Глава VI. Векторные пространства

§ 21. Векторное пространство, линейная зависимость и независимость векторов

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение векторного пространства

Определения

Пусть F — произвольное поле. Векторным (или линейным) пространством над полем F называется произвольное непустое множество V на котором заданы бинарная операции сложения и, для каждого элемента $t \in F$, унарная операция умножения на t, удовлетворяющие следующим условиям, которые называются аксиомами векторного пространства:

- 1) если $x, y \in V$, то x + y = y + x (сложение *коммутативно*);
- 2) если $x,y,z\in V$, то (x+y)+z=x+(y+z) (сложение *ассоциативно*);
- 3) существует элемент $\mathbf{0} \in V$ такой , что $\mathbf{x} + \mathbf{0} = \mathbf{x}$ для любого $\mathbf{x} \in V$;
- 4) для любого $\mathbf{x} \in V$ существует $\mathbf{y} \in V$ такой, что $\mathbf{x} + \mathbf{y} = \mathbf{0}$;
- 5) если $x, y \in V$, а $t \in F$, то t(x + y) = tx + ty;
- 6) если $x \in V$, а $t, s \in F$, то (t + s)x = tx + sx;
- 7) если $x \in V$, а $t, s \in F$, то t(sx) = (ts)x;
- 8) если $\mathbf{x} \in V$, то $1 \cdot \mathbf{x} = \mathbf{x}$.

Элементы множества V называются векторами. Поле F иногда будет называться основным полем.

Векторное пространство как универсальная алгебра

• Векторное пространство V над полем F можно рассматривать как универсальную алгебру в сигнатуре, состоящей из одной бинарной операции (сложения векторов) и множества унарных операций умножения на элементы поля F (по одной операции для каждого $t \in F$). При этом, как показывают аксиомы 1)–4), $\langle V; + \rangle$ — абелева группа. Нейтральный элемент этой группы (вектор $\mathbf{0}$) называется *нулевым вектором*. Вектор, противоположный к вектору \mathbf{a} , обозначается через $-\mathbf{a}$.

Приведем примеры векторных пространств.

Пример 1. Пусть V — множество всех обычных («геометрических») векторов трехмерного физического пространства с обычными операциями сложения векторов и умножения вектора на (действительное) число. Все аксиомы векторного пространства в этом случае выполнены; в частности, роль нулевого вектора ${\bf 0}$ играет вектор $\vec{{\bf 0}}$ (см. § 10). Поэтому V является векторным пространством над полем ${\mathbb R}$. Векторным пространством над ${\mathbb R}$ будет также множество всех векторов (в обычном смысле этого слова), коллинеарных некоторой плоскости или некоторой прямой.

• Таким образом, свойства векторов в векторном пространстве являются обобщением свойств обычных, «геометрических» векторов. Именно этим и объясняется и термин «векторное пространство», и использование термина «вектор» применительно к элементам произвольного векторного пространства.

Примеры векторных пространств: пространство строк

Пример 2. Пусть F — произвольное поле, а n — произвольное натуральное число. Обозначим через F_n множество всевозможных упорядоченных последовательностей вида $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, где $x_1,x_2,\ldots,x_n\in F$. На множестве F_n введем операции сложения и умножения на скаляр. Пусть $\mathbf{x}=(x_1,x_2,\ldots,x_n),\mathbf{y}=(y_1,y_2,\ldots,y_n)\in F_n$, а $t\in F$. Положим

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 if $t\mathbf{x} = (tx_1, tx_2, \dots, tx_n)$.

Легко проверяется, что множество F_n с такими операциями является векторным пространством (роль нулевого вектора играет последовательность $\mathbf{0}=(0,0,\dots,0)$). Это пространство называют пространством строк длины n над полем F или просто пространством строк. Оно играет особую роль в теории векторных пространств. Объяснение этому будет дано в конце следующего параграфа. Скаляры x_1, x_2, \dots, x_n будем называть компонентами вектора \mathbf{x} .

• Пространство F_1 , т. е. множество всех последовательностей вида (x_1) , где $x_1 \in F$, естественно отождествить с полем F. Таким образом, любое поле можно рассматривать как векторное пространство над самим собой. Нулевым вектором этого пространства является нуль поля.

