# Compiler - 2-1. Lexical Analysis -

JIEUNG KIM

jieungkim@yonsei.ac.kr





#### Where are we?



Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization



Machine Code



#### Outlines

- Basic concepts of formal grammars
- Role of the lexical analyzer
- Choose a token
- Finite automata
- Regular expression
- Specification of tokens
- Recognition of tokens
- Error handling
- Challenges in scanning
- Lex: lexical analyzer generator





- Programming language specs
  - Since the 1960s, the syntax of every significant programming language has been specified by a formal grammar
  - First done in 1959 with BNF (Backus-Naur Form or Backus-Normal Form) used to specify the syntax of ALGOL 60
  - Borrowed from the linguistics community (Chomsky)



Example of grammar for a tiny language

```
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr;
ifStmt ::= if ( expr ) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```



#### Productions

- The rules of a grammar are called productions
- Rules contain
  - Nonterminal symbols: grammar variables (program, statement, id, etc.).
  - Terminal symbols: concrete syntax that appears in programs (a, b, c, 0, 1, if, (, ), …)
- Meaning of "nonterminal ::= <sequence of terminals and nonterminals>"
  - In a derivation, an instance of *nonterminal* can be replaced by the sequence of *terminals and nonterminals* on the right of the production
- Often, there are two or more productions for one nonterminal use any in different parts of derivation



#### Alternative notations

• There are several syntax notations for productions in common use; all mean the same thing

```
ifStmt ::= if ( expr ) stmt
ifStmt → if ( expr ) stmt
<ifStmt> ::= if ( <expr> ) <stmt>
```









Role of the lexical analyzer

do[for] = new 0;



T\_DO

T LBRAKET

T FOR

T RBRAKET

T ASSIGN

T NEW

T\_NUM

T SCOLON

0



| d | 0 | [ | f | 0 | r | ] |  | = |  | n | е | W |  | 0 | ; |
|---|---|---|---|---|---|---|--|---|--|---|---|---|--|---|---|
|---|---|---|---|---|---|---|--|---|--|---|---|---|--|---|---|



- Parsing and lexing
  - Parsing
    - Parsing: Reconstruct the derivation (syntactic structure) of a program.
    - In principle, a single recognizer could work directly from a concrete, character-by-character grammar.
    - In practice this is never done.
  - Lexing and parsing
    - In real compilers the recognizer is split into two phases.
      - Lexical analyzer (scanner): Translate input characters to tokens.
        - · Also, report lexical errors like illegal characters and illegal symbols.
      - Parser: Read token stream and reconstruct the derivation.



- Role of the lexical analyzer
  - Read source code and generate token.

$$<$$
T\_ID, "y">  $<$ T\_ASSIGN>  $<$ T\_NUM, 31>  $<$ T\_PLUS>  $<$ T\_NUM, 28>  $<$ T\_MUL>  $<$ T\_ID, "x">





- Minor roles of lexical analyzer
  - Removal of white space and comments
  - Reading ahead
    - Need to read ahead some characters before its decision as a token.
      - E.g., > and >=
    - Maintain input buffers (fetching character and push back it to the buffer)
  - Management of symbol table
    - Symbol table generation
    - ID insertion/referencing
  - Handling constants
    - Lexical analyzer collects characters to generate integers and compute collaborative numerical value.
    - In parser, translation numbers can be treated as single unit <T\_NUM, 31> <T\_PLUS> < T\_NUM,28>



- Why do we divide two part in a compiler
  - Simplicity of design
    - May requires multiple tokens to parse in parser
  - Improved compiler efficiency
    - Lexical analysis is rather simpler than parser (even automate implementation)
  - Compiler portability
    - Different languages have different tokens (symbols)



Lexing a file

w h i l e ( 1 3 7 < i ) \n \t + + i ;



· Lexing a file





Lexing a file





Lexing a file









Some tokens can have attributes that store extra information about the token. Here we store which integer is represented.



- Token (lexical token)
  - A string with an assigned and identified meaning
  - Structured as a pair consisting of a token name and an optional token value (some tokens may have attributes)
    - Examples: integer constant token will have the actual integer (17, 42, ...) as an attribute; identifiers will have a string with the actual id
  - The token name is a category of lexical unit in the grammar



# Role of the lexical analyzer – self-study page

- · Lexing a file example
  - Input text

if 
$$(x >= y) y = 42;$$

Token Stream







• What tokens are useful here?

