Memory Bounds for the Experts Problem

Vaidehi Srinivas
Northwestern University

Ziyu (Neil) Xu Carnegie Mellon University

David P. Woodruff
Carnegie Mellon University

Samson Zhou
Carnegie Mellon University

Prediction with Expert Advice

a problem of **sequential prediction**

Day			You	Actual outcome
1	2000		?	
2		2000	?	
3			?	
4		252	?	

What does it mean to do well?

In general, predicting the future is impossible.

We judge our algorithm based on regret.

Definition (Regret)

of mistakes algorithm makes more than the best expert

of days

A Classical Algorithm: Multiplicative Weights

Standard Guarantees for Multiplicative Weights

Theorem [Littlestone, Warmuth, '89] (Deterministic Weighted Majority)

of mistakes by deterministic weighted
$$\leq 2.41 \left(M + \log_2 n\right)$$
 majority

regret: O($\frac{M + \log n}{T}$)

where *M* is the # of mistakes the best expert makes, *n* is # of experts.

Theorem [Arora, Hazan, Kale, '12] (Standard Randomized MW)

For $\varepsilon > 0$, can construct algorithm *A* such that

expected # of mistakes by
$$\leq (1 + \varepsilon) M + \frac{\ln n}{\varepsilon}$$

$$R = \frac{1 \log n}{T}$$

Applications of the Experts Problem

Ensemble learning, AdaBoost

Online convex optimization

Forecasting and portfolio optimization

Solving for equilibria of zero sum games

Room for Improvement

Multiplicative weights keeps track of # of mistakes so far for every expert:

 $\Omega(n)$ memory

Can we solve this problem with less memory?

(we are willing to compromise on regret)

The Streaming Model

The Streaming Model

The complete sequence of *T* days is the data stream.

 $(prediction_1, outcome_1), \dots, (prediction_T, outcome_T)$

Definition (Arbitrary Order Model)

An adversary chose the predictions and outcomes to trick you.

Definition (Random Order Model)

An adversary chose the predictions and outcomes to trick you, then the order of days was randomly shuffled.

Our Results

Theorem (Lower Bound)

Any algorithm that achieves average regret δ, in expectation, must use

$$\Omega(\frac{n}{\delta^2 T})$$
 space,

even for random order and i.i.d. streams.

- To match Multiplicative Weights regret $\approx \sqrt{\frac{1}{T}}$, must use $\Omega(n)$ space
- Could potentially do much better for constant δ

Our Results

Theorem (Upper Bound for Random Order Streams)

For target
$$\delta > \sqrt{\frac{16 \log^2 n}{T}}$$
, our algorithm achieves average regret δ in expectation, using

$$\tilde{O}(\frac{n}{\delta^2 T})$$
 space.

- Matches lower bound!
- Can handle general [0, 1] costs

Our Results

Theorem (Upper Bound for Arbitrary Order Streams)

For target $\delta > \sqrt{\frac{128 \log^2 n}{T}}$, our algorithm achieves average regret δ , in expectation, using

$$\tilde{O}(\frac{n}{\delta T})$$
 space,

when
$$M \le \frac{\delta^2 T}{1280 \log^2 n}$$
.

- Beats lower bound!
- Hardness of lower bound comes from regime where best expert makes large number of mistakes

Outline

1. Background and results

2. Lower bound

3. Upper bound

4. Conclusions

Blackboard Communication Model

Streaming Model Blackboard Model Day 1 Processors see blackboard blackboard for free state Day 2 communication state Processor 1 Processor 2 Processor T S space streaming S·T communication state protocol blackboard protocol Day T B/T streaming lower B blackboard lower bound bound

The δ-Distributed Detection Problem

Distinguish between:

FAIR COIN (pr. of heads ½)

BETTER COIN (pr. of heads $\frac{1}{2} + \delta$)

Processor 1

[Braverman, Garg, Ma, Nguyen, Woodruff, '16]

Requires

Processor 2

 $\Omega(1/\delta^2)$ communication in blackboard model

Processor 3

Processor T

The δ-DiffDist Problem

Distinguish between:

Requires $\Omega(n/\delta^2)$

communication in blackboard model (by Direct Sum Framework

[Bar-Yossef, Jayram, Kumar, Sivakumar, '04])

Can solve this using a 5-regret expert prediction algorithm!

