36-755: Advanced Statistical Theory

Fall 2017

Lecture 22: November 20

Lecturer: Alessandro Rinaldo Scribe: Robin Dunn

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

22.1 Sub-Gaussian Processes

We are often interested in bounding expressions of the form

$$\mathbb{E}\Big[\sup_{\theta\in\mathbb{T}}\theta^T\epsilon\Big],$$

where $\mathbb{T} \subset \mathbb{R}^n$, and $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ is a vector of independent $SG(\sigma^2)$ random variables.

Example: Suppose we have a class of the form $\mathbb{T} = \mathcal{F}(x_1^n) = \{(f(x_1), \dots, f(x_n)) : f \in \mathcal{F}, x_i \in \mathbb{R}^d\}$ or $\mathcal{A}(x_1^n) = \{A \cap x_1^n, A \in \mathcal{A}\}$, where \mathcal{A} is a collection of subsets of \mathbb{R}^n .

- Suppose $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ is a vector of n independent Rademacher random variables. Then $\mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left[\sup_{\theta \in \mathbb{T}} \theta^T \epsilon\right]$ is the Rademacher complexity of \mathbb{T} (or \mathcal{F}).
- Suppose $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ is a vector of n independent N(0, 1) (or $N(0, \sigma^2)$) random variables. Then $\mathcal{G}_n(\mathcal{F}) = \mathbb{E}\left[\sup_{\theta \in \mathbb{T}} \theta^T \epsilon\right]$ is the Gaussian complexity of \mathbb{T} (or \mathcal{F}).

Remark: Rademacher and Gaussian complexities are sometimes of a similar order and sometimes of different orders.

If
$$\mathbb{T} = \{ \theta \in \mathbb{R}^d : ||\theta||_2 \le 1 \}$$
, then $\mathcal{R}_n(\mathbb{T}) \approx \mathcal{G}_n(\mathbb{T}) \le \sqrt{d}$.

If
$$\mathbb{T} = \{ \theta \in \mathbb{R}^d : ||\theta||_1 \le 1 \}$$
, then $\mathcal{R}_n(\mathbb{T}) = 1$ and $\mathcal{G}_n(\mathbb{T}) \lesssim \sqrt{\log d}$.

To show these results, we would use the facts $||x||_2 = \sup_{v:||v||_2 \le 1} v^T x = \sup_{v \in B_d(1)} v^T x$ and $||x||_1 = \sup_{||v||_\infty \le 1} v^T x$.

Let $\{X_{\theta}, \theta \in \mathbb{T}\}$ be a mean zero stochastic process indexed by \mathbb{T} . Similar to above, we may be interested in expression of the form $\mathbb{E}\left[\sup_{\theta \in \mathbb{T}} X_{\theta}\right]$.

Examples:

- 1) Rademacher and Gaussian complexities. In the examples above, we could represent $X_{\theta} = \epsilon^T \theta$, where we are interested in $\mathbb{E}\left[\sup_{\theta \in \mathbb{T}} X_{\theta}\right]$.
- 2) Non-parametric least-squares regression. We observe n pairs $(Y_1, x_1), \ldots, (Y_n, x_n)$ where x_1, \ldots, x_n are deterministic points in [0, 1]. We assume that $Y_i = f^*(x_i) + \epsilon_i$, where $(\epsilon_1, \ldots, \epsilon_n) \stackrel{iid}{\sim} SG(\sigma^2)$ and

22-2 Lecture 22: November 20

 $f^* \in \mathcal{F}$ (a class of real-valued functions on [0,1]). Let $\widehat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum (Y_i - f(x_i))^2$ be the least squares estimator. We want to bound $\mathbb{E}\Big[\underbrace{\frac{1}{n}\sum_{i=1}^n\Big(\widehat{f}(x_i) - f^*(x_i)\Big)^2}_{MSE}\Big]$.

