Supplementary Material

Table 2. Results for the 33 benchmark problems that were not solved (near) optimally by all solvers: comparison of the gap between $V^L(b_0)$ and $V^U(b_0)$, lower bound $V^L(b_0)$, upper bound $V^U(b_0)$, the number of α -vectors ($|\Gamma|$) to represent V^L and time (seconds) for runs terminated after 1,000 seconds or when the gap is less than one unit at the 3rd significant digit. The smallest gaps or the highest lower bounds among algorithms are labeled with red color. Note that HSVI2, SARSOP and GapMin's results were reported in Tables 1 and 2 in (Poupart et al., 2011).

Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time	Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time		
aloha.10						aloha.30							
(S = 30, A						(S = 90, A							
HSVI2	9.0	535.4	544.4	4,729	997	HSVI2	38	1,212	1,249	2,062	1,000		
SARSOP	9.5	535.2	544.7	48	1,000	SARSOP	74	1,177	1,252	86	999		
GapMin ST	10.3	534.1	544.4	136	673	GapMin ST	113	1,136	1,249	44	800		
GapMin LP	7.6	536.5	544.2	152	968	GapMin LP	111	1,136	1,247	46	799		
PGVI	7.3	537.4	544.7	58	999	PGVI	19	1,231	1,250	342	994		
cheng.D3-1	0 171		0.000)			cheng.D3-2	0 171		0.000)				
(S = 3, A =				16	007	(S = 3, A)				0	40.4		
HSVI2	11	6,417	6,428	16	997	HSVI2	10	8,240	8,250	8	404		
SARSOP	15	6,417	6,432	10	1,000	SARSOP	12	8,240	8,252	6	1,000		
GapMin ST	10	6,412	6,422	8	26	GapMin ST	10	8,235	8,245	3	15		
GapMin LP	10	6,412	6,422	8	25	GapMin LP	10	8,235	8,245	3	22		
PGVI	10	6,417	6,427	8	990	PGVI	10	8,240	8,250	4	59		
cheng.D3-3	9 7	9	0.000)			cheng.D3-4	9 7	9	000)				
(S = 3, A =				12	991	$(S \equiv 3, A)$				15	993		
HSVI2 SARSOP	105 129	7,457 7,457	7,562 7,585	13 8	991	HSVI2 SARSOP	41 48	5,827 5,827	5,868 5,875	15 5	1,000		
GapMin ST	129	7,457	7,363	7	56	GapMin ST	10	5,827	5,832	8	78		
GapMin LP	10	7,452	7,462	7	37	GapMin LP	10	5,822	5,832	5	37		
PGVI	102	7,452 7,457	7,402	14	999	PGVI	39	5,822	5,866	19	999		
	102	7,437	1,339	14	777		39	3,021	3,000	19	777		
	cheng.D3-5 $(S = 3, A = 3, Z = 3, \gamma = 0.999)$						cheng.D4-1 $(S = 4, A = 4, Z = 4, \gamma = 0.999)$						
(S - 3, A - 4) HSVI2	= 3, Z 26	8,673	8,698	63	990	(5 = 4, A HSVI2	-4, Z	$-4, \gamma = 0$	6,882	19	999		
SARSOP	34	8,673	8,706	10	1,000	SARSOP	180	6,715	6,894	10	1,000		
GapMin ST	10	8,668	8,678	9	34	GapMin ST	100	6,710	6,720	11	553		
GapMin LP	10	8,668	8,678	10	15	GapMin LP	10	6,711	6,721	11	288		
PGVI	31	8,673	8,703	19	1,000	PGVI	171	6,715	6,886	11	999		
cheng.D4-2		0,073	0,705	17	1,000	cheng.D4-3	1/1	0,713	0,000	- 11			
(S = 4, A =	=4. Z	$=4, \gamma=0$	0.999)			S = 4, A	= 4. Z	$=4. \gamma=0$	0.999)				
HSVI2	63	8,381	8,443	22	995	HSVI2	55	7,661	7,715	20	997		
SARSOP	71	8,378	8,450	8	999	SARSOP	60	7,660	7,721	11	1,000		
GapMin ST	10	8,376	8,386	12	135	GapMin ST	10	7,656	7,666	10	91		
GapMin LP	10	8,376	8,386	13	115	GapMin LP	10	7,656	7,666	10	68		
PGVI	64	8,381	8,445	9	1,000	PGVI	55	7,661	7,715	11	999		
cheng.D4-4			,		,	cheng.D4-5			,				
(S = 4, A =	= 4, Z	$=4, \gamma=0$	0.999)			$(S = 4, A = 4, Z = 4, \gamma = 0.999)$							
HSVI2	65	7,670	7,735	18	997	HSVI2	91	7,884	7,975	35	994		
SARSOP	69	7,669	7,738	6	1,000	SARSOP	96	7,884	7,980	14	1,000		
GapMin ST	10	7,665	7,675	16	313	GapMin ST	10	7,879	7,889	19	415		
GapMin LP	10	7,665	7,675	11	109	GapMin LP	10	7,879	7,889	17	197		
PĠVI	64	7,670	7,734	16	1,000	PĠVI	90	7,884	7,974	18	998		
cheng-D5-1		·				cit		·					
(S = 5, A =	= 3, Z	$=3, \gamma=0$	0.999)			(S = 284,	A = 4,	$ Z = 28, \gamma$	= 0.990)				
HSVI2	59	6,549	6,608	19	996	HSVI2	0.095	0.743	0.838	3,739	975		
SARSOP	64	6,549	6,613	9	999	SARSOP	0.049	0.791	0.840	3,108	967		
GapMin ST	10	6,544	6,554	1	26	GapMin ST	0.838	0.000	0.838	1	802		
GapMin LP	10	6,544	6,554	1	25	GapMin LP	0.838	0.000	0.838	1	855		
PĠVI	54	6,549	6,603	12	999	PĠVI	0.016	0.822	0.838	6,748	990		
tiger-grid (S	= 81,		$ z = 3, \gamma = 1$	0.990)		GapMin ST	0.106	2.296	2.402	386	912		
HSVI2	0.388	2.138	2.525	3,394	990	GapMin LP	0.132	2.271	2.402	255	923		
SARSOP	0.262	2.267	2.529	945	997	PGVI	0.215	2.293	2.508	1,947	991		

