上册内容				
• 第一部分	函数与极限			
o —	函数			
0	极限			
• 第二部分	导数与微分			
o —	导数			
o <u>—</u> .	函数求导法则			
-	1. 和差积商求导法则			
-	2. 反函数求导法则			
-	3. 复合函数求导法则			
o <u>=</u>	微分			
• 第三部分	微分中值定理和导数应用			
o — .	微分中值定理			
o <u> </u>	洛必达法则			
o <u>=</u> .	泰勒公式			
-	1. 拉格朗日余项			
-	2. 佩亚诺余项			
。 匹、	函数性质分析			
	曲率分析			
• 第四部分				
	基本概念			
	基本积分表			
o <u> </u>	积分方法			
	1. 换元积分法			
	2. 分部积分法			
第五部分				
	基本概念			
	积分性质			
	积分方法			
	反常积分			
	1. 无穷限积分			
	2. 瑕积分			
	定积分的应用			
	曲线弧长			
第七部分				
	基本概念			

- 。 二、一阶微分方程
 - 。 三、高阶微分方程
 - 1. 二阶常系数齐次微分方程
 - 2. 二阶常系数非齐次微分方程
 - 。 (1) 求解对应的齐次方程
 - 。 (2) 求特解\$y_p(x)\$
 - 。(3)写出通解
 - o (4) 解题示例
 - 。(5)总结

第一部分 函数与极限

一、函数

中 函数

函数是一种映射关系,将定义域中的每个元素映射到值域中的唯一元素。

① 常见函数类型

• 多项式函数: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$

• 指数函数: $f(x) = a^x$ (其中 a > 0 且 $a \neq 1$)

• 对数函数: $f(x) = \log_a x$ (其中 a > 0 且 $a \neq 1$)

• 三角函数: $\sin x$, $\cos x$, $\tan x$

二、极限

中 极限

当自变量x趋近于某个值 x_0 时,函数值f(x)趋近于某个常数A,记作:

$$\lim_{x o x_0}f(x)=A$$

♀ 极限的性质

设 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, 则极限具有以下性质:

• 唯一性: 若极限存在,则极限值唯一

• 局部有界性: 若 $\lim_{x \to x_0} f(x) = A$,则存在 $\delta > 0$ 和 M > 0,使得当

 $0<|x-x_0|<\delta$ 时, $|f(x)|\leq M$

• 保号性: 若 A>0,则存在 $\delta>0$,使得当 $0<|x-x_0|<\delta$ 时,f(x)>0

♀ 重要极限

以下是两个重要的极限公式:

$$\lim_{x o 0}rac{\sin x}{x}=1$$

$$\overline{\lim_{x o\infty}\left(1+rac{1}{x}
ight)^x}=e$$

第二部分 导数与微分

一、导数

甲导数

函数f(x)在点 x_0 处的导数定义为:

$$f'(x_0) = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

函数 $f(x)$	导数 $f'(x)$	备注
x^n	nx^{n-1}	$n\in\mathbb{R}$
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
e^x	e^x	
$\ln x$	$\frac{1}{x}$	x > 0
$\tan x$	$\sec^2 x$	
$\cot x$	$-\csc^2 x$	
$\sec x$	$\sec x \tan x$	
$\csc x$	$-\csc x \cot x$	
$\arcsin x$	$rac{1}{\sqrt{1-x^2}}$	-1 < x < 1
$\arccos x$	$-rac{1}{\sqrt{1-x^2}}$	-1 < x < 1
$\arctan x$	$rac{1}{1+x^2}$	

□ 极坐标导数

对于极坐标方程 $r=r(\theta)$, 其导数公式为:

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{r'(heta)\sin heta + r(heta)\cos heta}{r'(heta)\cos heta - r(heta)\sin heta}$$

二、函数求导法则

1. 和差积商求导法则

♀ 和差积商求导法则

设 u(x)、v(x) 均可导,则:

• 和差法则: $[u(x) \pm v(x)]' = u'(x) \pm v'(x)$

• 积法则: [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)

• 商法则: $\left\lceil \dfrac{u(x)}{v(x)} \right\rceil' = \dfrac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}$ (其中 v(x)
eq 0)

2. 反函数求导法则

♀ 反函数求导法则

设函数 y=f(x) 在某区间内单调可导,且 $f'(x)\neq 0$,则其反函数 $x=f^{-1}(y)$ 在对应区间内也可导,且:

$$[f^{-1}(x)]'=rac{1}{f'(y)}$$

3. 复合函数求导法则

♀ 复合函数求导法则 (链式法则)

设 y=f(u), u=g(x), 且 f(u) 和 g(x) 均可导,则复合函数 y=f(g(x)) 也可导,且:

