1 Принцип работы LongLLMLingua

LongLLMLingua представляет собой метод сжатия длинных промптов для языковых моделей, который работает в несколько этапов:

1. Постановка задачи

Задача формулируется как оптимизационная проблема:

$$\min_{\tilde{x}} D_{\phi}(y, \tilde{y}) + \lambda \|\tilde{x}\|_{0}$$

где необходимо найти сжатый промпт \tilde{x} , минимизирующий расстояние между ответами языковой модели на исходный (y) и сжатый (\tilde{y}) промпты при сохранении заданной степени сжатия.

2. Крупнозернистое сжатие

На первом этапе оценивается важность каждого документа относительно заданного вопроса:

$$r_k = -\frac{1}{N_c} \sum_{i} \log p(x_i^{que,restrict} | x_i^{doc})$$

где $x_i^{que,restrict}$ — вопрос с ограничивающим контекстом, а x_i^{doc} — документ. Документы с высоким значением r_k считаются более релевантными для ответа.

3. Мелкозернистое сжатие

Далее для каждого токена вычисляется контрастная перплексия:

$$s_i = \text{perplexity}(x_i|x_{\leq i}) - \text{perplexity}(x_i|x^{que}, x_{\leq i})$$

Это позволяет определить важность отдельных токенов в контексте заданного вопроса.

4. Динамическое распределение бюджета

Бюджет сжатия распределяется между документами согласно их важности:

$$\begin{split} \tau_i &= \tau_k^{doc}, \forall x_i \in x_k^{doc} \\ \tau_k^{doc} &= \max(\min((1 - \frac{2I(r_k)}{K'})\delta\tau + \tau_{doc}, 1), 0) \end{split}$$

где более важные документы получают больший бюджет для сохранения информации.

5. Переупорядочивание и восстановление

Финальными этапами являются:

- Переупорядочивание документов для минимизации эффекта "потери в середине"
- Восстановление подпоследовательностей для сохранения целостности информации

Такой многоэтапный подход позволяет:

- Значительно уменьшить размер входного контекста
- Сохранить наиболее релевантную для вопроса информацию
- Оптимально расположить важную информацию в сжатом промпте

2 Количественные результаты

Таблица 1: Результаты на датасете NaturalQuestions при различных степенях сжатия

Метод	Точность	Токены	Сжатие	Латентность	Ускорение					
Сжатие 2х										
BM25	49.3%	1,545	1.9x	2.1	1.9x					
SBERT	67.9%	1,549	1.9x	2.2	1.9x					
LongLLMLingua	77.2%	1,429	2.1x	2.9	1.4x					
Сжатие 4х										
BM25	38.6%	798	3.7x	1.5	2.7x					
SBERT	61.1%	808	3.6x	1.6	2.5x					
LongLLMLingua	75.0%	748	3.9x	2.1	2.0x					
Исходный промпт	75.7%	2,946	-	4.1	-					

Таблица 2: Результаты на различных задачах бенчмарка LongBench (ограничение 2000 токенов)

Метод	Single	Multi	Summ	Few	Synth	Code	AVG
BM25	30.1	29.4	21.2	19.5	12.4	29.1	23.6
SBERT	33.8	35.9	25.9	23.5	18.0	17.8	25.8
OpenAI	34.3	36.3	24.7	32.4	26.3	24.8	29.8
LongLLMLingua	39.9	43.2	27.4	69.8	53.0	56.7	48.3
Исходный промпт	39.7	38.7	26.5	67.0	37.8	54.2	44.0
Zero-shot	15.6	31.3	15.6	40.7	1.6	36.2	23.5

2.1 Интерпретация результатов

В ходе экспериментов метод LongLLMLingua был протестирован на нескольких ключевых наборах данных:

- NaturalQuestions: При сжатии 4х достигнута точность 71-75% независимо от позиции релевантной информации, что превосходит исходные результаты
- LongBench: При ограничении в 2000 токенов средняя производительность 48.3% (исходная 44.0%) с шестикратным сжатием входных данных
- ZeroSCROLLS: Стабильные результаты даже при сильном сжатии, с улучшением некоторых метрик (например, BkSS: 47.2% против исходных 44.1%)
- Экономические показатели: Сокращение затрат от 52.6% до 94.0% в зависимости от датасета при сохранении или улучшении качества

