Contents

1. Introduction	2
2. Data Characteristics	2
3. Model Selection and Interpretation	3
4. Justifications of the Selected Model	3
4.1 Correlogram of SSE Index Returns	4
4.2 Unit Root Test for Stationarity	5
4.3 Information Criteria for ARMA model selection	6
4.4 Testing for ARCH Effects	7
4.5 GARCH Model	8
4.6 Information Criteria for ARMA and TARCH, EGARCH, GARCH-M model selection	9
4.7 ARMA(6,6)-EGARCH(1,1) Dynamic and Static Forecast	11
5. Limitations	12
6. Conclusion	12

1. Introduction

This paper investigates the SSE Composite Index from the time range 04/Jan/2010 to 28/Oct/2022. The behavior of the SSE Index return series is analyzed with time series econometrics, with the aim of building an adequate model for the return series and its volatility.

2. Data Characteristics

The nature of the data is a longitudinal univariate pure time series for the return of the SSE Index as a function of the time series. From the graph plotted below, there appears to be a long-term consistent trend and an outlier - a spike in 04-06-2015.

Figure 1: Adjusted Closing price of Shanghai Stock Exchange (SSE) Composite Index

In the dataset, the x variable of interest is adj_close (price) against the date. We transform the series into percentage returns. We use the function *dlog* here as it creates the first difference of the logarithm. This is equivalent to:

To test the model viability in terms of prediction results, we separate the data into training and test sets:

Training = 1/04/2010 to 6/1/2020

Testing = 6/2/2020 to 10/28/2022

3. Model Selection and Interpretation

This section identifies how a model selected with Box-Jenkins analysis. Autoregressive and moving average can be combined to form an ARMA process. The recommended model will be **ARMA (6, 6)-EGARCH(1, 1).** The return is stationary and thus ARIMA need not be used, which is the next-step model to ARMA with integration that differences the data to achieve stationarity. The white noise, however, has an ARCH effect. The next sections identify the thought process that would lead up to the model selection – including identification with information criterions, estimation, and diagnostic checking.

4. Justifications of the Selected Model

Wold's decomposition theorem indicates the necessity of stationary time series in constructing an ARMA model. To identify stationarity, we investigate with a correlogram. With the correlogram diagram, if there is no serial correlation, the autocorrelation (AC) and partial autocorrelation (PAC) at all lags should be near zero and all Q-statistic should be insignificant. In this case, up until the fifth autocorrelation and partial autocorrelation appear strongly significant. Thus, the test statistic rejects the null hypothesis of autocorrelation for all number of lags up ARMA (6, 6). A variable that is not serially correlated indicates that it is random (i.e., a white noise process). This concludes that a mixed ARMA process could be appropriate up to ARMA (6, 6).

Furthermore, to be stationary and invertible, the inverted AR roots and inverted MA roots must be less than 1 in absolute value. In this case, the MA and AR roots are clearly stationary and invertible.

Further analysis is needed, with the Unit Root test conducted in the next section.

4.1 Correlogram of SSE Index Returns

	Correlogram of RT								
Date: 12/11/22 Time: 12:53 Sample (adjusted): 1/05/2010 10/28/2022 Included observations: 3114 after adjustments									
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			
ı)	1)	1	0.031	0.031	3.0117	0.083			
(I	(2	-0.024	-0.025	4.7358	0.094			
1)		3	0.018	0.019	5.7079	0.127			
ı)		4	0.033	0.031	9.0071	0.061			
I I	1	5	-0.001	-0.002	9.0102	0.109			
<u>d</u> i	•	6	-0.055	-0.054	18.541	0.005			
ı		7	0.038	0.040	23.027	0.002			
ı j ı	1	8	0.029	0.023	25.599	0.001			
ıjı	l li	9	0.019	0.022	26.775	0.002			
(I	(10	-0.021	-0.019	28.132	0.002			
ų.	(11	-0.016	-0.017	28.930	0.002			
ı		12	0.004	-0.001	28.993	0.004			
ı		13	0.045	0.049	35.397	0.001			
(i		14			47.553				
il.		15	0.005	0.012	47.619	0.000			
ı)	<u> </u>	16	0.028	0.019	50.140	0.000			
ı	1 1	17	0.016			0.000			
ı[ı	1 1	18		0.011					
ılı		19		0.007					
h		20		0.041					
ı s	1 1	21		0.024		0.000			
ĺ.	1 1	l – .			62.346				

