Hamiltonian Monte Carlo and Stan

- Hamiltonian Monte Carlo uses gradient information and dynamic simulation to reduce random-walk and increase acceptance rate
 - the performance scales well with the number of dimensions
 - this lecture introduces the basic HMC and No-U-Turn-Sampler based dynamic HMC
 - other useful variants have been developed recently

Hamiltonian Monte Carlo and Stan

- Hamiltonian Monte Carlo uses gradient information and dynamic simulation to reduce random-walk and increase acceptance rate
 - the performance scales well with the number of dimensions
 - this lecture introduces the basic HMC and No-U-Turn-Sampler based dynamic HMC
 - other useful variants have been developed recently
- Stan is the most popular probabilistic programming framework
 - many recent probprog frameworks use dynamic HMC samplers
 - this lecture introduces Stan language and main features
 - later you can also use higher level packages built on top of Stan

BDA Chapter 12

- 12.1 Efficient Gibbs samplers (not part of the course)
- 12.2 Efficient Metropolis jump rules (not part of the course)
- 12.3 Further extensions to Gibbs and Metropolis (not part of the course)
- 12.4 Hamiltonian Monte Carlo (important)
- 12.5 Hamiltonian dynamics for a simple hierarchical model (useful example)
- 12.6 Stan: developing a computing environment (useful intro)

Extra material for HMC / NUTS

- An introduction for applied users with good visualizations:
 Monnahan, Thorson, and Branch (2016) Faster estimation of
 Bayesian models in ecology using Hamiltonian Monte Carlo.
 https://dx.doi.org/10.1111/2041-210X.12681
- A technical review of why HMC works:
 Neal (2012). MCMC using Hamiltonian dynamics.
 https://arxiv.org/abs/1206.1901
- The No-U-Turn Sampler:
 Hoffman and Gelman (2014). The No-U-Turn Sampler:
 Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.
 https://jmlr.csail.mit.edu/papers/v15/hoffman14a.html
- Multinomial variant of NUTS:
 Betancourt (2018). A Conceptual Introduction to Hamiltonian Monte Carlo. https://arxiv.org/abs/1701.02434

Extra material for Stan

- Gelman, Lee, and Guo (2015) Stan: A probabilistic programming language for Bayesian inference and optimization. http://www.stat.columbia.edu/~gelman/research/published/ stan_jebs_2.pdf
- Carpenter et al (2017). Stan: A probabilistic programming language. Journal of Statistical Software 76(1). https://dox.doi.org/10.18637/jss.v076.i01
- Stan User's Guide, Language Reference Manual, and Language Function Reference (in html and pdf) https://mc-stan.org/users/documentation/
 - easiest to start from Example Models in User's guide
- Basics of Bayesian inference and Stan, part 1 Jonah Gabry & Lauren Kennedy (StanCon 2019 Helsinki tutorial)
 - https://www.youtube.com/watch?v=ZRpo41I02KQ&index=6& list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
 - https://www.youtube.com/watch?v=6cc4N1vT8pk&index=7&list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J

Chapter 12 demos

- demo12_1: HMC
- https://chi-feng.github.io/mcmc-demo/
- http: //elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
- cmdstanr_demo, rstan_demo
- http://sumsar.net/blog/2017/01/ bayesian-computation-with-stan-and-farmer-jons/
- http://mc-stan.org/documentation/case-studies.html
- https://mc-stan.org/cmdstanr/
- https://mc-stan.org/rstan/

 Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)

- Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)
- Radford Neal started using for Bayesian neural networks in 1990's

- Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)
- Radford Neal started using for Bayesian neural networks in 1990's
- The performance scales well with the number of dimensions

- Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)
- Radford Neal started using for Bayesian neural networks in 1990's
- The performance scales well with the number of dimensions
- Hoffman and Gelman's (2014) NUTS variant and step size adaptation made it more robust wrt the algorithm parameters and thus easier to use

- Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)
- Radford Neal started using for Bayesian neural networks in 1990's
- The performance scales well with the number of dimensions
- Hoffman and Gelman's (2014) NUTS variant and step size adaptation made it more robust wrt the algorithm parameters and thus easier to use
- Stan was the first probabilistic programming framework using HMC+NUTS

- Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)
- Radford Neal started using for Bayesian neural networks in 1990's
- The performance scales well with the number of dimensions
- Hoffman and Gelman's (2014) NUTS variant and step size adaptation made it more robust wrt the algorithm parameters and thus easier to use
- Stan was the first probabilistic programming framework using HMC+NUTS
- Now most popular probabilistic programming frameworks use it (Stan, PyMC, TFP, Pyro, Turing.jl, etc.)

- Originally for quantum-chromo-dynamic simulation (Duane et al., 1987)
- Radford Neal started using for Bayesian neural networks in 1990's
- The performance scales well with the number of dimensions
- Hoffman and Gelman's (2014) NUTS variant and step size adaptation made it more robust wrt the algorithm parameters and thus easier to use
- Stan was the first probabilistic programming framework using HMC+NUTS
- Now most popular probabilistic programming frameworks use it (Stan, PyMC, TFP, Pyro, Turing.jl, etc.)
- Also used as the a high-fidelity reference in Approximate Inference in Bayesian Deep Learning competition https://izmailovpavel.github.io/neurips_bdl_competition/

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

- Uses log density (negative log density is called energy)
- Uses gradient of log density for more efficient sampling

-theta1 — theta2 - - 95% interval for MCMC error · · · · 95% interval for indeper3

1. HMC basics (static HMC)

- 1. HMC basics (static HMC)
- 2. HMC + leapfrog discretization + Metropolis (static HMC)
 - Duane et al. (1987)

