# Review Fuzzy Sets

### **Fuzzy Sets Operators**

#### Zadeh

- -c(a) = 1-a
- $-i(a,b) = \min\{a,b\}$
- $u(a,b) = \max\{a,b\}$

#### Lukasiewicz

- -c(a) = 1-a
- $-i(a,b) = max{a+b-1,0}$
- $-u(a,b) = min\{a+b,1\}$

|     | Properties                                            | Crisp sets | Zadeh   | Lukasiewicz |
|-----|-------------------------------------------------------|------------|---------|-------------|
| (1) | Idempotence laws                                      | Valid      | Valid   | Invalid     |
| (2) | $A \cup \bar{A} = X$ and $A \cap \bar{A} = \emptyset$ | Valid      | Invalid | Valid       |
| (3) | Distributivity laws                                   | Valid      | Valid   | Invalid     |
| (4) | De Morgan laws                                        | valid      | Valid   | Valid       |

 The idempotence properties (1) are only satisfied by Zadeh operators.

 Any intersection and union satisfying De Morgan properties (4) are called dual with respect to the complement.

- The dual of an intersection operator is a union operator.
- The dual of a union operator is an intersection operator.

- Any intersection and union defined on nondegenerate fuzzy sets that satisfy properties (2) of excluded middle and contradiction do not satisfy properties (3) of distributivity.
- Any intersection and union that satisfy properties (2) and (3) are defined on degenerate fuzzy sets (i.e. crisp values).

### **Fuzzy Partition**

- If C is a fuzzy set, then  $P = \{A_1, A_2, ..., A_n\}$  is a fuzzy partition of C if
  - $-C = A_1 \cup A_2 \cup \cdots \cup A_n$
  - $-A_i \cap A_j = \emptyset$  for any i and j distinct
- The following statement is true if and only if the operators are Lukasievicz:
  - P is a fuzzy partition on C if and only if

$$A_1(x) + A_2(x) + \dots + A_n(x) = C(x), \forall x \in X$$

#### Part 5.

### **Fuzzy Relations**

#### Relations

Relations: A representation of association, interaction, or connection between elements of sets.

A crisp relation on two sets:

$$R: A \times B \rightarrow \{0,1\}$$

A crisp relation on three sets:

$$R: A \times B \times C \rightarrow \{0,1\}$$

A crisp relation on a set itself:

$$R: A \times A \rightarrow \{0,1\}$$

#### **Example of Relations**

 $R: A \times A \rightarrow \{0,1\}$ 

R = "There is direct flight"

|           | Taipei | Kaohsiung | Hsinchu | Hualian |
|-----------|--------|-----------|---------|---------|
| Taipei    | 0      | 1         | 0       | 1       |
| Kaohsiung | 1      | 0         | 0       | 1       |
| Hsinchu   | 0      | 0         | 0       | 0       |
| Hualian   | 1      | 1         | 0       | 0       |

#### **Example of Relations**

$$R: A \times B \times C \times D \rightarrow \{0,1\}$$

A: set of all students at the university

B: set of all courses at the university

C: set of all semesters

D: grades: {0,1,2,...,99,100}

Do you sense relational database?

#### **Tuples**

A tuple is a combination of one element from each set that forms the relation.

For example:

(Big John, Fall 1994, Fuzzy Set Theory, 80)

is a tuple in our last relation.

A crisp relation can be defined as a subset of the product set of all the "base" sets.

### **Fuzzy Relations**

How about a fuzzy subset of the product set? This defines a fuzzy relation.

A fuzzy relation on two sets:

$$R: A \times B \rightarrow [0,1]$$

A fuzzy relation on three sets:

$$R: A \times B \times C \rightarrow [0,1]$$

A fuzzy relation on a set itself:

$$R: A \times A \rightarrow [0,1]$$

#### **Example of Fuzzy Relations**

R:  $A \times B \times C \rightarrow [0,1]$  A: the four seasons B: { cold, hot } C: { wet, dry }

#### A relation:

| Tuples              | Membership |
|---------------------|------------|
| ⟨spring, cold, wet⟩ | 0.6        |
| (summer, cold, wet) | 0.1        |
| (winter, cold, dry) | 0.5        |
| ⟨fall, hot, wet⟩    | 0.4        |
|                     |            |
|                     |            |
|                     |            |

### **Example of Fuzzy Relations**

 $R: A \times A \rightarrow [0,1]$  A: students in this class

#### A relation:

The degree of whether two students are "good friends" ...

