

(19) World intellectual Property Organization International Bureau

(43) International Publication Date 13 September 2001 (13.09.2001)

рст

(10) International Publication Number WO 01/66522 A1

- (51) International Patent Classification?: C07D 213/50, A01N 43/40, C07C 311/07, A01N 47/04, 47/02, C07D 265/02, A01N 43/58
- (21) International Application Number: PCT/EP01/02581
- (22) International Filing Date: 7 March 2001 (07.03.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 465/00
 - 9 March 2000 (09.03.2000) CH
- (71) Applicant for all designated States except USJ: SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LÜTHY, Christoph (CH/CH); Milletwey 1, CH-4142 Münchenstein (CH), SCHAETZER, Jürgen [DE/DE]; Holbeinstrasse 1, 79618 Rheinfelden (191); EDMUNDS, Andrew [GB/CH]; Clarastrase 5, CH-4058 Basel (CH).

- (74) Agent: BASTIAN, Werner; Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States Foundards: AE, AG, AL, AM, AT, AU, AZ, PA, BB, RG, BR, PS, EZ, CA, CH, CN, CO, CE, CU, CZ, DE, DM, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, ND, TP, TP, TRO, RU, SD, SE, SG, SI, SK, SL, TI, TM, HR, TT, TZ, UA, UC, SU, ZV, NY, UA, AZ, W.
- (84) Designated States regionalj: ARIPO palent (GH, GM, KE, LS, MW, My, SD, SL, SZ, TZ, UG, ZW), Eurastan patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TI, M), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GR, GR, IE, IL U. MC, NL, FY, SE, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

-- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ACYLATED PHENYL OR PYRIDINE HERBICIDES

- 1 -

The present invention relates to novel, herbicidally active benzoyl derivatives, to a process for their preparation, to compositions comprising those compounds, and to their use in controlling weeds, especially in crops of useful plants, or in inhibiting plant growth.

Benzoyl derivatives having herbicidal action are described, for example, in WO 97/08164, WO 99/09023 and EP-A-0 249 813. Novel benzoyl derivatives having herbicidal and growth-inhibiting properties have now been found.

The present invention accordingly relates to compounds of formula I

wherein X is methine, nitrogen or N=O;

m is 1, 2, 3 or 4;

each R is independently hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -alkynyl, C_2 - C_6 -haloalkylnyl, C_3 - C_6 -goloalkyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylamino, C_1 - C_6 -alkylamino, C_1 - C_6 -alkylaminosulfonyl, C_1 - C_6 -alkylaminosulfonyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylaminosulfonyl- C_1 - C_6 -alkylaminosulfonyl- C_1 - C_6 -alkylaminosulfonyl- C_1 - C_6 -alkylaminosulfonyl- C_1 - C_6 -alkoylaminosulfonyl- C_1 - C_6 -alkoyl- C_1 - C_6 -alko

alkoxycarbonyl- C_1 - C_0 alkylsulfonyl, alkoxycarbonyl- C_1 - C_0 alkylsulfonyl- C_1 - C_0 alkyl, C_1 - C_0 -alkylsulfonyloxy, C_1 - C_0 taloalkylsulfonyloxy, phenyl, benzyl, phenoxy, phenylthio, phenyl-sulfinyl, phenylsulfonyl, benzylthio. benzylsulfinyl or benzylsulfonyl, wherein the phenyl and benzyl groups may themselves be mono-, di- or tir-substituted by C_1 - C_0 -alkyl, C_1 - C_0 -haloalkenyl, C_2 - C_0 -alkenyl, C_2 - C_0 -alkenylthio, C_3 - C_0 -alkenylthio, C_3 - C_0 -alkenylthio, C_3 - C_0 -alkenylthio, C_3 - C_0 -alkoxycarbonylalkylthio, C_3 - C_0 -alkoxycarbonylalkylthio, C_3 - C_0 -alkoxycarbonylalkylthio, C_3 - C_0 -alkoxycarbonylalkylthio, C_3 - C_0 -alkoxycarbonylalkylsulfonyl, aminosulfonyl, C_3 - C_0 -alkoxycarbonylalkylsulfonyl, C_3 - C_3 -alkoxylaminosulfonyl, C_3 - C_3 -alkoxy, C_3 - C_3 -alkoxy, halogen, cyano or by nitro;

or each R is independently a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur;

 R_1 , R_3 and R_3 are each independently of the others hydrogen or C_1 - C_e alkyl; R_2 is $NR_{13}R_{14}$, C_1 - C_e alkyl, C_1 - C_e haloalkyl, C_2 - C_e alkenyl, C_2 - C_e haloalkynyl, C_3 - C_e alkenyl, C_3 - C_e baloalkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 aloalkyl, C_1 - C_3 aloalkyl, C_3 - C_3 aloalkyl, C_4 - C_3 aloalkyl, C_4 - C_3 aloalkoxy, halogen, cyano or by nitro;

$$\begin{split} &R_{\rm a} \ is \ NR_{15}R_{10}, \ C_{\rm t}-C_{\rm e}alkyl, \ C_{\rm t}-C_{\rm e}haloalkyl, \ C_{\rm c}-C_{\rm e}alkenyl, \ C_{\rm c}-C_{\rm e}haloalkenyl, \ C_{\rm c}-C_{\rm e}alkynyl, \ C_{\rm c}-C_{\rm e}haloalkynyl, \ C_{\rm c}-C_{\rm e}haloalkynyl, \ C_{\rm c}-C_{\rm e}haloalkyl, \ C_{\rm e}haloalkyl, \ C_{\rm c}-C_{\rm e}haloalkyl, \ C_{\rm e}haloalkyll, \ C_{\rm c}-C_{\rm e}haloalkyll, \ C_{\rm c}-C_{\rm e}haloalkyll, \ C_{\rm e}haloalkyll, \$$

 R_8 , R_{11} , R_{13} . R_{15} and R_{17} are each independently of the others C_1 - C_{12} alkyl; R_9 , R_{12} , R_{14} , R_{19} and R_{19} are each independently of the others C_1 - C_{12} alkyl, or R_9 and R_9 together, and/or R_{11} and R_{12} together, and/or R_{17} and R_{14} together, and/or R_{17} and R_{19} together, with the nitrogen atom to which they are bonded, form a 3- to 7-membered find:

Q is the group Q1

$$N(R_{10})-SO_2-R_{20}$$
 R_{24}
 R_{21}
 R_{21}
 R_{22}
 R_{22}
 R_{23}

wherein

R₁₉ is hydrogen or C₁-C₆alkyl;

 R_{20} is C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_2 - C_{12} alkenyl, C_2 - C_6 haloalkenyl, C_1 - C_2 alkoxycarbonyl- or phenyl-substituted vinyl, or is C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_3 - C_6 allenyl, C_3 - C_6 cycloalkyl, $NR_{98}R_{33}$, benzyl or phenyl,

wherein the phenyl-containing groups may themselves be substituted by C_1 - C_3 alkyl, C_1 - C_3 -haloalkyl, C_1 - C_3 alkoxy, C_1 - C_4 haloalkoxy, halogen, cyano or by nitro, or R_{20} is hydroxy- C_1 - C_1 -galkyl, C_1 - C_4 alkoxy- C_1 - C_1 -galkyl, C_1 - C_4 -galkyl, $C_$

or Roats a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the -N(R₁₉)-S(O)₂- group by way of a C₁-C₁₂alkylene group, and each ring system may contain no more than two oxygen atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, Ca-Calkynyloxy, mercapto, C1-Calkylthio, C1-Cahaloalkylthio, C3-Calkenylthio, C3-Cahaloalkenyithio, C₃-C₆alkynyithio, C₂-C₅alkoxyalkyithio, C₃-C₅acetylalkyithio, C₃-C₆alkoxycarbonylalkylthio, C2-C4cyanoalkylthio, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, C1-C6alkylsulfonyl, C₁-C₅haloalkylsulfonyl, aminosulfonyl, C₁-C₅alkylaminosulfonyl, di(C₁-C₅alkyl)aminosulfonyl, di(C1-C4alkyl)amino, halogen, cyano, nitro, phenylthio and/or by benzylthio, wherein phenylthic and benzylthic may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents at the nitrogen atom in the heterocyclic ring are free of halogen; R21, R22, R23 and R24 are each independently of the others hydrogen, C1-Csalkyl, C1-Cshaloaikyl, Co-Cealkenyl, Co-Cealkynyl, Co-Cealkoxycarbonyl, Co-Cealkylcarbonyl, Co-Ce alkylthio, C1-Csalkylsulfinyl, C1-Csalkylsulfonyl, C1-Csalkyl-NHS(O)2, C1-Csalkylamino, di-(C1-Caalkyl)amino, hydroxy, C1-Caalkoxy, C2-Caalkenyloxy, C2-Caalkynyloxy, hydroxy-C1-Caalkyl, C₁-C₄alkylsulfonyloxy-C₁-C₅alkyl, tosyloxy-C₁-C₅alkyl, halogen, cyano, nitro, phenyl or phenyl substituted by C₁-C₄alkyl, C₁-C₄haloalkyt, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄-alkylthio, C₁-Cealkylsulfinyl, C₁-Cealkylsulfonyl, C₁-Cealkylsulfonyloxy, C₁-Cehaloalkylthio, C1-C6haloalkylsulfinyl, C1-C6haloalkylsulfonyl, C1-C4haloalkylsulfonyloxy, C1-C4alkyl-S(O), NH, C1-C6alkylthio-N(C1-C6alkyl), C1-C6alkylsulfinyl-N(C1-C6alkyl), C1-C6alkylsulfonyl-N(C1-C6alk C₄alkyl), halogen, nitro, COOH or by cyano; or R₂₄ and R₂₁ together or R₂₂ and R₂₃ together denote C2-C6alkylene, C(O)OCH2CH2-, C(O)OCH2CH2CH2-, S-C2-C4alkylene, S(O)-C2-C4alkylene or S(O)2-C2-C4alkylene;

W is oxygen, sulfur, sulfinyl, sulfonyl, -CR₂₅, R₂₅-, -C(O)-, -CR₂₆R₂₇-CR₃₀R₃₁- or -NR₂₇, wherein the carbon atom carrying the substituents R₂₉R₂₉ is attached to the carbon atom carrying the substituents R₂₂R₂₃;

 R_{es} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy- C_1 - C_2 alkyl, C_1 - C_4 alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl,

$$\label{eq:continuous} \begin{split} & \text{methyl}, \ (C_1 \cdot C_3 \text{alkoxyalkyl}) \cdot (C_1 \cdot C_3 \text{alkothioalkyl}) \text{methyl}, \ C_2 \cdot C_5 \text{oxacycloalkyl}, \ C_3 \cdot C_5 \text{thiacycloalkyl}, \ C_3 \cdot C_5 \text{dioxacycloalkyl}, \ C_3 \cdot C_4 \text{dithiacycloalkyl}, \ C_2 \cdot C_5 \text{oxathiacycloalkyl}, \ formyl, \ C_1 \cdot C_4 \text{alkoxycarbonyl}, \ \text{carbamoyl}, \ C_1 \cdot C_4 \text{alkylaminocarbonyl}, \ \text{di}(G_1 \cdot C_4 \text{alkylylaminocarbonyl}, \ \text{phenylaminocarbonyl}, \ \text{phenylaminocarbonyl}, \ \text{phenylaminocarbonyl}, \ \text{phenylaminocarbonyl}, \ \text{phenylaminocarbonyl}, \ \text{carbonyl}, \ C_1 \cdot C_4 \text{alkoylamino}, \ C_1 \cdot C_4 \text{alkylaminopalkylaminopalkoxy}, \ C_1 \cdot C_4 \text{alkylaminopalkylaminopalkoxy}, \ C_1 \cdot C_4 \text{alkylaminop$$

alkylene; R_{22} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxycarbonyl or phenyl which may itself be substituted by C_1 - C_4 alkyl, C_1 - C_4 alakylk, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylamino, C_1 - C_4

 R_{28} , R_{29} , R_{30} and R_{31} are each independently of the others hydrogen or C_1 - C_6 allkyl, or R_{28} or R_{29} or R_{30} together with R_{21} or R_{29} form a direct bond;

R₃₀ is C₁-C₁₀alkvl;

R₃₃ is C₁-O₁₂alkyl, or R₃₂ and R₃₃ together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring:

with the proviso that R₂₀ is other than C₁-C₁-alkyl and C₁-C₄haloalkyl when X is nitrogen or NO, the group -C(O)-Q occupies the 3-position in the ring and R in the 6-position in the ring is C₁-C₄-haloalkyl.

or Q is the group Q2

$$R_{36}$$
 R_{37}
 R_{37}
 R_{39}
 R_{39}
 R_{39}
 R_{39}
 R_{39}

wherein

PCT/EP01/02581

R₁₄ is hydrogen or C₁-C₅alkyl;

 R_{35} is $C_1 - C_{12}$ alkyl, $C_2 - C_{12}$ alkenyl, $C_2 - C_{12}$ alkenyl, $C_2 - C_3$ baloalkenyl, $C_1 - C_2$ alkoxycarbonyl- or phenyl-substituted vinyl, or is $C_3 - C_8$ alkynyl, $C_3 - C_6$ haloalkynyl, $C_3 - C_8$ allenyl, $C_3 - C_8$ cycloalkyl, $NR_{c1}R_{c2}$, benzyl or phenyl.

wherein the phenyl-containing groups may themselves be substituted by C_1 - C_2 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_2 -haloalkoxy, halogen, cyano or by nitro, or R_{38} is hydroxy- C_1 - C_1 -galkyl, C_1 - C_2 -alkyl, C_1 - C_2 -alkyl, C_1 - C_3 -alkylsulfinyl- C_1 - C_1 -galkyl, C_1 - C_4 -galkylsulfinyl- C_1 - C_1 -galkyl, C_1 - C_4 -galkylsulfinyl- C_1 - C_1 -galkyl, C_1 - C_4 -galkylsulfinyl- C_1 - C_1 -galkyl, C_1 - C_4 -galkyl)- C_1 - C_1 -galkyl, C_1 - C_1 -galkyl)- C_1 - C_1 -galkyl, C_1 - C_1 -galkyl)- C_1 - C_1

or R_{3s} is a five-to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the

-N(R₃₄)–S(O)₂- group by way of a C₁-C₁₂alkylene group, and each ring system may contain no more than two oxygen atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆alkenyl, C₂-C₆haloalkynyl, C₂-C₆alkynyl, C₂-C₆alkynyl, C₂-C₆alkynyl, C₂-C₆alkynyl, C₂-C₆alkynylthio, C₃-C₆alkynylthio, C

Y is a chemical bond, an alkylene group A₁, carbonyl, oxygen, sulfur, sulfinyl, sulfonyl, -NR₄₀ or NH(CO)R₄₁;

A₁ is C(R₄₂R₄₃)m₀₁;

A is C(RaaRas)r;

r and mot are each independently of the other 0, 1 or 2;

Ras is hydrogen, methyl or C1-C3alkoxycarbonyl;

 R_{37} , R_{39} , R_{34} , R_{45} , R_{42} and R_{43} are each independently of the others hydrogen, C_1 - C_4 -alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, halogen or methyl, or R_{39} together with an adjacent group R_{45} or R_{45} denotes a chemical bond;

 R_{40} and R_{21} are each independently of the other hydrogen or C_1 - C_4 alkyl; R_{51} is C_1 - C_{12} alkyl; and

