One dimensional data

2 Dimensional data

2 Dimensional data

Find the "best" directions to represent this data

Project data onto a line

Distances between the projections carry information

Find the direction that has the largest distances between projections

Intuition Behind PCA

The direction along which this variance is maximised is the first principal component of the original data

Random variables

Random variables

Kcolumns

X11	X12	X 13	X1k
X21	X 22	X 23	 X ₂ k
X 31	X 32	X 33	X3k
• • •	• • •	• • •	• • •
X _n 1	X _n 2	X _n 3	Xnk
			Xk

 X_1 X_2 X_3 \cdots X_k

Each element X_i of this matrix is a vector with 1 column and n rows

Problem -> Multicollinearity

Many of the X variables contain the same information

 X_1 X_2 X_3 \cdots X_k

Use PCA when these random variables are highly correlated

Correlated variables

$$\begin{bmatrix} X_1 & X_2 & X_3 & \cdots & X_k \end{bmatrix}$$

$$PCA$$

Uncorrelated variables

$$\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$$

 $\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$

These are the principal components

 $\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$

 $var(F_1) > var(F_2) > var(F_3) > var(F_k)$

Arranged in descending order of variance

Problem: Finding Principal Component 1

Find F₁

$$F_1 = a_1X_1 + a_2X_2 + a_3X_3 ... + a_kX_k$$

such that

Variance(F₁) is maximised

subject to constraint

$$a_1^2 + a_2^2 + \dots + a_k^2 = 1$$

Eigendecomposition

Solution: Finding Principal Component 1

Eigenvector

$$v_1 = [a_1, a_2, a_3 ... a_k]$$

Principal Component

$$F_1 = a_1X_1 + a_2X_2 + a_3X_3 ... + a_kX_k$$

Eigen Value

$$e = Variance(F_1)$$

Eigendecomposition

Problem: Finding Principal Component 2

Given F₁, find F₂

$$F_2 = a_1(X_1 - F_1) + a_2(X_2 - F_1) + a_3(X_3 - F_1) ... + a_k(X_k - F_1)$$

such that

Variance(F₂) is maximised

subject to constraint

$$a_1^2 + a_2^2 + \dots + a_k^2 = 1$$

Eigendecomposition

Correlated variables

$$\begin{bmatrix} X_1 & X_2 & X_3 & \cdots & X_k \end{bmatrix}$$

$$PCA$$

Uncorrelated variables

$$\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$$

Results of PCA

Principal components F_1 F_2 F_3 ... F_k V₁ V₂ V₃ V_k Eigenvectors Eigenvalues

$$\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$$

$$var(F_1) > var(F_2) > var(F_3) > var(F_k)$$

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

Eigenvalue k

$$\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$$

$$var(F_1)+var(F_2)+var(F_3)+..var(F_k)$$

- = Total Variance F
- = Total Variance X

 $\begin{bmatrix} F_1 & F_2 & F_3 & \cdots & F_k \end{bmatrix}$

Eigenvalue 1 Variance(F)

> Eigenvalue 2 Variance(F)

Eigenvalue 3
Variance(F)

Eigenvalue 4
Variance(F)

Sum= 100%

% of Total Variance Explained

PCA is great when

Many, Highly Correlated Xi

Unequal Eigenvalues

Correlation matrix

$$\begin{bmatrix} 1 & \rho_{\times 1 \times 2} & \cdots & \rho_{\times 1 \times k} \\ \rho_{\times 2 \times 1} & 1 & \cdots & \rho_{\times 2 \times k} \\ \rho_{\times k \times 1} & \rho_{\times k \times 2} & \cdots & 1 \end{bmatrix}$$

Correlation matrix

$$\begin{bmatrix} X_1 & X_2 & X_3 & \cdots & X_k \end{bmatrix}$$

$$\begin{bmatrix} 1 & \rho_{x_1x_2} & \cdots & \rho_{x_1x_k} \\ \rho_{x_2x_1} & 1 & \cdots & \rho_{x_2x_k} \\ \rho_{x_kx_1} & \rho_{x_kx_2} & \cdots & 1 \end{bmatrix}$$

Rule-of-thumb: If average absolute values of off-diagonal entries is less than 0.3, PCA not a great idea

X11	X12	X 13	X1k
X21	X 22	X 23	 X ₂ k
X 31	X 32	X 33	X3k
• • •	• • •	• • •	• • •
X _n 1	X _n 2	X _n 3	Xnk
			Xk

F = Xv

