Mémoire M2

Wei ZHOU

7 septembre 2016

1 Introduction

Dans ce mémoire, nous allons étudier les interfaces dans le modèle de percolation dans le réseau \mathbb{Z}^2 avec une méthode dynamique. Plus généralement, nous considérons un paramètre $p \in [0,1]$ et le réseau (\mathbb{Z}^d, E^d) . nous posons $\Omega = \{0,1\}^{E^d}$, $\mathcal{F} \subset \mathcal{P}(\Omega)$ la tribu cylindrique. Nous disons que $\omega = \{\omega(e), e \in E^d\} \in \Omega$ est une configuration pour le réseau \mathbb{Z}^d et que l'arête e est ouverte si $\omega(e) = 1$ et fermée si $\omega(e) = 0$. La probabilité de percolation indépendant de paramètre p est la probabilité produit $P_p = \mathbb{B}_p^{E^d}$, où $\mathbb{B}_p = p\delta_1 + (1-p)\delta_0$ (la loi de Bernoulli de paramètre p).

Chaque configuration correspond à un sous graph de \mathbb{Z}^d si nous considérons uniquement les arêtes ouvertes. Et plus intuitivement, une configuration s'obtient en fermant indépendamment chaque arête du réseau \mathbb{Z}^d avec une probabilité 1-p.

2 Notations générales

Dans cette partie, nous définissons d'abord le processus de la percolation dynamique dans le réseau (\mathbb{Z}^2, E^2) puis nous définissons l'interface d'abord à l'aide de la percolation dynamique et d'un couplage. Pour commencer, nous présentons des notations générales pour la suite du mémoire.

Nous notons $\Lambda(l,h)$: le rectangle $[-l,l] \times [-h,h]$; nous notons aussi les bords T(l,h): les sommets de \mathbb{Z}^2 sur le segment $[-l,l] \times (0,h)$ (soit le côté haut de $\Lambda(l,h)$), nous notons aussi B(l,h) les sommets dans $[-l,l] \times (0,-h)$, que nous appelons le coté bas du rectangle et enfin l'ensemble des sommets dans les deux bords verticaux de la boîte que nous notons V(l,h).

Soit x et y deux sommets dans \mathbb{Z}^2 , nous notons $x \longleftrightarrow y$ s'ils sont reliés par un chemin ouvert, et $x \nleftrightarrow y$, si ce n'est pas le cas; de plus, soit B un sous ensemble du réseau, nous notons $x \overset{B}{\longleftrightarrow} y$ si x et y sont reliés par des arêtes contenant dans B;

Nous rappelons qu'un graphe dual d'une percolation sur le réseau \mathbb{Z}^2 est un réseau sur $\mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$, dont une arête e^* est ouverte ssi l'arête e dans \mathbb{Z}^2 qui l'intersecte est ouverte.

FIGURE 1 – La boîte $\Lambda(l,h)$

FIGURE 2 – un réseau \mathbb{Z}^2 et son dual (pointillée)

3 La percolation dynamique

Nous définissons d'abord le processus la percolation dynamique

$$X: \mathbb{R}^+ \to \{0, 1\}^{E^2}$$

dans un réseau (\mathbb{Z}^2, E^2). Soit $p \in [0,1]$, et soit $e \in E^2$, notons X_t la configurations de E^2 à l'instant t et $X_t(e)$ la configuration d'une arête e à l'instant t. Nous écrivons que $X_t(e) = 1$ si e est ouverte à l'instant t et $X_t(e) = 0$ sinon. Nous associons à e indépendamment des autres arête un processus markovien de sauts à deux états $\{0,1\}$ qui représente le changement de configuration de l'arête. Le taux de saut dépend de la configuration de e:

$$\lambda(X_t, e) = \begin{cases} 1 - p & X_t(e) = 1 \\ p & X_t(e) = 0 \end{cases}.$$

Nous avons une définition alternative suivante : nous associons à l'arête e un processus de Poisson de paramètre 1 $N_t(e)$. Nous notons $T_1(e), T_2(e), \ldots$ les instants de sauts de $N_t(e)$, à chaque $T_i(e)$, nous retirons la configuration de e selon une loi de Bernoulli de paramètre p. Nous voyons bien qu'avec cette définition, la probabilité P_p est l'unique probabilité stationnaire du processus.

