Network Security

Asim Rasheed

Where we are ...

- Introduction to network security
- Vulnerabilities in IP
- •I. CRYPTOGRAPHY
- -Symmetric Encryption and Message Confidentiality
- -Public-Key Cryptography and Message Authentication

•II. NETWORK SECURITY APPLICATIONS

- -Authentication Applications (Kerberos, X.509)
- -Electronic Mail Security (PGP, S/MIME)
- -IP Security (IPSec, AH, ESP, IKE)
- -Web Security (SSL, TLS, SET)

•III. SYSTEM SECURITY

- -Intruders and intrusion detection
- -Malicious Software (viruses)
- -Firewalls and trusted systems

Intruders

Intruders

- Significant security problem for networked systems is hostile or unwanted access
- Cyber attacks still on rise
- Threat of cyber-terrorism, more coordinated
- Even sensitive installations not well secured, regular break-ins
- Can happen either through a network or locally
- Varying levels of competence for intruders

Classes of Intruders

Masquerader:

- An individual who is not authorized to use the computer and penetrates a system's access control to exploit a legitimate user's account
- Likely to be an outsider

• Misfeasor:

- A legitimate user who accesses data, programs, resources for which he is not authorized
- Misuses his privileges
- Generally an insider

Classes of Intruders....

Clandestine user:

- An individual who seizes supervisory control of system and uses his control to evade auditing and access control or to suppress audit collection
- Either an insider or outsider

Intruders

- Intruders attack range from benign to the serious
 - Benign intruders:
 - users who simply wish to explore internets and see what is out there
 - Tolerable, but they consume resources and effect performance of legitimate users
 - May use compromised system to launch other attacks
 - Serious intruders:
 - Individuals who are attempting to read privileged data or disrupt the system
- Clearly a growing publicized problem

Intrusion

- Definition :
 - An intrusion is an action or set of actions aimed at compromising the confidentiality, integrity or availability of a service or system
- Principal defense categories:
 - Prevention
 - Detection
 - Response

Intrusion Techniques

- Aim to increase privileges on system
- Basic attack methodology
 - Target acquisition and information gathering
 - Initial access
 - Privilege escalation
 - Covering tracks
- Key goal often is to acquire passwords
- So then exercise access rights of owner

Intrusion Techniques

- System maintains a file that associates a password with each user
- Two ways to protect this file
 - One way encryption
 - Access control
- If these counter measures are in place then some effort is needed to learn passwords
- Different password guessing techniques have been observed

Password Guessing

- One of the most common attacks
- Attacker knows a login (from email/web page etc)
- Then attempts to guess password for it
 - Try default passwords shipped with systems
 - Try all short passwords
 - Then try by searching system's online dictionaries of common words
 - Intelligent searches try passwords associated with the user (variations on names, birthday, phone, common words/interests)

Password Guessing ...

- Check by login attempt or against stolen password file
- Success depends on password chosen by user
- Surveys show many users choose passwords poorly

Password Capture

- Another attack involves password capture
 - Watching over shoulder as password is entered
 - Using a Trojan horse program
 - Monitoring an insecure network login (e.g., telnet, FTP, web, email)
 - Extracting recorded info after successful login (web history/cache, last number dialed, etc.)
- Users need to be educated to use suitable precautions/countermeasures

Why is prevention not sufficient?

- Because it is too expensive to prevent all potential attack techniques
- Because legitimate users get annoyed by too many preventive measures and may even start to circumvent them (introducing new vulnerabilities)
- Because preventive measures may fail:
 - Incomplete or erroneous specification / implementation / configuration
 - Inadequate deployment by users (just think of passwords...)

Intrusion Detection

- Inevitably the best intrusion prevention will have security failures
- Need also to detect intrusions so that:
 - If intrusion is detected quickly, can be blocked
 - Act as deterrent
 - Collect info to improve security
- Assumption: Intruder will behave differently from a legitimate user
 - But will have imperfect distinction between the two

Behavior of Intruders & Authorized Users

Intrusion Detection Systems

- Overall goal:
 - Supervision of computer systems and communication infrastructures in order to detect intrusions and misuse
- What can be attained with intrusion detection?
 - Detection of attacks and attackers
 - Detection of system misuse (includes misuse by legitimate users)
 - Damage limitation (if response mechanisms exist)
 - Gain of experience in order to improve preventive measures
 - Deterrence of potential attackers

Classification of IDS

- Host-based: Analysis of system events
- Network-based: Analysis of exchanged information (IP packets)
- Hybrid: Combined analysis of system events and network traffic