```
for (int k = 0; k < myArray[5]; ++k) {
  cout << k << endl;</pre>
        for
        int
        <<
```



- Choosing good tokens
  - Very much dependent on the language
  - Typically
    - Give keywords their own tokens.
    - Give different punctuation symbols their own tokens.
    - Group lexemes representing identifiers, numeric constants, strings, etc. into their own groups.
    - Discard irrelevant information (whitespace, comments)



- Choosing tokens example
  - FORTRAN
    - Whitespace is irrelevant.
    - Can be difficult to tell when to partition input.

DO 5 I = 1.25DO5I = 1.25

- C++
  - Nested template declarations
  - Again, can be difficult to determine where to split.
- PL/1

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

(vector < (vector < (int >> myVector)))

vector < vector < int >> myVector

- Keywords can be used as identifiers.
- Can be difficult to determine how to label lexemes.



- Challenges in scanning
  - How do we determine which lexemes are associated with each token?
  - When there are multiple ways we could scan the input, how do we know which one to pick?
  - How do we address these concerns efficiently?



Associating lexemes with tokens



- Lexemes and tokens
  - Tokens give a way to categorize lexemes by what information they provide.
  - Some tokens might be associated with only a single lexeme:
    - Tokens for keywords like if and while probably only match those lexemes exactly.
  - Some tokens might be associated with lots of different lexemes:
    - All variable names, all possible numbers, all possible strings, etc.



## Choose a token - self-study page

- Typical tokens in programming languages
  - Operators & punctuation:
    - + \* / ( ) { } [ ] ; : :: < <= == !=! ···
    - Each of these is a distinct lexical class
  - Keywords
    - if while for goto return switch void ...
    - Each of these is also a distinct lexical class (not a string)
  - Identifiers
    - A single ID lexical class, but parameterized by actual id
  - Integer constants
    - · A single INT lexical class, but parameterized by int value
  - Other constants, etc.



## Choose a token - self-study page

- Token, pattern, and lexeme
  - Token: <token\_name, optional attributes>
    - token\_name: lexical aunit (e.g., a keyword) or character denoting ID
  - Pattern: description of lexemes
  - Lexeme: a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token

| Token    | Informal description                            | Sample lexemes       |  |  |  |
|----------|-------------------------------------------------|----------------------|--|--|--|
| T_IF     | characters i, f                                 | if                   |  |  |  |
| T_ELSE   | Characters e, I, s, e                           | else                 |  |  |  |
| T_COMP   | <pre>&lt; or &gt; or &lt;= or &gt;= or !=</pre> | <=, !=               |  |  |  |
| T_ID     | letter followed by letters and digits           | pi, score, D2        |  |  |  |
| T_NUM    | any numeric constant                            | 3.14159, 0, 6, 02e23 |  |  |  |
| T_STRING | Anything but ", surrounded by "'s               | "core dumped"        |  |  |  |

- Goals of lexical analysis
  - Convert from physical description of a program into sequence of of tokens.
    - Each token represents one logical piece of the source file a keyword, the name of a variable, etc.
  - Each token is associated with a lexeme.
    - The actual text of the token: "137," "int," etc.
  - Each token may have optional attributes.
    - Extra information derived from the text perhaps a numeric value.
  - The token sequence will be used in the parser to recover the program structure.



#### Set of lexemes

- Idea: Associate a set of lexemes with each token.
- We might associate the "number" token with the set { 0, 1, 2, ..., 10, 11, 12, ... }
- We might associate the "string" token with the set { "", "a", "b", "c", ... }
- We might associate the token for the keyword while with the set { while }.



How do we describe which (potentially infinite) set of lexemes is associated with each token type?



- Formal language
  - A formal language is a set of strings.
    - Many infinite languages have finite descriptions:
      - Define the language using an automaton.
      - Define the language using a grammar.
      - Define the language using a regular expression
    - We can use these compact descriptions of the language to define sets of strings.
    - Over the course of this class, we will use all of these approaches.



- Regular expression
  - Regular expressions are a family of descriptions that can be used to capture certain languages (the regular languages).
  - Often provide a compact and human-readable description of the language.
  - Used as the basis for numerous software systems, including the flex tool we will use in this course.



