

MS31007: Chapter 7

Phase diagram

- Solubility Limits
- Phases
- Phase Equilibrium
- Interpretation of Phase Diagrams
- Binary Isomorphous Systems (Cu-Ni)
- Development of Microstructure
- Mechanical Properties
- Binary Eutectic Systems
- Development of Eutectic Alloy Microstructure
- The Kinetics Of Phase Transformations

Development Of Microstructure In Isomorphous Alloys

Equilibrium Cooling of a Cu-Ni Alloy: Solidification

Condition: The cooling occurs very slowly, in that phase equilibrium is continuously maintained

Phase diagram:
 Cu-Ni system.

Consider
 microstuctural changes that
 accompany the cooling of a
 C₀ = 35 wt% Ni alloy

Binary-Eutectic Systems

Upon cooling, a liquid phase is transformed into the two solid α and β phases at T_E ; the opposite reaction occurs upon heating. This is called a

Eutectic reaction =
$$L(C_E) \stackrel{\text{cooling}}{\rightleftharpoons}_{\text{heating}} \alpha(C_{\alpha E}) + \beta(C_{\beta E})$$

$$L(71.9 \text{ wt\% Ag}) \stackrel{\text{cooling}}{\rightleftharpoons} \alpha(8.0 \text{ wt\% Ag}) + \beta(91.2 \text{ wt\% Ag})$$

- The horizontal solidus line at T_E is called the eutectic isotherm
- The solid product of eutectic solidification is always two solid phases
- For a eutectic system, three phases may be in equilibrium, but only at points along the eutectic isotherm.
- Another general rule is that single-phase regions are always separated from each other by a two-phase region that consists of the two single phases that it separates

Solidification of Eutectic Mixtures

Mixtures of some metals, such as Cu & Ni, are completely soluble in both liquid and solid states for all concentrations of both metals. Cu & Ni have the same crystal structure (FCC) and have nearly the same atomic radii. The solid formed by cooling can have any proportion of Cu & Ni. Such completely miscible mixtures of metals are called isomorphous.

- By contrast, a mixture of lead & tin that is eutectic is only partially soluble when in the solid state. Pb & Sn have different crystal structures (FCC versus BCC) and Pb atoms are much larger.
- No more than 18.3 weight % solid Sn can dissolve in solid Pb
- No more than 2.2% of solid Pb can dissolve in solid Sn
- The solid lead-tin alloy consists of a mixture of two solid phases, one consisting of a maximum of 18.3 wt% Sn (the alpha phase) and one consisting of a maximum of 2.2 wt% Pb (the beta phase).

The eutectic invariant point is located at 61.9 wt%

Sn and 183°C

Eutectic lead-tin solder

- For lead & tin the eutectic composition is 61.9 wt% tin and the eutectic temperature is 183°C -- which makes this mixture useful as solder.
- At 183°C, compositions of greater than 61.9 wt% tin result in precipitation of a tin-rich solid in the liquid mixture, whereas compositions of less than 61.9 wt% tin result in precipitation of lead-rich solid.

Composition (wt%)	Solidus Temperature (°C)	Liquidus Temperature (°C)				
Solders Containing Lead						
63 Sn–37 Pb ^a	183	183				
50 Sn-50 Pb	183	214				
Lead-Free Solders						
99.3 Sn-0.7 Cu ^a	227	227				
96.5 Sn-3.5 Ag ^a	221	221				
95.5 Sn-3.8 Ag-0.7 Cu	217	220				
91.8 Sn-3.4 Ag-4.8 Bi	211	213				
97.0 Sn-2.0 Cu-0.85 Sb-0.2 Ag	219	235				

Pb-Sn Eutectic System

- For a 40 wt% Sn-60 wt% Pb alloy at 150°C, determine:
- -- the phases present at B

