Pojęcie obrazu i jego akwizycja

WYKŁAD 1
Dla studiów niestacjonarnych 2021/2022
Semestr letni

Dr hab. Anna Korzyńska, prof. IBIB PAN

Co to jest obraz?

Obraz to wynik obserwacji świata przedstawiony na ograniczonej płaszczyźnie

(najczęściej prostokątnej)

Artystyczny i użytkowy (informacyjny), pamiątkowy

Poznawczy i użytkowy (klasyfikacyjny), archiwizujący

Obraz to ...

Dwuwymiarowa funkcja mówiąca o wartości pewnej mierzalnej wielkości f (x, y), (najczęściej wartość to określa intensywność światła/luminancję lub intensywność kolorów podstawowych) w miejscu o współrzędnych x, y na ograniczonej, dwuwymiarowej, powierzchni.

Obraz niesie informację o <u>odwzorowywanej</u> rzeczywistości lub <u>o wizji autora</u>, umieszczoną na ograniczonej, dwuwymiarowej przestrzeni (2D)

Obraz analogowy – przestrzeń jest spójna; obraz cyfrowy – przestrzeń jest dyskretna

Obraz analogowy i cyfrowy

Obraz jako odwzorowanie rzeczywistości na ograniczonej dwuwymiarowei przestrzeni: może być odwzorowany na przestrzeni ciągłej (płótno, papier fotograficzny itp.) lub na przestrzeni dyskretnej (ekran monitora komputerowego, telewizora cyfrowego, itp.)

Obrazy w komputerze

- Narysowane narzędziami grafiki komputerowej (cel informacyjny lub artystyczny)
- Wygenerowane przez oprogramowanie jak wizualizacji informacji będącej rezultatem obliczeń lub zbierania informacji (cel naukowo -informacyjny)
- Pozyskane z rzeczywistości dzięki urządzeniom akwizycji obrazów: kamery, skanery, aparaty cyfrowe, medyczne urządzenia diagnostyczne, itp.. (cel poznawczy, archiwizacyjny, użytkowy np. klasyfikacja, detekcji, itp., lub cel artystyczny)

Jak powstał obraz cyfrowy

- odwzorowuje 3D na dyskretną i ograniczoną przestrzeń 2D

31 czerwca 1964 o 13:09 UT (9:09 AM EDT) Vidicon B

> Rozmiar w pikselach: 1150x1150

Obraz cyfrowy to informacja podwójnie dyskretna:

Księżyc

informacja o intensywności (skwantowana)

Obraz cyfrowy w naukach technicznych i przyrodniczych to:

Zwarty, jednorodny i przestrzennie uporządkowany zbiór sygnałów:

- związanych z cechą/cechami pomiarowymi, na bazie których tworzymy obraz (natężenie fali elektromagnetycznej, akustycznej, wielkości nie falowe np. czas relaksacji)
- dostosowanych do materialnego nośnika obrazu (papieru, kliszy, dyskietki, pamieci dyskowej itp.)
- niosacych informacie o odwzorowywanej rzeczywistości

Podstawowe definicje wielkości opisujących obraz

Obraz to dyskretna dwuwymiarowa funkcja f(x, y) określona na ograniczonym fragmencie płaszczyzny, której wartości f to **intensywność** (jasność, kolor) w tym punkcie (x, y).

- Dla obrazów szaroodcieniowych wartość f to luminancja
- Dla obrazów kolorowych wartość f to wektor o trzech (lub więcej) składowych, określający np.: kolor w wybranej przestrzeni koloru f={f₁, f₂, f₂}
- Dla obrazów wielomodalnych i multispektranych wartość f to wielowymiarowy wektor określający różne dane pomiarowe.

 $f \in [L_{min'}, L_{max}]$ - skala szarości/intensywności składowej pojedynczego kanału obrazu

 L_{min} = 0, minimalna intensywność odpowiada czerni

L_{max} = maksymalna intensywność odpowiada bieli

M - liczba poziomów szarości $M=L_{\mathrm{max}}-L_{\mathrm{min}}+1$ $M=2^k$

0

Obrazy konstruowane na podstawie wielu sygnałów

Obrazy multimodalne

Intensywność odbicia światła białego

Intensywność odbicia światła podczerwonego

Intensywność rozproszenia fali akustycznej

Obrazy konstruowane na podstawie wielu sygnałów Obrazy multispektralny

Newada

Skaner multispektralny OPS z 8 zakresami spektralnymi od 0,52 do 2,40 um oraz radar obrazujący wykorzystujący dlugość fali 23,5 cm (1275 MHz) stosujący polaryzację pozioma (HH) kat padariia środka wybieranego pasa to 35 stopni, szerokość obrazowanego pasa wynosi?

