

IVÁN PINAR DOMÍNGUEZ ®

¿Qué es Elastic Stack (ELK)?

Búsqueda, análisis eficiente y almacenamiento flexible de ingente volumen de datos

Pipeline de procesamiento de datos capaz de ingestar datos de cualquier naturaleza, transformarlos y enviarlos a la salida que necesitemos

Plataforma de visualización y análisis con capacidad de construir potentes dashboards invocando al motor Elasticsearch

Objetivos del Curso

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

- Aprender los fundamentos y la arquitectura de Elastic Stack (ELK) para entender por qué es tan flexible, escalable y eficiente.
- O2 Crear un potente motor de búsqueda con Elasticsearch.
- **03** Escribir consultas Elasticsearch simples y complejas.
- **04** Ejecutar pipelines de ingesta, transformación y carga de datos con Logstash.
- Crear potentes visualizaciones en Kibana (línea, circular, histograma, heatmap, mapa geográfico,...).
- O6 Crear dashboards interactivos en Kibana y enlazar múltiples dashboards.
- Gestionar acceso y seguridad para compartir dashboards con otros usuarios configurando roles y permisos.

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

102 ELASTICSEARCH - MANEJO DE DOCUMENTOS

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

01

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

01 INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

elasticsearch - Búsquedas term-level, full-text y Booleanas

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

01 INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

04 ELASTICSEARCH - BÚSQUEDAS TERM-LEVEL, FULL-TEXT Y BOOLEANAS

05 ELASTICSEARCH - CONSULTAS PARA RELACIONES ENTRE DOCUMENTOS

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

01 INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

04 ELASTICSEARCH - BÚSQUEDAS TERM-LEVEL, FULL-TEXT Y BOOLEANAS

05 ELASTICSEARCH - CONSULTAS PARA RELACIONES ENTRE DOCUMENTOS

06 ELASTICSEARCH - AGREGACIONES

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

01 INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

04 ELASTICSEARCH - BÚSQUEDAS TERM-LEVEL, FULL-TEXT Y BOOLEANAS

05 ELASTICSEARCH - CONSULTAS PARA RELACIONES ENTRE DOCUMENTOS

06 ELASTICSEARCH - AGREGACIONES

07

LOGSTASH - INGESTA, TRANSFORMACIÓN Y SALIDA

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

01 INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

04 ELASTICSEARCH - BÚSQUEDAS TERM-LEVEL, FULL-TEXT Y BOOLEANAS

05 ELASTICSEARCH - CONSULTAS PARA RELACIONES ENTRE DOCUMENTOS

06 ELASTICSEARCH - AGREGACIONES

08

07 LOGSTASH - INGESTA, TRANSFORMACIÓN Y SALIDA

KIBANA - INTERFAZ, INGESTA Y VISUALIZACIONES

Máster Elasticsearch, Logstash y Kibana (Elastic Stack)

01 INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

02 ELASTICSEARCH - MANEJO DE DOCUMENTOS

03 ELASTICSEARCH - TÉCNICAS DE MAPPING Y ANÁLISIS

04 ELASTICSEARCH - BÚSQUEDAS TERM-LEVEL, FULL-TEXT Y BOOLEANAS

05 ELASTICSEARCH - CONSULTAS PARA RELACIONES ENTRE DOCUMENTOS

06 ELASTICSEARCH - AGREGACIONES

08

07 LOGSTASH - INGESTA, TRANSFORMACIÓN Y SALIDA

KIBANA - INTERFAZ, INGESTA Y VISUALIZACIONES

¿Por qué adquirir este curso?

Iván Pinar Domínguez

Ingeniero de Telecomunicación Director de Operaciones/ Data Scientist

Master en Project Management

BLOQUE 1:

INTRODUCCIÓN Y ARQUITECTURA DE ELASTIC STACK

- ✓ ¿Qué es Elastic Stack?
- ✓ ¿Cómo instalar e implementar Elastic Stack en local o cloud?
- ✓ ¿Cuál es la arquitectura básica de Elastic?
- ✓ ¿Qué es el sharding, escalabilidad, replicación y roles en Elastic?

- Elasticsearch es un motor de búsqueda analítico open-source full-text fácil de usar y altamente escalable.
- Es posible realizar búsquedas complejas de datos sobre toda la información **indexada** que tengamos incluyendo:
 - Auto-complección
 - Corrección de errores
 - Resaltar emparejamientos
 - Manejar sinónimos
 - Ajuste de relevancia
- Ejemplo:

 Elasticsearch también permite consultas sobre datos estructurados como números o agregaciones para ser usado como plataforma analítica.

- Elasticsearch es una herramienta potente a la hora de manejar **grandes volúmenes** de datos (uso de índices, shards,...).
- Ejemplo: Predicción de llamadas en un Call Center para dimensionar el equipo

- En Elasticsearch los datos son guardados como documentos (unidad de información, similar a una fila en una base de datos SQL).
- Un documento es un objeto JSON que contiene campos (similar a las columnas en una base de datos).

¿Cómo hacemos consultas en Elasticsearch?

elastic

ELASTIC STACK (ELK)

Conjunto de herramientas utilizadas en el ecosistema Elastic

- Colección de "data shippers" (recolectores de datos).
- Agentes que se instalan en un servidor y envían datos a Logstash o Elasticsearch.
- **Filebeat** es el más usado para **recolectar logs** de diferentes tipos de servidor (nginx, apache web server, BBDD MySQL,...)

 También existen otros como Metricbeat para recolectar métricas del sistema (ejemplo uso de CPU o RAM).

- Logstash es un pipeline de procesamiento de datos.
- Recibe datos que son manejados como eventos, estos datos pueden ser de cualquier tipo de fuente.
- Tiene 3 fases: Input Filter Output que forman el **pipeline**:

Existen plugins para cada una de las 3 fases.

elastic

Ejemplo

 Plataforma de visualización y análisis con capacidad de construir potentes dashboards:

- Configuración de aplicaciones Machine Learning:
 - Previsiones (forecasting)
 - Detección de anomalías
 - ...
- Puede manejar componentes de Logstash o Elasticsearch (como la autenticación)
- Invoca a Elasticsearch para obtener resultados a través de consultas en una interfaz gráfica.

Conjunto de **funcionalidades adicionales** a Elasticsearch y Kibana.

Seguridad:

- Proporciona autenticación y autorización para Elasticsearch y Kibana.
- Se puede integrar con proveedores de autenticación
- Puede configurar roles y permisos a usuarios

Monitoring & Alerting:

- Verifica cómo funcionan los componentes y su rendimiento
- Se puede configurar para enviar alertas (ejemplo: "Notifícame si el servidor web tiene un uso de CPU mayor que 90%)

Reporting:

- Exportado de datos y visualizaciones de Kibana
- Programación de reportes periódicos
- Pueden ser generados en función de un disparador (como una alerta)
- Machine Learning: Habilita el uso de ML en Elasticsearch y Kibana.
- **Graphs**: Analiza las relaciones en los datos basándose en la relevancia con Elasticsearch (ejemplo, mostrar al usuario productos relacionados o canciones recomendadas en una lista de reproducción).

