

密码学

第十三讲 HASH函数

张焕国

武汉大学计算机学院空天信息安全与可信计算教育部重点实验室

内容简介

第一讲 信息安全概论 第二讲 密码学的基本概念 第三讲 数据加密标准(DES) 第四讲 高级数据加密标准(AES) 第五讲 中国商用密码(SMS4) 第六讲 分组密码的应用技术 第七讲 序列密码 第八讲 复习 第九讲 公钥密码(1)

内容简介

第十讲 公钥密码 (2)

第十一讲 数字签名(1)

第十二讲 数字签名(2)

第十三讲 HASH函数

第十四讲 认证

第十五讲 密码协议

第十六讲 密钥管理(1)

第十七讲 密钥管理(2)

第十八讲 复习

教材与主要参考书

教材

参考书

- 1、Hash函数的作用
- Hash码也称报文摘要。
- 具有极强的错误检测能力:输入有很小的不同,输出 将有很大的不同!
- ●用Hash码作消息认证码(MAC),可用于认证。
- ●用Hash码可以辅助数字签名。
- Hash函数还可辅助用于保密。

2、Hash函数的定义

- ① Hash函数将任意长的数据M变换为定长的码h,记为:h=Hash (M)或 h=H(M)。
- 一般,h的长度小于M的长度,因此HASH函数是一种压缩变换。
- ②实用性:对于给定的数据M,计算h=Hash(M)是高效的。
- ③安全性:
- 单向性: 对给定的Hash值h,找到满足H(x)=h的x在计算上是不可行的。

设h码为n位长,且Hash函数的输出值是等概分布的,那么任意输入数据x产生的H(x)恰好为h的概率是1/2n。因此穷举攻击对于单向性求解的时间复杂度为O(2n)。

2、Hash函数的定义

③安全性:

- 抗弱碰撞性:对任何给定的x,找到满足 $y\neq x$ 且H(x)=H(y)的y在计算上是不可行的。
 - 否则,攻击者可以截获报文M及其H(M),并找出另一报文M'使得H(M')=H(M)。这样攻击者可用M'去冒充M,而收方不能发现。
 - 抗弱碰撞又称为抗求第二原像。
 - 从穷举分析的角度求解弱碰撞问题的难度等价于求解单向性的难度, 时间复杂度为O(2ⁿ)。
- 抗强碰撞性: 找到任何满足 $\mathbf{H}(x)=\mathbf{H}(y)$ 的偶对(x,y)在计算上是不可行的。
 - 平均需要尝试超过2n/2个数据就能产生一个碰撞, 复杂度O(2n/2)。

- 3、安全Hash函数处理数据的一般模型
- Merkle提出了用Hash函数处理数据M,的一般模型。

b位分组,f为压缩函数,L轮链接迭代,n位输出。

- 3、安全Hash函数处理数据的一般模型
- \bullet 分组:将输入M分为L-1个大小为b位的分组。
- 填充: 若第L-1个分组不足b位,则将其填充为b位。
- 附加: 再附加上一个输入的总长度。
- 填充和附加之后,共L个大小为b位的分组。
- ●由于输入中包含长度,所以攻击者必须找出具有相同Hash值且长度相等的两条报文,或者找出两条长度不等但加入报文长度后Hash值相同的报文,从而增加了攻击的难度。
- ●目前大多数Hash函数均采用这种数据处理模型。

1、SHA系列Hash函数

- SHA系列Hash函数是由美国标准与技术研究所(NIST)设计的。
- 1993年公布了SHA-0(FIPS PUB 180),后来发现它不安全。
- 1995年又公布了SHA-1 (FIPS PUB 180-1)。
- 2002年又公布了SHA-2(FIPS PUB 180-2)。 SHA-2包括3个Hash函数: SHA-256, SHA-384, SHA-512
- 2005年王小云给出一种攻击SHA-1的方法,用2⁶⁹操作找到一个强碰撞,以前认为是2⁸⁰。
- NIST于2007年公开征集SHA-3,并将于今年公布SHA-3。

1、SHA系列Hash函数

- SHA-1 是在MD5 的基础上发展起来的。它采用 Merkle提出了安全Hash模型。已被美国政府和许多 国际组织采纳作为标准。
- SHA-1的输入为长度小于2⁶⁴位的报文,输出为160 位的报文摘要,该算法对输入按512位进行分组, 并以分组为单位进行链接压缩处理。

- 2、SHA-1的结构
- 采用了Merkle提出了安全Hash模型

- 3、运算算法
- (1)输入填充
- 目的是使填充后的报文长度满足:

长度 = 448 mod 512。

- ①填充方法是在报文后附加一个1和若干个0。
- ②然后附上表示填充前报文长度的64位数据(最高有效位在前)。
- 若报文本身已经满足上述长度要求,仍然需要进行填充(例如,若报文长度为448位,则仍需要填充512位使其长度为960位),因此填充位数在1到512之间。
- 经过填充和附加后,数据的长度为512位的整数倍。

3、运算算法

(2)初始化缓冲区

- 缓冲区由5个32位的寄存器(A,B,C,D,E)组成,用于保存160位的中间结果和最终结果。
- 将寄存器初始化为下列32位的整数:

A: 67452301 B: EFCDAB89

C: 98BADCFE D: 10325476

E: C3D2E1F0

注意: 高有效位存于低地址。

- 3、运算算法
- (3)主处理
- 主处理是SHA-1 HASH函数的核心。
- 每次处理一个512位的分组,链接迭代处理所有L个 分组数。

3、运算算法

(3)主处理

- 压缩函数是主处理的核心。
- 它由四层运算(每层迭代20步)组成,四层的运算结构相 同。
- 每轮的输入是当前要处理的512位的分组BLK和160位缓冲区 ABCDE的内容,每轮都对ABCDE的内容更新,而且每轮使用的逻辑函数不同,分别为 f_1 , f_2 , f_3 和 f_4 。
- 第四轮的输出与第一轮的输入相加得到压缩函数的输出。

BLK_i(512位)

3、运算算法

(4)输出

● 所有的L个512位的分组处理完后,第L个分组的输出即是160位的报文摘要。

3、运算算法

(5)归纳

● $CV_0 = IV$ (ABCDE的初值)

$$\begin{array}{c} \bullet & CV_{i+1}(0) = CV_{i}(0) + A_{i} \\ CV_{i+1}(1) = CV_{i}(1) + B_{i} & 0 \leq i \leq L-1 \\ CV_{i+1}(2) = CV_{i}(2) + C_{i} & 其中+ 为 模2^{32}加法 \\ CV_{i+1}(3) = CV_{i}(3) + D_{i} \\ CV_{i+1}(4) = CV_{i}(4) + E_{i} \end{array}$$

 \bullet h = CV_L

- 3、运算算法
- (6)压缩函数

缺点:

- 输出**B**=输入A
- 输出D=输入C
- 输出E=输入D
- A、C、D没有运算

武漢大学

- 3、运算算法
- (6)压缩函数
- 每轮对A,B,C,D,E进行20次迭代,四轮共80次迭代。 t为迭代次数编号,所以 0≤t≤79。
- 其中, $f_t(B,C,D) = 第t步使用的基本逻辑函数;$
 - ■<<s 表示 32位的变量循环左移s位
 - ■W₁表示从当前分组BLK导出的32位的字
 - ■K_t表示加法常量,共使用4个不同的加法常量
 - +为 模232加法

- 3、运算算法
- (6)压缩函数
- 逻辑函数f_t

每轮使用一个逻辑函数,其输入均为B,C,D(每个32位),输出为一个32位的字。定义分别为:

第一轮 $0 \le t \le 19$ $f_1 = f_t(B,C,D) = (B \land C) \lor (\neg B \land D)$

第二轮20 \leq t \leq 39 $f_2=f_t(B,C,D)=B\oplus C\oplus D$

第三轮 $40 \le t \le 59$ $f_3 = f_t(B,C,D) = (B \land C) \lor (B \land D) \lor (C \land D)$

第三轮60≤t≤79 f₄=f_t(B,C,D)=B⊕C⊕D

● 缺点: f₂和f₄都是线性函数。

- 3、运算算法
- (6)压缩函数
- 加法常量 K_t 毎层使用一个加法常量。
- 各轮中使用的加法常量:

第一轮 K_t 0 \le t \le 19 5A827999 第二轮 K_t 20 \le t \le 39 6ED9EBA1 第三轮 K_t 40 \le t \le 59 8F1BBCDC 第四轮 K_t 60 \le t \le 79 CA62C1D6

● 缺点: 压缩字K_t的作用范围太小,只影响输出A,不影响 B、C、D、E。

武漢大学

- 3、运算算法
- (6)压缩函数
- 压缩字W_t

每步迭代使用从512位的报文分组BLK导出的一个32位的字 W_t 。因共有80步迭代,所以共需要80个32位字 W_t (0 \leq t \leq 79)。

- 将BLK 划分为16个32位的字(M₀至M₁₅),再扩展为80个32位的字(M₀至M₇₉)。
 - ■扩展过程为:

若0≤t≤15 ,则W_t = M_t 若16≤t≤79 ,则W_t = (W_{t-16}⊕ W_{t-14}⊕ W_{t-8}⊕ W_{t-3})<<1

- ●前16步迭代中W_t的值等于报文分组的第t 个字,其余64步迭代中W_t等于前面四个 W_t值异或后循环左移一位的结果。
- ●缺点:
 - ■压缩字的扩展函数是线性函数
 - ■压缩字W_t的作用范围太小,只影响输出A,不影响B、C、D、E。

注意:

- SHA-1是美国及许多国际组织的标准。
- 美国NIST已经制定出SHA-3。
- 我国政府公布了自己的HASH函数SM3。

- 1、SHA-2的概况
- 2002年公布了SHA-2(FIPS PUB 180-2)。 SHA-2包括3个Hash函数: SHA-256, SHA-384, SHA-512
- ●目的:
 - ■与AES配套
 - ■增强安全性
- 与SHA-1比较:
 - ■结构相同
 - ■逻辑函数相同
 - ■摸算术相同

1、SHA-2的概况

SHA参数比较

	SHA-1	SHA-256	SHA-384	SHA-512
Hash码长度	160	256	384	512
消息长度	<264	<264	<2128	<2128
分组长度	512	512	1024	1024
字长度	32	32	64	64
迭代步骤数	80	64	80	80
安全性	80	128	192	256

注:1、所有的长度以比特为单位。

2、安全性是指对输出长度为n比特hash函数的生日攻击产生碰撞的工作量大约为2n/2

- 2 SHA-512
- (1) SHA-512概况
 - 输入长度<2128
 - 数据分组长度1024位
 - 输出长度512位

2, SHA-512

- (2)运算算法
- ① 填充
 - 使填充后的长度=896 mod 1024。
 - ■即使消息长度已满足上述要求,也要填充。
 - ■填充由1个1和后续若干个0组成。
- ② 附加长度
 - ■填充后,再附加上表示原消息长度的128位。
- 注意: 在①、②步后,数据长度为1024的N倍。
 - ■将数据分成N块,每块1024位,进行迭代处理。

- F块处理
- +为摸264加

SHA-2处理框图

2、SHA-512

- ③初始化缓冲区
- 运算的中间结果和最终结果保存于512比特的缓冲区中,缓冲区用8个64比特的寄存器(A,B,C,D,E,F,G,H)表示,并将这些寄存器初始化为下列64比特的整数。
- A=6A09E667F3BCC908 E=510E527FADE682D1
 B=BB67AE8584CAA73B F=9B05688C2B3E6C1F
 C=3C6EF372FE94F82B G=1F83D9ABFB41BD6B
 D=A54FF53A5F1D36F1 H=5BE0CD19137E2179
- 获得方式:前8个素数取平方根,取小数部分的前64比特。
- 存储方式: 最高有效字节存于低地址字节位置。

2 SHA-512

- ④ 1024比特块的处理
- 处理每个1024比特数据块,都要经过80轮迭代运算。
- 每一轮都把512比特缓冲区的值ABCDEFGH作为输入,并 更新缓冲区的值。第一轮时,缓冲区里的值是初始值IV。
- 每一轮,都使用一个64比特的值W₄,其中0≤t≤79。
- 每一轮还将使用附加的常数 K_t ,其中 $0 \le t \le 79$ 。
- 80轮迭代后输出H_i。
- 存储方式: 最高有效字节存于低地址字节位置。

2 SHA-512

- ⑤轮函数
- ●每一轮的处理:
 - ●基本逻辑函数:
 - \blacksquare CH (E,F,G) = (E AND F) \oplus (NOT E AND G)
 - ■Maj $(A,B,C) = (A \text{ AND } B) \oplus (A \text{ AND } C) \oplus (B \text{ AND } C)$

其中ROTRⁱ(X)表示把X循环右移i位。

注意: 前2个函数与SHA-1的相同,后2个函数不同。

- ●适用于商用密码应用中的数字签名和验证、消息认证码的生成与验证以及随机数的生成。
- ●可满足多种密码应用的安全需求。

●基本框架: "压缩函数"十"迭代结构"

●轮函数

武溪大学

●逻辑函数

$$F_{1}(x, y, z) = (x \land y) \lor (\overline{x} \land z)$$

$$F_{2}(x, y, z) = (x \land y) \lor (x \land z) \lor (y \land z)$$

$$F_{3}(x, y, z) = x \oplus y \oplus z$$

● 轮函数分解结构

作业题

1、p204第1题,第4题。

