WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 97/46690 (11) International Publication Number: C12N 15/67, 15/82, 15/29, C07K 14/415 A1 (43) International Publication Date: 11 December 1997 (11.12.97)

GB

PCT/GB97/01414 (21) International Application Number:

23 May 1997 (23.05.97) (22) International Filing Date:

7 June 1996 (07.06.96)

(71) Applicant (for all designated States except US): ZENECA LIMITED [GB/GB]; 15 Stanhope Gate, London W1Y 6LN

(72) Inventors; and (75) Inventors/Applicants (for US only): DRAKE, Caroline, Rachel [GB/GB]; (GB). BIRD, Colin, Roger [GB/GB]; (GB). SCHUCH, Wolfgang, Walter [DE/GB]; Jealott's Hill Research Station, Bracknell, Berkshire RG42 6ET (GB).

(74) Agents: HUSKISSON, Frank, Mackie et al.; Zeneca Agrochemicals, Intellectual Property Dept., Jealott's Hill Research Station, P.O. Box 3538, Bracknell, Berkshire RG42 6YA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR. BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Published

amendments.

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: ENHANCEMENT OF GENE EXPRESSION

(57) Abstract

(30) Priority Data:

9611981.3

A method for enhancing the expression of a selected gene in an organism while avoiding or reducing co-suppression involves the synthesis of a DNA which is altered in nucleotide sequence and is capable of expression of a protein, ideally identical to that of a protein already expressed by a DNA already present in the organism. This method ensures that sequence similarity between the two genes is reduced enough to eliminate the phenomenon of co-suppression, allowing the over-expression of a specific protein. The method is particularly suitable in plants.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ŤJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	1S	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NI.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbahwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PI.	Poland Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ.	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 97/46690 - 1 - PCT/GB97/01414

ENHANCEMENT OF GENE EXPRESSION

This invention relates to a method and material for enhancing gene expression in organisms, particularly in plants. One particular, but not exclusive, application of the invention is the enhancement of caroteniod biosynthesis in plants such as tomato (*Lycopersicon* spp.)

In order to increase production of a protein by an organism, it is known practice to insert into the genome of the target organism one or more additional copies of the protein-encoding gene by genetic transformation. Such copies would normally be identical to a gene which is already present in the plant or, alternatively, they may be identical copies of a foreign gene. In theory, multiple gene copies should, on expression cause the organism to produce the selected protein in greater than normal amounts, this is referred to as "overexpression". Experiments have shown however, that low expression or no expression of certain genes can result when multiple copies of the gene are present. (Napoli *et al* 1990 and Dorlhac de Borne *et al* 1994). This phenomenon is referred to as co-suppression. It most frequently occurs when recombinant genes are introduced into a plant already containing a gene similar in nucleotide sequence. It has also been observed in endogenous plant genes and transposable elements. The effects of co-suppression are not always immediate and can be influenced by developmental and environmental factors in the primary transformants or in subsequent generations.

The general rule is to transform plants with a DNA sequence the codon usage of which approximates to the codon frequency used by the plant. Experimental analysis has shown that introducing a second copy of a gene identical in sequence to a gene already in the plant genome can result (in some instances) with the expression of the transgene, endogenous gene or both genes being inactivated (co-suppression). The mechanisms of exactly how co-suppression occurs are unclear, however there are several theories incorporating both pre- and post-gene transcriptional blocks.

As a rule the nucleotide sequence of an inserted gene is "optimised" in two respects. The codon usage of the inserted gene is modified to approximate to the preferred codon usage of the species into which the gene is to be inserted. Inserted genes may also be optimised in respect of the nucleotide usage with the aim of

5

10

15

20

25

WO 97/46690 - 2 - PCT/GB97/01414

approximating the purine to pyrimidine ratio to that commonly found in the target species. When genes of bacterial origin are transferred to plants, for example, it is well known that the nucleotide usage has to be altered to avoid highly adenylated regions, common in bacterial genes, which may be misread by the eukaryotic expression machinery as a polyadenylation signal specifying termination of translation, resulting in truncation of the polypeptide. This is all common practice and is entirely logical that an inserted sequence should mimic the codon and nucleotide usage of the target organism for optimum expression.

An object of the present invention is to provide means by which co-suppression may be obviated or mitigated.

According to the present invention there is provided a method of enhancing expression of a selected protein by an organism having a gene which produces said protein, comprising inserting into a genome of the said organism a DNA the nucleotide sequence of which is such that the RNA produced on transcription is different from but the protein produced on translation is the same as that expressed by the gene already present in the genome.

The invention also provides a gene construct comprising in sequence a promoter which is operable in a target organism, a coding region encoding a protein and a termination signal characterised in that the nucleotide sequence of the said construct is such that the RNA produced on transcription is different from but the protein produced on translation is the same as that expressed by the gene already present in the genome.

The inserted sequence may have a constitutive promoter or a tissue or developmental preferential promoter.

It is preferred that the promoter used in the inserted construct be different from that used by the gene already present in the target genome. However, our evidence suggests that it may be sufficient that the region between the transcription and translation initiation codons, sometimes referred to as the "5' intervening region", be different. In other words, the co-suppression phenomenon is probably associated with the transcription step of expression rather than the translation step: it occurs at the DNA or RNA levels or both.

5

10

15

20

25

WO 97/46690 - 3 - PCT/GB97/01414

The invention further provides transgenic plants having enhanced ability to express a selected gene and seed and propagating material derived from the said plant.

This invention is of general applicability to the expression of genes but will be illustrated in one specific embodiment of our invention by a method of enhancing expression of the phytoene synthase gene which is necessary for the biosynthesis of carotenoids in plants, the said overexpression being achieved by the use of a modified transgene having a different nucleotide sequence from the endogenous sequence.

