16 Matrices

	-2-
6- Lower Triangular Matrix Square mortra below	diagonal non
0 6007	
$A = \begin{pmatrix} 3 & 8 & 6 \\ \hline -7 & 7 & 1 \end{pmatrix}$	
L5 7 -1 J	
—	
7 Transpose of a mamix for A = [aij] =	1_<1 <m< td=""></m<>
	1<15 N
İS — O	
$A^{T} = [a_{i}c]$	
e ⁻⁷	
Example	
A= [7 9 1]	
LO -2 3	
AT= [7 0]	
1 3	
X. The Symmetrie Mark	
JIVINIEM C ITIA MX	
TH IS A RESIDENCE TO THE TOTAL OF THE TOTAL	
It is a square mornix with [aij] = [aij]	
[1 2 3]	
A = 2 4 5 \$ is Symmetric	
13561	
0 (1 2 3)	
$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$ is not Symmetric.	
[7 5 6]	
	1

		Matrices		
		M.GL.YY. C.e.)		J _a
A madris	()S a gr	nd of nows	and Clumns	<u>1-e</u> .
	A = [a	~;	1 6 1515-1	
	(a11 a12	a,,		
	a rumz	a my	-	7
			<u>:</u>	
1) Zero ma	NOT X CUI	enhies are Ze		
			ره س	e.
2) Square	meny m	<u> </u>	[2 4] 3 6 _ ZXZ	
3) Diagonal	mahix .	ull entriles are	zeros except d	i segonal
		1 2 6 6 7		
		006		
+) identity	mamix s	quare madrix v	on diagonal Zer	o's diag
		100		
		001		
5) Dipper	brangular m	sabtx Square	masta below s	vagional a
				100

					-3-
Matrix Antheme	Hc			-	
1) Matrix equality					
A:[aij]=B	[bij]	st P	~ = Q;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sm Sn
2) Mabix addibo	m				7
if A = [aij]) \	j ß	- b <u>ê</u> j) ع ا زیا ا	≤m ≤n
C =		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	iem Jen	and ei: = 915
$A = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$	5]	B= [o \]		
		[4 6-7 [8 10]			
3) Madrix Multiplic					
Let Amick,					
$C = AB$ mx_n					
	/				

	-4-
Example	······································
$A = \begin{bmatrix} 2 & 3 & -4 \\ 1 & 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 3 \\ 6 & 3 \\ 2 & 1 \end{bmatrix}$	
$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix}$	
2×5 3×2	
	.5
$C = AB = \begin{bmatrix} 14 & 11 \end{bmatrix}$	
20 12	
4- Power of Marxix	
Let In is the identity matrix nxn	
T = [100]	
In= [1	· · · · · · · · · · · · · · · · · · ·
Man	
$A^{\circ} = I_{\Omega}$	
$A^{r} = AAA \cdot - A$	
V times	
Characteristics of Marrix Arthemetic	[60])
Let A, B, C. be matrices Zo is the Zera m	a) j
and x is a Constant.	
$1) (A^{T})^{T} = A$	
$2) (A + B)^{T} = A^{T} + B^{T}$	
3) $(AB)^T = B^T A^T$	
A) (A+B) = R+A	
5) $(A+B)+C = A+(B+C)$	
$A \rightarrow Z_0 = Z_0 + A = A$	

	£5-
	7)' AB + BA 8) (AB)C = A(BC)
	9) $A(B+C) = AB+AC$ 10) $(A+B)C = AC+BC$
	11) $\times A = A \times C$ 12) $(A^K)^P = A^K P$
	Zero-One Mahices (Boolean Mahices)
	A matrix with entires 0 or 1 Example
	$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$
	Defn Let A=[aij] and B=[bij] be mxn matrices-then
	A and B 1) The job of $A \times B = \begin{cases} 1 & \text{if } \alpha = 1 \text{ or } b = 1 \\ 0 & \text{otherwise} \end{cases}$
	2) The meet of A and B is ANB = \1 if a = b = 1
	Example Find the join and meet of the zero one madrices
	$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$
5	The jom of A and B => AVB- [1 vo ov1 1 vo] - [1 1 1]
	The meet of A and B> ANB = [100 001 100] = [0 0

Defo	-6-
Defn	
Let A = [aij] be an mxx Zero one maha	
B = [bij] be a Kxn Zero-one-markix	A.
by A @B is the man matrix	* : -= }
By H (3) B 13 the Mxn matrix	
Cij = (ai, 1bi) v (ai, 1bi) v (aie	Ab _{kj})
Example	
4	
$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	
Find the boolean product of A and B	
-	
$A \circ B = \begin{cases} (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \\ (0 \wedge 1) \vee (1 \wedge 0) & (0 \wedge 1) \vee (1 \wedge 1) & (0 \wedge 0) \vee (1 \wedge 1) \\ (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (4 \wedge 0) \vee (0 \wedge 1) \end{cases}$	
$(1 \wedge 1) \vee (0 \wedge 0) \qquad (1 \wedge 1) \vee (0 \wedge 1) \qquad (4 \wedge 0) \vee (0 \wedge 1)$	
- [1 1 0]	
0 1 1	

De fva	
Let A be a Square notero-one mation, Le	1 x be
a positive integer. The v-th boolean pour	per of A
[7]	
	. 4
Thes	
We also define	1 200
A[b] to be In	
Fxamol	
Let A - [0 0 1] Find A Po	
1 1 0 0	x am Post-
integers n	
Soln	5
$A^{(2)} = A \circ A = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$	
[3 1]	
[3] [2]	
$A^{(3)} = A^{(3)} \circ A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	
441 - [3] [1 12	
+T'= A O A = 1	ģ.
£3-11, 13, 1	
[r] [r] ,	
- IT - To all position	e Shlegers N