2023 年「高等数学 1」杭电期中模拟试题一

出题: MathHub

审题: 未央学社

本资料仅作为模拟练习之用,目的是为了帮助大家更有效地复习,并减轻对考试的担忧。请正确的对待此资料, 其旨在辅助复习,而非预示具体的考试内容。我们鼓励同学们认真复习,大学学习主打理解,而非刷题,期望大家在 期中考试中取得优异成绩。

1. 选择题

☑ 题目 1

1

设 $y = \tan^2 x \sin \frac{1}{x}$, 则当 $x \to 0$ 时, y 是

- A. 无穷小量 B. 无穷大量
- C. 有界但非无穷小量
- D. 无界但非无穷大量

☑ 答题区

☑ 题目 2

下列各式中正确的是

A.
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 1$$

A.
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 1$$
 B. $\lim_{x \to +\infty} \frac{\ln (1+x)}{x} = 1$ C. $\lim_{x \to 1} \frac{\arctan x}{x} = 1$ D. $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

C.
$$\lim_{x \to 1} \frac{\arctan x}{x} = 1$$

D.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

☑ 答题区

☑ 题目 3

1

设 f'(0) = 2, 则 $\lim_{x\to 0} \frac{f(3\sin x) - f(2\arctan x)}{x} =$

- B. 2
- C. $\frac{1}{4}$

D. 4

☑ 答题区

☑ 题目 4

1

ľ

设函数 g(x) 可导, $h(x) = e^{1+g(x)}$, 其中 h'(1) = 1, g'(1) = 2, 则 g(1) =

- A. $\ln 3 1$
- B. $-\ln 3 1$ C. $-\ln 2 1$ D. $\ln 2 1$

☑ 答题区

☑ 题目 5

ľ 1

曲线 $y_1 = ax^3 + 1$ 与 $y_2 = e^x$ 在 x = 1 处斜率相同,则 a =

A. e

- D. $\frac{e}{4}$

☑ 答题区

☑ 题目 6

[]

设函数 f(u) 可导, $y = f(x^2)$ 当自变量 x 在 x = -1 处取得增量 $\Delta x = -0.1$ 时,相应的函数的增量 Δy 的线性 主部为 0.1,则 f'(1) =

A. -1

B. 0.1

C. 1

D. 0.5

☑ 答题区

☑ 题目 7

[]

设 $f'(x_0) = f''(x_0) = 0$, $f'''(x_0) > 0$, 则下列选项正确的是

A. $f'(x_0)$ 是 f(x)

B. $f(x_0)$ 是 f(x) 的极大值

C. $f'(x_0)$ 是 f(x) 的极小值

D. $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点

☑ 答题区

2. 填空题

☑ 题目 8

[]

设
$$f(x) = \lim_{n \to \infty} \frac{(n-1)x}{nx^2+1}$$
, 则 $f(x)$ 的间断点为 $x =$

A. 0

B. 1

C. 2

D. 3

☑ 答题区

☑ 题目 9

求极限
$$L = \lim_{x \to 0} \frac{x \ln(1+x)}{1 - \cos x} = ____.$$

☑ 答题区

☑ 题目 10

求参数方程的导数:
$$\begin{cases} x = \cos t \\ y = \sin t + t \end{cases}$$
 求解结果 =______

☑ 答题区

☑ 题目 11

求曲线 $y = xe^{-x}$ 的拐点及在拐点处的曲率分别为______.

3. 解答题

☑ 题目 12

求极限
$$L = \lim_{x \to 3} \frac{x-3}{x^2-9}$$
.

☑ 答题区

☑ 题目 13

求极限
$$L = \lim_{n \to \infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right].$$

☑ 答题区

☑ 题目 14

求极限
$$L = \lim_{n \to \infty} \frac{n}{\ln n} \cdot (\sqrt[n]{n} - 1).$$

☑ 答题区

2 题目 15

设 $y = f(\ln x) e^{f(x)}$, 其中 f 可微, 则 dy 为?

☑ 答题区

☑ 题目 16

求极限 $L = \lim_{n \to \infty} \frac{n}{\ln n} \cdot (\sqrt[n]{n} - 1).$

☑ 答题区

☑ 题目 17

设函数 y = y(x) 由方程 $\ln(x^2 + y) = x^3y + \sin x$ 确定,则 $\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=0}$ 为?

☑ 题目 18

☑ 题目 19

求极限: $L = \lim_{x \to 2} \frac{\sqrt{5x - 1} - \sqrt{2x + 5}}{x^2 - 4}$.

☑ 答题区

☑ 题目 20

设 $f(x) = (x^3 - 1)^n e^x$, 求 $f^{(n)}(1)$.

☑ 题目 21

设
$$y = \frac{e^x + 1}{e^x - 1}$$
, 求
1. 函数的间断点并判断其类型.

- 2. 该函数的水平渐近线和垂直渐近线.
- ☑ 答题区

☑ 题目 22

讨论函数
$$f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 在点 $x = 0$ 的连续性和可导性质.

☑ 答题区

☑ 题目 23

设
$$0 < x < a$$
,对任意的自然数 m, n ,试证: $x^m (a-x)^n \le \frac{m^m n^n}{(m+n)^{m+n}} a^{m+n}$.

☑ 答题区

设
$$f(x)$$
 在 $[0,+\infty)$ 上可导,且 $0 \le f(x) \le \frac{x}{1+x^2}$. 证明:存在 $\xi \in (0,+\infty)$ 使得 $f'(\xi) = \frac{1-\xi^2}{(1+\xi^2)^2}$.