JEE Chapter 19 CD

AI24BTECH11028 - Ronit Ranjan

C. MCQ WITH ONE CORRECT ANSWER

1) A solution of the differential equation (1999 -2 Marks)

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0 \text{ is}$$

(a) y = 2

(a) y = 2(c) y = 2x - 4

(b) y = 2x(d) $y = 2x^2 - 4$

2) If $x^2 + y^2 = 1$, then

(2000S)

(a) $yy'' - 2(y'^2) + 1 = 0$ (b) $yy'' + (y'^2) + 1 = 0$ (c) $yy'' - (y'^2) - 1 = 0$ (d) $yy'' + 2(y'^2) + 1 = 0$

3) If y(t) is a solution of $(1+t)\frac{dy}{dt} - ty = 1$ and y(0) = -1, then

y(1) is equal to

4) If y = y(x) and $\frac{2+\sin x}{y+1} \left(\frac{dy}{dx} \right) = -\cos x$, y(0) = 1, then $y(\frac{\pi}{2})$ (2004S)

5) If y = y(x) and it follows the relation $x \cos y +$ $y \cos x = \pi$ then y''(0) =(2005S)

(a)1

(b) $\pi - 1$

(c) -1

(d) $-\pi$

6) The solution of primitive integral equation $(x^2 + y^2) dy = xy dx$ is y = y(x). If y(1) = 1and $x_0 = e$, then x_0 is equal to

7) For the primitive integral equation $ydx + y^2dy =$ $x \, dy$; $x \in \mathbb{R}, y > 0, y = y(x), y(1) = 1$, then (2005S)y(-3) is

(a) 3

(b) 1

(c) 2

(d) 5

8) The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with (2005S)

- (a) variable radii and a fixed centre at (0, 1)
- (b) variable radii and a fixed centre at (0, -1)
- (c) fixed radius 1 and variable centres along the x-axis
- (d) fixed radius 1 and variable centres along the y-axis

9) The function y = f(x) is the solution of the differential equation

$$\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}$$

in (-1, 1) satisfying f(0) = 0. Then

 $\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) \, dx \text{ is}$

(a) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$ (b) $\frac{\pi}{6} - \frac{\sqrt{3}}{4}$ (c) $\frac{\pi}{2} - \frac{\sqrt{3}}{4}$ (d) $\frac{\pi}{2} - \frac{\sqrt{3}}{2}$

10) If y = y(x) satisfies the differential equation

 $8\sqrt{x}\left(\sqrt{9+\sqrt{x}}\right)dy = \left(\sqrt{4+\sqrt{9+\sqrt{x}}}\right)^{-1}dx, \ x > 0 \text{ and}$

 $y(0) = \sqrt{7}$, then y(256) =

(a)3

(b)16

(c) 9

(d) 80

D. MCQ WITH ONE OR MORE THAN CORRECT ANSWER

1) The order of the differential equation whose general solution given is $y = (C_1 + C_2)\cos(x + C_3) - C_4e^{x+C_5}$, where C_1, C_2, C_3, C_4, C_5 are arbitrary constants, is (1998 - 2 Marks)

(a) 5

(b) 3

(c) 4

- (d) 2
- 2) The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is of (1999 - 3 Marks)
 - (a) order 1
- (b) degree 3
- (c) order 2
- (d) degree 4
- 3) A curve y = f(x) passes through (1, 1) and at P(x, y), the tangent cuts the x-axis and y-axis at A and B respectively such that BP : AP = 3 : 1, then
 - (a) equation of curve is xy' 3y = 0
 - (b) normal at (1, 1) is x + 3y = 4
 - (c) curve passes through $(2, \frac{1}{8})$ (d) equation of curve is xy' + 3y = 0
- 4) If y(x) satisfies the differential equation y' $y \tan x = 2x \sec x$ and y(0) = 0, then

- (a) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$ (b) $y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{9}$ (c) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$ (d) $y\left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$
- 5) A curve passes through the point $(1, \frac{\pi}{6})$. Let the slope of the curve at each point (x, y) be $\frac{y}{x} + \sec\left(\frac{y}{x}\right), x > 0$. Then the equation of the curve is
- $\log x + 2$
- (a) $\sin\left(\frac{y}{x}\right) = \log x + \frac{1}{2}$ (b) $\sec\left(\frac{2y}{x}\right) = \log x + 2$ (c) $\cos\sec\left(\frac{y}{x}\right) = (d)\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$