

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

Urban Active Vehicle Module

MODEL NUMBER: 561077

FCC ID: 2AJFG561077 IC: 21819-561077

REPORT NUMBER: 11385860C

ISSUE DATE:December 1, 2016

Prepared for
Vast Production Services
307 Robbins Drive
Troy, MI, 48083

Prepared by
UL LLC
333 Pfingsten Rd.
Northbrook, IL 60062
TEL: (847) 272-8800

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	October 5, 2016	Initial Issue	V Sabalvaro
REV	December 1, 2016	Editorial Changes	V Sabalvaro

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS	4
2.	TEST	METHODOLOGY	5
3.	FACI	LITIES AND ACCREDITATION	5
4.	CALI	BRATION AND UNCERTAINTY	5
4	4.1. N	MEASURING INSTRUMENT CALIBRATION	5
4	4.2. S	SAMPLE CALCULATION	5
	4.3. N	MEASUREMENT UNCERTAINTY	6
	5.5. L	DESCRIPTION OF TEST SETUP	8
6.	TEST	AND MEASUREMENT EQUIPMENT	10
7.	TEST	RESULTS	11
	7.1 C	Configuration Tx 433.92MHz Test Data	
	7.1.1	Test Conditions and Results – Occupied Bandwidth	11
	7.1.2	Test Conditions and Results – Cease Operation	
	7.1.3	Test Conditions and Results – Pulse Train	18
	7.1.4	Test Conditions and Results – RADIATED EMISSIONS Fundamental and Spurious	24
8.	SETU	JP PHOTOS	34

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Vast Production Services

307 Robbins Drive Troy, MI, 48083

EUT DESCRIPTION: Urban Active Vehicle Module

MODEL: 561077

SERIAL NUMBER: 0059752

DATE TESTED: August 8 – September 29, 2016

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex A1.1 Pass
INDUSTRY CANADA RSS-GEN Issue 4 Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL LLC By:

Tested By:

Bart Mucha Staff Engineer Vincent Sabalvaro EMC WISE Engineer Consumer Technology

UL LLC

UL LLC

Page 4 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, IL 60062 USA.

UL NBK is accredited by NVLAP, Laboratory Code 100414-0. The full scope of accreditation can be viewed at http://ts.nist.gov

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test	Range	Equipment	Uncertainty k=2
Conducted Emissions	150k-30MHz	LISN	3.65dB
Radiated Emissions	9k-30MHz	H-Field Loop	3.15dB
Radiated Emissions	30-200MHz	Bicon 3m Horz	3.64dB
Radiated Emissions	30-200MHz	Bicon 3m Vert	5.10dB
Radiated Emissions	200-1000MHz	LogP 3m Horz	4.00dB
Radiated Emissions	200-1000MHz	LogP 3m Vert	5.36dB
Radiated Emissions	30-200MHz	Bicon 10m Horz	4.48dB
Radiated Emissions	30-200MHz	Bicon 10m Vert	4.49dB
Radiated Emissions	200-1000MHz	LogP 10m Horz	3.79dB
Radiated Emissions	200-1000MHz	LogP 10m Vert	3.84dB
Radiated Emissions	1-18GHz	Horn	4.32dB
Conducted Ant Port	30MHz-26GHz	Spectrum Analyzer	2.94dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 11385860C DATE: December 01, 2016 IC: 21819-561077 FCC ID: 2AJFG561077

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is a 433.92MHz periodic transmitter. It is powered by a DC vehicle battery. The transmitter is used for electronic acess and authorization system of a vehicle. The radio wave signals of ASK and FSK are not transmitted simultaneously. The key fob transmits radio wave signals of ASK and FSK modulations. Either one of ASK or FSK are transmitted by operator's actions. End user cannot control which of ASK and FSK modulation are to be transmitted. The device is manufactured by Vast Production Services

5.2. MAXIMUM OUTPUT E-FIELD STRENGTH

The transmitter has a maximum output peak E-field as follows:

Frequency Range	Mode	Output AV E-field Strength
(MHz)		(dBuV/m)
433.92	TX - ASK	77.21
433.92	TX - FSK	70.78

5.3. **DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes a PCB trace antenna.

