Group Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today or, rigorous. Any result of the above is not the author's fault.

0 Notation

We commonly deal with the following concepts in Group Theory which I will abbreviate as follows for brevity:

Term	Notation
Additive identity of set X	0_X
Multiplicative identity of a set X	1_X
For a field F , $(F \setminus \{0_F\}, \times)$	F^*
(invertible $n \times n$ matrices on F, \times)	$GL_n(F)$

Contents

0 Notation				1
1	The	Funda	amentals	3
	1.1	Binary	Operations	3
1.2 Groups			s	3
		1.2.1	Symmetric Groups	3
		1.2.2	Cyclic Groups	3
		1.2.3	Dihedral Groups	4
		1.2.4	The Infinite Cyclic/Dihedral Group	4

1 The Fundamentals

1.1 Binary Operations

A binary operation on a set X is a map $X \times X \to X$.

Take a binary operation * on a set X, we say that * is associative if for all x, y, z in X:

$$x * (y * z) = (x * y) * z.$$

Furthermore, we say e in X is an identity element of * if for all x in X:

$$e * x = x * e$$

and we say that y in X is the inverse to x if x * y and y * x are both identities of *.

1.2 Groups

A group (G,*) is a non-empty set G combined with a binary operation * such that:

- * is associative,
- G contains an identity for *,
- for each element in G, there exists some inverse in G with respect to *.

1.2.1 Symmetric Groups

For a set X, the set of bijections $X \to X$ is a group under function composition denoted by $\operatorname{Sym}(X)$. We typically write $\operatorname{Sym}(\{1, 2, \dots, n\})$ as S_n .

1.2.2 Cyclic Groups

If we consider a regular n-gon P_n , we take rotations of $\frac{2\pi}{n}$ radians about the centre to be r and can define:

$$C_n = \{e, r, r^2, \dots, r^{n-1}\},\$$

to be the group of rotational symmetries of P_n , the cyclic group on P_n .

1.2.3 Dihedral Groups

If we consider again, a regular n-gon P_n and take:

r = a rotation of $\frac{2\pi}{n}$ radians about the centre, s = reflection in some fixed line of symmetry,

then we have that:

$$Sym(P_n) = \{e, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s\},\$$

called the dihedral group, denoted by D_{2n} .

1.2.4 The Infinite Cyclic/Dihedral Group

A map φ from $\mathbb{Z} \to \mathbb{Z}$ is a symmetry if for some n and m in \mathbb{Z} :

$$|\varphi(m) - \varphi(n)| = |m - n|.$$

Taking r to be the symmetry $n \mapsto n+1$, we can define the infinite cyclic group:

$$C_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots\}.$$

Taking s to be the symmetry $n \mapsto -n$, we can define the infinite dihedral group:

$$D_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^{2}, \dots, r^{-2}s, r^{-1}s, s, rs, r^{2}s\}.$$