PERIODIC TABLE OF THE ELI

208 37×10*ylx 210 π (3×10*ylα 210 π (3×10*ylα 210 π (3×30*ylα 210 π (3×38 d) α 210 π (3×38

1768

[Ar]3d74s2

45^{102.90550}

3968 2237 12.41 Rh

[Kr]4d 85s1

[Xel4f145d76s2

109 (268)

[Rn]5f146d77s2"

22.42

(3.824 d) a

[3.824 d] α [19.3 min] EC, α [15 min] β^- [21.8 min] β^- [1.60 x 10 3 y] α [21.77 y] β^- [1.913 y] α [7.7 x 10 4 y] α [1.40 x 10 $^\infty$ y] α

243 (7.37 x 10³ ••Cm 242 (163.2 d) α

 $(18.12 \text{ y}) \alpha$ $(18.12 \text{ y}) \alpha$ $(1.55 \times 10^7 \text{ y}) \alpha$ $(3.5 \times 10^3 \text{ y}) \alpha$ $(1.4 \times 10^3 \text{ y}) \alpha$ $(351 \text{ y}) \alpha$ $(900 \text{ y}) \alpha$

(472 d) α (20.47 d) α

(20.47 d) α (276 d) α (20.1 h) α (100.5 d) α (55 d) α (58 min) α

11/IB

[Ar]3d104s1

1234.93 10.50

1337.33 AU

[Xe]4f145d106s

111 (272)

[Rn]5f146d97s

[Rn]5f146d107s2*

113 (284)

[Rn]5f146d107s27p

[Rn]5f146d107s27p

[Rn]5f146d107s27p

100 PG 259 | 260 min) α | 100 PG 260 | (3.0 min) α | 100 PG 261 | (65 s) α | 100 PG 262 | (40 s) α | 100 PG 263 | (0.9 d) α | 100 PG 263 | (0.9 d) α

10

[Ar]3d 84s2

1828

12.0

21.45

Pd

[Kr]4d 10

[Xe]4f145d96s1

[Rn]5f146d87s2

Table of Selected Radioactive Isotopes

127 m (109 d) IT

sPm 145 (18 γ) EC 147 (2.62 γ) β (3 γ) 167 (7 χ 10 γ) α 151 (73 γ) β 151 (73 γ) β 151 (13 γ) β 7, EC, β 154 (8.5 γ) β 46 (150 2.1 χ 10 γ) γ α 160 (7.2 χ 3 γ) γ EC, γ 160 (7.2 χ 3 γ) γ EC, γ 160 (7.2 χ 3 γ) γ EC, γ

(4.19 d) B

(115.0 d) B

8

[Ar]3d64s2

12.37 **N**U

[Kr]4d75s1

76 190.23 4,8,6,3,2

[Xel4f145d66s2

108 (277)

· [Rn]5f146d67s2

22.57

7/VII B

[Ar]3d54s2

[Kr]4d 55s2

75 186.207 7,6,5,4,3,2

[Xe]4f145d56s2

107 (264)

[Rn]5f146d57s2

Re

11.5*

21.0

(9.10 h) B (2.06 y) B (2.9 x 10° y) B

Naturally occurring radioactive isotopes are designated by a mass number in blue (although some are also manufactured). Letter m indicates an isomer of another isotope of the same mass number Half-lives follow in parentheses, where s, min, h, d, and y stand re spectively for seconds, minutes, hours, days, and years. The table includes mainly the longer-lived radioactive isotopes; many others have been prepared. Isotopes known to be radioactive but with half-lives exceeding 1012 v have not been included. Symbols de-

