Math 635 Lecture 12

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

2/15/21

Recall:

Defn: $\gamma:[a,b]\to M$ (for M a Riemannian manifold) is a geodesic iff $\frac{D}{dt}\dot{\gamma}=0$.

Recall: $\dot{\gamma}$ is the natural lift of γ along γ . We say $\dot{\gamma}(t) = (\gamma(t), \dot{\gamma}(t))$, so there's some ambiguity in the notation.

Review: In coordinates on $U \subset M$, we write $\gamma(t) = (x^1(t), \dots, x^n(t))$, with each $x^i \in C^{\infty}([a, b], M)$. Then γ is a geodesic iff $\ddot{x}^k(t) = -\dot{x}^i(t)\dot{x}^j(t)\Gamma^k_{ij}(\gamma(t))$, where $\Gamma^k_{ij}: U \to \mathbb{R}$ are the Christoffel symbols.

Observe: If ∇ is trivial, i.e., the "flat case", then $\Gamma_{ij}^k = 0$. So $\ddot{x}^k = 0$, and $\forall k, x^k(t) = tv^k(0) + x^k(0)$. See Do Carmo, Chapter 3, §2 for more details.

We want to rewrite the geodesic equations, locally, as a first order system in twice as many unknowns. We introduce v^1, \ldots, v^n , which we call the "velocities", such that $v_k \stackrel{\text{def}}{=} \dot{x}^k$, and $\dot{v}^k = -\Gamma^k_{ij}(\gamma(t))v^iv^j$ are the "accelerations".

Note that time derivatives have been solved in all cases, so there is a unique solution (for a small time interval) given $x^k(0)$ and $v^k(0)$, for k = 1, ..., n.

Lemma: (Do Carmo 2.3) $\exists ! G \in \mathfrak{X}(TM)$ s.t. the integral curves of G are precisely of the form $\dot{\gamma}(t) = (\gamma(t), \frac{d\gamma}{dt}(t))$, where γ is a geodesic. In other words, the integral curves of G are precisely the lifts to TM of geodesics on M. (Integral curves of G are locally solutions to the above system of differential equations.)

Proof: First, we'll prove local existence and uniqueness of G in coordinates. Let $V \subset M$ be a coordinate neighborhood, with coordinates (x^1, \ldots, x^n) , inducing coordinates $(x^1, \ldots, x^n, v^1, \ldots, v^n)$ on TV by $v = \sum_{i=1}^n v^i \partial_{x^i}|_p$ for $(p, v) \in TV$. Then $G = \sum_{i=1}^n a_i \partial_{x^i} + b_i \partial_{v^i}$, for some $a_i, b_i \in C^{\infty}(TV)$ (note that this is true for any vector field on TV).

Now, comparing with the system of differential equations, we can see that we must have $a_i = v^i = \dot{x}^i$, $\forall i$. So $G(x,v) = v^i \partial_{x^i} - \Gamma^k_{ij}(x) v^i v^j \partial_{v^k}$ iff the integral curves of V solve the system of equations.

Finally, local existence and uniqueness implies global existence and uniqueness by covering M with coordinate charts. \square

Observe: The vector field G can be described using T^*M and its symplectic form, and $TM \to T^*M$ by $T_pM \to T_p^*M$ using $\langle \ , \ \rangle_p$. In the future, we'll also consider the Hamiltonian picture...

Now, we want to think about the flow of G on TM. Let $X \in \mathfrak{X}(M)$. Given any $m \in M$, there's a neighborhood $\mathcal{U} \subseteq M$ of m, $\delta > 0$, and $\varphi : (-\delta, \delta) \times \mathcal{U} \to M$ smooth such that $\forall \mu \in \mathcal{U}, t \mapsto \varphi(t, \mu)$ is the integral curve of X s.t. $\varphi(0, \mu) = X_{\mu}$, and $\forall t, \frac{d}{dt}\varphi(t, \mu) = X_{\varphi(t, \mu)}$.

Now, apply this to $\mathcal{M} = TM$, X = G, and m = (p, 0) for $p \in M$. Then $\exists \mathcal{U} \subseteq \mathcal{M}$ and $\delta > 0$ as in the theorem. So we have $\{(q, 0) \in TM : q \in M\} \cong M$.

Claim: $\exists V \subseteq M$, a neighborhood of p, and $\varepsilon > 0$ s.t. $\{(q, v) \in TM \mid q \in V, ||v|| < \varepsilon\} \subseteq \mathcal{U}$.

We get

$$(-\delta, \delta) \times \{(q, v) \mid q \in V, ||v|| < \varepsilon\} \xrightarrow{\varphi} TM \downarrow^{\pi}_{\gamma = \pi \circ \varphi} M$$

An important property of γ is that $\forall (q,v), t \mapsto \gamma(t,q,v)$ is the unique geodesic s.t. $\gamma(0,q,v) = q$ and $\left. \frac{d}{dt} \gamma(t,q,v) \right|_{t=0} = v$.

Lemma: By reparameterizing geodesics by a constant factor in time, one can show (keeping the notation from our previous discussion) that, for a > 0, then $\gamma(t, q, av) = \gamma(at, q, v)$, provided that both sies are defined.

Proof: Check that both sides are geodesics, with the same initial conditions. Then by uniqueness of geodesics, they're equivalent. \Box