Геометрическая интерпретация пространства \mathbb{R}_n при $n\leqslant 3$

При n=1,2,3 пространство \mathbb{R}_n имеет естественную геометрическую интерпретацию. Предположим, что в обычном трехмерном пространстве зафиксирован некоторый базис $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$. Тогда произвольному вектору \vec{x} из этого пространства можно поставить в соответствие упорядоченную тройку чисел (x_1,x_2,x_3) — координат вектора \vec{x} в базисе $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$. Эта тройка чисел является элементом пространства \mathbb{R}_3 . Отображение f из обычного трехмерного простанства в пространство \mathbb{R}_3 , заданное правилом $f(\vec{x})=(x_1,x_2,x_3)$, является изоморфизмом (см. замечание о координатах векторов $\vec{x}+\vec{y}$ и $t\vec{x}$ в § 10). Таким образом,

!! пространство \mathbb{R}_3 изоморфно обычному («физическому») трехмерному пространству. Аналогично, пространство \mathbb{R}_2 изоморфно плоскости, а пространство \mathbb{R}_1 — прямой в обычном трехмерном пространстве.

Примеры векторных пространств: пространство многочленов и пространство функций

Пример 3. Рассмотрим множество F[x] всех многочленов над полем F. В § 18 была определена операция сложения многочленов. Для всякого $t \in F$ определим операцию умножения многочлена на скаляр t правилом: если $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in F[x]$, то $tf = ta_n x^n + ta_{n-1} x^{n-1} + \cdots + ta_0$. Выполнимость всех аксиом векторного пространства легко проверяется (роль нулевого вектора при этом играет многочлен o). Таким образом, множество F[x] является векторным пространством. Оно называется пространством многочленов. Для всякого натурального n обозначим через $F_n[x]$ множество всех многочленов степени $\leqslant n$ над полем f. Ясно, что $F_n[x]$ также будет векторным пространством относительно сложения многочленов и умножения многочлена на скаляры из F.

Пример 4. Рассмотрим множество всех функций от одной переменной из \mathbb{R} в \mathbb{R} . Введем операции сложения функций и умножения функции на число стандартным образом: если f и g — две функции, а $t \in \mathbb{R}$, то (f+g)(x)=f(x)+g(x) и $(tf)(x)=t\cdot f(x)$ для всякого $x\in \mathbb{R}$. Ясно, что эти операции удовлетворяют всем аксиомам векторного пространства (в качестве нулевого вектора выступает функция, значение которой при любом x равно 0). Это векторное пространство называется *пространством функций*.

Примеры векторных пространств: пространство решений однородной системы линейных уравнений и нулевое пространство

Пример 5. Рассмотрим произвольную однородную систему линейных уравнений с n неизвестными над полем F и обозначим через V множество всех ее частных решений. Ясно, что $V \subseteq F_n$. Из теоремы о строении общего решения системы линейных уравнений (см. § 6) вытекает, что операции сложения векторов и умножения вектора на скаляр, определенные в пространстве F_n , являются и операциями в V. Все аксиомы векторного пространства для множества V с этими операциями выполнены (в качестве нулевого вектора выступает нулевое решение системы). Таким образом, множество V является векторным пространством, которое называется пространством решений однородной системы.

Пример 6. Пусть V — произвольное множество, состоящее из одного элемента ${\bf a}$. Операции сложения векторов и умножения вектора на скаляр в таком множестве вводятся просто: ${\bf a}+{\bf a}={\bf a}$ и $t\cdot {\bf a}={\bf a}$ для любого t. Ясно, что все аксиомы векторного пространства выполняются. Таким образом, V можно рассматривать как векторное пространство. При этом его единственный элемент ${\bf a}$ будет нулевым вектором. Такое пространство называется *нулевым*.

Определения

Пусть $A=(a_{ij})$ и $B=(b_{ij})$ — матрицы размера $m\times n$ над кольцом R. Суммой матриц A и B называется матрица $C=(c_{ij})\in R^{m\times n}$ такая, что $c_{ij}=a_{ij}+b_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,n$. Эта матрица обозначается через A+B. Произведением матрицы A на скаляр $t\in R$ называется матрица $D=(d_{ij})\in R^{m\times n}$ такая, что $d_{ij}=ta_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,n$. Эта матрица обозначается через tA. Операции сложения матриц и умножения матрицы на скаляр часто объединяют термином линейные операции над матрицами.

• Если матрицы A и B имеют различные размеры, то их сумма не определена.

Пример 7. Пусть F — поле, а m и n — натуральные числа. Множество $F^{m \times n}$ с операциями сложения матриц и умножения матриц на скаляры из F является векторным пространством, которое называется пространством матриц размера $m \times n$. Нулевым вектором этого пространства является нулевая матрица размера $m \times n$.

Когда произведение скаляра на вектор равно нулевому вектору?

Укажем одно полезное свойство операций в векторном пространстве.

