Problem 1.

Suppose $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$. If $x^2 \stackrel{n}{\equiv} -1$ then for $1 \leq i \leq k$ we have $x^2 \stackrel{p_i^{\alpha_i}}{\equiv} -1$, which means we have $x^2 \stackrel{p_i}{\equiv} -1$. Suppose $p_i \neq 2$. And let x be an answer for this equation:

$$x^2 \stackrel{p_i}{\equiv} -1 \implies x^4 \stackrel{p_i}{\equiv} 1$$

This shows that $Ord_{p_i}(x) = 4$. Then we have: $Ord_{p_i}(x) \mid \phi(p_i) = p_i - 1$. Therefore $4 \mid p_i - 1$. Thus $p_i \stackrel{4}{=} 1$. Now if $p \stackrel{4}{=} 1$ then we have:

$$-1 = (p-1)! = (1 \times 2 \times \dots \times \frac{p-1}{2})(\frac{p+1}{2} \times \dots \times (p-1))$$
$$= (1 \times 2 \times \dots \times \frac{p-1}{2})(1 \times 2 \times \dots \times \frac{p-1}{2})(-1)^{(p-1)/2}$$
$$= (1 \times 2 \times \dots \times \frac{p-1}{2})^2$$

This shows that for prime $p_i, x^2 \stackrel{p_i}{\equiv} -1$ has an answer iff $p_i \stackrel{4}{\equiv} 1$ and it has exactly two answers $(1 \times 2 \times \cdots \times \frac{p-1}{2})$ and $-(1 \times 2 \times \cdots \times \frac{p-1}{2})$. Now suppose r and t are two answers for $x^2 + 1 \stackrel{p^{\alpha}}{\equiv} 0$ with $p \stackrel{4}{\equiv} 1$. Where $p \nmid t - r$ and $p \nmid r, t$. By Hensel's lemma since $p \nmid 2r$ then $x^2 + 1 \stackrel{p^{\alpha+1}}{\equiv} 0$ has one answer v such that $v \stackrel{p^{\alpha}}{\equiv} r$. Similarly for t there exists one answer u such that $u \stackrel{p^{\alpha}}{\equiv} t$. And since $p \nmid t - r$ and $p \nmid r, t$ it follows that $p \nmid v - u$ and $p \nmid u, v$. Thus $x^2 + 1 \stackrel{p^{\alpha}}{\equiv} 0$ has exactly two answers.

For p=2 we have $x^2+1\stackrel{2}{\equiv}0$ has one answer x=1. And for any $\alpha>1$ by Hensel's lemma $x^2+1\stackrel{2^{\alpha}}{\equiv}0$ doesn't have an answer. Since $x^2+1\stackrel{4}{\equiv}0$ doesn't have an answer. This shows that $x^2+1\stackrel{p^{\alpha}}{\equiv}0$ has 2 answers if $p\stackrel{4}{\equiv}1$ and doesn't have an answer if $p\stackrel{4}{\equiv}3$, and if p=2 it has one answer if $\alpha=1$ and doesn't have any answers if $\alpha>1$. By chinese remainder theorem it is easy to see that the number of answers modulo n is the product of the number of answers for all $1\leq i\leq k, \ x^2+1\stackrel{p_i^{\alpha_i}}{\equiv}0$.

Problem 2.

We know that $26411 = 7^4 \times 11$. $x^2 + x + 47 \stackrel{7}{\equiv} 0$ has two answers 1 and 5. Now we use Hensel's lemma to lift up these answers modulo 7^4 . Let $f(x) = x^2 + x + 47$, then we have f'(x) = 2x + 1.

$$1: f'(1) = 3 \not\equiv 0 \implies t \equiv (-f'(1)^* f(1)/7) \implies t = 0 \implies 1 + 7 \times 0 = 1$$
$$5: f'(5) = 11 \not\equiv 0 \implies t \equiv (-f'(5)^* f(5)/7) \implies t = 6 \implies 5 + 7 \times 6 = 47$$

Thus 1 and 47 are the answers to $x^2 + x + 47 \stackrel{7^2}{\equiv} 0$. Now for 7^3 :

$$1: f'(1) = 3 \not\equiv 0 \implies t \stackrel{7}{\equiv} (-f'(1)^* f(1)/49) \implies t = 2 \implies 1 + 49 \times 2 = 99$$
$$47: f'(47) = 95 \not\equiv 0 \implies t \stackrel{7}{\equiv} (-f'(47)^* f(47)/49) \implies t = 4 \implies 47 + 49 \times 4 = 243$$

