Boletim de Pesquisa 08 e Desenvolvimento ISSN 1678-1961 Dezembro, 2005

Comportamento, Adaptabilidade e Estabilidade de Cultivares de Milho no Nordeste Brasileiro no Ano Agrícola de 2004

República Federativa do Brasil

Luiz Inácio Lula da Silva Presidente

Ministério da Agricultura, Pecuária e Abastecimento

Roberto Rodrigues Ministro

Empresa Brasileira de Pesquisa Agropecuária - Embrapa

Conselho de Administração

Luis Carlos Guedes Pinto Presidente

Silvio Crestana Vice-Presidente

Alexandre Kalil Pires Cláudia Assunção dos Santos Viegas Ernesto Paterniani Hélio Tollini Membros

Diretoria Executiva da Embrapa

Silvio Crestana Diretor-Presidente

José Geraldo Eugênio de França Kepler Euclides Filho Tatiana Deane de Abreu Sá Diretores Executivos

Embrapa Tabuleiros Costeiros

Edmar Ramos de Siqueira Chefe-Geral

Tereza Cristina de Oliveira Chefe-Adjunto de Administração

Edson Diogo Tavares Chefe-Adjunto de Pesquisa e Desenvolvimento

Édson Luis Bolfe Chefe-Adjunto de Comunicação e Negócios

Empresa Brasileira de Pesquisa Agropecuária Centro de Pesquisa Agropecuária dos Tabuleiros Costeiros Ministério da Agricultura, Pecuária e Abastecimento

Boletim de Pesquisa e Desenvolvimento 08

Comportamento, Adaptabilidade e Estabilidade de Cultivares de Milho no Nordeste Brasileiro no Ano Agrícola de 2004

Hélio Wilson Lemos de Carvalho Milton José Cardoso Maria de Lourdes da Silva Leal Julio Roberto Araujo de Amorim Manoel Xavier dos Santos Ana Alexandrina Gama da Silva Luciana Marques de Carvalho Marcondes Maurício de Albuquerque Miguel Michereff Filho João Gomes da Costa José Nildo Tabosa Marcelo Abdon Lira Manoel Henrique Bomfim Cavalcante Ivan Vilas Boas Sousa Ana Rita de Morais Brandão Brito José Álvares Tavares José Jairo Gama de Macedo José Jorge Tavares Filho

Aracaju, SE 2005 Exemplares desta publicação podem ser adquiridos na:

Embrapa Tabuleiros Costeiros

Av. Beira Mar, 3250 Aracaju, SE

CEP: 49025-040

Fone: **79-4009-1300 Fax: **79-4009-1369 www.cpatc.embrapa.br E-mail: sac@cpatc.embrapa.br

Comitê Local de Publicações

Presidente: Edson Diogo Tavares

Secretária-Executiva: Maria Ester Gonçalves Moura

Membros: Emanuel Richard Carvalho Donald, Amaury Apolonio de Oliveira, Dalva Maria da Mota, João Bosco Vasconcellos Gomes, Onaldo Souza

Normalização bibliográfica: Josete Cunha Melo

Tratamento de ilustrações: Maria Ester Gonçalves Moura

Foto(s) da capa: José Gouveia Figueiroa

Editoração eletrônica: Maria Ester Gonçalves Moura

1ª edição

1ª impressão (2005): 500 exemplares

Todos os direitos reservados.

A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei no 9.610).

Dados Internacionais de Catalogação na Publicação (CIP) Embrapa Tabuleiros Costeiros

Carvalho, Hélio Wilson Lemos de

Comportamento, adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 2004 / Hélio Wilson Lemos de Carvalho, Milton José Cardoso, Manoel Xavier dos Santos... [et al.]. - Aracaju : Embrapa Tabuleiros Costeiros, 2005.

20 p. : il. - (Boletim de Pesquisa e Desenvolvimento / Embrapa Tabuleiros Costeiros, ISSN 1678-0175; 8)

Disponível em http:// < www.cpatc.embrapa.br> ISBN 1678-1961

1. Milho - Cultivar. I. Carvalho, Hélio Wilson Lemos de. II. Cardoso, Milton José. III. Leal, Maria de Lourdes da Silva. IV. Amorim, Julio Roberto Araujo de. V. Santos, Manoel Xavier dos. VI. Silva, Ana Alexandrina Gama da. VII. Carvalho, Luciana Marques de. VIII. Albuquerque, Marcondes Maurício de. IX. Michereff Filho, Miguel. X. Costa, João Gomes da. XI. Tabosa, José Nildo. XII. Lira, Marcelo Abdon. XIII. Cavalcante, Manoel Henrique Bomfim. XIV. Sousa, Ivan Vilas Boas. XV. Brito, Ana Rita de Morais Brandão. XVI. Tavares, José Álvares. XVII. Macedo, José Jairo Gama de. XVIII. Tavares Filho, José Jorge XIX. Título. XX. Série.