Лемма о равенстве $t\mathbf{x} = \mathbf{0}$

Пусть ${\bf x}$ — произвольный вектор из векторного пространства, а ${\bf t}$ — произвольный скаляр. Равенство ${\bf tx}={\bf 0}$ выполнено тогда и только тогда, когда либо ${\bf t}={\bf 0}$, либо ${\bf x}={\bf 0}$.

Доказательство. Достаточность. Проверим, что $0 \cdot x = 0$. В силу аксиом 6) и 8) имеем

$$x = 1 \cdot x = (1 + 0) \cdot x = 1 \cdot x + 0 \cdot x = x + 0 \cdot x$$

для любого вектора x. Поскольку нулевой вектор единствен (в силу единственности нейтрального элемента в любом моноиде — см. § 4), имеем $0 \cdot x = 0$. Аналогичным образом равенство $t \cdot 0 = 0$ следует из того, что $tx = t(x+0) = tx + t \cdot 0$.

Heoбxoдимость. Пусть $t{\sf x}={\sf 0}$ и $t \ne 0.$ Тогда, используя аксиомы 7) и 8), имеем

$$\mathbf{x} = 1 \cdot \mathbf{x} = \left(\frac{1}{t} \cdot t\right) \mathbf{x} = \frac{1}{t} \cdot (t\mathbf{x}) = \frac{1}{t} \cdot \mathbf{0}.$$

Из сказанного в предыдущем абзаце вытекает, что $\frac{1}{t}\cdot \mathbf{0}=\mathbf{0}$. Итак, если $t\mathbf{x}=\mathbf{0}$ и $t\neq \mathbf{0}$, то $\mathbf{x}=\mathbf{0}$.

Бесконечность ненулевого пространства над бесконечным полем

Из леммы о равенстве $t\mathbf{x} = \mathbf{0}$ вытекает

Замечание о числе векторов в векторном пространстве

Всякое ненулевое векторное пространство V над бесконечным полем F состоит из бесконечного числа векторов.

Доказательство. Пусть ${\bf x}$ — ненулевой вектор из V, а t_1 и t_2 — различные скаляры из F. Поскольку $t_1-t_2\neq 0$, из леммы о равенстве $t{\bf x}={\bf 0}$ вытекает, что $(t_1-t_2){\bf x}\neq {\bf 0}$, откуда $t_1{\bf x}\neq t_2{\bf x}$. Поскольку поле F бесконечно, получаем, что бесконечным является уже множество векторов $\{t{\bf x}\mid t\in F\}$, а тем более и все пространство V.

Линейная комбинация векторов. Линейно зависимые и независимые системы векторов

Перейдем к понятиям, которые будут играть весьма важную роль в дальнейшем.

Определения

Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — система векторов из векторного пространства V над полем F, а $t_1, t_2, \dots, t_k \in F$. Вектор вида

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k \tag{1}$$

называется линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Линейная комбинация (1) называется тривиальной, если $t_1 = t_2 = \dots = t_k = 0$, и нетривиальной, если хотя бы один из скаляров t_1, t_2, \dots, t_k отличен от нуля. Если вектор \mathbf{b} является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, то говорят, что \mathbf{b} линейно выражается через векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ называются линейно зависимыми, если существует нетривиальная линейная комбинация этих векторов, равная нулевому вектору, и линейно независимыми в противном случае, т. е. если любая нетривиальная линейная комбинация этих векторов не равна нулевому вектору.

Линейная зависимость и независимость в обычном пространстве (1)

Как отмечалось выше, плоскость можно отождествить с пространством \mathbb{R}_2 , а трехмерное физическое пространство — с пространством \mathbb{R}_3 . Оказывается, что введеные только что понятия линейной зависимости и независимости векторов в этих двух частных случаях равносильны некоторым хорошо знакомым нам понятиям.

Замечание о линейной зависимости на плоскости и в трехмерном пространстве

- а) Два вектора на плоскости или в трехмерном пространстве линейно зависимы тогда и только тогда, когда они коллинеарны.
- Три вектора в трехмерном пространстве линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство. а) Если векторы \vec{a} и \vec{b} линейно зависимы, то $p\vec{a}+q\vec{b}=\vec{0}$ для некоторых скаляров p и q, хотя бы один из которых отлично от 0. Пусть, без ограничения общности, $p\neq 0$. Тогда $\vec{a}=-\frac{q}{p}\cdot\vec{b}$, и векторы \vec{a} и \vec{b} коллинеарны по критерию коллинеарности векторов (см. § 10). Предположим теперь, что векторы \vec{a} и \vec{b} коллинеарны. Если $\vec{b}=\vec{0}$, то $0\cdot\vec{a}+1\cdot\vec{b}=\vec{0}$. Если же $\vec{b}\neq\vec{0}$, то по критерию коллинеарности $\vec{a}=t\vec{b}$ для некоторого t, т. е. $1\cdot\vec{a}-t\vec{b}=\vec{0}$. В обоих случаях получаем, что векторы \vec{a} и \vec{b} линейно зависимы

