Employment Effects of the new German minimum wage (SOEP dataset)

Meret Borchmann Jupp Kerschek Albert Thieme Timm Walz

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Outline

- 1. Motivation
- 2. SOEP dataset
- 3. Implementation of data
- 4. Identifying treatment and control group
- 5. Characteristics of individuals
- 6. Future outlook: Regression analysis

Motivation — 2-1

Economic Theory

Goal: Find out employment effects of the introduction of German minimum wage

- Potential effects of minimum wage on labor demand depend on market structure
- □ Competitive price-taker setting: Negative employment effects
- Monopsonic price setting: Possibility of positive employment effects
- Empirical research necessary

SOEP dataset — 3-1

What is the SOEP

- Sozio-oekonomische Panel
- □ Used for a wide variety of research: Economics, social science

SOEP dataset — 3-2

Why SOEP

- □ Representative sample of people living in Germany
- □ Panel data set
- Data on micro level for each individual
- For free

Allows us to identify an effect on employment

Variable Selection

- □ Surveys/datasets have different variables over the years
- Only take the relevant datasets and extract the relevant information
- Current focus: datasets from 2010 and 2015
- Code must be dynamic to avoid future code adjustments (e.g. further years)

Procedure

- Store relevant data in a subfolder of "input-data" named by the year
- Code crawls the data and merges it by the unique identifier "persnr"
- □ Filtering of the dataset based on variable list
- Labeling of the data with comprehensive/understandable names

Procedure

Label;y2010;y2011;y2012;y2013;y2014;y2015
never Changing Person ID;person;person;person;person;person;
Year of Birth;bap15002;bbp13202;bcp12803;bdp13403;bep12603;bfpbirthy
Sex;bap15001;bbp13201;bcp12801;bdp13401;bep12601;bfpsex
Black Economy Work in Personal Environment 2014;NA;NA;NA;NA;NA;Dfp08
Black Economy Work Personal Environment Today;NA;NA;NA;NA;NA;bfp09

Label	y2010	y2011	y2012	y2013	y2014	y2015
never Changing Person ID	persnr	persnr	persnr	persnr	persnr	persnr
Year of Birth	bap15002	bbp13202	bcp12803	bdp13403	bep12603	bfpbirthy
Sex	bap15001	bbp13201	bcp12801	bdp13401	bep12601	bfpsex
Black Economy Work in Personal Environment 2014	NA	NA	NA	NA	NA	bfp08
Black Economy Work Personal Environment Today	NA	NA	NA	NA	NA	bfp09
Hours Weekdays Job, Training	bap0301	bbp0201	bcp0401	bdp1001	bep0501	bfp1001
Hours Weekdays Running Errands	bap0302	bbp0202	bcp0402	bdp1002	bep0502	bfp1002
Hours Weekday Housework	bap0303	bbp0203	bcp0403	bdp1003	bep0503	bfp1003

Labels, column = 1

Variables, column 2+, extendable

Advantages of the procedure

- ☐ Resource-efficient, as only filtered data will stay in memory
- Not "hard coded": Extendable in the future by just adding directories and files

```
# We need two control variables:
2
  # i is to step through the list of years, beginning
    with 1
  # k is always one digit higher as it reads the
    second column of the feature selection list (the
    first column is the label)
   i <- 1
   k <- 2
  # List all directories within the input data, non-
    recursive
    list_dirs <- list.dirs(path="input-data",</pre>
10
      recursive=FALSE)
```

```
# Extract the year name of the directories, so the
   last 4 digits
 list_years <- str_sub(list_dirs, -4)</pre>
 # Create Variable names for every merged year based
   on the style merged[year]
   list_varnames <- paste("merged", list_years, sep="</pre>
     ")
 # Load the feature list we cleaned manually in Excel
    as CSV
   soep_selection <- read.table("variable-selection/</pre>
     soep-feature-selection.csv", header = TRUE, sep
     = ";", check.names=FALSE)
```

```
# Get all Labels, unfiltered
    labels <- soep_selection[,1]
# Create a vector to put object names of all years
    in it
    datalist <- c()
  # Loop through all the years, import the data, merge
    . clean and label them
    for (years in list_years) {
    # Define Current List of import data based on the
10
        "i" value
      list_files <- list.files(path=list_dirs[i],
11
        pattern = "", full.names=TRUE)
```

```
# Import all the data from the current list with
         the read.dta-Function for SPSS-Files
      list_import <- lapply(list_files, read.dta)</pre>
2
      # Merge it into one file
      data_merged <- Reduce(function(x, y) merge(x, y,
         by='persnr', all.x=TRUE),
        list_import)
      # Cut the .x and y. values from the merge
        process, so that we have clean column names
      colnames(data_merged) <- gsub("\\.x|\\.y", "",</pre>
        colnames(data_merged))
      # Get the feature list of the current year
10
      current_list <- sort(soep_selection[,k])</pre>
11
```

```
# Delete all columns where no data exists (as
        the surveys differed every year) -> not needed
         as import function excludes missing values
      # shortlist <- na.omit(current list)</pre>
      # ONLY take the data shortlisted for the current
         year
      cleaned <- data_merged[ ,which(names(data_merged</pre>
        ) %in% current_list == TRUE)]
      # Select the Label Column and the Variable
        Column of the current Year
      soep_subcrit <- c(1, k)
7
```

```
# Subset the Feature list so that only the label
         and the current year exist
      soep_selection_sub <- soep_selection[</pre>
2
        soep_subcrit]
      # Delete NA-Values from the list
      soep_selection_sub <- na.omit(soep_selection_sub</pre>
      # Create a subset of the clean labels, where all
         codenames match, to make sure that the labels
         are correct
      clean_labels <- subset(soep_selection_sub, sort(</pre>
        soep_selection_sub[,2]) == sort(names(cleaned
       )))
```

```
# Order Dataframe alphabetically
1
      clean_sorted <- cleaned[ , order(names(cleaned))</pre>
      # Order Frame with the Labels based on the ID
      ordered_colnames <- clean_labels[order(</pre>
        clean_labels[2]), ]
      # Label the columns properly
      colnames(clean sorted) <- ordered colnames[.1]
      # Assign data_merged to current merge[year]
10
         assign(list_varnames[i], clean_sorted)
11
```

```
# Add Year Variable to a list so that we can
access all years by a loop
datalist <- c(datalist, list_varnames[i])

# Update our variables for the next round
i <- i + 1
k <- k + 1

}</pre>
```