Rozdzielczość zasięgu i rozdzielczość azymutalna to 25 m. JERS -1 (Japanise Earth Resources Satellite)

Galaktyki a520485

Zdjećie przedstawia gromadę galaktyk. Abel 820° wykonane przez nakżenie oksładowyć jej obrzaźw wykonanych w różnych długościach fal. Kosmiczny teleskop Chandra obserwował obiekt w zakresie promieniowania X (kolor czerwony); Teleskopy Kanadyjski, Francuski, wysp Hawaii oraz teleskop Obianu w zakresie widzialnym (kolor zbły oraz pomarańczowy); Materię zabarwiono na kolor niebieski, z której to większość stanow ciemna materia.

George Seurat "Sunday Afternoon on the Island of Grand Jatte"

Model obrazu cyfrowego

- N1=N2=5
 - M=4 Lmin=0 czerń; Lmax=3 biel,
 1 jasna szarość, 2 ciemna szarość

33333	00000	00000
33333	00000	03330
33333	00000	0020
33333	00000	0010
33333	00000	0000

Obraz cyfrowy i piksel

Obraz cyfrowy niesie podwójną informacje o:

- lokalizacji w przestrzeni obrazu wartość intensywności cechy/cech pomiarowych oraz o samej wartości tej cech
- czyli o wartości poziomu szarości, koloru w danym punkcie f(i, j)=n gdzie n jest skalarem lub wektorem i n∈ {0,1,...}

Piksel to podstawowy element obrazu (ana. Picture element)

0,0)		i ,		
-,	15	15	0	0	2
j	13	13	15	0	0
	0	0	7	14	14

N1=5 N2=3 L_{min}=0 L_{max}=15 M=16

Rozdzielczość obrazu

- Rozdzielczość przestrzenna określa stopień rozróżnialności detali; tym lepsza, im większa wartość N/na jednostkę długości. Jest wyrażana w jednostkach zwanych punktami na cal (ang. Dot per inch)
- Rozdzielczość poziomów szarości określa ilość rozróżnianych poziomów szarości lub kolorów; tym lepsza, im większa wartość M. Jest dobierana tak, aby była potegą liczby 2.
- Inne rozdzielczości: całkowita, interpolowana, urządzeń prezentacji obrazu jak monitor, drukarka, ploter, urządzeń akwizycji.

Rozdzielczość przestrzenna

Ilość szczegółów zapisanych w obrazie na jednostkę długości (najczęściej na cal)

Granica rozdzielczości to rozmiar szczegółów i obiektów, które są widoczne na obrazku.

O rozdzielczości mówimy na poziomie:

- Akwizycji (punkty na cal),
- Wyświetlania na ekranie (linie na cal, punkty),
- Drukowania (punkty na cal)

Wymiar obrazu w pikslach

Jeśli akwizycja była przeprowadzona na matrycy 1200x1600

To jego rozdzielczość akwizycji wynosi:

1200:4.3cala=280 ppi

Rozdzielczość poziomów szarości

Histogram - rozkład ilości wystąpień pikseli o zadanych poziomach jasności w obrazie

15 15 0 13 13 15

0 0

0

15 14 13

Histogram definicja

Histogram to wykres słupkowy przedstawiający ilość pikseli o każdej potencjalnej wartości występującej w obrazie.

- Statystyka odzwierciedlająca rozkład jasności punktów w obrazie.
- Pewna estymata rozkładu jasności oryginalnego obrazu analogowego i rzeczywistości .

Akwizycja obrazu

Akwizycja (pozyskiwanie) obrazu cyfrowego

Akwizycja obrazu - przetworzenie **informacji o obiekcie fizycznym** do postaci zbioru danych dyskretnych (**obrazu cyfrowego**).