- 1. HMC basics (static HMC)
- 2. HMC + leapfrog discretization + Metropolis (static HMC)
 - Duane et al. (1987)
- 3. NUTS + slice sampling + Metropolis (dynamic HMC)
 - Hoffman & Gelman et al. (2014)

- 1. HMC basics (static HMC)
- 2. HMC + leapfrog discretization + Metropolis (static HMC)
 - Duane et al. (1987)
- 3. NUTS + slice sampling + Metropolis (dynamic HMC)
 - Hoffman & Gelman et al. (2014)
- 4. NUTS + multinomial (dynamic HMC)
 - Betancourt (2018)

- Related methods
 - Factorizing $p(\theta_1, \theta_2) = p(\theta_1 \mid \theta_2)p(\theta_2)$: sample from 1) $p(\theta_2)$, 2) $p(\theta_1 \mid \theta_2)$

- Related methods
 - Factorizing p(θ₁, θ₂) = p(θ₁ | θ₂)p(θ₂): sample from 1) p(θ₂),
 2) p(θ₁ | θ₂)
 - Metropolis: jointly $p(\theta_1,\theta_2)$ jump distribution is a combination of proposal distribution and point mass at the previous value

- Related methods
 - Factorizing p(θ₁, θ₂) = p(θ₁ | θ₂)p(θ₂): sample from 1) p(θ₂),
 2) p(θ₁ | θ₂)
 - Metropolis: jointly $p(\theta_1, \theta_2)$ jump distribution is a combination of proposal distribution and point mass at the previous value
- HMC
 - Augment with ϕ (the same dimensionality as θ)
 - 1) sample directly from $p(\phi)$,
 - 2) make a special joint Metropolis step for $p(\theta, \phi) = p(\theta)p(\phi)$

- 1) Sample from $p(\phi)$
 - define $p(\phi) = \text{normal}(0, 1)$
- 2) Metropolis update for $p(\theta, \phi) = p(\theta)p(\phi)$
 - proposal from Hamiltonian dynamic simulation

Hamiltonian dynamic simulation

Statistical mechanics and canonical distribution

$$p(\theta, \phi) = p(\theta)p(\phi)$$

$$= \frac{1}{Z} \exp(-(U(\theta) + K(\phi)))$$

$$= \frac{1}{Z} \exp(-H(\theta, \phi))$$

where

- U is potential energy function
- K is kinetic energy function
- H is Hamiltonian energy function
- ϕ is called a momentum variable

Hamiltonian dynamic simulation

Statistical mechanics and canonical distribution

$$p(\theta, \phi) = p(\theta)p(\phi)$$

$$= \frac{1}{Z} \exp(-(U(\theta) + K(\phi)))$$

$$= \frac{1}{Z} \exp(-H(\theta, \phi))$$

where

- U is potential energy function
- K is kinetic energy function
- H is Hamiltonian energy function
- ϕ is called a momentum variable
- The potential energy is the negative log density $U(\theta) = -\log(p(\theta)) + C$

Hamiltonian dynamic simulation

Equations of motion, use also the gradient

$$\frac{d\theta_i}{dt} = \frac{\partial H}{\partial \phi_i}$$
$$\frac{d\phi_i}{dt} = -\frac{\partial H}{\partial \theta_i}$$

From Monnahan et al (2017)

Hamiltonian Monte Carlo

- 1) Sample from $p(\phi)$
 - define $p(\phi) = \text{normal}(0, 1)$
- 2) Metropolis update for $p(\theta, \phi) = p(\theta)p(\phi)$
 - proposal from Hamiltonian dynamic simulation $p(\theta, \phi) \propto \exp(-H(\theta, \phi))$

From Monnahan et al (2017)

Leapfrog discretization

- Leapfrog discretization
 - preserves volume
 - reversible
 - discretization error does not usually grow in time

(c) Leapfrog Method, stepsize 0.3

Leapfrog discretization

- Leapfrog discretization
 - preserves volume
 - reversible
 - discretization error does not usually grow in time

Leapfrog discretization + Metropolis

- · Leapfrog discretization
 - due to the discretization error the simulation steps away from the constant contour

Leapfrog discretization + Metropolis

- Leapfrog discretization
 - due to the discretization error the simulation steps away from the constant contour
- Metropolis step with $r = \exp\left(-H(\theta^*, \phi^*) + H(\theta^{(t-1)}, \phi^{(t-1)})\right)$
 - · accept if the Hamiltonian energy in the end is higher
 - accept with some probability if the Hamiltonian energy in the end is lower

Two steps of Hamiltonian Monte Carlo

• Perfect simulation keeps $p(\theta, \phi)$ constant

Two steps of Hamiltonian Monte Carlo

- Perfect simulation keeps $p(\theta, \phi)$ constant
- Discretized simulation keeps changes in $p(\theta, \phi)$ small

Two steps of Hamiltonian Monte Carlo

- Perfect simulation keeps $p(\theta, \phi)$ constant
- Discretized simulation keeps changes in $p(\theta, \phi)$ small
- Alternating sampling from $p(\phi)$ is crucial for moving to (θ, ϕ) points with different joint density

Leapfrog discretization, step size

- Small step size → high acceptance rate, but many log density and gradient evaluations
- Big step size → less log density and gradient evaluations, but lower acceptance rate

From Monnahan et al (2017)

Leapfrog discretization, step size

- Small step size → high acceptance rate, but many log density and gradient evaluations
- Big step size → less log density and gradient evaluations, but lower acceptance rate and the simulation may diverge

From Monnahan et al (2017)

Leapfrog discretization, the number of steps

- Many steps can reduce random walk
- Many steps require many log density and gradient evaluations

From Monnahan et al (2017)

