Convolutional gated recurrent architectures for video segmentation

Mennatullah Siam, Sepehr Valipour, Martin Jagersand, Nilanjan Ray

Abstract

- Previous work: semantic segmentation on still images
- Temporal data in video for semantic segmentation
- Fully-CNN and Gated Recurrent Unit (GRU)
- Sequence of consecutive frames and outputs segmentation of last frame
- GRU to preserve spatial connectivity
- Around 5% improvement for Dice respect to F-CNN

Method

- Recurrent neural networks:
 - Long short term memory (LSTM)
 - Gated recurrent unit (GRU): reduced number of gates and parameters

Overview

Recurrent Fully Convolution

Qualitative Results

Quantitative Results

Table 2: Comparison of RFC-VGG with its baseline counterpart on DAVIS and SegTrack

		Precision	Recall	F-measure	IoU
SegTrack V2	FC-VGG	0.7759	0.6810	0.7254	0.7646
	RFC-VGG	0.8325	0.7280	0.7767	0.8012
	FC-VGG Extra Conv	0.7519	0.7466	0.7493	0.7813
DAVIS	FC-VGG	0.6834	0.5454	0.6066	0.6836
	RFC-VGG	0.7233	0.5586	0.6304	0.6984

Qualitative Results

Table 3: Semantic Segmentation Results on Synthia Highway Summer Sequence for RFC-VGG compared to FC-VGG

	Mean Class IoU	Per-Class IoU								
	Wican Class 100	Car	Pedestrian	Sky	Building	Road	Sidewalk	Fence	Vegetation	Pole
FC-VGG	0.755	0.504	0.275	0.946	0.958	0.840	0.957	0.762	0.883	0.718
RFC-VGG	0.812	0.566	0.487	0.964	0.961	0.907	0.968	0.865	0.909	0.742

Summary

- Time correlation is effective overall
- More effective for smaller objects (car, pedestrian) than large objects(sky, buildings)
- Higher complexity