Sumário

Resumo	5
Abstract	6
ntrodução	7
Material e Métodos	8
Resultados e Discussão	9
Conclusões	17
Agradecimentos	17
Referências Bibliográficas	18

Comportamento, Adaptabilidade e Estabilidade de Cultivares de Milho no Nordeste Brasileiro no Ano Agrícola de 2004

H. W. L. de Carvalho¹, M. J. Cardoso², M. de L. da S. Leal¹, J. R. A. de Amorim¹, M. X. dos Santos³ A. A. G. da Silva¹, L. M. de Carvalho¹, M. M. de Albuquerque¹, M. Michereff Filho¹, J. G. da Costa¹, J. N. Tabosa⁴, M. A. Lira⁵, M. H. B. Cavalcante⁶, I. V. B. Sousa⁷, A. R. de M. B. Brito⁴, J. Á. Tavares⁴, J. J. G. de Macedo⁷, J. J. Tavares Filho⁴

Resumo

Foram avaliadas 16 variedades e 24 híbridos de milho em 17 ambientes do Nordeste brasileiro, no ano agrícola de 2004, em blocos ao acaso, com três repetições, visando conhecer a adaptabilidade e a estabilidade desses materiais para fins de recomendação. Os híbridos mostraram melhor adaptação que as variedades, destacando-se, entre eles, os AG 7000, BRS 1010, AG 7575, DKB 350, DKB 466, dentre outros, por revelarem adaptabilidade ampla, consubstanciando-se em excelentes opções para os diferentes sistemas de produção prevalecentes na região. As variedades AL Piratininga, Sertanejo, AL Alvorada, Asa Branca, SHS 3031, AL 30 e AL Ipiranga mostraram também adaptabilidade ampla, considerando-se a média das variedades, tornando-se alternativas importantes para os diferentes sistemas de produção executadas na região, especialmente, aqueles sistemas praticados pelos pequenos e médios produtores rurais.

Termos para indexação: *Zea mays* L., variedades, híbridos, interação cultivares x ambientes, previsibilidade.

¹ Pesquisador, Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, CEP 490025-040, Aracaju, SE, e-mail: helio@cpatc.embrapa.br.

² Pesquisador, Embrapa Meio-Norte, Av. Duque de Caxias, 5660, CEP 64006-220, Teresina, PI, e-mail: milton@cpamn.embrapa.br

³ Pesquisador, Embrapa Milho e Sorgo, Caixa Postal 285, CEP 35701-970, Sete Lagoas, MG, xavier@cnpms.embrapa.br

⁴ Pesquisador, IPA, Caixa Postal 1022, CEP 50761-000, Recife, PE, tabosa@ipa.br

Pesquisador, Embrapa/Emparn, Rua Chile, 172, CEP 59012-250 Natal, RN, marcelo-emparn@rn.gov.br
Pesquisador, Secretaria de Estado da Agricultura de Abastecimento e Pesca do Estado de Alagoas, Rua Domingos Correia, 1150, Bairro São Luiz, CEP 57301-070, Arapiraca, AL

⁷ Pesquisador, EBDA, Av. Dorival Caymmi, 15649, CEP 44635-150, Salvador - BA

Behavior, Adaptability and Yield Stability of Corn Cultivars in the Northeast Region of Brazil

Abstract

Recommendation of corn varieties to the farmers is an important issue in semiarid environments. In Northeast region of Brazil there are many studies to identify better varieties and hybrids of corn based on adaptability and stability parameters. The results of an evaluation of 16 varieties and 24 hybrids of corn, in complete block design with 3 replications, showed that the hybrids performed better than the varieties. The hybrids 'AG 7000', 'BRS 1010', 'AG 7575', 'DKB 350', and 'DKB 466', presented higher adaptability to the regional production systems. The varieties 'AL Piratininga', 'Sertanejo', 'AL Alvorada', 'Asa Branca', 'SHS 3031', 'AL 30', and 'AL Ipiranga' also presented good adaptability to the regional production systems, mainly those ones used by small-scale farmers.

Keywords: Zea mays L., varieties, hybrids, cultivar-environment interactions.

Introdução

A utilização de variedades de milho de melhor adaptação e portadoras de atributos agronômicos desejáveis, tais como ciclos superprecoce, precoce e semi-precoce, tolerância ao acamamento e quebramento do colmo e bom empalhamento, consubstancia-se em alternativa importante para o desenvolvimento dos diversos sistemas de produção vigentes no Nordeste brasileiro, inclusive a agricultura de base familiar na região. Desta forma, os agricultores podem alcançar a autonomia em relação ao recurso semente, utilizando materiais produtivos, geneticamente estáveis e adaptados às condições de estresses ambientais.

O mercado para variedades de milho no Nordeste brasileiro é crescente, ocupando atualmente cerca de dois milhões de hectares, distribuídos em áreas de tabuleiros costeiros, agreste, sertão e cerrados. A boa performance das variedades de milho tem sido destacada em diversas oportunidades nessa ampla região, conforme enfatizam Carvalho e outros (2001, 2002), Cardoso e outros (2003, 2004) e Souza e outros (2004).

Os híbridos têm-se destacado em áreas do Nordeste brasileiro que utilizam tecnologias modernas de produção, como, por exemplo, os cerrados do oeste baiano, do sul do Maranhão e do sudoeste do Piauí (CARDOSO et al., 2002; CARVALHO et al., 2002, 2004; SOUZA et al., 2004).

Anualmente, nessa região, variedades e híbridos são postos a competir em vários ambientes em rede de ensaios de cultivares. Neste caso, a classificação relativa entre elas pode não ser coincidente, o que dificulta a identificação de materiais efetivamente superiores. Este fato pode ser minimizado mediante a seleção de genótipos com maior estabilidade fenotípica (RAMALHO et al., 1993).

