Матанализ 2 семестр ПИ, Лекции

Собрано 22 февраля 2022 г. в 11:59

Содержание

1. Интегральное исчисление	1
1.1. Неопределенный интеграл	1
1.2. Определенный интеграл Римана	5
1.3. Суммы Ларбу	6

Раздел #1: Интегральное исчисление

1.1. Неопределенный интеграл

Def 1.1.1. $f: \langle A, B \rangle \to \mathbb{R}$, $F: \langle A, B \rangle \to \mathbb{R}$ называется первообразной функцией f, если F дифференцируема на $\langle A, B \rangle$, $F'(x) = f(x) \ \forall x \in \langle A, B \rangle$.

Теорема 1.1.2. Пусть $f, F, G : \langle A, B \rangle \to \mathbb{R}, F$ — первообразная f. Тогда G — первообразная $f \Leftrightarrow \exists c \in \mathbb{R} : F(x) + c = G(x)$.

Доказательство. \Rightarrow . Пусть H(x) = F(x) - G(x). Тогда

$$H'(x) = F'(x) - G'(x) = f(x) - f(x) = 0 \Leftrightarrow H'(x) = 0 \Rightarrow H(x) \equiv \text{const}$$

$$\Leftarrow$$
. $(F(x)+c)'=(G(x))'\Leftrightarrow f(x)=F'(x)=G'(x)\Rightarrow G$ – первообразная.

Def 1.1.3. $f: \langle A, B \rangle \to \mathbb{R}, F$ – первообразная f. Множество функций $\{F(x) + c, c \in \mathbb{R}\}$ называется неопределенным интегралом f.

$$\int f(x) dx = F(x) + c, c \in \mathbb{R}$$

Далее, $f: \langle A, B \rangle \to \mathbb{R}$.

1. Дифференцирование

$$\left(\int f(x) dx\right)' = f(x), x \in \langle A, B \rangle$$

2. Арифметические действия:

$$\int f(x) dx + \int g(x) dx = \{ F(x) + G(x) + c, c \in \mathbb{R} \}$$

$$\int f(x) dx + H(x) = \{ F(x) + H(x) + c, c \in \mathbb{R} \}$$

$$\lambda \int f(x) dx = \{ \lambda F(x) + c, c \in \mathbb{R} \}, \lambda \neq 0, \lambda \in \mathbb{R}$$

Утверждение 1.1.4. Если функция f непрерывна на $\langle A, B \rangle$, то у неё есть первообразная на $\langle A, B \rangle$.

Упражнение 1.1.5. $f(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$. Есть ли первообразная у этой функции?

Def 1.1.6. $E \subset \mathbb{R}, f : E \to \mathbb{R}$. Если F дифференцируема на E и F'(x) = f(x) на E, то F – первообразная f на множестве E.

Таблица неопределенных интегралов

1.
$$\int a dx = ax + c, a \in \mathbb{R}$$

2.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + c, a \neq -1$$

3.
$$\int \frac{1}{x} dx = \ln|x| + c$$

4.
$$\int e^x dx = e^x + c$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + c, a > 0, a \neq 1$$

6.
$$\int \sin x \, dx = -\cos x + c$$

7.
$$\int \cos x \, dx = \sin x + c$$

8.
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + c$$

9.
$$\int \frac{1}{\sin^2 x} dx = -\cot x + c$$

10.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c, a \neq 0$$

11.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + c, a > 0$$

12.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c, a \neq 0$$

13.
$$\int \frac{dx}{\sqrt{x^2+a}} = \ln |x + \sqrt{x^2+a}| + c, a \in \mathbb{R}$$

Доказательство. Дифференцирование

Пример 1.1.7. $\int \frac{\sin x}{x} dx$ — неберущийся интеграл. Si(x) — интегральный синус (одна из первообразных, закрепленная при $x \to 0+$).

$$(\mathrm{Si}(x))' = \frac{\sin x}{x}$$

Теорема 1.1.8 (Линейность неопределенного интеграла). $f, g : \langle A, B \rangle \to \mathbb{R}$, имеют первообразные на $\langle A, B \rangle$. Тогда $\forall \alpha, \beta \in \mathbb{R} : \alpha, \beta \neq 0$

