

Given the following relation instance

X	у	Z
1	1	1
1	2	1
2	1	2
2	1	3
1	3	3

The	number	of non	trivial	FD's	are	satisfied	by	the	instance

Given the following relation instance

X	Y	Z
1	4	2
1	5	3
1	6	3
3	2	2

Which of the following functional dependencies are satisfied by the instance?

(a)
$$XY \rightarrow Z$$
 and $Z \rightarrow Y$

(b)
$$YZ \rightarrow X$$
 and $Y \rightarrow Z$

(c)
$$YZ \rightarrow X$$
 and $X \rightarrow Z$

(d)
$$XZ \rightarrow Y$$
 and $Y \rightarrow X$

[GATE-2000 : 2 Marks]

The following functional dependencies are given : AB \rightarrow CD, AF \rightarrow D, DE \rightarrow F, C \rightarrow G, F \rightarrow E, G \rightarrow A.

which one of the following options is false?

(a)
$$\{CF\}^+ = \{ACDEFG\}$$

(b)
$$\{BG\}^+ = \{ABCDG\}$$

(c)
$$\{AF\}^+ = \{ACDEFG\}$$

(d)
$$\{AB\}^+ = \{ACDFG\}$$

[GATE-2006 : 2 Marks]

This Questions is MSQ:

Consider	the	following	statement.

- $\boldsymbol{S}_{_{\boldsymbol{1}}}$: Every super key is a candidate key.
- \mathbf{S}_2 : All attribute of relation form a super key.
- $\boldsymbol{S}_{\scriptscriptstyle 3}$: A prime attribute of relation schema R is an attribute that appears in all candidate key of R.
- S_4 : Every candidate key are super key.

Which of the above statement is/are incorrect?

(a) S_1	(b) S ₂	(c) S_3	(d) S ₄
()1	(-) -2	(-) -3	(-) -4

Consider the relation scheme R(A, B, C) with the following functional dependencies.

 $AB \rightarrow C$

 $C \rightarrow A$

Determine the minimal keys of relation R.

[GATE-1995 : 2 Marks]

In a schema with attributes A, B, C, D and E following set of functional dependencies are given

$$A \rightarrow B$$

$$A \rightarrow C$$

$$CD \rightarrow E$$

$$B \rightarrow D$$

$$E \rightarrow A$$

which of the following functional dependencies is Not implied by the above set

(a)
$$CD \rightarrow AC$$

(b) BD
$$\rightarrow$$
 CD

(a)
$$CD \rightarrow AC$$
 (b) $BD \rightarrow CD$ (c) $BC \rightarrow CD$

(d) AC
$$\rightarrow$$
 BC

[GATE-2005 :2 Marks]

Let R = (A, B, C, D, E, F) be a relation scheme with the following dependencies $C \to F, E \to A$, $EC \to D$, $A \to B$. Which of the following is a key for R?

(a) CD

(b) EC

(c) AE

(d) AC

[GATE-1999 : 1 Mark]

Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies

hold:

$$\{A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A\}$$

What are the candidate keys of R?

(a) AE, BE

(b) AE, BE, DE

(c) AEH, BEH, BCH

(d) AEH, BEH, DEH

[GATE-2005 : 2 Marks]

This Questions is MSQ:

R is a relational schema with the following FD's $\{AD \rightarrow C, B\rightarrow A, C\rightarrow E, E\rightarrow BD\}$ Which of the following is a not candidate key of R?

- (a) AD
- (b) AB

(c) BE

(d) CD

Consider a relation R with five attributes V, W, X, Y, and Z. The following functional dependencies hold: $VY \rightarrow W$, $WX \rightarrow Z$, and $ZY \rightarrow V$. Which of the following is a candidate key for R?

(a) VXZ

(b) VXY

(c) VWXY

(d) VWXYZ

[GATE-2006 : 2 Marks]

Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values.

 $F=\{CH \rightarrow G, A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG\}$ is a set of functional dependencies (FDs) so that F is exactly the set of FDs that hold for R.

How many candidate keys does the relation R have?

(a) 3

(b) 4

(c) 5

(d) 6

[GATE-2013 : 2 Marks]