Answer:
$$\alpha + \beta$$

-- the phase compositions

Answer:
$$C_{\alpha} = 11$$
 wt% Sn $C_{\beta} = 99$ wt% Sn

-- the relative amount of each phase

Answer:
$$W_{\alpha} = \frac{C_{\beta} - C_{0}}{C_{\beta} - C_{\alpha}}$$

$$= \frac{99 - 40}{99 - 11} = \frac{59}{88} = 0.67$$

$$W_{\beta} = \frac{C_{0} - C_{\alpha}}{C_{\beta} - C_{\alpha}}$$

$$= \frac{40 - 11}{99 - 11} = \frac{29}{88} = 0.33$$

Pb-Sn Eutectic System

- For a 40 wt% Sn-60 wt% Pb alloy at 220°C, determine:
 - -- the phases present:

Answer: $\alpha + \bot$

-- the phase compositions

Answer:
$$C_{\alpha} = 17 \text{ wt\% Sn}$$

 $C_{L} = 46 \text{ wt\% Sn}$

-- the relative amount of each phase

Answer:

$$W_{\alpha} = \frac{C_{L} - C_{0}}{C_{L} - C_{\alpha}} = \frac{46 - 40}{46 - 17}$$
$$= \frac{6}{29} = 0.21$$

$$W_L = \frac{C_0 - C_{\alpha}}{C_1 - C_{\alpha}} = \frac{23}{29} = 0.79$$

Microstructures In Eutectic Systems: Equilibrium Cooling - I

- Composition range: a pure component (e.g. Pb)
- its maximum solid solubility at **room** (20 °C) temperature e.g. alloys where

 $C_0 < 2$ wt% Sn

 $T>T_L=330$ °C – *liquid alloy* with C_0 comp

T_S< T<T_L- very narrow region: a *solid* phase in *liquid* (L) and compositions of phases are defined by **tie-line method**

T<T_S - *polycrystal* of α *grains* with uniform composition of C₀

Result at room temperature is a polycrystalline with grains of α phase having composition C_0

Pb-Sn system

(room T solubility limit)

Microstructures In Eutectic Systems: Equilibrium Cooling - II

- •<u>Composition range</u>: maximum solid solubility at **room** (20°C) temperature (C = 2wt%) and maximum solid solubility at **eutectic** temperature, $T_E=183$ °C (C=18.3%) (e.g. 2 wt% Sn < C₂ < 18.3 wt% Sn)
- T>T_L *liquid alloy* with C₂ composition
- $T_{solidus}$
- T_{L} **solid** α phase in **liquid** (L) and compositions of phases are defined by tie-line method
- T_{solvus} < T < $T_{solidus}$ *polycrystal* of α *grains* with uniform composition of C_2
- T< T_{solvus} α *polycrystal* with fine β *crystals;* the compositions of phases are defined by tie-line method and the amount of each phase by Level rule.
- Results in polycrystalline microstructure with α grains and small β -phase particles at lower temperatures.

Pb-Sn system

Microstructures in Eutectic Systems - III

- T>T_E: *liquid* with $C = C_E = 61.9$ wt% Sn
- T<T_E: alternating layers of α and β crystals.
 - $C_3 = C_E$
 - Results in a eutectic microstructure with alternating layers of α and β crystals.

$$L(61.9 \text{ wt\% Sn}) \stackrel{\text{cooling}}{=\!=\!=\!=} \alpha(18.3 \text{ wt\% Sn}) + \beta(97.8 \text{ wt\% Sn})$$

Lamellar Eutectic Structure

☐ A 2-phase microstructure resulting from the solidification of a liquid having the eutectic composition where the phases exist as a lamellae that alternate with one another.

- □ Formation of eutectic layered microstructure in the Pb-Sn system during solidification at the eutectic composition.
- \Box Compositions of α and β phases are very different. Solidification involves redistribution of Pb and Sn atoms by atomic diffusion.

Microstructure obtained with different compositions

Microstructures in Eutectic Systems - IV

- For alloys with 18.3 wt% $Sn < C_0 < 61.9$ wt% Sn
- Result: α phase particles and a eutectic microconstituent

Just above T_E:

$$C_{\alpha} = 18.3 \text{ wt\% Sn}$$
 $C_{L} = 61.9 \text{ wt\% Sn}$
 $W_{\alpha} = \frac{C_{L} - C_{0}}{C_{L} - C_{\alpha}} = 0.50$
 $W_{L} = (1 - W_{\alpha}) = 0.50$

• Just below T_F:

$$C_{\alpha}$$
 = 18.3 wt% Sn
 C_{β} = 97.8 wt% Sn
 C_{β} - C_{α} = 0.727
 C_{β} - C_{α} = 0.727
 C_{β} - C_{α} = 0.727

Microstructures in Eutectic Systems - IV

Microstructure of a lead-tin alloy of composition 50 wt% Sn-50 wt% Pb

To distinguish one α from the other, that which resides in the eutectic structure is called **eutectic** α , whereas the other that formed prior to crossing the eutectic isotherm is termed **primary** α .

