TP 4 : Monte-Carlo cinétique (KMC)

Cours de modélisation numérique

17 mars 2023

Introduction

Dans ce TP, nous allons implémenter l'exemple de réaction chimique du cours, par une méthode Kinetic Monte-Carlo KMC.

Modèle

Soit deux espèces chimiques A et B interagissant entre elles, présentes en quantités initiales A_0 et B_0 , et soit les taux de réaction $k_1 \geq 0$ et $k_2 \geq 0$ tels que :

$$A \xrightarrow{k_1} B \qquad B \xrightarrow{k_2} A$$
 (1)

Il est possible de montrer que l'évolution de ces quantités est donnée par les équations suivantes:

$$A(t) = \frac{k_2(A_0 + B_0)}{k_1 + k_2} + \frac{A_0k_1 - B_0k_2}{k_1 + k_2}e^{-(k_1 + k_2)t}$$
(2)

$$B(t) = \frac{k_1(A_0 + B_0)}{k_1 + k_2} - \frac{A_0k_1 - B_0k_2}{k_1 + k_2}e^{-(k_1 + k_2)t}$$
(3)

Nous vous proposons de simuler l'évolution du système, en utilisant une méthode de Monte-Carlo. Pour cela, nous allons discrétiser A et B, par exemple en nombres de molécules. L'algorithme doit à chaque pas de temps Δt , itérer sur le nombre N=A+Bde molécules présentes et :

- Tirer avec probabilité $p(A) = \frac{A}{N}$ une molécule A, ou $p(B) = \frac{B}{N}$ une molécule B.
 Si c'est l'espèce A qui est tirée, on exécute la réaction $A \to B$ avec probabilité $k_1 \Delta t$.
- Si c'est l'espèce B qui est tirée, on exécute la réaction $B \to A$ avec probabilité $k_2\Delta t$.

A noter que le choix des paramètres doit satisfaire que $k_1 \Delta t \leq 1$ et $k_2 \Delta t \leq 1$.

Ecrivez vous-même un code Python implémentant cet algorithme, et testez-le pour différentes valeur de $A_0, B_0, k_1, k_2, \Delta t$. Vous pouvez utiliser la fonction random.uniform() de numpy, qui renvoie un nombre aléatoire réel entre 0 et 1.

Comparez votre résultat avec la valeur attendue lorsque $t \to \infty$ pour la solution analytique.