UNCLASSIFIED AD AD 486

Reproduced

Armed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

TECHNICAL NOTES NO. 40

RESINS OTHER THAN LAMINAC 4116 AS BINDERS IN PYROTECHNIC COMPOSITIONS

BOSSIE JACKSON
SEYMOUR M. KAYE
GARRY WEINGARTEN

JANUARY 1960

FELTMAN RESEARCH AND ENGINEERING LABORATORIES PICATINNY ARSENAL DOVER, N. J.

319 700.

ORDNANCE PROJECT - NONE

DEPT. OF THE ARMY PROJECT - NONE

COPY 27

RESINS OTHER THAN LAMINAC 4116 AS BINDERS IN PYROTECHNIC COMPOSITIONS

Ьý

Bossie Jackson Seymour M. Kaye Garry Weingarten

January 1960

Feltman Research and Engineering Laboratories
Picatinny Arsenal
Dever, N.J.

Technical Notes 40

Ordnance Project None

Dopt of the Army Project None

Approved:

S. SAGE

Chief, Pyretechnics

Laboratory

TABLE OF CONTENTS

		Pag
Object		1
Summar	у	1
Introdu	ction	I
Results		2
Time Resis Therr Acidi	sion of Results -Intensity Characteristics stance to Shock nal Decomposition ty of Polymer ge Stability	3 3 3 4 4
Conclus	ions and Recommendations	5
	ng	5 6 7 7
Reference	ces	9
Distribu	ion List	21
Tables		
1	Radiation Characteristics	10
2	Statistical Analysis of Total Integral Light Data	11
3	Polymerization Data	12
4	Physico-chemical Data	13
5	Effect of Additives on Gel Time of Resins	14
6	Effects of 76°C Storage on Resins	•
7	Effects of Ambient Storage on Resins	15 16
Figures		-v ,
1	Effect of 76°C Storage on Candlepower of Flare Compositions Containing Various Resins	17

		Page
Figures		
2	Effect of Ambient Storage on Candlepower of Flare Compositions Containing Various Resins	18
3	Effect of 76°C Storage on Burning Rate of Flare Compositions Containing Various Resins	19
4	Effect of Ambient Storage on Burning Rate of Flare Compositions Containing Various Resins	20

L'

OBJECT

To establish alternates for Laminac resin 4116 as binders in pyrotechnic compositions.

To catalog the physico-chemical characteristics of 32 commercially available resins as a preliminary to the preparation of a specification.

SUMMARY

A study was conducted to determine the physico-chemical characteristics of 31 polyester resins and 1 epoxy resin, and, in addition, the burning characteristics (candlepower, duration, color value) of standard flare compositions containing these resins. The thermal behavior of the resins was also studied, with results which will be published under separate cover. No correlation could be obtained among the physico-chemical, illumination, and thermal characteristics of the resins.

Applying a statistical comparison of tolerance limits at the 95% confidence level indicated that the total integral light values (duration × candlepower) for standard flare compositions containing these resins are essentially the same.

A standard flare composition containing the best resin submitted by each manufacturer was subjected to a 12-month storage surveillance program at both elevated (76°C) and room temperatures. The luminosity and burning rate characteristics of all the compositions surveyed were essentially the same after such

storage as those of the Laminac-containing composition.

INTRODUCTION

It was requested that a survey be conducted of commercially available polyester resins to establish alternates for Laminac resin 4116 (Ref 1). The use of Laminac resin 4116 in pyrotechnic compositions has steadily increased since it was first employed some years ago. It has therefore become desirable to have more than one source of supply for this type of material.

The specific physico-chemical parameters analyzed were viscosity, surface tension, hardness, shrinkage, thermal behavior, peak exotherms, gel and cure time duration, and the effect of typical flare composition ingredients on this duration. The effects of the polymers on the burning characteristics of the following composition were also determined and evaluated:

Composition	Percent by Weight
Magnesium, Atomized, 30/50 mesh	5 7
Strontium nitrate, Grade A, 34 microns	38
Resin (Resin-98%; Lupersol - 1%; Nuodex - 1%)	5

Liquid organic polymerizable materials for use in pyrotechnic compositions were first developed in Germany during World War II (Ref 2). This work was necessitated by the shortage of presses required to consolidate the older dry-type compositions. It was found that the incorporation of self-hardening resins in flare compositions minimizes and in some instances eliminates the need for high consolidation pressures, and yet produces flares comparable in rigidity to those consolidated under very high pressures. These polyester resins are essentially esters manufactured from glycols and unsaturated acids containing monomeric cross-linking additives, such as styrene and diallyl phthalate, to cure the resin. When the resins are catalyzed, they undergo a transition from liquid to gel to cure (Ref 3).

RESULTS

When illumination characteristics were obtained for standard flare compositions containing the various polyester and epoxy resins, 28 of the 32 resins studied gave essentially the same total integral light values as Laminac resin 4116 (Table 1, p 10). This finding is based on a comparison of tolerance limits at the 95% confidence level (Table 2, p 11). No essential difference was apparent among the color values (C.I.E. coordinates) obtained for the resins evaluated (Table 1).

