Î

5.1

		Solucions		Marks	Remarks
- i.	(a)	$AB^{T} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{2}{2} \\ 0 & 3 \\ 2 & -1 \end{pmatrix}$	89 I	\cdot	_
		$=\begin{pmatrix}0&3\\3&-3\end{pmatrix}$		lk	
		$3^{T}A = \begin{pmatrix} 1 & -2 \\ 0 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$			a.
		$-\begin{pmatrix} 1 & -2 & 1 \\ 0 & 3 & 0 \\ 2 & -1 & 2 \end{pmatrix}$		1A	***
	(5)	$ AB^{T} = 9 \pm 0$. AB^{T} is invertible and		ın	
		$(AB^T)^{-1} - \frac{1}{9} \begin{pmatrix} 3 & 2 \\ 0 & 3 \end{pmatrix}$		1A	
		$= \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix}$			
		As $ B^TA = 0$, B^TA is not invertible.		<u>lm</u>	
2.	[$\frac{\pi}{\ (a^k + b^k)\ ^2} - (\frac{\pi}{\ a^k + b^k\ }) \ (\frac{\pi}{\ a^{n+1-k}\ })\ _{k=1}^{2}$	+ 6 ^{2+1-k})]	2	
		$= \frac{\pi}{i} (a^{n+1} + b^{n+1} + a^k o^{n+1-k})$ k=i	+ a ^{n+1-k} o ^k)	1A	: .
- T		$ > \frac{\pi}{i!} (a^{m+1} + b^{m+1}) \text{ as a, 6 > } $ $k=1$	0,	LA	
		- (a ^{m+1} + b ^{m+1}) ²		1 <u>a</u>	#
•			•		-
			- 	<u>.</u> _. .	

RESTRICTED 内部文件

سنان.`	yeure Macha. 1		
	Solucions	Yarks	Remarks
•	(a) $\lim_{K \to \infty} \hat{\chi} \left[\sqrt{1 + \frac{1}{\alpha}} - \sqrt{1 - \frac{1}{\alpha}} \right] - \lim_{K \to \infty} \hat{\chi} \left[\frac{(1 + \frac{1}{\zeta}) - (1 - \frac{1}{\zeta})}{\sqrt{1 + \frac{1}{\alpha}} + \sqrt{1 - \frac{1}{\alpha}}} \right]$	IM .	May use L'Eospical's rule
	$=\frac{1}{x} = \frac{2}{\sqrt{1+\frac{1}{x}+\sqrt{1-\frac{1}{x}}}}$	1A	
	$-1 (as \ \underset{\chi \to \infty}{\text{lin}} \frac{1}{\chi} - 0)$	LA	
	(5) $\lim_{n \to \infty} \frac{n}{1 + an + \frac{a(n-1)}{2}h^2} = \lim_{n \to \infty} \frac{1}{\frac{1}{a} + h + \frac{a-1}{2}h^2}$		
	- 0	1A	
	Now $0 < \frac{a}{(1+h)^a} = \frac{a}{1+ah+\frac{a(n-1)}{2}h^2+\dots}$ positive terms		
	$\leqslant \frac{\alpha}{1 + \sin + \frac{\alpha(n-1)}{2} h^2} \text{for } \alpha \ge 2$	IX	Accept L'Hospital's Rui
	As $\frac{1}{1} = \frac{a}{1 + ah + \frac{a(a-1)}{2}h^2} = 0$, by the sandwich theorem,		:
`	$\frac{1+\pi}{m_{2}-\alpha} = 0.$	1A- 5	
<u></u>	The system has infinitely many solutions only if the		
٠.	decerminant of its coeff. matrix is zero.	177	
•	1 1 3": 4 h -i13h - 65	LA	
· ·	- o		
•	155 A = 5	! A.	•
	Now fix + Ty + Sz + 1(x + y + 3z) + 4x + 5y + z For the system to have infinitely many solutions,		
	2 - 2k + 1	אַנו	
	$:= k - \frac{t}{2}$	1A 5	_
		•	
	PECTRICIES DESCRIP	-	

Calustone	: Marks	Remarks
Solucious		
The number of 4-digit numbers formed = $\frac{7}{4}$ = 840 .	là l	
For a number to be divisible by 3, the sum of its digits must be divisible by 3 .	1	 ,
Now 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28		
For the sum to be 21, we have 21 - 28 - 7 - 2 - 4	ın j	For first giv
There are P4 = 24 numbers.	. 1A J	
Similarly, 18 = 28 - 1 - 2 - 7 - 28 - 1 - 3 - 6 - 25 - 1 - 4 - 5 - 28 - 2 - 3 - 5	·	şî.
There are $4 \times 7\frac{4}{4} = 96$ numbers.	lA	1
15 - 28 - 1 - 5 - 7 - 28 - 2 - 4 - 7 - 28 - 2 - 5 - 6 - 28 - 3 - 4 - 6		
There are 96 numbers.		
12 - 28 - 3 - 6 - 7 - 28 - 4 - 5 - 7	-	
There are 48 numbers.		
Altogether there are 264 numbers.	1 A	
Alternatively:		
Possible combinations are: {1, 2, 3, 6} {1, 2, 4, 5} {1, 2, 5, 7} {1, 3, 4, 7}		J
$\{1, 3, 5, 6\}\{1, 4, 6, 7\}\{2, 3, 4, 6\}\{2, 3, 6, 7\}$	14	
{2, 4, 5, 7 {3, 4, 5, 6 } {3, 5, 6, 7 }	۱۸	
$\frac{1}{2}(z+z^{-1}) = \frac{1}{2}((\cos\theta + i\sin\theta) + (\cos\beta + i\sin\beta))$	l.X	$\frac{OR}{\frac{1}{2}(z+\overline{z})}$
cosθ	là	2
$\approx \cos^{n}\theta - \frac{1}{2^{n}}(z + z^{-1})^{n}$		
$-\frac{1}{2^{n}}\sum_{r=0}^{n}c_{r}^{2}z_{n-r}z_{-r}$	là	
$=\frac{1}{2^{n}}\sum_{n=0}^{n}C_{n}^{2}z^{n-2n}$. <u>l</u> ė	
$-\frac{1}{2^{n}}\sum_{r=0}^{n}C_{r}^{2}\left[\cos(n-2r)\theta+i\sin(n-2r)\theta\right]$	- IA.	-
$= \frac{1}{2^{\infty}} \sum_{r=0}^{\alpha} c^{\frac{1}{r}} \cos(\alpha - 2r)\theta \text{as } \cos^{\frac{\alpha}{2}} \theta \text{ is real.}$	1.3.	
RESTRICTED 内部文件		1 100

RESTRICTED PAGE ATT		
Solucions	Marks	Remark
 (a) (i) For any z, z' and z" in C, (i) z S z as Re(z) ≤ Re(z) 	IA .	
(2) if z S z' and z' S z",		
then $Re(z) \le Re(z') \le Re(z'')$		
→ z S z" .	IA	•
Hence S is both reflexive and transitive.		
(ii) z S (1 + 21) iff Re(z) S 1 .	1A	
(b) For any z, z', z" in C, (1) z ~ z as z S z and z S z by (a) (2) if z ~ z', then z S z' and z' S z) z' S z and z S z' and hence z' ~ z)	LA.	
(3) if $z \sim z'$ and $z' \sim z''$, then $(z \le z')$ and $z' \le z$)		
<pre>and (z' S z" and z" S z') i.e. (z S z' and z' S z") and (z" S z' and z' S z) z S z" and z" S z as S is cransicive.</pre>		·
z ~ z"	!A	
Thus to is an equivalence relation:		
z - (1 + 21) 155 Re(z) - 1	1A	
The sec 3 is the line x = 1.	1A	-

