Final Project for Data Science Academy by COMPFEST

MEMPREDIKSI PENJUALAN KENDARAAN LISTRIK DENGAN POLYNOMIAL REGRESSION

POTTERHEADS

- Deanarani Kharisma
- Romauli Graciella Debora
- Zalfa Aretha Fahira Ranstya

Daftar Isi

- 1. Pendahuluan
- 2. Data Pre-Processing & Data Cleaning
- 3.EDA
- 4. Feature Engineering
- 5. Modeling & Evaluation
- 6. Konklusi & Rekomendasi

Latar Belakang

Kendaraan listrik telah mengalami pertumbuhan pesat dalam beberapa tahun terakhir sebagai alternatif ramah lingkungan dalam industri otomotif. Presentasi ini mengulas perkembangan teknologi kendaraan listrik serta analisis produksi total kendaraan listrik per tahun. Dengan fokus pada aspek manufaktur, project ini membahas peningkatan signifikan dalam produksi kendaraan listrik di Negara Washington. Data statistik mengenai total produksi kendaraan listrik per tahun dianalisis untuk mengidentifikasi tren pertumbuhan dan dampaknya terhadap industri otomotif konvensional.

Rumusan Masalah

- 1. Bagaimana tren pertumbuhan produksi kendaraan listrik?
- 2. Bagaimana akurasi prediksi model machine learning?
- 3. Bagaimana hasil analisis terhadap model yang diperoleh?

Manfaat Hasil Prediksi

Strategi Pemasaran

Pengembangan Produk

Analisis Persaingan

Pertimbangan Investasi

Mengarahkan sumber daya pemasaran ke wilayah atau segmen pasar yang memiliki potensi pertumbuhan lebih tinggi. Dapat menghemat biaya produksi dan mengoptimalkan pengelolaan persediaan. Dapat membantu dalam merumuskan strategi kompetitif. Membantu investor dalam pengambilan keputusan investasi dalam perusahaan otomotif.

Data Preprocessing & Cleaning

Data Observation

HTTPS://CATALOG.DATA.GOV/DATASET/ELECTRIC-VEHICLE-POPULATION-DATA

Import Data data = pd.read_csv('/content/Electr

data = pd.read_csv('/content/Electric_Vehicle_Population_Data.csv')
data

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	DOL Vehicle ID	Vehicle Location	Electric Utility	2020 Census Tract
0	1N4AZ0CP5D	Kitsap	Bremerton	WA	98310.0	2013	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	75	0	23.0	214384901	POINT (-122.61136499999998 47.575195000000065)	PUGET SOUND ENERGY INC	5.303508e+10
1	1N4AZ1CP8K	Kitsap	Port Orchard	WA	98366.0	2019	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	150	0	26.0	271008636	POINT (-122.63926499999997 47.537300000000007)	PUGET SOUND ENERGY INC	5.303509e+10
2	5YJXCAE28L	King	Seattle	WA	98199.0	2020	TESLA	MODEL X	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	293	0	36.0	8781552	POINT (-122.394185 47.639195000000003)	CITY OF SEATTLE - (WA) CITY OF TACOMA - (WA)	5.303301e+10
3	SADHC2S1XK	Thurston	Olympia	WA	98503.0	2019	JAGUAR	I-PACE	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	234	0	2.0	8308492	POINT (-122.8285 47.03646)	PUGET SOUND ENERGY INC	5.306701e+10
4	JN1AZ0CP9B	Snohomish	Everett	WA	98204.0	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	21.0	245524527	POINT (-122.24128499999995 47.910880000000008)	PUGET SOUND ENERGY INC	5.306104e+10
138774	KNAGV4LD6L	Clark	Vancouver	WA	98686.0	2020	KIA	OPTIMA	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	28	0	17.0	122272881	POINT (-122.64839529999995 45.70104270000007)	BONNEVILLE POWER ADMINISTRATION PUD NO 1 OF C	5.301104e+10
13877	7SAYGDEE1N	Thurston	Lacey	WA	98503.0	2022	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	22.0	187390038	POINT (-122.8285 47.03646)	PUGET SOUND ENERGY INC	5.306701e+10
138776	5YJYGDEE7M	Benton	Richland	WA	99352.0	2021	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	8.0	181300416	POINT (-119.29441499999996 46.27187500000008)	BONNEVILLE POWER ADMINISTRATION CITY OF RICHL	5.300501e+10
138777	WBY33AW08P	Pierce	Tacoma	WA	98443.0	2023	BMW	14	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	25.0	224612055	POINT (-122.36463499999996 47.194490000000003)	BONNEVILLE POWER ADMINISTRATION CITY OF TACOM	5.305394e+10
138778	JN1AZ0CP2B	King	Seattle	WA	98118.0	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	37.0	246621546	POINT (-122.28338999999994 47.549285000000054)	CITY OF SEATTLE - (WA) CITY OF TACOMA - (WA)	5.303301e+10

