Description of the model "Karen MoDC 25Jan2021"



Annotation

Sallusto and Lazavecchia (1994) described for the first time a protocol enabling the differentiate human monocytes into dendritic cells (moDC) in vitro, in the presence of granulocyte macrophage colony stimulating factor (CSF2) and interleukin 4 (IL4) [1].

Logical function

This model integrates current data on the signaling pathways involved in this differentiation process, together with relevant transcription factor and chromatin mark ChIP-seq data In particular, we consider novel putative regulatory interactions based on the prediction of TF binding sites in regulatory regions delineated with ChromHMM and public epigenomic ChIP-seq data) proximal to target genes, using the tool matrix-scan from the RSAT software suite [2] together with selected transcriptional factor binding profiles from the JASPAR database [3] https://www.ncbi.nlm.nih.gov/pubmed/8145033

V/al

http://rsat.eu

http://jaspar.genereg.net/

## Nodes

| ID                                            | Val                        | Logical function |
|-----------------------------------------------|----------------------------|------------------|
| CSF2                                          | Input node                 |                  |
| Granulocyte-macrophage colony-stimulati       | ng factor [1]              |                  |
| CSF2 stimulates the growth and differentia    | ation of hematopoietic     |                  |
| precursor cells from various lineages, inclu  | ıding granulocytes,        |                  |
| macrophages, eosinophils and erythrocyte      | 25.                        |                  |
| In 1994, Sallusto and Lazavecchia reported    | -                          |                  |
| enabling the differentiation of human mor     | •                          |                  |
| (moDC), in the presence of granulocyte ma     |                            |                  |
| stimulating factor (CSF2) and interleukin 4   |                            |                  |
| 1. https://www.uniprot.org/uniprot/           |                            |                  |
| https://pubmed.ncbi.nlm.nih.gov/814503        |                            |                  |
| IL4                                           | Input node                 |                  |
| Interleukin-4 [1].                            |                            |                  |
| IL4 participates in several B cell activation | -                          |                  |
| It induces the expression of class II MHC m   | _                          |                  |
| In 1994, Sallusto and Lazavecchia reported    | •                          |                  |
| enabling the differentiation of human mor     | •                          |                  |
| (moDC), in the presence of granulocyte ma     |                            |                  |
| stimulating factor (CSF2) and interleukin 4   |                            |                  |
| 1. https://www.uniprot.org/uniprot/           |                            |                  |
| https://pubmed.ncbi.nlm.nih.gov/814503        |                            |                  |
| CSF2R                                         | 1                          | • CSF2           |
| Granulocyte-macrophage colony-stimulati       | • • •                      |                  |
| Low affinity receptor for granulocyte-mac     | rophage colony-stimulating |                  |
| factor.                                       |                            |                  |

| Upon CSE2 hinding CSE2R induces the pro                                                                                    | diferation differentiation    |                   |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|
| Upon CSF2 binding, CSF2R induces the proliferation, differentiation, and functional activation of hematopoietic cells [1]. |                               |                   |
| GM-CSFR contains two distinct subunits, a specific-chain (GM CSFR;                                                         |                               |                   |
| -                                                                                                                          | •                             |                   |
| CD116) and a common chain, which is sha                                                                                    |                               |                   |
| the IL3 receptor, and the IL5 receptor. Sig                                                                                | •                             |                   |
| cytoplasmic tyrosine kinasejanus kinase 2                                                                                  | (JAK2), which then acts on    |                   |
| various downstream proteins [2].                                                                                           |                               |                   |
| 1. https://www.uniprot.org/uniprot/                                                                                        |                               |                   |
| https://pubmed.ncbi.nlm.nih.gov/223234                                                                                     | 50                            |                   |
| IL4R                                                                                                                       | 1                             | • IL4             |
| Receptor for both interleukin 4, activating                                                                                | the JAK (1,3)-STAT (3,6)      |                   |
| pathway [1].                                                                                                               |                               |                   |
| Upon binding of IL4, the activation of the                                                                                 | JAK-STAT pathway, enables     |                   |
| the development of immature DCs [2].                                                                                       | • ••                          |                   |
| 1. https://www.uniprot.org/uniprot/                                                                                        | P24394                        |                   |
| https://pubmed.ncbi.nlm.nih.gov/251592                                                                                     |                               |                   |
| AhR                                                                                                                        | 1                             | • (NCOR2 & USF1 & |
| 74114                                                                                                                      | -                             | STAT6)   (IRF4 &  |
|                                                                                                                            |                               | STAT6 & !ERK)     |
| Aryl hydrocarbon receptor [1].                                                                                             |                               | STATU & :LIKK)    |
|                                                                                                                            | onables cells to adapt to     |                   |
| Ligand-activated transcription factor that                                                                                 | · ·                           |                   |
| changing conditions by sensing compound                                                                                    |                               |                   |
| diet, microbiome and cellular metabolism                                                                                   |                               |                   |
| roles in development, immunity and cance                                                                                   |                               |                   |
| ERK inhibition upregulates AhR dependen                                                                                    |                               |                   |
| 1. https://www.uniprot.org/uniprot/                                                                                        |                               |                   |
| https://pubmed.ncbi.nlm.nih.gov/234301                                                                                     |                               |                   |
| AP1                                                                                                                        | 1                             | JUN & FOS         |
| Transcription factor AP-1, which recognize                                                                                 |                               |                   |
| enhancer heptamer motif 5'-TGA[CG]TCA-                                                                                     | • •                           |                   |
| Macrophage specific H3K4me1 regions we                                                                                     | ere characterized by a        |                   |
| distinct motif composition, including GT b                                                                                 | ox, an AP1 like motif, an E   |                   |
| box element, the consensus PU.1 motif, a                                                                                   | composite CEBP_bZIP           |                   |
| element, and a NFKB motif [2].                                                                                             |                               |                   |
| 1. https://www.uniprot.org/uniprot/                                                                                        | P05412                        |                   |
| https://pubmed.ncbi.nlm.nih.gov/225503                                                                                     | 42/                           |                   |
| ATF1                                                                                                                       | 1                             | • STAT6           |
| Cyclic AMP-dependent transcription facto                                                                                   | r ATF-1 [1].                  |                   |
| ATF1 binds the cAMP response element (0                                                                                    |                               |                   |
| and cellular promoters.                                                                                                    | •                             |                   |
| Using matrix-scan, we predicted STAT6 bir                                                                                  | nding sites in the regulatory |                   |
| region of the ATF1 coding gene.                                                                                            | 5                             |                   |
| 1. https://www.uniprot.org/uniprot/                                                                                        | P18846                        |                   |
|                                                                                                                            | 55.5                          | I                 |

| BATF3                                       | 1                           | • USF1   I | RF8     |
|---------------------------------------------|-----------------------------|------------|---------|
| Basic leucine zipper transcriptional factor | ATF-like 3 [1]              | ,          |         |
| AP-1 family transcription factor that contr | ols the differentiation of  |            |         |
| CD8+ thymic conventional dendritic cells i  | in the immune system.       |            |         |
| KLF4 and BATF3 serve as critical transcript | tion factors downstream of  |            |         |
| IRF8 to induce the differentiation of mono  |                             |            |         |
| [2]                                         | , , , ,                     |            |         |
| Using matrix-scan, we predicted binding of  | of USF1 and IRF8 in the     |            |         |
| regulatory region of the BATF3 coding ger   | ne.                         |            |         |
| 1. https://www.uniprot.org/uniprot/         | 'Q9NR55                     |            |         |
| https://pubmed.ncbi.nlm.nih.gov/287812      | 77                          |            |         |
| СЕВРа                                       | 1                           | • PU1 &!   | FOXO1 & |
|                                             |                             | !IRF8 &    | !STAT5  |
| CCAAT/enhancer-binding protein alpha [1     | ], expressed in myeloid     |            |         |
| progenetors [2] .                           |                             |            |         |
| IRF8 blocks the activity of CEBPa to suppre | ess the neutrophil          |            |         |
| differentiation program [3].                |                             |            |         |
| CEBP transcription factors, and CEBPb in p  | particular, have long been  |            |         |
| implicated in the regulation of monocyte    | macrophage differentiation, |            |         |
| whereas CEBPa appears to be more impo       | rtant for the maturation of |            |         |
| granulocytes.                               |                             |            |         |
| STAT5-mediated downregulation [4].          |                             |            |         |
| Using matrix-scan, we predicted binding s   | ites for CEBBa, FOXO1, and  |            |         |
| PU.1 in the regulatory region of the CEBPa  | a gene.                     |            |         |
| 1. https://www.uniprot.org/uniprot/         |                             |            |         |
| https://pubmed.ncbi.nlm.nih.gov/215582      | 73/                         |            |         |
| https://pubmed.ncbi.nlm.nih.gov/287812      |                             |            |         |
| https://pubmed.ncbi.nlm.nih.gov/223234      | 50/                         |            |         |
| CEBPb                                       | 1                           | • PU1 & (  | CEBPa   |
|                                             |                             | MAFB)      |         |
| CCAAT/enhancer-binding protein beta [1]     |                             |            |         |
| CEBP transcription factors, and CEBPb in p  | , •                         |            |         |
| implicated in the regulation of monocyte    |                             |            |         |
| whereas CEBPa appears to be more impo       | rtant for the maturation of |            |         |
| granulocytes [1].                           |                             |            |         |
| Macrophage specific H3K4me1 regions we      | •                           |            |         |
| distinct motif composition, including GT b  |                             |            |         |
| box element, the consensus PU.1 motif, a    | composite CEBP_bZIP         |            |         |
| element, and a NFKB motif [2].              |                             |            |         |
| C/EBPb almost always binds at C/EBPa bir    | _                           |            |         |
| the formation of granulocytes in C/EBPalp   |                             |            |         |
| There is a consensus ets-binding site at 7. | •                           |            |         |
| consensus C/EBP-binding site at 86-bp up    | stream of the transcription |            |         |

| initiation site of the MafB coding gene [4].                           |                              |   |              |
|------------------------------------------------------------------------|------------------------------|---|--------------|
| Using matrix-scan, we predicted binding o                              | f CEBPa in the regulatory    |   |              |
| region of the CEBPb coding gene.                                       |                              |   |              |
| 1. https://www.uniprot.org/uniprot/                                    | P17676                       |   |              |
| https://pubmed.ncbi.nlm.nih.gov/225503-                                | 42                           |   |              |
| https://pubmed.ncbi.nlm.nih.gov/285840                                 | 84/                          |   |              |
| https://pubmed.ncbi.nlm.nih.gov/129660                                 | 68/                          |   |              |
| FOS                                                                    | 1                            | • | ERK          |
| Proto-oncogene c-Fos [1].                                              |                              |   |              |
| Nuclear phosphoprotein which together w                                | ith JUN forms the AP-1       |   |              |
| complex.                                                               |                              |   |              |
| Activated ERK stabilizes c-Fos [2].                                    |                              |   |              |
| 1. https://www.uniprot.org/uniprot/                                    | P01100                       |   |              |
| https://pubmed.ncbi.nlm.nih.gov/217250                                 |                              |   |              |
| cMYC                                                                   | 1                            | • | ERK & !GSK3B |
| Myc proto-oncogene protein [1].                                        | <u> </u>                     |   |              |
| Transcription factor that binds DNA in a no                            | on-specific manner, but also |   |              |
| specifically recognizes the core sequence !                            | •                            |   |              |
| Myc ctivates the transcription of growth-r                             |                              |   |              |
| U0126 treatment significantly reduced the                              |                              |   |              |
| targets of ERK (FOS, MYC, DUSP6) [2].                                  | expression of Welliamown     |   |              |
| 1. https://www.uniprot.org/uniprot/                                    | P01106                       |   |              |
| https://pubmed.ncbi.nlm.nih.gov/2343010                                |                              |   |              |
| CREB                                                                   | 1                            | • | AKT   ERK    |
| Cyclic AMP-responsive element-binding pr                               | rotein 1 [1].                |   |              |
| Phosphorylation-dependent transcription                                |                              |   |              |
| transcription upon binding to the DNA cAN                              |                              |   |              |
| a sequence present in many viral and cellu                             | •                            |   |              |
| It has been reported that the phosphoryla                              | -                            |   |              |
| p38 and by ERK-1/2 [2].                                                | ,                            |   |              |
| 1. https://www.uniprot.org/uniprot/                                    | P16220                       |   |              |
| https://pubmed.ncbi.nlm.nih.gov/274469                                 |                              |   |              |
| ELK4                                                                   | 1                            | • | ERK          |
| ETS domain-containing protein Elk-4 [1].                               | 1                            |   |              |
| Rlk-4 is Involved in both transcriptional ac                           | tivation and repression.     |   |              |
| Interaction with SIRT7 leads to recruitment and stabilization of SIRT7 |                              |   |              |
| at promoters, followed by deacetylation o                              |                              |   |              |
| (H3K18Ac) and subsequent transcriptional                               | -                            |   |              |
| The expression of ELK4 is upregulated dur                              | •                            |   |              |
| differentiation in vitro [2].                                          | J : : : :::                  |   |              |
| 1. https://www.uniprot.org/uniprot/                                    | P28324                       |   |              |
| https://pubmed.ncbi.nlm.nih.gov/225503-                                |                              |   |              |
|                                                                        | •                            | j |              |

