-}l \ M2
    using L-in-M1 no-dup unfolding Mc lits-of-def by force+
  then have g\text{-}M\text{-}eq\text{-}g\text{-}M1: get\text{-}level\ ?M\ L=get\text{-}level\ M1\ L
```

```
using L-in-M1 unfolding Mc by auto
 then have get-level M1 L < Suc i
   using count-decided-ge-get-level[of L M1] KM2 lev-K Kc unfolding Mc
   by (auto simp del: count-decided-ge-get-level)
 moreover have Suc\ i \leq backtrack-lvl S using bt-l KM2\ lev-K Kc unfolding Mc by (simp\ add:\ Mc)
 ultimately show False using L g-M-eq-g-M1 by auto
qed
lemma cdcl_W-distinctinv-1:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   bt-lev: backtrack-lvl S = count-decided (trail S)
 shows no-dup (trail S')
 using assms
proof (induct rule: cdcl_W-all-induct)
 case (backtrack L D K i M1 M2 T) note decomp = this(3) and L = this(4) and lev-K = this(7)
   T = this(8) and n-d = this(9)
 obtain c where Mc: trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 have no-dup (M2 @ Decided K \# M1)
   using Mc n-d by fastforce
 moreover have atm\text{-}of\ L\notin atm\text{-}of ' lits\text{-}of\text{-}l\ M1
   using backtrack-lit-skiped of L S K M1 M2 i L decomp lev-K n-d bt-lev by fast
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map lits-of-def image-image)
 ultimately show ?case using decomp T n-d by (simp add: lits-of-def image-image)
qed (auto simp: defined-lit-map)
Item 1 page 81 of Weidenbach's book
lemma cdcl_W-consistent-inv-2:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   backtrack-lvl S = count-decided (trail S)
 shows consistent-interp (lits-of-l (trail S'))
 using cdcl_W-distinctinv-1 [OF assms] distinct-consistent-interp by fast
lemma cdcl_W-o-bt:
 assumes
   cdcl_W-o S S' and
   backtrack-lvl S = count-decided (trail S) and
   n\text{-}d[simp]: no\text{-}dup\ (trail\ S)
 shows backtrack-lvl S' = count-decided (trail S')
 using assms
proof (induct rule: cdcl_W-o-induct)
 case (backtrack L D K i M1 M2 T) note decomp = this(3) and levK = this(7) and T = this(8)
and
 level = this(9)
 have [simp]: trail (reduce-trail-to M1 S) = M1
   using decomp by auto
 obtain c where M: trail S = c @ M2 @ Decided K \# M1 using decomp by auto
 moreover have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
   using backtrack-lit-skiped[of L S K M1 M2 i] backtrack(4,8,9) levK decomp
   by (fastforce simp add: lits-of-def)
```

```
moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map lits-of-def image-image)
   have atm\text{-}of\ K \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M1} and atm\text{-}of\ K \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ c
     and atm\text{-}of\ K \notin atm\text{-}of ' lits\text{-}of\text{-}l\ M2
     using T n-d levK unfolding M by (auto simp: lits-of-def)
 ultimately show ?case
   using T levK unfolding M by (auto dest!: append-cons-eq-upt-length)
qed auto
lemma cdcl_W-rf-bt:
 assumes
    cdcl_W-rf S S' and
   backtrack-lvl S = count-decided (trail S)
 shows backtrack-lvl S' = count-decided (trail S')
 using assms by (induct rule: cdcl_W-rf.induct) (auto elim: restartE forgetE)
Item 7 page 81 of Weidenbach's book
lemma cdcl_W-bt:
 assumes
   cdcl_W S S' and
   backtrack-lvl S = count-decided (trail S) and
   no-dup (trail S)
  shows backtrack-lvl S' = count-decided (trail S')
 using assms by (induct rule: cdcl_W.induct) (auto simp: cdcl_W-o-bt cdcl_W-rf-bt
   elim: conflictE propagateE)
We write 1 + count\text{-}decided (trail S) instead of backtrack-lvl S to avoid non termination of
rewriting.
definition cdcl_W-M-level-inv :: 'st \Rightarrow bool where
cdcl_W-M-level-inv S \longleftrightarrow
  consistent-interp (lits-of-l (trail S))
 \wedge no-dup (trail S)
 \wedge backtrack-lvl S = count\text{-}decided (trail S)
lemma cdcl_W-M-level-inv-decomp:
 assumes cdcl_W-M-level-inv S
 shows
    consistent-interp (lits-of-l (trail S)) and
   no-dup (trail S)
 using assms unfolding cdcl<sub>W</sub>-M-level-inv-def by fastforce+
\mathbf{lemma} \ \mathit{cdcl}_W\text{-}\mathit{consistent-inv} :
 fixes S S' :: 'st
 assumes
   cdcl_W S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms cdcl<sub>W</sub>-consistent-inv-2 cdcl<sub>W</sub>-distinctinv-1 cdcl<sub>W</sub>-bt
 unfolding cdcl<sub>W</sub>-M-level-inv-def by meson+
lemma rtranclp-cdcl_W-consistent-inv:
 assumes
   cdcl_W^{**} S S' and
   cdcl_W-M-level-inv S
```

```
shows cdcl_W-M-level-inv S'
 using assms by (induct rule: rtranclp-induct) (auto intro: cdcl_W-consistent-inv)
lemma tranclp-cdcl_W-consistent-inv:
 assumes
   cdcl_W^{++} S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by (induct rule: tranclp-induct) (auto intro: cdcl<sub>W</sub>-consistent-inv)
lemma cdcl_W-M-level-inv-S0-cdcl_W[simp]:
 cdcl_W-M-level-inv (init-state N)
 unfolding cdcl_W-M-level-inv-def by auto
lemma cdcl_W-M-level-inv-qet-level-le-backtrack-lvl:
 assumes inv: cdcl_W-M-level-inv S
 shows get-level (trail S) L \leq backtrack-lvl S
 using inv unfolding cdcl_W-M-level-inv-def
 by simp
lemma backtrack-ex-decomp:
 assumes
   M-l: cdcl_W-M-level-inv S and
   i	ext{-}S:\ i<\ backtrack	ext{-}lvl\ S
 shows \exists K \ M1 \ M2. (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) \land
   get-level (trail S) K = Suc i
proof -
 let ?M = trail S
 have i < count\text{-}decided (trail S)
   using i-S M-l by (auto simp: cdcl_W-M-level-inv-def)
 then obtain c \ K \ c' where tr-S: trail \ S = c \ @ \ Decided \ K \ \# \ c' and
   lev-K: get-level (trail S) K = Suc i
   using le-count-decided-decomp[of trail S i] M-l by (auto simp: cdcl<sub>W</sub>-M-level-inv-def)
 obtain M1 M2 where (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S))
   using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons unfolding tr-S by fast
 then show ?thesis using lev-K by blast
qed
Compatibility with op \sim
lemma propagate-state-eq-compatible:
 assumes
   propa: propagate S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows propagate S' T'
proof -
 obtain CL where
   conf: conflicting S = None  and
   C: C \in \# clauses S  and
   L: L \in \# C \text{ and }
   tr: trail \ S \models as \ CNot \ (remove1-mset \ L \ C) and
   undef: undefined-lit (trail S) L and
   T: T \sim cons-trail (Propagated L C) S
 using propa by (elim propagateE) auto
```

```
have C': C \in \# clauses S'
   using SS' C
   by (auto simp: state-eq-def clauses-def simp del: state-simp)
 show ?thesis
   apply (rule propagate-rule[of - C])
   using state-eq-sym[of S S'] SS' conf C' L tr undef TT' T
   by (auto simp: state-eq-def simp del: state-simp)
qed
lemma conflict-state-eq-compatible:
 assumes
   confl: conflict S T and
   TT': T \sim T' and
   SS': S \sim S'
 shows conflict S' T'
proof -
 obtain D where
   conf: conflicting S = None  and
   D: D \in \# \ clauses \ S \ \mathbf{and}
   tr: trail S \models as CNot D and
   T: T \sim update\text{-conflicting (Some D) } S
 using confl by (elim conflictE) auto
 have D': D \in \# clauses S'
   using D SS' by fastforce
 show ?thesis
   apply (rule conflict-rule[of - D])
   using state-eq-sym[of S S'| SS' conf D' tr TT' T
   by (auto simp: state-eq-def simp del: state-simp)
qed
{f lemma}\ backtrack	ext{-}state	ext{-}eq	ext{-}compatible:
 assumes
   bt: backtrack S T and
   SS': S \sim S' and
   TT': T \sim T' and
   inv: cdcl_W-M-level-inv S
 shows backtrack S' T'
proof -
 obtain D L K i M1 M2 where
   conf: conflicting S = Some D  and
   L\!\!:L\in \#\ D\ \mathbf{and}
   decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
   lev: get-level (trail\ S)\ L = backtrack-lvl S and
   max: get-level (trail S) L = get-maximum-level (trail S) D and
   max-D: get-maximum-level (trail\ S) (remove1-mset\ L\ D) \equiv i and
   lev-K: qet-level (trail S) K = Suc i  and
   T: T \sim cons-trail (Propagated L D)
             (reduce-trail-to M1
               (add-learned-cls D)
                 (update-backtrack-lvl\ i
                  (update\text{-}conflicting\ None\ S))))
 using bt inv by (elim backtrackE) metis
 have D': conflicting S' = Some D
```

```
using SS' conf by (cases conflicting S') auto
 have T': T' \sim cons-trail (Propagated L D)
    (reduce-trail-to M1 (add-learned-cls D
    (update-backtrack-lvl i (update-conflicting None S'))))
   using TT' unfolding state-eq-def
   using decomp D' inv SS' T by (auto simp add: cdcl_W-M-level-inv-def)
 show ?thesis
   apply (rule \ backtrack-rule[of - D])
      apply (rule D')
     using state-eq-sym[of S S'] TT' SS' D' conf L decomp lev max max-D T
     apply (auto simp: state-eq-def simp del: state-simp)[]
     using decomp SS' lev SS' max-D max T' lev-K by (auto simp: state-eq-def simp del: state-simp)
qed
lemma decide-state-eq-compatible:
 assumes
   decide S T and
   S \sim S' and
   T\,\sim\,T^{\,\prime}
 shows decide S' T'
 using assms apply (elim\ decideE)
 by (rule decide-rule) (auto simp: state-eq-def clauses-def simp del: state-simp)
\mathbf{lemma}\ skip\text{-}state\text{-}eq\text{-}compatible\text{:}
 assumes
   skip: skip S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows skip S' T'
proof -
 obtain L C' M E where
   tr: trail S = Propagated L C' \# M and
   raw: conflicting S = Some E  and
   L: -L \notin \# E and
   E: E \neq \{\#\} and
   T: T \sim tl\text{-}trail S
 using skip by (elim \ skipE) \ simp
 obtain E' where E': conflicting S' = Some E'
   using SS' raw by (cases conflicting S') (auto simp: state-eq-def simp del: state-simp)
 show ?thesis
   apply (rule skip-rule)
     using tr raw L E T SS' apply (auto simp: simp del: )[]
     using E' apply simp
    using E'SS' L raw E apply (auto simp: state-eq-def simp del: state-simp)[2]
   using T TT' SS' by (auto simp: state-eq-def simp del: state-simp)
qed
{f lemma}\ resolve-state-eq-compatible:
 assumes
   res: resolve S T and
   TT': T \sim T' and
   SS': S \sim S'
 shows resolve S' T'
proof -
```

```
obtain E D L where
   tr: trail S \neq [] and
   hd: hd\text{-}trail\ S = Propagated\ L\ E\ \mathbf{and}
   L: L \in \# E  and
   raw: conflicting S = Some D  and
   LD: -L \in \# D and
   i: get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S and
   T: T \sim update\text{-conflicting (Some (resolve\text{-}cls L D E)) (tl\text{-}trail S)}
 using assms by (elim resolveE) simp
 obtain D' where
   D': conflicting S' = Some D'
   using SS' raw by fastforce
 have [simp]: D = D'
   using D'SS' raw state-simp(5) by fastforce
 have T'T: T' \sim T
   using TT' state-eq-sym by auto
 show ?thesis
   apply (rule resolve-rule)
         using tr SS' apply simp
        using hd SS' apply simp
       using L apply simp
      using D' apply simp
     using D'SS' raw LD apply (auto simp add: state-eq-def simp del: state-simp)[]
     using D'SS' raw LD apply (auto simp add: state-eq-def simp del: state-simp)
    using raw SS' i apply (auto simp add: state-eq-def simp del: state-simp)[]
   using T T'T SS' by (auto simp: state-eq-def simp del: state-simp)
qed
lemma forget-state-eq-compatible:
 assumes
   forget: forget S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows forget S' T'
proof -
 obtain C where
   conf: conflicting S = None  and
   C: C \in \# learned\text{-}clss S  and
   tr: \neg(trail\ S) \models asm\ clauses\ S and
   C1: C \notin set (get-all-mark-of-propagated (trail S)) and
   C2: C \notin \# init\text{-}clss S and
   T: T \sim remove\text{-}cls \ C \ S
   using forget by (elim forgetE) simp
 show ?thesis
   apply (rule forget-rule)
       using SS' conf apply simp
      using CSS' apply simp
     using SS' tr apply simp
     using SS' C1 apply simp
    using SS' C2 apply simp
   using T TT' SS' by (auto simp: state-eq-def simp del: state-simp)
qed
```

lemma $cdcl_W$ -state-eq-compatible:

```
assumes
   cdcl_W S T and \neg restart S T and
   S \sim S'
   T \sim T' and
   cdcl_W-M-level-inv S
 shows cdcl_W S' T'
 using assms by (meson backtrack backtrack-state-eq-compatible bj cdcl_W.simps\ cdcl_W-o-rule-cases
   cdcl_W\textit{-rf.} cases\ conflict\textit{-state-eq-compatible}\ decide\ decide\textit{-state-eq-compatible}\ forget
   forget-state-eq-compatible propagate-state-eq-compatible resolve resolve-state-eq-compatible
   skip\ skip\ -state\ -eq\ -compatible\ state\ -eq\ -ref)
lemma cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj S T and cdcl_W-M-level-inv S
   T \sim T'
 shows cdcl_W-bj S T'
 using assms by (meson backtrack backtrack-state-eq-compatible cdcl<sub>W</sub>-bjE resolve
   resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)
lemma tranclp-cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj^{++} S T and inv: cdcl_W-M-level-inv S and
   S \sim S' and
   T \sim T'
 shows cdcl_W-bj^{++} S' T'
 using assms
proof (induction arbitrary: S' T')
 case base
 then show ?case
   unfolding transformed by (meson backtrack-state-eq-compatible cdcl_W-bj.simps
     resolve-state-eq-compatible rtranclp-unfold skip-state-eq-compatible)
next
 case (step\ T\ U) note IH = this(3)[OF\ this(4-5)]
 have cdcl_W^{++} S T
   using tranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ step.hyps(1)\ cdcl_W.other\ cdcl_W-o.bj\ by\ blast
 then have cdcl_W-M-level-inv T
   using inv tranclp-cdcl_W-consistent-inv by blast
 then have cdcl_W-bj^{++} T T'
   using \langle U \sim T' \rangle cdcl_W-bj-state-eq-compatible[of T U] \langle cdcl_W-bj T U \rangle by auto
 then show ?case
   using IH[of T] by auto
qed
Conservation of some Properties
lemma cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl_W-o-induct) (auto simp: inv cdcl_W-M-level-inv-decomp)
lemma tranclp-cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o^{++} S S' and
   inv: cdcl_W-M-level-inv S
```

```
shows init-clss S = init-clss S'
  using assms apply (induct rule: tranclp.induct)
  by (auto dest: cdcl_W-o-no-more-init-clss
   dest!: tranclp-cdcl_W-consistent-inv dest: tranclp-mono-explicit[of <math>cdcl_W-o - - cdcl_W]
   simp: other)
lemma rtranclp-cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o^{**} S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms unfolding rtranclp-unfold by (auto intro: tranclp-cdcl<sub>W</sub>-o-no-more-init-clss)
lemma cdcl_W-init-clss:
 assumes
   cdcl_W \ S \ T and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss T
  using assms by (induction rule: cdcl_W-all-induct)
  (auto simp: inv \ cdcl_W-M-level-inv-decomp not-in-iff)
lemma rtranclp-cdcl_W-init-clss:
  cdcl_{W}^{**} S T \Longrightarrow cdcl_{W} - M - level - inv S \Longrightarrow init - clss S = init - clss T
 by (induct rule: rtranclp-induct) (auto dest: cdcl<sub>W</sub>-init-clss rtranclp-cdcl<sub>W</sub>-consistent-inv)
lemma tranclp\text{-}cdcl_W\text{-}init\text{-}clss:
  cdcl_W^{++} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
 using rtranclp-cdcl_W-init-clss[of S T] unfolding rtranclp-unfold by auto
```

Learned Clause

This invariant shows that:

- the learned clauses are entailed by the initial set of clauses.
- the conflicting clause is entailed by the initial set of clauses.
- the marks are entailed by the clauses.

```
definition cdcl_W-learned-clause (S :: 'st) \longleftrightarrow (init\text{-}clss \ S \models psm \ learned\text{-}clss \ S \land (\forall \ T. \ conflicting \ S = Some \ T \longrightarrow init\text{-}clss \ S \models pm \ T) \land set \ (get\text{-}all\text{-}mark\text{-}of\text{-}propagated \ (trail \ S)) \subseteq set\text{-}mset \ (clauses \ S))
```

of Weidenbach's book for the inital state and some additional structural properties about the trail.

```
lemma cdcl_W-learned-clause-S0-cdcl_W[simp]: cdcl_W-learned-clause (init-state N) unfolding cdcl_W-learned-clause-def by auto Item 4 page 81 of Weidenbach's book lemma cdcl_W-learned-clss: assumes cdcl_W S S' and learned: cdcl_W-learned-clause S and
```

```
lev-inv: cdcl_W-M-level-inv S
 shows cdcl_W-learned-clause S'
 using assms(1) lev-inv learned
proof (induct rule: cdcl<sub>W</sub>-all-induct)
 case (backtrack K i M1 M2 L D T) note decomp = this(3) and confl = this(1) and lev-K = this
(7) and
   undef = this(8) and T = this(9)
 show ?case
   using decomp confl learned undef T lev-K unfolding cdcl<sub>W</sub>-learned-clause-def
   by (auto dest!: get-all-ann-decomposition-exists-prepend
     simp: clauses-def \ lev-inv \ cdcl_W-M-level-inv-decomp dest: true-clss-clss-left-right)
next
 case (resolve L \ C \ M \ D) note trail = this(1) and CL = this(2) and confl = this(4) and DL = this(5)
   and lvl = this(6) and T = this(7)
 moreover
   have init-clss S \models psm \ learned-clss S
     using learned trail unfolding cdcl<sub>W</sub>-learned-clause-def clauses-def by auto
   then have init-clss S \models pm \ C + \{\#L\#\}
     using trail\ learned\ unfolding\ cdcl_W-learned-clause-def clauses-def
     by (auto dest: true-clss-clss-in-imp-true-clss-cls)
 moreover have remove1-mset (-L) D + \{\#-L\#\} = D
   using DL by (auto simp: multiset-eq-iff)
 moreover have remove1-mset L C + \{\#L\#\} = C
   using CL by (auto simp: multiset-eq-iff)
 ultimately show ?case
   using learned T
   by (auto dest: mk-disjoint-insert
     simp\ add: cdcl_W-learned-clause-def clauses-def
     intro!: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or[of - - L])
next
 case (restart T)
 then show ?case
   using learned learned-clss-restart-state[of T]
   by (auto
     simp: clauses-def \ state-eq-def \ cdcl_W-learned-clause-def
     simp del: state-simp
     dest: true-clss-clssm-subsetE)
next
 case propagate
 then show ?case using learned by (auto simp: cdcl_W-learned-clause-def)
next
 case conflict
 then show ?case using learned
   by (fastforce simp: cdcl_W-learned-clause-def clauses-def
     true-clss-clss-in-imp-true-clss-cls)
next
 case (forget U)
 then show ?case using learned
   by (auto simp: cdcl<sub>W</sub>-learned-clause-def clauses-def split: if-split-asm)
qed (auto simp: cdcl_W-learned-clause-def clauses-def)
lemma rtranclp-cdcl_W-learned-clss:
 assumes
   cdcl_W^{**} S S' and
   cdcl_W-M-level-inv S
   cdcl_W-learned-clause S
```

```
shows cdcl_W-learned-clause S' using assms by induction (auto dest: cdcl_W-learned-clss intro: rtranclp-cdcl_W-consistent-inv)
```

No alien atom in the state

This invariant means that all the literals are in the set of clauses. These properties are implicit in Weidenbach's book.

```
definition no-strange-atm S' \longleftrightarrow (
   (\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-mm (init-clss S'))
  \land (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')
       \rightarrow atms-of\ mark \subseteq atms-of-mm\ (init-clss\ S'))
  \land atms-of-mm (learned-clss S') \subseteq atms-of-mm (init-clss S')
 \land atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S')) \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S'))
lemma no-strange-atm-decomp:
  assumes no-strange-atm S
 shows conflicting S = Some \ T \Longrightarrow atms-of \ T \subseteq atms-of-mm \ (init-clss \ S)
 and (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S))
    \longrightarrow atms\text{-}of \ mark \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S))
  and atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S)
 and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
  using assms unfolding no-strange-atm-def by blast+
lemma no-strange-atm-S0 [simp]: no-strange-atm (init-state N)
  unfolding no-strange-atm-def by auto
lemma in-atms-of-implies-atm-of-on-atms-of-ms:
  C + \{\#L\#\} \in \#A \implies x \in atms\text{-}of \ C \implies x \in atms\text{-}of\text{-}mm \ A
  using multi-member-split by fastforce
\mathbf{lemma}\ propagate-no\text{-}strange\text{-}atm\text{-}inv:
  assumes
   propagate S T and
   alien: no-strange-atm S
  shows no-strange-atm T
  using assms(1)
proof (induction)
  case (propagate-rule CLT) note confl = this(1) and C = this(2) and C-L = this(3) and
   tr = this(4) and undef = this(5) and T = this(6)
  have atm-CL: atms-of C \subseteq atms-of-mm (init-clss S)
   using C alien unfolding no-strange-atm-def
   by (auto simp: clauses-def atms-of-ms-def)
  show ?case
   unfolding no-strange-atm-def
   proof (intro conjI allI impI, qoal-cases)
     case 1
     then show ?case
       using confl T undef by auto
   next
     case (2 L' mark')
     then show ?case
       using C-L T alien undef atm-CL unfolding no-strange-atm-def clauses-def by (auto 5 5)
   next
     case (3)
     show ?case using T alien undef unfolding no-strange-atm-def by auto
```

```
next
     case (4)
     show ?case
       using T alien undef C-L atm-CL unfolding no-strange-atm-def by (auto simp: atms-of-def)
    qed
qed
lemma in-atms-of-remove1-mset-in-atms-of:
  x \in atms\text{-}of \ (remove1\text{-}mset \ L \ C) \Longrightarrow x \in atms\text{-}of \ C
 using in-diffD unfolding atms-of-def by fastforce
lemma cdcl_W-no-strange-atm-explicit:
  assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   conf: \forall T. \ conflicting \ S = Some \ T \longrightarrow atms-of \ T \subseteq atms-of-mm \ (init-clss \ S) and
    decided: \forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S)
       \rightarrow atms-of mark \subseteq atms-of-mm \ (init-clss S) and
   learned: atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S) and
   trail: atm-of ' (lits-of-l (trail S)) \subseteq atms-of-mm (init-clss S)
  shows
    (\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-mm (init-clss S')) \land
   (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')
      \longrightarrow atms\text{-}of \ mark \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S')) \land
   atms-of-mm (learned-clss S') \subseteq atms-of-mm (init-clss S') \wedge
   atm-of ' (lits-of-l (trail S')) \subseteq atms-of-mm (init-clss S')
   (is ?CS' \land ?MS' \land ?US' \land ?VS')
  using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
  case (propagate C L T) note confl = this(1) and C-L = this(2) and tr = this(3) and undef =
this(4)
 and T = this(5)
 show ?case
   using propagate-rule OF propagate.hyps(1-3) - propagate.hyps(5,6), simplified
   propagate.hyps(4) propagate-no-strange-atm-inv[of S T]
   conf decided learned trail unfolding no-strange-atm-def by presburger
  case (decide\ L)
  then show ?case using learned decided conf trail unfolding clauses-def by auto
next
  case (skip\ L\ C\ M\ D)
  then show ?case using learned decided conf trail by auto
next
  case (conflict D T) note D-S = this(2) and T = this(4)
  have D: atm-of 'set-mset D \subseteq \bigcup (atms-of '(set-mset (clauses S)))
   using D-S by (auto simp add: atms-of-def atms-of-ms-def)
  moreover {
   \mathbf{fix} \ xa :: 'v \ literal
   assume a1: atm-of 'set-mset D \subseteq (\bigcup x \in set\text{-mset (init-clss } S)). atms-of x)
     \cup (| ] x \in set\text{-mset} (learned-clss S). atms-of x)
   assume a2:
     ([] x \in set\text{-}mset \ (learned\text{-}clss \ S). \ atms\text{-}of \ x) \subseteq ([] x \in set\text{-}mset \ (init\text{-}clss \ S). \ atms\text{-}of \ x)
   assume xa \in \# D
   then have atm\text{-}of\ xa \in UNION\ (set\text{-}mset\ (init\text{-}clss\ S))\ atms\text{-}of
     using a2 a1 by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)
   then have \exists m \in set\text{-}mset \ (init\text{-}clss \ S). \ atm\text{-}of \ xa \in atms\text{-}of \ m
```

```
by blast
   } note H = this
 ultimately show ?case using conflict.prems T learned decided conf trail
   unfolding atms-of-def atms-of-ms-def clauses-def
   by (auto simp add: H)
next
 case (restart T)
 then show ?case using learned decided conf trail by auto
 case (forget C T) note confl = this(1) and C = this(4) and C-le = this(5) and
   T = this(6)
 have H: \bigwedge L mark. Propagated L mark \in set (trail\ S) \Longrightarrow atms-of\ mark \subseteq atms-of-mm\ (init-clss\ S)
   using decided by simp
 show ?case unfolding clauses-def apply (intro conjI)
     using conf confl T trail C unfolding clauses-def apply (auto dest!: H)
    using T trail C C-le apply (auto dest!: H)[]
    using T learned C-le atms-of-ms-remove-subset[of set-mset (learned-clss S)] apply auto[]
  using T trail C-le apply (auto simp: clauses-def lits-of-def)
  done
next
 case (backtrack\ L\ D\ K\ i\ M1\ M2\ T) note confl=this(1) and LD=this(2) and decomp=this(3)
and
   lev-K = this(7) and T = this(8)
 have ?C T
   using conf T decomp lev lev-K by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have set M1 \subseteq set \ (trail \ S)
   using decomp by auto
 then have M: ?M T
   using decided conf confl T decomp lev lev-K
   by (auto simp: image-subset-iff clauses-def cdcl_W-M-level-inv-decomp)
 moreover have ?UT
   using learned decomp conf confl T lev lev-K unfolding clauses-def
   by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have ?V T
   using M conf confl trail T decomp lev LD lev-K
   by (auto simp: cdcl_W-M-level-inv-decomp atms-of-def
     dest!: qet-all-ann-decomposition-exists-prepend)
 ultimately show ?case by blast
 case (resolve L C M D T) note trail-S = this(1) and confl = this(4) and T = this(7)
 let ?T = update\text{-conflicting (Some (resolve-cls L D C)) (tl-trail S)}
 have ?C ?T
   using confl trail-S conf decided by (auto dest!: in-atms-of-remove1-mset-in-atms-of)
 moreover have ?M ?T
   using confl trail-S conf decided by auto
 moreover have ?U ?T
   using trail learned by auto
 moreover have ?V?T
   using confl trail-S trail by auto
 ultimately show ?case using T by simp
qed
lemma cdcl_W-no-strange-atm-inv:
 assumes cdcl_W S S' and no-strange-atm S and cdcl_W-M-level-inv S
 shows no-strange-atm S'
 using cdcl_W-no-strange-atm-explicit[OF assms(1)] assms(2,3) unfolding no-strange-atm-def by fast
```

```
lemma rtranclp-cdcl_W-no-strange-atm-inv:

assumes cdcl_W^{**} S S' and no-strange-atm S and cdcl_W-M-level-inv S

shows no-strange-atm S'

using assms by induction (auto\ intro:\ cdcl_W-no-strange-atm-inv rtranclp-cdcl_W-consistent-inv)
```

No Duplicates all Around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The last part could be proven using the previous invariant also. Remark that we will show later that there cannot be duplicate *clause*.

```
definition distinct\text{-}cdcl_W\text{-}state (S :: 'st)
  \longleftrightarrow ((\forall T. conflicting S = Some T \longrightarrow distinct-mset T)
   \land distinct-mset-mset (learned-clss S)
   \land distinct-mset-mset (init-clss S)
   \land (\forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct-mset \ mark)))
lemma distinct-cdcl_W-state-decomp:
  assumes distinct\text{-}cdcl_W\text{-}state\ (S::'st)
  shows
   \forall T. \ conflicting \ S = Some \ T \longrightarrow distinct\text{-mset } T \ \mathbf{and}
   distinct-mset-mset (learned-clss S) and
   distinct-mset-mset (init-clss S) and
   \forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct\text{-mset } mark)
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by blast+
lemma distinct\text{-}cdcl_W\text{-}state\text{-}decomp\text{-}2:
 assumes distinct-cdcl<sub>W</sub>-state (S ::'st) and conflicting S = Some \ T
 shows distinct-mset T
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by auto
lemma distinct\text{-}cdcl_W\text{-}state\text{-}S0\text{-}cdcl_W[simp]:
  distinct-mset-mset N \implies distinct-cdcl<sub>W</sub>-state (init-state N)
  unfolding distinct-cdcl_W-state-def by auto
lemma distinct-cdcl_W-state-inv:
  assumes
    cdcl_W S S' and
   lev-inv: cdcl_W-M-level-inv S and
    distinct-cdcl_W-state S
  shows distinct\text{-}cdcl_W\text{-}state\ S'
  using assms(1,2,2,3)
proof (induct\ rule:\ cdcl_W-all-induct)
  case (backtrack L D K i M1 M2)
  then show ?case
   using lev-inv unfolding distinct-cdcl_W-state-def
   by (auto dest: get-all-ann-decomposition-incl simp: cdcl_W-M-level-inv-decomp)
next
  case restart
  then show ?case
   \mathbf{unfolding}\ distinct\text{-}cdcl_W-state-def distinct-mset-set-def clauses-def
   using learned-clss-restart-state [of S] by auto
next
  case resolve
  then show ?case
```

Conflicts and Annotations

This invariant shows that each mark contains a contradiction only related to the previously defined variable.

```
abbreviation every-mark-is-a-conflict :: 'st \Rightarrow bool where
every-mark-is-a-conflict S \equiv
\forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = (trail \ S)
   \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
definition cdcl_W-conflicting S \longleftrightarrow
  (\forall T. conflicting S = Some T \longrightarrow trail S \models as CNot T)
 \land every-mark-is-a-conflict S
lemma backtrack-atms-of-D-in-M1:
 fixes M1 :: ('v, 'v \ clause) \ ann-lits
 assumes
   inv: cdcl_W-M-level-inv S and
   i: get-maximum-level (trail S) ((remove1-mset L D)) \equiv i and
   decomp: (Decided K \# M1, M2)
      \in set (get-all-ann-decomposition (trail S)) and
   S-lvl: backtrack-lvl S = get-maximum-level (trail S) D and
   S-confl: conflicting S = Some D and
   lev-K: get-level (trail S) K = Suc i  and
    T: T \sim cons-trail (Propagated L D)
               (reduce-trail-to M1
                 (add-learned-cls D
                  (update-backtrack-lvl i
                    (update\text{-}conflicting\ None\ S)))) and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 shows atms-of ((remove1\text{-}mset\ L\ D)) \subseteq atm\text{-}of\ `its-of-l\ (tl\ (trail\ T))
proof (rule ccontr)
 let ?k = get\text{-}maximum\text{-}level (trail S) D
 let ?D = D
 let ?D' = (remove1 - mset L D)
 have trail S \models as \ CNot \ ?D \ using \ confl \ S\text{-confl} by auto
  then have vars-of-D: atms-of ?D \subseteq atm-of 'lits-of-l (trail S) unfolding atms-of-def
   by (meson image-subsetI true-annots-CNot-all-atms-defined)
 obtain M0 where M: trail S = M0 @ M2 @ Decided K \# M1
   using decomp by auto
```

```
have max: ?k = count\text{-}decided (M0 @ M2 @ Decided K \# M1)
   using inv unfolding cdcl<sub>W</sub>-M-level-inv-def S-lvl M by simp
  assume a: \neg ?thesis
  then obtain L' where
   L': L' \in atms\text{-}of ?D' and
   L'-notin-M1: L' \notin atm-of 'lits-of-l M1
   using T decomp inv by (auto simp: cdcl_W-M-level-inv-decomp)
  then have L'-in: L' \in atm-of 'lits-of-l (M0 @ M2 @ Decided K # [])
   using vars-of-D unfolding M by (auto dest: in-atms-of-remove1-mset-in-atms-of)
  then obtain L'' where
   L'' \in \# ?D' and
   L'': L' = atm\text{-}of L''
   using L'L'-notin-M1 unfolding atms-of-def by auto
  have atm\text{-}of \ K \notin atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ (M0 @ M2)
   using inv by (auto simp: cdcl_W-M-level-inv-def M lits-of-def)
  then have count-decided M1 = i
   using lev-K unfolding M by (auto simp: image-Un)
  then have lev-L'':
   get-level (trail S) L'' = get-level (M0 @ M2 @ Decided K # []) L'' + i
   using L'-notin-M1 L'' get-rev-level-skip-end[OF L'-in[unfolded L''], of M1] M by auto
  moreover
   consider
     (M0) L' \in atm\text{-}of 'lits\text{-}of\text{-}l M0
     (M2) L' \in atm\text{-}of `lits\text{-}of\text{-}l M2
     (K) L' = atm\text{-}of K
     using inv L'-in unfolding L'' by (auto simp: cdcl_W-M-level-inv-def)
   then have get-level (M0 @ M2 @ Decided K # []) L'' \geq Suc \ 0
     proof cases
       case M0
       then have L' \neq atm\text{-}of K
         using inv \langle atm\text{-}of \ K \notin atm\text{-}of \ ' \ lits\text{-}of\text{-}l \ (M0 @ M2) \rangle unfolding L'' by auto
       then show ?thesis using M0 unfolding L'' by auto
     next
       case M2
       then have L' \notin atm\text{-}of ' lits-of-l (M0 @ Decided K # [])
         using inv \langle atm\text{-}of \ K \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (M0 @ M2) \rangle unfolding L''
         by (auto simp: M cdcl<sub>W</sub>-M-level-inv-def atm-lit-of-set-lits-of-l)
       then show ?thesis using M2 unfolding L'' by (auto simp: image-Un)
     next
       then have L' \notin atm\text{-}of ' lits\text{-}of\text{-}l \ (M0 @ M2)
         using inv unfolding L'' by (auto simp: cdcl<sub>W</sub>-M-level-inv-def atm-lit-of-set-lits-of-l M)
       then show ?thesis using K unfolding L'' by (auto simp: image-Un)
     qed
  ultimately have get-level (trail S) L'' \ge i + 1
   using lev-L'' unfolding M by simp
  then have get-maximum-level (trail S) ?D' > i + 1
   using get-maximum-level-ge-get-level [OF \ \langle L'' \in \# ?D' \rangle, of trail S by auto
 then show False using i by auto
qed
lemma distinct-atms-of-incl-not-in-other:
 assumes
   a1: no-dup (M @ M') and
   a2: atms-of D \subseteq atm-of 'lits-of-l M' and
```

```
\mathit{a3} \colon x \in \mathit{atms-of} \, D
 shows x \notin atm\text{-}of ' lits\text{-}of\text{-}l M
proof -
 have ff1: \bigwedge l ms. undefined-lit ms l \vee atm-of l
   \in set \ (map \ (\lambda m. \ atm-of \ (lit-of \ (m :: ('a, 'b) \ ann-lit))) \ ms)
   by (simp add: defined-lit-map)
 have ff2: \bigwedge a. \ a \notin atms\text{-}of \ D \lor a \in atm\text{-}of \ `lits\text{-}of\text{-}l \ M'
   using a2 by (meson subsetCE)
 have ff3: \bigwedge a. \ a \notin set \ (map \ (\lambda m. \ atm-of \ (lit-of \ m)) \ M')
   \vee a \notin set (map (\lambda m. atm-of (lit-of m)) M)
   using a1 by (metis (lifting) IntI distinct-append empty-iff map-append)
 have \forall L \ a \ f \ \exists \ l. \ ((a::'a) \notin f \ `L \lor (l ::'a \ literal) \in L) \land (a \notin f \ `L \lor f \ l = a)
   by blast
 then show x \notin atm\text{-}of ' lits\text{-}of\text{-}l M
   using ff3 ff2 ff1 a3 by (metis (no-types) Decided-Propagated-in-iff-in-lits-of-l)
qed
Item 5 page 81 of Weidenbach's book
lemma cdcl_W-propagate-is-conclusion:
 assumes
   cdcl_W S S' and
   inv: cdcl_W-M-level-inv S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   confl: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   alien: no-strange-atm S
 shows all-decomposition-implies-m (init-clss S') (qet-all-ann-decomposition (trail S'))
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
 case restart
 then show ?case by auto
next
  case forget
 then show ?case using decomp by auto
next
 case conflict
 then show ?case using decomp by auto
 case (resolve L C M D) note tr = this(1) and T = this(7)
 let ?decomp = get\text{-}all\text{-}ann\text{-}decomposition } M
 have M: set ?decomp = insert (hd ?decomp) (set (tl ?decomp))
   by (cases ?decomp) auto
 show ?case
   \mathbf{using}\ decomp\ tr\ T\ \mathbf{unfolding}\ all\text{-}decomposition\text{-}implies\text{-}} def
   by (cases hd (get-all-ann-decomposition M))
      (auto\ simp:\ M)
next
  case (skip\ L\ C'\ M\ D) note tr=this(1) and T=this(5)
 have M: set (get-all-ann-decomposition M)
   =insert\ (hd\ (get-all-ann-decomposition\ M))\ (set\ (tl\ (get-all-ann-decomposition\ M)))
   by (cases get-all-ann-decomposition M) auto
 show ?case
   using decomp tr T unfolding all-decomposition-implies-def
   by (cases hd (get-all-ann-decomposition M))
      (auto simp add: M)
next
```

```
case decide note S = this(1) and undef = this(2) and T = this(4)
 show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto
 case (propagate C L T) note propa = this(2) and L = this(3) and undef = this(5) and T = this(6)
 obtain a y where ay: hd (get-all-ann-decomposition (trail S)) = (a, y)
   by (cases hd (get-all-ann-decomposition (trail S)))
  then have M: trail\ S = y @ a using qet-all-ann-decomposition-decomp by blast
 \mathbf{have}\ M':\ set\ (\textit{get-all-ann-decomposition}\ (\textit{trail}\ S))
   = insert (a, y) (set (tl (get-all-ann-decomposition (trail S))))
   using ay by (cases get-all-ann-decomposition (trail S)) auto
 have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ S) \models ps \ unmark-l \ y
   using decomp ay unfolding all-decomposition-implies-def
   by (cases get-all-ann-decomposition (trail S)) fastforce+
  then have a-Un-N-M: unmark-l a \cup set-mset (init-clss S)
   \models ps \ unmark-l \ (trail \ S)
   unfolding M by (auto simp add: all-in-true-clss-clss image-Un)
 have unmark-l a \cup set-mset (init-clss S) \models p \{ \#L\# \} (is ?I \models p -)
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p \ remove 1 - mset \ L \ C + \{\#L\#\}
       apply (rule true-clss-cls-in-imp-true-clss-cls|of -
          set-mset (init-clss S) \cup set-mset (learned-clss S)])
       using learned propa L by (auto simp: clauses-def cdcl_W-learned-clause-def
         true-annot-CNot-diff)
   next
     have unmark-l (trail\ S) \models ps\ CNot\ (remove1-mset\ L\ C)
       using \langle (trail\ S) \models as\ CNot\ (remove1-mset\ L\ C) \rangle true-annots-true-clss-clss
       by blast
     then show ?I \models ps \ CNot \ (remove1\text{-}mset \ L \ C)
       using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast
   qed
 moreover have \bigwedge aa\ b.
     \forall (Ls, seen) \in set (get-all-ann-decomposition (y @ a)).
       unmark-l Ls \cup set-mset (init-clss S) <math>\models ps unmark-l seen <math>\Longrightarrow
       (aa, b) \in set (tl (get-all-ann-decomposition (y @ a))) \Longrightarrow
       unmark-l \ aa \cup set-mset \ (init-clss \ S) \models ps \ unmark-l \ b
   by (metis (no-types, lifting) case-prod-conv get-all-ann-decomposition-never-empty-sym
     list.collapse\ list.set-intros(2))
  ultimately show ?case
   using decomp T undef unfolding ay all-decomposition-implies-def
   using M \langle unmark-l \ a \cup set\text{-mset} \ (init\text{-}clss \ S) \models ps \ unmark-l \ y \rangle
    ay by auto
next
 case (backtrack L D K i M1 M2 T) note conf = this(1) and LD = this(2) and decomp' = this(3)
and
   lev-L = this(4) and lev-K = this(7) and undef = this(8) and T = this(9)
 let ?D = D
 let ?D' = (remove1 - mset L D)
 have \forall l \in set M2. \neg is\text{-}decided l
   using get-all-ann-decomposition-snd-not-decided decomp' by blast
  obtain M0 where M: trail S = M0 @ M2 @ Decided K \# M1
   using decomp' by auto
 show ?case unfolding all-decomposition-implies-def
   proof
     \mathbf{fix} \ x
```

```
assume x \in set (get-all-ann-decomposition (trail T))
then have x: x \in set (get-all-ann-decomposition (Propagated L ?D # M1))
 using T decomp' undef inv by (simp add: cdcl_W-M-level-inv-decomp)
let ?m = get-all-ann-decomposition (Propagated L ?D \# M1)
let ?hd = hd ?m
let ?tl = tl ?m
consider
   (hd) x = ?hd
 \mid (tl) \ x \in set \ ?tl
 using x by (cases ?m) auto
then show case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set\text{-mset} (init-clss T) \models ps unmark-l seen
 proof cases
   case tl
   then have x \in set (get-all-ann-decomposition (trail S))
     using tl-qet-all-ann-decomposition-skip-some of x by (simp\ add:\ list.set-sel(2)\ M)
   then show ?thesis
    using decomp learned decomp confl alien inv T undef M
    unfolding all-decomposition-implies-def cdcl<sub>W</sub>-M-level-inv-def
    by auto
 next
   case hd
   obtain M1' M1'' where M1: hd (qet-all-ann-decomposition M1) = (M1', M1'')
     by (cases hd (get-all-ann-decomposition M1))
   then have x': x = (M1', Propagated L?D # M1'')
     using \langle x = ?hd \rangle by auto
   have (M1', M1'') \in set (qet-all-ann-decomposition (trail S))
     using M1[symmetric] hd-qet-all-ann-decomposition-skip-some[OF M1[symmetric],
      of M0 @ M2] unfolding M by fastforce
   then have 1: unmark-l M1' \cup set-mset (init-clss S) \models ps unmark-l M1"
     using decomp unfolding all-decomposition-implies-def by auto
   moreover
    have vars-of-D: atms-of ?D' \subseteq atm-of 'lits-of-l M1
      using backtrack-atms-of-D-in-M1 [of S D L i K M1 M2 T] backtrack.hyps inv conf confl
      by (auto simp: cdcl_W-M-level-inv-decomp)
     have no-dup (trail S) using inv by (auto simp: cdcl_W-M-level-inv-decomp)
     then have vars-in-M1:
      \forall x \in atms\text{-}of ?D'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M0 @ M2 @ Decided } K \# [])
      using vars-of-D distinct-atms-of-incl-not-in-other of
        M0 @ M2 @ Decided K \# [] M1] unfolding M by auto
     have trail S \models as \ CNot \ (remove1\text{-}mset\ L\ D)
      using conf confl LD unfolding M true-annots-true-cls-def-iff-negation-in-model
      by (auto dest!: Multiset.in-diffD)
     then have M1 \models as \ CNot \ ?D'
      using vars-in-M1 true-annots-remove-if-notin-vars[of M0 @ M2 @ Decided K \# []
        M1 CNot ?D' conf confl unfolding M lits-of-def by simp
    have M1 = M1'' @ M1' by (simp add: M1 get-all-ann-decomposition-decomp)
    have TT: unmark-l M1' \cup set-mset (init-clss S) \models ps CNot ?D'
      using true-annots-true-clss-cls[OF \land M1 \models as\ CNot\ ?D'] true-clss-clss-left-right[OF\ 1]
      unfolding \langle M1 = M1'' @ M1' \rangle by (auto simp add: inf-sup-aci(5,7))
     have init-clss S \models pm ?D' + \{\#L\#\}
      using conf learned confl LD unfolding cdcl_W-learned-clause-def by auto
     then have T': unmark-l M1' \cup set-mset (init-clss S) \models p ?D' + \{\#L\#\} by auto
     have atms-of (?D' + \{\#L\#\}) \subseteq atms-of-mm (clauses S)
      using alien conf LD unfolding no-strange-atm-def clauses-def by auto
     then have unmark-l M1' \cup set-mset (init-clss S) \models p \{\#L\#\}
```

```
using true-clss-cls-plus-CNot[OF T' TT] by auto
        ultimately show ?thesis
           using T' T decomp' undef inv unfolding x' by (simp add: cdcl_W-M-level-inv-decomp)
      qed
   qed
qed
lemma cdcl_W-propagate-is-false:
 assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   learned: cdcl_W-learned-clause S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   confl: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   alien: no-strange-atm S and
   mark-confl: every-mark-is-a-conflict S
 shows every-mark-is-a-conflict S'
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
  case (propagate C L T) note LC = this(3) and confl = this(4) and undef = this(5) and T = this(5)
this(6)
 show ?case
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then consider
        (hd) a = [] and L = L' and mark = C and b = trail S
      | (tl) tl a @ Propagated L' mark # b = trail S
      using T undef by (cases a) fastforce+
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
      using mark-confl confl LC by cases auto
   qed
next
 case (decide\ L) note undef[simp] = this(2) and T = this(4)
 have \bigwedge a \ La \ mark \ b. a \ @ \ Propagated \ La \ mark \ \# \ b = Decided \ L \ \# \ trail \ S
   \implies the a @ Propagated La mark # b = trail S by (case-tac a) auto
 then show ?case using mark-conft T unfolding decide.hyps(1) by fastforce
next
 case (skip\ L\ C'\ M\ D\ T) note tr=this(1) and T=this(5)
 show ?case
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then have a @ Propagated L' mark \# b = M using tr T by simp
     then have (Propagated L C' \# a) @ Propagated L' mark \# b = Propagated L C' \# M by auto
     moreover have \forall La \ mark \ a \ b. \ a @ Propagated \ La \ mark \ \# \ b = Propagated \ L \ C' \ \# \ M
      \longrightarrow b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
      using mark-confl unfolding skip.hyps(1) by simp
     ultimately show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark \ by \ blast
   qed
 case (conflict D)
 then show ?case using mark-confl by simp
next
 case (resolve L C M D T) note tr-S = this(1) and T = this(7)
```

```
show ?case unfolding resolve.hyps(1)
   proof (intro allI impI)
     \mathbf{fix} \ L' \ mark \ a \ b
     assume a @ Propagated L' mark \# b = trail T
     then have (Propagated L (C + \{\#L\#\}\) # a) @ Propagated L' mark # b
      = Propagated \ L \ (C + \{\#L\#\}) \ \# \ M
      using T tr-S by auto
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
      using mark-confl unfolding tr-S by (metis\ Cons-eq-appendI\ list.sel(3))
next
 case restart
 then show ?case by auto
 case forget
 then show ?case using mark-confl by auto
 case (backtrack L D K i M1 M2 T) note conf = this(1) and LD = this(2) and decomp = this(3)
and
   lev-K = this(7) and T = this(8)
 have \forall l \in set M2. \neg is\text{-}decided l
   using get-all-ann-decomposition-snd-not-decided decomp by blast
 obtain M0 where M: trail S = M0 @ M2 @ Decided K \# M1
   using decomp by auto
 have [simp]: trail (reduce-trail-to M1 (add-learned-cls D)
   (update-backtrack-lvl\ i\ (update-conflicting\ None\ S))))=M1
   using decomp lev by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
 let ?D = D
 let ?D' = (remove1\text{-}mset\ L\ D)
 show ?case
   proof (intro allI impI)
     fix La:: 'v literal and mark:: 'v clause and
      a \ b :: ('v, 'v \ clause) \ ann-lits
     assume a @ Propagated\ La\ mark\ \#\ b=trail\ T
     then consider
        (hd-tr) a = [] and
          (Propagated\ La\ mark:: ('v, 'v\ clause)\ ann-lit) = Propagated\ L\ ?D\ and
          b = M1
      | (tl-tr) tl \ a @ Propagated La mark \# b = M1
      using M T decomp lev by (cases a) (auto simp: cdcl_W-M-level-inv-def)
     then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
      proof cases
        case hd-tr note A = this(1) and P = this(2) and b = this(3)
        have trail S \models as CNot ?D using conf confl by auto
        then have vars-of-D: atms-of ?D \subseteq atm-of 'lits-of-l (trail S)
          unfolding atms-of-def
          by (meson image-subsetI true-annots-CNot-all-atms-defined)
        have vars-of-D: atms-of ?D' \subseteq atm-of `lits-of-l M1
         using backtrack-atms-of-D-in-M1 of S D L i K M1 M2 T T backtrack lev confl
         by (auto simp: cdcl_W-M-level-inv-decomp)
        have no-dup (trail S) using lev by (auto simp: cdcl_W-M-level-inv-decomp)
        then have \forall x \in atms\text{-}of ?D'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M0 @ M2 @ Decided } K \# \parallel)
          using vars-of-D distinct-atms-of-incl-not-in-other of
            M0 @ M2 @ Decided K \# [] M1] unfolding M by auto
        then have M1 \models as \ CNot \ ?D'
          using true-annots-remove-if-notin-vars[of M0 @ M2 @ Decided K \# []
```

```
M1 CNot ?D' \land trail S \models as CNot ?D \land unfolding M lits-of-def
          by (simp add: true-annot-CNot-diff)
         then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
           using P LD b by auto
       next
         case tl-tr
         then obtain c' where c' @ Propagated La mark \# b = trail S
           unfolding M by auto
         then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
          using mark-confl by auto
       qed
   \mathbf{qed}
qed
lemma cdcl_W-conflicting-is-false:
 assumes
   cdcl_W S S' and
   M-lev: cdcl_W-M-level-inv S and
   confl-inv: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   decided-confl: \forall L \text{ mark } a \text{ b. } a \text{ @ Propagated } L \text{ mark } \# b = (trail S)
     \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) \ \mathbf{and}
   dist: distinct-cdcl_W-state S
 shows \forall T. conflicting S' = Some \ T \longrightarrow trail \ S' \models as \ CNot \ T
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
  case (skip L C' M D T) note tr-S = this(1) and confl = this(2) and L-D = this(3) and T =
this(5)
 let ?D = D
 have D: Propagated L C' \# M \models as CNot D using assms skip by auto
 moreover
   have L \notin \# ?D
     proof (rule ccontr)
       assume ¬ ?thesis
       then have -L \in lits-of-l M
         using in-CNot-implies-uminus(2)[of L ?D Propagated L C' \# M]
         \langle Propagated \ L \ C' \# M \models as \ CNot \ ?D \rangle \ \mathbf{by} \ simp
       then show False
         by (metis (no-types, hide-lams) M-lev cdcl<sub>W</sub>-M-level-inv-decomp(1) consistent-interp-def
           image-insert\ insert-iff\ list.set(2)\ lits-of-def\ ann-lit.sel(2)\ tr-S)
     qed
 ultimately show ?case
   using tr-S confl L-D T unfolding cdcl_W-M-level-inv-def
   by (auto intro: true-annots-CNot-lit-of-notin-skip)
  case (resolve L C M D T) note tr = this(1) and LC = this(2) and confl = this(4) and LD = this(4)
this(5)
 and T = this(7)
 let ?C = remove1\text{-}mset\ L\ C
 let ?D = remove1\text{-}mset (-L) D
 show ?case
   proof (intro allI impI)
     fix T'
     have the trail S = as \ CNot \ ?C \ using \ tr \ decided-confl \ by \ fastforce
     moreover
       have distinct-mset (?D + \{\#-L\#\}) using confl dist LD
         unfolding distinct-cdcl_W-state-def by auto
```

```
then have -L \notin \# ?D unfolding distinct-mset-def
        by (meson \ (distinct\text{-}mset \ (?D + \{\#-L\#\})) \ distinct\text{-}mset\text{-}single\text{-}add)
       have M \models as CNot ?D
        proof -
          have Propagated L (?C + \{\#L\#\}) \# M \modelsas CNot ?D \cup CNot \{\#-L\#\}
            using confl tr confl-inv LC by (metis CNot-plus LD insert-DiffM2 option.simps(9))
          then show ?thesis
            using M-lev \langle -L \notin \# ?D \rangle tr true-annots-lit-of-notin-skip
            unfolding cdcl_W-M-level-inv-def by force
     moreover assume conflicting T = Some T'
     ultimately
       show trail T \models as CNot T'
       using tr T by auto
   qed
\mathbf{qed} (auto simp: M-lev cdcl_W-M-level-inv-decomp)
lemma cdcl_W-conflicting-decomp:
 assumes cdcl_W-conflicting S
 shows \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 and \forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = (trail \ S)
    \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
 using assms unfolding cdcl_W-conflicting-def by blast+
lemma cdcl_W-conflicting-decomp2:
 assumes cdcl_W-conflicting S and conflicting <math>S = Some \ T
 shows trail S \models as \ CNot \ T
 using assms unfolding cdcl_W-conflicting-def by blast+
lemma cdcl_W-conflicting-S0-cdcl_W[simp]:
  cdcl_W-conflicting (init-state N)
 unfolding cdcl_W-conflicting-def by auto
Putting all the invariants together
lemma cdcl_W-all-inv:
 assumes
   cdcl_W: cdcl_W S S' and
   1: all-decomposition-implies-m (init-clss S) (qet-all-ann-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W-M-level-inv S and
   5: no-strange-atm S and
   7: distinct\text{-}cdcl_W\text{-}state\ S and
   8: cdcl_W-conflicting S
  shows
   all-decomposition-implies-m (init-clss S') (qet-all-ann-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv S' and
   no-strange-atm S' and
   distinct-cdcl_W-state S' and
   cdcl_W-conflicting S'
  show S1: all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S'))
   using cdcl_W-propagate-is-conclusion[OF cdcl_W 4 1 2 - 5] 8 unfolding cdcl_W-conflicting-def
 show S2: cdcl_W-learned-clause S' using cdcl_W-learned-clss[OF \ cdcl_W \ 2 \ 4].
```

```
show S_4: cdcl_W-M-level-inv S' using cdcl_W-consistent-inv[OF cdcl_W 4].
 show S5: no-strange-atm S' using cdcl_W-no-strange-atm-inv[OF cdcl_W 5 4].
 show S7: distinct-cdcl_W-state S' using distinct-cdcl_W-state-inv[OF cdcl_W 4 7].
 show S8: cdcl_W-conflicting S'
   using cdcl<sub>W</sub>-conflicting-is-false[OF cdcl<sub>W</sub> 4 - - 7] 8 cdcl<sub>W</sub>-propagate-is-false[OF cdcl<sub>W</sub> 4 2 1 -
   unfolding cdcl_W-conflicting-def by fast
qed
lemma rtranclp-cdcl_W-all-inv:
 assumes
   cdcl_W: rtranclp \ cdcl_W \ S \ S' and
   1: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W-M-level-inv S and
   5: no-strange-atm S and
   7: distinct\text{-}cdcl_W\text{-}state\ S and
   8: cdcl_W-conflicting S
 shows
   all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv S' and
   no-strange-atm S' and
   distinct\text{-}cdcl_W\text{-}state\ S' and
   cdcl_W-conflicting S'
  using assms
proof (induct rule: rtranclp-induct)
 case base
   case 1 then show ?case by blast
   case 2 then show ?case by blast
   case 3 then show ?case by blast
   case 4 then show ?case by blast
   case 5 then show ?case by blast
   case 6 then show ?case by blast
next
 case (step S' S'') note H = this
   case 1 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 2 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 3 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 4 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 5 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 6 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
qed
lemma all-invariant-S0-cdcl_W:
 assumes distinct-mset-mset N
 shows
   all-decomposition-implies-m (init-clss (init-state N))
                           (get-all-ann-decomposition (trail (init-state N))) and
   cdcl_W-learned-clause (init-state N) and
```

```
\forall T. \ conflicting \ (init\text{-state } N) = Some \ T \longrightarrow (trail \ (init\text{-state } N)) \models as \ CNot \ T \ and
   no-strange-atm (init-state N) and
   consistent-interp (lits-of-l (trail (init-state N))) and
   \forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = trail \ (init\text{-state } N) \longrightarrow
    (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) and
    distinct\text{-}cdcl_W\text{-}state (init\text{-}state N)
  using assms by auto
Item 6 page 81 of Weidenbach's book
lemma cdcl_W-only-propagated-vars-unsat:
 assumes
   decided: \forall x \in set M. \neg is\text{-}decided x \text{ and }
   DN: D \in \# \ clauses \ S \ {\bf and}
   D: M \models as \ CNot \ D and
   inv: all-decomposition-implies-m N (get-all-ann-decomposition M) and
   state: state S = (M, N, U, k, C) and
   learned-cl: cdcl_W-learned-clause S and
   atm-incl: no-strange-atm S
 shows unsatisfiable (set-mset N)
proof (rule ccontr)
  assume \neg unsatisfiable (set-mset N)
  then obtain I where
   I: I \models s \ set\text{-}mset \ N \ \mathbf{and}
   cons: consistent-interp I and
   tot: total\text{-}over\text{-}m \ I \ (set\text{-}mset \ N)
   unfolding satisfiable-def by auto
 have atms-of-mm N \cup atms-of-mm U = atms-of-mm N
   using atm-incl state unfolding total-over-m-def no-strange-atm-def
    by (auto simp add: clauses-def)
  then have total-over-m I (set-mset N) using tot unfolding total-over-m-def by auto
  moreover then have total-over-m I (set-mset (learned-clss S))
   using atm-incl state unfolding no-strange-atm-def total-over-m-def total-over-set-def
   by auto
  moreover have N \models psm\ U using learned-cl state unfolding cdcl_W-learned-clause-def by auto
  ultimately have I-D: I \models D
   using I DN cons state unfolding true-clss-def true-clss-def Ball-def
   by (auto simp add: clauses-def)
 have l0: \{unmark\ L\ | L.\ is\text{-decided}\ L \land L \in set\ M\} = \{\}\ \textbf{using}\ decided\ \textbf{by}\ auto
 have atms-of-ms (set-mset N \cup unmark-l M) = atms-of-mm N
   \mathbf{using} \ atm\text{-}incl \ state \ \mathbf{unfolding} \ no\text{-}strange\text{-}atm\text{-}def \ \mathbf{by} \ auto
  then have total-over-m I (set-mset N \cup unmark-l M)
   using tot unfolding total-over-m-def by auto
  then have I \models s \ unmark-l \ M
   using all-decomposition-implies-propagated-lits-are-implied [OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
  then have IM: I \models s \ unmark-l \ M \ by \ auto
   \mathbf{fix} \ K
   assume K \in \# D
   then have -K \in lits-of-l M
     using D unfolding true-annots-def Ball-def CNot-def true-annot-def true-cls-def true-lit-def
     Bex-def by force
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl lits-of-def by fastforce }
  then have \neg I \models D using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
  then show False using I-D by blast
```

Item 5 page 81 of Weidenbach's book

We have actually a much stronger theorem, namely all-decomposition-implies ?N (get-all-ann-decomposition ?M) $\Longrightarrow ?N \cup \{unmark\ L\ | L.\ is\text{-decided}\ L \land L \in set\ ?M\} \models ps\ unmark\ l\ ?M$, that show that the only choices we made are decided in the formula

```
lemma
 assumes all-decomposition-implies-m N (get-all-ann-decomposition M)
 and \forall m \in set M. \neg is\text{-}decided m
 shows set-mset N \models ps unmark-l M
 have T: \{unmark\ L\ | L.\ is\text{-}decided\ L\land L\in set\ M\}=\{\}\ using\ assms(2)\ by\ auto
   using all-decomposition-implies-propagated-lits-are-implied [OF assms(1)] unfolding T by simp
qed
Item 7 page 81 of Weidenbach's book (part 1)
lemma conflict-with-false-implies-unsat:
 assumes
   cdcl_W: cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   [simp]: conflicting S' = Some \{\#\} and
   learned: cdcl_W-learned-clause S
 shows unsatisfiable (set-mset (init-clss S))
 using assms
proof -
 have cdcl_W-learned-clause S' using cdcl_W-learned-clss cdcl_W learned lev by auto
 then have init-clss S' \models pm \ \{\#\}  using assms(3) unfolding cdcl_W-learned-clause-def by auto
 then have init-clss S \models pm \{\#\}
   using cdcl_W-init-clss[OF\ assms(1)\ lev] by auto
 then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto
qed
Item 7 page 81 of Weidenbach's book (part 2)
lemma conflict-with-false-implies-terminated:
 assumes cdcl_W S S'
 and conflicting S = Some \{ \# \}
 shows False
 using assms by (induct rule: cdcl_W-all-induct) auto
```

No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but helps finding a better bound on the number of learned clauses.

 $\mathbf{lemma}\ \mathit{learned-clss-are-not-tautologies} :$

```
assumes cdcl_W \ S \ S' and lev: cdcl_W - M-level-inv S and conflicting: cdcl_W-conflicting S and no-tauto: \forall \ s \in \# \ learned-clss S. \neg tautology \ s shows \forall \ s \in \# \ learned-clss S'. \neg tautology \ s using assms proof (induct\ rule:\ cdcl_W-all-induct)
```

```
case (backtrack L D K i M1 M2 T) note confl = this(1)
 have consistent-interp (lits-of-l (trail S)) using lev by (auto simp: cdcl_W-M-level-inv-decomp)
  moreover
   have trail S \models as CNot D
     using conflicting confl unfolding cdcl<sub>W</sub>-conflicting-def by auto
   then have lits-of-l (trail S) \modelss CNot D
     using true-annots-true-cls by blast
  ultimately have ¬tautology D using consistent-CNot-not-tautology by blast
 then show ?case using backtrack no-tauto lev
   by (auto simp: cdcl_W-M-level-inv-decomp split: if-split-asm)
next
  case restart
 then show ?case using learned-clss-restart-state state-eq-learned-clss no-tauto
   by (metis (no-types, lifting) set-mset-mono subsetCE)
qed (auto dest!: in-diffD)
definition final-cdcl_W-state (S :: 'st)
  \longleftrightarrow (trail S \models asm init-clss S
   \vee ((\forall L \in set (trail S). \neg is\text{-}decided L) \wedge
      (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
definition termination-cdcl_W-state (S :: 'st)
  \longleftrightarrow (trail S \models asm init-clss S
    \lor ((\forall L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S). \ L \in atm\text{-}of \ `its\text{-}of\text{-}l \ (trail \ S))
       \land (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
          CDCL Strong Completeness
2.1.4
lemma cdcl_W-can-do-step:
 assumes
   consistent-interp (set M) and
   distinct M and
   atm\text{-}of \text{ '} (set M) \subseteq atms\text{-}of\text{-}mm N
  shows \exists S. rtranclp \ cdcl_W \ (init\text{-state } N) \ S
   \wedge state S = (map (\lambda L. Decided L) M, N, {\#}, length M, None)
 using assms
proof (induct M)
 case Nil
 then show ?case apply - by (rule exI[of - init-state N]) auto
next
  case (Cons L M) note IH = this(1)
 have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-mm N
   using Cons.prems(1-3) unfolding consistent-interp-def by auto
  then obtain S where
   st: cdcl_{W}^{**} (init\text{-}state\ N)\ S \ \mathbf{and}
   S: state S = (map (\lambda L. Decided L) M, N, \{\#\}, length M, None)
   using IH by blast
 let ?S_0 = incr-lvl \ (cons-trail \ (Decided \ L) \ S)
 have undefined-lit (map (\lambda L. Decided L) M) L
   using Cons. prems(1,2) unfolding defined-lit-def consistent-interp-def by fastforce
 moreover have init-clss S = N
   using S by blast
  moreover have atm-of L \in atms-of-mm N using Cons.prems(3) by auto
  moreover have undef: undefined-lit (trail S) L
   using S (distinct (L \# M)) (calculation(1)) by (auto simp: defined-lit-map)
  ultimately have cdcl_W S ?S_0
```

