Sprawozdanie z laboratorium 6

HART (WAGO)

Łukasz Janusz Marek Generowicz

09.03.2025

1 Wstęp

Na laboratoriach należało zapoznać się z protokołem HART, który jest standardem komunikacyjnym stosowanym w przemyśle, zasadami komunikacji oraz praktycznymi aspektami jego wykorzystania w przemyśle. W trakcie zajęć przeprowadzono ćwiczenia z wykorzystaniem sterownika WAGO 750-841 wyposażonym w dwukanałowy analogowy moduł wejścia, który pozwala na komunikację z urządzeniami HART. Elementem pomiarowym natomiast jest termopara typu K, która została połączona z modułem WAGO za pomocą przetwornika temperatury TxIsoRail-HART.

2 Przebieg ćwiczenia

2.1 Badanie właściwości metrologicznych transformatorowego czujnika LVDT drogi

Celem zadania jest zbadanie właściwości metrologicznych transformatorowego czujnika LVDT drogi. W tym celu należy wyznaczyć charakterystykę statyczną czujnika, tj. zależność napięcia wyjściowego czujnika od położenia rdzenia przy napięciu zmiennym. Następnie należy wyznaczyć charakterystykę czujnika w układzie z wzmacniaczem z modulacją AM. Schemat układu pomiarowego przedstawiono na rysunku 1.

Rysunek 1: Schemat połączeń przy współpracy toru pomiarowego z czujnikiem LVDT.

2.1.1 Wyznaczenie charakterystyki statycznej czujnika LVDT

Po połączeniu układu zgodnie z rysunkiem 1 należy za pomocą śruby mikrometrycznej znaleźć położenie rdzenia dla, którego napięcie na wyjściu wynosiło 0V, wartość ta wynosi 62,2cm.

Następnie należało mierzyć napięcia na wyjściu czujnika w odległość 5 cm od punktu zerowego w obu kierunkach z skokiem o 5 mm. Wartości tych pomiarów przedstawiają trzy pierwsze kolumny tabeli 1.

Na podstawie zmierzonych napięć i przemieszczeń stworzono wykres 1.

Kolejno przyjmując ujemne wartości napięcia dla x < 0 należy należy aproksymować wartości pomiarów wielomianem stopnia pierwszego, z czego otrzymujemy współczynnik a = 0.1172 oraz b = 0. Po zastosowaniu wzoru 1 otrzymujemy wartość napięcia obliczonego przedstawione w czwartej kolumnie tabeli 1.

$$y = ax + b \tag{1}$$

Względne	Przemieszczenie	Napięcie zmierzone [V]	Napięcie	Moduł
przemieszczenie [cm]	na śrubie [cm]		obliczone [V]	błędu bezwzględnego
-5	57,2	0,59	-0,586	0,004
-4,5	57,7	0,53	-0,5274	0,0026
-4	58,2	0,47	-0,4688	0,0012
-3,5	58,7	0,41	-0,4102	0,0002
-3	59,2	0,35	-0,3516	0,0016
-2,5	59,7	0,29	-0,293	0,003
-2	60,2	0,23	-0,2344	0,0044
-1,5	60,7	0,17	-0,1758	0,0058
-1	61,2	0,11	-0,1172	0,0072
-0,5	61,7	0,053	-0,0586	0,0056
0	62,2	0	0	0
0,5	62,7	0,053	0,0586	0,0056
1	63,2	0,11	0,1172	0,0072
1,5	63,7	0,17	0,1758	0,0058
2	64,2	0,23	0,2344	0,0044
2,5	64,7	0,29	0,293	0,003
3	65,2	0,35	0,3516	0,0016
3,5	65,7	0,41	0,4102	0,0002
4	66,2	0,47	0,4688	0,0012
4,5	66,7	0,53	0,5274	0,0026
5	67,2	0,59	0,586	0,004

Tabela 1: Wyniki pomiarów i obliczeń w zadaniu 1a.

Następnie stosując wzór 2, obliczamy wartość błędu bezwzględnego dla każdego pomiaru. Największe błędy bezwzględne wynoszą $\pm 0,0072$ i występują w odległości 1 cm od odległości śruby, dla której napięcie zmierzone wynosi 0V. Przebieg wartości błędu bezwzględnego w stosunku do względnego wartości przemieszczenia śruby od stanu początkowego przedstawia wykres 2, natomiast moduł wartości błędy bezwzględnego przedstawia ostatnia kolumna tabeli 1.

$$\Delta_U = U_{pomiar} - U_{obliczone} \tag{2}$$

Wykres 1: Wartość napięcia zmierzonego w zależności od przemieszczenia rdzenia.

