Introduction to Machine Learning

Supervised Regression: Linear Models with *L*2 Loss

Learning goals

- Grasp the overall concept of linear regression
- Understand how L2 loss optimization results in SSE-minimal model
- Understand this as a general template for ERM in ML

LINEAR REGRESSION

• Idea: predict $y \in \mathbb{R}$ as **linear** combination of features¹:

$$\hat{\mathbf{y}} = f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

 \rightarrow find loss-optimal params to describe relation $y | \mathbf{x}$

• Hypothesis space: $\mathcal{H} = \{ f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1} \}$

¹ Actually, special case of linear model, which is linear combo of *basis functions* of features → Polynomial Regression Models

DESIGN MATRIX

- ullet Mismatch: $oldsymbol{ heta} \in \mathbb{R}^{p+1}$ vs $\mathbf{x} \in \mathbb{R}^p$ due to intercept term
- Trick: pad feature vectors with leading 1, s.t.

•
$$\mathbf{x} \mapsto \mathbf{x} = (1, x_1, \dots, x_p)^{\top}$$
, and
• $\boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 \cdot 1 + \theta_1 x_1 + \dots + \theta_p x_p$

- Collect all observations in **design matrix X** $\in \mathbb{R}^{n \times (p+1)}$ \rightsquigarrow more compact: single param vector incl. intercept
- Resulting linear model:

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_p^{(1)} \\ 1 & x_1^{(2)} & \dots & x_p^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} & \dots & x_p^{(n)} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} = \begin{pmatrix} \theta_0 + \theta_1 x_1^{(1)} + \dots + \theta_p x_p^{(1)} \\ \theta_0 + \theta_1 x_1^{(2)} + \dots + \theta_p x_p^{(2)} \\ \vdots \\ \theta_0 + \theta_1 x_1^{(n)} + \dots + \theta_p x_p^{(n)} \end{pmatrix}$$

• We will make use of this notation in other contexts

EFFECT INTERPRETATION

- Big plus of LM: immediately **interpretable** feature effects
- "Marginally increasing x_j by 1 unit increases y by θ_j units" \rightsquigarrow ceteris paribus assumption: $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p$ fixed


```
Call:
lm(formula = y \sim x 1, data = dt univ)
Residuals:
    Min
              10 Median
-1.10346 -0.34727 -0.00766 0.31500 1.04284
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.03727
                       0.11360
                               9.131 4.55e-12 ***
x 1
            0.53521
                       0.08219 6.512 4.13e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5327 on 48 degrees of freedom
Multiple R-squared: 0.469, Adjusted R-squared: 0.458
F-statistic: 42.4 on 1 and 48 DF. p-value: 4.129e-08
```

MODEL FIT

- How to determine LM fit? → define risk & optimize
- Popular: L2 loss / quadratic loss / squared error

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2 \text{ or } L(y, f(\mathbf{x})) = 0.5 \cdot (y - f(\mathbf{x}))^2$$

- Why penalize **residuals** $r = y f(\mathbf{x})$ quadratically?
 - Easy to optimize (convex, differentiable)
 - Theoretically appealing (connection to classical stats LM)

LOSS PLOTS

We will often visualize loss effects like this:

- Data as $y \sim x_1$
- ◆ Prediction hypersurface→ here: line
- Residuals r = y f(x)

 ⇒ squares to illustrate loss

- Loss as function of residuals

 ⇒ strength of penalty?

 ⇒ symmetric?
- Highlighted: loss for residuals shown on LHS

• Resulting risk equivalent to **sum of squared errors (SSE)**:

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left(y^{(i)} - oldsymbol{ heta}^{ op} \mathbf{x}^{(i)}
ight)^2$$

• Resulting risk equivalent to **sum of squared errors (SSE)**:

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left(y^{(i)} - oldsymbol{ heta}^{ op} \mathbf{x}^{(i)}
ight)^2$$

• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left(y^{(i)} - oldsymbol{ heta}^ op \mathbf{x}^{(i)}
ight)^2$$

• Resulting risk equivalent to **sum of squared errors (SSE)**:

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left(y^{(i)} - oldsymbol{ heta}^ op \mathbf{x}^{(i)}
ight)^2$$

Intercept θ_0	Slope θ_1	SSE
1.80	0.30	16.86
1.00	0.10	24.29
0.50	0.80	10.61

Intercept θ_0	Slope θ_1	SSE
1.80	0.30	16.86
1.00	0.10	24.29
0.50	0.80	10.61
-1.65	1.29	5.88

Instead of guessing, of course, use optimization!

ANALYTICAL OPTIMIZATION

• Special property of LM with L2 loss: analytical solution available

$$\hat{\boldsymbol{\theta}} \in \mathop{\mathrm{arg\,min}}_{\boldsymbol{\theta}} \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) = \mathop{\mathrm{arg\,min}}_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^{2}$$

$$= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\theta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2}$$

Find via normal equations

$$rac{\partial \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})}{\partial oldsymbol{ heta}} = \mathbf{0}$$

Solution: ordinary-least-squares (OLS) estimator

$$\hat{oldsymbol{ heta}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$$

STATISTICAL PROPERTIES

- LM with L2 loss intimately related to classical stats LM
- Assumptions
 - $\mathbf{x}^{(i)}$ iid for $i \in \{1, ..., n\}$
 - Homoskedastic (equivariant) Gaussian errors

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}, \; \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \boldsymbol{I})$$

 $\rightsquigarrow y_i$ conditionally independent & normal: $\mathbf{y}|\mathbf{X} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I})$

- Uncorrelated features
 - → multicollinearity destabilizes effect estimation
- If assumptions hold: statistical inference applicable
 - Hypothesis tests on significance of effects, incl. *p*-values
 - Confidence & prediction intervals via student-t distribution
 - Goodness-of-fit measure $R^2=1-\text{SSE }/\underbrace{\text{SST}}_{\sum\limits_{i=1}^{n}(y^{(i)}-\bar{y})^2}$

→ SSE = part of data variance not explained by model

