Week 8,9

Draw Lines and Triangles:

Howdo we draw lines on a computer?

and a common and a common and

http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/

Oscilloscope

Output for a raster display

- Common abstraction of a raster display:
 - Image represented as a 2Dgrid of "pixels"
 - Each pixel can can take on a unique color value

A raster display converts an image (a color value at each pixel) into emitted light

Close up photo of pixels on a modern display

LCD screen pixels (closeup)

"Rasterization": process of converting a continuous object (a line, a polygon, etc.) to a discrete representation on a "raster" grid (pixel grid)

Light up all pixels intersected by the line?

Diamond rule (used by modern GPUs): light up pixel if line passes through associated diamond

Is there a right answer? (consider a drawing a "line" with thickness)

Howdo we find the pixels satisfying a chosen rasterization rule?

- Could check every single pixel in the image to see if it meets the condition...
 - O(n²) pixels in image vs. at most O(n) "lit up" pixels
 - Must be able to do better!

Incremental line rasterization

- Let's say a line is represented with integer endpoints: (u1,v1), (u2,v2)
- Slope of line: s = (v2-v1)/(u2-u1)
- Consider an easy special case:
 - u1 < u2, v1 < v2 (line points toward upper-right)
 - 0 < s < 1 (more change in x than y)

```
v = v1;
for( u=u1; u<=u2; u++ )
{
   v += s;
   draw( u, round(v) )
}</pre>
```


Assume integer coordinates

Common optimization: rewrite algorithm to use only integer arithmetic (Bresenham algorithm)

Line drawing of cube

Weknow how to compute to location of points in 3Don a 2D screen

Weknow how to draw lines between those points.

Wejust rendered a simple line drawing of a cube.

But to render more realistic pictures (or animations) we need a much richer model of the world.

surfaces
materials
lights
cameras

2D shapes

[Source: Batra 2015]

Complex 3D surfaces

Platonic noid

Drawing a triangle ("triangle rasterization")

(Converting a representation of a triangle into an image)

Input: 2D position of triangle vertices: P₀, P₁, P₂

Output: Set of pixels "covered" by the triangle

Whytriangles?

Triangles are a basic block for creating more complex shapes and surfaces

Triangles - a fundamental primitive

- Whytriangles?
 - Mostbasic polygon
 - Can break up other polygons into triangles
 - Allows programs to optimize one implementation

- Guaranteed to be planar
- Well-defined interior
- Well-defined method for interpolating values at vertices over triangle.

What does it mean for a pixel to be covered by a triangle?

Question: which triangles "cover" this pixel?

One option: compute fraction of pixel area covered by triangle, then color pixel according to this fraction.

Analytical coverage schemes get tricky when considering occlusion of one

triangle by another

Idea: let's call a pixel "inside" the triangle if the pixel center is inside the triangle

So here's our triangle...

(Overlaid over a pixel grid)

What's wrong with this picture?

(This is the result of rasterizing the triangle using our method)

Jaggies!

drawing a triangle

(Converting a representation of a triangle into an image)

"Triangle rasterization"

Input: 2D position of triangle vertices: P₀, P₁, P₂

Po•

Output: set of pixels "covered" by the triangle

Idea from last time: let's call a pixel "inside" the triangle if

the pixel center is inside the triangle

Today we will draw triangles using a simple method: point sampling (testing whether a specific points are inside the triangle)

Before talking about sampling in 2D, let's consider sampling in 1D first...

Considera 1Dsignal:f(x)

Sampling: taking measurements of a signal

Below: five measurements ("samples") of f(x)

Adiscrete representation of f(x) is given by the samples $f(x_0)$, $f(x_1)$, $f(x_2)$, $f(x_3)$, $f(x_4)$

Audio file: stores samples of a 1D signal

Audio is often sampled at 44.1 KHz

Sampling a function

■ Evaluating a function at a point is sampling the function's value

■ Wecan discretize a function by periodic sampling

```
for(int x = 0; x < xmax; x++)
  output[x] = f(x);</pre>
```

■ Sampling is a core idea in graphics. In this class we'll sample signals parameterized by: time (1D), area (2D), angle (2D), volume (3D), paths through a scene (infinite-D) etc ...

Reconstruction: given a set of samples, how might we attempt to reconstruct the original (continuous) signal f(x)?

Reconstruction: given a set of samples, how might we attempt to reconstruct the original (continuous) signal f(x)?

Piecewise constant approximation

 $f_{recon}(x) =$ value of sample closest tox

 $f_{recon}(x)$ approximates f(x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)

Piecewise linear approximation

 $f_{recon}(x)$ = linear interpolation between values of two closest samples to x

= reconstruction via linear interpolation

Howcan werepresent the signal more accurately?

