TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH

BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

HOMEWORK 02:

PHÂN TÍCH GIẢI THUẬT ĐỆ QUY

GV hướng dẫn: Huỳnh Thị Thanh Thương

Nhóm sinh viên thực hiện:

Họ và tên	MSSV	Mã lớp
1. Trần Đình Khánh Đăng	22520195	CS112.O22
2. Lê Minh Nhựt	22521060	CS112.O22
3. Lê Cảnh Nhật	22521016	CS112.O22
4. Nguyễn Hùng Phát	22521074	CS112.O22

TP. Hồ Chí Minh, ngày 12 tháng 4 năm 2024

BÀI 1: Thành lập phương trình đệ quy

a. Đề bài

Gửi ngân hàng 1000 USD, lãi suất 12%/1 năm. Số tiền có được sau 30 năm là bao nhiêu?

Lời giải

Gọi T(n) là thời gian thực hiện hàm đệ quy.

- Với n=0, số tiền nhận được là hằng số nên tốn thời gian là c_1
- Với n > 0:
 - Số tiền gửi ngân hàng sẽ được tính theo công thức: Số tiền sau n năm = Số tiền sau (n-1) năm * (1 + lãi suất)
 - Do đó, hàm sẽ gọi đệ quy 1 lần ứng với thời gian T(n-1) và c_2 là tổng chi phi tính toán.

• Vậy:
$$T(n) = \begin{cases} c_1 & \text{khi } n=0 \\ T(n-1)+c_2 & \text{khi } n>0 \end{cases}$$

b. Đề bài

```
long Fibo(int n)
{
        if (n == 0 || n == 1) return 0;
        return Fibo(n - 1) + Fibo(n - 2);
}
```

Lời giải

Gọi T(n) là thời gian thực hiện Fibo(n).

- Với n=0 hoặc n=1, số lệnh thực hiện là hằng số, nên tốn thời gian c_1
- Với n > 1:
 - Hàm Fibo(n) gọi đệ quy 2 lần gồm: 1 lần gọi Fibo(n-1) ứng với thời gian T(n-1) và 1 lần gọi Fibo(n-2) ứng với thời gian T(n-2).
 - Thời gian tính tổng kết quả của 2 lần gọi đệ quy là c_2 => $T(n) = T(n-1) + T(n-2) + c_2$

• Vậy:
$$T(n)= egin{cases} c_1 & \text{khi } 0 \leq n \leq 1 \\ T(n-1)+T(n-2)+c_2 & \text{khi } n>1 \end{cases}$$

c. Đề bài

```
public int g(int n){
  if (n == 1)
```

```
return 2;
else
return 3*g(n/2) + g(n/2) + 5;
```

Lời giải

Gọi T(n) là thời gian thực hiện hàm g(n).

- Với n=1, chi phí xử lý ít nên tốn thời gian là c_1
- Với n > 1:
 - Hàm g(n) gọi đệ quy 2 lần: 2 lần gọi hàm g(n/2) tương ứng với thời gian là $2T(\frac{n}{2})$
 - Thời gian tính tổng kết quả của 2 lần gọi hàm ta chọn là c_2
 - Suy ra: $T(n) = 2T(\frac{n}{2}) + c_2$

• Vậy:
$$T(n) = \begin{cases} c_1 & \text{khi } n=1 \\ 2T(\frac{n}{2}) + c_2 & \text{khi } n>1 \end{cases}$$

d. Đề bài

```
long xn(int n)
{
    if (n == 0) return 1;
    long s = 0;
    for(i = 1; i <= n; i++)
        s = s + i*i*xn(n - i);
    return s;
}</pre>
```

Lời giải

Gọi T(n) là thời gian thực hiện hàm xn(n)

- Với n=0, số lệnh thực hiện là hằng số nên tốn thời gian là c_1
- Với n > 0:
 - Chương trình gọi hàm đệ quy xn(n-i) với i chay từ $1 \rightarrow n$
 - Ngoài ra, còn một số phép toán khác: phép cộng, phép nhân,... nhưng chi phí không đáng kể nên ta đặt chi phí đó là c_2

- Suy ra:
$$T(n) = \sum_{i=1}^{n} T(n-i) + c_2$$

• Vậy:
$$T(n) = \begin{cases} c_1 & \text{khi } n=0 \\ \sum_{i=1}^n T(n-i) + c_2 & \text{khi } n>0 \end{cases}$$

e. Đề bài

Lời giải

Gọi T(n) là thời gian thực hiện hàm g(n).