138779 rows × 17 columns

Deskripsi Dataset

FITUR-FITUR PADA DATASET

1. VIN (1-10): Vehicle Identification Number

2. County: Daerah

3. City: Kota

4. **State**: Negara

5. Postal Code: Kode Pos

6. Model Year: Tahun Pembuatan Modelnya

7. Make: Manufacture

8. Model: Varian

9. Electric Vehicle Type: Jenis Kendaraan Listrik

10. Clean Alternative Fuel Vehicle (CAFV) Eligibility: Memenuhi Syarat Sebagai Kendaraan Listrik

11. Electric Range: Listrik pada Kendaraan

12. Base MSRP: Base Manufacturer Suggested Retail Price

13. Legislative District: Kawasan yang Menggunakan Kendaraan Listrik

14. **DOL Vehicle ID**: Department of Licensing

15. Vehicle Location: Lokasi Kendaraan

16. Electric Utility: Electric Privider/Supplier

17.2020 Census Tract: Sensus Daerah 2020

Rename Columns

Mengubah beberapa nama variabel untuk mempermudah.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 138779 entries, 0 to 138778 Data columns (total 17 columns): Column Non-Null Count Dtype VIN 138779 non-null object County 138776 non-null object City 138776 non-null object State 138779 non-null object 138776 non-null float64 Zipcode Year 138779 non-null int64 Make 138779 non-null object Model 138493 non-null object EVT 138779 non-null object CAFV 138779 non-null object Range 138779 non-null int64 138779 non-null int64 MSRP District 138464 non-null float64 DOL 138779 non-null int64 Location 138773 non-null object Provider 138776 non-null object Census2020 138776 non-null float64 dtypes: float64(3), int64(4), object(10) memory usage: 18.0+ MB

Values Observation

Melihat jumlah missing values pada dataset

0	data.isna()	.sum()
---	-------------	--------

8	VIN	0
	County	3
	City	3
	State	0
	Zipcode	3
	Year	0
	Make	0
	Model	286
	EVT	0
	CAFV	0
	Range	0
	MSRP	0
	District	315
	DOL	0
	Location	6
	Provider	3
	Census2020	3
	dtype: int64	

Melihat jumlah data yang duplikat pada dataset

data.duplicated().sum()

8

0

Handling Missing Values

Handling missing value
data = data.dropna()

Data Description

Melihat statistik deskriptif dari tiap variabel numerik pada dataset.

	Zipcode	Year	Range	MSRP	District	DOL	Census2020
count	138175.000000	138175.000000	138175.000000	138175.000000	138175.000000	1.381750e+05	1.381750e+05
mean	98258.819685	2019.766441	72.448981	1407.425982	29.427190	2.079269e+08	5.303963e+10
std	302.371730	3.012774	97.809794	9551.756736	14.799921	8.464173e+07	1.617000e+07
min	98001.000000	1997.000000	0.000000	0.000000	1.000000	4.385000e+03	5.300195e+10
25%	98052.000000	2018.000000	0.000000	0.000000	18.000000	1.643437e+08	5.303301e+10
50%	98122.000000	2021.000000	21.000000	0.000000	33.000000	2.085477e+08	5.303303e+10
75%	98370.000000	2022.000000	149.000000	0.000000	43.000000	2.342263e+08	5.305307e+10
max	99403.000000	2024.000000	337.000000	845000.000000	49.000000	4.792548e+08	5.307794e+10

Exploratory Data Analysis

Top Three

Akan dilakukan eksplorasi data untuk top three variabel 'Make' perusahaan pembuat kendaraan listrik terbanyak.

data.Make.value_counts()

