Санкт-Петербургский Политехнический Университет _{им.} Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №5

3 курс, группа 3630102/70301

Студент Лебедев К.С.

Преподаватель Баженов А. Н.

Содержание

1.	Список иллюстраций	3
2.	Список таблиц	3
3.	Постановка задачи	4
4.	Теория	4
5.	Реализация	4
6.	Результаты	5
7.	Выводы	9
8.	Список литературы	9
9.	Приложения	9

1 Список иллюстраций

	1	Графики двумерного нормального распределения(2) при $p = 0.0$	5
	2	Графики двумерного нормального распределения(2) при p = 0.5	6
	3	График двумерного нормального распределения (2) при p = 0.9	7
	4	Графики смеси двумерных нормальных распределений	8
2	C	писок таблиц	
	1	Результаты для двумерного нормального распределения (2) при p = $0.0 \dots$	5
	2	Результаты для двумерного нормального распределения (2) при p = 0.5	6
	3	Результаты для двумерного нормального распределения (2) при p = 0.9	7
	4	Результаты для смеси двумерных нормальных распределений	8

3 Постановка задачи

Необходимо построить выборки объёмом 20,60,100,1000 для двумерного нормального распределения с коэффициентами корреляции $\rho = 0,0.5,0.9$

Вычислить коэффициент корреляции Пирсона, Спирмана и квадрантный коэффициент корреляции для каждой выборки. Эти же вычисления повторить для смеси двумерных нормальных распределений [4]:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9)$$
(1)

На графике изобразить точки выборки и эллипс равновероятности.

4 Теория

1. Двумерное нормально распределение [5]:

$$N(x, y, 0, 0, 1, 1, \rho) = \frac{1}{2\pi\sqrt{1 - \rho^2}} e^{-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)}$$
(2)

2. Коэффициент корреляции Пирсона [6]:

$$r_{xy} = \left(\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})\right) \left(\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2\right)^{-\frac{1}{2}}$$
(3)

3. Коэффициент корреляции Спирмана [7]:

$$\rho_n = 1 - \frac{6}{n^3 - n} \sum_{i=1}^n d_i^2 \tag{4}$$

4. Квадрантный коэффициент корреляции [8]:

$$\hat{q} = \frac{1}{n} \sum_{i=1}^{n} sign(x_i - med \ x) sign(y_i - med \ y)$$
(5)

5 Реализация

Работы была выполнена на языке Python 3.7. Для генерации выборок использовался модуль [1]. Для построения графиков использовалась библиотека matplotlib [2]. Функции распределения обрабатывались при помощи библиотеки scipy.stats [3]

6 Результаты

Рис. 1: Графики двумерного нормального распределения
(2) при p = 0.0

Таблица 1: Результаты для двумерного нормального распределения (2) при p=0.0

Normal $n = 20, p = 0.0$				
	Pearson	Spearman	Quad	
E	0.18892	0.14541	0.06000	
E^2	0.05409	0.04186	0.02800	
D	0.01840	0.02071	0.02440	

Normal $n = 100, p = 0.0$				
	Pearson	Spearman	Quad	
E	-0.03469	-0.02805	-0.03200	
E^2	0.00531	0.00539	0.00864	
D	0.00411	0.00461	0.00762	

Normal $n = 60, p = 0.0$				
Pearson		Spearman	Quad	
E	-0.04642	-0.05109	-0.03333	
E^2	0.01080	0.00965	0.00667	
D	0.00865	0.00704	0.00556	

Normal $n = 1000, p = 0.0$				
	Pearson	Spearman	Quad	
E	0.00805	0.01039	0.00760	
E^2	0.00094	0.00083	0.00094	
D	0.00088	0.00073	0.00088	

Рис. 2: Графики двумерного нормального распределения(2) при p = 0.5

Таблица 2: Результаты для двумерного нормального распределения (2) при p=0.5

Normal $n = 20, p = 0.5$				
	Pearson	Spearman	Quad	
E	0.50363	0.52647	0.46000	
E^2	0.27217	0.30152	0.22800	
D	0.01853	0.02435	0.01640	

Normal $n = 100, p = 0.5$				
	Pearson	Spearman	Quad	
E	0.49628	0.47702	0.33200	
E^2	0.25200	0.23489	0.12048	
D	0.00570	0.00734	0.01026	

