Множество $S \subset \mathbb{N} \cup \{0\}$ называется 2-автоматным если существует конечный автомат, распознающий язык двоичных записей чисел из S. Например, 2-автоматны множества всех степеней двоек, всех чётных чисел и всех чисел, в двоичной записи которых нечётное число единиц, но не 2-автоматны множества всех степеней троек, всех точных квадратов и всех простых чисел.

Пусть \mathbb{F}_2 — поле из двух элементов, а $\mathbb{F}_2[t]$ и $\mathbb{F}_2[[t]]$ — кольца многочленов и формальных степенных рядов над \mathbb{F}_2 соответственно. Формальный степенной ряд $\sum_{n=0}^{+\infty} f_n t^n = f \in \mathbb{F}_2[[t]]$ называется алгебраическим, если он является корнем какогонибудь ненулевого многочлена с коэффициентами из $\mathbb{F}_2[t]$. Например, алгебраичны решения уравнений $f^2 + f + t = 0$, $(1+t)f + t^4 = 0$, $(t^2 + t + 1)f^3 + (t^4 + t)f + t^8 = 0$ из кольца $\mathbb{F}_2[[t]]$ формальных степенных рядов над полем \mathbb{F}_2 .

Theorem 0.1 (Теорема Кристеля). Формальный степенной ряд $\sum_{n=0}^{+\infty} f_n t^n$ алгебраичен тогда и только тогда, когда множество $\{n \mid f_n = 1\} \subset \mathbb{N} \cup \{0\}$ 2-автоматно.