Calculus and Differential Equations

Queensland University of Technology

Dr Vivien Challis 2021, Semester 2

Tarang Janawalkar

Contents

C	ontents	1	
1	Integration Techniques 1.1 Table of Derivatives	3 9 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
2	Limits, Continuity and Differentiability	6	
	2.1 Limits 2.2 Continuity 2.3 Differentiability	6	
3	Definite Integrals3.1 Riemann Sums3.2 Fundamental Theorem of Calculus3.3 Taylor and Maclaurin Polynomials	7 7 7 9	
4	Taylor and Maclaurin Series 4.1 Infinite Series	10 10 10 11 11	
5	Multivariable Calculus5.1Multivariable Functions5.2Level Curves5.3Limits and Continuity5.4Partial Derivatives5.5The Gradient Vector5.6Multivariable Chain Rule	12 12 12 12 13 13	
6	Double and Triple Integrals6.1 Double Integrals6.2 Properties of Triple Integrals6.3 Triple Integrals	14 14 14 14	
7	Vector-Valued Functions		
8	First-Order Differential Equations	17	

9 Second-Order Differential Equations

18

1 Integration Techniques

1.1 Table of Derivatives

Let f(x) be a function, and $a \in \mathbb{R}$ be a constant.

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\frac{y}{x^a}$	$\frac{dx}{ax^{a-1}}$	a	0
\sqrt{x}	1	x	$\begin{vmatrix} 1 & 1 \\ du & dv \end{vmatrix}$
a^x	$ \frac{\overline{2\sqrt{x}}}{\ln(a)a^x} $	$a_1 u(x) \pm a_2 v(x)$	$a_1 \frac{\mathrm{d}u}{\mathrm{d}x} \pm a_2 \frac{\mathrm{d}v}{\mathrm{d}x}$
\mathbf{e}^x	\mathbf{e}^x	u(x)v(x)	$\frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x}$
$\log_a x,\ a\in\mathbb{R}\backslash\left\{0\right\}$	$\frac{1}{a \ln x}$	$\underline{u(x)}$	$\frac{\mathrm{d}u}{\mathrm{d}x}v - u\frac{\mathrm{d}v}{\mathrm{d}x}$
$\ln x$	$\frac{1}{m}$	$\overline{v(x)}$	$ \frac{v(x)^2}{\mathrm{d}u\mathrm{d}v} $
	<u> </u>	u(v(x))	$\overline{\mathrm{d}v}\overline{\mathrm{d}x}$

		f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$\arcsin(ax)$	$\frac{a}{\sqrt{1-a^2x^2}}$
$\sin(ax)$	$a\cos(ax)$	$\arccos\left(ax\right)$	$-\frac{a}{\sqrt{1-a^2x^2}}$
$\cos(ax)$ $\tan(ax)$	$-a\sin\left(ax\right)$ $a\sec^{2}\left(ax\right)$	$\arctan\left(ax\right)$	$\frac{a}{1+a^2x^2}$
$\cot\left(ax\right)$	$-a\csc^{2}\left(ax\right)$	$\operatorname{arccot}\left(ax\right)$	$-\frac{a}{1+a^2x^2}$
$\sec(ax)$ $\csc(ax)$	$a \sec(ax) \tan(ax)$ $-a \csc(ax) \cot(ax)$	$\operatorname{arcsec}\left(ax\right)$	$\frac{1}{x\sqrt{a^2x^2-1}}$
	<u> </u>	$\operatorname{arccsc}\left(ax\right)$	$-\frac{1}{x\sqrt{a^2x^2-1}}$

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$				
$\sinh(ax)$	$\frac{1}{a\cosh(ax)}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\cosh\left(ax\right)$	$a \sinh(ax)$	$\arcsin(ax)$	$\frac{a}{\sqrt{a}}$	$\mathrm{arccoth}(ax)$	$\frac{a}{1-a^2x^2}$
tanh(ax)	$a \operatorname{sech}^{2}(ax)$	amasagh (am)	$\begin{array}{c c} \sqrt{1+a^2x^2} \\ a \end{array}$	$\operatorname{arcsech}(ax)$	1
$\coth{(ax)}$	$-a\operatorname{csch}^{2}\left(ax\right)$	$\operatorname{arccosh}(ax)$	$\sqrt{1-a^2x^2}$		$a\left(1+ax\right)\sqrt{\frac{1-ax}{1+ax}}$
$\mathrm{sech}(ax)$	$-a\operatorname{sech}(ax)\tan(ax)$	$\operatorname{arctanh}\left(ax\right)$	$\frac{a}{1-a^2x^2}$	$\mathrm{arccsch}(ax)$	$-\frac{1}{ax^2\sqrt{1+\frac{1}{a^2x^2}}}$
$\cosh{(ax)}$	$-a \operatorname{csch}(ax) \cot(ax)$				$\frac{ax-\sqrt{1+\frac{1}{a^2x^2}}}{a^2x^2}$