 R_{52} is C_1 - C_{12} alkyl; or R_{51} and R_{52} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring; with the proviso that R_{34} is C_5 - C_6 alkyl when R_{35} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl and X is nitrogen or NO;

or Q is the group Q3

wherein

R₄₆ is hydrogen or C₁-C₆alkyl;

$$\label{eq:Region} \begin{split} &R_{47} \text{ is } C_1-C_{12}\text{alkyl}, \ C_1-C_{12}\text{alkoyl}, \ C_2-C_{12}\text{alkenyl}, \ C_2-C_6\text{haloalkenyl}, \ C_1-C_2\text{alkexycarbonyl-} \ or \\ &\text{phenyl-substituted vinyl, or is } C_2-C_6\text{alkenyl}, \ C_3-C_6\text{haloalkenyl}, \ C_3-C_6\text{allenyl}, \ C_3-C_6\text{cycloalkyl}, \\ &NR_{55}R_{56}, \ \text{benzyl or phenyl, wherein the phenyl-containing groups may themselves be substituted by $C_1-C_3\text{alkyl}, \ C_1-C_6\text{haloalkyl}, \ C_1-C_6\text{haloalkeyl}, \ C_1-C_6\text{haloalkey$$

or $R_{\rm s7}$ is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the $-N(R_{\rm s6})-S(O)_{\rm 2^-}$ group by way of a $C_{\rm 1^-}C_{\rm 12}$ alkylene group, and each ring system may contain no more than two oxygen atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by $C_{\rm 1^-}C_{\rm e8}$ lkyl, $C_{\rm 1^-}C_{\rm e8}$ lkoyl, $C_{\rm 2^-}C_{\rm e8}$ lkenyl, $C_{\rm 2^-}C_{\rm e8}$ lkenyl, $C_{\rm 2^-}C_{\rm e8}$ lkenyloxy,

PCT/EP01/02581

C3-Ccalkynyloxy, mercapto, C1-C6alkylthio, C1-C6haloalkylthio, C3-C6alkenylthio, C3-C6haloalkenylthio, C3-C5alkynylthio, C2-C5alkoxyalkylthio, C3-C5acetylalkylthio, C3-C5alkoxycarbonylalkylthio, C2-C4cyanoalkylthio, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, C1-C6alkylsulfonyl, C1-C6haloalkylsulfonyl, aminosulfonyl, C1-C2alkylaminosulfonyl, dl(C1-C2alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenylthio and/or by benzylthio. wherein phenylthio and benzylthio may themselves be substituted on the phenyl ring by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, halogen, cyano or by nitro, and wherein the substituents at the nitrogen atom in the heterocyclic ring are free of halogen; R48 and R49 are each independently of the other hydrogen, C1-C4alkyl, C2-C6alkenyl, C2-C6alkynyl, C1-C4alkoxycarbonyl, C1-C6alkylthio, C1-C6alkylsulfinyl, C1-C6alkylsulfonyl, C1-C4alkyl-NHS(O)₂, C₁-C₄halpalkyl, or phenyl which may itself be substituted by C₁-C₄alkyl. C1-C4haloalkvl, C1-C4alkoxv, C1-C4haloalkoxv, C1-C4alkvlcarbonvl, C1-C4alkoxvcarbonvl, amino, C₁-C₄alkylamino, di-C₁-C₄alkylamino, C₁-C₅alkylthio, C₁-C₅alkylsulfinyl, C₁-C₅alkylsulfonyl, C₁-C₄alkylsulfonyloxy, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C_1 - C_4 haloalkylsulfonyloxy, C_1 - C_4 alkyl- $S(O)_2NH$, C_1 - C_4 alkyl- $S(O)_2N(C_1$ - C_4 alkyl), halogen, nitro, COOH or by cyano; or R48 and R49 together form a C2-Calkylene bridge; and

 R_{50} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_4 alkoxycarbonyl, benzyl or phenyl, wherein benzyl or phenyl may themselves be substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino, C_1 - C_4 alkylamino, C_1 - C_4 alkylamino, C_1 - C_4 alkylulifonyl, C_1 - C_4 alkylulifonyloxy.

 C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkylsulfonyloxy, C_1 - C_4 alkyl- $S(O)_2$ NH, C_1 - C_4 alkyl- $S(O)_2$ N(C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; R_{53} is C_1 - C_4 2alkyl and

 R_{64} is C_1 - C_{12} alkyl, or R_{53} and R_{54} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring;

with the proviso that R_{46} is C_5 - C_6 alkyl when R_{47} is C_4 - C_4 alkyl or C_1 - C_4 haloalkyl and X is nitrogen or NO;

or Q is the group Q4

- 9 -

$$R_{55}$$
 R_{56}
 R_{57}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}

wherein

R₆₀ is hydrogen or C₁-C₆alkyl;

 $R_{61} \text{ is } C_1 - C_{12} \text{alkyl}, \ C_1 - C_{12} \text{aloalkyl}, \ C_2 - C_{12} \text{alkenyl}, \ C_2 - C_6 \text{haloalkenyl}, \ C_1 - C_2 \text{alkoxycarbonyl-} \ or phenyl-substituted vinyl, or is $C_2 - C_6 \text{alkynyl}, \ C_3 - C_6 \text{haloalkynyl}, \ C_3 - C_6 \text{allenyl}, \ C_3 - C_6 \text{cloalkyl}, \ NR_{66}R_{65}, \ \text{benzyl} \ \text{or phenyl}, \ \text{whorein the phenyl-containing groups may thermselves be substituted by $C_1 - C_2 \text{alkyl}, \ C_1 - C_3 \text{haloalkyl}, \ C_1 - C_3 \text{alkoxy}, \ C_1 - C_3 \text{alkoxy}, \ \text{halogen}, \ \text{cyano or by nitro}, \ \text{or } R_{61} \text{ is hydroxy-} C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkylsulfinyl-} \ C_1 - C_1 \text{alkyl}, \ C_1 - C_4 \text{alkylsulfinyl-} \ C_1 - C_1 \text{alkyl}, \ C_1 - C_4 \text{alkylsulfinyl-} \ C_1 - C_1 \text{alkyl}, \ C_1 - C_4 \text{alkoxycarbonyloxy-} \ C_1 - C_1 \text{alkyl}, \ C_1 - C_4 \text{alkoxycarbonyloxy-} \ C_1 - C_1 \text{alkyl}, \ \text{chodano-} \ C_1 - C_1 \text{alkyl}, \ \text{benzoyloxy-} \ C_1 - C_1 \text{alkyl}, \ C_2 - C_6 \text{oxiranyl}, \ C_1 - C_4 \text{alkylamino-} \ C_1 - C_2 \text{alkyl}, \ \text{di} \ \text{(} C_1 - C_4 \text{alkyl}) \text{amino-} \ \text{C}_1 - C_1 \text{alkyl}, \ \text{C}_1 - C_1 \text{alkyl}, \ \text{chodano-} \ \text{$

or R_e, is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the -N(Rea)-S(O)₂- group by way of a C₁-C₁₂alkylene group, and each ring system may contain no more than two oxygen atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C1-Cealkyl, C1-Cehaloalkyl, C2-Cealkenyl, C2-Cehaloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C3-C6alkynyloxy, mercapto, C1-C6alkylthio, C1-C6haloalkylthio, C3-C6alkenylthio, C3-C6haloalkenylthio, C₃-C₅alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C2-C4cvanoalkylthio, C1-C6alkylsulfinyl, C--C6haloalkylsulfinyl, C1-C6alkylsulfonyl, C1-C6haloalkylsulfonyl, aminosulfonyl, C1-C2alkylaminosulfonyl, di(C1-C2alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenylthio and/or by benzylthio, wherein phenylthic and benzylthic may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents at the nitrogen atom in the heterocyclic ring are free of halogen; Reg is C1-C10alkyl and

- 10 -

 R_{63} is C_1 - C_{12} alkyl, or R_{62} and R_{63} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring;

R₅₉ is hydrogen, C₁-C₅alkyl, C₃-C₅alkenyl, C₃-C₆alkynyl, C₁-C₄alkoxycarbonyl, benzyl or

PCT/EP01/02581

Y₁ is oxygen or NR₅₉;

phenyl, wherein benzyl or phenyl may themselves be substituted by $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ -haloalkoxy, $C_1\text{-}C_6$ -falkylcarbonyl, $C_1\text{-}C_6$ alkyoxycarbonyl, amino, $C_1\text{-}C_6$ alkylamino, $C_1\text{-}C_6$ -falkylamino, $C_1\text{-}C_6$ -falkylamino,

C₈alkyl, C₁-C₈alkoxy-C₂-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₁-C₉alkoxycarbonyl, C₁-C₉-alkylthio, C₁-C₈alkylsulfinyl, C₁-C₉alkylsulfonyl, C₁-C₉alkylsulfonyloxy-C₁-C₈alkylsulfonyloxy-C₁-C₈alkylamino, C₁-C₉alkylamino, C₁-C₉alkylamino, C₁-C₉alkylamino, C₁-C₉alkylamino, C₁-C₉alkylamino, C₁-C₉alkylamino, C₁-C₉alkylamino, C₁-C₉alkoxy, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylcambonyl, C₁-C₈alkoxy-carbonyl, halogen, nitro, COOH or by cyano, or R₅₅ and R₅₆ together form a C₂-C₅alkylene chain, or R₅₅ and R₅₇ together form a chemical bond or a C₁-C₄alkylene chain, or R₅₇ together with R₅₉ forms a chemical bond or a C₃-C₄alkylene chain; and to the acrochemically tolerable salts and all stereoisomers and fautomers of the

and to the agrochemically tolerable salts and all stereoisomers and tautomers of the compounds of formula I.

The alkyl groups mentioned in the substituent definitions may be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl or branched isomers thereof. Alkoxy, alkenyl and alkynyl gradicals are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may be mono- or poly-unsaturated.

An alkylene group can be substituted by one or more methyl groups; such alkylene groups are preferably unsubstituted. The same applies also to all groups containing C_9 - C_9 -cycloalkyl, C_3 - C_9 -oxacycloalkyl, C_9 - C_9 - C_9 -oxacycloalkyl, C_9 - $C_$

Halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine. The same is also true of halogen in conjunction with other definitions, such as haloalkyl or haloghenyl.

Haloalkyl groups having a chain length of from 1 to 6 carbon atoms are, for example, fluoromethyl, difluoromethyl, trifluoromethyl, thoromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-fluoroethyl, 2-fluoroethyl, 2-fluoroethyl, 2-fluoroethyl, 2,2,3,3-tetrafluoroethyl, and 2,2,2-trichloroethyl, pentafluoroethyl, heptafluoroen-propyl, perfluoro-n-hexyl; haloalkyl groups in the definitions R₂, R₃ and especially R₅ are preferably trichloromethyl, fluoromethyl, dichlorofluoromethyl, difluoroethyl, filluoromethyl, pentafluoroethyl or heptafluoro-n-propyl,

As haloalkenyl there come into consideration alkenyl groups mono- or poly-substituted by halogen, wherein halogen is fluorine, chlorine, bromine or iodine and especially fluorine or chlorine, for example 1-chlorovinyl, 2-chlorovinyl, 2,2-difluorovinyl, 2,2-difluorovinyl, 2,2-difluorovinyl, 3-fluoroprop-1-en-2-yl, 2,2-difluorovinyl, 3-fluoroprop-1-en-1-yl, chloroprop-1-en-1-yl, 2-bromoprop-1-en-1-yl, 2,3,3-trifluoroprop-2-en-1-yl, and 4,4,4-trifluoro-but-2-en-1-yl. Of the C₂-C₆alkenyl groups mono-, di- or tri-substituted by halogen, preference is given to those having a chain length of from 2 to 5 carbon atoms.

As haloalkynyl there come into consideration, for example, alkynyl groups mono- or polysubstituted by halogen, wherein halogen is bromine, iodine and especially fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluoro-but-2-yn-1-yl. Of the alkynyl groups mono- or poly-substituted by halogen, preference is given to those having a chain length of from 2 to 5 carbon atoms.

A C₃-C₆cycloalkyl group mono- or poly-substituted by halogen is, for example, the 2,2-dichlorocyclopropyl, 2,2-dibromocyclopropyl, 2,2,3,3-tetrafluorocyclobutyl or 2,2-difluoro-3,3dichlorocyclobutyl group.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy and the isomeric pentyloxy and hexyloxy groups; preferably methoxy or ethoxy. Alkylcarbonyl is preferably acetyl or propionyl. Alkoxycarbonyl is, for example, methoxy-

carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl. Haloalkoxy groups preferably have a chain length of from 1 to 6 parbon atoms.

Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy. 1-fluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy or 2,2,2-trichloroethoxy; preferably fluoromethoxy, difluoromethoxy, 2-chloroethoxy or trifluoromethoxy.

Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio or ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl or tert-butylsulfinyl; preferably methylsulfinyl or tertylsulfinyl.

Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably methylsulfonyl or ethylsulfonyl.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or the isomeric butylamines. Dlatkylamino is, for example, dimethylamino, methylethylamino, dibutylamino or diisopropylamino. Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon atoms. Alkoxyalkyl groups preferably have from 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl. Alkylthioalkyl groups preferably have from 1 to 6 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methythioethyl, ethylthiomethyl, ethylthiomethyl, ethylthiomethyl, butylthiomethyl, n-propylthioethyl, isopropylthiomethyl, butylthiomethyl, butylthiomethyl, butylthioethyl, butylthiomethyl, butylthioethyl, butylthiomethyl, butylthioethyl, buty

Phenyl, also as part of a substituent, such as phenoxy, benzyl, benzyloxy, benzoyl, phenylthio, phenylalkyl, phenoxyalkyl or tosyl, can be mono- or poly-substituted. The substituents can in that case be in the ortho-, meta- and/or para-position(s) as desired. Allenyl is, for example, $CH_2=C=CH_2$, $CH_2=CH-CH_2-CH=CH_2$, $CH_2=CH-CH_2-CH=CH_2$ or $CH_2=CH-CH_2-CH=CH-CH_3$.

The invention also includes the salts that can be formed by the compounds of formula I. preferably with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases. Among the alkali metal bases and alkaline earth metal bases as salt formers. emphasis is given to the hydroxides of lithium, sodium, potassium, magnesium or calcium, especially those of sodium or potassium. Examples of amines suitable for ammonium salt formation include ammonia and also primary, secondary and tertiary C1-C1-alkylamines, C1-C4-hydroxyalkylamines and C2-C4-alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four isomeric butylamines, namylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methylethylamine, methylisopropylamine, methylhexylamine, methylnonylamine, methylpentadecylamine, methyloctadecylamine, ethylbutylamine, ethylbeptylamine, ethyloctylamine, hexylbeptylamine, hexyloctylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, di-iso-amylamine, dihexylamine, dihexylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2.3-dimethylbutenyl-2-amine, di-butenyl-2-amine, n-hexenyl-2-amine, propylenedlamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines, for example anilines. methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, naphthylamines and o-, m- and p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine. Quaternary ammonium bases suitable for salt formation are, for example. IN(R_o R_o R_oR_o)))* OH', wherein R_o, R_b, R_o and R_o are each independently of the others C1-C4alkyl. Further suitable tetraalkylammonium bases containing other anions can be obtained, for example, by anion exchange reactions. M+ is preferably an ammonium salt, especially NH₂* or an alkali metal, especially potassium or sodium.