The polymerization data (Table 3, p 12) gave a wide range of values for the various parameters studied, except in the case of the Shore D hardness, where the majority of the resins approximated a value of 80.

Tests to determine the physical and chemical characteristics of these resins (Table 4, p 13) also yielded a wide range of values.

The effects of magnesium, sodium nitrate, and a magnesium-sodium nitrate mixture on the gel times of the different polymers were determined. Most of the results obtained indicated that the additives tend to prolong gel time (Table 5, p 14).

When the polyester resins were subjected to differential thermal analysis (Ref 4), most of them gave similar thermal degradation curves, the endothermal bands occurring between 250°C and 450°C. Two exceptions were Hetron-92, which was found to contain carbon-chlorine bonds, and ERL-2795, an epoxy resin, which underwent exothermal decomposition.

The candlepower values for compositions containing the various resins varied considerably throughout the storage life of the samples at both normal and elevated temperatures (Tables 6 and 7, pp 15 and 16, Figures 1 and 2, pp 17 and 18). The burning rate values showed considerable variation during the first month of storage at both temperature levels, but thereafter they remained essentially constant (Tables 6 and 7, pp 15 and 16, Figures 3 and 4, pp 19 and 20).

DISCUSSION OF RESULTS

Time-Intensity Characteristics

The time-intensity characteristics of a flare composition containing polyester or epoxy resins are tabulated in Table 1 (p 10). These data indicated that there is no meaningful relationship between the mean candlepower and burning rate values of the resins and their suitability as substitutes for Laminac 4116. To compare the time-luminous intensity values of the polymers, total candleseconds was used as the criterion. Candleseconds are the product of candlepower and burning time. The ratio of candleseconds to total weight (grams) or total volume (cubic centimeters) of composition indicates the efficiency of the flare composition. A cursory examination of the candlesecond values obtained showed that all the polyester resins had given essentially the same values. Since a more critical analysis of these values was desired, a statistical comparison of tolerance limits (Ref 5) was conducted at the 95% confidence level (Table 2, p 11). When the average total integral light figure for Laminac 4116 (3.3 × 106 candleseconds) is used as a standard and the tolerance limit obtained (±0.5 × 10⁶ candleseconds) is applied, all integral light figures in the 2.8 to 3.8 × 106 candlesecond range are statistically identical. Hence, 28 of the 32 resins surveyed may be said to yield essentially the same total integral light values as does Laminac 4116. The exceptions are MR28-C, Aropol 7110, and Stypol 405, whose total integral light values (2.6, 2.7, and 2.7 c.s.,

respectively) fall outside the lower limit of 2.8×10^6 c.s., and Paraplex 43, whose total integral light value of 4.0×10^6 U.S. falls above the upper limit of 3.8×10^6 c.s.

It should be noted that, although the above four polyester resins fall outside statistically acceptable limits, from a practical point of view their performance is sufficiently similar to that of Laminac 4116 to be considered acceptable. In fact, the high integral light value obtained with one of these four resins, Paraplex 43, is the kind of performance that is sought in flare applications.

Resistance to Shock

It has been demonstrated that pyrotechnic compositions containing polyester resins can withstand severe setback forces and rough handling when consolidated at only moderate pressures. The disadvantages of employing polyesters are that they undergo an average shrinkage of some 10% on curing (Table 3, p 12) and that they produce a slag on combustion. Moreover, polyester resins in the final cure state do not have optimum hardness. A low hardness value is most desirable for binder applications. As has been observed, most of the resins have hardness values comparable to that of Laminac 4116 resin, which is classified as brittle. A more resilient resin gives better stability throughout the flare composition column, which is subjected to severe setback forces. In addition to greater resiliency, low shrinkage, such as is shown by Paraplex-444 and Paraplex13, is desirable. This quality obviates the need for flare case coatings and minimizes or eliminates the possibility of voids forming in the column.

The rate of polymerization (cure or gel time) of most polyester resins can be varied without incurring any changes in their physico-chemical characteristics. The peak exotherm is also dependent upon the rate of polymerization. Therefore, it is not considered important to discuss these parameters since they can be altered to fit any pot-life requirement. This is not true of the epoxy resin, because, with this material, changes in the ratio of resin and catalyst do result in changed physical and chemical characteristics.

Thermal Decomposition

The thermal decomposition curves of these resins (Ref 4) indicated varying degrees of similarity to Laminac 4116 resin. The resins were classified into four groups in terms of the closeness of similarity of their thermal spectra to that of Laminac 4116 resin (Table 4, p 13), and also into three groups (Table 4) on the basis of similarity of infrared spectra. The resins in group O do not belong in any specific category. The infrared classification showed that the majority of the polymers are similar to Laminac 4116.

Polyester resins for use in pyrotechnic compositions must have low surface tension and high viscosity (Table 4). These qualities make the resin a good wetting agent and enable it to disperse itself readily throughout the composition. These two characteristics tend to improve the quality of mixing and, consequently, the performance of the composition.

