Конспекты к экзамену по математической статистике

June 3, 2016

Contents

0.0	Список вопросов к экзамену по математической статистике .	2
0.1	Случайная выборка, генеральная совокупность, функция распред	деления
	выборки	3
0.2	Эмпирическая функция распределения, гистограмма	4
0.3	Выборочные характеристики. Выборочные моменты	6
0.4	Точечные оценки	7
	0.4.1 Характеристики оценок	7
0.5	Функция правдоподобия. Неравенство Крамера-Рао	9
0.6	Оценки максимального правдоподобия	12
0.7	Метод моментов	13

0.0 Список вопросов к экзамену по математической статистике

- 1. 1. Случайная выборка и генеральная совокупность
 - 2. Функция распределения выборки
- 2. 1. Эмпирическая функция распределения
 - 2. Гистограмма
- 3. Выборочные характеристики. Выборочные моменты
- 4. Точечные оценки и их свойства
- 5. Функция правдоподобия. Неравенство Крамера-Рао
- 6. Метод максимального правдоподобия, свойства оценок максимального правдоподобия
- 7. Метод моментов для точечных оценок
- 8. Достаточные статистики
- 9. Интервальные оценки. Доверительные интервалы
- 10. Интервальные оценки.

Доверительные интервал для дисперсии нормальной генеральной совокупности

11. Асимптотические свойства оценки максимального правдоподобия.

Асимптотический доверительный интервал

12. Проверка статистических гипотез.

Критерий Неймана-Пирсона проверки простых гипотез

- 13. Наиболее мощный критерий. Теорема Неймана-Пирсона
- 14. Проверка статистических гипотез о параметрах нормального распределения
- 15. Критерии для сложных гипотез
- 16. Функция мощности при альтернативе
- 17. Критерий согласия χ^2 -Пирсона
- 18. Критерий согласия Колмогорова
- 19. Критерий однородности Колмогорова-Смирнова
- 20. Критерий однородности χ^2

0.1 Случайная выборка, генеральная совокупность, функция распределения выборки

Def. 1. Выборка (sample) Пусть эксперемент состоит в проведении n испытаний, результат j-го из которых является случайной величиной $X_j:\Omega_j\to\mathcal{X}_j.$

Кортёж из этих случайных величин (случайный вектор) $X=(X_1,\ldots,X_n)$ называется (случайной) выборкой, а r.v. X_j называются элементами выборки

А значение $x=(x_1,\ldots,x_n)=X(\omega)$ называется реализацией выборки

Далее всегда, если не указано иное, случайные величины будут обозначаться заглавными буквами, а их реализации соответствующими строчными

Далее X_i полагаются независимыми

Def. 2. Выборочное пространство (sample space) Выборочным пространством называется измеримое пространство $(\mathcal{X}, \mathcal{A})$, где $\mathcal{X} = \{X(\omega); \omega \in \Omega\}$ есть множество возможных значений выборки, а \mathcal{F} — σ -алгебра в \mathcal{X}

Особенно важен случай, когда случайные величины X_j являются независимыми и имеют распределение одной случайной величины ξ . Этот случай соответствует повторению n раз одного эксперемента, описываемого случайной величиной ξ

Def. 3. Генеральная совокупность (population) Генеральной совокупностью называют распределение $\mathcal{L}(\xi)$ случайной величины ξ

Оно может быть задано, например, множеством возможных значений ${\rm r.v.}~\xi$ и её функцией распределения

При этом X называют выборкой из (генеральной совокупности) $\mathcal{L}(\xi)$

Def. 4. Функция распределения выборки $X \in \mathcal{L}(\xi)$

$$F_X(x) = \mathbb{P}\{X \le x\} = \prod \mathbb{P}\{X_j \le x_j\} = \prod F_{X_j}(x_j)$$

Эмпирическая функция распределения, гистограмма

Пусть $A \subset \Omega_0$ событие, происходящее в ходе испытания с вероятностью $\mathbb{P}A = p$, и пусть эксперимент состоит в проведении n таких независимых испытаний

Тогда

$$\Omega = \prod_{j=1}^{n} \Omega_0$$

А случайная величина

$$X_j = I_{\{\omega; \omega_j \in A\}} = \begin{cases} 1; & \omega_j \in A \\ 0; & \omega_j \notin A \end{cases}$$

является индикатором того, что в ходе j-го испытания случилось событие A Пусть r.v. $k=\sum_{j=1}^n X_j$ — число проявлений A в ходе эксперимента.

