Title of Qualification Exam Talk

J. S. Rehak

Qualification Exam September 4th, 2019

Outline

Motivation

2 Background

Steady-state Boltzman Transport Equation

Our problem of interest is the time-independent transport equation for a critical system on a domain of interest $\mathbf{r} \in \mathbb{D}, E \in \mathbb{E}$ [1]

$$\begin{split} \left[\hat{\Omega} \cdot \nabla + \Sigma_t(\mathbf{r}, E)\right] \psi(\mathbf{r}, E, \hat{\Omega}) \\ &= \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' \Sigma_s(\mathbf{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \psi(\mathbf{r}, E', \hat{\Omega}') \\ &+ Q(\mathbf{r}, E, \hat{\Omega}) \end{split}$$

with a given boundary condition,

$$c_0\psi(\mathbf{r},\hat{\Omega},E) + c_1\frac{\partial\psi(\mathbf{r},\hat{\Omega},E)}{\partial\mathbf{r}} = f(\mathbf{r},\hat{\Omega},E), \quad \hat{n}\cdot\hat{\Omega} < 0, \mathbf{r} \in \partial\mathbb{D}$$

Energy discretization

Introduce a discretization of the energy domain \mathbb{E} into G non-overlapping elements, such that

$$E_h = \{E_1, E_2, \dots, E_G\}, \quad \mathbb{E} = \bigcup_{g=1}^G E_g$$

Assume that the energy-dependent angular flux can be separated into a group angular flux and a energy function within each of these groups

$$\psi(\mathbf{r}, E, \hat{\Omega}) \approx \psi_g(\mathbf{r}, \hat{\Omega}) f_g(E), \quad E \in E_g$$

Finally, assume that

$$\int_{E_{g'} \in E_h} f_g(E) dE = \delta_{g,g'}$$

Single-group steady-state transport equation

$$\begin{split} \left[\hat{\Omega} \cdot \nabla + \Sigma_t(\mathbf{r}, E) \right] \psi_g(\mathbf{r}, \hat{\Omega}) \\ &= \sum_{g'=1}^G \int_{4\pi} d\hat{\Omega}' \Sigma_s(\mathbf{r}, E_{g'} \to E_g, \hat{\Omega}' \to \hat{\Omega}) \psi_{g'}(\mathbf{r}, \hat{\Omega}') + Q_g(\mathbf{r}, \hat{\Omega}) \end{split}$$

Transport equation second-order forms

Consider the mono-energetic form of the transport equation, using the scattering operator $S\psi(\mathbf{r},\hat{\Omega}) = \int_{A\pi} d\hat{\Omega}' \Sigma_s(\mathbf{r},\hat{\Omega}' \to \hat{\Omega}) \psi(\mathbf{r},\hat{\Omega}')$:

$$\left[\hat{\Omega} \cdot \nabla + \Sigma_t(\mathbf{r})\right] \psi(\mathbf{r}, \hat{\Omega}) = S\psi(\mathbf{r}, \hat{\Omega}) + Q \tag{1}$$

Substitute $-\hat{\Omega}$ for $\hat{\Omega}$, add to Eq. (1), and divide by two to get a function of even- and odd-parity angular fluxes.

$$\hat{\Omega} \cdot \nabla \psi^- + \Sigma_t \psi^+ = S^+ \psi^+ + Q^+$$

where,

$$\psi^{+} = \frac{1}{2} \left(\psi(\hat{\Omega}) + \psi(-\hat{\Omega}) \right)$$
$$\psi^{-} = \frac{1}{2} \left(\psi(\hat{\Omega}) - \psi(-\hat{\Omega}) \right)$$

Acknowledgments

This work was prepared by Joshua Rehak under award number NRC-HQ-84-14-G-0042 from the Nuclear Regulatory Commission. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the view of the US Nuclear Regulatory Commission.

References

 E. E. Lewis and W.F. Miller, Jr. Computational Methods of Neutron Transport. American Nuclear Society, 1993.