The compounds of formula I may occur in various tautomeric forms, such as, for example, when Q is Q₁, formulae Ia. Ib and Ic, with the forms Ia and Ic being preferred:

The present invention includes also all those stereoisomeric forms of the compound of formula I.

Of the compounds of formula I, special preference is given to those groups wherein:

a) R₁₉, R₃₄, R₄₆ and R₆₀ are hydrogen; R₂₀, R₃₅, R₆₁ and R₄₇ are each independently of the others C₁-C₄eikyl, C₁-C₄haloalkyl, preferably trifluoromethyl, C₃-C₄alkenyl, C₃-C₄haloalkenyl, benzyl or phenyl:

or R₂₀, R₃₅, R₆: and R₄₇ are a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and each ring system may contain no more than two oxygen atoms and no more than two oxygen atoms and no more than two oxygen atoms, and the ring system listelf may be mono-, di-or tri-substituted by C₁-C₈alkyl, C₁-C₈haloalkyl, C₁-C₈alkoys, C₁-C₈alkyl-thio, C₁-C₆haloalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfinyl, C₁-

R₃₂, R₅₁, R₅₃ and R₆₂ are each independently of the others C₁-C₁₂alkyl and

 R_{33} , R_{22} , R_{34} and R_{63} are each independently of the others C_1 - C_{12} alkyl, or R_{32} and R_{33} , or R_{51} and R_{52} , or R_{53} and R_{54} , or R_{62} and R_{63} , together with the nitrogen atom to which they are bonded, form a 3- to 7 membered ring;

- b) Q is the group Q_1 ; wherein W is -CR₂₆R₂₆- or oxygen and R₂₆ and R₂₆ are each independently of the other hydrogen, methyl or ethyl;
- R_{21} , R_{22} , R_{23} and R_{24} are each independently of the others hydrogen, methyl, ethyl or trifluoromethyl; or a maximum of one substituent selected from R_{21} , R_{22} , R_{23} and R_{24} is methoxycarbonyl, ethoxycarbonyl, methylthio, methylsulfinyl or methylsulfonyl; or W is -C(O)- and R_{21} , R_{22} , R_{23} and R_{24} are each independently of the others methyl or ethyl;
- c) Q is the group Q_2 ; wherein Y is a methylene group, an ethylene group, carbonyl or oxygen and A is a methylene group or an ethylene group;

 R_{36} is hydrogen or methyl; and R_{37} , R_{36} and R_{39} are each independently of the others hydrogen or methyl:

- d) Q is the group Q_4 ; wherein Y is NR_{35} ; R_{36} is methyl or ethyl; R_{55} , R_{56} , R_{57} and R_{58} are each independently of the others hydrogen, methyl or ethyl; or R_{65} and R_{57} together form a chemical bond or a methylene bridge;
- e) Q is the group Q_3 ; wherein R_{48} and R_{49} are each independently of the other methyl or ethyl, and R_{50} is methyl or ethyl;
- f) X is methine, wherein the phenyl ring containing the substituent X is substituted in the 2-position relative to the substituent —C(O)-Q by methyl, ethyl, halomethyl, chlorine, bromine, nitro or by methylsulfonyl, and in the 4-position relative to the substituent —C(O)-Q by halomethyl, chlorine, bromine, nitro, methylthio, methylsulfinyl, methylsulfonyl, meth
- g) X is nitrogen; the group -C(O)-Q is preferably in the 3-position relative thereto, and the ring carrying the substitutent X is substituted in the 2-position by methyl, ethyl, n-propyl, hatomethyl, methoxymethyl, ethoxymethyl, methylthiomethyl, methylsulfinyl or by methyl-

PCT/EP01/02581 - 16 -

sulfonyl; and in the 6-position by halomethyl, chlorine, bromine, methylthio, methylsulfinyl or by methylsulfonyl;

h) X is methine, and the phenyl ring is substituted in the 4-position relative to the substituent -C(O)-Q by halomethyl, chlorine, bromine, nitro, methylthiomethyl, methylsulfinylmethyl, methylsulfonyl, methylsulfonyloxy, methylsulfonylamino or by halomethylsulfonylamino, and in the 2,3-position relative to the substituent -C(O)-Q by a fused ring system, such as, preferably, by groups -S(O),CH2CH2-, -S(O),CH(CH2)CH2-, -SO2N(CH3)C(O)-, -CH2CH2O-, -CH₂CH(CH₃)O-, -CH₂CH₂CH₂O-, -CH₂CH(CH₃)O- or -CH₂CH(CH₂OCH₃)O-, wherein n is 0, 1 or 2; and

i) X is methine, and the phenyl ring is substituted in the 2-position relative to the substituent -C(O)-Q by methyl, halomethyl, chlorine or by bromine, and in the 3,4-position relative to the substituent -C(O)-Q by a fused ring system, such as preferably by the groups -S(O)₀CH₂CH₂-, -S(O)₀CH(CH₃)CH₂-, -CH₂CH₂CH₂S(O)₀, -CH(CH₃)CH₂CH₂S(O)₀-, -CH(OCH₃)CH₂CH₅S(O)_n-, -C(O)CH₂CH₂S(O)_n-, -C(OCH₃)₂CH₂CH₂S(O)_n-, -C(NOH)CH₂CH₂S(O)₀-, -C(NOCH₂)CH₂CH₂C(O)₀- or -SO₂N(CH₂)C(O)-, wherein n is 0, 1 or 2.

In the process according to the invention for the preparation of compounds of formula I

wherein R, m and X are as defined for formula I and Q is a group

either

a) a compound of formula II

wherein R, m and X are as defined for formula I and Qa is a group

- 18 -

wherein X_1 is a leaving group, for example halogen, is reacted in a polar aprotic solvent, such as acetonitrile, dimethylformamide or sulfolan, with a compound of formula M-N(R_{19})SO₂ R_{20} (IIIa, when Qa is O_1 a), or

M-N(R₃₄)SO₂R₃₅ (IIIb, when Qa is Q₂a), or

M-N(R₄₆)SO₂R₄₇ (IIIc, when Qa is Q₃a), or

M-N(R₆₀)SO₂R₆₁ (IIId, when Qa is Q₄a),

wherein M is lithium, sodium, potassium, magnesium or calcium, especially sodium or potassium; R₁₉, R₃₄, R₄₆ and R₆₀ are each independently of the others hydrogen or C₁-C₆-alkyl; and R₅₀, R₅₅, R₄₇ and R₆₁ are each independently of the others C₁-C₁₂alkyl, C₁-C₁₂-haloalkyl, C₂-C₁₂alkenyl, C₂-C₆-baloalkonyl, C₁-C₂-alkoxycarbonyl- or phenyl-substituted vinyl, or is C₄-C₆alkynyl, C₃-C₆haloalkynyl, C₃-C₆allenyl, C₃-C₆cycloalkyl, NR₂₆R₃₅, NR₅₁R₃₂, NR₅₁R₃₂, NR₅₁R₃₂, Denzyl or phenyl-

wherein the phenyl-containing groups may themselves be substituted by C_1 - C_2 alkyl, C_1 - C_2 -haloalkyl, C_1 - C_2 alkoxy, C_1 - C_3 -haloalky, C_1 - C_3 -haloalkyl, C_1 - C_3 -lakyl, C_1 - C_3 -lakyl, C_1 - C_4 -lakyl, haloalkoxy, halogen, cyano or by nitro, or $R_{0.5}$, $R_{0.5}$, $R_{0.5}$, $R_{0.5}$ and $R_{0.7}$ are hydroxy- C_1 - C_{12} alkyl, C_1 - C_4 -alkylkultonyl- C_1 - C_{12} -alkyl, C_1 - C_4 -alkyly-bithio- C_1 - C_1 -alkyl, C_1 - C_4 -alkyly-bithio- C_1 -alkyly-bithio- C_1 - C_4 -a

 $C_2\text{-}C_6\text{alkaynyl}, \ C_1\text{-}C_6\text{alkayx}, \ C_7\text{-}C_6\text{alkayyloxy}, \ C_7\text{-}C_6\text{alkayyloxy}, \ \text{mercapto}, \ C_1\text{-}C_6\text{alkayylthio}, \ C_1\text{-}C_6\text{alkayylthio}, \ C_2\text{-}C_6\text{alkayylthio}, \ C_2\text{-}C_6\text{alkayylthio}, \ C_2\text{-}C_6\text{-}C$

 R_{29} , R_{33} , R_{33} and R_{82} are each independently of the others C_1 - C_1 2alkyl and R_{23} , R_{32} . R_{34} and R_{83} are each independently of the others C_1 - C_1 2alkyl, or R_{32} and R_{33} for R_{51} and R_{62} , or R_{53} and R_{54} , or R_{62} and R_{63} , together with the nitrogen atom to which they are bonded, form a 3- to 7-membered ring.

or

b) in a compound of formula II

wherein X, R, m and Qa are as defined above,

using ammonia in an organic solvent, such as, for example, a halogenated hydrocarbon, for example dichloromethane, or an ether, for example tetrahydrofuran, or in a polar aprotic solvent, such as dimethylformamide or sulfolan, the leaving group X_1 is replaced by the amino group, the resulting compound of formula IV

(IV).

wherein R, m and X are as defined for formula I and Qb is a group

is reacted, in the presence of a suitable base, such as lithium diisopropylamide, sodium hydride or sodium bistrimethylsilylamide, at temperatures of from 100 °C to -20 °C (preferably from 0 to 50°C) in an ether, for example tetrahydrofuran, or in a polar aprotic solvent, such as the context of the corresponding anion, and the latter is then reacted with a compound of formula (X)SO-Ra (Va, when Q is Q/b), or

 $(X_2)SO_2H_{20}$ (va, when Q is Q_1D), O

 $(X_2)SO_2R_{35}$ (Vb), when Q is Q_2b), or

(X2)SO2R47 (Vc, when Q is Q3b), or

 $(X_2)SO_2R_{61}$ (Vd, when Q is Q_4b),

wherein X_2 is a leaving group, for example halogen, and R_{20} , R_{35} , R_{47} and R_{61} are as defined above.

- 21 -

The resulting compound of formula I

wherein R, m, Q and X are as defined above for formula I and R_{19} , R_{34} , R_{46} and R_{20} are hydrogen, can be converted by alkylation in a suitable solvent with an alkylating agent L-C₁-C₂alkyl, wherein L is a leaving group, such as chlorine, bromine, iodine, mesyloxy or tosyloxy, in the presence of a base, for example sodium hydride, into compounds of formula I wherein R_{194} , R_{34} , R_{34} , R_{34} and R_{32} are C_1 -C₂alkyl.

Those reaction sequences, Routes a) and b), are described in more detail by way of the following Example (Q, Q₂):

Scheme 1.

The compounds of formulae II and IV can be prepared by way of processes known per sa, e.g. processes described in EP-A-0 249 813, WO 00/15615 and WO 00/39094. According to reaction scheme 1, the compounds of formula II wherein X₁ is as defined above are prepared by way of the corresponding hydroxy compounds, for example by using a halogenating agent, e.g. a thionyl halide, for example thionyl chloride or bromide; a phosphorus axialide or a phosphorus oxyhalide, for example phosphorus pentachioride or phosphorus oxychloride or phosphorus pentabromide or phosphorus pentachioride; or an oxalyl halide, for example oxalyl chloride, or by using a reagent for the formation of an activated ester, such as N,N'-dicyclohexylcarbodilimide (DCC) or N-ethyl-N'-(3-dimethylaminopropyl)-carbodilmide (EDC).

The reaction is preferably carried out in an inert, organic solvent, such as in an aliphatic, halogenated aliphatic, aromatic or halogenated aromatic hydrocarbon, for example n-hexane, benzene, toluene, xylenes, dichloromethane, 1,2-dichloroethane or chlorobenzene, at reaction temperatures in the range of from -20°C to the reflux temperature of the reaction mixture, preferably at 40-150°C, and in the presence of a catalytic amount of N,N-dimethyl-formamide. Such reactions are generally known and are described in the literature with a number of variations for the leaving group X, (or X₂).

The end products of formula I can be isolated in customary manner by concentration or evaporation of the solivent, and can be purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons, by distillation or by column chromatography using a suitable eliuant.

The person skilled in the art will also be familiar with the order in which it is expedient to carry out certain reactions in order to avoid any possible secondary reactions. Where the synthesis is not targeted at the isolation of pure isomers, the product can be in the form of a mixture of two or more isomers. The isomers can be separated according to methods known per se.

Compounds of formula I wherein X is N=O can be prepared by reacting a compound of formula I wherein X is nitrogen with a suitable oxidising agent, such as with the adduct of H₂O₂ and urea, in the presence of an acid anhydride, for example trifluoroacetic anhydride, The reactions to form compounds of formula I are advantageously carried out in aprotic, inert organic solvents. Such solvents are hydrocarbons, such as benzene, toluene, xylene and cyclohexane, chlorinated hydrocarbons, such as dichloromethane, trichloromethane, tetrachloromethane and chlorobenzene, ethers such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran and dioxane, nitriles, such as acetonitrile and propionitrile, amides, such as N,N-dimethylformamide, diethylformamide and N-methylpyrrolidinone. The reaction temperatures are preferably from -20°C to +120°C. The reactions are generally slightly exothermic and can generally be carried out at room temperature. In order to shorten the reaction time or in order to initiate the reaction, it is also possible to heat the reaction mixture for a short time up to its boiling point. The reaction times can also be shortened by the addition of a few drops of a base as reaction catalyst. Suitable bases are especially tertiary amines, such as trimethylamine, triethylamine. quinucliding, 1.4-diazabicyclo[2,2,2]octane, 1.5-diazabicyclo[4,3,0]non-5-ene or 1,5diazabicyclol5.4.0lundec-7-ene but as bases it is also possible to use inorganic bases, such as hydrides, such as sodium or calcium hydride, hydroxides, such as sodium or potassium hydroxide, carbonates, such as sodium or potassium carbonate, or hydrogen carbonates. such as potassium or sodium hydrogen carbonate.

The compounds of formula I can be isolated in customary manner by concentration and/or evaporation of the solvent, and can be purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons.

For the use according to the invention of the compounds of formula I or of compositions comprising them there is suitable any method of application customary in agriculture, such as pre-emergence application, post-emergence application and seed dressing, as well as various methods and techniques, such as the controlled release of active ingredient. In that method, the compound is applied in solution to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. Where appropriate, it is also possible to apply a coating (coated granules), which allows the active ingredient to be released in metered amounts over a specific period.

The compounds of formula I can be used as herbicides in unmodified form, i.e. as obtained during synthesis, but are preferably formulated in customary manner together with the adjuvants conventionally employed in formulation technology, e.g. into emulsifiable

- 25 -

concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules and microcapsules. Such formulations are described, for example, in WO 97/34485 on pages 9 to 13. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

The formulations, i.e. the compositions, preparation or mixtures comprising the compound (active ingredient) of formula I or at least one compound of formula I and generally one or more solid or liquid formulation adjuvant(s), are prepared in known manner, e.g. by intimately mixing and/or grinding the active ingredients with the formulation adjuvants, e.g. solvents or solid carriers. Surface-active compounds (surfactants) may additionally be used in the preparation of the formulations. Examples of solvents and solid carriers are given, for example, in WO 97/34485 on page 6.