Thus 99 and 243 are the answers to $x^2 + x + 47 \stackrel{7^3}{\equiv} 0$. For 7^4 :

$$99: f'(99) \neq 0 \implies t = (-f'(99)^*f(99)/343) \implies t = 2 \implies 99 + 343 \times 2 = 785$$
$$243: f'(243) \neq 0 \implies t = (-f'(243)^*f(243)/343) \implies t = 4$$
$$\implies 243 + 343 \times 4 = 1615$$

Thus 785 and 1615 are the answers to $x^2 + x + 47 \stackrel{7^4}{\equiv} 0$. Also 5 is the only answer to $x^2 + x + 47 \stackrel{11}{\equiv} 0$. By Chinese Remainder Theorem we have 10389 and 16021 are the answers to the equation.

Problem 3.

First we prove that τ is multiplicative. Suppose (m, n) = 1. Let D_m be the set of divisors of m. We intrudoce a bijection:

$$\pi: D_m \times D_n \to D_{mn}$$
$$\pi(i,j) = ij$$

 π is surjective since for any $d \mid mn$ where (m,n) = 1 there exists d_1 and d_2 such that $d_1d_2 = d$ where $d_1 \mid n$ and $d_2 \mid m$. It also is injective since if $\pi(a,b) = \pi(c,d)$. Therefore ab = cd. Suppose for prime p such that $p \mid a \mid m$:

$$p \mid a \implies p \mid ab = cd \implies p \mid cd$$

 $p \mid c \text{ or } d$

If $p \mid d$ then since $d \mid n, p \mid n$, which implies $p \mid (m, n) = 1$. Which is a contradiction. Therefore $p \mid c$. This shows that $a \mid c$. Similarly we can show that $c \mid a$. Therefore if $\pi(a,b) = \pi(c,d)$ we would have a = c and b = d. Thus π is a bijection. Since $\tau(k)$ is the number of elements in D_k , the bijection π shows that τ is multiplicative and for (m,n) = 1 we have $\tau(mn) = \tau(m)\tau(n)$.

We prove this by induction on number of distinct primes in n. First we prove the equation for k = 1, $n = p^{\alpha}$. We know that $\tau(p^{\alpha}) = \alpha + 1$.

$$\left[\sum_{d|p^{\alpha}} \tau(d)\right]^{2} = \left[1 + 2 + \dots + \alpha + (\alpha + 1)\right]^{2} = 1^{3} + 2^{3} + \dots + (\alpha + 1)^{3} = \sum_{d|p^{\alpha}} \tau(d)^{3}$$

Now suppose that for any n with k-1 distinct prime divisors, the equation holds. Now suppose $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$, and $n=n_1p_k^{\alpha_k}$

$$\left[\sum_{d|n} \tau(d)\right]^2 = \left[\left(\sum_{d_1|p_{\nu}^{\alpha_k}} \tau(d_1)\right)\left(\sum_{d_2|n_1} \tau(d_2)\right)\right]^2$$

Since n_1 has k-1 distinct prime divisors, by induction hypothesis for n_1 and $p_k^{\alpha_k}$:

$$[(\sum_{d_1|p_k^{\alpha_k}} \tau(d_1))(\sum_{d_2|n_1} \tau(d_2))]^2 = (\sum_{d_1|p_k^{\alpha_k}} \tau(d_1)^3)(\sum_{d_2|n_1} \tau(d_2)^3)$$
$$= \sum_{d|n} \tau(d)^3$$

Thus the proof is completed.

Problem 4.

We know that ϕ is multiplicative. We prove this by induction on number of distinct prime divisors of d. for k=0, we have d=1, therefore (a,b)=1: $\phi(ab)=\phi(a)\phi(b)\frac{1}{\phi(1)}$ Now suppose that the statement is true for k-1. Let $d=p_1^{\alpha_1}\dots p_k^{\alpha_k}=d'p_k^{\alpha_k}$. WLOG suppose $a=p_k^{\alpha_k}a'$ and $b=p_k^{\beta}b'$ where $\beta \geq \alpha_k$.