Nous pouvons aussi définir $(\tau_i)_{i\geqslant 0}$ la suite des instants de changement de configuration par récurrence dans une boîte finie $\Lambda(l,h)$: soit

$$\tau_0 = 0$$

$$\forall i \in \mathbb{N}, \tau_{i+1} = \inf\{t > \tau_i, \exists e_{i+1} \in \Lambda(l, h), X_t(e) \neq X_{\tau_i}(e)\}$$

et nous appelons la suite $(e_{i+1})_{i\in\mathbb{N}}$ la suite d'arête modifiée.

4 L'interface

Nous définissons l'interface \mathcal{I} à l'aide de la percolation dynamique. Nous définissons d'abord un couplage suivant :

Soit X_t le processus de percolation dynamique de paramètre p dans $\Lambda_{l,h}$ qui satisfait $T \overset{X_0}{\leftrightarrow} B$ et $(\tau_i)_{i\geqslant 0}$ sa suite des instants de changement de configuration, soit Y_t un processus à valeurs dans $\{0,1\}^E$. Nous déterminons Y_t par récurrence sur $i:Y_0=X_0$; soit $i\geqslant 0$, pour tout $s\in [\tau_i,\tau_{i+1}[,Y_s=Y_{\tau_i},\text{ soit }\bar{Y}_i]$ la configuration où nous remplaçons $Y_{\tau_i}(e_{i+1})$ par $Y_{\tau_{i+1}}(e_{i+1})$ dans Y_{τ_i} , nous déterminons $(X_{\tau_{i+1}},Y_{\tau_{i+1}})$ ainsi :

$$(X_{\tau_{i+1}}(e), Y_{\tau_{i+1}}(e)) = \begin{cases} (X_{\tau_{i+1}}(e), X_{\tau_{i+1}}(e)) & e \neq e_{i+1} \\ (X_{\tau_{i+1}}(e_{i+1}), X_{\tau_{i+1}}(e)_{i+1}) & e = e_{i+1}, T \stackrel{\bar{Y}_i}{\leftrightarrow} B \\ (1, 0) & e = e_{i+1}, T \stackrel{\bar{Y}_i}{\leftrightarrow} B \end{cases}.$$

Nous remarquons d'abord qu'une arête e devient différente dans les deux configurations à l'instant τ_i si et seulement si e devient ouverte à τ_i mais cette ouverture induit une connexion entre T et B dans la configuration \bar{Y}_{i-1} ; dans ce cas, l'arête e reste fermée dans la configuration Y_t .

La chaîne de Markov $(X_{\tau_i})_{i\geqslant 0}$ est irréductible et à l'espace d'états fini donc elle admet une probabilité invariante qui est la probabilité de la percolation Bernoulli de paramètre p. La chaîne $(Y_{\tau_i})_{i\geqslant 0}$ est aussi irréductible car toute configuration de $(Y_{\tau_i})_{i\geqslant 0}$ est reliée à la configuration où toutes les arêtes sont fermées. En effet, pour toute arête e dans $\Lambda(l,h)$, et à toute instant de saut $(T_i(e))_{i\geqslant 0}$, on peut choisir de fermer e avec probabilité 1-p qui est strictement positive. Le théorème suivant décrit la probabilité invariante de Y.

Théorème 1. Soit Z_n une chaîne de Markov à valeurs dans un ensemble E fini, irréductible de probabilité invariante π , soit $A \subset E$, nous définissons Z_n^A par sa probabilité de transition :

$$p^{A}(x,y) = \begin{cases} p(x,y) & y \in A, x \neq y \\ 0 & y \notin A \\ 1 - \sum_{y \neq x} p^{A}(x,y) & x = y \end{cases}$$

alors Z^A admet une probabilité invariante qui est $\frac{\mathbf{1}_A(.)\pi(.)}{\pi(A)}$ soit la probabilité invariante de la chaîne conditionnée à rester dans A.

Nous appliquons le théorème à $(Y_{\tau_i})_{i\geqslant 0}$ avec A l'ensemble des configuration qui satisfont $T \leftrightarrow B$. Nous obtenons la probabilité invariante qui est la loi de la percolation Bernoulli de paramètre p conditionnée par l'événement $T \leftrightarrow B$.

