UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

| APPLICATION NO.                | FILING DATE             | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|--------------------------------|-------------------------|----------------------|---------------------|------------------|
| 10/598,732                     | 09/08/2006              | Ken Welker           | 14.0248-PCT-US      | 9557             |
| <sup>28116</sup> WesternGeco L | 7590 04/28/201<br>.L.C. | EXAMINER             |                     |                  |
| 10001 Richmond Avenue          |                         |                      | BREIER, KRYSTINE E  |                  |
| Kevin McEnand<br>HOUSTON, TX   |                         |                      | ART UNIT            | PAPER NUMBER     |
|                                |                         |                      | 3663                |                  |
|                                |                         |                      |                     |                  |
|                                |                         |                      | NOTIFICATION DATE   | DELIVERY MODE    |
|                                |                         |                      | 04/28/2011          | ELECTRONIC       |

# Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

WG-IP@slb.com

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Application No.                                                                                                                                                   | Applicant(s)                                                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Office Action Occurrence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/598,732                                                                                                                                                        | WELKER ET AL.                                                        |  |  |  |
| Office Action Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Examiner                                                                                                                                                          | Art Unit                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KRYSTINE BREIER                                                                                                                                                   | 3663                                                                 |  |  |  |
| The MAILING DATE of this communication app<br>Period for Reply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ears on the cover sheet with the c                                                                                                                                | orrespondence address                                                |  |  |  |
| A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA  - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication.  - If NO period for reply is specified above, the maximum statutory period w  - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).                                                                                        | ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim vill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONE | ely filed the mailing date of this communication. (35 U.S.C. § 133). |  |  |  |
| Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                      |  |  |  |
| Responsive to communication(s) filed on <u>03/07</u> 2a) ☐ This action is <b>FINAL</b> . 2b) ☐ This  3) ☐ Since this application is in condition for allowar closed in accordance with the practice under E                                                                                                                                                                                                                                                                                                                                                                                                       | action is non-final.<br>nce except for formal matters, pro                                                                                                        |                                                                      |  |  |  |
| Disposition of Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                   |                                                                      |  |  |  |
| 4) ☐ Claim(s) 1-23,25-28,30-37,39-47,49,51 and 53 4a) Of the above claim(s) is/are withdrav 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-23,25-28,30-37,39-47,49,51 and 53 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or                                                                                                                                                                                                                                                                                                                                                     | vn from consideration.<br>2-68 is/are rejected.                                                                                                                   | on.                                                                  |  |  |  |
| Application Papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                      |  |  |  |
| 9) The specification is objected to by the Examine 10) The drawing(s) filed on is/are: a) access Applicant may not request that any objection to the Replacement drawing sheet(s) including the correction of the oath or declaration is objected to by the Examine 11).                                                                                                                                                                                                                                                                                                                                          | epted or b) objected to by the Eddrawing(s) be held in abeyance. See ion is required if the drawing(s) is obj                                                     | e 37 CFR 1.85(a).<br>ected to. See 37 CFR 1.121(d).                  |  |  |  |
| Priority under 35 U.S.C. § 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                                                                      |  |  |  |
| <ul> <li>12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).</li> <li>a) All b) Some * c) None of:</li> <li>1. Certified copies of the priority documents have been received.</li> <li>2. Certified copies of the priority documents have been received in Application No</li> <li>3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).</li> <li>* See the attached detailed Office action for a list of the certified copies not received.</li> </ul> |                                                                                                                                                                   |                                                                      |  |  |  |
| Attachment(s)  1) \( \overline{\text{N}} \) Notice of References Cited (PTO-892)  2) \( \overline{\text{N}} \) Notice of Draftsperson's Patent Drawing Review (PTO-948)                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4)                                                                                                                                                                |                                                                      |  |  |  |
| Notice of Draftsperson's Patent Drawing Review (PTO-948)     Information Disclosure Statement(s) (PTO/SB/08)     Paper No(s)/Mail Date 12/08/2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5) Notice of Informal P                                                                                                                                           |                                                                      |  |  |  |

Art Unit: 3663

#### **DETAILED ACTION**

## Response to Arguments

- 1. Applicant's amendments to claim 55 are sufficient to overcome the rejection under 35 U.S.C. 101, and as such, the rejection has been withdrawn.
- 2. Applicant's arguments with respect to the rejection of claims 1-3, 6, 9-15, 18, 19, 22, 25, 27, 28, 30, 39-46, 49, 51, 54, 55, 59, 63, 65, and 66, filed 03/07/2011, have been fully considered but they are not persuasive.
- 3. Applicant argues that Bennett does not teach calculating drive commands for a seismic source control element and a streamer control element. Firstly, Bennett is not cited as teaching calculating drive commands for a streamer control element. Zajac is cited to teach this element of the claim. Secondly, Applicant's argument that Bennett's teaching of calculating drive commands for the vessel to control the position of the source is not the same as calculating drive commands for a seismic source control element is not persuasive. The Examiner is reading a source control element as an element of the survey which controls the position of the source. The vessel clearly controls the position of the source, and furthermore Bennett teaches that the vessel is used to control the position of the source. Thus Bennett's teachings of calculating drive commands for the vessels to control the position of the source reads on the Applicant's limitation of calculating drive commands for a seismic source control element.
- 4. In the interest of furthering prosecution, however, a new rejection is made in view of the amendments claim 51 to more closely align the rejection with that which the Applicant views as his invention.