- Specification of tokens
  - Use regular expressions instead of specifying all lexeme patterns (for efficiency)
    - The lexical grammar (structure) of most programming languages can be specified with regular expressions
    - (Sometimes a little cheating is needed)
- Recognition of tokens
  - Tokens can be recognized by a deterministic finite automaton
  - Can be either table-driven or built by hand based on lexical grammar
- Lexical analyzer
  - Code that implements deterministic finite automaton
  - Lex: lexical analyzer generator



#### Choose a token - self-study page

- Principle of longest match
  - In most languages, the scanner should pick the longest possible string to make up the next token if there is a choice
- Example

```
return maybe != iffy;

<T_RETURN> <T_ID, maybe> <T_NEQ> <T_ID, iffy> <T_SCOLON>
```

- Should be recognized as 5 tokens
  - != is one token, not two
  - "iffy" is an ID, not <T\_IF> followed by <T\_ID, fy>



# Choose a token - self-study page

- Lexical errors
  - fi (a == f(x)) ...
    - Lexer cannot decide it's an error or not, why?
      - Case 1: fi is spelling miss of if
      - Case 2: fi is an undeclared function name
  - Let parser handle it





- Finite automata (FA)
  - Finite automata are finite collections of states with transition rules that take you from one state to another
  - Original application was sequential switching circuits, where the "state" was the settings
    of internal bits
  - Today, several kinds of software can be modeled by finite automata



- Finite automata is used as a model for
  - Software for designing digital circuits
  - Lexical analyzer in compiler
  - Text editor searching for keywords in a file or web
  - Software for verifying finiteness such as communication protocols
- Example
  - Modeling on-off switch
  - Recognizing English words
  - Modeling vending machine
  - Etc.



- Representing finite automata
  - Simplest representation is often a graph
    - Nodes = states
    - Arcs indicate state transitions
    - Labels on arcs tell what causes the transition



• Example: Recognizing strings ending in "ing"





• Example: An even number of 1's





- General comments related to finite automata
  - Some things are easy with finite automata
    - Substrings (···abcabc···)
    - Subsequences (···a···b···c···b···a···)
    - Modular counting (odd number of 1's)
  - Some things are impossible with finite automata (we will prove this later)
    - An equal number of a's and b's
    - More 0's than 1's
  - But when they can be used, they are fast



## Language

#### Alphabets

- An alphabet is any finite set of symbols (characters)
- Examples: ASCII, Unicode, {0,1} (binary alphabet), {a,b,c}

#### • Strings

- The set of strings over an alphabet  $\Sigma$  is the set of lists, each element of which is a member of  $\Sigma$ 
  - Strings shown with no commas, e.g., abc
- $\Sigma^*$  denotes this set of strings
- |s| denotes the length of string s
- $\varepsilon$  denotes the empty string, thus  $|\varepsilon| = 0$



# Language

- Example: Strings
  - $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$
  - Subtlety: 0 as a string, 0 as a symbol look the same
    - Context determines the type

## Language

#### Languages

- A *language* is a subset of  $\Sigma^*$  for some alphabet  $\Sigma$
- Example: The set of strings of 0's and 1's with no two consecutive 1's
- L =  $\{\epsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, 0000, 0001, 0010, 0100, 0100, 0101, 1000, 1001, 1010, . . . \}$



- Deterministic finite automata
  - A formalism for defining languages, consisting of:
    - A finite set of states (Q, typically)
    - An input alphabet (Σ, typically)
    - A transition function (δ, typically)
    - A start state (q<sub>0</sub>, in Q, typically)
    - A set of final states (F ⊆ Q, typically)



- The transition function
  - Takes two arguments: a state and an input symbol
  - $\delta(q, a)$  = the state that the DFA goes to when it is in state q and input a is received



- Graph representation of DFA's
  - Nodes = states
  - Arcs represent transition function
    - Arc from p to q labeled by all those input symbols that have transitions from p to q
  - Arrow labeled "start" to the start state
  - Final states indicated by double circles



- Example: Graph of a DFA
  - Accepts all strings without two consecutive 1's



Previous string OK, does not end in 1

Previous
String OK,
ends in a
single 1

Consecutive 1's have been seen



Example: Transition table of a DFA





- Language of a DFA
  - Automata of all kinds define languages
  - If A is an automaton, L(A) is its language
  - For a DFA A, L(A) is the set of strings labeling paths from the start state to a final state
  - Formally: L(A) = the set of strings w such that  $\delta(q_0, w)$  is in F



- Example: String in a language
  - String 101 is in the language of the DFA below
    - Start at A
    - Follow arc labeled 1
    - Then arc labeled 0 from current state B
    - Finally arc labeled 1 from current state A (result is an accepting state, so 101 is in the language)



The language of this DFA is: {w | w is in {0,1}\* and w does not have two consecutive 1's}



#### Regular languages

- A language L is *regular* if it is the language accepted by some DFA
  - Note: the DFA must accept only the strings in L, no others
- Regular Languages can be described in many ways, e.g., regular expressions
- They appear in many contexts and have many useful properties
- Examples
  - the strings that represent floating point numbers in your favorite language is a regular language
  - $L_3 = \{ w \mid w \text{ in } \{0,1\}^* \text{ and } w, \text{ viewed as a binary integer is divisible by 23} \}$
- Some languages are not regular
  - Intuitively, regular languages "cannot count" to arbitrarily high integers



- Example: A nonregular language
  - $L_1 = \{0^n1^n \mid n \ge 1\}$ 
    - Note: ai is conventional for i a's
      - Thus,  $0^4 = 0000$
    - Read: "The set of strings consisting of n 0's followed by n 1's, such that n is at least 1.