```
using cdcl_W.other[OF\ cdcl_W-o.decide[OF\ decide-rule[of\ S\ L\ ?S_0]]]\ S
   by (auto simp: state-eq-def simp del: state-simp)
  then have cdcl_W^{**} (init-state N) ?S_0
   using st by auto
  then show ?case
   using S undef by (auto intro!: exI[of - ?S_0] del: simp del:)
qed
theorem 2.9.11 page 84 of Weidenbach's book
lemma cdcl_W-strong-completeness:
 assumes
   MN: set M \models sm N  and
   cons: consistent-interp (set M) and
   dist: distinct M and
   \mathit{atm} \colon \mathit{atm}\text{-}\mathit{of} \ \lq \ (\mathit{set}\ M) \subseteq \mathit{atms}\text{-}\mathit{of}\text{-}\mathit{mm}\ N
 obtains S where
   state S = (map (\lambda L. Decided L) M, N, \{\#\}, length M, None) and
   rtranclp\ cdcl_W\ (init\text{-}state\ N)\ S\ and
   final-cdcl_W-state S
proof -
 obtain S where
   st: rtranclp\ cdcl_W\ (init\text{-state}\ N)\ S and
   S: state S = (map (\lambda L. Decided L) M, N, \{\#\}, length M, None)
   using cdcl_W-can-do-step[OF cons dist atm] by auto
 have lits-of-l (map (\lambda L. Decided L) M) = set M
   by (induct\ M,\ auto)
  then have map (\lambda L. \ Decided \ L) \ M \models asm \ N \ using \ MN \ true-annots-true-cls \ by \ metis
  then have final-cdcl_W-state S
   using S unfolding final-cdcl<sub>W</sub>-state-def by auto
  then show ?thesis using that st S by blast
qed
```

2.1.5 Higher level strategy

The rules described previously do not lead to a conclusive state. We have to add a strategy.

Definition

```
lemma tranclp-conflict:
    tranclp conflict S S' \Longrightarrow conflict S S'
    apply (induct rule: tranclp.induct)
    apply simp
    by (metis conflictE conflicting-update-conflicting option.distinct(1) state-eq-conflicting)

lemma tranclp-conflict-iff[iff]:
    full1 conflict S S' \longleftrightarrow conflict S S'

proof —
    have tranclp conflict S S' \Longrightarrow conflict S S' by (meson tranclp-conflict rtranclpD)
    then show ?thesis unfolding full1-def
    by (metis conflict.simps conflicting-update-conflicting option.distinct(1)
        state-eq-conflicting tranclp.intros(1))

qed

inductive cdcl_W - cp :: 'st \Longrightarrow 'st \Longrightarrow bool where
    conflict'[intro]: conflict S S' \Longrightarrow cdcl_W - cp S S' |
```

```
propagate': propagate \ S \ S' \Longrightarrow cdcl_W\text{-}cp \ S \ S'
lemma rtranclp-cdcl_W-cp-rtranclp-cdcl_W:
  cdcl_W - cp^{**} S T \Longrightarrow cdcl_W^{**} S T
 by (induction rule: rtranclp-induct) (auto simp: cdcl<sub>W</sub>-cp.simps dest: cdcl<sub>W</sub>.intros)
lemma cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp\ S\ T and
   S \sim S' and
   T \sim T'
 shows cdcl_W-cp S' T'
 using assms
 apply (induction)
   using conflict-state-eq-compatible apply auto[1]
 using propagate' propagate-state-eq-compatible by auto
lemma tranclp-cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp^{++} S T and
   S \sim S' and
    T \sim T'
 shows cdcl_W-cp^{++} S' T'
 using assms
proof induction
 case base
 then show ?case
   using cdcl_W-cp-state-eq-compatible by blast
 case (step\ U\ V)
 obtain ss :: 'st where
   cdcl_W-cp \ S \ ss \ and \ cdcl_W-cp^{**} \ ss \ U
   by (metis (no-types) step(1) tranclpD)
 then show ?case
   \mathbf{by} \ (\textit{meson} \ \textit{cdcl}_W\text{-}\textit{cp-state-eq-compatible} \ \textit{rtranclp.rtrancl-into-rtrancl} \ \textit{rtranclp-into-tranclp2}
     state-eq-ref step(2) step(4) step(5)
qed
lemma option-full-cdcl_W-cp:
  conflicting S \neq None \Longrightarrow full \ cdcl_W - cp \ S \ S
 unfolding full-def rtranclp-unfold tranclp-unfold
 by (auto simp add: cdcl_W-cp.simps elim: conflictE propagateE)
lemma skip-unique:
 skip \ S \ T \Longrightarrow skip \ S \ T' \Longrightarrow T \sim T'
 by (fastforce simp: state-eq-def simp del: state-simp elim: skipE)
lemma resolve-unique:
 resolve S \ T \Longrightarrow resolve \ S \ T' \Longrightarrow T \sim T'
 by (fastforce simp: state-eq-def simp del: state-simp elim: resolveE)
lemma cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp S S'
 shows clauses S = clauses S'
 using assms by (induct rule: cdcl_W-cp.induct) (auto elim!: conflictE propagateE)
```

```
lemma tranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{++} S S'
 shows clauses S = clauses S'
 using assms by (induct rule: tranclp.induct) (auto dest: cdcl<sub>W</sub>-cp-no-more-clauses)
lemma rtranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{**} S S'
 shows clauses S = clauses S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-no-more-clauses)+
lemma no-conflict-after-conflict:
  conflict \ S \ T \Longrightarrow \neg conflict \ T \ U
 by (metis conflictE conflicting-update-conflicting option.distinct(1) state-simp(5))
lemma no-propagate-after-conflict:
  conflict \ S \ T \Longrightarrow \neg propagate \ T \ U
 by (metis conflictE conflicting-update-conflicting option. distinct(1) propagate. cases
   state-eq-conflicting
\mathbf{lemma} \ \mathit{tranclp-cdcl}_W\text{-}\mathit{cp-propagate-with-conflict-or-not}:
 assumes cdcl_W-cp^{++} S U
 shows (propagate^{++} S U \land conflicting U = None)
   \vee (\exists T D. propagate^{**} S T \wedge conflict T U \wedge conflicting U = Some D)
proof -
 have propagate^{++} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
   using assms by induction
   (force simp: cdcl<sub>W</sub>-cp.simps tranclp-into-rtranclp dest: no-conflict-after-conflict
      no-propagate-after-conflict)+
 moreover
   have propagate^{++} S U \Longrightarrow conflicting U = None
     unfolding tranclp-unfold-end by (auto elim!: propagateE)
 moreover
   have \bigwedge T. conflict T \ U \Longrightarrow \exists D. conflicting U = Some \ D
     by (auto elim!: conflictE simp: state-eq-def simp del: state-simp)
 ultimately show ?thesis by meson
qed
lemma cdcl_W-cp-conflicting-not-empty[simp]: conflicting S = Some \ D \Longrightarrow \neg cdcl_W-cp S \ S'
proof
 assume cdcl_W-cp \ S \ S' and conflicting \ S = Some \ D
 then show False by (induct rule: cdcl_W-cp.induct)
  (auto elim: conflictE propagateE simp: state-eq-def simp del: state-simp)
qed
lemma no-step-cdcl_W-cp-no-conflict-no-propagate:
 assumes no-step cdcl_W-cp S
 shows no-step conflict S and no-step propagate S
 using assms conflict' apply blast
 by (meson assms conflict' propagate')
CDCL with the reasonable strategy: we fully propagate the conflict and propagate, then we
apply any other possible rule cdcl_W-o S S' and re-apply conflict and propagate cdcl_W-cp^{\downarrow} S'
inductive cdcl_W-stgy :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow \ cdcl_W - stgy \ S \ S' \mid
```

Invariants

```
These are the same invariants as before, but lifted
lemma cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: cdcl_W-cp.induct) (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{**} S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl_W-cp-learned-clause-inv)+
lemma tranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{++} S S'
 shows learned-clss S = learned-clss S'
 using assms by (simp add: rtranclp-cdcl_W-cp-learned-clause-inv tranclp-into-rtranclp)
lemma cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp S S'
 shows backtrack-lvl S = backtrack-lvl S'
 using assms by (induct rule: cdcl_W-cp.induct) (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp^{**} S S'
 shows backtrack-lvl S = backtrack-lvl S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl_W-cp-backtrack-lvl)+
lemma cdcl_W-cp-consistent-inv:
 assumes cdcl_W-cp S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms
proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict')
 then show ?case using cdcl_W-consistent-inv cdcl_W.conflict by blast
next
 case (propagate' S S')
 have cdcl_W S S'
   using propagate'.hyps(1) propagate by blast
 then show cdcl_W-M-level-inv S'
   using propagate'.prems(1) cdcl_W-consistent-inv propagate by blast
qed
lemma full1-cdcl_W-cp-consistent-inv:
 assumes full1 cdcl_W-cp S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
 by (metis\ rtranclp-cdcl_W-cp-rtranclp-cdcl_W\ rtranclp-unfold\ tranclp-cdcl_W-consistent-inv)
lemma rtranclp-cdcl_W-cp-consistent-inv:
 assumes rtranclp \ cdcl_W-cp \ S \ S' and cdcl_W-M-level-inv \ S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
```

```
by (induction rule: rtranclp-induct) (blast intro: cdcl_W-cp-consistent-inv)+
lemma cdcl_W-stgy-consistent-inv:
  assumes cdcl_W-stgy S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
  using assms apply (induct rule: cdcl_W-stqy.induct)
  unfolding full-unfold by (blast intro: cdcl_W-consistent-inv full1-cdcl_W-cp-consistent-inv
   cdcl_W.other)+
lemma rtranclp-cdcl_W-stgy-consistent-inv:
 assumes cdcl_W-stgy^{**} S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by induction (auto dest!: cdcl_W-stgy-consistent-inv)
lemma cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl<sub>W</sub>-cp.induct) (auto elim: conflictE propagateE)
lemma tranclp-cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp^{++} S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: tranclp.induct) (auto dest: cdcl_W-cp-no-more-init-clss)
lemma cdcl_W-stgy-no-more-init-clss:
 assumes cdcl_W-stgy S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct\ rule:\ cdcl_W-stgy.induct)
 unfolding full1-def full-def apply (blast dest: tranclp-cdcl<sub>W</sub>-cp-no-more-init-clss
   tranclp-cdcl_W-o-no-more-init-clss)
 by (metis\ cdcl_W-o-no-more-init-clss rtranclp-unfold tranclp-cdcl_W-cp-no-more-init-clss)
lemma rtranclp-cdcl_W-stgy-no-more-init-clss:
 assumes cdcl_W-stgy^{**} S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct rule: rtranclp-induct, simp)
 \mathbf{using}\ cdcl_W\textit{-stgy-no-more-init-clss}\ \mathbf{by}\ (simp\ add:\ rtranclp\text{-}cdcl_W\textit{-stgy-consistent-inv})
lemma cdcl_W-cp-dropWhile-trail':
 assumes cdcl_W-cp S S'
 obtains M where trail S' = M @ trail S and (\forall l \in set M. \neg is\text{-}decided l)
  using assms by induction (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-drop While-trail':
 assumes cdcl_W-cp^{**} S S'
 obtains M :: ('v, 'v \ clause) \ ann-lits \ where
   trail\ S' = M @ trail\ S \ and \ \forall\ l \in set\ M. \ \neg is\ decided\ l
 using assms by induction (fastforce dest!: cdcl<sub>W</sub>-cp-dropWhile-trail')+
lemma cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-decided l)
 using assms by induction (fastforce elim: conflictE propagateE)+
```

```
lemma rtranclp-cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp^{**} S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-decided l)
 using assms by induction (fastforce dest: cdcl<sub>W</sub>-cp-dropWhile-trail)+
This theorem can be seen a a termination theorem for cdcl_W-cp.
lemma length-model-le-vars:
 assumes
   no-strange-atm S and
   no-d: no-dup (trail S) and
   finite\ (atms-of-mm\ (init-clss\ S))
 shows length (trail S) \leq card (atms-of-mm (init-clss S))
proof -
 obtain M N U k D where S: state S = (M, N, U, k, D) by (cases state S, auto)
 have finite (atm-of ' lits-of-l (trail S))
   using assms(1,3) unfolding S by (auto simp add: finite-subset)
 have length (trail\ S) = card\ (atm-of\ `lits-of-l\ (trail\ S))
   using no-dup-length-eq-card-atm-of-lits-of-l no-d by blast
  then show ?thesis using assms(1) unfolding no-strange-atm-def
 by (auto simp add: assms(3) card-mono)
qed
lemma cdcl_W-cp-decreasing-measure:
 assumes
   cdcl_W: cdcl_W-cp S T and
   M-lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
 shows (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
     + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ S
   > (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
     + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ T
 using assms
proof -
 have length (trail T) \leq card (atms-of-mm (init-clss T))
   apply (rule length-model-le-vars)
      using cdcl_W-no-strange-atm-inv alien M-lev apply (meson cdcl_W cdcl_W.simps cdcl_W-cp.cases)
     using M-lev cdcl_W cdcl_W-cp-consistent-inv cdcl_W-M-level-inv-def apply blast
     using cdcl_W by (auto simp: cdcl_W-cp.simps)
 with assms
 show ?thesis by induction (auto elim!: conflictE propagateE
   simp \ del: state-simp \ simp: state-eq-def)+
lemma cdcl_W-cp-wf: wf {(b, a). (cdcl_W-M-level-inv a \land no-strange-atm a) \land cdcl_W-cp a b}
 apply (rule wf-wf-if-measure' of less-than - -
     (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
       + (if \ conflicting \ S = None \ then \ 1 \ else \ 0))))
   apply simp
  using cdcl_W-cp-decreasing-measure unfolding less-than-iff by blast
lemma rtranclp-cdcl_W-all-struct-inv-cdcl_W-cp-iff-rtranclp-cdcl_W-cp:
 assumes
   lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
 shows (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a) \land cdcl_W - cp \ a \ b)^{**} \ S \ T
   \longleftrightarrow cdcl_W - cp^{**} S T
```

```
(is ?I S T \longleftrightarrow ?C S T)
proof
 assume
    ?IST
 then show ?C S T by induction auto
next
 assume
    ?CST
 then show ?IST
   proof induction
     case base
     then show ?case by simp
   next
     case (step T U) note st = this(1) and cp = this(2) and IH = this(3)
     have cdcl_{W}^{**} S T
       by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty cp st
         rtranclp-propagate-is-rtranclp-cdcl_W tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
       cdcl_W-M-level-inv T and
       no-strange-atm T
        \mathbf{using} \ \langle cdcl_{W}^{**} \ S \ T \rangle \ \mathbf{apply} \ (\mathit{simp add: assms}(1) \ \mathit{rtranclp-cdcl}_{W}\text{-}\mathit{consistent-inv})
       using \langle cdcl_W^{**} \mid S \mid T \rangle alien rtranclp-cdcl_W-no-strange-atm-inv lev by blast
     then have (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a) \land cdcl_W - cp \ a \ b)^{**} \ T \ U
       using cp by auto
     then show ?case using IH by auto
   ged
\mathbf{qed}
lemma cdcl_W-cp-normalized-element:
 assumes
   lev: cdcl_W-M-level-inv S and
   no-strange-atm S
 obtains T where full\ cdcl_W-cp\ S\ T
proof
 let ?inv = \lambda a. (cdcl<sub>W</sub>-M-level-inv a \wedge no-strange-atm a)
 obtain T where T: full (\lambda a \ b. ?inv a \land cdcl_W-cp a \ b) S T
   using cdcl_W-cp-wf wf-exists-normal-form[of \lambda a b. ?inv a \wedge cdcl_W-cp a b]
   unfolding full-def by blast
   then have cdcl_W-cp^{**} S T
     using rtranclp-cdcl_W-all-struct-inv-cdcl_W-cp-iff-rtranclp-cdcl_W-cp assms unfolding full-def
     by blast
   moreover
     then have cdcl_W^{**} S T
       using rtranclp-cdcl_W-cp-rtranclp-cdcl_W by blast
     then have
       cdcl_W-M-level-inv T and
       no-strange-atm T
        using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: \ assms(1) \ rtranclp-cdcl_W-consistent-inv)
       using \langle cdcl_W^{**} \mid S \mid T \rangle assms(2) rtranclp-cdcl_W-no-strange-atm-inv lev by blast
     then have no-step cdcl_W-cp T
       using T unfolding full-def by auto
   ultimately show thesis using that unfolding full-def by blast
qed
lemma always-exists-full-cdcl_W-cp-step:
 assumes no-strange-atm S
```

```
shows \exists S''. full cdcl_W-cp S S''
   using assms
proof (induct card (atms-of-mm (init-clss S) - atm-of 'lits-of-l (trail S)) arbitrary: S)
   case \theta note card = this(1) and alien = this(2)
   then have atm: atms-of-mm \ (init-clss \ S) = atm-of \ `its-of-l \ (trail \ S)
      unfolding no-strange-atm-def by auto
   { assume a: \exists S'. conflict S S'
      then obtain S' where S': conflict S S' by metis
     then have \forall S''. \neg cdcl_W - cp S' S''
        by (auto simp: cdcl_W-cp.simps elim!: conflictE propagateE
           simp del: state-simp simp: state-eq-def)
     then have ?case using a S' cdcl_W-cp.conflict' unfolding full-def by blast
   moreover {
     assume a: \exists S'. propagate SS'
     then obtain S' where propagate SS' by blast
     then obtain EL where
        S: conflicting S = None and
        E: E \in \# \ clauses \ S \ \mathbf{and}
        LE: L \in \# E  and
        tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ and
        undef: undefined-lit (trail S) L and
        S': S' \sim cons-trail (Propagated L E) S
        by (elim propagateE) simp
     have atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S)
        using alien S unfolding no-strange-atm-def by auto
     then have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
        using E LE S undef unfolding clauses-def by (force simp: in-implies-atm-of-on-atms-of-ms)
     then have False using undef S unfolding atm unfolding lits-of-def
        by (auto simp add: defined-lit-map)
   }
   ultimately show ?case unfolding full-def by (metis cdcl_W-cp.cases rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl
   case (Suc n) note IH = this(1) and card = this(2) and alien = this(3)
   { assume a: \exists S'. conflict S S'
     then obtain S' where S': conflict S S' by metis
     then have \forall S''. \neg cdcl_W - cp S'S''
        by (auto simp: cdcl_W-cp.simps elim!: conflictE propagateE
           simp del: state-simp simp: state-eq-def)
     then have ?case unfolding full-def Ex-def using S' cdcl<sub>W</sub>-cp.conflict' by blast
   }
   moreover {
     assume a: \exists S'. propagate SS'
     then obtain S' where propagate: propagate S S' by blast
     then obtain EL where
        S: conflicting S = None  and
        E: E \in \# \ clauses \ S \ \mathbf{and}
        LE: L \in \# E  and
        tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ and
        undef: undefined-lit (trail S) L and
        S': S' \sim cons-trail (Propagated L E) S
        by (elim propagateE) simp
     then have atm\text{-}of\ L \notin atm\text{-}of ' lits\text{-}of\text{-}l\ (trail\ S)
        unfolding lits-of-def by (auto simp add: defined-lit-map)
     moreover
        have no-strange-atm S' using alien propagate propagate-no-strange-atm-inv by blast
```

```
then have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
           using S' LE E undef unfolding no-strange-atm-def
           by (auto simp: clauses-def in-implies-atm-of-on-atms-of-ms)
        then have \bigwedge A. \{atm\text{-}of\ L\}\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)-A\lor atm\text{-}of\ L\in A\ \text{by}\ force
    moreover have Suc\ n - card\ \{atm\text{-}of\ L\} = n\ \textbf{by}\ simp
    moreover have card\ (atms-of-mm\ (init-clss\ S)\ -\ atm-of\ `lits-of-l\ (trail\ S))\ =\ Suc\ n
      using card S S' by simp
    ultimately
        have card\ (atms-of-mm\ (init-clss\ S)\ -\ atm-of\ `insert\ L\ (lits-of-l\ (trail\ S)))\ =\ n
           by (metis (no-types) Diff-insert card-Diff-subset finite.emptyI finite.insertI image-insert)
        then have n = card (atms-of-mm (init-clss S') - atm-of `lits-of-l (trail S'))
           using card S S' undef by simp
    then have a1: Ex (full cdcl_W-cp S') using IH (no-strange-atm S') by blast
    have ?case
       proof -
           obtain S'' :: 'st where
                ff1: cdcl_W-cp^{**} S' S'' \wedge no-step cdcl_W-cp S''
                using a1 unfolding full-def by blast
           have cdcl_W-cp^{**} S S''
                using ff1 cdcl_W-cp.intros(2)[OF\ propagate]
                by (metis (no-types) converse-rtranclp-into-rtranclp)
           then have \exists S''. cdcl_W-cp^{**} S S'' \land (\forall S'''. \neg cdcl_W-cp S'' S''')
                using ff1 by blast
           then show ?thesis unfolding full-def
                by meson
       \mathbf{qed}
ultimately show ?case unfolding full-def by (metis cdcl_W-cp.cases rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl
```

Literal of highest level in conflicting clauses

One important property of the $cdcl_W$ with strategy is that, whenever a conflict takes place, there is at least a literal of level k involved (except if we have derived the false clause). The reason is that we apply conflicts before a decision is taken.

```
abbreviation no-clause-is-false :: 'st \Rightarrow bool where
no-clause-is-false \equiv
  \lambda S. \ (conflicting \ S = None \longrightarrow (\forall \ D \in \# \ clauses \ S. \ \neg trail \ S \models as \ CNot \ D))
abbreviation conflict-is-false-with-level :: 'st \Rightarrow bool where
conflict-is-false-with-level S \equiv \forall D. conflicting S = Some D \longrightarrow D \neq \{\#\}
  \longrightarrow (\exists L \in \# D. \ get\text{-level (trail S)} \ L = backtrack\text{-lvl S})
lemma not-conflict-not-any-negated-init-clss:
 assumes \forall S'. \neg conflict S S'
 shows no-clause-is-false S
proof (clarify)
  \mathbf{fix} D
  assume D \in \# local.clauses S and conflicting S = None and trail S \models as CNot D
  then show False
    using conflict-rule[of S D update-conflicting (Some D) S] assms
    by auto
qed
```

lemma full- $cdcl_W$ -cp-not-any-negated-init-clss:

```
assumes full\ cdcl_W-cp\ S\ S'
 shows no-clause-is-false S'
 using assms not-conflict-not-any-negated-init-clss unfolding full-def by auto
lemma full1-cdcl_W-cp-not-any-negated-init-clss:
 assumes full1 cdcl_W-cp S S'
 shows no-clause-is-false S'
 using assms not-conflict-not-any-negated-init-clss unfolding full1-def by auto
lemma cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stgy SS'
 shows no-clause-is-false S'
 using assms apply (induct rule: cdcl_W-stgy.induct)
 using full1-cdcl_W-cp-not-any-negated-init-clss full-cdcl_W-cp-not-any-negated-init-clss by metis+
lemma rtranclp-cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stgy^{**} S S' and no-clause-is-false S
 shows no-clause-is-false S'
 using assms by (induct rule: rtranclp-induct) (auto simp: cdcl<sub>W</sub>-stqy-not-non-negated-init-clss)
lemma cdcl_W-stgy-conflict-ex-lit-of-max-level:
 assumes
   cdcl_W-cp\ S\ S' and
   no-clause-is-false S and
   cdcl_W-M-level-inv S
 shows conflict-is-false-with-level S'
 using assms
proof (induct rule: cdcl_W-cp.induct)
 case conflict'
 then show ?case by (auto elim: conflictE)
next
 case propagate'
 then show ?case by (auto elim: propagateE)
qed
lemma no-chained-conflict:
 assumes conflict S S' and conflict S' S"
 shows False
 using assms unfolding conflict.simps
 by (metis\ conflicting\ update\ conflicting\ option\ distinct(1)\ state\ eq\ conflicting)
lemma rtranclp-cdcl_W-cp-propa-or-propa-confl:
 assumes cdcl_W - cp^{**} S U
 shows propagate^{**} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
 using assms
proof induction
 \mathbf{case}\ base
 then show ?case by auto
 case (step U V) note SU = this(1) and UV = this(2) and IH = this(3)
 consider (confl) T where propagate^{**} S T and conflict T U
    (propa) propagate** S U using IH by auto
 then show ?case
   proof cases
     case confl
     then have False using UV by (auto elim: conflictE)
```

```
then show ?thesis by fast
   next
     case propa
     also have conflict U \ V \ \vee propagate \ U \ V using UV by (auto simp add: cdcl_W-cp.simps)
     ultimately show ?thesis by force
   qed
qed
lemma rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level:
 assumes full: full cdcl_W-cp S U
 and cls-f: no-clause-is-false S
 and conflict-is-false-with-level S
 and lev: cdcl_W-M-level-inv S
 shows conflict-is-false-with-level U
proof (intro allI impI)
 \mathbf{fix} D
 assume
   confl: conflicting U = Some D and
   D: D \neq \{\#\}
 consider (CT) conflicting S = None \mid (SD) D' where conflicting S = Some D'
   by (cases conflicting S) auto
 then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
   proof cases
     case SD
     then have S = U
      by (metis (no-types) assms(1) cdcl_W-cp-conflicting-not-empty full-def rtranclpD tranclpD)
     then show ?thesis using assms(3) confl D by blast-
   next
     case CT
     have init-clss U = init-clss S and learned-clss U = learned-clss S
      using full unfolding full-def
        apply (metis (no-types) rtranclpD tranclp-cdcl_W-cp-no-more-init-clss)
      by (metis (mono-tags, lifting) full full-def rtranclp-cdcl_W-cp-learned-clause-inv)
     obtain T where propagate^{**} S T and TU: conflict T U
      proof -
        have f5: U \neq S
          using confl CT by force
        then have cdcl_W-cp^{++} S U
          by (metis full full-def rtranclpD)
        have \bigwedge p pa. \neg propagate p pa \lor conflicting pa =
          (None :: 'v \ clause \ option)
         by (auto elim: propagateE)
        then show ?thesis
          using f5 that translp-cdcl<sub>W</sub>-cp-propagate-with-conflict-or-not[OF \langle cdcl_W - cp^{++} | S | U \rangle]
          full confl CT unfolding full-def by auto
      qed
     obtain D' where
      conflicting T = None  and
      D': D' \in \# \ clauses \ T \ and
      tr: trail \ T \models as \ CNot \ (D') \ and
      U: U \sim update\text{-conflicting (Some (D'))} T
      using TU by (auto elim!: conflictE)
     have init-clss T = init-clss S and learned-clss T = learned-clss S
      using U \in I init-clss U = I init-clss S \in I by auto
     then have D \in \# clauses S
      using confl\ U\ D' by (auto\ simp:\ clauses-def)
```

```
then have \neg trail S \models as CNot D
 using cls-f CT by simp
moreover
 obtain M where tr-U: trail U = M @ trail S and nm: \forall m \in set M. \neg is\text{-}decided m
   by (metis (mono-tags, lifting) assms(1) full-def rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail)
 have trail U \models as \ CNot \ D
   using tr confl U by (auto elim!: conflictE)
ultimately obtain L where L \in \# D and -L \in lits-of-l M
 unfolding tr-U CNot-def true-annots-def Ball-def true-annot-def true-cls-def by force
moreover have inv-U: cdcl_W-M-level-inv U
 by (metis\ cdcl_W - stgy. conflict'\ cdcl_W - stgy-consistent-inv\ full\ full-unfold\ lev)
moreover
 have backtrack-lvl\ U = backtrack-lvl\ S
   using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-backtrack-lvl)
moreover
 have no-dup (trail U)
   using inv-U unfolding cdcl_W-M-level-inv-def by auto
  { \mathbf{fix} \ x :: ('v, 'v \ clause) \ ann-lit \ \mathbf{and}
     xb :: ('v, 'v \ clause) \ ann-lit
   assume a1: atm\text{-}of\ L = atm\text{-}of\ (lit\text{-}of\ xb)
   moreover assume a2: -L = lit - of x
   moreover assume a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M
     \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ `set \ (trail \ S) = \{\}
   moreover assume a4: x \in set M
   moreover assume a5: xb \in set (trail S)
   moreover have atm\text{-}of(-L) = atm\text{-}ofL
     by auto
   ultimately have False
     by auto
 then have LS: atm\text{-}of \ L \notin atm\text{-}of \ ' lits\text{-}of\text{-}l \ (trail \ S)
   \mathbf{using} \ \leftarrow L \in \mathit{lits-of-l}\ \mathit{M} \land (\mathit{no-dup}\ (\mathit{trail}\ \mathit{U})) \land \mathbf{unfolding}\ \mathit{tr-U}\ \mathit{lits-of-def}\ \mathbf{by}\ \mathit{auto}
ultimately have get-level (trail U) L = backtrack-lvl U
 proof (cases count-decided (trail S) \neq 0, qoal-cases)
   case 2 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
     LS = this(5) and ne = this(6)
   have backtrack-lvl\ S=0
     using lev ne unfolding cdcl_W-M-level-inv-def by auto
   moreover have get-level ML = 0
     using nm by auto
   ultimately show ?thesis using LS ne US unfolding tr-U
     by (simp add: lits-of-def filter-empty-conv)
   case 1 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
     LS = this(5) and ne = this(6)
   have count-decided (trail S) = backtrack-lvl S
     using ne lev unfolding cdcl_W-M-level-inv-def by auto
   moreover have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
     using \langle -L \in lits-of-l M \rangle by (simp \ add: \ atm-of-in-atm-of-set-iff-in-set-or-uninus-in-set
       lits-of-def)
   ultimately show ?thesis
     using nm ne get-level-skip-in-all-not-decided[of M L] unfolding lits-of-def US tr-U
```

```
by auto
         qed
     then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
       using \langle L \in \# D \rangle by blast
   qed
qed
Literal of highest level in decided literals
definition mark-is-false-with-level :: 'st \Rightarrow bool where
mark-is-false-with-level S' \equiv
 \forall D \ M1 \ M2 \ L. \ M1 @ Propagated \ L \ D \# M2 = trail \ S' \longrightarrow D - \{\#L\#\} \neq \{\#\}
   \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = count\text{-decided } M1)
definition no-more-propagation-to-do :: 'st \Rightarrow bool where
no-more-propagation-to-do S \equiv
 \forall D \ M \ M' \ L. \ D + \{\#L\#\} \in \# \ clauses \ S \longrightarrow trail \ S = M' @ M \longrightarrow M \models as \ CNot \ D
    \longrightarrow undefined-lit M L \longrightarrow count-decided M < backtrack-lvl S
   \longrightarrow (\exists L. \ L \in \# \ D \land get\text{-level (trail S)} \ L = count\text{-decided } M)
\mathbf{lemma}\ propagate-no-more-propagation-to-do:
 assumes propagate: propagate S S'
 and H: no-more-propagation-to-do S
 and lev-inv: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
 using assms
proof -
 obtain EL where
   S: conflicting S = None  and
   E: E \in \# clauses S  and
   LE: L \in \# E \text{ and }
   tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ and
   undefL: undefined-lit (trail\ S)\ L and
   S': S' \sim cons-trail (Propagated L E) S
   using propagate by (elim propagateE) simp
 let ?M' = Propagated \ L \ \# \ trail \ S
  show ?thesis unfolding no-more-propagation-to-do-def
   proof (intro allI impI)
     fix D M1 M2 L'
     assume
       D\text{-}L: D + \{\#L'\#\} \in \# \ clauses \ S' \ and
       trail S' = M2 @ M1 and
       get-max: count-decided M1 < backtrack-lvl S' and
       M1 \models as \ CNot \ D and
       undef: undefined-lit M1 L'
     have tl M2 @ M1 = trail S \vee (M2 = [] \wedge M1 = Propagated L E \# trail S)
       using \langle trail \ S' = M2 \ @ M1 \rangle \ S' \ S \ undefL \ lev-inv
       by (cases M2) (auto simp:cdcl_W-M-level-inv-decomp)
     moreover {
       assume tl M2 @ M1 = trail S
       moreover have D + \{\#L'\#\} \in \# clauses S
         using D-L S S' undefL unfolding clauses-def by auto
       moreover have count-decided M1 < backtrack-lvl S
         using get-max S S' undefL by auto
       ultimately obtain L' where L' \in \# D and
         get-level (trail S) L' = count-decided M1
```

```
using H \langle M1 \models as\ CNot\ D \rangle undef unfolding no-more-propagation-to-do-def by metis
       moreover
         { have cdcl_W-M-level-inv S'
             \mathbf{using}\ \mathit{cdcl}_W\text{-}\mathit{consistent-inv}\ \mathit{lev-inv}\ \mathit{cdcl}_W.\mathit{propagate}[\mathit{OF}\ \mathit{propagate}]\ \mathbf{by}\ \mathit{blast}
           then have no-dup ?M' using S' undefL unfolding cdcl_W-M-level-inv-def by auto
           moreover
             have atm\text{-}of\ L' \in atm\text{-}of\ `(lits\text{-}of\text{-}l\ M1)
               using \langle L' \in \# D \rangle \langle M1 \models as \ CNot \ D \rangle by (metis atm-of-uninus image-eqI
                 in-CNot-implies-uminus(2))
             then have atm\text{-}of\ L' \in atm\text{-}of\ `(lits\text{-}of\text{-}l\ (trail\ S))
               using \langle tl \ M2 \ @ \ M1 = trail \ S \rangle [symmetric] \ S \ undefL \ by \ auto
           ultimately have atm\text{-}of L \neq atm\text{-}of L' unfolding lits\text{-}of\text{-}def by auto
       ultimately have \exists L' \in \# D. get-level (trail S') L' = count\text{-}decided M1
         using SS' undefL by auto
     moreover {
       assume M2 = [] and M1: M1 = Propagated L E \# trail S
       have cdcl_W-M-level-inv S'
         using cdcl_W-consistent-inv[OF - lev-inv] cdcl_W.propagate[OF propagate] by blast
       then have count-decided M1 = backtrack-lvl S'
         using S' M1 undefL unfolding cdcl_W-M-level-inv-def by (auto intro: Max-eqI)
       then have False using get-max by auto
     ultimately show \exists L. \ L \in \# \ D \land get\text{-level (trail } S') \ L = count\text{-decided } M1
       by fast
  qed
qed
lemma conflict-no-more-propagation-to-do:
 assumes
   conflict: conflict S S' and
   H: no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S\ and
   M: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
 using assms unfolding no-more-propagation-to-do-def by (force elim!: conflictE)
lemma cdcl_W-cp-no-more-propagation-to-do:
 assumes
   conflict: cdcl_W-cp S S' and
   H: no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S\ and
   M: cdcl_W - M - level - inv S
 shows no-more-propagation-to-do S'
 using assms
 proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict' S S')
 then show ?case using conflict-no-more-propagation-to-do[of S S \cap \ by blast
 case (propagate' S S') note S = this
 show 1: no-more-propagation-to-do S'
   using propagate-no-more-propagation-to-do [of SS'] S by blast
lemma cdcl_W-then-exists-cdcl_W-stgy-step:
 assumes
   o: cdcl_W-o S S' and
```

```
alien: no-strange-atm S and
   lev: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W-stgy SS'
proof -
 obtain S'' where full cdcl_W-cp S' S''
   using always-exists-full-cdcl<sub>W</sub>-cp-step alien cdcl_W-no-strange-atm-inv cdcl_W-o-no-more-init-clss
    o other lev by (meson cdcl_W-consistent-inv)
  then show ?thesis
   using assms by (metis always-exists-full-cdcl<sub>W</sub>-cp-step cdcl<sub>W</sub>-stgy.conflict' full-unfold other')
lemma backtrack-no-decomp:
 assumes
   S: conflicting S = Some E  and
   LE: L \in \# E \text{ and }
   L: get-level (trail S) L = backtrack-lvl S and
   D: get-maximum-level (trail S) (remove1-mset L(E) < backtrack-lvl S and
   bt: backtrack-lvl\ S = qet-maximum-level (trail S) E and
   M-L: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W \text{-}o \ S \ S'
proof -
 have L-D: get-level (trail S) L = get-maximum-level (trail S) E
   using L D bt by (simp add: get-maximum-level-plus)
 let ?i = get\text{-}maximum\text{-}level (trail S) (remove1\text{-}mset L E)
 obtain K M1 M2 where
   K: (Decided \ K \ \# \ M1, \ M2) \in set \ (get-all-ann-decomposition \ (trail \ S)) and
   lev-K: get-level (trail S) K = Suc ?i
   using backtrack-ex-decomp[OF M-L, of ?i] D S by auto
 show ?thesis using backtrack-rule[OF S LE K L, of ?i] bt L lev-K bj by (auto simp: cdcl<sub>W</sub>-bj.simps)
qed
lemma cdcl_W-stgy-final-state-conclusive:
 assumes
   termi: \forall S'. \neg cdcl_W \text{-stgy } S S' \text{ and }
   decomp: all-decomposition-implies-m \ (init-clss \ S) \ (get-all-ann-decomposition \ (trail \ S)) and
   learned: cdcl_W-learned-clause S and
   level-inv: cdcl_W-M-level-inv: S and
   alien: no-strange-atm S and
   no-dup: distinct-cdcl_W-state S and
   confl: cdcl_W-conflicting S and
   confl-k: conflict-is-false-with-level S
 shows (conflicting S = Some \{\#\} \land unsatisfiable (set-mset (init-clss S)))
       \vee (conflicting S = None \wedge trail S \models as set\text{-mset (init-clss S))}
proof -
 let ?M = trail S
 let ?N = init\text{-}clss S
 let ?k = backtrack-lvl S
 let ?U = learned\text{-}clss S
 consider
     (None) conflicting S = None
   | (Some-Empty) E  where conflicting S = Some E  and E = \{\#\}
   | (Some) E' where conflicting S = Some E' and
     conflicting S = Some (E') and E' \neq \{\#\}
   by (cases conflicting S, simp) auto
  then show ?thesis
   proof cases
```

```
case (Some\text{-}Empty\ E)
  then have conflicting S = Some \{\#\} by auto
  then have unsatisfiable (set\text{-}mset (init\text{-}clss S))
   using assms(3) unfolding cdcl_W-learned-clause-def true-clss-cls-def
   by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
      sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
  then show ?thesis using Some-Empty by auto
next
  case None
  { assume \neg ?M \models asm ?N
   have atm\text{-}of ' (lits\text{-}of\text{-}l\ ?M) = atms\text{-}of\text{-}mm\ ?N\ (is\ ?A = ?B)
     proof
       show ?A \subseteq ?B using alien unfolding no-strange-atm-def by auto
       show ?B \subseteq ?A
         proof (rule ccontr)
           assume \neg ?B \subseteq ?A
           then obtain l where l \in ?B and l \notin ?A by auto
           then have undefined-lit ?M (Pos l)
             using \langle l \notin ?A \rangle unfolding lits-of-def by (auto simp add: defined-lit-map)
           moreover have conflicting S = None
             using None by auto
           ultimately have \exists S'. \ cdcl_W \text{-}o \ S \ S'
             using cdcl_W-o.decide\ decide-rule \langle l \in ?B \rangle no-strange-atm-def
             by (metis\ literal.sel(1)\ state-eq-def)
           then show False
             using termi cdcl<sub>W</sub>-then-exists-cdcl<sub>W</sub>-stgy-step[OF - alien] level-inv by blast
         qed
     qed
   obtain D where \neg ?M \models a D \text{ and } D \in \# ?N
      using \langle \neg ?M \models asm ?N \rangle unfolding lits-of-def true-annots-def Ball-def by auto
   have atms-of D \subseteq atm-of ' (lits-of-l?M)
     using \langle D \in \#?N \rangle unfolding \langle atm\text{-}of \cdot (lits\text{-}of\text{-}l?M) = atms\text{-}of\text{-}mm?N \rangle atms\text{-}of\text{-}ms\text{-}def
     by (auto simp add: atms-of-def)
   then have a1: atm-of 'set-mset D \subseteq atm-of 'lits-of-l (trail S)
     by (auto simp add: atms-of-def lits-of-def)
   have total-over-m (lits-of-l ?M) {D}
     using \langle atms-of \ D \subset atm-of \ (lits-of-l \ ?M) \rangle
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by (fastforce simp: total-over-set-def)
   then have ?M \models as \ CNot \ D
     using total-not-true-cls-true-cls-CNot \langle \neg trail \ S \models a \ D \rangle true-annot-def
     true-annots-true-cls by fastforce
   then have False
     proof -
       obtain S' where
         f2: full\ cdcl_W-cp S\ S'
         by (meson \ alien \ always-exists-full-cdcl_W-cp-step \ level-inv)
       then have S' = S
         using cdcl_W-stgy.conflict'[of S] by (metis (no-types) full-unfold termi)
       then show ?thesis
         using f2 \langle D \in \# init\text{-}clss S \rangle None \langle trail S \models as CNot D \rangle
         clauses-def full-cdcl_W-cp-not-any-negated-init-clss by auto
     qed
  then have ?M \models asm ?N by blast
  then show ?thesis
   using None by auto
```

```
next
 case (Some E') note conf = this(1) and LD = this(2) and nempty = this(3)
 then obtain LD where
   E'[simp]: E' = D + \{\#L\#\}  and
   lev-L: get-level ?M L = ?k
   by (metis (mono-tags) confl-k insert-DiffM2)
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as CNot ?D using confl LD unfolding cdcl_W-conflicting-def by auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 have M: ?M = hd ?M \# tl ?M using \langle ?M \neq [] \rangle list.collapse by fastforce
 have g-k: get-maximum-level (trail S) D \leq ?k
   using count-decided-ge-get-maximum-level[of ?M] level-inv
   unfolding cdcl_W-M-level-inv-def
   by auto
   assume decided: is-decided (hd?M)
   then obtain k' where k': k' + 1 = ?k
     using level-inv M unfolding cdcl<sub>W</sub>-M-level-inv-def
     by (cases hd (trail S); cases trail S) auto
   obtain L' where L': hd ?M = Decided L' using decided by (cases hd ?M) auto
   have *: \bigwedge list. no-dup list \Longrightarrow
         -L \in \mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l}\;\mathit{list} \Longrightarrow \mathit{atm}\text{-}\mathit{of}\; L \in \mathit{atm}\text{-}\mathit{of}\; `\mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l}\;\mathit{list}
     by (metis\ atm\text{-}of\text{-}uminus\ imageI)
   have L'-L: L' = -L
     proof (rule ccontr)
       assume ¬ ?thesis
      moreover have -L \in lits-of-l? M using confl LD unfolding cdcl_W-conflicting-def by auto
       ultimately have get-level (hd (trail S) \# tl (trail S)) L = \text{get-level} (tl ?M) L
        using cdcl_W-M-level-inv-decomp(1)[OF level-inv] unfolding consistent-interp-def
        by (subst (asm) (2) M) (auto simp add: atm-of-eq-atm-of L')
       moreover
        have count-decided (trail S) = ?k
          using level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
         then have count: count-decided (tl (trail S)) = ?k - 1
          using level-inv unfolding cdclw-M-level-inv-def
          by (subst\ (asm)\ M)\ (auto\ simp\ add:\ L')
        then have get-level (tl ?M) L < ?k
          using count-decided-ge-get-level[of L tl ?M] unfolding count k'[symmetric]
          by auto
       finally show False using lev-L M by auto
     qed
   have L: hd ?M = Decided (-L) using L'-L L' by auto
   have get-maximum-level (trail S) D < ?k
     proof (rule ccontr)
       assume ¬ ?thesis
       then have qet-maximum-level (trail S) D = ?k using M q-k unfolding L by auto
       then obtain L'' where L'' \in \# D and L-k: qet-level ?M L'' = ?k
         using get-maximum-level-exists-lit[of ?k ?M D] unfolding k'[symmetric] by auto
       have L \neq L'' using no-dup \langle L'' \in \# D \rangle
         unfolding distinct\text{-}cdcl_W\text{-}state\text{-}def LD
        by (metis E' add.right-neutral add-diff-cancel-right'
           distinct-mem-diff-mset union-commute union-single-eq-member)
       have L^{\prime\prime} = -L
```

```
proof (rule ccontr)
         assume ¬ ?thesis
         then have get-level ?M L'' = get-level (tl ?M) L''
          using M \langle L \neq L'' \rangle get-level-skip-beginning[of L'' hd? M tl? M] unfolding L
          by (auto simp: atm-of-eq-atm-of)
         moreover
          have d: drop While (\lambda S. atm\text{-}of (lit\text{-}of S) \neq atm\text{-}of L) (tl (trail S)) = []
            using level-inv unfolding cdcl_W-M-level-inv-def apply (subst\ (asm)(2)\ M)
            by (auto simp: image-iff L'L'-L)
          have get-level (tl (trail S)) L = 0
            by (auto simp: filter-empty-conv d)
         moreover
          have get-level (tl (trail S)) L'' \leq count\text{-decided} (tl (trail S))
            by auto
          then have get-level (tl (trail S)) L'' < backtrack-lvl S
            using level-inv unfolding cdcl_W-M-level-inv-def apply (subst (asm)(5) M)
            by (auto simp: image-iff L'L'-L simp del: count-decided-ge-get-level)
         ultimately show False
          apply -
          apply (subst\ (asm)\ M,\ subst\ (asm)(3)\ M,\ subst\ (asm)\ L')
          using L-k
          apply (auto simp: L'L'-L split: if-splits)
          apply (subst\ (asm)(3)\ M,\ subst\ (asm)\ L')
          using \langle L'' \neq -L \rangle by (auto simp: L' L'-L split: if-splits)
     then have taut: tautology (D + \{\#L\#\})
       using \langle L'' \in \# D \rangle by (metis add.commute mset-leD mset-le-add-left multi-member-this
         tautology-minus)
     \mathbf{have}\ \mathit{consistent}\text{-}\mathit{interp}\ (\mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l}\ ?M)
       using level-inv unfolding cdcl_W-M-level-inv-def by auto
     then have \neg ?M \models as \ CNot \ ?D
       using taut by (metis \langle L'' = -L \rangle \langle L'' \in \# D \rangle add.commute consistent-interp-def
         diff-union-cancelR in-CNot-implies-uminus(2) in-diffD multi-member-this)
     moreover have ?M \models as \ CNot \ ?D
       using confl no-dup LD unfolding cdclw-conflicting-def by auto
     ultimately show False by blast
   \mathbf{ged} \ \mathbf{note} \ H = this
 have get-maximum-level (trail S) D < get-maximum-level (trail S) (D + \{\#L\#\})
   using H by (auto simp: get-maximum-level-plus lev-L max-def)
 moreover have backtrack-lvl S = get-maximum-level (trail S) (D + \{\#L\#\})
   using H by (auto simp: get-maximum-level-plus lev-L max-def)
 ultimately have False
   using backtrack-no-decomp[OF conf - lev-L] level-inv termi
   cdcl_W-then-exists-cdcl_W-stgy-step[of S] alien unfolding E'
   by (auto simp add: lev-L max-def)
} note not-is-decided = this
moreover {
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as \ CNot \ ?D \ using \ confl \ LD \ unfolding \ cdcl_W - conflicting - def \ by \ auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 assume nm: \neg is\text{-}decided (hd ?M)
 then obtain L' C where L'C: hd-trail S = Propagated L' C using \langle trail \ S \neq [] \rangle
   by (cases hd-trail S) auto
 then have hd ?M = Propagated L' C
```

```
using \langle trail \ S \neq [] \rangle by fastforce
   then have M: ?M = Propagated L' C \# tl ?M
     using \langle ?M \neq [] \rangle list.collapse by fastforce
   then obtain C' where C': C = C' + \{\#L'\#\}
     using confl unfolding cdcl_W-conflicting-def by (metis append-Nil diff-single-eq-union)
   { assume -L' \notin \# ?D
     then have Ex (skip S)
      using skip-rule[OF\ M\ conf] unfolding E' by auto
     then have False
      using cdcl_W-then-exists-cdcl_W-stgy-step[of S] alien level-inv termi
      by (auto dest: cdcl_W-o.intros cdcl_W-bj.intros)
   }
   moreover {
     assume L'D: -L' \in \# ?D
     then obtain D' where D': ?D = D' + \{\#-L'\#\} by (metis insert-DiffM2)
     then have get-maximum-level (trail S) D' \leq ?k
      \mathbf{using}\ count\text{-}decided\text{-}ge\text{-}get\text{-}maximum\text{-}level[of\ Propagated\ L'\ C\ \#\ tl\ ?M]\ M
      level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have get-maximum-level (trail S) D' = ?k
      \lor get-maximum-level (trail S) D' < ?k
      using le-neq-implies-less by blast
     moreover {
      assume g-D'-k: get-maximum-level (trail S) D' = ?k
      then have f1: get-maximum-level (trail S) D' = backtrack-lvl S
        using M by auto
      then have Ex\ (cdcl_W - o\ S)
        using f1 resolve-rule[of S L' C , OF \langle trail \ S \neq [] \rangle - - conf] conf g-D'-k
        L'C\ L'D\ \mathbf{unfolding}\ C'\ D'\ E'
        by (fastforce simp add: D' intro: cdcl_W-o.intros cdcl_W-bj.intros)
      then have False
        by (meson\ alien\ cdcl_W-then-exists-cdcl_W-stgy-step termi level-inv)
     moreover {
      assume a1: get-maximum-level (trail S) D' < ?k
      then have f3: get-maximum-level (trail S) D' < \text{get-level (trail S) } (-L')
        using a lev-L by (metis D' qet-maximum-level-qe-qet-level insert-noteq-member
      moreover have backtrack-lvl S = get-level (trail S) L'
        apply (subst M)
        using level-inv unfolding cdcl_W-M-level-inv-def
        by (subst\ (asm)(3)\ M)\ (auto\ simp\ add:\ cdcl_W-M-level-inv-decomp)[]
      moreover
        then have get-level (trail S) L' = get-maximum-level (trail S) (D' + \{\#-L'\#\})
          using a1 by (auto simp add: get-maximum-level-plus max-def)
      ultimately have False
        using M backtrack-no-decomp[of S - L', OF conf]
        cdcl_W-then-exists-cdcl_W-stgy-step L'D level-inv termi alien
        unfolding D' E' by auto
     ultimately have False by blast
   ultimately have False by blast
 ultimately show ?thesis by blast
qed
```

qed

```
lemma cdcl_W-cp-tranclp-cdcl_W:
  cdcl_W-cp \ S \ S' \Longrightarrow cdcl_W^{++} \ S \ S'
 apply (induct rule: cdcl_W-cp.induct)
 by (meson\ cdcl_W.conflict\ cdcl_W.propagate\ tranclp.r-into-trancl\ tranclp.trancl-into-trancl)+
\mathbf{lemma} \ \mathit{tranclp-cdcl}_W\text{-}\mathit{cp-tranclp-cdcl}_W\text{:}
  cdcl_W - cp^{++} S S' \Longrightarrow cdcl_W^{++} S S
 apply (induct rule: tranclp.induct)
  apply (simp add: cdcl_W-cp-tranclp-cdcl_W)
  by (meson\ cdcl_W-cp-tranclp-cdcl<sub>W</sub> tranclp-trans)
lemma cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy S S' \Longrightarrow cdcl_W^{++} S S'
proof (induct \ rule: \ cdcl_W-stgy.induct)
 case conflict'
 then show ?case
  unfolding full1-def by (simp add: tranclp-cdcl_W-cp-tranclp-cdcl<sub>W</sub>)
next
  case (other' S' S'')
 then have S' = S'' \lor cdcl_W - cp^{++} S' S''
   by (simp add: rtranclp-unfold full-def)
  then show ?case
   using other' by (meson\ cdcl_W.other\ tranclp.r-into-trancl
     tranclp-cdcl_W-cp-tranclp-cdcl_W tranclp-trans)
qed
lemma tranclp-cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy^{++} S S' \Longrightarrow cdcl_W^{++} S S'
 apply (induct rule: tranclp.induct)
  using cdcl_W-stgy-tranclp-cdcl<sub>W</sub> apply blast
 by (meson\ cdcl_W-stgy-tranclp-cdcl<sub>W</sub> tranclp-trans)
lemma rtranclp-cdcl_W-stgy-rtranclp-cdcl_W:
  cdcl_W-stgy^{**} S S' \Longrightarrow cdcl_W^{**} S S'
  using rtranclp-unfold[of cdcl_W-stgy S S'] tranclp-cdcl_W-stgy-tranclp-cdcl_W[of S S'] by auto
lemma not-empty-get-maximum-level-exists-lit:
 assumes n: D \neq \{\#\}
 and max: get\text{-}maximum\text{-}level\ M\ D=n
 shows \exists L \in \#D. get-level ML = n
proof -
 have f: finite (insert 0 ((\lambda L. get-level M L) 'set-mset D)) by auto
 then have n \in ((\lambda L. \ get\text{-level } M \ L) \ `set\text{-mset } D)
   using n max get-maximum-level-exists-lit-of-max-level image-iff
   unfolding get-maximum-level-def by force
 then show \exists L \in \# D. get-level ML = n by auto
lemma cdcl_W-o-conflict-is-false-with-level-inv:
 assumes
    cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   confl-inv: conflict-is-false-with-level S and
   n-d: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S
```

```
shows conflict-is-false-with-level S'
 using assms(1,2)
proof (induct rule: cdcl<sub>W</sub>-o-induct)
 case (resolve L C M D T) note tr-S = this(1) and confl = this(4) and LD = this(5) and T =
this(7)
 have uL-not-D: -L \notin \# remove1-mset (-L) D
   using n-d confl unfolding distinct-cdcl<sub>W</sub>-state-def distinct-mset-def
   by (metis distinct-cdcl_W-state-def distinct-mem-diff-mset multi-member-last n-d)
 moreover have L-not-D: L \notin \# remove1\text{-}mset (-L) D
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L \in \# D
      by (auto simp: in-remove1-mset-neq)
     moreover have Propagated L C \# M \modelsas CNot D
      using conflicting confl tr-S unfolding cdcl<sub>W</sub>-conflicting-def by auto
     ultimately have -L \in lits-of-l (Propagated L C \# M)
      using in-CNot-implies-uminus(2) by blast
     moreover have no-dup (Propagated L C \# M)
      using lev tr-S unfolding cdcl_W-M-level-inv-def by auto
     ultimately show False unfolding lits-of-def by (metis consistent-interp-def image-eqI
       list.set	ext{-}intros(1)\ lits	ext{-}of	ext{-}def\ ann	ext{-}lit.sel(2)\ distinct	ext{-}consistent	ext{-}interp)
   qed
 ultimately
   have g-D: get-maximum-level (Propagated L C \# M) (remove1-mset (-L) D)
     = qet-maximum-level M (remove1-mset (-L) D)
     using get-maximum-level-skip-first[of L remove1-mset (-L) D C M]
     by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
 have lev-L[simp]: get-level\ M\ L=0
   apply (rule atm-of-notin-get-rev-level-eq-0)
   using lev unfolding cdcl_W-M-level-inv-def tr-S by (auto simp: lits-of-def)
 have D: get-maximum-level M (remove1-mset (-L) D) = backtrack-lvl S
   using resolve.hyps(6) LD unfolding tr-S by (auto simp: get-maximum-level-plus max-def g-D)
 have get-maximum-level M (remove1-mset L C) \leq backtrack-lvl S
   \mathbf{using} \ \ count\text{-}decided\text{-}ge\text{-}get\text{-}maximum\text{-}level[of\ M]\ lev\ \mathbf{unfolding}\ \ tr\text{-}S\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}def\ \mathbf{by}\ \ auto
 then have
   get-maximum-level M (remove1-mset (-L) D \#\cup remove1-mset L C) =
     backtrack-lvl S
   by (auto simp: qet-maximum-level-union-mset qet-maximum-level-plus max-def D)
 then show ?case
   using tr-S not-empty-get-maximum-level-exists-lit[of
     remove1-mset (-L) D \# \cup remove1-mset L C M T
   by auto
next
 case (skip\ L\ C'\ M\ D\ T) note tr\text{-}S=this(1) and D=this(2) and T=this(5)
 then obtain La where
   La \in \# D and
   get-level (Propagated L C' \# M) La = backtrack-lvl S
   using skip confl-inv by auto
 moreover
   have atm-of La \neq atm-of L
     proof (rule ccontr)
      assume ¬ ?thesis
      then have La: La = L \text{ using } \langle La \in \# D \rangle \langle -L \notin \# D \rangle
        by (auto simp add: atm-of-eq-atm-of)
```

```
have Propagated L C' \# M \modelsas CNot D
        using conflicting tr-S D unfolding cdcl_W-conflicting-def by auto
      then have -L \in lits-of-l M
        using \langle La \in \# D \rangle in-CNot-implies-uminus(2)[of L D
          Propagated L C' \# M] unfolding La
        by auto
      then show False using lev tr-S unfolding cdcl<sub>W</sub>-M-level-inv-def consistent-interp-def by auto
     qed
   then have get-level (Propagated L C' \# M) La = get-level M La by auto
 ultimately show ?case using D tr-S T by auto
next
 case backtrack
 then show ?case
   by (auto split: if-split-asm simp: cdcl_W-M-level-inv-decomp lev)
ged auto
Strong completeness
lemma cdcl_W-cp-propagate-confl:
 assumes cdcl_W-cp S T
 shows propagate^{**} S T \lor (\exists S'. propagate^{**} S S' \land conflict S' T)
 using assms by induction blast+
lemma rtranclp-cdcl_W-cp-propagate-conft:
 assumes cdcl_W-cp^{**} S T
 shows propagate^{**} S T \vee (\exists S'. propagate^{**} S S' \wedge conflict S' T)
 by (simp add: assms rtranclp-cdcl_W-cp-propa-or-propa-confl)
lemma propagate-high-levelE:
 assumes propagate S T
 obtains M' N' U k L C where
   state S = (M', N', U, k, None) and
   state T = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M',\ N',\ U,\ k,\ None) and
   C + \{\#L\#\} \in \# local.clauses S  and
   M' \models as \ CNot \ C and
   undefined-lit (trail S) L
proof -
 obtain EL where
   conf: conflicting S = None  and
   E: E \in \# \ clauses \ S \ \mathbf{and}
   LE: L \in \# E  and
   tr: trail S \models as\ CNot\ (E - \{\#L\#\}) and
   undef: undefined-lit (trail S) L and
   T: T \sim cons-trail (Propagated L E) S
   using assms by (elim propagateE) simp
 obtain M N U k where
   S: state \ S = (M, N, U, k, None)
   using conf by auto
 show thesis
   using that [of M N U k L remove1-mset L E] S T LE E tr undef
   by auto
qed
lemma cdcl_W-cp-propagate-completeness:
 assumes MN: set M \models s set-mset N and
```

cons: consistent-interp (set M) and

```
tot: total\text{-}over\text{-}m \ (set \ M) \ (set\text{-}mset \ N) \ \mathbf{and}
  lits-of-l (trail S) \subseteq set M and
  init-clss S = N and
 propagate** S S' and
  learned-clss S = {\#}
 shows length (trail S) \leq length (trail S') \wedge lits-of-l (trail S') \subseteq set M
 using assms(6,4,5,7)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
 case (step Y Z)
 note st = this(1) and propa = this(2) and IH = this(3) and lits' = this(4) and NS = this(5) and
   learned = this(6)
 then have len: length (trail S) \leq length (trail Y) and LM: lits-of-l (trail Y) \subseteq set M
    by blast+
 obtain M'N'UkCL where
    Y: state \ Y = (M', N', U, k, None) and
   Z: state Z = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M',\ N',\ U,\ k,\ None) and
   C: C + \{\#L\#\} \in \# clauses \ Y \ and
   M'-C: M' \models as \ CNot \ C and
   undefined-lit (trail\ Y)\ L
   using propa by (auto elim: propagate-high-levelE)
  have init-clss S = init-clss Y
   using st by induction (auto elim: propagateE)
  then have [simp]: N' = N using NS Y Z by simp
 have learned-clss Y = \{\#\}
   using st learned by induction (auto elim: propagateE)
  then have [simp]: U = {\#} using Y by auto
 have set M \models s \ CNot \ C
   using M'-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
   by force
 moreover
   have set M \models C + \{\#L\#\}
     \mathbf{using}\ \mathit{MN}\ \mathit{C}\ \mathit{learned}\ \mathit{Y}\ \mathit{NS}\ \mathit{\langle init\text{-}\mathit{clss}\ \mathit{S} = \mathit{init\text{-}\mathit{clss}\ \mathit{Y}}\rangle\ \mathit{\langle learned\text{-}\mathit{clss}\ \mathit{Y} = \{\#\}\rangle}
     unfolding true-clss-def clauses-def by fastforce
 ultimately have L \in set M by (simp \ add: cons \ consistent-CNot-not)
 then show ?case using LM len Y Z by auto
qed
lemma
 assumes propagate^{**} S X
 shows
   rtranclp-propagate-init-clss: init-clss X = init-clss S and
   rtranclp-propagate-learned-clss: learned-clss X = learned-clss S
 using assms by (induction rule: rtranclp-induct) (auto elim: propagateE)
lemma completeness-is-a-full1-propagation:
 fixes S :: 'st and M :: 'v literal list
 assumes MN: set M \models s set-mset N
 and cons: consistent-interp (set M)
 and tot: total-over-m (set M) (set-mset N)
 and alien: no-strange-atm S
 and learned: learned-clss S = \{\#\}
 and clsS[simp]: init-clss\ S = N
```

```
and lits: lits-of-l (trail S) \subseteq set M
 shows \exists S'. propagate^{**} S S' \land full \ cdcl_W - cp \ S S'
proof -
  obtain S' where full: full cdcl_W-cp S S'
   using always-exists-full-cdcl_W-cp-step alien by blast
  then consider (propa) propagate** S S'
    \mid (confl) \exists X. propagate^{**} S X \land conflict X S'
   using rtranclp-cdcl_W-cp-propagate-confl unfolding full-def by blast
  then show ?thesis
   proof cases
     case propa then show ?thesis using full by blast
   next
     case confl
     then obtain X where
       X: propagate^{**} S X  and
       Xconf: conflict X S'
     by blast
     have clsX: init-clss\ X = init-clss\ S
       using X by (blast dest: rtranclp-propagate-init-clss)
     have learnedX: learned-clss\ X = \{\#\}
       using X learned by (auto dest: rtranclp-propagate-learned-clss)
     obtain E where
       E: E \in \# init\text{-}clss \ X + learned\text{-}clss \ X \ \mathbf{and}
       Not-E: trail\ X \models as\ CNot\ E
       using Xconf by (auto simp add: clauses-def elim!: conflictE)
     have lits-of-l (trail\ X) \subseteq set\ M
       using cdcl_W-cp-propagate-completeness [OF assms(1-3) lits - X learned] learned by auto
     then have MNE: set M \models s \ CNot \ E
       using Not-E
       by (fastforce simp add: true-annots-def true-annot-def true-clss-def)
     have \neg set M \models s set-mset N
        using E consistent-CNot-not[OF cons MNE]
        unfolding learnedX true-clss-def unfolding clsX clsS by auto
     then show ?thesis using MN by blast
   qed
qed
See also cdcl_W-cp^{**} ?S ?S' \Longrightarrow \exists M. trail ?S' = M @ trail ?S \land (\forall l \in set M. \neg is\text{-}decided l)
lemma rtranclp-propagate-is-trail-append:
  propagate^{**} S T \Longrightarrow \exists c. trail T = c @ trail S
 by (induction rule: rtranclp-induct) (auto elim: propagateE)
{\bf lemma}\ rtranclp	ext{-}propagate	ext{-}is	ext{-}update	ext{-}trail:
 propagate^{**} S T \Longrightarrow cdcl_W \text{-}M\text{-}level\text{-}inv S \Longrightarrow
   init-clss \ S = init-clss \ T \land learned-clss \ S = learned-clss \ T \land backtrack-lvl \ S = backtrack-lvl \ T
   \wedge conflicting S = conflicting T
proof (induction rule: rtranclp-induct)
  case base
 then show ?case unfolding state-eq-def by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
  case (step \ T \ U) note IH = this(3)[OF \ this(4)]
 moreover have cdcl_W-M-level-inv U
   using rtranclp\text{-}cdcl_W\text{-}consistent\text{-}inv \langle propagate^{**} \ S \ T \rangle \langle propagate \ T \ U \rangle
   rtranclp-mono[of\ propagate\ cdcl_W]\ cdcl_W-cp-consistent-inv propagate'
   rtranclp-propagate-is-rtranclp-cdcl_W step.prems by blast
   then have no-dup (trail U) unfolding cdcl_W-M-level-inv-def by auto
```

```
ultimately show ?case using \langle propagate \ T \ U \rangle unfolding state-eq-def
   by (fastforce simp: elim: propagateE)
qed
lemma cdcl_W-stgy-strong-completeness-n:
 assumes
   MN: set M \models s set-mset N and
   cons: consistent-interp\ (set\ M) and
   tot: total-over-m (set M) (set-mset N) and
   atm-incl: atm-of ' (set M) \subseteq atms-of-mm N and
   distM: distinct M and
   length: n \leq length M
 shows
   \exists M' \ k \ S. \ length \ M' \geq n \land
     lits-of-lM' \subseteq set M \land
     no-dup M' \land
     state S = (M', N, \{\#\}, k, None) \land
     cdcl_W-stqy** (init-state N) S
  using length
proof (induction \ n)
  case \theta
 have state (init-state N) = ([], N, \{\#\}, \theta, None)
   by (auto simp: state-eq-def simp del: state-simp)
 moreover have
   0 \leq length [] and
   lits-of-l [] \subseteq set M and
   cdcl_W-stgy** (init-state N) (init-state N)
   and no-dup
   by (auto simp: state-eq-def simp del: state-simp)
 ultimately show ?case using state-eq-sym by blast
  case (Suc n) note IH = this(1) and n = this(2)
  then obtain M' k S where
   l-M': length M' \geq n and
   M': lits-of-l M' \subseteq set M and
   n-d[simp]: no-dup M' and
   S: state S = (M', N, \{\#\}, k, None) and
   st: cdcl_W - stgy^{**} (init-state \ N) \ S
   by auto
 have
   M: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
     using cdcl_W-M-level-inv-S0-cdcl_W rtranclp-cdcl_W-stgy-consistent-inv st apply blast
   using cdcl_W-M-level-inv-S0-cdcl_W no-strange-atm-S0 rtranclp-cdcl_W-no-strange-atm-inv
   rtranclp-cdcl_W-stgy-rtranclp-cdcl_W st by blast
  { assume no-step: \neg no-step propagate S
   obtain S' where S': propagate^{**} S S' and full: full cdcl_W-cp S S'
     using completeness-is-a-full1-propagation [OF assms(1-3), of S] alien M'S
     by (auto simp: comp-def)
   have lev: cdcl_W-M-level-inv S'
     using MS' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
   then have n-d'[simp]: no-dup (trail S')
     unfolding cdcl_W-M-level-inv-def by auto
   have length (trail S) \leq length (trail S') \wedge lits-of-l (trail S') \subseteq set M
     using S' full cdcl_W-cp-propagate-completeness[OF assms(1-3), of S] M' S
```

```
by (auto simp: comp-def)
 moreover
   have full: full1 cdcl_W-cp S S'
     using full no-step no-step-cdcl_W-cp-no-conflict-no-propagate(2) unfolding full1-def full-def
     rtranclp\text{-}unfold \ \mathbf{by} \ blast
   then have cdcl_W-stgy S S' by (simp \ add: \ cdcl_W-stgy.conflict')
 moreover
   have propa: propagate<sup>++</sup> S S' using S' full unfolding full1-def by (metis rtranclpD tranclpD)
   have trail\ S = M'
     using S by (auto simp: comp-def rev-map)
   with propa have length (trail S') > n
     using l-M' propa by (induction rule: tranclp.induct) (auto elim: propagateE)
 moreover
   have stS': cdcl_W-stgy^{**} (init-state N) S'
     using st cdcl_W-stgy.conflict'[OF full] by auto
   then have init-clss S' = N
     using stS' rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss by fastforce
 moreover
   have
     [simp]: learned-clss\ S' = \{\#\}\ and
     [simp]: init-clss\ S' = init-clss\ S and
     [simp]: conflicting S' = None
     using tranclp-into-rtranclp[OF \langle propagate^{++} S S' \rangle] S
     rtranclp-propagate-is-update-trail[of S S'] S M unfolding state-eq-def
     by (auto simp: comp-def)
   have S-S': state S' = (trail\ S',\ N,\ \{\#\},\ backtrack-lvl\ S',\ None)
     using S by auto
   have cdcl_W-stgy^{**} (init-state N) S'
     apply (rule rtranclp.rtrancl-into-rtrancl)
     using st apply simp
     using \langle cdcl_W \text{-}stgy \ S \ S' \rangle by simp
 ultimately have ?case
   apply -
   apply (rule exI[of - trail S'], rule exI[of - backtrack-lvl S'], rule exI[of - S'])
   using S-S' by (auto simp: state-eq-def simp del: state-simp)
moreover {
 assume no-step: no-step propagate S
 have ?case
   proof (cases length M' \geq Suc \ n)
     then show ?thesis using l-M' M' st M alien S n-d by blast
   next
     case False
     then have n': length M' = n using l-M' by auto
     have no-confl: no-step conflict S
      proof -
        \{ fix D \}
          assume D \in \# N and M' \models as \ CNot \ D
          then have set M \models D using MN unfolding true-clss-def by auto
          moreover have set M \models s \ CNot \ D
            using \langle M' \models as \ CNot \ D \rangle \ M'
            by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
          ultimately have False using cons consistent-CNot-not by blast
        then show ?thesis
```

```
clauses-def elim!: conflictE)
        qed
      have len M: length M = card (set M) using dist M by (induction M) auto
      have no-dup M' using S M unfolding cdcl_W-M-level-inv-def by auto
      then have card (lits-of-lM') = length M'
        by (induction M') (auto simp add: lits-of-def card-insert-if)
      then have lits-of-l M' \subset set M
        using n M' n' len M by auto
      then obtain L where L: L \in set\ M and undef-m: L \notin lits-of-l\ M' by auto
      moreover have undef: undefined-lit M' L
        using M' Decided-Propagated-in-iff-in-lits-of-l calculation (1,2) cons
        consistent-interp-def by (metis (no-types, lifting) subset-eq)
      moreover have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
        using atm-incl calculation S by auto
      ultimately
        have dec: decide S (cons-trail (Decided L) (incr-lvl S))
          using decide-rule [of S - cons-trail (Decided\ L) (incr-lvl\ S)] S
          by auto
      let ?S' = cons\text{-trail} (Decided L) (incr-lvl S)
      have lits-of-l (trail ?S') \subseteq set M using L M' S undef by auto
      moreover have no-strange-atm ?S'
        using alien dec M by (meson cdcl_W-no-strange-atm-inv decide other)
      ultimately obtain S'' where S'': propagate^{**} ?S' S'' and full: full\ cdcl_W-cp ?S' S''
        using completeness-is-a-full1-propagation [OF assms(1-3), of ?S'] S undef
        by auto
      have cdcl_W-M-level-inv ?S'
        using M dec rtranclp-mono[of decide cdcl_W] by (meson cdcl_W-consistent-inv decide other)
      then have lev'': cdcl_W-M-level-inv S''
        using S'' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
      then have n\text{-}d'': no\text{-}dup\ (trail\ S'')
        unfolding cdcl_W-M-level-inv-def by auto
      have length (trail ?S') \leq length (trail S'') \wedge lits-of-l (trail S'') \subseteq set M
        using S'' full cdcl_W-cp-propagate-completeness [OF\ assms(1-3),\ of\ ?S'\ S'']\ L\ M'\ S\ undef
      then have Suc \ n \leq length \ (trail \ S'') \land lits-of-l \ (trail \ S'') \subseteq set \ M
        using l-M' S undef by auto
      moreover
        have cdcl_W-M-level-inv (cons-trail (Decided L)
          (update-backtrack-lvl (Suc (backtrack-lvl S)) S))
          using S \langle cdcl_W - M - level - inv (cons-trail (Decided L) (incr-lvl S)) \rangle by auto
        then have S'':
          state S'' = (trail S'', N, \{\#\}, backtrack-lvl S'', None)
          using rtranclp-propagate-is-update-trail[OF S''] S undef n-d'' lev''
          by auto
        then have cdcl_W-stgy** (init-state N) S''
          using cdcl_W-stgy.intros(2)[OF decide[OF \ dec] - full] no-step no-confl st
          by (auto simp: cdcl_W-cp.simps)
      ultimately show ?thesis using S'' n-d'' by blast
     qed
 ultimately show ?case by blast
theorem 2.9.11 page 84 of Weidenbach's book (with strategy)
lemma cdcl_W-stgy-strong-completeness:
```

using S by (auto simp: true-clss-def comp-def rev-map

```
assumes
   MN: set M \models s set\text{-}mset N \text{ and }
   cons: consistent-interp (set M) and
   tot: total\text{-}over\text{-}m \ (set \ M) \ (set\text{-}mset \ N) \ \mathbf{and}
   atm\text{-}incl: atm\text{-}of `(set M) \subseteq atms\text{-}of\text{-}mm N \text{ and }
   distM: distinct M
 shows
   \exists M' k S.
     lits-of-lM' = setM \wedge
     state S = (M', N, \{\#\}, k, None) \land
     cdcl_W-stgy^{**} (init-state N) S \wedge
     final-cdcl_W-state S
proof -
 from cdcl_W-stgy-strong-completeness-n[OF assms, of length M]
 obtain M' k T where
   l: length M \leq length M' and
   M'-M: lits-of-l M' \subseteq set M and
   no-dup: no-dup: M' and
   T: state \ T = (M', N, \{\#\}, k, None) \ and
   st: cdcl_W - stgy^{**} (init-state N) T
   by auto
  have card (set M) = length M using distM by (simp add: distinct-card)
 moreover
   have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-stgy-consistent-inv[OF st] T by auto
   then have card (set ((map (\lambda l. atm-of (lit-of l)) M'))) = length M'
     using distinct-card no-dup by fastforce
 moreover have card (lits-of-l M') = card (set ((map (\lambda l. atm-of (lit-of l)) M')))
   using no-dup unfolding lits-of-def apply (induction M') by (auto simp add: card-insert-if)
  ultimately have card (set M) \leq card (lits-of-l M') using l unfolding lits-of-def by auto
  then have set M = lits-of-l M'
   using M'-M card-seteq by blast
 moreover
   then have M' \models asm N
     using MN unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
   then have final-cdcl_W-state T
     using T no-dup unfolding final-cdclw-state-def by auto
 ultimately show ?thesis using st T by blast
qed
```

No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about all possible conflicts.