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Доказательство. Пусть F и G — первообразные f и g на $\langle A,B \rangle$. Правая часть равенства: $\{\alpha F(x) + \beta G(x) + c, c \in \mathbb{R}\}.$

$$(\alpha F(x) + \beta G(x) + c)' = \alpha F'(x) + \beta G'(x) = \alpha f(x) + \beta g(x)$$

Теорема 1.1.9 (Замена переменной). $f: \langle A, B \rangle \to \mathbb{R}, F$ – первообразная f на $\langle A, B \rangle$, $\varphi: \langle C, D \rangle \to \overline{\langle A, B \rangle}$ – дифференцируемая функция. Тогда

$$\int f(\varphi(x))\varphi'(x) dx = F(\varphi(x)) + c$$

Доказательство.

$$(F(\varphi(x)) + c)' = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$$

Замечание 1.1.10. $\varphi'(x) dx = d\varphi(x)$. Пусть $y = \varphi(x)$

$$\int f(y)dy = F(y) + c = F(\varphi(x)) + c$$

Пример 1.1.11. $\int \frac{\ln x}{x} dx = \int \ln x \cdot \frac{1}{x} dx$. Пусть $y = \ln x \Rightarrow dy = \frac{1}{x} dx$

$$\Rightarrow \int \frac{\ln x}{x} dx = \int y dy = \frac{y^2}{2} + c = \frac{\ln^2 x}{2} + c$$

Следствие 1.1.12. Пусть в условиях теоремы φ имеет обратную функцию $\psi : (A, B) \to (C, D)$. Если G(x) – первообразная функции $(f \circ \varphi(x)) \cdot \varphi'(x)$, то

$$\int f(x) dx = G(\psi(x)) + c$$

Доказательство. Пусть F – первообразная f на $\langle A,B \rangle$. $F(\varphi(x))$ – первообразная $f(\varphi(y))\varphi'(y)$ (по теореме). Рассмотрим G(x) – $F(\varphi(x))$ – постоянная (т.к. производная равна нулю). $y = \varphi(x) \Leftrightarrow x = \psi(y)$. Тогда

$$G(\psi(y)) - F(y) = \text{const} \Rightarrow \int f(y) \, dy = G(\psi(y)) + c$$

Пример 1.1.13. $\int \frac{dx}{1+\sqrt{x}}$. Пусть $t = \sqrt{x}, t > 0 \Leftrightarrow t^2 = x \Rightarrow dx = dt^2 = 2t dt$. Тогда

$$\int \frac{dx}{1+\sqrt{x}} = \int \frac{2t}{1+t} dt = \int \left(\frac{2t+2}{t+1} - \frac{2}{t+1}\right) dt = \int \left(2 - \frac{2}{t+1}\right) dt = 2\int dt - 2\int \frac{dt}{t+1} = 2t - \int \frac{d(t+1)}{t+1} = 2t - 2\ln|t+1| + c = 2\sqrt{x} - 2\ln(\sqrt{x}+1) + c$$

Пример 1.1.14. $\int \sin x \cos x \, dx = \int \sin x \, d \sin x = \frac{\sin^2 x}{2} + c$.

Иначе: $\int \sin x \cos x \, dx = -\int \cos x \, d\cos x = -\frac{\cos^2 x}{2} + c$. Иначе: $\int \sin x \cos x \, dx = \frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} \cdot \frac{1}{2} \int \sin 2x \, d(2x) = \frac{-\cos 2x}{4} + c$. Мораль сей басни такова: константы разные, а не $\frac{\sin^2 x}{2} = -\frac{\cos^2 x}{2} = -\frac{\cos 2x}{4}$.