	Solucions	Marks	Remarks
) For any 9 , 8 ∈ R , A(9)A(9)		
8. (2)(1	= [I - (sine)5 + (I - cos 0) S ²][I - (sine)5 + (I - cos 0) S ²]		
	= $I^2 - (\sin\theta + \sin\theta)S + [\sin\theta \sin\theta + (1-\cos\theta) + (1-\cos\theta)]S^2$		
	- $[six\theta(1-cos\theta) + sin\theta(i-cos\theta)]S^3 + (1-cos\theta)(1-cos\theta)S^4$	ı	
	= I - $(\sin\theta\cos\theta + \cos\theta\sin\theta)S + (1 + \sin\theta\sin\theta - \cos\theta\cos\theta)S^2$ ($\cos\theta\cos\theta + \cos\theta\cos\theta$)	l	
	" [- 212(0 + 0)7 + (1 - co2(4 + 0))2	ı	
•	- A(0 + 0)		
(:	(4) We shall prove by induction. The case where u=1 is trivial	Ī	
	Assume $\{A(\theta)\}^k = A(k\theta)$ for some positive integer k.		
•	Then $[A(\theta)]^{k+1} - [A(\theta)]^k A(\theta)$	l	
•	$= A(k\theta)A(\theta)$ $= A((k + 1)\theta) \qquad b_7(1)$	1	
	Rence [A(Θ)] ¹ = A(πΘ)	١,	5
(1	11)For any 9 ∈ R, A(-0) = [A(9)] ⁻¹	l l	
	as $\lambda(-2)\lambda(\theta) = \lambda(-\theta + \theta)$		
	- A(O)	ı L	
		7	-
(p)-	(1) -T ³ - T ² T		
	$- \begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{1}{2} & -\frac{1}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & 0 \end{pmatrix}$		
	$-\left(-\frac{1}{3} - \frac{2}{3} - \frac{1}{3}\right) - \frac{1}{13} = 0 \frac{1}{13}$	1 1	
	$\frac{1}{2} - \frac{1}{3} - \frac{2}{3} / \sqrt{-\frac{1}{J_3} - \frac{1}{J_3}} = 0$	1	
	$- \begin{pmatrix} 0 & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{5}} & 0 & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \end{pmatrix}\tau \text{i.e. } \tau^{3} + \tau = 0$		
	- (is 0 - is) T 1.e. T ³ + T = 0	L	-7 -
	(11) As $T^{3} = T = 0$, puzzing $S = T$ and $\theta = \frac{3\pi}{2}$ in (a).		
	$I + T = T^2 - 2(-\frac{2T}{2})$.	2	
	(i) Sy (a) (144) $(I + T + T^2)^{-1} = A(-\frac{3\pi}{2})$	1	
	- I - I + I ²	ι	ĺ
	1689 1	. 4	
	(2) $(1 + T - T^2)^{1/2} = A(\frac{\pi}{2} + \frac{\pi}{2})$ = $A(1491 \times 2T + \frac{3\pi}{2})$		
		į	<u> </u>
	$-\lambda(\frac{3\overline{u}}{2})$		
	$+\Gamma+\Gamma+\Gamma^2$	- 1	=
	RESTRICTED 内部文件	-	

	Solucions		•	Marks	Rema	iks
7					- 	~
	For any inceger k,		,		•	
•	$\frac{1}{(\sum_{r=1}^{n} \frac{k}{r}) - (\sum_{r=1}^{n} (\overline{x}_r)^k) - \sum_{r=1}^{n} (\overline{x}_r)^k}$	 عد الأ عدد (1) (ع	< ±.0)			
	$(2\alpha_{\pm}) = (2(\alpha_{\pm})) = 2$	1 37 (2)	T			
•	<u>=</u> k .			ı		-
	$\sum_{r=1}^{n} x_{r}^{k} \text{ is real}$		• '			
(111)	o ∝ + 0		•		OR .	
•	F		:		puc y =	x in
•	(1) . $\frac{\pi}{Z_{i}}$ (\overline{T} ×	,)	-		,. 	
-	1 1 jer	<u> </u>	•			
	(1) $\frac{\frac{1}{z}}{z-1} \times \frac{\frac{1}{z-1}}{\frac{1}{z-1}} \times \frac{1}{z-1} \times \frac{1}$		•			
	$=\frac{(-1)^{n-1}}{(-1)^n}$			$\frac{1}{1}$		-
	= -1					
	= -[
	(2) From (*), $\propto \frac{n-1}{r} + 1 + -\frac{1}{r}$	<u>l</u> = 0				
	•	∝ τ				
	Σα α-! - Σ (! + ·	1)		1		
•		z.				
	= -n - (-1)					
	$= -\alpha \div 1$		•	1 1 C		
	•					
- , .		 بر:				
	•		. :	ļ		
	,					
			• .	- :		
	:					
	·					
•	•	•				
	•	. 🔸				
	•			ļ	į	

Lee Marchs. I RESTRICTED 内部文件		P.
Solucions	Marks	Remark
) Let $f(x) = x^{n} + x + 1$. $f'(x) = x^{n-1} + 1$		· .
> 0	1	٠
Further $f(-1) < 0$ and $f(1) > 0$, for $f(x) = 0$ has concern and and	. 1	٠
Suppose n is even. $f'(x) = 0$ iff $x = -\sqrt{\frac{1}{n}}$ $f''(x) = n(n-1)x^{n-2}$ $f''(x) = n(x-1)x^{n-2}$		
As f is continuously differentiable, f actains its absolute sining at $x = -\frac{1}{n} \cdot \frac{1}{n}$ $f(-\frac{1}{n}) = (\frac{1}{n})^n - \frac{1}{n} + 1$ $ > (\frac{1}{n})^n$ $ > 0$	1	
i.e. $f(x) = 0$ has no real root.	t	
b) (1) If ∞ is a root of (*), $ x^{2} + \infty + 1 = 0 \Rightarrow \frac{x^{2} + \infty + 1}{x^{2} + \infty + 1} = 0 $ $ -2 + 2 + 1 = 0 $ $ -3 + 2 + 1 = 0 $ $ -3 + 2 + 1 = 0 $ $ -3 + 2 + 1 = 0 $ $ -4 + 2 + 1 = 0 $ $ -5 + 2 + 1 = 0 $ $ -6 + 3 + 2 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 3 + 4 + 4 + 1 = 0 $ $ -7 + 7 + 4 + 1 = 0 $ $ -7 + 7 + 1 = 0 $ $ -7 + 1 + 1 = 0 $ $ -7 + 1 + 1 = 0 $ $ -7 + 1 + 1 = 0 $ $ -7 $	L	
Now $\{\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n\} \subset \{x_1, x_2, \dots, x_n\}$ as the lacter is the set of all roots. Contradiction that the set of all roots is a foot $\Rightarrow \overline{x}_n$. Is also a foot, i.e. $\overline{x}_n \in \{x_1, x_2, \dots, x_n\}$. $x_n = \overline{x}_n \in \{\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n\}$.		
Thus $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset \{\overline{\alpha}_1, \overline{\alpha}_2, \dots, \overline{\alpha}_n\}$		-

