

## Final Defense Presentation

## MS THESIS FINAL DEFENSE

## FOOD CALORIE MEASUREMENT USING EFFICIENT CLASSIFICATION AND DISTANCE MEASUREMENT TECHNIQUES



BY
NAUMAN ZAFAR
NUST 2014 64096 MSEECS 61314F

#### **PANEL OF ADJUDICATORS**



#### **SUPERVISOR**

Engr. Dr. Omar Arif



**Assistant Professor** 

#### **COMMITTEE MEMBERS**

Dr. Anis ur Rahman



**Assistant Professor** 

Engr. Dr. Faisal Shafait



**Associate Professor** 

Dr. Muneeb Ullah



**Assistant Professor** 

#### INTRODUCTION



- Nutrients give our bodies instructions about how to function.
- If we don't get the right instructions, our metabolic processes suffer and our health declines.
- "Food acts as medicine--to maintain, prevent, and treat disease"\*
- In short, what we eat is central to our health.

#### **INTRODUCTION**



## 60 nations\*

Across the world

## **30,000+ consumers**

Concerned about healthier eating habits

## 41% Generation Z (1990-present)

Willing to pay for healthier products

#### **SYSTEM DESIGN GOALS**





"Food Item Recognition and captioning along with Ingredients and Attributes estimation"

#### **MOTIVATION**



- Non or Semi-automatic system
- Cost Effective and Approachable Solution
- Limited Dataset
- Assumptions
- Time Efficiency
- Accurate Gauging of Real Object

#### **KEY CONTRIBUTIONS**



- Transfer Learning Based Food Item Recognition along with enhanced Captioning technique
- Extraction of Food Attributes and Ingredients to familiarize user with Food Content
- Introduction of a Food Dataset





- Ingestion conscious people can get info about their intake using food image taken from mobile
- BUT HOW?
  - How we know about food image class?
    - Transfer learning based food recognition
  - How to know about food content?
    - Info extraction from text (NLP)
- Text scattered on web related to food items can be beneficial if processed
- BUT HOW?
  - Utilizing Word2Vec



- More on awareness to diet conscious people
  - Captioning
    - Neural image captioner
    - Not trained on specific food dataset
    - Result: wrong captions for food images
  - We propose Caption Correction







# TRANSFER LEARNING BASED FOOD RECOGNITION AND CAPTIONING TECHNIQUE ENHANCEMENT



## FOOD IMAGE RECOGNITION MODULE

#### PRE- TRAINED MODEL ACCURACY IMPROVEMENT



- Food Images Dataset
  - Popular Food Datasets
    - PFID, FOOD-101, TADA
  - In order to get feedback from our regional community,
    - We constitute classes of our regional food.
    - 35% Classes from FOOD-101.
    - Rest of 65% classes is taken from our regional food.
    - 500 to 1000 images in each category.
  - Continental and Asian dishes



#### PRE- TRAINED MODEL ACCURACY IMPROVEMENT



- Instead of building model from scratch, we took advantage of a pre-trained model
  - Pre-trained model requires moderate computation with less training time
- Done experiments on different pre-trained models
  - Inception v4 trained with our dataset showed maximum accuracy of 91.73%.
- How finetuned?
  - Pre-trained weights are loaded
  - FC and Last two conv blocks are trained
- Other improvement approaches
  - Data Augmentation
  - Batch normalization
  - Regularization



### FOOD IMAGE CAPTION CORRECTION MODULE

#### INTRODUCTION



#### Show and Tell: A Neural Image Caption Generator\*

 A generative model which utilizes deep recurrent architecture and used to produce natural sentences describing a picture



- Wrong image captions due to lack food specific classes in dataset
- How to solve?
  - Caption Correction Technique

#### WHAT WE PROPOSED: CAPTION CORRECTION TECHNIQUE





#### PRE-TRAINING PHASE: TEXTUAL DATASET PREPARATION



- Textual Data Congregation
  - For the collection of data, we used two different frameworks. i.e. Common Crawl & Scrapy
  - Captions are generated for all the images containing in our dataset using neural image captioner and all the generated captions are saved in textual form
- Textual Data Cleansing and Pre-Processing
  - HTML to text and removal of Java script tags and programming language code using beautiful soup
  - For Stop words removal, Lemmatization and Stemming, we utilized libraries from NLTK.