Acidity of Polymer

Of all the physical and chemical parameters studied, probably the most important and most frequently overlooked is the acidity of the polymer. The total acidity of the resins studied (Table 4) varied from 0 to 245, based on milligrams of sodium hydroxide per gram of resin. Acidic substances in flare compositions oxidize the metallic magnesium, thereby reducing the available fuel and, consequently, lowering the candlepower and burning rate. It can be seen from Table 4 that Laminac 4116 resin yielded an acid number of 25. Approximately 50% of the resins gave acid numbers lower than that of Laminac resin, which is desirable in view of the premise discussed above.

The use of additives can influence the gel time of the resins under test by either catalyzing or retarding the rate of polymerization of the resin (Table 5, p. 14). As has been mentioned above, the rate of polymerization can be adjusted to individual needs without any deleterious effects, except in the case of ERL-2795 epoxy resin.

Storage Stability

A 12-month surveillance program was conducted on at least one resin received from each manufacturer. Samples were stored at both elevated (76°C) and room temperatures. Burning rate and candlepower values for standard flare compositions containing the assorted polymers are summarized in Tables 6 and 7. It may be observed from Figures 1 through 4 (pp 17 through 20) that the luminous intensities of the flare compositions varied considerably throughout their storage life at both elevated and normal temperatures. The burning rates of these systems varied during the first month of storage at both temperature levels, after which they remained essentially constant. It is noted that the same type of performance was obtained with the composition containing Laminac 4116 resin and the binary blend containing no resin. Since the binary mixture containing no polyester resin gave a significant variation in light output with storage time, it would appear that the use of polyester resins is not responsible for these variations, although they may well contribute to them. Another possibility that should be mentioned is that a substantial experimental error is inherent in the instrumentation that was used to obtain the luminosity values. It can be observed from the graphical illustrations that, for very large changes in candlepower, there is essentially no change in burning rate. This defies all logical reasoning since experience has shown that candlepower and burning rate are interdependent variables. On the basis of these findings, it is apparent that the polymers tested are comparable to Laminac 4116 resin in stability at elevated and normal temperatures.

CONCLUSIONS AND RECOMMENDATIONS

On the basis of the data obtained in this investigation, it is concluded that a majority of the polyester resins studied give stability and time-intensity data comparable to that of Laminac 4116. The wide range of values obtained for various physico-chemical parameters is believed to indicate that optimum performance can be obtained by using polyester resins whose physical and chemical properties fall within the following limits:

Acidity, milligrams of sodium hydroxide per gram of	m
resin	0 - 120
Gel time, minutes	10 - 25
Maximum shrinkage, %	10
Viscosity, centipoises	300 - 600
Surface tension, dynes per centin, ter	36 - 65
Styrene content, %	25 - 40
Specific gravity at 25°C	1.01 - 1.16

It is recommended that these values be used in the preparation of a specification on "Polyester Resins for Use in Pyrotechnic Illuminant Compositions," for use in procuring such resins.

EXPERIMENTAL PROCEDURE

All experimental, blending and loading procedures were maintained constant throughout the program.

Materials Used

Magnesium, atomized, PA-PD-265, Type A, 30/50 mesh, 350 ± 50 microns, Golwynne Chemical Company

Strontium nitrate, nonhygroscopic, Grade A, 34 microns, AXS-1792, Davies Nitrate Company.

Sodium nitrate, double refined, USP, PA-PD-495, 38 microns, Davies Nitrate Company.

Lupersol DDM (Methylethylketone peroxide), Novadel-Agene Corporation. Nuodex (Cobalt naphthenate), Nuodex Corporation

Hardener-ZZLD-0814, Bakelite Company.

Resins:

MR-28C - Celanese Corporation

Selectron - 5027 - Pittsburgh Plate Glass Company

Aropol - 7110 - Archer - Daniels - Midland Company

Stypol - 405 - H.H. Robertson Company

Stypol - 4051 - H.H. Robertson Company

I.C. - 1154 - Interchemical Corporation

MX - 314 - Celanese Corporation

I.C. - 312 - Interchemical Corporation

Vibrin - 117 - Naugatuck Chemical Company

Laminac - 4134 - American Cyanamid Company

Paraplex - 49 - Rohm and Haas Company

Vibrin - 1088 B - Naugatuck Chemical Company

PLL - 4262 - Bakelite Company

ED - 199 - Archer-Daniels - Midland Company

'Aropol - 7300 - Archer-Daniels -Midland Company

Polylite - 8007 - Reichhold Chemical Company

I.C. - 937 - Interchemical Company

Polylite - 8001 - Reichhold Chemical Company

Aropol - 7120 - Archer-Daniels - Midland Company

Pleogen - 1150 - American Petrochemical Corporation

I.C. - 401 - Interchemical Company

Glidpol - 1001-A - Glidden Company

Paraplex - 47 - Rohm and Haas Company

Paraplex - 13 - Rohm and Haas. Company

Laminac - 4116 - American Cyanamid Company

Paraplex - 444 - Rohm and Haas Company

Paraplex - 43 - Rohm and Haas Company

ERL - 2795 - Bakelite Company

Hetron - 92 - Hooker Electrochemical Company

I.C. - 1191 - Interchemical Company

I.C. - 730 - Interchemical Company

Pleogen - 1006 - American Petrochemical Corporation

Blending

The strontium nitrate was weighed on a laboratory triple beam balance and transferred to a conductive rubber container. The magnesium was weighed and allowed to remain on the balance pan. The resin composition was placed on top of the magnesium and weighed by difference. The mixture was then transferred directly to the Simpson Intensive Mixer, Model No 1. The mixer was operated for three minutes by remote control, stopped, and

