Задача А. Самое дешевое ребро

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Все ребра имеют веса (стоимости). Вам нужно ответить на M запросов вида "найти у двух вершин минимум среди стоимостей ребер пути между ними".

Формат входных данных

В первой строке файла записано одно числ-n (количество вершин).

В следующих n-1 строках записаны два числа — x и y. Число x на строке i означает, что x — предок вершины $i,\,y$ означает стоимость ребра.

$$x < i, |y| \le 10^6$$
.

Далее m запросов вида (x,y) — найти минимум на пути из x в y $(x \neq y)$.

Ограничения: $2 \le n \le 5 \cdot 10^4, 0 \le m \le 5 \cdot 10^4$.

Формат выходных данных

m ответов на запросы.

stdin	stdout
5	2
1 2	2
1 3	
2 5	
3 2	
2	
2 3	
4 5	

AU-2017-03-21. [M/B]ST Russia, Saint-Petersburg, May, 21, 2017

Задача В. День Объединения

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

В Байтландии есть целых n городов, но нет ни одной дороги. Король решил исправить эту ситуацию и соединить некоторые города дорогами так, чтобы по этим дорогам можно было бы добраться от любого города до любого другого. Когда строительство будет завершено, Король планирует отпраздновать День Объединения. К сожалению, казна Байтландии почти пуста, поэтому Король требует сэкономить деньги, минимизировав суммарную длину всех построенных дорог.

Формат входных данных

Первая строка входного файла содержит натуральное число n $(1 \le n \le 5\,000)$ — количество городов в Байтландии. Каждая из следующих n строк содержит два целых числа x_i, y_i — координаты i-го города $(-10\,000 \le x_i, y_i \le 10\,000)$. Никакие два города не расположены в одной точке.

Формат выходных данных

Первая строка выходного файла должна содержать минимальную суммарную длину дорог. Выведите число с точностью не менее 10^{-3} .

stdin	stdout
6	9.65685
1 1	
7 1	
2 2	
6 2	
1 3	
7 3	

AU-2017-03-21. [M/B]ST Russia, Saint-Petersburg, May, 21, 2017

Задача С. Остовное дерево 2

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Требуется найти в связном графе остовное дерево минимального веса.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно. Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя натуральными числами b_i, e_i и w_i — номера концов ребра и его вес соответственно ($1 \le b_i, e_i \le n$, $0 \le w_i \le 100\,000$). $n \le 20\,000, m \le 100\,000$.

Граф является связным.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число — вес минимального остовного дерева.

stdin	stdout
4 4	7
1 2 1	
2 3 2	
3 4 5	
4 1 4	

Задача D. Range Minimum Query

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Компания $\underline{\text{Giggle}}$ открывает свой новый офис в Судиславле, и вы приглашены на собеседование. Ваша задача — решить поставленную задачу.

Вам нужно создать структуру данных, которая представляет из себя массив целых чисел. Изначально массив пуст. Вам нужно поддерживать две операции:

- запрос: «? і j» возвращает минимальный элемент между i-ым и j-м, включительно;
- изменение: «+ і х» добавить элемент x после i-го элемента списка. Если i=0, то элемент добавляется в начало массива.

Конечно, эта структура должна быть достаточно хорошей.

Формат входных данных

Первая строка входного файла содержит единственное целое число n — число операций над массивом ($1 \le n \le 200\,000$). Следующие n строк описывают сами операции. Все операции добавления являются корректными. Все числа, хранящиеся в массиве, по модулю не превосходят 10^9 .

Формат выходных данных

Для каждой операции в отдельной строке выведите её результат.

stdin	stdout
8	4
+ 0 5	3
+ 1 3	1
+ 1 4	
? 1 2	
+ 0 2	
? 2 4	
+ 4 1	
? 3 5	

AU-2017-03-21. [M/B]ST Russia, Saint-Petersburg, May, 21, 2017

Задача Е. Вперёд!

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 6 секунд
Ограничение по памяти: 256 мегабайт

Капрал Дукар любит раздавать приказы своей роте. Самый любимый его приказ — "Вперёд!". Капрал строит солдат в ряд и отдаёт некоторое количество приказов, каждый из них звучит так: "Рядовые с l_i по l_j — вперёд!"

Перед тем, как Дукар отдал первый приказ, солдаты были пронумерованы от 1 до n, слева направо. Услышав приказ "Рядовые с l_i по l_j — вперёд!", солдаты, стоящие на местах с l_i по l_j включительно, продвигаются в начало ряда, в том же порядке, в котором были.

