Topic Models

Lecture 2 Data Analysis E0 259

Probabilistic Latent Semantic Analysis

Parameters to Estimate

• Given, document corpus D, number of topics k and vocabulary V, we need

• $\{\pi_{d,i}\}_{i=1,...,k}$

Probability distribution of topics in each document

• $\{p(w|t_i)\}_{w\in V}$

Number of parameters to estimate is huge, function of corpus size and vocabulary size!!

Some Math

• Probability that a given word occurs in document

•
$$p(w) = \lambda p(w|b) + (1 - \lambda) \sum_{i=1}^{k} \pi_{d,i} p(w|t_i)$$

•
$$p(d) = \prod_{w \in V} p(w)^{c_w}$$

Probability that document has all those words! We are still using Unigram language model

•
$$log(p(d)) = \sum_{w \in V} c_w log(\lambda p(w|b) + (1 - \lambda) \sum_{i=1}^k \pi_{d,i} p(w|t_i))$$

•
$$p(D|\Theta) = \prod_{d \in D} p(d)$$

Probability that document corpus occurs

•
$$log(p(D|\Theta)) = \sum_{d \in D} log(p(d))$$

•
$$log(p(D|\Theta)) = \sum_{d \in D} log(p(d))$$

$$= \sum_{d \in D} \sum_{w \in W} c_w \log(\lambda p(w|b) + (1 - \lambda) \sum_{i=1}^k \pi_{d,i} p(w|t_i))$$

•
$$\arg \max_{\Theta} log(p(D|\Theta)) = \sum_{d \in D} log(p(d))$$

 $= \sum_{d \in D} \sum_{w \in W} c_w \log(\lambda p(w|b) + (1-\lambda) \sum_{i=1}^k \pi_{d,i} p(w|t_i))$

• s.t. $\sum_{i=1}^{k} \pi_{d,k} = 1, \forall d \in D \text{ and } \sum_{w \in V} p(w|t_i) = 1, \forall i = 1, ..., k$

Use EM Algorithm to Solve - E-Step

• Same trick, introduce hidden variable $z_{d,w} \in b, 1, \ldots, k$

•
$$p^{n+1}(z_{d,w}=j)=rac{\pi_{d,j}^n p^n(w|t_j)}{\sum_{i=1}^k \pi_{d,i}^n p^n(w|t_i)}$$
 Weighted average of word belonging to topic j

•
$$p^{n+1}(z_{d,w} = b) = \frac{\lambda p(w|b)}{\lambda p(w|b) + (1-\lambda) \sum_{i=1}^{k} \pi_{d,i}^{n} p^{n}(w|t_{i})}$$

Weighted average of word belonging to background topic

Use EM Algorithm to Solve - M-Step

•
$$\pi^{n+1}(d,j) = \frac{\sum_{w \in V} c_{w,d} (1-p^n(z_{d,w}=b)) p^n(z_{d,w}=j)}{\sum_{i=1}^k \pi_{d,i}^n p^n(w|t_i)}$$

$$p^{n+1}(w|t_j) = \frac{\sum_{d \in D} c_{w,d} (1 - p^n(z_{d,w} = b)) p(z_{d,w} = j)}{\sum_{w' \in V} \sum_{d \in D} c_{w',d} (1 - p^n(z_{d,w'} = b)) p^n(z_{d,w'} = j)}$$

Jensen's Inequality

For a concave function, $f(E[x]) \ge E[f(x)]$

EM Algorithm Solves a Lower Bound at Each Step

Challenges with PLSA

- Number of parameters = kV + kD
- Linear growth in parameters as documents and vocabulary increases
- Not generative model
 - If a new document comes, how do we know topic distribution for new document

Graphical Models - Bayesian Networks

- Capture causality via nodes and edges
- P(Fries, Obesity, PhD) = P(Phd)P(Fries)P(Obesity | Fries)
- Captures conditional independence

Bayesian Networks (contd.)

- Probability of occurrence of a node only dependent on it's parents. P(X | parents(X)) e.g. P(C | A, B). P(D | C).
- Allows for efficient inference

Conditional Independence

 Each node is conditionally independent of it's non descendents, given its parents.

E.g. If A is known, then C independent of B and D.

Conditional Independence

 Each node is conditionally independent of it's non descendents, given its parents.

 E.g. If C is known, then E independent of A and B.

Conditional Independence

 Markov Blanket: Parents, Children and Children's parents

 Each node is independent of any other node, given it's Markov Blanket

 E.g. Given A, E and D, C is independent of B.