#### TRAINING PHASE: TEXTUAL MODEL TRAINING



#### Word2Vec Model Training

- Semantic learning framework and uses a shallow neural network
- Word2Vec takes the whole text corpus as an input, creates a vocabulary of words used in that text
- Overall computes vector space embedding of given text data.
- Used CBOW approach
- After experimenting with different configurations, the most relevant results are achieved using the values described in Table

| NAME            | VECTOR<br>DIMENSIONALITY |    | SAMPLE | NEGATIVE | ITERATION |
|-----------------|--------------------------|----|--------|----------|-----------|
| VECTOR<br>MODEL | 300                      | 12 | 1e-4   | 25       | 25        |

#### **EXAMPLE DEPICTING DIFFERENT WORKFLOW PHASES**







# EXTRACTION OF FOOD ATTRIBUTES AND INGREDIENTS

#### WHAT WE PROPOSED





#### PRE-TRAINING PHASE: ATTRIBUTE AND INGREDIENTS LIST PREPARATION



- A static list of attributes and ingredients
- Attributes → Food Traits
- Ingredients → Elements present in food item
- Encompassed all possible and relevant attributes in the list

#### **TRAINING PHASE: TEXTUAL MODEL TRAINING**



#### Word2Vec

• Used CBOW approach

| NAME            | VECTOR<br>DIMENSIONALITY | WINDOW | SAMPLE | NEGATIVE | ITERATION |
|-----------------|--------------------------|--------|--------|----------|-----------|
| VECTOR<br>MODEL | 200                      | 8      | 1e-4   | 25       | 15        |

#### **WORK FLOW OF ATTRIBUTE AND INGREDIENTS EXTRACTION**



- Ingredients
  - Highest frequency
  - Sample size is large
  - Most accurate
- Nutrition values
  - Sparse In the text
  - Characteristics occur very infrequently
  - Less Accurate





## RESULTS AND EVALUATION

#### INCEPTION V4 TOP-1 MOST VS LEAST ACCURATE CLASSES COMPARISON





#### **CAPTION CORRECTION MODEL RESULTS**





Predicted Label: Tea Similarity Score: {food': '0.279','bowl': '0.246','sit': '0.133'} NIC: a bowl of food sitting on a table Novel: a bowl of tea sitting on a



Predicted Label: Prawns Similarity Score: {'sheep': '0. 257', 'white': '0. 126', 'black: '0. 083'} NIC: a close up of a white and black sheep Novel: a close up of a white and black prawns



Predicted Label: Prawns Similarity Score: {'broccoli': '0. 482', 'food': '0.325', 'plate': '0.196'} NIC: a close up of a plate of food with broccoli Novel: a close up of a plate of food with prawns



Predicted Label: Guava Similarity Score: {banana': '0.527','hold': '0.395', 'person': '0.078'} NIC: a person holding a banana in their hand Novel: a person holding a guava in their hand



Predicted Label: Cheese Similarity Score: {'food': '0.279','bowl': '0.246','sit': '0.133'} NIC: a bowl of food with a spoon in it Novel: a bowl of cheese with a spoon in it



Predicted Label: Cucumbers Similarity Score: {'sandwich': '0.280', 'top': '0.060', 'sit': '0.052'} NIC: a cut in half sandwich sitting on top of a table Novel: a cut in half cucumbers sitting on top of a table



Predicted Label: Tea Similarity Score: ('wine': '0.355', 'glass': '0.191', 'sit': '0.133') NIC: a glass of wine sitting on top of a table Novel: a glass of tea sitting on top of a table



