Intersection Forms

Assumption: M is a closed oriented 4-mfd.

Several statements:

Denote the intersection form of M by QM: $H_2(M; \mathbb{Z}) \times H_2(M; \mathbb{Z}) \longrightarrow \mathbb{Z}$ QM can be represented by an integer symmetrical matrix A.

Indeed, let ei, -, ex be a basis of Hz(M; Z)

$$A = \begin{bmatrix} Q_{M}(e_{i},e_{i}) & \cdots & Q_{M}(e_{i},e_{k}) \\ \vdots & \vdots & \vdots \\ Q_{M}(e_{k},e_{i}) & \cdots & Q_{M}(e_{k},e_{k}) \end{bmatrix}_{\mathbf{k}\times\mathbf{k}}$$

Remark: The matrix representing Q_{M} is not unique.

let $Q_{1}, --$, Q_{K} be a basis of $H^{2}(M; Z)$, $B_{1}, --$, B_{K} be another basis of $H^{2}(M; Z)$, Let $Q_{M}(Q_{1}, Q_{1}) = Q^{T}AQ$, $Q_{M}(B_{1}, B_{2}) = B^{T}B_{1}B_{2}B_{3}$, where $B = (B_{1}, ---, B_{2})$ $B = Q \cdot C$ then we have $B = C^{-1}AC$.

$$\mathsf{E}_{\mathsf{X}}: \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

[Def (Unimodularity) and is unimodular if $\det \alpha u = \pm 1$ $\iff \alpha u \text{ is invertible over } Z$

Remark: QM is unimodular iff $\forall Z$ -linear function $f: H_Z(M)Z \longrightarrow Z$, $\forall Y \in H_Z(M;Z)$, $\exists ! X \in H_Z(M;Z)$ S.t. $f(x) = X \cdot Y = Q(X,Y)$

Z. Invariants of intersection forms:

(rank, signature, definiteness, parity)

Let M be a closed oriented 4-mfd, let an be the intersection form.

Def:

- 11) the rank of Qm: rank Qm = rank = Hz (M; Z)
- (2) the signature of Q_m : sign $Q_m = b_2^+ b_2^+$

(diagonalize Qm into a rational canonical form, and then into the normal form $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ by $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is the number of +|s| (H's) on the diagonal.

(3) the definiteness of $Q_M: Q_M$ is called positive definite if rank $Q_M = \operatorname{sign} Q_M$ (or if $Q_M(Q_i,Q_i) > 0$ for every $d_i \in H_2(M_i,Z_i)$)

• Q_M is called negative definite if $\operatorname{rank} Q_M = -\operatorname{sign} Q_M$

(or if an(di,di)<0, for every di EHz(M; Z)

- · Om is called indefinite otherwise.
- (4) the parity of Qm : Qm is called even if Qm (wide) is even for all classes $di \in H_2(M; Z)$

(or if every metrix representing on has even diagonal)

Pemark: $OSign(Q_1 \oplus Q_2) = signQ_1 + signQ_2$ Sign(M # N) = signM + signN

Sign $\bar{M} = -\sin n M$, where \bar{M} is the manifold M with opposite orientation

 $Q Q \bar{M} = -Q M$ (by definition)

3. (Connected Sum) The connected sum of two oriented mfds Mm and Nn, denoted by M#N, is a mfd formed by deleting a ball inside each mafold and gluing together the resulting boundary spheres:

 $M\#N = (M \mid \dot{\iota}_{10}) \sqcup (N \mid \dot{\imath}_{20})$ $i_{1}(tu) \sim \dot{\imath}_{2}(Ht)u) \quad u \in S^{n-1}, \quad 0 \leq t \leq 1$ where $\dot{\imath}_{1}: D_{1} \longrightarrow M_{1}, \quad \dot{\imath}_{2}: P_{2} \longrightarrow M_{1}, \quad \text{are imbeddings.}$

The Let M.N be a connected closed oriented 4-mfds with intersection forms and an respectively, then $D_{M\#N} = D_{M} \oplus D_{N}$

Pf: M° : $M - a + bail \cong M - a + bandle$ N° : $N - a + bail \cong N - a + bandle$

Since 2-homology of M.N is determined by 1.2,3 handles.