### **Projection**

This is the process of getting a relation

$$R: A \times B \rightarrow [0,1]$$

from a relation of more "base" sets

$$R: A \times B \times C \rightarrow [0,1]$$

This is like the "projection", say, from a 3-D space to a 2-D space

#### **Projection**

 ${\mathcal X}$ : the original family of base sets

y: a subset of x

For example,  $\mathcal{X} = \{A,B,C\}$  and  $\mathcal{Y} = \{A,B\}$ 

The projection  $(R \downarrow y)$  for a given tuple y in A×B is given by the maximum membership of all tuples x in A×B×C that contain y.

### **Example of Projection**

 $R: A \times B \times C \rightarrow [0,1]$ 

A: the four seasons

B: { cold, hot }

C: { wet, dry }

#### A relation:

|           | spring | summer | fall | winter |
|-----------|--------|--------|------|--------|
| cold, wet | 0.6    | 0.1    | 0.3  | 0.8    |
| cold, dry | 0.4    | 0.2    | 0.5  | 0.5    |
| hot, wet  | 0.5    | 0.6    | 0.4  | 0.1    |
| hot, dry  | 0.3    | 0.8    | 0.6  | 0.1    |

# Projection on A×B:

|      | spring | summer | fall | winter |
|------|--------|--------|------|--------|
| cold |        |        |      |        |
| hot  |        |        |      |        |

### **Cylindric Extension**

This is the process of getting a relation

$$R: A \times B \times C \rightarrow [0,1]$$

from a relation of less "base" sets

$$R: A \times B \rightarrow [0,1]$$

Since there is no information regarding the "additional" base set, all its should be considered equal.

### **Cylindric Extension**

- **y**: the original family of base sets
- ${oldsymbol{\mathcal{X}}}$ : the bigger family that contains  ${oldsymbol{\mathcal{Y}}}$  and other sets

For example,  $\mathcal{Y} = \{A,B\}$  and  $\mathcal{X} = \{A,B,C\}$ 

The cylindric extension  $(R^{\uparrow} \mathcal{X} - \mathcal{Y})$  for a given tuple  $\mathbf{x}$  in  $A \times B \times C$  is given by the membership of the  $\mathbf{y}$  in  $A \times B$  that is contained in  $\mathbf{x}$ .

### **Example of Cylindric Extension**

 $R: A \times B \rightarrow [0,1]$ 

A: the four seasons

B: { cold, hot }

C: { wet, dry }

#### A relation:

|      | spring | summer | fall | winter |
|------|--------|--------|------|--------|
| cold | 0.5    | 0.1    | 0.4  | 0.7    |
| hot  | 0.4    | 0.8    | 0.6  | 0.2    |

Cylindric Extension to A×B×C:

|           | spring | summer | fall | winter |
|-----------|--------|--------|------|--------|
| cold, wet |        |        |      |        |
| cold, dry |        |        |      |        |
| hot, wet  |        |        |      |        |
| hot, dry  |        |        |      |        |

### Cylindric Closure

This is the "intersection" of multiple cylindric extensions from different family of sets.

#### For example:

## A relation on A×B:

|      | spring | summer | fall | winter |
|------|--------|--------|------|--------|
| cold | 0.5    | 0.1    | 0.4  | 0.7    |
| hot  | 0.4    | 0.8    | 0.6  | 0.2    |

# A relation on A×C:

|     | spring | summer | fall | winter |
|-----|--------|--------|------|--------|
| wet | 0.7    | 0.3    | 0.2  | 0.5    |
| dry | 0.2    | 0.6    | 0.6  | 0.3    |

