RAHUL SANDIP DESHMUKH

602-200-4347 • desrahul.200@gmail.com • www.linkedin.com/in/desrahul200 • desrahul200.github.io

EDUCATION

Master of Science, Computer Science

Graduating May 2025

Arizona State University, Tempe, AZ

3.90 GPA

Bachelor of Technology, Information Technology

K.J. Somaiya Institute of Technology, University of Mumbai, India

May 2023 3.83 GPA

Relevant coursework: Data Structures and Algorithms, Statistical Machine Learning, Planning Learning methods in AI, NLP, Data-Intensive Systems for Machine Learning, Frontier Topics in GenAI, Computing for Data-Driven Optimization, Big Data Analytics, Database Management, Data Mining and Business Intelligence, Engineering Blockchain

TECHNICAL SKILLS

Programming Languages & Web Development: Python, Java, C++, JavaScript, SQL, Flask

Data Management & Big Data Technologies: Google BigQuery, MySQL, MongoDB, DBeaver, Hadoop

Cloud Platforms & DevOps Tools: AWS, Google Cloud Platform, Docker, CI/CD, Git, Unix/Linux

Machine Learning Libraries & Data Analysis: PyTorch, TensorFlow, Keras, scikit-learn, NumPy, Pandas, BERTopic, FastAPI, Matplotlib, Seaborn, Excel, Tableau, Power BI

EXPERIENCE

Data Scientist - Student Assistant: ASU Enterprise Partners, Scottsdale, AZ

January 2024 - Present

- Developed and deployed **first-touch**, **last-touch**, **and data-driven attribution models** in **Python** for **Sun Devil Athletics**, using **GA4** and **BigQuery** to identify top-performing acquisition channels and inform marketing spend strategies.
- Built and evaluated **multi-stage attribution models** for **ASU Learning Enterprise**, mapping user journeys from sign-up to purchase to optimize full-funnel performance and drive ROI-focused media investment.
- Designed a K-means segmentation pipeline in R with Mahalanobis distance to cluster 100K+ alumni into 5 affinity groups, enabling targeted engagement and improving outreach efficiency.
- Developed a **donor propensity model** using **Bayesian optimization**, with end-to-end **ETL**, **EDA**, and hyperparameter tuning, improving predictive accuracy by **10%** and shaping strategic fundraising efforts.

ACADEMIC PROJECTS

LLM-Powered Sentiment & Topic Mining - Yelp Reviews Analysis

Spring 2025

- Fine-tuned transformer-based models (**BERT, RoBERTa**) for multi-class sentiment classification, achieving **94.2% accuracy** on 500K+ real-world Yelp reviews.
- Integrated BERTopic with SentenceTransformer embeddings to improve topic coherence, resolving cluster overlap seen in traditional KMeans-based approaches.
- Deployed the pipeline as a RESTful API using FastAPI, enabling real-time sentiment analysis on user-submitted reviews.

3D VAE Developer - Vermilion: ASU's In-house Text-to-Video Generative Model

Fall 2024

- Optimized the Variational Autoencoder (VAE) in the CogVideoX pipeline, reducing GPU memory usage by 30% via dynamic tiling and gradient checkpointing.
- Developed Optical Flow Consistency (OFC) and SSIM metrics to enhance temporal coherence and structural fidelity in video sequences.
- Designed and tested 10+ complex prompts to improve spatial fidelity and temporal transitions, refining model robustness.

Harnessing Deep Reinforcement Learning for Autonomous Driving in CARLA

Fall 2023

- Designed an adaptive autonomous driving agent using Deep Reinforcement Learning in CARLA simulation environment.
- Employed a Variational Autoencoder (VAE) for feature extraction and Proximal Policy Optimization (PPO) for decision-making, achieving a mean reward of 92.3% in dry conditions and 78.5% in adverse scenarios.
- Optimized model performance by refining reward functions and limiting training to 3 million steps, demonstrating lane-keeping, obstacle avoidance, and precise navigation across diverse scenarios.

Identification and Classification of Plant Leaf Diseases

Spring 2023

- Implemented **Generative Adversarial Networks (GANs)** to augment the plant leaf dataset, enhancing model performance by increasing data diversity. Used Labelimg for precise annotation, ensuring accurate **model training**.
- Developed a YOLO v4-tiny model for real-time detection of diseased leaves, achieving 77.0% Mean Average Precision (mAP).
 Created a mobile-based detection app in Java and hosted the model on a Flask website for instant identification.

PUBLICATION

• Deshmukh, R., Mayekar, V., Patel, S., & Rathod, M. (2023). Identification and Classification of Plant Leaf Diseases using YOLOv4-tiny Algorithm. 2023 6th International Conference on Advances in Science and Technology (ICAST), 352–357.