Diversos trabalhos ressaltam a importância e a influência da interação cultivares x ambientes, principalmente nas fases do programa que envolvem a avaliação final e a recomendação de cultivares (ARIAS, 1996; GAMA et al., 2000; CARDOSO et al., 2002; CARVALHO et al., 2004; SOUZA et al., 2004).

Considerando-se esses aspectos, desenvolveu-se este trabalho com o objetivo de conhecer-se a performance produtiva, a adaptabilidade e a estabilidade de

diversas variedades e híbridos de milho quando submetidos a diferentes condições ambientais do Nordeste brasileiro, de modo a recomendar, com mais segurança, cultivares com melhor adaptação aos diferentes sistemas de produção da região.

Material e métodos

Foram realizados 17 ensaios no Nordeste brasileiro, no ano agrícola de 2004, distribuídos nos estados do Maranhão (quatro ensaios), Piauí (quatro ensaios), Pernambuco (dois ensaios), Alagoas (dois ensaios), Sergipe (dois ensaios) e Bahia (três ensaios).

Foram avaliadas 40 cultivares (16 variedades e 24 híbridos), em blocos ao acaso, com três repetições. Cada parcela constou de 4 fileiras de 5,0m de comprimento, a espaços de 0,80m e 0,40m entre covas, dentro das fileiras. Foram colocadas três sementes por cova, deixando-se, após o desbaste, duas plantas por cova. Foram colhidas as duas fileiras centrais de forma integral. As adubações de cada ensaio foram realizadas conforme os resultados das análises de solo de cada área experimental.

Foram avaliados os seguintes caracteres: florescimento masculino e feminino, alturas de plantas e de inserção da primeira espiga, estande de colheita, número de espigas colhidas e peso de grãos. Os dados de florescimento foram tomados quando 50% das plantas das duas fileiras centrais emitiram os pendões (floração masculina) e os estilo-estigmas (floração feminina). A altura da planta foi medida do solo até a base da folha bandeira, e a altura de inserção da primeira espiga foi tomada do solo até a base da primeira espiga. Os pesos de grãos de cada tratamento foram ajustados para o nível de 15% de umidade. Todos os caracteres à exceção do florescimento, foram submetidos à análise de variância por local, obedecendo ao modelo em blocos ao acaso e a uma análise de variância conjunta obedecendo ao critério de homogeneidade dos quadrados médios residuais, considerando aleatórios os efeitos de blocos e ambientes e fixo, o efeito de cultivares. Essas análises foram realizadas utilizando-se o Statistical Analysis System (SAS.INSTITUTE, 1996) para os dados balanceados (PROCANOVA). O seguinte modelo foi utilizado:

$$Y_{iik} = m + C_i + A_i + CA_{ii} + B/A_{k(i)} + e_{iik}$$
, em que :

m : média geral; C_i : efeito da cultivar i; A_j : efeitos dos ambientes i; CA_{ij} : efeito da interação da cultivar i com o local j; $B/A_{k(j)}$: efeito do bloco k dentro do ambiente j; e_{ik} : erro aleatório.

Os parâmetros de adaptabilidade e estabilidade foram estimados pelo método de Cruz e outros (1989), o qual se baseia na análise de regressão bissegmentada, tendo como parâmetros de adaptabilidade a média (b_0), a resposta linear aos ambientes desfavoráveis (b_1) e aos ambientes favoráveis (b_1+b_2). Para tanto, foi utilizado o seguinte modelo:

 $Y_{ij} = b_{oi} + b_{1i}I_J + b_{2i}T(I_j) + s_{ij} + e_{ij}$ onde Y_{ij} : média da cultivar i no ambiente j; I_j : índice ambiental; $T(I_j) = 0$ se $I_J < 0$; $T(I_J) = I_j - I_+$ se $I_j > 0$, sendo I_+ a média dos índices I_j positivos; b_{oi} : média geral da cultivar I_j : coeficiente de regressão linear associado à variável I_j ; b_{2i} : coeficiente de regressão linear associado à variável $T(I_j)$; S_{ii} : desvio da regressão linear; S_{ii} : erro médio experimental.

Resultados e Discussão

A precocidade assume importância significativa, principalmente no Nordeste brasileiro, em razão de reduzir os riscos do cultivo nas regiões do semi-árido onde os períodos chuvosos são curtos. Esta característica evidenciou-se nas cultivares avaliadas, apresentando-se como mais precoces as variedades Caatingueiro e Cruzeta e os híbridos AG 9010 e BRS 2223 (Tabela 1). Carvalho e outros (1999) ressaltam que a precocidade também exerce importância nas áreas de tabuleiros costeiros, onde ocorrem períodos chuvosos constantes, por favorecer a colheita de duas safras dentro do mesmo ano agrícola, especificamente, na faixa compreendida entre os estados da Bahia e Alagoas. Nesta faixa, com o período chuvoso compreendido entre os meses de março a setembro, pode-se iniciar um plantio de milho visando à produção de milho verde até junho, e um segundo plantio, com cultivares superprecoces, na segunda quinzena de junho, objetivando a produção de grãos.

Tabela 1. Florescimentos (dias) masculino e feminino de diferentes cultivares de milho observados em alguns estados do Nordeste brasileiro, no ano agrícola de 2004.

