

Machine Learning

Lecture 8: Bayesian classification (theory)

Bayesian model

- The basic assumption of Bayesian models for classification is that every feature of an object is a realisation of a random variable
- The distribution of these random variables depends only on the class of the object
- Let's assume there are a total of k different possible classes of objects $\{\omega_1, \dots, \omega_k\}$
- We now observe an object of class ω_i and extract the feature vector $x \in \mathbb{R}^d$
- Then observations of this feature vector happen with a certain probability given by the class-specific **likelihood**

$$P[x|\omega_i]$$

Likelihood

- The likelihood $P[x|\omega_i]$ tells us for each class, how likely it is to observe a feature of a member of this class
- Example: P[height|women] and P[height|men]

Height of Adult Women and Men

Within-group variation and between-group overlap are significant

Likelihood

- The likelihood $P[x|\omega_i]$ tells us for each class, how likely it is to observe a feature of a member of this class

- Example:

- For the classes "English words" and "French words" the probability of a particular letter occurring in these words is different
- For instance the likelihood of observing the letter "H" is

$$P["H"|"English"] = 4.96\%$$

 $P["H"|"French"] = 0.93\%$

- While likelihood of observing the letter "U" is

$$P["U"|"English"] = 2.68\%$$

 $P["U"|"French"] = 5.55\%$

Likelihood

- The likelihood $P[x|\omega_i]$ tells us for each class, how likely it is to observe a feature of a member of this class
- For discrete features the likelihood can be determined by counting occurrence for each class (e.g. letters in words)
- For continuous features the likelihood can be parameterised, often as Normal distribution with mean μ and variance σ^2 , and then estimated from data (e.g. height distribution in population)

Bayes' Theorem

- The likelihood $P[x|\omega_i]$ tells us for each class, how likely it is to observe a feature of a member of this class
- Our problem is the opposite, though: We are measuring a feature and want to determine the class from this
- Bayes' Theorem states that the **posterior** $P[\omega_i|x]$ is equal to the product of the **likelihood** $P[x|\omega_i]$ and the **prior** $P[\omega_i]$ divided by the **evidence** P[x], or

$$P[\omega_i|x] = \frac{P[x|\omega_i]P[\omega_i]}{P[x]}$$

- Note, how this formula reverses the role of class ω_i and feature x

Bayes' Theorem

The posterior is the probability of each class given a particular observed feature

$$P[\omega_i|x] = \frac{P[x|\omega_i]P[\omega_i]}{P[x]}$$

 Note, that the denominator is simply the sum over all classes of the numerator

$$P[x] = \sum_{i} P[x|\omega_i]P[\omega_i]$$

 Also note, that it is independent of the class and therefore equal for all classes; if it is not required to normalise the function to 1 (for example because we are only interested in the class with maximum posterior probability) then it is often omitted

Risk

The posterior is the probability of each class given a particular observed feature

$$P[\omega_i|x] = \frac{P[x|\omega_i]P[\omega_i]}{P[x]}$$

- If we are taking an action α_j based on the assumption that we assume that class to be ω_i we use a **loss function**

$$L[\alpha_j, \omega_i]$$

- To define the **risk** of taking action α_i given observation x as

$$R[\alpha_j|x] = \sum_i L[\alpha_j|\omega_i] P[\omega_i|x]$$

Risk

The conditional risk is the expected loss incurred by an action given and observed feature

$$R[\alpha_j|x] = \sum_i L[\alpha_j|\omega_i] P[\omega_i|x]$$

- In a Bayesian model the optimal decision rule $\alpha[x]$ is defined as minimising the overall risk

$$R = \int_{\mathcal{X}} R[\alpha[x]|x]p[x]dx$$

- This can obviously be achieved by always selecting the action $\alpha_j \in \{\alpha_1, ..., \alpha_k\}$ that minimises the conditional risk for every observed feature x