Na koniec zadania 1a należało obliczyć błąd nieliniowości zgodnie z wzorem 3. Z tabeli możemy odczytać wartość maksymalnego błędu bezwzględnego oraz zakres napięcia wyjściowego czujnika . Po podstawieniu wartości do wzoru otrzymujemy wartość błędu nieliniowości 0.0122.

$$\delta_{U_{max}} = \frac{|\Delta_U|_{max}}{U_{max} - U_{min}} \tag{3}$$

Wykres 2: Wartość błędu bezwzględnego w zależności od przemieszczenia rdzenia.

$\bf 2.1.2$ Obserwacja sygnałów na poszczególnych etapach przetwarzania czujnik LVDT – wzmacniacz z modulacją AM

W celu obserwacji sygnałów na poszczególnych etapach należało układ z rysunku 1 podpiąć do oscyloskopu, który był połączony z komputerem z oprogramowaniem pozwalającym na odczytywanie sygnałów. A następnie przeprowadzić pomiary dla rdzenia w pozycji zerowej oraz w pozycji przesuniętej w obu kierunkach.

Z powodu braku czasu na wykonanie ostatniego, 2 zadania, w trakcie pracy na oscyloskopie mogliśmy zaobserwować dużo ciekawych zależności i lepiej zrozumieć działanie układu.

(a) Pierwszy wykres z oscyloskopu

(b) Drugi wykres z oscyloskopu

(c) Trzeci wykres z oscyloskopu

Rysunek 2: Wykresy z oscyloskopu.

Na rysunkach 2 i 3 przedstawione jest pięć różnych zdjęcia stworzonych przez oscyloskop. Na każdym z nich widać 4 wykresy. Pomarańczowy to jest sygnał wejściowy, niebieska to sygnał wyjściowy układu, fioletowy to moduł oddanego sygnału, a zielona to sygnał fazy. Te cztery wyjścia oscyloskopu pozwalają nam odczytać i zrozumieć jak działa nasz układ.

Zdjęcie 2c przedstawia wykresy dla rdzenia w pozycji zerowej. Widać że sygnał modułu jest zerowy a sygnał fazy jest na środku. Z tego powodu sygnał wyjścia również się zeruje.

Na zdjęciu 2a widać że sygnał wyjścia jest niewiele przesunięty względem sygnału wejściowego, natomiast na zdjęciu 2b widać że sygnał wyjścia jest w przeciw fazie do sygnału wejściowego. Ponadto moduły są przeciwne względem siebie a wykres fazy na drugim zdjęciu jest znacznie niżej niż na pierwszym zdjęciu. Wynika to z tego że odległość rdzenia od początkowej pozycji w trakcie pomiarów różni się o taką samą wartość od położenia zerowego, jednak w przeciwnym kierunku.

Na wykresach 3a i 3b widać że sygnały wyjść zmieniają się bardzo intensywnie, co jest spo-

(a) Czwarty wykres z oscyloskopu

(b) Piąty wykres z oscyloskopu

Rysunek 3: Wykresy z oscyloskopu.

wodowane bardzo nagłymi zmianami położenia rdzenia względem początkowej pozycji. Pokaz ten został przeprowadzony aby pokazać jak układ zachowuje się w ekstremalnych warunkach oraz jak zmieniają się sygnały wyjściowe przy dużych zmianach położenia rdzenia.

Praca na oscyloskopie pozwoliła nam zobaczyć jak zachowują się wyjścia układu w zależności od położenia rdzenia oraz jakie są różnice między sygnałami wejściowymi a wyjściowymi. Jest to bardzo użyteczna informacja dla osób pracujących z układami pomiarowymi, ponieważ pozwala na zrozumienie jak działa układ oraz jakie są różnice korelacje między wyjściowymi.

2.2 Wyznaczanie charakterystyki statycznej układu czujnik + tor z modulacją amplitudową

Celem ćwiczenie było wyznaczenie charakterystyki statycznej układu zbudowanego zgodnie z schematem przedstawionym na rysunku 4, a następnie przeprowadzenie analizy analogicznej jak w zadaniu 1a, opisanym w punkcie 2.1.1 z tą różnicą że należało nadać sygnał stały.

Rysunek 4: Schemat układu do wyznaczania charakterystyki statycznej układu czujnik + tor z modulacją amplitudową.

Po połączeniu układu zgodnie z rysunkiem 4 należy za pomocą śruby mikrometrycznej znaleźć położenie rdzenia, dla którego napięcie na wyjściu wynosiło 0V, wartość ta wynosi 62,25cm. Następnie przeprowadzone zostały pomiary napięcia na wyjściu czujnika w odległość 5 cm od punktu zerowego w obu kierunkach z skokiem o 5 mm. Wartości tych pomiarów przedstawiają trzy pierwsze kolumny tabeli 2.