### **Example of Cylindric Closure**

(use "minimum" for intersection)

|           | spring | summer | fall | winter |
|-----------|--------|--------|------|--------|
| cold, wet |        |        |      |        |
| cold, dry |        |        |      |        |
| hot, wet  |        |        |      |        |
| hot, dry  |        |        |      |        |

### **Composition of Fuzzy Relations**

This is the process of getting a relation

$$R: A \times C \rightarrow [0,1]$$

from two other relations

$$R_1: A \times B \rightarrow [0,1]$$
 and  $R_2: B \times C \rightarrow [0,1]$ 

$$(R_1 \circ R_2)(\langle x, z \rangle) = \bigvee_{y \in B} [R_1(\langle x, y \rangle) \wedge R_2(\langle y, z \rangle)]$$

for all  $x \in A$  and  $z \in C$ 

This is called the min-max composition. It's common but not the only way.

#### **Example**

This is a possible application of fuzzy relations in approximate reasoning:

A: a set of patients

B: a set of symptons

C: a set of possible diagnoses

Input from tests, etc.:  $R_1: A \times B \rightarrow [0,1]$ 

Knowledge base:  $R_2: B \times C \rightarrow [0,1]$ 

We can then use  $(R_1 \circ R_2)$  to generate possible diagnoses for these patients.

Part 6.

**Fuzzy Logic** 

### **Binary Logic Functions**

$$f: \{0,1\}^N \to \{0,1\}$$

How many functions are there if N = 2?

#### **Multi-Valued Logic Functions**

f: 
$$\{0, 1/2, 1\}^N \rightarrow \{0, 1/2, 1\}$$

For example, when we need to represent "not sure".

Lukasiewice's definitions:

$$(a \text{ AND } b) = \min(a,b)$$

$$(a \text{ OR } b) = \max(a,b)$$

$$(\text{NOT } a) = 1 - a$$

$$(a \Rightarrow b) = \min(1, 1-a+b)$$

Finer divisions of truth values:

f: 
$$T^N \to T$$
,  $T = \{ 0, 1/n, 2/n, ..., (n-1)/n, 1 \}$ 

### **Fuzzy Propositions**

A basic proposition: P: V is A.

#### **Examples:**

"38 degrees is HOT"
"This afternoon is HOT"
"200cm is TALL"
"Big John is TALL"

#### **Linguistic Variables**



### Linguistic Hedges

Modifiers made to fuzzy variables Examples:

> HOT ⇒ VERY HOT WARM ⇒ MORE-OR-LESS WARM

#### Common methods:

"VERY": take the square

"MORE-OR-LESS": take the square root

### **Combining Propositions**

Conjunctive: P: (V is A) AND (W is B).

- Uses intersection operator
- Forms a fuzzy relation

Disjunctive: P: (V is A) OR (W is B).

- Uses union operator
- Forms a fuzzy relation

### **Implicative Propositions**

 $P: (V \text{ is } A) \Rightarrow (W \text{ is } B).$ 

Uses fuzzy implication operator

#### Binary implication operators:

- (NOT a) OR b
- (NOT a) OR (a AND b)
- ((NOT a) AND (NOT b)) OR b

#### **Implication Operators**

- (NOT a) OR b  $\Rightarrow u(c(a), b)$
- (NOT a) OR (a AND b)  $\Rightarrow$  u( c(a), i(a,b) )
- ((NOT a) AND (NOT b)) OR b  $\Rightarrow$  u(i(c(a),c(b)), b)

Logically equivalent for binary logic, but not for fuzzy logic.

#### **Implication Operators**

#### Use

$$(a \text{ OR } b) = \min(1, a+b)$$
  
 $(\text{NOT } a) = 1 - a$   
 $(a \Rightarrow b) = (\text{NOT } a) \text{ OR } b$ 

 $\rightarrow$  (a  $\Rightarrow$  b) = min(1, 1-a+b) Lukasiewicz's implication

#### Other examples:

 $(a \Rightarrow b) = min(1-a,b)$  Kleene-Dienes implication  $(a \Rightarrow b) = (1-a+ab)$  Reichenbach implication