| FOXO1                                        | 1                             | • | (PU1   KLF4) &<br>!AKT |
|----------------------------------------------|-------------------------------|---|------------------------|
| Forkhead box protein O1 [1].                 |                               |   |                        |
| Transcription factor that is the main targe  | t of insulin signaling and    |   |                        |
| regulates metabolic homeostasis in respon    |                               |   |                        |
| Activated PKB regulates many targets, incl   |                               |   |                        |
| transcription factors, the TSC1 TSC2 comp    | _                             |   |                        |
| 1 (mTORC1) [2].                              |                               |   |                        |
| Using matrix-scan, we predicted binding s    | ites for KLF4 and PU.1 in the |   |                        |
| regulatory region of the FOXO1 coding ger    |                               |   |                        |
| 1. https://www.uniprot.org/uniprot/          |                               |   |                        |
| https://pubmed.ncbi.nlm.nih.gov/223234       |                               |   |                        |
| IRF4                                         | 1                             | • | AhR   (PU1 &           |
|                                              |                               |   | STAT6 &                |
|                                              |                               |   | NFKB1_RelA &           |
|                                              |                               |   | IRF4)                  |
| Interferon regulatory factor 4 [1].          |                               |   |                        |
| Transcriptional activator. Binds to the inte | rferon-stimulated response    |   |                        |
| element (ISRE) of the MHC class I promote    | er. Binds the                 |   |                        |
| immunoglobulin lambda light chain enhan      | cer, together with PU.1 [1].  |   |                        |
| DCs were found to express IRF4 mRNA and      | d protein constitutively, and |   |                        |
| STAT and NFkB transcription factors play a   | n important role              |   |                        |
| inregulating IRF4 expression in DCs [2,3].   |                               |   |                        |
| The promoter of IRF4 contains several put    | ative NF-kB binding sites     |   |                        |
| [4].                                         |                               |   |                        |
| Using matrix-scan, we predicted binding s    | ites for AHR, IRF4, PU1, and  |   |                        |
| STAT6 in the regulatory region of the IRF4   | gene.                         |   |                        |
| 1. https://www.uniprot.org/uniprot/          | Q15306                        |   |                        |
| https://pubmed.ncbi.nlm.nih.gov/104530       | 13                            |   |                        |
| https://pubmed.ncbi.nlm.nih.gov/298719       | 28/                           |   |                        |
| https://pubmed.ncbi.nlm.nih.gov/16272311/    |                               |   |                        |
| IRF8                                         | 1                             | • | (PU1   KLF4) &         |
|                                              |                               |   | !NCOR2                 |
| Interferon regulatory factor 8 [1].          |                               |   |                        |
| Transcription factor that specifically binds |                               |   |                        |
| region of type I interferon (IFN) and IFN-ir | ducible MHC class I genes     |   |                        |

[1].

The differentiation of MO in vitro culture systems is multifaceted, integrating time-dependent signals delivered by GM-CSF and IL-4 and orchestrated by NCOR2 [2].

Introduction of KLF4 into an Irf8(-/-) myeloid progenitor cell line induced a subset of IRF8 target genes and caused partial monocyte differentiation [3].

Using matrix-scan, we predicted binding sites for KLF4 and PU1 in the regulatory region of the IRF8 gene. https://www.uniprot.org/uniprot/Q02556 https://pubmed.ncbi.nlm.nih.gov/29262348 https://pubmed.ncbi.nlm.nih.gov/23319570/ KLF4 1 • (NR4A1 & IRF8 & AP1) | (PU1:1 & !STAT5) Krueppel-like factor 4 [1]. PU.1 induced the KLF4 promoter 15 fold [2]. KLF4 and BATF3 serve as critical transcription factors downstream of IRF8 to induce the differentiation of monocytes and DCs, respectively [3,4]. Using matrix-scan, we predicted binding sites for AP1, NR4A1 and STAT5 in the regulatory region of the KLF4 gene. https://www.uniprot.org/uniprot/O43474 1. https://pubmed.ncbi.nlm.nih.gov/17762869 https://pubmed.ncbi.nlm.nih.gov/28781277 https://pubmed.ncbi.nlm.nih.gov/23319570/ MAFB 1 • (CEBPb | IRF8) & !AhR & !PU1:2 Transcription factor MafB [1]. Acting as a transcriptional activator or repressor, MAFB plays a pivotal role in regulating lineage-specific hematopoiesis by repressing ETS1-mediated transcription of erythroid-specific genes in myeloid cells [1]. PU1 in monocytes favors DC development at the expense of a macrophage fate by directly inhibiting expression of MAFB, suggesting that PU1 could be an important decision factor between DC and macrophage commitment [2]. MAFB gene silencing improved the differentiation potential of CD14+ cells into mDCs, increasing the percentage of mDCs by >75%. Furthermore, GATA1+ and HLA-DR+ mDCs were increased following MAFB silencing [3]. MAFB have also been implicated in monocyte differentiation [4]. Using matrix-scan, we predicted binding sites for AHR and CEBPb in the regulatory region of the MAFB coding gene. https://www.uniprot.org/uniprot/Q9Y5Q3 https://pubmed.ncbi.nlm.nih.gov/24070385 https://pubmed.ncbi.nlm.nih.gov/22868453 https://pubmed.ncbi.nlm.nih.gov/23319570/ NFKB1 RelA IKK

Nuclear factor NF-kappa-B p105 subunit [1]. NFkB complexes are formed by Rel like domain containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL or NFKB2/p52. The heterodimeric p65-p50 complex appears to be most abundant. NFkB activation is achieved through the IKK complex, which phosphorylates IkB [2, 3]. https://www.uniprot.org/uniprot/P19838 https://pubmed.ncbi.nlm.nih.gov/22323450/ https://pubmed.ncbi.nlm.nih.gov/16540365/ NFKB2 1 NFKB1 RelA | STAT5 Nuclear factor NF-kappa-B p100 subunit [1]. NFkB is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis [1]. GM CSF induced activation of STAT5 and canonical NFkB transcription factors increases the intrinsic immunogenicity of the DCs generated. STAT5 activates NFKB2 by phosphorylation [2]. https://www.uniprot.org/uniprot/Q00653 https://pubmed.ncbi.nlm.nih.gov/22323450 NR4A1 ERK & STAT6 Nuclear receptor subfamily 4 group A member 1 [1,2]. Nr4a1 is required for the differentiation of the Ly6Clo monocyte. In the absence of Nr4a1, this specific population of monocytes is arrested in the bone marrow, as shown in studies of Nr4a1-/- mice [3]. 1. https://www.uniprot.org/uniprot/P22736 https://www.genome.jp/dbget-bin/www bget?hsa04010 https://pubmed.ncbi.nlm.nih.gov/26580501/ PRDM1 IRF4 & AhR & !KLF4 PR domain zinc finger protein 1 [1]. Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types. PRDM1 silencing significantly decreased moDC differentiation, while increasing the proportion of moMacs [2]. Using matrix-scan, we predicted binding of IRF4 and KLF4 in the promoter region of PRDM1 coding gene. https://www.uniprot.org/uniprot/075626 https://pubmed.ncbi.nlm.nih.gov/28930664

| PU1                                            | 1                          | • (ERK   STAT6) & |
|------------------------------------------------|----------------------------|-------------------|
|                                                | EDI O STATS                | !(ERK & STAT6)    |
| 2                                              | ERK & STAT6                |                   |
| Transcription factor PU.1 [1].                 |                            |                   |
| PU1 is a transcriptional activator involved    | in the differentiation of  |                   |
| lymphoid and myeloid cells [2].                |                            |                   |
| PU1 is necessary for all DC development be     |                            |                   |
| mutant neonates were shown to lack thym        |                            |                   |
| generate DCs in vitro in response to GMCS      |                            |                   |
| An alternative mechanism may involve STA       |                            |                   |
| 1. https://www.uniprot.org/uniprot/l           |                            |                   |
| https://pubmed.ncbi.nlm.nih.gov/1159474        |                            |                   |
| https://pubmed.ncbi.nlm.nih.gov/2051087        | -                          |                   |
| https://pubmed.ncbi.nlm.nih.gov/2675819        | 99/                        |                   |
| STAT3                                          | 1                          | • JAK1 & SHP1     |
| 2                                              | • JAK1 & !SHP1             |                   |
| Signal transducer and transcription activat    | or that mediates cellular  |                   |
| responses to interleukins, KITLG/SCF, LEP a    | and other growth factors   |                   |
| [1].                                           |                            |                   |
| SOCS proteins are themselves encoded by        | STAT target genes and thus |                   |
| provide a transcription dependent negativ      | e feedback mechanism [3].  |                   |
| IncDC bound directly to STAT3 in the cytop     | olasm, which promoted      |                   |
| STAT3 phosphorylation on tyrosine705 by        | preventing STAT3 binding   |                   |
| to and dephosphorylation by SHP1 [2,4].        |                            |                   |
| 1. https://www.uniprot.org/uniprot/            | P40763                     |                   |
| https://pubmed.ncbi.nlm.nih.gov/2474437        | 78                         |                   |
| https://pubmed.ncbi.nlm.nih.gov/3057843        | 15                         |                   |
| https://pubmed.ncbi.nlm.nih.gov/2846567        | 74                         |                   |
| STAT5                                          | 1                          | • Src   JAK2      |
| Signal transducer and activator of transcrip   | ption 5A.                  |                   |
| STAT5 carries out a dual function: signal tr   | ansduction and activation  |                   |
| of transcription [1].                          |                            |                   |
| STAT5 clearly contributes to GM CSF drive      | n DC development [2].      |                   |
| 1. https://www.uniprot.org/uniprot/8           | P42229                     |                   |
| https://pubmed.ncbi.nlm.nih.gov/2232345        | 50                         |                   |
| STAT6                                          | 1                          | • JAK3            |
| Signal transducer and activator of transcrip   | ption 6 [1].               |                   |
| STAT6 carries out a dual function: signal tr   |                            |                   |
| of transcription.                              |                            |                   |
| It is involved in IL4/interleukin-4 and IL3/ir | nterleukin-3-mediated      |                   |
| signaling [1].                                 |                            |                   |
|                                                |                            |                   |