Preferably said modified phytoene synthase gene has the sequence SEQ-ID-10 NO-1.

The invention also provides a modified chloroplast targeting sequence comprising nucleotides 1 to 417 of SEQ-ID-NO-1.

In simple terms, our invention requires that protein expression be enhanced by inserting a gene construct which is altered, with respect to the gene already present in the genome, by maximising the dissimilarity of nucleotide usage while maintaining identity of the encoded protein. In other words, the concept is to express the same protein from genes which have different nucleotide sequences within their coding region and, preferably the promoter region as well. It is desirable to approximate the nucleotide usage (the purine to pyrimidine ratio) of the inserted gene to that of the gene already present in the genome. We also believe it to be desirable to avoid the use of codons in the inserted gene which are uncommon in the target organism and to approximate the overall codon usage to the reported codon usage for the target genome.

The degree to which a sequence may be modified depends on the frequency of degenerate codons. In some instances a high proportion of changes may be made, particularly to the third nucleotide of a triplet, resulting in a low DNA (and consequently RNA) sequence homology between the inserted gene and the gene already present while in other cases, because of the presence of unique codons, the number of changes which are available may be low. The number of changes which are available can be determined readily by a study of the sequence of the gene which is already present in its degeneracy.

5

15

20

25

To obtain the gene for insertion in accordance with this invention it may be necessary to synthesise it. The general parameters within which the nucleotide sequence of the synthetic gene compared with the gene already present may be selected are:

- 5 1. Minimise the nucleotide sequence similarity between the synthetic gene and the gene already present in the plant genome;
 - 2. Maintain the identity of the protein encoded by the coding region;
 - 3. Maintain approximately the optimum codon usage indicated for the target genome;
- 10 4. Maintain approximately the same ratio of purine to pyrimidine bases; and
 - 5. Change the promoter or, at least, the 5'-intervening region.

We have worked with the phytoene synthase gene of tomato. The DNA sequence of the endogenous phytoene sequence is known (EMBL Accession Number Y00521): and it was discovered that this gene contained two sequencing errors toward the 3' end. These errors were corrected in the following way (1) cancel the cytosine at location 1365 and (2) insert a cytosine at 1421. The corrected phytoene synthase sequence (Bartley et al 1992), is given herein as SEQ-ID-NO-2. Beginning with that natural sequence we selected modifications according to the parameters quoted above and synthesised the modified gene which we designated MTOM5 and which has the sequence SEQ-ID-NO-1. Figure 1 herewith shows an alignment of the natural and synthesised gene with retained nucleotides indicated by dots and alterations by dashes. The modified gene MTOM5 has 63% homology at the DNA level, 100% at the protein level and the proportion of adenine plus thymidine (i.e. the purines) is 54% in the modified gene compared with 58% for the natural sequence.

In the sequence listings provided herewith, SEQ ID NO 1 is the DNA sequence of the synthetic (modified TOM5) gene rewferred to as MTOM5 in Figure 1, SEQ ID NO 2 is the natural genomic phytoene synthase (PsyI) gene referred to as GTOM5 in Figure 1, and SEQ-ID NO 3 is the translation product of both GTOM5 and MTOM5.

In tomato (*Lycopersicon esculentum*), it has been shown that the carotenoid namely lycopene, is primarily responsible for the red colouration of developing fruit (Bird *et al* 1991). The production of an enzyme phytoene synthase, referred to herein as PsyI, is an important catalyst in the production of phytoene, a precursor of lycopene.

15

20

WO 97/46690 - 5 - PCT/GB97/01414

Psyl catalyses the conversion of geranyl geranyl diphosphate to phytoene, the first dedicated step in carotenoid biosynthesis.

The regulation and expression of the active Psyl gene is necessary for the production of lycopene and consequently the red colouration of fruit during ripening.

This can be illustrated by the yellow flesh phenotype of tomato fruits observed in a naturally occurring mutant in which the Psyl gene is inactive. In addition transgenic plants containing an antisense Psyl transgene, which specifically down regulates Psyl expression have also produced the yellow flesh phenotype of the ripe fruit.

When transgenic plants expressing another copy of the Psyl gene (referred to as TOM5) placed under the control of a constitutive promoter (being the Cauliflower Mosaic Virus 35S promoter) were produced, approximately 30% of the primary transformants produced mature yellow fruit indicative of the phenomenon of cosuppression. Although some of the primary transformants produced an increased caroteniod content, subsequent generations did not exhibit this phenotype thus providing evidence that co-suppression is not always immediate and can occur in future generations.

The sequence of PsyI is known and hence the amino acid sequence was determined.

With reference to published Genbank genetic sequence data (Ken-nosuke Wada et al 1992.), a synthetic DNA was produced by altering the nucleotide sequence to one which still had a reasonable frequency of codon use in tomato, and which retained the amino acid sequence of Psyl. A simple swap between codons was used in cases where there are only two codon options, however in other cases the codons were changed within the codon usage bias of tomato. Nucleotide sequence analysis indicated that the synthetic DNA has a nucleotide similarity with Psyl (TOM5 Bartley et al 1992) of 63% and amino acid sequence similarity of 100%.

The synthetic gene was then cloned into plant transformation vectors under the control of 35S promoter. These were then transferred into tomato plants by *Agrobacterium* transformation, and both the endogenous and the synthetic gene appear to express the protein. Analysis of the primary transformants illustrates there is no evidence, such as the production of yellow fruit, indicative of co-suppression between the two genes.

10

15

20

25

WO 97/46690 - 6 - PCT/GB97/01414

The present invention will now be described by way of illustration in the following examples.