2004.						
	Maranhão	Piauí	Pernambuco	Alagoas	Bahia	Sergipe
Cultivares	(feminino)					
	(Terrinino)	(feminino)	(masculino)	(feminino)	(feminino)	(feminino,
Sertanejo	63	63	54	58	58	67
São Francisco	62	62	51	57	57	64
Asa Branca	63	61	51	57	5 <i>7</i>	64
CPATC- 4	64	63	54	62	58	69
CPATC-3	64	63	53	58	56	69
Caatingueiro	59	58	46	51	52	60
Cruzeta	60	61	50	52	58	64
São Vicente	63	66	51	60	58	64
BR 106	66	64	51	59	57	68
BRS 4150	64	61	52	59	55	69
SHS 3031	65	66	52 51	59 58	54	64
BRS 3150	62	64	51 52	60	60	64
Sintético Denta						
AL 30	00	62	50	58 57	59	68
AL Piratininga	64	60	54	57	59	67
AL Ipiranga	66	65	52	60	59	67
AL Ipiranga AL Alvorada	65	65	54	61	61	68
Colorado 32	66	63	54	58	58	68
	63	64	56	58	57	68
PL 6880	67	61	53	62	59	67
AG 405	66	62	53	58	58	68
DKB 747	68	63	52	60	57	66
AG 6690	64	64	52	60	55	68
AG 7575	64	64	50	57	54	64
DKB350	66	66	51	60	56	64
DKB 950	65	66	51	52	59	62
DKB 390	63	65	51	59	63	64
AG 9010	61	62	48	52	57	60
AG 2060	69	64	51	52	59	68
DKB 900	66	64	51	56	57	62
AG 1451	68	64	55	62	58	70
AG 1051	65	63	54	62	58	69
AG 7000	63	65	55	63	57	67
DKB 466	67	65	51	61	59	65
BRS 3060	68	65	54	63	62	68
BRS 2114	68	66	54	58	59	69
BRS 2110	66	63	53	63	59	68
BRS 3123	62	62	53	63	57	68
BRS 1001	63	64	54	61	59	69
BRS 1010	64	64	53	58	57	68
BRS 2223	61	63	50	58	55	67
Média	64	62	52	59	58	66

Foram observados efeitos altamente significativos (p < 0,01) para as fontes de variação: ambientes, cultivares e interação ambientes x cultivares (Tabela 2), no que se refere às características alturas de planta e de inserção da primeira espiga, estande de colheita e número de espigas colhidas, o que evidencia diferenças entre os ambientes e as cultivares, além de mostrar que o comportamento das cultivares foi inconsistente nos diferentes ambientes. Tal comportamento tem sido verificado no Nordeste brasileiro, nos trabalhos com cultivares de milho (CARDOSO et al., 1997, 2000; CARVALHO et al., 2001).

Tabela 2. Resumo das análises de variância conjuntas para as características alturas (cm) de planta e de inserção da primeira espiga, estande de colheita e número de espigas colhidas, no Nordeste brasileiro, em 2004.

Foots do	Quadrados médios						
Fonte de	Graus de	Altura de	Altura de	Estande de	Espigas		
Variação	liberdade	planta	espiga	colheita	Colhidas		
Ambientes (A)	16	42273,4**	16407,8**	1091,3**	1091,9**		
Cultivares (C)	39	6672,4**	4087,3**	60,3**	88,9**		
Interação (AxC)	624	437,4**	262,9**	10,6**	17,7**		
Erro	1326	293,0	165,1	4,6	7,9		
Média		202	100	40	40		
C. V(%)		8	12	5	7		

^{**} Significativo pelo teste F a 1% de probabilidade.

As médias registradas para as alturas de planta e de inserção da primeira espiga foram, respectivamente, de 202cm e 100cm, apresentando com menores alturas os híbridos AG 9010, DKB 900 e DKB 950 e a variedade Caatingueiro, apesar de serem semelhantes, estatisticamente, a outras cultivares (Tabela 3). Ressaltase que cultivares de milho com menor altura de planta e de espiga favorecem o plantio de um maior número de plantas por unidade de área e conferem uma maior tolerância ao acamamento e quebramento do colmo. O estande de colheita médio observado foi de 40 plantas/ha, correspondente a uma população de 50.000 plantas/ha, registrando-se uma redução de 10.000 plantas/ha, em relação ao estande proposto (60.000 plantas/ha). Variação semelhante foi verificada para o número de espigas colhidas.

Tabela 3. Médias referentes às alturas de planta e de inserção da primeira espiga, estande de colheita e número de espigas colhidas. Nordeste brasileiro, 2004.