Définition 1. Soit $(X_t, Y_t)_{t\geqslant 0}$ un couplage défini précédemment, nous appelons une interface dans $\Lambda(l,h)$ notée $\mathcal{I}_t(l,h)$ l'ensemble aléatoire des arêtes qui sont ouvertes dans X_t et fermé dans Y_t :

$$\mathcal{I}_t(l,h) = \{e \in E : X_t(e) = 1, Y_t(e) = 0\}.$$

5 Condition aux bords

Nous allons étudier l'influence de l sur la loi de l'interface dans la boîte $\Lambda(l,h)$. Nous introduisons la notion de conditions aux bords. Pour instant, nous traitons uniquement le cas où seulement l varie. Nous fixons alors un entier h et nous introduisons l'ensemble $\{top, bot, null\}$. Nous notons $\partial^{in}\Lambda(l,h)$ le bord intérieur de $\Lambda(l,h)$, soit

$$\partial^{in}\Lambda(l,h) = \{x \in \Lambda(l,h), \exists y \notin \Lambda(l,h), \langle x,y \rangle \in E^2\}.$$

Nous posons d'abord la condition aux bords sur les bords horizontaux T et B :

$$\forall t \geqslant 0, \forall x \in T \cup B, \Pi_t^{l,h}(x) = \begin{cases} top & x \in T \\ bot & x \in B \end{cases}$$

Soit $t \ge 0$, pour un sommet x sur le bord vertical V(l,h), nous déterminons $\Pi_t^{l,h}(x)$ à l'aide une boîte plus grande. Plus précisément, soit m > l entier

naturel, nous considérons une boîte $\Lambda(m,h)$ qui contient la boîte $\Lambda(l,h)$, avec une configuration X_t et que pour tout $y \in V(m,h)$, $\Pi_t^{m,h}(y) = null$:

$$\Pi_t^{l,h}(x) = \begin{cases} top & x \stackrel{\Lambda_m \setminus \Lambda_l}{\longleftrightarrow} T \\ bot & x \stackrel{\Lambda_m \setminus \Lambda_l}{\longleftrightarrow} B \\ null & x \stackrel{\Lambda_m \setminus \Lambda_l}{\longleftrightarrow} T \cup B \end{cases},$$

la notation $x \stackrel{\Lambda_m \setminus \Lambda_l}{\longleftrightarrow} T(resp.B)$ signifie que le sommet x est relié à T(resp.B) uniquement par un chemin ouvert dont les arrêtes sont dans l'ensemble $(\Lambda_m \setminus \Lambda_l) \cup \partial \Lambda_l$.

Figure 3 – Exemples d'une condition aux bords

6 Quelques résultats géométriques

Nous allons étudier la probabilité qu'une arrête fixée soit dans l'interface. Dans la suite, nous considérons le régime surcritique, ceci correspond au cas $p > \frac{1}{2}$ en dimension 2. Nous faisons varier seulement la longueur du rectangle, soit $l \to \infty$ et nous voulons montrer que la probabilité $\mathbb{P}(E_0 \in I_t^l)$ converge pour t fixé avec E_0 l'arête entre (0,0) et (0,1).

Intuitivement, nous pouvons deviner que l'influence d'une condition aux bords disparaît quand la taille de la boîte devient très grande. Plus précisément, nous considérons un couplage de processus de percolation dynamique conditionné à la condition $T \leftrightarrow B$ dans deux boîtes de taille l munies de deux conditions aux bords qui diffèrent à un seul sommet v_0 . La proposition suivante décrit la façon dont cette différence au bord induit une différence à l'arête E_0 .

Proposition 1. Soit Λ_l , Λ'_l deux boites munis des processus Y, Y' couplés avec un processus de percolation dynamique X en commun démarrés avec la même configuration initiale et de condition aux bords qui diffèrent au sommet v_0 . Soit t > 0 premier instant où E_0 diffère dans les deux boites, alors $\exists N \in \mathbb{N}$, une suite d'arête $\epsilon_1, \ldots, \epsilon_N$ et des instant $0 < t_1 < t_2 < \cdots < t_N = t$ tels que à t_1 , ϵ_1 devient différente et deux chemins fermés relient ϵ_1^* et le bord contenant v_0 , de plus, $\forall i > 1$, l'arête ϵ_i devient différente à t_i et deux chemins fermés p_i^1, p_i^2 distincts relient ϵ_{i-1}^* et ϵ_i^* en graphe dual.

