10/582654 AP3 Rec'd PCT/PTO 12 JUN 2000

SEQUENCE LISTING

<110>	Ono	et al.					
<120>	Mod:	ified antibo	odies recogn	nizing rece	ptor trimer	s or higher	multimers
<130>	7599	96-01					
<150> <151>		/JP2004/018! 4-12-10	507				
<150> <151>		2003-415735 3-12-12					
<160>	42		:				
<170>	Pate	entIn versio	on 3.1				
<210><211><211><212><213>	1 797 DNA Art:	ificial					
<220> <223>	An a	artificially	y synthesizo	ed nucleotio	de sequence		
<400> tagaati	1 tcca	ccatggagtt	tgggctgagc	tggctttttc	ttgtggctat	tttaaaaggt	60
gtccagt	tgtg	aggtacagct	gttggagtct	gggggaggct	tggtacagcc	tgggaggtcc	120
ctgagad	ctct	cctgtgcagc	ctctggattc	acctttagca	gctatgccat	gagctgggtc	180
cgccag	gctc	cagggaaggg	gctggagtgg	gtctcagcta	ttagtggtag	tggtggtagc	240
agatact	cacg	cagactccgt	gaagggccgg	ttcaccatct	ccagagacaa	ttccaagaac	300
acgctgt	tatc	tgcaaatgaa	cagcctgaga	gccgaggaca	cggccgtata	ttactgtgcg	360
aaagaga	agca	gtggctggtt	cggggccttt	gactactggg	gccagggaac	cctggtcacc	420
gtctcct	cag	gtggagaaat	tgtgctgact	cagtctccag	actttcagtc	tgtgactcca	480
aaggaga	aaag	tcaccatcac	ctgccgggcc	agtcagagca	ttggtagtag	cttacactgg	540
taccago	caga	aaccagatca	gtctccaaag	ctcctcatca	agtatgcttc	ccagtccttc	600
tcagggg	gtcc	cctcgaggtt	cagtggcagt	ggatctggga	cagatttcac	cctcaccatc	660
aatagc	ctgg	aagctgaaga	tgctgcagcg	tattactgtc	atcagagtag	tagtttaccg	720
atcacct	tcg	gccaagggac	acgactggag	attaaagact	acaaggatga	cgacgataag	780
tgataag	gegg	ccgcaat					797

<210> 2

<211> 256

<212> PRT

<213> Artificial

<220>

<223> An artificially synthesized peptide sequence

<400> 2

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln
20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45

Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Arg Tyr Tyr Ala 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Lys Glu Ser Ser Gly Trp Phe Gly Ala Phe Asp Tyr 115 120 125

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Glu Ile Val 130 135 140

Leu Thr Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys Glu Lys Val 145 150 155 160

Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Gly Ser Ser Leu His Trp 165 170 175

Tyr Gln Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile Lys Tyr Ala 180 185 190

Ser Gln Ser Phe Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser 195 200 205

Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Glu Ala Glu Asp Ala 210 215 220

Ala Ala Tyr Tyr Cys His Gln Ser Ser Leu Pro Ile Thr Phe Gly
225 230 235 240

Gln Gly Thr Arg Leu Glu Ile Lys Asp Tyr Lys Asp Asp Asp Asp Lys 245 250 255

<210> 3 <211> 794 <212> DNA <213> Artificial <220> <223> An artificially synthesized nucleotide sequence <400> 3 tagaattcca ccatggagtt tgggctgagc tggctttttc ttgtggctat tttaaaaqqt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tqqqaqqtcc etgagaetet cetgtgeage etetggatte acetttagea getatgeeat gagetgggte cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaaqaac acgetgtate tgeaaatgaa eageetgaga geegaggaea eggeegtata ttaetgtgeg 360 aaagagagca gtggctggtt cggggccttt gactactggg gccagggaac cctggtcacc gtctcctcag gtgaaattgt gctgactcag tctccagact ttcagtctgt gactccaaag 480 gagaaagtca ccatcacctg ccgggccagt cagagcattg gtagtagctt acactggtac 540 cagcagaaac cagatcagtc tccaaagctc ctcatcaagt atgcttccca gtccttctca 600 ggggtcccct cgaggttcag tggcagtgga tctqqqacaq atttcaccct caccatcaat 660 agcctggaag ctgaagatgc tgcagcgtat tactgtcatc agagtagtag tttaccgatc 720 acctteggee aagggacaeg aetggagatt aaagaetaea aggatgaega egataaqtga 780 taagcggccg caat 794 <210> 255 <211> <212> PRT <213> Artificial <220> <223> An artificially synthesized peptide sequence <400> 4 Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe

60

120

180

240

300

420

Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu

	50					55					60					
Glu 65	Trp	Val	Ser	Ala	Ile 70	Ser	Gly	Ser	Gly	Gly 75	Ser	Arg	Tyr	Tyr	Ala 80	
Asp	Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn	
Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val	
Tyr	Tyr	Cys 115	Ala	Lys	Glu	Ser	Ser 120	Gly	Trp	Phe	Gly	Ala 125	Phe	Asp	Tyr	
Trp	Gly 130	Gln	Gly	Thr	Leu	Val 135	Thr	Val	Ser	Ser	Gly 140	Glu	Ile	Val	Leu	
Thr 145	Gln	Ser	Pro	Asp	Phe 150	Gln	Ser	Val	Thr	Pro 155	Lys	Glu	Lys	Val	Thr 160	
Ile	Thr	Cys	Arg	Ala 165	Ser	Gln	Ser	Ile	Gly 170	Ser	Ser	Leu	His	Trp 175	Tyr	
Gln	Gln	Lys	Pro 180	Asp	Gln	Ser	Pro	Lys 185	Leu	Leu	Ile	Lys	Tyr 190	Ala	Ser	
Gln	Ser	Phe 195	Ser	Gly	Val	Pro	Ser 200	Arg	Phe	Ser	Gly	Ser 205	Gly	Ser	Gly	
Thr	Asp 210	Phe	Thr	Leu	Thr	Ile 215	Asn	Ser	Leu	Glu	Ala 220	Glu	Asp	Ala	Ala	
Ala 225	Tyr	Tyr	Cys	His	Gln 230	Ser	Ser	Ser	Leu	Pro 235	Ile	Thr	Phe	Gly	Gln 240	
Gly	Thr	Arg	Leu	Glu 245	Ile	Lys	Asp	Tyr	Lys 250	Asp	Asp	Asp	Asp	Lys 255		
<211 <212	2> I 3> <i>I</i>	5 791 DNA Artif	icia	ıl												
<223	3> <i>I</i>		tifi	cial	ly s	ynth	nesiz	zed n	nucle	otic	le se	quen	ice			
<400 taga			cate	gagt	t t <u>c</u>	ggct	gago	tgg	jcttt	ttc	ttgt	ggct	at t	ttaa	aaggt	60
gtco	agto	gtg a	iggta	cago	t gt	tgga	gtct	ggg	ggag	gct	tggt	acag	jcc t	ggga	ıggtcc	120
ctga	igact	ct o	ctgt	gcag	ge et	ctgg	gatto	acc	ttta	igca	gcta	tgcc	at g	agct	gggtc	180
cgcc	aggo	ctc c	aggg	gaagg	ia ac	tgga	gtgg	gto	tcag	cta	ttag	tggt	ag t	ggtg	gtagc	240
agat	acta	acg c	agad	tccg	jt ga	aggg	ccgg	, ttc	acca	tct	ccag	agac	aa t	tcca	agaac	300

acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactgtgcg 360 aaagagagca gtggctggtt cggggccttt gactactggg gccagggaac cctgqtcacc 420 gtctcctcag aaattgtgct gactcagtct ccagactttc agtctgtgac tccaaaggag 480 aaagtcacca tcacctgccg ggccagtcag agcattggta gtagcttaca ctggtaccag 540 cagaaaccag atcagtctcc aaagctcctc atcaagtatg cttcccagtc cttctcaqqq 600 gtcccctcga ggttcagtgg cagtggatct gggacagatt tcaccctcac catcaataqc 660 ctggaagctg aagatgctgc agcgtattac tgtcatcaga gtagtagttt accgatcacc 720 ttcggccaag ggacacgact ggagattaaa gactacaagg atgacgacga taagtgataa 780 gcggccgcaa t 791

<210> 6

<211> 254

<212> PRT

<213> Artificial

<220>

<223> An artificially synthesized peptide sequence

<400> 6

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln
20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45

Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60

Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Arg Tyr Tyr Ala 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Lys Glu Ser Ser Gly Trp Phe Gly Ala Phe Asp Tyr 115 120 125