Введём r.v. $p_n^* = \frac{1}{n} \sum_{j=1}^n X_j$. Очевидно $\mathbb{E}p_n^* = p$.

Кроме того, из ЗБЧ в форме Бернулли следует

$$\lim_{n \to \infty} \mathbb{P}\{|p_n^* - p| < \varepsilon\} = 1 \quad \forall \varepsilon > 0$$

Таким образом, значение случайной величины p_n^* можно считать приближённой оценкой величины р

Пусть теперь $X=(X_1,\dots,X_n)$ — выборка объёма n из генеральной совокупности $\mathcal{L}(\xi)$, $x = (x_1, \dots, x_n)$ — реализация.

 $\mathbf{Def.}$ 5. Порядковые статистики Каждой реализации x можно сопоставить в соответствие его перестановку $x_{(1)} \leq \cdots \leq x_{(n)},$

j-й порядковой статистикой назвается случайная величина $X_{(j)},\,$ при каждой реализации $X(\omega) = x$, принимает значение $X_{(j)}(\omega) = x_{(j)}$

Def. 6. Вариационный ряд Случайный вектор $(X_{(1)}, \dots, X_{(n)})$ называется вариационным рядом

Def. 7. Эмпирическая функция распределения Для каждого $t \in \mathbb{R}$ зададим случайную величину $\mu_n(x)$, равную количеству элементов выборки X, значения которых не превосходят t:

$$\mu_n(x) = \sum I_{\{X_j \le t\}}$$

Эмпирической функцией распределения, построенной по выборке X, называют случайную функцию $F_n: t \mapsto \mathcal{L}^0(\Omega)$

$$F_n(x) = \frac{1}{n}\mu_n(t)$$

 ${\rm E\ddot{e}}$ значение в точке t является случайной величиной, сходящейся по вероятности к значению F(t) теоретической функции распределения

EDF можно перезаписать с помощью функции Хевисайда (Heaviside):

$$H(t) = \begin{cases} 0; & t < 0 \\ 1; & t \ge 0 \end{cases}$$

$$F_n(t) = \frac{1}{n} \sum_{i=1}^{n} H(t - X_{(k)})$$

Def. 8. Гистограмма Разобьём область значений r.v. ξ на равные интервалы Δ_i , и для каждого Δ_i подсчитаем число n_i элементов x_j вектора x, попавших в Δ_i , $n=\sum n_i$.

Построим график ступенчатой функции

$$t \mapsto \frac{n_i}{nh_i}, \quad t \in \Delta_i, h_i = |\Delta_i|$$

Полученный график (при желании, само отображение) называется Γ истограммой, построенной по данной реализации выборки

Соединим середины смежных отрезков этого графика. Полученная ломанная называется полигоном частот

С уменьшением $\max\{h_i\}$, гистограмма и полигон частот всё более точно приближают вероятности попадания в каждый из интервалов разбиения

0.3 Выборочные характеристики. Выборочные моменты

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{L}(\xi),\ F$ и F_n — соответственно теоритическая и эмпирическая функции распределения.

Всякой характиристике \tilde{g} случайной величины ξ

$$\tilde{g} = \int_{\mathbb{R}} g(t) \mathrm{d}F(t)$$

можно поставить в соответствие статистический аналог — случайную величину G:

$$G = \int_{\mathcal{X}} g(x) dF_n(x) = \frac{1}{n} \sum_{j=1}^n g \circ X_j$$

$$G(\omega) = \int_{\mathcal{X}} g(x) d((F_n(x))(\omega)) = \frac{1}{n} \sum_{j=1}^n g(x_j)$$

Выборочным моментом k-го порядка называется статистический аналог характеристики $\alpha_k = \mathbb{E} \xi^k = \int_{\mathbb{R}} t^k \mathrm{d} F(t)$:

$$A_k = \frac{1}{n} \sum_{j=1}^n X_j^k$$

 $\bar{X} = A_1$ называют выброчным средним.

Выборочным центральным моментом k-го порядка называют случайную величину M_k — статистический аналог характеристики $\mu_k=\mathbb{E}(\xi-\mathbb{E}\xi)^k=\int_{\mathbb{R}}(t-\alpha_1)^k\mathrm{d}F(t)$

$$M_k = \frac{1}{n} \sum_{j=1}^{n} (X_j - \bar{X})^k$$

 M_2 называют выборочной дисперсией

 $NB\ 1.$ Выборочное среднее является несмещённой оценкой математического ожидания

$$\mathbb{E}\bar{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}X_{i} = \frac{n\alpha_{1}}{n} = \alpha_{1}$$

0.4 Точечные оценки

Пусть некоторый процесс описывается вероятностной моделью $(\Omega, \mathcal{A}, \mathbb{P})$, где Ω — пространство элементарных событий, $\mathcal{A} \subset 2^{\Omega}$ — σ -алгебра событий, $\mathbb{P} : \mathcal{A} \to [0,1]$ — вероятностная мера, а проводимый эксперимент соответствует случайной величине $\xi \in \mathcal{L}^0$, с функцией распределения F.