| nathway through its samman gamma sha                                      | in which loads to the        | ]                     |
|---------------------------------------------------------------------------|------------------------------|-----------------------|
| pathway through its common gamma chai                                     | in, which leads to the       |                       |
| development of immature DCs [2,3,4].  1. https://www.uniprot.org/uniprot/ | D42226                       |                       |
|                                                                           |                              |                       |
| https://pubmed.ncbi.nlm.nih.gov/165403                                    |                              |                       |
| https://pubmed.ncbi.nlm.nih.gov/251592                                    |                              |                       |
| https://pubmed.ncbi.nlm.nih.gov/104859                                    |                              | D114   141   54       |
| USF1                                                                      | 1                            | • PU1   KLF4          |
| Upstream stimulatory factor [1]1.                                         |                              |                       |
| Transcription factor that binds to a symme                                | •                            |                       |
| boxes) (5'-CACGTG-3') that is found in a va                               | ariety of viral and cellular |                       |
| promoters [1].                                                            |                              |                       |
| USF is involved in myeloid cell differentiat                              | ion[2].                      |                       |
| Using matrix-scan, we predicted binding s                                 | ites for KLF4 and PU1 in the |                       |
| regulatory region of the USF1 coding gene                                 | ·.                           |                       |
| 1. https://www.uniprot.org/uniprot/                                       | P22415                       |                       |
| https://pubmed.ncbi.nlm.nih.gov/100851                                    | 60                           |                       |
| NCOR2                                                                     | 1                            | • IRF4   AhR          |
|                                                                           |                              | STAT6                 |
| Nuclear receptor corepressor 2 [1].                                       |                              |                       |
| NCOR2 mMediates the transcriptional rep                                   | ression activity of some     |                       |
| nuclear receptors by promoting chromatir                                  | n condensation, thus         |                       |
| preventing access of the basal transcription                              | on [1].                      |                       |
| NCOR2 was identified as a key transcription                               | onal hub linked to IL4       |                       |
| dependent differentiation of MOs [2].                                     |                              |                       |
| Using matrix-scan, we predicted binding s                                 | ites for AHR, IRF4 and       |                       |
| STAT6 in the regulatory regio of the NCOR                                 | 2 coding gene.               |                       |
| 1. https://www.uniprot.org/uniprot/                                       | Q9Y618                       |                       |
| https://pubmed.ncbi.nlm.nih.gov/292623                                    | 48                           |                       |
| JAK2                                                                      | 1                            | CSF2R & !PTPN1        |
| Tyrosine-protein kinase JAK2 [1].                                         | ,                            |                       |
| Non-receptor tyrosine kinase involved in v                                | various processes such as    |                       |
| cell growth, development, differentiation                                 | •                            |                       |
| JAK2 mediates signaling events essential f                                |                              |                       |
| immunity [1].                                                             |                              |                       |
| Src kinases are recruited to BetaC by their                               | SH2 domains that interact    |                       |
| with phosphorylated Y612, Y695 and Y750                                   |                              |                       |
| The STATs are primarily phosphorylated by JAK2.                           |                              |                       |
| PTP1B recognizes TYK2 on JAK2, but not o                                  | •                            |                       |
| signaling responses to IFNgamma and IFN                                   |                              |                       |
| 1. https://www.uniprot.org/uniprot/                                       |                              |                       |
| https://pubmed.ncbi.nlm.nih.gov/223234                                    |                              |                       |
| https://pubmed.ncbi.nlm.nih.gov/116945                                    |                              |                       |
| Src                                                                       | 1                            | • CSF2R:1   JAK2      |
| 0.0                                                                       | 1 ~                          | 301 Z111 Z   37 111 Z |

|                                                                     |                                       | 1             |
|---------------------------------------------------------------------|---------------------------------------|---------------|
| Proto-oncogene tyrosine-protein kinase Sr                           |                                       |               |
| Non-receptor protein tyrosine kinase activated following engagement |                                       |               |
| of many different classes of cellular receptors including immune    |                                       |               |
| response receptors, integrins and other ac                          | thesion receptors, receptor           |               |
| protein tyrosine kinases, G protein-couple                          | d receptors as well as                |               |
| cytokine receptors [1].                                             | ·                                     |               |
| Src kinases are recruited to BetaC by their                         | SH2 domains that interact             |               |
| with phosphorylated Y612, Y695, and Y750                            |                                       |               |
| The STATs are primarily phosphorylated by                           |                                       |               |
| kinases [2].                                                        | y 37 (1.2), but also by 310           |               |
| 1. https://www.uniprot.org/uniprot/                                 | D12021                                |               |
|                                                                     |                                       |               |
| https://pubmed.ncbi.nlm.nih.gov/223234                              |                                       | - DAC   IAKA  |
| PI3K                                                                | 1                                     | RAS   JAK2    |
| Phosphatidylinositol 4,5-bisphosphate 3-k                           | inase catalytic subunit               |               |
| gamma isoform [1].                                                  |                                       |               |
| PI3K phosphorylates PtdIns(4,5)P2 (Phosp                            | •                                     |               |
| bisphosphate) to generate phosphatidyline                           | ositol 3,4,5 trisphosphate            |               |
| (PIP3) [1].                                                         |                                       |               |
| Activity of PI3K is promoted by JAK2 media                          | ated phosphorylation of               |               |
| p85 [2].                                                            |                                       |               |
| 1. https://www.uniprot.org/uniprot/                                 | P48736                                |               |
| https://pubmed.ncbi.nlm.nih.gov/223234                              | 50/                                   |               |
| PIP3                                                                | 1                                     | PI3K & !PTEN  |
| Phosphatidylinositol (3,4,5) trisphosphate                          | [1].                                  |               |
| PIP3 is the product of the phosphorylation                          | of phosphatidylinositol               |               |
| (4,5) bisphosphate (PIP2) by class I phosph                         |                                       |               |
| It is a phospholipid that resides on the plas                       |                                       |               |
| PI3K functions mainly through the generat                           |                                       |               |
| counteracted by phosphatases PTEN and S                             | •                                     |               |
| 1. https://en.wikipedia.org/wiki/Phos                               |                                       |               |
| trisphosphate                                                       | ,prid:idyiiriositoi_(3,4,3)           |               |
| https://pubmed.ncbi.nlm.nih.gov/223234                              | 50/                                   |               |
| AKT                                                                 | 1                                     | PIP3 & !NCOR2 |
| RAC-alpha serine/threonine-protein kinase                           |                                       | FIFS & INCORE |
| There are three closely related serine/thre                         |                                       |               |
| •                                                                   | •                                     |               |
| (AKT1, AKT2 and AKT3), which regulate me                            | etabolism, proliteration, cell        |               |
| survival, growth and angiogenesis.                                  |                                       |               |
| PIP3 acts as a second messenger, regulating                         | · · · · · · · · · · · · · · · · · · · |               |
| downstream targets, including the protein                           | kinase B (PKB; also called            |               |
| AKT) [2].                                                           |                                       |               |
| 1                                                                   |                                       |               |
| 1. https://www.uniprot.org/uniprot/                                 |                                       |               |
| 1 '                                                                 |                                       |               |

Phosphatidylinositol 3,4,5 trisphosphate 3 phosphatase and dual-specificity protein phosphatase PTEN [1].

PTEN acts as a dual specificity protein phosphatase, dephosphorylating tyrosine, serine and threonine phosphorylated proteins.

It is activated by MEK1 [2]

A ternary complex between MEK1, MAGI1 and PTEN mediates the translocation of PTEN to the membrane and thereby regulates the concentration of PIP3 and AKT activation.

Both MEK1 and MAGI1 are necessary for complex formation, and PTEN will not bind to one component if the other is missing [3].

1. https://www.uniprot.org/uniprot/P60484 https://pubmed.ncbi.nlm.nih.gov/23453810/ https://pubmed.ncbi.nlm.nih.gov/22323450/

MEK1 | 1 | • RAF | (AKT & ERK)

Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1) [1].

Phosphorylation of MEK1 T292 relays a negative feedback within the ERK pathway and initiates the deactivation of the PIP3 AKT pathway through the membrane localization of MAGI PTEN, acting as a temporal switch for both cascades.

ERK regulates the binding of MEK1 to WW domain containing proteins and may negatively affect survival by promoting the membrane recruitment of PTEN in the context of the MEK1/MAGI1/PTEN complex [2].

1. https://www.uniprot.org/uniprot/Q02750 https://pubmed.ncbi.nlm.nih.gov/23453810/

Membrane associated guanylate kinase, WW and PDZ domain containing protein 1 [1].

MAGI1 presumably plays a role as scaffolding protein at cell-cell junctions and regulates acid-induced ASIC3 currents by modulating its expression at the cell surface [1].

MEK1 is essential for the formation of a complex containing MAGI1 and PTEN and for their membrane translocation upon growth factor stimulation.

Mutation of the WW domains of MAGI1, in particular of WW2, strongly reduced MEK1 binding by a WW MAGI1 fragment or by full length MAGI1. A ternary complex involving MEK1, MAGI1, and PTEN, mediates the translocation of PTEN to the membrane and therebye regulates the concentration of PIP3 and AKT activation.

Both MEK1 and MAGI1 are necessary for complex formation, and PTEN will not bind to one component if the other is missing. MEK1 ablation prevented MAGI1 membrane translocation [2].

|                                               |                              | _ |               |
|-----------------------------------------------|------------------------------|---|---------------|
| 1. https://www.uniprot.org/uniprot/           | Q96QZ7                       |   |               |
| https://pubmed.ncbi.nlm.nih.gov/234538        | 10/                          |   |               |
| CLIP1                                         | 1                            | • | mTORC1   PU1  |
| CAP-Gly domain-containing linker protein      | 1 [1,2].                     |   |               |
| CLIP1 binds to the plus end of microtubule    | es and regulates the         |   |               |
| dynamics of the microtubule cytoskeletor      | , promoting microtubule      |   |               |
| growth and microtubule bundling.              |                              |   |               |
| CLIP1 links cytoplasmic vesicles to microtu   | ubules and thereby plays an  |   |               |
| important role in intracellular vesicle traff | icking, including            |   |               |
| macropinocytosis and endosome trafficking     | ng [1].                      |   |               |
| The microtubule plus-end protein CLIP-17      | 0 (also known as CLIP1) is a |   |               |
| direct AMPK substrate [3].                    |                              |   |               |
| 1. https://www.uniprot.org/uniprot/           | P30622                       |   |               |
| https://www.genome.jp/dbget-bin/www           | _bget?hsa04150               |   |               |
| https://pubmed.ncbi.nlm.nih.gov/218921        | 42/                          |   |               |
| mTORC1                                        | 1                            | • | AKT           |
| Serine/threonine-protein kinase mTOR [1]      | ,2].                         |   |               |
| The mTOR complex 1 (MTORC1) belongs t         | o a family of                |   |               |
| phosphatidylinositol kinase-related kinase    | es.                          |   |               |
| These kinases mediate cellular responses      | to stresses such as DNA      |   |               |
| damage and nutrient deprivation.              |                              |   |               |
| MTORC1 acts as the target for the cell-cyc    | cle arrest and               |   |               |
| immunosuppressive effects of the FKBP12       | 2-rapamycin complex [1].     |   |               |
| Activated PKB regulates mTORC1 [3].           |                              |   |               |
| 1. https://www.uniprot.org/uniprot/           | P42345                       |   |               |
| https://www.genecards.org/cgi-bin/cardo       | disp.pl?gene=MTOR            |   |               |
| https://pubmed.ncbi.nlm.nih.gov/223234        | 50/                          |   |               |
| SHC_GRB2_mSOS                                 | 1                            | • | CSF2R         |
| Complex involving SHC, GRB2 and mSOS.         |                              |   |               |
| The main MAPK pathway activated by the        | GM CSF receptor is the       |   |               |
| MEK/ERK pathway.                              |                              |   |               |
| The recruitment of mSOS to the SHC GRB2       | 2 complex enables mSOS to    |   |               |
| catalyze RAS activation [1].                  |                              |   |               |
| 1. https://pubmed.ncbi.nlm.nih.gov/           | 22323450/                    |   |               |
| RAS                                           | 1                            | • | SHC_GRB2_mSOS |
| GTPase KRas [1].                              |                              |   |               |
| Ras proteins bind GTP and possess intrins     | ic GTPase activity) [1].     |   |               |
| The main MAPK pathway activated by the        | GM CSF receptor is the       |   |               |
| MEK/ERK pathway.                              |                              |   |               |
| The recruitment of mSOS to the SHC GRB2       | 2 complex enables mSOS to    |   |               |
| catalyze RAS activation.                      |                              |   |               |
| Formation of active GTP bound RAS from        | inactive GDP bound RAS       |   |               |
| leads to the successive activation of RAF,    | MEK, and ERK [2].            |   |               |
| Leads to the successive activation of IVAL,   | 4.14 - 111 [2].              | J |               |

