CHAPTER - 9

STATISTICS

Statistics deals with collection, classification, presentation, analysis and interpretation of numeric data (quantitative data). The quantitative data occurs in three forms namely (A) Individual series (B) Discrete series and (C) Continuous series.

This chapter presents various statistical constants and methods of computing them for an individual series. These statistical constants that concisely describe any given group of data fall into two categories.

- An average, or a measure of central tendency which indicates the central value of t he size of a typical member of the group.
- (II) A measure of dispersion which indicates the extent to which the different items of the group are spread about the average.

I. Measures of Central Tendencies:

The measures we discuss here are

- (A) Arithmetic Mean,
- (B) Geometric Mean,
- (C) Harmonic Mean,
- (D) Median and
- (E) Mode.

1. Arithmetic Mean $(A.M.)(\overline{x})$:

Given x_1, x_2, \ldots, x_n (n individual items)

A.M. =
$$\bar{X} = \frac{x_1 + x_2 + + x_n}{n}$$

or $\bar{x} = \frac{\text{Sum of the observations}}{\text{The number of observations}}$

Examples:

- (i) The arithmetic mean of (4, 7, 8, 14, -13) is $= \frac{4+7+8+14+(-13)}{5} = \frac{20}{5} = 4$ (ii) The arithmetic mean of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) is
- $= \frac{1+2+3+4+5+6+7+8+9+10}{10} = \frac{55}{10} = 5.5$

- (a) The algebraic sum of deviations about the mean is 0 or $\Sigma(x - X) = 0$.
- (b) The arithmetic mean of two numbers a, b is $\frac{a+b}{2}$.
- (c) If b = AM of (a, c), then a, b and c are in arithmetic progression.

2. Geometric Mean (G.M.):

Given $x_1,\ x_2,\ \dots,\ x_n$ (n individual items all being positive)

G.M. =
$$(x_1 \cdot x_2 \cdot, x_n)^{1/n}$$

or $G.M. = n^{th}$ root of the product of the numbers.

- (i) The geometric mean of (10, 20, 40) is $= (10 \times 20 \times 40)^{1/3}$
 - $= (10 \times 20 \times 2 \times 20)^{1/3}$
 - $= (20 \times 20 \times 20)^{1/3} = 20$
- (ii) The geometric mean of (3, 5, 15, 45, 75) is $= (3 \times 5 \times 3 \times 5 \times 3^2 \times 5 \times 3 \times 5^2)^{1/5}$
 - $= (3^5 \times 5^5)^{1/5}$
 - $= 3 \times 5 = 15$

Note:

- (a) Geometric mean is not very commonly used as it involves finding the nth root, and hence requires complex calculations for higher values of n.
- (b) The geometric mean of two positive numbers a, b is √ab .

(c) If b = GM of (a, c), then a, b and c are in geometric progression.

3. Harmonic Mean (H.M.):

Given $x_1, x_2, ..., x_n$ (n individual observations such that none of them is equal to 0),

$$HM = \frac{n}{1/x_1 + 1/x_2 + \dots + 1/x_n}$$

Examples:

(i) The harmonic mean of (1, 2, 3, 4, 5) is

$$= \frac{5}{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}} = \frac{5 \times 60}{60 + 30 + 20 + 15 + 12}$$
$$= \frac{300}{137}$$

(ii) The harmonic mean of $\left(\frac{1}{1}, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}\right)$

$$=\frac{4}{1+3+9+27}=\frac{4}{40}=\frac{1}{10}$$

Note:

- (a) HM of two numbers a, b is $\frac{2ab}{a+b}$
- If b = HM of (a, c), then a, b and c are in harmonic progression.
- (c) For any two positive numbers a, b (i) $AM \ge GM \ge HM$. (ii) $(GM)^2 = (AM) (HM)$.
- 4. Median:

Median is the magnitude of the "middle-most" item in a series of values, when the values have been arranged in order of their magnitude. When there are odd number of observations, the middle number, when the values are arranged in ascending or descending order, is the median. When there are even number of observations, the average of the two numbers, at the middle when the values are arranged in ascending or in descending order is the median.

Examples:

- (i) The median of 4, 7, 12, 15, 20 is 12.
- (ii) The median of 3, 5, 9, 11, 13, 15 is $\frac{9+11}{2} = 10$.

Note:

- (a) The median divides the distribution into two equal
- Median is suitable for qualitative data as well.

