

Він знає, як працюють інерційні датчики. А ти?

Навіщо нам це треба?

Визначення орієнтації пристрою в просторі:

- Локалізація дрону
- Орієнтація літаків
- Написання мобільних застосунків, що керуються рухами телефону
- Шоломи віртуальної реальності
- Визначення положення частин тіла
- Доповнена реальність

Визначення орієнтації тіла в просторі

Щоб визначити орієнтацію тіла в просторі потрібні два чинники:

- Frame of reference
- Rotation representation

Кути roll, pitch, yaw визначають поворот, який потрібно здійснити осям XYZ щоб перейти у вісі ENU.

Інтегрування прискорення відновити швидкість і отримати інформацію про відносне розташування.

Способи подання повороту

$$\vec{r} = \begin{bmatrix} x \\ y \end{bmatrix}, \ \vec{r}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\vec{r} = \hat{A}\vec{r}'$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\begin{cases} x = a_{11}x' + a_{12}y' \\ y = a_{21}x' + a_{22}y' \end{cases}$$

$$\begin{cases} a_{11} = \cos \varphi \\ a_{12} = -\sin \varphi \\ a_{21} = \sin \varphi \\ a_{22} = \cos \varphi \end{cases}$$

$$\begin{cases} x = a_{11}x' + a_{12}y' \\ y = a_{21}x' + a_{22}y' \end{cases} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\det \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} = \cos^2 \varphi + \sin^2 \varphi = 1$$

$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

roll

$$roll = atan\left(rac{a_Y}{a_Z}
ight),$$

pitch

$$pitch = atan\left(rac{-a_X}{\sqrt{a_Y^2+a_Z^2}}
ight),$$

yaw
$$yaw = atan2\left(rac{m_E}{m_N}
ight),$$

Кватерніони

Для розробника - це перш за все інструмент, що описує дію - поворот навколо осі на заданий кут:

```
[w, x, y, z] = [\cos(alpha/2), \sin(alpha/2)*vx, \sin(alpha/2)*vy, \sin(alpha/2)*vz]
```

де v - вісь, виражена напрямним вектором;

w - компонента, що описує поворот (косинус половини кута).

Наприклад, кватерніон повороту вздовж осі X на 90 градусів має наступні значення своїх компонент: w = 0,7071; x = 0,7071; y = 0; z = 0

Сенсори. Принципи роботи.

Акселерометр - вимірює прискорення.

За допомогою нього можна визначити кут повороту тіла, що не переміщується у просторі.

Mass on spring

У наших смартфонах всередині є пружинні акселерометри?

 В електронному акселерометрі груз замінений на інертну масу, всередині маленького чіпа.

Акселерометр має межі вимірювання ±2g, ±4g, ±8g і ±16g

- На будь-яке тіло діє сила тяжіння. У стані спокою сила
- тяжіння складає 1g=9, 81 м/с^2. При вільному падінні вона дорівнює нулю.

Чим більше прискорення, тим більші покази акселерометра. Якщо система не буде прискорюватися занадто сильно, немає сенсу ставити дуже широкі межі.

Гіроскоп - вимірює кутові швидкості по 3 осям.

Має різні **межі вимірювання**: 250, 500, 1000, 2000 градусів за секунду. Якщо система є повільною, то не варто виставляти максимальні межі. Правильно обрані межі впливають на точність вимірів.

Магнітометр

- вимірює вектор магнітної індукції.

При повороті магнітометра у магнітному полі Землі показання на його трьох осях змінюються. Використовуючи ці дані, можна обчислити і з'ясувати напрямок магнітометра відносно напрямку на магнітний полюс. Зчитавши показання з осей X і Y, можна обчислити кут, який і буде кутом відхилення від напрямку на північ.

НЛО прилетіло і опублікувало цей напис тут.

Датчик нерухомий, але

Покази гіроскопа != 0 рад/с

Покази акселерометра != 1g (9, 81 м/с^2)

Комбінація сенсорів

Магнетометер + Акселерометр

- Дозволяють утворити систему координат (frame of reference)
- East векторний добуток Down та показників магнітного поля (magnetic field)
- East * Down = North

Чому не використовувати поодинці?

