

Data sheet acquired from Harris Semiconductor SCHS122I

CD54/74HC4051, CD54/74HCT4051, CD54/74HC4052, CD74HCT4052, CD54/74HC4053, CD74HCT4053

High-Speed CMOS Logic Analog Multiplexers/Demultiplexers

November 1997 - Revised July 2004

Features

• Wide Analog Input Voltage Range ±5V Max

· Low "On" Resistance

- 70Ω Typical (V_{CC} - V_{EE} = 4.5V)

- 40Ω Typical (V_{CC} - V_{FF} = 9V)

Low Crosstalk between Switches

Fast Switching and Propagation Speeds

· "Break-Before-Make" Switching

• Wide Operating Temperature Range . . -55°C to 125°C

• CD54HC/CD74HC Types

- Operation Control Voltage2V to 6V

- Switch Voltage0V to 10V

- High Noise Immunity . . . N_{IL} = 30%, N_{IH} = 30% of V_{CC}, V_{CC} = 5V

• CD54HCT/CD74HCT Types

- Operation Control Voltage4.5V to 5.5V

- Direct LSTTL Input

Logic Compatibility ... V_{IL} = 0.8V Max, V_{IH} = 2V Min

- CMOS Input Compatibility I_I \leq 1 μ A at V_{OL}, V_{OH}

Description

These devices are digitally controlled analog switches which utilize silicon gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

These analog multiplexers/demultiplexers control analog voltages that may vary across the voltage supply range (i.e. V_{CC} to V_{EE}). They are bidirectional switches thus allowing any analog input to be used as an output and vice-versa. The switches have low "on" resistance and low "off" leakages. In addition, all three devices have an enable control which, when high, disables all switches to their "off" state.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC4051F3A	-55 to 125	16 Ld CERDIP
CD54HC4052F3A	-55 to 125	16 Ld CERDIP
CD54HC4053F3A	-55 to 125	16 Ld CERDIP
CD54HCT4051F3A	-55 to 125	16 Ld CERDIP

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD74HC4051E	-55 to 125	16 Ld PDIP
CD74HC4051M	-55 to 125	16 Ld SOIC
CD74HC4051MT	-55 to 125	16 Ld SOIC
CD74HC4051M96	-55 to 125	16 Ld SOIC
CD74HC4051NSR	-55 to 125	16 Ld SOP
CD74HC4051PWR	-55 to 125	16 Ld TSSOP
CD74HC4051PWT	-55 to 125	16 Ld TSSOP
CD74HC4052E	-55 to 125	16 Ld PDIP
CD74HC4052M	-55 to 125	16 Ld SOIC
CD74HC4052MT	-55 to 125	16 Ld SOIC
CD74HC4052M96	-55 to 125	16 Ld SOIC
CD74HC4052NSR	-55 to 125	16 Ld SOP
CD74HC4052PW	-55 to 125	16 Ld TSSOP
CD74HC4052PWR	-55 to 125	16 Ld TSSOP
CD74HC4052PWT	-55 to 125	16 Ld TSSOP
CD74HC4053E	-55 to 125	16 Ld PDIP
CD74HC4053M	-55 to 125	16 Ld SOIC
CD74HC4053MT	-55 to 125	16 Ld SOIC
CD74HC4053M96	-55 to 125	16 Ld SOIC
CD74HC4053NSR	-55 to 125	16 Ld SOP
CD74HC4053PW	-55 to 125	16 Ld TSSOP
CD74HC4053PWR	-55 to 125	16 Ld TSSOP
CD74HC4053PWT	-55 to 125	16 Ld TSSOP
CD74HCT4051E	-55 to 125	16 Ld PDIP
CD74HCT4051M	-55 to 125	16 Ld SOIC
CD74HCT4051MT	-55 to 125	16 Ld SOIC
CD74HCT4051M96	-55 to 125	16 Ld SOIC
CD74HCT4052E	-55 to 125	16 Ld PDIP
CD74HCT4052M	-55 to 125	16 Ld SOIC
CD74HCT4052MT	-55 to 125	16 Ld SOIC
CD74HCT4052M96	-55 to 125	16 Ld SOIC
CD74HCT4053E	-55 to 125	16 Ld PDIP
CD74HCT4053M	-55 to 125	16 Ld SOIC
CD74HCT4053MT	-55 to 125	16 Ld SOIC
CD74HCT4053M96	-55 to 125	16 Ld SOIC
CD74HCT4053PWR	-55 to 125	16 Ld TSSOP
CD74HCT4053PWT	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