TESLA	53032
NISSAN :	13194
CHEVROLET :	11527
FORD	7046
BMW	6014
KIA	5663
TOYOTA	4923
VOLKSWAGEN	3704
VOLVO	3036
JEEP	2938
AUDI	2787
HYUNDAI	2625
CHRYSLER	2381
RIVIAN	1932
PORSCHE	980
MERCEDES-BENZ	862
FIAT	818
HONDA	799
MITSUBISHI	763
MINI	758
POLESTAR	727
SUBARU	368
SMART	276
JAGUAR	222
LINCOLN	220
LUCID	160
CADILLAC	126
LEXUS	88
GENESIS	77
MAZDA	53
LAND ROVER	43
FISKER	15
AZURE DYNAMICS	8
TH!NK	4
BENTLEY	3
WHEEGO ELECTRIC CARS	3
Name: Make, dtype: int64	

Pivot Table

Membuat Pivot Table data perusahaan top 3 dengan 'Make' sebagai indeks atas, 'Year' sebagai kolom, dan 'Count' sebagai nilai.

	Year	1997	2008	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	Make																
CH	HEVROLET	1	0	0	76	474	798	713	470	301	2738	1152	1007	957	351	914	1575
	NISSAN	0	0	0	694	589	1937	640	1840	1172	936	1226	1391	642	473	940	714
	TESLA	0	18	21	7	128	771	653	1071	1617	1635	8027	4642	6938	10872	13879	12753

Drop Row

Dropping baris data tahun 1997, 2008, 2010, dan 2023.

	<u> </u>	,

	Year	Make	Count
10	2011	CHEVROLET	76
11	2011	NISSAN	694
12	2011	TESLA	7
15	2012	CHEVROLET	474
19	2012	NISSAN	589
20	2012	TESLA	128
22	2013	CHEVROLET	798
2 5	2013	NISSAN	1937
27	2013	TESLA	771
31	2014	CHEVROLET	713
37	2014	NISSAN	640
40	2014	TESLA	653
43	2015	CHEVROLET	470
48	2015	NISSAN	1840
51	2015	TESLA	1071
57	2016	CHEVROLET	301
64	2016	NISSAN	1172

				1
67	2016	TESLA	1617	
73	2017	CHEVROLET	2738	
81	2017	NISSAN	936	,
84	2017	TESLA	1635	,
91	2018	CHEVROLET	1152	
101	2018	NISSAN	1226	
104	2018	TESLA	8027	
110	2019	CHEVROLET	1007	
121	2019	NISSAN	1391	
12 5	2019	TESLA	4642	
132	2020	CHEVROLET	957	
144	2020	NISSAN	642	
146	2020	TESLA	6938	
152	2021	CHEVROLET	351	
164	2021	NISSAN	473	
167	2021	TESLA	10872	
174	2022	CHEVROLET	914	
187	2022	NISSAN	940	
191	2022	TESLA	13879	

Data Visualization: Plot Perbandingan Jumlah Produksi Mobil Top 3 per Tahun

Jumlah Produksi Tesla, Nissan, dan Chevrolet per Tahun

Data Visualization: Jumlah Produksi TESLA per Tahun

	Year	Make	Count
12	2011	TESLA	7
20	2012	TESLA	128
27	2013	TESLA	771
40	2014	TESLA	653
51	2015	TESLA	1071
67	2016	TESLA	1617
84	2017	TESLA	1635
104	2018	TESLA	8027
125	2019	TESLA	4642
146	2020	TESLA	6938
167	2021	TESLA	10872
191	2022	TESLA	13879

Data Visualization: Jumlah Produksi NISSAN per Tahun

	Year	Make	Count
11	2011	NISSAN	694
19	2012	NISSAN	589
25	2013	NISSAN	1937
37	2014	NISSAN	640
48	2015	NISSAN	1840
64	2016	NISSAN	1172
81	2017	NISSAN	936
101	2018	NISSAN	1226
121	2019	NISSAN	1391
144	2020	NISSAN	642
164	2021	NISSAN	473
187	2022	NISSAN	940

Data Visualization: Jumlah Produksi CHEVROLET per Tahun

	Year	Make	Count
10	2011	CHEVROLET	76
15	2012	CHEVROLET	474
22	2013	CHEVROLET	798
31	2014	CHEVROLET	713
43	2015	CHEVROLET	470
57	2016	CHEVROLET	301
73	2017	CHEVROLET	2738
91	2018	CHEVROLET	1152
110	2019	CHEVROLET	1007
132	2020	CHEVROLET	957
152	2021	CHEVROLET	351
174	2022	CHEVROLET	914

