Naive Bayes

August 18, 2018

1 Objective:

Find the best the model with highest accuracy for Naive Bayes and also find precision, recall, f1 score and confusion matrix of each model.

1.1 Workflow:

- 1. Sort data based on time.
- 2. Split data into train and test.
- 3. Convert reviews of "Amazon Fine Food Review" dataset into vectors using :-
 - Bag of words.
 - TF-IDF
- 4. Perform feature selection on every model.
- 5. Find best hyperparameter by Naive Bayes cross validation.
- 6. Apply Naive Bayes model on the train data.
- 7. Find accuracy, precision, recall and f1 score of the model.
- 8. Print confusion matrix and plot error plots for every model.

In [0]: %matplotlib inline

```
import sqlite3
import pandas as pd
import numpy as np
import nltk
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
import re, gensim
import string
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import TruncatedSVD
```

```
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.cross_validation import cross_val_score
from collections import Counter
from sklearn.metrics import accuracy_score
from sklearn import cross_validation
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.feature_selection import chi2
```

1.2 Importing data

```
In [0]: """
        Reading data from .sqlite file,
        choosing only positive and negative reviews not neutral reviews.
        11 11 11
        # using the SQLite Table to read data.
        con = sqlite3.connect('drive/datasets/database.sqlite')
        #filtering only positive and negative reviews i.e.
        # not taking into consideration those reviews with Score=3
        filtered_data = pd.read_sql_query("SELECT * FROM Reviews WHERE Score != 3", con)
        # Give reviews with Score>3 a positive rating, and reviews with a score<3 a negative r
        def partition(x):
            if x < 3:
                return 'negative'
            return 'positive'
        #changing reviews with score less than 3 to be positive and vice-versa
        actualScore = filtered_data['Score']
        positiveNegative = actualScore.map(partition)
        filtered_data['Score'] = positiveNegative
```

1.3 Cleansing data

```
In [47]: """
         Sorting data on the basis of TIME
         final = final.sort_values(by=['Time'], axis=0)
         final.shape
Out [47]: (364171, 10)
1.4 Text preprocessing
In [20]: """
         This code snippet does text preprocessing
         nltk.download('stopwords')
         def cleanhtml(sentence): #function to clean the word of any html-tags
             cleanr = re.compile('<.*?>')
             cleantext = re.sub(cleanr, ' ', sentence)
             return cleantext
         def cleanpunc(sentence): #function to clean the word of any punctuation or special ch
             cleaned = re.sub(r'[?|!|\'|"|#]',r'',sentence)
             cleaned = re.sub(r'[.|,|)|(||/|,r'',cleaned)
             return cleaned
         stop = set(stopwords.words('english')) #set of stopwords
         sno = nltk.stem.SnowballStemmer('english') #initialising the snowball stemmer
         final_text = []
         for index in range(len(final['Text'])):
             filtered_sentence=[]
             sent=cleanhtml(final['Text'].iloc[index]) # remove HTMl tags
             for w in sent.split():
                 for cleaned_words in cleanpunc(w).split():# clean punctuation marks from word
                     if((cleaned_words.isalpha()) & (len(cleaned_words)>2)):# verifying word m
                         cleaned_words = cleaned_words.lower()
                         if(cleaned_words not in stop):# blocks stopwords
                             s=(sno.stem(cleaned_words))# stemming in process
                             filtered_sentence.append(s)
                         else:
                             continue
                     else:
                         continue
             str1 = " ".join(filtered_sentence) #final cleaned string of words
             final_text.append(str1)
[nltk_data] Downloading package stopwords to /content/nltk_data...
[nltk data]
            Package stopwords is already up-to-date!
In [21]: amazon_data_text = pd.Series(final_text)
         amazon_data_label = pd.Series(final['Score'])
```

```
print(amazon_data_text.shape)
         print(amazon_data_label.shape)
(364171,)
(364171,)
In [0]: """
        Spliting sample data into train_data and test_data (75:25)
        11 11 11
        x_train, x_test, y_train, y_test = cross_validation.train_test_split(\)
                                                                               amazon_data_text,
                                                                               amazon_data_label
                                                                               test_size = 0.25,
                                                                               random_state=0)
In [45]: print("Train data : \n",y_train.value_counts())
Train data:
             230354
positive
negative
             42774
Name: Score, dtype: int64
In [46]: print("Test data : \n",y_test.value_counts())
Test data:
positive
             76707
           14336
negative
Name: Score, dtype: int64
1.4.1 Bag of words.
In [24]: """
         This code snippet converts train data from text to vectors by BOW.
         count_vect = CountVectorizer(analyzer='word') #in scikit-learn
         bow_text_train_vector = count_vect.fit_transform(x_train)
         bow_text_train_vector = bow_text_train_vector
         bow_text_train_vector.shape
Out [24]: (273128, 61712)
In [25]: """
         This code snippet shows feature selection
         a = chi2(bow_text_train_vector, y_train)
         print("chi2's statistics : ",a[0])
         print("feature probabilities : ",a[1])
```

```
chi2's statistics: [0.37137623 2.92261259 0.18568811 ... 0.18568811 0.18568811 0.18568811]
feature probabilities : [0.54225506 0.08734634 0.66652986 ... 0.66652986 0.66652986 0.6665298
In [26]: """
         This code snippet converts test data from text to vectors by BOW.
         bow_text_test_vector = count_vect.transform(x_test)
         bow_text_test_vector = bow_text_test_vector
         print(bow_text_test_vector.shape)
(91043, 61712)
In [27]: """
         This code snippet helps to find lamda for BernoulliNB and plot error
         # empty list that will hold cv scores
         cv_scores = []
         alpha_values = list(range(300,400,4))
         # perform 10-fold cross validation
         for al in alpha_values:
             nb = BernoulliNB(alpha = al)
             scores = cross_val_score(nb, bow_text_train_vector,
                                      y_train, cv=10, scoring='accuracy')
             cv scores.append(scores.mean())
         # changing to misclassification error
         MSE = [1 - x for x in cv_scores]
         # determining best alpha
         bow_optimal_alpha = alpha_values[MSE.index(min(MSE))]
         print('The optimal value of alpha is %d.' % bow_optimal_alpha)
         # plot misclassification error vs alpha
         plt.plot(alpha_values, MSE)
         for xy in zip(alpha_values, np.round(MSE,3)):
             plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
         plt.xlabel('Alpha Values')
         plt.ylabel('Misclassification Error')
         plt.show()
         print("the misclassification error for each alpha value is: ", np.round(MSE,3))
The optimal value of alpha is 324.
```


