Find a Gene Project BGGN 213 Kalodiah Toma

PID: A07606689

Email: k1toma@ucsd.edu

Questions:

[Q1] Tell me the name of a protein you are interested in. Include the species and the accession number. This can be a human protein or a protein from any other species as long as it's function is known.

If you do not have a favorite protein, select human RBP4 or KIF11. Do not use beta globin as this is in the worked example report that I provide you with online.

Name: TOE1 target of EGR1
Accession: NP_079353.3 (NM_025077.4)
Species: Homo Sapiens

[Q2] Perform a BLAST search against a DNA database, such as a database consisting of genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the BLAST method used, database searched and any limits applied (e.g. Organism).

Method: TBLASTN (2.7.1) search against mouse Database: ESTs Expressed Sequence Tags (est) Organism: Mouse (Taxid: 10090) Chosen match: Accession CB202140.1, a 860 base pair clone from Mus musculus. See below for alignment details.

	is limited to records the are filtered to match re									
Job Title			F	ilter Results						
ref NP_079353.3 RID										
Negret Note KP2PYXPK013 Search Download All ▼ Program	n expires on 10-28 08:5:	7 am		Organism only top 20 will appear Type common name, binomial, taxid or group na						
TBLASTN ② Citation	1~			+ Add organism						
Database				Percent Identity	E value	Query				
est <u>See details</u> >				to	to					
Query ID										
NP_079353.3 Description						Filter				
target of EGR1 protein	1 [Lama agricus]		Į							
Molecule type	т (нотто sapiens)									
amino acid										
Query Length										
510										
Other reports										
?										
Descriptions	Graphic Summary	Alignments	Taxonomy							

Query Coverage to

eq	uences producing significant alignments	Download	~	Sele	ct colum	nns 🗡	Show	100	~ 0
,	select all 100 sequences selected						Ge	nBank	Graphics
	Description	Scientific Name	Max Score	Total Score	Query	E value	Per. Ident	Acc. Len	Accession
•	AGENCOURT_11289261 NIH_MGC_135 Mus musculus cDNA clo	Mus mus	451	451	52%	2e-156	81.65%	860	CB202140.1
	AGENCOURT 11290268 NIH MGC 135 Mus musculus cDNA clo	Mus mus	449	449	49%	2e-155	86.11%	912	CB201496.1
•	MNS05308 Mouse Neurosphere Normalized cDNA library Mus mu	Mus mus	429	429	49%	2e-148	82.07%	754	CX203198.
	UI-M-FR0-cbd-d-07-0-UI.r1 NIH BMAP FR0 Mus musculus cDNA	Mus mus	418	418	45%	5e-144	85.04%	771	BU613048.
	602962029F1 NCI_CGAP_Lu33 Mus musculus cDNA clone IMAG	Mus mus	420	463	56%	4e-143	77.61%	1077	BI409932.1
	602820847F1 NCI_CGAP_Mam6 Mus musculus cDNA clone IMA	Mus mus	409	409	42%	2e-140	89.40%	793	BG917923.
	BY729493 RIKEN full-length enriched, 12 days embryo spinal cord	Mus mus	399	399	44%	5e-137	84.14%	703	BY729493.
	AGENCOURT 13688105 NIH MGC 176 Mus musculus cDNA clo	Mus mus	383	383	38%	2e-130	91.33%	713	CB952852.
	602904023F1 NCI_CGAP_Mam3 Mus musculus cDNA clone IMA	Mus mus	377	377	48%	9e-128	76.83%	763	BI155607.1
	AGENCOURT 8764578 NIH MGC 129 Mus musculus cDNA clon	Mus mus	375	479	50%	9e-127	95.65%	892	BQ887777.
	BY715996 RIKEN full-length enriched, adult male testis Mus musc	Mus mus	370	370	41%	2e-125	83.10%	681	BY715996.
	UI-M-FR0-can-c-07-0-UI.r1 NIH BMAP FR0 Mus musculus cDNA	. Mus mus	355	355	35%	5e-119	92.74%	782	BU609318.
	603305180F1 NCI_CGAP_Mam4 Mus musculus cDNA clone IMA	Mus mus	358	447	62%	1e-118	72.58%	1120	BI662161.1
	AGENCOURT 8755658 NIH MGC 130 Mus musculus cDNA clon	Mus mus	353	353	55%	2e-117	66.55%	926	BQ885768.
	ux31e07.y1 Soares_NMMAX_maxillary_process Mus musculus cD	Mus mus	335	335	38%	2e-112	82.56%	587	BE854582.
	601790579F1 NCI_CGAP_Lu30 Mus musculus cDNA clone IMAG	Mus mus	338	338	43%	2e-111	75.57%	1010	BF142819.
	601084430F1 NCI_CGAP_Mam6 Mus musculus cDNA clone IMA	Mus mus	326	326	33%	4e-109	90.59%	530	BE291721.
	BB645314 RIKEN full-length enriched, 4 days neonate male adipo	Mus mus	325	325	37%	4e-108	81.25%	649	BB645314.
	CJ092853 RIKEN full-length enriched mouse cDNA library, C57BL/	Mus mus	320	320	39%	3e-106	77.61%	671	CJ092853.1
	AGENCOURT 10724757 NIH MGC 169 Mus musculus cDNA clo	Mus mus	319	374	41%	4e-105	81.72%	759	CA463763.
N	mv68a08.y1 Soares mouse 3NME12 5 Mus musculus cDNA clone	Mus mus	315	315	30%	5e-105	94.84%	466	Al390214.1
	602103116F1 NCI_CGAP_Kid14 Mus musculus cDNA clone IMAG	Mus mus	259	404	47%	3e-104	78.98%	775	BF780573.1
8	B0350H01-5 NIA Mouse E9.5 Whole Embryo cDNA Library (Long)	Mus mus	314	314	36%	5e-104	81.52%	611	CD552976.
	AGENCOURT 10152285 NCI CGAP Mam2 Mus musculus cDNA.	. Mus mus	313	313	35%	1e-102	82.87%	792	BU522427.