EXAMPLE 1

The coding region of the cDNA which encodes tomato phytoene synthase,

TOM5 (EMBL accession number Y00521) was modified since the original sequence
contained two errors towards the 3' end of the sequence. The sequence reported by
Bartley et al 1992 (J Biol Chem 267:5036-5039) for TOM5 cDNA homologues
therefore differs from TOM5 (EMBL accession number Y00521). For the purpose of
the production of the synthetic gene the sequence used is a corrected version of the

TOM5 cDNA which is identical to Psyl (Bartley et al 1992).

Design of the sequence.

10

15

20

25

BNSU00 DIRWC 9746690A1 III

- Potential restriction endonuclease cleavage sites were considered given the
 constraints of the amino acid sequence. Useful sites around the predicted target
 sequence cleavage site were introduced to aid subsequent manipulation of the
 leader.
- 2. A simple swap between codons was used in cases where there are only two codon options (eg. lysine). In other cases codons were changed within the codon usage bias of tomato as given by Ken-nosuke Wada *et al* (codon usage tabulated from GenBank genetic sequence data, 1992. Nucleic Acids research 20:S2111-2118). A priority was given to reducing homology and avoiding uncommon codons rather than producing a representative spread of codon usage.
- 3. A BamHI site was introduced at either end of the sequence to facilitate cloning into the initial. At the 5' end 4A were placed upstream of the ATG according the dicot start site consensus sequence (Cavener and Ray 1991, Eukaryotic start and stop translation sites. NAR 19: 3185-3192).
- 4. The synthetic gene has been cloned into the vector pGEM4Z such that it can be translated using SP6.
- 5. Restriction site, stemloop and codon usage analyses were performed, all results30 being satisfactory.
 - 6. The modified TOM5 sequence was termed CGS48 or MTOM5.

Sequence analysis

CGS48

AT content = 54%

TOM5

10

20

25

30

AT content = 58%

The nucleotide homology between TOM5 and CGS48 is 63%.

5 Amino acid sequence homology is 100%.

In summary the sequence TOM5 (Acc. No. Y00521) was extracted from the GenBank database and modified to incorporate the following corrections: deleted C at 1365, inserted C at 1421. CGS48 is based on the CDS of the modified Y00521 and the original sequence, whilst retaining translation product homology and trying to maintain optimal tomato codon usage.

Assembly of CGS48

CGS48 was divided into three parts:

CGS48A: BamHI / KpnI

CGS48B: KpnI / SacI

15 CGS48C: SacI / BamHI

All three were designed to be cloned on EcoRI / HindIII fragments. The sequences were divided into oligonucleotide fragments following computer analysis to give unique complementarity in the overlapping regions used for the gene assembly.

The oligonucleotides were synthesised on an Applied Biosystems 380B DNA synthesiser using standard cyanoethyl phosphoramidite chemistry. The oligonucleotides were gel purified and assembled into full length fragments using our own procedures.

The assembled fragments were cloned into pUC18 via their EcoRI/HindIII overhangs.

Clones were sequenced bi-directionally using "forward" and "reverse" sequencing primers together with the appropriate "build" primers for the top and bottom strands, using the dideoxy-mediated chain termination method for plasmid DNA.

Inserts from correct CGS48A, B and C clones were isolated by digestion with BamHI / KpnI, KpnI / SacI, SacI / BamHI respectively. The KpnI and SacI ends of the BamHI / KpnI and SacI / BamHI fragments were phosphatased. All three fragments were co-ligated into BamHI cut and phosphatased pGEM4Z. Clones with the correct sized inserts oriented with the 5' end of the insert adjacent to the SmaI site were

WO 97/46690 - 8 - PCT/GB97/01414

identified by PCR amplification of isolated colonies and digestion of purified plasmid DNA with a selection of restriction enzymes.

A CsCl purified plasmid DNA preparation was made from one of these clones. This clone (CGS48) was sequenced bi-directionally using "forward" and "reverse" sequencing primers together with the appropriate "build" primers for the top and bottom strands, using the dideoxy-mediated chain termination method for plasmid DNA.

EXAMPLE 2

Construction of the MTOM 5 vector with the CaMV 35S promoter

The fragment MTOM5 (CGS48) DNA described in EXAMPLE 1 was cloned into the vector pJR1Ri (Figure 2) to give the clone pRD13 (Figure 3). The clone CGS48 was digested with SmaI and XbaI and then cloned into pJR1Ri which was cut with SmaI and XbaI to produce the clone pRD13.

EXAMPLE 3

15 Generation and analysis of plants transformed with the vector pRD13

The pRD13 vector was transferred to *Agrobacterium tumefaciens* LBA4404 (a micro-organism widely available to plant biotechnologists) and used to transform tomato plants. Transformation of tomato stem segments followed standard protocols (e.g. Bird et al Plant Molecular Biology 11, 651-662, 1988). Transformed plants were identified by their ability to grow on media containing the antibiotic kanamycin. Forty nine individual plants were regenerated and grown to maturity. None of these plants produced fruit which changed colour to yellow rather than red when ripening. The presence of the pRD13 construct in all of the plants was confirmed by polymerase chain reaction analysis. DNA blot analysis on all plants indicated that the insert copy number was between one and seven. Northern blot analysis on fruit from one plant indicated that the MTOM5 gene was expressed. Six transformed plants were selfed to produce progeny. None of the progeny plants produced fruit which changed colour to yellow rather than red during ripening.

The results are summarised in Table 1 below. The incidence of yellow, or mixed yellow/red (for example, striped) fruits is indicative of suppression of phytoene synthesis. Thus, with the normal GTOM5 construct, 28% of the transgenic plants displayed the co-suppressed phenotype. All the plants carrying the modified MTOM5

5

10

20

25

construct of this invention had red fruit demonstrating that no suppression of phytoene synthesis had occurred in any of them.

