COMP 256: Discrete Structures Logic, Part 2

Adam Clark

California State University, Northridge

August 26, 2020

Predicates

Propositions by themselves are a bit limited. We need a way to talk about larger *sets* of objects.

A predicate is a function from some domain of discourse to true or false (its range).

P(x) = "x is an odd number."

X	P(x)
1	Т
2	F
:	:

Universal Quantifier

To make a general statement about a domain, we may want a predicate to hold *for all* elements of the domain:

$$P(x) = "x$$
 is divisible by 5."
 $\forall x P(x) \equiv P(x_1) \land P(x_2) \land ... \land P(x_n)$

Note that this statement $\forall x P(x)$ is true or false, and does not depend on any value of x. Instead, its value depends entirely on the domain of discourse D:

$$D = \{5, 10, 15, 20\}$$
$$\forall x P(x) = \mathsf{True}$$

$$D = \{1, 2, 3, 4, 5\}$$
$$\forall x P(x) = \mathsf{False}$$

Existential Quantifier

Another statement we might make has to do with *some* value in the domain of discourse:

$$P(x) =$$
" $x \text{ is odd.}$ "
 $\exists x P(x) \equiv P(x_1) \lor P(x_2) \lor \ldots \lor P(x_n)$

Again, this type of statement depends entirely on the domain D:

$$D = \{2, 4, 6, 8, 10\}$$

 $\exists x P(x) = \text{False}$

$$D = \{2, 4, 5, 6, 8\}$$

 $\exists x P(x) = \text{True}$

Nested Quantifiers

Quantifiers may be combined for predicates with more than one variable:

$$P(x,y) = x > y$$

$$\exists x \exists y P(x,y) = \text{True}$$

$$\forall x \exists y P(x,y) = \text{True}$$

$$\exists x \forall y P(x,y) = \text{True}$$

$$\forall x \forall y P(x,y) = \text{False}$$

Quantified Statements

Predicates may be combined using logic operators, just like propositions.

$$P(x) = \text{``}x \text{ is even.''}$$

$$Q(x) = \text{``}x \text{ is prime.''}$$

$$P(x) \land Q(x) = \text{``}x \text{ is both even and prime.''}$$

$$\exists x (P(x) \land Q(x)) = \text{``There's an }x \text{ that is even and prime.''}$$

Negation

Using De Morgan's laws, it is easy to derive the negation of any quantifier:

$$\neg \forall x P(x) \equiv \neg (P(x_1) \land \dots \land P(x_n))$$

$$\equiv \neg P(x_1) \lor \dots \lor \neg P(x_n)$$

$$\equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \neg (P(x_1) \lor \dots \lor P(x_n))$$

$$\equiv \neg P(x_1) \land \dots \land \neg P(x_n)$$

$$\equiv \forall x \neg P(x)$$

This can be applied to nested quantifiers as well:

$$\neg \forall x \exists y \forall z P(x, y, z) \equiv \exists x \neg \exists y \forall z P(x, y, z)$$
$$\equiv \exists x \forall y \neg \forall z P(x, y, z)$$
$$\equiv \exists x \forall y \exists z \neg P(x, y, z)$$

Free and Bound Variables

All variables within a predicate statement default to free. Recall:

$$P(x) = \text{"}x \text{ is odd."}$$

$$\begin{array}{c|c} x & P(x) \\ \hline 1 & T \\ 2 & F \\ \vdots & \vdots \end{array}$$

A variable is said to be *bound* whenever it is assigned a value (or set of values as in quantification):

$$P(5) = \text{True}$$

 $\forall x P(x) = \text{False}$
 $\exists x P(x) = \text{True}$

Expressing Uniqueness

It is often useful to make statements such as "x is the only value such that P(x)". How do we accomplish this using only the tools we have?

If x is the *only* value such that P(x), we know that $\forall y \neg P(y)$ when $y \neq x$. We can then write:

$$\exists x P(x) \land \forall y (x \neq y \rightarrow \neg P(y))$$

Logical Arguments

We will want to construct valid *logical arguments* that present an *hypothesis* about our domain, and draw a *conclusion*.

$$h_1 \wedge h_2 \wedge \ldots h_n \rightarrow c$$

An argument is *valid* whenever its construction is a tautology:

$$\begin{array}{c|c|c|c} p \land q \rightarrow p \\ \hline \hline p & q & p \land q & p \land q \rightarrow p \\ \hline F & F & F & T \\ F & T & F & T \\ T & F & F & T \\ T & T & T & T \end{array}$$

This is an argument form known as simplification.

