Rose's Favorite Team

Yong Liu, Binghong Li, Brooks Niu, Zimo Peng

Presentation Summary

- 1. Team introduction
- 2. Task
- 3. Our approach
 - a. Methodology
 - b. Experiments
- 4. What have we learned
- 5. Future work

Introduction

Team Introduction

Yong Liu:

• Senior, DSC

Zimo Peng:

Junior, CE

Ruijia (Brooks) Niu:

• Junior, CS & CogSci

Binghong(Leo) Li:

Junior, CS

Task - motion forecasting

- Autonomous vehicle motion forecasting challenge
- Argoverse motion dataset
 - Six cities
 - o 5 seconds of 50 inputs
 - o 6 seconds of 60 outputs
- Details:
 - Predict the positions of a tracked AV 6 seconds into the future, given an initial 5-second observation
- Significance
 - Traffic system design
 - Reducing accidents
 - Safety and effectiveness of autonomous vehicles

Mental Journey

Methodology

- 1. Understanding the Data
 - a. Heat map
 - b. Visualization via random sampling
- 2. Constructing Data Loaders
 - a. MLP
 - Flattened data
 - b. LSTM
 - i. Length 110: 109 to 1 correspondence
 - c. Seq2Seq-LSTM
 - i. Pure displacement, (20% of total data)

Engineering Tricks

Feature Engineering:

• Velocity, acceleration, Jerk, and even more

Data Normalization:

- Standardization, didn't go so well :(
- Translation (all starting at origin)
- Rotation (all starting with same direction)
- Fixed Min Max, didn't finish

Deep Learning Model

	MLP	LSTM	Seq2seq
Training Time	Under 10 min (total)	4 hours (total)	3-4 hours (total)
Final Loss	19.3 (final private)	137.23 (validation)	37(final private)
Num of Parameters	8	6	11

Experiments

Baseline MLP

 At the beginning we tried the simple MLP without any data processing techniques.

$$Input = \{c_{x_i}, c_{y_i}\}_{i=1}^{50}$$

$$Output = \{c_{x_i}, c_{y_i}\}_{i=1}^{60}$$

Cx refers to the first coordinate and Cy refers to the second coordinate

We use scikit learn MLP package with these parameter:

Activation function: ReLU

Optimizer: Adam Learning Rate: 0.0005

Validation fraction: "0.2"

5-layers with (32, 32, 64, 64, 128)

initial MSE-loss: 830

LSTM

- Trained separately for each city
- Adam Optimizer
- Shifted displacement (loss ~150)
- Early stopping
- Austin as baseline

Seq2Seq LSTM Implementation

- Shifted & Rotated displacement (Loss ~35)
- Mixed Teacher Forcing ~0.5
- Used 20% of data to train the model (per city)

Final Submission - Refined MLP

$$Input = \{c_{x_i}, c_{y_i}, v_{xl}, v_{yl}, a_{x_j}, a_{y_j}, j_{x_k}, j_{y_k}\}_{i,j,k,l=1}^{50,49,48,47}$$
 Total length: 388

$$Output = \{c_{x_i}, c_{y_i}\}_{i=1}^{60}$$
 Total length: 120

+ Data Normalization

Activation function: ReLU

Optimizer: Adam ;Learning Rate: 0.001

Validation fraction: "0.3"

4-layers with (32, 64, 64, 128)

final MSE-loss: 19.3

	Loss
Naive MLP (Raw data)	800-850
Adding velocity and acceleration	200-250
Coordinate translation	22-25
Trajectory Rotation	19.3

Loss value progressions		
<u>Approaches</u>	MSE Loss	
Naive MLP (Raw data)	800-850	
AUD Addison stored and entire attendant (failed)	. 0000	

Traive Mili (Itaw data)	000-000
MLP Adding standardization attempt (failed)	> 2000
LSTM (80% data)	200-300
MLP Adding velocity to data	150-250

LSTM (80% data)	200-300
MLP Adding velocity to data	150-250
MLP Adding Jerk to data	100-200
MLP Adding derivatives beyond jerk to data	> 300
Seq2Seq with LSTM (20% translated & rotated data)	30-40
MID Adding Coordinate translation	22.25

WEI 7 tading velocity to data	100 200
MLP Adding Jerk to data	100-200
MLP Adding derivatives beyond jerk to data	> 300
Seq2Seq with LSTM (20% translated & rotated data)	30-40
MLP Adding Coordinate translation	22-25
MLP Adding Trajectory Rotation (FINAL)	19.3
MLP Adding path length normalization	Unfinished

Future Work

- Trying More Advanced Models (Transformer, Autoregressive model, Add attention to seq2seq)
- Training the MLP model with all data at first, then finetune according to each city
- More Features

Discussion

What we have learned

- 1. Power of Teamwork
- 2. Simplicity is the ultimate sophistication
- 3. Do not underestimate the complex model's ability to learn
- 4. Start Early Start Often
- 5. Finding a correct direction is crucial

Thank You!