TRUTH TABLE HC/HCT4051

	INPUT STATES						
ENABLE	S ₂	S ₁	S ₀	"ON" CHANNELS			
L	L	L	L	A0			
L	L	L	Н	A1			
L	L	Н	L	A2			
L	L	Н	Н	А3			
L	Н	L	L	A4			
L	Н	L	Н	A5			
L	Н	Н	L	A6			
L	Н	Н	Н	A7			
Н	Х	Х	Х	None			

X = Don't care

Functional Diagram of 'HC4052, CD74HCT4052 A CHANNELS IN/OUT \widehat{A}_3 A₂ A₀ v_{cc} 11) (15) (12) (14) TG TG TG **COMMON A** BINARY TG OUT/IN то LOGIC 1 OF 4 DECODER WITH ENABLE s₁ 9 **LEVEL** CONVERSION COMMON B TG OUT/IN s₀ (10) TG **E** 6 TG TG 7 V_{EE} В₀ B_3 **B CHANNELS IN/OUT**

TRUTH TABLE 'HC4052, CD74HCT4052

ı	NPUT STATES	S	"ON"
ENABLE	S ₁	S ₀	CHANNELS
L	L	L	A0, B0
L	L	Н	A1, B1
L	Н	L	A2. B2
L	Н	Н	A3, B3
Н	Х	Х	None

X = Don't care

Functional Diagram of 'HC4053, CD74HCT4053 IN/OUT **BINARY TO** v_{cc} 1 OF 2 C₀ $\overline{C_1}$ B₁ B₀ A₁ LOGIC LEVEL **DECODERS** (16) (13) (12) CONVERSION WITH ENABLE (3) (5) (1) (2) TG A COMMON OUT/IN (14) s₀ (11) TG TG S₁ (10) **B COMMON** (15) OUT/IN TG TG s_2 (9) C COMMON OUT/IN TG Ē 6 (8) GND

TRUTH TABLE 'HC4053, CD74HCT4053

	INPUT STATES							
ENABLE	S ₀	S ₁	S ₂	"ON" CHANNELS				
L	L	L	L	C0, B0, A0				
L	Н	L	L	C0, B0, A1				
L	L	Н	L	C0, B1, A0				
L	Н	Н	L	C0, B1, A1				
L	L	L	Н	C1, B0, A0				
L	Н	L	Н	C1, B0, A1				
L	L	Н	Н	C1, B1, A0				
L	Н	Н	Н	C1, B1, A1				
Н	Х	Х	Х	None				

X = Don't care

Absolute Maximum Ratings (Note 2)

DC Supply Voltage, V _{CC} - V _{EE}	
DC Supply Voltage, V _{CC}	0.5V to +7V
DC Supply Voltage, V _{EE}	+0.5V to -7V
DC Input Diode Current, I _{IK}	
For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$	±20mA
DC Switch Diode Current, IOK	
For $V_I < V_{EE}$ -0.5V or $V_I > V_{CC} + 0.5V$	±20mA
DC Switch Current, (Note 2)	
For $V_I > V_{EE}$ -0.5V or $V_I < V_{CC} + 0.5V$	±25mA
DC V _{CC} or Ground Current, I _{CC}	
DC V _{EE} Current, I _{EE}	

Thermal Information

Package Thermal Impedance, θ_{JA} (see Note 1):	
E (PDIP) Package	OC/W
M (SOIC) Package73	
NS (SOP) Package	
PW (TSSOP) Package108	3°C/W
Maximum Junction Temperature	150°C
Maximum Storage Temperature Range65°C to 1	150°C
Maximum Lead Temperature (Soldering 10s)	300°C