Graphical Models - Representation

Observed variables are shaded

Plate denotes replicated structure

In this graph

$$p(x, y_1, ..., y_n) = p(x) \prod_{i=1}^{N} p(y_i|x)$$

Dirichlet Distributions

- Used as a prior distribution in Bayesian statistics
- A distribution over n random variables

$$Dir(\alpha)$$
:

$$\mathbf{p}(\theta_1, \dots, \theta_N) = \frac{1}{\beta(\alpha)} \prod_{i=1}^N \theta_i^{\alpha_i - 1} \mathbf{I}\{\theta_i \in \mathbf{S}\}$$

$$S = \{\theta_i \in \mathbb{R}, \theta_i \ge 0, \sum_{i=1}^N \theta_i = 1\}$$

Dirichlet Distributions (contd.)

• No Γ is not a function of some Δ , it is the Γ function:)

$$\beta(\alpha) = \frac{\Gamma(\alpha_0)}{\prod_{i=1}^{N} \Gamma(\alpha_i)}$$

$$\alpha_0 = \sum_{i=1}^N \alpha_i$$

$$E[\theta_i] = \frac{\alpha_i}{\alpha_0}$$

$$\sigma^2(\theta_i) = \frac{\alpha_i(\alpha_0 - 1)}{\alpha_0^2(\alpha_0 + 1)}$$

Properties of Dirichlet Distribution

$$\alpha = (1.000, 1.000, 1.000)$$

$$Dir(\alpha):$$

$$\mathbf{p}(\theta_{1},...,\theta_{N}) = \frac{1}{\beta(\alpha)} \prod_{i=1}^{N} \theta_{i}^{\alpha_{i}-1} \mathbf{I}\{\theta_{i} \in \mathbf{S}\}$$

$$S = \{\theta_{i} \in \mathbb{R}, \theta_{i} \geq 0, \sum_{i=1}^{N} \theta_{i} = 1\}$$

• When α =1, we get a uniform distribution over the simplex

Properties of Dirichlet Distribution (contd.)

• With equal $\alpha > 1$, probability mass get more concentrated around center of simplex

Properties of Dirichlet Distribution (contd.)

• With equal α < 1, probability mass get more concentrated around corners of simplex

Properties of Dirichlet Distribution (contd.)

$$E[\theta_i] = \frac{\alpha_i}{\alpha_0}$$

$$\alpha = (1.000, 1.000, 5.000)$$

$$\alpha = (1.000, 1.000, 50.000)$$

• With equal $\alpha > 1$ for one and rest remaining constant, probability mass get more concentrated around the large α

Latent Dirichlet Allocation

LDA Graphical Model

LDA Generative Model

- Draw each topic word distribution β from Dir(η)
- For each Document:
 - \circ Topic distribution is π from Dir(α)
 - o For each word:
 - \blacksquare Z is Mult(π)
 - W is Mult(β)

LDA Inference

- α is a hyper parameter
- We need to infer:
 - Per word topic assignment Z
 - Per document topic distribution π
 - \circ Per **topic** word distribution β

Computing the Hidden Variable Distributions

$$p(\beta, \pi, \mathbf{Z}, \mathbf{W}) = \prod_{i=1}^{K} \mathbf{p}(\beta_i) \prod_{i=1}^{D} \mathbf{p}(\pi_d)$$

$$(\prod_{n=1}^{N} \mathbf{p}(\mathbf{Z}_{d,n} | \pi_d) \mathbf{p}(\mathbf{w}_{d,n} | \beta, \mathbf{z}_{d,n}))$$

$$p(\beta, \pi, \mathbf{Z} | \mathbf{W}) = \frac{\mathbf{p}(\beta, \pi, \mathbf{Z}, \mathbf{W})}{\mathbf{p}(\mathbf{W})}$$
Joint probability distribution from graphical model

$$p(\beta, \pi, \mathbf{Z} | \mathbf{W}) = \frac{\mathbf{p}(\beta, \pi, \mathbf{Z}, \mathbf{W})}{\mathbf{p}(\mathbf{W})}$$
 Posterior Distribution

Why This Model?

- In PLSA, essentially modeling each document in the training set comes from a point distribution over topics
- Hence for new unseen documents, there is no way to have a generative model
- LDA addresses this by having a generative model for the topic distribution of a document (essentially instead of a point, it is a distribution over the simplex).
- This gives it way more flexibility.
- Still the parameter space is large, how do we estimate it efficiently?