Depending upon the nature of the compound of formula I to be formulated, suitable surfaceactive compounds are non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties.

Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, in WO 97/34485 on pages 7 and 8.

Also suitable for the preparation of the herbicidal compositions according to the invention are the surfactants conventionally employed in formulation technology described inter alia in "Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81.

The herbicidal formulations generally contain from 0.1 to 99 % by weight, especially from 0.1 to 99 % by weight, of herbicide, from 1 to 99.9 % by weight, especially from 5 to 99.8 % by weight, of a solid or liquid formulation adjuvant and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further auxiliaries, such as stabilisers, e.g. vegetable oils or

- 26 -

epoxidised vegetable oils (epoxidised coconut oil, rape oil or soybean oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and tackifiers, as well as fertilisers or other active incredients.

The compounds of formula I are generally applied to the plants or to their locus in rates of application of from 0.001 to 4 kg/ha, especially from 0.005 to 2 kg/ha. The concentration required to achieve the desired effect can be determined by experimentation. It is dependent upon the type of action, the stage of development of the crop plant and of the weed, and also upon the application (place, time, method) and, in dependence upon those parameters, can vary within wide limits.

The compounds of formula I are distinguished by herbicidal and growth-inhibiting properties which enable them to be used in crops of useful plants, especially in cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice, and in non-selective weed control. Crops are also to be understood as including those which have been rendered tolerant to herbicides or classes of herbicide by conventional methods of breeding or genetic engineering. The weeds to be controlled may be either monocotyledonous or dicotyledonous weeds, for example Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

The following Examples illustrate the invention further but do not limit the invention.

Preparation Examples:

Example P1: Preparation of C,C,C-trifluoro-N-[3-(4-methanesulfonyl-2-nitro-benzoyl)-4-oxobicyclo[3.2.1]oct-2-en-2-yl]-methanesulfonamide:

0.25 g (1.8 mmol) of trifluoromethylsulfonamide is added to a 55 % dispersion of 0.16 g (3.6 mmol) of sodium hydride in oil in 5 ml of anhydrous N-methylpyrrolidone, and the mixture is heated to a temperature of 50°C. Once the evolution of hydrogen has ceased, 0.64 g (1.6 mmol) of 4-chloro-3-(4-methanesulfonyl-2-nitro-benzoyl)-bicyclo[3.2.1]oct-3-en-2-one (e.g. known from JP 06025144 A2) is added in portions and the mixture is stirred for one hour at a temperature of 50°C. The reaction mixture is then acidified with 0.5N hydro-chloric acid and subsequently extracted with ethyl acetate in the presence of a small amount of sodium chloride solution. The product, which is dried over sodium sulfate and concentrated by evaporation, is recrystallised from a 1:1 mixture of dichloromethane and hexane to yield the pure C,C,C-trifluoro-N-[3-(4-methanesulfonyl-2-nitro-benzoyl)-4-oxo-bicyclo[3.2.1]oct-2-en-2-vll-methanesulfonamide having a melting point of 178-180°C.

Example P2: Preparation of N-[2-(4-methanesulfonyl-2-nitro-benzoyl)-3-oxo-cyclohex-1-envli-methanesulfonamide:

1 g (2.96 mmol) of 3-amino-2-(4-methanesulfonyl-2-nitro-benzoyl)-cyclohex-2-enone (m.p. 137-138°C, prepared by treatment of 3-chloro-2-(4-methanesulfonyl-2-nitro-benzoyl)-cyclohex-2-enone (m.p. 149-150°C, prepared analogously to DE-A-42 41 999) with 25%

PCT/EP01/02581

ammonia solution at room temperature in tetrahydrofuran) is placed in 10 ml of anhydrous dimethylformamide, 0.81 g (4.43 mmol) of sodium bistrimethylsilylamide is then added in portions. After stirring for 30 minutes, 0.28 ml (3.55 mmol) of methanesulfonyl chloride is added dropwise and the mixture is stirred for a further 8 hours. The reaction mixture is then poured into ethyl acetate and 1N hydrochloric acid, and the organic phase is separated off, washed with water, dried over sodium sulfate and concentrated by evaporation. The residue that remains behind is chromatographed on silica gel using a mixture of toluene, ethyl alcohol, dioxane, triethylamine and water (100:40:20:20:5 parts by volume) as eluant. The resulting oil is dissolved in ethyl acetate and washed in succession with 10 % hydrochloric acid and water. Concentration of the dried organic solution by evaporation yields pure N-[2-(4-methanesulfonyl-2-nitro-benzoyl)-3-oxo-cyclohex-1-enyl]-methane-sulfonamide in the form of crystals having a melting point of 191-192°C.

Table 1: Compounds of formula Id:

No.	R ₃₆	R ₆₄	R ₆₅	physical data
1.1	CH ₂ -CH=CH ₂	CH ₃	CF ₃	-
1.2	CH ₂ -CH=CH ₂	CH ₃	CHF ₂	-
1.3	CH ₂ -CH=CH ₂	CH ₃	CF ₂ CI	-
1.4	CH ₂ -CH=CH ₂	CH₂OCH₃	CF ₃	-
1.5	CH ₂ -CH=CH ₂	CH ₂ OCH ₃	CHF ₂	-
1.6	CH ₂ -CH=CH ₂	CH₂OCH₃	CF₂CI	-
1.7	CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CF,	-
1.8	CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
1.9	CH ₂ -CH=CH ₂	CH₂OC₂H₅	CF₂CI	-

- 29 -

No.	R ₃₅	R _∞	R ₆₅	physical data
1.10	(CH ₂) ₄ -CH ₃	CH ₃	CF,	
1.11	(CH ₂) ₄ -CH ₃	CH ₃	CHF ₂	-
1.12	(CH₂)∠-CH₃	CH ₃	CF ₂ CI	
1.13	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CF,	-
1.14	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CHF ₂	-
1.15	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃	CF₂CI	-
1.16	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CF ₃	-
1.17	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
1.18	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CF ₂ CI	-
1.19	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF ₃	
1.20	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CHF ₂	
1.21	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF₂CI	
1.22	CH ₂ -CH=CHCI	CH ₃	CF ₃	
1.23	CH₂-CH=CHCI	CH ₃	CHF ₂	-
1.24	CH₂-CH=CHCI	CH ₃	CF₂CI	-

Table 2: Compounds of formula le:

No.	R ₁₉	R _{re}	R ₆₇	physical data
2.1	CH ₂ -CH=CH ₂	CH ₃	CF,	-
2.2	CH ₂ -CH=CH ₂	CH ₃	CH ₃ CHF ₂	
2.3	CH ₂ -CH=CH ₂	CH ₃	CF ₂ CI	
2.4	CH ₂ -CH=CH ₂	CH₂OCH₃	CF,	-
2.5	CH₂-CH=CH₂	CH₂OCH₃	CHF ₂	-
2.6	CH ₂ -CH=CH ₂	CH₂OCH₃	CF ₂ Cl	-
2.7	CH ₂ -CH=CH ₂	CH₂OC₂H₅	CF,	1-
2.8	CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
2.9	CH ₂ -CH=CH ₂	CH₂OC₂H₅	CF ₂ CI	-
2.10	CH₃	CF ₃	CH,	-
2.11	CH ₃	CH ₃	SO₂CH₃	-
2.12	CH ₃	CF ₃	CI	-
2.13	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃	CF ₃	resin
2.14	CH ₂ -C(CH ₅)=CH ₂	CH₂OCH₃	CH ₂ OCH ₃ CHF ₂	
2.15	CH ₂ -C(CH ₂)=CH ₂	CH₂OCH₃	CF ₂ Cl	-
2.16	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CF ₃	-
2.17	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CHF ₂	-
2.18	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CF₂CI	-
2.19	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF,	resin
2.20	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CHF ₂	-
2.21	CH ₂ -C(CH ₃)=CH ₂	CH₃	CF ₂ CI	-
2.22	CH₂-CH=CHCI	CH₃	CF ₃	- [-
2.23	CH ₂ -CH=CHCl	CH ₃	CHF ₂	-
2.24	CH ₂ -CH=CHCI	CH ₃	CF₂CI	-

Table 3: Compounds of formula If:

No.	R _{ig}	R _{se}	R ₆₉	physical data
3.1	CH ₂ -CH=CH ₂	CH ₃	CH ₃ CF ₃	
3.2	CH ₂ -CH=CH ₂	CH ₃ CHF ₂		-
3.3	CH ₂ -CH=CH ₂	CH ₃	CF₂CI	-
3.4	CH ₂ -CH=CH ₂	CH ₂ OCH ₃	CF,	-
3.5	CH ₂ -CH=CH ₂	CH₂OCH₃	CHF ₂	-
3.6	CH₂-CH≔CH₂	CH₂OCH₃	CF ₂ CI	
3.7	CH ₂ -CH=CH ₂	CH₂OC₂H₅	CF ₃	-
3.8	CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
3.9	CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅ CF ₂ Cl		-
3.10	CH₃	CF ₃ CH ₃		-
3.11	CH ₃	CF ₃	SO₂CH₃	
3.12	CH₃	CF ₃	CI	-
3.13	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃	CF,	-
3.14	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CHF ₂	-
3.15	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃	CF ₂ CI	-
3.16	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CH ₂ OC ₂ H ₅ CF ₃	
3.17	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₆ CHF ₂		-
3.18	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅ CF₂CI		-
3.19	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF ₃	

- 32 -

No.	R ₁₉	R _{es}	R ₆₉	physical data
3.20	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CHF ₂	
3.21	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF ₂ Cl	
3.22	CH ₂ -CH=CHCl	CH ₃	CF ₃	-
3.23	CH ₂ -CH=CHCI	CH ₃	CHF ₂	-
3.24	CH₂-CH=CHCI	CH₃	CF ₂ Cl	-

Table 4: Compounds of formula Ig:

R.,	R ₇₀ R ₇₁		physical data
CH₂-CH=CH₂	CH ₃	CF ₃	-
CH ₂ -CH=CH ₂	CH ₃	CHF ₂	-
CH ₂ -CH=CH ₂	CH ₃	CF ₂ CI	-
CH ₂ -CH=CH ₂	CH₂OCH₃	CF ₃	-
CH ₂ -CH=CH ₂	CH ₂ OCH ₃	CHF ₂	-
CH ₂ -CH=CH ₂	CH₂OCH₃	CF₂CI	-
CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CF ₃	-
CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
CH ₂ -CH=CH ₂	CH₂OC₂H₅	CF₂Cl	-
CH ₃	. CF ₃	CH,	-
	CH ₂ -CH=CH ₂	CH ₂ -CH=CH ₂ CH ₃ CH ₂ -CH=CH ₂ CH ₃ CH ₂ -CH=CH ₂ CH ₂ CH ₂ -CH=CH ₂ CH ₂ -CH=CH ₂ CH ₂ -CH=CH ₂ CH ₂ -CH=CH ₃ CH ₂ -CH=CH ₂ CH ₂ -CH ₂ -CH ₃ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₄ -CH ₅ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₅ CH ₂ -CH ₄ -CH ₄ -CH ₅ CH ₂ -CH ₄ -CH	CH ₂ -CH=CH ₂ CH ₃ CH ₂ -CH=CH ₂ CH ₂ CH ₂ -CH ₃ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CH ₂ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CF ₃ CH ₃ -CH=CH ₂ CH ₂ -CH ₃ -CH ₅ CF ₃

No.	Ř,	R ₇₀ R ₇₁		physical data	
4.11	CH ₃	CF ₃	OCH ₃		
4.12	CH ₃	CF ₃	CI	-	
4.13	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CF ₃	<u> </u>	
4.14	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CHF ₂		
4.15	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CF₂CI	- -	
4.16	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CF ₃	- -	
4.17	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅ CHF ₂			
4.18	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CH ₂ OC ₂ H ₅ CF ₂ CI		
4.19	CH ₂ -C(CH ₃)=CH ₂	CH₃	CF ₃		
4.20	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CHF ₂		
4.21	CH ₂ -C(CH ₃)=CH ₂	CH₃	CF₂CI		
4.22	CH ₂ -CH=CHCI	CH₃	CF ₃	-	
4.23	CH2-CH=CHCI	CH ₃	CHF ₂	-	

Table 5: Compounds of formula Ih:

4.24

CH₂-CH=CHCI

CF₂Cl

CH₃

No.	R ₄₇	R ₇₂	R ₇₃	physical data
				1

No.	R _s ,	R ₇₂	R ₇₃	physical data
5.1	CH ₂ -CH=CH ₂	CH ₃	CF ₃	-
5.2	CH ₂ -CH=CH ₂	CH ₅ CHF₂		-
5.3	CH ₂ -CH=CH ₂	CH ₃	CF ₂ CI	-
5.4	CH ₂ -CH=CH ₂	CH₂OCH₃	CF ₃	-
5.5	CH₂-CH=CH₂	CH₂OCH₃	CHF ₂	-
5.6	CH ₂ -CH=CH ₂	CH₂OCH₃	CF₂CI	-
5.7	CH₂-CH≃CH₂	CH ₂ OC ₂ H ₅	CF,	
5.8	CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
5.9	CH ₂ -CH=CH ₂	CH₂OC₂H₅	CF₂CI	-
5.10	(CH ₂) ₄ -CH ₃	CH ₃	CF ₃	-
5.11	(CH ₂) ₄ -CH ₃	CH ₃	CHF ₂	-
5.12	(CH ₂) ₄ -CH ₃	CH ₃	CF ₂ Cl	-
5.13	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃ CF ₃		١.
5.14	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃ CHF₂		-
5.15	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CF₂CI	-
5.16	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CF ₃	-
5.17	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CHF ₂	-
5.18	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CF₂CI	-
5.19	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF ₃	
5.20	CH ₂ -C(CH ₃)=CH ₂	CH ₃ CHF ₂		
5.21	CH _z -C(CH ₃)=CH ₂	CH ₃ CF ₂ CI		
5.22	CH ₂ -CH=CHCI	CH ₃	CF ₃	-
5.23	CH ₂ -CH=CHCI	CH ₃	CHF ₂	-
5.24	CH ₂ -CH=CHCl	CH ₃	CF ₂ CI	-

Table 6: Compounds of formula Ik:

No.	R _{as}	R ₇₄	R ₇₅	R ₇₆	physical
6.1	CH ₃	NO ₂	H	cí	-
6.2	CH ₃	NO ₂	Н	Br	-
6.3	CH ₃	NO ₂	н	SCH₃	
6.4	CH ₃	NO ₂	Н	SOCH₃	
6.5	CH ₃	NO ₂	н	SO₂CH ₃	-
6.6	CH ₃	NO ₂	н	CF ₃	-
6.7	C ₂ H ₅	NO ₂	Н	CI	-
6.8	C ₂ H ₅	NO ₂	H	SO ₂ CH ₃	-
6.9	C ₂ H ₅	NO ₂	н	CF ₃	-
6.10	C ₃ H ₇	NO ₂	н	CI	-
6.11	C ₃ H ₇	NO ₂	н	SO₂CH₃	-
6.12	C ₃ H ₇	NO ₂	н	CF ₃	-
6.13	CH ₂ -C(CH ₃)=CH ₂	NO ₂	н	CI	
6.14	CH ₂ -C(CH ₃)=CH ₂	NO ₂	Н	SO ₂ CH ₃	-
6.15	CH ₂ -C(CH ₃)=CH ₂	NO ₂	Н	CF ₃	-
6.16	CF ₃	NO ₂	Н	CI	-
6.17	CF ₃	NO ₂	Н	SO₂CH ₃	178-180°C