Static Hamiltonian Monte Carlo

- Fixed number of steps
- Demo https://chi-feng.github.io/mcmc-demo/

- Adaptively selects number of steps
 - NUTS is a dynamic HMC algorithm, where dynamic refers to the dynamic trajectory length

- Adaptively selects number of steps
 - NUTS is a dynamic HMC algorithm, where dynamic refers to the dynamic trajectory length
 - simulate until a U-turn is detected
 - the number of simulation steps doubled if no U-turn yet

from Hoffman & Gelman (2014)

- Adaptively selects number of steps
 - NUTS is a dynamic HMC algorithm, where dynamic refers to the dynamic trajectory length
 - simulate until a U-turn is detected
 - the number of simulation steps doubled if no U-turn yet

from Hoffman & Gelman (2014)

- To keep reversibility of Markov chain
 - need to simulate in two directions
 - choose a point along the simulation path with slice sampling
 - Metropolis acceptance step for the selected point

- Adaptively selects number of steps
 - NUTS is a dynamic HMC algorithm, where dynamic refers to the dynamic trajectory length
 - simulate until a U-turn is detected
 - the number of simulation steps doubled if no U-turn yet
- To keep reversibility of Markov chain
 - need to simulate in two directions
 - choose a point along the simulation path with slice sampling
 - Metropolis acceptance step for the selected point
- For further efficiency
 - simulation path parts further away from the starting point can have higher probability
 - max treedepth to keep computation in control

- Adaptively selects number of steps
 - NUTS is a dynamic HMC algorithm, where dynamic refers to the dynamic trajectory length
 - simulate until a U-turn is detected
 - the number of simulation steps doubled if no U-turn yet
- To keep reversibility of Markov chain
 - need to simulate in two directions
 - choose a point along the simulation path with slice sampling
 - Metropolis acceptance step for the selected point
- For further efficiency
 - simulation path parts further away from the starting point can have higher probability
 - max treedepth to keep computation in control
- Demo https://chi-feng.github.io/mcmc-demo/

No-U-Turn sampler with multinomial sampling

- Original NUTS
 - choose a point along the simulation path with slice sampling
 - possibly with bigger weighting for further points
 - Metropolis acceptance step for the selected point
 - if the proposal is rejected the previous state is also the new state

No-U-Turn sampler with multinomial sampling

- Original NUTS
 - choose a point along the simulation path with slice sampling
 - possibly with bigger weighting for further points
 - Metropolis acceptance step for the selected point
 - if the proposal is rejected the previous state is also the new state
- NUTS with multinomial sampling
 - compute the probability of selecting a point and accepting it for all points
 - select the point with multinomial sampling
 - more likely to accept a point that is not the previous one

No-U-Turn sampler with multinomial sampling

- Original NUTS
 - choose a point along the simulation path with slice sampling
 - possibly with bigger weighting for further points
 - Metropolis acceptance step for the selected point
 - if the proposal is rejected the previous state is also the new state
- NUTS with multinomial sampling
 - compute the probability of selecting a point and accepting it for all points
 - select the point with multinomial sampling
 - more likely to accept a point that is not the previous one
- Demo https://chi-feng.github.io/mcmc-demo/

Mass matrix and the step size adaptation

- Mass matrix refers to having different scaling for different parameters and optionally also rotation to reduce correlations
 - mass matrix is estimated during the adaptation phase of the warm-up
 - mass matrix is estimated using the draws so far

Mass matrix and the step size adaptation

- Mass matrix refers to having different scaling for different parameters and optionally also rotation to reduce correlations
 - mass matrix is estimated during the adaptation phase of the warm-up
 - mass matrix is estimated using the draws so far
- Step size
 - adjusted to be as big as possible while keeping discretization error in control (adapt_delta)
 - "Dual averaging" demo https://chi-feng.github.io/mcmc-demo/

Mass matrix and the step size adaptation

- Mass matrix refers to having different scaling for different parameters and optionally also rotation to reduce correlations
 - mass matrix is estimated during the adaptation phase of the warm-up
 - mass matrix is estimated using the draws so far
- Step size
 - adjusted to be as big as possible while keeping discretization error in control (adapt_delta)
 - "Dual averaging" demo https://chi-feng.github.io/mcmc-demo/
- After adaptation the algorithm parameters are fixed and some more iterations run to finish the warmup

- NUTS specific diagnostic
 - the dynamic simulation is build as a binary tree

from Hoffman & Gelman (2014)

- NUTS specific diagnostic
 - the dynamic simulation is build as a binary tree

from Hoffman & Gelman (2014)

 maximum simulation length is capped to avoid very long waiting times in case of bad behavior

- NUTS specific diagnostic
 - the dynamic simulation is build as a binary tree

from Hoffman & Gelman (2014)

- maximum simulation length is capped to avoid very long waiting times in case of bad behavior
- Indicates inefficiency in sampling leading to higher autocorrelations and lower ESS (Seff)
 - very low inefficiency can indicate problems that need to be inverse-distance
 - moderate inefficiency doesn't invalidate the result

- NUTS specific diagnostic
 - the dynamic simulation is build as a binary tree

from Hoffman & Gelman (2014)

- maximum simulation length is capped to avoid very long waiting times in case of bad behavior
- Indicates inefficiency in sampling leading to higher autocorrelations and lower ESS (S_{eff})
 - very low inefficiency can indicate problems that need to be inverse-distance
 - moderate inefficiency doesn't invalidate the result
- Different parameterizations matter

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density (compared to the used step size)
 - indicates possibility of biased estimates

From Monnahan et al (2017)

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density (compared to the used step size)
 - indicates possibility of biased estimates

From Monnahan et al (2017)

