Eigenimages

- Unitary transforms
- Karhunen-Loève transform and eigenimages
- Sirovich and Kirby method
- Eigenfaces for gender recognition
- Fisher linear discrimant analysis
- Fisherimages and varying illumination
- Fisherfaces vs. eigenfaces

- To recognize complex patterns (e.g., faces), large portions of an image (say *N* pixels) have to be considered
- High dimensionality of "image space" results high computational burden for many recognition techniques

Example: nearest-neigbor search requires pairwise comparison with every image in a database

- lacktriangleright Transform $\vec{c}=W\!f$ is a projection on a J-dimensional linear subspace that greatly reduces the dimensionality of the image space J<< N
- <u>Idea</u>: tailor the projection to a set of representative training images and preserve the salient features by using Principal Component Analysis (PCA)

$$W_{opt} = \arg\max_{W} \left(\frac{\det(WR_{f\!f}W^{H_{\bullet}})}{\det(WR_{f\!f}W^{H_{\bullet}})} \right)^{\text{Mean squared value of projection}}$$
 With orthonormal rows.

2-d example:

2-d example:

2-d example:

Unitary transforms

- Sort pixels f[x,y] of an image into column vector f of length N
- Calculate N transform coefficients

$$\vec{c} = A\vec{f}$$

where A is a matrix of size NxN

 \blacksquare The transform A is unitary, iff

$$A^{-1} = \underbrace{A^{*T} \equiv A^{H}}_{\text{Hermitian conjugate}}$$

• If A is real-valued, i.e., $A=A^*$, transform is "orthonormal"

Energy conservation with unitary transforms

• For any unitary transform $\vec{c} = A\vec{f}$ we obtain

$$\|\vec{c}\|^2 = \vec{c}^H \vec{c} = \vec{f}^H A^H A \vec{f} = \|\vec{f}\|^2$$

- Interpretation: every unitary transform is simply a rotation of the coordinate system (and, possibly, sign flips)
- Vector length is conserved.
- Energy (mean squared vector length) is conserved.

Energy distribution for unitary transforms

- Energy is conserved, but, in general, unevenly distributed among coefficients.
- Autocorrelation matrix

$$R_{cc} = E \left[\vec{c} \vec{c}^H \right] = E \left[A \vec{f} \cdot \vec{f}^H A^H \right] = A R_{ff} A^H$$

ullet Diagonal of R_{cc} comprises mean squared values ("energies") of the coefficients c_i

$$E\left[c_{i}^{2}\right] = \left[R_{cc}\right]_{i,i} = \left[AR_{ff}A^{H}\right]_{i,i}$$

Eigenmatrix of the autocorrelation matrix

<u>Definition:</u> eigenmatrix Φ of autocorrelation matrix R_{ff}

- Φ is unitary
- The columns of Φ form a set of eigenvectors of $R_{\it ff}$, i.e.,

$$R_{ff}\Phi = \Phi \Lambda \longleftarrow \Lambda$$
 is a diagonal matrix of eigenvalues λ_{ι}

- R_{ff} is normal matrix, i.e., $R_{ff}^H R_{ff} = R_{ff} R_{ff}^H$, hence unitary eigenmatrix exists ("spectral theorem")
- R_{ff} is symmetric nonnegative definite, hence $\lambda_i \ge 0$ for all i

Karhunen-Loève transform

Unitary transform with matrix

$$A = \Phi^H$$

Transform coefficients are pairwise uncorrelated

$$R_{cc} = AR_{ff}A^{H} = \Phi^{H}R_{ff}\Phi = \Phi^{H}\Phi\Lambda = \Lambda$$

- Columns of Φ are ordered according to decreasing eigenvalues.
- Energy concentration property:
 - No other unitary transform packs as much energy into the first J coefficients.
 - Mean squared approximation error by keeping only first J coefficients is minimized.
 - Holds for any J.

Illustration of energy concentration

Basis images and eigenimages

For any transform, the inverse transform

$$\vec{f} = A^{-1}\vec{c}$$

can be interpreted in terms of the superposition of columns of A^{-1} ("basis images")

- For the KL transform, the basis images are the eigenvectors of the autocorrelation matrix R_{ff} and are called "eigenimages."
- If energy concentration works well, only a limited number of eigenimages is needed to approximate a set of images with small error. These eigenimages span an optimal linear subspace of dimensionality J.
- Eigenimages can be used directly as rows of the projection matrix

$$W_{opt} = \arg\max_{W} \left(\frac{\det(WR_{f\!f}W^{H})}{\det(WR_{f\!f}W^{H})} \right) \qquad \text{Mean squared value of projection}$$

$$\text{JxN projection matrix with orthonormal rows}$$
 Autocorrelation matrix of image

