

Available online at www.sciencedirect.com

ScienceDirect

Full Length Article

Some applications of $D\alpha$ -closed sets in topological spaces

O.R. Sayed a,*, A.M. Khalil b,*

- ^a Department of Mathematics, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- ^b Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt

ARTICLE INFO

Article history: Received 23 January 2015 Received in revised form 27 July 2015

Accepted 27 July 2015 Available online 18 August 2015

Keywords:

lpha-closed

 $D\alpha$ -closed

 $D\alpha$ -continuous

D α -closed graph

Strongly $D\alpha$ -closed graph

2010 Mathematics subject

classification:

54A05

54C08

54C10 54D10 ABSTRACT

In this paper, a new kind of sets called $D\alpha$ -open sets are introduced and studied in a topological spaces. The class of all $D\alpha$ -open sets is strictly between the class of all α -open sets and g-open sets. Also, as applications we introduce and study $D\alpha$ -continuous, $D\alpha$ -open, and $D\alpha$ -closed functions between topological spaces. Finally, some properties of $D\alpha$ -closed and strongly $D\alpha$ -closed graphs are investigated.

© 2015 Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and preliminaries

Generalized open sets play a very important role in General Topology, and they are now the research topics of many topologies worldwide. Indeed a significant theme in General Topology and Real Analysis is the study of variously modified forms of continuity, separation axioms, etc. by utilizing generalized open sets. One of the most well-known notions and also inspiration source are the notion of α -open [1] sets introduced by Njåstad in 1965 and generalized closed (g-closed) subset of a topological space [2] introduced by Levine in 1970.

E-mail addresses: o_sayed@aun.edu.eg (O.R. Sayed); a.khalil@azhar.edu.eg (A.M. Khalil). http://dx.doi.org/10.1016/j.ejbas.2015.07.005

^{*} Corresponding authors. Tel.: +2088 2242873.

Definition 1.1. Let (X, τ) be a topological space and $A \subseteq X$. Then

- (i) A is α -open [1] if $A \subseteq Int(Cl(Int(A)))$ and α -closed [1] if $Cl(Int(Cl(A))) \subseteq A$.
- (ii) A is generalized closed (briefly g-closed) [2] if Cl(A) ⊆ U whenever A ⊆ U and U is open in X.
- (iii) A is generalized open(briefly g-open) [2] if $X\setminus A$ is g-closed.

The α -closure of a subset A of X [3] is the intersection of all α -closed sets containing A and is denoted by $Cl_{\alpha}(A)$. The α -interior of a subset A of X [3] is the union of all α -open sets contained in A and is denoted by $Int_{\alpha}(A)$. The intersection of all g-closed sets containing A [14] is called the g-closure of A and denoted by $Cl^*(A)$, and the g-interior of A [15] is the union of all g-open sets contained in A and is denoted by $Int^*(A)$.

We need the following notations:

- αO(X) (resp. αC(X)) denotes the family of all α-open sets (resp. α-closed sets) in (X, τ).
- GO(X) (resp. GC(X)) denotes the family of all generalized open sets (resp. generalized closed sets) in (X, τ).
- $\alpha O(X, x) = \{U \mid x \in U \in \alpha O(X, \tau)\}, O(X, x) = \{U \mid x \in U \in \tau\} \text{ and } \alpha C(X, x) = \{U \mid x \in U \in \alpha C(X, \tau)\}.$

Definition 1.2. A function $f: X \to Y$ is said to be:

- (i) α -continuous [16] (resp. g-continuous [17]) if the inverse image of each open set in Y is α -open (resp. g-open) in X
- (ii) α -open [16] (resp. α -closed [16]) if the image of each open (resp. closed) set in X is α -open (resp. α -closed) in Y.
- (iii) g-open [18] (resp. g-closed [18]) if the image of each open (resp. closed) set in X is g-open (resp. g-closed) in Y.

Definition 1.3. Let $f: X \to Y$ be a function:

- (i) The subset $\{(x, f(x)) | x \in X\}$ of the product space $X \times Y$ is called the graph of f [19] and is usually denoted by G(f).
- (ii) a closed graph [19] if its graph G(f) is closed sets in the product space $X \times Y$.
- (iii) a strongly closed graph [20] if for each point $(x, y) \notin G(f)$, there exist open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $(U \times Cl(V)) \cap G(f) = \phi$.
- (iv) a strongly α -closed graph [21] if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \alpha O(X, x)$ and $V \in O(Y, y)$ such that $(U \times Cl(V)) \cap G(f) = \phi$.

Definition 1.4. A topological space (X, τ) is said to be:

- (i) α -T₁ [9] (resp. g-T₁ [22]) if for any distinct pair of points x and y in X, there exist α -open (resp. g-open) set U in X containing x but not y and an α -open (resp. g-open) set V in X containing y but not x.
- (ii) α -T₂ [8] (resp. g-T₂ [22]) if for any distinct pair of points x and y in X, there exist α -open (resp. g-open) sets U and V in X containing x and y, respectively, such that $U \cap V = \phi$.

Lemma 1.5. Let $A \subseteq X$, then

- (i) $X \setminus Cl^*(A) = Int^*(X \setminus A)$.
- (ii) $X \setminus Int^*(A) = Cl^*(X \setminus A)$.

Lemma 1.6. A function $f:(X, \tau) \to (Y, \sigma)$ has a closed graph [19] if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in O(X, x)$ and $V \in O(Y, y)$ such that $f(U) \cap V = \phi$.

Lemma 1.7. The graph G(f) is strongly closed [23] if and only if for each point $(x, y) \notin G(f)$, there exist open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $f(U) \cap Cl(V) = \phi$.

2. $D\alpha$ -closed sets

In this section we introduce $D\alpha$ -closed sets and investigate some of their basic properties.

Definition 2.1. A subset A of a space X is called $D\alpha$ -closed if $Cl^*(Int(Cl^*(A))) \subseteq A$.

The collection of all $D\alpha$ -closed sets in X is denoted by $D\alpha C(X)$.

Lemma 2.2. If there exists an g-closed set F such that $Cl^*(Int(F)) \subseteq A \subseteq F$, then A is $D\alpha$ -closed.

Proof. Since F is g-closed, $Cl^*(F) = F$. Therefore, $Cl^*(Int(Cl^*(A))) \subseteq Cl^*(Int(Cl^*(F))) = Cl^*(Int(F)) \subseteq A$. Hence A is $D\alpha$ -closed.

Remark 2.3. The converse of above lemma is not true as shown in the following example.

Example 2.4. Let (X, τ) be a topological space, where $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $F_X = \{\phi, \{c\}, \{b, c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $D\alpha C(X) = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $D\alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Therefore $\{c\} \in D\alpha C(X)$ and $\{a, c\} \in GC(X)$ but $Cl^*(Int\{a, c\}) = \{a, c\} \not\subset \{c\} \subset \{a, c\}$.

Theorem 2.5. Let (X, τ) be a topological space. Then

- (i) Every α -closed subset of (X, τ) is $D\alpha$ -closed.
- (ii) Every g-closed subset of (X, τ) is D α -closed.