7.	Solucions	Maiks	Remaiks
0. (a)	$f(x) = e^{x-1} - x$		
o. (a)	$f'(x) = e^{x-1} - 1$	1	• .
	$f''(x) = e^{x-1}$		
	f'(x) = 0 iff $x = 1$ at which	1.	
	$f''(x) = e^{0} > 0$	L	
٠,			
	As $f(x)$ is continuously differentiable in \mathbb{R} , $f(x) \ge f(1)$		
	\Rightarrow $e^{x-1} - x \ge e^{1-1} - 1 = 0$, i.e. $e^{x-1} \ge x$ $\forall x \in \mathbb{R}$	<u>l</u>	•
(3)	As b. $\neq 0$, put $x_1 = \frac{a_2}{2}$ (f. = 1, 2,, n) in (a).		
.,,,,,	As $b_{\underline{i}} \neq 0$, put $x_{\underline{i}} = \frac{a_{\underline{i}}}{b_{\underline{i}}}$ (f. = 1, 2,, n) in (a).		
	$\left(\frac{\frac{1}{b}}{b}, \frac{1}{b}\right) > \frac{a}{b}$	1 1	•
	$\frac{a}{\frac{a_i}{l}} \left(\frac{a_i}{b_i} - l \right)$ $\frac{a}{l} \left(\frac{a_i}{b_$	1	
	$i-1$ $i-1$ $\frac{b_1}{b_1}$ as $\frac{b_2}{b_2} > 0$	1	
	(a a,)		
	$\left\{ \left(\begin{array}{ccc} \frac{a}{5} & \frac{a}{5} \\ \frac{1}{5} & \frac{a}{5} \end{array} \right) - a \right\}$ $\vdots \qquad \qquad$		·
		- 1	
	$\left\{\left(\sum_{\underline{i}=1}^{n} \frac{a_{\underline{i}}}{b_{\underline{i}}}\right) - n\right\} \xrightarrow{\begin{array}{c} \underline{n} \\ \underline{i+1} \end{array}} a_{\underline{i}}$ If $\sum_{\underline{i}=1}^{n} \frac{a_{\underline{i}}}{b_{\underline{i}}} \leq n$, $\underline{i} \geq a$ $\geqslant \frac{n}{\underline{n+1}} b_{\underline{i}}$		
	$\left\{\left(\underset{i=1}{\mathcal{E}}\frac{1}{b_i}\right)-u\right\} \overline{\prod}_{i=1} a_i$		·
	If $\sum_{i=1}^{n} \le n$, $i \ge e$ $\Rightarrow \frac{n}{n} b$,		
	i ^u i ¹		
	$\frac{a}{1+a} = \frac{a}{1+a} \leq \frac{a}$	i i	•
	tel 12 tel 12	4_	· · · · · · · · · · · · · · · · · · ·
(4)	(i) For $i = 1, 2,, n$, puc $b_i = \frac{1}{n} \sum_{r=1}^{n} a_r = 2 \ (\ge 0)$ in	(5) 1	
,		i	,
	Then $\frac{\pi}{4} = \frac{a_1}{b_1} = \frac{\pi}{2} = a_2 = \pi \le \pi$	1)
	ini ii ka ini m		
	$\exists y \ (5), \frac{\pi}{7} \ a_1 \le \frac{\pi}{7} = \frac{1}{12}$	1	٠.
	<u>t=1</u>		• • •
	$-\left[\begin{array}{cc} \frac{1}{\alpha} & \sum_{i=1}^{n} a_{i} \end{array}\right]^{n}$		
	<u>. 7~7 ,</u>		
	$\Rightarrow \left(\begin{array}{c} \frac{\pi}{1} & \mathbf{a}_{L} \right)^{\frac{1}{n}} \lesssim \frac{1}{\pi} \sum_{\ell=1}^{n} \mathbf{a}_{L}$	L	
	Let L' E tel. L.	1.	

Solucions		Maiks	Remaiks
10. (c) (ii) Consider the positive numbers $\frac{1}{a_1}$, $\frac{1}{a_2}$	1	1	
	,, an	`	
3y (1), $\frac{1}{c} \sum_{i=1}^{n} \frac{1}{a_i} > \left\{ \frac{n}{m} \frac{1}{a_i} \right\}^{\frac{1}{m}}$	•	1	÷.
	•		
	•		
	• •		at .
> - 1		1	
-			
= 1/2			*.
$\frac{1}{1+1}\frac{1}{a_1} > \frac{1}{a}$			
$\longrightarrow \sum_{i=1}^{n} \left(\frac{1}{a_i} - \frac{1}{n}\right) > 0.$		3	
	200		
	•		
	٠		•
			•
			<u>.</u>
		-	•
the property of the second	· · · · · ·		
	· :		
	,		
	•		<u>.</u>
	:		
		<u> </u>	

Pare Machs. I RESTRICTED 内部文件		P.10
Solutions	Marks	Rezerks
l. (a) We first prove the uniqueness. Suppose E incegers a ,	-	
b, c, d such that a $\sqrt{2}$ + b = c $\sqrt{2}$ + d.	1	
Then $(z - c) \sqrt{2} - d - b$.		• •
As $\sqrt{2}$ is irracional, (a - c), (d - b) are integers only		
if a - c - d - b = 0, i.e. $a = c$ and $b = d$.	l l	
Hence the uniqueness.		
Next observe that the given scatterent is true for $n=1$		•
with a, - b, - l	1	
Assume that for some $k \ge 1$, $(\sqrt{2} \div 1)^k = a_k \sqrt{2} + b_k$.		
where a, and b, are positive integers with ok odd and		
$b_{i_0} \ge a_{i_0} \ge 2^{k-1}$.		
$(\sqrt{2} + 1)^{k+1} = (a_k \sqrt{2} + b_k)(\sqrt{2} + 1)$		
= $(a_x + b_y)\sqrt{2} + (2a_x + b_y) = a_{k+1}\sqrt{2} + b_{k+1}$, say	1	
Now $(a_k + b_k)$ and $(2a_k + b_k)$ are positive integers and		
lag + bg is odd as bg is odd.	1	
Furcher $2a_{k} + b_{k} \ge a_{k} + b_{k} \ge 2a_{k} \ge 2^{k}$.	i.	
Thus the statement is true φ positive α .		
To prove that a_n is odd for even a , first $a_i = 1$ is odd	•	
Assume that a is odd for some cdd k ,		•
$(\sqrt{2}+1)^{k+2} = (a_k \sqrt{2} + b_k)(2\sqrt{2} + 3)$. 1	
$= (3a_{k} + 2b_{k})\sqrt{2} + (4a_{k} + 3b_{k})$		
as a is odd, 3a + 2b, is odd.	; I	
The answer follows.	-8	
(5) For $n = L_1(\sqrt{2} - 1)^{\frac{1}{2}} - (-1)^{\frac{1}{2}}(1 \times \sqrt{2} - 1)$		
Suppose $(\sqrt{2} - 1)^k = (-1)^{k+1} (z_k \sqrt{2} - b_k)$, $k \ge 1$.		
$(\sqrt{2}-1)^{k+1} - (-1)^{k+1} (a_k^{-1} - b_k^{-1}) (\sqrt{2}-1)$	2	
$-(-1)^{k+1}\{-(a_{k}+b_{k})\sqrt{2}+(2\dot{a_{k}}+b_{k})\}$		
$-(-1)^{k+2}(a_{k+1}\sqrt{2}+b_{k+1})$ by (a).	2	_
	1	j .
Thus $(\sqrt{2}-1)^n = (-1)^{n+1}(a_n\sqrt{2}-b_n) = n \ge 1$.		