Akwizycja obrazu cyfrowego

Akwizycja (pozyskiwanie, zbieranie) obrazu - przetworzenie informacji o fizycznym obiekcie lub scenie do postaci zbioru danych dyskretnych (f(x,y) obraz cyfrowy) nadających się do zapisania w pamięci komputera, a następnie do wyświetlenia, drukowania i dalszego przetwarzania za pomocą odpowiedniego oprogramowania.

Elementy procesu akwizycji:

- 1. Oświetlenie obrazu.
- 2. Formowanie obrazu (optyczne).
- 3. Detekcja obrazu.
- Formowanie wyjściowego sygnału z urządzenia (kamera, skaner)

Elementy procesu akwizycji

 Formowanie obrazu/sygnału (optyczne, akustyczne, inne)

2. Detekcja sygnału przez czujniki analogowo-cyfrowe.

3. Formowanie kodu obrazu (kamera, skaner, MRI, USG).

Najważniejsze elementy procesu akwizycji (pozyskania)

- Formowanie obrazu
 - Dyskretyzacja obrazu, czyli dyskretyzacja funkcji f (x,y) na dwóch poziomach:
 - · przestrzenna (próbkowanie dziedziny funkcji)
 - · amplitudowa (kwantyzacja wartości funkcji)

Proces wiąże się z nieuniknioną i nieodwracalną **utratą informacji** o <u>wartości</u> cech pomiarowej <u>poza węzłami</u> siatki, i <u>o dokładnej</u> wartości w punktach siatki

- Przekształcenie danych surowych w dane do zapisu obrazu
- Kodowanie obrazu zgodne z wybranym formatem zapisu (RAW, JPEG, TIFF)

Matryce CCD jako elementy pozyskania obrazu w aparacie fotograficznym cyfrowym

Matryca CCD (charge coupled device) ma płaską periodyczną strukturę (dyskretną), której podstawowe elementy mają 10-5µm długości i szerokości, która zamienia światło na prąd (sygnał analogowy) o napięciu proporcjonalnym do jasności. Prąd ten jest próbkowany przez konwerter A/D (framegrabber).

Nagroda Nobla za sensor CCD

Fizyka 2009

Willard S. Boyle (Kanada/USA) i George E. Smith (USA) za "wynalezienie półprzewodnikowego obwodu obrazującego - sensora CCD"

1969 - rozpoczecie prac

Pierwszy układ wczytujący miał zaledwie osiem pikseli ułożonych w jednym rzędzie

1973 - 100 x 100 pikseli

Pierwszy aparat fotograficzny wykorzystujący matryce światłoczuła zamiast błony nazywał sie MAVICA -1981

CCD sygnał zapisywany jako NTSC

570 linii i 490 pixels

Proces pozyskiwania obrazu cyfrowego

Najważniejsze elementy formowanie sygnału w procesie akwizycji

Dyskretyzacja obrazu to dyskretyzacja funkcji *f* (x,y) na dwóch poziomach:

- -przestrzenna (próbkowanie dziedziny funkcji)
- -amplitudowa (kwantyzacja wartości funkcji)

Obraz jest więc strukturą podwójnie dyskretną

Próbkowanie sygnału

Obraz cyfrowy to funkcja f(x, y) podwójnie dyskretna:

- odwzorowuje 3D na dyskretną i ograniczoną przestrzeń 2D

Kwantyzacja sygnału

Kwantyzacja sygnału

- To proces polegający na przypisaniu wartościom analogowym do najbliższych poziomów reprezentacji cyfrowej (np.: 8-bitowego kodu)
- · Niedokładności wynikające z zaokrągleń stanowią szum kwantyzacji

		0	5	6	8.5
	W dyskretnych punktach przestrzeni	2.1	3.3	5.2	◆ (9.0)
	dokonujemy pomiaru sygnału na		2	1.2	3
	podstawie, którego tworzymy obraz	0.5	0.75	0.8	0.92
•	Wyszukanie wartości minimalnej i	0.6	0.66	0.76	0.95
	maksymalnej-lub odczytanie z parametrów urządzeń detekcji sygnału	0.1	0.4	0.56	0.65
•	Unormowanie sygnału przez przeliczenie wartości pomiarowych na zakres <0,1>	127.5	191.1	204.0	235.8
	Wybór zakresu bitów kodu, czyli ilości	154.2	169.5	193.8	242.2
•	przedziałów kwantowania i przeliczenie unormowanego sygnału na kody	25.5	102.0	142.8	165.7
	Zaokraglenie do wartości naturalnych	127	191	204	235
-	Zaoki ągienie do wai tosti naturalnych	154	169	193	242
		25	102	142	165

