Amendments to the claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

1. (Previously Presented): A compound of formula (I)

wherein

 R^1 is $OC(O)(CH_2)_mXR^7$;

R² is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, C_{1-4} alkyl or C_{3-6} alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, OR^8 , $S(O)_nR^8$, NR^8R^9 , $CONR^8R^9$, halogen and cyano;

 R^5 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl, or $O(CH_2)_pO(CH_2)_qR^{10}$,

R⁶ is hydroxy, or

 ${\sf R}^5$ and ${\sf R}^6$ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH $_2$ -, -CH(CN)-, -O-, -N(R 11)- and -CH(SR 11)-;

R⁷ is a heterocyclic group having the following structure:

or

 ${\sf R}^8$ and ${\sf R}^9$ are each independently selected from hydrogen and ${\rm C}_{1\text{--}4}$ alkyl;

R¹⁰ is hydrogen or NR⁸R⁹;

 R^{11} is hydrogen or C_{1-4} alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

R¹² is hydrogen, C(O)OR¹⁵, C(O)NHR¹⁵ or C(O)CH₂NO₂;

 R^{13} is C_{1-4} alkyl optionally substituted by hydroxy or C_{1-4} alkoxy,

C₃₋₇cycloalkyl, or optionally substituted phenyl or benzyl;

 $\mathsf{R}^{14} \text{ is halogen, } \mathsf{C}_{1\text{-}4} \mathsf{alkyl}, \, \mathsf{C}_{1\text{-}4} \mathsf{thioalkyl}, \, \mathsf{C}_{1\text{-}4} \mathsf{alkoxy}, \, \mathsf{NH}_2, \, \mathsf{NH}(\mathsf{C}_{1\text{-}4} \mathsf{alkyl}) \text{ or }$

 $N(C_{1-4}alkyl)_2;$

 R^{15} is hydrogen or $C_{1\text{--}4}$ alkyl optionally substituted by up to three groups independently selected from halogen, $C_{1\text{--}4}$ alkoxy, $OC(O)C_{1\text{--}4}$ alkyl and

OC(O)OC₁₋₄alkyl;

 R^{16} is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl;

 R^{17} is hydrogen or R^{14} , or R^{17} and R^{13} are linked to form the bivalent radical -O(CH₂)₂- or -(CH₂)_v-;

X is $-U(CH_2)_SZ$ - or X is a group selected from:

$$-N$$
 N $-$

and

U and Z independently are a divalent radical selected from -N(R $^{16})\text{-}$, -O-, -S(O) $_{t^{\text{-}}}$,

 $-N(R^{16})C(O)$ -, $-C(O)N(R^{16})$ - and $-N[C(O)R^{16}]$ -;

W is CR¹⁷ or a nitrogen atom;

m is 0 or an integer from 1 to 5;

n, r and t are each independently selected from 0, 1 and 2;

p and q are each independently selected from 1 to 6;

s is an integer from 2 to 8; and

v is 2 or 3;

or a pharmaceutically acceptable salt thereof.

2. (Previously presented): A compound according to claim 1 wherein R² is hydrogen; or a pharmaceutically acceptable salt thereof.

- 3. (Previously presented): A compound according to claim 1 wherein R³ is hydrogen; or a pharmaceutically acceptable salt thereof.
- 4. (Previously presented): A compound according to claim 3 wherein R^4 is hydrogen or C_{1-4} alkyl optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heteroaryl, OR^8 , $S(O)_nR^8$, NR^8R^9 , halogen and cyano; or a pharmaceutically acceptable salt thereof.
- 5. (Currently amended): A compound according to $\underline{\text{claim 4}}$ wherein R^5 is hydroxy or $O(CH_2)_pO(CH_2)_qR^{10}$ and R^6 is hydroxy, or R^5 and R^6 taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is the bivalent radical -O-; or a pharmaceutically acceptable salt thereof.

6. (Previously presented): A compound according to claim 5 wherein R⁷ is a heterocyclic group having the following structure:

wherein W is CR^{17} where R^{17} is hydrogen; or a pharmaceutically acceptable salt thereof.

7. (Previously presented): A compound according to claim 6 wherein X is $-U(CH_2)_SZ$ - wherein U and Z are independently -NH- or -O-; or a pharmaceutically acceptable salt thereof.

8. (Canceled).

- 9. (Previously presented): A compound selected from: 4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11-O-(2-dimethylaminoethoxymethyl)-(9E)-methoximino erythromycin A,
- 4"-*O*-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-*O*-(2-propyl)oximino erythromycin A,
- 4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-methoximino erythromycin A, and
- 4"-*O*-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-*O*-(ethoxymethyl)oximino erythromycin A, or a pharmaceutically acceptable salt thereof.
- 10. (Currently amended): A process for the preparation of a compound as claimed in claim 1 which comprises:
- a) reacting a compound of formula (II)

with a suitable activated derivative of the acid (III), wherein m is an integer 1 to 5, X^a and R^{7a} are X and R^7 as defined in claim 1 or protected forms of X and R^7 , to produce a compound of formula (I) wherein m is an integer 1 to 5;

