NOTES 19: CLT-BASED INFERENCE FOR PROPORTIONS

Stat 120 | Fall 2025 Prof Amanda Luby

CLT: The Central Limit Theorem (CLT) tells us that if the sample size is big enough and the sample is random,

$$\bar{X} \sim N(___, ___)$$

$$\hat{p} \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

The general form for a **confidence interval** is:

Example: Finding z^*

- 95% confidence interval
- 68% confidence interval
- 99% confidence interval
- 90% confidence interval

1 How big is big enough?

Example 1: $\hat{p}=.5$

Example 1: $\hat{p}=.05$

Rule of Thumb for Proportions:

- Expected count in each category (Yes/No) should be > _____
- \$np > \$ ____ and \$n(1-p) > \$ ____

2 How do we find the SE?

Standard Error for Proportions:		
Idea: As n gets bigger, the SE gets if \hat{p} is close to 0 or 1	If \widehat{p} is close to .5, the SE is	than
Example: ESP Example Again		
n = 14		
p_hat = 3/14 n = 14		
$H = 14$ $SE_p = sqrt((p_hat*(1-p_hat))/n)$		
z_score = (p_hat2)/SE_p		
<pre>p_val = pnorm(z_score, lower.tail = FALSE) p_val</pre>		
[1] 0.4482		
n=1400:		
n=14000:		
Big Picture Picture		