Projective and inductive locally convex topologies. Products and coproducts

(EXERCISES FOR LECTURES 4-5)

- **5.1.** Let X be a vector space equipped with the projective locally convex topology generated by a family of linear maps $(\varphi_i \colon X \to X_i)_{i \in I}$, where $(X_i)_{i \in I}$ is a family of locally convex spaces. Show that
- (a) the projective topology on X is the weakest locally convex topology on X that makes all the maps φ_i continuous;
- (b) the projective topology on X is the weakest topology on X that makes all the maps φ_i continuous;
- (c) the projective topology on X is a unique locally convex topology on X having the following property: if Y is a locally convex space, then a linear map $\psi \colon Y \to X$ is continuous if and only if all the maps $\varphi_i \circ \psi \colon Y \to X_i$ are continuous;
- (d) if σ_i is a neighborhood subbase at 0 in X_i $(i \in I)$, then the family $\{\varphi_i^{-1}(U) : i \in I, U \in \sigma_i\}$ is a neighborhood subbase at 0 in X.
- **5.2.** Let X be a vector space equipped with the inductive locally convex topology generated by a family of linear maps $(\varphi_i: X_i \to X)_{i \in I}$, where $(X_i)_{i \in I}$ is a family of locally convex spaces. Show that
- (a) the inductive topology on X is the strongest locally convex topology on X that makes all the maps φ_i continuous;
- (b) the inductive topology on X is a unique locally convex topology on X having the following property: if Y is a locally convex space, then a linear map $\psi \colon X \to Y$ is continuous if and only if all the maps $\psi \circ \varphi_i \colon X_i \to Y$ are continuous;
- (c) the family of all absorbing, absolutely convex sets $U \subset X$ such that, for each $i \in I$, $\varphi^{-1}(U_i)$ is a neighborhood of zero in X_i , is a neighborhood base at zero in X.
- **5.3.** Let X, X_i, φ_i be as in Exercise 5.2. Assume also that $X = \sum_{i \in I} \varphi_i(X_i)$. Let $\tau_{\text{ind.lcs}}$ denote the respective inductive locally convex topology on X.
- (a) Prove that there exists the strongest topology on X that makes all the maps φ_i continuous, and describe it explicitly. This topology will be denoted by $\tau_{\text{ind.top}}$.
- (b) Prove that there exists the strongest vector space topology on X that makes all the maps φ_i continuous, and describe it explicitly. This topology will be denoted by $\tau_{\text{ind.tvs}}$.
- (c)* Prove that, if I is at most countable, then $\tau_{\text{ind.lcs}} = \tau_{\text{ind.tvs}}$. (*Hint*: it suffices to show that sets of the form $\sum_{i} \varphi_{i}(U_{i})$, where $U_{i} \subset X_{i}$ is a neighborhood of 0, form a neighborhood base at 0 in $\tau_{\text{ind.tvs}}$.)
- (d)* Construct an example such that I is uncountable and $\tau_{\text{ind.lcs}} \neq \tau_{\text{ind.tvs}}$. (*Hint*: consider the strongest locally convex topology on a vector space of uncountable dimension.)
- (e) Construct an example such that I is finite and $\tau_{\text{ind.tvs}} \neq \tau_{\text{ind.top.}}$
- **5.4.** (a) Show that the product of a family of locally convex spaces is their product in LCS (in the category-theoretic sense).
- (b) Show that an infinite family of nonzero normed spaces does not have a product in the category of normed spaces and continuous linear maps.
- **5.5.** Let $(X_i)_{i\in I}$ be a family of nonzero locally convex spaces. Show that
- (a) $\prod_{i \in I} X_i$ is Hausdorff \iff all the X_i 's are Hausdorff;
- (b) $\prod_{i \in I} X_i$ is normable \iff all the X_i 's are normable, and I is finite;
- (c) $\prod_{i \in I} X_i$ is metrizable \iff all the X_i 's are metrizable, and I is at most countable.