Art Unit: 3663

5. Applicant's arguments with respect to claims 6 and 65 are moot in view of new rejections of each of said claims.

- 6. Applicant's arguments that claims 4, 5, 7, 8, 16, 17, 20, 21, 26, 31, and 53, which depend from the previously argued claims, are allowable for the aforementioned reasons are not persuasive. See explanation above.
- 7. The Examiner thanks the Applicant for bringing the minor error with regards to claims 21, 26, and 31. The rejection is in fact over Zajac *in view of Bennett*, and further in view of Armstrong as the Applicant assumed. Likewise claims 32-37 and 61 are rejected over Zajac *in view of Bennett*, and further in view of Onat.
- 8. Applicant argues that Onat does not teach activating a selected portion of the sources as cited in claims 32 and 37, and also that Onat does not teach activating sources when the selected portion is within the vicinity of desired cross line positions.
- 9. Onat clearly teaches activating a selected portion of the sources (see Figures 1-
- 4). The fact that Onat is directed to beamforming is irrelevant. Onat "activates one of a plurality of subsets of the elements" (Col 2, line 3). Onat also teaches activating sources when the selected portion is within the vicinity of the desired cross line position. As can be seen in both the figures and the description of Onat, the sources are activated in a specific pattern. In order for the method of Onat to work, the sources must necessarily be in the desired crossline position at the time of firing or else the method would not function to produce the desired results.
- 10. Applicant argues that Zajac does not teach steering the selected portion within a cross line corridor to the vicinity of the desired cross line positions. Zajac does teach

Art Unit: 3663

this as shown in the previous rejection. Furthermore it teaches "the actual positions of vessel, streamers, ASPDs and array geometry are compared to *the desired vessel/streamers/ASPD positions* and array geometry and corrective position commands are set to the control elements *to move the vessel/streamers ASPDs to the desired position and array geometry*" (Col 8, lines 61-67). The positions of Zajac include both inline and crossline positions. Thus Zajac does teach the required element.

Page 4

- 11. Applicant's arguments that claims 47, 56-58, 60, 62, 64, and 67 which depend from the previously argued claims, are allowable for the aforementioned reasons are not persuasive. See explanation above.
- 12. Finally, the Examiner acknowledges the typo in the number of the Petersen patent and apologizes for the confusion.

### Claim Rejections - 35 USC § 103

- 13. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
  - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 14. Claims 1-3, 9-15, 18, 19, 22, 25, 27, 28, 30, 39-46, 49, 54, 55, 59, 63, and 66 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zajac (6691038) in view of Bennett (6590831).
- 15. With respect to claim 1, Zajac teaches collecting input data from a seismic survey spread having a plurality of spread control elements (Col 4, lines 52-54), a plurality of

Art Unit: 3663

navigation nodes (Col 7, lines 22-25; Col 9, lines 4-12), and a plurality of seismic sources (Col 6, lines 40-42) and seismic streamers (Col 4, lines 51-52) containing receivers (hydrophones) (Col 1, lines 34-35), input data including: navigation data for the navigation nodes (Col 2, lines 5-59), operating states from sensors associated with the spread control elements (Col 5, lines 19-20; Col 8, lines 23-25; Col 7, lines 47-49; Col 9, lines 34-36), environmental data for the survey (Col 2, lines 61-62; Col 7, lines 42-46), and survey design data (Col 2, lines 62-64; Col 9, lines 10, 20), estimating positions of the receivers using the navigation data, the operating states, and the environmental data (Col 5, lines 5-7; Col 8, lines 29-31); determining optimum tracks for and receivers using the estimated positions and a portion of the input data that includes at least the survey design data (Col 5, line 7, Col 8, lines 7-9); and calculating drive commands for at least two of the spread control elements using the determined optimum tracks (Col 5, lines 8-10), wherein at least one of the spread control elements comprise a streamer control element (Col 7, lines 1-12). However, it does not teach estimating the positions of the seismic sources, determining the optimal paths for the seismic sources, and calculating drive commands for a seismic source control element. 16. Bennett teaches estimating the positions of the seismic sources (Col 9, lines 30-32, 59-66), determining the optimal paths for the seismic sources (Col 9, lines 5-8; Col 10, lines 55-56), and calculating drive commands for a seismic source control element (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the

time of the invention to modify the system of Zajac with the source control of Bennett

Art Unit: 3663

since such a modification would have given improved accuracy in the determination of subsurface features and better midpoint coverage of the surveyed area.