Figure 2: Correlogram reflecting autocorrelation (AC) and partial autocorrelation (PAC)

4.2 Unit Root Test for Stationarity

By conducting a unit root test, we can determine if the data is stationary, a fundamental requirement for time series modelling. The Augmented Dickey-Fuller (ADF) test is widely used to test if a series contains a unit root, based on a regression of the change in that variable on the lag of the level of that variable. From the ADF test, the null hypothesis of a unit root (i.e., H0 = unit root) is rejected as the test statistic = 0.001 < 0.05. Meanwhile, from the KPSS test, the null hypothesis of stationarity (i.e., H0 = stationary) is not rejected. Thus, the series is stationary.

Null Hypothesis: RT has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	iller test statistic 1% level 5% level	-54.04825 -3.432261 -2.862270 -2.567203	0.0001

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RT) Method: Least Squares Date: 12/13/22 Time: 15:40

Sample (adjusted): 1/06/2010 10/28/2022 Included observations: 3113 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
RT(-1)	-0.968886	0.017926	-54.04825	0.0000
C	-0.003717	0.023565	-0.157735	0.8747
R-squared	0.484269	Mean depen	dent var	-0.001108
Adjusted R-squared	0.484103	S.D. dependent var		1.830510
S.E. of regression	1.314782	Akaike info	riterion	3.385860
Sum squared resid	5377.832	Schwarz crit	erion	3.389743
Log likelihood	-5268.092	Hannan-Quinn criter.		3.387254
F-statistic	2921.214	Durbin-Watson stat		1.996997
Prob(F-statistic)	0.000000			

Null Hypothesis: RT is stationary

Exogenous: Constant

Bandwidth: 11 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	in test statistic	0.078977
Asymptotic critical values*:	1% level	0.739000
Asymptotic critical values*:	5% level	0.463000
	10% level	0.347000

1	
Residual variance (no correction)	1.729105
HAC corrected variance (Bartlett kernel)	1.870942

KPSS Test Equation Dependent Variable: RT Method: Least Squares Date: 12/13/22 Time: 15:59

Sample (adjusted): 1/05/2010 10/28/2022 Included observations: 3114 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	-0.003421	0.023568	0.023568 -0.145175	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 1.315166 5384.435 -5271.194 1.936618	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Quii	ent var riterion erion	-0.003421 1.315166 3.386124 3.388064 3.386820

Figures 3 and 4 (Left and Right): ADF and KPSS Unit Root Test

4.3 Information Criteria for ARMA model selection

The model with the lowest AIC and SBIC will be chosen. It is worth noting that AIC has a less strict penalty while SBIC has a strict penalty. As AIC is more appropriate to predict future observations, while BIC is more useful in selecting a correct model, the AIC method will be used.

ARMA (6,6) is the best in terms of AIC.

Click Quick (Top row) > Estimate Equation > rt c ar(5) ma(5) / rt c ar(6) ma(6)

Dependent Variable: RT Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/13/22 Time: 16:45 Sample: 1/05/2010 6/01/2020

Included observations: 2529

Convergence achieved after 64 iterations
Coefficient covariance computed using outer product of gradients