Demo https://chi-feng.github.io/mcmc-demo/

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and_bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- HMC specific: indicates that Hamiltonian dynamic simulation has problems with unexpected fast changes in log-density
 - indicates possibility of biased estimates
- http://mc-stan.org/users/documentation/case-studies/divergences_ and bias.html

- Nonlinear dependencies
 - simple mass matrix scaling doesn't help

- Nonlinear dependencies
 - simple mass matrix scaling doesn't help
- Funnels
 - optimal step size depends on location

- Nonlinear dependencies
 - simple mass matrix scaling doesn't help
- Funnels
 - optimal step size depends on location
- Multimodal
 - · difficult to move from one mode to another

- Nonlinear dependencies
 - simple mass matrix scaling doesn't help
- Funnels
 - optimal step size depends on location
- Multimodal
 - difficult to move from one mode to another
- Long-tailed with non-finite variance and mean
 - efficiency of exploration is reduced
 - central limit theorem doesn't hold for mean and variance

Some other recent HMC and gradient based variants

- ChEES-HMC (Hoffman et al., 2021)
 - a GPU friendly adapted but fixed simulation length
 - static after adaptation
- MEADS (Hoffman & Sountsov, 2022)
 - a GPU friendly multi-chain adaptation for generalized HMC (Horowitz, 1991) in which the momentum is partially updated frequently
 - instead of simulation length, need to choose the partial update rate
- MALT (Riou-Durand and Vogrinc, 2022; Riou-Durand et al., 2022)
 - a GPU friendly method related to GHMC
 - but avoids momentum flips after rejection

Probabilistic programming language

 Wikipedia "A probabilistic programming language (PPL) is a programming language designed to describe probabilistic models and then perform inference in those models"

Probabilistic programming language

- Wikipedia "A probabilistic programming language (PPL) is a programming language designed to describe probabilistic models and then perform inference in those models"
- To make probabilistic programming useful
 - inference has to be as automatic as possible
 - diagnostics for telling if the automatic inference doesn't work
 - easy workflow (to reduce manual work)
 - fast enough (manual work replaced with automation)

Probabilistic programming

- Enables agile workflow for developing probabilistic models
 - language
 - automated inference
 - diagnostics
- Many frameworks Stan, PyMC, Pyro (Uber), TFP (Google), Turing.jl, JAGS, ELFI, ...
 - Short review of the landscape:
 Štrumbelj et al. (2023). Past, Present, and Future of Software for
 Bayesian Inference. Statistical Science, accepted for publication.
 Preprint http://www.stat.columbia.edu/~gelman/research/
 published/Bayesian_software_review-8.pdf.

- Language, inference engine, user interfaces, documentation, case studies, diagnostics, packages, ...
 - · autodiff to compute gradients of the log density

- Language, inference engine, user interfaces, documentation, case studies, diagnostics, packages, ...
 - autodiff to compute gradients of the log density
- Most popular, with more than 200K users in social, biological, and physical sciences, medicine, engineering, and business

- Language, inference engine, user interfaces, documentation, case studies, diagnostics, packages, ...
 - autodiff to compute gradients of the log density
- Most popular, with more than 200K users in social, biological, and physical sciences, medicine, engineering, and business
- Several full time developers, 40+ developers, more than 100 contributors

- Language, inference engine, user interfaces, documentation, case studies, diagnostics, packages, ...
 - autodiff to compute gradients of the log density
- Most popular, with more than 200K users in social, biological, and physical sciences, medicine, engineering, and business
- Several full time developers, 40+ developers, more than 100 contributors
- R, Python, Julia, Scala, Stata, command line interfaces
- More than 200 R packages using Stan

Stan

- Stanislaw Ulam (1909-1984)
 - Monte Carlo method
 - H-Bomb

Domain-specific language for constructing models

```
data {
  int<lower=0> N;  // number of experiments
  int<lower=0.upper=N> y; // number of successes
parameters {
  real<lower=0,upper=1> theta; // parameter of the binomial
model {
 theta ~ beta(1, 1); // prior
 y ~ binomial(N, theta); // observation / data model
```

Domain-specific language for constructing models

```
data {
  int<lower=0> N;  // number of experiments
  int<lower=0.upper=N> y; // number of successes
parameters {
  real<lower=0,upper=1> theta; // parameter of the binomial
model {
 theta ~ beta(1, 1); // prior
 y ~ binomial(N, theta); // observation / data model
```

Domain-specific language for constructing models

```
data {
  int<lower=0> N;  // number of experiments
  int<lower=0.upper=N> y; // number of successes
parameters {
  real<lower=0,upper=1> theta; // parameter of the binomial
model {
 theta ~ beta(1, 1); // prior
 y ~ binomial(N, theta); // observation / data model
```

- Data type and size are declared
- Stan checks that given data matches type and constraints

- Data type and size are declared
- Stan checks that given data matches type and constraints
 - If you are not used to strong typing, this may feel annoying, but it will reduce the probability of coding errors, which will reduce probability of data analysis errors

```
parameters {
   real<lower=0,upper=1> theta; // parameter of the binomial
}
```

- Only continuous parameters allowed (discrete parameters can often be integerated out in the model block)
- Parameters may have constraints
- Stan makes transformation to unconstrained space and samples in unconstrained space
 - e.g. log transformation for <lower=a>
 - e.g. logit transformation for <lower=a,upper=b>

```
parameters {
   real<lower=0,upper=1> theta; // parameter of the binomial
}
```

