Model-based likelihood free inference: BOLFI and LFIRE

Based on slides by Michael Gutmann

Owen Thomas

Department of Biostatistics, University of Oslo

13th March 2019

Task

Perform Bayesian inference for models where

- 1. the likelihood function is too costly to compute
- 2. sampling simulating data from the model is possible

Program

Background

Previous work

BOLFI

LFIRE

Program

Background

Previous work

BOLF

LFIRE

Simulator-based models

- Goal: Inference for models that are specified by a mechanism for generating data
 - e.g. stochastic dynamical systems
 - e.g. computer models / simulators of some complex physical or biological process
- Such models occur in multiple and diverse scientific fields.
- Different communities use different names:
 - Simulator-based models
 - Stochastic simulation models
 - Implicit models
 - ► Generative (latent-variable) models
 - Probabilistic programs

5 / 45

Examples

Simulator-based models are widely used:

- Evolutionary biology: Simulating evolution
- Neuroscience:
 Simulating neural circuits
- Ecology: Simulating species migration
- Health science:
 Simulating the spread of an infectious disease

Definition of simulator-based models

- Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space.
- A simulator-based model is a collection of (measurable) functions $g(.,\theta)$ parametrised by θ ,

$$\omega \in \Omega \mapsto \mathbf{x}_{\theta} = \mathbf{g}(\omega, \theta) \in \mathcal{X}$$
 (1)

For any fixed θ , $\mathbf{x}_{\theta} = g(., \theta)$ is a random variable.

Implicit definition of the model pdfs

Owen Thomas

BOLFI and LFIRE

8 / 45

Advantages of simulator-based models

- Direct implementation of hypotheses of how the observed data were generated.
- Neat interface with scientific models (e.g. from physics or biology).
- Modelling by replicating the mechanisms of nature that produced the observed/measured data. ("Analysis by synthesis")
- Possibility to perform experiments in silico.

Disadvantages of simulator-based models

- Generally elude analytical treatment.
- Can be easily made more complicated than necessary.
- Statistical inference is difficult.

Disadvantages of simulator-based models

- Generally elude analytical treatment.
- ► Can be easily made more complicated than necessary.
- Statistical inference is difficult.

Main reason: Likelihood function is intractable

The likelihood function $L(\theta)$

- Probability that the model generates data like x^o when using parameter value θ
- Generally well defined but intractable for simulator-based / implicit models

Three foundational issues

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the probability of the event $x_{\theta} \equiv x^{o}$?
- 3. For which values of θ should we compute it?

Likelihood: Probability that the model generates data like x^o for parameter value heta

Program

Background

Previous work

BOLF

LFIRE

Approximate Bayesian computation

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
 - \Rightarrow Check whether $d(\theta, \mathbf{x}^{o}) = ||T(\mathbf{x}_{\theta}) T(\mathbf{x}^{o})|| \leq \epsilon$
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{o}$?
 - ⇒ By counting
- 3. For which values of θ should we compute it?
 - ⇒ Sample from the prior (or other proposal distributions)

Approximate Bayesian computation

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
 - \Rightarrow Check whether $d(\theta, \mathbf{x}^o) = ||T(\mathbf{x}_{\theta}) T(\mathbf{x}^o)|| \leq \epsilon$
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{o}$?
 - ⇒ By counting
- 3. For which values of θ should we compute it?
 - ⇒ Sample from the prior (or other proposal distributions)

Difficulties:

- ▶ Choice of T() and ϵ
- Typically high computational cost

For recent review, see: Lintusaari et al (2017) "Fundamentals and recent developments in approximate Bayesian computation", Systematic Biology

Synthetic likelihood

(Simon Wood, Nature, 2010)

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{o}$?
 - \Rightarrow Compute summary statistics $oldsymbol{t}_{ heta} = T(oldsymbol{x}_{ heta})$
 - ⇒ Model their distribution as a Gaussian
 - \Rightarrow Compute likelihood function with $T(x^o)$ as observed data
- 3. For which values of θ should we compute it?
 - ⇒ Use obtained "synthetic" likelihood function as part of a Monte Carlo method

Synthetic likelihood

(Simon Wood, Nature, 2010)

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{\circ}$?
 - \Rightarrow Compute summary statistics $t_{\theta} = T(x_{\theta})$
 - ⇒ Model their distribution as a Gaussian
 - \Rightarrow Compute likelihood function with $T(x^o)$ as observed data
- 3. For which values of θ should we compute it?
 - ⇒ Use obtained "synthetic" likelihood function as part of a Monte Carlo method