```
definition no-smaller-confl (S ::'st) \equiv (\forall M \ K \ M' \ D. \ M' \ @ \ Decided \ K \ \# \ M = trail \ S \longrightarrow D \in \# \ clauses \ S \longrightarrow \neg M \models as \ CNot \ D)
lemma no-smaller-confl-init-sate[simp]: no-smaller-confl (init-state \ N) unfolding no-smaller-confl-def by auto lemma cdcl_W-o-no-smaller-confl-inv: fixes S \ S' :: 'st assumes cdcl_W-o S \ S' and
```

```
lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   smaller: no\text{-}smaller\text{-}confl\ S and
   no-f: no-clause-is-false S
 shows no-smaller-confl S'
 using assms(1,2) unfolding no-smaller-confl-def
proof (induct rule: cdcl<sub>W</sub>-o-induct)
 case (decide L T) note confl = this(1) and undef = this(2) and T = this(4)
 have [simp]: clauses T = clauses S
   using T undef by auto
 show ?case
   proof (intro allI impI)
     fix M'' K M' Da
     assume M'' @ Decided K \# M' = trail T
     and D: Da \in \# local.clauses T
     then have tl \ M'' \ @ \ Decided \ K \ \# \ M' = trail \ S
      \vee (M'' = [] \wedge Decided K \# M' = Decided L \# trail S)
      using T undef by (cases M'') auto
     moreover {
      assume tl \ M'' \ @ \ Decided \ K \ \# \ M' = trail \ S
      then have \neg M' \models as \ CNot \ Da
        using D T undef no-f confl smaller unfolding no-smaller-confl-def smaller by fastforce
     moreover {
      assume Decided\ K\ \#\ M'=Decided\ L\ \#\ trail\ S
      then have \neg M' \models as \ CNot \ Da \ using \ no-f \ D \ confl \ T \ by \ auto
     ultimately show \neg M' \models as \ CNot \ Da by fast
  qed
next
 case resolve
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
 case skip
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
 case (backtrack L D K i M1 M2 T) note confl = this(1) and LD = this(2) and decomp = this(3)
and
   T = this(8)
 obtain c where M: trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 show ?case
   proof (intro allI impI)
     \mathbf{fix} \ M \ ia \ K' \ M' \ Da
     assume M' @ Decided K' \# M = trail T
     then have the M' @ Decided K' \# M = M1
      using T decomp lev by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
     let ?S' = (cons\text{-}trail\ (Propagated\ L\ D)
               (reduce-trail-to M1 (add-learned-cls D
               (update-backtrack-lvl\ i\ (update-conflicting\ None\ S)))))
     assume D: Da \in \# clauses T
     moreover{
      assume Da \in \# clauses S
      then have \neg M \models as \ CNot \ Da \ using \ \langle tl \ M' @ \ Decided \ K' \# M = M1 \rangle \ M \ conft \ smaller
        unfolding no-smaller-confl-def by auto
```

```
}
     moreover {
      assume Da: Da = D
      have \neg M \models as \ CNot \ Da
        proof (rule ccontr)
          assume ¬ ?thesis
          then have -L \in lits-of-l M
            using LD unfolding Da by (simp \ add: in-CNot-implies-uminus(2))
          then have -L \in lits-of-l (Propagated L D \# M1)
           using UnI2 \langle tl \ M' \ @ \ Decided \ K' \# \ M = M1 \rangle
           by auto
          moreover
           have backtrack S ?S'
             using backtrack-rule[of S] backtrack.hyps
             by (force simp: state-eq-def simp del: state-simp)
            then have cdcl_W-M-level-inv ?S'
             using cdcl_W-consistent-inv[OF - lev] other [OF \ bj] by (auto intro: cdcl_W-bj.intros)
            then have no-dup (Propagated L D \# M1)
             using decomp lev unfolding cdcl_W-M-level-inv-def by auto
          ultimately show False
            using Decided-Propagated-in-iff-in-lits-of-l defined-lit-map by auto
        qed
     }
     ultimately show \neg M \models as \ CNot \ Da
      using T decomp lev unfolding cdcl_W-M-level-inv-def by fastforce
   ged
qed
lemma conflict-no-smaller-confl-inv:
 assumes conflict S S'
 and no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding no-smaller-confl-def by (fastforce elim: conflictE)
\mathbf{lemma}\ propagate \textit{-}no\textit{-}smaller\textit{-}confl\textit{-}inv:
 assumes propagate: propagate S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 unfolding no-smaller-confl-def
proof (intro allI impI)
 fix M' K M'' D
 assume M': M'' @ Decided K \# M' = trail S'
 and D \in \# clauses S'
 obtain M N U k C L where
   S: state \ S = (M, N, U, k, None) and
   S': state S' = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M,\ N,\ U,\ k,\ None) and
   C + \{\#L\#\} \in \# clauses S \text{ and }
   M \models as \ CNot \ C and
   undefined-lit ML
   using propagate by (auto elim: propagate-high-levelE)
 have tl M'' @ Decided K \# M' = trail S using M' S S'
   by (metis Pair-inject list.inject list.sel(3) ann-lit.distinct(1) self-append-conv2
     tl-append2)
 then have \neg M' \models as \ CNot \ D
   using \langle D \in \# \ clauses \ S' \ n-l \ S \ S' \ clauses-def \ unfolding \ no-smaller-confl-def \ by \ auto
 then show \neg M' \models as \ CNot \ D by auto
```

```
qed
```

```
lemma cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict' S S')
 then show ?case using conflict-no-smaller-confl-inv[of S S'] by blast
next
 case (propagate' S S')
 then show ?case using propagate-no-smaller-confl-inv[of S S'] by fastforce
lemma rtrancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{**} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: rtranclp-induct)
 case base
 then show ?case by simp
next
 case (step S' S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
lemma trancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{++} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: tranclp.induct)
 case (r-into-trancl S S')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
 case (trancl-into-trancl S S' S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
qed
lemma full-cdcl_W-cp-no-smaller-confl-inv:
 assumes full cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full-def
 using rtrancp-cdcl_W-cp-no-smaller-confl-inv[of S S'] by blast
lemma full1-cdcl_W-cp-no-smaller-confl-inv:
 assumes full1 cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full1-def
 using trancp-cdcl_W-cp-no-smaller-confl-inv[of\ S\ S'] by blast
lemma cdcl_W-stgy-no-smaller-confl-inv:
```

```
assumes cdcl_W-stgy S S'
 and n-l: no-smaller-confl S
 and conflict-is-false-with-level S
 and cdcl_W-M-level-inv S
 shows no-smaller-confl S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 then show ?case using full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv[of SS'] by blast
next
 case (other' S' S'')
 have no-smaller-confl S'
   using cdcl_W-o-no-smaller-confl-inv[OF other'.hyps(1) other'.prems(3,2,1)]
   not-conflict-not-any-negated-init-clss other'.hyps(2) cdcl_W-cp.simps by auto
 then show ?case using full-cdcl_W-cp-no-smaller-confl-inv[of S' S'] other'.hyps by blast
\mathbf{qed}
lemma is-conflicting-exists-conflict:
 assumes \neg(\forall D \in \#init\text{-}clss\ S' + learned\text{-}clss\ S'. \neg\ trail\ S' \models as\ CNot\ D)
 and conflicting S' = None
 shows \exists S''. conflict S' S''
 using assms clauses-def not-conflict-not-any-negated-init-clss by fastforce
lemma cdcl_W-o-conflict-is-no-clause-is-false:
 fixes S S' :: 'st
 assumes
   cdcl_W-o SS' and
   lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   no-f: no-clause-is-false S and
   no-l: no-smaller-confl S
 shows no-clause-is-false S
   \vee (conflicting S' = None
       \longrightarrow (\forall D \in \# \ clauses \ S'. \ trail \ S' \models as \ CNot \ D
            \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
 using assms(1,2)
proof (induct rule: cdcl<sub>W</sub>-o-induct)
 case (decide L T) note S = this(1) and undef = this(2) and T = this(4)
 show ?case
   {f proof}\ (\mathit{rule}\ \mathit{HOL}.\mathit{disjI2},\ \mathit{clarify})
     \mathbf{fix} D
     assume D: D \in \# clauses T and M-D: trail T \models as CNot D
     let ?M = trail S
     let ?M' = trail T
     let ?k = backtrack-lvl S
     have \neg ?M \models as \ CNot \ D
         using no-f D S T undef by auto
     have -L \in \# D
       proof (rule ccontr)
         assume ¬ ?thesis
         have ?M \models as CNot D
           unfolding true-annots-def Ball-def true-annot-def CNot-def true-cls-def
           proof (intro allI impI)
            assume x: x \in \{\{\#-L\#\} \mid L. L \in \# D\}
```

```
then obtain L' where L': x = \{\#-L'\#\}\ L' \in \#\ D by auto
             obtain L'' where L'' \in \# x and L'': lits-of-l (Decided L \# ?M) \models l L''
               using M-D x T undef unfolding true-annots-def Ball-def true-annot-def CNot-def
               true-cls-def Bex-def by auto
             \mathbf{show} \ \exists \ L \in \# \ \textit{x. lits-of-l ?M} \models \textit{l L unfolding Bex-def}
               using L'(1) L'(2) \leftarrow L \notin \!\!\!\!/ \!\!\!/ D \land L'' \in \!\!\!\!\!/ \!\!\!\!/ x >
               \langle lits\text{-}of\text{-}l \; (Decided \; L \; \# \; trail \; S) \models l \; L'' \rangle \; \mathbf{by} \; auto
           qed
         then show False using \langle \neg ?M \models as \ CNot \ D \rangle by auto
     have atm\text{-}of L \notin atm\text{-}of ' (lits\text{-}of\text{-}l ?M)
       using undef defined-lit-map unfolding lits-of-def by fastforce
     then have get-level (Decided L # ?M) (-L) = ?k + 1
       using lev unfolding cdcl_W-M-level-inv-def by auto
     then have -L \in \# D \land get\text{-level } ?M'(-L) = backtrack\text{-lvl } T
       using \langle -L \in \# D \rangle T undef by auto
     then show \exists La. La \in \# D \land get\text{-level }?M'La = backtrack\text{-lvl } T
       by blast
   qed
\mathbf{next}
  case resolve
 then show ?case by auto
next
 case skip
 then show ?case by auto
  case (backtrack L D K i M1 M2 T) note decomp = this(3) and lev-K = this(7) and T = this(8)
 show ?case
   proof (rule HOL.disjI2, clarify)
     \mathbf{fix} \ Da
     assume Da: Da \in \# \ clauses \ T \ and \ M-D: \ trail \ T \models as \ CNot \ Da
     obtain c where M: trail S = c @ M2 @ Decided K \# M1
       using decomp by auto
     have tr-T: trail T = Propagated L D # M1
       using T decomp lev by (auto simp: cdcl_W-M-level-inv-decomp)
     have backtrack S T
       using backtrack-rule[of S] backtrack.hyps T
       by (force simp del: state-simp simp: state-eq-def)
     then have lev': cdcl_W-M-level-inv T
       using cdcl_W-consistent-inv lev other cdcl_W-bj.backtrack cdcl_W-o.bj by blast
     then have -L \notin lits-of-l M1
       using lev cdcl_W-M-level-inv-def tr-T unfolding consistent-interp-def by (metis insert-iff
         list.simps(15) lits-of-insert ann-lit.sel(2))
     { assume Da \in \# clauses S
       then have \neg M1 \models as\ CNot\ Da\ using\ no-l\ M\ unfolding\ no-smaller-confl-def\ by\ auto
     moreover {
       assume Da: Da = D
       have \neg M1 \models as \ CNot \ Da \ using \leftarrow L \notin lits \text{-} of \text{-} l \ M1 \rangle \ unfolding \ Da
         using backtrack.hyps(2) in-CNot-implies-uminus(2) by auto
     ultimately have \neg M1 \models as \ CNot \ Da
       using Da\ T\ decomp\ lev\ by (fastforce\ simp:\ cdcl_W-M-level-inv-decomp)
     then have -L \in \# Da
       using M-D \leftarrow L \notin lits-of-l M1 \rightarrow T unfolding tr-T true-annots-true-cls true-cls-def
       by (auto simp: uminus-lit-swap)
```

```
have no-dup (Propagated L D \# M1)
       using lev lev' T decomp unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have L: atm-of L \notin atm-of 'lits-of-l M1 unfolding lits-of-def by auto
     have get-level (Propagated L D # M1) (-L) = i
       using lev-K lev unfolding cdcl_W-M-level-inv-def
       by (simp add: M image-Un atm-lit-of-set-lits-of-l)
     then have -L \in \# Da \land get\text{-level (trail } T) \ (-L) = backtrack\text{-lvl } T
       using \langle -L \in \# Da \rangle T decomp lev by (auto simp: cdcl_W-M-level-inv-def)
     then show \exists La. La \in \# Da \land get\text{-level (trail } T) La = backtrack\text{-lvl } T
       by blast
   \mathbf{qed}
qed
lemma full1-cdcl_W-cp-exists-conflict-decompose:
 assumes
   confl: \exists D \in \#clauses \ S. \ trail \ S \models as \ CNot \ D \ and
   full: full cdcl_W-cp S U and
   no-confl: conflicting S = None and
   lev: cdcl_W-M-level-inv S
 shows \exists T. propagate^{**} S T \land conflict T U
proof -
 consider (propa) propagate^{**} S U
       \mid (confl) \ T \ \mathbf{where} \ propagate^{**} \ S \ T \ \mathbf{and} \ conflict \ T \ U
  using full unfolding full-def by (blast dest:rtranclp-cdcl<sub>W</sub>-cp-propa-or-propa-conft)
  then show ?thesis
   proof cases
     case confl
     then show ?thesis by blast
   next
     case propa
     then have conflicting U = None and
       [simp]: learned-clss U = learned-clss S and
       [simp]: init-clss U = init-clss S
       using no-confl rtranclp-propagate-is-update-trail lev by auto
     moreover
       obtain D where D: D \in \#clauses\ U and
         trS: trail S \models as CNot D
         using confl clauses-def by auto
       obtain M where M: trail U = M @ trail S
         using full rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail unfolding full-def by meson
       have tr-U: trail\ U \models as\ CNot\ D
         apply (rule true-annots-mono)
         using trS unfolding M by simp-all
     have \exists V. conflict U V
       using \langle conflicting \ U = None \rangle \ D clauses-def not-conflict-not-any-negated-init-clss tr-U
       by meson
     then have False using full cdcl<sub>W</sub>-cp.conflict' unfolding full-def by blast
     then show ?thesis by fast
   qed
qed
lemma full1-cdcl_W-cp-exists-conflict-full1-decompose:
 assumes
   confl: \exists D \in \#clauses \ S. \ trail \ S \models as \ CNot \ D \ and
   full: full cdcl_W-cp S U and
```

```
no-confl: conflicting S = Noneand
   lev: cdcl_W-M-level-inv S
 shows \exists T D. propagate^{**} S T \land conflict T U
   \land trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
proof -
 obtain T where propa: propagate** S T and conf: conflict T U
   using full1-cdcl_W-cp-exists-conflict-decompose[OF\ assms] by blast
 have p: learned-clss T = learned-clss S init-clss T = init-clss S
    using propa lev rtranclp-propagate-is-update-trail by auto
 have c: learned-clss U = learned-clss T init-clss U = init-clss T
    using conf by (auto elim: conflictE)
 obtain D where trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
   using conf p c by (fastforce simp: clauses-def elim!: conflictE)
 then show ?thesis
   using propa conf by blast
qed
lemma cdcl_W-stgy-no-smaller-confl:
 assumes
   cdcl_W-stgy S S' and
   n-l: no-smaller-confl S and
   conflict-is-false-with-level S and
   cdcl_W-M-level-inv S and
   no-clause-is-false S and
   distinct-cdcl_W-state S and
   cdcl_W-conflicting S
 shows no-smaller-confl S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 show no-smaller-confl S'
   using conflict'.hyps conflict'.prems(1) full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv by blast
 case (other' S' S'')
 have lev': cdcl_W-M-level-inv S'
   using cdcl_W-consistent-inv other other'.hyps(1) other'.prems(3) by blast
 show no-smaller-confl S''
   using cdcl_W-stqy-no-smaller-confl-inv[OF cdcl_W-stqy.other'[OF other'.hyps(1-3)]]
   other'.prems(1-3) by blast
qed
lemma cdcl_W-stgy-ex-lit-of-max-level:
 assumes
   cdcl_W-stgy S S' and
   n-l: no-smaller-confl S and
   conflict-is-false-with-level S and
   cdcl_W-M-level-inv S and
   no-clause-is-false S and
   distinct-cdcl_W-state S and
   cdcl_W-conflicting S
 shows conflict-is-false-with-level S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 have no-smaller-confl S'
   using conflict'.hyps conflict'.prems(1) full1-cdcl_W-cp-no-smaller-confl-inv by blast
```

```
moreover have conflict-is-false-with-level S'
   using conflict'.hyps conflict'.prems(2-4)
   rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S S']
   unfolding full-def full1-def rtranclp-unfold by presburger
  then show ?case by blast
next
 case (other' S' S'')
 have lev': cdcl_W-M-level-inv S'
   using cdcl_W-consistent-inv other other'.hyps(1) other'.prems(3) by blast
 moreover
   have no-clause-is-false S'
     \lor (conflicting S' = None \longrightarrow (\forall D \in \#clauses S'. trail S' \models as CNot D
           \rightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
     using cdcl_W-o-conflict-is-no-clause-is-false[of S S'] other'.hyps(1) other'.prems(1-4) by fast
 moreover {
   assume no-clause-is-false S'
     assume conflicting S' = None
     then have conflict-is-false-with-level S' by auto
     moreover have full cdcl_W-cp S' S''
       \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types})\ \mathit{other'.hyps}(3))
     ultimately have conflict-is-false-with-level S^{\,\prime\prime}
       using rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S' S''] lev' (no-clause-is-false S')
       \mathbf{by} blast
   }
   moreover
     assume c: conflicting S' \neq None
     have conflicting S \neq None using other'.hyps(1) c
       by (induct rule: cdcl_W-o-induct) auto
     then have conflict-is-false-with-level S'
       using cdcl_W-o-conflict-is-false-with-level-inv[OF other'.hyps(1)]
       other'.prems(3,5,6,2) by blast
     moreover have cdcl_W-cp^{**} S' S'' using other'.hyps(3) unfolding full-def by auto
     then have S' = S'' using c
       by (induct rule: rtranclp-induct)
          (fastforce\ intro:\ option.exhaust)+
     ultimately have conflict-is-false-with-level S'' by auto
   ultimately have conflict-is-false-with-level S'' by blast
  }
 moreover {
    assume
      confl: conflicting S' = None and
      D\text{-}L: \forall D \in \# \ clauses \ S'. \ trail \ S' \models as \ CNot \ D
        \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')
    { assume \forall D \in \#clauses S'. \neg trail S' \models as CNot D
      then have no-clause-is-false S' using confl by simp
      then have conflict-is-false-with-level S'' using calculation(3) by presburger
    }
    moreover {
      assume \neg(\forall D \in \# clauses \ S'. \ \neg \ trail \ S' \models as \ CNot \ D)
      then obtain TD where
        propagate^{**} S' T and
        conflict TS" and
        D: D \in \# \ clauses \ S' and
```

```
trail S'' \models as CNot D and
  conflicting S'' = Some D
  using full1-cdcl_W-cp-exists-conflict-full1-decompose[OF - - confl]
  other'(3) lev' by (metis (mono-tags, lifting) conflictE state-eq-trail
    trail-update-conflicting)
obtain M where M: trail S'' = M @ trail S' and nm: \forall m \in set M. \neg is\text{-}decided m
  using rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail other'(3) unfolding full-def by meson
have btS: backtrack-lvl S'' = backtrack-lvl S'
 using other'.hyps(3) unfolding full-def by (metis\ rtranclp-cdcl_W-cp-backtrack-lvl)
have inv: cdcl_W-M-level-inv S''
  by (metis (no-types) cdcl<sub>W</sub>-stgy.conflict' cdcl<sub>W</sub>-stgy-consistent-inv full-unfold lev'
    other'.hyps(3))
then have nd: no-dup (trail S'')
  by (metis\ (no\text{-}types)\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}decomp(2))
have conflict-is-false-with-level S''
 proof cases
    assume trail\ S' \models as\ CNot\ D
    moreover then obtain L where
      L \in \# D and
      lev-L: get-level (trail S') L = backtrack-lvl S'
      using D-L D by blast
    moreover
      have LS': -L \in lits-of-l (trail S')
        using \langle trail \ S' \models as \ CNot \ D \rangle \ \langle L \in \# \ D \rangle \ in\text{-}CNot\text{-}implies\text{-}uminus(2) by } \ blast
      { \mathbf{fix} \ x :: ('v, 'v \ clause) \ ann-lit \ \mathbf{and}
          xb :: ('v, 'v \ clause) \ ann-lit
        assume a1: x \in set (trail S') and
          a2: xb \in set M and
          a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
            = \{\} and
           a4: -L = lit\text{-}of x \text{ and }
           a5: atm-of L = atm-of (lit-of xb)
        moreover have atm\text{-}of (lit\text{-}of x) = atm\text{-}of L
          using a4 by (metis (no-types) atm-of-uminus)
        ultimately have False
          using a5 a3 a2 a1 by auto
      then have atm\text{-}of\ L\notin atm\text{-}of ' lits\text{-}of\text{-}l\ M
        using nd LS' unfolding M by (auto simp add: lits-of-def)
      then have get-level (trail S'') L = get-level (trail S') L
        unfolding M by (simp add: lits-of-def)
    ultimately show ?thesis using btS \ (conflicting S'' = Some D) by auto
 next
    assume \neg trail\ S' \models as\ CNot\ D
    then obtain L where L \in \# D and LM: -L \in lits\text{-}of\text{-}l M
      \mathbf{using} \ \langle \mathit{trail} \ S^{\prime\prime} \models \mathit{as} \ \mathit{CNot} \ \mathit{D} \rangle \ \mathbf{unfolding} \ \mathit{M}
        by (auto simp add: true-cls-def M true-annots-def true-annot-def
              split: if-split-asm)
    { \mathbf{fix} \ x :: ('v, 'v \ clause) \ ann-lit \ \mathbf{and}
        xb :: ('v, 'v \ clause) \ ann-lit
      assume a1: xb \in set (trail S') and
        a2: x \in set M and
        a3: atm\text{-}of\ L = atm\text{-}of\ (lit\text{-}of\ xb) and
        a4: -L = lit - of x and
        a5: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
          = \{ \}
```

```
moreover have atm\text{-}of\ (lit\text{-}of\ xb) = atm\text{-}of\ (-\ L)
             using a\beta by simp
            ultimately have False
             by auto }
          then have LS': atm-of L \notin atm-of 'lits-of-l (trail S')
            using nd \langle L \in \# D \rangle LM unfolding M by (auto simp add: lits-of-def)
          show ?thesis
           proof -
             have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
               using \langle -L \in lits\text{-}of\text{-}l M \rangle
               by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def)
             then have get-level (M @ trail S') L = backtrack-lvl S'
               using lev' LS' nm unfolding cdcl_W-M-level-inv-def by auto
             then show ?thesis
               using nm \langle L \in \#D \rangle \langle conflicting S'' = Some D \rangle
               unfolding lits-of-def btS M
               by auto
           qed
        \mathbf{qed}
    }
    ultimately have conflict-is-false-with-level S^{\prime\prime} by blast
 moreover
  {
   assume conflicting S' \neq None
   have no-clause-is-false S' using \langle conflicting S' \neq None \rangle by auto
   then have conflict-is-false-with-level S^{\prime\prime} using calculation(3) by presburger
 ultimately show ?case by blast
qed
lemma rtranclp-cdcl_W-stgy-no-smaller-confl-inv:
 assumes
   cdcl_W-stgy^{**} S S' and
   n-l: no-smaller-confl S and
   cls-false: conflict-is-false-with-level S and
   lev: cdcl_W-M-level-inv S and
   no	ext{-}f: no	ext{-}clause	ext{-}is	ext{-}false \ S \ \mathbf{and}
   dist: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   alien: no-strange-atm S
  shows no-smaller-confl S' \wedge conflict-is-false-with-level S'
  using assms(1)
proof (induct rule: rtranclp-induct)
 case base
 then show ?case using n-l cls-false by auto
  case (step S' S'') note st = this(1) and cdcl = this(2) and IH = this(3)
 have no-smaller-confl S' and conflict-is-false-with-level S'
   using IH by blast+
 moreover have cdcl_W-M-level-inv S'
   using st\ lev\ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W
   by (blast intro: rtranclp-cdcl_W-consistent-inv)+
  moreover have no-clause-is-false S'
```

```
using st\ no\text{-}f\ rtranclp\text{-}cdcl_W\text{-}stgy\text{-}not\text{-}non\text{-}negated\text{-}init\text{-}clss} by presburger moreover have distinct\text{-}cdcl_W\text{-}state\ S' using rtanclp\text{-}distinct\text{-}cdcl_W\text{-}state\text{-}inv[of\ S\ S']} lev rtranclp\text{-}cdcl_W\text{-}stgy\text{-}rtranclp\text{-}cdcl_W[OF\ st]} dist by auto moreover have cdcl_W\text{-}conflicting\ S' using rtranclp\text{-}cdcl_W\text{-}all\text{-}inv(6)[of\ S\ S'] st\ alien\ conflicting\ decomp\ dist\ learned\ lev\ rtranclp\text{-}cdcl_W\text{-}stgy\text{-}rtranclp\text{-}cdcl_W\ by\ blast} ultimately show ?case using cdcl_W\text{-}stgy\text{-}no\text{-}smaller\text{-}confl[OF\ cdcl]\ cdcl_W\text{-}stgy\text{-}ex\text{-}lit\text{-}of\text{-}max\text{-}level[OF\ cdcl]\ by\ fast qed
```

Final States are Conclusive

```
lemma full-cdcl_W-stgy-final-state-conclusive-non-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no\text{-}d: distinct\text{-}mset\text{-}mset\ N
 and no-empty: \forall D \in \#N. D \neq \{\#\}
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
proof -
 let ?S = init\text{-}state\ N
 have
   termi: \forall S''. \neg cdcl_W \text{-stqy } S' S'' \text{ and }
   step: cdcl<sub>W</sub>-stgy** ?S S' using full unfolding full-def by auto
  moreover have
   learned: cdcl_W-learned-clause S' and
   level-inv: cdcl_W-M-level-inv: S' and
   alien: no-strange-atm S' and
   no-dup: distinct-cdcl_W-state S' and
   confl: cdcl_W-conflicting S' and
   decomp: all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S'))
   using no-d translp-cdcl<sub>W</sub>-stgy-translp-cdcl<sub>W</sub>[of ?SS'] step rtranslp-cdcl<sub>W</sub>-all-inv(1-6)[of ?SS']
   unfolding rtranclp-unfold by auto
  moreover
   have \forall D \in \#N. \neg [] \models as \ CNot \ D \ using \ no-empty \ by \ auto
   then have confl-k: conflict-is-false-with-level S'
     using rtranclp-cdcl_W-stgy-no-smaller-confl-inv[OF step] no-d by auto
 show ?thesis
   using cdcl<sub>W</sub>-stgy-final-state-conclusive[OF termi decomp learned level-inv alien no-dup confl
     confl-k].
qed
lemma conflict-is-full1-cdcl_W-cp:
 assumes cp: conflict S S'
 shows full1 cdcl_W-cp S S'
proof -
  have cdcl_W-cp S S' and conflicting S' \neq None
   using cp \ cdcl_W-cp.intros \ by \ (auto \ elim!: \ conflictE \ simp: \ state-eq-def \ simp \ del: \ state-simp)
  then have cdcl_W-cp^{++} S S' by blast
 moreover have no-step cdcl_W-cp S'
   using \langle conflicting S' \neq None \rangle by (metis\ cdcl_W\text{-}cp\text{-}conflicting\text{-}not\text{-}empty)
     option.exhaust)
 ultimately show full1 cdcl<sub>W</sub>-cp S S' unfolding full1-def by blast+
qed
```

```
lemma cdcl_W-cp-fst-empty-conflicting-false:
 assumes
   cdcl_W-cp S S' and
   trail S = [] and
   conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl_W-cp.induct) (auto elim: propagateE conflictE)
lemma cdcl_W-o-fst-empty-conflicting-false:
 assumes cdcl_W-o SS'
 and trail S = [
 and conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-fst-empty-conflicting-false:
 assumes cdcl_W-stgy SS'
 and trail\ S = []
 and conflicting S \neq None
 shows False
 using assms apply (induct rule: cdcl_W-stgy.induct)
  using tranclpD cdcl_W-cp-fst-empty-conflicting-false unfolding full1-def apply metis
  using cdcl_W-o-fst-empty-conflicting-false by blast
thm cdcl_W-cp.induct[split-format(complete)]
lemma cdcl_W-cp-conflicting-is-false:
  cdcl_W-cp\ S\ S' \Longrightarrow conflicting\ S = Some\ \{\#\} \Longrightarrow False
 by (induction rule: cdcl_W-cp.induct) (auto elim: propagateE conflictE)
lemma rtranclp-cdcl_W-cp-conflicting-is-false:
  cdcl_W - cp^{++} S S' \Longrightarrow conflicting S = Some \{\#\} \Longrightarrow False
 apply (induction rule: tranclp.induct)
 by (auto dest: cdcl_W-cp-conflicting-is-false)
lemma cdcl_W-o-conflicting-is-false:
  cdcl_W-o S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 by (induction rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-conflicting-is-false:
  cdcl_W-stgy S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 apply (induction rule: cdcl_W-stgy.induct)
   unfolding full1-def apply (metis (no-types) cdcl<sub>W</sub>-cp-conflicting-not-empty tranclpD)
  unfolding full-def by (metis conflict-with-false-implies-terminated other)
lemma rtranclp-cdcl_W-stgy-conflicting-is-false:
  cdcl_W-stgy** S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow S' = S
 apply (induction rule: rtranclp-induct)
   apply simp
 using cdcl_W-stgy-conflicting-is-false by blast
lemma full-cdcl_W-init-clss-with-false-normal-form:
 assumes
   \forall m \in set M. \neg is\text{-}decided m \text{ and }
   E = Some D and
   state S = (M, N, U, 0, E)
```

```
full\ cdcl_W-stgy S\ S' and
   all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S))
   cdcl_W-learned-clause S
   cdcl_W-M-level-inv S
   no-strange-atm S
   distinct-cdcl_W-state S
   cdcl_W-conflicting S
 shows \exists M''. state S' = (M'', N, U, 0, Some {\#})
 using assms(10,9,8,7,6,5,4,3,2,1)
proof (induction M arbitrary: E D S)
 case Nil
 then show ?case
   using rtranclp-cdcl_W-stgy-conflicting-is-false unfolding full-def cdcl_W-conflicting-def
   by fastforce
next
 case (Cons\ L\ M) note IH=this(1) and full=this(8) and E=this(10) and inv=this(2-7) and
   S = this(9) and nm = this(11)
 obtain K p where K: L = Propagated K p
   using nm by (cases L) auto
 have every-mark-is-a-conflict S using inv unfolding cdcl_W-conflicting-def by auto
 then have MpK: M \models as \ CNot \ (p - \{\#K\#\}) \ and \ Kp: \ K \in \# \ p
   using S unfolding K by fastforce+
 then have p: p = (p - \{\#K\#\}) + \{\#K\#\}
   by (auto simp add: multiset-eq-iff)
 then have K': L = Propagated K ((p - \{\#K\#\}) + \{\#K\#\})
   using K by auto
 obtain p' where
   p': hd-trail S = Propagated K <math>p' and
   pp': p' = p
   using S K by (cases hd-trail S) auto
 have conflicting S = Some D
   using S E by (cases conflicting S) auto
 then have DD: D = D
   using S E by auto
 consider (D) D = {\#} | (D') D \neq {\#}  by blast
 then show ?case
   proof cases
     case D
     then show ?thesis
      using full rtranclp-cdcl_W-stgy-conflicting-is-false S unfolding full-def E D by auto
   next
     case D'
     then have no-p: no-step propagate S and no-c: no-step conflict S
      using S E by (auto elim: propagateE conflictE)
     then have no-step cdcl_W-cp S by (auto simp: cdcl_W-cp.simps)
     have res-skip: \exists T. (resolve S \ T \land no-step skip S \land full \ cdcl_W-cp T \ T)
      \vee (skip S \ T \land no-step resolve S \land full \ cdcl_W-cp T \ T)
      proof cases
        assume -lit-of L \notin \# D
        then obtain T where sk: skip S T
          using SD'K skip-rule unfolding E by fastforce
        then have res: no-step resolve S
          using \langle -lit\text{-}of \ L \notin \# \ D \rangle \ S \ D' \ K \ unfolding \ E
          by (auto elim!: skipE resolveE)
        have full cdcl_W-cp T T
          using sk by (auto intro!: option-full-cdcl_W-cp elim: skipE)
```

```
then show ?thesis
          using sk res by blast
        assume LD: \neg -lit - of L \notin \# D
        then have D: Some D = Some ((D - \{\#-lit\text{-}of L\#\}) + \{\#-lit\text{-}of L\#\})
          by (auto simp add: multiset-eq-iff)
        have \bigwedge L. get-level M L = 0
          by (simp \ add: nm)
          then have get-maximum-level (Propagated K (p - \{\#K\#\} + \{\#K\#\}) \# M) (D - \{\#-1\})
K\#\}) = 0
          using LD get-maximum-level-exists-lit-of-max-level
          proof -
           obtain L' where get-level (L\#M) L' = get-maximum-level (L\#M) D
             using LD qet-maximum-level-exists-lit-of-max-level[of D L#M] by fastforce
           then show ?thesis by (metis (mono-tags) K' get-level-skip-all-not-decided
             qet-maximum-level-exists-lit nm not-qr0)
          qed
        then obtain T where sk: resolve S T
          using resolve-rule[of S \ K \ p' \ D] \ S \ p' \langle K \in \# \ p \rangle \ D \ LD
          unfolding K' D E pp' by auto
        then have res: no-step skip S
          using LD S D' K unfolding E
          by (auto elim!: skipE resolveE)
        have full cdcl_W-cp T T
          using sk by (auto simp: option-full-cdcl<sub>W</sub>-cp elim: resolveE)
        then show ?thesis
         using sk res by blast
      qed
     then have step-s: \exists T. cdcl_W-stgy S T
      using \langle no\text{-}step\ cdcl_W\text{-}cp\ S \rangle\ other' by (meson\ bj\ resolve\ skip)
     have get-all-ann-decomposition (L \# M) = [([], L \# M)]
      using nm unfolding K apply (induction M rule: ann-lit-list-induct, simp)
        by (rename-tac L xs, case-tac hd (get-all-ann-decomposition xs), auto)+
     then have no-b: no-step backtrack S
      using nm S by (auto elim: backtrackE)
     have no-d: no-step decide S
      using S E by (auto elim: decideE)
     have full-S-S: full\ cdcl_W-cp\ S\ S
      using S E by (auto simp add: option-full-cdcl<sub>W</sub>-cp)
     then have no-f: no-step (full1 cdcl_W-cp) S
      unfolding full-def full1-def rtranclp-unfold by (meson tranclpD)
     obtain T where
       s: cdcl_W-stgy S T and st: cdcl_W-stgy** T S'
      using full step-s full unfolding full-def by (metis rtranclp-unfold tranclpD)
     have resolve S T \vee skip S T
      using s no-b no-d res-skip full-S-S cdcl_W-cp-state-eq-compatible resolve-unique
      skip-unique unfolding cdcl_W-stqy.simps cdcl_W-o.simps full-unfold
      full1-def by (blast dest!: tranclpD elim!: cdclw-bj.cases)+
     then obtain D' where T: state T = (M, N, U, 0, Some D')
      using S E by (auto elim!: skipE resolveE simp: state-eq-def simp del: state-simp)
     have st-c: cdcl_W^{**} S T
      using E \ T \ rtranclp\text{-}cdcl_W \text{-}stgy\text{-}rtranclp\text{-}cdcl_W \ s \ by \ blast
     have cdcl_W-conflicting T
```

```
using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6,5,4,3,2,1)].
     show ?thesis
       apply (rule\ IH[of\ T])
                using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6,5,4,3,2,1)] apply blast
              using rtranclp-cdcl_W-all-inv(5)[OF st-c inv(6,5,4,3,2,1)] apply blast
             using rtranclp-cdcl_W-all-inv(4)[OF st-c inv(6,5,4,3,2,1)] apply blast
            using rtranclp-cdcl_W-all-inv(3)[OF st-c inv(6,5,4,3,2,1)] apply blast
           using rtranclp-cdcl_W-all-inv(2)[OF st-c inv(6,5,4,3,2,1)] apply blast
          using rtranclp-cdcl_W-all-inv(1)[OF st-c inv(6,5,4,3,2,1)] apply blast
         apply (metis full-def st full)
         using T E apply blast
        apply auto[]
       using nm by simp
   qed
qed
lemma full-cdcl_W-stqy-final-state-conclusive-is-one-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no\text{-}d: distinct\text{-}mset\text{-}mset\ N
 and empty: \{\#\} \in \# N
 shows conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss S'))
proof -
 let ?S = init\text{-}state\ N
 have cdcl_W-stqy** ?S S' and no-step cdcl_W-stqy S' using full unfolding full-def by auto
  then have plus-or-eq: cdcl_W-stqy<sup>++</sup> ?S S' \vee S' = ?S unfolding rtranclp-unfold by auto
 have \exists S''. conflict ?S S''
   using empty not-conflict-not-any-negated-init-clss[of init-state N] by auto
  then have cdcl_W-stgy: \exists S'. cdcl_W-stgy ?S S'
   using cdcl_W-cp.conflict'[of ?S] conflict-is-full1-cdcl_W-cp cdcl_W-stgy.intros(1) by metis
 have S' \neq ?S using \langle no\text{-step } cdcl_W\text{-stgy } S' \rangle \ cdcl_W\text{-stgy by } blast
 then obtain St:: 'st where St: cdcl_W-stgy ?S St and cdcl_W-stgy** St S'
   using plus-or-eq by (metis (no-types) \langle cdcl_W \text{-stgy}^{**} ?S S' \rangle converse-rtranclpE)
 have st: cdcl_{W}^{**} ?S St
   by (simp add: rtranclp-unfold \langle cdcl_W - stgy ?S St \rangle \ cdcl_W - stgy - tranclp-cdcl_W)
 have \exists T. conflict ?S T
   using empty not-conflict-not-any-negated-init-clss[of ?S] by force
  then have fullSt: full1 \ cdcl_W-cp ?S St
   using St unfolding cdcl_W-stgy.simps by blast
  then have bt: backtrack-lvl St = (0::nat)
   using rtranclp-cdcl_W-cp-backtrack-lvl unfolding full1-def
   by (fastforce dest!: tranclp-into-rtranclp)
 have cls-St: init-clss St = N
   using fullSt\ cdcl_W-stgy-no-more-init-clss[OF\ St] by auto
 have conflicting St \neq None
   proof (rule ccontr)
     assume conf: \neg ?thesis
     obtain E where
       ES: E \in \# init\text{-}clss \ St \ \mathbf{and}
       E: E = \{\#\}
       \mathbf{using}\ \mathit{empty}\ \mathit{cls}\text{-}\mathit{St}\ \mathbf{by}\ \mathit{metis}
     then have \exists T. conflict St T
```

```
using empty cls-St conflict-rule[of St E] ES conf unfolding E
       by (auto simp: clauses-def dest: )
     then show False using fullSt unfolding full1-def by blast
   qed
 have 1: \forall m \in set (trail St). \neg is\text{-}decided m
   using fullSt unfolding full1-def by (auto dest!: tranclp-into-rtranclp
     rtranclp-cdcl_W-cp-drop\ While-trail)
 have 2: full cdcl_W-stgy St S'
   using \langle cdcl_W \text{-}stgy^{**} \ St \ S' \rangle \langle no\text{-}step \ cdcl_W \text{-}stgy \ S' \rangle bt unfolding full-def by auto
 have 3: all-decomposition-implies-m
     (init-clss\ St)
     (get-all-ann-decomposition
        (trail\ St))
  using rtranclp-cdcl_W-all-inv(1)[OF st] no-d bt by simp
 have 4: cdcl_W-learned-clause St
   using rtranclp-cdcl_W-all-inv(2)[OF st] no-d bt by simp
  have 5: cdcl_W - M - level - inv St
   using rtranclp-cdcl_W-all-inv(3)[OF\ st]\ no-d\ bt\ by\ simp
 have 6: no-strange-atm St
   using rtranclp-cdcl_W-all-inv(4)[OF\ st]\ no-d\ bt\ by\ simp
  have 7: distinct\text{-}cdcl_W\text{-}state\ St
   using rtranclp-cdcl_W-all-inv(5)[OF\ st]\ no-d\ bt\ by\ simp
 have 8: cdcl_W-conflicting St
   using rtranclp-cdcl_W-all-inv(6)[OF\ st]\ no-d\ bt\ by\ simp
  have init-clss S' = init-clss St and conflicting S' = Some \{\#\}
    using \langle conflicting St \neq None \rangle full-cdcl<sub>W</sub>-init-clss-with-false-normal-form[OF 1, of - - St]
    2 3 4 5 6 7 8 St apply (metis \( cdcl_W\)-stgy** St S'\\\ rtranclp\)-cdcl_W\-stgy\-no\-more\-init\-clss\)
   using (conflicting St \neq None) full-cdcl<sub>W</sub>-init-clss-with-false-normal-form [OF 1, of - - St - -
     S' \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8  by (metis bt option.exhaust prod.inject)
 moreover have init-clss S' = N
   using \langle cdcl_W-stgy** (init-state N) S'\rangle rtranclp-cdcl_W-stgy-no-more-init-clss by fastforce
 moreover have unsatisfiable (set\text{-}mset N)
   by (meson empty satisfiable-def true-cls-empty true-clss-def)
 ultimately show ?thesis by auto
theorem 2.9.9 page 83 of Weidenbach's book
lemma full-cdcl_W-stgy-final-state-conclusive:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S' and no-d: distinct-mset-mset N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
  using assms full-cdcl_W-stgy-final-state-conclusive-is-one-false
 full-cdcl_W-stgy-final-state-conclusive-non-false by blast
theorem 2.9.9 page 83 of Weidenbach's book
lemma full-cdcl_W-stgy-final-state-conclusive-from-init-state:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no\text{-}d: distinct\text{-}mset\text{-}mset\ N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset N))
  \vee (conflicting S' = None \wedge trail S' \models asm N \wedge satisfiable (set-mset N))
proof -
 have N: init-clss S' = N
```

```
using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss)
 consider
     (confl) conflicting S' = Some \{ \# \} and unsatisfiable (set-mset (init-clss S'))
   \mid (sat) \ conflicting \ S' = None \ and \ trail \ S' \models asm \ init-clss \ S'
   using full-cdcl_W-stgy-final-state-conclusive[OF\ assms] by auto
 then show ?thesis
   proof cases
     case confl
     then show ?thesis by (auto simp: N)
   next
     case sat
     have cdcl_W-M-level-inv (init-state N) by auto
     then have cdcl_W-M-level-inv S'
      using full rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv unfolding full-def by blast
     then have consistent-interp (lits-of-l (trail S')) unfolding cdcl_W-M-level-inv-def by blast
     moreover have lits-of-l (trail S') \models s set-mset (init-clss S')
      using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def)
     ultimately have satisfiable (set-mset (init-clss S')) by simp
     then show ?thesis using sat unfolding N by blast
   qed
qed
end
end
theory CDCL-W-Termination
imports CDCL-W
begin
context conflict-driven-clause-learning<sub>W</sub>
begin
```

2.1.6 Termination

The condition that no learned clause is a tautology is overkill (in the sense that the no-duplicate condition is enough), but we can reuse *simple-clss*.

The invariant contains all the structural invariants that holds,

```
definition cdcl_W-all-struct-inv where
  cdcl_W-all-struct-inv S \longleftrightarrow
   no-strange-atm S \wedge
   cdcl_W-M-level-inv S \wedge
   (\forall s \in \# learned\text{-}clss \ S. \ \neg tautology \ s) \land
   distinct\text{-}cdcl_W\text{-}state\ S\ \land
   cdcl_W-conflicting S \wedge
   all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) \land
   cdcl_W-learned-clause S
lemma cdcl_W-all-struct-inv-inv:
  assumes cdcl_W S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
  unfolding cdcl_W-all-struct-inv-def
proof (intro HOL.conjI)
  show no-strange-atm S'
   using cdcl_W-all-inv[OF\ assms(1)]\ assms(2) unfolding cdcl_W-all-struct-inv-def\ by\ auto
 show cdcl_W-M-level-inv S'
   using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
```

```
show distinct\text{-}cdcl_W\text{-}state\ S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show cdcl_W-conflicting S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S'))
    using cdcl_W-all-inv[OF\ assms(1)]\ assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show cdcl_W-learned-clause S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show \forall s \in \#learned\text{-}clss S'. \neg tautology s
   using assms(1)[THEN learned-clss-are-not-tautologies] assms(2)
   unfolding cdcl_W-all-struct-inv-def by fast
qed
lemma rtranclp-cdcl_W-all-struct-inv-inv:
 assumes cdcl_W^{**} S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
 using assms by induction (auto intro: cdcl<sub>W</sub>-all-struct-inv-inv)
lemma cdcl_W-stgy-cdcl_W-all-struct-inv:
 cdcl_W-stgy S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (meson\ cdcl_W\ -stgy\ -tranclp\ -cdcl_W\ -tranclp\ -cdcl_W\ -all\ -struct\ -inv\ -inv\ rtranclp\ -unfold)
lemma rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv:
 cdcl_W-stgy** S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (induction rule: rtranclp-induct) (auto intro: cdcl_W-stqy-cdcl_W-all-struct-inv)
No Relearning of a clause
lemma cdcl_W-o-new-clause-learned-is-backtrack-step:
 assumes learned: D \in \# learned-clss T and
 new: D \notin \# learned\text{-}clss S  and
 cdcl_W: cdcl_W-o S T and
 lev: cdcl_W-M-level-inv S
 shows backtrack S T \land conflicting <math>S = Some \ D
 using cdcl_W lev learned new
proof (induction rule: cdcl_W-o-induct)
 case (backtrack L C K i M1 M2 T) note decomp = this(3) and undef = this(6) and T = this(8)
and
   D-T = this(10) and D-S = this(11)
 then have D = C
   using not-gr0 lev by (auto simp: cdcl_W-M-level-inv-decomp)
 then show ?case
   using T backtrack.hyps(1-5) backtrack.intros[OF\ backtrack.hyps(1,2)] backtrack.hyps(3-7)
   by auto
ged auto
lemma cdcl_W-cp-new-clause-learned-has-backtrack-step:
 assumes learned: D \in \# learned-clss T and
 new: D \notin \# learned\text{-}clss S  and
 cdcl_W: cdcl_W-stgy S T and
 lev: cdcl_W-M-level-inv S
 shows \exists S'. backtrack S S' \land cdcl_W-stgy** S' T \land conflicting S = Some D
 using cdcl_W learned new
proof (induction rule: cdcl_W-stgy.induct)
 case (conflict' S')
```

```
then show ?case
   unfolding full1-def by (metis (mono-tags, lifting) rtranclp-cdcl_W-cp-learned-clause-inv
     tranclp-into-rtranclp)
next
  case (other' S' S'')
 then have D \in \# learned\text{-}clss S'
   unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv)
  then show ?case
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - \langle D \notin \# | learned-clss S \rangle \langle cdcl_W-o S S' \rangle]
   \langle full\ cdcl_W\text{-}cp\ S'\ S'' \rangle\ lev\ \mathbf{by}\ (metis\ cdcl_W\text{-}stgy.conflict'\ full-unfold\ r\text{-}into\text{-}rtranclp
     rtranclp.rtrancl-refl)
qed
lemma rtranclp-cdcl_W-cp-new-clause-learned-has-backtrack-step:
 assumes learned: D \in \# learned-clss T and
 new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-stgy^{**} S T and
  lev: cdcl_W-M-level-inv S
 shows \exists S' S''. cdcl_W-stgy** S S' \land backtrack S' S'' \land conflicting S' = Some D \land
   cdcl_W-stgy^{**} S^{\prime\prime} T
  using cdcl_W learned new
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by blast
next
  case (step T U) note st = this(1) and o = this(2) and IH = this(3) and
   D\text{-}U = this(4) and D\text{-}S = this(5)
 show ?case
   proof (cases D \in \# learned-clss T)
     case True
     then obtain S'S'' where
       st': cdcl_W - stgy^{**} S S' and
       bt: backtrack S' S" and
       confl: conflicting S' = Some D and
       st^{\prime\prime}: cdcl_W-stgy^{**} S^{\prime\prime} T
       using IH D-S by metis
     have cdcl_W-stgy^{++} S'' U
       using st'' o by force
     then show ?thesis
       by (meson bt confl rtranclp-unfold st')
   next
     case False
     have cdcl_W-M-level-inv T
       using lev rtranclp-cdcl_W-stgy-consistent-inv st by blast
     then obtain S' where
       bt: backtrack T S' and
       st': cdcl_W - stgy^{**} S' U and
       confl: conflicting T = Some D
       using cdcl_W-cp-new-clause-learned-has-backtrack-step[OF D-U False o]
        by metis
     then have cdcl_W-stgy^{**} S T and
       backtrack \ T \ S' and
       conflicting T = Some D  and
       cdcl_W-stgy^{**} S' U
       using o st by auto
     then show ?thesis by blast
```

```
qed
qed
lemma propagate-no-more-Decided-lit:
 assumes propagate S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms by (auto elim: propagateE)
lemma conflict-no-more-Decided-lit:
 assumes conflict S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms by (auto elim: conflictE)
lemma cdcl_W-cp-no-more-Decided-lit:
 assumes cdcl_W-cp S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms apply (induct rule: cdcl_W-cp.induct)
 using conflict-no-more-Decided-lit propagate-no-more-Decided-lit by auto
lemma rtranclp-cdcl_W-cp-no-more-Decided-lit:
 assumes cdcl_W-cp^{**} S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms apply (induct rule: rtranclp-induct)
 using cdcl_W-cp-no-more-Decided-lit by blast+
lemma cdcl_W-o-no-more-Decided-lit:
 assumes cdcl_W-o S S' and lev: cdcl_W-M-level-inv S and \neg decide S S'
 shows Decided K \in set (trail S') \longrightarrow Decided K \in set (trail S)
 using assms
proof (induct rule: cdcl_W-o-induct)
 case backtrack note decomp = this(3) and undef = this(8) and T = this(9)
 then show ?case using lev by (auto simp: cdcl_W-M-level-inv-decomp)
 case (decide\ L\ T)
 then show ?case using decide-rule[OF\ decide.hyps] by blast
qed auto
lemma cdcl_W-new-decided-at-beginning-is-decide:
 assumes cdcl_W-stgy S S' and
 lev: cdcl_W-M-level-inv S and
 trail S' = M' @ Decided L \# M and
 trail\ S = M
 shows \exists T. decide S T \land no-step cdcl_W-cp S
 using assms
proof (induct\ rule:\ cdcl_W-stgy.induct)
 case (conflict' S') note st = this(1) and no\text{-}dup = this(2) and S' = this(3) and S = this(4)
 have cdcl_W-M-level-inv S'
   using full1-cdcl_W-cp-consistent-inv no-dup st by blast
 then have Decided L \in set (trail S') and Decided L \notin set (trail S)
   using no-dup unfolding SS' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
 then have False
   using st rtranclp-cdcl<sub>W</sub>-cp-no-more-Decided-lit[of SS']
   unfolding full1-def rtranclp-unfold by blast
 then show ?case by fast
next
 case (other' T U) note o = this(1) and ns = this(2) and st = this(3) and no\text{-}dup = this(4) and
```

```
S' = this(5) and S = this(6)
   have cdcl_W-M-level-inv U
       by (metis\ (full-types)\ lev\ cdcl_W.simps\ cdcl_W-consistent-inv\ full-def\ o
           other'.hyps(3) rtranclp-cdcl_W-cp-consistent-inv)
    then have Decided L \in set (trail U) and Decided L \notin set (trail S)
       using no-dup unfolding SS' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
    then have Decided L \in set (trail T)
       using st\ rtranclp-cdcl_W-cp-no-more-Decided-lit unfolding full-def by blast
    then show ?case
       using cdcl_W-o-no-more-Decided-lit[OF o] \langle Decided \ L \notin set \ (trail \ S) \rangle ns lev by meson
qed
lemma cdcl_W-o-is-decide:
   assumes cdcl_W-o S T and lev: cdcl_W-M-level-inv S
    trail T = drop \ (length \ M_0) \ M' @ Decided \ L \ \# \ H \ @ \ Mand
    \neg (\exists M'. trail S = M' @ Decided L \# H @ M)
   shows decide S T
   using assms
proof (induction rule: cdcl_W-o-induct)
    case (backtrack L D K i M1 M2 T)
    then obtain c where trail S = c @ M2 @ Decided K \# M1
       by auto
   show ?case
       using backtrack\ lev
       apply (cases drop (length M_0) M')
         apply (auto simp: cdcl_W-M-level-inv-decomp)
       using \langle trail\ S = c\ @\ M2\ @\ Decided\ K\ \#\ M1 \rangle
       by (auto simp: cdcl_W-M-level-inv-decomp)
next
   case decide
   show ?case using decide-rule[of S] decide(1-4) by auto
qed auto
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}new\text{-}decided\text{-}at\text{-}beginning\text{-}is\text{-}decide}:
   assumes cdcl_W-stgy^{**} R U and
    trail\ U=M'\ @\ Decided\ L\ \#\ H\ @\ M and
    trail R = M and
    cdcl_W-M-level-inv R
   shows
       \exists S \ T \ T'. \ cdcl_W \text{-stgy}^{**} \ R \ S \ \land \ decide \ S \ T \ \land \ cdcl_W \text{-stgy}^{**} \ T \ U \ \land \ cdcl_W \text{-stgy}^{**} \ S \ U \ \land
           no\text{-step } cdcl_W\text{-cp } S \wedge trail \ T = Decided \ L \# H @ M \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ S = H @ M \wedge cdcl_W\text{-stqy } S \ T' \wedge trail \ T' \wedge trail \ T' \wedge trail \ T' \wedge trail 
           cdcl_W-stgy^{**} T' U
   using assms
proof (induct arbitrary: M H M' i rule: rtranclp-induct)
   case base
   then show ?case by auto
next
    case (step T U) note st = this(1) and IH = this(3) and s = this(2) and
        U = this(4) and S = this(5) and lev = this(6)
   show ?case
       proof (cases \exists M'. trail T = M' \otimes Decided L \# H \otimes M)
           case False
           with s show ?thesis using U s st S
               proof induction
                  case (conflict' W) note cp = this(1) and nd = this(2) and W = this(3)
                  then obtain M_0 where trail W = M_0 @ trail T and ndecided: \forall l \in set M_0. \neg is-decided l
```

```
using rtranclp-cdcl_W-cp-drop While-trail unfolding full1-def rtranclp-unfold by meson
 then have MV: M' @ Decided L \# H @ M = M_0 @ trail T unfolding W by simp
 then have V: trail T = drop \ (length \ M_0) \ (M' @ Decided \ L \# H @ M)
   by auto
 have take While (Not o is-decided) M' = M_0 @ take While (Not o is-decided) (trail T)
   using arg-cong[OF MV, of takeWhile (Not o is-decided)] ndecided
   by (simp add: takeWhile-tail)
 from arg-cong[OF this, of length] have length M_0 \leq length M'
   unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
     length-take While-le)
 then have False using nd V by auto
 then show ?case by fast
next
 case (other' T' U) note o = this(1) and ns = this(2) and cp = this(3) and nd = this(4)
   and U = this(5) and st = this(6)
 obtain M_0 where trail U = M_0 @ trail T' and ndecided: \forall l \in set M_0. \neg is-decided l
   using rtranclp-cdcl_W-cp-drop While-trail cp unfolding full-def by meson
 then have MV: M' @ Decided L \# H @ M = M_0 @ trail T' unfolding U by simp
 then have V: trail T' = drop \ (length \ M_0) \ (M' @ Decided \ L \# H @ M)
 have take While (Not o is-decided) M' = M_0 @ take While (Not o is-decided) (trail T')
   using arg-cong[OF MV, of takeWhile (Not o is-decided)] ndecided
   by (simp add: takeWhile-tail)
 from arg-cong[OF this, of length] have length M_0 \leq length M'
   unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
     length-take While-le)
 then have tr-T': trail T' = drop \ (length \ M_0) \ M' @ Decided \ L \# H @ M \ using \ V \ by \ auto
 then have LT': Decided L \in set (trail T') by auto
 moreover
   have cdcl_W-M-level-inv T
     using lev rtranclp-cdcl_W-stgy-consistent-inv step.hyps(1) by blast
   then have decide T T' using o nd tr-T' cdcl_W-o-is-decide by metis
 ultimately have decide T T' using cdcl<sub>W</sub>-o-no-more-Decided-lit[OF o] by blast
 then have 1: cdcl_W-stgy^{**} R T and 2: decide T T' and 3: cdcl_W-stgy^{**} T' U
   using st other'.prems(4)
   by (metis\ cdcl_W\text{-}stgy.conflict'\ cp\ full-unfold\ r\text{-}into\text{-}rtranclp\ rtranclp.rtrancl-refl)+
 have [simp]: drop\ (length\ M_0)\ M' = []
   using \langle decide\ T\ T' \rangle \langle Decided\ L \in set\ (trail\ T') \rangle \ nd\ tr-T'
   by (auto simp add: Cons-eq-append-conv elim: decideE)
 have T': drop (length M_0) M' @ Decided L # H @ M = Decided L # trail T
   using \langle decide\ T\ T' \rangle \langle Decided\ L \in set\ (trail\ T') \rangle \ nd\ tr\ T'
   by (auto elim: decideE)
 have trail T' = Decided L \# trail T
   using \langle decide\ T\ T' \rangle \langle Decided\ L \in set\ (trail\ T') \rangle\ tr\text{-}T'
   by (auto elim: decideE)
 then have 5: trail T' = Decided L \# H @ M
     using append.simps(1) list.sel(3) local.other'(5) tl-append2 by (simp add: tr-T')
 have \theta: trail T = H @ M
   by (metis (no-types) (trail T' = Decided L \# trail T)
     \langle trail\ T'=drop\ (length\ M_0)\ M'\ @\ Decided\ L\ \#\ H\ @\ M\rangle\ append-Nil\ list.sel(3)\ nd
     tl-append2)
 have 7: cdcl_W-stgy^{**} T U using other'.prems(4) st by auto
 have 8: cdcl_W-stgy T U cdcl_W-stgy** U U
   using cdcl_W-stgy.other'[OF other'(1-3)] by simp-all
 show ?case apply (rule exI[of - T], rule exI[of - T'], rule exI[of - U])
   using ns 1 2 3 5 6 7 8 by fast
```

