Adv Abstract Algebra: AAA #04

Due on March 2022 at 11:59PM

 $Prof.\ Peter\ Hermann\ Spr\ 2022$

Xianzhi

2023

Let G be a finite group and p a prime. Suppose that $N_p \triangleleft G$ such that $|G:N_p|$ is some power of p and $|N_p|$ is not divisible by p. (Then N_p is called a normal p-complement in G.) Prove that (for the give p) N_p is unique, i.e., a group can have at most one normal p-complement.

Solution:

Let G be a finite group, $L \triangleleft G$ and p a prime. Suppose that N_p is a normal p-complement in G. Show that $L \cap N_p$ is a normal p-complement in L and $L \cdot N_p/L$ is a normal p-complement in G/L. Solution:

Let $|G| = 2 \cdot 5 \cdot 7 \cdot 79^3$. Show that G is solvable.

Solution:

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta_1}] &= \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i^2}{\sum x_i^2 \sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{\sum x_i^2}{\sum x_i^2 \sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \sigma^2 \\ &= \frac{\sigma^2}{\sum x_i^2} \end{aligned}$$

Let a solvable group G act faithfully and transitively on the set Ω , where $|\Omega| = 35$.

- 1. Prove that this action is not primitive.
- 2. Show that if G is abelian then it must be cyclic.