TABLE 1

	Construct						
	35S-GTOM5-nos	35S-MTOM5-nos					
Total number of fruiting plants	39	49					
Number of plants producing yellow fruit	8	0					
Number of plants producing mixed yellow and	3	0					
red fruit or temporal changes							
Number of plants producing red fruit	28	49					
% plants showing co-suppression of psyI	28%	0%					

5

FIGURE 1

Sequence Alignment of Modified TOM5 with the synthetic MTOM5

10												
	TOM5	ATG	TCT	GTT	GCC	TTG	TTA	TGG	GTT	GTT	TCT	30
15	MTOM5	ATG M	AGC S	GTG V	GCA A	CTT L	CTT L	TGG W	GTG V	GTG V	AGC S	30
13	TOM5	CCT	TGT	GAC	GTC	TCA	AAT	GGG	ACA	AGT	TTC	60
	MTOM5		TGC C					GGC G		TCA S	TTT F	60
20	TOM5	ATG	GAA	TCA	GTC	CGG	GAG	GGA	AAC	CGT	TTT	90
	MTOM5	ATG	GAG	AGT	GTG	 AGA R			AAT N	-	TTC	90
25		1.1			•	•	-		••	••	•	
	TOM5	TTT	GAT	TCA	TCG	AGG	CAT	AGG	AAT -	TTG	GTG	120
	MTOM5	TTC F	GAC D	AGT	TCT S	CGT R	CAC H	CGT R	AAC N	CTT	GTT V	120
30		-	_	_	_							
	TOM5	TCC	AAT		AGA	ATC	AAT	AGA		GGT	GGA	150
	MTOM5		AAC N	GAA E	CGT R		AAC N		GGA G		GGT G	150
35												
	TOM5	AAG	CAA	ACT	AAT	AAT	GGA	CGG	AAA	TTT	TCT	180
	MTOM5	AAA	CAG	ACA	AAC	AAC	GGT	AGA	AAG	TTC	TCA	180

		K	Q	T	N	N	G	R	K	F	S	
	TOM5		CGG									210
5	MTOM5		AGA	TCA	GCA	ATC	CTT		ACA	CCT	A GC	210
	TOM5										ATG	240
10	MTOM5	GGT G				ATG				CAA	ATG M	240
	TOM5										GCC	270
15	MTOM5			GAC	GTC		CTT	CGT	CAA		GCA	270
	TOM5		GTG								AAT	300
20	MTOM5	CTA		AAA	CGT	CAG	TTA		AGT		AAC	300
	TOM5		TTA								ATT	330
25	MTOM5	GAA		GAG	GTT	AAA	CCT		ATT	CCA	ATA	330
	TOM5		GGG								GCA	360
30	MTOM5		GGA	AAC	CTT	GGA		CTT	TCT		GCT	360
	TOM5		GAT								GAG	390
35	MTOM5	TAC		AGA	TGC	GGA	GAG		TGC	GCA	GAA	390
	TOM5	TAT	GCA	AAG	ACG	TTT	AAC	TTA	GGA	ACT	ATG	420
40	MTOM5										ATG M	
	TOM5		ATG								ATC	450
45	MTOM5	TTG		ACA	CCA	GAA	AGG		CGT	GCA	ATA	450
	TOM5		GCA								ACA	480
50	MTOM5	TGG	GCT A	ATT	TAC	GTT	TGG	TGT	AGG	CGT	ACT	480
	TOM5											510
55	MTOM5	GAC	GAG E	TTA	GTG	GAC	GGA	CCT	AAT	GCT	AGT	510
	TOM5	TAT	ATT	ACC	CCG	GCA	GCC	TTA	GAT	AGG	TGG	5 4 0

	MTOM5	TAC	ATA I	ACA	CCC	GCT	GCT	CTT	GAC	AGA	TGG W	5 4 0
5	TOM5	GAA	AAT									570
	MTOM5		AAC	CGT	TTG		GAC	GTG	TTT	AAC	GGC G	570
10	TOM5										TTG	600
	MTOM5	AGA	CCT P	TTC	GAT	ATG	TTG	GAC	GGA	GCA	CTT	600
15	TOM5		GAT									630
	MTOM5		GAC	ACT	GTG		AAT	TTC	CCT	GTG	GAC	630
20	TOM5		CAG									660
	MTOM5	ATC		CCT	TTT	CGG	GAC	ATG	ATC	GAG	GGC	660
25	TOM5		CGT								TAC	690
	мтом5	ATG		ATG	GAT		CGT	AAG	TCT	CGT	TAT Y	690
30	TOM5	AAA									TGT	
	MTOM5	AAG	AAT N	TTT	GAT	GAG	TTG	TAT	TTG L	TAC	TGC	720
35	TOM5	TAT	TAT									750
	MTOM5	TAC	TAC	GTG	GCA		ACC	GTG	GGC	CTT	ATG	7 50
40	TOM5		GTT								GAA	780
	MTOM5	TCA		CCT	ATC	ATG	GGA	ATT	GCA	CCA	GAG	780
45	TOM5		AAG								AAT	810
	MTOM5	AGT		GCT	ACT	ACT	GAA	TCT	GTT	TAC	ACC	810
50	TOM5	GCT										840
	MTOM5	GCA	GCA A	CTA	GCA	TTA	GGT	ATA	GCT	AAC	CAG	840
55	TOM5	ע נוויון	ልሮመ	አልሮ	ልጥል	ርጥር	ACA	Cam	Gmm	GC3	GAA	870
	MIOMS	C11	AUA	- Arti	A10		21.00	JAC	310	331	UNU	5 , 0