- 17. With respect to claim 2, it is inherent that the master controller (Col 5, line 11) of Zajac contains instructions for performing the steps which it performs in the method of claim 1 using the navigation data (Col 8, lines 29-30), the operating states (Col 5, lines 19-22), the environmental data (Col 8, lines 31-32) and the survey design data (Col 8, lines 23-25, 33) as inputs. Thus the estimating, determining, and calculating steps are performed by this "transfer function".
- 18. With respect to claim 3, Zajac teaches the positions are estimated according to a spread model within the transform function, and the optimum tracks are input to the spread model for calculation of the drive commands (Col 9, lines 41-42).
- 19. With respect to claim 9, Zajac teaches the drive commands include commands for controlling at least one vessel propeller, vessel thruster, spread component steering device (Col 8, lines 64-67), or vessel cable winch.
- 20. With respect to claim 10, Zajac teaches the sensors associated with the spread control elements include one or more sensor types of tension, water flow rate (Col 9, lines 34-36), inclination, orientation, acceleration or combinations thereof.
- 21. With respect to claim 11, Zajac teaches the collected environmental data includes one or more data types of current (Col 2, line 61), salinity (Col 2, lines 61-62), temperature (Col 2, line 61), pressure, speed of sound, wave height, wave frequency, wind speed (Col 2, line 61), and wind direction.

Art Unit: 3663

22. With respect to claim 12, Zajac teaches the survey design data is selected from spread tracks, performance specifications (CoI 2, lines 62-64), and survey objectives, wherein the performance specifications are selected from drag and maneuvering characteristics for the vessel (CoI 2, line 64), steerable cable devices (CoI 8, lines 23-25), steerable seismic source devices, and deflectors, drag characteristics for the towed cables (CoI 2, lines 62-64; CoI 8, lines 23-25), seismic sources, and floatation devices, and winch operating characteristics.

- 23. With respect to claim 13, Zajac teaches the survey design data includes one or more data types of area, depth (Col 9, line 10), area rotation or shooting orientation, line coordinates, required coverage, local constraints, optimizing factors and historical data (Col 9, line 20).
- 24. With respect to claim 54, Zajac teaches the collected input data includes one or more data types of pre-survey, operator input (Col 8, line 9), present survey, near-real time, real-time survey (Col 8, line 3), and simulated survey.
- 25. With respect to claim 14, Zajac teaches the operator input data includes spread parameter settings (Col 8, lines 7-9) and environmental data, and wherein the presurvey data includes environmental sensor data (Col 2, 61-66).
- 26. With respect to claim 15, Zajac teaches the real-time survey data includes one or more data types of cable tension, water flow rate (Col 9, lines 34-36), inclination, orientation, acceleration, velocity, position (Col 9, lines 10-12), spread control element setting, environmental data, seismic signal and noise data, and operator input.

Art Unit: 3663

- 27. With respect to claims 18 and 22, Zajac teaches the spread model is a hydrodynamic force model of the spread components, a pure stochastic model of the spread components, employing one of the L-norm fitting criteria, or a neural network (Col 9, lines 41-42).
- 28. With respect to claim 19, Zajac teaches the force model contains marine current data (Col 9, lines 41-43).
- 29. With respect to claim 25, Zajac teaches towing a plurality of seismic survey spread elements generally behind a vessel having one or more spread control elements (Col 4, lines 51-54; Col 6, lines 34-57); providing a first set of desired coordinate positions of at least two of the spread control elements (Col 5, line 7; Col 8, lines 11-15), wherein the set of desired coordinate positions is determined using navigation data for a plurality of navigation nodes, operating states from sensors, environmental data for a seismic survey, and survey design data (Col 8, line 57-Col 9, line 58) independently measuring the a set of actual coordinate positions of the at least two of the spread control elements (Col 4, lines 66-67; Col 8, lines 15-17), therein at least one of the control elements is a streamer control element (Col 7, lines 1-12); calculating a difference between the set of desired coordinate positions and the set of actual coordinate positions to form residuals (Col 5, lines 5-7; Col 8, lines 29-31); and using the residuals as set points in one or more controllers calculating to calculate drive commands for the at least two of the spread control elements (Col 5, line 8; Col 8, lines31-35). However, it does not teach one of the spread control elements is a source control element.

Art Unit: 3663

30. Bennett teaches (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the source control of Bennett since such a modification would have given improved accuracy in the determination of subsurface features and better midpoint coverage of the surveyed area.

- 31. With respect to claim 27, Zajac teaches planning a path for the vessel within a constraint corridor that allows steering available in the spread control elements to achieve a target shape and track for the seismic survey spread elements (Col 8, lines 1-38).
- 32. With respect to claim 28, Zajac teaches estimating optimum tracks for tow points of the spread control elements that provide a cross-line component relative to an optimum track for the spread control elements (Col 8, lines 11-15).
- 33. With respect to claim 30, Zajac teaches each of the drive commands is used to control at least one of position Col 9, lines24-25), speed (Col 9, lines 24-28), and heading of the vessel.
- 34. With respect to claim 39, Zajac teaches a vessel control element and a streamer control element in coordination with each other (Col 8, lines 45-51). However, it does not teach a vessel control element, a source control element, and a streamer control element in coordination with each other.
- 35. Bennett teaches a vessel control element, a source control element and a streamer control element in coordination with each other (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify

the method of Zajac with the control element coordination of Bennett since such a modification would have provided additional flexibility and control over the array.