- Only continuous parameters allowed (discrete parameters can often be integerated out in the model block)
- Parameters may have constraints
- Stan makes transformation to unconstrained space and samples in unconstrained space
 - e.g. log transformation for <lower=a>
 - e.g. logit transformation for <lower=a,upper=b>
- For these declared transformation Stan automatically takes into account the Jacobian of the transformation (see BDA3 p. 21)

```
model {
  theta ~ beta(1, 1);  // prior
  y ~ binomial(N, theta); // observation model
}
```

```
model {
  theta ~ beta(1, 1); // prior
  v ~ binomial(N, theta); // observation model

    ~ defines a distribution statement

         e.g. v is distributed as binomial(N, theta)

    these can be written also as log density increment statements

         left side of | denotes what is distributed as, e.g., binomial
model {
  target += beta_lpdf(theta | 1, 1);
  target += binomial_lpmf(y | N, theta);
```

```
model {
  theta ~ beta(1, 1); // prior
  v ~ binomial(N, theta); // observation model

    ~ defines a distribution statement

         e.g. v is distributed as binomial(N, theta)

    these can be written also as log density increment statements

         left side of | denotes what is distributed as, e.g., binomial
model {
  target += beta_lpdf(theta | 1, 1);
  target += binomial_lpmf(y | N, theta);
```

target is the log posterior density (Lecture 4 discussed log)

```
model {
  theta ~ beta(1, 1);  // prior
  y ~ binomial(N, theta); // observation model
}
```

- ~ defines a distribution statement
 e.g. y is distributed as binomial(N, theta)
- these can be written also as *log density increment statements* left side of | denotes what is distributed as, e.g., binomial

```
model {
  target += beta_lpdf(theta | 1, 1);
  target += binomial_lpmf(y | N, theta);
}
```

- target is the log posterior density (Lecture 4 discussed log)
- _lpdf for continuous, _lpmf for discrete distributions (left of |)

```
model {
  theta ~ beta(1, 1);  // prior
  y ~ binomial(N, theta); // observation model
}
```

- ~ defines a distribution statement
 e.g. y is distributed as binomial(N, theta)
- these can be written also as *log density increment statements* left side of | denotes what is distributed as, e.g., binomial

```
model {
  target += beta_lpdf(theta | 1, 1);
  target += binomial_lpmf(y | N, theta);
}
```

- target is the log posterior density (Lecture 4 discussed log)
- _lpdf for continuous, _lpmf for discrete distributions (left of |)
- if y are data, and theta is a parameter, then that term defines log likelihood

```
model {
  theta ~ beta(1, 1);  // prior
  y ~ binomial(N, theta); // observation model
}
```

- ~ defines a distribution statement
 e.g. v is distributed as binomial(N, theta)
- these can be written also as *log density increment statements* left side of | denotes what is distributed as, e.g., binomial

```
model {
  target += beta_lpdf(theta | 1, 1);
  target += binomial_lpmf(y | N, theta);
}
```

- target is the log posterior density (Lecture 4 discussed log)
- _lpdf for continuous, _lpmf for discrete distributions (left of |)
- if y are data, and theta is a parameter, then that term defines log likelihood
- for Stan sampler there is no difference between prior and likelihood, all that matters is the final target

Stan

 You can write in Stan language any program to compute the log density (Stan language is Turing complete)

Stan

- You can write in Stan language any program to compute the log density (Stan language is Turing complete)
- Stan compiles (transplies) the model written in Stan language to C++
 - this makes the sampling for complex models and bigger data faster
 - also makes Stan models easily portable, you can use your own favorite interface and scripting language for manipulating data and inference results (e.g. R, Python, Julia, Stata, ...)

CmdStanR

RStan

```
library(cmdstanr)
options(mc.cores = 1)

d_bin <- list(N = 10, y = 7)
mod_bin <- cmdstan_model(stan_file = 'binom.stan')
fit_bin <- mod_bin$sample(data = d_bin)</pre>
```

CmdStanR

RStan

```
library(cmdstanr)
options(mc.cores = 1)

d_bin <- list(N = 10, y = 7)
mod_bin <- cmdstan_model(stan_file = 'binom.stan')
fit_bin <- mod_bin$sample(data = d_bin)</pre>
```

PyStan

PyStan

```
import pystan
import stan_utility

data = dict(N=10, y=8)
model = stan_utility.compile_model('binom.stan')
fit = model.sampling(data=data)
```

PyStan

PyStan

```
import pystan
import stan_utility

data = dict(N=10, y=8)
model = stan_utility.compile_model('binom.stan')
fit = model.sampling(data=data)
```

Stan

- Compilation (unless previously compiled model available)
- Warm-up including adaptation
- Sampling
- Generated quantities
- Save posterior draws
- Report divergences, ESS, \widehat{R}

- An experiment was performed to estimate the effect of beta-blockers on mortality of cardiac patients
- A group of patients were randomly assigned to treatment and control groups:
 - out of 674 patients receiving the control, 39 died
 - out of 680 receiving the treatment, 22 died

```
data {
  int<lower=0> N1:
  int<lower=0> y1;
  int<lower=0> N2;
  int<lower=0> y2;
parameters {
  real<lower=0,upper=1> theta1;
  real<lower=0,upper=1> theta2;
model {
  theta1 \sim beta(1, 1):
  theta2 \sim beta(1, 1);
  y1 ~ binomial(N1, theta1);
  y2 ~ binomial(N2, theta2);
generated quantities {
  real oddsratio;
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
```

```
data {
  int<lower=0> N1:
  int<lower=0> y1;
  int<lower=0> N2;
  int<lower=0> y2;
parameters {
  real<lower=0,upper=1> theta1;
  real<lower=0,upper=1> theta2;
model {
  theta1 \sim beta(1, 1):
  theta2 \sim beta(1, 1);
  y1 ~ binomial(N1, theta1);
  y2 ~ binomial(N2, theta2);
generated quantities {
  real oddsratio;
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
```

```
data {
  int<lower=0> N1:
  int<lower=0> y1;
  int<lower=0> N2;
  int<lower=0> y2;
parameters {
  real<lower=0,upper=1> theta1;
  real<lower=0,upper=1> theta2;
model {
  theta1 \sim beta(1, 1):
  theta2 \sim beta(1, 1);
  y1 ~ binomial(N1, theta1);
  v2 ~ binomial(N2, theta2);
generated quantities {
  real oddsratio;
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
```

```
data {
  int<lower=0> N1:
  int<lower=0> y1;
  int<lower=0> N2;
  int<lower=0> y2;
parameters {
  real<lower=0,upper=1> theta1;
  real<lower=0,upper=1> theta2;
model {
  theta1 \sim beta(1, 1):
  theta2 \sim beta(1, 1);
  y1 ~ binomial(N1, theta1);
  y2 ~ binomial(N2, theta2);
generated quantities {
  real oddsratio;
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
```

```
generated quantities {
  real oddsratio;
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
}
```