|                                             |                              | 1 |      |
|---------------------------------------------|------------------------------|---|------|
| 1. https://www.uniprot.org/uniprot/         |                              |   |      |
| https://pubmed.ncbi.nlm.nih.gov/223234      | 50/                          |   |      |
| RAF                                         | 1                            | • | RAS  |
| RAF proto-oncogene serine, threonine-pro    | = = =                        |   |      |
| RAF acts as a regulatory link between the   |                              |   |      |
| GTPases and the MAPK ERK cascade, and f     |                              |   |      |
| determining cell fate decisions including p |                              |   |      |
| apoptosis, survival and oncogenic transfor  |                              |   |      |
| 1. https://www.uniprot.org/uniprot/         |                              |   |      |
| https://pubmed.ncbi.nlm.nih.gov/223234      | 50/                          |   |      |
| ERK                                         | 1                            | • | MEK1 |
| Mitogen-activated protein kinase 3 [1].     |                              |   |      |
| ERK is an essential component of the MAP    | kinase signal transduction   |   |      |
| pathway.                                    |                              |   |      |
| MAPK1/ERK2 and MAPK3/ERK1 are the 2         | MAPKs which play an          |   |      |
| important role in the MAPK/ERK cascade.     |                              |   |      |
| DUSP6 Inactivates MAP kinases, with a spe   | ecificity for the ERK family |   |      |
| [2,3].                                      |                              |   |      |
| 1. https://www.uniprot.org/uniprot/         | P27361                       |   |      |
| https://pubmed.ncbi.nlm.nih.gov/985880      | 8/                           |   |      |
| https://pubmed.ncbi.nlm.nih.gov/223234      | 50/                          |   |      |
| JUN                                         | 1                            | • | JNK  |
| Proto-oncogene c-Jun [1].                   |                              |   |      |
| Nuclear phosphoprotein which together w     | vith FOS forms AP-1          |   |      |
| complex.                                    |                              |   |      |
| In response to growth factors, ERK-1/2, c   | Jun NH2-terminal kinase 1    |   |      |
| (JNK-1), and p38 are activated [2].         |                              |   |      |
| 1. https://www.uniprot.org/uniprot/         | P05412                       |   |      |
| https://pubmed.ncbi.nlm.nih.gov/274469      | 31/                          |   |      |
| JNK                                         | 1                            | • | ERK  |
| Jun N-Terminal Kinase [1].                  |                              |   |      |
| Extracellular stimuli such as proinflammat  | ory cytokines or physical    |   |      |
| stress stimulate the stress-activated prote | in kinase/c-Jun N-terminal   |   |      |
| kinase (SAP/JNK) signaling pathway [2,3].   |                              |   |      |
| 1. https://www.uniprot.org/uniprot/         | P45983                       |   |      |
| https://pubmed.ncbi.nlm.nih.gov/174098      | 20/                          |   |      |
| https://pubmed.ncbi.nlm.nih.gov/274469      | 31/                          |   |      |
| TAU                                         | 1                            | • | ERK  |
| Microtubule-associated protein tau [1,2].   |                              |   |      |
| TAU promotes microtubule assembly and       | stability.                   |   |      |
| The C-terminus binds axonal microtubules    | while the N-terminus binds   |   |      |
| neural plasma membrane components, su       | ggesting that tau functions  |   |      |
| · · · · · · · · · · · · · · · · · · ·       | <del>-</del>                 |   |      |

| as a linker protein between both [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          | 1 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| as a linker protein between both [1].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |   |      |
| ERK regulated TAU phosphorylation [3].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210020                                                                                                                                                                                                                                                   |   |      |
| 1. https://www.uniprot.org/uniprot/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |   |      |
| https://www.genome.jp/dbget-bin/www_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |   |      |
| https://pubmed.ncbi.nlm.nih.gov/3190810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |   |      |
| CPLA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                        | • | ERK  |
| Cytosolic phospholipase A2 [1].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |   |      |
| CPLA2 has primarily calcium-dependent ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                        |   |      |
| lysophospholipase activities, with a major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                        |   |      |
| remodeling and biosynthesis of lipid media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ators of the inflammatory                                                                                                                                                                                                                                |   |      |
| response [1,2].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |   |      |
| CPLA2 is downregulated when ERk is inhac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |   |      |
| 1. https://www.uniprot.org/uniprot/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |   |      |
| https://www.genome.jp/dbget-bin/www_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2343010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/                                                                                                                                                                                                                                                      |   |      |
| FLT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                        | • | PU1  |
| Receptor-type tyrosine-protein kinase FLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 [1].                                                                                                                                                                                                                                                   |   |      |
| FLT3 acts as cell-surface receptor for the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ytokine FLT3LG and                                                                                                                                                                                                                                       |   |      |
| regulates differentiation, proliferation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | survival of hematopoietic                                                                                                                                                                                                                                |   |      |
| progenitor cells and of dendritic cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |   |      |
| PU1 directly regulated Flt3 expression in D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cs and their precursors in a                                                                                                                                                                                                                             |   |      |
| dose-dependent manner [2].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                          |   |      |
| 1. https://www.uniprot.org/uniprot/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 236888                                                                                                                                                                                                                                                   |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30000                                                                                                                                                                                                                                                    |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                       | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038<br>GSK3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35<br>1                                                                                                                                                                                                                                                  | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038<br>GSK3B<br>Glycogen synthase kinase-3 beta [1].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>endent phosphorylation and                                                                                                                                                                                                                          | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038<br>GSK3B<br>Glycogen synthase kinase-3 beta [1].<br>GSK3B is negatively regulated by AKT depe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 endent phosphorylation and nacrophage                                                                                                                                                                                                                  | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038<br>GSK3B<br>Glycogen synthase kinase-3 beta [1].<br>GSK3B is negatively regulated by AKT depe<br>is required to avoid human monocyte to m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | andent phosphorylation and nacrophage Ferentiation cultures [2].                                                                                                                                                                                         | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038<br>GSK3B<br>Glycogen synthase kinase-3 beta [1].<br>GSK3B is negatively regulated by AKT depe<br>is required to avoid human monocyte to m<br>differentiationin monocyte derived DC diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | andent phosphorylation and nacrophage Ferentiation cultures [2].                                                                                                                                                                                         | • | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT depersion of the second formula is required to avoid human monocyte to make the second formula is required to avoid human monocyte derived DC differentiationin monocyte derived DC differentiation monocyte derived DC diff | andent phosphorylation and nacrophage Ferentiation cultures [2].                                                                                                                                                                                         |   | !AKT |
| https://pubmed.ncbi.nlm.nih.gov/2407038<br>GSK3B<br>Glycogen synthase kinase-3 beta [1].<br>GSK3B is negatively regulated by AKT depe<br>is required to avoid human monocyte to m<br>differentiationin monocyte derived DC diff<br>1. https://www.uniprot.org/uniprot/l<br>https://pubmed.ncbi.nlm.nih.gov/2232348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | andent phosphorylation and nacrophage Ferentiation cultures [2]. P49841                                                                                                                                                                                  |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperies required to avoid human monocyte to modifferentiationin monocyte derived DC diffurity.  1. https://www.uniprot.org/uniprot/lhttps://pubmed.ncbi.nlm.nih.gov/2232348 IKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | andent phosphorylation and nacrophage Ferentiation cultures [2]. P49841                                                                                                                                                                                  |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT depersion of the second formula is required to avoid human monocyte to modifferentiationin monocyte derived DC differentiation of https://www.uniprot.org/uniprot/lehttps://pubmed.ncbi.nlm.nih.gov/2232348 IKK Inhibitor of nuclear factor kappa-B kinase,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | endent phosphorylation and nacrophage ferentiation cultures [2]. P49841 50/ 1 involving two subunits A                                                                                                                                                   |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperis required to avoid human monocyte to modifferentiationin monocyte derived DC diffurity 1. https://www.uniprot.org/uniprot/lhttps://pubmed.ncbi.nlm.nih.gov/2232348 IKK Inhibitor of nuclear factor kappa-B kinase, and B [1,2].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | andent phosphorylation and nacrophage Ferentiation cultures [2]. P49841 50/ 1 involving two subunits A in the NF-kappa-B signaling                                                                                                                       |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperies required to avoid human monocyte to modifferentiationin monocyte derived DC diffuration of https://www.uniprot.org/uniprot/lehttps://pubmed.ncbi.nlm.nih.gov/2232348 IKK Inhibitor of nuclear factor kappa-B kinase, and B [1,2]. Serine kinase that plays an essential role in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | endent phosphorylation and nacrophage ferentiation cultures [2]. P49841 50/ 1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory                                                                                             |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperisor required to avoid human monocyte to modifferentiationin monocyte derived DC diffurentiationin monocyte derived DC diffurentiation  | endent phosphorylation and nacrophage ferentiation cultures [2]. P49841 50/ 1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory                                                                                             |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperisor required to avoid human monocyte to modifferentiationin monocyte derived DC differentiationin monocyte derived DC differentiation monocyte derived DC differentiat | endent phosphorylation and nacrophage Ferentiation cultures [2]. P49841 50/ 1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory damages or other cellular                                                                   |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deposits required to avoid human monocyte to modifferentiationin monocyte derived DC differentiationin monocyte derived DC differentiation | endent phosphorylation and nacrophage ferentiation cultures [2]. P49841 50/  1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory damages or other cellular IKK complex in the                                               |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperis required to avoid human monocyte to modifferentiationin monocyte derived DC diff 1. https://www.uniprot.org/uniprot/lhttps://pubmed.ncbi.nlm.nih.gov/2232348 IKK Inhibitor of nuclear factor kappa-B kinase, and B [1,2]. Serine kinase that plays an essential role in pathway which is activated by multiple stir cytokines, bacterial or viral products, DNA stresses. IKKA and IKKB act as parts of the canonical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | endent phosphorylation and nacrophage ferentiation cultures [2]. 249841 50/  1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory damages or other cellular IKK complex in the ation and phosphorylates                      |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT depersion of the canonical conventional pathway of NF-kappa-B actively negatively regulated by AKT depersion of the canonical conventional pathway of NF-kappa-B actively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | endent phosphorylation and nacrophage ferentiation cultures [2]. 249841 50/  1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory damages or other cellular IKK complex in the ation and phosphorylates is.                  |   |      |
| https://pubmed.ncbi.nlm.nih.gov/2407038 GSK3B Glycogen synthase kinase-3 beta [1]. GSK3B is negatively regulated by AKT deperisor required to avoid human monocyte to modifferentiationin monocyte derived DC diffuration of https://www.uniprot.org/uniprot/lhttps://pubmed.ncbi.nlm.nih.gov/2232345 IKK Inhibitor of nuclear factor kappa-B kinase, and B [1,2]. Serine kinase that plays an essential role in pathway which is activated by multiple stir cytokines, bacterial or viral products, DNA stresses. IKKA and IKKB act as parts of the canonical conventional pathway of NF-kappa-B activinhibitors of NF-kappa-B on serine residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | endent phosphorylation and nacrophage ferentiation cultures [2]. 249841 50/ 1 involving two subunits A in the NF-kappa-B signaling muli such as inflammatory damages or other cellular IKK complex in the ation and phosphorylates is scrucial to ensure |   |      |

