



## Cleaning Data with OpenRefine

Introduction to Data Management Practices course

**NBIS DM Team** 

data@nbis.se





### **Data Cleaning**





#### Typical workflow

| Inspecting                                           | Cleansing                               | Verifying                                                        | Reporting/Documenting                                                                     |
|------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Detect unexpected, incorrect, and inconsistent data. | Fix or remove the anomalies discovered. | After cleaning, the results are inspected to verify correctness. | A report about the changes made and the quality of the currently stored data is recorded. |



#### **OpenRefine**





# OpenRefine

A powerful open source tool that can be used for data cleaning

- Free
- Does not change your original data file
- Keeps your data private on your own computer until you choose to share it
- Automatically tracks any step you take allowing you to easily document and reuse the cleaning process
- Works with fairly large datasets



### 1. Working with OpenRefine



- How can we bring our data into OpenRefine?
- How can we sort and summarize our data?
- How can we find and correct errors in our raw data?

Sorting and summarizing our data using **Facets**:

- Groups all the like values that appear in a column
- Allow you to filter the data by these values and edit in bulk

Facets are a useful way to explore your data and seeing the overview picture



### 1. Working with OpenRefine



Finding and correcting errors using **Clustering**:

- Identifying and grouping different values that are alternative representations of the same thing.
  - "New York" and "new york" same concept different capitalization
  - "Gödel" and "Godel" probably refer to the same person
- Allow you to filter the data by these values and edit in bulk

Clustering is very powerful for cleaning up misspelled or mistyped entries or when applying a standard retrospectively.



### 2. Filtering and Sorting



- How can we select only a subset of our data to work with?
- How can we sort our data?

When a dataset has many entries, **filtering** can be used to create a subset of the data that is relevant for the specific task at hand.

Data **sorting** arranges the data into some meaningful order to make it easier to understand, analyze or visualize.



### 3. Numbers in OpenRefine



- How can we convert a column from one data type to another?
- How can we visualize relationships among columns?

Each value in a cell in OpenRefine is assigned one of the following data types:

- string/text default upon import
- number
- date (YYYY-MM-DDTHH:MM:SSZ)
- boolean ("true" or "false")

Note: text values can be sorted as numbers without changing the data type



#### Key points so far..



- OpenRefine can import a variety of file types.
- OpenRefine can be used to explore data using facets.
- Clustering in OpenRefine can help to identify different values that might mean the same thing.
- OpenRefine can transform the structures and values of a column.
- OpenRefine provides a way to sort and filter data without affecting the raw data.
- OpenRefine provides ways to get overviews of numerical data.



# Reusability and Reproducibility



- OpenRefine tracks and documents all the modifications done to the data
- OpenRefine allows you to export the documentation in order to apply the same modifications to another dataset with the same structure

#### Why is this important?

- It makes your own work more efficient
- It provides documentation for yourself and others to understand how the data has been modified
- It provides everything necessary to reproduce your cleaned data



## Using Scripts and exporting data 🛂 SciLifeLab



- How can we document the data-cleaning steps we've applied to our data?
- How can we apply these steps to additional data sets?
- How can we save and export our cleaned data from OpenRefine?

**A script** is a recipe with stepwise instructions for machines.

OpenRefine uses the data format JSON to generate scripts.



### Working with a subset of data V SciLifeLab



#### Scenario:

- **Sam** is going to submit **sequencing data** to the repository ENA and the sample metadata is stored in the common spreadsheet we have been working with.
- Sam needs to transform and extract a subset of the data in the common spreadsheet to prepare a sample metadata file compatible with the ENA and need to consider the following questions
  - Which of the existing columns are relevant for the submission?
  - Are they named correctly?
  - Are there additional columns that need to be added?



#### **ENA** sample metadata



#### Mandatory metadata for all ENA samples:

#### **Basic details:**

- sample\_alias The unique name is a submitter provided unique identifier.
- **sample\_title** The sample title is a short, preferably a single sentence, description of the sample.

#### **Organism details:**

- tax\_id The NCBI taxonomy id
- scientific\_name based on tax\_id

Question: Can any of the existing columns be used to provide the mandatory metadata?

| animal ID | researcher | experiment refer | sample | genotype        | ▼ tax_id | ▼ date     | ▼ mouse line | ▼ strain | ▼ age | developmental s | sex    | organism part | experiment type  |
|-----------|------------|------------------|--------|-----------------|----------|------------|--------------|----------|-------|-----------------|--------|---------------|------------------|
| 834217    | Kim        | up_235_1         | A      | Kdr Y949F/Y949F | 10900    | 2020-02-18 | Alk3         | BALB/cJ  | 4     | adult           | male   | lung          | sequencing assay |
| 836507    | Sam        | up_201_4         | D_hom  | Kdr Y949F/Y949F | 10900    | 2020-02-23 | Kdr          | C57BL/6  | 9     | adult           | male   | lung          | sequencing assay |
| 842068    | Sam        | Feb2720_IHC      | С      | KdrY949F/Y949F  | 10900    | 2020-02-27 | Kdr          | C57BL/6  | P9    | pup             | female | lung          | IHC              |
| 843132    | Sam        | Mar0418_IHC      | D      | KdrY949F/Y949F  | 10900    | 2018-03-04 | Kdr          | C57BL/6  | P9    | pup             | female | lung          | IHC              |
| 845290    | Kim        | up_235_2         | В      | Kdr Y949F/Y949F | 10900    | 2019-03-07 | Alk3         | BALB/cJ  | 8     | adult           | male   | lung          | sequencing assay |



