

UNIVERSIDADE FEDERAL DO ABC GRADUAÇÃO EM ENGENHARIA DE MATERIAIS

FEITO DOS PROCESSOS DE SOLDAGEM TIG E LASER NA FORMAÇÃO DE FERRITA DELTA NO AÇO INOXIDÁVEL 304L

Jefferson Douglas Santos de Melo – RA: 11201721563

Prof. Dr. Mohammad Masoumi

Type 304 Stainless Steel Chemical Composition, ^[4] %						
Standard AISI (UNS) $C, \le Si, \le Mn, \le P, \le S, \le Cr$ Ni						
ASTM A276/A276M 304 (S30400) 0.08 1.00 2.00 0.045 0.030 18.0-20.0 8.0-11.0						

Diagrama de fases Fe-Cr.

Fonte: Metals Handbook, 1973.

Isotermas do diagrama de fases Fe-Cr-Ni em diferentes temperaturas.

Fonte: Ansara et. al. (1985).

Microestrutura de um aco inoxidável 304H, contendo austenita, fase sigma e ferrita delta.

Fonte: Jordan e Maharaj (2020).

Diagrama de Schaeffler.

Adaptado de Schaeffler, 1949.

$$Cr_{eq} = \%Cr + \%Mo + 1,5\%Si + 0,5\%Nb$$

$$Ni_{eq} = \%Ni + 30\%C + 0.5\%Mn$$

Proceptions planeauses of a phase in accession in this main. Without hasting (a), the 5 ferror proceptions or all the handless that a plan proception is restricted in the proception of the 10 ferror process. The other than plan plane proception is the right proception or the right principle in the process of the right principle in the process of the right principle in the process of the right principle in the p

Representação dos modos de solidificação na seção vertical do diagrama ternário Fe-Cr-Ni para 70% de ferro.

Fonte: Modenesi (2001).

Ferrita delta

A ferrita delta aparece nos aços inoxidáveis austeníticos devido à presença de elementos estabilizadores de ferrita. A maneira pela qual a ferrita delta é formada, conforme item anterior, depende do modo de solidificação do aço inoxidável.

Quando esse microconstituinte está presente em teores até 10% em aços inoxidáveis fundidos, ou 3% em aços inoxidáveis completamente solubilizados, sua presença é aceitável, e pode trazer beneficios, como a redução de trincas a quente na soldagem (PESSANHA, 2011).

Microstructure of the intesface between AISI 321 55 and weld metal; (a) OM and (b) FESEM micrograph.

Em nenhuma das três amostras foi observada a formação de carbetos de cromo do tipo $Cr_{23}C_6$, responsável pela depleção de Cr nos contornos de grão, prejudicando a resistência do aço inoxidável à corrosão intergranular em um fenômeno denominado sensitização. De acordo com o diagrama TTT (tempo-temperatura-transformação) mostrado na Figura 9, a precipitação de $Cr_{23}C_6$ de fato não era esperada para as amostras, pois todas possuíam teor de carbono inferior a 0.03%. Além disso, o tempo a qual o material foi submetido às temperaturas de sensitização (500-900 °C) não foi suficiente para a precipitação dos carbetos de cromo, pois a soldagem era automática.

Diagrama TTT do Cr23Ce nos acos inoxidáveis da série 304.

Fonte: Davis (2006).

MATERIAIS E MÉTODOS

Amostra	/ c \	Mn	Si	N	/ Cr \	Ni	Mo	Co	Nb
Tipo 1	0,0276	1,340	0,490	0,0004	18,11	8,02	0,066	0,144	0,000
Tipo 2	0,0202	1,270	0,62	0,0004	18,13	8,06	0,123	0,208	0,000
Tipo 3	0,0264	1,270	0.420	0,0004	18,16	8,00	0,162	0,181	0,000

Fonte: autoria progria

Características de cada amostra estudada.

Amostras	Condição		
Tipo 1	Produzida por soldagem TIG sem tratamento térmico de solubilização		
Tipo 2	Produzida por soldagem TIG com tratamento térmico de solubilização		
Tipo 3	Produzida por soldagem laser sem tratamento térmico de solubilização		

Fonte: autoria propria.

Três diferentes aços inoxidáveis usados neste trabalho

Tratamento térmico

Foi retirada uma amostra com tratamento térmico de solubilização realizado em um formo de indução com atmosfera controlada de H₂, pertencente à linha de produção de uma das formadoras com soldagem TIG. A potência do forno foi ajustada para que a temperatura atingisse 1040 °C, minimo necessário para a solubilização adequada dos carbetos de cromo do tipo Cr₂₃C₆. O tubo ficou 15 segundos no interior do forno e 30 segundos no túnel de resfriamento com gás H₂.

Parâmetros da soldagem TIG - amostra 1.