Table 1: Derivatives of Elementary Functions

1.2 Trigonometric Identities

1.2.1 Pythagorean Identities

$$\sin^2(x) + \cos^2(x) = 1$$

Dividing by either the sine or cosine function gives:

$$\tan^2(x) + 1 = \sec^2(x)$$

 $1 + \cot^2(x) = \csc^2(x)$

1.2.2 Double-Angle Identities

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\csc(2x) = \frac{\sec(x)\csc(x)}{2}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$\sec(2x) = \frac{\sec^2(x)\csc^2(x)}{\csc^2(x) - \sec^2(x)}$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

$$\cot(2x) = \frac{\cot^2(x) - 1}{2\cot(x)}$$

1.2.3 Power Reducing Identities

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\sec^{2}(x) = \frac{2}{1 + \cos(2x)}$$

$$\tan^{2}(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

$$\cot^{2}(x) = \frac{1 + \cos(2x)}{1 - \cos(2x)}$$

1.3 Partial Fractions

Definition 1.3.1 (Partial Fraction Decomposition). **Partial fraction decomposition** is a method where a rational function $\frac{P(x)}{Q(x)}$ is rewritten as a sum of fraction.

Factor in denominator	Term in partial fraction decomposition
ax + b	$\frac{A}{ax+b}$
$(ax+b)^k, k \in \mathbb{N}$	$\frac{A_1}{ax+b} + \frac{A_2}{\left(ax+b\right)^2} + \dots + \frac{A_k}{\left(ax+b\right)^k}$
$ax^2 + bx + c$	$\frac{A}{ax^2 + bx + c}$
$\left(ax^2 + bx + c\right)^k, \ k \in \mathbb{N}$	$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$

Table 2: Partial Fraction Forms

1.4 Integration by Parts

Theorem 1.4.1.

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

1.5 Integration by Substitution

Theorem 1.5.1.

$$\int f(g\left(x\right))\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x = \int f(u)\,\mathrm{d}u\,,\; where\; u = g(x)$$

1.6 Trigonometric Substitutions

Form	Substitution	Result	Domain
$\left(a^2 - b^2 x^2\right)^n$	$x = \frac{a}{b}\sin\left(\theta\right)$	$a^2\cos^2\left(\theta\right)$	$\theta \in \left[-\frac{\pi}{2}, \ \frac{\pi}{2} \right]$
$\left(a^2 + b^2 x^2\right)^n$	$x = \frac{a}{b}\tan(\theta)$	$a^2\sec^2\left(\theta\right)$	$ heta\in\left(-rac{\pi}{2},\ rac{\pi}{2} ight)$
$\left(b^2x^2 - a^2\right)^n$	$x = \frac{a}{b}\sec(\theta)$	$a^2 \tan^2{(\theta)}$	$\theta \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

Table 3: Trigonometric substitutions for various forms.

2 Limits, Continuity and Differentiability

2.1 Limits

Theorem 2.1.1 (Limits). $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^+} f(x)$ and $\lim_{x\to x_0^-} f(x)$ exist and are equal.

Definition 2.1.1 (Finite limits using the ε - δ definition).

$$\lim_{x\to x_0} f(x) = L \iff \forall \varepsilon > 0: \exists \delta > 0: \forall x \in I: 0 < |x-x_0| < \delta \implies |f(x)-L| < \varepsilon$$

 $\begin{array}{l} \textbf{Theorem 2.1.2 (L'Hôpital's Rule).} \ \ \textit{For two differentiable functions} \ f(x) \ \textit{and} \ g(x). \ \ \textit{If} \ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \lim_{x \to x_0} g(x) = \pm \infty, \ \ \textit{then} \ \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \end{array}$

2.2 Continuity

Theorem 2.2.1 (Continuity at a Point). f(x) is continuous at c iff $\lim_{x\to c} f(x) = f(c)$.

