

Master 1 Informatique – ENSICAEN 2A

Module « Apprentissage »

TD 1: Régression

A. Lechervy

1 Régression linéaire

Un Test de lecture a été réalisé sur 12 enfants de 7 à 9 ans dont les notes ont été les suivantes:

i	1	2	3	4	5	6	7	8	9	10	11	12
ages	7	8	9	7	9	8	7	9	8	9	8	7
notes	12	16	16	14	18	18	12	18	14	16	18	14

Question 1.1. Tracez les notes en fonction de l'age.

Question 1.2. Calculez les moyennes et la matrice de covariance des données.

Question 1.3. Déduisez de l'équation précédente la droite passant le plus proche des données, puis tracez là.

Question 1.4. A votre avis, quelle devrait être la note d'un enfant de 10 ans ?

2 Descente de gradient

Nous voulons faire une régression par descente de gradient sur les données suivantes:

Question 2.1. Calculez la valeur de la fonction de coût du critère par moindre carré dans le cas d'une régression de type y=ax pour les droites suivantes:

• y = x,

- y = 0.5x,
- y = 0.25x.

Question 2.2. Tracez à partir des points précédents la fonction de coût J(a) du problème de régression.

Question 2.3. Calculez les 3 premières itérations d'une descente de gradient en partant de la droite $y=1\cdot x$ pour un taux d'apprentissage de $\alpha=0.1$. Tracez la descente sur la figure précédente.

Question 2.4. Calculez la solution analytique du problème de régression. Trouvez vous la même solution que par descente de gradient ?

Question 2.5. Nous allons effectué des descentes de gradients avec d'autres valeurs de α :

- $\alpha = 0.3$,
- $\alpha = 0.01$.

Que constatez vous ? Calculez et tracer la valeur de la fonction de coût au cours des itérations et expliquer son comportement.

3 Régression polynomiale

Lors du lancement d'une balle nous avons mesurer l'altitude de la balle en fonction du temps. On obtient les valeurs suivantes:

t[s]	0	3	4
h[m]	1	13	9

Question 3.1. On suppose que l'on peux approximer cette fonction par un polynôme de degré 2. Calculez les coefficients de ce polynôme.

Rappel:

$$X^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1}, \tag{1}$$

$$= \frac{1}{\det(X)} \begin{bmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix}.$$
 (2)

Avec:

$$det(X) = aei + bfg + cdh - ceg - fha - ibd.$$

Question 3.2. Déduisez de la question précédente l'instant \hat{t} où la balle atteint l'altitude maximale.