Prática em Fábrica de Software III Sensores

Prof. Alexandre Tannus

ENGENHARIA DA COMPUTAÇÃO

Definição de Sensores

- ➤ Sensores são dispositivos que detectam informações sobre o robô e do meio onde ele está imerso e as transmite para o controlador do robô.
- Sensores produzem um sinal que permite medir uma quantidade como:
 - Força, torque, temperatura, posição, velocidade, ...

- Sensores ajudam o robô a:
 - ▶ Detectar a posição e orientação de suas diversas juntas.
 - Garantir a qualidade de produção.
 - Descobrir variações de forma e dimensão das peças produzidas.
 - ► Identificar obstáculos imprevistos.
 - ▶ Determinar e analisar defeitos.

Definições importantes

- Acurácia
 - ► Concordância entre o valor real e o valor medido
- ▶ Resolução
 - Mudança na variável medida para a qual o sensor irá responder
- Repetibilidade
 - Variação das medidas do sensor quando a mesma variável é medida várias vezes
- Range
 - Limite superior e inferior que podem ser medidos da variável

Sinal analógico x digital

- Analógico: amplitude pode variar em uma faixa contínua
- ▶ Digital: amplitude pode assumir M valores dentro de uma faixa de amplitudes

Terminologia

- ► Face sensora
 - ► Lado do sensor que detecta o objeto
- Distância
 - Espaço entre a face sensora e o objeto a ser detectado
- Histerese

Tipos de sensores

- Mecânicos
- ► Magnéticos detectam apenas magnetos
- Indutivos apenas materiais ferromagnéticos
- Capacitivos
- Ópticos
- Ultrassônicos

Sensores Mecânicos

- ► Chaves de fim de curso
- Botoeiras

Sensores Mecânicos

- Usados para medir quantidades como:
 - Posição
 - ▶ Velocidade
 - ► Forma
 - ► Força e torque
 - Pressão
 - ► Vibração, estresse
 - Massa

Sensores indutivos

▶ Variação na indutância gerada por uma bobina

Princípio de Funcionamento

Sensores Capacitivos

- Detectam objetos metálicos e não metálicos
- Capacidade de detectar dentro de recipientes
- Verificação de níveis de fluidos e sólidos em tanques

Princípio de Funcionamento

Constante dielétrica

Material	K dielétrica	Material	K dielétrica	Material	K dielétrica
Acetona	19.5	Farinha	1,5-1,7	Poliamida	5,0
Açúcar	3,0	Freon R22 & 502 (líquido)	6,11	Poliestireno	3,0
Água	80	Gasolina	2,2	Polietileno	2,3
Aguarrás	2,2	Glicerina	47	Polipropileno	2,0-2,3
Álcool	25,8	Goma-Laca, Verniz	2,5-4,7	Porcelana	4,4-7
Amônia	15-25	Leite em Pó	3,5-4	Resina Acrílica	2.7-4.5
Anilina	6,9	Madeira, Molhada	10-30	R. de Cloreto de Polivinil	2,8-3,1
Ar	1,000264	Madeira, Seca	2-7	Resina de Poliéster	2,8-8,1
Areia	3-5	Mármore	8,0-8,5	Resina Epóxi	2,5-6
Baquelite	3,6	Mica	5,7-6,7	Resina de Estireno	2,3-3,4
Benzina	2,3	Nitrobenzina	36	Resina Fenólica	4-12
Borracha	2,5-35	Nylon	4-5	Resina Melamínica	4,7-10,2
Calcário de Concha	1,2	Óleo de Soja	2,9-3,5	Resina de Uréia	5-8
Celulóide	3,0	Óleo de Transformadores	2,2	Sal	6,0
Cereal	3-5	Papel	1,6-2,6	Soluções Aquosas	50-80
Cinza de Incêndio	1,5-1,7	Papel Saturado de Óleo	4,0	Teflon	2,0
Cloro líquido	2.0	Parafina	1,9-2,5	Tetracloreto de Carbono	2.2
Dióxido de Carbono	1,000985	Perspex	3,2-3,5	Tolueno	2,3
Ebonite	2,7-2,9	Petróleo	2,0-2,2	Vaselina	2,2-2,9
Enxofre	3,4	Placa Prensada	2-5	Verniz Siliconado	2,8-3,3
Etanol	24	Pó de cimento	4,0	Vidro	3,7-10
Etilenoglicol	38,7	Poliacetal	3,6-3,7	Vidro de Quartzo	3,7

Sensores óticos

► Emissão e recepção de feixes de luz

Maior distância sensora

Sensores óticos

- ▶ Background
- Zona Morta
- ► Interferências do meio
- ► Fator de correção

Cor	Fator de correção
Branco	0,95 a 1,00
Amarelo	0,90 a 0,95
Verde	0,80 a 0,90
Vermelho	0,70 a 0,80
Azul claro	0,60 a 0,70
Violeta	0,50 a 0,60
Preto	0,20 a 0,50

Material	Fator de correção
Metal polido	1,20 a 1,80
Metal usinado	0,95 a 1,00
Papéis	0,95 a 1,00
Madeira	0,70 a 0,80
Borracha	0,40 a 0,70
Papelão	0,50 a 0,60
Pano	0,50 a 0,60

Sensores ultrassônicos

► Emissão e recepção de ondas sonoras

Princípio de funcionamento

Sensores segundo a função

- ▶ Manipulação
 - Que interagem com o meio ambiente do robô.
 - Ex: sensores de Força.