- Với n < 1, chi phí xử lý ít nên tốn thời gian là c_1
- Với $n \geq 1$:
 - Hàm Draw(n-3) gọi đệ quy 1 lần: tương ứng với thời gian là T(n-3)
 - Có 2 vòng lặp lồng nhau với chi phí là n^2 , ngoài ra còn các phép toán khác với chi phí không đáng kể nên ta đặt chi phí đó là c_2 . Thời gian để thực hiện câu lệnh print(*) là n^2c_2
 - Suy ra: $T(n) = T(n-3) + n^2c_2$

• Vậy:
$$T(n) = \begin{cases} c_1, & \text{khi } n < 1 \\ T(n-3) + n^2c_2, & \text{khi } n \geq 1 \end{cases}$$

f. Đề bài

```
hanoi(n, A, B, C)
{
    if (n == 1) transfer(A, C);
    else
    {
        hanoi(n - 1, A, C, B);
        transfer(A, C);
        hanoi(n - 1, B, A, C);
    }
}
```

Lời giải

$$T(n) = \begin{cases} 1, & \text{khi } n = 1\\ 2T(n-1) + 1, & \text{khi } n > 1 \end{cases}$$

Giải thích:

- Khi chỉ có 1 đĩa, ta thực hiện dịch chuyển 1 lần
- Với số đĩa nhiều hơn 1:
 - + Chuyển n-1 đĩa còn lại từ cột A sang cột B, chi phí T(n-1)
 - + Chuyển đĩa thứ n từ cột A sang cột C, chi phí 1
 - + Chuyển n-1 đĩa còn lại từ cột B sang cột C, chi phí T(n-1)
 - \Rightarrow Tổng chi phí là 2T(n-1)+1

BÀI 2: Giải các phương trình đệ quy sau bằng phương pháp truy hồi

1. Đề bài

$$T(n) = 2T\left(\frac{n}{2}\right) + n^2$$
$$T(1) = 1$$

Lời giải

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n^2$$

$$= 2\left[2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)^2\right] + n^2 = 4T\left(\frac{n}{4}\right) + \left(n^2 + \frac{1}{2}n^2\right)$$

$$= 4\left[2T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)^2\right] + \left(n^2 + \frac{1}{2}n^2\right) = 8T\left(\frac{n}{8}\right) + \left(n^2 + \frac{1}{2}n^2 + \frac{1}{4}n^2\right)$$

$$= \dots$$

$$= 2^i T\left(\frac{n}{2^i}\right) + \sum_{j=0}^{i-1} \frac{1}{2^j} n^2$$

• Quá trình dừng lại khi tiến tới T(1):

$$\frac{n}{2^i} = 1 \Leftrightarrow i = \log_2 n$$

Vây:

$$T(n) = 2^{\log_2 n} T(1) + \sum_{j=0}^{\log_2 n-1} \frac{1}{2^j} n^2$$

$$= n + n^2 \sum_{j=0}^{\log_2 n-1} \left(\frac{1}{2}\right)^j$$

$$= n + n^2 \frac{\left(\frac{1}{2}\right)^{\log_2(n)} - 1}{\frac{1}{2} - 1}$$

$$= n - 2n^2 \left(\frac{1^{\log_2(n)}}{2^{\log_2(n)}} - 1\right)$$

$$= n - 2n^2 \left(\frac{1}{n} - 1\right)$$

$$= 2n^2 - n$$

2. Đề bài

$$T(n) = 2T\left(\frac{n}{2}\right) + \log_2 n$$
$$T(1) = 1$$

Lời giải

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \log_2 n$$

 $= 2\left[2T\left(\frac{n}{4}\right) + \log_2\left(\frac{n}{2}\right)\right] + \log_2 n$
 $= 4T\left(\frac{n}{4}\right) + \log_2 n + 2\log_2\left(\frac{n}{2}\right)$
 $= 4\left[2T\left(\frac{n}{8}\right) + \log_2\left(\frac{n}{4}\right)\right] + \log_2 n + 2\log_2\left(\frac{n}{2}\right)$
 $= 8T\left(\frac{n}{8}\right) + \log_2 n + 2\log_2\left(\frac{n}{2}\right) + 4\log_2\left(\frac{n}{4}\right)$
 $= 8\left[2T\left(\frac{n}{16}\right) + \log_2\left(\frac{n}{8}\right)\right] + \log_2 n + 2\log_2\left(\frac{n}{2}\right) + 4\log_2\left(\frac{n}{4}\right)$
 $= 16T\left(\frac{n}{16}\right) + \log_2 n + 2\log_2\left(\frac{n}{2}\right) + 4\log_2\left(\frac{n}{4}\right) + 8\log_2\left(\frac{n}{8}\right)$
 $= \dots$
 $= 2^iT\left(\frac{n}{2^i}\right) + \sum_{i=0}^{i-1} 2^i\log_2\left(\frac{n}{2^i}\right)$

