

BEMM457

Topic in Business Analytics

Jasper Samuel Jesudas 740002193

Table of Contents

Introduction	3
Descriptive Statistics	3
Comparative Hypothesis	4
Associative Hypothesis	5
Hypothesis Summary Table	7
Follow-up study	8
Regression Analysis	9
Managerial Implications	10
Conclusion	12
Appendix	13

Introduction

A UK-based fitness apparel and equipment retailer has sought our consultancy services to understand customer usage patterns of wearable technology specifically fitness trackers and smartwatches. This report analyses the data collected from 300 customers six months after their purchase of wearable technology devices aiming to provide insights for developing a new marketing campaign that highlights the most attractive features of the wearable technologies.

This report presents descriptive statistics, hypothesis development, testing suggestions for follow-up research and managerial implications.

Descriptive statistics

Descriptive statistics are used to describe aspects of sets of quantitative data to enable interpretation and comparison. A descriptive statistic could be the value of an individual data item (variable) or a summary of a single variable or group of variables. (Kirsty Williamson, 2018)

Figure 1 (Dashboard 1)

This dashboard helps us to understand the brands their average selling price, average rating per country, brand rating and brand profit. Through this dashboard the retailer can purchase the brands like Apple, Samsung, OnePlus etc which have more rating

and promote them with new marketing campaigns, this can help the retailer to reach audiences who likes the Highly rated brands and wearable tech enthusiast.

On the other hand, GOQii, Lava, Apple and Samsung are highly profitable than other brands and OnePlus, Huami are the loss-making brands, through this we can give more importance to highly profitable brands and less importance to the loss-making brands.

Figure 2(Dashboard 2)

This dashboard gives clear picture of average units of wearable products sold based on brand names and their average battery life both in descending order to track the most selling units and the products with good battery life.

Comparative Hypothesis

A comparative hypothesis compares two or more groups or conditions to identify differences between them. It predicts varying outcomes based on different treatments, classifications, or conditions. This approach helps determine if distinct factors lead to significant changes in results, facilitating targeted analysis and informed decision-making. (The Ohio State University, 2010)

Hypothesis (H1a)

There is a significant difference in the perceived entertainment (Q4-Q6) between fitness tracker users and smartwatch users.

For Q4, Q5 and Q6 the p-values are less than 0.05 indicating that there's a significant difference in perceived entertainment between fitness tracker users and smartwatch users.

For all three questions (Q4, Q5, Q6), the p-values are less than 0.05, indicating statistically significant differences in perceived entertainment between fitness tracker users and smartwatch users. **H1a is supported.**

Hypothesis (H1b)

There is a significant difference in the continued use intention (Q17-Q20) between fitness tracker users and smartwatch users.

For Q17, Q18, Q19 and Q20, the p-values are less than 0.05 indicating significant differences in the continued use intention between fitness tracker users and smartwatch users.

For all four questions (Q17-Q20), the p-values are less than 0.05, indicating statistically significant differences in continued use intention between fitness tracker users and smartwatch users.

The negative t-values suggest that smartwatch users (likely coded as 2) reported higher levels of continued use intention compared to fitness tracker users (likely coded as 1). The mean differences range from -0.213 to -0.380, representing the average difference in scores between the two groups on a 5-point scale.

H1b is supported as there's significant differences between continued use intention between users and smartwatch users.

Associative Hypothesis

Associative Hypothesis posits that changes in one variable coincide with changes in another, without implying causation. In contrast, the Causal Hypothesis asserts a direct cause-and-effect relationship between variables, suggesting that alterations in one directly influence changes in another. (The Ohio State University, 2010)

Hypothesis (H2a)

There is a significant association between age and continued use intention (Q17-Q20). Corelation between age and continued use intention variables are very weak and not statistically significant. This suggests that age does not have significant relationship with continued use intention.

There is a weak but statistically significant positive correlation between age and Q17 (continued use intention for Q17). There is no significant correlation between age and Q18, Q19, or Q20, suggesting that age does not have a significant relationship with these aspects of continued use intention, hence **H2a** is not **supported**

Hypothesis (H2b)

There is a significant association between gender and perceived effort expectancy (Q13-Q16). The p-value is greater than 0.05, indicating that there is no statistically significant association between gender and perceived effort expectancy.