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

三、微分

□ 微分

函数y = f(x)在点x处的微分为:

$$\mathrm{d}y = f'(x)\mathrm{d}x$$

第三部分 微分中值定理和导数应用

一、微分中值定理

♀罗尔定理

若函数f(x)满足:

- 1. 在闭区间[a,b]上连续
- 2. 在开区间(a,b)内可导
- 3. f(a)=f(b) 则存在 $c\in(a,b)$ 使得f'(c)=0

♀ 拉格朗日中值定理

若函数f(x)满足:

- 1. 在闭区间[a,b]上连续
- 2. 在开区间(a,b)内可导则存在 $c \in (a,b)$ 使得:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

♀ 柯西中值定理

若函数f(x)和g(x)满足:

- 1. 在闭区间[a,b]上连续
- 2. 在开区间(a,b)内可导
- 3. $g'(x) \neq 0$ 在(a,b)内则存在 $c \in (a,b)$ 使得:

$$\boxed{\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}}$$

二、洛必达法则

♀ 洛必达法则 (0/0型)

设函数f(x)和F(x)满足:

- 1. $\lim_{x \to a} f(x) = \lim_{x \to a} F(x) = 0$
- 2. 在点a的某去心邻域内可导且 $F'(x) \neq 0$
- 3. $\lim_{x \to a} \frac{f'(x)}{F'(x)}$ 存在或为 ∞ 则有:

$$oxed{\lim_{x o a}rac{f(x)}{F(x)}=\lim_{x o a}rac{f'(x)}{F'(x)}}$$

♀ 洛必达法则 (∞/∞型)

设函数f(x)和F(x)满足:

- 1. $\lim_{x \to a} f(x) = \lim_{x \to a} F(x) = \infty$
- 2. 在点a的某去心邻域内可导且 $F'(x) \neq 0$
- 3. $\lim_{x \to a} \frac{f'(x)}{F'(x)}$ 存在或为 ∞ 则有:

$$oxed{\lim_{x o a}rac{f(x)}{F(x)}=\lim_{x o a}rac{f'(x)}{F'(x)}}$$

三、泰勒公式

♀ 泰勒公式

若函数f(x)在 x_0 处具有n阶导数,则存在 x_0 的一个邻域,对于该邻域的任一x,有:

$$f(x) = \sum_{k=0}^n rac{f^{(k)}(x_0)}{k!} (x-x_0)^k + R_n(x)$$

1. 拉格朗日余项

$$R_n(x)=rac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$
 (ξ 介于 x 和 x_0 之间)

2. 佩亚诺余项

$$R_n(x) = o((x - x_0)^n)$$

四、函数性质分析

印单调性

- f'(x) > 0: 函数单调递增
- f'(x) < 0: 函数单调递减

中 极值

- $f'(x_0) = 0$ 且 $f''(x_0) > 0$:极小值点
- $f'(x_0) = 0$ 且 $f''(x_0) < 0$:极大值点

□□凸性

- f"(x) > 0: 函数凹
- f"(x) < 0: 函数凸

五、曲率分析

中曲率

描述曲线在某点处弯曲程度的量, 计算公式如下:

曲线表示形式	曲率公式
参数方程 $\mathbf{r}(t)=(x(t),y(t))$	$\kappa = rac{ x'y'' - y'x'' }{(x'^2 + y'^2)^{3/2}}$
显函数 $y=f(x)$	$\kappa = rac{ f''(x) }{(1+f'^2(x))^{3/2}}$
极坐标 $r=r(heta)$	$\kappa = rac{ r^2 + 2r'^2 - rr'' }{(r^2 + r'^2)^{3/2}}$

□曲率性质

- κ = 0: 直线段
- κ越大: 弯曲程度越大
- 曲率半径 $\rho=1/\kappa$: 最佳拟合圆半径

第四部分 不定积分

一、基本概念

□ 不定积分

设函数F(x)在区间I上可导,且F'(x)=f(x),则称F(x)为f(x)在I上的一个原函数。 f(x)的所有原函数的一般表达式称为f(x)的不定积分,记作:

$\int f(x) \mathrm{d}x = F(x) + C$

其中C为任意常数。

基本积分表

被积函数 $f(x)$	不定积分 $\int f(x) dx$	约束条件
x^n	$\frac{x^{n+1}}{n+1} + C$	n eq -1
$\frac{1}{x}$	$\ln x + C$	x eq 0
e^x	$e^x + C$	
$\sin x$	$-\cos x + C$	
$\cos x$	$\sin x + C$	
$\tan x$	$-\ln \cos x +C$	
$\cot x$	$\ln \sin x + C$	
$\sec x$	$\ln \sec x + \tan x + C$	
$\csc x$	$\ln \csc x - \cot x + C$	
$\frac{1}{1+x^2}$	$\arctan x + C$	
$\frac{1}{\sqrt{1-x^2}}$	rcsin x + C	-1 < x < 1
$\frac{1}{\sqrt{x^2+a^2}}$	$\ln x+\sqrt{x^2+a^2} +C$	a>0