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

PARAMETER	MIN	MAX	UNITS
Supply Voltage Range (For T _A = Full Package Temperature Range), V _{CC} (Note 2) CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
Supply Voltage Range (For T_A = Full Package Temperature Range), V_{CC} - V_{EE} CD54/74HC Types, CD54/74HCT Types (See Figure 1)	2	10	V
Supply Voltage Range (For T _A = Full Package Temperature Range), V _{EE} (Note 3) CD54/74HC Types, CD54/74HCT Types (See Figure 2)	0	-6	V
DC Input Control Voltage, V _I	GND	V _{CC}	V
Analog Switch I/O Voltage, V _{IS}	V _{EE}	V _{CC}	V
Operating Temperature, T _A	-55	125	°C
Input Rise and Fall Times, $\mathbf{t_f}$, $\mathbf{t_f}$ 2V	0	1000	ns
4.5V	0	500	ns
6V	0	400	ns

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 2. All voltages referenced to GND unless otherwise specified..
- 3. In certain applications, the external load resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6V (calculated from r_{ON} values shown in Electrical Specifications table). No V_{CC} current will flow through R_L if the switch current flows into terminal 3 on the HC/HCT4051; terminals 3 and 13 on the HC/HCT4052; terminals 4, 14 and 15 on the HC/HCT4053.

Recommended Operating Area as a Function of Supply Voltages

FIGURE 2.

DC Electrical Specifications

	TEST CONDITIONS					AMBIENT TEMPERATURE, TA						
	V _{IS}	V _I	VEE	v _{cc}	25°C		-40°C - 85°C		-55°C - 125°C		1	
PARAMETER	(V)	(V)	(V)	(v)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
HC TYPES				-	-	=	-	=			=	-
High Level Input Voltage,				2	1.5	-	-	1.5	-	1.5	-	V
V _{IH}				4.5	3.15	-	-	3.15	-	3.15	0	٧
				6	4.2	-	-	4.2	-	4.2	-	٧
Low Level Input Voltage,				2	-	-	0.5	-	0.5	-	0.5	٧
V_{IL}				4.5	-	-	1.35	-	1.35	-	1.35	٧
				6	-	-	1.8	-	1.8	-	1.8	V
On Resistance, r _{ON}	V _{CC} or V _{EE}	V _{IL} or	0	4.5	-	70	160	-	200	-	240	Ω
I _O = 1mA, (Figure 11)		V _{IH}	0	6	-	60	140	-	175	-	210	Ω
			-4.5	4.5	-	40	120	-	150	-	180	Ω
	V _{CC} to V _{EE}		0	4.5	-	90	180	-	225	-	270	Ω
			0	6	-	80	160	-	200	-	240	Ω
			-4.5	4.5	-	45	130	-	162	-	195	Ω
Maximum On Resistance			0	4.5	-	10	-	-	-	-	-	Ω
Between any Two Channels, Δr _{ON}			0	6	-	8.5	-	-	-	-	-	Ω
olv			-4.5	4.5	-	5	-	-	-	-	-	Ω
Switch On/Off Leakage Current, I _{IZ}	For Switch Off: When V _{IS} = V _{CC} ,	V _{IL} or V _{IH}										
1 and 2 Channels	$V_{OS} = V_{EE};$ When $V_{IS} = V_{EE},$		0	6	-	-	±0.1	-	±1	-	±1	μΑ
4053	$V_{OS} = V_{CC}$		-5	5	-	-	±0.1	-	±1	-	±1	μΑ
4 Channels	For Switch On: All Applicable		0	6	-	-	±0.1	-	±1	-	±1	μΑ
4052	Combinations of V _{IS} and V _{OS}		-5	5	-	-	±0.2	-	±2	-	±2	μΑ
8 Channels	Voltage Levels		0	6	-	-	±0.2	-	±2	-	±2	μΑ
4051			-5	5	-	-	±0.4	-	±4	-	±4	μА
Control Input Leakage Current, I _{IL}		V _{CC} or GND	0	6	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current, I _{CC}	When $V_{IS} = V_{EE}$, $V_{OS} = V_{CC}$	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА
I _O = 0	When $V_{IS} = V_{CC}$, $V_{OS} = V_{EE}$		-5	5	-	-	16	-	160	-	320	μА