Answer: sample signal more densely (increase sampling rate)

Reconstruction from sparse sampling

(5 samples)

= reconstruction via linear interpolation

More accurate reconstructions result from denser sampling

(9 samples)

= = reconstruction via linear interpolation

More accurate reconstructions result from denser sampling

(17 samples)

= reconstruction via linear interpolation

Drawing a triangle by 2D sampling

Image as a 2D matrix of pixels

Here I'm showing a 10 x 5 pixel image Identify pixel by its integer (x,y) coordinates

(0,0)	(1,0)				(9,0)
(0,1)	(1,1)				
(0,4)					(9,4)

Continuous coordinate space over image

Ok, nowforget about pixels!

Continuous coordinate space over image

Ok, nowforget about pixels!

(I removed pixel boundaries from the figure to encourage you to forget about pixels!)

Define binary function: inside (tri, x, y)

Sampling the binary function: inside(tri,x,y)

Sample coverage at pixel centers

Sample coverage at pixel centers

I only want you to think about evaluating triangle-point coverage! NOTTRIANGLE-PIXEL OVERLAP!

Rasterization = sampling a 2D binary function

■ Rasterize triangle tri by sampling the function

```
f(x,y) = inside(tri,x,y)

for (int x = 0; x < xmax; x++)
    for (int y = 0; y < ymax; y++)</pre>
```

image[x][y] = f(x + 0.5, y + 0.5);

Evaluating inside (tri,x,y)

Triangle = intersection of three half planes

Point-slope form of a line

(You might have seen this in high school)

$$y-y_0 = m(x-x_0)$$

$$m = \frac{y_1 - y_0}{x_1 - x_0}$$

$$P_{1}=(x_1, y_1)$$

Each line defines two half-planes

Implicit line equation

$$-L(x,y) = Ax + By + C$$

- Ontheline: L(x,y)=0
- "Negative side" of line: L(x,y) < 0
- "Positive" side of line: L(x,y) > 0

 $T= P_1 - P_0 = (x_1 - x_0 y_1 - y_0)$

$$N = \text{Perp}(T) = (y_1 - y_0 - (x_1 - x_0))$$

Nowconsider a point P=(x,y). Which side of the line is it on?

Line equation tests

Line equation tests

$$L(x,y) = V \cdot N = 0$$

$$P = (x, y)$$

$$N$$

Line equation tests

$$L(x,y) = V \cdot N = -(y - y_0)(x_1 - x_0) + (x - x_0)(y_1 - y_0)$$

$$= (y_1 - y_0)x - (x_1 - x_0)y + y_0(x_1 - x_0) - x_0(y_1 - y_0)$$

$$= Ax + By + C$$

$$P_1$$

$$V = P - P_0 = (x - x_0y - y_0)$$

$$N = Perp(T) = (y_1 - y_0 - (x_1 - x_0))$$

$$P_i = (X_i, Y_i)$$

$$A_i = dY_i = Y_{i+1} - Y_i$$
 $B_i = -dX_i = X_i - X_{i+1}$
 $C_i = Y_i (X_{i+1} - X_i) - X_i (Y_{i+1} - Y_i)$

$$L_i(x, y) = A_i x + B_i y + C_i$$

 $L_i(x, y) = 0$: point on edge > 0: outside edge < 0: inside edge

$$P_i = (X_i, Y_i)$$

$$A_i = dY_i = Y_{i+1} - Y_i$$
 $B_i = -dX_i = X_i - X_{i+1}$
 $C_i = Y_i (X_{i+1} - X_i) - X_i (Y_{i+1} - Y_i)$

$$L_i(x, y) = A_i x + B_i y + C_i$$

 $L_i(x, y) = 0$: point on edge > 0: outside edge < 0: inside edge

$$L_1(x, y) < 0$$

$$P_i = (X_i, Y_i)$$

$$A_i = dY_i = Y_{i+1} - Y_i$$
 $B_i = -dX_i = X_i - X_{i+1}$
 $C_i = Y_i (X_{i+1} - X_i) - X_i (Y_{i+1} - Y_i)$

$$L_i(x, y) = A_i x + B_i y + C_i$$

 $L_i(x, y) = 0$: point on edge > 0: outside edge < 0: inside edge

$$L_2(x, y) < 0$$

Sample point s = (sx, sy) is inside the triangle if it is inside all three edges.

$$inside(sx, sy) = L_0(sx, sy) < 0 \&\& L_1(sx, sy) < 0 \&\& L_2(sx, sy) < 0$$

Note: actual implementation of inside(sx, sy) involves \leq checks based on the triangle coverage edge rules (see next slide)

Sample points inside triangle are highlighted red.