Tareal Carmine Ortiz

May 5, 2025

1 Tarea 1 2025

Instrucciones

Su notebook con las respuestas a la tarea se deben entregar a mas tardar el dia 21/04/25 hasta las 21:00, subiendolo al repositorio en la carpeta tareas/2025.

Es importante considerar que el código debe poder ejecutarse en cualquier computadora con la data original del repositorio. Recordar la convencion para el nombre de archivo ademas de incluir en su documento titulos y encabezados por seccion. La data a utilizar es machine_failure_data.csv.

Las variables tienen la siguiente descripcion:

Date: data medida en frecuencia diaria Location: ubicacion del medidor Min_Temp: temperatura minima observada Max_Temp: temperatura maxima observada Leakage: Filtracion medida en el area Evaporation: Tasa de evaporacion Electricity: Consumo electrico KW Parameter#: Diferentes sensores de reportando direccion y velocidad de viento en distintos momentos del dia, asi como otras metricas relevantes. Failure today: El sensor reporta fallo (o no)

```
[231]: #Cargamos librerías
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import sklearn
import scipy
import seaborn as sns
import warnings
from sklearn.preprocessing import StandardScaler

warnings.filterwarnings("ignore")

%matplotlib inline
```

2 Descripcion de la Data y limpieza

1.-Cargar la base de datos en el ambiente. Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario.

R: Cargamos la data y cambiamos nombres de las variables para mas comodidad, vemos los tipos de variables y sus estadisticas descriptivas, luego realizamos las limpiezas correspondientes.

```
[232]: url="https://raw.githubusercontent.com/juancaros/LAB-MAA/refs/heads/main/data/
        ⇔machine_failure_data.csv"
       df=pd.read_csv(url)
       df=df.rename(columns={"Parameter1_Speed":"P1_Speed",
                             "Parameter1_Dir": "P1_Dir",
                              "Parameter2_3pm": "P2_3pm",
                             "Parameter2_9am": "P2_9am",
                             "Parameter3_9am": "P3_9am",
                             "Parameter3_3pm": "P3_3pm",
                            "Parameter4_9am": "P4_9am",
                            "Parameter4_3pm": "P4_3pm",
                            "Parameter5_9am": "P5_9am",
                            "Parameter5_3pm": "P5_3pm",
                            "Parameter6_9am": "P6_9am",
                            "Parameter6_3pm": "P6_3pm",
                            "Parameter7_9am": "P7_9am",
                            "Parameter7_3pm": "P7_3pm",
                            })
       df['Failure_bin'] = df['Failure_today'].apply(lambda x:1 if x=='Yes' else 0)__
        ⇔#Pasamos la variables Failuere_today a binaria
       df.drop('Failure_today', axis=1, inplace=True)
       df.info()
       df.describe()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 142193 entries, 0 to 142192 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	Date	142193 non-null	object
1	Location	142193 non-null	int64
2	Min_Temp	141556 non-null	float64
3	Max_Temp	141871 non-null	float64
4	Leakage	140787 non-null	float64
5	Evaporation	81350 non-null	float64
6	Electricity	74377 non-null	float64
7	P1_Dir	132863 non-null	object
8	P1_Speed	132923 non-null	float64
9	P2_9am	132180 non-null	object
10	P2_3pm	138415 non-null	object
11	P3_9am	140845 non-null	float64

12	P3_3pm	139563 non-null	float64
13	P4_9am	140419 non-null	float64
14	P4_3pm	138583 non-null	float64
15	P5_9am	128179 non-null	float64
16	P5_3pm	128212 non-null	float64
17	P6_9am	88536 non-null	float64
18	P6_3pm	85099 non-null	float64
19	P7_9am	141289 non-null	float64
20	P7_3pm	139467 non-null	float64
21	Failure_bin	142193 non-null	int64
dtyp	es: float64(1	6), int64(2), obj	ect(4)

memory usage: 23.9+ MB

	шешот у	usage. 23.9+ M	Б			
[232]:		Location	Min_Temp	_ •	•	\
	count	142193.000000	141556.000000			
	mean	24.740655	12.186400			
	std	14.237503	6.403283			
	min	1.000000	-8.500000		0.000000	
	25%	12.000000	7.600000			
	50%	25.000000	12.000000	22.600000	0.000000	
	75%	37.000000	16.800000	28.200000	0.800000	
	max	49.000000	33.900000	48.100000	371.000000	
		Evaporation	Electricity	P1_Speed	P3_9am	\
	count	81350.000000	74377.000000	132923.000000	140845.000000	
	mean	5.469824	7.624853	39.984292	14.001988	
	std	4.188537	3.781525	13.588801	8.893337	
	min	0.000000	0.00000	6.000000	0.000000	
	25%	2.600000	4.900000	31.000000	7.000000	
	50%	4.800000	8.500000	39.000000	13.000000	
	75%	7.400000	10.600000	48.000000	19.000000	
	max	145.000000	14.500000	135.000000	130.000000	
		P3_3pm	P4_9am	P4_3pm	. P5_9am	\
	count	139563.000000	140419.000000	138583.000000	128179.000000	
	mean	18.637576	68.843810	51.482606	1017.653758	
	std	8.803345	19.051293	20.797772	7.105476	
	min	0.000000	0.000000	0.000000	980.500000	
	25%	13.000000	57.000000	37.000000	1012.900000	
	50%	19.000000	70.000000	52.000000	1017.600000	
	75%	24.000000	83.000000	66.000000	1022.400000	
	max	87.000000	100.000000	100.000000	1041.000000	
		P5_3pm	P6_9am	P6_3pm	P7_9am	\
	count	128212.000000	88536.000000	85099.000000	141289.000000	
	mean	1015.258204	4.437189	4.503167	16.987509	
	std	7.036677	2.887016	2.720633	6.492838	