	Solucious			Marks	sylems?
11. (b) Nov 0	$<(\sqrt{2}-1)<\frac{1}{2}$			l -	-
	$< (\sqrt{2} - 1)^n < \frac{1}{2^n}$		·	1.	
	$\int_{\Omega} \int_{\Omega} \leq \frac{1}{2^{n}}$			L	
- -> \[$\left \overline{2} - \frac{b}{a_n} \right < \frac{1}{a_n 2^n}$,		
-	$<\frac{1}{2^{2z-1}}$ by (a)		,	1 7	
	÷.	•			
	and the second s				
•					•
· <u>.</u>		•			
					• • • • • • • • • • • • • • • • • • •
1	e V		:		
				1	i

Provided by dse.life

<u> 2 - /ur</u>	e Matths I RESTRICTED 內部文件		7.12
7	Solucious	Marks	Remarks
12. (a)	For any z_1 , $z_2 \in \mathbb{C} \setminus \{-1\}$, $f(z_1) = f(z_2)$ $\Rightarrow \frac{f(1-z_1)}{1+z_1} = \frac{f(1-z_1)}{1+z_1}$ $\Rightarrow 1-z_1+z_2-z_1z_2-1+z_1-z_2-z_1z_2$	1	
		<u> </u>	
	Eence f is injective.	ı	
	For any $w \in C \setminus \{-i\}$, consider $w = \frac{i(1-z)}{1+z}$.		
	Changing subject, we have $z = \frac{1-u}{1+u}$. (as $u \neq -1$)	ı	
	As $z \neq -1$ and $f(z) = w$, f is surjective and thus bijective.	1_4	
(6)	the imaginary axis	1	OR
s e e	$\bar{\epsilon}(z) = \frac{1(1-\epsilon 1)}{1+\epsilon 1}$		May use z + Z
K	$= \frac{2c + (1 - c^2)t}{1 + c^2}$	1	1ff 1-0 +(1-0)
•	$-x + iy$ where $x = \frac{2c}{1+c^2}$, $y = \frac{1-c^2}{1+c^2}$		iff w = 1 1
	We see that $x^2 + y^2 = \frac{4c^2}{(1+c^2)^2} + \frac{1-2c^2+c^4}{(1+c^2)^2} = 1$.	Ţ	ecc.
***	As $x = \frac{2c}{1+c^2} \ge 0$, $f(z)$ lies on right half of the uni	=	
	cirice (including the and point i) (#-i)	1	
	For any point $u = x + i \gamma_{\Lambda} on$ the right half of the uni	-	
1	cirics, we have $x^2 + y^2 = 1$, $x \ge 0$.		
	By (a), the pre-image of w is given by		
	$z = \frac{1 - v}{1 + v}$		
	$=\frac{1-(x+1y)}{1+(x+1y)}$		
•	$-\frac{-x + (1 - y)i}{x + (1 - y)i}$ $-\frac{-x^2 - y^2 + 1 - 2xi}{x^2 + (1 + y)^2}$		
	$= \frac{-x^2 - y^2 + 1 + 2x^2}{x^2 + (1 + y)^2}$ $= \frac{2x^2}{x^2 + (1 + y)^2} (x \ge c) c_5 x^2 - y^2 = 1$	İ	
•	it lies on the upper half of the imaginary exis-	į l	
	<u>**</u>		
			! i
	×		_
•	- mile of waren rail		
	impring aria	ı	
	RESTRICTED 内部文件		

/	S	olucions					•	Yarks	T	Remark
12 (5)	(ii) Let z = t,	t > 0 .		·		 -	_	1	0.0	
	$\dot{z}(z) = \frac{\dot{z}(1)}{1}$		on the fo	2 C 1 D 2 C T		•			<u>OR</u>	
	Further -L	+ c	· · · · · · · · · · · · · · · · · · ·		alia.	•		1		show th
		•				:				= 15E
	For any w =	lies between		1 1(end	point	s exclu	ided)	L I	1(4	+ 3) -
				_						
		$=\frac{1-vi}{1+vi}$						1	٠	•
	The image is						.s -			
	lying becwer	1 and 1 and 1 .	end poi	عدد عدد.	Lluded) • , ,				•
		. 1	•		٠.					
		ا ،								
	. •									
					\longrightarrow	Y				
	•	0				~		J	•	
			r		•	•		11		a
		. !								
	:									
				•		1	ĺ			
	* * * * * * * * * * * * * * * * * * * *				. ,		ļ			
:		,				* 1	ĺ			
							!			•
•		•				• •	-	i		
1					**		- <u> </u> -	•		•
		•								
								i		
				•						
			-							
	•	•				-				-
	· · ·									•
	غائي فالمشتقسة	·				·		. ——		

₹	ES	TRI	ICT	ED	内部文件	:

•	Solutions	Maiks	
a)	$\begin{array}{cccc} (\underline{1}) & \underline{\tau}(\underline{0}) & -\underline{\tau}(\underline{0} + \underline{0}) \\ & -\underline{\tau}(\underline{0}) & +\underline{\tau}(\underline{0}) \end{array}$		
	->τ(<u>0</u>) - <u>0</u>	1	
	(ii) For any \underline{x} , \underline{y} , $\underline{z} \in \mathbb{R}^3$ and ∞ , β , $\beta \in \mathbb{R}$,		
	$T(\sim \underline{x} + \beta \underline{y} + \beta \underline{z}) - T(\sim \underline{x} + \beta \underline{y}) + T(\beta \underline{z})$		
	$- \leftarrow T(\underline{x}) + \beta T(\underline{y}) + f T(\underline{z})$	ι	
	(iii) For any linearly dependent x , y , z ∈ R ³ , j ∝ , β , Y ∈ R (not all zefo) such that		· .
	$\propto \underline{x} + \beta \underline{y} + \gamma \underline{z} = \underline{0} \qquad$	i	
	$T(\times \overline{x} + b \overline{x} + 1 \overline{z}) = 0$		
	$\therefore \propto T(x) + \int T(y) + \int T(z) = 0$		

(b) To prove (1)
$$\rightarrow$$
 (2), suppose T is injective.
For any linearity independent \underline{x} , \underline{y} , $\underline{z} \in \mathbb{R}^3$ and \times , β , $\beta \in \mathbb{R}$, $\alpha \in \mathbb{R}$ and α

i.e. T(x), T(y), T(z) are linearly dependent.

$$-\rightarrow T(\propto x + \beta y + y z) - 0$$

$$\Rightarrow \propto \underline{x} + \beta \underline{y} + Y \underline{z} = 0$$
 by (a) and injectivity of T

1

l

1

10

Hence $T(\underline{x})$, $T(\underline{y})$, $T(\underline{z})$ are linearly independent.

To piove (2) \Rightarrow (3), observe that \underline{e}_1 , \underline{e}_2 , \underline{e}_3 are

linearly independent because if $\mathbb{F} = 1$, β , $\beta \in \mathbb{R}$ such that

$$-\underline{e}_1 + \beta \underline{e}_2 + \beta \underline{e}_3 - \underline{0} ,$$

then (=,6,3)=0

 I_{n} by (2), $I(\underline{e}_{n})$, $I(\underline{e}_{n})$, $I(\underline{e}_{n})$ and linearly independent.

To prove (3) \Rightarrow (1), suppose T(x) = T(y) for some x, $y \in \mathbb{R}^3$.

$$\exists \sim_1, \sim_2, \sim_3 \text{ and } \beta_1, \beta_2, \beta_3 \in \mathbb{R}$$
 such that $x = \frac{3}{2}, \sim_4 x, \quad x = \frac{7}{2}, \beta_4 x$

$$\Sigma = \underline{i} \in \underbrace{\alpha_i \underline{e_i}}, \quad \Sigma = \underline{i} \in \underline{\beta_i \underline{e_i}}$$

$$\text{Sow } T(\underline{x}) = T(\underline{y}) \longrightarrow T(\Sigma = \underline{i} \underline{e_i}) = T(\Sigma \underline{\beta_i \underline{e_i}})$$

$$\longrightarrow \Sigma = \underline{i} T(\underline{e_i}) = \Sigma \underline{\beta_i} T(\underline{e_i})$$

$$\longrightarrow \Sigma (=\underline{i} - \underline{\beta_i}) T(\underline{e_i}) = \underline{0}$$

$$\longrightarrow \underline{e_i} = \underline{\beta_i} = \Sigma \text{ as } T(\underline{e_i}) \text{ are linearly}$$

independent by assumption.

