

LEARNING OBJECTIVES

After this lesson, you will be able to:

- 1. Explore Tableau's statistical capabilities in the Analytics pane.
- 2. Build and visualize common statistical models.
- 3. Develop statistical visualizations to analyze sample data for insights.

DATASETS

In today's lesson, we'll examine how common statistical principles can be applied in Tableau. We will be working with:

- Two sample data sets, which were included in your Tableau install Superstore and World Indicators.
- An additional call center data set (excel file to be downloaded).

GUIDED PRACTICE: TABLEAU'S ANALYTICS PANE

Here is an example of Tableau's **Analytics** pane. Some of the statistical functions we'll review in this lesson include:

- Summary statistics.
- Distribution bands.
- Forecasting
- Trend analysis.
- Cluster analysis.
- Box plots.

STATISTICAL ANALYSIS IN TABLEAU: SUMMARY STATISTICS

Descriptive statistics are available in all Worksheet menus.

These can display statistics for many different kinds of visualization measures, including:

- Count.
- Sum.
- Average.
- Min.
- Max.
- Median.

TABLEAU'S ANALYTICS PANE

- The **Analytics** pane provides quick-and-easy access to advanced analytical features in Tableau.
- You can drag forecasts, clustering analysis, trend and reference lines, box plots, and more.
- Toggle between the **Data** pane and the **Analytics** pane by clicking one of the tabs at the top of the sidebar.
- There are other ways to add these analyses in Tableau, but the **Analytics** pane allows for drag-and-drop convenience.

STATISTICAL ANALYSIS IN TABLEAU: FORECASTING

If you're working with quantitative time series data, you can use **forecasting** to create exponential smoothing models.

- Future values for a given measure are shown next to the actual values.
- When forecasting, recent data are given slightly more weight.
- Forecasting captures evolving trends and seasonality.

STATISTICAL ANALYSIS IN TABLEAU: FORECASTING

STATISTICAL ANALYSIS IN TABLEAU: REFERENCE LINES AND BANDS

Reference lines can be added to any continuous axis in the view.

- Drag a reference line into the pane to open the edit box.
- Lines may be added by measure, or by table, pane, or cell.

Reference distributions may specify one, two, or more values.

- One value results in a reference line.
- Two or more values create a set of one, two, or more bands.

STATISTICAL ANALYSIS IN TABLEAU: TREND LINE ANALYSIS

- You can add one or more trend lines in the Tableau view canvas.
- When you add a trend line, the drop options identify your available trend line options: **linear**, **logarithmic**, **exponential**, **and polynomial**.*
- Click on a trend line to remove, edit, or to see the model's definition.
- You can remove a trend line by dragging it off the view.

STATISTICAL ANALYSIS IN TABLEAU: CLUSTER ANALYSIS

Tableau's **clustering** partitions data into statistically similar clusters. This feature can be used to highlight segmentations of marks in a data source.

- Tableau uses the k-means algorithm to group similar marks together into clusters.
- Each cluster has a center called a **centroid**, which is the mean value of all points.
- Clustering is a powerful alternative to manually creating groups or sets.

STATISTICAL ANALYSIS IN TABLEAU: BULLET GRAPHS

Reference distributions can also be used to create **bullet graphs**.

- A bullet graph is a variation of a bar graph developed to replace dashboard gauges and meters.
- Bullet graphs are excellent for representing things like targets vs actuals.

STATISTICAL ANALYSIS IN TABLEAU: BOX PLOTS

Box-and-whisker plots ("**box plots**") create a box around the second and third **quartile** of a range of disaggregated data points.

- Box plots are an effective choice for visualizing distributions.
- Box plots are different from histograms because the "bins" aren't defined as set sizes, but instead by the *25th*, *mean*, and *75th* percentiles.

Upper Whisker: \$1,124
Upper Quartile: \$483
Median: \$192
Lower Quartile: \$49
Lower Whisker: \$4

STATISTICAL ANALYSIS IN TABLEAU: BOX PLOTS

Box-and-whisker plots are also great for showing **relative differences** between the distribution of data points for different groups.