Dependent Variable: RT
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/13/22 Time: 16:48
Sample: 1/05/2010 6/01/2020
Included observations: 2529
Convergence achieved after 110 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	-0.004322	0.033403 -0.129382		0.8971
AR(1)	0.476500	0.760305	0.626722	0.5309
AR(2)	-0.177338	0.131620	-1.347343	0.1780
AR(3)	-0.082036	0.187790	-0.436853	0.6623
AR(4)	0.813139	0.165019	4.927535	0.0000
AR(5)	-0.258137	0.522666	-0.493885	0.6214
MA(1)	-0.441074	0.763343	-0.577819	0.5634
MA(2)	0.127778	0.124062	1.029958	0.3031
MA(3)	0.155829	0.162096	0.961337	0.3365
MA(4)	-0.815560	0.203980	-3.998240	0.0001
MA(5)	0.229109	0.513478	0.446191	0.6555
SIGMASQ	1.830654	0.030498	60.02460	0.0000
R-squared	0.019479	Mean depen	dent var	-0.004220
Adjusted R-squared	0.015194	S.D. depend	ent var	1.366660
S.E. of regression	1.356238	Akaike info	riterion	3.452128
Sum squared resid	4629.724	Schwarz crit	erion	3.479818
Log likelihood	-4353.216	Hannan-Qui	nn criter.	3.462175
F-statistic	4.545762	Durbin-Wats	on stat	2.002499
Prob(F-statistic)	0.000001			
Inverted AR Roots	.90	.33	.0797i	.07+.97i
	91			
Inverted MA Roots	.89	.30	.0995i	.09+.95i
	93			

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	-0.004342	0.032769 -0.132494		0.8946
AR(1)	-1.125350	0.176428 -6.378540		0.0000
AR(2)	-1.140838	0.301753	-3.780705	0.0002
AR(3)	-0.434158	0.421982	-1.028856	0.3036
AR(4)	0.189399	0.390417	0.485120	
AR(5)	0.579084	0.282436	2.050320	0.0404
AR(6)	0.627133	0.127804	4.906987	0.0000
MA(1)	1.158139	0.180055	6.432149	0.0000
MA(2)	1.151568	0.316499	3.638459	0.0003
MA(3)	0.482929	0.437616	1.103546	0.2699
MA(4)	-0.124607	0.410767	-0.303351	0.7616
MA(5)	-0.494487	0.300052	-1.648007	0.0995
MA(6)	-0.626068	0.142149	-4.404316	0.0000
SIGMASQ	1.821356	0.030611	59.50031	0.0000
R-squared	0.024460	Mean depen	dent var	-0.004220
Adjusted R-squared	0.019417	S.D. depend	ent var	1.366660
S.E. of regression	1.353327	Akaike info	riterion	3.448715
Sum squared resid	4606.209	Schwarz crit	erion	3.481020
Log likelihood	-4346.900	Hannan-Qui	nn criter.	3.460436
F-statistic	4.850639	Durbin-Wats	on stat	1.990660
Prob(F-statistic)	0.000000			
Inverted AR Roots	.78	.0897i	.08+.97i	5978i
	59+.78i	88		
Inverted MA Roots	.76	.0996i	.09+.96i	59+.79i
	5979i	91		

Figures 5 and 6 (Left and Right): ARMA (5, 5) and ARMA (6, 6)

		=====	=====			====
Model Sel	ection Crite	eria Ta	able			
Depender	nt Variable:	RT				
Date: 12/2	14/22 Tim	e: 08:0	02			
Sample: 1	/04/2010 6	/01/2	020			
Included o	observation	ns: 252	29			
======	======					====
Model	LogL Al	C*	BIC	HQ		
======	======	=====	=====		======	====
(6	6)(0	-4346	.90018	33 3.448715	3.481020	3.460436
(4	6)(0	-4350	.64813	33 3.450097	3.477787	3.460144
(3	5)(0	-4352	.73693	39 3.450168	3.473242	3.458540
(5	3)(0	-4352	.78513	33 3.450206	3.473280	3.458578
(6	4)(0	-4351	.00513	35 3.450380	3.478069	3.460426
(4	3)(0	-4354	.15262	25 3.450496	3.471264	3.458031
(3	4)(0	-4354	.28746	3.450603	3.471370	3.458138
(6	3)(0	-4352	.29899	91 3.450612	3.475994	3.459822
(3	6)(0	-4352	.37388	30 3.450671	3.476053	3.459881
(4	4)(0	-4353	.45364	12 3.450734	3.473809	3.459107
(5	5)(0	-4351	.47532	29 3.450752	3.478441	3.460798

Figure 7: Model Selection Criteria Table indicates ARMA(6,6) as ideal

4.4 Testing for ARCH Effects

Testing for ARCH effects, also known as a test for autocorrelation in the squared residuals, allows us to determine of the assumption of constant variance is valid. We identify ARCH effects by conducting residual diagnostics of the estimated model. According to the test results, the top panel shows the results of the ARCH Lagrange Multiplier (LM) test. Up until RESID^2(-5), the statistics are significant indicating the presence of ARCH effects. We reject the null hypothesis of no ARCH effects, which indicates that the residuals suffer from heteroskedasticity. Thereby, an ARCH model will yield better results as it accounts for the effect of volatility in the time series.