    - Thus,  $L_1 = \{01, 0011, 000111, \cdots\}$
  - L<sub>2</sub> = {w | w in {(, )}\* and w is *balanced* }
    - Note: alphabet consists of the parenthesis symbols '(' and ')'
    - Balanced parenthesis are those that can appear in an arithmetic expression
      - E.g.: (), ()(), (()), (()()), ...



#### Nondeterminism

- A nondeterministic finite automaton has the ability to be in several states at once
- Transitions from a state on an input symbol can be to any set of states
- Sequence
  - Start in one start state
  - Accept if any sequence of choices leads to a final state
  - Intuitively: the NFA always "guesses right"



## Nondeterminism

- Example: Moves on a chessboard
  - States = squares
  - Inputs = r (move to an adjacent red square) and b (move to an adjacent black square)
  - Start state, final state are in opposite corners

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |



|          |   | r       | b       |
|----------|---|---------|---------|
| <b>-</b> | 1 | 2,4     | 5       |
|          | 2 | 4,6     | 1,3,5   |
|          | 3 | 2,6     | 5       |
|          | 4 | 2,8     | 1,5,7   |
|          | 5 | 2,4,6,8 | 1,3,7,9 |
|          | 6 | 2,8     | 3,5,9   |
|          | 7 | 4,8     | 5       |
|          | 8 | 4,6     | 5,7,9   |
| *        | 9 | 6,8     | 5       |



← Accept, since final state reached 57

- Formal nondeterministic finite automata (NFA)
  - A finite set of states, typically Q
  - An input alphabet, typically Σ
  - A transition function, typically δ
  - A start state in Q, typically q<sub>0</sub>
  - A set of final states F ⊆ Q
- Transition function of an NFA
  - $\delta(q, a)$  is a set of states



- Language of an NFA
  - A string w is accepted by an NFA if  $\delta(q_0, w)$  contains at least one final state
  - That is, there exists a sequence of valid transitions from  $q_0$  to a final state given the input w
  - The language of the NFA is the set of strings it accepts



#### Example NFA

• Set of all strings with two consecutive a's or two consecutive b's



 Note that some states have an empty transition on an a or b, and some have multiple transitions on a or b



- Equivalence of DFA's, NFA's
  - DFA → NFA
    - A DFA can be turned into an NFA that accepts the same language
    - If  $\delta_D(q, a) = p$ , let the NFA have  $\delta_N(q, a) = \{p\}$
    - Then the NFA is always in a set containing exactly one state the state the DFA is in after reading the same input
  - NFA → DFA
    - For any NFA there is a DFA that accepts the same language
    - Proof is the *subset construction*
    - The number of states of the DFA can be exponential in the number of states of the NFA
    - Thus, NFA's accept exactly the regular languages



#### Subset construction

- Given an NFA with states Q, inputs  $\Sigma$ , transition function  $\delta_N$ , state state  $q_0$ , and final states F, construct equivalent DFA with:
  - States 2<sup>Q</sup> (Set of subsets of Q)
  - Inputs Σ
  - Start state {q<sub>0</sub>}
  - Final states = all those with a member of F
  - The transition function  $\delta_D$  is defined by:  $\delta_D(\{q_1, \dots, q_k\}, a)$  is the union over all  $i = 1, \dots, k$  of  $\delta_N(q_i, a)$
- Critical points
  - The DFA states have names that are sets of NFA states
  - But as a DFA state, an expression like {p,q} must be read as a single symbol, not as
    a set



• Example: Subset construction

|         |   | r       | b       |
|---------|---|---------|---------|
| <b></b> | 1 | 2,4     | 5       |
|         | 2 | 4,6     | 1,3,5   |
|         | 3 | 2,6     | 5       |
|         | 4 | 2,8     | 1,5,7   |
|         | 5 | 2,4,6,8 | 1,3,7,9 |
|         | 6 | 2,8     | 3,5,9   |
