SH2702 Nuclear Reactor Technology

Exercise Session 02

Primary system of PWR

Steam Generator Analysis

 Steam generator is a special case of heat exchanger, where water is evaporated to generate steam

The performance of the steam generator is given by the

recirculation ratio:

Steam Generator Schematic

Steam Generator Energy Balance

 The steam mass flow rate from the steam generator is found from the energy balance as follows:

$$W_{s}(i_{s}-i_{F})+q_{loss}=q_{t}=W_{c}(i_{co}-i_{ci})$$

In steady-state: $W_s = W_F$

Exit steam from steam generator is wet due to the carryover fraction Fco.

Thus, the wet steam enthalpy is:

$$i_s(p, F_{co}) = i_f(p)F_{co} + i_g(p)(1 - F_{co})$$

here i_f , i_g are specific enthalpies of saturated liquid and vapor, respectively

E01_P01

- A steam generator works at conditions indicated in the following figure.
 Calculate the mass flow rate of steam produced in the steam generator.
 - (Specific enthalpy of water at 15.5 MPa and 596.4 K is 1.4731x10⁶ J/kg;
 - Specific enthalpy of water at 15.26 MPa and 569.2 K is 1.3164x10⁶ J/kg;
 - Specific enthalpy of water at 6.66 MPa and 492.9 K is 0.9437x10⁶ J/kg;
 - Saturation pressure of water at temperature 543.2 K is 5.507 MPa;

Specific enthalpy of saturated steam at 5.507 MPa is 2.7896x10⁶ J/kg)

E01_P01

- A steam generator works at conditions indicated in the following figure.
 Calculate the mass flow rate of steam produced in the steam generator.
 - (Specific enthalpy of water at 15.5 MPa and 596.4 K is 1.4731x10⁶ J/kg;
 - Specific enthalpy of water at 15.26 MPa and 569.2 K is 1.3164x10⁶ J/kg;
 - Specific enthalpy of water at 6.66 MPa and 492.9 K is 0.9437x10⁶ J/kg;
 - Saturation pressure of water at temperature 543.2 K is 5.507 MPa;
 - Specific enthalpy of saturated steam at 5.507 MPa is 2.7896x10⁶ J/kg)

Solution

$$q_t = W_c (i_{ci} - i_{co}) = 691.78 \ MW$$

$$W_{s} = \frac{q_{t} - q_{loss}}{i_{s} - i_{fw}} = 374.73 \text{ kg/s}$$

Pumping Power (1)

- To increase pressure from 3 to 4 pumping power |N_{iP}| has to be supplied
- From the energy conservation principle for steady-state (dE_T/dt=0) we have

$$\frac{dE_T}{dt} = q - N_{iP} + W_3 (i_3 + e_{P3} + e_{K3}) - W_4 (i_4 + e_{P4} + e_{K4}) = 0$$

• here we have to supply power to the system thus $-N_{iP} = |N_{iP}|$, no heat is added thus q = 0, we also neglect kinetic and potential energy changes and from mass conservation we have $W_3 = W_4 = W_{Here \ \rho_e \ is \ an \ equivalent}$

$$\left| N_{iP} \right| = W \left(i_4 - i_3 \right) = W \left(\underbrace{e_{I4} - e_{I3}}_{\text{internal energy increase}} + \underbrace{\frac{p_4 - p_3}{\rho_e}}_{N_{uP} = \text{useful pumping}} + \underbrace{W \Delta e_I}_{\text{internal energy increase}} \right)$$

Here ρ_e is an equivalent fluid density for process 3-4. Typically we assume $\rho_e \approx \rho_3 \approx \rho_4$ (incompressible)

Pumping Power (2)

- The pumping power |N_{thP}| is a theoretical pumping power (used in ideal cycle analyses) Pump
- For real process 3-4, we obtain the pumping power |N_{iP}| from energy conservation as $|N_{iP}| \equiv W(i_4 - i_3)$ and call this internal power
- Due to internal losses, internal power is: $|N_{iP}| = \frac{|N_{uP}|}{|N_{iP}|}$
- We also define an effective pumping power, N_{effP}, due to pump mechanical
- efficiency η_{mP} : $|N_{\textit{effP}}| = \frac{|N_{\textit{iP}}|}{\eta_{\textit{mP}}}$ here η_{EM} : is the electrical mater officience. $|N_{\textit{elP}}| = \frac{|N_{\textit{effP}}|}{\eta_{\textit{mP}}}$