```
qed
   next
     case True
     then obtain M' where T: trail T = M' @ Decided L \# H @ M by metis
     from IH[OF this S lev] obtain S' S'' S''' where
       1: cdcl_W-stgy^{**} R S' and
       2: decide S'S'' and
       \mathcal{Z}: cdcl_W-stgy^{**} S^{\prime\prime} T and
       4: no-step cdcl_W-cp S' and
       6: trail\ S'' = Decided\ L\ \#\ H\ @\ M and
       7: trail S' = H @ M and
       8: cdcl_W-stgy^{**} S' T and
       9: cdcl_W-stgy S' S''' and
       10: cdcl_W-stgy^{**} S''' T
         by blast
     have cdcl_W-stgy^{**} S'' U using s \langle cdcl_W-stgy^{**} S'' T \rangle by auto
     moreover have cdcl_W-stgy^{**} S' U using 8 s by auto
     moreover have cdcl_W-stgy^{**} S''' U using 10 s by auto
     ultimately show ?thesis apply - apply (rule exI[of - S'], rule exI[of - S'])
       using 1 2 4 6 7 8 9 by blast
   qed
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}new\text{-}decided\text{-}at\text{-}beginning\text{-}is\text{-}decide':
 assumes cdcl_W-stgy^{**} R U and
  trail\ U = M' @ Decided\ L \ \# \ H @ M \ and
  trail R = M and
  cdcl_W-M-level-inv R
 shows \exists y \ y'. \ cdcl_W - stgy^{**} \ R \ y \land cdcl_W - stgy \ y' \land \neg \ (\exists \ c. \ trail \ y = c \ @ \ Decided \ L \ \# \ H \ @ \ M)
   \wedge (\lambda a \ b. \ cdcl_W \text{-stgy} \ a \ b \ \wedge (\exists \ c. \ trail \ a = c \ @ \ Decided \ L \ \# \ H \ @ \ M))^{**} \ y' \ U
proof -
 fix T'
 obtain S' T T' where
   st: cdcl_W - stgy^{**} R S' and
   decide\ S'\ T\ {\bf and}
    TU: cdcl_W \text{-}stgy^{**} \ T \ U \text{ and }
   no-step cdcl_W-cp S' and
   trT: trail\ T = Decided\ L\ \#\ H\ @\ M and
   trS': trail S' = H @ M and
   S'U: cdcl_W-stgy** S'U and
   S'T': cdcl_W-stgy S' T' and
    T'U: cdcl_W - stgy^{**} T'U
   using rtranclp-cdcl_W-new-decided-at-beginning-is-decide[OF assms] by blast
 have n: \neg (\exists c. trail S' = c @ Decided L \# H @ M) using trS' by auto
 show ?thesis
   using rtranclp-trans[OF\ st]\ rtranclp-exists-last-with-prop[of\ cdcl_W-stgy\ S'\ T' -
       \lambda a -. \neg (\exists c. trail \ a = c @ Decided \ L \# H @ M), \ OF \ S'T' \ T'U \ n]
   by meson
qed
lemma beginning-not-decided-invert:
 assumes A: M @ A = M' @ Decided K \# H and
 nm: \forall m \in set M. \neg is\text{-}decided m
 shows \exists M. A = M @ Decided K \# H
proof -
 have A = drop \ (length \ M) \ (M' @ Decided \ K \# H)
```

```
using arg\text{-}cong[OF\ A,\ of\ drop\ (length\ M)] by auto
 moreover have drop\ (length\ M)\ (M'\ @\ Decided\ K\ \#\ H) = drop\ (length\ M)\ M'\ @\ Decided\ K\ \#\ H
   using nm by (metis (no-types, lifting) A drop-Cons' drop-append ann-lit.disc(1) not-gr0
     nth-append nth-append-length nth-mem zero-less-diff)
 finally show ?thesis by fast
qed
\mathbf{lemma}\ cdcl_W\textit{-stgy-trail-has-new-decided-is-decide-step};
 assumes cdcl_W-stgy S T
 \neg (\exists c. trail S = c @ Decided L \# H @ M) and
 (\lambda a \ b. \ cdcl_W-stgy a \ b \land (\exists \ c. \ trail \ a = c @ Decided \ L \# H @ M))^{**} \ T \ U \ and
 \exists M'. trail U = M' @ Decided L \# H @ M and
 lev: cdcl_W-M-level-inv S
 shows \exists S'. decide S S' \land full \ cdcl_W - cp \ S' \ T \land no-step \ cdcl_W - cp \ S
 using assms(3,1,2,4,5)
proof induction
 case (step \ T \ U)
 then show ?case by fastforce
next
 case base
 then show ?case
   proof (induction rule: cdcl_W-stgy.induct)
     case (conflict' T) note cp = this(1) and nd = this(2) and M' = this(3) and no\text{-}dup = this(3)
     then obtain M' where M': trail T = M' @ Decided L \# H @ M by metis
     obtain M'' where M'': trail T = M'' @ trail S and nm: \forall m \in set M''. \neg is-decided m
      using cp unfolding full1-def
      by (metis\ rtranclp-cdcl_W-cp-drop\ While-trail'\ tranclp-into-rtranclp)
     have False
      using beginning-not-decided-invert of M'' trail S M' L H @ M M' nm nd unfolding M''
      by fast
     then show ?case by fast
   next
     case (other' TU') note o = this(1) and ns = this(2) and cp = this(3) and nd = this(4)
      and trU' = this(5)
     have cdcl_W-cp^{**} T U' using cp unfolding full-def by blast
     from rtranclp-cdcl_W-cp-drop While-trail[OF this]
     have \exists M'. trail T = M' @ Decided L \# H @ M
      using trU' beginning-not-decided-invert[of - trail T - L H @ M] by metis
     then obtain M' where M': trail\ T = M' @ Decided\ L \# H @ M
      by auto
     with o lev nd cp ns
     show ?case
      proof (induction rule: cdcl_W-o-induct)
        case (decide L) note dec = this(1) and cp = this(5) and ns = this(4)
        then have decide\ S\ (cons\text{-}trail\ (Decided\ L)\ (incr\text{-}lvl\ S))
          using decide.hyps \ decide.intros[of S] by force
        then show ?case using cp decide.prems by (meson decide-state-eq-compatible ns state-eq-ref
          state-eq-sym)
      next
        case (backtrack L' D K j M1 M2 T) note decomp = this(3) and undef = this(8) and
          T = this(9) and trT = this(13)
        obtain MS3 where MS3: trail\ S = MS3\ @\ M2\ @\ Decided\ K\ \#\ M1
          using get-all-ann-decomposition-exists-prepend[OF decomp] by metis
        have tl (M' @ Decided L \# H @ M) = tl M' @ Decided L \# H @ M
          using lev trT T lev undef decomp by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
        then have M'': M1 = tl M' @ Decided L \# H @ M
```

```
using arg-cong[OF trT[simplified], of tl] T decomp undef lev
          by (simp\ add:\ cdcl_W-M-level-inv-decomp)
        have False using nd MS3 T undef decomp unfolding M'' by auto
        then show ?case by fast
       qed auto
     qed
qed
lemma rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end:
 assumes (\lambda a \ b. \ cdcl_W-stqy a \ b \land (\exists c. \ trail \ a = c @ Decided \ L \# H @ M))^{**} \ T \ U and
 \exists M'. trail U = M' @ Decided L \# H @ M
 shows \exists M'. trail T = M' @ Decided L \# H @ M
 using assms by (induction rule: rtranclp-induct) auto
lemma remove1-mset-eq-remove1-mset-same:
  remove1-mset\ L\ D = remove1-mset\ L'\ D \Longrightarrow L \in \#\ D \Longrightarrow L = L'
 by (metis diff-single-trivial insert-DiffM multi-drop-mem-not-eq single-eq-single
   union-right-cancel)
lemma cdcl_W-o-cannot-learn:
 assumes
   cdcl_W-o y z and
   lev: cdcl_W-M-level-inv y and
   M: trail\ y = c\ @\ Decided\ Kh\ \#\ H\ and
   DL: D \notin \# learned\text{-}clss \ y \ \mathbf{and}
   LD: L \in \# D and
   DH: atms-of (remove1-mset L D) \subseteq atm-of ' lits-of-l H and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ \mathbf{and}
   learned: \forall T. conflicting y = Some T \longrightarrow trail y \models as CNot T and
   z: trail z = c' @ Decided Kh # H
 shows D \notin \# learned\text{-}clss z
  using assms(1-2) M DL DH LH learned z
proof (induction rule: cdcl_W-o-induct)
 case (backtrack L' D' K j M1 M2 T) note confl = this(1) and LD' = this(2) and decomp = this(3)
   and levL = this(4) and levD = this(5) and j = this(6) and lev-K = this(7) and T = this(8) and
   z = this(15)
  \mathbf{def} \ i \equiv \mathit{qet-level} \ (\mathit{trail} \ T) \ \mathit{Kh}
 have lev T: cdcl_W-M-level-inv T
   using backtrack-rule[OF confl LD' decomp levL levD - - T] lev-K j lev
   by (metis Suc\text{-}eq\text{-}plus1\ cdcl_W.simps\ cdcl_W\text{-}bj.simps\ cdcl_W\text{-}consistent-inv\ cdcl_W\text{-}o.simps)
  obtain M3 where M3: trail y = M3 @ M2 @ Decided K \# M1
   using decomp get-all-ann-decomposition-exists-prepend by metis
 have c' @ Decided Kh \# H = Propagated L' D' \# trail (reduce-trail-to M1 y)
   using z decomp T lev by (force simp: cdcl_W-M-level-inv-def)
  then obtain d where d: M1 = d @ Decided Kh \# H
   by (metis (no-types) decomp in-get-all-ann-decomposition-trail-update-trail list.inject
     list.sel(3) ann-lit.distinct(1) self-append-conv2 tl-append2)
 have atm\text{-}of\ Kh \notin atm\text{-}of ' lits\text{-}of\text{-}l\ c'
   using levT unfolding cdcl_W-M-level-inv-def z
   by (auto simp: atm-lit-of-set-lits-of-l)
  then have count-H: count-decided H = i - 1 i > 0
   unfolding z i-def by auto
 have n-d-y: no-dup (trail y) and bt-y: backtrack-lvl y = count-decided (trail y)
   using lev unfolding cdcl_W-M-level-inv-def by auto
 have tr-T: trail T = Propagated L' D' \# M1
```

```
show ?case
 proof
   assume D \in \# learned\text{-}clss T
   then have DLD': D = D'
    using DL T neq0-conv decomp n-d-y by fastforce
   have L-cKh: atm-of L \in atm-of ' lits-of-l (c @ [Decided Kh])
    using LH learned M DLD'[symmetric] confl LD' LD
    apply (auto simp add: image-iff dest!: in-CNot-implies-uminus)
    apply (metis atm-of-uminus)+ done
   then consider (Lc) atm-of L \in atm-of 'lits-of-l c and atm-of L \neq atm-of Kh
     (LKh) atm-of L = atm-of Kh and atm-of L \notin atm-of ' lits-of-l c
    using n-d-y M by (auto simp: atm-lit-of-set-lits-of-l)
   then have lev-L-c-Kh: get-level (c @ [Decided Kh]) L \ge 1
    by cases auto
   have get-level (trail y) L = get-level (c @ [Decided Kh]) L + count-decided H
    using get-rev-level-skip-end[OF\ L-cKh, of H] unfolding M by simp
   then have get-level (trail y) L \geq i
     using count-H lev-L-c-Kh by linarith
   then have i-le-bt-y: i \leq backtrack-lvl y
     using cdcl_W-M-level-inv-get-level-le-backtrack-lvl[OF lev, of L] by linarith
   have DD'[simp]: remove1-mset L D = D' - \{\#L'\#\}
    proof (rule ccontr)
      assume DD': \neg ?thesis
      then have L' \in \# remove1-mset L D using DLD' LD by (metis LD' in-remove1-mset-neq)
      then have get-level (trail y) L' \leq get-maximum-level (trail y) (remove1-mset L D)
        using get-maximum-level-ge-get-level by blast
      moreover
      have \forall x \in atms\text{-}of \ (remove1\text{-}mset \ L \ D). \ x \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (c @ Decided \ Kh \ \# \ [])
        using DH n-d-y unfolding M by (auto simp: atm-lit-of-set-lits-of-l)
      from get-maximum-level-skip-beginning[OF this, of H]
        have get-maximum-level (trail y) (remove1-mset L D) =
        get-maximum-level H (remove1-mset L D)
        unfolding M by (simp add: qet-maximum-level-skip-beginning)
      moreover
        have atm\text{-}of\ Kh \notin atm\text{-}of ' lits\text{-}of\text{-}l\ c'
          using levT unfolding cdcl_W-M-level-inv-def z
         by (auto simp: atm-lit-of-set-lits-of-l)
        then have count-decided H < i
          unfolding i-def z by auto
        then have 0 < i - count\text{-}decided H
         by presburger
      ultimately have get-maximum-level (trail y) (remove1-mset L D) < i
        by (metis (no-types) count-decided-ge-get-maximum-level diff-is-0-eq diff-le-mono2
          not-le)
      moreover
        have L \in \# remove1\text{-}mset \ L' \ D'
          using DLD'[symmetric] DD' LD by (metis in-remove1-mset-neg)
        then have get-maximum-level (trail y) (remove1-mset L'D') \geq
          get-level (trail\ y)\ L
          using get-maximum-level-ge-get-level by blast
      moreover
        have get-maximum-level (trail y) (remove1-mset L'D')
          < get-level (trail y) L
```

using $decomp \ T \ n-d-y \ by \ auto$

```
using \langle get\text{-level }(trail\ y)\ L' \leq get\text{-maximum-level }(trail\ y)\ (remove1\text{-mset}\ L\ D) \rangle
        calculation(1) i-le-bt-y levL by linarith
   ultimately show False using backtrack.hyps(4) by linarith
 qed
then have LL': L = L'
 using LD LD' remove1-mset-eq-remove1-mset-same unfolding DLD'[symmetric] by fast
have [simp]: atm\text{-}of\ K \notin atm\text{-}of\ '\ lits\text{-}of\text{-}l\ M2 and
  [simp]: atm-of K \notin atm-of ' lits-of-l M3
 using lev unfolding M3 cdcl_W-M-level-inv-def by (auto simp: atm-lit-of-set-lits-of-l)
{ assume D: remove1-mset L D' = \{\#\}
 then have j\theta: j = \theta using levD \ j by (simp \ add: LL')
 have \forall m \in set M1. \neg is\text{-}decided m
   using lev-K unfolding j0 M3 by (auto simp: atm-lit-of-set-lits-of-l image-Un
     filter-empty-conv)
 then have False using d by auto
moreover {
 assume D[simp]: remove1-mset L D' \neq \{\#\}
 have i \leq j
   using lev count-H lev-K unfolding M3 d cdcl<sub>W</sub>-M-level-inv-def by (auto simp add:
     atm-lit-of-set-lits-of-l)
 have j > \theta apply (rule ccontr)
   using \langle i > \theta \rangle lev-K unfolding M3 d
   by (auto simp add: rev-swap[symmetric] dest!: upt-decomp-lt)
 obtain L'' where
   L'' \in \# remove1\text{-}mset \ L \ D' and
   L''D': get-level (trail y) L'' = get-maximum-level (trail y)
     (remove1-mset\ L\ D')
   using get-maximum-level-exists-lit-of-max-level[OF D, of trail y] by auto
 \mathbf{have}\ L^{\prime\prime}M\colon atm\text{-}of\ L^{\prime\prime}\in\ atm\text{-}of\ `\ lits\text{-}of\text{-}l\ (trail\ y)
   using get-level-ge-0-atm-of-in[of 0 L'' trail <math>y \mid \langle j > 0 \rangle levD L''D'
   i-le-bt-y levL by (simp\ add:\ LL'\ j)
 then have L'' \in lits-of-l (Decided Kh \# d)
   proof -
     {
       assume L''H: atm\text{-}of\ L'' \in atm\text{-}of ' lits\text{-}of\text{-}l\ H
       then have atm\text{-}of L'' \notin atm\text{-}of \text{ 'lits-}of\text{-}l \ (c @ [Decided Kh])
         using n-d-y unfolding M by (auto simp: lits-of-def atm-of-eq-atm-of)
       then have get-level (trail\ y)\ L'' = get-level H\ L''
         using L''H unfolding M by auto
       moreover have get-level HL'' \leq count-decided H
         by auto
       ultimately have False
         using \langle j > 0 \rangle \langle i \leq j \rangle L''D' LL' \langle get\text{-level } H L'' \leq count\text{-decided } H \rangle count\text{-}H(1) j
         unfolding count-H by presburger
     }
     moreover
       have atm-of L'' \in atm-of ' lits-of-l H
         using DD'DH \ \langle L'' \in \# remove1\text{-}mset\ L\ D' \rangle \ atm\text{-}of\text{-}lit\text{-}in\text{-}atms\text{-}of\ LL'\ LD
         LD' by fastforce
     ultimately show ?thesis
       using DD'DH \lor L'' \in \# remove1\text{-}mset\ L\ D' \lor atm-of-lit-in-atms-of
       by auto
   qed
 moreover
```

```
have atm\text{-}of\ L'' \in atms\text{-}of\ (remove1\text{-}mset\ L\ D')
           using \langle L'' \in \# remove1\text{-}mset \ L \ D' \rangle by (auto simp: atms-of-def)
         then have atm\text{-}of\ L^{\prime\prime}\in\ atm\text{-}of ' lits\text{-}of\text{-}l\ H
           using DH unfolding DD' unfolding LL' by blast
       ultimately have False
         using n-d-y unfolding M3 d LL' by (auto simp: lits-of-def)
     ultimately show False by blast
qed auto
lemma cdcl_W-stgy-with-trail-end-has-not-been-learned:
  assumes
    cdcl_W-stqy y z and
   cdcl_W-M-level-inv y and
   trail\ y = c\ @\ Decided\ Kh\ \#\ H\ and
   D \notin \# learned\text{-}clss \ y \ \mathbf{and}
   LD: L \in \# D and
   DH: atms-of \ (remove1-mset \ L \ D) \subseteq atm-of \ `lits-of-l \ H \ and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ \mathbf{and}
   \forall T. \ conflicting \ y = Some \ T \longrightarrow trail \ y \models as \ CNot \ T \ and
   \mathit{trail}\ z = \mathit{c'} \ @\ \mathit{Decided}\ \mathit{Kh}\ \#\ \mathit{H}
  shows D \notin \# learned\text{-}clss z
  using assms
proof induction
  case conflict'
  then show ?case
   unfolding full1-def using tranclp-cdcl_W-cp-learned-clause-inv by auto
next
  case (other' T U) note o = this(1) and cp = this(3) and lev = this(4) and trY = this(5) and
   notin = this(6) and LD = this(7) and DH = this(8) and LH = this(9) and confl = this(10) and
   trU = this(11)
 obtain c' where c': trail T = c' @ Decided Kh # H
   using cp beginning-not-decided-invert[of - trail T c' Kh H]
     rtranclp-cdcl_W-cp-drop\ While-trail[of\ T\ U] unfolding trU\ full-def by fastforce
   using cdcl_W-o-cannot-learn[OF o lev trY notin LD DH LH confl c']
     rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv cp unfolding full-def by auto
qed
lemma rtranclp-cdcl_W-stgy-with-trail-end-has-not-been-learned:
  assumes
   (\lambda a \ b. \ cdcl_W-stgy a \ b \land (\exists \ c. \ trail \ a = c @ Decided \ K \# \ H @ []))^{**} \ S \ z \ and
   cdcl_W-all-struct-inv S and
   trail\ S = c\ @\ Decided\ K\ \#\ H\ {f and}
   D \notin \# learned\text{-}clss \ S and
   LD: L \in \# D and
   DH: atms-of (remove1-mset L D) \subseteq atm-of ' lits-of-l H and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ and
   \exists c'. trail z = c' @ Decided K \# H
  shows D \notin \# learned\text{-}clss z
  using assms(1-4.8)
proof (induction rule: rtranclp-induct)
  {f case}\ base
  then show ?case by auto[1]
```

```
next
  case (step T U) note st = this(1) and s = this(2) and IH = this(3)[OF this(4-6)]
   and lev = this(4) and trS = this(5) and DL-S = this(6) and trU = this(7)
 obtain c where c: trail T = c @ Decided K \# H  using s by auto
 obtain c' where c': trail U = c' @ Decided K \# H using trU by blast
 have cdcl_W^{**} S T
   proof -
     have \forall p \ pa. \ \exists s \ sa. \ \forall sb \ sc \ sd \ se. \ (\neg p^{**} \ (sb::'st) \ sc \ \lor \ p \ s \ sa \ \lor \ pa^{**} \ sb \ sc)
       \land (\neg pa \ s \ sa \lor \neg p^{**} \ sd \ se \lor pa^{**} \ sd \ se)
       by (metis (no-types) mono-rtranclp)
     then have cdcl_W-stgy** S T
      using st by blast
     then show ?thesis
       using rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
   qed
  then have lev': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv[of S T] lev by auto
  then have confl': \forall Ta. conflicting T = Some Ta \longrightarrow trail T \models as CNot Ta
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by blast
  show ?case
   apply (rule cdcl_W-stgy-with-trail-end-has-not-been-learned[OF - - c - LD DH LH confl' c'])
   using s \ lev' \ IH \ c \ unfolding \ cdcl_W-all-struct-inv-def by blast+
qed
lemma cdcl_W-stgy-new-learned-clause:
 assumes cdcl_W-stqy S T and
   lev: cdcl_W-M-level-inv S and
   E \notin \# learned\text{-}clss S \text{ and }
   E \in \# learned\text{-}clss T
 shows \exists S'. backtrack S S' \land conflicting S = Some E \land full cdcl_W - cp S' T
 using assms
proof induction
 case conflict'
  then show ?case unfolding full1-def by (auto dest: tranclp-cdcl_W-cp-learned-clause-inv)
  case (other' T U) note o = this(1) and cp = this(3) and not\text{-yet} = this(5) and learned = this(6)
 have E \in \# learned\text{-}clss T
   using learned cp rtranclp-cdclw-cp-learned-clause-inv unfolding full-def by auto
  then have backtrack S T and conflicting S = Some E
   \mathbf{using}\ \mathit{cdcl}_W\text{-}\mathit{o-new-clause-learned-is-backtrack-step}[\mathit{OF-not-yet}\ o]\ \mathit{lev}\ \mathbf{by}\ \mathit{blast+}
 then show ?case using cp by blast
qed
theorem 2.9.7 page 83 of Weidenbach's book
lemma cdcl_W-stgy-no-relearned-clause:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st': cdcl_W - stgy^{**} R S and
   bt: backtrack S T and
   confl: conflicting S = Some E and
   already-learned: E \in \# clauses S and
   R: trail R = []
 shows False
proof -
 have M-lev: cdcl_W-M-level-inv R
   using invR unfolding cdcl_W-all-struct-inv-def by auto
```

```
have cdcl_W-M-level-inv S
 using M-lev assms(2) rtranclp-cdcl_W-stgy-consistent-inv by blast
with bt obtain L K :: 'v \ literal \ and \ M1 \ M2-loc :: ('v, 'v \ clause) \ ann-lits
 and i :: nat where
   T: T \sim cons-trail (Propagated L E)
    (reduce-trail-to M1 (add-learned-cls E
      (update-backtrack-lvl i (update-conflicting None S))))
   and
  decomp: (Decided K \# M1, M2\text{-loc}) \in
            set (get-all-ann-decomposition (trail S)) and
 LD: L \in \# E  and
 k: get-level (trail S) L = backtrack-lvl S and
 level: get-level (trail S) L = get-maximum-level (trail S) E and
 confl-S: conflicting S = Some E and
 i: i = get\text{-}maximum\text{-}level (trail S) (remove1\text{-}mset L E) and
 lev-K: get-level (trail\ S)\ K = Suc\ i
 using confl apply (induction rule: backtrack.induct)
   apply (simp del: state-simp)
   by blast
obtain M2 where
  M: trail S = M2 @ Decided K \# M1
 using get-all-ann-decomposition-exists-prepend [OF\ decomp] unfolding i by (metis\ append-assoc)
let ?E = E
let ?E' = remove1\text{-}mset\ L\ ?E
have invS: cdcl_W-all-struct-inv S
 using invR rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stqy-rtranclp-cdcl_W st' by blast
then have conf: cdcl<sub>W</sub>-conflicting S unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
then have trail S \models as\ CNot\ ?E\ unfolding\ cdcl_W-conflicting-def confl-S by auto
then have MD: trail S \models as CNot ?E  by auto
then have MD': trail S \models as\ CNot\ ?E' using true-annot-CNot-diff by blast
have lev': cdcl<sub>W</sub>-M-level-inv S using invS unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
have lev: cdcl_W-M-level-inv R using invR unfolding cdcl_W-all-struct-inv-def by blast
then have vars-of-D: atms-of ?E' \subseteq atm-of 'lits-of-l M1
 using backtrack-atms-of-D-in-M1[OF lev' - decomp - - -, of E - i T] confl-S conf T decomp k
 level\ lev'\ lev-K\ \mathbf{unfolding}\ i\ cdcl_W-conflicting-def \mathbf{by}\ (auto\ simp:\ cdcl_W-M-level-inv-decomp)
have no-dup (trail S) using lev' by (auto simp: cdcl_W-M-level-inv-decomp)
have vars-in-M1:
 \forall x \in atms\text{-}of ?E'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M2 @ [Decided K])
 unfolding Set.Ball-def apply (intro impI allI)
   apply (rule vars-of-D distinct-atms-of-incl-not-in-other of
   M2 @ Decided K \# [] M1 ?E'])
   using \langle no\text{-}dup \ (trail \ S) \rangle \ M \ vars\text{-}of\text{-}D \ \textbf{by} \ simp\text{-}all
have M1-D: M1 \models as CNot ?E'
 using vars-in-M1 true-annots-remove-if-notin-vars[of M2 @ Decided K # [] M1 CNot ?E']
  MD' M by simp
have backtrack-lvl S > 0 using lev' unfolding cdcl_W-M-level-inv-def M by auto
obtain M1'K'Ls where
  M': trail S = Ls @ Decided K' # M1' and
  Ls: \forall l \in set \ Ls. \ \neg \ is\text{-}decided \ l \ \mathbf{and}
 set M1 \subseteq set M1'
 proof -
   let ?Ls = takeWhile (Not o is-decided) (trail S)
   have MLs: trail\ S = ?Ls \ @\ drop\ While\ (Not\ o\ is\ decided)\ (trail\ S)
```

```
by auto
   have drop While (Not o is-decided) (trail S) \neq [] unfolding M by auto
     from hd-dropWhile[OF this] have is-decided(hd (dropWhile (Not o is-decided) (trail S)))
       by simp
   ultimately
     obtain K' where
       K'k: drop While (Not o is-decided) (trail S)
         = Decided K' \# tl (drop While (Not o is-decided) (trail S))
       by (cases drop While (Not \circ is-decided) (trail S);
          cases hd (drop While (Not \circ is-decided) (trail S)))
         simp-all
   moreover have \forall l \in set ?Ls. \neg is\text{-}decided l using set\text{-}takeWhileD by force
   moreover have set M1 \subseteq set (tl (dropWhile (Not o is-decided) (trail S)))
     unfolding M by (induction M2) auto
   ultimately show ?thesis using that[of takeWhile (Not \circ is-decided) (trail S)
     K' tl (drop While (Not o is-decided) (trail S))] MLs by simp
 qed
have M1'-D: M1' \models as\ CNot\ ?E' using M1-D (set M1 \subseteq set\ M1') by (auto intro: true-annots-mono)
have -L \in lits-of-l (trail\ S) using conf\ confl-S LD unfolding cdcl_W-conflicting-def
 by (auto simp: in-CNot-implies-uminus)
have L-notin: atm-of L \in atm-of 'lits-of-l Ls \vee atm-of L = atm-of K'
 proof (rule ccontr)
   assume ¬ ?thesis
   then have atm-of L \notin atm-of 'lits-of-l (Decided K' # rev Ls) by simp
   then have get-level (trail S) L = get-level M1' L
     unfolding M' by auto
   moreover
     have get-level M1' L \leq count-decided M1'
       by auto
     then have get-level M1' L < backtrack-lvl S
       using lev' unfolding cdcl_W-M-level-inv-def M'
       by (auto simp del: count-decided-ge-get-level)
   ultimately show False using k by linarith
 qed
obtain YZ where
  RY: cdcl_W \text{-}stgy^{**} R Y \text{ and }
  YZ: cdcl_W-stgy YZ and
  nt: \neg (\exists c. trail Y = c @ Decided K' \# M1' @ []) and
  Z: (\lambda a \ b. \ cdcl_W \text{-stgy } a \ b \land (\exists c. \ trail \ a = c @ Decided \ K' \# M1' @ \parallel))^{**} \ Z \ S
 using rtranclp-cdcl<sub>W</sub>-new-decided-at-beginning-is-decide'[OF st' - - lev, of Ls K'
   M1' []] unfolding R M' by auto
have [simp]: cdcl_W-M-level-inv Y
 using RY lev rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by blast
obtain M' where trZ: trail\ Z = M' @ Decided\ K' \# M1'
 using rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end[OF Z] M' by auto
have no-dup (trail\ Y)
 using RY lev rtranclp-cdcl<sub>W</sub>-stqy-consistent-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by blast
then obtain Y' where
  dec: decide Y Y' and
  Y'Z: full cdcl_W-cp Y' Z and
 no-step cdcl_W-cp Y
 using cdcl_W-stgy-trail-has-new-decided-is-decide-step[OF YZ nt Z] M' by auto
have trY: trail\ Y = M1'
 proof -
```

```
obtain M' where M: trail Z = M' @ Decided K' \# M1'
       using rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end[OF Z] M' by auto
     obtain M" where M": trail Z = M" @ trail Y' and \forall m \in set M". \neg is-decided m
       using Y'Z rtranclp-cdcl_W-cp-drop While-trail' unfolding full-def by blast
     obtain M''' where trail Y' = M''' @ Decided K' \# M1'
       using M'' unfolding M
       by (metis (no-types, lifting) \forall m \in set M''. \neg is-decided m \land beginning-not-decided-invert)
     then show ?thesis using dec nt by (induction M''') (auto elim: decideE)
   qed
  have Y-CT: conflicting Y = None using (decide Y Y') by (auto elim: decideE)
 have cdcl_W^{**} R Y by (simp\ add:\ RY\ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W)
 then have init-clss Y = init-clss R using rtranclp-cdcl_W-init-clss [of R Y] M-lev by auto
  { assume DL: E \in \# clauses Y
   have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
     apply (rule backtrack-lit-skiped[of - S])
     using decomp i k lev' lev-K unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
   then have LM1: undefined-lit M1 L
     by (metis Decided-Propagated-in-iff-in-lits-of-l atm-of-uninus image-eqI)
   have L-trY: undefined-lit (trail Y) L
     using L-notin \langle no\text{-}dup \ (trail \ S) \rangle unfolding defined-lit-map trY \ M'
     by (auto simp add: image-iff lits-of-def)
   have Ex\ (propagate\ Y)
     using propagate-rule[of Y E L] DL M1'-D L-trY Y-CT trY LD by auto
   then have False using \langle no\text{-}step\ cdcl_W\text{-}cp\ Y\rangle\ propagate' by blast
  }
  moreover {
   assume DL: E \notin \# clauses Y
   have lY-lZ: learned-clss Y = learned-clss Z
     using dec\ Y'Z\ rtranclp-cdcl_W-cp-learned-clause-inv[of\ Y'\ Z]\ unfolding\ full-def
     by (auto elim: decideE)
   have invZ: cdcl_W-all-struct-inv Z
     by (meson\ RY\ YZ\ invR\ r-into-rtranclp\ rtranclp-cdcl_W-all-struct-inv-inv
       rtranclp-cdcl_W-stgy-rtranclp-cdcl_W)
   have n: E \notin \# learned\text{-}clss Z
      using DL lY-lZ YZ unfolding clauses-def by auto
   have ?E \notin \#learned\text{-}clss S
     apply (rule rtranclp-cdcl<sub>W</sub>-stqy-with-trail-end-has-not-been-learned [OF Z invZ trZ])
        apply (simp \ add: \ n)
       using LD apply simp
       apply (metis (no-types, lifting) \langle set \ M1 \subseteq set \ M1' \rangle image-mono order-trans
         vars-of-D lits-of-def)
      using L-notin (no-dup (trail S)) unfolding M' by (auto simp add: image-iff lits-of-def)
   then have False
     using already-learned DL confl st' M-lev rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss[of R S]
     unfolding M'
     by (simp add: \langle init\text{-}clss \ Y = init\text{-}clss \ R \rangle clauses-def confl-S
       rtranclp-cdcl_W-stgy-no-more-init-clss)
 ultimately show False by blast
qed
lemma rtranclp-cdcl_W-stgy-distinct-mset-clauses:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st: cdcl_W - stgy^{**} R S and
   dist: distinct-mset (clauses R) and
```

```
R: trail R = []
 shows distinct-mset (clauses S)
 using st
proof (induction)
 case base
 then show ?case using dist by simp
next
 case (step S T) note st = this(1) and s = this(2) and IH = this(3)
 from s show ?case
   proof (cases rule: cdcl_W-stgy.cases)
     case conflict'
     then show ?thesis
      using IH unfolding full1-def by (auto dest: tranclp-cdcl<sub>W</sub>-cp-no-more-clauses)
     case (other' S') note o = this(1) and full = this(3)
     have [simp]: clauses T = clauses S'
      using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-no-more-clauses)
     show ?thesis
      using o IH
      proof (cases rule: cdcl_W-o-rule-cases)
        case backtrack
        moreover
          have cdcl_W-all-struct-inv S
           using invR rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv st by blast
          then have cdcl_W-M-level-inv S
           unfolding cdcl_W-all-struct-inv-def by auto
        ultimately obtain E where
          conflicting S = Some E  and
          cls-S': clauses <math>S' = \{ \#E\# \} + clauses S
          using \langle cdcl_W \text{-}M\text{-}level\text{-}inv S \rangle
          by (induction rule: backtrack.induct) (auto simp: cdcl_W-M-level-inv-decomp)
        then have E \notin \# clauses S
          using cdcl_W-stgy-no-relearned-clause R invR local.backtrack st by blast
        then show ?thesis using IH by (simp add: distinct-mset-add-single cls-S')
      qed (auto elim: decideE skipE resolveE)
   qed
qed
lemma cdcl_W-stgy-distinct-mset-clauses:
 assumes
   st: cdcl_W-stgy^{**} (init-state N) S and
   no-duplicate-clause: distinct-mset N and
   no-duplicate-in-clause: distinct-mset-mset N
 shows distinct-mset (clauses S)
 using rtranclp-cdcl_W-stgy-distinct-mset-clauses [OF - st] assms
 by (auto simp: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
Decrease of a Measure
fun cdcl_W-measure where
cdcl_W-measure S =
 [(3::nat) \cap (card (atms-of-mm (init-clss S))) - card (set-mset (learned-clss S)),
   if conflicting S = None then 1 else 0,
   if conflicting S = None then card (atms-of-mm (init-clss S)) – length (trail S)
   else length (trail S)
```

```
{\bf lemma}\ length-model-le-vars-all-inv:
 assumes cdcl_W-all-struct-inv S
 shows length (trail S) \leq card (atms-of-mm (init-clss S))
 using assms length-model-le-vars[of S] unfolding cdcl_W-all-struct-inv-def
 by (auto simp: cdcl_W-M-level-inv-decomp)
end
context conflict-driven-clause-learning<sub>W</sub>
begin
lemma learned-clss-less-upper-bound:
 fixes S :: 'st
 assumes
   distinct-cdcl_W-state S and
   \forall s \in \# learned\text{-}clss S. \neg tautology s
 shows card(set\text{-}mset\ (learned\text{-}clss\ S)) \leq 3 \cap card\ (atms\text{-}of\text{-}mm\ (learned\text{-}clss\ S))
 have set-mset (learned-clss S) \subseteq simple-clss (atms-of-mm (learned-clss S))
   apply (rule simplified-in-simple-clss)
   using assms unfolding distinct-cdclw-state-def by auto
  then have card(set\text{-}mset\ (learned\text{-}clss\ S))
   \leq card \ (simple-clss \ (atms-of-mm \ (learned-clss \ S)))
   by (simp add: simple-clss-finite card-mono)
  then show ?thesis
   by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)
qed
lemma cdcl_W-measure-decreasing:
 fixes S :: 'st
 assumes
   cdcl_W S S' and
   no\text{-}restart:
     \neg (learned\text{-}clss\ S \subseteq \#\ learned\text{-}clss\ S' \land [] = trail\ S' \land conflicting\ S' = None)
    and
   no-forget: learned-clss S \subseteq \# learned-clss S' and
   no-relearn: \bigwedge S'. backtrack SS' \Longrightarrow \forall T. conflicting S = Some T \longrightarrow T \notin \# learned-clss S
     and
   alien: no-strange-atm S and
   M-level: cdcl_W-M-level-inv S and
   no-taut: \forall s \in \# learned-clss S. \neg tautology s and
   no-dup: distinct-cdcl_W-state S and
   confl: cdcl_W-conflicting S
  shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
  using assms(1) M-level assms(2,3)
proof (induct rule: cdcl_W-all-induct)
  case (propagate C L) note conf = this(1) and undef = this(5) and T = this(6)
 have propa: propagate S (cons-trail (Propagated L C) S)
   using propagate-rule [OF propagate.hyps(1,2)] propagate.hyps by auto
  then have no-dup': no-dup (Propagated L C \# trail S)
   using M-level cdcl_W-M-level-inv-decomp(2) undef defined-lit-map by auto
 let ?N = init\text{-}clss S
 have no-strange-atm (cons-trail (Propagated L(C)(S))
   using alien cdcl_W.propagate cdcl_W-no-strange-atm-inv propa M-level by blast
```

```
then have atm-of 'lits-of-l (Propagated L C \# trail S)
   \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S)
   using undef unfolding no-strange-atm-def by auto
 then have card (atm-of 'lits-of-l (Propagated L C \# trail S))
   \leq card (atms-of-mm (init-clss S))
   by (meson atms-of-ms-finite card-mono finite-set-mset)
 then have length (Propagated L C # trail S) \leq card (atms-of-mm ?N)
   using no-dup-length-eq-card-atm-of-lits-of-l no-dup' by fastforce
 then have H: card (atms-of-mm (init-clss S)) - length (trail S)
   = Suc (card (atms-of-mm (init-clss S)) - Suc (length (trail S)))
   by simp
 show ?case using conf T undef by (auto simp: H lexn3-conv)
next
 case (decide L) note conf = this(1) and undef = this(2) and T = this(4)
 moreover
   have dec: decide S (cons-trail (Decided L) (incr-lvl S))
     using decide-rule decide.hyps by force
   then have cdcl_W:cdcl_W S (cons-trail (Decided L) (incr-lvl S))
     using cdcl_W.simps\ cdcl_W-o.intros by blast
 moreover
   have lev: cdcl_W-M-level-inv (cons-trail (Decided L) (incr-lvl S))
     using cdcl_W M-level cdcl_W-consistent-inv[OF cdcl_W] by auto
   then have no-dup: no-dup (Decided L \# trail S)
     using undef unfolding cdclw-M-level-inv-def by auto
   have no-strange-atm (cons-trail (Decided L) (incr-lvl S))
     using M-level alien calculation(4) cdcl<sub>W</sub>-no-strange-atm-inv by blast
   then have length (Decided L \# (trail S))
     \leq card (atms-of-mm (init-clss S))
     using no-dup undef
     length-model-le-vars[of\ cons-trail\ (Decided\ L)\ (incr-lvl\ S)]
     by fastforce
 ultimately show ?case using conf by (simp add: lexn3-conv)
 case (skip L C' M D) note tr = this(1) and conf = this(2) and T = this(5)
 show ?case using conf T by (simp add: tr lexn3-conv)
next
 then show ?case by (simp add: lexn3-conv)
next
 case resolve
 then show ?case using finite by (simp add: lexn3-conv)
 case (backtrack L D K i M1 M2 T) note conf = this(1) and decomp = this(3) and T = this(8) and
 lev = this(9)
 let ?S' = T
 have bt: backtrack S ?S'
   using backtrack.hyps backtrack.intros[of\ S\ D\ L\ K] by auto
 have D \notin \# learned\text{-}clss S
   using no-relearn conf bt by auto
 then have card-T:
   card\ (set\text{-}mset\ (\{\#D\#\} + learned\text{-}clss\ S)) = Suc\ (card\ (set\text{-}mset\ (learned\text{-}clss\ S)))
   by simp
 have distinct\text{-}cdcl_W\text{-}state ?S'
   using bt M-level distinct-cdcl<sub>W</sub>-state-inv no-dup other cdcl_W-o.intros cdcl_W-bj.intros by blast
 moreover have \forall s \in \#learned\text{-}clss ?S'. \neg tautology s
   using learned-clss-are-not-tautologies[OF <math>cdcl_W.other[OF \ cdcl_W-o.bj]OF
```

```
cdcl_W-bj.backtrack[OF bt]]]] M-level no-taut confl by auto
 ultimately have card (set-mset (learned-clss T)) \leq 3 \hat{} card (atms-of-mm (learned-clss T))
     by (auto simp: learned-clss-less-upper-bound)
   then have H: card (set-mset (\{\#D\#\}\ + \ learned\text{-}clss\ S))
     \leq 3 ^{\circ} card (atms-of-mm (\{\#D\#\} + learned\text{-}clss\ S))
     using T decomp M-level by (simp add: cdcl_W-M-level-inv-decomp)
 moreover
   have atms-of-mm (\{\#D\#\} + learned-clss S) \subseteq atms-of-mm (init-clss S)
     using alien conf unfolding no-strange-atm-def by auto
   then have card-f: card (atms-of-mm (\{\#D\#\}\ + \ learned-clss\ S))
     \leq card (atms-of-mm (init-clss S))
     by (meson atms-of-ms-finite card-mono finite-set-mset)
   then have (3::nat) \widehat{\ } card (atms-of-mm\ (\{\#D\#\} + learned-clss\ S))
     \leq 3 \hat{} card (atms-of-mm (init-clss S)) by simp
 ultimately have (3::nat) \widehat{\ } card (atms-of-mm\ (init-clss\ S))
   \geq card \ (set\text{-}mset \ (\{\#D\#\} + learned\text{-}clss \ S))
   using le-trans by blast
 then show ?case using decomp diff-less-mono2 card-T T M-level
   by (auto simp: cdcl_W-M-level-inv-decomp lexn3-conv)
\mathbf{next}
 case restart
 then show ?case using alien by (auto simp: state-eq-def simp del: state-simp)
next
 case (forget C T) note no-forget = this(9)
 then have C \in \# learned-clss S and C \notin \# learned-clss T
   using forget.hyps by auto
 then have \neg learned-clss S \subseteq \# learned-clss T
    by (auto simp add: mset-leD)
 then show ?case using no-forget by blast
qed
lemma propagate-measure-decreasing:
 fixes S :: 'st
 assumes propagate S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \ less-than 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) propagate apply blast
         using assms(1) apply (auto simp add: propagate.simps)[3]
      using assms(2) apply (auto simp \ add: \ cdcl_W-all-struct-inv-def)
 done
lemma conflict-measure-decreasing:
 fixes S :: 'st
 assumes conflict \ S \ S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) conflict apply blast
          using assms(1) apply (auto simp: state-eq-def simp del: state-simp elim!: <math>conflictE)[3]
       using assms(2) apply (auto simp add: cdcl_W-all-struct-inv-def elim: conflictE)
 done
lemma decide-measure-decreasing:
 fixes S :: 'st
 assumes decide\ S\ S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 apply (rule cdcl_W-measure-decreasing)
```

```
using assms(1) decide other apply blast
         using assms(1) apply (auto simp: state-eq-def simp del: state-simp elim!: decideE)[3]
       using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def elim:\ decideE)
 done
lemma cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 using assms
proof induction
 case conflict'
 then show ?case using conflict-measure-decreasing by blast
 case propagate'
 then show ?case using propagate-measure-decreasing by blast
lemma tranclp-cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp^{++} S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 using assms
proof induction
 case base
 then show ?case using cdcl_W-cp-measure-decreasing by blast
next
 case (step T U) note st = this(1) and step = this(2) and IH = this(3) and inv = this(4)
 then have (cdcl_W-measure T, cdcl_W-measure S) \in lexn\ less-than 3 by blast
 moreover have (cdcl_W-measure U, cdcl_W-measure T) \in lexn\ less-than 3
   using cdcl_W-cp-measure-decreasing [OF step] rtranclp-cdcl_W-all-struct-inv-inv inv
   tranclp-cdcl_W-cp-tranclp-cdcl_W[OF\ st]
   unfolding trans-def rtranclp-unfold
   by blast
 ultimately show ?case using lexn-transI [OF trans-less-than] unfolding trans-def by blast
qed
lemma cdcl_W-stgy-step-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy S T and
 cdcl_W-stgy^{**} R S
 trail R = [] and
 cdcl_W-all-struct-inv R
 shows (cdcl_W-measure T, cdcl_W-measure S) \in lexn\ less-than 3
proof -
 have cdcl_W-all-struct-inv S
   using assms
   by (metis rtranclp-unfold rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv tranclp-cdcl<sub>W</sub>-stgy-tranclp-cdcl<sub>W</sub>)
 with assms show ?thesis
   proof induction
    case (conflict' V) note cp = this(1) and inv = this(5)
    show ?case
       using tranclp-cdcl_W-cp-measure-decreasing[OF HOL.conjunct1[OF cp[unfolded full1-def]] inv]
   next
```

```
case (other' T U) note st = this(1) and H = this(4,5,6,7) and cp = this(3)
    have cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv other other'.hyps(1) other'.prems(4) by blast
    from tranclp-cdcl_W-cp-measure-decreasing [OF - this]
    have le-or-eq: (cdcl_W-measure U, cdcl_W-measure T) \in lexn\ less-than 3 \vee less
      cdcl_W-measure U = cdcl_W-measure T
      using cp unfolding full-def rtranclp-unfold by blast
    moreover
      have cdcl_W-M-level-inv S
        using cdcl_W-all-struct-inv-def other'.prems(4) by blast
      with st have (cdcl_W-measure T, cdcl_W-measure S) \in lexn\ less-than 3
      proof (induction rule: cdcl_W-o-induct)
        case (decide\ T)
        then show ?case using decide-measure-decreasing H decide.intros[OF decide.hyps] by blast
      next
        case (backtrack L D K i M1 M2 T) note conf = this(1) and decomp = this(3) and
         undef = this(8) and T = this(9)
        have bt: backtrack S T
         apply (rule backtrack-rule)
         using backtrack.hyps by auto
        then have no-relearn: \forall T. conflicting S = Some T \longrightarrow T \notin \# learned-clss S
         using cdcl_W-stgy-no-relearned-clause of R S T H conf
         unfolding cdcl_W-all-struct-inv-def clauses-def by auto
        have inv: cdcl_W-all-struct-inv S
         using \langle cdcl_W - all - struct - inv S \rangle by blast
        show ?case
         apply (rule cdcl_W-measure-decreasing)
                using bt cdcl_W-bj.backtrack cdcl_W-o.bj other apply simp
               using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
               cdcl_W-M-level-inv-def apply auto
              using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
               cdcl_W-M-level-inv-def apply auto
             using bt no-relearn apply auto
             using inv unfolding cdcl_W-all-struct-inv-def apply simp
            using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def apply simp
           using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdclw-all-struct-inv-def apply simp
         using inv unfolding cdcl_W-all-struct-inv-def by simp
      next
        case skip
        then show ?case by (auto simp: lexn3-conv)
      next
        {f case}\ resolve
        then show ?case by (auto simp: lexn3-conv)
      qed
    ultimately show ?case
      by (metis (full-types) lexn-transI transD trans-less-than)
   qed
qed
Roughly corresponds to theorem 2.9.15 page 86 of Weidenbach's book (using a different bound)
lemma tranclp-cdcl_W-stgy-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy^{++} R S
 trail R = [] and
 cdcl_W-all-struct-inv R
```

```
shows (cdcl_W-measure S, cdcl_W-measure R) \in lexn\ less-than 3
  using assms
 apply induction
  using cdcl_W-stgy-step-decreasing[of R - R] apply blast
  using cdcl_W-stqy-step-decreasing[of - - R] tranclp-into-rtranclp[of <math>cdcl_W-stqy R]
  lexn-transI[OF trans-less-than, of 3] unfolding trans-def by blast
lemma tranclp\text{-}cdcl_W\text{-}stgy\text{-}S0\text{-}decreasing:
 fixes R S T :: 'st
 assumes
   pl: cdcl_W \text{-}stgy^{++} \ (init\text{-}state \ N) \ S \ \mathbf{and}
   no-dup: distinct-mset-mset N
 shows (cdcl_W-measure S, cdcl_W-measure (init-state N)) \in lexn\ less-than 3
proof -
 have cdcl_W-all-struct-inv (init-state N)
   using no-dup unfolding cdcl_W-all-struct-inv-def by auto
 then show ?thesis using pl tranclp-cdcl<sub>W</sub>-stgy-decreasing init-state-trail by blast
lemma wf-tranclp-cdcl_W-stgy:
  wf \{(S::'st, init\text{-}state\ N)|
    S N. distinct-mset-mset N \wedge cdcl_W-stgy^{++} (init-state N) S)
 apply (rule wf-wf-if-measure'-notation2[of lexn less-than 3 - - cdcl_W-measure])
  apply (simp add: wf wf-lexn)
  using tranclp-cdcl_W-stgy-S0-decreasing by blast
lemma cdcl_W-cp-wf-all-inv:
  wf \{(S', S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - cp \ S \ S'\}
  (is wf ?R)
proof (rule wf-bounded-measure[of -
   \lambda S. \ card \ (atms-of-mm \ (init-clss \ S))+1
   \lambda S.\ length\ (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)],\ goal-cases)
  then have cdcl_W-all-struct-inv S and cdcl_W-cp S S' by auto
 moreover then have cdcl_W-all-struct-inv S'
   using cdcl_W-cp.simps cdcl_W-all-struct-inv-inv conflict cdcl_W.intros cdcl_W-all-struct-inv-inv
   by blast+
 ultimately show ?case
   \mathbf{by} \ (auto \ simp: cdcl_W - cp. simps \ state - eq-def \ simp \ del: \ state - simp \ elim!: \ conflictE \ propagateE
     dest: length-model-le-vars-all-inv)
qed
end
end
```

2.2 Merging backjump rules

```
theory CDCL-W-Merge imports CDCL-W-Termination begin
```

Before showing that Weidenbach's CDCL is included in NOT's CDCL, we need to work on a variant of Weidenbach's calculus: conflict-driven-clause- $learning_W$.conflict, conflict-driven-clause- $learning_W$.resolve conflict-driven-clause- $learning_W$.skip, and conflict-driven-clause- $learning_W$.backtrack have to be

done in a single step since they have a single counterpart in NOTs CDCL.

We show that this new calculus has the same final states than Weidenbach's CDCL if the calculus starts in a state such that the invariant holds and no conflict has been found yet. The latter condition holds for initial state.

2.2.1 Inclusion of the states

```
context conflict-driven-clause-learning<sub>W</sub>
begin
\mathbf{declare}\ cdcl_W.intros[intro]\ cdcl_W-bj.intros[intro]\ cdcl_W-o.intros[intro]
lemma backtrack-no-cdcl_W-bj:
 assumes cdcl: cdcl_W-bj T U and inv: cdcl_W-M-level-inv V
 shows \neg backtrack\ V\ T
 using cdcl inv
 apply (induction rule: cdcl_W-bj.induct)
   apply (elim\ skipE, force elim!: backtrackE\ simp: cdcl_W-M-level-inv-def)
  apply (elim resolveE, force elim!: backtrackE simp: cdcl<sub>W</sub>-M-level-inv-def)
 apply standard
 apply (elim backtrackE)
 apply (force simp del: state-simp simp add: state-eq-def cdcl_W-M-level-inv-decomp)
 done
skip-or-resolve corresponds to the analyze function in the code of MiniSAT.
inductive skip-or-resolve :: 'st \Rightarrow 'st \Rightarrow bool where
s-or-r-skip[intro]: skip S T \Longrightarrow skip-or-resolve S T
s-or-r-resolve[intro]: resolve S T \Longrightarrow skip-or-resolve S T
lemma rtranclp-cdcl_W-bj-skip-or-resolve-backtrack:
 assumes cdcl_W-bj^{**} S U and inv: cdcl_W-M-level-inv S
 shows skip-or-resolve** S \ U \lor (\exists \ T. \ skip-or-resolve** S \ T \land backtrack \ T \ U)
 using assms
proof (induction)
 case base
 then show ?case by simp
next
 case (step U V) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)]
 consider
     (SU) S = U
   | (SUp) \ cdcl_W - bj^{++} \ S \ U
   using st unfolding rtranclp-unfold by blast
  then show ?case
   proof cases
     case SUp
     have \bigwedge T. skip-or-resolve** S T \Longrightarrow cdcl_W** S T
      using mono-rtranclp[of skip-or-resolve cdcl_W]
      by (blast intro: skip-or-resolve.cases)
     then have skip-or-resolve** S U
       using bj IH inv backtrack-no-cdcl<sub>W</sub>-bj rtranclp-cdcl<sub>W</sub>-consistent-inv[OF - inv] by meson
     then show ?thesis
      using bj by (auto simp: cdcl_W-bj.simps dest!: skip-or-resolve.intros)
   next
     case SU
     then show ?thesis
      using bj by (auto simp: cdcl_W-bj.simps dest!: skip-or-resolve.intros)
```

```
qed
qed
lemma rtranclp-skip-or-resolve-rtranclp-cdcl_W:
  skip\text{-}or\text{-}resolve^{**} \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
 by (induction rule: rtranclp-induct)
 (auto dest!: cdcl_W-bj.intros cdcl_W.intros cdcl_W-o.intros simp: skip-or-resolve.simps)
definition backjump-l-cond :: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ where
backjump-l-cond \equiv \lambda C C' L' S T. True
definition inv_{NOT} :: 'st \Rightarrow bool where
inv_{NOT} \equiv \lambda S. \text{ no-dup (trail } S)
declare inv_{NOT}-def[simp]
end
context conflict-driven-clause-learning<sub>W</sub>
begin
2.2.2
          More lemmas conflict-propagate and backjumping
Termination
lemma cdcl_W-cp-normalized-element-all-inv:
 assumes inv: cdcl_W-all-struct-inv S
 obtains T where full cdcl_W-cp S T
 using assms cdclw-cp-normalized-element unfolding cdclw-all-struct-inv-def by blast
thm backtrackE
lemma cdcl_W-bj-measure:
 assumes cdcl_W-bj S T and cdcl_W-M-level-inv S
 shows length (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)
   > length (trail T) + (if conflicting T = None then 0 else 1)
  using assms by (induction rule: cdcl_W-bj.induct)
  (force dest: arg-cong[of - - length]
   intro:\ get-all-ann-decomposition-exists-prepend
   elim!: backtrackE skipE resolveE
   simp: cdcl_W - M - level - inv - def) +
lemma wf-cdcl_W-bj:
  wf \{(b,a). \ cdcl_W - bj \ a \ b \land cdcl_W - M - level - inv \ a\}
 apply (rule wfP-if-measure[of \lambda-. True
     - \lambda T. length (trail T) + (if conflicting T = None then 0 else 1), simplified])
 using cdcl_W-bj-measure by simp
lemma cdcl_W-bj-exists-normal-form:
 assumes lev: cdcl_W-M-level-inv S
 shows \exists T. full \ cdcl_W-bj S T
proof -
 obtain T where T: full (\lambda a b. cdcl_W-bj a b \wedge cdcl_W-M-level-inv a) S T
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-bj] by auto
  then have cdcl_W-bj^{**} S T
    by (auto dest: rtranclp-and-rtranclp-left simp: full-def)
 moreover
   then have cdcl_W^{**} S T
```

```
using mono-rtranclp[of cdcl_W-bj cdcl_W] by blast
   then have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-consistent-inv lev by auto
 ultimately show ?thesis using T unfolding full-def by auto
qed
lemma rtranclp-skip-state-decomp:
 assumes skip^{**} S T and no-dup (trail S)
 shows
   \exists M. \ trail \ S = M @ \ trail \ T \land (\forall m \in set \ M. \neg is -decided \ m)
   init-clss S = init-clss T
   learned-clss S = learned-clss T
   backtrack-lvl S = backtrack-lvl T
   conflicting S = conflicting T
 using assms by (induction rule: rtranclp-induct)
 (auto simp del: state-simp simp: state-eq-def elim!: skipE)
More backjumping
Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack:
 assumes
   skip^{**} S T and
   backtrack T W and
   cdcl_W-all-struct-inv S
 shows backtrack S W
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step T V) note st = this(1) and skip = this(2) and IH = this(3) and bt = this(4) and
   inv = this(5)
 have skip^{**} S V
   using st skip by auto
 then have cdcl_W-all-struct-inv V
   using rtranclp-mono[of\ skip\ cdcl_W]\ assms(3)\ rtranclp-cdcl_W-all-struct-inv-inv\ mono-rtranclp
   by (auto dest!: bj other cdcl_W-bj.skip)
 then have cdcl_W-M-level-inv V
   unfolding cdcl_W-all-struct-inv-def by auto
 then obtain K i M1 M2 L D where
   conf: conflicting V = Some D  and
   LD: L \in \# D and
   decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail V)) and
   lev-L: get-level (trail V) L = backtrack-lvl V  and
   max: get\text{-}level \ (trail \ V) \ L = get\text{-}maximum\text{-}level \ (trail \ V) \ D \ \mathbf{and}
   max-D: qet-maximum-level (trail V) (remove1-mset L D) \equiv i and
   lev-k: qet-level (trail V) K = Suc \ i and
   W: W \sim cons-trail (Propagated L D)
             (reduce-trail-to M1
               (add-learned-cls D
                (update-backtrack-lvl i
                  (update\text{-}conflicting\ None\ V))))
 using bt inv by (elim backtrackE) metis+
 obtain L' C' M E where
   tr: trail \ T = Propagated \ L' \ C' \# M \ and
   raw: conflicting T = Some E  and
```

 $LE: -L' \notin \# E$ and

```
E: E \neq \{\#\} and
 V: V \sim tl-trail T
 using skip by (elim skipE) metis
let ?M = Propagated L' C' \# trail V
have tr-M: trail\ T = ?M
 using tr \ V by auto
have MT: M = tl (trail T) and MV: M = trail V
 using tr \ V by auto
have DE[simp]: D = E
 using V conf raw by (auto simp add: state-eq-def simp del: state-simp)
have cdcl_{W}^{**} S T using bj cdcl_{W}-bj.skip mono-rtranclp[of skip cdcl_{W} S T] other st by meson
then have inv': cdcl_W-all-struct-inv T
 using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
have M-lev: cdcl_W-M-level-inv T using inv' unfolding cdcl_W-all-struct-inv-def by auto
then have n-d': no-dup ?M
 using tr-M unfolding cdcl_W-M-level-inv-def by auto
let ?k = backtrack-lvl\ T
have [simp]:
 backtrack-lvl V = ?k
 using V by simp
have ?k > 0
 using decomp M-lev V tr unfolding cdcl_W-M-level-inv-def by auto
then have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ (trail\ V)
 using lev-L get-level-ge-0-atm-of-in[of 0 L (trail V)] by auto
then have L-L': atm-of L \neq atm-of L
 using n-d' unfolding lits-of-def by auto
have L'-M: atm-of L' \notin atm-of 'lits-of-l (trail V)
 using n-d' unfolding lits-of-def by auto
have ?M \models as \ CNot \ D
 using inv' raw unfolding cdcl_W-conflicting-def cdcl_W-all-struct-inv-def tr-M by auto
then have L' \notin \# (remove1\text{-}mset\ L\ D)
 using L-L' L'-M \langle Propagated L' C' \# trail V \models as CNot D \rangle
 unfolding true-annots-true-cls true-clss-def
 by (auto simp: uminus-lit-swap atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set dest!: in-diffD)
have [simp]: trail (reduce-trail-to M1 T) = M1
 using decomp tr W V by auto
have skip^{**} S V
 using st skip by auto
have no-dup (trail\ S)
 using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
then have [simp]: init-clss S = init-clss V and [simp]: learned-clss S = learned-clss V
 using rtranclp-skip-state-decomp[OF (skip^{**} S V)] V
 by (auto simp del: state-simp simp: state-eq-def)
then have
 W-S: W \sim cons-trail (Propagated L E) (reduce-trail-to M1
  (add-learned-cls\ E\ (update-backtrack-lvl\ i\ (update-conflicting\ None\ T))))
 using W \ V \ M-lev decomp tr
 by (auto simp del: state-simp simp: state-eq-def cdcl_W-M-level-inv-def)
obtain M2' where
 decomp': (Decided\ K\ \#\ M1,\ M2') \in set\ (get-all-ann-decomposition\ (trail\ T))
 using decomp V unfolding tr-M by (cases hd (get-all-ann-decomposition (trail V)),
   cases get-all-ann-decomposition (trail V)) auto
moreover
 from L-L' have get-level ?M L = ?k
   using lev-L V by (auto split: if-split-asm)
```

```
moreover
   have atm\text{-}of L' \notin atms\text{-}of D
     by (metis DE LE L-L' \langle L' \notin \# \text{ (remove 1-mset } L D) \rangle in-remove 1-mset-neq
       atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
   then have get-level ?M L = get-maximum-level ?M D
     using calculation(2) lev-L max by auto
  moreover
   have atm\text{-}of\ L' \notin atms\text{-}of\ ((remove1\text{-}mset\ L\ D))
     by (metis DE LE \langle L' \notin \# (remove1\text{-}mset \ L \ D) \rangle
       atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def in-remove1-mset-neq
       in-atms-of-remove1-mset-in-atms-of)
   have i = get\text{-}maximum\text{-}level ?M ((remove1\text{-}mset L D))
     using max-D \langle atm-of L' \notin atms-of ((remove1\text{-}mset\ L\ D)) \rangle by auto
 moreover have atm\text{-}of L' \neq atm\text{-}of K
   \mathbf{using}\ inv'\ get-all-ann-decomposition-exists-prepend[\mathit{OF}\ decomp]
   unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def tr\ MV by auto
  ultimately have backtrack T W
   apply -
   apply (rule backtrack-rule[of T - L K M1 M2' i W, OF raw])
   unfolding tr-M[symmetric]
        using LD apply simp
       apply simp
      apply simp
      apply simp
     apply auto[]
    using W-S lev-k tr MV apply auto
   using W-S lev-k apply auto[]
   done
 then show ?thesis using IH inv by blast
qed
See also [skip^{**} ?S ?T; backtrack ?T ?W; cdcl_W-all-struct-inv ?S] \implies backtrack ?S ?W
\mathbf{lemma}\ rtranclp\text{-}skip\text{-}backtrack\text{-}backtrack\text{-}end:
 assumes
   skip: skip^{**} S T and
   bt: backtrack S W and
   inv: cdcl_W-all-struct-inv S
 shows backtrack T W
 using assms
proof -
 have M-lev: cdcl_W-M-level-inv S
   using bt inv unfolding cdcl<sub>W</sub>-all-struct-inv-def by (auto elim!: backtrackE)
  then obtain K i M1 M2 L D where
   S: conflicting S = Some D  and
   LD: L \in \# D and
   decomp: (Decided K \# M1, M2) \in set (qet-all-ann-decomposition (trail S)) and
   lev-l: qet-level (trail\ S)\ L = backtrack-lvl S and
   lev-l-D: get-level (trail S) L = get-maximum-level (trail S) D and
   i: get-maximum-level (trail S) (remove1-mset L D) \equiv i and
   lev-K: qet-level (trail S) K = Suc i  and
   W: W \sim cons-trail (Propagated L D)
              (reduce-trail-to M1
                (add-learned-cls D
                 (update-backtrack-lvl\ i
                   (update\text{-}conflicting\ None\ S))))
   using bt by (elim backtrackE)
```