Теорема 1.1.15 (Формула интегрирования по частям). $f, g \in C^1(A, B)$. Тогда

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Доказательство. H – первообразная $g \cdot f'$. Тогда

$$(f(x)g(x) - H(x))' = f'(x)g(x) + f(x)g'(x) - H'(x) = f(x)g'(x)$$

Замечание 1.1.16. $\int u \, dv = uv - \int v \, du$

Пример 1.1.17. $\int xe^x dx$. Пусть $u = x, u' = 1, v' = e^x, v = e^x$

$$\int xe^x dx = xe^x - \int 1 \cdot e^x dx = xe^x - e^x + c$$

Пример 1.1.18. $\int \ln x \, dx$. Пусть $u = \ln x, u' = \frac{1}{x}, v' = 1, v = x$.

$$\int \ln x \, dx = x \ln x - \int \frac{1}{x} \cdot x \, dx = x \ln x - x + c$$

Упражнение 1.1.19. $\int e^x \cdot \sin x \, dx$ Пусть $f = \sin x, g = e^x$. Тогда

$$\int f \, dg = fg - \int g \, df \Leftrightarrow \int e^x \sin x = e^x \sin x - \int e^x \cos x$$

Пусть теперь $f = \cos x, g = e^x$. Тогда

$$\int f \, dg = fg - \int g \, df \Leftrightarrow \int e^x \cos x = e^x \cos x + \int e^x \sin x$$

Отсюда

$$\int e^x \sin x = e^x \sin x - e^x \cos x - \int e^x \sin x \Leftrightarrow \int e^x \sin x = \frac{e^x}{2} (\sin x - \cos x)$$

Пример 1.1.20. Пусть $a \in \mathbb{R}, a \neq 0, I_n = \int \frac{dx}{(x^2+a)^n}, n \in \mathbb{N}$. Выразим интеграл I_{n+1} через I_n для произвольного натурального n.

Обозначим $f(x) = \frac{1}{(x^2+a)^n}$ и g(x) = x. Тогда

$$df(x) = \left(\frac{1}{(x^2 + a)^n}\right)' dx = -\frac{2nx}{(x^2 + a)^{n+1}} dx, dg(x) = dx$$

По формуле интегрирования по частям:

$$I_n = \frac{x}{(x^2 + a)^n} + 2n \int \frac{x^2}{(x^2 + a)^{n+1}} dx = \frac{x}{(x^2 + a)^n} + 2n \int \frac{x^2 + a - a}{(x^2 + a)^{n+1}} dx$$
$$= \frac{x}{(x^2 + a)^n} + 2n \int \frac{dx}{(x^2 + a)^n} - 2na \int \frac{dx}{(x^2 + a)^{n+1}} = \frac{x}{(x^2 + a)^n} + 2nI_n - 2naI_{n+1}$$

Откуда

$$2naI_{n+1} = (2n-1)I_n + \frac{x}{(x^2+a)^n}$$

Утверждение 1.1.21. Любая рациональная функция имеет элементарную первообразную.

Рассмотрим простешие дроби:

1.
$$\frac{a}{(x+p)^n}$$
, $n \in \mathbb{N}$, $a, p \in \mathbb{R}$

$$2. \frac{ax+b}{(x^2+px+q)^n}$$

Интегралы от простейших дробей первого рода вычисляются по таблице. Для простейших дробей второго рода используется следующий алгоритм:

1. Если $p \neq 0$, то выделим полный квадрат и выполним замену $y = x + \frac{p}{2}$. Если p = 0, тогда

$$\int \frac{ax+b}{(x^2+px+q)^n} = a \int \frac{x\,dx}{(x^2+q)^n} + b \int \frac{dx}{(x^2+q)^n}$$

- 2. Интеграл $\int \frac{x \, dx}{(x^2+q)^n}$ можно вычислить с помощью замены $y=x^2+q$, т.к. $dy=2x\, dx$.
- 3. Применяя к интегралу $I_n = \int \frac{dx}{(x^2+q)^n}$ формулу понижения n-1 раз сведем его к интегралу I_1 , который является табличным.

Пример 1.1.22 (12 и 13 из таблицы).

$$\int \frac{dx}{x^2 - 4} = \int \left(\frac{\frac{1}{4}}{x - 2} + \frac{-\frac{1}{4}}{x + 2} \right) dx = \frac{1}{4} \left(\ln|x - 2| - \ln|x + 2| \right) + c$$

Пример 1.1.23. $\int \frac{dx}{\sqrt{x^2+1}}$. Пусть $x = \sinh t, dx = \cosh t dt$. Тогда

$$\int \frac{\operatorname{ch} t dt}{\sqrt{1 + \operatorname{sh}^2 t}} = \int \frac{\operatorname{ch} t}{\operatorname{ch} t} dt = \int dt = t + c$$