Pumping Power (3)

Typical tasks: (1) calculate required electrical power to produce given pressure difference; (2) calculate specific enthalpy at pump discharge for given electrical power; (3) the same as in (2) for given pressure drop

1)
$$\left| N_{elP} \right| = W \frac{p_4 - p_3}{\eta_{iP} \eta_{mP} \eta_{EM} \rho_e}$$

2)
$$i_4 - i_3 = \frac{\eta_{mP} \eta_{EM} |N_{elP}|}{W}$$

3)
$$i_4 - i_3 = \frac{p_4 - p_3}{\rho_e \eta_{iP}}$$

E01 P02

 Calculate the useful pumping power required in a primary loop of a PWR where the total pressure losses are 0.47 MPa and the coolant flow rate is 4410 kg/s. The reference pressure and temperature in the pump are 15.3 MPa and 286°C, respectively.

E01_P02

 Calculate the useful pumping power required in a primary loop of a PWR where the total pressure losses are 0.47 MPa and the coolant flow rate is 4410 kg/s. The reference pressure and temperature in the pump are 15.3 MPa and 286°C, respectively.

$$\left| N_{elP} \right| = W \frac{p_4 - p_3}{\eta_{iP} \eta_{mP} \eta_{EM} \rho_e}$$

Schematic of PWR Plant

E01_P03

- Assume a PWR operating at steady-state with the following parameters:
 - Thermal core power $q_c = 3400 \text{ MWt}$
 - Total coolant mass flow rate $W_c = 16000 \text{ kg/s}$
 - Core inlet temperature T_{cin} = 295 °C
 - Reference pressure in the primary system 15.5 MPa
 - Total pump pressure drop in the primary system 0.34 MPa
 - Inlet temperature of feed water to steam generator T_{fwin} = 215
 °C
 - Pressure in the secondary system 6.5 MPa
- Calculate
 - Core outlet temperature
 - Mass flow rate of saturated steam leaving the steam generator

E01_P03

Energy Balance in the Core

- The inlet enthalpy of coolant is found as $i_{cin} = f(p, T_{cin})$ from water property tables: $i_{cin} = 1310.6 \text{ kJ/kg}$
- For the reactor pressure vessel the energy conservation equation is as follows:

$$W_c^*i_{cex} = W_c^*i_{cin} + q_c$$
 (we neglect heat losses)

thus

$$i_{cex} = i_{cin} + q_c/W_c = 1310.6 + 3400000/16000 = 1310.9 + 212.5 = 1523.1 kJ/kg$$

Coolant Temperature

- From water property tables, the saturation enthalpy at p = 15.5 MPa is found as i_f = 1629.9 kJ/kg
- It is thus clear that there is a subcooled water at the outlet from the reactor core
- Its temperature is found from tables as $T_{cex} = f(p, i_{cex}) = 330.9$ °C
- The coolant temperature increase in the reactor core is thus 330.9 – 295 = 35.9 °C

Energy Balance in Primary Loop

- Next step is to calculate the energy transferred to steam in the steam generator (SG)
- The total energy entering SG from the primary side consists of
 - Thermal energy generated in the reactor core per unit time: q_c = 3400 MW
 - Work done by pumps on surroundings: $P_p = W_c(i_1 i_2)$

for incompressible and isentropic process: $di = dp/\rho => i_1-i_2=(p_1-p_2)/\rho$

pumping power = pressure drop/coolant density * mass flow rate

Assuming that coolant temperature in pump is 295 °C and the mean pressure 15.33 MPa, the coolant density in the pump is found from water property tables as: 736.3 kg/m³

Pumping Power

 Hence, the work per unit time done by pumps is (neglecting losses),

$$-3.4\ 10^5\ (Pa)\ /\ 736.3\ (kg/m^3)\ *\ 16000\ (kg/s) = -7.39\ MW$$

 Thus, the total energy per unit time entering the SG on the primary side is

$$3400 - (-7.39) = 3407.39 \text{ MW}$$

 The same amount of energy is transferred to the secondary side of the SG

Energy Balance in SG (1)

The energy balance for the SG is thus

$$q_{SG} = W_F^*(i_S - i_F)$$

here:

 q_{SG} – total thermal power provided to steam generator W_F – total mass flow rate of feed-water in the SG: from the mass conservation principle, it is equal to the mass flow rate of the generated steam, W_s

 i_s – outlet enthalpy of steam from SG

 i_F – inlet enthalpy of feed water to SG

Energy Balance in SG (2)