		L	T	N	I	L	R	D	v	G	E	
	TOM5										CCT	900
5	MTOM5	GAC D	GCA		AGG R	GGT		GTG		CTC	CCA P	900
	TOM5										TCC	930
10	MTOM5				CTC	GCT	CAA		-		AGT	930
	TOM5										ACC	960
15	MTOM5	GAC	GAG E	GAC	ATT	TTC		GGT	CGT R		ACA	960
	TOM5								AAG	AAA	CAA	990
20	MTOM5		AAG			ATT			AAA	AAG	CAG	990
	TOM5											1020
25	MTOM5		CAC H					TTT		GAC	GAA	1020
	TOM5										TCA	1050
30	MTOM5				GGA				CTT L		AGT S	1050
	TOM5	GCT	AGT								TTG	1080
35	MTOM5	GCA A	TCA S	AGG	TTT	CCA	GTT	TGG				1080
	TOM5											1110
40	MTOM5	GTG	CTC L	TAT	AGA	AAG	ATT	TTG	GAC	GAA	ATC	1110
	TOM5		-									1140
45	MTOM5	GAG	GCT A	AAC	GAT	TAT	AAT	AAT	TTT	ACT	AAA	1140
	TOM5											1170
50	MTOM5	CGT	GCT A	TAC	GTT	TCT	AAG	AGC			CTT	1170
	TOM5	ATT										1200
55	MTOM5			CTT	CCA	ATC	GCT	TAC		AAG	AGC	1200
	TOM5	CTT	GTG	CCT	CCT	ACA				TCT		1230

	MTOM5	TTG L	GTT V	CCA P	CCA P	ACT T	AAG K	ACA T	GCT A	AGC S	TTG L	1230
_	TOM5	CAA	AGA	TAA								1239
5	MTOM5	CAG Q	AGG R	TGA								1239
10			Same Diffe			5 e						
15			SEQ1 TEIN			€:	63% 100%		10L00			

SEQUENCE LISTING

5	(1) GENER	RAL INFORMATION:
J	(i)	APPLICANT: ZENECA LIMITED .,
	(ii)	TITLE OF INVENTION: ENHANCEMENT OF GENE EXPRESSION
10	(iii)	NUMBER OF SEQUENCES: 3
	(iv)	CORRESPONDENCE ADDRESS:
		(A) ADDRESSEE: IP DEPT., ZENECA AGROCHEMICALS,
		(B) STREET: JEALOTTS HILL RESEARCH STATION.
15		(C) CITY: BRACKNELL,
		(D) STATE: BERKSHIRE
		(E) COUNTRY: GB
		(F) ZIP: RG42 6ET
20	(v)	COMPUTER READABLE FORM:
		(A) MEDIUM TYPE: Floppy disk
		(B) COMPUTER: IBM PC compatible
		(C) OPERATING SYSTEM: PC-DOS/MS-DOS
25		(D) SOFTWARE: PatentIn Release #1.0, Version #1.25
23	(vi) (CURRENT APPLICATION DATA:
		(A) APPLICATION NUMBER: WO NOT KNOWN
		(B) FILING DATE:
		(C) CLASSIFICATION:
30		
	(viii) A	ATTORNEY/AGENT INFORMATION:
		(A) NAME: HUSKISSON, FRANK M
		(C) REFERENCE/DOCKET NUMBER: PPD 50156/WO
35	(ix) 1	TELECOMMUNICATION INFORMATION:
		(A) TELEPHONE: 01344 414822
40	(2) INFORM	MATION FOR SEQ ID NO:1:
,,	/i\ c	FOURNOE CUARACTERICATES
		SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 1239 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 5 (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: SYNTHETIC DNA