Difficulties:

- ► Choice of *T*()
- Gaussianity assumption may not hold
- ► Typically high computational cost

Overview of some related work

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
 - ⇒ Use classification (Gutmann et al, 2014, 2017)
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{\circ}$?
- 3. For which values of θ should we compute it?
 - ⇒ Use Bayesian optimisation (Gutmann and Corander, 2013-2016) Compared to standard approaches: speed-up by a factor of 1000 more
- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{\circ}$?
 - ⇒ Use density ratio estimation (Thomas et al, 2016, arXiv:1611.10242)

Overview of some related work

1000 more

- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
 - ⇒ Use classification (Gutmann et al, 2014, 2017)
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{\circ}$?
- 3. For which values of θ should we compute it?
 - ⇒ Use Bayesian optimisation BOLFI (Gutmann and Corander, 2013-2016)
 Compared to standard approaches: speed-up by a factor of
- 1. How should we assess whether $x_{\theta} \equiv x^{o}$?
- 2. How should we compute the proba of the event $x_{\theta} \equiv x^{\circ}$?
 - ⇒ Use density ratio estimation LFIRE (Thomas et al, 2016, arXiv:1611.10242)

Program

Background

Previous work

BOLFI

LFIRE

BOLFI: Creating Proxies for the Discrepancy

(Gutmann and Corander, 2013-2016)

- It is possible to recast likelihood free inference as characterising the discrepancy surface $d(\theta)$ as a function of θ .
- ▶ Observations of the discrepancy for a given θ can be considered an evaluation of a nonnegative response function d given covariates θ .
- ▶ It is possible to build a proxy model for the discrepancy using the well established tools of nonlinear regression.
- We can fully separate the problems of acquisition for the proxy model, and sampling from the proxy model.

Gaussian Processes

A flexible Bayesian nonparametric prior over functions is the Gaussian Process (GP), a stochastic process in which all realisations of the discrepancy $d(\theta)$ are assumed to be jointly normally distributed:

$$p(d|\theta) \sim \mathcal{N}(m(\theta), K(\theta, \theta'))$$

(Rasmussen and Williams, 2006)

Bayesian Optimisation I

- GPs have two important properties that enable Bayesian Optimisation
 - ► Good posterior uncertainty characterisation
 - Flexible, non-parametric structure
- ightharpoonup Values of θ are deterministically queried to maximise their information about the optimum of the function.
- ► There is no analytical solution for the optimum of a GP, but there exist various heuristics that can be useful in different circumstances
- ► We define an acquisition function using the posterior mean and variance to determine where to evaluate.
 - Upper Confidence Bound
 - Expected Improvement

Bayesian Optimisation II

(https://towards datascience.com/shallow-understanding-on-bayesian-optimization-324b6c1f7083)

Owen Thomas

BOLFI example

Posterior Sampling

- Once we have a model for the discrepancy function $d(\theta)$, we can use it to build proxies for the likelihood $p(X|\theta)$.
- This can be achieved through Kernel Density Estimation (KDE).
- For a uniform kernel, the likelihood proxy is proportional to the probability of the discrepancy being below a given threshold, i.e.:

$$\tilde{\pi}(X|\theta) \propto p(d(\theta) < h)$$
 (2)

- ▶ Given the likelihood proxy $\tilde{L}(\theta)$ and the prior $p(\theta)$, we can use an algorithm of our choice to sample the posterior.
- In practice, Hamiltonian Monte Carlo (HMC) is often used.

Results

- ▶ BOLFI performs extremely well in situations where simulations are expensive and acquisitions must be done intelligently.
- Smart acquisitions results in much fewer calls to the simulator, sometimes of $\mathcal{O}(10^3)$. (Gutmann and Corander, 2013-2016)
- Convergence properties are secured by the theory behind Bayesian Optimization.
- ► A natural extension of contemporary probabilistic numerics techniques to the likelihood free paradigm.

