江西财经大学 2015—2016 第二学期期末考试试卷

适用对象: 经管类本科生

课程代码: 06603 (A) 授课课时: 48 考试用时: 110 分钟

课程名称: 概率论(主干课程)

ï	【卷命题人: __ 	杨 婷		试卷审核人:	徐慧植	_
1	5分)		答题纸的相应位 <u>;</u> 立,已知 <i>P(B)</i> =0			
2.	在一次实验	中事件A发生的	カ概率为 0.4. 现边 知 Φ(1)=0.8413,	进行5次独立试	验,则A最有可能	
5.	设随机变量	,则 $E(X^2) = $ X 和 Y 的数学, 有 $P\{ X - Y \ge 3\}$	期望都是 1,方差	经分别为4和9,	而相关系数为	0.5,则根据切比
			四个备选答案中立 该题不得分。每			写在答题纸的相
1	. 一批产品共	有8个正品和2	2个次品,任意抽	取两次,每次抽	一个,抽出后不真	再放回,则第二次
拍		的概率为(B. {	$\frac{2}{6}$ C.	$\frac{1}{9}$	D. $\frac{1}{3}$	
		独立地对同一 的概率为(目标射击一次, 其).	命中率分别为	0.6 和 0.5, 现记	3知目标被命中,
	A. $\frac{3}{5}$	В.	$\frac{4}{5}$ C.	$\frac{1}{2}$	D. $\frac{3}{4}$	
	设 X 和 Y 是 h 别为 $F_{X}(x)$		卖型随机变量 , 它	们的密度函数。	分别为 $f_{x}(x)$ 和	$f_{_{Y}}(y)$,分布函数
	A. $f_X(x)$	$+f_{\scriptscriptstyle Y}(y)$ 必为密	度函数 B	$f_X(x)f_Y(y)$ 必	为密度函数	
	$C. F_X(x)$	$)+F_{_{Y}}(y)$ 必为分	布函数 D.	$F_X(x)F_Y(y)$ 必	为分布函数	
4.	随机变量 X	,Y均服从正态。	分布,则下列命题	题正确的是 ()	
	A. $X + Y$	一定服从正态。	分布 B.	(X,Y)一定服	从正态分布	

- C. XY一定服从正态分布
- D. X,Y 不相关与独立等价
- 5. 设随机变量 X 和 Y 独立同分布且 X 分布函数为 F(x),则 $Z = \min(X,Y)$ 的分布函数为

A.
$$F^2(x)$$

B.
$$F(x)F(y)$$

C.
$$1 - [1 - F(x)]^2$$

D.
$$[1-F(x)][1-F(y)]$$

三、计算题(要求在答题纸写出主要计算步骤及结果, 12分)

同一种产品由甲、乙、丙三个厂家供应。由长期经验知,三家的正品率分别为 0.9, 0.8, 0.7, 三厂家产品数所占比例为 3:3:4, 产品均匀混合在一起。(1) 从中任取一件, 求此件产品为正品的概率; (2) 现取到一件产品为正品, 问它是三个厂中哪个厂生产的可能性最大?

四、计算题(要求在答题纸写出主要计算步骤及结果,12分)

设随机变量
$$X$$
 的密度函数为 $f(x) =$
$$\begin{cases} a\cos\frac{x}{2}, & 0 < x < \pi \\ 0, & \text{其它} \end{cases}$$
.

- (1) 求未知参数a; (2) 计算E(X), D(X).
- **五、计算题**(要求在答题纸写出主要计算步骤及结果,12分)

设二维随机变量
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} 1 & 0 < x < 1, 0 < y < 2x \\ 0 & 其它 \end{cases}$,求:

- (1) (X,Y)的边缘概率密度 $f_X(x)$, $f_Y(y)$; (2) 判断随机变量 X,Y 是否独立.
- **六、计算题**(要求在答题纸写出主要计算步骤及结果, 12 分)

设随机变量 X,Y 相互独立, 其概率密度函数分别为 $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其它 \end{cases}$

$$f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & \text{其它} \end{cases}$$
. 求: $Z = X + 2Y$ 的概率密度函数.

七、应用题(要求在答题纸上写出主要计算步骤及结果,12分)

一个复杂的系统由 100 个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为 0.05,为了使整个系统起作用,至少必须有 92 个部件正常工作,求整个系统起作用的概率.($\Phi(1.38)=0.9162$)

八、证明题(要求在答题纸上写出主要推理步骤及结果,10分)

已知 $P(A|B) = P(A|\overline{B})$,证明事件A与事件B相互独立..