H2b is not supported because the corelation between gender and perceived effort expectancy are not statistically significant.

Hypothesis (H2c)

There is a significant association between perceived performance expectancy (Q8-Q12) and continued use intention (Q17-Q20).

There's a significant association between perceived performance expectancy and continued use intention as the relationships are statistically significant.

The hypothesis is supported because all correlations between perceived performance expectancy variables and continued use intention variables are statistically significant, indicating that higher perceived performance expectancy is associated with higher continued use intention. **H2c is supported.**

Hypothesis Summary Table

Hypothesis	Description	Variables	Test Used	Significant?	Supported?
		Involved		(p < 0.05)	
H1a	There is a significant difference in perceived entertainment between fitness tracker users and smartwatch	Q4, Q5, Q6	Independent Samples t- test	,,	Supported
	users.				
H1b	There is a significant difference in continued use intention between fitness tracker users and smartwatch users.	Q17, Q18, Q19, Q20	Independent Samples t- test	Yes	Supported
H2a	There is a significant association between age and continued use intention.	Age, Q17, Q18, Q19, Q20	Pearson Correlation	No	Not Supported

H2b	There is a	Gender,	Pearson	No	Not
	significant	Q13, Q14,	Correlation		Supported
	association	Q15, Q16			
	between				
	gender and				
	perceived				
	effort				
	expectancy.				
H2c	There is a	Q8, Q9,	Pearson	Yes	Supported
	significant	Q10, Q11,	Correlation		
	association	Q12, Q17,			
	between	Q18, Q19,			
	perceived	Q20			
	performance				
	expectancy				
	and				
	continued use				
	intention.				

Follow-up Study

Qualitative Study on Device Differences

Given the significant differences found between fitness tracker and smartwatch users in terms of perceived entertainment and continued use intention, a qualitative follow-up study could be beneficial. This could involve:

- In-depth interviews or focus groups with users of both device types.
- Exploring the reasons behind the higher perceived entertainment and continued use intention for smartwatches.
- Investigating specific features or aspects that contribute to these differences.

Experimental Study on Performance Expectancy

Given the strong association found between performance expectancy and continued use intention, an experimental study could be designed to:

Manipulate different levels of performance feedback or goal achievement

- Measure the impact on user satisfaction and intention to continue use
- Test different ways of communicating device performance to users

Cross-Cultural Comparison

As the study only focused on UK, a follow-up on other countries could explore culture and demographical differences.

- Replicate the study in different countries or cultural contexts
- Compare how factors like artificiality, entertainment, and performance expectancy vary across cultures
- Identify universal vs. culture-specific factors influencing wearable technology adoption and use

Regression Analysis

Regression analysis is a statistical method that examines the relationship between variables. It quantifies how changes in one variable are associated with changes in another, or several others. It's used to model and predict outcomes based on the relationships observed within the data. (Harvard Business School, 2021)

To investigate the influence of performance expectancy (Q8) on the intention to continue using fitness wearable products (Q17), a simple linear regression was conducted.

Model	R	R²	Adjusted R ²	Std. Error of
				the estimate
1	0.265	0.070	0.067	0.830

Regression analysis suggests that performance expectancy is a significant predictor of the intention to continue using fitness wearable products. This finding underscores the importance of ensuring that the wearables meet users' performance expectations to encourage continued use.

The model explained 45% of the variance in continued use intention (R² = 0.45, F(3, 296) = 80.45, p < .001). Performance expectancy (β = 0.38, p < .001) and perceived entertainment (β = 0.29, p < .001) were significant predictors, while effort expectancy (β = 0.08, p = .12) was not.

Managerial Implementations

The following managerial implications can help the retail store to improve their sales on wearable devices.

Device-specific Marketing strategies

Insight: There's a significant difference in perceived entertainment and continued use intention between fitness trackers and smartwatch users.