Proof. (i) Since closed set is g-closed, $Cl^*(A) \subseteq Cl(A)$ [14]. Now, suppose A is α -closed in X, then $Cl(Int(Cl(A))) \subseteq A$. Therefore, $Cl^*(Int(Cl^*(A))) \subseteq Cl(Int(Cl(A))) \subseteq A$. Hence A is $D\alpha$ -closed in X

(ii) Suppose A is g-closed. Then $Cl^*(A) = A$ [14]. Therefore, $Int(Cl^*(A)) \subseteq Cl^*(A)$. Then $Cl^*(Int(Cl^*(A))) \subseteq Cl^*(Cl^*(A)) \subseteq Cl^*(A) = A$ [14]. Hence A is $D\alpha$ -closed.

Remark 2.6. The converse of above theorem is not true as shown in the following example.

- (i) $D\alpha$ -closed set need not be α -closed. (see Example 2.7 below)
- (ii) $D\alpha$ -closed set need not be g-closed. (see Example 2.7 below)

Example 2.7. Let (X, τ) be a topological space, where $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then $F_X = \alpha C(X) = \{\phi, \{c\}, X\}, \ \alpha O(X) = \{\phi, \{a, b\}, X\}, \ GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, \ GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \ D\alpha C(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}, \ D\alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$ Therefore $\{a\} \in D\alpha C(X)$, but $\{a\} \notin \alpha C(X)$ and $\{a\} \notin GC(X)$.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -closed set \rightarrow D α -closed set \leftarrow g-closed set

Theorem 2.8. Arbitrary intersection of $D\alpha$ -closed sets is $D\alpha$ -closed.

Proof. Let $\{F_i: i \in \Lambda\}$ be a collection of $D\alpha$ -closed sets in X. Then $Cl^*(Int(Cl^*(F_i))) \subseteq F_i$ for each i. Since $\cap F_i \subseteq F_i$ for each i, $Cl^*(\cap F_i) \subseteq Cl^*(F_i)$ for each i. Hence $Cl^*(\cap F_i) \subseteq \cap Cl^*(F_i)$, $i \in \Lambda$. Therefore $Cl^*(Int(Cl^*(\cap F_i))) \subseteq Cl^*(Int(\cap Cl^*(F_i))) \subseteq Cl^*(\cap Int(Cl^*(F_i))) \subseteq \cap Cl^*(Int(Cl^*(F_i))) \subseteq \cap F_i$. Hence $\cap F_i$ is $D\alpha$ -closed.

Remark 2.9. The union of two $D\alpha$ -closed sets need not to be $D\alpha$ -closed as shown in Example 2.7, where both $\{a\}$ and $\{b\}$ are $D\alpha$ -closed sets but $\{a\} \cup \{b\} = \{a,b\}$ is not $D\alpha$ -closed.

Corollary 2.10. If a subset A is $D\alpha$ -closed and B is α -closed, then A \cap B is $D\alpha$ -closed.

Proof. Follows from Theorem 2.5 (i) and Theorem 2.8.

Corollary 2.11. If a subset A is $D\alpha$ -closed and F is g-closed, then $A \cap F$ is $D\alpha$ -closed.

Proof. Follows from Theorem 2.5 (ii) and Theorem 2.8.

Definition 2.12. Let A be a subset of a space X. The $D\alpha$ -closure of A, denoted by $Cl^D_\alpha(A)$, is the intersection of all $D\alpha$ -closed sets in X containing A. That is $Cl^D_\alpha(A) = \bigcap \{F : A \subseteq F \text{ and } F \in D\alpha C(X)\}$.

Theorem 2.13. Let A be a subset of X. Then A is $D\alpha$ -closed set in X if and only if $Cl_{\alpha}^{D}(A) = A$.

Proof. Suppose A is $D\alpha$ -closed set in X. By Definition 2.12, $Cl_{\alpha}^{D}(A) = A$. Conversely, suppose $Cl_{\alpha}^{D}(A) = A$. By Theorem 2.8 A is $D\alpha$ -closed.

Theorem 2.14. Let A and B be subsets of X. Then the following results hold.

- (i) $A \subseteq Cl^{\mathbb{D}}_{\alpha}(A) \subseteq Cl_{\alpha}(A)$, $Cl^{\mathbb{D}}_{\alpha}(A) \subseteq Cl^{*}(A)$.
- (ii) $Cl^{\mathbb{D}}_{\alpha}(\phi) = \phi$ and $Cl^{\mathbb{D}}_{\alpha}(X) = X$.
- (iii) If $A \subseteq B$, Then $Cl_{\alpha}^{D}(A) \subseteq Cl_{\alpha}^{D}(B)$.
- (iv) $Cl^{\mathbb{D}}_{\alpha}(Cl^{\mathbb{D}}_{\alpha}(A)) = Cl^{\mathbb{D}}_{\alpha}(A)$.
- (v) $Cl^{\mathbb{D}}_{\alpha}(A) \cup Cl^{\mathbb{D}}_{\alpha}(B) \subseteq Cl^{\mathbb{D}}_{\alpha}(A \cup B)$.
- (vi) $Cl^{\mathbb{D}}_{\alpha}(A \cap B) \subseteq Cl^{\mathbb{D}}_{\alpha}(A) \cap Cl^{\mathbb{D}}_{\alpha}(B)$.

Proof. (i) Follows From Theorem 2.5 (i) and (ii), respectively.

- (ii) and (iii) are obvious.
- (iv) If $A \subseteq F$, $F \in D\alpha C(X)$, then from (iii) and Theorem 2.13, $Cl_{\alpha}^{D}(A) \subseteq Cl_{\alpha}^{D}(F) = F$. Again $Cl_{\alpha}^{D}(Cl_{\alpha}^{D}(A)) \subseteq Cl_{\alpha}^{D}(F) = F$. Therefore $Cl_{\alpha}^{D}(Cl_{\alpha}^{D}(A)) \subseteq Cl_{\alpha}^{D}(A)$.
 - (v) and (vi) follows from (iii).

Remark 2.15. The equality in the statements (v) of the above theorem need not be true as seen from Example 2.7, where $A = \{a\}$, $B = \{b\}$, and $A \cup B = \{a, b\}$. Then one can have that, $Cl_{\alpha}^{D}(A) = \{a\}$; $Cl_{\alpha}^{D}(B) = \{b\}$; $Cl_{\alpha}^{D}(A \cup B) = X$; $Cl_{\alpha}^{D}(A) \cup Cl_{\alpha}^{D}(B) = \{a, b\}$. Further more the equality in the statements (iv) of the above theorem need not be true as shown in the following example.

Example 2.16. Let (X, τ) be a topological space, where $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then $F_X = GC(X) = D\alpha C(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$, $GO(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Let $A = \{a\}$, $B = \{b\}$, and $A \cap B = \phi$. Then one can have that, $Cl_{\alpha}^{D}(A) = \{a\}$; $Cl_{\alpha}^{D}(B) = \{a, b\}$; $Cl_{\alpha}^{D}(A \cap B) = \phi$; $Cl_{\alpha}^{D}(A) \cap Cl_{\alpha}^{D}(B) = \{a\}$.

3. $D\alpha$ -open sets

In this section we introduce $D\alpha$ -open sets and investigate some of their basic properties.

Definition 3.1. A subset A of a space X is called an $D\alpha$ -open if $X \setminus A$ is $D\alpha$ -closed. Let $D\alpha O(X)$ denote the collection of all an $D\alpha$ -open sets in X.

