

数据库系统

论文概述

(2019 年度春季学期)

姓	名 _	朱明彦
学	号	1160300314
学	院	计算机学院
教	师	高宏

计算机科学与技术学院

论文概述

目录

第	1章	解决的问题	3
第	2 章	采用的思想	3
	2.1	数学模型方面	3
	2.2	索引 SCOB 方面	3
	2.3	算法 TOAIN 方面	3
第	3 章	基本算法描述	3
第	4 章	算法分析	3
笙	5	坐 例说明	3

论文概述 概述

论文概述

第1章 解决的问题

选择的论文 [1] 为 2018 年 PVLDB 上面的一篇文章, **主要解决的问题是 Road Networks** 上面动态的 kNN 查询。

针对这个问题,作者主要有如下三个方面的工作:

- 1. 对于 Road Networks 上需要进行 kNN 查询的系统建立新的数学模型,并找到其中影响系统整体吞吐量的关键因素。
- 2. 建立了一个以 Shortcut Graph 为基础的索引, SCOB。
- 3. 设计了可以调整 SCOB 以最大化系统吞吐量的算法, TOAIN。

第2章 采用的思想

- 2.1 数学模型方面
- 2.2 索引 SCOB 方面
- 2.3 算法 TOAIN 方面

第3章 基本算法描述

文中以伪代码形式讲述的算法共有4个,下面将分别进行描述。

3.0.1 SCOB Index

Query

Insert

Delete

3.0.2 TOAIN

Compute Rank

论文概述

第 4 章 算法分析

第5章 举例说明

参考文献

[1] Luo, S., Kao, B., Li, G., Hu, J., Cheng, R., & Zheng, Y. (2018). TOAIN: a throughput optimizing adaptive index for answering dynamic k NN queries on road networks. Proceedings of the VLDB Endowment, 11(5), 594-606.