Table 3. Results continued (1,000 seconds limit).

A.1. *.1		T7[.(1)				ed (1,000 secor			T7[](1)	IDI	<i>T</i> :
Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time	Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time
ejs1	4 7	2	0.000)			ejs2	9 7	9. **	0.000)		
(S = 3, A				12	001	(S = 2, A				0	997
HSVI2 SARSOP	7.8 48.8	421.3 421.3	429.1	13 9	991	HSVI2 SARSOP	91 115	1,781 1,781	1,872 1,896	8	
			470.1		1,000					7	1,000
GapMin ST	0.4	421.1	421.5	9	52	GapMin ST	10	1,777	1,787	6	22
GapMin LP	0.3	421.2	421.6	9	65	GapMin LP	10	1,776	1,786	6	13
PGVI	0.1	421.3	421.4	9	184	PGVI	83	1,781	1,864	7	1,000
ejs4	0 171	0	0.000)			fourth		1 7 00	0.000	.)	
(S = 3, A	7 1 1			7	000	(S = 1,052)					004
HSVI2	20.2	-133.6	-113.4	7	999	HSVI2	0.376	0.242	0.617	3,345	994
SARSOP	22.8	-133.6	-110.8	2	1,000	SARSOP	0.330	0.288	0.618	3,595	975
GapMin ST	1.0	-134.1	-133.1	2	26	GapMin ST	0.618	0.000	0.618	1	532
GapMin LP	1.0	-134.1	-133.1	2	13	GapMin LP	0.618	0.000	0.618	1	669
PGVI	15.5	-133.6	-118.0	2	1,000	PGVI	0.142	0.475	0.617	6,166	984
hallway2		zl 4 ==	0.050)			hallway		zl 0.1	0.050)		
(S = 92, A)				2 202	005	(S = 60, A)			= 0.950)	1.065	006
HSVI2	0.525	0.361	0.886	2,393	997	HSVI2	0.250	0.945	1.195	1,367	996
SARSOP	0.525	0.374	0.898	262	992	SARSOP	0.210	0.995	1.206	456	998
GapMin ST	0.372	0.417	0.789	294	940	GapMin ST	0.078	1.008	1.086	290	765
GapMin LP	0.428	0.362	0.790	153	759	GapMin LP	0.085	1.003	1.089	159	845
PGVI	0.422	0.440	0.862	736	996	PGVI	0.176	1.004	1.180	838	1,000
iff	41 4 1	7 1 22	0.000)			learning.c2	u	zi e	0.000)		
(S = 104, S)			y = 0.999	7.101	000	(S = 12, A)				4.002	001
HSVI2	0.924	8.931	9.855	7,134	999	HSVI2	0.090	1.549	1.639	4,082	996
SARSOP	0.775	9.095	9.871	6,811	997	SARSOP	0.093	1.556	1.648	4,903	996
GapMin ST	0.722	9.214	9.936	544	785	GapMin ST	0.078	1.553	1.631	810	893
GapMin LP	0.660	9.261	9.920	532	940	GapMin LP	0.024	1.558	1.582	470	885
PGVI	0.657	9.233	9.890	12,795	999	PGVI	0.055	1.558	1.613	13,606	997
learning.c3	ا مد ا	7 1 0	0.000)			learning.c4		5 1 0	0.000		
(S = 24, A			=0.999)		000	(S = 48, A)					000
HSVI2	0.250	2.364	2.614	4,229	988	HSVI2	0.567	3.055	3.622	4,569	999
SARSOP	0.222	2.446	2.668	981	997	SARSOP	0.321	3.358	3.679	923	982