View > Residual Diagnostics > Heteroskedasticity Tests > ARCH = 6

Heteroskedasticity Tes	st: ARCH			ne: 08:10 1/05/2010 6/01/2020 ns: 2529 after adjustr Partial Correlation	ments	s AC	PAC	Q-Stat	Prob		
F-statistic	54.33849	Prob. F(6,25	16)	0.0000	-		1	0.188	0.188	89.274	0.000
Obs*R-squared	289.4325	Prob. Chi-So	uare(6)	0.0000		-	2			223.13	
			1				3			349.35	
					Ξ.		5	0.180		431.48 524.06	
Test Equation:					.	1 7	6		0.095		
•	ECIDAO				5		7		0.035		
Dependent Variable: R					•		8	0.099	0.006	626.81	0.000
Method: Least Square					•	1	9		0.040		
Date: 12/14/22 Time:						1 1	10			707.89	
Sample (adjusted): 1/1	3/2010 6/01/20	20				1 1	11		0.025		
Included observations:	2523 after adju	ustments			- E	1 1	13			816.04	
						1 5	14			842.68	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	•		15	0.095	0.003	865.52	0.000
					-		16		0.094		
С	0.812266	0.108860	7.461602	0.0000	2	1 1	17			972.52 1000.2	
RESID^2(-1)	0.093402	0.019937	4.684826	0.0000	<u> </u>	1 1	18		0.001		
• •			7.357929	0.0000		1 6	20		0.087	1115.1	
RESID^2(-2)	0.146678	0.019935			<u> </u>		21	0.161	0.063	1180.9	0.000
RESID^2(-3)	0.136810	0.020082	6.812700	0.0000	•	1 •	22		-0.031	1199.6	
RESID^2(-4)	0.081859	0.020081	4.076414	0.0000		1 1	23		-0.025	1222.6	
RESID^2(-5)	0.094587	0.019934	4.744998	0.0000		1 %	24 25		-0.016 0.074	1239.7 1296.3	
RESID^2(-6)	0.000768	0.019937	0.038532	0.9693		1 7	26		-0.006	1315.9	
					- i	1 0	27		0.013	1338.5	
R-squared	0.114718	Mean depen	dent var	1.821950	<u> </u>	-	28		0.080		
Adjusted R-squared	0.112606	S.D. depend		4.883833	<u>L</u>	1 1	29		-0.000	1420.6	
S.E. of regression	4.600647	Akaike info c		5.893042		1 2	30		0.034	1471.0 1486.9	
Sum squared resid	53253.54	Schwarz crite		5.909226	i i	1 5	32		0.025		
•	-7427.072	Hannan-Qui		5.898914	Ē	1	33		0.015	1557.9	
Log likelihood					•	1 1	34	0.112	0.023	1590.0	
F-statistic	54.33849	Durbin-Wats	on stat	1.999487	ė.		35		0.029	1628.6	
Prob(F-statistic)	0.000000				-	1 1	36	0.122	0.032	1666.7	0.000

Figures 8 and 9: Heteroskedasticity Test and Correlogram of Squared Residuals

4.5 GARCH Model

To check if the goodness-of-fit for the model, we scrutinize the residuals once again. With the histogram, as the standardized residuals are not normally distributed, the quasi-maximum likelihood (QML) model with Bollerslev-Wooldridge coefficient covariance will be used in specifying the GARCH(1,1) model in EViews.

