'MATH+ECON+CODE' MASTERCLASS ON MATCHING MODELS, OPTIMAL TRANSPORT AND APPLICATIONS

Alfred Galichon (New York University)

Day 5: "Empirical matching models" Block 15. Rank constained models

LEARNING OBJECTIVES: BLOCK 15

- regularized optimal transport
- ▶ the gravity equation
- ► generalized linear models
- ▶ pseudo-Poisson maximum likelihood estimation
- ► affinity matrix
- ▶ index models
- ► rank-constraint models

Section 1

PART I: THE GRAVITY MODEL

REFERENCES FOR PART I

- ► Anderson and van Wincoop (2003). "Gravity with Gravitas: A Solution to the Border Puzzle". *AER*.
- ► Head and Mayer (2014). "Gravity Equations: Workhorse, Toolkit and Cookbook". *Handbook of international economics*.
- ► Gourieroux, Trognon, Monfort (1984). "Pseudo Maximum Likelihood Methods: theory" *Econometrica*.
- ► McCullagh and Nelder (1989). *Generalized Linear Models*. Chapman and Hall/CRC.
- ► Santos Silva and Tenreyro (2006). "The Log of Gravity". REStats.
- ▶ Yotov et al. (2011). An advanced guide to trade policy analysis. WTO.
- ► Guimares and Portugal (2012). "Real Wages and the Business Cycle: Accounting for Worker, Firm, and Job Title Heterogeneity". *AEJ: Macro.*
- ► Dupuy and G (2014), "Personality traits and the marriage market". *JPE*.
- Dupuy, G and Sun (2016), "Estimating matching affinity matrix under low-rank constraints." arxiv 1612.09585.

MOTIVATION

- ► The gravity equation is a very useful tool for explaining trade flows by various measures of proximity between countries.
- ► A number of regressors have been proposed. They include: geographic distance, common official languague, common colonial past, share of common religions, etc.
- ▶ The dependent variable is the volume of exports from country i to country n, for each pair of country (i, n).
- ► Today, we shall see a close connection between gravity models of international trade and separable matching models.

REGULARIZED OPTIMAL TRANSPORT

Consider the optimal transport duality

$$\max_{\pi \in \mathcal{M}(P,Q)} \sum_{xy} \pi_{xy} \Phi_{xy} = \min_{u_x + v_y \ge \Phi_{xy}} \sum_{x \in \mathcal{X}} p_x u_x + \sum_{y \in \mathcal{Y}} q_y v_y$$

Now let's assume that we are adding an entropy to the primal objective function. For any $\sigma > 0$, we get

$$\begin{split} & \max_{\pi \in \mathcal{M}(P,Q)} \sum_{\mathbf{xy}} \pi_{\mathbf{xy}} \Phi_{\mathbf{xy}} - \sigma \sum_{\mathbf{xy}} \pi_{\mathbf{xy}} \ln \pi_{\mathbf{xy}} \\ & = \min_{u,v} \sum_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{x}} u_{\mathbf{x}} + \sum_{\mathbf{y} \in \mathcal{Y}} q_{\mathbf{y}} v_{\mathbf{y}} + \sigma \sum_{\mathbf{xy}} \exp \left(\frac{\Phi_{\mathbf{xy}} - u_{\mathbf{x}} - v_{\mathbf{y}} - \sigma}{\sigma} \right) \end{split}$$

► The latter problem is an unconstrained convex optimization problem. But the most efficient numerical computation technique is often coordinate descent, i.e. alternate between minimization in *u* and minimization in *v*.

ITERATED FITTING

► Maximize wrt to *u* yields

$$e^{-u_x/\sigma} = \frac{p_x}{\sum_y \exp\left(\frac{\Phi_{xy} - v_y - \sigma}{\sigma}\right)}$$

and wrt v yields

$$e^{-v_y/\sigma} = \frac{q_y}{\sum_x \exp\left(\frac{\Phi_{xy} - v_y - \sigma}{\sigma}\right)}$$

- ▶ It is called the "iterated projection fitting procedure" (ipfp), aka "matrix scaling", "RAS algorithm", "Sinkhorn-Knopp algorithm", "Kruithof's method", "Furness procedure", "biproportional fitting procedure", "Bregman's procedure". See survey in Idel (2016).
- ► Maybe the most often reinvented algorithm in applied mathematics. Recently rediscovered in a machine learning context.