the misclassification error for each alpha value is : $[0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157$

```
In [28]: """
         This code snippet apply BernoulliNB for above lambda value
         # Instantiate learning model
         nb = BernoulliNB(alpha = bow_optimal_alpha)
         # fitting the model
         nb.fit(bow_text_train_vector, y_train)
         # response prediction
         pred = nb.predict(bow_text_test_vector)
         # evaluate accuracy
         acc = accuracy_score(y_test, pred)*100
         print('\nThe accuracy of the Naive Bayes classifier for alpha = %d is %f%%' % (bow_op
         conf_matrix = confusion_matrix(y_test, pred)
         confusion_matrix_df = pd.DataFrame(conf_matrix,
                                            ["Negative", "Positive"],\
                                            ["Negative", "Positive"],\
                                            dtype=int)
         sns.heatmap(confusion_matrix_df, annot=True, fmt="d")
         plt.title("CONFUSION MATRIX")
```

The accuracy of the Naive Bayes classifier for alpha = 324 is 84.251398%

Out[28]: Text(0.5,1,'CONFUSION MATRIX')

support	f1-score	recall	precision	
14336 76707	0.00 0.91	0.00 1.00	0.00 0.84	negative positive
91043	0.77	0.84	0.71	avg / total

```
# perform 10-fold cross validation
for al in alpha_values:
   nb = MultinomialNB(alpha = al)
    scores = cross_val_score(nb, bow_text_train_vector,
                             y_train, cv=10, scoring='accuracy')
    cv_scores.append(scores.mean())
# changing to misclassification error
MSE = [1 - x for x in cv_scores]
# determining best alpha
bow_optimal_alpha = alpha_values[MSE.index(min(MSE))]
print('The optimal value of alpha is %d.' % bow_optimal_alpha)
# plot misclassification error vs alpha
plt.plot(alpha_values, MSE)
for xy in zip(alpha_values, np.round(MSE,3)):
    plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
plt.xlabel('Alpha Values')
plt.ylabel('Misclassification Error')
plt.show()
print("the misclassification error for each alpha value is : ", np.round(MSE,3))
```

