LATTICE THEORY PROBLEMS

- 1. If x and y are two elements of a lattice, show that $x \wedge y = y$ if and only if $x \vee y = x$.
- 2. If x, y, and z are elements of a lattice, show that

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$

$$(x \land y) \lor (x \land z) \le x \land (y \lor z).$$

- 3. Show that in an algebraic system (L, \oplus, \otimes) , where \oplus and \otimes are binary operations satisfying the absorption law, \oplus and \otimes are idempotent.
- 4. Let a, b, c be elements in a lattice (L, \leq) . Show that $a \leq b$ if and only if

$$a \lor (b \land c) \le b \land (a \lor c).$$

- 5. Show that a lattice L is distributive if and only if for all elements $x, y, z \in L$, $(x \lor y) \land z \le x \lor (y \land z)$.
- 6. Show that every chain is a distributive lattice. Which chains are Boolean lattices?
- 7. Let L be a distributive lattice. Show that for $a, b \in L$, if there exists an element $x \in L$ such that $a \lor x = b \lor x$ and $a \land x = b \land x$, then a = b.
- 8. Give an example of a complemented lattice that is not distributive.
- 9. Does the lattice $(\mathbb{N}, |)$ (where $\mathbb{N} = \{1, 2, 3, \ldots\}$) contain
 - (a) a universal lower bound?
 - (b) a universal upper bound?
- 10. Does the lattice $(\mathbb{N}_0, |)$ (where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$) contain a universal upper bound?
- 11. Show that every finite lattice contains a universal upper bound and a universal lower bound.
- 12. Show that if a lattice contains both 0 and 1, then they are the unique complements of each other.
- 13. Compute the CNF and DNF of the expression $E(a,b,c)=\overline{\left(a\wedge\left(\overline{b}\vee(\overline{c}\wedge a)\right)\right)}$ over the 2-valued Boolean algebra.