| 1. https://www.uniprot.org/uniprot/0            | O14920                     |   |                  |
|-------------------------------------------------|----------------------------|---|------------------|
| https://www.uniprot.org/uniprot/O15111          |                            |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/2232345         | 50                         |   |                  |
| JAK3                                            | 1                          | • | IL4R             |
| Tyrosine-protein kinase JAK3 [1].               |                            |   |                  |
| JAK3 mediates essential signaling events in     | n both innate and adaptive |   |                  |
| immunity.                                       |                            |   |                  |
| The IL4 receptor (IL4R) signals the activation  | on of the JAK3-STAT6       |   |                  |
| pathway through its common gamma chai           | n, which leads to the      |   |                  |
| development of immature DCs [2].                |                            |   |                  |
| 1. https://www.uniprot.org/uniprot/l            | P52333                     |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/2515922         | 17/                        |   |                  |
| JAK1                                            | 1                          | • | IL4R             |
| Tyrosine-protein kinase JAK1 [1]                |                            |   |                  |
| IL4R signal transduction is initiated by rece   | eptor-associated kinases,  |   |                  |
| i.e. a member of JAK family, including JAK1     |                            |   |                  |
| 1. https://www.uniprot.org/uniprot/l            | <del></del>                |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/271658          |                            |   |                  |
| SHP1                                            | 1                          | • | USF1:1 & !LnC DC |
| Tyrosine-protein phosphatase non-receptor       | or type 6 [1].             |   |                  |
| SHP1 modulates signaling by tyrosine phos       | • • • •                    |   |                  |
| receptors such as KIT and the EGF recepto       | -                          |   |                  |
| The SH2 region interacts with other cellula     |                            |   |                  |
| its own phosphatase activity against intera     | -                          |   |                  |
| LncDC promotes STAT3 phosphorylation vi         | <del>-</del>               |   |                  |
| Src homology region 2 domain containing         | _                          |   |                  |
| 1. https://www.uniprot.org/uniprot/l            |                            |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/284656          |                            |   |                  |
| CIITA                                           | 1                          | • | STAT5            |
| MHC class II transactivator [1].                |                            |   |                  |
| CIITA is essential for transcriptional activity | y of the HLA class II      |   |                  |
| promoter, via the proximal promoter. No I       | •                          |   |                  |
| translated CIITA was detected.                  | S                          |   |                  |
| CIITA may act in a coactivator-like fashion     | through protein-protein    |   |                  |
| interactions by contacting factors binding      |                            |   |                  |
| II promoter, to elements of the transcription   | •                          |   |                  |
| STAT5 promotes the expression of CIITA [2].     |                            |   |                  |
| 1. https://www.uniprot.org/uniprot/l            | -                          |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/22323450        |                            |   |                  |
| ITGAX                                           | 1                          | • | IRF4 & PU1 &     |
|                                                 |                            |   | PRDM1            |
| Integrin alpha-X [1].                           |                            |   |                  |
| ITGAX is a receptor for fibrinogen and a m      | oDC marker [2,3,5,6].      |   |                  |

|                                                                                                                                                             |                                                                      | 1                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|
| It mediates cell-cell interaction during infla                                                                                                              | •                                                                    |                  |
| It is especially important for monocyte adl                                                                                                                 |                                                                      |                  |
| PU1 transactivates the Itgax promoter via                                                                                                                   | _                                                                    |                  |
| element on the gene in DCs and through g                                                                                                                    |                                                                      |                  |
| molecule, IRF4, which transactivates the It                                                                                                                 | tgax gene in a synergistic                                           |                  |
| manner with PU1 [4].                                                                                                                                        |                                                                      |                  |
| Using matrix-scan, we predicted binding s                                                                                                                   | •                                                                    |                  |
| PRDM1 in the regulatory region of the ITG                                                                                                                   |                                                                      |                  |
| 1. https://www.uniprot.org/uniprot/                                                                                                                         |                                                                      |                  |
| https://pubmed.ncbi.nlm.nih.gov/294480                                                                                                                      |                                                                      |                  |
| https://pubmed.ncbi.nlm.nih.gov/245139                                                                                                                      |                                                                      |                  |
| https://pubmed.ncbi.nlm.nih.gov/283388                                                                                                                      |                                                                      |                  |
| https://pubmed.ncbi.nlm.nih.gov/292623                                                                                                                      |                                                                      |                  |
| https://pubmed.ncbi.nlm.nih.gov/274016                                                                                                                      |                                                                      |                  |
| LnC_DC                                                                                                                                                      | 1                                                                    | • PU1 & IRF4 &   |
|                                                                                                                                                             |                                                                      | STAT5            |
| Long non coding RNA espressed in DCs [1,                                                                                                                    |                                                                      |                  |
| This IncRNA IncDC regulates differentiatio                                                                                                                  | •                                                                    |                  |
| the most potent antigen-presenting cells of                                                                                                                 | •                                                                    |                  |
| IncDC binds directly to STAT3 in the cytopl                                                                                                                 | •                                                                    |                  |
| STAT3 phosphorylation on tyrosine705 by                                                                                                                     | preventing STAT3 binding                                             |                  |
| to and dephosphorylation by SHP1 [3].                                                                                                                       |                                                                      |                  |
| PU1 directs IncDC expression in human cD                                                                                                                    |                                                                      |                  |
| Using matrix-scan, we predicted binding s                                                                                                                   |                                                                      |                  |
| the regulatory region of the LnC-DC gene.                                                                                                                   |                                                                      |                  |
| 1. https://omim.org/entry/615772                                                                                                                            |                                                                      |                  |
| https://www.genenames.org/data/gene-s                                                                                                                       | symbol-                                                              |                  |
| report/#!/hgnc_id/50357                                                                                                                                     |                                                                      |                  |
| https://www.ncbi.nlm.nih.gov/pubmed/2                                                                                                                       |                                                                      |                  |
| https://www.ncbi.nlm.nih.gov/pubmed/2                                                                                                                       | 8465674                                                              |                  |
| IL4_gene                                                                                                                                                    | 1                                                                    | • STAT6          |
| Gene encoding Interleukin-4 [1].                                                                                                                            |                                                                      |                  |
| IL4 gene is regulated by STAT6 [2].                                                                                                                         |                                                                      |                  |
| 1. https://www.uniprot.org/uniprot/                                                                                                                         | P05112                                                               |                  |
| https://pubmed.ncbi.nlm.nih.gov/165403                                                                                                                      | 65/                                                                  |                  |
| DUOX1                                                                                                                                                       | 1                                                                    | • STAT6 & IRF4 & |
|                                                                                                                                                             |                                                                      | PU1              |
| Dual oxidase 1 [1].                                                                                                                                         |                                                                      |                  |
| DUOX1 generates hydrogen peroxide which                                                                                                                     | ch is required for the                                               |                  |
| activity of thyroid peroxidase/TPO and lac                                                                                                                  | toperoxidase/LPO [1].                                                |                  |
| STAT6 did interacts specifically with DC-specific genes, including                                                                                          |                                                                      |                  |
| DUOX1 and SLAMF1, during DC differentia                                                                                                                     |                                                                      |                  |
| DUOX1  Dual oxidase 1 [1].  DUOX1 generates hydrogen peroxide which activity of thyroid peroxidase/TPO and lact STAT6 did interacts specifically with DC-sp | th is required for the toperoxidase/LPO [1]. ecific genes, including |                  |

|                                                                        | the a few IDEA and DIJA in the       |   |                  |
|------------------------------------------------------------------------|--------------------------------------|---|------------------|
| Using matrix-scan, we predicted binding si                             |                                      |   |                  |
| regulatory region of the DUOX1 coding ge                               |                                      |   |                  |
| 1. https://www.uniprot.org/uniprot/                                    |                                      |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/267581                                 | 99                                   |   |                  |
| SLAMF1                                                                 | 1                                    | • | STAT6 & IRF4 &   |
|                                                                        |                                      |   | ELK4             |
| Signaling lymphocytic activation molecule                              | [1].                                 |   |                  |
| SLAM receptors triggered by homo- or het                               | terotypic cell-cell                  |   |                  |
| interactions are modulating the activation                             | and differentiation of a             |   |                  |
| wide variety of immune cells and are invol                             |                                      |   |                  |
| interconnection of both innate and adapti                              | _                                    |   |                  |
| STAT6 interacts specifically with DC-specif                            |                                      |   |                  |
| and SLAMF1, duing DC differentiation [2].                              | 8                                    |   |                  |
| IRF4 and STAT6 bind to SLAMF1 promoter                                 | and regulate its activity [3]        |   |                  |
| Using matrix-scan, we predicted binding si                             | _                                    |   |                  |
|                                                                        |                                      |   |                  |
| regulatory region of the SLAMF1 coding ge                              |                                      |   |                  |
| 1. https://www.uniprot.org/uniprot/                                    |                                      |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/267581                                 |                                      |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/292847                                 | 1                                    |   |                  |
| MAOA                                                                   | 1                                    | • | STAT6 & NCOR2 &  |
|                                                                        |                                      |   | PU1              |
| Amine oxidase [flavin-containing] A [1].                               |                                      |   |                  |
| MAOA catalyzes the oxidative deaminatio                                | n of biogenic and                    |   |                  |
| xenobiotic amines and has important functions in the metabolism of     |                                      |   |                  |
| neuroactive and vasoactive amines in the central nervous system and    |                                      |   |                  |
| peripheral tissues [1].                                                |                                      |   |                  |
| The IL4/,Jak1/Stat3/Stat6 cascade regulates the expression of critical |                                      |   |                  |
| inflammatory genes, including ALOX15, ma                               | onoamine oxidase A                   |   |                  |
| (MAOA), and the scavenger receptor CD36                                |                                      |   |                  |
| Using matrix-scan, we predicted binding si                             |                                      |   |                  |
| the regulatory region of the MAOA coding                               |                                      |   |                  |
| 1. https://www.uniprot.org/uniprot/                                    |                                      |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/231240                                 |                                      |   |                  |
| HLA DR                                                                 | 1                                    | • | STAT3   (STAT6 & |
| 110.7_01(                                                              | <del>*</del>                         |   | CIITA)           |
| HLA class II histocompatibility antigen, DR                            | R1 heta chain [1]                    |   | CITAJ            |
|                                                                        | DI Deta Cham [1],                    |   |                  |
| expressed by DCs [2,3]                                                 | ace II transportive to reverse to in |   |                  |
| STAT5 promotes the expression of MHC cl                                | •                                    |   |                  |
| (CIITA), which is essential for proper trans                           | cripiton of the MHC class II         |   |                  |
| promoter [4].                                                          | 201011                               |   |                  |
| 1. https://www.uniprot.org/uniprot/                                    |                                      |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/294480                                 |                                      |   |                  |
| https://pubmed.ncbi.nlm.nih.gov/29262348                               |                                      |   |                  |

