Algebra from the context of the course MTH 418H: Honors Algebra

Kaedon Cleland-Host

September 12, 2021

Contents

L	Gro	oups	2
	1.1	Inverses	2
	1.2	Symmetric Groups and Subgroups	9

Chapter 1

Groups

Definition 1.0.1. A law of composition is a map $S^2 \to S$.

Remark. We will use the notation ab for the elements of S obtained as $a, b \to ab$. This element is the product of a and b.

Definition 1.0.2. A group is a set G together with a law of composition that has the following three properties:

- 1. **Identity** There exists an element $1 \in G$ such that 1a = a1 = A for all $a \in G$.
- 2. Associativity (ab)c = a(bc) for all $a, b, c \in G$.
- 3. Inverse For any $a \in G$, there exists $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = 1$.

Definition 1.0.3. An **abelian group** is a group with a commutative law of composition. That is for any $a, b \in G$, ab = ba.

1.1 Inverses

Definition 1.1.1. A **left inverse** of $a \in S$ is an element $l \in S$ such that la = 1.

Definition 1.1.2. A **right inverse** of $a \in S$ is an element $r \in S$ such that ar = 1.

Proposition 1.1.1. If $a \in S$ has a left and right inverse $l, r \in S$ then l = r and are unique.

Proof. Immediately, $la=1,\ lar=r,\ l=r.$ Now, Let $a_1^{-1}, r_2^{-1}\in S$ both be inverse of $a\in S$ We have $a_1^{-1}a=1,\ a_1^{-1}aa_2^{-1}=a_2^{-1},\ a_1^{-1}=a_2^{-1}.$

Proposition 1.1.2. Inverses multiply in reverse order: $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

$$(ab)b^{-1}a^{-1} = a(bb^{-1})a^{-1} = aa^{-1} = 1$$

 $b^{-1}a^{-1}(ab) = b^{-1}(a^{-1}a)b = b^{-1}b = 1$

Proposition 1.1.3. Cancellation Law For $a, b, c \in G$ if ab = ac then b = c.

Proof.

$$ab = ac$$

$$a^{-1}ab = a^{-1}ac$$

$$b = c$$

Remark. Law of cancellation may not hold for non-invertible elements.

Proposition 1.1.4. Let S be a set with an associative law of composition and an identity. The subset of elements of S that are invertible forms a group.

Proof. Let G denote the subset consisting of the invertible elements in S.

- 1. Closure: Let $a, b \in G$. By definition, they must have inverses $a^{-1}, b^{-1} \in G$. Note that, $ab, b^{-1}a^{-1} \in S$. Now since $abb^{-1}a^{-1} = b^{-1}a^{-1}ab = 1$, ab is invertible and hence $ab \in G$.
- 2. Identity: Since $1 \in S$ and 11 = 11 = 1 it is invertible so therefore $1 \in G$.
- 3. Inverse: Immediately by definition every elements in G is invertible.

Therefore G is a group.

1.2 Symmetric Groups and Subgroups

Definition 1.2.1. A **Symmetric Group** denoted S_n is the set of unique bijections on the set $\{1, \ldots, n\}$. With function composition as the law of composition.

Remark. This is equivalent to the set of all permutations.

To denote the elements of a symmetric group we use a parentheses with element of the set $\{1, \ldots, n\}$ in the parentheses. Where the first elements maps the next one and the last element maps to the first one. Any elements not included map to themselves.

Example. Consider the elements $1, x, y \in S_n$ where 1 = (), y = (1, 2), and x = (1, 2, 3). Immediately we have

$$y^2 = 1$$

$$x^{3} = 1$$

Through the cancellation law we find that the following elements are distinct and since $|S_n| = n!$ we have

$$S_3 = \{1, x, x^2, y, yx, yx^2\}$$

Definition 1.2.2. A group H is a **Subgroup** of G if H is subset of G, H has the same law of composition as G, and H is also a group. In other words H a group if it is a subset of G with the following properties:

- 1. Closure $a, b \in H$ then $ab \in H$.
- 2. Identity $1 \in H$.
- 3. Inverse For all $a \in H$, $a^{-1} \in H$.

Definition 1.2.3. A subgroup S of G is a **proper subgroup** if $S \neq G$ and $S \neq \{I\}$.

Theorem 1.2.1. If S is a subgroup of \mathbb{Z}^+ , then either

- $S = \{0\}$
- $S = \mathbb{Z}a$, where a is the smallest elements of S.

Proof. Let S be any subgroup of \mathbb{Z}^+ If $S=\{0\}$, the statement holds. Otherwise $S\neq\{0\}$. There exists a nonzero integer $n\in S$. If $n\in S$ then $-n\in S$ so S contains a positive integer. Let a be the smallest positive integer in S. Let (j)a denote adding a to itself j times. Since $a\in S$, we have $(2)a\in S$. Now for any $k\in \mathbb{N}$ we see that $(k+1)a=ka+a\in S$. So, by induction $ka\in S$ for all $k\in \mathbb{N}$. Now it follows that $-ka\in S$ and clearly $0\in S$. Therefore, $\mathbb{Z} a\subset S$. For any $n\in S$ use division to write n=qa+r for some integers r,q with $0\leq r< a$. We know $n\in S$ and $qa\in S$. Hence $r=n-qa\in S$. Now since a is the smallest integer, we have r=0. Hence, $n=qa\in \mathbb{Z} a$ and $S\subset \mathbb{Z} a$. Therefore, $\mathbb{Z} a=S$.