课程编号: A073122

北京理工大学 2015-2016 学年第一学期

线性代数 A试题 A卷

题号	_	<u></u>	三	四	五	六	七	八	九	+	总分
得											
分											
签 名											
名											

一、(10分)已知矩阵
$$A = \begin{pmatrix} 3 & -5 & 1 \\ 1 & -1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$
,矩阵 X 满足 $\frac{1}{3}A^*XA = 2A + XA$,求 X

解:由 $\frac{1}{3}$ A* XA = 2 A + XA 有

$$\frac{1}{3} |A| X = 2 A + A X ,$$

进而有 $X = 2A + AX \Rightarrow (I - A)X = 2A$, 即

$$X = 2(I - A)^{-1} A$$

又因为

$$(I - A)^{-1} = \begin{pmatrix} -2 & 5 & -1 \\ -1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -2 & 5 & 2 \\ -1 & 3 & 1 \\ -2 & 5 & 1 \end{pmatrix},$$

所以

$$X = 2 \begin{pmatrix} -2 & 5 & 2 \\ -1 & 3 & 1 \\ -2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 3 & -5 & 1 \\ 1 & -1 & 0 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -6 & 10 & 4 \\ -2 & 4 & 2 \\ -4 & 10 & 0 \end{pmatrix}.$$

二、(10分)已知平面上三条直线的方程

$$x - y + a = 0$$
, $2x + 3y - 1 = 0$, $x - ay - \frac{1}{2} = 0$

讨论参数 a的取值与这三条直线相互位置之间的关系.

解:写出方程组的增广矩阵并化为阶梯形

$$\overline{A} = \begin{pmatrix} 1 & -1 & -a \\ 2 & 3 & 1 \\ 1 & -a & 1/2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & -a \\ 0 & 5 & 1+2a \\ 0 & 1-a & 1/2+a \end{pmatrix} = \overline{B}$$

- (1) 若 = 1, 上述矩阵已化为阶梯形, 此时, 方程组无解, 三条直线中第一条与第三条平行但不重合, 与第二条相交.
- (2) 若 瓣≠1,继续进行初等行变换,有

$$\overline{B} = \begin{pmatrix}
1 & -1 & -a \\
0 & 5 & 1+2a \\
0 & 1-a & 1/2+a
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & -1 & -a \\
0 & 5 & 1+2a \\
0 & 0 & (2a+1)(2a+3)
\end{pmatrix}$$

- ① 当 $a \neq 1$, $a \neq -\frac{1}{2}$ 且 $a \neq -\frac{3}{2}$ 时,方程组无解. 此时,三条直线不交于一点,但任意两条直线都相交.
- ② 当 $a = -\frac{1}{2}$ 时,方程组有唯一解 $x = \frac{1}{2}$,y = 0 ,此时,三条直线交于点($\frac{1}{2}$,0),且任意两条直线不重合.
- ③ 当 $a = -\frac{3}{2}$ 时,方程组有唯一解 $x = \frac{11}{10}$, $y = -\frac{2}{5}$,此时,三条直线交于($\frac{11}{10}$, $-\frac{2}{5}$),且其中后两条直线重合.

三、(10分)已知向量组

$$\alpha_{1} = (1,1,1,a)^{T}, \alpha_{2} = (1,1,a,1)^{T}, \alpha_{3} = (1,a,1,1)^{T}, \alpha_{4} = (a,1,1,1)^{T}$$

- (1) 讨论 a 的取值与向量组 α , α , α , α , α 的秩之间的关系;
- (2) 对 a 的不同取值, 确定向量空间 $L(\alpha, \alpha, \alpha, \alpha, \alpha)$ 的维数与基.

解:(1)

$$(\alpha_1',\alpha_2',\alpha_3',\alpha_4') = \begin{pmatrix} 1 & 1 & 1 & a \\ 1 & 1 & a & 1 \\ 1 & a & 1 & 1 \\ a & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 0 & a-1 & 1-a \\ 0 & a-1 & 0 & 1-a \\ 0 & 1-a & 1-a & 1-a^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a-1 & 0 & 1-a \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & 0 & 3-2a-a^2 \end{pmatrix}$$

2

①当a=1 时,向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩为 1

②当a = -3 时,向量组 α , α , α , α , α , 的秩为 3

③当 $a \neq 1$, $\rightarrow 3$ 时,向量组 α , α , α , α , α , 的秩为 4.