The optimal value of alpha is 480.

the misclassification error for each alpha value is : [0.157 0.157

0.157

```
In [31]: """
         This code snippet apply MultinomialNB for above lambda value
         # Instantiate learning model
         nb = MultinomialNB(alpha = bow_optimal_alpha)
         # fitting the model
         nb.fit(bow_text_train_vector, y_train)
         # response prediction
         pred = nb.predict(bow_text_test_vector)
         # evaluate accuracy
         acc = accuracy_score(y_test, pred)*100
         print('\nThe accuracy of the Naive Bayes classifier for alpha = %d is %f%%' % (bow_op
         conf_matrix = confusion_matrix(y_test, pred)
         confusion_matrix_df = pd.DataFrame(conf_matrix,
                                            ["Negative", "Positive"],\
                                            ["Negative", "Positive"],\
                                            dtype=int)
         sns.heatmap(confusion_matrix_df, annot=True, fmt="d")
         plt.title("CONFUSION MATRIX")
```

The accuracy of the Naive Bayes classifier for alpha = 480 is 84.253594%

Out[31]: Text(0.5,1,'CONFUSION MATRIX')


```
In [32]: """
         This code snippet shows precision, recall, f1 and support scores for MultinomialNB
         print(classification_report(y_test, pred, target_names = np.unique(y_test)))
                          recall f1-score
                                             support
             precision
                            0.00
                                      0.00
  negative
                  0.50
                                               14336
  positive
                  0.84
                            1.00
                                      0.91
                                               76707
avg / total
                  0.79
                                      0.77
                                               91043
                            0.84
```

Observation:

- Here we have applied Bag of words to convert text to vector.
- We got best hyperparameter for the BernoulliNB model is 324 with accuracy 84.251398%.
- \bullet We got best hyperparameter for the Multinomial NB model is 480 with accuracy 84.253594%

1.4.2 TF IDF.

```
In [33]: """
         This code snippet converts train data from text to vectors by TF_IDF.
         tf_idf_vect = TfidfVectorizer(ngram_range=(1,2))
         final_tf_idf_train = tf_idf_vect.fit_transform(x_train)
         final_tf_idf_train.shape
Out[33]: (273128, 2436312)
In [34]: """
         This code snippet converts test data from text to vectors by TF_IDF.
         final_tf_idf_test = tf_idf_vect.transform(x_test)
         final_tf_idf_test.shape
Out [34]: (91043, 2436312)
In [35]: """
         This code snippet shows feature selection
         a = chi2(final_tf_idf_train, y_train)
         print("chi2's statistics : ",a[0])
         print("feature probabilities : ",a[1])
```

```
chi2's statistics: [0.03995276 0.03601368 0.00524348 ... 0.02876846 0.04075579 0.04075579]
feature probabilities: [0.84157297 0.84948724 0.94227415 ... 0.86531476 0.84001003 0.84001003
In [36]: """
         This code snippet helps to find lamda for BernoulliNB and plot error
         # empty list that will hold cv scores
         cv_scores = []
         alpha_values = list(range(30,50,2))
         # perform 10-fold cross validation
         for al in alpha_values:
             nb = BernoulliNB(alpha = al)
             scores = cross_val_score(nb, final_tf_idf_train,
                                      y_train, cv=10,
                                      scoring='accuracy')
             cv_scores.append(scores.mean())
         # changing to misclassification error
         MSE = [1 - x for x in cv_scores]
         # determining best alpha
         optimal_alpha = alpha_values[MSE.index(min(MSE))]
         print('The optimal value of alpha is %d.' % optimal_alpha)
         # plot misclassification error vs alpha
         plt.plot(alpha_values, MSE)
         for xy in zip(alpha_values, np.round(MSE,3)):
             plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
```

print("the misclassification error for each alpha value is: ", np.round(MSE,3))

The optimal value of alpha is 38.