Program

Background

Previous work

BOLF

LFIRE

Basic idea

(Thomas et al, 2016, arXiv:1611.10242)

▶ Frame posterior estimation as ratio estimation problem

$$p(\theta|\mathbf{x}) = \frac{p(\theta)p(\mathbf{x}|\theta)}{p(\mathbf{x})} = p(\theta)r(\mathbf{x},\theta)$$
(3)

$$r(\mathbf{x}, \boldsymbol{\theta}) = \frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x})} \tag{4}$$

- Estimating $r(\mathbf{x}, \theta)$ is the difficult part since $p(\mathbf{x}|\theta)$ unknown.
- Estimate $\hat{r}(\mathbf{x}, \boldsymbol{\theta})$ yields estimate of the likelihood function and posterior

$$\hat{L}(\theta) \propto \hat{r}(\mathbf{x}^o, \theta), \qquad \hat{p}(\theta|\mathbf{x}^o) = p(\theta)\hat{r}(\mathbf{x}^o, \theta).$$
 (5)

BOLFI and LFIRE

27 / 45

Estimating density ratios in general

- ▶ Relatively well studied problem (Textbook by Sugiyama et al, 2012)
- ▶ Bregman divergence provides general framework (Gutmann and Hirayama, 2011; Sugiyama et al, 2011)
- ▶ Here: density ratio estimation by logistic regression

Density ratio estimation by logistic regression

Samples from two data sets

$$\mathbf{x}_{i}^{(1)} \sim p^{(1)}, \quad i = 1, \dots, n^{(1)}$$
 (6)

$$\mathbf{x}_{i}^{(2)} \sim p^{(2)}, \quad i = 1, \dots, n^{(2)}$$
 (7)

Probability that a test data point x was sampled from $p^{(1)}$

$$\mathbb{P}(\mathbf{x} \sim p^{(1)}|\mathbf{x}, h) = \frac{1}{1 + \nu \exp(-h(\mathbf{x}))}, \quad \nu = \frac{n^{(2)}}{n^{(1)}} \quad (8)$$

Owen Thomas

Density ratio estimation by logistic regression

Estimate h by minimising

$$\begin{split} \mathcal{J}(h) &= \frac{1}{n} \left\{ \sum_{i=1}^{n^{(1)}} \log \left[1 + \nu \exp \left(- h_i^{(1)} \right) \right] + \sum_{i=1}^{n^{(2)}} \log \left[1 + \frac{1}{\nu} \exp \left(h_i^{(2)} \right) \right] \right\} \\ h_i^{(1)} &= h \left(\mathbf{x}_i^{(1)} \right) \qquad h_i^{(2)} = h \left(\mathbf{x}_i^{(2)} \right) \\ n &= n^{(1)} + n^{(2)} \end{split}$$

- Objective is the re-scaled negated log-likelihood.
- ▶ For large $n^{(1)}$ and $n^{(2)}$

$$\hat{h} = \operatorname{argmin}_h \mathcal{J}(h) = \log \frac{p^{(1)}}{p^{(2)}}$$

without any constraints on h

Estimating the posterior

- Property was used to estimate unnormalised models (Gutmann & Hyvärinen, 2010, 2012)
- ► It was used to estimate likelihood ratios (Pham et al, 2014; Cranmer et al, 2015)
- ► For posterior estimation, we use
 - ▶ data generating pdf $p(x|\theta)$ for $p^{(1)}$
 - ightharpoonup marginal p(x) for $p^{(2)}$ (Other choices for p(x) possible too)
 - sample sizes entirely under our control

Estimating the posterior

▶ Logistic regression (point-wise in θ)

$$\hat{h}(\mathbf{x}, \boldsymbol{\theta}) \to \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x})} = \log r(\mathbf{x}, \boldsymbol{\theta})$$
 (9)

Estimated posterior and likelihood function:

$$\hat{p}(\theta|\mathbf{x}^o) = p(\theta) \exp(\hat{h}(\mathbf{x}^o, \theta)) \quad \hat{L}(\theta) \propto \exp(\hat{h}(\mathbf{x}^o, \theta)) \quad (10)$$

Estimating the posterior

(Thomas et al, 2016, arXiv:1611.10242)

Owen Thomas

BOLFI and LFIRE

33 / 45

Auxiliary model

- ▶ We need to specify a model for h.
- ► For simplicity: linear model

$$h(\mathbf{x}) = \sum_{i=1}^{b} \beta_i \psi_i(\mathbf{x}) = \beta^{\top} \psi(\mathbf{x})$$
 (11)

where $\psi_i(\mathbf{x})$ are summary statistics

More complex models possible

Exponential family approximation

Logistic regression yields

$$\hat{h}(\mathbf{x}; \boldsymbol{\theta}) = \hat{\beta}(\boldsymbol{\theta})^{\top} \psi(\mathbf{x}), \quad \hat{r}(\mathbf{x}, \boldsymbol{\theta}) = \exp(\hat{\beta}(\boldsymbol{\theta})^{\top} \psi(\mathbf{x}))$$
 (12)