- 36. With respect to claim 40, Zajac teaches a vessel control element (Col 8, lines 48,
- 65). However it does not teach a vessel control element and a source control element in coordination with each other.
- 37. Bennett teaches a vessel control element and a source control element in coordination with each other (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the control element coordination of Bennett since such a modification would have provided additional flexibility and control over the array.
- 38. With respect to claim 41, Zajac teaches the spread control elements comprise a vessel control element and a streamer control element in coordination with each other (Col 8, lines 65-66).
- 39. With respect to claim 42, Zajac teaches a streamer control element (Col 8, lines 65-66). However it does not teach a streamer control element and a source control element in coordination with each other.
- 40. Bennett teaches a streamer control element and a source control element in coordination with each other (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the control element coordination of Bennett since such a modification would have provided additional flexibility and control over the array.

Art Unit: 3663

- 41. With respect to claims 43 and 44, Zajac teaches a vessel control element (Col 8, lines 48, 65). However, it does not teach the spread control elements comprise at least two vessel control elements in coordination with each other; one of the at least two vessel control elements is associated with a first vessel and another of the at least two vessel control elements is associated with a second vessel
- 42. Bennett teaches the spread control elements comprise at least two control elements in coordination with each other (Col 4, lines 20-58; Fig 1); one of the at least two vessel control elements is associated with a first vessel and another of the at least two vessel control elements is associated with a second vessel (Col 4, lines 20-58; Fig 1).
- 43. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the vessel control elements of Bennett since such a modification would have maximized the safety of the vessels, seismic assets, and crew while also minimizing deviations from desired spatial configuration of the assets.
- 44. With respect to claim 45, Zajac teaches providing a seismic survey spread having one or more vessels (Col 4, line 51) and one or more spread control elements (Col 4, lines 52-54), wherein the spread control elements comprise one or more vessel control elements (Col 4, lines 38-39), and one or more streamer control elements (Col 4, lines 52-54); and controlling the seismic survey spread (Col 8, lines 31-35). However, it does not teach one or more source control elements; and coordinating the

Art Unit: 3663

positioning of the vessel control elements, the source control elements and the streamer control elements.

- 45. Bennett teaches one or more source control elements (Col 10, lines 64-65); coordinating the positioning of the vessel control elements, the source control elements and the streamer control elements (Col 4, lines 20-58; Fig 1; Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the vessel control elements of Bennett since such a modification would have maximized the safety of the vessels, seismic assets, and crew while also minimizing deviations from desired spatial configuration of the assets.
- 46. With respect to claim 46, Zajac teaches providing a set of desired coordinate positions of the spread control elements (Col 5, line 7; Col 8, lines 11-15), wherein the set of desired coordinate positions is obtained from one or more data types selected from operating states from sensors associated with the spread control elements, environmental data for the survey and survey design data (Col 8, lines 1-29), independently measuring a set of actual coordinate positions and the set of actual coordinate positions of the spread control elements (Col 4, lines 66-67, Col 8, lines 15-17); calculating the difference between the set of desired coordinate positions and the set of actual coordinate positions to form residuals (Col 5, lines 5-7; Col 8, lines 29-31); and using the residuals as set points in one or more controllers to calculate drive commands for the spread control elements (Col 5, line 8; Col 8, lines 1-38).
- 47. With respect to claim 49, providing a seismic survey spread having one or more vessels (Col 4, line 51) and one or more spread control elements (Col 4, lines 52-54),

Art Unit: 3663

wherein the spread control elements comprise one or more vessel control elements (Col 4, lines 38-39), one or more streamer control elements (Col 4, lines 52-54). However, it does not teach one or more source control elements, and controlling the seismic survey spread by coordinating the positioning of the streamer control elements and the source control elements.

- 48. Bennett teaches one or more source control elements (Col 10, lines 64-65); coordinating the positioning of the source control elements and the streamer control elements (Col 4, lines 20-58; Fig 1; Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the vessel control elements of Bennett since such a modification would have maximized the safety of the vessels, seismic assets, and crew while also minimizing deviations from desired spatial configuration of the assets.
- 49. With respect to claim 55, Zajac teaches the measurements comprise current velocity (Col 7, line 44; Col 9, lines 19-20), wind velocity (Col 7, line 42), or combinations thereof.
- 50. With respect to claim 59, Zajac teaches providing a seismic survey spread having one or more vessels (Col 2, line 34), one or more source arrays (Col 6, lines 40-42), and one or more spread control elements (Col 4, lines 52-54), wherein the spread control elements comprise one or more vessel control elements (Col 8, lines 48, 65) and one or more streamer control elements (Col 7, lines 1-12); and coordinating the positioning of the vessel control element and the streamer control elements (Col 8, lines 45-51). However, it does not teach one of the spread control elements is a source

Art Unit: 3663

control element; steering the source array in a crossline motion using the source control element; and coordinating the positioning of the vessel control elements, the source control elements, and the streamer control elements.