#### Implication Operators

• 
$$\max\{ x \in \{0,1\} \mid (a \text{ AND } x) \le b \}$$
  
 $\Rightarrow \sup\{ x \in [0,1] \mid i(a,x) \le b \}$ 

#### **Examples:**

Godel implication: 
$$i(a,b) = min(a,b) \rightarrow (a \Rightarrow b) = \begin{cases} 1 & \text{when } a \leq b \\ b & \text{when } a > b \end{cases}$$

$$i(a,b) = ab \rightarrow (a \Rightarrow b) =$$

$$i(a,b) = max(0, a+b-1) \rightarrow (a \Rightarrow b) =$$

#### **Common Properties**

$$a \le b \rightarrow \mathcal{J}(a,x) \ge \mathcal{J}(b,x)$$
  
 $a \le b \rightarrow \mathcal{J}(x,a) \le \mathcal{J}(x,b)$   
 $\mathcal{J}(0,a) = 1$   
 $\mathcal{J}(1,b) = b$   
 $\mathcal{J}(a,a) = 1$   
 $\mathcal{J}(a,\mathcal{J}(b,x)) = \mathcal{J}(b,\mathcal{J}(a,x))$   
 $\mathcal{J}(a,b) = 1 \iff a \le b$   
 $\mathcal{J}(a,b) = \mathcal{J}(c(b),c(a))$   
 $\mathcal{J}(a,b)$  is continuous

#### Inference

Inference: Derivation of new results from given facts and rules.

Rules of inference:

modus ponens:  $(a \text{ AND } (a \Rightarrow b)) \Rightarrow b$ 

modus tollens:  $((NOT b) AND (a \Rightarrow b)) \Rightarrow (NOT a)$ 

syllosium:  $((a \Rightarrow b) \text{ AND } (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ 

## **Composition of Fuzzy Relations**

Getting  $R: A \times C \to [0,1]$ from  $R_1: A \times B \to [0,1]$  and  $R_2: B \times C \to [0,1]$  $R(x,z) = (R_1 \circ R_2)(x,z) = \bigvee_{y \in B} [R_1(x,y) \bigwedge R_2(y,z)]$ for all  $x \in A$  and  $z \in C$ 

#### Example:

A: patients B: symptoms C: diagnoses  $R_1$ : patient symptoms  $R_2$ : knowledge base

We can then use  $(R_1 \circ R_2)$  to generate possible diagnoses for these patients.

#### Inference and Relations

Assume A has only one element so we drop the variable x:

$$R(z) = (R_1 \circ R_2)(z) = \bigvee_{y \in B} [R_1(y) \bigwedge R_2(y,z)] \qquad \text{for all } z \in C$$

This is like modus ponens:

 $P: (V \text{ is } A) \Rightarrow (W \text{ is } B).$ 

A represents "fun days" of a week:

$$A = 0.4/Thu + 0.8/Fri + 1/Sat + 0.6/Sun$$

B represents "happy" defined on "degrees of happiness" = {1,2,3,4}:

$$B = 0.5/3 + 1/4$$

The fuzzy relation representing P, using implication operator min(1,1–a+b):

| A<br>B | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|--------|-----|-----|-----|-----|-----|-----|-----|
| 1      |     |     |     |     |     |     |     |
| 2      |     |     |     |     |     |     |     |
| 3      |     |     |     |     |     |     |     |
| 4      |     |     |     |     |     |     |     |

Do inference for the following inputs:

- V = { Sat }
- V = { Thu }
- $\mathbf{V} = \mathbf{A}$
- V = NOT A (use Zadeh's complement)
- $\blacksquare$  V = MORE-OR-LESS A (use square root)

#### **Correlation-Min**

The idea is to implement

$$P: (V \text{ is } A) \Rightarrow (W \text{ is } B).$$

as

$$(V \text{ is } A) \text{ AND } (W \text{ is } B)$$

using "min" for "AND" operation.

Convenient, and actually used in practice, but not a true implication operator.