scraped down with a brass spatula. The remaining ingredients were then added and allowed to blend for a total uninterrupted period of 13 minutes. The flare composition was discharged into a safety-approved receptacle.

Loading

Each composition was consolidated into 1.3-inch-I.D. paper cases in one increment of 150 grams at a pressure of 4000 psi. The inside walls of the flare cases were coated with paraffin wax before loading.

Testing

Time-Luminous Intensity Characteristics

The time-luminous intensity characteristics of the flares were determined in accordance with Specification MIL-P-20464, except that a black background was used instead of a white one. The color characteristics were determined by the C.I.E. method.

Infrared Spectroscopy

The infrared spectra of the resin samples were obtained with a Perkin-Elmer Model 21 infrared spectrophotometer equipped with rock salt optics. Samples were mounted as laminar films between two salt plates.

Surface Tension

A Du Nouy tensiometer was used to determine surface tension.

^{1 1} of the resin compositions except ERL-2795 cr sisted of 98.5% resin, 1% Lupersol DDM, and 0. % cobalt asphthenate. ERL-2795 contained 7y,4% resin and 20.6% ZZLD-0814 hardener.

Viscosity

Viscosity was determined with a Brookfield viscosimeter.

Moisture Content

Polymerized Material. The procedure described in G.L.R. 56-HI-2014 was used.

Unpolymerized Material. The procedure described in Specification PA-PD-181 was used.

Chlorine

The chlorine content of the Hetron-92 resin was determined in accordance with the procedure described in Specification MIL-P-20307.

Total Acidity

The procedure used was taken from a Bjorksten Research Laboratories, Inc. report (p 234) titled "Polyesters and Their Applications," Reinhold Publishing Corporation, New York, 1956, except that sodium hydroxide was used instead of potassium hydroxide.

Carbon, Hydrogen, Oxygen Content

Percentages of these elements were determined in accordance with the procedure described in G.L.R. 56-HI-857.

Hardness

Hardness was determined with a Shore D hardness tester.

pH Value

The procedure described in Specification MIL-R-3745, para. 4.6., was used to determine all pH values.

Shrinkage

The percent shrinkage of each resin was determined by placing a known volume of catalyzed resin in a glass bottle and allowing it to polymerize. After polymerization, the sample was vibrated to loosen any material that might be stuck to the walls of the container. Distilled water was then titrated into the bottle to bring its contents back to their original volume. The difference between initial and final volumes was computed to determine percent shrinkage.

Heat of Combustion

The heat of combustion was determined in accordance with the procedure described in C.L.R. 127815.

Effect of Kind of Filler on Gel Time

The effect of different fillers on the gel time of resins was determined by blending equal weights of filler and catalyzed resin in a test tube and allowing the mixture to gel. The time to gel was determined by visual observation.

Gel and Cure Times

These values were determined by visual observation of the samples containing a 1% concentration of Lupersol

DDM and 0.5% concentration of Nuodex. The cure time was taken as the time to a tack-free sample.

Peak Exotherm

The peak exotherm developed during curing of the liquid resin to a solid resin was determined with a 20-gram sample of catalyzed activated resin. The exotherm curve of each resin was measured at room temperature (25°C).

REFERENCES

1. Belitsky, E., Alternates for Laminac 4116 Resin, Industrial Engineering Division Memorandum, Picatinny Arsenal, May 14, 1956

- Eppig, H.J., and J.D. Strachan, Self-Hardening Pyrotechnic Compositions, Picatinny Arsenal Technical Report 1801, December 1950
- Bjorksten Research Laboratories, Inc., Polyesters and Their Applications, Reinhold Publishing Corporation, New York, N.Y., 1956, pp 21-34
- 4. Anderson, D.A., and E.S. Freeman,

 Differential Thermal Analysis of
 Saturated Polyesters, Pyrotechnics
 Laboratory Technical Note No. 19,
 Picatinny Arsenal, March 1958
- Dixon, W.J., and F.J.Massey, Introduction to Statistical Analysis, First Edition, McGraw-Hill Book Co., New York, N.Y., 1951, pp 110-111, 315 (Table 8) and 334 (Table 16)