Démonstration. Sans perte de généralité, nous pouvons supposer que à l'instant 0, toutes les arêtes dans les deux boîtes soient fermées. nous considérons maintenant la première arête e_1 qui devient différente dans les deux boites. Par symétrie, nous pouvons supposer que v_0 soit dans le bord gauche et que e_1 soit fermée dans Λ'_l .

Cette arête devient différente car il existe dans une boite un chemin ouvert entre T et B si elle est ouverte et pas dans l'autre boîte. Il existe alors un chemin ouvert entre cette arête et le sommet v_0 au bord. Sans perte de généralité, nous supposons que $\Pi'_l(v_0) = T$, il existe alors dans Λ_l et Λ'_l un chemin identique qui relie une extrémité de e_0 et B. nous considérons maintenant le cluster ouvert de ce chemin dans la boite Λ'_l , il n'est pas connecté à B par la condition $T \leftrightarrow B$ dans Λ'_l , de plus, il n'est pas connecté à T car s'il l'était, $T \longleftrightarrow B$ dans la boîte Λ_l où e_0 est ouverte. Il existe donc dans le graphe dual un contour fermé C_1 qui sépare ce cluster de T et de B. L'arête e_1^* sépare donc ce contour en deux parties disjointes (voir Figure 4).

FIGURE 4 – La configuration dans les deux boites quand e_1 devient différente et le contour C_1 en rouge

nous considérons maintenant une arête e_i qui devient différente à cause d'une autre arête e_j , j < i qui est déjà différente. Par symétrie, nous supposons que

 e_j est ouverte dans Λ_l et fermée dans Λ_l' , e_i est fermée dans Λ_l et ouverte dans Λ_l' . Comme pour la première arête e_0 , il y a un chemin ouvert qui relie e_i et e_j . Sans perte de généralité, nous supposons que e_j est reliée à T dans les deux boîtes et e_i est reliée à B. Quitte à fermer toutes les arêtes $e_k, k \neq i, j$, nous pouvons considérer le cluster ouvert de ce chemin dans les deux boîtes arrêté à e_j et e_i . Ce cluster n'est pas connecté à B dans Λ_l car e_j est ouverte, il n'est pas connecté à T dans Λ_l' car e_i est ouverte. nous pouvons donc trouver un contour fermé C_i dans le graphe dual qui sépare ce cluster de T, B qui traverse e_i et e_j . Donc e_i et e_j sépare C_i en deux chemins fermés disjoints.

FIGURE 5 – La configuration dans les deux boites quand e_i devient différente avec le contour C_i en rouge

Enfin, pour obtenir la suite dans l'énoncé, nous partons de l'instant t pour trouver l'arête qui a causé la différence à E_0 , ensuite nous répétons ce procédure à l'instant où cette arête est devenue différente jusqu'à arriver au bord. Comme chaque ouverture ou fermeture d'une arête est donnée par une horloge exponentielle, il y a presque sûrement un nombre fini d'arêtes qui sont devenues différentes avant t. nous pouvons donc trouver une suite finie d'arêtes f_0, f_1, \ldots, f_N avec $f_N = E_0$ et des instants $t_1 < \cdots < t_N = t$ qui vérifient l'énoncé.

nous estimons maintenant la probabilité pour qu'une arête deviennent différente à cause d'une autre arête ou directement à cause du bord.

Définition 2. Soit Λ_l une boîte de longueur l, un cut C est un ensemble d'arête fermé dont le dual contient un chemin fermé de gauche à droite de Λ_l . Un cut minimal est un cut dont l'ouverture d'un sous-ensemble produit un chemin ouvert de T à B.

nous voyons bien que l'existence d'un cut dans une boite Λ_l est équivalent à $T \nleftrightarrow B$.

Corollaire 1. Avec les notation précédente, $\forall i > 1$, à l'instant t_i , il existe un cut C_i et un chemin fermé c_i^* dans le graphe dual disjoint de C_i qui vérifie les conditions suivantes :

 $\begin{array}{ll} - \ c_i^* \subset (p_i^1 \cup p_i^2) \ ; \\ - \ |c_i^*| \geqslant \frac{1}{2} |p_i^1 \cup p_i^2| \ . \end{array}$

