Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 9. Tydzień rozpoczynający się 10. maja

Zadania

- 1. Niech zmienne X_1, X_2, \ldots, X_n będą niezależne i niech mają ten sam rozkład $\operatorname{Exp}(\lambda)$. Niech $Y_i = X_1 + \ldots + X_i$, dla $i = 1, \ldots, n$. Wykazać, że dla gęstości zmiennej (Y_1, \ldots, Y_n) zachodzi wzór $f_{Y_1, \ldots, Y_n}(y_1, \ldots, y_n) = \lambda^n \exp(-\lambda y_n)$, gdzie $0 < y_1 < y_2 < \ldots < y_n$.
- 2. Dla gęstości $f_{Y_1,\dots,Y_n}(y_1,\dots,y_n)$ z poprzedniego zadania wykazać, że gęstość brzegowa $f_n(y_n)$ względem zmiennej Y_n wyraża się wzorem $f_{Y_n}(y_n) = \lambda^n \frac{y_n^{n-1}}{(n-1)!} \exp{(-\lambda y_n)}$, gdzie $0 < y_n$.
- 3. Metodą MLE znaleźć estymator parametru θ rozkładu jednostajnego na przedziale $[\theta a; \theta + a]$, przy założeniu, że znana jest wartość parametru a.
- 4. Metodą MLE znaleźć estymator parametru θ rozkładu jednostajnego na przedziale $[\theta-a;\theta+a]$, przy założeniu, że nie jest znana wartość parametru a.
- 5. Niezależne zmienne X_1, \ldots, X_5 mają ten sam, ciągły, rozkład. Oznaczmy przez p prawdopodobieństwo $P(X_1 < X_2 > X_3 < X_4 > X_5)$. Wykazać, że p nie zależy od gęstości rozkładu f(x) zmiennych X_k . Obliczyć wartość p.
- 6. X, Y, Z są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym U[0, 1]. Obliczyc $P(X \ge YZ)$.
- 7. X_1, X_2, X_3 są niezależnymi zmiennymi losowymi o rozkładzie $\text{Exp}(\lambda)$. Znaleźć rozkład (3-wymiarowy) zmiennej $(Y_1, Y_2, Y_3) = (X_1 + X_2, X_1 + X_3, X_2 + X_3)$.
- 8. (2p.) Niech X_1, \ldots, X_n będą niezależnymi zmiennymi o tym samym, ciągłym rozkładzie. Mówimy, że w chwili j notujemy rekord $(j \le n)$, jeśli $X_j \ge X_i$ dla $1 \le i \le j$. Niech zmienna losowa Z będzie liczbą rekordów w ciągu $\{X_k\}$. Wykazać, że $\mathrm{E}(Z) = \sum_{j=1}^n \frac{1}{j}$.

[Do zadań 9–10] Zmienna losowa (X,Y) ma rozkład o gęstości:

$$f(x,y) = 1, \ 0 < \le x, y \le 1.$$

- 9. Znaleźć gęstość zmiennej Z = X/Y.
- 10. Obliczyć prawdopodobieństwo tego, że pierwszą cyfrą znaczącą \boldsymbol{Z} jest 1.
- 11. **(E2)** Załóżmy, że niezależne zmienne losowe X, Y mają rozkłady, odpowiednio, Gamma(b, p) i Gamma(b, q). Niech U = X + Y oraz $V = \frac{X}{X + Y}$. Wykazać, że
 - (a) Zmienne U i V są niezależne.
 - (b) X + Y ma rozkład Gamma(b, p + q).
 - (c) Zmienna V ma rozkład Beta(p,q), tzn. $f(x) = \frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1}, x \in [0,1].$

[Do zadań 12–13] W pliku klimat.csv znajduje się: szerokość i długość geograficzna, roczna suma opadów (mm), średnia temperatura roczna (°C) i wysokość nad poziomem morza miast wojewódzkich. Po rozwiązaniu omówić wyniki zadań.

- 12. (E1) Wyznaczyć prostą regresji temperatury względem wysokości npm.
- 13. **(E1)** Wyznaczyć prostą regresji temperatury względem długości i szerokości. (Z zależy od X oraz od Y).
- 14. (E2) Zmienna losowa X ma dyskretny rozkład jednostajny

$$P(X=i) = \frac{1}{100}, i \in \{1, 2, \dots, 99, 100\}.$$

Zmienne losowe Y oraz Z określone są następująco

$$Y = \left\{ \begin{array}{ll} 1, & 2|X\vee 3|X, \\ 0, & \mathrm{wpw}, \end{array} \right. \qquad Z = \left\{ \begin{array}{ll} 1, & 3|X, \\ 0, & \mathrm{wpw}. \end{array} \right.$$

Znaleźć wartość współczynnika korelacji ρ zmiennych Y i Z. (Odp.: $\rho={}^{33}/\!{}_{67})$

Witold Karczewski