

# Background

- Customer churn
- : Core business metric for business operation across industries.

  Essential to retain existing customers and target profitable customers
- From Machine Learning perspective
- : Binary classification task to predict customer churn
- Telco Customer Churn data (Kaggle link)
- Customer churn defined as "who left the service in the last month" (target column "Churn", if yes: 1, no: 0)
- 7043 instances (28% True, 72% False, Imbalanced)
- 19 features (16 categorical, 3 numerical)

"Who leaves and who remains?"



|      | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | Phone Service | MultipleLines    | Internet Service |
|------|----------------|--------|---------------|---------|------------|--------|---------------|------------------|------------------|
| 0    | 7590-<br>VHVEG | Female | 0             | Yes     | No         | 1      | No            | No phone service | DSL              |
| 1    | 5575-<br>GNVDE | Male   | 0             | No      | No         | 34     | Yes           | No               | DSL              |
| 2    | 3668-<br>QPYBK | Male   | 0             | No      | No         | 2      | Yes           | No               | DSL              |
| 3    | 7795-<br>CFOCW | Male   | 0             | No      | No         | 45     | No            | No phone service | DSL              |
| 4    | 9237-<br>HQITU | Female | 0             | No      | No         | 2      | Yes           | No               | Fiber optic      |
|      |                |        |               |         |            |        |               |                  |                  |
| 7038 | 6840-<br>RESVB | Male   | 0             | Yes     | Yes        | 24     | Yes           | Yes              | DSL              |
| 7039 | 2234-<br>XADUH | Female | 0             | Yes     | Yes        | 72     | Yes           | Yes              | Fiber optic      |
| 7040 | 4801-JZAZL     | Female | 0             | Yes     | Yes        | 11     | No            | No phone service | DSL              |
| 7041 | 8361-<br>LTMKD | Male   | 1             | Yes     | No         | 4      | Yes           | Yes              | Fiber optic      |
| 7042 | 3186-AJIEK     | Male   | 0             | No      | No         | 66     | Yes           | No               | Fiber optic      |
|      |                |        |               |         |            |        |               |                  |                  |

7043 rows × 21 columns

# **Data Exploration**

- Imbalanced data (28% True, 72% False)
- 19 Features 3 types of info
  - Demographic info: Gender, SeniorCitizen, Partner, Dependents
  - Customer account info: Tenure, Contract, PaymentMethod, MonthlyCharges, TotalCharges
  - Other service info (signed up or not): PhoneService, MultipleLines, InternetService, StreamingTV etc.

## General Hypotheses

- Those without partners, without dependents, senior are more likely to drop out
- Those without security service, with Fiber optic Internet services are likely to drop out
- Customers with month-to-month plans, using paperless billing are likely to drop out





Imbalanced data



Distribution of numerical column

# Data Pre-processing

- Relatively Clean data, pre-processing to streamline model training
- Pre-processing steps
  - 1. Merge categorical values without additional information
    - (Yes, No, No Internet service) → (Yes, No)
  - 2. Binary Encoding
    - Gender: Male  $\rightarrow$  0, Female  $\rightarrow$ 1
    - Binary categorical columns: Yes  $\rightarrow$  1, No  $\rightarrow$  0
  - 3. One-hot-encoding
    - Columns with more than 2 categorical values
  - 4. Scaler
    - Normalize numerical columns MonthlyCharges, TotalCharges, Tenure

### Correlation plot after pre-processing



|   | Gender | SeniorCitizen | Partner | Dependents | Tenure | Phone Service | MultipleLines |
|---|--------|---------------|---------|------------|--------|---------------|---------------|
| 0 | Female | 0             | Yes     | No         | 1      | No            | No            |
| 1 | Male   | 0             | No      | No         | 34     | Yes           | No            |
| 2 | Male   | 0             | No      | No         | 2      | Yes           | No            |
| 3 | Male   | 0             | No      | No         | 45     | No            | No            |
| 4 | Female | 0             | No      | No         | 2      | Yes           | No            |

|   | Gender | SeniorCitizen | Partner | Dependents | Tenure   | Phone Service | MultipleLines |
|---|--------|---------------|---------|------------|----------|---------------|---------------|
| 0 | 1      | 0             | 1       | 0          | 0.000000 | 0             | 0             |
| 1 | 0      | 0             | 0       | 0          | 0.464789 | 1             | 0             |
| 2 | 0      | 0             | 0       | 0          | 0.014085 | 1             | 0             |
| 3 | 0      | 0             | 0       | 0          | 0.619718 | 0             | 0             |
| 4 | 1      | 0             | 0       | 0          | 0.014085 | 1             | 0             |

