ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА Факультет прикладної математики та інформатики

Кафедра дискретного аналізу

Теорія прийняття рішень Лабораторна робота №4 Відновлення цільових функцій в мультиплікативному вигляді за дискретною вибіркою

Виконав Студент групи ПМІ-43 Заречанський Олексій Викладач Доц. Хімка У.

q_0	X_{11}	X_{12}	X_{21}	X_{22}	X_{31}	X_{32}	X_{33}	Y_1	Y_2	Y_4	Y_4
1	2,050	22,015	1,050	4,015	5,000	1,000	8,100	154,621	158,145	219,406	227,683
2	5,150	16,100	1,150	9,109	15,800	2,100	4,200	398,163	173,368	192,651	190,123
3	8,200	10,125	1,192	14,125	22,500	2,500	3,500	587,411	271,084	187,691	183,576
4	11,250	4,175	1,250	19,175	28,700	3,510	2,720	767,197	383,567	78,793	174,789
5	14,325	1,200	4,325	24,198	34,500	4,200	2,530	966,547	493,813	79,497	154,316
6	17,350	0,250	8,350	29,251	39,000	5,020	2,100	1153,789	601,378	177,082	132,817
7	20,490	5,400	12,411	34,495	46,700	8,200	1,150	1210,926	855,579	267,758	257,425
8	23,698	10,500	16,505	28,498	53,800	10,100	0,720	1851,381	960,432	371,956	289,519
9	26,900	15,700	20,610	22,598	65,000	12,800	0,540	1987,364	1176,283	491,123	321,374
10	29,450	20,700	24,695	16,699	82,000	14,400	0.150	2536,123	1293,657	512,859	549,173
11	32,750	25,750	21,750	9,748	95,400	16,700	0,550	2292,341	1578,624	653,717	784,136
12	28,800	30,775	18,804	4,775	102,800	18,500	1,760	1988,324	2354,324	717,965	879,153
13	24,950	35,800	15,850	2,798	117,000	21,300	2,230	1326,939	3478,926	955,912	901,239
14	20,840	40,850	12,050	7,850	129,780	25,700	4,610	857,128	4588,675	1169,359	1225,48
15	16,910	34,855	9,910	13,855	99,000	29,900	6,160	605,327	5499,367	1292,924	1340,97
16	10,925	22,865	5,925	19,865	85,500	32,500	8,250	458,386	6468,567	1318,549	1875,84
17	4,929	16,885	1,011	25,875	71,900	28,700	12,370	218,859	7353,932	1257,354	1916,12
18	2,933	4,915	5,933	31,899	57,500	24,200	14,260	195,737	9335,124	984,167	863,92
19	1,935	8,950	10,935	37,951	43,580	19,100	16,510	106,168	11261,946	716,375	703,15
20	3,950	16,975	16,950	42,975	29,400	19,700	19,740	185,761	12151,387	541,326	631,19
21	9,810	20,995	22,950	35,015	15,500	21,000	15,140	790,639	13910,519	475,651	571,58
22	12,750	24,975	28,108	27,975	12,500	23,560	13,350	1323,784	15485,142	244,856	436,84
23	15,150	28,950	34,251	19,950	9,800	25,300	8,580	1831,438	17688,125	448,314	341,84
24	18,200	32,900	38,204	12,915	6,500	28,700	6,740	2321,321	19883,435	644,716	239,42
25	21,450	36,875	34,248	6.875	4,400	31,560	4,850	2891,845	14972,834	829,942	122,14
26	24,325	40,865	28,325	1,865	2,500	37,100	6,210	3308,614	9080,562	949,316	95,954
27	27,350	46,855	23,351	5,855	1,300	34,700	9,520	3529,956	7887,987	1148,231	150,49
28	30,400	52,850	18,408	9,850	4,700	26,200	10,750	4730,129	5688,951	1347,987	254,89
29	34,500	47,775	13,495	14,775	11,200	23,700	12,950	5917,152	3455,494	1542,967	458,28
30	29,600	42,750	8,607	19,750	14,700	20,360	8,100	8678,654	1211,209	1732,856	672,16
31	24,700	37,710	3,697	25,697	17,800	17,700	4,150	9212,145	996,197	1915,632	853,35
32	19,750	32,603	1,750	31,605	20,100	13,340	2,360	12886,243	677,325	1493,135	427,16
33	14,800	27,495	2,798	37,495	40,520	11,720	1,350	12362,345	364,615	1177,824	206,12
34	9,850	22,394	5,850	44,415	65,200	9,900	2,130	10632,879	152,534	963,453	182,65
35	4,907	17,245	8,913	36,255	80,760	7,740	4,570	9267,156	45,178	779,167	93,834
36	1,910	12,192	12,910	28,205	91,100	6,360	6,750	7070,531	36,176	580,836	71,34
37	6,925	7,175	17,925	19,175	109,500	5,700	9,260	4984,243	20,364	287,192	66,84
38	12,929	2,125	22,929	9.125	122,900	4,750	11,790	2881,956	10,428	185,834	93,952

