Prohorov's theorem

Bengt Ringnér*†

October 26, 2008

1 The theorem

Definition 1 A set Π of probability measures defined on the Borel sets of a topological space is called tight if, for each $\varepsilon > 0$, there is a compact set K such that

$$P(K) > 1 - \varepsilon$$

for all $P \in \Pi$

Theorem 1 A tight set, Π , of probability measures on the Borel sets of a metric topological space, \mathfrak{X} , is relatively compact in the sense that for each sequence, P_1, P_2, \ldots in Π there exists a subsequence that converges to a probability measure P, not necessarily in Π , in the sense that

$$\int g \, d\boldsymbol{P}_{n_j} \to \int g \, d\boldsymbol{P}$$

for all bounded continuous integrands. Conversely, if the metric space is separable and complete, then each relatively compact set is tight.

This is a generalisation of the Helly selection and the Helly-Bray theorems in which \mathfrak{X} is the real line. If F_1, F_2, \ldots is a sequence of right-continuous cumulative distribution functions, $F_n(x) = \mathbb{P}(X_n \leq x)$, then there is a subsequence and a limiting F such that, as $j \to \infty$,

$$F_{n_i}(x) \to F(x)$$
 if F is continuous at x

^{*}Centre for Mathematical Sciences, Lund University, Lund, Sweden.

[†]Homepage: http://www.maths.lth.se/~bengtr

This is the same as, for all g continuous with compact support,

$$\int g(x) dF_{n_j}(x) \to \int g(x) dF(x),$$

in other words,

$$\int g \, d\mathbf{P}_{n_j} \to \int g \, d\mathbf{P}$$

where $P_n(A) = \mathbb{P}(X_n \in A)$ for Borel sets A. The limiting F can be chosen as right continuous and nondecreasing, but is not necessarily a distribution function, since one has $\lim_{x\to\infty} F(x) \leq 1$ and $\lim_{x\to-\infty} F(x) \geq 0$, but not necessarily equality. Equality is equivalent to the original sequence being tight. In this case pointwise convergence at continuity points is the same as $\int g \, dF_{n_i}$ converges for all bounded continuous integrands.

Note also that working with continuous functions with compact support is only possible in locally compact spaces, a concept which is too restrictive in probability theory. Here \mathfrak{X} may contain trajectories of random processes, and one might be interested in

$$P_n(\{x: \sup_t x(t) \le M\}) = \mathbb{P}(\sup_t X_n(t) \le M).$$

2 Proof of the direct part

The idea the same as on the real line. First prove convergence on a denumerable dense subset, then use equicontinuity. To get a dense subset of integrands, we need a lemma.

Lemma 1 Let K be a compact set in a space \mathfrak{X} equipped with a metric topology. Then the space of bounded real valued functions on \mathfrak{X} is separable in the sense that there exist a countable subset, $\varphi_1, \varphi_2, \ldots$ such that, for any bounded continuous g,

$$\sup_{x \in K} |g(x) - \varphi_k(x)|$$

can be made arbitrarily small, and

$$\sup_{x \in \mathfrak{X}} |g(x) - \varphi_k(x)| \le 3 \sup_{x \in \mathfrak{X}} |g(x)|.$$

PROOF Being compact in a metric space, K has a countable dense subset, x_1, x_2, \ldots From the (proof of the) Stone-Weierstrass approximation theorem it follows that any continuous function f can be approximated in the sup-norm on K with functions of the form

$$\varphi = \min_{0 < j \le j_0} \max_{0 < k \le k_0} \psi_{jk}$$

where the ψ are of the form

$$\psi(x) = a - b\rho(x, x_i)$$

and ρ is any metric generating the topology. Since K is bounded, we may let a and b be rational. Finally, make the φ bounded by replacing them with

$$\min(\max(\varphi, \inf_K \varphi), \sup_K \varphi).$$

To prove the theorem, choose compact K_1, K_2, \ldots such that $\mathbf{P}(K_m) < 1 - 1/m$ for all $\mathbf{P} \in \Pi$. For each such K_m the lemma gives a dense subset of functions. Let $\varphi_1, \varphi_2, \ldots$ be an enumeration of all these. For a given bounded continuous g and $\varepsilon > 0$, choose $m > 1/\varepsilon$ and φ_k with $|g - \varphi_k| < \varepsilon$ on K_m . Then

$$\int |g - \varphi_k| d\mathbf{P} = \int_{K_m} \underbrace{|g - \varphi_k|}_{<\varepsilon} d\mathbf{P} + \int_{K_m^c} \underbrace{|g - \varphi_k|}_{\leq 3\sup|f|} d\mathbf{P} \leq (1 + 3\sup_{\mathfrak{X}} |g|)\varepsilon.$$