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGAGCGTGG CACTTCTTTG GGTGGTGAGC CCATGCGATG TGAGTAACGG CACTTCATTT 60

15

ATGGAGAGTG TGAGAGAGG TAATAGATTC TTCGACAGTT CTCGTCACCG TAACCTTGTT 120

AGTAACGAAC GTATAAACAG GGGAGGAGGT AAACAGACAA ACAACGGTAG AAAGTTCTCA 20 180

GTTAGATCAG CAATCCTTGC AACACCTAGC GGTGAGAGAA CTATGACTAG CGAGCAAATG 240

25 GTGTACGACG TCGTACTTCG TCAAGCTGCA CTAGTTAAAC GTCAGTTACG TAGTACTAAC 300

GAACTTGAGG TTAAACCTGA CATTCCAATA CCTGGAAACC TTGGACTTCT TTCTGAGGCT 360

30

TACGACAGAT GCGGAGAGGT TTGCGCAGAA TACGCTAAAA CCTTCAATTT GGGTACCATG 420

TTGATGACAC CAGAAAGGCG TCGTGCAATA TGGGCTATTT ACGTTTGGTG TAGGCGTACT

480

GACGAGTTAG TGGACGGACC TAATGCTAGT TACATAACAC CCGCTGCTCT TGACAGATGG 540

40 GAGAACCGTT TGGAGGACGT GTTTAACGGC AGACCTTTCG ATATGTTGGA CGGAGCACTT 600

	AGTGACACTG TGAGCAATTT CCCTGTGGAC ATCCAACCTT TTCGGGACAT GATCGAGGGC 660
5	ATGAGAATGG ATCTTCGTAA GTCTCGTTAT AAGAATTTTG ATGAGTTGTA TTTGTACTGC 720
	TACTACGTGG CAGGAACCGT GGGCCTTATG TCAGTGCCTA TCATGGGAAT TGCACCAGAG 780
10	AGTAAAGCTA CTACTGAATC TGTTTACACC GCAGCACTAG CATTAGGTAT AGCTAACCAG
15	CTTACAAATA TCTTGAGGGA CGTGGGTGAG GACGCACGTA GGGGTCGTGT GTATCTCCCA 900
	CAGGACGAGC TCGCTCAAGC TGGATTGAGT GACGAGGACA TTTTCGCAGG TCGTGTTACA 960
20	GACAAGTGGA GGATTTTCAT GAAAAAGCAG ATTCACCGTG CTCGTAAATT TTTCGACGAA
	GCTGAAAAGG GAGTTACTGA GCTTTCTAGT GCATCAAGGT TTCCAGTTTG GGCCAGCCTT
25	GTGCTCTATA GAAAGATTTT GGACGAAATC GAGGCTAACG ATTATAATAA TTTTACTAAA 1140
30	CGTGCTTACG TTTCTAAGAG CAAAAAACTT ATCGCTCTTC CAATCGCTTA CGCTAAGAGC
	TTGGTTCCAC CAACTAAGAC AGCTAGCTTG CAGAGGTGA 1239
35	(2) INFORMATION FOR SEQ ID NO:2:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1239 base pairs (B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
40	(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

	(iii) HYPOTHETICAL: NO
5	(iv) ANTI-SENSE: NO
	(vi) ORIGINAL SOURCE: (A) ORGANISM: LYOPERSICON ESCULENTUM (TOMATO)
10	(vii) IMMEDIATE SOURCE: (B) CLONE: GTOM5 - PHYTOENE SYNTHASE GENE
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
15	ATGTCTGTTG CCTTGTTATG GGTTGTTTCT CCTTGTGACG TCTCAAATGG GACAAGTTTC
20	ATGGAATCAG TCCGGGAGGG AAACCGTTTT TTTGATTCAT CGAGGCATAG GAATTTGGTG
20	TCCAATGAGA GAATCAATAG AGGTGGTGGA AAGCAAACTA ATAATGGACG GAAATTTTCT
25	GTACGGTCTG CTATTTTGGC TACTCCATCT GGAGAACGGA CGATGACATC GGAACAGATG 240
	GTCTATGATG TGGTTTTGAG GCAGGCAGCC TTGGTGAAGA GGCAACTGAG ATCTACCAAT
30	GAGTTAGAAG TGAAGCCGGA TATACCTATT CCGGGGAATT TGGGCTTGTT GAGTGAAGCA 360
2.5	TATGATAGGT GTGGTGAAGT ATGTGCAGAG TATGCAAAGA CGTTTAACTT AGGAACTATG
35	CTAATGACTC CCGAGAGAAG AAGGGCTATC TGGGCAATAT ATGTATGGTG CAGAAGAACA 480
40	GATGAACTTG TTGATGGCCC AAACGCATCA TATATTACCC CGGCAGCCTT AGATAGGTGG 540

GAAAATAGGC TAGAAGATGT TTTCAATGGG CGGCCATTTG ACATGCTCGA TGGTGCTTTG

TCCGATACAG TTTCTAACTT TCCAGTTGAT ATTCAGCCAT TCAGAGATAT GATTGAAGGA 5 660

ATGCGTATGG ACTTGAGAAA ATCGAGATAC AAAAACTTCG ACGAACTATA CCTTTATTGT 720

10 TATTATGTTG CTGGTACGGT TGGGTTGATG AGTGTTCCAA TTATGGGTAT CGCCCCTGAA 780

TCAAAGGCAA CAACAGAGAG CGTATATAAT GCTGCTTTGG CTCTGGGGAT CGCAAATCAA 840

15

TTAACTAACA TACTCAGAGA TGTTGGAGAA GATGCCAGAA GAGGAAGAGT CTACTTGCCT 900

CAAGATGAAT TAGCACAGGC AGGTCTATCC GATGAAGATA TATTTGCTGG AAGGGTGACC 20 960

GATAAATGGA GAATCTTTAT GAAGAAACAA ATACATAGGG CAAGAAAGTT CTTTGATGAG 1020

25 GCAGAGAAAG GCGTGACAGA ATTGAGCTCA GCTAGTAGAT TCCCTGTATG GGCATCTTTG 1080

GTCTTGTACC GCAAAATACT AGATGAGATT GAAGCCAATG ACTACAACAA CTTCACAAAG 1140

30

35

AGAGCATATG TGAGCAAATC AAAGAAGTTG ATTGCATTAC CTATTGCATA TGCAAAATCT 1200

CTTGTGCCTC CTACAAAAAC TGCCTCTCTT CAAAGATAA 1239

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

40

(A) LENGTH: 402 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: unknown

(D) TOPOLOGY: unknown

		(2	, 10.	. 020												
	(ii)	MOL	ECULI	E TY	PE: j	prot	ein									
5	(iii)	HYP	OTHE:	rical	L: N)										
	(vi)	ORIO					ERSI	CONN	ESC	ULEN'	rum	(TOM	ATO)			
10	(vii)						LATIO	ON PI	RODU	CT O	F GT	OM5 2	AND 1	MTOM!	5	
15	(xi)	SEQ	JENCI	E DES	SCRI	PTIOI	1: SI	EQ I	ON C	:3:						
	Me t 1	Ser	Val	Ala	Leu 5	Leu	Trp	Val	Val	Ser 10	Pro	Cys	Asp	Val	Ser 15	Asn
20	Gly	Thr	Ser	Phe 20	Met	Glu	Ser	Val	Arg 25	Glu	Gly	Asn	Arg	Phe 30	Phe	Asp
	Ser	Ser	Arg 35	His	Arg	Asn	Leu	Val	Ser	Asn	Glu	Arg	Ile 45	Asn	Arg	Gly
25	Gly	Gly 50	Lys	Gln	Thr	Asn	Asn 55	Gly	Arg	Lys	Phe	Ser 60	Val	Arg	Ser	Ala
30	Ile 65	Leu	Ala	Thr	Pro	Ser 70	Gly	Glu	Arg	Thr	Met 75	Thr	Ser	Glu	Gln	Me t 80
50	Val	Tyr	Asp	Val	Val 85	Leu	Arg	Gln	Ala	Ala 90	Leu	Val	Lys	Arg	Gln 95	Leu
35	Arg	Ser	Thr	Asn 100	Glu	Leu	Glu	Val	Lys 105	Pro	Asp	Ile	Pro	Ile 110	Pro	Gly
	Asn	Leu	Gly 115	Leu	Leu	Ser	Glu	Ala 120	Tyr	Asp	Arg	Cys	Gly 125	Glu	Val	Cys
40	Ala	Glu 130	Tyr	Ala	Lys	Thr	Phe	Asn	Leu	Gly	Thr	Met 140	Leu	Met	Thr	Pro