```
(simp-all\ add:\ cdcl_W-M-level-inv-decomp\ state-eq-def\ del:\ state-simp)
 let ?D = remove1\text{-}mset\ L\ D
 have [simp]: no-dup (trail\ S)
   using M-lev by (auto simp: cdcl_W-M-level-inv-decomp)
 have cdcl_W-all-struct-inv T
   using mono-rtranclp[of skip cdcl_W] by (smt bj cdcl_W-bj.skip inv local.skip other
     rtranclp-cdcl_W-all-struct-inv-inv)
 then have [simp]: no-dup (trail\ T)
   unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
 obtain MS M_T where M: trail S = MS @ M_T and M_T: M_T = trail T and nm: \forall m \in set MS.
\neg is-decided m
   using rtranclp-skip-state-decomp(1)[OF skip] S M-lev by auto
 have T: state T = (M_T, init\text{-}clss S, learned\text{-}clss S, backtrack\text{-}lvl S, Some D)
   using M_T rtranclp-skip-state-decomp[of S T] skip S
   by (auto simp del: state-simp simp: state-eq-def)
 have cdcl_W-all-struct-inv T
   apply (rule rtranclp-cdcl_W-all-struct-inv-inv[OF - inv])
   using bj cdcl_W-bj.skip local.skip other rtranclp-mono[of skip cdcl_W] by blast
 then have M_T \models as \ CNot \ D
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def using T by blast
 then have \forall L \in \#D. atm\text{-}of \ L \in atm\text{-}of ' lits\text{-}of\text{-}l \ M_T
   by (meson atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
     true-annots-true-cls-def-iff-negation-in-model)
 moreover have no-dup (trail S)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
 ultimately have \forall L \in \#D. atm\text{-}of L \notin atm\text{-}of \text{ } its\text{-}of\text{-}l MS
   unfolding M unfolding lits-of-def by auto
 then have H: \Lambda L. L \in \#D \Longrightarrow get-level (trail S) L = get-level M_T L
   unfolding M by (fastforce simp: lits-of-def)
 have [simp]: get-maximum-level (trail S) D = get-maximum-level M_T D
   using \langle M_T \models as \ CNot \ D \rangle \ M \ nm \ \langle \forall \ L \in \#D. \ atm-of \ L \notin atm-of \ `its-of-l \ MS \rangle
   by (auto simp: get-maximum-level-skip-un-decided-not-present)
 have lev-l': get-level M_T L = backtrack-lvl S
   using lev-l LD by (auto simp: H)
 have [simp]: trail (reduce-trail-to M1 T) = M1
   using T decomp M nm by (smt M_T append-assoc beginning-not-decided-invert
     qet-all-ann-decomposition-exists-prepend reduce-trail-to-trail-tl-trail-decomp)
 have W: W \sim cons-trail (Propagated L D) (reduce-trail-to M1
   (add-learned-cls\ D\ (update-backtrack-lvl\ i\ (update-conflicting\ None\ T))))
   using W T i decomp by (auto simp del: state-simp simp: state-eq-def)
 have lev-l-D': get-level M_T L = get-maximum-level M_T D
   using lev-l-D LD by (auto simp: H)
 have [simp]: get-maximum-level (trail S) ?D = get-maximum-level M_T ?D
   by (smt H get-maximum-level-exists-lit get-maximum-level-ge-get-level in-diffD le-antisym
     not-qr0 not-less)
 then have i': i = get-maximum-level M_T?
   using i by auto
 have Decided K \# M1 \in set \ (map \ fst \ (get-all-ann-decomposition \ (trail \ S)))
   using Set.imageI[OF decomp, of fst] by auto
 then have Decided K \# M1 \in set \ (map \ fst \ (get-all-ann-decomposition \ M_T))
   using fst-get-all-ann-decomposition-prepend-not-decided [OF nm] unfolding M by auto
 then obtain M2' where decomp': (Decided K \# M1, M2') \in set (get-all-ann-decomposition M_T)
```

```
by auto
  moreover
   have atm\text{-}of\ K \notin atm\text{-}of ' lits\text{-}of\text{-}l\ MS
     using \langle no\text{-}dup \ (trail \ S) \rangle \ decomp' \ unfolding \ M \ M_T
     by (auto simp: lits-of-def)
   then have get-level (trail T) K = get-level (trail S) K
     unfolding M M_T by auto
  ultimately show backtrack T W
   apply -
   apply (rule backtrack.intros[of TD])
     using T lev-l' lev-l-D' i' W LD lev-K i apply auto[7]
   using T W unfolding i'[symmetric]
   by (auto simp del: state-simp simp: state-eq-def)
lemma cdcl_W-bj-decomp-resolve-skip-and-bj:
 assumes cdcl_W-bj^{**} S T and inv: cdcl_W-M-level-inv S
 shows (skip\text{-}or\text{-}resolve^{**} \ S \ T
   \vee (\exists U. skip-or-resolve^{**} S U \wedge backtrack U T))
 using assms
proof induction
 case base
  then show ?case by simp
next
  case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
 have IH: skip-or-resolve** S T
   proof -
     { assume (\exists U. skip-or-resolve^{**} S U \land backtrack U T)
       then obtain V where
         bt: backtrack V T and
         skip-or-resolve** S V
         by blast
       have cdcl_W^{**} S V
         using \langle skip\text{-}or\text{-}resolve^{**} \mid S \mid V \rangle rtranclp-skip-or-resolve-rtranclp-cdcl<sub>W</sub> by blast
       then have cdcl_W-M-level-inv V and cdcl_W-M-level-inv S
         using rtranclp-cdcl_W-consistent-inv inv by blast+
       with bj bt have False using backtrack-no-cdclw-bj by simp
     then show ?thesis using IH inv by blast
   qed
 show ?case
   using bj
   proof (cases rule: cdcl_W-bj.cases)
     case backtrack
     then show ?thesis using IH by blast
   qed (metis (no-types, lifting) IH rtranclp.simps skip-or-resolve.simps)+
qed
lemma resolve-skip-deterministic:
 resolve \ S \ T \Longrightarrow skip \ S \ U \Longrightarrow False
 by (auto elim!: skipE resolveE)
lemma list-same-level-decomp-is-same-decomp:
 assumes M-K: M=M1 @ Decided K \# M2 and M-K': M=M1' @ Decided K' \# M2' and
 \mathit{lev}	ext{-}\mathit{K}\mathit{K}': \mathit{get}	ext{-}\mathit{level}\;\mathit{M}\;\mathit{K} = \mathit{get}	ext{-}\mathit{level}\;\mathit{M}\;\mathit{K}' and
  n-d: no-dup M
```

```
shows K = K' and M1 = M1' and M2 = M2'
proof -
   fix j j' K K' M1 M1' M2 M2'
   assume
     M-K: M = M1 @ Decided K \# M2 and
     M-K': M = M1' @ Decided K' # <math>M2' and
     levKK': get-level\ M\ K = get-level\ M\ K' and
    j: M ! j = Decided K  and j-M: j < length M  and
    j': M ! j' = Decided K' and j'-M: j' < length M and
    jj: j' > j
   have j \ge length M1
     proof (rule ccontr)
      assume \neg length M1 \leq j
      then have i < length M1
        by auto
      then have Decided K \in set M1
        using i unfolding M-K
        by (auto simp: nth-append in-set-conv-nth split: if-splits)
      from Set.imageI[OF\ this,\ of\ \lambda L.\ atm-of\ (lit-of\ L)]
      show False using n-d unfolding M-K by auto
   moreover then have j' - Suc \ (length \ M1) < length \ M2
     using j'-M jj M-K unfolding M-K' by (metis One-nat-def Suc-eq-plus1 add.left-commute
      le-less-trans length-append less-diff-conv2 list.size(4) not-less not-less-eq)
   ultimately have dec: Decided K' \in set M2
     using jj j j' j'-M unfolding M-K by (auto simp: nth-append in-set-conv-nth List.nth-Cons')
   obtain xs ys where
     M2: M2 = xs @ Decided K' \# ys
     using List.split-list[OF dec] by auto
   have [simp]: atm\text{-}of\ K \neq atm\text{-}of\ K'
     using n-d unfolding M-K M2 by auto
   have atm\text{-}of\ K \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M1} and atm\text{-}of\ K' \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M1} and
   atm\text{-}of\ K'\notin atm\text{-}of\ ``lits\text{-}of\text{-}l\ xs
     using n\text{-}d Set.imageI[OF dec, of \lambda L. atm-of (lit-of L)] unfolding M-K
     using n-d unfolding M-K M2
     by (auto simp: lits-of-def)
   then have False
     using M2 levKK' unfolding M-K by (auto simp: split: if-splits)
 } note H = this
 have Decided K \in set M and Decided K' \in set M
    using M-K apply simp
   using M-K' by simp
 then obtain j j' where
   j: M ! j = Decided K  and j-M: j < length M  and
   j': M ! j' = Decided K' and j'-M: j' < length M
    using in-set-conv-nth by metis
 have [simp]: j = j' using H[OF\ M-K\ M-K' - j\ j-M\ j'\ j'-M]
   H[OF\ M-K'\ M-K - j'\ j'-M\ j\ j-M]\ lev-KK'\ \mathbf{by}\ presburger
 then show KK': K = K' using j j' by auto
 have j-M1: j = length M1
   proof (rule ccontr)
     assume j \neq length M1
     moreover then have j - Suc (length M1) < length M2 \lor j < length M1
```

```
using j-M M-K unfolding M-K' by force
     ultimately have Decided K \in set (M1 @ M2)
      using j unfolding M-K by (auto simp: nth-append in-set-conv-nth split: if-splits)
     from Set.imageI[OF this, of \lambda L. atm-of (lit-of L)]
     show False using n-d unfolding M-K by auto
   qed
  have j-M2: j' = length M1'
   proof (rule ccontr)
     assume j' \neq length M1'
     moreover then have j' - Suc (length M1') < length M2' \vee j' < length M1'
      using j'-M M-K' unfolding M-K by force
     ultimately have Decided K' \in set (M1' @ M2')
      \mathbf{using}\ j'\ \mathbf{unfolding}\ \mathit{M-K'}\ \mathbf{by}\ (\mathit{auto}\ \mathit{simp:}\ \mathit{nth-append}\ \mathit{in-set-conv-nth}\ \mathit{split:}\ \mathit{if-splits})
     from Set.imageI[OF this, of \lambda L. atm-of (lit-of L)]
     show False using n-d unfolding M-K' by auto
   qed
 show M1 = M1' M2 = M2'
   using arg-cong[OF M-K, of take j] j-M1 arg-cong[OF M-K', of take j'] j-M2
   using arg-cong[OF\ M-K, of drop\ (j+1)]\ j-M1\ arg-cong[OF\ M-K', of drop\ (j'+1)]\ j-M2
   by auto
qed
\mathbf{lemma}\ \textit{backtrack-unique} :
 assumes
   bt-T: backtrack S T and
   bt-U: backtrack S U and
   inv: \ cdcl_W-all-struct-inv S
 shows T \sim U
proof -
 have lev: cdcl_W-M-level-inv S
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  then obtain K i M1 M2 L D where
   S: conflicting S = Some D  and
   \mathit{LD} \colon \mathit{L} \in \# \mathit{D} and
   decomp: (Decided K \# M1, M2) \in set (qet-all-ann-decomposition (trail S)) and
   lev-l: qet-level (trail\ S)\ L = backtrack-lvl S and
   lev-l-D: get-level (trail S) L = get-maximum-level (trail S) D and
   i: get-maximum-level (trail S) (remove1-mset L D) \equiv i and
   lev-K: get-level (trail S) K = Suc i and
   T: T \sim cons-trail (Propagated L D)
             (reduce-trail-to M1
               (add-learned-cls D
                 (update-backtrack-lvl i
                   (update\text{-}conflicting\ None\ S))))
   using bt-T by (elim\ backtrackE) (force\ simp:\ cdcl_W-M-level-inv-def)+
  obtain K' i' M1' M2' L' D' where
   S': conflicting S = Some D' and
   LD': L' \in \# D' and
   decomp': (Decided K' \# M1', M2') \in set (get-all-ann-decomposition (trail S)) and
   lev-l: get-level (trail S) L' = backtrack-lvl S and
   lev-l-D: get-level (trail S) L' = get-maximum-level (trail S) D' and
   i': get-maximum-level (trail S) (remove1-mset L'D') \equiv i' and
   lev-K': get-level (trail S) K' = Suc i' and
   U: U \sim cons-trail (Propagated L' D')
```

```
(reduce-trail-to M1'
               (add-learned-cls D'
                 (update-backtrack-lvl i'
                   (update\text{-}conflicting\ None\ S))))
   using bt-U lev by (elim\ backtrackE) (force\ simp:\ cdcl_W-M-level-inv-def)+
 obtain c where M: trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 obtain c' where M': trail S = c' @ M2' @ Decided K' # M1'
   using decomp' by auto
 have n-d: no-dup (trail S) and bt: backtrack-lvl S = count-decided (trail S)
   using lev unfolding cdcl_W-M-level-inv-def by auto
 then have atm\text{-}of\ K \notin atm\text{-}of ' lits\text{-}of\text{-}l\ (c\ @\ M2)
   by (auto simp: lits-of-def M)
 then have i < backtrack-lvl S
   using lev-K unfolding M bt by (auto simp add: image-Un)
 have [simp]: L' = L
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L' \in \# remove1\text{-}mset \ L \ D
      using S\ S'\ LD\ LD' by (simp\ add:\ in\mbox{-}remove1\mbox{-}mset\mbox{-}neq)
     then have get-maximum-level (trail S) (remove1-mset L D) \geq backtrack-lvl S
      using \langle get\text{-}level \ (trail \ S) \ L' = backtrack\text{-}lvl \ S \rangle \ get\text{-}maximum\text{-}level\text{-}ge\text{-}get\text{-}level}
      by metis
     then show False using i' i < backtrack-lvl S  by auto
   ged
 then have [simp]: D' = D
   using S S' by auto
 have [simp]: i' = i
   using i i' by auto
 have [simp]: K = K' and [simp]: M1 = M1'
    apply (rule list-same-level-decomp-is-same-decomp[of trail S c @ M2 K M1
       c' @ M2' K' M1')
    using lev-K lev-K' M M' n-d apply (auto)[4]
   apply (rule list-same-level-decomp-is-same-decomp[of trail S c @ M2 K M1
       c' @ M2' K' M1')
   using lev-K lev-K' M M' n-d apply (auto)[4]
   done
 show ?thesis using T U inv decomp by (auto simp del: state-simp simp: state-eq-def
   cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-decomp)
qed
\mathbf{lemma}\ if\ can-apply-backtrack-no-more-resolve:
 assumes
   skip: skip^{**} S U and
   bt: backtrack S T  and
   inv: cdcl_W-all-struct-inv S
 shows \neg resolve\ U\ V
proof (rule ccontr)
 assume resolve: \neg\neg resolve\ U\ V
 obtain L E D where
   U: trail \ U \neq [] and
   tr-U: hd-trail U = Propagated L E and
   LE: L \in \# E  and
   confl-U: conflicting U = Some D and
```

```
LD: -L \in \# D and
 get-maximum-level (trail U) ((remove1-mset (-L) D)) = backtrack-lvl U and
 V: V \sim update\text{-conflicting (Some (resolve\text{-}cls L D E)) (tl\text{-}trail U)}
 using resolve by (auto elim!: resolveE)
have inv-U: cdcl_W-all-struct-inv U
 using mono-rtranclp[of skip cdcl_W] by (meson bj cdcl_W-bj.skip inv local.skip other
   rtranclp-cdcl_W-all-struct-inv-inv)
then have [iff]: no-dup (trail\ S)\ cdcl_W-M-level-inv S and [iff]: no-dup (trail\ U)
 using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by blast+
have inv-V: cdcl_W-all-struct-inv V
 using mono-rtrancly of resolve cdcl_W inv-U resolve cdcl_W.simps cdcl_W-all-struct-inv-inv
 cdcl_W-bj.resolve cdcl_W-o.simps by blast
have
 S: init\text{-}clss \ U = init\text{-}clss \ S
    learned-clss U = learned-clss S
    backtrack-lvl \ U = backtrack-lvl \ S
    backtrack-lvl V = backtrack-lvl S
    conflicting S = Some D
 using rtranclp-skip-state-decomp[OF skip] U confl-U V
 by (auto simp del: state-simp simp: state-eq-def)
obtain M_0 where
 tr-S: trail <math>S = M_0 @ trail U and
 nm: \forall m \in set M_0. \neg is\text{-}decided m
 using rtranclp-skip-state-decomp[OF skip] by blast
obtain K'i'M1'M2'L'D' where
 S': conflicting S = Some D' and
 LD': L' \in \# D' and
 decomp': (Decided K' \# M1', M2') \in set (get-all-ann-decomposition (trail S)) and
 lev-l: get-level (trail S) L' = backtrack-lvl S and
 lev-l-D: get-level (trail S) L' = get-maximum-level (trail S) D' and
 i': get-maximum-level (trail S) (remove1-mset L'D') \equiv i' and
 lev-K': get-level (trail S) K' = Suc i' and
 R: T \sim cons-trail (Propagated L' D')
            (reduce-trail-to M1'
             (add-learned-cls D'
               (update-backtrack-lvl i'
                 (update\text{-}conflicting\ None\ S))))
 using bt by (elim backtrackE) metis
obtain c where M: trail S = c @ M2' @ Decided K' \# M1'
 using get-all-ann-decomposition-exists-prepend[OF decomp'] by auto
have i' < backtrack-lvl S
 \mathbf{using}\ count\text{-}decided\text{-}ge\text{-}get\text{-}level[of\ K'\ trail\ S]\ inv
 unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def lev-K'
 by linarith
have U: trail\ U = Propagated\ L\ E\ \#\ trail\ V
using tr-S U S V tr-U (trail U \neq []) by (cases trail U) (auto simp: lits-of-def)
have DD'[simp]: D' = D
 using US'S by auto
have [simp]: L' = -L
 proof (rule ccontr)
   assume ¬ ?thesis
   then have -L \in \# remove1\text{-}mset L' D'
     using DD' LD' LD by (simp add: in-remove1-mset-neq)
   moreover
```

```
have M': trail\ S = M_0 @ Propagated\ L\ E\ \#\ trail\ V
         using tr-S unfolding U by auto
       have no-dup (trail S)
          using inv U unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
       then have atm-L-notin-M: atm-of L \notin atm-of ' (lits-of-l (trail V))
         using M' U S by (auto simp: lits-of-def)
       have qet-lev-L:
         get-level(Propagated L E # trail V) L = backtrack-lvl V
         using inv-V unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
       have atm\text{-}of \ L \notin atm\text{-}of \ (lits\text{-}of\text{-}l \ (rev \ M_0))
         using (no\text{-}dup\ (trail\ S)) M' by (auto\ simp:\ lits\text{-}of\text{-}def)
       then have get-level (trail S) L = backtrack-lvl S
         using get-lev-L S unfolding M' by auto
     ultimately
       have get-maximum-level (trail S) (remove1-mset L'D') > backtrack-lvl S
         by (metis get-maximum-level-ge-get-level get-level-uminus)
     then show False
       using \langle i' < backtrack-lvl S \rangle i' by auto
   qed
  have cdcl_{W}^{**} S U
   using bj cdcl_W-bj.skip local.skip mono-rtranclp[of skip cdcl_W S U] other by meson
  then have cdcl_W-all-struct-inv U
   using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
  then have Propagated L E # trail V \models as \ CNot \ D'
   using U confl-U unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-conflicting-def by auto
  then have \forall L' \in \# (remove1\text{-}mset L' D').
   atm\text{-}of\ L' \in atm\text{-}of\ `lits\text{-}of\text{-}l\ (Propagated\ L\ E\ \#\ trail\ U)
   using U atm-of-in-atm-of-set-iff-in-set-or-uninus-in-set in-CNot-implies-uninus(2)
   by (fastforce dest: in-diffD)
  then have \forall L' \in \# (remove1\text{-}mset L' D').
   atm\text{-}of\ L'\notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M_0
   using (no\text{-}dup\ (trail\ S)) unfolding tr\text{-}S\ U by (fastforce\ simp:\ lits\text{-}of\text{-}def\ image\text{-}image)
  then have get-maximum-level (trail S) (remove1-mset L'D') = backtrack-lvl S
    using get-maximum-level-skip-un-decided-not-present[of remove1-mset L' D'
        M_0 trail U] tr-S nm U
     (\textit{get-maximum-level (trail U) ((remove1-mset (- L) D))} = \textit{backtrack-lvl U})
    by (auto simp: S)
  then show False
   using i' \langle i' < backtrack-lvl S \rangle by auto
\mathbf{lemma}\ \textit{if-can-apply-resolve-no-more-backtrack}:
 assumes
   skip: skip^{**} S U and
   resolve: resolve S T and
   inv: cdcl_W-all-struct-inv S
 shows \neg backtrack\ U\ V
 using assms
 by (meson if-can-apply-backtrack-no-more-resolve rtranclp.rtrancl-refl
   rtranclp-skip-backtrack-backtrack)
lemma if-can-apply-backtrack-skip-or-resolve-is-skip:
 assumes
   bt: backtrack S T and
   skip: skip-or-resolve^{**} S U and
   inv: cdcl_W-all-struct-inv S
```

```
shows skip^{**} S U
  using assms(2,3,1)
  by induction (simp-all add: if-can-apply-backtrack-no-more-resolve skip-or-resolve.simps)
lemma cdcl_W-bj-bj-decomp:
  assumes cdcl_W-bj^{**} S W and cdcl_W-all-struct-inv S
 shows
   (\exists T \ U \ V. \ (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ S \ T
       \wedge (\lambda T U. resolve T U \wedge no-step backtrack T) T U
       \wedge skip^{**} U V \wedge backtrack V W
   \vee (\exists T \ U. \ (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)** \ S \ T
       \wedge (\lambda T \ U. \ resolve \ T \ U \wedge no\text{-step backtrack} \ T) \ T \ U \wedge skip^{**} \ U \ W)
   \vee (\exists T. skip^{**} S T \wedge backtrack T W)
   \vee skip^{**} S W (is ?RB S W \vee ?R S W \vee ?SB S W \vee ?S S W)
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step WX) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)] and inv = this(4)
 have \neg ?RB \ S \ W and \neg ?SB \ S \ W
   proof (clarify, goal-cases)
     case (1 \ T \ U \ V)
     have skip-or-resolve** S T
       using 1(1) by (auto dest!: rtranclp-and-rtranclp-left)
     then show False
      by (metis (no-types, lifting) 1(2) 1(4) 1(5) backtrack-no-cdcl<sub>W</sub>-bj
        cdcl_W-all-struct-inv-def cdcl_W-all-struct-inv-inv cdcl_W-o.bj local.bj other
        resolve\ rtranclp-cdcl_W-all-struct-inv-inv rtranclp-skip-backtrack-backtrack
        rtranclp-skip-or-resolve-rtranclp-cdcl_W step.prems)
   next
     case 2
     then show ?case by (meson\ assms(2)\ cdcl_W-all-struct-inv-def\ backtrack-no-cdcl_W-bj
       local.bj rtranclp-skip-backtrack-backtrack)
   qed
  then have IH: ?R S W \lor ?S S W using IH by blast
 have cdcl_W^{**} S W using mono-rtranclp[of cdcl_W-bj cdcl_W] st by blast
  then have inv-W: cdcl_W-all-struct-inv W by (simp add: rtranclp-cdcl_W-all-struct-inv-inv
   step.prems)
 consider
     (BT)\ X' where backtrack\ W\ X'
     (skip) no-step backtrack W and skip W X
    (resolve) no-step backtrack W and resolve W X
   using bj \ cdcl_W-bj.cases by meson
  then show ?case
   proof cases
     case (BT X')
     then consider
        (bt) backtrack W X
       |(sk)| skip W X
       using bj if-can-apply-backtrack-no-more-resolve [of W W X' X] inv-W cdcl_W-bj.cases by fast
     then show ?thesis
      proof cases
        case bt
```

```
then show ?thesis using IH by auto
   next
      case sk
      then show ?thesis using IH by (meson rtranclp-trans r-into-rtranclp)
   qed
next
  case skip
  then show ?thesis using IH by (meson rtranclp.rtrancl-into-rtrancl)
  case resolve note no-bt = this(1) and res = this(2)
  consider
      (RS) T U where
        (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ T \ and
        resolve \ T \ U \ {\bf and}
        no-step backtrack T and
        skip^{**} U W
   | (S) \ skip^{**} \ S \ W
   using IH by auto
  then show ?thesis
   proof cases
      case (RS \ T \ U)
      have cdcl_W^{**} S T
        using RS(1) cdcl_W-bj.resolve cdcl_W-o.bj other skip
        mono-rtranclp[of (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S) \ cdcl_W \ S \ T]
       by (meson skip-or-resolve.cases)
      then have cdcl_W-all-struct-inv U
        by (meson\ RS(2)\ cdcl_W-all-struct-inv-inv cdcl_W-bj.resolve cdcl_W-o.bj other
         rtranclp-cdcl_W-all-struct-inv-inv step.prems)
      { fix U'
       assume skip^{**} U U' and skip^{**} U' W
       have cdcl_W-all-struct-inv U
         using \langle cdcl_W - all - struct - inv \ U \rangle \langle skip^{**} \ U \ U' \rangle \ rtranclp - cdcl_W - all - struct - inv - inv
             cdcl_W-o.bj rtranclp-mono[of skip cdcl_W] other skip by blast
       then have no-step backtrack U'
         \mathbf{using} \ \textit{if-can-apply-backtrack-no-more-resolve} [\textit{OF} \ \langle \textit{skip}^{**} \ \textit{U'} \ \textit{W} \rangle \ ] \ \textit{res} \ \mathbf{by} \ \textit{blast}
      with \langle skip^{**} \ U \ W \rangle
      have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ W
        proof induction
           case base
           then show ?case by simp
         case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
           have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
             using skip by auto
           then have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ V
            using IH H by blast
           moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
            by (simp add: local.skip r-into-rtranclp st step.prems skip-or-resolve.intros)
           ultimately show ?case by simp
        qed
      then show ?thesis
       proof -
         have f1: \forall p \ pa \ pb \ pc. \neg p \ (pa) \ pb \lor \neg p^{**} \ pb \ pc \lor p^{**} \ pa \ pc
           by (meson converse-rtranclp-into-rtranclp)
```

```
using RS(2) RS(3) by force
              then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ T \ W
                proof -
                  have (\exists vr19 \ vr16 \ vr17 \ vr18. \ vr19 \ (vr16::'st) \ vr17 \land vr19^{**} \ vr17 \ vr18
                       \wedge \neg vr19^{**} vr16 vr18
                    \vee \neg (skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T)
                    \vee \neg (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \land no-step \ backtrack \ uu)^{**} \ U \ W
                    \vee (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \wedge no-step \ backtrack \ uu)^{**} \ T \ W
                    by force
                  then show ?thesis
                    by (metis (no-types) \langle (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ W \rangle
                      \langle skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T \rangle\ f1)
                qed
              then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ S \ W
                using RS(1) by force
              then show ?thesis
                using no-bt res by blast
            qed
        next
          case S
          \{ \text{ fix } U' \}
            assume skip^{**} S U' and skip^{**} U' W
            then have cdcl_W^{**} S U'
              using mono-rtranclp[of skip cdcl_W S U'] by (simp add: cdcl_W-o.bj other skip)
            then have cdcl_W-all-struct-inv U'
              \mathbf{by} \ (\textit{metis} \ (\textit{no-types}, \ \textit{hide-lams}) \ \langle \textit{cdcl}_W \text{-} \textit{all-struct-inv} \ S \rangle
                rtranclp-cdcl_W-all-struct-inv-inv)
            then have no-step backtrack U'
              using if-can-apply-backtrack-no-more-resolve [OF \langle skip^{**} \ U' \ W \rangle ] res by blast
          }
          with S
          have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ S \ W
             proof induction
               case base
               then show ?case by simp
              case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
               have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
                 using skip by auto
               then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ V
                 using IH H by blast
               moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
                 by (simp add: local.skip r-into-rtranclp st step.prems skip-or-resolve.intros)
               ultimately show ?case by simp
             qed
          then show ?thesis using res no-bt by blast
        qed
    qed
qed
The case distinction is needed, since T \sim V does not imply that R^{**} T V.
lemma cdcl_W-bj-strongly-confluent:
   assumes
     cdcl_W-bj^{**} S V and
```

have skip-or-resolve T $U \wedge no$ -step backtrack T

```
cdcl_W-bj^{**} S T and
    n-s: no-step cdcl_W-bj V and
    inv: cdcl_W-all-struct-inv S
  shows T \sim V \vee cdcl_W - bj^{**} T V
  using assms(2)
proof induction
 case base
  then show ?case by (simp \ add: \ assms(1))
next
  case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3)
 have cdcl_{W}^{**} S T
   using st mono-rtranclp[of cdcl_W-bj cdcl_W] other by blast
  then have lev-T: cdcl_W-M-level-inv T
   using inv rtranclp-cdcl<sub>W</sub>-consistent-inv[of S T]
   unfolding cdcl_W-all-struct-inv-def by auto
 consider
      (TV) T \sim V
    |(bj-TV)| cdcl_W-bj^{**} T V
   using IH by blast
  then show ?case
   proof cases
     case TV
     have no-step cdcl_W-bj T
       using \langle cdcl_W - M - level - inv \ T \rangle n-s cdcl_W - bj-state-eq-compatible [of T - V] TV
       by (meson\ backtrack\text{-}state\text{-}eq\text{-}compatible\ cdcl}_W\text{-}bj.simps\ resolve\text{-}state\text{-}eq\text{-}compatible\ }
         skip-state-eq-compatible state-eq-ref)
     then show ?thesis
       using s-o-r by auto
   next
     case bi-TV
     then obtain U' where
       T-U': cdcl_W-bj T U' and
       cdcl_W-bj^{**} U' V
       using IH n-s s-o-r by (metis rtranclp-unfold tranclpD)
     have cdcl_{W}^{**} S T
       by (metis (no-types, hide-lams) bj mono-rtranclp[of cdcl<sub>W</sub>-bj cdcl<sub>W</sub>] other st)
     then have inv-T: cdcl_W-all-struct-inv T
       \mathbf{by} \ (\mathit{metis} \ (\mathit{no-types}, \ \mathit{hide-lams}) \ \mathit{inv} \ \mathit{rtranclp-cdcl}_W \textit{-all-struct-inv-inv})
     have lev-U: cdcl_W-M-level-inv U
       using s-o-r cdcl_W-consistent-inv lev-T other by blast
     show ?thesis
       using s-o-r
       proof cases
         {f case}\ backtrack
         then obtain V0 where skip^{**} T V0 and backtrack V0 V
           using IH if-can-apply-backtrack-skip-or-resolve-is-skip[OF backtrack - inv-T]
            cdcl_W-bj-decomp-resolve-skip-and-bj
            by (meson\ bj-TV\ cdcl_W-bj.backtrack\ inv-T\ lev-T\ n-s
              rtranclp-skip-backtrack-backtrack-end)
         then have cdcl_W-bj^{**} T V0 and cdcl_W-bj V0 V
           using rtranclp-mono[of\ skip\ cdcl_W\ -bj] by blast+
         then show ?thesis
           \mathbf{using} \ \langle backtrack \ V0 \ V \rangle \ \langle skip^{**} \ T \ V0 \rangle \ backtrack-unique \ inv\text{-}T \ local.backtrack
           rtranclp-skip-backtrack-backtrack by auto
```

```
next
        case resolve
        then have U \sim U'
          by (meson T-U' cdcl<sub>W</sub>-bj.simps if-can-apply-backtrack-no-more-resolve inv-T
            resolve-skip-deterministic resolve-unique rtranclp.rtrancl-refl)
        then show ?thesis
          using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
          by (meson \ T-U' \ bj \ cdcl_W-consistent-inv lev-T other state-eq-ref state-eq-sym
            tranclp-cdcl_W-bj-state-eq-compatible)
      next
        case skip
        consider
            (sk) skip T U'
            (bt) backtrack T U'
          using T-U' by (meson\ cdcl_W-bj.cases\ local.skip\ resolve-skip-deterministic)
        then show ?thesis
          proof cases
            case sk
            then show ?thesis
              using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
              by (meson \ T-U' \ bj \ cdcl_W-all-inv(3) \ cdcl_W-all-struct-inv-def \ inv-T \ local.skip \ other
                tranclp-cdcl_W-bj-state-eq-compatible skip-unique state-eq-ref)
          next
            case bt
            have skip^{++} T U
              using local.skip by blast
            have cdcl_W-bj U U'
              by (meson \langle skip^{++} \mid T \mid U \rangle backtrack bt inv-T rtranclp-skip-backtrack-backtrack-end
                tranclp-into-rtranclp)
            then have cdcl_W-bj^{++} U V
              using \langle cdcl_W - bj^{**} \ U' \ V \rangle by auto
            then show ?thesis
              by (meson tranclp-into-rtranclp)
          qed
      \mathbf{qed}
   qed
\mathbf{qed}
lemma cdcl_W-bj-unique-normal-form:
 assumes
   ST: cdcl_W - bj^{**} S T and SU: cdcl_W - bj^{**} S U and
   n-s-U: no-step cdcl_W-bj U and
   n-s-T: no-step cdcl_W-bj T and
   inv: cdcl_W-all-struct-inv S
 shows T \sim U
proof -
 have T \sim U \vee cdcl_W - bj^{**} T U
   using ST SU cdcl_W-bj-strongly-confluent inv n-s-U by blast
 then show ?thesis
   by (metis (no-types) n-s-T rtranclp-unfold state-eq-ref tranclp-unfold-begin)
qed
lemma full-cdcl_W-bj-unique-normal-form:
assumes full\ cdcl_W-bj\ S\ T and full\ cdcl_W-bj\ S\ U and
  inv: cdcl_W-all-struct-inv S
```

2.2.3 CDCL FW

```
inductive cdcl_W-merge-restart :: 'st \Rightarrow 'st \Rightarrow bool where
fw-r-propagate: propagate S S' \Longrightarrow cdcl_W-merge-restart S S'
fw-r-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge-restart S \ U \mid
fw-r-decide: decide \ S \ S' \Longrightarrow cdcl_W-merge-restart S \ S'
fw-r-rf: cdcl_W-rf S S' \Longrightarrow cdcl_W-merge-restart S S'
lemma rtranclp-cdcl_W-bj-rtranclp-cdcl_W:
  cdcl_W - bj^{**} S T \Longrightarrow cdcl_W^{**} S T
  using mono-rtranclp[of cdcl_W-bj cdcl_W] by blast
lemma cdcl_W-merge-restart-cdcl_W:
 assumes cdcl_W-merge-restart S T
 shows cdcl_W^{**} S T
  using assms
proof induction
  case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
 have cdcl_W \ S \ T using confl by (simp \ add: \ cdcl_W.intros \ r-into-rtranclp)
 moreover
   have cdcl_W - bj^{**} T U using bj unfolding full-def by auto
   then have cdcl_W^{**} T U using rtranclp-cdcl_W-bj-rtranclp-cdcl_W by blast
 ultimately show ?case by auto
qed (simp-all \ add: \ cdcl_W-o.intros \ cdcl_W.intros \ r-into-rtranclp)
lemma cdcl_W-merge-restart-conflicting-true-or-no-step:
 assumes cdcl_W-merge-restart S T
 shows conflicting T = None \lor no\text{-step } cdcl_W T
 using assms
proof induction
 case (fw-r-conflict S T U) note confl = this(1) and n-s = this(2)
  { fix D V
   assume cdcl_W U V and conflicting U = Some D
   then have False
     using n-s unfolding full-def
     by (induction rule: cdcl_W-all-rules-induct)
       (auto dest!: cdcl_W-bj.intros elim: decideE propagateE conflictE forgetE restartE)
 then show ?case by (cases conflicting U) fastforce+
qed (auto simp add: cdcl<sub>W</sub>-rf.simps elim: propagateE decideE restartE forgetE)
inductive cdcl_W-merge :: 'st \Rightarrow 'st \Rightarrow bool where
fw-propagate: propagate S S' \Longrightarrow cdcl_W-merge S S'
fw-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T U \Longrightarrow cdcl_W-merge S U \mid
fw-decide: decide \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
fw-forget: forget \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
lemma cdcl_W-merge-cdcl_W-merge-restart:
  cdcl_W-merge S T \Longrightarrow cdcl_W-merge-restart S T
 by (meson\ cdcl_W\text{-}merge.cases\ cdcl_W\text{-}merge-restart.simps\ forget)
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}tranclp\text{-}cdcl_W\text{-}merge\text{-}restart\text{:}
  cdcl_W-merge** S T \Longrightarrow cdcl_W-merge-restart** S T
```

```
using rtranclp-mono[of\ cdcl_W-merge\ cdcl_W-merge-restart]\ cdcl_W-merge-cdcl_W-merge-restart\  by blast
lemma cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge S \ T \Longrightarrow cdcl_W^{**} \ S \ T
  using cdcl_W-merge-cdcl_W-merge-restart cdcl_W-merge-restart-cdcl_W by blast
lemma rtranclp-cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge^{**} S T \Longrightarrow cdcl_W^{**} S T
 using rtranclp-mono[of cdcl_W-merge cdcl_W^{**}] cdcl_W-merge-rtranclp-cdcl_W by auto
lemmas rulesE =
  skipE\ resolveE\ backtrackE\ propagateE\ conflictE\ decideE\ restartE\ forgetE
\mathbf{lemma}\ cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv:
 assumes
   inv: cdcl_W-all-struct-inv b
   cdcl_W-merge^{++} b a
 shows (\lambda S \ T. \ cdcl_W - all - struct - inv \ S \wedge \ cdcl_W - merge \ S \ T)^{++} \ b \ a
 using assms(2)
proof induction
 case base
 then show ?case using inv by auto
next
 case (step\ c\ d) note st=this(1) and fw=this(2) and IH=this(3)
 have cdcl_W-all-struct-inv c
   using tranclp-into-rtranclp[OF\ st]\ cdcl_W-merge-rtranclp-cdcl_W
   assms(1) rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv rtranclp-mono[of cdcl<sub>W</sub>-merge cdcl<sub>W</sub>**] by fastforce
 then have (\lambda S \ T. \ cdcl_W - all - struct - inv \ S \wedge cdcl_W - merge \ S \ T)^{++} \ c \ d
   using fw by auto
 then show ?case using IH by auto
qed
lemma backtrack-is-full1-cdcl_W-bj:
 assumes bt: backtrack S T and inv: cdcl_W-M-level-inv S
 shows full1\ cdcl_W-bj\ S\ T
  using bt inv backtrack-no-cdcl<sub>W</sub>-bj unfolding full1-def by blast
lemma rtrancl-cdcl_W-conflicting-true-cdcl_W-merge-restart:
 assumes cdcl_{W}^{**} S V and inv: cdcl_{W}-M-level-inv S and conflicting S = None
 shows (cdcl_W-merge-restart** S \ V \land conflicting \ V = None)
   \vee (\exists T U. cdcl_W-merge-restart** S T \wedge conflicting V \neq None \wedge conflict T U \wedge cdcl_W-bj** U V)
 using assms
proof induction
 case base
 then show ?case by simp
next
  case (step U V) note st = this(1) and cdcl_W = this(2) and IH = this(3)[OF\ this(4-)] and
   conf[simp] = this(5) and inv = this(4)
 from cdcl_W
 show ?case
   proof (cases)
```

ultimately show ?thesis using IH $cdcl_W$ -merge-restart.fw-r-propagate[of U V] by auto

moreover then have conflicting U = None and conflicting V = None

case propagate

 \mathbf{next}

by (auto elim: propagateE)

```
{\bf case}\ conflict
 moreover then have conflicting U = None and conflicting V \neq None
   by (auto elim!: conflictE simp del: state-simp simp: state-eq-def)
 ultimately show ?thesis using IH by auto
 case other
 then show ?thesis
   proof cases
     case decide
     then show ?thesis using IH cdcl_W-merge-restart.fw-r-decide[of U V] by (auto elim: decideE)
   next
     case bj
     moreover {
       assume skip-or-resolve U V
       have f1: cdcl_W - bj^{++} U V
         by (simp add: local.bj tranclp.r-into-trancl)
       obtain T T' :: 'st where
         f2: cdcl_W-merge-restart** SU
           \vee \ cdcl_W-merge-restart** S \ T \land conflicting \ U \neq None
             \land conflict \ T \ T' \land cdcl_W - bj^{**} \ T' \ U
         using IH confl by blast
       have conflicting V \neq None \land conflicting U \neq None
         using \langle skip\text{-}or\text{-}resolve\ U\ V \rangle
         by (auto simp: skip-or-resolve.simps state-eq-def elim!: skipE resolveE
           simp \ del: state-simp)
       then have ?thesis
         by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)
     }
     moreover {
       assume backtrack U V
       then have conflicting U \neq None by (auto elim: backtrackE)
       then obtain T T' where
         cdcl_W-merge-restart** S T and
         conflicting U \neq None and
         conflict\ T\ T' and
         cdcl_W-bj^{**} T' U
         using IH confl by meson
       have invU: cdcl_W-M-level-inv U
         using inv rtranclp-cdcl_W-consistent-inv step.hyps(1) by blast
       then have conflicting V = None
         using \langle backtrack\ U\ V \rangle inv by (auto elim: backtrackE
           simp: cdcl_W - M - level - inv - decomp)
       have full cdcl_W-bj T'V
         apply (rule rtranclp-fullI[of cdcl_W-bj T'UV])
           using \langle cdcl_W - bj^{**} T' U \rangle apply fast
         \mathbf{using} \ \langle backtrack \ U \ V \rangle \ backtrack-is\text{-}full1\text{-}cdcl_W\text{-}bj \ inv} U \ \mathbf{unfolding} \ full1\text{-}def \ full-def
         by blast
       then have ?thesis
         using cdcl_W-merge-restart.fw-r-conflict[of T T' V] \langle conflict T T' \rangle
         \langle cdcl_W \text{-}merge\text{-}restart^{**} \mid S \mid T \rangle \langle conflicting \mid V \mid = None \rangle \text{ by } auto
     ultimately show ?thesis by (auto simp: cdcl_W-bj.simps)
 qed
\mathbf{next}
 case rf
 moreover then have conflicting U = None and conflicting V = None
```

```
by (auto simp: cdcl_W-rf.simps elim: restartE forgetE)
     ultimately show ?thesis using IH cdcl_W-merge-restart.fw-r-rf[of U V] by auto
   qed
qed
lemma no\text{-}step\text{-}cdcl_W\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart: }no\text{-}step \ cdcl_W \ S \implies no\text{-}step \ cdcl_W\text{-}merge\text{-}restart
 by (auto simp: cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps)
lemma no-step-cdcl_W-merge-restart-no-step-cdcl_W:
 assumes
   conflicting S = None  and
   cdcl_W-M-level-inv S and
   no-step cdcl_W-merge-restart S
 shows no-step cdcl_W S
proof -
 \{ \text{ fix } S' \}
   assume conflict S S'
   then have cdcl_W S S' using cdcl_W.conflict by auto
   then have cdcl_W-M-level-inv S'
     using assms(2) cdcl_W-consistent-inv by blast
   then obtain S'' where full\ cdcl_W-bj\ S'\ S''
     using cdcl_W-bj-exists-normal-form[of S'] by auto
   then have False
     using \langle conflict \ S \ S' \rangle \ assms(3) \ fw-r-conflict \ by \ blast
  }
 then show ?thesis
   using assms unfolding cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps
   by (auto elim: skipE resolveE backtrackE conflictE decideE restartE)
qed
lemma cdcl_W-merge-restart-no-step-cdcl_W-bj:
 assumes
   cdcl_W-merge-restart S T
 shows no-step cdcl_W-bj T
 using assms
  by (induction rule: cdcl_W-merge-restart.induct)
  (force simp: cdcl_W-bj.simps: cdcl_W-rf.simps: cdcl_W-merge-restart.simps: full-def
    elim!: rulesE)+
lemma rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj:
 assumes
   cdcl_W-merge-restart** S T and
   conflicting S = None
 shows no-step cdcl_W-bj T
  using assms unfolding rtranclp-unfold
 apply (elim \ disjE)
  apply (force simp: cdcl_W-bj.simps cdcl_W-rf.simps elim!: rulesE)
 by (auto simp: tranclp-unfold-end simp: cdcl_W-merge-restart-no-step-cdcl_W-bj)
If conflicting S \neq None, we cannot say anything.
Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.
\mathbf{lemma} \ \ conflicting\text{-}true\text{-}full\text{-}cdcl_W\text{-}iff\text{-}full\text{-}cdcl_W\text{-}merge:}
```

assumes confl: conflicting S = None and $lev: cdcl_W$ -M-level-inv S

```
shows full cdcl_W S V \longleftrightarrow full cdcl_W-merge-restart S V
proof
  assume full: full cdcl_W-merge-restart S V
  then have st: cdcl_W^{**} S V
   using rtranclp-mono[of\ cdcl_W-merge-restart\ cdcl_W^{**}]\ cdcl_W-merge-restart-cdcl_W
   unfolding full-def by auto
  have n-s: no-step cdcl_W-merge-restart V
   using full unfolding full-def by auto
  have n-s-bj: no-step cdcl_W-bj V
   using rtranclp-cdcl_W-merge-restart-no-step-cdcl<sub>W</sub>-bj conft full unfolding full-def by auto
  have \bigwedge S'. conflict V S' \Longrightarrow cdcl_W-M-level-inv S'
   \mathbf{using}\ \mathit{cdcl}_{W}.\mathit{conflict}\ \mathit{cdcl}_{W}\text{-}\mathit{consistent}\text{-}\mathit{inv}\ \mathit{lev}\ \mathit{rtranclp-cdcl}_{W}\text{-}\mathit{consistent}\text{-}\mathit{inv}\ \mathit{st}\ \mathbf{by}\ \mathit{blast}
  then have \bigwedge S'. conflict V S' \Longrightarrow False
   using n-s n-s-bj cdcl_W-bj-exists-normal-form cdcl_W-merge-restart.simps by meson
  then have n-s-cdcl_W: no-step cdcl_W V
   using n-s n-s-bj by (auto simp: cdcl<sub>W</sub>.simps cdcl<sub>W</sub>-o.simps cdcl<sub>W</sub>-merge-restart.simps)
  then show full cdcl_W S V using st unfolding full-def by auto
next
  assume full: full cdcl_W S V
  have no-step cdcl_W-merge-restart V
   using full no-step-cdcl<sub>W</sub>-no-step-cdcl<sub>W</sub>-merge-restart unfolding full-def by blast
  moreover
   consider
       (fw) cdcl_W-merge-restart** S \ V \ and conflicting \ V = None
     \mid (bi) \mid T \mid U \text{ where }
       cdcl_W-merge-restart** S T and
       conflicting V \neq None and
       conflict T U and
       cdcl_W-bj^{**} U V
     using full rtrancl-cdcl<sub>W</sub>-conflicting-true-cdcl<sub>W</sub>-merge-restart confl lev unfolding full-def
     by meson
   then have cdcl_W-merge-restart** S V
     proof cases
       case fw
       then show ?thesis by fast
     next
       case (bj \ T \ U)
       have no-step cdcl_W-bj V
         using full unfolding full-def by (meson cdcl_W-o.bj other)
       then have full cdcl_W-bj U V
         using \langle cdcl_W - bj^{**} U V \rangle unfolding full-def by auto
       then have cdcl_W-merge-restart T V
         using \langle conflict \ T \ U \rangle \ cdcl_W-merge-restart.fw-r-conflict by blast
       then show ?thesis using \langle cdcl_W-merge-restart** S T \rangle by auto
 ultimately show full cdcl_W-merge-restart S V unfolding full-def by fast
lemma init-state-true-full-cdcl_W-iff-full-cdcl_W-merge:
  shows full cdcl_W (init-state N) V \longleftrightarrow full\ cdcl_W-merge-restart (init-state N) V
  by (rule conflicting-true-full-cdcl<sub>W</sub>-iff-full-cdcl<sub>W</sub>-merge) auto
```

2.2.4 FW with strategy

The intermediate step

```
inductive cdcl_W-s' :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow \ cdcl_W - s' \ S \ S' \mid
\mathit{decide'} \colon \mathit{decide} \mathrel{SS'} \Longrightarrow \mathit{no-step} \mathrel{\mathit{cdcl}}_W \mathit{-cp} \mathrel{S} \Longrightarrow \mathit{full} \mathrel{\mathit{cdcl}}_W \mathit{-cp} \mathrel{S'S''} \Longrightarrow \mathit{cdcl}_W \mathit{-s'} \mathrel{SS''} \mathrel{|}
bj': full1 cdcl_W-bj S S' \Longrightarrow no-step cdcl_W-cp S \Longrightarrow full \ cdcl_W-cp S' S'' \Longrightarrow \ cdcl_W-s' S S''
inductive-cases cdcl_W-s'E: cdcl_W-s' S T
lemma rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stgy:
  cdcl_W - bj^{**} S S' \Longrightarrow full \ cdcl_W - cp \ S' S'' \Longrightarrow cdcl_W - stgy^{**} S S''
proof (induction rule: converse-rtranclp-induct)
  then show ?case by (metis cdcl_W-stgy.conflict' full-unfold rtranclp.simps)
next
  case (step T U) note st = this(2) and bj = this(1) and IH = this(3)[OF\ this(4)]
  have no-step cdcl_W-cp T
    using bj by (auto simp add: cdcl_W-bj.simps cdcl_W-cp.simps elim!: rulesE)
  consider
      (U) U = S'
    | (U') U'  where cdcl_W-bj U U'  and cdcl_W-bj^{**} U' S'
    using st by (metis converse-rtranclpE)
  then show ?case
    proof cases
      case U
      then show ?thesis
        using \langle no\text{-step } cdcl_W\text{-}cp | T \rangle cdcl_W\text{-}o.bj | local.bj | other' | step.prems | by | (meson r-into-rtranclp)
      case U' note U' = this(1)
      have no-step cdcl_W-cp U
        using U' by (fastforce\ simp:\ cdcl_W\text{-}cp.simps\ cdcl_W\text{-}bj.simps\ elim:\ rulesE)
      then have full cdcl_W-cp U U
        by (simp add: full-unfold)
      then have cdcl_W-stgy T U
        using \langle no\text{-}step\ cdcl_W\text{-}cp\ T \rangle\ cdcl_W\text{-}stgy.simps\ local.bj\ cdcl_W\text{-}o.bj\ \mathbf{by}\ meson
      then show ?thesis using IH by auto
    qed
\mathbf{qed}
lemma cdcl_W-s'-is-rtranclp-cdcl<sub>W</sub>-stgy:
  cdcl_W-s' S T \Longrightarrow cdcl_W-stgy^{**} S T
  apply (induction rule: cdcl_W-s'.induct)
    apply (auto intro: cdcl_W-stgy.intros)[]
  apply (meson decide other' r-into-rtrancly)
  by (metis\ full1-def\ rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stgy\ tranclp-into-rtranclp)
lemma cdcl_W-cp-cdcl_W-bj-bissimulation:
  assumes
    full\ cdcl_W-cp\ T\ U and
    cdcl_W-bj^{**} T T' and
    cdcl_W-all-struct-inv T and
    no-step cdcl_W-bj T'
  shows full cdcl_W-cp T' U
    \vee (\exists U' U''. full cdcl_W-cp T' U'' \wedge full cdcl_W-bj U U' \wedge full cdcl_W-cp U' U''
```

```
\wedge \ cdcl_W - s'^{**} \ U \ U''
 using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
 \mathbf{case}\ base
 then show ?case by blast
next
 case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF this(4,5)] and
   full = this(4) and inv = this(5)
 have cdcl_W-bj^{**} T T''
   using local.bj st by auto
  then have cdcl_W^{**} T T"
   using rtranclp-cdcl_W-bj-rtranclp-cdcl_W by blast
  then have inv-T'': cdcl_W-all-struct-inv T''
   using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
 have cdcl_W-bj^{++} T T''
   using local.bj st by auto
  have full1 cdcl_W-bj T T''
   by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
   proof -
     obtain Z where cdcl_W-bj T Z
       using \langle cdcl_W - bj^{++} \ T \ T'' \rangle by (blast dest: tranclpD)
     { assume cdcl_W-cp^{++} T U
       then obtain Z' where cdcl_W-cp T Z'
         by (meson\ tranclpD)
       then have False
         using \langle cdcl_W \text{-}bj \mid T \mid Z \rangle by (fastforce \ simp: \ cdcl_W \text{-}bj.simps \ cdcl_W \text{-}cp.simps
           elim: rulesE)
     then show ?thesis
       using full unfolding full-def rtranclp-unfold by blast
   qed
  obtain U'' where full\ cdcl_W-cp\ T''\ U''
   using cdcl_W-cp-normalized-element-all-inv inv-T'' by blast
  moreover then have cdcl_W-stgy^{**} U U''
   by (metis \ \langle T = U \rangle \ \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ rtranclp-cdcl_W - bj-full1-cdclp-cdcl_W - stgy \ rtranclp-unfold)
 moreover have cdcl_W-s'^{**} U U''
   proof -
     obtain ss :: 'st \Rightarrow 'st where
       f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
       by moura
     have \neg \ cdcl_W \text{-}cp \ U \ (ss \ U)
       by (meson full full-def)
     then show ?thesis
       using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \ bj' \ calculation(1)
         r-into-rtranclp)
   qed
  ultimately show ?case
   using \langle full1\ cdcl_W-bj T\ T'' \rangle \langle full\ cdcl_W-cp T''\ U'' \rangle unfolding \langle T=U \rangle by blast
qed
lemma cdcl_W-cp-cdcl_W-bj-bissimulation':
 assumes
   full\ cdcl_W-cp\ T\ U and
   cdcl_W-bj^{**} T T' and
   cdcl_W-all-struct-inv T and
```

```
no-step cdcl_W-bj T'
  shows full cdcl_W-cp T' U
    \vee (\exists U'. full1 cdcl_W-bj U U' \wedge (\forall U''. full cdcl_W-cp U' U'' \longrightarrow full \ cdcl_W-cp T' U''
      \wedge \ cdcl_W - s'^{**} \ U \ U'')
  using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by blast
next
  case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF this(4,5)] and
    full = this(4) and inv = this(5)
  have cdcl_W^{**} T T''
    by (metis local.bj rtranclp.simps rtranclp-cdcl<sub>W</sub>-bj-rtranclp-cdcl<sub>W</sub> st)
  then have inv-T": cdcl<sub>W</sub>-all-struct-inv T"
    using inv \ rtranclp-cdcl_W-all-struct-inv-inv by blast
  have cdcl_W-bj^{++} T T''
    using local.bj st by auto
  have full1 cdcl_W-bj T T''
    by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
    proof -
      obtain Z where cdcl_W-bj T Z
        using \langle cdcl_W - bj^{++} \ T \ T'' \rangle by (blast dest: tranclpD)
      { assume cdcl_W - cp^{++} T U
        then obtain Z' where cdcl_W-cp T Z'
          by (meson tranclpD)
        then have False
          using \langle cdcl_W-bj TZ \rangle by (fastforce simp: cdcl_W-bj.simps cdcl_W-cp.simps elim: rulesE)
      then show ?thesis
        using full unfolding full-def rtranclp-unfold by blast
    qed
  { fix U"
    assume full cdcl_W-cp T'' U''
    moreover then have cdcl_W-stgy^{**} U U''
      \textbf{by} \; (\textit{metis} \; \langle T = U \rangle \; \langle \textit{cdcl}_W \text{-}\textit{bj} \overset{+}{+} \; T \; T'' \rangle \; \textit{rtranclp-cdcl}_W \text{-}\textit{bj-full1-cdclp-cdcl}_W \text{-}\textit{stgy} \; \textit{rtranclp-unfold})
    moreover have cdcl_W-s'** U U''
      proof -
       obtain ss :: 'st \Rightarrow 'st where
          f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
          by moura
        have \neg \ cdcl_W \text{-}cp \ U \ (ss \ U)
          by (meson \ assms(1) \ full-def)
        then show ?thesis
          using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W-bj T \ T'' \rangle \ bj' \ calculation(1)
            r-into-rtranclp)
      qed
    ultimately have full1 cdclw-bi U T" and cdclw-s'** T" U"
      using \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \langle full \ cdcl_W - cp \ T'' \ U'' \rangle unfolding \langle T = U \rangle
       apply blast
      by (metis \langle full \ cdcl_W \ -cp \ T'' \ U'' \rangle \ cdcl_W \ -s'. simps \ full-unfold \ rtranclp. simps)
  then show ?case
    using \langle full1 \ cdcl_W-bj T \ T'' \rangle full \ bj' unfolding \langle T = U \rangle full-def by (metis r-into-rtranclp)
```

```
lemma cdcl_W-stgy-cdcl_W-s'-connected:
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S
 shows cdcl_W-s' S U
   \vee (\exists U'. full1 \ cdcl_W-bj \ U \ U' \land (\forall U''. full \ cdcl_W-cp \ U' \ U'' \longrightarrow cdcl_W-s' \ S \ U''))
 using assms
proof (induction rule: cdcl_W-stqy.induct)
 case (conflict' T)
 then have cdcl_W-s' S T
   using cdcl_W-s'.conflict' by blast
  then show ?case
   by blast
next
  case (other' T U) note o = this(1) and n-s = this(2) and full = this(3) and inv = this(4)
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   next
     case bj
     have inv-T: cdcl_W-all-struct-inv T
       using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     consider
        (cp) full cdcl_W-cp T U and no-step cdcl_W-bj T
       | (fbj) T' where full cdcl_W-bj T T'
      apply (cases no-step cdcl_W-bj T)
       using full apply blast
       using cdcl_W-bj-exists-normal-form[of T] inv-T unfolding cdcl_W-all-struct-inv-def
       by (metis full-unfold)
     then show ?thesis
       proof cases
        case cp
        then show ?thesis
          proof -
            obtain ss :: 'st \Rightarrow 'st where
              f1: \forall s \ sa \ sb. \ (\neg \ full1 \ cdcl_W - bj \ s \ sa \ \lor \ cdcl_W - cp \ s \ (ss \ s) \ \lor \neg \ full \ cdcl_W - cp \ sa \ sb)
               \vee \ cdcl_W - s' \ s \ sb
              using bj' by moura
            have full1 cdcl_W-bj S T
              by (simp add: cp(2) full1-def local.bj tranclp.r-into-trancl)
            then show ?thesis
              using f1 full n-s by blast
          qed
       next
        case (fbj U')
        then have full1\ cdcl_W-bj\ S\ U'
          using bj unfolding full1-def by auto
        moreover have no-step cdcl_W-cp S
          using n-s by blast
        moreover have T = U
          using full fbj unfolding full1-def full-def rtranclp-unfold
          by (force dest!: tranclpD simp:cdcl_W-bj.simps elim: rulesE)
        ultimately show ?thesis using cdcl_W-s'.bj'[of S U'] using fbj by blast
       \mathbf{qed}
   \mathbf{qed}
qed
```

```
lemma cdcl_W-stgy-cdcl_W-s'-connected':
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S
 shows cdcl_W-s' S U
   \vee (\exists U' U''. cdcl_W - s' S U'' \wedge full cdcl_W - bj U U' \wedge full cdcl_W - cp U' U'')
 using assms
proof (induction rule: cdcl_W-stgy.induct)
 case (conflict' T)
 then have cdcl_W-s' S T
   using cdcl_W-s'.conflict' by blast
 then show ?case
   by blast
\mathbf{next}
 case (other' TU) note o = this(1) and n-s = this(2) and full = this(3) and inv = this(4)
 show ?case
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   next
     case bj
     have cdcl_W-all-struct-inv T
       using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     then obtain T' where T': full cdcl_W-bj T
      using cdcl_W-bj-exists-normal-form unfolding full-def cdcl_W-all-struct-inv-def by metis
     then have full cdcl_W-bj S T'
      proof
        have f1: cdcl_W - bj^{**} T T' \wedge no\text{-}step \ cdcl_W - bj \ T'
          by (metis\ (no\text{-}types)\ T'\ full-def)
        then have cdcl_W-bj^{**} S T'
          by (meson converse-rtranclp-into-rtranclp local.bj)
        then show ?thesis
          using f1 by (simp add: full-def)
      qed
     have cdcl_W-bj^{**} T T'
      using T' unfolding full-def by simp
     have cdcl_W-all-struct-inv T
       using cdcl<sub>W</sub>-all-struct-inv-inv o other other'.prems by blast
     then consider
        (T'U) full cdcl_W-cp T' U
      \mid (U) \ U' \ U'' where
          full cdcl_W-cp T' U'' and
          full1\ cdcl_W-bj\ U\ U' and
          full\ cdcl_W-cp\ U'\ U'' and
          cdcl_W-s'** U~U''
      using cdcl_W-cp-cdcl_W-bj-bissimulation[OF full <math>\langle cdcl_W-bj^{**} T T' \rangle] T' unfolding full-def
      by blast
     then show ?thesis by (metis T' cdcl_W-s'.simps full-fullI local.bj n-s)
   qed
qed
lemma cdcl_W-stgy-cdcl_W-s'-no-step:
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S and no-step cdcl_W-bj U
 shows cdcl_W-s' S U
 using cdcl_W-stgy-cdcl_W-s'-connected[OF assms(1,2)] assms(3)
 by (metis (no-types, lifting) full1-def tranclpD)
```

```
lemma rtranclp\text{-}cdcl_W\text{-}stgy\text{-}connected\text{-}to\text{-}rtranclp\text{-}cdcl_W\text{-}s':
 assumes cdcl_W-stgy^{**} S U and inv: cdcl_W-M-level-inv S
 shows cdcl_W - s'^{**} S U \vee (\exists T. cdcl_W - s'^{**} S T \wedge cdcl_W - bj^{++} T U \wedge conflicting U \neq None)
 using assms(1)
proof induction
 case base
 then show ?case by simp
next
 case (step T V) note st = this(1) and o = this(2) and IH = this(3)
 from o show ?case
   proof cases
     case conflict'
     then have f2: cdcl_W - s' T V
       using cdcl_W-s'.conflict' by blast
     obtain ss :: 'st where
       f3: S = T \lor cdcl_W - stgy^{**} S ss \land cdcl_W - stgy ss T
      by (metis (full-types) rtranclp.simps st)
     obtain ssa :: 'st where
       ssa: cdcl_W-cp T ssa
       using conflict' by (metis (no-types) full1-def tranclpD)
     have \forall s. \neg full \ cdcl_W \text{-}cp \ s \ T
       by (meson ssa full-def)
     then have S = T
      by (metis (full-types) f3 ssa cdcl<sub>W</sub>-stgy.cases full1-def)
     then show ?thesis
      using f2 by blast
   next
     case (other' U) note o = this(1) and n-s = this(2) and full = this(3)
     then show ?thesis
       using o
      proof (cases rule: cdcl_W-o-rule-cases)
        case decide
        then have cdcl_W-s'** S T
          using IH by (auto elim: rulesE)
        then show ?thesis
          by (meson decide decide' full n-s rtranclp.rtrancl-into-rtrancl)
       next
        {f case}\ backtrack
        consider
            (s') cdcl_W-s'^{**} S T
          |(bj)| S' where cdcl_W - s'^{**} S S' and cdcl_W - bj^{++} S' T and conflicting T \neq None
          using IH by blast
        then show ?thesis
          proof cases
            case s'
            moreover
              have cdcl_W-M-level-inv T
               using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stqy-consistent-inv by auto
              then have full1 cdcl_W-bj T U
               using backtrack-is-full1-cdcl<sub>W</sub>-bj backtrack by blast
              then have cdcl_W-s' T V
               using full bj' n-s by blast
            ultimately show ?thesis by auto
          next
            case (bj S') note S-S' = this(1) and bj-T = this(2)
```

```
have no-step cdcl_W-cp S'
      using bj-T by (fastforce simp: cdcl_W-cp.simps cdcl_W-bj.simps dest!: tranclpD
        elim: rulesE)
     moreover
      have cdcl_W-M-level-inv T
        using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
       then have full cdcl_W-bj T U
        using backtrack-is-full1-cdcl_W-bj backtrack by blast
      then have full1 cdcl_W-bj S' U
        using bj-T unfolding full1-def by fastforce
     ultimately have cdcl_W-s' S' V using full by (simp add: bj')
     then show ?thesis using S-S' by auto
   qed
next
 case skip
 then have [simp]: U = V
   using full converse-rtranclpE unfolding full-def by (fastforce elim: rulesE)
 then have confl-V: conflicting V \neq None
   using skip by (auto elim!: rulesE simp del: state-simp simp: state-eq-def)
 consider
     (s') cdcl_W-s'^{**} S T
   |(bj)| S' where cdcl_W-s'^{**}| S| S' and cdcl_W-bj^{++}| S'| T and conflicting| T \neq None
   using IH by blast
 then show ?thesis
   proof cases
     case s'
     show ?thesis using s' confl-V skip by force
     case (bj S') note S-S' = this(1) and bj-T = this(2)
     have cdcl_W-bj^{++} S' V
      using skip bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.skip tranclp.simps)
     then show ?thesis using S-S' confl-V by auto
   qed
next
 {f case}\ resolve
 then have [simp]: U = V
   using full unfolding full-def rtranclp-unfold
   by (auto elim!: rulesE dest!: tranclpD
     simp \ del: \ state-simp \ simp: \ state-eq-def \ cdcl_W-cp.simps)
 have confl-V: conflicting V \neq None
   using resolve by (auto elim!: rulesE simp del: state-simp simp: state-eq-def)
 consider
     (s') cdcl_W-s'^{**} S T
   |(bj)| S' where cdcl_W-s'^{**} S S' and cdcl_W-bj^{++} S' T and conflicting T \neq None
   using IH by blast
 then show ?thesis
   proof cases
     case s'
     have cdcl_W-bj^{++} T V
      using resolve by force
     then show ?thesis using s' confl-V by auto
     case (bj S') note S-S' = this(1) and bj-T = this(2)
     have cdcl_W-bj^{++} S' V
      using resolve bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.resolve tranclp.simps)
```

