# Hands-on Activity 8.1: Aggregating Data with Pandas

```
1 import warnings
2 warnings.simplefilter(action='ignore', category=FutureWarning)
3 # Im following the Modules and yet I receive future warnings so I added this...
```

# 8.1.1 Intended Learning Outcomes

After this activity, the student should be able to:

- Demonstrate guerying and merging of dataframes
- · Perform advanced calculations on dataframes
- · Aggregate dataframes with pandas and numpy
- Work with time series data

### 8.1.2 Resources

- Computing Environment using Python 3.x
- Attached Datasets (under Instructional Materials)

#### 8.1.3 Procedures

The procedures can be found in the canvas module. Check the following under topics:

- 8.1 Weather Data Collection
- 8.2 Querying and Merging
- 8.3 Dataframe Operations
- 8.4 Aggregations
- 8.5 Time Series

### 8.1.4 Data Analysis

#### **INSIGHTS AND COMMENTS IN MODULE 1:**

This Module is the same as the first activity of the last moddule, when we are collecting data form an API (Applicatin Programming Interface). This API or the 'National Oceanic and Atmospheric Administration' NCDC API is the one that being used to this modue.

First I've learned to understand and read Documentation of a certain API or the items provided to give you knowledge about the software you want to use

- if i don't know or understand what to do, I refer first to the documentation before going to Internet or an Al.
- think of it as a manual even though some documentation has some overwhelming infoormation to throw at you.

#### **INSIGHTS AND COMMENTS IN MODULE 2**

Querying in Pandas/Dataframes are easy and easy to remember because of it's similarity in SQL.

I've Learned that there are two ways to et the query you like/desire:

- 1. The Easy DataFrame.query():
  - The query accepts a SQL script as a Parameter.
  - snow\_data = weather.query('datatype == "SNOW" and value > 0') $_{\S}$
- 2. the bitwise Opt Cracker, The Booolean Mask:
  - o uses bitwise to get what he/she wanted/desired in the query

```
weather[(weather.datatype == 'SNOW') & (weather.value > 0)].equals(snow_data)
```

#### Merging follows the JOIN in SQL

• using DataFrame.merge() we can perform Joins such as left, right, inner joins and many more. (Inner Join as the default)







### INSIGHTS AND COMMENTS FOR MODULE 3

This module consists of the basic Operations you can do to your dataframes. The most memorable is these:

# pct\_change()

• lets you change the current number of a column to its percentage equivalent.

# pd.cut(), pd.qcut()

• let youu create seperate bins in order for you to identify the rages/roupings of your data

## .apply()

• lets you apply Functions in certain dataframe or specific coluumn for an easy configurations

## Window calculations

• rolinng calculations can be done using this <-

### INSIGHTS AND COMMENTS FOR MODULE 4

this Aggeration of dataframe is simply formating the data for future use. can be done uing the agg() function.

but this module alo includes:

## group\_by()

• aggreating the groups of a dataframe not the entire dataframe

## pivot\_tables

• Provides the simmplest form of aggregation

#### crosstabs

• in which you get the frequency of a specific column

### INSIGHTS AND COMMENTS IN MODDULE 5

- basically this module talks about time. Yo can calulate time wiht TimeDelta() andd you can select data from simply inputting the dates/range of dates of the desired data.
- You can also resample your data by the DateTime Index, Period Index, and timedeltaIndex

## 8.1.5 Supplementary Activity

Using the CSV files provided and what we have learned so far in this module complete the following exercises

```
1 import pandas as pd
2 import numpy as np
3
4 earthquake_df = pd.DataFrame(pd.read_csv("/content/earthquakes.csv")) # reading and making a dtafr
5 faang_df = pd.DataFrame(pd.read_csv("/content/faang.csv", parse_dates=['date'], index_col = ['date
```

1 earthquake\_df.head(10) # earthquake dataframe

|   | mag  | magType | time          | place                                         | tsunami | parsed_place          |
|---|------|---------|---------------|-----------------------------------------------|---------|-----------------------|
| 0 | 1.35 | ml      | 1539475168010 | 9km NE of Aguanga, CA                         | 0       | California            |
| 1 | 1.29 | ml      | 1539475129610 | 9km NE of Aguanga, CA                         | 0       | California            |
| 2 | 3.42 | ml      | 1539475062610 | 8km NE of Aguanga, CA                         | 0       | California            |
| 3 | 0.44 | ml      | 1539474978070 | 9km NE of Aguanga, CA                         | 0       | California            |
| 4 | 2.16 | md      | 1539474716050 | 10km NW of Avenal, CA                         | 0       | California            |
| 5 | 2.61 | md      | 1539473686440 | 55km ESE of Punta Cana,<br>Dominican Republic | 0       | Dominican<br>Republic |
| 6 | 1.70 | ml      | 1539473176017 | 105km W of Talkeetna,<br>Alaska               | 0       | Alaska                |
| 7 | 1.13 | md      | 1539473060280 | 10km NW of Parkfield, CA                      | 0       | California            |
| 8 | 0.92 | md      | 1539473042310 | 6km NW of The Geysers,                        | 0       | California            |