|         | 7 | 4,8     | 5       |
|         | 8 | 4,6     | 5,7,9   |
| *       | 9 | 6,8     | 5       |

|              | r     | b   |
|--------------|-------|-----|
| <b>─</b> {1} | {2,4} | {5} |
| {2,4}        |       |     |
| {5}          |       |     |
|              |       |     |
|              |       |     |
|              |       |     |
|              |       |     |

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to





|          |   | r       | b       |
|----------|---|---------|---------|
| <b>→</b> | 1 | 2,4     | 5       |
|          | 2 | 4,6     | 1,3,5   |
|          | 3 | 2,6     | 5       |
|          | 4 | 2,8     | 1,5,7   |
|          | 5 | 2,4,6,8 | 1,3,7,9 |
|          | 6 | 2,8     | 3,5,9   |
|          | 7 | 4,8     | 5       |
|          | 8 | 4,6     | 5,7,9   |
| *        | 9 | 6,8     | 5       |

|                | r         | b         |
|----------------|-----------|-----------|
| <b>─</b> → {1} | {2,4}     | {5}       |
| {2,4}          | {2,4,6,8} | {1,3,5,7} |
| {5}            |           |           |
| {2,4,6,8}      |           |           |
| {1,3,5,7}      |           |           |
|                |           |           |
|                |           |           |



|          |   | r       | b       |
|----------|---|---------|---------|
| <b>→</b> | 1 | 2,4     | 5       |
|          | 2 | 4,6     | 1,3,5   |
|          | 3 | 2,6     | 5       |
|          | 4 | 2,8     | 1,5,7   |
|          | 5 | 2,4,6,8 | 1,3,7,9 |
|          | 6 | 2,8     | 3,5,9   |
|          | 7 | 4,8     | 5       |
|          | 8 | 4,6     | 5,7,9   |
| *        | 9 | 6,8     | 5       |

|   |                | r         | b         |
|---|----------------|-----------|-----------|
|   | <b>─</b> → {1} | {2,4}     | {5}       |
|   | {2,4}          | {2,4,6,8} | {1,3,5,7} |
|   | {5}            | {2,4,6,8} | {1,3,7,9} |
|   | {2,4,6,8}      |           |           |
|   | {1,3,5,7}      |           |           |
| k | {1,3,7,9}      |           |           |
|   |                |           |           |
|   |                |           |           |



|         |   | r       | b       |
|---------|---|---------|---------|
| <b></b> | 1 | 2,4     | 5       |
|         | 2 | 4,6     | 1,3,5   |
|         | 3 | 2,6     | 5       |
|         | 4 | 2,8     | 1,5,7   |
|         | 5 | 2,4,6,8 | 1,3,7,9 |
|         | 6 | 2,8     | 3,5,9   |
|         | 7 | 4,8     | 5       |
|         | 8 | 4,6     | 5,7,9   |
| *       | 9 | 6,8     | 5       |

|                | r         | b           |
|----------------|-----------|-------------|
| <b>─</b> → {1} | {2,4}     | {5}         |
| {2,4}          | {2,4,6,8} | {1,3,5,7}   |
| {5}            | {2,4,6,8} | {1,3,7,9}   |
| {2,4,6,8}      | {2,4,6,8} | {1,3,5,7,9} |
| {1,3,5,7}      |           |             |
| * {1,3,7,9}    |           |             |
| * {1,3,5,7,9}  |           |             |



|          |   | r       | b       |
|----------|---|---------|---------|
| <b>→</b> | 1 | 2,4     | 5       |
|          | 2 | 4,6     | 1,3,5   |
|          | 3 | 2,6     | 5       |
|          | 4 | 2,8     | 1,5,7   |
|          | 5 | 2,4,6,8 | 1,3,7,9 |
|          | 6 | 2,8     | 3,5,9   |
|          | 7 | 4,8     | 5       |
|          | 8 | 4,6     | 5,7,9   |
| *        | 9 | 6,8     | 5       |

|                | r         | b           |
|----------------|-----------|-------------|
| <b>─</b> → {1} | {2,4}     | {5}         |
| {2,4}          | {2,4,6,8} | {1,3,5,7}   |
| {5}            | {2,4,6,8} | {1,3,7,9}   |
| {2,4,6,8}      | {2,4,6,8} | {1,3,5,7,9} |
| {1,3,5,7}      | {2,4,6,8} | {1,3,5,7,9} |
| * {1,3,7,9}    |           |             |