Lemma 3.2. Let $A \subseteq X$, then

- (i) $X \setminus Cl^*(X \setminus A) = Int^*(A)$.
- (ii) $X \setminus Int^*(X \setminus A) = Cl^*(A)$.

Proof. Obvious.

Theorem 3.3. A subset A of a space X is $D\alpha$ -open if and only if $A \subseteq Int^*(Cl(Int^*(A)))$.

Proof. Let A be $D\alpha$ -open set. Then $X \setminus A$ is $D\alpha$ -closed and $Cl^*(Int(Cl^*(X \setminus A))) \subseteq X \setminus A$. By Lemma 3.2 $A \subseteq Int^*(Cl(Int^*(A)))$. Conversely, suppose $A \subseteq Int^*(Cl(Int^*(A)))$. Then $X \setminus Int^*(Cl(Int^*(A))) \subseteq X \setminus A$. Hence $(Int^*(Cl(Int^*(X \setminus A)))) \subseteq X \setminus A$. This shows that $X \setminus A$ is $D\alpha$ -closed. Thus A is $D\alpha$ -open.

Lemma 3.4. If there exists g-open set V such that $V \subseteq A \subseteq Int^*$ (Cl(V)), then A is $D\alpha$ -open.

Proof. Since V is g-open, $X \setminus V$ is g-closed and $X \setminus Int^*(Cl(V)) \subseteq X \setminus A \subseteq X \setminus V$. Therefore From Lemma 3.2 $Cl^*(Int(X \setminus V)) \subseteq X \setminus A \subseteq X \setminus V$. From Lemma 2.2 we have $X \setminus A$ is $D\alpha$ -closed. Hence A is $D\alpha$ -open.

Remark 3.5. The converse of Lemma 3.4 need not to be true as seen from Example 2.4, where $\{a,b\} \in D\alpha O(X)$ and $\{b\} \in GO(X)$ but $\{b\} \subset \{a,b\} \not\subset \{b\}$.

Theorem 3.6. Let (X, τ) be a topological space. Then

- (i) Every α -open subset of (X, τ) is D α -open.
- (ii) Every g-open subset of (X, τ) is D α -open.

Proof. From Theorem 2.5, the proof is obvious.

Remark 3.7. The converse of the above theorem is not true as seen from Example 2.7, where $\{b, c\} \in D\alpha O(X)$ but $\{b, c\} \notin \alpha O(X)$ and $\{b, c\} \notin GO(X)$.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -open set \rightarrow D α -open set \leftarrow g-open set

Theorem 3.8. Arbitrary union of $D\alpha$ -open set is $D\alpha$ -open.

Proof. Follows from Theorem 2.8.

Remark 3.9. The intersection of two $D\alpha$ -open sets need not be $D\alpha$ -open as seen from Example 2.7, where both $\{b, c\}$ and $\{a, c\}$ are $D\alpha$ -open sets but $\{b, c\} \cap \{a, c\} = \{c\}$ is not $D\alpha$ -open.

Corollary 3.10. If a subset A is $D\alpha$ -open and B is α -open, then $A \cup B$ is $D\alpha$ -open.

Proof. Follows from Theorem 3.6 (i) and Theorem 3.8.

Corollary 3.11. If a subset A is $D\alpha$ -open and U is g-open, then $A \cup U$ is $D\alpha$ -open.

Proof. Follows from Theorem 3.6 (ii) and Theorem 3.8.

Definition 3.12. Let A be a subset of a space X. The $D\alpha$ -interior of A is denoted by $Int^D_\alpha(A)$, is the union of all an $D\alpha$ -open sets in X contained in A. That is $Int^D_\alpha(A) = \bigcup \{U : U \subseteq A, U \in D\alpha O(X)\}$.

Lemma 3.13. If A is a subset of X, then

- (i) $X \setminus Cl^{\mathbb{D}}_{\alpha}(A) = Int^{\mathbb{D}}_{\alpha}(X \setminus A)$.
- (ii) $X \setminus Int_{\alpha}^{D}(A) = Cl_{\alpha}^{D}(X \setminus A)$.

Proof. Obvious.

Theorem 3.14. Let A be a subset of X. Then A is $D\alpha$ -open if and only if $Int^{\alpha}_{\alpha}(A) = A$.

Proof. Follows from Theorem 2.13 and Lemma 3.13.

Theorem 3.15. Let A and B be subsets of X. Then the following results hold.

- (i) $Int_{\alpha}(A) \subseteq Int_{\alpha}^{D}(A) \subseteq A$, $Int^{*}(A) \subseteq Int_{\alpha}^{D}(A)$.
- (ii) $Int_{\alpha}^{\mathbb{D}}(\phi) = \phi$ and $Int_{\alpha}^{\mathbb{D}}(X) = X$.
- (iii) If $A \subseteq B$, then $Int_{\alpha}^{D}(A) \subseteq Int_{\alpha}^{D}(B)$.
- (iv) $Int_{\alpha}^{D}(Int_{\alpha}^{D}(A)) = Int_{\alpha}^{D}(A)$.
- (v) $Int_{\alpha}^{D}(A) \cup Int_{\alpha}^{D}(B) \subseteq Int_{\alpha}^{D}(A \cup B)$.
- (vi) $\operatorname{Int}_{\alpha}^{\mathbb{D}}(A \cap B) \subseteq \operatorname{Int}_{\alpha}^{\mathbb{D}}(A) \cap \operatorname{Int}_{\alpha}^{\mathbb{D}}(B)$.

Proof. Obvious.

Remark 3.16. The equality in the statements (v) of Theorem 3.15 need not be true as seen from Example 2.7, where $A = \{b, c\}$, $B = \{a, c\}$, and $A \cup B = X$. Then one can have that, $Int_{\alpha}^{\mathbb{D}}(A) = \{b, c\}$; $Int_{\alpha}^{\mathbb{D}}(B) = \{c\}$; $Int_{\alpha}^{\mathbb{D}}(A) \cup Int_{\alpha}^{\mathbb{D}}(B) = \{b, c\}$; $Int_{\alpha}^{\mathbb{D}}(A \cup B) = X$. Furthermore the equality in the statements (iv) of the above theorem need not be true as seen from Example 2.7, where $A = \{b, c\}$, $B = \{a, c\}$, and $A \cap B = \{c\}$. Then one can have that, $Int_{\alpha}^{\mathbb{D}}(A) = \{b, c\}$; $Int_{\alpha}^{\mathbb{D}}(B) = \{a, c\}$; $Int_{\alpha}^{\mathbb{D}}(A \cap B) = \phi$; $Int_{\alpha}^{\mathbb{D}}(A) \cap Int_{\alpha}^{\mathbb{D}}(B) = \{c\}$.

Theorem 3.17. Let $x \in X$. Then $x \in C_{\alpha}^{D}(A)$ if and only if $U \cap A \neq \phi$ for every $D\alpha$ -open set U containing x.

