Control Systems

G V V Sharma*

5

CONTENTS

1	Stability 1.1 Second order System	1 1	0.8
2	Routh Hurwitz Criterion	2	0.6
3	State-Space Model	3	£ 0.4
4	Compensators	5	0.2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python

Download python codes using

Nyquist Plot

codes are available in the text.

svn co https://github.com/gadepall/school/trunk/ control/codes

1 STABILITY

1.1 Second order System

5

1.1. Consider the following second order system with the transfer function

$$G(s) = \frac{1}{1 + 2s + s^2} \tag{1.1.1}$$

Is the system stable?

Solution: The poles of

$$G(s) = \frac{1}{1 + 2s + s^2} \tag{1.1.2}$$

are at

$$s = -1$$
 (1.1.3)

i.e., the left half of s-plane. Hence the system is stable.

1.2. Find and sketch the step response c(t) of the system.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.2

Solution: For step-response, we take input as unit-step function u(t)

$$C(s) = U(s).G(s) = \left[\frac{1}{s}\right] \left[\frac{1}{1+2s+s^2}\right]$$

$$= \frac{1}{s(1+s)^2}$$

$$= \frac{1}{s} - \frac{1}{(1+s)} - \frac{1}{(1+s)^2}$$
(1.2.2)

Taking the inverse Laplace transform,

$$c(t) = L^{-1} \left[\frac{1}{s} \right] - L^{-1} \left[\frac{1}{1+s} \right] - L^{-1} \left[\frac{1}{(1+s)^2} \right]$$

$$= (1 - e^{-t} - te^{-t}) u(t)$$
(1.2.5)

The following code plots c(t) in Fig. 1.2

codes/ee18btech11002/plot.py

1.3. Find the steady state response of the system using the final value theorem. Verify using 1.2.5

Solution: To know the steady response value

of c(t), using final value theorem,

$$\lim_{t \to \infty} c(t) = \lim_{s \to 0} sC(s) \tag{1.3.1}$$

We get

$$\lim_{s \to 0} s \left(\frac{1}{s}\right) \left(\frac{1}{1+s+s^2}\right) = \frac{1}{1+0+0} = 1$$
(1.3.2)

Using 1.2.5,

$$\lim_{t \to \infty} c(t) = \lim_{t \to \infty} \left(1 - e^{-t} - t e^{-t} \right) u(t) \tag{1.3.3}$$

$$= (1 - 0 - 0) = 1 \tag{1.3.4}$$

$$= (1 - 0 - 0) = 1 \tag{1.3.4}$$

1.4. Find the time taken for the system output c(t) to reach 94% of its steady state value.

Solution: Now, 94% of 1 is 0.94, so we should now solve for a positive t such that

$$1 - e^{-t} - te^{-t} = 0.94 (1.4.1)$$

The following code

codes/ee18btech11002/solution.py

provides the necessary solution as

$$t = 4.5228 \tag{1.4.2}$$

2 ROUTH HURWITZ CRITERION

2.1. Consider a unity feedback system as shown in Fig. 2.1, with an integral compensator $\frac{k}{a}$ and open-loop transfer function

$$G(s) = \frac{1}{s^2 + 3s + 2}$$
 (2.1.1)

where k greater than 0. Find its closed loop transfer function.

Fig. 2.1

Solution: H(s) = 1 in Fig. 2.1, due to unity

feedback, the transfer function is given by

$$\frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
 (2.1.2)

$$\implies T(s) = \frac{k}{s^3 + 3s^2 + 2s}$$
 (2.1.3)

2.2. Find the *characteristic* equation for G(s). **Solution:** The characteristic equation is

$$1 + G(s)H(s) = 0 (2.2.1)$$

$$\implies 1 + \left[\frac{k}{s^3 + 3s^2 + 2s} \right] = 0 \qquad (2.2.2)$$

or,
$$s^3 + 3s^2 + 2s + k = 0$$
 (2.2.3)

2.3. Using the tabular method for the Routh hurwitz criterion, find k > 0 for which there are two poles of unity feedback system on $j\omega$ axis.

