Barch Normalisation

Even if we do proper weight finitialisation e choose a right activation funulon - still we may encounter gradient problem

Ics: Internal Conoriate Shift

- change in distortion of networks
- activation of place to change in network programmeter during todning

Let's say we have a bell shaped distribution in Layers. If we move to layers there may be a shift in the curve or also in the distribution range of the curve due to the changes in the value of 2. Hence we need to by the distribution in a similar form in layers as well.

-> It has been experimentally proven Ele can et al, 1998 & Wieslewand Hary 20113 "The network converges faster if inputs to the layer are whitened is of they are widered to linearly transformed to Zero mean (u20) and unit variance!

Dur Expectation:

- fix distribution for each layer => reduction in Internal Covariate slift (105). Save & efficient & fast training & faster Convergence dollars. Use of resources

Batch Normalisation solves this (BN): In 2015 sergey Iof 2 Christian Szegedy have - published this paper [proposed entra set of operations which can be]
[performed before or after the activation layer]

1) Columbre The booth mean

2) Calculate the botch variance

 $ae^2 = \frac{1}{2} \left[\frac{me}{x^i - Me} \right]^2 \frac{8ath variance}{2}$

 x^{i} - 116 $\sqrt{s_{i}^{2}+E}$ + this has been introduced because s_{i}^{2} can be zero. Smoothby term $e = 10^{-2}$? To avoid zero divi

zi = Y @ 2 (i) + } shippy Parometer] shipped scale the scaling Learnable Parameters

(alculate overall mean (11) and standard deviation (+) by using moving average on llea & GRA

while prodution:
$$(i) \chi^{(i)} = \chi^{(i)} - \mu$$
 $(ii) \chi^{(i)} = \gamma \hat{\chi}^{(i)} + \beta$

) \rightarrow layer $2 \xrightarrow{2}$, $BN \xrightarrow{2}$ altration \xrightarrow{a} layer 2 function

→ layer 1 → act n a BN a layer 2

Two approaches t apply Batch Normall -southon.

In normal neural network trainable parameters are just weight and blasses where as In a neural network with batch normalisation we have two entra parameters named V (gamma) and B (Beta) their needs focurry

- Extoa parometers but not technoloe aur lost function is dependent on 4 barampers.

C (w16, ~1B) updated by ball propogation

Disadvantages

- 1) It increases the Complexity of the network.
- D Number of harnable parameters Pincreased
- Runtime penality due to complex network -> slow fredition.
- Training the is anneased but Cornergence WIII be faster.

Advantages

- 1 You don't need scally of data if you are using Batch Normallsation as a 1St layer.
- (8) It converges faster despite having two entra learnable parameter.
- (3) It helps to reduce the vanishing and emploding gradient Pesse drastially
 - @ 3+ doesn't get affected by choice of activation function and weight ANHallsation technique.