

LEVEL 1: ECONOMICS

Reading 8 (1st out of 7): INTRO TO MICROECONOMICS

Difficulty:

easy

Benchmark Study Time:

2.2h

THIS E-BOOK:

- ❖ is a selective summary of the corresponding Reading in your CFA® Program Curriculum,
- provides place for your own notes,
- helps you structure your study and revision time!

How to use this e-book to maximize your knowledge retention:

- 1. **Print** the e-book in <u>duplex</u> and bind it to keep all important info for this Reading in one place.
- 2. Read this e-book, best twice, to grasp the idea of what this Reading is about.
- 3. **Study** the Reading from your curriculum. **Here add** your notes, examples, formulas, definitions, etc.
- 4. **Review** the Reading using this e-book, e.g. write your summary of key concepts or revise the formulas at the end of this e-book (if applicable).
- 5. **Done?** Go to <u>your study plan</u> and change the Reading's status to **green**: (it will make your Chance-to-Pass-Score™ grow ⓒ).
- 6. Come back to this e-book from time to time to regularly review for knowledge retention!

NOTE: While studying or reviewing this Reading, you can use the tables at the end of this e-book and mark your study/review sessions to hold yourself accountable.

DEMAND

Demand determines the quantity of goods and services consumers are able and willing to purchase in a given time and at a given price.

The law of demand states that:

- if the price of a given good rises, consumers are willing to buy less,
- if the price of a given good drops, consumers are willing to buy more.

The demand function for the good:

$$Q_D = f(P, I, P_A, ...)$$

Where:

- ▶ f demand function for the good,
- Q_D quantity demanded of the good,
- P price of the good (own price),
- I − consumers' income,
- ▶ P_A price of another good (complement or substitute).

Inverse demand function:

$P = A - B \times Q_D$

Where:

- P price of the good,
- Q_D quantity demanded of the good,
- A, B constants.

NOTE: This demand function is called <u>inverse</u> because the price is on the Y-axis and the quantity demanded on the X-axis. Usually, in mathematics, the independent variable (in this case price) is given on the X-axis and the dependent variable (in this case quantity demanded) is given on the Y-axis. This is how economists present the demand function.

DEMAND ELASTICITIES

Types of elasticity

Elasticity is a ratio of a percentage change in one variable to a percentage change in another variable.

Types of elasticity:

- own-price elasticity of demand,
- income elasticity of demand,
- cross-price elasticity of demand.

Own-price elasticity of demand

$$E_P = \text{own-price elasticity of demand} = \frac{\text{\% change in quantity demanded}}{\text{\% change in price}} = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

Where:

- Q quantity demanded,
- ► P price,
- ΔP small change in price,
- ΔQ small change in quantity demanded.

Interpretation of elasticity

Demand can be:

- elastic,
- perfectly elastic (it's when we are dealing with a horizontal demand curve),
- unitary elastic,
- inelastic,
- perfectly inelastic (*it's when we are dealing with a vertical demand curve*).

$$\left| E_{P} \right| > 1 o demand is elastic$$
 $\left| E_{P} \right| = +\infty o demand is perfectly elastic$
 $\left| E_{P} \right| = -1 o demand is unitary elastic$
 $\left| E_{P} \right| < 1 o demand is inelastic$
 $\left| E_{P} \right| < 0 o demand is perfectly inelastic$

Elasticity vs Total Expenditure

demand is elastic: decrease in price → increase in total expenditure

demand is inelastic: decrease in price → decrease in total expenditure

Factors that affect the price elasticity of demand

The factors that affect the price elasticity of demand are:

- the number of substitutes for a good when it is small the demand is inelastic,
- the share of the consumer's budget spent on the product the higher the share, the higher the elasticity of demand,
- time in the long run the price elasticity of demand is higher than in the short run.

Income elasticity

$$E_I = \text{income elasticity of demand} = \frac{\% \text{ change in quantity demanded}}{\% \text{ change in income}} = \frac{\Delta Q}{\Delta I} \times \frac{I}{Q}$$

Where:

- Q quantity demanded,
- I − income,
- $ightharpoonup \Delta I$ small change in income,
- ΔQ small change in quantity demanded.

