

ANALISIS EXPLORATORIO DE DATOS MULTIVARIADOS

Métodos Cuantitativos

El Vector de Medias

$$\overline{\mathbf{X}} = \frac{1}{n} \sum_{i} \mathbf{X}_{i} = \frac{1}{n} \mathbf{X}^{t} \mathbf{1}$$

$$\overline{\mathbf{X}}_{i} = \frac{1}{n} \sum_{\mathbf{r}} \mathbf{X}_{ri} = \frac{\mathbf{X}_{.i}}{n}$$

Matriz Varianza-Covarianza

$$S_{ij} = \frac{1}{n} \sum_{i} X_{ir} X_{rj} - \overline{X}_{i} \overline{X}_{j}$$

$$S = \frac{1}{n} \sum_{r} (x_r - \overline{X}) (x_r - \overline{X})^t$$

$$S = \frac{1}{n} X^t H X$$

"H" se conoce como matriz central

$$H = I - \frac{1}{n} 11^{t}$$

Resultado

Mostrar que S es semidefinida positiva y H es simétrica e idempotente

La matriz
$$M = \sum_{i} z_{r} z_{r}^{t} = Z^{t}Z$$
 se conoce como matriz suma

de cuadrados y productos cruzados y se define como:

$$Z^{t}Z = \begin{bmatrix} z_{1} & z_{2} & \dots & z_{n} \end{bmatrix} \begin{bmatrix} z_{1}^{t} \\ z_{2}^{t} \\ \vdots \\ z_{n}^{t} \end{bmatrix} = z_{1}z_{1}^{t} + z_{2}z_{2}^{t} + \dots + z_{n}z_{n}^{t}$$

Otras Medidas de Dispersión

Varianza Generalizada

S

Estimación Máximo Verosímil

Determinante de la Matriz Varianza-Covarianza Muestral

Variación Total

Tr(S)

Traza de la Matriz Varianza-Covarianza

Teorema

La matriz de correlación R de un vector aleatorio "y" con matriz de covarianzas ${f R}$ se calcula a partir de ${f S}$ mediante la relación:

$$R = D^{-1/2} S D^{-1/2}$$

donde D es una matriz diagonal con el i-ésimo elemento de la diagonal igual a σ_{ii}

Teorema

La matriz de correlación R es definida positiva

Distancia

Sean **P** y **Q** dos puntos que representan medidas **x** e **y** respecto a dos objetos. Una función real valorada **d**(**P**,**Q**) es una función distancia si tiene las siguientes propiedades:

$$d(P,Q) = d(Q,P)$$

$$d(P,Q) > 0$$
, si $P \neq Q$

$$P = Q \Rightarrow d(P,Q) = 0$$

Métrica

Una distancia es una MÉTRICA si cumple:

IV) Definición

$$d(P,Q) = 0 \Rightarrow P = Q$$

V) Desigualdad Triangular $d(P,R) + d(R,Q) \ge d(P,Q)$

Ultra Métrica

Una distancia es una ULTRAMÉTRICA si cumple:

$$VI$$
) $d(P,Q) \le máx \{ d(P,X), d(X,Q) \}$

Distancias para Datos Cuantitativos

- a) Distancia Euclidea
- b) Distancia Estadística
- c) Distancia de Mahalanobis

a) Distancia Euclidea

La distancia más corta entre dos puntos $P=(x_1, x_2, ..., x_n)$ y $Q=(y_1, y_2, ..., y_n)$ está definido por:

$$d^{2}(P,Q) = (x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2} + ... + (x_{n} - y_{n})^{2}$$

Dada X (nxp) una matriz de datos con filas $x'_1, x'_2, ..., x'_n$, entonces, la distancia Euclidea entre los puntos (objetos) x'_i y x'_i es d_{ii} , donde:

$$d^{2}ij = \sum_{k=1}^{p} (x_{ik} - x_{jk})^{2} = ||x_{i} - x_{j}||^{2}$$

Propiedades Adicionales

- a) Es semi definida positiva
- b) Es invariante frente a transformaciones ortogonales en las x
- c) Cumple la ley de cosenos

b) Distancia Estadística

Es un concepto de distancia que además de incluir la variabilidad también incorpora la presencia de correlación

La forma de equilibrar las ponderaciones de acuerdo a la variabilidad consiste en dividir cada coordenada por la desviación estándar, así se obtiene las coordenadas estandarizadas.

Si hacemos:

$$d(O,P) = \frac{x_1^2}{s_{11}} + \frac{x_2^2}{s_{22}}$$

La distancias estadística de P a Q se define como:

$$d^{2}(P,Q) = \frac{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2} + ... + (x_{n} - y_{n})^{2}}{s_{11}}$$

Si s₁₁=s₂₂=...=s_{nn} se puede utilizar la fórmula de la distancia Euclidea

Si x₁ no varía independientemente de x₂

La variabilidad de x₁ es diferente a la de x₂ y, además, ambas están correlacionados

d(O,P) =
$$\frac{\tilde{x}_1^2}{s_{11}} + \frac{\tilde{x}_2^2}{s_{22}}$$

donde;

$$\widetilde{X}_1 = x_1 \cos \theta + x_2 \sin \theta$$

$$\widetilde{X}_2 = -x_1 \sin \theta + x_2 \cos \theta$$

La **distancia estadística** más corta entre dos puntos $P=(x_1, x_2, ..., x_n)$ y $Q=(y_1, y_2, ..., y_n)$ está definido por:

$$d^{2}(P,Q) = \int a_{11}(x_{1} - y_{1})^{2} + a_{22}(x_{2} - y_{2})^{2} + ... + a_{pp} (x_{n} - y_{n})^{2}$$

$$a_{12}(x_1 - y_1) (x_2 - y_2) + a_{13}(x_1 - y_1) (x_3 - y_3) + ... + a_{p-1,p} (x_{p-1} - y_{p-1}) (x_p - y_p)$$

Los coeficientes de la expresión anterior pueden representarse mediante un arreglo matricial, así:

Distancia euclidea y distancia estadística

d(P,Q) > d(Q,O) Distancia euclidea

d(P,Q) < d(Q,O) Distancia estadística

b) Distancia de Mahalanobis

La **distancia al cuadrado de Mahalanobis** entre los puntos x_i y x_j se define como:

$$D_{ij}^{2} = (x_i - x_j)' S^{-1} (x_i - x_j)$$

Matrices Definidas Positivas

Dado A una matriz simétrica kxk, entonces, A tiene k pares de vectores y valores característicos:

$$\lambda_1, e_1 \quad \lambda_2, e_2 \quad ... \quad \lambda_k, e_k$$
 tal que,
$$e_i^t e_j = \begin{cases} 1 & \text{Si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Descomposición Espectral

La descomposición espectral de una matriz simétrica kxk está dado por:

$$A = \lambda_1 e_1 e_1^t + \lambda_2 e_2 e_2^t + ... + \lambda_k e_k e_k^t$$

RESULTADOS

(continuación)

Si A es una matriz kxk definida positiva con descomposición espectral:

$$A = \sum_{t} \lambda_1 e_1 e_1^t = P \Lambda P^t$$

donde $PP^t = P^tP = I$

Probar que la matriz raíz cuadrada $\mathbf{A}^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}^{t}$ tiene las siguientes propiedades :

- a. A^{1/2} es simétrica
- b. $A^{1/2}A^{1/2} = A$
- c. $(A^{1/2})^{-1}$ existe
- d. $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$