Proof. Let $x \in Cl^D_\alpha(A)$ and there exists $D\alpha$ -open set U containing x such that $U \cap A = \phi$. Then $A \subseteq X \setminus U$ and $X \setminus U$ is $D\alpha$ -closed. Therefore $Cl^D_\alpha(A) \subseteq Cl^D_\alpha(X \setminus U) = X \setminus U$. This implies $x \notin Cl^D_\alpha(A)$, which is a contradiction. Conversely, assume that $U \cap A \neq \phi$ for every $D\alpha$ -open set U containing x and $x \notin Cl^D_\alpha(A)$. Then there exists $D\alpha$ -closed subset F containing A such that $x \notin F$. Hence $x \in X \setminus F$ and $X \setminus F$ is $D\alpha$ -open. Therefore $A \subseteq F$, $(X \setminus F) \cap A = \phi$ This is a contradiction to our assumption.

Lemma 3.18. Let A be any subset of (X, τ) . Then

- (i) $A \cap Int^*(Cl(Int^*(A)))$ is $D\alpha$ -open;
- (ii) $A \cup Cl^*(Int(Cl^*(A)))$ is $D\alpha$ -closed.

Proof.

- (i) $Int^*(Cl(Int^*(A \cap Int^*(Cl(Int^*(A)))))) = Int^*(Cl(Int^*(A) \cap Int^*(Cl(Int^*(A)))))) = Int^*(Cl(Int^*(A)))) = Int^*(Cl(Int^*(A))) = A \cap Int^*(Cl(Int^*(A \cap Int^*(Cl(Int^*(A)))))) = Int^*(Cl(Int^*(A \cap Int^*(Cl(Int^*(A)))))))$. Therefore $A \cap Int^*(Cl(Int^*(A))))$ is $D\alpha$ -open.
- (ii) From (i) we have $X \setminus (A \cup Cl^*(Int(Cl^*(A))) = (X \setminus A)$ $\cap Int^*(Cl(Int^*(X \setminus A)))$ is $D\alpha$ -open that further implies $A \cup Cl^*(Int(Cl^*(A)))$ is $D\alpha$ -closed.

Theorem 3.19. If A is a subset of a topological space X,

- (i) $Int_{\alpha}^{\mathbb{D}}(A) = A \cap Int^*(Cl(Int^*(A)))$.
- (ii) $Cl^{\mathbb{D}}_{\alpha}(A) = A \cup Cl^{*}(Int(Cl^{*}(A))).$

Proof.

(i) Let $B = Int_{\alpha}^{D}(A)$. Clearly B is $D\alpha$ -open and $B \subseteq A$. Since B is $D\alpha$ -open, $B \subseteq Int^{*}(Cl(Int^{*}(B))) \subseteq Int^{*}(Cl(Int^{*}(A)))$. This proves that $B \subseteq A \cap Int^{*}(Cl(Int^{*}(A)))$. By Lemma 3.18,

 $A \cap Int^*(Cl(Int^*(A)))$ is $D\alpha$ -open. By the definition of $Int^D_\alpha(A)$, $A \cap Int^*(Cl(Int^*(A))) \subseteq B$. Then it follows that $B = A \cap Int^*(Cl(Int^*(A)))$. Therefore $Int^D_\alpha(A) = A \cap Int^*(Cl(Int^*(A)))$.

- (ii) By Lemma 3.13 we have $Cl^{\mathbb{D}}_{\alpha}(A) = X \setminus Int^{\mathbb{D}}_{\alpha}(X \setminus A)$,
 - $= X \setminus ((X \setminus A) \cap Int^*(Cl(Int^*(X \setminus A))))$, using (i)
 - $= X \setminus (X \setminus A) \cup (X \setminus Int^*(Cl(Int^*(X \setminus A)))$
 - $=A\cup Cl^*(Int(Cl^*(A))).$

4. $D\alpha$ -continuous functions

In this section we introduce $D\alpha$ -continuous functions and investigate some of their basic properties.

Definition 4.1. A function $f: X \to Y$ is called $D\alpha$ -continuous if the inverse image of each open set in Y is $D\alpha$ -open in X.

Theorem 4.2.

- (i) Every α -continuous function is $D\alpha$ -continuous.
- (ii) Every g-continuous function is $D\alpha$ -continuous.

Proof. It is obvious from Theorem 3.6.

Remark 4.3.

- (i) $D\alpha$ -continuous function need not be α -continuous. (see Example 4.4 (i) below)
- (ii) $D\alpha$ -continuous function need not be g-continuous. (see Example 4.4 (ii) below)

(ii) Let (X,τ) and (Y,σ) be the topological spaces in (i) and $f: X \to Y$ be a function defined by f(a) = x, f(b) = f(c) = z. Since $\{z\}$ is open in Y, $f^{-1}(\{z\}) = \{b,c\} \in D\alpha O(X)$, but $\{b,c\} \notin GO(X)$. Therefore f is $D\alpha$ -continuous but not g-continuous.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -continuity \rightarrow D α -continuity \leftarrow g-continuity

Theorem 4.5. Let $f: X \to Y$ be a function. Then the following are equivalent:

- (i) f is $D\alpha$ -continuous.
- (ii) For each $x \in X$ and each open set $V \subset Y$ containing f(x), there exists $D\alpha$ -open set $W \subset X$ containing x such that $f(W) \subset V$.
- (iii) The inverse image of each closed set in Y is $\mathrm{D}\alpha\text{-closed}$ in X.

- (iv) $f(Cl^{\mathbb{D}}_{\alpha}(A)) \subseteq Cl(f(A))$ for every subset A of X.
- (v) $Cl^{\mathbb{D}}_{\alpha}(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset B of Y.
- (vi) $f^{-1}(Int(B)) \subseteq Int_{\alpha}^{D}(f^{-1}(B))$ for every subset B of Y.

Proof. (i) \Rightarrow (ii) Since $V \subset Y$ containing f(x) is open, then $f^{-1}(V) \in D\alpha O(X)$. Set $W = f^{-1}(V)$ which contains x, therefore $f(W) \subset V$.

(ii) \Rightarrow (i) Let $V \subset Y$ be open, and let $x \in f^{-1}(V)$, then $f(x) \in V$ and thus there exists $W_x \in D\alpha O(X)$ such that $x \in W_x$ and $f(W_x) \subset V$. Then $x \in W_x \subset f^{-1}(V)$, and so $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} W_x$ but $\bigcup_{x \in f^{-1}(V)} W_x \in V$.

 $D\alpha O(X)$ by Theorem 3.8. Hence $f^{-1}(V) \in D\alpha O(X)$, and therefore f is $D\alpha$ -continuous.

(i) \Rightarrow (iii) Let $F \subset Y$ be closed. Then $Y \setminus F$ is open and $f^{-1}(Y \setminus F) \in D\alpha O(X)$, i.e. $X - f^{-1}(F) \in D\alpha O(X)$. Then $f^{-1}(F)$ is $D\alpha$ -closed of X.

(iii) \Rightarrow (iv) Let $A \subseteq X$ and F be a closed set in Y containing f(A). Then by (iii), $f^{-1}(F)$ is $D\alpha$ -closed set containing A. It follows that $Cl_{\alpha}^{D}(A) \subseteq Cl_{\alpha}^{D}(f^{-1}(F)) = f^{-1}(F)$ and hence $f(Cl_{\alpha}^{D}(A)) \subseteq F$. Therefore $f(Cl_{\alpha}^{D}(A)) \subseteq Cl(f(A))$.