Next steps: View recommended plots

1 faang\_df.head(10) # faang dataframe

|            | ticker | open   | high   | low      | close  | volume   |     |
|------------|--------|--------|--------|----------|--------|----------|-----|
| date       |        |        |        |          |        |          | 11. |
| 2018-01-02 | FB     | 177.68 | 181.58 | 177.5500 | 181.42 | 18151903 |     |
| 2018-01-03 | FB     | 181.88 | 184.78 | 181.3300 | 184.67 | 16886563 |     |
| 2018-01-04 | FB     | 184.90 | 186.21 | 184.0996 | 184.33 | 13880896 |     |
| 2018-01-05 | FB     | 185.59 | 186.90 | 184.9300 | 186.85 | 13574535 |     |
| 2018-01-08 | FB     | 187.20 | 188.90 | 186.3300 | 188.28 | 17994726 |     |
| 2018-01-09 | FB     | 188.70 | 188.80 | 187.1000 | 187.87 | 12393057 |     |
| 2018-01-10 | FB     | 186.94 | 187.89 | 185.6300 | 187.84 | 10529894 |     |
| 2018-01-11 | FB     | 188.40 | 188.40 | 187.3800 | 187.77 | 9588587  |     |
| 2018-01-12 | FB     | 178.06 | 181.48 | 177.4000 | 179.37 | 77551299 |     |
| 2018-01-16 | FB     | 181.50 | 181.75 | 178.0400 | 178.39 | 36183842 |     |

Next steps: View recommended plots

1. With the earthquakes.csv file, select all the earthquakes in Japan with a magType of mb and a magnitude of 4.9 or greater.

```
1 earthquake_df.query('magType == "mb" and mag > 4.9 and parsed_place == "Japan"') # Simple method
```

|                |      | mag   | magType | time          | place                         | tsunami  | parsed_place   |                       |
|----------------|------|-------|---------|---------------|-------------------------------|----------|----------------|-----------------------|
|                | 2576 | 5.4   | mb      | 1538697528010 | 37km E of Tomakomai,<br>Japan | 0        | Japan          |                       |
| 1 ea<br>2<br>3 |      | rthqu | _       |               | b') & (earthquake_d           | f['mag'] | > 4.9) & (eart | hquake_df['parsed_pla |

```
mag magType time place tsunami parsed_place

2576 5.4 mb 1538697528010 37km E of Tomakomai, Japan 0 Japan
```

2. Create bins for each full number of magnitude (for example, the first bin is 0-1, the second is 1-2, and so on) with a magType of ml and count how many are in each bin.

```
1 earthquake_magBin = pd.cut(earthquake_df.query('magType == "ml"').mag,
                             bins=6,
                             labels=['0-1', '1-2', '2-3', '3-4', '4-5', '5-6'])
3
4 earthquake_magBin.value_counts() # Creating bins
          3436
   1-2
          1889
   3 - 4
          1027
   0 - 1
           288
   4-5
           160
   5-6
   Name: mag, dtype: int64
```

- 3. Using the faang.csv file, group by the ticker and resample to monthly frequency. Make the following aggregations
- · Mean of the opening price
- Maximum of the high price
- Minimum of the low price
- Mean of the closing price
- Sum of the volume traded

|        | open        | high      | low       | close       | volume     |    |
|--------|-------------|-----------|-----------|-------------|------------|----|
| ticker |             |           |           |             |            | 1. |
| AAPL   | 187.038674  | 231.6645  | 145.9639  | 186.986218  | 8539383858 |    |
| AMZN   | 1644.072669 | 2050.5000 | 1170.5100 | 1641.726175 | 1418040266 |    |
| FB     | 171.454424  | 218.6200  | 123.0200  | 171.510936  | 6949682394 |    |
| GOOG   | 1113.554104 | 1273.8900 | 970.1100  | 1113.225139 | 437403914  |    |
| NFLX   | 319.620533  | 423.2056  | 195.4200  | 319.290299  | 2879045091 |    |