- Aquisição
 - Que permitem ao robô perceber seu próprio estado.
 - Ex: encoders.

Sensores segundo a localização

- Internos
 - Encoders.

- Externos
 - ► Swiches, táteis, proximidade e fotoelétricos.

- Interlocked
 - Usados para proteger o robô.
 - ► Travam o robô até que certa condição se torne válida (pressão de fluido, temperatura alta, etc)

Sensores segundo a ativação

- Contato
 - Existe um contato físico para a ativação
 - Ex.: switches

- Sem contato
 - ▶ Não existe um contato físico para a ativação
 - Ex.: visão, ultrassom, radiação

Classificação - Aplicação

► Proximidade

► Posição / Velocidade

► Força / pressão

▶ Vibração / Aceleração

► Tato

Sensores de Proximidade

- ▶ On / Off presença ou ausência de objeto
- ▶ Tipos
 - ► Chave mecânica
 - Ótico
 - ▶ Ultrassônico
 - ► Indutivo
 - ► Capacitivo

Sensores de Proximidade

- ▶ É necessário, em geral, pelo menos duas funções de segurança:
 - Desligar ou poder desabilitar quando uma pessoa entra na área de perigo.
 - 2 Evitar ligar ou habilitação de força quando uma pessoa está na zona de perigo.

Cortinas de luz

As cortinas de luz de segurança são sensores de presença fotoelétrico projetados especificamente para proteger o pessoal de lesões relacionadas com o movimento da máquina perigosa.

- Também conhecido como:
 - AOPDs (dispositivos de proteção individual optoeletrônicos ativos)
 - ► ESPE (equipamentos de proteção individual eletrosensiveis)

Scanners a laser

 Os leitores de segurança a laser usam um espelho rotativo que criam um plano de detecção.

- ➤ A localização do objeto é determinado pelo ângulo de rotação do espelho e pelo "tempo de vôo" de um feixe de laser.
 - ▶ Ao tomar a medida da distância e da localização do objeto, o scanner a laser determina a posição exata do objeto.

Scanners a laser

- Os scanners a laser criam duas zonas
 - uma zona de alerta: fornece um sinal de que não desliga o perigo e informa às pessoas que elas estão se aproximando da zona de segurança
 - uma zona de segurança: quando um objeto entra, faz o scanner a laser emitir uma ordem de parada; as saídas dos controladores se desligam.

Scanners a laser

Tapetes de segurança sensíveis a pressão

Usados para a vigilância de uma área em torno de uma máquina

Uma matriz de tapetes interligados é definido em torno da área de risco e a pressão aplicada ao tapete (por exemplo, passos de um operador) fará com que a unidade controladora do tapete desligue a alimentação do perigo.

Tapetes de Segurança

Tapetes de Segurança

Sensores de Velocidade / Aceleração

- ► Sensores de velocidade
 - Potenciômetro
 - ► LVDT
 - ► Encoder
- ► Sensores de aceleração
 - ▶ Tacômetro

Potenciômetro

- Resistor variável
- Vantagens
 - Simples
 - Barato
- Desvantagens
 - Pouco exato
 - ▶ Baixa resolução

LVDT (Linear Variable Differential Transformer)

- ▶ Um LVDT consiste de um núcleo magnético que move dentro de um cilindro
- ➤ A luva do cilindro contém uma bobina primária com uma tensão oscilante aplicada
- ➤ A luva também contém dois secundários que detectam esta tensão com a magnitude igual ao deslocamento
- LVDTs são muito precisos (centésimo de milímetro)

Encoders

- Encoders são sensores digitais usados para dar feedback de posição para atuadores
- Consiste de um disco de vidro ou plástico que gira entre uma fonte de luz (LED) e um par de fotodetectores
- O disco é marcado com setores ou riscos que bloqueiam a passagem da luz, produzindo pulsos conforme gira

Codificação

Resolvers

- Sensor de posição absoluta
 - Um estator composto por dois enrolamentos, A e B.
 - ▶ O enrolamento A está posicionado a 90 graus do enrolamento B.
 - ➤ O rotor é composto por um terceiro enrolamento, C, que é energizado com uma onda senoidal.
 - O sinal em C induz sinais em A e B, que variam com a posição angular de C.
 - ▶ A voltagem induzida em A está em quadratura com a de B.
 - ► Cada posição do rotor produz valores diferentes em A e B.

Resolvers

Figure 1: A resolver consists of a reference coil (rotor) and a pair of orthogonally positioned stator coils. As the energized reference coil turns, it induces voltages in the stator coils that can be processed to yield angular position.

Resolvers

Tacômetro

- Medida de velocidade de rotação utilizando um gerador DC
- Essencialmente é um motor girando ao contrário
- ▶ Normalmente utiliza-se conectados diretamente ao motor para se ter *feedback*