RESTRICTED 內部文件

HONG KONG EXAMINATIONS AUTHORITY

一九八九年乔施高岛程度合分

HONG KONG ADVANCED LEVEL EXAMINATION, 1989

Fure Mathematics (Paper-II)

MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited

Special Note for Teacher Hatkers

It is highly underirable that this marking scheme should fall into the hinds of students. They are likely to regard it as a set of model answers.

dominant Making it systable o(the marker and is, moreover, in breach of the 1977 Hour Kong Examinations Authority Ordinance

Hong Kong Examinations Authority All Rights Reserved, 1939

RESTRICIED	计为记忆		P.2
Solucions		Yarks	Remarks
(a) Consider x fixed and put $u = xt$. Then $du = xdt$. $t = \frac{1}{x} \rightarrow u = 1$; $t = \frac{1}{x} \rightarrow u = 1$	x -> n - x2)	là	
$\therefore f(x) = \int_{1}^{x^{2}} \sin \sqrt{u} \frac{du}{x}$			•
$-\frac{1}{x}\int_{1}^{x^{2}}\sin\sqrt{u}du$	······································	1A	
(b) $\frac{df}{dx} = -\frac{1}{x^2} \int_{1}^{x^2} \sin \sqrt{u} \ du + \frac{1}{x} \cdot 2x \cdot \sin \sqrt{x}$	<u>.</u>	iA+lA	4
= 2 sin 1 at x = 1 (as $\int_{1}^{1} \sin \sqrt{y}$ = (1.663)	ću = 0)	1A	Withheld if answaries of the state of the st
= (1.863)		5	
4. (a) The two curves intersect at $x=0$ at Area bounded by the curves is $\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$		1A	
$-\left[\frac{2}{3}x^{\frac{3}{2}} - \frac{1}{3}x^{3}\right]_{0}^{1} - \frac{1}{3} \dots$		1A	
(b) $y = \ln \cos x = \frac{1}{2} \frac{dy}{dx} = \frac{-\sin x}{\cos x} = -\frac{\cos x}{\cos x}$		1A	
Arc length $-\int_{0}^{\frac{\pi}{4}} \sqrt{1 + (-\tan x)^2} dx$;	114	
$-\int_{0}^{\frac{\pi}{2}} \sec x dx$ $-\left[\ln\left \sec x + \tan x\right \right]$	-	14	-
- ln ($\sqrt{2}$ + 1) units (-	0.881)	1 A	
			-
RESTRICT	ED 内部文件		

	Tre Maths II		P.i
	Solucions	Marks	Remarks
1.	f is continuously differentiable for x > 0 and x e e x - e x e - 1 e x		± 1
	f'(x) - x ² e		
	$=\frac{e^{x}(x-e)}{x^{e-1}}$	lA.	
-	f'(x) = 0 iff $x = e$.	1.4	
	For $0 < x < e$, $f'(x) < 0 \Rightarrow f$ is strictly decreasing there) For $x > e$, $f'(x) > 0 \Rightarrow f$ is strictly increasing there	2	May consider f"(x)
	$\int_{\Gamma}(x) > \int_{\Gamma}(e) = 1 \text{if } x \neq e$ $\text{Now } f(\pi) = \frac{e^{-x}}{\pi^2} > f(e) = 1.$		$= \frac{2}{\chi^2} \left[\left(1 - \frac{2}{\lambda}\right)^2 + \frac{e}{\lambda} \right]$
	> e ^T > ग ^e (as ग ^e > 0)	1A 5	
	$\frac{1}{x^{2}+1} = \frac{1}{(x+1)(x^{2}-x+1)} + \frac{1}{3} \left(\frac{1}{x+1} - \frac{x-2}{x^{2}-x+1} \right)$	IM+1A	IM for attempt solve by partia fractions
•	$\frac{1}{3} \int \left(\frac{1}{x+1} - \frac{x-2}{x^2 - x - 1} \right) dx$ $-\frac{1}{3} \ln x+1 - \frac{1}{3} \int \frac{x-2}{x^2 - x + 1} dx$	1A	For Six+1
	$-\frac{1}{3} \ln x+1 - \frac{1}{3} \int (\frac{x-\frac{1}{2}}{x^2-x+1} - \frac{\frac{3}{2}}{x^2-x+1}) dx$ $-\frac{1}{3} \ln x+1 - \frac{1}{6} \ln x^2-x+1 + \frac{1}{2} \int \frac{1}{x^2-x+1} dx$	IM	
	$-\frac{1}{3} \ln x-1 - \frac{1}{6} \ln x^2 - x + 1 + \frac{1}{2} \int \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}} dx$		
· 	$= \frac{1}{6} \ln \left \frac{(x+1)^2}{x^2 - x - 1} \right = \frac{1}{3} \tan^{-1} \left(\frac{2x-1}{\sqrt{3}} \right) + c$	1A -5	-
		· · · · · · · · · · · · · · · · · · ·	

. :::::::::::::::::::::::::::::::::::::	Zens 11		
	Solutions	Marks	Remarks
-	entiating $y(1 + r^2) = 1$ with respect to x, by Leibnitz		
		là là) May use induct:
rule,	$\sum_{r=0}^{n} c_{r}^{2} y^{(n-r)} (1 + x^{2})^{(r)} = 0$	''	,
	$+x^2$)' = 2x, $(1+x^2)^{(2)} = 2$, $(1+x^2)^{(r)} = 0$ for $r \ge 3$,		
As (1	$+x^{2}$) $y^{(n)} + n \cdot 2x \cdot y^{(n-1)} + \frac{n(n-1)}{2} \cdot 2y^{(n-2)} = 0$ for $n \ge 2$.	1A)
(1	$+ x^2$) $y^{(-)} + n \cdot 2x \cdot y + \frac{1}{2} = 2$	14	
Now A	$(n)_{(0)} = -a(n-1)y^{(n-2)}(0)$ for $n \ge 2$		
	y(0) = 1		•
	$y^{\dagger}(0) = 0$		
	y ⁽ⁿ⁾ (0) = 0 if n is odd	IA.	
If a	is even, $y^{(n)}(0) = -n(n-1)y^{(n-2)}(0)$		
	$= (-1)^{2}(n)(n-1)(n-2)(n-3)y^{(n-4)}(0)$	1A	
	= ecc.		
	$= (-1)^{\frac{\pi}{2}}$ n! $(y^{(0)}(0) = 1)$	1A 6	
		\ <u>-</u>	-
(-)	Let (r, θ) be the polar coordinates of a point on r .		
. (2)	Then x = rcos0 , y = rsin0 :		•
	Substituting in T , $r^2 \sin^2 \theta = 1 + 2r \cos \theta$	1A	
	$r^2 \sin^2 \theta - 2r \cos \theta - 1 = 0$		
	$\frac{2 \cos \theta = \sqrt{4\cos^2 \theta + 4\sin^2 \theta}}{2\sin^2 \theta}$,
	$= \frac{\cos \theta + 1}{\sin^2 \theta} \text{ or } \frac{\cos \theta - 1}{\sin^2 \theta}$	12	For either
	$\frac{\sin^2 \theta}{\sin^2 \theta} = \frac{\sin^2 \theta}{1 - \cos \theta}$ 1.e. $\frac{1}{1 - \cos \theta} = \frac{-1}{1 + \cos \theta}$	-	
	1.e. $\frac{1-\cos\theta}{1-\cos\theta}$ 1 - cost	ed	
	Either $r = \frac{1}{1 - \cos \theta}$ or $r = \frac{-1}{1 + \cos \theta}$ could be the requir		
	equation, depending on the restrictions on T.		
(ъ)	Let $r = \frac{1}{1 - \cos \theta}$ be the polar equation of T.	. +)	
	Since PQ passes through 0, let P = $(\pi, 9)$, 0 = $(\pi_2, 9)$	· Ŧ). ÷	
	We have $\frac{1}{1 - \cos \theta}$, $\frac{1}{1 - \cos (\theta - \pi)} = \frac{1}{1 + \cos \theta}$	I Å	
	$\frac{5}{3} + \varepsilon_1 + \varepsilon_2 \qquad \dots$	114	
	$=\frac{1}{1-\cos\theta}+\frac{1}{1-\cos\theta}$		
	$=\frac{2}{\sin^2\theta}$ $\sin\theta = \pm \frac{\sqrt{3}}{2}$		-
		_ <u>l</u>	
	$\therefore P = (2, \frac{\pi}{3}), Q = (\frac{2}{3}, \frac{4\pi}{3})$		-
	DECTRICTED。成	.1	-