Logical Arguments (Continued)

Arguments may also be written in a more straight forward notation:

$$\begin{array}{c}
p\\q\\
\frac{r}{p \wedge q \wedge r}
\end{array}$$

This is equivalent to writing:

$$p \land q \land r \rightarrow p \land q \land r$$

(Which is clearly a tautology.)

Modus Ponens

$$p \xrightarrow{p \to q} q$$
 $\therefore q$

If we know the hypothesis is true, and we know that an implication is true, clearly the implication's conclusion must be true.

p	q	$p \wedge (p ightarrow q)$	$p \wedge (p ightarrow q) ightarrow q$
F	F	F	Т
F	Т	F	T
Т	F	F	T
Т	Т	Т	Т

Modus Tollens

$$\neg q$$
 $p \rightarrow q$
 $\neg p$

If we know a conclusion is false, and we know that an implication is true, clearly the implication's hypothesis must be false.

p	q	$ eg q \wedge (p ightarrow q)$	$ eg q \wedge (p o q) o eg p$
F	F	Т	Т
F	Т	F	Т
Τ	F	F	Т
Т	Т	F	T

Addition

$$\frac{p}{p \vee q}$$

If a proposition is true, then either it, or some other proposition is true.

p	q	p ightarrow p ee q
F	F	Т
F	Т	Т
Τ	F	Т
Τ	Т	Т

Simplification

$$\therefore \frac{p \wedge q}{p}$$

If two propositions are true, then one of those propositions is true.

p	q	$p \wedge q \rightarrow p$
F	F	Т
F	Т	Т
Τ	F	Т
Τ	Т	Т

Conjunction

If multiple propositions are true, than all of those propositions are true.

p	q	$p \wedge q \rightarrow p \wedge q$
F	F	Т
F	Т	Т
Τ	F	Т
Т	Т	Т

Hypothetical Syllogism

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

Implication is transitive.

p		r	$p \rightarrow q \land q \rightarrow r$	$\mid (p ightarrow q \wedge q ightarrow r) ightarrow (p ightarrow r)$
F	F	F	Т	T
F	F	Т	Т	Т
F	Т	F	F	Т
F	Т	Т	Т	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	F	Т
Τ	Т	Т	Т	Т

Disjunctive Syllogism

$$p \lor q$$

$$\frac{\neg p}{q}$$

$$\therefore q$$

If at least one of two propositions is true, and the first proposition is not true, the second proposition must be true.

p	q	$(p \lor q) \land \neg p$	$(p \lor q) \land \neg p \to q$
F	F	F	Т
F	Т	Т	T
Т	F	F	Т
Т	Т	F	T

Resolution

$$p \lor q$$

$$\frac{\neg p \lor r}{q \lor r}$$

If p is false, q must be true for $p \lor q$ to be true. Likewise if p is true, r must be true in order for $\neg p \lor r$ to be true. Therefore, either q or r must be true.

p	q	r	$(p \lor q) \land (\neg p \lor r)$	$ \mid (p \lor q) \land (\neg p \lor r) \rightarrow q \lor r $
F	F	F	F	T
F	F	Т	F	Т
F	Т	F	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	Т
Т	F	Т	Т	Т
Т	Т	F	F	Т
Т	Т	Т	Т	Т

Universal Instantiation

a is an arbitrary element in the domain
$$\forall x P(x)$$
 ∴ $P(a)$

If a predicate applies to all elements, it applies to any element.

Universal Generalization

a is an arbitrary element in the domain
$$P(a)$$

 $\therefore \forall x P(x)$

If a predicate applies to any arbitrary element, it applies to all elements.

Existential Instantiation

$$\exists x P(x)$$

$$\therefore a \text{ is an element } \land P(a)$$

If there is an element for which a predicate holds, it should be nameable.

Existential generalization

a is an element (possibly arbitrary)
$$\frac{P(a)}{\exists x P(x)}$$

If there is an element for which the predicate holds, there is at least one element for which the predicate holds.

Affirming the Conclusion

$$p \rightarrow q$$

$$\vdots p$$

Just because a conclusion is true, does not make the hypothesis true:

If you study really hard, then you will pass.

You passed.

Therefore, you studied really hard.

Denying the Hypothesis

$$p \to q$$

$$\therefore \frac{\neg p}{\neg q}$$

If the hypothesis is untrue, we can conclude nothing about the conclusion:

If you a mathematician, then you can understand logic.

You are not a mathematician.

Therefore, you cannot understand logic.

Begging the Question

I will teach you how to use this phrase correctly!

```
p= "Logic is confusing." q= "You find logic confusing." p 	o q= "You find logic confusing because it is."
```

Nobody ever declared that "henceforth, it shall be that logic is confusing!" Your confusion over logic is completely your own fault!