- 51. Bennett teaches one of the spread control elements is a source control element (Col 10, lines 60-65); steering an array in a crossline motion using the source control element (Col 2, lines 30-46); and coordinating the positioning of the vessel control elements, the source control elements, and the streamer control elements (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the source control of Bennett since such a modification would have given improved accuracy in the determination of subsurface features and better midpoint coverage of the surveyed area. It would have been obvious to one of ordinary skill in the art that the well-known lateral positioning devices described in Bennett would be used in the source positioning also described by Bennett. It would have been obvious to one of ordinary skill in the art to use the lateral positioning devices described in Bennett since such a modification would have improved control and survey coverage. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify they method of Zajac with the control element coordination of Bennett since such a modification would have provided additional flexibility and control over the array along the optimal path.
- 52. It is inherent in the operation of a tow vessel that the vessel control elements be used to steer the inline motion of the arrays. The forward movement of the vessel inherently determines the inline movement and position of the arrays.

Art Unit: 3663

53. With respect to claim 63, Zajac teaches the seismic survey is controlled for reoccupying coordinates from a prior survey to achieve a 4D time-lapsed seismic survey (Col 2, lines 66-67).

- 54. With respect to claim 66, the spread control elements comprise a vessel control element (Col 8, lines 48, 65).
- 55. Claims 4, 5, 7, 16, and 53 are rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Brunet (6618321).
- 56. Zajac discloses the invention as discussed above. However, it does not disclose the spread model calculates a first set of estimated positions using input that includes at least the operating states and the environmental data, the navigation data includes a second set of estimated positions, and the first and second set of estimated positions are combined with the transform function to produce the estimated seismic source and receiver positions and predicted residuals; the predicted residuals are used to estimate a set of parameters that characterize the spread model, and the spread model parameters are used to calibrate the spread model; the optimum tracks are determined according to a weighting function within the transform function, wherein the weighting function receives as inputs the survey design data and the estimated positions; the simulated survey data includes one or more data types of simulated pre-survey, simulated operator input, simulated current survey, simulated near-real time survey, simulated real-time survey, and simulated environmental data; the positions are estimated according to a spread model used to predict residuals, and further

Art Unit: 3663

comprising: using the predicted residuals to estimate one or more parameters of the spread model; and feeding the parameters back into the spread model.

- 57. Brunet teaches the spread model calculates a first set of estimated positions using input that includes at least the operating states and the environmental data (Col 4, lines 39-41), the navigation data includes a second set of estimated positions (Col 4. lines 26-28), and the first and second set of estimated positions are combined with the transform function to produce the estimated source and receiver positions and predicted residuals; the predicted residuals are used to estimate a set of parameters that characterize the spread model, and the spread model parameters are used to calibrate the spread model (Col 5, lines 17-21); the optimum tracks are determined according to a weighting function within the transform function, wherein the weighting function receives as inputs the survey design data and the estimated positions (Col 4, lines 45-55; Col 5, lines 11-13); the simulated survey data includes one or more data types of simulated pre-survey, simulated operator input, simulated current survey, simulated near-real time survey, simulated real-time survey, and simulated environmental data (Col 2, lines 49-52); the positions are estimated according to a spread model used to predict residuals, and further comprising: using the predicted residuals to estimate one or more parameters of the spread model (Col 5, lines 17-21); and feeding the parameters back into the spread model (Col 4, lines 42-55).
- 58. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the predicted residuals of Brunet since such a modification would have led to more accurate positioning results. It would have

Art Unit: 3663

been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the weighted optimum track determination of Brunet since such a modification would have ensured that the most important factors were those which were taken most strongly into account in the path determination. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the simulated data of Brunet since such a modification would have given a good prediction of environmental factors to take into account for more accurate positioning of the streamers.

- 59. Claim 6 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Cretin (4862425).
- 60. Zajac as modified teaches the invention as discussed above. Furthermore it teaches using the predicted residuals are used to measure error states in the streamers (Col 5, lines 19-20; Col 10, lines 56-64). However, it does not teach the predicted residuals are used to estimate error states associated with one or more sensors that measure the environmental data.
- 61. Cretin teaches obtaining error states associated with one or more sensors that measure the environmental data (Abstract, lines 8-11). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the environmental sensor error detection of Cretin since such a modification would have reduced the chance for faulty environmental readings to lead to a faulty positioning command.

Art Unit: 3663

62. Claim 8 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Saban (5448233).

- 63. Zajac as modified teaches the invention as discussed above. However, it does not teach validating the calculated drive commands and delivering the validated drive commands to the spread control elements, whereby a desirable survey objective may be attained.
- 64. Saban teaches validating and subsequently executing drive commands (CoI 4, lines 21-24). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the command validation of Saban, since such a modification would have ensured collisions with obstacles or other components.
- 65. Claims 17 and 23 are rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Riley (7446706).
- 66. With respect to claim 17, Zajac as modified teaches the invention as discussed above. However, it does not teach the collected input data further includes raw seismic sensor data, and using the raw seismic sensor data to produce quality indicators for the estimated positions, the quality indicators selected from binning datasets, absolute noise data, signal-to-noise ratios, and seismic signal frequency content.
- 67. Riley teaches the collected input data further includes raw seismic sensor data, and using the raw seismic sensor data to produce quality indicators for the estimated

Art Unit: 3663

positions (Col 5, lines 61-66), the quality indicators selected from binning datasets, absolute noise data, signal-to-noise ratios, and seismic signal frequency content (Col 6, lines 3-67; Col 7, lines 1-15). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the quality indicators of Riley since such a modification would have provided data for error estimates in the processing of the data.