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Glu Ile Val Leu Thr 130 135 140

Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys Glu Lys Val Thr Ile

145 150 155 160	
Thr Cys Arg Ala Ser Gln Ser Ile Gly Ser Ser Leu His Trp Tyr Gln 165 170 175	
Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile Lys Tyr Ala Ser Gln 180 185 190	
Ser Phe Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr 195 200 205	
Asp Phe Thr Leu Thr Ile Asn Ser Leu Glu Ala Glu Asp Ala Ala Ala 210 215 220	
Tyr Tyr Cys His Gln Ser Ser Ser Leu Pro Ile Thr Phe Gly Gln Gly 225 230 235 240	
Thr Arg Leu Glu Ile Lys Asp Tyr Lys Asp Asp Asp Lys 245 250	
<210> 7 <211> 1538 <212> DNA <213> Artificial <220> <223> An artificially synthesized nucleotide sequence	
<400> 7	
<400> 7 tagaattcca ccatggagtt tgggctgagc tggctttttc ttgtggctat tttaaaaggt	60
	60 120
tagaattcca ccatggagtt tgggctgagc tggctttttc ttgtggctat tttaaaaggt	
tagaattcca ccatggagtt tgggctgagc tggctttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc	120
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc	120 180
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc	120 180 240
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaagaac	120 180 240 300
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaagaac acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactgtgcg	120 180 240 300 360
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaagaac acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactgtgcg aaaggagaca gtggctggtt cggggccttt gactactggg gccagggaac cctggtcacc	120 180 240 300 360 420
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaagaac acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactgtgcg aaagagagaa gtggctggtt cggggccttt gactactggg gccagggaac cctggtcacc gtctcctcag gtggaggcgg atcggaaatt gtgctgactc agtctccaga ctttcagtct	120 180 240 300 360 420 480
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaagaac acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactgtgcg aaagagagaa gtggctggtt cggggccttt gactactggg gccagggaac cctggtcacc gtctcctcag gtggaggcgg atcggaaatt gtgctgactc agtctccaga ctttcagtct gtgactccaa aggagaaagt caccatcacc tgccgggcca gtcagagcat tggtagtagc	120 180 240 300 360 420 480 540
tagaattcca ccatggagtt tgggctgagc tggcttttc ttgtggctat tttaaaaggt gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctgggtc cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tggtggtagc agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaagaac acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactgtgcg aaagagagaa gtggctggtt cggggccttt gactactggg gccagggaac cctggtcacc gtctcctcag gtggaggcgg atcggaaatt gtgctgactc agtctccaga ctttcagtct gtgactccaa aggagaaagt caccatcacc tgccgggcca gtcagagcat tggtagtagc ttacactggt accagcagaa accagatcag tctccaaagc tcctcatcaa gtatgcttcc	120 180 240 300 360 420 480 540

gctgcaggag gtcccgggtc cgaggtacag ctgttggagt ctgggggagg cttggtacag

cctgggaggt ccctgagact ctcctgtgca gcctctggat tcacctttaq caqctatqcc 900 atgagetggg teegeeagge teeagggaag gggetggagt gggteteage tattaqtqqt 960 agtggtggta gcagatacta cgcagactcc gtgaagggcc ggttcaccat ctccagagac 1020 aattccaaga acacgctgta tctgcaaatg aacagcctga gagccgagga cacggccgta 1080 tattactgtg cgaaagagag cagtggctgg ttcggggcct ttgactactq qqqccaqqqa 1140 accetggtea cegteteete aggtggagge ggateggaaa ttgtgetgae teagteteea 1200 gactttcagt ctgtgactcc aaaggagaaa gtcaccatca cctgccgggc caqtcaqaqc 1260 attggtagta gettacaetg gtaccagcag aaaccagate agtetecaaa geteeteate 1320 aagtatgett cecagteett etcaggggte cectegaggt teagtggeag tggatetggq 1380 acagatttca ccctcaccat caatagcctg gaagctgaag atgctgcagc gtattactgt 1440 catcagagta gtagtttacc gatcaccttc ggccaaggga cacgactgga gattaaagac 1500 tacaaggatg acgacgataa gtgataagcg gccgcaat 1538

<210> 8

<211> 503

<212> PRT

<213> Artificial

<220>

<223> An artificially synthesized peptide sequence

<400> 8

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln
20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45

Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60

Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Arg Tyr Tyr Ala 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Lys Glu Ser Ser Gly Trp Phe Gly Ala Phe Asp Tyr

115 120 125

	Trp	Gly 130	Gln	Gly	Thr	Leu	Val 135	Thr	Val	Ser	Ser	Gly 140	Gly	Gly	Gly	Ser
	Glu 145	Ile	Val	Leu	Thr	Gln 150	Ser	Pro	Asp	Phe	Gln 155	Ser	Val	Thr	Pro	Lys 160
	Glu	Lys	Val	Thr	Ile 165	Thr	Cys	Arg	Ala	Ser 170	Gln	Ser	Ile	Gly	Ser 175	Ser
	Leu	His	Trp	Tyr 180	Gln	Gln	Lys	Pro	Asp 185	Gln	Ser	Pro	Lys	Leu 190	Leu	Ile
	Lys	Tyr	Ala 195	Ser	Gln	Ser	Phe	Ser 200	Gly	Val	Pro	Ser	Arg 205	Phe	Ser	Gly
	Ser	Gly 210	Ser	Gly	Thr	Asp	Phe 215	Thr	Leu	Thr	Ile	Asn 220	Ser	Leu	Glu	Ala
	Glu 225	Asp	Ala	Ala	Ala	Tyr 230	Tyr	Cys	His	Gln	Ser 235	Ser	Ser	Leu	Pro	Ile 240
•	Thr	Phe	Gly	Gln	Gly 245	Thr	Arg	Leu	Glu	Ile 250	Lys	Arg	Ala	Asp	Ala 255	Ala
	Ala	Ala	Gly	Gly 260	Pro	Gly	Ser	Glu	Val 265	Gln	Leu	Leu	Glu	Ser 270	Gly	Gly
	Gly	Leu	Val 275	Gln	Pro	Gly	Arg	Ser 280	Leu	Arg	Leu	Ser	Cys 285	Ala	Ala	Ser
	Gly	Phe 290	Thr	Phe	Ser	Ser	Tyr 295	Ala	Met	Ser	Trp	Val 300	Arg	Gln	Ala	Pro
	Gly 305	Lys	Gly	Leu	Glu	Trp 310	Val	Ser	Ala	Ile	Ser 315	Gly	Ser	Gly	Gly	Ser 320
	Arg	Tyr	Tyr	Ala	Asp 325	Ser	Val	Lys	Gly	Arg 330	Phe	Thr	Ile	Ser	Arg 335	Asp
	Asn	Ser	Lys	Asn 340	Thr	Leu	Tyr	Leu	Gln 345	Met	Asn	Ser	Leu	Arg 350	Ala	Glu
	Asp	Thr	Ala 355	Val	Tyr	Tyr	Cys	Ala 360	Lys	Glu	Ser	Ser	Gly 365	Trp	Phe	Gly
	Ala	Phe 370	Asp	Tyr	Trp	Gly	Gln 375	Gly	Thr	Leu	Val	Thr 380	Val	Ser	Ser	Gly
	385					Ile 390					395					400
	Val	Thr	Pro	Lys	Glu 405	Lys	Val	Thr	Ile	Thr 410	Cys	Arg	Ala	Ser	Gln 415	Ser
	Ile	Glv	Ser	Ser	Len	His	Trn	Tvr	Gln	Gln	Lvs	Pro	Asn	Gln	Ser	Pro