RESTRICTED 内部文件		₽.4
Solucions	Harks	Remarks
(a) Let $y = [\ln (e + h)]^{\frac{1}{h}}$ $\ln y = \frac{1}{h} \ln (\ln (e + h))$	1	
$\lim_{h\to 0} \ln y = \lim_{h\to 0} \frac{1}{h} \ln \left(\ln \left(e + h \right) \right)$	-	: '
$= \lim_{\substack{n \to 0 \\ n \to 0}} \frac{\frac{1}{(e+n) \ln(e+n)}}{1}$ (By L'Eospital's Rule)	1A	
lu lim y - le	1.4	e.
(b) $\lim_{n \to \infty} \frac{\pi}{k-1} = \lim_{n \to \infty} \frac{\pi}{k-1} \cdot \frac{1}{n} \cdot \left(\frac{1}{1+\left(\frac{k}{n}\right)^2}\right)$	1A	, , , , , , ,
$= \int_{0}^{1} \frac{1}{1+x^{-1}} dx$	2A	
- [tan ⁻¹ x] ₀	1.A	
<u> </u>	1 <u>A</u> 7	
the second secon		-

J. 11	RESTRICTED 內部文件	

RESTRICTED FIED	J., I	Remarks
Solucions	Farks	
a) $I_0 = \int_0^1 e^{ax} dx = \frac{1}{a} e^{ax} \Big _0^1 = \frac{1}{a} (e^a - 1)$	1	
For $n \ge 1$, $I_n = \int_0^1 x^n e^{ax} dx$		
$=\frac{1}{a}\int_{0}^{L}x^{n}de^{ax}$. 1	
$=\frac{1}{a}x^{n}e^{ax}\Big _{0}^{1}-\frac{n}{a}\int_{0}^{1}x^{n-1}e^{ax}dx$. 1	7
$=\frac{e^{\lambda}}{a}-\frac{n}{a}I_{n-1}$	1 4	
(b) We shall prove inductively.		
First $I_1 = \frac{e^{\frac{1}{a}} - \frac{1}{a^{\frac{1}{a}}}}{\frac{1}{a^{\frac{1}{a}} + e^{\frac{1}{a}(\frac{1}{a} - \frac{1}{a^{\frac{1}{a}}})}}$	1	
Hence the statement is true for n = 1. Assume that for some k > 1,		
(k-1) (k-1)	+1)	

$$I_{k} = \frac{(-1)^{k+1} k!}{a^{k+1}} + e^{a} \left[\frac{1}{a} + \sum_{r=1}^{k} \frac{(-1)^{r} k(k-1) \dots (k-r+1)}{a^{r+1}} \right]$$

7	Solucions [.]	Harks	Remarks
	then $I_{k+1} = \frac{e^a}{a} - \frac{k+1}{a} I_k$	2	
	$= \frac{e^{2r}}{a} - \left\{ \frac{k+1}{a} \times \frac{(-1)^{k+1} k!}{a^{k+1}} + e^{2r} \left(\frac{k+1}{r} \times \frac{1}{a} + \sum_{r=1}^{k} \frac{(-1)^{r} (k+1) (k) (r)}{a^{r+2}} \right) \right\}$	k-1)	(k-r+1)
	$= \frac{(-1)^{k+2}(k+1)!}{a^{k+2}} + e^{2} \left[\frac{1}{a} - \frac{k+1}{a^{2}} - \sum_{k=2}^{k+1} \frac{(-1)^{k-1}(k+1)(k)(k-1)}{a^{k+1}} \right]$	1 (k+	<u>l-r+1)</u>
		1	
	$= \frac{(-1)^{k+2}(k+1)!}{a^{k+2}} + e^{2} \left(\frac{1}{a} + \sum_{r=1}^{k+1} \frac{(-1)^{r}(k+1)(k)\dots(k+1-r+1)}{a^{r+1}} \right)$	l L	
	Thus the statement is true for $n = k + 1$ and hence $\forall n \ge 1$.	6	-
(ċ)	Put x = log Ju ;	-1	
<u></u> .	Then $u = e^{2x}$, $du = 2e^{2x} dx$. When $u = 1$, $x = 0$;) when $u = e^{2}$, $x = 1$.	ī	
	$\int_{1}^{e^{2}} (\frac{\log u}{u})^{3} du = 16 \int_{0}^{1} x^{3} e^{-4x} dx$	1	
	= $16I_3$ with $a = -4$ = $16 \cdot \frac{(-1)^4 \cdot 3 \cdot 2}{(-4)^2} + e^{-4} \left(\frac{1}{-4} + \frac{-3}{(-4)^2} - \frac{3 \cdot 2}{(-4)^3} - \frac{3 \cdot 2 \cdot 1}{(-4)^2} \right)$	l. I	
	$-\frac{3}{3} - \frac{71}{8} e^{-4} (= 0.2124)$	- I - 3	_
	en la competencia de br>La competencia de la		

(1) (2) (3)	RESTRICTED 內部文件		0 - ₽₌
	Solutions	Marks	Remarks
9. (a) Slope of the chord = $\frac{\frac{c_2^2}{1 + c_2^3} - \frac{c_1^2}{1 + c_1^3}}{\frac{c_2}{1 + c_2^3} - \frac{c_1}{1 + c_1^3}}$	I	
	$=\frac{c_1^2c_2^2-c_1-c_2}{c_1c_2(c_1+c_2)-1} (\text{for } c_1 \neq c_2)$ Equation of the chord is	1	
i	$y - \frac{c_1^2}{1 + c_1^3} - \frac{c_1^2 c_2^2 - c_1 - c_2}{c_1 c_2 (c_1 + c_2) - 1} (x - \frac{c_1}{1 + c_1^3})$	1	
	i.e. $(c_1^2 c_2^2 - c_1 - c_2)x + (1 - c_1 c_2(c_1 + c_2))y + c_1 c_2 = 0$ Letting c_1 , c_2 — c , the equation of the tangent at c is $(c^4 - 2c)x + (1 - 2c^3)y + c^2 = 0$	1 4	. :
· · · · · · · · · · · · · · · · · · ·	Ey (a), putting $x = \frac{c_3}{1 + c_3^2}$, $y = \frac{c_3^2}{1 + c_5^3}$, a necessary sufficient condition for the three points to be collinear	4	7
	is $(c_1^2 c_2^2 - c_1 - c_2) \frac{c_4}{1 + c_3^2} + [1 - c_1 c_2 (c_1 + c_2)] \frac{c_3^2}{1 + c_3^2}$	+ c _L c _Z	- 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$(t_1 t_2 t_3 - t_3) \left[t_1 (t_2 - t_3) - t_3 (t_2 - t_3) \right] = 0$ $(t_1 t_2 t_3 - t_3)(t_1 + t_3)(t_2 - t_3) = 0$	1	
· · · · · · · · · · · · · · · · · · ·	$\langle = \rangle$ $t_1 t_2 t_3 = -1$ as t_1 , t_2 , t_3 are distinct.	1	
!			-
:			

