Xilinx Zynq FPGA, TI DSP, MCU기반의 프로그래밍 및 회로 설계 전문가 과정

강사 - Innov (이상훈) gcccompil3r@gmail.com 학생 - 이유성 dbtjd1102@naver.com

hetPWM 프로젝트 생성

하고 file ->generate code

후

헤더 파일 추가

#include "HL_system.h" #include "HL_het.h"

코드 추가

hetInit();

분석해보면

HET pin[0 \sim 31] =>logic low

Pin HET[10] 을 output으로 설정

핀이 모두 push/pull mode로 configured되어있다

23.4.24 N2HET Pull Disable Register (HETPULDIS)

이전 다음

Values in this register enable or disable the pull-up/-down functionality of the pins. N2HET1: offset = FFF7 B864h; N2HET2: offset = FFF7 B964h

Figure 23-79. N2HET Pull Disable Register (HETPULDIS)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; n is device dependent, see device specific data sheet

Table 23-40. N2HET Pull Disable Register (HETPULDIS) Field Descriptions

Bit	Field	Value	Description
31-0	HETPULDIS[n]		Pull disable for N2HET pins
		0	The pull functionality is enabled on pin HET[n].
		1	The pull functionality is disabled on pin HET[n].

NOTE: See device data sheet for which pins provide programmable pullups/pulldowns.

Table 23-9 shows how the register bits of HETDIR, HETPULDIS, and HETPSL are affecting the N2HET pins.

HET pin0~31의 풀기능 사용가능.

23.4.25 N2HET Pull Select Register (HETPSL)

Values in this register select the pull-up or pull-down functionality of the pins. N2HET1: offset = FFF7 B868h; N2HET2: offset = FFF7 B968h

Figure 23-80. N2HET Pull Select Register (HETPSL)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23-41. N2HET Pull Select Register (HETPSL) Field Descriptions

Bit	Field Value Description				
31-0	HETPSL[n]		Pull select for NHET pins		
	111111111111111111111111111111111111111	0	The pull down functionality is enabled if corresponding bit in HETPULDIS is 0.		
		1	The pull up functionality is enabled if corresponding bit in HETPULDIS is 0.		

NOTE: See device data sheet for which pins provide programmable pullups/pulldowns.

Table 23-9 shows how the register bits of HETDIR, HETPULDIS and HETPSL are affecting the N2HET pins.

The information of this register is also used to define the pin states after a parity error:

After a parity error all N2HET pins, which are

- 1. Defined as output pins in the HETDIR register
- 2. Not defined as open drain pins (with the HETPDR register)
- Selected with the HETPPR register, will remain outputs, but automatically change their levels in the following way:
 - · If the HETPSL register specifies 0 for the pin, it will switch to low level.
 - If the HETPSL register specifies 1 for the pin, it will switch to high level.

HETPULDIS 비트가 0인것처럼 동일하면 pull down기능 사용가능.

23.4.13 HR Share Control Register (HETHRSH) N2HET1: offset = FFF7 B834h; N2HET2: offset = FFF7 B934h hetHRSH Figure 23-68. HR Share Control Register (HETHRSH) 31 R-0 15 13 12 10 HR SHARE31/30 HR SHARE29/28 HR SHARE27/26 HR SHARE25/24 HR SHARE23/22 HR SHARE21/20 HR SHARE19/18 HR SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 6 0 HR SHARE9/8 HR SHARE1/0 HR HR HR HR HR HR SHARE15/14 SHARE11/10 SHARE5/4 SHARE3/2 SHARE13/12 SHARE7/6 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23-29. HR Share Control Register (HETHRSH) Field Descriptions

Bit	Field	Value 0	Description Reads return 0. Writes have no effect.		
31-16	Reserved				
15-0	HRSHARE		HR Share Bits		
	n+1 / n		Enables the share of the same pin for two HR structures. For example, if bit HRSHARE1/0 is set, the pin HET[0] will then be connected to both HR input structures 0 and 1.		
			Note: If HR share bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs.		
		0	HR Input of HET[n+1] and HET[n] are not shared.		
		1	HR Input of HET[n+1] and HET[n] are shared; both measure pin HET[n].		

핀이 2개씩 물려있다 31/30 29/28 27/26 25/24 핀이 HR을 공유한다

```
(void)memcpy((void *)hetRAM1, (const void *)het1PROGRAM, sizeof(het1PROGRAM)); //het1program চুজালুছছ... FF46->138p 963p //N2HET instruction is 96-bits হল্পতা 12H0ছ but aligned to a 128-bit boundary.... //FF46를 NHET1 RAM의 কএ N2HET RAM Banking 964p
```

het1PROGRAM에 있는 정보를 hetRAM1(FPGA칩)에 복사한다.

het1PROGRAM을 보면

het1PROGRAM PWM을 셋팅.

