Diferenciación Numérica

Métodos Numéricos

Prof. Juan Alfredo Gómez

Conferencia 20

Conferencia 20

- Fórmulas de diferencias
 - Fórmulas de tres y de cinco puntos
- Cálculo a través del Polinomio de Taylor
 - Segunda derivada
- Coeficientes indeterminados
- Errores de redondeo

Problema de diferenciación numérica

Encontrar una aproximación con error estimable de:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Soluciones a mano:

1) Aproximar el límite con valores de h cercanos a 0:

$$f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$$

- II) Usar diferencias divididas (incluyendo derivadas superiores):
- Si $\{x_0,\ldots,x_n\}\subset [a,b]$, entonces existe $\xi\in (a,b)$ tal que:

$$f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

MAGNITUD DEL ERROR???

Polinomio de Lagrange en dos puntos

Dados $f \in C^2[a,b]$, $x_0,x_1 \in (a,b)$ se cumple $\forall x \in (a,b)$, que existe $\xi(x) \in [a,b]$:

$$f(x) = P_{0,1}(x) + \frac{(x - x_0)(x - x_1)}{2} f''(\xi(x))$$

Tomando $x_1 = x_0 + h$ y derivando obtenemos:

$$f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2}f''(\xi(x))$$

$$= f(x_0) + \frac{f(x_0 + h) - f(x_0)}{h}(x - x_0) + \frac{(x - x_0)^2 - (x - x_0)h}{2}f''(\xi(x))$$

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x)) + \frac{(x - x_0)^2 - (x - x_0)h}{2} \frac{\partial f''(\xi(x))}{\partial x}$$

Definición

Definición

Evaluando en $x = x_0$ la expresión

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x)) + \frac{(x - x_0)^2 - (x - x_0)h}{2} \frac{\partial f''(\xi(x))}{\partial x}$$

obtenemos la fórmula de dos puntos para aproximar $f'(x_0)$.

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

para $\xi \in (x_0, x_0 + h)$. Esta expresión se conoce como la formula de diferencia hacia adelante si h > 0, o la formula de diferencia hacia atrás si h < 0.

Observación

Si M es un acota superior para |f''(x)|, entonces $f'(x_0)$ puede aproximarse, para valores chicos de h, mediante una fórmula de diferencia con un error absoluto menor que M|h|/2.

Fórmulas de diferencias

Ejercicio

Dados $f(x) = \ln x$ y $x_0 = 1.8$, estimar $f'(x_0)$ y una cota del error.

Desarrollo

Aproximando f'(1.8) con la formula de diferencia hacia adelante

$$\frac{f(1.8+h)-f(1.8)}{h}$$

tenemos la siguiente cota del error, con $\xi \in (1.8, 1.8 + h)$:

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} \le \frac{|h|}{2(1.8)^2}$$

h	f(1.8 + h)	f(1.8+h)-f(1.8)	h	
		h	2(1.8)2	
0.100	0.64185389	0.5406722	0.0154321	
0.010	0.59332685	0.5540180	0.0015432	
0.001	0.58834207	0.5554013	0.0001543	
0.000	0.58778666	f'(1.8)=0.5555556		

Polinomio de Lagrange en (n+1) puntos

Dados $f \in C^{n+1}[a,b], \{x_0,\ldots,x_n\} \subset (a,b)$ se cumple para todo $x \in$ (a, b) que existe $\mathcal{E}(x) \in [a, b]$:

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

donde

$$L_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

Derivando y evaluando en x_i obtenemos:

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} (x_j - x_0) \cdots (x_j - x_{j-1}) (x_j - x_{j+1}) \cdots (x_j - x_n)$$

Deducción en el caso de tres puntos (n = 2)