generated quantities is run after the sampling

```
d_bin2 \leftarrow list(N1 = 674, y1 = 39, N2 = 680, y2 = 22)
mod_bin2 <- cmdstan_model(stan_file = 'binom2.stan')</pre>
fit_bin2 <- mod_bin2$sample(data = d_bin2, refresh=1000)</pre>
> Running MCMC with 4 parallel chains...
Chain 1 Iteration: 1 / 2000 [ 0%]
                                       (Warmup)
Chain 1 Iteration: 1000 / 2000 [ 50%]
                                       (Warmup)
Chain 1 Iteration: 1001 / 2000 [ 50%]
                                       (Sampling)
Chain 1 Iteration: 2000 / 2000 [100%]
                                       (Sampling)
All 4 chains finished successfully.
Mean chain execution time: 0.0 seconds.
Total execution time: 0.2 seconds.
```

```
options(posterior.num_args=list(sigfig=2))
fit_bin2$summary()
```

```
variable
                 median
                                                  rhat ess_bulk ess_tail
            mean
                       sd
                               mad
                                       q5
                                             a95
1 lp__
         -2.5e+2 -2.5e+2 1.0
                             0.74 -2.6e+2 -2.5e+2
                                                  1.0
                                                        1751.
                                                                2231.
2 theta1 5.9e-2 5.9e-2 0.0093 0.0093 4.5e-2 7.5e-2 1.0
                                                         3189.
                                                                2657.
3 theta2 3.4e-2 3.3e-2 0.0069 0.0067 2.3e-2 4.6e-2 1.0
                                                         3229.
                                                                2163.
4 oddsratio 5.7e-1 5.5e-1 0.16
                             0.15 3.5e-1 8.7e-1 1.0
                                                        2998.
                                                                2685.
```

```
options(posterior.num_args=list(sigfig=2))
fit_bin2$summary()
```

```
        variable
        mean
        median
        sd
        mad
        q5
        q95
        rhat
        ess_bulk
        ess_tail

        1 lp__
        -2.5e+2
        -2.5e+2
        1.0
        0.74
        -2.6e+2
        -2.5e+2
        1.0
        1751.
        2231.

        2 theta1
        5.9e-2
        5.9e-2
        0.0093
        0.0093
        4.5e-2
        7.5e-2
        1.0
        3189.
        2657.

        3 theta2
        3.4e-2
        3.3e-2
        0.0069
        0.0067
        2.3e-2
        4.6e-2
        1.0
        3229.
        2163.

        4 oddsratio
        5.7e-1
        5.5e-1
        0.16
        0.15
        3.5e-1
        8.7e-1
        1.0
        2998.
        2685.
```

lp__ is the log density, ie, same as target

HMC specific diagnostics

Difference between proportions (bayesplot)

```
draws <- fit_bin2$draws(format = "df")
mcmc_hist(draws, pars = 'oddsratio') +
  geom_vline(xintercept = 1) +
  scale_x_continuous(breaks = c(seq(0.25,1.5,by=0.25)))</pre>
```


Difference between proportions (ggplot2)

```
draws <- fit_bin2$draws(format = "df")
draws |> ggplot(aes(x=oddsratio)) +
  geom_histogram() +
  geom_vline(xintercept = 1) +
  scale_x_continuous(breaks = c(seq(0.25,1.5,by=0.25)))
```


Difference between proportions (ggdist dot plot)

```
draws <- fit_bin2$draws(format = "df")
draws |> ggplot(aes(x=oddsratio)) +
  geom_dotsinterval() +
  geom_vline(xintercept = 1) +
  scale_x_continuous(breaks = c(seq(0.25,1.5,by=0.25)))
```


Difference between proportions (probability and MCSE)

Probability (and corresponding MCSE) that oddsratio<1

Default is draws_array

. . .

```
> fit_bin2$draws()
# A draws_array: 1000 iterations, 4 chains, and 4 variables
, , variable = lp__
        chain
iteration 1 2 3 4
       1 -253 -253 -254 -253
       2 -253 -253 -255 -252
       3 -254 -252 -254 -253
       4 -255 -253 -254 -254
       5 -253 -253 -253 -253
, , variable = theta1
        chain
iteration 1 2
       1 0.054 0.052 0.045 0.049
       2 0.062 0.060 0.070 0.058
```