No.	R _{Jb}	R ₇₄	R ₇₅	R ₇₆	physical data
6.18	CF ₃	NO ₂	Н	CF ₃	-
6.19	CH ₃	CI	Н	SO₂CH₃	-
6.20	CH ₃	CF ₃	Н	SO₂CH₃	
6.21	CH ₃	SO ₂ CH ₃	н	CF ₃	-
6.22	C ₂ H ₅	CI	H	SO ₂ CH ₃	
6.23	C₂H₅	CF ₃	Н	SO₂CH₃	-
6.24	C₂H₅	SO ₂ CH ₃	Н	CF ₃	
6.25	C ₃ H ₇	CF ₃	Н	SO ₂ CH ₃	+
6.26	C ₃ H ₇	SO ₂ CH ₃	н	CF ₃	Ţ-
6.27	CF ₃	CF ₃	Н	SO₂CH₃	
6.28	CF ₃	SO₂CH₃	н	CF ₃	-
6.29	CH ₂ -C(CH ₃)=CH ₂	CF ₃	н	SO ₂ CH ₃	-
6.30	CH ₂ -C(CH ₃)=CH ₂	SO ₂ CH ₃	Н	CF ₃	-
6.31	CH ₃	CH ₃	OCH ₃	SO ₂ CH ₃	-
6.32	CH ₃	CH ₃	OC₂H₅	SO₂CH₃	1-
6.33	CH ₃	CI	OCH ₃	SO₂CH ₃	-
6.34	CH ₃	CI	OC ₂ H ₅	SO₂CH ₃	1- "
6.35	C ₂ H ₅	CH₃	OCH₃	SO₂CH₃	-
6.36	C ₂ H ₅	CH ₃	OC ₂ H ₅	SO₂CH ₃	1.
6.37	C ₂ H ₅	CI	OCH ₃	SO₂CH₃	1-
6.38	C ₂ H ₅	CI	OC ₂ H ₅	SO₂CH₃	1.
6.39	C ₃ H ₇	CH ₃	OCH₃	SO₂CH ₃	
6.40	C ₃ H ₇	CH ₃	OC ₂ H ₅	SO ₂ CH ₃	-

No.	R _{se}	R ₇₄	R ₇₅	R ₇₆	physical
					data
6.41	C ₃ H ₇	CI	OCH ₃	SO ₂ CH ₃	-
6.42	C ₃ H ₇	CI	OC ₂ H ₅	SO₂CH₃	-
6.43	CF ₃	CH ₃	OCH ₃	SO ₂ CH ₃	-
6.44	CF ₃	CH₃	OC ₂ H ₅	SO₂CH₃	-
6.45	CF ₃	CI	OCH ₃	SO ₂ CH ₃	-
6.46	CF ₃	CI	OC₂H₅	SO ₂ CH ₃	-
6.47	CH ₂ -CH=CHCI	NO ₂	Н	SO₂CH₃	-
6.48	CH ₂ -CH=CHCI	NO ₂	Н	CF ₃	
6.49	CH ₂ -CH=CHCI	CH ₃	OCH ₃	SO ₂ CH ₃	-
6.50	CH ₂ -CH=CHCI	CH ₃	OC ₂ H ₅	SO ₂ CH ₃	-
6.51	CH₂-CH=CHCI	CI	OCH ₃	SO₂CH₃	-
6.52	CH₂-CH=CHCI	CI	OC ₂ H ₅	SO ₂ CH ₃	-
6.53	CH ₃	-CH=C	H-CH=N-	CF,	•
6.54	CH ₃	-CH=C	H-CH=N-	CI	-
6.55	CH ₃	CH ₃	-SO ₂ CH ₂ CH	H ₂ C(CH ₃) ₂ -	-

Table 7: Compounds of formula Im:

- 38 -

No.	R ₁₆	R ₇₇	R ₇₈	R ₇₉	phys. data
7.1	CH ₃	NO ₂	Н	SO ₂ CH ₃	-
7.2	CH ₃	NO ₂	Н	CF ₃	†-
7.3	CH ₃	NO ₂	Н	CI	-
7.4	CH ₃	CH ₃	OCH ₃	SO ₂ CH ₃	-
7.5	CH ₃	CH ₃	OC ₂ H ₅	SO₂CH ₃	-
7.6	CH ₃	CI	OCH ₃	SO ₂ CH ₃	1-
7.7	CH ₃	CI	OC ₂ H ₅	SO₂CH ₃	
7.8	CH ₃	CI	Н	SO ₂ CH ₃	-
7.9	CH ₃	SO ₂ CH ₃	Н	CF ₃	-
7.10	CH ₃	CF ₃	н	SO ₂ CH ₃	-
7.11	CF ₃	NO ₂	Н	SO ₂ CH ₃	-
7.12	C ₂ H ₅	NO ₂	Н	SO₂CH₃	-
7.13	n-C ₃ H ₇	NO ₂	н	SO₂CH₃	-
7.14	n-C₄H ₉	NO ₂	н	SO₂CH₃	-
7.15	CF ₃	CH ₃	OCH ₃	SO ₂ CH ₃	-
7.16	C ₂ H ₅	CH₃	OCH₃	SO ₂ CH ₃	-
7.17	n-C ₃ H ₇	CH₃	OCH ₃	SO ₂ CH ₃	-
7.18	n-C ₄ H ₉	CH ₃	OCH ₃	SO ₂ CH ₃	-
7.19	CH ₂ -CH=CHCl	NO ₂	н	SO ₂ CH ₃	1-
7.20	CH ₂ -CH=CHCl	NO ₂	н	CF ₃	-
7.21	CH ₂ -CH=CHCl	CH ₃	OCH₃	SO ₂ CH ₃	-
7.22	CH ₂ -CH=CHCl	CH ₃	OC ₂ H ₅	SO ₂ CH ₃	-
7.23	CH ₂ -CH=CHCI	CI	OCH ₃	SO₂CH₃	-
7.24	CH ₂ -CH=CHCl	CI	OC ₂ H ₅	SO₂CH ₃	-

No.	R.,	R ₇₇	R ₇₈	R ₇₉	phys. data	
7.25	CH ₃	CH ₃	-SO ₂ CH,CH ₂ S	0,-	-	
7.25	CH ₃	CH ₃	-SO ₂ CH ₂ CH ₂ C	H(OCH ₃)-	-	

Table 8: Compounds of formula In:

No.	R,	Rao	R ₈₁	R ₅₂	phys.data
8.1	CH₃	NO ₂	Н	SO₂CH ₃	-
8.2	CH ₃	NO ₂	н	CF ₃	-
8.3	CH3	NO ₂	Н	CI	-
8.4	CH ₃	CH ₃	OCH₃	SO₂CH ₃	-
8.5	CH ₃	CH ₃	OC ₂ H ₅	SO ₂ CH ₃	
8.6	CH ₃	CI	OCH ₃	SO ₂ CH ₃	1.
8.7	CH ₃	CI	OC₂H₅	SO₂CH ₃	1-
8.8	CH ₂	CI	Н	SO₂CH₃	-
8.9	CH ₃	SO₂CH₃	Н	CF ₃	-
8.10	CH ₃	CF₃	Н	SO ₂ CH ₃	 -
8.11	CF ₃	NO ₂		SO ₂ CH ₃	-
8.12	C ₂ H ₅	NO ₂	÷н	SO ₂ CH ₃	-
8.13	n-C ₃ H ₇	NO ₂	Н	SO ₂ CH ₃	-
8.14	n-C ₄ H ₉	NO ₂	Н	SO₂CH₃	-
8.15	CF ₃	CH ₃	OCH ₃	SO₂CH₃	-

No.	R,,	R ₈₀	R _{8*}	R ₈₂	phys.data
8.16	C ₂ H ₅	CH ₃	OCH₃	SO ₂ CH ₃	-
8.17	n-C ₃ H ₇	CH ₃	OCH₃	SO ₂ CH ₃	
8.18	n-C ₄ H ₉	CH ₃	OCH ₃	SO₂CH ₃	-
8.19	CH ₂ -CH=CHCI	NO ₂	н	SO₂CH ₃	-
8.20	CH ₂ -CH=CHCI	NO ₂	H	CF ₃	
8.21	CH ₂ -CH=CHCl	CH ₃	OCH ₃	SO₂CH ₃	-
8.22	CH ₂ -CH=CHCI	CH ₃	OC ₂ H ₅	SO₂CH ₃	
8.23	CH ₂ -CH=CHCI	CI	OCH ₃	SO₂CH ₃	-
8.24	CH ₂ -CH=CHCI	CI	OC ₂ H ₅	SO ₂ CH ₃	 -

Table 9: Compounds of formula lp:

No.	R _{es}	R ₈₃	R ₈₄	R ₈₅	phys.data
9.1	CH ₃	NO ₂	Н	SO ₂ CH ₃	191-192°C
9.2	CH ₃	NO ₂	Н	CF ₃	<u> </u>
9.3	CH ₃	NO ₂	Н	CI	
9.4	CH ₃	CH ₃	OCH ₃	SO ₂ CH ₃	-
9.5	CH ₃	CH ₃	OC ₂ H ₅	SO ₂ CH ₃	-
9.6	CH ₃	CI	OCH ₃	SO ₂ CH ₃	-
9.7	CH ₃	CI	OC ₂ H ₅	SO ₂ CH ₃	-

WO 01/66522 PCT/EP01/02581

No.	1 R ₉₆	R ₈₃	R ₈₄	R ₈₅	phys.data
9.8	CH ₃	CI	Н	SO₂CH₃	-
9.9	CH ₃	SO₂CH ₃	Н	CF ₃	-
9.10	CH ₃	CF ₃	H	SO₂CH ₃	1-
9.11	CF ₃	NO ₂	н	SO ₂ CH ₃	1-
9.12	C ₂ H ₅	NO ₂	н	SO₂CH ₃	-
9.13	n-C ₃ H ₇	NO ₂	н	SO₂CH ₃	-
9.14	n-C₄H ₉	NO ₂	Н	SO ₂ CH ₃	
9.15	CF ₃	CH ₃	OCH ₃	SO₂CH ₃	-
9.16	C ₂ H ₅	CH ₃	OCH ₃	SO ₂ CH ₃	-
9.17	n-C ₃ H ₇	CH ₃	OCH₃	SO ₂ CH ₃	-
9.18	n-C ₄ H ₉	CH ₃	OCH ₃	SO₂CH ₃	-
9.19	CH2-CH=CHCI	NO ₂	н	SO₂CH ₃	-
9.20	CH ₂ -CH=CHCI	NO ₂	Н	CF ₃	-
9.21	CH ₂ -CH=CHCl	CH ₃	OCH ₃	SO₂CH ₃	-
9.22	CH2-CH=CHCI	CH ₃	OC ₂ H ₅	SO₂CH ₃	-
9.23	CH ₂ -CH=CHCI	Ci	OCH₃	SO₂CH ₃	 -
9.24	CH ₂ -CH=CHCl	CI	OC ₂ H ₅	SO₂CH ₃	-
9.25	CH ₃	CI	-SO₂CH₂C	-SO ₂ CH ₂ CH ₂ C(CH ₃) ₂ -	
9.26	CH ₃	CH ₃	-SO₂CH₂C	H ₂ C(CH ₃) ₂ -	-

Table 10: Compounds of formula lq:

No.	R _{e7}	R ₈₆	R ₈₇	R ₈₈	phys.data
10.1	CH₃	NO ₂	н	SO₂CH ₃	-
10.2	CH ₃	NO ₂	Н	CF ₃	
10.3	CH ₃	NO ₂	н	CI	181-182°C
10.4	CH ₃	CH ₃	OCH₃	SO₂CH₃	-
10.5	CH₃	CH ₃	OC ₂ H ₅	SO₂CH₃	-
10.6	CH₃	CI	OCH ₃	SO ₂ CH ₃	-
10.7	CH ₃	CI	OC ₂ H ₅	SO ₂ CH ₃	-
10.8	CH ₃	CI	Н	SO ₂ CH ₃	-
10.9	CH ₃	SO ₂ CH ₃	Н	CF ₃	-
10.10	CH ₃	CF ₃	Н	SO₂CH₃	
10.11	CF ₃	NO ₂	Н	SO₂CH₃	
10.12	C ₂ H ₅	NO ₂	H	SO₂CH ₃	-
10.13	n-C ₃ H ₇	NO ₂	Н	SO₂CH₃	-
10.14	n-C ₄ H ₉	NO ₂	Н	SO₂CH₃	-
10.15	CF ₃	CH ₃	OCH₂	SO₂CH₃	
10.16	C ₂ H ₅	CH ₃	OCH ₃	SO₂CH₃	-
10.17	n-C ₃ H ₇	CH ₃	OCH ₃	SO ₂ CH ₃	-
10.18	n-C ₄ H ₉	CH ₃	OCH₃	SO₂CH₃	
10.19	CF ₃	NO ₂	Н	CI	197-198°C

No.	R _{ar}	R ₈₆	R ₈₇	R ₈₈	phys.data
10.20	CH ₂ -CH=CHCI	NO ₂	н	SO ₂ CH ₃	
10.21	CH ₂ -CH=CHCI	NO ₂	н	CF ₃	-
10.22	CH ₂ -CH=CHCI	CH ₃	OCH ₃	SO ₂ CH ₃	-
10.23	CH ₂ -CH=CHCI	CH ₃	OC ₂ H ₅	SO₂CH ₃	-
10.24	CH ₂ -CH=CHCI	Ci	OCH,	SO₂CH₃	-
10.25	CH₂-CH=CHCI	CI	OC₂H ₅	SO ₂ CH ₃	-

Table 11: Compounds of formula Ir:

CH ₂ -CH=CH ₂	CH ₃	CF	
		CF ₃	-
CH ₂ -CH=CH ₂	CH₃	CHF ₂	-
CH ₂ -CH=CH ₂	CH ₃	CF₂CI	-
CH ₂ -CH=CH ₂	CH₂OCH₃	CF,	
CH ₂ -CH=CH ₂	CH₂OCH₃	CHF ₂	-
CH ₂ -CH=CH ₂	CH₂OCH₃	CF ₂ Cl	-
CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CF _a	-
CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CHF ₂	-
CH ₂ -CH=CH ₂	CH ₂ OC ₂ H ₅	CF ₂ Cl	-
(CH ₂) ₄ -CH ₃	CH ₃	CF ₃	-
	CH ₂ -CH=CH ₂	CH ₂ ·CH=CH ₂	CH ₂ ·CH=CH ₂ CH ₂ ·CC=CH ₂

