마인크래프트

 $1 \le N, M \le 500, O \le B \le 6.4 * 10^7, O \le h_{ij} \le 256$

해법1

- 정답이 가능한 높이는 0~256 이다.
- 각 높이에 대해 500*500 셀을 전부 확인한다.
- [인벤토리->땅] 블록 개수 a,
 [땅->인벤토리] 블록 개수 b 일 때,
 a <= b+B 이면 가능하다.
- O(257*500*500)

3	4	3	2
7	2	3	7
0	0	4	4

높이를 3으로 맞추는 경우

- a = 12
- b = 3

해법2

- 500*500 셀의 높이는 0~256 범위이다.
 높이 별로 셀의 개수를 세서 기록한다.
- a, b를 구하는 과정에서 셀 별로 확인 하지 않고 같은 높이는 모아서 처리 가능하다.
- 검색 비용 : O(257*257) 입력, 개수 세는 비용 : O(500*500)

					N	cni
3	4	3	2		0	2
1	2	3	7]	2
				_	2	2
0	0	4	4		3	3
					4	3

마인크래프트

 $1 \le N, M \le 500, 0 \le B \le 6.4 * 10^7, 0 \le h_{ij} \le 256$

해법3

- 해법2 에서 특정 높이의 a, b를 구할 때,
 prefix sum을 통해 O(1) 로 해결 가능하다!
- 검색 비용 : O(257)

입력, 개수 세는 비용 : 0(500*500)

						A[h]	S1[h]	S2[h]
		T	I	1	h	cnt	cnt prefix sum	h*cnt prefix sum
3	4	3	2		0	2	2	0
1	2	3	1		<u> </u>	2	1	2
0	0	4	4				4	
				J	2	2	6	6
					3	3	9	15
					4	3	12	27

* h=5~256의 S1, S2는 h=4와 동일

높이를 H로 만드는 경우, 모든 높이 h에 대해

식을 풀어보면

$$a = A_0^*(H-0) + A_1^*(H-1) + ... + A_H^*(H-H)$$

= $(A_0 + A_1 + ... + A_H) * H - (0*A_0 + 1*A_1 + ... + H*A_H)$
= $S1_H * H - S2_H$

$$b = A_{H+1}*(H+1-H) + A_{H+2}*(H+2-H) + ... + A_{256}*(256-H)$$

$$= (H+1)*A_{H+1}+(H+2)*A_{H+2}+...+256*A_{256}$$

$$- (A_{H+1}+A_{H+2}+...+A_{256})*H$$

$$= (S2_{256}-S2_H) - (S1_{256}-S1_H)*H$$

H=2 인 경우,

•
$$a = S1_2 * 2 - S2_2 = 6 * 2 - 6 = 6$$

•
$$b = (S2_{256} - S2_2) - (S1_{256} - S1_2) \times 2 = (27-6) - (12-6) \times 2 = 9$$