```
25%
                                  1.000000
                                                2.000000
                1010.400000
                                                              12.300000
       50%
                1015.200000
                                 5.000000
                                                5.000000
                                                              16.700000
       75%
                1020.000000
                                 7.000000
                                                7.000000
                                                              21.600000
                1039.600000
                                  9,000000
                                                9.000000
                                                              40.200000
      max
                               Failure bin
                     P7_3pm
                             142193.000000
       count
              139467.000000
                  21.687235
                                  0.221213
      mean
       std
                   6.937594
                                  0.415065
      min
                  -5.400000
                                  0.000000
       25%
                  16.600000
                                  0.00000
       50%
                  21.100000
                                  0.00000
       75%
                  26.400000
                                   0.000000
                  46.700000
                                   1.000000
      max
[233]: # Pasamos los variables de direcciones a valores númericos, en este caso los
        ⇔pasamos a radianes, seprando cada variable
       # en seno y coseno seqún corresponda
       rad_map = {'N': 0, 'NNE': 22.5, 'NE': 45, 'ENE': 67.5,
                  'E': 90, 'ESE': 112.5, 'SE': 135, 'SSE': 157.5,
                  'S': 180, 'SSW': 202.5, 'SW': 225, 'WSW': 247.5,
                  'W': 270, 'WNW': 292.5, 'NW': 315, 'NNW': 337.5}
       #Pasamos a grados
       df['P1_Dir'] = df['P1_Dir'].map(rad_map)
       df['P2 9am'] = df['P2 9am'].map(rad map)
       df['P2_3pm'] = df['P2_3pm'].map(rad_map)
        # Pasamos a radianes
       df['P1 Dir sin'] = np.sin(np.radians(df['P1 Dir']))
       df['P1 Dir cos'] = np.cos(np.radians(df['P1 Dir']))
       df['P2_9am_sin'] = np.sin(np.radians(df['P2_9am']))
       df['P2 9am cos'] = np.cos(np.radians(df['P2 9am']))
       df['P2_3pm_sin'] = np.sin(np.radians(df['P2_3pm']))
       df['P2_3pm_cos'] = np.cos(np.radians(df['P2_3pm']))
       df = df.drop(['P1_Dir', 'P2_9am', 'P2_3pm'], axis=1)
       df.head()
[233]:
                     Location Min_Temp Max_Temp Leakage Evaporation Electricity \
               Date
       0 12/1/2008
                            3
                                    13.4
                                              22.9
                                                        0.6
                                                                     NaN
                                                                                   NaN
       1 12/2/2008
                            3
                                    7.4
                                              25.1
                                                        0.0
                                                                      NaN
                                                                                   NaN
                            3
                                              25.7
       2 12/3/2008
                                   12.9
                                                        0.0
                                                                     NaN
                                                                                   NaN
                            3
                                    9.2
                                              28.0
                                                        0.0
                                                                      NaN
                                                                                   NaN
       3 12/4/2008
                            3
       4 12/5/2008
                                   17.5
                                              32.3
                                                        1.0
                                                                      NaN
                                                                                   NaN
```

min

977.100000

0.000000

0.000000

-7.200000

```
P1_Speed P3_9am P3_3pm ...
                                        P6_3pm P7_9am P7_3pm Failure_bin
       0
              44.0
                      20.0
                               24.0
                                                   16.9
                                                           21.8
                                           {\tt NaN}
                               22.0 ...
                                                                           0
              44.0
                       4.0
                                                   17.2
                                                           24.3
       1
                                           {\tt NaN}
       2
              46.0
                               26.0 ...
                                           2.0
                                                  21.0
                                                           23.2
                      19.0
                                                                           0
       3
              24.0
                      11.0
                               9.0 ...
                                           {\tt NaN}
                                                   18.1
                                                           26.5
                                                                           0
              41.0
                       7.0
                               20.0 ...
                                           8.0
                                                   17.8
                                                           29.7
                                                                           0
                        P1_Dir_cos P2_9am_sin
                                                   P2_9am_cos
          P1_Dir_sin
                                                                P2_3pm_sin \
           -1.000000 -1.836970e-16
                                      -1.000000 -1.836970e-16
                                                                 -0.923880
       0
       1
           -0.923880 3.826834e-01
                                      -0.382683 9.238795e-01
                                                                 -0.923880
       2
           -0.923880 -3.826834e-01
                                      -1.000000 -1.836970e-16
                                                                 -0.923880
       3
            0.707107 7.071068e-01
                                      0.707107 -7.071068e-01
                                                                 1.000000
           -1.000000 -1.836970e-16
                                       0.923880 3.826834e-01
                                                                 -0.707107
            P2_3pm_cos
       0 3.826834e-01
       1 -3.826834e-01
       2 -3.826834e-01
       3 6.123234e-17
       4 7.071068e-01
       [5 rows x 25 columns]
[234]: #Visulizamos las distribuciones de las variables
       df.hist(bins=30, figsize=(15, 10))
       plt.tight_layout()
       plt.show()
```


[235]: # Vemos la proporción de nulos (NaN) en % (df.isnull().mean().sort_values(ascending=False))*100

[235] •	Electricity	47.692924
[200].	Evaporation	42.789026
	-	
	P6_3pm	40.152469
	P6_9am	37.735332
	P5_9am	9.855619
	P5_3pm	9.832411
	P2_9am_cos	7.041838
	P2_9am_sin	7.041838
	P1_Dir_cos	6.561504
	P1_Dir_sin	6.561504
	P1_Speed	6.519308
	P2_3pm_sin	2.656952
	P2_3pm_cos	2.656952
	P4_3pm	2.538803
	P7_3pm	1.917113
	P3_3pm	1.849599
	P4_9am	1.247600
	Leakage	0.988797
	P3_9am	0.948007
	P7_9am	0.635756