Линейная зависимость и независимость в обычном пространстве (2)

б) Если векторы \vec{a} , \vec{b} и \vec{c} линейно зависимы, то $p\vec{a}+q\vec{b}+r\vec{c}=\vec{0}$ для некоторых скаляров p, q и r, хотя бы один из которых отличен от 0. Пусть, без ограничения общности, $p \neq 0$. Тогда $\vec{a} = -\frac{q}{p} \cdot \vec{b} - \frac{r}{p} \cdot \vec{c}$. Это значит, что вектор \vec{a} лежит в той плоскости, которой принадлежат векторы \vec{b} и \vec{c} , и потому векторы \vec{a} , \vec{b} и \vec{c} компланарны. Предположим теперь, что векторы \vec{a} , \vec{b} и \vec{c} компланарны. Если $\vec{c}=\vec{0}$, то $0\cdot\vec{a}+0\cdot\vec{b}+1\cdot\vec{c}=\vec{0}$. Если $\vec{c}\neq\vec{0}$ и $ec{b} \parallel ec{c}$, то по критерию коллинеарности векторов $ec{b} = t ec{c}$ для некоторого t, и потому $0 \cdot \vec{a} + 1 \cdot \vec{b} - t\vec{c} = \vec{0}$. Наконец, если $\vec{b} \not\parallel \vec{c}$, то векторы \vec{b} и \vec{c} образуют базис той плоскости, в которой лежат векторы \vec{a} . \vec{b} и \vec{c} . По теореме о разложении вектора по базису на плоскости (см. § 10) $\vec{c} = t\vec{a} + s\vec{b}$ для некоторых скаляров t и s, откуда $t\vec{a} + s\vec{b} - 1 \cdot \vec{c} = \vec{0}$. Во всех трех случаях получаем, что векторы \vec{a} , \vec{b} и \vec{c} линейно зависимы.

Пример линейно независимой системы векторов

Приведем пример линейно независимой системы векторов в пространстве F_n , которая будет многократно возникать и играть особую роль в дальнейшем.

Положим $\mathbf{e_1} = (1, 0, \dots, 0), \mathbf{e_2} = (0, 1, 0, \dots, 0), \dots, \mathbf{e_n} = (0, \dots, 0, 1).$

1-е замечание о векторах e_1, e_2, \ldots, e_n

Система векторов $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ линейно независима.

Доказательство. Предположим, что $x_1\mathbf{e}_1+x_2\mathbf{e}_2+\cdots+x_n\mathbf{e}_n=\mathbf{0}$ для некоторых $x_1,x_2,\ldots,x_n\in F$. Очевидно, что

$$x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \cdots + x_n\mathbf{e}_n = (x_1, x_2, \dots, x_n).$$

Таким образом, $(x_1, x_2, \dots, x_n) = \mathbf{0}$, т. е. $x_1 = x_2 = \dots = x_n = 0$. Мы доказали, что если какая-то линейная комбинация векторов $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ равна нулевому вектору, то эта комбинация тривиальна.

В процессе доказательства этого замечания фактически доказано следующее полезное для дальнейшего утверждение.

2-е замечание о векторах $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$

Если $\mathbf{x} = (x_1, x_2, \dots, x_n)$ — произвольный вектор из пространства F_n , то $\mathbf{x} = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_n\mathbf{e}_n$.

Свойства линейно зависимых и линейно независимых систем векторов (1)

Отметим несколько простых свойств линейно зависимых и линейно независимых систем векторов.

Лемма о системе векторов, содержащей нулевой вектор

Если среди векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ имеется нулевой вектор, то эти векторы линейно зависимы.

 Δ оказательство. Пусть $\mathbf{a}_i = \mathbf{0}$. Тогда

$$0 \cdot \mathbf{a}_1 + \cdots + 0 \cdot \mathbf{a}_{i-1} + 1 \cdot \mathbf{a}_i + 0 \cdot \mathbf{a}_{i+1} + \cdots + 0 \cdot \mathbf{a}_k = \mathbf{0}.$$

Лемма доказана.

Лемма о подсистеме линейно независимой системы векторов

Подсистема линейно независимой системы векторов линейно независима. Если к линейно зависимой системе векторов добавить произвольную конечную систему векторов, то расширенная система векторов также будет линейно зависимой.