420 425 430

Lys Leu Ile Lys Tyr Ala Ser Gln Ser Phe Ser Gly Val Pro Ser
435
440
445

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn 450 455 460

Ser Leu Glu Ala Glu Asp Ala Ala Ala Tyr Tyr Cys His Gln Ser Ser 465 470 475 480

Ser Leu Pro Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Asp 485 490 495

Tyr Lys Asp Asp Asp Lys 500

<210> 9

<211> 15

<212> DNA

<213> Artificial

<220>

<223> An artificial sequence encoding linker sequence

<400> 9

ggtggaggcg gatcg

15

<210> 10

<211> 5

<212> PRT

<213> Artificial

<220>

<223> An artificially synthesized linker sequence

<400> 10

Gly Gly Gly Ser

<210> 11

<211> 24

<212> DNA

<213> Artificial

<220>

<223> An artificial sequence encoding flag tag sequence

<400> 11

gactacaagg atgacgacga taag

24

<210> 12

<211> 8

```
<212>
      PRT
<213> Artificial
<220>
<223> An artificially synthesized flag tag sequence
<400>
Asp Tyr Lys Asp Asp Asp Lys
<210>
      13
<211>
       806
<212>
      DNA
<213> Artificial
<220>
<223> An artificially synthesized diabody sequence
<400> 13
tagaattcca ccatggagtt tgggctgagc tggctttttc ttgtggctat tttaaaagqt
                                                                      60
gtccagtgtg aggtacagct gttggagtct gggggaggct tggtacagcc tgggaggtcc
                                                                     120
ctgagactct cctgtgcagc ctctggattc acctttagca gctatgccat gagctqqqtc
                                                                     180
cgccaggctc cagggaaggg gctggagtgg gtctcagcta ttagtggtag tqqtqqtaqc
                                                                     240
agatactacg cagactccgt gaagggccgg ttcaccatct ccagagacaa ttccaaqaac
                                                                     300
acgctgtatc tgcaaatgaa cagcctgaga gccgaggaca cggccgtata ttactqtqcq
                                                                     360
aaagagagca gtggctggtt cggggccttt gactactggg gccaqqqaac cctqqtcacc
                                                                     420
gtctcctcag gtggaggcgg atcggaaatt gtgctgactc agtctccaga ctttcagtct
                                                                     480
gtgactccaa aggagaaagt caccatcacc tgccgggcca gtcagagcat tggtagtagc
                                                                     540
ttacactggt accagcagaa accagatcag tctccaaagc tcctcatcaa gtatgcttcc
                                                                     600
cagtccttct caggggtccc ctcgaggttc agtggcagtg gatctgggac agatttcacc
                                                                     660
ctcaccatca atagcctgga agctgaagat gctgcagcgt attactgtca tcagagtagt
                                                                     720
agtttaccga tcaccttcgg ccaagggaca cgactggaga ttaaagacta caaqqatqac
                                                                     780
gacgataagt gataagcggc cgcaat
                                                                     806
<210>
      14
<211>
      94
<212>
      DNA
<213>
      Artificial
<220>
```

<223> An artificially synthesized oligonucleotide sequence

<400> tagaat	14 tcca ccatggagtt tgggctgagc tggctttttc ttgtggctat tttaaaaggt	60
gtccag	tgtg aggtacagct gttggagtct gggg	94
<210>	15 96	
<212>		
<213>	Artificial	
<220> <223>	An artificially symthogical alicensal actide assures	
	An artificially synthesized oligonucleotide sequence	
<400>	15	د م
	aggt gaatccagag gctgcacagg agagtctcag ggacctccca ggctgtacca	60
agcctc	cccc agactccaac agctgtacct cacact	96
<210>	16	
<211>	97	
<212>		
<213>	Artificial	
<220>		
<223>	An artificially synthesized oligonucleotide sequence	
<400>	16	
cctgtg	cage etetggatte acetttagea getatgecat gagetgggte egecaggete	60
caggga	aggg gctggagtgg gtctcagcta ttagtgg	97
010		
<210> <211>	17 99	
<212>		
<213>	Artificial	
<220>		
<223>	An artificially synthesized oligonucleotide sequence	
<400>	17	
ttggaa	ttgt ctctggagat ggtgaaccgg cccttcacgg agtctgcgta gtatctgcta	60
ccacca	ctac cactaatage tgagacecae tecagecee	99
.010		
<210>	18 103	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	An artificially synthesized oligonucleotide sequence	
<400>	18	

ccggtt	cacc atctccagag acaattccaa gaacacgctg tatctgcaaa tgaacagcct	60
gagagc	cgag gacacggccg tatattactg tgcgaaagag agc	103
<210><211><211><212><213>	19 87 DNA Artificial	
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400> ggagac	19 ggtg accagggttc cctggcccca gtagtcaaag gccccgaacc agccactgct	60
ctcttt	cgca cagtaatata cggccgt	87
<210><211><211><212><213>	20 98 DNA Artificial	
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400> tggggc	20 cagg gaaccctggt caccgtctcc tcaggtggag gcggatcgga aattgtgctg	60
actcag	tctc cagactttca gtctgtgact ccaaagga	98
<210><211><212><212><213>	21 79 DNA Artificial	
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400> taagcta	21 acta ccaatgetet gactggeeeg geaggtgatg gtgaetttet eetttggagt	60
cacaga	ctga aagtctgga	79
<210><211><211><212><213>	103	
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400>	22 agtc agagcattgg tagtagctta cactggtacc agcagaaacc agatcagtct	60