ECONOMETRICS OF MATCHING

▶ The goal is to estimate the matching surplus Φ_{xy} . For this, take a linear parameterization

$$\Phi_{xy}^{\beta} = \sum_{k=1}^{K} \beta_k \phi_{xy}^k.$$

► Following Choo and Siow (2006), G and Salanié (2017) introduce logit heterogeneity in individual preferences and show that the equilibrium now maximizes the *regularized Monge-Kantorovich problem*

$$W\left(\beta\right) = \max_{\pi \in \mathcal{M}(P,Q)} \sum_{xy} \pi_{xy} \Phi_{xy}^{\beta} - \sigma \sum_{xy} \pi_{xy} \ln \pi_{xy}$$

▶ By duality, $W(\beta)$ can be expressed

$$W(\beta) = \min_{u,v} \sum_{x} p_{x} u_{x} + \sum_{y} q_{y} v_{y} + \sigma \sum_{xy} \exp\left(\frac{\Phi_{xy}^{\beta} - u_{x} - v_{y} - \sigma}{\sigma}\right)$$

and w.l.o.g. can set $\sigma=1$ and drop the additive constant $-\sigma$ in the exp.

ESTIMATION

▶ We observe the actual matching $\hat{\pi}_{xy}$. Note that $\partial W/\partial \beta^k = \sum_{xy} \pi_{xy} \phi^k_{xy}$, hence β is estimated by running

$$\min_{u,v,\beta} \sum_{x} p_{x} u_{x} + \sum_{y} q_{y} v_{y} + \sum_{xy} \exp\left(\Phi_{xy}^{\beta} - u_{x} - v_{y}\right) - \sum_{xy,k} \hat{\pi}_{xy} \beta_{k} \phi_{xy}^{k}$$
(1)

which is still a convex optimization problem.

► This is actually the objective function of the log-likelihood in a Poisson regression with *x* and *y* fixed effects, where we assume

$$\pi_{xy}|xy \sim \textit{Poisson}\left(\exp\left(\sum_{k=1}^K \beta_k \phi_{xy}^k - u_x - v_y\right)\right).$$

POISSON REGRESSION WITH FIXED EFFECTS

- Let $\theta = (\beta, u, v)$ and $Z = (\phi, D^x, D^y)$ where $D^x_{x'y'} = 1 \{x = x'\}$ and $D^y_{x'y'} = 1 \{y = y'\}$ are x-and y-dummies. Let $m_{xy}(Z; \theta) = \exp(\theta^\intercal Z_{xy})$ be the parameter of the Poisson distribution.
- ▶ The conditional likelihood of $\hat{\pi}_{xy}$ given Z_{xy} is

$$\begin{split} I_{xy} \left(\hat{\pi}_{xy}; \theta \right) &= \hat{\pi}_{xy} \log m_{xy} \left(Z; \theta \right) - m_{xy} \left(Z; \theta \right) \\ &= \hat{\pi}_{xy} \left(\theta^{\mathsf{T}} Z_{xy} \right) - \exp \left(\theta^{\mathsf{T}} Z_{xy} \right) \\ &= \hat{\pi}_{xy} \left(\sum_{k=1}^{K} \beta_k \phi_{xy}^k - u_x - v_y \right) - \exp \left(\sum_{k=1}^{K} \beta_k \phi_{xy}^k - u_x - v_y \right) \end{split}$$

 \triangleright Summing over x and y, the sample log-likelihood is

$$\sum_{xy} \hat{\pi}_{xy} \sum_{k=1}^K \beta_k \phi_{xy}^k - \sum_x p_x u_x - \sum_y q_y v_y - \sum_{xy} \exp\left(\sum_{k=1}^K \beta_k \phi_{xy}^k - u_x - v_y\right)$$

hence we recover objective function (1).