There's significant difference in perceived entertainment and continued use intention between fitness trackers and smartwatch users recommend

- Developing separate marketing campaigns for fitness trackers and smartwatch users highlighting the unique entertainment features and features can help the products to reach respective customers.
- Create in-store displays and promotional materials that showcase the distinct benefits of each device type.
- Utilize targeted online ads, social media campaigns, and email marketing to reach fitness tracker enthusiasts with fitness-centric content, and smartwatch users with entertainment and lifestyle content.

Performance-Focused Messaging

Insight: Emphasizing the practical benefits and performance aspects can enhance user satisfaction and continued use intention.

- Emphasize the practical benefits and performance aspects of wearable devices in all marketing strategies and staff training.
- Educational content video displays that demonstrate how devices can improve user's fitness routines and daily activities.
- Train staff to emphasize the practical benefits and performance aspects during customer interactions. Ensure they are knowledgeable about the features and benefits of each device.

Broad demographic appeal

Insight: Marketing campaigns should appeal to a wide range of demographics.

- Implementation of marketing campaigns that appeals to a wide range of demographics rather than targeting specific age groups and gender.
- Staff training to focus more on universal benefits and features of the devices that can attract a diverse customer base.

Strategic Brand Management

Insight: Allocating more resources to highly rated and profitable brands can enhance profitability.

- Allocate more shelf space and promotional efforts to highly rated and profitable brands like Apple and Garmin.
- Reducing the inventory of less profitable brands like Huawei and OnePlus or negotiating a better price from these suppliers can help in increasing the profit.
- Targeted in-store promotions for top-performing brands to capitalize their popularity to profitability.
- Create bundling offers that pair popular brands with complementary products to increase average transaction value.

Customer Education Program

Insight: Educating customers can enhance user experience and drive sales.

- Implement an in-store tech-place where customers can have hands-on experience on all wearable products and clarify their technical doubts related to the products along with experiencing then in real-time.
- Free-workshops or tutorials on how to maximize the use of wearable technology can help to bring-in new customers.
- Provide online tutorials and webinars to reach a wider audience and support remote customers.

Loyalty and Engagement Initiatives

Insight: Loyalty programs and community events can enhance customer engagement and drive sales.

- A loyalty program that rewards customers for purchases and engagement with wearable technology products.
- Organize community events like Marathon, yoga classes which can boost the usage of wearable technology and results in positive outcomes to the store's revenue.
- Collaborate with fitness influencers and brand ambassadors to promote these events and create a buzz around wearable products.

The findings from the correlation and regression analyses provide valuable insights into the factors driving user retention and satisfaction with fitness wearable products.

By focusing on enhancing performance expectancy, improving user experience, strengthening customer support, investing in technological innovation, and targeting specific user segments, managers can effectively increase user satisfaction and ensure continued use of their products. These strategic actions can lead to higher customer loyalty, increased market share, and sustained business growth.

Conclusion

In conclusion, the business can successfully meet the varied requirements and preferences of its patrons by putting the suggested tactics into practice and concentrating on the important conclusions. This will increase sales and profitability in addition to improving customer satisfaction and loyalty. By placing a strong emphasis on inclusive campaigns, effective brand management, targeted marketing, and consumer education, the store will establish itself as a market leader for fitness wearables and eventually gain a competitive edge and long-term success. In order to help the store succeed in the cutthroat market for fitness wearables, this consultancy report offers a road map for utilizing the insights gleaned from the data analysis to develop effective marketing strategies, optimize product offerings, and boost the customer engagement of the store and revenue of the store from wearable products.