| https://pubmed.ncbi.nlm.nih.gov/223234                                                                                                                                                                                                                                                | 50/                                                                                                                      |   |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---|----------------|
| ALOX15                                                                                                                                                                                                                                                                                | 1                                                                                                                        | • | CREB & STAT6 & |
|                                                                                                                                                                                                                                                                                       |                                                                                                                          |   | STAT3          |
| Polyunsaturated fatty acid lipoxygenase A                                                                                                                                                                                                                                             | LOX15 [1].                                                                                                               |   |                |
| Non-heme iron-containing dioxygenase th                                                                                                                                                                                                                                               | nat catalyzes the stereo-                                                                                                |   |                |
| specific peroxidation of free and esterified                                                                                                                                                                                                                                          | d polyunsaturated fatty                                                                                                  |   |                |
| acids generating a spectrum of bioactive I                                                                                                                                                                                                                                            | ipid mediators [1].                                                                                                      |   |                |
| The IL4-Jak1-Stat3-Stat6 cascade regulate                                                                                                                                                                                                                                             | s the expression of critical                                                                                             |   |                |
| inflammatory genes, including ALOX15 [2]                                                                                                                                                                                                                                              |                                                                                                                          |   |                |
| Using matrix-scan, we predicted binding s                                                                                                                                                                                                                                             | ites for STAT3 in the                                                                                                    |   |                |
| regulatory region of the ALOX15 coding go                                                                                                                                                                                                                                             |                                                                                                                          |   |                |
| 1. https://www.uniprot.org/uniprot/                                                                                                                                                                                                                                                   | P16050                                                                                                                   |   |                |
| https://pubmed.ncbi.nlm.nih.gov/165403                                                                                                                                                                                                                                                | 65/                                                                                                                      |   |                |
| TIMP3                                                                                                                                                                                                                                                                                 | 1                                                                                                                        | • | STAT6 & AP1 &  |
|                                                                                                                                                                                                                                                                                       |                                                                                                                          |   | IRF4           |
| Metalloproteinase inhibitor 3 [1].                                                                                                                                                                                                                                                    |                                                                                                                          |   |                |
| IL-4 specifically stimulates the expression                                                                                                                                                                                                                                           | = = =                                                                                                                    |   |                |
| Using matrix-scan, we predicted binding s                                                                                                                                                                                                                                             |                                                                                                                          |   |                |
| regulatory region of the TIMP3 coding gene.                                                                                                                                                                                                                                           |                                                                                                                          |   |                |
| 1. https://www.uniprot.org/uniprot/                                                                                                                                                                                                                                                   |                                                                                                                          |   |                |
| https://pubmed.ncbi.nlm.nih.gov/231240                                                                                                                                                                                                                                                |                                                                                                                          |   |                |
| DUSP6                                                                                                                                                                                                                                                                                 | 1                                                                                                                        | • | ERK            |
| Dual specificity protein phosphatase 6 [1].                                                                                                                                                                                                                                           |                                                                                                                          |   |                |
| DUSP6 inactivates MAP kinases and has a                                                                                                                                                                                                                                               |                                                                                                                          |   |                |
| family. MEK1/2 inhibitor U0126 treatmen                                                                                                                                                                                                                                               |                                                                                                                          |   |                |
| expression of wellknown targets of ERK (F                                                                                                                                                                                                                                             |                                                                                                                          |   |                |
| 1. https://www.uniprot.org/uniprot/                                                                                                                                                                                                                                                   |                                                                                                                          |   |                |
| https://pubmed.ncbi.nlm.nih.gov/234301                                                                                                                                                                                                                                                |                                                                                                                          |   | EDIC O CTATE O |
| CCL2                                                                                                                                                                                                                                                                                  | 1                                                                                                                        | • | ERK & STAT5 &  |
| 0.0 11.1 11.2 141                                                                                                                                                                                                                                                                     |                                                                                                                          |   | STAT3 & FOXO1  |
| C-C motif chemokine 2 [1].                                                                                                                                                                                                                                                            |                                                                                                                          |   |                |
| 7 .                                                                                                                                                                                                                                                                                   | CCL2 is a chemokine constitutively produced by immature MDDCs,                                                           |   |                |
| acting as a ligand for C-C chemokine receptor CCR2 [1].                                                                                                                                                                                                                               |                                                                                                                          |   |                |
|                                                                                                                                                                                                                                                                                       |                                                                                                                          |   |                |
| The CCL2 chemokine directs monocyte/m                                                                                                                                                                                                                                                 | acrophage recruitmentinto                                                                                                |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit                                                                                                                                                                                                       | acrophage recruitmentinto ions [2].                                                                                      |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit ERK upregulated CCL2 expression while in                                                                                                                                                              | acrophage recruitmentinto ions [2]. hpairing the expression of                                                           |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit ERK upregulated CCL2 expression while in DC maturation markers (RUNX3, ITGB7, IE                                                                                                                      | acrophage recruitmentinto ions [2]. npairing the expression of 001) [3].                                                 |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit ERK upregulated CCL2 expression while in DC maturation markers (RUNX3, ITGB7, IC Using matrix-scan, we predicted binding s                                                                            | acrophage recruitmentinto ions [2]. hpairing the expression of DO1) [3]. ites for FOXO1, STAT3 and                       |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit ERK upregulated CCL2 expression while in DC maturation markers (RUNX3, ITGB7, IE Using matrix-scan, we predicted binding s STAT5 in the regulatory regio of the CCL2                                  | acrophage recruitmentinto ions [2]. hpairing the expression of DO1) [3]. ites for FOXO1, STAT3 and coding gene.          |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit ERK upregulated CCL2 expression while in DC maturation markers (RUNX3, ITGB7, ICUsing matrix-scan, we predicted binding STAT5 in the regulatory regio of the CCL2 1. https://www.uniprot.org/uniprot/ | acrophage recruitmentinto ions [2]. hpairing the expression of DO1) [3]. ites for FOXO1, STAT3 and coding gene. P13500   |   |                |
| The CCL2 chemokine directs monocyte/m tissues under resting and inflamed condit ERK upregulated CCL2 expression while in DC maturation markers (RUNX3, ITGB7, IE Using matrix-scan, we predicted binding s STAT5 in the regulatory regio of the CCL2                                  | acrophage recruitmentinto ions [2].  pairing the expression of DO1) [3].  ites for FOXO1, STAT3 and coding gene.  P13500 |   |                |

| CCL22                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                  | F    | AhR & NCOR2 &<br>OXO1)   (KLF4 &<br>//AFB) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------|--------------------------------------------|
| C-C motif chemokine 22 [1], moDC marker May play a role in the trafficking of activate to inflammatory sites and other aspects of physiology. Chemotactic for monocytes, diller cells [1].                                                                                                                                                                                           | ted/effector T-lymphocytes<br>f activated T-lymphocyte                                             |      |                                            |
| Using Matrix-scan, we predicted binding s<br>FOXO1, KLF4, and MAFB in the regulatory<br>chromHMM in this study, of the CCL22 ge<br>1. https://www.uniprot.org/uniprot/<br>https://pubmed.ncbi.nlm.nih.gov/292623                                                                                                                                                                     | region, annotated with<br>ne.<br>O00626                                                            |      |                                            |
| TLR3                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                  | • 11 | RF4   PRDM1                                |
| Toll-like receptor 3 [1], moDC marker[2]. TLRs control host immune response against recognition of molecular patterns specific. Using matrix-scan, we predicted binding sthe regulatory region of the TLR3 coding goding 1. https://www.uniprot.org/uniprot/https://pubmed.ncbi.nlm.nih.gov/245139                                                                                   | to microorganisms [1]. ites for IRF4 and PRDM1 in gene. O15455                                     |      |                                            |
| TLR4                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                  |      | NP1   IRF4  <br>PRDM1   PU1                |
| Toll-like receptor 4 [1], moDC marker [2,3] TLR4 cooperates with LY96 and CD14 to marker response to bacterial lipopolysaccharide (Using matrix-scan, we predicted binding sand PU1 in the regulatory region of the TL 1. https://www.uniprot.org/uniprot/https://pubmed.ncbi.nlm.nih.gov/245139 https://pubmed.ncbi.nlm.nih.gov/270221                                              | nediate the innate immune LPS) [1]). ites for AP1, IRF4, PRDM1 R4 coding gene. O00206              |      |                                            |
| TLR6                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                  |      | EBPa   CEBPb  <br>TAT6                     |
| Toll-like receptor 6 [1], moDC marker [2,3, TLR6 participates in the innate immune re bacteria and fungi. TLR6 specifically recog lesser extent, triacylated lipopeptides [1]. Using matrix-scan, we predicted binding s STAT6 in the regulatory region of the TLR6 1. https://www.uniprot.org/uniprot/https://pubmed.ncbi.nlm.nih.gov/245139 https://pubmed.ncbi.nlm.nih.gov/200375 | sponse to Gram-positive nizes diacylated and, to a lites for CEBPa, CEBPb and coding gene.  Q9Y2C9 |      |                                            |

| https://pubmed.ncbi.nlm.nih.gov/295937                             | 36/                         |                                 |
|--------------------------------------------------------------------|-----------------------------|---------------------------------|
| TLR7                                                               | 1                           | CEBPa   CEBPb       IRF4        |
| Toll-like receptor 7 [1], moDC marker [2].                         |                             |                                 |
| Endosomal receptor that plays a key role i                         | in innate and adaptive      |                                 |
| immunity.                                                          |                             |                                 |
| ILR7 controls host immune response agair                           | nst pathogens through       |                                 |
| recognition of uridine containing single st                        | rand RNAs (ssRNAs) of viral |                                 |
| origin or guanosine analogs [1].                                   |                             |                                 |
| Using matrix-scan, we predicted binding s                          |                             |                                 |
| IRF4 in the regulatory region of the TLR7 of                       |                             |                                 |
| 1. https://www.uniprot.org/uniprot/                                |                             |                                 |
| https://pubmed.ncbi.nlm.nih.gov/245139                             | 68                          |                                 |
| TLR8                                                               | 1                           | KLF4   CEBPa                    |
|                                                                    |                             | STAT6   BATF3                   |
| Toll-like receptor 8 [1], moDC marker [2].                         |                             |                                 |
| Endosomal receptor that plays a key role                           | in innate and adaptive      |                                 |
| immunity.                                                          |                             |                                 |
| TLR8 controls host immune response against pathogens through       |                             |                                 |
| recognition of RNA degradation products specific to microorganisms |                             |                                 |
| that are initially processed by RNASET2 [3                         |                             |                                 |
| Using matrix-scan, we predicted binding s                          |                             |                                 |
| STAT6 in the regulatory region of TLR8 coding gene.                |                             |                                 |
| 1. https://www.uniprot.org/uniprot/                                |                             |                                 |
| https://pubmed.ncbi.nlm.nih.gov/245139                             |                             |                                 |
| https://pubmed.ncbi.nlm.nih.gov/317786                             |                             | DUA O IDEA                      |
| CD48                                                               | 1                           | • PU1 & IRF4                    |
| CD48 antigen [1], expressed in moDC [2],                           | •                           |                                 |
| presumably involved in regulating T-cell a                         | <del>-</del> -              |                                 |
| Using matrix-scan, we predicted binding s                          |                             |                                 |
| regulatory region of the CD48 coding gene                          |                             |                                 |
| 1. https://www.uniprot.org/uniprot/                                |                             |                                 |
| https://pubmed.ncbi.nlm.nih.gov/292623                             |                             | • (BATE3   CERPa                |
| CD1A                                                               | 1                           | (5,1113   62514                 |
|                                                                    |                             | CEBPb   CREB) &<br>IRF4 & PU1 & |
|                                                                    |                             | PRDM1 & NCOR2                   |
| T-cell surface glycoprotein CD1a [1].                              |                             | LUDINIT & INCORT                |
| Antigen-presenting protein that binds self                         | and non-self linid and      |                                 |
| glycolipid antigens and presents them to                           |                             |                                 |
| killer T-cells [1].                                                | i-cen receptors on natural  |                                 |
| IL4 signaling upregulates CD1a on cell surf                        | face of DC cells [2]        |                                 |
| NCOR2 silencing repressed CD1A, that is o                          |                             |                                 |
| THOURS SHELLING TEPTESSED CDIA, that is t                          | THE OF THE 12 + SIGNATURE   | J                               |