	scribing the principal mode (or modes) of decay are as follows (these processes are generally accompanied by gamma radiation): a alpha particle enission between the particle (electron) emission consideration of the particle of the part					18/VIII
						4.00260 4.216 0.95 at 20 atm 0.17851 1s ² Helium
	5 10.811 4275 2348 B 2.37 [He]2s ² 2p ¹ Boron	6 12.0107 4675° 3915° 2.26 [He] 2s ² 2p ² Carbon	7 14.0067 23,5,4,2 77.344 63.15 1.251† [He] 2s ² 2p ³ Nitrogen	8 15.9994 90.2 -2,-1 94.4 0 1.429† (He)2s ² 2p ⁴ Oxygen	9 18.99840 85.0 53.55 1.696† [He] 2s ² 2p ⁵ Fluorine	10 20.1797 27.07 24.56 0.900†NC [He] 2s ² 2p ⁶ Neon
12/IIB	1326.981538 2792 933.5 2.6989 [Ne]3s ² 3p ¹ Aluminum	14 28.0855 3538 1687 2.33 [Ne] 3s ² 3p ² Silicon	1530.97376 £3,5,4 553 317.3 1.82 [Ne]3s ² 3p ³ Phosphorus	16 32.065 6,±2,4, 717.75 388.36 2.07 [Ne]3s ² 3p ⁴ Sulfur	17 35.453 ±1,7,5,3 239.11 171.65 3.214† CI [Ne]3s ² 3p ⁵ Chlorine	18 39.948 87.8 83.8 1.784† Ar [Ne]3s ² 3p ⁶ Argon
80 65.409 80 2.68 Zn 13 [Ar]3d ¹⁰ 4s ² Zinc	31 69.723 1,3 2477 302.91 Ga [Ar]3d ¹⁰ 4s ² 4p ¹ Gallium	32 72.64 3106 1211.4 Ge 5.32 Ge [Ar]3d ¹⁰ 4s ² 4p ² Germanium	33 74.9216 ±3,5 876 (wat) As 1090 As (2# dm) 5.73 [Ar]3d ¹⁰ 4s ² 4p ³ Arsenic	34 78.96 4,6,-2 958 494 Se (Ar)3d ¹⁰ 4s ² 4p ⁴ Selenium	35 79.904 ±1,7,5,3 331.95 265.95 Br 3.12 [Ar]3d ¹⁰ 4s ² 4p ⁵ Bromine	36 83.80 119.93 115.8 3.73† [Ar]3d ¹⁰ 4s ² 4p ⁶ Krypton
8 112.41 40 Cd 4.22 Cd [Kr]4d 105s ² Cadmium	49 114.82 3 2345 429.75 In [Kr]4d 10 5s 2 5p 1 Indium	50 118.710 4.2 2875 505.08 Sn 7.31 K r]4d 105s 25p 2 Tin	51 121.760 \$1860 903.78 \$5 6.69 \$5 [Kr]4d ¹⁰ 5s ² 5p ³ Antimony	52 127.60 4,6,-2 1261 722.66 Te 6.24 [Kr]4d ¹⁰ 5s ² 5p ⁴ Tellurium	53126.90447 ±1,5,7 457.51 386.85 4.93 [Kr]4d ¹⁰ 5s ² 5p ⁵ lodine	54 131.29 0,2,4,6,6 165.11 161.4 5.90† Xe [Kr]4d ¹⁰ 5s ² 5p ⁶ Xenon
200.59 9.88 4.32	81 204.3833 3,1 1746 577 11.85 [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹ Thallium	82 207.2 2022 Pb 11.35 Pb [Xe]4f ¹⁴ 5d ¹⁶ 6s ² 6p ² Lead	83 ^{208.9804} 3,5 1837 544.55 9.75 [Xe]4f1 ⁴ 5d ¹⁰ 6s ² 6p ³ Bismuth	84 (209) 4.2.6 P0 9.3 P0 [Xe]4f145d106s26p4 Polonium	85 (210) ±1,7,5,3 At [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵ Astatine	86 (222) 0,2 211.4 202 Rn (Xe)4f ¹⁴ 5d ¹⁰ 6s ² 6p Radon

(223)

GROUP

1/IA

0.0899 † 151

[Hel2s1

371.0 0.971 Na

[Ne]3s

19 39.0983

[Ar]4s1

961 312.46 **Rb**

[Kr]5s1

[Xe]6s1

87

1033 336.8

0.862

(6.941)

2/IIA

[Hel2s2

12 24.305

[Ne]3s2

[Ar]4s2

[Kr]5s²

[Xel6s2

[Rn]7s²

88

973

Ba

Ra

2.54

40.078

3/1118

2144.95591

[Arl3d14s2

[Kr]4d15s2

[Xe]5d16s2

1324 10.07 AC

[Rn]6d17s2

(227)

2.99

4.47

6.15

89

9.012182

Be

20.28 13.81

1615

453.7

0.534

(g/cm³) Copyright 2007 VWR International. Il Rights Reserved. lo portion of this work may be eproduced in any form or by any

neans without express prior written

ermission from VWR/Sargent-

Velch.

