Pattern Classification

03. Pattern Classification Methods

AbdElMoniem Bayoumi, PhD

Acknowledgment

These slides have been created relying on lecture notes of Prof. Dr. Amir Atiya

\mathcal{C}

Minimum Distance Classifier

Choose a center or a representative pattern from each class $\rightarrow V(k)$, where k is the class index

Minimum Distance Classifier

Given a pattern X that we would like to classify

Minimum Distance Classifier

Compute the distance from \underline{X} to each center $\underline{V}(k)$:

Recap: Euclidean Distance

2D:

$$d^2 = (y_2 - x_2)^2 + (y_1 - x_1)^2$$

N-dimensions:

sions:
$$d^2(\underline{X},\underline{Y}) = \sum_{i=1}^N (Y_i - X_i)^2$$

Minimum Distance Classifier

Find k corresponding to the minimum distance:

$$\mathbf{K} = \underset{1 \le k \le K}{\operatorname{argmin}} d(k)$$

Then our classification of is \underline{X} class C_{K}

corresponding to the nearest class center X is classified as belonging to the class

Class Center Estimation

Let $\underline{X}(m) \in C_1$,

$$\underline{V}(1) = \frac{1}{M_1} \sum_{m=1}^{M_1} \underline{X}(m)$$

This corresponds to component-wise averaging

$$V_i(1) = \frac{1}{M_1} \sum_{m=1}^{M_1} X_i(m)$$

Minimum Distance Classifier

Too simple to solve difficult problems

Minimum Distance Classifier

Too simple to solve difficult problems

Nearest Neighbor Classifier

The class of the nearest pattern to \underline{X} determines its classification

\overline{C}

Nearest Neighbor Classifier

Compute the distance between pattern \underline{X} and each pattern $\underline{X}(m)$ in the training set

$$d(m) = \left\| \underline{X} - \underline{X}(m) \right\|^2$$

The class of the pattern m that corresponds to the minimum distance is chosen as the classification of X

Nearest Neighbor Classifier

The advantage of the nearest neighbor classifier is its simplicity However, a rouge pattern can affect the classification negatively

Nearest Neighbor Classifier

patterns can negatively affect performance between the classes, the overlapping Also, for patterns with large overlaps

15

K-Nearest Neighbor Classifier

- classifier there is the k-nearest neighbor To alleviate the problems of the NN classifier
- Take the k-nearest points to point X
- Choose the classification of X as the class most often represented in these k points

K-Nearest Neighbor Classifier

• Take k = 5

- One can see that C_2 is the majority \rightarrow classify X as C_2
- The KNN rule is less dependent on strange patterns compared to the nearest neighbor classification rule

K-Nearest Neighbor Classifier

 The k-nearest neighbors could be a bit far away from X

 Leading to using information that might not be relevant to the considered point X

Recall: histogram for feature x from class C_1 (e.g., letter 'A')

probability density of feature x, given that x comes from class C_i $P(x|class C_i) \equiv class conditional probability function$ Ш

$$\mathbf{If} \ \underline{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \end{bmatrix} \text{ is } \partial X_2$$

is a feature vector then:

$$P(\underline{X}|C_i) = P(X_1, X_2, \cdots, X_N|C_i)$$

- Given a pattern X (with unknown class) that we wish to classify:
- Compute $P(C_1|\underline{X})$, $P(C_2|\underline{X})$, ..., $P(C_K|\underline{X})$
- Find the k giving maximum $P(C_k|X)$
- This is our classification according to the Bayes classification rule
- We classify the data point (pattern) as belonging to the *most likely* class

To compute $P(C_i|\underline{X})$, we use Bayes rule:

$$P(C_i | \underline{X}) = \frac{P(C_i, \underline{X})}{P(\underline{X})}$$
$$= \frac{P(\underline{X} | C_i) P(C_i)}{P(\underline{X})}$$

P(A,B) = P(A|B)P(B) = P(B|A)P(A)**Bayes Rule:**

23

Bayes Classification Rule

To compute $P(C_i|\underline{X})$, we use **Bayes rule**:

$$P(C_i|\underline{X}) = \frac{P(\underline{X}|C_i) P(C_i)}{P(X)}$$

 $P(\underline{X}|C_i) \equiv \mathsf{Class} ext{-conditional density}$ (**defined before**)