Risk

The conditional risk is the expected loss incurred by an action given and observed feature

$$R[\alpha_j|x] = \sum_i L[\alpha_j|\omega_i] P[\omega_i|x]$$

 We already saw the 0/1-loss function in the context of classification errors

$$L[\alpha_j, \omega_i] = \begin{cases} 0 & if \ j = i \\ 1 & if \ j \neq i \end{cases}$$

- The associated risk in this case depends only on the posterior of the associated class

$$R[\alpha_i|x] = 1 - P[\omega_i|x]$$

- Minimising this quantity is the same as maximising the posterior $P[\omega_i|x]$ leading to minimum-error-rate classification

Minimum-error-rate classification

In summary: to classify a feature x such that the symmetric error-rate is minimised we have to maximising the posterior

$$P[\omega_i|x] = \frac{P[x|\omega_i]P[\omega_i]}{P[x]}$$

- Deciding on class ω_1 over ω_2 to be the more likely we look at

$$\frac{P[x|\omega_1]P[\omega_1]}{P[x]} > \frac{P[x|\omega_2]P[\omega_2]}{P[x]}$$

which is equivalent to the likelihood-ratio being

$$\frac{P[x|\omega_1]}{P[x|\omega_2]} > \frac{P[\omega_2]}{P[\omega_1]}$$

Minimum-error-rate classification

 The optimal Bayesian decision rule for minimum-error-rate classification is to threshold the likelihood-ratio as follows

$$\frac{P[x|\omega_1]}{P[x|\omega_2]} > \frac{P[\omega_2]}{P[\omega_1]}$$

 For numerical reasons it is common to use logarithms of probabilities, so you will sometime find the equivalent formula

$$\log P[x|\omega_1] - \log P[x|\omega_2] > \log P[\omega_2] - \log P[\omega_1]$$

Priors

 The optimal Bayesian decision rule for minimum-error-rate classification is to threshold the likelihood-ratio as follows

$$\frac{P[x|\omega_1]}{P[x|\omega_2]} > \frac{P[\omega_2]}{P[\omega_1]}$$

- The threshold is determined by the ratio of priors
- The **prior** $P[\omega_i]$ is the a-priori probability that you will encounter a specific class ω_i at all
- In case of random sampling the prior is determined by the relative class sizes, which can simply be counted
- If for example all classes have equal size (e.g. 50% male, 50% female), the threshold ratio is

$$\frac{P[\omega_2]}{P[\omega_1]} = 1$$

Bayesian decision rule

 In case of equal priors the Bayesian decision rule separates the feature space into areas depending on which likelihood is higher

Bayesian decision rule

The priors move this decision boundary towards the class that is apriori less likely (ω_2), thereby favouring the more likely class (ω_1)

Example: n-d Normal densities

- Let's assume we have two classes, and the likelihoods is given by two Normal densities with means μ_1 and μ_2 with equal and circular co-variances $\sigma^2 I$
- What is the optimal decision surface w

Example: n-d Normal densities

- The likelihood of the two distributions looks like

$$P[x|\lambda_i, \sigma^2] = \frac{\exp\left[-\frac{1}{2\sigma^2}(x - \mu_i)^T(x - \mu_i)\right]}{\sqrt{(2\pi)^n \sigma^2}}$$

The likelihood-ratio is therefore

$$\frac{P[x|\lambda_1,\sigma^2]}{P[x|\lambda_2,\sigma^2]} = \exp\left[-\frac{1}{2\sigma^2}(2(\mu_2 - \mu_1)^T x + \mu_1^T \mu_1 + \mu_2^T \mu_2)\right] > 1$$

- Taking logarithms yields the equivalent linear inequality

$$\underbrace{2(\mu_2 - \mu_1)^T}_{w^T} x + \underbrace{\mu_1^T \mu_1 + \mu_2^T \mu_2}_{w_0} > 0$$

- showing that the optimal decision surface is the plane $w^T x + w_0 = 0$

Thank you for your attention