| * {1,3,5,7,9}  |           |             |
|                | !         | 1           |



|          |   | r       | b       |
|----------|---|---------|---------|
| <b>→</b> | 1 | 2,4     | 5       |
|          | 2 | 4,6     | 1,3,5   |
|          | 3 | 2,6     | 5       |
|          | 4 | 2,8     | 1,5,7   |
|          | 5 | 2,4,6,8 | 1,3,7,9 |
|          | 6 | 2,8     | 3,5,9   |
|          | 7 | 4,8     | 5       |
|          | 8 | 4,6     | 5,7,9   |
| *        | 9 | 6,8     | 5       |

|               | r         | b           |
|---------------|-----------|-------------|
| <b>→</b> {1}  | {2,4}     | {5}         |
| {2,4}         | {2,4,6,8} | {1,3,5,7}   |
| {5}           | {2,4,6,8} | {1,3,7,9}   |
| {2,4,6,8}     | {2,4,6,8} | {1,3,5,7,9} |
| {1,3,5,7}     | {2,4,6,8} | {1,3,5,7,9} |
| * {1,3,7,9}   | {2,4,6,8} | <b>{5</b> } |
| * {1,3,5,7,9} |           |             |
|               | ļ .       |             |



|          |   | r       | b       |
|----------|---|---------|---------|
| <b>→</b> | 1 | 2,4     | 5       |
|          | 2 | 4,6     | 1,3,5   |
|          | 3 | 2,6     | 5       |
|          | 4 | 2,8     | 1,5,7   |
|          | 5 | 2,4,6,8 | 1,3,7,9 |
|          | 6 | 2,8     | 3,5,9   |
|          | 7 | 4,8     | 5       |
|          | 8 | 4,6     | 5,7,9   |
| *        | 9 | 6,8     | 5       |

|               | r         | b           |
|---------------|-----------|-------------|
| <b>→</b> {1}  | {2,4}     | {5}         |
| {2,4}         | {2,4,6,8} | {1,3,5,7}   |
| {5}           | {2,4,6,8} | {1,3,7,9}   |
| {2,4,6,8}     | {2,4,6,8} | {1,3,5,7,9} |
| {1,3,5,7}     | {2,4,6,8} | {1,3,5,7,9} |
| * {1,3,7,9}   | {2,4,6,8} | {5}         |
| * {1,3,5,7,9} | {2,4,6,8} | {1,3,5,7,9} |
|               | 1         |             |



#### ε-NFA

- NFA's with ε-transitions
  - We can allow state-to-state transitions on ε input.
  - These transitions are done spontaneously, without looking at the input string.
  - A convenience at times, but still only regular languages are accepted.



## ε-NFA

• Example







#### ε-NFA

- Closure of states
  - CL(q) = set of states you can reach from state q following only arcs labeled  $\varepsilon$
  - Example
    - $CL(A) = \{A\};$
    - CL(E) = {B, C, D, E}
  - Closure of a set of states = union of the closure of each state





#### ε-NFA

- Equivalence of NFA, ε-NFA
  - Every NFA is an ε-NFA
    - It just has no transitions on  $\epsilon$
  - Converse requires us to take an  $\epsilon-NFA$  and construct an NFA that accepts the same language
  - We do so by combining ε-transitions with the next transition on a real input



#### ε-NFA

- Equivalence
  - Start with an  $\epsilon$ -NFA with states Q, inputs  $\Sigma$ , start state  $q_0$ , final states F, and transition function  $\delta_E$
  - Construct an "ordinary" NFA with states Q, inputs  $\Sigma,$  start state  $q_0,$  final states F', and transition function  $\delta_N$
  - Compute  $\delta_N(q, a)$  as follows
    - Let S = CL(q)
    - $\delta_N(q, a)$  is the union over all p in S of  $\delta_E(p, a)$
  - F' = the set of states q such that CL(q) contains a state of F
  - Intuition:  $\delta_N$  incorporates  $\epsilon$ -transitions before using a but not after



#### ε-NFA

Example: ε-NFA-to-NFA

ε-NFA



Since closures of B and E include

final state D.

Interesting closures:

$$CL(B) = \{B, D\};$$

$$CL(E) = \{B,C,D,E\}$$

Since closure of E includes B and C; which have transitions on 1 to C and D





# Minimization of DFAsupplementary page

#### Minimization of DFA

- DFA is efficient in terms of time (execution time), but inefficient interms of space (number of states)
- For any regular language L, there exists a unique minimized DFA M.