Упражнение 1.1.24. Найди формулу для $(\sinh t)^{-1}$

Неберущиеся интегралы:

- $\int \frac{\sin x}{x} dx$
- $\bullet \int \frac{\cos x}{x} \, dx$
- $\bullet \int \frac{dx}{\ln x}$
- $\int \frac{e^x}{x} dx$

- $\int \sin x^2 dx$
- $\int \cos x^2 dx$
- $\int e^{-x^2} dx$

1.2. Определенный интеграл Римана

Def 1.2.1. [a,b], a < b. Набор точек $\tau = \{x_k\}_{k=0}^n : x_0 = a < x_1 < x_2 < \dots < x_n = b$ – разбиение (дробление) отрезка $[a,b], \Delta x_k = x_{k+1} - x_k$ – длина отрезка $[x_k, x_{k+1}]$. $\lambda = \lambda_{\tau} = \max_{k \in [0,n-1]} \Delta x_k$ – ранг дробления (мелкость), $\xi = \{\xi_k\}_{k=0}^{n-1} : \xi_k \in [x_k, x_{k+1}]$ – оснащение дробления τ . Пара (τ, ξ) называется оснащенным дроблением.

Def 1.2.2. $f:[a,b] \to \mathbb{R}, \sigma_{\tau} = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k - cymmu Pumaha (интегральные суммы).$

Def 1.2.3. $f:[a,b] \to \mathbb{R}$. Число $I \in \mathbb{R}$ называют пределом интегральных сумм при ранге $\to 0$:

$$I = \lim_{\lambda_{\tau} \to 0} \sigma_{\tau}(f, \xi) \quad (I = \lim_{\lambda \to 0} \sigma)$$

ecли $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta$

$$|\sigma_{\tau}(f,\xi) - I| < \varepsilon$$

Замечание 1.2.4. Последовательность оснащенных дроблений $\{(\tau^{(i)}, \xi^{(i)})\}_{i=1}^{\infty} : \lambda^{(i)} \to 0$. $\forall \{\tau^{(i)}, \xi^{(i)}\} : \lambda^{(i)} \to 0$ $\sigma_{\tau^{(i)}}(f, \xi^{(i)}) \to I$.

Def 1.2.5 (Интеграл Римана). $f:[a,b] \to \mathbb{R}$. Если $\exists \lim_{\lambda \to 0} \sigma = I$, то f называется интегрируемой по Риману на [a,b], а число I называется интегралом f по [a,b]. R[a,b] – класс функций, интегрируемых по Риману на [a,b].

$$\int_a^b f(x) \, dx$$

1.3. Суммы Дарбу

Def 1.3.1. $f:[a,b] \to \mathbb{R}, \tau = \{x_k\}_{k=0}^n - \partial poбление [a,b].$

$$M_k = \sup_{x \in [x_k, x_{k+1}]} f(x), m_k = \inf_{x \in [x_k, x_{k+1}]} f(x)$$

Суммы

$$S = S_{\tau}(f) = \sum_{k=0}^{n-1} M_k \Delta x_k, s = s_{\tau}(f) = \sum_{k=0}^{n-1} m_k \Delta x_k$$

называются верхними и нижними интегральными суммами.

 $\it Замечание 1.3.2.$ Если $\it f$ – непрерывна на [a,b], то это две частные суммы из сумм Римана.

Замечание 1.3.3. f ограничена сверху $\Leftrightarrow S$ ограничена.

Свойства сумм Дарбу:

1.
$$S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f, \xi), s_{\tau} = \inf_{\xi} \sigma_{\tau}(f, \xi)$$

Доказательство. $M_k \geqslant f(\xi_k), k = 0, ..., n-1$. Тогда $M_k \Delta x_k \geqslant f(\xi_k) \Delta x_k \Leftrightarrow \sum_{k=0}^{n-1} M_k \Delta x_k \geqslant \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \Rightarrow S_{\tau}(f) \geqslant \sigma_{\tau}$, т.е. S_{τ} – верхняя граница. Докажем, что она является точной верхней границей.

