Cambridge (CIE) A Level Chemistry

Carboxylic Acids

Contents

- * Producing Benzoic Acid
- * Reactions of Carboxylic Acids
- * Relative Acidities of Carboxylic Acids, Phenols & Alcohols
- * Relative Acidities of Chlorine-substituted Carboxylic Acids

Producing Benzoic Acid

Production of Benzoic Acid

- Benzoic acids are the simplest aromatic carboxylic acids with the molecular formula of C₆H₅COOH
- Benzoic acids and their derivatives are often used as reagents in the synthesis of esters
- The compounds can be produced from the **oxidation** of **alkylbenzenes**

Oxidation of alkylbenzenes

- The alkyl side-chain in alkylbenzenes, such as methylbenzene, can be oxidised to a carboxylic acid
- The alkylbenzene is **heated under reflux** with a solution of **hot alkaline KMnO**₄ (this is the oxidising agent)
 - The **purple** colour of the Mn⁷⁺ ions disappears as they are **reduced** to Mn⁴⁺ ions
 - A brown precipitate of MnO₂ is formed
- The mixture is then acidified with dilute acid (such as hydrochloric acid) to protonate the organic product form and produce a benzoic acid

Making benzoic acid from methylbenzene

Alkylbenzenes such as methylbenzene undergo oxidation to form benzoic acid

Reactions of Carboxylic Acids to **Produce Acyl Chlorides**

- Acyl chlorides are compounds with the functional group -COCl
- They look similar in structure to carboxylic acids but have a Cl atom instead of an -OH group attached to the carbonyl (C=O)
- Acyl chlorides are **more reactive** than their corresponding carboxylic acids and are therefore often used as starting materials in the production of organic compounds such as esters
- They can be prepared from the reaction of carboxylic acids with:
 - **Solid** phosphorus(V) chloride (PCl₅)
 - Liquid phosphorus(III) chloride (PCl₃) and heat
 - **Liquid** sulfur dichloride oxide (SOCl₂)
- For example, the acyl chloride ethanoyl chloride can be formed from ethanoic acid in the above reactions

Using ethanoic acid to form ethanoyl chloride

Ethanoic acid can be used to produce ethanoyl chloride with different by-products depending on the reagent used

Further Oxidation of Carboxylic Acids

- Carboxylic acids can be formed from the oxidation of primary alcohols
- The primary alcohols are firstly oxidised to aldehydes and then further oxidised to carboxylic acids
- Some carboxylic acids can get even further oxidised

Methanoic acid

- Methanoic acid is a strong reducing agent and gets further oxidised to carbon dioxide (CO₂)
- The oxidation of methanoic acid can occur by:
 - Warming methanoic acid with mild oxidising agents such as Fehling's or Tollens' reagent
 - In a Fehling's solution, the Cu²⁺ ion is **reduced** to Cu⁺ ion which **precipitates** as
 - With Tollens' reagent, the Ag⁺ is **reduced** to Ag
 - Using stronger oxidising agents such as acidified KMnO₄ or acidified K₂Cr₂O₇
 - The purple KMnO₄ solution turns colourless as Mn⁷⁺ ions are reduced to Mn²⁺ ions
 - The **orange** K₂Cr₂O₇ solution turns **green** as the Cr⁶⁺ ions are reduced to Cr³⁺

Ethanedioic acid

- Another carboxylic acid that can get further oxidised is **ethanedioic acid**
- A strong oxidising agent such as warm acidified KMnO₄ is required for the oxidation of ethanedioic acid to carbon dioxide

Oxidation of ethanedioic acid

Ethanedioic acid is a dicarboxylic acid that can get further oxidised to carbon dioxide

Relative Acidities of Carboxylic Acids, Phenols & **Alcohols**

Relative Acidities of Carboxylic Acids, Phenols & Alcohols

- Carboxylic acids are compounds with a -COOH functional group
- They can act as **acids** and lose a proton (H⁺ion) in an aqueous solution to form carboxylate salts and water

Carboxylic acids forming carboxylate salts

Carboxylic acids dissociate in aqueous solutions to form carboxylate salts and water

- However, carboxylic acids are only **weak acids** as the **position of equilibrium** lies well over to the left-hand side
- The p K_a values of carboxylic acids, phenols, and alcohols suggest that carboxylic acids are stronger acids than alcohols and phenols
 - The p K_a is a measure of the relative strength of a species as an acid
 - The smaller the pK_a value, the stronger the acid

Relative acidity of ethanol, phenol & carboxylic acids table

Acid	Dissociation	pK _a at 25 °C
Ethanol	$C_2H_5OH(aq) \rightleftharpoons C_2H_5O^-(aq) + H^+(aq)$	16
Phenol	$C_6H_5OH(aq) \rightleftharpoons C_6H_5O^-(aq) + H^+(aq)$	10
Ethanoic acid	$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$	4.8
Benzoic acid	$C_6H_5COOH(aq) \rightleftharpoons C_6H_5COO^-(aq) + H^+(aq)$	4.2

• This order of relative acidities can be explained by looking at the **strength** of the O-H bond and the stability of the conjugate bases of the acids