 • Quá trình dừng lại khi tiến tới T(1):

$$\frac{n}{2^i} = 1 \Leftrightarrow i = \log_2 n$$

• Vậy:

$$T(n) = 2^{\log_2 n} T(1) + \sum_{j=0}^{\log_2 n-1} 2^j \log_2 \left(\frac{n}{2^j}\right)$$

$$= n + \sum_{j=0}^{\log_2 n-1} 2^j \left[\log_2 n - \log_2(2^j)\right]$$

$$= n + \sum_{j=0}^{\log_2 n-1} 2^j \log_2 n - \sum_{j=0}^{\log_2 n-1} 2^j \log_2(2^j)$$

$$= n + \log_2 n \sum_{j=0}^{\log_2 n-1} 2^j - \sum_{j=1}^{\log_2 n-1} j 2^j$$

$$= n + \log_2 n \frac{2^{\log_2 n} - 1}{2 - 1} - (\log_2 n - 2) 2^{\log_2 n} - 2$$

$$= n + (n - 1) \log_2 n - n(\log_2 n - 2) - 2$$

$$= 3n - \log_2 n - 2$$

3. Đề bài

$$T(n) = 8T\left(rac{n}{2}
ight) + n^3$$
 $T(1) = 1$
Lời giải

•
$$T(n) = 8T\left(\frac{n}{2}\right) + n^3$$

$$= 8\left[8T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)^3\right] + n^3$$

$$= 8^2T\left(\frac{n}{4}\right) + 2n^3$$

$$= 8^2\left[8T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)^3\right] + 2n^3$$

$$= 8^3T\left(\frac{n}{8}\right) + 3n^3$$

$$= \dots$$

$$= 8^iT\left(\frac{n}{2^i}\right) + in^3$$

• Quá trình dừng lại khi tiến tới T(1): $\frac{n}{2^i} = 1 \Leftrightarrow i = \log_2 n$

$$T(n) = 8^{\log_2 n} T(1) + n^3 \log_2 n$$

$$= (2^3)^{\log_2 n} + n^3 \log_2 n$$

$$= (2^{\log_2 n})^3 + n^3 \log_2 n$$

$$= n^3 (1 + \log_2 n)$$

4. Đề bài

$$T(n)=4T(rac{n}{3})+n$$
 $T(1)=1$
Lời giải

•
$$T(n) = 4T\left(\frac{n}{3}\right) + n$$

 $= 4\left[4T\left(\frac{n}{9}\right) + \frac{n}{3}\right] + n$
 $= 4^2T\left(\frac{n}{9}\right) + \frac{4n}{3} + n$
 $= 4^2\left[4T\left(\frac{n}{27}\right) + \frac{n}{9}\right] + \frac{4n}{3} + n$
 $= 4^3T\left(\frac{n}{27}\right) + \frac{16n}{9} + \frac{4n}{3} + n$
 $= \dots$
 $= 4^iT\left(\frac{n}{3^i}\right) + n\sum_{k=0}^{i-1} \left(\frac{4}{3}\right)^k$

• Quá trình dừng lại khi tiến tới T(1): $\frac{n}{3i} = 1 \Leftrightarrow i = \log_3 n$

• Vậy:

$$T(n) = 4^{\log_3 n} T(1) + n \sum_{k=0}^{\log_3 n - 1} \left(\frac{4}{3}\right)^k$$

$$= 4^{\log_3 n} + n \frac{\left(\frac{4}{3}\right)^{\log_3 n} - 1}{\frac{1}{3}}$$

$$= 4^{\log_3 n} + 3n \left(\frac{4}{3}\right)^{\log_3 n} - 3n$$

$$= 4^{\log_3 n} + 3.4^{\log_3 n} - 3n$$

5. Đề bài

$$T(n) = 9T\left(\frac{n}{3}\right) + n^2$$
$$T(1) = 1$$

Lời giải

Loi giái
$$T(n) = 9T\left(\frac{n}{3}\right) + n^2$$

$$= 9\left[9T\left(\frac{n}{9}\right) + \left(\frac{n}{3}\right)^2\right] + n^2$$

$$= 9^2T\left(\frac{n}{3^2}\right) + 2n^2$$

$$= 9^2\left[9T\left(\frac{n}{27}\right) + \left(\frac{n}{9}\right)^2\right] + 2n^2$$

$$= 9^3T\left(\frac{n}{3^3}\right) + 3n^2$$

$$= 9^3\left[9T\left(\frac{n}{81}\right) + \left(\frac{n}{27}\right)^2\right] + 3n^2$$

$$= 9^4T\left(\frac{n}{3^4}\right) + 4n^2$$

$$= \dots$$

$$= 9^iT\left(\frac{n}{3^i}\right) + in^2$$

- ullet Quá trình dừng lại khi tiến tới T(1): $\frac{n}{3^i} = 1 \Leftrightarrow n = 3^i \Leftrightarrow i = \log_3 n$
- Vây: $T(n) = 9^{\log_3 n} T(1) + n^2 \log_3 n$ $=n^2 + n^2 \log_3 n = n^2 (1 + \log_3 n)$
- 6. Đề bài

$$T(n) = 2T(\sqrt{n}) + 1$$
$$T(2) = 0$$

Lời giải

• Ta có:

 • Quá trình dừng lại khi tiến tới T(2):

$$\sqrt[2^i]{n} = 2 \Leftrightarrow n = 2^{2^i} \Leftrightarrow \log_2 n = 2^i \Leftrightarrow i = \log_2(\log_2 n)$$