5.4. **WORST-CASE CONFIGURATION AND MODE**

The EUT was set in worst axis as found in preliminary testing. The Z-axis was determined to be the worst axis.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Use	Description	Manufacturer	Model	Serial Number	FCC ID		
EUT	CAN/LIN Interface	Vector	VN1630A	-	-		
SIM	Laptop	DELL	E6410	82563381124	-		
SIM	Power Supply	Leader	LPS-164A	9070286	-		
SIM	SIM Tablet Samsung SM-T560NU RS2H60LF76W A3LSMT560NU						
Note: EUT	Note: EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)						

I/O CABLES

	I/O Cable List						
Cable	Port	# of identical	Connector Type	Cable	Cable	Remarks	
No		ports		Туре	Length (m)		
0	Enclosure	-	Non-Electrical	-	-	None	
1	DC	2	Wire	DC	<3m	None	
2	CAN	1	Wire	1/0	<3m	None	
3	USB	1	Wire	I/O	<3m	Service port only. Not accessible to the end user.	

TEST SETUP

The EUT is programmed for continuous TX mode for Radiated and Bandwidth measurements. For timing tests, the EUT is programmed for manual TX operation. The EUT was programmed through the USB port. The USB port was left unpopulated during testing, since it is only used for factory programming and the USB port will remain inaccessible by the user after it is installed into the vehicle.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description	Manufacturer	Model	T No.	Cal Date	Cal Due
Radiated Software	UL	UL EMC		Ver 9.5, Nov, 2	015
Signal Analyzer	Agilent	PXA	EMC4360	1/8/2016	1/31/2017
Test Receiver	Rhode & Schwarz	ESCI	EMC4328	11/18/2015	11/30/2016
Log-P Antenna	Chase	UPA6109	EMC4313	1/22/2016	1/31/2017
Bicon Antenna	Chase	UPA6106A	EMC4078	12/28/2015	12/31/2016
Antenna Array	UL	BOMS	EMC4276	12/1/2015	12/31/2016
Test Receiver	Rhode & Schwarz	ESU	EMC4323	1/2/2016	1/31/2017
Loop Antenna	EMCO	6502/1	EMC4026	7/22/2016	7/31/2017

7. TEST RESULTS

7.1 Configuration Tx 433.92MHz Test Data

7.1.1 Test Conditions and Results - Occupied Bandwidth

Test Description	Measurements were made in the laboratory environment. A Dipole (or equivalent) antenna tuned to the transmit frequency was attached to the input of a spectrum analyzer. The device was operated and the spectrum analyzer resolution bandwidth set per the appropriate standard.			
Basic Standard		47 CFR Part 15.231(c), RSS-210 A1.1.3		
	Occupied Bandwidth Limits			
	0.25% of Center Frequency (433.92MHz: 1085.8kHz)			

Table 1 Occupied Bandwidth Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #		
1	1	1		
Supplementary information: None				

Table 2 Occupied Bandwidth Spectrum Analyzer Settings

Resolution Bandwidth	Occupied Bandwidth Requirements		
	dBc	% PWR	
15kHz	-20	99	
Supplementary information: None			

Table 3 Occupied Bandwidth Test Result Summary

Center Frequency	Modulation	20dB BW Measured (kHz)	99% BW Measured (kHz)
400 001411	1014	\ /	\ /
433.92MHz	ASK	86.23	370.97
433.92MHz	FSK	85.03	89.921

REPORT NO: 11385860C DATE: December 01, 2016 IC: 21819-561077 FCC ID: 2AJFG561077

Figure 1 - Bandwidth Graph 433.92MHz - 20dB (ASK modulation)