Theorem 2.2.2 (Continuity over an Interval). f(x) is continuous on I if f(x) is continuous for all $x \in I$.

- f(x) is continuous on I:(a,b) if it is continuous for all $x \in I$.
- f(x) is continuous on I : [a, b] if it is continuous for all $x \in I$, but only right continuous at a and left continuous at b.

If f(x) is continuous on $(-\infty, \infty)$, f(x) is continuous everywhere.

Theorem 2.2.3 (Intermediate Value Theorem). If f(x) is continuous on I : [a, b] and c is any number between f(a) and f(b), inclusive, then there exists an $x \in I$ such that f(x) = c.

2.3 Differentiability

Theorem 2.3.1 (Differentiability). f(x) is differentiable at $x = x_0$ iff

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists. When this limit exists, it defines the derivative

$$\left. \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x=x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Theorem 2.3.2. f(x) is differentiable on I if f(x) is differentiable for all $x_0 \in I$.

Theorem 2.3.3. Differentiability implies continuity.

Theorem 2.3.4 (Mean Value Theorem). If f(x) is continuous on I : [a, b] and differentiable on I, then there exists a point $c \in I$ such that

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=c} = \frac{f(b) - f(a)}{b - a}$$

3 Definite Integrals

Theorem 3.0.1. If f(x) is continuous on an interval I:[a, b], then the net signed area A between the graph of f(x) and the interval I is

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Properties of Definite Integrals

Theorem 3.0.2. Suppose that f(x) and g(x) are continuous on the interval I, with $a, b, c \in I \text{ and } k \in \mathbb{R} \text{ then}$

a)
$$\int_a^a f(x) \, \mathrm{d}x = 0.$$

b)
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x.$$

c)
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x.$$

$$d) \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

$$e) \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

e)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

3.1Riemann Sums

Theorem 3.1.1. Let A be the area under f(x) on the interval [a, b], then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k) \Delta x_k$$

where n is the number of rectangles, x_k is the centre of the rectangle k, and Δx_k is the width of the rectangle k. If every rectangle has the same width, then

$$\forall k: \Delta x_k = \frac{b-a}{n}$$

Fundamental Theorem of Calculus

The fundamental theorem of calculus provides a logical connection between infinite series (definite integrals) and antiderivatives (indefinite integrals).

Theorem 3.2.1 (The Fundamental Theorem of Calculus: Part 1). If f(x) is continuous on [a, b] and F is any antiderivative of f on [a, b] then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Equivalently

$$\int_a^b \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a) \equiv \left. F(x) \right|_a^b$$

Theorem 3.2.2 (The Fundamental Theorem of Calculus: Part 2). If f(x) is continuous on I then it has an antiderivative on I. In particular, if $a \in I$, then the function F defined by

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is an antiderivative of f(x). That is,

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x) \equiv \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \,\mathrm{d}t = f(x)$$

Theorem 3.2.3. Differentiation and integration are inverse operations.

3.3 Taylor and Maclaurin Polynomials

Theorem 3.3.1 (Taylor Polynomials). If f(x) is a n differentiable function at x_0 , then the nth degree Taylor polynomial for f(x) near x_0 , is given by

$$f(x) \approx p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

Theorem 3.3.2 (Maclaurin Polynomials). Evaluating a Taylor polynomial near 0, gives the nth degree Maclaurin polynomial for f(x)

$$f(x) \approx p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

Theorem 3.3.3 (Error in Approximation). Let $R_n(x)$ denote the difference between f(x) and its nth Taylor polynomial, that is

$$R_n(x) = f(x) - p_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k = \frac{f^{(n+1)}(s)}{(n+1)!} \left(x - x_0\right)^{n+1}$$

where s is between x_0 and x.