No.	R ₆ ,	R _{a9}	R ₉₀	physical data
11.11	(CH ₂) ₄ -CH ₃	CH ₃	CHF ₂	-
11.12	(CH ₂) ₄ -CH ₃	CH ₃	CF ₂ Cl	-
11.13	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃	CF ₃	-
11.14	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OCH ₃	CHF ₂	-
11.15	CH ₂ -C(CH ₃)=CH ₂	CH₂OCH₃	CF ₂ CI	-
11.16	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CF ₃	-
11.17	CH ₂ -C(CH ₃)=CH ₂	CH₂OC₂H₅	CHF ₂	
11.18	CH ₂ -C(CH ₃)=CH ₂	CH ₂ OC ₂ H ₅	CF₂CI	-
11.19	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF ₃	-
11.20	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CHF₂	-
11.21	CH ₂ -C(CH ₃)=CH ₂	CH ₃	CF ₂ CI	-
11.22	CH ₂ -CH=CHCI	CH ₃	CF ₃	1-
11.23	CH ₂ -CH=CHCI	CH ₃	CHF ₂	-
11.24	CH₂-CH≃CHCI	CH₃	CF₂CI	-
11.25	CH₃	CH ₃	SO₂CH ₃	-
11.26	CH₃	C₂H₅	SO₂CH₃	-
11.27	CH ₃	CH₃	CF ₃	-
11.28	CH ₃	CH ₃	CHF ₂	-
11.29	CH ₃	CH ₃	CF₂CI	-
11.30	CH ₃	C ₂ H ₅	CF ₃	-
11.31	CH ₃	C ₂ H ₅	CHF ₂	-
11.32	CH ₃	C ₂ H ₅	CF ₂ CI	-
		1		

Table 12: Compounds of formula Is:

No.	R ₉₂	R ₉₃	R ₉₄	R ₉₅	phys. data
12.1	CH ₃	NO ₂	Н	SO ₂ CH ₃	-
12.2	CH ₃	NO ₂	Н	CF ₃	-
12.3	CH ₃	NO ₂	Н	CI	-
12.4	CH ₃	CH₃	OCH ₃	SO ₂ CH ₃	1-
12.5	CH₃	CH₃	OC₂H₅	SO₂CH₃	-
12.6	CH₃	CI	OCH₃	SO₂CH₃	
12.7	CH ₃	CI	OC₂H₅	SO₂CH ₃	-
12.8	CH ₃	Ci	Н	SO₂CH ₃	-
12.9	CH ₃	SO ₂ CH ₃	Н	CF ₃	-
12.10	CH₃	CF ₃	Н	SO₂CH₃	T- **
12.11	CF ₃	NO ₂	Н	SO₂CH ₃	1-
12.12	C ₂ H ₅	NO ₂	Н	SO₂CH ₃	1-
12.13	n-C ₃ H ₇	NO ₂	Н	SO₂CH₃	-
12.14	n-C ₄ H ₉	NO ₂	н	SO₂CH ₃	-
12.15	CF ₃	CH₃	OCH ₃	SO₂CH ₃	-
12.16	C ₂ H ₅	CH ₃	OCH ₃	SO₂CH₃	1
12.17	n-C ₃ H ₇	CH ₃	OCH ₃	SO₂CH ₃	-
12.18	n-C ₄ H ₉	CH ₃	OCH ₃	SO ₂ CH ₃	-
12.19	CH ₂ -CH=CHCI	NO ₂	Н	SO ₂ CH ₃	-
12.20	CH ₂ -CH=CHCI	NO ₂	Н	CF ₃	-

No.	R ₉₂	R ₉₃	R ₉₄	R ₉₆	phys. data
12.21	CH ₂ -CH=CHCI	CH ₃	OCH ₃	SO ₂ CH ₃	-
12.22	CH ₂ -CH=CHCl	CH ₃	OC₂H₅	SO ₂ CH ₃	-
12.23	CH ₂ -CH=CHCl	CI	OCH ₃	SO₂CH ₃	-
12.24	CH ₂ -CH=CHCI	CI	OC₂H₅	SO ₂ CH ₃	-
12.25	CH ₃	NO ₂	H	SO ₂ C ₂ H ₅	-
12.26	CH ₃	NO ₂	H	SOCH ₃	-
12.27	CH ₃	NO ₂	Н	SCH ₃	
12.28	CH ₃	CH ₃	OCH₃	SO ₂ C ₂ H ₅	-
12.29	CH ₃	CH ₃	OC ₂ H ₅	SO ₂ C ₂ H ₅	-
12.30	CH ₃	CI	OCH₃	SO ₂ C ₂ H ₅	-
12.31	CH ₃	CI	OC₂H₅	SO ₂ C ₂ H ₅	-
12.32	CH ₃	CI	Н	SO ₂ C ₂ H ₅	-
12.33	CH ₃	SO₂CH₃	н	SCH ₃	-
12.34	CH ₃	. CF ₃	Н	SO ₂ C ₂ H ₅	-
12.35	CF ₃	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.36	C ₂ H ₅	NO ₂	Н	SO₂C₂H₅	-
12.37	n-C₃H ₇	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.38	n-C ₄ H ₉	NO ₂	н	SO ₂ C ₂ H ₅	-
12.39	CF ₃	CH ₃	OCH ₃	SO ₂ C ₂ H ₅	-
12.40	C ₂ H ₅	CH ₃	OCH₃	SO ₂ C ₂ H ₅	-
12.41	n-C ₃ H ₇	ČH₃	OCH₃	SO ₂ C ₂ H ₅	-
12.42	n-C₄H ₉	CH ₃	OCH₃	SO ₂ C ₂ H ₅	-
12.43	CH₂-CH=CHCI	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.44	CH₂-CH=CHCI	NO ₂	Н	SCH ₃	-

No.	R ₉₂	R ₉₃	R ₉₄	R ₉₅	phys. data
12.45	CH₂-CH=CHCI	CH ₃	OCH ₃	SO ₂ C ₂ H ₅	4-
12.46	CH ₂ -CH=CHCl	CH₃	OC ₂ H ₅	SO ₂ C ₂ H ₅	Ĭ-
12.47	CH ₂ -CH=CHCI	Cl	OCH₃	SO₂C₂H₅	
12.48	CH ₂ -CH=CHCI	CI	OC₂H₅	SO ₂ C ₂ H ₅	-
12.49	CH ₃	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.50	CH ₃	NO ₂	Н	SOCH ₃	-
12.51	CH ₃	NO ₂	Н	SCH₃	
12.52	CH ₃	CH ₃	OCH ₃	SO ₂ C ₂ H ₅	-
12.53	CH ₃	CH ₃	OC ₂ H ₅	SO ₂ C ₂ H ₅	-
12.54	CH ₃	CI	OCH₃	SO ₂ C ₂ H ₅	-
12.55	CH ₃	CI	OC ₂ H ₅	SO ₂ C ₂ H ₅	-
12.56	CH ₃	CI	Н	SO ₂ C ₂ H ₅	-
12.57	CH ₃	SO₂CH ₃	Н	SCH ₃	-
12.58	CH ₃	CF ₃	Н	SO ₂ C ₂ H ₅	-
12.59	CF ₃	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.60	C ₂ H ₅	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.61	n-C ₃ H ₇	NO ₂	н	SO₂C₂H₅	-
12.62	n-C ₄ H ₉	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.63	CF ₃	CH ₃	OCH ₃	SO ₂ C ₂ H ₅	-
12.64	C₂H₅	CH ₃	OCH₃	SO ₂ C ₂ H ₅	-
12.65	n-C ₃ H ₇	CH ₃	OCH ₃	SO ₂ C ₂ H ₅	†
12.66	n-C₄H ₉	CH ₃	OCH ₃	SO ₂ C ₂ H ₅	-
12.67	CH2-CH=CHCI	NO ₂	Н	SO ₂ C ₂ H ₅	-
12.68	CH ₂ -CH=CHCI	NO ₂	Н	SCH ₃	-

- 48 -

No.	Ř ₉₂	R ₉₃	R ₉₄	R ₉₅	phys. data
12.69	CH ₂ -CH=CHCI	CH ₃	, OCH₃	SO₂C₂H₅	-
12.70	CH-CH=CHCI	CH ₃	OC ₂ H ₅	SO ₂ C ₂ H ₅	-
12.71	CH ₂ -CH=CHCI	CI	OCH ₃	SO ₂ C ₂ H ₅	-
12.72	CH ₂ -CH=CHCI	CI	OC ₂ H ₅	SO ₂ C ₂ H ₅	<u> </u> -

Biological Examples

Example B1; Herbicidal action before emergence of the plants (pre-emergence action) Monocotyledonous and dicotyledonous test plants are sown in standard soil in plastic pots. Immediately after sowing, an aqueous suspension (prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or an emulsion (prepared from a 25 % emulsifiable concentrate (Example F1, c)) of the test compounds is applied by spraying at a rate of application corresponding to 250 g a.i./ha (500 litres water/ha). The test plants are then cultivated in a greenhouse under optimum conditions. After 3 weeks the test is evaluated in accordance with a scale of nine ratings (1 = total damage, 9 = no action).

Ratings of from 1 to 4 (especially from 1 to 3) indicate good to very good herbicidal action.

Table B1: Pre-emergence action of the compounds of formula I:

Example No.	SETARIA	PANICUM	DIGITARIA	ECHINOCHLO A	BRACHIARIA	ABUTILON	XANTHIUM	CHENO- PODIUM
2.19	2	1	1	1	1	1	3	2
2.13	3	,	3	2	2	2	3	1

The same results are obtained when the compounds of formula I are formulated in accordance with Examples F2 and F4 to F8 according to WO 97/34485.

Example B2: Post-emergence herbicidal action

Monocotyledonous and dicotyledonous test plants are raised in a greenhouse in plastic pots containing standard soil and at the 4- to 6-leaf stage are sprayed with an aqueous suspension of the test compounds of formula! (prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or with an emulsion of the test compounds of formula I (prepared from a 25 % emulsifiable concentrate (Example F1, c) according to WO 97/34485) at a rate of application corresponding to 250 g a.i./ha (500 litres water/ha). The test plants are then grown on in the greenhouse under optimum conditions. After about 18 days the test is evaluated in accordance with a scale of nine ratings (1 = total damage, 9 = no action). Ratings of from 1 to 4 (especially from 1 to 3) indicate good to very good herbicidal action. In this test too, the compounds of formula | exhibit strong herbicidal action.

Table B2: Post-emergence action of the compounds of formula I:

	Evample	PANICUM	DIGITARIA	ÉCHINO-	FUPHORIA	ABUTILON	XANTHIUM	CHENO.	SINAPIS	STELLARIA
ı	No.			CHLOA				PODIUM		
1										
	2.19	11	1	2	2	2	2		2 -	2
	2.13	3	3	3	3	3	3	1 1	3	2

What is claimed is:

1. A compound of formula I

wherein X is methine, nitrogen or N=O; m is 1, 2, 3 or 4;

each R is independently hydrogen, C1-C6alkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6-alkynyl, C2-C5haloalkvnvl, C3-C6cycloalkvl, C1-C5alkoxy, C1-C6haloalkoxy, C1-C6alkylthio, C1-Csalkylsulfinyl, C1-Csalkylsulfonyl, C1-Cshaloalkyl, C1-Cshaloalkylthio, C1-Cshaloalkylsulfinyl, C1-Cehaloalkylsulfonyl, C1-Cealkoxycarbonyl, C1-Cealkylcarbonyl, C1-Cealkylamino, di-C.-C.alkylamino, C.-C.alkylaminosulfonyl, di-C.-C.alkylaminosulfonyl, -N(R1)-S-R2. -N(R₂)-SO-R₄, -N(R₅)-SO₂-R₆, nitro, cyano, halogen, hydroxy, amino, formyl, hydroxy-C1-Cealkyl, C1-Cealkoxy-C1-Cealkyl, C1-Cealkoxy-Carbonyloxy-C1-Cealkyl, C1-Cealkylthio-C1-Cnalkyl, C1-Cnalkylsulfinyl-C1-Cnalkyl, C1-Cnalkylsulfonyl-C1-Cnalkyl, rhodano-C1-Cnalkyl, cvano-C1-Caalkyl, oxiranyl, C3-Caalkenyloxy, C3-Caalkynyloxy, C1-C6alkoxy-C1-C6alkoxy-C1-C2alkvl, C1-C3alkoxv-C1-C3alkoxv, cvano-C1-C3alkenyloxy, C1-C3alkoxycarbonyloxy-C1-Csalkoxy, C1-Csalkoxy, cyano-C1-Csalkoxy, C1-Csalkoxycarbonyl-C1-Csalkoxy- $C_1-C_3 alky!,\ C_1-C_6 alkoxycarbonyl-C_1-C_6 alkoxy.\ C_1-C_6 alky!thio-C_1-C_6 alkoxy,\ C_1-C_6 alky!thio-C_1-C_6 alkoxy,\ C_1-C_6 alky!thio-C_1-C_6 alkoxy.\ C_1-C_6 alkox$ $C_1 - C_6 alkoxy - C_1 - C_3 alkyl, \ alkoxycarbonyl - C_1 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_3 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_6 alkylthio, \ alkoxycarbonyl - C_1 - C_6 alkylthio - C_1 - C_6$ alkyl, alkoxycarbonyl-C1-Cgalkylsulfinyl, alkoxycarbonyl-C1-Cgalkylsulfinyl-C1-C3alkyl, alkoxycarbonyl-C1-C6alkylsulfonyl, alkoxycarbonyl-C--C8alkylsulfonyl-C1-C3alkyl, C1-C6alkylsulfonyloxy, C1-Cshaloalkylsulfonyloxy, phenyl, benzyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, benzylthio, benzylsulfinyl or benzylsulfonyl, wherein the phenyl and benzyl groups may themselves be mono-, di- or tri-substituted by C₁-C₆alkyl, C1-C6haloaikyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C2-C6haloaikynyl, C1-C6-alkoxy, C1-C6haloalkoxy, C3-C6alkenyloxy, C3-C6alkynyloxy, mercapto, C1-C6alkylthio, C1-C6haloalkylthio, C₂-C₆alkenylthio, C₂-C₆haloalkenylthio, C₂-C₆alkynylthio, C₇-C₆alkynylthio, C3-C5acetylalkylthio, C3-C5alkoxycarbonylalkylthio, C2-C2cyanoalkylthio, C1-C5alkylsulfinyl,

 $C_1\text{-}C_0\text{-haloalkylsulfinyl}, \ C_1\text{-}C_0\text{-haloalkylsulfonyl}, \ C_1\text{-}C_0\text{-haloalkylsulfonyl}, \ aminosulfonyl, \ C_1\text{-}C_0\text{-}$ alkylaminosulfonyl, $C_2\text{-}C_4\text{dialkylaminosulfonyl}, \ R_2\text{-}C_1\text{-}C_2\text{alkylene-}, \ NR_0R_2, \ halogen, \ cyano, nitro, phenylthio and/or by benzylthio, wherein those phenylthio and benzylthio groups may themselves be substituted on the phenyl ring by <math>C_1\text{-}C_2\text{-alkyl}, \ C_1\text{-}C_3\text{-haloalkyl}, \ C_1\text{-}C_3\text{-alkoxy}, \ C_1\text{-}C_3\text{-haloalkoxy}, \ halogen, \ cyano \ or \ by \ nitro;$

or each R is independently a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur;

the ring system either being bonded directly to the ring containing the substituent X or being bonded to the ring containing the substituent X by way of a C₁-C₄alkylene group; and each ring system may contain no more than two oxygon atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆haloalkyl, C₂-C₆haloalkyl, C₂-C₆haloalkyl, C₂-C₆haloalkyl, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆haloalkyl, C₂-C₆alkoxyl, C₃-C₆alkylyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkyl, C₁-C₆alkylthio, C₂-C₆alkoxylkylthio, C₃-C₆alkoxylkylthio, C₃-C₆alkoxylkylthio, C₂-C₆alkoxylkylthio, C₂-C₆alkoxylkylthio, C₃-C₆alkoxylkylthio, C₂-C₆alkoxylkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfiny

R₁, R₃ and R₅ are each independently of the others hydrogen or C₁-C₆alkyl;
R₂ is NR₁₃R₁₄, C₂-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl,
C₃-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, wherein phenyl may itself be substituted by
C₁-C₂alkyl, C₁-C₂haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;
R₄ is NR₁₅R₁₆, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₈alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl,
C₃-C₆haloalkynyl, C₁-C₆cycloalkyl or phenyl, wherein phenyl may itself be substituted by
C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkyl, C₁-C₃haloalkoxy, halogen, cyano or by nitro;
R₆ is NR₁₇R₁₈, C₁-C₆cycloalkyl, C₁-C₆haloalkyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, wherein phenyl may itself be substituted by
C₁-C₃alkyl, C₁-C₅haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;
R₇ and R₁₀ are each independently of the other C₁-C₃alkoxy, C₂-C₄alkoxycarbonyl, C₁-C₃-alkythio, C₁-C₃alkylsulfinyl, C₁-C₃-C₃lkylsulfinyl, C₁-C₃-C₄phenyl may itself be

substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, halogen, cyano or by nitro:

- 52 -

Rs, R11, R12, R15 and R17 are each independently of the others C1-C12alkyl; R_9 , R_{12} , R_{14} , R_{16} and R_{18} are each independently of the others C_1 - C_{12} alkyl, or R_8 and R_9 together, and/or R₁₁ and R₁₂ together, and/or R₁₃ and R₁₄ together, and/or R₁₅ and R₁₆ together, and/or R₁₇ and R₁₈ together, with the nitrogen atom to which they are bonded. form a 3- to 7-membered ring;

Q is the group Q₁

$$\begin{array}{c|c} N(R_{13}) \cdot SO_2 \cdot R_{20} \\ \hline \\ R_{24} \\ R_{21} \\ R_{23} \\ \end{array} \qquad (O_1)$$

wherein

R₁₀ is hydrogen or C₁-C₆alkyl;

Ren is C1-C12alkyl, C1-C12haloalkyl, C2-C12alkenyl, C2-C6haloalkenyl, C1-C2alkoxycarbonyl- or phenyl-substituted vinyl, or is C₃-C₆alkynyl, C₃-C₆haloalkynyl, C₃-C₆allenyl, C₃-C₆cycloalkyl, NR₃₂R₃₃, benzyl or phenyl, wherein the phenyl-containing groups may themselves be substituted by C1-C3alkyl, C1-C3-

haloalkyl, C₁-C₂alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or R₂₀ is hydroxy-C1-C1-alkyl, C1-C4alkoxy-C1-C1-alkyl, C1-C4alkylthio-C1-C1-alkyl, C1-C4alkylsulfinyl-C1-C12-

aikyl, C₁-C₂alkylsulfonyl-C₁-C₁2alkyl, cyano-C₁-C₁2alkyl, C₁-C₆alkylcarbonyloxy-C₁-C₁₂alkyl, C1-C4alkoxycarbonyl-C1-C12alkyl, C1-C4alkoxycarbonyloxy-C1-C12alkyl, rhodano-C1-C12alkyl. benzoyloxy-C₁-C₁₂alkyl, C₂-C₆oxiranyl, C₁-C₄alkylamino-C₁-C₁₂alkyl, di(C₁-C₄alkyl)amino-C1-C12alkyl, C1-C12alkylthiocarbonyl-C1-C12alkyl or formyl-C1-C12alkyl; or Rm is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the -N(R₁₉)-S(O)₂- group by way of a C₁-C₁₂alkylene group, and each ring system may contain no more than two oxygen atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, Co-Cahaloalkenyl, Co-Caalkynyl, Co-Cahaloalkynyl, C1-Caalkoxy, C1-Cahaloalkoxy, C3-C6-

alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio,

- 53 -

$$\begin{split} &C_3\text{-}C_6\text{haloalkenylthio},\ C_3\text{-}C_6\text{alkynylthio},\ C_2\text{-}C_6\text{alkoxyalkylthio},\ C_3\text{-}C_0\text{-}acetylalkylthio},\ C_3\text{-}C_6\text{-}alkoxycarbonylalkylthio},\ C_3\text{-}C_6\text{-}alkylsulfinyl},\ C_1\text{-}C_6\text{-}alkylsulfinyl},\ C_1\text{-}C_6\text{-}alkylsulfinyl},\ C_1\text{-}C_6\text{-}alkylsulfinyl},\ C_1\text{-}C_6\text{-}alkylsulfinyl},\ di(C_1\text{-}C_2\text{-}alkyl)\text{aminosulfonyl},\ di(C_1\text{-}C_2\text{-}alkyl)\text{aminosulfonyl},\ di(C_1\text{-}C_6\text{-}alkyl)\text{aminosulfonyl},\ di(C_1\text{-}C_6\text{-}alkyl)\text{aminosulfonyl},\ di(C_1\text{-}C_6\text{-}alkyl)\text{aminosulfonyl},\ di(C_1\text{-}C_6\text{-}alkyl)\text{aminosulfonyl},\ di(C_1\text{-}C_6\text{-}alkyl)\text{-}aninosulfonyl,\ di(C_1\text{-$$

R₂₁, R₂₂, R₂₃ and R_{2c} are each independently of the others hydrogen, C₁-C₆alklyl, C₁-C₃-haloalklyl, C₂-C₆alkenyl, C₂-C₆alkeynyl, C₁-C₆alklynyl, C₁-C₆alklylaml, C₁-C₆alklylaml, C₁-C₆alklylaml, C₁-C₆alklylamlno, C₁-C₆alklylamlno, C₁-C₆alklylamlno, C₁-C₆alklylamlno, C₁-C₆alklylamlno, C₁-C₆alklylamlno, C₁-C₆alklylamlno, C₁-C₆alklyl, C₁-C₆alklyl, C₁-C₆alklyl, C₁-C₆alklyl, halogen, cyano, nitro, phenyl or phenyl substituted by C₁-C₆alklyl, C₁-C₆alklylamlno, C₁-C₆alklylamlno

W is oxygen, sulfur, sulfinyl, sulfonyl, -CR₂₆, R₂₆-, -C(O)-, -CR₂₆R₂₆-CR₃₆R₃₁- or -NR₂₇-, wherein the carbon atom carrying the substituents $R_{28}R_{29}$ is attached to the carbon atom carrying the substituents $R_{22}R_{23}$;

 $\label{eq:region_region} $$R_{25}$ is hydrogen, $C_1-C_4alkyl, $$

suifinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyloxy, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkylsulfonyloxy, C_1 - C_4 alkyl- $S(O)_2$ MH, C_1 - C_4 alkyltino-N(C_1 - C_4 alkyl), C_1 - C_4 alkyltinyl-N(C_1 - C_4 alkyl), C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; or R_{26} together with R_{23} or R_{24} denotes C_1 - C_4 alkylene; R_{26} is hydrogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl, or R_{26} together with R_{25} denotes C_2 - C_5 -alkylene; alkylene;

 R_{27} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxycarbonyl or phenyl which may itself be substituted by C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkylamino, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyloxy, C_1 - C_4 alkyl-S(O)₂NH, C_1 - C_4 alkyl-S(O)₂N(C_1 - C_4 -alkyl-S(O)₂NH, C_1 - C_4 -alkyl-S(O)₂N(C_1 - C_4 -alkyl-S(O)₂NH, C_1 - C_4 -alkyl-S(O)₂N(C_1 - C_4 -alkyl-S(O)₂NH, C_1 - C_4 -Alk

 R_{28} , R_{29} , R_{39} and R_{31} are each independently of the others hydrogen or C_1 - C_6 alkyl, or R_{26} or R_{39} together with R_{21} or R_{23} form a direct bond;

R₃₂ is C₁-C₁₂alkyl;

 R_{33} is C_1 - C_{12} alkyl, or R_{32} and R_{33} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring:

with the proviso that R_{20} is other than $C_1 \cdot C_1 \cdot 2$ alkyl and $C_1 \cdot C_4 \cdot 2$ haloalkyl when X is nitrogen or NO, the group -C(O)-Q occupies the 3-position in the ring and R in the 6-position in the ring is $C_1 \cdot C_4 \cdot 2$ haloalkyl:

or Q is the group Q.

$$\begin{array}{c|c} & N(R_{34})\text{-SO}_2\text{-}R_{35} \\ \hline A & V & \\ R_{36} & R_{37} & \\ R_{39} & R_{38} & \\ \end{array}$$

wherein

R₃₄ is hydrogen or C₁-C₆alkyl;

 R_{35} is C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_2 - C_{12} alkenyl, C_2 - C_6 haloalkenyl, C_1 - C_2 alkoxycarbonyl- or phenyl-substituted vinyl, or is C_3 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 allenyl, C_3 - C_6 cycloalkyl. NR₃₅ Benzyl or phenyl.

wherein the phenyl-containing groups may themselves be substituted by C_1 - C_3 -alkyl, C_1 - C_3 -haloalkyl, C_1 - C_3 -haloalkyl, C_1 - C_3 -haloalkoxy, C_1 - C_3 -haloalkoxy, halogen, cyano or by nitro, or R_{38} is hydroxy-

WO 01/66522 PCT/EP01/02581

 C_1 - C_1 -2alkyl, C_1 - C_4 alkoxy- C_1 - C_1 -2alkyl, C_1 - C_4 alkylthio- C_1 - C_1 -2alkyl, C_1 - C_4 alkylsulfinyl- C_1 - C_1 -2alkyl, C_1 - C_4 alkylsulfinyl- C_1 - C_1 -2alkyl, C_1 - C_4 -2alkyl)- C_1 - C_4 -2alkyl, C_1 - C_4 -2alkyl, C_1 - C_4 -2alkyl)- C_1 - C_4 -2alkyl, C_1 - C_4 -2alkyl

or R₀₅ is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the

 $-N(B_{3c})-S(O)_{2^{\circ}}\ group\ by\ way\ of\ a\ C_1\cdot C_{12}alkylene\ group,\ and\ each\ ring\ system\ may\ contain\ no\ more\ than\ two\ oxygen\ atoms\ and\ no\ more\ than\ two\ sulfur\ atoms,\ and\ the\ ring\ system\ itself\ may\ be\ mono-,\ di-\ or\ tri-substituted\ by\ C_1\cdot C_6alkyl,\ C_1\cdot C_6plaloalkyl,\ C_2\cdot C_6alkenyl,\ C_2\cdot C$

Y is a chemical bond, an alkylene group A₁, carbonyl, oxygen, sulfur, sulfinyl, sulfonyl, -NR₄₀ or NH(CO)R₄₁:

A₁ is C(R₄₂R₄₃)m₆₁;

A is $C(R_{44}R_{45})r$;

r and mot are each independently of the other 0, 1 or 2;

R₃₆ is hydrogen, methyl or C₁-C₃alkoxycarbonyl;

 R_{27} , R_{38} , R_{29} , R_{44} , R_{45} , R_{42} and R_{42} are each independently of the others hydrogen, C_1 - C_4 -alkyny, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfinyl, halogen or methyl, or R_{33} together with an adjacent group R_{43} or R_{43} denotes a chemical bond;

R₄₀ and R₄₁ are each independently of the other hydrogen or C₁-C₄alkyl;

R₅₁ is C₁-C₃₂alkyl; and

 R_{52} is C_1 - C_{12} alkyl; or R_{51} and R_{52} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring; with the proviso that R_{54} is C_5 - C_6 alkyl when R_{65} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl and X is nitrogen or NO;

or Q is the group Q2

wherein

R₄₅ is hydrogen or C₁-C₆alkyl:

 $R_{47} \text{ is } C_1 - C_{12} \text{alkyl}, \ C_1 - C_{12} \text{haloalkyl}, \ C_2 - C_{12} \text{alkenyl}, \ C_2 - C_6 \text{haloalkenyl}, \ C_1 - C_2 \text{alkoxycarbonyl-} \ or phenyl-substituted vinyl, or is $C_3 - C_6 \text{alkynyl}, \ C_3 - C_6 \text{haloalkenyl}, \ C_3 - C_6 \text{allenyl}, \ C_3 - C_6 \text{cycloalkyl}, \ NR_{55}R_{54}, \ \text{benzyl} \ \text{or phenyl}, \ \text{wherein the phenyl-containing groups may themselves be substituted by $C_1 - C_3 \text{alkyl}, \ C_1 - C_3 \text{alcakyl}, \ C_1 - C_4 \text{alkoxy}, \ C_2 - C_6 \text{haloalkoxy}, \ \text{halogen}, \ \text{cyano} \ \text{or} \ \text{by nitro}, \ \text{or} \ R_{47} \ \text{is hydroxy} - C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_{12} \text{alkyl}, \ C_1 - C_4 \text{alkoxy-} \ C_1 - C_4 \text{alkyl} \ \text{anino-} \ C_1 - C_5 \text{alkyl} \ \text{anino-} \ C_1 - C_{12} \text{alkyl} \ \text{chaloalkenyl} \ \text{chaloalkeny$

or R₄₇ is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the —N(F₀₆)—S(O)₂- group by way of a C₁-C₁₂alkylene group, and each ring system may contain no more than two oxygen atoms and no more more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C₁-C₀alkyl, C₁-C₀haloalkyl, C₂-C₀alkoryl, C₂-C₀haloalkenyl, C₂-C₀alkoryl, C₂-C₀alkoryl, C₂-C₀haloalkylyl, C₁-C₀alkyl, C₁-C₀haloalkoxy, C₃-C₀-alkenyl, C₂-C₀alkoryl, C₁-C₀alkylyl), C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkoryl, C₁-C₀alkylylthio, C₂-C₀-C₀alkorylalkylthio, C₂-C₀-C₀alkorylalkylthio, C₃-C₀-C₀alkorylalkylthio, C₃-C₀-C₀alkorylalkylthio, C₃-C₀-C₀alkorylalkylthio, C₃-C₀-C₀alkorylalkylthio, C₃-C₀-C₀alkorylalkylthio, C₃-C₀-C₀alkylsulfinyl, C₁-C₀alkylsulfinyl, C₁-C₀alkylsulfinyl,

WO 01/66522 PCT/FP01/02581

benzylthio, wherein phenylthio and benzylthio may themselves be substituted on the phenyl ring by C₁-C₉alkyl, C₁-C₉haloalkyl, C₁-C₉alkoxy, C₁-C₉haloalkoxy, halogen, cyano or by nitro, and wherein the substituents at the nitrogen atom in the heterocyclic ring are free of halogen;

 $R_{48} \ and \ R_{28} \ are each independently of the other hydrogen, \ C_1\text{-}C_4alkyl, \ C_2\text{-}C_6alkenyl, \ C_7\text{-}C_6alkylsulfinyl, \ C_1\text{-}C_6alkylsulfinyl, \ C_1\text{-}C_6\text{-}alkylsulfinyl, \ C_1\text{-}alkylsulfinyl, \ C_1\text{-}C_6\text{-}alkylsulfinyl, \ C_1\text{-}C_6\text{-}alkylsulfinyl, \ C_1\text{-}C_6\text{-}alkylsulfinyl, \ C_1\text{-}C_6\text{-}alkyl$

$$\begin{split} R_{50} &|s\ hydrogen,\ C_{1^*}C_{\theta}alkyl,\ C_{3^*}C_{\theta}alkenyl,\ C_{2^*}C_{\theta}alkynyl,\ C_{1^*}C_{\epsilon}alkoycarbonyl,\ benzyl\ or\\ &phenyl,\ wherein\ benzyl\ or\ phenyl\ may\ themselves\ be\ substituted\ by\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkyl,\ C_{1^*}C_{\delta}alkylamino,\ C_{1^*}C_{\delta}alkylamino,\ C_{1^*}C_{\delta}alkylsulfinyl,\ C_{1^*}C_{\delta}alkylsulfinyl,\ C_{1^*}C_{\delta}alkylsulfonyl,\ C_{1^*}C_{\delta}alkylsulfonyloxy,\ C_{1^*}C_{\delta}alkylsulfonyl$$

 C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkylsulfonyloxy, C_1 - C_4 alkyl- $S(O)_2$ NH, C_1 - C_4 alkyl- $S(O)_2$ N(C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; R_∞ is C_1 - C_4 2alkyl and

 R_{54} is C_{1} - C_{12} alkyl, or R_{53} and R_{54} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring;

with the proviso that R_{48} is C_5 - C_6 alkyl when R_{47} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl and X is nitrogen or NO;

or Q is the group Q4

$$\begin{array}{c} & N(R_{80})\text{-}SO_2\text{--}R_{81} \\ R_{56} & Y_1 & O \\ R_{57} & R_{88} & \end{array}$$

wherein Reg is hydrogen or C1-C6alkyl;

R₆₁ is C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₆haloalkenyl, C₁-C₂alkoxycarbonyl- or phenyl-substituted vinyl, or is C₃-C₆alkynyl, C₃-C₆haloalkynyl, C₇-C₇allenyl, C₃-C₆cycloalkyl.