(2)

①当a=1 时,向量空间 $L(\alpha,\alpha,\alpha,\alpha,\alpha)$ 的维数为 1, α 是一个基;

②当a = -3 时,向量空间 $L(\alpha, \alpha, \alpha, \alpha, \alpha)$ 的维数为 3, α, α, α 是一个基;

③当 $_{a} \neq 1$, $_{3}$ 时,向量空间 $_{L}(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})$ 的维数为 **4**, $_{\alpha_{1}},\alpha_{2},\alpha_{3},\alpha_{4}$ 是一个基. 四、(**10**分)在实数域上的二阶矩阵构成的线性空间中,

(1)
$$\sqrt[3]{4} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, I_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 到基底

$$E_1 = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}$, $E_4 = \begin{pmatrix} 6 & 6 \\ 1 & 3 \end{pmatrix}$ 的过渡矩阵.

(2) 求非零矩阵 A 使 A在这两组基下的坐标相等.

解:(1)

$$E_{1} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = 2 I_{1} + I_{2} - I_{3} + I_{4},$$

$$E_{2} = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = 3 I_{2} + I_{3},$$

$$E_{3} = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} = 5 I_{1} + 3 I_{2} + 2 I_{3} + I_{4},$$

$$E_{4} = \begin{pmatrix} 6 & 6 \\ 1 & 3 \end{pmatrix} = 6 I_{1} + 6 I_{2} + I_{3} + 3 I_{4}.$$

所以过渡矩阵为
$$P = \begin{pmatrix} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{pmatrix}$$
.

(2) 设 A在两组基下的坐标分别为 $X = (x_1, x_2, x_3, x_4)^T$, $Y = (y_1, y_2, y_3, y_4)^T$, 则由坐标变换公式, 有 $Y = P^{-1}X$,两组坐标相同 $X = P^{-1}X$,即 (P - I)X = 0,

$$P - I = \begin{pmatrix} 1 & 0 & 5 & 6 \\ 1 & 2 & 3 & 6 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

其解为 $X = k(-1,-1,-1,1)^T$, 所以所求矩阵为 $A = k\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}$.

五、(10分) 在多项式空间 R[x] 中定义变换 σ :

$$\sigma(a_0 + a_1 x + a_2 x^2 + a_3 x^3) = a_3 + a_1 + a_2 x + (a_0 - a_2) x^3$$

- 1. 证明: σ 是 R[x] 上的线性变换;
- 2. 求 σ 在 R[x] 的自然基 $1, x, x^2, x^3$ 下的矩阵, 并判断 σ 是否可逆.

解:(1) 设
$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3, g(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3,$$
则
$$\sigma(f(x) + g(x)) = (a_3 + b_3) + (a_1 + b_1) + (a_2 + b_2) x + (a_0 - a_2 + b_0 - b_2) x^3$$

$$= (a_3 + a_1 + a_2 x + (a_0 - a_2) x^3) + (b_3 + b_1 + b_2 x + (b_0 - b_2) x^3)$$

$$= \sigma(f(x)) + \sigma(g(x)),$$

且

$$\sigma(kf(x)) = ka_3 + ka_1 + ka_2 x + (ka_0 - ka_2) x^3$$

$$= k(a_3 + a_1 + a_2 x + (a_0 - a_2) x^3)$$

$$= k\sigma(f(x)),$$

则 σ 是R[x] 上的线性变换;

(2)
$$\sigma(1) = x^3$$
, $\sigma(x) = 1$, $\sigma(x^2) = x - x^3$, $\sigma(x^3) = 1$,

所以 σ 在 R[x] 的自然基1, x, x^3 , x^3 下的矩阵为

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0
\end{pmatrix}.$$

由于|A|=0,故 σ 不可逆.

六、(10分)设 A是 5阶方阵, 且已知存在 5阶可逆矩阵 P, 使得

$$P^{-1} A P = \begin{pmatrix} -2 & 1 & & & \\ & -2 & & & \\ & & 1 & & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}.$$

- (1) 试写出 A的初等因子;
- (2) 判断 P的哪几列是 A的特征向量.

解:A的初等因子为 $(\lambda + 2)^2$, $\lambda - 1$, λ^2

(2) P的第一列是对应于 -2 的特征向量, 第三列是对应于 1的特征向量, 第四列是对应于 0的特征向量.

七、**(10**分) 已知 A 是 $m \times n$ 矩阵, n > m, r(A) = m; B 是 $n \times (n - m)$ 矩阵, r(B) = n - m, 且 AB = 0. 证明:B 的列向量组为线性方程组 AX = 0 的一个基础解系.