ccaaag	ctcc tcatcaagta tgcttcccag tccttctcag ggg	103
<210><211><212><212><213>	23 97 DNA Artificial	
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400> gcttcc	23 aggc tattgatggt gagggtgaaa tctgtcccag atccactgcc actgaacctc	60
gagggg	accc ctgagaagga ctgggaagca tacttga	97
<210><211><212><212><213>		
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400> tttcac	24 cctc accatcaata gcctggaagc tgaagatgct gcagcgtatt actgtcatca	60
gagtag	tagt ttaccgatca ccttcggcca	90
<210><211><211><212><213>		
<220> <223>	An artificially synthesized oligonucleotide sequence	
<400> attgcg	25 gccg cttatcactt atcgtcgtca tecttgtagt ctttaatctc cagtcgtgtc	60
ccttgg	ccga aggtgatcgg taaactacta ctc	93
<210><211><212><213>	26 26 DNA Artificial	
<220> <223>	An artificially synthesized primer sequence	
<400>	26 tcca ccatggagtt tgggct	26

```
<210> 27
<211> 26
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence
<400> 27
ggagacggtg accagggttc cctggc
                                                                     26
<210> 28
<211> 26
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence
<400> 28
tggggccagg gaaccctggt caccgt
                                                                     26
<210> 29
<211> 26
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence
<400> 29
attgcggccg cttatcactt atcgtc
                                                                     26
<210> 30
<211> 35
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence
<400> 30
tcctcaggtg gagaaattgt gctgactcag tctcc
                                                                     35
<210> 31
<211> 36
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence
```

	tcca cctgaggaga cggtgaccag ggttcc	36
010		
<210>	32	
<211>	32	
<212>		
<213>	Artificial	
<220>		
<223>	An artificially synthesized primer sequence	
<400>	32	
tcctca	ggtg aaattgtgct gactcagtct cc	32
<210>	33	
<211>	36	
<212>		
<213>	Artificial	
<220>		
<223>	An artificially synthesized primer sequence	
<400>	33	
Cacaat	ttca cctgaggaga cggtgaccag ggttcc	36
<210>	34	
<211>	32	
<212>		
<213>	Artificial	
<220>		
<223>	An artificially synthesized primer sequence	
<400>	34	
	tcag aaattgtgct gactcagtct cc	32
3		32
<210>	35	
<211>	36	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	An artificially symthogized nation assures	
<223>	An artificially synthesized primer sequence	
<400>	35	
cacaat	ttct gaggagacgg tgaccagggt tccctg	36
<210>	36	
<211>	12	
<212>	PRT	
<213>	Artificial	

```
<220>
<223> An artificially synthesized linker sequence
<400> 36
Arg Ala Asp Ala Ala Ala Gly Gly Pro Gly Ser
               5
                                   10
<210> 37
<211> 60
<212> DNA
<213> Artificial
<220>
      An artificially synthesized primer sequence
<223>
<400> 37
ggacccggga cctcctgcag ctgcagcatc agctctttta atctccagtc gtgtcccttg
                                                                     60
<210> 38
<211> 35
<212> DNA
<213> Artificial
<220>
      An artificially synthesized primer sequence
<223>
<400> 38
ggtcccgggt ccgaggtaca gctgttggag tctgg
                                                                     35
<210> 39
<211> 37
<212>
      DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence
<400> 39
gataagcttc caccatggag tttgggctga gctggct
                                                                     37
<210> 40
<211> 43
<212> DNA
<213> Artificial
<220>
<223>
      An artificially synthesized primer sequence
<400> 40
gtcggatcca ctcacctgag gagacggtga ccagggttcc ctg
                                                                     43
```

<210> 41

<211>	94	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	An artificially synthesized primer sequence	
<400>	41	
gataag	cttc caccatgtcg ccatcacaac tcattgggtt tctgctgctc tgggttccag	60
cctcca	gggg tgaaattgtg ctgactcagt ctcc	94
<210>	42	
<211>	40	
<212>		
	Artificial	
(213)	Altilitial	
<220>		
	An artificially synthesized primer sequence	
	a	
<400>	42	
gtcggai	cca ctcacgttta atctccagtc gtgtcccttg	40