Calculando $L_k(x)$ y $L'_{\nu}(x)$

$$L_{0}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})}; \ L_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})};$$

$$L_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})};$$

$$L'_{0}(x) = \frac{2x - x_{1} - x_{2}}{(x_{0} - x_{1})(x_{0} - x_{2})}; \ L'_{1}(x) = \frac{2x - x_{0} - x_{2}}{(x_{1} - x_{0})(x_{1} - x_{2})};$$

$$L'_{2}(x) = \frac{2x - x_{0} - x_{1}}{(x_{0} - x_{0})(x_{0} - x_{1})};$$

Deducción en el caso de tres puntos (n = 2)

$L'_k(x)$

$$L'_{0}(x) = \frac{2x - x_{1} - x_{2}}{(x_{0} - x_{1})(x_{0} - x_{2})}; \ L'_{1}(x) = \frac{2x - x_{0} - x_{2}}{(x_{1} - x_{0})(x_{1} - x_{2})};$$
$$L'_{2}(x) = \frac{2x - x_{0} - x_{1}}{(x_{1} - x_{2})(x_{2} - x_{2})};$$

Aplicando la fórmula general

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} (x_j - x_0) \cdots (x_j - x_{j-1}) (x_j - x_{j+1}) \cdots (x_j - x_n)$$

Para el caso equidistante $(x_1 = x_0 + h \ y \ x_2 = x_0 + 2h)$ obtenemos:

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) - \frac{3}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Deducción en el caso de tres puntos (n = 2)

Caso equidistante x_0 , $x_0 + h$, $x_0 + 2h$

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) - \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Caso equidistante $x_0 - h$, x_0 , $x_0 + h$

$$f'(x_0 - h) = \frac{1}{h} \left[-\frac{3}{2} f(x_0 - h) + 2f(x_0) - \frac{1}{2} f(x_0 + h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{h} \left[-\frac{1}{2} f(x_0 - h) + \frac{1}{2} f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_0 + h) = \frac{1}{h} \left[\frac{1}{2} f(x_0 - h) - 2f(x_0) - \frac{3}{2} f(x_0 + h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Fórmulas de aproximación de $f'(x_0)$

Fórmulas de tres puntos

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

donde $\xi_0 \in [x_0, x_0 + 2h]$ y $\xi_1 \in [x_0 - h, x_0 + h]$.

Fórmulas de cinco puntos

$$f'(x_0) = \frac{1}{12h} \left[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\xi_2)$$

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi_3)$$

donde $\xi_2 \in [x_0, x_0 + 4h]$ y $\xi_3 \in [x_0 - 2h, x_0 + 2h]$.

Ejercicio

Dados los siguientes valores tabulados de $f(x) = xe^x$ aproximar f'(2.0) = 22.167168 utilizando fórmulas de tres y cinco puntos.

X		1.8	1.9	2.0	2.1	2.2
f(z)	x)	10.889365	12.703199	14.778112	17.148957	19.855030

Desarrollo

Utilizando la fórmula de tres puntos:

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

para h=0.1 y h=-0.1

$$f'(2.0) \approx \quad \frac{1}{0.2} \left[-3f(2.0) + 4f(2.1) - f(2.2) \right] = 22.032310; \quad \textit{E}_{a} = 1.35 \cdot 10^{-1}$$

$$f'(2.0) \approx \frac{1}{-0.2} \left[-3f(2.0) + 4f(1.9) - f(1.8) \right] = 22.054525; \quad E_a = 1.13 \cdot 10^{-1}$$

00000000

Ejercicio

Dados los siguientes valores tabulados de $f(x) = xe^x$ aproximar f'(2.0) =22.167168 utilizando fórmulas de tres y cinco puntos.

X	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Desarrollo

Utilizando la fórmula de tres puntos:

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

para h = 0.2 y h = 0.1

$$f'(2.0) \approx \frac{1}{0.4} [f(2.2) - f(1.8)] = 22.414163; \quad E_a = 2.47 \cdot 10^{-1}$$

$$f'(2.0) \approx \frac{1}{0.2} [f(2.1) - f(1.9)] = 22.228790; \quad E_a = 6.16 \cdot 10^{-2}$$

Fórmulas de diferencias

Ejercicio

Dados los siguientes valores tabulados de $f(x) = xe^x$ aproximar f'(2.0) = 22.167168 utilizando fórmulas de tres y cinco puntos.