draws_df looks prettier and works with ggplot()

```
> fit_bin2$draws(format ="df")
# A draws_df: 1000 iterations, 4 chains, and 4 variables
  lp__ theta1 theta2 oddsratio
1 -253 0.054 0.033
                   0.59
2 -253 0.062 0.035 0.55
3 -254 0.047 0.026 0.54
4 -255 0.049 0.049 0.99
5 -253 0.068 0.035 0.50
6 -253 0.056 0.027 0.47
7 -253 0.071 0.031 0.43
8 -253 0.049 0.036 0.72
9 -253 0.049 0.036 0.72
10 -253 0.063 0.026 0.39
# ... with 3990 more draws
# ... hidden reserved variables {'.chain', '.iteration', '.draw'}
```

draws_rvar makes it easy to compute derived quantities

```
> as_draws_rvars(fit_bin2$draws())
# A draws_rvars: 1000 iterations, 4 chains, and 4 variables
$lp__: rvar<1000,4>[1] mean ± sd:
[1] -253 ± 1

$theta1: rvar<1000,4>[1] mean ± sd:
[1] 0.059 ± 0.0093

$theta2: rvar<1000,4>[1] mean ± sd:
[1] 0.034 ± 0.0069

$oddsratio: rvar<1000,4>[1] mean ± sd:
[1] 0.57 ± 0.16
```

draws_rvar makes it easy to compute derived quantities

```
> as draws rvars(fit bin2$draws())
# A draws_rvars: 1000 iterations, 4 chains, and 4 variables
$lp : rvar<1000.4>[1] mean ± sd:
[1] -253 \pm 1
$theta1: rvar<1000.4>[1] mean ± sd:
[1] 0.059 ± 0.0093
$theta2: rvar<1000,4>[1] mean ± sd:
[1] 0.034 ± 0.0069
\odsymbol{$} $oddsratio: rvar<1000,4>[1] mean \pm sd:
[1] 0.57 ± 0.16
> with(draws, (theta2/(1-theta2))/(theta1/(1-theta1)))
rvar<1000.4>\lceil 1 \rceil mean \pm sd:
[1] 0.5689 ± 0.1577
```

draws_rvar makes it easy to compute derived quantities

```
> as draws rvars(fit bin2$draws())
# A draws_rvars: 1000 iterations, 4 chains, and 4 variables
$lp : rvar<1000.4>[1] mean ± sd:
[1] -253 \pm 1
$theta1: rvar<1000.4>[1] mean ± sd:
[1] 0.059 ± 0.0093
$theta2: rvar<1000,4>[1] mean ± sd:
[1] 0.034 ± 0.0069
\odsymbol{$} $oddsratio: rvar<1000,4>[1] mean \pm sd:
[1] 0.57 ± 0.16
> with(draws. (theta2/(1-theta2))/(theta1/(1-theta1)))
rvar<1000.4>\lceil 1 \rceil mean \pm sd:
[1] 0.5689 ± 0.1577
> draws$oddsratio<1</pre>
rvar<1000,4>[1] mean ± sd:
Γ17 0.9865 ± 0.1154
```

- Temperature at Kilpisjärvi in June, July and August from 1952 to 2013
- Is there change in the temperature?


```
data {
   int<lower=0> N;  // number of observations
   vector[N] x;
   vector[N] y;
parameters {
   real alpha;
                       // intercept
   real beta;
                     // slope
   real<lower=0> sigma; // observation model sd
transformed parameters {
   vector[N] mu;
   mu = alpha + beta*x; // linear model
model {
   y ~ normal(mu, sigma); // observation model
```

```
data {
   int<lower=0> N;  // number of observations
   vector[N] x;
   vector[N] y;
parameters {
   real alpha;
                       // intercept
   real beta;
                      // slope
   real<lower=0> sigma; // observation model sd
transformed parameters {
   vector[N] mu;
   mu = alpha + beta*x; // linear model
model {
   y ~ normal(mu, sigma); // observation model
```

```
data {
   int<lower=0> N;  // number of observations
   vector[N] x;
   vector[N] y;
parameters {
   real alpha;
                      // intercept
   real beta;
              // slope
   real<lower=0> sigma; // observation model sd
transformed parameters {
   vector[N] mu;
   mu = alpha + beta*x; // linear model
model {
   y ~ normal(mu, sigma); // observation model
```

```
data {
   int<lower=0> N;  // number of observations
   vector[N] x;
   vector[N] y;
parameters {
   real alpha;
                      // intercept
   real beta;
              // slope
   real<lower=0> sigma; // observation model sd
transformed parameters {
   vector[N] mu;
   mu = alpha + beta*x; // linear model
model {
   y ~ normal(mu, sigma); // observation model
}
```

• difference between vector[N] x and array[N] real x

- difference between vector[N] x and array[N] real x
- only integer arrays: array[N] int x

 transformed parameters are deterministic transformations of parameters and data

Student-t linear model

```
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma;
  real<lower=1,upper=80> nu;
transformed parameters {
  vector[N] mu;
  mu = alpha + beta*x;
model {
                                   // prior for nu
  nu \sim gamma(2, 0.1);
  y ~ student_t(nu, mu, sigma); // observation model
```

Priors for normal linear model

```
data {
    int<lower=0> N; // number of observations
    vector[N] x; //
    vector[N] y; //
    real pmualpha; // prior mean for alpha
    real psalpha; // prior std for alpha
    real pmubeta; // prior mean for beta
    real psbeta; // prior std for beta
transformed parameters {
   vector[N] mu;
   mu = alpha + beta*x;
model {
    alpha ~ normal(pmualpha, psalpha); // prior for alpha
    beta ~ normal(pmubeta, psbeta); // prior for beta
    y ~ normal(mu, sigma);
                                  // observation model
```

Priors

• Prior for temperature increase?

Posterior fit

Posterior draws of alpha and beta

Posterior draws of alpha and beta

Warning: 1 of 4000 (0.0%) transitions hit the maximum treedepth limit of 10. See https://mc-stan.org/misc/warnings for details.