Small MSE means that \hat{f} is a good approximation to f^* . To analyze the performance of \hat{f} , we start with the basic inequality:

$$MSE \le \frac{2}{n} \sum_{i=1}^{n} \epsilon_i \left(\widehat{f}(x_i) - f^*(x_i) \right)$$
$$\le \frac{2}{\sqrt{n}} \sup_{f,g \in \mathcal{F}} |X_f - X_g|$$

where $X_f = \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(x_i)$. So

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left(\widehat{f}(x_i) - f^*(x_i)\right)^2\right] \le \frac{2}{\sqrt{n}}\mathbb{E}\left[\sup_{f,g\in\mathcal{F}}|X_f - X_g|\right].$$

Also, for any two functions $f, g \in \mathcal{F}$,

$$V(X_f - X_g) = \mathbb{E}\left[\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n \epsilon_i (f(x_i) - g(x_i))\right)^2\right]$$

$$= \frac{1}{n}\mathbb{E}\left[\left(\sum_{i=1}^n \epsilon_i (f(x_i) - g(x_i))\right)^2\right]$$

$$\leq \frac{1}{n}\mathbb{E}\left[\left(\sum_{i=1}^n \epsilon_i^2\right) \left(\sum_{i=1}^n (f(x_i) - g(x_i))^2\right)\right]$$

$$= \frac{1}{n}\mathbb{E}\left[\left(\sum_{i=1}^n \epsilon_i^2\right)\right] \sum_{i=1}^n (f(x_i) - g(x_i))^2$$

$$\leq \frac{1}{n} \cdot n\sigma^2 ||f - g||_2^2$$

$$= \sigma^2 ||f - g||_2^2.$$

3) Estimation in Wasserstein distance. Essentially, the Wasserstein distance is the amount of mass one must move from one distribution to another to make them equal.

Suppose P and Q are distributions on on \mathbb{R} . The Wasserstein distance between P and Q is

$$W_1(P,Q) = \sup_{f \in \mathcal{F}} |Pf - Qf|,$$

where $Pf = \mathbb{E}_{X \sim P}[f(X)]$ and $\mathcal{F} = \{f : [0,1] \to \mathbb{R}, f \text{ is 1-Lipschitz}\}$. (That is, for any $f \in \mathcal{F}$ and $x, y \in [0,1], |f(x) - f(y)| \le |x - y|$.)

An equivalent characterization is given by

$$W_1(P,Q) = \inf_{(x,y)} \mathbb{E}[|X - Y|, X \sim P, Y \sim Q].$$

Lecture 22: November 20 22-3

We might want to use this metric to compare a true distribution to its empirical distribution. Suppose $(X_1, \ldots, X_n) \stackrel{iid}{\sim} P$ and P_n is the corresponding empirical measure. Then $W_1(P_n, P) = \sup_{f \in \mathcal{F}} |X_f|$, where $X_f = P_n f - P f$. So $\mathbb{E}[X_f] = 0$ for all f. Then we see

$$\mathbb{E}[W_1(P_n, P)] = \mathbb{E}\Big[\sup_{f \in \mathcal{F}} |X_f|\Big].$$

22.1.1 Sub-Gaussian Processes

Definition 22.1 (Sub-Gaussian process.) A zero-mean stochastic process $\{X_{\theta} : \theta \in \mathbb{T}\}$ is sub-Gaussian with respect to metric d on \mathbb{T} if for $\theta, \theta' \in \mathbb{T}$ and $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda(X_{\theta}-X_{\theta'})}\right] \le \exp\left[\frac{\lambda^2}{2}d^2(\theta,\theta')\right].$$

Equivalently, for $\theta, \theta' \in \mathbb{T}$, $X_{\theta} - X_{\theta'} \in SG(d^2(\theta, \theta'))$. $d(\cdot)$ is called the canonical metric. In the case of Gaussian random variables, the canonical metric is given by $d(\theta, \theta') = \sqrt{V(X_{\theta} - X_{\theta'})}$.