Idea

Treatment

- Before 2015: Individuals with hourly wage < 8.50€
 </p>

Control Group

- 2010 2015: Individuals with hourly wage > 8.50€
- Three different control groups
 - ▶ 1. Hourly Wage: 8.50€< C₁ < 9.00€
 - ≥ 2. Hourly Wage: 8.50€< C₂ < 9.50€</p>
 - 3. Hourly Wage: 8.50€< C₃ < 10.00€</p>

Procedure

- Generate 4 dummy variables that indicate whether individual belongs to Treatment or Control groups
 - ► Example: Value "1" if in treatment, otherwise value "0"
- □ Need to generate a "hourly wage" variable
 - Current Gross Labor Income in Euro
 - 4 * Actual Work Time per Week

```
# Treatment dummy

# 2015

# Minimum wage earnings are split in 2
variables "Minimum Wage EUR" and "Minimum
Wage Cent"

# The values "-2" and "-1" refer to "Does not
apply" and "No answer" respectively
merged2015$'Minimum Wage' <- merged2015$'
Minimum Wage EUR' + merged2015$'Minimum Wage
Cent'/100
```

```
# Create the treatment dummy
merged2015$ 'Treatment' [merged2015$ 'Minimum Wage'
> 0 & merged2015$ 'Minimum Wage' <= 8.5] <- 1

merged2015$Treatment[is.na(merged2015$Treatment)
] <- 0
```

```
# 2010 - 2014
# Loop function
# Generate variable "Hourly earnings"
# Use "Current Gross Labor Income in Euro" and "
Actual Work Time Per Week"
```

```
#Create hourly wage:
           v <- 1
           for (years in c(datalist)) {
               # Rewrite the minus values as NA
                current_year <- datalist[y]</pre>
                current_data <- get(current_year)</pre>
                current data$ 'Actual Work Time Per Week
                  '[current_data$'Actual Work Time Per
                 Week' == -1] <- NA
10
                current_data$ 'Actual Work Time Per Week
11
                  '[current_data$'Actual Work Time Per
                 Week' == -21 < - NA
           Effects of the new German minimum wage
```

```
current_data$ 'Actual Work Time Per Week
    '[current_data$ 'Actual Work Time Per
    Week' == -3] <- NA

current_data$ 'Current Gross Labor Income
    in Euro'[current_data$ 'Current Gross
    Labor Income in Euro' == -1] <- NA

current_data$ 'Current Gross Labor Income
    in Euro'[current_data$ 'Current Gross
    Labor Income in Euro' == -2] <- NA
```

```
# Variable "Hourly earnings"
           current_data$ 'Hourly earnings' <-</pre>
             current_data$ 'Current Gross Labor Income
             in Euro' / (4 * current_data$'Actual Work
             Time Per Week')
           current_data$ 'Treatment '[current_data$ '
             Hourly earnings ' < 8.5] <- 1
           current_data$Treatment[is.na(
             current data$Treatment)] <- 0</pre>
           assign(current_year, current_data)
           y < -y + 1
10
```

```
# 1. Control Dummy

current_data$ 'Control_1'[current_data$'
Hourly earnings' >= 8.5 & current_data$'
Hourly earnings' < 9] <- 1

current_data$ 'Control_1'[is.na(
current_data$Control_1)] <- 0
```

```
# 2. Control Dummy

current_data$ 'Control_2'[current_data$'
Hourly earnings' >= 8.5 & current_data$'
Hourly earnings' < 9.5] <- 1

current_data$ 'Control_2'[is.na(
current_data$Control_2)] <- 0
```

```
# 3. Control Dummy
1
            current_data$ 'Control_3 '[current_data$ '
              Hourly earnings '>= 8.5 & current_data$ '
              Hourly earnings ' < 10] <- 1
           current data$ 'Control 3 '[is.na(
             current_data$Control_3)] <- 0</pre>
        # Assign it to the correct year
               assign(current_year, current_data)
               y < -y + 1
10
11
```