- **5.6.** Let X be a vector space equipped with the projective topology generated by a family $(\varphi_i \colon X \to X_i)_{i \in I}$ of linear maps, where $(X_i)_{i \in I}$ is a family of locally convex spaces. Prove that a set $B \subset X$ is bounded if and only if $\varphi_i(B)$ is bounded in X_i for all $i \in I$. In particular, a set $B \subset \prod_{i \in I} X_i$ is bounded if and only if $B \subset \prod_{i \in I} B_i$, where $B_i \subset X_i$ are bounded sets.
- **5.7.** (a) Show that the locally convex direct sum of a family of locally convex spaces is their coproduct in LCS (in the category-theoretic sense).
- (b) Show that an infinite family of nonzero normed spaces does not have a coproduct in the category of normed spaces and continuous linear maps.
- **5.8.** Let $(X_i)_{i\in I}$ be a family of locally convex spaces. For each $i\in I$ choose a directed defining family P_i of seminorms on X_i . For each $p=(p_i)\in\prod_{i\in I}P_i$ and each $a=(a_i)\in[0,+\infty)^I$, define a seminorm $q_{a,p}$ on $\bigoplus_{i\in I}X_i$ by $q_{a,p}(x)=\sum_i a_ip_i(x_i)$ (where $x=\sum_i x_i, x_i\in X_i$). Show that
- (a) $\left\{q_{a,p}: p \in \prod_{i \in I} P_i, \ a \in [0, +\infty)^I\right\}$ is a defining family of seminorms on $\bigoplus_{i \in I} X_i$;
- (b) if each P_i is stable under multiplication by positive numbers (for example, if P_i consists of all continuous seminorms on X_i), then it suffices to consider seminorms of the form $q_{1,p}$ (where $p \in \prod_{i \in I} P_i$).
- **5.9.** Let $(X_i)_{i\in I}$ be a family of locally convex spaces. Prove that
- (a) if I is finite, then $\bigoplus_{i \in I} X_i = \prod_{i \in I} X_i$ as topological vector spaces;
- (b) if I is infinite, and if the topology on X_i is nontrivial for all $i \in I$, then the standard (inductive) topology on $\bigoplus_{i \in I} X_i$ is strictly stronger than the topology induced from $\prod_{i \in I} X_i$.
- **5.10.** Let $(X_i)_{i\in I}$ be a family of nonzero locally convex spaces. Show that
- (a) $\bigoplus_{i \in I} X_i$ is Hausdorff \iff all the X_i 's are Hausdorff;
- (b) $\bigoplus_{i \in I} X_i$ is normable \iff all the X_i 's are normable, and I is finite;
- (c) $\bigoplus_{i \in I} X_i$ is metrizable \iff all the X_i 's are metrizable, and I is finite.

As a corollary (see Exercise 3.8), an infinite-dimensional strongest locally convex space is not metrizable.

- **5.11.** Let $(X_i)_{i\in I}$ be a family of Hausdorff locally convex spaces. Show that a set $B\subset \bigoplus_{i\in I} X_i$ is bounded if and only if there exists a finite subset $J\subset I$ such that $B\subset \prod_{j\in J} B_j$, where $B_j\subset X_j$ are bounded sets.
- **5.12.** Let X be a locally compact, second countable Hausdorff topological space, and let $C_c(X)$ be the space of compactly supported continuous functions on X topologized in the standard way. Let $C(X)_{\geq 0}$ denote the set of all nonnegative continuous functions on X. Given $a \in C(X)_{\geq 0}$, define a seminorm $\|\cdot\|_a$ on $C_c(X)$ by letting $\|f\|_a = \sup_{x \in X} |f(x)|a(x)$. Show that the family $\{\|\cdot\|_a : a \in C(X)_{\geq 0}\}$ of seminorms is defining for $C_c(X)$.
- **5.13.** Let $U \subset \mathbb{R}^n$ be an open set, and let $C_c^{\infty}(U)$ be the space of compactly supported smooth functions on U topologized in the standard way. Let \mathscr{V} denote the set of all tuples of the form $v = (v_{\alpha})_{\alpha \in \mathbb{Z}_{\geq 0}^n}$, where $v_{\alpha} \in C(U)_{\geq 0}$ and the family $(\sup v_{\alpha})_{\alpha \in \mathbb{Z}_{\geq 0}^n}$ is locally finite¹. For each $v = (v_{\alpha}) \in \mathscr{V}$ define a seminorm $\|\cdot\|_v$ on $C_c^{\infty}(U)$ by letting

$$||f||_v = \sup_{\alpha \in \mathbb{Z}_{\geq 0}^n} \sup_{x \in U} |D^{\alpha} f(x)| v_{\alpha}(x).$$

Show that the family $\{\|\cdot\|_v : v \in \mathcal{V}\}$ of seminorms is defining for $C_c^{\infty}(U)$.

¹A family $(X_i)_{i\in I}$ of subsets of a topological space X is *locally finite* if each $x\in X$ has a neighborhood U such that $U\cap X_i=\varnothing$ for all but finitely many $i\in I$.