The fuzzy relation representing P, using correlation-min:

| A<br>B | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|--------|-----|-----|-----|-----|-----|-----|-----|
| 1      |     |     |     |     |     |     |     |
| 2      |     |     |     |     |     |     |     |
| 3      |     |     |     |     |     |     |     |
| 4      |     |     |     |     |     |     |     |

Do inference for the following inputs:

- V = { Sat }
- V = { Thu }
- $\mathbf{V} = \mathbf{A}$
- V = NOT A (use Zadeh's complement)
- $\blacksquare$  V = MORE-OR-LESS A (use square root)

### **Binary Relations**

It is also possible to have a binary relation for "translating" this rule:

$$P: (V \text{ is } A) \Rightarrow (W \text{ is } B).$$

For example:

$$\mathbf{R}(\mathbf{x},\mathbf{y}) = \begin{cases} 0 & \text{if } A(\mathbf{x}) > B(\mathbf{y}) \\ 1 & \text{if } A(\mathbf{x}) \le B(\mathbf{y}) \end{cases}$$

The fuzzy relation representing P:

| A<br>B | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|--------|-----|-----|-----|-----|-----|-----|-----|
| 1      |     |     |     |     |     |     |     |
| 2      |     |     |     |     |     |     |     |
| 3      |     |     |     |     |     |     |     |
| 4      |     |     |     |     |     |     |     |

Do inference for the following inputs:

- $\mathbf{V} = \mathbf{A}$
- $\blacksquare$  V = MORE-OR-LESS A (use square root)
- V = NOT A (use Zadeh's complement)

Preservation of function relations

#### **Multi-Antecedent Rules**

Conjunctive ("AND"):

P: 
$$(V_1 \text{ is } A_1 \text{ AND } V_2 \text{ is } A_2) \Rightarrow (W \text{ is } B)$$

- First create a relation between  $A_1$  and  $A_2$  first (using an intersection operator).
- Then create a new relation (using an implication operator) between B and this relation.

If Day is Fun and Weather is Good Then Happy.

Weather is defined on {Sunny, Cloudy, Rainy} Good(Weather) = 1/Sunny + 0.5/Cloudy + 0/Rainy

The fuzzy relation representing the antecedents:

| $egin{array}{c} A_1 \ A_2 \end{array}$ | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|----------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Sunny                                  |     |     |     |     |     |     |     |
| Cloudy                                 |     |     |     |     |     |     |     |
| Rainy                                  |     |     |     |     |     |     |     |

Use "min" as intersection

The combined (3-dimensional) relation  $R_{rule}$  (use Lukasiewice's implication operator):

$$y (Mood) = "1"$$

| $A_1$ $A_2$ | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|-------------|-----|-----|-----|-----|-----|-----|-----|
| Sunny       |     |     |     |     |     |     |     |
| Cloudy      |     |     |     |     |     |     |     |
| Rainy       |     |     |     |     |     |     |     |

$$y (Mood) = "3"$$

| $A_1$ $A_2$ | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|-------------|-----|-----|-----|-----|-----|-----|-----|
| Sunny       |     |     |     |     |     |     |     |
| Cloudy      |     |     |     |     |     |     |     |
| Rainy       |     |     |     |     |     |     |     |

$$y (Mood) = "2"$$

| $A_1$ $A_2$ | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|-------------|-----|-----|-----|-----|-----|-----|-----|
| Sunny       |     |     |     |     |     |     |     |
| Cloudy      |     |     |     |     |     |     |     |
| Rainy       |     |     |     |     |     |     |     |

$$y (Mood) = "4"$$

| $egin{array}{c} A_1 \ A_2 \ \end{array}$ | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Sunny                                    |     |     |     |     |     |     |     |
| Cloudy                                   |     |     |     |     |     |     |     |
| Rainy                                    |     |     |     |     |     |     |     |

<sup>\*</sup>For simplicity, "Mood" replaces "Degree of Happiness"

For input, get the relation  $R_{input}$  between  $V_1$  and  $V_2$  using the same intersection operator.

