74LVC1G3157

2-channel analog multiplexer/demultiplexer

Rev. 02 — 18 September 2007

Product data sheet

1. General description

The 74LVC1G3157 is a low-power, low-voltage, high-speed Si-gate CMOS device.

The 74LVC1G3157 provides one analog multiplexer/demultiplexer with one digital select input (S), two independent inputs/outputs (Y0, Y1) and a common input/output (Z).

Schmitt trigger action at the select input makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V.

2. Features

- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
 - 7.5 Ω (typical) at $V_{CC} = 2.7 \text{ V}$
 - 6.5 Ω (typical) at $V_{CC} = 3.3 \text{ V}$
 - 6 Ω (typical) at $V_{CC} = 5 \text{ V}$
- Switch current capability of 32 mA
- Break-before-make switching
- High noise immunity
- CMOS low power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD 78 Class I
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Control input accepts voltages up to 5.5 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

Type number	Package	Package								
	Temperature range	Name	Description	Version						
74LVC1G3157GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363						
74LVC1G3157GV	–40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6); 6 leads	SOT457						
74LVC1G3157GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886						
74LVC1G3157GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891						

4. Marking

Table 2. Marking

Type number	Marking code
74LVC1G3157GW	YJ
74LVC1G3157GV	YJ
74LVC1G3157GM	YJ
74LVC1G3157GF	YJ

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
Y1	1	independent input or output
GND	2	ground (0 V)
Y0	3	independent input or output
Z	4	common output or input
V _{CC}	5	supply voltage
S	6	select input

7. Functional description

Table 4. Function table[1]

Input S	Channel on
L	Y0
Н	Y1

[1] H = HIGH voltage level;L = LOW voltage level.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I_{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-50	-	mA
I _{SK}	switch clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±50	mA
V_{SW}	switch voltage	enable and disable mode	<u>[2]</u> –0.5	$V_{CC} + 0.5$	V
I_{SW}	switch current	$V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	<u>[3]</u> _	250	mW

^[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
V _{SW}	switch voltage	enable and disable mode	<u>[1]</u> 0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	[2] _	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$	[2] _	-	10	ns/V

^[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.

^[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.

^[3] For SC-88 and SC-74 packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 packages: above 45 °C the value of P_{tot} derates linearly with 2.4 mW/K.

^[2] Applies to control signal levels.

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

	Parameter	Conditions		- 40 °	°C to +8	5 °C	–40 °C to	Unit	
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level	V _{CC} = 1.65 V to 1.95 V		0.65V _{CC}	-	-	0.65V _{CC}	-	V
	input voltage	V _{CC} = 2.3 V to 2.7 V		1.7	-	-	1.7	-	V
		V _{CC} = 3 V to 3.6 V		2.0	-	-	2.0	-	V
		V _{CC} = 4.5 V to 5.5 V		$0.7V_{CC}$	-	-	$0.7V_{CC}$	-	V
V_{IL}	LOW-level	V _{CC} = 1.65 V to 1.95 V		-	-	$0.35V_{CC}$	-	$0.35V_{CC}$	V
	input voltage	V _{CC} = 2.3 V to 2.7 V		-	-	0.7	-	0.7	V
		V _{CC} = 3 V to 3.6 V		-	-	0.8	-	8.0	V
		V _{CC} = 4.5 V to 5.5 V		-	-	$0.3V_{CC}$		$0.3V_{CC}$	V
I _I	input leakage current	pin S; $V_1 = 5.5 \text{ V or GND}$; $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	[2]	-	±0.1	±2	-	±10	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5 V$; see Figure 6	[2]	-	±0.1	±5	-	±20	μА
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5 V$; see Figure 7	[2]	-	±0.1	±5	-	±20	μА
I _{CC}	supply current	$V_{I} = 5.5 \text{ V or GND};$ $V_{SW} = \text{GND or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	[2]	-	0.1	10	-	40	μА
ΔI_{CC}	additional supply current	$\begin{aligned} &\text{pin S; V}_{\text{I}} = \text{V}_{\text{CC}} - 0.6 \text{ V; I}_{\text{O}} = 0 \text{ A;} \\ &\text{V}_{\text{CC}} = 5.5 \text{ V; V}_{\text{SW}} = \text{GND or V}_{\text{CC}} \end{aligned}$	[2]	-	5	500	-	5000	μΑ
Cı	input capacitance			-	2.5	-	-	-	pF
$C_{S(OFF)}$	OFF-state capacitance			-	6.0	-	-	-	pF
C _{S(ON)}	ON-state capacitance			-	18	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C.

^[2] These typical values are measured at V_{CC} = 3.3 V

10.1 Test circuits

10.2 ON resistance

Table 8. ON resistance

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 9 to Figure 14.