# Data Imbalance: Oversample vs Undersample

- Before splitting into train/test data, correct data imbalance
  - Small size of minority case (No-churn. Target value = 1) is problematic, as companies are more interested in the behavior of drop-out customers

|                  | Oversampling   | Undersampling       |
|------------------|----------------|---------------------|
| Chosen method    | SMOTE          | RandomUnderSampler  |
| Cost to consider | Redundant data | Too small data size |

- In general, undersampling is preferred over oversampling. But concerns about too small data size
- Change in sample size
  - Original: (1, 0) = (1869, 5163)
  - Oversampling: (1, 0) = (5163, 5163)
  - Undersampling: (1, 0) = (1869, 1869)
- Decide on which data set to use after testing on the models



Imbalanced data



Balanced data
After oversampling

# Models – RF, LR, XGBoost

- 3 Model types: Random Forest, Logistic Regression, XGBoost
- Model building/deployment process
  - : Simillar for the 3 models
    - 1. GridSearchCV
      - For both over/undersampled data
    - 2. Find the best parameters for each model
      - In all 3 models, higher score with oversampled data
    - 3. Present model performance
      - Classification report
      - Confusion Matrix
      - AUC of ROC curve
    - 4. After 1-3: Compare three model performance
- Parameter grids for GridSearchCV
  - 1. Random Forest: n\_estimators, max\_depth, criterion
  - 2. Logistic Regression: penalty, C, max\_iter, solver
  - 3. XGBoost: max\_depth, learning\_rate

#### [ Random Forest Model ]

#### 1. Classification report

|                                       | precision    | recall       | f1-score             | support              |  |
|---------------------------------------|--------------|--------------|----------------------|----------------------|--|
| 0                                     | 0.85<br>0.78 | 0.76<br>0.87 | 0.81<br>0.82         | 1563<br>1535         |  |
| accuracy<br>macro avg<br>weighted avg | 0.82<br>0.82 | 0.81<br>0.81 | 0.81<br>0.81<br>0.81 | 3098<br>3098<br>3098 |  |

#### 2. Confusion matrix



#### 3. AUC – ROC curve



## **Models Performance**

- Ranking of the model performance
  - 1. XGBoost
  - 2. Random Forest
  - 3. Logistic Regression
- Ranking was identical across three evaluation estimators

|   | Model               | roc_auc_score | f1_score | accuracy_score |
|---|---------------------|---------------|----------|----------------|
| 0 | Random Forest       | 0.814851      | 0.822037 | 0.814396       |
| 1 | Logistic Regression | 0.811721      | 0.814838 | 0.811491       |
| 2 | XGBoost             | 0.832067      | 0.834970 | 0.831827       |





## **Error Analysis**

- Examine the incorrectly predicted data's distribution of each column with the overall data
- General Insights
  - 1. Models were not complicated enough to classify the case that does not follow the general trend
    - (e.g.,) There was a general trend that customers with dependents/partners are less likely to drop-out.
    - Noticeably unsuccessful in classifying customers without dependents/partners
  - 2. Majority of columns were not significant enough to differentiate classes
    - When excluding the general trend detected in EDA, other columns does not seem to have explanatory power
  - 3. Three models are making common errors. Similar error rows
    - XGBoost was making less errors

#### Overall data – demographic columns



VS.

#### Incorrectly predicted data by RF- demographic columns



## **Further Task**

## Limitation of the project

- 1. Limited number of tested parameter grid
  - Including more parameters could have changed the result
- 2. Small data size for machine learning task
  - Oversampled data has 10326 instances
- 3. Comparison of three models
- 4. Technical aspect: Making model deployment and comparison into a function
  - Could have compare more models altogether