Например, если в какой-то момент солдаты стоят в порядке 1, 3, 6, 2, 5, 4, то после приказа "Рядовые с 2 по 3 — вперёд!", порядок будет таким: 3, 6, 1, 2, 5, 4. А если потом Капрал вышлет вперёд солдат с 3 по 4, то порядок будет уже таким: 1, 2, 3, 6, 5, 4.

Вам дана последовательность из приказов Капрала. Найдите порядок, в котором будут стоять солдаты после исполнения всех приказов.

Формат входных данных

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число солдат и число приказов. Следующие m строк содержат приказы в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходных данных

Выведите в выходной файл n целых чисел — порядок, в котором будут стоять солдаты после исполнения всех приказов.

stdin	stdout
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	

Задача F. Переворачивания

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 5 секунд
Ограничение по памяти: 256 мебибайт

Учитель физкультуры школы с углубленным изучением предметов уже давно научился считать суммарный рост всех учеников, находящихся в ряду на позициях от l до r. Но дети играют с ним злую шутку. В некоторый момент дети на позициях с l по r меняются местами. Учитель заметил, что у детей не очень богатая фантазия, поэтому они всегда «переворачивают» этот отрезок, т. е. l меняется с r, l+1 меняется с r-1 и так далее. Но учитель решил не ругать детей за их хулиганство, а все равно посчитать суммарный рост на всех запланированных отрезках.

Формат входных данных

В первой строке записано два числа n и m $(1 \le n, m \le 200\,000)$ — количество детей в ряду и количество событий, произошедших за все время. Во второй строке задано n натуральных чисел — рост каждого школьника в порядке следования в ряду. Рост детей не превосходит $2 \cdot 10^5$. Далее в m строках задано описание событий: три числа q, l, r в каждой строке $(0 \le q \le 1, \ 1 \le l \le r \le n)$. Число q показывает тип события: 0 показывает необходимость посчитать и вывести суммарный рост школьников на отрезке [l, r]; 1 показывает то, что дети на отрезке [l, r] «перевернули» свой отрезок. Все числа во входном файле целые.

Формат выходных данных

Для каждого события типа 0 выведите единственное число на отдельной строке — ответ на этот запрос.

stdin	stdout
5 6	15
1 2 3 4 5	9
0 1 5	8
0 2 4	7
1 2 4	10
0 1 3	
0 4 5	
0 3 5	

Задача G. Приказы

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Вася работает в НИИГСД (НИИ Государственных Структур Данных). Он изучает приказы правительства далёкого государства.

В том государстве все города расположены вдоль одной дороги. Они пронумерованы в порядке обхода. Изначально качество жизни в каждом из них равно нулю.

Далее последовательно издаются указы вида «уровень жизни в городах с i по j должен стать не меньше x».

Также есть некоторые официальные заявления. Они имеют следующую форму: «средний уровень жизни в городах с i по j равен x». Вася нуждается в помощи с проверкой этих утверждений: для каждого из них известны i и j, требуется подсчитать верное значение x.

Можете считать, что каждый приказ исполняется, а также в каждый момент времени каждый город имеет минимальный неотрицательный уровень жизни, удовлетворяющий всем приказам.

Формат входных данных

Ввод состоит из одного или более тестов. Каждый тест начинается строкой с двумя целыми числами n и k — числом городов и событий, соответственно. Следующие k строк содержат по одному описанию события:

- 1. ^ $i\ j\ x$ означает приказ: после этого, все города с номерами от $i\ до\ j$ включительно должны иметь уровень жизни не менее $x\ (1\leqslant x\leqslant 10^9,\ 1\leqslant i\leqslant j\leqslant n).$
- 2. ? i j означает официальное заявление: следует подсчитать средний уровень жизни в городах с i по j включительно $(1 \le i \le j \le n)$.

В конце ввода будет помещён тест с n = k = 0, который не требуется обрабатывать.

Сумма n по всему вводу не превысит $100\,000$. Сумма k по всему вводу не превысит $100\,000$.

Формат выходных данных

Для каждого официального заявления выведите на отдельной строке искомый средний уровень жизни в виде несократимой дроби с наименьшим возможным натуральным знаменателем. Если знаменатель равен 1, выведите вместо дроби целое число. Следуйте формату вывода, как это показано в примере.

stdin	stdout
10 10	0
? 1 10	1
^ 1 10 1	10
? 1 10	10
^ 2 3 10	5
^ 3 4 5	27/5
? 2 2	16/5
? 3 3	
? 4 4	
? 1 5	
? 1 10	
0 0	

Задача Н. Динамический Лес

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам нужно научиться обрабатывать 3 типа запросов:

- 1. Добавить ребро в граф (link).
- 2. Удалить ребро из графа (cut).
- 3. По двум вершинам a и b, определить, лежат ли они в одной компоненте связности (get).

