Clase práctica 2

September 24, 2025

- 1. Sea $a \in \mathbf{Z}$, $a \neq 0$, $b_i \in \mathbf{Z}$, $1 \leq i \leq n$, demuestre que, si $a|b_1b_2...b_n$ y $\forall j, 1 \leq j < n$ y se cumple que $(a,b_j) = 1$ entonces $a|b_n$.
- 2. Implemente un método que dados $a, b, c \in \mathbf{Z}$ y $a, b \neq 0$ diga si ax + by = c tiene solución en los enteros, es decir que existan $x_0, y_0 \in \mathbf{Z}$ tales que $ax_0 + by_0 = c$, en caso de existir encuentre una y de una forma de generar otras n.
- 3. Sean $a_1, a_2...a_n$ números naturales. Demuestre que $(a_i, a_j) = 1$ para todo par $1 \le i < j \le n$ si y solo si $mcm(a_1, a_2, ..., a_n) = a_1a_2...a_n$.
- 4. Una inmobiliaria renta apartamentos del tipo A cuyo alquiler es \$188.00 y apartamentos de tipo B cuyo alquiler es \$508.00. Cuando todos los apartamentos de tipo A y B hayan sido rentados, la inmobiliaria recibirá un total de \$1580.00. Cuántos apartamentos de cada tipo posee?
- 5. Sean a,b naturales, cuántos números de la secuencia a,2a,...,ba son divisibles por b.
- 6. Sea p_n el n-ésimo primo. Demuestre que $p_n \leq 2^{2^{n-1}}$.
- 7. Sea $a, b, c, k, n \in \mathbb{N}$, calcule o demuestre (según sea el caso) que:
 - (a) (ka, kb) = k(a, b)
 - (b) Si (a, b) = 1
 - (a+b,a)
 - (a+b,ab)
 - (a + b, a b)
 - $(n^2+1,(n+1)^2+1)$
 - (c) $[a, b, c] = \frac{abc}{(ab, bc, ca)}$