Diwash Bhattarai

A. DATASET DESCRIPTION

The primary dataset used for training, validating, and testing was compiled to capture various aspects of a student's life that could potentially correlate with mental well-being and depression.

Source: The dataset was a CSV file named "Student Depression Dataset", sourced from Kaggle

url: https://www.kaggle.com/datasets/hopesb/student-depression-dataset

INITIAL SIZE: 27901 Rows with 18 attributes each

SIZE AFTER PREPROCESSING: 27851 Rows with 91 attributes each

TARGET VARIABLE: 'Depression', a binary indicator

KEY FEATURES: The dataset originally comprised features categorized as follows:

Demographics:

- id: Unique identifier (dropped during preprocessing).
- Gender: Male, Female.
- Age: Numerical age of the student.
- City: The city where the student resides/studies.

Academics:

• Profession: Student

• Degree: The student's current or highest completed academic degree.

• CGPA: Cumulative Grade Point Average.

• Academic Pressure: Self-reported level (e.g., 1-5).

• Study Satisfaction: Self-reported level (e.g., 1-5).

• Work/Study Hours: Average hours spent per day.

Well-being & Lifestyle:

- Work Pressure: (This column was found to have constant values and was dropped).
- Job Satisfaction: (This column was found to have constant values and was dropped).
- Sleep Duration: Categorical (e.g., "Less than 5 hours", "5-6 hours").
- Dietary Habits: Categorical (e.g., "Healthy", "Moderate", "Unhealthy").

Mental Health Indicators:

- Have you ever had suicidal thoughts?: Yes/No.
- Family History of Mental Illness: Yes/No.

Socioeconomic Factors:

• Financial Stress: Self-reported level (e.g., 1-5).

DATA QUALITY AND PREPROCESSING:

Initial Cleaning:

- Dropped uninformative columns
- Handled junk values identified in the city column
- Outlier Treatment

Feature Engineering:

- Suicidal_Thoughts, Family History of Mental Illness: Converted from Yes/No to binary (1/0).
- Sleep Ordinal: Created from Sleep Duration categorical values.
- Total Stress: Derived by summing Academic Pressure and Financial Stress.
- Region: The City column was mapped to broader geographical regions
- The Degree column was generalized into Degree Level, Degree Field, Degree Type.

Encoding:

• Categorical features were one-hot encoded

B. Unit + Component Testing

UT = Unit Testing

CT = Component Testing

Test Case ID: UT_001

Class::Function:

DecisionTree::calculate gini impurity()

Input:

- labels = $\{0, 0, 1, 1\}$
- indices = $\{0, 1, 2, 3\}$

Scenario: Calculate Gini impurity for a perfectly balanced two-class node.

Expected Outcome: Gini Impurity = $1.0 - ((2/4)^2 + (2/4)^2) = 1.0 - (0.25 + 0.25) = 0.5$

Assertion Method:

Check if the returned double is approximately equal to 0.5 (within a small epsilon).

Status: PASS

Test Case ID: UT_002

Class::Function: DecisionTree::calculate_gini_impurity()

Input:

- labels = $\{0, 0, 0, 0\}$
- indices = $\{0, 1, 2, 3\}$

Scenario: Calculate Gini impurity for a pure node (all class 0).

Expected Outcome: Gini Impurity = $1.0 - ((4/4)^2 + (0/4)^2) = 1.0 - 1.0 = 0.0$

Assertion Method: Check if the returned double is approximately equal to 0.0.

Status: PASS

Test Case ID: UT_003

Class::Function: DecisionTree::majority_class()

Input:

- labels = $\{0, 1, 1, 0, 1\}$
- indices = $\{0, 1, 2, 3, 4\}$

Scenario: Find majority class in a mixed set.

Expected Outcome: 1

Assertion Method: Check if the returned int is 1.

Status: PASS

Test Case ID: UT_004

Class::Function: DecisionTree::find_best_split()

Input:

- features = $\{\{1.0, 10.0\}, \{2.0, 20.0\}, \{3.0, 10.0\}, \{4.0, 20.0\}\}$
- labels = $\{0, 1, 0, 1\}$
- current indices = $\{0, 1, 2, 3\}$
- feature_subset_indices = {0, 1} (consider both features)
- params.min samples leaf = 1

Scenario: Simple 2-feature dataset where splitting on feature 1 at value 15.0 (or feature 0 at 2.5) should yield a good Gini gain.

Expected Outcome:

SplitInfo.gini gain > 0. SplitInfo.feature index and SplitInfo.split value should correspond to the

optimal split (e.g., feature 1, value around 15.0, or feature 0, value around 2.5). Left/Right indices

should be correctly partitioned.

Assertion Method:

Verify best split.gini gain > 0. Manually calculate or inspect the expected optimal split and

compare feature index, split value. Check sizes of left indices and right indices.

Status: PASS

Test Case ID: CT 001

Class::Function: RandomForest::train() and RandomForest::predict class()

Input:

• Use the same simple linearly separable dataset as UT DT 006.

• rf params.num trees = 5

• rf params.tree params.max depth = 2, rf params.tree params.min samples leaf = 1

• rf params.bootstrap sample ratio = 1.0

Scenario: Train a small random forest and predict on training data.

Expected Outcome:

Predictions on training data should be highly accurate (likely 100% for this simple case, but

bagging might introduce slight variations if a tree gets a very skewed bootstrap sample). Each tree

should be trained.