5. Mode:

It is the item which is "most often" found in the given set of observations, i.e., the value occurring the highest number of times.

Examples:

- (i) For the observations; 2, 1, 1, 2, 3, 4, 3, 2, 1, 2, 2, 1, 4. 6. 7. Mode = 2
- (ii) For the observations; 1, 2, 2, 3, 3, 3, 4, 4, 4, 4 Mode = 4
- (iii) Consider the observations 5, 7, 11, 25, 36, 16.

Here no item occurs more than once. So, mode is ill-defined.

Empirical Formula:

Mode = 3Median - 2Mean.

This formula is valid for the distribution which are moderately symmetric. (symmetry being coincidence of mean, median and mode)

II. Measures of Dispersion:

The measures we discuss here are

- (A) Range,
- (B) Quartile Deviation,
- (C) Mean Deviation and
- (D) Standard Deviation/Variance.

1. Range:

Given, x_1, x_2, \ldots, x_n (n individual observations). Range = maximum value - minimum value

Example:

- Range (2, 3, 5, 6, 8, 11, 13) = 13 2 = 11.
- (ii) Range (7, 4, 8, 1, 6, 11, 15) = 15 1 = 14.
- Quartile Deviation (Q.D.) or Semi Inter **Quartile Range:**

Quartiles are those values, which divide the distribution into four equal parts, when the values are arranged in ascending or descending order of magnitude.

Q₁ is called the first quartile, Q₂ is the middle quartile and Q₃ is the third quartile. The second quartile is also referred to as the median.

As the name semi-inter-quartile range itself suggests Q.D. = $\frac{Q_3 - Q_1}{2}$ (one-half the range of quartiles)

$$Q_1 = \text{size of } \left(\frac{n+1}{4}\right)^{\text{th}}$$
 item

$$Q_3 = \text{size of } 3 \left(\frac{n+1}{4} \right)^{th} \text{ item}$$

Examples:

Find the Q.D. of the observations 5, 9, 13, 15, 21, 23, 25.

Sol: Since there are 7 terms; n = 7

$$Q_1 = \left(\frac{7+1}{4}\right)^{th} item = 2^{nd} item = 9.$$

$$Q_3 = 3\left(\frac{7+1}{4}\right)^{th}$$
 item = 6th item = 23.

$$\therefore$$
 Q.D = $\frac{Q_3 - Q_1}{2} = \frac{23 - 9}{2} = \frac{14}{2} = 7$.

(ii) Find the Q.D. of the observations 16, 2, 8, 24, 4, 32,

Sol: Arranging the numbers in order, we get 2, 4, 8, 16, 18, 24, 32; n = 7

:.
$$Q_1 = 2^{nd}$$
 item = 4 and $Q_3 = 6^{th}$ item = 24

∴
$$Q_1 = 2^{\text{nd}}$$
 item = 4 and $Q_3 = 6^{\text{th}}$ item = 24
∴ $Q_2 = \frac{Q_3 - Q_1}{2} = \frac{24 - 4}{2} = \frac{20}{2} = 10$.

Note:

The data is not in the ascending order (or in the descending order). So we arrange it first and then

- (iii) Find the Q.D. of 3, 7, 13, 25, 27, 31.
- **Sol:** The observations 3, 7, 13, 25, 27, 31.

$$Q_1 = \left(\frac{6+1}{4}\right)^{th} item = 1^{3}/_4^{th} item$$

= 1st item +
$$\frac{3}{4}$$
 (2nd item - 1st item)

$$Q_1 = 3 + \frac{3}{4} (7 - 3) = 6$$
 and

$$Q_3 = 3\left(\frac{6+1}{4}\right)^{th}$$
 item = $5^{1}/_{4}^{th}$ item

= 5th item +
$$\frac{1}{4}$$
 (6th item - 5th item)
Q₃ = 27 + $\frac{1}{4}$ (31 - 27) = 28.
 \therefore Q.D = $\frac{Q_3 - Q_1}{2} = \frac{28 - 6}{2} = 11$.

3. Mean Deviation (M.D.):

The mean deviation is calculated about mean or median or mode. But by default mean deviation is about mean. Mean deviation is the average of deviations of each item in the data set from the mean.

M.D. =
$$\sum_{i=1}^{n} |x_i - A|$$

A = mean / median / mode; n = number of items.