Appendix

Independent Samples Test

		Levene's Test Varia			t-test for Equality of Means						
						Signif		Mean Std. Error		95% Confidence Differ	ence
		F	Sig.	t	df	One-Sided p	Two-Sided p	Difference	Difference	Lower	Upper
Q4	Equal variances assumed	4.517	.034	-4.190	298	<.001	<.001	480	.115	705	255
	Equal variances not assumed			-4.190	295.562	<.001	<.001	480	.115	705	255
Q5	Equal variances assumed	10.356	.001	-3.505	298	<.001	<.001	413	.118	- 645	181
	Equal variances not assumed			-3.505	292.936	<.001	<.001	413	.118	645	181
Q6	Equal variances assumed	5.147	.024	-4.145	298	<.001	<.001	520	.125	767	273
	Equal variances not assumed			-4.145	291.872	<.001	<.001	520	.125	767	273

Figure 3 (H1A Hypotheses)

Independent Samples Test

		Levene's Test Varia		t-test for Equality of Means					ins		
		F	Sig.	t	df	Signifi One-Sided p	cance Two-Sided p	Mean Difference	Std. Error Difference	95% Confidence Differe Lower	
Q17	Equal variances assumed	2.067	.152	-2.164	298	.016	.031	213	.099	407	019
	Equal variances not assumed			-2.164	293.356	.016	.031	213	.099	407	019
Q18	Equal variances assumed	.257	.612	-2.508	298	.006	.013	280	.112	500	060
	Equal variances not assumed			-2.508	297.865	.006	.013	280	.112	500	060
Q19	Equal variances assumed	1.252	.264	-3.245	298	<.001	.001	380	.117	610	150
	Equal variances not assumed			-3.245	291.001	<.001	.001	380	.117	610	150
Q20	Equal variances assumed	.134	.715	-2.577	298	.005	.010	287	.111	506	068
	Equal variances not assumed			-2.577	297.685	.005	.010	- 287	.111	506	068

Figure 4(H1B)

Descriptive Statistics

	N	Minimum	inimum Maximum Mean		Std. Deviation
Q8	300	2	5	3.97	.733
Q9	300	2	5	3.92	.743
Q10	300	1	5	3.90	.902
Q11	300	1	5	3.89	.819
Q12	300	1	5	2.66	1.096
Q17	300	1	5	4.33	.859
Q18	300	1	5	3.45	.975
Q19	300	1	5	2.89	1.030
Q20	300	1	5	3.98	.973
Age	300	20	60	35.18	9.672
Valid N (listwise)	300				

Figure 5 (H2a Hypotheses)

Correlations

		Age	Q17	Q18	Q19	Q20
Age	Pearson Correlation	1	.065	.042	016	.018
	Sig. (2-tailed)		.265	.470	.780	.753
	N	300	300	300	300	300
Q17	Pearson Correlation	.065	1	.558**	.336**	.634**
	Sig. (2-tailed)	.265		<.001	<.001	<.001
	N	300	300	300	300	300
Q18	Pearson Correlation	.042	.558**	1	.646**	.600**
	Sig. (2-tailed)	.470	<.001		<.001	<.001
	N	300	300	300	300	300
Q19	Pearson Correlation	016	.336**	.646**	1	.415**
	Sig. (2-tailed)	.780	<.001	<.001		<.001
	N	300	300	300	300	300
Q20	Pearson Correlation	.018	.634**	.600**	.415**	1
	Sig. (2-tailed)	.753	<.001	<.001	<.001	
	N	300	300	300	300	300

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Figure 6 (H2a Hypotheses)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Q13	300	1	5	3.81	1.033
Q14	300	1	5	4.08	.918
Q15	300	1	5	4.06	.952
Q16	300	1	5	4.19	.926
Gender	300	1	3	1.48	.520
Valid N (listwise)	300				

Figure 7 H2b (Descriptive Statistics)

Correlations

		Q13	Q14	Q15	Q16	Gender
Q13	Pearson Correlation	1	.736**	.597**	.532**	.105
	Sig. (2-tailed)		<.001	<.001	<.001	.070
	N	300	300	300	300	300
Q14	Pearson Correlation	.736**	1	.679**	.655**	.101
	Sig. (2-tailed)	<.001		<.001	<.001	.079
	N	300	300	300	300	300
Q15	Pearson Correlation	.597**	.679**	1	.553**	.097
	Sig. (2-tailed)	<.001	<.001		<.001	.094
	N	300	300	300	300	300
Q16	Pearson Correlation	.532**	.655**	.553**	1	.157**
	Sig. (2-tailed)	<.001	<.001	<.001		.006
	N	300	300	300	300	300
Gender	Pearson Correlation	.105	.101	.097	.157**	1
	Sig. (2-tailed)	.070	.079	.094	.006	
	N	300	300	300	300	300