```
Max_Temp
                       0.226453
      Location
                      0.000000
      Failure_bin
                      0.000000
      Date
                       0.000000
      dtype: float64
[236]: # Vemos las correlaciones entre los parametros que son medidos dos veces al día
       variables =
       →['P3_9am','P3_3pm','P4_9am','P4_3pm','P5_9am','P5_3pm','P6_9am','P6_3pm','P7_9am','P7_3pm']
       → # ejemplo
       correlaciones = df[variables].corr()
       mask = np.triu(np.ones_like(correlaciones, dtype=bool))
      plt.figure(figsize=(10, 6))
       sns.heatmap(correlaciones, mask=mask, annot=True, cmap='coolwarm', fmt=".2f",__
       ⇔square=True)
      plt.title("Matriz de correlación (mitad inferior)")
       plt.show()
```

0.447983

Min_Temp


```
[237]: # Vemos los outliers que tienen las variables
numeric_cols = df.select_dtypes(include='number').columns
for col in numeric_cols:
    plt.figure(figsize=(8, 2))
    sns.boxplot(data=df, x=col, color='skyblue')
    plt.title(f'Outliers en: {col}')
    plt.tight_layout()
    plt.show()
```



```
for col in df.select_dtypes(include='number'):
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5 * IQR
    upper = Q3 + 1.5 * IQR
    outliers = df[(df[col] < lower) | (df[col] > upper)]
    outlier_counts[col] = len(outliers)

# Proporciones de outliers en %
outlier_counts = dict(sorted(outlier_counts.items(), key=lambda item: item[1], uereverse=True))
for k, v in outlier_counts.items():
```

```
df.head()
      Failure bin: 22.121342119513617 outliers
      Leakage: 17.74208294360482 outliers
      P1_Speed: 2.114028116714606 outliers
      P3_3pm: 1.7286364307666342 outliers
      Evaporation: 1.3741886028144845 outliers
      P3_9am: 1.222985660334897 outliers
      P4 9am: 0.9979394203652782 outliers
      P5_9am: 0.8256383928885388 outliers
      P5_3pm: 0.6371621669139831 outliers
      P7_3pm: 0.5169030824302181 outliers
      Max_Temp: 0.3228007004564219 outliers
      P7_9am: 0.17370756647654947 outliers
      Min_Temp: 0.04360270899411363 outliers
      Location: 0.0 outliers
      Electricity: 0.0 outliers
      P4 3pm: 0.0 outliers
      P6_9am: 0.0 outliers
      P6_3pm: 0.0 outliers
      P1_Dir_sin: 0.0 outliers
      P1_Dir_cos: 0.0 outliers
      P2_9am_sin: 0.0 outliers
      P2 9am cos: 0.0 outliers
      P2_3pm_sin: 0.0 outliers
      P2_3pm_cos: 0.0 outliers
[238]:
               Date Location Min_Temp Max_Temp
                                                   Leakage Evaporation Electricity \
       0 12/1/2008
                            3
                                   13.4
                                              22.9
                                                        0.6
                                                                     NaN
                                                                                  NaN
       1 12/2/2008
                            3
                                    7.4
                                             25.1
                                                        0.0
                                                                                  NaN
                                                                     NaN
                            3
       2 12/3/2008
                                   12.9
                                             25.7
                                                        0.0
                                                                     NaN
                                                                                  NaN
       3 12/4/2008
                            3
                                    9.2
                                              28.0
                                                        0.0
                                                                     NaN
                                                                                  NaN
       4 12/5/2008
                            3
                                   17.5
                                             32.3
                                                        1.0
                                                                     NaN
                                                                                  NaN
          P1_Speed P3_9am P3_3pm ...
                                       P6_3pm P7_9am P7_3pm Failure_bin
       0
              44.0
                      20.0
                              24.0
                                          NaN
                                                  16.9
                                                          21.8
       1
              44.0
                       4.0
                              22.0 ...
                                                  17.2
                                                          24.3
                                                                          0
                                          NaN
       2
              46.0
                              26.0 ...
                                          2.0
                                                                          0
                      19.0
                                                  21.0
                                                          23.2
       3
                                                                          0
              24.0
                      11.0
                               9.0
                                                          26.5
                                          NaN
                                                  18.1
       4
              41.0
                       7.0
                              20.0 ...
                                          8.0
                                                  17.8
                                                          29.7
                                                                          0
          P1_Dir_sin
                        P1_Dir_cos P2_9am_sin
                                                  P2_9am_cos
                                                               P2_3pm_sin \
       0
          -1.000000 -1.836970e-16
                                     -1.000000 -1.836970e-16
                                                                -0.923880
       1
           -0.923880 3.826834e-01
                                     -0.382683 9.238795e-01
                                                                -0.923880
       2
           -0.923880 -3.826834e-01
                                     -1.000000 -1.836970e-16
                                                                -0.923880
            0.707107 7.071068e-01
                                      0.707107 -7.071068e-01
                                                                 1.000000
```

print(f"{k}: {(v/len(df))*100} outliers")

