Lecture 41 Monte Carlo Simulation, Bootstrapping And Permutation Test

BIO210 Biostatistics

Xi Chen

Spring, 2024

School of Life Sciences
Southern University of Science and Technology

A Little History About Monte Carlo Simulations

Stanislaw Ulam

John von Neumann

ENIAC

Code name: Monte Carlo

https://en.wikipedia.org/wiki/Monte_Carlo_method

Monte Carlo Simulations

Casino de Monte-Carlo, picture taken on 26 Dec 2017.

A Monte Carlo Simulation To Calculate π

- Monte Carlo Simulation: a method of solving deterministic problems using a probabilistic analog.
- An example to calculate π using Monte Carlo Simulation.

A Monte Carlo Simulation To Calculate π

Number of dots	Estimated π
10	2.0
100	3.0
1,000	3.124
10,000	3.1276
100,000	3.14112
1,000,000	3.141772
10,000,000	3.14163332
100,000,000	3.141831323

Buffon's Needle

- First Posed by Georges-Louis Leclerc, Comte de Buffon in 1733, and reproduced with solution in 1777.
- Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips?

Buffon's Needle

We have two random variables: X, Θ to describe the position of the needle:

$$0 \leqslant x \leqslant \frac{d}{2}$$
$$0 \leqslant \theta \leqslant \frac{\pi}{2}$$

Marginal PDF of
$${\pmb X}$$
 and ${\pmb \Theta}$: ${\mathbb f}_{{\pmb X}}(x)=\frac{2}{d}, \ {\mathbb f}_{{\pmb \Theta}}(\theta)=\frac{2}{\pi}$

Joint PDF of X and Θ : $\mathbb{f}_{X,\Theta}(x,\theta) = \mathbb{f}_X(x)\mathbb{f}_{\Theta}(\theta) = \frac{4}{\pi d}$

 $A = \{$ the needle lies across a line between two strips $\}$

Event $A \Leftrightarrow \operatorname{red}$ is shorter than blue $\Leftrightarrow 0 \leqslant \mathbf{x} \leqslant \frac{l \cdot \sin \theta}{2}$

$$\mathbb{P}(A) = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{t \cdot \sin \theta}{2}} \mathbb{f}_{\mathbf{X}, \mathbf{\Theta}}(x, \theta) dx d\theta = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{t \cdot \sin \theta}{2}} \frac{4}{\pi d} dx d\theta$$

Buffon's Needle - Monte Carlo simulations to estimate π

Number of needles	Estimated π			
10	3.333333			
100	3.125			
1,000	3.333333			
10,000	3.22684737			
100,000	3.13293023			
1,000,000	3.14433768			
10,000,000	3.14071042			
100,000,000	3.14148011			

Overlap of Transcription Factors

Overlap of OCT4 And CTCF In mESC

Bootstrapping

- Point/interval estimation of mean/median *etc*. from a population with very little information.
- How? Bootstrapping methods.

parametric bootstraps nonparametric bootstraps weighted bootstraps

Steps of Bootstrapping

- 1. Replace the population with the sample
- 2. Sample with replacement B times. B should be large, say 1,000
- 3. Compute sample means/medians each time, M_i
- 4. Obtain the approximate distribution of the sample mean/median

Bootstrapping Example

Original samuela (sa 95)

Original sample $(n \equiv 25)$			bootstrapping sample #1 ($n=25$)				25)			
16.66 6.4 12.17 12.23 0.11	13.58 11.33 16.02 4.32 1.28	2.27 10.54 5.17 10.68 11.33	9.96 10.02 15.14 17.42 21.92	13.11 9.13 11.14 4.6 15.62	sampling with replacement with the same sample size $n=25$	15.62 2.27 12.23 11.33 11.33	15.62 10.02 11.33 16.02 10.68	17.42 12.23 11.33 4.32 12.23	5.17 15.14 1.28 5.17 5.17	11.33 15.62 12.17 16.66 10.02

Bootstrapping sample #2 ($n=25$)							
	6.4	21.92	12.23	13.58	9.13		
	17.42	9.13	6.4	21.92	13.58		
	16.66	10.54	15.62	9.13	9.13		
	11.14	10.02	0.11	11.14	4.32		
	0.11	9.13	17.42	10.02	21.92		

Destatus uning segundo //1 (ss. 95)

Bootstrapping - Point And Interval Estimation

Distribution of Means of 10,000 Bootstrapping Samples

Permutation Tests

Permutation Tests - p-value Calculation

Distribution of 10,000 Differences (d_1 to d_{10000})

p-value: probability of seeing the observation or more extreme given that ${\cal H}_0$ is true!

$$p_{\text{one-sided}} = \frac{\text{\# of simulations} \geqslant 3.68}{\text{total } \text{\# of simulations}}$$

$$p_{\mathrm{two\text{-}sided}} = 2 \times p_{\mathrm{one\text{-}sided}}$$

https://www.jwilber.me/permutationtest/15/15