לוגיקה ותורת הקבוצות - תרגול 6

מערכת הוכחה לתחשיב הפסוקים

הבא: באופן הבאודרת באופן היכיחים, $Ded\left(\emptyset\right)$, היא הפסוקים היכיחים, הפטוקים היכיחים, חיא הקבוצה האינדוקטיבית

- $W = WFF_{\{\neg, \rightarrow\}} \bullet$
- כאשר: באסיומות, כאשר: האקסיומות, כאשר: $B = A_1 \cup A_2 \cup A_3$

$$A_1 = \{ \alpha \to (\beta \to \alpha) \mid \alpha, \beta \in WFF_{\{\neg, \to\}} \}$$

$$A_3 = \left\{ ((\neg \beta) \to (\neg \alpha)) \to (\alpha \to \beta) \mid \alpha, \beta \in \mathrm{WFF}_{\{\neg, \to\}} \right\} -$$

 $rac{lpha, lpha o eta}{eta}$ קבוצת כלל הניתוק החיסק, כאשר MP הוא כלל הניתוק קבוצת כללי החיסק. $MP\left(lpha, lpha o eta
ight) = eta$ צורת רישום נוספת: $BP\left(lpha, lpha o eta
ight) = eta$

מערכת הוכחה עם הנחות: קבוצת הפסוקים היכיחים מקבוצת פסוקים Σ (הנחות), $Ded\left(\Sigma\right)$, היא הקבוצה האינדוקטיבית מערכת הוכחה עם הנחות: קבוצת הפסוקים היכיחים מקבוצת פסוקים $X_{B\cup\Sigma,F}$

- $\Sigma \vdash \alpha$ נאמר כי α יכיח מ־ Δ ונסמן $\alpha \in Ded(\Sigma)$ אם
- Σ מתוך מתוך סדרת היצירה של פסוק α מעל $Ded\left(\Sigma\right)$ מעל מעל פסוק סדרת היצירה של פסוק α
 - . או $\Sigma=\emptyset$ או הנחות), קבוצת הפסוקים היכיחים (ללא הנחות). $\Sigma=\emptyset$

משפט הנאותות ועקביות

 $\Sigma \models \alpha$ אז $\Sigma \vdash \alpha$ אז $\Sigma \vdash \alpha$ מתקיים, אם $\Sigma \vdash \alpha$ מתקיים, לכל קבוצת פסוקים כל מתקיים, אם $\Sigma \vdash \alpha$ אז $Con\left(\Sigma\right) = \left\{\alpha \in \mathrm{WFF}_{\{\neg, \rightarrow\}} \mid \Sigma \vdash \alpha\right\}$ סימון: $\Sigma \vdash \alpha$ אז $\Sigma \not\vdash \alpha$ אז $\Sigma \not\vdash \alpha$ אז $\Sigma \not\vdash \alpha$ מסקנה ממשפט הנאותות: אם $\Sigma \not\vdash \alpha$ אז $\Sigma \not\vdash \alpha$

 $\models \alpha$ אז $\vdash \alpha$ משפט הנאותות הצר: אם

עקביות

. $\Sigma \vdash \neg \alpha$ גום $\Sigma \vdash \alpha$ כך ש־ $\alpha \in \mathrm{WFF}_{\{\neg, \to\}}$ היא א עקבית אם א $\Sigma \subseteq \mathrm{WFF}_{\{\neg, \to\}}$ כך ש־ $\alpha \in \mathrm{WFF}_{\{\neg, \to\}}$ וגם $\Sigma \vdash \alpha$ וגם $\Sigma \vdash \alpha$ אם משפט 1 (הגדרה שקולה): $\Sigma \vdash \alpha$ עקבית אמ"מ קיים פסוק α כך ש־ $\alpha \vdash \alpha$.

איך מראים שקבוצה Σ היא עקבית?

 $.\alpha\notin Ded\left(\Sigma\right)$ כלומר , $\Sigma \nvdash \alpha$ עד מסוק פסוק להראות די להראות, השקולה, בי לפי ההגדרה לפי לפי להראות, די להוכיח המשפט הנאותות, די להוכיח כי $\alpha\notin Con\left(\Sigma\right)$

. היא עקבית $\Sigma=\{p_i o p_{i+1} \mid i \in \mathbb{N}\}=\{p_0 o p_1, p_1 o p_2, \dots\}$ היא הוכיחו כי הקבוצה בית הוכיחו כי הקבוצה

משפט 2: אם Σ ספיקה אז עקבית.

:2 תרגיל

נגדיר סדרה של קבוצות פסוקים:

$$\Sigma_{0} = \{\neg p_{0}\}\$$

$$\Sigma_{1} = \{p_{0}, \neg p_{1}\}\$$

$$\Sigma_{2} = \{p_{0}, p_{1}, \neg p_{2}\}\$$

$$\vdots$$

 $\Sigma_i = \{p_0, p_1, \dots, p_{i-1}, \neg p_i\}$ באופן כללי

- Σ_i עקבית? עקבית לכל לכל מתקיים ש
 - ? עקבית $\bigcup_{i\in\mathbb{N}}\Sigma_i$ עקבית 2
 - עקבית? עקבית: האם $\bigcap_{i\in\mathbb{N}}\Sigma_i$
- 4. תהי $\emptyset
 eq X$ קבוצת קבוצות פסוקים. ההי עקבית, אז $X \neq \emptyset$ היא עקבית. הוכיחו: אם לכל $\Sigma \in X$ מתקיים ש