plt.show()

plt.xlabel('Alpha Values')

plt.ylabel('Misclassification Error')

the misclassification error for each alpha value is : $[0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.157\ 0.$

```
In [37]: """
         This code snippet apply BernoulliNB for above lambda value
         # Instantiate learning model
         nb = BernoulliNB(alpha = optimal_alpha)
         # fitting the model
         nb.fit(final_tf_idf_train, y_train)
         # response prediction
         pred = nb.predict(final_tf_idf_test)
         # evaluate accuracy
         acc = accuracy_score(y_test, pred)*100
         print('\nThe accuracy of the Naive Bayes classifier for alpha = %d is %f%%' % (optimal
         conf_matrix = confusion_matrix(y_test, pred)
         confusion_matrix_df = pd.DataFrame(conf_matrix,
                                            ["Negative", "Positive"],\
                                            ["Negative", "Positive"],\
                                            dtype=int)
         sns.heatmap(confusion_matrix_df, annot=True, fmt="d")
         plt.title("CONFUSION MATRIX")
```

The accuracy of the Naive Bayes classifier for alpha = 38 is 84.253594%

Out[37]: Text(0.5,1,'CONFUSION MATRIX')

	precision	recall	f1-score	support
negative	0.00	0.00	0.00	14336
positive	0.84	1.00	0.91	76707
avg / total	0.71	0.84	0.77	91043

/usr/local/lib/python3.6/dist-packages/sklearn/metrics/classification.py:1135: UndefinedMetric 'precision', 'predicted', average, warn_for)

```
11 11 11
# empty list that will hold cv scores
cv_scores = []
alpha_values = list(range(5,100,5))
# perform 10-fold cross validation
for al in alpha_values:
    nb = MultinomialNB(alpha = al)
    scores = cross_val_score(nb, final_tf_idf_train,
                             y_train, cv=10,
                             scoring='accuracy')
    cv_scores.append(scores.mean())
# changing to misclassification error
MSE = [1 - x for x in cv_scores]
# determining best alpha
optimal_alpha = alpha_values[MSE.index(min(MSE))]
print('The optimal value of alpha is %d.' % optimal_alpha)
# plot misclassification error vs alpha
plt.plot(alpha_values, MSE)
for xy in zip(alpha_values, np.round(MSE,3)):
    plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
plt.xlabel('Alpha Values')
plt.ylabel('Misclassification Error')
plt.show()
print("the misclassification error for each alpha value is: ", np.round(MSE,3))
```

The optimal value of alpha is 5.

the misclassification error for each alpha value is : [0.157 0.157

```
In [40]: """
         This code snippet apply MultinomialNB for above lambda value
         # Instantiate learning model
         nb = MultinomialNB(alpha = optimal_alpha)
         # fitting the model
         nb.fit(final_tf_idf_train, y_train)
         # response prediction
         pred = nb.predict(final_tf_idf_test)
         # evaluate accuracy
         acc = accuracy_score(y_test, pred)*100
         print('\nThe accuracy of the Naive Bayes classifier for alpha = %d is %f%%' % (optima
         conf_matrix = confusion_matrix(y_test, pred)
         confusion_matrix_df = pd.DataFrame(conf_matrix,
                                            ["Negative", "Positive"],\
                                            ["Negative", "Positive"],\
                                            dtype=int)
         sns.heatmap(confusion_matrix_df, annot=True, fmt="d")
         plt.title("CONFUSION MATRIX")
```

The accuracy of the Naive Bayes classifier for alpha = 5 is 84.253594%

Out[40]: Text(0.5,1,'CONFUSION MATRIX')

In [41]: """ $This\ code\ snippet\ shows\ precision,\ recall,\ f1\ and\ support\ scores\ for\ MultinomialNB$

print(classification_report(y_test, pred, target_names = np.unique(y_test)))

	precision	recall	f1-score	support
negative positive	0.00 0.84	0.00	0.00 0.91	14336 76707
avg / total	0.71	0.84	0.77	91043

/usr/local/lib/python3.6/dist-packages/sklearn/metrics/classification.py:1135: UndefinedMetric 'precision', 'predicted', average, warn_for)

Observation:

- Here we have applied TF_IDF to convert text to vector.
- We got best hyperparameter for the BernoulliNB model is 38 with accuracy 84.253594%%.
- We got best hyperparameter for the MultinomialNB model is 5 with accuracy 84.253594%.
- MultinomialNB model for TF_IDF is underfitting .

1.4.3 Conclusion:

From the above excercise I got to know that

- BernoulliNB deals with binary classifications and MultinomialNB deals with multiclass classifications.
- Through feature selection we can choose the important feature for our model to train on.
- Naive Bayes is a performance benchmark for all advanced text classification techniques.