		Time in millisec Logistic Regression		Time in millisec		
Naive Bayes		0.072s	Coefficients W0 + W1 * X			
				0.988122 -2.35	5228X	33s (500 Iterations)
	Survived	Died				
Male				Chances of sur		
Pclass 1	0.0520833	0.0882172		female 0.728717		
Pclass 2	0.0328526	0.115523		male 0.203566		
Pclass 3	0.0400641	0.30876				
Female				Accuracy:	0.784553	0.351s
Pclass 1	0.110417	0.0167828		Sensitivity:	0.695652	0.355s
Pclass 2	0.0696474	0.0219775		Specificity:	0.862595	0.443s
Pclass 3	0.0400641	0.0587398		-		
Age						
Avq	11.235	18.5388				
Std	14.215	14.5114				
	0 760000		0.0			
Accuracy:	0.768293		0.3s			
Sensitivity:	0.530435		0.48s			
Specificity:	0.977099		0.246s			

Based on the output Logistic regression takes more time than Naïve Bayes most likely because of its iterative nature however it is slightly more accurate. Something quite noteworthy is that logistic regression has a higher sensitivity while naïve bayes has a higher specificity.

Both models create a boundary that groups data points and uses those groups to predict the grouping of future points however their methods are drastically different. Discriminative models use iteration to create a boundary line between data points in order to classify models whereas generative models use probabilities in order to group data points together. Because of this, discriminative models are limited to creating only a boundary line, but generative models can create circular areas for groupings.

In terms of their performance's discriminative models will always take more time to execute because it has to perform repeated calculations on the training set but the generative model only has to look at the data once. However discriminative models can be more accurate based on the amount of data given to it compared to generative models.

Reproduceable research means having the ability to document and reproduce your results. Having your work be reproduceable "helps your teams reduce errors and ambiguity when the projects move from development to production" [1]. This means that whenever errors occur for other users, you and your team are able to easily recreate said errors and solve the issue.

Reproducible research is also important because "It is what enables a researcher to build upon, or refute, previous research" [2]. Meaning without reproducible research, research could become chaotic or contradicting, with multiple different people getting different results because the basis of their works is not consistent. Reproducible research is important in every field because without it, there is no way to prove anything because it isn't constant.

[1] https://www.decisivedge.com/blog/the-importance-of-reproducibility-in-machine-learning-applications/#:~:text=Reproducibility%20helps%20your%20teams%20reduce,project%20results%20are%20actually%20correct.

[2] Cacho, J.R.F., Taghva, K. (2020). The State of Reproducible Research in Computer Science. In: Latifi, S. (eds) 17th International Conference on Information Technology–New Generations (ITNG 2020). Advances in Intelligent Systems and Computing, vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-030-43020-7_68