RES	T	RIC	ΓED	内部文件	
olucions	-				Mark

7	Solutions	Marks	Remarks
(c)	Equation of tangent at t is $(t^4 - 2t)x + (1 - 2t^3)y + t^2 = 0$)	<u>OR</u>
	Putting $x = \frac{T}{1 + T^3}$, $y = \frac{T^2}{1 + T^3}$, the tangent intersects	· 1	From (b),
	the curve at $F(T)$ if $f^2T^3 + (1 - 2t^3)T^2 + (t^4 - 2t)T + t^2 = 0$		c ₁ c ₂ c ₃ 1 .
			Lecting t ₁ , t ₂ ->
	iff $(T - c)(c^2T^2 - (c^3 - 1)T - c) = 0$	ı	ecc.
	iff $(T - c)(T - c)(c^2T + 1) = 0$		
	$1ff T = c or - \frac{1}{c^{-}}$	1	
	T = z is the point of contact.		
	As $t \neq 0$ or ± 1 , $-\frac{1}{t^2} \neq t$ or -1		
•	the tangent meers the curve again at another point		
	T, where $T = -\frac{1}{c^{-1}}$.	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Let $P(r_1)$, $P(r_2)$, $P(r_3)$ be three distinct points on the		
	curve and let the tangents at these points meet the curve	,	
	again at $P(T_1)$, $P(T_2)$, $P(T_3)$ respectively, where		_
	$\tau_1 = -\frac{1}{c_1^{-1}} \cdot \tau_2 = -\frac{1}{c_2^{-1}} \cdot \tau_3 = -\frac{1}{c_3^{-1}}$	1	
	3y (b), c[=2== -1-		
-	$\frac{1}{r_1 r_2 r_3} = -\frac{1}{r_1 r_2 r_5^2} = -1$	- 1-	
	By (b) again, $2(T_1)$, $2(T_2)$, $2(T_3)$ are collinear.	1	
		- !	

54 37

Satus II	MEDITIC LED LINDS		
	Solucions	Harks	Remarks
(1) As X	$\rightarrow \pm \infty$, $f(x) \rightarrow \pm \infty$ respectively.		
3.	the graph of f(x) does not have any horizontal	1.	
	asymptote. On the other hand, $x^2 + 1$ does not vanish for any real x , there is no vertical		
	asymptote.	1	
and	$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} (1 + \frac{8}{x^2 + 1}) = 1$ $\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} \frac{8x}{x^2 + 1} = 0$ $y = x \text{ is an asymptote and is also the only one}$	1	
	of the graph of f(x).		<u> </u>
(11) ['(x	$\frac{(x^2+1)(3x^2+9)-x(x^2+9)(2x)}{(x^2+1)^2}=\frac{(x^2-3)^2}{(x^2+1)^2}$	1	
ř'(x	$= 0 \text{ iff } x = \sqrt{3} \text{ or } -\sqrt{3}$	1	
f"(x	$x) = \frac{(x^2+1)^2(2)(x^2-3)(2x)-(x^2-3)^2(2)(x^2+1)(2x)}{(x^2+1)^4} = \frac{1}{2}$	6x(x ² -3 (x ² +1) ³	
f"(2	x) = 0 iff x = 0 or $\sqrt{3}$ or $-\sqrt{3}$	1	

	x<-5	x = -\1	-√3 < x < 0	z = 0	0 < x < \sqrt{3}	x = 13	x > ∫3
f'(x)	+	0	+	+	+	0	. +
f"(x)	-	0	+	0		0 .	+
f(x)	7~	pc. of inflexion	7.	pt. of inflexion	. ~ ~	pc. of inflexion	20

.. the graph of f(x) has inflexion points $(-\sqrt{3}, -3\sqrt{3}), (0, 0) \text{ and } (\sqrt{2}, 3\sqrt{3})$ Since f is continuously differentiable, the only possible extreme values occur at x where f'(x) = 0

Consider the following table:

1+1

10

-2	RESTRICTED 内部文件		P.!
	Solutions	Marks	Remarks
10. (b)	(1) $y = f(x)$ $y = x$ (75.36)	2	
		•	
	(-15,73/5)	•	
. ·	$(11) \ \tilde{z}(x) - \frac{ x \ (x ^2 + 9)}{ x ^2 + 1}$		
	$=\begin{cases} f(x) & \text{if } x > 0 \\ -f(x) & \text{if } x < 0 \end{cases}$	L	
•	y = -x $(-3, 3, 5)$ $(5, 3, 5)$ $(5, 3, 5)$		
ene ej e erre			
		<u>2</u> <u>5</u>	
		•	
			* * * * * * * * * * * * * * * * * * *
:		-	

	Solucions	Marks	Remarks
. (a	$a) \int_{a}^{b} (x-a)f'(x)dx = (x-a)f(x) \Big _{a}^{b} - \int_{a}^{b} f(x)dx$	1	
·	$= (b - a)f(b) - \int_{a}^{b} f(x)dx$		
4	$-\int_{a}^{b} f(b) dx - \int_{a}^{b} f(x) dx$		
-	$-\int_{a}^{b} [f(b) - f(x)] dx$	1	
	$b) - \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left[\varepsilon(\frac{k}{n}) - \varepsilon(x) \right] dx = \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \varepsilon(\frac{k}{n}) dx - \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \varepsilon(x) dx \right]$	x	
	$-\sum_{k=1}^{n}\frac{1}{n}f(\frac{k}{n})-\int_{0}^{1}f(x)dx$	1	
	$= E_{\alpha}$ If $ f'(x) \leq M \forall x \in [0, 1],$		
	$= \left \mathbb{E}_{\frac{n}{n}} \left\{ -\frac{n}{k-1} \int_{-\frac{k-1}{n}}^{\frac{k}{n}} \left[f\left(\frac{k}{n}\right) - f(x) \right] dx \right $		
	$= \left \frac{n}{\zeta} \left(\frac{\frac{k}{n}}{n} \left(x - \frac{k-1}{n} \right) f'(x) dx \right \text{of (a)}$	1	
	$\leq \sum_{k=1}^{n} \left \int_{\frac{k-1}{n}}^{\frac{k}{n}} (x - \frac{k-1}{n}) f'(x) dx \right $		
	$ \leq \sum_{k=1}^{n} \left \frac{\frac{k}{n}}{\frac{k-1}{n}} \left f'(x) \right \left x - \frac{k-1}{n} \right dx $	1	1
	$\begin{cases} \sum_{k=1}^{n} $	1	
	$= \frac{n}{k-1} \times \left(\frac{1}{2} \left(x - \frac{k-1}{n} \right)^2 \right) \frac{\frac{k}{n}}{\frac{k-1}{n}}$		
		5	