4 Taylor and Maclaurin Series

4.1 Infinite Series

Definition 4.1.1 (Taylor Series). If f(x) has derivatives of all orders at x_0 , then the Taylor series for f(x) about $x = x_0$ is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Definition 4.1.2 (Maclaurin Series). If a Taylor series is centred on $x_0 = 0$, it is called a Maclaurin series, defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Definition 4.1.3 (Power Series). Both Taylor and Maclaurin series are examples of **power series**, which are defined as follows

$$\sum_{n=0}^{\infty} c_n \left(x - x_0 \right)^n$$

4.2 Convergence

Theorem 4.2.1 (Convergence of a Taylor Series). The equality

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

holds at a point x iff

$$\begin{split} \lim_{n \to \infty} \left[f(x) - \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \left(x - x_0 \right)^n \right] &= 0 \\ \lim_{n \to \infty} R_n(x) &= 0 \end{split}$$

Definition 4.2.1 (Interval of Convergence). The interval of convergence for a power series is the set of x values for which that series converges.

Definition 4.2.2 (Radius of Convergence). The radius of convergence R is a nonnegative real number or ∞ such that a power series converges if

$$|x - a| < R$$

and diverges if

$$|x-a| > R$$

The behaviour of the power series on the boundary, that is, where |x - a| = R, can be determined by substituting x = R + a for the upper boundary, and x = -R + a for the lower boundary.

4.3 Convergence Tests

For any power series of the form $\sum_{i=i_0}^{\infty} a_i$.

Alternating Series

Conditions
$$a_i = (-1)^i b_i$$
 or $a_i = (-1)^{i+1} b_i$. $b_i > 0$.
Is $b_{i+1} \leqslant b_i$ & $\lim_{i \to \infty} b_i = 0$?
$$\begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \text{Inconclusive} \end{cases}$$

Ratio Test

$$\text{Is } \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right| < 1? \begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \sum a_i \text{ Diverges} \end{cases}$$

The ratio test is in conclusive if $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}=1.$

Table of Maclaurin Series

Function	Series	Interval of Convergence
\mathbf{e}^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$-\infty < x < \infty$
$\sin\left(x\right)$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$	$-\infty < x < \infty$
$\cos\left(x\right)$	$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{(2n)!} x^{2n}$	$-\infty < x < \infty$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	-1 < x < 1

Table 4: Maclaurin Series of Common Functions

5 Multivariable Calculus

5.1 Multivariable Functions

Definition 5.1.1. A function is multivariable if its domain consists of several variables. In the reals, these functions are defined

$$f: \mathbb{R}^n \to \mathbb{R}$$

5.2 Level Curves

Definition 5.2.1. Level curves or *contour curves* of a function of two variables is a curve along which the function has constant value.

$$L_{c}(f) = \{(x, y) : f(x, y) = c\}$$

The level curves of a function can be determined by substituting z=c, and solving for y.

5.3 Limits and Continuity

Definition 5.3.1 (Finite Limit of Multivariable Functions using the ε - δ Definition).

$$\begin{split} &\lim_{(x_1,\,\ldots,\,x_n)\to(c_1,\,\ldots,\,c_n)} f(x_1,\,\ldots,\,x_n) = L\\ &\iff \forall \varepsilon > 0: \exists \delta > 0: \forall (x_1,\,\ldots,\,x_n) \in I:\\ &0 < |x_1-c_1,\,\ldots,\,x_n-c_n| < \delta \implies |f(x_1,\,\ldots,\,x_n)-L| < \varepsilon \end{split}$$

Theorem 5.3.1 (Limits along Smooth Curves). If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

Theorem 5.3.2 (Existence of a Limit). If the limit of f(x, y) changes along different smooth curves, then $\lim_{(x, y) \to (x_0, y_0)} does \ not \ exist.$

Theorem 5.3.3 (Continuity of Multivariable Functions). A function $f(x_1, ..., x_n)$ is continuous at $(c_1, ..., c_n)$ iff

$$\lim_{(x_1,\,\dots,\,x_n)\to(c_1,\,\dots,\,c_n)} f(x_1,\,\dots,\,x_n) = f(c_1,\,\dots,\,c_n)$$

Recognising continuous functions:

- A sum, difference or product of continuous functions is continuos.
- A quotient of continuous functions is continuos expect where the denominator is zero.
- A composition of continuous functions is continuos.

5.4 Partial Derivatives

Definition 5.4.1 (Partial Differentiation). The partial derivative of a multivariable function is its derivative with respect to one of those variables, while the others are held constant.