Solution: This criterion is based on arranging the coefficients of characteristic equation into an array called Routh array. For any characteristic equation

$$q(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$
(2.3.1)

the Routh array can be constructed as

$$\begin{vmatrix} s^{n} \\ s^{n-1} \\ s^{n-2} \\ \vdots \end{vmatrix} \begin{vmatrix} a_{0} & a_{2} & a_{4} & \cdots \\ a_{1} & a_{3} & a_{5} & \cdots \\ b_{1} & b_{2} & b_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \cdots \end{vmatrix}$$
(2.3.2)

where

$$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1} \tag{2.3.3}$$

$$b_2 = \frac{a_1 a_4 - a_0 a_5}{a_1} \tag{2.3.4}$$

$$c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1} \tag{2.3.5}$$

$$c_2 = \frac{b_1 a_5 - a_1 b_3}{b_1} \tag{2.3.6}$$

For poles to lie on imaginary axis any one entire row of hurwitz matrix should be zero. Constructing the routh array for the characteristic equation obtained in 2.2.1,

$$s^3 + 3s^2 + 2s + k = 0 (2.3.7)$$

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 3 & k \\ \frac{6-k}{3} & 0 \\ k & 0 \end{vmatrix}$$
 (2.3.8)

For poles on $j\omega$ axis any one of the row should be zero.

$$\therefore \frac{6-k}{3} = 0 \text{ or } k = 0$$

$$\implies k = 6 \quad \because k > 0$$
(2.3.9)
$$(2.3.10)$$

2.4. Repeat the above using the determinant method.

Solution: The *Routh matrix* can be expressed as

$$\mathbf{R} = \begin{pmatrix} a_0 & a_2 & a_4 & \cdots \\ a_1 & a_3 & a_5 & \cdots \\ 0 & a_0 & a_2 \cdots \\ 0 & a_1 & a_3 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \cdots \end{pmatrix}$$
 (2.4.1)

and the corresponding Routh determinants are

$$D_1 = |a_0| (2.4.2)$$

$$D_2 = \begin{vmatrix} a_0 & a_2 \\ a_1 & a_3 \end{vmatrix} \tag{2.4.3}$$

$$D_{2} = \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} & a_{4} \\ a_{1} & a_{3} & a_{5} \\ 0 & a_{0} & a_{2} \end{vmatrix}$$
 (2.4.3)

If at least any one of the Determinents are zero then the poles lie on imaginary axes. From (2.2.1),

$$D_1 = 1 \neq 0 \tag{2.4.6}$$

$$D2 = \begin{vmatrix} 1 & 2 \\ 3 & k \end{vmatrix} = k - 6 = 0 \implies k = 6 \quad (2.4.7)$$

2.5. Verify your answer using a python code for both the determinant method as well as the tabular method.

Solution: The following code

provides the necessary soution.

• For the system to be stable all coefficients should lie on left half of s-plane. Because if any pole is in right half of s-plane then there will be a component in output that increases without bound, causing system to be unsta-

- ble. All the coefficients in the characteristic equation should be positive. This is necessary condition but not sufficient. Because it may have poles on right half of s plane. Poles are the roots of the characteristic equation.
- A system is stable if all of its characteristic modes go to finite value as t goes to infinity. It is possible only if all the poles are on the left half of s plane. The characteristic equation should have negative roots only. So the first column should always be greater than zero. That means no sign changes.
- A system is unstable if its characteristic modes are not bounded. Then the characteristic equation will also have roots in the right side of s-plane. That means it has sign changes.

3 STATE-SPACE MODEL

3.1. State the general model of a state space system specifying the dimensions of the matrices and vectors.

Solution: The model is given by

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{3.1.1}$$

$$\mathbf{v}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \tag{3.1.2}$$

with parameters listed in Table 3.1.

Variable	Size	Description	
u	$p \times 1$	input(control)	
		vector	
y	$q \times 1$	output vector	
X	$n \times 1$	state vector	
A	$n \times n$	state or system	
		matrix	
В	$n \times p$	input matrix	
C	$q \times n$	output matrix	
D	$q \times p$	feedthrough	
		matrix	

TABLE 3.1

3.2. Find the transfer function $\mathbf{H}(s)$ for the general system.

Solution: Taking Laplace transform on both

sides we have the following equations

$$s\mathbf{I}X(s) - x(0) = \mathbf{A}X(s) + \mathbf{B}U(s)$$

$$(3.2.1)$$

$$(s\mathbf{I} - \mathbf{A})X(s) = \mathbf{B}U(s) + x(0)$$

$$(3.2.2)$$

$$X(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s) + (s\mathbf{I} - \mathbf{A})^{-1}x(0)$$

and

$$Y(s) = \mathbf{C}X(s) + D\mathbf{I}U(s) \tag{3.2.4}$$

Substituting from (3.2.3) in the above,

$$Y(s) = (\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D\mathbf{I})U(s) + \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}x(0) \quad (3.2.5)$$

3.3. Find H(s) for a SISO (single input single output) system.

Solution:

$$H(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + DI \quad (3.3.1)$$

3.4. Given

$$H(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$$
 (3.4.1)

$$D = 0 \tag{3.4.2}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{3.4.3}$$

find A and C such that the state-space realization is in *controllable canonical form*.

