臨門一腳隊_分析說明書

一、 資料處理與特徵選取

Data Cleaning

異常值處理

將NA值過多之欄位刪除(參見附件一),忽略該變數不計, 以免影響預測結果,造成誤判。其他未捨去之欄位NA值,我們利 用Mice推估可能值並填補上去。

至於變數 CUST_9_SEGMENTS_CD 未選取之原因,是因為它是類別型數據,我們無法數字化它的類別項目,故不選取。

變數轉換

進行資料預處理時,我們先將 NA 數目過多者剔除,解決異常值問題。接下來,我們處理如:「低」、「中」、「中高」、「高」的類別類型資料,將類別型資料以無順序意義的數字來表示。

其次,我們先用 Excel 內建取代功能,把原始資料中的 Y (Yes) /N (No) 分別轉換成 1/0,再利用 R 將屬於 Character 類型資料,轉換成 Number 或者 Integer ,以免在後續跑訓練模型 時可能會造成 Error。

我們將不同級距變數的數值改為不同公差的等差數列,如:「Age」、「APC_1ST_AGE」、「INSD_1ST_AGE」、「RFM_R」、「REBUY_TIMES_CNT」、「LIFE_CNT」。(轉換數值參考附件二)

數據缺失值填補

對變數 NA 值的處理,我們考慮「填補平均值」、「以 O 填補」,但可能會照造成成填補資訊無意義,或者造成資訊扭曲改

變,最後我們我們使用「MICE」套件建立3個訓練資料集,30個 maxit,並使用 CART 決策樹,進行遺漏值預測,我們針對去除異常值後的116個變數建立填補好的資料集,以進行後續的建模。

Data Processing

基礎資料分析

最開始我們利用敘述統計篩選出 17個變數,作為線性回歸的數據。作法為:將符合預測目標的(Y1=="Y")篩選為新的 data,再從新 data 一個個檢測變數中也為 Yes 的。我們發現,利用敘述統計篩選出來的 17個變數 Run 線性回歸的 Submit 初始分數到達約0.792。因此,我們決定以線性回歸為主要改良方向,其餘時間也不斷測試有沒有表現更好的模型。但後來利用 R 提供的逐步回歸來計算 step() 函數,選出最小的 AIC 信息統計量逐步刪減項目,我們發現剔除 OCCUPATION CLASS CD 後的線性回歸更為貼合。

產生新變數過程說明

敘述統計:

以敘述統計的方式選出 17 個對 Y1 影響較關聯的變數。方法是以 R 程式開啟,先從原始資料中篩出符合我們預測期待結果 (Y1 == "Y")的資料,再從篩出的資料中一一篩各個變數與 Y1 == "Y"的關係,

關聯規則:

使用 Apriori 演算法是找出高頻項之布林值關聯規則中最 具代表性的演算法。他採用水平方向進行項目集的搜尋。若某 選項集為高頻,則其所有子集合必定是高頻項目集。 在此競賽中我們先將 train 的 Y1 中為 Y 的選項篩選出來,透過 apriori 演算法找出單一項目出現頻率較高的。之後再使用關聯規則的群組矩陣圖,總攬產生的關聯規則中包含哪些項目,矩陣交會的地方則是以圓圈大小代表該群組規則的支持度,越大越好。

一開始先以 0.1 最小支持度與 0.4 最小信賴門檻逐步增加到 0.5 的最小支持度與 0.9 的信賴門檻來產生的關聯規則,最後將塞選出來的變數聯集敘述統計的變數,最後產生 43 個變數。

決策樹:

利用 Cart 套件訓練模型。並且把 cp 直設在 0.003 以免 過度配適。

隨機森林:

比起決策樹,隨機森林更能有效地防止過度配適,所以 我們利用隨機森林評估變數重要性,並使用套件 ("varImpPlot")函數畫圖,以「正確率下降指標」以及「分 支不純度降低指標」來排序變數重要性,以下篩選排列出 38 個變數。

新增二次項與三次項:

因為二元項目(1或0)的平方項仍為1或0,因此我們在交集項中選取不為二元(1或0)的變數數據資料做乘二次項與三次項來觀察。

找交集:

我們使用 Random Forest 跑出來的重要變數取交集來檢 視正確率下降指標」以及「分支不純度降低指標」兩種指標的 變數解釋程度。

交乘項:

我們利用 Corrplot 的方法 (method:pie) 使用 random forest 的交集來繪製 Corrplot ,再將大於半圓的 Pie 找出兩變數相關性顯著者來新增為交乘項。

corrplot::corrplot(m, method = "Pie")

• Feature Selection

重要變數選擇過程

最初是用敘述統計,加上 Random forest 交集後項目,再利用 step 逐步刪減項目,使線性回歸準確率提高並貼合。

重要變數與預測變數之關聯說明

在嘗試 Log 指數模型與 LASSO 模型後,我們發現線性回歸仍 最為貼合預測目標,因此重要變數與預測變數應為線性線性關係, 且由於加入三次項的 AGE 之後,預測結果特為貼合、顯著,因此我 們認為 AGE 也是影響 Y1 的重要變數。