[Q3] Gather information about this "novel" **protein**. At a minimum, show me the protein sequence of the "novel" protein as displayed in your BLAST results from [Q2] as FASTA format (you can copy and paste the aligned sequence subject lines from your BLAST

result page if necessary) or translate your novel DNA sequence using a tool called EMBOSS Transeq at the EBI. Don't forget to translate all six reading frames; the ORF (open reading frame) is likely to be the longest sequence without a stop codon. It may not start with a methionine if you don't have the complete coding region. Make sure the sequence you provide includes a header/subject line and is in traditional FASTA format.

Chosen sequence:

>A. TOE1 like protein (sequence taken from BLAST result) [FP]
MAADSDDGVPPVPTPSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL
NQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ
GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY
AAEFHARFVASYLEYPFPEMSTGRMGSKRGSLATHI

Species: Mus musculus

Eukaryota; Animalia; Chordata; Mammalia; Rodentia; Muridae; Mus; Mus; M. musculus.

[Q4] Prove that this gene, and its corresponding protein, are novel. For the purposes of this project, "novel" is defined as follows. Take the protein sequence (your answer to [Q3]), and use it as a query in a blastp search of the nr database at NCBI.

- If there is a match with 100% amino acid identity to a protein in the database, from the same species, then your protein is NOT novel (even if the match is to a protein with a name such as "unknown"). Someone has already found and annotated this sequence, and assigned it an accession number.
- If the top match reported has less than 100% identity, then it is likely that your protein is novel, and you have succeeded.
- If there is a match with 100% identity, but to a different species than the one you started with, then you have likely succeeded in finding a novel gene.
- If there are no database matches to the original query from [Q1], this indicates that you have partially succeeded: yes, you may have found a new gene, but no, it is not actually homologous to the original query. You should probably start over.

A BLASTP search against NR database yielded a top hit result is to a protein from Rattus norvegicus (Norway rat).

See additional screen shots below for top hits and selected alignment details:

bloots		bloots		blooty	thlooto	th looty	1		
blastn		blastp		blastx	tblastn	tblastx			
									BLASTP programs search protein databases using a protein query. more
Ente	r Que	ry Sequ	uence						
Enter	acces	sion nu	umbei	r(s), gi(s),	or FASTA seq	uence(s) 🔞 🔾	Clear	Que	ery subrange 😯
>Prote								From	
							DNFKEIWPSLLLALKTASFV FRQQPDKGENSYLAQVFNI		
TLLCI	MEEY	VIEPKS	SVQF	VQHGFN	FNRQYAQGIP	YHKGNDKG	DESQSQSVRTLFLELIRARR	To	
		IDLVFL'			LGTFTADLCE	MFPAGIYDT	KYAAEFHARFVASYLEYPFP	//	
Or, up	load f	file	Cho	ose File no f	ile selected		②		
			<u> </u>						
Job Ti	tie								
			En	ter a descr	iptive title for y	our BLAST se	earch 😯		
_ Al	lign tw	o or mo	ore se	quences 🔞					
Char	6	earch S	né.						
CHOC	ose o	earch S	et						
Databa	ases			Standard	databases (nr	etc.): New	Experimental databases		r more info see What is clustered nr
			_					. 10	Tillore lillo see What is clustered lil !
Compa	are			Select to	compare stan	dard and expe	erimental database 😯		
St	andar	d							
Data	abase	•		Non-redu	ndant protein	seguences (nr	r) 🗸 🕝		
0			1		au.it protoiir	7044011000 (111	, ,		
	anisn ional	1		Enter org	ganism name o	r idcompleti	ons will be suggested	exclude	Add organism
			1	Enter organ	nism common	name, binomia	al, or tax id. Only 20 top taxa	will be show	vn 🚱
Exc	lude			Madel	s (XM/XP)	Non-radius de	ant RefSeg proteins (WP)	Unauttura	d/environmental sample sequences
Opti	ional			Model	s (XIVI/XP)	Non-redunda	ant ReiSeq proteins (WP)	Unculture	o/environmental sample sequences
Prog	ram S	Selectio	n						
Algori	thm		10	Quick BL	ASTP (Acceler	ated protein-p	protein BLAST)		
					otein-protein E	,			
			18		ST (Position-Sp		,		
			l o		ST (Pattern Hit LAST (Domain		ST) pokup Time Accelerated BLA	ST)	
			Ch		AST algorithm		- Into Additional DEA	,	
Di	ACT		0	anab dat-l		Diagta (parts	in nestrin BLACT)		
BL	AST		Se	7			in-protein BLAST)		
				_ snow re	esults in a nev	window			

Details: The top result is to a protein from Rattus norvegicus (Norway rat), see second screen shot below for alignment details:

Sequ	ences producing significant alignments	Download	· ~	:	Select co	olumns	∨ Sh	iow	100 🗸	0
~ §	select all 100 sequences selected	GenPept Gra	aphics	Distar	nce tree	of results	Multip	le alig	nment MS	A Viewe
	Description	Scientific Name	Max Score	Total Score	Query	E value	Per. Ident	Acc. Len	Acces	sion
~	target of EGR1 protein 1 isoform X4 [Rattus norvegicus]	Rattus no	504	504	92%	1e-179	97.18%	257	XP_03896	5533.1
•	target of EGR1 protein 1 [Cricetulus griseus]	Cricetulu	503	503	100%	2e-175	91.01%	511	XP_02725	8385.1
~	target of EGR1 protein 1 [Chionomys nivalis]	Chionom	502	502	92%	2e-174	96.77%	541	XP_05764	0769.1
~	target of EGR1 protein 1 [Phodopus roborovskii]	Phodopu	501	501	100%	3e-174	90.64%	511	XP_05104	4502.1
~	target of EGR1 protein 1 [Peromyscus californicus insignis]	Peromys	501	501	100%	3e-174	90.64%	511	XP_05257	2255.1
~	target of EGR1 protein 1 [Mesocricetus auratus]	Mesocric	500	500	100%	4e-174	90.26%	511	XP_00507	2112.3
~	target of EGR1 protein 1 [Peromyscus maniculatus bairdii]	Peromys	500	500	100%	4e-174	90.26%	511	XP_00698	86621.1
~	target of EGR1 protein 1 [Cricetulus griseus]	Cricetulu	500	500	100%	7e-174	90.26%	511	XP_00349	7425.1
~	target of EGR1 protein 1 [Myodes glareolus]	Myodes	499	499	92%	2e-173	96.37%	510	XP_04828	6556.1
~	target of EGR1 protein 1 [Peromyscus eremicus]	Peromys	499	499	100%	2e-173	90.26%	511	XP_05911	0794.1
~	target of EGR1 protein 1 isoform X1 [Mastomys coucha]	Mastomy	498	498	92%	7e-173	95.97%	513	XP_03123	4176.1
~	target of EGR1 protein 1 isoform X1 [Microtus ochrogaster]	Microtus	496	496	92%	2e-172	95.97%	510	XP_02663	3303.1
~	target of EGR1 protein 1 isoform X3 [Microtus ochrogaster]	Microtus	496	496	92%	4e-172	95.97%	541	XP_00537	0077.1
~	target of EGR1, member 1 (nuclear), isoform CRA_c [Mus mu	Mus mus	488	488	100%	6e-172	92.51%	329	EDL30586	<u>8.1</u>
~	Target of EGR1, member 1 (nuclear) [Mus musculus]	Mus mus	494	494	100%	2e-171	93.26%	511	AAH23109	9.1
~	target of EGR1, member 1 (nuclear) (predicted), isoform CRA	Rattus no	485	485	100%	3e-171	91.39%	296	EDL90253	<u>3.1</u>
~	target of EGR1 protein 1 [Acomys russatus]	Acomys r	493	493	100%	3e-171	90.64%	510	XP 05102	7553.1
~	target of EGR1, member 1 (nuclear) (predicted), isoform CRA	Rattus no	484	484	100%	5e-171	91.39%	293	EDL90254	l.1
~	target of EGR1 protein 1 isoform 2 [Mus musculus]	Mus mus	489	489	100%	5e-171	92.51%	410	NP 00140	6115.1
~	unnamed protein product [Mus musculus]	Mus mus	484	484	100%		92.13%		BAB30482	2.1
~	target of EGR1 protein 1 [Psammomys obesus]	Psammo	491	491	100%	2e-170	89.51%	511	XP 05547	 '4418.1
~	target of EGR1, member 1 (nuclear) (predicted), isoform CRA			484	100%		91.39%		EDL90251	
	hypothetical protein A6R68 22771 [Neotoma lepida]	Neotoma	489	489	91%				OBS8323	

[Q5] Generate a multiple sequence alignment with your novel protein, your original query protein, and a group of other members of this family from different species. A typical number of proteins to use in a multiple sequence alignment for this assignment purpose is a minimum of 5 and a maximum of 20 - although the exact number is up to you. Include the multiple sequence alignment in your report. Use Courier font with a size appropriate to fit page width.

Side-note: Indicate your sequence in the alignment by choosing an appropriate name for each sequence in the input unaligned sequence file (i.e. edit the sequence file so that the species, or short common, names (rather than accession numbers) display in the output alignment and in the subsequent answers below). The goal in this step is to create an interesting an alignment for building a phylogenetic tree that illustrates species divergence.

>Homo sapiens NP_079353.3 target of EGR1 protein 1 [Homo sapiens]
MAADSDDGAVSAPAASDGGVSKSTTSGEELVVQVPVVDVQSNNFKEMWPSLLLAIKTANFVAVDTELSGLGDRKSLL
NQCIEERYKAVCHAARTRSILSLGLACFKRQPDKGEHSYLAQVFNLTLLCMEEYVIEPKSVQFLIQHGFNFNQQYAQ
GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPESLGTFTADLCEMFPAGIYDTKY
AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLTLEFCNYPSSMRDHIDYRCCLPPATHRPHPTSICDNFSAYGW
CPLGPQCPQSHDIDLIIDTDEAAAEDKRRRRRREKRKRALLNLPGTQTSGEAKDGPPKKQVCGDSIKPEETEQEVA
ADETRNLPHSKQGNKNDLEMGIKAARPEIADRATSEVPGSQASPNPVPGDGLHRAGFDAFMTGYVMAYVEVSQGPQP
CSSGPWLPECHNKVYLSGKAVPLTVAKSQFSRSSKAHNQKMKLTWGSS

>Mus musculus TOE1 like protein (sequence taken from BLAST result) [5]
MAADSDDGVPPVPTPSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL
NQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ
GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY
AAEFHARFVASYLEYPFPEMSTGRMGSKRGSLATHI

>Rattus norvegicus XP_038965533.1 target of EGR1 protein 1 isoform X4 [Rattus norvegicus]