Normal $n = 60, p = 0.5$				
	Pearson	Spearman	Quad	
E	0.50847	0.47194	0.31333	
E^2	0.26921	0.23710	0.12222	
D	0.01067	0.01437	0.02404	

Normal $n = 1000, p = 0.5$			
	Pearson	Spearman	Quad
E	0.49458	0.47938	0.33320
E^2	0.24515	0.23052	0.11207
D	0.00054	0.00071	0.00105

Рис. 3: График двумерного нормального распределения (2) при p = 0.9

Таблица 3: Результаты для двумерного нормального распределения (2) при p = 0.9

Normal $n = 20, p = 0.9$				
	Pearson	Spearman	Quad	
E	0.90154	0.85850	0.64000	
E^2	0.81558	0.74275	0.44000	
D	0.00281	0.00574	0.03040	

Normal $n = 100, p = 0.9$				
	Pearson	Spearman	Quad	
E	0.89624	0.88888	0.71600	
E^2	0.80360	0.79094	0.51728	
D	0.00037	0.00082	0.00462	

Normal $n = 60, p = 0.9$			
	Pearson	Spearman	Quad
E	0.89761	0.88464	0.69333
E^2	0.80681	0.78457	0.48622
D	0.00112	0.00198	0.00551

Normal $n = 1000, p = 0.9$			0.9
	Pearson	Spearman	Quad
E	0.89971	0.88953	0.71120
E^2	0.80951	0.79132	0.50603
D	0.00004	0.00005	0.00022

Рис. 4: Графики смеси двумерных нормальных распределений

Таблица 4: Результаты для смеси двумерных нормальных распределений

Nor	NormalMix $n = 20, p_1 = 0.9, p_2 = -0.9$			
	Pearson	Spearman	Quad	
E	0.90154	0.85850	0.64000	
E^2	0.12784	0.14056	0.18000	
D	0.03603	0.04226	0.11240	

NormalMix $n = 100, p_1 = 0.9, p_2 = -0.9$			
	Pearson	Spearman	Quad
E	0.42503	0.39751	0.26400
E^2	0.18615	0.16254	0.07584
D	0.00550	0.00453	0.00614

Nor	NormalMix $n = 60, p_1 = -0.9, p_2 = -0.9$			
	Pearson	Spearman	Quad	
E	0.34444	0.33502	0.24000	
E^2	0.13330	0.12744	0.08711	
D	0.01466	0.01521	0.02951	

NormalMix $n = 1000$, $p_1 = 0.9$, $p_2 = -0.9$			$.9, p_2 = -0.9$
	Pearson	Spearman	Quad
E	0.38948	0.37427	0.25080
E^2	0.15242	0.14103	0.06380
D	0.00073	0.00095	0.00090

7 Выводы

По таблицам 1, 2, 3, 4, видно, что, при увеличении объёма выборки, подсчитанные коэффициенты корреляции стремятся к теоретическим.

Ближе всех к данному коэффициенту корреляции находится коэффициент Пирсона.

По графикам видно, что при уменьшении корреляции эллипс равновероятности стремится к окружности, а при увеличении растягивается.

8 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] http://stu.sernam.ru/book stat3.php?id=55
- [5] Двумерное нормальное распределение: https://en.wikipedia.org/wiki/Multivariate normal distribution
- [6] Коэффициент корреляции Пирса: http://statistica.ru/theory/koeffitsient-korrelyatsii/
- [7] Коэффициент корреляции Спирмана: http://economic-definition.com/Exchange_Terminology/Koefficient_korrelyacii_Correlation_coefficient_eto.html
- [8] Квадрантный коэффициент корреляции: https://www.researchgate.net/profile/Pavel_Smirnov8/publication/-316973167_Robastnye_metody_i_algoritmy_ocenivania_korrelacionnyh_harakteristik_dannyh_na_osnove_novyh_vysokoeffektivnyh_i_bystryh_robastnyh_ocenok_masstaba/links/591b019d458515695282-8a52/Robastnye-metody-i-algoritmy-ocenivania-korrelacionnyh-harakteristik-dannyh-na-osnove-novyh-vysokoeffektivnyh-i-bystryh-robastnyh-ocenok-masstaba.pdf#page=81

9 Приложения

Kод отчёта: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab5.tex

Kод лаборатрной: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab5.py