

	Objetive Epidemical Model Existence Theory Simulations	1			
Contents					
mm 40	60	8	0 10	00	-120
1 Motivation					
2 OL ⁴⁰ ive					
3 Epidemical Mode					
Model without co	ntrol				
Existence Theory					
5 Simulations					
Cabriel Ade	án Salcedo Varela				

Motivation

$$\begin{split} \frac{dS_{p}}{dt} &= -\beta_{p} S_{p} I_{v} + r(L_{p} + I_{p}), \\ \frac{dL_{p}}{dt} &= \beta_{p} S_{p} I_{v} - bL_{p} - rL_{p}, \\ \frac{dI_{p}}{dt} &= bL_{p} - rI_{p}, \\ \frac{dS_{v}}{dt} &= -\beta_{v} S_{v} I_{p} - \gamma S_{v} - (1 - \theta)\mu, \\ \frac{dI_{v}}{dt} &= \beta_{v} S_{v} I_{p} - \gamma I_{v} - \theta\mu, \\ S_{p}(0) &= S_{p_{0}}, L_{p}(0) = L_{p_{0}}, I_{p}(0) = I_{p_{0}}, \\ S_{v}(0) &= S_{v_{0}}, I_{v}(0) = I_{v_{0}}. \end{split}$$

Par. Value Descrip. 0.1 plant latent rate 0.01 plant remove rate 0.075 plant infectious rate 0.06 vector die or depar rate 0.3 mmigration rate nfected vectors arrival 0.003 vector infected rate

R 0= 0.0550074570718611

Plant Model with control

Tomato I mm url Virus Di 40 se Using an 500 emiological 80 de

Gabriel Adrián Salcedo Varela

	_ /	Λ —	d	S_p		0	c ı		/		\ /		(r -		\ /				
	4	U	-	lt		- /2 p	$\mathcal{S}_{p}I_{1}$	<i>,</i> +	(<i>r</i> -	$\vdash u_1$) L _F	, +	(<i>r</i> -	⊢ <i>U</i> 2) I _p	,			
			d	L_p	= B	5.5.	J., -	- bi	L	- (r	+	U1) /							
												1)	p)						
	6	Λ_	-	II _p	= b	L_p	- (ı	r +	u ₂)	I_p ,									
	_ (0	d	sı Sv															
			_		= -	$-\beta_{\mathbf{v}}$	$S_{v}I_{\mu}$, –	$(\gamma -$	+ <i>u</i> ;	₃)S	_v —	(1	$-\theta$	μ				
			C	II_{V}			,	(0	, _	и ₃)	ı	Α,							
	 —8	0		dt	— <i>ρ</i>	$V \supset V$	'Ip -	- (7	из)	I _V -	- υμ	,						
	_ o	0 —																	

Minimize											
mm	L_{cTA}			0				 00 =		1)))
$J(u_1, u_2, u_3)$	<u></u>	$A_1I_p(t)$	$+A_2L$	$_{p}(t) +$	$A_3I_{\nu}(t$	$+ c_1 \iota$	$(t)^2$	$+ c_2$	$u_2(t$	$()^2$	
	10										
subject to	+ c ₃ u ₃ (t) dt,									
$\frac{40}{dS_p}$	= $-$	$\beta_p S_p I_v$	+(r +	$u_1)L_p$	+(r +	$u_2)I_p$					
$\frac{dL_{p}}{dt}$	$= \beta_{p}$,S _p I _v -	bL _p -	(r + u	L_p ,						
60 dl _p		,									
$\frac{1}{dt}$		$r_p - (r$	$+ u_2)I$	p,							
dS _v		BSI	_ (~ +	- u ₃)S _v	_ (1 -	θ) μ ,					
dt		OV OV IP		u3)5v		σ)μ,					
$\frac{dI_{v}}{dt}$	$= \beta_{\nu}$	$S_{\nu}I_{p}$ –	$(\gamma + \iota$	$I_3)I_V -$	$\theta\mu$,						
S_p	0) =	S_{p_0}, L_p	(0) =	$L_{p_0}, I_p($	$0) = I_{\mu}$	$S_{o}, S_{v}(0)$)=S	I_{v_0}, I_{v_0}	(0)	$=I_{v_0}$.	
	Cabriel	Advića Sa	cedo Vare								

$$T\in (0,\infty)$$
 be fixed. Consider the control system:

$$\begin{cases} \dot{x}(s) = f(s, u(s), x(s)) \ s \in [t_0, T], \\ x(t_0) = x_0, \end{cases}$$

with terminal state constraint $x(T; t_0, x_0, u(\cdot)) \in M,$

where $M \subseteq \mathbb{R}^n$ is fixed.