Solution:

$$\therefore \frac{Y(s)}{U(s)} = \frac{Y(s)}{V(s)} \times \frac{V(s)}{U(s)},\tag{3.4.4}$$

letting

$$\frac{Y(s)}{V(s)} = 1, (3.4.5)$$

results in

$$\frac{U(s)}{V(s)} = s^3 + 3s^2 + 2s + 1 \tag{3.4.6}$$

giving

$$U(s) = s^{3}V(s) + 3s^{2}V(s) + 2sV(s) + V(s)$$
(3.4.7)

so equation 0.1.13 can be written as

$$\begin{pmatrix} sV(s) \\ s^2V(s) \\ s^3V(s) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} \begin{pmatrix} V(s) \\ s(s) \\ s^2V(s) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U$$
 (3.4.8)

So

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} \tag{3.4.9}$$

$$Y = X_1(s) = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} V(s) \\ sV(s) \\ s^2V(s) \end{pmatrix}$$
 (3.4.10)

$$\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \tag{3.4.11}$$

3.5. Obtain **A** and **C** so that the state-space realization in in *observable canonical form*.

Solution: Given that

$$H(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$$
 (3.5.1)

$$\frac{Y(s)}{U(s)} = \frac{1}{s^3 + 3s^2 + 2s + 1}$$
 (3.5.2)

$$Y(s) \times (s^3 + 3s^2 + 2s + 1) = U(s)$$
 (3.5.3)

$$s^{3}Y(s) + 3s^{2}Y(s) + 2sY(s) + Y(s) = U(s)$$
(3.5.4)

$$s^{3}Y(s) = U(s) - 3s^{2}Y(s) - 2sY(s) - Y(s)$$
(3.5.5)

$$Y(s) = -3s^{-1}Y(s) - 2s^{-2}Y(s) + s^{-3}(U(s) - Y(s))$$
(3.5.6)

let $Y = aU + X_1$

by comparing with equation 1.5.6 we get a=0 and

$$Y = X_1$$
 (3.5.7)

inverse laplace transform of above equation is

$$y = x_1 (3.5.8)$$

so from above equation 1.5.6 and 1.5.7

$$X_1 = -3s^{-1}Y(s) - 2s^{-2}Y(s) + s^{-3}(U(s) - Y(s))$$
(3.5.9)

$$sX_1 = -3Y(s) - 2s^{-1}Y(s) + s^{-2}(U(s) - Y(s))$$
(3.5.10)

inverse laplace transform of above equation

$$\dot{x_1} = -3y + x_2 \tag{3.5.11}$$

where

$$X_2 = -2s^{-1}Y(s) + s^{-2}(U(s) - Y(s))$$
 (3.5.12)

$$sX_2 = -2Y(s) + s^{-1}(U(s) - Y(s))$$
 (3.5.13)

inverse laplace transform of above equation

$$\dot{x_2} = -2y + x_3 \tag{3.5.14}$$

where

$$X_3 = s^{-1}(U(s) - Y(s))$$
 (3.5.15)

$$sX_3 = U(s) - Y(s)$$
 (3.5.16)

inverse laplace transform of above equation

$$\dot{x_3} = u - y \tag{3.5.17}$$

so we get four equations which are

$$y = x_1 \tag{3.5.18}$$

$$\dot{x_1} = -3y + x_2 \tag{3.5.19}$$

$$\dot{x_2} = -2y + x_3 \tag{3.5.20}$$

$$\dot{x_3} = u - y \tag{3.5.21}$$

sub $y = x_1$ in 1.5.19,1.5.20,1.5.21 we get

$$y = x_1 \tag{3.5.22}$$

$$\dot{x_1} = -3x_1 + x_2 \tag{3.5.23}$$

$$\dot{x_2} = -2x_1 + x_3 \tag{3.5.24}$$

$$\dot{x}_3 = u - x_1 \tag{3.5.25}$$

so above equations can be written as

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 0 \\ -2 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \quad (3.5.26)$$

So

$$\mathbf{A} = \begin{pmatrix} -3 & 1 & 0 \\ -2 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \tag{3.5.27}$$

$$y = x_1 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 (3.5.28)

$$\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \tag{3.5.29}$$

3.6. Find the eigenvalues of **A** and the poles of H(s)

using a python code.