REPORT NO: 11385860C DATE: December 01, 2016 IC: 21819-561077 FCC ID: 2AJFG561077

Figure 2 - Bandwidth Graph 433.92MHz - 20dB (FSK modulation)

FORM NO: CCSUP4701i TEL: (847) 272-8800

Figure 3 – Bandwidth Graph 433.92MHz – 99% (ASK modulation)

Figure 4 – Bandwidth Graph 433.92MHz – 99% (FSK modulation)

TEL: (847) 272-8800

FORM NO: CCSUP4701i

7.1.2 Test Conditions and Results - Cease Operation

Test Description	Measurements were made in the laboratory environment. A Dipole (or equivalent) antenna tuned to the transmit frequency was attached to the input of a spectrum analyzer. The device was operated and the transmission time measured with the spectrum analyzer set to zero span at the fundamental frequency.				
Basic Standard		47 CFR Part 15.231(a), RSS-210 Annex A1.1.1			
	Cease Operation Limits				
The tra	The transmissions shall stop within 5 seconds of either a button being released or if automatically controlled transmissions shall be stopped 5 seconds after transmissions begin.				

Table 4 Cease Operation Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #
1	1	1
Supplementary information: None		

Figure 5 Cease Operation Graph 433.92MHz (ASK modulation)

Figure 6 Cease Operation Graph 433.92MHz (FSK modulation)

REPORT NO: 11385860C DATE: December 01, 2016 IC: 21819-561077 FCC ID: 2AJFG561077

Test Conditions and Results - Pulse Train 7.1.3

Test Description	tuned to the transmit frequ	in the laboratory environment. A Dipole (or equivalent) antenna ency was attached to the input of a spectrum analyzer. The pulse spectrum analyzer set to zero span at the fundamental frequency.								
Basic Stand	Basic Standard FCC Part 15 Subpart A 15.35, RSS-Gen 6.10									
		Pulse Train Limits								
	o limits for this test. This daured peak radiated emission	ata is used to calculate the averaging correction factor that is applied ns results.								

Table 5 Pulse Train Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #
1	1	1
Supplementary information: None		

Table 6 Pulse Train Calculation

			Total Transmission period or 100ms	DC Correction Factor (dB)
TX Frequency	Modulation	Total TX time	whichever is lesser	(- /
433.92MHz	ASK	$(48 \times 0.120) + (46 \times 0.240) = 2mS$	100mS	-15.49dB
433.92IVITZ	FSK	34.43	100mS	-9.26
Worst Case Du	ıty Cycle: Wors	t case duty cycle was calculated over 1	00mS.	

FORM NO: CCSUP4701i

Figure 7 Pulse Train Graphs for 433.92MHz (ASK modulation)

TEL: (847) 272-8800

FORM NO: CCSUP4701i

FCC ID: 2AJFG561077

REPORT NO: 11385860C DATE: December 01, 2016 IC: 21819-561077

TEL: (847) 272-8800

Figure 8 Pulse Train Graphs for 433.92MHz (FSK modulation)

FORM NO: CCSUP4701i

7.1.4 Test Conditions and Results – RADIATED EMISSIONS Fundamental and Spurious

Test Description	16/ANSI C63.4:2003 EUT separation dista with the receive ante Final measurements EUT 360° and adjus	made in a 10-meter semi-anechoic control of the con	were per vas rotan horizon ere then to 4-m	erformed at an antenna to ated 360° about its azimuth ontal and vertical polarities. a performed by rotating the neters. All frequencies were
Basic Standa	ard	47 CFR Part 15 subpar	t C, and	d RSS-210 A1.1.2
UL LPG		80-EN	1-S0029	9
		Frequency range		Measurement Point
	red sample scanned	30MHz – 1GHz		3 meter distance
over the follo	owing frequency range	1GHz – 4GHz		3 meter distance
	(Out of band spurious emissions lim	it	
		Limit (dE	BµV/m)	
Freq	quency (MHz)	Quasi-Peak	Peak	
	30 - 88	40.00		NA
	88 - 216	43.52		NA
2	216 - 960	46.02		NA
9	960 - 1000	54		NA
Abov	re 1000 (FCC)	NA		54 (at 3-meter)
	Fundamental Frequ	ency Limits and Non-restricted ba	nd Har	monic Limits
Freq	quency (MHz)	Limit (dBµV/m) (All harmonics except those in restric 20dB or	cted ba	
		Average - Fundamental		Peak - Fundamental
	433.92	80.8		100.8