```
P2_3pm_cos
       0 3.826834e-01
       1 -3.826834e-01
       2 -3.826834e-01
       3 6.123234e-17
       4 7.071068e-01
       [5 rows x 25 columns]
[239]: \# Conociendo las distribuciones, los outliers y las correlaciones, notamos que \sqcup
        →los parametros que son medidos dos veces al día
       # siquen una distribucion muy parecida, además de tener correlaciones_
       ⇔relativamente altas, por lo que se calculó la media
       # de cada variable y se junto en una sola para mayor comodidad
       df['P3_prmd'] = (df['P3_9am'] + df['P3_3pm']) / 2
       df['P4\_prmd'] = (df['P4\_9am'] + df['P4\_3pm']) / 2
       df['P5_prmd'] = (df['P5_9am'] + df['P5_3pm']) / 2
       df['P6 prmd'] = (df['P6 9am'] + df['P6 3pm']) / 2
       df['P7_prmd'] = (df['P7_9am'] + df['P7_3pm']) / 2
       df.drop(columns=['P3_9am','P3_3pm',
                        'P4_9am', 'P4_3pm',
                        'P5_9am', 'P5_3pm',
                        'P6_9am', 'P6_3pm',
                        'P7_9am', 'P7_3pm'
                       ], inplace=True)
       col = 'Failure_bin'
       cols = [c for c in df.columns if c != col] + [col]
       df = df[cols]
       # Con respecto a los outliers notamos que Leakage teine un valor alto, por lo_{\sqcup}
       →que la cambiamos a su forma logarítmica
       df['Leakage_log'] = np.log1p(df['Leakage'])
       df.drop(columns=['Leakage'], inplace=True)
       df.head()
[239]:
               Date Location Min_Temp Max_Temp Evaporation Electricity \
       0 12/1/2008
                            3
                                   13.4
                                              22.9
                                                            NaN
                                                                          NaN
       1 12/2/2008
                            3
                                    7.4
                                              25.1
                                                            NaN
                                                                          NaN
       2 12/3/2008
                            3
                                   12.9
                                              25.7
                                                            NaN
                                                                          NaN
       3 12/4/2008
                            3
                                    9.2
                                              28.0
                                                            {\tt NaN}
                                                                          NaN
       4 12/5/2008
                            3
                                   17.5
                                              32.3
                                                            NaN
                                                                          NaN
```

0.923880 3.826834e-01

-0.707107

4 -1.000000 -1.836970e-16

```
0
                                                                         -0.923880
              44.0
                     -1.000000 -1.836970e-16
                                               -1.000000 -1.836970e-16
       1
              44.0
                     -0.923880 3.826834e-01
                                               -0.382683 9.238795e-01
                                                                         -0.923880
       2
              46.0
                     -0.923880 -3.826834e-01
                                               -1.000000 -1.836970e-16
                                                                         -0.923880
       3
              24.0
                      0.707107 7.071068e-01
                                               0.707107 -7.071068e-01
                                                                          1.000000
              41.0
                     -1.000000 -1.836970e-16
                                                0.923880 3.826834e-01
                                                                         -0.707107
           P2_3pm_cos P3_prmd P4_prmd P5_prmd P6_prmd P7_prmd Failure_bin \
       0 3.826834e-01
                           22.0
                                    46.5 1007.40
                                                              19.35
                                                       NaN
       1 -3.826834e-01
                           13.0
                                    34.5
                                          1009.20
                                                       NaN
                                                              20.75
                                                                                0
       2 -3.826834e-01
                           22.5
                                    34.0
                                                              22.10
                                                                                0
                                          1008.15
                                                       NaN
       3 6.123234e-17
                           10.0
                                    30.5 1015.20
                                                       NaN
                                                              22.30
                                                                                0
       4 7.071068e-01
                           13.5
                                    57.5 1008.40
                                                       7.5
                                                              23.75
                                                                                0
         Leakage_log
             0.470004
       0
       1
             0.000000
       2
             0.000000
       3
             0.000000
             0.693147
[240]: # Sobre los valores nulos, notamos que la mayoría se concentra en Electricity,
        ⇒Evaporation y P6, para evitar la perdida de data
       # se decide reemplaza los valores nulos de Evaporation y Eletricity por la_{f L}
        ⊶mediana
       df['Evaporation'] = df['Evaporation'].fillna(df['Evaporation'].median())
       df['Electricity'] = df['Electricity'].fillna(df['Electricity'].median())
       # Respecto a P6, se decide eliminarlo directemante
       df.drop(columns=['P6_prmd'], inplace=True)
       df=df.dropna()
       df.head()
[240]:
              Date Location Min_Temp Max_Temp Evaporation Electricity \
        12/1/2008
                            3
                                   13.4
                                             22.9
                                                           4.8
                                                                        8.5
       1 12/2/2008
                            3
                                   7.4
                                             25.1
                                                           4.8
                                                                        8.5
       2 12/3/2008
                            3
                                   12.9
                                             25.7
                                                           4.8
                                                                        8.5
       3 12/4/2008
                            3
                                    9.2
                                             28.0
                                                           4.8
                                                                        8.5
       4 12/5/2008
                            3
                                   17.5
                                             32.3
                                                           4.8
                                                                        8.5
         P1_Speed
                    P1_Dir_sin
                                  P1_Dir_cos P2_9am_sin
                                                            P2_9am_cos
                                                                        P2_3pm_sin \
       0
              44.0
                     -1.000000 -1.836970e-16
                                               -1.000000 -1.836970e-16
                                                                         -0.923880
       1
              44.0
                     -0.923880 3.826834e-01
                                               -0.382683 9.238795e-01
                                                                         -0.923880
       2
              46.0
                    -0.923880 -3.826834e-01
                                               -1.000000 -1.836970e-16
                                                                         -0.923880
       3
              24.0
                      0.707107 7.071068e-01
                                                0.707107 -7.071068e-01
                                                                          1.000000
       4
              41.0
                     -1.000000 -1.836970e-16
                                                0.923880 3.826834e-01
                                                                         -0.707107
```

P1_Dir_cos P2_9am_sin

P2_9am_cos

P2_3pm_sin \

P1_Speed P1_Dir_sin

	P2_3pm_cos	P3_prmd	P4_prmd	P5_prmd	P7_prmd	Failure_bin	Leakage_log
0	3.826834e-01	22.0	46.5	1007.40	19.35	0	0.470004
1	-3.826834e-01	13.0	34.5	1009.20	20.75	0	0.000000
2	-3.826834e-01	22.5	34.0	1008.15	22.10	0	0.000000
3	6.123234e-17	10.0	30.5	1015.20	22.30	0	0.000000
4	7.071068e-01	13.5	57.5	1008.40	23.75	0	0.693147

3 OLS

2.-Ejecute un modelo de probabilidad lineal (MCO) que permita explicar la probabilidad de que un dia se reporte fallo medido por sensor, a partir de las informacion disponible. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Para ejecutar el modelo MCO se crea una matriz de correlaciones para eliminar variables muy correlacionadas, posterior a esto se ejecuta el modelo eliminando estas variables. Ya dropeadas las variables no deseadas se ejecutó el modelo, de esto se puede interpretar que la mayoría de las variables son significativas, esto puede deberse a la gran cantidad de data, a su vez la variablre que más influye negativamente a la variable dependiente es P4_prmd, la cual si aumenta en una unidad la probabilidad de falla aumenta en 0.1289, por otro lado la mayoria de las variables restante aportan positivamente, disminuyendo la probabilidad de falla al tener un valor negativo.

[241]: <Axes: >