二、积分方法

1. 换元积分法

♀ 第一类换元法

设f(u)有原函数F(u), $u=\varphi(x)$ 可导,则:

$$\int f[arphi(x)]arphi'(x)\mathrm{d}x = F[arphi(x)] + C$$

♀ 第二类换元法

设 $x=\psi(t)$ 单调可导旦 $\psi'(t)
eq 0$,则:

$$\int f(x) \mathrm{d}x = \int f[\psi(t)] \psi'(t) \mathrm{d}tigg|_{t=\psi^{-1}(x)}$$

2. 分部积分法

♀ 分部积分公式

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u$$

第五部分 定积分

一、基本概念

甲定积分

设函数f(x)在区间[a,b]上有界,将区间任意分割为n个子区间,任取 $\xi_i\in[x_{i-1},x_i]$,当 $\lambda=\max\{\Delta x_i\}\to 0$ 时,若极限

$$\int_a^b f(x) \mathrm{d}x = \lim_{\lambda o 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

存在且与分割和 ξ_i 的取法无关,则称f(x)在[a,b]上可积,此极限值称为f(x)在[a,b]上的定积分。

二、积分性质

♀ 积分中值定理

若 $f(x) \in C[a,b]$,则存在 $c \in [a,b]$ 使得:

$$\left|\int_a^b f(x)\mathrm{d}x = f(c)(b-a)
ight|$$

♀ 柯西-施瓦茨不等式

$$oxed{\left[\left(\int_a^b f(x)g(x)\mathrm{d}x
ight)^2 \leq \left(\int_a^b f^2(x)\mathrm{d}x
ight)\left(\int_a^b g^2(x)\mathrm{d}x
ight)
ight]}$$

三、积分方法

♀ 换元积分法

设 $f(x) \in C[a,b]$, $x = \varphi(t)$ 满足:

- 1. $\varphi(\alpha) = a, \ \varphi(\beta) = b$
- 2. $arphi(t) \in C^1[lpha,eta]$ 则:

上册内容
$$\int_a^b f(x) \mathrm{d}x = \int_lpha^eta f(arphi(t)) arphi'(t) \mathrm{d}t$$

四、反常积分

1. 无穷限积分

印无穷限积分

$$oxed{\int_a^{+\infty} f(x) \mathrm{d}x = \lim_{t o +\infty} \int_a^t f(x) \mathrm{d}x}$$

收敛条件: 极限存在

□ 牛顿-莱布尼茨公式

$$\int_a^{+\infty} f(x) \mathrm{d}x = F(+\infty) - F(a)$$

其中
$$F(+\infty) = \lim_{x \to +\infty} F(x)$$

2. 瑕积分

中 瑕积分

设a为瑕点:

$$oxed{\int_a^b f(x) \mathrm{d}x = \lim_{t o a^+} \int_t^b f(x) \mathrm{d}x}$$

收敛条件: 极限存在

□ 瑕点在内部

$$\int_a^b f(x)\mathrm{d}x = \int_a^c f(x)\mathrm{d}x + \int_c^b f(x)\mathrm{d}x$$

收敛条件: 两部分均收敛

第六部分 定积分的应用

一、曲线弧长

□直角坐标系弧长

设曲线y = f(x)在[a, b]上连续可导,则弧长为:

$$L = \int_a^b \sqrt{1 + [f'(x)]^2} \mathrm{d}x$$

☑ 推导

弧微分
$$\mathrm{d}s = \sqrt{\mathrm{d}x^2 + \mathrm{d}y^2} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$$

□参数方程弧长

设曲线 $egin{cases} x = x(t) \ y = y(t) \end{cases}$ 在 $[t_1, t_2]$ 上连续可导,则弧长为:

$$L=\int_{t_1}^{t_2}\sqrt{[x'(t)]^2+[y'(t)]^2}\mathrm{d}t$$

☑ 推导

弧微分
$$\mathrm{d}s = \sqrt{\left(rac{\mathrm{d}x}{\mathrm{d}t}
ight)^2 + \left(rac{\mathrm{d}y}{\mathrm{d}t}
ight)^2}\mathrm{d}t$$