Result

Result

- Convenient number of observations for analysis
 - ► Treatment Group: 3200 4000 obs. (2010 2014), 842 obs. (2015)
 - Control Groups: 300 1200 obs. (2010 2015)

Idea

- - ▶ Human capital: Education, Working Experience, Age...

Procedure

- Analyze following variables: Sex, Education, Year of birth, Working experience, Minimum Wage, Nationality, Labor income, Work time
- Convert variables to numeric
- □ Value cleaning
 - Negative values to NA
 - Adjust scale

```
# Analysis of treatment & control group
y = 1
for (years in c(datalist)) {
   current_year = datalist[y]
   current_data = get(current_year)
print(current_year)
```

Similar code for other variables

```
summary(current_data$working_exp_with_NA[
    current_data$Treatment == 1])
summary(current_data$'Year of Birth'[current_data$'
    Year of Birth' > 0 & current_data$Treatment == 1])
if("merged2015" == current_year) {
summary(current_data$Minwagenona[
    current_data$Treatment == 1])
summary(current_data$getminwage[
    current_data$Treatment == 1])
```

Full Code in Git - directory

Table 1: Descriptive Statistic of Treatment Group 2010

Statistic	N	Mean	St. Dev.	Min	Max
Amount of Education Or Training in Years	3,076	11.649	2.197	7.000	18.000
Actual Work Time Per Week	3,286	32.821	16.817	1.000	80.000
Current Gross Labor Income in Euro	3,286	703.556	493.470	0	2,500
Sexnum	2,172	0.584	0.493	0	1
German	3,286	0.928	0.259	0	1
working exp with NA	3,049	9.754	11.259	0.000	59.300
Birth Year	2,172	1,971.259	14.895	1,922	1,992

Table 2: Descriptive Statistic of Control Group 2010

Statistic	N	Mean	St. Dev.	Min	Max
Amount of Education Or Training in Years	987	11.727	2.038	7.000	18.000
Actual Work Time Per Week	1,013	36.256	15.756	2.000	80.000
Current Gross Labor Income in Euro	1,013	1,334.210	583.430	70	3,116
Sexnum	681	0.589	0.492	0	1
German	1,013	0.926	0.262	0	1
working exp with NA	939	13.005	11.000	0.000	48.000
Birth Year	681	1,968.326	12.412	1,932	1,991

Table 3: Descriptive Statistic of Treatment Group 2015

Statistic	N	Mean	St. Dev.	Min	Max
Amount of Education Or Training in Years	3,111	11.651	2.371	7.000	18.000
Actual Work Time Per Week	3,425	32.838	15.091	1.000	80.000
Current Gross Labor Income in Euro	3,441	980.551	983.931	0	18,159
Sexnum	3,148	0.589	0.492	0	1
German	3,441	0.807	0.395	0	1
working exp with NA	3,394	9.215	11.496	0.000	54.000
Minwagenona	912	8.508	0.587	3.000	13.950
Birth Year	3,148	1,976.929	14.645	1,928	1,997

Table 4: Descriptive Statistic of Control Group 2015

Statistic	N	Mean	St. Dev.	Min	Max
Amount of Education Or Training in Years	1,136	11.539	2.187	7.000	18.000
Actual Work Time Per Week	1,190	32.064	15.384	1.000	80.000
Current Gross Labor Income in Euro	1,190	1,177.287	568.195	34	3,000
Sexnum	1,052	0.663	0.473	0	1
German	1,190	0.768	0.422	0	1
working exp with NA	1,179	11.483	11.366	0.000	55.700
Birth Year	1,052	1,972.520	12.466	1,937	1,997

Results - To Do

- Clean observations with missing values
- Calculate differences of the variables
- Check whether these are significant

Future Outlook: Regression analysis

- Use regression discontinuity to estimate the effect of minimum wage on employment
- Robustness checks and tests to validate significance and robustness of estimation