BST Trim

(1 sec, 512mb)

จงเพิ่มบริการ void CP::map_bst::trim(int depth) ให้กับ CP::map_bst โดยฟังก์ชันนี้จะ "ลบ" ข้อมูลทุกตัวในต้นไม้ที่มีความลึก<u>มากกว่า depth</u> โดยกำหนดให้ปมรากมีความลึกเป็น 0 ปม ลูกของรากมีความลึกเป็น 1 ปมลูกของลูกของรากมีความลึกเป็น 2 และเป็นเช่นนี้ไปเรื่อย ๆ ถ้า depth มีค่าเป็น -1 หมายความว่าต้องลบทุกปมในต้นไม้

ข้อบังคับ

- ในโจทย์ข้อนี้ ห้ามทำการสร้างปมของ BST ใหม่ (ซึ่งหมายความว่าจะไม่สามารถใช้วิธีสร้าง ต้นไม้ใหม่แล้วค่อย ๆ เติมปมเข้าไปได้) แต่อย่างไรก็ตาม 60% ของ testcase จะอนุญาตให้ สร้างปมของ BST ใหม่ได้
- โจทย์ข้อนี้จะมีไฟล์โปรเจ็คของ Code::Blocks ให้ ซึ่งในไฟล์โปรเจ็คดังกล่าวจะมีไฟล์ map_bst.h, main.cpp และ student.h อยู่ ให้นิสิตเขียน code เพิ่มเติมลงในไฟล์ student.h เท่านั้น และการส่งไฟล์เข้าสู่ระบบ grader ให้ส่งเฉพาะไฟล์ student.h เท่านั้น
 - o ในไฟล์ student.h ดังกล่าวจะต้องไม่ทำการอ่านเขียนข้อมูลใด ๆ ไปยังหน้าจอหรือ คีย์บอร์ดหรือไฟล์ใด ๆ
- หากใช้ VS Code ให้ทำการ compile ที่ไฟล์ main.cpp
- ** main ที่ใช้จริงใน grader นั้นจะแตกต่างจาก main ที่ได้รับในไฟล์โปรเจ็กต์เริ่มต้นแต่จะ ทำการทดสอบในลักษณะเดียวกัน **

คำแนะนำ

ข้อนี้สามารถทำได้ง่าย ๆ โดยเขียนโปรแกรมแบบ Recursive และเพื่อความสะดวก ข้อนี้ได้ เตรียมโครงของฟังก์ชัน my_recur(node* n,int level,int tmp) เพื่อใช้ในการเขียน recursive ไว้ ให้ โดยฟังก์ชันนี้มีโครงอยู่ใน student.h แล้ว นิสิตสามารถเขียนและเรียกใช้งานฟังก์ชันนี้ได้เลย

คำอธิบายฟังก์ชัน main

main() จะอ่านข้อมูลมา 2 บรรทัด คือ

- บรรทัดแรกประกอบด้วยจำนวนเต็ม N และ K ซึ่งระบุจำนวนข้อมูลใน map และ ค่าความลึกที่ต้องการจะตัด
- บรรทัดที่สองประกอบด้วยจำนวนเต็ม N ตัวคือข้อมูลที่จะใส่เข้าไปใน CP::map_bst ตามลำดับ

หลังจากนั้น main จะเรียก trim(K) และ ทำการพิมพ์ข้อมูลทั้งหมดใน map ออกมาด้วย ฟังก์ชัน print()

ชุดข้อมูลทดสอบ

- 20% ต้นไม้มีความลึกไม่เกิน 2 และค่า K เป็น 0 หรือ 1 เท่านั้น สามารถสร้างปมใหม่ได้
- 40% สามารถสร้างปมใหม่ได้
- 40% ไม่มีเงื่อนไขอื่น ๆ

(--- มีตัวอย่างอยู่ในหน้าถัดไป ---)

ตัวอย่าง

ข้อมูลนำเข้า	ผลลัพธ์ของ m.print() หลังจากเรียก m.trim(K)
92	====== size = 5 =======
567891234	7:2
	6:1
	5:0
	2:6
	1:5
12 5	====== size = 9 =======
70 30 100 80 130 150 140	160:7
160 147 143 145 144	150:5
	147:8
	140:6
	130:4
	100:2
	80:3
	70:0
	30:1