MAADSDDGVPSVPTPSDGGVNRTTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGDSSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKWPMAGAL

>Cricetulus griseus XP_027258385.1 target of EGR1 protein 1 [Cricetulus griseus]

MAADSDDGVPSVPTTSDGGVNKNTKSAEEFVIRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPETLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGTPHLALEFCSYPSSMRGHIDYRCCMSPVTYRRSHTTGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALLSQPETQTFEEAEDGPPTKQVCEDSLKTEEMEQRV TEGETRDELGSKQAHKSGLEMEHKATSSETVDVATTELPVSQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGPQ LCSSRPWLPECHNKVYLSGKTVPLTVAKSQFSHSSKAHNQKMKLAWGSS

>Chionomys nivalis XP_057640769.1 target of EGR1 protein 1 [Chionomys nivalis]

MAADSDDGVPSVPATSDGDVNKNTKSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKRQATGSPHLALEFCSYPSSMRGHIDYRCCMSPVTSRRSHTAGICTKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDRRKRALLSQPGTGTFEEAEDGPPTKQVCEDSLKTETEQKVT EGESRDQAEDGLPTKQVCEGSLKTEIEQKVTEGESRDQLGSKQCHNSDLEVEHKATSSEIADVAASELPASQASPNP VPGDGLHRAGFDAFMTGYVMAYVGLRHGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAWG SS

>Phodopus roborovskii XP_051044502.1 target of EGR1 protein 1 [Phodopus roborovskii]

MAADSDDGVPSVPTTSDGGVNKNTKSAEEFVIRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKHQADKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKRRAAGTPHLVLEFCSYPSSMRGHIDYRCCLSPVTYRRSHTTSICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRRRALLSQLGTQNFEEADDGPPTKQVCEDNLKTQELEQRV TERETRDELDSKQGHKSDLEMEHKATGSETADVAISELPVSQASPNPMPGDGLHRAGFDAFMTGYVMAYVGLSQGPQ LCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSHSSKAHNQKMKLAWSSS

>Peromyscus californicus insignis XP_052572255.1 target of EGR1 protein 1 [Peromyscus californicus insignis]

MAADSVDGVPSVPTTSDGGVNKNTKSADEFIVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTYRRFHTSGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALLSQPGAQTFEEAEDGPPTKQVCEDSLKTEEIEQKV TEGETRDQLGSQQGHKSGLAVERKATSSETAEVATSELPVSQANPNPGPGDGLHRAGFDAFMTGYVMAYVGLSQGPQ LCSSGPWLPECHNKVYLSGKTVPLTVARSQFSRSSKAHNQKMKLAWGSS

>Mesocricetus auratus XP_005072112.3 target of EGR1 protein 1 [Mesocricetus auratus]

MAADSDDGVPSVPTTSDGGVNKNTKSAEKFVIRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENCYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPETLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGTPHLALEFCSYPSSMRSHIDYRCCISPVTYRRSHTTGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALLSQPGTQTFEEAEDGPPTKQVCEDNLKTEEIEQRV TEGEIRDELGSKQAHKSGSEMEHKATSSETVDVATSELPVSQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGPQ LCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSHSSKAHNQKMKLAWGSS

>Myodes glareolus XP_048286556.1 target of EGR1 protein 1 [Myodes glareolus] MAADSDDGVPSVPATSDGDVNKTTKSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKRQAAGSPHLALEFCSYPSSMRGHIDYRCCMSPITSRRSHTTGICTKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDRRKRALLNQPGTETFEEAEDGPPTKQVCEDSLKTEIEQKVT EGETRDQLGSNQDHKSDLEVEHKATSSEIADVAASELPVSQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLRHGPQL CSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAWGSS

>Mastomys coucha XP_031234176.1 target of EGR1 protein 1 isoform X1 [Mastomys coucha]

MAADSADGMPSVPSSSDGGVNKNTQSAKEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPEKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFEARFVASYLEYAFRKCERENGRQQAVGSPHLALEFCSYPSSMRGHIDYRCCMSPVTCRRSYTTGICDKFSAYG WCPLGPECPQSHDIDLIIDTDEAVAEDKRRRRWQRRKDKRKRALQSQPGTQTLEEAEGGPPTKQVCEDSLKAEKMEQ KVAEGDAGDQLGSRQGHTGSLEIAHRRTSAETADVAPSELPVSQASTNPLPGDGLHRAGFDAFMTGYVMAYVGLSQG LQLCSSEPWLPKCHNKVYLSGKTVPLTVAKSQFSHPSKAHKQKMKLAWGSS

>Microtus ochrogaster XP_026633303.1 target of EGR1 protein 1 isoform X1 [Microtus ochrogaster]

MAADSDDGVPSVSATSDGDVNKNTKPAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKRQAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTSRRSHTTGICTRFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDRRKRALLSQPGTETFEEAEDGPPIKQVCEDSLKTEIEQKVT EGESRDQLGSKQDQNSDLEVEHKATSSEIADVAASELPVSQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLRHGPQL CSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAWGSS

>Acomys russatus XP_051027553.1 target of EGR1 protein 1 [Acomys russatus]
MAADSGDGVPLVPKTSDGGVNKSTSAEEFVARVPVVDVQTDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLLN
QCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQG
IPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYA
AEFHARFVASYLEYAFRKCERENGKQRAAGGPHLALEFCSYPSSMRGHIDYRCCMSPVTDRRSYATGICDKFSAYGW
CPLGPQCPQSHDIDLIIDTDEAVAEDKRRKRRKDKRRRALLRQPGTQTFEEGEDGPPTKQVREDSLNTENTEQKVA
EGETSDQLGSKQGHKGGLEMKHEATGSETADVATSELQVNQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGLQL
CSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAWGNS

>Psammomys obesus XP_055474418.1 target of EGR1 protein 1 [Psammomys obesus] MAADSDDGGLSVPPTSDGVVNKNTKSEEFVIRVPVVDVQTDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTYHRSHTGGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRRRALLSQPGMQTFEEAEEGPPTKQVCEDSLKTENTEQKV AEGETRDQPGSKQGHKGGLEMEHEAVSSEIADVATSELPVNQTSPNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGTQ LCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAWGSS

>Neotoma lepida OBS83234.1 hypothetical protein A6R68_22771 [Neotoma lepida] MAADSDDGVPSVPTTSDDGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQNQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFFCSYPSSMRDHIDYRCCMSPVTYRRSHTTGICNKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRR RRRKKDKRRRALLSQPETQTFEEAEDGPPTKQVCEDSLKTEEIEQKVTEGETRDQLGSQQGHKSSLEIEYKATSSKI ADVATSELPVSQASPNPMPGDGLHRAGFDAFMTGYVMAYVGLSQGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQ FSRSSKAHNQKMKLAWGSS

>Mus caroli XP_021015031.1 target of EGR1 protein 1 [Mus caroli]
MAADSDDGVPPVPTSSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKNLL
NQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ
GIPYHKGNDKGDESQSQSVRMLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY
ASEFHARFVASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCTSPGTCRRSRPTGICDKFSAYG
WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRSLQSQPGTQALAEAEDGPPTKQVCEDSLKTEKMEQKV
AEGEAGDQPGSREGHTSSLEMAHRRTSAETADVATSELLVNQASTNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGLQ
LCSSEPWLPECHNKVYLSGKTVPLTVTKSQFSRPSKAHNQKMKLAWGSS

>Mus pahari XP_021055456.1 target of EGR1 protein 1 [Mus pahari]
MAADSDDGVPPVATSSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL
NQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQVFNLTLLCVEEYVIEPKSVQFLVQHGFNFNRQYAQ
GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY
AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPGTCRRSHTTGICDKFSAYG
WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALQSQPGTQTLAEAEDGPPTKQVCEDSLKTEKMEQKV
AEGEAGDQPGSRQDHTGSLEMEHRRTRAETAEVATSELLVSQARTDPVPGDGLHRAGFDAFMTGYVMAYVGLSQGLQ
LCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAWGSS

>Rattus rattus XP_032755624.1 target of EGR1 protein 1 [Rattus rattus] MAADSDDGVPSVPTPSDGGVNRTTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGDSSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY

AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHVALEFCSYPSSMRGHIDYRCCMSPVSCRRSHTTGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALQSQPGTQNLEEAEDGPPTKQVCEDSLKTEKIEQKV AEGDQLGSTQGHKDSLEMACKRTADVPTSELLVNQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLSKGLQLCSSEPW LPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAWGSS

>Apodemus sylvaticus XP_052033054.1 target of EGR1 protein 1 [Apodemus sylvaticus]

MAADSDDGVPSVPTSSDGGVNKNTQTAEEFVVRVPVVDVQNDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLAQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSNMRGHIDYRCCMPPVTCRPPHTTGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALQSQLGTQTLEEAEDGPPTKQVCEDNVKTEKVEQKV AEGEAGDELGSRQGHTGSPEMAHRTSADTADVATSELPVNQANANPVPGDGLHRAGFDAFMTGYVMAYVGLSQGLQL CSSEPWLPECHNKVYLSGKTVPLTVAKSOFSRPSKAHNOKMKLAWGSS

>Meriones unguiculatus XP_021489081.1 target of EGR1 protein 1 [Meriones unguiculatus]

MAADSVDGGLSVPPTSDGVVNKNTKSEEEFVIRVPVVDVQTDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLVQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTYHRSHTSGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRRRALLSQPGMQTFEEAEEGPPTKQVCEDSLKTENPEQKV AEGETRDQVGSKQGHEGGLEMEHEAPSSEIADVATSELPVNQASPNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGTQ LCSSEPWLPECHNKVYLSGKTVPLTVAKSOFSRPSKAHNOKMKLAWGSS

>Arvicanthis niloticus XP_034357978.1 target of EGR1 protein 1 [Arvicanthis niloticus]

MAADSDDGVPSVPTSSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDQGDESQNQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYVFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTCRRSHTTGICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALQSQPQTQTLEEAEDGPPTKQVCEDSLQTEKIEQIM AEGEAKDQLGSKQGHTGSLVMAHKRTSSETADMATSDLLVNQGSTNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGLQ LCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAWGSS

>Onychomys torridus XP_036033233.1 target of EGR1 protein 1 [Onychomys torridus]

MAADSDDGVPSVPTTSDGGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLLALKTASFVAVDTELSGLGDRKSLL NQCIEERYKAVCHAARTRSVLSLGLACFKQQPAKGENSYLTQVFNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQ GIPYHKGNDKGDESQSQSVRTLFLELIRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKY AAEFHARFVASYLEYAFRKCERENGKQRAAGSPHLTLEFCSYPSSMGGHIDYRCCMSPVTHRRSHTSSICDKFSAYG WCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRRRKDKRKRALLSQPGAQTFEEAEDGPPTKQICEDSLKTEETEQKV TEGETKDQLGSQQDHKSGLAIRRKATSSETADVATSELPVSQANPNPVPGDGLHRAGFDAFMTGYVMAYVGLSQGPQ LCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAWGSS

Alignment:

Homo-sapiens
Psammomys-obesus
Meriones-unguiculatus
Acomys-russatus
Mastomys-coucha
Phodopus-roborovskii
Cricetulus-griseus
Mesocricetus-auratus
Neotoma-lepida
Onychomys-torridus
Peromyscus-californicus-insignis
Mus-caroli
Mus-pahari

MAADSDDGAVSAPAASDGGVSKSTTSGEELVVQVPVVDVQSNNFKEMWPSLLLAIKTANF
MAADSDDGGLSVPPTSDGVVNKNTKSEEEFVIRVPVVDVQTDNFKEIWPSLLLAIKTASF
MAADSVDGGLSVPPTSDGVVNKNTKSEEEFVIRVPVVDVQTDNFKEIWPSLLLAIKTASF
MAADSDGVPLVPKTSDGGVNKST-SAEEFVARVPVVDVQTDNFKEIWPSLLLAIKTASF
MAADSDDGVPSVSSDGGVNKNTQSAKEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSAEEFVIRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSAEEFVIRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTKSADEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPSVPTTSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPPVPTSSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF
MAADSDDGVPPVPTSSDGGVNKNTQSAEEFVVRVPVVDVQSDNFKEIWPSLLIAIKTASF

Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

Homo-sapiens Psammomys-obesus Meriones-unquiculatus Acomys-russatus Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

Homo-sapiens Psammomys-obesus Meriones-unguiculatus Acomys-russatus Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

Homo-sapiens Psammomvs-obesus Meriones-unquiculatus Acomys-russatus Mastomvs-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus

VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSILSLGLACFKRQPDKGEHSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLVQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPEKGENSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKHQADKGENSYLTQV VAVDTELSGLGDRKSLLNOCIEERYKAVCHAARTRSVLSLGLACFKOOPDKGENSYLTOV ${\tt VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENCYLTQV}$ VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPAKGENSYLTQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQV ${\tt VAVDTELSGLGDRKNLLNQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQV}$ VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQV VAVDTELSGLGDRKSLLNOCIEERYKAVCHAARTRSVLSLGLACFKOOPDKGENSYLTOV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLTQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGENSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFRQQPDKGENSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGDSSYLAQV VAVDTELSGLGDRKSLLNQCIEERYKAVCHAARTRSVLSLGLACFKQQPDKGDSSYLAQV

FNLTLLCMEEYVIEPKSVQFLIQHGFNFNQQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQNQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRMLFLEL FNLTLLCVEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDQGDESQNQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL $\verb|FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL|$ FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL FNLTLLCMEEYVIEPKSVQFLVQHGFNFNRQYAQGIPYHKGNDKGDESQSQSVRTLFLEL

IRARRPLVLHNGLIDLVFLYQNFYAHLPESLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV ${\tt IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV}$ IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFEARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV TRARRPLVI.HNGI.TDI.VFI.YONFYAHI.PETI.GTFTADI.CEMFPAGIYDTKYAAEFHARFV ${\tt IRARRPLVLHNGLIDLVFLYQNFYAHLPETLGTFTADLCEMFPAGIYDTKYAAEFHARFV}$ IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARF- ${\tt IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV}$ IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYASEFHARFV ${\tt IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV}$ IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYONFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV ${\tt IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV}$ IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV

IRARRPLVLHNGLIDLVFLYQNFYAHLPENLGTFTADLCEMFPAGIYDTKYAAEFHARFV

Homo-sapiens Psammomys-obesus Meriones-unquiculatus Acomys-russatus Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

ASYLEYAFRKCERENGKORAAGSPHLTLEFCNYPSSMRDHIDYRCCLPPAT-HRPHPTSI ASYLEYAFRKCERENGKORAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTYHRSHTGGI ASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTYHRSHTSGI ASYLEYAFRKCERENGKQRAAGGPHLALEFCSYPSSMRGHIDYRCCMSPVTDRRSYATGI ASYLEYAFRKCERENGROOAVGSPHLALEFCSYPSSMRGHIDYRCCMSPVTCRRSYTTGI ASYLEYAFRKCERENGKRRAAGTPHLVLEFCSYPSSMRGHIDYRCCLSPVTYRRSHTTSI ASYLEYAFRKCERENGKQRAAGTPHLALEFCSYPSSMRGHIDYRCCMSPVTYRRSHTTGI ASYLEYAFRKCERENGKQRAAGTPHLALEFCSYPSSMRSHIDYRCCISPVTYRRSHTTGI -----FCSYPSSMRDHIDYRCCMSPVTYRRSHTTGI ASYLEYAFRKCERENGKORAAGSPHIJTLEFCSYPSSMGGHIDYRCCMSPVTHRRSHTSSI $\verb|ASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTYRRFHTSGI|$ ASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCTSPGTCRRSRPTGI ASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSSMRGHIDYRCCMSPGTCRRSHTTGI ASYLEYVFRKCERENGKORAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTCRRSHTTGI ASYLEYAFRKCERENGKROAAGSPHLALEFCSYPSSMRGHIDYRCCMSPITSRRSHTTGI ASYLEYAFRKCERENGKRQATGSPHLALEFCSYPSSMRGHIDYRCCMSPVTSRRSHTAGI ASYLEYAFRKCERENGKRQAAGSPHLALEFCSYPSSMRGHIDYRCCMSPVTSRRSHTTGI ASYLEYAFRKCERENGKQRAAGSPHLALEFCSYPSNMRGHIDYRCCMPPVTCRPPHTTGI ASYLEYPFPEM-----ASYLEYAFRK-----ASYLEYAFRKCERENGKQRAAGSPHVALEFCSYPSSMRGHIDYRCCMSPVSCRRSHTTGI