(iv) \Rightarrow (v) Let $B \subseteq Y$ and $A = f^{-1}(B)$. Then by assumption, $f(Cl_{\alpha}^{D}(A)) \subseteq Cl(f(A)) \subseteq Cl(B)$. This implies that $Cl_{\alpha}^{D}(A) \subseteq f^{-1}(Cl(B))$. Hence $Cl_{\alpha}^{D}(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$.

 $(v)\Rightarrow (vi)$ Let $B\subseteq Y$. By assumption, $Cl^{\mathbb{D}}_{\alpha}(f^{-1}(Y\setminus B))\subseteq f^{-1}(Cl(Y\setminus B))$. This implies that, $Cl^{\mathbb{D}}_{\alpha}(X\setminus f^{-1}(B))\subseteq f^{-1}(Y\setminus Int(B))$ and hence $X\setminus Int^{\mathbb{D}}_{\alpha}(f^{-1}(B))\subseteq X\setminus f^{-1}(Int(B))$. By taking complement on both sides we get $f^{-1}(Int(B))\subseteq Int^{\mathbb{D}}_{\alpha}(f^{-1}(B))$.

(vi) \Rightarrow (i) Let U be any open set in Y. Then Int(U) = U. By assumption, $f^{-1}(Int(U)) \subseteq Int_{\alpha}^{D}(f^{-1}(U))$ and hence $f^{-1}(U) \subseteq Int_{\alpha}^{D}(f^{-1}(U))$. Then $f^{-1}(U) = Int_{\alpha}^{D}(f^{-1}(U))$. Therefore by Theorem 3.14, $f^{-1}(U)$ is $D\alpha$ -open in X. Thus f is $D\alpha$ -continuous.

Theorem 4.6. Let $f: X \to Y$ be $D\alpha$ -continuous and let $g: Y \to Z$ be continuous. Then $q \circ f: X \to Z$ is $D\alpha$ -continuous.

Proof. Obvious.

Remark 4.7. Composition of two $D\alpha$ -continuous functions need not be $D\alpha$ -continuous as seen from the following example.

Example 4.8. Let $X = \{a, b, c\}$ associated with the topology $\tau = \{\phi, \{b\}, \{a, b\}, X\}$, $Y = \{x, y, z\}$ associated with the topology $\sigma = \{\phi, \{x\}, Y\}$ and $Z = \{p, q, r\}$ associated with the topology $v = \{\phi, \{r\}, Z\}$ and $f : (X, \tau) \to (Y, \sigma)$ by f(a) = y, f(b) = x, f(c) = z. Define $g : (Y, \sigma) \to (Z, v)$ by g(x) = g(y) = p, g(z) = r. One can have that $F_X = \{\phi, \{c\}, \{a, c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $D\alpha C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $D\alpha C(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$, and $F_Y = \{\phi, \{y\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, Y\}$, $D\alpha C(Y) = D\alpha O(Y) = P(X)$. Clearly, f and g are $D\alpha$ -continuous. $\{r\}$ is open in Z. But $(gof)^{-1}(\{r\}) = f^{-1}(g^{-1}(\{r\})) = f^{-1}(\{z\}) = \{c\}$, which is not $D\alpha$ -open in X. Therefore g0 is not $D\alpha$ -continuous.

5. $D\alpha$ -open functions and $D\alpha$ -closed functions

In this section we introduce $D\alpha$ -open functions and $D\alpha$ -closed functions and investigate some of their basic properties.

Definition 5.1. A function $f: X \to Y$ is said to be $D\alpha$ -open (resp. $D\alpha$ -closed) if the image of each open (resp. closed) set in X is $D\alpha$ -open (resp. $D\alpha$ -closed) in Y.

Theorem 5.2.

- (i) Every α -open function is $D\alpha$ -open.
- (ii) Every g-open function is $D\alpha$ -open.

Proof. It is obvious from Theorem 3.6.

Remark 5.3.

- (i) $D\alpha$ -open function need not be α -open. (see Example 5.4 below)
- (ii) $D\alpha$ -open function set need not be g-open. (see Example 5.5 below)

Example 5.4. (i) Let $X = \{x,y,z\}$ associated with the topology $\tau = \{\phi, \{x\}, X\}$ and $Y = \{a,b,c\}$ associated with the topology $\sigma = \{\phi, \{a,b\}, \{c\}, Y\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be a function defined by f(x) = a, f(y) = b and f(z) = c. One can have that $F_Y = \alpha O(Y) = \{\phi, \{a,b\}, \{c\}, Y\}$, $GC(Y) = GO(Y) = D\alpha C(Y) = D\alpha O(Y) = P(X)$. Since $\{x\}$ is open in X, $f(\{x\}) = \{a\} \in D\alpha O(Y)$, but $\{a\} \notin \alpha O(Y)$. Therefore f is $D\alpha$ -open function but not α -open.

Example 5.5. (ii) Let $X = \{x,y,z\}$ associated with the topology $\tau = \{\phi, \{y\}, \{x,y\}, X\}$ and $Y = \{a,b,c\}$ associated with the topology $\sigma = \{\phi, \{a\}, Y\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be a function defined by f(x) = b, f(y) = c and f(z) = a. One can have that $F_Y = \{\phi, \{b,c\}, Y\}$, $GC(Y) = \{\phi, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, Y\}$, $GO(Y) = \{\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, Y\}$, $D\alpha C(Y) = D\alpha O(Y) = P(X)$. Since $\{x,y\}$ is open in X, $f(\{x,y\}) = \{b,c\} \in D\alpha O(Y)$, but $\{b,c\} \notin GO(Y)$. Therefore f is $D\alpha$ -open function but not g-open.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -open function \rightarrow D α -open function \leftarrow *g*-open function

Theorem 5.6. Let $f: X \to Y$ be a function. The following statements are equivalent.

- (i) f is $D\alpha$ -open.
- (ii) For each x ∈ X and each neighborhood U of x, there exists Dα-open set W ⊆ Y containing f(x) such that W ⊆ f(U).

Proof. (i) \Rightarrow (ii) Let $x \in X$ and U is a neighborhood of x, then there exists an open set $V \subseteq X$ such that $x \in V \subseteq U$. Set W = f(V). Since f is $D\alpha$ -open, $f(V) = W \in D\alpha O(Y)$ and so $f(x) \in W \subseteq f(U)$. (ii) \Rightarrow (i) Obvious.

Theorem 5.7. Let $f: X \to Y$ be $D\alpha$ -open (resp. $D\alpha$ -closed) function and $W \subseteq Y$. If $A \subseteq X$ is a closed (resp. open) set containing $f^{-1}(W)$, then there exists $D\alpha$ -closed (resp. $D\alpha$ -open) set $H \subseteq Y$ containing W such that $f^{-1}(H) \subseteq A$.

Proof. Let $H = Y \setminus f(X \setminus A)$. Since $f^{-1}(W) \subseteq A$, we have $f(X \setminus A) \subseteq Y \setminus W$. Since f is $D\alpha$ -open (resp. $D\alpha$ -closed), then H is $D\alpha$ -closed (resp. $D\alpha$ -open) set and $f^{-1}(H) = X \setminus f^{-1}(f(X \setminus A)) \subset X \setminus (X \setminus A) = A$.