Reduction

WANT: δ-regret algorithm makes mistakes at least half the time

δ-regret algorithm makes mistakes less than half the time!

Reduction

Fix: on each day, "mask" predictions and outcomes with fair coin flip

Outcome is uniform and independent of predictions, no algorithm can make mistakes less than half the time!

δ-regret algorithm makes mistakes less than half the time!

Reduction

s: size of streaming state of δ-regret algorithm

This protocol for δ -DiffDist uses T(s + 1) bits of communication

$$\in \Omega (n/\delta^2)$$

$$s \in \Omega\left(\frac{n}{\delta^2 T}\right)$$

Outline

1. Background and results

2. Lower bound

3. Upper bound

4. Conclusions

Sampling-based Algorithm

Goal: Given guess for M, make at most $M + O(\delta T)$ mistakes

Recall (Multiplicative Weights):

cost of best expert $cost \leq \frac{(1 + \delta)M}{\delta} + \frac{\ln n}{\delta}$ "ongoing" cost "start-up" cost

Strategy:

- Run MW on a randomly sampled "pool" of $\frac{n \ln n}{\delta^2 T}$ experts
- If/when every expert in pool has average mistake rate $\geq \frac{M}{T} + \delta$, resample and start over

Total Cost:

$$\frac{(1+\delta)[M+\delta T]}{\delta} + \frac{\ln n}{\delta}$$
 (# of rounds of sampling)

$$\frac{1}{M+O(\delta T)}$$
 just need to bound this!

days

Algorithm Sketch

expert predictions

best expert in set doing well

everyone in set doing badly: resample!

best expert in set doing well

everyone in set doing badly: resample!

best expert in set doing well

Idea: run MW on randomly sampled subset of experts

set threshold of "acceptable" error rate

+ start-up cost

MW does well

+ start-up cost

MW does well

+ start-up cost

MW does well

Analysis: we won't restart too many times

Bounding # of Rounds

Recall: Total Cost
$$M + O(\delta T) + \frac{\ln n}{\delta}$$
 (# of rounds)

Random Order Streams: with high probability, once we catch the best expert, we never resample.

Mistakes of best expert over time

evenly spaced

Probability we catch the best expert in given pool:

$$\frac{\text{size of pool}}{} = \frac{n \ln n / (\delta^2 T)}{}$$

Expected # of rounds:

$$\frac{\mathbf{\delta}^2 T}{\ln n}$$

Total cost: $M + O(\delta T)$

Bounding # of Rounds

Arbitrary Order Streams: Assume best expert makes $O(\frac{\delta^2 T}{\log^2 n})$ mistakes

Mistakes of best expert over time

bad days to sample

Few mistakes means few bad days.

Even if we sample on every bad day, we will be okay!

Outline

1. Background and results

2. Lower bound

3. Upper bound

4. Conclusions

Our Results (recap)

Theorem (Lower Bound)

Any algorithm that achieves average regret δ, in expectation, must use

$$\Omega(\frac{n}{\delta^2 T})$$
 space,

even for random order and i.i.d. streams.

Theorem (Upper Bound for Random Order Streams)

For target $\delta > \sqrt{\frac{16 \log^2 n}{T}}$, our algorithm achieves average regret δ in expectation, using $\tilde{O}(\frac{n}{\delta^2 T})$ space.

Theorem (Upper Bound for Arbitrary Order Streams)

For target $\delta > \sqrt{\frac{128 \log^2 n}{T}}$, our algorithm achieves average regret δ , in expectation, using $\delta^2 T$ $\delta(\frac{n}{\delta T})$ space, when $M \leq \frac{\delta^2 T}{1280 \log^2 n}$.

Future Directions

- Tight bounds for arbitrary-order streams
 - For constant regret δ, can we tolerate best expert making constant fraction of mistakes?

- Better bounds when expert costs have more structure
 - i.e. expert predictions are real numbers that are evaluated against true outcome with some loss function

Better bounds with extra constraints on experts

Thanks!