Zapis obrazu cyfrowego w pamięci komputera

					1					
186	186	187	187	188	188	188	189	189	190	190
186	186	186	187	187	188	188	188	189	189	190
185	186	186	196	187	187	188	188	188	189	189
195	195	186	196	196	187	197	199	198	199	189
185	185	185	186	186	187	187	187	188	188	188
184	185	185	185	186	186	187	187	187	188	188
184	184	185	185	185	186	186	187	187	187	188
184	184	184	185	185	185	186	186	187	187	187
183	184	184	184	185	185	185	186	186	187	187
183	183	184	184	184	185	185	185	186	186	187
183	183	183	184	184	184	185	185	186	186	18€
182	183	183	183	184	184	184	185	185	186	18€
182	182	183	183	183	184	184	184	185	185	18€
182	182	182	183	183	183	184	184	184	185	185
181	182	182	182	183	183	183	184	184	184	185
181	181	182	182	182	183	183	183	184	184	184
181	181	181	182	182	182	183	183	183	184	184_

Charakterystyczne cechy procesu akwizycji i obrazu

Inherentne cechy procesu akwizycji

- Nakładanie szumu (dla aparatu cyfrowego – szumu kwantyzacji, czyli odpowiednika ziarna dla tradycyjnej fotografii)
- Nakładanie zniekształceń
 (dla aparatu cyfrowego zniekształcenia obiektywów
 szerokokątnych, dystorsje soczewek, gorące i zimne
 pisksle w matrycy)

Urządzenia akwizycji charakteryzuje się przez podanie informacji o poziomie szumu i zakłóceń

Szum

Szum (ang. random noise) to przypadkowe, niestacjonarne zakłócenia wartości sygnału:

w czasie;

w przestrzeni.

Nakładanie szumu na sygnał to inherentna cecha urządzeń elektronicznych, które albo transmitują albo odbierają sygnał w postaci prądu elektrycznego

Szum powstaje na skutek

- Nałożenia termicznych ruchów elektronów w materii na mierzony sygnał, który jest zamieniany na prąd (np.: w przetwornikach zamieniających światło na prąd zgodnie ze zjawiskiem fotoelektrycznym)
- Niestabilności źródła formowania sygnału, np.: promieniowania X, fali akustycznej czy radiowej;

Zrozumienie zjawiska i jego przyczyn zwykle prowadzi do unikania zaszumienia, a nie do jego likwidacji czy choćby redukcji

Miara szumu

Stosunek sygnału do szumu (ang. signal to noise ratio – SNR), jednostka decybele dB.

Brak "odczuwania" szumu oznacza, że jego stosunek do sygnału jest taki, że nasze sensory (wzrokowe, słuchowe) odbierają sygnał a pomijają szum.

Charakterystyka szumu w obrazie

Typy szumu w obrazie

- Szum niskoczęstotliwościowy (ang. coarser texture -chropowaty gruboziarnisty)
- Szum wysokoczęstotliwościowy (ang. fine-grained -drobny)
- Szum o małej amplitudzie (ang. smooter texture -gładki)
- Szum o dużej amplitudzie (ang. roughter texture -szorstki)

Szum w obrazie:

w luminancji i w kanałach kolorów

Na jakich obrazach występuje dużo szumu?

 Rentgenowskich, w mikroskopach fluorescencyjnych, ze znacznikami emitującymi wąski zakres fal elektromagnetycznych – powód: mało fotonów (charakterystyka gaussowska)

- Mikroskop elektronowy skaningowy powód: niestabilność źródła światła - długie czasy zbierania (charakterystyka niegaussowska)
- Astronomicznych zbieranych przy pomocy kamery integrującej sygnał

Szum nakładany na obraz przez cyfrowy aparat fotograficzny

Szum nakładany na obraz powstały w cyfrowym aparacie

wynika z:

- Parametrów technicznych matrycy fotoczułej (wielkość sensora)
- Niestabilności światła lub z jego niewielkiej ilości (noca)
- Zjawisk towarzyszących zamianie światła na prąd (ang. banding noise, trunced, ...)
- Nałożenia termicznych ruchów elektronów na mierzony sygnał