#### Inference:

W(y) = 
$$(x_1, x_2) \land R_{rule}(x_1, x_2, y)$$

Do inference for the following inputs:

$$\blacksquare$$
 V<sub>1</sub> = "Sunday" AND V<sub>2</sub> = "Cloudy"

$$\mathbf{V}_1 = \mathbf{A}_1 \text{ AND } \mathbf{V}_2 = \mathbf{A}_2$$

#### **Multi-Antecedent Rules**

Disjunctive ("OR"):

P: 
$$(V_1 \text{ is } A_1 \text{ OR } V_2 \text{ is } A_2) \Rightarrow (W \text{ is } B)$$

Is this equivalent to the following?

$$P: (P_1 OR P_2)$$

$$P_1$$
:  $(V_1 \text{ is } A_1) \Rightarrow (W \text{ is } B)$ 

$$P_2$$
:  $(V_2 \text{ is } A_2) \Rightarrow (W \text{ is } B)$ 

#### Test with

- "max" as OR and correlation-min for implication
- "max" as OR and Lukasiewicz's implication

## Multiple Rules

 $P_j$ :  $(V_{j1} \text{ is } A_{j1} \text{ AND ... AND } V_{jn} \text{ is } A_{jn}) \Rightarrow (W_j \text{ is } B_j)$ Common: Conjunctive Normal Form

Combination of outputs for variable W:

- Take all rules with (W is B<sub>i</sub>)
- (Common) Get the "max" or "sum" of the outputs (W(y)) of these rules

If Day is Fun and Weather is Good Then Mood is Happy.

If Day is Fun and Weather is Bad Then Mood is Unhappy.

$$Fun(Days) = 0.4/Thu + 0.8/Fri + 1/Sat + 0.6/Sun$$

Good(Weather) = 1/Sunny + 0.5/Cloudy

Bad(Weather) = 1/Rainy + 0.4/Cloudy

Happy(Mood) = 1/4 + 0.5/3

Unhappy(Mood) = 1/1 + 0.5/2

#### Try to do inference for

- a Cloudy Saturday
- a Sunny Thursday

## Why Correlation-Min?

P:  $(V_1 \text{ is } A_1 \text{ AND } V_2 \text{ is } A_2) \Rightarrow (W \text{ is } B)$ 

$$W(y) = \bigvee \{ i(V_1(x_1), V_2(x_2)) \\ x_1, x_2 \qquad \bigwedge [1 \bigwedge (1-i(A_1(x_1), A_2(x_2)) + B(y))] \}$$
 using Lukasiewice's implication

Much simpler with correlation-min for implication:

$$W(y) = \bigvee_{X_1, X_2} [(V_1(x_1) \land V_2(x_2) \land A_1(x_1) \land A_2(x_2) \land B(y))]$$

If Day is Fun and Weather is Good Then Mood is Happy.

If Day is Fun and Weather is Bad Then Mood is Unhappy.

$$Fun(Days) = 0.4/Thu + 0.8/Fri + 1/Sat + 0.6/Sun$$

Good(Weather) = 1/Sunny + 0.5/Cloudy

Bad(Weather) = 1/Rainy + 0.4/Cloudy

Happy(Mood) = 1/4 + 0.5/3

Unhappy(Mood) = 1/1 + 0.5/2

#### Try to do inference for

- a Cloudy Saturday
- a Sunny Thursday

## Why Correlation-Min?

P:  $(V_1 \text{ is } A_1 \text{ AND } V_2 \text{ is } A_2) \Rightarrow (W \text{ is } B)$ 

$$W(y) = \bigvee \{ i(V_1(x_1), V_2(x_2)) \\ X_1, X_2 \qquad \bigwedge [1 \bigwedge (1-i(A_1(x_1), A_2(x_2)) + B(y))] \}$$
 using Lukasiewice's implication

Much simpler with correlation-min for implication:

$$\begin{split} W(y) &= \bigvee_{x_1, x_2} [(V_1(x_1) \wedge V_2(x_2) \wedge A_1(x_1) \wedge A_2(x_2) \wedge B(y)] \\ &= \left\{ \bigvee_{x_1, x_2} [(V_1(x_1) \wedge V_2(x_2) \wedge A_1(x_1) \wedge A_2(x_2)] \right\} \wedge B(y) \end{split}$$