```
then show ?thesis using confl-V S-S' by auto
           qed
       qed
   \mathbf{qed}
qed
lemma n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o:
 assumes inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-s' S \longleftrightarrow no-step cdcl_W-cp S \land no-step cdcl_W-o S (is ?S' S \longleftrightarrow ?C S \land ?O S)
proof
 assume ?CS \land ?OS
 then show ?S'S
   by (auto simp: cdcl_W-s'.simps full1-def tranclp-unfold-begin)
 assume n-s: ?S' S
 have ?CS
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-cp S S'
       by auto
     then obtain T where full1 \ cdcl_W-cp \ S \ T
       using cdcl_W-cp-normalized-element-all-inv inv by (metis (no-types, lifting) full-unfold)
     then show False using n-s cdcl_W-s'.conflict' by blast
   qed
  moreover have ?O S
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-o S S'
       by auto
     then obtain T where full 1 \cdot cdcl_W -cp S' T
       using cdcl_W-cp-normalized-element-all-inv inv
       by (meson\ cdcl_W - all - struct - inv - def\ n - s
         cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step)
     then show False using n-s by (meson \langle cdcl_W - o S S' \rangle cdcl_W-all-struct-inv-def
       cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step inv)
 ultimately show ?C S \land ?O S by auto
qed
lemma cdcl_W-s'-tranclp-cdcl_W:
  cdcl_W-s' S S' \Longrightarrow cdcl_W<sup>++</sup> S S'
proof (induct rule: cdcl_W-s'.induct)
 case conflict'
 then show ?case
   by (simp add: full1-def tranclp-cdcl<sub>W</sub>-cp-tranclp-cdcl<sub>W</sub>)
\mathbf{next}
 case decide'
 then show ?case
   using cdcl_W-stgy.simps cdcl_W-stgy-tranclp-cdcl_W by (meson cdcl_W-o.simps)
  case (bj' Sa S'a S'') note a2 = this(1) and a1 = this(2) and n-s = this(3)
 obtain ss :: 'st \Rightarrow 'st \Rightarrow ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st where
   \forall x0 \ x1 \ x2. \ (\exists \ v3. \ x2 \ x1 \ v3 \ \land \ x2^{**} \ v3 \ x0) = (x2 \ x1 \ (ss \ x0 \ x1 \ x2) \ \land \ x2^{**} \ (ss \ x0 \ x1 \ x2) \ x0)
  then have f3: \forall p \ s \ sa. \ \neg p^{++} \ s \ sa \ \lor \ p \ s \ (ss \ sa \ s \ p) \ \land \ p^{**} \ (ss \ sa \ s \ p) \ sa
   by (metis (full-types) tranclpD)
```

```
have cdcl_W-bj^{++} Sa S'a \wedge no-step cdcl_W-bj S'a
   using a2 by (simp add: full1-def)
  then have cdcl_W-bj Sa (ss\ S'a\ Sa\ cdcl_W-bj) \land\ cdcl_W-bj** (ss\ S'a\ Sa\ cdcl_W-bj) S'a
   using f3 by auto
  then show cdcl_W^{++} Sa S"
   using a1 n-s by (meson bj other rtranclp-cdcl<sub>W</sub>-bj-full1-cdclp-cdcl<sub>W</sub>-stgy
     rtranclp-cdcl_W-stgy-rtranclp-cdcl_W rtranclp-into-tranclp2)
qed
lemma tranclp-cdcl_W-s'-tranclp-cdcl_W:
  cdcl_W-s'++ SS' \Longrightarrow cdcl_W++ SS'
 apply (induct rule: tranclp.induct)
  using cdcl_W-s'-tranclp-cdcl<sub>W</sub> apply blast
  by (meson\ cdcl_W - s' - tranclp - cdcl_W\ tranclp - trans)
lemma rtranclp-cdcl_W-s'-rtranclp-cdcl_W:
  cdcl_W-s'^{**} S S' \Longrightarrow cdcl_W^{**} S S'
 using rtranclp-unfold[of\ cdcl_W-s'\ S\ S']\ tranclp-cdcl_W-s'-tranclp-cdcl_W[of\ S\ S'] by auto
lemma full-cdcl_W-stgy-iff-full-cdcl_W-s':
 assumes inv: cdcl_W-all-struct-inv S
 shows full cdcl_W-stgy S T \longleftrightarrow full cdcl_W-s' S T (is ?S \longleftrightarrow ?S)
proof
 assume ?S'
 then have cdcl_W^{**} S T
   using rtranclp-cdcl_W-s'-rtranclp-cdcl_W[of\ S\ T] unfolding full-def by blast
  then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
 have cdcl_W-stgy^{**} S T
   using \langle ?S' \rangle unfolding full-def
     using cdcl_W-s'-is-rtranclp-cdcl_W-stgy rtranclp-mono[of cdcl_W-s' cdcl_W-stgy**] by auto
  then show ?S
   using \langle ?S' \rangle inv' cdcl_W-stgy-cdcl_W-s'-connected' unfolding full-def by blast
next
  assume ?S
 then have inv-T:cdcl_W-all-struct-inv T
   by (metis assms full-def rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv rtranclp-cdcl<sub>W</sub>-stqy-rtranclp-cdcl<sub>W</sub>)
  consider
     (s') cdcl_W-s'^{**} S T
   |(st)|S' where cdcl_W-s'^{**} S S' and cdcl_W-bj^{++} S' T and conflicting T \neq None
   using rtranclp-cdcl_W-stgy-connected-to-rtranclp-cdcl_W-s'[of S T] inv \langle ?S \rangle
   unfolding full-def cdcl_W-all-struct-inv-def
   by blast
  then show ?S'
   proof cases
     case s'
     have no-step cdcl_W-s' T
       using \langle full\ cdcl_W-stqy S\ T \rangle unfolding full-def
       by (meson\ cdcl_W-all-struct-inv-def\ cdcl_W-s'E\ cdcl_W-stgy.conflict'
         cdcl_W-then-exists-cdcl_W-stgy-step inv-T n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o)
     then show ?thesis
       using s' unfolding full-def by blast
   \mathbf{next}
     case (st S')
     have full\ cdcl_W-cp\ T\ T
```

```
using option-full-cdcl<sub>W</sub>-cp st(3) by blast
     moreover
       have n-s: no-step cdcl_W-bj T
         \mathbf{by} \ (\textit{metis} \ \langle \textit{full} \ \textit{cdcl}_W \textit{-stgy} \ \textit{S} \ \textit{T} \rangle \ \textit{bj} \ \textit{inv-T} \ \textit{cdcl}_W \textit{-all-struct-inv-def}
           cdcl_W-then-exists-cdcl_W-stgy-step full-def)
       then have full1\ cdcl_W-bj S' T
         using st(2) unfolding full1-def by blast
     moreover have no-step cdcl_W-cp S'
       using st(2) by (fastforce dest!: tranclpD simp: cdcl_W-cp.simps cdcl_W-bj.simps
         elim: rulesE)
     ultimately have cdcl_W-s' S' T
       using cdcl_W-s'.bj'[of S' T T] by blast
     then have cdcl_W-s<sup>**</sup> S T
       using st(1) by auto
     moreover have no-step cdcl_W-s' T
       using inv-T \land full \ cdcl_W-cp \ T \ T \land (full \ cdcl_W-stgy \ S \ T \land \ \mathbf{unfolding} \ full-def
       by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -then\ -exists\ -cdcl_W\ -stgy\ -step
         n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
     ultimately show ?thesis
       unfolding full-def by blast
    qed
qed
lemma conflict-step-cdcl<sub>W</sub>-stgy-step:
  assumes
    conflict S T
    cdcl_W-all-struct-inv S
 shows \exists T. \ cdcl_W-stgy S \ T
proof -
  obtain U where full\ cdcl_W-cp\ S\ U
   using cdcl_W-cp-normalized-element-all-inv assms by blast
  then have full cdcl_W-cp S U
   by (metis\ cdcl_W-cp. conflict'\ assms(1)\ full-unfold)
  then show ?thesis using cdcl_W-stgy.conflict' by blast
qed
lemma decide-step-cdcl_W-stqy-step:
 assumes
    decide S T
    cdcl_W-all-struct-inv S
 shows \exists T. \ cdcl_W-stqy S \ T
proof -
  obtain U where full\ cdcl_W-cp\ T\ U
   using cdcl_W-cp-normalized-element-all-inv by (meson\ assms(1)\ assms(2)\ cdcl_W-all-struct-inv-inv
     cdcl_W-cp-normalized-element-all-inv decide other)
  then show ?thesis
   by (metis assms cdcl_W-cp-normalized-element-all-inv cdcl_W-stgy.conflict' decide full-unfold
      other')
qed
lemma rtranclp-cdcl_W-cp-conflicting-Some:
  cdcl_W-cp^{**} S T \Longrightarrow conflicting <math>S = Some \ D \Longrightarrow S = T
  using rtranclpD tranclpD by fastforce
inductive cdcl_W-merge-cp :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': conflict \ S \ T \Longrightarrow full \ cdcl_W - bj \ T \ U \Longrightarrow cdcl_W - merge-cp \ S \ U \ |
```

```
propagate': propagate^{++} S S' \Longrightarrow cdcl_W-merge-cp S S'
lemma cdcl_W-merge-restart-cases [consumes 1, case-names conflict propagate]:
 assumes
   cdcl_W-merge-cp S U and
   \bigwedge T. conflict S \ T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow P and
   propagate^{++} S U \Longrightarrow P
 shows P
 using assms unfolding cdcl_W-merge-cp.simps by auto
lemma cdcl_W-merge-cp-tranclp-cdcl_W-merge:
  cdcl_W-merge-cp S T \Longrightarrow cdcl_W-merge<sup>++</sup> S T
 apply (induction rule: cdcl_W-merge-cp.induct)
   using cdcl_W-merge.simps apply auto[1]
 using translp-mono of propagate cdcl_W-merge fw-propagate by blast
lemma rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W:
  cdcl_W-merge-cp^{**} S T \Longrightarrow cdcl_W^{**} S T
apply (induction rule: rtranclp-induct)
 apply simp
unfolding cdcl_W-merge-cp.simps by (meson cdcl_W-merge-restart-cdcl_W fw-r-conflict
  rtranclp-propagate-is-rtranclp-cdcl_W rtranclp-trans tranclp-into-rtranclp)
lemma full1-cdcl_W-bj-no-step-cdcl_W-bj:
 full1 cdcl_W-bj S T \Longrightarrow no-step cdcl_W-cp S
 unfolding full1-def by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty option.exhaust
   rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj tranclpD)
Full Transformation
inductive cdcl_W-s'-without-decide where
conflict'-without-decide[intro]: full1 cdcl_W-cp S S' \Longrightarrow cdcl_W-s'-without-decide S S'
bj'-without-decide[intro]: full1 cdcl_W-bj S S' \Longrightarrow no-step cdcl_W-cp S \Longrightarrow full cdcl_W-cp S' S''
     \implies cdcl_W-s'-without-decide S S''
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W:
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W** S \ T
 apply (induction rule: rtranclp-induct)
   apply simp
 by (meson\ cdcl_W - s'.simps\ cdcl_W - s'-tranclp-cdcl_W\ cdcl_W - s'-without-decide.simps
   rtranclp-tranclp-tranclp tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W-s':
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W-s'** S \ T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step y z) note a2 = this(2) and a1 = this(3)
 have cdcl_W-s' y z
   using a2 by (metis (no-types) bj' cdcl_W-s'.conflict' cdcl_W-s'-without-decide.cases)
 then show cdcl_W-s'** S z
   using a1 by (meson r-into-rtranclp rtranclp-trans)
qed
```

lemma $rtranclp-cdcl_W$ -merge-cp-is- $rtranclp-cdcl_W$ -s'-without-decide:

```
assumes
   cdcl_W-merge-cp^{**} S V
   conflicting S = None
  shows
   (cdcl_W - s' - without - decide^{**} S V)
   \vee (\exists T. cdcl_W-s'-without-decide** S T \wedge propagate^{++} T V)
   \vee (\exists T \ U. \ cdcl_W - s' - without - decide^{**} \ S \ T \land full 1 \ cdcl_W - bj \ T \ U \land propagate^{**} \ U \ V)
 using assms
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step U V) note st = this(1) and cp = this(2) and IH = this(3)[OF\ this(4)]
 from cp show ?case
   proof (cases rule: cdcl_W-merge-restart-cases)
     case propagate
     then show ?thesis using IH by (meson rtranclp-tranclp-tranclp tranclp-into-rtranclp)
     case (conflict U') note confl = this(1) and bj = this(2)
     have full1-U-U': full1 cdclw-cp U U'
       by (simp add: conflict-is-full1-cdcl<sub>W</sub>-cp local.conflict(1))
     consider
        (s') cdcl_W-s'-without-decide^{**} S U
       | (propa) T' where cdcl_W-s'-without-decide** S T' and propagate^{++} T' U
       \mid (bj\text{-}prop) \ T' \ T'' \text{ where}
          cdcl_W-s'-without-decide** S T' and
          full1\ cdcl_W-bj\ T'\ T'' and
          propagate^{**} T^{\prime\prime} U
       using IH by blast
     then show ?thesis
       proof cases
        case s'
        have cdcl_W-s'-without-decide U U'
         using full1-U-U' conflict'-without-decide by blast
        then have cdcl_W-s'-without-decide** S U'
          using \langle cdcl_W - s' - without - decide^{**} S U \rangle by auto
        moreover have U' = V \vee full1 \ cdcl_W-bj U' \ V
          using bj by (meson full-unfold)
        ultimately show ?thesis by blast
       next
        case propa note s' = this(1) and T'-U = this(2)
        have full1 cdcl_W-cp T' U'
          using rtranclp-mono[of\ propagate\ cdcl_W-cp]\ T'-U\ cdcl_W-cp.propagate'\ full1-U-U'
          rtranclp-full1I[of\ cdcl_W-cp\ T'] by (metis\ (full-types)\ predicate2D\ predicate2I
            tranclp-into-rtranclp)
        have cdcl_W-s'-without-decide** S U'
          using \langle full1 \ cdcl_W - cp \ T' \ U' \rangle conflict'-without-decide s' by force
        have full cdcl_W-bj U' V \vee V = U' using bj unfolding full-unfold by blast
        then show ?thesis
          using \langle cdcl_W - s' - without - decide^{**} S U' \rangle by blast
      next
        case bj-prop note s' = this(1) and bj-T' = this(2) and T''-U = this(3)
        have no-step cdcl_W-cp T'
          using bj-T' full1-cdcl_W-bj-no-step-cdcl_W-bj by blast
        moreover have full1 cdcl_W-cp T'' U'
          using rtranclp-mono[of propagate cdcl<sub>W</sub>-cp] T''-U cdcl<sub>W</sub>-cp.propagate' full1-U-U'
```

```
rtranclp-full1I[of\ cdcl_W-cp\ T''] by blast
         ultimately have cdcl_W-s'-without-decide T' U'
           using bi'-without-decide[of T' T'' U'] bj-T' by (simp\ add:\ full-unfold)
         then have cdcl_W-s'-without-decide** S U'
           using s' rtranclp.intros(2)[of - S T' U'] by blast
         then show ?thesis
           using local.bj unfolding full-unfold by blast
   \mathbf{qed}
qed
lemma rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp:
 assumes
    cdcl_W-s'-without-decide** S V and
    confl: conflicting S = None
   (cdcl_W - merge - cp^{**} S V \land conflicting V = None)
   \vee (cdcl_W \text{-}merge\text{-}cp^{**} \ S \ V \land conflicting \ V \neq None \land no\text{-}step \ cdcl_W \text{-}cp \ V \land no\text{-}step \ cdcl_W \text{-}bj \ V)
   \vee (\exists T. \ cdcl_W \text{-}merge\text{-}cp^{**} \ S \ T \land conflict \ T \ V)
 using assms(1)
proof (induction)
 case base
  then show ?case using confl by auto
next
  case (step U V) note st = this(1) and s = this(2) and IH = this(3)
  from s show ?case
   proof (cases rule: cdcl_W-s'-without-decide.cases)
     {\bf case}\ conflict'\mbox{-}without\mbox{-}decide
     then have rt: cdcl_W-cp^{++} U V unfolding full1-def by fast
     then have conflicting U = None
       using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of U V]
       conflict by (auto dest!: tranclpD simp: rtranclp-unfold elim: rulesE)
     then have cdcl_W-merge-cp^{**} S U using IH by (auto elim: rulesE
       simp del: state-simp simp: state-eq-def)
     consider
         (propa) propagate<sup>++</sup> U V
        | (confl') conflict U V
         (propa-confl') U' where propagate<sup>++</sup> U U' conflict U' V
       \textbf{using} \ \textit{tranclp-cdcl}_W \textit{-cp-propagate-with-conflict-or-not}[\textit{OF} \ \textit{rt}] \ \textbf{unfolding} \ \textit{rtranclp-unfold}
       by fastforce
     then show ?thesis
       proof cases
         case propa
         then have cdcl_W-merge-cp U V
          by (auto intro: cdcl_W-merge-cp.intros)
         moreover have conflicting V = None
          using propa unfolding translp-unfold-end by (auto elim: rulesE)
         ultimately show ?thesis using \langle cdcl_W-merge-cp^{**} S U \rangle by (auto elim!: rulesE
           simp del: state-simp simp: state-eq-def)
       next
         case confl'
         then show ?thesis using \langle cdcl_W-merge-cp^{**} S U\rangle by auto
         case propa-confl' note propa = this(1) and confl' = this(2)
         then have cdcl_W-merge-cp U U' by (auto intro: cdcl_W-merge-cp.intros)
         then have cdcl_W-merge-cp^{**} S U' using \langle cdcl_W-merge-cp^{**} S U \rangle by auto
```

```
then show ?thesis using \langle cdcl_W \text{-merge-}cp^{**} \mid S \mid U \rangle confl' by auto
      qed
   next
     case (bj'-without-decide U') note full-bj = this(1) and cp = this(3)
     then have conflicting U \neq None
      using full-bj unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps
        elim: rulesE)
     with IH obtain T where
      S-T: cdcl_W-merge-cp** S T and T-U: conflict T U
      using full-bj unfolding full1-def by (blast dest: tranclpD)
     then have cdcl_W-merge-cp T U'
      using cdcl_W-merge-cp.conflict'[of T \ U \ U'] full-bj by (simp add: full-unfold)
     then have S-U': cdcl_W-merge-cp** S U' using S-T by auto
     consider
        (n-s) U'=V
       \mid (propa) \; propagate^{++} \; U' \; V
        |(confl')| conflict U'|V
       | (propa-confl') U'' where propagate<sup>++</sup> U' U'' conflict U'' V
      using tranclp-cdcl_W-cp-propagate-with-conflict-or-not cp
      unfolding rtranclp-unfold full-def by metis
     then show ?thesis
      proof cases
        case propa
        then have cdcl_W-merge-cp U' V by (blast intro: cdcl_W-merge-cp.intros)
        moreover have conflicting V = None
         using propa unfolding translp-unfold-end by (auto elim: rulesE)
        ultimately show ?thesis using S-U' by (auto elim: rulesE
          simp del: state-simp simp: state-eq-def)
      next
        case confl'
        then show ?thesis using S-U' by auto
      next
        case propa-confl' note propa = this(1) and confl = this(2)
        have cdcl_W-merge-cp U' U'' using propa by (blast intro: cdcl_W-merge-cp.intros)
        then show ?thesis using S-U' confl by (meson rtranclp.rtrancl-into-rtrancl)
      next
        case n-s
        then show ?thesis
         using S-U' apply (cases conflicting V = None)
          using full-bj apply simp
          by (metis cp full-def full-unfold full-bj)
      qed
   \mathbf{qed}
qed
lemma no-step-cdcl_W-s'-no-ste-cdcl_W-merge-cp:
 assumes
   cdcl_W-all-struct-inv S
   conflicting S = None
   no-step cdcl_W-s' S
 shows no-step cdcl_W-merge-cp S
 using assms apply (auto simp: cdcl_W-s'.simps cdcl_W-merge-cp.simps)
   using conflict-is-full1-cdcl_W-cp apply blast
 using cdcl_W-cp-normalized-element-all-inv cdcl_W-cp.propagate' by (metis cdcl_W-cp.propagate'
   full-unfold tranclpD)
```

The no-step decide S is needed, since $cdcl_W$ -merge-cp is $cdcl_W$ -s' without decide.

```
lemma conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide:
 assumes
   confl: conflicting S = None and
   inv: cdcl_W-M-level-inv S and
   n-s: no-step cdcl_W-merge-cp S
 shows no-step cdcl_W-s'-without-decide S
proof (rule ccontr)
 assume \neg no-step cdcl_W-s'-without-decide S
 then obtain T where
   cdcl_W: cdcl_W-s'-without-decide S T
   by auto
 then have inv-T: cdcl_W-M-level-inv T
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W[of S T]
   rtranclp-cdcl_W-consistent-inv inv by blast
 from cdcl_W show False
   proof cases
     case conflict'-without-decide
     have no-step propagate S
      using n-s by (blast intro: cdcl_W-merge-cp.intros)
     then have conflict S T
      using local.conflict' translp-cdcl<sub>W</sub>-cp-propagate-with-conflict-or-not[of S T]
      local.conflict'-without-decide unfolding full1-def rtranclp-unfold
      by (metis tranclp-unfold-begin)
     moreover
      then obtain T' where full cdcl_W-bj T T'
        using cdcl_W-bj-exists-normal-form inv-T by blast
     ultimately show False using cdcl_W-merge-cp.conflict' n-s by meson
   next
     case (bi'-without-decide S')
     then show ?thesis
      using confl unfolding full1-def by (fastforce simp: cdcl_W-bj.simps dest: tranclpD
        elim: rulesE)
   qed
\mathbf{qed}
lemma conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp:
 assumes
   inv: cdcl_W-all-struct-inv S and
   n-s: no-step cdcl_W-s'-without-decide S
 shows no-step cdcl_W-merge-cp S
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain T where cdcl_W-merge-cp S T
   by auto
 then show False
   proof cases
     case (conflict' S')
     then show False using n-s conflict'-without-decide conflict-is-full1-cdcl<sub>W</sub>-cp by blast
   next
     case propagate'
     moreover
      have cdcl_W-all-struct-inv T
        using inv by (meson local.propagate' rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv
          rtranclp-propagate-is-rtranclp-cdcl_W tranclp-into-rtranclp)
```

```
then obtain U where full\ cdcl_W-cp\ T\ U
        using cdcl_W-cp-normalized-element-all-inv by auto
     ultimately have full 1 \ cdcl_W-cp \ S \ U
       using tranclp-full-full1I[of cdcl_W-cp S T U] cdcl_W-cp.propagate'
       tranclp-mono[of\ propagate\ cdcl_W-cp] by blast
     then show False using conflict'-without-decide n-s by blast
   qed
qed
lemma no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp:
  no\text{-step } cdcl_W\text{-merge-cp } S \Longrightarrow cdcl_W\text{-M-level-inv } S \Longrightarrow no\text{-step } cdcl_W\text{-cp } S
 using cdcl_W-bj-exists-normal-form cdcl_W-consistent-inv[OF\ cdcl_W.conflict,\ of\ S]
 by (metis\ cdcl_W\text{-}cp.cases\ cdcl_W\text{-}merge\text{-}cp.simps\ tranclp.intros(1))
lemma conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj:
 assumes
   conflicting S = None  and
   cdcl_W-merge-cp^{**} S T
 shows no-step cdcl_W-bj T
  using assms(2,1) by (induction)
  (fast force\ simp:\ cdcl_W-merge-cp.simps full-def tranclp-unfold-end cdcl_W-bj.simps
   elim: rulesE)+
lemma conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode:
 assumes
   confl: conflicting S = None and
   inv: cdcl_W-all-struct-inv S
 shows
   full\ cdcl_W-merge-cp S\ V\longleftrightarrow full\ cdcl_W-s'-without-decide S\ V\ (\mathbf{is}\ ?fw\longleftrightarrow ?s')
proof
 assume ?fw
 then have st: cdcl_W-merge-cp^{**} S V and n-s: no-step cdcl_W-merge-cp V
   unfolding full-def by blast+
 have inv-V: cdcl_W-all-struct-inv V
   using rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}rtranclp\text{-}cdcl_W[of\ S\ V]} (?fw) unfolding full\text{-}def
   by (simp\ add:\ inv\ rtranclp-cdcl_W-all-struct-inv-inv)
  consider
     (s') cdcl_W-s'-without-decide^{**} S V
   | (propa) T  where cdcl_W-s'-without-decide** S T  and propagate^{++} T V
   (bj) T U where cdcl<sub>W</sub>-s'-without-decide** S T and full1 cdcl<sub>W</sub>-bj T U and propagate** U V
   using rtranclp-cdcl_W-merge-cp-is-rtranclp-cdcl_W-s'-without-decide confl st n-s by metis
  then have cdcl_W-s'-without-decide** S V
   proof cases
     case s'
     then show ?thesis.
   next
     case propa note s' = this(1) and propa = this(2)
     have no-step cdcl_W-cp V
       using no-step-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-cp n-s inv-V
       unfolding cdcl_W-all-struct-inv-def by blast
     then have full cdcl_W-cp T V
       using propa translp-mono of propagate cdcl_W-cp] cdcl_W-cp.propagate' unfolding full1-def
       by blast
     then have cdcl_W-s'-without-decide T V
       using conflict'-without-decide by blast
     then show ?thesis using s' by auto
```

```
next
     case bj note s' = this(1) and bj = this(2) and propa = this(3)
     have no-step cdcl_W-cp V
       using no-step-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-cp n-s inv-V
       unfolding cdcl_W-all-struct-inv-def by blast
     then have full cdcl_W-cp U V
       using propa rtranclp-mono[of\ propagate\ cdcl_W-cp]\ cdcl_W-cp.propagate'\ unfolding\ full-def
       by blast
     moreover have no-step cdcl_W-cp T
       using bj unfolding full1-def by (fastforce dest!: tranclpD \ simp: cdcl_W-bj.simps \ elim: \ rulesE)
     ultimately have cdcl_W-s'-without-decide T V
       using bj'-without-decide[of T U V] bj by blast
     then show ?thesis using s' by auto
   qed
  moreover have no-step cdcl_W-s'-without-decide V
   proof (cases conflicting V = None)
     case False
      { fix ss :: 'st
       have ff1: \forall s \ sa. \ \neg \ cdcl_W - s' \ s \ sa \ \lor \ full1 \ cdcl_W - cp \ s \ sa
         \vee (\exists sb. \ decide \ s \ sb \land no\text{-step} \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa)
         \vee (\exists sb. full1 \ cdcl_W - bj \ s \ sb \land no\text{-}step \ cdcl_W - cp \ s \land full \ cdcl_W - cp \ sb \ sa)
         by (metis\ cdcl_W - s'. cases)
       have ff2: (\forall p \ s \ sa. \ \neg \ full1 \ p \ (s::'st) \ sa \lor p^{++} \ s \ sa \land no\text{-step} \ p \ sa)
         \land (\forall p \ s \ sa. \ (\neg p^{++} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full1 \ p \ sa)
         by (meson\ full1-def)
       obtain ssa :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
         ff3: \forall p \ s \ sa. \ \neg \ p^{++} \ s \ sa \ \lor \ p \ s \ (ssa \ p \ s \ sa) \ \land \ p^{**} \ (ssa \ p \ s \ sa) \ sa
         by (metis (no-types) tranclpD)
       then have a3: \neg cdcl_W - cp^{++} V ss
         using False by (metis option-full-cdcl<sub>W</sub>-cp full-def)
       have \bigwedge s. \neg cdcl_W - bj^{++} V s
         using ff3 False by (metis confl st
           conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj)
       then have \neg cdcl_W-s'-without-decide V ss
         using ff1 a3 ff2 by (metis cdcl_W-s'-without-decide.cases)
     then show ?thesis
       by fastforce
     next
       case True
       then show ?thesis
         using conflicting-true-no-step-cdcl<sub>W</sub>-merge-cp-no-step-s'-without-decide n-s inv-V
         unfolding cdcl_W-all-struct-inv-def by simp
   qed
  ultimately show ?s' unfolding full-def by blast
next
  assume s': ?s'
  then have st: cdcl<sub>W</sub>-s'-without-decide** S V and n-s: no-step cdcl<sub>W</sub>-s'-without-decide V
   unfolding full-def by auto
  then have cdcl_W^{**} S V
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl<sub>W</sub> st by blast
  then have inv-V: cdcl_W-all-struct-inv V using inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
  then have n-s-cp-V: no-step cdcl_W-cp V
   using cdcl_W-cp-normalized-element-all-inv[of\ V]\ full-fullI[of\ cdcl_W-cp\ V]\ n-s
   conflict'-without-decide conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp
   no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp
```

```
unfolding cdcl_W-all-struct-inv-def by presburger
 have n-s-bj: no-step cdcl_W-bj V
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain W where W: cdcl_W-bj V W by blast
     have cdcl_W-all-struct-inv W
      using W \ cdcl_W.simps \ cdcl_W-all-struct-inv-inv \ inv-V \ by \ blast
     then obtain W' where full cdcl_W-bj V W'
      using cdcl_W-bj-exists-normal-form[of W] full-fullI[of cdcl_W-bj V W] W
      unfolding cdcl_W-all-struct-inv-def
      by blast
     moreover
      then have cdcl_W^{++} V W'
        using tranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ cdcl_W.other\ cdcl_W-o.bj\ unfolding\ full1-def\ by\ blast
      then have cdcl_W-all-struct-inv W'
        by (meson\ inv-V\ rtranclp-cdcl_W-all-struct-inv-inv\ tranclp-into-rtranclp)
      then obtain X where full cdcl_W-cp W'X
        using cdcl_W-cp-normalized-element-all-inv by blast
     ultimately show False
      using bj'-without-decide n-s-cp-V n-s by blast
   qed
 from s' consider
     (cp-true) cdcl_W-merge-cp^{**} S V and conflicting V = None
   |(cp\text{-}false)| cdcl_W-merge-cp^{**} S V and conflicting V \neq None and no-step cdcl_W-cp V and
       no-step cdcl_W-bj V
   | (cp\text{-}confl) T \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} S T conflict T V
   using rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp[of S V] confl
   unfolding full-def by meson
 then have cdcl_W-merge-cp^{**} S V
   proof cases
     case cp-confl note S-T = this(1) and conf-V = this(2)
     have full cdcl_W-bj V
      using conf-V n-s-bj unfolding full-def by fast
     then have cdcl_W-merge-cp T V
      using cdcl_W-merge-cp.conflict' conf-V by auto
     then show ?thesis using S-T by auto
   qed fast+
 moreover
   then have cdcl_W^{**} S V using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl<sub>W</sub> by blast
   then have cdcl_W-all-struct-inv V
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then have no-step cdcl_W-merge-cp V
     using conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp s'
     unfolding full-def by blast
 ultimately show ?fw unfolding full-def by auto
qed
lemma conflicting-true-full1-cdcl_W-merge-cp-iff-full1-cdcl_W-s'-without-decode:
 assumes
   confl: conflicting S = None  and
   inv: cdcl_W-all-struct-inv S
 shows
   full1\ cdcl_W-merge-cp S\ V \longleftrightarrow full1\ cdcl_W-s'-without-decide S\ V
proof -
 have full cdcl_W-merge-cp S V = full cdcl_W-s'-without-decide S V
   using conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode inv
```

```
by simp
  then show ?thesis unfolding full-unfold full1-def tranclp-unfold-begin by blast
\mathbf{lemma}\ conflicting\text{-}true\text{-}full1\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}imp\text{-}full1\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode}:
 assumes
   fw: full1 cdcl_W-merge-cp S V and
   inv: cdcl_W-all-struct-inv S
 shows
   full1 cdcl_W-s'-without-decide S V
proof -
 have conflicting S = None
   using fw unfolding full1-def by (auto dest!: tranclpD simp: cdclw-merge-cp.simps elim: rulesE)
 then show ?thesis
   using conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-iff-full1-cdcl<sub>W</sub>-s'-without-decode fw inv by simp
qed
inductive cdcl_W-merge-stqy where
fw-s-cp[intro]: full1\ cdcl_W-merge-cp S\ T \Longrightarrow cdcl_W-merge-stqy S\ T
fw-s-decide[intro]: decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full \ cdcl_W-merge-cp T U
 \implies cdcl_W-merge-stgy S \ U
lemma cdcl_W-merge-stgy-tranclp-cdcl_W-merge:
 assumes fw: cdcl_W-merge-stgy S T
 shows cdcl_W-merge^{++} S T
proof -
  \{ \mathbf{fix} \ S \ T \}
   assume full1 cdcl_W-merge-cp \ S \ T
   then have cdcl_W-merge^{++} S T
     using tranclp-mono[of\ cdcl_W-merge-cp\ cdcl_W-merge^{++}]\ cdcl_W-merge-cp-tranclp-cdcl_W-merge
     unfolding full1-def
     by auto
  } note full1-cdcl_W-merge-cp-cdcl_W-merge = this
 show ?thesis
   using fw
   apply (induction rule: cdcl_W-merge-stgy.induct)
     using full1-cdcl_W-merge-cp-cdcl_W-merge apply simp
   unfolding full-unfold by (auto dest!: full1-cdcl_W-merge-cp-cdcl_W-merge fw-decide)
qed
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-merge:
 assumes fw: cdcl_W-merge-stgy** S T
 shows cdcl_W-merge^{**} S T
 using fw \ cdcl_W - merge - stgy - tranclp - cdcl_W - merge \ r tranclp - mono[of \ cdcl_W - merge - stgy \ cdcl_W - merge^{++}]
  unfolding tranclp-rtranclp-rtranclp by blast
lemma cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy S T \Longrightarrow cdcl_W^{**} S T
 apply (induction rule: cdcl_W-merge-stqy.induct)
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}rtranclp\text{-}cdcl_W\ cdcl_W\text{-}o.decide\ cdcl_W.other\ \mathbf{unfolding}\ full\text{-}def
 by (meson r-into-rtranclp rtranclp-trans)
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy** S T \Longrightarrow cdcl_W** S T
```

```
lemma cdcl_W-merge-stgy-cases[consumes 1, case-names fw-s-cp fw-s-decide]:
  assumes
    cdcl_W-merge-stgy S U
   full1\ cdcl_W-merge-cp S\ U \Longrightarrow P
   \bigwedge T. decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full \ cdcl_W-merge-cp T U \Longrightarrow P
  shows P
  using assms by (auto simp: cdcl_W-merge-stgy.simps)
inductive cdcl_W-s'-w :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1\ cdcl_W-s'-without-decide S\ S' \Longrightarrow cdcl_W-s'-w S\ S'
decide': decide \ S \ S' \Longrightarrow no-step \ cdcl_W-s'-without-decide \ S \Longrightarrow full \ cdcl_W-s'-without-decide \ S' \ S''
  \implies cdcl_W - s' - w \ S \ S''
lemma cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-s'-w.induct)
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full-def
  by (meson decide other rtranclp-into-tranclp2 tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w** S T \Longrightarrow cdcl_W** S T
  using rtranclp-mono[of cdcl_W-s'-w cdcl_W^{**}] cdcl_W-s'-w-rtranclp-cdcl_W by auto
lemma no-step-cdcl_W-cp-no-step-cdcl_W-s'-without-decide:
  assumes no-step cdcl_W-cp S and conflicting <math>S = None and inv: cdcl_W-M-level-inv S
  shows no-step cdcl_W-s'-without-decide S
  by (metis\ assms\ cdcl_W\text{-}cp.conflict'\ cdcl_W\text{-}cp.propagate'\ cdcl_W\text{-}merge\text{-}restart\text{-}cases\ tranclpD}
    conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
lemma no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart:
  assumes no-step cdcl_W-cp S and conflicting S = None
  shows no-step cdcl_W-merge-cp S
  by (metis\ assms(1)\ cdcl_W\text{-}cp.conflict'\ cdcl_W\text{-}cp.propagate'\ cdcl_W\text{-}merge\text{-}restart\text{-}cases\ tranclpD})
lemma after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp:
  assumes cdcl_W-s'-without-decide S T
  shows no-step cdcl_W-cp T
  using assms by (induction rule: cdcl_W-s'-without-decide.induct) (auto simp: full1-def full-def)
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp}:
  cdcl_W-all-struct-inv S \Longrightarrow no-step cdcl_W-s'-without-decide S \Longrightarrow no-step cdcl_W-cp S
  by (simp\ add:\ conflicting\ -true-no\ -step\ -s'\ -without\ -decide\ -no\ -step\ -cdcl_W\ -merge\ -cp
    no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp\ cdcl_W-all-struct-inv-def)
lemma after-cdcl_W-s'-w-no-step-cdcl_W-cp:
 assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
 shows no-step cdcl_W-cp T
  using assms
proof (induction rule: cdcl_W-s'-w.induct)
  case conflict'
  then show ?case
   by (auto simp: full1-def tranclp-unfold-end after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp)
\mathbf{next}
```

using $rtranclp-mono[of\ cdcl_W-merge-stgy\ cdcl_W^{**}]\ cdcl_W-merge-stgy-rtranclp-cdcl_W\$ by auto

```
case (decide' \ S \ T \ U)
  moreover
   then have cdcl_W^{**} S U
     using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W [of T U] cdcl_W.other[of S T]
     cdcl_W-o.decide unfolding full-def by auto
   then have cdcl_W-all-struct-inv U
     using decide'.prems\ rtranclp-cdcl_W-all-struct-inv-inv\ by\ blast
  ultimately show ?case
   using no-step-cdcl<sub>W</sub>-s'-without-decide-no-step-cdcl<sub>W</sub>-cp unfolding full-def by blast
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-cp-or-eq:
 assumes cdcl_W-s'-w** S T and cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
 using assms
proof (induction rule: rtranclp-induct)
  case base
 then show ?case by simp
next
  case (step \ T \ U)
 moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W [of SU] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
    rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1) by blast
  ultimately show ?case using after-cdcl_W-s'-w-no-step-cdcl_W-cp by fast
qed
lemma rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq:
 assumes cdcl_W-merge-stgy** S T and inv: cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
 using assms
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step \ T \ U)
 moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W [of S U] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
   rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1)
   by (meson\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W)
  ultimately show ?case
   using after-cdcl<sub>W</sub>-s'-w-no-step-cdcl<sub>W</sub>-cp inv unfolding cdcl<sub>W</sub>-all-struct-inv-def
   by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -merge\ -stgy. simps\ full1\ -def\ full\ -def
     no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
     rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W tranclp.intros(1) tranclp-into-rtranclp)
qed
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj:
 assumes no-step cdcl_W-s'-without-decide S and inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-bj S
proof (rule ccontr)
 assume ¬ ?thesis
  then obtain T where S-T: cdcl_W-bj S T
   by auto
 have cdcl_W-all-struct-inv T
   using S-T cdcl_W-all-struct-inv-inv inv other by blast
  then obtain T' where full cdcl_W-bj S T'
```

```
using cdcl_W-bj-exists-normal-form of T full-full S-T unfolding cdcl_W-all-struct-inv-def
   by metis
  moreover
   then have cdcl_W^{**} S T'
     using rtranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ cdcl_W.other\ cdcl_W-o.bj\ tranclp-into-rtranclp[of\ cdcl_W-bj]
     unfolding full1-def by blast
   then have cdcl_W-all-struct-inv T'
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then obtain U where full\ cdcl_W-cp\ T'\ U
     using cdcl_W-cp-normalized-element-all-inv by blast
  moreover have no-step cdcl_W-cp S
   using S-T by (auto simp: cdcl_W-bj.simps elim: rulesE)
  ultimately show False
  using assms cdcl_W-s'-without-decide.intros(2)[of S T' U] by fast
qed
lemma cdcl_W-s'-w-no-step-cdcl_W-bj:
 assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
  shows no-step cdcl_W-bj T
  using assms apply induction
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
   no-step-cdcl_W-s'-without-decide-no-step-cdcl_W-bj unfolding full1-def
   apply (meson tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}rtranclp\text{-}cdcl_W\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv}
    no-step-cdcl<sub>W</sub>-s'-without-decide-no-step-cdcl<sub>W</sub>-bj unfolding full-def
  by (meson\ cdcl_W - merge-restart - cdcl_W\ fw-r-decide)
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-bj-or-eq:
  assumes cdcl_W-s'-w^{**} S T and cdcl_W-all-struct-inv S
  shows S = T \vee no\text{-step } cdcl_W\text{-bj } T
  using assms apply induction
   apply simp
  using rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
    cdcl_W-s'-w-no-step-cdcl_W-bj by meson
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}decomp\text{-}into\text{-}cdcl_W\text{-}merge:}
  assumes
    cdcl_W-s'** R V and
    conflicting R = None  and
    inv: cdcl_W-all-struct-inv R
  shows (cdcl_W \text{-}merge\text{-}stgy^{**} R V \land conflicting V = None)
  \lor (cdcl_W \text{-merge-stgy}^{**} \ R \ V \land conflicting \ V \neq None \land no\text{-step} \ cdcl_W \text{-bj} \ V)
  \vee (\exists S \ T \ U. \ cdcl_W-merge-stgy** R \ S \ \land \ no-step cdcl_W-merge-cp S \ \land \ decide \ S \ T
   \land \ cdcl_W \text{-merge-}cp^{**} \ T \ U \land conflict \ U \ V)
  \vee (\exists S \ T. \ cdcl_W \text{-merge-stgy}^{**} \ R \ S \land no\text{-step} \ cdcl_W \text{-merge-cp} \ S \land decide \ S \ T
   \land cdcl_W-merge-cp^{**} T V
     \land conflicting V = None)
  \vee (cdcl_W \text{-merge-}cp^{**} \ R \ V \wedge conflicting \ V = None)
  \vee (\exists U. \ cdcl_W \text{-merge-} cp^{**} \ R \ U \land conflict \ U \ V)
  using assms(1,2)
proof induction
  case base
  then show ?case by simp
  case (step V W) note st = this(1) and s' = this(2) and IH = this(3)[OF\ this(4)] and
   n-s-R = this(4)
```

```
from s'
show ?case
 proof cases
   case conflict'
   consider
       (s') cdcl_W-merge-stgy** R V
     | (dec-confl) S T U where cdcl<sub>W</sub>-merge-stgy** R S and no-step cdcl<sub>W</sub>-merge-cp S and
        decide\ S\ T\ {\bf and}\ cdcl_W\mbox{-}merge\mbox{-}cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
     (dec) S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and decide S T
        and cdcl_W-merge-cp^{**} T V and conflicting V = None
     (cp) \ cdcl_W - merge - cp^{**} \ R \ V
     | (cp\text{-}confl) U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} R U \text{ and } conflict U V
     using IH by meson
   then show ?thesis
     proof cases
     next
       case s'
       then have R = V
        by (metis full1-def inv local.conflict' tranclp-unfold-begin
          rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
       consider
          (V-W) V = W
         | (propa) propagate^{++} V W  and conflicting W = None
        | (propa-confl) V' where propagate** V V' and conflict V' W
        using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
        unfolding full-unfold full1-def by meson
       then show ?thesis
        proof cases
          case V-W
          then show ?thesis using \langle R = V \rangle n-s-R by simp
          case propa
          then show ?thesis using \langle R = V \rangle by (auto intro: cdcl_W-merge-cp.intros)
          case propa-confl
          moreover
            then have cdcl_W-merge-cp^{**} V V'
              by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
          ultimately show ?thesis using s' \langle R = V \rangle by blast
        qed
     \mathbf{next}
       case dec\text{-}confl note - = this(5)
       then have False using conflict' unfolding full1-def by (auto dest!: tranclpD elim: rulesE)
       then show ?thesis by fast
     next
       case dec note T-V = this(4)
       consider
          (propa) propagate^{++} V W and conflicting W = None
        | (propa-confl) V' where propagate** V V' and conflict V' W
        \textbf{using} \ \textit{tranclp-cdcl}_W \textit{-cp-propagate-with-conflict-or-not}[\textit{of} \ \textit{V} \ \textit{W}] \ \textit{conflict'}
        unfolding full1-def by meson
       then show ?thesis
        proof cases
          case propa
          then show ?thesis
            by (meson\ T-V\ cdcl_W-merge-cp.propagate'\ dec\ rtranclp.rtrancl-into-rtrancl)
```

```
next
         case propa-confl
         then have cdcl_W-merge-cp^{**} T V'
           using T-V by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' rtranclp.simps)
         then show ?thesis using dec propa-confl(2) by metis
       qed
   next
     case cp
     consider
         (propa) propagate^{++} V W  and conflicting W = None
       | (propa-confl) V' where propagate** V V' and conflict V' W
       using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
       unfolding full1-def by meson
     then show ?thesis
       proof cases
         case propa
         then show ?thesis by (meson cdcl<sub>W</sub>-merge-cp.propagate' cp
           rtranclp.rtrancl-into-rtrancl)
       next
         case propa-confl
         then show ?thesis
           using propa-confl(2) cp
           by (metis\ (full-types)\ cdcl_W-merge-cp.propagate' rtranclp.rtrancl-into-rtrancl
             rtranclp-unfold)
       qed
   next
     case cp-confl
     then show ?thesis using conflict' unfolding full1-def by (fastforce dest!: tranclpD
       elim!: rulesE)
   qed
next
 case (decide' \ V')
 then have conf-V: conflicting V = None
   by (auto elim: rulesE)
 consider
    (s') cdcl_W-merge-stqy** R V
   \mid (dec\text{-}confl) \mid S \mid T \mid U \text{ where } cdcl_W\text{-}merge\text{-}stgy^{**} \mid R \mid S \text{ and } no\text{-}step \mid cdcl_W\text{-}merge\text{-}cp \mid S \mid and
       decide S T and cdclw-merge-cp** T U and conflict U V
   \mid (dec) \mid S \mid T  where cdcl_W-merge-stgy** R \mid S  and no-step cdcl_W-merge-cp S and decide \mid S \mid T
        and cdcl_W-merge-cp^{**} T V and conflicting V = None
   |(cp)| cdcl_W-merge-cp^{**} R V
   \mid (\textit{cp-confl}) \ \textit{U} \ \text{where} \ \textit{cdcl}_{\textit{W}} \text{-merge-cp}^{**} \ \textit{R} \ \textit{U} \ \text{and} \ \textit{conflict} \ \textit{U} \ \textit{V}
   using IH by meson
 then show ?thesis
   proof cases
     case s'
     have confl-V': conflicting V' = None using decide'(1) by (auto elim: rulesE)
     have full: full1 cdcl_W-cp\ V'\ W\ \lor\ (V'=W\ \land\ no\text{-}step\ cdcl_W-cp\ W)
       using decide'(3) unfolding full-unfold by blast
     consider
         (V'-W) V'=W
       | (propa) propagate^{++} V' W  and conflicting W = None
       | (propa-conft) V'' where propagate** V' V'' and conflict V'' W
       using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] decide'
        \langle full1\ cdcl_W - cp\ V'\ W\ \lor\ V' = W\ \land\ no\text{-step}\ cdcl_W - cp\ W\rangle unfolding full1-def
       by (metis\ tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
```

```
then show ?thesis
   proof cases
     case V'-W
     then show ?thesis
       using confl-V' local.decide'(1,2) s' conf-V
       no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart[of V]
       by auto
   next
     case propa
     then show ?thesis using local.decide'(1,2) s' by (metis cdcl<sub>W</sub>-merge-cp.simps conf-V
       no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart r-into-rtranclp)
   \mathbf{next}
     case propa-confl
     then have cdcl_W-merge-cp^{**} V' V''
       by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
     then show ?thesis
       using local.decide'(1,2) propa-confl(2) s' conf-V
       no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart
       by metis
   \mathbf{qed}
next
 case (dec) note s' = this(1) and dec = this(2) and cp = this(3) and ns\text{-}cp\text{-}T = this(4)
 have full cdcl_W-merge-cp T V
   unfolding full-def by (simp add: conf-V local.decide'(2)
     no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart ns-cp-T)
 moreover have no-step cdcl_W-merge-cp V
    by (simp add: conf-V local.decide'(2) no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart)
 moreover have no-step cdcl_W-merge-cp S
   by (metis dec)
 ultimately have cdcl_W-merge-stqy S V
   using cp by blast
 then have cdcl_W-merge-stgy** R V using s' by auto
 consider
     (V'-W) \ V' = W
   | (propa) propagate^{++} V' W  and conflicting W = None
    (propa-confl) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] decide'
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     moreover have conflicting V' = None
       using decide'(1) by (auto elim: rulesE)
     ultimately show ?thesis
       \mathbf{using} \  \, \langle cdcl_W \text{-}merge\text{-}stgy^{**} \  \, R \  \, V \rangle \  \, decide' \  \, \langle no\text{-}step \  \, cdcl_W \text{-}merge\text{-}cp \  \, V \rangle \  \, \mathbf{by} \  \, blast
   next
     case propa
     moreover then have cdcl_W-merge-cp V' W by (blast intro: cdcl_W-merge-cp.intros)
     ultimately show ?thesis
       using \langle cdcl_W-merge-stgy** R \ V \rangle \ decide' \langle no\text{-step} \ cdcl_W-merge-cp V \rangle
       by (meson \ r-into-rtranclp)
   next
     case propa-confl
     moreover then have cdcl_W-merge-cp^{**} V' V''
       by (metis cdcl<sub>W</sub>-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
     ultimately show ?thesis using \langle cdcl_W \text{-merge-stgy}^{**} R \ V \rangle \ decide'
```

```
\langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
       qed
   next
     case cp
     have no-step cdcl_W-merge-cp V
        using conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart by auto
     then have full cdcl_W-merge-cp R V
        unfolding full-def using cp by fast
     then have cdcl_W-merge-stgy** R V
       unfolding full-unfold by auto
     have full cdcl_W-cp V'W \vee (V' = W \wedge no\text{-step } cdcl_W\text{-cp } W)
       using decide'(3) unfolding full-unfold by blast
     consider
         (V'-W) \ V' = W
        | (propa) propagate^{++} V' W  and conflicting W = None
        | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
       using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] decide'
        unfolding full-unfold full1-def by meson
     then show ?thesis
       proof cases
         case V'-W
         moreover have conflicting V' = None
           using decide'(1) by (auto elim: rulesE)
         ultimately show ?thesis
           \mathbf{using} \  \, \langle cdcl_W\text{-}merge\text{-}stgy^{**} \  \, R \  \, V \rangle \  \, decide' \  \, \langle no\text{-}step \  \, cdcl_W\text{-}merge\text{-}cp \  \, V \rangle \  \, \mathbf{by} \  \, blast
       \mathbf{next}
         case propa
         moreover then have cdcl_W-merge-cp V' W
           by (blast intro: cdcl_W-merge-cp.intros)
         ultimately show ?thesis using \langle cdcl_W-merge-stgy** R V \rangle decide'
           \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V\rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
       next
         case propa-confl
         moreover then have cdcl_W-merge-cp^{**} V' V''
           by (metis cdcl<sub>W</sub>-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
         ultimately show ?thesis using \langle cdcl_W \text{-merge-stgy}^{**} R V \rangle decide'
           \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
       qed
   next
     case (dec-confl)
     show ?thesis using conf-V dec-confl(5) by (auto elim!: rulesE
        simp del: state-simp simp: state-eq-def)
   next
     case cp-confl
     then show ?thesis using decide' apply - by (intro HOL.disjI2) (fastforce elim: rulesE
        simp del: state-simp simp: state-eq-def)
  qed
next
  case (bj'\ V')
  then have \neg no\text{-}step\ cdcl_W\text{-}bj\ V
   by (auto dest: tranclpD simp: full1-def)
  then consider
    (s') cdcl_W-merge-stgy** R V and conflicting V = None
   | (dec-confl) S T U where cdcl<sub>W</sub>-merge-stgy** R S and no-step cdcl<sub>W</sub>-merge-cp S and
```

```
decide\ S\ T\ {\bf and}\ cdcl_W-merge-cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
 \mid (dec) \mid S \mid T  where cdcl_W-merge-stgy** R \mid S  and no-step cdcl_W-merge-cp S and decide \mid S \mid T
     and cdcl_W-merge-cp^{**} T V and conflicting V = None
 |(cp)| cdcl_W-merge-cp^{**} R V and conflicting V = None
 | (cp\text{-}confl) U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} R U \text{ and } conflict U V
 using IH by meson
then show ?thesis
 proof cases
   case s' note - = this(2)
   then have False
     using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps
       elim: rulesE)
   then show ?thesis by fast
 next
   case dec note - = this(5)
   then have False
     using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps
       elim: rulesE)
   then show ?thesis by fast
 next
   case dec-confl
   then have cdcl_W-merge-cp UV'
     using bj' cdcl_W-merge-cp.intros(1)[of U \ V \ V'] by (simp add: full-unfold)
   then have cdcl_W-merge-cp^{**} T V'
     using dec\text{-}confl(4) by simp
   consider
       (V'-W) V'=W
     |(propa)| propagate^{++} V' W  and conflicting W = None
     | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
     using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] bj'(3)
     unfolding full-unfold full1-def by meson
   then show ?thesis
     proof cases
      case V'-W
      then have no-step cdcl_W-cp V'
        using bi'(3) unfolding full-def by auto
       then have no-step cdcl_W-merge-cp V'
        by (metis\ cdcl_W-cp.propagate' cdcl_W-merge-cp.cases tranclpD
          no-step-cdcl_W-cp-no-conflict-no-propagate(1)
       then have full cdcl_W-merge-cp T V'
        unfolding full1-def using \langle cdcl_W-merge-cp U|V'\rangle dec-confl(4) by auto
       then have full cdcl_W-merge-cp T V'
        by (simp add: full-unfold)
       then have cdcl_W-merge-stgy S V'
        using dec\text{-}confl(3) cdcl_W-merge-stgy.fw-s-decide \langle no\text{-}step \ cdcl_W-merge-cp S \rangle by blast
       then have cdcl_W-merge-stgy** R V
        using \langle cdcl_W \text{-}merge\text{-}stgy^{**} R S \rangle by auto
       show ?thesis
        proof cases
          assume conflicting W = None
          then show ?thesis using \langle cdcl_W-merge-stgy** R \ V' \rangle \langle V' = W \rangle by auto
          assume conflicting W \neq None
          then show ?thesis
            using \langle cdcl_W-merge-stgy** R\ V' \rangle\ \langle V' = W \rangle by (metis\ \langle cdcl_W-merge-cp U\ V' \rangle
              conflictE\ conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
```

```
dec\text{-}confl(5) r-into-rtranclp)
      qed
   next
     case propa
     moreover then have cdcl_W-merge-cp V' W by (blast intro: cdcl_W-merge-cp.intros)
    rtranclp.rtrancl-into-rtrancl)
   next
     case propa-confl
     moreover then have \mathit{cdcl}_W\text{-}\mathit{merge\text{-}\mathit{cp}^{**}}\ \mathit{V'}\ \mathit{V''}
      by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
   ultimately show ?thesis by (meson \langle cdcl_W-merge-cp^{**} T V') dec-confl(1-3) rtranclp-trans)
   qed
next
 case cp note - = this(2)
 then show ?thesis using bj'(1) \langle \neg no\text{-step } cdcl_W\text{-}bj | V \rangle
   conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj by auto
 case cp-confl
 then have cdcl_W-merge-cp U V' by (simp \ add: \ cdcl_W-merge-cp.conflict' full-unfold
   local.bj'(1)
 consider
     (V'-W) V'=W
   | (propa) \ propagate^{++} \ V' \ W \ and \ conflicting \ W = None
   (propa-confl) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] bj'
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     show ?thesis
      proof cases
        assume conflicting V' = None
        then show ?thesis
          using V'-W \langle cdcl_W-merge-cp U V' \rangle cp-confl(1) by force
        assume confl: conflicting V' \neq None
        then have no-step cdcl_W-merge-stgy V'
          by (fastforce simp: cdcl_W-merge-stgy.simps full1-def full-def
            cdcl_W-merge-cp.simps dest!: tranclpD elim: rulesE)
        have no-step cdcl_W-merge-cp V'
          using confl by (auto simp: full1-def full-def cdcl_W-merge-cp.simps
          dest!: tranclpD elim: rulesE)
        moreover have cdcl_W-merge-cp U W
          using V'-W \langle cdcl_W-merge-cp \ U \ V' \rangle by blast
        ultimately have full1\ cdcl_W-merge-cp R\ V'
          using cp\text{-}confl(1) V'-W unfolding full1-def by auto
        then have cdcl_W-merge-stay R V'
          by auto
        moreover have no-step cdcl_W-merge-stgy V'
          using confl \langle no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ V' \rangle by (auto simp: cdcl_W\text{-}merge\text{-}stgy.simps
            full1-def dest!: tranclpD elim: rulesE)
        ultimately have cdcl_W-merge-stgy** R V' by auto
        { fix ss :: 'st
          have cdcl_W-merge-cp U W
```

```
using V'-W \langle cdcl_W-merge-cp \ U \ V' \rangle by blast
                 then have \neg cdcl_W - bj W ss
                   by (meson\ conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
                     cp-confl(1) rtranclp.rtrancl-into-rtrancl step.prems)
                 then have cdcl_W-merge-stgy** R W \wedge conflicting W = None \vee
                   cdcl_W-merge-stgy^{**} R W \land \neg cdcl_W-bj W ss
                   using V'-W \langle cdcl_W-merge-stgy** R V' \rangle by presburger }
               then show ?thesis
                 by presburger
             qed
          next
            {\bf case}\ propa
            moreover then have cdcl_W-merge-cp V'W
              by (blast intro: cdcl_W-merge-cp.intros)
            ultimately show ?thesis using \langle cdcl_W-merge-cp U|V'\rangle cp-confl(1) by force
          next
            case propa-confl
            moreover then have cdcl_W-merge-cp^{**} V' V''
              by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
            ultimately show ?thesis
              using \langle cdcl_W-merge-cp U|V'\rangle cp-confl(1) by (metis rtranclp.rtrancl-into-rtrancl
                rtranclp-trans)
          \mathbf{qed}
       \mathbf{qed}
   \mathbf{qed}
qed
lemma decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s':
 assumes
   dec: decide S T and
   cdcl_W-s'** T U and
   n-s-S: no-step cdcl_W-cp S and
   no-step cdcl_W-cp U
 shows cdcl_W-s'** S U
 using assms(2,4)
proof induction
 case (step U V) note st = this(1) and s' = this(2) and IH = this(3) and n-s = this(4)
 consider
     (TU) T = U
   | (s'-st) T' where cdcl_W-s' T T' and cdcl_W-s'^{**} T' U
   using st[unfolded rtranclp-unfold] by (auto dest!: tranclpD)
  then show ?case
   proof cases
     case TU
     then show ?thesis
      proof -
        assume a1: T = U
        then have f2: cdcl_W - s' T V
          using s' by force
        obtain ss :: 'st where
          ss: cdcl_W-s'** S T \lor cdcl_W-cp T ss
          using a1 step.IH by blast-
        obtain ssa :: 'st \Rightarrow 'st where
          f3: \forall s \ sa \ sb. \ (\neg \ decide \ s \ sa \ \lor \ cdcl_W \ -cp \ s \ (ssa \ s) \ \lor \ \neg \ full \ cdcl_W \ -cp \ sa \ sb)
            \vee \ cdcl_W - s' \ s \ sb
          using cdcl_W-s'.decide' by moura
```

```
have \forall s \ sa. \ \neg \ cdcl_W \neg s' \ s \ sa \ \lor \ full 1 \ cdcl_W \neg cp \ s \ sa \ \lor
           (\exists sb. \ decide \ s \ sb \land no\text{-}step \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa) \lor
           (\exists sb. full1 \ cdcl_W - bj \ s \ sb \ \land \ no\text{-}step \ cdcl_W - cp \ s \ \land full \ cdcl_W - cp \ sb \ sa)
           by (metis\ cdcl_W - s'E)
         then have \exists s. \ cdcl_W - s'^{**} \ S \ s \land \ cdcl_W - s' \ s \ V
           using f3 ss f2 by (metis dec full1-is-full n-s-S rtranclp-unfold)
         then show ?thesis
           by force
       qed
   next
     case (s'-st \ T') note s'-T' = this(1) and st = this(2)
     have cdcl_W-s'^{**} S T'
       using s'-T'
       proof cases
         case conflict'
         then have cdcl_W-s' S T'
            using dec\ cdcl_W-s'.decide'\ n-s-S by (simp\ add:\ full-unfold)
         then show ?thesis
            using st by auto
       \mathbf{next}
         case (decide' T'')
         then have cdcl_W-s' S T
            using dec\ cdcl_W-s'.decide'\ n-s-S by (simp add: full-unfold)
         then show ?thesis using decide' s'-T' by auto
       next
         case bi'
         then have False
           using dec unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps
             elim: rulesE)
         then show ?thesis by fast
       qed
     then show ?thesis using s' st by auto
   qed
next
  \mathbf{case}\ \mathit{base}
  then have full\ cdcl_W-cp\ T\ T
   by (simp add: full-unfold)
  then show ?case
   using cdcl_W-s'.simps dec n-s-S by auto
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s':
  assumes
    cdcl_W-merge-stgy** R V and
    inv: cdcl_W-all-struct-inv R
  shows cdcl_W-s'** R V
  using assms(1)
proof induction
  case base
  then show ?case by simp
next
  case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have cdcl_W-all-struct-inv S
   using inv rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-styy-rtranclp-cdcl_W st by blast
  from fw show ?case
   proof (cases rule: cdcl_W-merge-stgy-cases)
```

```
case fw-s-cp
     have \bigwedge s. \neg full\ cdcl_W-merge-cp s\ S
       using fw-s-cp unfolding full-def full1-def by (metis tranclp-unfold-begin)
     then have S = R
       using fw-s-cp unfolding full1-def by (metis cdcl<sub>W</sub>-cp.conflict' cdcl<sub>W</sub>-cp.propagate'
         cdcl_W-merge-cp. cases tranclp-unfold-begin inv st
         rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
     then have full cdcl_W-s'-without-decide R T
       using inv local.fw-s-cp
       by (blast intro: conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-imp-full1-cdcl<sub>W</sub>-s'-without-decode)
     then show ?thesis unfolding full1-def
       \mathbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \textit{rtranclp-cdcl}_W \textit{-s'-without-decide-rtranclp-cdcl}_W \textit{-s'} \ \textit{rtranclp-unfold})
   next
     case (fw-s-decide S') note dec = this(1) and n-S = this(2) and full = this(3)
     moreover then have conflicting S' = None
       by (auto elim: rulesE)
     ultimately have full\ cdcl_W-s'-without-decide S'\ T
       by (meson \langle cdcl_W - all - struct - inv S \rangle cdcl_W - merge - restart - cdcl_W fw - r - decide
         rtranclp-cdcl_W-all-struct-inv-inv
         conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode)
     then have a1: cdcl_W - s'^{**} S' T
        unfolding full-def by (metis (full-types) rtranclp-cdcl<sub>W</sub>-s'-without-decide-rtranclp-cdcl<sub>W</sub>-s')
     have cdcl_W-merge-stgy** S T
        using fw by blast
     then have cdcl_W-s'** S T
       using decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s' a1 by (metis \langle cdcl_W-all-struct-inv S \rangle dec
         n-S no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp cdcl_W-all-struct-inv-def
         rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
     then show ?thesis using IH by auto
   qed
\mathbf{qed}
lemma rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses:
  assumes invR: cdcl_W-all-struct-inv R and
  st: cdcl_W-merge-stgy^{**} R S and
  dist: distinct-mset (clauses R) and
  R: trail R = []
  shows distinct-mset (clauses S)
  using rtranclp-cdcl_W-stgy-distinct-mset-clauses[OF invR - dist R]
  invR st rtranclp-mono[of\ cdcl_W-s'\ cdcl_W-stgy^{**}]\ cdcl_W-s'-is-rtranclp-cdcl_W-stgy
  by (auto dest!: cdcl<sub>W</sub>-s'-is-rtranclp-cdcl<sub>W</sub>-stqy rtranclp-cdcl<sub>W</sub>-merge-stqy-rtranclp-cdcl<sub>W</sub>-s')
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}stgy:
  assumes
    inv: cdcl_W-all-struct-inv R and s': no-step cdcl_W-s' R
  shows no-step cdcl_W-merge-stgy R
proof -
  { fix ss :: 'st
   obtain ssa :: 'st \Rightarrow 'st \Rightarrow 'st where
     ff1: \land s sa. \neg cdcl_W-merge-stgy s sa \lor full1 cdcl_W-merge-cp s sa \lor decide s (ssa s sa)
     using cdcl_W-merge-stgy.cases by moura
   obtain ssb :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
     ff2: \bigwedge p \ s \ sa. \ \neg \ p^{++} \ s \ sa \lor p \ s \ (ssb \ p \ s \ sa)
     by (meson tranclp-unfold-begin)
   obtain ssc :: 'st \Rightarrow 'st where
     ff3: \bigwedge s sa sb. (\neg cdcl_W - all - struct - inv <math>s \lor \neg cdcl_W - cp \ s \ sa \lor cdcl_W - s' \ s \ (ssc \ s))
```

```
\land (\neg cdcl_W - all - struct - inv \ s \lor \neg cdcl_W - o \ s \ sb \lor cdcl_W - s' \ s \ (ssc \ s))
      using n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o by moura
   then have ff_4: \bigwedge s. \neg cdcl_W-o R s
      using s' inv by blast
   have ff5: \bigwedge s. \neg cdcl_W - cp^{++} R s
      using ff3 ff2 s' by (metis inv)
   have \bigwedge s. \neg cdcl_W - bj^{++} R s
      using ff4 ff2 by (metis bj)
   then have \bigwedge s. \neg cdcl_W-s'-without-decide R s
      using ff5 by (simp add: cdcl_W-s'-without-decide.simps full1-def)
   then have \neg cdcl_W - s'-without-decide<sup>++</sup> R ss
      using ff2 by blast
   then have \neg full1\ cdcl_W-s'-without-decide R ss
      by (simp add: full1-def)
   then have \neg cdcl_W-merge-stqy R ss
      using ff4 ff1 conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-imp-full1-cdcl<sub>W</sub>-s'-without-decode inv
      by blast }
  then show ?thesis
   by fastforce
qed
end
```

Termination and full Equivalence

We will discharge the assumption later using NOT's proof of termination.