 $D\acute{e}monstration$. nous considérons le contour fermé formé par p_i^1 et p_i^2 , la condition $T \nleftrightarrow B$ impose qu'il existe un cut K_i qui contient ϵ_i dans la configuration où elle est fermée. Quitte à ouvrir les arêtes de K_i qui ne sont pas pivotes, nous pouvons supposer K_i minimal. nous considérons le dual de K_i , qui est un chemin fermé simple de gauche à droite. Nous pouvons numéroter les arêtes de K_i de la façon suivante :

- nous posons $\epsilon_i^* = k_0$;
- si ϵ_i^* est horizontale, nous posons k_{-1} l'arête qui partage le sommet gauche de ϵ_i^* et k_1 l'arête qui partage le sommet droite. S'il ϵ_i^* est verticale, nous posons k_{-1} l'arête en bas et k_1 celle en haut.
- Nous nous éloignons de ϵ_i , jusqu'à avoir numéroté toutes les arêtes. Dans la direction négative, nous diminuons l'indice de 1 à chaque pas et nous augmentons de 1 par pas dans la direction positive.

Nous considérons maintenant l'arête minimale et l'arête maximale de l'ensemble $K_i \cap (p_i^1 \cup p_i^2)$ que nous notons k_{min} et k_{max} . Les deux arêtes k_{min} et k_{max} coupe K_i en 3 parties disjointes : C_i^g un chemin entre le bord gauche et k_{min} ; C_i^d un chemin entre le bord droite et k_{max} ; l'union d'un chemin entre k_{min} et k_{max} et ces deux arêtes. De plus, les deux sommets qui séparent ces trois parties coupent le contour $p_i^1 \cup p_i^2$ en deux chemins disjoints c_i^1 et c_i^2 . Quitte à échanger les numéros, nous supposons que $|c_i^1| \ge |c_i^2|$.

FIGURE 6 – construction d'un chemin fermé disjoint d'un cut

Enfin nous posons $C_i^* = C_i^g \cup C_i^d \cup c_i^2$ un chemin fermé du bord gauche au bord droite dans le graphe dual et $c_i^* = c_i^1$, nous posons C_i le dual de C_i^* qui

est un cut. Or $|c_i^1| \ge |c_i^2|$, nous obtenons $|c_i^*| \ge \frac{1}{2}|p_i^1 \cup p_i^2|$. Par construction, C_i et c_i^* sont disjoints.

7 Quelques inégalités préliminaires

nous allons énoncer quelques inégalités utiles pour montrer la convergence en loi de l'interface quand la taille de la boîte tend vers infini. Nous commençons par une inégalité de type BK adaptée au problème. Nous commençons par généraliser la notion de l'occurrence disjointe.

Définition 3. Soit Λ_l une boîte de longueur l, soit A l'événement $x \longleftrightarrow y$ à l'instant s, B l'événement $u \longleftrightarrow v$ à l'instant t, soit $K(\omega) = \{e : e = 1\}$, nous définissons l'occurrence disjointe de A et B noté par $A \circ B$ par :

- $-si\ s = t,\ A \circ B = \{\omega : \exists \omega_1 \in A, \exists \omega_2 \in B, K(\omega_1) \cap K(\omega_2) = \emptyset, K(\omega_1) \cup K(\omega_2) \subset K(\omega)\};$
- $-sis < t, A \circ B = \{\omega : \exists \omega_1 \in A, \exists \omega_2 \in B, K(\omega_1) \cup K(\omega_2) \subset K(\omega), \forall e \in (\omega_1) \cap K(\omega_2), \exists r \in [s, t], e(r) = 1\}.$

Nous énonçons l'inégalité de BK pour la percolation dynamique :

Proposition 2. Soit Λ_l une boîte de longueur l, $0 < s \le t$, soit A l'événement $x \longleftrightarrow y$ à l'instant s, B l'événement $u \longleftrightarrow v$ à l'instant t, alors $P(A \circ B) \le P(A)P(B)$ quand p est assez proche de 1.

