Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories

after Hassett, Addington-Thomas, Beauville, Donagi, Voisin, Galkin-Shinder, ...

- **1** $X \subset \mathbb{P}^5$ smooth cubic hypersurface,
- ② $\mathcal{A}_X \subset \mathrm{D^b}(X)$ Kuznetsov category,
- F(X) Fano variety of lines,
- S K3 surface.

Goal: Study and relate $H^*(S)$, $\widetilde{H}(A_X)$, $H^4(X)$, $H^2(F(X))$.

Various aspects: Lattices, \mathbb{Q} - and \mathbb{Z} -Hodge structures,...

Plan:

- Lattice theory
- Period domains and moduli spaces
- Rational Hodge structures
- 4 Hodge theory for A_X

Lattice theory

Lattices for cubics $X \subset \mathbb{P}^5$:

$$\widetilde{\Gamma} := H^4(X,\mathbb{Z})(-1); \ \Gamma := H^4(X,\mathbb{Z})_{\mathrm{pr}}(-1); \ K_d \subset \widetilde{\Gamma}.$$

Lattices for K3 surfaces S:

$$\widetilde{\Lambda} := H^*(S, \mathbb{Z}); \ \Lambda := H^2(S, \mathbb{Z}); \ L_d \subset \widetilde{\Lambda}.$$

General lattice theory:

$$(N \simeq \mathbb{Z}^{\oplus r}, (.))$$

with (.) symmetric, \mathbb{Z} -valued, usually non-degenerate, often even (i.e. $(x)^2 = (x.x) \equiv 0$ (2)).

$$\rightsquigarrow \operatorname{disc}(N) := |\det(.)| \text{ and } (n_+, n_-) := \operatorname{sign}(.).$$

Discriminant: $A_N := N^*/N$, finite group $|A_N| = \operatorname{disc}(N)$:

$$N \hookrightarrow N^*, x \mapsto (x.).$$

$$()^2: N \longrightarrow \mathbb{Z} \rightsquigarrow ()^2: N^* \longrightarrow \mathbb{Q} \rightsquigarrow ()^2: A_N \longrightarrow \mathbb{Q}/\mathbb{Z}$$

For even (.) it lifts to

$$q = ()^2 := A_N \longrightarrow \mathbb{Q}/2\mathbb{Z}.$$

Standard examples:

- $\begin{array}{l} \bullet \ \, I_{n_+,n_-} = \mathbb{Z}^{\oplus n_+ + n_-} \ \& \ \mathrm{diag}(+1,\ldots,+1,-1,\ldots,-1), \\ \simeq \mathbb{Z}^{\oplus n_+} \oplus \mathbb{Z}(-1)^{\oplus n_-}, \ \mathrm{disc} = (-1)^{n_-}, \ \mathrm{sign} = (n_+,n_-). \end{array}$
- $A_2 = \mathbb{Z}\lambda_1 \oplus \mathbb{Z}\lambda_2 \& \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \text{ disc} = 3, \text{ sign} = (2, 0),$ $q: A_{A_2} \simeq \mathbb{Z}/3\mathbb{Z}^* \longrightarrow \mathbb{Q}/2\mathbb{Z}, \ \lambda_1^* = \bar{1}, \lambda_2^* = \bar{2} \longmapsto (2/3).$

$$A_2\simeq (1,1,1)^{\perp}\subset \mathrm{I}_{3,0}$$

with basis $\lambda_1 = (1, -1, 0)$ and $\lambda_2 = (0, 1, -1)$.

• E_8 =unique unimodular, even lattice of signature (8,0). Let

$$E := E_8(-1)^{\oplus 2}$$
 (or just forget).

Standard results:

- ② $N_1 \hookrightarrow N$: $\operatorname{disc}(N_1) \cdot \operatorname{disc}(N_1^{\perp}) = \operatorname{disc}(N) \cdot [N : N_1 \oplus N_1^{\perp}]^2$. N unimodular $\Rightarrow A_{N_1} \simeq A_{N_1^{\perp}}$.
- 3 N even, unimodular, $n_{\pm} > 0$: $N \simeq E_8(\pm 1)^{\oplus a} \oplus U^{\oplus b}$.
- N odd, unimodular, $n_{\pm} > 0$: $N \simeq I_{n_+,n_-}$.
- **3** N even, unimodular, $1 < n_{\pm}$: Primitive $\ell \in N$ with given $(\ell)^2$ is unique up to O(N).
- **1** $N = N' \oplus U^{\oplus 2}$ even: Primitive $\ell \in N$ with given $(\ell)^2$ and $(1/n)\ell \in A_N$, $(\ell.N) = n\mathbb{Z}$, is unique up to O(N). (Eichler).

