שעור *7* צירוף לינארי ופרישה לינארית

7.1 הגדרה של צרוף לינארי

הגדרה 7.1 צרוף לינארי

 $lpha_1,lpha_2,\ldots,lpha_n\in\mathbb{F}$ -ו אין ווקטוים של $V_1,v_2,\ldots,v_n\in V$ יהיו יהיו יהיו \mathbb{F} יהיו מעל שדה, \mathbb{F} יהיו מעל שדה, \mathbb{F} יהיו מעל שדה, \mathbb{F} יהיו מעל שדה, \mathbb{F} יהיו מעל שדה, מקלרים של

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

 $lpha_1,\ldots,lpha_n$ עם מקדמים ע $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n$ נקרא של הווקטורים של לינארי (צ"ל) של

דוגמה 7.1

$$\mathbf{v}_1 = egin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \;, \qquad \mathbf{v}_2 = egin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix} \;.$$
 $2\mathbf{v}_1 - 5\mathbf{v}_2 = egin{pmatrix} -8 \\ -19 \\ 8 \end{pmatrix}$. $\mathbf{v}_2 \;, \mathbf{v}_1 \;$ של אירוף לינארי של $\mathbf{v}_1 = \mathbf{v}_2 \;, \mathbf{v}_1 \;$ הוא צירוף לינארי של $\mathbf{v}_1 = \mathbf{v}_2 \;, \mathbf{v}_1 \;$ הוא צירוף לינארי הארי של $\mathbf{v}_2 = \mathbf{v}_1 \;, \mathbf{v}_2 \;, \mathbf{v}_3 \;$

דוגמה 7.2

האם ווקטור
$$\mathbf{v} = \begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix}$$
 הוא צירוף לינארי של הווקטורים

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

? אם כן, רשמו את הצירוף הלינארי.

$$\mathbf{v} = xu_1 + yu_2 + zu_3 \qquad \rightsquigarrow \qquad \begin{pmatrix} 0\\4\\4 \end{pmatrix} = x \begin{pmatrix} 1\\1\\2 \end{pmatrix} + y \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + z \begin{pmatrix} 0\\1\\2 \end{pmatrix} .$$

$$\begin{array}{rcl}
x + 2y & = 0 \\
x - y + z & = 4 \\
x + 2z & = 4
\end{array}$$

$$\begin{pmatrix}
1 & 2 & 0 & 0 \\
1 & -1 & 1 & 4 \\
1 & 0 & 2 & 4
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - R_1 \atop R_3 \to R_3 - R_1}$$

$$\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & -3 & 1 & 4 \\
0 & -2 & 2 & 4
\end{pmatrix}$$

$$\frac{R_2 \to R_2 + \frac{1}{3}R_3}{0 \quad 1 \quad 0 \quad -1} \qquad \frac{R_1 \to R_1 - 2R_2}{0 \quad 1 \quad 0 \quad -1} \qquad \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad \begin{matrix} R_1 \to R_1 - 2R_2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{matrix} \qquad , z = 1 , y = -1 , x = 2$$

$$v = 2u_1 - u_2 + u_3 .$$

דוגמה 7.3

האם ווקטור
$$\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$$
 הוא צירוף לינארי של הווקטורים

$$u_1 = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$

? אם כן, רשמו את הצירוף הלינארי.

$$v = xu_1 + yu_2 + zu_3 \qquad \leadsto \qquad \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} = x \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix} + y \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix} + z \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} .$$

$$x + 2y + z = 1$$

$$-5x - 4y - 3z = -2$$

$$7x - y + 2z = 5$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ -5 & -4 & -3 & -2 \\ 7 & -1 & 2 & 5 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 5R_1 \atop R_3 \to R_3 - 7R_1} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 6 & 2 & 3 \\ 0 & -15 & -5 & -2 \end{pmatrix}$$

 $.u_3\;,u_2\;,u_1$ אין פתרון ולכן v הוא לא צירוף לינארי של

דוגמה 7.4

בדקו אם ווקטור
$$\mathbf{v} = \begin{pmatrix} 0 \\ 4 \\ 7 \end{pmatrix}$$
 הוא צירוף לינארי של הווקטורים

$$u_1 = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1\\2\\4 \end{pmatrix}$

? אם כן, רשמו את הצירוף הלינארי.