Corollary 5.8. If $f: X \to Y$ is $D\alpha$ -open, then $f^{-1}(Cl_{\alpha}^{D}(B)) \subseteq Cl(f^{-1}(B))$ for each set $B \subset Y$.

Proof. Since $Cl(f^{-1}(B))$ is closed in X containing $f^{-1}(B)$ for a set $B \subseteq Y$. By Theorem 5.7, there exists $D\alpha$ -closed set $H \subseteq Y$, $B \subseteq H$ such that $f^{-1}(H) \subseteq Cl(f^{-1}(B))$. Thus, $f^{-1}(Cl_{\alpha}^{D}(B)) \subseteq f^{-1}(Cl_{\alpha}^{D}(H)) \subseteq f^{-1}(H) \subseteq Cl(f^{-1}(B))$.

Theorem 5.9. A function $f: X \to Y$ is $D\alpha$ -open if and only if $f(Int(A)) \subseteq Int_{\alpha}^{\alpha}(f(A))$ for every subset A of X.

Proof. Suppose $f: X \to Y$ is $D\alpha$ -open function and $A \subseteq X$. Then Int(A) is open set in X and f(Int(A)) is $D\alpha$ -open set contained in f(A). Therefore $f(Int(A)) \subseteq Int_{\alpha}^{\mathbb{D}}(f(A))$. Conversely, let be $f(Int(A)) \subseteq Int_{\alpha}^{\mathbb{D}}(f(A))$ for every subset A of X and U is open set in X. Then Int(U) = U, $f(U) \subseteq Int_{\alpha}^{\mathbb{D}}(f(U))$. Hence $f(U) = Int_{\alpha}^{\mathbb{D}}(f(U))$. By Theorem 3.14 f(U) is $D\alpha$ -open.

Theorem 5.10. For any bijective function $f:(X, \tau) \to (Y, \sigma)$ the following statements are equivalent.

- (i) f^{-1} is $D\alpha$ -continuous function.
- (ii) f is $D\alpha$ -open function.
- (iii) f is $D\alpha$ -closed function.

Proof. (i) \Rightarrow (ii) Let U be an open set in X. Then $X \setminus U$ is closed in X. Since f^{-1} is $D\alpha$ -continuous, $(f^{-1})^{-1}(X \setminus U)$ is $D\alpha$ -closed in Y. That is $f(X \setminus U) = Y \setminus f(U)$ is $D\alpha$ -closed in Y. This implies f(U) is $D\alpha$ -open in Y. Hence f is $D\alpha$ -open function.

(ii) \Rightarrow (iii) Let F be a closed set in X. Then X \ F is open in X. Since f is $D\alpha$ -open, $f(X \setminus F)$ is $D\alpha$ -open in Y. That is $f(X \setminus F) = Y \setminus f(F)$ is $D\alpha$ -open in Y. This implies f(F) is $D\alpha$ -closed in Y. Hence f is $D\alpha$ -closed function.

(iii) \Rightarrow (i) Let F be closed set in X. Since f is $D\alpha$ -closed function, f(F) is $D\alpha$ -closed in Y. That is $(f^{-1})^{-1}(F)$ is $D\alpha$ -closed in Y. Hence f^{-1} is $D\alpha$ -continuous function.

Remark 5.11. Composition of two $D\alpha$ -open functions need not be $D\alpha$ -open as seen from the following example.

Example 5.12. Let $X = \{x, y, z\}$ associated with the topology $\tau = \{\phi, \{x, y\}, \{z\}, X\}, Y = \{p, q, r\}$ associated with the topology $\sigma = \{\phi, \{p\}, Y\}$ and $Z = \{a,b,c\}$ associated with the topology, $v = \{\phi, \{b\}, \{a, b\}, Z\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by f(x) = p, f(y) = q, f(z) = r and $g: (Y, \sigma) \to (Z, v)$ by g(p) = b, g(q) = a, g(r) = c. One can have that; $F_Y = \{\phi, \{q, r\}, Y\}, GC(Y) = \{\phi, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, Y\}, GO(Y) = \{\phi, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, Y\}, D\alpha C(Y) = D\alpha O(Y) = P(X)$ and $F_Z = \{\phi, \{c\}, \{a, c\}, Z\}, GC(Z) = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}, D\alpha C(Z) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, Z\}, D\alpha C(Z) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, Z\}.$ Clearly, f and g are $D\alpha$ -open function. $\{z\}$ is open in X. But $gof(\{z\}) = g(f(\{z\})) = g(\{r\}) = \{c\}$ which is not $D\alpha$ -open function.

6. $D\alpha$ -closed graph and strongly $D\alpha$ -closed

In this section we introduce $D\alpha$ -closed graph and strongly $D\alpha$ -closed and investigate some of their basic properties.

Definition 6.1. A function $f: X \to Y$ has $D\alpha$ -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $(U \times Cl^*(V)) \cap G(f) = \phi$.

Remark 6.2. Evidently every closed graph is $D\alpha$ -closed. That the converse is not true is seen from the following example.

Example 6.3. Let $X = \{a, b, c\}$ associated with the topology $\tau = \{\phi, \{a, b\}, X\}$ and $Y = \{x, y, z\}$ associated with the topology $\sigma = \{\phi, \{x\}, \{x, y\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = f(c) = x, f(b) = y. One can have that $F_X = \{\phi, \{c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $D\alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $F_Y = \{\phi, \{z\}, \{y, z\}, Y\}$, $GC(Y) = \{\phi, \{z\}, \{x, z\}, \{y, z\}, Y\}$, $GO(Y) = \{\phi, \{x\}, \{y\}, \{x, y\}, Y\}$. Since $\{a, c\} \in D\alpha O(X, c)$ and $\{y\} \in GO(Y, y)$ but $\{a, c\} \notin O(X)$ and $\{y\} \notin O(Y)$. Therefore G(f) is $D\alpha$ -closed but not closed.

Theorem 6.4. Let $f:(X,\tau)\to (Y,\sigma)$ be a function and

- (i) f is $D\alpha$ -closed graph;
- (ii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $f(U) \cap Cl^*(V) = \phi$.
- (iii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in D\alpha O(Y, y)$ such that $(U \times Cl^D_\alpha(V)) \cap G(f) = \phi$.
- (iv) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in D\alpha O(Y, y)$ such that $f(U) \cap Cl^D_\alpha(V) = \phi$. Then
 - (1) (i)⇔ (ii)
 - (2) (i)⇒ (iii)
 - (3) (ii)⇒ (iv)
 - (4) (i) \Rightarrow (iv)

Proof. (i) \Rightarrow (ii) Suppose f is $D\alpha$ -closed graph. Then for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $(U \times Cl^*(V)) \cap G(f) = \phi$. This implies that for each $f(x) \in f(U)$ and $y \in Cl^*(V)$. Since $y \neq f(x)$, $f(U) \cap Cl^*(V) = \phi$.

(ii) \Rightarrow (i) Let $(x, y) \in (X \times Y) \setminus G(f)$. Then there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $f(U) \cap Cl = {}^*(V) = \phi$. This implies that $f(x) \neq y$ for each $x \in U$ and $y \in Cl^*(V)$. Therefore $(U \times Cl^*(V)) \cap G(f) = \phi$.