| genes [3].                                                       |                                       |                                  |  |  |
|------------------------------------------------------------------|---------------------------------------|----------------------------------|--|--|
| Using matrix-scan, we predicted binding sites                    | for BATE2 CEDDA                       |                                  |  |  |
| CEBPB, CREB1, IRF4, PRDM1, PU1 and NCOR2                         |                                       |                                  |  |  |
| of the CD1A coding gene.                                         | in the regulatory region              |                                  |  |  |
|                                                                  | 126                                   |                                  |  |  |
| 1. https://www.uniprot.org/uniprot/P063                          | 126                                   |                                  |  |  |
| https://pubmed.ncbi.nlm.nih.gov/10629465/                        |                                       |                                  |  |  |
| https://pubmed.ncbi.nlm.nih.gov/29262348                         |                                       |                                  |  |  |
| CD1B 1                                                           |                                       | • (CEBPa   CEBPb   IRF4) & PRDM1 |  |  |
| T-cell surface glycoprotein CD1b [1].                            |                                       |                                  |  |  |
| During protein synthesis and maturation, CD1                     | family members bind                   |                                  |  |  |
| endogenous lipids that are replaced by lipid or                  | r glycolipid antigens                 |                                  |  |  |
| when the proteins are internalized and pass th                   | hrough endosomes or                   |                                  |  |  |
| lysosomes, before trafficking back to the cell s                 | _                                     |                                  |  |  |
| Human inflammatory moDC are HLADR CD11c                          |                                       |                                  |  |  |
| markers found on classical DC such as CD1c, C                    | D1a, CD1b [2].                        |                                  |  |  |
| Using matrix-scan, we predicted binding sites                    | = =                                   |                                  |  |  |
| and PRDM1 in the regulatory region of the CD                     | · · · · · · · · · · · · · · · · · · · |                                  |  |  |
| 1. https://www.uniprot.org/uniprot/P290                          |                                       |                                  |  |  |
| https://pubmed.ncbi.nlm.nih.gov/29448070                         |                                       |                                  |  |  |
| CD1C 1                                                           |                                       | • FOXO1 & IRF4 &                 |  |  |
|                                                                  |                                       | NR4A1 & PU1 &                    |  |  |
|                                                                  |                                       | STAT6                            |  |  |
| T-cell surface glycoprotein CD1c [1], expressed                  | d in DC [2].                          |                                  |  |  |
| Antigen-presenting protein that binds self and                   |                                       |                                  |  |  |
| glycolipid antigens and presents them to T-cel                   | •                                     |                                  |  |  |
| killer T-cells.                                                  |                                       |                                  |  |  |
| Using matrix-scan, we predicted binding sites                    | for FOXO1, IRF4.                      |                                  |  |  |
| NR4A1, PU1 and STAT6 in the regulatory region                    |                                       |                                  |  |  |
| gene.                                                            | on or the core coung                  |                                  |  |  |
| 1. https://www.uniprot.org/uniprot/P290                          | 017                                   |                                  |  |  |
| https://pubmed.ncbi.nlm.nih.gov/29448070                         |                                       |                                  |  |  |
| CD40 1                                                           |                                       | • AP1                            |  |  |
| Tumor necrosis factor receptor superfamily m                     | ombor 5 [1] moDC                      | • AFI                            |  |  |
| marker [2].                                                      | leniber 5 [1], mode                   |                                  |  |  |
|                                                                  |                                       |                                  |  |  |
| Receptor for TNFSF5/CD40LG [3].                                  |                                       |                                  |  |  |
| CD40 transduces TRAF6- and MAP3K8-mediated signals that activate |                                       |                                  |  |  |
| ERK in macrophages and B cells, leading to induction of          |                                       |                                  |  |  |
| immunoglobulin secretion [1].                                    | Cara A Dalla III                      |                                  |  |  |
| Using matrix-scan, we predicted binding sites for AP1 in the     |                                       |                                  |  |  |
| regulatory region of the CD40 coding gene.                       |                                       |                                  |  |  |
| 1. https://www.uniprot.org/uniprot/P25942                        |                                       |                                  |  |  |
| https://pubmed.ncbi.nlm.nih.gov/24513968                         |                                       |                                  |  |  |

| https://pubmed.ncbi.nlm.nih.gov/313319                                                                                                | 73/                       | 1 |                      |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|----------------------|
| CD86                                                                                                                                  | 1                         | • | AP1                  |
| T-lymphocyte activation antigen CD86 [1],<br>Receptor involved in the costimulatory sig<br>lymphocyte proliferation and interleukin-2 | nal essential for T-      |   |                      |
| CD28 or CTLA-4.                                                                                                                       |                           |   |                      |
| CD86 presumably plays a critical role in th                                                                                           | •                         |   |                      |
| activation and costimulation of naive T-ce                                                                                            |                           |   |                      |
| Using matrix-scan, we predicted binding s                                                                                             |                           |   |                      |
| regulatory region of the CD86 coding gene                                                                                             |                           |   |                      |
| 1. https://www.uniprot.org/uniprot/                                                                                                   |                           |   |                      |
| https://pubmed.ncbi.nlm.nih.gov/274016                                                                                                |                           |   |                      |
| https://pubmed.ncbi.nlm.nih.gov/292623                                                                                                |                           | _ | CTATC O NICKDO O     |
| CD83                                                                                                                                  | 1                         | • | STAT6 & NFKB2 & IRF4 |
| CD83 antigen [1], moDC marker [2,3].                                                                                                  |                           |   | INI 4                |
| CD83 antigen [1], mode marker [2,3].  CD83 presumably plays a significant role in                                                     | n antigen presentation or |   |                      |
| the cellular interactions that follow lymph                                                                                           | <u> </u>                  |   |                      |
| Using matrix-scan, we predicted binding si                                                                                            | -                         |   |                      |
| STAT6 in the regulatory regio of the CD83 coding gene.                                                                                |                           |   |                      |
| 1. https://www.uniprot.org/uniprot/                                                                                                   |                           |   |                      |
| https://pubmed.ncbi.nlm.nih.gov/274016                                                                                                |                           |   |                      |
| https://pubmed.ncbi.nlm.nih.gov/267581                                                                                                |                           |   |                      |
| CD209                                                                                                                                 | 1                         | • | AP1 & CREB &         |
|                                                                                                                                       |                           |   | ELK4 & IRF4 &        |
|                                                                                                                                       |                           |   | PU1 & STAT6          |
| CD209 antigen [1], moDC marker [2].                                                                                                   |                           |   |                      |
| Pathogen-recognition receptor expressed                                                                                               |                           |   |                      |
| dendritic cells (DCs) and involved in initiat                                                                                         | ion of primary immune     |   |                      |
| response.                                                                                                                             |                           |   |                      |
| CD209 mediates the endocytosis of patho                                                                                               |                           |   |                      |
| subsequently degraded in lysosomal comp                                                                                               |                           |   |                      |
| CD209 was found exclusively expressed by MOs GMCS IL4 (0 tp 72h)                                                                      |                           |   |                      |
| [3].                                                                                                                                  |                           |   |                      |
| Treatment with a STAT6 inhibitor affected the presence of the surface markers CD209 and CD83 during GM-CSF/IL-4-mediated              |                           |   |                      |
| differentiation to DCs [4].                                                                                                           | owi-cor/it-4-ineulateu    |   |                      |
| Using matrix-scan, we predicted binding sites for AP1, CREB1, ELK4,                                                                   |                           |   |                      |
| IRF4, PU1 and STAT6 in the regulatory reg                                                                                             |                           |   |                      |
| gene.                                                                                                                                 | 51 the 65205 county       |   |                      |
| 1. https://www.uniprot.org/uniprot/                                                                                                   | Q9NNX6                    |   |                      |
| https://pubmed.ncbi.nlm.nih.gov/245139                                                                                                |                           |   |                      |
| https://pubmed.ncbi.nlm.nih.gov/292623                                                                                                |                           |   |                      |
| 11.1493.// publicu.11cbi.111111.11111.guv/232023                                                                                      | <b>⊤</b> ∪                | J |                      |

| https://pubmed.ncbi.nlm.nih.gov/267581        | 99/                       | 1 |                                           |
|-----------------------------------------------|---------------------------|---|-------------------------------------------|
| CD141                                         | 1                         | • | (CEBPa   CREB) &<br>USF1 & ATF1 &<br>IRF4 |
| Thrombomodulin [1,2], marker for moDC         | [3].                      |   |                                           |
| CD141 is a specific endothelial cell receptor | or that forms a 1:1       |   |                                           |
| stoichiometric complex with thrombin. Th      | is complex is responsible |   |                                           |
| for the conversion of protein C to the activ  | vated protein Ca [1].     |   |                                           |
| Using matrix-scan, we predicted binding s     | ites for ATF1, CEBPa,     |   |                                           |
| CREB1, IRF4 and USF1 in the regulatory re     | gion of the CD141 coding  |   |                                           |
| gene.                                         | _                         |   |                                           |
| 1. https://www.uniprot.org/uniprot/           | P07204                    |   |                                           |
| https://www.genecards.org/cgi-                |                           |   |                                           |
| bin/carddisp.pl?gene=THBD&keywords=C          | D141                      |   |                                           |
| https://pubmed.ncbi.nlm.nih.gov/294480        |                           |   |                                           |
| CD226                                         | 1                         | • | (BATF3   CEBPa) &                         |
|                                               |                           |   | FOXO1 & IRF4 &                            |
|                                               |                           |   | PRDM1 & PU1 &                             |
|                                               |                           |   | STAT3 & STAT5 &                           |
|                                               |                           |   | STAT6 & USF1                              |
| CD226 antigen [1], expressed in moDCs [2      | 1.                        |   |                                           |
| Involved in intercellular adhesion, stimular  |                           |   |                                           |
| cytokine production [1].                      | tes i den promeration and |   |                                           |
| Using matrix-scan, we predicted binding si    | ites for BATE3 CERPa      |   |                                           |
| FOXO1, IRF4, PRDM1, PU1, STAT3, STAT5,        |                           |   |                                           |
| regulatory region of the CD226 coding         | 31/110 dild 03/1 iii dile |   |                                           |
| gene.                                         |                           |   |                                           |
| 1. https://www.uniprot.org/uniprot/           | O15762                    |   |                                           |
| https://www.ncbi.nlm.nih.gov/pubmed/2         |                           |   |                                           |
| DEC205                                        | 1                         | • | FOXO1 & AP1 &                             |
| DEC203                                        | 1                         |   | PRDM1                                     |
| Lymphocyte antigen 75 [1], moDC marker        |                           |   |                                           |
| Acts as an endocytic receptor to direct cap   | <u>-</u>                  |   |                                           |
| extracellular space to a specialized antiger  | n-processing compartment  |   |                                           |
| (By similarity).                              |                           |   |                                           |
| Using matrix-scan, we predicted binding s     | ites for FOXO1, AP1 and   |   |                                           |
| PRDM1 in the regulatory region of the DEG     | C205 gene.                |   |                                           |
| 1. https://www.uniprot.org/uniprot/           | O60449                    |   |                                           |
| https://pubmed.ncbi.nlm.nih.gov/245139        | 68                        |   |                                           |
| DCIR                                          | 1                         | • | STAT6 & PU1                               |
| C-type lectin domain family 4 member A [      | 1,2], moDC marker [3].    |   |                                           |
| Using matrix-scan, we predicted binding si    | ites for STAT6 and PU1 in |   |                                           |
| , ,                                           |                           |   |                                           |