- 68. With respect to claim 23, Zajac as modified teaches a seismic survey spread having a plurality of spread control elements (Col 4, lines 51-54; Col 6, lines 34-57), a plurality of navigation nodes (Col 7, lines 22-25; Col 9, lines 4-12), and a plurality of seismic sources (Col 6, lines 40-42) and seismic streamers (Col 4, lines 51-52) containing receivers (hydrophones) (Col 1, lines 34-35), a database for receiving input data (Col 4, lines 63-64; Col 8, lines 29-31); and a streamer control element (Col 8, lines 65-66). However, it does not have computer readable instructions for performing the method as taught in claim 1; and a seismic source control element.
- 69. Bennett teaches a seismic source control element (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Bennett with the source control element of Bennett since such a modification would have improved source control and lead to more accurate positioning and better coverage.
- 70. Riley teaches a computer readable medium having computer executable instructions (Col 13, lines 42-67; Col 14, lines 1-12). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with

Art Unit: 3663

the computer readable medium of Riley since such a modification would have allowed the method to be portable and executable on multiple systems.

- 71. Claim 20 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Gikas et al, "Reliability analysis in dynamic systems: Implications for positioning marine seismic networks", *Geophysics*, Vol. 64, No. 4, July-August 1999, pgs. 1014-1022.
- 72. Zajac as modified teaches the invention as discussed above. However, it does not teach the spread model is a pure stochastic model of the spread components (pg 1018, Col 1, lines 6-28).
- 73. Gikas teaches the spread model is a pure stochastic model of the spread components (pg 1018, Col 1, lines 6-28). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the stochastic spread model of Gikas since such a modification would have given easily understandable measures of both internal and external reliability and can be used in both the design of seismic spread and in real time to ensure that appropriate quality control is possible.
- 74. Claim 21 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett, and further in view of Armstrong et al., "The best parameter subset using the Chebychev curve fitting criterion", *Mathematical Programming*, Vol. 27, No. 1, September 1983, pages 64-74.

Art Unit: 3663

75. Zajac as modified teaches the invention as discussed above. However, it does not teach the spread model employs one of the L-norm fitting criteria.

- 76. Armstrong teaches that the L-norm fitting criterion is a widely studied curve fitting method (Abstract). Since Zajac gives a set of points for the positions of current and legacy data for the optimum spread component positions (Col 8, lines 1-15), it would have been obvious to one of ordinary skill in the art at the time of the invention to modify method of Zajac to use the L-norm fitting criteria of Armstrong to calculate the spread model by fitting the curve to the given points.
- 77. Claim 26 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Rau (6292436).
- 78. Zajac as modified teaches the invention as discussed above. However, it does not teach at least one of the controllers uses a PID correction method.
- 79. Rau teaches the invention as discussed above. However, it does not teach at least one of the controllers uses a PID correction method (Col 30, lines 63-66). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the PID algorithm of Rau since such a modification would have given a good positioning device command algorithm.
- 80. Claim 31 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac and further in view of Semb (6681710).

Art Unit: 3663

81. Zajac as modified teaches the invention as discussed above. However, it does not teach the drive commands include commands for controlling at least one vessel propeller, vessel thruster, vessel thruster setting, vessel propeller pitch, vessel propeller rotation speed, vessel rudder angle or combinations thereof.

- 82. Semb teaches the drive commands include commands for controlling at least one vessel propeller, vessel thruster, vessel thruster setting, vessel propeller pitch, vessel propeller rotation speed, vessel rudder angle or combinations thereof (Col 3, lines 34-36). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the vessel commands of Semb since such a modification would have allowed for more accurate positioning of the survey.
- 83. Claims 32-37 and 61 are rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Onat (6088298).
- 84. With regards to claim 32, Zajac teaches towing a plurality of seismic survey sources (Col 6, lines 40-42) and seismic streamers (Col 4, lines 51-52) containing receivers (hydrophones) (Col 1, lines 34-35) generally behind a vessel (Col 4, line 51) having one or more spread control elements (Col 4, lines 52-54). However, it does not teach estimating one or more positions of the sources based on data received from one or more reference points on a seismic survey spread with respect to the earth; and activating only a selected portion of the sources that are at the proximities of the desired cross line positions.

Art Unit: 3663

85. Bennett teaches estimating one or more positions of the sources based on data received from one or more reference points on a seismic survey spread with respect to the earth (Col 6, lines 4-11; Col 9, lines 30-32). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the source positioning of Bennett since such a modification would have improved the position data and control flexibility.