FROM POISSON TO PSEUDO-POISSON

- ▶ If $\pi_{xy}|xy$ is Poisson, then $\mathbb{E}\left[\pi_{xy}\right] = m_{xy}\left(Z_{xy};\theta\right) = \mathbb{V}ar\left(\pi_{xy}\right)$. While it makes sense to assume the former equality, the latter is a rather strong assumption.
- For estimation purposes, $\hat{\theta}$ is obtained by

$$\max_{\boldsymbol{\theta}} \sum_{\mathbf{x}\mathbf{y}} I\left(\hat{\pi}_{\mathbf{x}\mathbf{y}}; \boldsymbol{\theta}\right) = \sum_{\mathbf{x}\mathbf{y}} \left(\hat{\pi}_{\mathbf{x}\mathbf{y}}\left(\boldsymbol{\theta}^{\mathsf{T}} Z_{\mathbf{x}\mathbf{y}}\right) - \exp\left(\boldsymbol{\theta}^{\mathsf{T}} Z_{\mathbf{x}\mathbf{y}}\right)\right)$$

however, for inference purposes, one shall not assume the Poisson distribution. Instead

$$\sqrt{N} \left(\hat{\theta} - \theta \right) \Longrightarrow \left(A_0 \right)^{-1} B_0 \left(A_0 \right)^{-1}$$

where $N = |\mathcal{X}| \times |\mathcal{Y}|$ and A_0 and B_0 are estimated by

$$\hat{A}_0 = N^{-1} \sum_{xy} D_{\theta\theta}^2 I\left(\hat{\pi}_{xy}; \hat{\theta}\right) = N^{-1} \sum_{xy} \exp\left(\hat{\theta}^\intercal Z_{xy}\right) Z_{xy} Z_{xy}^\intercal$$

$$\hat{B}_0 = N^{-1} \sum_{xy} \left(\hat{\pi}_{xy} - \exp\left(\hat{\theta}^\intercal Z_{xy}\right) \right)^2 Z_{xy} Z_{xy}^\intercal.$$

APPLICATION: ESTIMATION OF AFFINITY MATRIX

▶ Dupuy and G (2014) focus on cross-dimensional interactions

$$\phi_{xy}^A = \sum_{p,q} A_{pq} \xi_x^p \xi_y^q$$

and estimate "affinity matrix" A on a dataset of married individuals where the "big 5" personality traits are measured.

► A is estimated by

$$\min_{s_i,m_n} \min_{A} \left\{ \begin{array}{c} \sum_x p_x u_x + \sum_y q_y v_y \\ + \sum_{xy} \exp\left(\sum_{p,q} A_{pq} \xi_x^p \xi_y^q - u_x - v_y\right) \\ - \sum_{x,y,p,q} \hat{\pi}_{xy} A_{pq} \xi_x^p \xi_y^q \end{array} \right\}.$$

▶ Dupuy, G and Sun (2016) consider the case when the space of characteristics is high-dimensional. More on this this afternoon.

ESTIMATION OF AFFINITY MATRIX: RESULTS

TABLE: Affinity matrix. Source: Dupuy and G (2014).

Wives	Education	Height.	BMI	Health	Consc.	Extra.	Agree.	Emotio.	Auto.	Risk
Husbands										
Education	0.46	0.00	-0.06	0.01	-0.02	0.03	-0.01	-0.03	0.04	0.01
Height	0.04	0.21	0.04	0.03	-0.06	0.03	0.02	0.00	-0.01	0.02
BMI	-0.03	0.03	0.21	0.01	0.03	0.00	-0.05	0.02	0.01	-0.02
Health	-0.02	0.02	- 0.04	0.17	- 0.04	0.02	- 0.01	0.01	-0.00	0.03
Conscienciousness	-0.07	-0.01	0.07	-0.00	0.16	0.05	0.04	0.06	0.01	0.01
Extraversion	0.00	-0.01	0.00	0.01	-0.06	0.08	-0.04	-0.01	0.02	-0.06
Agreeableness	0.01	0.01	-0.06	0.02	0.10	-0.11	0.00	0.07	-0.07	-0.05
Emotional	0.03	-0.01	0.04	0.06	0.19	0.04	0.01	-0.04	0.08	0.05
Autonomy	0.03	0.02	0.01	0.02	-0.09	0.09	-0.04	0.02	-0.10	0.03
Risk	0.03	-0.01	-0.03	-0.01	0.00	-0.02	-0.03	-0.03	0.08	0.14
							_			

Note: Bold coefficients are significant at the 5 percent level.