FORM NO: CCSUP4701i

Figure 9 Radiated Emissions Graph (30MHz to 1GHz) - ASK Modulation

Besides the fundamental transmit frequency and its harmonics, All visible emissions are at least 6dB below the limit or under the noise floor, therefore no further measurement needed.

Table 7 - Radiated Emissions Data Points 433.92MHz - 30MHz to 1GHz - ASK Modulation

Vast Production 561076 Active Keyfob 315MHz & BT 12VDC

							Average									
Test	Meter		Antenna		Peak Level	DC	Level with		PK		AV					
Frequency	Reading		Factor	Path	Reading	Factor	DC Factor	PK	Margin	AV	Margin	Azimuth	Height			
(MHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	dB	dBuV/m	Limit	(dB)	Limit	(dB)	[Degs]	[cm]	Polarity	Notes	
433.9199	67.7	' Pk	16.3	8.7	92.7	-15.49	77.21	100.8	-8.1	80.8	-3.59	208	128	V	2	
433.9179	55.21	. Pk	16.3	8.7	80.21	-15.49	64.72	100.8	-20.59	80.8	-16.08	257	102	Н	2	
867.8373	18.07	' Pk	22.1	9.5	49.67	-15.49	34.18	80.80	-31.13	60.80	-26.62	148	139	V	2	
867.8446	11.17	' Pk	22.1	9.5	42.77	-15.49	27.28	80.80	-38.03	60.80	-33.52	308	105	Н	2	

Pk - Peak detector

Note: 2 - Y-Axis

Figure 10 Radiated Emissions Graph (30MHz to 1GHz) - FSK Modulation

Table 8 - Radiated Emissions Data Points 433.92MHz - 30MHz to 1GHz - FSK Modulation

Vast Production 561076 Active Keyfob 433MHz FSK & BT 12VDC RED:Horizontal, GREEN:Vertical

						10M to	Corrected					
	Test	Meter		Antenna		3M	Reading		QP			
Marker	Frequency	Reading		Factor	Path	Factor	dB(uVolts/	QP	Margin	Azimuth	Height	
No.	(MHz)	(dBuV)	Detector	dBm	dB	dB	meter)	Limit	(dB)	[Degs]	[cm]	Polarity
1	30.8075	31.95	Pk	17.9	-30	10.5	30.35	40	-9.65	0-360	398	Н
2	190.1825	31.34	Pk	16	-29	10.5	28.84	43.52	-14.68	0-360	99	Н
3	57.2	46.27	Pk	7.8	-30	10.5	34.57	40	-5.43	0-360	251	V
4	67.655	46.54	Pk	6.5	-30	10.5	33.54	40	-6.46	0-360	398	V
5	70.7575	46.14	Pk	6.5	-29.9	10.5	33.24	40	-6.76	0-360	251	V
6	89.925	41.58	Pk	9.3	-29.9	10.5	31.48	43.52	-12.04	0-360	102	V
7	142.285	36.4	Pk	14.1	-29.7	10.5	31.3	43.52	-12.22	0-360	102	V
8	410	28.08	Pk	15.9	-28.3	10.5	26.18	46.02	-19.84	0-360	199	Н
9	608	28.08	Pk	20	-27.3	10.5	31.28	46.02	-14.74	0-360	399	Н
10	914.6	31.77	Pk	23.4	-27.8	10.5	37.87	46.02	-8.15	0-360	199	Н
11	407.7	41.53	Pk	15.9	-28.3	10.5	39.63	46.02	-6.39	0-360	99	V
12	410	28.04	Pk	15.9	-28.3	10.5	26.14	46.02	-19.88	0-360	299	V
13	608	28.94	Pk	20	-27.3	10.5	32.14	46.02	-13.88	0-360	399	V
14	867.8	34.43	Pk	22.1	-27.6	10.5	39.43	46.02	-6.59	0-360	399	V