The energy balance yields

$$W_F = q_{SG} / (i_s - i_F)$$

and from steam-water property tables:

 i_s = (saturated steam at 6.5 MPa pressure) = 2778.8 kJ/kg (Note: we assume dry steam, F_{co} = 0) i_F = (subcooled water at 6.5 MPa and 215 °C) = 921.9 kJ/kg

Thus: $W_F = 3407.39*10^6 / [(2778.8 - 921.9)*10^3] = 1835$ kg/s

Summary of Results

Coolant temperature at the outlet from reactor: 330.9 °C

Mass flow rate of saturated steam: 1835 kg/s

Pressurizer Operation Insurge

- When pressure in the primary system is too high, water from cold leg is sprayed into pressurizer's part filled with vapor. As a result, the following occurs:
 - vapor is condensing and its volume is decreasing
 - water flows into pressurizer from the hot leg
 - heaters are switched on to bring water in pressurizer to saturation level
 - pressure in the primary system decreases

Pressurizer Operation Outsurge

- When pressure in the primary system is too low, heaters are switched on to boil the saturated water. As a result, the following occurs:
 - vapor is generated and its volume is increasing
 - water flows out of the pressurizer into the hot leg
 - pressure in the primary system increases

HEM of Pressurizer

- For a simple transient, homogeneous equilibrium model (HEM) of pressurizer, it is assumed:
 - both phases are in the thermodynamic equilibrium
 - whole volume is filled with a saturated homogeneous mixture
- The following conservation equations can be formulated:

• mass
$$\frac{dM}{dt} = W_h + W_c$$

• energy
$$\frac{d(Me_I)}{dt} = W_h i_h + W_c i_c + q_h$$
 pressurizer W_t - insurant

• volume
$$\frac{dV}{dt} = 0$$

M – total mass in pressurizer e_I – total specific internal energy in pressurizer V – total volume of the pressurizer W_h – insurge flow rate W_c – spray flow rate i_h – insurge specific enthalpy i_c – spray specific enthalpy q_h – heater power

HEM of Pressurizer

- The model has:
 - five input parameters: W_c , i_c , W_h , i_h , q_h ,
 - three unknowns: *M*, *e*₁ and *V*,
 - three equations.
- The model provides the time variations of M(t) and $e_l(t)$, whereas $V = \text{const} = V_0$ (initial volume).
- The pressure in the pressurizer can be found from HEM assumptions as $p = p(M, e_l)$, provided that the initial pressure is known.

Schematic of BOP

HPT – high pressure turbine

LPT – low pressure turbine

G – generator

MS – moisture separator

SR – steam reheater

DGFWT – degasifier and feedwater tank

FWH – feed water heater

FWP - feed water pump

CP – condensate pump

MSIV – main steam isolation valve

HPT – Mass&Energy Balance

Mass balance for the turbine:

$$W_{1a} - W_3 - W_4 - W_5 - W_6 = 0$$

Energy balance for the turbine:

$$W_{1a}i_{1a} - W_3i_3 - W_4i_4 - W_5i_5 - W_6i_6 - N_{HPT,i} = 0$$

W_k – mass flow rate of stream k i_k – enthalpy of stream k N_{HPT,i} – internal power of HPT

1- steam from reactor, 1a – steam to turbine, 2- steam to SR, 3- exit steam from turbine, 4- third steam extraction, 5- second steam extraction, 6 – first steam extraction

HPT – T-s Diagram

HPT – First Extraction

From inlet to the first extraction we have:

$$\eta_{HPT1,i} \equiv \frac{N_{HPT1,i}}{N_{HPT1,th}} = \frac{W_{1a} \left(i_{1a} - i_{6}\right)}{W_{1a} \left(i_{1a} - i_{6s}\right)} = \frac{i_{1a} - i_{6}}{i_{1a} - i_{6s}}$$

Thus, the enthalpy at the first extraction is:

$$i_6 = i_{1a} - \eta_{HPT1,i} (i_{1a} - i_{6s})$$

Here we define the internal efficiency (called also isentropic efficiency) as:

$$\eta_{{\scriptscriptstyle HPT1,i}} \equiv \frac{N_{{\scriptscriptstyle HPT1,i}}}{N_{{\scriptscriptstyle HPT1,th}}}$$

The specific enthalpy at point 6s is found from property tables as $i(p_6,s_{1a})$

