Deep Learning for Natural Language Processing

Cornelia Caragea

Computer Science University of Illinois at Chicago

Logistics

Today

Lecture Structure

- Logistics
- What is this course about?

Logistics

- Instructor: Dr. Cornelia Caragea
 - Email: cornelia@uic.edu
 - WWW: https://www.cs.uic.edu/~cornelia/
 - Office: 3-190E Daley Library
- Class structure:
 - Asynchronous: recorded lectures posted on Blackboard
- Office hours:
 - Synchronous: Tuesday 1:00pm 2:00pm or by appointment.
 - Zoom Link:

```
https://uic.zoom.us/j/91426290683?pwd = RzJqd3N4SnZJdzlXYytNZGkwM0FQUT09
```

- Prerequisites: Linear algebra and calculus, machine learning, basic probability and statistics.
- Class material: Available on Blackboard.

Recommended Textbooks

- Neural Network Methods for Natural Language Processing (Synthesis Lectures on Human Language Technologies)
 by Yoav Goldberg.
- Deep Learning
 by Ian Goodfellow, Yoshua Bengio and Aaron Courville.
 Online version available at:
 https://www.deeplearningbook.org/.
- Introduction to Deep Learning by Eugene Charniak.
- Research papers.

Course Description

The course will cover the foundations of deep learning, with focus on different types of modern neural network (such as convolutional neural networks, recurrent neural networks, long short-term memory networks, attention and transformers). Furthermore, the course will also cover tools and software available for building and training deep neural networks.

Course Objectives

- Introduce students to deep learning and discuss types of deep neural networks
- Study concepts such as regularization in the context of deep learning
- Identify applications where deep learning excels, and discuss what type of network is appropriate for what application
- Identify limitations of existing deep learning approaches
- Explore tools available for deep learning
- Teach students about how to stay up-to-date with the latest research in deep learning

Tentative Topics

- Basics of Machine Learning
- Word Embeddings (word2vec, Glove, FastText)
- Word Window Classification and Neural Networks
- Language Models and Recurrent Neural Networks
- Recurrent Neural Networks Variants (LSTMs and GRUs)
- Sequence-to-Sequence Models and Attention Mechanisms
- Natural Language Generation Evaluation and Metrics
- Convolutional Neural Networks for Sentence Classification
- Transformers and Self-Attention
- Bidirectional Encoder Representations from Transformers
- Multi-Task Learning and Transfer Learning
- Adversarial Learning
- Auto-encoders

Applications

NLP Applications:

- Text Classification
- Sentiment Analysis and Emotion Detection
- Word Classification (Named Entity Recognition)
- Neural Machine Translation
- Twitter Mining
- Information Extraction Keyphrase Extraction
- Question Answering

Software Resources

- Python (programming language) https://www.python.org/
- Machine Learning in Python scikit-learn http://scikit-learn.org/stable/
- TensorFlow https://www.tensorflow.org/
- PyTorch https://pytorch.org/
- AllenNLP: An open-source NLP research library, built on PyTorch https://allennlp.org/
- Keras: The Python Deep Learning library https://keras.io/
- Gensim https://radimrehurek.com/gensim/

Computational Resources

- Amazon Web Services (AWS) http://aws.amazon.com
- Google Cloud https://cloud.google.com

Word Embeddings Resources

- word2vec https://code.google.com/archive/p/word2vec/
- Glove https://nlp.stanford.edu/projects/glove/
- FastText https://fasttext.cc/
- ELMo https://allennlp.org/elmo
- BERT https://arxiv.org/abs/1810.04805

Course Grading

Section	Weight
Reading Assignments	20%
Programming Assignments	30%
Quizzes	20%
Final Project	30%

Class Project

Goal: teach you how to apply deep learning to real-world tasks.

- Application project. Find a problem/application of interest to you, identify algorithms that are best suited for that problem, and use the algorithms to solve the problem.
- Algorithmic project. Find a problem/application of interest to you, identify limitations of existing algorithms, and develop a new learning algorithm, or a novel variant of an existing algorithm, to solve it.

Submission Policies

- Assignments will be submitted online through Blackboard.
- Late submissions are not encouraged. I will accept late submissions, but there will be grading penalties (and at most three day late submissions).

Collaboration Policies

- You are encouraged to discuss the course material, concepts, and assignments, but you must write your answers independently.
- For each assignment, you are required to list students with whom you have discussed the assignment.
- Your submission should reflect your own knowledge and you should be able to reproduce the material you turn in at any time.
- Sharing answers will not be tolerated.
- Plagiarism will not be tolerated either.
- Appropriate citations for any external sources used in your work are mandatory. Never use sentences or phrases taken directly from a paper you are reviewing.

Who Am I?

- Cornelia Caragea, Associate Professor in CS@UIC <cornelia@uic.edu>
- Artificial Intelligence, Information Retrieval, Natural Language Processing, Machine Learning
 - Information Extraction Keyphrase Extraction
 - Mining Scientific Documents
 - Building Scholarly Knowledge Graphs
 - Mining Social Media in Disaster Events
 - Domain Adaptation approaches for Disaster Management
 - Image Privacy Prediction

Next...

• What is Natural Language Processing?