DC Electrical Specifications (Continued)

	TEST CONDITIONS					AMBIENT TEMPERATURE, TA						
	V _{IS}	V _I	V	v _{cc}		25°C		-40°C	- 85°C	-55°C	- 125°C	1
PARAMETER	(V)	(V)	V _{EE}	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES						•	-		•			
High Level Input Voltage, VIH				4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage, V _{IL}				4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	٧
On Resistance, r _{ON}	V _{CC} or V _{EE}	V _{IL} or	0	4.5	-	70	160	-	200	-	240	Ω
$I_O = 1$ mA, (Figure 15)		V _{IH}	-	-	-	-	-	-	-	-	-	Ω
			-4.5	4.5	-	40	120	-	150	-	180	Ω
	V _{CC} to V _{EE}	1	0	4.5	-	90	180	-	225	-	270	Ω
			-	-	-	-	-	-	-	-	-	Ω
			-4.5	4.5	-	45	130	-	162	-	195	Ω
Maximum On Resistance			0	4.5	-	10	-	-	-	-	-	Ω
Between any Two Channels, ∆r _{ON}			-	-	-	-	-	-	-	-	-	Ω
			-4.5	4.5	-	5	-	-	-	-	-	Ω
Switch On/Off Leakage Current, I _{IZ}	For Switch Off: When V _{IS} = V _{CC} ,	V _{IL} or V _{IH}										
1 and 2 Channels	$V_{OS} = V_{EE};$ When $V_{IS} = V_{EE},$		0	6	-	-	±0.1	-	±1	-	±1	μΑ
4053	$V_{OS} = V_{CC}$		-5	5	-	-	±0.1	-	±1	-	±1	μА
4 Channels	For Switch On: All Applicable		0	6	-	-	±0.1	-	±1	-	±1	μА
4052	Combinations of V _{IS} and V _{OS}		-5	5	-	-	±0.2	-	±2	-	±2	μА
8 Channels	Voltage Levels		0	6	-	-	±0.2	-	±2	-	±2	μА
4051	1		-5	5	-	-	±0.4	-	±4	-	±4	μА
Control Input Leakage Current, I _{IL}	-	(Note 4)	-	5.5	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current, I _{CC} I _O = 0	When $V_{IS} = V_{EE}$, $V_{OS} = V_{CC}$	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
	When $V_{IS} = V_{CC}$, $V_{OS} = V_{EE}$		-4.5	5.5	-	-	16	-	160	-	320	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔICC (Note 5)	V _{CC} - 2.1		4.5 to 5.5	-	100	360	-	450	-	490	μА

NOTES:

- 4. Any voltage between $\rm V_{\hbox{\footnotesize CC}}$ and GND.
- 5. For dual supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

HCT Input Loading Table

TYPE	INPUT	UNIT LOADS (NOTE)			
4051, 4053	All	0.5			
4052	All	0.4			

NOTE: Unit load is ΔI_{CC} limit specified in DC Specifications table, e.g., 360mA max. at 25°C.

Switching Specifications V_{CC} = 5V, T_A = 25°C, Input t_r , t_r = 6ns

		TYPICAL						
	 c _L	40	4051		4052		4053	
PARAMETER	(pF)	нс	нст	нс	нст	нс	нст	UNITS
Propagation Delay								
Switch IN to OUT, t _{PHL} , t _{PLH}	15	4	4	4	4	4	4	ns
Switch Turn-Off (S or $\overline{\mathbb{E}}$), t _{PHZ} , t _{PLZ}	15	19	19	21	21	18	18	ns
Switch Turn-On (S or $\overline{\mathbb{E}}$), t _{PZH} , t _{PZL}	15	19	23	27	29	18	20	ns
Power Dissipation Capacitance, C _{PD} (Note 6)	-	50	52	74	76	38	42	pF

NOTE:

6. C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD} \ V_{CC}^2 \ f_I + \Sigma \ (C_L + C_S) \ V_{CC}^2 \ f_O$ $f_O =$ output frequency

 f_{I} = input frequency

C_L = output load capacitance

 C_S = switch capacitance

 V_{CC} = supply voltage

Switching Specifications $C_L = 50pF$, Input t_r , $t_r = 6ns$

							A	MBIEN	IT TEM	PERAT	URE, T	A				
					25	°C			-40°C	- 85°C			-55°C -	125 ⁰ C	;	
PARAMETER		V _{EE} (V)	 _{V-}	Н	С	Н	СТ	Н	С	Н	СТ	НС		нст		
			V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	МАХ	MIN	MAX	UNITS
Propagation Delay,		0	2	-	60	-	-	-	75	-	-	-	90	-	-	ns
In to Out, t _{PLH} , t _{PHL}	-	0	4.5	-	12	-	12	-	15	-	15	-	18	-	18	ns
		0	6	-	10	-	-	-	13	-	-	-	15	-	-	ns
		-4.5	4.5	-	8	-	8	-	10	-	10	-	12	-	12	ns
Maximum Switch Turn "Off" Delay from S or Ē to Switch Output tpHZ, tpLZ	0	2	-	225	-	-	-	280	-	-	-	340	-	-	ns	
		0	4.5	-	45	-	45	-	56	-	56	-	68	-	68	ns
		0	6	-	38	-	-	-	48	-	-	-	57	-	-	ns
		-4.5	4.5	-	32	-	32	-	40	-	40	-	48	-	48	ns
	4052	0	2	-	250	-	-	-	315	-	-	-	375	-	-	ns
		0	4.5	-	50	-	50	-	63	-	63	-	75	-	75	ns
		0	6	-	43	-	-	-	54	-	-	-	65	-	-	ns
		-4.5	4.5	-	38	-	38	-	48	-	48	-	57	-	57	ns
	4053	0	2	-	210	-	-	-	265	-	-	-	315	-	-	ns
		0	4.5	-	42	-	44	-	53	-	55	-	63	-	66	ns
		0	6	-	36	-	-	-	45	-	-	-	54	-	-	ns
		-4.5	4.5	-	29	-	31	-	36	-	39	-	44	-	47	ns

Switching Specifications $C_L = 50 pF$, Input t_r , $t_r = 6 ns$ (Continued)

				AMBIENT TEMPERATURE, TA													
					25	°С			-40°C	- 85 ⁰ C			-55°C -	125 ⁰ C	;		
		\ ,	v _{cc}	Н	нс		нс нст		НС		нст		нс		Н	СТ	
PARAMETER		V _{EE} (V)	(V)	MIN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	МАХ	MIN	MAX	UNITS	
Maximum Switch	4051	0	2	-	225	-	-	-	280	-	-	-	340	-	-	ns	
Turn "On" Delay from S or E to		0	4.5	-	45	-	55	-	56	-	69	-	68	-	83	ns	
Switch Output tPZL, tPZH		0	6	-	38	-	-	-	48	-	-	-	57	-	-	ns	
	-4.5	4.5	-	32	-	39	-	40	-	49	-	48	-	59	ns		
	4052	0	2	-	325	-	-	-	405	-	-	-	490	-	-	ns	
		0	4.5	-	65	-	70	-	81	-	68	-	98	-	105	ns	
		0	6	-	55	-	-	-	69	-	-	-	83	-	-	ns	
		-4.5	4.5	-	46	-	48	-	58	-	60	-	69	-	72	ns	
	4053	0	2	-	220	-	-	-	275	-	-	-	330	-	-	ns	
		0	4.5	-	44	-	48	-	55	-	60	-	66	-	72	ns	
		0	6	-	37	-	-	-	47	-	-	-	56	-	-	ns	
		-4.5	4.5	-	31	-	34	-	39	-	43	-	47	-	51	ns	
Input (Control) Capacitance, C _I		-	-	-	10	-	10	-	10	-	10	-	10	-	10	pF	

Analog Channel Specifications Typical Values at $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	HC/HCT TYPES	V _{EE} (V)	V _{CC} (V)	HC/ HCT	UNITS
Switch Input Capacitance, C _I		All	-	-	5	pF
Common Output Capacitance, C _{COM}		4051	-	-	25	pF
		4052	-	-	12	pF
		4053	-	-	8	pF
Minimum Switch Frequency Response at -3dB, f _{MAX}	See Figure 3 (Notes 7, 8)	4051			145	MHz
(Figures 12, 14, 16)		4052	-2.25	2.25	165	MHz
		4053			200	MHz
		4051			180	MHz
		4052	-4.5	4.5	185	MHz
		4053			200	MHz