- 86. Onat teaches activating only a selected portion of the sources that are at the proximities of the desired cross line positions (Col 2, lines 55-56, 61-63).
- 87. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the source activation of Onat since such a modification would have allowed for the modification of the operational center frequency of the transducer array without excessive movement of the array.
- 88. With regards to claims 33-36, Zajac as modified teaches the invention as discussed above. Furthermore, it teaches seismic streamers containing receivers (hydrophones) (Col 1, lines 34-35) in a linear array (Fig 1); collecting input data from a seismic survey spread having a plurality of spread control elements (Col 4, lines 52-54), a plurality of navigation nodes (Col 2, lines 5-59; Col 7, lines 22-25; Col 9, lines 4-12), and a plurality of sources (Col 6, lines 40-42) and seismic streamers (Col 4, lines 51-52) containing receivers (hydrophones) (Col 1, lines 34-35); estimating positions of the sources and receivers using the navigation data, the operating states, and the environmental data (Col 5, lines 5-7; Col 8, lines 29-31); determining optimum tracks for the sources and receivers using the estimated positions and a portion of the input data

Art Unit: 3663

that includes at least the survey design data (Col 5, line 7, Col 8, lines 7-9); and calculating drive commands for at least two of the spread control elements using the determined optimum tracks (Col 5, lines 8-10); and the at least one of the spread control elements is a spread control element for a vessel or a spread control element for a receiver (Col 4, lines 52-54). However, it does not teach the number of the selected portion of the sources is less than the total number of sources; the selected portion of the sources form at least one linear source array parallel to the streamers.

- 89. Onat teaches the number of the selected portion of the sources is less than the total number of sources (Col 2, lines 55-56, 61-63; Fig 1); the selected portion of the sources form at least one linear source array parallel to the streamers (Col 2, lines 55-56, 61-63; Fig 1).
- 90. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the source activation of Onat since such a modification would have allowed for the modification of the operational center frequency of the transducer array without excessive movement of the array.
- 91. With regards to claim 37, Zajac teaches a vessel (Col 4, line 51) a plurality of seismic survey sources (Col 6, lines 40-42) and seismic streamers (Col 4, lines 51-52) containing receivers (hydrophones) (Col 1, lines 34-35) generally towed behind the vessel (Col 4, line 51) and having one or more spread control elements (Col 4, lines 52-54); a controller coupled to the seismic survey sources, receivers and the spread control elements (Col 4, lines 56-58). However, it does not teach the controller is configured to estimate one or more positions of the sources; and activating only a selected portion of

Art Unit: 3663

the sources that are at the proximities of the desired cross line positions; and a controller that activates the sources.

- 92. Bennett teaches the controller is configured to estimate one or more positions of the sources based on data received from one or more reference points on a seismic survey spread with respect to the earth (Col 6, lines 4-11; Col 9, lines 30-32). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the source positioning of Bennett since such a modification would have improved the position data and control flexibility.
- 93. Onat teaches activating only a selected portion of the sources that are at the proximities of the desired cross line positions (CoI 2, lines 55-56, 61-63); and a controller that activates the sources (CoI 2, line 55).
- 94. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the source activation of Onat since such a modification would have allowed for the modification of the operational center frequency of the transducer array without excessive movement of the array.
- 95. With regards to claim 61, Zajac teaches steering the selected portion within a cross line corridor to the vicinity near the desired cross line positions (Col 8, lines 1-38, 61-67).
- 96. Claims 47, 62, 64, and 65 are rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Lambert (2005/0180263).

Page 26

Art Unit: 3663

over the array.

With respect to claim 47, Zajac teaches providing a seismic survey spread 97. having one or more vessels (Col 4, line 51) and one or more spread control elements (Col 4, lines 52-54), wherein the spread control elements comprise one or more vessel control elements (Col 4, lines 38-39), and one or more streamer control elements (Col 4. lines 52-54). However, it does not teach one or more source control elements. estimating one or more positions of the spread components based on data received from one or more acoustic positioning receivers and one or more reference points on the seismic survey with respect to the earth; controlling the seismic survey spread by coordinating the positioning of the vessel control elements and the source control elements; and the sensors measure tension, vertical inclination, body orientation, acceleration or combinations thereof associated with the spread control elements. 98. Bennett teaches one or more source control elements (Col 10, lines 64-65); and coordinating the positioning of the vessel control elements and the source control elements based on the estimated positions (Col 4, lines 20-58; Fig 1; Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the source control elements of Bennett since such a modification would have maximized the safety of the vessels, seismic assets, and crew while also minimizing deviations from desired spatial configuration of the assets. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the control element coordination of Bennett since such a modification would have provided additional flexibility and control

Art Unit: 3663

99. Lambert teaches estimating one or more positions of the spread components based on data received from one or more acoustic positioning receivers ([0007], lines 7-15) one or more reference on the seismic survey with respect to earth ([0007], lines 3-7); and the sensors measure tension, vertical inclination, body orientation, acceleration or combinations thereof associated with the spread control elements ([0043], lines 36-38). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the acoustic positioning of Lambert since such a modification would have provided a relatively low cost and reliable way of determining positions of the spread components. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the earth reference points of Lambert since such a modification would have enabled more accurate repeat surveying.

