

Thermal Modelling of Thermal Runaway Propagation in Lithium-Ion Battery Systems

Elisabeth Irene Kolp (M.Sc.), Prof. Dr.-Ing. Andreas Jossen

Technical University of Munich, Germany

Department of Electrical and Computer Engineering

Institute for Electrical Energy Storage Technology

Petten, 8th & 9th March 2018

Limitations of accurate modelling of TR-P

Mitigation strategies of battery TR-P

Empirical method to investigate abusive behaviour

Measure heat generation rate of a nail penetrated battery inside a calorimeter

Empirical method to investigate abusive behaviour

Measure trigger temperature of thermal runaway with heat-wait-seek method

Empirical method to investigate abusive behaviour

Measure trigger temperature of thermal runaway: compare to literature

Method to investigate abusive behaviour

Simulation model for thermal runaway propagation (TR-P) Limitations of accurate modelling of TR-P

Mitigation strategies of battery TR-P

Conductive thermal model for TR propagation

Lithium-ion battery module (12s1p)

FEM-model of lithium-ion battery module

Conductive thermal model for TR propagation

FEM-model of lithium-ion battery module

Custom Hot Disk / Literature:

- Heat capacity
- Thermal conductivity (anisotrop)

ARC/Calorimeter:

- Heat generation rate
- Heat capacity
- Trigger temperature of thermal runaway

Simulation: 12s1p module nail penetration of a single cell

Experiment: 12s1p module nail penetration of a single cell

Experiment: 12s1p module nail penetration of a single cell

Safer Li-Ion Batteries by Preventing Thermal Propagation? | Petten 2018 | Elisabeth I. Kolp (TUM)

Experiment: 12s1p module nail penetration of a single cell

Results:

- Conductive thermal model approach cannot describe the TR-P of experiment
- Heat release of gas and direction of gas flow have a strong influence on TR-P
- Implementing gas flow / venting necessary
- CFD model

1st CFD model approach for TR propagation

Model assumptions:

- 2D, k-ε model for turbulence
- $V_{fluid,inlet} = 215 \text{ m/s} [Coman P.T., JoP 307 (2016)]$
- T_{fluid.inlet} = measured data
- Vent position extracted from module experiment
- Gas = similar specs like hydrogen

Neglected:

- Cell connector → heat transfer via solid bodies
- Heat generation of nail penetrated cell

1st CFD model approach for TR propagation

Results:

- t > 0; $T_{fluid} >> T_{initial}$
- t > 0; $T_{outlet} >> T_{initial}$
- t > 0; $T_{cells} >> T_{initial}$
- · Direction of gas flow

Problem:

- 3D CFD simulation is time consuming
- Uncertain input parameters
- Experiment (nail penetration) not suitable

Simulation model for thermal runaway propagation (TR-P)

Limitations of accurate modelling of TR-P

Mitigation strategies of battery TR-P

Limitations of accurate of modelling TR-P

General:

- Temperature dependent material properties for > 100 °C not available
- 3D-CFD simulation is time consuming

Understanding and describing venting by a model needs accurate data on

- Vent size and vent position
- Heat release, mass rate, velocity of vented gas

Missing information makes it hard to simulate TR-P with simplified thermal models, especially if venting gas occurs

venting model [Leung J.C., AiChE, Vol. 38, No. 5, 1992]

Method to investigate abusive behaviour

Simulation model for thermal runaway propagation (TR-P) Limitations of accurate modelling of TR-P

Mitigation strategies of battery TR-P

Experimental results of a 2s1p module for nail

penetration of a single cell

- In the beginning rapid temperature increase of cell connector due to opened berst
- → Isolation prevents TR-P

Mitigation strategies of battery TR-P

Ideas:

- Increase trigger temperature of thermal runaway (by changing separator)
 PE, PP/PE/PP, PE-based with ceramic coating
- Use of electrical fuses \rightarrow reduce released electric energy during internal short circuit
 - e.g. Tesla uses wire bonding which act as fuses too
- Increase heat dissipation of battery module by lower ambient temperature or increased thermal capacity e.g. phase-change-material
- Additional thermal resistance between cells
- Protect neighbor cells of venting gas (define predetermined breaking points on cell)

FIG. 10

FIG. 12

[Tesla Motors Inc., 2010, patent US8241772 B2]

Summary

- Venting gas during TR can have a strong influence on TR-P inside a battery module
- Conductive thermal models cannot represent TR-P if venting occurs inside a (half-)closed battery module
- Approach to implement heat transfer by gas looks promising and shows qualitativ the TR-P behavior
- More information on physical properties and behavior of venting gas during TR are necessary
- Standardised abuse testing regarding TR-P by venting gas is required

Elisabeth I. Kolp (M.Sc.)

Technical University of Munich Chair of Electrical Energy Storage Technology

Tel: +49 89 289 26977 e-mail: elisabeth.kolp@tum.de

www.ees.ei.tum.de