TABLE 1
Radiation Characteristics

C	andlepower	Burning Rate	Total Integral	c	IE
Polyester Resins 1	000 candles	inch/minute	Light, 10 ⁶ c-s	Coor	d in ate :
Hetron-92	84.0	· 4.4		X	Y
Paraplex-43		-	3.7	0.52	0.35
Paraplex-444	70.3 65.0	3.5	4.0	0.54	0.3
Laminac 4116		4.2	3.2	0.50	0.3
Paraplex-13	64.5	3.8	3.3	0.51	0.3
•	62.5	3.3	3.7	0.53	0.3
Paraplex-47	62.0	3.4	3.5	0.52	0.30
Glidpol-1001-A	61.2	3.5	3.4	0.52	0.3
Interchemical-401	60.5	3.9	3.5	0.57	0.32
Pleogen-1150	60.3	4.0	3.2	0.54	0.34
Aropol-7120	60.0	3.8	3.5	0.56	0.3
Polylite-8001	59.3	4.1	3.3	0.56	0.33
Interchemical-937	58.0	4.0	3.3	0.57	0.33
Polylite-8007	56.8	3.8	3.2	0.55	0.34
4116- 85%; 4134-15%	56.6	4.1	3.2	0.55	0.33
Aropol-7300	56.4	4.3	3.0	0.56	0.33
Pleogen-1006	56.4	4.1	3.0	0.55	0.34
ED-199	56.2	4.1	3.2	0.57	0.32
PLL-4262	56.0	4.1	3.1	0.58	0.32
Vibrin-1088-B	54.5	3.4	3.4	0.56	0.33
Paraplex-49	54.4	3.4	3.1	0.52	0.35
Laminac-4134	53.7	3.9	3.0	0.55	0.34
Vibrin-117	52.9	3.9	3.0	0.55	0.33
Interchemical-312	51.7	4.1	2.9	0.56	0.32
Celanese-MX-314	51.4	4.0	2.8	0.55	0.34
Interchemical-1191	51.4	4.0	2.9	0.56	0.33
Interchemical-730	51.4	3.7	3.1	0.57	0.32
Interchemical-1154	50.2	4.0	2.9	0.56	0.33
Stypol-4051	49.5	3.8	2.8	0.55	0.33
Stypol-405	49.1	4.0	2.7	0.55	0.34
Aropol-7110	49.0	4. 2	2.7	0.56	0.33
Selectron-5027	48.4	3.7	2.9	0.55	0.34
Celanese MR 28-C	46.0	4.0	2.6	0.55	0.34
exy Resin					
Bakelite ERL-2795	81.2	5.1	3.8	0.59	0.30

TABLE 2

Statistical Analysis of Total integral Light Data*

Total Integral Light (candleseconds × 10⁶)

Polyester Resins

Maximum-Minimum Individual Values (R_j)

Hetron-92	0.5	Total Integral Light (ΣR_i values) = 31.4
Paraplex-43	0.8	
Paraplex-444	0.1	Pooled Variance
Lamin ac-4116-21	0.7	$-\sum R_{i} \times K$ where: $Sp = pooled$ variance
Paraplex-13	1.4	$Sp = \frac{\sum R_i \times K}{n-1}$ where: Sp = pooled variance $n = number of samples$
Paraplex-47	0.4	$\Sigma R_i = \text{sum of } R_i$ values
Glidpol-1001-A	0.7	K = constant = 0.430
Interchemical-401	0.7	K. = constant = 0,450
Pleogen-1150	0.4	
Aropol-7120	0.7	$S_{P} = \frac{(31.4)(0.430)}{32} = 0.423$
Polylite-8001	0.5	32
Interchemical-937	1.2	
Polylite-8007	0.6	Tolerance Limits at 95% Confidence Level:
4116-85%; 4134-15%	2.6	
Aropol-7300	1.5	$\overline{X} = \pm \frac{2.524 \times Sp}{\sqrt{n}}$ where:
Pleogen-1006	0.8	\overline{X} = tolerance limit
ED-199	1.6	Sp = pooled variance
PLL-4262	0.7	n = number of samples
Vibrin-1088-B	0.7	in each group
Paraplex-49	0.7	
Laminac 4134	1.9	$\bar{X} = \pm \frac{(2.524)(0.423)}{\sqrt{5}} = \pm 0.478 = \pm 0.5$
Vibrin-117	1.3	X= ±
Interchemical-312	0.6	·
Celanese-MX-314	0.7	
Interchemical -1191	0.6	
Interchemical-730	1.3	
Interchemical-1154	1.7	*Dixon, W. J., and Massey, F. J., "Intro-
Stypol-4051	1.1	duction to Statistical Analyses," First Edition,
Stypol-405	0.5	McGraw-Hill Book Co., Inc. pp 110-111,
Aropol-7110	0.8	315 (Table 8) and 334 (Table 16), 1951
Selectron-5027	0.9)1) (1 able b) and))4 (1 able 10), 19)1
Celanese MR28-C	1.3	
Epoxy Resin		
Bakelite ERL-2795	1.4	