• Vây:

$$T(n) = 2^{\log_2(\log_2 n)}T(2) + 2^{\log_2(\log_2 n)} - 1 = 2^{\log_2(\log_2 n)} - 1 = \log_2 n - 1$$

BÀI 3: Giải phương trình đệ quy sau dùng phương pháp trình đặc trưng

a. Đề bài

$$T(n) = 4T(n-1) - 3T(n-2)$$

 $T(0) = 1, T(1) = 2$

Lời giải

- Xét phương trình T(n) = 4T(n-1) 3T(n-2) $\Leftrightarrow T(n) - 4T(n-1) + 3T(n-2) = 0(1)$
- Đặt $X^n=T(n)$ đưa (1) về dạng phương trình ẩn X: $X^n-4X^{n-1}+3X^{n-2}=0 \\ \Leftrightarrow X^{n-2}(X^2-4X+3)=0 \\ \Leftrightarrow \begin{bmatrix} X^{n-2}=0 \\ X^2-4X+3=0 (2) \end{bmatrix}$

Phương trình đặc trưng (2) có nghiệm: $X_1=1$ (nghiệm đơn), $X_2=2$ (nghiệm đơn)

• Thay X_1 và X_2 vào phương trình (1) ta có:

$$T(n) = c_1 X_1^n + c_2 X_2^n = c_1 1^n + c_2 3^n = c_1 + c_2 3^n$$

$$\begin{cases} T(0) = 0 \\ T(1) = 2 \end{cases} \Leftrightarrow \begin{cases} c_1 + c_2 = 1 \\ c_1 + 3c_2 = 2 \end{cases} \Leftrightarrow \begin{cases} c_1 = \frac{1}{2} \\ c_2 = \frac{1}{2} \end{cases}$$

• Kết luận:
$$T(n) = \frac{1}{2} + \frac{1}{2}3^n = \frac{1}{2}(1+3^n)$$

b. Đề bài

$$T(n) = 4T(n-1) - 5T(n-2) + 2T(n-3)$$

$$T(0) = 0, T(1) = 1, T(2) = 2$$

Lời giải

- Xét phương trình: T(n) = 4T(n-1) 5T(n-2) + 2T(n-3) $\Leftrightarrow T(n) - 4T(n-1) + 5T(n-2) - 2T(n-3) = 0(1)$
- Đặt $X^n = T(n)$ đưa (1) về dạng phương trình ẩn X: $X^n 4X^{n-1} + 5X^{n-2} 2X^{n-3} = 0$ $\Leftrightarrow X^{n-3}(X^3 4X^2 + 5X 2) = 0$ $\Leftrightarrow \begin{bmatrix} X^{n-3} = 0 \\ X^3 4X^2 + 5X 2 = 0 \end{bmatrix}$

Phương trình (2) có nghiệm: $X_1 = 1$ (nghiệm kép), $X_2 = 2$ (nghiệm đơn)

• Ta có:
$$T(n) = c_1 X_1^n + c_2 n X_1^n + c_3 X_2^n = c_1 + c_2 n + c_3 2^n$$

$$\begin{cases} T(0) = 0 \\ T(1) = 1 \end{cases} \Leftrightarrow \begin{cases} c_1 + c_3 = 0 \\ c_1 + c_2 + 2c_3 = 1 \\ c_1 + 2c_2 + 4c_3 = 2 \end{cases} \Leftrightarrow \begin{cases} c_1 = 0 \\ c_2 = 1 \\ c_3 = 2 \end{cases}$$

• Kết luận: T(n) = n

c. Đề bài

$$T(n) = T(n-1) + T(n-2)$$

$$T(0) = 1, T(1) = 1$$

Lời giải

• Xét phương trình:
$$T(n) = T(n-1) + T(n-2)$$
 $\Leftrightarrow T(n) - T(n-1) - T(n-2) = 0$ (1)

• Đặt $T(n)=X^n$ đưa (1) về dạng phương trình ẩn X: $X^n-X^{n-1}-X^{n-2}=0$

$$X^{n} - X^{n-1} - X^{n-2} = 0$$

$$\Leftrightarrow X^{n-2}(X^{2} - X - 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} X^{n-2} = 0 \\ X^{2} - X - 1 = 0 \end{bmatrix}$$

Giải phương trình đặc trưng (2) ta được 2 nghiệm:

$$\begin{cases} X_1 = \frac{1 + \sqrt{5}}{2} \\ X_2 = \frac{1 - \sqrt{5}}{2} \end{cases}$$

$$T(n) = c_1 X_1^n + c_2 X_2^n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$\begin{cases} T(0) = 1 \\ T(1) = 1 \end{cases} \Leftrightarrow \begin{cases} c_1 + c_2 = 1 \\ \frac{1+\sqrt{5}}{2}c_1 + \frac{1-\sqrt{5}}{2}c_2 = 1 \end{cases} \Leftrightarrow \begin{cases} c_1 = \frac{5+\sqrt{5}}{10} \\ c_2 = \frac{5-\sqrt{5}}{10} \end{cases}$$

