	Kalibratie 10 cm
Meting 1 (s)	1.031
Meting 2 (s)	1.042
Meting 3 (s)	1.042
Meting 4 (s)	1.046
Meting 5 (s)	1.045

Tabel 1: TODO caption

Resultaten en Discussie

Er zijn drie verschillende metingen verricht, kalibratiemeting, onbekende afstandsmeting en de lineariteitsmeting. Deze metingen zijn drie keer gedaan en dus zijn de meetresultaten ook drie keer weergeven en geanalyseerd.

Kalibratie

Meting 1

Hieronder zijn de meetresultaten van de eerste kalibratiemeting te zien. Deze meting is maar vijf keer uitgevoerd terwijl het de bedoeling was dat deze tien keer werd uitgevoerd, maar bij een enkel groepje is de opdracht verkeerd geÄrnterpreteerd.

	Kalibratie 10 cm		
Meting 1 (s)	1.128		
Meting 2 (s)	1.127		
Meting 3 (s)	1.137		
Meting 4 (s)	1.142		
Meting 5 (s)	1.130		
Meting 6 (s)	1.136		
Meting 7 (s)	1.140		
Meting 8 (s)	1.130		
Meting 9 (s)	1.131		
Meting 10 (s)	1.145		

Tabel 2: TODO caption

$$\begin{split} t_{gem} &= \frac{\sum_{i=1}^{n} t_i}{n} = 1.041s \\ v_{gem} &= \frac{s}{t_{gem}} = 9.602cm/s \\ s(t) &= \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{gem})^2}{n-1}} = 0.582s \\ u(t) &= \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{gem})^2}{n(n-1)}} = 0.003s \\ u(v) &= \sqrt{\left(\frac{\partial v}{\partial t}\right)^2 u(t)^2 + \left(\frac{\partial v}{\partial s}\right)^2 u(s)^2} = \sqrt{\left(\frac{s}{t_{gem}^2}\right)^2 u(t)^2 + \left(\frac{1}{t_{gem}}\right)^2 u(s)^2} = 0.054cm/s \end{split}$$

Figuur 1: TODO caption

$$\begin{split} t_{gem} &= \frac{\sum_{i=1}^{n} t_i}{n} = 1.135s \\ v_{gem} &= \frac{s}{t_{gem}} = 8.813cm/s \\ s &= \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{gem})^2}{n-1}} = 0.006s \\ u &= \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{gem})^2}{n(n-1)}} = 0.002s \\ u(v) &= \sqrt{\left(\frac{\partial v}{\partial t}\right)^2 u(t)^2 + \left(\frac{\partial v}{\partial s}\right)^2 u(s)^2} = \sqrt{\left(\frac{s}{t_{gem}^2}\right)^2 u(t)^2 + \left(\frac{1}{t_{gem}}\right)^2 u(s)^2} = 0.047cm/s \end{split}$$

	Kalibratie 10 cm		
Meting 1 (s)	1.170		
Meting 2 (s)	1.173		
Meting 3 (s)	1.142		
Meting 4 (s)	1.146		
Meting 5 (s)	1.164		
Meting 6 (s)	1.167		
Meting 7 (s)	1.171		
Meting 8 (s)	1.167		
Meting 9 (s)	1.156		
Meting 10 (s)	1.152		

Tabel 3: TODO caption

Figuur 2: TODO caption

	Onbekende afstand 23.4 cm
Meting 1 (s)	2.526
Meting 2 (s)	2.531
Meting 3 (s)	2.518
Meting 4 (s)	2.515
Meting 5 (s)	2.522

Tabel 4: TODO caption

Meting 3

Hierboven zijn de meetresultaten van de kalibratiemeting in een diagram gezet. Hier zijn goed de verschillen tussen de metingen te zien.

$$\begin{split} t_{gem} &= \frac{\sum_{i=1}^{n} t_i}{n} = 1.161s \\ v_{gem} &= \frac{s}{t_{gem}} = 8.614cm/s \\ s &= \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{gem})^2}{n-1}} = 0.011s \\ u &= \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{gem})^2}{n(n-1)}} = 0.004s \\ u(v) &= \sqrt{\left(\frac{\partial v}{\partial t}\right)^2 u(t)^2 + \left(\frac{\partial v}{\partial s}\right)^2 u(s)^2} = \sqrt{\left(\frac{s}{t_{gem}^2}\right)^2 u(t)^2 + \left(\frac{1}{t_{gem}}\right)^2 u(s)^2} = 0.050cm/s \end{split}$$

Onbekende afstand

Meting 1

Hieronder zijn de meetresultaten te zien van de onbekende afstandsmeting. Om de snelheid te kunnen bepalen moet er een afstand bekend zijn. Deze afstand is gemeten en deze is 23.4 cm.

De gemiddelde tijd die het kost om de onbekende afstand af te leggen is

$$t_{gem} = \frac{\sum_{i=1}^{n} t_i}{n} = 2.523s$$

Deze tijd kunnen we gebruiken in combinatie met de gemiddelde snelheid die we eerder hebben vastgesteld om de onbekende afstand te berekenen

$$s = v_{gem} \cdot t_{gem}$$

$$= 9.602cm/s \cdot 2.523s = 24.23cm$$

	5 cm	10 cm	15 cm	20 cm	25 cm
Meting 1 (s)	0.542	1.092	1.638	2.218	2.728

Tabel 5: TODO caption

Figuur 3: TODO caption

Meting 2

Meting 3

Lineariteit

Meting 1

Hieronder zijn de meetresultaten te zien van de lineariteitsmeting. Doormiddel van de meetresultaten en de afstand is de gemiddelde snelheid uitgerekend. Onder de tabel en op de volgende pagina zijn deze gegevens in diagrammen gezet, waardoor de afwijkingen in lineariteit beter te zien zijn.

Meting 2

Meting 3

Figuur 4: TODO caption

Figuur 5: TODO caption

Conclusie