Hz (Cx) = ker 22/11/3;

7k: Cx -> 4-1

(k= Z {k-handles h}}

then 2-hombogy of M#N is the gathering of 2-homologies of M and N.

then QMAN = QM & QN

Remork = the Tesults also holds for gluing space MUaN.

- Th 2: If in definite unimodular forms Q_1,Q_2 have the same rank, signature, parity, then $Q_1\cong Q_2$ (i.e. Q_1 is equivalent to Q_2)
 - $E_{x}: H \oplus [-1] \cong 2[-1] \oplus [1]$ They both have rank 3, signature -1 and they are odd.
- 4. The signature vanishes for boundaries.
 - Th3. If M^4 is the boundary of some oriented 5-mfd W⁵, then sign $Q_M = 0$
- Covallary: If two mfds M.N are cobordant, then sign $Q_M = sign Q_N$.

 Pf:If $\partial W = \bar{M} \sqcup N$, then $O = sign (\bar{M} \sqcup N) = sign (-\alpha_M) + sign (\alpha_N)$ = sign $Q_M = sign Q_M$
- Thus (V, Rokhlin) If a smooth oriented 4-mfd M has sign $Q_{M}=0$ then there is a smooth oriented 5-mfd W s.t. $\partial W=M$
- Corallary: 11) M 4 is the boundary of some oriented 5-manifold W^5 iff sign $Q_M = 0$
 - (2) Two 4-mfds have the same signature iff they are cobordant.

5. Examples of unimodular intersection forms.

 $H_2(\mathbb{CP}^2; \mathbb{Z}) = \mathbb{Z}[dJ]$, where [dJ] is a class of a complex projective plain. any two projective line intersects at I point.

thus
$$Qcp^2 = [1]$$
, $\begin{cases} sign = 1 \\ positive definite \\ odd \end{cases}$

Q
$$\overline{CP}^2 = -Q_{\overline{CP}^2} = [-1],$$

where $CP^2 = [-1]$

rank = 1

sign = 1

negative definite.

odd

$$H_2(S^2 \times S^2; Z) = Z[d] \oplus Z[\beta]$$
, where $d = [S^2 \times \{Pt\}]$, $\beta = [\{Pt\} \times S^2\}$ form the basis of $H_2(S^2 \times S^2; Z)$

thus
$$Q_{5^2 \times 5^2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, denote it by H

$$\begin{cases} Vank = 2 \\ Sigh = 0 \\ indefinite \\ pavity of Qs^2 x s^2 \end{cases}$$

Question: I can not tell the parity of
$$Q_{S^2 \times S^2}$$
,

Since $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$, let $C = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, then $\begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix} = C^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} C$

but $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ has even diagonal, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ has odd cliagonal.

14) Connected Sum
$$M = 3CP^2 + \overline{CP^2} + 2S^2XS^2$$

$$Q_M = Q(3CP^2 + \overline{CP^2} + 2S^2 \times S^2)$$

- = 3 acp D app D 2H
- = 3[+1] \(\Pi [-1] \) \(\Pi H)

$$\begin{cases} \text{Vank} = 6 \\ \text{Sign} = 2 \\ \text{indefinite} \\ \text{odd} \end{cases}$$

15) the E8 -manifold
$$ME_8 = PE_8 U_{\Sigma_p} \Delta$$
, where Δ is a fake 4-ball, Σ_p is a homology 3-sphere, PE_8 is a space gathering 8 sphere with self intersection 2 and intersecting the other sphere 0 or 1 as the form $QE_8 = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\$

even.

Remark: Omes can also be represented by

$$\begin{bmatrix}
2+1 \\
+2+1 \\
+2-1 \\
-12-1
\\
-12-1
\\
0+2 \\
-12
\end{bmatrix}$$

- Th.5. (White head) Two simply connected, closed, oriented 4-mfds X_1, X_2 are homotopy equivalent iff $Q_{X_1} \cong Q_{X_2}$.
- This (Freedman) For every unimodular symmetric bilinear form Q, there exists a simply closed topological 4-mfd X st. Qx = X. If Q is even, then X is unique up to homeomorphism.
- Corallory: A simply connected closed 4-mfd X is homeomorphic to S4 iff X is homeology equivalent to S4.