A2I2 - Basic Image Processing Exercise

Summer 2021 Jochen Schmidt

Filter

1. The following values represent a row of pixels of a grayscale image:

1, 0, 2, 2, 2, 8, 2, 3, 6, 6, 6

Compute the convolution (filter) of this image row using a 1D filter mask:

- a. mask 1/3 [1 1 1]
- b. mask [1 0 -1]
- c. use a 1x3 sized Median filter

2. The following table shows a small grayscale image. Filter the image and fill in the result in the empty tables below.

1.1,1,1,0,1,4,4,4 ville

a. apply a 3x3 mean filter

2	3	
2	3	

b. apply a 3x3 Median

1	4	
1	4	

3. The following table shows a small grayscale image. Filter the image and fill in the result in the empty tables below.

0 + 0 +0 +

1.4+1.4+ 1.4 =

-4+16=12

-1							
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4
1	1	1	⁰ 1	14/	4	4	4
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4

a. apply a 3x3 Sobel (derivative in x-direction)

1	0	-1	
2		-1	- 1
1	U	-1	
(spir	ge (J)	

()	0	n	12	0	0	
	\bigcirc	11	n		\bigcirc	
0	0	12	12	\bigcirc	0	
0	0	12	12	0	0	

b. apply a 3x3 Sobel (derivative in y-direction)

	10	\ U -1	1 0 -1	
(.		je (()	/

U	0	0	0	0	0	
Ŏ	0	0		0	0	
()	0	δ	\bigcirc	0	0	
0	0	0	0	0	()	

1) a)
$$\int_{10}^{10} \int_{10}^{10} \int_{10}^{10$$