The income elasticity of demand helps answer the question:

By how many percentage points will the demand change if there is one percentage change in income?

Normal good vs Inferior good

 $E_1 > 0 \rightarrow \text{good is a normal good} = \text{when the income rises, more of the product is demanded}$

 $E_I < 0 \rightarrow good$ is an inferior good = when the income rises, less of the product is demanded

Cross-price elasticity of demand

$$E_C$$
 = cross-price elasticity of demand = $\frac{\% \text{ change in quantity demanded}}{\% \text{ change in the price of another good}}$ =

$$= \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

Where:

- Q quantity demanded,
- ► P price of another good,
- ΔP small change in price,
- ΔQ small change in quantity demanded.

Substitutes vs Complements

 $E_C > 0 \rightarrow$ good is a substitute = a rise in the price of another good leads to a rise in demand for the given good

 $E_C < 0 \rightarrow$ good is a complement = a rise in the price of another good

leads to a drop in the demand for the given good

SUBSTITUTION EFFECT VS INCOME EFFECT

Consumer's equilibrium bundle

A **consumption bundle** is a set of goods and services that consumers are willing to purchase.

The consumer's equilibrium bundle of goods is a basket of goods thanks to which the consumer maximizes his utility within his budget constraints.

Let's assume 2 goods: bread and apples →

The substitution effect:

- a decrease in the price of a given good is accompanied by the consumer purchasing more of this good and less of the goods whose prices did not change,
- is a result of changes in the ratio of goods prices.

The income effect:

- reflects how prices and consumer purchasing power affect the demand for a certain good,
- if the price of one good decreases → the real income of the consumer will increase → the demand for goods changes.

Substitution Effect vs Income Effect: Apples as an Inferior Good

The **substitution effect** always positively affects the demand for a certain good:

 \blacktriangleright when its price drops \rightarrow the demand increases.

The **income effect** may result in both an increase or a decrease in demand.

Copyright © soleadea.org

3 scenarios for the income effect:

- a positive response to the substitution effect and a positive response to the income effect → the demand for good A increases,
- 2. a positive response to the substitution effect and a negative response to the income effect, but less responsive than to the substitution effect → the demand for good A increases,
- 3. a positive response to the substitution effect and a negative response to the income effect, but more responsive than to the substitution effect → the demand for good A decreases.

Normal goods

Scenario 1:

A positive response to the substitution effect and a positive response to the income effect \rightarrow the demand for good A increases.

normal good = good whose income elasticity of demand has a positive value

In scenario 1, good A is a normal good because the increase in income results in the increase in demand.

For normal goods, the income effect is positive.

Inferior good

Scenario 2:

A positive response to the substitution effect and a negative response to the income effect, but less responsive than to the substitution effect \rightarrow the demand for good A increases.

inferior good = good whose income elasticity of demand has a negative value

In scenario 2, good A is an inferior good because the increase in income results in the decrease in demand.

For inferior goods, the income effect is negative.

Giffen good

Scenario 3:

A positive response to the substitution effect and a negative response to the income effect, but more responsive than to the substitution effect \rightarrow the demand for good A decreases.

Giffen good = good whose income effect is greater than the substitution effect

In scenario 3, good A is Giffen good because the decrease in price results in the decrease in demand.

Giffen goods are characterized by a positively sloped demand curve.

Veblen good

Veblen goods:

- are goods whose rise in their prices results in higher demand,
- are not inferior goods,
- the consumer is more inclined to purchase the good when its price is higher because together with the price also the perception of the good enhances.

SUPPLY

Supply determines the quantity of goods and services sellers are willing to offer at a given time and price.

The **law of supply** states that:

- if the price of a given good rises, a greater quantity is supplied,
- if the price of a given good drops, a lower quantity is supplied.

The **supply function**:

$$Q_{s} = f(P, W, ...)$$

Where:

- Q_s quantity supplied of some good,
- ► P price of some good,
- ► W wage rate of labor.