Figure 10: GARCH (1, 1) Standardized Residuals indicate non-normality

Dependent Variable: RT
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 12/14/22 Time: 08:14
Sample (adjusted): 1/13/2010 6/01/2020
Included observations: 2523 after adjustments
Convergence achieved after 48 iterations
Coefficient covariance computed using Bollerslev-Wooldridge QML
sandwich with expected Hessian
MA Backcast: 1/05/2010 1/12/2010
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)*2 + C(6)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
	223111010111	5.a. E1101		. 100.			
С	0.005987	0.005987 0.020793 0.287930		0.7734			
AR(6)	-0.848717	0.051215	-16.57174	0.0000			
MA(6)	0.871582	0.046666	18.67687	0.0000			
Variance Equation							
С	0.010454	0.005230	1.998725	0.0456			
RESID(-1) ²	0.063094	0.018016	3.502167	0.0005			
GARCH(-1)	0.934053	0.017187	54.34682	0.0000			
R-squared	0.000546	Mean deper	ndent var	-0.004597			
Adjusted R-squared	-0.000247	S.D. depend	dent var	1.366893			
S.E. of regression	1.367062	Akaike info	criterion	3.175036			
Sum squared resid	4709.520	Schwarz crit	terion	3.188908			
Log likelihood	-3999.308	Hannan-Qui	inn criter.	3.180070			
Durbin-Watson stat	1.931609						
Inverted AR Roots	.8449i	.84+.49i	.00+.97i	0097i			
	8449i	84+.49i					
Inverted MA Roots	.85+.49i	.8549i	.0098i	00+.98i			
	85+.49i	8549i					

Date: 12/14/22 Time: 08:14 Sample (adjusted): 1/13/2010 6/01/2020 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
· II		1	0.035	0.035	3.1710	
•		2	0.009	0.008	3.3724	
ı i		3	0.040	0.039	7.3638	0.007
1		4	0.002	-0.000	7.3793	0.025
1		5	0.002	0.001	7.3886	0.060
Q i	0	6	-0.041	-0.043	11.711	0.020
ų l	1	7	0.050	0.053	17.990	0.003
•		8	0.010	0.007	18.249	0.006
•)	9	0.029	0.031	20.336	0.005
1))	10	0.018	0.011	21.124	0.007
1		11	0.003	0.001	21.144	0.012
		12	0.002	-0.003	21.154	0.020
1		13	-0.000	0.003	21.154	0.032
		14	-0.017	-0.020	21.904	0.039
1		15	0.002	0.006	21.919	0.057
))	16	0.020	0.018	22.911	0.062
•	•	17	-0.014		23.404	0.076
1		18	0.006	0.005	23.481	0.101
•	•	19		0.012	24.000	0.119
1))	20	0.018	0.016	24.841	0.129
•	•	21	-0.023	-0.023	26.203	0.125
	•	22	-0.016	-0.014	26.858	0.139
•	•		-0.024		28.312	0.132
		24	-0.012	-0.006	28.652	0.155
•	•	25	0.031	0.033	31.043	0.122
	(26	-0.017	-0.017	31.778	0.133
•			-0.009		31.977	0.159
•	•	28		0.030	34.458	0.124
•			-0.030		36.716	0.100
1		30	-0.008	-0.002	36.862	0.122
1		31	-0.004	-0.000	36.894	0.149
•	. •	32	-0.015		37.441	0.165
1	•	33		0.012	37.603	0.192
•	. •		-0.013		38.061	0.213
•	. •	35		0.012	38.753	0.226
•	•	36	-0.011	-0.010	39.062	0.253

*Probabilities may not be valid for this equation specification.

Figures 11 and 12: Output of ARMA (6, 6)-GARCH (1,1) and Correlogram of Standardized Residuals

The coefficients of both RESID(-1)^2 and GARCH(-1) adjusted for coefficient variance using the Bollerslev-Wooldridge QML is statistically significant. Thus, shocks impact conditional volatility and there is a presence of persistent volatility clustering. As a conventional GARCH model is unable to enforce an asymmetric formulation to positive/negative shocks, alternative formulations will be explored, namely TARCH, EGARCH, and GARCH-M. Meanwhile, the correlogram reflect white noise.

4.6 Information Criteria for ARMA and TARCH, EGARCH, GARCH-M model selection

With ARMA(6,6) as the baseline, according to the Schwarz's Bayesian Information Criterion (SBIC) and the Akaike Information Criterion (AIC), the ARMA(6,6)-EGARCH(1,1) model works most effectively. This paper proposes ARMA(6,6)-EGARCH(1,1) as the optimal model in predicting SSE Composite Index returns.