By Hoeffding's inequality for sub-Gaussians,

$$\mathbb{P}(|X_{\theta} - X_{\theta'}| \ge t) \le 2 \exp\left\{-\frac{t^2}{2d^2(\theta, \theta')}\right\}.$$

Examples:

1) Rademacher and Gaussian complexities. In these cases, $\mathbb{T} \subseteq \mathbb{R}^n$. These processes are sub-Gaussian with respect to $d(\theta, \theta') = ||\theta - \theta'||_2$ on \mathbb{T} because

$$V(X_{\theta} - X_{\theta'}) = V(\epsilon^T \theta - \epsilon^T \theta') \le ||\theta - \theta'||_2^2 \sigma^2.$$
(22.1)

(This proves that $X_{\theta} - X_{\theta'} \in SG(||\theta - \theta'||_2^2 \sigma^2)$.) In the case where ϵ_i is Rademacher, $\sigma^2 = 1$. In the case where $\epsilon_i \sim N(0, \sigma^2)$, σ^2 in equation 22.1 is the same σ^2 as the normal variance.

- 2) Non-parametric least squares regression. As before, we define $X_f = \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(x_i)$, where x_1, \dots, x_n are deterministic. X_f is SG, and so is $X_f X_g$. Previously, we showed $V(X_f X_g) \leq \sigma^2 ||f g||_2^2$. In this case, we can use the canonical distance $d(f,g) = \sqrt{\frac{1}{n} \sum_{i=1}^n (f(x_i) g(x_i))^2}$.
- 3) Wasserstein distance. In this problem, we had $X_f = P_n f P f$. This is an SG process with respect to $d(f,g) = \frac{||f-g||_{\infty}}{\sqrt{n}}$. This is an exercise, and the result can be obtained by using Azuma-Hoeffding.

22.1.2 Metric Entropy

Definition 22.2 (Metric entropy.) Let $\mathbb{T} \subseteq \mathbb{R}^n$ and let d be a distance metric on \mathbb{T} . For $\delta > 0$, the metric entropy of \mathbb{T} with respect to d is given by $\log \mathcal{N}(\mathbb{T}, \delta)$, where $\mathcal{N}(\mathbb{T}, \delta)$ is the δ -covering number of \mathbb{T} .

Definition 22.3 (Diameter of \mathbb{T} .) Let $\mathbb{T} \subseteq \mathbb{R}^n$ and let d be a distance metric on \mathbb{T} . The diameter of the set \mathbb{T} is given by $D = \sup_{\theta, \theta' \in \mathbb{T}} d(\theta, \theta')$.

22-4 Lecture 22: November 20

Proposition 22.4 (1-step discretization bound.) Assume $\{X_{\theta} : \theta \in \mathbb{T}\}$ is a SG process with respect to d. Then for all $\delta \in (0, D]$,

$$\mathbb{E}\left[\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|\right] \leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\leq\delta}}|X_{\gamma}-X_{\gamma'}|\right] + 4D\sqrt{\log\mathcal{N}(\mathbb{T},\delta)}.$$

 δ is a tuning parameter. As δ decreases, the first term decreases and the second term increases.

Remarks:

- 1) For arbitrary $\theta_0 \in \mathbb{T}$, $\mathbb{E}\left[\sup_{\theta \in \mathbb{T}} X_{\theta}\right] = \mathbb{E}\left[\sup_{\theta \in \mathbb{T}} (X_{\theta} X_{\theta_0})\right] \leq \mathbb{E}\left[\sup_{\theta, \theta' \in \mathbb{T}} (X_{\theta} X_{\theta'})\right]$.
- 2) Constants are not optimal.

Proof: Let $\theta_1, \ldots, \theta_N$ be a minimal δ -cover of \mathbb{T} , where $N = \mathcal{N}(\mathbb{T}, \delta)$. Then for all $\theta \in \mathbb{T}$, there exists j $(1 \le j \le N)$ such that $d(\theta, \theta_j) \le \delta$.