פתרון:

$$\begin{pmatrix} -1 & 2 & 1 & 0 \\ 2 & 0 & 2 & 4 \\ 3 & 1 & 4 & 7 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} -1 & 2 & 1 & 0 \\ 0 & 4 & 4 & 4 \\ 0 & 7 & 7 & 7 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - \frac{7}{4}R_2} \left(\begin{array}{ccc|c} -1 & 2 & 1 & 0 \\ 0 & 4 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{array} \right) \to \left(\begin{array}{ccc|c} -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

 $.u_3$, u_2 , u_1 של לינארי אירוף לינארי על סכן פתרונות, לכן אירונות מערכת הוא אירונות, לכן אירונות

הפתרון הכללי:

$$(x, y, z) = (2 - z, 1 - z, z) , \qquad (z \in \mathbb{R}) .$$

נציב z=1 נציב

$$v = u_1 + 0 \cdot u_2 + u_3$$
.

דוגמה 7.5

בטאו את הפולינום $p(x) = -3 + 4x + x^2$ בטאו את בטאו

$$p_1(x) = 5 - 2x + x^2$$
, $p_2(x) = -3x + 2x^2$, $p_3(x) = 3 + x$.

פתרון:

$$-3 + 4x + x^{2} = \alpha_{1}(5 - 2x + x^{2}) + \alpha_{2}(-3x + 2x^{2}) + \alpha_{3}(3 + x)$$

השוויון אמור להתקיים לכל $x \in \mathbb{R}$ לכן

$$\begin{cases} 5\alpha_1 + 3\alpha_3 &= -3, \\ -2\alpha_1 - 3\alpha_2 + \alpha_3 &= 4, \\ \alpha_1 + 2\alpha_2 &= 1. \end{cases}$$

$$\begin{pmatrix}
5 & 0 & 3 & | & -3 \\
-2 & -3 & 1 & | & 4 \\
1 & 2 & 0 & | & 1
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_3}
\begin{pmatrix}
1 & 2 & 0 & | & 1 \\
-2 & -3 & 1 & | & 4 \\
5 & 0 & 3 & | & -3
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \frac{1}{13}R_3} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 4 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_3} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - 2R_2} \left(\begin{array}{ccc|c} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4 \end{array} \right)$$

$$.\alpha_3 = 4$$
 $.\alpha_2 = 2$ $.\alpha_1 = -3$

$$p(x) = -3p_1(x) + 2p_2(x) + 4p_3(x) .$$

דוגמה 7.6

רשמו מטריצה $D = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ המטריצות

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$.

$$\alpha_1 A + \alpha_2 B + \alpha_3 C = D$$

$$\alpha_{1} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{1} & \alpha_{1} + 2\alpha_{3} \\ \alpha_{1} + \alpha_{2} & \alpha_{2} - \alpha_{3} \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\begin{cases} \alpha_{1} & = 3 \\ \alpha_{2} + 2\alpha_{3} & = 1 \\ \alpha_{1} + \alpha_{2} & = 1 \\ \alpha_{2} - \alpha_{3} & = -1 \end{cases} \Rightarrow \alpha_{1} = 3, \alpha_{2} = -2, \alpha_{3} = -1.$$

ז"א

$$3A - 2B - C = D.$$

דוגמה 7.7

 $\cos x$ ו- $\sin x$ אירוף לינארי של $y=\sin(2x)$ קבעו אם הפונקציה

פתרון:

נניח שקיימים α_2,α_1 כך ש

$$\alpha_1 \sin x + \alpha_2 \cos x = \sin(2x) .$$

 $x \in \mathbb{R}$ השוויון אמור להתקיים לכל

נציב
$$lpha_2=0 \Leftarrow lpha_1 \cdot 0 + lpha_2 \cdot 1 = 0$$
 לכן אז נקבל $x=0$

$$\sin(2x) = \alpha_1 \sin x .$$

כלומר
$$\sin(\pi)=lpha_1\sin\left(rac{\pi}{2}
ight)$$
 נעת נציב $x=rac{\pi}{2}$ ונקבל

$$\alpha_1 = \sin \pi = 0 .$$

 $\sin 2x=0$ נציב את הערכים בצירוף לינארי המקורי $lpha_1\sin x+lpha_2\cos x=\sin(2x)$ ונקבל כי $lpha_1\sin x+lpha_2\cos x=\sin(2x)$ לכל $x\in\mathbb{R}$ טתירה.