Resulting posterior

$$\hat{p}(\boldsymbol{\theta}|\mathbf{x}^o) = p(\boldsymbol{\theta}) \exp(\hat{\beta}(\boldsymbol{\theta})^{\top} \psi(\mathbf{x}^o))$$
 (13)

Implicit exponential family approximation of $p(x|\theta)$

$$\hat{r}(\mathbf{x}, \boldsymbol{\theta}) = \frac{\hat{p}(\mathbf{x}|\boldsymbol{\theta})}{\hat{p}(\mathbf{x})}$$
(14)

$$\hat{p}(\mathbf{x}|\boldsymbol{\theta}) = \hat{p}(\mathbf{x}) \exp(\hat{\beta}(\boldsymbol{\theta})^{\top} \psi(\mathbf{x}))$$
 (15)

Implicit because $\hat{p}(x)$ never explicitly constructed.

Remarks

- Vector of summary statistics $\psi(\mathbf{x})$ should include a constant for normalisation of the pdf (log partition function)
- ▶ Normalising constant is estimated via the logistic regression
- Simple linear model leads to a generalisation of synthetic likelihood
- $ightharpoonup L_1$ penalty on β for weighing and selecting summary statistics

Application to ARCH model

► Model:

$$x^{(t)} = \theta_1 x^{(t-1)} + e^{(t)} \tag{16}$$

$$e^{(t)} = \xi^{(t)} \sqrt{0.2 + \theta_2(e^{(t-1)})^2}$$
 (17)

 $\xi^{(t)}$ and $e^{(0)}$ independent standard normal r.v., $x^{(0)}=0$

- ▶ 100 time points
- Parameters: $\theta_1 \in (-1,1), \quad \theta_2 \in (0,1)$
- ▶ Uniform prior on θ_1, θ_2

Application to ARCH model

- Summary statistics:
 - auto-correlations with lag one to five
 - ▶ all (unique) pairwise combinations of them
 - a constant
- ➤ To check robustness: 50% irrelevant summary statistics (drawn from standard normal)
- Comparison with synthetic likelihood with equivalent set of summary statistics (relevant sum. stats. only)

Example posterior

Example posterior

Observations

- Compared two auxiliary models: exponential vs Gaussian family
- ► For same summary statistics , typically more accurate inferences for the richer exponential family model
- Robustness to irrelevant summary statistics thanks to L₁ regularisation

Application to cell proliferation model

- ► A stochastic lattice model for generating instances of cell proliferation data.
- ▶ Two parameters P_m , P_p describing the dynamic properties.
- ► The summary statistics are the Hamming distances between each of the 145 time instances of the cell lattice and their squares, giving 291 in total, including a constant.
- Very high-dimensional summary statistic space.

42 / 45

Application to cell proliferation model

Figure: Cell spreading model: Contour plots of the LFIRE proliferation likelihood for the parameters P_m and P_p for the cell spreading model. Each panel corresponds to different numbers of simulated data points $n_\theta = n_m$ to train the classifier. The true values and MAP estimates of the parameters are also displayed in the plots.

Observations

- ► LFIRE with regularisation successfully characterises a posterior in the presence of high numbers of summary statistics.
- \triangleright L_1 regularisation discretely selects greater numbers of relevant summary statistics as number of simulated data increases.
- ► The $n_{\theta} = n_m = 50$, 100 and 150 simulations select an average of 17.3, 23.9 and 30.5, respectively.

Conclusions

- Background and previous work on inference with simulator-based / implicit statistical models
- Our work on:
 - Framing the posterior estimation problem as a density ratio estimation problem
 - Estimating the ratio with logistic regression
 - Using regularisation to automatically select summary statistics
- Multitude of research possibilities:
 - ► Choice of the auxiliary model
 - Choice of the loss function used to estimate the density ratio
 - Combine with Bayesian optimisation framework to reduce computational cost

Conclusions

- Background and previous work on inference with simulator-based / implicit statistical models
- Our work on:
 - Framing the posterior estimation problem as a density ratio estimation problem
 - Estimating the ratio with logistic regression
 - Using regularisation to automatically select summary statistics
- Multitude of research possibilities:
 - ► Choice of the auxiliary model
 - Choice of the loss function used to estimate the density ratio
 - Combine with Bayesian optimisation framework to reduce computational cost

More results and details in arXiv:1611.10242v1