Datos

Escenario típico de Elastic Stack

Implementar Elasticsearch y Kibana en Elastic Cloud elastic

1. Visitar la página: https://www.elastic.co/ y pulsar en "Try Free"

- 2. Insertar datos personales y configurar los parámetros para el nuevo despliegue.
- 3. Pulsar en el proveedor de infraestructura Cloud oportuno (ejemplo Azure), no es necesario crear ninguna cuenta previa en el proveedor de Cloud.
- 4. Seleccionar versión de Elastic (8.x)
- 5. Guardar credenciales de acceso a Elastic proporcionadas

Instalación de Elasticsearch y Kibana en local

- 1. Visitar la página: https://www.elastic.co/downloads/elasticsearch
- Seleccionar la plataforma de descarga (Windows / MAC / Linux)
- En consola de comandos ir a la ruta donde tenemos la descarga de elasticsearch (con comando cd en Windows) e insertar la sentencia "bin\elasticsearch.bat"
- 4. Copiar el password generado para el usuario "elastic" que aparece en la terminal.
- 5. Si se necesita resetear el password, se puede usar el comando: "bin\elasticsearch-reset-password.bat –u elastic.
- Copiar el token generado para el "enrollment" posterior de Kibana.
- 7. Realizamos los mismos pasos para instalar Kibana desde la URL https://www.elastic.co/downloads/kibana teniendo en cuenta que ahora el comando para la instalación es "bin\kibana.bat
- 8. Acceder a la URL local generada e insertar el token generado anteriormente para el enrollment.
- 9. Acceder con el usuario "elastic" que se generó.

NOTA: En Linux/MAC la diferencia es que en lugar de insertar "bin\elasticsearch.bat" y "bin\kibana.bat", solo es necesario insertar "bin\elasticsearch" y "bin\kibana" en la terminal.

¿Cuál es la arquitectura básica de Elastic?

- Nodo: Instancia de Elasticsearch que almacena datos.
 - Se pueden crear todos los nodos que queramos, cada nodo tiene un límite del orden de TB.
 - Cada nodo se puede instalar en una máquina física o máquina virtual (incluso compartiendo el mismo disco)
 - Nodo = instancia (nodo no es cada máquina), se pueden instalar hasta 5 nodos en la misma máquina (si se quieren más habría que usar máquinas virtuales o contenedores).
 - Lo normal es que cada nodo se ejecute en una máquina diferente (o máquina virtual / contenedor diferente)
- Cluster: Colección de nodos relacionados.
 - Los clusters son independientes de los demás.
 - Se suelen utilizar diferentes clusters para separaciones lógicas (cluster para un ecommerce, cluster para el ERP,...)
 - Cuando se crea un primer nodo, el cluster se crea automáticamente, posteriores nodos pueden crear nuevos clusters o adherirse a uno existente.

¿Cuál es la arquitectura básica de Elastic?

¿Cómo se almacena la información en Elasticsearch?

¿Cómo se organizan los documentos?

- Índice: Agrupan documentos de manera lógica:
 - Cada documento se almacena dentro de un index
 - Proporcionan opciones de configuración particulares para cada índice.
 - Son una colección de documentos con características similares.
 - Pueden contener todos los documentos que queramos.
 - En las consultas Elastic que se hagan hay que especificar el index al que corresponde.

Inspección del cluster y envío de consultas mediante consola

- La comunicación con Elastic la realizaremos a través de la API con mensajes HTTP (GET, PUT,...)
- Para comunicarnos con la API de Elasticsearch y realizar consultas (queries) podemos usar:
 - Consola de Kibana (la más sencilla y recomendada)
 - cURL
 - Postman

Para obtener información, usaremos el comando HTTP GET, ejemplo:

```
• GET /_cluster/health

API Comando
```

- Consulta de nodos: GET /_cat/nodes?v
- Consulta de índices: GET /_cat/indices?v

Sharding y escalabilidad en Elastic Stack

- **Sharding**: Técnica para dividir índices en piezas más pequeñas:
 - Cada pieza se denomina "shard"
 - Sharding se realiza a nivel de índex (no a nivel de cluster o nodo).
 Por defecto un índex solo contiene 1 shard.
 - **Objetivo**: Escalar horizontalmente el volumen de datos para poder alojar índices de gran tamaño.
 - Un shard solo puede alojarse en un nodo (es la división mínima)
 - Cada shard es un índex casi independiente (realmente es un Apache Lucene index)
 - Un índex de Elasticsearch por tanto consiste en 1 o más índices de Apache Lucene.
 - Los shards no tienen un tamaño predefinido y aumentarán conforme se añadan documentos.
 - Cada shard puede almacenar hasta 2 billones de documentos.
 - Objetivo adicional: Mejorar el rendimiento
 - Paralelización de consultas para incrementar el rendimiento del index (la consulta se puede realizar en múltiples shards al mismo tiempo y por tanto utilizar la capacidad de varios nodos en paralelo)
 - Incrementar el número de shards: Split API
 - Reducir el número de shards: Shrink API

Shard #1 Shard #2 (Tamaño 250 GB)

Index (Tamaño 500 GB)

¿Qué ocurre si en un nodo falla el disco duro?

¡Perdemos los datos asociados!

SOLUCIÓN: Elasticsearch soporta Replicación (habilitada por defecto)

- A diferencia de las BBDD donde la replicación es muy compleja, en Elasticsearch es muy sencilla (se realiza automáticamente).
- La replicación se realiza a nivel de **índex**.
- La replicación crea copias de los shards ("replicas").
- Un shard que ha sido replicado se le denomina "primary shard".
- Un "primary shard" y sus réplicas forman el "replication group".
- Una réplica puede servir consultas exactamente como el "primary shard".
- Al crear un índex, podemos definir cuántas réplicas queremos (1 por defecto).

¿Cómo se reparten las réplicas?

Las réplicas deben estar almacenadas en un nodo diferente del primary shard

Primary Shard A Primary Shard B Réplica B1 Réplica A1 Réplica B2 Réplica A2

Nodo A Nodo B Nodo C

 Elasticsearch reconoce automáticamente cuando se añaden más nodos al cluster para distribuir las réplicas de manera autónoma.

¿Cuál es el número de replicas recomendado?

- Depende de la criticidad del caso de uso:
 - ¿Tenemos un respaldo de los datos en una RDBMS?
 - ¿Podemos permitir periodos de indisponibilidad durante la restauración?
- Para escenarios críticos se recomienda replicar al menos 2 veces.
- Es posible utilizar **snapshots** de Elasticsearch para realizar backup a un momento específico en el tiempo (a nivel de índex o el cluster al completo, típico realizar backups diarios), la replicación proporciona alta disponibilidad de los datos generados en tiempo real.

¿Pueden las réplicas aumentar el rendimiento?

 Las réplicas también pueden servir solicitudes igual que las primary shards y Elasticsearch direcciona las solicitudes a la "mejor shard" mejorando la paralelización de CPU:

Añadir la Réplica B2 no mejora la disponibilidad pero sí el rendimiento (por ejemplo ejecutar 3 solicitudes a la vez sobre el mismo índice)

*Importante: Cada nodo normalmente tiene varias CPUs

¿Cómo creamos un índex?

PUT /Nombre_index

¿Cómo visualizamos los shards?

GET /_cat/shards?v

¿Qué son los roles de los nodos de Elastic?

Rol Master node

- Responsable de crear/eliminar índices (entre otras).
- El rol master node no habilita a que automáticamente un nodo sea maestro.
- Puede ser útil en el caso de tener un nodo maestro dedicado (clusters de gran tamaño que requieren un nodo dedicado a ello para mantener la estabilidad).
- Configuración:
 - node.master: true | false

Rol Data node

- Habilita al nodo a almacenar datos y realizarle solicitudes.
- Para clusters pequeños o medianos, siempre está activo este rol.
- Si hay un nodo master dedicado se le puede quitar este rol.
- Configuración:
 - node.data: true | false

Rol Ingest node

- Habilita a ejecutar pipelines de ingestión de datos (pasos de transformación antes de indexar documentos).
- Sería una versión simplificada de Logstash directamente dentro de Elasticsearch para transformaciones simples (si hay mayor complejidad es mejor usar Logstash).
- Este rol se usa cuando hay nodos dedicados a la ingesta.
- Configuración:
 - node.ingest: true | false

¿Qué son los roles de los nodos de Elastic?