GapMin ST	0.214	2.442	2.655	446	944	GapMin ST	0.363	3.308	3.671	349	858
GapMin LP	0.180	2.441	2.622	515	947	GapMin LP	0.353	3.306	3.658	500	989
PGVI	0.192	2.450	2.642	9,423	982	PGVI	0.296	3.367	3.663	7,436	991
machine			>			milos-aaai97		-1 -	>		
(S = 256, S)			y = 0.990			(S = 20, A)			,		
HSVI2	3.49	63.18	66.66	662	982	HSVI2	18.31	49.15	67.46	3,965	998
SARSOP	3.57	63.18	66.75	150	998	SARSOP	19.61	49.74	69.35	3,699	997
GapMin ST	2.98	62.93	65.90	77	817	GapMin ST	17.67	49.89	67.55	1,212	774
GapMin LP	3.20	62.39	65.59	67	856	GapMin LP	15.42	49.97	65.39	581	730
PGVI	3.09	63.18	66.27	209	990	PGVI	17.40	50.06	67.46	10,096	980
query.s2						mit					
(S = 9, A						(S = 204,					
HSVI2	4.2	490.7	495.0	1,366	992	HSVI2	0.094	0.791	0.885	5,539	1,000
SARSOP	5.5	490.7	496.3	113	999	SARSOP	0.067	0.819	0.885	2,820	999
GapMin ST	1.0	490.4	491.4	37	224	GapMin ST	0.039	0.845	0.884	152	806
GapMin LP	1.0	490.5	491.5	31	57	GapMin LP	0.055	0.828	0.883	120	859
PGVI	3.8	490.7	494.6	495	1,000	PGVI	0.028	0.857	0.885	6,218	999
query.s3			>			pentagon			>		
(S = 27, A						(S = 212,					
HSVI2	26.2	546.8	573.1	1,203	997	HSVI2	0.192	0.634	0.826	4,361	997
SARSOP	28.1	546.8	574.8	112	999	SARSOP	0.131	0.696	0.827	3,196	971
GapMin ST	10.8	546.7	557.5	154	686	GapMin ST	0.826	0.000	0.826	1	990
GapMin LP	7.0	546.7	553.7	119	706	GapMin LP	0.826	0.000	0.826	1	893
PGVI	26.0	546.9	572.9	549	1,000	PGVI	0.072	0.754	0.826	5,842	996
query.s4						sunysb					
(S = 81, A)						(S = 300,			y = 0.990		_
HSVI2	51.9	569.5	621.4	2,846	999	HSVI2	0.240	0.557	0.796	4,370	997
SARSOP	54.3	569.1	623.4	166	1,000	SARSOP	0.323	0.475	0.798	3,537	986
GapMin ST	46.1	569.6	615.6	377	958	GapMin ST	0.796	0.000	0.796	1	930
GapMin LP	43.2	569.5	612.7	169	939	GapMin LP	0.796	0.000	0.796	1	974
PGVI	52.2	569.6	621.8	446	979	PGVI	0.137	0.659	0.796	5,974	987

Table 4. Results for 8 problems of the 18 problems that were not solved (near) optimally by any of the solvers, with 50,000 seconds limit. The smallest gaps or the highest lower bounds among algorithms are labeled with red color. Note that HSVI2, SARSOP and GapMin's results were reported in Table 3 in (Poupart et al., 2011).

Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time	Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	\Gamma	\overline{Time}			
cit						hallway								
(S = 284,	$(S = 284, A = 4, Z = 28, \gamma = 0.990)$						$(S = 60, A = 5, Z = 21, \gamma = 0.950)$							
HSVI2	0.018	0.819	0.837	29,803	49,760	HSVI2	0.179	0.994	1.173	15,374	49,951			
SARSOP	0.017	0.823	0.840	21,168	49,916	SARSOP	0.178	1.013	1.191	3,053	49,992			
GapMin ST	0.023	0.814	0.837	739	48,931	GapMin ST	0.043	1.015	1.058	947	34,828			
GapMin LP	0.015	0.822	0.836	648	45,473	GapMin LP	0.036	1.016	1.051	851	43,184			
PGVI	0.007	0.831	0.838	32,041	49,861	PGVI	0.134	1.017	1.150	18,902	49,831			
hallway2						iff								
(S = 92, A)	1 = 5, 2	$Z =17, \gamma$:	= 0.950)			(S = 104,	A = 4,	$Z =22, \gamma$	= 0.999)					
HSVI2	0.421	0.432	0.853	18,505	49,983	HSVI2	0.199	9.302	9.501	40,984	50,000			
SARSOP	0.448	0.434	0.882	1,901	49,973	SARSOP	0.290	9.259	9.549	54,016	49,966			
GapMin ST	0.262	0.461	0.723	1,647	46,687	GapMin ST	0.634	9.273	9.908	1,614	34,472			
GapMin LP	0.226	0.468	0.694	1,135	36,766	GapMin LP	0.156	9.275	9.431	1,626	40,046			
PGVI	0.340	0.485	0.825	3,846	49,999	PGVI	0.237	9.267	9.504	63,784	49,978			
machine						mit								
(S = 256, S)	A = 4,	$ Z = 16, \gamma$	= 0.990)			$(S = 204, A = 4, Z = 28, \gamma = 0.990)$								
HSVI2	2.89	63.18	66.07	7,857	49,998	HSVI2	0.058	0.827	0.885	34,461	49,942			
SARSOP	3.02	63.18	66.20	996	49,963	SARSOP	0.020	0.866	0.885	20,662	49,616			
GapMin ST	1.67	63.17	64.84	139	49,261	GapMin ST	0.011	0.871	0.882	861	41,564			
GapMin LP	1.14	63.17	64.30	173	49,036	GapMin LP	0.009	0.872	0.881	832	43,680			
PGVI	2.45	63.18	65.63	592	49,987	PGVI	0.011	0.874	0.885	30,598	49,911			
pentagon						sunysb								
(S = 212,	$(S = 212, A = 4, Z = 28, \gamma = 0.990)$						$(S = 36, A = 5, Z = 17, \gamma = 0.950)$							
HSVI2	0.135	0.691	0.826	29,033	49,924	HSVI2	0.217	2.286	2.502	28,182	49,978			
SARSOP	0.070	0.757	0.827	21,950	49,994	SARSOP	0.231	2.290	2.522	5,333	49,987			
GapMin ST	0.825	0.000	0.825	1	44,437	GapMin ST	0.055	2.322	2.377	2,404	38,675			
GapMin LP	0.150	0.675	0.824	425	40,436	GapMin LP	0.052	2.321	2.373	2,404	43,254			
PGVI	0.026	0.800	0.826	29,292	49,845	PGVI	0.160	2.317	2.477	20,836	49,935			

Table 5. Parameters for the 35 small benchmark problems that PGVI could find near optimal solutions within 1,000 seconds.

Problem	S	A	Z	γ	Problem	S	A	Z	$\overline{\gamma}$
1d	4	2	2	0.750	4×3.95	11	4	6	0.950
$4\times5\times2.95$	39	4	4	0.950	bridge-repair	5	12	5	0.950
cheese.95	11	4	7	0.950	cheese-taxi	34	7	10	0.950
cheng.D3-1	3	3	3	0.999	cheng.D3-2	3	3	3	0.999
concert	2	3	2	0.999	ejs1	3	4	2	0.999
ejs3	2	2	2	0.999	ejs5	2	2	2	0.999
ejs6	2	2	2	0.999	ejs7	2	2	2	0.999
ejs-ft-counter	2	2	2	0.900	line4-2goals	4	2	1	0.999
marking	9	4	3	0.870	marking2	9	4	3	0.870
mcc-example1	4	3	3	0.750	mcc-example2	4	3	3	0.750
mini-hall2	13	3	9	0.950	network.95	7	4	2	0.950
network	7	4	2	0.950	paint.95	4	4	2	0.950
parr95.95	7	3	6	0.950	saci-s12-a6-z5.95	12	6	5	0.950
saci-s100-a10-z31	100	10	31	0.950	shuttle.95	8	3	5	0.950
stand-tiger.95	4	4	4	0.950	tiger.95	2	3	2	0.950
tiger.aaai	2	3	2	0.750	web-ad	4	3	5	0.950
web-mall	2	3	2	0.950	hanks.95	4	4	2	0.950
baseball	7,681	6	9	0.999					