Изначально граф пустой (содержит N вершин, не содержит ребер). Гарантируется, что в любой момент времени граф является лесом. При добавлении ребра гарантируется, что его сейчас в графе нет. При удалении ребра гарантируется, что оно уже добавлено.

Формат входных данных

Числа N и M ($1 \le N \le 10^5 + 1$, $1 \le M \le 10^5$) — количество вершин в дереве и, соответственно, запросов. Далее M строк, в каждой строке команда (link или cut, или get) и 2 числа от 1 до N — номера вершин в запросе.

Формат выходных данных

В выходной файл для каждого запроса get выведите 0, если не лежат, или 1, если лежат.

stdin	stdout
3 7	0101
get 1 2	
link 1 2	
get 1 2	
cut 1 2	
get 1 2	
link 1 2	
get 1 2	
5 10	110100
link 1 2	
link 2 3	
link 4 3	
cut 3 4	
get 1 2	
get 1 3	
get 1 4	
get 2 3	
get 2 4	
get 3 4	

Задача І. Внутреняя точка 2

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан совсем невыпуклый <u>простой</u> N-угольник и K точек. Напомним, N-угольник называется простым, если не имеет ни самопересечений, ни самокасаний. Для каждой точки нужно определить, где она находится — внутри, на границе, или снаружи.

Формат входных данных

В первой строке дано целое число T — количество тестов.

Далее идут T тестов. Тесты разделены переводом строки.

 $N\ (3\leqslant N\leqslant 10^5)$. Далее $N\ {
m точек}-{
m вершины}$ многоугольника.

 $K (0 \le K \le 10^5)$. Далее K точек — запросы.

Все координаты — целые числа по модулю не превосходящие 10^9 .

Суммарное количество N и K не превосходит $2 \cdot 10^6$.

Формат выходных данных

Для каждого запроса одна строка — INSIDE, BORDER или OUTSIDE.

Тесты следует разделять переводом строки.

stdin	stdout
1	INSIDE
4	BORDER
0 0	BORDER
2 0	OUTSIDE
2 2	
0 2	
4	
1 1	
0 0	
0 1	
0 3	

Задача Ј. Междугородний Экспресс

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 5 секунд
Ограничение по памяти: 256 мегабайт

Андрей разрабатывает программу для электронной продажи билетов. Сейчас он хочет протестировать ее на «Междугороднем Экспрессе», маршрут которого соединяет два крупных города. По пути между городами экспресс останавливается в n-2 населенных пунктах и, таким образом всего проходит n остановок, пронумерованных от 1 до n.

В «Междугороднем Экспрессе» s посадочных мест, пронумерованных от 1 до s. У программы Андрея есть доступ к базе данных, в которой содержится информация об уже проданных билетах по напровлению из города 1 в город n. Нужно, чтобы программа умела отвечать, возможно ли продать билет со станции a до станции b и, если возможно, выдать номер минимального места, свободного на всем промежутвке от a до b.

Пока система должна работать в тестовом режиме, поэтому никаких билетов она не продает и, выведя номер свободного места, она не должа его резервировать.

Помогите Андрею дописать эту программу.

Формат входных данных

В первой строке файла через пробел написаны числа n, s и m — число уже проданных билетов $(2 \le n \le 10^9, 1 \le s \le 100\,000, 0 \le m \le 100\,000)$.

Далее m строк содержат по три числа, описывающих каждый из билетов: c_i — номер занятого места, a_i — станция отправления и b_i — станция прибытия $(1 \le c_i \le s, 1 \le a_i < b_i \le n)$.

В следующей строке записано число q — количество запросов к программе ($1 \le q \le 100\,000$).

Для обработки запросов должно поддерживатся специальное число p, изначально равное 0.

Дальше идет 2q чисел, описывающие запросы. Каждый запрос описывается двумя числами: x_i и y_i ($x_i < y_i$). Чтобы получить a и b — номера станций запроса нужно воспользоваться следующими формулами: $a = x_i + p, \ b = y_i + p$. Ответ на запрос — 0, если свободных мест на данном отрезке станций нет, иначе — номер минимального свободного места.

Ответив на запрос, нужно присвоить p значение ответа.

Формат выходных данных

Для каждого запроса выведите ответ на него.