Рассмотрим задачу определения распределения случайной величины, в случае когда известно, что её функция распределения F принадлежит некоторому классу распределений, зависящих от параметра

$$F \in \mathcal{F} = \{F_{\theta}; \theta \in \Theta\}$$

где Θ — множество значений параметра θ . То есть известно, что распределение определяется некоторым неизвестным истинным значением θ_0 параметра θ , и задача сводится к его оценке.

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{L}(\xi)$. Говорят, что пара $(\mathcal{X},\mathcal{F})$ задаёт "статистическую модель".

Def. 9. Статистика Статистикой называется случайная величина — композиция $g \circ X$ некоторой (вообще говоря борелевской) функции g и выборки X

$$(g \circ X)(\omega) = g(x)$$

Def. 10. Точечная оценка параметра θ есть статистика $T=\tau\circ X:\Omega\to\Theta,$ реализацию $T(\omega)=\tau(x)$ которой принимают за приближённое значение параметра θ

0.4.1 Характеристики оценок

Def. 11. Несмещённость (unbiasedness) Несмещённой называют такую оценку T, что её математическим ожиданием является искомый параметр θ :

$$\mathbb{E}T = \int_{\mathcal{X}} \tau(x) f(x; \theta_0) dx = \theta_0$$

Def. 12. Состоятельность (consistency) Оценка T называется состоятельной, если она сходится по вероятности к оцениваемому параметру:

$$\lim_{n \to \infty} \mathbb{P}\{\omega \in \Omega; |T(\omega) - \theta_0| < \varepsilon\} = \lim_{n \to \infty} \mathbb{P}\{|\tau(x) - \theta_0| < \varepsilon\} = 1$$

Def. 13. Оптимальность (effectiveness) Оценка T_0 называется оптимальной в классе \mathcal{T} несмещённых оценок, если среди всех оценок класса \mathcal{T} , оценка T_0 имеет минимальную дисперсию, то есть для любого $T \in \mathcal{T}$

$$\mathbb{D}T_0 \leq \mathbb{D}T$$

Оценка называется onmuмальной, если она оптимальна в классе ecex несмещённых оценок

Thm. 1. Единственность оптимальной оценки Если две несмещённые оценки T_1, T_2 параметра θ оптимальны, то они равны почти-всюду $T_1 \stackrel{\mathbb{P}}{=} T_2$:

$$\mathbb{P}\{T_1 \neq T_2\} = 0$$

0.5 Функция правдоподобия. Неравенство Крамера-Рао

Зададим класс допустимых распределений r.v. $\xi:\Omega_0\to\mathcal{X}_0\subset\mathbb{R}$ функцией двух переменных

$$f: \mathbb{R} \times \Theta \to [0,1]$$

при каждом фиксированном θ являющейся плотностью распределения вероятностей $f_{\theta}: \mathbb{R} \to [0,1]$ соответствующего значению θ параметра

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{L}(\xi),\ x=X(\omega)$ — реализация выборки. Функцией $f_s:\mathcal{X}\times\Theta\to[0,1]$ будем обозначать плотность распределения вероятностей выборки $f_s(x;\theta)=\prod_{j=1}^n f(x_j;\theta)$

Def. 14. Функция правдоподобия (likelihood fuction) При фиксированном $x \in \mathcal{X}$ функция $L: \theta \mapsto f_s(x; \theta)$ называется функцией правдоподобия. При данной реализации x, значение $L(\theta)$ характеризует вероятность получения такой реализации при таком значении параметра, i.e. "правдоподобие" этого значения параметра.

Далее будем считать, что при любом x отображение f_s дифференцируемо по θ ($\iff f$ дифференцируемо по θ)

Def. 15. Вклад (score) выборки Пусть

$$u = \frac{\partial \ln f_s}{\partial \theta} : \mathcal{X} \times \Theta \to \mathbb{R}$$

— частная производная функции логарифма правдоподобия. Вкладом выборки X называется случайная функция $U:\Theta \to \mathcal{L}^0$

$$U(\theta)(\omega) = u(X(\omega); \theta) = u(x; \theta)$$

- Вклад характеризует чувствительность плотности распределения выборки к изменению значения параметра θ
- Кроме того, реализация вклада (выборки в данное значение параметра) характеризует "степень несоответствия" данного значения параметра полученной реализации выборки.