Rol Machine Learning node

- Permite al nodo ejecutar trabajos de Machine Learning.
- Podemos habilitar que el nodo pueda operar como API Machine Learning.
- Típico utilizarlo para activar nodos dedicados a ML.
- Configuración:
 - node.ml: true | false
 - xpack.ml.enable: true | false

Rol Coordination node

- Rol para distribución de consultas internamente en el cluster y agregación de resultados.
- Útil para nodos de solo coordinación (clusters de gran tamaño).
- Sería como un repartidor de carga del cluster.
- Configuración:
 - Deshabilitar todos los demás roles

Rol Voting node

- Usado para habilitar al nodo a votar quién es el nodo master en el cluster.
- Muy poco usado
- Configuración:
 - node.voting_only: true | false

Por regla general, no se modifican los roles de los nodos a menos que haya una razón de peso (como por ejemplo si el cluster es de un tamaño considerable)

BLOQUE 2:

ELASTICSEARCH –
MANEJO DE DOCUMENTOS

Lo que aprenderemos en este bloque....

- √ ¿Cómo crear un index y sus documentos?
- ✓ ¿Cómo actualizar y eliminar documentos en Elasticsearch?
- ✓ ¿Cómo se controla la concurrencia de solicitudes en Elasticsearch?
- √ ¿Cómo podemos realizar operaciones masivas?

Creación de un índex, indexar documentos y consultarlos mediante el ID

Actualización de documentos manual y mediante scripts en Elastic

¿Cómo actualizar documentos mediante scripts?

*Los documentos son inmutables (no modificables), realmente lo que hace Elasticsearch es un reemplazo del documento

¿Cómo Elasticsearch lee y escribe datos?

Proceso de "Routing" (¿Dónde se encuentra mi documento?)

¿Cómo Elasticsearch lee y escribe datos?

Proceso de Lectura (¿Cómo extraigo los datos?)

¿Cómo Elasticsearch lee y escribe datos?

Proceso de Escritura (¿Cómo escribo los datos?)

¿Cómo controlamos la concurrencia de solicitudes en Elasticsearch?

PROBLEMA DE OPERACIONES CONCURRENTES

SOLUCIÓN (uso de primary_term / seq_no)

Actualizar y eliminar masivamente a partir de consulta (Quer

¿Qué ocurre si quiero actualizar varios documentos?

Usar "update_by_query"

Dentro de "Query" se establece la lógica de los documentos que serán actualizados (similar a UPDATE WHERE de SQL)

```
#ACTUALIZAR MASIVAMENTE DOCUMENTOS
POST /productos/ update by query
  'scrint": {
    "source": "ctx. source.stock-
  'query": {
    "match all": {}
```

Indicamos en "source" la modificación a realizar (ejemplo restar 1 al atributo "stock" de todos los documentos

¿Cómo puedo consultar masivamente los documentos de un index?

Usar "_search" y la "Query" que especifica las condiciones de búsqueda

```
GET /productos/ search
  "query":{
    "match all": {}
```

¿Cómo puedo eliminar masivamente los documentos de un index?

'query": {

Dentro de "Query" se establece la lógica de los documentos que serán eliminados

#FLITMINAR MASTVAMENTE DOCUMENTOS POST /productos/ delete by query "match all": {}

Usar "delete_by_query"

Procesamiento masivo mediante bulk

¿Qué ocurre si queremos importar gran cantidad de datos o bien actualizarlos masivamente?

Usar Bulk API (mayor eficiencia)

Acción = "index" para crear un nuevo documento o reemplazar existente

Acción = "create" para crear un nuevo documento si no existe previamente

```
POST /_bulk
{ "index": { "_index": "productos", "_id": 200 } }
{ "name": "Cafetera", "precio": 199, "stock": 5 }
{ "create": { "_index": "productos", "_id": 201 }
{ "name": "Aspirador", "precio": 149, "stock": 14 }
```

```
Acción = "update" para actualizar documento
```

Acción = "delete" para eliminar documento

Si solo modificamos un index entonces se puede insertar en la request de HTTP

```
POST /productos/ bulk
{ "update": { "_id": 201 } }
{ "doc": { "precio": 129 } }
{ "delete": { "_id": 200 } }
```

*Este formato es NDJSON, la consola nos realiza el trabajo pero si no comunicamos a través de una aplicación, entonces hay que especificar application/x-ndjson

Importación de datos con cURL

1. Preparar documento ndjson

2. Ejecutar cURL

3. Lanzar comando

("name":"Fork - Lein Some - In", "price": 100, "in stock": 10, "asid": 100, "taga": ["Meacription": "Elimane": "Indexes and pumpkin risotto", "price": 10, "in stock": 17, "sold": 10, "taga": [], "description": "Creation of the season of pumpkin risotto", "price": 10, "in stock": 17, "sold": 10, "taga": [], "description": "Creation of the season of th

Obligatorio que haya un salto de línea (\n) al final del documento

Comprobar que cURL está disponible:

```
C:\Users\ivan_pinar>curl --version
```

 Si versión de Windows antigua entonces descargar cURL: https://curl.se/download.html

curl -k -H "Content-Type: application/x-ndjson" -H "Authorization: ApiKey cadena_api"-X POST https://nombre_url:9243/nombre_index/_bulk --data-binary "@nombre_fichero.json"

BLOQUE 3:

ELASTICSEARCH – TÉCNICAS DE MAPPING Y ANÁLISIS

- ✓ ¿Qué tipos de datos tenemos en Elasticsearch?
- √ ¿Cómo podemos hacer un mapeo a los campos?
- √ ¿Cómo reindexar un índice?
- √ ¿Cómo podemos crear analizadores?

Introducción al análisis y al uso de la API Analyze

Los datos están en el campo _source del documento

¿Realiza Elasticsearch las búsqueda de campos de texto en base al campo _source de todos los documentos?

NO, cuando se indexan documentos , los campos de texto son analizados por Elasticsearch

Introducción al análisis y al uso de la API Analyze

Filtros de caracteres

- Añade, elimina o modifica caracteres
- Los analizadores pueden tener varios filtros de caracteres
- Son aplicados en el orden especificado

Tokenizador

- División de una cadena en tokens
- Los analizadores contiene un tokenizador
- Los caracteres especiales pueden ser eliminados en el proceso.

Filtros de token

- Añade, elimina o modifica tokens
- Los analizadores pueden tener varios filtros de tokens
- Son aplicados en el orden especificado

Ejemplo: filtro html_strip

Entrada: "Quiero modificar caracteres" Salida: "Quiero modificar caracteres"

Analizar estándar "Ninguno"

Ejemplo:

Entrada: "¡Me ENCANTAN los coches!"
Salida: ["Me", "ENCANTAN", "los", "coches"]

Ejemplo: filtro lowercase

Entrada: ["Me", "ENCANTAN", "los", "coches"]
Salida: ["me", "encantan", "los", "coches"]

"standard"

"lowercase"

¿Qué son los índices invertidos para mejorar la eficiencia de Elasticsearch?