TABLE 3
Polymerization Data

Polyesters Resins	Gel Time minutes	Cure Time minutes	Peak Exotherm ^O C	Shrinkage Percent, (%)	Hardness Shore D
Hetron-92	, 11	25	127	7	00
Paraplex-43	80	217	Room Temp.	9	88 80
Paraplex-444	>1440	>1440	Room Temp.	2	
Laminac-4116	13	50	132	8	75 81
Paraplex-13	37	248	Room Temp.	3	28
Paraplex-47	13	17	42	8	
Glidpol-1001-A	14	18	132	8	82 82
Interchemical-401		_	-	8	82 35
Pleogen-1150	27	35	154	8	25 ~
Aropol-7120	11	15	40	12	80
Polylite-8001	25	38	40 27	10	82
Interchemical-937	12	21	42		83
Polylite-8007	21	37	36	11	85
4116-85%; 4134-15%	9	18	69	8	85
Aropol-7300	23	32	36	8	55
Pleogen-1006	30	38	124	10	20
ED-199	16	20	32	9	80
PLL-4262	15	24	.52 32	13	80
Vibrin-1088-B	24	34	32 46	11	80
Paraplex-49	5	9	46 42	8	85
Laminac-4134	17	45		8	88
Vibrin-117	12	38	83	7	25
Interchemical-312	7	-	54	.8	85
Celanese-MX-314	38	13 4 8	42	11	85
Interchemical-1191	8	48 18	28	11 '	25
Interchemical-730	11	20	56	8	85
Interchemical-1154	16	25	48	11	75
Stypol-4051	26	41	38	7	75 ·
Stypol-405	. 6	45	134	9	86
Aropol-7110	7	10	45	8	85
Selectron-5027	6	17	94	13	82
Celanese MR 28-C	27	38	115 50	7 13	85 85
exy Resin			-	-•	0)
Bakelite ERL-2795	17	18	208	0	80

TABLE 4

Physico-chemical Data

Polyester Resins	Surface Tension dyne/cm	Viscosity	Heat of Combustion, calorie/g	Infrared Group	Thermal Spectra Group	% Carbon	% Hydrogen	K Oxygen	Chlorine	Total Acidity mg of sodium hydroxide per gram of resin
Herma-92	47.0	4.000	5334	0	4	40.31	3.43	28.11	28.15	210
Paraplex-43	44.3	4.500	6643		·	64.78	5.48	29.74		\$
Paraplez-444	54.7	5.300	5613	0	· ~	56.55	4.95	38.50		3
1. amina ~ 4116	38.5	9	7160	-		51.22	4.44	44.34		23
Parablex-13	36.6	9	77.42	0	*	62.65	7.46	29.89		129
Pacablez-47	39.3	3,000	6722	6	3	62.02	6.77	31.21		88
Glidpol-1001-A	37.0	1,280	6816	~	m	51.03	5.83	43.14		106
Interchemical-401	54.6	400	82	٣	4	62.39	7.51	30.10		
Pleoren-1150	36.0	1,680	8169		. .	69.03	7.76	23.21		0
Aropol-7120	× ×	1,080	6933	-	7	68.80	4.53	26.67		∞
Polylite-8001	\$6.0	4,080	6952	1	3	66.56	5.08	28.36		æ
Interchemical-937	53.4	1,960	6854	-	-	64.34	5.49	30.17		
Polylite-8007.	53.7	1,360	7168	-	7	69.38	5.61	25.01		œ
4116-85%; 4134-15%	36.0	1,000	7086	-	-	60.85	5.37	33.78		20
Aropol-7300	62.6	1,120	9899	7	~	62.14	7.95	29.91		148
Pleogen-1006	39.0	2,040	683 0	7	1	62.39	2.30	31.41		0
ED-199	4.09	720	8989		~	64.16	6.38	29.46		8 2
PLL-4262	60.5	1,400	6824	ı	4	63.38	6.53	30.0g		0
Vibris-1088-B	57.9	3,040	8149	7	4	72.40	8.01	19.59		;
Paraplex-49	41.5	3,750	6839	٣.	~	63.46	5.11	31.43		109
Laminac-4134	38.0	26	6209	0	1	45.56	5.58	48.86		22
Vibria-117	60.3	1,360	6816	-	7	65.38	5.86	28.76		0
Isterchemical-312	58.4	5,240	6639	-	-	12.99	5.96	27.33		0
Celanene-MX-314	60.7	1,960	6783	ı	4	62.19	5.87	28.94		\$
Interchemical-1191	59.5	too viscous	7999	1		65.55	6.82	27.63		0
Interchemical-730	56.8	5,200	6837	-	7	54.45	6.08	29.47		∞
Interchemical-1154	56.3	2,240	7879	-	~	62.04	5.71	32.25		91
Seypol-4051	37.5	2,340	6750	5		65.02	6.24	28.74		151
Seypol-405	38.4	070,1	9889	7	*	67.10	5.85	27.05		100
Arapol-7110	65.4	10,960	7679	-	7	67.07	8.21	24.72		œ
Selectron-5027	55.6	23,750	\$ 4 \$	-	€	65.35	5.65	29.00		245
Celanese-MR 28-C	59.5	3,140	6853	ı	-	67.01	6.37	76.62		0
Epaxy Resin										
Bakelite ERL-2795	63.9	2,840	7629	ì	4	72.31	6.74	20.95		0