• Kết luận:
$$T(n) = \frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{5-\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^n$$

BÀI 4: Giải bằng hàm sinh

a. Đề bài

$$T(n) = \begin{cases} 1 & n = 0\\ 2 & n = 1\\ 7T(n-1) - 12T(n-2) & n \ge 2 \end{cases}$$

Lời giải

- Ta có hàm sinh của dãy vô hạn là $\{T(n)\}_{n=0}^{\infty}$ là:

$$f(x) = \sum_{n=0}^{\infty} T(n)x^{n}$$

$$\Leftrightarrow f(x) = \sum_{n=2}^{\infty} (7T(n-1) - 12T(n-2))x^{n} + T(1)x^{1} + T(0)x^{0}$$

$$\Leftrightarrow f(x) = 7\sum_{n=2}^{\infty} T(n-1)x^{n} - 12\sum_{n=2}^{\infty} T(n-2)x^{n} + 2x + 1$$

• Đặt:
$$\begin{cases} A=7\sum\limits_{n=2}^{\infty}T(n-1)x^n\\ B=12\sum\limits_{n=2}^{\infty}T(n-2)x^n \end{cases}$$

• Ta có:

$$A = 7 \sum_{n=2}^{\infty} T(n-1)x^{n}$$

$$A = 7x \sum_{n=2}^{\infty} T(n-1)x^{n-1}$$

$$A = 7x[T(1)x^{1} + T(2)x^{2} + \dots]$$

$$A = 7x[f(x) - T(0)]$$

$$A = 7x(f(x) - 1)$$

$$A = 7xf(x) - 7x$$

• Ta có:

$$B = 12 \sum_{n=2}^{\infty} T(n-2)x^{n}$$

$$B = 12x^{2} \sum_{n=2}^{\infty} T(n-2)x^{n-2}$$

$$B = 12x^{2} [T(0)x^{0} + T(1)x^{1} + \dots]$$

$$B = 12x^{2} f(x)$$

• Thay
$$A$$
 và B vào $f(x)$ ta có :
$$f(x) = 7xf(x) - 7x - 12x^2f(x) + 2x + 1$$

$$\Leftrightarrow f(x) = f(x)(7x - 12x^2) - 5x + 1$$

$$\Leftrightarrow f(x)(12x^2 - 7x + 1) = 1 - 5x$$

$$\Leftrightarrow f(x) = \frac{1 - 5x}{12x^2 - 7x + 1} = \frac{1 - 5x}{(1 - 3x)(1 - 4x)}$$

$$\Leftrightarrow f(x) = \frac{2}{1 - 3x} + \frac{-1}{1 - 4x}$$

$$\Leftrightarrow f(x) = 2\sum_{n=0}^{\infty} (3x)^n - 1\sum_{n=0}^{\infty} (4x)^n$$

$$\Leftrightarrow f(x) = \sum_{n=0}^{\infty} (2 \cdot 3^n - 4^n)x^n$$

$$\text{mà } f(x) = \sum_{n=0}^{\infty} T(n)x^n$$

• Vậy:
$$T(n) = 2.3^n - 4^n$$

b. Đề bài

$$T(n+1) = T(n) + 3n \qquad , n \ge 0$$

$$T(0) = 7$$

Lời giải

• Ta có:
$$T(n+1) = T(n) + 3n$$

 $\Rightarrow T(n) = T(n-1) + 3(n-1)$, $n \ge 1$
 $T(0) = 7$

 \bullet Ta có hàm sinh của dãy vô hạn $\{T(n)\}_{n=0}^{\infty}$ là:

$$\begin{split} f(x) &= \sum_{n=0}^{\infty} T(n) x^n \\ &= \sum_{n=1}^{\infty} [T(n-1) + 3(n-1)] x^n + T(0) x^0 \\ &= \sum_{n=1}^{\infty} T(n-1) x^n + 3 \sum_{n=1}^{\infty} (n-1) x^n + 7 \\ \text{Dặt } A &= \sum_{n=1}^{\infty} T(n-1) x^n = x \sum_{n=1}^{\infty} T(n-1)^{n-1} \\ &= x [T(0) x^0 + T(1) x + T(2) x^2 + \ldots] = x f(x) \\ \text{Dặt } B &= 3 \sum_{n=1}^{\infty} (n-1) x^n = 3 \Big(\sum_{n=1}^{\infty} n x^n - \sum_{n=1}^{\infty} x^n \Big) \\ &= 3 \Big[\sum_{n=0}^{\infty} n x^n - \Big(\sum_{n=0}^{\infty} x^n - 1 \Big) \Big] = \frac{3x}{(1-x)^2} - \frac{3}{1-x} + 3 \end{split}$$

• Thay
$$A$$
 và B vào $f(x)$ ta có :