3 Преимущества

а. Технологическая эффективность:

- Сокращение расходов на АРІ-запросы до 94.0% в тестах LooGLE
- Ускорение общей латентности в 1.4х-2.6х при сжатии промптов около 10к токенов
- Стабильное 4-6 кратное уменьшение количества токенов при сохранении или улучшении качества работы
- Универсальность применения для различных языковых моделей (GPT-3.5, GPT-4, Claude и др.)

b. **Качественные** улучшения:

- Значительное улучшение точности в тестах NaturalQuestions (до 21.4%)
- Существенный прирост в синтетических задачах LongBench (15.5 пунктов)
- Стабильное улучшение на 3-5 пунктов в различных задачах LongBench
- Эффективное решение проблемы "потери информации в середине" (lost in the middle)

с. Практическая применимость:

- Простая интеграция через популярные фреймворки (LangChain, LlamaIndex)
- Полная совместимость с основными облачными API (OpenAI, Anthropic, Azure)
- Подробная документация с примерами для различных сценариев использования
- Открытый исходный код модели сжатия с инструкциями по обучению

d. Универсальность применения:

- Эффективность в multi-document QA (увеличение F1-score на 5.4 пункта в MuSiQue)
- Улучшение производительности в long-dependency QA (на 9.5 пунктов в LooGLE)
- Сохранение качества при суммаризации с существенным сокращением токенов
- Поддержка различных форматов входных данных и типов задач

е. Экономическая выгода:

- Существенное снижение затрат на АРІ-запросы во всех тестах:
 - LooGLE: -94.0% (\$93.6 \rightarrow \$5.6 на 1000 запросов)
 - LongBench: -90.5% (\$31.5 \to \$3.0)
 - ZeroSCROLLS: -89.5% (\$30.6 \rightarrow \$3.2)
 - Multi-document QA: -71.7% (\$4.6 \rightarrow \$1.3)
 - MuSiQue: -52.6% (\$3.8 \rightarrow \$1.8)
- Сокращение времени обработки запросов на 40-160%
- Снижение нагрузки на вычислительные ресурсы

f. Техническая поддержка и развитие:

- Понятный структурированный GitHub репозиторий с Quick Start и ссылками на статьи и Huggingface
- Подробные примеры использования в Jupyter notebooks
- Готовые интеграции с популярными инструментами и фреймворками
- Открытый код обучения модели сжатия с документацией

4 Недостатки

- а. **Повторная компрессия для каждого запроса:** LongLLMLingua требует новой компрессии для каждого вопроса, даже если контекст тот же самый. Это увеличивает вычислительные затраты в 2 раза по сравнению с базовым LLMLingua, что может быть критично в промышленных системах.
- b. **Проблемы со сложными зависимостями:** Несмотря на хорошие результаты на датасете MuSiQue, где модель улучшает базовый результат на 5.4 пункта, эффективность может снижаться в задачах с более тонкими семантическими связями из-за использования грубой вопросно-ориентированной компрессии.
- с. Ограничения на типы задач: Метод особенно эффективен для задач вопросноответного типа, где скорость ответа критична. Например, на NaturalQuestions достигается ускорение в 2.6 раза при сжатии 6х. Однако для задач, требующих сохранения полного контекста (например, творческой генерации), такая агрессивная компрессия может быть неприменима.
- d. **Качество сжатия зависит от малой модели:** При замене LLaMA-2-7B на GPT2small производительность падает на 2.8-5.3 пункта в различных задачах, хотя всё ещё превосходит базовые методы. Это показывает важность выбора качественной малой модели для компрессии.