Examples:

- Find the mean deviation of 2, 5, 9, 11, 13. (i)
- **Sol:** Mean of the observations X = 40/5 = 8So the mean deviation is

M.D =
$$\frac{\left|2-8\right|+\left|5-8\right|+\left|9-8\right|+\left|11-8\right|+\left|13-8\right|}{5}$$
$$=\frac{6+3+1+3+5}{5}=\frac{18}{5}=3.6$$

- (ii) Find the mean deviation of 2, 3, 5, 9, 11.
- **Sol:** Mean of the observations X = 30/5 = 6So the mean deviation is

M.D. =
$$\frac{4+3+1+3+5}{5} = \frac{16}{5} = 3.2$$

- (A) Mean Deviation of two numbers a, $b = \frac{|a-b|}{2}$.
- (B) Mean deviation is based on each and every observation.

4. Standard Deviation (S.D.):

It is the root mean squared deviation taken about the

$$S.D. = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}, \ \ \text{where } x_1,\, x_2,\, x_3,\, \ldots \ldots\, x_n \text{ are the } n \text{ items given}.$$

The expression
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$
 also equals to $\sqrt{\frac{\sum x_i^2}{n} - (\overline{x})^2}$

Examples:

Find the S.D. of (2, 5, 8, 11, 14). (i)

Sol: Mean of the observations = 40/5 = 8

$$S.D. = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

$$= \sqrt{\frac{(2-8)^2 + (5-8)^2 + (8-8)^2 + (11-8)^2 + (14-8)^2}{5}}$$

$$= \sqrt{\frac{36+9+0+9+36}{5}}$$

$$= \sqrt{\frac{90}{5}} = \sqrt{18} = 3\sqrt{2}$$

- (ii) Find the S.D. of (2, 5, 7, 10, 13, 17).
- **Sol:** Mean of the observations = 54/6 = 9

S.D. =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

= $\sqrt{\frac{(-7)^2 + (-4)^2 + (-2)^2 + (1)^2 + (4)^2 + (8)^2}{6}}$
= $\sqrt{\frac{49 + 16 + 4 + 1 + 16 + 64}{6}}$ = $\sqrt{\frac{150}{6}}$
= $\sqrt{25}$ = 5

Note:

- (A) The square of the standard deviation is variance.(B) The standard deviation is non-negative.

Examples:

9.01. Find the mean, median and mode of the observations 2, 5, 9, 11, 13, 13, 17, 18.

Sol: Mean =
$$\bar{X} = \frac{\sum X_i}{n} = \frac{2+5+.....+18}{8}$$

Median: The given numbers are in ascending order, with 11 and 13 as the middle terms,

∴ Median =
$$\frac{11+13}{2} = \frac{24}{2} = 12$$

Mode: As the observation 13 has the greatest frequency, 13 is the mode.

9.02. If the arithmetic mean of 28, 31, 36, 43, 30 and K is 35, then find the value of K.

Sol:
$$\bar{X} = \frac{28 + 30 + 31 + 36 + 43 + K}{6} = 35$$

 $\Rightarrow 168 + K = 210$
or $K = 210 - 168 = 42$.

- 9.03. Find the arithmetic mean and the median of the first seven natural numbers.
- **Sol:** The numbers are 1, 2, 3, 4, 5, 6, 7. As the numbers are in an A.P. the arithmetic mean is the average of first and last terms. i.e., 4. Since, the middle term is 4, the value of the median is also equal to 4.
- **9.04.** Find the geometric mean of 3, 6, 24, 48.
- **Sol:** G.M. = (3, 6, 24, 48) $= (3 \times 6 \times 24 \times 48)^{1/4}$

=
$$(3 \times 2 \times 3 \times 2^3 \times 3 \times 2^4 \times 3)^{1/4}$$

= $(2^8 \times 3^4)^{1/4}$ = $2^2 \times 3$ = 12.

Sol: G.M. =
$$(2^0 . 2^1 . 2^22^8)^{1/9}$$

= $(2^{0+1+2+.....8})^{1/9} = (2^{36})^{1/9} = 2^4 = 16$

Sol: H.M. (10, 20, 30, 40, 50)
$$= \frac{5}{\frac{1}{10} + \frac{1}{20} + \frac{1}{30} + \frac{1}{40} + \frac{1}{50}}$$

$$= \frac{5 \times 600}{60 + 30 + 20 + 15 + 12} = \frac{3000}{137}$$

Sol: For two positive numbers a and b,
$$A.M. = \frac{a+b}{2} \; ; \; G.M. = \sqrt{ab} \; , \; H.M. = \frac{2ab}{a+b}$$

$$Now \; (G.M.)^2 = ab = \frac{a+b}{2} \times \frac{2ab}{a+b}$$

$$\therefore (G.M.)^2 = A.M. \times H.M.$$
 Since $(G.M.)^2 = A.M. \times H.M.$; A.M., G.M. and the H.M. of two positive numbers forms a geometric progression.