二、模型選擇與驗證成效說明

Model Selection

模型選擇與驗證過程

我們一開始用敘述統計選出的 17 個變數來跑單一變數的線性 回歸(Linear regression),之後嘗試 Log 與 LASSO,但變數不確 定較大,擔心效果不彰,因此先繼續優化線性回歸,於 17 個變數中 加入使用關聯規則後挑出的變數,增加為 43 個變數。因為是用線性 回歸於是我們嘗試增加變數項來讓線更符合預測值,然而在增減的 過程中 43 個變數已經達到了極限。往後我們又增加了隨機森林選擇 的變數,一系列的增增減減後再加上二次項、三次項、交乘項來跑 複回歸。

除了線性之外,我們想瞭解自變數與應變數之間的關係是否可能為非線性關係,所以使用非線性的 Log 指數模型。但是發現 Log 指數的結果反而較線性回歸差,因此我們決定捨棄 Log 指數模型不用。

再來嘗試的是適用於二元分類的 LASSO 模型,由於本數據的二元資料,理論上非常適合應用,但 LASSO 需要 Test 與 Train 都是相同矩陣大小,但我們的數據 Test 為 150,000 筆、Train 則是100,000 筆資料,矩陣大小不一,為了解決這個問題,我們先將Test 分割成 100,000 和 50,000 筆資料與 Train 跑,而為了配合切割後的 50,000 筆 Test 資料,又再將 Train 隨機挑出 50,000 筆資料跑LASSO 模型,因為是隨機挑出,我們無法保證是否選入過多偏差值,所以效果十分糟糕,因此我們最終仍使用線性回歸而非 LASSO模型。

模型成效說明

線性回歸:

1. 58 個變數

2019/9/27 43_2 var linear

submit_test.csv	9/23/2019 11:36:00 PM	0.7902700508
2019/9/23 58 var linear reg		
2. 43 個變數 (比 58 個變數優)		
	9/27/2019 2:41:38 PM	0.8122606024

3. 43 個變數、二次、三次項與交乘項(最佳)

⊗ submit_test.csv	9/30/2019 12:08:01 AM	0.8343019831
2019 / 9/ 30 tri 43 binary reg		

LASSO:

submit_test_ridge_58.csv	10/4/2019 4:40:34 PM	0.4333381252
ridge regression 58		

Log:

submit_test.csv	9/20/2019 11:42:28 AM	0.4761889137
2019/9/20 log binomial reg (re_train)		

綜上述所言,我們共嘗試了三個模型,但只有線性回歸的複回歸最為顯著,因此,在此之後,我們都集中探討如何優化線性回歸模型。最佳表現結果的是有利用 Mice 填補缺漏值,並且包含二次、三次項與交乘項的線性回歸複回歸模型。

```
附件:
附件一: (A IND、B IND、C IND、L1YR C CNT、
DIEBENEFIT AMT . DIEACCIDENT AMT .
POLICY_VALUE_AMT \ ANNUITY_AMT \ EXPIRATION_AMT \
ACCIDENT HOSPITAL REC AMT >
DISEASES HOSPITAL REC AMT .
OUTPATIENT SURGERY AMT >
INPATIENT_SURGERY_AMT \ PAY_LIMIT_MED_MISC_AMT \
FIRST_CANCER_AMT \ ILL_ACCELERATION_AMT \
ILL_ADDITIONAL_AMT \ LONG_TERM_CARE_AMT \
MONTHLY_CARE_AMT \ IF_HOUSEHOLD_CLAIM_IND \
LIFE INSD CNT . IF ISSUE INSD A IND .
IF_ISSUE_INSD_B_IND \ IF_ADD_INSD_F_IND \
IF_ADD_INSD_L_IND \ IF_ADD_INSD_Q_IND \
IF_ADD_INSD_G_IND \ IF_ADD_INSD_R_IND \
FINANCETOOLS_A \ FINANCETOOLS_B \
FINANCETOOLS_C \ FINANCETOOLS_D \
FINANCETOOLS E . FINANCETOOLS F .
FINANCETOOLS G)
附件二:
AGE
  low = 20
  mid = 35
  midhigh = 50
  high = 65
APC_1ST_AGE
 low = 22
 mid = 33
 midhigh = 44
 high = 55
```

```
INSD_1ST_AGE
  low = 0
  mid = 20
  midhigh = 40
  high = 60
RFM_R
  low = 1
  mid = 4
  midhigh = 7
  high = 10
REBUY_TIMES_CNT
  low =5
  mid = 10
  midhigh = 15
  high = 20
LIFE_CNT
  low = 5
  mid = 15
  midhigh = 25
  high = 35
```