X	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Desarrollo

Utilizando la fórmula de cinco puntos:

$$f'(x_0) = \frac{1}{12h} \left[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^4}{30} f^{(5)}(\xi_3)$$

para h = 0.1

$$f'(2.0) \approx \frac{1}{1.2} [f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)] = 22.166999; E_a = 1.69 \cdot 10^{-4}$$

Deducción

Desarrollo de Taylor de orden tres

$$f(x_0+h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_{-1})h^4$$

con $\xi_1 \in (x_0, x_0 + h)$ y $\xi_{-1} \in (x_0 - h, x_0)$. Sumando tenemos:

$$f(x_0+h)+f(x_0-h)=2f(x_0)+f''(x_0)h^2+\frac{h^4}{24}\left[f^{(4)}(\xi_1)+f^{(4)}(\xi_{-1})\right]$$

Despejando $f''(x_0)$:

$$f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{24} \left[f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1}) \right]$$

Fórmula de tres puntos para $f''(x_0)$

Por el Teorema del valor medio, existe $\xi \in [x_0 - h, x_0 + h]$ tal que:

$$f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{12} f^{(4)}(\xi)$$

Ejercicio

Dados los siguientes valores tabulados de $f(x) = xe^x$ aproximar f''(2.0) = 29.556224 utilizando la fórmula de tres puntos.

X	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Desarrollo

Utilizando la fórmula de tres puntos:

$$f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{12} f^{(4)}(\xi)$$

para h = 0.2 y h = 0.1

$$f''(2.0) \approx \frac{1}{0.04} [f(1.8) - 2f(2.0) + f(2.2)] = 29.704275; \quad E_a = 1.48 \cdot 10^{-1}$$

$$f''(2.0) \approx \frac{1}{0.01} [f(1.9) - 2f(2.0) + f(2.1)] = 29.593200; \quad E_a = 3.70 \cdot 10^{-2}$$

Coeficientes indeterminados

Formulación

Para determinar la $f^{(k)}(\alpha)$, la idea es encontrar los coeficientes $A_i \in \mathbb{R}, i = 1, ..., n$ tales que

$$f^{(k)}(\alpha) = \sum_{i=0}^{n} A_i f(x_i)$$
, con x_i datos conocidos

Para el cálculo de los coeficientes A_i impondremos la exactitud de la fórmula sobre los polinomios x^j , $0 \le j \le n$,

$$\sum_{i=0}^{n} A_{i}x^{j} = \frac{d^{k}(x^{j})}{dx^{k}}\bigg|_{x=\alpha}, \quad 0 \leq k \leq n$$

Coeficientes indeterminados

o equivalentemente

$$\sum_{i=0}^{n} A_{i}x^{j} = 0, \quad 0 \le j \le k-1$$

$$\sum_{i=0}^{n} A_{i}x^{j} = j(j-1)\cdots(j-k+1)\alpha^{j-k}, \quad k \le j \le n.$$

formando un sistema de (n+1) ecuaciones y (n+1) incógnitas con matriz de Vandermonde (por tanto, inversible) tiene solución única.

Calcular f''(5) a partir de la siguiente tabla de valores

Desarrollo

 $f'''(5) \approx Af(x_0) + A_1f(x_1) + A_2f(x_2) + A_3f(x_3)$ debemos resolver el siguiente sistema:

$$\begin{cases} A_0 + A_1 + A_2 + A_3 = 0 \\ A_0 + 2A_1 + 3A_2 + 4A_3 = 0 \\ A_0 + 4A_1 + 9A_2 + 16A_3 = 2 \\ A_0 + 8A_1 + 27A_2 + 64A_3 = 6 \cdot 5 \end{cases}$$

la solución es $A_0 = -2$, $A_1 = 7$, $A_2 = -8$, $A_3 = 3$, por tanto:

$$f''(5) \approx 7 * (-2) + 2 * 7 - 3 = -3$$

Coeficientes indeterminados

Ejemplo

Para calcular $f'''(x_0)$ conociendo cinco puntos: $x_0 - 2h, x_0 - h, x_0, x_0 + h, x_0 + 2h$.