- 100. With respect to claims 62 and 64, Zajac as modified teaches the invention as discussed above. However, it does not teach estimating one or more positions of the spread control elements based on data received from one or more acoustic positioning receivers and one or more reference points on the seismic survey spread with respect to the earth, wherein positioning of the streamer control elements and the source control elements are coordinated based on the estimated positions.
- 101. Lambert teaches estimating one or more positions of the spread components based on data received from one or more acoustic positioning receivers ([0007], lines 7-15) and one or more reference on the seismic survey with respect to earth ([0007], lines 3-7). It would have been obvious to one of ordinary skill in the art at the time of the

Art Unit: 3663

invention to modify the method of Zajac with the acoustic positioning of Lambert since such a modification would have provided a relatively low cost and reliable way of determining positions of the spread components. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the earth reference points of Lambert since such a modification would have enabled more accurate repeat surveying.

- 102. Bennett teaches coordinating the positioning of the vessel control elements, the source control elements, and the streamer control elements (Col 10, lines 60-65). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify they method of Zajac with the control element coordination of Bennett since such a modification would have provided additional flexibility and control over the array along the optimal path.
- 103. Claims 51 and 68 are rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and Hocquet (7156035).
- 104. With respect to claim 51, Zajac teaches providing a seismic survey spread (Col 4, lines 49-57) having a first vessel (Col 4, line 51) having a first vessel control element (Col 4, lines 38-39) and a streamer control element (Col 4, lines 52-54). However, it does not teach a second vessel, a second vessel control element, a first source control element and a second source control element, and controlling the seismic survey by coordinating the first vessel control element, second vessel control elements, first source control element and second source control element.

Art Unit: 3663

105. Bennett teaches a second vessel control element associated with a second vessel (Col 4, lines 20-58; Fig 1); coordinating the positioning of at least two positioning control elements (Col 4, lines 20-58; Fig 1). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the vessel control elements of Bennett since such a modification would have maximized the safety of the vessels, seismic assets, and crew while also minimizing deviations from desired spatial configuration of the assets.

- 106. Hocquet teaches that multiple control elements cam be used to control seismic sources, specifically a first and second control device (Col 5, lines 57-58). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the multiple source control elements of Hocquet since such a modification would have led to a more balanced and easier to control survey.
- 107. Zajac further teaches coordinating the positioning of the vessel control element and the individual streamer control elements based on the estimated positions to provide additional flexibility and control (Col 8, lines 1-35, 45-51). It would have been obvious to one of ordinary skill in the art at the time of the invention, especially in view of Hocquet's teaching that the similar devices can be used to both positioning streamers and for positioning sources (Col 5, lines 57-58), to coordinate the vessel control elements and the source control elements.
- 108. With respect to claim 68, Zajac as modified teaches the invention as discussed above. However, it does not teach, the source control element is coupled between a seismic source and the vessel.

Art Unit: 3663

109. Hocquet teaches the source control element is coupled between a seismic source and the vessel (Col 1, lines 51-52). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the source control element of Hocquet since such a modification would have enabled more control over individual source element positioning.

- 110. Claims 56-58 and 67 are rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and Onat and further in view of Lambert (2005/0180263).
- 111. Zajac as modified teaches the invention as discussed above. However, it does not teach teaches the reference points comprise at least two reference points wherein each reference point is located on opposite corners of the seismic spread; wherein each reference points is located at a corner of the seismic survey spread; estimating positions of the sources comprises estimating positions of the acoustic positioning receivers on the sources; and estimating the positions of the sources based on data received from one or more acoustic positioning devices.
- 112. Lambert teaches the reference points comprise at least two reference points wherein each reference point is located on opposite corners of the seismic spread ([0023]); wherein each reference points is located at a corner of the seismic survey spread ([0023]); and estimating positions of the sources comprises estimating positions of the acoustic positioning receivers on the sources ([0002], lines 19-23); and estimating the positions of the sources based on data received from one or more acoustic positioning devices ([0002], lines 19-23). It would have been obvious to one of ordinary

Art Unit: 3663

skill in the art at the time of the invention to modify the system of Zajac with the reference points of Lambert since such a modification would have provided accurate earth based position coverage at both the front and rear positions of the spread. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the method of Zajac with the acoustic positioning of Lambert since such a modification would have provided a relatively low cost and reliable way of determining positions of the spread components.

- 113. Claim 60 is rejected under 35 U.S.C. 103(a) as being obvious over Zajac in view of Bennett and further in view of Petersen (7047898).
- 114. Zajac as modified teaches the invention as discussed above. However, it does not teach a winch system relative to one or more outer streamer tow ropes.
- 115. Petersen teaches a winch system relative to one or more outer streamer tow ropes (Col 3, lines 11-13). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Zajac with the winches of Petersen since the winches are already present in most surveys to deployment and retrieval of the cables, and using available equipment would reduce the cost of the survey.

#### Conclusion

116. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

Art Unit: 3663

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to KRYSTINE BREIER whose telephone number is (571)270-7614. The examiner can normally be reached on Monday thru Thursday, 8am-5:30pm EST and alternate Fridays 8am-4:30pm EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jack Keith can be reached on 571-272-6878. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 3663

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/K. B./ Examiner, Art Unit 3663

/JACK KEITH/ Supervisory Patent Examiner, Art Unit 3663