Пример

stdin	stdout
5 3 5	1
1 2 5	2
2 1 2	2
2 4 5	3
3 2 3	0
3 3 4	2
10	0
1 2 1 2 1 2 2 3 -2 0	0
2 4 1 3 1 4 2 5 1 5	0
	0

Замечание: запросы должны получиться вот такие: (1,2), (2,3), (3,4), (4,5), (1,3), (2,4), (3,5), (1,4), (2,5), (1,5).

Задача К. Миллиардеры

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Возможно, вы знаете, что из всех городов мира больше всего миллиардеров живёт в Москве. Но, поскольку работа миллиардера подразумевает частые перемещения по всему свету, в определённые дни какой-то другой город может занимать первую строчку в таком рейтинге. Ваши приятели из ФСБ, ФБР, МІ5 и Шин Бет скинули вам списки перемещений всех миллиардеров за последнее время. Ваш работодатель просит посчитать, сколько дней в течение этого периода каждый из городов мира был первым по общей сумме денег миллиардеров, находящихся в нём.

Формат входных данных

В первой строке записано число n — количество миллиардеров ($1 \le n \le 10\,000$). Каждая из следующих n строк содержит данные на определённого человека: его имя, название города, где он находился в первый день данного периода, и размер состояния. В следующей строке записаны два числа: m — количество дней, о которых есть данные ($1 \le m \le 50\,000$), k — количество зарегистрированных перемещений миллиардеров ($0 \le k \le 50\,000$). Следующие k строк содержат список перемещений в формате: номер дня (от 1 до m–1), имя человека, название города назначения. Вы можете считать, что миллиардеры путешествуют не чаще одного раза в день, и что они отбывают поздно вечером и прибывают в город назначения рано утром следующего дня. Список упорядочен по возрастанию номера дня. Все имена и названия городов состоят не более чем из 20 латинских букв, регистр букв имеет значение. Состояния миллиардеров лежат в пределах от 1 до 100 миллиардов.

Формат выходных данных

В каждой строке должно содержаться название города и, через пробел, количество дней, в течение которых этот город лидировал по общему состоянию миллиардеров, находящихся в нём. Если таких дней не было, пропустите этот город. Города должны быть отсортированы по алфавиту (используйте обычный порядок символов: ABC...Zabc...z).

stdin	stdout
5	Anadyr 5
Abramovich London 15000000000	London 14
Deripaska Moscow 10000000000	Moscow 1
Potanin Moscow 5000000000	
Berezovsky London 2500000000	
Khodorkovsky Chita 1000000000	
25 9	
1 Abramovich Anadyr	
5 Potanin Courchevel	
10 Abramovich Moscow	
11 Abramovich London	
11 Deripaska StPetersburg	
15 Potanin Norilsk	
20 Berezovsky Tbilisi	
21 Potanin StPetersburg	
22 Berezovsky London	

Дополнительные задачи

Задача L. Таможенные пошлины

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Недавно королева страны AlgoLand придумала новый способ отмывания денег для своего королевского двора. Она решила, что всякий житель, желающий совершить путешествие из одного города страны в другой, должен расплатиться за это желание своими деньгами.

В стране AlgoLand есть N городов, пронумерованных от 1 до N. Некоторые города соединены дорогами, движение по которым разрешено в двух направлениях. Начиная движение по какойнибудь дороге, путешественник обязательно должен доехать до ее конца.

Предположим теперь, что житель страны хочет совершить путешествие из города A в город B. Новый указ королевы гласит, что при проезде по любой дороге страны во время этого путешествия, полицейские могут взять с этого жителя таможенную пошлину в пользу королевского двора (а могут и не взять). Если при этом у жителя недостаточно денег для уплаты пошлины, то он автоматически попадает в тюрьму. Указ также устанавливает величину пошлины для каждой дороги страны. Так как королева заботится о жителях своей страны, то она запретила полицейским брать с жителя пошлину более чем три раза во время одного путешествия.

Отметим, что если существует несколько способов попасть из города A в город B, то житель может выбрать для путешествия любой из них по собственному желанию.

Напишите программу, которая определяет, какую минимальную сумму денег должен взять с собой житель, чтобы гарантированно не попасть в тюрьму во время путешествия.

Формат входных данных

Первая строка входного файла содержит числа N и M ($2 \leqslant N \leqslant 10\,000$, $1 \leqslant M \leqslant 100\,000$), разделенные пробелом — количества городов и дорог. Следующие M строк описывают дороги. Каждая из этих строк описывает одну дорогу и содержит три числа X, Y, Z ($1 \leqslant X, Y \leqslant N; X \neq Y; 1 \leqslant Z \leqslant 1\,000\,000\,000$), разделенных пробелами, означающие, что дорога соединяет города X и Y и пошлина за проезд по ней равна Z денежных единиц. Все числа Z целые. Последняя строка содержит числа A и B ($1 \leqslant A, B \leqslant N; A \neq B$) — номера начального и конечного городов путешествия. Гарантируется, что существует хотя бы один способ проезда из A в B.