לכן לא קיימים α_1 , כך ש

$$\alpha_1 \sin x + \alpha_2 \cos x = \sin(2x) .$$

7.2 פרישה לינארי

הגדרה 7.2 פרישה לינארי

נניח כי V מרחב ווקטורי מעל שדה, \mathbb{F} . יהיו שדה, יהיו מרחב ווקטורי מעל א

$$\{\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \dots \alpha_n\mathbf{v}_n | \alpha_1, \dots, \alpha_n \in \mathbb{F}\}$$

 v_1, v_2, \dots, v_n נקראת פרישה לינארית של

 $.\mathrm{span}(\mathrm{v}_1,\ldots,\mathrm{v}_n)$ הפרישה של ווקטורים מסומן ב

 v_1, v_2, \ldots, v_n של היינאריים הלינאריים כל אוסף כל אוסף אוסף מיינאריים איינארית זה מיינארית ז"ג

משפט 7.1 פרישה היא תת מרחב

, $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\in V$ ולכל מרחב ווקטורי ע מעל שדה V מעל מרחב לכל

$$span(v_1, \ldots, v_n)$$

הוכחה: נוכיח את הטענה ע"י להראות כי כל פרישה מקיימת את כל התנאים של תת מרחב.

$$ar{.0} \in \mathrm{span}(\mathrm{v}_1,\ldots,\mathrm{v}_n)$$
 צריך להוכיח כי

הרי

$$\bar{0} = 0 \cdot \mathbf{v}_1 + \ldots + 0 \cdot \mathbf{v}_n$$

 $ar{0} \in \mathrm{span}(\mathrm{v}_1,\dots,\mathrm{v}_n)$ לפיכך לפיכך מקדמים כולם מקדמים לינארי עם צירוף לינארי עם מקדמים כולם אפסים.

$$u_1+u_2\in \mathrm{span}(\mathtt{v}_1,\ldots,\mathtt{v}_n)$$
 נניח ניית $u_1,u_2\in \mathrm{span}(\mathtt{v}_1,\ldots,\mathtt{v}_n)$ נניח (2

י"א קיימים סקלרים כך ש: $u_1,u_2\in \mathrm{span}(\mathrm{v}_1,\ldots,\mathrm{v}_n)$

$$u_1 = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n , \qquad u_2 = t_1 \mathbf{v}_1 + \ldots + t_n \mathbf{v}_n .$$

מכאן

$$u_1 + u_2 = (k_1 + t_1)v_1 + \ldots + (k_n + t_n)v_n$$
,

$$.u_1+u_2\in \mathrm{span}(\mathbf{v}_1,\ldots,\mathbf{v}_n)$$
 א"ז

 $.tu\in {\sf span}({
m v}_1,\ldots,{
m v}_n)$ נניח $.t\in \mathbb{F}$, $u\in {\sf span}({
m v}_1,\ldots,{
m v}_n)$ נניח

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \quad \Rightarrow \quad tu = (tk_1)\mathbf{v}_1 + \ldots + (tk_n)\mathbf{v}_n \in \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$$
.

מש"ל.

דוגמה 7.8

בדקו אם ווקטור
$$\mathbf{R}^{2\times3}$$
 שייך לפרישה לינארית של $\mathbf{v}=\begin{pmatrix} -1&3&4\\0&-1&8 \end{pmatrix}$ בדקו אם ווקטור $\mathbf{v}=\begin{pmatrix} 2&1&4\\-1&0&3 \end{pmatrix}$, $u_2=\begin{pmatrix} -3&2&0\\1&-1&5 \end{pmatrix}$, $u_3=\begin{pmatrix} 1&4&8\\-1&-1&11 \end{pmatrix}$.

פתרון:

עם ורק אם קיימים סקלרים א $\mathbf{v} \in \mathrm{span}(u_1,u_2,u_3)$

$$k_1 u_1 + k_2 u_2 + k_3 u_3 = \mathbf{v}$$
.