Eigenimages for face recognition

Computing eigenimages from a training set

- How to obtain NxN covariance matrix?
 - Use training set $\vec{\Gamma}_1, \vec{\Gamma}_2, ..., \vec{\Gamma}_{L+1}$ (each column vector represents one image)
 - Let μ be the mean image of all L+1 training images
 - Define training set matrix $S = (\vec{\Gamma}_1 \vec{\mu}, \vec{\Gamma}_2 \vec{\mu}, \vec{\Gamma}_3 \vec{\mu}, ..., \vec{\Gamma}_L \vec{\mu}),$

and calculate scatter matrix
$$R = \sum_{l=1}^{L} \left(\vec{\Gamma}_{l} - \overrightarrow{\mu}\right) \left(\vec{\Gamma}_{l} - \overrightarrow{\mu}\right)^{H} = SS^{H}$$

Problem 1: Training set size should be L+1 >> NIf L < N, scatter matrix R is rank-deficient

Problem 2: Finding eigenvectors of an NxN matrix.

■ Can we find a small set of the most important eigenimages from a small training set L << N?

Sirovich and Kirby algorithm

Instead of eigenvectors of SS^H , consider the eigenvectors of S^HS , i.e.,

$$S^H S \vec{v}_i = \lambda_i \vec{v}_i$$

Premultiply both sides by S

$$SS^H S\vec{v}_i = \lambda_i S\vec{v}_i$$

■ By inspection, we find that $S\vec{v}_i$ are eigenvectors of SS^H

Sirovich and Kirby Algorithm (for $L \ll N$)

- Compute the *LxL* matrix *S*^H*S*
- Compute *L* eigenvectors \vec{v}_i of S^HS
- Compute eigenimages corresponding to the $L_0 \le L$ largest eigenvalues as a linear combination of training images $S\vec{v}_i$

L. Sirovich and M. Kirby, "Low-dimensional procedure for the characterization of human faces," Journal of the Optical Society of America A, 4(3), pp. 519-524, 1987.

Example: eigenfaces

The first 8 eigenfaces obtained from a training set of 100 male and 100 female

training images

Mean Face

Eigenface 1

Eigenface 5

Eigenface 2

Eigenface 6

Eigenface 3

Eigenface 7

Eigenface 4

Eigenface 8

- Can be used to generate faces by adjusting 8 coefficients.
- Can be used for face recognition by nearest-neighbor search in 8-d "face space."

Gender recognition using eigenfaces

Nearest neighbor search in "face space"

Female face samples

Male face samples

Fisher linear discriminant analysis

 Eigenimage method maximizes "scatter" within the linear subspace over the entire image set – regardless of classification task

$$W_{opt} = \arg\max_{W} \left(\det \left(WRW^{H} \right) \right)$$

 Fisher linear discriminant analysis (1936): maximize between-class scatter, while minimizing within-class scatter

$$R_{B} = \sum_{i=1}^{c} N_{i} (\overline{\mu_{i}} - \overline{\mu}) (\overline{\mu_{i}} - \overline{\mu})^{H}$$

$$Samples \text{ in class } i$$

$$R_{W} = \sum_{i=1}^{c} \sum_{\overline{\Gamma_{l}} \in Class(i)} (\overline{\Gamma_{l}} - \overline{\mu_{i}}) (\overline{\Gamma_{l}} - \overline{\mu_{i}})^{H}$$

Fisher linear discriminant analysis (cont.)

■ Solution: Generalized eigenvectors $\overrightarrow{w_i}$ corresponding to the J largest eigenvalues $\left\{\lambda_i \mid i=1,2,...,J\right\}$, i.e.

$$R_{B}\overrightarrow{w_{i}} = \lambda_{i}R_{W}\overrightarrow{w_{i}}, \quad i = 1, 2, ..., J$$

- Problem: within-class scatter matrix R_w at most of rank L-c, hence usually singular.
- Apply KLT first to reduce dimensionality of feature space to L-c (or less), proceed with Fisher LDA in lower-dimensional space

Eigenimages vs. Fisherimages

2-d example:

Eigenimages vs. Fisherimages

2-d example:

Goal: project samples on a 1-d subspace, then perform classification.

The KLT preserves maximum energy, but the 2 classes are no longer distinguishable.

Eigenimages vs. Fisherimages

2-d example:

Goal: project samples on a 1-d subspace, then perform classification.

The KLT preserves maximum energy, but the 2 classes are no longer distinguishable.

Fisher LDA separates the classes by choosing a better 1-d subspace.

Fisherimages and varying illlumination

Differences due to varying illumination can be much larger than differences among faces!

Fisherimages and varying illumination

- All images of same Lambertian surface with different illumination (without shadows) lie in a 3d linear subspace
- Single point source at infinity

- Superposition of arbitrary number of point sources at infinity still in same 3d linear subspace, due to linear superposition of each contribution to image
- Fisherimages can eliminate within-class scatter

Fisherface trained to recognize gender

Male mean $\vec{\mu}_2$

Fisherface

Gender recognition using 1st Fisherface

Gender recognition using 1st eigenface

Person identification with Fisherfaces and eigenfaces