- Step 1: partition states into 2 groups: accepting and non-accepting
- Step 2: in each group, find a sub-group of states having property P
  - P: The states have transitions on each symbol (in the alphabet) to the same group
- Step 3: if a sub-group does not obey P split up the group into a separate group
  - Go back to step 2. If no further sub-groups emerge then continue to step 4
- Step 4: each group becomes a state in the minimized DFA
  - Transitions to individual states are mapped to a single state representing the group of states



# Minimization of DFAsupplementary page

- Example
  - Step 1: partition states into 2 groups: accepting and non-accepting





# Minimization of DFA – supplementary page

#### • Example

- Step 2: in each group, find a sub-group of states having property P
  - P: The states have transitions on each symbol (in the alphabet) to the same group

A, 0: blue

A, 1: yellow

E, 0: blue

E, 1: yellow

D, 0: yellow

D, 1: yellow



B, 0: blue

B, 1: yellow

C, 0: blue

C, 1: yellow



# Minimization of DFAsupplementary page

#### • Example

- Step 3: if a sub-group does not obey P split up the group into a separate group
  - Go back to step 2. If no further sub-groups emerge then continue to step 4

A, 0: blue

A, 1: green

E, 0: blue

E, 1: green

D, 0: yellow

D, 1: green



B, 0: blue

B, 1: green

C, 0: blue

C, 1: green



# Minimization of DFAsupplementary page

#### • Example

- Step 4: each group becomes a state in the minimized DFA
  - Transitions to individual states are mapped to a single state representing the group of states





- Formal definition of equivalent and distinguishable states
  - Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA, and  $\{p, q\} \in Q$ .
  - We define p = q as:
    - For any string  $w \in \Sigma^*$ ,  $\delta^*(p, w) \in F$  iff  $\delta^*(q, w) \in F$
    - If  $p \equiv q$ , we say that p and q are equivalent.
  - We define p ≠ q as:
    - There exists **some** string w such that  $\delta^*(p, w) \in F$  and  $\delta^*(q, w) \notin F$ , or vice versa.
    - If  $p \not\equiv q$ , we say that p and q are distinguishable.



• Example



$$a \not\equiv g$$
?  $\delta^*(a, 01) = c \in F$ ,  $\delta^*(g, 01) = e \notin F$   
Therefore  $a \not\equiv g$ 

$$c \not\equiv g$$
  $\delta^*(c, \epsilon) = c \in F, \, \delta^*(g, \epsilon) = g \notin F$   
Therefore,  $c \not\equiv g$ 

$$\begin{array}{l} w = 01 : \delta^*(a,\,01) = c \in F, \, \delta^*(e,\,01) = c \in F \\ - \, w = 0 : \delta^*(a,\,0) = b \not \in F, \, \delta^*(e,\,0) = h \not \in F \\ - \, w = 00110 : \delta^*(a,\,00110) = c \in F = \delta^*(e,\,00110) \\ - \, w = 1100110 : ?? \end{array}$$



8

- Example
  - Basis: Find all pairs (p, q) where p ∈ F and q ∉ F; Then, mark them by √ by as follows:



Mark  $\sqrt{ }$  in {(a, c), (b, c), (d, c), (e, c), (f, c), (g, c), (h, c)}



- Example
  - Induction



|        | 0         | 1         |
|--------|-----------|-----------|
| (a, b) |           | (f, c): √ |
| (a, d) | (b, c): √ |           |
| (a, f) | (b, c): √ |           |
| (a, h) | (b, c): √ |           |
| (b, c) |           | (c, a): √ |
| (b, d) | (g, c): √ |           |
| (b, f) | (g, c): √ |           |
|        |           |           |





- Example
  - Induction



|        | 0         | 1         |
|--------|-----------|-----------|
| (a, e) | (b, h)    | (f, f)    |
| (a, g) | (b, g)    | (f, e): √ |
| (b, h) | (g, g)    | (c, c)    |
| (d, f) | (c, c)    | (g, g)    |
| (e, g) | (h, g): √ | (f, e)    |
|        |           |           |
|        |           |           |
|        |           |           |





- Example
  - If p and q are <u>not</u> distinguished by this, then  $p \equiv q$