	Altura	Altura	Estande	Fanina
Cultivares	de	de	de	Espiga
	planta	espiga	colheita	colhida
CPATC-5	225a	117a	40b	40b
AG 405	221a	118a	42a	43a
AG 4051	220a	110b	40b	40b
AL Piratininga	219a	117a	39c	38d
PL 6880	215b	116a	40b	39c
BRS 4150	214b	108c	40b	40b
AG 1051	213c	111b	41a	40b
Sertanejo	212c	106c	39c	39c
BRS 3060	212c	101d	40b	41b
AL 30	212c	106c	38d	39c
AG 2060	211c	104c	42a	41b
São Vicente	210c	103d	38d	38d
Cruzeta	209c	101d	38d	38d
BRS 2110	209c	101d	40b	41b
BRS 2114	208c	100d	41a	41b
SHS 3031	207d	102d	41a	41b
BR 106	207d	103d	40b	43a
AG 7575	205d	93e	42a	42a
DKB 466	205d	102d	42a	42a
AG 6690	204d	95e	42a	42a
BRS 3150	204d	95e	41a	41b
Asa Branca	202e	101d	39c	39c
CPATC-4	202e	100d	39c	40b
São Francisco	201e	100d	40b	40b
AL Alvorada	200e	105c	40b	40b
BRS 3123	197e	95e	40b	40b
DKB 747	197e	92e	41a	41b
BRS 1001	197e	100d	41a	42a
DKB 390	196e	103d	41a	42a
Sintético Dentado	194f	94e	40b	41b
BRS 2223	194f	93e	39c	41b
DKB 350	192f	92e	41a	42a
BRS 1010	192f	92e	42a	43a
AL Ipiranga	192f	95e	39c	39c
Colorado 32	191f	95e	41a	41a
AG 7000	191f	99e	41a	42a
Caatingueiro	188g	89e	39c	40b
DKB 950	181h	81g	41a	41b
DKB 900	180h	86f	41a	42a
AG 9010	177h	80g	41a	42a

As médias seguidas pela mesma letra não diferem entre si pelo teste de Scott-Knott a 5% .

A Tabela 4 apresenta o resumo das análises de variância da variável rendimento de grãos em nível de ambientes, podendo-se observar efeitos significativos para cultivares em todos os ensaios. Os coeficientes de variação obtidos oscilaram de

A média de produtividade das cultivares variou de 3.721 kg/ha, no município de Caruaru, Pernambuco, a 8.525 kg/ha, em Simão Dias, Sergipe (Tabela 4), o que revela ampla faixa de variação nas condições ambientais em que foram realizados os ensaios. Os municípios de Barra do Corda, Paraibano, São Raimundo das Mangabeiras, no Maranhão, Baixa Grande do Ribeiro, Bom Jesus e Teresina, no Piauí, Vitória de Santo Antão, em Pernambuco, Arapiraca, em Alagoas, Simão dias, em Sergipe e Barra do Choça, na Bahia, apresentaram melhor potencialidade para exploração do milho, com produtividades médias de grãos entre 6.038 kg/ha a 8.525 kg/ha. A boa performance dessas áreas tem sido destacada em trabalhos anteriores realizados na região (CARDOSO et al., 1997, 2000, 2001; CARVALHO et al., 1999, 2000). Os municípios de Anapurus, no Maranhão e Teotônio Vilela, em Alagoas, destacaram-se também como ambientes favoráveis à exploração desse cereal, com produtividades médias acima de 5.300 kg/ha.

Tabela 4. Resumo das análises de variância de rendimentos de grãos (kg/ha) de cada ensaio. Região Nordeste do Brasil, 2004.

Ambientes	Quadrados	Médias		
Ambientes	Cultivares	Cultivares Resíduos		
Anapurus/MA	633803,4**	120920,0	5495	6
Barra do Corda /MA	2129413,2**	336446,2	6366	9
Paraibano/MA	2343634,4**	284223,0	6186	9
São R. das Mangabeiras/MA	920754,4**	378798,1	6054	10
Baixa Grande do Ribeiro/PI	3072487,9*	413666,6	6295	10
Bom Jesus/PI	2093017,4**	420180,1	6038	11
Teresina sequeiro/PI	1400296,8**	264926,3	6177	8
Teresina irrigado/PI	2089097,1**	364064,1	5209	12
Vitória de Santo Antão/PE	2370673,0**	812089,0	6400	14
Caruaru/PE	1038464,6**	135962,0	3721	10
Arapiraca/AL	3382199,3**	319622,2	6687	8
Teotônio Vilela/AL	2674380,3**	596638,0	5213	15
Nossa Senhora das Dores/SE	1379960,0**	735436,1	5317	16
Simão Dias/SE	3063772,7**	491676,6	8525	8
Lapão/BA	2267106,4**	912001,3	4952	19
Paripiranga/BA	543409,1**	211934,0	4235	11
Barra do Choça/BA	5543156,1**	955287,0	7302	13

^{**}Significativo a 1% de probabilidade pelo teste F

Houve efeitos significativos (p<0,01) quanto aos ambientes, cultivares e interação cultivares x ambientes, o que evidencia o comportamento diferenciado entre os ambientes e as cultivares e inconsistência no comportamento dessas cultivares em função das variações ambientais (Tabela 5). Interações significativas têm sido verificadas em trabalhos de competição de cultivares (ARIAS 1996; CARNEIRO 1998; CARDOSO et al., 2003; CARVALHO et al., 2002; GAMA et al., 2000; SOUZA et al., 2004).

Tabela 5. Resumo da análise de variância conjunta de rendimento de grãos (kg/ha) de 40 cultivares de milho em 17 ambientes do Nordeste brasileiro no ano agrícola de 2004.

Fonte de variação	Graus de liberdade	Quadrados médios
Ambientes (A)	16	151296694,8**
Cultivares (C)	39	19023286,4**
Interação (AxC)	624	1120146,1**
Erro	1326	456110,2
Média		5.750
C. V. (%)		12

^{**} Significativo a 1% de probabilidade pelo teste F.

