Example: I	n the prisoner's dilemma, the guard's answer provided no information regarding the probability of
F	A's execution.
	• P(EA) = \frac{1}{3}
	• P(EAIGB) = 1/3
	The events {A executed} and {Guard says B} are independent.
ndependen	nt + Mutually exclusive
IF A	and B are mutually exclusive, and have non zero probability:
	• $P(A \cap B) = P(\phi) = 0$
	• P(A)P(B) >0
	• They cannot be independent: P(A(B)=P(A)P(B)
Conditional	independence
Тюо	events are conditionally independent given an event C with P(C) >0 if P(ANBIC)=P(AIC)P(BIC)
Assur	me A and B are conditionally independent. Recall conditional prob.: P(A1B) = P(B)
Ву со	anditioning on C, we have:
	$P(A \mid B, C) = \frac{P(A \cap B \mid C)}{P(B \mid C)} = \frac{P(A \mid C) P(B \mid C)}{P(B \mid C)} = \frac{P(A \mid C) P(B \mid C)}{P(B \mid C)} = P(A \mid C)$
Note	: Events that are indep. are not necessarily conditionally indep.
	Events that are conditionally indep. are not necessarily indep.
Examp	ple: we have a regular coin and a fake 2 headed coin. We choose one coin at random and toss it twice
	· A: 1 St toss is H.
	·B: 2 toss is H.
	·C: Regular coin was selected
	Are A and B independent? Note that A and B are conditionally indep. given C
	⇒ Find P(A), P(B), P(A∩B)
	P(A)=P(A(c)P(c)+P(A(C')P(C')
	$=\frac{1}{2} \cdot \frac{1}{2} + 1 \times \frac{1}{2} = \frac{3}{4}$

	(BIC)P(C) +P(I							
⇒ P(A)P(B								
⇒ P(A∩B)	= P(ANBIC)PO	c)+P(ANi	31C ⁶) P(c ^e)				
	= P(A(C)P(B)C)P(c)+P(f	AIC ^e) PCE	sic ^e) P(c ^e)				
	= \frac{1}{2} * \frac{1}{2} * x	* 2 = 5 +	9 16					
	\$ P(A) P(B) B are not in	dep.						