Schematic Overview of IDS

Host-Based IDS

- Using OS auditing mechanisms
 - e.g., BSM on Solaris: logs all direct or indirect events generated by a user
 - strace for system calls made by a program
- Monitoring user activities
 - e.g., Analyze shell commands
- Monitoring executions of system programs
 - e.g., Analyze system calls made by sendmail

Network IDS

- Deploying sensors at strategic locations
 - E.G., Packet sniffing via tcpdump at routers
- Inspecting network traffic
 - Watch for violations of protocols and unusual connection patterns
- Monitoring user activities
 - Look into the data portions of the packets for malicious command sequences
- May be easily defeated by encryption
 - Data portions and some header information can be encrypted

Architecture of Network IDS

Firewall Versus Network IDS

- Firewall
 - Active filtering
 - Fail-close
- Network IDS
 - Passive monitoring
 - Fail-open

Requirements of Network IDS

- High-speed, large volume monitoring
 - No packet filter drops
- Real-time notification
- Mechanism separate from policy
- Extensible
- Broad detection coverage
- Economy in resource usage
- Resilience to stress
- Resilience to attacks upon the IDS itself!

Eluding Network IDS

- What the IDS sees may not be what the end system gets.
 - Insertion and evasion attacks.
- IDS needs to perform full reassembly of packets.
 - But there are still ambiguities in protocols and operating systems:
 - E.G. TTL, fragments.
 - Need to "normalize" the packets

Insertion Attack

End-System sees:
A T T A C K

IDS sees:
A T X T A C K

Attacker's data stream

T X T C A A K

Examples: bad checksum, TTL.

Evasion Attack

End-System sees:
A T T A C K

IDS sees:
A T T C K

Attacker's data stream

T C A A K

Example: fragmentation overlap

Approaches to Intrusion Detection

- Statistical Anomaly Detection: Involves collection of data relating to the behavior of legitimate user over a period.
 - Threshold
 - Profile based
- Rule-based detection: Involves an attempt to define a set of rules that can be used to detect an intruder
 - Anomaly
 - Penetration identification

Audit Records

- Fundamental tool for intrusion detection
- Native audit records
 - Part of all common multi-user O/S
 - Already present for use
 - May not have info wanted in desired form
- Detection-specific audit records
 - Created specifically to collect wanted info
 - At cost of additional overhead on system

Audit Record Fields

- Each audit records contains following fields
 - Subject:
 - A terminal user but can also be a process acting on behalf of users
 - Action:
 - Operation performed by the subject on or within an object e.g., login, read, execute, etc.
 - Object:
 - Receptors of action e.g., files, programs, messages, etc.

Audit Record Fields...

- Exception-condition:
 - Denotes which exception condition is raised on return
- Resource-usage:
 - List of quantitative elements in which each element gives the amount used of some resources
- Time-stamp:
 - Identifying when the action took place

Statistical Anomaly Detection

- Threshold detection
 - Count occurrences of specific event over time
 - If exceed reasonable value assume intrusion
 - Alone is a crude & ineffective detector
- Profile based
 - Characterize past behavior of users
 - Detect significant deviations from this
 - Profile usually multi-parameter

Audit Record Analysis

- Foundation of statistical approaches
- Analyze records to get metrics over time
 - Counter, gauge, interval timer, resource use
- Use various tests on these to determine if current behavior is acceptable
 - Mean & standard deviation, multivariate, markov process, time series, operational
- Key advantage is no prior knowledge used

Rule-Based Intrusion Detection

- Observe events on system & apply rules to decide if activity is suspicious or not
- Rule-based anomaly detection
 - Analyze historical audit records to identify usage patterns & auto-generate rules for them
 - Then observe current behavior & match against rules to see if conforms
 - Like statistical anomaly detection does not require prior knowledge of security flaws

Rule-Based Intrusion Detection

- Rule-based penetration identification
 - Uses expert systems technology
 - With rules identifying known penetration, weakness patterns, or suspicious behavior
 - Rules usually machine & O/S specific
 - Rules are generated by experts who interview & codify knowledge of security administrators
 - Quality depends on how well this is done
 - Compare audit records or states against rules

Examples of Heuristics Used for Rules

- Users should not read files in other user's personal directories
- Users must not write other user's files
- Users who log on in after hours often access the same files they used earlier
- Users do not generally open disk devices directly but rely on higher level operating system utilities
- Users should not be logged in more than once to the same system
- Users do not make copies of system programs

Base-Rate Fallacy

- Practically an intrusion detection system, needs to detect a substantial percentage of intrusions with few false alarms
 - If too few intrusions detected -> false security
 - If too many false alarms -> ignore / waste time
- This is very hard to do
- Existing systems seem not to have a good record