Démonstration. Pour le premier cas, c'est l'inégalité de BK classique. Nous traitons uniquement le deuxième cas où les instants sont différents. Soit $\Gamma = \{f: [s,t] \to \{0,1\} \text{ càdlàg}\}^{|\Lambda_l|}$. Nous introduisons deux espaces de probabilité identiques $S_1 = (\Gamma_1, \mathcal{F}_1, P_1), S_2 = (\Gamma_2, \mathcal{F}_2, P_2)$, nous définissons S l'espace produit de S_1, S_2 . Nous écrivons $x \times y$ un point de $\Gamma_1 \times \Gamma_2$. Nous notons $A' = A \times \Gamma_2, B'_k = \{x \times y: (y_1, \dots, y_k, x_{k+1}, \dots, x_{|\Lambda_l|}) \in B\}$. Nous notons P_{12} la probabilité produit de P_1, P_2 . Nous avons bien que $P(A \circ B) = P_{12}(A' \circ B'_0)$ et $P_{12}(A' \circ B'_{|\Lambda_l|}) = P(A)P(B)$. Nous montrons maintenant :

$$\forall k > 0, P_{12}(A' \circ B'_{k-1}) \leqslant P_{12}(A' \circ B'_k)$$

nous considérons $x \times y \in A' \circ B'_{k-1}$, donc $x \in A$ et $(y_1, \dots, y_{k-1}, x_k, \dots, x_{|\Lambda_l|}) \in B$.

nous considérons d'abord le cas où e_k n'est pas pivot pour B. Nous vérifions facilement $x \times y \in A' \circ B'_k$.

Nous considérons maintenant l'arête e_k est pivot pour A et B. Nous avons donc $x_k(s) = 1, x_k(t) = 1, \exists r \in [s, t], x_k(r) = 0$. Nous posons

$$x' = (x_1, \dots, x_{k-1}, \bar{x}_k, x_{k+1}, \dots, x_{|\Lambda_l|})$$
$$y' = (y_1, \dots, y_{k-1}, x'_k, y_{k+1}, \dots, y_{|\Lambda_l|})$$

où x_k' une copie indépendante de x_k . $x \times y' \in A' \circ B_k'$ et \bar{x}_k vérifie $\bar{x}_k(s) = 1$. nous avons donc $P_{12}(x \times y \in A' \circ B_k'; e_k \text{ pivot } A, B) = pP_{12}(x \times y \in A' \circ B_{k-1}'; e_k \text{ pivot } A, B)$.

Il reste le cas e_k pivot pour B mais pas pour A. Nous avons maintenant $x_k(t) = 1$, nous posons

$$x' = (x_1, \dots, x_{k-1}, f_k, x_{k+1}, \dots, x_{|\Lambda_l|})$$
$$y' = (y_1, \dots, y_{k-1}, x'_k, y_{k+1}, \dots, y_{|\Lambda_l|})$$

où $f_k:[s,t]\to\{0,1\}$ une fonction càdlàg et x_k' une copie indépendante de x_k . Nous avons $x'\times y'\in A'\circ B_k'$, et $P_{12}(x\times y\in A'\circ B_k';e_k$ pivot $B)=\frac{1}{p}P_{12}(x\times y\in A'\circ B_{k-1}';e_k$ pivot B).

Nous montrons maintenant $P(e_k \text{ pivot } A, B) \leq P(e_k \text{ pivot } B)$ quand p proche de 1. En effet,

$$P(e_k \text{ pivot } A, B) \le P(x_k(s) = 1, x_k(t) = 1, \exists r \in [s, t], x_k(r) = 0)$$

 $\le 1 - \exp(-(1 - p)(t - s))$

$$P(e_k \text{ pivot } B) \geqslant P(e_k \text{ ne change pas d'état}) \geqslant \exp(-(t-s))$$

Pour p assez proche de 1, nous avons l'inégalité demandée. Nous avons donc

$$P_{12}(A' \circ B'_{k-1}) = P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } A, B) + P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } B)$$

$$+ P_{12}(A' \circ B'_{k-1}; e_k \text{ non pivot })$$

$$\leq p P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } A, B) + \frac{1}{p} P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } B)$$

$$+ P_{12}(A' \circ B'_{k-1}; e_k \text{ non pivot })$$

$$\leq P_{12}(A' \circ B'_{k}; e_k \text{ pivot } A, B) + P_{12}(A' \circ B'_{k}; e_k \text{ pivot } B)$$

$$+ P_{12}(A' \circ B'_{k}; e_k \text{ non pivot })$$

$$\leq P_{12}(A' \circ B'_{k}; e_k \text{ non pivot })$$

$$\leq P_{12}(A' \circ B'_{k}; e_k \text{ non pivot })$$

Avec une récurrence sur k, nous avons l'inégalité demandée dans la proposition.