| 1. https://www.uniprot.org/uniprot/                                             | O9LIMR7                    | 1 |                 |
|---------------------------------------------------------------------------------|----------------------------|---|-----------------|
| https://www.genecards.org/cgi-                                                  | Q301VII(7                  |   |                 |
| bin/carddisp.pl?gene=CLEC4A&keywords=                                           | -DCIR                      |   |                 |
| https://pubmed.ncbi.nlm.nih.gov/245139                                          |                            |   |                 |
| Tet2                                                                            | 1                          | • | PU1             |
| Methylcytosine dioxygenase Tet2 [1].                                            | 1                          |   | F 0 1           |
| Tet2 catalyzes the conversion of the modi                                       | find ganomic base 5        |   |                 |
| methylcytosine (5mC) into 5-hydroxymeth                                         | _                          |   |                 |
| plays a key role in active DNA demethylati                                      |                            |   |                 |
| Tet2 has a preference for 5-hydroxymethy                                        |                            |   |                 |
| TET2 downregulation partially impaired do                                       |                            |   |                 |
| common and DC/ MAC-specific genes.                                              | emetry ation or both       |   |                 |
| PU1 has been shown to recruit TET2 [2].                                         |                            |   |                 |
| 1. https://www.uniprot.org/uniprot/                                             | O6N021                     |   |                 |
| https://pubmed.ncbi.nlm.nih.gov/267581                                          |                            |   |                 |
| PTPN1                                                                           | 1                          | • | AhR             |
| Tyrosine-protein phosphatase non-recept                                         | 1 -                        | _ | Alli            |
| PTPN1 acts as a regulator of endoplasmic                                        |                            |   |                 |
| response.                                                                       | reticulum umolded protein  |   |                 |
| 1                                                                               | AV2 and DEDV and thoroby   |   |                 |
| It mediates the dephosphorylation of EIF2 inactivates their protein kinase [2]. | AKS and PEKK and thereby   |   |                 |
| 1. https://www.uniprot.org/uniprot/                                             | D19021                     |   |                 |
|                                                                                 |                            |   |                 |
| https://pubmed.ncbi.nlm.nih.gov/116945                                          | 1                          |   | STAT3           |
|                                                                                 | 1 1                        | • | SIAIS           |
| Suppressor of cytokine signaling 1 [1].                                         | cal nogative feedback      |   |                 |
| SOCS family proteins form part of a classic                                     | <del>-</del>               |   |                 |
| system that regulates cytokine signal tran                                      |                            |   |                 |
| SOCS1 is involved in negative regulation of                                     | or cytokines that signal   |   |                 |
| through the JAK/STAT3 pathway [1].                                              | CTAT target genes and thus |   |                 |
| SOCS proteins are themselves encoded by                                         |                            |   |                 |
| provide a transcription dependent negative                                      |                            |   |                 |
| 1. https://www.uniprot.org/uniprot/O15524                                       |                            |   |                 |
| https://pubmed.ncbi.nlm.nih.gov/305784                                          |                            | _ | CTAT2 0 FOVO1 0 |
| CD14                                                                            | 1                          | • | STAT3 & FOXO1 & |
| Manage to differentiation actions CD14 [1                                       | 1                          |   | KLF4 & !STAT5   |
| Monocyte differentiation antigen CD14 [1                                        | =                          |   |                 |
| Coreceptor for bacterial lipopolysaccharide [1].                                |                            |   |                 |
| In concert with LBP, CD14 binds to monomeric lipopolysaccharide                 |                            |   |                 |
| and delivers it to the LY96/TLR4 complex,                                       | _                          |   |                 |
| innate immune response to bacterial lipor                                       |                            |   |                 |
| The CD14 promoter is induced by KLF4 [3]                                        |                            |   |                 |
| Using matrix-scan, we predict binding site                                      |                            |   |                 |
| and STAT5 in the regulatory region of CD1                                       | 4 couling gene.            | J |                 |

| 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. https://www.uniprot.org/uniprot/P08571                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| https://pubmed.ncbi.nlm.nih.gov/20133493/                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| https://pubmed.ncbi.nlm.nih.gov/17762869  SELL 1 • STAT6 & FOX !PRDM1                                                                                                                                                                                                                                                                                                                                                                                          | 01 & |
| L-selectin, monocyte associated [1], expressed in monocytes [2].                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Calcium-dependent lectin that mediates cell adhesion by binding to                                                                                                                                                                                                                                                                                                                                                                                             |      |
| glycoproteins on neighboring cells [1].                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Using matrix-scan, we predicted binding sites for STAT6, FOXO1 and                                                                                                                                                                                                                                                                                                                                                                                             |      |
| PRDM1 in the regulatory region of the SELL coding gene.                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 1. https://www.uniprot.org/uniprot/P14151                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| https://pubmed.ncbi.nlm.nih.gov/29262348                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| CD163                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 &  |
| Scavenger receptor cysteine-rich type 1 protein M130 [1], expressed                                                                                                                                                                                                                                                                                                                                                                                            |      |
| in macrophages [2]. Acute phase-regulated receptor involved in clearance and                                                                                                                                                                                                                                                                                                                                                                                   |      |
| endocytosis of hemoglobin/haptoglobin complexes by macrophages,                                                                                                                                                                                                                                                                                                                                                                                                |      |
| presumably thereby protecting tissues from free hemoglobin-                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| mediated oxidative damage [1].                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Using matrix-scan, we predicted binding sites for PRDM1, IRF8 and                                                                                                                                                                                                                                                                                                                                                                                              |      |
| MAF8 in the regulatory region of the CD163 coding gene.                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 1. https://www.uniprot.org/uniprot/Q86VB7                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| https://pubmed.ncbi.nlm.nih.gov/29262348                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| CD206 1 • MAFB & IRF8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8    |
| USF1 & !PRD                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1   |
| Macrophage mannose receptor 1 [1], expressed in macrophage [2].                                                                                                                                                                                                                                                                                                                                                                                                |      |
| CD206 mediates the endocytosis of glycoproteins by macrophages.                                                                                                                                                                                                                                                                                                                                                                                                |      |
| CD206 binds both sulfated and non-sulfated polysaccharide chains                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Using matrix-scan, we predicted binding sites for MAFB, IRF8, USF1,                                                                                                                                                                                                                                                                                                                                                                                            |      |
| and PRDM1 in the regulatory region of the CD206 coding gene.                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897                                                                                                                                                                                                                                                                                                                                                        |      |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348                                                                                                                                                                                                                                                                                                               | ,    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK 1 • IRF8 & MAFE                                                                                                                                                                                                                                                                                        | 3    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK 1 • IRF8 & MAFE Tyrosine-protein kinase Mer [1], expressed in macrophages [2].                                                                                                                                                                                                                         | 3    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK 1                                                                                                                                                                                                                                                                                                      | 3    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK 1                                                                                                                                                                                                                                                                                                      | 3    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK  1  • IRF8 & MAFE  Tyrosine-protein kinase Mer [1], expressed in macrophages [2]. MERTK transduces signals from the extracellular matrix into the cytoplasm by binding to several ligands including LGALS3, TUB, TULP1 or GAS6.                                                                        | 3    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK  1  • IRF8 & MAFE  Tyrosine-protein kinase Mer [1], expressed in macrophages [2]. MERTK transduces signals from the extracellular matrix into the cytoplasm by binding to several ligands including LGALS3, TUB, TULP1 or GAS6.  MERTK regulates many physiological processes including cell survival, | 3    |
| and PRDM1 in the regulatory region of the CD206 coding gene.  1. https://www.uniprot.org/uniprot/P22897 https://pubmed.ncbi.nlm.nih.gov/29262348  MERTK  1  • IRF8 & MAFE  Tyrosine-protein kinase Mer [1], expressed in macrophages [2]. MERTK transduces signals from the extracellular matrix into the cytoplasm by binding to several ligands including LGALS3, TUB, TULP1 or GAS6.                                                                        | 3    |

| 1. https://www.uniprot.org/u                                      | niprot/Q12866                    |                        |
|-------------------------------------------------------------------|----------------------------------|------------------------|
| https://pubmed.ncbi.nlm.nih.gov/2                                 | 29262348                         |                        |
| CCDC151                                                           | 1                                | • PU1:1 & AP1 & CEBPb  |
| Coiled-coil domain-containing prot                                | ein 115 [1], expressed in        |                        |
| macrophages [2].                                                  |                                  |                        |
| Ciliary protein involved in outer dy                              | nein arm assembly and require    | ed                     |
| for motile cilia function [1].                                    |                                  |                        |
| Using matrix-scan, we predicted TF                                | BS for PU1, CEBPB and AP1 in     | the                    |
| regulatory region of the CCDC151 of                               | oding gene.                      |                        |
| 1. https://www.uniprot.org/u                                      | niprot/A5D8V7                    |                        |
| https://pubmed.ncbi.nlm.nih.gov/2                                 | 28093525                         |                        |
| BCL2                                                              | 1                                | • !JNK & STAT3:2       |
| Apoptosis regulator Bcl-2 [1].                                    |                                  |                        |
| Bcl-2 suppresses apoptosis in a var                               | ety of cell systems including    |                        |
| factor-dependent lymphohematop                                    | oietic and neural cells. Bcl-2   |                        |
| regulates cell death by controlling                               | he mitochondrial membrane        |                        |
| permeability.                                                     |                                  |                        |
| BCL2 is involved in a feedback loop                               |                                  |                        |
| STAT3 blocks the formation of auto                                | sed                              |                        |
| expression of antiautophagic genes                                |                                  |                        |
| suppression of the proautophagic g                                | CL1                              |                        |
| [2,3].                                                            |                                  |                        |
| 1. https://www.uniprot.org/u                                      | niprot/P10415                    |                        |
| https://pubmed.ncbi.nlm.nih.gov/3                                 | 80578415                         |                        |
| https://pubmed.ncbi.nlm.nih.gov/2                                 | 22323450                         |                        |
| BECN1                                                             | 1                                | • !STAT3 & !BCL2 & JNK |
| Beclin-1 [1].                                                     |                                  |                        |
| Plays a central role in autophagy ar                              | nd acts as core subunit of the F | PI3K                   |
| complex that mediates formation of                                | f phosphatidylinositol 3-        |                        |
| phosphate.                                                        |                                  |                        |
| GM CSF presumably induces autophagy by activating JNK, leading to |                                  | g to                   |
| the release of Beclin1 during monocyte differentiation.           |                                  |                        |
| STAT3 blocks the formation of autophagosomes by driving increased |                                  | sed                    |
| expression of antiautophagic genes Bcl2, Bcl2l1 and Mcl1 and      |                                  |                        |
| suppressing the proautophagic gen                                 | e Becn1, which encodes BECN      | l1                     |
| [2,3].                                                            |                                  |                        |
| 1. https://www.uniprot.org/u                                      | niprot/Q14457                    |                        |
| https://pubmod.nchi.nlm.nih.gov/                                  |                                  | I                      |
| https://pubmed.ncbi.nlm.nih.gov/2                                 | 22323450                         |                        |