HPT - Second Extraction

The internal efficiency of the turbine between the first and the second extraction is given as:

$$\eta_{HPT2,i} \equiv \frac{N_{HPT2,i}}{N_{HPT2,th}} = \frac{\left(W_{1a} - W_{6}\right)\left(i_{6} - i_{5}\right)}{\left(W_{1a} - W_{6}\right)\left(i_{6} - i_{5s'}\right)} = \frac{i_{6} - i_{5}}{i_{6} - i_{5s'}}$$

$$i_5 = i_6 - \eta_{HPT2,i} (i_6 - i_{5s'})$$

Where the specific enthalpy at point 5s' is found from property tables as $i_{5s'} = i(p_5,s_6)$

HPT - Third Extraction

The internal efficiency of the turbine between the second and the third extraction is given as:

$$\eta_{HPT3,i} \equiv \frac{N_{HPT3,i}}{N_{HPT3,th}} = \frac{\left(W_{1a} - W_6 - W_5\right)\left(i_5 - i_4\right)}{\left(W_{1a} - W_6 - W_5\right)\left(i_5 - i_{4s'}\right)} = \frac{i_5 - i_4}{i_5 - i_{4s'}}$$

$$i_4 = i_5 - \eta_{HPT3,i} (i_5 - i_{4s'})$$

Where the specific enthalpy at point 4s' is found from property tables as $i_{4s'} = i(p_4,s_5)$

HPT - Exit

The internal efficiency of the turbine T between the third extraction and the exit is given as:

$$\eta_{HPT4,i} \equiv \frac{N_{HPT4,i}}{N_{HPT4,th}} = \frac{\left(W_{1a} - W_6 - W_5 - W_4\right)\left(i_4 - i_3\right)}{\left(W_{1a} - W_6 - W_5 - W_4\right)\left(i_4 - i_{3s'}\right)} = \frac{i_4 - i_3}{i_4 - i_{3s'}}$$

$$i_3 = i_4 - \eta_{HPT4,i} (i_4 - i_{3s'})$$

Where the specific enthalpy at point 3s' is found from property tables as $i_{3s'} = i(p_3,s_4)$

HPT – Total Internal Power

The total Internal power:

$$N_{HPT,i} = W_{1a} (i_{1a} - i_{6}) + (W_{1a} - W_{6})(i_{6} - i_{5}) + (W_{1a} - W_{6} - W_{5})(i_{5} - i_{4}) + (W_{1a} - W_{6} - W_{5} - W_{4})(i_{4} - i_{3})$$

Turbine Efficiency

Internal efficiency:

$$\eta_{\mathit{HPT},i} \equiv \frac{N_{\mathit{HPT},i}}{N_{\mathit{HPT},\mathit{th}}}$$

Mechanical efficiency:

$$\eta_{{HPT},m} \equiv \frac{N_{{HPT},m}}{N_{{HPT},i}}$$

Effective efficiency:

$$\eta_{\mathit{HPT},e} \equiv \eta_{\mathit{HPT},\mathit{m}} \eta_{\mathit{HPT},i} = \frac{N_{\mathit{HPT},\mathit{m}}}{N_{\mathit{HPT},i}} \cdot \frac{N_{\mathit{HPT},i}}{N_{\mathit{HPT},\mathit{th}}} = \frac{N_{\mathit{HPT},\mathit{m}}}{N_{\mathit{HPT},\mathit{th}}}$$

HPT – Example

Calculate enthalpy distribution in HPT.

Known:

$$p_{1a} = 60 \text{ bar (sat. steam)}$$

 $p_3 = 8 \text{ bar}$
 $p_4 = 23 \text{ bar}$
 $p_5 = 38 \text{ bar}$
 $p_6 = 50 \text{ bar}$
 $W_{1a} = 0.91W_1$
 $W_4 + W_5 + W_6 = 0.15W_1$

$$\eta_{HPT1,i} = ... = \eta_{HPT4,i} = 0.88$$

HPT – Solution

Calculated enthalpy distribution in HPT.

Found:

$$i_{1a} = i_g(60 \text{ bar}) = 2784.6 \text{ kJ/kg}$$

 $s_{1a} = s_g(60 \text{ bar}) = 5.89 \text{ kJ/kg/K}$
 $i_{6s} = i(p_6, s_{1a}) = 2749.3 \text{ kJ/kg}$
 $i_6 = i_{1a} - \eta_1(i_{1a} - i_{6s}) = 2753.5 \text{ kJ/kg}$
 $i_5 = 2707.6 \text{ kJ/kg}$
 $i_4 = 2626.1 \text{ kJ/kg}$
 $i_3 = 2466.7 \text{ kJ/kg}$

HPT - Solution

Flow distribution in HPT.

