12/12/2018

Análise Combinatória

Nome: Welison Lucas A. Regis

Matricula: XX/XXXXXXX

	IIIDIIIutoriu							
1. Raciocinando semânticamente, determine a validade ou invalidade nos casos a seguir.								
(a) $A \vee B, \neg A \models B$	(e) $\neg A \rightarrow \neg B \vDash A \rightarrow B$							
(b) $A \leftrightarrow B, \neg A \vDash \neg B$	(f) $A, A \to B \vDash A \leftrightarrow B$							
(c) $\neg (A \land B) \vDash \neg B \land \neg A$	(g) $B \to \neg C \vDash \neg (B \land C)$							
(d) $A \to B \vDash A \lor B$	(h) $\neg (A \lor B), C \leftrightarrow A \vDash \neg C$							
2. Jogando-se dois dados, qual a probabilidade	da soma ser 3?							
3. Descreva matemática as implicações lógicas	Modus Ponens (MP) e Modus Tollens (MT).							
4. Três moedas são lançadas ao mesmo tempo. Qual é a probabilidade de as três moedas caírem com a mesma face para cima?								
	4							
5. Determine abaixo todas as permutações pos	síveis da palavra "BOBS".							
6. Sobre análise combinatória, responda:								
(a) O que é um evento certo?								
(b) i. O que é um espaço amostral?								
	:							

ii.	O	que é	ıım	espaco	amostral	ec	quidistante	?
11.	\sim	que e	CILL	Copaço	annostiai		<i>a</i> raro carro	- •

• •			
11			
11.			

- 7. ______ é definido como a razão entre casos favoráveis e o espaço amostral.
- 8. Julge em verdadeiro ou falso:
 - (a) ____ A probabilidade de ocorrência de uma face qualquer de um dado não viciado é 1/6.
 - (b) ____ A probabilidade de cair 5 ou 6 em um dado não viciado é 2/36.

RESPOSTAS

Exemplo I.

a)
$$A \vee B$$
, $\neg A \models B$

Demonstração. Iremos demonstrar que o presente argumento é válido. Suponha, por absurdo, que o argumento é inválido. Assim, há uma valoração v, tal que: i. $v(A \lor B) = V$, ii. $v(\neg A) = V$ e iii. v(B) = F. Note que de i. e iii., pelo significado da (\lor), temos que iv. v(A) = V. De iv., pelo significado da (\neg), temos que v. $v(\neg A) = F$. Contudo, de ii. e v., obtemos uma contradição, visto que v é função. Segue-se disso que não há valoração que torne as premissas verdadeiras e a conclusão falsa. Portanto, o argumento é válido.