Symbol	Parameter	Conditions	-40 °C to +85 °C		-40 °C to	+125 °C	Unit	
			Min	Typ[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = GND$ to V_{CC} ; see <u>Figure 8</u>						
		$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	34.0	130	-	195	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	12.0	30	-	45	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	10.4	25	-	38	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	7.8	20	-	30	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	6.2	15	-	23	Ω

 Table 8.
 ON resistance ...continued

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 9 to Figure 14.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND; see <u>Figure 8</u>						
		$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	8.2	18	-	27	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	7.1	16	-	24	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	6.9	14	-	21	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	6.5	12	-	18	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	5.8	10	-	15	Ω
		V _I = V _{CC} ; see <u>Figure 8</u>						
		$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	10.4	30	-	45	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	7.6	20	-	30	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	7.0	18	-	27	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	6.1	15	-	23	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	4.9	10	-	15	Ω
$R_{ON(flat)} \\$	ON resistance	$V_I = GND \text{ to } V_{CC}$						
	(flatness)	$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	26.0	-	-	-	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	5.0	-	-	-	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	3.5	-	-	-	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	2.0	-	-	-	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	1.5	-	-	-	Ω

^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .

^[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

10.3 ON resistance test circuit and graphs

 $R_{ON} = V_{SW} / I_{SW}$

Fig 8. Test circuit for measuring ON resistance

- (1) $V_{CC} = 1.8 \text{ V}.$
- (2) $V_{CC} = 2.5 \text{ V}.$
- (3) $V_{CC} = 2.7 \text{ V}.$
- (4) $V_{CC} = 3.3 \text{ V}.$
- (5) $V_{CC} = 5.0 \text{ V}.$

Fig 9. Typical ON resistance as a function of input voltage; $T_{amb} = 25 \, ^{\circ}C$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 10. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 11. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$

74LVC1G3157_2 © NXP B.V. 2007. All rights reserved.

- (1) $T_{amb} = 125 \, {}^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 12. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 13. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 14. ON resistance as a function of input voltage; V_{CC} = 5.0 V

11. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 18.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	Z to Yn or Yn to Z; see Figure 15	[2][3]				'		
		V_{CC} = 1.65 V to 1.95 V		-	-	2	-	3.0	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	-	1.2	-	2.0	ns
		$V_{CC} = 2.7 \text{ V}$		-	-	1.0	-	1.5	ns
		V_{CC} = 3 V to 3.6 V		-	-	0.8	-	1.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	-	0.6	-	1.0	ns
t _{en}	enable time	S to Yn; see Figure 16	<u>[4]</u>						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.0	8.7	14	1.0	14.0	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	5.3	7.5	1.0	7.5	ns
	$V_{CC} = 2.7 \text{ V}$		1.0	4.9	6.0	1.0	6.0	ns	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.5	4.0	5.5	0.5	5.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		0.5	3.0	4.0	0.5	4.0	ns
t _{dis}	disable time	S to Yn; see Figure 16	<u>[5]</u>						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.5	6.0	8.5	2.5	8.5	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.0	4.4	6.0	2.0	6.0	ns
		$V_{CC} = 2.7 \text{ V}$		1.5	4.2	5.0	1.5	5.0	ns
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		1.5	3.6	4.5	1.5	4.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		8.0	2.9	3.5	8.0	3.5	ns
t _{b-m}	break-before-make	see Figure 17	<u>[6]</u>						
	time	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		0.5	-	-	0.5	-	ns
		V_{CC} = 2.3 V to 2.7 V		0.5	-	-	0.5	-	ns
		$V_{CC} = 2.7 V$		0.5	-	-	0.5	-	ns
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.5	-	-	0.5	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		0.5	-	-	0.5	-	ns

^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).

^[4] t_{en} is the same as t_{PZH} and t_{PZL} .

^[5] t_{dis} is the same as t_{PLZ} and t_{PHZ}.

^[6] Break-before-make specified by design.

11.1 Waveforms and test circuits

Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 15. Input (Yn or Z) to output (Z or Yn) propagation delays

Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 16. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output				
V _{CC}	V _M	V _M	V _X	V _Y		
1.65 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V		

a. Test circuit

b. Input and output measurement points

Fig 17. Test circuit for measuring break-before-make timing

Test data is given in Table 11.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

 V_{EXT} = External voltage for measuring switching times.