Therefore, for any given g and $\varepsilon > 0$ there is a φ_k such that

$$\sup_{\boldsymbol{P}\in\Pi}\int\left|g-\varphi_{k}\right|d\boldsymbol{P}<\varepsilon.$$

By the Bolzano-Weierstrass theorem combined with Cantor's diagonal method, there is a subsequence such that, for each k, $\int \varphi_k d\mathbf{P}_{n_j}$ converges as $j \to \infty$. This gives

$$\limsup_{j\to\infty} \int g \, d\mathbf{P}_{n_j} - \liminf_{j\to\infty} \int g \, d\mathbf{P}_{n_j} < 2\varepsilon.$$

Since this holds for arbitrarily small $\varepsilon > 0$, the limit exists, so we can define a functional \boldsymbol{I} by

$$I(g) = \lim_{j \to \infty} \int g \, d\mathbf{P}_{n_j}.$$

Clearly, I is a linear functional and $I(g) \geq 0$ if $g \geq 0$. To prove that it can be represented with a probability measure, we use the Stone-Daniell representation theorem. Let $g_k \searrow 0$ pointwise. For a given $\varepsilon > 0$ choose a compact K such that $P(K^c) < \varepsilon$ for all P in Π . Then

$$\int g_k d\mathbf{P}_{n_j} \le \int_K g_k d\mathbf{P}_{n_j} + \int_{K^c} g_k d\mathbf{P}_{n_j} \le \sup_{x \in K} g_k(x) + \varepsilon \sup_x g_1(x),$$

$$I(g_k) \le \sup_{x \in K} g_k(x) + \varepsilon \sup_x g_1(x),$$

By Dini's theorem, $g_k \to 0$ uniformly on K, so the first term tends to zero as $k \to \infty$, giving $\limsup_{k \to \infty} I(g_k) \le \varepsilon \sup_x g_1(x)$ for all $\varepsilon > 0$, which gives

$$I(g_k) \to 0$$

Since |g| and min(1, g) are bounded continuous if g is so, I is a Daniell integral on a Stone lattice. Therefore, and since I(1) = 1, it can be represented as an integral with respect to a probability measure, so

$$\lim_{j \to \infty} \int g \, d\mathbf{P}_{n_j} = \mathbf{I}(g) = \int g \, d\mathbf{P}$$

which proves the first part of the theorem.

3 Proof of the converse

All sets of the form

$$K = \bigcap_{i=1}^{\infty} \cup_{i=1}^{k_j} \overline{B(x_i, 1/j)}$$

in which $B(x_i, 1/j) = \{x : \rho(x, x_i) < 1/j\}$ are compact, since \mathfrak{X} is complete and K is closed and totally bounded. In order to make K large enough, we use separability and choose x_1, \ldots as a dense subset. We shall use the fact that, if $P_k \to P$ is the sense of the theorem, then¹

$$\liminf_{k\to\infty} \mathbf{P}_k(U) \ge \mathbf{P}(U)$$

for all open sets U.

Let $\varepsilon > 0$. There is a K with $P(K) > 1 - \varepsilon$ for all $P \in \Pi$

• if we can prove that for each j there is a k_j such that

$$P(\bigcup_{i=1}^{k_j} B(x_i, 1/j)) > 1 - \varepsilon/2^j$$

for all \boldsymbol{P} in Π .

$$P_k(U) \ge \int g_n dP_k \to \int g_n dP, \quad k \to \infty,$$

which gives

$$\liminf_{k\to\infty} \mathbf{P}_k(U) \ge \int g_n \, d\mathbf{P} \to \mathbf{P}(U), \quad n\to\infty.$$

This is a part of the so called Portemanteau Theorem. It follows by considering $g_n(x) = \min(1, n\rho(x, U^c))$. Then g_n increases towards the indicator function of U, and

If this does not hold, there is a j_0 such that, for each k there is a P_k with

$$P_k(\bigcup_{i=1}^k B(x_i, 1/j_0)) \le 1 - \varepsilon/2^{j_0}.$$

Of course, this also holds with $\cup_{i=1}^{k'}$ if $k' \leq k$. By assumption, there is a converging subsequence, so

$$P(\bigcup_{i=1}^k B(x_i, 1/j_0)) \le \liminf_{n \to \infty} P_{k_n}(\bigcup_{i=1}^k B(x_i, 1/j_0)) \le 1 - \varepsilon/2^{j_0}.$$

But this would give

$$1 = \mathbf{P}(\mathfrak{X}) = \lim_{k \to \infty} \mathbf{P}(\bigcup_{i=1}^k B(x_i, 1/j_0)) \le 1 - \varepsilon/2^{j_0}.$$

Therefore \bullet holds and the proof is complete.