What assumptions does linear regression make?

Linear regression assumes:

- Linearity: The relationship between the independent variables and the dependent variable is linear.
- Independence: Observations are independent of each other.
- Homoscedasticity: The variance of residuals (errors) is constant across all levels of the independent variables.
- Normality: The residuals are normally distributed (primarily for inference, like hypothesis testing).
- No multicollinearity: Independent variables are not highly correlated with each other (in multiple regression).
- No autocorrelation: Residuals are not correlated with each other (important in time-series data).

How do you interpret the coefficients?

In linear regression, the coefficients represent the change in the dependent variable for a one-unit change in the independent variable, holding all other variables constant.

- The intercept (β_0) is the predicted value of the dependent variable when all independent variables are zero.
- Slope coefficients (β_1 , β_2 , etc.) indicate the direction and magnitude of the relationship: positive for direct relationships, negative for inverse. For example, if β_1 = 2.5 for a variable like "years of experience," it means the dependent variable (e.g., salary) increases by 2.5 units for each additional year, assuming other factors are fixed.

What is R² score and its significance?

The R² (R-squared) score, also known as the coefficient of determination, measures the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1 (or 0% to 100%), where:

- 0 indicates the model explains none of the variability (as good as predicting the mean).
- 1 indicates the model explains all the variability perfectly. Its significance lies in evaluating model fit: higher R² suggests better explanatory power, but it doesn't imply causation, and it can be misleading in overfitted models or when comparing models with different numbers of predictors (use adjusted R² for that).

When would you prefer MSE over MAE?

Mean Squared Error (MSE) penalizes larger errors more heavily than Mean Absolute Error (MAE) because it squares the residuals. Prefer MSE when:

- You want to emphasize and reduce large outliers or extreme errors in predictions.
- The problem involves optimization where differentiability is key (e.g., in gradient descent algorithms).

 The data has a normal distribution of errors, as MSE aligns with maximum likelihood estimation under normality. MAE is better for robustness to outliers or when all errors should be treated equally.

How do you detect multicollinearity?

Multicollinearity occurs when independent variables are highly correlated, leading to unstable coefficient estimates. Detection methods include:

- Correlation matrix: Check pairwise correlations; values above 0.8-0.9 signal issues.
- Variance Inflation Factor (VIF): Calculate VIF for each variable; VIF > 5-10 indicates high multicollinearity.
- Condition number: From the eigenvalue decomposition of the feature matrix; a high condition number (>30) suggests problems.
- Tolerance: Inverse of VIF; low tolerance (<0.1-0.2) flags multicollinearity. If detected, remedies include removing variables, combining them (e.g., PCA), or using regularization (e.g., Ridge regression).

What is the difference between simple and multiple regression?

Aspect	Simple Linear Regression	Multiple Linear Regression
Number of Predictors	One independent variable (e.g., Y = $\beta_0 + \beta_1 X + \epsilon$)	Two or more independent variables (e.g., Y = $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \epsilon$)
Purpose	Models the relationship between two variables	Models the relationship while controlling for multiple factors
Complexity	Easier to interpret and visualize (e.g., scatter plot with line)	More complex; requires checking for multicollinearity and interactions
Use Case	Basic predictions, like height predicting weight	Real-world scenarios, like house price based on size, location, and age

Can linear regression be used for classification?

Technically yes, but it's not ideal. Linear regression outputs continuous values, so for binary classification, you could threshold predictions (e.g., >0.5 as class 1). However, it violates assumptions like bounded outputs (predictions can be outside [0,1]) and homoscedasticity. Better alternatives include logistic regression (for binary) or softmax regression (for multi-class), which model probabilities properly and handle non-linear decision boundaries via transformations.

What happens if you violate regression assumptions?

Violating assumptions can lead to:

- Biased or inefficient coefficient estimates (e.g., non-linearity causes systematic errors).
- Invalid inference: Unreliable p-values, confidence intervals, or hypothesis tests (e.g., non-normality affects t-tests).

- Poor predictions: Heteroscedasticity or autocorrelation inflates error variance, reducing model accuracy.
- Unstable models: Multicollinearity causes high variance in coefficients, making them sensitive to data changes. Remedies include transformations (e.g., log for non-linearity), robust methods (e.g., weighted least squares), or switching models (e.g., GLM for non-normality). Always check residuals with plots like Q-Q or scatter for diagnostics.