Def. 16. Регулярная статистическая модель Статистическая модель, позволяющая дифференцировать (всякие $\int L$ и вообще всё что вздумается) по θ , переставлять операторы интегрирования и дифференцирования, и разрешающая прочий матан называется регулярной

Далее рассматриваются регулярные модели

 $^{^1}$ Далее случайные функции (аналогично последовательности, векторы) могут рассматриваться и как $\mathbb{R} \to \mathcal{L}^0$ отображения в пространство случайных величин, и как $\Omega \to \mathcal{L}^0(\mathbb{R},\mathbb{R})$ отображение из пространства элементарных событий в пространство измеримых функций, и как $\Omega \times \mathbb{R} \to \mathbb{R}$ в зависимости от контекста и потребностей

Тhm. 2. Свойства функции правдоподобия и вклада

$$\mathbb{E}_{\theta}L(\theta) = \int_{\mathcal{X}} f_s(x;\theta) dx = 1 \quad \forall \theta \in \Theta$$

$$\mathbb{E}_{\theta}U(\theta) = 0 \quad \forall \theta \in \Theta$$

То есть ожидаемый вклад выборки в истинное значение параметра — 0. Это соответствует ожиданию достижения максимума функции (логарифма) правдоподобия в точке θ, и минимальному "несоответствию" между предполагаемым значением параметра и полученной реализацией выборки.

Proof. Первое равенство естественно.

$$\mathbb{E}_{\theta}U(\theta) = \int_{\mathcal{X}} \frac{\partial \ln f_s}{\partial \theta}(x;\theta) f_s(x;\theta) dx = \int_{\mathcal{X}} \frac{\partial f_s}{\partial \theta}(x;\theta) \frac{1}{f_s(x;\theta)} f_s(x;\theta) dx =$$

$$= \int_{\mathcal{X}} \frac{\partial f_s}{\partial \theta}(x;\theta) dx = \frac{\partial}{\partial \theta} \int_{\mathcal{X}} f_s(x;\theta) dx = \frac{\partial}{\partial \theta} 1 = 0$$

Def. 17. Информация Фишера *Информацией Фишера* о параметре θ содержащейся в выборке X называется функция $\mathcal{I}: \Theta \to \mathbb{R}_+$ (или её значение):

$$\mathcal{I}(\theta) = \mathbb{D}_{\theta} U(\theta) = \mathbb{E}_{\theta} U^{2}(\theta) = \int_{\mathcal{X}} u(x; \theta) f(x; \theta) dx$$

A функции \mathcal{I}_i

$$\mathcal{I}_{j}(\theta) = \mathbb{D}_{\theta} \frac{\partial \ln f(X_{j}; \theta)}{\partial \theta} = \int_{\mathbb{R}} \left(\frac{\partial \ln f(t; \theta)}{\partial \theta} \right)^{2} f(t; \theta) dt$$

количеством информации о параметре θ , содержащейся в j-м наблюдении

$$\mathcal{I}(\theta) = \sum_{j=1}^{n} \mathcal{I}_{j}(\theta) = n\mathcal{I}_{1}(\theta)$$

Информация Фишера представляет собой ожидание (в предположении о истинности значения θ) некоего абсолютного значения несоответствия значения θ параметра полученной реализации выборки

Thm. 3. Неравенство Крамера-Рао Для любой несмещённой оценки T параметра θ справедливо

$$\mathbb{D}_{\theta}T \ge \frac{1}{\mathcal{I}(\theta)}$$

 $\textit{Proof.}\ T = \tau \circ X$ — несмещённая оценка. Значит

$$\mathbb{E}_{\theta} T = \int_{\mathcal{X}} \tau(x) f_s(x; \theta) dx = \theta \qquad \left| \frac{\partial}{\partial \theta} \right|$$

$$1 = \frac{\partial}{\partial \theta} \int_{\mathcal{X}} \tau(x) f_s(x; \theta) dx = \int_{\mathcal{X}} \tau(x) \frac{\partial}{\partial \theta} f_s(x; \theta) dx = \int_{\mathcal{X}} \tau(x) \frac{\partial \ln f_s}{\partial \theta} (x; \theta) f_s(x; \theta) dx$$
$$= \mathbb{E}_{\theta} (TU(\theta)) = \mathbb{E}_{\theta} ((T - \theta)(U(\theta) - 0)) + \underbrace{\theta}_{\theta} \mathbb{E}_{\theta} U(\theta) = \text{cov}(T, U(\theta)) \leq \sqrt{\mathbb{D}_{\theta} T \mathbb{D}_{\theta} U(\theta)}$$
$$\mathbb{D}_{\theta} T \geq \frac{1}{\mathbb{D}_{\theta} U(\theta)} = \frac{1}{\mathcal{I}(\theta)}$$