Quartile deviation:

$$Q_1 = \left(\frac{n+1}{4}\right)^{th} \text{ item} = 2^{nd} \text{ item} = 11$$

$$Q_3 = 3\left(\frac{n+1}{4}\right)^{th}$$
 item = 6th item = 24

$$\therefore$$
 Q.D. = $\frac{Q_3 - Q_1}{2} = \frac{24 - 11}{2} = 6.5$

Mean deviation:

Mean of the observations = 112/7 = 16

$$MD. = \frac{\sum |x_i - x|}{n}$$

$$|7 - 16| + |11 - 16| + |12 - 16| + |14 - 16|$$

$$= \frac{+ |18 - 16| + |24 - 16| + |26 - 16|}{7}$$

$$= \frac{9 + 5 + 4 + 2 + 2 + 8 + 10}{7} = \frac{40}{7}$$

9.09. Find the standard deviation and variance of the observation 8, 12, 20, 24, 36.

Sol: Mean of the observation
$$\bar{X} = \frac{\sum x}{n} = \frac{8+12+20+24+36}{5} = 20$$

$$\frac{\sum x^2}{n} = \frac{64+144+400+576+1296}{5} = \frac{2480}{5} = 496$$

$$\therefore (S.D.) = \sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$$

$$= \sqrt{496-400} = \sqrt{96} = 4\sqrt{6}$$
and variance = $(S.D.)^2 = (4\sqrt{6})^2 = 96$

9.10. Find the range and quartile deviation for the following prices of 11 items in a super market: 13, 21, 42, 19, 23, 64, 56, 71, 85, 25, 9.

9, 13, 19, 21, 23, 25, 42, 56, 64, 71, 85 Range = maximum price - minimum price = 85 - 9 = 76 $Q_1 = \left(\frac{n+1}{4}\right)^{th}$ item = $\left(\frac{11+1}{4}\right)^{th}$ item = 3^{rd} item = 19 $Q_3 = 3\left(\frac{n+1}{4}\right)^{th}$ item = $3\left(\frac{11+1}{4}\right)^{th}$ item = 9^{th} item = 64Q.D. = $\frac{64-19}{2} = \frac{45}{2} = 22.5$

Sol: Arranging the prices in ascending order;

Concept Review Questions

Directions for questions 1 to 20: For the Multiple Choice Questions, select the correct alternative from the given choices. For the Non-Multiple Choice Questions, write your answer in the box provided.