$$\phi(ab) = \phi(a'b'p_k^{\alpha_k + \beta}) = \phi(a'b')\phi(p_k^{\alpha_k + \beta})$$

since d' = (a', b') and has k - 1 distinct prime divisors, by induction hypothesis we have: $\phi(a'b') = \phi(a')\phi(b')\frac{d'}{\phi(d')}$:

$$\phi(a'b')\phi(p_k^{\alpha_k+\beta}) = \phi(a')\phi(b')\frac{d'}{\phi(d')}p_k^{\alpha_k+\beta-1}(p_k-1)$$

$$= \phi(a')\phi(b')\frac{d'}{\phi(d')}p_k^{\alpha_k-1}(p_k-1)p_k^{\beta-1}(p_k-1)\frac{p_k^{\alpha_k}}{p_k^{\alpha_k-1}(p_k-1)}$$

$$= \phi(a')\phi(p_k^{\alpha_k})\phi(b')\phi(p_k^{\beta})\frac{d'}{\phi(d')}\frac{p_k^{\alpha_k}}{\phi(p_k^{\alpha_k})}$$

$$= \phi(a)\phi(b)\frac{d}{\phi(d)}$$

Thus $\phi(ab) = \phi(a)\phi(b)\frac{d}{\phi(d)}$. Now if d > 1 then $\phi(d) < d$. Therefore $\frac{d}{\phi(d)} > 1$. This follows that $\phi(ab) > \phi(a)\phi(b)$.

Problem 5.

The only solutions are prime numbers. For any prime p, we know that $\phi(p) = p - 1$ and $\sigma(p) = p + 1$. Thus $\phi(p) + \sigma(p) = 2p$. Now by induction on the number of distinct divisors of n we show that if n is not a prime number then $\phi(n) + \sigma(n) > 2n$. for k = 1 which means $n = p^{\alpha}$ with $\alpha > 1$ we have:

$$\phi(p^{\alpha}) + \sigma(p^{\alpha}) = p^{\alpha-1}(p-1) + p^{\alpha} + p^{\alpha-1} + \dots + p^{1} + 1$$
$$= 2p^{\alpha} + p^{\alpha-2} + \dots + p^{1} + 1 \ge 2p^{\alpha} + 1 > 2p^{\alpha}$$

Now suppose the statement is true for k-1. Let $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}=n_1p_k^{\alpha_k}$:

$$\phi(n) + \sigma(n) = \phi(n_1)\phi(p_k^{\alpha_k}) + \sigma(n_1)\sigma(p_k^{\alpha_k})$$

$$= \phi(n_1)p_k^{\alpha_k-1}(p_k-1) + \sigma(n_1)(p_k^{\alpha_k} + \dots + 1)$$

$$= \phi(n_1)p_k^{\alpha_k} + \sigma(n_1)p_k^{\alpha_k} - \phi(n_1)p_k^{\alpha_k-1} + \sigma(n_1)(p_k^{\alpha_k-1} + \dots + 1)$$

$$\geq p_k^{\alpha_k}(\phi(n_1) + \sigma(n_1)) + p_k^{\alpha_k-1}(\sigma(n_1) - \phi(n_1))$$

Now by induction hypothesis we know that $\phi(n_1) + \sigma(n_1) \geq 2n_1$. We also know that $\phi(n) < n < \sigma(n)$:

$$p_k^{\alpha_k}(\phi(n_1) + \sigma(n_1)) + p_k^{\alpha_k - 1}(\sigma(n_1) - \phi(n_1))$$

$$\geq p_k^{\alpha_k} 2n_1 + p_k^{\alpha_k - 1}(1) \geq 2n + p_k^{\alpha_k - 1} > 2n$$

Thus for any composite n, $\phi(n) + \sigma(n) > 2n$. And only for prime p, $\phi(p) + \sigma(p) = 2p$.

Problem 6.

 (\Rightarrow) If f has an inverse g then we have:

$$f * g = l$$

Where l is the identity function. with l(1) = 1 and l(n) = 0 for $n \neq 1$. Now if we check input 1:

$$f * g(1) = f(1)g(1) = 1$$

This shows that $f(1) \neq 0$.

 (\Leftarrow) If $f(1) \neq 0$, we find g such that f * g = l. We use induction on n. Base case n = 1:

$$f * g(1) = f(1)g(1) \implies g(1) = \frac{1}{f(1)}$$

And since $f(1) \neq 1$ then $\frac{1}{f(1)}$ is valid. Now suppose that for all $n \leq k$ we know the value of g such that f * g(n) = l(n). Put n = k + 1.

$$f * g(n) = \sum_{d|n} f(d)g(\frac{n}{d})$$

For all $\frac{n}{d} < n$ the value of g is already determined, Thus we sum all the values for d > 1: $S = \sum_{d|n} f(d)g(\frac{n}{d}) - f(1)g(n)$.

$$f * g(n) = \sum_{d|n} f(d)g(\frac{n}{d}) = S + f(1)g(n)$$

$$\implies g(n) = \frac{-S}{f(1)}$$

Which is valid. Thus we proved that for n = k + 1 there exists $g(1), \ldots, g(k + 1)$ such that for all $n \le k + 1$ we have: f * g(n) = l(n). Therefore the function g described is the inverse of f.