Pk - Peak detector

Radiated Emission Data

						10M to	Corrected					
Test	Meter		Antenr	na		3M	Reading		QP			
Frequency	Reading		Factor		Path	Factor	dB(uVolts/	QP	Margin	Azimuth	Height	
(MHz)	(dBuV)	Detector	dBm		dB	dB	meter)	Limit	(dB)	[Degs]	[cm]	Polarity
57.2366	43.94	l Qp		7.8	-30	10.5	32.24	40	-7.76	1	260) V

Qp - Quasi-Peak detector

Table 9 - Radiated Emissions Data Points 433.92MHz - 30MHz to 1GHz - FSK Modulation

Fundamamental and Harmonics Measurements

Vast Production 561077 Active Keyfob FSK 433MHz & BT 12VDC RED:Horizontal, GREEN:Vertical

							Average							
Test	Meter		Antenna			DC	Level with		Peak					
Frequency	Reading		Factor	Path	Peak Level	Factor	DC factor	Peak	Margin	Average	Average	Azimuth	Height	
(MHz)	(dBuV)	Detector	dBm	dB	dBuV/m	dB	dBuV/m	Limit	(dB)	Limit	margin	[Degs]	[cm]	Polarity
433.9465	43.49	Pk	16.3	8.4	68.19	-9.26	58.93	100.8	-32.61	80.8	-21.87	264	347	Н
433.8864	55.34	Pk	16.3	8.4	80.04	-9.26	70.78	100.8	-20.76	80.8	-10.02	1	138	V
867.7738	9.76	i Pk	22.1	9.5	41.36	-9.26	32.1	80.8	-39.44	60.8	-28.7	348	133	V
867.7732	5.52	. Pk	22.1	9.5	37.12	-9.26	27.86	80.8	-43.68	60.8	-32.94	302	259	Н

Pk - Peak detector

Text File: Funda Harmonic 1-3 HV FSK 433.TXT

Figure 11 Radiated Emissions Graph (Above 1GHz) ASK Modulation

Emissions visible at 2.4GHz are the product of the modular certified Bluetooth transmitter. Besides the transmit frequency harmonics, All visible emissions are at least 6dB below the limit or under the noise floor, therefore no further measurement needed.

Table 10 - Radiated Emissions Data Points 433.92MHz - Above 1GHz - ASK Modulation

