64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2011ws/vorlesung/rs Kapitel 13

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2011/2012

Kapitel 13

Zeitverhalten

Modellierung Hazards

Zeitverhalten - Modellierung

Zeitverhalten einer Schaltung: Modellierung

Wie wird das Zeitverhalten eines Schaltnetzes modelliert?

Gängige Abstraktionsebenen mit zunehmendem Detaillierungsgrad

- 1. algebraische Ausdrücke: keine zeitliche Abhängigkeit
- 2. "fundamentales Modell": Einheitsverzögerung des algebraischen Ausdrucks um eine Zeit au
- 3. individuelle Gatterverzögerungen
 - ► mehrere Modelle, unterschiedlich detailliert
 - ► Abstraktion elektrischer Eigenschaften
- 4. Gatterverzögerungen + Leitungslaufzeiten (geschätzt, berechnet)
- 5. Differentialgleichungen für Spannungen und Ströme (verschiedene "Ersatzmodelle")

64-040 Rechnerstrukturer

Zeitverhalten - Modellierung

Gatterverzögerung vs. Leitungslaufzeiten

- ► früher: Gatterverzögerungen ≫ Leitungslaufzeiten
- Schaltungen modelliert durch Gatterlaufzeiten
- aktuelle "Submicron"-Halbleitertechnologie: Leitungslaufzeiten ≫ Gatterverzögerungen

Zeitverhalten - Modellierung Zeitverhalten

- alle folgenden Schaltungsbeispiele werden mit Gatterverzögerungen modelliert
- \blacktriangleright Gatterlaufzeiten als Vielfache einer Grundverzögerung (τ)
- ▶ aber Leitungslaufzeiten ignoriert
- mögliche Verfeinerungen
 - gatterabhängige Schaltzeiten für INV, NAND, NOR, XOR etc.
 - ▶ unterschiedliche Schaltzeiten für Wechsel: $0\rightarrow1$ und $1\rightarrow0$
 - ▶ unterschiedliche Schaltzeiten für 2-, 3-, 4-Input Gatter
 - Schaltzeiten sind abhängig von der Anzahl nachfolgender Eingänge (engl. fanout)

Exkurs: Lichtgeschwindigkeit und Taktraten

- ► Lichtgeschwindigkeit im Vakuum: $c \approx 300\,000\,\mathrm{km/sec}$ $\approx 30\,\mathrm{cm/ns}$
- ▶ in Metallen und Halbleitern langsamer: $c \approx 20 \, \text{cm/ns}$
- ⇒ bei 1 Gigahertz Takt: Ausbreitung um ca. 20 Zentimeter

Abschätzungen:

- ▶ Prozessor: ca. 2 cm Diagonale $\approx 10\,\text{GHz}$ Taktrate
- ightharpoonup Platine: ca. 20 cm Kantenlänge pprox 1 GHz Takt
- ▶ UKW-Radio: 100 MHz, 2 Meter Wellenlänge
- ⇒ prinzipiell kann (schon heute) ein Signal innerhalb eines Takts nicht von einer Ecke des ICs zur Anderen gelangen

Impulsdiagramme

- ► Impulsdiagramm (engl. waveform): Darstellung der logischen Werte einer Schaltfunktion als Funktion der Zeit
- als Abstraktion des tatsächlichen Verlaufs
- Zeit läuft von links nach rechts
- ► Schaltfunktion(en): von oben nach unten aufgelistet
- Vergleichbar den Messwerten am Oszilloskop (analoge Werte)
 bzw. den Messwerten am Logic-State-Analyzer (digitale Werte)
- ▶ ggf. Darstellung mehrerer logischer Werte (z.B. 0,1,Z,U,X)

Zeitverhalten - Modellierung

Impulsdiagramm: Beispiel

- ▶ im Beispiel jeweils eine "Zeiteinheit" Verzögerung für jede einzelne logische Operation
- ▶ Ergebnis einer Operation nur, wenn die Eingaben definiert sind
- im ersten Zeitschritt noch undefinierte Werte

64-040 Rechnerstrukturer

Universität Hamburg

Hazards

- ▶ **Hazard**: die Eigenschaft einer Schaltfunktion, bei bestimmten Kombinationen der individuellen Verzögerungen ihrer Verknüpfungsglieder ein Fehlverhalten zu zeigen
- ► Hazardfehler: das aktuelle Fehlverhalten einer realisierten Schaltfunktion aufgrund eines Hazards