(1) Black - solid. Red - gas. Blue - liquid.

(15.3 min) f: (12.26 y) β' (53.3 d) EC

°C

 $(1.6 \times 10^6 \text{ y}) \beta$ (20.40 min) β^+

 $(20.40 \text{ min}) \beta^{+}$ $(5730 \text{ y}) \beta^{-}$ $(109.8 \text{ min}) \beta^{+}$ $(2.602 \text{ y}) \beta^{+}$, EC $(15.02 \text{ h}) \beta^{-}$ $(20.9 \text{ h}) \beta^{-}$

11426 d 8

(12.36 H) B

[83.80 d] β [27.70 d] EC [2 × 10° y] EC [313.0 d] EC [2.578 h] β

(44.6 d) 8

[78.8d] β⁺, EC [270 d] EC [71.3 d] β⁺, EC

(5.272 y) β (36.0 h) β , EC (8 x 10 y) EC

5/VB

[Ar]3d34s2

5017 2730 **8.57 Nb**

[Kr]4d45s1

[Xe]4f145d36s2

Tantalum

105 (262)

[Rn]5f146d37s2"

16.65

Ta

19.3

63 (92 y) β 20**Cu** 64 (12.70 h) β β β EC

4/IV8

[Arl3d24s2

[Kr]4d 25s2

[Xe]4f145d26s2

104 (261)

[Rn]5f146d27s2"

NOTES:

Hf

40

2128

6.51

13.31

30 Zn 31 Ga

(14.10 h) B

 $(17.9 \text{ d}) \beta$, β , $(118.5 \text{ d}) \beta$ $(6.5 \times 10^4 \text{ y}) \beta$ $(35.34 \text{ h}) \beta$ $(2.1 \times 10^5 \text{ y}) \text{ EC}$

[10/2 y) B [187 d) B [4.8 x 10 11 y) B [28.8 y) B [106.6 d) B⁺, EC [1.5 x 10 4 y) B [64.0 d) B

(64.0 d) \$\beta^{2}\$ (2.0 \times 10^{4} \times 1) \$\beta^{2}\$ (35.15 d) \$\beta^{2}\$ (66.02 h) \$\beta^{2}\$ (2.6 \times 10^{6} \times 1) \$\beta^{2}\$ (4.2 \times 10^{5} \times 1) \$\beta^{2}\$ (3.6 \times 1) \$\beta^{2}\$ (3.6 \times 1) \$\beta^{2}\$

(3.3 y) EC (17.0 d) EC

(17.0 d) EC (7 x 10 ° y) β (127 y) EC (252 d) β (7.45 d) β (453 d) EC

(49.51 d) II

6/VIB

[Arl3d54s1

⁴⁹¹²₂₈₉₆ 10.22 **10**

[Kr]4d55s1

[Xe]4f145d46s2

106 (266)

[Rn]5f146d47s2

(2) Based upon carbon-12. () indicates most stable or best known isotope.

Entries marked with daggers refer to the gaseous state at 273 K and 1 atm and are given in units of g/l.

The A & B subgroup designations, are those recommended by the Inter national Union of Pure and Applied Chemistry.

[Rn]5f146d107s27p

Side 1

118

[[]Rn]7s1 * Estimated Values

TABLE OF PERIODIC PROPERTIES OF THE ELEMENTS

© Copyright 2000 © Copyright 2001 © Copyright 2002 © Copyright 2004

© Copyright 2007 VWR International

Catalog Number WLS-18806

SIDE 2