THE GRAVITY EQUATION

► "Structural gravity equation" (Anderson and van Wincoop, 2003) as reviewed in Head and Mayer (2014) handbook chapter:

$$X_{ni} = \underbrace{\frac{Y_i}{\Omega_i} \underbrace{\frac{X_n}{\Psi_n}}_{S_i} \Phi_{ni}}_{S_i}$$

where n=importer, i=exporter, X_{ni} =trade flow from i to n, $Y_i = \sum_n X_{ni}$ is value of production, $X_n = \sum_i X_{ni}$ is importers' expenditures, and ϕ_{ni} =bilateral accessibility of n to i.

 $ightharpoonup \Omega_i$ and Ψ_n are "multilateral resistances", satisfying the set of implicit equations

$$\Psi_n = \sum_i \frac{\Phi_{ni} Y_i}{\Omega_i}$$
 and $\Omega_i = \sum_n \frac{\Phi_{ni} X_n}{\Psi_n}$

► These are exactly the same equations as those of the regularized OT.

EXPLAINING TRADE

▶ Parameterize $\Phi_{ni} = \exp\left(\sum_{k=1}^K \beta_k D_{ni}^k\right)$, where the D_{ni}^k are K pairwise measures of distance between n and i. We have

$$X_{ni} = \exp\left(\sum_{k=1}^{K} \beta_k D_{ni}^k - s_i - m_n\right)$$

where fixed effects $s_i = -\ln S_i$ and $m_n = -\ln M_n$ are adjusted by

$$\sum_{i} X_{ni} = Y_{i} \text{ and } \sum_{n} X_{ni} = X_{n}.$$

- ▶ Standard choices of D_{ni}^{k} 's:
 - ▶ logarithm of bilateral distance between n and i
 - indicator of contiguous borders; of common official language; of colonial ties
 - ► trade policy variables: presence of a regional trade agreement; tariffs
 - could include many other measures of proximity, e.g. measure of genetic/cultural distance, intensity of communications, etc.

Section 2

PART II: RANK-CONSTRAINED MODELS

REFERENCES FOR PART II

- ▶ Becker (1973). A Theory of Marriage: Part I. JPE.
- ► [COQ] Chiappori, Oreffice and Quintana-Domeque (2012). "Fatter Attraction: Anthropometric and Socioeconomic Matching on the Marriage Market," *Journal of Political Economy*.

MOTIVATION: ESTIMATING INDICES OF ATTRACTIVENESS

► Chiappori, Oreffice and Quintana-Domeque [COQ] assume individuals match on a scalar "index of attractiveness" subsuming BMI, salary, education. Then the surplus function is

$$\Phi(x,y) = \left(\sum_{k} \zeta_{k} x_{k}\right) \left(\sum_{l} \nu_{l} y_{l}\right)$$

 $\zeta_k/\zeta_{k'}$ and $\nu_l/\nu_{l'}$ are marginal rates of substitution: how much richer do men/women need to be in order to compensate an increase in Body Mass Index?

▶ This problem can be solves by looking for the vectors of weights ζ and ν such that the rank correlation of $\zeta^{\mathsf{T}}x$ and $\nu^{\mathsf{T}}y$ is maximal.

A LOOK AT THE DATA

- ► [COQ] look at the characteristics of married couples, in particular body mass index, wages, and education.
- ► According to [COQ] (*Journal of Political Economy*, 2012): "Men may compensate 1.3 additional units of BMI with a 1%-increase in wages, while women may compensate two BMI units with one year of education."