Desarrollo

$$f'''(x_0) = Af(x_0 - 2h) + Bf(x_0 - h) + Cf(x_0) + Df(x_0 + h) + Ef(x_0 + 2h)$$

donde las constantes A, B, C, D, E son la solución del siguiente sistema de ecuaciones:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ x_0-2h & x_0-h & x_0 & x_0+h & x_0+2h \\ (x_0-2h)^2 & (x_0-h)^2 & (x_0)^2 & (x_0+h)^2 & (x_0+2h)^2 \\ (x_0-2h)^3 & (x_0-h)^3 & (x_0)^3 & (x_0+h)^3 & (x_0+2h)^3 \\ (x_0-2h)^4 & (x_0-h)^4 & (x_0)^4 & (x_0+h)^4 & (x_0+2h)^4 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \\ 0 \\ 3 \cdot 2 \cdot 1 \\ 4 \cdot 3 \cdot 2 \cdot x_0 \end{pmatrix}$$

Fórmula de tres puntos y errores de redondeo

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

Al evaluar $f(x_0 + h)$ y $f(x_0 - h)$ se general errores:

$$f(x_0 + h) = \tilde{f}(x_0 + h) + e(x_0 + h); \quad f(x_0 - h) = \tilde{f}(x_0 - h) + e(x_0 - h)$$

Por ende:

$$f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h} = \frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Si $|e(x_0 \pm h)| \le \epsilon$ y $|f^{(3)}(.)| \le M$ con $\epsilon, M > 0$, entonces

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \le \frac{\epsilon}{h} + \frac{h^2}{6}M$$

Reduciendo el error

Observación

De la desigualdad

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \leq \frac{\epsilon}{h} + \frac{h^2}{6}M$$

donde $|e(x_0 \pm h)| \le \epsilon$ y $|f^{(3)}(.)| \le M$ se concluye que:

- Al reducir demasiado h el error de cálculo de la derivada no mejora, ya que predomina el término $\frac{\epsilon}{h}$
- El valor óptimo para h se obtiene minimizando la expresión

$$\frac{\epsilon}{h} + \frac{h^2}{6}M$$

dando como resultado

$$h = \sqrt[3]{\frac{3\epsilon}{M}}$$

Considere $f(x) = \sin x$, $x_0 = 0.9$ y una aritmética de redondeo a cinco dígitos. Estimar el valor de $f'(x_0) = \cos(0.9) = 0.62161$ calculando para distintos valores de h la fórmula de tres puntos:

$$f'(x_0) \approx \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)]$$

Cálculos

h	$x_0 - h$	$f(x_0 - h)$	$x_0 + h$	$f(x_0 + h)$	$\frac{f(x_0+h)-f(x_0-h)}{2h}$	Error
0.001	0.899	0.78270	0.901	0.78395	0.62500	0.00339
0.002	0.898	0.78208	0.902	0.78457	0.62250	0.00089
0.005	0.895	0.78021	0.905	0.78643	0.62200	0.00039
0.010	0.890	0.77707	0.910	0.78950	0.62150	0.00011
0.020	0.880	0.77074	0.920	0.79560	0.62150	0.00011
0.050	0.850	0.75128	0.950	0.81342	0.62140	0.00021
0.100	0.800	0.71736	1.000	0.84147	0.62055	0.00106

$$M = \max_{x \in [0.8,1]} |f'''(x)| = \max_{x \in [0.8,1]} |cos(x)| = cos(0.8) \approx 0.69671$$

$$h = \sqrt[3]{\frac{3\epsilon}{M}} \Longrightarrow h = \sqrt[3]{\frac{3(0.000005)}{0.69671}} \approx 0.028$$