## LARGE-SCALE ENERGY STORAGE

Renewable. Rechargeable. Remarkable.

#### THE ENERGY PROBLEM

- Energy Demand varies unpredictably, operators need to react by
  - fine-tuning the output of coal-fired power plants
  - turn on peaker gas plants during high demand
- In order to keep the extra plants to a minimum, utilities companies adopt <u>demand side</u> <u>management</u>

With the advent of the **renewable revolution**, things got even worse!

The unpredictability is now not only in the demand,

but also, and mostly, in the supply.

#### Possible answer:

- demand dispatch, software-driven smart energy-consuming equipment in order to use electricity when abundant, cheap or green. This approach still faces unsurmountable challenges
  - regulatory uncertainty
  - doubts on whether grid companies or users should pay for its adoption [1]

# IF WE WANT A SIGNIFICANT PART OF OUR ENERGY TO COME FROM RENEWABLE SOURCES, **STORAGE IS A MUST.**

The **expense for downtime** due to blackouts is estimated at \$135 billion per year in the US alone [2].

Energy that is **not exploited** in Italy due to curtailing of wind and solar plants is assessed at 166 GW in 2012 [3].





The European **infrastructure system** needs investments up to **€500 billion** to allow for renewables penetration [4].



Storage technology, if adopted in a sufficiently large scale, can

- help with the short, steep ramps in power demand, shown in the *duck graph*, that are due to the effects of **self generation** from renewable sources
- reduce the risks of **over-generation**, which causes imbalances to the grid
- increase the frequency response → less resources are required in order to adapt to the energy demand



**Power Demand in California, USA**. Data from California Energy Commission staff, Energy Assessment division 2015

Most of them are better suited for sustaining **ramps**, even with sudden changes in direction, **reacting quickly** to meet the required operating levels; starting and stopping with short notice, multiple times per day.

#### BENEFITS



✓ Take is the successful integration of Natiable Reversable Energy Saurces [6] te. What are the benefits for introducing storage systems in such a market?

Production From Renewables in Italy



## **CURRENT SITUATION**



As we speak, the **installed** Electrical Energy Storage (EES) capacity is approximately 125 GW worldwide.

This is about 3% of the world's total generation, amounting to 3.9 TW.

On the other hand, performance studies have suggested that about 8% of the total power capacity should be enough to accomodate **peak shaving** purposes [6].

## **APPROACHES**

- Pumped Hydroelectric Storage (PHS)
- Compressed Air Energy Storage (CAES)
- Hydrogen Storage
- Battery Storage
- Thermal Energy Storage (TES)
- Flywheels, Capacitors, etc.



CAES plant in Huntorf, Germany





CSP in Ivanpah, California, USA



PHS plant in Wendefurth, Germany



## PUMPED HYDROELECTRIC STORAGE (PHS)

- Most established technology for utility-scale electricity storage since the 1890s
- Only large-scale technology available commercially for grid-tied electricity storage
- In Italy, there are 22 PHS stations with a total capacity of 7669 MW [Terna]

Reversible pumps/generators connect an upper and a lower reservoir. Water is pumped during times of high availability and released to generate power during peak hours.

PHS facilities are divided in:

- Pure (or off-stream) PHS
- Reversible pump-turbine sets

The energy related to the storage of a volume V of water can be computed as

$$\boldsymbol{E_P} = \frac{\rho ghV}{3600\eta_P}; \; \boldsymbol{E_G} = \frac{\rho V gh\eta_G}{3600}$$

Typically, the overall efficiency  $\eta = {}^{E_G}/_{E_P}$  is within 70-80%



## COMPRESSED AIR ENERGY STORAGE (CAES)

#### CAES systems:

- Ordinary CAES system
- CAES system with **recuperator**: this system applies regenerative cycle technology to CAES. The heat content of the exhaust gases is recovered with a HX to preheat air entering the combustor.
- Advanced adiabatic CAES system: heat is extracted and stored separately before the compressed air enters the cavern in order to avoid the efficiency loss due to the air cooling down. [8]

The compression power, is given by

$$P_C = \frac{\gamma}{\gamma - 1} p_1 \cdot \dot{V} \left[ \left( \frac{p_2}{p_1} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$



## PHS advantages

- large capacities
- low operation and maintenance cost
- high reliability

## Disadvantages

- They require suitable terrain
- Construction takes many years
- Environmental impact is a serious concern [9]

## **CAES** advantages

- High power capacity
- Large energy-storage capacity
- Long storage period
- Low capital cost

## Disadvantages

- Reliance on favourable geography
- Low energy density
- Not carbon neutral in most cases [5]

The potential impacts of PHS and CAES projects are site-specific and must be evaluated on a case-by-case basis

## HYDROGEN STORAGE

#### The process is divided in **three steps**:

#### Electrolysis plant:

- $\triangleright$  Water is split into  $H_2$  and  $O_2$  in an electrolysis cell by supplying direct current to the electrodes
- $> H_2O + w_{el} \rightarrow H_2 + O_2$
- > Fuel cells, also denoted Proton Exchange Membranes (PEM), have simpler process layout, since there is no circulating liquid electrolyte