Vast Produ	ction													
561076														
Active Key	fob 315M	Hz & BT												
12VDC														
							Average							
							Level							
Test	Meter		Antenna		Peak	DC	with DC		PK		AV			
Frequency	Reading		Factor	Path	Level	Factor	Factor	PK	Margin	ΑV	Margin	Azimuth	Height	
(GHz)	(dBuV)	Detector	dB/m	(dB)	dBuV/m	dB	dBuV/m	Limit	(dB)	Limit	(dB)	[Degs]	[cm]	Polarity
1.3016	73.1	Pk	28.9	-57.01	44.99	-15.49	29.5	74	-29.01	54	-24.5	11	108	Н
1.3018	78.72	Pk	28.9	-57.01	50.61	-15.49	35.12	74	-23.39	54	-18.88	278	212	V
1.7357	69.52	Pk	29.6	-55.42	43.7	-15.49	28.21	74	-30.3	54	-25.79	149	157	V
1.7359	69.42	Pk	29.6	-55.42	43.6	-15.49	28.11	74	-30.4	54	-25.89	296	153	Н
2.1696	93.55	Pk	21.7	-52.18	63.07	-15.49	47.58	74	-10.93	54	-6.42	301	226	Н
2.1696	95.05	Pk	21.7	-52.18	64.57	-15.49	49.08	74	-9.43	54	-4.92	85	101	V
2.6035	91.95	Pk	22.3	-51.19	63.06	-15.49	47.57	74	-10.94	54	-6.43	111	119	V
2.6035	92.59	Pk	22.3	-51.19	63.7	-15.49	48.21	74	-10.3	54	-5.79	78	100	Н
3.0373	86.23	Pk	22.5	-50.24	58.49	-15.49	43	74	-15.51	54	-11	84	105	Н
3.0374	79.21	Pk	22.5	-50.23	51.48	-15.49	35.99	74	-22.52	54	-18.01	71	150	V
3.4713	76.29	Pk	23.5	-50.59	49.2	-15.49	33.71	74	-24.8	54	-20.29	308	115	V
3.4715	78.81	Pk	23.5	-50.59	51.72	-15.49	36.23	74	-22.28	54	-17.77	77	162	Н
3.9053	79.74	Pk	23.8	-51	52.54	-15.49	37.05	74	-21.46	54	-16.95	248	100	Н
3.9052	77.48	Pk	23.8	-51	50.28	-15.49	34.79	74	-23.72	54	-19.21	135	156	V
4.3393	70.36	Pk	28.1	-52.09	46.37	-15.49	30.88	74	-27.63	54	-23.12	330	103	V
4.3392	73.56	Pk	28.1	-52.09	49.57	-15.49	34.08	74	-24.43	54	-19.92	47	208	Н
DI D														
Pk - Peak d	etector													

Page 30 of 41

Emissions visible at 2.4GHz are the product of the modular certified Bluetooth transmitter. Besides the transmit frequency harmonics, All visible emissions are at least 6dB below the limit or under the noise floor, therefore no further measurement needed.

Table 11 - Radiated Emissions Data Points 433.92MHz - Above 1GHz - FSK Modulation

Vast Production 561077 Active Keyfob FSK 433MHz & BT 12VDC RED:Horizontal, GREEN:Vertical

							Average							
							Level							
Test	Meter		Antenna		Peak	DC	with DC		Peak		Average			
Frequency	Reading		Factor	Path	Level	Factor	Factor	Peak	Margin	Average	Margin	Azimuth	Height	
(GHz)	(dBuV)	Detector	dBm	(dB)	dBuV/m	dB	dBuV/m	Limit	(dB)	Limit	(dB)	[Degs]	[cm]	Polarity
1.3017	72.39	Pk	28.9	-57.01	44.28	-9.26	35.02	74	-29.72	54	-18.98	82	109	Н
1.7355	70.15	Pk	29.6	-55.42	44.33	-9.26	35.07	74	-29.67	54	-18.93	61	221	Н
2.1694	84.35	Pk	21.7	-52.18	53.87	-9.26	44.61	74	-20.13	54	-9.39	96	226	Н
2.6033	83.27	Pk	22.3	-51.19	54.38	-9.26	45.12	74	-19.62	54	-8.88	109	210	Н
3.0372	85.84	Pk	22.5	-50.24	58.1	-9.26	48.84	74	-15.9	54	-5.16	101	251	Н
3.4715	77.15	Pk	23.5	-50.59	50.06	-9.26	40.8	74	-23.94	54	-13.2	104	159	Н
3.905	75.23	Pk	23.8	-51	48.03	-9.26	38.77	74	-25.97	54	-15.23	93	100	Н
4.3393	70.76	Pk	28.1	-52.09	46.77	-9.26	37.51	74	-27.23	54	-16.49	146	100	Н
1.3018	74.5	Pk	28.9	-57.01	46.39	-9.26	37.13	74	-27.61	54	-16.87	117	125	V
1.7357	67.19	Pk	29.6	-55.42	41.37	-9.26	32.11	74	-32.63	54	-21.89	174	147	V
2.1697	82.88	Pk	21.7	-52.18	52.4	-9.26	43.14	74	-21.6	54	-10.86	193	173	V
2.6036	76.91	Pk	22.3	-51.19	48.02	-9.26	38.76	74	-25.98	54	-15.24	282	106	V
3.0372	80.08	Pk	22.5	-50.24	52.34	-9.26	43.08	74	-21.66	54	-10.92	99	105	V
3.4711	71.41	Pk	23.5	-50.59	44.32	-9.26	35.06	74	-29.68	54	-18.94	180	220	V
3.9055	72.71	Pk	23.8	-51	45.51	-9.26	36.25	74	-28.49	54	-17.75	27	100	V
4.3395	67.5	Pk	28.1	-52.09	43.51	-9.26	34.25	74	-30.49	54	-19.75	358	105	V

