Module 3 Final Project:

Modeling Tax-Assessed Home Values Using Zillow Housing Data

DX603 Spring 2025 - Team 37

- Zonglin Wu
- Sergey Nelyapenko
- Lee McFarling

Project Overview:

Project Objectives:

- Develop a predictive model using Zillow's housing dataset to estimate the tax-assessed value of residential properties (taxvaluedollarcnt).
 - Identify key factors influencing property valuations.
 - Minimize prediction errors using Root Mean Squared Error (RMSE).

Approach:

- Leverage Zillow's Dataset
 - Expand on Zillow's Zestimate tool by predicting tax-assessed values

Key Findings:

- Random Forest
 - Top performer on test set
 - Top performer on cross-validated (CV) RMSE

Gradient Boosted Trees

- Second best performer in CV RMSE
- Performed worse than both Random Forest and Linear Regression on test set
- Potential overfitting?
- Linear Regression
 - Outperformed Ridge and Lasso regression models.
 - Feature engineering process minimized multicollinearity and feature noise. Also well regularized.

Introduction:

Zillow's Zestimate Impact:

- Zestimate revolutionized real estate transparency
 - Provides instant, market-based property valuations.
 - Enabled consumers to easily compare listing prices to market estimates with a single click.
 - Empowered informed decision making when evaluating real estate prices

The Overlooked Metric — Tax-Assessed Value:

- Property taxes remain a significant and ongoing expense for homeowners.
- Home Tax Value Assessment remains shrouded in opacity.
 - Difficult for consumers to evaluate or predict

Project Purpose:

- Develop a machine learning model to accurately predict tax-assessed values using Zillow's housing database.
- Bring greater transparency to an often overlooked but (financially) critical metric

Dataset Description

Dataset Source

- Zillow's 2017 Kaggle Competition (Zestimate Prediction Zillow Prize)
- Provided dataset: 77,613 rows x 55 columns
- Target Variable: Assessed Tax Value (taxvaluedollarcnt)

Key Dataset Characteristics

- Mix of Features: Numerical & Categorical
- Key Numerical Features:
 - o Bedrooms, Bathrooms, Total Living Area, Lot Size, Property Tax Values, Year Built
- Mapped ID Features: External dictionaries created for better interpretation (e.g., Property Land Use Type, FIPS codes)

Summary

- Dataset focuses on structural, financial, and geographic attributes.
- Well-structured dataset, ready for cleaning and preprocessing to support modeling.

Methodology: Feature Engineering

Key Transformations and New Features

- Property Size:
 - Log-transformed calculatedfinishedsquarefeet
 - Outlier flag (95th percentile)
 - Quartile indicators
- Age Features:
 - Property age and decade groupings
- Ratio Features:
 - Bedrooms/Bathrooms ratio
 - Garage presence adjusted by bedrooms
- Binary Flags:
 - Garage, Air Conditioning, Storage Shed

Feature Selection Decisions

- Log transformation applied to skewed features
- External dictionaries used for categorical mappings
- Simple binary flags favored for interpretability

Feature Consolidation Examples

- Fireplace-related fields combined into fireplaceflag_new
- Garage-related fields combined into hasgarage_flag
- Pool-related sparse features consolidated into haspool_flag

Impact Summary

- Worked Well:
 - Log-transformed property size, binary flags, age groupings improved model performance
- Didn't Work:
 - Log-transforming the target variable
 - Complex interaction terms increased overfitting

Methodology: Analytical Framework and Model Selection

Top Three Models Thus Far:

- Initial Mean CV RMSE was used to determine the three top models
 - <u>Gradient Boosted Trees</u> (Full features, no log)
 - Random Forest (Full features, no log)
 - <u>Linear Regression</u> (Final Features part 3)

Hyperparameter Tuning / Model Selection Approach:

- Top performing models underwent hyperparameter tuning.
- Key hyperparameters were chosen using scikit-learn documentation and Boston University resources.
- Each model was cross validated with tuned hyperparameters across:
 - The full feature set
 - The full feature set with a logged target
 - The best selected features from feature selection

Final Model Selection:

- Both *Training RMSE* and *Mean Cross Validation RMSE* were evaluated holistically across *all model runs* to select the model most likely to generalize and deliver best performance.

Results

Best CV RMSE: Random Forest Fine-Tuning No Log – \$401,543

Best Training RMSE: Random Forest Fine-Tuning No Log – \$192,416

Notable gap between Training and CV RMSE (~192K vs ~401K) indicates moderate overfitting

Random Forest Fine-Tuning No Log achieved the strongest performance on unseen data and was selected as the final model based on its superior overall performance.

Model / Run	Training RMSE	CV RMSE
GBT Fine-Tuning Log	\$380,740	\$416,126
GBT Fine-Tuning No Log Final	\$320,343	\$402,017
Linear Regression Fine-Tuning Best Features	\$415,922	\$415,746
Linear Regression Fine-Tuning No Log	\$411,627	\$412,043
Random Forest Fine-Tuning Best Features	\$192,254	\$407,652
Random Forest Fine-Tuning Log	\$256,681	\$420,191
Random Forest Fine-Tuning No Log	\$192,416	\$401,543

BOSTON UNIVERSITY

Evaluation - Random Forest

Good overall prediction, but greater dispersion for high-value properties (> \$1.5M).

Key Error Patterns

- Higher absolute errors for expensive properties, especially those > \$2M.
- Residual outliers remained even after IQR filtering, suggesting traditional outlier removal may be insufficient for long-tailed distributions.
- Simpler features outperformed highly complex engineered terms, reinforcing the value of model simplicity.

Future Work Recommendations

- Reduce less informative features to mitigate overfitting.
- Apply stronger outlier capping or explore robust modeling approaches.

Conclusion

Top Models:

Gradient Boosted Trees (GBT) and Random Forest outperformed baseline RMSE.

Random Forest outperformed GBT on the test set, although some overfitting was observed.

Key Insights:

- Models without log-transforming the target performed better.
- Random Forest demonstrated stronger generalization across property value ranges.

Practical Implications:

- Investors: More accurate tax predictions support better profitability analysis.
- Homeowners: Improved forecasts assist in financial planning and reduce uncertainty.
- Policymakers: Better evaluation of tax fairness across property types.

Next Steps:

- Fine-tune Random Forest hyperparameters to enhance robustness.
- Revisit data transformations and feature engineering to address value distribution skewness.