	Glu 145	Arg	Arg	Arg	Ala	Ile 150	Trp	Ala	Ile	Tyr	Val 155	Trp	Cys	Arg	Arg	Thr 160
5	Asp	Glu	Leu	Val	Asp 165	Gly	Pro	Asn	Ala	Ser 170	Tyr	Ile	Thr	Pro	Ala 175	Ala
	Leu	Asp	Arg	Trp 180	Glu	Asn	Arg	Leu	Glu 185	Asp	Val	Phe	Asn	Gly 190	Arg	Pro
10	Phe	Asp	M et 195	Leu	Asp	Gly	Ala	Leu 200	Ser	Asp	Thr	Val	Ser 205	Asn	Phe	Pro
15	Val	Asp 210	Ile	Gln	Pro	Phe	Arg 215	Asp	Met	Ile	Glu	Gly 220	Met	Arg	Met	Asp
	Leu 225	Arg	Lys	Ser	Arg	Туг 230	Lys	Asn	Phe	Asp	Glu 235	Leu	Tyr	Leu	Tyr	Cys 240
20	Tyr	Tyr	Val	Ala	Gly 245	Thr	Val	Gly	Leu	Met 250	Ser	Val	Pro	Ile	Met 255	Gly
	Ile	Ala	Pro	Glu 260	Ser	Lys	Ala	Thr	Thr 265	Glu	Ser	Val	Tyr	A sn 270	Ala	Ala
25	Leu	Ala	Leu 275	Gly	Ile	Ala	Asn	Gln 280	Leu	Thr	Asn	Ile	Leu 285	Arg	Asp	Val
30	Gly	Glu 290	Asp	Ala	Arg	Arg	Gly 295	Arg	Val	Tyr	Leu	Pro 300	Gln	Asp	Glu	Leu
	Ala 305	Gln	Ala	Gly	Leu	Ser 310	Asp	Glu	Asp	Ile	Phe 315	Ala	Gly	Arg	Val	Thr 320
35	Ile	His	Arg	Ala	Arg 325	Lys	Phe	Phe	Asp	Glu 330	Ala	Glu	Lys	Gly	Val 335	Thr
	Glu	Leu	Ser	Ser 340	Ala	Ser	Arg	Phe	Pro 345	Val	Trp	Ala	Ser	Leu 350	Val	Leu
40	Tyr	Arg	Lys 355	Ile	Leu	Asp	Glu	Ile 360	Glu	Ala	Asn	Asp	T yr 365	Asn	Asn	Phe

Thr Lys Arg Ala Tyr Val Ser Lys Ser Lys Lys Leu Ile Ala Leu Pro 370 380

Ile Ala Tyr Ala Lys Ser Leu Val Pro Pro Thr Lys Thr Ala Ser Leu

5 385 390 395 400

Gln Arg

CLAIMS

- A method of enhancing expression of a selected protein by an organism having a gene which produces said protein, comprising inserting into the genome of the said organism a DNA the nucleotide sequence of which is such that the RNA produced on transcription is different from but the protein produced on translation is the same as that expressed by the gene already present in the genome.
- 10 2. A method as claimed in claim 1, in which the organism is a plant.
 - 3. A method as claimed in claim 2, in which the plant is a tomato plant.
- 4. A method as claimed in any preceding claim, in which the selected gene is the gene encoding phytoene synthase.
 - 5. A method as claimed in claim 4, in which the coding region of the said inserted gene has the sequence SEQ-ID-NO-1.
- A gene construct comprising in sequence a promoter which is operable in a target organism, a coding region encoding a protein and a termination signal characterised in that the nucleotide sequence of the said construct is such that the RNA produced on transcription is different from but the protein produced on translation is the same as that expressed by the gene already present in the genome.
 - 7. A method of enhancing expression of caroteniods in a plant comprising overexpression in the plant a gene specifying an enzyme necessary to the biosynthesis of carotenoids, the said overexpression being achieved by the use of a modified transgene having a different nucleotide sequence from the endogenous sequence.

