Quantum Field Theory

Xinyu Xiang

Jun. 2025

Warning: Lots of possible typos!!!!!!!!!! Notations:

- *X*: a smooth manifold, usually a compact manifold.
- \mathcal{E} : the space of fields, usually infinite dimensional.
- Conn(*P*, *X*): the space of connections on a principal bundle *P* over *X*.
- Maps(Σ , X): the space of maps from a surface Σ to X.
- $\Omega^{\bullet}(X)$: the space of differential forms on X.
- $\Omega_c^{\bullet}(X)$: the space of differential forms with compact support on X.
- Vect(M): the space of smooth vector fields on a manifold M, which is Lie algebra of Diff(M).

1 Day I: Overall Discussion and Mathematical Preliminaries

1.1 Actions and Path Integrals

Action $S: \mathcal{E} \to \mathbf{k}$ where \mathcal{E} always has infinite dimension, and is a field (usually \mathbb{R} or \mathbb{C}).

QM in Imaginary Time $\xrightarrow{Brownian Motion}$ Wiener Measure on Phase Space

Asymptotic Analysis — Perturbative Renormalisation Theory

Example 1.1. Some Examples of Classical Field Theories

- (a) Scalar Field Theory $\mathcal{E} = C^{\infty}(X)$
- (b) Gauge Theory $\mathcal{E} = \text{Conn}(P, X)$
- (c) σ Model $\mathcal{E} = Maps(\Sigma, X)$
- (d) Gravity $\mathcal{E} = Metrics(X)$ (More better descriptions does not depends on the background)

1.2 Observables

Observables are functions on the space of fields, i.e. $\mathcal{O} \in C^{\infty}(\mathcal{E})$.

Example 1.2 (field theory). (a) Consider X = pt, thus $\mathcal{E} = \mathbb{R}^n$ for example.

(b) dim X > 0, the new algebraic structure arise form topological structures of X.

The Key Point is: Capture the data of open sets of $X \longrightarrow$ Consider the observables supported on open set U of X denoted by Obs(U) where U is an open set of X.

Local data captures the open sets of X. The relations between open sets captures the global data of $X \longrightarrow$ The algebraic structure of the observables is a sheaf of X.

$$\bigsqcup_{i} U_{i} \longrightarrow \bigotimes_{i} \mathrm{Obs}(U_{i})$$

Which implies OPE in physics and factorization algebra in mathematics.

Higher product in QFT: The generalization of products of algebra ('products in any direction instead of left and right') e.g. QM gives only left and right module of an algebra; OPE has products in various directions.

Consider the dim X = 2 case in detailed

Example 1.3 (Holomorphic/Chiral Field Theory). *Various angle of product* A(w)B(z) *could be denoted by the time of* A(w) *rotations around* B(z), *which could be captured by the Fourier mode of* A(w), *thus one can have*

$$A(w)B(z) = \sum_{m \in \mathbb{Z}} \frac{(A_{(m)B(z)})}{(z-w)^{m+1}}$$

which is the Chiral algebra due to Beilinson and Drinfeld and associated with the Doubult cohomology $H^1_{\bar{\partial}}(\Sigma^2 - \Delta)$, where Σ^2 is the complex surface and Δ is the diagonal of Σ^2 . The higher structure could be captured by the higher cohomology $H^p_{\bar{\partial}}(\Sigma^2 - \Delta)$, which is the higher chiral algebra associated to the derived holomorphic section.

1.3 de Rham Cohomology

Chain of differential forms $\Omega^{\bullet}(X)$

$$\Omega^{\bullet}(X) = \left(\cdots \xrightarrow{d} \Omega^{n-1}(X) \xrightarrow{d} \Omega^{n}(X) \xrightarrow{d} \Omega^{n+1}(X) \xrightarrow{d} \cdots \right)$$
(1.1)

where d is the exterior derivative, and $\Omega^n(X)$ is the space of *n*-forms on X. The general construction of differential forms could be constructed over open set U by

$$\Omega^n(U) = \bigoplus_{1 \le i_1 \le \dots \le i_n \le n} C^{\infty}(U) dx^{i_1} \wedge \dots \wedge dx^{i_n}$$

where one can prove that $d^2 = 0$ and thus $(\Omega^{\bullet}(U), d)$ is a cochain complex. The cohomology of it is called the de Rham cohomology $H^{\bullet}(X)$.

Proposition 1.1. The definition of de Rham cohomology does not depend on the choice of the open set U and the choice of the coordinate system i.e. it is intrinsic \longrightarrow we can define the de Rham cochain complex on smooth manifold X.