Para conseguir máxima eficiencia, Elasticsearch utiliza el concepto de "índices invertidos"

Entrada 2: "Nos reuniremos tras aparcar los coches" → Salida 2: ["nos", "reuniremos", "tras", "aparcar", "los", "coches"]

Entrada 3: "Los coches nos ENCANTAN" Salida 3: ["los", "coches", "nos", "encantan]

TÉRMINO	DOCUMENTO#1	DOCUMENTO#2	DOUMENTO#3
me	X		
encantan	X		X
los	X	X	X
coches	X	X	X
nos		X	X
reuniremos		X	
tras		X	
aparcar		X	

Ordena
alfabéticamente
y se establece
puntuación de
relevancia*

*¡Se realiza por cada campo de texto de los documentos!

Tipos de datos en Elasticsearch

Object (=json)	Floa	t	Text	
Into	eger	Date		Keyword

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html

Tipos de datos en Elasticsearch

Tipo de dato: Keyword

- Se usa para la búsqueda exacta de valores
- Útil para filtrado, agregaciones y ordenaciones (ejemplo, buscar artículos por estado "PUBLICADO")
- Para búsquedas de texto completo, se usar el tipo "texto" en lugar de "keyword" (ejemplo, buscar un texto dentro del contenido de un artículo)
- Los campos "keyword" son analizados con el analizador keyword (se genera un token que contiene todo el campo sin modificar nada)

Documento 1

```
"nombre": "Iván",
"email": "usuarioelastic@aac.com"
```

Documento 2

```
{
    "nombre": "Eduardo",
    "email": "aprendiendoelk@aac.com"
}
```

Documento 3

```
{
    "nombre": "Marta",
    "email": "elastic@aac.com"
}
```

Tipo keyword

TÉRMINO	DOCUMENTO#1	DOCUMENTO#2	DOUMENTO#3
usuarioelastic@aac.com	X		
aprendiendoelk@aac.com		X	
elastic@aac.com			X

Tipos de datos en Elasticsearch

¿Cómo detecta Elasticsearch el tipo de datos?

- Los tipos de datos se inspeccionan cuando se indexan documentos.
- Es importante usar el tipo de datos correcto para el campo, sobre todo cuando se indexa por primera vez el campo.

• Se usa la técnica "coerción" por defecto a menos que se desactive para los siguientes valores de

ese campo.

Inspección "precio" → float

Mapping: "precio":{"type":"float"}

Coercion

Se inspecciona el campo para mapearlo al tipo de datos si es posible

¿Cómo definir mapeos explícitos y añadir nuevos mapeos?

• Parámetros: Se usan para modificar el comportamiento y características de un campo.

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-params.html

Parámetro "format"

- Permiten personalizar el formato de un campo "date" (fechas).
- El formato por defecto de las fechas (y recomendado) sigue la ISO8601: "2024-05-21T13:07:41+01:00"
- Se pueden utilizar múltiples formatos como por ejemplo sintaxis de Java como "dd/MM/yyyy"
- Los formatos posibles están en https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-format.html

Parámetro "coerce"

• Usado para habilitar o deshabilitar la coerción de valores (habilitado por defecto)

Parámetro "copy_to"

- Usado para copiar múltiples campos en un campo "agregado" (campo objetivo).
- Se copian los valores, pero no los términos y tokens.
- El campo objetivo no es parte del objeto _source.

```
PUT /Nombre index
 "mappings": {
    "properties":
       'nombre":
         "type":"text",
        "copy_to": "nombre_completo"
       "apellidos":{
         "type":"text",
         "copy_to": "nombre_completo"
       "nombre_completo":{
         "type":"text",
```

elastic

¿Qué podemos hacer si queremos liberar espacio en disco?

Parámetro "doc_values"

- Cambia el tipo de estructura de datos por defecto afectando al índice inverso.
- Solo deshabilitar si no queremos hacer agregaciones, ordenaciones o scripting sobre el campo ("doc_values": False)
- No se puede modificar sin reindexar documentos en un nuevo index.

Parámetro "norms"

- Parámetros utilizado para valorar la relevancia (normalmente no solo queremos filtrar resultados, sino conseguir un ranking)
- Solo deshabilitar si no el campo para ordenar por relevancia, por ejemplo, un campo de etiquetas ("norms": False)

Reindexación de documentos con la API Reindex

Reindexar: Mover documentos a un nuevo índex por necesidades de cambio de mapping.

Reindexación de documentos con la API Reindex

¿Podemos reindexar con modificaciones?

```
#REINDEXAR MODIFICANDO producto_id A STRING

POST /_reindex
{
    "source": {
        "index": "valoraciones"
    },
    "dest": {
        "index": "valoraciones_nuevo"
    },
    "script": {
        "source": """
        if (ctx._source.product_id != null) {
            ctx._source.product_id = ctx._source.product_id.toString();
        }
    """
}
```

Si el documento cumple una condición

Modificando el tipo de dato

```
POST /_reindex
{
    "source": {
        "index": "valoraciones",
        "_source": ["puntuacion", "autor"]
}

dest": {
        "index": "valoraciones_nuevo"
}
}
```

Modificando el nombre del campo

```
POST /_reindex
{
    "source": {
        "index": "valoraciones"
    },
    "dest": {
        "index": "valoraciones_nuevo"
    },
    "script": {
        "source": """
        | ctx._source.descripcion = ctx._source.remove("contenido");
    """
    }
}
```


Aplicación de plantillas de mapeo a índices

¿Podemos reutilizar un mapeo para ser aplicable en múltiples indices?

Índices mensuales (Alto volumen de datos)

- Un índex puede cumplir criterios de varias plantillas.
- Se define el parámetro "order" en la definición de la plantilla para indicar la prioridad (cuanto más bajo el valor más prioritaria la plantilla).

Recomendaciones prácticas de mapeo

- Usar mapeo dinámico por defecto es conveniente, pero cuando se pasa a producción o hay alto volumen de datos se puede liberar espacio con mapeos explícitos:
 - Si necesitas búsquedas de texto completa → text mapping
 - Si necesitas realizar agregaciones, ordenaciones o filtrados por valores exactos → keyword mapping
 - Para valores enteros normalmente es suficiente con integer (en lugar de long que ocupa más espacio)
 - Para valores decimales normalmente es suficiente con float (en lugar de double)
- Setear dentro de "mappings" la propiedad "dynamic" a "strict" para solo indexar documentos cuyos campos cumplan todas las condiciones de tipo de mapeo.
- Deshabilitar "doc_values" si no queremos hacer agregaciones, ordenaciones o scripting.
- Deshabilitar "norms" si no queremos el campo para ordenar por relevancia.

Solo merece la pena cambiar el comportamiento por defecto si indexamos gran cantidad de documentos

Técnicas stemming y palabras de parada

Técnicas stemming y palabras de parada

- Steeming: Reducir las palabras a su forma raíz (se realiza por defecto en Elasticsearch).
 - Ejemplo: "gustaba" → "gustar"

"Me gustaba saltar mientras estaba corriendo por las aceras"

"Me gustar saltar mientras estar correr por la acera"

- **Palabras de parada**: Palabras que son filtradas durante el análisis de texto ya que tienen poca relevancia ("a", "el", "de", "un",...)
 - Muy común eliminarlas (por ejemplo en buscador Google).
 - En **Elasticsearch** el tratamiento se realiza automáticamente, aunque es menos común puesto que los algoritmos de relevancia han mejorado drásticamente.

Analizadores predefinidos (built-in)

"¿Es el perro de Pedro?"