משפט השלמות

 $.\Sigma \vdash \alpha$ אז $\Sigma \models \alpha$ אם כסוקים פסוקים וקבוצת פסוק לכל לכל משפט האלמות: $.\Sigma \vdash \alpha \Leftrightarrow \Sigma \vdash \alpha \Leftrightarrow \Sigma \vdash \alpha$ בצרוף משפט הנאותות נקבל כי

 $.\Sigma \not\models \alpha$ אז א, $\Sigma \not\vdash \alpha$ אם מסקנה ממשפט משלמות:

 Σ אז עקבית אז עקבית אס Σ אם בפוקים ספיקה. לכל לכל קבוצת לכל עקבית אמ"מ עקבית נקבל נקבל בצרוף משפט 2 נקבל כי Σ עקבית אמ"מ עקבית אמ"מ

. WFF $_{\{\neg,\rightarrow\}}$ מעל הפסוקים המחשיב הדשה חדשה הוכחה מערכת נגדיר בי נגדיר ו

• קבוצת האקסיומות מכילה את הפסוקים מהצורה הבאה:

,
$$\alpha,\beta,\gamma\in\mathrm{WFF}_{\{\neg,\rightarrow\}}$$
 לכל

$$\alpha \to (\beta \to \alpha) : A_1$$
 -

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) : A_2$$
 -

• כללי היסק:

$$MP(\alpha, \alpha \to \beta) = \beta$$
 -

(יוגדר בהמשך)
$$MV$$
 –

. במערכת החדשה Σ במערכת יכיח שפסוק את א $\Sigma \underset{N}{\vdash} \alpha$ במערכת החדשה נסמן ב

$$.MV\left(lpha
ightarrow(eta
ightarrowlpha)
ight)=lpha$$
 נגדיר.

הוכיחו/ הפריכו: המערכת החדשה שלמה.

 $.\Sigma \vdash_N \alpha$ אז $\Sigma \vDash \alpha$ אם , $\alpha \in \mathrm{WFF}_{\{\neg, \to\}}$ ולכל פטוק ולכל בסוקים בסוקים המוקים בכלומר, כלומר, אוב

$$\Sigma = \{ p_i \to p_{i+1} | i \in \mathbb{N} \} = \{ p_o \to p_1, p_1 \to p_2, \dots \}$$
$$\Sigma \nvDash \alpha \alpha = \neg (p_0 \to p_o)$$
$$\alpha \Sigma$$

$$\overline{V_T}(p_i \to p_{i+1}) = TT_{\to}(V_T(p_i), V_T(p_{i+1}))$$
$$TT_{\to}(T, T) = T$$

$$V_T(\alpha) = F\Sigma V_T$$

$$\Sigma \nvdash \alpha \Leftarrow \Sigma \nvdash \alpha$$

$$\Sigma \Leftarrow$$

$$\overline{V}(\neg(p_0 \to p_0)) = Fv \vDash \Sigma v \Sigma$$

$$\Sigma \forall \neg(p_0 \to p_0) \underset{\text{neotut}}{\longleftarrow} \Sigma \nvDash \neg(p_0 \to p_0)$$

$$\begin{split} &\Sigma_0 = \{\neg p_o\} \\ &\Sigma_1 = \{p_0, \neg p_1\} \\ &\Sigma_2 = \{p_0, p_1, \neg p_2\} \\ &\vdots \end{split}$$

$$\Sigma_i = \{p_0, p_1, \dots, p_{i-1}, \neg p_i\}$$

$$\Sigma_{i}i$$

$$\bigcup_{i\in\mathbb{N}}\Sigma_{i}$$

$$\bigcap_{i\in\mathbb{N}}\Sigma_{i}$$

$$X \neq \emptyset$$

$$\bigcap X\Sigma\Sigma \in X$$

$$V_i(p_k) \begin{cases} F & k = i \\ T & k \neq i \end{cases}$$

$$p_0, \neg p_0 \in \bigcup_{i \in \mathbb{N}} \Sigma_i p_0 \in \Sigma_1 \neg p_o \in \Sigma_0$$

$$\bigcup_{i \in \mathbb{N}} \Sigma_i \vdash \neg p_0 \bigcup_{i \in \mathbb{N}} \Sigma_i \vdash p_0$$

$$\bigcup_{i \in \mathbb{N}} \Sigma \neg p_0 p_0 \bigcup_{i \in \mathbb{N}} \Sigma_i$$

$$\bigcap_{i \in \mathbb{N}} \Sigma_i = \emptyset$$

$$\bigcap X \vdash \alpha\alpha \in \mathrm{WFF}_{\{\to,\neg\}}$$

$$\bigcap X \subseteq \Sigma\Sigma X \neq \emptyset$$

$$\Sigma\Sigma \vdash \alpha$$

$$MV(\alpha \to (\beta \to \alpha)) = \alpha \\ \Sigma \vdash_N \alpha \Sigma \vDash \alpha \alpha \in \mathrm{WFF}_{\{\neg, \to\}} \Sigma \subseteq \mathrm{WFF}_{\{\neg, \to\}}$$

$$\Sigma \mathrel{\mathop{\vdash}}_N \alpha \Sigma \vDash \alpha \alpha \Sigma$$

$$(A_1)\alpha \to (\beta \to \alpha)$$

 $(MV(1))\alpha$

$$\alpha\Sigma \vDash \alpha$$