Infinite Sets

Equinumerousness and Infinite Sets

Infinite Sets Are Not Rigid

By the rigidity property, a finite set cannot be equinumerous to any of its proper subsets. But this is not the case with an infinite set.

Example 1 (Natural Numbers and Whole Numbers)

 $\mathbb N$ is a proper subset of ω , but ω is equinumerous to $\mathbb N$ because the function f defined by f(n)=n+1 for all $n\in\omega$ is a bijection from ω to $\mathbb N$.

Question. Is f above the only bijection from ω to \mathbb{N} ? If not, construction another one of your own.

Infinite Sets Are Not Rigid (cont')

Example 2 (Intervals)

Let $A = [1, \infty)$ and $B = (1, \infty)$. B is a proper subset of A, but A is equinumerous to B. Find an example of a bijection f from A to B.

Infinite Sets Are Not Rigid (cont')

Example 3 (Even and Odd Natural Numbers)

Let $A=\{2,4,6,\ldots\}$ be the set of even natural numbers and let $B=\{1,3,5,\ldots\}$ be the set of odd natural numbers. Verify the following by finding suitable bijections.

Infinite Sets Are Not Rigid (cont')

Exercise

Show that $\mathbb{Z} \approx \mathbb{N}$.

More Counter-Intuitive Examples

Example 4 (Perfect Squares)

Let $S=\{n^2:n\in\mathbb{N}\}$ be the set of all perfect squares. Then $S\approx\mathbb{N}.$

Example 5 (Cartesian Product of \mathbb{N})

 $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$ because the function g defined by

$$\begin{split} g(1,1)&=1,\\ g(1,2)&=2,\quad g(2,1)=3,\\ g(1,3)&=4,\quad g(2,2)=5,\quad g(3,1)=6,\\ g(1,4)&=7,\quad g(2,3)=8,\quad g(3,2)=9,\quad g(4,1)=10,\\ \text{and so on,} \end{split}$$

is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} .

Example 6 (Positive Rational Numbers)

Let $A=\{x\in\mathbb{Q}:x>0\}$. Each element $x\in A$ can be expressed uniquely as x=a/b where $a,b\in\mathbb{N}$ and the fraction is in lowest terms. We can list all such fractions in lowest terms as follows:

Define f(n) to be the n-th term in this list. Then f is a bijection from \mathbb{N} to A.

Exercise

Show that $\mathbb{Q} \approx \mathbb{N}$.

Example 7

Let A=[0,12] and let B=[0,5]. Then $A\approx B$ because of we let f(x)=5x/12 for all $x\in$, then f is a bijection from A to B.

Note. In general, for any $a, b, c, d \in \mathbb{R}$ with a < b and c < d,

 $[a,b]\approx [c,d], \quad (a,b)\approx (c,d), \quad (a,b]\approx (c,d], \quad \text{and} \quad [a,b)\approx [c,d).$

Example 8

Let $\varphi(x)=x/(1-|x|)$ for all $x\in (-1,1)$. In S11E23, we showed that φ is a bijection from (-1,1) to $\mathbb R$. Hence $(-1,1)\approx \mathbb R$.

Note. By this example and the note from the previous example, we deduce that $(0,1) \approx \mathbb{R}$. This fact will be useful later.