기계어(2진수나 16진수나) ->어셈어(명령어)로 찾아야함.

hetRAM1 의 주소 ff46 -> N2HET Instruction RAM (Program/Control/Data) ->

23.6.1 Instruction Summary

Table 23-73 presents a list of the instructions in the N2HET instruction set. The pages following describe each instruction in detail.

Table 23-73. Instruction Summary

Abbreviation	Instruction Name	Opcode	Sub-Opcode	Cycles
ACMP	Angle Compare	Ch	5	1
ACNT	Angle Count	9h	-	2
ADCNST	Add Constant	5h		2
ADC	Add with Carry and Shift	4h	C[25:23] = 011, C5 = 1	1-3
ADD	Add and Shift	4h	C[25:23] = 001, C5 = 1	1-3
ADM32	Add Move 32	4h	C[25:23] = 000, C5 = 1	1-2
AND	Bitwise AND and Shift	4h	C[25:23] = 010, C5 = 1	1-3
APCNT	Angle Period Count	Eh	-	1-2
BR	Branch	Dh	-	1
CNT	Count	6h	2	1-2
DADM64	Data Add Move 64	2h	-	2
DJZ	Decrement and Jump if -zero	Ah	P[7:6] = 10	1
ECMP	Equality Compare	0h	C[6:5] = 00	1
ECNT	Event Count	Ah	P[7:6] = 01	1
MCMP	Magnitude Compare	Oh	C[6] = 1	1
MOV32	Move 32	4h	C[5] = 0	1-2
MOV64	Move 64	1h		1
OR	Bitwise OR	4h	C[25:23] = 100, C5 = 1	1-3
PCNT	Period/Pulse Count	7h	-	1
PWCNT	Pulse Width Count	Ah	P[7:6] = 11	1
RADM64	Register Add Move 64	3h	-	1
RCNT	Ratio Count	Ah	P[7:6] = 00, P[0] = 1	3
SBB	Subtract with Borrow and Shift	4h	C[25:23] =110, C[5] = 1	1-3
SCMP	Sequence Compare	0h	C[6:5] = 01	1
SCNT	Step Count	Ah	P[7:6] = 00, P[0] = 0	3
SHFT	Shift	Fh	C[3] = 0	1
SUB	Subtract and Shift	4h	C[25:23] = 101, C[5] = 1	1-3
WCAP	Software Capture Word	Bh	76 20	1
WCAPE	Software Capture Word and Event Count	8h	25	1
XOR	Bitwise Exclusive-Or and Shift	4h	C[25:23] = 111, C[5] = 1	1-3

기계어 ->어셈어(명령어)로 찾아야함.

/* Program */
0x00002C80U, 0000 0000 0000 0001 0 110(9~12bit)=opcode 0 1000 0000 기계어 -> 어셈어(명령어)CNT

7,10,11,13bit on

/* Control */
0x01FFFFFU,
/* Data */
0xFFFFF80U,
/* Reserved */
0x0000000U

Instruction Set www.ti.com

23.6.3.8 CNT (Count)

Syntax CNT {

[brk={OFF | ON}]

[next={label | 9-bit unsigned integer}] [regnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}]

[angle_count={OFF | ON}] [reg={A | B | T | NONE}] [comp ={EQ | GE}] [irq={OFF | ON}] [control={OFF | ON}]

max={25-bit unsigned integer} [data={25-bit unsigned integer]

}

Figure 23-134. CNT Program Field (P31:P0)

Figure 23-135. CNT Control Field (C31:C0)

Figure 23-136. CNT Data Field (D31:D0)

Cycles One or two

One cycle (time mode), two cycles (angle mode)

Register modified

Selected register (A, B or T) Description

This instruction defines a virtual timer. The counter value stored in the data field [D31:7] is incremented unconditionally on each execution of the instruction when in time mode (angle count bit [P8] = 0). When the count reaches the maximum count specified in the control field, the counter is reset.

It takes one cycle in this mode.

In angle mode (angle count bit [P8] = 1), CNT needs data from the software angle generator (SWAG). When in angle count mode the angle increment

value will be 0 or 1. It takes two cycles in this mode.

next program address에 1값이 들어가서 다음 인덱스를 가르킴.

register 에 2의 값이 들어감.

Max Count 25bit 만큼 최대값 가능

Data 25bit 만큼 저장 가능