Coursera Machine Learning Notes

Eddie Shim

October 12, 2016

1 Regression

1.1 Linear Regression

For a univariate linear regression, take a dataset of two variables and optimize the linear equation $y = \theta_1 x + \theta_0$. Use the least squares method $\sum_{i=1}^m (f(x) - y)^2$, where $(f(x)) - y)^2$ represents the residual squared. To minimize residual squared, find $\vec{\theta}$ which makes the derivative of the cost function equal to 0.

• Cost function for linear regression (where $\vec{\theta} \in \mathbb{R}^{n+1}$, where n is the number of independent variables):

$$J(\vec{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Gradient descent (Note: must update all θ_j simultaneously):

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\vec{\theta})$$

ex: for 2 variable case:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

• Feature scaling: normalizing all independent variables to an appropriate range. Purpose is to speed up gradient descent.

$$x_i = \frac{x_i - \mu}{\text{range of } x}$$

- Note: if α is too large, gradient descent may skip minimum point. However, if α is too little, it may take too long to converge.
- Normal equation an alternative to gradient descent:

$$\theta = (X^T X)^{-1} y$$

Gradient Descent	Normal Equation
- need to choose an α	- no need for α
- needs many iterations	- no need to iterate, one calculation
- works well even when n is large	- need to compute $(X^TX)^{-1}$ which runs
	in $O(n^3)$ runtime
	- slow if n is very large

Table 1: Pros and Cons

• **Vectorization**: to speed up loops. e.g. Transform the following code from:

```
for i = 1:3  \text{for j = 1:m} \\ \text{theta(i) := theta(i) - alpha * (1/m)*(h_theta(x(j))-y(j))*x(i);} \\ \text{end} \\ \text{end} \\ \text{into:} \\ \text{theta = theta - alpha * delta;} \\ \text{where } \theta \in \mathbb{R}^{n+1}, \ \alpha \in \mathbb{R}, \ \delta \in \mathbb{R}^{n+1} \\ \end{cases}
```

1.2 Logistic Regression

• A classification algorithm (not really regression, which predicts continuous variable given continuous variable)

$$h_{\theta}(x) = g(\theta^T x),$$
 where $g(z) = \frac{1}{1 + e^{-z}}$ (sigmoid function)

- Nice properties:
 - $0 \le h_{\theta}(x) \le 1$, good for properties of a probability
 - At z = 0, g(z) = 0.5
 - Converges to g(z) = 1 quickly as g increases, and vice versa for 0
 - We can use these properties to output the probability that an input exists in one of two binary states (1 or 0)
- Terminology: the probability of the output of results equaling 1:

$$h_{\theta}(x) = p(y = 1|x;\theta)$$

- Predict y = 1 if $\theta^T x \ge 0 \Leftrightarrow \text{if } h_{\theta}(x) = g(\theta^T x) \ge 0.5$
- Cost Function:

$$J(\vec{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}(h_{\theta}(x), y)$$

where cost $(h_{\theta}(x), y) =$

$$\begin{cases}
-log(h_{\theta}(x)) & \text{if } y = 1 \\
-log(1 - h_{\theta}(x)) & \text{if } y = 0
\end{cases}$$

Figure 1: Left: $-log(h_{\theta}(x))$; Right: $-log(1 - h_{\theta}(x))$

• We can create a more succinct function instead of using a piecewise function. Cost function for logistic regression:

$$cost(h_{\theta}(x), y) = -y * log(h_{\theta}(x)) - (1 - y) * log(1 - h_{\theta}(x))$$

$$J(\vec{\theta}) = -\frac{1}{m} \left(\sum_{i=1}^{m} y^{(i)} * log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) * log(1 - h_{\theta}(x^{(i)})) \right)$$

1.3 Neural Networks