## **Graphical Representation**

$$W(y) = \left\{ \bigvee_{x_1, x_2} [(V_1(x_1) \wedge V_2(x_2) \wedge A_1(x_1) \wedge A_2(x_2)] \right\} \wedge B(y)$$

$$= \left\{ \bigvee_{x_1} [(V_1(x_1) \wedge A_1(x_1)] \right\} \wedge \left\{ \bigvee_{x_2} [V_2(x_2) \wedge A_2(x_2)] \right\} \wedge B(y)$$



## Firing of Multiple Rules

Assume the same input and output domains for all rules. For example, all rules have the form:

IF (Day) AND (Weather) THEN (Mood)

$$P_1$$
:  $(V_1 \text{ is } A_{11} \text{ AND } V_2 \text{ is } A_{12}) \Rightarrow (W \text{ is } B_1)$   
 $P_2$ :  $(V_1 \text{ is } A_{21} \text{ AND } V_2 \text{ is } A_{22}) \Rightarrow (W \text{ is } B_2)$   
 $P_3$ :  $(V_1 \text{ is } A_{31} \text{ AND } V_2 \text{ is } A_{32}) \Rightarrow (W \text{ is } B_3)$   
etc.

If Day is Fun and Weather is Good Then Mood is Happy.

If Day is Fun and Weather is Bad Then Mood is OK.

If Day is Work and Weather is Bad Then Mood is Unhappy.

etc.

## Firing of Multiple Rules





#### **Fuzzification**

What happens when the inputs are individual numbers, such as readings from instruments?

We can create a "narrow" fuzzy set around the number. For example, with a triangle:



Does not work on discrete domains.

## Singleton Excitation

This happens when inputs are individual elements. Very common in fuzzy logic applications.

$$V_i(x_i) = \begin{cases} 1 & \text{when } x_i = x_i^* \\ 0 & \text{otherwise} \end{cases}$$

$$W(y) = \left\{ \bigvee_{x_1, x_2} [(V_1(x_1) \land V_2(x_2) \land A_1(x_1) \land A_2(x_2)] \right\} \land B(y)$$

$$= \left\{ \bigvee_{x_1} [(V_1(x_1) \land A_1(x_1)] \right\} \land \left\{ \bigvee_{x_2} [V_2(x_2) \land A_2(x_2)] \right\} \land B(y)$$

$$= [A_1(x_1^*) \land A_2(x_2^*)] \land B(y)$$

## Singleton Excitation





#### Defuzzification

The process of converting a fuzzy set to a single number so that we can do something about it.



Common methods:

- centroid
- maxima (or center of maxima)

This number y\* can be used for ranking, or as inputs to other devices, etc.

#### **Grid of Rules**

Common representation of a set of 2-antecedent rules with the same input and output domains.

For example: IF (Day) AND (Weather) THEN (Mood)

P:  $(V_1 \text{ is } A_1 \text{ AND } V_2 \text{ is } A_2) \Rightarrow (W \text{ is } B)$ 

| A <sub>1</sub> (Day)     | Fun   | Work    |
|--------------------------|-------|---------|
| A <sub>2</sub> (Weather) |       |         |
| Good                     | Happy | OK      |
| Bad                      | OK    | Unhappy |

## **Fuzzy Inference System**

Input (usually crisp) **Fuzzification Fuzzy Knowledge Base** Inference **Engine** (Rules) **Fuzzy** Choices: Defuzzification How to fuzzify How to defuzzify Rules Output (crisp) Inference

Inverse pendulum is a classical control problem.



#### Variables (inputs):





#### Variables (output):



Acceleration (m/sec<sup>2</sup>)

Stick assumed to be 1-m long

**Rules:** IF (Angle) AND (Angle Change Rate)

**THEN (Acceleration)** 

| $\frac{d\theta}{dt}$ | NL | NM | NS | AZ | PS | PM | PL |
|----------------------|----|----|----|----|----|----|----|
| NL                   | PL | PL | PL | PL | PM | AZ | AZ |
| NM                   | PL | PL | PL | PL | PM | AZ | AZ |
| NS                   | PM | PM | PM | PS | AZ | NM | NM |
| AZ                   | PM | PM | PS | AZ | NS | NM | NM |
| PS                   | PM | PM | AZ | NS | NM | NM | NM |
| PM                   | AZ | AZ | NM | NL | NL | NL | NL |
| PL                   | AZ | AZ | NM | NL | NL | NL | NL |

## **TSK Model of Fuzzy Inference**

The fuzzy inference method used so far is called the Mandani-Assilian (MA) model.

