

Sistemas de Processamento Digital de Sinais Problems about FIR & IIR filters

I — Check only one answer. The penalty for a wrong answer is \(\frac{1}{4} \) point. 1) When designing FIR filters with the non-recursive frequency sampling method, transition samples are used to: □ precisely control the filter cutoff frequencies. \square decrease the attenuation in the stopband. \square increase the transition bandwidth. \square decrease the ripple in the passband. 2) A FIR digital filter designed with the non-recursive frequency sampling method: \square cannot be lowpass. \square cannot be highpass. \square cannot have linear phase. \square is always stable. 3) A FIR filter with an even number of coefficients: \square cannot be lowpass. \square cannot be highpass. \square cannot have linear phase. \square can be passband. 4) In the impulse response invariance method (design of IIR filters): \square a stable analog prototype filter always originates a stable digital filter. □ the frequency response of the digital filter is equal to the frequency response of the analog filter. \square the DC gain of the digital filter is always the same of the analog filter. \square the analog frequency band $(0,\infty)$ is mapped into the digital frequency band $(0,\omega_s/2)$. 5) When designing FIR digital filters, coefficient windows are used to: □ precisely control the filter cutoff frequencies. \square increase the attenuation in the stopband relative to the passband. \square increase the transition band. \square increase the ripple in the passband. 6) When designing IIR digital filters using the bilinear transformation method: \square high-pass filters cannot be designed.

 \square there is no frequency warping effect.

 \square an unstable analogue prototype filter may originate a stable digital filter.

 \square the analog frequency band $(0,\infty)$ is mapped into the digital frequency band $(0,\omega_s/2)$.

II — Consider the design of a FIR linear phase, high-pass ideal unit-gain filter using the Fourier series development method with N=9 coefficients. The cutoff frequency is $f_c=2$ kHz and the sampling frequency is $f_s=\frac{1}{T}=10$ kHz.

- a) Explain what kind of symmetry is expected for the filter coefficients. Compute the filter coefficients.
- b) Determine the fixed-point arithmetic format that should be used to represent the filter output if the input samples are represented in Q_{11} . Justify.
- c) Sketch approximately and qualitatively (for $0 \le f \le f_s$) the amplitude frequency response of the filter and of the same filter if a Hanning window was applied to the coefficients. Justify and explain the advantages and disadvantages of using windows with progressive decay.

Window	Transition width	Passband ripple	Relative attenuation
Rectangular	$0.9 f_s/N$	0.74 dB	13 dB
Hanning	$3.1 f_s/N$	0.05 dB	31 dB

III — Consider a DSP system operating with a sampling frequency $f_s = \frac{1}{T_\circ} = 10 \text{ kHz}$.

- a) Design an IIR filter from an analog filter with transfer function $H(s) = 40 \frac{s+10}{s^2+40s+400}$ using the matched Z transform method (MZT) and keeping the DC gain.
- b) Write the difference equation and the signal flow diagram of the filter in direct form II.
- c) Consider the bilinear method of IIR filter design. Explain the differences, advantages and disadvantages of this method with respect to the MZT method.

- a) Design the filter determining its frequency response H(z).
- b) Determine the gain of the digital filter for f = 0 and $f = f_s / 2$.
- c) Sketch the magnitude of the frequency response of the analog and the digital filters for $0 \le f \le f_s$ (make use of the values from previous question). Explain the differences between the two responses.