Względne	Przemieszczenie	NT · · · [X7]	Napięcie	Moduł
przemieszczenie [cm]	na śrubie [cm]	Napięcie zmierzone [V]	obliczone [V]	błędu bezwzględnego
-5	57,25	1,06	1,05	0,01
-4,5	57,75	0,96	0,945	0,015
-4	58,25	0,85	0,84	0,01
-3,5	58,75	0,74	0,735	0,005
-3	59,25	0,64	0,63	0,01
-2,5	59,75	0,53	0,525	0,005
-2	60,25	0,43	0,42	0,01
-1,5	60,75	0,32	0,315	0,005
-1	61,25	0,21	0,21	0
-0,5	61,75	0,1	0,105	0,005
0	62,25	0	0	0
0,5	62,75	-0,11	-0,105	0,005
1	63,25	-0,21	-0,21	0
1,5	63,75	-0,32	-0,315	0,005
2	64,25	-0,43	-0,42	0,01
2,5	64,75	-0,53	-0,525	0,005
3	65,25	-0,64	-0,63	0,01
3,5	65,75	-0,74	-0,735	0,005
4	66,25	-0,85	-0,84	0,01
4,5	66,75	-0,96	-0,945	0,015
5	67,25	-1,06	-1,05	0,01

Tabela 2: Wyniki pomiarów i obliczeń w zadaniu \mathcal{Z}

Następnie na podstawie zmierzonych napięć i przemieszczeń stworzono wykres 3. Z wykresu tego aproksymowane zostały wartości współczynników $a=-\theta,21$ oraz $b=\theta$. Po zastosowaniu wzoru 1 otrzymujemy wartość napięcia obliczonego przedstawione w czwartej kolumnie tabeli 2.

Wykres 3: Wartość napięcia zmierzonego w zależności od przemieszczenia rdzenia.

Posiadając wartości napięć zmierzonych i obliczonych, obliczono wartość błędu bezwzględnego dla każdego pomiaru zgodnie z wzorem 2. Największe błędy bezwzględne wynoszą $\pm 0,015$ i występują dla w odległości 4,5 cm od odległości śruby dla, której napięcie zmierzone wynosi 0V. Przebieg wartości błędu bezwzględnego w stosunku do względnego wartości przemieszczenia śruby od stanu początkowego przedstawia wykres 4, natomiast moduł wartości błędu bezwzględnego przedstawiają ostatnia kolumna tabeli 2.

Wykres 4: Wartość błędu bezwzględnego w zależności od przemieszczenia rdzenia.

Na koniec zadania 3 obliczono błąd nieliniowości zgodnie z wzorem 3. Z tabeli możemy odczytać wartość maksymalnego błędu bezwzględnego oraz zakres napięcia wyjściowego czujnika po podstawieniu wartości do wzoru otrzymujemy wartość błędu nieliniowości 0,007.

3 Podsumowanie

Sprawozdanie dotyczy badania właściwości metrologicznych toru pomiarowego z modulacją AM współpracującego z transformatorowym czujnikiem LVDT. Realizowane zadania obejmowały wyznaczanie charakterystyk statycznych czujnika oraz układu czujnik + tor, analizę błędów, a także obserwację sygnałów na różnych etapach przetwarzania.

W ramach badań wyznaczono charakterystykę statyczną czujnika LVDT, mierząc napięcie wyjściowe w funkcji przemieszczenia rdzenia. Uzyskane dane wskazują na dobrą liniowość czujnika w badanym zakresie, z maksymalnym błędem nieliniowości wynoszącym 0,0122. Analiza sygnałów na oscyloskopie pozwoliła zobrazować dynamikę układu czujnik-wzmacniacz oraz jego reakcje na różne pozycje rdzenia i szybkie zmiany położenia. Wyznaczono również charakterystykę statyczną całego układu czujnik + tor, obliczając błędy i uzyskując błąd nieliniowości na poziomie 0,007, co wskazuje na wysoką zgodność z modelem teoretycznym.

- 1. **Właściwości czujnika LVDT:** Czujnik wykazuje dobrą liniowość i precyzję w badanym zakresie, co potwierdza jego przydatność w precyzyjnych pomiarach przemieszczeń.
- 2. **Skuteczność modulacji AM:** Wzmacniacz z modulacją AM skutecznie przetwarza sygnały z czujnika, minimalizując zakłócenia.
- 3. **Praktyczne zastosowania:** Układ może być stosowany w systemach pomiarowych wymagających wysokiej dokładności, takich jak mechanika precyzyjna.
- 4. **Obserwacje oscyloskopowe:** Analiza sygnałów umożliwiła lepsze zrozumienie dynamiki układu oraz korelacji między sygnałami wejściowymi a wyjściowymi.

Podsumowując, przeprowadzone badania wykazały, że tor pomiarowy z czujnikiem LVDT i wzmacniaczem z modulacją AM spełnia założenia metrologiczne, oferując wysoką dokładność i stabilność pomiarów.