Szum periodyczny ang. periodic

noise

Szum w obrazach cyfrowych zależny od:

- typu (egzemplarza) aparatu cyfrowego
- od ustawień przy wykonywaniu zdjęcia (czułość ISO, czas naświetlenia)
- jasności fotografowanych obiektów i obszarów (w cieniach szumu jest więcej niż w tonach jasnych)
- temperatury otoczenia im wyższa tym silniei widać

(ang. Fixed pattern noise)

Rozłożenie szumu na obrazie

UWAGA! Odwrotnie w klasycznej fotografii negatywowej

Redukcja szumu

- · Na poziomie akwizycii:
 - Wybór maksymalnie długiego czasu naświetlania
 - Wybór niskich czułości ISO
 - Chłodzenie matrycy
 - Wykonywanie zdjęć wielokrotnych (braketing)
 - Wykonywanie zdjęć lekko prześwietlonych (HighKey)
- · Na poziomie przetwarzania (obróbki) obrazów:
 - Uśrednianie zdjęć wielokrotnych
 - Filtrowanie
- Uwaga: Nie redukujemy szumu przez
 - Rozjaśnianie obrazu w miejscach niedoświetlenia
 - Rozjaśnianie cieni w obrazie

Uśrednianie czasowe (dotyczy obrazów statycznych)

NxN – liczba pikseli w obrazie.

Np. dla N=4 liczba pikseli w obrazie wynosi NxN = 16.

15	14	10	0	
12	11	5	0	
11	4	3	2	
3	2	0	1	

$$P_{j\acute{s}} = \frac{\sum_{i=1}^{n} P_{ji}}{n}$$

 P_{jj} - wartość j-tego piksela obrazu w i-tej chwili czasowej

 P_{ji} - wartość średnia j-tego piksela obrazu w n chwilach czasowych

n - liczba pojawień się obrazu i = 1, n

NxN – liczba pikseli w obrazie j = 1, NxN

50

Stosowane do redukcji szumu (obrazy astronomiczne)

Uśrednianie przestrzenne (obrazy statyczne oraz zmienne w czasie)

15	13	15	\Rightarrow	15	13	15
14	0	15		14	12	15
12	12	14		12	12	14

$$P_{\acute{s}r} = \frac{\sum_{i}^{\infty} P_{i}}{n}$$

n = 9 - otoczenie 8-spójne

13 14 0 15 12

n = 5 - otoczenie 4-spójne

n - liczba pikseli otoczenia (wraz z pikselem przetwarzanym)

MATERIAŁ DO WYKŁADU I ĆWICZEŃ LABORATORYJNYCH:

R. Tadeusiewicz, P. Korohoda: **Komputerowa analiza i przetwarzanie obrazów**, Kraków 1997. http://winntbg.bg.agh.edu.pl/skrypty2/0098/ (także plik ...\POBD\2019-2020\Materialy\TadKoroh.pdf na UBIKU)

Wykład

Materiał podstawowy:

M. Doros, Przetwarzanie obrazów, Skrypt WSISiZ

Ćwiczenia Laboratoryjne

Materiał podstawowy:

M.Doros, A. Korzyńska, M.Przytulska, H.Goszczyńska: "Przetwarzanie Obrazów, ćwiczenia laboratoryjne", Skrypt WSISiZ

10

- Siatka prostokatna
 - Siatka sześciokątna (heksagonalna) Siatka trójkątna

Rzadziei stosowane siatki

Rodzaje sąsiedztwa: np. 8-spójne, 4-spójne

Dualizm oczko - węzeł (siatka prostokątna)

zachowuje zasady sąsiedztwa np. ośmiospójnego.

Piksel może być skojarzony z węzłem lub z oczkiem siatki

Sasiedztwo

- Siatka dyskretna (discrete net)- wzorzec według którego dokonywana jest dyskretyzacja przestrzenna obrazu; linie, oczka, węzły
- Siatka prostokątna najczęściej stosowana: oczko siatki jest kwadratem
- Piksel podstawowy element obrazu; odniesienie do oczka lub wezła siatki

1

Paradoks spójności

- 1 obiekt spójny
- 2 tło: spójne(?) niespójne(?)

Przeciwdziałanie:

przypisanie różnych rodzajów sąsiedztwa pikselom obiektu i tła