Hazards: Klassifikation

nach der Erscheinungsform am Ausgang

- **statisch**: der Ausgangswert soll stabil sein, es tritt aber ein Wechsel auf
- **dynamisch**: der Ausgangswert soll (einmal) wechseln, es tritt aber ein mehrfacher Wechsel auf

nach den Eingangsbedingungen, unter denen der Hazard auftritt

- ▶ **Strukturhazard**: bedingt durch die Struktur der Schaltung, auch bei Umschalten eines einzigen Eingangswertes
- ► Funktionshazard: bedingt durch die Funktion der Schaltung

Hazards: statisch vs. dynamisch

- ▶ 1-Hazard wenn fehlerhaft der Wert 1 auftritt, und umgekehrt
- es können natürlich auch mehrfache Hazards auftreten
- ► Hinweis: Begriffsbildung in der Literatur nicht einheitlich

Hazards: Strukturhazard

- Strukturhazard wird durch die gewählte Struktur der Schaltung verursacht
- ▶ auch, wenn sich nur eine Variable ändert
- ▶ Beispiel: $f(a) = \neg a \lor (a \land a)$ $\neg a$ schaltet schneller ab, als $(a \land a)$ einschaltet

▶ Hazard kann durch Modifikation der Schaltung beseitigt werden im Beispiel mit: f(a) = 1

64-040 Rechnerstrukturen

Strukturhazards: Beispiele

- ▶ logische Funktion ist $(a \land \overline{a}) = 0$ bzw. $(a \lor \overline{a}) = 1$
- ▶ aber ein Eingang jeweils durch Inverter verzögert
- \Rightarrow kurzer Impuls beim Umschalten von $0\rightarrow 1$ bzw. $1\rightarrow 0$

64-040 Rechnerstrukturer

Strukturhazards: Beispiele (cont.)

- ▶ Schaltung $(a \land \overline{a}) = 0$ erzeugt (statischen-1) Hazard
- ▶ Länge des Impulses abhängig von Verzögerung im Inverter
- ▶ Kette von Invertern erlaubt Einstellung der Pulslänge

Strukturhazards extrem: NAND-Kette

- ▶ alle NAND-Gatter an Eingang *in* angeschlossen
- ▶ in = 0 erzwingt $y_i = 1$
- ▶ Übergang in von 0 auf 1 startet Folge von Hazards...

64-040 Rechnerstrukturen

Zeitverhalten - Hazards

Strukturhazards extrem: NAND-Kette (cont.)

- ► Schaltung erzeugt Folge von (dynamischen-0) Hazards
- Anzahl der Impulse abhängig von Anzahl der Gatter

Strukturhazards im KV-Diagramm

- Funktion $f = (x_2\overline{x_1}) \lor (x_1x_0)$
- realisiert in disjunktiver Form mit 2 Schleifen

Strukturhazard beim Übergang von $(x_2\overline{x_1}x_0)$ nach $(x_2x_1x_0)$

- ▶ Gatter $(x_2\overline{x_1})$ schaltet ab, Gatter (x_1x_0) schaltet ein
- ► Ausgang evtl. kurz 0, abhängig von Verzögerungen

Strukturhazards im KV-Diagramm (cont.)

64-040 Rechnerstrukturer

Zeitverhalten - Hazards

Strukturhazards beseitigen

- ▶ Funktion $f = (x_2\overline{x_1}) \lor (x_1x_0)$
- realisiert in disjunktiver Form mit 3 Schleifen

$$f=(x_2\overline{x_1})\vee(x_1x_0)\vee(x_2x_0)$$

- + Strukturhazard durch zusätzliche Schleife beseitigt
- aber h\u00f6here Hardwarekosten als bei minimierter Realisierung

64-040 Rechnerstrukturen

Zeitverhalten - Hazards

Strukturhazards beseitigen (cont.)

990

Hazards: Funktionshazard

- ► Funktionshazard kann bei gleichzeitigem Wechsel mehrerer Eingangswerte als Eigenschaft der Schaltfunktion enststehen
- ▶ Problem: Gleichzeitigkeit an Eingängen
- ⇒ Funktionshazard kann nicht durch strukturelle Maßnahmen verhindert werden
 - ▶ Beispiel: Übergang von $(x_2\overline{x_1}x_0)$ nach $(\overline{x_2}x_1x_0)$