Proof. Consider
$$\Box$$

Definition 1.1 (de Rham Cohomology on Compact Support). *Let X be a smooth manifold, then the de Rham cohomology on compact support is defined as*

$$H_c^{\bullet}(X) = H^{\bullet}(\Omega_c^{\bullet}(X), \mathbf{d}) \tag{1.2}$$

where $\Omega_c^{\bullet}(X)$ is the space of differential forms with compact support.

Theorem 1.2 (Stokes' Theorem). Let X be a smooth manifold with boundary, then for any $\omega \in \Omega^n(X)$, we have

$$\int_X d\omega = \int_{\partial X} \omega$$

which connects the local data $d\Omega^{\bullet}(X)$ and the global data ∂X .

Theorem 1.3 (Poincaré Lemma).

$$H^p(\mathbb{R}^n) = \begin{cases} \mathbb{R} & p = 0 \\ 0 & p > 0 \end{cases}, \quad H^p_c(\mathbb{R}^n) = \begin{cases} 0 & p < 0 \\ \mathbb{R} & p = n \end{cases}$$

Generator: $H^p(\mathbb{R}^n) \to \text{constant function}$, $H^p_c(\mathbb{R}^n) \to \text{a compact support function } \alpha = f(x) \text{vol}_n$, and $\int_{\mathbb{R}^n} \alpha = 1$.

Proof.

Important: An Integration arises from the de Rham cohomology!

Observation. (1) if $\alpha = d\beta$ where $\beta \in \Omega_c^{n-1}(X)$, then $\int_X \alpha = 0$, thus the generator is α whose integral is non-zero.

(2) **Dual Site**: Integration could be captured by the cohomology

$$\int_{\mathbb{R}^n} \leftrightarrow H_c^n(\mathbb{R}^n) \cong \mathbb{R}$$

Path integral could be interpreted as the integration over \mathcal{E} , which leads to consider the cohomology of it.

1.4 Cartan Formula

Vector fields could acts on smooth functions via

$$V(f) = V^{i} \frac{\partial f}{\partial x^{i}} = \frac{\mathrm{d}}{\mathrm{d}t} f(\varphi_{t}(x)) \bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{t}^{*} f(x) \bigg|_{t=0}$$

Such an action could be extended to differential forms by

$$\operatorname{Vect}(M) \ni V : \alpha \mapsto \mathcal{L}_V \alpha = \frac{\operatorname{d}}{\operatorname{d}t} \varphi_t^* \alpha \bigg|_{t=0}$$

which has the property $\mathcal{L}_V(\alpha \wedge \beta) = \mathcal{L}_V \alpha \wedge \beta + \alpha \wedge \mathcal{L}_V \beta$, which implies that the Lie derivative is a derivation on the algebra of differential forms with degree 0. And we have contraction ι_V which is a derivation of degree -1 on the algebra of differential forms.

$$\mathcal{L}_V = \mathrm{d}\iota_V + \iota_V \mathrm{d}$$

Lie derivative is homotopy trivial i.e. chain homotopic.

1.4.1 Proof of Poincaré Lemma

Use Cartan Formula, one can proof Poincaré Lemma.

Proof. Rescaling invariance of \mathbb{R}^n leads to the Euler vector field $E = x^i \frac{\partial}{\partial x^i}$. One can consider the associated diffeomorphism φ_t , where we assume $\varphi_0 = 1$ and thus $\varphi_{-\infty}^* \alpha = 0$, thus the closed form α could be rewritten as

$$\alpha = \varphi_0^* \alpha - \varphi_{-\infty}^* \alpha$$

$$= \int_{-\infty}^0 \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t^* \alpha \mathrm{d}t$$

$$= \int_{-\infty}^0 \mathcal{L}_E(\varphi_t^* \alpha) \mathrm{d}t$$

using the Cartan formula and $\mathrm{d}\varphi^*=\varphi^*\mathrm{d}$, we have

$$\alpha = \mathrm{d} \int_{-\infty}^{0} \varphi_{t}^{*} \iota_{E} \alpha \, \mathrm{d}t = \mathrm{d}\beta,$$

thus, the closed form α is exact, which implies that the de Rham cohomology $H^p(\mathbb{R}^n)$ is trivial for p>0. The same idea could be applied to the de Rham cohomology on compact support $H^p_c(\mathbb{R}^n)$. \square

2 Day II: Classical Mechanics