CLAIMS

The embodiment of the invention in which an exclusive property or privilege is claimed is defined as follows:

1	 A method for detecting molecules, the method comprising: 		
2	 a) determining the electronic status of a semi-conductor; 		
3	b) establishing electronic communication between the molecules and		
4	the semiconductor;		
5	c) subjecting the semi-conductor to energy influx;		
6	d) redetermining the electronic status of the semi-conductor.		
1	2. The method as recited in claim 1, wherein the energy level is deter-		
2	mined optically.		
1	3. The method as recited in claim 1, wherein the energy level is deter-		
2	mined electrically.		
1	4. The method as recited in claim 1, wherein the semiconductors are		
2	are octahedral metal oxides.		
1	5. The method as recited in claim 1, wherein the semiconductors are		
2	metal oxides selected from the group consisting of TiO ₂ , VO ₂ , ZrO ₂ , Fe ₃ O ₄ , MnO ₂ ,		
3	NiO, CuO, and combinations thereof.		

1	6. The method as recited in claim 1 wherein bidentate moieties are		
2	positioned intermediate to the molecules and the semiconductors.		
1	7. The method as recited in claim 6, wherein the moieties are		
2	dihydroxyl phenyls selected from the group consisting of 1,2 dihydroxy		
3	phenylamine, 1,2-dihydroxyl phenyl alanine, 1,2-dihydroxyl benzoic acid, 1,2-		
4	dihydroxy glycine, 1,2 dihydroxy benzyl amine, and combinations thereof.		
1	8. The method as recited in claim 1, wherein the semiconductor further		
2	comprises a valence band and a conductive band, whereby the valence ban		
3	contains electrons.		
1	9. The method as recited in claim 8, wherein the energy influx induces		
2	the electrons to relocate to the conductance band.		
1	10. The method as recited in claim 1 wherein the molecules are electron		
2	donators.		
1	11. The method as recited in claim 1 wherein the molecules are electron		
2	acceptors.		
1	12. A method for detecting biological molecules, the method comprising		
2	a) supplying a semi-conductor having a first energy level and a second		
3	energy level and whereby the first energy level corresponds to a first option		
4	characteristic of the semi-conductor;		
5	b) establishing electrical contact between the semi-conductor and the		
6	molecules;		
7	c) causing electrons to move from the molecule to the second energy		
8	level; and		
9	d) monitoring any change in the first optical characteristic.		

1	13. The method as recited in claim 12, wherein the biological molecule		
2	extracts electrons from the semi-conductor.		
1	14. The method as recited in claim 12, wherein the biological molecule		
2	donates electrons to the semi-conductor.		
1	15. The method as recited in claim 12, wherein a bidentate moiety is		
2	intermediate to the semi-conductor and the biological molecule.		
1	16. The method as recited in claim 12 wherein a moiety capable of		
2	withdrawing electrons from the biological molecule is in electrical communication		
3	with the molecule.		
1	17. The method as recited in claim 12 wherein a moiety capable of		
2	donating electrons to the biological molecule is in electrical communication with the		
3	molecule.		
1	18. The method as recited in claim 12 wherein the semiconductors		
2	are octahedral metal oxides.		
1	19. The method as recited in claim 12, wherein the semi-conductor is		
2	between 1 and 20 nanometers in diameter.		
1	20. The method as recited in claim 12 wherein the step of causing		
2	electrons to move results in the formation of an oxidative region on the semi-		
3	conductor.		
1	21. The method as recited in claim 20, wherein the oxidative region		
2	facilitates cleavage of molecules.		

1	22.	A method for detecting target moieties in situ, the method
2	comprising:	
3	a)	binding biological material to nanocrystalline semiconductor
4	particles, wh	erein the material has an affinity to the target moiety;
5	b)	facilitating entry of the bound material into an organelle; and
6	c)	subjecting the semiconductor to radiation sufficient to produce a
7-	charge pair	separation on the semiconductor's surface.
1	23.	The method as recited in claim 22 wherein the biological material is
2	genetic mate	erial.
1	24.	The method as recited in claim 22 wherein the organelle is a nucleus
2	of a cell.	
1	25.	The method as recited in claim 22 wherein the charge pair separation
2	is detected v	ria Electron Paramagnetic Resonance.
1	26.	The method as recited in claim 22 wherein the charge separation is
2	detected via	an electronic signal.
1	27.	The method as recited in claim 26 wherein the signal can be
2	amplified.	
1	28.	A method for manipulating biological material in vivo, the method
2	comprising:	
3	a)	attaching a semi-conductor to a first biological moiety to create a
4		construct;
5	b)	inserting the construct into a living organism;
6	c)	allowing the construct to migrate to the biological material:

7	d) creating a plurality of charges on the construct, wherein the size of the		
8	charges and distances between the charges cause the biologica		
9	material to change in structure.		
1	29. The method as recited in claim 28 wherein the biological material		
2	comprises molecules selected from the group consisting of nucleotides, nitrogenous		
3	heterocyclic bases, amino acids, and combinations thereof.		
1	30. The method as recited in claim 28 wherein the charges are created		
2	by subjecting the construct to radiation.		
1	31. The method as recited in claim 30 wherein the radiation has an		
2	energy greater than 1.6 eV.		
1	32. The method as recited in claim 28 wherein the radiation has energy		
2	ranging from about 1.6 eV to 10 eV.		
1	33. The method as recited in claim 28 wherein the step of creating a		
2	plurality of charges further comprises subjecting the construct to radiation selected		
3	from the group consisting of white light, ultra violet light, X-rays or gamma rays		
4	alpha rays, gamma rays, and combinations thereof.		
1	34. The method as recited in claim 28 wherein the biological material is		
2	nucleic acid and the construct changes the nucleic acid by cleaving it.		
1	35. The method as recited in claim 34 wherein the cleavage occurs when		
2	the semiconductor accumulates electrons from the first biological moiety.		
1	36. The method as recited in claim 28 wherein the semiconductor is a		

2	metal oxide selected from the group consisting of TIO2, ZrO2, VO2, MnO2, NiO,			
3	ZnO, CuO, FeO₄ and combinations thereof.			
1	37. The method as recited in 1 wherein the biological molecule is			
2	nucleic acid having base sequences interspersed with guanine.			

- 38. The method as recited in claim 30 wherein the source of radiation is a radioactive isotope selected from the group consisting of phosphorus-32, iodine-123, iodine-131, sulfur-35, selenium-75, technetium-99, yttrium-90 and combinations thereof.
- 39. The method as recited in claim 37 wherein the radioactive isotope is covalently attached to the semi-conductor.