Constatada a presença da interação cultivares x ambientes, foram estimados os parâmetros de adaptabilidade e estabilidade de produção propostos por Cruz et al. (1989). Aliado ao modelo proposto, consideram-se cultivares melhor adaptadas aquelas que expressaram melhores produtividades de grãos (VENCOVSKY; BARRIGA, 1992).

Os rendimentos médios de grãos das cultivares (b_0) oscilaram de 4.697 kg/ha a 6.953 kg/ha, com média geral de 5.892 kg/ha (Tabela 6), o que mostra o bom desempenho produtivo das cultivares avaliadas. As cultivares de rendimentos superiores à média geral expressaram melhor adaptação, destacando-se, entre elas, os híbridos AG 7000 e BRS 1010. Os híbridos mostraram melhor adaptado que as variedades, produzindo, em média, 6.296 kg/ha, superando em 19% o rendimento médio das variedades (5.289 kg/ha). Esta superioridade dos híbridos em relação às variedades tem sido constatada em diversas oportunidades no Nordeste brasileiro (CARDOSO et al., 2003, 2004; CARVALHO et al., 2002).

Ao analisar o comportamento das cultivares de melhor adaptação (b_0 > média geral), a estimativa de b_1 que avalia seus desempenhos nas condições desfavoráveis indicou os híbridos AG 6690, DKB 390, DKB 747, BRS 1001 e AG 2060 como exigentes nessas condições de ambiente (b_1 > 1), (Tabela 6). A estimativa de b_1 + b_2 que avalia as respostas das cultivares nos ambientes

favoráveis evidenciou nesse grupo de materiais de melhor adaptação que os híbridos AG 7575, DKB 350, BRS 3150 e AG 9010 responderam à melhoria ambiental ($b_1 + b_2 > 1$). Percebe-se também que esses materiais mais adaptados mostraram os desvios da regressão estatisticamente diferentes de zero, o que indica comportamento imprevisível ou errático desses materiais nos ambientes estudados. Entretanto, aqueles materiais que mostraram estimativas de R^2 iguais ou superiores a 80% evidenciaram boa estabilidade nesses ambientes (CRUZ et al., 1989).

Considerando os resultados apresentados, nota-se que o material ideal preconizado pelo modelo bissegmentado ($b_0 > média geral, b_1 < 1, b_1 + b_2 > 1$ e desvio da regressão igual a zero) não foi encontrado no conjunto avaliado. Da mesma forma, não foi encontrada qualquer cultivar que atendesse a todos os requisitos para adaptação nos ambientes desfavoráveis ($b_0 > média geral, b_1 < 1 e b_1 + b_2$ < 1e desvio da regressão igual a zero e/ou R²> 80%). Também, não foi observado qualquer material que atendesse a todos os requisitos de adaptação aos ambientes favoráveis ($b_0 > média geral, b_1 e 1, b_1 + b_2 > 1e desvio da$ regressão igual a zero e/ou R² > 80%). Mesmo assim, os híbridos AG 6690, DKB 390, DKB 747, BRS 1001 e AG 2060 atenderam a um maior número de requisitos para recomendação em condições favoráveis (b_o > média geral e b₁ > 1); os híbridos AG 7575, DKB 350, BRS 3150 e AG 9010, que apresentaram estimativas de $b_0 >$ média geral e $b_1 + b_2 > 1$, também justificaram suas recomendações para as condições favoráveis. Os híbridos AG 7000, BRS 1010, AG 7575, DKB 350, DKB 466, Ag 4051, BRS 3150, AG 1051 AG 9010 BRS 3123, BRS 3060, Colorado 32 e AG 405, com estimativas de b_1 = 1 e de b_o > média geral, evidenciaram adaptabilidade ampla, justificando suas recomendações para os diferentes sistemas de produção prevalecentes no Nordeste brasileiro.

Considerando-se a média das variedades (5.289 kg/ha), as variedades Sertanejo, AL Alvorada, São Francisco, Asa Branca, SHS 3031, Al 30, AL Ipiranga e AL Piratininga, disponíveis no mercado, revelaram boa adaptação na região (b₀ > média para variedades) corroborando resultados de trabalhos anteriores realizados no Nordeste do Brasil (CARDOSO et al. 2000, 2003, CARVALHO et al., 2002; SOUZA et al., 2004). Nesse grupo, apenas a variedade São Francisco mostrou ser pouco exigente nas condições desfavoráveis (b₁ < 1), o que justifica sua recomendação para essa classe de ambientes. As variedades AL Piratininga, Sertanejo, AL Alvorada, Asa Branca, SHS 3031, AL 30 e AL Ipiranga, em razão de seus altos rendimentos em relação à média das variedades e por mostrarem estimativas de b₁ = 1, evidenciaram adaptabilidade ampla, tornando-se alternativas importantes para os sistemas de produção em vigência na região.

Tabela 6. Estimativas dos parâmetros de adaptabilidade e estabilidade de 40 cultivares de milho em 19 ambientes do Nordeste brasileiro no ano agrícola de 2004. (Média = 5.750 kg/ha e C.V. = 12%).

