INDEX

accelerometer measurement, 300 ammonia (NH₃) sensing, 357–358 active antenna modules, for energy-efficient amplifier-mixer-filter (AMF) cell, 424, 428, off-body communication systems, 434-435, 440-443 analog to digital converter (ADC), 440 261-313 analog identifier, 344 active antennas, full-wave/circuit co-design paradigm for energy-efficient, analytical models, 280 270-273 anatomical tissue models, 96 active wearable antennas, 262, 269–273 animal testing, for wireless capsule endoscopy, 183-187 adaptive antenna system, with frequency reconfigurability, 105-110 antenna configurations, fabricating on flexible latex substrate, 68–69 adaptive capsule system, 106-107 antenna deformations, 9-11, 76-79 adaptive systems, frequency reconfigurable, antenna designs, 129-130, 174-183. adaptive tuning network, 109-110 See also capsule antenna design; additive manufacturing technique, 351 circularly polarized; tag antenna AMC-backed antennas, 74. See also design artificial magnetic conductor (AMC) conformal capsule, 129-130 AMC-backed flexible near-endfire wearable external, 175, 189-192, 198-199 antennas, 61-84 at 4 GHz band, 192-199 AMC-backed near-endfire antennas, for at 434 MHz band, 187-189 on-body communications, 64–68 for head implants, 161–162 AMC metasurfaces, 74 implant, 174 AMC reflector surfaces, 69 for medical diagnostics/sensing, AMC surface, 65-68, 84 87 - 130

Electromagnetics of Body-Area Networks: Antennas, Propagation, and RF Systems, First Edition. Edited by Douglas H. Werner and Zhi Hao Jiang.

^{© 2016} The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.

antenna designs (Continued)	conformal wearable, 29
of metasurface-enabled compact	crumpled, 16
wearable antennas, 29–31, 34–37	dipole, 162, 164, 167–168, 324–325
on-body, 97	dual-mode, 152–156
RFID capsule, 113	electrically large, 322–323
suitability of, 47–55	end-fire, 244–246
for wireless medical implantable	endfire radiation wearable planar, 84
devices, 91–95	epidermal, 319–348
WMTS, 94, 97–103	filtering, 29
antenna design strategies, 127	high permittivity periodic structure
antenna efficiency, specific absorption rate	loaded dipole, 191
and, 74	implantable/ingestible, 90–97, 129–130
antenna efficiency evaluation, 11–15,	integrated, 30, 32, 45
140–143	interaction with lossy human body, 328
antenna fabrication procedure, 2–5	isotropic, 282
antenna freezing, 19	loop, 162, 164–165, 167–168, 324–325,
antenna gains, 6	363–364
antenna impedance, 112–114	low-profile near-endfire, 63
antenna modeling, 280	as microfluidic-tunable elements,
antenna models, human body and	362–363
performance of, 225	microstrip patch, 28
antenna modules, active, 261–313	off-body, 230
antenna performance, 52–55	for off-body communications, 222–230
frequency range in, 135–156	on-body, 233–235
human body and, 225–227, 230	for on-body propagation, 231–248
three-layered model and, 195–196	patch, 47–49, 222–230, 288, 305, 355
antenna performance assessment, 21,	planar inverted-F, 28
47–55, 63	planar monopole, 28, 30
under bending deformation, 76–79	radiation patterns of, 50–51, 53–55,
in free space, 69–72	71–72, 74–76, 155–156, 194,
on voxel model, 72–76, 78	196–197, 226–227, 246, 284–285,
antenna prototypes, 79–81, 82–83	288, 308–309
antenna radiation vector, 285	surface wave, 28
antenna requirements, for off-body	textile, 1–21, 227–230
communications, 225	transmitting and receiving, 281
antennas, see adaptive antenna system; coil	wearable, 2–3, 27–55, 61–84, 135–156,
antennas; CP filtering antennas;	233
epidermal antennas; head antennas;	for wireless capsule endoscopy, 162–187
implanted antennas; PIFA antenna;	in wireless implantable neuroprobe
textile antennas; Yagi antennas	microsystem, 187–201
AMC-backed, 74	woodpile EBG-based, 234–235
AMC-backed near-endfire, 64–68	antenna safety limit, 18
aperture-coupled patch head, 192–198	antenna selection, in signal processing, 267
body-centric, 1–2	antenna simulation, 5–6
bow-tie head, 192, 195, 198–199	antenna size, efficiency and gain vs.,
circularly polarized, 175–176, 178,	324–326
181–185	antenna size reduction, 354
conformal meandered offset dipole,	antenna surfaces, planar Yagi, 69
100–101	antenna under test (AUT), 6, 16–17

aperture-coupled patch head antenna, 192–198	bio-telemetry systems, antenna design and, 89–90
aperture-coupled shorted patch antenna, 305	bit error rate (BER), 262, 268-269, 280,
applications	287–289. <i>See also</i> BER
of RFID epidermal tags, 341-346	characteristics; MIMO BER
of sensors and smart skins, 351-371	characteristics
for wearable antennas, 295–311	calculating, 275–276
artificial magnetic conductor (AMC), 63.	body-absorbed radiation, 72, 74
See also AMC	body area networks (BANs), 27, 405–406,
attenuation, simulated, 167-173	485, 487–488. See also BAN;
attenuation measurements, 166-173	on-body
	progress in, 248
BAN communication systems, frequency	textile antennas for, 1–21
bands for, 27–28. See also body area	body-centric antennas, 1-2
networks	body-centric communications, 261
bandpass filter (BPF), 28–29, 37, 41–42.	body-centric MIMO channels, 273–295.
See also BPF circuits; Chebyshev	See also multiple-input
BPF	multiple-output (MIMO)
bandwidth extended design, of	communication
metasurface-enabled compact	body-centric systems, 233
wearable antennas, 34–37	body-centric wireless communications,
bandwidth tuning, 430–433	applications for, 135–136
bandwidth variation, 432	body-centric wireless communication
baseband simulation, of data transmission,	systems, 126, 312
286–287	body channel communication (BCC),
basic restrictions (BRs), 219, 221	376–377, 381, 384–388
batch fabrication processes, 115–117	body dual polarized antennas, 287–289
battery operated devices, 473–474	body fluids monitoring, 360
bending deformation, antenna performance	body-matched tags, 117
under, 76–79	body movement, influences of, 143–149
bending models/studies, 9-10	body sensor networks (BSNs), 61
bending radius, 77	wearable wireless, 299, 303–304
BER characteristics, 278–279, 293–295.	body-worn networks, N-node, 298–300
See also bit error rate	body-worn textiles, 61–62
bidirectional Yagi antennas, 65	bow-tie head antenna, 192, 195, 198-199
binary frequency shift keying (BFSK),	BPF circuits, 43. See also bandpass filter;
440	stripline BPF circuit
binary phase-shift keying (BPSK),	brain–machine interface system, 127–128
287–288, 290–293	BreathTaking application, 456–457
biofuel powered devices, energy harvesting	bulk acoustic wave (BAW) resonators,
from, 481	411–413
biosensors, see nano-biosensors	Butterworth-Van Dyke model, 412
bio-signals, 152	•
bio-tags	CAD (computer aided design) tools, 282
planar fat-type folded dipole, 119–121	calculated electric field distributions,
RFID, 118–119, 124–125, 130	150–151
bio-telemetry, 161	calculation models, 136-139
antenna design and, 87	calibrated dual-loop epidermal sensor,
bio-telemetry connecting, 129–130	341–342

calibration, of personal distributed	for planar fat-type folded dipole bio-tag,
exposimeter, 308–309	119–121
canonical tissue models, 96	circuits, see BPF circuits; full-wave/circuit
capacitors (C_{ltc}), 435–437. See also LC	co-design paradigm;
DCO; LC VCO; MIM	microwave-circuit-integrated
(metal-insulator-metal) capacitors	wearable filtering antennas; printed
capsule antenna design	circuit board (PCB) layout; stripline
conformal, 129–130	BPF circuit
RFID, 113	harvesting, 364–365
for through-body RF transmission,	receiver, 365
179–181	RF-DC conversion, 366, 368
capsule antenna orientations, 178, 183	for wireless body area networks,
capsule antennas, 183	375–402
capsule endoscope system, 160, 162–187	circularly polarized (CP) antenna, 175-176.
capsule endoscopy, antennas for wireless,	See also CP
162–187	with through-body RF transmission,
capsule insertion, for wireless capsule	178, 181–185
endoscopy, 184–187	circularly polarized wearable filtennas, 29
capsule package, 175	synthesis of narrowband, 37–41
capsule systems, 97–110, 128–129	synthesis of wideband, 41–46
adaptive, 106–107	clock synthesis, 426–428
carbon nanomaterial-based sensors,	CNT-based DMMP sensor, 359–360.
358–360	See also carbon nanotubes
carbon nanotubes (CNTs), 352. See also	coaxial probes, open-ended, 212
CNT-based DMMP sensor	coil antennas, 174
carbon-silicate phantoms, 211	internal, 171–173
cardiac recordings, 449–450	coils, transmitter and receiver, 106–109
cascode biasing, 399	commercial textiles, for textile antennas,
catalyst inks, inkjet printing of, 352–353	4–5
CDF correlation properties, 292. See also	communication channels, frequency
cumulative distribution function	dependence of, 136–142
channel characterization, for wireless	communication systems
capsule endoscopy, 168–173	body-centric wireless, 312
channel matrix, 274	power-efficient, 312–313
channel measurements	communication theory, 105
on-body, 241–244	compact planar dipole external antenna,
for through-body RF transmission,	189–191
178	compact sensor node designs, 389-400
channel models, correlated, 312	complex signal demodulation (CSD),
channel responses, 282–284, 286	462–463
with Matlab model, 283–284	composition/fabrication method, for solid
Chebyshev BPF, 43–44. See also bandpass	skin-equivalent phantoms, 217–218
filter	concurrent dual-band operation, in MBAN
circuit fabrication, with inkjet-printed	hub design, 381–383
masking, 365–366	conducting materials, inkjet printing of, 352
circuit/full-wave co-design paradigm, for	conductive polymer-based sensors, 357–358
energy-efficient active antennas,	conductive textiles/foils, 2–3, 18, 20–21
271–273	conductivity, equivalent, 3
circuit models, 40, 43-44	conformal capsule antenna design, 129–130

conformal meandered offset dipole antenna	design paradigms, for energy-efficient
(CMODA), 100–101	active antennas, 270–273
inverted conical helical antenna vs.,	design strategies, for textile antennas, 5–20
101–105	deterministic, 280
conformal RFID tag, 118. See also radio	deterministic models, 273, 280-289
frequency identification	device flexibility, 62
conformal wearable antennas, 29	diagnostic capsule systems, 128-129
contact-less sensing, 448	dielectric materials, inkjet printing of,
continuous-wave (CW) methods,	352–354
457–463	dielectric properties
conventional radios, WBAN systems and,	of human phantoms and tissues,
407–408	211–213
co-planar waveguide (CPW) line, 19	measured, 216–218
co-polarization, 171–172	diffracted fields, 33–34
copper foil tape, 3	diffraction, 283
correlated channel model, 312	digital baseband, 416-418
co-simulations, on-body, 6–9	digitally controlled oscillator (DCO),
coupling gap change, 114–115	377–381, 393. See also FBAR DCO
coupling matrix technique, 43	digital signal processing techniques, 467
coupling parameter, 39–40	dimethyl methylphosphonate (DMMP),
CP filtering antennas, 37–38, 40, 46.	359
See also circularly polarized;	dipole antennas, 162, 164, 167–168,
narrowband CP filtering antenna;	189–192, 324–325
wideband CP filtering antenna	distributed exposimeter, 263–264, 304–311
performance of, 41	distributed sensor networks, wearable,
CP radiation patterns, 50–51, 53–55	295–304
cross-correlation values, 277–278	diversity/MIMO systems, signal processing
cross-polarization, 171–173	techniques in, 266–269
crumpled antennas, 16	diversity/MIMO techniques, for off-body
crumpling models, 11–12	wireless channels, 264–269. See also
crystal-less sensor nodes, 379–381	multiple-input multiple-output
crystal oscillator (XO), 377, 408	(MIMO) communication
CST MWS voxel model, 84	diversity technique, 149
cumulative distribution function (CDF),	Doppler radars, 467–468
267–268, 303–304. See also CDF	Doppler radar systems, 457–459
correlation properties	Doppler shift, 264–265
cylindrical skin models, 239–240	double-layered AMC, 67-68. See also
	artificial magnetic conductor
database calculation, 282	drug delivery, 346
data communication, 481–484	drug release, 338
data forwarding, 263	drying/washing cycles, 20
data inversion curves, 345	dual-band hub, 381–383
data telemetry applications, 129	dual-band hub transceiver, 383–389
data transmission, baseband simulation of, 286–287	dual-loop epidermal sensors, calibrated, 341–342
Debye model, 214	dual loop tag, 328-329
extrapolation from, 212-213	performance of epidermal, 328-335
deformations, 9–11	dual-mode antenna, 152-156
deformation studies, 63	dual-polarized patch antennas (DPPAs), 288

duty cycling, 407–408	endfire radiation wearable planar antennas,
dynamic human body model, 136, 143–149	84
	endoscope systems, capsule, 160, 162–187
ECG (electrocardiogram) sensor, 401,	endoscopy diagnostics, 97–103
461–462	energy-efficient active antennas,
effective isotropic radiated power (EIRP),	full-wave/circuit co-design paradigm
160, 296, 322, 381	for, 270–273
efficiency, antenna size vs., 324–326.	energy-efficient MBAN hub design,
See also radiation efficiency; RF-DC conversion efficiency	381–389. <i>See also</i> medical body area network (MBAN)
efficiency evaluation, for antennas, 11–15,	energy-efficient off-body communication
140–143	systems, wearable active antenna
<i>E</i> -field distributions, 144. <i>See also</i> electric	modules for, 261–313
field; E-plane	energy harvesting, 472
E-field intensities, 140	for wearable antennas, 364
electrically large antennas, 322–323	energy harvesting devices, 488
electric field, 150, 151. See also	regenerative, 478–481
E-field	energy harvesting technologies, 485
spectral-domain, 240–241	envelope correlation, 292–293
electric field distributions, 139–140, 143,	environment, influences of, 142–143
150–151	environmental conditions, aging and
calculated, 142, 144	varying, 18–20
electromagnetic band gap (EBG), 222.	environmental drawing, 282
See also woodpile EBG-based	epidermal antennas, 347
antennas	examples of, 320
electromagnetic coupling, 223	radiation performance of, 322–328
electromagnetic (EM) applications	as sensors, 327
(electromagnetics), 110–114.	for tracking and sensing, 319–348
See also 3D EM solvers	epidermal devices, 319, 335
antenna design and, 87-89	radiation performance vs. trace
electromagnetic energy harvesters, 480	conductivity in, 326–327
electromagnetic fields, 474–477	epidermal membranes, functionalized,
electromagnetic propagation, 172–173.	335–341
See also on-body propagation	epidermal radiators, 347
performance of, 245–246	epidermal RFID dual-loop tag, performance
electromagnetic ray tracer, 282-283	of, 328–335
electromagnetic sensing systems, 449-451	epidermal RF thermometer, 341-342
non-invasive, 451	epidermal sensors, calibrated dual-loop,
electronic stirring, 13	341–342
electrospinning, 336–337	epidermal tags, 347
embedded software, 296	layout of, 329-330
"EME Spy 140," 307–310	prototypes and on-skin performance of,
empirical models, 280	330–332
end-fire antennas, 244	sensing applications of, 341–346
wearable, 245–246	E-plane, 30-31, 34-36. See also
endfire gain, 70-71, 83-84	<i>E</i> -field
endfire radiation, 65. See also	equivalent conductivity, 3
near-endfire	evaluation, for textile antennas, 5–20

evaluations	FET sensor concept, 129
antenna efficiency, 11–15	filtering antennas (filtennas), 29, 37–46.
experimental, 6–9	See also LP (linearly polarized)
experimental evaluations, 6–9	filtering antennas
experimental phantoms, 213-218	circularly polarized, 29
exposimeters	fabricated, 51
distributed, 263–264, 304–311	integrated, 45
personal, 305	microwave-circuit-integrated wearable,
personal distributed, 305, 307–311	37–46
exposimeter system design, 305–306	performance of, 41
exposure limits/guidelines, 218–222	finite-difference time-domain (FDTD)
external antenna design, 175, 189–192,	method/technique, 5, 96, 136, 138,
198–199	235–236
external antennas, 189–192, 198–199	finite element method (FEM), 5, 96
wideband sleeve monopole, 191–193	finite integration technique (FIT), 5
extravehicular activity (EVA) suit, 206–207	FIR (finite impulse response) filtering,
() ====	439–440
fabricated filtering antenna, 51	flat skin models, 237–239
fabricated textile antennas, 228–230	Flectron electrotextile, 18–20
fabrication procedure, for textile antennas,	fleece, polyester, 4
4–5	flexible latex substrate, antenna
fabrication process types, 18–19	configuration fabrication on, 68-69
fabrication technology, inkjet printing in,	flexible microfluidics, 361
354	flexible near-endfire wearable antennas,
fabric water-proofing, 20	AMC-backed, 61-84
fading, 264–265. See also fast fading	flip-chip CW radar sensor, 462
separation from shadowing, 274	fluid loss monitoring, 343–345
fading characteristics, in simulated	fluid permittivity, 361
attenuation, 168–169	foils, conductive, 2–3
far-field RFID tags, 117-118. See also radio	folded dipole bio-tag, planar fat-type,
frequency identification	119–121
fast fading, 148	4 GHz band, antenna designs at, 192–199
fat-dipole bio-tag, 119–121	434 MHz band, antenna designs at, 187–189
fat-type planar folded dipole, 119–121	free space, antenna performances in, 69–72
FBAR-based pseudo-lattice network,	free-space experiments
428–430. See also thin-film bulk	with metasurface-enabled compact
acoustic resonators	wearable antennas, 34
FBAR-based radios, 413	with microwave-circuit-integrated
FBAR-based RF front end, 428-437	wearable filtering antennas, 46
FBAR-based RX, 443	frequency bands, 159–160
FBAR-based TX, 420-424	for BAN communication systems, 27–28
FBAR-based TX architecture, 413–414	in data communication, 483–484
FBAR DCO, 413–419, 421, 425–427, 440.	frequency calibration techniques, 379–381
See also digitally controlled	frequency dependences, 142, 147–148
oscillator	of communication channels, 136–142
FB ratio, 47–48	frequency detuning, 72–74
Federal Communications Commission	frequency domain plot, 455
(FCC) requirements, 62	frequency modulated continuous wave
feeding loop length, 114–115	(FMCW) method, 460
· • •	

frequency ranges	harvesting receivers, wearable, 367–368
in antenna performance, 135–156	head antennas
parameters for, 139	primate demonstration for, 199-201
frequency reconfigurability, with adaptive	for wireless implantable neuroprobe
antenna system, 105–110	microsystem, 187-190, 192-198,
frequency reconfigurable adaptive system,	199–201
107	head implants, antenna design for, 161–162
frequency retuning, 334	health monitoring applications, 7
frequency selective surface (FSS)	heating kinetics technique, 212
coverings, 29	high frequency, in data communication,
frequency-shift keying (FSK), 296, 381,	483–484
397, 398	high frequency power transfer, 475–476
frequency stirring, 13	high permittivity periodic structure (HPPS),
frequency synthesis, receiver architecture	189–190, 192
and, 425–428	high-resolution human body model,
frequency tuning, 433–434	154–155
full-wave/circuit co-design paradigm, for	home base station, 89–90
energy-efficient active antennas,	homogeneous phantoms, 207
270–273	H-plane, 30–31, 33–36
full-wave models, of on-body propagation,	hub transceiver, dual-band, 383–389
236–241	HUGO human body model, 51–52, 55
full-wave solvers, 96	human–antenna interaction, 88, 328
fully integrated on-body PDE, 313. See also	human body
personal distributed exposimeter	antenna interactions with, 88, 328
functionalized epidermal membranes,	patch antenna array for, 225–227
335–341	tag characterizations on, 121–124
333-341	wearable antennas mounted on, 136–142
gain, 70-71. See also endfire gain	human body communication (HBC) band,
antenna size vs., 324–326	376
realized, 344	
	human body models, 49–52, 55, 101, 137–138, 150, 207–222
trace width vs., 326	
gain antennas, 6	dynamic, 136, 143–149
gain measurements, 83–84	high-resolution, 154–155
gap coupling, 114–115	walking, 146
Gaussian frequency-shift keying (GFSK), 296	human body phantoms, 155, 207–211, 248–249
Gaussian minimum shift keying (GMSK),	dielectric properties and measurement
296	techniques for, 211–213
gel phantoms, 208	numerical and experimental, 213–218
geometrical optic (GO) fields (GOFs),	propagation along, 241–242
33–34, 237–239	propagation around, 242–244
geometrical theory of diffraction (GTD),	skin-equivalent, 225–226, 229–230
29, 33–34	human tissues
global connectivity, 87	dielectric properties and measurement
1 1 1 210	
glycerin phantom, 210	techniques for, 211–213
graphene oxide (GO), 359	permittivity of, 138
graphene oxide (GO), 359	permittivity of, 138 human vital data acquisition system,

ideal power transmission efficiency,	inkjet-printed sensors, 356–357
140–143, 146	inkjet-printed smart skins, applications of,
IETR, University of Rennes, 222	351–371
IF (intermediate frequency) amplifier,	inkjet printing, multilayer, 352-356
390–392	inkjet-printing technologies, 365–366
IIR (infinite impulse response) filtering, 439	input power estimation, 366–368
impedance, 112–114	integer-N approach, 425–428
mutual, 141	integrated antennas, 30, 32, 45
impedance control, 114-115	interdigital capacitance, 35
impedance matching, 141, 181, 200	interface systems, brain-machine, 127-128
in coil antennas, 174	intermediate frequency (IF), 413-414
optimal, 271–272	internal coil antenna, 171
impedance measurement, 120, 122–124	misalignment of, 172–173
implantable devices, see head implants	Internet of Things (IoT), 375
antenna design for wireless medical,	interrogating devices, 341
91–95	inverted conical helical antenna (ICHA),
miniature, 127–128	conformal meandered offset dipole
wireless communication for, 161	antenna vs., 101–105
implantable/ingestible devices, 89–97,	inverted-F antennas, 28
129–130	ISM (industry-science-medical) band, 376
implantable neuroprobe microsystems,	ingestible antenna design at, 110–117
motor prosthesis for wireless,	wireless medical implantable devices
187–201	and, 92–94
implantable sensor node transceiver, 389–394	isotropic antenna, 282
	Lab on a abin (LOC) 260, 261
implant antenna design, 174 implanted antennas, in through-body	Lab-on-a-chip (LOC), 360–361 latex substrate, antenna configuration
communications, 159–201	fabrication on flexible, 68–69
implanted devices, 485	
implanted devices, 463	lattices, <i>see</i> pseudo-lattice network bandwidth tuning in, 430–433
implant node, 401	capacitors (C_{lic}) in, 435–437
implants, telemetry techniques for, 471–488	frequency tuning in, $433-434$
in-body sensors, antenna design and, 89	layered phantoms, 207
indoor environment, modeling, 282–283	LC DCO (inductor-capacitor digitally controlled oscillator), 393. <i>See also</i>
indoor off-body radio propagation channel, 264–265	digitally controlled oscillator
inductive coupling, 474–475 inductively coupled near-field links, 108	LC VCO (inductor-capacitor VCO), 387–388. See also VCO
ingestible antenna designs, 97. See also	LHCP (left-hand circularly polarized)
implantable/ingestible devices	radiation patterns, 50–51, 53–54
at ISM band, 110–117	light-powered sources, 478
link budget vs. SAR for, 101–105	linear-frequency modulated continuous
at WMTS band, 97–103	wave (LFMCW) method, 460
injection-locking DCO (IL-DCO), 379,	line-of-sight (LoS) conditions, 290
389, 391, 394–396. <i>See also</i> digitally	link budget
controlled oscillator	SAR vs., 101–105
injection-locking oscillator (ILO), 379	for wireless capsule endoscopy, 183, 185
inkjet-printed masking, circuit fabrication	link budget calculation, 104–105
with, 365–366	link loss, 184
inkiet-printed microfluidics, 360–364	liquid phantoms, 207–209

listen-before-talk (LBT) protocol, 381	reference measurements, 163-164
local oscillator (LO), 413-414	in RF transmission characterization,
location services, antenna design and, 89	162–168
loop antennas, 162, 164–165, 167–168,	for sensors, 300–301
324–325, 363–364	temperature, 341, 343
loop feeding scheme, 113–114	through-body transmission
low frequency (LF), in data communication,	measurement, 165, 175–183
482–483	measurement results, for Yagi antennas,
low frequency band, wireless medical	79–84
implantable devices and, 91	measurement setup
low-noise amplifier (LNA), 271–272, 384,	for NLoS conditions, 292-293
389, 395–396, 400, 424, 441–442.	for spatial modulation, 291-292
See also Q-enhancement LNA (low	for through-body RF transmission,
noise amplifier)	176–183
low-profile near-endfire antenna, 63	mechanical energy harvesters, 479
LP (linearly polarized) filtering antennas,	mechanical stirring, 12
43–44	medical BAN (MBAN) band, 27-28, 30
	medical body area network (MBAN),
machine-brain interface system, 127-128	375–377. See also MBAN
magnetic current, 33	medical compliance sensing systems,
masking, inkjet-printed, 365-366	110–117
Matlab simulation model, 283–289	medical diagnostics/sensing, antenna design
maximal ratio combining (MRC) technique,	and methodologies for, 87-130
286–287	medical implantable devices, antenna
maximum achievable data rate (MADR),	design for wireless, 91–95
416, 418	medical implant communication services
maximum frequency, defined, 138	(MICS) band, 27–28, 376, 381,
maximum power transmission, 141	383–390
maximum radio combining (MRC)	wireless medical implantable devices
technique, 266	and, 91–92
MBAN hub design, energy-efficient,	medical implant communication services
381–389. See also medical body area	technologies, 159–160
network	medical monitoring/sensing system, 130
MBAN system concept, 377–381	medical non-compliance, 111
MBAN system implementation, 400–402	medicine monitoring schemes, 111
meandered dipole antenna, 100-101	membrane permittivity, 339–340
for head, 187–190	membranes, 335–341
measured dielectric properties, 216–218	hydrogel, 338–341
measured power density, 310–311	scaffold, 336–337
measurement methodologies/techniques,	MEMS (microelectromechanical
see transmitter measurement results	system)-based radios, ultra
for accelerometers, 300	low-power, 405–443
attenuation measurements, 166–173	MEMS (MEM) resonators, 411–413, 443
channel measurement, 178	metallic materials, inkjet printing of,
for four on-body nodes, 300	352–353
for human phantoms and tissues,	metasurface-enabled compact wearable
211–213	antennas, 29–37
path loss measurement, 178–180	assessing performance of, 47–49
for PDE and PEM nodes, 310–311	design of, 28–31, 34–37

free-space experiments with, 34	minimum shift keying (MSK), 296
radiation mechanism of, 31–34	misalignment, of internal coil antenna,
metasurfaces, 29–30, 34–35, 62–63.	172–173
See also AMC metasurfaces	misalignment loss, 173
method of moments (MoM), 5, 236	mixer, 416–418
methodologies, see measurement	quadrature sub-sampling, 437-440
methodologies/techniques	mobile health, antenna design and, 89
for medical diagnostics/sensing, 87-130	modeling framework, for off-body
for numerical	deterministic modeling, 281–282
simulations/characterizations, 95-97	monitoring, of body fluids, 360
for RF transmission measurement,	monitoring/sensing systems, 130
162–168	monolithic microwave integrated circuits
for wireless capsule endoscopy, 97-103	(MMICs), 466
microelectromechanical systems (MEMS),	monopole antennas, 28, 30
see MEMS	wideband sleeve external, 191-193
microfabrication technology, 471	motion, impact on radio propagation
microfluidics, 352	characteristics, 452
flexible, 361	motor prosthesis, for wireless implantable
inkjet-printed, 360–364	neuroprobe microsystem, 187–201
microfluidic-tunable elements, antennas as,	multilayer inkjet printing, 352–356
362–363	multilayer printing process, 355–356
microstrip patch antenna array, 228-230	multiple-input multiple-output (MIMO)
microstrip patch antennas, 28, 222, 355	communication, 262–263, 267–268
Micro-Total-Analysis (µTAS), 360–361	See also body-centric MIMO
microwave-circuit-integrated wearable	channels; diversity/MIMO
filtering antennas, 37–46	techniques; MIMO
free-space experiments with, 46	multiple-input single-output (MISO) links
microwave receiver design, 364–365	293–294
microwave resonators, 361	multipostural realistic human torso
microwaves	phantom, 209
human body models and, 207–211	mutual impedance, 141
off-body communications at, 222	
millimeter-waves, 212–218	nano-biosensors, 128–129
off-body communications at, 222–223,	nanowire arrays, 129
225, 230	narrowband CP filtering antenna, 46
studies at, 207	assessing performance of, 49–52
transceivers for wearable devices at,	narrowband CP filtering antenna synthesis
247–248	37–41
MIM (metal-insulator-metal) capacitors,	near-endfire antennas
inkjet printing of, 353	AMC-backed, 64–68
MIMO BER characteristics, 278–279,	low-profile, 63
294–295. See also bit error rate;	near-endfire wearable antennas,
multiple-input multiple-output	AMC-backed flexible, 61–84
(MIMO) communication	near-endfire Yagi antennas, 65–68
MIMO capacity, 278–279	near-field links, inductively coupled, 108
MIMO systems, 312	network nodes, 300, 313
MIMO techniques, 264–268	PDE and PEM, 306–308, 310–311
MIMO transmission, 274	neural implants, 127–128
miniature implantable devices, 127–128	neural signal acquisition, 199, 201

neuromotor prosthetic devices, 161	off-body wireless channels,
neuroprobe microsystems, motor prosthesis	diversity/MIMO techniques for,
for wireless implantable, 187-201	264–269
N-node body-worn network, 298–300	off-body wireless communication, 261-262
nodes, see network nodes; on-body nodes;	offset dipole antenna, 100-101
sensor nodes; wireless sensor nodes	on-body antenna designs, 97
node-to-node communication, on-body, 303	at UHF bands, 117–125
node-to-node links, reliability of on-body,	on-body antennas, 233–235
300–302	on-body channel measurements, 241–244
non-communicable diseases (NCDs), 405	on-body communications
non-compliance, medical, 111	AMC-backed near-endfire antennas for,
non-conductive textiles, 3-4, 19-20	64–68
non-invasive devices, 471–472	wearable antennas for, 61-84
non-invasive EM sensing systems, 451	Yagi-Uda antennas for, 233-234
non-invasive monitoring system, 457	on-body co-simulations, 6–9
non-invasive physiological detection,	on-body measurement configurations, 8–9
449–466	on-body mode, of dual-mode antenna,
non-invasive sensing, 447–448	152–154
non-invasive technologies, 466–468	on-body nodes, measurements for four, 300
non-line-of-sight (NLoS) conditions,	on-body node-to-node communication, 303
290–293	on-body node-to-node links, reliability of,
non-regenerative power sources, 472–478	300–302
normalized radiation polar plots, 74, 76–79,	on-body to off-body propagation scenario,
81–82	244–246
normalized received open voltages, 145	on-body PDE, fully integrated, 313.
Norton wave, 237–240	See also personal distributed
numerical phantoms, 213-218	exposimeter
numerical simulations/characterizations,	on-body performance, of PDE and PEM
methodologies for, 95-97	nodes, 306–308
numerical skin-equivalent phantom,	on-body propagation, see electromagnetic
213–215	propagation
	analytical for, 236–237
off-body antennas, 230	antennas for, 231–248
off-body communications, 312–313	simplified analyses of, 236
antenna requirements for, 225	with and without textiles, 241-244
antennas for, 222–230	theoretical analysis of, 235-241
wearable antennas for, 27-55	on-body radio channels, 447-468
wireless, 312	on-body sensor network, 263, 297–300
off-body communication system modeling,	on-body sensors/devices, 126-127, 231
280–281	antenna design and, 89
off-body communication systems,	on-body simulations, 54
energy-efficient, 261–313	on-body wearable antennas, 77
off-body deterministic modeling, 280-289	on-body wireless communication, 261
off-body mode, of dual-mode antenna,	on-body wireless links, 249
152–153, 155	on-site battery operated devices, 473-474
off-body propagation, on-body to, 244-246	on-skin performance, of epidermal tags,
off-body radio propagation channels,	330–332
indoor, 264–265	on-skin retuning, 332–335
off-body stochastic modeling, 273–279	on-voxel analysis, 84

open-ended coaxial probe, 212	fluid, 361
open voltages, normalized, 145	of human tissue, 138
operating frequencies, for RFID systems,	of membranes, 339–340
321	personal distributed exposimeter (PDE),
operation tests, 369–370	305, 307–311, 313
optimal impedance matching, 271–272	node performance of, 306–308
optimal simulation strategy, 5–6	wearable, 311
output voltage, measuring, 369	personal exposimeters (PEMs), 305, 313
	node performance of, 306–308
paralysis, care for, 160–161	person-to-person links, 303
patch antenna array, 230	phantom composition, 215–216
for human body, 225–227	phantom electrical properties, 210
microstrip, 228–230	phantoms, see human body phantoms
proximity-coupled, 354–355	phase switching divider (PSD), 414,
patch antennas, 47–49, 223–230	416–417
aperture-coupled shorted, 305	photovoltaic cells, 479–480
dual-polarized, 288	physiological body signals, from on-body
microstrip, 222, 355	radio channels, 447–468
textile, 224	physiological detection, non-invasive,
patch head antenna, 199	449–466
aperture-coupled, 192–198	physiological information parameters, 449
patch radiators, 39, 43	piezoelectric transducers (PZTs), 477
path gain, 243–246	PIFA antenna, wireless medical implantable
path loss, 173, 264	devices and, 92–94. See also planar
in simulated attenuation, 169–171	inverted-F antenna (PIFA) topology
with through-body RF transmission, 176	planar antennas, endfire radiation wearable,
path loss measurement, for through-body	84
RF transmission, 178–180	planar dipole external antenna, compact,
pattern diversity, 288	189–191
PDE calibration, 308–309. See also	planar fat-type folded dipole bio-tag, circuit
personal distributed exposimeter	model for, 119–121
PEM modules, 307. See also personal	planar inverted-F antenna (PIFA) topology,
exposimeters	3. See also PIFA antenna
perfect electrical conductor (PEC), 142–143	planar inverted-F antennas, 28
performance, <i>see</i> radiation performance	planar monopole antennas, 28, 30
assessing antenna, 21, 47–55, 63	planar thin-type folded dipole, 120–121
of CP filtennas, 41	planar Yagi antenna surfaces, 69
of epidermal RFID dual-loop tag,	plane-wave approximation, 282–283
328–335	plaster prototype, 345–346
of PDE and PEM nodes, 306-308	plaster sensor, 343
propagation, 245–246	PLL-based SOTA TX, 422–423
spectral, 455	PLL-based TX, 422–423
of a three-person network, 302–304	PLLs (phase-locked loops), 396–399,
of wearable applications, 47–55,	408–410, 424
135–156	polarization, of transmitting and receiving
permanent magnet–based power transfer,	antennas, 281
476–477	polarization diversity, 288
permittivity, see high permittivity periodic	polarization mismatch, in simulated
structure	attenuation, 171–172

polarization stirring, 12–13	Q (filter quality), 429–433
poli(ε -caprolactone) (PCL), 336–337	Q-enhancement LNA (low noise amplifier).
polyaniline (PANI), 357–358	389, 391, 394
polydimethylsiloxane (PDMS), 217	quadrature amplitude modulation (QAM),
polyester fleece, 4	247
poly(methylmethacrylate) (PMMA), 361	quadrature phase-shift keying (QPSK), 268
polyvinyl acetate (PVA), see PVA/XG	275, 291, 293
membranes	quadrature sub-sampling mixer, 437-440
position stirring, 13–14	
power amplifier (PA), 247	radiating PIFA antenna, wireless medical
power amplifier stage, 416–418	implantable devices and, 92-94.
power density, measured, 310-311	See also planar inverted-F antenna
power-efficient communication systems,	(PIFA) topology
312–313	radiation, body-absorbed, 72, 74
powering, of implants and wearable	radiation characteristics, of implant
systems, 472–481	antennas, 174
power reflection coefficient, 217–218	radiation efficiency (η_{rad}), 14–15, 325,
power sources, non-regenerative, 472–478	327–328, 347
power spectrum/spectral density (PSD),	radiation mechanism, of
454, 456, 464	metasurface-enabled compact
power transfer technology, wireless,	wearable antennas, 31–34
105–110, 471–488	radiation pattern measurements, 81–83, 124
power transmission	radiation patterns, 50–51, 53–55, 71–72,
defined, 141	74–76, 155–156, 194, 196–197,
maximum, 141	226–227, 246, 284–285, 288,
power transmission coefficient, 322	308–309
power transmission efficiency, 140–143,	radiation performance
146	of epidermal antennas, 322–328
prediction models, 312–313	skin spacing vs., 327–328
primate demonstrations, for head antennas,	trace conductivity vs., 326–327
199–201	radiation polar plots, 70–72
printed circuit board (PCB) layout, 296	normalized, 74, 76–79, 81–82
propagation channel response, 282	radio channels
propagation distance, 173	on-body, 447–468
proper polarizations, of dual-mode antenna,	waist-to-chest, 452
153	radio frequency identification (RFID), 89, 92–93, 110–114, 320. <i>See also</i>
prosthetic devices, 472 neuromotor, 161	92–93, 110–114, 320. See also RFID
prototype operation tests, 369–370	
proximity-coupled patch antenna array,	radiofrequency (RF) transmissions, in through-body communications,
354–355	159–201
pseudo-lattice network, FBAR-based,	radio frequency transceivers, 488
428–430	radio propagation channels, indoor
pulse amplitude modulation (PAM), 464	off-body, 264–265
pulse-based radio technologies, 464–465	radio propagation characteristics, impact of
pulse position modulation (PPM), 464	motion on, 452
pure copper polyester taffeta fabric	radios, WBAN systems and, 407–408.
(PCPTF), 3–4	See also conventional radios; ULP
PVA/XG membranes, 338	radios

ray tracer, electromagnetic, 282–283	retuning
ray tracing, 263, 280, 282–283	frequency, 334
read range measurements, 124–125	on-skin, 332–335
realized gain, 344	return loss, 70, 73
real-world measurements, of PDE and PEM	return loss graph, 77-78, 80-81
nodes, 310–311	return loss measurements, 80-81
receive diversity signal processing	reverberation chamber (RC), 11-12, 15
techniques, 266	measurement parameters for, 13
received open voltages, 140-143, 147	RF-based techniques, 450. See also radio
normalized, 145	frequency
received signals, 286–287	RF-DC conversion circuits, 366, 368
received signal strength (RSS), 452, 454.	RF-DC conversion efficiency, 368–370
See also RSS measurements	RF front end, FBAR-based, 428-437
received signal strength-based methods,	RFID bio-capsule tag, 114. See also radio
451–457	frequency identification
received voltage, 151	RFID bio-tags, 118–119, 124–125, 130
receiver architecture, 424–442. See also RX	RFID capsule antenna design, 113
antenna radiation pattern	RFID dual-loop tag, performance of
receiver circuits, 365	epidermal, 328–335
receiver coil, 106–109	RFID epidermal tags, sensing applications
receiver design, 364–365	of, 341–346
receiver measurement results, 440–442	RFID pill tags, 111–112
receivers, filtering in, 441–442. See also	RFID plaster, 345–346
FBAR-based RX; RX antenna	RFID sensors, in epidermal RF
radiation pattern	thermometer, 341–342
receive/transmit diversity, 262	RFID smart-plasters, 348
receiving antennas, 281	RFID systems, operating frequencies for,
receiving coils, 129	321
receiving power level, measured, 166–168	RFID tag antennas, 97, 474
reference levels (RLs), 220–221	conformal, 118
reference measurements, 13–14	far-field, 117–118
in RF transmission characterization,	for patient monitoring, 117–125
163–164	RFID tag design, wireless medical
reflection, 283	implantable devices and, 92–93
reflection coefficients, 15, 18–19	RFID technology, 321–322
reflector surfaces, 69	RF sources, for wireless energy harvesting
regenerative energy harvesting devices,	364
478–481	RF technologies, non-invasive, 448–449
remote monitoring, 448	RF transmission characterization, 162–168
antenna design and, 89–90	See also through-body RF
residual sum of squares (RSS), 243	transmission
resonators, microwave, 361. See also bulk	RHCP (right-hand circularly polarized)
acoustic wave (BAW) resonators;	radiation patterns, 50–51, 53–54
MEMS (MEM) resonators; solidly	ring resonance, 339–340
mounted resonators; split ring	robotic platforms, 201
resonator; stripline open-loop	RSS measurements, 454, 457. See also
resonators; thin-film bulk acoustic	received signal strength
resonators; T-resonator method	RX antenna radiation pattern, 285–286,
retinal prosthesis, 485–487	294. See also receiver

SAR computation, 102–103. See also	shift keying modulation, 296
specific absorption rate	Sigma-Delta modulator (SDM), 408
SAR level, 84	signal generator, 163
SAR measurements, 16	signal processing techniques, 286–287
SAR measurement setup, 227	in diversity/MIMO systems, 266–269
SAR simulations, 15–16	signal-to-noise ratio (SNR), 262, 266,
SAR values, 17, 48–49, 55, 62, 74–77, 103,	268–269, 280, 293–295
304	signal variation phenomena, 264-265
scaffold membranes, 336-337	simulated attenuation, 167-173
scalar channel, 285	simulation models, 155
scalar channel response, 282-284, 286	Matlab, 283–289
selection combining (SC) technique, 266	simulation results, 287–289
self-impedance, 141	simulation strategies, optimal, 5-6. See also
semi-solid phantoms, 208–210	co-simulations
semi-solid skin-equivalent phantom,	simulation tools, 280
215–217	simulator categorization, 5-6
sensing applications, of RFID epidermal	single-input single-output (SISO) channels,
tags, 341–346	267, 276–278
sensing and tracking, epidermal antennas	single-layered AMC, 65-67. See also
for, 319–348	artificial magnetic conductor
sensing/monitoring systems, 130	skin dielectric properties, 213
sensor calibration, 341–342	skin electronics, 319
sensor devices, 61	research on, 347
sensor measurements, 300–301	Skin-equivalent phantoms, 225–226,
sensor networks	229–230
on-body, 297–300	numerical, 213–215
wearable distributed, 295–304	semi-solid, 215–217
sensor node designs, compact, 389-400	solid, 217–218
sensor nodes	skin models
crystal-less, 379–381	cylindrical, 239–240
wireless, 453	flat, 237–239
sensor node transceivers	textile materials in, 240–244
implantable, 389–394	skin spacing, radiation performance vs.,
wearable, 395–400	327–328
sensor positions, 231	sleeve monopole antennas, wideband
sensors, <i>see</i> flip-chip CW radar sensor	external, 191–193
applications of, 351–371	slope diffraction, 33–34
carbon nanomaterial-based, 358–360	SMA connector, 4
conductive polymer-based, 357–358	small-scale fading, 264–265
epidermal antennas as, 327	smart devices, 447
inkjet-printed, 356–357	smart diagnostic capsule system, 128
on-body, 126–127, 231, 447–468	smart electronic systems, 272
plaster, 343	smart fabrics and interactive textiles (SFIT).
wearable, 447	270
wireless, 457, 487–488	smart-plasters
series inductors, 109	RFID, 348
shadowing, 264–265, 273	for wound healing, 342–346
separation from fading, 274	smart shirt, 206
shadowing parameter extraction, 276–278	smart skins, applications of, 351–371
parameter extraction, 270 270	onari omno, applicationo oi, oo i o i i

smart textiles, 261 software, embedded, 296 solidly mounted resonators (SMR), 411-412 solid phantoms, 210-211 solid skin-equivalent phantom, 217-218 SOTA TX, 422-423 space-time code (STC), 290-293, 295, 313 space-time coding (STC) technique, 267 spatial considerations, in exposure limits/guidelines, 221–222 spatial modulation (SM), 273, 289-295, 313 spatial multiplexing (SMX), 290-295, 313 specific absorption rate (SAR), 28, 51-52, 196-198. See also SAR antenna efficiency and, 74 link budget vs., 101–105 specific absorption rate evaluation, 15-18 specific anthropomorphic mannequin (SAM), 16 specific anthropomorphic mannequin phantom, 209. See also human body phantoms spectral-domain electric field, 240-241 spectral performance, 455 spectrum analyzer, 163-164 split ring resonator (SRR), 361 standard deviation, 276 of received open voltage, 147-149 stirring sequences, 12–13 stochastic models, 280 off-body, 273-279 stripline BPF circuit, 45. See also bandpass stripline open-loop resonators (SOLRs), 37, 39-40, 42-43 sub-sampling clock synthesis, 426-428 surface wave antennas, 28 surrounding environment, influences of, 142-143 system implementation, of MBAN system, 400-401 system integration, for wireless capsule endoscopy, 183-187 systems, see adaptive antenna system;

adaptive capsule system; adaptive

systems; BAN communication

systems; bio-telemetry systems; communication systems; diversity/MIMO systems; Doppler radar systems; electromagnetic (EM) sensing systems; exposimeter system design; frequency reconfigurable adaptive system; human vital data acquisition system; interface systems; MBAN system concept; medical compliance sensing systems; medical monitoring/sensing system; MEMS; non-invasive monitoring system; off-body communication system modeling; off-body communication systems; RFID systems; textile systems; ultra low powered (ULP) systems; wall-mounted ID tag system; WBAN systems; wearable systems; wireless communication systems; wireless implantable neuroprobe microsystems body-centric, 233 capsule, 97-110, 128-129 capsule endoscope, 160, 162-187 MIMO, 312 smart electronic, 272 for wireless body area networks, 375-402

tag antenna design, 112-114 tag characterizations, on human body, 121-124 tag layout, 329-330 tag reading, 124 tags, with RFID technology, 321–322 tag tuning, 334 technological advancements, antenna design and, 87 technologies, future outlook of, 126–129 telemedicine, antenna design and, 89 telemetry applications, 129 telemetry techniques, for implants or wearable systems, 471-488 temperature considerations, in exposure limits/guidelines, 221 temperature measurements, 341, 343 temperature sensing mechanism, 341-342

textile antennas, 227–230	implantable sensor node, 389–394
for body area networks, 1–21	for wearable devices, 247–248
design strategies and evaluation for,	wearable sensor node, 395–400
5–20	transmission, 283. See also TX
fabricated, 228–230	transmission efficiency, 140-143, 146
fabrication procedure for, 4–5	transmission line matrix (TLM) method, 5
textile materials, 2–5	transmission measurement, through-body,
in skin models, 240–244	165, 175–183
textile patch antennas, 224	transmission packets, 298, 300
textiles, 3, 4, 222–223, 228	transmission schemes, 464
body-worn, 61–62	transmit diversity signal processing
conductive, 2–3, 18	techniques, 267
non-conductive, 3-4, 19-20	transmitter coil, 106-109. See also TX
textile substrates, 5	transmitter measurement results, 418-424
textile systems, wearable, 261–262, 269	transmitting antennas, 281
theoretical phantoms, 207	T-resonator method, 69
thermoelectric substrate, energy harvesting	tuning networks, adaptive, 109-110
from, 480–481	tuning parameters, 114–115
thermometers, epidermal RF, 341–342	turn-on power, 344
thick dielectric materials, inkjet printing of,	two-third muscle-equivalent phantom,
353–354	210
thin-film bulk acoustic resonators (FBAR),	TX antenna radiation pattern, 284–285,
411–413. See also FBAR	291. See also transmission;
thin-type planar folded dipole, 120–121	transmitter
3D EM solvers, 280	TX architecture, FBAR-based, 413–414,
three-layered model, in antenna	420–424
performance, 195–196	TX operation, 420–424
three-person networks, performance	
analysis for, 302–304	UHF (ultra-high frequency) bands, 135,
through-body communications, implanted	321–322
antennas and RF transmissions in,	on-body antennas at, 117–125
159–201	UHF RFID tag antennas, 97. See also Radio
through-body RF transmission, 175–183	frequency identification
through-body transmission measurement,	UHF RFID tag design
165	for patient monitoring, 117–125
time considerations, in exposure	wireless medical implantable devices
limits/guidelines, 221	and, 92–93
tissue/body models, 96	UHF RFID tags, performance of, 328–329
tissue-equivalent model, 207	ULP radios, 408–410
tissue model, 47–48	ULP WBAN systems, 443. See also ultra
tooth-attached RFID tags, 117	low powered (ULP) systems;
total efficiency (η_{tot}) , 15	wireless body area networks
trace conductivity, radiation performance	ultra-high frequency, see UHF
vs., 326–327	ultra low powered (ULP) systems, 408.
trace width, gain vs., 326	See also ULP
tracking and sensing, epidermal antennas	ultra low-power MEMS-based radios, for
for, 319–348	wireless body area networks,
transceivers	405–443
dual-band hub, 383–389	ultrasound-powered sources, 477–478

ultra-wideband (UWB), 376	requirements for, 233
wireless medical implantable devices	wireless energy harvesting for, 364
and, 94–95	wearable antenna technologies, 249
ultra-wide band (UWB) pulse-based radio	wearable applications, performance of,
technologies, 464–465	47–55, 135–156
uniform linear array (ULA), 291	wearable devices, 205-207
upper limb kinesthetic garment (ULKG),	transceivers for, 247–248
231	wearable distributed sensor networks,
useful energy threshold (UET), 409	295–304
	wearable electronics, 472
VCO (voltage-controlled oscillator), 396.	wearable end-fire antenna, 245–246
See also LC VCO	wearable filtering antennas,
vectorial channel responses, 282–285	microwave-circuit-integrated, 37–46
vector network analyzer (VNA), 6, 163	wearable harvesting receiver, 367–368
vertical polarization, of dual-mode antenna,	wearable node design, 296
153	wearable PDE, 311. See also personal
vital signs detection, 462	distributed exposimeter
voltage fluctuations, 147–149	wearable planar antennas, endfire radiation,
voxel model, 15, 17	84
antenna performances on, 72–76, 78	wearable sensor node transceiver, 395–400
CST MWS, 84	wearable sensors, 447
voxel phantoms, 207	wireless, 231
vener phantenis, 207	wearable systems, telemetry techniques for,
waist-to-chest radio channels, 452	471–488
walking human body model, 146	wearable textile systems, 261–262, 269
wall-mounted ID tag system, 149–152	wearable wireless body sensor network,
washing/drying cycles, 20	299, 303–304
water-proofing, 20	wearable wireless devices, 159
WBAN requirements, 406–407. See also	whole-body resonance, 220–221
wireless body area networks	wideband CP filtering antenna, 46
WBAN systems, 406. See also ULP WBAN	wideband CP filtering antenna, assessing
systems	performance of, 52–55
conventional radios and, 407–408	wideband CP filtering antenna synthesis,
wearable active antenna modules, for	41–46
energy-efficient off-body	wide band pulsed radar method, 464–466
communication systems, 261–313	wideband sleeve monopole external
wearable antennas, 2–3	antenna, 191–193
active, 262, 269–273	Wi-Fi band, wireless medical implantable
AMC-backed flexible near-endfire,	devices and, 92–94
61–84	windowing, 454–455
applications for, 295–311	wireless body area networks (WBANs).
configurations for, 28	See also WBAN
conformal, 29	circuits and systems for, 375–402
metasurface-enabled compact, 29–37	wireless body area network technology,
mounted on the human body, 136–142	61–62
for off-body communications, 27–55	ultra low-power MEMS-based radios in,
on-body, 77	405–443
performance characteristics of,	wireless body sensor networks, wearable,
135–156	299, 303–304

wireless brain-machine interface system, 127-128 and, 94 wireless capsule, for wireless capsule endoscopy, 186 wireless capsule endoscopy, antennas for, 162-187 wireless capsule endoscopy diagnostics, 97-103 wireless channels, in off-body stochastic modeling, 273-274 wireless communication for implantable devices, 161 off-body, 261-262 on-body, 261 wireless communication systems, body-centric, 126, 135-136, 312 wireless data telemetry applications, 129 wireless devices, 451-452 wearable, 159 wireless diagnostic capsules, 128 wireless energy harvesting, for wearable antennas, 364 wireless implantable neuroprobe microsystems, motor prosthesis for, 187-201 wireless links, on-body, 249 wirelessly-powered devices, 474–477 wirelessly-powered sensors, applications of, 351-371 wireless medical implantable devices, antenna design for, 91-95 wireless medical telemetry services (WMTS) band wireless capsule endoscopy and, 97-Yagi-Uda antennas, for on-body 103 communications, 233-234

wireless medical implantable devices wireless network topology, 456 wireless off-body communications, 312 wireless power, 485-487 wireless power transfer (WPT), 472 wireless power transfer systems, 474–478 wireless power transfer technology, 105-110, 471-488 wireless sensor nodes, 296-297, 453 wireless sensors, 457, 487-488 wireless technology, antenna design and, 89 wireless wearable sensors, 231 woodpile EBG-based antennas, 234-235. See also electromagnetic band gap wound healing, smart-plaster for, 342-346 wound treatment, 338 xyloglucan (XG), see PVA/XG membranes Yagi antennas, 63, 84 AMC-backed, 64-65 bidirectional, 65 endfire gain of, 70-71 measurements of, 79-84 near-endfire, 65-68 performance under bending deformation, 76-79 performances on voxel model, 72-74, 78 radiation patterns of, 71-72, 74-76 return loss of, 70 Yagi antenna surfaces, planar, 69 Yagi radiator, 66, 68, 79