- 8. A method as claimed in claim 7, in which the modified gene specifies phytoene synthase.
- 9. A modified chloroplast targeting sequence comprising nucleotides 1 to 417 of
 5 SEQ-ID-NO-1

1/2

FIGURE 2

pJR1Ri

BNSDCC 5 kWC 9746690A1 F>

2/2

FIGURE 3

pRD13

MTOM5 encodes phytoene synthase

nterr nal Application No PCT/GB 97/01414

A CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/67 C12 C07K14/415 C12N15/29 C12N15/82 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-4,6-8 FRAY, R.G., ET AL.: "Constitutive Χ expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway" THE PLANT JOURNAL vol. 8, no. 5, November 1995, pages 693-701, XP002043131 1 - 4Υ see the whole document 1-4 WO 90 02189 A (UPJOHN CO) 8 March 1990 see the whole document 1-4 WO 95 02060 A (ZENECA LTD ; GRIERSON DONALD Х (GB); FRAY RUPERT GEORGE (GB)) 19 January 1995 see page 18, paragraph 1 -/--Patent family members are listed in annex. Ix I Further documents are listed in the continuation of box C Special categories of cited documents *T* later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such doc ments, such combination being obvious to a person skilled other means *P* document published prior to the international filing date but later than the priority date claimed. "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 10 October 1997 17. 10. 97 Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Maddox, A Fax. (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

		PC1/GB 97/01414	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.	
Category °	Citation of document, with indication, where appropriate, of the relevant passages		
A	BARTLEY, G.E., ET AL.: "A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 267, 1992, pages 5036-5039, XP002043132 see the whole document	1-4	
X	KUMAR, A.M., ET AL.: "Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes." THE PLANT JOURNAL, vol. 9, no. 2, February 1996, pages 147-158, XP002043133 see figure 2	1,2	
Р,Х	WO 97 11086 A (GEN HOSPITAL CORP) 27 March 1997 see the whole document	1,6	
X	WO 95 33055 A (CALGENE INC ;LASSNER MICHAEL (US); METZ JAMES GEORGE (US)) 7 December 1995 see page 50; claims 1-3	6	
X	WO 96 02650 A (ZENECA LTD ; KARVOUNI ZOI (GR); JOHN ISAAC (GB); TAYLOR JANE (GB);) 1 February 1996 see the whole document	7,8	
x	WO 96 13149 A (AMOCO CORP) 9 May 1996 see page 18, line 23 - line 31	7,8	
×	WO 95 34668 A (BIOSOURCE TECH INC) 21 December 1995 see examples 6,7	7,8	
A	WO 94 09143 A (MOGEN INT ;TUNEN ADRIANUS JOHANNES VAN (NL); MOL JOSEPHUS NICOLAAS) 28 April 1994 see page 7, line 20 - line 26 see page 10, line 28 - page 11, line 10	1-6	
A	FINNEGAN, J., ET AL.: "Transgene inactivation: plants fight back" BIOTECHNOLOGY, vol. 12, September 1994, pages 883-888, XP002043134 see the whole document	1-8	
	-/		

Interr nal Application No PCT/GB 97/01414

		PC1/GB 97/01414
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
А	MEYER, P.: "Understanding and controlling transgene expression" TRENDS IN BIOTECHNOLOGY, vol. 13, September 1995, pages 332-337, XP002043135 see page 336, right-hand column	1-8
A	FLAVELL, R.B.: "Inactivation of gene expression in plants as a consequence of specific gene duplication" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 91, April 1994, WASHINGTON US, pages 3490-3496, XP002043136 see the whole document	1-8
Α	FRAY R G ET AL: "IDENTIFICATION AND GENETIC ANALYSIS OF NORMAL AND MUTANT PHYTOENE SYNTHASE GENES OF TOMATO BY SEQUENCING, COMPLEMENTATION AND CO-SUPPRESSION" PLANT MOLECULAR BIOLOGY, vol. 22, pages 589-602, XP002017524 see the whole document	1-5
Α	WO 91 09128 A (ICI PLC) 27 June 1991 see the whole document	7,8
A	WO 90 01551 A (ROGERS JOHN C) 22 February 1990 see the whole document	

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

•

mormation on patent family members

Intern val Application No PCT/GB 97/01414

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9002189 A	08-03-90	AU 639891 B AU 3970489 A AU 634168 B AU 3987089 A CA 1332718 A CA 1329561 A CN 1044126 A CN 1044297 A DE 68915282 D DE 68915282 T DK 28191 A EP 0429478 A EP 0429478 A EP 0693555 A EP 0699757 A JP 4500151 T JP 4500152 T WO 9002184 A	12-08-93 23-03-90 18-02-93 23-03-90 25-10-94 17-05-94 25-07-90 01-08-90 16-06-94 29-09-94 19-02-91 05-06-91 05-06-91 24-01-96 06-03-96 16-01-92 16-01-92 08-03-90
WO 9502060 A	19-01-95	AU 7079994 A	06-02-95
WO 9711086 A	27-03-97	NONE	
WO 9533055 A	07-12-95	CA 2168042 A CN 1129014 A EP 0711351 A JP 9501325 T	07-12-95 14-08-96 15-05-96 10-02-97
WO 9602650 A	01-02-96	AU 2805395 A CA 2190760 A EP 0771353 A	16-02-96 01-02-96 07-05-97
WO 9613149 A	09-05-96	US 5618988 A AU 3970195 A EP 0792352 A NO 971945 A	08-04-97 23-05-96 03-09-97 27-06-97
WO 9534668 A	21-12-95	AU 2653495 A CA 2193094 A ZA 9504451 A	05-01-96 21-12-95 05-02-96

information on patent family members

A larger

nal Application No

PCT/GB 97/01414

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9409143 A	28-04-94	AU 674029 B AU 5178093 A CA 2146113 A EP 0665891 A	05-12-96 09-05-94 15-10-94 09-08-95
wO 9109128 A	27-06-91	AU 645534 B AU 6893891 A CA 2070831 A EP 0505405 A EP 0699765 A JP 5502160 T US 5304478 A	20-01-94 18-07-91 14-06-91 30-09-92 06-03-96 22-04-93 19-04-94
WO 9001551 A	22-02-90	AU 638409 B AU 4037289 A EP 0428572 A JP 4500153 T	01-07-93 05-03-90 29-05-91 16-01-92