Cultivaraa	Médias de grãos		h h		h . h	R^2	
Cultivares	Geral De					$b_1 + b_2$	K ^z
AG 7000	6953a	7010	1,00	-3,19**	-2,19**	4728278,6**	61
BRS 1010	6911a	7641	1,05	-0,28	0,77	1089904,6**	78
AG 6690	6718b	7619	1,22**	-0,13	1,08	955700,3**	85
AG 7575	6668b	7565	1,16	0,52*	1,69**	1604747,2**	81
DKB 390	6608b	7470	1,23**	-0,17	1,05	1726416,2**	76
DKB 350	6589b	7500	1,18	0,30	1,48**	1359203,7**	82
DKB 466	6536b	7342	1,18	0,07	1,26	900945,2*	86
DKB 747	6497b	7400	1,29**	-0,03	1,25	1116510,3**	86
BRS 1001	6493b	7402	1,31**	-0,87**	0,43**	883203,6*	86
AG 4051	6366c	7080	1,10	0,15	1,26	1953021,1**	73
BRS 3150	6283c	7078	1,12	0,69**	1,81**	2044090,1**	77
AG 2060	6253c	7163	1,26**	0,07	1,34	1358746,2**	83
AG 1051	6248c	6984	1,09	0,08	1,18	735771,7**	87
AG 9010	6224c	7002	1,04	0,44*	1,48**	924463,6*	85
BRS 3123	6187c	6764	0,89	-0,53*	0,35**	1138999,1**	69
BRS 3060	6165c	6837	0,98	-0,27	0,70	1266413,3**	73
Colorado 32	6156c	6786	0,91	0,41*	1,32	1845728,7**	69
AG 405	6120c	6944	1,17	0,06	1,23	5570065,1**	91
PL 6880	5959c	6436	0,70** 0,92*	0,23 0,46*	0,93 1,38*	1993523,1**	54
DKB 950 BRS 223	5878d 5862d	6658	•	-0,30	•	2155138,8**	67 69
BRS 2114	5852u 5854d	6432	0,90 1,03	-0,30	0,60 0,88	1250720,0**	84
DKB 900	5844d	6611 6415	0,83	0,41*	1,24	758715,2 670932,0	84
CPATC-5	5781d	6480	1,00	0,41	1,24	384802,5	92
CPATC-5	5748d	6389	0,96	0,17	1,17	451856,1	92 91
AL Piratininga	5748d	6450	1,08	-0,37	0,70	1175032,3**	77
BRS 2110	5723d 5707d	6359	1,00	-0,01	1,01	519338,1	89
Sertanejo	5629d	6314	1,98	0,32	1,30	367948,6	92
AL Alvorada	5484e	6239	1,00	0,35	1,35	1167325,4**	80
São Francisco	5481e	5876	0,55**	0,33	0,75	1734002,0**	46
Asa Branca	5431e	6021	0,88	0,14	1,02	694458,0	82
Sintético Dentado		6083	0,95	0,14	1,31	852284,5*	83
SHS 3031	5326e	5972	0,88	0,60**	1,49**	352628,3	92
AL 30	5317e	6103	1,02	0,24	1,27	765731,6	86
AL Ipiranga	5317e	6022	0,99	-0,17	0,81	309668,7	92
Cruzeta	4860f	5512	0,93	-0,04	0,90	659364,7	84
São Vicente	4853f	5552	1,01	-0,40	0,61*	1021157,6**	77
BR 106	4805f	5243	0,70**	0,22	0,92	684413,8	77
BRS 4150	4795f	5299	0,75**	-0,17	0,58*	670121,1	76
Caatingueiro	4697f	5073	0,57**	0,18	0,76	671006,7	64

 $^{^{1}}$ Híbrido simples, 2 híbrido triplo, 3 híbrido duplo e 4 variedade. * e* * significativamente diferente da unidade, para b_{1} e b_{1} + b_{2} , e de zero, para b_{2} . Significativamente diferentes de zero, pelo teste F, para s_{d}^{2} .

Conclusões

- Os híbridos apresentam melhor adaptação do que as variedades, e aqueles que mostram adaptabilidade ampla consolidam-se em alternativas importantes para a agricultura regional, a exemplo dos AG 7000, BRS 1010, AG 7575, DKB 350, DKB 466, dentre outros.
- As variedades que expressam adaptabilidade ampla tornam-se de importância para os diferentes sistemas de produção em execução no Nordeste brasileiro, especialmente aqueles praticados por pequenos e médios produtores rurais, a exemplo das AL Piratininga, Sertanejo, Asa Branca, SHS 3031, AL 30, dentre outros.
- O conjunto avaliado mostra diferentes níveis de estabilidade na Região Nordeste do Brasil
- A variedade Caatingueiro, de ciclo superprecoce, deve ser recomendada para os sistemas de produção dos pequenos produtores rurais das áreas semi-áridas do Nordeste brasileiro.

Agradecimentos

Os autores agradecem aos Técnicos Agrícolas José Raimundo Fonseca Freitas, Arnaldo Santos Rodrigues e José Carlos dos Santos pela participação efetiva durante todas as fases de execução do trabalho.