1.	The mid-value of the class 45 – 65 is .	11.	The range of the data 10, 8, 12, 23, 18, 35, 56, 82,
			49, 76 is .
2.	The size of the class 12 - 22 is (the previous class		
	is 2 – 12) .	12.	If the range and the maximum value of a set of numbers are 15 and 101 respectively, then the
3.	The arithmetic mean of 3a, 3b, 3c is (A) $3(a+b+c)$ (B) $a+b+c$		minimum value of the set is .
	(C) $\frac{a+b+c}{3}$ (D) $a^3+b^3+c^3$	13.	The second quartile of a distribution is equal to its (A) Mean (B) Median (C) Mode (D) Range
4.	For a symmetric distribution, which of the following is true?		(b) Mode (b) Range
	 (A) mode = 2 median - 3 mean (B) mode = 3 median + 2 mean (C) mean = median = mode (D) mean = mode + median 	14.	If the arithmetic mean of a set of 15 observations is 12, then the sum of the observations is (A) 180 (B) 150 (C) 240 (D) 160
5.	The empirical relation between mean, median and mode is (A) mean + median = mode (B) mean = 3 median - 2 mode	15.	If the standard deviation of 10, 20, 30, 40 and 50 is S, then the standard deviation of 20, 30, 40, 50 and 60 is (A) S (B) S + 10 (C) S - 10 (D) 10 S
	(C) mode = 3 median - 2 mean(D) None of these	16.	The mean deviation of 30 and 40 is
6.	The mode of the data 1, 2, 1, 5, 6, 7, 8, 7, 1 is	17.	If the standard deviation of $x_1, x_2,, x_n$ is S, then the variance of $x_1 + c, x_2 + c,, x_n + c$ is (A) S (B) S ² (C) 2 S (D) \sqrt{S}
7.	The mode of the data 2, 5, 11, 12, 15 and 32 is		
	(A) 2 (B) 32 (C) 30 (D) ill-defined	18.	If the range of the set $S = \{x_1, x_2, x_3,, x_n\}$ is R , then the range of the set $\{x_1 - 2, x_2 - 2,, x_n - 2\}$ is (A) $R - 2$ (B) $R + 2$ (C) R (D) $2R$
8.	The geometric mean of a, b and c is		(5) 11 (5) 11 (5) 11
	(A) (abc) ³ (B) abc	19.	If the arithmetic mean of $x_1, x_2,, x_n$ is A, then the
	(C) ³ √abc (D) None of these		arithmetic mean of $x_1 + a$, $x_2 + a$,, $x_n + a$ is (A) $A + a$ (B) $A - a$ (C) $a \cdot A$ (D) A
9.	Find the geometric mean of the data 5, 75 and 9.	20.	The arithmetic mean of the first 'n' natural numbers is 8 n =
10.	If A, G and H are the arithmetic mean, geometric mean and harmonic mean respectively of two positive numbers a and b, then which of the following is true? (A) $A \cdot G = H^2$ (B) $A^2 H^2 = G$ (C) $G \cdot H = A^2$ (D) $A \cdot H = G^2$		

Exercise - 9(a)

	ections for questions 1 to 25: For the Multiple Choice Question the Non-Multiple Choice Questions, write your answer in						
1.	The arithmetic mean of 24, 4, 12, 8, 36, 48, 20, 16, 28, 32, 40 and 44 is		(A) 135 (B) 105 (C) 75 (D) 95				
2.	(A) 52 (B) 26 (C) 28 (D) 56 The first term and the common difference of an	11.	The median of the values 12.12346, 12.12355, 12.12382, 12.13245, 12.15632, 12.12345, 12.12432, 12.18932,				
	arithmetic progression are 3 and 4 respectively. Find the arithmetic mean of the first 15 terms of the arithmetic progression.		12.12344, 12.12346 and 12.12349 is				
		12.	The median of the first 100 natural numbers is				
3.	The arithmetic mean of a set of 17 observations is 20. If two observations 13 and 27 are discarded, then the arithmetic mean of the remaining observations is	13.	Which of the following can be the range of the values of the median for the values 5, 11, 8, 3, 25, 39, x, 14, 23, 4, 25, 6, 9, 15 and 29? (A) [14, 15] (B) [9, 11] (C) [11, 14] (D) [23, 25]				
4.	The arithmetic mean of the cubes of the first n natural numbers is	14.	(C) [11, 14] (D) [23, 25] The median of a set of 20 observations is 100.				
	(A) $\frac{(n+1)(2n+1)}{6}$ (B) $\frac{(n+1)^2}{4}$		If each observation is divided by 4, then the median of the new set of observations is (A) 100 (B) 25 (C) 12.5 (D) 50				
	(C) $\frac{n(n+1)^2}{4}$ (D) $\frac{n+1}{2}$	15.	The mode of the data 2, 5, 3, 2, 6, 2, 7, 8, 2, 7, 7, 3, 7, 8, 7 and 10 is .				
5.	If the arithmetic mean of the series $a_1, a_2, \ldots a_n$ is A and the arithmetic mean of the series $b_1, b_2, \ldots b_n$ is B, then the arithmetic mean of the series $a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n$ is	16.	The range of a set of 30 observations is 50. If 2 is added to each of the observations, then the range of				
	(A) $\frac{A + B}{2}$ (B) $A + B$		the new set of observations is				
	(C) $2(A + B)$ (D) $\frac{A + B}{n}$	17.	The quartile deviation of the series 1, 8, 4, 32, 19, 23, 25, 14, 12, 35 and 15 is				
6.	The arithmetic mean of the multiples of 7 between the numbers 100 and 200 is .	18.	(A) 11 (B) 4 (C) 8.5 (D) 12 The mean deviation of the series 1, 4, 12, 18, 13,				
7.	The arithmetic mean of the series x_1, x_2,x_n is A. If	.0.	16, 25, 3, 5 and 3 is .				
	the observation x_i is replaced by x^1 , then the arithmetic mean of the new series is (A) x^1 (B) $\frac{nA - x_i + x^1}{n}$	19.	The standard deviation of a series of 'n' observations is σ . If each observation is multiplied by 3, then the standard deviation of the new series is				
	(C) $\frac{nA + x_i + x^1}{n}$ (D) $\frac{nA + x^1}{n}$		(A) σ (B) 9σ (C) $\frac{\sigma}{3}$ (D) 3σ				
8.	In calculating the arithmetic mean of a set of 15 observations as 25, four observations 4, 12, 19 and 35 were misread as 1, 3, 8 and 13 respectively. Find the correct mean.	20.	If the standard deviation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 is M, then the standard deviation of 101, 102, 103, 104, and 111 is (B) M (D) $M = 100$				
9.	The average of a set of 120 observations is 20. If the average of 80 of these observations is also 20, then the average of the remaining 40 observations is	21.	The algebraic sum of the squares of the deviations of 11 observations about their arithmetic mean is 275. The standard deviation of the 11 observations is				
		22.	The standard deviation of the first 13 natural numbers				

