Evidência experimental para teoria quântica da luz

Radiação do corpo negro

Dispersão de Compton

O efeito fotoelétrico

Louis Pasteur (France, 1822 – 1895)
"In the fields of observation, chance only favors the prepared mind" (1854)

"It seems probable that most of the grand underlying principles have been firmly established."

A.A. Michelson 1894

Radiação térmica

Corpos físicos com temperaturas elevadas emitam radiação

W. Wien (Prémio Nobel 1911)

Espetro varia com a temperatura

Independente da composição, tamanho do objeto

Um "Corpo Negro"

Idealização dum corpo que absorve toda a radiação nele incidente.

O espetro emitido depende do nível de excitação térmica.

Se A e B estão em equilíbrio termodinâmico não há troca liquida de energia. O espetro devera ser universal, i.e. não depende da composição

Lei de Wien

Ultravioleta $\lambda < 400nm$ Visível $400nm \le \lambda \le 700nm$ Infravermelho $700nm < \lambda$

Wilhelm Wien 1864-1928 Nobel 1911

Lei empírica (inicialmente)

$$\lambda_{\text{max}} T \approx 2898 \ \mu mK$$

Lei de Stefan Boltzmann

A potência total radiada por unidade área dum corpo negro é

$$I(T) = \varepsilon \sigma T^4$$

$$\sigma = 5.67 \times 10^{-8} W / (m^2 K^4)$$

ε emissividade (1 por um corpo negro ideal)

1879

Teoria clássica – o catástrofe UV

Lord Rayleigh

Number of modes per unit frequency per unit volume

8\pi v^2

C^3

For higher frequencies you can fit more modes into the cavity. For double the frequency, four times as many

Cada "modo" tem uma energia média kT

O número de modos tende para infinito quando o comprimento de onda tende para 0

Lei de Planck

Teórico que trabalhava em termodinâmica e física estatística

Na base duma expressão empírica deduzida pelo Wien chegou em 1900 a expressão

Max Planck (1858-1947)

$$I(T,\lambda) = \frac{2\pi c^2 h}{\lambda^5} \frac{1}{\exp(hc/\lambda kT) - 1}$$

Ajuste bem as curvas experimentais se $h = 6.63x10^{-34} Js$

$$h = 6.63x10^{-34} Js$$

Teoria Quântica

Evite a catástrofe UV se \(\Delta \) E fosse muito maior do que kT os osciladores n\(\tilde{a} \) seriam excitados

Na altura a teoria gerou muita controvérsia .

O Planck resistia a noção que a própria radiação está quantizada.

Aplicações

Os espetros das estrelas se aproximam espetros de corpos negro (são perto do equilíbrio termodinâmico)

Visão humana

Visão infravermelho

Classificação das estrelas

CLASSIFICATION:

TEMPERATURE (K):

Hertzsprung-Russell (H-R) diagram Luminosity vs temperature

Luminosity: $L = 4\pi R^2 \sigma T^4$

where R the radius of the star

T the temperature of the star

σ the Stefan-Boltzmann constant (σ=5.67x10⁻⁸ W.m⁻².K⁻⁴)

Dados observados

Fundo Cósmico de micro ondas

Sugere que no passado o Universo estava perto do equilíbrio termodinâmico quente e denso

Expansão -> arrefecimento

Pensa que quando atingiu 3000 K os eletrões combinar com os protões e o Universo ficou quase transparente a radiação.

Desde então o Universo se
expandiu por um fator
~1000

T = 2.728 K