Roll No: 41163

Title: Implement basic logic gates using McCulloch-Pitts or Hebb net neural networks.

Problem Statement: Implement basic logic gates using McCulloch-Pitts or Hebb net neural networks.

Objective:

- To understand the concept of an artificial neuron.
- To implement McCulloch-Pitts network.

Outcome:

• Understood and implemented McCulloch-Pitts network.

Software Requirements:

- 1. Jupyter Notebook
- 2. Python 3.8.5
- 3. 64 bit OS

Hardware Requirements:

• Machine with 64 bit processor

Theory:

The first computational model of a neuron was proposed by Warren McCulloch (neuroscientist) and Walter Pitts (logician) in 1943.

The neuron is divided into two parts. The first part, g takes an input and performs an aggregation and based on the aggregated value the second part, f makes a decision.

$$g(x_1, x_2, x_3, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^{n} x_i$$

$$\begin{aligned} y &= f(g(\mathbf{x})) = 1 & if & g(\mathbf{x}) \geq \theta \\ &= 0 & if & g(\mathbf{x}) < \theta \end{aligned}$$

Boolean Functions using M-P neuron:

For Boolean functions structure M-P neurons is simple. Aggregate function calculates sum of all inputs, if sum is more than threshold, the neuron fires.

1. AND Function:

An AND function neuron would only fire when all the inputs are ON i.e., $g(x) \ge$ number of input features.

2. OR Function:

An OR function neuron would only fire when any of the inputs is ON i.e., $g(x) \ge 1$.

3. NOT Function:

A NOT function neuron would only fire when input is OFF i.e., g(x) = 0.

4. NOR Function:

A NOR function neuron would only fire when all the inputs are OFF i.e., g(x) = 0.

Test Cases:

Operations	Input	Expected O/P	Actual O/P	Result
AND	0,0,0	0	0	Successful
	0,0,1	0	0	
	1,1,0	0	0	
	1,1,1	1	1	
OR	0,0	0	0	Successful
	0,1	1	1	
	1,0	1	1	
	1,1	1	1	
NOT	0	1	1	Successful
	1	0	0	
NOR	0,0	1	1	
	0,1	0	0	Successful
	1,0	0	0	
	1,1	0	0	

Conclusion:

Therefore, successfully implemented basic logic gates using McCulloch-Pitts neural network.