Feature Engineering

Feature Engineering

Membuat dataframe baru dengan dropping fitur-fitur selain 'Year' dan 'Make' lalu menambahkan kolom 'Count'.

```
# Jumlah pembelian mobil setiap tahunnya
data = data.groupby(['Year', 'Make']).size().reset_index(name='Count')
```


Spesifikasi dataframe baru tersebut dengan hanya menggunakan data row terkait perusahaan top three yang ingin diteliti lebih lanjut.

```
# Keep only Tesla, Nissan, and Chevrolet
data = data[data['Make'].isin(['TESLA', 'NISSAN', 'CHEVROLET'])]
```

Modeling & Evaluation

Splitting Data

Splitting Features & Target

X : Year y : Count

Splitting Training & Testing Set

Train Data Test Data

Year	Count
2011	
2012	
2013	
2014	
2015	
2016	
2017	
2018	
2019	
2020	
2021	
2022	

Hyperparameter Tuning (tune the degree)

Digunakan Metrik Evaluasi MAE (Mean Absolute Error).

	TESLA		NISSAN		CHEVROLET		
Degree	Test Data	Train Data	Test Data	Train Data	Test Data	Train Data	
6	50062.38182	793.7313287	8102.018182	245.851655	31671.41818	291.3435431	
5	11163.99394	827.6626573	7116.224242	246.7995338	5392.824242	374.1683916	
4	11044.39394	828.8657343	1481.590909	331.1714452	3030.742424	380.4413753	
3	2715.939394	616.4179487	315.2348485	348.9004662	844.1651515	404.469697	
2	2333.121212	823.28	408.9893939	338.5939394	364.4287879	370.9975758	

Model Evaluation

	TESLA		NISSAN		CHEVROLET	
Matrix	Test Data	Train Data	Test Data	Train Data	Test Data	Train Data
r2_score	-1.534518481	0.76828912	-1.056265766	0.225664826	-1.656802688	0.29139985
MAE	2333.121212	823.28	315.2348485	348.9004662	364.4287879	370.9975758
MSE	5729310.073	1775370.217	112112.2362	172496.951	210531.0228	346938.598

Tesla Prediction

Year: 2023, Predicted Count: 13136.76

Year: 2024, Predicted Count: 15450.15

Year: 2025, Predicted Count: 17951.39

Year: 2026, Predicted Count: 20640.47

Year: 2027, Predicted Count: 23517.41

Nissan Prediction

Year: 2023, Predicted Count: 366.23

Year: 2024, Predicted Count: 250.39

Year: 2025, Predicted Count: 176.39

Year: 2026, Predicted Count: 156.25

Year: 2027, Predicted Count: 201.99

Chevrolet Prediction

Year: 2023, Predicted Count: 615.33 Year: 2024, Predicted Count: 355.12 Year: 2025, Predicted Count: 47.74 Year: 2026, Predicted Count: -306.81

Year: 2027, Predicted Count: -708.54

Konklusi & Rekomendasi

Konklusi

- 1. Prediksi menunjukkan potensi pertumbuhan yang besar khususnya bagi Tesla sehingga hal ini menandakan peluang yang menarik dalam industri mobil listrik.
- 2. Informasi ini dapat membantu merek mengarahkan strategi pemasaran dengan lebih tepat. Kampanye dapat diarahkan ke area pertumbuhan potensial.
- 3.Untuk Nissan dan Chevrolet, tren penjualan dapat dipahami sehingga membantu perencanaan produksi yang lebih efisien, menghindari biaya yang tidak perlu.

Rekomendasi

- 1. Perlu eksplorasi model yang lebih sederhana dan memiliki kemampuan generalisasi yang lebih baik untuk meningkatkan akurasi.
- 2. Integrasi data lebih lengkap, termasuk faktor eksternal, memperkaya analisis.
- 3. Jika hasil analisis ini digunakan dalam pengambilan keputusan bisnis, penting untuk memantau kinerja prediksi secara teratur dan memperbarui model sesuai dengan kondisi pasar yang berkembang.

Thank you.