```
X_est = pd.DataFrame(X_est, columns=cols_est, index=X.index)
X_final = pd.concat([X_est, X[no_est]], axis=1)
X_final = sm.add_constant(X_final)
model = sm.OLS(y, X_final)
results = model.fit(cov_type='HCO')
print(results.summary())
```

OLS Regression Results

Dep. Variable:	Failure_bin	R-squared:	0.257
Model:	OLS	Adj. R-squared:	0.257
Method:	Least Squares	F-statistic:	2717.
Date:	Thu, 24 Apr 2025	Prob (F-statistic):	0.00
Time:	23:46:58	Log-Likelihood:	-44786.
No. Observations:	112925	AIC:	8.960e+04
Df Residuals:	112909	BIC:	8.976e+04
Df Model:	15		
C	IICO		

Covariance Type: HCO

	coef	std err	z	P> z	[0.025	0.975]
const	0.2376	0.002	110.854	0.000	0.233	0.242
Min_Temp	0.0769	0.002	39.404	0.000	0.073	0.081
Max_Temp	-0.0867	0.002	-36.449	0.000	-0.091	-0.082
Evaporation	-0.0154	0.001	-10.917	0.000	-0.018	-0.013
Electricity	-0.0102	0.001	-7.497	0.000	-0.013	-0.008
P1_Speed	0.0586	0.002	31.632	0.000	0.055	0.062
P3_prmd	-0.0140	0.002	-7.945	0.000	-0.017	-0.011
P4_prmd	0.1289	0.002	78.805	0.000	0.126	0.132
P5_prmd	-0.0519	0.002	-33.779	0.000	-0.055	-0.049
P1_Dir_cos	-0.0141	0.002	-6.331	0.000	-0.018	-0.010
P2_9am_cos	-0.0282	0.002	-15.465	0.000	-0.032	-0.025
P2_3pm_sin	-0.0427	0.002	-20.712	0.000	-0.047	-0.039
P2_3pm_cos	-0.0250	0.002	-11.870	0.000	-0.029	-0.021
P2_9am_sin	-0.0158	0.002	-8.813	0.000	-0.019	-0.012
P1_Dir_sin	0.0028	0.002	1.278	0.201	-0.001	0.007
Location	-0.0006	7.44e-05	-8.155	0.000	-0.001	-0.000
Omnibus:	=======	9644.2	257 Durbi:	======= n-Watson:		1.782
Prob(Omnibus)	:	0.0	000 Jarqu	e-Bera (JB):		11861.140
Skew:		0.7				0.00
Kurtosis:		2.6	398 Cond.	No.		91.4
=========	=======					=======

Notes:

[1] Standard Errors are heteroscedasticity robust (HCO)

4 Probit

3.-Ejecute un modelo probit para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Para verificar la existencia de multicolinealidad se calculo el VIF de cada variable, la cual nos indicó que no existe en mayor medida, luego de esto se realizó el modelo Probit, este modelo resulta ser estadísticamente sifnificativo, en este caso todas las variables resultaron ser significativas. Los efectos marginales en el modelo Probit muestran cambios importantes en la magnitud de las asociaciones, en comparación con el modelo OLS. En general, las asociaciones se intensifican, especialmente para variables como la temperatura mínima y la temperatura máxima, donde un aumento de una unidad puede traducirse en un cambio de más de 10 puntos porcentuales en la probabilidad de falla. Dando un mejor entendimiento del modelo.