	SBIC	AIC
TGARCH	3.191995	3.175811
<u>EGARCH</u>	3.190015	3.173831
GARCH-M	3.191912	3.175728

Table 1: SBIC values for ARMA(6,6)-ARCH models

Dependent Variable: RT

Sample (adjusted): 1/13/2010 6/01/2020 Included observations: 2523 after adjustments Convergence achieved after 75 iterations

Coefficient covariance computed using outer product of gradients MA Backcast: 1/05/2010 1/12/2010

Presample variance: backcast (parameter = 0.7)

GARCH = C(4) + C(5)*RESID(-1)*2 + C(6)*RESID(-1)*2*(RESID(-1)<0) + C(7)*GARCH(-1)

=======================================					
Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.005386	0.021342 0.252353		0.8008	
AR(6)	-0.848341	0.056581	-14.99351	0.0000	
MA(6)	0.871323	0.052949 16.45604		0.0000	
	Variance	Equation			
С	0.010563	0.002074	5.093705	0.0000	
RESID(-1)^2	0.062138	0.006008	10.34235	0.000	
RESID(-1)^2*(RESID(-1)<0)	0.002227	0.006476	0.343878	0.7309	
GARCH(-1)	0.933775	0.003665	0.0000		
R-squared	0.000528	Mean dependent var		-0.004597	
Adjusted R-squared	-0.000266	S.D. depend	dent var	1.366893	
S.E. of regression	1.367074	Akaike info	criterion	3.17581	
Sum squared resid	4709.608	Schwarz cri	terion	3.19199	
Log likelihood	-3999.286	Hannan-Qu	inn criter.	3.181684	
Durbin-Watson stat	1.931626				
Inverted AR Roots	.8449i	.84+.49i	.00+.97i	0097i	
	8449i	84+.49i			
Inverted MA Roots	.85+.49i	.8549i	.0098i	00+.98i	
	85+.49i	8549i			

Date: 12/14/22 Time: 08:20 Sample (adjusted): 1/13/2010 6/01/2020
Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
-	1 1	1	0.036	0.036	3.1853	
•		2	0.009	0.008	3.3969	
ı)		3	0.040	0.039	7.3923	0.007
ψ		4	0.003	-0.000	7.4120	0.025
ψ.		5	0.002	0.001	7.4223	0.060
		6	-0.041	-0.043	11.751	0.019
1	1	7	0.050	0.053	18.047	0.003
•		8	0.010	0.007	18.303	0.006
•)	9	0.029	0.031	20.375	0.005
•		10	0.018	0.012	21.179	0.007
ų.		11	0.003	0.001	21.201	0.012
		12		-0.003	21.213	0.020
			-0.000	0.003	21.213	0.031
			-0.017		21.957	0.038
		15	0.002	0.006	21.972	0.056
•		16	0.020	0.018	22.974	0.061
•			-0.014		23.466	0.075
		18	0.006	0.005	23.546	0.100
		19	0.014	0.012	24.062	0.118
•		20	0.018	0.016	24.910	0.127
			-0.023		26.266	0.123
			-0.016		26.911	0.138
			-0.024		28.338	0.131
	! !!		-0.011		28.670	0.155
9	! !	25	0.031	0.033	31.055	0.121
			-0.017		31.784	0.132
Ų.	! !!		-0.009		31.973	0.159
9	! !	28	0.031	0.030	34.456	0.124
			-0.030		36.720	0.100
	"		-0.008		36.873	0.122
<u>"</u>	! !!		-0.003		36.902	0.149
•	! !		-0.015		37.451	0.164
1	! !!	33		0.012	37.617	0.192
Ų.	! !		-0.013		38.072	0.212
?	! !	35	0.016	0.012	38.768	0.226
0		36	-0.011	-0.010	39.085	0.252

^{*}Probabilities may not be valid for this equation specification.