Nous avons déjà qu'un chemin fermé admet la propriété de décroissance exponentielle en fonction de son cardinal dans la phase surcritique, nous montrons maintenant une propriété similaire pour la percolation dynamique sur son comportement temporel :

Proposition 3. Soit $p > \frac{1}{2}$, c un chemin fermé à l'instant s de cardinal m, soit $P_{c,c'}$ la probabilité qu'il ne soit pas disjoint d'un chemin c' à l'instant t > s, nous avons $P_{c,c'} \leq me^{-\gamma(t-s)}$ avec γ une constante indépendante de c et de c'.

Démonstration. nous considérons une arête (x,y) fermé et une modification locale M pour l'ouvrir suivante : nous fermons deux arêtes perpendiculaires de même côté qui contiennent respectivement un sommet x,y et l'arête qui relie ces deux arêtes ; ensuite nous ouvrons l'arête (x,y). Chaque étape de la modification est déterminée par une horloge exponentielle et elle respecte la condition de $T \leftrightarrow B$. Entre [0,1], cette modification a une probabilité positive r pour se réaliser. Nous en déduisons qu'il existe une constante γ pour qu'entre [s,t], la probabilité que cette modification ne se réalise pas est inférieur à $e^{-\gamma(t-s)}$.

Nous considérons maintenant deux arêtes e, e' voisines, nous pouvons choisir les arêtes que nous modifions pour que e, e' soient modifiées indépendamment. En effet, si les e, e' sont colinéaires alors nous effectuons les modifications à différents côtés; si e, e' sont perpendiculaires, alors nous effectuons la modification à l'extérieur de l'angle formé par e, e', voir figure 7.

Figure 7 – deux arêtes voisines et les arêtes à modifier en rouge

Nous avons donc

$$P(c \coprod c') \geqslant P(\forall e \in c, M \text{ se réalise sur } e)$$

 $\geqslant (1 - e^{-\gamma(t-s)})^m \geqslant 1 - me^{-\gamma(t-s)}$

Nous introduisons la notion de space-time chemin, en prolongeant la connexion dans le temps, c'est-à-dire si une arête e=(x,y) reste ouverte (resp. fermée) entre s et t alors $(x,s)\longleftrightarrow (y,t)$ par un space-time chemin ouvert (resp.fermé). Nous montrons aussi une décroissance exponentielle avec les space-time chemin.

Proposition 4. Soit $n \in \mathbb{N}$, t > 0, $p > \frac{1}{2}$, soit A(n,t) l'événement $(O,0) \longleftrightarrow (n\mathbf{e}_1,t)$ par un space-time chemin fermé ou $\mathbf{e}_1 = (1,0)$, alors $\exists \gamma(p,t)$, une constante qui dépend de p,t tel que $P(A(n,t)) \sim e^{-\gamma(p,t)n}$.

Démonstration. Nous montrons cette équivalence par le lemme sous-additif. En fait,

$$P((O,0)\longleftrightarrow ((n+m)\mathbf{e}_1,s+t))\geqslant P((O,0)\longleftrightarrow (n\mathbf{e}_1,s))P((n\mathbf{e}_1,s)\longleftrightarrow ((m+n)\mathbf{e}_1,s+t))$$

$$\leqslant P((O,0)\longleftrightarrow (n\mathbf{e}_1,s))P((O,0)\longleftrightarrow (m\mathbf{e}_1,t))$$

Car nous avons l'invariance par translation. Nous concluons avec le lemme sous additif. \Box

8 La probabilité d'une influence du bord

Nous montrons maintenant que la probabilité d'avoir une influence du bord sur une arête à l'intérieur de la boîte.

Théorème 2. Soit $p \ge \frac{1}{2}$, \bar{e} l'arête au centre de la boîte Λ_l , Λ'_l décrit dans la proposition 1, il existe une constante $\lambda > 0$ tel que $P(Y(\bar{e}) \ne Y'(\bar{e})) \le e^{-\lambda l}P(T \leftrightarrow B \text{ entre } [0,t])$.