K3 lattice: $\Lambda := H^2(S, \mathbb{Z})$ is even, unimodular, sign(3, 19). Hence,

$$\rightarrow$$
 $\Lambda \simeq E \oplus U^{\oplus 3} = E \oplus U_1 \oplus U_2 \oplus U_3$.

Polarized K3 lattice: $\Lambda_d := (e_2 + (d/2)f_2)^{\perp} \subset \Lambda$ is even, $\operatorname{sign}(2,19)$.:

$$\Lambda_d \simeq E \oplus U_1 \oplus U_3 \oplus \mathbb{Z}(-d).$$

Mukai lattice: $\widetilde{\Lambda} := \widetilde{H}(S, \mathbb{Z})$ is even, unimodular, $\operatorname{sign} = (4, 20)$. Hence,

$$ightsquigarrow \widetilde{\Lambda} \simeq E \oplus U^{\oplus 4} = E \oplus U_1 \oplus U_2 \oplus U_3 \oplus U_4.$$

Convention: $U_4 = \mathbb{Z}e_4 \oplus \mathbb{Z}f_4 \& \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$. Then

$$U_4 \simeq (H^0 \oplus H^4)(S, \mathbb{Z})$$

with Mukai pairing and $e_4 \mapsto [S] \in H^0$, $f_4 \mapsto [pt] \in H^4$.

Cubic lattice: $\widetilde{\Gamma}:=H^4(X,\mathbb{Z})(-1)$ is odd, unimodular, $\mathrm{sign}=(2,21)$,

$$ightsquigarrow \widetilde{\Gamma} \simeq E \oplus U_1 \oplus U_2 \oplus \mathbb{Z}(-1)^{\oplus 3}.$$

Primitive cubic lattice: $\Gamma := H^4(X, \mathbb{Z})_{\mathrm{pr}}(-1)$ even, $\mathrm{sign} = (2, 20), \ \mathrm{disc} = 3, \ h := [H^2] \in H^4(X, \mathbb{Z})(-1)$ is

$$h = (-1, -1, -1) \in \mathbb{Z}(-1)^{\oplus 3}.$$

$$ightharpoonup \Gamma \simeq E \oplus U_1 \oplus U_2 \oplus A_2(-1).$$

Hassett: Via $H^4(X,\mathbb{Z})_{\mathrm{pr}}(-1) \simeq H^2(F(X),\mathbb{Z})_{\mathrm{pr}}$ [Beau-Don]. Beauville: Characteristic vectors in unimodular lattices [Wall].

Explicit embedding:
$$A_2 \hookrightarrow \widetilde{\Lambda}$$
, $\lambda_1 \mapsto e_4 - f_4 \ (= v(\mathcal{I}_{x,y}))$, $\lambda_2 \mapsto e_3 + f_3 + f_4$

Then

$$A_2^{\perp}=E\oplus U_1\oplus U_2\oplus A_2(-1),$$

with
$$A_2(-1)=\mathbb{Z}\mu_1\oplus\mathbb{Z}\mu_2$$
 & $egin{pmatrix} -2&1\1&-2 \end{pmatrix}$ and

$$\mu_1 = e_3 - f_3, \ \mu_2 = -e_3 - e_4 - f_4.$$

Explicit embedding: $A_2 \hookrightarrow \widetilde{\Lambda}$, $\lambda_1 \mapsto e_4 - f_4$, $\lambda_2 \mapsto e_3 + f_3 + f_4$. Then

$$A_2^{\perp} = E \oplus U_1 \oplus U_2 \oplus A_2(-1),$$

with
$$A_2(-1)=\mathbb{Z}\mu_1\oplus\mathbb{Z}\mu_2$$
 & $\begin{pmatrix} -2&1\1&-2 \end{pmatrix}$ and

$$\mu_1 = e_3 - f_3, \ \mu_2 = -e_3 - e_4 - f_4.$$

Then $A_2 \oplus A_2^{\perp} \subset \widetilde{\Lambda}$ is of index 3

Corollary

$$\bullet \ \widetilde{\Gamma} \supset \Gamma \simeq A_2^{\perp} \subset \widetilde{\Lambda},$$

$$2 \lambda_1^{\perp} \simeq \Lambda \oplus \mathbb{Z}(e_4 + f_4) \subset \widetilde{\Lambda}.$$

$$(\simeq H^2(S^{[2]},\mathbb{Z}))$$

Consider $v \in \Gamma \simeq A_2^{\perp} \subset \widetilde{\Lambda}$ primitive with $(v)^2 < 0$. Saturations:

$$\begin{array}{ll} L_v &:= \overline{A_2 \oplus \mathbb{Z} v} \subset \widetilde{\Lambda} & \mathrm{sign} = (2,1) \\ K_v &:= \overline{\mathbb{Z} h \oplus \mathbb{Z} v} \subset \widetilde{\Gamma} & \mathrm{sign} = (0,2). \end{array}$$

$$\begin{array}{ccccc} L_{v}^{\perp} & \subset & A_{2}^{\perp} & \subset & \widetilde{\Lambda} \\ | \wr & & | \wr & & \\ \mathcal{K}_{v}^{\perp} & \subset & \Gamma & \subset & \widetilde{\Gamma}. \end{array}$$

- ② $\mathbb{Z}h \oplus \mathbb{Z}v \subset K_v \subset (1/3)\mathbb{Z}h \oplus (1/3)\mathbb{Z}v$ (use $(h)^2 = -3$). Hence, $[K_v : \mathbb{Z}h \oplus \mathbb{Z}v] = 1$ or 3.

•
$$K_v = \mathbb{Z}h \oplus \mathbb{Z}x \& \begin{pmatrix} -3 & a \\ a & b \end{pmatrix}$$
. Hence, $\operatorname{disc}(K_v) \equiv 0, 2, 5$ (6).

- ② $\mathbb{Z}h \oplus \mathbb{Z}v \subset K_v \subset (1/3)\mathbb{Z}h \oplus (1/3)\mathbb{Z}v$ (use $(h)^2 = -3$). Hence, $[K_v : \mathbb{Z}h \oplus \mathbb{Z}v] = 1$ or 3.

If
$$[K_v : \mathbb{Z}h \oplus \mathbb{Z}v] = 1$$
, then $\operatorname{disc}(K_v) = -3(v)^2 \equiv 0$ (6).
If $[K_v : \mathbb{Z}h \oplus \mathbb{Z}v] = 3$, then $3\operatorname{disc}(K_v) = -(v)^2 \equiv 0, 2, 4$ (6).

$$\Rightarrow d := \operatorname{disc}(K_{\nu}) \equiv 0, 2 (6).$$
 (H)

Note: $d \equiv 0$ (6) $\Rightarrow [K_v : \mathbb{Z}h \oplus \mathbb{Z}v] = 1$.

- $-(v := sh + tx.h) = 0 \Rightarrow v = \lambda(ah + 3x).$
- ν primitive $\Rightarrow \lambda = \pm 1, \pm (1/3)$.
- $-d \equiv 0$ (6) $\Rightarrow a \equiv 0$ (3) $\Rightarrow \pm v = h + x$ and $3(v)^2 = -d$.

$$d \equiv 0 (6)$$
 \Rightarrow $(v)^2 = -d/3 \equiv 0 \text{ or } 2 (6)$
 $d \equiv 2 (6)$ \Rightarrow $(v)^2 = -3d \equiv 0 (6).$

$$(v)^2 \equiv 2,4(6)$$
 \Rightarrow $d \equiv 0(6)$
 $(v)^2 \equiv 0(6)$ \Rightarrow $d \equiv 0 \text{ or } 2(6)$

$$d\equiv 0$$
 (6). Let $v_d:=e_1-(d/6)f_1\in U_1\subset \Gamma\simeq A_2^\perp.$ \leadsto $L_d:=L_{v_d}\subset\widetilde{\Lambda}$ and $K_d:=K_{v_d}\subset\widetilde{\Gamma}.$ $(v_d)^2=-d/3.$

 $-A_2 \subset U_3 \oplus U_4$ and $v_d \in U_1 \Rightarrow A_2 \oplus \mathbb{Z} v_d \subset \widetilde{\Lambda}$ is saturated.

$$\Rightarrow$$
 disc (L_d) = disc $(A_2 \oplus \mathbb{Z}v_d) = -3(v_d)^2 = d$.