Свойства линейно зависимых и линейно независимых систем векторов (2)

Доказательство. Пусть векторы a_1, a_2, \ldots, a_k линейно независимы. Выберем произвольное подмножество этой системы векторов. Для простоты обозначений будем считать, что мы взяли сколько-то первых векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$, где $m \leq k$ (в противном случае мы всегда можем перенумеровать исходные векторы). Предположим, что векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ линейно зависимы, т. е. что существуют скаляры t_1, t_2, \dots, t_m , по крайней мере один из которых отличен от нуля, такие, что $t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_m \mathbf{a}_m = \mathbf{0}$. Тогда

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_m\mathbf{a}_m+0\cdot\mathbf{a}_{m+1}+\cdots+0\cdot\mathbf{a}_k=\mathbf{0}.$$

Поскольку среди скаляров t_1, t_2, \ldots, t_m хотя бы один отличен от нуля, последнее равенство противоречит линейной независимости векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Первое утверждение леммы доказано.

Пусть теперь система векторов a_1, a_2, \ldots, a_m линейно зависима, т. е. существует нетривиальная линейная комбинация $t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_m \mathbf{a}_m$ этих векторов, равная нулевому вектору. Добавим к исходной системе векторы $\mathbf{a}_{m+1},\ldots,\mathbf{a}_k$. Тогда

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_m\mathbf{a}_m+0\cdot\mathbf{a}_{m+1}+\cdots+0\cdot\mathbf{a}_k=\mathbf{0}.$$

Следовательно, векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно зависимы, $\mathbf{a}_k = \mathbf{a}_k = \mathbf{a}_k = \mathbf{a}_k$

Свойства линейно зависимых и линейно независимых систем векторов (3)

Лемма о добавлении вектора к линейно независимой системе векторов

Если векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно независимы, а векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}$ линейно зависимы, то вектор \mathbf{b} линейно выражается через векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$.

Доказательство. По условию существуют скаляры t_1, t_2, \ldots, t_k, s , по крайней мере один из которых не равен нулю такие, что

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k+s\mathbf{b}=\mathbf{0}.$$

Если s=0, то $t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k=\mathbf{0}$ и по крайней мере один из скаляров t_1,t_2,\ldots,t_k отличен от нуля. Это, однако, противоречит линейной незавимости векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$. Следовательно, $s\neq 0$, и потому $\mathbf{b}=-\frac{t_1}{s}\cdot\mathbf{a}_1-\frac{t_2}{s}\cdot\mathbf{a}_2-\cdots-\frac{t_k}{s}\cdot\mathbf{a}_k$.

Свойства линейно зависимых и линейно независимых систем векторов (4)

Критерий линейной зависимости

Векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно зависимы тогда и только тогда, когда один из них линейно выражается через остальные.

Доказательство. Необходимость. Пусть векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно зависимы, т. е. $t_1\mathbf{a}_1+t_2\mathbf{a}_2+\dots+t_k\mathbf{a}_k=\mathbf{0}$ для некоторых скаляров t_1, t_2, \dots, t_k , не все из которых равны нулю. Пусть $t_i\neq 0$. Тогда

$$\mathbf{a}_i = -\frac{t_1}{t_i} \cdot \mathbf{a}_1 - \frac{t_2}{t_i} \cdot \mathbf{a}_2 - \cdots - \frac{t_{i-1}}{t_i} \cdot \mathbf{a}_{i-1} - \frac{t_{i+1}}{t_i} \cdot \mathbf{a}_{i+1} - \cdots - \frac{t_k}{t_i} \cdot \mathbf{a}_k,$$

т. е. вектор \mathbf{a}_i линейно выражается через остальные.

Достаточность. Если вектор \mathbf{a}_i линейно выражается через остальные, т. е. $\mathbf{a}_i = r_1 \mathbf{a}_1 + r_2 \mathbf{a}_2 + \cdots + r_{i-1} \mathbf{a}_{i-1} + r_{i+1} \mathbf{a}_{i+1} + \cdots + r_k \mathbf{a}_k$ для некоторых скаляров $r_1, r_2, \ldots, r_{i-1}, r_{i+1}, \ldots, r_k$, то

$$r_1 \mathbf{a}_1 + r_2 \mathbf{a}_2 + \cdots + r_{i-1} \mathbf{a}_{i-1} - 1 \cdot \mathbf{a}_i + r_{i+1} \mathbf{a}_{i+1} + \cdots + r_k \mathbf{a}_k = \mathbf{0},$$

и потому векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно зависимы.