- The bottom and top "whiskers" extend to the **first** and **fourth** quartiles.
- Outliers are disregarded in terms of finding the **middle 50** situated around the median.

INDEPENDENT PRACTICE: CALL STATISTICS ANALYSIS

ACTIVITY: STATISTICAL ANALYSIS IN TABLEAU

DIRECTIONS

- 1. Use the **Statistical_Analysis_in_Tableau_activities_v4** workbook for this activity.
- 2. Follow the prompts to create the two statistical visualizations located in the independent statistics activity (**blue** tabs).
- 3. Pair or group up and collaborate with others as appropriate or instructed.

DELIVERABLES

Be prepared to share your efforts and insights.

STRETCH EXERCISES: STATISTICS IN TABLEAU

STRETCH EXERCISE 1: SUPERSTORE CORRELATION COEFFICIENT

A **correlation coefficient** quantifies a relationship between variables.

- In a linear correlation, the coefficient quantifies the strength and direction of the correlation between the variables.
- Tableau uses a **Pearson** correlation coefficient, also known as **r**, which measures linear correlation and has a value between *negative one and one*.

STATISTICAL ANALYSIS IN TABLEAU: SPARKLINES

Edward Tufte introduced **sparklines** in his book "Beautiful Evidence."

- According to him, a sparkline is a "small intense, simple, word-sized graphic with typographic resolution."
- Sparklines are often incorporated into dashboards and linked to other metrics or statistical elements by action filters.

STRETCH EXERCISE 2: CALL CENTER ANALYSIS

- 1. For our next activity, we'll use the **call_center** data set to statistically explore sample support call KPIs using sparklines.
- 2. Your goal is to quickly scan for measures of efficiency and effectiveness by using Tableau's statistical analysis tools to inform your answers.

STATISTICAL ANALYSIS IN TABLEAU: STRETCH EXERCISES

DIRECTIONS

Stretch Exercise No. 1

- 1. Using the **superstore** data, create a correlation coefficient analysis of subcategory sales versus profit.
 - a. Segment by region.
 - b. Color code the correlations to reflect positive, negative, or no correlation.
 - c. Include trend lines.
 - d. Filter by region and subcategory.

Stretch Exercise No. 2

- 1. Using the **call_center** data, develop a set of statistical analyses to measure effectiveness and efficiency of call center agents.
 - b. Suggested metrics include customer satisfaction ratings (CSAT), first call issue resolution (FCR), average call times, and overall call volumes.
 - c. Develop visualizations and combine them into dashboards and Story Points.

STATISTICAL ANALYSIS IN TABLEAU: STRETCH EXAMPLE SOLUTION

Stretch Exercise No. 3

- 3. The final tab in this workbook includes a fully featured call center KPI dashboard. It's provided as an *advanced example* of a solution dashboard created with Tableau.
 - a. This solution dashboard is intended to be studied, disassembled, and recreated as an independent stretch exercise. **Note**: Intermediate Tableau skills are required.
 - o. To understand how this dashboard was created, first click on the **stretch_stats_o3** tab, then Unhide All Sheets.
 - i. This unhides all of the component visualizations used to build it.
 - Next, study the components of each visual by selecting Worksheet menu > Describe Sheet.

CONCLUSION

WHAT DID WE LEARN?

To recap, in today's lesson we:

- 1. Learned how to navigate and use Tableau's Analytics pane.
- 2. Built and visualized various statistical models in Tableau.
- 3. Develop statistical visualizations to analyze sample data for insights.

Q&A

RESOURCES

- Advanced Analytics With Tableau (Tableau):
 https://www.tableau.com/learn/whitepapers/advanced-analytics-tableau
- Let's Talk Advanced Analytics (Tableau):
 https://www.tableau.com/about/blog/2017/4/lets-talk-advanced-analytics-68604
- Using R and Tableau (Tableau): https://www.tableau.com/learn/whitepapers/using-r-and-tableau
- Best-Selling Book "Naked Statistics" (Charles Wheelan): http://a.co/365gXni

