Exercice 1.

La matrice A est de format 2×3 et B est de format 3×2 : le nombre de colonnes de la matrice A est égale au nombre de lignes de matrice B donc le produit AB existe bien et la matrice produit est de format 2×2 .

On a aisément $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ soit la matrice I_2 .

Exercice 2.

Soit la matrice : $A = \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix}$.

1.
$$A^2 = A \times A = \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix}$$
 soit $A^2 = \begin{pmatrix} x^2 + 2 & x + 3 \\ 2x + 6 & 11 \end{pmatrix}$.

2.
$$A^2 = \begin{pmatrix} 6 & 1 \\ 2 & 11 \end{pmatrix}$$
 si et seulement $x = -2$.

Exercice 3.

- 1. On trouve $6M M^2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$ soit $6M M^2 = 5I_2$.
- 2. $6M M^2 = 5I_2 \iff M \times \frac{1}{5}(6I_2 M) = \frac{1}{5}(6I_2 M) \times M = I_2$ ce qui prouve que la matrice M est inversible et son inverse est $A^{-1} = \frac{6}{5}I_2 \frac{1}{5}M$ ainsi $\alpha = \frac{6}{5}$ et $\beta = -\frac{1}{5}$.

Exercice 4.

- 1. $(I_n M)(I_n + M + M^2) = I_n + M + M^2 M M^2 M^3$. Or M nilpotente d'indice 3 donc $M^3 = 0_n$ et par suite $(I_n M)(I_n + M + M^2) = I_n$.
- 2. De même $(I_n + M + M^2)(I_n M) = I_n$ donc $(I_n M)(I_n + M + M^2) = (I_n + M + M^2)(I_n M) = I_n$ ce qui induit que la matrice $I_n M$ est inversible et son inverse est $I_n + M + M^2$.

Exercice 5.

- 1. On a aisément : $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
- 2. (a) $B = A + I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et $B^2 = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix}$ et par suite on a $B^2 = 3B$.
 - (b) Supposons B inversible, soit B^{-1} son inverse. On multiplie l'égalité précédente par B^{-1} à gauche, il vient $B^{-1} \times B^2 = 3B^{-1} \times B$ soit $B = 3I_2$: absurde car $B \neq 3I_2$ donc B n'est pas inversible.
 - (c) On a $B^2 = 3B$ donc $(A + I_3)^2 = 3(A + I_3)$ et en développant : $A^2 + 2A + I_3 = 3A + 3I_3$ soit $A^2 A = 2I_3$ ou encore : $A \times \left(\frac{1}{2}A \frac{1}{2}I_3\right) = \left(\frac{1}{2}A \frac{1}{2}I_3\right) \times A = I_3$ donc la matrice A est inversible et son inverse est :

$$A^{-1} = \frac{1}{2}A - \frac{1}{2}I_3 = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$