Inverse supply function:

$$P = A + B \times Q_S$$

Where:

- ► P price of some good,
- Q_s quantity supplied of some good,
- ► A, B constants.

Change in demand (supply) vs Change in quantity demanded (supplied)

ceteris paribus = all independent variables apart from the price of a good hold constant

A change in the own-price of the good is reflected by the change in quantity demanded or supplied (a movement along the demand or supply curve).

When a variable other than the own-price of the good changes, there is a change in demand or supply (the supply curve and demand curve may **move either right or left**).

Copyright © soleadea.org

PROFIT-MAXIMIZING LEVEL OF OUTPUT

The output of the company may be expressed as the production function of labor and capital:

Q = f(C, L)

Where:

- Q output,
- f production function, e.g. Cobb–Douglas production function,
- C capital,
- L labor.

Profit

profit = total revenue - total cost

Companies try to maximize their profit.

Productivity

productivity = an average output generated by one unit of input

Products of labor:

- total product of labor,
- average product of labor,
- marginal product of labor.

Total product of labor is the total volume of the output of the firm produced in a given period of time.

Average product of labor at the level of output = (total product of labor) divided by (number of workers at the level of output).

Marginal product of labor measures the productivity of each additional worker.

Law of diminishing returns

Accounting profit vs Economic profit

accounting profit = net income reported on the income statement =

= total revenue - explicit costs (total accounting costs)

Economic profit takes into consideration:

- explicit costs,
- implicit opportunity costs.

economic profit = accounting profit - total implicit opportunity costs

Normal profit

normal profit = the accounting profit a company must generate to cover implicit opportunity costs

accounting profit = economic profit + normal profit

- If accounting profit = normal profit → economic profit = 0
- If accounting profit > normal profit → economic profit > 0
- If accounting profit < normal profit → economic profit < 0</p>

Revenue:

- total revenue,
- average revenue,
- marginal revenue.

Total revenue (TR):

$$TR = P \times Q$$

Where:

- ▶ P per-unit price of the product (note: in the case of imperfect competition P is the function of Q),
- Q quantity of products sold.

Average revenue (AR):

$$AR = \frac{TR}{Q}$$

Marginal revenue (MR) = an increase in total revenue resulting from the sale of an additional unit of product

Costs

Types of costs:

- fixed costs,
- variable costs.

Fixed cost is the cost that doesn't have a direct relationship with the output.

Variable cost changes when the output changes.

Average total cost (ATC):

$$ATC = \frac{TC}{O}$$

Average fixed cost (AFC):

$$AFC = \frac{TFC}{O}$$

Average variable cost (AVC):

$$AVC = \frac{TVC}{Q}$$

- Average fixed cost (AFC) will decline if the output increases.
- Usually, the average variable cost (AVC) and average total cost (ATC) initially decline while the output increases. However, after reaching a certain value of output, an increase in output leads to an increase in average variable cost.

marginal cost (MC) = an increase in total cost resulting from the production of an additional unit of product

Profit maximization

A company deals with the profit-maximizing level of output if:

Condition 1: the marginal revenue equals marginal cost:

MR = MC

Condition 2: (second-order condition): MC is not falling

If:

- ▶ marginal revenue > marginal cost → the company should increase the output
- marginal revenue = marginal cost → the profit will be maximized
- marginal revenue < marginal cost → the company should decrease the output
 </p>

Breakeven point vs Shutdown point (image below is for perfect competition)

Where:

- ► S shutdown point
- ▶ B breakeven point

Point S, which is at the intersection of marginal cost and average variable cost, is called the **shutdown point**. If the price is below P₂, the company won't be able to cover its average variable cost, so it should cease to exist even in the short run.

Point B, which is at the intersection of marginal cost and average total cost, is the **breakeven point**. If the price is above P_1 , the company will make a profit. At P_1 it will break even.

If the company's output is between points S and B, the company is able to cover its total variable costs but will suffer a loss due to its fixed costs. Note that in the short run the company can be at the state between points S and B, but in the long run it can't because it will go bankrupt.

