

Economic solution: · given k other cooperators in group, what "should" I do? payoffs: -> If I defect, Po(K) = KCr/N -> If I cooperate, Pc(K)=(K+1)cr/N-c = Pb(K)-(1-1/2)C · rationality: choose higher payoff \rightarrow if r < N then $P_b(k) > P_c(k) \rightarrow$ always defect \rightarrow if r > N then $P_c(k) > P_b(k) \rightarrow$ always cooperate · what is NE? Can't write down payoff matrix · but one strategy dominates for any k, so other strategy can be eliminated. Only one rational outcome, must be NE \rightarrow if r < N then everyone playing D is NE \rightarrow if r > N " C is NE · what are payoffs if everybody plays Cor D? PAILC = Pc(N-1) = Nor/N-c= c(r-1) PAID = PD(0) = (0) cr/N = 0 -> if r>1 then All C is mutually preferred -> social dilemma for 1< r< N because NE is not mutually preferred Evolutionary solution: · population with two types: C,D · x = frequency of C-types

randomly sample groups of N, payoffs represent fitness
 to determine fitness of a C or D, need to know how many others in group are cooperators, K, on average

Problem of cooperation:
o consider fitness of papilibria
consider fitness of equilibria $x=1: f_c(x=1) = c(r-1) \text{if } r>1 \text{ then } f_{Allc} > f_{Allb}$ $x=0: f_b(x=0) = 0 \text{s}$
Len f (x-0) - 0
2-0. 16(2-0) = 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· when IXXXN cooperation is lost, even though
a population of AllC has a higher fitness than All D.
-> selection can't support cooperation with our setup -> how can cooperation evolve?
-> how can cooperation evolve?
Summary: · public goods game · economic solution
· economic solution
-> All D is NE when r <n< td=""></n<>
-> All C is mutually preferred when r>1
-> social dilemma when 1 <r<n< td=""></r<n<>
· Rightionary solution
→ All D is stable equilibrium when r <n all="" c="" fitness="" higher="" r="" when="" would="" yield="" →="">1 → "evolutionary dilemma" when I<r<n (problem="" cooperation)<="" of="" td=""></r<n></n>
-> All C would vield higher fitness when r>1
-> "evolutionary dilemma" when 1 <r<n< td=""></r<n<>
(problem of cooperation)
(7.951em) (1.959) et 2(1/61)