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \; \dots, \; x_{i-1}, \; x_i + h, \; x_{i+1}, \; \dots, \; x_n) - f(x_1, \; \dots, \; x_n)}{h}$$

5.5 The Gradient Vector

Definition 5.5.1. Let ∇ , pronounced "del", denote the vector differential operator defined as follows

$$\nabla = \begin{bmatrix} \partial_{x_1} \\ \partial_{x_2} \\ \vdots \\ \partial_{x_n} \end{bmatrix}$$

5.6 Multivariable Chain Rule

Theorem 5.6.1 (Multivariable Chain Rule). Let $f = f(\boldsymbol{x}(t_1, \, \dots, \, t_n))$ be the composition of f with $\boldsymbol{x} = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}$, then the partial derivative of f with respect to t_i is given by

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \partial_{t_i} \boldsymbol{x}$$

6 Double and Triple Integrals

6.1 Double Integrals

Theorem 6.1.1. Divide the rectangular reigon of R into n rectangles with sides parallel to the coordinate axes. Discard rectangles which contain any points outside of R. Choose an arbitrary point in each remaining rectangle. The area of the kth remaining rectangle is ΔA_k . The arbitrary point in the kth remaining rectangle is (x_k^*, y_k^*) . The Riemann sum is

$$\iint\limits_{R} f(x,y) \, \mathrm{d}A = \sum_{k=1}^{\infty} f(x_k^*, y_k^*) \Delta A_k$$

Properties of Double Integrals

Theorem 6.1.2. Suppose that f(x,y) and g(x,y) are continuous on R and R can be subdivided into R_1 and R_2 then

a)
$$\iint\limits_R kf(x,y) \, \mathrm{d}A = k \iint\limits_R f(x,y) \, \mathrm{d}A.$$

b)
$$\iint\limits_R \left(f(x,y) \pm g(x,y) \right) \mathrm{d}A = \iint\limits_R f(x,y) \, \mathrm{d}A \pm \iint\limits_R g(x,y) \, \mathrm{d}A.$$

c)
$$\iint\limits_R f(x,y) \, \mathrm{d}A = \iint\limits_{R_1} f(x,y) \, \mathrm{d}A + \iint\limits_{R_2} f(x,y) \, \mathrm{d}A.$$

6.2 Properties of Triple Integrals

6.3 Triple Integrals

Definition 6.3.1. A triple integral is of a function is the net signed volume defined over a finite closed solid reigon G in an xyz coordinate system.

Theorem 6.3.1. Divide the bounding box of G into n boxes with sides parallel to the coordinate planes. Discard boxes which contain any points outside of G. Choose an arbitrary point in each remaining box. The volume of the kth remaining box is (x_k^*, y_k^*, z_k^*) . The Riemann sum is

$$\iiint\limits_{G} f(x,y,z)\,\mathrm{d}V = \sum_{k=1}^{\infty} f(x_k{}^*,y_k{}^*,z_k{}^*)\Delta V_k$$

Properties of Triple Integrals

Theorem 6.3.2. Suppose that f(x,y,z) and g(x,y,z) are continuous on G and Gcan be subdivided into G_1 and G_2 then

a)
$$\iiint\limits_G kf(x,y,z)\,\mathrm{d}V = k\iiint\limits_G f(x,y,z)\,\mathrm{d}V.$$

b)
$$\iiint\limits_{G} \left(f(x,y,z) \pm g(x,y,z) \right) \mathrm{d}V = \iiint\limits_{G} f(x,y,z) \, \mathrm{d}V \pm \iiint\limits_{G} g(x,y,z) \, \mathrm{d}V.$$
c)
$$\iiint\limits_{G} f(x,y,z) \, \mathrm{d}V = \iiint\limits_{G_{1}} f(x,y,z) \, \mathrm{d}V + \iiint\limits_{G_{2}} f(x,y,z) \, \mathrm{d}V.$$

c)
$$\iiint\limits_{G} f(x,y,z)\,\mathrm{d}V = \iiint\limits_{G_{1}} f(x,y,z)\,\mathrm{d}V + \iiint\limits_{G_{2}} f(x,y,z)\,\mathrm{d}V$$

7 Vector-Valued Functions

First-Order Differential Equations 8

9 Second-Order Differential Equations