#### **ENA** sample metadata



| Current variable name | ENA Variable name | Measurement unit | Allowed values                                                                      |
|-----------------------|-------------------|------------------|-------------------------------------------------------------------------------------|
| animal ID             |                   |                  |                                                                                     |
| date                  |                   |                  | format: YYYY-MM-DD, >=proj_start_date & <=today                                     |
| mouse line            | sub_strain        |                  |                                                                                     |
| strain                | strain            |                  | NCIT ontology:<br>C56BL/6 Mouse (NCIT:C14424),<br>BALB/cJ Mouse (NCIT:C14657)       |
| age                   |                   | days,weeks (?)   |                                                                                     |
| developmental stage   | dev_stage         |                  | BTO ontology:<br>pup (BTO:0004377),<br>adult (BTO:0001043),<br>embryo (BTO:0000379) |
| sex                   | sex               |                  | male, female, unknown                                                               |
| organism part         | tissue_type       |                  | MA ontology:<br>lung (MA:0000415),<br>brain (MA:0000168)                            |
| genotype              |                   |                  |                                                                                     |
| experiment type       |                   |                  |                                                                                     |
| experiment reference  |                   |                  |                                                                                     |
| researcher            |                   |                  |                                                                                     |

#### **Checklist-derived metadata:**

- strain
- sub strain
- dev\_stage
- sex
- tissue\_type

To specify the ontology terms we will add **custom fields:** 

- strain ID
- . dev\_stage\_ID
- tissue\_type\_ID



#### **ENA** exercise



- Create a new project in OpenRefine named ENA sample metadata by loading the same data as before (samples\_openrefine\_lesson.csv)
- 2. Open the file **ENA\_sample\_metadata\_script.txt** found in the project folder. Copy the JSON script and apply it to the project.
- 3. Export the cleaned data as a tab separated file (.tsv)
- 4. Open the file in a text editor and add the following two lines at the beginning of the file: #checklist\_accession ERC000011 #unique\_name\_prefix
  - NB! Make sure that you have a tab between #checklist\_accession and ERC000011
- 5. Save the file in your course folder and use in the next lesson.



#### Resulting .tsv file



```
ENA-sample-metadata.tsv
#checklist accession
                        ERC000011
#unique_name_prefix
sample alias
                        scientific_name sample_title
                tax_id
                                                        dev stage
                                                                       tissue_type
                                                                                        sex
        sub_strain
                        strain strain ID
                                                dev stage ID
                                                                tissue_type_ID
up_201_4
                10900
                        Mus musculus
                                        D hom Lung tissue from adult Kdr(Y949F/Y949F) mouse.
        adult
                lung
                        male
                                Kdr
                                        C57BL/6 NCIT: C14424
                                                                BT0:0001043
                                                                                MA:0000415
                                        F hom Lung tissue from adult Kdr(Y949F/Y949F) mouse.
                10900
                        Mus musculus
up_201_6
                                        C57BL/6 NCIT: C14424
                                                                BT0:0001043
        adult
                lung
                        male
                               Kdr
                                                                                MA:0000415
up_201_5
                                        E hom Lung tissue from adult Kdr(Y949F/Y949F) mouse.
                10900
                       Mus musculus
        adult
                        female Kdr
                                        C57BL/6 NCIT: C14424
                                                                BT0:0001043
                lung
                                                                                MA: 0000415
                                        B_wt Lung tissue from adult wildtype mouse.
up_201_2
                10900
                        Mus musculus
                                                                                        adult
                Male
                                C57BL/6 NCIT: C14424
                                                        BT0:0001043
        lung
                        Kdr
                                                                        MA:0000415
up_201_1
                                        A_wt Lung tissue from adult wildtype mouse.
                                                                                        adult
                10900
                        Mus musculus
                female
                       Kdr
                                C57BL/6 NCIT: C14424
                                                        BT0:0001043
        lung
                                                                        MA:0000415
up_201_3
                10900
                       Mus musculus
                                        C_wt Lung tissue from adult wildtype mouse.
                                                                                        adult
        lung
                Male
                        Kdr
                                C57BL/6 NCIT: C14424
                                                        BT0:0001043
                                                                        MA:0000415
```



#### Other resources



What other resources are available for working with OpenRefine?

OpenRefine has its own web site with documentation and a book:

- OpenRefine web site
- OpenRefine Documentation for Users
- Using OpenRefine book by Ruben Verborgh, Max De Wilde and Aniket Sawant
- OpenRefine history from Wikipedia