Формат выходных данных

Единственная строка выходного файла должна содержать одно число, равное минимальной сумме денег, которую должен взять с собой житель, чтобы иметь возможность совершить путешествие из города A в город B и при этом гарантированно не попасть в тюрьму независимо от действий полицейских.

stdin	stdout
5 6	6
1 2 10	
1 3 4	
3 2 3	
1 4 1	
4 5 2	
5 2 3	
1 2	

Задача М. Динамический Лес 2

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Вам нужно научиться обрабатывать 3 типа запросов:

- 1. Добавить ребро в граф (link).
- 2. Удалить ребро из графа (cut).
- 3. По двум вершинам a и b вернуть длину пути между ними (или -1, если они лежат в разных компонентах связности) (get).

Изначально граф пустой (содержит N вершин, не содержит ребер). Гарантируется, что в любой момент времени граф является лесом. При добавлении ребра гарантируется, что его сейчас в графе нет. При удалении ребра гарантируется, что оно уже добавлено.

Формат входных данных

Числа N и M ($1 \le N \le 10^5 + 1$, $1 \le M \le 10^5$) — количество вершин в дереве и, соответственно, запросов. Далее M строк, в каждой строке команда (link или cut, или get) и 2 числа от 1 до N — номера вершин в запросе.

Формат выходных данных

В выходной файл для каждого запроса get выведите одно число — расстояние между вершинами, или -1, если они лежат в разных компонентах связности.

стандартный ввод	стандартный вывод
3 7	-1
get 1 2	1
link 1 2	-1
get 1 2	1
cut 1 2	
get 1 2	
link 1 2	
get 1 2	
5 10	1
link 1 2	2
link 2 3	-1
link 4 3	1
cut 3 4	-1
get 1 2	-1
get 1 3	
get 1 4	
get 2 3	
get 2 4	
get 3 4	

Задача N. Игровой автомат

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Создатели игровых автоматов выпустили на рынок математическую игру. Игра состоит в следующем: в каждом автомате создателями задана уникальная комбинация из M+1 числа в P-ичной системе счисления. Каждое число состоит из N разрядов. Первые M чисел во время игры не меняют своего значения, обозначим их a_1, a_2, \ldots, a_M . Во время игры автомат несколько раз случайным образом выбирает из первых M чисел одно число и поразрядно прибавляет его к M+1-му числу (будем называть M+1-е число счетчиком) по модулю P, тем самым, изменяя его (т. е. счетчик поразрядно накапливает сумму всех сложений по модулю P). Игрок получает выигрыш, если в результате игры счетчик обнулится.

Поразрядное сложение по модулю P выполняется следующим образом: если в каком-либо разряде числа получено значение, большее P-1, то оно уменьшается на P, например, при P=5 и N=3 результат сложения чисел 123 и 144 равен 212.

Вам прислали на инспекцию несколько таких автоматов, удостоверьтесь в том, что выигрыш принципиально возможен.

Формат входных данных

Первая строка файла содержит натуральное число — количество автоматов, присланных на инспекцию. В следующих строках описываются сами игровые автоматы. Каждый автомат описывается отдельно в следующем формате. Первая строка содержит числа $P,\ N,\ M\ (1\leqslant N,M\leqslant 100,\ 2\leqslant P\leqslant 255)$. Следующие M+1 строк содержат по N чисел в P—ичной системе счисления, каждое из которых — значение одного разряда P—ичного числа из уникальной комбинации чисел описываемого автомата. Значения разрядов P—ичного числа задаются как числа в десятичной записи через пробел. Суммарный размер входного файла не превосходит $40\,000$ байт.

Формат выходных данных

Ответ по каждому автомату должен содержаться в отдельной строке. Ответ — это число 0, если игроку вообще не удастся выиграть. Если же выигрыш возможен, то ответ — это число 1 и далее — M чисел через пробел в этой же строке файла: k_1, k_2, \ldots, k_M , где значение k_i ($k_i \leq P$) указывает, сколько раз нужно прибавить к счетчику число a_i , чтобы в результате всех сложений счетчик обнулился. Если решение не единственно, то выведите любое из них.

stdin	stdout
3	0
4 2 2	1 1 0 0 2
2 2	0
2 2	
3 3	
3 2 4	
1 0	
2 0	
0 0	
0 1	
2 1	
14 2 2	
12 12	
10 10	
3 3	