Если существует оценка, для которой достигается эта нижняя граница, то, очевидно, эта оценка является оптимальной (и единственной)

Thm. 4. Если нижняя граница Крамера-Рао достигается, то $1 = \text{cov}(T, U(\theta)) = \mathbb{D}_{\theta}T\mathbb{D}_{\theta}U(\theta)$, *i.e.*

$$corr(T, U(\theta)) = \frac{cov(T, U(\theta))}{\mathbb{D}_{\theta} T \mathbb{D}_{\theta} U(\theta)} = 1$$

Что возможно тогда и только тогда, когда T и U линейно-зависимы, i.e. $\forall \theta \in \Theta$ существуют константы $a(\theta), b(\theta)$, такие что

$$\mathbb{P}\{T \neq a(\theta)U(\theta) + b(\theta)\} = 0$$

 Π ричём $\forall \theta \in \Theta$

$$\mathbb{D}_{\theta}T = \mathbb{D}_{\theta}(a(\theta)U(\theta) + b(\theta)) = \mathbb{D}_{\theta}(a(\theta)U(\theta)) = a^{2}(\theta)\mathbb{D}_{\theta}U(\theta) = \frac{1}{\mathcal{I}(\theta)}$$
$$a(\theta) = \pm \frac{1}{\mathbb{D}_{\theta}U(\theta)}$$
$$\theta = \mathbb{E}_{\theta}T = b(\theta)$$
$$T = \frac{1}{\mathbb{D}_{\theta}U(\theta)}U(\theta) + \theta$$

0.6 Оценки максимального правдоподобия

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{L}(\xi)=\{F_\theta;\theta\in\Theta\}$. При каждом $x\in\mathcal{X},\,L:\theta\to[0,1]$ — функция правдоподобия для реализации x.

Def. 18. Оценка максимального правдоподобия Оценкой $\hat{\theta}$ максимального правдоподобия называется статистика, каждая реализция $\theta = \hat{\theta}(\omega)$ которой является точкой максимума функции L правдоподобия при данной реализации $x = X(\omega)$

$$\hat{\theta}: \omega \mapsto \sup_{\theta \in \Theta} f(X(\omega); \theta)$$

Thm. 5. Уравнения правдоподобия Если $L: \Theta \to [0,1]$ дифференцируема и при каждой реализации $x \in \mathcal{X}$ супремум достигается в внутренней точке множества Θ , то

$$\frac{\partial f}{\partial \theta}(x;\theta) = 0$$

или, то же самое:

$$\frac{\partial \ln f}{\partial \theta}(x;\theta) = 0$$

$$\frac{\partial \ln f}{\partial \theta_i}(x;\theta) = 0 \quad \forall x \in \mathcal{X} \quad i = \overline{1,m}$$

Эти уравнения называются уравнениями максимального правдоподобия, а значение оценки максимального правдоподобия (о.м.п.) ищется как её решение при заданной реализации.

0.7 Метод моментов

 $X=(X_1,\dots,X_n)$ — выборка из $\mathcal{L}(\xi)\in\{F_{\theta};\theta\in\Theta\}.\ \Theta\subset\mathbb{R}^r.$ Пусть существуют и конечные первые r моментов $\alpha_k(\theta)=\mathbb{E}\xi_{\theta}^k.$ Рассмотрим выборочные моменты $A_k=\frac{1}{n}\sum_{j=1}^n X_j^k.$ Метод оценивания состоит в решении относительно θ системы равенств

$$a_k(\theta) = A_k(\omega)$$
 $k = \overline{1, r}$

Thm. 6. Пусть $\tilde{\theta}$ — оценка, полученная методом моментов. $\tilde{\theta}(\omega) = \phi(A_1(\omega), \dots, A_r(\omega))$. Если ϕ непрерывна и взаимно-однозначна, то так как $\lim_{n\to\infty} \mathbb{P}\{A_k = \alpha_k\} = 1$, то и $\tilde{\theta} \stackrel{\mathbb{P}}{\to} \theta$