```
locale\ conflict-driven-clause-learning -termination =
  conflict-driven-clause-learning_W +
 assumes wf-cdcl<sub>W</sub>-merge-inv: wf \{(T, S). cdcl_W-all\text{-struct-inv } S \land cdcl_W\text{-merge } S T\}
begin
lemma wf-tranclp-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge<sup>++</sup> S T\}
  using wf-trancl[OF wf-cdcl<sub>W</sub>-merge-inv]
 apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp
   cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv)
lemma wf-cdcl_W-merge-cp:
  wf\{(T, S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - merge - cp \ S \ T\}
 using wf-tranclp-cdcl_W-merge by (rule wf-subset) (auto simp: cdcl_W-merge-cp-tranclp-cdcl_W-merge)
lemma wf-cdcl_W-merge-stgy:
  wf\{(T, S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - merge - stgy \ S \ T\}
 using wf-tranclp-cdcl_W-merge by (rule wf-subset)
  (auto simp add: cdcl_W-merge-stgy-tranclp-cdcl<sub>W</sub>-merge)
lemma cdcl_W-merge-cp-obtain-normal-form:
 assumes inv: cdcl_W-all-struct-inv R
 obtains S where full cdcl_W-merge-cp R S
  obtain S where full (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) R S
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-merge-cp] by blast
  then have
   st: (\lambda S \ T. \ cdcl_W-all-struct-inv S \land cdcl_W-merge-cp S \ T)^{**} \ R \ S and
   n-s: no-step (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) S
   unfolding full-def by blast+
```

```
have cdcl_W-merge-cp^{**} R S
   using st by induction auto
 moreover
   have cdcl_W-all-struct-inv S
     using st inv
     apply (induction rule: rtranclp-induct)
      apply simp
     by (meson\ r-into-rtranclp\ rtranclp-cdcl_W-all-struct-inv-inv
      rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W)
   then have no-step cdcl_W-merge-cp S
     using n-s by auto
 ultimately show ?thesis
   using that unfolding full-def by blast
lemma no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s':
 assumes
   inv: cdcl_W-all-struct-inv R and
   confl: conflicting R = None and
   n-s: no-step cdcl_W-merge-stgy R
 shows no-step cdcl_W-s' R
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain S where cdcl_W-s' R S by auto
 then show False
   proof cases
     case conflict'
     then obtain S' where full1\ cdcl_W-merge-cp R\ S'
      proof -
        obtain R' where
          cdcl_W-merge-cp R R'
          using inv unfolding cdcl_W-all-struct-inv-def by (meson confl
            cdcl_W-s'-without-decide.simps conflict'
            conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
        then show ?thesis
          using that by (metis cdcl_W-merge-cp-obtain-normal-form full-unfold inv)
     then show False using n-s by blast
   next
     case (decide' R')
     then have cdcl_W-all-struct-inv R'
      using inv cdcl_W-all-struct-inv-inv cdcl_W.other cdcl_W-o.decide by meson
     then obtain R'' where full cdcl_W-merge-cp R' R''
      using cdcl_W-merge-cp-obtain-normal-form by blast
     moreover have no-step cdcl_W-merge-cp R
      by (simp add: confl local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
     ultimately show False using n-s cdcl_W-merge-stgy.intros local.decide'(1) by blast
   next
     case (bj' R')
     then show False
      using confl\ no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide}\ inv
      unfolding cdcl_W-all-struct-inv-def by auto
   qed
qed
```

```
assumes conflicting R = None and cdcl_W-merge-cp^{**} R S
 shows no-step cdcl_W-bj S
 using assms conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj by auto
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}stgy\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj\text{:}
 assumes confl: conflicting R = None and cdcl_W-merge-stgy** R S
 shows no-step cdcl_W-bj S
 using assms(2)
proof induction
 case base
 then show ?case
   using confl by (auto simp: cdcl_W-bj.simps elim: rulesE)
 case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have confl-S: conflicting S = None
   using fw apply cases
   by (auto simp: full1-def cdcl_W-merge-cp.simps dest!: tranclpD elim: rulesE)
 from fw show ?case
   proof cases
     case fw-s-cp
     then show ?thesis
      using rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj confl-S
      by (simp add: full1-def tranclp-into-rtranclp)
   \mathbf{next}
     case (fw-s-decide S')
     moreover then have conflicting S' = None by (auto elim: rulesE)
     {\bf ultimately \ show} \ ? the sis
      using conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
      unfolding full-def by meson
   qed
\mathbf{qed}
end
end
theory CDCL-WNOT
imports CDCL-NOT CDCL-W-Termination CDCL-W-Merge
begin
```

2.3 Link between Weidenbach's and NOT's CDCL

2.3.1 Inclusion of the states

```
declare upt.simps(2)[simp\ del]

fun convert-ann-lit-from-W where

convert-ann-lit-from-W (Propagated\ L\ -) = Propagated\ L\ () \mid

convert-ann-lit-from-W (Decided\ L) = Decided\ L

abbreviation convert-trail-from-W ::

('v, 'mark)\ ann-lits

\Rightarrow ('v, unit)\ ann-lits where

convert-trail-from-W \equiv map\ convert-ann-lit-from-W

lemma lits-of-l-convert-trail-from-W[simp]:
```

```
\mathit{lits}	ext{-}\mathit{of}	ext{-}\mathit{l}\ (\mathit{convert}	ext{-}\mathit{trail}	ext{-}\mathit{from}	ext{-}\mathit{W}\ \mathit{M}) = \mathit{lits}	ext{-}\mathit{of}	ext{-}\mathit{l}\ \mathit{M}
 by (induction rule: ann-lit-list-induct) simp-all
lemma lit-of-convert-trail-from-W[simp]:
  lit-of\ (convert-ann-lit-from-W\ L) = lit-of\ L
 by (cases L) auto
lemma no-dup-convert-from-W[simp]:
  no-dup (convert-trail-from-WM) \longleftrightarrow no-dup M
 by (auto simp: comp-def)
lemma convert-trail-from-W-true-annots[simp]:
  convert-trail-from-WM \models as C \longleftrightarrow M \models as C
 by (auto simp: true-annots-true-cls image-image lits-of-def)
lemma defined-lit-convert-trail-from-W[simp]:
  defined-lit (convert-trail-from-W S) L \longleftrightarrow defined-lit S L
 by (auto simp: defined-lit-map image-comp)
The values \theta and \{\#\} are dummy values.
consts dummy-cls :: 'cls
\mathbf{fun}\ convert\text{-}ann\text{-}lit\text{-}from\text{-}NOT
 :: ('v, 'mark) \ ann-lit \Rightarrow ('v, 'cls) \ ann-lit \ where
convert-ann-lit-from-NOT (Propagated L -) = Propagated L dummy-cls
convert-ann-lit-from-NOT (Decided L) = Decided L
abbreviation convert-trail-from-NOT where
convert-trail-from-NOT \equiv map\ convert-ann-lit-from-NOT
lemma undefined-lit-convert-trail-from-NOT[simp]:
  undefined-lit (convert-trail-from-NOT F) L \longleftrightarrow undefined-lit F L
 by (induction F rule: ann-lit-list-induct) (auto simp: defined-lit-map)
lemma\ lits-of-l-convert-trail-from-NOT:
  lits-of-l (convert-trail-from-NOT F) = lits-of-l F
 by (induction F rule: ann-lit-list-induct) auto
lemma convert-trail-from-W-from-NOT[simp]:
  convert-trail-from-W (convert-trail-from-NOT M) = M
 by (induction rule: ann-lit-list-induct) auto
lemma convert-trail-from-W-convert-lit-from-NOT[simp]:
  convert-ann-lit-from-W (convert-ann-lit-from-NOT L) = L
 by (cases L) auto
abbreviation trail_{NOT} where
trail_{NOT} S \equiv convert\text{-}trail\text{-}from\text{-}W (fst S)
lemma undefined-lit-convert-trail-from-W[iff]:
  undefined-lit (convert-trail-from-W M) L \longleftrightarrow undefined-lit M L
 by (auto simp: defined-lit-map image-comp)
lemma lit-of-convert-ann-lit-from-NOT[iff]:
  lit-of (convert-ann-lit-from-NOTL) = lit-of L
 by (cases L) auto
```

```
sublocale state_W \subseteq dpll\text{-}state\text{-}ops
  \lambda S. convert-trail-from-W (trail S)
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda \, C \, S. \, \, add\text{-}learned\text{-}cls \, \, C \, S
  \lambda C S. remove-cls C S
  by unfold-locales
sublocale state_W \subseteq dpll-state
  \lambda S. convert-trail-from-W (trail S)
   clauses
  \lambda L\ S.\ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  by unfold-locales (auto simp: map-tl o-def)
context state_W
begin
declare state-simp_{NOT}[simp\ del]
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-ops
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. \ add-learned-cls C S
  \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None
  \lambda C C' L' S T. backjump-l-cond C C' L' S T
   \land distinct\text{-mset} (C' + \{\#L'\#\}) \land \neg tautology (C' + \{\#L'\#\})
 by unfold-locales
thm cdcl_{NOT}-merge-bj-learn-proxy.axioms
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L\ S.\ cons-trail (convert-ann-lit-from-NOT L) S
 \lambda S. tl-trail S
 \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None
  backjump-l-cond
  inv_{NOT}
proof (unfold-locales, goal-cases)
  then show ?case using cdcl_{NOT}-merged-bj-learn-no-dup-inv by (auto simp: comp-def)
next
  case (1 C' S C F' K F L)
 moreover
   let ?C' = remdups\text{-}mset C'
```

```
have L \notin \# C'
      \mathbf{using} \ \langle F \models as \ CNot \ C' \rangle \ \langle undefined\text{-}lit \ F \ L \rangle \ Decided\text{-}Propagated\text{-}in\text{-}iff\text{-}in\text{-}lits\text{-}of\text{-}l}
      in-CNot-implies-uminus(2) by fast
    then have distinct-mset (?C' + \{\#L\#\})
      by (simp add: distinct-mset-single-add)
  moreover
    have no-dup F
      \mathbf{using} \ \langle inv_{NOT} \ S \rangle \ \langle convert\text{-}trail\text{-}from\text{-}W \ (trail \ S) = F' \ @ \ Decided \ K \ \# \ F \rangle
      unfolding inv_{NOT}-def
      by (smt\ comp-apply\ distinct.simps(2)\ distinct-append\ list.simps(9)\ map-append
        no-dup-convert-from-W)
    then have consistent-interp (lits-of-l F)
      using distinct-consistent-interp by blast
    then have \neg tautology C'
      using \langle F \models as\ CNot\ C' \rangle consistent-CNot-not-tautology true-annots-true-cls by blast
    then have \neg tautology (?C' + \{\#L\#\})
      using \langle F \models as \ CNot \ C' \rangle \langle undefined\text{-}lit \ F \ L \rangle by (metis \ CNot\text{-}remdups\text{-}mset
        Decided-Propagated-in-iff-in-lits-of-l add.commute in-CNot-uminus tautology-add-single
        tautology-remdups-mset true-annot-singleton true-annots-def)
  show ?case
    proof -
      have f2: no-dup (convert-trail-from-W (trail S))
        using \langle inv_{NOT} | S \rangle unfolding inv_{NOT}-def by (simp \ add: \ o\text{-def})
      have f3: atm-of L \in atms-of-mm (clauses S)
        \cup atm-of 'lits-of-l (convert-trail-from-W (trail S))
        using \langle convert\text{-trail-from-}W \ (trail \ S) = F' @ Decided \ K \# F \rangle
        (atm\text{-}of\ L\in atm\text{-}of\text{-}mm\ (clauses\ S)\cup atm\text{-}of\ (lits\text{-}of\text{-}l\ (F'\ @\ Decided\ K\ \#\ F))\ \mathbf{by}\ auto
      have f_4: clauses S \models pm \ remdups\text{-mset} \ C' + \{\#L\#\}
        by (metis (no-types) \langle L \notin \# C' \rangle \langle clauses S \models pm C' + \{ \#L\# \} \rangle remdups-mset-singleton-sum(2)
          true-clss-cls-remdups-mset union-commute)
      have F \models as \ CNot \ (remdups-mset \ C')
        by (simp\ add: \langle F \models as\ CNot\ C' \rangle)
      have Ex\ (backjump-l\ S)
        apply standard
        apply (rule backjump-l.intros[OF - f2, of - - -])
        using f4 f3 f2 \langle \neg tautology (remdups-mset C' + \{\#L\#\}) \rangle
        calculation(2-5,9) \langle F \models as \ CNot \ (remdups-mset \ C') \rangle
        state-eq<sub>NOT</sub>-ref unfolding backjump-l-cond-def by blast+
      then show ?thesis
        by blast
    qed
qed
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy2
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
 \lambda C S. \ add-learned-cls C S
  \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None \ backjump-l-cond \ inv_{NOT}
  by unfold-locales
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn
  \lambda S. \ convert-trail-from-W (trail S)
```

```
clauses
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
 \lambda S. tl-trail S
 \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S
  backjump-l-cond
  \lambda- -. True
 \lambda- S. conflicting S = None \ inv_{NOT}
 apply unfold-locales
  using dpll-bj-no-dup apply (simp add: comp-def)
 using cdcl_{NOT}.simps cdcl_{NOT}-no-dup no-dup-convert-from-W unfolding inv_{NOT}-def by blast
context conflict-driven-clause-learning<sub>W</sub>
begin
Notations are lost while proving locale inclusion:
notation state-eq<sub>NOT</sub> (infix \sim_{NOT} 50)
2.3.2
          Additional Lemmas between NOT and W states
lemma trail_W-eq-reduce-trail-to<sub>NOT</sub>-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
proof (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
 case (1 F S T) note IH = this(1) and tr = this(2)
 then have [] = convert-trail-from-W (trail S)
   \vee length F = length (convert-trail-from-W (trail S))
   \vee trail (reduce-trail-to<sub>NOT</sub> F (tl-trail S)) = trail (reduce-trail-to<sub>NOT</sub> F (tl-trail T))
   using IH by (metis (no-types) trail-tl-trail)
 then show trail (reduce-trail-to<sub>NOT</sub> F S) = trail (reduce-trail-to<sub>NOT</sub> F T)
   using tr by (metis (no-types) reduce-trail-to<sub>NOT</sub>.elims)
qed
lemma trail-reduce-trail-to_{NOT}-add-learned-cls:
no-dup (trail S) \Longrightarrow
  trail\ (reduce-trail-to_{NOT}\ M\ (add-learned-cls\ D\ S)) = trail\ (reduce-trail-to_{NOT}\ M\ S)
by (rule\ trail_W-eq-reduce-trail-to_{NOT}-eq)\ simp
lemma reduce-trail-to<sub>NOT</sub>-reduce-trail-convert:
  reduce-trail-to_{NOT} C S = reduce-trail-to (convert-trail-from-NOT C) S
 apply (induction C S rule: reduce-trail-to<sub>NOT</sub>.induct)
 apply (subst reduce-trail-to<sub>NOT</sub>.simps, subst reduce-trail-to.simps)
 by auto
lemma reduce-trail-to-map[simp]:
  reduce-trail-to (map\ f\ M)\ S = reduce-trail-to M\ S
 by (rule reduce-trail-to-length) simp
lemma reduce-trail-to_{NOT}-map[simp]:
  reduce-trail-to<sub>NOT</sub> (map f M) S = reduce-trail-to<sub>NOT</sub> M S
 by (rule reduce-trail-to<sub>NOT</sub>-length) simp
lemma skip-or-resolve-state-change:
 assumes skip-or-resolve** S T
 shows
   \exists M. \ trail \ S = M @ \ trail \ T \land (\forall m \in set \ M. \neg is\text{-}decided \ m)
   clauses\ S = clauses\ T
```

```
backtrack-lvl S = backtrack-lvl T
 using assms
proof (induction rule: rtranclp-induct)
 case base
 case 1 show ?case by simp
 case 2 show ?case by simp
 case 3 show ?case by simp
next
 case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3) and IH' = this(3-5)
 case 2 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
 case 3 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
 case 1 show ?case
   using s-o-r
   proof cases
    case s-or-r-skip
    then show ?thesis using IH by (auto elim!: rulesE simp: skip-or-resolve.simps)
    case s-or-r-resolve
    then show ?thesis
      using IH by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)
   qed
qed
```

2.3.3 More lemmas conflict-propagate and backjumping

2.3.4 CDCL FW

```
lemma cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W:cdcl_W-merge S T
 shows cdcl_{NOT}-merged-bj-learn S T
   \vee (no-step cdcl<sub>W</sub>-merge T \wedge conflicting T \neq None)
 using cdcl_W inv
proof induction
 case (fw\text{-}propagate\ S\ T) note propa = this(1)
 then obtain M N U k L C where
   H: state\ S = (M, N, U, k, None) and
   CL: C + \{\#L\#\} \in \# \ clauses \ S \ and
   M-C: M \models as CNot C and
   undef: undefined-lit (trail S) L and
   T: state \ T = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M, \ N, \ U, \ k, \ None)
   by (auto elim: propagate-high-levelE)
 have propagate_{NOT} S T
   using H CL T undef M-C by (auto simp: state-eq<sub>NOT</sub>-def state-eq-def clauses-def
     simp del: state-simp)
 then show ?case
   using cdcl_{NOT}-merged-bj-learn.intros(2) by blast
 case (fw-decide S T) note dec = this(1) and inv = this(2)
 then obtain L where
   undef-L: undefined-lit (trail S) L and
   atm-L: atm-of L \in atms-of-mm (init-clss S) and
   T: T \sim cons-trail (Decided L)
     (update-backtrack-lvl (Suc (backtrack-lvl S)) S)
```

```
by (auto\ elim:\ decideE)
have decide_{NOT} S T
 apply (rule decide_{NOT}.decide_{NOT})
    using undef-L apply simp
  using atm-L inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def clauses-def
    apply auto[]
 using T undef-L unfolding state-eq-def state-eq_{NOT}-def by (auto simp: clauses-def)
then show ?case using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> by blast
case (fw-forget S T) note rf = this(1) and inv = this(2)
then obtain C where
  S: conflicting S = None  and
  C-le: C \in \# learned-clss S and
  \neg(trail\ S) \models asm\ clauses\ S\ and
  C \notin set (qet\text{-}all\text{-}mark\text{-}of\text{-}propagated (trail S)) and
  C-init: C \notin \# init\text{-}clss S and
  T: T \sim remove\text{-}cls \ C \ S
 by (auto elim: forgetE)
have init-clss S \models pm \ C
 using inv C-le unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def clauses-def
 by (meson true-clss-clss-in-imp-true-clss-cls)
then have S-C: removeAll-mset C (clauses S) \models pm \ C
 using C-init C-le unfolding clauses-def by (auto simp add: Un-Diff ac-simps)
have forget_{NOT} S T
 apply (rule forget_{NOT}.forget_{NOT})
    using S-C apply blast
   using S apply simp
  using C-init C-le apply (simp add: clauses-def)
 using T C-le C-init by (auto
   simp: state-eq-def \ Un-Diff \ state-eq_{NOT}-def \ clauses-def \ ac-simps
   simp del: state-simp)
then show ?case using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> by blast
case (fw-conflict S T U) note confl = this(1) and bj = this(2) and inv = this(3)
obtain C_S CT where
 confl-T: conflicting T = Some CT and
 CT: CT = C_S and
 C_S: C_S \in \# clauses S and
 tr-S-C_S: trail S \models as CNot C_S
 using confl by (elim conflictE) (auto simp del: state-simp simp: state-eq-def)
have cdcl_W-all-struct-inv T
 using cdcl_W.simps\ cdcl_W-all-struct-inv-inv\ confl\ inv\ by blast
then have cdcl_W-M-level-inv T
 unfolding cdcl_W-all-struct-inv-def by auto
then consider
   (no\text{-}bt) skip\text{-}or\text{-}resolve^{**} T U
 | (bt) T' where skip-or-resolve** T T' and backtrack T' U
 using bj rtranclp-cdcl_W-bj-skip-or-resolve-backtrack unfolding full-def by meson
then show ?case
 proof cases
   case no-bt
   then have conflicting U \neq None
     using confl by (induction rule: rtranclp-induct)
     (auto simp del: state-simp simp: skip-or-resolve.simps state-eq-def elim!: rulesE)
   moreover then have no-step cdcl_W-merge U
     by (auto simp: cdcl_W-merge.simps elim: rulesE)
```

```
ultimately show ?thesis by blast
next
 case bt note s-or-r = this(1) and bt = this(2)
 have cdcl_W^{**} T T'
   using s-or-r mono-rtranclp[of skip-or-resolve cdcl_W] rtranclp-skip-or-resolve-rtranclp-cdcl_W
   by blast
 then have cdcl_W-M-level-inv T'
   using rtranclp-cdcl_W-consistent-inv \langle cdcl_W-M-level-inv T \rangle by blast
 then obtain M1 M2 i D L K where
   confl-T': conflicting T' = Some D and
   LD: L \in \# D and
   M1-M2:(Decided\ K\ \#\ M1\ ,\ M2)\in set\ (get-all-ann-decomposition\ (trail\ T')) and
   get-level (trail T') K = i+1
   get-level (trail T') L = backtrack-lvl T' and
   get-level (trail T') L = get-maximum-level (trail T') D and
   get-maximum-level (trail T') (remove1-mset L D) = i and
   U: U \sim cons-trail (Propagated L D)
           (reduce-trail-to M1
                (add-learned-cls D
                  (update-backtrack-lvl\ i
                     (update\text{-}conflicting\ None\ T'))))
   using bt by (auto elim: backtrackE)
 have [simp]: clauses S = clauses T
   using confl by (auto elim: rulesE)
 have [simp]: clauses T = clauses T'
   using s-or-r
   proof (induction)
     case base
     then show ?case by simp
     case (step U V) note st = this(1) and s-o-r = this(2) and IH = this(3)
     have clauses U = clauses V
       using s-o-r by (auto simp: skip-or-resolve.simps elim: rulesE)
     then show ?case using IH by auto
   qed
 have inv-T: cdcl_W-all-struct-inv T
   by (meson\ cdcl_W\text{-}cp.simps\ confl\ inv\ r\text{-}into\text{-}rtranclp\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
     rtranclp-cdcl_W-cp-rtranclp-cdcl_W)
 have cdcl_{W}^{**} T T'
   using rtranclp-skip-or-resolve-rtranclp-cdcl_W s-or-r by blast
 have inv-T': cdcl_W-all-struct-inv T'
   \mathbf{using} \ \langle cdcl_{W}{}^{**} \ T \ T' \rangle \ inv{-}T \ rtranclp{-}cdcl_{W}{-}all{-}struct{-}inv{-}inv \ \mathbf{by} \ blast
 have inv-U: cdcl_W-all-struct-inv U
   using cdcl_W-merge-restart-cdcl_W confl fw-r-conflict inv local.bj
   rtranclp-cdcl_W-all-struct-inv-inv by blast
 have [simp]: init-clss S = init-clss T'
   using \langle cdcl_W^{**} \mid T \mid T' \rangle cdcl_W-init-clss confl cdcl_W-all-struct-inv-def conflict inv
   by (metis \langle cdcl_W - M - level - inv T \rangle rtranclp - cdcl_W - init - clss)
 then have atm-L: atm-of L \in atms-of-mm (clauses S)
   using inv-T' confl-T' LD unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def
   clauses-def
   by (simp add: atms-of-def image-subset-iff)
 obtain M where tr-T: trail T = M @ trail T'
   using s-or-r skip-or-resolve-state-change by meson
 obtain M' where
```

```
tr-T': trail T' = M' @ Decided K # <math>tl (trail U) and
       tr-U: trail U = Propagated L D # <math>tl (trail U)
       using U M1-M2 inv-T' unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
       by fastforce
     \mathbf{def}\ M^{\prime\prime} \equiv M \ @\ M^{\prime}
     have tr-T: trail S = M'' @ Decided K \# tl (trail U)
       using tr-T tr-T' confl unfolding M"-def by (auto elim: rulesE)
     have init-clss T' + learned-clss S \models pm D
       using inv-T' confl-T' unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-learned-clause-def
       clauses-def by simp
     have reduce-trail-to (convert-trail-from-NOT (convert-trail-from-W M1)) S =
       reduce-trail-to M1 S
       by (rule reduce-trail-to-length) simp
     moreover have trail (reduce-trail-to M1 S) = M1
       apply (rule reduce-trail-to-skip-beginning[of - M @ - @ M2 @ [Decided K]])
       using confl M1-M2 \langle trail \ T = M \ @ \ trail \ T' \rangle
        apply (auto dest!: get-all-ann-decomposition-exists-prepend
          elim!: conflictE)
        by (rule sym) auto
     ultimately have [simp]: trail\ (reduce-trail-to_{NOT}\ M1\ S)=M1
       using M1-M2 confl by (subst reduce-trail-to<sub>NOT</sub>-reduce-trail-convert)
       (auto simp: comp\text{-}def\ elim:\ rulesE)
     have every-mark-is-a-conflict U
       using inv-U unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by simp
     then have U-D: tl\ (trail\ U) \models as\ CNot\ (remove1-mset\ L\ D)
       by (metis append-self-conv2 tr-U)
     have undef-L: undefined-lit (tl (trail U)) L
       using U M1-M2 inv-U unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
       by (auto simp: lits-of-def defined-lit-map)
     have backjump-l S U
       apply (rule backjump-l[of - - - - L D - remove1-mset L D])
               using tr-T apply simp
              using inv unfolding cdclw-all-struct-inv-def cdclw-M-level-inv-def
              apply (simp add: comp-def)
             using U M1-M2 conft M1-M2 inv-T' inv unfolding cdcl_W-all-struct-inv-def
             cdcl_W-M-level-inv-def apply (auto simp: state-eq_{NOT}-def
               trail-reduce-trail-to<sub>NOT</sub>-add-learned-cls)[]
            using C_S apply auto[]
           using tr-S-C_S apply simp
          using undef-L apply auto[]
         using atm-L apply (simp \ add: trail-reduce-trail-to_{NOT}-add-learned-cls)
        using \langle init\text{-}clss \ T' + learned\text{-}clss \ S \models pm \ D \rangle \ LD \ unfolding \ clauses\text{-}def
        apply simp
        using LD apply simp
       apply (metis U-D convert-trail-from-W-true-annots)
       using inv-T' inv-U U conft-T' undef-L M1-M2 LD unfolding cdcl<sub>W</sub>-all-struct-inv-def
       distinct-cdcl_W-state-def by (simp\ add:\ cdcl_W-M-level-inv-decomp backjump-l-cond-def)
     then show ?thesis using cdcl_{NOT}-merged-bj-learn-backjump-l by fast
   qed
\mathbf{qed}
abbreviation cdcl_{NOT}-restart where
cdcl_{NOT}\text{-}restart \equiv restart\text{-}ops.cdcl_{NOT}\text{-}raw\text{-}restart \ cdcl_{NOT} \ restart
\mathbf{lemma}\ cdcl_W\textit{-merge-restart-is-cdcl}_{NOT}\textit{-merged-bj-learn-restart-no-step}:
```

```
assumes
    inv: cdcl_W-all-struct-inv S and
    cdcl_W: cdcl_W-merge-restart S T
  shows cdcl_{NOT}-restart** S \ T \lor (no\text{-step } cdcl_W\text{-merge } T \land conflicting \ T \ne None)
proof -
  consider
     (fw) \ cdcl_W-merge S \ T
    | (fw-r) restart S T
   using cdcl_W by (meson cdcl_W-merge-restart.simps cdcl_W-rf.cases fw-conflict fw-decide fw-forget
     fw-propagate)
  then show ?thesis
   proof cases
     case fw
     then have IH: cdcl_{NOT}-merged-bj-learn S T \vee (no-step \ cdcl_W-merge T \wedge conflicting \ T \neq None)
       using inv cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn by blast
     have invS: inv_{NOT} S
       using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
     have ff2: cdcl_{NOT}^{++} S T \longrightarrow cdcl_{NOT}^{**} S T
         by (meson tranclp-into-rtranclp)
     have ff3: no-dup (convert-trail-from-W (trail S))
       using invS by (simp add: comp-def)
     have cdcl_{NOT} \leq cdcl_{NOT}-restart
       by (auto simp: restart-ops.cdcl_{NOT}-raw-restart.simps)
     then show ?thesis
       using ff3 ff2 IH cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}
       rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-restart]\ invS\ predicate2D\ {\bf by}\ blast
   \mathbf{next}
     case fw-r
     then show ?thesis by (blast intro: restart-ops.cdcl<sub>NOT</sub>-raw-restart.intros)
   qed
qed
abbreviation \mu_{FW} :: 'st \Rightarrow nat where
\mu_{FW} S \equiv (if no-step \ cdcl_W-merge \ S \ then \ 0 \ else \ 1+\mu_{CDCL}'-merged \ (set-mset \ (init-clss \ S)) \ S)
lemma cdcl_W-merge-\mu_{FW}-decreasing:
  assumes
    inv: cdcl_W-all-struct-inv S and
   fw: cdcl_W-merge S T
  shows \mu_{FW} T < \mu_{FW} S
proof -
  let ?A = init\text{-}clss S
  have atm-clauses: atms-of-mm (clauses S) \subseteq atms-of-mm ?A
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def clauses-def by auto
  \mathbf{have}\ \mathit{atm-trail:}\ \mathit{atm-of}\ \lq\ \mathit{lits-of-l}\ (\mathit{trail}\ S)\subseteq \mathit{atms-of-mm}\ ?A
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def clauses-def by auto
  have n-d: no-dup (trail S)
   using inv unfolding cdcl_W-all-struct-inv-def by (auto simp: cdcl_W-M-level-inv-decomp)
  have [simp]: \neg no\text{-step } cdcl_W\text{-merge } S
   using fw by auto
  have [simp]: init-clss S = init-clss T
   using cdcl_W-merge-restart-cdcl_W [of S T] inv rtranclp-cdcl_W-init-clss
   unfolding cdcl_W-all-struct-inv-def
   \mathbf{by} \ (\mathit{meson} \ \mathit{cdcl}_W\text{-}\mathit{merge}.\mathit{simps} \ \mathit{cdcl}_W\text{-}\mathit{merge}\mathit{restart}.\mathit{simps} \ \mathit{cdcl}_W\text{-}\mathit{rf}.\mathit{simps} \ \mathit{fw})
  consider
     (merged) \ cdcl_{NOT}-merged-bj-learn S \ T
```

```
\mid (n-s) \text{ no-step } cdcl_W\text{-merge } T
    using cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn inv fw by blast
  then show ?thesis
    proof cases
      case merged
      then show ?thesis
        using cdcl_{NOT}-decreasing-measure' [OF - - atm-clauses, of T] atm-trail n-d
        by (auto split: if-split simp: comp-def image-image lits-of-def)
    next
      case n-s
      then show ?thesis by simp
    qed
qed
lemma wf-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge S T\}
  apply (rule wfP-if-measure[of - - \mu_{FW}])
  using cdcl_W-merge-\mu_{FW}-decreasing by blast
sublocale conflict-driven-clause-learning<sub>W</sub>-termination
  by unfold-locales (simp add: wf-cdcl<sub>W</sub>-merge)
lemma full-cdcl_W-s'-full-cdcl_W-merge-restart:
  assumes
    conflicting R = None  and
    inv: cdcl_W-all-struct-inv R
  shows full cdcl_W-s' R V \longleftrightarrow full <math>cdcl_W-merge-stgy R V (is ?s' \longleftrightarrow ?fw)
proof
  assume ?s'
  then have cdcl_W-s'** R V unfolding full-def by blast
  have cdcl_W-all-struct-inv V
    \mathbf{using} \ \langle cdcl_W \text{-}s'^{***} \ R \ V \rangle \ inv \ rtranclp\text{-}cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}inv \ rtranclp\text{-}cdcl_W \text{-}s'\text{-}rtranclp\text{-}cdcl_W \text{-}} \\
    by blast
  then have n-s: no-step cdcl_W-merge-stgy V
    using no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}stgy} by (meson \land full \ cdcl_W\text{-}s' \ R \ V \land full\text{-}def)
  have n-s-bj: no-step cdcl_W-bj V
    by (metis \langle cdcl_W - all - struct - inv \ V \rangle \langle full \ cdcl_W - s' \ R \ V \rangle \ bj \ full - def
      n-step-cdcl<sub>W</sub>-stqy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
  have n-s-cp: no-step cdcl_W-merge-cp V
    proof -
      { \mathbf{fix} \ ss :: 'st
        obtain ssa :: 'st \Rightarrow 'st where
          ff1: \forall s. \neg cdcl_W-all-struct-inv s \lor cdcl_W-s'-without-decide s (ssa s)
             \vee no-step cdcl_W-merge-cp s
          using conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp by moura
        have (\forall p \ s \ sa. \ \neg \ full \ p \ (s::'st) \ sa \lor p^{**} \ s \ sa \land no\text{-step} \ p \ sa) and
          (\forall p \ s \ sa. \ (\neg p^{**} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full \ p \ s \ sa)
          by (meson full-def)+
        then have \neg cdcl_W-merge-cp V ss
          using ff1 by (metis (no-types) \langle cdcl_W-all-struct-inv V\rangle \langle full\ cdcl_W-s' R V\rangle \langle cdcl_W-s'.simps
             cdcl_W-s'-without-decide.cases) }
      then show ?thesis
        \mathbf{by} blast
    qed
  consider
      (fw-no-confl) cdcl_W-merge-stgy** R\ V and conflicting\ V = None
    | (fw\text{-}confl) \ cdcl_W\text{-}merge\text{-}stgy^{**} \ R \ V \ \text{and} \ conflicting \ V \neq None \ \text{and} \ no\text{-}step \ cdcl_W\text{-}bj \ V
```

```
| (fw-dec-confl) S T U  where cdcl_W-merge-stgy** R S  and no-step cdcl_W-merge-cp S  and
       decide\ S\ T\ {\bf and}\ cdcl_W\mbox{-}merge\mbox{-}cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
   \mid (fw\text{-}dec\text{-}no\text{-}confl) \ S \ T \ \text{where} \ cdcl_W\text{-}merge\text{-}stgy^{**} \ R \ S \ \text{and} \ no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ S \ \text{and}
       decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ V\ and\ conflicting\ V=None
    | (cp\text{-}no\text{-}confl) \ cdcl_W\text{-}merge\text{-}cp^{**} \ R \ V \ \mathbf{and} \ conflicting \ V = None
    | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
   using rtranclp-cdcl_W-s'-no-step-cdcl<sub>W</sub>-s'-without-decide-decomp-into-cdcl<sub>W</sub>-merge | OF
     \langle cdcl_W \text{-}s'^{**} \mid R \mid V \rangle \mid assms] by auto
  then show ?fw
   proof cases
     case fw-no-confl
     then show ?thesis using n-s unfolding full-def by blast
   next
     case fw-confl
     then show ?thesis using n-s unfolding full-def by blast
     case fw-dec-confl
     have cdcl_W-merge-cp U V
       using n-s-bj by (metis\ cdcl_W-merge-cp.simps\ full-unfold\ fw-dec-confl(5))
     then have full1\ cdcl_W-merge-cp T\ V
       unfolding full1-def by (metis fw-dec-confl(4) n-s-cp tranclp-unfold-end)
     then have cdcl_W-merge-stay S V using (decide S T) (no-step cdcl_W-merge-cp S) by auto
     then show ?thesis using n-s \langle cdcl_W-merge-stgy** R S \rangle unfolding full-def by auto
   next
     case fw-dec-no-confl
     then have full cdcl_W-merge-cp T V
       using n-s-cp unfolding full-def by blast
     then have cdcl_W-merge-stay S V using \langle decide\ S\ T \rangle \langle no-step cdcl_W-merge-cp\ S \rangle by auto
     then show ?thesis using n-s < cdcl_W-merge-stgy** R > S unfolding full-def by auto
   next
     case cp-no-confl
     then have full cdcl_W-merge-cp R V
       by (simp add: full-def n-s-cp)
     then have R = V \vee cdcl_W-merge-stgy<sup>++</sup> R V
       using fw-s-cp unfolding full-unfold fw-s-cp
       by (metis (no-types) rtranclp-unfold tranclp-unfold-end)
     then show ?thesis
       by (simp add: full-def n-s rtranclp-unfold)
   next
     case cp-confl
     have full cdcl_W-bj V
       using n-s-bj unfolding full-def by blast
     then have full1 cdcl_W-merge-cp R V
       unfolding full1-def by (meson cdcl_W-merge-cp.conflict' cp-confl(1,2) n-s-cp
         rtranclp-into-tranclp1)
     then show ?thesis using n-s unfolding full-def by auto
   qed
next
 assume ?fw
 then have cdcl_W^{**} R V using rtranclp-mono[of cdcl_W-merge-stgy cdcl_W^{**}]
    cdcl_W-merge-stgy-rtranclp-cdcl_W unfolding full-def by auto
  then have inv': cdcl_W-all-struct-inv V using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
 have cdcl_W-s'** R V
   using \langle fw \rangle by (simp add: full-def inv rtranclp-cdcl<sub>W</sub>-merge-stgy-rtranclp-cdcl<sub>W</sub>-s')
 moreover have no-step cdcl_W-s' V
   proof cases
```

```
assume conflicting V = None
     then show ?thesis
       by (metis inv' (full cdcl_W-merge-stqy R V) full-def
         no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s'
   next
     assume confl-V: conflicting V \neq None
     then have no-step cdcl_W-bj V
     using rtranclp-cdcl_W-merge-stgy-no-step-cdcl<sub>W</sub>-bj by (meson \ \ full \ cdcl_W-merge-stgy R \ \ V)
       assms(1) full-def)
     then show ?thesis using confl-V by (fastforce simp: cdcl<sub>W</sub>-s'.simps full1-def cdcl<sub>W</sub>-cp.simps
       dest!: tranclpD elim: rulesE)
   qed
 ultimately show ?s' unfolding full-def by blast
lemma full-cdcl_W-stgy-full-cdcl_W-merge:
 assumes
   conflicting R = None  and
   inv:\ cdcl_W\text{-}all\text{-}struct\text{-}inv\ R
 shows full cdcl_W-stgy R V \longleftrightarrow full <math>cdcl_W-merge-stgy R V
 by (simp\ add:\ assms(1)\ full-cdcl_W-s'-full-cdcl_W-merge-restart\ full-cdcl_W-stgy-iff-full-cdcl_W-s'
lemma full-cdcl_W-merge-stgy-final-state-conclusive':
 fixes S' :: 'st
 assumes full: full cdcl_W-merge-stgy (init-state N) S'
 and no\text{-}d: distinct\text{-}mset\text{-}mset\ N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset N))
   \vee (conflicting S' = None \wedge trail S' \models asm N \wedge satisfiable (set-mset N))
proof -
 have cdcl_W-all-struct-inv (init-state N)
   using no-d unfolding cdcl_W-all-struct-inv-def by auto
 moreover have conflicting (init-state N) = None
   by auto
 ultimately show ?thesis
   using full full-cdcl_W-stgy-final-state-conclusive-from-init-state
   full-cdcl_W-stqy-full-cdcl_W-merge no-d by presburger
qed
end
theory CDCL-W-Incremental
\mathbf{imports}\ \mathit{CDCL}\text{-}\mathit{W}\text{-}\mathit{Termination}
begin
```

2.4 Incremental SAT solving

```
\begin{aligned} & \textbf{locale} \ \ \textit{state}_W \text{-} \textit{adding-init-clause} = \\ & \textit{state}_W \\ & - \text{functions about the state:} \\ & - \text{getter:} \\ & \textit{trail init-clss learned-clss backtrack-lvl conflicting} \\ & - \text{setter:} \\ & \textit{cons-trail tl-trail add-learned-cls remove-cls update-backtrack-lvl update-conflicting} \end{aligned}
```

```
— Some specific states:
    init-state
    restart-state
  for
    trail :: 'st \Rightarrow ('v, \ 'v \ clause) \ ann	ext{-}lits \ \mathbf{and} \ init	ext{-}clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    init-state :: 'v clauses \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st +
  fixes
    add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st
  assumes
    trail-add-init-cls[simp]:
      \bigwedge st\ C.\ trail\ (add-init-cls\ C\ st) = trail\ st\ and
    init-clss-add-init-cls[simp]:
      \bigwedge st\ C.\ init\text{-}clss\ (add\text{-}init\text{-}cls\ C\ st) = \{\#C\#\} + init\text{-}clss\ st
      and
    learned-clss-add-init-cls[simp]:
      \bigwedge st\ C.\ learned\text{-}clss\ (add\text{-}init\text{-}cls\ C\ st) = learned\text{-}clss\ st\ and
    backtrack-lvl-add-init-cls[simp]:
      \bigwedgest C. no-dup (trail st) \Longrightarrow backtrack-lvl (add-init-cls C st) = backtrack-lvl st and
    conflicting-add-init-cls[simp]:
      \bigwedge st\ C.\ conflicting\ (add-init-cls\ C\ st) = conflicting\ st
begin
lemma clauses-add-init-cls[simp]:
   clauses (add-init-cls NS) = {\#N\#} + init-clss S + learned-clss S
   unfolding clauses-def by auto
lemma reduce-trail-to-add-init-cls[simp]:
  trail\ (reduce-trail-to\ F\ (add-init-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
  by (rule trail-eq-reduce-trail-to-eq) auto
lemma conflicting-add-init-cls-iff-conflicting[simp]:
  conflicting\ (add\mbox{-}init\mbox{-}cls\ C\ S) = None \longleftrightarrow conflicting\ S = None
  by fastforce+
end
locale\ conflict-driven-clause-learning-with-adding-init-clause_W =
  state_W-adding-init-clause
    — functions for the state:
       — access functions:
    trail init-clss learned-clss backtrack-lvl conflicting
        - changing state:
    cons\text{-}trail\ tl\text{-}trail\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
```

```
update-conflicting
      — get state:
    init-state
    restart-state
      — Adding a clause:
    add-init-cls
  for
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ and
   hd\text{-}trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann\text{-}lit \ \mathbf{and}
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v clauses and
   backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v \ clause \ option \ \mathbf{and}
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
   tl-trail :: 'st \Rightarrow 'st and
   add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
   remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   init-state :: 'v clauses \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st and
    add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st
begin
sublocale conflict-driven-clause-learningW
  by unfold-locales
This invariant holds all the invariant related to the strategy. See the structural invariant in
cdcl_W-all-struct-inv
definition cdcl_W-stgy-invariant where
cdcl_W-stgy-invariant S \longleftrightarrow
  conflict-is-false-with-level S
  \land no-clause-is-false S
  \land \ \textit{no-smaller-confl} \ S
  \land no-clause-is-false S
lemma cdcl_W-stgy-cdcl<sub>W</sub>-stgy-invariant:
  assumes
   cdcl_W: cdcl_W-stgy S T and
   inv-s: cdcl_W-stgy-invariant S and
   inv: cdcl_W-all-struct-inv S
  shows
    cdcl_W-stqy-invariant T
  unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply (intro conjI)
   apply (rule cdcl_W-stgy-ex-lit-of-max-level[of S])
   using assms unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply auto[7]
   using cdcl_W cdcl_W-stgy-not-non-negated-init-clss apply simp
  apply (rule cdcl_W-stgy-no-smaller-confl-inv)
  using assms unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply auto[4]
  using cdcl_W cdcl_W-stgy-not-non-negated-init-clss by auto
lemma rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant:
```

assumes

```
cdcl_W: cdcl_W-stgy^{**} S T and
  inv-s: cdcl_W-stgy-invariant S and
  inv: cdcl_W-all-struct-inv S
  shows
   cdcl_W-stgy-invariant T
  using assms apply (induction)
   apply simp
  \mathbf{using}\ cdcl_W-stgy-cdcl_W-stgy-invariant rtranclp-cdcl_W-all-struct-inv-inv
  rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
abbreviation decr-bt-lvl where
decr-bt-lvl \ S \equiv update-backtrack-lvl \ (backtrack-lvl \ S - 1) \ S
When we add a new clause, we reduce the trail until we get to the first literal included in C.
Then we can mark the conflict.
fun cut-trail-wrt-clause where
cut-trail-wrt-clause C [] S = S
\textit{cut-trail-wrt-clause} \ C \ (\textit{Decided} \ L \ \# \ M) \ S =
  (if -L \in \# C then S)
   else cut-trail-wrt-clause C M (decr-bt-lvl (tl-trail S))) |
cut-trail-wrt-clause C (Propagated L - \# M) S =
  (if -L \in \# C then S)
   else cut-trail-wrt-clause C M (tl-trail S))
definition add-new-clause-and-update :: 'v clause \Rightarrow 'st \Rightarrow 'st where
add-new-clause-and-update CS =
  (if trail S \models as \ CNot \ C
  then update-conflicting (Some C) (add-init-cls C
   (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S))
  else add-init-cls CS)
thm cut-trail-wrt-clause.induct
lemma init-clss-cut-trail-wrt-clause[simp]:
  init-clss (cut-trail-wrt-clause C M S) = init-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma learned-clss-cut-trail-wrt-clause[simp]:
  learned-clss (cut-trail-wrt-clause C M S) = learned-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma conflicting-clss-cut-trail-wrt-clause[simp]:
  conflicting (cut-trail-wrt-clause C M S) = conflicting S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma trail-cut-trail-wrt-clause:
 \exists M. trail S = M \otimes trail (cut-trail-wrt-clause C (trail S) S)
proof (induction trail S arbitrary: S rule: ann-lit-list-induct)
 case Nil
 then show ?case by simp
  case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail S)] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
next
  case (Propagated L l M) note IH = this(1)[of tl-trail S] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
```

qed

```
\mathbf{lemma} \ n\text{-}dup\text{-}no\text{-}dup\text{-}trail\text{-}cut\text{-}trail\text{-}wrt\text{-}clause[simp]}:
 assumes n-d: no-dup (trail T)
 shows no-dup (trail (cut-trail-wrt-clause C (trail T) T))
proof -
 obtain M where
    M: trail \ T = M @ trail (cut-trail-wrt-clause \ C \ (trail \ T) \ T)
   using trail-cut-trail-wrt-clause [of T C] by auto
  show ?thesis
   using n-d unfolding arg-cong[OF M, of no-dup] by auto
qed
\mathbf{lemma}\ \mathit{cut-trail-wrt-clause-backtrack-lvl-length-decided}\colon
    backtrack-lvl T = count-decided (trail T)
  shows
   backtrack-lvl (cut-trail-wrt-clause C (trail T) T) =
     count-decided (trail (cut-trail-wrt-clause C (trail T) T))
  using assms
proof (induction trail T arbitrary:T rule: ann-lit-list-induct)
  case Nil
  then show ?case by simp
next
  case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
   and bt = this(3)
  then show ?case by auto
next
  case (Propagated L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt =
this(3)
 then show ?case by auto
qed
lemma cut-trail-wrt-clause-CNot-trail:
 assumes trail T \models as \ CNot \ C
 shows
    (trail\ ((cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))) \models as\ CNot\ C
  using assms
proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
  case Nil
  then show ?case by simp
  case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
   and bt = this(3)
  show ?case
   proof (cases count C (-L) = \theta)
     {f case} False
     then show ?thesis
       using IH M bt by (auto simp: true-annots-true-cls)
   next
     case True
     obtain mma :: 'v clause where
       f6: (mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow M \models a\ mma) \longrightarrow M \models as \{\{\#-l\#\} \mid l. \ l \in \#\ C\}
       using true-annots-def by blast
     have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
       using \mathit{CNot\text{-}def}\ \mathit{M}\ \mathit{bt}\ \mathbf{by}\ (\mathit{metis}\ (\mathit{no\text{-}types})\ \mathit{true\text{-}annots\text{-}def})
     then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
```

```
using f6 True M bt by (force simp: count-eq-zero-iff)
      then show ?thesis
        using IH true-annots-true-cls M by (auto simp: CNot-def)
    qed
next
  case (Propagated L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt =
this(3)
 show ?case
    proof (cases count C (-L) = \theta)
      case False
      then show ?thesis
       using IH M bt by (auto simp: true-annots-true-cls)
    \mathbf{next}
      case True
      obtain mma :: 'v clause where
        f6: (mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow M \models a\ mma) \longrightarrow M \models as \{\{\#-l\#\} \mid l. \ l \in \#\ C\}
        using true-annots-def by blast
      have mma \in \{\{\#-l\#\} \mid l. \ l \in \#C\} \longrightarrow trail \ T \models a \ mma
        using \mathit{CNot\text{-}def}\ \mathit{M}\ \mathit{bt}\ \mathsf{by}\ (\mathit{metis}\ (\mathit{no\text{-}types})\ \mathit{true\text{-}annots\text{-}def})
      then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
        using f6 True M bt by (force simp: count-eq-zero-iff)
      then show ?thesis
        using IH true-annots-true-cls M by (auto simp: CNot-def)
    qed
qed
\mathbf{lemma}\ \mathit{cut-trail-wrt-clause-hd-trail-in-or-empty-trail}:
  ((\forall L \in \#C. -L \notin lits - of -l (trail T)) \land trail (cut-trail-wrt-clause C (trail T) T) = [])
    \vee (-lit\text{-}of \ (hd \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))) \in \# \ C
       \land length (trail (cut-trail-wrt-clause C (trail T) T)) \geq 1)
  using assms
proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
  case Nil
  then show ?case by simp
  case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
  then show ?case by simp force
next
  case (Propagated L l M) note IH = this(1)[of\ tl\ trail\ T] and M = this(2)[symmetric]
  then show ?case by simp force
qed
We can fully run cdcl_W-s or add a clause. Remark that we use cdcl_W-s to avoid an explicit
skip, resolve, and backtrack normalisation to get rid of the conflict C if possible.
inductive incremental-cdcl<sub>W</sub> :: 'st \Rightarrow 'st \Rightarrow bool for S where
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ C \Longrightarrow \ conflicting \ S = None \Longrightarrow
   trail S \models as CNot C \Longrightarrow
  full\ cdcl_W-stgy
     (update\text{-}conflicting\ (Some\ C))
       (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S)))\ T \Longrightarrow
   incremental\text{-}cdcl_W \ S \ T \ |
add-no-confl:
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ C \Longrightarrow \ conflicting \ S = None \Longrightarrow
   \neg trail \ S \models as \ CNot \ C \Longrightarrow
   full\ cdcl_W-stqy (add-init-cls C S) T \implies
```

```
\mathbf{lemma}\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}add\text{-}new\text{-}clause\text{-}and\text{-}update\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{:}}
  assumes
    inv-T: cdcl_W-all-struct-inv T and
    tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail\ T \models as\ CNot\ C and
    [simp]: distinct-mset C
  shows cdcl_W-all-struct-inv (add-new-clause-and-update C T) (is cdcl_W-all-struct-inv ?T')
proof
  let ?T = update\text{-conflicting (Some C)}
   (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
  obtain M where
    M: trail \ T = M @ trail (cut-trail-wrt-clause \ C \ (trail \ T) \ T)
     using trail-cut-trail-wrt-clause of T C by blast
 have H[dest]: \Lambda x. \ x \in lits\text{-}of\text{-}l \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T)) \Longrightarrow
   x \in lits-of-l (trail\ T)
   using inv-T arg-cong[OF M, of lits-of-l] by auto
  have H'[dest]: \bigwedge x. \ x \in set \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T)) \Longrightarrow
   x \in set (trail T)
   using inv-T arg-cong[OF M, of set] by auto
  have H-proped: \Lambda x. x \in set (get-all-mark-of-propagated (trail (cut-trail-wrt-clause C
  (trail\ T)\ T))) \Longrightarrow x \in set\ (get-all-mark-of-propagated\ (trail\ T))
  using inv-T arg-cong[OF M, of get-all-mark-of-propagated] by auto
  have [simp]: no-strange-atm ?T
   using inv-T unfolding cdcl_W-all-struct-inv-def no-strange-atm-def add-new-clause-and-update-def
    cdcl_W-M-level-inv-def by (auto 20 1)
  have M-lev: cdcl_W-M-level-inv T
   using inv-T unfolding cdcl_W-all-struct-inv-def by blast
  then have no-dup (M @ trail (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))
   unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
  then have [simp]: no-dup (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
   by auto
  have consistent-interp (lits-of-l (M @ trail (cut-trail-wrt-clause C (trail T) T)))
    using M-lev unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
  then have [simp]: consistent-interp (lits-of-l (trail (cut-trail-wrt-clause C
    (trail\ T)\ T)))
   unfolding consistent-interp-def by auto
  have [simp]: cdcl_W-M-level-inv ?T
   using M-lev unfolding cdcl_W-M-level-inv-def by (auto dest: H H'
     simp: M-lev\ cdcl_W-M-level-inv-def\ cut-trail-wrt-clause-backtrack-lvl-length-decided)
 have [simp]: \land s. \ s \in \# \ learned\text{-}clss \ T \Longrightarrow \neg tautology \ s
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
  have distinct\text{-}cdcl_W\text{-}state\ T
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
  then have [simp]: distinct-cdcl_W-state ?T
   unfolding distinct\text{-}cdcl_W\text{-}state\text{-}def by auto
  have cdcl_W-conflicting T
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
```

```
have trail ?T \models as CNot C
    \mathbf{by}\ (simp\ add:\ cut\text{-}trail\text{-}wrt\text{-}clause\text{-}CNot\text{-}trail)
  then have [simp]: cdcl_W-conflicting ?T
   unfolding cdcl_W-conflicting-def apply simp
   by (metis M \langle cdcl_W - conflicting T \rangle append-assoc cdcl_W - conflicting - decomp(2))
  have
   decomp-T: all-decomposition-implies-m \ (init-clss \ T) \ (get-all-ann-decomposition \ (trail \ T))
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
  have all-decomposition-implies-m (init-clss ?T)
   (qet-all-ann-decomposition (trail ?T))
   unfolding all-decomposition-implies-def
   proof clarify
     \mathbf{fix} \ a \ b
     assume (a, b) \in set (qet-all-ann-decomposition (trail ?T))
     from in-get-all-ann-decomposition-in-get-all-ann-decomposition-prepend [OF\ this,\ of\ M]
     obtain b' where
       (a, b' \otimes b) \in set (qet-all-ann-decomposition (trail T))
       using M by auto
     then have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ T) \models ps \ unmark-l \ (b' @ b)
       using decomp-T unfolding all-decomposition-implies-def by fastforce
     then have unmark-l a \cup set-mset (init-clss ?T) \models ps unmark-l (b \otimes b')
       by (simp add: Un-commute)
     then show unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ ?T) \models ps \ unmark-l \ b
       by (auto simp: image-Un)
   qed
 have [simp]: cdcl_W-learned-clause ?T
   using inv-T unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def
   by (auto dest!: H-proped simp: clauses-def)
 show ?thesis
   using \langle all\text{-}decomposition\text{-}implies\text{-}m \quad (init\text{-}clss ?T)
   (get-all-ann-decomposition (trail ?T))
   unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
qed
\mathbf{lemma}\ cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stqy-inv:
 assumes
   inv-s: cdcl_W-stgy-invariant T and
   inv: cdcl_W-all-struct-inv T and
   tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail\ T \models as\ CNot\ C and
   [simp]: distinct-mset C
  shows cdcl_W-stgy-invariant (add-new-clause-and-update C T)
   (is cdcl_W-stgy-invariant ?T')
proof -
 have cdcl_W-all-struct-inv ?T'
   using cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl<sub>W</sub>-all-struct-inv assms by blast
  then have
   no-dup-cut-T[simp]: no-dup (trail (cut-trail-wrt-clause C (trail T) T)) and
   n-d[simp]: no-dup (trail T)
   using cdcl_W-M-level-inv-decomp(2) cdcl_W-all-struct-inv-def inv
   n-dup-no-dup-trail-cut-trail-wrt-clause by blast+
  then have trail (add-new-clause-and-update C T) \models as CNot C
   by (simp add: add-new-clause-and-update-def cut-trail-wrt-clause-CNot-trail
     cdcl_W-M-level-inv-def cdcl_W-all-struct-inv-def)
```

```
obtain MT where
   MT: trail T = MT @ trail (cut-trail-wrt-clause C (trail T) T)
   using trail-cut-trail-wrt-clause by blast
 consider
     (false) \ \forall \ L \in \#C. - L \notin lits \text{-} of \text{-} l \ (trail \ T) \ and
       trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T) = []
   | (not-false)
     - lit-of (hd (trail (cut-trail-wrt-clause C (trail T) T))) \in \# C and
     1 \leq length (trail (cut-trail-wrt-clause C (trail T) T))
   using cut-trail-wrt-clause-hd-trail-in-or-empty-trail of C T by auto
 then show ?thesis
   proof cases
     case false note C = this(1) and empty-tr = this(2)
     then have [simp]: C = \{\#\}
       by (simp add: in-CNot-implies-uminus(2) multiset-eqI)
     show ?thesis
       using empty-tr unfolding cdcl_W-stgy-invariant-def no-smaller-confl-def
       cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
   next
     case not-false note C = this(1) and l = this(2)
     \mathbf{let} \ ?L = - \ lit\text{-}of \ (hd \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T)))
     have L: get-level (trail (cut-trail-wrt-clause C (trail T) T)) (-?L)
       = count\text{-}decided (trail (cut\text{-}trail\text{-}wrt\text{-}clause C (trail T) T))
       apply (cases trail (add-init-cls C
           (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T));
        cases hd (trail (cut-trail-wrt-clause C (trail T) T)))
       using l by (auto split: if-split-asm
         simp:rev-swap[symmetric] \ add-new-clause-and-update-def)
     have L': count-decided (trail (cut-trail-wrt-clause C
       (trail\ T)\ T)
       = backtrack-lvl (cut-trail-wrt-clause C (trail T) T)
       using \langle cdcl_W-all-struct-inv ?T'\rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
       by (auto simp:add-new-clause-and-update-def)
     have [simp]: no-smaller-confl (update-conflicting (Some C)
       (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T)))
       unfolding no-smaller-confl-def
     proof (clarify, goal-cases)
       case (1 \ M \ K \ M' \ D)
       then consider
           (DC) D = C
         \mid (D\text{-}T)\ D\in \#\ clauses\ T
         by (auto simp: clauses-def split: if-split-asm)
       then show False
         proof cases
          case D-T
          have no-smaller-confl T
            using inv-s unfolding cdcl<sub>W</sub>-stqy-invariant-def by auto
          have (MT @ M') @ Decided K \# M = trail T
            using MT 1(1) by auto
           then show False using D-T \langle no\text{-smaller-confl} \ T \rangle \ 1(\beta) unfolding no-smaller-confl-def by
blast
         next
           case DC note -[simp] = this
           then have atm\text{-}of (-?L) \in atm\text{-}of (lits\text{-}of\text{-}l M)
```

```
using 1(3) C in-CNot-implies-uminus(2) by blast
           moreover
            have lit-of (hd (M' @ Decided K # [])) = -?L
               using l 1(1)[symmetric] inv
              by (cases M', cases trail (add-init-cls C
                  (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T)))
               (auto dest!: arg-cong[of - \# - - hd] simp: hd-append cdcl_W-all-struct-inv-def
                 cdcl_W-M-level-inv-def)
            from arg-cong[OF this, of atm-of]
            have atm\text{-}of (-?L) \in atm\text{-}of (lits\text{-}of\text{-}l (M' @ Decided } K \# []))
               by (cases (M' @ Decided K \# [])) auto
           moreover have no-dup (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
             using \langle cdcl_W - all - struct - inv ?T' \rangle unfolding cdcl_W - all - struct - inv - def
             cdcl_W-M-level-inv-def by (auto simp: add-new-clause-and-update-def)
           ultimately show False
             unfolding 1(1)[symmetric, simplified] by (auto simp: lits-of-def)
       qed
     qed
     show ?thesis using L L' C
       unfolding cdcl_W-stgy-invariant-def
       unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
   qed
qed
lemma full-cdcl_W-stgy-inv-normal-form:
 assumes
   full: full cdcl_W-stgy S T and
   inv-s: cdcl_W-stgy-invariant S and
   inv: cdcl_W-all-struct-inv S
 shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss S))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ S \wedge satisfiable (set-mset (init-clss \ S))
proof -
 have no-step cdcl_W-stgy T
   using full unfolding full-def by blast
 moreover have cdcl_W-all-struct-inv T and inv-s: cdcl_W-stgy-invariant T
   apply (metis rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub> full full-def inv
     rtranclp-cdcl_W-all-struct-inv-inv)
   by (metis full full-def inv inv-s rtranclp-cdcl_W-stqy-cdcl_W-stqy-invariant)
  ultimately have conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail T \models asm init-clss T
   using cdcl_W-stgy-final-state-conclusive [of T] full
   unfolding cdcl_W-all-struct-inv-def cdcl_W-stqy-invariant-def full-def by fast
  moreover have consistent-interp (lits-of-l (trail T))
   \mathbf{using} \ \langle cdcl_W \text{-}all \text{-}struct \text{-}inv \ T \rangle \ \mathbf{unfolding} \ cdcl_W \text{-}all \text{-}struct \text{-}inv \text{-}def \ cdcl_W \text{-}M \text{-}level \text{-}inv \text{-}def
   by auto
  moreover have init-clss S = init-clss T
   using inv unfolding cdcl_W-all-struct-inv-def
   by (metis\ rtranclp-cdcl_W-stgy-no-more-init-clss\ full\ full-def)
 ultimately show ?thesis
   by (metis satisfiable-carac' true-annot-def true-annots-def true-clss-def)
qed
lemma incremental\text{-}cdcl_W\text{-}inv:
 assumes
   inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
```

```
s-inv: cdcl_W-stgy-invariant S
  \mathbf{shows}
    cdcl_W-all-struct-inv T and
   cdcl_W-stgy-invariant T
  using inc
proof (induction)
 case (add\text{-}confl\ C\ T)
 let ?T = (update\text{-}conflicting (Some C) (add\text{-}init\text{-}cls C)
   (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S)))
 have cdcl_W-all-struct-inv ?T and inv-s-T: cdcl_W-stgy-invariant ?T
   using add-confl.hyps(1,2,4) add-new-clause-and-update-def
   cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv inv apply auto[1]
   using add-confl.hyps(1,2,4) add-new-clause-and-update-def
    cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stgy-inv inv s-inv by auto
  case 1 show ?case
    by (metis add-confl.hyps(1,2,4,5)) add-new-clause-and-update-def
      cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv
      rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stqy-rtranclp-cdcl_W full-def inv)
 case 2 show ?case
   by (metis inv-s-T add-confl.hyps(1,2,4,5) add-new-clause-and-update-def
     cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv full-def inv
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
next
  case (add-no-confl \ C \ T)
 case 1
 have cdcl_W-all-struct-inv (add-init-cls CS)
   using inv \langle distinct\text{-}mset \ C \rangle unfolding cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def no-strange-atm-def
   cdcl_W-M-level-inv-def distinct-cdcl_W-state-def cdcl_W-conflicting-def cdcl_W-learned-clause-def
   by (auto 9 1 simp: all-decomposition-implies-insert-single clauses-def)
  then show ?case
   using add-no-confl(5) unfolding full-def by (auto intro: rtranclp-cdcl<sub>W</sub>-stgy-cdcl<sub>W</sub>-all-struct-inv)
  case 2
 have nc: \forall M. (\exists K \ i \ M'. \ trail \ S = M' @ Decided \ K \# M) \longrightarrow \neg M \models as \ CNot \ C
   using \langle \neg trail \ S \models as \ CNot \ C \rangle
   by (auto simp: true-annots-true-cls-def-iff-negation-in-model)
 have cdcl_W-stgy-invariant (add-init-cls C S)
   using s-inv \langle \neg trail \ S \models as \ CNot \ C \rangle inv unfolding cdcl_W-stqy-invariant-def
   no-smaller-confl-def\ eq-commute[of-trail-]\ cdcl_W-M-level-inv-def\ cdcl_W-all-struct-inv-def
   by (auto simp: clauses-def nc)
  then show ?case
   by (metis \langle cdcl_W - all - struct - inv \ (add - init - cls \ C \ S) \rangle add -no-confl. hyps(5) full-def
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
qed
lemma rtranclp-incremental-cdcl_W-inv:
 assumes
    inc: incremental - cdcl_W^{**} S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  \mathbf{shows}
    cdcl_W-all-struct-inv T and
   cdcl_W-stgy-invariant T
    using inc apply induction
```

```
using inv apply simp
  using s-inv apply simp
  using incremental\text{-}cdcl_W\text{-}inv by blast+
\mathbf{lemma}\ incremental\text{-}conclusive\text{-}state:
 assumes
   inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
 shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
 using inc
proof induction
 print-cases
 case (add-confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4) and
 full = this(5)
 have full cdcl_W-stqy T T
   using full unfolding full-def by auto
  then show ?case
   using full C conf dist tr
   by (metis\ full-cdcl_W\ -stgy\ -inv\ -normal\ -form\ incremental\ -cdcl_W\ .simps\ incremental\ -cdcl_W\ -inv(1)
     incremental\text{-}cdcl_W\text{-}inv(2) inv s\text{-}inv)
next
  case (add-no-conft C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4)
   and full = this(5)
 have full cdcl_W-stgy T T
   using full unfolding full-def by auto
 then show ?case
    by (meson C conf dist full full-cdcl<sub>W</sub>-stgy-inv-normal-form incremental-cdcl<sub>W</sub> add-no-confl
      incremental - cdcl_W - inv(1) incremental - cdcl_W - inv(2) inv s - inv tr)
qed
\mathbf{lemma}\ tranclp\text{-}incremental\text{-}correct:
 assumes
    inc: incremental - cdcl_W^{++} S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
  using inc apply induction
  using assms incremental-conclusive-state apply blast
 by (meson\ incremental\text{-}conclusive\text{-}state\ inv\ rtranclp\text{-}incremental\text{-}cdcl_W\text{-}inv\ s\text{-}inv}
   tranclp-into-rtranclp)
end
end
theory CDCL-W-Restart
imports CDCL-W-Merge
begin
```

2.4.1 Adding Restarts

 $locale \ cdcl_W$ -restart =