Microconstituent—an element of the microstructure having an identifiable and characteristic structure (Example primary α and the eutectic structure)

The fraction of the eutectic microconstituent W_e is just the same as the fraction of liquid W_t from which it transforms,

Composition (wt% Sn)

$$W_e = W_L = \frac{P}{P + Q}$$

Fractions of total α ,

$$W_{\alpha} = \frac{Q + R}{P + Q + R}$$

fraction of primary α

$$W_{\alpha'} = \frac{Q}{P + Q}$$

Fraction of β

$$W_{\beta} = \frac{P}{P + Q + R}$$

Hypoeutectic & Hypereutectic

Lamellar Eutectic Structure

lamellar Ti-Fe eutectics

F. Zhu et al. App. Phys Lett 2011

Copper phosphorus eutectic

Ni-Al

Each eutectic alloy
has its own
characteristic
microstructure:
spheroidal, nodular, or
globular; acicular
(needles) or rod; and
lamellar (platelets,
Chinese script or

Well-Aligned Nanocylinder Formation in Phase-Separated Metal-Silicide–Silicon and Metal-Germanide–Germanium Systems

Figure 4. HRTEM images of the Pd₂Si-Si system sputtered by using deposition condition 1. a) A low-magnification image and b) high-magnification lattice image in plane view. c) A low-magnification image and d) high-magnification image in cross-sectional view.

Table 1. List of the examined materials and their eutectic temperatures

Materials	Eutectic	Materials	Eutectic
[silicide]	Temperature [°C]	[germanide]	Temperature [°C]
Al-Si [11,18]	577	Al-Ge [12, 18]	420
Cu₃Si-Si [18]	802	Cu₃Ge-Ge [18]	644
Pd₂Si-Si [19]	825	Ag-Ge [18]	651
NiSi ₂ -Si [20]	960	Mn ₁₁ Ge ₈ -Ge [28]	720
PtSi-Si [18]	979	PdGe-Ge [18]	725
RhSi-Si [21]	1060	NiGe-Ge [18]	762
Mn ₁₁ Si ₁₉ -Si [18]	1142	PtGe ₂ -Ge [18]	802
FeSi ₂ -Si [18]	1207	Co _{0.875} Ge ₂ -Ge [18]	810
IrSi ₃ -Si [22]	1221	Rh_3Ge_4 -Ge [18]	850
CoSi ₂ -Si [18]	1259	Cr ₁₁ Ge ₁₉ -Ge [18]	895
NbSi ₂ -Si [18]	1302		
CrSi ₂ -Si [18]	1305		
TiSi ₂ -Si [18]	1330		
ZrSi ₂ -Si [23]	1353		
HfSi ₂ -Si [18]	1360		
Ru ₂ Si ₃ -Si [24]	1370		
VSi ₂ -Si [25]	1382		
TaSi ₂ -Si [18]	1385		
ReSi _{1.75} -Si [26]	1380		
MoSi ₂ -Si [18]	1400		
WSi ₂ -Si [27]	1400		

Equilibrium Diagrams with Intermediate Phases or Compounds

Terminal solid solutions:

only two solid phases/composition extremes

Intermediate solid solutions:

other than the two composition

extremes
For example Cu-Zn phase diagram:
there are six different solid
solutions—two terminal ($\alpha \& \eta$) and
four intermediate

- •α and η are **terminal solid solutions**: exist near the concentration *extremities* of the phase diagram
- •β,γ,ε,δ are intermediate solid solutions (or *intermediate phases*)
- ■new types (not eutectic) of invariant points (e.g. E, P)