Figures 13 and 14: ARMA(6,6)-TARCH(1,1) Estimation Output and Correlogram of Residuals

Dependent Variable: RT

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 12/14/22 Time: 08:21

Sample (adjusted): 1/13/2010 6/01/2020

Included observations: 2523 after adjustments
Failure to improve likelihood (singular hessian) after 48 iterations
Coefficient covariance computed using outer product of gradients

MA Backcast: 1/05/2010 1/12/2010

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +C(6)*RESID(-1)/@SQRT(GARCH(-1)) + C(7)*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.007294	0.020339	0.358621	0.7199
AR(6)	-0.846198	0.056621	-14.94502	0.0000
MA(6)	0.870523	0.052734	16.50796	0.0000
	Variance	Equation		
C(4)	-0.104437	0.006488	-16.09634	0.0000
C(5)	0.148225	0.008419	17.60547	0.0000
C(6)	-0.008432	0.005335	-1.580416	0.1140
C(7)	0.990387	0.001759 562.9358		0.0000
R-squared	0.000195	Mean deper	ndent var	-0.004597
Adjusted R-squared	-0.000598	S.D. depend	dent var	1.366893
S.E. of regression	1.367301	Akaike info	3.173831	
Sum squared resid	4711.174	Schwarz crit	terion	3.190015
Log likelihood	-3996.788	Hannan-Qu	inn criter.	3.179704
Durbin-Watson stat	1.931620			
Inverted AR Roots	.8449i 8449i	.84+.49i 84+.49i	.00+.97i	0097i
Inverted MA Roots	.85+.49i 85+.49i	.8549i 8549i	.0098i	00+.98i

Date: 12/14/22 Time: 08:21 Sample (adjusted): 1/13/2010 6/01/2020 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
))	1	0.032	0.032	2.5925	
ψ.		2	0.006	0.005	2.6804	
1		3	0.040	0.039	6.6633	0.010
1		4	0.003	0.000	6.6844	0.035
-		5	-0.001	-0.001	6.6860	0.083
q.	(h	6	-0.044	-0.045	11.531	0.021
(II		7	0.050	0.053	17.753	0.003
()		8	0.010	0.007	18.023	0.006
•		9	0.032	0.034	20.558	0.004
•)	. •	10	0.018	0.012	21.410	0.006
ψ		11	0.003	0.001	21.431	0.011
ψ.	1 1	12	0.004	-0.001	21.479	0.018
ψ		13	-0.001	0.002	21.482	0.029
- (-		14	-0.020	-0.022	22.448	0.033
1		15	0.002	0.005	22.455	0.049
•)	16	0.018	0.016	23.320	0.055
•	(17	-0.014	-0.015	23.805	0.068
ψ.	1 1	18	0.004	0.003	23.844	0.093
)		19	0.019	0.016	24.734	0.101
•)	20	0.021	0.019	25.857	0.103
(•	21	-0.023	-0.023	27.224	0.100
•	(22	-0.016	-0.015	27.901	0.112
(•	23	-0.024	-0.026	29.338	0.106
•		24	-0.009	-0.004	29.552	0.130
•		25	0.031	0.033	31.954	0.101
•	(26	-0.017	-0.017	32.716	0.110
•	(27	-0.011	-0.014	33.018	0.131
4)	28	0.035	0.033	36.162	0.089
(29	-0.028	-0.031	38.141	0.076
ψ.		30	-0.008	-0.001	38.288	0.093
ų.	1 1	31	-0.005	-0.002	38.340	0.115
•	•	32	-0.014	-0.015	38.878	0.128
1	1 1	33	0.008	0.012	39.027	0.152
•	. •	34	-0.012		39.406	0.172
•	1 1	35	0.018	0.012	40.212	0.181
(1	(36	-0.012	-0.011	40.561	0.203

^{*}Probabilities may not be valid for this equation specification.