 $D\acute{e}monstration$. Nous utilisons les notations de la proposition 1 et son corollaire. D'après la proposition 1, nous savons qu'il existe une suite d'arêtes ϵ_1, ϵ_n qui sont reliées l'une après l'autre à différentes instants. Nous notons x_i, y_i les extrémités de c_i^* chemin fermé dans le graphe dual et de C_i le cut, nous notons aussi k_i le cardinal de $p_i^1 \cup p_i^2$. Nous séparons la suite en différentes sous suites selon l'indépendance, plus précisément, si c_j^* et c_{j+1}^* est de l'occurrence disjointe, alors nous coupons la suite à l'indice j. Ainsi, nous obtenons les indices j_1, \ldots, j_r telles que $\forall 1 \leqslant u \leqslant r, c_{j_u}^*$ et $c_{j_{u+1}}^*$ sont disjoints, $\forall j_k \leqslant v \leqslant j_{k+1}, c_k^*$ et c_{k+1}^* ne sont pas disjoints.

$$P(Y(\bar{e}) \neq Y'(\bar{e})) = P(\exists \epsilon_1, \dots, \epsilon_n, \forall i, \exists p_i^1, p_i^2, \epsilon_{i-1} \stackrel{p_i^1, p_i^2}{\longleftrightarrow} \epsilon_i)$$

$$\leqslant P(\exists x_1, \dots, x_n, y_1, \dots, y_n c_1^*, \dots, c_n^*, C_1, \dots, C_n)$$

$$\leqslant \sum_{j_1, \dots, j_r} \prod_{1 \leqslant k \leqslant r} P \begin{pmatrix} \exists x_{j_{k-1}+1}, \dots, x_{j_k}, \\ y_{j_{k-1}+1}, \dots, y_{j_k}, \\ c_{j_{k-1}+1}, \dots, c_{j_k}^*, \\ C_{j_{k-1}+1}, \dots, C_{j_k} \text{ cut}, \\ \forall j_{k-1}+1 \leqslant m \leqslant j_k, x_m \stackrel{c_m^*}{\longleftrightarrow} y_m, c_m^* \circ C_m \end{pmatrix}$$

Nous utilisons la proposition 4 pour majorer chaque terme du produit. Or les $\forall j_{k-1}+1\leqslant c_m^*\leqslant j_k$, les c_m^* ne sont pas d'occurrence disjointe, nous avons un space-time chemin σ_k qui relie $x_{j_{k-1}+1}$ et y_{j_k} . Donc elle est bornée par

$$|\sigma_k|^4 e^{-\gamma(p,t_{j_k}-t_{j_{k-1}+1})|\sigma_k|} P(\exists C_{j_{k-1}+1},\dots,C_{j_k} \text{ cut})$$

car $x_{j_{k-1}+1}$ et y_{j_k} sont dans un carré de taille inférieure à $|\sigma_k|$. Or $\exists \delta > 0$ tel que $\forall x > 1, x^4 e^{-x} \leq e^{-\delta x}$, nous avons

$$|\sigma_k|^4 e^{-\gamma(p,t_{j_k}-t_{j_{k-1}+1})|\sigma_k|} \le |\sigma_k|^4 e^{-\gamma(p,t)|\sigma_k|} \le e^{-\delta\gamma(p,t)|\sigma_k|}$$

Nous partons de \bar{e} , $x_{j_{n-1}+1}$ est de distance inférieure à $2|\sigma_r|$ de \bar{e} , nous avons donc

$$\sum_{1=j_1<\dots< j_r=n} \prod_{1\leqslant k\leqslant r} e^{-\delta\gamma(p,t)|\sigma_k|} P(\exists C_{j_{k-1}+1},\dots,C_{j_k} \text{ cut})$$

$$\leqslant P(\exists C_1,\dots,C_n \text{ cut}) \sum_{1=j_1<\dots< j_{r-1}} 4|\sigma_r|^2 e^{-\delta\gamma(p,t)|\sigma_r|} \prod_{1\leqslant k\leqslant r-1} e^{-\delta\gamma(p,t)|\sigma_k|}$$

$$\leqslant P(\exists C_1,\dots,C_n \text{ cut}) \sum_{1=j_1<\dots< j_{r-1}} 4e^{-\delta^2\gamma(p,t)|\sigma_r|} \prod_{1\leqslant k\leqslant r-1} e^{-\delta\gamma(p,t)|\sigma_k|}$$

$$\leqslant 4^r e^{-\delta^2\gamma(p,t)\sum_1^r |\sigma_k|} P(\exists C_1,\dots,C_n \text{ cut})$$

Enfin, r est borné par une variable aléatoire de loi de Poisson de paramètre $l^2(1-p)t$, nous avons le résultat.