

NLP Workshop

HackED 2019

Luke Kumar
Machine Learning Scientist @ Amii

- 1. NLP & History
- 2. Why NLP is hard?
- 3. Symbolic/Classical NLP
- 4. Statistical/ML NLP
 - Notebook Demos
- 5. Q&A

Note: Materials & Diagrams from Prof. Regina Barzilay's NLP Course @ MIT (Advanced NLP)

Natural language processing

NLP - Building programs that can use NL as input and output

History of NLP

- First patents for <u>translating machines</u> were applied [mid-1930]
- Alan Turing published his famous article Computing
 Machinery and Intelligence which proposed what is now
 called the Turing test as a criterion of intelligence [1950]
- Noam Chomsky's Syntactic Structures <u>universal grammar</u> a rule based system of syntactic structures [1957]
- Watson by IBM [2006]
- Word Embeddings [2013/2014]

Ref: https://en.wikipedia.org/wiki/History_of_natural_language_processing

Why NLP is hard?

Ambiguity

"Harry loves his mother and Hermione does too"

- Harry and hermione love their own mothers
- Hermione loves harry's mother
- Different types of ambiguities:
 - Acoustic (sound)
 - Syntactic (structure)
 - Semantic (meaning)
 - Discourse (multi-clause)
 - "The horse ran up the hill. It was very steep. It soon got tired"

How to solve?

We need the:

- Knowledge of the language
- 2. Knowledge of the world

Approaches:

- 1. Symbolic: Code all the rules into a program
- 2. Statistical: Learn language properties from examples

NLP in use ...

- 1. Language translation
- 2. Information extraction
 - a. Search
- 3. Text summarization
- 4. Sentiment analysis
- Text to Speech
 - a. WaveNET
- Chatbots Conversational AI
 - a. Alexa
 - b. Google Home

.

NLP in research - ACL 2019 tracks

- Dialogue and Interactive Systems
- Discourse and Pragmatics
- Document Analysis
- Generation
- Information Extraction and Text Mining
- Linguistic Theories, Cognitive Modeling and Psycholinguistics
- Machine Learning
- Machine Translation
- Multidisciplinary
- Word-level Semantics
- Multilinguality

- Phonology, Morphology and Word Segmentation
- Question Answering
- Resources and Evaluation
- Sentence-level semantics
- Sentiment Analysis and Argument Mining
- Social Media
- Summarization
- Tagging, Chunking, Syntax and Parsing
- Textual Inference and Other Areas of Semantics
- Vision, Robotics, Multimodal, Grounding and Speech

Classical/Symbolic NLP

Topics in symbolic NLP

- Parsing (we discuss)
- 2. Lexical semantics Meanings of words
 - a. WordNet "mother"
- Stemming and lemmatization
 - a. am, are, is => be
 - b. car, cars, car's, cars' => car
- 4. Named entity recognition (NER)
 - a. Map text items to proper names (eg: people, location, organization)
- 5.

Parsing - syntactic structure

Input:

"Boeing is located in Seattle"

Ref: https://ruslanspivak.com/lsbasi-part7/

Parse tree

Parts of speech:

- 1. Words:
 - a. N noun
 - b. V verb
 - c. DT determiner
- 2. Phrases:
 - a. NP noun phrases
 - b. VP verb phrases
 - c. S Sentence

Penn Treebank

- 1. Major dataset for parsing experiments
- 2. ~ 50, 000 sentences along with trees

Canadian Utilities had 1988 revenue of C\$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.