Economies of scale vs Diseconomies of scale

For different levels of capital employed, there are different SATC (short-run average total cost) curves.

The envelope curve of all possible short-run average total cost curves can be derived. This curve is called a long-run average total cost (LRAC) curve.

In the long run, we can distinguish between:

- economies of scale,
- diseconomies of scale.

Economies of scale occur when at a higher production volume the average total cost decreases. In other words, when **LRAC** is downward slopping.

Diseconomies of scale occur when at a higher production volume the average total cost increases. In other words, when **LRAC** is upward slopping.

Summarizing key concepts:
□ Inverse demand function My summary:
□ Own-price elasticity of demand My summary:
☐ Income elasticity My summary:
□ Normal good vs Inferior good My summary:

☐ Cross-price elasticity of demand		
My summary:		
☐ Substitutes vs Complements		
My summary:		
☐ Substitution Effect vs Income Effe	c+	
My summary:	LL	

Copyright © soleadea.org

☐ Giffen good My summary:		
□ Veblen good My summary:		
☐ Profit-maximizing level of output My summary:		
☐ Law of diminishing returns My summary:		

	Accounting profit vs Economic profit
	My summary:
	Breakeven point vs Shutdown point
	My summary:
П	Economies of scale vs Diseconomies of scale
	My summary:
	iviy surimary.

Reviewing formulas:

$$Q_D = f(P, I, P_A, ...)$$

Write down the formula:

$$E_P = \text{own-price elasticity of demand} = \frac{\text{% change in quantity demanded}}{\text{% change in price}} = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

Write down the formula:

$$E_{I} = \text{income elasticity of demand} = \frac{\text{\% change in quantity demanded}}{\text{\% change in income}} = \frac{\Delta Q}{\Delta I} \times \frac{I}{Q}$$

Write down the formula:

$$E_C = cross-price elasticity of demand = \frac{\% change in quantity demanded}{\% change in the price of another good} = \frac{\% change in quantity demanded}{\% change in the price of another good}$$

$$= \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

Write down the formula:

Q _s = f (P, W,)
Write down the formula:
•
profit = total revenue – total cost
Write down the formula:
accounting profit = net income reported on the income statement =
= total revenue – explicit costs (total accounting costs)
Write down the formula:
economic profit = accounting profit – total implicit opportunity costs
Write down the formula:
accounting profit = economic profit + normal profit
Write down the formula:
$TR = P \times Q$

Write down the formula:

$$AR = \frac{TR}{Q}$$

Write down the formula:

Total costs (TC) = total fixed cost (TFC) + total variable cost (TVC)

Write down the formula:

$$ATC = \frac{TC}{Q}$$

Write down the formula:

$$AFC = \frac{TFC}{O}$$

Write down the formula:

$$AVC = \frac{TVC}{Q}$$

Write down the formula:

Keeping myself accountable:

TABLE 1 | STUDY

When you sit down to study, you may want to **try the Pomodoro Technique** to handle your study sessions: study for 25 minutes, then take a 5-minute break. Repeat this 25+5 study-break sequence all throughout your daily study session.

Tick off as you proceed.

POMODORO TIMETABLE: study-break sequences (25′ + 5′)												
date		date		date		date		date		date	date	
25′		25′		25′		25′		25′		25′	25′	
5′		5′		5′		5′		5′		5'	5′	
25′		25′		25′		25′		25′		25′	25′	
5′		5′		5′		5′		5′		5′	5′	
25′		25′		25′		25′		25′		25′	25′	
5′		5′		5′		5′		5′		5′	5′	
25′		25′		25′		25′		25′		25′	25′	
5′		5′		5′		5′		5′		5′	5′	

TABLE 2 | REVIEW

Never ever neglect revision! Though it's not the most popular thing among CFA candidates, regular revision is what makes the difference. If you want to pass your exam, **schedule & do your review sessions.**

REVIEW TIMETABLE: When did I review this Reading?												
date		date		date		date		date		date	date	
date		date		date		date		date		date	date	