The Invention Claimed is:

1	1. A web data conferencing system comprising:					
2	means for receiving a full-motion video signal from a remote location;					
3	means for providing the full-motion video signal to a web conferencing					
4	system; and					
5	a first network interface for providing the full-motion video signal to a					
6	plurality of web conference subscribers as a web conferencing signal.					
1	2. A web conferencing system according to claim 1, wherein the means					
2	for providing the full motion video signal as the web conferencing signal includes a format					
3	converter which converts the full-motion video signal into a format compatible with the					
4	web conferencing system.					
1	3. A web conferencing system according to claim 1, wherein the means					
2	for receiving the full-motion video signal from the remote location includes a plurality of					
3	coder/decoders (codecs) and a video server, wherein the video server is configured to					
4	combine video signals provided by the respective codecs to generate the full-motion video					
5	signal.					
1	4. A web conferencing system according to claim 1, wherein the means					
2	for receiving the full-motion video signal from the remote location includes a plurality of					
3	codecs, a video/audio server and an audio server,					
4	the video/audio server is configured to receive video and audio signals					
5	provided by the respective codecs to generate a video portion of the full-motion video					
6	signal, and					
7	the audio server is configured to communicate with the video/audio server					
8	for receiving the audio signals to generate an audio portion of the full-motion video signal.					

	A web conferencing system according to claim 4, wherein the first					
2	network interface is configured for compatibility with one of a global information network					
}	and a private Internet protocol (IP) network, and					
ļ	a second network interface provides the audio signals between the					
5	video/audio server and the audio server, the second network interface is configured for					
ó	compatibility with one of a public switched telephone network (PSTN), IP network, and					
7	voice-over-IP (VoIP) network.					
1	6. A web conferencing system according to claim 1, wherein the means					
2	for receiving the full-motion video signal from the remote location includes					
_						
3	a second network interface for receiving the full-motion video signal from					
4	one of an integrated switched digital network (ISDN) network and an IP network, and					
5	the second network interface is independent of the first network interface.					
1	7. A web conferencing system according to claim 1, wherein the means					
2	for providing the full-motion video signal to the web conferencing system includes					
2	a format converter coupled to one of the plurality of codecs for converting					
3	the full-motion video signal into a digital signal compatible with the web conferencing					
4 5	signal, and					
J	Signal, and					
6	the first network interface coupled to the format converter for receiving the					
7	digital signal and providing the digital signal to the plurality of web conference subscribers					
1	A web conferencing system according to claim 7, wherein the one of					
2	the plurality of codecs converts the full-motion video signal into an analog signal having a					
3	format of one of NTSC, PAL, SECAM, analog component video and S/Video.					
1	9. A web conferencing system according to claim 1 wherein the means					
2	for receiving the full-motion video signal from the remote location includes a plurality of					
3	coder/decoders (codecs) and a video server, wherein the video server is configured to					

combine video signals provided by the respective codecs to generate the full-motion video 4 5 signal, and the means for providing the full motion video signal to the web conferencing 6 system includes a format converter which converts the full-motion video signal into a 7 format compatible with the web conferencing signal. 8 A web conferencing system according to claim 1 wherein the means 10. 1 for receiving the full-motion video signal from the remote location includes 2 a codec for receiving the full-motion video signal from one of a video play-3 back device and a video feed from a satellite receiver, the codec configured to decompress 4 the received full-motion video signal to produce an analog video signal, and 5 a format converter coupled to the codec for converting the analog video 6 signal into a format compatible with the web conferencing signal. 7 A web data conferencing system comprising: 11. 1 a video server for receiving a full-motion video signal from a remote 2 3 location; and a processor coupled to the video server for converting the full-motion video 4 signal into a format compatible with the web conferencing signal; 5 wherein the processor is configured to communicate with a first network, 6 the video server is configured to communicate with a second network, and 7 the first network is independent of the second network. 8 A web conferencing system according to claim 11 wherein 12. 1

2	the full-motion video signal includes full-motion interactive images of a					
3	plurality of participants communicating with each other over the second network, and					
4	the processor is configured to transmit the converted full-motion video					
1 -	·					
5	signal to another plurality of participants communicating over the first network.					
1	13. A web conferencing system according to claim 12 wherein					
2	the video server provides a portion of the full-motion video signal as an					
3	audio signal to the other plurality of participants by way of a third network, and					
4	the third network is independent of the first and second networks.					
1	14. A web conferencing system according to claim 11 including					
2	a codec and a format converter serially connected to each other between					
3	first and second ends,					
4	the first end connected to the processor, and					
5	the second end coupled to the video server by way of the second network,					
6	wherein the codec converts the full-motion video signal into an analog					
7	signal, and					
8	the format converter converts the analog signal into a digital signal					
9	compatible with the processor.					
	companie was the processor					
1	15. A web conferencing system according to claim 14 wherein					
2	the codec is configured for video compatibility with one of H.261, H.263 and					
3	H.264 protocols, and configured to decompress video using one of H.320, H.323, H.324,					
4	MPEG-1.MPEG-2 and MPEG-4 protocols, and					

5	the format converter is configured to provide the digital signal using one of					
6	JPGL, VCF, QCF and PGB.					
1	16. A web conferencing method comprising the steps of:					
2	(a) receiving a full-motion video signal from a remote location;					
3	(b) converting the full-motion video signal into a format compatible with a web conferencing system; and					
5 6	(c) transmitting the converted full-motion video signal to web conference participants using a web conferencing signal.					
1	17. The method of claim 16 wherein					
2	step (a) includes receiving full-motion interactive images of participants in a video conference,					
4 5	step (b) includes converting the received images into the format compatible with the web conferencing system, and					
6 7 8	participants, wherein the participants of the video conference are different from the web					
1	18. The method of claim 17 further including the steps of:					
2	(d) extracting a sound signal after receiving the full-motion interactive images in step (a); and					
4 5 6	(e) transmitting the extracted sound signal to the web conference participants using a first network independent of a second network for transmitting the converted full-motion video signal to the web participants.					

1		19.	The method of claim 16 wherein				
2		step (b) includes					
3			(i) converting, by using a codec, the received images into a				
4		decompressed video signal,					
5			(ii) formatting, by using a format converter, the				
6		decompressed video signal into the format compatible with the web					
7		conferencing system.					
1		20.	The method of claim 19 wherein				
2		step (b) of converting and formatting is performed in a unit located at one					
3	location.						
1		21.	A web conferencing method comprising the steps of:				
2		(a)	connecting a multi-point video conferencing system with a web				
3	conference s	ystem,	wherein (i) the multi-point video conferencing system includes a				
4	plurality of codecs communicating with a multi-point controller (MCP), and (ii) the web						
5	conference s	ystem i	ncludes a plurality of terminals communicating with a web conference				
6	server;						
7		(b)	transmitting a motion video signal to one of the codecs from the				
8	MCP; and						
9		(c)	converting the motion video signal received by the one codec into a				
10	format compatible with the web conference system; and						
11		(d)	transmitting the converted motion video signal to the web conference				
12	system.	. ,					
1		22.	The method of claim 21 wherein				

5

step (a) includes connecting the one of the codecs to one of the terminals of 2 3 the web conference system. The method of claim 22 wherein 23. 1 step (a) further includes connecting a format converter between the one of 2 3 the codecs and the one of the terminals; and step (c) includes converting the motion video signal into the format 4 compatible with the web conference system using the format converter.