Nombre analizador	Características	Resultado			
Standard	 Divide el texto por palabras y elimina símbolos de puntuación. Convierte a minúsculas 	["es", "el", "perro", "de", "pedro"]			
Keyword	Deja la entrada de texto intactaUtilizado para campos de tipo keyword	["¿Es el perro de Pedro?"]			
Whitespace	 Divide el texto en tokens a partir de los espacios en blanco No convierte a minúscula 	["¿Es", "el", "perro", "de", "Pedro?"]			
Pattern	 Se evalúa una expresión regular para separar en tokens (ejemplo: "//") Muy flexible, por defecto divide por los caracteres que no son palabras Convierte a minúsculas 	["es", "el", "perro", "de", "pedro"]			

Web referencia analizadores built-in:

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html

Analizadores personalizados

- Es posible actualizar los analizadores.
- Hay que intentar definir correctamente los analizadores **antes** de indexar documentos, si no es posible, habrá una **indisponibilidad** durante la actualización (o bien se puede reindexar los documentos si no se permiten tiempos de indisponibilidad.

BLOQUE 4:

ELASTICSEARCH –
BÚSQUEDAS TERM-LEVEL, FULL-TEXT Y
BOOLEANAS

- ✓ ¿Qué métodos de búsqueda existen en Elasticsearch?
- ✓ ¿Por qué Elasticsearch utiliza la puntuación de relevancia?
- ✓ ¿Para qué son las consultas "term-level"?
- ✓ ¿Para qué son las consultas "full-text"?
- √ ¿Cómo aplicar potentes consultas booleanas con MUST, MUST NOT, FILTER y SHOULD?

Métodos de búsqueda QueryDSL vs búsqueda URI

¿Cómo hacemos consultas en Elasticsearch?

¿Qué es la puntuación de relevancia en las búsquedas?

 A diferencia de una BBDD relacional, en Elasticsearch se evalúan los resultados que tienen una mayor relevancia respecto a la búsqueda realizada:

- Actualmente en Elasticsearch se utiliza el algoritmo Okapi BM25:
 - o Term Frequency: ¿Cuántas veces aparece el término de búsqueda en el documento?
 - o **Inverse Document Frequency**: ¿Cuántas veces aparece el término en el index (en todos los documentos)?
 - Field length norm: ¿Cómo de largo es el campo? Si aparece el término en campos más pequeños entonces tendrá más peso

Diferencia entre consultas "full-text" y "term level"

Consulta "Term level"

- Realiza la búsqueda por el término de manera exacta
- No se aplica analizador antes de buscar en el índice inverso.
- Utilizadas para consulta de fechas, identificadores, categorías,...

Consulta "Full-text"

- Realiza búsqueda en todo el campo sin que la coincidencia sea completa.
- Se aplica el analizador sobre la consulta antes de buscar en el índice inverso.
- Utilizadas para consultar dentro de campos de texto, descripciones, encabezados, artículos,...

Búsquedas "Term level" – 1 o múltiples términos o IDs

Búsquedas "Term level" – Rango de valores o de fechas

Consulta por rango de valores

Consulta por rango de fechas

Consulta por rango de fechas con formato personalizado

Especificamos el formato personalizado de la búsqueda

Búsquedas "Term level" – Trabajar con fechas relativas

Formato: Fecha anclaje + | | + redondeo /x + desplazamiento fechas

Ejemplo "3 días después del 03/04/2024":

"2024/04/03 | | +3d"

Ejemplo "3 días después del 03/04/2024 redondeado al mes":

"2024/04/03 | |/M+3d"

Ejemplo "Fecha mayor que el momento actual menos 1 mes":

"now-1M"

Web referencia fechas relativas

https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#date-math

У	Years
М	Months
w	Weeks
d	Days
h	Hours
Н	Hours
m	Minutes
s	Seconds

Búsquedas "Term level" – No nulos, prefijo, comodín y expresión regular

Búsqueda por no nulos:

Búsqueda con comodín:

Búsqueda por un prefijo:

Búsqueda con expresión regular:

Web referencia expresiones regulares

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexpquery.html#regexp-syntax

Búsquedas "Full-text" – Coincidencia flexible con "match"

Indicamos campo en el que buscar y la búsqueda de texto completo (por defecto devuelve resultados que contengan algunas de las palabras – modo OR)

Especificamos el operador "and" si deben aparecer todas las palabras en el campo

Búsquedas "Full-text" – Múltiples campos y frases completas

elastic

Búsquedas "booleanas" – Must, must not, should y filter

El tipo de consulta es "must" para indicar que es obligatorio que se cumplan las condiciones para devolver resultados

CONDICIÓN 1

CONDICIÓN 2

Búsqueda booleanas - MUST + FILTER

```
GET /productos2/ search
  "query": {
    "bool": {
      "must": [
          "match": {
            "name": "chocolate"
      "filter":
          "range": {
             "precio": {
               "lte": 150
```

El tipo de consulta es

"filter" si lo que
necesitamos es solo
filtrar datos por una
condición si/no
(búsqueda de filtro) en
lugar de que se dé una
puntuación de valoración
(búsqueda de contexto)

Búsquedas "booleanas" – Must, must not, should y filter

Búsqueda booleanas - MUST NOT

```
GET /productos2/_search
  "query": {
    "bool": {
      "must": [
          "match": {
            "name": "chocolate"
      "must_not":
          "match": {
            "name": "milk"
      "filter": [
          "range": {
             "precio": {
              "lte": 150
```

NO se debe cumplir

Búsqueda booleanas - SHOULD

```
GET /productos2/_search
  "query": {
    "bool": {
      "must": [
          "match": {
            "name": "chocolate"
      "must not": [
          "match": {
            "name": "milk"
       'should": [
          "range": {
             "vendido": {
              "gte":200
```

Los resultados que cumplan la condición de "should" serán priorizados con mayor peso

*Si no existe "must" o "must_not", es obligatorio que al menos una condición "should" se cumpla

Mejorar búsquedas con tratamiento de errores mediante "fuzziness"

¿Cómo podemos solventar un error tipográfico en la búsqueda del usuario?

Búsquedas "fuzziness"

"choc0late"

Búsqueda fuzziness – Reemplazo automático

Añadimos en parámetros fuzziness a "auto" para solucionar errores.

El número de errores que solventa "auto" depende de la longitud de la palabra:

1-2 caracteres → 0 reemplazo

3-5 caracteres → 1 reemplazo

>5 caracteres → 2 reemplazos

Búsqueda fuzziness - Reemplazo específico

Fuzziness también corrige trasposiciones de caracteres y podemos indicar el número de cambios en lugar de dejarlo a "auto"

Búsquedas aplicando steeming y sinónimos

• La derivación regresiva (**stemming**) se utilizar para encontrar la palabra raíz eliminando afijos (prefijos o sufijos).

- Optimiza los resultados de búsqueda sin necesidad de coincidencia exacta.
- Se pueden declarar sinónimos a buscar que permiten obtener resultados relevantes.

BLOQUE 5:

ELASTICSEARCH –
CONSULTAS PARA RELACIONES ENTRE
DOCUMENTOS

- ✓ ¿En qué se diferencia una BBDD relacional y Elasticsearch?
- ✓ ¿Cómo mapear las relaciones entre documentos?
- ✓ ¿Cómo buscar documentos en base a las relaciones?
- √ ¿Cómo crear relaciones multinivel y buscar en base a este modelo?
- √ ¿Cómo controlamos los resultados de búsqueda?

¿En qué se diferencia una BBDD relacional y Elasticsearch?