Predicted Label: Cucumbers Similarity Score: {'carrot': '0.343', 'wooden': '0.167, 'pile': '0.086'} NIC: a pile of carrots sitting on top of a wooden table Novel: a pile of cucumbers sitting on top of a wooden table

#### **CAPTION CORRECTION MODEL RESULTS**





Actual Label: Avocado
Predicted Label: Bitter\_gourd
Similarity Score:
{apple: '0.126', 'top': '0.110', 'pile': '0.103'}
NIC: a pile of apples sitting on top of a table
Novel: a pile of bitter\_gourd
sitting on top of a table



Actual Label: Falooda Predicted Label: Spaghetti Similarity Score: {'glass': '0.329', 'vase': '0.307', 'flower': '0.290'} Nic: a glass vase with a flower in it Novel: a spaghetti vase with a flower in it



Actual Label: Kheer
Predicted Label: Haleem
Similarity Score:
{cake: '0.442', 'birthday': '0.332', 'candle': '0.226'}
NIC: a birthday cake with a candle on it
Novel: a birthday haleem with a candle on it



Actual Label: Zarda Predicted Label: Fried\_rice Similarity Score: ('food': '0.254', 'white': '0.092', 'plate': '0.031'} NIC: a white plate topped with a piece of food Novel: a white plate topped with a piece of fried\_rice

#### **CONTENT EXTRACTION RESULT ON BURGER IMAGE**





| Attributes |      | Ingredients |      | Nutrition   |      |
|------------|------|-------------|------|-------------|------|
| Grill      | 1    | Beef        | 1    | Fat         | 1    |
| Spicy      | 0.75 | Cheese      | 0.9  | Sodium      | 0.55 |
| Juicy      | 0.64 | Lettuce     | 0.8  | Protein     | 0.44 |
| Fry        | 0.54 | Tomato      | 0.67 | Cholesterol | 0.24 |
| Tasty      | 0.53 | Potato      | 0.58 | Carbs       | 0.7  |
| Healthy    | 0.33 | Soya        | 0.53 | Zinc        | 0.3  |
|            |      | Egg         | 0.52 | Manganese   | 0.15 |
|            |      | Onion       | 0.50 |             |      |

#### **CONTENT EXTRACTION RESULT ON BIRYANI IMAGE**







#### **CONCLUSION**



- Curiosity is found among people to measure their heaviness and healthy eating in order to avoid over weightiness
- So we developed a system which can aware user about his/her daily intake
- We have done critical analysis of recent studies on accurate calorie estimation
- We successfully utilized transfer learning for food item recognition model, where it can predict food items with high accuracy
- Accurate and cognitive description of food image to assist targeted audience about what they eat
- Our proposed system can help
  - nutritionist for physical and medical treatment of overweight persons
  - normal people can also get the benefit of this system



#### **FUTURE WORK**



- The results can be enhanced by:
  - Using even more large text corpus.
  - Increasing number of attributes.
  - Cross validation.
  - Tuning Word2Vec parameters.



#### **PUBLICATIONS** (submitted)



- 1. O. Arif, H. Afzal, R. Yunus, H. Noor, S. Tazeen, N. Zafar, M. Faisal, R. Nawaz, "Real Time Estimation of Nutritional Value of Food through Attribute Estimation Using Deep Learning and Vector Embedding", *Proceedings of the International Journal of Wireless Communications and Mobile Computing*.
- 2. M. Muhammad Ali Baig, M. Ihtisham Shah, M. Abdullah Wajahat, N. Zafar, O. Arif, "Image Caption Generator with Novel Object Injection", Proceedings of IEEE Transactions on Instrumentation & Measurement.
- 3. N. Zafar, "Food Item Recognition and Calorie Measurement Techniques: A Review", Proceedings of the Sukkur IBA Journal of Computing and Mathematical Sciences.



# **THANK YOU**



**ANY QUESTIONS** 



# **END**