证明:将 B 按列分块: $B = (B_1, B_2, ..., B_{s-s}), B_1 \in \mathbb{R}^s$,由 r(B) = n - m 得: $r(B_1, B_2, ..., B_{s-s}) = n - m$,则 $B_1, B_2, ..., B_{s-s}$ 线性无关.

由 AB = 0 得: $A(B_1, B_2, ..., B_{s-s}) = 0$,即 $AB_1 = 0$, $B_1, B_2, ..., B_{s-s}$ 是方程组 AX = 0 的解.

A 是 m × n 矩阵 , n > m , r(A) = m , 则 n - r(A) = n - m

B 的列向量组为线性方程组 A X = 0 的一个基础解系.

八、(10分) 已知实二次型
$$f(x_1, x_2, x_3) = X^T A X$$
 , 其中 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$.

- (1) 求一正交变换 X = Q Y , 将二次型 $f(x_1, x_2, x_3)$ 化为标准形;
- (2) 判断二次型 $f(x_1, x_2, x_3)$ 是否正定.

解:(1) 因为

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda - 5 & \lambda - 5 & \lambda - 5 \\ 0 & \lambda + 1 & 0 \\ 0 & 0 & \lambda + 1 \end{vmatrix} = (\lambda + 1)^{2} (\lambda - 5),$$

所以 4 的全部特征值为 -1 (二重),5

一个基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_{2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

正交化
$$\beta_i = \alpha_i = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix},$$

单位化
$$\eta_1 = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \eta_2 = \begin{pmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}.$$

对于特征值 5,
$$5I - A = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
, 求出方程组 $(5I - A)X = 0$ 的

一个基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
,单位化得: $\eta_3 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$.

取

$$Q = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

则得标准形

$$f(y_1, y_2, y_3) = -y_1^2 - y_2^2 + 5y_3^2$$
.

(2) 由 (1) 易知, $f(x_1, x_2, x_3)$ 不是正定的.

九、**(10**分) 已知矩阵
$$A = \begin{pmatrix} -1 & 0 & 2 \\ a & 1 & a-2 \\ -3 & 0 & 4 \end{pmatrix}$$
有三个线性无关的特征向量.

- (1) 求*a*;
- (2) 求 4 ...

解:由于
$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & 0 & -2 \\ -a & \lambda - 1 & 2 - a \\ 3 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2), 所以 \lambda = 1(二重), \lambda = 2.$$

当 $^{\lambda=1}$ 时,特征方程组的系数矩阵为 $\begin{pmatrix} 2 & 0 & -2 \\ -a & 0 & 2-a \\ 3 & 0 & -3 \end{pmatrix}$ 由于 A有三个线性无关的特

征向量, 所以 A可以对角化, 因此, $r(\lambda I - A) = 1$, 故 a = 1.

(2)
$$\lambda = 1$$
 的特征向量为 $\xi_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. $\lambda = 2$ 的特征向量为 $\xi_3 = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$.

令
$$P = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix}$$
, 则 $P^{-1}AP = \text{diag}(1,1,2)$, 因此

$$A'' = P \operatorname{diag}(1,1,2'') P^{-1} = \begin{pmatrix} 3 - 2''^{+1} & 0 & -1 + 2'^{+1} \\ -1 + 2'' & 1 & 1 - 2'' \\ 3 - 3 \cdot 2'' & 0 & -1 + 3 \cdot 2'' \end{pmatrix}.$$

十、(10分) 已知 n 阶矩阵
$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 与 $B = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$,

- (1) 求矩阵 A 与 B 的特征值;
- (2) 证明 *A* 与 *B* 是相似的.

解:由于|\lambda | - A |= (\lambda - n) \lambda | 则 A 的特征值为 n, o (n-1 重).

同样 $|\lambda I - B| = (\lambda - n)\lambda^*$. 则 B的特征值为 n, 0 (n-1 重).

(2) A属于 $\lambda=n$ 的特征向量为 $(1,1,\cdots,1)^T$;r(A)=1,故Ax=0基础解系有

n-1 个线性无关的解向量, 即 ႔属于 λ=0 有 n-1 个线性无关的特征向量,

B 的特征值为 n , 0 (n-1 重), 同理 B 属于 $\lambda=0$ 有 n-1 个线性无关的特征向量, 故 B 相似于对角阵 Λ .

由相似关系的传递性, A相似于 B.