Equivalent states:

a≡e,

 $b \equiv h$ ,

 $d \equiv f$ 







Equivalent states:

 $a \equiv e$ ,  $b \equiv h$ ,  $d \equiv f$ 



Minimized





# Regular expression



- Informal definition
  - A sequence of characters that specifies a match pattern in text
- Formal definition
  - Basis
    - 1) Ø is RE
    - 2) ε is RE
      - $\varepsilon$  is a regular expression denoting language  $\{\varepsilon\}$
    - 3) For any symbol  $a \in \Sigma$ , a is RE
      - $a \in \Sigma$  is a regular expression denoting  $\{a\}$



#### Definition

- Induction If r and s are regular expressions denoting languages L(r) and M(s) respectively, then
  - 4) r + s is also RE (union also notated as r | s)
    - r + s is a regular expression denoting  $L(r) \cup M(s)$
  - 5) r · s is also RE (concatenation)
    - rs is a regular expression denoting L(r)M(s)
  - 6) r\* is also RE (star closure)
    - $r^*$  is a regular expression denoting  $L(r)^*$
  - 7) (r) is also RE (parenthesis)
    - (r) is a regular expression denoting L(r)
- It is represented with three operators, union(+), concatenation(·), star closure(\*)



Excludes (r) for the convenience



- Example
  - Let  $\Sigma = \{a, b\}$ 
    - a + b
    - (a + b)(a + b)
    - a\*
    - $(a + b)^*$
    - a + a\*b



Precedence of opeartors

- $0 \cdot 1^* + 1 = (0 \cdot (1)^*) + 1$
- Other examples
  - (0 + 1)\*00(0+1)\*
  - (1 + 10)\*
  - $(0 + \varepsilon)(1 + 10)^*$
  - $(00)*(11)*1 = \{0^{2n}1^{2m+1} \mid n, m > 0\}$
  - (0 + 1)\*(00 + 1)
  - (letter) (letter + digit)\*
  - $(01)^* + (10)^* + 0(10)^* + 1(01)^*$
  - (0 + 1)\*(00 + 01 + 10 + 11)\*(0 + 1)\*



#### Arithmetic law

• 
$$r + s = s + r$$

• 
$$r + (s + t) = (r + s) + t$$

• 
$$(r \cdot s) \cdot t = r \cdot (s \cdot t)$$

• 
$$\mathbf{r} \cdot (\mathbf{s} + \mathbf{t}) = (\mathbf{r} \cdot \mathbf{s}) + (\mathbf{r} \cdot \mathbf{t})$$

• 
$$(r + \varepsilon)^* = r^*$$

• 
$$r \cdot \epsilon = r = \epsilon \cdot r$$

• 
$$\mathbf{r} \cdot \mathbf{Ø} = \mathbf{Ø} = \mathbf{Ø} \cdot \mathbf{r}$$

• 
$$r + r \cdot s^* = r \cdot s^*$$

• 
$$(r^*)^* = r^*$$

• 
$$\mathbf{r} \cdot \mathbf{r}^* = \mathbf{r}^+ = \mathbf{r}^* \cdot \mathbf{r}$$

(commutative)

(associative)

(associative)

(distributive)

(guaranteed in a closure)

(identity element for concatenation)

(\* is idempotent)



- Convert R.E. into ε-NFA
  - For every R.E. R., we can construct  $\varepsilon$ -NFA M such that L(R) = L(M).
  - (Basis)
    - $R = \emptyset$ :



•  $R = \epsilon$ :



•  $R = a (\subseteq \Sigma)$ :



- Convert R.E. into ε-NFA
  - (Induction Step)
    - Let
      - M1 = (Q<sub>1</sub>,  $\Sigma_1$ ,  $\delta_1$ , q<sub>1</sub>, {f<sub>1</sub>}) be a  $\epsilon$ -NFA for R1
      - M2 = (Q<sub>2</sub>,  $\Sigma_2$ ,  $\delta_2$ , q<sub>2</sub>, {f<sub>2</sub>}) be a  $\epsilon$ -NFA for R2



- Convert R.E. into ε-NFA
  - (Induction Step)
    - Case 1: R1 + R2:
      - We construct  $\epsilon$ -NFA M for R1 + R2 as follows: M = (Q<sub>1</sub>  $\cup$  Q<sub>2</sub>  $\cup$  {q<sub>0</sub>, f<sub>0</sub>},  $\Sigma$ <sub>1</sub>  $\cup$   $\Sigma$ <sub>2</sub>,  $\delta$ , q<sub>0</sub>, {f<sub>0</sub>})



M2 (R2)



- Convert R.E. into ε-NFA
  - (Induction Step)
    - Case 2: R1 · R2 :
      - We construct  $\epsilon$ -NFA M for R1 · R2 as follows:  $M = (Q_1 \cup Q_2, \Sigma_1 \cup \Sigma_2, \delta, q_1, \{f_2\})$





M2 (R2)

- Convert R.E. into ε-NFA
  - (Induction Step)
    - Case 3: R1\*:
      - We construct  $\varepsilon$ -NFA M for R1\* as follows: M = (Q<sub>1</sub>  $\cup$  {q<sub>0</sub>, f<sub>0</sub>},  $\Sigma$ <sub>1</sub>,  $\delta$ , q<sub>0</sub>, {f<sub>0</sub>})





# Equility





# Questions?



