IN THE CLAIMS:

1	1. (CURRENTLY AMENDED) In a plurality of intermediate network devices having a
2	plurality of ports for forwarding network messages within a bridged network having a
3	root, the plurality of intermediate network devices organized as a stack, each intermediate
4	network device having a stack port for use in communicating with the other network de-
5	vices of the stack, a method for efficiently transitioning the ports among a plurality of
6	spanning tree protocol (STP) states, the method comprising the steps of:
7	executing the STP at each intermediate network device of the stack so as to assign
8	the stack port of each device to either a Root Port Role or a Designated Port Role, and to
9	assign a non-stack port at a single device of the stack to the Root Port Role;
10	transitioning the ports assigned to the Root Port Role and the Designated Port
11	Role to a forwarding STP state;
12	designating all non-stack ports at the devices of the stack that provide connec-
13	tivity to the root, other than the non-stack port assigned to the Root Port Role, as Alter-
14	nate Stack Root Ports;
15	transitioning the Alternate Stack Root Ports to a discarding STP state; and
16	in response to a failure at the non-stack port assigned to the Root Port Role, tran-
17	sitioning a selected one of the Alternate Stack Root Ports from the discarding STP state
18	directly to the forwarding STP state, without transitioning the selected port through any
19	intermediary STP states, so that the selected Alternate Stack Root Port assumes Root Port
20	Role for the stack.
,	

2. (ORIGINAL) The method of claim 1 wherein

1

- each Alternate Stack Root Port has a respective cost to the root; and the selected one of the Alternate Stack Root Ports that is transitioned to the for-
- warding STP state is the Alternate Stack Root Port whose cost to the root is lowest.

- 3. (ORIGINAL) The method of claim 2 further comprising the step of, in response to the
- failure at the non-stack port assigned to the Root Port Role, generating and issuing, from
- one or more source devices of the stack for receipt by one or more other devices of the
- stack, one or more bridge protocol data unit (BPDU) messages proposing to transition a
- 5 given Alternate Stack Root Port of the device to the forwarding STP state.
- 4. (ORIGINAL) The method of claim 3 further comprising the step generating and issu-
- 2 ing, in response to the proposal BPDU message, one or more Rapid Transition Acknowl-
- 3 edgement messages to the source device agreeing with the source device's proposal to
- transition the given Alternate Stack Root Port to the forwarding STP state.
- 5. (ORIGINAL) The method of claim 4 further comprising the step of transitioning the
- 2 given Alternate Stack Root Port of the source device from the discarding STP state di-
- 3 rectly to the forwarding STP state, without passing through any intermediary states, pro-
- 4 vided that the source device receives a Rapid Transition Acknowledgement message
- from each other member of the stack.
- 6. (ORIGINAL) The method of claim 1 wherein the spanning tree protocol is one of the
- 2 IEEE Std 802.1w.1w-2001 and the IEEE Std. 802.1s-2002 specification standards.
- 7. (ORIGINAL) The method of claim 1 further comprising the step of associating each
- stack port with a port cost of zero, such that the stack port of each device is assigned to
- either a Root Port Role or a Designated Port Role.
- 8. (ORIGINAL) The method of claim 1 further comprising the step of monitoring which
- 2 intermediate network devices are organized as the stack.

- 9. (ORIGINAL) The method of claim 8 wherein the step of monitoring comprises the
- step of periodically exchanging Discovery Hello messages among the intermediate net-
- work devices organized as the stack.
- 1 10. (ORIGINAL) An intermediate network device configured to forward network mes-
- sages within a bridged network, the intermediate network device comprising:
- a plurality of ports for connecting the device to one or more network entities;
- at least one stack port for connecting the device to one or more other intermediate
- 5 network devices that cooperate to form a stack;
- a port role selection state machine configured to assign roles to the ports;
- a port transition state machine configured to transition the ports among a plurality
- of spanning tree protocol (STP) states depending on the assigned roles, wherein
- the port role selection state machine is configured and arranged to assign the stack
- port to one of a Root Port Role or a Designated Port Role, and
- the port transition state machine is configured and arranged to transition those
- ports that are assigned to the Root Port Role or to the Designated Port Role to a forward-
- ing spanning tree port state.
- 1 11. (ORIGINAL) The intermediate network device of claim 10 further comprising a mes-
- sage generator configured and arranged periodically to issue a Discovery Hello message
- from the at least one stack port, signaling that the intermediate network device is part of
- 4 the stack.
- 1 12. (ORIGINAL) The intermediate network device of claim 11 further comprising a
- 2 neighbor discovery engine configured and arranged to monitor Discovery Hello messages
- received from the other intermediate network devices that form the stack, and to desig-
- a nate the other intermediate network devices from which a Discovery Hello message is
- 5 received as members of the stack.