```
Variable
                            VIF
0
          const
                  39438.107523
1
       Location
                       1.033256
2
       Min_Temp
                       4.054110
3
       Max_Temp
                       5.592020
4
    Evaporation
                       1.450385
5
    Electricity
                      1.390771
       P1_Speed
6
                       2.625612
7
     P1_Dir_sin
                       2.265681
8
     P1_Dir_cos
                       2.216234
9
     P2_9am_sin
                       1.439005
10
     P2_9am_cos
                       1.622673
11
     P2_3pm_sin
                       2.026331
12
     P2_3pm_cos
                       2.121965
        P3_prmd
13
                       2.384595
14
        P4 prmd
                       2.391992
15
        P5_prmd
                       1.764535
```

```
probit_model = model.fit(cov_type='HCO')

# Ejecución efectos marginales

mfx = logit_results.get_margeff()

print(probit_model.summary())

print("\nEfectos marginales (Probit):")

print(mfx.summary())
```

Optimization terminated successfully.

Current function value: 0.378725

Iterations 7

Probit Regression Results

Dep. Variable:	Failure_bin	No. Observations:	112925
Model:	Probit	Df Residuals:	112909
Method:	MLE	Df Model:	15
Date:	Thu, 24 Apr 2025	Pseudo R-squ.:	0.2891
Time:	23:47:03	Log-Likelihood:	-42768.
converged:	True	LL-Null:	-60159.
Covariance Type:	HCO	LLR p-value:	0.000

	· 					
	coef	std err	z	P> z	[0.025	0.975]
const	-1.0972	0.006	-169.246	0.000	-1.110	-1.085
Location	-0.0338	0.005	-6.627	0.000	-0.044	-0.024
Min_Temp	0.4742	0.011	44.424	0.000	0.453	0.495
Max_Temp	-0.5208	0.013	-41.561	0.000	-0.545	-0.496
Evaporation	-0.1388	0.013	-10.717	0.000	-0.164	-0.113
Electricity	0.0180	0.006	3.221	0.001	0.007	0.029
P1_Speed	0.2107	0.008	27.380	0.000	0.196	0.226
P1_Dir_sin	-0.0161	0.008	-2.022	0.043	-0.032	-0.000
P1_Dir_cos	-0.0493	0.008	-6.458	0.000	-0.064	-0.034
P2_9am_sin	-0.0788	0.006	-13.244	0.000	-0.090	-0.067
P2_9am_cos	-0.1110	0.006	-17.315	0.000	-0.124	-0.098
P2_3pm_sin	-0.1021	0.008	-13.575	0.000	-0.117	-0.087
P2_3pm_cos	-0.0512	0.008	-6.736	0.000	-0.066	-0.036
P3_prmd	-0.0600	0.007	-8.212	0.000	-0.074	-0.046
P4_prmd	0.6058	0.008	74.207	0.000	0.590	0.622
P5_prmd	-0.1975	0.006	-31.732	0.000	-0.210	-0.185

Efectos marginales (Probit):

Logit Marginal Effects

Dep. Variable: Failure_bin
Method: dydx
At: overall

	dy/dx	std err	z	P> z	[0.025	0.975]
Location	-0.0073	0.001	-6.738	0.000	-0.009	-0.005
Min_Temp	0.1053	0.002	47.767	0.000	0.101	0.110
Max_Temp	-0.1140	0.003	-43.387	0.000	-0.119	-0.109
Evaporation	-0.0403	0.003	-15.662	0.000	-0.045	-0.035
Electricity	0.0059	0.001	5.124	0.000	0.004	0.008
P1_Speed	0.0437	0.002	27.270	0.000	0.041	0.047
P1_Dir_sin	-0.0033	0.002	-1.952	0.051	-0.007	1.32e-05
P1_Dir_cos	-0.0103	0.002	-6.372	0.000	-0.013	-0.007
P2_9am_sin	-0.0175	0.001	-13.642	0.000	-0.020	-0.015
P2_9am_cos	-0.0252	0.001	-18.594	0.000	-0.028	-0.023
P2_3pm_sin	-0.0211	0.002	-13.106	0.000	-0.024	-0.018
P2_3pm_cos	-0.0100	0.002	-6.209	0.000	-0.013	-0.007
p3_prmd	-0.0122	0.002	-7.886	0.000	-0.015	-0.009
P4_prmd	0.1283	0.002	80.878	0.000	0.125	0.131
P5_prmd =======	-0.0413	0.001	-32.078 	0.000	-0.044 ======	-0.039

5 Logit

4.- Ejecute un modelo logit para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Los resultados obtenido con el modelo Logit no difirene en mayor medida a comparación del Probit sobre los efectos marginales, pero en este modelo permite interpretar con mayor facilidad los coeficientes en terminos de odds-ratio, en donde seguimos tienendo a las variables de temperatura como las que más afectan a la variable dependiente, en este caso el aumento en una unidad de Max_temp disminuye la probabilidad de fallo en 0.947, y un aumento en Min_tempo aumenta la probabilidad en 0.875.

```
[247]: logit_model = sm.Logit(y, X_est)
logit_results = logit_model.fit(cov_type='HCO') # errores robustos

