CS 223 Computer Architecture & Organization

Computer Fundamentals

J. K. Deka

Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

What is a program?

- A sequence of steps (instructions)
- For each step, an arithmetic or logical operation is done
- For each operation, a different set of control signals is needed

Instruction Cycle

- Two steps:
 - Fetch
 - Execute

Computer Components: Top Level View

Example of Program Execution

Data Bus and Address Bus

Size of Address Bus:

SIZE	BINARY	DEC	HEXA	
8	0000 0000	0	00	
8	1111 1111	255	FF	
8	0101 0111	87	57	
8	0000 0110	6	06	
10	11 1111 1111	1023	3FF	
12	1111 1111 1111	4095	FFF	
16	1111 1111 1111	2 ¹⁶ -1	FFFF	
20	1111 1111 1111 1111	2 ²⁰ -1	FFFFF	
30	11 1111	2 ³⁰ -1	3FFFFFF	
32	1111 1111	2 ³² -1	FFFFFFF	

Data Bus and Address Bus

Size of Address Bus and Memory Capacity:

SIZE	BINARY	DEC	HEXA	Size
8	0000 0000	0	00	
8	1111 1111	255	FF	256
10	11 1111 1111	1023	3FF	1K
12	1111 1111 1111	4095	FFF	4K
16	1111 1111 1111	2 ¹⁶ -1	FFFF	64K
20	1111 1111 1111 1111	2 ²⁰ -1	FFFFF	1M
30	11 1111	2 ³⁰ -1	3FFFFFF	1G
32	1111 1111	2 ³² -1	FFFFFFF	4G

Data Bus and Address Bus

Size of Data Bus/Memory Location:

SIZE	BINARY	DEC	HEXA
8	1111 1111 0111 1111	-127 +127	00 - FF
12	1111 1111 1111 0111 1111 1111	-2047 +2047	000 - FFF
16	1111 1111 1111 0111 1111 1111	$-(2^{15}-1)$ + $(2^{15}-1)$	0000- FFFF
20	1111 1111 1111 1111 0111 1111 1111 1111	-(2 ¹⁹ -1) +(2 ¹⁹ -1)	00000 - FFFFF
32	1111	$-(2^{31}-1)$ $+(2^{31}-1)$	00000000 – FFFFFFF

Example of Program Execution

CPU Organization

CPU

Fetch Cycle:

MAR <- PC Read PC <- PC+1 IR <- MBR

Example of Program Execution

Instruction Execution

Fetch Cycle:

MAR <- PC

Read

PC <- PC+1

IR <- MBR

Format of Instruction:

4 bits: Operation

12 bits: Address

Execute Cycle:

MAR <- IR_{Address}

Read

AC <- MBR

(Data Movement)

Machine Instruction

Machine	Instruction Format			Assembly	
Instruction	Operation	Address		Code	
1940	0001	1001	0100	0000	LDA M
5941	0101	1001	0100	0001	ADD M
2941	0010	1001	0100	0001	STA M

(LDA M) LOAD AC: Load the accumulator by the contents of memory location specified in the instruction

(ADD M) ADD AC: Add the contents of memory location specified in the instruction to accumulator and store the result in accumulator

(STA M) STORE AC: Store the contents of accumulator the memory location specified in the instruction

Computer Program

High Level Code	Assembly Code	Machine Code (HEX)
Y = X + Y	LDA X	1940
	ADD Y	5941
	STAY	2941

Size of Operation Code (Op Code): 4 bits

16 possible instructions Used: 1: LDA M, 5: ADD M, 2: STA M

Size of Address Bus: 12 bits

Addressable Memory Location: $2^{12} = 4096 = 4 \text{ K}$

Size of Data Bus: 16 bits

Size of each location of memory: 16 bits

Size of Memory Module: 4096 x 16 = 4096 x 2 x 8 = 8 KB (Kilo Byte)

Reference

Computer Organization and Architecture –
Designing for Performance
William Stallings

Chapter 3: Page no. 59 – 64 (Seventh Edition) Page No.: 68 – 73 (Eighth Edition)

Working Slide

Discussion