Definition (Co-design problem with implementation). A Co-Design Problem with Implementation (CDPI) is a tuple $\langle \mathbf{F}, \mathbf{R}, \langle \mathcal{V}, \mathcal{E} \rangle \rangle$, where \mathbf{F} and \mathbf{R} are two posets, and $\langle \mathcal{V}, \mathcal{E} \rangle$ is a multigraph of DPIs. Each node $v \in \mathcal{V}$ is a DPI v = $\langle \mathbf{F}_v, \mathbf{R}_v, \mathbf{I}_v, \mathsf{prov}_v, \mathsf{req}_v \rangle$. An edge $e \in \mathcal{E}$ is a tuple $e = \langle \langle v_1, i_1 \rangle, \langle v_2, j_2 \rangle \rangle$, where $v_1, v_2 \in \mathcal{E}$ \mathcal{V} are two nodes and i_1 and j_2 are the indices of the components of the functionality and resources to be connected, and it holds that $\pi_{i_1} \mathbf{R}_{v_1} = \pi_{i_2} \mathbf{F}_{v_2}$ (??).

Figure 0.1:

o in tik