TABLE 5

Effect of Additives on Gel Time of Resins

Polyester Resins	Resin Alone, minutes	With Magnesium,	With Sodium Nitrate, minutes	With Magnesium/ Sodium Nitrate, minutes
Hetron-92	11	31	20	13
Paraplex-43	80	*dng 154	150	dng 125
Paraplex-444	>1440	dng 168	dng 160	dng 393
Laminac-4116	13	47	28	25
Paraplex-13	37	113	110	dng 180
Paraplex-47	13	13	10	15
Glidpol-1001-A	14	64	33	72
Interchemical-401		188	114	116
Pleogen-1150	27	dng 188	85	dng 332
Aropol-7120	11	17	4	6
Polylite-8001	25	23	31	30
Interchemical-937	12	12	11	11
Polylite-8007	21	60	31	37
4116-85%; 4134-15%	9	24	19	50
Aropol-7300	23	24	19	20
Pleogen-1006	30	166	57	dng 128
ED-199	16	18	16	16
PLL-4262	15	19	13	14
Vibrin-1088-B	24	38	26	39
Paraplex-49	5	16	15	· 17
Laminac-4134	17	64	79	•
Vibrin-117	12	11	8	9
Interchemical-312	7	13	9	11
Celanese-MX-314	38	53	52	53
Interchemical-1191	8	16	11	14
Interchemical-730	11	15	10	12
Interchemical-1154	16	.23	18	18
Stypol-4051	26	dng 96	50	dng 120
Stypol-405	6	40	19	dng 108
Aropol-7110	7	8	6	7
Selectron-5027	6	12	7	17
Celanese MR 28-C	27	22	16	17
Epoxy Resin				
Bakelite ERL-2795	17	11	25	17

^{*} dag = did not gel after - minutes

TABLE 6

Effects of 76°C Storage on Resins

		-	Alatai Dan				,		:										
				•	ů	7		đ	E COM		٠	Menths			6 Months		ć	12 140-	ŧ
Resin	Sewer	į	6 /ci e i e	14 cs	8 ÷	10 M 10 M 10 M 10 M		2 ÷].]of cs	8 - 8 - 9 - 9 -	58 / ii	7 I.L.		5 4 j	_	§ 5 8 ÷	88 /ri 8 / m i n	71.L 10 cs
Mg/N=NO, 60/40	1	3	18.6	3.0	282	18.6		263	18.9	3.8	293	20,5	3.9		21.8		309	20.3	1
Paraplez-13 Herrar-92 Laminoc-4116	Rober-Hans Hooker Electro Americas Cyana.	131 145 133	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7.3 6.7 8.3	182 157 151	272		351 136 137 137 137 137 137 137 137 137 137 137	5.1 5.8 4.5	6.2 5.2 7.0	15 15 15 15	5.0 6.0 7.4	7.6 6.6 7.9		5.7 5.7 6.6		193	6.7 5.8 4.4	9.7 7.5
	Rahar-Hans HH Robertson American Cyses.	108 120 112	4.8 4.6	5.5 6.0 5.9	132 135 169	5.6 6.2 6.2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.9 5.9 6.0	5.8 5.7 8.1	178 163 158	5.6 5.7 5.2	7.7 6.9 7.3		5.5 5.8 6.3		29 S	6.1 6.4 8.9	. 6.6. 5.6. 5.6.
	American Pero Naugatuck Chem Interchemical Reichhold Chem Celmene Com.	92 144 141 159	2 4 2 4 5	4.7 6.1 7.3 7.0	142 201 208 238 238	5.9 6.6 8.3 4.7	6.1 7.7 6.5 7.3	11.7 23.2 4 25.2 24.2 24.2 25.2 25.2 25.2 25.2 25.2 25.2	6.4 7.6 7.4 8.2	4.6.6.9 6.3.4.6.6.9 6.9.9.9	153 180 198 195 240	6.1 7.2 7.9 7.0 7.8	6.4 6.3 5.7 7.2		6.2 6.4 6.5 7.0		15 16 15 17 17 17	6.3 6.2 6.0 6.0	6.2 6.3 6.1 6.1
Selection 9027 P111-4262 Arepol-7120 Glidpol-100 l-A ERL-2755	Pistubengh Place Bakelite Co. Archae Daniels Glidden Co. Bakelite Co.	118 135 123 135 137	5.1 5.2 5.2 5.0 5.0	5.5 5.7 6.9 6.9	204 166 205 219 161	2,8 8,0 4,0 4,0 8,0		224 182 217 213 190	f 7.1 2 6.8 7 7.3 5 7.1	7.6 6.6 7.1 7.0 7.8	192 159 183 181	6.6 6.2 6.9 8.8	7.0 6.4 6.2 7.1	213 187 199 186	6.3 4.6 4.6 4.7	7.7 7.2 7.5 6.8	183 140 176 157 188	6.5 6.1.6 6.1.6 8 5.8	6.8 6.1 6.1 8.3

