#### L-8: Predictive Analytics



### Agenda

- **Covariance**
- **Correlation**
- >Introduction to regression
- >Method of least squares
- >Simple linear regression

## Covaniance of X and T



$$Cov(x,y) =$$

$$= \left[ E(x-\mu_x)(y-\mu_y) \right]$$

$$= \sum \{ (a-\mu_x)(y-\mu_y) P(a,y) \}$$

$$= \int (a-\mu_x)(y-\mu_y) f(a,y) dady$$
if continuous



## consider the following

=> whether spending on advertising of a company is related to overall sales of the company.

-> If it is related, now it is related

=> Forecasting the sales, given the budget for advertising

## innovate achieve lead

#### And also

Farmer has an impression that
if he uses more fentilizers, then the
crop yield increases.

we need to validate this?

How ->?

#### Correlation



→ Sales of a Company and

Expenditure on advertisement

→ Price and Demand of a product

→ Inflation and Gold Price

→ ID and performance in

Entrance:











# Coefficient of correlation:

$$\mathcal{T} = \frac{\text{Cov}(x,y)}{\sqrt{x}} = \frac{2 \times y}{\sqrt{2} \times 2}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2} = \frac{2 \times y}{\sqrt{2}}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2} \times 2}$$

$$\frac{\sqrt{2} \times y}{\sqrt{2}}$$



### Coefficient of Correlation

 $\pi=1 \Rightarrow$  Perfect and positive relation  $\pi=-1 \Rightarrow$  " negative relation  $\pi=0 \Rightarrow \text{No relation}$ oracl  $\Rightarrow$  Pantial positive relation  $\Rightarrow \text{No relation}$ 



#### Example-1

| 7 | 1  | 2 | 3 | 4 | 5 | 6 | ٦ | 8 | 9 |  |
|---|----|---|---|---|---|---|---|---|---|--|
|   | 10 |   |   |   |   |   |   |   |   |  |

$$x = \frac{1}{3} = \frac{43}{9} = 5$$

$$y = \frac{5y}{9} = \frac{126}{9} = 14$$

|     |     |               |                  | (                |                                       |              | inr |
|-----|-----|---------------|------------------|------------------|---------------------------------------|--------------|-----|
| - K | × = | X             | 2_<br>           | 7                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | / <b>*</b> ~ | ·   |
| ,   | ス-5 |               | d                | - 7-12           | +                                     | 1            | ~ ( |
| l   | -4  | 16            | 10               | -4               | 16                                    | 16           | 9   |
| 2   | -3  | 9             | 11               | -3               | 9                                     | 9            |     |
| 3   | - 2 | 4             | 12               | -2               | Ц                                     | 4            | _   |
| 4   | -1  | 1             | 14               | Ø                | 0                                     | 0            |     |
| 5   | O   | O             | 13               | -1               | 1                                     | 0            |     |
| S   | 1   | ſ             | 15               | 1                | 1                                     | (            |     |
| 7   | 2   | Ч             | 16               | 2                | 4                                     | 4            |     |
| 8   | 3   | 9             | 17               | 3                | 9                                     | 9            |     |
| 9   | 4   | 16            | 18               | 4                | 16                                    | 16           |     |
|     |     | (ô)           | (                |                  | 50                                    | 459)         |     |
|     | Ad  | vanced Statis | stical Technique | es for Analytics |                                       | 9-1-2018     | 9   |

| ٤٦: | £ x γ<br>√ £ x 2 ξ γ 2 |
|-----|------------------------|
| _   | 59                     |
| _   | V60×60                 |
|     |                        |

### Coefficient of Determination



nis coeff. of correlation

n² is coeff of determination

the disches the which

Indicates the extent to which vaniation in one variable is explained by the variation in the other.

n=0.9 =>  $\pi^2$  = 0.81 i 81./ of the variation in y due to variation in x remaining 19/. is due to some other factors.



### Regression



## Regression:



when 2 = 7: 4 = ?





#### Method of Least squares



# innovate achieve lead

#### Method of Least squares



# innovate achieve lead

#### Method of Least squares

$$S(\beta_0, \beta_1) = \sum_{i=1}^{\infty} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial S}{\partial \beta_0} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(-1)$$

$$\Rightarrow \sum_{i=1}^{\infty} (y_i - \beta_0 - \beta_1 x_i)(-1)$$

$$\Rightarrow \sum_{i=1}^{\infty} (y_i - \beta_0 - \beta_1 x_i)(2)(-1)$$

$$\Rightarrow \sum_{i=1$$



Linear regression
$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x$$

$$xy = \beta_0 x$$

### Matrix Approach:



Let 
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$
observations  $y_1 = 1, 2, \dots m \rightarrow by$  a vector  $y_1 = 1, 2, \dots p_{p-1} \rightarrow y_1 = 1$ 

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_3 = y_4 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_4 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 +$$



Find 13 to minimize  $S(\beta) = \sum_{i=1}^{\infty} (y_i - \beta_0 - \beta_1 x_1 - \beta_2 x_2 - \cdots)^2$ = || Y - x | = | | Y - Ý || = Diff 5 wot to each B we get hinear eggs XXB = XY \_ normal egres If x1x is non-singular, the soln's 育=(メナス)、オイ



computationally, it is sometimes unwise even to form the normal equations because the multiplications involved in forming xTx can introduce undesinable mound - off errol.

#### Linear regression (Multiple regression)

#### Example:-

|   | 513e | noons | 1000g | Age of<br>home | Proice<br>Laxby |
|---|------|-------|-------|----------------|-----------------|
| 1 | 2000 | 5     | 2     | 45             | 4000            |
| 1 | 1400 | 3     | 1     | 40             | 2000            |
| ) | 1600 | 3     | 2     | 30             | 2000            |
| 1 | 800  | 2     | )     | 35             | 2000            |
| ~ | 71   | 7/    | 4     | <b>マ</b> タ     | Z               |

### Linear regression (Multiple regression)

lead



## Example:

Consider une following data

| 74 | (   | 2 | 4 | O |  |
|----|-----|---|---|---|--|
| 7  | 0.5 | 1 | 2 | 0 |  |

Fit a linear regression line Estimate y when x = 5.

| x     | y .      | xy                          | 7L2       | 7 = 130 + 131 x                              |
|-------|----------|-----------------------------|-----------|----------------------------------------------|
| 1     | 0,5      | 0.5                         | 1         | 5y: nBo+ 13, Ex                              |
| 2     | 1        | 2                           | 4         | Zxy 2 Bo Ex, + B, Ex2                        |
| 4     | 2        | 8                           | 16        | 3.5 = 4 Bo + B1 (7)<br>10.5 = 7 Bo + B1 (21) |
| O     | 0        | 0                           | 0         | on solving these                             |
| ٤ ۽ 7 | <u> </u> | 5 <u>5</u> 1 <sub>0</sub> . | \<br>S 21 | $ 3_0 = 0 $ $ 3_1 = 0.5 $ $ 3_1 = 0.5 $      |
|       |          |                             | when      | x=5, y= (0.5) <sup>5</sup><br>= 0.25         |



## **Thanks**