Derivation of Huper Romsey Excitation Potantisting Sho The T (CIZ) is(Z) (CIZ) 25(Z) (CIZ) 25(Z)	$U_{1}(t) = \begin{pmatrix} c(t) & ie^{i\phi}s(t) \\ ie^{-i\phi}s(t) & c(t) \end{pmatrix}$ $U_{0}(t) = \begin{pmatrix} e^{iDT/2} & o \\ 0 & e^{-iDT/2} \end{pmatrix}$ where $c(t) = cos(\frac{1\overline{N} t}{2})$ $s(t) = sin(\frac{ \overline{N} t}{2})$ $U_{1} is propagator during palse for during the following of the control of $
$ \begin{pmatrix} c(t) & is(t) \\ is(t) & c(t) \end{pmatrix} $ $ \begin{pmatrix} c(izt) & -is(iz) \\ -is(iz) & c(izt) \end{pmatrix} $ $ \begin{pmatrix} e^{i\Delta T/2} & b \\ b & e^{-i\Delta Y/2} \end{pmatrix} $	$ e\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, g\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $ e\rangle = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \sqrt{ R ^2 + \Delta^2}$
Note that $ T $ is the $ T /2$ time (i.e. $ J /Z \approx D /Z = T /2$) Hence C(T) = s(T) = cos(T /2) = f C(Z) = cos(T /2) = 0. s(Z) = sin(T /2) = 1.	
Hence hell propagator \vec{O} : $U = \frac{1}{52} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \begin{pmatrix} e & o \\ o & e^{-i\Delta T/E} \end{pmatrix}$	$\frac{1}{\sqrt{12}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$
$P_{e} = \left\{ e(U g) \right\}^{2}$ $= \frac{1}{4} \left[(1 i) \left[\begin{array}{c} 0 & -i \\ -i & 0 \end{array} \right] \left(\begin{array}{c} e^{i \Delta T/L} \\ 0 & e^{-i \Delta T/L} \end{array} \right) \left(\begin{array}{c} 0 & -i \\ 0 & e^{-i \Delta T/L} \end{array} \right) \left(\begin{array}{c} 0 & -i \\ 0 & e^{-i \Delta T/L} \end{array} \right)$	
$=\frac{1}{4}\left \left(1-\frac{1}{2}\right)\left(\frac{ie^{-i\Delta t/L}}{e^{-i\Delta t/L}}\right)\right ^{2}$	
$= \frac{1}{4} \left(ie^{i\delta T/L} - ie^{-i\delta T/L} \right)$ $= \frac{1}{4} 4 \sin^2 \left(\frac{\Delta T}{2} \right)$ $= 8M^2 \left(\frac{\Delta T}{2} \right) \left(Ar \Delta \ll \vec{D} \right).$	