Eutectoid and Peritectic Reactions

Peritectic transformation $\gamma + L \Longrightarrow \delta$

Point P (78.6 wt%Zn at 598°C):

three phases are in equilibrium (δ,L,ϵ) in this case upon heating a solid phase transforms to liquid and another solid

phases: a *peritectic reaction*:

$$\delta + L \stackrel{\text{cooling}}{\underset{\text{heating}}{\rightleftharpoons}} \varepsilon$$

$$\delta (76wt\%Zn) + L(88wt\%Zn) \xrightarrow[\text{heating}]{c od ig} \epsilon (78.6wt\%Zn)$$

•Point E (74 wt%Zn at 560°C): again (as in eutectic) three phases are in equilibrium $(\delta, \gamma, \epsilon)$

Eutectoid reaction

•but in this case upon cooling a *solid* phase transforms to *two solid* phases, so-called a *eutectoid reaction*:

$$\delta \underset{\text{heating}}{\overset{\text{cooling}}{\Longrightarrow}} \gamma + \varepsilon$$

$$\delta \left(74wt\%Zn\right) \frac{\text{cooling}}{\overset{}{\longleftarrow} \gamma \left(69.5wt.\%Zn\right) + \epsilon (78.6wt\%Zn)}$$

Equilibrium Diagrams with Intermediate Compounds

- Mg₂Pb melts at approximately 550°C
- The solubility of Pb in Mg is rather extensive
- Solubility of Mg in Pb is extremely limited

Example: Magnesium-Lead System

- ■Mg₂Pb is a *intermetallic compound* with a distinct chemical formula (not a solution)
- •for this specific example, the intermediate compound exists by itself only at this precise composition (region of its existence has small *width-just a line*!!)
- ■the phase diagram in Mg- Pb system can be thought of a *two simple eutectic diagrams* joined back to back, one for Mg-Mg₂Pb system and other Mg₂Pb-Pb system

Eutectic, Eutectoid, & Peritectic

Eutectic - liquid transforms to two solid phases

L
$$\frac{\text{cool}}{\text{heat}}$$
 $\alpha + \beta$ (For Pb-Sn, 183°C, 61.9 wt% Sn)

Eutectoid – one solid phase transforms to two other solid phases
 Solid₁ ↔ Solid₂ + Solid₃

$$\gamma \stackrel{\text{cool.}}{\text{heat}} \alpha + \text{Fe}_3 \text{C}$$
 (For Fe-C, 727°C, 0.76 wt% C)

Peritectic - liquid and one solid phase transform to a 2nd solid phase
 Solid₁ + Liquid ↔ Solid₂

$$\delta + L \frac{\text{cool}}{\text{heat}} \epsilon$$
 (For Cu-Zn, 598°C, 78.6 wt% Zn)

Congruent Phase Transformations

Phase transformations may be classified according to whether there is any change in composition for the phases involved.

There are no compositional alterations are said to be **congruent transformations**

Ni–Ti phase diagram, showing a congruent melting point for the γ-phase solid solution at 1310°C and 44.9 wt% Ti

- γ solid solution at 1310°C and C = 44.9 wt% Ti melts without changing of the composition
- •Congruent transformation: melting of pure metals, allotropic transformations are congruent

The intermetallic compound Mg₂Pb melts congruently at the point designated *M* on the Mg-Pb phase diagram

Incongruent transformations, at least one of the phases experiences a change in composition.

- •P melting at 598°C: $\varepsilon \Rightarrow \delta + L$ (peritectic reaction) occurs with *changing of phase* composition
- Incongruent phase transformation
- •Eutectic, eutectoid and peritectic reactions are examples of incongruent transformations

Iron-Carbon System

- Pure iron when heated experiences 2 changes in crystal structure before it melts.
- At room temperature, ferrite (α iron) has a BCC crystal structure.
- Ferrite experiences a polymorphic transformation to FCC austenite (γ iron) at 912 °C.
- At 1394°C austenite reverts back to BCC phase δ ferrite and melts at 1538 °C.
- Carbon is an interstitial impurity in iron and forms a solid solution with the α , γ , δ phases.
- Iron carbide (cementite or Fe₃C) an intermediate compound is formed at 6.7 wt% C.
- Typically, all steels and cast irons have carbon contents less than 6.7 wt% C.