Takagi-Sugeno-Kung (TS or TSK) model uses functions of inputs, instead of fuzzy sets, as outputs:

$$P_j$$
:  $(V_1 \text{ is } A_{j1} \text{ AND ... AND } V_n \text{ is } A_{jn}) \Rightarrow (y \text{ is } f_j(\vec{V}))$ 

Consider just singleton excitation:  $V_i \rightarrow x_i$ 

$$P_j$$
:  $(A_{j1}(x_1) \text{ AND ... AND } A_{jn}(x_n)) \Rightarrow (y = f_j(\vec{x}))$ 

#### **TSK Model**

Weighted mean for aggregation of multiple inputs.

$$y(\vec{x}) = \frac{\sum \alpha_j(x_j) f_j(x_j)}{\sum \alpha_j(x_j)}$$
 similar to centroid

Firing strength:

$$\alpha_j(x_j) = A_{j1}(x_1) \wedge ... \wedge A_{jn}(x_n)$$
 or 
$$\alpha_j(x_j) = A_{j1}(x_1) \times ... \times A_{jn}(x_n)$$

TSK model is very popular with fuzzy controls and description of dynamic systems.

## Fuzzy Propositions

## Unconditional and unqualified propositions

- p: *V* is *F* 
  - V is a variable with values from the universe V
  - F is a fuzzy set on V that represents a fuzzy predicate
- E.g.: John is tall
- T(p) = F(v) for any value v of variable V

## Unconditional and qualified propositions

- p: V is F is S
  - V is a variable with values from the universe V
  - F is a fuzzy set on V that represents a fuzzy predicate
  - S is a fuzzy truth qualifier (e.g. fairly true, very false)
- E.g.: John is tall is fairly true
- T(p) = S(F(v)) for any value v of variable V

## Conditional and unqualified propositions

- p: if X is A then Y is B
  - X, Y are variables with values in X, Y
  - A, B are fuzzy sets on X, Y
- May be viewed as <X, Y> is R
- T(p) = R(x,y) for each values x, y of X, Y
- $T(p) = R(x,y) = \mathfrak{A}(A(x),B(y))$ 
  - o denotes the fuzzy implication operator

# Conditional and qualified propositions

• p: if X is A then Y is B is S

 Truth value determined in a way similar to the cases above

### Fuzzy quantifiers: absolute

- Absolute quantifiers are defined on R
  - about 10, more than 100, at least 5

- p: There are Q is in I such that V(i) is F
  - I is a set of individuals
  - Q is a fuzzy number on R

•  $T(p) = Q(\sum_{i \in I} F(V(i)))$ 

#### Fuzzy quantifiers: absolute

- p: There are Q is in I such that V1(i) is F1 and V2(i) is F2
  - I is a set of individuals
  - Q is a fuzzy number on R

•  $T(p) = Q(\sum_{i \in I} \min(F_1(V_1(i)), F_2(V_2(i))))$ 

### Fuzzy quantifiers: relative

- Relative quantifiers are defined on [0,1]
  - Almost all, about half, most of
- p: Among is in I such that V1(i) is F1 there are Q is in I such that V2(i) is F2
  - I is a set of individuals
  - Q is a fuzzy number on [0,1]

• T(p) = Q 
$$\left(\frac{\sum_{i \in I} \min(F_1(V_1(i)), F_2(V_2(i)))}{\sum_{i \in I} F_1(V_1(i))}\right)$$

### Linguistic hedges

- Linguistic terms that modify other linguistic terms
  - very, more or less, fairly, extremely
- The fuzzy set that defines the hedge is called modifier
- E.g. the proposition "x is young [is true]":
  - "x is very young is true"
  - "x is young is very true"
  - "x is very young is very true"