10 - Configuration | 10 - Configuration | 11 - Descriptor | 12 - Control | 12 - C

***Control for all reules except Perspier-13 and Hottoer92

Effects of Ambiont Storage on Resins

		•	taitiel Dete	2		2 Week			1:Menth			3 Months			6 Months		_	2 Months	
a a	j		0 } E i i i	1 T.L.	0 <u>8</u> 4	15 K 18 J			80 <u>/ ci</u> Fi F	14 H	0 0 0 0 0 0 0	BR in/min	7 IL 10° cs		B.R. in/win] T.E.		BR in/min	11.L 10° cs
Me/NeNO, 60/40	•	8	9.81	3.0	230	21.1			19.1	4.0	238	20.6	3.1		20.3	5		20.2	3.8
Parapler-13 Herror-92 Laminac-4116**	Rober-Haas Hooker Electro American Cyana.	<u> </u>	4.2 5.2 3.8	7.3 6.7 8.3	2 5 2	\$.2 3.7			8.4 8.5 8.8	7.8 6.9 8.0	25 25 13 25 13 25	53 5.1 4.0	6.4 7.3 8.0		77 7	7.8 7.4 7.6		222	8.6 7.3 8.9
Paraplez-43 Stypol-4051 Lanianc-4116***	Robar-Haas HH Robertson Aserican Cyana.	106 120 112	743	25 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	122 121 117	17 % ¢			5.1 5.3 4.8	7.0 5.1 5.7	433	5. 2.4 2.5	6.8 6.5		2 2 2	7.3 5.9 7.0		5.3 5.3 5.0	7.0 7.4 6.3
Pleogen-1150 Vibrin-10688 IC-401 Polyline-8001 MC-314	American Petro Naugatuck Chem Interchemical Reichhold Chem. Celanese Corp.	2	23222	4.7 6.1 7.3 7.0	55 55 54 54 54 54 54 54 54 54 54 54 54 5	0, 0, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	5.8 5.8 7.9 7.0 7.0	123 144 158 161	8.2.2.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	4.8 6.8 7.9 7.9	142 132 160 149 157	8.4.4.8 8.4.9.8 8.6.0	6.2 6.3 6.3 6.3	140 135 150 170	5.2 5.2 5.4 5.4 5.4	6.2 6.6 7.3 7.1	152 123 181 163 170	5.6 4.9 5.1 5.3	6.8 6.3 8.0 7.1 7.5
Selectron-5027 P1L-4262 Arapal-7120 Glidpol-1001-A ERL-2795	Pistaburgh Plate Bakelite Co. Archer Daniels Glidden Co. Bakelite Co.	118 135 123 135 135	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	150 153 133 131 143	5.4 5.0 5.3 6.8			5.9 5.3 5.0 5.0	6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	131 168 155 160 158	4.2.2.2.4.4.2.3.3.4.4.4.4.4.4.4.4.4.4.4.	5.9 7.5 7.1 7.1		5.2.2.2.3. 5.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	7.0 7.3 6.9 7.2 7.9		5.3 5.2 5.2 5.2 6.6	7.5 7.1 7.1 9.0

*Q · Candisperer BR · Suming Res Til. - Tetal Integral Light

***County for all resiss except Persplex-13 and Hets **Control for Pormplex-13 and Hettue-92

CANDLEPOWER VS AMBTENT STORAGE

Fig 1 Effect of 76°C Storage on Candlepower of Flare Compositions Containing Various Resins

CANDLEPOWER VS STORAGE AT 76°C

Fig 2 Effect of Ambient Storage on Candlepower of Flare Compositions Containing Various Resins

BURNING RATE VS AMBIENT STORAGE

Fig 3 Effect of 76°C Storage on Burning Rate of Flare Compositions Containing Various Resins

BURNING RATE VS STORAGE AT 76°C

Fig 4 Effect of Ambient Storage on Burning Rate of Flare Compositions Containing Various Resins

DISTRIBUTION LIST

	Copy No.
Commanding Officer	
Picatinny Arsenal	
ATTN: Technical Information Section	1 - 5
Industrial Engineering Division, Ammuni	
Industrial Engineering Division, Inspecti	
Industrial Engineering Division, Process	-
Dover, New Jersey	Development States
Chief of Ordnance	
Dept of the Army	
ATTN: ORDIM	11 - 12
ORDTS	13
ORDTB	14 - 15
Washington 25, D.C.	
Commanding General	
OSWAC	
ATTN: ORDSW-A	. 16
ORDSW-W	17
Picatinny Arsenal	
Dover, New Jersey	
Armed Services Technical Information Agency	
Arlington Hall Station	
Arlington 12, Virginia	18 - 27
Commanding General	
Aberdeen Proving Ground	
ATTN: Ballistic Research Laboratories	28
Aberdeen, Maryland	20
Commanding General	
Ordnance Ammunition Command	
ATTN: ORDLY-R	20
Inliet Illinois	29