DIGITAL SYSTEM

6th PRACTICUM: KARNAUGH MAP

Writed by:

Name : Ainayah Syifa Hendri

NIM : L200183203

Major : Information Engineering

INFORMATION TECHNOLOGY FACULTY OF COMMUNICATION AND INFORMATICS MUHAMMADIYAH UNIVERSITY OF SURAKARTA 2019

PRACTICUM ACTIVITIES

1st Experiment

1. Create a combination of logic gates based on the following karnaugh map.

		AB					
		00 01 11 10					
	00	0	0	0	0		
CD	01	1	1	1	0		
	11	0	1	1	1		
	10	0	0	0	0		

$$I = 0101$$
 $II = 0001$
 $III = 1111$

 1101
 0101
 1011

 0111
 $A'C'D$
 ACD

 1111
 BD

- 2. Boolean function: F = BD + A'C'D + ACD
- 3. Create logic gates based on your boolean function! Picture in the box below!

2^{nd} Experiment

1. Create a combination of logic gates based on the following karnaugh map.

		AB					
		00 01 11 10					
	00	1	0	0	1		
CD	01	0	1	1	0		
	11	0	1	1	0		
	10	1	0	0	1		

$$-SOP : I = 0101 \qquad II = 0000$$

$$1101 \qquad 1000$$

$$0111 \qquad 0010$$

$$1111 \qquad 1010$$

$$BD \qquad B'D'$$

$$-POS : I = 0100 \qquad II = 0001$$

$$1100 \qquad 0011$$

$$0110 \qquad 1001$$

$$1110 \qquad 1011$$

$$B' + D \qquad B + D'$$

2. Boolean function: F = BD + B'D' (AND – OR)

$$F = (B' + D)(B + D')(OR - AND)$$

- 3. Create logic gates based on your boolean function! Picture in the box below!
 - SOP

- POS

Do the two combinations give the same results? Yes / No

So, the two combinations give the same results

3rd Experiment

- 1. Boolean function: $\mathbf{F} = \mathbf{XYZ} + \mathbf{XYZ'} + \mathbf{XY'Z} + \mathbf{X'YZ} + \mathbf{X'YZ'} + \mathbf{XY'Z'} + \mathbf{XY'Z'} + \mathbf{X'Y'Z'}$
- 2. Based on the boolean function, fill in the points on the map because of the following!

		XY					
		00	01	11	10		
Z	0	1	<u>1</u>	1	1		
	1	0	1	1	<u>1</u>		

I = 010	II = 110	III = 000
110	100	010
011	111	110
<u>111</u>	101	100
$\overline{\mathbf{Y}}$	X	Z '

- 3. Simplify boolean functions : F = X + Y + Z'
- 4. Create logic gates based on your boolean function! Picture in the box below!

4th Experiment

- 1. Boolean function: F = AD' + ABC + ABC' + BCD + BC'D' + AB'CD'.
- 2. Based on the boolean function, fill in the points on the map because of the following!

		AB					
		00 01 11 10					
	00	0	1	1	<u>1</u>		
CD	01	0	0	1	0		
	11	0	1	1	0		
	10	0	0	1	1		

		AD'	AB
		1010	1110
BC'D'	BCD	1110	1111
1100	1111_	1000	1101
I = 0100	$\mathbf{II} = 0111$	II = 1100	III = 1100

- 3. Simplify boolean functions : F = BC'D' + BCD + AD' + AB
- 4. Create logic gates based on your boolean function! Picture in the box below!

5th Experiment

1. Boolean Function Table:

A	В	С	D	F
0	0	0	0	1
1	0	0	0	0
0	1	0	0	0
1	1	0	0	1
0	0	1	0	1
1	0	1	0	1
0	1	1	0	0
1	1	1	0	0
0	0	0	1	1
1	0	0	1	1
0	1	0	1	0
1	1	0	1	1
0	0	1	1	1
1	0	1	1	0
0	1	1	1	1
1	1	1	1	0

2. Based on the boolean function, fill in the points on the map because of the following!

			AB					
		(00 01 11 10					
	00		1		0	1	Ö	
CD	01		1		0	1	1	
	11		1		1	0	Ö	
	10		1		0	0	1	

I = 0000	II = 0011	III = 0010	IV = 1101	V = 1100
0001	0111	1010	1001	1101
0011	A'CD	B'CD'	AC'D	ABC'
0010				
A'B'				

- 3. Simple boolean function : F = A'B' + A'CD + B'CD' + AC'D + ABC'
- 4. Create logic gates based on your boolean function! Picture in the box below!

Do the two combinations give the same results? Yes / No