Math 10A Fall 2024 Worksheet 8

September 24 2024

1. Determine if the following functions are even, odd, or neither.

(a)
$$f(x) = x^2 - 1$$

(b)
$$f(x) = \sin(x)$$

(c)
$$f(x) = 42$$

(d)
$$f(x) = x + \sin(x)$$

(e)
$$f(x) = x^2 - 3\cos(x)$$

(f)
$$f(x) = x^2 + x + 1$$

2. Find the domain of the following functions.

(a)
$$f(x) = x$$

(b)
$$f(x) = \sqrt{x+3}$$

(c)
$$f(x) = \sqrt{4 - \sqrt{x}}$$

(d)
$$f(x) = \frac{1}{x} + \frac{1}{x-1} + \frac{1}{x-2} + \dots + \frac{1}{x-10}$$

3. If

$$f(x) = \frac{x^3 - 1}{x - 1}, \quad g(x) = x^2 + x + 1$$

is it true f = g?

4. Let $f(x) = \sqrt{x}$. Plot the graphs of the following functions. Also describe the domains.

(a)
$$y = f(x)$$

(b)
$$y = f(x+1)$$

(c)
$$y = 3f(x)$$

(d)
$$y = f(x) - 3$$

(e)
$$y = 2f(x-1) + 2$$

5. Let

$$f(x) = x + \frac{1}{x}, \quad g(x) = \frac{x+1}{x+2}.$$

Find $f \circ g$ and $g \circ f$. What are the domains of these functions?

1 Solutions

- 1. (a) even
 - (b) odd
 - (c) even
 - (d) odd
 - (e) even
 - (f) neither

Note that (even) + (even) = (even) and (odd) + (odd) = (odd).

- 2. **Key principle:** The two main conditions to a number being in the domain are:
 - i) Avoid dividing by zero.
 - ii) Avoid taking the square root, or any even power root, of a negative number. Odd power roots of negatives are okay, for example $\sqrt[3]{-1} = -1$.
 - (a) All $x \in \mathbb{R}$.
 - (b) $x \ge -3$
 - (c) $0 \le x \le 16$. All the values in square roots should be nonnegative, which gives $x \ge 0$ and $4 \sqrt{x} \ge 0 \Leftrightarrow x \le 16$.
 - (d) All the values in the denominator should be nonzero. Hence $x \in \mathbb{R} \setminus \{0, 1, 2, ..., 10\}$. This is a notation that means "the set \mathbb{R} (all real numbers), except for the set $\{0, 1, 2, ..., 10\}$ ". It is also correct to write the domain as a bunch of intervals, but it's shorter to write it like this.
- 3. No, because f(x) is not defined at x=1 but g(x) is, even they agree on any other $x\neq 1$.
- 4. For the graphs, visit the following link: https://www.desmos.com/geometry/lschqfmuch
 - (a) $x \ge 0$
 - (b) $x \ge -1$
 - (c) $x \ge 0$
 - (d) $x \ge 0$
 - (e) $x \ge 1$

5.

$$(f \circ g)(x) = f(g(x)) = \frac{x+1}{x+2} + \frac{x+2}{x+1} = \frac{2x^2 + 6x + 5}{(x+2)(x+1)}$$
$$(g \circ f)(x) = g(f(x)) = \frac{x + \frac{1}{x} + 1}{x + \frac{1}{x} + 2} = \frac{x^2 + x + 1}{x^2 + 2x + 1} = \frac{x^2 + x + 1}{(x+1)^2}$$

The domains are $x \neq -1, -2$ and $x \neq -1$, respectively.