Table 6. PGVI's results for the 35 small benchmark problems that it could find a near optimal solution (gap smaller than one unit at the third significant digit) within 1,000 seconds. The linear correlation coefficient between $|\Gamma|$ and Time is -0.0451, the linear correlation coefficient between |S| and Time is -0.0406, the linear correlation coefficient between $|B^s|$ and Time is 0.9842, and the linear correlation coefficient between $\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$ with $\delta=10^{-6}$ and Time is 0.9869.

Problem	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	$ B^s $	$\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$	Time (s)
1d	0.00	1.26	1.26	6	9	9	0.00
4×3.95	0.01	1.89	1.90	227	152	152	0.25
$4\times5\times2.95$	0.01	2.08	2.09	2,428	1,680	1,679	30.62
bridge-repair	63	40,421	40,484	7	22	21	0.02
cheese.95	0.01	3.48	3.49	56	12	12	0.02
cheese-taxi	0.00	2.48	2.48	174	33	33	0.02
cheng.D3-1	10	6,417	6,427	8	31,565	26,202	989.98
cheng.D3-2	10	8,240	8,250	6	6,920	4,802	85.06
concert	0.00	0	0	1	1	1	0.01
ejs1	1	421	422	9	12,089	11,359	448.04
ejs3	0	1,712	1,712	5	12	11	0.07
ejs5	0	0	0	1	1	1	0.00
ejs6	0	0	0	1	1	1	0.00
ejs7	0	0	0	1	1	1	0.00
ejs-ft-counter	0.00	-3.18	-3.18	3	2	2	0.00
line4-2goals	0.00	0.47	0.47	2	3	3	0.00
marking	0.00	2.75	2.75	50	16	16	0.01
marking2	0.00	2.75	2.75	48	16	16	0.01
mcc-example1	0.00	0.38	0.38	10	21	21	0.00
mcc-example2	0.00	0.38	0.38	10	21	21	0.00
mini-hall2	0.01	2.71	2.72	166	18	18	0.04
network.95	1	293	294	24	3,023	3,023	10.40
network	1	293	294	24	3,065	3,065	10.12
paint.95	0.00	3.29	3.29	14	157	153	0.09
parr95.95	0.01	7.19	7.20	8	7	7	0.01
saci-s12-a6-z5.95	0.03	14.80	14.83	9	58	58	0.02
saci-s100-a10-z31	0.06	16.56	16.62	2	29	29	0.41
shuttle.95	0.10	32.79	32.89	109	6	6	0.02
stand-tiger.95	0.08	50.38	50.46	136	40	40	0.09
tiger.95	0.05	19.36	19.41	12	21	19	0.02
tiger.aaai	0.00	1.93	1.93	5	7	6	0.00
web-ad	0.001	0.804	0.805	543	738	725	1.32
web-mall	0.01	6.90	6.91	13	63	60	0.03
hanks.95	0.01	3.29	3.30	14	157	153	0.14
baseball	0.001	0.641	0.642	424	258	257	4.02

Table 7. Performance comparison, SARSOP and PGVI. Here, Time represents the total computation time, and T_0 represents the initialization time on each test problem.

Problem	Gap	Ti	me (second	ls)	$Time - T_0 ext{ (seconds)}$			
		SARSOP	PGVI	Speedup	SARSOP	PGVI	Speedup	
FieldVisionRockSample[5,5]	0.47	9,764	2,570	3.80	9,764	2,570	3.80	
Tracking	0.69	9,998	2,294	4.36	9,105	1,401	6.50	
Homecare	3.43	9,987	1,819	5.49	9,577	1,409	6.80	
3D Navigation	754,977	9,934	< 1,719	> 5.78	9,922	< 1,707	> 5.81	