```
In [1]: import warnings
        warnings.filterwarnings("ignore")
        from sklearn.datasets import load boston
        from random import seed
        from random import randrange
        from csv import reader
        from math import sqrt
        from sklearn import preprocessing
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from prettytable import PrettyTable
        from sklearn.linear_model import SGDRegressor
        from sklearn import preprocessing
        from sklearn.metrics import mean squared error
        from sklearn.model_selection import train_test_split
```

```
In [2]: # Loading data into X,Y
X = load_boston().data
Y = load_boston().target
```

```
In [3]: #splitting data into X_train and X_test
import sklearn
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.33, ra
ndom_state = 5)
print(X_train.shape)
print(Y_test.shape)
print(Y_train.shape)
print(Y_test.shape)

(339, 13)
(167, 13)
(339,)
(167,)
```

```
In [8]: #standardizing the data
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

```
In [9]: #clf = SGDRegressor(loss='squared_loss')
#clf.fit(X, Y)
#print(mean_squared_error(Y, clf.predict(X)))
```

```
In [12]: #Applying SGD regressor on Train data
  clf = SGDRegressor(loss='squared_loss')
  clf.fit(X_train, Y_train)
```

```
In [13]: clf.fit(X_train, Y_train)
#Finding the predicted prices
Y_pred_clf = clf.predict(X_test)

#plotting a chart of actual prices vs predicted prices for SGD regressor
plt.scatter(Y_test, Y_pred_clf)
plt.xlabel("Prices: $Y_i$")
plt.ylabel("Predicted prices: $\hat{Y}_i$")
plt.title("Prices vs Predicted prices: $Y_i$ vs $\hat{Y}_i$")
plt.show()
```


In [14]: from sklearn.linear_model import LinearRegression lm = LinearRegression() lm.fit(X_train, Y_train) #Finding the predicted price Y_pred_lm = lm.predict(X_test) #plotting a chart of actual prices vs predicted prices for linear regression plt.scatter(Y_test, Y_pred_lm) plt.xlabel("Prices: \$Y_i\$") plt.ylabel("Predicted prices: \$\hat{Y}_i\$") plt.title("Prices vs Predicted prices: \$Y_i\$ vs \$\hat{Y}_i\$") plt.show()


```
SGD Weights Linear regression weigths
    -0.8136
                                  -1.3119
     0.4041
                                   0.8619
    -0.5175
                                  -0.1672
     0.2934
                                   0.1896
    -0.2237
                                  -1.4866
     3.1451
                                   2.7913
    -0.4222
                                  -0.3274
    -1.6801
                                  -2.7720
     0.7458
                                   2.9757
    -0.5245
                                  -2.2728
    -1.7799
                                  -2.1338
     0.8761
                                   1.0584
    -2.9882
                                  -3.3350
```

```
In [18]: clf.fit(X_train, Y_train)
   print(mean_squared_error(Y_train, clf.predict(X_train)))
```

21.39072011815044

```
In [19]: lm.fit(X_train, Y_train)
    print(mean_squared_error(Y_train, lm.predict(X_train)))
```

19.54675847353467

```
In [20]: #calculating mean squared errors of both models
a=(Y_test-clf.predict(X_test))
b=(Y_test-lm.predict(X_test))

a=a**2
b=b**2
```

```
In [21]: #comparing MSE of SGD regressor and Linear regression
from tabulate import tabulate
headers = ['SGD MSE','Linear regression MSE']

