Practical 2

Problem 1. Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard vectors in \mathbb{R}^3 . Simplify the sets:

(i)
$$span(\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3)$$

(ii)
$$span(\mathbf{e}_1, -2\mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3)$$

(iii)
$$span(\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2, \mathbf{e}_2 - 3\mathbf{e}_1)$$

Problem 2. If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors, determine whether \mathbf{u} can be expressed as linear combination of \mathbf{v}, \mathbf{w} .

Problem 3. Find the span of the following vectors:

$$(i) \quad \mathbf{u} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad (ii) \quad \mathbf{u} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad (iii) \quad \mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ -1/2 \\ 3/2 \\ 1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Problem 4. Find a value for c so that the following vectors:

(i)
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 - c \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad (ii) \quad \mathbf{u} = \begin{bmatrix} 1 \\ c \\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1/3 \\ -1/3 \\ 1 \end{bmatrix},$$

are linearly independent.

Problem 5. Check whether the following vectors in \mathbb{R}^3 are linearly independent:

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

and find $span(\mathbf{u}, \mathbf{v}, \mathbf{w})$.

Problem 6. Find the dot product, the length and the angle between the vectors:

(i)
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$, (ii) $\mathbf{u} = \begin{bmatrix} 0 \\ 1/2 \\ -1/2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$, (iii) $\mathbf{u} = \begin{bmatrix} 0 \\ -1/2 \\ 2 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$

Verify the Cauchy–Schwarz inequality and the Triangle inequality.