• Thay
$$A$$
 và B vào $f(x)$ ta có:
$$f(x) = xf(x) + \frac{3x}{(1-x)^2} - \frac{3}{1-x} + 10$$

$$\Leftrightarrow (1-x)f(x) = \frac{3x}{(1-x)^2} + \frac{3x-3}{(1-x)^2} + \frac{10x^2 - 20x + 10}{(1-x)^2}$$

$$\Leftrightarrow (1-x)f(x) = \frac{10x^2 - 14x + 7}{(1-x)^2}$$

$$\Leftrightarrow f(x) = \frac{10x^2 - 14x + 7}{(1-x)^3}$$

$$\Leftrightarrow f(x) = \frac{3}{(1-x)^3} + \frac{-6}{(1-x)^2} + \frac{10}{1-x}$$

$$\Leftrightarrow f(x) = \sum_{n=0}^{\infty} 3C_{n+2}^n x^n + \sum_{n=0}^{\infty} \left[-6(n+1)x^n \right] + \sum_{n=0}^{\infty} 10x^n (1)$$

$$\Leftrightarrow f(x) = \sum_{n=0}^{\infty} \left[\frac{3(n+2)!}{2n!} - 6(n+1) + 10 \right] x^n$$

$$\operatorname{mà} f(x) = \sum_{n=0}^{\infty} T(n)x^n$$

• Suy ra:
$$T(n) = \frac{3}{2}(n+1)(n+2) - 6(n+1) + 10$$

 $\Leftrightarrow T(n) = \frac{3}{2}n^2 - \frac{3}{2}n + 7$

Ta có (1) dựa vào công thức ở mục I.c trong đường dẫn:

https://mathscope.org/showthread.php?t=29788

$$\frac{1}{(1-x)^n} = \sum_{i=0}^{\infty} C_{i+n-1}^i x^i, n \in N$$

c. Đề bài

```
Zeta(n) { if(n == 0)Zeta = 6; else { k = 0; Ret = 0; while(k <= n - 1); { Ret = Ret + Zeta(k); k = k + 1; } Zeta = Ret; }
```

Lời giải

```
• Gọi T(n) là số phép cộng cần thực hiện khi gọi Zeta(n)
 - Khi n = 0, T(0) = 0 (do không thực hiện while)
 - Khi n = 1, k \in [0, 0]
 k=0, số phép cộng =2+T(0)=2
 \Rightarrow T(1) = 2^1
 - Khi n = 2, k \in [0, 1]
 k = 0, số phép cộng = 2 + T(0) = 2
 k = 1, số phép cộng = 2 + T(1) = 2 + 2 = 4
 \Rightarrow T(2) = 2 + 2 + T(1) = 6
 - Khi n = 3, k \in [0, 2]
 k = 0, số phép công = 2 + T(0) = 2
 k = 1, số phép cộng = 2 + T(1) = 2 + 2 = 4
 k = 2, số phép cộng = 2 + T(2) = 2 + 6 = 8
 \Rightarrow T(3) = 2^1 + 2^2 + 2 + T(2) = 14
 - Khi n=4, k\in [0,3]
 k = 0, số phép cộng = 2 + T(0) = 2
 k = 1, số phép cộng = 2 + T(1) = 2 + 2 = 4
 k = 2, số phép cộng = 2 + T(2) = 2 + 6 = 8
 k = 3, số phép cộng = 2 + T(3) = 2 + 14 = 16
 \Rightarrow T(4) = 2^1 + 2^2 + 2^3 + 2 + T(3) = 30
 - Khi n = i, k \in [0, i]
 \Rightarrow T(i) = \sum_{i=1}^{i-1} 2^{j} + 2 + T(i-1)
```

$$\Leftrightarrow T(i) = \sum_{j=0}^{i-1} 2^j - 2^0 + 2 + T(i-1)$$

$$\Leftrightarrow T(i) = \frac{2^i - 1}{2 - 1} - 1 + 2 + T(i-1)$$

$$\Leftrightarrow T(i) = 2^i + T(i-1) \text{ khi } i \ge 1$$

• Vậy:
$$T(n) = \begin{cases} 0 & \text{khi } n = 0 \\ T(n-1) + 2^n & \text{khi } n \geq 1 \end{cases}$$

• Ta có hàm sinh của dãy vô hạn $\{T(n)\}_{n=0}^{\infty}$ là:

$$f(x) = \sum_{n=0}^{\infty} T(n)x^n$$

$$f(x) = T(0) + T(1)x + T(2)x^2 + \dots$$

$$f(x) = \sum_{n=1}^{\infty} [T(n-1) + 2^n]x^n + T(0)x^0$$

$$f(x) = \sum_{n=1}^{\infty} T(n-1)x^n + \sum_{n=1}^{\infty} 2^n x^n$$

$$f(x) = A + B$$

•
$$A = \sum_{n=1}^{\infty} [T(n-1)x^n]$$

= $x \sum_{n=1}^{\infty} [T(n-1)x^{n-1}]$
= $x[T(0)x^0 + T(1)x^1 + ...]$
= $xf(x)$

