What is important about Theorem 33.6 is not so much the construction itself but the fact that it produces a tensor product with the universal mapping property with respect to multilinear maps. Indeed, Theorem 33.6 yields a canonical isomorphism

$$L(E_1 \otimes \cdots \otimes E_n, F) \cong L(E_1, \dots, E_n; F)$$

between the vector space of linear maps $L(E_1 \otimes \cdots \otimes E_n, F)$, and the vector space of multilinear maps $\mathcal{L}(E_1, \ldots, E_n; F)$, via the linear map $-\circ \varphi$ defined by

$$h \mapsto h \circ \varphi$$
,

where $h \in L(E_1 \otimes \cdots \otimes E_n, F)$. Indeed, $h \circ \varphi$ is clearly multilinear, and since by Theorem 33.6, for every multilinear map $f \in \mathcal{L}(E_1, \ldots, E_n; F)$, there is a unique linear map $f_{\otimes} \in L(E_1 \otimes \cdots \otimes E_n, F)$ such that $f = f_{\otimes} \circ \varphi$, the map $-\circ \varphi$ is bijective. As a matter of fact, its inverse is the map

$$f \mapsto f_{\otimes}$$
.

We record this fact as the following proposition.

Proposition 33.7. Given a tensor product $(E_1 \otimes \cdots \otimes E_n, \varphi)$, the linear map $h \mapsto h \circ \varphi$ is a canonical isomorphism

$$L(E_1 \otimes \cdots \otimes E_n, F) \cong L(E_1, \dots, E_n; F)$$

between the vector space of linear maps $L(E_1 \otimes \cdots \otimes E_n, F)$, and the vector space of multilinear maps $\mathcal{L}(E_1, \ldots, E_n; F)$.

Using the "Hom" notation, the above canonical isomorphism is written

$$\operatorname{Hom}(E_1 \otimes \cdots \otimes E_n, F) \cong \operatorname{Hom}(E_1, \dots, E_n; F).$$

Remarks:

(1) To be very precise, since the tensor product depends on the field K, we should subscript the symbol \otimes with K and write

$$E_1 \otimes_K \cdots \otimes_K E_n$$
.

However, we often omit the subscript K unless confusion may arise.

(2) For F = K, the base field, Proposition 33.7 yields a canonical isomorphism between the vector space $L(E_1 \otimes \cdots \otimes E_n, K)$, and the vector space of multilinear forms $\mathcal{L}(E_1, \ldots, E_n; K)$. However, $L(E_1 \otimes \cdots \otimes E_n, K)$ is the dual space $(E_1 \otimes \cdots \otimes E_n)^*$, and thus the vector space of multilinear forms $\mathcal{L}(E_1, \ldots, E_n; K)$ is canonically isomorphic to $(E_1 \otimes \cdots \otimes E_n)^*$.