2D DTFT

For 2D signals, DTFT Analysis and Synthesis Relations are,

(S)
$$x(n_1, n_2) = \left(\frac{1}{2\pi}\right)^2 \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} X(\omega_1, \omega_2) e^{j(\omega_1 n_1 + \omega_2 n_2)} d\omega_1 d\omega_2$$

(A)
$$X(\omega_1, \omega_2) = \sum_{n_1} \sum_{n_2} x(n_1, n_2) e^{-j(\omega_1 n_1 + \omega_2 n_2)}$$

(S) represents the function $x(n_1, n_2)$ as a linear combination of complex exponentials $\exp\left(-j\left(\omega_1\,n_1+\omega_2\,n_2\right)\right)$ with weights $(4\pi^2)^{-1}\,X(\omega_1,\omega_2)\,d\omega_1\,d\omega_2.$

$$\exp\left(j\,\omega\,\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/8 \quad \theta = 0$$

$$\exp\left(j\omega\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/8 \quad \theta = \pi/6$$

$$\exp\left(j\omega\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/8 \quad \theta = 2\pi/6$$

$$\exp\left(j\,\omega\,\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/8 \quad \theta = 3\pi/6$$

Rotating the Coordinate System

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\exp\left(j\,\omega\,\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/8 \quad \theta = 0$$

$$\exp\left(j\,\omega\,\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/16 \quad \theta = 0$$

$$\exp\left(j\omega\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/16 \quad \theta = \pi/6$$

$$\exp\left(j\,\omega\,\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/16 \quad \theta = 2\pi/6$$

$$\exp\left(j\,\omega\,\left(\cos\theta\,x + \sin\theta\,y\right)\right)$$
$$\omega = \pi/16 \quad \theta = 3\pi/6$$

Sampling – 1D

Suppose we know f(t) only for $t \in \{n T\}_{n \in \mathbb{Z}}$.

 Q_1 : Under what conditions can we reconstruct f(t)?

 Q_2 : How can we reconstruct f(t)?

Sampling – 2D

Suppose we know $f(t_1,t_2)$ only the points marked by red dots.

 Q_1 : Under what conditions can we reconstruct $f(t_1,t_2)$?

 Q_2 : How can we reconstruct $f(t_1, t_2)$?

Rectangular Sampling Lattice

$$\{n_1 T_1, n_2 T_2\}_{n_1, n_2 \in \mathbb{Z}} = \left\{ \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \right\}_{n_1, n_2 \in \mathbb{Z}}$$

Rectangular Sampling Lattice

$$\{n_1 T_1, n_2 T_2\}_{n_1, n_2 \in \mathbb{Z}} = \left\{ \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \right\}_{n_1, n_2 \in \mathbb{Z}}$$

General Sampling Lattice

$$\{n_1 \mathbf{v_1} + n_2 \mathbf{v_2}\}_{n_1, n_2 \in \mathbb{Z}} = \left\{ \underbrace{\begin{bmatrix} \mathbf{v_1} \mathbf{v_2} \end{bmatrix}}_{V} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \right\}_{n_1, n_2 \in \mathbb{Z}}$$

Sampling Density

Sampling Density = Number of Samples per Unit Area

Sampling Density

Sampling Density = Number of Samples per Unit Area

$$\rho = \lim_{R \to \infty} \frac{\text{Number of parallelograms}}{\text{Area of Disk}} \propto \frac{1}{|\det(V)|}$$

Rectangular vs. Hexagonal Sampling

Hexagonal Sampling:

$$V = c \begin{bmatrix} 1 & \sqrt{3}/2 \\ 0 & 1/2 \end{bmatrix}$$

For a function with frequency support restricted to a disk,

 $ho_{\min}(\text{Rectangular Sampling}) \approx 1.15 \,
ho_{\min}(\text{Hexagonal Sampling})$

Irregular Sampling

Irregular sampling arises in biomedical imaging problems like MRI, CT, diffraction tomography etc.

Magnitude and Phase

Fourier Transform = Magnitude \times $e^{j \text{ Phase}}$

$$X(\omega_1, \omega_2) = |X(\omega_1, \omega_2)| \exp(j \angle X(\omega_1, \omega_2))$$

Typical Fourier Transform Magnitude of Natural Images

Dominant lowpass behavior...

Texture

Fourier Transform of a Box / Line

Fourier Transform of a Box / Line

Magnitude vs. Phase

Magnitude vs. Phase

 $X(\omega_1,\omega_2)$

 $Y(\omega_1, \omega_2)$ $|X| \exp(j \angle Y)$

Magnitude vs. Phase

 $X(\omega_1,\omega_2)$

 $Y(\omega_1, \omega_2)$ $|Y| \exp(j \angle X)$

Convolution

$$h(n_1, n_2) * *x(n_1, n_2) = \sum_{k_1} \sum_{k_2} x(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

**

Convolution - Step 1

Flip the kernel in both directions.

Convolution – Step 2

Compute the inner product of the flipped mask with the image.

Convolution - Step 2

Shift the mask and repeat.

$$\{h * *x\}(m+1, l)$$

Convolution - Step 2

Shift the mask and repeat.

Convolution – Some Special Cases

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Convolution – Some Special Cases

Convolution – Some Special Cases

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

_ 7

1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49

= 7

	1/49	1/49	1/49	1/49	1/49	1/49	1/49
l	1/49	1/49	1/49	1/49	1/49	1/49	1/49
$\delta(n_1,n_2)$ –	1/49	1/49	1/49	1/49	1/49	1/49	1/49
(1, 2)	1/49	1/49	1/49	1/49	1/49	1/49	1/49
	1/49	1/49	1/49	1/49	1/49	1/49	1/49
	1/49	1/49	1/49	1/49	1/49	1/49	1/49
	1/49	1/49	1/49	1/49	1/49	1/49	1/49

— 7

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Convolution Theorem

Convolution in the time domain corresponds to multiplication in the frequency domain.

$$y(n_1, n_2) = h(n_1, n_2) * * x(n_1, n_2)$$

$$\iff$$

$$Y(\omega_1, \omega_2) = H(\omega_1, \omega_2) X(\omega_1, \omega_2)$$

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49

			1
1	0	-1	
1	0	-1	\implies
1	0	-1	

			1
1	1	1	
0	0	0	\implies
-1	-1	-1	