Если f ограничена на [a,b]. Фиксируем $\varepsilon > 0$. На каждом кусочке разбиения $\exists \xi_k^* \in [x_k, x_{k+1}] : f(\xi_k^*) > M_k - \frac{\varepsilon}{b-a}$. Тогда $\sigma^* = \sum_{k=0}^{n-1} f(\xi_k^*) \Delta x_k > S - \frac{\varepsilon}{b-a} \sum_{k=0}^{n-1} \Delta x_k = S - \varepsilon$.

Если f не ограничена на $[a,b] \Rightarrow$ не ограничена на каком-то кусочке $[x_l,x_{l+1}].$ Фиксируем A>0 и выберем ξ_k^* при $k\neq l$ произвольно, а для ξ_l^*

$$f(\xi_l^*) > \frac{1}{\Delta x_l} \left(A - \sum_{k \neq l} f(\xi_k^*) \Delta x_k \right)$$

Тогда

$$\sigma^* = \sum_{k=0}^{n-1} f(\xi_k^*) \Delta x_k > A \Rightarrow \sup_{\xi} \sigma = +\infty = S$$

2. При добавлении новых точек дробления верхняя сумма не увеличится, а нижняя не уменьшится.

Доказательство. Докажем для верхних сумм при добавлении одной точки. $\tau:\{x_k\}_{k=0}^{n-1}$. Добавим точку c в $[x_l,x_{l+1}]-T$ — новое дробление.

$$S_{\tau} = \sum_{k=0}^{l-1} M_k \Delta x_k + M_l \Delta x_l + \sum_{k=l+1}^{n-1} M_k \Delta x_k$$

$$S_T = \sum_{k=0}^{l-1} M_k \Delta x_k + (c - x_l) \cdot M' + (x_{l+1} - c)M'' + \sum_{k=l+1}^{n-1} M_k \Delta x_k$$

где $M' = \sup_{x \in [x_l, c]} f, M'' = \sup_{x \in [c, x_{l+1}]} f.$ $M_l \geqslant M', M_l \geqslant M'',$ т.к. $[x_l, c] \subset [x_l, x_{l+1}], [c, x_{l+1}] \subset [x_l, x_{l+1}].$

Рассмотрим $S_{\tau} - S_T = M_l \Delta x_l - (c - x_l) M' - (x_{l+1} - c) M'' \geqslant M_l (x_{l+1} - x_l - c + x_l - x_{l+1} + c) = 0.$ Добавить больше точек можно по индукции.

3. Каждая нижняя сумма Дарбу не превосходит каждой верхней.

Доказательство. τ_1, τ_2 – разные дробления [a,b]. Докажем, что $s_{\tau_1} \leqslant S_{\tau_2}$. Возьмем $\tau = \tau_1 \cup \tau_2$. Тогда $s_{\tau_1} \leqslant s_{\tau} \leqslant S_{\tau} \leqslant S_{\tau_2}$ (по свойству 2).

Утверждение 1.3.4. $f \in R[a,b] \Rightarrow f$ ограничена на [a,b].

Доказательство. Пусть f не ограничена на [a,b] сверху. Тогда $\forall \tau \Rightarrow \sup_{\xi} \sigma_{\tau}(f,\xi) = +\infty$. Тогда $\forall \tau$ и числа $I \exists$ оснащение $\xi' : \sigma_{\tau}(\xi') > I + 1 \Rightarrow$ никакое число I не является пределом интегральных сумм.

Def 1.3.5. $f : [a, b] \to \mathbb{R}$. Возъмем

$$I^* = \inf_{\tau} S_{\tau} \qquad I_* = \sup_{\tau} s_{\tau}$$

где I^* – верхний интеграл Дарбу, I_* – нижний интеграл Дарбу.

Замечание 1.3.6. $I^* \geqslant I_*$.

Замечание 1.3.7. f ограничена сверху $\Leftrightarrow I^*$ ограничена.

