Exercice 1:

Une route comporte n stations-service, numérotées dans l'ordre du parcours, de 0 à n-1. La première est à une distance d [0] du départ, la deuxième est à une distance d [1] de la première, la troisième à une distance d [2] de la deuxième, etc. La fin de la route est à une distance d [n] de la n-ième et dernière station-service. Un automobiliste prend le départ de la route avec une voiture dont le réservoir d'essence est plein. Sa voiture est capable de parcourir une distance r avec un plein.

Ouestion 9.5.1

Donnez une condition nécessaire et suffisante pour que l'automobiliste puisse effectuer le parcours. On la supposera réalisée par la suite.

Ouestion 9.5.2

Prenez 17 stations-service avec les distances d = [23, 40, 12, 44, 21, 9, 67, 32, 51, 30, 11, 55, 24, 64, 32, 57, 12, 80] et r = 100.

L'automobiliste désire faire le plein le moins souvent possible. Écrivez en pseudo-code, puis programmez une fonction Python *rapide* qui détermine à quelles stations-service il doit s'arrêter.

Exercice 2:

Dans un cinéma, chaque séance i est caractérisée par l'intervalle (di, fi), où di est l'heure de début et fi l'heure de fin. On peut représenter ces séances sur un schéma d'intervalles :

Exemple de planning des séances de cinéma

Vous voulez assister au maximum de séances dans une journée.

Vous considérez trois critères pour classer les séances, de la plus petite valeur à la plus grande :

- 1. critère A : l'heure de début de la séance (di)
- 2. critère B : la durée de la séance (fi di)
- 3. critère *C* : l'heure de fin de la séance (*fi*)
- **a.** Décrivez en pseudo-code un algorithme glouton permettant de choisir les séances, après les avoir classées selon l'un des critères ci-dessus.
- **b.** Pour chacun des trois critères de classement, exhibez un cas (s'il en existe un) où votre algorithme ne donnera pas un choix optimal. Donnez un exemple avec 5 séances sous forme d'un schéma d'intervalles comme celui de l'énoncé du problème.
- **c.** Appliquez votre algorithme aux séances ci-dessous. Donner le résultat pour chacun des trois critères de classement.

Séance (i)	1	2	3	4	5	6	7	8	9	10
Début (d _i)	9h	9h15	10h	13h	15h	15h15	16h	17h30	18h	19h30
Fin (f_i)	11h	10h50	11h20	15h25	16h40	18h15	18h05	19h	20h10	22h
Durée $(f_i - d_i)$	120	95	80	145	100	180	125	90	130	150

d. Vous voulez absolument assister à la séance 9. Modifiez votre algorithme pour intégrer cette contrainte supplémentaire, puis répondez à nouveau à la question **c.**

Exercice 3: https://pixees.fr/informatiquelycee/n site/nsi prem knn.html