1	13. (ORIGINAL) The intermediate network device of 10 further comprising
2	a spanning tree protocol entity configured and arranged to elect a root of the
3	bridged network; and
4	a cross-stack rapid transition engine configured and arranged to issue one or more
5	Rapid Transition Acknowledgment messages to a given intermediate network device that
6	forms the stack and from which a proposal Bridge Protocol Data Unit (BPDU) message is
7	received representing a better path to the root.
1	14. (CURRENTLY AMENDED) In an intermediate network device having a plurality of
2	ports for forwarding network messages within a bridged network, and a stack port for
3	communicating with one or more other intermediate network devices that together form a
4	stack, a method for efficiently transitioning the ports among a plurality of spanning tree
5	protocol (STP) states, the method comprising the steps of:
6	executing the STP so as to assign the stack port to a Root Port Role;
7	transitioning the stack port, which has been assigned to the Root Port Role, to a
8	forwarding STP state;
9	designating all non-stack ports that provide connectivity to the root as Alternate
10	Stack Root Ports;
11	transitioning the Alternate Stack Root Ports to a discarding STP state; and
12	in response to receiving from a source intermediate network device a proposal
13	Bridge Protocol Data Unit (BPDU) message on the stack port that specifies a path cost to
14	the root and that seeks to transition a port of the source device to a forwarding state, issu-
15	ing one or more Rapid Transition Acknowledgment messages to the source device, pro-
16	vided that the specified path cost of the proposal BPDU is lower than the root path costs
17	associated with the Alternate Stack Root Ports, wherein
18	the one or more Rapid Transition Acknowledgment messages signal the interme-
19	diate network device's agreement to the port of the source device transitioning directly to
20	the forwarding state without transitioning through any intermediary STP states, so that
21	the port of the source device assumes Root Port Role for the stack.

- 15. (PREVIOUSLY PRESENTED) The method of claim 14 further comprising the step
- of issuing a proposal BPDU message to the source device, provided that the specified
- path cost of the proposal BPDU that was received is higher than the root path cost associ-
- 4 ated with a selected one of the Alternate Stack Root Ports.
- 1 16. (PREVIOUSLY PRESENTED) The method of claim 15 further comprising the step
- of transitioning the selected Alternate Stack Root Port from a discarding state directly to
- a forwarding state provided that the intermediate network device receives a Rapid Transi-
- 4 tion Acknowledgment message from each device that forms part of the stack.
- 17. (PREVIOUSLY PRESENTED) The method of claim 16 wherein
- the intermediate network device recognizes one or more Virtual Local Area Net-
- 3 works (VLANs), and
- 4 the stack port is forwarding for all VLANs recognized by the intermediate net-
- 5 work device.

1

- 18. (PREVIOUSLY PRESENTED) The method of claim 1 further comprising:
- associating each stack port with a cost lower than that of non-stack ports to cause
- all the stack ports to be assigned to the forwarding STP state.
- 19. (PREVIOUSLY PRESENTED) The intermediate network device of 10 wherein the
- at least one stack port is associated with a cost lower than that of ports of the plurality of
- ports that are not stack ports, to cause the stack port to be assigned to the forwarding
- 4 spanning tree port state.
- 1 20. (CURRENTLY AMENDED) An apparatus comprising:

2	means for executing a spanning tree protocol (STP) to assign a stack port of the
3	apparatus to a Root Port Role, the stack port for communicating with one or more other
4	apparatus that together form a stack;
5	means for transitioning the stack port, which has been assigned to the Root Port
6	Role, to a forwarding STP state;
7	means for designating a plurality of non-stack ports of the apparatus that provide
8	connectivity to a root as Alternate Stack Root Ports;
9	means for transitioning the Alternate Stack Root Ports to a discarding STP state;
10	and
11	means for issuing, in response to receiving from a source device a proposal
12	Bridge Protocol Data Unit (BPDU) message on the stack port that specifies a path cost to
13	the root and that seeks to transition a port of the source device to a forwarding state, one
14	or more Rapid Transition Acknowledgment messages to the source device, provided that
15	the specified path cost of the proposal BPDU is lower than the root path costs associated
16	with the Alternate Stack Root Ports, wherein
17	the one or more Rapid Transition Acknowledgment messages signal the appara-
18	tus's agreement to the port of the source device transitioning directly to the forwarding
19	state without transitioning through any intermediary STP states, so that the port of the
20	source device assumes Root Port Role for the stack