- 58 -

 $NR_{ic2}R_{o3}, benzy! \ or phenyl, wherein the phenyl-containing groups may themselves be substituted by C_1-C_3elkyl, C_1-C_3haloalkyl, C_1-C_3elkoxy, C_1-C_3haloalkoxy, halogen, cyano or by nitro, or R_0; is hydroxy-$C_1-C_{12}alkyl, C_1-C_3elkoxy-$C_1-C_{12}alkyl, C_1-C_4elkylthio-$C_1-C_{12}alkyl, C_1-C_4elkyl, C_1-C_4elkyl$

or Reg is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, the ring system being bonded to the sulfur atom of the -N(R_{cn})-S(O)₂- group by way of a C₁-C₂-alkylene group, and each ring system may contain no more than two oxygen atoms and no more than two sulfur atoms, and the ring system itself may be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C3-C6alkenyloxy, C3-C6alkynyloxy, mercapto, C1-C6alkylthio, C1-C6haloalkylthio, C3-C6alkenylthio, C3-C6haloalkenylthio, C3-C6alkynylthio, C2-C5alkoxyalkylthio, C3-C5acetylalkylthio, C3-C6alkoxycarbonylalkylthio, C2-C4cyanoalkylthio, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, C1-C6alkylsulfonyl, C1-Cahaloalkylsulfonyl, aminosulfonyl, C1-C2alkylaminosulfonyl, di(C1-C2alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenylthio and/or by benzylthio, wherein phenylthio and benzylthio may themselves be substituted on the phenyl ring by C₁-C₂alkyl, C₁-C₂haloalkyl, C₁-C₂alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro. and wherein the substituents at the nitrogen atom in the heterocyclic ring are free of halogen:

Reg is C1-C10alkyl and

 R_{63} is C_1 - C_{12} alkyl, or R_{62} and R_{63} together with the nitrogen atom to which they are bonded form a 3- to 7-membered ring;

Y₁ is oxygen or NR_{sq}:

 R_{00} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_4 - C_6 alkynyl, C_1 - C_6 alkoxycarbonyl, benzyl or phenyl, wherein benzyl or phenyl in may themselves be substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 -haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, amino, C_1 - C_6 alkylamino, C_1 - C_6 alkyla

WO 01/66522 PCT/EP01/02581 - 59 -

 C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkylsulfonyloxy, C_1 - C_4 alkyl- $S(O)_2$ NIC, C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; R_{65} , R_{67} and R_{58} are each independently of the others hydrogen, hydroxy- C_1 - C_4 alkyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyloxy- C_1 - C_4 alkyl, C_1 - C_6 alkylsulfonyloxy- C_1 - C_4 alkyl, C_1 - C_6 alkylsulfonyloxy- C_1 - C_6 alkylsulfonyloxy- C_1 - C_6 alkylsulfonyloxy- C_1 - C_6 alkylamino, C_1 - C_6 alkyl, C_1 - C_6 alkoxy or phenyl, wherein the phenyl group may itself be substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkylen or C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6

- 2. A herbicidal and plant-growth-inhibiting composition that comprises a herbicidally effective amount of a compound of formula I on an inert carrier.
- 3. A method of controlling undesired plant growth, which comprises applying a herbicidally effective amount of a compound of formula I or of a composition comprising that compound to the plants or to their locus.
- 4. A method of inhibiting plant growth, which comprises applying a herbicidally effective amount of a compound of formula I or of a composition comprising that compound to the plants or to their locus.
- 5. The use of a composition according to claim 2 in controlling undesired plant growth.

Internation Application No. PCT/EF 01/02581

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO7D213/50 A01N43/40 C07C311/07 A01N47/04 A01N47/02 CO7D265/02 A01N43/58 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched i classification system followed by classification symbols: Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consuled during the international search (name of data base and, iwhere practical search terms used) EPO-Internal, WPI Data, PAJ. BEILSTEIN Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * | Citation of document, with indication, where appropriate of the relevant passages Relevant to claim No P.A WO 00 37437 A (NOVARTIS ERFIND VERWALT 1-5 GMBH ; NOVARTIS AG (CH); MESMAEKER ALAIN DE) 29 June 2000 (2000-06-29) claim 1 Α WO 99 09023 A (NOVARTIS ERFINDUNGEN 1-5 ;NOVARTIS AG (CH); EDMUNDS ANDREW (CH); MESMA) 25 February 1999 (1999-02-25) cited in the application claim 1 Α WO 97 46530 A (DU PONT ;TSENG CHI PING 1 - 5(US): PATEL KANU MAGANBHAI (US): RORER MOR) 11 December 1997 (1997-12-11) Compounds where a = 0-1claim 1 -/--X Further documents are listed in the continuation of box C. X Patent family members are fisted in annex. * Special categories of cried documents "T" later document published after the international filing date or priority date and not in conflict with the application but cited to uncerstand the principle or theory uncertying the "A" document defining the deneral state of the lart which is not considered to be of particular relevance. "E" earlier document but published on or after the international "X" document of carboular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention pitation or other special reason (as, specified). cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments such combination being obvious to a person skilled "O" document referring to an oxal disclosure, use, exhibition or other means "P" document published prior to the informational filing date but ater than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of maying of the international search report 12 June 2001 19/06/2001 Name and mailing address of the ISA Authorizon officer European Patent Office, P B 5818 Patenthan 2 European Fallin Cinice, F. B. 56 to Panishila NL = 2280 HV Rijswijk Tel. (+31=70) 340=2040. Tx. 31 651 epo ni Fax. (+31=70) 340=3016

rorm PCT, SA/210 (specing sheet) Lieb 1992

Gettins, M

Internation Application No PCT/EF 01/02581

ategory Catalog	OCCUMENTS CONSIDERED TO DAE RELEVANT OF OR OBSERVED WITH THE PROPERTY OF THE	Fellowant to Liestin No
KI Wi C' Q:	ENNETH (US); HANAGAN MARY ANN (US); HONG N) 6 March 1997 (1997-03-06) ited in the application -0-1	1-5
Si	0 92 07837 A (SANDOZ AG :SANDOZ AG (DE); NDOZ LTD (CH)) 14 May 1992 (1992-05-14) :laim 1	1-5
S/ 3:	O 394 889 A (SANDOZ AG ;SANDOZ AG (DE); NNDOZ AG (AT)) L October 1990 (1990-10-31) Plaim 1	1-5
3:	2 0 353 187 A (CIBA GEIGY AG) L January 1990 (1990-01-31) Claim 1	1-5
CI	? O 316 491 A (STAUFFER AGRICULTURAL HEMICAL) 24 May 1989 (1989-05-24) Plaim 1	1-5
23	O 249 813 A (STAUFFER CHEMICAL CO) 3 December 1987 (1987-12-23) ted in the application claim 1	1-5
-		
i		
İ		İ

Info. Jon on patent family members

PCT/EH 01/02581

Patent document		Publication		Patent family	Publication
cited in search report		date		member(s)	date
WO 0037437	А	29-06-2000	AU	1982600 A	12-07-2000
WO 9909023	Α	25-02-1999	AU	732154 B	12-04-2001
		E0 0E 1333	AU	9344198 A	08-03-1999
			BR	9811314 A	29-08-2000
			CN	1261884 T	02-08-2000
			EP	1005467 A	07-06-2000
WO 9746530	A	11-12-1997	AU	3297397 A	05~01-1998
			CA	2257196 A	11-12-1997
			EP	0922032 A	16-06-1999
			ZA	9704916 A	26-01-1999
WO 9708164	Α	06-03-1997	AU	6777896 A	19-03-1997
			EP	0846112 A	10-06-1998
WO 9207837	Α	14-05-1992	AU	642052 B	07-10-1993
			AU BR	8744291 A 9106194 A	26-05-1992 23-03-1993
			CA.		25-03-1993 26-04-1992
			C\$	2072134 A 9201934 A	14-10-1992
			EP	0506907 A	07-10-1992
			HU	61534 A	28-01-1993
			JP	5503106 T	27-05-1993
			PL	295411 A	28-06-1993
			us	5565410 A	15-10-1996
			ÜŞ	5780626 A	14-07-1998
			US	5728831 A	17-03-1998
			US	5336662 A	09-08-1994
			ZA	9108535 A	26-04-1993
EP 0394889	A	31-10-1990	AT	109474 T	15-08-1994
			AU	628521 B	17-09-1992
			AU	5377190 A	01-11-1990
			BG	62310 B	30-07-1999
			BR	9001894 A	30-07-1991
			CA	2015242 A	25-10-1990
			CN	1046900 A,	
			CZ	9002040 A	14-10-1998
			DE	69011179 D	08-09-1994
			D E	69011179 T 394889 T	02-02-1995 03-10-1994
			ES.	394889 T	16-10-1994
			HU E2	54126 A,	
			IE	901434 A	02-01-1991
			ĬĹ	94165 A	31-08-1995
			JP	2295905 A	06-12-1990
			JP	2896190 B	31-05-1999
			NZ	233411 A	28-04-1992
			PL	163354 B	31-03-1994
			PT	93841 A.	
			SK	204090 A	10-12-1999
			RU	2013956 C	15-06-1994
			TR	24452 A	01-11-1991
				24452 A 5565410 A	01-11-1991 15-10-1996
			TR		
			TR US	5565410 A	15-10-1996

Form PCT/ISA/215 (patent tarminy anniew) (July 1992)

Internation Application No PCT/E+ 01/02581

						01/02561
	atent document d in search repor	t	Publication date	1	Patent family member(s)	Publication date
EP	0394889	Α _		ZA	9003144 A	24-12-1991
ΕP	0353187	Α	31-01-1990	AU	621638 B	19-03-1992
				AU	3892989 A	25-01-1990
				BR	8903654 A	13-03-1990
				CN	1039808 A	21-02-1990
				DK	365189 A	26-01-1990
				HU	50774 A	28-03-1990
				HÜ	206497 B	30-11-1992
				IL	91083 A	04-04-1993
				JP	2078662 A	19-03-1990
				RO	104618 B	02-12-1992
				US	4995902 A	26-02-1991
				DD	284002 A	31-10-1990
				ZA	8905610 A	28-03-1990
ΕP	0316491	A	24-05-1989	NONE	:	
EP.	0249813	Α	23-12-1987	US	4775411 A	04-10-1988
				AT	65492 T	15-08-1991
				AU	592873 B	25-01-1990
				AU	7388687 A	10-12-1987
				BG	60285 B	25-04-1994
				BR	8702902 A	08-03-1988
				CA	1291756 A	05-11-1991
				CN	87104123 A	20-01-1988
				CZ	8704193 A	12-02-1997
				DE	3771590 D	29-08-1991
					3771590 D 171529 B	29-08-1991 23-12-1996
				DE		
				DE DK ES FI	171529 B	23-12-1996
				DE DK ES	171529 B 2044868 T	23-12-1996 16-01-1994
				DE DK ES FI	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A	23-12-1996 16-01-1994 10-12-1987
				DE DK ES FI GR	171529 B 2044868 T 872548 A,B, 3002358 T	23-12-1996 16-01-1994 10-12-1987 30-12-1992
				DE DK ES FI GR HR HU IL	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A 44396 A,B 82798 A	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997
				DE DK ES FI GR HR HU	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A 44396 A,B	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988
				DE DK ES FI GR HR HU IL	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A 44396 A,B 82798 A	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991
				DE DK ES FI GR HR HU JP JP KR	171529 B 2044868 T 872548 A.B., 3002358 T 940872 A 44396 A.B 82798 A 2509623 B	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991 26-06-1996
				DE DK ES FI GR HR JP JP	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A 44396 A,B 82798 A 2509623 B 62298563 A	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991 26-06-1996 25-12-1987
				DE DK ES FI GR HR JL JP KR NZ PH	171529 B 2044368 T 872548 A.B., 3002358 T 940872 A 44396 A.B 82798 A 2509623 B 62298563 A 9506392 B 20486 A 25548 A	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991 26-06-1996 25-12-1987 14-06-1995
				DE DK ES FI GR HR HU JP KR NZ PH PT	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A 44396 A,B 82798 A 2509623 B 62298563 A 9506392 B 220486 A 25548 A 85027 A,B	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991 26-06-1996 25-12-1987 14-06-1995 28-06-1995
				DE DK ES FI GR HR JL JP KR NZ PH	171529 B 2044868 T 872548 A, B, 3002358 T 940872 A 44396 A, B 82798 A 2509623 B 62298563 A 9506392 B 220486 A 25548 A 85027 A, B 419387 A	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991 26-06-1996 25-12-1987 14-06-1995 28-06-1989 08-08-1991
				DE DK ES FI GR HU JP KR NZ PT SK TR	171529 B 2044868 T 872548 A,B, 3002358 T 940872 A 44396 A,B 82798 A 2509623 B 62298563 A 9506392 B 220486 A 25548 A 85027 A,B 419387 A 24110 A	23-12-1996 16-01-1994 10-12-1987 30-12-1992 30-06-1997 28-03-1988 12-05-1991 26-06-1996 25-12-1987 14-06-1995 28-06-1989 08-08-1991 01-07-1987
				DE DK ES FI GR HR JP JP KR PT SK	171529 B 2044868 T 872548 A, B, 3002358 T 940872 A 44396 A, B 82798 A 2509623 B 62298563 A 9506392 B 220486 A 25548 A 85027 A, B 419387 A	23-12-1996 16-01-1994 10-12-1987 30-12-1997 28-03-1988 12-05-1991 26-06-1996 25-12-1987 14-06-1995 28-06-1989 08-38-1991 01-07-1987 08-08-1998