Linear regression model in Stan

Center the data inside the model code

```
data {
  int<lower=0> N; // number of observations
 vector[N] x:
 vector[N] y;
 real xpred; // covarite values for prediction
transformed data {
  vector[N] x_std;
  vector[N] v_std;
  real xpred_std;
  x_std = (x - mean(x)) / sd(x);
  y_std = (y - mean(y)) / sd(y);
  xpred_std = (xpred - mean(x)) / sd(x);
```

Posterior draws of alpha and beta when data is centered

Kilpisjärvi summer temperature

Without centering

With centering

```
variable rhat ess_bulk ess_tail
alpha 1.0 3872. 2616.
beta 1.0 3770. 2396.
```

RStanARM

- RStanARM provides simplified model description with pre-compiled models
 - no need to wait for compilation
 - a restricted set of models

Two group Binomial model:

RStanARM

- RStanARM provides simplified model description with pre-compiled models
 - no need to wait for compilation
 - · a restricted set of models

Two group Binomial model:

Normal linear model

```
fit_lin <- stan_glm(temp ~ year, data = d_lin)</pre>
```

brms

- brms provides simplified model description
 - + a larger set of models than RStanARM, but still restricted
 - need to wait for the compilation

```
fit_bin2 <- brm(y | trials(N) ~ grp2, family = binomial(), data = d_bin2)
fit_lin_t <- brm(temp ~ year, data = d_lin, family = student())</pre>
```

Geomagnetic storms


```
data {
  int<lower=0> N;
  vector<lower=0>[N] y;
  int<lower=0> Nt;
  vector<lower=0>[Nt] yt;
transformed data {
  real ymax = max(y);
parameters {
  real<lower=0> sigma;
  real<lower=-sigma/ymax> k;
model {
  y ~ gpareto(k, sigma);
generated quantities {
  vector[Nt] predccdf = gpareto_ccdf(yt, k, sigma);
```

```
data {
  int<lower=0> N;
  vector<lower=0>[N] y;
  int<lower=0> Nt;
  vector<lower=0>[Nt] vt;
transformed data {
  real ymax = max(y);
parameters {
  real<lower=0> sigma;
  real<lower=-sigma/ymax> k;
model {
  y ~ gpareto(k, sigma);
generated quantities {
  vector[Nt] predccdf = gpareto_ccdf(yt, k, sigma);
```

```
data {
  int<lower=0> N;
  vector<lower=0>[N] y;
  int<lower=0> Nt;
  vector<lower=0>[Nt] yt;
transformed data {
  real ymax = max(y);
parameters {
  real<lower=0> sigma;
  real<lower=-sigma/ymax> k;
model {
  y ~ gpareto(k, sigma);
generated quantities {
 vector[Nt] predccdf = gpareto_ccdf(yt, k, sigma);
```

```
data {
  int<lower=0> N;
  vector<lower=0>[N] y;
  int<lower=0> Nt;
  vector<lower=0>[Nt] vt;
transformed data {
  real ymax = max(y);
parameters {
  real<lower=0> sigma;
  real<lower=-sigma/ymax> k;
model {
  y ~ gpareto(k, sigma);
generated quantities {
  vector[Nt] predccdf = gpareto_ccdf(yt, k, sigma);
```

User defined functions

```
functions {
  real gpareto_lpdf(vector y, real k, real sigma) {
    // generalised Pareto log pdf with mu=0
    // should check and give error if k<0
    // and max(y)/sigma > -1/k
    int N;
    N \leftarrow dims(v)[1];
    if (abs(k) > 1e-15)
      return -(1+1/k)*sum(log1pv(v*k/sigma)) -N*log(sigma);
    else
      return -sum(y/sigma) -N*log(sigma); // limit k->0
  vector gpareto_ccdf(vector y, real k, real sigma) {
    // generalised Pareto log ccdf with mu=0
    // should check and give error if k<0
    // and max(y)/sigma < -1/k
    if (abs(k) > 1e-15)
      return exp((-1/k)*log1pv(y/sigma*k));
    else
      return exp(-y/sigma); // limit k->0
```

User defined functions

```
functions {
  real gpareto_lpdf(vector v, real k, real sigma) {
    // generalised Pareto log pdf with mu=0
    // should check and give error if k<0
    // and max(y)/sigma > -1/k
    int N;
   N \leftarrow dims(y)[1];
    if (abs(k) > 1e-15)
      return -(1+1/k)*sum(log1pv(v*k/sigma)) -N*log(sigma);
    else
      return -sum(y/sigma) -N*log(sigma); // limit k->0
  vector gpareto_ccdf(vector y, real k, real sigma) {
    // generalised Pareto log ccdf with mu=0
    // should check and give error if k<0
    // and max(y)/sigma < -1/k
    if (abs(k) > 1e-15)
      return exp((-1/k)*log1pv(y/sigma*k));
    else
      return exp(-y/sigma); // limit k->0
```

Different interfaces

- CmdStanR / CmdStanPy
 - Interface on top of command-line program CmdStan
- RStan / PyStan
 - C++ functions of Stan are called directly from R / Python
 - Higher integration between R/Python and Stan, but maybe more difficult to install due to more requirements of compatible C++ compilers and libraries

Other packages

- R
- posterior posterior handling and diagnostics (Lectures 5 and 6)
- bayesplot visualization and model checking (Lectures 5, 6, and 8)
- tidybayes and ggdist more posterior and prediction visualization (Lecture 6)
- loo cross-validation model assessment and comparison (Lecture 9)
- projpred projection predictive variable selection (Lecture 12)
- priorsense prior and likelihood sensitivity diagnostics (Lecture 12)
- Python
 - ArviZ visualization, and model checking and assessment