Теорема 1.3.8 (Критерий интегрируемости функции). Пусть $f:[a,b] \to \mathbb{R}$. Тогда $f \in R[a,b] \Leftrightarrow S_{\tau}(f) - s_{\tau}(f) \xrightarrow[\lambda \to 0]{} 0$, т.е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon$$

Доказательство. \Rightarrow . Пусть $f \in R[a,b]$. Обозначим $I = \int_a^b f$. Возьмем $\varepsilon > 0$, подберем $\delta > 0$:

$$I - \frac{\varepsilon}{3} < \sigma_{\tau}(f, \xi) < I + \frac{\varepsilon}{3}$$

Переходя к супремуму и инфимуму, получим

$$I - \frac{\varepsilon}{3} \leqslant s_{\tau} \leqslant S_{\tau} \leqslant I + \frac{\varepsilon}{3}$$

откуда $S_{\tau} - s_{\tau} \leqslant I + \frac{\varepsilon}{3} - I + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} < \varepsilon$.

 \Leftarrow . Пусть $S_{\tau} - s_{\tau} \xrightarrow{\lambda \to 0} 0 \Rightarrow$ все суммы Дарбу конечны.

$$s_{\tau} \leqslant I_{\star} \leqslant I^{\star} \leqslant S_{\tau} \Rightarrow 0 \leqslant I^{\star} - I_{\star} \leqslant S_{\tau} - s_{\tau}$$

 $\Rightarrow I^* = I_*$ (т.к. это числа). Обозначим $I = I^* = I_*$.

$$s_{\tau} \leqslant I \leqslant S_{\tau}, s_{\tau} \leqslant \sigma_{\tau} \leqslant S_{\tau} \Rightarrow |I - \sigma_{\tau}| \leqslant S_{\tau} - s_{\tau}$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta \ |I - \sigma_{\tau}| < \varepsilon.$$

Замечание 1.3.9. Если $f \in R[a,b] \Rightarrow s_{\tau} \leqslant \int_a^b f \leqslant S_{\tau}$.

Cnedemeue 1.3.10. $f \in R[a,b] \Rightarrow \lim_{\lambda \to 0} S_{\tau} = \lim_{\lambda \to 0} s_{\tau} = \int_a^b f$

Доказательство.
$$0 \le S_{\tau} - \int_a^b f \le S_{\tau} - s_{\tau}, \ 0 \le \int_a^b f - s_{\tau} \le S_{\tau} - s_{\tau}.$$

Замечание 1.3.11. $\lim_{\lambda \to 0} S_{\tau} = I^*, \lim_{\lambda \to 0} s_{\tau} = I_*.$

Утверждение 1.3.12 (Критерий Дарбу интегрируемости функции по Риману). $f \in R[a,b] \Leftrightarrow f$ ограничена на [a,b] и $I_* = I^*$.

Утверждение 1.3.13 (Критерий Римана интегрируемости). $f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0 \; \exists \tau \; S_{\tau}(f) - s_{\tau}(f) < \varepsilon$.

Def 1.3.14. $f: D \to \mathbb{R}$. Величина

$$\omega(f)_D = \sup_{x,y \in D} (f(x) - f(y))$$

называется колебанием f на D. Из определений граней функции ясно, что

$$\omega(f)_D = \sup_{x \in D} f(x) - \inf_{y \in D} f(y)$$

Если задано τ отрезка [a,b], то

$$\omega_k(f) = M_k - m_k$$

Тогда теорему можно записать:

$$f \in R[a,b] \Leftrightarrow \lim_{\lambda \to 0} \sum_{k=0}^{n-1} \omega_k(f) \Delta x_k = 0$$

Теорема 1.3.15 (Интегрируемость непрерывной функции). $f:[a,b] \to \mathbb{R}, f \in C[a,b] \Rightarrow f \in \overline{R[a,b]}$.

Доказательство. По теореме Кантора $f \in C[a,b] \Rightarrow f$ равномерна непрерывна на [a,b].

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall t', t'' \in [a, b] : |t' - t''| < \delta |f(t') - f(t'')| < \frac{\varepsilon}{b - a}$$

По теореме Вейерштрасса f достигает наибольшего и наименьшего значения на любом отрезке, содержащемся в [a,b]. Поэтому колебание f на всяком отрезке, длина которого меньше δ , будет меньше $\frac{\varepsilon}{b-a}$. Значит, $\forall \tau: \lambda_{\tau} < \delta$

$$\sum_{k=0}^{n-1} \omega_k(f) \Delta x_k < \sum_{k=0}^{n-1} \frac{\varepsilon}{b-a} \Delta x_k$$

Теорема 1.3.16 (Интегрируемость монотонной функции). f монотонна на $[a,b] \Rightarrow f \in R[a,b]$.