Fig 18. Load circuit for switching times

Table 11. Test data

Supply voltage	Input		Load		V _{EXT}		
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
1.65 V to 1.95 V	V_{CC}	\leq 2.0 ns	50 pF	500Ω	open	GND	2V _{CC}
2.3 V to 2.7 V	V_{CC}	≤ 2.0 ns	50 pF	$500~\Omega$	open	GND	2V _{CC}
2.7 V	V_{CC}	≤ 2.5 ns	50 pF	$500~\Omega$	open	GND	2V _{CC}
3 V to 3.6 V	V_{CC}	≤ 2.5 ns	50 pF	$500~\Omega$	open	GND	$2V_{CC}$
4.5 V to 5.5 V	V_{CC}	≤ 2.5 ns	50 pF	500Ω	open	GND	2V _{CC}

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

		<u>-</u>	, unio			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	$\begin{aligned} &f_i = 600 \text{ Hz to } 20 \text{ kHz; } R_L = 600 \ \Omega; \\ &C_L = 50 \text{ pF; } V_I = 0.5 \text{ V (p-p);} \\ &\text{see } \frac{\text{Figure } 19}{\text{ or } 19} \end{aligned}$				
		V _{CC} = 1.65 V	-	0.260	-	%
		V _{CC} = 2.3 V	-	0.078	-	%
		$V_{CC} = 3.0 \text{ V}$	-	0.078	-	%
		V _{CC} = 4.5 V	-	0.078	-	%
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; $C_L = 5 pF$; see Figure 20				
		V _{CC} = 1.65 V	-	200	-	MHz
		V _{CC} = 2.3 V	-	300	-	MHz
		V _{CC} = 3.0 V	-	300	-	MHz
		V _{CC} = 4.5 V	-	300	-	MHz
$lpha_{iso}$	isolation (OFF-state)	$R_L = 50 \Omega$; $C_L = 5 pF$; $f_i = 10 MHz$; see Figure 21				
		V _{CC} = 1.65 V	-	-42	-	dB
		V _{CC} = 2.3 V	-	-42	-	dB
		V _{CC} = 3.0 V	-	-40	-	dB
		V _{CC} = 4.5 V	-	-40	-	dB
Q _{inj}	charge injection	C_L = 0.1 nF; V_{gen} = 0 V; R_{gen} = 0 Ω ; f_i = 1 MHz; R_L = 1 M Ω ; see Figure 22				
		V _{CC} = 1.8 V	-	3.3	-	pC
		V _{CC} = 2.5 V	-	4.1	-	pC
		V _{CC} = 3.3 V	-	5.0	-	рС
		V _{CC} = 4.5 V	-	6.4	-	рС
		V _{CC} = 5.5 V	-	7.5	-	рС

11.3 Test circuits

0.5V_{CC} V_{CC} 0.5V_{CC} Switch S 1 V_{IL} V_{IL} V_{IL} V_{IL} V_{IL} S V_{IL} Switch S 1 V_{IL} V_{IL} V_{IL} S V_{IL} Switch S 1 V_{IL} V_{IL} S V_{IL} Switch S 1 V_{IL} S V_{IL}

a. Test circuit

b. Input and output pulse definitions

 $Q_{inj} = \Delta V_O \times C_L.$

 ΔV_{O} = output voltage variation.

R_{gen} = generator resistance.

V_{gen} = generator voltage.

Fig 22. Test circuit for measuring charge injection

15 of 22

12. Package outline

Plastic surface-mounted package; 6 leads

SOT363

Fig 23. Package outline SOT363 (SC-88)

16 of 22

Plastic surface-mounted package (TSOP6); 6 leads

SOT457

Fig 24. Package outline SOT457 (SC-74)

17 of 22

Fig 25. Package outline SOT886 (XSON6)

74LVC1G3157_2 © NXP B.V. 2007. All rights reserved.

Fig 26. Package outline SOT891 (XSON6)

74LVC1G3157_2 © NXP B.V. 2007. All rights reserved.

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
DUT	Device Under Test

14. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74LVC1G3157_2	20070918	Product data sheet	-	74LVC1G3157_1	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts have been adapted to the new company name when appropriate. 				
	 Added type number 74LVC1G3157GF (XSON6 package). 				
	Section 1 "General description":				
	Added: Schmitt trigger action at the enable input.				
	Section 2 "Features":				
	Added: Switch handling capability of 32 mA.				
	Section 8 "	Limiting values":			
	Added: Derating factors of the applicable packages.				
	 Section 10 	"Static characteristics":			
	Changed: Maximum values of ON resistance (peak) parameters and graphics.				
	Changed: Conditions for input leakage and supply current.				
	Changed: Conditions for OFF-state and ON-state leakage current.				
	 Section 11 	"Dynamic characteristics":			
	Changed: Typical values of the charge injection.				
74LVC1G3157_1	20050207	Product data sheet	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

17. Contents

1	General description
2	Features
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
10.1	Test circuits 6
10.2	ON resistance
10.3	ON resistance test circuit and graphs 8
11	Dynamic characteristics 10
11.1	Waveforms and test circuits
11.2	Additional dynamic characteristics
11.3	Test circuits
12	Package outline 16
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status 21
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks
16	Contact information
17	Contents 22

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