Solution: The following code

codes/ee18btech11004.py

gives the necessary values. The roots are the same as the eigenvalues.

3.7. Theoretically, show that eigenvaues of **A** are the poles of *H*(*s*). **Solution:** as we know that the characteristic equation is det(sI-A)

$$\mathbf{sI} - \mathbf{A} = \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 1 & 2 & s + 3 \end{pmatrix}$$
(3.7.1)

therfore

$$det(sI - A) = s(s^2 + 3s + 2) + 1(1) = s^3 + 3s^2 + 2s + 1$$
(3.7.2)

so from equation 1.6.2 we can see that charcteristic equation is equal to the denominator of the transefer function

4 Compensators

5 NYQUIST PLOT

5.1. The open loop transfer function of a unity feedback system is given by

$$G(s) = \frac{\pi e^{-0.25s}}{s} \tag{5.1.1}$$

5.2. Find Re $\{G(j\omega)\}\$ and Im $\{G(j\omega)\}\$.

Solution: From (5.1.1),

$$G(j\omega) = \frac{\pi}{\omega}(-\sin 0.25\omega - j\cos 0.25\omega)$$
(5.2.1)

$$(3.5.27) \qquad \Longrightarrow \operatorname{Re}\left\{G(j\omega)\right\} = \frac{\pi}{\omega}(-\sin 0.25\omega) \qquad (5.2.2)$$

$$\operatorname{Im}\left\{G(j\omega)\right\} = \frac{\pi}{\omega}(-j\cos 0.25\omega) \qquad (5.2.3)$$

5.3. Sketch the Nyquist plot.

Solution: The Nyquist plot is a graph of Re $\{G(j\omega)\}$ vs Im $\{G(j\omega)\}$. The following python code generates the Nyquist plot in Fig. 5.3

5.4. Find the point at which the Nyquist plot of G(s) passes through the negative real axis

Fig. 5.3

Solution: Nyquist plot cuts the negative real axis at ω for which

$$\angle G(1\omega) = -\pi \tag{5.4.1}$$

From (5.1.1),

$$G(j\omega) = \frac{\pi e^{-\frac{j\omega}{4}}}{j\omega} = \frac{\pi e^{-j(\frac{\omega}{4} + \frac{\pi}{2})}}{\omega}$$
 (5.4.2)

$$\implies \angle G(j\omega) = -\left(\frac{\omega}{4} + \frac{\pi}{2}\right) \tag{5.4.3}$$

From (5.4.3) and (5.4.1),

$$\frac{\omega}{4} + \frac{\pi}{2} = \pi \tag{5.4.4}$$

$$\implies \omega = 2\pi$$
 (5.4.5)

Also, from (5.1.1),

$$|G(j\omega)| = \frac{\pi}{|\omega|}$$
 (5.4.6)

$$\implies |G(\jmath 2\pi)| = \frac{1}{2} \tag{5.4.7}$$

5.5. Find the value of *P* defined in Table 5.5 from Fig. 5.3.

Solution: P = 0.

5.6. Find the value of N defined in Table 5.5 from (5.1.1)

Solution: H(s) = 1, G(s)H(s) = G(s). Also, G(s) has a pole at s = 0, hence N = 0.

5.7. Use the Nyquist Stability criterion to determine if the system in (5.4.3) is stable.

Solution: According to the Nyquist criterion,

Variable	Value	Description
Z	0	Poles of $\frac{G(s)}{1+G(s)H(s)}$ in right half of s plane
N	0	Poles of $G(s)H(s)$ in right half of s plane
Р	0	No of clockwise encirclements of $G(s)H(s)$ about -1+j0 in the Nyquist plot

TABLE 5.5

the system is stable if

$$Z = P - N = 0, (5.7.1)$$

where Z is defined in Table 5.5. $\therefore Z = 0$ from (5.7.1), the system is stable.