Homo-sapiens Psammomys-obesus Meriones-unguiculatus Acomys-russatus Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

CDNFSAYGWCPLGPQCPQSHDIDLIIDTDEAAAEDKRRRR--RRREKRKRALLNLPGTQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRRRALLSQPGMQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRRRALLSQPGMQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRKR--RRKDKRRRALLRQPGTQT CDKFSAYGWCPLGPECPQSHDIDLIIDTDEAVAEDKRRRRWQRRKDKRKRALQSQPGTQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRRRALLSQLGTQN CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALLSQPETQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALLSQPGTQT CNKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRRRALLSQPETQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALLSOPGAOT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALLSQPGAQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRSLQSQPGTQA CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALQSQPGTQT CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALQSQPQTQT CTKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDRRKRALLNQPGTET CTKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDRRKRALLSQPGTGT CTRFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDRRKRALLSQPGTET CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALQSQLGTQT ______ _____

CDKFSAYGWCPLGPQCPQSHDIDLIIDTDEAVAEDKRRRR--RRKDKRKRALQSQPGTQN

Homo-sapiens Psammomys-obesus Meriones-unquiculatus Acomys-russatus Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

SGEAKDGPPKKQVCGDSIKPE-----ETEOEVAAD FEEAEEGPPTKQVCEDSLKTE-----NTEQKVAEG FEEAEEGPPTKQVCEDSLKTE-----NPEQKVAEG FEEGEDGPPTKQVREDSLNTE-----NTEQKVAEG LEEAEGGPPTKOVCEDSLKAE------KMEOKVAEG FEEADDGPPTKQVCEDNLKTQ-----ELEQRVTER FEEAEDGPPTKQVCEDSLKTE-----EMEQRVTEG FEEAEDGPPTKQVCEDNLKTE-----EIEQRVTEG FEEAEDGPPTKQVCEDSLKTE-----EIEQKVTEG FEEAEDGPPTKQICEDSLKTE-----ETEQKVTEG FEEAEDGPPTKQVCEDSLKTE-----EIEQKVTEG LAEAEDGPPTKQVCEDSLKTE-----KMEQKVAEG LAEAEDGPPTKQVCEDSLKTE-----KMEQKVAEG LEEAEDGPPTKOVCEDSLOTE-----KIEOIMAEG FEEAEDGPPTKQVCEDSLKTE-----IEQKVTEG $\verb|FEEAEDGPPTKQVCEDSLKTETEQKVTEGESRDQAEDGLPTKQVCEGSLKTEIEQKVTEG|$ FEEAEDGPPIKQVCEDSLKTE-----IEQKVTEG LEEAEDGPPTKOVCEDNVKTE-----KVEOKVAEG _____ LEEAEDGPPTKOVCEDSLKTE-----KIEOKVAEG

Homo-sapiens Psammomys-obesus Meriones-unguiculatus Acomys-russatus ETRNLPHSKQGNKNDLEMGIKAARPEIADRATSEVPGSQASPNPVPGDGLHRAGFDAFMT ETRDQPGSKQGHKGGLEMEHEAVSSEIADVATSELPVNQTSPNPVPGDGLHRAGFDAFMT ETRDQVGSKQGHEGGLEMEHEAPSSEIADVATSELPVNQASPNPVPGDGLHRAGFDAFMT ETSDOLGSKOGHKGGLEMKHEATGSETADVATSELOVNOASPNPVPGDGLHRAGFDAFMT Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

DAGDQLGSRQGHTGSLEIAHRRTSAETADVAPSELPVSQASTNPLPGDGLHRAGFDAFMT ETRDELDSKQGHKSDLEMEHKATGSETADVAISELPVSQASPNPMPGDGLHRAGFDAFMT ETRDELGSKQAHKSGLEMEHKATSSETVDVATTELPVSQASPNPVPGDGLHRAGFDAFMT EIRDELGSKQAHKSGSEMEHKATSSETVDVATSELPVSQASPNPVPGDGLHRAGFDAFMT $\verb|ETRDQLGSQQGHKSSLEIEYKATSSKIADVATSELPVSQASPNPMPGDGLHRAGFDAFMT|$ ETKDQLGSQQDHKSGLAIRRKATSSETADVATSELPVSQANPNPVPGDGLHRAGFDAFMT ETRDQLGSQQGHKSGLAVERKATSSETAEVATSELPVSQANPNPGPGDGLHRAGFDAFMT EAGDOPGSREGHTSSLEMAHRRTSAETADVATSELLVNOASTNPVPGDGLHRAGFDAFMT ${\tt EAGDQPGSRQDHTGSLEMEHRRTRAETAEVATSELLVSQARTDPVPGDGLHRAGFDAFMT}$ EAKDQLGSKQGHTGSLVMAHKRTSSETADMATSDLLVNQGSTNPVPGDGLHRAGFDAFMT ETRDQLGSNQDHKSDLEVEHKATSSEIADVAASELPVSQASPNPVPGDGLHRAGFDAFMT ESRDQLGSKQCHNSDLEVEHKATSSEIADVAASELPASQASPNPVPGDGLHRAGFDAFMT ESRDQLGSKQDQNSDLEVEHKATSSEIADVAASELPVSQASPNPVPGDGLHRAGFDAFMT EAGDELGSRQGHTGSPEMAHR-TSADTADVATSELPVNQANANPVPGDGLHRAGFDAFMT ---DOLGSTOGHKDSLEMACKRT----ADVPTSELLVNOASPNPVPGDGLHRAGFDAFMT