ESTIMATION OF AFFINITY MATRIX BY CONVEX OPTIMIZATION

► Recall

$$W(A) = \max_{\pi \in \mathcal{M}(P,Q)} \int x' Ay d\pi(x,y) - \sigma \int \pi(x,y) d\pi(x,y).$$

and note that

$$\frac{\partial \mathcal{W}\left(A\right)}{\partial A_{ii}} = C_{ij}^{A}$$

- ▶ We are therefore looking for the estimator \hat{A} of the true A such that $\partial \mathcal{W}(A)/\partial A_{ii} = \hat{C}_{ii}$.
- ▶ Thus we shall estimate A by \hat{A} the solution of

$$\min_{A} \left\{ \mathcal{W}\left(A\right) - \sum_{ij} A_{ij} \, \hat{C}_{ij} \right\}$$

which is a nice and smooth convex minimization problem.

SEVERAL PROPOSALS

- ▶ Several proposal to estimate ζ and ν :
 - 1. Becker (1973): use Hotelling's canonical correlation analysis

$$\max_{\zeta,\nu} \mathbb{E}\left[\zeta^{\mathsf{T}} X Y^{\mathsf{T}} \nu\right]$$
 ,

which is unbiased if (X, Y) is Gaussian. Can be biased outside that case, cf. Dupuy-Galichon (AES, 2015).

- 2. Chiappori, Oreffice and Quintana-Domeque (JPE 2013): when Y is 1-dimensional, regress Y on X.
- 3. Terviö (AER 2007): maximize Spearman's rank correlation

$$\max_{\zeta,\nu}\mathbb{E}\left[F_{\zeta^{\intercal}X}\left(\zeta^{\intercal}X\right)F_{\nu^{\intercal}Y}\left(\nu^{\intercal}Y\right)\right],$$

where $F_{\zeta^\intercal X}$ and $F_{\nu^\intercal Y}$ are the cdfs of $\zeta^\intercal X$ and $\nu^\intercal Y$ respectively.

4. In the spirit of Han (JE 1987), maximize

$$\sum_{ii} \left(1 \left\{ \zeta^{\mathsf{T}} X_i > \zeta^{\mathsf{T}} X_j \right\} 1 \left\{ \nu^{\mathsf{T}} Y_i > \nu^{\mathsf{T}} Y_j \right\} + 1 \left\{ \zeta^{\mathsf{T}} X_i < \zeta^{\mathsf{T}} X_j \right\} 1 \left\{ \nu^{\mathsf{T}} Y_i < \nu^{\mathsf{T}} Y_j \right\} \right)$$

5. Dupuy-Galichon-Sun (2017): perform rank-constrained estimation of $\Phi\left(x,y\right)=x'Ay$ using nuclear norm regularization.

NUCLEAR NORM

lacktriangleright Recall that any $d \times d$ matrix A has a singular value decomposition

$$A = U\Lambda V^{\mathsf{T}}$$

where U and V are orthogonal matrices, and $\Lambda = diag(\lambda_1, ..., \lambda_d)$ is diagonal with positive entries ordered in descending order, i.e. $\lambda_1 > \lambda_2 > ... > \lambda_d > 0$.

- ► Note:
 - $ightharpoonup \Lambda$ are the eigenvalues of AA^{T} , and also of $A^{\mathsf{T}}A$.
 - ▶ If A is symmetric positive, then Λ are the eigenvalues of A
 - ▶ The rank of A is the number of nonzero entries of λ .
- ▶ The nuclear norm of A, denoted $|A|_*$, is simply the L1 norm of λ , that is

$$|A|_* = \sum_{i=1}^d \lambda_i.$$

- ► Controlling for nuclear norm is a good proxy for controlling for rank.
- ► Further, the nuclear norm is convex.

(SUB)GRADIENT OF THE NUCLEAR NORM

▶ The nuclear norm can be expressed as

$$|A|_* = \max_{U,V \in O_d} \operatorname{Tr}\left(U^{\mathsf{T}}AV\right)$$

from which its gradient may be inferred (from the envelope theorem).

▶ In general, one can use the nuclear norm for problems of the type

$$\min_{A}W\left(A\right)+\gamma\left|A\right|_{*}$$

which will drive low-rank solutions.

