

Robobrole: TP frottement



|       | Connaissances                                                       |                 |
|-------|---------------------------------------------------------------------|-----------------|
| CO7.5 | Mettre en œuvre un scénario de validation devant intégrer un        | Concept         |
|       | protocole d'essais, de mesures et/ou d'observations sur le          | d'équilibre     |
|       | prototype ou la maquette, interpréter les résultats et qualifier le | (mouvement d'un |
|       | produit                                                             | système)        |

# Objectifs:

- Évaluer des performances transposables au système de frappe (Robobrole)
- Étudier le comportement d'un palet sur différentes surfaces.

### Introduction:

Lister des grandeurs physiques communes aux situations présentées en vidéo :

<u>Critères de réussite</u>: vous trouvez au moins 2 grandeurs.

| • |  |
|---|--|
| • |  |
| • |  |
| • |  |
| • |  |
|   |  |

#### Pour aller plus loin:

Donner 2 paramètres qui peuvent améliorer ou dégrader les conditions.

| • |  |
|---|--|
| • |  |

#### A retenir:

Pour étudier ces paramètres, nous allons mettre une expérience en œuvre.

#### Matériels:

- Un palet
- Une masse cylindrique en acier

Info.:  $\rho = 7.8 \ g/cm^3$ 

- Un dynamomètre <u>lien</u>
- 2 plaques de matériaux différents

Vous mettrez avantageusement à profit les notions de forces étudiées en physique, en I2D et les notions vues en mathématiques.





Robobrole: TP frottement



### Travail préalable aux expériences

| 1. | Calculer le poids de la masse cylindrique                             |  |  |  |
|----|-----------------------------------------------------------------------|--|--|--|
|    | Données : diamètre 40 mm ; hauteur 51 mm ; $ ho=rac{m}{V}$ ; $P=m*g$ |  |  |  |
|    | Pour réussir :                                                        |  |  |  |
|    | Trouver le volume                                                     |  |  |  |

| Isole <b>m</b> pour trouver la masse Calculer le poids $P$ ( g = 9.81 m*s <sup>-2</sup> ) |
|-------------------------------------------------------------------------------------------|
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |

# Mise en place de la première expérience.



Sur la **version numérique** de ce document (.../maclasse...) cliquer sur le lien vidéo <u>ICI</u> La vidéo vous explique comment mettre en œuvre le matériel.

## Informations de préparation.

Pour la suite, nous considérons que la masse du palet est **7 grammes**.

Prendre une des plaques et identifier le matériau, reporter cette information dans le tableau suivant.

**F**<sub>N</sub> correspond au poids de l'ensemble **cylindre + palet** si l'ensemble est à plat.

 $F_f$  correspond à l'effort résistant au déplacement

| Matériaux | Masse<br>palet +<br>cylindre | Poids<br>(F <sub>N</sub> ) | Friction (F <sub>f</sub> ) | $\frac{F_f}{F_N}$ = |
|-----------|------------------------------|----------------------------|----------------------------|---------------------|
|           |                              |                            |                            |                     |
|           |                              |                            |                            |                     |

| Proposez un protocole pour tester les matériaux : (me                                                                                                                     | entionner des étapes pour trouver F <sub>f</sub> ) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                                                                                                                                           |                                                    |
| <u>Critères de réussite :</u>                                                                                                                                             |                                                    |
| <ul> <li>Vos valeurs sont relevées consciencieusement</li> <li>Vous avez testé 2 matériaux</li> <li>Vous rédigez une courte conclusion ci-dessous</li> </ul> Conclusion : |                                                    |
| Que dire de F <sub>f</sub> / F <sub>N</sub> ? :                                                                                                                           |                                                    |