table = zip(a,b)
print(tabulate(table, headers=headers, floatfmt=".4f"))
```

	00 II
SGD MSE	Linear regression MSE
0.6603	0.0176
1.0227	12.1909
16.9378	20.4322
100.6309	53.7519
3.8395	2.4659
38.3353	22.3665
8.0225	9.8563
0.0056	0.8594
13.7791	12.6495
8.6762	0.5588
0.6498	0.9899
4.7137	7.7641
5.0103	9.6807
19.3146	6.2054
5.5706	15.1025
0.6116	4.2494
410.3948	309.7293
0.0879	0.7770
30.9380	27.3459
28.5613	15.1458
13.6688	29.2147
13.4311	14.3116
50.4955	40.8117
0.9498	1.6113
0.0909	0.3423
0.2017	0.3870
2.1558	3.3439
3.9715	4.4596
1.3825	0.3322
0.1089	11.8969
	1.5997
17.7918	
3.1109	0.0064
9.4612	24.5529
21.3465	25.1473
3.1443	7.9492
0.7905	0.9731
6.6289	10.7388
0.5360	0.2552
48.8440	51.1024
5.0086	0.7585
20.2667	40.7924
123.2739	109.0770
3.4386	0.1671
2.4091	0.2696
0.0134	0.0088
42.5192	34.0705
195.8100	175.5499
12.8017	0.3066
1.3089	0.0026
0.5680	0.4035
0.5155	0.4033
4.4839	5.4124
3.8192	4.7375
	4.7373 0.0097
0.0911	
0.5679	3.0117

4/2/2019

	00 11
2.5984	0.0055
65.8017	71.9992
0.3204	1.9132
0.0673	0.0085
3.8915	4.1037
12.0519	14.2992
4.4805	8.3210
4.9402	2.8286
94.9936	79.6567
7.1728	3.5752
4.5771	15.1269
3.2892	1.1141
0.1442	0.2851
0.2992	0.0053
2.9018	
	0.4932
3.2614	15.0716
11.8745	21.5886
3.5886	3.4967
115.1919	77.1025
136.8576	78.6721
8.7710	18.7876
13.3833	20.0324
1.6009	0.0954
12.8608	17.0084
4.5382	14.7832
0.0359	8.0436
104.5661	112.3588
0.6322	0.3682
5.4019	10.7180
23.8102	34.7275
10.2004	18.6629
0.1739	1.1758
3.4962	0.1004
0.8049	0.4569
3.9801	1.8368
203.0105	188.7152
3.6719	4.1783
6.6290	0.0850
0.4778	0.4683
15.3659	4.5165
9.8774	9.5345
11.0441	11.1907
0.5707	17.5903
6.6314	1.9465
1.7963	0.1687
5.4615	0.0084
4.1824	9.0657
1.0552	1.1016
67.8689	52.4643
35.3341	46.0920
0.4646	1.9360
21.1132	38.7513
989.9258	751.1242
20.6970	23.3340
0.4032	5.7133
16.8595	13.8040
1.3212	0.1264

	00 11
30.8442	52.2018
10.3347	5.6124
12.3023	20.5187
0.3668	0.9498
30.9493	13.7672
2.9821	2.6733
2.5935	0.2543
0.6682	1.9840
5.9755	9.4744
0.0890	4.4263
4.7010	2.3728
14.2292	9.6116
0.8943	1.3058
1.3961	1.4449
5.8583	0.8060
0.0174	2.2955
15.3988	17.5098
100.3884	82.4811
150.7083	
	147.6452
10.7323	20.6138
1.2001	4.1400
4.6595	3.5877
33.5495	54.0743
0.2894	0.3950
0.7210	3.9191
48.2809	23.7523
3.0517	3.2417
0.5713	0.0166
7.0136	13.0412
18.5664	7.2417
19.1313	16.0424
14.9465	5.3290
0.9669	0.0136
867.0612	707.2908
47.9280	37.6687
0.8946	0.3658
4.1980	5.6095
47.4987	43.4578
0.1041	0.0038
431.5750	329.0273
0.2202	1.8615
1.9557	8.5125
0.3472	7.9701
17.1837	16.0415
9.2588	20.8928
0.7249	0.0824
12.4961	19.7446
0.2006	0.5149
3.3543	6.1065
14.4457	24.5683
20.5040	21.9177
3.1268	0.4827
0.0327	0.1633
2.4052	3.4385
0.4784	1.4528

Conclusions

- 1.Mean sqaured error of SGD regressor is higher than that of linear regression
- 2.Most of the SGD weights are higher than that of linear model's weights