 $-h \in \mathbb{Z}(-1)^{\oplus 3}$ and $v_d \in U_1 \Rightarrow K_d = \mathbb{Z}h \oplus \mathbb{Z}v_d$ (or directly $\operatorname{disc}(K_d) = \operatorname{disc}(L_d)$).

$$L_d^{\perp} \simeq K_d^{\perp} \simeq E \oplus U_2 \oplus A_2(-1) \oplus \mathbb{Z}(e_1 + (d/6)f_1).$$

$$d\equiv 2$$
 (6). Let $v_d:=3(e_1-\frac{d-2}{6}f_1)+\mu_1-\mu_2\in U_1\oplus A_2(-1).$ \leadsto $L_d:=L_{v_d}\subset\widetilde{\Lambda} \text{ and } K_d:=K_{v_d}\subset\widetilde{\Gamma}.$ $(v_d)^2=-3d.$

Recall

$$\lambda_1 = e_4 - f_4, \ \lambda_2 = e_3 + f_3 + f_4, \ \mu_1 = e_3 - f_3, \ \mu_2 = -e_3 - e_4 - f_4.$$
 Check $v_d - \lambda_1 + \lambda_2$ divisible by 3. $\Rightarrow [L_d : A_2 \oplus \mathbb{Z}v] = 3$

$$\Rightarrow \operatorname{disc}(L_d) = -d.$$

$$L_d^{\perp} \simeq K_d^{\perp} \simeq E \oplus U_2 \oplus B.$$

with sign(B) = (1, 2).

Proposition (Hassett-Nikulin)

All L_v , K_v are of the form L_d , K_d up to $\tilde{O}(\Gamma)$ -action.

Proof:

Apply Eichler criterion to $v \in \Gamma = E \oplus U_1 \oplus U_2 \oplus A_2(-1)$.

$$(v)^2\equiv 2,4\,(6)\Rightarrow (v.\Gamma)=\mathbb{Z}$$
, i.e. $n=1$, and $v=0\in A_\Gamma\simeq \mathbb{Z}/3\mathbb{Z}$

 \Rightarrow one choice for $O(\Gamma)v$.

$$(v)^2 \equiv 0 (6) \Rightarrow 2$$
 cases:

(i)
$$n = 1 \& v = 0$$
 in $A_{\Gamma} \simeq \mathbb{Z}/3\mathbb{Z}$,

(ii)
$$n = 3 \& (1/3)v = \pm 1 \text{ in } A_{\Gamma} \simeq \mathbb{Z}/3\mathbb{Z}.$$

$$\begin{array}{ll} (\mathrm{H}) & = (*) & A_2 \oplus \mathbb{Z} v_d \subset L_d \subset \widetilde{\Lambda} \text{ and } \mathbb{Z} h \oplus \mathbb{Z} v_d \subset K_d \subset \widetilde{\Gamma}, \\ \\ (\mathrm{K3'}) & = (**') & \exists \quad U(n) \hookrightarrow L_d, \\ \\ (\mathrm{K3}) & = (**) & \exists \quad U \hookrightarrow L_d \iff K_d^{\perp} \simeq L_d^{\perp} \simeq \Lambda_d, \\ \\ (\mathrm{K3}^{[2]}) & = (***) & \exists \quad U \hookrightarrow L_d \text{ with } \lambda_1 \in U. \end{array}$$

$$(K3^{[2]}) \Rightarrow (K3) \Rightarrow (K3') \Rightarrow (H).$$

Write $(H)_0$ and $(H)_2$ for $d \equiv 0$ (6) resp. $d \equiv 2$ (6). Similarly, $(K3)_0$ and $(K3)_2$, etc.

(H)
$$= (*)$$
 $\Leftrightarrow d \equiv 0, 2 (6),$
(K3') $= (**')$ $\Leftrightarrow \exists w \in A_2 \colon (w)^2 = d,$
 $\Leftrightarrow \frac{d}{2} = \prod p^{n_p} \text{ with } n_p \equiv 0 (2) \ \forall p \equiv 2 (3),$
(K3) $= (**)$ $\Leftrightarrow \exists \text{ primitive } w \in A_2 \colon (w)^2 = d,$
 $\Leftrightarrow \frac{d}{2} = \prod p^{n_p} \text{ with } n_p = 0 \ \forall p \equiv 2 (3) \text{ and } n_3 \leq 1,$
 $\Leftrightarrow d = \frac{2n^2 + 2n + 2}{a}, \ a, n \in \mathbb{Z},$
(K3^[2]) $= (***)$ $\Leftrightarrow d = \frac{2n^2 + 2n + 2}{a^2}, \ a, n \in \mathbb{Z}.$
(K3^[2]) \Rightarrow (K3) \Rightarrow (K3') \Rightarrow (H).

$(K3^{[2]})$			14				26				38	42
(K3)			14				26				38	42
(K3')	8		14	18		24	26		32		38	42
(H)	8	12	14	18	20	24	26	30	32	36	38	42

$(K3^{[2]})$							62					
(K3)							62				74	78
(K3')			50				62		68		74	78
(H)	44	48	50	54	56	60	62	66	68	72	74	78