Next steps: View recommended plots

4. Build a crosstab with the earthquake data between the tsunami column and the magType column. Rather than showing the frequency count, show the maximum magnitude that was observed for each combination. Put the magType along the columns.

```
1 pd.crosstab(
     index=earthquake_df.tsunami,
3
     columns=earthquake_df.magType,
     values=earthquake_df.mag, # As said, instead of the frequency, we get the Magnitude of the com
     aggfunc=lambda x:np.max(x)
6 ).fillna(0) \# since there are Empty shells, it is better to fill it up
    magType mb mb_lg md mh ml ms_20
                                            mw mwb mwr mww
    tsunami
       0
            5.6
                   3.5 4.11 1.1 4.2
                                       0.0 3.83
                                                5.8
                                                          6.0
                                                     4.8
                   0.0 0.00 0.0 5.1
            6.1
                                       5.7 4.41
                                                          7.5
       1
                                                0.0
                                                     0.0
```

4. Calculate the rolling 60-day aggregations of OHLC data by ticker for the FAANG data. Use the same aggregations as exercise no. 3.

```
1 faang_df.groupby(['ticker']).rolling('60D').agg( # Grouuping them by the Ticker and setting Rollin
 2
 3
           'open': np.mean,
 4
           'high': np.max,
 5
           'low': np.min,
 6
           'close': np.mean,
           'volume': np.sum
9
10 ).join(aggFang[['open', # Join the past aggregation for a comparison of the data
          'high',
11
           'low',
12
           'close',
1.3
14
           'volume']], lsuffix="_rolling").sort_index(axis=1) # adding suffixes to prevent errors
```

|        |                | close      | close_rolling | high     | high_rolling | low      | low_rollin |
|--------|----------------|------------|---------------|----------|--------------|----------|------------|
| ticker | date           |            |               |          |              |          |            |
| AAPL   | 2018-<br>01-02 | 186.986218 | 168.987200    | 231.6645 | 169.0264     | 145.9639 | 166.044    |
|        | 2018-<br>01-03 | 186.986218 | 168.972500    | 231.6645 | 171.2337     | 145.9639 | 166.044    |
|        | 2018-<br>01-04 | 186.986218 | 169.229200    | 231.6645 | 171.2337     | 145.9639 | 166.044    |
|        | 2018-<br>01-05 | 186.986218 | 169.840675    | 231.6645 | 172.0381     | 145.9639 | 166.044    |
|        | 2018-<br>01-08 | 186.986218 | 170.080040    | 231.6645 | 172.2736     | 145.9639 | 166.044    |
|        |                |            |               |          |              |          |            |
| NFLX   | 2018-<br>12-24 | 319.290299 | 281.931750    | 423.2056 | 332.0499     | 195.4200 | 233.680    |
|        | 2018-<br>12-26 | 319.290299 | 280.777750    | 423.2056 | 332.0499     | 195.4200 | 231.230    |
|        | 2018-<br>12-27 | 319.290299 | 280.162805    | 423.2056 | 332.0499     | 195.4200 | 231.230    |
|        | 2018-<br>12-28 | 319.290299 | 279.461341    | 423.2056 | 332.0499     | 195.4200 | 231.230    |
|        | 2018-<br>12-31 | 319.290299 | 277.451410    | 423.2056 | 332.0499     | 195.4200 | 231.230    |

1255 rows × 10 columns

6. Create a pivot table of the FAANG data that compares the stocks. Put the ticker in the rows and show the averages of the OHLC and volume traded data.

```
1 faang_df.pivot_table(
2  index = 'ticker',
3  values = ['open', 'high', 'low','close', 'volume'],
4  aggfunc = 'mean' # getting the mean == average
5 ).reset_index()
```

|   | ticker | close       | high        | low         | open        | volume       |     |
|---|--------|-------------|-------------|-------------|-------------|--------------|-----|
| 0 | AAPL   | 186.986218  | 188.906858  | 185.135729  | 187.038674  | 3.402145e+07 | 11. |
| 1 | AMZN   | 1641.726175 | 1662.839801 | 1619.840398 | 1644.072669 | 5.649563e+06 |     |
| 2 | FB     | 171.510936  | 173.615298  | 169.303110  | 171.454424  | 2.768798e+07 |     |
| 3 | GOOG   | 1113.225139 | 1125.777649 | 1101.001594 | 1113.554104 | 1.742645e+06 |     |
| 4 | NFLX   | 319.290299  | 325.224583  | 313.187273  | 319.620533  | 1.147030e+07 |     |