# 4. Resumen del modelo
print(logit_results.summary())

# 5. Efectos marginales
mfx = logit_results.get_margeff()
print("\nEfectos marginales (Logit):")
print(mfx.summary())
```

Optimization terminated successfully.

Current function value: 0.377860

Iterations 7

Logit Regression Results

Dep. Variable: Failure_bin No. Observations: 112925

Model:	Logit	Df Residuals:	112909
Method:	MLE	Df Model:	15
Date:	Thu, 24 Apr 2025	Pseudo R-squ.:	0.2907
Time:	23:47:35	Log-Likelihood:	-42670.
converged:	True	LL-Null:	-60159.
Covariance Type:	HCO	LLR p-value:	0.000

	coef	std err	z	P> z	[0.025	0.975]
const	-1.9403	0.012	-160.100	0.000	-1.964	-1.917
Location	-0.0607	0.009	-6.731	0.000	-0.078	-0.043
Min_Temp	0.8750	0.019	46.472	0.000	0.838	0.912
Max_Temp	-0.9470	0.022	-42.570	0.000	-0.991	-0.903
Evaporation	-0.3345	0.022	-15.463	0.000	-0.377	-0.292
Electricity	0.0493	0.010	5.119	0.000	0.030	0.068
P1_Speed	0.3634	0.014	26.859	0.000	0.337	0.390
P1_Dir_sin	-0.0277	0.014	-1.953	0.051	-0.056	0.000
P1_Dir_cos	-0.0855	0.013	-6.370	0.000	-0.112	-0.059
P2_9am_sin	-0.1452	0.011	-13.616	0.000	-0.166	-0.124
P2_9am_cos	-0.2095	0.011	-18.429	0.000	-0.232	-0.187
P2_3pm_sin	-0.1749	0.013	-13.053	0.000	-0.201	-0.149
P2_3pm_cos	-0.0831	0.013	-6.205	0.000	-0.109	-0.057
P3_prmd	-0.1012	0.013	-7.877	0.000	-0.126	-0.076
P4_prmd	1.0663	0.014	73.580	0.000	1.038	1.095
P5_prmd	-0.3434 =======	0.011	-31.555 	0.000	-0.365 	-0.322

Efectos marginales (Logit): Logit Marginal Effects

Dep. Variable: Failure_bin
Method: dydx
At: overall

=========	========	========	========	========	========	========
	dy/dx	std err	Z	P> z	[0.025	0.975]
Location	-0.0073	0.001	-6.738	0.000	-0.009	-0.005
Min_Temp	0.1053	0.002	47.767	0.000	0.101	0.110
Max_Temp	-0.1140	0.003	-43.387	0.000	-0.119	-0.109
Evaporation	-0.0403	0.003	-15.662	0.000	-0.045	-0.035
Electricity	0.0059	0.001	5.124	0.000	0.004	0.008
P1_Speed	0.0437	0.002	27.270	0.000	0.041	0.047
P1_Dir_sin	-0.0033	0.002	-1.952	0.051	-0.007	1.32e-05
P1_Dir_cos	-0.0103	0.002	-6.372	0.000	-0.013	-0.007
P2_9am_sin	-0.0175	0.001	-13.642	0.000	-0.020	-0.015
P2_9am_cos	-0.0252	0.001	-18.594	0.000	-0.028	-0.023
P2_3pm_sin	-0.0211	0.002	-13.106	0.000	-0.024	-0.018
P2_3pm_cos	-0.0100	0.002	-6.209	0.000	-0.013	-0.007

P3_prmd	-0.0122	0.002	-7.886	0.000	-0.015	-0.009
P4_prmd	0.1283	0.002	80.878	0.000	0.125	0.131
P5_prmd	-0.0413	0.001	-32.078	0.000	-0.044	-0.039

5.- Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

R: Las diferencias de los modelos se encuentran principalente en sus coeficientes, dando resultados distintos en cada uno, lo cual afecta a la interpretacion de las variables explicativas, esto porque el modelo OLS no es adecuado para trabajar con una variable independiente binaria, a diferencia de los modelos Probit y Logit. Por otro lado, entre estos dos modelos el mas adecuado sería el modelo Logit, particularmente por los odds ratios, lo cual lo hace particularmente útil para interpretar el impacto de las variables. Las variables que se identifican como robustas según los modelos son Min_tempo, Max_temp, Evaporation, P1_speed y P4_prmd, las cuales siguieron una relación consistente en todos los modelos.

6 Poisson

6.- Agregue la data a nivel mensual, usando la data promedio de las variables (ignorando aquellas categoricas, como la direccion del viento). En particular, genere una variable que cuente la cantidad de fallos observados en un mes, utilice un valor de 0 si en ese mes no se reporto fallos en ningun dia. Use un modelo Poisson para explicar el numero de fallas por mes. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Se configuro la data para contar el numero de fallos por mes para luego ejecutar el modelo Poisson. En este modelo casi todas las variables resultaron ser significativas, se puede identificar a las variables P7_prmd, P3_prmd y P4_prmd son las que muestran un efecto positivo mas alto sobre el conteo de fallas, en cambio Min_speed y P1_speed son las variables que mas negativamente aportan al conteo de fallas.

```
estandar = StandardScaler()
X_est = estandar.fit_transform(X)
X_est = pd.DataFrame(X_scaled, columns=X.columns, index=X.index)
X_est = sm.add_constant(X_scaled)
y = mensual_df['Failure_Cont']
modelo_poisson = sm.GLM(y, X_scaled, family=sm.families.Poisson()).fit()
print(modelo_poisson.summary())
```

Generalized Linear Model Regression Results

No. Observations: Dep. Variable: Failure_Cont 113 Model: GLMDf Residuals: 103 Model Family: Poisson Df Model: 9 Link Function: Log Scale: 1.0000

 Method:
 IRLS
 Log-Likelihood:
 -1082.3

 Date:
 Thu, 24 Apr 2025
 Deviance:
 1375.7

 Time:
 23:47:37
 Pearson chi2:
 1.18e+03

No. Iterations: 6 Pseudo R-squ. (CS): 1.000

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	5.2718	0.008	679.937	0.000	5.257	5.287
Min_Temp	-0.6116	0.094	-6.537	0.000	-0.795	-0.428
Max_Temp	-0.3387	0.154	-2.197	0.028	-0.641	-0.037
Evaporation	-0.1419	0.044	-3.209	0.001	-0.229	-0.055
Electricity	0.1511	0.029	5.300	0.000	0.095	0.207
P1_Speed	-0.4016	0.030	-13.362	0.000	-0.461	-0.343
p3_prmd	0.9217	0.032	28.761	0.000	0.859	0.985
P4_prmd	0.7323	0.029	25.192	0.000	0.675	0.789
P5_prmd	-0.0275	0.014	-1.933	0.053	-0.055	0.000
P7_prmd	1.2730	0.201	6.339	0.000	0.879	1.667
=========	-=======	:========	========	========	========	

7 Alpha

- 7.- Determine sobre dispersion en la data y posible valor optimo de alpha para un modelo Binomial Negativa.
- R: Para la determinación de la sobredisperisión se dividió Deviance/ Df resiudals, con esto se llego a un resultado de 13.35, el cual indica una sibredispersion alta, dando a entender que Poisson no es una buena elección como modelo en este caso. Con respecto a la estimación del alpha se utlizo un modelo OLS para estimarlo, dando como resultado 1.0314.