Typical values:

$$W_{1a} = 0.91W_1$$
; $W_2 = 0.09W_1$
 $W_4 + W_5 + W_6 = 0.15W_1$
 $W_3 = 0.76W_1$

MS – Mass&Energy Balance

03 – wet steam from exit of HPT

07 – saturated steam to steam reheater

20 – moisture (saturated water)

Mass balance:

$$W_3 - W_7 - W_{20} = 0$$

Energy balance:

$$W_{3}i_{3} - W_{7}i_{7} - W_{20}i_{20} = 0$$

$$i_{7} \approx i_{g}(p_{7}) \quad i_{20} \approx i_{f}(p_{20})$$

MS – Example

Known:

 p_{20} = 8 bar $\approx p_7$ i_3 = 2466.7 kJ/kg Find fraction of flow y_7 and y_{20} :

$$y_7 \equiv \frac{W_7}{W_3}$$
; $y_{20} \equiv \frac{W_{20}}{W_3} = 1 - y_7$

MS – Example

Known:

 $p_{20} = 8 \text{ bar } \approx p_7$ $i_3 = 2466.7 \text{ kJ/kg}$ Find fraction of flow y_7 and y_{20} :

$$y_7 \equiv \frac{W_7}{W_3}; y_{20} \equiv \frac{W_{20}}{W_3} = 1 - y_7$$

Energy balance gives:

$$i_3 - \frac{W_7}{W_3} i_7 - \frac{W_{20}}{W_3} i_{20} = i_3 - y_7 (i_7 - i_{20}) - i_{20} = 0$$
 $y_7 = \frac{i_3 - i_{20}}{i_7 - i_{20}}$

Found: $i_7 = 2768.3 \text{ kJ/kg}$ $i_{20} = 721.0 \text{ kJ/kg}$ $y_7 = 0.853$ The fraction of moisture separated in MS is $y_{20} = 0.147$. (In reality, not all moisture is separated.) Thus $W_{20} \approx 0.11W_1$ and $W_7 \approx 0.65W_1$

SR – Mass&Energy Balance

02 – saturated steam from reactor

08 – steam to LPT inlet

09 – wet steam to DGFWT

07 – saturated steam from MS

Mass balance:

$$W_2 = W_9 \quad W_7 = W_8$$

Energy balance:

$$W_2(i_2-i_9)=W_7(i_8-i_7)$$

SR – Example

Known:

$$i_7 = 2768.3 \text{ kJ/kg}, W_7 \approx 0.65W_1, p_3 = 8$$

bar $\approx p_7 \approx p_8$
 $i_2 = i_{1a} = i_g(60 \text{ bar}) = 2784.6 \text{ kJ/kg},$
 $W_2 = 0.09W_1$

Mass balance:

$$W_2 = W_9$$
 $W_7 = W_8$

From energy balance:

$$i_8 = i_7 + \frac{W_2}{W_7} (i_2 - i_9)$$

Assuming saturated liquid at 09, $i_9 = i_f(60 \text{ bar}) = 1213.7 \text{ kJ/kg}$; thus $i_8 = 2985.8 \text{ kJ/kg}$; we note that $t_9 = \text{tsat}(60 \text{ bar}) = 275.6 ^{\circ}\text{C}$ and $t_8 = \text{tv}(8 \text{ bar}, 2985.8 \text{ kJ/kg}) = 266.4 ^{\circ}\text{C}$. So $t_9 > t_8$ as it should be.

Power Losses

Power losses in a turbine set and generator are as

Plant Energy Efficiency

Thermodynamic efficiency:
$$\eta_{\it th} \equiv \frac{\sum N_{\it Turb}}{q_{\it th}} = \frac{\it total~useful~power~of~turbines}{\it Reactor~power}$$

Gross efficiency:

$$\eta_{Gross} \equiv \frac{\sum N_{g}}{q_{th}} = \frac{total\ power\ of\ generators}{Reactor\ power}$$

Net efficiency:
$$\eta_{\mathit{Net}} \equiv \frac{\sum N_{\mathit{g}} - \sum N_{\mathit{own}}}{q_{\mathit{th}}} = \frac{\mathit{total\ power\ of\ generators} - \mathit{own\ needs}}{\mathit{Reactor\ power}}$$