#### Hydrogen storage:

- The gas is compressed and stored in **pressurised storage tanks**: H<sub>2</sub> can be stored as compressed gas, as cryogenic liquid, in solids (metal hydrides, carbon materials) and liquid carriers (methanol, ammonia)
- ➤ Compressed gas storage is most relevant for large-scale stationary storage systems. Compression of H<sub>2</sub> is normally achieved by use of piston compressors or centrifugal compressors
- > A future option could be within **bedrock** consisting of porous material

#### Hydrogen-fuelled power generation:

> The reverse reaction of water electrolysis (combustion) takes place:

$$H_2 + O_2 \rightarrow H_2O + q$$

- q which is then fed to a conventional power plant
- ➤ In fuel cells, chemical energy is converted to electrical energy [12]



#### **Advantages**

- In comparison with other energy storage systems,  $H_2$  offers great **flexibility in sizing** because of the modularity of electrolysers, fuel cells and storage tanks
- H<sub>2</sub> engines are cheap and reliable
- H<sub>2</sub> has **good combustion properties** with high flame velocity and adiabatic temperature

#### **Disadvantages**

- **Low** round-trip storage **efficiency** (electricity-H<sub>2</sub>-electricity)
- Low reliability and lifetime of fuel cells
- Limited capability of electrolysers to operate with fluctuating power input
- High cost of system components like catalysts and polymer membrane
- Intermittent operation may cause impurity of H<sub>2</sub> in O<sub>2</sub> and viceversa
- The alkaline electrolyte is very corrosive, the electrode will corrode if the production is stopped [11]



MYRTE Hydrogen Storage plant in Ajaccio, France

#### **BATTERIES**

#### Available battery technologies:

- Lead acid (LA)
- Nickel Cadmium (NiCd)
- Sodium Sulphur (NaS)
- Sodium Nickel Chloride (ZEBRA)
- Lithium ion (LiB)
- Flow battery: vanadium redox (VRB)



Most of these technologies are currently **being investigated** for grid storage applications. Today NaS is the only commercially established one [5].

#### SODIUM-SULFUR BATTERY



Reaction

 $2Na + 4S \rightleftharpoons Na_2S_4$ 

NaS batteries are characterized by **high** energy  $(150 \div 240 \text{ Wh/kg})$  and power densities  $(150 \div 230 \text{ W/kg})$ .

The efficiency is almost 90% and the **pulse** power capability is significant

NaS cells **have to be kept at**  $300 \div 350^{\circ}\text{C}$  (at this temperature the  $\beta$ -alumina electrolyte is permeable and conductive for the Na<sup>+</sup> ion). This represents the **major drawback**: the heat source requirement reduces battery efficiency. The challenge is to *lower the operating temperature* in the next years, in order to make this battery more and more competitive.

Another important issue is **safety**: the *corrosivity* of the sulfur and its compounds and the high temperatures of the cells are potentially dangerous. An accident occurred on September 21, 2011 in Tsukuba, Japan, where a NaS battery storage plant caught on fire [13].

## THERMAL ENERGY STORAGE (TES)

Mainly adopted in large-scale CSP plants, to allow work as a base-load generation technology.

Heat can be stored by means of:

- Sensible heat in solids or liquids
- Phase-change materials
- Thermochemical reactions

There are other, non-solar ways to store thermal power that exploit an excess of electricity during off-peak generation:

- **Pumped Heat Energy Storage** (PHES): electricity is used to drive a *heat pump* which is reversed to become a heat engine when needed.
- Cryogenic Energy Storage (CES): excess of electricity is used to generate a liquid fluid (air or  $N_2$ ) at very low temperature that is later exploited by a heat engine.



In PHES systems, **concrete** can be used as a solid storage material from which power can be estracted using synthetic oil as carrier.

The most used liquid material is **molten salt** (KNO<sub>3</sub>-NaNO<sub>3</sub> with  $Ca(NO_3)_2$  or LiNO<sub>3</sub> mixture) due to its relatively low cost and high operative temperature (500 ÷ 600°C), compatible with classical steam turbines.

**Phase-change materials** exploit the latent heat released during the liquid-solid transformation. Constant temperature during charge/discharge, high storage density and temperature flexibility.

Thermochemical reactions are mainly used for long-term storage; high storage density and low heat losses. High amount of energy required, solar fuels can be produced via endothermic reversible reactions [10]:

#### **Advantages**

- They reduce the mismatch between solar insolation and demand through buffering
- Low thermal losses (no more than 3%)
- Increased annual solar-to-electricity efficiency → LCOE reduced by about 10%
- Less turbine start-up energy use

#### **Disadvantages**

- Requirement for large solar fields
- High capital costs
- Increased operation losses in the system

Methane reforming 
$$CH_4 + H_2O \rightleftharpoons CO + 3 H_2$$

Ammonia synthesis/dissociation  $3H_2+N_2 \rightleftharpoons 2NH_3$ 

**Cryogen** ensure relatively high energy density  $(100 \div 200 \text{ Wh/kg})$  with a rather low efficiency (40-50%).