```
conflict-driven-clause-learning_W
    — functions for the state:
     — access functions:
   trail init-clss learned-clss backtrack-lvl conflicting
      — changing state:
    cons-trail tl-trail add-learned-cls remove-cls update-backtrack-lvl
    update-conflicting
     — get state:
    init-state
   restart-state
  for
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v clauses and
   backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
   cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   init-state :: 'v clauses \Rightarrow 'st and
   restart-state :: 'st \Rightarrow 'st +
  fixes f :: nat \Rightarrow nat
  assumes f: unbounded f
begin
The condition of the differences of cardinality has to be strict. Otherwise, you could be in
a strange state, where nothing remains to do, but a restart is done. See the proof of well-
foundedness.
inductive cdcl_W-merge-with-restart where
restart-step:
  (cdcl_W-merge-stqy^{\sim}(card\ (set-mset (learned-clss T)) - card\ (set-mset (learned-clss S)))) S T
  \implies card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)) > f n
 \implies restart \ T \ U \implies cdcl_W-merge-with-restart (S, n) \ (U, Suc \ n)
restart-full: full1 cdcl_W-merge-stgy S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
lemma cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-merge-restart** (fst S) (fst T)
  \mathbf{by}\ (\mathit{induction}\ \mathit{rule}\colon \mathit{cdcl}_W\text{-}\mathit{merge-with-restart}.\mathit{induct})
  (auto dest!: relpowp-imp-rtranclp\ cdcl_W-merge-stgy-tranclp-cdcl_W-merge\ tranclp-into-rtranclp
    rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W-merge-rtranclp-cdcl_W-merge-restart
    fw-r-rf cdcl_W-rf.restart
    simp: full 1-def)
lemma cdcl_W-merge-with-restart-rtranclp-cdcl_W:
  cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W^{**} (fst S) (fst T)
  by (induction rule: cdcl_W-merge-with-restart.induct)
  (auto dest!: relpowp-imp-rtranclp\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W\ cdcl_W.rf
    cdcl_W-rf.restart tranclp-into-rtranclp simp: full1-def)
```

lemma $cdcl_W$ -merge-with-restart-increasing-number:

```
cdcl_W-merge-with-restart S T \Longrightarrow snd T = 1 + snd S
  by (induction rule: cdcl_W-merge-with-restart.induct) auto
lemma full1 cdcl_W-merge-stgy S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
  using restart-full by blast
lemma cdcl_W-all-struct-inv-learned-clss-bound:
 assumes inv: cdcl_W-all-struct-inv S
 shows set-mset (learned-clss S) \subseteq simple-clss (atms-of-mm (init-clss S))
proof
 \mathbf{fix} \ C
 assume C: C \in set\text{-}mset \ (learned\text{-}clss \ S)
 have distinct-mset C
   using C inv unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def distinct-mset-set-def
   by auto
 moreover have \neg tautology C
   using C inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-learned-clause-def by auto
   have atms-of C \subseteq atms-of-mm (learned-clss S)
     using C by auto
   then have atms-of C \subseteq atms-of-mm (init-clss S)
   using inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def by force
  moreover have finite (atms-of-mm \ (init-clss \ S))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  ultimately show C \in simple-clss (atms-of-mm (init-clss S))
   using distinct-mset-not-tautology-implies-in-simple-clss simple-clss-mono
   by blast
qed
lemma cdcl_W-merge-with-restart-init-clss:
  cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-M-level-inv (fst S) \Longrightarrow
  init\text{-}clss\ (fst\ S) = init\text{-}clss\ (fst\ T)
 using cdcl_W-merge-with-restart-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-init-clss by blast
lemma
  wf \{(T, S). \ cdcl_W - all - struct - inv \ (fst \ S) \land cdcl_W - merge - with - restart \ S \ T\}
proof (rule ccontr)
 assume ¬ ?thesis
   then obtain g where
   g: \bigwedge i. \ cdcl_W-merge-with-restart (g\ i)\ (g\ (Suc\ i)) and
   inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  { fix i
   have init-clss\ (fst\ (g\ i))=init-clss\ (fst\ (g\ \theta))
     apply (induction i)
       apply simp
     using g inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-merge-with-restart-init-clss)
   } note init-q = this
 let ?S = q \theta
 have finite (atms-of-mm \ (init-clss \ (fst \ ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 have snd-g: \bigwedge i. snd (g i) = i + snd (g 0)
   apply (induct-tac i)
     apply simp
   by (metis Suc-eq-plus1-left add-Suc cdcl_W-merge-with-restart-increasing-number g)
  then have snd-g-\theta: \bigwedge i. i > 0 \Longrightarrow snd (g i) = i + snd (g \theta)
```

```
by blast
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
 { fix i
   assume no-step cdcl_W-merge-stgy (fst (g \ i))
   with q[of i]
   have False
     proof (induction rule: cdcl_W-merge-with-restart.induct)
      case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
      obtain S' where cdcl_W-merge-stgy S S'
        using H c by (metis gr-implies-not0 relpowp-E2)
      then show False using n-s by auto
     next
      case (restart-full S T)
      then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
 obtain m T where
   m: m = card (set\text{-}mset (learned\text{-}clss T)) - card (set\text{-}mset (learned\text{-}clss (fst (q k))))) and
   m > f \ (snd \ (g \ k)) and
   restart T (fst (g(k+1))) and
   using g[of k] H[of Suc k] by (force simp: cdcl_W-merge-with-restart.simps full1-def)
 have cdcl_W-merge-stgy** (fst (g k)) T
   using cdcl_W-merge-stgy relpowp-imp-rtranclp by metis
 then have cdcl_W-all-struct-inv T
   using inv[of k] rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W
   by blast
 moreover have card (set-mset (learned-clss T)) – card (set-mset (learned-clss (fst (q k))))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m > f \ (snd \ (g \ k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     by linarith
 moreover
   have init\text{-}clss\ (fst\ (g\ k))=init\text{-}clss\ T
     using \langle cdcl_W-merge-stgy** (fst (g \ k)) T \rangle rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W
     rtranclp-cdcl<sub>W</sub>-init-clss inv unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
   then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
 ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp add: \langle finite\ (atms-of-mm\ (init-clss\ (fst\ (g\ 0)))) \rangle simple-clss-finite
     card-mono leD)
qed
lemma cdcl_W-merge-with-restart-distinct-mset-clauses:
 assumes invR: cdcl_W-all-struct-inv (fst R) and
```

```
st: cdcl_W-merge-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
 case (restart-full S T)
 then show ?case using rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
\mathbf{next}
 case (restart-step T S n U)
 then have distinct-mset (clauses T)
   using rtranclp-cdcl<sub>W</sub>-merge-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: relpowp-imp-rtranclp)
 then show ?case using \langle restart \ T \ U \rangle by (metis\ clauses-restart\ distinct-mset-union\ fstI
    mset-le-exists-conv restart.cases state-eq-clauses)
qed
inductive cdcl_W-with-restart where
restart-step:
  (cdcl_W - stgy \sim (card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)))) S T \Longrightarrow
    card\ (set\text{-}mset\ (learned\text{-}clss\ T)) - card\ (set\text{-}mset\ (learned\text{-}clss\ S)) > f\ n \Longrightarrow
    restart \ T \ U \Longrightarrow
   cdcl_W-with-restart (S, n) (U, Suc n)
restart-full: full1 cdcl_W-stqy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
lemma cdcl_W-with-restart-rtranclp-cdcl_W:
  cdcl_W-with-restart S \ T \Longrightarrow cdcl_W^{**} \ (fst \ S) \ (fst \ T)
 apply (induction rule: cdcl_W-with-restart.induct)
 by (auto dest!: relpowp-imp-rtrancly tranclp-into-rtrancly fw-r-rf
    cdcl_W-rf.restart rtranclp-cdcl_W-stgy-rtranclp-cdcl_W cdcl_W-merge-restart-cdcl_W
   simp: full1-def)
lemma cdcl_W-with-restart-increasing-number:
  cdcl_W-with-restart S T \Longrightarrow snd T = 1 + snd S
 by (induction rule: cdcl_W-with-restart.induct) auto
lemma full1 cdcl_W-stqy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
 using restart-full by blast
lemma cdcl_W-with-restart-init-clss:
  cdcl_W-with-restart S \ T \implies cdcl_W-M-level-inv (fst S) \implies init-clss (fst S) = init-clss (fst T)
  using cdcl_W-with-restart-rtranclp-cdcl_W rtranclp-cdcl_W-init-clss by blast
  wf \{(T, S). \ cdcl_W \text{-}all\text{-}struct\text{-}inv \ (fst \ S) \land cdcl_W \text{-}with\text{-}restart \ S \ T\}
proof (rule ccontr)
 assume ¬ ?thesis
   then obtain q where
   g: \bigwedge i. \ cdcl_W-with-restart (g\ i)\ (g\ (Suc\ i)) and
   inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  \{ \text{ fix } i \}
   have init-clss (fst (g\ i)) = init-clss (fst (g\ 0))
     apply (induction i)
       apply simp
```

```
using g inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-with-restart-init-clss)
   } note init-g = this
 let ?S = g \theta
 have finite (atms-of-mm (init-clss (fst ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  have snd-g: \bigwedge i. snd (g i) = i + snd (g 0)
   apply (induct-tac\ i)
     apply simp
   by (metis Suc-eq-plus1-left add-Suc cdcl_W-with-restart-increasing-number g)
  then have snd-g-\theta: \bigwedge i. i > \theta \Longrightarrow snd (g i) = i + snd (g \theta)
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
   assume no-step cdcl_W-stgy (fst (g i))
   with g[of i]
   have False
     proof (induction rule: cdcl_W-with-restart.induct)
       case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
       obtain S' where cdcl_W-stgy S S'
        using H c by (metis gr-implies-not0 relpowp-E2)
       then show False using n-s by auto
       case (restart-full S T)
       then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
  obtain m T where
   m: m = card (set\text{-}mset (learned\text{-}clss T)) - card (set\text{-}mset (learned\text{-}clss (fst (g k))))) and
   m > f (snd (g k)) and
   restart T (fst (g(k+1))) and
   cdcl_W-merge-stgy: (cdcl_W-stgy ^{\sim} m) (fst (g \ k)) T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-with-restart.simps full1-def)
  have cdcl_W-stgy^{**} (fst (g \ k)) T
   using cdcl_W-merge-stgy relpowp-imp-rtranclp by metis
  then have cdcl_W-all-struct-inv T
   using inv[of k] rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
 moreover have card (set-mset (learned-clss T)) – card (set-mset (learned-clss (fst (q k))))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m > f \ (snd \ (g \ k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     by linarith
 moreover
   have init-clss (fst (g k)) = init-clss T
     \mathbf{using} \ \langle cdcl_W\text{-}stgy\text{**}\ (fst\ (g\ k))\ \ T \rangle \ rtranclp\text{-}cdcl_W\text{-}stgy\text{-}rtranclp\text{-}cdcl_W\ rtranclp\text{-}cdcl_W\text{-}init\text{-}clss
     inv unfolding cdcl_W-all-struct-inv-def
     by blast
```

```
then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
  ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp add: \langle finite\ (atms-of-mm\ (init-clss\ (fst\ (g\ 0)))) \rangle simple-clss-finite
     card-mono leD)
qed
lemma cdcl_W-with-restart-distinct-mset-clauses:
 assumes invR: cdcl_W-all-struct-inv (fst R) and
 st: cdcl_W-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
 case (restart-full S T)
 then show ?case using rtranclp-cdcl_W-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
\mathbf{next}
  case (restart\text{-}step\ T\ S\ n\ U)
 then have distinct-mset (clauses T) using rtranclp-cdcl<sub>W</sub>-stqy-distinct-mset-clauses[of S T]
   unfolding full1-def by (auto dest: relpowp-imp-rtranclp)
 then show ?case using \langle restart\ T\ U \rangle by (metis\ clauses-restart\ distinct-mset-union\ fstI
    mset-le-exists-conv restart.cases state-eq-clauses)
qed
end
locale luby-sequence =
 fixes ur :: nat
 assumes ur > 0
begin
lemma exists-luby-decomp:
 fixes i :: nat
 shows \exists k :: nat. (2 \hat{k} - 1) < i \land i < 2 \hat{k} - 1) \lor i = 2 \hat{k} - 1
proof (induction i)
 case \theta
 then show ?case
   by (rule\ exI[of - \theta],\ simp)
next
 case (Suc\ n)
 then obtain k where 2 \ \widehat{} \ (k-1) \le n \land n < 2 \ \widehat{} \ k-1 \lor n=2 \ \widehat{} \ k-1
   by blast
 then consider
     (st-interv) 2 \ \widehat{} (k-1) \le n \text{ and } n \le 2 \ \widehat{} k-2
    (end\text{-}interv) 2 \widehat{\phantom{a}}(k-1) \leq n and n=2 \widehat{\phantom{a}}k-2
   |(pow2)| n = 2^k - 1
   by linarith
  then show ?case
   proof cases
     case st-interv
     then show ?thesis apply - apply (rule exI[of - k])
       by (metis (no-types, lifting) One-nat-def Suc-diff-Suc Suc-lessI
         \langle 2 \cap (k-1) \leq n \wedge n < 2 \cap k-1 \vee n = 2 \cap k-1 \rangle diff-self-eq-0
         dual-order.trans\ le-SucI\ le-imp-less-Suc\ numeral-2-eq-2\ one-le-numeral
```

```
one-le-power zero-less-numeral zero-less-power)
next
  case end-interv
  then show ?thesis apply - apply (rule exI[of - k]) by auto
next
  case pow2
  then show ?thesis apply - apply (rule exI[of - k+1]) by auto
qed
qed
```

Luby sequences are defined by:

- $2^k 1$, if $i = (2::'a)^k (1::'a)$
- luby-sequence-core $(i-2^{k-1}+1)$, if $(2::'a)^{k-1} \le i$ and $i \le (2::'a)^k (1::'a)$

Then the sequence is then scaled by a constant unit run (called *ur* here), strictly positive.

```
function luby-sequence-core :: nat \Rightarrow nat where
luby-sequence-core i =
 (if \exists k. \ i = 2\hat{\ }k - 1
  then 2^{(SOME k. i = 2^k - 1) - 1)}
  else luby-sequence-core (i-2^{(SOME\ k.\ 2^{(k-1)} \le i \land i < 2^k-1)-1)+1))
by auto
termination
proof (relation less-than, goal-cases)
 case 1
  then show ?case by auto
next
  case (2 i)
 let ?k = (SOME \ k. \ 2 \ (k-1) \le i \land i < 2 \ k-1)
  have 2^{(k-1)} \le i \land i < 2^{(k-1)}
   apply (rule some I-ex)
   using 2 exists-luby-decomp by blast
  then show ?case
   proof -
     have \forall n \ na. \ \neg (1::nat) \leq n \lor 1 \leq n \ \widehat{} \ na
       by (meson one-le-power)
     then have f1: (1::nat) \leq 2 \ \widehat{} \ (?k-1)
       using one-le-numeral by blast
     have f2: i - 2 \ (?k - 1) + 2 \ (?k - 1) = i
       using \langle 2 \ \widehat{\ } (?k-1) \leq i \land i < 2 \ \widehat{\ }?k-1 \rangle le-add-diff-inverse2 by blast
     have f3: 2 \ \widehat{\ }?k - 1 \neq Suc \ 0
       using f1 \langle 2 \ \widehat{\ } (?k-1) \leq i \wedge i < 2 \ \widehat{\ }?k-1 \rangle by linarith
     have 2 \hat{\ } ?k - (1::nat) \neq 0
       using \langle 2 \cap (?k-1) \leq i \wedge i < 2 \cap ?k-1 \rangle gr-implies-not0 by blast
     then have f_4: 2 \cap ?k \neq (1::nat)
       by linarith
     have f5: \forall n \ na. \ if \ na = 0 \ then \ (n::nat) \cap na = 1 \ else \ n \cap na = n * n \cap (na - 1)
       by (simp add: power-eq-if)
     then have ?k \neq 0
       using f4 by meson
     then have 2 \cap (?k-1) \neq Suc \ \theta
       using f5 f3 by presburger
     then have Suc \ \theta < 2 \ \widehat{\ } \ (?k-1)
```

```
using f1 by linarith
     then show ?thesis
      using f2 less-than-iff by presburger
   \mathbf{qed}
qed
function natlog2 :: nat \Rightarrow nat where
natlog2 \ n = (if \ n = 0 \ then \ 0 \ else \ 1 + natlog2 \ (n \ div \ 2))
 using not0-implies-Suc by auto
termination by (relation measure (\lambda n. n)) auto
declare natlog2.simps[simp del]
declare luby-sequence-core.simps[simp del]
lemma two-pover-n-eq-two-power-n'-eq:
 assumes H: (2::nat) ^ (k::nat) - 1 = 2 ^ k' - 1
 shows k' = k
proof -
 have (2::nat) \hat{\ } (k::nat) = 2 \hat{\ } k'
   using H by (metis One-nat-def Suc-pred zero-less-numeral zero-less-power)
 then show ?thesis by simp
qed
lemma luby-sequence-core-two-power-minus-one:
 luby-sequence-core (2\hat{k}-1)=2\hat{k}-1 (is ?L=?K)
proof -
 have decomp: \exists ka. 2 \hat{k} - 1 = 2 \hat{k}a - 1
   by auto
 have ?L = 2^{(SOME k'. (2::nat)^k - 1 = 2^k' - 1) - 1)}
   apply (subst luby-sequence-core.simps, subst decomp)
   by simp
 moreover have (SOME k'. (2::nat) \hat{k} - 1 = 2\hat{k}' - 1) = k
   apply (rule some-equality)
     apply \ simp
     using two-pover-n-eq-two-power-n'-eq by blast
 ultimately show ?thesis by presburger
qed
{\bf lemma}\ different\hbox{-} luby\hbox{-} decomposition\hbox{-} false:
 assumes
   H: 2 \cap (k - Suc \ \theta) \leq i \text{ and }
   k': i < 2 \ \hat{} k' - Suc \theta and
   k-k': k > k'
 shows False
proof -
 have 2 \hat{k}' - Suc \theta < 2 \hat{k} - Suc \theta
   using k-k' less-eq-Suc-le by auto
 then show ?thesis
   using H k' by linarith
qed
lemma luby-sequence-core-not-two-power-minus-one:
 assumes
   k-i: 2 \cap (k-1) \leq i and
   i-k: i < 2^k - 1
```

```
shows luby-sequence-core i = luby-sequence-core (i - 2 \hat{\ } (k - 1) + 1)
proof -
 have H: \neg (\exists ka. \ i = 2 \land ka - 1)
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain k'::nat where k': i = 2 \hat{k}' - 1 by blast
     have (2::nat) \hat{k}' - 1 < 2 \hat{k} - 1
       using i-k unfolding k'.
     then have (2::nat) \hat{k}' < 2 \hat{k}
       by linarith
     then have k' < k
       \mathbf{by} \ simp
     have 2^{(k-1)} \le 2^{(k'-1)} = 2^{(k'-1)}
       using k-i unfolding k'.
     then have (2::nat) \hat{k} (k-1) < 2 \hat{k}'
       by (metis Suc-diff-1 not-le not-less-eq zero-less-numeral zero-less-power)
     then have k-1 < k'
       by simp
     show False using \langle k' < k \rangle \langle k-1 < k' \rangle by linarith
   qed
 have \bigwedge k \ k'. 2 \ (k - Suc \ \theta) \le i \Longrightarrow i < 2 \ k - Suc \ \theta \Longrightarrow 2 \ (k' - Suc \ \theta) \le i \Longrightarrow
   i < 2 \hat{k}' - Suc \ \theta \Longrightarrow k = k'
   \mathbf{by}\ (\mathit{meson}\ \mathit{different-luby-decomposition-false}\ \mathit{linorder-neqE-nat})
  then have k: (SOME \ k. \ 2 \ \widehat{} \ (k - Suc \ \theta) \le i \land i < 2 \ \widehat{} \ k - Suc \ \theta) = k
   using k-i i-k by auto
 show ?thesis
   apply (subst luby-sequence-core.simps[of i], subst H)
   by (simp\ add:\ k)
qed
lemma unbounded-luby-sequence-core: unbounded luby-sequence-core
 unfolding bounded-def
proof
 assume \exists b. \forall n. luby-sequence-core n \leq b
 then obtain b where b: \bigwedge n. luby-sequence-core n \leq b
 have luby-sequence-core (2^{(b+1)} - 1) = 2^{b}
   using luby-sequence-core-two-power-minus-one [of b+1] by simp
 moreover have (2::nat)^b > b
   by (induction b) auto
 ultimately show False using b[of 2^{(b+1)} - 1] by linarith
qed
abbreviation luby-sequence :: nat \Rightarrow nat where
luby-sequence n \equiv ur * luby-sequence-core n
lemma bounded-luby-sequence: unbounded luby-sequence
 using bounded-const-product[of ur] luby-sequence-axioms
 luby-sequence-def unbounded-luby-sequence-core by blast
lemma luby-sequence-core-0: luby-sequence-core 0 = 1
proof -
 have \theta: (\theta :: nat) = 2 \hat{\ } \theta - 1
   by auto
 show ?thesis
```

```
by (subst 0, subst luby-sequence-core-two-power-minus-one) simp
qed
lemma luby-sequence-core n \geq 1
proof (induction n rule: nat-less-induct-case)
 case \theta
 then show ?case by (simp add: luby-sequence-core-0)
next
 case (Suc\ n) note IH = this
 consider
     (interv) k where 2 \hat{k} (k-1) \leq Suc \ n and Suc \ n < 2 \hat{k} - 1
   |(pow2)| k where Suc n = 2 \hat{k} - Suc \theta
   using exists-luby-decomp[of Suc n] by auto
 then show ?case
    proof cases
      case pow2
      show ?thesis
       using luby-sequence-core-two-power-minus-one pow2 by auto
    next
      case interv
      have n: Suc \ n - 2 \ \widehat{\ } (k - 1) + 1 < Suc \ n
       by (metis Suc-1 Suc-eq-plus1 add.commute add-diff-cancel-left' add-less-mono1 gr0I
          interv(1) interv(2) le-add-diff-inverse2 less-Suc-eq not-le power-0 power-one-right
         power-strict-increasing-iff)
      show ?thesis
       apply (subst luby-sequence-core-not-two-power-minus-one[OF interv])
       using IH n by auto
    qed
\mathbf{qed}
end
locale luby-sequence-restart =
  luby-sequence ur +
  conflict-driven-clause-learning<sub>W</sub> — functions for clauses:
   — functions for the state:
     — access functions:
   trail init-clss learned-clss backtrack-lvl conflicting
       - changing state:
   cons-trail tl-trail add-learned-cls remove-cls update-backtrack-lvl
   update-conflicting
     — get state:
   in it\text{-}state
   restart-state
 for
   ur :: nat and
   trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ and
   hd-trail :: 'st \Rightarrow ('v, 'v clause) ann-lit and
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v clauses and
   backtrack-lvl :: 'st \Rightarrow nat and
   conflicting :: 'st \Rightarrow 'v \ clause \ option \ \mathbf{and}
   cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
```

```
tl-trail :: 'st \Rightarrow 'st and
     add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
     remove\text{-}cls:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
     update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
     update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
     init-state :: 'v clauses \Rightarrow 'st and
     \textit{restart-state} :: \textit{'st} \Rightarrow \textit{'st}
begin
\mathbf{sublocale}\ \mathit{cdcl}_W\text{-}\mathit{restart} \ \text{-----} \ \mathit{luby-sequence}
  {\bf apply} \ {\it unfold-locales}
  \mathbf{using}\ bounded\text{-}luby\text{-}sequence\ \mathbf{by}\ blast
end
end
{\bf theory}\ DPLL\text{-}CDCL\text{-}W\text{-}Implementation
{\bf imports}\ \textit{Partial-Annotated-Clausal-Logic}\ \textit{CDCL-W-Level}
begin
```

Chapter 3

Implementation of DPLL and CDCL

We then reuse all the theorems to go towards an implementation using 2-watched literals:

• CDCL_W_Abstract_State.thy defines a better-suited state: the operation operating on it are more constrained, allowing simpler proofs and less edge cases later.

3.1 Simple Implementation of the DPLL and CDCL

3.1.1 Common Rules

Propagation

```
The following theorem holds:
lemma lits-of-l-unfold[iff]:
  (\forall c \in set \ C. \ -c \in lits\text{-}of\text{-}l \ Ms) \longleftrightarrow Ms \models as \ CNot \ (mset \ C)
   {\bf unfolding} \ true-annots-def \ Ball-def \ true-annot-def \ CNot-def \ {\bf by} \ auto
The right-hand version is written at a high-level, but only the left-hand side is executable.
definition is-unit-clause :: 'a literal list \Rightarrow ('a, 'b) ann-lits \Rightarrow 'a literal option
 where
 is-unit-clause l M =
   (case List.filter (\lambda a. atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M) l \ of
     a \# [] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
   | - \Rightarrow None \rangle
definition is-unit-clause-code :: 'a literal list \Rightarrow ('a, 'b) ann-lits
  \Rightarrow 'a literal option where
 is-unit-clause-code l M =
   (case List.filter (\lambda a. atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M) l of
     a \# [] \Rightarrow if (\forall c \in set (remove1 \ a \ l), -c \in lits-of-l \ M) then Some \ a \ else \ None
   | - \Rightarrow None \rangle
lemma is-unit-clause-is-unit-clause-code[code]:
  is-unit-clause l M = is-unit-clause-code l M
  have 1: \bigwedge a. (\forall c \in set \ (remove1 \ a \ l). - c \in lits of - l \ M) \longleftrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
    using lits-of-l-unfold[of remove1 - l, of - M] by simp
  then show ?thesis
```

unfolding is-unit-clause-code-def is-unit-clause-def 1 by blast

```
qed
```

```
lemma is-unit-clause-some-undef:
  assumes is-unit-clause l M = Some a
  shows undefined-lit M a
proof -
  have (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
            [a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
           | a \# ab \# xa \Rightarrow Map.empty xa) = Some a
    using assms unfolding is-unit-clause-def.
  then have a \in set \ [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `its\text{-}of\text{-}l \ M]
    apply (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `its\text{-}of\text{-}l \ M])
      apply simp
    apply (rename-tac aa list; case-tac list) by (auto split: if-split-asm)
  then have atm\text{-}of \ a \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M by auto
  then show ?thesis
    by (simp add: Decided-Propagated-in-iff-in-lits-of-l
      atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
qed
lemma is-unit-clause-some-CNot: is-unit-clause l M = Some \ a \Longrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
  unfolding is-unit-clause-def
proof -
  assume (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
          |a| \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
          | a \# ab \# xa \Rightarrow Map.empty xa | = Some a
  then show ?thesis
    apply (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M], simp)
      apply simp
    apply (rename-tac aa list, case-tac list) by (auto split: if-split-asm)
lemma is-unit-clause-some-in: is-unit-clause l M = Some \ a \Longrightarrow a \in set \ l
  unfolding is-unit-clause-def
proof -
  assume (case [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
         |a| \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
          \mid a \# ab \# xa \Rightarrow Map.empty xa) = Some a
  then show a \in set l
    by (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M])
       (fastforce dest: filter-eq-ConsD split: if-split-asm split: list.splits)+
qed
lemma is-unit-clause-Nil[simp]: is-unit-clause [] M = None
  unfolding is-unit-clause-def by auto
Unit propagation for all clauses
Finding the first clause to propagate
\textbf{fun} \textit{ find-first-unit-clause} :: \textit{'a literal list list} \Rightarrow (\textit{'a}, \textit{'b}) \textit{ ann-lits}
  \Rightarrow ('a literal \times 'a literal list) option where
find-first-unit-clause (a # l) M =
  (case is-unit-clause a M of
    None \Rightarrow find\text{-}first\text{-}unit\text{-}clause \ l \ M
  | Some L \Rightarrow Some (L, a) |
```

```
find-first-unit-clause [] - = None
lemma find-first-unit-clause-some:
 find-first-unit-clause\ l\ M = Some\ (a,\ c)
  \implies c \in set \ l \land M \models as \ CNot \ (mset \ c - \{\#a\#\}) \land undefined-lit \ M \ a \land a \in set \ c
 apply (induction \ l)
   apply simp
  by (auto split: option.splits dest: is-unit-clause-some-in is-unit-clause-some-CNot
        is-unit-clause-some-undef)
\mathbf{lemma}\ propagate\text{-}is\text{-}unit\text{-}clause\text{-}not\text{-}None:
  assumes dist: distinct c and
  M: M \models as \ CNot \ (mset \ c - \{\#a\#\}) \ and
  undef: undefined-lit M a and
  ac: a \in set c
  shows is-unit-clause c M \neq None
proof -
  have [a \leftarrow c : atm\text{-}of \ a \notin atm\text{-}of \ `its\text{-}of\text{-}l \ M] = [a]
   using assms
   \mathbf{proof} (induction c)
     case Nil then show ?case by simp
   next
     case (Cons\ ac\ c)
     show ?case
       proof (cases \ a = ac)
         case True
         then show ?thesis using Cons
           by (auto simp del: lits-of-l-unfold
                simp add: lits-of-l-unfold[symmetric] Decided-Propagated-in-iff-in-lits-of-l
                  atm-of-eq-atm-of atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       next
         {\bf case}\ \mathit{False}
         then have T: mset\ c + \{\#ac\#\} - \{\#a\#\} = mset\ c - \{\#a\#\} + \{\#ac\#\}\}
           by (auto simp add: multiset-eq-iff)
         show ?thesis using False Cons
           by (auto simp add: T atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       qed
   qed
  then show ?thesis
   using M unfolding is-unit-clause-def by auto
qed
lemma find-first-unit-clause-none:
  distinct\ c \Longrightarrow c \in set\ l \Longrightarrow\ M \models as\ CNot\ (mset\ c - \{\#a\#\}) \Longrightarrow undefined-lit\ M\ a \Longrightarrow a \in set\ c
  \implies find-first-unit-clause l M \neq None
 by (induction l)
    (auto split: option.split simp add: propagate-is-unit-clause-not-None)
Decide
fun find-first-unused-var :: 'a literal list list \Rightarrow 'a literal set \Rightarrow 'a literal option where
find-first-unused-var (a # l) <math>M =
  (case List.find (\lambda lit.\ lit \notin M \land -lit \notin M) a of
    None \Rightarrow find\text{-}first\text{-}unused\text{-}var\ l\ M
  \mid Some \ a \Rightarrow Some \ a) \mid
find-first-unused-var [] - = None
```

```
lemma find-none[iff]:
  List.find\ (\lambda lit.\ lit \notin M \land -lit \notin M)\ a = None \longleftrightarrow atm-of`set\ a \subseteq atm-of`M
 apply (induct a)
 using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
   by (force simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)+
lemma find-some: List.find (\lambdalit. lit \notin M \land -lit \notin M) a = Some \ b \Longrightarrow b \in set \ a \land b \notin M \land -b \notin M
 unfolding find-Some-iff by (metis nth-mem)
lemma find-first-unused-var-None[iff]:
 find-first-unused-var\ l\ M=None\longleftrightarrow (\forall\ a\in set\ l.\ atm-of\ `set\ a\subseteq atm-of\ `M)
 by (induct l)
    (auto split: option.splits dest!: find-some
      simp add: image-subset-iff atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
lemma find-first-unused-var-Some-not-all-incl:
 assumes find-first-unused-var\ l\ M = Some\ c
 shows \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M)
proof -
 have find-first-unused-var l M \neq None
   using assms by (cases find-first-unused-var l M) auto
 then show \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M) by auto
qed
lemma find-first-unused-var-Some:
 find\mbox{-}first\mbox{-}unused\mbox{-}var\ l\ M = Some\ a \Longrightarrow (\exists\ m\in set\ l.\ a\in set\ m\land a\notin M\land -a\notin M)
 by (induct l) (auto split: option.splits dest: find-some)
lemma find-first-unused-var-undefined:
 find-first-unused-var l (lits-of-l Ms) = Some \ a \Longrightarrow undefined-lit Ms a
 using find-first-unused-var-Some[of l lits-of-l Ms a] Decided-Propagated-in-iff-in-lits-of-l
 by blast
3.1.2
          CDCL specific functions
Level
fun maximum-level-code:: 'a literal list \Rightarrow ('a, 'b) ann-lits \Rightarrow nat
 where
maximum-level-code [] - = 0 []
maximum-level-code (L # Ls) M = max (get-level M L) (maximum-level-code Ls M)
lemma maximum-level-code-eq-get-maximum-level[simp]:
  maximum-level-code D M = get-maximum-level M (mset D)
 by (induction D) (auto simp add: get-maximum-level-plus)
lemma [code]:
 fixes M :: ('a, 'b) ann-lits
 shows get-maximum-level M (mset D) = maximum-level-code D M
 by simp
Backjumping
```

```
fun find-level-decomp where
find-level-decomp M \mid D \mid k = None \mid
```

```
find-level-decomp M (L \# Ls) D k =
  (case (get-level M L, maximum-level-code (D @ Ls) M) of
   (i,j) \Rightarrow if \ i = k \land j < i \ then \ Some \ (L,j) \ else \ find-level-decomp \ M \ Ls \ (L\#D) \ k
lemma find-level-decomp-some:
 assumes find-level-decomp M Ls D k = Some(L, j)
 shows L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ (remove1\ L\ (Ls\ @\ D))) = j \land get\text{-}level\ M\ L = k
 using assms
proof (induction Ls arbitrary: D)
 case Nil
 then show ?case by simp
next
  case (Cons L' Ls) note IH = this(1) and H = this(2)
 \operatorname{def} find \equiv (if \ get\text{-}level \ M \ L' \neq k \lor \neg \ get\text{-}maximum\text{-}level \ M \ (mset \ D + mset \ Ls) < get\text{-}level \ M \ L'
   then find-level-decomp M Ls (L' \# D) k
   else Some (L', qet\text{-}maximum\text{-}level\ M\ (mset\ D\ +\ mset\ Ls)))
  have a1: \bigwedge D. find-level-decomp M Ls D k = Some(L, j) \Longrightarrow
    L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ Ls + mset\ D - \{\#L\#\}) = j \land get\text{-}level\ M\ L = k
   using IH by simp
  have a2: find = Some (L, j)
   using H unfolding find-def by (auto split: if-split-asm)
  { assume Some (L', get\text{-}maximum\text{-}level\ M\ (mset\ D+mset\ Ls)) \neq find}
   then have f3: L \in set\ Ls and get-maximum-level M (mset Ls + mset\ (L' \# D) - \{\#L\#\} = j
     using a1 IH a2 unfolding find-def by meson+
   moreover then have mset\ Ls + mset\ D - \{\#L\#\} + \{\#L'\#\} = \{\#L'\#\} + mset\ D + (mset\ Ls
-\{\#L\#\}
     by (auto simp: ac-simps multiset-eq-iff Suc-leI)
   ultimately have f_4: qet-maximum-level M (mset Ls + mset D - \{\#L\#\} + \{\#L'\#\}\} = i
     by (metis add.commute diff-union-single-conv in-multiset-in-set mset.simps(2))
  } note f_4 = this
 have \{\#L'\#\} + (mset\ Ls + mset\ D) = mset\ Ls + (mset\ D + \{\#L'\#\})
     by (auto simp: ac-simps)
  then have
   (L = L' \longrightarrow qet-maximum-level M (mset Ls + mset D) = j \land qet-level M L' = k) and
   (L \neq L' \longrightarrow L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ Ls + mset \ D - \{\#L\#\} + \{\#L'\#\}) = j \land M 
     get-level M L = k)
     using a2 a1 of L' \# D unfolding find-def apply (metis add-diff-cancel-left' mset.simps(2)
       option.inject prod.inject union-commute)
   using f4 a2 a1 [of L' # D] unfolding find-def by (metis option.inject prod.inject)
 then show ?case by simp
qed
lemma find-level-decomp-none:
 assumes find-level-decomp M Ls E k = None and mset (L\#D) = mset (Ls @ E)
 shows \neg(L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ D) < k \land k = get\text{-}level\ M\ L)
 using assms
proof (induction Ls arbitrary: E L D)
 case Nil
 then show ?case by simp
 case (Cons L' Ls) note IH = this(1) and find-none = this(2) and LD = this(3)
 have mset D + \{\#L'\#\} = mset E + (mset Ls + \{\#L'\#\}) \implies mset D = mset E + mset Ls
   by (metis add-right-imp-eq union-assoc)
  then show ?case
```

```
using find-none IH[of L' \# E L D] LD by (auto simp add: ac-simps split: if-split-asm)
qed
fun bt-cut where
bt-cut i (Propagated - - \# Ls) = bt-cut i Ls
bt-cut i (Decided K \# Ls) = (if count-decided Ls = i then Some (Decided K \# Ls) else bt-cut i Ls)
bt-cut i [] = None
lemma bt-cut-some-decomp:
 assumes no-dup M and bt-cut i M = Some M'
 shows \exists K M2 M1. M = M2 @ M' \land M' = Decided K \# M1 \land get-level M K = (i+1)
 using assms by (induction i M rule: bt-cut.induct) (auto split: if-split-asm)
lemma bt-cut-not-none:
 assumes no-dup M and M = M2 @ Decided K # M' and get-level M K = (i+1)
 shows bt-cut i M \neq None
 using assms by (induction M2 arbitrary: M rule: ann-lit-list-induct)
 (auto simp: atm-lit-of-set-lits-of-l)
lemma get-all-ann-decomposition-ex:
 \exists N. (Decided \ K \# M', N) \in set (get-all-ann-decomposition (M2@Decided \ K \# M'))
 apply (induction M2 rule: ann-lit-list-induct)
   apply auto[2]
 by (rename-tac L m xs, case-tac get-all-ann-decomposition (xs @ Decided K \# M'))
 auto
{f lemma}\ bt-cut-in-get-all-ann-decomposition:
 assumes no-dup M and bt-cut i M = Some M'
 shows \exists M2. (M', M2) \in set (get-all-ann-decomposition M)
 using bt-cut-some-decomp[OF assms] by (auto simp add: get-all-ann-decomposition-ex)
fun do-backtrack-step where
do-backtrack-step (M, N, U, k, Some D) =
 (case find-level-decomp MD [] k of
   None \Rightarrow (M, N, U, k, Some D)
 | Some (L, j) \Rightarrow
   (case bt-cut j M of
    Some (Decided - \# Ls) \Rightarrow (Propagated L D \# Ls, N, D \# U, j, None)
    - \Rightarrow (M, N, U, k, Some D)
 )
do-backtrack-step S = S
theory DPLL-W-Implementation
imports DPLL-CDCL-W-Implementation <math>DPLL-W \sim /src/HOL/Library/Code-Target-Numeral
begin
3.1.3
         Simple Implementation of DPLL
Combining the propagate and decide: a DPLL step
definition DPLL-step :: int dpll_W-ann-lits \times int literal list list
 \Rightarrow int dpll_W-ann-lits \times int literal list list where
DPLL-step = (\lambda(Ms, N)).
 (case find-first-unit-clause N Ms of
   Some (L, -) \Rightarrow (Propagated L () \# Ms, N)
```

```
| - ⇒
   if \exists C \in set \ N. \ (\forall c \in set \ C. \ -c \in lits \text{-of-} l \ Ms)
     (case backtrack-split Ms of
      (-, L \# M) \Rightarrow (Propagated (- (lit-of L)) () \# M, N)
     | (-, -) \Rightarrow (Ms, N)
     )
   else
   (case find-first-unused-var N (lits-of-l Ms) of
       Some a \Rightarrow (Decided \ a \# Ms, \ N)
     | None \Rightarrow (Ms, N)))
Example of propagation:
value DPLL-step ([Decided (Neg 1)], [[Pos (1::int), Neg 2]])
We define the conversion function between the states as defined in Prop-DPLL (with multisets)
and here (with lists).
abbreviation toS \equiv \lambda(Ms::(int, unit) \ ann-lits)
                   (N:: int\ literal\ list\ list).\ (Ms,\ mset\ (map\ mset\ N))
abbreviation toS' \equiv \lambda(Ms::(int, unit) ann-lits,
                      N:: int \ literal \ list \ list). (Ms, \ mset \ (map \ mset \ N))
Proof of correctness of DPLL-step
lemma DPLL-step-is-a-dpll<sub>W</sub>-step:
 assumes step: (Ms', N') = DPLL-step (Ms, N)
 and neg: (Ms, N) \neq (Ms', N')
 shows dpll_W (toS Ms N) (toS Ms' N')
proof -
 let ?S = (Ms, mset (map mset N))
 { fix L E
   assume unit: find-first-unit-clause N Ms = Some (L, E)
   then have Ms'N: (Ms', N') = (Propagated L() \# Ms, N)
     using step unfolding DPLL-step-def by auto
   obtain C where
     C: C \in set \ N  and
     Ms: Ms \models as \ CNot \ (mset \ C - \{\#L\#\}) \ and
     undef: undefined-lit Ms L and
     L \in set \ C \ using \ find-first-unit-clause-some[OF \ unit] \ by \ metis
   have dpll_W (Ms, mset (map mset N))
       (Propagated L () # fst (Ms, mset (map mset N)), snd (Ms, mset (map mset N)))
     apply (rule dpll_W.propagate)
     using Ms undef C (L \in set C) by (auto simp add: C)
   then have ?thesis using Ms'N by auto
 }
 moreover
 { assume unit: find-first-unit-clause N Ms = None
   assume exC: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   then obtain C where C: C \in set \ N and Ms: Ms \models as \ CNot \ (mset \ C) by auto
   then obtain L M M' where bt: backtrack-split Ms = (M', L \# M)
     using step exC neq unfolding DPLL-step-def prod.case unit
     by (cases backtrack-split Ms, rename-tac b, case-tac b) auto
   then have is-decided L using backtrack-split-snd-hd-decided of Ms by auto
   have 1: dpll_W (Ms, mset (map mset N))
               (Propagated (-lit-of L) () \# M, snd (Ms, mset (map mset N)))
     apply (rule dpll_W.backtrack[OF - \langle is\text{-}decided L \rangle, of ])
```

```
using C Ms bt by auto
   moreover have (Ms', N') = (Propagated (-(lit-of L))) () \# M, N)
    using step exC unfolding DPLL-step-def bt prod.case unit by auto
   ultimately have ?thesis by auto
 moreover
 \{ assume unit: find-first-unit-clause N Ms = None \}
   assume exC: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   obtain L where unused: find-first-unused-var N (lits-of-l Ms) = Some L
    using step exC neq unfolding DPLL-step-def prod.case unit
    by (cases find-first-unused-var N (lits-of-l Ms)) auto
   have dpll_W (Ms, mset (map mset N))
            (Decided L \# fst (Ms, mset (map mset N)), snd (Ms, mset (map mset N)))
    apply (rule dpll_W.decided[of ?S L])
    using find-first-unused-var-Some[OF unused]
    by (auto simp add: Decided-Propagated-in-iff-in-lits-of-l atms-of-ms-def)
   moreover have (Ms', N') = (Decided L \# Ms, N)
    using step exC unfolding DPLL-step-def unused prod.case unit by auto
   ultimately have ?thesis by auto
 ultimately show ?thesis by (cases find-first-unit-clause N Ms) auto
qed
lemma DPLL-step-stuck-final-state:
 assumes step: (Ms, N) = DPLL-step (Ms, N)
 shows conclusive-dpll_W-state (toS Ms N)
proof -
 have unit: find-first-unit-clause N Ms = None
   using step unfolding DPLL-step-def by (auto split:option.splits)
 { assume n: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   then have Ms: (Ms, N) = (case\ backtrack-split\ Ms\ of\ (x, []) \Rightarrow (Ms, N)
                    (x, L \# M) \Rightarrow (Propagated (-lit-of L) () \# M, N))
    using step unfolding DPLL-step-def by (simp add:unit)
 have snd (backtrack-split Ms) = []
   proof (cases backtrack-split Ms, cases snd (backtrack-split Ms))
    \mathbf{fix} \ a \ b
    assume backtrack-split\ Ms = (a, b) and snd\ (backtrack-split\ Ms) = []
    then show snd\ (backtrack-split\ Ms) = [] by blast
   next
    fix a b aa list
    assume
      bt: backtrack-split Ms = (a, b) and
      bt': snd (backtrack-split Ms) = aa \# list
    then have Ms: Ms = Propagated (-lit-of aa) () # list using <math>Ms by auto
    have is-decided as using backtrack-split-snd-hd-decided of Ms bt bt' by auto
    moreover have fst (backtrack-split Ms) @ aa \# list = Ms
      using backtrack-split-list-eq[of Ms] bt' by auto
    ultimately have False unfolding Ms by auto
    then show snd\ (backtrack-split\ Ms) = [] by blast
   qed
   then have ?thesis
    using n backtrack-snd-empty-not-decided of Ms unfolding conclusive-dpll_W-state-def
    by (cases backtrack-split Ms) auto
```

```
}
 moreover {
   assume n: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   then have find-first-unused-var\ N\ (lits-of-l\ Ms) = None
     using step unfolding DPLL-step-def by (simp add: unit split: option.splits)
   then have a: \forall a \in set \ N. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `(lits\text{-}of\text{-}l \ Ms) by auto
   have fst (toS Ms N) \models asm snd (toS Ms N) unfolding true-annots-def CNot-def Ball-def
     proof clarify
      \mathbf{fix} \ x
       assume x: x \in set\text{-}mset (clauses (toS Ms N))
      then have \neg Ms \models as\ CNot\ x using n unfolding true-annots-def CNot-def Ball-def by auto
       moreover have total-over-m (lits-of-l Ms) \{x\}
         using a x image-iff in-mono atms-of-s-def
         unfolding total-over-m-def total-over-set-def lits-of-def by fastforce
       ultimately show fst (toS Ms N) \models a x
         using total-not-CNot[of lits-of-l Ms x] by (simp add: true-annot-def true-annots-true-cls)
   then have ?thesis unfolding conclusive-dpllw-state-def by blast
 ultimately show ?thesis by blast
qed
Adding invariants
Invariant tested in the function function DPLL-ci :: int dpll_W-ann-lits \Rightarrow int literal list list
  \Rightarrow int dpll<sub>W</sub>-ann-lits \times int literal list list where
DPLL-ci\ Ms\ N =
  (if \neg dpll_W - all - inv (Ms, mset (map mset N)))
 then (Ms, N)
  else
  let (Ms', N') = DPLL-step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-ci Ms'(N)
 by fast+
termination
proof (relation \{(S', S). (toS'S', toS'S) \in \{(S', S). dpll_W-all-inv S \land dpll_W S S'\}\})
 show wf \{(S', S).(toS' S', toS' S) \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}
   using wf-if-measure-f[OF\ dpll_W-wf, of toS'] by auto
next
 fix Ms :: int \ dpll_W-ann-lits and N \ x \ xa \ y
 assume \neg \neg dpll_W - all - inv (to S Ms N)
 and step: x = DPLL-step (Ms, N)
 and x: (xa, y) = x
 and (xa, y) \neq (Ms, N)
 then show ((xa, N), Ms, N) \in \{(S', S), (toS'S', toS'S) \in \{(S', S), dpll_W - all - inv S \land dpll_W S S'\}\}
   using DPLL-step-is-a-dpll<sub>W</sub>-step dpll<sub>W</sub>-same-clauses split-conv by fastforce
No invariant tested function (domintros) DPLL-part:: int dpll_W-ann-lits \Rightarrow int literal list list \Rightarrow
  int \ dpll_W-ann-lits \times \ int \ literal \ list \ list \ where
DPLL-part Ms N =
  (let (Ms', N') = DPLL\text{-step }(Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-part Ms'(N)
 by fast+
lemma snd-DPLL-step[simp]:
  snd (DPLL-step (Ms, N)) = N
```

```
unfolding DPLL-step-def by (auto split: if-split option.splits prod.splits list.splits)
lemma dpll_W-all-inv-implieS-2-eq3-and-dom:
 assumes dpll_W-all-inv (Ms, mset (map mset N))
 shows DPLL-ci~Ms~N = DPLL-part~Ms~N \land DPLL-part-dom~(Ms,~N)
 using assms
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N)
 have snd (DPLL\text{-step }(Ms, N)) = N by auto
 then obtain Ms' where Ms': DPLL-step (Ms, N) = (Ms', N) by (cases DPLL-step (Ms, N)) auto
 have inv': dpll_W-all-inv (toS\ Ms'\ N) by (metis\ (mono\text{-}tags)\ 1.prems\ DPLL\text{-}step\text{-}is\text{-}a\text{-}dpll_W\text{-}step)
   Ms' dpll_W-all-inv old.prod.inject)
 { assume (Ms', N) \neq (Ms, N)
   then have DPLL-ci Ms' N = DPLL-part Ms' N \wedge DPLL-part-dom (Ms', N) using 1(1)[of - Ms']
N Ms'
     1(2) inv' by auto
   then have DPLL-part-dom (Ms, N) using DPLL-part.domintros Ms' by fastforce
   moreover have DPLL-ci Ms N = DPLL-part Ms N using 1.prems DPLL-part.psimps Ms'
    \langle DPLL\text{-}ci\ Ms'\ N = DPLL\text{-}part\ Ms'\ N \land DPLL\text{-}part\text{-}dom\ (Ms',\ N) \rangle \ \langle DPLL\text{-}part\text{-}dom\ (Ms,\ N) \rangle \ \mathbf{by}
auto
   ultimately have ?case by blast
 moreover {
   assume (Ms', N) = (Ms, N)
   then have ?case using DPLL-part.domintros DPLL-part.psimps Ms' by fastforce
 }
 ultimately show ?case by blast
qed
lemma DPLL-ci-dpll_W-rtranclp:
 assumes DPLL-ci Ms N = (Ms', N')
 shows dpll_W^{**} (toS Ms N) (toS Ms' N)
 using assms
proof (induct Ms N arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 Ms N Ms' N') note IH = this(1) and step = this(2)
 obtain S_1 S_2 where S:(S_1, S_2) = DPLL-step (Ms, N) by (cases DPLL-step (Ms, N)) auto
 { assume \neg dpll_W-all-inv (toS Ms N)
   then have (Ms, N) = (Ms', N) using step by auto
   then have ?case by auto
 }
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) = (Ms, N)
   then have ?case using S step by auto
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) \neq (Ms, N)
   moreover obtain S_1' S_2' where DPLL-ci S_1 N = (S_1', S_2') by (cases DPLL-ci S_1 N) auto
   moreover have DPLL-ci Ms N = DPLL-ci S_1 N using DPLL-ci.simps[of Ms N] calculation
    proof -
      have (case (S_1, S_2) of (ms, lss) \Rightarrow
        if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N = DPLL-ci Ms N
```

then have (if $(S_1, S_2) = (Ms, N)$ then (Ms, N) else DPLL-ci $S_1 N$) = DPLL-ci Ms N

using S DPLL-ci.simps[of Ms N] calculation by presburger

```
by fastforce
      then show ?thesis
        using calculation(2) by presburger
     qed
   ultimately have dpll_W^{**} (toS S_1'N) (toS Ms'N) using IH[of(S_1, S_2) S_1 S_2] S step by simp
   moreover have dpll_W (toS Ms N) (toS S_1 N)
     by (metis DPLL-step-is-a-dpll<sub>W</sub>-step S(S_1, S_2) \neq (Ms, N) prod.sel(2) snd-DPLL-step)
   ultimately have ?case by (metis (mono-tags, hide-lams) IH S (S_1, S_2) \neq (Ms, N))
     \langle DPLL\text{-}ci \; Ms \; N = DPLL\text{-}ci \; S_1 \; N \rangle \langle dpll_W\text{-}all\text{-}inv \; (toS \; Ms \; N) \rangle \; converse\text{-}rtranclp\text{-}into\text{-}rtranclp
     local.step)
 }
 ultimately show ?case by blast
lemma dpll_W-all-inv-dpll_W-tranclp-irrefl:
 assumes dpll_W-all-inv (Ms, N)
 and dpll_W^{++} (Ms, N) (Ms, N)
 shows False
proof -
 have 1: wf \{(S', S), dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using dpll_W - wf - tranclp by auto
 have ((Ms, N), (Ms, N)) \in \{(S', S), dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using assms by auto
 then show False using wf-not-reft[OF 1] by blast
qed
lemma DPLL-ci-final-state:
 assumes step: DPLL-ci\ Ms\ N=(Ms,\ N)
 and inv: dpll_W-all-inv (toS Ms N)
 shows conclusive-dpll_W-state (toS Ms N)
proof -
 have st: dpll_W^{**} (toS Ms N) (toS Ms N) using DPLL-ci-dpll<sub>W</sub>-rtranclp[OF step].
 have DPLL-step (Ms, N) = (Ms, N)
   proof (rule ccontr)
     obtain Ms' N' where Ms'N: (Ms', N') = DPLL-step (Ms, N)
      by (cases DPLL-step (Ms, N)) auto
     assume ¬ ?thesis
     then have DPLL-ci Ms' N = (Ms, N) using step inv st Ms'N[symmetric] by fastforce
     then have dpll_W^{++} (toS Ms N) (toS Ms N)
     by (metis DPLL-ci-dpll<sub>W</sub>-rtranclp DPLL-step-is-a-dpll<sub>W</sub>-step Ms'N \land DPLL-step (Ms, N) \neq (Ms, N)
N)
        prod.sel(2) \ rtranclp-into-tranclp2 \ snd-DPLL-step)
     then show False using dpll_W-all-inv-dpll_W-tranclp-irreft inv by auto
 then show ?thesis using DPLL-step-stuck-final-state[of Ms N] by simp
qed
lemma DPLL-step-obtains:
 obtains Ms' where (Ms', N) = DPLL-step (Ms, N)
 unfolding DPLL-step-def by (metis (no-types, lifting) DPLL-step-def prod.collapse snd-DPLL-step)
lemma DPLL-ci-obtains:
 obtains Ms' where (Ms', N) = DPLL-ci Ms N
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N) note IH = this(1) and that = this(2)
 obtain S where SN: (S, N) = DPLL-step (Ms, N) using DPLL-step-obtains by metis
 { assume \neg dpll_W-all-inv (toS Ms N)
```

```
then have ?case using that by auto
 moreover {
   assume n: (S, N) \neq (Ms, N)
   and inv: dpll_W-all-inv (toS Ms N)
   have \exists ms. DPLL\text{-step }(Ms, N) = (ms, N)
    by (metis \land \land thesisa. (\land S. (S, N) = DPLL\text{-step} (Ms, N) \Longrightarrow thesisa) \Longrightarrow thesisa)
   then have ?thesis
    using IH that by fastforce
 }
 moreover {
   assume n: (S, N) = (Ms, N)
   then have ?case using SN that by fastforce
 ultimately show ?case by blast
qed
lemma DPLL-ci-no-more-step:
 assumes step: DPLL-ci\ Ms\ N=(Ms',\ N')
 shows DPLL-ci\ Ms'\ N' = (Ms',\ N')
 using assms
proof (induct arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 Ms N Ms' N') note IH = this(1) and step = this(2)
 obtain S_1 where S:(S_1, N) = DPLL-step (Ms, N) using DPLL-step-obtains by auto
 { assume \neg dpll_W-all-inv (toS Ms N)
   then have ?case using step by auto
 }
 moreover {
   assume dpll_W-all-inv (toS Ms N)
   and (S_1, N) = (Ms, N)
   then have ?case using S step by auto
 moreover
 { assume inv: dpll_W - all - inv (toS Ms N)
   assume n: (S_1, N) \neq (Ms, N)
   obtain S_1' where SS: (S_1', N) = DPLL-ci S_1 N using DPLL-ci-obtains by blast
   moreover have DPLL-ci\ Ms\ N = DPLL-ci\ S_1\ N
    proof -
      have (case (S_1, N) of (ms, lss) \Rightarrow if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N)
= DPLL-ci Ms N
       \mathbf{using} \ S \ DPLL\text{-}ci.simps[of \ Ms \ N] \ calculation \ inv \ \mathbf{by} \ presburger
      then have (if (S_1, N) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N) = DPLL-ci Ms N
       by fastforce
      then show ?thesis
       using calculation n by presburger
    qed
   moreover
    ultimately have ?case using step by fastforce
 ultimately show ?case by blast
qed
```

lemma DPLL-part- $dpll_W$ -all-inv-final:

```
fixes M Ms':: (int, unit) ann-lits and
   N :: int \ literal \ list \ list
 assumes inv: dpll_W-all-inv (Ms, mset (map mset N))
 and MsN: DPLL-part Ms N = (Ms', N)
 shows conclusive-dpll<sub>W</sub>-state (toS Ms' N) \wedge dpll<sub>W</sub>** (toS Ms N) (toS Ms' N)
proof -
 have 2: DPLL-ci Ms N = DPLL-part Ms N using inv dpll_W-all-inv-implieS-2-eq3-and-dom by blast
 then have star: dpll_W^{**} (to SMs N) (to SMs' N) unfolding MsN using DPLL-ci-dpll<sub>W</sub>-rtranclp
by blast
 then have inv': dpll<sub>W</sub>-all-inv (toS Ms' N) using inv rtranclp-dpll<sub>W</sub>-all-inv by blast
 show ?thesis using star DPLL-ci-final-state[OF DPLL-ci-no-more-step inv'] 2 unfolding MsN by
blast
qed
Embedding the invariant into the type
Defining the type typedef dpll_W-state =
   \{(M::(int, unit) \ ann-lits, N::int \ literal \ list \ list).
      dpll_W-all-inv (toS M N)}
 morphisms rough-state-of state-of
proof
   show ([],[]) \in \{(M, N). dpll_W-all-inv (toS\ M\ N)\} by (auto simp add: dpll_W-all-inv-def)
qed
lemma
 DPLL-part-dom ([], N)
 using assms dpll_W-all-inv-implieS-2-eq3-and-dom[of [] N] by (simp add: dpll_W-all-inv-def)
Some type classes instantiation dpll_W-state :: equal
begin
definition equal-dpll<sub>W</sub>-state :: dpll_W-state \Rightarrow dpll_W-state \Rightarrow bool where
equal-dpll_W-state SS' = (rough-state-of S = rough-state-of S')
instance
 by standard (simp add: rough-state-of-inject equal-dpll<sub>W</sub>-state-def)
end
DPLL definition DPLL-step' :: dpll_W-state \Rightarrow dpll_W-state where
 DPLL-step' S = state-of (DPLL-step (rough-state-of S))
declare rough-state-of-inverse[simp]
lemma DPLL-step-dpll_W-conc-inv:
 DPLL-step (rough-state-of S) \in \{(M, N). dpll_W-all-inv (to SMN)}
 by (smt DPLL-ci.simps DPLL-ci-dpll<sub>W</sub>-rtranclp case-prodE case-prodI2 rough-state-of
   mem-Collect-eq old.prod.case prod.sel(2) rtranclp-dpll<sub>W</sub>-all-inv snd-DPLL-step)
lemma rough-state-of-DPLL-step'-DPLL-step[simp]:
 rough-state-of (DPLL-step' S) = DPLL-step (rough-state-of S)
 using DPLL-step-dpll<sub>W</sub>-conc-inv DPLL-step'-def state-of-inverse by auto
function DPLL\text{-}tot:: dpll_W\text{-}state \Rightarrow dpll_W\text{-}state where
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S')
 by fast+
```

```
termination
proof (relation \{(T', T).
    (rough-state-of T', rough-state-of T)
      \in \{(S', S). (toS'S', toS'S)\}
            \in \{(S', S). dpll_W - all - inv S \wedge dpll_W S S'\}\}\}
 show wf \{(b, a).
        (rough-state-of b, rough-state-of a)
          \in \{(b, a). (toS'b, toS'a)
           \in \{(b, a). dpll_W - all - inv \ a \land dpll_W \ a \ b\}\}\}
   using wf-if-measure-f[OF wf-if-measure-f[OF dpll_W-wf, of toS'], of rough-state-of].
next
 fix S x
 assume x: x = DPLL-step' S
 and x \neq S
 have dpll_W-all-inv (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
   by (metis (no-types, lifting) case-prodE mem-Collect-eq old.prod.case rough-state-of)
 moreover have dpll_W (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
                  (case\ rough\text{-}state\text{-}of\ (DPLL\text{-}step'\ S)\ of\ (Ms,\ N) \Rightarrow (Ms,\ mset\ (map\ mset\ N)))
   proof -
     obtain Ms N where Ms: (Ms, N) = rough-state-of S by (cases rough-state-of S) auto
     have dpll_W-all-inv (toS'(Ms, N)) using calculation unfolding Ms by blast
     moreover obtain Ms' N' where Ms': (Ms', N') = rough\text{-}state\text{-}of (DPLL\text{-}step' S)
      by (cases\ rough-state-of\ (DPLL-step'\ S))\ auto
     ultimately have dpll_W-all-inv (toS'(Ms', N')) unfolding Ms'
      by (metis (no-types, lifting) case-prod-unfold mem-Collect-eq rough-state-of)
     have dpll_W (toS Ms N) (toS Ms' N')
      apply (rule DPLL-step-is-a-dpll<sub>W</sub>-step[of Ms' N' Ms N])
      unfolding Ms Ms' using \langle x \neq S \rangle rough-state-of-inject x by fastforce+
     then show ?thesis unfolding Ms[symmetric] Ms'[symmetric] by auto
 ultimately show (x, S) \in \{(T', T). (rough-state-of T', rough-state-of T)\}
   \in \{(S', S). (toS' S', toS' S) \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}\}
   by (auto simp add: x)
qed
lemma [code]:
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S') by auto
lemma DPLL-tot-DPLL-step-DPLL-tot (simp]: DPLL-tot (DPLL-step' S) = DPLL-tot S
 apply (cases DPLL-step' S = S)
 apply simp
 unfolding DPLL-tot.simps[of S] by (simp del: DPLL-tot.simps)
lemma DOPLL-step'-DPLL-tot[simp]:
 DPLL-step' (DPLL-tot S) = DPLL-tot S
 by (rule DPLL-tot.induct[of \lambda S. DPLL-step' (DPLL-tot S) = DPLL-tot S])
    (metis (full-types) DPLL-tot.simps)
lemma DPLL-tot-final-state:
 assumes DPLL-tot S = S
 shows conclusive-dpll_W-state (toS'(rough-state-of S))
```

```
proof -
 have DPLL-step' S = S using assms[symmetric] DOPLL-step'-DPLL-tot by metis
 then have DPLL-step (rough-state-of S) = (rough-state-of S)
   unfolding DPLL-step'-def using DPLL-step-dpll<sub>W</sub>-conc-inv rough-state-of-inverse
   by (metis rough-state-of-DPLL-step'-DPLL-step)
 then show ?thesis
   by (metis (mono-tags, lifting) DPLL-step-stuck-final-state old.prod.exhaust split-conv)
qed
lemma DPLL-tot-star:
 assumes rough-state-of (DPLL\text{-tot }S) = S'
 shows dpll_{W}^{**} (toS' (rough-state-of S)) (toS' S')
 using assms
proof (induction arbitrary: S' rule: DPLL-tot.induct)
 case (1 S S')
 let ?x = DPLL\text{-}step' S
 { assume ?x = S
   then have ?case using 1(2) by simp
 moreover {
   assume S: ?x \neq S
   have ?case
    apply (cases DPLL-step' S = S)
      using S apply blast
    by (smt 1.IH 1.prems DPLL-step-is-a-dpll<sub>W</sub>-step DPLL-tot.simps case-prodE2
      rough-state-of-DPLL-step'-DPLL-step rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl
      rtranclp-idemp split-conv)
 ultimately show ?case by auto
qed
lemma rough-state-of-rough-state-of-Nil[simp]:
 rough-state-of (state-of ([], N)) = ([], N)
 apply (rule DPLL-W-Implementation.dpll_W-state.state-of-inverse)
 unfolding dpll_W-all-inv-def by auto
Theorem of correctness
lemma DPLL-tot-correct:
 assumes rough-state-of (DPLL-tot\ (state-of\ (([],\ N)))) = (M,\ N')
 and (M', N'') = toS'(M, N')
 shows M' \models asm N'' \longleftrightarrow satisfiable (set-mset N'')
proof -
 have dpll_{W}^{**} (toS' ([], N)) (toS' (M, N')) using DPLL-tot-star[OF assms(1)] by auto
 moreover have conclusive-dpll_W-state (toS' (M, N'))
   using DPLL-tot-final-state by (metis (mono-tags, lifting) DOPLL-step'-DPLL-tot DPLL-tot.simps
     assms(1)
 ultimately show ?thesis using dpll_W-conclusive-state-correct by (smt DPLL-ci.simps
   DPLL-ci-dpll<sub>W</sub>-rtranclp assms(2) dpll_W-all-inv-def prod.case prod.sel(1) prod.sel(2)
   rtranclp-dpll_W-inv(3) rtranclp-dpll_W-inv-starting-from-0)
qed
```

Code export

A conversion to DPLL-W-Implementation. $dpll_W$ -state definition $Con :: (int, unit) \ ann-lits \times int \ literal \ list$

```
\Rightarrow dpll_W-state where
```

```
Con xs = state-of (if dpll_W-all-inv (toS (fst xs) (snd xs)) then xs else ([], []))

lemma [code abstype]:

Con (rough-state-of S) = S

using rough-state-of [of S] unfolding Con-def by auto

declare rough-state-of-DPLL-step'-DPLL-step[code abstract]

lemma Con-DPLL-step-rough-state-of-state-of[simp]:

Con (DPLL-step (rough-state-of s)) = state-of (DPLL-step (rough-state-of s))

unfolding Con-def by (metis (mono-tags, lifting) DPLL-step-dpll_W-conc-inv mem-Collect-eq prod.case-eq-if)
```

A slightly different version of *DPLL-tot* where the returned boolean indicates the result.

```
definition DPLL-tot-rep where DPLL-tot-rep S = (let (M, N) = (rough-state-of (DPLL-tot S)) in (\forall A \in set N. (\exists a \in set A. a \in lits-of-l (M)), M))
```

One version of the generated SML code is here, but not included in the generated document. The only differences are:

- export 'a literal from the SML Module Clausal-Logic;
- export the constructor Con from DPLL-W-Implementation;
- export the *int* constructor from *Arith*.

 All these allows to test on the code on some examples.

end