Assertion Method:

Call train. Verify model.trees.size() is 5. For each sample in input features, call predict class and

compare to the true label. Aim for high accuracy.

Status: PASS

Test Case ID: UT_002

Class::Function: RandomForest::predict_probability_class1()

Input:

- Train with UT RF 001.
- sample = $\{1,1\}$ (belongs to class 0)
- sample = $\{2,2\}$ (belongs to class 1)

Scenario: Check probability output.

Expected Outcome:

For $\{1,1\}$, probability of class 1 should be low (e.g., \leq 0.2, ideally 0.0 if all trees agree). For $\{2,2\}$, probability of class 1 should be high (e.g., \geq 0.8, ideally 1.0).

Assertion Method:

Call predict_probability_class1 and check if the returned double is within the expected range.

Status: PASS

C. System-wise Testing (Functional Requirements)

These tests evaluate the end-to-end functionality based on the CLI interaction.

Test Case ID: SYS_001

Input:

User inputs via CLI leading to a known "High Risk" prediction (e.g., low sleep, high academic pressure, high financial stress, suicidal thoughts=YES, low CGPA, etc. - define a specific set of values).

- Age: 20
- Academic Pressure: 5
- CGPA: 5.5
- Study Satisfaction: 1
- Suicidal Thoughts: 1 (Yes)
- Work/Study Hours: 10
- Financial Stress: 5
- Family History: 1 (Yes)
- Sleep Ordinal: 0 (<5 hours)
- Gender: 1 (Male)
- Degree Type: 0 (Science/Tech)

Scenario: User enters data indicating high likelihood of depression. This is the first run (no history).

Expected Outcome:

- CLI displays "No past prediction history found."
- CLI displays "Predicted Risk: HIGH (Likely Depressed)".
- CLI displays a probability of High Risk > 0.5
- CLI displays recommendations appropriate for high risk, including urgent advice for suicidal thoughts, and tips related to high academic/financial stress, low sleep.
- risk history.txt is created/updated with one entry (timestamp, probability, "HIGH").

Assertion Method: Observe CLI output. Inspect risk history.txt content.

Status: PASS

Test Case ID: SYS_002

Input:

Precondition: risk_history.txt contains the entry from SYS FN 001.

User inputs via CLI leading to a known "Low Risk" prediction (e.g., good sleep, low academic/financial stress, no suicidal thoughts, high CGPA, etc.).

• Age: 22

• Academic Pressure: 1

• CGPA: 9.0

• Study Satisfaction: 5

• Suicidal Thoughts: 0 (No)

• Work/Study Hours: 6

• Financial Stress: 1

• Family History: 0 (No)

• Sleep Ordinal: 2 (7-8 hours)

• Gender: 0 (Female)

• Degree Type: 1 (Non-Science/Arts)

Scenario: User enters data indicating low likelihood of depression. History exists.

Expected Outcome:

- CLI displays the previous "HIGH" risk entry from history.
- CLI displays "Predicted Risk: LOW (Likely Not Depressed)".
- CLI displays a probability of High Risk < 0.5 (e.g., < 0.3 based on input).
- CLI displays recommendations appropriate for low risk (e.g., maintain habits).
- risk history.txt is updated with a new second entry (timestamp, probability, "LOW").

Assertion Method: Observe CLI output. Inspect risk history.txt content (should now have two

entries).

Status: Pass

Test Case ID: SYS 003

Input:

Test with values at the boundaries and within typical ranges for each simplified CLI input field

(e.g., Age=17, Age=40; Academic Pressure=1, Academic Pressure=3, Academic Pressure=5;

CGPA=0, CGPA=6.9, CGPA=7.1, CGPA=10).

Scenario: Test various combinations of inputs to see how predictions and recommendations

change.

Expected Outcome:

• System handles all valid inputs within defined ranges without crashing.

• Predictions and recommendations appear logical and consistent with the input changes

(e.g., increasing multiple stressors should generally increase risk probability).

Assertion Method: Observe CLI output for sensible predictions and recommendations. Ensure no

crashes or exceptions for valid inputs.

Status: Pass

D. Acceptance Testing for Non-Functional Requirements

ID	System Requirement (Verifiable)	Verification Criteria & Method	Status
SR4	The machine learning modelmust achieve at least 80% accuracy in predicting depression risk when	Criteria: Test set accuracy ≥ 80.0%. Method: After training the model on	PASS
	evaluated on a held-out, unseen test dataset.	the training split, run the C++ program's evaluation part on the remaining 20% test split.	
SR5	The system, when running via the CLI, must process user inputs for a single prediction and display the risk level and initial recommendations within 5 seconds of the user submitting the final input.	Criteria: Average response time ≤ 5.0 seconds. Method: Perform 10 interactive prediction sessions via the CLI. For each session, use a stopwatch to measure the time from hitting "Enter" after the last required input field to the moment the prediction and first line of recommendations appear. Calculate the average time.	PASS
SR6	For the current CLI single-user version, no personal identifiable information (like name) is explicitly requested or stored beyond the session, other than the anonymized risk history. The risk history file (risk_history.txt) will contain only timestamps, probabilities, and risk levels, without direct user identifiers.	Criteria: risk_history.txt contains only timestamp, probability, and risk category string. No other user-identifying data is persistently stored by the application. Method: 1. Run several prediction sessions. 2. Manually inspect the contents of risk_history.txt. 3. Review the C++ source code to ensure no other files are written with user-specific session data (beyond the feature values passed to the model in memory).	PASS