 $P(C_i) \equiv \text{Probability of class C}_i \text{ before or without observing the features } \underline{X}$ a priori probability of class C Ш

24

Bayes Classification Rule

- The a priori probabilities represent the frequencies of the classes irrespective of the observed features
- For example in OCR, the a priori probabilities are taken as the frequency or fraction of occurrence of the different letters in a typical
- For the letters E & A \rightarrow P(C_i) will be higher
- For letters Q & X \rightarrow P(C_i) will be low because they are infrequent

• Find C_k giving max $P(C_k|\overline{X})$

$$P(C_k | \underline{X}) = \frac{P(\underline{X} | C_k) P(C_k)}{P(\underline{X})}$$

 $-P(C_k|\underline{X}) \equiv \text{posterior prob.}$

 $-P(C_k) \equiv \text{a priori prob.}$

 $P(\underline{X}|C_k) \equiv \text{class-conditional densities}$

$$P(\underline{X}) = \sum_{i=1}^{K} P(\underline{X}, C_i) = \sum_{i=1}^{K} P(\underline{X} | C_i) P(C_i)$$

Recap: Marginalization

Discrete case:

ase:
$$P(A) = \sum_{i=1}^{N} P(A, B = B_i)$$
s case:

Continuous case:

$$P(x) = \int\limits_{-\infty}^{\infty} P(x, y) \, dy$$
 $-\infty$ Law of total probability

So:

$$P(\underline{X}) = \sum_{i=1}^{K} P(\underline{X}, C_i) = \sum_{i=1}^{K} P(\underline{X} | C_i) P(C_i)$$

Marginalization

Bayes rule

$$P(C_k|\underline{X}) = \frac{P(\underline{X}|C_k) P(C_k)}{\sum_{i=1}^K P(\underline{X}|C_i) P(C_i)}$$

- In reality, we do not need to compute $P(\underline{X})$ because it is a common factor for all the terms in the expression for $P(C_k|\underline{X})$
- Hence, it will not affect which terms will end up being maximum

Classify \underline{X} to the class corresponding to $\max P(\underline{X}|C_k) P(C_k)$

Classify \underline{X} to the class corresponding to max $P(\underline{X}|C_k)$ $P(C_k)$

For x=5, $P(x|C_1)P(C_1)$ has a higher value compared to $P(x|C_2)P(C_2) \rightarrow classify$ as C_1

$$P(correct\ classification | \underline{X}) = \max_{1 \le i \le K} P(C_i | \underline{X})$$

• Example: 3-class case:

$$-P(C_1|\underline{X}) = 0.6$$
, $P(C_2|\underline{X}) = 0.3$, $P(C_3|\underline{X}) = 0.1$

You classified \underline{X} as $C_1 \rightarrow \text{it has highest } P(C_i | \underline{X})$

equals to the probability that X belongs to the same class of the classification (which is 0.6) The probability that your classifier is correct

31

Classification Accuracy

• Overall P(correct) is:

$$P(correct) = \int P(correct, \underline{X}) d\underline{X}$$

•

Marginal prob.

$$= \int P(correct|\underline{X})P(\underline{X}) d\underline{X}$$

Bayes rule

$$= \int \max_{k} \left[\frac{P(\underline{X}|C_k) P(C_k)}{P(\underline{X})} \right] P(\underline{X}) d\underline{X}$$

$$= \int \max_{k} P(\underline{X}|C_{k}) P(C_{k}) d\underline{X}$$

Overall P(correct) is:

$$P(correct) = \int_{k} \max_{k} P(\underline{X}|C_k) P(C_k) d\underline{X}$$

Overall P(correct) is:

$$P(correct) = \int_{k} \max_{k} P(\underline{X}|C_k) P(C_k) d\underline{X}$$

Overall P(correct) is:

$$P(correct) = \int \max_{k} P(\underline{X}|C_k) P(C_k) d\underline{X}$$

$$P(correct) = \int \max_{k} P(\underline{X}|C_k) P(C_k) d\underline{X}$$

$$P(error) = 1 - P(correct)$$

$$P(correct) = \int \max_{k} P(\underline{X}|C_k) P(C_k) d\underline{X}$$

$$P(error) = 1 - P(correct)$$

We can compute P(error) directly only for 2-class case!

Acknowledgment

These slides have been created relying on lecture notes of Prof. Dr. Amir Atiya