5 Влияние

- а. Существенное снижение затрат: Метод показывает впечатляющее сокращение расходов на использование LLM: экономия составляет 71.7% для Multi-document QA, 90.5% для LongBench и до 94% для LooGLE. Это делает использование больших языковых моделей значительно доступнее, особенно для малого и среднего бизнеса.
- b. Ускорение обработки запросов: При сжатии длинных промптов (около 10 тысяч токенов) достигается ускорение в 1.4-2.6 раза. В некоторых задачах, например на датасете NaturalQuestions, удаётся сократить количество токенов в 4 раза при одновременном улучшении точности на 21.4%.
- с. Повышение качества ответов: На ключевых бенчмарках метод не только сохраняет, но и улучшает точность ответов. Например, в задачах Multi-document QA точность повышается на 3-5 пунктов, а в синтетических задачах LongBench на 15.5 пунктов. Это открывает возможности для более надёжного использования LLM в критически важных областях, таких как анализ документов и научные исследования.
- d. **Технологический прорыв в работе с контекстом:** LongLLMLingua предлагает новый подход к решению проблемы "lost in the middle потери информации в середине длинного контекста. Эффективность метода подтверждается на разных моделях, включая GPT-3.5-Turbo и LongChat-13B, что создаёт основу для дальнейшего развития технологий обработки длинных текстов.

6 Бизнес-кейсы

- а. **Поисковые системы и QA-сервисы:** На примере NaturalQuestions показано повышение точности на 21.4% при использовании в 4 раза меньшего количества токенов. Это значительно снижает затраты на API-запросы и ускоряет работу системы в 1.4-2.6 раза при сжатии контекста в 2-6 раз.
- b. Обработка длинных документов: При работе с документами объёмом около 10 тысяч токенов технология позволяет сократить затраты на 90.5% (данные бенчмарка LongBench) при сохранении или даже улучшении качества результатов. В некоторых случаях, как показано на бенчмарке LooGLE, экономия достигает 94%.
- с. **Многоступенчатый анализ:** В задачах, требующих анализа нескольких документов (multi-hop QA), технология демонстрирует улучшение производительности на 5.4

- пункта по метрике F1 при двукратном сжатии входных данных. Это особенно важно для систем, работающих с множеством взаимосвязанных документов.
- d. **Работа с кодом:** В задачах автодополнения кода технология сохраняет высокую точность даже при значительном сжатии контекста, что подтверждается результатами тестирования на Code Completion части бенчмарка LongBench.
- е. Генерация текста: В задачах суммаризации и создания отчётов система демонстрирует стабильные результаты даже при сжатии входных данных в 3-6 раз, что подтверждается тестами на бенчмарках ZeroSCROLLS и Gov Report.

7 Будущие разработки

- а. Оптимизация вычислительной эффективности: Текущая реализация требует двойных вычислений по сравнению с базовой LLMLingua из-за question-aware подхода. Приоритетная задача разработка task-aware версии, позволяющей кэшировать и переиспользовать сжатый контекст для схожих задач, что значительно снизит накладные расходы.
- b. Улучшение работы со сложными зависимостями: Тесты на датасете MuSiQue показали, что при многоступенчатых запросах система может терять часть важных связей между документами. Необходимо усовершенствовать механизмы определения и сохранения сложных смысловых зависимостей, особенно в задачах, где F1-мера сейчас достигает 51.2%.
- с. Масштабирование на сверхдлинные контексты: При работе с контекстами более 24K токенов (как в бенчмарке LooGLE) текущая реализация демонстрирует снижение эффективности. Требуется адаптация алгоритмов для работы со сверхдлинными последовательностями при сохранении высокой степени сжатия (сейчас до 94% на LooGLE).
- d. Динамическая настройка сжатия: Развитие механизма динамических коэффициентов сжатия, который сейчас использует линейный планировщик ... с гиперпараметром $\delta \tau = 0.3$. Необходимо исследовать более сложные стратегии распределения бюджета токенов для различных частей документа.
- е. Улучшение восстановления последовательностей: Существующий алгоритм восстановления подпоследовательностей может быть улучшен для более точного воспроизведения критически важных частей текста, особенно в задачах, где важна дословная точность цитирования (сейчас используется prefix trees и sequence automata).