

Technical Infrastructure Monitoring: Modernising a 20-Year-Old system for CERN Technical Services

Thomas Georges, Lukasz Burdzanowski, Christophe Chanavat, Mark Geza Varadi, Athanasios Tsounis, Bartek Urbaniec

Challenge

How can a 20-year-old software ecosystem, essential for the safe operation of CERN's technical services, be efficiently migrated to a modern, manageable, and cost-effective infrastructure while minimising downtime and maintaining high availability?

Key Features

- Data-driven acquisition from heterogeneous data sources.
- End-user GUIs to configure & monitor the system and dashboarding.
- Data transformations (aggregation, filtering, etc.)
- Command/Set, also from GUI layer
- Acquisition data with metadata (data-tag metadata, alarms, etc.)
- Monitor and troubleshoot the system (tag/alarm/process viewers, Grafana dashboards)

Highly Available

- The services should be running 24/7/365
- Event during Long Shutdown (LS)

Critical

• All the services provided allow to run the LHC, SPS, PS and cryogenics safe

Current Issues

- Risks associated with used technologies
- Need to modernise the 20+-year-old system
- Growing needs to increase global efficiency

daq-japc

• Alternatives available on the market

daq-rest

• Rapidly changing software eco-system

Short-Term Goals

- Modernate DevOps
- Industrial process monitoring
- Standardise libraries and processes
- Upgrade infrastructure
- Use industrial standards

Mid-Term Goals

- Consolidate configuration
- Improve system supervision
- Modernise end-user GUI
- Enable data processing rules
- Migrate to Kubernetes (K8s)

GUI

UI to interact with TIM service.

MODESTI (configuration), TIM view
(visualisation + dashboard editor),
HelpAlarm (alarms)

Processing Layer

Consumes data gathered by DAQs process it and transfers to the client processes via JMS client API. The C2MON allows to define rules (data transformations).

Acquisition Layer (DAQs)

Set of standalone processes which receives data from different hardware/protocols (PLC, WINCCOA, OPCUA) and transfers them via c2mon client API to processing layer (C2MON).

References

daq-db

daq-ssh

• Martini, R., Bräger, M., Salmon, J., & Suwalska, A. Tools and Procedures for High Quality Technical Infrastructure Monitoring Reference Data at CERN. In 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS), Melbourne, Australia, 2015.

daq-alarmsource

- Braeger, M., Brightwell, M., Lang, A., & Suwalska, A. A Customizable Platform for High-availability Monitoring, Control and Data Distribution at CERN. In 13th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS),, Grenoble, France, 2011.
- Stowisek, J., Riesco, T., & Suwalska, A. *Technical Infrastructure Monitoring at CERN*. In 10th European Particle Accelerator Conference (EPAC), Edinburgh, UK, 2006.
- Epting, U., Ninin, P., Martini, R., Sollander, P., Bartolomé, R., Vercoutter, B., & Morodo-Testa, M. C. CERN LHC Technical Infrastructure Monitoring (TIM). In 7th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS), Trieste, Italy, 1999.

Key Metrics and Statistics

- 15 000 devices
- 28 000 alarms monitored
- 1168 buildings with equipment