(i) \Rightarrow (iii) Suppose f is $D\alpha$ -closed graph. Then for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $(U \times Cl^*(V)) \cap G(f) = \phi$. Since g-open set is $D\alpha$ -open, $Cl^{\alpha}(V) \subseteq Cl^*(V)$. Therefore $(U \times Cl^{\alpha}(V)) \cap G(f) = \phi$.

(ii) \Rightarrow (iv) Let $(x, y) \in (X \times Y) \setminus G(f)$. Then there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $f(U) \cap Cl^*(V) = \phi$. Since $Cl^D_\alpha(V) \subseteq Cl^*(V)$, $f(U) \cap Cl^D_\alpha(V) \subseteq f(U) \cap Cl^*(V) = \phi$.

(i)⇒(iv) From (ii).

Definition 6.5. A topological space (X,τ) is said to be $D\alpha$ - T_1 if for any distinct pair of points x and y in X, there exist $D\alpha$ -open U in X containing x but not y and an $D\alpha$ -open V in X containing y but not x.

Theorem 6.6.

- (i) Every α -T₁ space is $D\alpha$ -T₁.
- (ii) Every g- T_1 space is $D\alpha$ - T_1 .

Proof. It is obvious from Theorem 3.6.

Remark 6.7. The converse of the above theorem is not true as seen from Example 2.7.

Theorem 6.8. Let $f: X \to Y$ be any surjection with G(f) $D\alpha$ -closed. Then Y is g- T_1 .

Proof. Let $y_1, y_2(y_1 \neq y_2) \in Y$. The subjectivity of f gives the existence of an element $x_0 \in X$ such that $f(x_0) = y_2$. Now $(x_0, y_1) \in (X \times Y) \setminus G(f)$. The $D\alpha$ -closeness of G(f) provides $U_1 \in D\alpha O(X, x_0)$, $V_1 \in GO(Y, y_1)$ such that $f(U_1) \cap Cl^*(V_1) = \phi$. Now $x_0 \in U_1 \Rightarrow f(x_0) = y_2 \in f(U_1)$. This and the fact that $f(U_1) \cap Cl^*(V_1) = \phi$ guarantee that $y_2 \notin V_1$. Again from the subjectivity of f gives a $x_1 \in X$ such that $f(x_1) = y_1$. Now $(x_1, y_2) \in (X \times Y) \setminus G(f)$ and the $D\alpha$ -closedness of G(f) provides $U_2 \in D\alpha O(X, x_1)$, $V_2 \in GO(Y, y_2)$ such that $f(U_2) \cap Cl^*(V_2) = \phi$. Now $x_1 \in U_2 \Rightarrow f(x_1) = y_1 \in f(U_2)$ so that $y_1 \notin V_2$. Thus we obtain sets $V_1, V_2 \in GO(Y)$ such that $y_1 \in V_1$ but $y_2 \notin V_1$ while $y_2 \in V_2$ but $y_1 \notin V_2$. Hence Y is g- V_1 .

Corollary 6.9. Let $f: X \to Y$ be any surjection with G(f) $D\alpha$ -closed. Then Y is $D\alpha$ - T_1 .

Proof. Follows From Theorems 6.6 (i) and 6.8.

Theorem 6.10. Let $f: X \to Y$ be any injective with G(f) $D\alpha$ -closed. Then X is $D\alpha$ - T_1 .

Proof. Let $x_1, x_2(x_1 \neq x_2) \in X$. The injectivity of f implies $f(x_1) \neq f(x_2)$ whence one obtains that $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. The $D\alpha$ -closedness of G(f) provides $U_1 \in D\alpha O(X, x_1)$, $V_1 \in GO(Y, f(x_2))$ such that $f(U_1) \cap Cl^*(V_1) = \emptyset$. Therefore $f(x_2) \notin f(U_1)$ and a fortiori $x_2 \notin U_1$. Again $(x_2, f(x_1)) \in (X \times Y) \setminus G(f)$ and $D\alpha$ -closedness of G(f) as before gives $U_2 \in D\alpha O(X, x_2)$, $V_2 \in GO(Y, f(x_1))$ with $f(U_2) \cap Cl^*(V_2) = \emptyset$, which guarantees that $f(x_1) \notin f(U_2)$ and so $x_1 \notin U_2$. Therefore, we obtain sets U_1 and $U_2 \in D\alpha O(X)$ such that $x_1 \in U_1$ but $x_2 \notin U_1$ while $x_2 \in U_2$ but $x_1 \notin U_2$. Hence X is $D\alpha$ - T_1 .

Corollary 6.11. Let $f: X \to Y$ be any bijection with G(f) $D\alpha$ -closed. Then both X and Y are $D\alpha$ - T_1 .

Proof. It readily follows from Corollary 6.9 and Theorem 6.10.

Definition 6.12. A topological space (X, z) is said to be $D\alpha$ - T_2 if for any distinct pair of points x and y in X, there exist $D\alpha$ -open sets U and V in X containing x and y, respectively, such that $U \cap V = \phi$.

Theorem 6.13.

- (i) Every α -T₂ space is $D\alpha$ -T₂.
- (ii) Every g-T₂ space is $D\alpha$ -T₂.

Proof. Obvious.

Remark 6.14. The converse of the above theorem is not true as seen from Example 2.7.

Theorem 6.15. Let $f: X \to Y$ be any surjection with G(f) $D\alpha$ -closed. Then Y is g- T_2 .

Proof. Let $y_1, y_2(y_1 \neq y_2) \in Y$. The subjectivity of f gives a $x_1 \in X$ such that $f(x_1) = y_1$. Now $(x_1, y_2) \in (X \times Y) \setminus G(f)$. The $D\alpha$ -closedness of G(f) provides $U \in D\alpha O(X, x_1)$, $V \in GO(Y, y_2)$ such that $f(U) \cap Cl^*(V) = \phi$. Now $x_1 \in U \Rightarrow f(x_1) = y_1 \in f(U)$. This and the fact that $f(U) \cap Cl^*(V) = \phi$ guarantee that $y_1 \notin Cl^*(V)$. This mean that there exists $W \in GO(Y, y_1)$ such that $W \cap V = \phi$. Hence Y is g- T_2 .

Corollary 6.16. Let $f: X \to Y$ be any surjection with G(f) $D\alpha$ -closed. Then Y is $D\alpha$ -T₂.

Proof. Follows from Theorems 6.13 (ii) and 6.15.

Definition 6.17. A function $f: X \to Y$ has a strongly $D\alpha$ -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in O(Y, y)$ such that $(U \times Cl(V)) \cap G(f) = \emptyset$.

Corollary 6.18. A strongly $D\alpha$ -closed graph is $D\alpha$ -closed. That the converse is not true is seen from Example 6.3, where $\{y\} \in GO(Y, y)$ but $\{y\} \notin O(Y)$. Therefore G(f) is $D\alpha$ -closed but not strongly $D\alpha$ -closed.

Remark 6.19. Evidently every strongly α -closed graph (resp. strongly closed graph) is strongly $D\alpha$ -closed graph. That the converse is not true is seen from the following example.

