Лабораторная работа №5.6.1

Исследование резонансного поглощения γ - квантов (эффект Мессбауэра)

С помощью метода доплеровского сдвига мессбауэровской лилнии погложения исследуется резонансное поглощение γ -лучей, испускаемых ядрами олова ^{119}Sn в соединении $BaSnO_3$ при комнатной температуре. Определяется положение максимума резонансного поглощения, его величина, а также экспериментальная ширина линии $\gamma_{\rm экc}$. Оценивается время жизни возбужденного состояния ядра ^{119}Sn .

Теоретическая справка

Нуклоны, как электроны могут находиться в основном и возбужденном состояниях. Переход на более низкий энергетический уровень сопровождается возникновение гамма-кванта. Все возбужденные атомы имеют конечную ширину

$$\Gamma \tau pprox rac{h}{2\pi}$$

Ядра атомов могут и поглозать гамма-кванты. Если энергия гаммакванта равна разности между основным и возбужденным состояниями, то атом можно так возбудить(резонансный характер). Проблема возникает из-за того, что часть энергии уносит с собой ядро в качестве отдачи. Энергия отдачи:

$$R = \frac{p^2}{M_{\rm s}} = \frac{E_{\gamma}^2}{2M_{\rm s}c^2}$$

Резонансное поглощение возможно при

$$2R < \Gamma$$

. Для наблюдения нужно воспользоваться эффектом Доплера. Скомпенсируем энергетический сдвиг 2R. Тогда поглощающие и излучающие ядра должны двигаться друг относительно друга со

$$V = c \cdot R/E_{\gamma}$$

Ширина линии испускания складывается из собственной ширины линии и ее доплеровской ширины. Доплеровская ширина:

$$D = \frac{v}{c} \approx \frac{v}{c} E_0$$

$$v = \sqrt{k_{\rm B} T / M_{\rm g}}$$

$$D = 2\sqrt{R k_{\rm B} T}$$

Доплеровская ширина линии значительно превосходит собственную и иногда оказывается больше R.

Процесс поглощения и испускания.

- 1. Энергия отдачи превышает энергию связи ядра в решетке. При этом свзь ядра становится малосущественной и никаких новых явлений не наступает. Большая энергия гамма-квантов.
- 2. При энергии гамма-квантов с E < 1 МэВ энергия отдачи оказывается недостаточной для вырывания ядра из кристаллической решетки, а импульс передается всему кристаллу. Возникают звуковые колебания(фононы).

Испускание и поглощение γ -квантов в твердых телах без рождения фононов называется **эффектом Мессбауэра**. Вероятность эффекта

$$f = \exp{-4\pi^2} < u^2 > /\lambda^2$$

Эффект ограничен областью малых энергий (200кэВ).

Схема установки:

Измерение спектра источника

Цель этого этапа работы — подобрать настройки анализатора импульсов так, чтобыдетектировались только гамма-кванты с энергией 23.8 кэВ, исходящие от источника ^{119}Sn .

Время накопления данных - 5 секунд.

Ширина окна - 0.5 В.

Анализ спектра и настройка анализатора спектра

Цель этого этапа работы — подобрать настройки анализатора импульсов так, чтобы детектировались только гамма-кванты с энергией 23.8 кэВ, исходящие от источника ^{119}Sn .

LU = 2.0 B

UL = 5.0 B

По окончании этого этапа электронная схема нашей установки настроена так, что подсчитываются только гамма-кванты энергиями, соответствующими используемому источнику.

Измерение резонансного поглощения

Необходимо измерить резонансное поглощение для четырёх образцов. Рекомендуется исследовать образцы в следующей последовательности: образец №1 (металлическое олово минимальной толщины), образец №4 (SnO2), затем образцы №2 и №3 (металлическое олово другой толщины). Параметры образцов указаны на столах. Переключение образца производится при неподвижном приводе.

Ход поглотителя 8.77 ± 0.02 мм

Время измерения - 20 сек.

Таблица положений и толщин поглотителей, находящихся в держателе:

Положение держателя	1	2	3	4
Толщина поглотителя (мкм)	100 (Sn)	200 (Sn)	330 (Sn)	SnO2

Измерение фона разными образцами

Первый образец

Амплитуда резонансного поглощения:

$$\epsilon = (11 \pm 2)\%$$

Химический сдвиг:

$$v = (2.4 \pm 0.1)$$
mm/c
 $E = (19 \pm 1) \cdot 10^{-8}$ θ B

Ширина линии:

$$\Gamma = (1.4 \pm 0.2)$$
 mm/c = $(11 \pm 0.5) \cdot 10^{-8}$ θ B

Второй образец

v-, мм/с	I-, частиц/с	v+, mm/c	I+, частиц/с
4.83	400.6	5.16	394.4
4.30	395.3	4.56	394.2
3.59	397.1	3.81	391.1
2.73	398.5	2.93	357.5
1.80	404.9	1.93	372.0
0.64	392.6	0.73	394.8
2.30	402.7	2.47	335.4
2.53	394.0	2.69	337.9
2.06	395.5	2.21	341.8

Амплитуда резонансного поглощения:

$$\epsilon = (16 \pm 3)\%$$

Химический сдвиг:

$$v = (2.4 \pm 0.1)$$
mm/c
 $E = (19 \pm 1) \cdot 10^{-8}$ θ B

Ширина линии:

$$\Gamma = (1.3 \pm 0.2)$$
 mm/c = $(11 \pm 0.5) \cdot 10^{-8}$ θ B

Третий образец

v-, мм/с	I-, частиц/с	v+, mm/c	I+, частиц/с
4.82	208.8	5.12	213.1
4.24	208.7	4.52	212.4
3.45	217.9	3.66	203.3
2.87	213.9	3.07	192.9
1.94	222.3	2.08	193.8
0.98	212.2	1.08	212.9
2.24	210.9	2.40	184.7
2.51	207.8	2.66	179.5
2.21	204.8	2.35	184.5
2.61	212.7	2.79	187.7

Амплитуда резонансного поглощения:

$$\epsilon = (17 \pm 2)\%$$

Химический сдвиг:

$$v = (2.4 \pm 0.1)$$
mm/c
 $E = (19 \pm 1) \cdot 10^{-8}$ θ B

Ширина линии:

$$\Gamma = (1.4 \pm 0.3)$$
 mm/c = $(11 \pm 0.5) \cdot 10^{-8}$ θ B

Четвертый образец

v-, мм/с	I-, частиц/с	v+, mm/c	I+, частиц/с
4.89	780.7	5.22	772.5
3.25	765.4	4.51	776.9
3.69	757.0	3.94	779.1
2.81	760.5	3.00	762.1
1.80	729.6	1.92	735.4
0.87	642.0	0.96	658.0
0.64	593.4	0.73	621.9
1.09	665.9	1.20	684.0
0.55	584.2	0.61	603.4

Амплитуда резонансного поглощения:

$$\epsilon = (26 \pm 2)\%$$

Химический сдвиг = 0.

Ширина линии:

$$\Gamma = (2.2 \pm 0.2)$$
 mm/c = $(17 \pm 0.5) \cdot 10^{-8}$ θ B

Для сравения изобразим все на одном графике.

$$\Gamma_{\text{Teop}} = 3 \cdot 10^{-8} \text{sB}$$

Вывод

Изучили резонансное погложение гамма-квантов в кристаллах олова разной толщины и в образце SnO_2 . При увеличении толщины поглотителя ширина линии поглощения уменьшается, можно более точно определить мксимум поглощения. Для кристалла оксида олова максимум поглощения смещен. Это происходит из-за влияние внутренних магнитный полей электронных оболочек атомов соединения.