南京林业大学试卷(B卷)

课程 概率统计B

2021~2022 学年第 2 学期

一、选择题(每小题4分,共40分)

1. B 2. D 3. C 4. D 5. C 6. B 7. D 8. B 9. B 10. A 二、(8分)

解: (1) A_1 表示容易出事故的人, A_2 表示比较谨慎的人,B 表示新保险客户在购买保险单后一年内出现一次事故。

$$P(A_1) = 0.3$$
, $P(A_2) = 0.7$, $P(B|A_1) = 0.05$, $P(B|A_2) = 0.01$

(1)由全概率公式:
$$P(B) = \sum_{i=1}^{2} P(A_i) P(B|A_i)$$

$$=0.3\times0.05+0.7\times0.01=0.022$$

-----4 分

(2)由贝叶斯公式:

$$P(A_1 \mid B) = \frac{P(A_1) P(B \mid A_1)}{P(B)} = \frac{0.3 \times 0.05}{0.022} = \frac{15}{22}$$

-----4 分

三、(12 分) 解: 1) 由
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{300}^{+\infty} \frac{k}{x^2} dx = \frac{k}{300} = 1$$

所以
$$k = 300$$

-----4 分

$$(2) F(x) = \int_{-\infty}^{x} f(t)dt$$

当
$$x \ge 300$$
 时, $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{300} 0dt + \int_{300}^{x} \frac{300}{t^2} dt = 1 - \frac{300}{x}$

(3)
$$P(X \le 500) = F(500) = \frac{2}{5}$$

或
$$P(X \le 500) = \int_{-\infty}^{500} f(x)dx = \int_{300}^{500} \frac{300}{x^2} dx = \frac{2}{5}$$
 -----4 分

四、(12分)

解: (1)
$$X$$
 分布函数为: $F(x) = \begin{cases} 0, & x < -2 \\ 0.25, & -2 \le x < 0 \\ 0.75, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$ -------3 分

(2) Y的概率分布为:

Y	0	4
P	1/2	1/2

-----3 分

(3)(X,Y)的联合概率分布为:

YX	-2	0	2
0	0	1/2	0
4	1/4	0	1/4

-----3 分

$$(4)$$
 : $P(X = -2, Y = 0) \neq P(X = -2) \cdot P(Y = 0)$

五、(12分)

解:(1)法一:由规范性

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} k \ dy = \int_{0}^{1} kx \ dx = \frac{k}{2},$$

∴
$$k=2$$
 ------3 分

(法二:利用均匀分布, $k = \frac{1}{S} = 2$)

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{1} 2dx = 2(1 - y), \ 0 < y < 1 \\ 0, & else \end{cases}$$
 -----2 \(\frac{\frac{1}{2}}{2} \)

(3) Q
$$f_X(x)f_Y(y) \neq f(x,y)$$
, : X 与 Y 不相互独立 ------2 分

(4)
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xf(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} 2x dy = \int_{0}^{1} 2x^{2} dx = \frac{2}{3}$$
 ------3 \Rightarrow

解: 极大似然函数为

$$L(\lambda) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (\lambda + 1) x_i^{\lambda} = (\lambda + 1)^{n} (x_1 \Lambda x_n)^{\lambda}, \quad 0 < x_1, \Lambda, x_n < 1$$

则
$$\ln L(\lambda) = n \ln(\lambda + 1) + \lambda \sum_{i=1}^{n} \ln x_i$$
 ------4 分

$$\Leftrightarrow \frac{d \ln L(\lambda)}{d\lambda} = \frac{n}{\lambda + 1} + \sum_{i=1}^{n} \ln x_i = 0$$

故
$$\theta$$
的极大似然估计值为: $\hat{\lambda} = \frac{-n}{\sum_{i=1}^{n} \ln x_i} - 1$

故
$$\theta$$
的极大似然估计量为: $\hat{\lambda} = \frac{-n}{\sum\limits_{i=1}^{n} \ln X_i} -1$ ------4 分

七、(8分)解:假设:
$$H_0$$
: μ = 220, H_1 : μ ≠ 220 ------2分

当
$$H_0$$
成立时,构造检验统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(9)$ ------2 分

$$\alpha = 0.05$$
, $t_{0.025}(9) = 2.2622$, 拒绝域为: $W = \{T \mid |T| > 2.2622\}$

因为
$$\bar{x} = 227.2$$
, $s = 9.48$

故拒绝 H_0 ,即不能认为苹果重量为220g。 ------2 分