Pk - Peak detector

Page 31 of 41

Figure 13 Radiated Emissions Graph (9kHz to 30MHz) - ASK Modulation

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 3 m open area test site. Therefore sufficient tests weremade to demonstrate that the alternative site produces results that correlate with the ones oftests made in an open field based on KDB 937606.

All visible emissions are at least 6dB below the limit or under the noise floor, therefore no further measurement needed.

Table 12 - Radiated Emissions Data Points 433.92MHz - 9kHz to 30MHz - ASK Modulation

Vast Pro	duction									
561077										
Active K	eyfob 433M	Hz & BT								
12VDC										
						Corrected				
	Test	Meter		Antenna		Reading		AV		
Marker	Frequency	Reading		Factor	Path	dB(uVolts	AV	Margin	Azimuth	Antenna
No.	(MHz)	(dBuV)	Detector	dB/m	dB	/meter)	Limit	(dB)	[Degs]	Polarity
1	0.009105	44.44	Pk	22.3	0	66.74	128.4	-61.66	0-360	Х
2	0.03756	39.21	Pk	14.9	0	54.11	116.1	-61.99	0-360	X
3	0.23009	42.58	Pk	12	0	54.58	100.36	-45.78	0-360	Х
4	0.65257	32.91	Pk	12	0	44.91	71.31	-26.4	0-360	Х
5	1.1595	26.09	Pk	12.6	0.1	38.79	66.32	-27.53	0-360	Х
6	1.696	23.82	Pk	12.4	0.1	36.32	63.02	-26.7	0-360	Х
7	0.00928	43.7	Pk	22	0	65.7	128.23	-62.53	0-360	Υ
8	0.016	40.1	Pk	18.5	0	58.6	123.51	-64.91	0-360	Υ
9	0.30485	39.9	Pk	11.9	0	51.8	97.92	-46.12	0-360	Υ
10	0.61796	33.75	Pk	12	0	45.75	71.78	-26.03	0-360	Υ
11	1.1305	26.28	Pk	12.6	0.1	38.98	66.54	-27.56	0-360	Υ
12	1.42775	25.44	Pk	12.5	0.1	38.04	64.51	-26.47	0-360	Υ
13	0.00935	43.03	Pk	21.9	0	64.93	128.17	-63.24	0-360	Z
14	0.018345	42.82	Pk	17.4	0	60.22	122.32	-62.1	0-360	Z
15	0.24777	42.14	Pk	12	0	54.14	99.72	-45.58	0-360	Z
16	0.63202	32.75	Pk	12	0	44.75	71.59	-26.84	0-360	Z
17	1.03625	27.59	Pk	12.6	0.1	40.29	67.29	-27	0-360	Z
18	1.6815	21.83	Pk	12.4	0.1	34.33	63.09	-28.76	0-360	Z
Pk - Pea	k detector									