7. Calculate the Z-scores for each numeric column of Netflix's data (ticker is NFLX) using apply().

|                | ticker | open   | high     | low      | close   | volume   | open_zscore | high_zscore |
|----------------|--------|--------|----------|----------|---------|----------|-------------|-------------|
| date           |        |        |          |          |         |          |             |             |
| 2018-<br>01-02 | NFLX   | 196.10 | 201.6500 | 195.4200 | 201.070 | 10966889 | 0.819007    | 0.814892    |
| 2018-<br>01-03 | NFLX   | 202.05 | 206.2100 | 201.5000 | 205.050 | 8591369  | 0.809083    | 0.807364    |
| 2018-<br>01-04 | NFLX   | 206.20 | 207.0500 | 204.0006 | 205.630 | 6029616  | 0.802161    | 0.805978    |
| 2018-<br>01-05 | NFLX   | 207.25 | 210.0200 | 205.5900 | 209.990 | 7033240  | 0.800410    | 0.801075    |
| 2018-<br>01-08 | NFLX   | 210.02 | 212.5000 | 208.4400 | 212.050 | 5580178  | 0.795790    | 0.796981    |
|                |        |        |          |          |         |          |             |             |
| 2018-<br>12-24 | NFLX   | 242.00 | 250.6500 | 233.6800 | 233.880 | 9547616  | 0.742451    | 0.734001    |
| 2018-<br>12-26 | NFLX   | 233.92 | 254.5000 | 231.2300 | 253.670 | 14402735 | 0.755928    | 0.727645    |
| 2018-<br>12-27 | NFLX   | 250.11 | 255.5900 | 240.1000 | 255.565 | 12235217 | 0.728925    | 0.725846    |
| 2018-<br>12-28 | NFLX   | 257.94 | 261.9144 | 249.8000 | 256.080 | 10987286 | 0.715865    | 0.715405    |
| 2018-<br>12-31 | NFLX   | 260.16 | 270.1001 | 260.0000 | 267.660 | 13508920 | 0.712163    | 0.701892    |

251 rows × 11 columns

### 8. Add event descriptions:

- Create a dataframe with the following three columns: ticker, date, and event. The columns should have the following values:
  - o ticker: 'FB'
  - date: ['2018-07-25', '2018-03-19', '2018-03-20']
  - o event: ['Disappointing user growth announced after close.', 'Cambridge Analytica story', 'FTC investigation']
- Set the index to ['date', 'ticker']
- Merge this data with the FAANG data using an outer join



9. Use the transform() method on the FAANG data to represent all the values in terms of the first date in the data. To do so, divide all the values for each ticker by the values for the first date in the data for that ticker. This is referred to as an index, and the data for the first date is the base (<a href="https://ec.europa.eu/eurostat/statistics-explained/">https://ec.europa.eu/eurostat/statistics-explained/</a> index.php/ Beginners:Statisticalconcept-Indexandbaseyear). When data is in this format, we can easily see growth over time. Hint: transform() can take a function name.

1 faang\_df.groupby('ticker').head()

|     | ticker | date       | open      | high      | low       | close     | volume   |     |
|-----|--------|------------|-----------|-----------|-----------|-----------|----------|-----|
| 0   | FB     | 2018-01-02 | 177.6800  | 181.5800  | 177.5500  | 181.4200  | 18151903 | 11. |
| 1   | FB     | 2018-01-03 | 181.8800  | 184.7800  | 181.3300  | 184.6700  | 16886563 |     |
| 2   | FB     | 2018-01-04 | 184.9000  | 186.2100  | 184.0996  | 184.3300  | 13880896 |     |
| 3   | FB     | 2018-01-05 | 185.5900  | 186.9000  | 184.9300  | 186.8500  | 13574535 |     |
| 4   | FB     | 2018-01-08 | 187.2000  | 188.9000  | 186.3300  | 188.2800  | 17994726 |     |
| 251 | AAPL   | 2018-01-02 | 166.9271  | 169.0264  | 166.0442  | 168.9872  | 25555934 |     |
| 252 | AAPL   | 2018-01-03 | 169.2521  | 171.2337  | 168.6929  | 168.9578  | 29517899 |     |
| 253 | AAPL   | 2018-01-04 | 169.2619  | 170.1742  | 168.8106  | 169.7426  | 22434597 |     |
| 254 | AAPL   | 2018-01-05 | 170.1448  | 172.0381  | 169.7622  | 171.6751  | 23660018 |     |
| 255 | AAPL   | 2018-01-08 | 171.0375  | 172.2736  | 170.6255  | 171.0375  | 20567766 |     |
| 502 | AMZN   | 2018-01-02 | 1172.0000 | 1190.0000 | 1170.5100 | 1189.0100 | 2694494  |     |
| 503 | AMZN   | 2018-01-03 | 1188.3000 | 1205.4900 | 1188.3000 | 1204.2000 | 3108793  |     |