Grammars

- Context-Free Grammars (CFG)
 - a. Chomsky Normal Form (CNF)
- 2. Probabilistic CFG

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}$

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

pe, une, wrun, m			
Vi	\Rightarrow	sleeps	
Vt	\Rightarrow	saw	
NN	\Rightarrow	man	
NN	\Rightarrow	woman	
NN	\Rightarrow	telescope	
DT	\Rightarrow	the	
IN	\Rightarrow	with	
IN	\Rightarrow	in	

CFG - "the man sleeps"

= S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

R

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Derivation

S

NP VP

DT NN VP

the NN VP

the man VP

the man Vi

the man sleeps

Rules

S -> NP VP

NP -> DT NN

DT -> the

NN -> man

VP -> Vi

Vi -> sleeps

Statistical NLP

ML applications in NLP

Topics in statistical NLP (we discuss)

- Sentiment analysis
 - Positive vs negative polarity
- Language model
 - Probability distribution of a natural language
- Word embedding
 - Representing words as numerical vectors
- Topic model
 - Categorizing document collections

Other topics

- Statistical Machine Translation (SMT)
- Tagging (eg: POS tagging)
 - Hidden Markov Models (HMMs)
 - Conditional Random Forests (CRFs)
- Recurrent neural networks
 - Sequence to Sequence tasks (eg: Translation)
- Duplicate detection
- Other embeddings
 - Document2vector
 - Character2vector
- Conversational Al
- •

Text to numeric representation

- Bag of words
 - a. Absence and presence
 - b. Frequency
 - c. Term frequency inverse document frequency (TFiDF)
- N-grams
 - a. Unigrams = Bag of words
- Embeddings
 - a. Word embeddings
 - b. Document embeddings
 - c. Character embeddings

Sentiment analysis

- AKA Opinion mining
 - Polarity: positive or negative
- Sentiment Classification
 - Polarity Data 2.0 Movie reviews
- Sentiment Lexicons
 - Subjectivity Lexicon
 - Bing Liu Opinion lexicon
 - SentiWordNet

Ref: https://web.stanford.edu/class/cs124/lec/sentiment.pdf

Demo

Sentiment_Analysis Notebook

Language model (Autoregressive models)

Learn a probability distribution

$$\sum_{x \in \mathcal{V}^*} \hat{P}(x) = 1, \quad \hat{P}(x) \ge 0 \text{ for all } x \in \mathcal{V}^*$$

$$\begin{split} \hat{P}(\text{the}) &= 10^{-12} \\ \hat{P}(\text{the fan}) &= 10^{-8} \\ \hat{P}(\text{the fan saw Beckham}) &= 2 \times 10^{-8} \\ \hat{P}(\text{the fan saw saw}) &= 10^{-15} \end{split}$$

22

Language model - n-grams

Trigram (triplets) Model
P(w_i | w_{i-2}, w_{i-1})
eg:
P("well" | "all", "is") = Count(all, is, well)
Count(all, is)

23

$$P(w_1, w_2, \dots, w_{T-1}, w_T) = \prod_{t=1}^{T} P(w_t | w_{t-1}, w_{t-2}, \dots, w_1)$$

the	cat	sat	on	the	mat	$P(w_1)$
the	cat	sat	on	the	mat	$P(w_2 w_1)$
the	cat	sat	on	the	mat	$P(w_3 w_2,w_1)$
the	cat	sat	on	the	mat	$P(w_4 w_3, w_2, w_1)$
the	cat	sat	on	the	mat	$P(w_5 w_4, w_3, w_2, w_1)$
the	cat	sat	on	the	mat	$P(w_6 w_5, w_4, w_3, w_2, w_1)$

From Unsupervised Deep Learning tutorial @ NeurIPS 2018

24

Word embeddings

- Representations of NL
 - a. Bag of words
 - b. N-grams
- Embedding vectors Map words into vectors of real values
 - a. Embeddings are influenced by the context
 - b. Embeddings try to capture the meaning using the context
- How embeddings are learnt:
 - a. Language Model
 - Word2Vec (Google)
 - b. Co-occurrence Matrix
 - GloVe (Stanford)

Word embeddings cont.

Demo

Word_Embeddings Notebook

Topic models

- A statistical model to learn intrinsic topics in a collection of documents
- Several models are proposed
 - LDA Latent Dirichlet Allocation (Probabilistic)
 - LSA Latent Semantic Analysis (SVD)
 - PLSA Probabilistic Latent Semantic Analysis (Probabilistic)
- Helps to <u>cluster</u> a collection of documents
 - Soft clustering
 - Mostly interpretable (Probabilistic models)

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

New

Demo

Topic_Models Notebook

Questions?

amii.ca