Problem 7.

(i) We describe f as below:

$$f(n) = \begin{cases} 1 & \text{if } n \text{ is square free} \\ 0 & O.W. \end{cases}$$

Note that f(1) = 1. Now $\sum_{d|n} f(d)$ is the number of square free divisors of n. Now let $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Free squares divisors of n are all of the form $p_1^{\beta_1} \dots p_k^{\beta_k}$ with $0 \le \beta_i \le 1$. And since for any β_i there are two choices, then the number of squares free numbers are $2^k = 2^{\omega(n)}$.

(ii) Note that $\mu(d)$ for any square free d is either +1 or -1 but for any other number is 0. We use induction on the number of distinct primes in n. for k=1 we have $n=p^{\alpha}$:

$$p^{\alpha} \sum_{p^{\beta}|p^{\alpha}} \frac{|\mu(p^{\beta})|}{p^{\beta}} = p^{\alpha} \left(1 + \frac{1}{p} + \frac{0}{p^{2}} + \dots + \frac{0}{p^{\alpha}}\right) = p^{\alpha} \left(1 + \frac{1}{p}\right)$$

$$= p^{\alpha} + \dots + p + 1 - p^{\alpha - 2} - \dots - p - 1 = \mu(1)\sigma(p^{\alpha}) + \mu(p)\sigma(\frac{n}{p^{2}}) + 0 + \dots + 0$$

$$= \sum_{p^{2\beta}|p^{\alpha}} \mu(p^{\beta})\sigma(\frac{p^{\alpha}}{p^{2\beta}})$$

Now suppose for m < k the equation holds. Let m = k. Thus $n = p_1^{\alpha_1} \dots p_k^{\alpha_k} = n_1 p_k^{\alpha_k}$. We know both μ and σ are both multiplicative, also μ is not zero for square free numbers, which means in $d^2 \mid n$, only square free d numbers are important:

$$n \sum_{d|n} \frac{|\mu(d)|}{d} = n_1 p_k^{\alpha_k} \left(\sum_{p_k^{\beta} \mid p_k^{\alpha_k}} \frac{|\mu(p_k^{\beta})|}{p_k^{\beta}} \right) \left(\sum_{d_1 \mid n_1} \frac{|\mu(d_1)|}{d_1} \right) \stackrel{I.H}{=} p_k^{\alpha_k} \left(1 + \frac{1}{p_k} \right) \left(\sum_{d_1^2 \mid n_1} \mu(d_1) \sigma(\frac{n_1}{d_1^2}) \right)$$

$$= (p_k^{\alpha_k} + \dots + p_k + 1) \left(\sum_{d_1^2 \mid n_1} \mu(d_1) \sigma(\frac{n_1}{d_1^2}) \right) - (p_k^{\alpha_k - 2} + \dots + p_k + 1) \left(\sum_{d_1^2 \mid n_1} \mu(d_1) \sigma(\frac{n_1}{d_1^2}) \right)$$

$$= \sum_{d_1^2 \mid n_1} \mu(d_1) \sigma(\frac{n_1}{d_1^2}) \sigma(p_k^{\alpha_k}) + \sum_{d_1^2 \mid n_1} \mu(d_1) \mu(p_k) \sigma(\frac{n_1}{d_1^2}) \sigma(\frac{p_k^{\alpha_k}}{p_k^2})$$

$$= \sum_{d_1^2 \mid n} \mu(d_1) \sigma(\frac{n}{d_1^2}) + \sum_{p_k^2 d_1^2 \mid n} \mu(d_1 p_k) \sigma(\frac{n}{p_k^2 d_1^2}) + 0 + \dots + 0$$

$$= \sum_{d_1^2 \mid n} \mu(d) \sigma(\frac{n}{d})$$

Note that the last line is because any other square divisor of n, other than d_1^2 and $p_k^2 d_1^2$, is not square free.

Problem 8.

Suppose (x, m) = 1. Therefore (m-x, m) = 1. And for $m \neq 2$ we know that $x \neq m-x$. Otherwise we would have:

$$x = m - x \implies 2x = m \implies x = \frac{m}{2} \implies x \mid m \implies (x, m) \neq 1$$

Which gives us the contradiction. Therefore for any $m \neq 2$ we can pair all the numbers in $\{c_1, \ldots, c_{\phi(m)}\}$. And sum of all pairs are m since x + m - x = m. Therefore $S \stackrel{m}{\equiv} 0$. For m = 2 we have S = 1. This concludes the answer.