Name: Cameron Peterso-Zopf

PROGRAMMING ASSIGNMENT 2

Discussion on a high level with your colleagues is encouraged. Make sure the work submitted is your own. When in doubt, ask a TA or the instructor. If you are not sure what constitutes academic dishonesty, please refer to the AISC web site: https://aisc.uci.edu/.

You can fill out your answers below in text, paste screenshots, and/or include images (make sure the image is right side up & legible).

This homework covers:

LC-3 Machine Language to Assembly – Part 1

AISC

Please initial here to indicate you understand UCI's Academic Integrity Policy and confirm that this is your own work you are submitting (this counts for points): CPZ

UPDATED CODE SCREENSHOT

```
power2.asm
1 ;Assembly Version of Code to Figure out if a number (positive 2's complement integer)
2 ; is a power of 2 => only one 1 bit.
3 ; Code starts @ x3000
4 ;Input: positive two's complement number stored in x3050 (doesn't handle 0 case properly)
5 ; Output: 1 @ x3051 = power of two; 0 @ x3051 = not a power of two
6
                    x3000
            .ORIG
                    R2, R2, #0; R2<-0
8
            AND
9
            LDI
                    R0, INPUT ; R0 < -M[x3050] == R0 < -(#)
10
            BRz
                    #4
                                 ; If R0 = 0, store right away (not a power of 2)
            ADD
                    R1, R0, #-1; R1<-R0-#1
11
            AND
                    R0, R0, R1 ; R0<-R0 AND R1
12
                    #1 ; If R0 not 0, skip next line (not power of 2)
R2, R2, #1 ; R2<-R2+#1 == R2<-1 (is power of 2)
13
            BRnp
14
            ADD
                    R2, OUTPUT ; M[x3051]<-R2
            STI
15
16
            HALT
17
            ;hardcoded values
18
19 INPUT
            .FILL
                   x3050
20 OUTPUT
           .FILL
                    x3051
21
22
            .END
```

EECS 20 Homework Page 1 of 4

SCREENSHOT OF POSITIVE NUMBER THAT IS A POWER OF 2

BE SURE TO SHOW VALUES @ X3050 & X3051 AS WELL AS REGISTERS JUST BEFORE HALT INSTRUCTION

First test 8, which is a power of 2

	Registers	Memory
R0	xC4C7 50375	1 ▶ x3050 x0008 8
R1	xACDA 44250	♠ x3051 x71D3 29139
R2	x9CCD 40141	♠ x3052 x3C5A 15450
R3	xBD47 48455	♠ x3053 x74A8 29864
R4	xA17E 41342	♠ x3054 xFD3E 64830
R5	xB850 47184	(1) ▶ x3055 x6784 26500
R6	xC8B5 51381	♠ x3056 xEB83 60291
R7	x25E2 9698	● x3057 x436F 17263
PSR	x8002 32770 CC: Z	● x3058 x7B41 31553
PC	x3000 12288	() ▶ x3059 x1984 6532
MCR	x0000 0	♠ x305A x9D3D 40253

R2 = 1 as we wanted.

	Registers	Memory
R0	x0000 0	■ x3001 xA007 40967 LDI RO, INPUT
R1	x0007 7	● x3002 x0404 1028 BRz #4
R2	x0001 1	■ x3003 x123F 4671 ADD R1, R0, #-1
R3	xBD47 48455	■ x3004 x5001 20481 AND R0, R0, R1
R4	xA17E 41342	▶ x3005 x0A01 2561 BRnp #1
R5	xB850 47184	▶ x3006 x14A1 5281 ADD R2, R2, #1
R6	xC8B5 51381	■ x3007 xB402 46082 STI R2, OUTPUT
R7	x25E2 9698	■ x3008 xF025 61477 HALT
PSR	x8001 32769 CC: P	■ x3009 x3050 12368 INPUT .FILL x3050
PC	x3008 12296	■ x300A x3051 12369 OUTPUT .FILL x3051
MCR	x0000 0	▶ x300B xBFF7 49143

The value stored in x3051 is 1, indicating it is a power of 2.

	The value stored in ASSSI is 1, indicating it is a power of 2.					
	Registers	Memory				
R0	x0000 0	() ▶ x3050 x0008 8				
R1	x0007 7	1 ▶ x3051 x0001 1				
R2	x0001 1	■ x3052 x3C5A 15450				
R3	xBD47 48455	■ x3053 x74A8 29864				
R4	xA17E 41342	● x3054 xFD3E 64830				
R5	xB850 47184	1 ▶ x3055 x6784 26500				
R6	xC8B5 51381	★3056 xEB83 60291				
R7	x25E2 9698	(1) ▶ x3057 x436F 17263				
PSR	x8001 32769 CC: P	(1) ▶ x3058 x7B41 31553				
PC	x3008 12296	(1) ▶ x3059 x1984 6532				
MCR	x0000 0	★305A x9D3D 40253				

EECS 20 Homework Page 2 of 4

SCREENSHOT OF POSITIVE NUMBER THAT IS NOT A POWER OF 2

BE SURE TO SHOW VALUES @ X3050 & X3051 AS WELL AS REGISTERS JUST BEFORE HALT INSTRUCTION

Next test 100, which is not a power of 2

R2 = 0 as we wanted.

The value stored in x3051 is 0, indicating it is not a power of 2.

	Registers	Memory
R0	x0060 96	0 ▶ x3050 x0064 100
R1	x0063 99	0 ▶ x3051 x0000 0
R2	x0000 0	♠ x3052 xB8F1 47345
R3	xD73E 55102	① ▶ x3053 xE9B5 59829
R4	x50A0 20640	● x3054 x0c1D 3101
R5	xD2BE 53950	● x3055 x7DCA 32202
R6	xD81C 55324	■ x3056 xBD1A 48410
R7	x66BB 26299	① ▶ x3057 x052D 1325
PSR	x8001 32769 CC: P	① ▶ x3058 x2322 8994
PC	x3008 12296	① ▶ x3059 x33F9 13305
MCR	x0000 0	▶ x305A xF5BF 62911

EECS 20 Homework Page 3 of 4

SCREENSHOT OF 0 CASE

BE SURE TO SHOW VALUES @ X3050 & X3051 AS WELL AS REGISTERS JUST BEFORE HALT INSTRUCTION

Finally test 0, which is not a power of 2

R2 = 0 as we wanted.

The value stored in x3051 is 0, indicating it is not a power of 2.

EECS 20 Homework Page 4 of 4