- Traditional focus is on single systems
- But typically have networked systems
- More effective defense has these working together to detect intrusions
- Issues
 - Dealing with varying audit record formats
 - Integrity & confidentiality of networked data
 - Centralized or decentralized architecture

- Architecture

Host Agent Module:

- An audit collection module operating as a background process on a monitored system
- Collects events and transmits to the central manager

LAN Monitor Agent Module:

 Operates in the same fashion as hot agent module except that it analyzes LAN traffic

Central Manager Module:

 Receives reports from LAN monitor and host agents processes and correlates these reports to detect intrusion

- Agent Implementation

Honeypots

- Decoy systems deigned to lure attackers:
 - Away from accessing critical systems
 - To collect information of their activities
 - To encourage attacker to stay on system so administrator can respond
- Are filled with fabricated information
- Instrumented to collect detailed information on attackers activities
- May be single or multiple networked systems

Intrusion Detection Exchange Format

- The goal of IETF Intrusion Detection Working Group is to come up with a standard
- Outputs of this working group so far include:
 - A requirements document, which describes the high level functional requirements for communication between IDSs
 - A common intrusion language specification
 - A framework document, which identifies existing protocols best used for communication between IDSs.

Password Management

- Front-line of defense against intruders
- Users supply both:
 - Login determines privileges of that user
 - Password to identify them
- Passwords are often stored encrypted
 - Unix uses multiple DES (variant with salt)
 - More recent systems use crypto hash function

UNIX Password Scheme

- Each user selects a password of up to 8 characters
- This is converted into a 56 it value
 - This serves as input key to encryption scheme based on DES
- DES algorithm is modified using a 12 bit salt value
 - Value is related to time at which the password is assigned
- Output from crypt(3) is of 11 character sequence
- Password is stored in then stored, together with a plaintext copy of the salt, in the password file for corresponding user ID

Loading a New Password

Verifying a Password

Password File User id User id salt Epwd[salt, 0] salt password Select crypt (3) encrypted password compare

Advantages of Salt

- Prevents duplicate passwords from being visible
- If two users choose the same password, the time will be different
- It increases the length of the password
- Prevents the use of hardware implementation of DES

Managing Passwords

- Need policies and good user education
- Ensure every account has a default password
- Ensure users change the default passwords to something they can remember
- Protect password file from general access
- Set technical policies to enforce good passwords
 - Minimum length (>6)
 - Require a mix of upper & lower case letters, numbers, punctuation
 - Block known dictionary words

Managing Passwords

- May reactively run password guessing tools
 - Note that good dictionaries exist for almost any language/interest group
- May enforce periodic changing of passwords
- Have system monitor failed login attempts, & lockout account if see too many in a short period
- Do need to educate users and get support
- Balance requirements with user acceptance
- Be aware of social engineering attacks

Password Selection

- Many users choose password either too short or too easy to guess
- Devices can assign users password and makes cracking impossible
 - But impossible for most users to remember passwords

Password Selection

- Goal: To eliminate guessable passwords
- Basic techniques
 - User education
 - Computer-generated passwords
 - Reactive password checking
 - Proactive password checking

User Education

- Users be told the importance of using hard-toguess passwords
- Provide guidelines for selecting passwords
- Unlikely to succeed in large user population
 - Many users may ignore the guidelines

Computer Generated Passwords

- Passwords are quite random in nature
- Users may not be able to remember them
 - Even if it is pronounceable
- Scheme has history of poor acceptance

Reactive Password Checking

- System periodically checks for guessable passwords
- Cancels the guessed passwords and notifies the user
 - Number of drawbacks
- Most importantly resource intensive

Proactive Password Checking

- Most promising approach to improving password security
- Allow users to select own password
- But have system verify it is acceptable
 - Simple rule enforcement
 - Compare against dictionary of bad passwords
 - Use algorithms (markov model or bloom filter) to detect poor choices

Markov Model

Markov Model

$$M = \{3, \{a, b, c\}, T, 1\}$$
 where

$$T = \begin{bmatrix} 0.0 & 0.5 & 0.5 \\ 0.2 & 0.4 & 0.4 \\ 1.0 & 0.0 & 0.0 \end{bmatrix}$$

e.g., string probably from this language: abbcacaba

e.g., string probably not from this language: aacccbaaa

Markov Model

- Markov Model is quadruple [m, A, T, k]
 - m is the number of states in the model
 - A is state space
 - T is matrix if transition probabilities
 - k is order of the model

Any question?