Riemannian Convex Potential Maps

Samuel Cohen*, Brandon Amos*, Yaron Lipman

FACEBOOK AI

Motivation

Real-world data on Riemannian manifolds

Density Transportation

Density Estimation

Geodesics Estimation

Riemannian Optimal Transport

• Given source μ and target ν distributions on manifolds find an (OT) map pushing source to target.

$$\underset{t:t_{\#}\mu=\nu}{\operatorname{argmin}} \int_{\mathscr{M}} c[x, t(x)] d\mu$$

Approach: Semidiscrete OT

- McCann's Theorem: OT is of the form $t(x) = \exp(-\nabla \phi)$, ϕ is c-concave
- Our semidiscrete OT on manifolds:

Use discrete c-concave potentials of the form

$$\phi(x) = \min_{i \in [n]} c(x, y_i) + \alpha_i$$
Learnable parameters

Theory: Universality

Theorem 1: For compact, boundaryless, smooth manifolds, $\{f | f(x) = \min_{i \in [n]} c(x, y_i) + \alpha_i\}$ is dense in $\{f | f$ is c-concave $\}$.

Theorem 2: If μ, ν are regular, there exists a sequence of discrete c-concave potentials ϕ_{ϵ} such that $\exp[-\nabla \phi_{\epsilon}] \stackrel{p}{\to} t$ where t is the OT map.

Implementation Details

• Map architecture: stack of multiple blocks of the form

$$s_j(x) = \exp[-\nabla_x \phi_j(x)], \quad j = 1,..., T$$

• Smoothing: applied to discrete c-concave layers

$$\min_{\gamma}(a_1, ..., a_n) = -\gamma \log \sum_{i=1}^n \exp -\frac{a_i}{\gamma}$$

• Loss: standard density estimation losses (NLL, KL)

Results

• Synthetic, sphere

Synthetic, torus

Earth case study, sphere

For more details, have a look at our paper!