b) reacting a compound of formula (II), in which the 4" hydroxy is suitably activated, with a compound of formula X^aR^{7a} (IV), wherein R^{7a} is R^{7a} as defined in claim 1 or a protected form of R^7 , s and Z have the meanings defined in claim 1 and X^a is $-U(CH_2)_sZ$ - or a protected form of $-U(CH_2)_sZ$ -, in which U is a group selected from selected from $-N(R^{16})$ -, -O-, and -S-, to produce a compound of formula (I) wherein m is 0 and U is a group selected from $-N(R^{16})$ -, -O- and -S-;

c) reacting a compound of formula (V)

wherein R^{16} has the meaning defined in claim 1 with a suitable activated derivative of the carboxylic acid $HOC(O)(CH_2)_8Z^aR^{7a}$ (VI), wherein R^{7a} and Z^a are R^7 and Z as defined in claim 1 or protected forms of R^7 and Z, to produce a compound of formula (I) wherein m is 0 and U is $-N(R^{16})C(O)$ -;

d) reacting a compound of formula (II) with a suitably activated derivative of the carboxylic acid $HOC(O)C(O)N(R^{16})(CH_2)_8Z^aR^{7a}$ (VIIb) to produce a compound of formula (I) wherein m is 0 and U is $-C(O)N(R^{16})$ -;

e) reacting a compound of formula (VII)

with a compound of formula X^aR^{7a} (IV), wherein R^{7a} and X^a are R^7 and X as defined in claim 1 or protected forms of R^7 and X, U is a group selected from -N(R^{16})-, -O- and -S-, and L is suitable leaving group, to produce a compound of formula (I) wherein m is 1 to 5 and U is a group selected from -N(R^{16})-, -O- and -S-; or

f) reacting a compound of formula (IX), with a compound of formula X^aR^{7a} (IV),

wherein R^{7a} and X^a are R^7 and X as defined in claim 1 or protected forms of R^7 and X, U is

a group selected from -N(R 16)-, -O- and -S-, to produce a compound of formula (I) wherein

m is 2 and U is a group selected from $-N(R^{16})$ -, -O- and -S-;

and thereafter, if required, subjecting the resulting compound to one or more of the following

operations:

i) removal of the protecting group R²,

ii) conversion of XaR7a or ZaR7a to XR7 or ZR7 respectively, and

iii) conversion of the resultant compound of formula (I) into a pharmaceutically acceptable

salt thereof.

11-13. (Canceled).

14. (Previously presented): A pharmaceutical composition comprising a compound

according to claim 1 or a pharmaceutically acceptable salt thereof in admixture with one or

more pharmaceutically acceptable carriers or excipients.

15. (Previously presented): A method for the treatment of the human or non-human

animal body to combat a bacterial infection comprising administration to said human or non-

human animal body of an effective amount of a compound according to claim 1 or a

pharmaceutically acceptable salt thereof.

16. (Previously presented): A compound of formula (IA)

10

wherein

 R^1 is $OC(O)(CH_2)_mXR^7$;

R² is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, C_{1-4} alkyl or C_{3-6} alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, OR^8 , $S(O)_nR^8$, NR^8R^9 , $CONR^8R^9$, halogen and cyano;

 R^5 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl or $O(CH_2)_pO(CH_2)_qR^{10}$,

 R^6 is hydroxy, or

 ${\sf R}^5$ and ${\sf R}^6$ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH₂-, -CH(CN)-, -O-, -N(R¹¹)- and -CH(SR₈)-;

R⁷ is a heterocyclic group having the following structure:

or

 R^8 and R^9 are each independently selected from hydrogen and C_{1-4} alkyl;

R¹⁰ is hydrogen or NR⁸R⁹;

 R^{11} is hydrogen or $C_{1\text{--}4}$ alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

 R^{12} is hydrogen, $C(O)OR^{15}$, $C(O)NHR^{15}$ or $C(O)CH_2NO_2$;

 R^{13} is C_{1-4} alkyl, C_{3-7} cycloalkyl, or optionally substituted phenyl or benzyl;

 R^{14} is halogen, C_{1-4} alkyl, C_{1-4} thioalkyl, C_{1-4} alkoxy, NH_2 , $NH(C_{1-4}$ alkyl) or $N(C_{1-4}$ alkyl)₂;

 R^{15} is hydrogen or C_{1-4} alkyl;

 R^{16} is hydrogen, $C_{1\text{-4}}$ alkyl, $C_{3\text{-7}}$ cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl;

X is $-U(CH_2)_SZ$ - or X is a group selected from:

$$-N$$
 N $-$

and

U and Z independently are a divalent radical selected from -N(R 16)-, -O-, -S(O) $_{t^-}$, -

 $N(R^{16})C(O)$ -, $-C(O)N(R^{16})$ - and $-N[C(O)R^{16}]$ -;

W is a carbon or a nitrogen atom;

m is 0 or an integer from 1 to 5;

n, r and t are each independently selected from 0, 1 and 2;

p and q are each independently selected from 1 and 2; and

s is an integer from 2 to 8;

or a pharmaceutically acceptable salt thereof.