Example 6.20. Let $X = \{a, b, c\}$ associated with the topology $\tau = \{\phi, \{a, b\}, X\}$ and $Y = \{x, y, z\}$ associated with the topology $\sigma = \{\phi, \{x, y\}, \{z\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = f(c) = x, f(b) = y. One can have that $F_X = \{\phi, \{c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $\alpha O(X) = \{\phi, \{a, b\}, X\}$, $\alpha O(X) = \{\phi, \{a, b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Since $\{a, c\} \in D\alpha O(X, c)$ and $\{z\} \in O(Y, z)$ but $\{a, c\} \notin \alpha O(X)$ (resp. $\{a, c\} \notin O(X)$). Therefore G(f) is strongly $D\alpha$ -closed but not strongly α -closed (resp. strongly closed).

Theorem 6.21. For a function $f:(X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (i) f has strongly $D\alpha$ -closed graph.
- (ii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in O(Y, y)$ such that $f(U) \cap Cl(V) = \phi$.
- (iii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in \alpha O(Y, y)$ such that $(U \times Cl_{\alpha}(V)) \cap G(f) = \phi$.
- (iv) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and $V \in \alpha O(Y, y)$ such that $f(U) \cap Cl_{\alpha}(V) = \phi$.

Proof. Similar to the proof of Theorem 6.4.

Theorem 6.22. If $f: X \to Y$ is a function with a strongly $D\alpha$ -closed graph, then for each $x \in X$, $f(x) = \bigcap \{Cl_{\alpha}(f(U)): U \in D\alpha O(X, x)\}$.

Proof. Suppose the theorem is false. Then there exists a $y \neq f(x)$ such that $y \in \bigcap \{Cl_{\alpha}(f(U)) : U \in D\alpha O(X, x)\}$. This implies that $y \in Cl_{\alpha}(f(U))$ for every $U \in D\alpha O(X, x)$. So $V \cap f(U) \neq \emptyset$ for every $V \in \alpha O(Y, y)$. This, in its turn, indicates that $Cl_{\alpha}(V) \cap f(U) \supset V \supset f(U) \neq \emptyset$, which contradicts the hypothesis that f is a function with $D\alpha$ -closed graph. Hence the theorem holds.

Theorem 6.23. If $f: X \to Y$ is $D\alpha$ -continuous function and Y is T_2 . Then G(f) is strongly $D\alpha$ -closed.

Proof. Let $(x,y) \in (X \times Y) \setminus G(f)$. Since Y is T_2 , there exists a set $V \in O(Y, y)$ such that $f(x) \notin Cl(V)$. But Cl(V) is closed. Now $Y \setminus Cl(V) \in O(Y, f(x))$. By Theorem 4.5 there exists $U \in D\alpha O(X, x)$ such that $f(U) \subseteq Y \setminus Cl(V)$. Consequently, $f(U) \cap Cl(V) = \phi$ and therefore G(f) is strongly $D\alpha$ -closed.

Theorem 6.24. Let $f: X \to Y$ be any surjection with G(f) strongly $D\alpha$ -closed. Then Y is T_1 and α - T_1 .

Proof. Similar to the proof of Theorem 6.8 and T_1 -ness always guarantees α - T_1 -ness. Hence Y is α - T_1 .

Corollary 6.25. Let $f: X \to Y$ be any surjection with G(f) strongly $D\alpha$ -closed. Then Y is $D\alpha$ - T_1 .

Proof. Follows From Theorems 6.6 (i) and 6.24.

Theorem 6.26. Let $f: X \to Y$ be any injective with G(f) strongly $D\alpha$ -closed. Then X is $D\alpha$ - T_1 .

Proof. Similar to the proof of Theorem 6.10.

Corollary 6.27. Let $f: X \to Y$ be any bijection with G(f) strongly $D\alpha$ -closed. Then both X and Y are $D\alpha$ - T_1 .

Proof. It readily follows from Corollary 6.25 and Theorem 6.26.

Theorem 6.28. Let $f: X \to Y$ be any surjection with G(f) strongly $D\alpha$ -closed. Then Y is T_2 and α - T_2 .

Proof. Similar to the proof Theorem 6.15 and T_2 -ness always guarantees α - T_2 -ness. Hence Y is α - T_2 .

Corollary 6.29. Let $f: X \to Y$ be any surjection with G(f) strongly $D\alpha$ -closed. Then Y is $D\alpha$ -T₂.

Proof. Follows From Theorems 6.13 (i) and 6.28.

REFERENCES

- [1] Njåstad O. On some classes of nearly open sets. Pacific J Math 1965;15:961–70.
- [2] Levine N. Generalized closed sets in topology. Rend Circ Mat Palermo 1970;19:89–96.
- [3] Andrijevic D. Some properties of the topology of α -sets. Mat Vesnik 1984:36:1–10.
- [4] Caldas M, Dontchev J. On spaces with hereditarily compact α-topologies. Acta Math Hungar 1999;82:121–9.
- [5] Caldas M, Jafari S. On some low separation axioms in topological spaces. Houston J Math 2003;29:93–104.
- [6] Caldas M, Navalagi G. On weakly α -open functions between topological spaces. Internat J Math Sci 2004;3:39–51
- [7] Jafari S, Noiri T. Some remarks on weakly lpha-continuity. Far East J Math Sci 1998;6:619–25.
- [8] Maheshwari SN, Thakur SS. On α -irresolute mappings. Tamkang J Math 1980;11:209–14.

- [9] Maki H, Devi R, Balachandran K. Generalized α -closed sets in topology. Bull Fukuoka Univ Ed 1993;42:13–21.
- [10] Noiri T. Weakly α -continuous function. Internat J Math Sci 1987;10:483–90.
- [11] Agashe P, Levine N. Adjacent topologies. J Math Tokushima Univ 1973;7:21–35.
- [12] Dunham W. T 1/2-spaces. Kyungpook Math J 1977;17:161–
- [13] Dunham W, Levine N. Further results on generalized closed sets in topology. Kyungpook Math J 1980;20:169–75.
- [14] Dunham W. A new closure operator for non-T₁ topologies. Kyungpook Math J 1982;22:55–60.
- [15] Robert A, Missier SP. On semi*-closed sets. Asian J Engine Maths 2012;4:173–6.
- [16] Mashhour AS, Hasanein IA, EL-Deeb SN. α -continuous and α -open mappings. Acta Math Hungar 1983;41:213–18.

- [17] Balachandran K, Sundaram P, Maki J. On generalized continuous maps in topological spaces. Mem Fac Sci Kochi Univ Math 1991;12:5–13.
- [18] Malghan SR. Generalized closed maps. J Karnatak Univ Sci 1982;27:82–8.
- [19] Long PE. Functions with closed graphs. Amer Math Monthly 1969;76:930–2.
- [20] Herrington LL, Long PE. Characterizations of H-closed spaces. Proc Amer Math Soc 1975;48:469–75.
- [21] Caldas M, Jafari S, Latif RM, Noiri T. Characterizations of function with strongly α -closed graphs. Sci Stud Res Ser Math Inform 2009;19:49–58.
- [22] Caldas M, Jafari S. On g-US spaces. Stud Cercet Stiint Ser Mat Univ Bacau 2005;14:13–20.
- [23] Noiri T. On functions with strongly closed graphs. Acta Math Acad Sci Hungar 1978;32:373–5.