 $M: \mathbb{R}_+ \to 2^{\mathbb{R}^n}$ is a moving target in \mathbb{R}^n if for any $t \in \mathbb{R}_+$, M(t) is a measurable.

$$J(t_0,x_0;u(\cdot))=\int_{t_0}^T g(s,u(s),x(s))ds+h(T,x(T))\equiv J^T(t_0,x_0,u(\cdot)).$$

Problem $(OC)^T$

Given $(t_0,x_0)\in\mathbb{R}_+ imes\mathbb{R}^n$ with $ilde{\mathcal{U}}^M_{x_0}[t_0,\,T]
eq\emptyset$, find a $ar{u}(\cdot)\in ilde{\mathcal{U}}^M_{x_0}[t_0,\,T]$ such that

$$J^{\mathcal{T}}(t_0,x_0;\bar{u}(\cdot))=\inf_{u(\cdot)\in\tilde{\mathcal{U}}_{x_0}^M[t_0,T]}J^{\mathcal{T}}(t_0,x_0;u(\cdot)).$$

 $\omega: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, increasing, and $\omega(r,0) = \emptyset$ for every $r \geq 0$.

(C1)

 $f: \mathbb{R}_+ \times U \times \mathbb{R}^n \to \mathbb{R}^n$ is measurable, satisfies a lipchitz condition in x, and $|f(t, u, 0)| \leq L$, for every $(t, u) \in \mathbb{R}_+ \times U$.

$$g:\mathbb{R}_+ imes U imes \mathbb{R}^n o \mathbb{R}$$
 and $h:\mathbb{R}^n o \mathbb{R}$ are measurable, and

$$|g(s, u, x_1) - g(s, u, x_2)| + |h(x_1) - h(x_2)| \le \omega(|x_1| \vee |x_2|, |x_1 - x_2|)$$

for every $(s, u) \in \mathbb{R}_+ \times U, x_1, x_2 \in \mathbb{R}^n$.

		vatio bjetiv	
Existe	nical nce Simu	Γheor	y

Existence Theorem

Let (C1)-(C3) hold. Let $M \subseteq \mathbb{R}^n$ be a non-empty closed set. Let $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$ be given and $\tilde{\mathcal{U}}_x^M[t_0, T] \neq \emptyset$. Then problem $(OC)^T$ admits at least one optimal pair.

Pontryagin's Maximum Principle

If $u^*(t)$ and $x^*(t)$ are optimal for the problem $(OC)^T$, then there exists a piecewise differentiable adjoint variable $\lambda(t)$ such that

$$H(t,x^*(t),u(t),\lambda(t)) \leq H(t,x^*(t),u^*(t),\lambda(t))$$

for all controls u at each time t, where the Hamiltonian H is

$$H = g(t, x(t), u(t)) + \lambda(t)f(t, x(t), u(t)),$$

and

$$\lambda'(t) = -\frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x},$$
$$\lambda(T) = 0.$$

		Mot	vatio	n
	Epider	0	bjetiv	e
E	pider	nical	Mode	t
	Existe	nce -	Γheor	y
		Simu	lation	s
_			_	П

-40 + 100 + 100 + 120Step 1 Make an initial guess for # over the interval. Step 2. Using the initial condition $x_1 = x(t_0) = a$ and the values for \vec{u} , solve \vec{x} forward in time according to lits differential equation in the optimality system. Step 3. Using the transversality condition $\lambda_{N+1} = \lambda(t_1) = 0$ and the values for \vec{u} and \vec{x} , solve λ backward in time according to its differential equation in the optimality system. Step 4. Update \vec{u} by entering the new \vec{x} and $\hat{\lambda}$ values into the characterization of the optimal control. Step 5. Check convergence. If the values of the variables in this iteration and the last iteration and the last iteration are negligibly close, output the current values as solutions. If values are not close, return to Step 2.

