Sensors of temperature (contact)

AE3B38SME - Sensors and Measurement

Thermocouples

$$V_t = k \left(T_h - T_c \right)$$

- it is composed of different materials
- it measure the difference of temperature

The voltage is generated by gradient of temperature

The voltage is generated by gradient of temperature

Thermocouples are very robust, but they might fail too

Compensation of cold end temperature

- by measuring the temperature at cold end and numerically adjust the reading

Compensation of cold end temperature

- using compensation box

$$V_t = k \left(T_h - T_c \right)$$

$$V_0 = k T_h$$

Compensation box

$$V_0 = V_{t+} V_{br} = k \left(T_h - T_c \right) + k' T_c$$

Types of thermocouples

Omega

Chromel:90% nickel + 10% chromium

Alumel: 95% nickel, 2% manganese, 2% aluminium

Sensitivity is not always constant

The sensitivity is always about tens of $\mu V/K$. Amplification is often required.

Industrial thermocouple

Metal Resistive Thermometers

wire wound thermometer

$R=R_0\cdot(I+\alpha\cdot\Delta T)$

Common materials

thin layer resistive thermometer

	α [%/K]	range [°C]
Platinum	0.39	- 200 / 850
Nickel	0.69	- 80 / 320
Copper	0.43	- 200 / 260

Platinum resistive thermometers

Normalized resistance

 $R_{100} / R_0 = 1.385$

Standards define the ratio between the resistance at 100 °C and the resistance at 0°C

(1.3910 in GB, USA, Japan, Russia)

The resistance is not linear

$$R_t = R_0 [I + A \cdot t + B \cdot t^2 + C \cdot t^3 (t - 100)]$$

$$A = 3.90802.10-3 K^{-1}$$

 $B = -5,802.10-7 K^{-2}$

$$t < 0$$
°C C= -4,27350.10-12 K⁻⁴
 $t > 0$ °C C=0

Actual non-linearity

Actual non-linearity

Standard value of Pt resistance:

PtI00 \rightarrow 0°C R= 100 Ω

200, 500, 1000, 2000 Ω

tollerance

Nickel resistance thermometer:

- high sensitivity, quick response, small dimensions
- limited temperature range

$$R_t = R_0 [I + A \cdot t + B \cdot t^2 + C \cdot t^2 (t - 100)]$$

A=
$$5.49 \ 10^{-3} \ K^{-1}$$

B= $6.80 \ 10^{-6} \ K^{-2}$
C= $9.24 \ 10^{-9} \ K^{-3} \ for \ t>0 \ (else C=0)$

Copper resistance thermometer:

- limited range (from -200°C to + 200°C)
- small resistance
- direct measurement of windings temperature

$$R_t = R_0 [I + \alpha \cdot t]$$
 $\alpha = 4.26 I0^{-3} K^{-1}$

Semiconductor resistive sensors of temperature

Thermistor PTC - Positive Temperature Coefficient NTC - Negative Temperature Coefficient

NTC - Negative Temperature Coefficient

-produced e.g. by sintering technology from the powder of metal oxides -usable range - from 4.2K to 1000 °C

$$R=A \cdot e^{\frac{B}{T}}$$

$$R_1 = A \cdot e^{\frac{B}{T_1}}$$

$$R_2 = A \cdot e^{\frac{B}{T_2}} \rightarrow R_2 = e^{\left(\frac{B}{T_1} - \frac{B}{T_2}\right)} \rightarrow B$$

PTC, posistors

 $\alpha > 0$

- made from polycrystalline ferroelectric ceramics e.g. (BaTiO3)
- application: two state sensors
 (thermal switches indication of excessing max. temp.)

resistance slowly decrease with increasing temperature

after Curie point rapid increase of resistance - relation for increase of resistance

Semiconductor monocrystalline sensors of temperature

Resistance of the sensor

 β – geometrical factor d – diameter of contact ρ – resistivity

$$R = \frac{\rho}{\beta d}$$
 sio₂

Problem: in order to measure a resistance we need to inject a current which generates heat!

SELF HEATING

difference of temperature given by self heating:

$$\Delta T = \frac{RI^2}{D}$$
thermal resistance

Pt100 : max I mA to have max $\Delta T=0.1^{\circ}C$

Effect of self heating on

negastor (NTC thermistor)

posistor (PTC thermistor)

at high I the temp increases so the R drops and therefore V=RI drops.

we can't increase I because increment of I would increase R and then decrease I back.

Two wire connection in a bridge

 R_{ad} can be adjusted to balance the bridge and null the contribution of R_{cu} . Problem: the resistance of the cables might change too with temperature

Three wire connection in a bridge

Two resistances of the cables fall in opposite sides of the bridge's leg, the compensate each other. The 3rd cable resistance has no effect (lv=0)

Linearization of thermistor with a series resistor

Linearization of thermistor with a series resistor

 $V_s = 5 V$ $R_1 = 2,365 \Omega$

Linearization of thermistor with parallel resistor

PN junction based sensors of temperature

The V-I curve of PN junction depends on temperature

Shockley equation

$$I_D = I_S \left(e^{\frac{V_D}{mV_T}} - I \right)$$

$$V_D = m \cdot V_T \cdot \ln \left(\frac{I_D}{I_S} + I \right)$$

Is – reverse saturation current

ID - forward current in PN junction

m – coefficient of recombination

V_D – forward voltage on PN junction

VT – thermal voltage

e – elementary charge

k – Boltzmann constant

$$V_T = \frac{kT}{e}$$

This principle can be used to create a compensation circuit for thermocouples cold end

V_D changes with about 2 mV/K. A voltage divider is used to achieved the desired sensitivity.

Quartz thermometer

- I quartz
- 2 quartz controlled oscillator
- 3 ref. quartz controlled oscillator (thermostated)
- 4 mixer (analogue multiplier)
- 5 low frequency filter (4+5=synchronous detector)
- 6 counter with display

very precise!

Reversible temperatur labels

Non-reversible temperatur labels