is __

10. The geometric mean of 45, 245, 21 and 525 is _

	(A) $\sqrt{7}$ (B) $\frac{\sqrt{14}}{2}$ (C) $\sqrt{14}$ (D) 4		(C) harmonic mean of V ₁ and V ₂ .				
	(A) $\sqrt{7}$ (B) $\frac{\sqrt{14}}{2}$ (C) $\sqrt{14}$ (D) 4		(D) Arithmetic mean of $\frac{1}{V_1}$ and $\frac{1}{V_2}$				
23.	If 3, 2 and 9 occur with frequencies 2, 5 and		-1 -2				
	3 respectively, then their arithmetic mean is A man travels a distance of 200 km on a motorcycle	25.	The arithmetic mean (AM) of the series $x_1, x_2, \dots x_n$ is M. Let $y_i = AM$ (x_i, x_{i+1}, x_{i+2}) for $1 \le i \le n-2$ and $y_{n-1} = AM$ (x_{n-1}, x_n, x_1), $y_n = AM$ (x_n, x_1, x_2).				
	and covers the first 100 km at an average speed of		The arithmetic mean of y_1, y_2, \dots, y_n is				
	V_1 km/hr and the second 100 km at an average speed of V_2 km/hr ($V_1 \neq V_2$). The average speed of the bike		(A) $\frac{2}{3}$ M (B) M				
	for the entire journey is equal to		(C) $\frac{3}{2}$ M (D) 3M				
	(A) arithmetic mean of V₁ and V₂.(B) geometric mean of V₁ and V₂.		$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
	Exercise	e – 9	(b)				
	ections for questions 1 to 25: For the Multiple Choice Qu						
For	the Non-Multiple Choice Questions, write your answer in						
	Very Easy / Easy	9.	Which of the following can be the range of the values of the median for the series 14, 12, 23, x, 15, 29, 5?				
1.	The arithmetic mean of 2, 12, 8, 16, 17, 18, 23 and 40 is		(A) [12, 14] (B) [14, 15]				
	(A) 19.5 (B) 17 (C) 16 (D) 17.5		(C) [15, 29] (D) [13, 18]				
2.	The arithmetic mean of the first 100 natural numbers	10.	The median of the series 1, $\frac{2}{3}$, $\frac{12}{5}$, $\frac{13}{6}$, $\frac{1}{2}$ and 2 is				
	is .						
3.	The arithmetic mean of a set of 22 observations is 25.	44	The reading of a set of OA absorbations is 50 H O is				
	If two observations 23 and 47 are discarded, then the arithmetic mean of the remaining observations is	11.	The median of a set of 21 observations is 50. If 2 is subtracted from each of the observations, then the				
	(A) 24 (B) 24.5 (C) 23.5 (D) 25		median of the new set of observations is				
4.	If the arithmetic mean of the series $x_1, x_2, x_3, \ldots, x_n$ is	12.	Consider the non-decreasing series of the numbers				
	M, then the arithmetic mean of the series		1, 8, 8, 13, 14, 14, x, y, 18, 20, 31, 34, 38 and 40 If the median of the series is 15, then the mode of the				
	$\frac{2x_1-3}{5}, \frac{2x_2-3}{5}, \dots, \frac{2x_n-3}{5}$ is		series is				
	(A) $\frac{2M+3}{5}$ (B) $\frac{2M-3}{5}$ (C) $M-\frac{3}{5}$ (D) $\frac{2M}{5}$		(A) 14 (B) 16 (C) 18 (D) Cannot be determined				
_		40					
5.	In calculating the arithmetic mean of a set of 10 observations as 30, three observations 18, 12 and 21	13.	The geometric mean of 1, 4, 4^2 , and 4^{101} is (A) 2^{101} (B) 4^{50} (C) $2^{101}\sqrt{2}$ (D) 4^{51}				
	were misread as 38, 6 and 22 respectively. Find the						
	actual mean of the set of observations. (A) 28 (B) 28.5 (C) 31.7 (D) 30	14.	The geometric mean of the numbers 75, 80, 225				
6.	There are 100 employees in an organization. The		20 and 144 is .				
	average wage of 40 of these employees is ₹2000 per month and the average wage of the remaining	45	The crithmetic mean of the first 'n' even neture				
	employees is ₹3000 per month. The average wage of	15.	The arithmetic mean of the first 'n' even natura numbers is				
	all the 100 employees per month (in ₹) is		(A) $n(n+1)$ (B) $n+1$ (C) $\frac{n+1}{2}$ (D) n				
	Moderate	16.	The harmonic mean of 1, 2, 4, 7, 14 and 28 is				
7.	In an increasing arithmetic progression of 20 terms, the 10 th term is 48 and the common difference is 4.						
	The arithmetic mean of the 20 terms is	17.	The median of the first 20 prime numbers is .				
8.	a ₁ , a ₂ ,, a _n are 'n' distinct real numbers such that						
٥.	$a_1 < a_2 < a_3 < \ldots < a_n$ and the arithmetic mean of a_1 ,	18.	The algebraic sum of the deviations of 12 numbers				
	a_2, \ldots, a_n is M. Let $b_i = \max [a_1, a_2, \ldots, a_i]$. The arithmetic mean of b_1, b_2, \ldots, b_n is		about 9 is 60. Find the arithmetic mean of the				
	(A) 2M (B) M (C) $\frac{M}{2}$ (D) M – 2		numbers. (A) 14 (B) 12 (C) 13 (D) 15				
	2 (-,		• • • • • • • • • • • • • • • • • • • •				

