Classification and Naive Bayes

Foundations of Data Analysis

February 1, 2023

Naive Bayes Classifier

Iris virginica

Iris versicolor

Iris setosa

:Example regions of petal.

:Example regions of sepal.

Classification

Say we want to automatically identify an iris species based on its petal and sepal length measurements.

This is a famous data set in machine learning / statistics, from Ronald Fisher in 1936!

A Classifier is a Decision Rule

x ='petal length', c ='species'

if
$$x < 2.5$$
: $c = \text{'setosa'}$

if
$$2.5 < x < 4.7$$
: $c = \text{'versicolor'}$

if
$$4.7 < x$$
: $c = \text{'virginica'}$

Classification Task

Training:

Learn a decision rule, based on training data, to predict a class C from features X.

Testing:

Use trained classifier to predict unknown class C^* from features of new testing data, X^* .

Important! Training and testing data should be completely separate!

Probabilistic Classifier

Features X and class C are random variables.

Learn a probability distribution from the training data: P(C|X)

Example:

An iris test point X^* might give something like this:

<i>C</i> *	setosa	versicolor	virginica
$P(C^* \mid X^*)$	0.80	0.15	0.05

Bayes' Rule for Classification

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

•P(X | C) Likelihood - learned from data

The probability of random observed data conditional on particular model parameters.

Likelihood Function

$$x =$$
'petal length', $c =$ 'species'

$$P(X \mid C)$$

if c = 'setosa', what is the probability to assign x to this class c ?

Bayes' Rule for Classification

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

- •P(X | C) Likelihood learned from data
- •P(C) Prior determined beforehand

Prior

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

- •P(X | C) Likelihood learned from data
- •P(C) Prior determined beforehand

Probability of one's beliefs about this object before evidences are taken into account.

Prior

Normal

Coronary artery blockage

Prior

Final with prior Final w/ prior

Bayes' Rule for Classification

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

- $\bullet P(X \mid C)$ Likelihood learned from data
- •P(C) Prior determined beforehand
- P(X) Evidence not needed for decision

The revised/updated probability of after considering new data. It is treated as a constant after giving a training data x.

Naive Bayes

Multidimensional features $X=(X_1,X_2,\cdots,X_d)$.

"Naive" Assumption:

Assume features X_i are independent, given the class C:

$$P(X | C) = P(X_1 | C) \times P(X_2 | C) \times \cdots \times P(X_d | C).$$

Gaussian or Normal Distribution

Probability density function (pdf):

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

Notation: $X \sim N(\mu, \sigma^2)$

Mean, μ , and variance, σ^2 , are parameters.

Gaussian μ Parameter

Shifts the pdf, shape stays the same

Gaussian σ Parameter

Stretches/shrinks the pdf, position stays the same

Gaussian or Normal Distribution

Density function of hippocampus volumes between healthy vs. dementia

Left Hippo Volume

Right Hippo Volume

Probabilities of Continuous Random Variables

Probability is given by area under the pdf:

$$P(a < x < b) = \int_{a}^{b} p(x)dx$$

Gaussian Area

Area under a Gaussian pdf [-1, 1]

Units of horizontal axis are σ

Gaussian Area

Area under a Gaussian pdf [-2, 2]

Units of horizontal axis are σ

Gaussian Area

Area under a Gaussian pdf [-3, 3]

Units of horizontal axis are σ

Gaussian Naive Bayes

Likelihood is Gaussian pdf:

$$p(x \mid C = c_k) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp(-\frac{(x - \mu_k)^2}{2\sigma_k^2})$$

The Gaussian depends on the class

$$C \in \{c_1, c_2, \dots, c_k\}$$

• Each class needs a mean, μ_k , and a variance, σ_k^2

How to "Train" a Gaussian Distribution

For each feature in your data, given training data:

$$(x_1, x_2, \dots, x_n)$$
 all from the k —th class

Set parameters:

Mean:
$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i$$
Variance: $\hat{\sigma}_k^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu}_k)^2$

Evidence Calculation

If we have K classes $C \in \{c_1, c_2, \dots, c_K\}$:

$$p(x) = \sum_{k=1}^{K} p(X | C = c_k) P(C = c_k)$$

Using Total Probability.

For the case that we have two classes:

$$p(x) = p(x \mid C = c_1)P(C = c_1) + p(x \mid C = c_2)P(C = c_2)$$

Choosing a Prior

How to set $P(C = c_k)$?

- Equally likely: $P(C = c_k) = 1/K$
- Frequency of classes in training data
- Derive from previous experiments or knowledge

Putting It All Together

- Pick a prior: $P(C = c_k)$
- Train your Gaussians on training data: μ_k, σ_k^2
- For each test data point, $x^* = (x_1^*, x_2^*, \dots, x_d^*)$, compute the likelihood:

$$p(x^* \mid C = c_k) = p(x_1^* \mid C = c_k) \times p(x_2^* \mid C = c_k) \times \cdots p(x_d^* \mid C = c_k)$$

Compute the class probabilities:

$$P(C = c_k | x^*) = \frac{p(x^* | C = c_k)P(C = c_k)}{p(x^*)}$$

Classify x^* as the class c_k with highest probability