Stochasticity may save leukemia patients during **antibody** based **immunotherapy**.

Modeling dynamics of undetectable disease and therapy in leukemia

Max Planck Institute for volutionary Biology, Ploen

Introduction

- A series of specific lesions in white blood cell precursors leads to acute lymphoblastic leukemia (ALL)
- ALL is a malignant disease and leads to differentiation arrest and abnormal proliferation of white blood cells.
 The primary treatment for ALL is chemotherapy, which combines anti-leukemic.
- drugs targeting cell proliferation.

 40%-50% of adults with ALL experience a relapse in the course of the treatment.
- and disease doesn't respond favorably to chemotherapy.
- Relapsed ALL patients are then advised for immunotherapy.
- Bi-specific T cell engager (BiTE) monoclonal antibody drives CD3+T cells to
- eliminate CD19+ B cells.

 Within 3 days of immunotherapy, CD19+ cell counts drop below 1 cell/µl; from whereon, the system is driven by stochastic fluctuations.

Aim

- Formulate a model capturing the stochasticity of the system.
- Simulate chemotherapy and immunotherapy.
- Study effect of stochasticity on the treatment outcome.

Model

5	slowly proliferating cells		$S \longrightarrow S + S$	$v_K S$	$x^2 = (2, 0, 0, 0)$	(1)
F	rapidly proliferating cells		$F \longrightarrow F + F$	$r_F F$	$x^2 = (0, 1, 0, 0)$	(2)
T_a	activated sytotocic T cells		$S \longrightarrow F$	$p_{KF}S$	$\mathbf{r}^2 = (-1, 1, 0, 0)$	(20)
T _d	de-activated cytotosic T cells		$F \longrightarrow S$	Pec F	$\mathbf{r}^4 = (1, -1, 0, 0)$	(4)
Fe. Fe	bith rate constants	5 - 10 ⁻² , 10 ⁻¹ dos-1	$S \longrightarrow \phi$	$m_{\mathcal{E}}S$	$\mathbf{r}^0 = (-1, 0, 0, 0)$	(5)
Part Proc.	conversion rate constants	10 ⁻² , 10 ⁻² day ⁻¹	$F \longrightarrow \phi$	mr F	$\mathbf{r}^{G} = (0,-1,0,0)$	(6)
mg, mg	death rate constants	10°2, 5-10° day"	$S \longrightarrow \phi$	0 rx S	$\mathbf{r}^2 = (-1, 0, 0, 0)$	(2)
Part Pile	de-activation and activation	$5 \cdot 10^{-5}$, $10^{-4} \mathrm{day^{-1}}$	$F \longrightarrow \phi$	$a v_F F$	$\mathbf{r}^{K} = (0, -1, 0, 0)$	(8)
rate constants			$T_c + S \longrightarrow T_c + S$	no. To S	$r^0 = (0, 0, 1, -1)$	(9)
	efficacy of chemotherapy drug	- 1	$T_d + F \longrightarrow T_a + F$	p_{0} , T_{0} , F	$\mathbf{r}^{10} = (0,0,1,-1)$	(20)
	serial killing efficacy of T cells	6 cells	$T_a + nS \longrightarrow T_d$	Part To (5)	$\mathbf{r}^{11} = (-u, 0, -1, 1)$	(11)
Table 1: Symbols used in the model.			$T_a+nF \longrightarrow T_d$	$p_{ad} T_a \binom{p}{a}$	$\mathbf{r}^{12} = (0,-a,-1,1)$	(12)
State of the outer $x = (S, F, T, T_1)$			Table 2: Reactions used in the model.			

Master equation

Fokker-Planck equation

$$\begin{split} \partial_t \Pr[\mathbf{z}, t] &= (|\alpha - 1) \ r_F + (\alpha - 1) \ r_F + m_\theta + m_F + p_{HF} + p_{Y\theta}) \ \Pr[\mathbf{z}, t] \\ &+ \{|1 + \alpha| \ r_F + m_\theta + p_{HF} - p_{Y\theta} + ||\alpha - 1| \ r_F + m_\theta + p_{HF} \mid S - p_{Y\theta} \mid S \mid B_F \mid \mathbf{z}, t\} \\ &+ \{|1 + \alpha| \ r_F + m_F + p_{Y\theta} - p_{HF} \mid \{|\alpha - 1| \ r_F + m_\theta + p_{HF} \mid F - p_{HF} \mid S \mid B_F \mid \mathbf{z}, t\} \\ &+ \frac{1}{2} \{|(1 + \alpha) \ r_F + m_\theta + p_{HF} \mid S + p_{HF} \mid S \mid \partial_{HF} \mid \mathbf{z}, t\} \\ &+ \frac{1}{2} \{|(1 + \alpha) \ r_F + m_\theta + p_{HF} \mid S + p_{HF} \mid S \mid \partial_{HF} \mid \mathbf{z}, t\} \\ \end{split}$$

+ $\frac{1}{2}$ [[(1+a) $r_F + m_F + p_{FF} S + p_{FF} S \} \partial_{FF} \Pr(\mathbf{z}, t)$ + $\frac{1}{2}$ [[(1+a) $r_F + m_F + p_{FS} \} F + p_{FF} S \} \partial_{FF} \Pr(\mathbf{z}, t)$ - $(p_{FF} S + p_{FF} S + p$

Conclusion

- Tumor populations faced extinction that was subject to chance during treatment.
 Significant variation was observed at the end of the treatment.
- Tumor cell numbers and fraction of slow cells are important initial conditions that shape the relapse, and differences in them can lead to diverse relapse profiles, generating within cohort variability.

Saumil Shah, Michael Raatz, Arne Traulsen shah@evolbio.mpg.de

ction rate constants depicted on the reaction arrows. The right panel shows ratumoMAB activated Ticell performing serial killing of tumor cells.

S.F., Ti, Ti) = (2000, 18000, 10, 1990). Panel titles report total tumor cells remaining at the and of the therapy, Panels (a) - (d) are single-cycle treatment simulations. Panels (a), (b) i the motionapy, and panels (c), (d) are immunotherapy realizations. Panels (e), (f) are two science littles of imma continency.