□ 极坐标弧长

设曲线 $r = r(\theta)$ 在 $[\alpha, \beta]$ 上连续可导,则弧长为:

$$L = \int_{lpha}^{eta} \sqrt{r^2 + \left(rac{\mathrm{d}r}{\mathrm{d} heta}
ight)^2} \mathrm{d} heta$$

☑ 推导

由极坐标转换:

$$\left\{ egin{aligned} x = r\cos heta \ y = r\sin heta \end{aligned}
ight.$$

可得:

$$\mathrm{d}s = \sqrt{r^2 + \left(rac{\mathrm{d}r}{\mathrm{d} heta}
ight)^2} \mathrm{d} heta$$

第七部分 微分方程

一、基本概念

□ 微分方程

含有未知函数及其导数的方程称为微分方程。方程中出现的最高阶导数的阶数 称为微分方程的阶。

二、一阶微分方程

○ 一阶线性微分方程

形如 $\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)$ 的方程,其通解为:

$$y = e^{-\int P(x) \mathrm{d}x} \left(\int Q(x) e^{\int P(x) \mathrm{d}x} \mathrm{d}x + C
ight)$$

♀ 可分离变量方程

形如 $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y)$ 的方程,解法为:

$$\left| \int \frac{1}{g(y)} dy = \int f(x) dx + C \right|$$

三、高阶微分方程

1. 二阶常系数齐次微分方程

♀ 二阶常系数齐次微分方程通解

形如y'' + py' + qy = 0的方程,通过求解特征方程 $r^2 + pr + q = 0$:

• 两个不同实根 r_1, r_2 :

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

一个重根r:

$$y=(C_1+C_2x)e^{rx}$$

共轭复根a ± bi:

$$y=e^{ax}(C_1\cos(bx)+C_2\sin(bx))$$

2. 二阶常系数非齐次微分方程

♀二阶常系数非齐次微分方程通解

形如y''+p(x)y'+q(x)y=g(x)的方程,通解为 $y(x)=y_h(x)+y_p(x)$ 其中 $y_h(x)$ 为对应齐次方程的通解, $y_p(x)$ 为非齐次方程的一个特解。

(1) 求解对应的齐次方程

$$y'' + p(x)y' + q(x)y = 0$$

• 特征方程法 (常系数):

$$r^2 + pr + q = 0$$

。 两个不同实根:

$$y_h = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

• 重根:

$$y_h = (C_1 + C_2 x)e^{rx}$$

• 共轭复根:

$$y_h = e^{lpha x} (C_1 \cos eta x + C_2 \sin eta x)$$

(2) 求特解 $y_p(x)$

① 求特解的方法

- 待定系数法:
 - 根据g(x)形式假设特解:
 - 多项式: $y_p = Ax^n + \cdots$
 - 指数函数: $y_p = Ae^{kx}$
 - 三角函数: $y_p = A \sin \omega x + B \cos \omega x$
 - 与齐次解重复时乘以 x^k
- 常数变易法:

$$y_p = u_1(x)y_{h1}(x) + u_2(x)y_{h2}(x)$$

解方程组:

$$\left\{ egin{aligned} u_1' y_{h1} + u_2' y_{h2} &= 0 \ u_1' y_{h1}' + u_2' y_{h2}' &= g(x) \end{aligned}
ight.$$

♀ 求解特解技巧

- 待定系数法技巧:
 - g(x)为多项式: 假设同次多项式
 - 。 $g(x) = e^{kx}$: 若 e^{kx} 为齐次解则乘以x
 - $g(x) = \sin \omega x$: 假设 $A \sin \omega x + B \cos \omega x$
 - 。 组合形式叠加假设
- 常数变易法简化:
 - 。 优先选择简单的 y_{h1}, y_{h2}
 - 。 使用积分技巧简化计算

(3) 写出通解

$$y(x)=y_h(x)+y_p(x)$$

(4) 解题示例

柒 例题1

方程: $y'' - 3y' + 2y = e^x$

• 齐次解: $r^2 - 3r + 2 = 0 \Rightarrow r = 1, 2$

$$y_h = C_1 e^x + C_2 e^{2x}$$

• 特解: 设 $y_p = Axe^x$ (因为 e^x 是齐次解的一部分) 代入得:

$$y_p'=Ae^x+Axe^x,\quad y_p''=2Ae^x+Axe^x \ (2Ae^x+Axe^x)-3(Ae^x+Axe^x)+2Axe^x=e^x$$

$$\Rightarrow -Ae^x = e^x \Rightarrow A = -1$$

• 通解:

$$y = C_1 e^x + C_2 e^{2x} - x e^x$$

(5) 总结

□解题步骤

- 先求齐次解 y_h
- 根据g(x)形式求特解 y_p
- 通解 $y = y_h + y_p$
- 当g(x)含齐次解项时乘以 x^k