	1º tocha	2ª tocha	3ª tocha
Corrente (A)	200	170	165
Voltagem (V)	13	14	10
Vazão do gás de proteção (L/min)	7	8	7
Velocidade (mm/min)		4000	400
Aporte térmico por tocha (J/mm)	23,40	21,42	14,85
Aporte térmico total (J/mm)	59,67		-

Fonte: autoria própria.

Parametros da soldagem TIG - amostra 2.

	1º tocha	2ª tocha	3ª tocha
Corrente (A)	230	170	240
Voltagem (V)	13	14	13
Vazão do gás de proteção (L/min)	15	10	15
Velocidade (mm/min)		4000	2.4
Aporte térmico por tocha (J/mm)	26,91 21,42 28		28,08
Aporte térmico total (J/mm)	76,41		

Fonte: autoria própria.

Parâmetros da soldagem Laser - amostra 3.

Altura da tocha (mm)	5,90
Potência (kW)	4,575
Gás de proteção (L/min)	15
Gás de purga (L/min)	40
Velocidade (mm/min)	6500
	10000

Velocidade (mm/min)	6500
Fator K	457
Aporte térmico (J/mm)	25,34

TIG sem treatamento Weld

TIG com Tratamento WEL

Laser Welded

70

576	Lancas and Lores					377
	Austenite		Ferrite			
Laser	0,99521	0,78215	0,54827		0,187887026	18,789%
TIG sem	0,98366	0,72858	0,55786		0,196371035	19,637%
TIG com	0,9936	0,74975	0,52781		0,185048669	18,505%
₫ _ <i>V</i>	= 1.4 <i>I</i> _γ	=		$(I_{\gamma}^{111} + I$		
γ	$= \frac{1}{I_{\alpha} + 1.4I_{\gamma}}$	$[(I_{\alpha}^{1})]$	$I_{\alpha}^{10} + I_{\alpha}^{200})/2$	2] + 1.4	$4[(I_{\gamma}^{111}+I_{\gamma}^{20})]$	$^{(0)}/2$]
	f f				1	

Teores de ferrita delta quantificados pelo software ImageJ.

	Região analisada					
Amostra	Zona fundida	ZTA	Metal base			
TIG sem T.T.	7,85%	8,45%	1,32%			
TIG com T.T.	6,85%	6,86%	1,23%			
Laser	1,04%	N/A	0,56%			

Fonte: autoria própria.

Teores de ferrita delta quantificados por difração de raios-X.

Amostra	Teor de δ
TIG sem T.T.	20,33%
TIG com T.T.	20,76%
Laser	21,12%

304 TIG sem

304 Tig com T 100 µm 200 pm

304 Tig com T ferrita delta

304 Tig com T ferrita delta

304 Laser 500 µm

RESULTADOS

Metalografías da amostra de solda TIG, sem tratamento térmico, do metal base, da zona termicamente afetada (ZTA), e da zona fundida.

a. Metal base b. ZTA

c. Zona fundida

Zona fundida com maior ampliação, em que FL = Ferrita "lathy"; AW = Austenita de Widmanstätten, FV = ferrita vermicular.

Metalografias da amostra de solda TIG, com tratamento térmico, da zona fundida, zona termicamente afetada, e do metal base.

b. ZTA a. Metal base

Metalografías da amostra de solda TIG, com tratamento térmico, da zona fundida, zona termicamente afetada. e do metal base.

c. Zona fundida

 d. Ampliação da zona fundida, em que FL = ferrita "lathy", AW = austenita de Widmanstatten

e. Face da solda

f. Raiz da solda

Laser

a. Metal base

b. Região de transição

c. Zona fundida

Teores de ferrita delta quantificados pelo software ImageJ.

	Região analisada					
Amostra	Zona fundida	ZTA	Metal base			
TIG sem T.T.	7,85%	8,45%	1,32%			
TIG com T.T.	6,85%	6,86%	1,23%			
Laser	1,04%	N/A	0,56%			

Perfis de microdureza para as amostras 1, 2 e 3.

Resultados		997.53	The second	PT
 RC #40011E0/Cl/O4 	0.00	TATAL PROPERTY.	1 1 No. CO. CO.	1.00

Amostra 1 - TIG sem T.T.	Amostra 2 - TIG com T.T.	Amostra 3 - Laser
	(ATTOM/ATTAIL)	sem T.T.
1,556	1,530	1,524
1,618	1,638	1,482
0,672	0,778	0,907
0,528	0,920	0,871
1,233	0,955	0,990
Aprovado	Aprovado	Aprovado
	1,618 0,672 0,528 1,233	1,618 1,638 0,672 0,778 0,528 0,920 1,233 0,955

UNIVERSIDADE FEDERAL DO ABC GRADUAÇÃO EM ENGENHARIA DE MATERIAIS

FEITO DOS PROCESSOS DE SOLDAGEM TIG E LASER NA FORMAÇÃO DE FERRITA DELTA NO AÇO INOXIDÁVEL 304L

Jefferson Douglas Santos de Melo – RA: 11201721563

Prof. Dr. Mohammad Masoumi