Dr. S. DIOUF

Année universitaire: 2023-2024

Contrôle 1 D'algèbre 2 du 2nd Semestre : Section AS1 Durrée: 4 heures

Exercice 1: 5 points

On considère un endomorphisme f de \mathbb{R}^2 dont la matrice relative à la base canonique de \mathbb{R}^2 est:

$$A = \begin{pmatrix} 7 & 5 \\ -6 & -4 \end{pmatrix}$$

1. Pour tout vecteur u de \mathbb{R}^2 de coordonnées (x,y), calculer f(x,y).

2. Calculer la matrice $A^2 - 3A + 2I_2$.

3. En déduire que la matrice A est inversible et déterminer A^{-1} .

4. Soit n un entier supérieur ou égal à 2. Déterminer le reste de la division euclidienne du polynôme X^n par $X^2 - 3X + 2$.

5. En déduire la matrice A^n .

Exercice 2: 5 points

En utilisant la théorie de diagonalistaion, déterminer les suites (u_n) , (v_n) et (w_n) définies par leur premier terme (u_0) , (v_0) et (w_0) et les relations suivantes pour $n \ge 0$:

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

Exercice 3: 5 points

Donner la réduction de Jordan de la matrice A définie par:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Exercice 4: 5 points

Donner la décomposition de Dunford de la matrice A définie par:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 2 \end{pmatrix}$$