Dependent Variable: RT

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 12/14/22 Time: 08:24

Sample (adjusted): 1/13/2010 6/01/2020 Included observations: 2523 after adjustments Convergence achieved after 53 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: 1/05/2010 1/12/2010

Presample variance: backcast (parameter = 0.7) GARCH = $C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1)$

Variable	Coefficient	Std. Error z-Statistic		Prob.
@SQRT(GARCH)	-0.028624	0.063129	0.6502	
С	0.033980	0.065761	0.516725	0.6053
AR(6)	-0.849876	0.056062	-15.15963	0.0000
MA(6)	0.872564	0.052457	16.63378	0.0000
	Variance	Equation		
С	0.010443	0.002174	4.804262	0.0000
RESID(-1) ²	0.063003	0.003946	15.96622	0.0000
GARCH(-1)	0.934116	0.003471	269.1256	0.0000
R-squared	0.000817	Mean depe	ndent var	-0.004597
Adjusted R-squared	-0.000373	S.D. depen	dent var	1.366893
S.E. of regression	1.367148	Akaike info	criterion	3.175728
Sum squared resid	4708.245	Schwarz cr	terion	3.191912
Log likelihood	-3999.181	Hannan-Qu	inn criter.	3.181601
Durbin-Watson stat	1.933139			
Inverted AR Roots	.8449i	.84+.49i	.00+.97i	0097i
	8449i	84+.49i		
Inverted MA Roots	.8549i	.85+.49i	00+.98i	0098i
	8549i	85+.49i		

Date: 12/14/22 Time: 08:24 Sample (adjusted): 1/13/2010 6/01/2020 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
-		1	0.035	0.035	3.1153	
ı)ı		2	0.009	0.007	3.3013	
1		3	0.039	0.039	7.2131	0.007
ψ		4	0.002	-0.001	7.2224	0.027
ψ.		5	0.001	0.001	7.2280	0.065
0	l O	6	-0.042	-0.043	11.617	0.020
1	ļ	7	0.049	0.052	17.776	0.003
•		8	0.010	0.007	18.011	0.006
•)	9	0.028	0.031	20.048	0.005
•		10	0.017	0.011	20.791	0.008
		11	0.002	0.001	20.806	0.014
		12		-0.003	20.812	0.022
*			-0.000	0.003	20.812	0.035
•	! (!		-0.018		21.596	0.042
1		15	0.002	0.005	21.606	0.062
		16	0.019	0.018	22.559	0.068
*	! !	1	-0.014		23.080	0.082
1		18	0.005	0.005	23.150	0.110
1		19	0.014	0.012	23.644	0.129
9	! !	20	0.018	0.016	24.457	0.141
<u> </u>	! <u> </u>		-0.023		25.854	0.134
<u>"</u>	<u> </u>		-0.016		26.518	0.149
!	! !		-0.024		28.006	0.140
*	l 1		-0.012		28.365	0.164
2	! !	25	0.030	0.033	30.735	0.129
!	<u> </u>		-0.017		31.487	0.140
1	! <u>"</u>		-0.009		31.698	0.167
7	! !	28	0.031	0.030	34.165	0.131
!	! !		-0.030		36.433	0.106
1			-0.008		36.579	0.128
1	<u> </u>		-0.004		36.612	0.156
*	! <u>"</u>		-0.015		37.164	0.172
1	! !	33	0.008	0.012	37.326	0.201
1	! !		-0.013		37.783	0.222
1	! !	35	0.016	0.012	38.477	0.235
	<u> </u>	36	-0.011	-0.010	38.784	0.263

*Probabilities may not be valid for this equation specification.

Figures 17 and 18: ARMA(6,6)-GARCH-M(1,1) Estimation Output and Correlogram of Residuals

4.7 ARMA(6,6)-EGARCH(1,1) Dynamic and Static Forecast

Based on the selected optimal model of ARMA(6,6)-EGARCH(1,1), the RMSE, MAE and Theil Inequality coefficient presents a sufficiently optimal outcome.

The forecast for the test period 6/2/2020 to 10/28/2022 are as follows:

Figures 19 and 20: Dynamic and Static Forecast

5. Limitations

The sample may include structural breaks. Structural breaks may best be modelled with other timevarying parameter models and Markov-switching models.

Using the GARCH model, we may not be accounting for asymmetricity. Thus, the EGARCH model was used to account for negativity constraints. However, it may not be the best model if one is looking at overcoming leverage effects or incorporating the "higher risk, higher returns" concept.

6. Conclusion

This paper proposes the use of ARMA(6,6)-EGARCH(1,1) model in measuring and predicting returns of the SSE Composite Index.