Homo-sapiens Psammomvs-obesus Meriones-unguiculatus Acomys-russatus Mastomys-coucha Phodopus-roborovskii Cricetulus-griseus Mesocricetus-auratus Neotoma-lepida Onychomys-torridus Peromyscus-californicus-insignis Mus-caroli

Mus-pahari Arvicanthis-niloticus Myodes-glareolus Chionomys-nivalis Microtus-ochrogaster Apodemus-sylvaticus Mus-musculus Rattus-norvegicus Rattus-rattus

GYVMAYVGLSQGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSHSSKAHNQKMKLAW GYVMAYVGLSOGPOLCSSRPWLPECHNKVYLSGKTVPLTVAKSOFSHSSKAHNOKMKLAW GYVMAYVGLSQGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSHSSKAHNQKMKLAW GYVMAYVGLSQGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAW GYVMAYVGLSQGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAW GYVMAYVGLSQGPQLCSSGPWLPECHNKVYLSGKTVPLTVARSQFSRSSKAHNQKMKLAW ${\tt GYVMAYVGLSQGLQLCSSEPWLPECHNKVYLSGKTVPLTVTKSQFSRPSKAHNQKMKLAW}$ GYVMAYVGLSQGLQLCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAW GYVMAYVGLSQGLQLCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAW

GYVMAYVEVSQGPQPCSSGPWLPECHNKVYLSGKAVPLTVAKSQFSRSSKAHNQKMKLTW

GYVMAYVGLSQGTQLCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAW

GYVMAYVGLSOGTOLCSSEPWLPECHNKVYLSGKTVPLTVAKSOFSRPSKAHNOKMKLAW

GYVMAYVGLSQGLQLCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAW GYVMAYVGLSQGLQLCSSEPWLPKCHNKVYLSGKTVPLTVAKSQFSHPSKAHKQKMKLAW

GYVMAYVGLRHGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAW GYVMAYVGLRHGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAW GYVMAYVGLRHGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAW GYVMAYVGLRHGPQLCSSGPWLPECHNKVYLSGKTVPLTVAKSQFSRSSKAHNQKMKLAW GYVMAYVGLSQGLQLCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAW -----SLATHI----------PMA-----

GYVMAYVGLSKGLQLCSSEPWLPECHNKVYLSGKTVPLTVAKSQFSRPSKAHNQKMKLAW

Homo-sapiens GSS Psammomys-obesus GSS Meriones-unguiculatus GSS Acomys-russatus GNS Mastomys-coucha GSS Phodopus-roborovskii SSS GSS Cricetulus-griseus Mesocricetus-auratus GSS Neotoma-lepida GSS Onychomys-torridus

Peromyscus-californicus-insignis GSS Mus-caroli GSS Mus-pahari GSS Arvicanthis-niloticus GSS Myodes-glareolus Chionomys-nivalis GSS Microtus-ochrogaster GSS Apodemus-sylvaticus GSS Mus-musculus Rattus-norvegicus GAL Rattus-rattus

[Q6] Create a phylogenetic tree, using either a parsimony or distance-based approach. Bootstrapping and tree rooting are optional. Use "simple phylogeny" online from the EBI or any respected phylogeny program (such as MEGA, PAUP, or Phylip). Paste an image of your Cladogram or tree output in your report.

[Q7] Generate a sequence identity based **heatmap** of your aligned sequences using R.

If necessary convert your sequence alignment to the ubiquitous FASTA format (Seaview can read in clustal format and "Save as" FASTA format for example). Read this FASTA format alignment into R with the help of functions in the **Bio3D package**. Calculate a sequence identity matrix (again using a function within the Bio3D package). Then generate a heatmap plot and add to your report. Do make sure your labels are visible and not cut at the figure margins.

[Q8] Using R/Bio3D (or an online blast server if you prefer), search the main protein structure database for the most similar atomic resolution structures to your aligned sequences.

List the top 3 *unique* hits (i.e. not hits representing different chains from the same structure) along with their Evalue and sequence identity to your query. Please also add annotation details of these structures. For example include the annotation terms PDB identifier (structured), Method used to solve the structure (experimental Technique), resolution (resolution), and source organism (source).

Similar atomic resolution structures:

I used two methods to validate this date, PDB website and the NCBI Blast website. Both methods only provided these three structures.

ID	Technique	Resolution	Source	Evalue	Identity
2FC6	SOLUTION NMR		Homo sapiens	1.99e-12	76

3D45	X-RAY DIFFRACTION	3 Å	Mus musculus	7.51e-7	26
2A1S	X-RAY DIFFRACTION	2.6 Å	Homo sapiens	1.068e-7	29

[Q9] Generate a molecular figure of one of your identified PDB structures using **VMD**. You can optionally highlight conserved residues that are likely to be functional. Please use a white or transparent background for your figure (i.e. not the default black).

Based on sequence similarity. How likely is this structure to be similar to your "novel" protein?

2FC6 is very likely to be similar in structure to Mus musculus TOE1 like protein given the high sequence similarity (>76%).

[Q10] Perform a "Target" search of ChEMBEL (https://www.ebi.ac.uk/chembl/) with your novel sequence. Are there any **Target Associated Assays** and **ligand efficiency data** reported that may be useful starting points for exploring potential inhibition of your novel protein?

Yes, there are five different targets. Within those targets, there are several assays and ligand efficiency data that could be useful starting points for exploring potential inhibition of the novel protein. One strong contender is purine-2,6-dione which inhibited PARN. PARN has a similar structure to the novel protein.

Ligand Efficiencies

Target Report Card

Assay Report Card

Discovery, synthesis and biochemical profiling of purine-2,6-dione derivatives as inhibitors of the human poly(A)-selective ribonuclease Cafl

https://doi.org/10.1016/j.bmcl.2015.07.095.