BBDD Relacional Elasticsearch

Producto ID_Cliente ID_Empleado Fecha Estado					TABLA DE EMPLEADOS				
_Producto	ID_Cliente	ID_cilibleado	compra	Pedido	ID_Empleado	Nombre	Puesto	Fecha	País
1	C2	E1	05/06/2021	Enviado		1000	TAX SECURITY STATES	incorporación	Jan 19
2	C3	EĮ	05/06/2021	Entregado	E1	JSD	Comercial Nivel 1	05/04/2018	Perú
5	C3	E3	07/06/2021	Entregado	E2	PED	Comercial Nivel 2	06/05/2020	México
	TABLA DI	PRODUCT	os		E3	TEZ	Gerente comercial	01/02/2015	México
	Tipo	Color	Precio						
ID_Producto	Producto								
1D_Producto		Blanco	40		TABLA	DE CLII	ENTES		
	Producto	Blanco Amarillo	40 28	ID_Clie	1.0000000	(1201)	irección	País	
1	Producto Pantalón			ID_Clie	1.0000000	e D		País España	
1 2	Producto Pantalón Pantalón	Amarillo	28	111000000000000000000000000000000000000	nte Nombr	e D	irección		

```
"Fecha compra": "05/06/2021",
"Estado Pedido": "Enviado"
"Empleado":{
  "Nombre": "JSD",
  "Puesto": "Comercial Nivel 1",
  "Fecha incorp": "05/04/2018",
  "País": "Perú"
```

 Existen claves (IDs) en las tablas para poder relacionarlas entre ellas

- Desnormalización de los datos
- Similar a BBDD NO SQL
- Mejor rendimiento a base de mayor espacio en disco.
- Si problemas de espacio, no usar
 Elasticsearch como el Data Store principal.

¿En qué se diferencia una BBDD relacional y Elasticsearch?

Los empleados son guardados dentro de los documentos de cada departamento

La actualización sería muy costosa

SOLUCIÓN: RELACIONAR DOCUMENTOS

Departamento Tecnología

Empleado 1 Empleado 2

Mapear relaciones entre documentos y añadir documentos

Mapear relación entre documentos

Crear Departamentos (PARENT)

```
PUT /departamento/_doc(1)
{
    "nombre": "Tecnología",
    "campo_combinación": "departmentos"
}

PUT /departamento/_doc(2)
{
    "nombre": "Marketing",
    "campo_combinación": "departmentos"
}
```

Definimos a que lado de la relación pertenece el documento

Definimos el lado de la relación y el parent ID

Crear empleados (CHILDREN)

```
PUT /departamento/_doc/3?routing=1
{
    "name_empleado"; "Iván",
    "edad": 36,
    "género": "M",
    "campo_combinación": {
        "name": "empleados",
        "parent": 1
    }
}
```

```
PUT /departmento/_doc/5?routing 2
{
    "name_empleado": "Ana",
    "edad": 38,
    "género": "F",
    "campo_combinación": {
        "name": "empleados",
        "parent": 2
     }
}
```


Búsqueda de Children por Parent y viceversa

BUSCAR CHILD POR PARENT ID

Indicar lado de la relación a devolver y el ID del Parent

```
BUSCAR CHILD POR CONDICIÓN PARENT
                                                 Tipo consulta "has_parent"
GET /departamento/_search
                                              Lado de la relación por la que buscar
  "auery": {
    "has parent":
      "parent_type": "departamentos"
                                                Si queremos ver la puntuación de
      'score": true,
                                                valoración de cada resultado (por
      'query": {
                                               ejemplo en búsquedas de contexto
        "term": {
          "nombre.keyword": "Tecnología"
                                                      como match o bool)
                                                     Condición de búsqueda
```


Búsqueda de Children por Parent y viceversa

BUSCAR PARENT POR CONDICIÓN CHILD

Relaciones multinivel

- Definir relaciones de cada nivel individualmente
- Definir en un array si hay varias relaciones al mismo nivel

Relaciones multinivel

 Las combinaciones son útiles para algunos escenarios, pero la filosofía de Elasticsearch es tener los datos desnormalizados para conseguir mayor rendimiento a diferencia de BBDD relacional (ejemplo, en cada documento de empleado añadir el departamento y la empresa asociada).

Control de resultados de búsqueda

LIMITAR TAMAÑO RESULTADOS

Parámetro "size" para especificar tamaño de visualización

FILTRAR CAMPOS DE RETORNO

```
GET /productos3/_search
{
   "_source": ["name","stock"],
   "query": {
        "match_all": {
        }
    }
}
```

Campos a devolver

ORDENAR RESULTADOS

"sort" los campos por los que ordenar

BLOQUE 6:

ELASTICSEARCH – AGREGACIONES

- ✓ ¿Para qué nos sirven las agregaciones y por qué son tan potentes?
- √ ¿Cómo crear agregaciones de tipo métrica y de tipo bucket?
- √ ¿Cómo realizar agregaciones combinadas?
- √ ¿Cómo realizar agregaciones por rangos de valores y fechas?
- √ ¿Cómo crear histogramas?

¿Qué son las agregaciones de tipo métrica?

• Las **agregaciones de tipo métrica** nos permiten realizar cálculos globales con nuestros datos para extraer conclusiones relevantes.

Product A
Cantidad Total: 50
Cantidad Promedio: 25

Product B
Cantidad Total: 110
Cantidad Promedio: 55

¿Qué son las agregaciones de tipo métrica?

¿Cómo realizamos una agregación?

"size" es cero para indicar que es una agregación

Indicamos nombre del objeto donde nos va a devolver las agregaciones

Tipo de agregación (sum, avg, min, max,...) y campo a utilizar para la agregación

OBTENER ESTADÍSTICAS COMUNES CON "STATS"

Tipo de agregación "stats" devuelve suma, mínimo, máximo, promedio y contador de valores

 Por defecto, las agregaciones hacen el cálculo considerando todos los documentos del index (como si usáramos una Query "match_all"), pero podríamos añadir una Query concreta sobre la que después aplicar las agregaciones.

Web referencia agregaciones tipo métrica:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics.html

¿Qué son las agregaciones de tipo "bucket"?

 Las agregaciones de tipo "bucket" nos permiten realizar contenedores de documentos (agrupaciones de documentos).

¿Qué son las agregaciones de tipo "bucket"?

Agregación bucket tipo "terms"

Nombre del bucket

Agregación bucket tipo "terms" por cada "estado" encontrado

Número máximo de buckets

Especificar bucket para los documentos que tengan el campo "estado" vacío

Agregaciones combinadas "nested"

Product A SOLICITADO

Cantidad: 40

Product A PROCESADO Cantidad: 15

Product B PROCESADO Cantidad: 12

Product B PROCESADO Cantidad: 3

SOLICITADO = 1

PROCESADO = 3

SOLICITADO
Cantidad Total: 40

PROCESADO
Cantidad Total: 30

Agregaciones combinadas (bucket + métricas)

Agregación combinada bucket + métrica + query

Agregación combinada bucket + métrica

```
GET /pedidos/ search
  "size": 0.
  "aggs":
                               1. Para cada uno de los
     bucket estados": {
                                buckets de "estado"...
      "terms": {
        "field": "estado"
       'aggs": {
        "stats estados": {
          "stats": {
            "field": "total importe"
                               2. ...quiero obtener las
                                   estadísticas del
                                    total_importe
```

```
GET /pedidos/ search
  "size": 0.
  "query": {
    "range": {
      "total_importe": {
        "gte": 100
   aggs": {
    "bucket estados": {
      "terms": {
        "field": "estado"
      "aggs": {
        "stats estados": {
          "stats": {
            "field": "total importe"
```

3. Teniendo en cuenta solo los documentos en los que total_importe sea mayor que 100

Agregaciones con filtrados y reglas

Crear buckets en base a filtrado y aplicar métricas

Aplicar un filtrado en la agregación


```
GET /pedidos/ search
                                           Crear buckets con las
  "size": 0,
  "aggs":
                                             reglas de filtrado
    'mi filtro":
     "filters":
                                               personalizado:
       "filters": {
                                           Bucket 1: "pending"
         "PENDIENTE": {
           "match":
                                          Bucket 2: "confirmed"
             "estado": "pending"
         "CONFIRMADO": {
           "match": {
            "estado": "confirmed"
                                             Combinar con la
      aggs":
        'promedio importe": {
                                         agregación de métrica
         "avg": {
                                                 deseada
           "field": "total importe"
```


Agregaciones con rangos de valores y fechas

Agregaciones con rangos de valores y fechas

Agregación por rangos de valores

Agregación por rangos de fechas

Histogramas

Histograma: Agrupación de los valores de una variables en contenedores (**intervalos** - **bins**). Proporciona la distribución de un campo a lo largo de los intervalos

x: Campo número de pedidos de mis clientes

Histogramas

Creación de histograma – intervalo valores

Creación de histograma – intervalo fechas

BLOQUE 7:

LOGSTASH – INGESTA, TRANSFORMACIÓN Y SALIDA

Lo que aprenderemos en este bloque....