RESTRICTED 内部文件

	Solucions	Marks	Remarks
7			
. (c)			. :
	$\begin{cases} \frac{1}{k} & \left\{ \xi(\frac{n}{k}) - f(x) \right\} dx = \begin{cases} \frac{1}{k} & f'(x) \left(x - \frac{n}{k-1} \right) dx & \text{by (a)} \end{cases}$	1 -	
	$= \tilde{\epsilon}'(\xi_{\lambda}) \begin{cases} \frac{k}{a} (x - \frac{k-1}{a}) dx \end{cases}$		
	$\left(\frac{\lambda_{k}}{\lambda_{k}}\right)\frac{k-1}{n}$		
	for some $\frac{2}{k} \in \left\{ \frac{k-1}{n}, \frac{k}{n} \right\}$ by Einc with $h(x) = x - \frac{k-1}{n} \ge 0$	k I	
	•	1	•
	on $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ and $f'(x)$, $h(x)$ are continuous.	•	
-	= $\varepsilon'(\xi_k)(\frac{1}{2}(x-\frac{k-1}{n})^2)^{\frac{n}{n}}$		
	1		
	$=\frac{f'(\xi_k)}{2n^2}$	1	
	$ \Xi_{n} = \sum_{k=1}^{n} \left\{ \frac{\frac{k}{n}}{\frac{k-1}{n}} \left[f\left(\frac{k}{n}\right) - f(x) \right] dx \right. $		•
	$\frac{n}{n}$ k-1 $\int \frac{x-1}{n}$,
	$= \sum_{k=1}^{n} f'(\frac{x}{2k}) \frac{1}{2n^2} \text{ where } \frac{x}{2k} \in \left[\frac{k-1}{n}, \frac{k}{n}\right]'$	1	
	k=1		
	$\lim_{n\to\infty} \mathbb{E}_{\alpha} = \lim_{n\to\infty} \frac{1}{2} \sum_{k=1}^{n} f'(\frac{1}{2}k) \frac{1}{\alpha}$		
	nee a nee 2 k=1		
	$1 = \frac{1}{2} \cdot (k + 1)$	1	
	$=\lim_{n\to\infty}\frac{1}{2}\sum_{k=1}^{n}z^{*}\left(\frac{x}{2k}\right)\left(\frac{k}{n}-\frac{k-1}{n}\right)$		
	, (1	_1 7	
	$= \frac{1}{2} \int_{0}^{1} f'(x) dx \text{by definition of definite integr}$	-	: 1
	$-\frac{1}{2} \left[\bar{\epsilon}(1) - \bar{\epsilon}(0) \right]$	\ <u>.</u>	_
	2 (3,5)	8	-
	•		
		!	
		1	

RESTRICTED 內部文件

RESTRICTED 内部文	. [T	P.13
Solucions	Marks	Remarks
2. (a) Let 3 be any point on ℓ with position vector $\vec{r} = \vec{r}_0 + \vec{r}_0$	τε	<u> </u>
and let R' be the projection of R on \mathfrak{T} .		,
The unit vector normal to $\overline{\pi}$ is $\frac{1}{\sqrt{\pi \cdot \pi}} \overline{\pi}$.	1	Noce.
The vector $\overline{R'R}$ is given by $[(\overline{r} - \overline{r}_0) \cdot \frac{1}{\overline{n} \cdot \overline{n}} \overline{n}] \overline{n}$	2	Candidaces may
the vector $\overline{R_0 \mathbb{R}^2}$ is given by		use coordinate
$(\vec{r} - \vec{r}_0) - [(\vec{r} - \vec{r}_0), \frac{1}{3 \cdot 3}, \hat{n}] \hat{d}$	1	
= cā - c = - 1 = - 1	1	
caquaction of the projection of lon wis		
$\vec{z} = \vec{r}_0 + c(\vec{z} - \frac{\vec{a} \cdot \vec{n}}{n \cdot n} \vec{a}), c \in R$	11	
(5) (6) Promotion in the Community of the	<u> </u>	
(5) (i) Putting $x = -1 - 2\epsilon$, $y = 3 - 3\epsilon$, $z = 1 + \epsilon$ in π_1 $4(-1 - 2\epsilon) + (3 + 3\epsilon) - 2(1 + \epsilon) - 4 = 0$	•	
•		
$c = -1$ $P_1 = (1, 0, 0)$		
Similarly, from 1, and W, ,	1	
$4(2-8t) \div 19t - 2(2+4t) - 4 = 0$		
-> = 0		
$P_{2} = (2, 0, 2)$		
$\frac{2}{P_1P_2} = \frac{1}{2} \div 2\overline{k}$	1	
	1	
The directions of $\frac{1}{1}$ and $\frac{1}{2}$ are given by the vec $-2\vec{1} + 3\vec{1} + \vec{k}$ and $-8\vec{1} + 19\vec{1} + 4\vec{k}$ respectively	1	
$(\vec{1} + 2\vec{k}) \cdot (-2\vec{1} + 3\vec{j} + \vec{k}) = 0$	· 1	
and $(1 \div 2\vec{k}) \cdot (-3\vec{1} + 19\vec{1} + 4\vec{k}) = 0$		
the line segment $\mathbb{F}_1\mathbb{F}_2$ is perpendicular to J_1 and $J_1: \mathbb{F}=(-\overline{1}+3\overline{j}+\overline{k})+\varepsilon(-2\overline{1}+3\overline{j}+\overline{k})$	2: 1	
$S_{\frac{1}{2}} : \vec{x} = (2\vec{1} + 3\vec{1} + k) + c(-3\vec{1} + 19\vec{1} + 4\vec{k})$		
37 (a), sec $\frac{1}{2}$ = $\frac{1}{2}$, $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$ + $\frac{1}{2}$, $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$.	Í
$2, (1), = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}$		
$\frac{2}{1}$: $\frac{1}{1} + \frac{1}{5} \left(-2\frac{1}{1} + 3\frac{1}{3} + \frac{1}{5} \right) = \frac{1}{3} \left(2\frac{1}{1} + \frac{1}{3} - 3\frac{1}{1} \right)$	į	
$\frac{21 + \frac{1}{3}c(-21 + 10) + 2c}{5}$ Similarly, $2\frac{1}{3}c(-21 + 2k + 2c(-21 + 10) + k)$		-
· · · · · · · · · · · · · · · · · · ·	1	
Rence, 11' // 12'	9	

	Sciutions	1	2.14
	(4) d (g(x) =0x) -0x -bx -bx	Marks	Remarks
	(1) $\frac{d}{dx} [G(x)e^{-bx}] - G'(x)e^{-bx} - bG(x)e^{-bx}$	1	
•	$\leq (a + bG(x))e^{-bx} - bG(x)e^{-bx}$!	
	(as e ^{-bx} > 0)		1 4
	$= ae^{-bx} \forall x > 0$	1	
	(ii) As G(x) is continuously differentiable, for every		·
	$x > 0$, $\int_0^x \frac{d}{dt} \left[G(t) e^{-bt} \right] dt \le \int_0^x a e^{-bt} dt$	1	
	$G(x)e^{-bx} - G(0) \le -\frac{a}{b}(e^{-bx} - 1)$	1	•
	:. $G(\pi) \le G(0)e^{bx} + \frac{a}{b}(e^{bx} - 1)$ (as $e^{-bx} > 0$)	<u>l</u>	
(b)	(1) As $f(x) = f(0) + \int_0^x f'(c)dc$.	1	;
	$ f(x) \le f(0) + \left \int_{x}^{x} f'(t)dt\right $	I	
	< f(0) + " f'(E)de		
	$ \leq f(0) + H \int_0^{\infty} f(t) dt \text{for } x \geq 0 $. 1	
	$(11) \frac{d}{dx} \int_0^x f(z) dz - f(x) \dots - \dots$		<u></u>
	$\leq f(0) + H \int_{0}^{\infty} f(z) dz$	1	
	We see that the function $\int_{0}^{\infty} f(z) dz \text{ satisfies}$		
• .	the conditions for $C(x)$ in (a) with $a = f(0) $ and $b = H > 0$.		•
_	CF In the Mr. Co		
	$\int_0^{\infty} f(z) dz \le e^{\frac{M\pi}{2}} \int_0^{c} f(z) dz + \frac{ f(0) }{H} (e^{\frac{M\pi}{2}} - 1)$	1	
	$H \int_{0}^{\infty} f(z) dz + f(0) \leq f(0) e^{Mx}$	- ,	
	1.e. \(\frac{1}{2} \) \(\f	,	•
(c)	As h'(x) = sin(h(x))	5	
	$\leq h(x) \forall x > 0$	1	
	Condicions in (b) are satisfied with M - 1.	1	
	h(x) \(h(0) e^{x} \)	ı	
	-0 = x > 0	1	-
	DECEDIC	4	
,	RESTRICTED 內部文件		