Abstract Algebra I David Cardozo

Nombre del curso: Abstract Algebra I

CÓDIGO DEL CURSO: MATE2101

UNIDAD ACADÉMICA: Departamento de Matemáticas

PERIODO ACADÉMICO: 201510 HORARIO: Ma y Vi, 2:00 a 3:50

Nombre Profesor(a) Principal: Mehdi Garrousian

HORARIO Y LUGAR DE ATENCIÓN: Mo y 17:00 a 18:00, Office H-409

1 Organization of the course

• 5 Homework 15 /

- Quizzes 10 /
- Exam
- \bullet Parciales 35 %

We will cover Chapter 1-9 skiping 6, which will include

2 Introduction

We begin with section 0.3, let us consider the following quotient group, let n be a fixed integer $\frac{\mathbb{Z}}{n\mathbb{Z}}$ which is described better as:

• $a \iff n|(a-b)$ in better notation $a \equiv b \mod n$

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = \{\bar{0}...n - 1\}$$

Prove:

$$\bar{a} + \bar{b} = a + b$$
 $\bar{a}\bar{b} = \bar{a}\bar{b}$

Check that this is well defined. The strategy is to use that if $\bar{a}=\bar{a}$ and $\bar{b}=\bar{b}'$ and it should imply that $\bar{ab}=a'\bar{b}'$

Example 1.

$$\bar{2}x = \bar{1} \mod 6$$

 $\bar{2}x = \bar{1} \mod 5$

Observe that we can use a force-brute approach to solve each equation, and we see that the first one is not solvable, meanwhile the second is by $\bar{3}$. we now denote

$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^x = \{ \text{ Elements with a multiplicative inverse} \}$$

for example

$$\bar{2} \in (\frac{\mathbb{Z}}{n\mathbb{Z}})^x \text{for } n = 5$$

Theorem 1. The above group is given by $\{\bar{a} \in (\frac{\mathbb{Z}}{n\mathbb{Z}})^x : (a,n)=1\}$

Proof. Observe
$$(a,b) = \min \{ax + by > 0 : x,y \in \mathbb{Z}\}$$
 if we supoose $(a,n) = 1 \implies \exists x,y \in \mathbb{Z}$

Example 2. Compute the remainder of 37^{1000} in division by 29. Let us observe then $\left|\frac{\mathbb{Z}}{n\mathbb{Z}}\right| = \phi(n)$, and the properties of ϕ to calculate we use the prime decomposition. to solve the above problem we use Fermat little theorem.

$$a^{p-1} \equiv 1 \mod p$$

.

3 Basic Axioms

Definition 1. A binary opertion * on a set G is a function:

$$*: G \times G \to G$$

, *(a,b) = a*b which if it has the following properties:

- ullet * is associative, i.e
- * is Abelian or commutative, i.e

Example 3. Observe that the following sets are group (R, +), (R, \cdot) . The dot product fails since it is not an operation.

Definition 2. A group is an ordered pair (G,*) set with a binary operation such that the following properties hold:

- $\bullet \ * \ is \ associative$
- $\exists e \in G \forall g \in Gg * e = g = e * g$
- $\forall a \in G \exists b \in G \ s.t \ a * b = b * a = e$

G is abelian if * is abelian.

Example 4. $(\mathbb{R},+), (\mathbb{C}^x,\cdot), (M_{\mathbb{R}}(2,2),\cdot)$ is not associative, $GL_n(\mathbb{R}), (\frac{\mathbb{Z}}{n\mathbb{Z}},+)$

So it is clear that it depends on the ground set and the operation.

Example 5. If (A,*) and (B,\diamond) are groups then $A \times B$ has a natural group structure. Note: Prove that the operations hold the properties.

Theorem 2. If G is a group under *, then:

- the identity is unique
- a^{-1} is unique for every a
- $(a^{-1})^{-1} = a$
- $(a*b)^{-1} = a^{-1}*b^{-1}$
- for any $a_1, a_2, \ldots, a_n \in G$, $a_1 * \ldots a_n$ is well-defined

Proof. Assume we have e and e' as identity, so that e' * e = e' and because e' is an identity e' = e' * e = e. Note: Write number 2. Let b, b' be inverses of a, b = be = b(ab'), then by associativity (ba)b' = eb' = b'. Note: For five use induction

Remark: Mathematics on a different planet

Proposition 1. Let G be a group and $a, b \in G$. The equations ax = b and ya = b has unique solutions.

Proof. Prove it! you will need left and right cancellation. \Box

Example 6. No cancelation $\bar{2}\bar{3} = \bar{0} \mod 6$, observe that $\frac{Z}{6Z}$ is not a group

Definition 3. The order of $x \in G$ is the least positive integer n such that $x^n = e$ and is denoted by (x). if there's no such n then $(x) = \infty$.

Example 7. Order of $\bar{2}$ is 5 in $(\frac{\mathbb{Z}}{5\mathbb{Z}},+)$ where e=0, Order of $\bar{2}$ in $((\frac{\mathbb{Z}}{5\mathbb{Z}})^x,\cdot)$.