MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove a formula for the determinant of a principal minor of the distance matrix of a weighted tree.pr

Contents

1.	Introduction	1
2.	Background	2
3.	Proofs	2
4.	Examples	2
Acknowledgements		2
References		3

1. Introduction

graham-hoffman-hosoya

[1]

Special case: Γ is a metric tree.

 $\verb|thm:max-measure|$

Theorem 1. Suppose $\Gamma = (G, \ell)$ is a metric tree, and $A \subset V(G)$ a finite subset of vertices. The measure in Meas¹(A) which maximizes distance energy is given by

eq:max-measure

(1)
$$\mu_A = \frac{1}{\sum_{\mathcal{F}} w(F)} \sum_{\mathcal{F}} w(F) \sum_{x \in A} \mu_{can}(F_x) \, \delta_x = \sum_{x \in A} \left(\frac{\sum_{\mathcal{F}} w(F) \mu_{can}(F_x)}{\sum_{\mathcal{F}} w(F)} \right) \delta_x$$

where δ_x is the Dirac measure at x, $\mathcal{F} = \mathcal{F}(A,G)$ denotes the set of A-rooted spanning forests of G, $w(F) = \prod_{e \notin F} \ell(e)$ is the weight of F, F_x denotes the x-component of the forest F and

$$\mu_{can}(F_x) = \sum_{y \in V(F_x)} \frac{2 - \operatorname{val}(y)}{2}.$$

Equivalently, the optimal measure is

$$\mu_A = \sum_{x \in A} \delta_x \left(\frac{2 - \operatorname{val}(x)}{2} + \sum_{y \in \Gamma \setminus A} \frac{2 - \operatorname{val}(y)}{2} c(y, x; \Gamma) \right)$$

where $c(y, x; \Gamma)$ denotes the current to $x \in A$ when unit current flows from y to A. In particular,

(2)
$$c(y,x;\Gamma) = \frac{\sum_{F} \epsilon(y,x,F)w(F)}{\sum_{F} w(F)}$$

Date: v1, April 23, 2022 (Preliminary draft, not for circulation).

where both sums are taken over A-rooted spanning forests F of Γ , and

$$\epsilon(y, x, F) = \begin{cases} 1 & \text{if } x\text{-component of } F \text{ contains } y \\ 0 & \text{otherwise.} \end{cases}$$

thm:max-capacity

Theorem 2. Suppose $\Gamma = (G, \ell)$ is a metric tree, $A \subset V(G)$ is a finite subset, and μ_A is the measure (I). Then

eq:max-capacity

(3)
$$\mathcal{E}(\mu_A) = \frac{1}{4}\ell(\Gamma) - \left(\frac{\sum_{\mathcal{F}^*} \mu_{can}(F_{2,*})^2 w(F_2)}{\sum_{\mathcal{F}} w(F_1)}\right).$$

where F_1 varies over A-rooted spanning forests of G, F_2 varies over all (A, *)-rooted spanning forests of G, $F_{2,*}$ denotes the *-component of F_2 , and

(4)
$$\mu_{can}(F_{2,*}) = \frac{1}{2} \sum_{x \in V(F_{2,*})} 2 - \text{val}_{\Gamma}(x).$$

In other words, μ_{can} denotes the canonical measure on Γ .

1.1. Previous work.

1.2. **Notation.** Γ a compact metric graph

G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 (G,ℓ) a combinatorial model for a metric graph, where

 $\ell: E(G) \to \mathbb{R}_{>0}$ is a length function on edges of G

 $\mathcal{C}(\Gamma)$ continuous \mathbb{R} -valued functions on Γ

 $Meas(\Gamma)$ signed Borel measures on Γ

 $Meas_{>0}(\Gamma)$ positive Borel measures on Γ

2. Background

3. Proofs

4. Examples

Example 3. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $A = \{u, v, w\}$. Then

$$\mu_{A} = \frac{ab(\frac{1}{2}\delta_{u} + \frac{1}{2}\delta_{v}) + ac(\frac{1}{2}\delta_{u} + \frac{1}{2}\delta_{w}) + bc(\frac{1}{2}\delta_{v} + \frac{1}{2}\delta_{w})}{ab + ac + bc}$$

$$= \frac{1}{2} \left(\frac{ab + ac}{ab + ac + bc} \delta_{u} + \frac{ab + bc}{ab + ac + bc} \delta_{v} + \frac{ac + bc}{ab + ac + bc} \delta_{w} \right).$$

ACKNOWLEDGEMENTS

The authors would like to thank ...

References

graham-hoffman-hosoya

[1] R. L. Graham, A. J. Hoffman, and H. Hosoya. On the distance matrix of a directed graph. J. $Graph\ Theory,\ 1(1):85-88,\ 1977.$