## **Chapter 2: Sequence**

# 2.1. Definitions, Examples and Theorems

#### **Definition 2.1.**

 A (real) sequence is an ordered list of infinitely many real numbers

$$(a_n)_{n=1}^{\infty} := a_1, a_2, a_3, a_4, \dots$$

- $a_n$  is the n-th term of the sequence and n is the index.
- One can write  $(a_n)_{n=n_0}^{\infty}$ , where  $n_0 \in \mathbb{Z}$ , or simply  $(a_n)$ .
- For example,  $(2n-3)_{n=1}^{\infty}$ ,  $(2n-3)_{n=0}^{\infty}$ ,  $(2n-3)_{n=-5}^{\infty}$

A sequence as a function of integers:

$$a_n = f(n)$$

• Plotting the sequence  $\left(\frac{n}{n+1}\right)_{n=1}^{\infty}$  as points on *x*-axis:



• Plotting  $\left(\frac{n}{n+1}\right)_{n=1}^{\infty}$  as the graph of a function:



## Convergence

- **Definition 2.2.** Let  $(a_n)_{n=1}^{\infty}$  be a sequence.
  - (1) Statement ' $a_n$  tends to L as n tends to infinity', written as ' $a_n \to L$  as  $n \to \infty$ ', is defined by:  $\forall \, \epsilon > 0 \ \exists \, K \in \mathbb{R} \ \forall \, n \in \mathbb{N}, \ n \geq K, \ |a_n L| < \epsilon$
  - (2) If  $a_n \to L$  as  $n \to \infty$ , we say that  $(a_n)_{n=1}^{\infty}$  **converges** to L, and we also write  $\lim_{n \to \infty} a_n = L$ . That is, L is the **limit** of  $(a_n)_{n=1}^{\infty}$ .
  - (3) The sequence  $(a_n)_{n=1}^{\infty}$  is said to be **convergent** if it converges to some real number.

    Otherwise,  $(a_n)_{n=1}^{\infty}$  is said to be **divergent**.
- $|a_n L| < \epsilon$  means  $L \epsilon < a_n < L + \epsilon$
- K depends on  $\epsilon$  and may be written  $K_{\epsilon}$

## Example 2.1.

1. Prove that the sequence  $(a_n) = \left(\frac{n}{n+1}\right)$  converges and find its limit .

#### Solution.

By guessing the limit (see the graph), take L = 1.

Let  $\epsilon > 0$ . We must find  $K_{\epsilon}$  such that for all n,

$$n \ge K_{\epsilon} \implies |a_n - L| = \left| \left( \frac{n}{n+1} \right) - 1 \right| < \epsilon$$

For this we first simplify:

$$\left| \left( \frac{n}{n+1} \right) - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

Hence,  $|a_n - 1| < \epsilon$  provided that  $\frac{1}{n+1} < \epsilon$ ,

which can be written as  $n+1>\frac{1}{\epsilon}$  or  $n>\frac{1}{\epsilon}-1$ .

If we take  $K_{\epsilon} = \frac{1}{\epsilon} - 1$ , then  $|a_n - 1| < \epsilon$  for all  $n > K_{\epsilon}$ . Since  $\epsilon > 0$  was arbitrary, then  $\frac{n}{n+1} \to 1$  as  $n \to \infty$ .

2. Show that the sequence  $(a_n) = \left(\frac{1}{n}\right)$  converges to 0.

## **Solution**

Given  $\epsilon > 0$ . We need to find  $K_{\epsilon}$  such that for all n,

$$n \ge K_{\epsilon} \implies \left| \frac{1}{n} - 0 \right| < \epsilon$$

Simplifying 
$$\left|\frac{1}{n} - 0\right| < \epsilon \implies \frac{1}{n} < \epsilon$$
, or  $n > \frac{1}{\epsilon}$ .

Take 
$$K_{\epsilon} = \frac{1}{\epsilon}$$
 then  $\left| \frac{1}{n} - 0 \right| < \epsilon$  for every  $n > K_{\epsilon}$ .

This shows that  $\left(\frac{1}{n}\right)$  converges to 0.

# **Tutorial 2.1.1(1)**

- (a) Prove, using the definition of convergence, that the sequence  $(a_n) = \left(\frac{n}{n+1}\right)$  does not converge to 2.
- (b) Prove, using the definition of convergence, that the sequence  $(a_n) = ((-1)^n)$  does not converge to any L.