- √ ¿Cómo podemos ingestar datos en Elasticsearch?
- √ ¿Cómo instalar Logstash?
- √ ¿Cómo crear pipelines de Logstash?
- √ ¿Cómo ejecutar los pipelines y realizar cargas en Elasticsearch?
- ✓ ¿Qué otros métodos de ingesta, transformación y carga podemos utilizar?

¿Cómo ingestamos datos en Elasticsearch?

• MÉTODO 1: Desde Elastic Cloud (CSV, TSV, NDJSON, log files,...)

• MÉTODO 2: Importación masiva mediante cURL o aplicaciones web:

```
("name": "Fork - Loin Bone - In", "price": 110, "in_stock": 30, "aold": 300, "tage": ["Meat"], "description": "I
("index":[" id":905))
("name": "Chasse and pumpkin risotto", "price": (", "in_stock": )", "sold": (", "tags": [], "description": "Cres
("name": "Napkin - Bewerge White I - Fly", "price": 110, "in_stock": 11, "sold": 110, "tage": [], "description"
("mane": "lid Tray - lin Tone", "price": | "in_stock": "V, "sold": [1", "tage": [], "description": "Nulls me
("name":"Sage - Fresh", "price": 148, "in_stock": 148, "anid": 200, "tage": ["Spice"], "description": "Integer a
(*index*:(* id*:***))
("name":"Pepper - Yellow Bell", "price": 131, "in_stock": 3, "sold": 131, "taggs": ["Fruit"], "description": "Se
('name': "Corm - Hini", "price": "", "in_stock": il, "sold": ["Vage": ["Vagetable"], "description": "Etiam :
("mane": "Yoqurt - Feach 178 Gr", "pulce": 117, "in_atoux": 1, "sold": 110, "tage": [], "description": "Crae wi
(*1mdex*:(* 1d*:222))
("make"; "Wine - Alsace Bissling Reserve", "pxine"; "], "in_stock"; 17, "sold"; 118, "tegs"; ["Heverage", "Aloc
(*index*(f* 1d*(**)))
("make":"Sauce - Black Current Dry Mim", "price": 170, "in_stock": 11, "sold": 177, "tags": [], "description"
("make":"lamb - loim Trimmed Someless", "price":["]0, "in_stock":[", "sold":["]", "tage":["Heat"], "descripts
(*index*((* 1d*(*))))
(*mane": "Toothplot Frilled", "price"; isl, "in stock"; DO, "sold"; +1, "tags"; [], "description"; "Integer so
(*index*((*_id*)***))
```


¿Cómo ingestamos datos en Elasticsearch?

• **MÉTODO 3**: Utilizar Logstash desde la máquina donde residen los datos:

- Logstash es un pipeline de procesamiento de datos.
- Recibe datos que son manejados como **eventos**, estos datos pueden ser de cualquier tipo de fuente.

Tiene 3 fases: Input – Filter – Output que forman el pipeline:

Existen plugins para cada una de las 3 fases.

Instalación de Logstash

Descargar Logstash:
 https://www.elastic.co/es/downloads/logstash

- 2) Descomprimir carpeta Logstash
 - Carpeta "bin": logstash.bat (Windows) / logstash (Linux)

Creación de un pipeline (input, filter y output)

1) Crear **Input** del pipeline:

```
input{
    file{
        path => "C:/Users/ivan_pinar/Downloads/Info_pais.csv'
        start_position => beginning
        sincedb_path => "NULL"
     }
}
```

En path indicamos la ruta del fichero

2) Aplicar **Filtros** en el pipeline:

```
Renombrado de columnas (se pueden aplicar múltiples pasos de transformación)
```

```
filter {
    csv{
        separator => ";"
        columns => ["Pais", "Poblacion", "Renta per capita", "Esperanza de vida"]
    }
}
```

- 3) Asignar la **Salida** (output) del pipeline:
 - Utilizar el Cloud ID (cloud_id => "tu_cloud_id")
 - O bien la dirección local de Elasticsearch (hosts => "http\\localhost:9200".

stdout{}
elasticsearch{
 cloud id => "Ocee7a2e06ea46
 user => logstash_internal
 password => logstash
 index =>"paises_test"
}

Usuario creado en Elastic cloud con los permisos necesarios

Web referencia documentación Logstash:

Ejecución del pipeline y carga en Elasticsearch

Definir el index en Elasticsearch (se puede aplicar un mapping previo al index)

- Definir rol para permitir la escritura en el index
- Crear usuario en Elastic Cloud con ese rol

```
Security @
Users
Roles
API keys
Role Mappings
```

```
POST / security/role/logstash escritura
  "run_as": [ "logstash_escritura" ],
  "cluster": [ "monitor" ],
  "indices": |
      "names": [ "paises test" ],
      "privileges": ["write", "all"]
```

```
PUT /paises_test
   'mappings": {
     'properties": {
       'Esperanza de vida": {
      "Pais": {
        "type": "keyword"
      "Poblacion": {
        "type": "long"
      "Renta per capita": {
        "type": "long"
```

Ejecutar logstash con el pipeline creado

C:\Users\ivan pinar\Downloads\logstash-8.6.2-windows-x86 64\logstash-8.6.2\bin\logstash.bat -f C:\Users\ivan pinar\Downloads\pipeline simp.con

Ruta completa logstash

Ruta completa pipeline "conf"

Indexar en Kibana para poder visualizar los datos posteriormente (Management / Stack Management):

Kibana @

Data Views

Otros métodos de ingesta, transformación y carga

¿Qué otras fuentes de datos se pueden usar?

input { ¿Qué transformaciones se pueden aplicar? sqlite {

```
filter {
path => "/tmp/example.db"
                                                  mutate {
type => weblogs
                                                      split => { "hostname" => "." }
                                                      add_field => { "shortHostname" => "%{[hostname][0]}" }
                                                  mutate {
                                                      rename => {"shortHostname" => "hostname"}
     input {
       beats {
```

```
filter {
 grok {
    match => { "message" => "%{IP:client} %{WORD:method} %{URIPATHPARAM:request}
```

¿Hacia dónde puede enviar los datos además

```
de Elasticsearch?
```

```
output {
  kafka {
    codec => json
    topic_id => "mytopic"
```

output {

```
output {
  csv {
```


Beats

port => 5044

Web referencia documentación Logstash:

https://www.elastic.co/guide/en/logstash/current/index.html

BLOQUE 8:

KIBANA –
INTERFAZ, INGESTA Y VISUALIZACIONES

Lo que aprenderemos en este bloque....