Strength of O-H bond

- In carboxylic acids, the electrons in the O-H bond are drawn towards the C-O bond
- The electrons in the C-O bond are drawn towards the C=O bond
- Overall, the O-H bond is **weakened** due to the **carbonyl** (C=O) group removing electron density from it and drawing it towards itself
- Carboxylic acids can therefore more easily lose a proton compared to phenols and alcohols which lack this electron-withdrawing carbonyl group

Comparing OH bond strength of carboxylic acids, ethanol and phenol

The carbonyl group in carboxylic acids draws the electrons away from the O-H bond causing it to become weaker compared to the O-H bond in phenols and alcohols

Stability of carboxylate ions

- The conjugate base of carboxylic acids is the carboxylate ion
- The charge density on the oxygen atom is spread out over the carboxylate ion
- This is because the charge is **delocalised** on an **electronegative carbonyl oxygen atom**
- As a result, the electrons on the oxygen atom are **less available** for bond formation with an H⁺ ion to reform the **undissociated** acid molecule with -COOH group
- The position of the dissociation equilibrium lies more to the right compared to alcohols and phenols

The equilibrium position of a carboxylic acid and its carboxylate ion

The carboxylate ion is stable due to the delocalisation of the charge density on the electronegative oxygen

Stability of alkoxide ions

- The conjugate base of alcohols is the alkoxide ion
- The alkyl group in the ion is an electron-donating group that donates electron density to the oxygen atom
- As a result, the electron density on the oxygen atom is more readily available for bond formation with an H+ion
- Alkoxide ions also **lack** the ability to delocalise the charge density on the entire ion
- The conjugate bases of alcohols are therefore less stable than the alcohols themselves and are more likely to reform the alcohol
- This means that alcohols are **weaker acids** compared to carboxylic acids and phenols
- The position of the dissociation equilibrium lies more to the left

The equilibrium position of an alcohol and its alkoxide ion

The electron-donating alkyl groups in alkoxide ions increase the electron density on the oxygen atom which is, therefore, more likely to bond with a H+ ion and reform the alcohol

Stability of phenoxide ions

- In the phenoxide ion (which is the conjugate base of phenol) the charge density on the oxygen atom is **spread out** over the entire ion
 - This delocalisation of electrons **stabilises** the phenoxide ion

• As a result, the electrons on the oxygen atom are less available for bond formation with a proton (H+ion)

- The **conjugate base** of phenols is therefore **more stable** than phenol
- However, since the delocalisation of charge density is on carbon atoms and not on electronegative oxygen atoms like in the carboxylate ion, phenoxide ions are less stable than carboxylate ions
- Therefore, phenols are **weaker acids** relative to carboxylic acids
- The position of the dissociation equilibrium lies more to the right compared to alcohols and more to the left compared to carboxylic acids

The equilibrium position of phenol and the phenoxide ion

The charge density is delocalised on the entire benzene ring in the phenoxide ions

Relative Acidities of Chlorine-substituted Carboxylic **Acids**

Relative Acidities of Chlorine-**Substituted Carboxylic Acids**

- Electron-withdrawing groups bonded to the carbon attached to the -COOH group make the carboxylic acids stronger acids
- This is because the O-H bond in the undissociated acid molecule is even further weakened as the electron-withdrawing group draws even more electron density away from this bond
- Furthermore, the electron-withdrawing groups extend the **delocalisation** of the negative charge on the -COO⁻ group of the carboxylate ion
- The -COO⁻ group is now even more stabilised and is less likely to bond with an H⁺ ion
- Chlorine-substituted carboxylic acids are examples of carboxylic acids with electronwithdrawing groups

pK_a values of ethanoic acid and chlorine-substituted derivatives table

Acid	pK _a at 25 °C
Ethanoic acid, CH ₃ COOH	4.8
Chloroethanoic acid, CH ₂ CICOOH	2.9
Dichloroethanoic acid, CHCl ₂ COOH	1.3
Trichloroethanoic acid, CCl ₃ COOH	0.6

■ The pK_a values of ethanoic acid and **chloro-substituted derivatives** show that the **more** electron-withdrawing groups there are on the carbon attached to the -COOH group, the stronger the acid

Comparing the relative acidities of chlorine substituted derivatives of ethanoic acid

The more chlorine atoms there are in the carboxylic acids, the stronger the acid is

- Trichloroethanoic acid is the **strongest acid** as:
 - The O-H bond in CCl₃COOH is the **weakest** since there are **three** very strong electronegative Cl atoms withdrawing electron density from the -COOH group
 - When the O-H is broken to form the carboxylate (-COO-) ion, the charge density is further spread out by the three electron-withdrawing Cl atoms
 - The carboxylate ion is so **stabilised** that it is less attracted to H⁺ions

The equilibrium of trichloroethanoic acid and the trichloroethanoate ion

Relative acidity of trichloroethanoic acid

- Ethanoic acid is the **weakest acid** as:
 - It contains an **electron-donating** methyl group which **strengthens** the O-H bond
- Your notes
- The methyl group **donates** negative charge towards the -COO⁻ group which becomes more likely to accept an H+ion

The equilibrium of ethanoic acid and the ethanoate ion

Relative acidity of ethanoic acid