Доказательство. Пусть f монотонно возрастает на [a,b]. Если $f(a)=f(b)\Rightarrow f$ постоянна $\Rightarrow f\in C[a,b]\Rightarrow f\in R[a,b]$.

Если f(a) < f(b). $\forall \varepsilon > 0$ возьмем $\delta = \frac{\varepsilon}{f(b) - f(a)}$. Возьмем произвольное $\tau : \lambda_{\tau} < \delta$ на $[x_k, x_{k+1}]$. В силу монотонности f верно $\omega_k(f) = f(x_{k+1}) - f(x_k)$.

$$\sum_{k=0}^{n-1} \omega_k(f) \Delta_k = \sum_{k=0}^{n-1} (f(x_{k+1}) - f(x_k)) \Delta x_k < \sum_{k=0}^{n} (f(x_{k+1}) - f(x_k)) \cdot \frac{\varepsilon}{f(b) - f(a)} = \varepsilon$$

Замечание 1.3.17. $f \in R[a,b]$. Если изменить значение f в конечном числе точек, то интегрируемость не нарушится и интеграл не изменится.

Доказательство. \widetilde{f} — отличается от f в точках $t_1, t_2, ..., t_m$. |f| ограничена на $[a, b] \Rightarrow |\widetilde{f}|$ ограничена. $|f| \leqslant A$, возьмем $\widetilde{A} = \max\{A, |\widetilde{f}(t_1)|, |\widetilde{f}(t_2)|, ..., |\widetilde{f}(t_m)|\}$. В интегральных суммах для f и \widetilde{f} отличаются не более 2m слагаемых, поэтому

$$|\sigma_{\tau}(f,\xi) - \sigma_{\tau}(\widetilde{f},\xi)| \leq 2m(A+\widetilde{A})\lambda_{\tau} \xrightarrow{\lambda_{\tau}} 0$$

Поэтому предел $\sigma_{\tau}(\widetilde{f},\xi)$ существует и равен пределу $\sigma_{\tau}(f,\xi)$.

Теорема 1.3.18 (Интегрируемость функции и её сужения). 1. $f \in R[a,b], [\alpha,\beta] \subset [a,b] \Rightarrow f \in \overline{R[\alpha,\beta]}$

2. Если $a < c < b, f : [a, b] \to \mathbb{R}$ и $f \in R[a, c], f \in R[c, b]$, то $f \in R[a, b]$.

Доказательство. 1. Возьмем $\varepsilon > 0$, подберем $\delta > 0$ из критерия интегрируемости на [a,b]. τ_0 – дробление $[\alpha,\beta], \lambda_{\tau_0} < \delta$. Добавим точек до дробления [a,b]. Получим $\tau(\lambda_{\tau} < \delta)$.

$$S_{\tau_0} - S_{\tau_0} = \sum_{k=1}^{m-1} \omega_k(f) \Delta x_k \leqslant \sum_{k=0}^{m-1} \omega_k(f) \Delta x_k < \varepsilon$$

2. Пусть f не постоянна, т.е. $\omega(f)_{[a,b]} > 0$. Возьмем $\varepsilon > 0$, подберем $\delta_1, \delta_2 : \forall \tau_1 : \lambda_{\tau_1} < \delta_1, \forall tau_2 : \lambda_{\tau_2} < \delta_2$

$$S_{\tau_1} - S_{\tau_1} < \frac{\varepsilon}{3}, S_{\tau_2} - S_{\tau_2} < \frac{\varepsilon}{3}$$

 $\delta = \min\{\delta_1, \delta_2, \frac{\varepsilon}{3\omega}\}$. Пусть τ — дробление $[a,b], \lambda_\tau < \delta$. Точка $c \in [x_l, x_{l+1})$. Обозначим $\tau' = \tau \cup \{c\}, \tau_1 = \tau' \cap [a,c], \tau_2 = \tau' \cap [c,b]$

$$S_{\tau} - s_{\tau} \leq S_{\tau_1} - s_{\tau_1} + S_{\tau_2} - s_{\tau_1} + \omega_l(f)\delta < \varepsilon$$