THE PROXIMAL OPERATOR

Usual gradient descent step:

$$x_{t+1} = x_t - \epsilon \nabla h(x_t).$$

▶ Proximal gradient descent step: look for *x* such that

$$x_{t+1} = x_t - \epsilon \nabla h(x_{t+1}).$$

► Note that the first expression cannot be recast as a minimization problem, while the second one does. Indeed, the second expression can be expressed as

$$x_{t+1} \in prox_{\epsilon h}(x_t)$$

where for a convex function f, the proximal operator is defined as

$$prox_{f}(x) = \arg\min_{z} \left\{ f(z) + \frac{1}{2} ||z - x||^{2} \right\}.$$

► The ability to recast the descent step as a minimization problem is very useful because it applies also when *f* is nonsmooth.

THE PROXIMAL OPERATOR: L1 NORM

▶ This works when h is nonsmooth too. When $f(z) = \epsilon |z|$, we have a closed-form expression for

$$\mathit{prox}_{\varepsilon|.|}\left(x\right) = \arg\min_{z} \left\{ \varepsilon \left|z\right| + \frac{1}{2} \left\|z - x\right\|^{2} \right\}$$

indeed, by first order conditions,

$$\begin{cases} z_k > 0 \implies \epsilon + z_k - x_k = 0 \\ z_k < 0 \implies -\epsilon + z_k - x_k = 0 \\ z_k = 0 \implies z_k - x_k \in [-\epsilon, \epsilon] \end{cases}$$

thus, we get the "soft-threshoding" operator

$$\begin{cases} x_k \in [-\epsilon, \epsilon] \implies z_k = 0 \\ x_k > \epsilon \implies z_k = x_k - \epsilon \\ x_k < -\epsilon \implies z_k = x_k + \epsilon \end{cases}$$

THE PROXIMAL OPERATOR: NUCLEAR NORM

- ▶ When the argument of f is a square matrix M, and $f(M) = |M|_*$ where $|M|_*$ is the sum of the singular values of M. Recall, if $M = U\Lambda V^\top$, where $\Lambda = diag(\lambda_1, \lambda_2, ... \lambda_d)$ with $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_d \geq 0$, then $|M|_* = Tr(\Lambda) = \lambda_1 + \lambda_2 + ... + \lambda_d$.
- ▶ When $f(M) = \epsilon |M|_*$, we have a closed-form expression for

$$prox_{\epsilon|.|_*}(A) = arg \min_{M} \left\{ \epsilon |M|_* + \frac{1}{2} \|M - A\|^2 \right\}$$

indeed, by first order conditions,

$$\begin{cases} z_k > 0 \implies \epsilon + z_k - x_k = 0 \\ z_k < 0 \implies -\epsilon + z_k - x_k = 0 \\ z_k = 0 \implies z_k - x_k \in [-\epsilon, \epsilon] \end{cases}$$

thus, we get the "soft-threshoding" operator

$$\begin{cases} x_k \in [-\epsilon, \epsilon] \implies z_k = 0 \\ x_k > \epsilon \implies z_k = x_k - \epsilon \\ x_k < -\epsilon \implies z_k = x_k + \epsilon \end{cases}$$

THE PROXIMAL GRADIENT ALGORITHM

- ► Consider min g(x) + h(x), where g is convex and differentiable, and h is convex and possibly nonsmooth.
- ▶ Standard gradient descent: $x_{t+1} = x_t \epsilon \nabla g(x_t) \epsilon \nabla h(x_t)$
- ▶ Proximal gradient descent: $x_{t+1} = x_t \varepsilon \nabla g(x_t) \varepsilon \nabla h(x_{t+t})$, that is $x_{t+1} + \varepsilon \nabla h(x_{t+1}) = x_t \varepsilon \nabla g(x_t)$, or in other words

$$x_{t+1} = prox_{\epsilon h} \left(x_t - \epsilon \nabla g \left(x_t \right) \right)$$

▶ We would like to interpret $x_{t+1} = prox_{\epsilon h} (x_t - \epsilon \nabla g(x_t))$ as $x_{t+1} = x_t - \epsilon G_{\epsilon}(x_t)$. For this, define

$$G_{\epsilon}(x) = \frac{x - prox_{\epsilon h}(x - \epsilon \nabla g(x))}{\epsilon}$$

► And now, let's code!