Referências Bibliográficas

ARIAS, E. R. A. Adaptabilidade e estabilidade de cultivares de milho no Estado do Mato Grosso do Sul e avanço genético obtido no período de 1986/87 a 1993/94. 1996. 118 f. Tese (Doutorado)-ESAL, Lavras, MG, 1996.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; PACHECO, C. A. P. SANTOS, M X. dos.; LEAL, M. de L da S. Adaptabilidade e estabilidade de cultivares de milho no Estado do Piauí, no biênio 1993/1994. **Revista Científica Rural**, Bagé, RS, v. 2, n. 1, p. 35-44, 1997.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; LEAL, M. de L da S.; SANTOS, M. X. dos. Comportamento, adaptabilidade e estabilidade de híbridos de milho no Estado do Piauí no ano agrícola de 1998. **Revista Científica Rural**, Bagé, RS, v. 5, n. 1, p.146-153, 2000.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; LEAL, M. de L. da S.; SANTOS, M. X. dos.; OLIVEIRA, A. C. Adaptabilidade e estabilidade de híbridos de milho na Região Meio-Norte do Brasil no ano agrícola de 1999/2000. **Agrotrópica**, Itabuna, BA, v. 13, n. 2, p. 59-66, 2001.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; SANTOS, M. X. dos.; LEAL, M. de L da S.; OLIVEIRA, A. C. Desempenho de híbridos de milho na Região Meio-Norte do Brasil. **Revista Brasileira de Milho e Sorgo**, Sete Lagoas, MG, v. 2, n. 1, p. 43-52, 2003.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; OLIVEIRA, A. C.; SOUZA, E. M. de. Adaptabilidade e estabilidade de cultivares de milho em diferentes ambientes

do Meio-Norte brasileiro. **Revista Ciência Agronômica**, Fortaleza, v. 35, n. 1, p. 68-75. 2004.

CARNEIRO, P. C. S. Novas metodologias de análise de adaptabilidade e estabilidade de comportamento. 1998. 168 f. Tese (Doutorado)-ESAL, Lavras, MG, 1998.

CARVALHO, H. W. L. de; LEAL, M. de L. da S.; CARDOSO, M. J.; SANTOS, M. S. dos; TABOSA, J. N.; CARVALHO, B. C. L. de; ALBUQUERQUE, M. M.; SANTOS, D. M. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 1998/99. **Agrotrópica**, Itabuna, BA, v. 12, n. 1, p. 21-28, 2000.

CARVALHO, H. W. L. de; LEAL, M. de L. da S.; CARDOSO, M. J.; SANTOS, M. S. dos; CARVALHO, B. C. L. de; TABOSA, J. N.; LIRA, M. A.; ALBUQUERQUE, M. M. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 1998. **Pesquisa Agropecuária Brasileira**, Brasília, v. 36, n. 4, p. 637-644, 2001.

CARVALHO, H. W. L. de; LEAL, M. de L. da S.; CARDOSO, M. J.; SANTOS, M. X. dos; TABOSA, J. N.; CARVALHO, B. C. L. de; LIRA, M. A. Adaptabilidade e estabilidade de cultivares de milho no nordeste brasileiro no triênio 1998 a 2000. **Pesquisa Agropecuária Brasileira**, Brasília, v. 37, n. 11, p. 1581-1588, nov. 2002.

CARVALHO, H. W. L. de.; SANTOS, M. X. dos.; LEAL, M. de L. da S. PACHECO, C. A. P; CARDOSO, M. J.; MONTEIRO A. A. T. Adaptabilidade e estabilidade de produção de cultivares de milho no Nordeste brasileiro. **Pesquisa Agropecuária Brasileira**, Brasília, v. 34, n. 9, p.1581-1591, 1999.

CARVALHO, H. W. L. de.; CARDOSO, M. J.; LEAL, M. de L. da S.; SANTOS, M. X. dos.; SANTOS, D. M. dos.; TABOSA, J. N.; LIRA, M. A.; SOUZA, E. M. de. Adaptabilidade e estabilidade de híbridos de milho no Nordeste brasileiro. **Revista Científica Rural**, Bagé, RS, v. 9, n. 1, p. 118-125, 2004.

CRUZ, C. D.; TORRES, R. A. de.; VENCOVSKY, R. An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, Ribeirão Preto, SP, v. 12, p. 567-580, 1989.

GAMA, E. E. G.; PARENTONI, S. N.; PACHECO, C. A. P.; OLIVEIRA, A. C. de.; GUIMARÃES, P. E. de O. de.; SANTOS, M. X. dos. Estabilidade de produção de germoplasma de milho avaliado em diferentes regiões do Brasil. **Pesquisa Agropecuária Brasileira**, Brasília, v. 36 n. 6, p. 1143-1149, 2000.

SAS INSTITUTE. **SAS/STAT user's Guide**: version 6. 4. Estados Unidos: Cary, 1996. v. 1.

SCAPIM, C. A.; CARVALHO, C. G. P de.; CRUZ, C. D. Uma proposta de classificação dos coeficientes de variação para a cultura do milho. **Pesquisa Agropecuária Brasileira**, Brasília, v. 30, n. 5, p. 683-686, 1995.

SOUZA, E. M. de.; CARVALHO. H. W. L. de.; LEAL, M. de L. da S.; SANTOS, D. M. dos. Adaptabilidade e estabilidade de cultivares de milho nos Estados de Sergipe e Alagoas. **Revista Ciência Agronômica**, Fortaleza, v. 35, n. 1, p. 76-81, 2004.

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto, SP: Sociedade Brasileira de Genética, 1992. 496 p.