3.6. Варіанти завдання

									3	акінчення	табл. 3.,
q_o	X ₁₁	X ₁₂	X ₂₁	X ₂₂	X ₃₁	X ₃₂	X ₃₃	Y_1	Y_2	Y ₄	Y_4
39	18,010	1,105	27,933	3,091	128,300	3,650	13,120	1616,829	8,475	301,985	109,463
40	24,935	3,010	21,935	1,985	94,500	3,520	15,360	973,329	16,924	528,591	233,415
41	19,950	13,110	15,950	4,115	57,600	2,720	12,850	449,421	54,183	602,861	308,613
42	14,020	18,115	3,995	9,115	35,800	2,340	10,340	225,356	96,324	705,817	407,319
43	9,050	12,128	9,950	15,120	15,260	2,160	12,680	176,578	176,457	978,473	282,263
44	4,935	6,131	17,935	22,130	9,520	1,760	14,320	170,948	195,814	1081,417	184,132
45	1,925	2,135	25,925	29,135	4,800	1,480	16,160	168,334	204,549	1178,653	61,953

Вибірка 1, ст. 64-65 підручника. Структура наближувальних функцій:

$$[1 + a_{i_k j_k} \Psi_{k j_k}(x_{k j_k}) = \prod_{p j_k = 1}^{P_{k j_k}} \left[1 + \lambda_{k j_k} T_{p j_k}^*(x_{k j_k}) \right]^{V_{k j_k}};$$

$$\Psi_{k j_k}(x_{k j_k}) = \frac{1}{a_{i_k j_k}} \left\langle \exp \left\{ \lambda_{0 j_k} \ln 1, 5 + \sum_{p j_k = 1}^{P_{k j_k}} V_{p j_k} \ln [1 + \lambda_{k j_k} T_{p j_k}^*(x_{k j_k})] \right\} - 1 \right\rangle.$$

Варіанти функцій $\varphi_{p_k}(x_{j_k})$:

$$\begin{split} & \phi_{p_k}(x_{j_k}) \Rightarrow T_n^*(x); \ \, \phi_{0j_k} = \lambda_{0j_k} \, \ln(1+T_0^*) = \lambda_{0j_k} \, \ln 1,5; \ \, k = \overline{1,K_0}; \ \, j_k = \overline{1,n_k}. \\ & \phi_{p_k}(x_{j_k}) \Rightarrow T_n(x); \ \, \phi_{0j_k} = \lambda_{0j_k} \, \ln(1+T_0^*) = \lambda_{0j_k} \, \ln 1,5; \ \, k = \overline{1,K_0}; \ \, j_k = \overline{1,n_k}. \\ & \phi_{p_k}(x_{j_k}) \Rightarrow U_n^*(x); \ \, \phi_{0j_k} = \lambda_{0j_k} \, \ln(1+U_0^*) = \lambda_{0j_k} \, \ln 1,5; \ \, k = \overline{1,K_0}; \ \, j_k = \overline{1,n_k}. \end{split}$$

- 1. Для цієї лабораторної я створив копію програми яка використовувалась для минулої лабораторної, оскільки для них підходить той самий інтерфейс, тобто потрібно замінити лише логіку обрахувань, для яких я використав точність 1е-9.
- 2. Вхідні параметри для програми:
 - Розмір вибірки 45
 - Розмірності векторів $x_1 2, x_2 2, x_3 3$
 - Кількість функцій для відновлень 4
 - Степені поліномів як і в попередній лабораторній роботі 2, 3, 4.
- 3. На скріншотах показані всі обраховані значення, лямбди, матриць A та C і відновлені функції.

4. На скріншоті нижче показані графіки функцій в порівнянні з даними з текстового файлу.

Також нижче показана нев'язка відновленої функції та вихідних даних,

яка оцінюється як абсолютне значення різниці справжніх даних та обрахованих апроксимацією функції.

Y1 Error	Y2 Error				
0,643339820943314	0.423991761972887				
Y3 Error	Y4 Error				
0,561910822659538	0,539502376325536				

Як видно найменша нев'язність у графіку номер 2, який відповідає другій відновленій функції.