לכן

$$k_1 \begin{pmatrix} 2 & 1 & 4 \\ -1 & 0 & 3 \end{pmatrix} + k_2 \begin{pmatrix} -3 & 2 & 0 \\ 1 & -1 & 5 \end{pmatrix} + k_3 \begin{pmatrix} 1 & 4 & 8 \\ -1 & -1 & 11 \end{pmatrix} = \begin{pmatrix} -1 & 3 & 4 \\ 0 & -1 & 8 \end{pmatrix} .$$

מקבלים מערכת משוואות:

$$\begin{cases}
2k_1 - 3k_2 + k_3 &= -1 \\
k_1 + 2k_2 + 4k_3 &= 3 \\
4k_1 + 8k_3 &= 4 \\
-k_1 + k_2 - k_3 &= 0 \\
3k_1 + 5k_2 + 11k_3 &= 8
\end{cases}$$

$$\begin{pmatrix} 2 & -3 & 1 & | & -1 \\ 1 & 2 & 4 & | & 3 \\ 4 & 0 & 8 & | & 4 \\ -1 & 1 & -1 & | & 0 \\ 3 & 5 & 11 & | & 8 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 4 & | & 3 \\ 2 & -3 & 1 & | & -1 \\ 4 & 0 & 8 & | & 4 \\ -1 & 1 & -1 & | & 0 \\ 3 & 5 & 11 & | & 8 \end{pmatrix}$$

פתרון כללי:

$$k_1 = 1 - 2k_3$$
, $k_2 = 1 - k_3$, $k_3 \in \mathbb{R}$.

נציב $k_1 = -1$, $k_2 = 0 \Leftarrow k_3 = 1$ נציב

$$\mathbf{v} = -u_1 + 0 \cdot u_2 + u_3 \ .$$

לכן

$$v \in span(u_1, u_2, u_3)$$
.

יש שתי דרכים להגדיר תת מרחב:

- ע"י פרישה לינארית (1
- 2) ע"י מערכת הומוגנית.

ניתן לעבור מדרך אחת לשניה.

דוגמה 7.9

נתונה מטריצה

$$A = \begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix}$$

. בצורת פרישה אינארית Nul(A) את

$$\begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

לכן למערכת ההומוגנית X=0 יש החומות. הפתרון הכללי:

$$\left. \begin{array}{ll} x_1 &= 2x_2 + x_4 - 3x_5 \\ x_3 &= -2x_4 + 2x_5 \end{array} \right\} \ x_2, x_4, x_5 \in \mathbb{R}$$

7"%

$$u = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} \in \text{Nul}(A)$$

 $\mathrm{Nul}(A)$ ב ווקטור של הכללית הכללית

$$u = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

קיבלנו צירוף ליניארי של ווקטורים

$$\mathbf{v}_{1} = \begin{pmatrix} 2\\1\\0\\0\\0 \end{pmatrix} , \qquad \mathbf{v}_{2} = \begin{pmatrix} 1\\0\\-2\\1\\0 \end{pmatrix} , \qquad \mathbf{v}_{3} = \begin{pmatrix} -3\\0\\2\\0\\1 \end{pmatrix} .$$

 $.Nul(A) = span(v_1, v_2, v_3)$ א"ז $.u \in span(v_1, v_2, v_3)$ לכן

דוגמה 7.10

נתונה מטריצה

$$u_1 = \begin{pmatrix} -1\\3\\2\\1 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1\\-2\\4\\5 \end{pmatrix}$, $u_3 = \begin{pmatrix} 3\\-5\\18\\21 \end{pmatrix}$

. באוסף של מערכת הומוגנית span (u_1,u_2,u_3) את הציגו את

פתרון:

עם אם אם אס אס אם אס אס אס אס אס יימים ער אס אס יימים א $\mathbf{v} \in \mathrm{span}(u_1,u_2,u_3)$ ווקטור ווקטור $k_1u_1+k_2u_2+k_3u_3=\mathbf{v}$.

ונפתור את המערכת המשוואות יסמן $\mathbf{v} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ ונפתור את המערכת המשוואות

$$\begin{pmatrix} -1 & 1 & 3 & x \\ 3 & -2 & -5 & y \\ 2 & 4 & 18 & z \\ 1 & 5 & 21 & w \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 3 & x \\ 0 & 1 & 4 & 3x + y \\ 0 & 0 & 0 & -16x - 6y + z \\ 0 & 0 & 0 & x + z - w \end{pmatrix}$$

למערכת יש פתרון כאשר

$$\begin{cases} -16x - 6y + z = 0 \\ x + z - w = 0 \end{cases}$$