**PHES** is a very low cost solution for plants in the range of  $2 \div 5$  MW



Graph data [6], information [5]

Energy Density Life Time



Other technologies are undesirable:

- ☐ PHS and CAES are site-specific and have low energy density
- ☐ Lead-acid batteries have low cycle life and require regular maintenance
- ☐ Hydrogen storage is difficult to implement and is costly

## **CONCLUSIONS**

Although EES is **expensive**, large-scale VRES integration would be a nearly impossible challenge without it.

As load growth clogs the grid and VRES penetration increases, strategic use of EES may be **more viable** than the construction of new transmission and generation capacity [5].

#### WHAT'S NEXT?

Among the technologies that will step up on the scene in the next future, two are particularly promising:

## Harvard's quinone-based flow battery

- As any flow battery the quantity of energy that can be stored only depends on the tanks size
- Organic, uses safe and economic materials
- Cycling showed >99% storage capacity retention per cycle
- Estimated price of 27  $\frac{1}{kWh}$  (Vanadium costs  $\frac{81}{kWh}$ )
- Available in 2 to 5 years [14]



#### \* Aqueous Electrolyte Polyionic batteries

- Stationary, long duration energy storage applications
- Made from *abundant*, *non toxic* sustainable materials using consolidated and cheap manufacturing processes
- Same performance as Lead batteries with double the lifetime
- Safety and cost-effectiveness make it a real alternative to Li-ion for cheap energy storage [15]



Quinone flow battery (Nature)

#### **BIBLIOGRAPHY**

- [1] P. Fairley, "Power revolution," Nature, vol. 526, pp. \$102-\$104, 2015.
- [2] K. Hamachi LaCommare and J. H. Eto, "Cost of Power Interruptions to Electricity Consumers in the United States," Environmental Energy Technologies Division, Berkeley, 2006.
- [3] D. Lew, L. Bird, M. Milligan, B. Speer, X. Wang, E. M. Carlini, A. Estanqueiro, D. Flynn, E. Gomez-Lazaro, N. Menemenlis, A. Orths, I. Pineda, C. J. Smith, L. Soder, P. Sorensen, A. Altiparmakis and Y. Yoh, "Wind and Solar Curtailment," in International Workshop on Large-Scale Integration of Wind Power Into Power System as Well as on Transmission Networks for Offshore Wind Power Plants, London, 2013.
- [4] European Commission, "European SmartGrids Technology Platform: Vision and Strategy for Europe's Electricity Networks of the Future," EU Publications Office, Brussels, 2006.
- [5] P. Du and N. Lu, Energy Storage for Smart Grids, Planning and Optimization for Renewable and Variable Energy Resources, 1st ed., Amsterdam: Elsevier, 2015.
  - H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, "Progress in electrical energy storage system: A critical review," Progress in Natural Science, vol. 19, pp. 291-312, 2009.
- [7] A. Rosin, Energy Storages, Tallinn: Tallinn University of Technology, 2012.

[6]

- [8] S.-i. Inage, "Prospects for Large-Scale Energy Storage in Decarbonised Power Grids," IEA, Paris, 2009.
- [9] C.-J. Yang, "Pumped Hydroelectric Storage," in Storing Energy, Elsevier, forthcoming, p. Chapter 2.
- [10] P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rougé, M. Cabassud and P. Cognet, "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, vol. 32, no. April 2014, pp. 591-610, 2014.
- [1] M. Korpas and C. J. Greiner, "Opportunities for hydrogen production in connection with wind power in weak grids," Renewable Energy, no. 33, pp. 1199-1208, 2008.
- [12] S. P. Cicconardi, E. Jannelli and G. Spazzafumo, "Hydrogen energy storage: hydrogen and oxygen storage subsystems," int. J. Hydrogen Energy, vol. 22, no. 9, pp. 897-902, 1997.
- [13] H. K. J.-M. T. Bruce Dunn, "Electrical Energy Storage for the Grid: A Battery of Choices," Science, vol. 334, pp. 928-935, 2011.
- [14] B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, "A metal-free organic-inorganic aqueous flow battery, " Nature, vol. 505, pp. 195-198, 2014
- [15] J.F. Whitacre, S. Shanbhag, A. Mohamed, A. Polonsky, K. Carlisle, J. Gulakowsli, W. Wu, C. Smith, L. Cooney, D. Blackwood, J.C. Dandrea and C. Truchot, "A Polyionic, Large-Format Energy Storage Device Using an Aqueous Electrolyte and Thick-Format Composite NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/Activated Carbon Negative Electrodes," Energy Technol, pp. 1-13, 2014