• Акселерометр:

- невизначеність щодо кута повороту навколо осі, паралельної напрямку прискорення вільного падіння.
- Дуже складно відрізнити силу тяжіння від фізичного прискорення датчика.
- Навіть при повороті датчика, будуть показуватись зміни в прискоренні, якщо акселерометер не в центрі об'єкту, що повертається, а отже й для статично положення використання не завжди пригоднє

Похибки магнетометра

AMR measurements (μTesla)
 Earth's magnetic field reference

- Hard iron sources постійні відхилення (спричинені чимось, що генерує своє власне магнітне поле)
- Soft iron sources зовнішні чинники, що спотворюють магнітне поле.
- Corrected x = (x b) * A, де b hard iron bias (3, 1) vector; A soft iron distortion (3 * 3) matrix

Використання лише гіроскопа

- Dead reckoning метод визначення поточного місцезнаходження рухомого об'єкта по вихідним початковим координатам.
- Покази гіроскопа мають "білий шум".
- Експоненційне зростання похибки внаслідок інтегрування. Процес інтегрування відіграє роль low-pass filter.
- Gyroscope drift
- Потрібно знати початкову орієнтацію, адже гіроскоп вимірює кутову швидкість відносно себе, а не якогось стороннього об'єкту

Inertial Measurement Unit

- Комбінація плюсів двох підходів
- Похибки уникаються фільтрами
 - Ініціалізувати положення (initialise attitude). Може бути здійснено вручну або визначене з початкових замірів акселерометра та магнетометра
 - Використання замірів магнітного поля та гравітації щоб скорегувати дрифт гіроскопа

Фільтри (Orientation filters)

Euler angles (°)	EKF	Madgwick	Mahony
Roll (static)	0.02	0.03	0.02
Pitch (static)	0.07	0.05	0.05
Yaw (static)	0.31	1.92	1.85
Roll (dynamic)	6.64	6.51	6.69
Pitch (dynamic)	2.75	3.34	2.85
Yaw (dynamic)	6.09	7.07	6.92

- Low-pass filter
- Kalman filter
- Madgwick filter
- Mahony filter

RMSE: root mean square error; EKF: Extended Kalman Filter.

Коли хтось каже, що можна обійтися без математики

Madgwick filter

- аналітичні обчислення і оптимізація методом градієнтного спуску;
- компенсація магнітних спотворень і компенсація зсуву нуля гіроскопа в режимі реального часу.
- По сути фильтр Махони воплощает хорошо известный тезис: знание двух неколлинеарных векторов в двух разных системах координат позволяет однозначно восстановить взаимную ориентацию этих систем.

Sensors: gy-89, gy-87 (Зручніший цей, адже до нього підходять бібліотеки від Adafruit)

Коротко повторимо про I2C

I2C послідовна шина даних для зв'язку інтегральних схем - ???

Способи передачі даних:

- Parallel
- Serial
 - Synchronous
 - 12C
 - SPI
 - Asynchronous
 - UART

Code time

Візуалізація

- 2D sensors' values plotting
 - Python Serial module + matplotlib/...
 - Arduino Serial Plotter
- 3D visualisation
 - Processing (з недавна також підтримує написання коду на python) - 3D візуалізація, що дуже легко робиться, адже в processing є готові графічні примітиви для цього
 - Python's PyGame
 - MatLab

Якщо цікаво дізнатись щось більше

- https://www.youtube.com/watch?v=C7JQ7Rpwn2k Чудова лекцію з використання IMU (Google Tech Talk)
- https://habr.com/ru/post/438060/ Пояснення принципів орієнтації в просторі простою мовою
- https://habr.com/ru/company/realtrac/blog/302650/Перечитати про мотивацію поєднання датчиків
- https://habr.com/ru/post/255005/ Rotation via
 Quaternion
- https://habr.com/ru/post/255661/ Madgwick filter