Fix $\theta \in \mathbb{T}$. Choose j such that $d(\theta, \theta_j) \leq \delta$. Then

$$\begin{split} X_{\theta} - X_{\theta_1} &= X_{\theta} - X_{\theta_j} + X_{\theta_j} - X_{\theta_1} \\ &\leq \sup_{\substack{\gamma, \gamma' \in \mathbb{T} \\ d(\gamma, \gamma') \leq \delta}} (X_{\gamma} - X_{\gamma'}) + \max_i |X_{\theta_i} - X_{\theta_1}|. \end{split}$$

We can obtain a similar bound for $X_{\theta_1} - X_{\theta'}$, where θ' is another point in \mathbb{T} .

Adding up and using the fact that θ and θ' are arbitrary,

$$\sup_{\theta,\theta'\in\mathbb{T}} (X_{\theta} - X_{\theta'}) \le 2 \sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\le\delta}} (X_{\gamma} - X_{\gamma'}) + 2 \max_{i} |X_{\theta_i} - X_{\theta_1}|.$$

To finish the proof, we will take the expectation of both sides. Since $X_{\theta_i} - X_{\theta_1} \in SG(D^2)$, we know $\mathbb{E}\left[\max_i |X_{\theta_i} - X_{\theta_1}|\right] \leq 2D\sqrt{\log \mathcal{N}(\mathbb{T}, \delta)}$. (See the maximal inequality from the 9-13 lecture notes.) So

$$\mathbb{E}\left[\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|\right] \leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\leq\delta}}(X_{\gamma}-X_{\gamma'})\right] + 2\mathbb{E}\left[\max_{i}|X_{\theta_{i}}-X_{\theta_{1}}|\right]$$
$$\leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\leq\delta}}|X_{\gamma}-X_{\gamma'}|\right] + 4D\sqrt{\log\mathcal{N}(\mathbb{T},\delta)}.$$

Applications: For $\mathbb{T} \subseteq \mathbb{R}^n$ and $\delta \in (0, D]$ (where D is the diameter of \mathbb{T}), define

$$\widetilde{\mathbb{T}}(\delta) := \{ \gamma - \gamma' | \gamma, \gamma' \in \mathbb{T}, ||\gamma - \gamma'||_2 \le \delta \}.$$

Then where ϵ is a vector of Rademacher random variables and $d(\cdot)$ is Euclidean distance,

$$\mathcal{R}_n(\widetilde{\mathbb{T}}(\delta)) = \mathbb{E}\left[\sup_{\substack{\gamma, \gamma' \in \mathbb{T} \\ d(\gamma, \gamma') < \delta}} \epsilon^T(\gamma - \gamma')\right] \leq \mathbb{E}[||\epsilon||_2 \delta] \leq \sqrt{n}\delta.$$

Lecture 22: November 20 22-5

The same inequality holds for $\mathcal{G}_n(\widetilde{\mathbb{T}}(\delta))$ if ϵ is a vector of N(0,1) random variables.

Applying the 1-step discretization bound, we see

$$\mathbb{E}\bigg[\sup_{\theta,\theta'\in\mathbb{T}}\epsilon^T(\theta-\theta')\bigg]\lesssim \min_{\delta\in(0,D]}\{\delta\sqrt{n}+\sqrt{\log\mathcal{N}(\mathbb{T},\delta)}\}$$

(up to constants). Again, as $\delta \to 0$, $\delta \sqrt{n} \to 0$ and $\sqrt{\log \mathcal{N}(\mathbb{T}, \delta)}$ increases (often to infinity). To balance, we set $\delta \sqrt{n} = \sqrt{\log \mathcal{N}(\mathbb{T}, \delta)}$ and solve for δ .

References

[W17] M. WAINWRIGHT, "High-dimensional statistics: A Non-asymptotic Viewpoint. (Draft)," Chapter 5. 2017.