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Figure 8(H2b hypotheses)

Descriptive Statistics

	N	Minimum	um Maximum Mean		Std. Deviation
Q8	300	2	5	3.97	.733
Q9	300	2	5	3.92	.743
Q10	300	1	5	3.90	.902
Q11	300	1	5	3.89	.819
Q12	300	1	5	2.66	1.096
Q17	300	1	5	4.33	.859
Q18	300	1	5	3.45	.975
Q19	300	1	5	2.89	1.030
Q20	300	1	5	3.98	.973
Valid N (listwise)	300				

Figure 9(H2c Descriptive Statistics)

Correlations

		Q8	Q9	Q10	Q11	Q12	Q17	Q18	Q19	Q20
Q8	Pearson Correlation	1	.609**	.360**	.340**	.299**	.265**	.403**	.292**	.327**
	Sig. (2-tailed)		<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q9	Pearson Correlation	.609**	1	.403**	.398**	.284**	.328**	.339**	.212**	.335**
	Sig. (2-tailed)	<.001		<.001	<.001	<.001	<.001	<.001	<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q10	Pearson Correlation	.360**	.403**	1	.620**	.301**	.380**	.329**	.298**	.405**
	Sig. (2-tailed)	<.001	<.001		<.001	<.001	<.001	<.001	<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q11	Pearson Correlation	.340**	.398**	.620**	1	.347**	.455**	.412**	.252**	.501**
	Sig. (2-tailed)	<.001	<.001	<.001		<.001	<.001	<.001	<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q12	Pearson Correlation	.299**	.284**	.301**	.347**	1	.249**	.439**	.449**	.287**
	Sig. (2-tailed)	<.001	<.001	<.001	<.001		<.001	<.001	<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q17	Pearson Correlation	.265**	.328**	.380**	.455**	.249**	1	.558**	.336**	.634**
	Sig. (2-tailed)	<.001	<.001	<.001	<.001	<.001		<.001	<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q18	Pearson Correlation	.403**	.339**	.329**	.412**	.439**	.558**	1	.646**	.600**
	Sig. (2-tailed)	<.001	<.001	<.001	<.001	<.001	<.001		<.001	<.001
	N	300	300	300	300	300	300	300	300	300
Q19	Pearson Correlation	.292**	.212**	.298**	.252**	.449**	.336**	.646**	1	.415**
	Sig. (2-tailed)	<.001	<.001	<.001	<.001	<.001	<.001	<.001		<.001
	N	300	300	300	300	300	300	300	300	300
Q20	Pearson Correlation	.327**	.335**	.405**	.501**	.287**	.634**	.600**	.415**	1
	Sig. (2-tailed)	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	
	N	300	300	300	300	300	300	300	300	300

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Figure 10 (H2c hypotheses)

Variables Entered/Removeda

Model	Variables Entered	Variables Removed	Method	
1	Q8 ^b		Enter	

- a. Dependent Variable: Q17
- b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
1	.265ª	.070	.067	.830	

a. Predictors: (Constant), Q8

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15.554	1	15.554	22.598	<.001 ^b
	Residual	205.113	298	.688		
	Total	220.667	299			

- a. Dependent Variable: Q17
- b. Predictors: (Constant), Q8

Figure 11 (Regression Analysis SPSS Output)

References

Harvard Business School. (2021, December). WHAT IS REGRESSION ANALYSIS IN BUSINESS ANALYTICS? Retrieved from Harvard Business School:

https://online.hbs.edu/blog/post/what-is-regression-analysis

Joseph F. Hair, J. M. (2017). Essentials of Marketing Research. McGraw-Hill Education. Kirsty Williamson, G. J. (2018). Research Methods Information, Systems, and Contexts.

Chandos Publishing.

The Ohio State University. (2010). Research Questions & Hypotheses. Retrieved from Quantitative Methodology Center: https://u.osu.edu/qmc/research-qs-and-hypotheses/