•
$$B = \sum_{n=1}^{\infty} 2^n x^n$$

$$= \sum_{n=1}^{\infty} (2x)^n$$

$$= \sum_{n=0}^{\infty} (2x)^n - (2x)^0$$

$$= \sum_{n=0}^{\infty} (2x)^n - 1$$

$$= \frac{1}{1 - 2x} - 1$$

• Thay A và B vào f(x) ta có :

$$f(x) = xf(x) + \frac{1}{1 - 2x} - 1$$

$$\Leftrightarrow (1 - x)f(x) = \frac{2x}{1 - 2x}$$

$$\Leftrightarrow f(x) = \frac{2}{(1 - 2x)(1 - x)}$$

$$\Leftrightarrow f(x) = \frac{2}{1 - 2x} + \frac{-2}{1 - x}$$

$$\Leftrightarrow f(x) = 2\sum_{n=0}^{\infty} (2x)^n - 2\sum_{n=0}^{\infty} x^n$$

$$\Leftrightarrow f(x) = 2\sum_{n=0}^{\infty} ((2x)^n - x^n)$$

$$\Leftrightarrow f(x) = \sum_{n=0}^{\infty} 2(2^n - 1)x^n$$

$$\Leftrightarrow f(x) = \sum_{n=0}^{\infty} T(n)x^n$$

$$\Leftrightarrow f(x) = \sum_{n=0}^{\infty} T(n)x^n$$

BÀI 5: Giải bằng đoán nghiệm

$$\begin{cases} T(1) = c_1 \\ T(n) = 4T\left(\frac{n}{2}\right) + n, & \text{n\'eu } n \geq 2 \end{cases}$$

Lời giải

- i. Đoán $f(n) = an^3$
- Chứng minh: $T(1) \le f(1)$ Ta có: $T(1) = c_1, f(1) = a$ $\text{D\'e}\ T(1) \leq f(1)$ ta phải chọn $a \geq c_1$
- Giả sử: $T(k) \leq f(k), \forall k < n$ Ta cần chứng minh: $T(n) \leq f(n)$ tại n

$$T(n) = 4T(\frac{n}{2}) + n$$

$$T(n) \le 4f(\frac{n}{2}) + n = 4a(\frac{n}{2})^3 + n = \frac{1}{2}an^3 + n = an^3 - \frac{an^3}{2} + n$$

$$T(n) \le f(n) + (an^3)$$

$$T(n) \le f(n) + (n - \frac{an^3}{2})$$

$$\text{D\'e }T(n) \leq f(n) \text{ th} : n - \frac{an^3}{2} \leq 0$$

• Chọn
$$a$$
 sao cho:
$$\begin{cases} n - \frac{an^3}{2} \le 0 \\ a \ge c_1 \end{cases} \Rightarrow a = 2$$

Suy ra: $T(n) < 2n^3$

• Vậy đoán $f(n) = an^3$ là thành công

ii. Đoán
$$f(n) = an^2$$

• Chứng minh: T(1) < f(1)

Ta có:
$$T(1) = c_1, f(1) = a$$

$$\text{D\'e}\ T(1) \leq f(1)$$
 ta phải chọn $a \geq c_1$

• Giả sử: $T(k) \leq f(k), \forall k < n$

Ta cần chứng minh: $T(n) \leq f(n)$ tại n

$$T(n) = 4T(\frac{n}{2}) + n$$

$$T(n) = 4T(\frac{n}{2}) + n$$

$$T(n) \le 4f(\frac{n}{2}) + n = 4a(\frac{n}{2})^2 + n$$

$$T(n) \le f(n) + n$$

• Chọn a sao cho: $\begin{cases} n \leq 0 \\ a \geq c_1 \end{cases}$

Suy ra không chọn được a thỏa mãn yêu cầu vì $n \ge 1$

- Vậy đoán $f(n)=an^2$ là thất bại **iii. Đoán** $f(n)=an^2-bn$
- Chứng minh: $T(1) \leq f(1)$ Ta có: $T(1) = c_1, f(1) = a b$ Để $T(1) \leq f(1)$ ta phải chọn $a b \geq c_1$
- Giả sử: $T(k) \leq f(k), \forall k < n$ Ta cần chứng minh: $T(n) \leq f(n)$ tại n $T(n) = 4T(\frac{n}{2}) + n$ $\Leftrightarrow T(n) \leq 4f(\frac{n}{2}) + n$ $\Leftrightarrow T(n) \leq 4\left[a(\frac{n}{2})^2 b\frac{n}{2}\right] + n = an^2 bn + n = an^2 bn bn + n$ $\Leftrightarrow T(n) \leq f(n) + n bn$ $\Leftrightarrow T(n) \leq f(n)$ thì: $n bn \leq 0$
- Chọn a, b sao cho: $\begin{cases} n bn \le 0 \\ a b \ge c_1 \end{cases} \Rightarrow \begin{cases} a = c_1 + 1 \\ b = 1 \end{cases}$ Suy ra: $T(n) \le (c_1 + 1)n^2 + n$
- Vậy đoán $f(n) = an^2 bn$ là thành công

b. Đề bài

$$T(n) = \begin{cases} 1, & \text{khi } n = 1\\ 3T\left(\frac{n}{2}\right) + n^2, & \text{khi } n \ge 1 \end{cases}$$