```
[249]: #Grafico de la destribución de valores predichos de alpha en le modelo alpha
mensual_df['plambda'] = modelo_poisson.mu
sns.histplot(data=mensual_df, x="plambda", bins=20, kde=True)
plt.title("Distribución de valores predichos () - Modelo Poisson")
plt.xlabel(" estimado (mu)")
plt.ylabel("Frecuencia")
plt.tight_layout()
plt.show()
# Calculo sobredispersión
sobredispersion = modelo_poisson.deviance / modelo_poisson.df_resid
print("Sobredispersión:", sobredispersion)
```


200

λ estimado (mu)

300

400

Sobredispersión: 13.356025476197102

100

```
[250]: # Modelo OLS
prediccion = poisson_model.predict(X_scaled)
aux = ((mensual_df['Failure_Cont'] - prediccion)**2 - prediccion) / prediccion
aux_model = sm.OLS(aux, prediccion).fit()
print(aux_model.summary())
coef_aux = aux_model.params[0]
```

```
print(f"\nCoeficiente de la regresión auxiliar: {coef_aux:.4f}")

# Estimación de alpha
alpha_estimado = np.exp(coef_aux)

print(f"Alpha estimado (exp(coef)): {alpha_estimado:.4f}")
```

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.167

Model: OLS Adj. R-squared (uncentered):

0.160

Method: Least Squares F-statistic:

22.53

Date: Thu, 24 Apr 2025 Prob (F-statistic):

6.16e-06

Time: 23:47:42 Log-Likelihood:

-477.59

No. Observations: 113 AIC:

957.2

Df Residuals: 112 BIC:

959.9

Df Model: 1
Covariance Type: nonrobust

========	=======		:======:	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
x1	0.0309	0.007	4.747	0.000	0.018	0.044
Omnibus:		98.80	0 Durb	in-Watson:		1.239
Prob(Omnibus): 0.000		0 Jarq	ue-Bera (JB)	:	954.039	
Skew:		2.95	3 Prob	(JB):		6.81e-208
Kurtosis:		15.95	2 Cond	. No.		1.00

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Coeficiente de la regresión auxiliar: 0.0309

Alpha estimado (exp(coef)): 1.0314

8 Binomial negativa

8.- Usando la informacion anterior, ejecute un modelo Binomial Negativa para responder a la pregunta 6. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Este modelo logra corregir la sobredispersion del modelo anterior, pero se puede notar que no exiten muchas variables significativas, solo P3_prmd y P4_prmd logran ser significativas, con coeficientes de 1.1492 y 0.8132, aportando positivamente al conteo de fallos por mes.

```
[251]: # Ejecución modelo Binomial Negativo
negbin=sm.GLM(y,X_scaled,family=sm.families.NegativeBinomial(alpha=1.0314)).

→fit()
print(negbin.summary())
```

Generalized Linear Model Regression Results

=============	=======================================		
Dep. Variable:	Failure_Cont	No. Observations:	113
Model:	GLM	Df Residuals:	103
Model Family:	NegativeBinomial	Df Model:	9
Link Function:	Log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-704.59
Date:	Thu, 24 Apr 2025	Deviance:	15.097
Time:	23:47:45	Pearson chi2:	9.85
No. Iterations:	19	Pseudo R-squ. (CS):	0.3169

Covariance Type: nonrobust

=========	=======	========		========	========	=======
	coef	std err	z	P> z	[0.025	0.975]
const	5.2125	0.096	54.181	0.000	5.024	5.401
Min_Temp	-0.3087	1.126	-0.274	0.784	-2.516	1.898
Max_Temp	-1.4600	2.036	-0.717	0.473	-5.450	2.530
Evaporation	0.0299	0.608	0.049	0.961	-1.161	1.221
Electricity	0.1199	0.389	0.308	0.758	-0.643	0.883
P1_Speed	-0.4758	0.335	-1.420	0.155	-1.132	0.181
p3_prmd	1.1492	0.275	4.183	0.000	0.611	1.688
P4_prmd	0.8132	0.356	2.282	0.023	0.115	1.512
P5_prmd	0.0791	0.200	0.394	0.693	-0.314	0.472
P7_prmd	2.1255	2.725	0.780	0.435	-3.216	7.467
=========	========	========	========	========	========	=======

^{9.-} Comente los resultados obtenidos en 6, 7 y 8. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

R: Entre los modelos exiten diferencias de significancia, mientral que en Poisson casi todas las variables son significativas, en la Binomial Negativa tan solo dos los son, además el modelos de Poisson resulto tener una sobredispersión alta, por lo que no es una buena elección de modelo, en cambio el modelo Binomial Negativo corrige esta sobredispresión, por lo que este modelo sería el adecuado para responder la pregunta de investigación. Las variables robustas resultaron ser P3_prmd y P4_prmd, las cuales son consistentes en los dos modelos.