Analog Channel Specifications Typical Values at T_A = 25°C

PARAMETER	TEST CONDITIONS	HC/HCT TYPES	V _{EE} (V)	V _{CC} (V)	HC/ HCT	UNITS
Crosstalk Between any Two Switches (Note 10)	See Figure 4	4051			N/A	dB
	(Notes 8, 9)	4052	-2.25	2.25	(TBE)	dB
		4053			(TBE)	dB
		4051			N/A	dB
		4052	-4.5	4.5	(TBE)	dB
		4053			(TBE)	dB
Sinewave Distortion	See Figure 5	All	-2.25	2.25	0.035	%
		All	-4.5	4.5	0.018	%
E or S to Switch Feedthrough Noise	See Figure 6	4051				mV
	(Notes 8, 9)	4052	-2.25	2.25	(TBE)	mV
		4053				mV
		4051	-4.5		(TBE)	mV
		4052		4.5		mV
		4053				mV
Switch "OFF" Signal Feedthrough (Figures 13, 15, 17)	See Figure 7	4051			-73	dB
	(Notes 8, 9)	4052	-2.25	2.25	-65	dB
		4053	1		-64	dB
		4051			-75	dB
		4052	-4.5	4.5	-67	dB
		4053			-66	dB

- 7. Adjust input voltage to obtain 0dBm at V_{OS} for f_{IN} = 1MHz.
- 8. V_{IS} is centered at (V_{CC} V_{EE})/2.
- 9. Adjust input for 0dBm.
- 10. Not applicable for HC/HCT4051.

Test Circuits and Waveforms

FIGURE 3. FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 4. CROSSTALK BETWEEN TWO SWITCHES TEST CIRCUIT

FIGURE 5. SINEWAVE DISTORTION TEST CIRCUIT

FIGURE 6. CONTROL TO SWITCH FEEDTHROUGH NOISE TEST CIRCUIT

FIGURE 7. SWITCH OFF SIGNAL FEEDTHROUGH

Test Circuits and Waveforms (Continued)

FIGURE 8A.

FIGURE 8B. HC TYPES

FIGURE 8C. HCT TYPES

FIGURE 8. SWITCH PROPAGATION DELAY, TURN-ON, TURN-OFF TIMES

FIGURE 9. SWITCH ON/OFF PROPAGATION DELAY TEST CIRCUIT

FIGURE 10. SWITCH IN TO SWITCH OUT PROPAGATION DELAY TEST CIRCUIT

Typical Performance Curves

FIGURE 11. TYPICAL ON RESISTANCE vs INPUT SIGNAL VOLTAGE

FIGURE 12. CHANNEL ON BANDWIDTH (HC/HCT4051)

FIGURE 13. CHANNEL OFF FEEDTHROUGH (HC/HCT4051)

FIGURE 14. CHANNEL ON BANDWIDTH (HC/HCT4052)

FIGURE 15. CHANNEL OFF FEEDTHROUGH (HC/HCT4052)

Typical Performance Curves (Continued)

FIGURE 16. CHANNEL ON BANDWIDTH (HC/HCT4053)

FIGURE 17. CHANNEL OFF FEEDTHROUGH (HC/HCT4053)

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-8775401EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
5962-8855601EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
5962-9065401MEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HC4051F	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HC4051F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HC4052F	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HC4052F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HC4053F	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HC4053F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HCT4051F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD74HC4051E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC4051EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC4051M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4051PWTE4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC4052EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC4052M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

26-Sep-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
CD74HC4052ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052PWTE4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4052SM	OBSOLETE	SSOP	DB	16		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC4053EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC4053M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

26-Sep-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD74HC4053PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4053PWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT4051EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT4051M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4051MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT4052EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT4052M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4052MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT4053EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT4053M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

com 26-Sep-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD74HCT4053ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053PWTE4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4053PWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated