STA260 Tutorial 4 Question 2

Question 2

Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$, where both parameters μ and σ^2 are unknown. A confidence interval for σ^2 can be found as follows.

We know that $(n-1)S^2/\sigma^2$ is a random variable with a $\chi^2(n-1)$ distribution. Thus we can find constants a and b so that $P((n-1)S^2/\sigma^2 < b) = 0.975$ and $P(a < (n-1)S^2/\sigma^2 < b) = 0.95$.

(a) Show that this second probability statement can be written as:

$$P((n-1)S^2/b < \sigma^2 < (n-1)S^2/a) = 0.95.$$

(b) If n=9 and $s^2=7.93$, find a 95% confidence interval for σ^2 .

a) note that
$$a < \frac{(n-1)s^2}{\sigma^2} < b$$

$$\frac{1}{a} > \frac{\sigma^{2}}{a} > \frac{1}{b} \Rightarrow \frac{(n-1)s^{2}}{a} > \sigma^{2} > \frac{(n-1)s^{2}}{b}$$
Hence $0.95 = P(a < \frac{(n-1)s^{2}}{\sigma^{2}} < b) = P(\frac{(n-1)s^{2}}{a} < \sigma^{2} < \frac{(n-1)s^{2}}{a})$

b)
$$(N-1)5^2 = (8)(7.93) = (63.444)$$

note:

63.44_	63.44	29.1045
	2.17973	·

$$\frac{63.44}{6}$$
 $\frac{-63.44}{17.5346}$ $\frac{-3.618}{17.5346}$

$\chi^{2}_{0.025}$	$\chi^{2}_{0.010}$	$\chi^2_{0.005}$	df
5.02389	6.63490	7.87944	1
7.3 7776	9.21034	10.5966	2
9.3 <mark>484</mark> 0	11.3449	12.8381	3
11.1433	13.2767	14.8602	4
12.8 325	15.0863	16.7496	5
- 14. <mark>449</mark> 4	16.8119	18.5476	6 -
16 128	18.4753	20.2777	7
17.5346	2 0.0902	21.9550	- 8

df	$\chi^2_{0.995}$	$\chi^2_{0.990}$	$\chi^2_{0.975}$
1	0.0000393	0.0001571	0.0009821
2	0.0100251	0.0201007	0.0506356
3	0.0717212	0.114832	0.215795
4	0.206990	0.297110	0.484419
5	0.411740	0.554300	0.83 1211
6	0.675727	0.872085	1.277347
7	0.989265	1.239043	1. 3987
8	1.344419	1.646482	2.17973

for

Hence we are 95% confident that or is

Within (3.618, 29.1045)