FINAL SOLAR PV PROJECT WORK REPORT

Project Title:

Design, Simulation & Analysis of 4 kW Grid-Tied Solar Power Plant

Submitted By:

Haris Sheikh

Internship Organization:

Solar Complete Firm

Duration:

1-Month Internship

Krishna Nagar, Kanpur, Uttar Pradesh, India

This project report has been completed as part of the technical internship training in grid-tied solar photovoltaic design and system simulation.

FINAL SOLAR PV PROJECT WORK REPORT

(As per Internship Project Guidelines)

TABLE OF CONTENTS

1. Project Title & Customer Type	Page 1
2. Location & Plant Capacity	Page 1
3. Component Specifications	Page 1
4. Task 1: PV SYST Generation Report	Page 2
5. Task 2: Cable Sizing Calculation	Page 2
6. Task 3: Technical Specifications Study	Page 3
7. Task 4: Net Metering Report	Page 4
8. Task 5: Document List	Page 5

PROJECT TITLE:

4 kW Grid-Tied Solar Power Plant Design & Reporting

CUSTOMER TYPE:

Residential

PLOCATION:

Krishna Nagar, Kanpur, U.P., India

PLANT CAPACITY:

4 kW Grid-Tied Solar Power Plant

COMPONENT SPECIFICATIONS:

Sr. No.	Item	Details
1	Solar Panel	Bifacial 450 Wp, Mono PERC, 144 half-cut cells
2	Panel Brand	LONGi Solar
3	Number of Panels	8
4	Inverter	5.5 kVA, 1Ø, Grid-Tied, Model: EHC-S55MP3B-PNJ
5	Solar Panel Tilt Angle	15°
6	Solar Panel Azimuth Angle	0°

📜 **Note:** The version of PVsyst software provided did not include a 540 Wp bifacial solar panel. Hence, a 450 Wp bifacial panel (LONGi Solar LR4-72 HBD 450 M G2) was used. All simulation results are based on this specification. Refer to the annexed PVsyst PDF report for validation.

⊗TASK 1: PV SYST GENERATION REPORT

Objective:

Generate an energy output simulation using PVsyst software.

Input Parameters:

- System Capacity: 3.6 kW (8 × 450 Wp modules)
- Location: Krishna Nagar, Kanpur
- Tilt Angle: 15°
- Azimuth Angle: 0° (South-facing)
- Inverter: 5.5 kVA, Single Phase (EHC-S55MP3B-PNJ)

Simulation Results (As per PVsyst PDF): - Annual Energy Production: 5.31 MWh/year

- Specific Yield: 1633 kWh/kWp/year- Performance Ratio (PR): 75.57%

- Soiling Loss: 2.00%

Collection Losses: 0.98 kWh/kWp/day
System Losses: 0.47 kWh/kWp/day
Final Output to Grid: 5.31 MWh/year

See attached PVsyst report for full graphs and monthly data.

⊘TASK 2: CABLE SIZING CALCULATION

Objective:

Calculate appropriate cable sizes manually for both DC and AC sides.

DC Side Calculation:

Voltage: 299 VCurrent: 11 ACable Length: 20 m

• Voltage Drop Limit: 1% (2.99 V)

Formula Used: $A = (I \times L \times 2) / (56 \times Vd)$

AC Side Calculation:

Voltage: 230 VCurrent: 15.65 ACable Length: 15 m

• Voltage Drop Limit: 1% (2.3 V)

Formula: $A = (I \times L \times 2) / (56 \times Vd)$

Result: A = $(15.65 \times 15 \times 2) / (56 \times 2.3) = 3.63 \text{ mm}^2$

Quse 6 mm² copper cable

Optimizer Compatibility: A Verified compatible with 450 Wp bifacial modules.

⊘TASK 3: TECHNICAL SPECIFICATIONS STUDY

Objective:

Review solar components as per MNRE & CEA specifications.

Summary: - **Panels:** LONGi Solar 450 Wp, bifacial, mono PERC, 21.3% efficiency, 25-year warranty - **Inverter:** 5.5 kVA, MPPT-based, anti-islanding, 5-year warranty - **Cables:** UV-resistant, Copper; DC: 4 mm², AC: 6 mm² - **Earthing:** 3 Nos Pipe Earthings + 1 Lightning Arrester (IS 3043 compliant) - **Structure:** Galvanized MS, fixed tilt (15°)

Technical compliance verified via MNRE guidelines & manufacturer datasheets.

TASK 4: NET METERING REPORT

Objective:

Outline net metering rules, billing process, and user benefits.

Departments Involved: - UPPCL / KESA (Kanpur Electricity Supply Authority) - UPNEDA (State nodal agency for solar)

Net Metering Rules (Residential): - Capacity up to 10 kW for LT connections allowed - Bi-directional net meter required

Billing Example: - Generation: 500 kWh, Consumption: 400 kWh

- Net Export: 100 kWh @ ₹3/unit = ₹300 credited

Customer Benefits: - Monthly bill savings - Export surplus units to DISCOM - Central/state subsidies (if applicable)

KESA Calculation Method: - Monthly import/export readings - Energy balance billed or credited per **UPPCL** policy

TASK 5: DOCUMENT LIST (By Installer)

Sr. No.	Document Name	
1	PVsyst Generation Report (PDF)	
2	Cable Sizing Sheet	
3	Technical Datasheets (Panel/Inverter)	
4	Net Metering Application Copy	
5	Installation & Commissioning Certificate	
6	Warranty Cards & Purchase Invoices	
7	Final Inspection Approval Report	
8	Project SLD (Single Line Diagram)	