TRAmHap

A novel deep-learning framework, termed **TRAmaHap**, that predict transcriptional activity using characteristics of DNA methylation haplotypes in proximal promoters and enhancers as far as 25 kb away from TSS.

Prerequisites

Python 3.8.8 or greater:

- 1. <u>pytorch</u> v1.9.1+cu102
- 2. <u>numpy</u> v1.21.5
- 3. pandas v 1.3.5
- 4. matplotlib v3.5.1

Workflow

Inputs

TRAmhap has two types of input, trainning input & prediting input.

Trainning Input

For model trainning, all the trainning data should be preprocessed as .npy files. As all the data prepared, one can use COMMAND to train the model.

```
The configs for the command are shown as below:

-S: Choose a sample as valid dataset.

-I: Data Folder with processed data.

-O: Output Folder for saving result.

-M: Model Folder for saving model parameters.

-E: Number of epoch for trainning (default=90).

-K: Window size of inpur gene (default="all").

-T: Statistics to be used (default="all").
```

Predicting Input

For making predictions, the data should be preprocessed as .npy files. As the predicting data prepared, one can use COMMAND to make prediction.

```
The configs for the command are shown as below:
-I: Data path to be predict..
-O: Output Folder for saving result.
-M: Model parameters to be used.
-K: Window size of inpur gene (default="all").
-T: Statistics to be used (default="all").
```

Example of usage:

Datasets

To demenstrate the usage of TRAmHap, we have provided a mouse heart datasets, which can be downloaded from

TestDataSets.

Tissue	Name	Description	GEO Accession
heart	ENCBS366XOW	Heart from 69 embryonic 10.5 day mice	GSM2701082
heart	ENCBS490ZWZ	Heart from embryonic 13.5 day mice	GSM2191246
heart	ENCBS004ZLN	Heart, Mus musculus	GSM2191412
heart	ENCBS909LOF	Heart from 62 embryonic 15.5 day mice	GSM2191436
heart	ENCBS955JPC	Heart pooled from embyonic 16.5 day mice	GSM2191004
heart	ENCBS557AAA	Heart from pooled postnatal 0 day mice	GSM2191652
heart	ENCBS225RIF	Heart from 109 embyronic 11.5 day mice	GSM2192039

Run prediction

```
#Trainning
python3 ~/TRAmHap/RunModel/run_TRAmHap_Train.py -S ENCBS004ZLN \
-I ~/TRAmHap/TestDatasets/trainning/demo_data \
-O ~/TRAmHap/TestDatasets/trainning/file_fig \
-M ~/TRAmHap/demo_model -T 0

#Predicting
python3 ~/TRAmHap/RunModel/run_TRAmHap_Predict.py \
-I ~/TRAmHap/TestDatasets/demo_testdata/x_ENCBS004ZLN.npy \
-O ~/TRAmHap/demo_file_fig \
-M ~/TRAmHap/demo_model/model_ENCBS004ZLN.pkl -T 0
```

The predicting output file is .csv file with 4 columns, including index , $P_H3K27ac$, $P_H3K4me3$, $P_log2(TPM+1)$.

(The above scatterplot is from ggplot)