- ✓ ¿Qué nos proporciona Kibana y cuáles son sus componentes?
- √ ¿Cómo creamos data views con la ingesta de datos?
- ✓ ¿Qué nos permite analizar la herramienta Discover?
- ✓ ¿Cómo crear multitud de tipos de visualización como área, línea, barras, circular, histogramas, heatmap, KPI, mapas geográficos,..?

¿Qué nos proporciona Kibana y cuáles son sus componentes?

- 1) Discover: Analizar datos mediante consultas KQL filtros.
- 2) Dashboard: Creación de dashboards (combinaciones de visualizaciones) para presentación de datos.
- 3) Canvas: Presentación de visualizaciones más avanzada y personalizada (incluso CSS).
- **4) Maps**: Creación de mapas geográficos avanzada con diferentes capa.
- **5) Machine learning**: Detección de anomalías, forecasting,...
- 6) Graph: Visualizar conexiones entre elementos.
- 7) Librería visualizaciones: Creación de las visualizaciones.

Ingesta de datos y creación de data views

3.Creación data view: access-logs* pedidos-*

1. Aplicación de templates con el mapping usando el asterisco (*)

- access-logs-2023-01
- access-logs-2023-02
- access-logs-2023-03
- ..

2.Carga mediante cURL o interfaz Kibana

- pedidos-01
- pedidos-02
- pedidos-03
- • •

Menú Discover – Paneles y lenguaje KQL

- 1) Modificación filtro temporal
- 2) Vista general paneles Discover
- 3) Sintaxis KQL: Lenguaje abreviado que se transforma automáticamente a consulta QueryDSL de Elasticsearch.

COMPARADORES KQL

4) Guardar consultas:

Inspeccionar consulta y respuesta

OPERADORES BOOLEANOS

Web referencia documentación KQL:

https://www.elastic.co/guide/en/kibana/current/kuery-query.html

Visualización tipo métrica

- 1) Pulsamos en Analytics > Visualize Library > Create > Metric
- 2) Elegimos el Data View
- 3) Configuramos la métrica:

Discover
Dashboard
Canvas
Maps
Machine Learning
Graph
Visualize Library

4) Dividimos en buckets si es preciso:

Save

- 5) Guardamos la visualización:
- 6) Modificamos el formato del campo en el data view > Set format

Visualización tipo barra, área y línea

1) Elegimos el tipo de visualización agregación:

Present data in vertical bars on an axis.

- 2) Elegimos el Data View
- 3) Configuramos el bucket "x-axis" para la escala temporal:

4) Configuramos un bucket subagregación Split-series:

Aggregation Terms.halp 3
Terms

Field
url.path
Order by

Area

✓ X-axis

Date Histogram

Split chart

Metric: Count

Select an option or create a custom value

Emphasize the data

between an axis and a

@ = X

0 4

Metrics

Count

Value sels

LeftAxis-1

Chart type

Mode

Area
Stacked

Line mode

Straight

Shaw date

5) Bucket para dividir el gráfico con Split-chart y subir a la parte alta:

6) Modificación "Metrics & axes" y se puede modificar entre tipos de gráfico.

Visualización tipo circular

- 1) Pulsamos en Analytics > Visualize Library > Create
- 2) Elegimos el Data View

4) Agregamos nuevos buckets para sub-slices:

Split de series con filtros KQL y Ranges

1) Dividimos en buckets "Split series" de tipo "Filters":

2) Dividimos buckets "Split series" con "Ranges"

Visualización tipo histogramas

 Los buckets serán de agregación tipo "Histogram" e indicaremos el ancho del intervalo:

Buckets

2) Podemos configurar el eje y para que en lugar de la cuenta nos proporcione otras agregaciones:

Metrics

Visualización tipo tabla

1) Configuramos los buckets para dividir en filas:

2) Añadimos las métricas con las columnas de interés:

Visualización tipo heatmap

1) Configuramos los buckets para el x-axis:

2) Configuramos los buckets para el y-axis:

Visualización tipo KPI objetivo

1) Definir la métrica KPI:

2) Personalizar la visualización KPI:

3) Definir buckets de división:

Visualización en mapa geográfico

- 1) Configuramos el basemap.
- 2) Añadimos todas las capas que necesitemos usando un campo de tipo geo_point:

BLOQUE 9:

KIBANA – CREACIÓN DE DASHBOARDS, ROLES Y PERMISOS

- ¿Cómo podemos crear completos dashboards utilizando las visualizaciones?
- √ ¿Cómo filtrar nuestros dashboards y añadir controles?
- √ ¿Cómo aplicar interactividad dentro del dashboard?
- √ ¿Cómo enlazar diferentes dashboards?
- √ ¿Cómo creamos usuarios para acceder a los dashboards y les aplicamos los roles y permisos oportunos?

50

Create your first dashboard

Analyze all of your Blastic data in one place by creating a

dashboard and adding visualizations.

New to Kibana? Add some sample data to take a test drive.

Create a dashboard

Editing New Dashboard

Creación de un dashboard completo

1) Pulsar en Analytics > Dashboard > Create

2) Crear nuevas visualizaciones o importar existentes.

Controls V

(6) Settings

⊕ Add control

Add time slider control

3) Añadir controles

4) Ajustar layout

Manage this deployment

() Home

Analytics

Dashboard

Editar visualizaciones y filtrar documentos

1) Personalizar colores si pulsamos en la leyenda.

2) Es posible editar una visualización:

3) Inspeccionar la visualización para descargar datos o ver la consulta en Query DSL enviada a Elasticsearch

4) Aplicar consultas KQL al dashboard:

Interactividad en el dashboard

1) Pulsar en una categoría de la visualización para filtrar el dashboard al completo:

tienda: Denver ×

2) Seleccionar un intervalo de fechas:

3) Seleccionar 1 día concreto hará que se expanda a nivel horario:

Select filters to apply

hour_of_day: 17

Creación de dashboard logs de acceso

1) Reutilizamos las visualizaciones creadas previamente.

Heatmap URL vs hora acceso

En las visualizaciones que tienen 2 campos (ejemplo heatmaps), la interactividad nos solicitará por qué campo filtrar.

Enlazar dashboards (drilldown)

- 1) Es posible enlazar dashboards que tengan algún campo en común:
 - a) Dashboards que utilizan el mismo data view, ejemplo: Visualizar para una tienda concreta el dashboard de clientes asociados.
 - b) Dashboards que NO utilizan el mismo data view se pueden enlazar por el campo de fechas, ejemplo: Visualizar dashboards de solicitudes al servidor en el periodo de mayor número de ventas.
- 2) En cualquier visualización pulsamos configuración > "Create drilldown".
- 3) Configuración drilldown, si los dashboards solo comparten rango de fechas (diferente data view), marcar "usar date range from origin dashboard":

Creación de usuarios y roles

2) Configurar solo lo que queramos permitir para el rol (importante: debe tener permiso a los índices de Elasticsearch de donde tomen datos los data views del dashboard)

3) Crear usuario asignando el rol definido.

BLOQUE:CONCLUSIONES

Conclusiones

Es posible realizar búsquedas complejas de datos sobre toda la información indexada que tengamos incluyendo consultas sobre datos estructurados como números o agregaciones para ser usado como plataforma analítica.

Kibana es una plataforma de visualización y análisis con capacidad de construir potentes dashboards y que invoca a Elasticsearch para obtener datos.

La pila **Elastic Stack** al completo proporciona una **plataforma muy potente** y flexible para manejar grandes volúmenes de datos de una manera muy eficiente y creando potentes dashboards para analizar la información.

Gracias