Lời giải

Đoán
$$f(n) = an^2 + b$$

- Chứng minh: $T(1) \leq f(1)$ Ta có: T(1) = 1, f(1) = a + b Nếu chọn $a+b \geq 1$ thì ta có điều phải chứng minh.
- Giả sử $T(k) \le f(k), \forall k < n$

• Chứng minh:
$$n, T(n) \leq f(n)$$
 tại n
$$T(n) = 3T(\frac{n}{2}) + n^2 \leq 3f(\frac{n}{2}) + n^2$$

$$\Leftrightarrow T(n) \leq 3[a(\frac{n}{2})^2 + b] + n^2$$

$$\Leftrightarrow T(n) \leq \frac{3}{4}an^2 + n^2 + 3b$$

$$\Leftrightarrow T(n) \leq an^2 - \frac{1}{4}an^2 + n^2 + 2b + b$$

$$\Leftrightarrow T(n) \leq f(n) - \frac{1}{4}an^2 + n^2 + 2b$$
 Nếu $(-\frac{1}{4}an^2 + n^2 + 2b \leq 0)$ thì $T(n) \leq f(n)$

• Chon a, b sao cho:

$$\begin{cases} a+b \ge 1 \\ -\frac{1}{4}an^2 + n^2 + 2b \le 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a \ge 1 - b \\ -\frac{1}{4}an^2 + n^2 + 2b \le 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a \ge 1 - b \\ n^2(-\frac{1}{4}a + 1) + 2b \le 0 (*) \end{cases}$$

Chọn
$$a = b - 1$$

Thay a vào (*) ta có:

$$n^{2}[-\frac{1}{4}(1-b)+1]+2b \le 0$$

Vì $n^2 \ge 1$ với mọi n, ta chọn b sao cho:

$$\begin{cases} \frac{b}{4} + \frac{3}{4} \le 0 \\ 2b \le 0 \end{cases} \Leftrightarrow \begin{cases} b \le -3 \\ b \le 0 \end{cases} \Rightarrow b \le -3$$

Vậy chọn a,b sao cho: $\begin{cases} a \geq 1-b \\ b \leq -3 \end{cases}$

Ta chọn $a=4, b=-3 \Rightarrow T(n) <= 4n^2-3$ Kết luận: đoán nghiệm $f(n)=an^2+b$ **đúng**.

$$\begin{cases} T(n)=1, & \text{n\'eu } n \leq 5 \\ T(n)=T\Big(\frac{n}{2}\Big)+T\Big(\frac{n}{4}\Big)+n \end{cases}$$

Lời giải

Đoán f(n) = an

• Chứng minh $T(n) \leq f(n), \forall n \in [1,5]$ Với n=1, ta có: T(1)=1, f(1)=aĐể $T(1) \leq f(1)$ ta phải chọn $a \geq 1$

Tương tự, với n=2, ta có: $T(n) \leq f(n)$ khi $a \geq \frac{1}{2}$

...

Với
$$n=5$$
, ta có: $T(n)\leq f(n)$ khi $a\geq \frac{1}{5}$
Vậy khi $a\geq 1$ thì $T(n)\leq f(n)$ khi $n\in [1,5]$

- Giả sử $T(k) \le f(k), \forall k < n$
- $\begin{array}{l} \bullet \text{ Chứng minh: } T(n) \leq f(n) \text{ tại n} \\ T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + n \leq f(\frac{n}{2}) + f(\frac{n}{4}) + n \\ \Leftrightarrow T(n) \leq \frac{an}{2} + \frac{an}{4} + n \\ \Leftrightarrow T(n) \leq \frac{3an}{4} + n \\ \Leftrightarrow T(n) \leq an \frac{an}{4} + n \\ \Leftrightarrow T(n) \leq f(n) \frac{an}{4} + n \end{array}$

Nếu chọn $(-\frac{an}{4}+n) \leq 0$ thì $T(n) \leq f(n)$

• Chọn a sao cho:

$$\begin{cases} a \ge 1 \\ -\frac{an}{4} + n \le 0 \end{cases} \Leftrightarrow \begin{cases} a \ge 1 \\ \frac{n(4-a)}{4} \le 0 \end{cases}$$

Vì $n \ge 1$, ta chọn a sao cho:

$$\begin{cases} a \ge 1 \\ 4 - a \le 0 \end{cases} \Leftrightarrow \begin{cases} a \ge 1 \\ a \ge 4 \end{cases}$$
Chọn $a = 4 \Rightarrow f(n) = 4a$
Mà $f(n) = 4n = O(n)$

$$\hat{\operatorname{Vay}T(n)} <= O(n)$$

$$\Rightarrow T(n) = O(n)$$
đúng.