Crystal structures of iron

Iron-Carbon (Fe-C) Phase Diagram

- 2 important points
- Eutectic (A): $L \Rightarrow \gamma + Fe_3C$
- Eutectoid (B):

$$\gamma \Rightarrow \alpha + \text{Fe}_3\text{C}$$

Pearlite

Eutectoid reaction:

$$\gamma \leftrightarrow \alpha + \text{Fe}_3\text{C}$$

- formation of the pearlite structure
 - nucleating at γ grain boundaries
 - growth by diffusion of C to achieve the compositions of α and Fe₃C (with structural changes)
 - α lamellae much thicker

Redistribution of carbon by diffusion

Austenite – 0.76 wt% C Ferrite - 0.022 wt% C Cementite - 6.70 wt% C

Iron-Carbon (Fe-C) Phase Diagram

(b)

Though carbon is present in relatively low concentrations, it significantly influences the mechanical properties of ferrite: (a) α ferrite, (b) austenite.

Nonequilibrium Solidification Phenomenon:

Readjustments of phases are accomplished by diffusional processes—that is, diffusion in both solid and liquid phases and also across the solid—liquid interface.

Diffusion rates (i.e., the magnitudes of the diffusion coefficients) are especially low for the solid phase and, for both phases, decrease with diminishing temperature.

In most solidification situations, cooling rates are **much too rapid** to allow these compositional readjustments and maintenance of equilibrium; consequently, microstructures other than those previously described develops.

- Development of microstructure during the non-equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy outcome:
- Segregation-nonuniform distribution of elements within grains.
- Weaker grain boundaries if alloy is reheated.

Nonequilibrium Solidification Phenomenon:

Cooling
At point b' (~1260°C), α-phase particles begin to form,
Composition 46 wt% Ni–54 wt% Cu [α(46 Ni)].

Point c' (~1240°C), composition shifted to 29 wt% Ni–71 wt% Cu;

- α phase that solidified is 40 wt% Ni–60 wt% Cu [α(40 Ni)]
- α phase at b' has not changed composition appreciably, because diffusion in the solid α phase is relatively slow
- composition of the α grains
- continuously changes
 (46 wt% Ni at centers to 40 wt% Ni outer)
- Volume-weighted average composition
 42 wt% Ni–58 wt% Cu [α(42 Ni)]
- Solidus line on the phase diagram has been shifted to higher Ni contents

The degree of displacement of the nonequilibrium solidus curve from the equilibrium one depends on the rate of cooling; the slower the cooling rate, the smaller this displacement; if the diffusion rate in the solid phase increases, this displacement decreases

Cored vs Equilibrium Phases

- \mathbf{C}_{α} changes as it solidifies.
- Cu-Ni case: First α to solidify has \mathbf{C}_{α} = 46wt%Ni. Last α to solidify has \mathbf{C}_{α} = 35wt%Ni.
- Fast rate of cooling:
 Cored structure

 Slow rate of cooling: Equilibrium structure

Coring can be eliminated by means of a homogenization heat treatment carried out at temperatures below the alloy's solidus.
 During the process, atomic diffusion produces grains that are compositionally homogeneous.

Mechanical Properties: Cu-Ni System

Effect of solid solution strengthening on:

--Tensile strength (TS)

--Peak as a function of Co

--Ductility (%EL,%AR)

--Min. as a function of Co

Ceramic Phase Diagrams

MgO-Al₂O₃ diagram:

Home Assignment

Q. No 9.3: The following figure is the hafnium–vanadium phase diagram, for which only single-phase regions are labeled. Specify temperature–composition points at which all eutectics, eutectoids, peritectics, and congruent phase transformations occur. Also, for each, write the reaction upon cooling.

Example Problem

For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following:

- a) The compositions of Fe_3C and ferrite (α).
- b) The amount of cementite (in grams) that forms in 100 g of steel.

Criteria for Solid Solubility: Example

Simple system (e.g., Ni-Cu solution)

	Crystal Structure	Electro-neg	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally soluble in one another for all proportions.