19.	The range of a set of 25 observation is divided by			
	new set of observations is].		

- 20. The mean deviation of the series 12, 5, 9, 15, 31, 20, 4, 17 and 22 about the mean is __
- (B) $\frac{56}{9}$
- (C) $\frac{20}{3}$
- **21.** If the standard deviation of the series $x_1 + 2$, $x_2 + 2$, $x_n + 2$ is σ , then the standard deviation of $x_1 - 2, x_2 - 2, \dots x_n - 2$ is _____. (A) σ (B) $\sigma - 2$ (C) $\sigma + 2$ (D) $\frac{\sigma}{2}$

- 22. The variance of the first 11 natural numbers is

- 23. The standard deviation of 7, 7, 7, 7, 7, 7, 7, 7, 7
 - (A) 10
- (B) $2\sqrt{2}$
- (C) $\sqrt{10}$
- (D) $2\sqrt{5}$

Difficult / Very Difficult

- 24. The median of the series sin10, sin20, sin30,
 - (A) 1
- (B) $\frac{1}{\sqrt{2}}$ (C) $\sin 46^{\circ}$ (D) $\sin 89^{\circ}$
- **25.** The quartile deviation of 2, 12, 19, 17, 52, 11, 32, 23, 25, 12 and 39 is .

Key

Concept Review Questions

- 55 10 D 3. В
- 15 10. D 11. 74 12. 86
- 14. A 15. A
- 17. B 18. C 19. A 20. 15

Exercise - 9(a)

- В 150.5 6. 1. 2. 3. 31 7. В 20 8. 28 4. С 9. 20 10. B
- 11. 12.12355 12. 50.5 13. C 14. B 15. 7
- 16. 50 17. C 18. 6.8 19. D 20. A
- 21. 5 22. C 23. 4.3 24. C 25. B

Exercise - 9(b)

- В 1. 2. 50.5 3. Α 4. В
- 2600 7. 50 8. В В 9. 10. 1.5
- 11. 48 12. D 13. A 14. 60 15. B
- 16. 3 17. 30 18. A 19. 25

20. C

22. 10 23. C 24. B 25. 10

21. A