| Apellido y Nombre: |      |
|--------------------|------|
|                    | DNI: |

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

## Algoritmos y Estructuras de Datos. Examen Final. [29 de Julio de 2004]

## [Ej. 1] [Clases (20 puntos)]

Escribir las primitivas que se indican del TAD list<> insert(x,p), erase(p), retrieve(p)/\*p, next()/p++, list() y ~list(). Escribir las declaraciones de la clase y los componentes necesarios para implementar las funciones indicadas.

## [Ej. 2] [Programación (total = 80 puntos)]

a) [corrida (40 puntos)]

En ciertas aplicaciones interesa detectar las corridas ascendentes en una lista de números  $L=[a_1\ a_2\ ,\ ...,\ a_n]$ , donde cada corrida ascendente es una sublista de números consecutivos  $a_i,\ a_{i+1},\ ...,\ a_{i+k}$  de modo tal que  $a_j \le a_{j+1}$  para j=i,...,i+k-1, y es máxima en el sentido que si i>0 entonces  $a_{i-1}>a_i,\ y$  si i+k< n entonces  $a_{i+k}>a_{i+k+1}$ . Por ejemplo, si n=10 y la lista es L=[0,5,5,9,4,3,9,6,5,5,2], entonces hay h=6 corridas ascendentes, a saber,  $[0,5,5,9],\ [4],\ [3,9],\ [6],\ [5,5]$  y [2]. Usando las operaciones del TAD lista, escribir una función int ascendente(list<t>&l,vector< list<t> &v) en la cual, dada una lista de enteros 1, almacene cada carrera ascendente como una componente del vector de listas vectorlist <t> &v, devolviendo además el número h de carreras ascendentes halladas.

b) [ord-nodo (20 puntos)]

Escribir una función predicado bool ordnodo(tree<int> &A); que verifica si cada secuencia de hermanos del subárbol del nodo n (perteneciente al árbol ordenado orientado A) estan ordenadas entre sí, de izquierda a derecha. Por ejemplo, para el árbol (3 5 (6 1 3) (7 4 5)) debería retornar true, mientras que para (3 9 (6 1 3) (7 4 2)) debería retornar false, ya que las secuencias de hermanos (9 6 7) y (4 2) NO están ordenados. Se sugiere el siguiente algoritmo: para un dado nodo retornar false si: 1) sus hijos no estan ordenados o 2) algunos de sus hijos contiene en su subárbol una secuencia de hermanos no ordenada (recursividad).

c) [es-completo (20 puntos)]

Escribir una función predicado bool es\_completo(btree<int> &), la cual retorna verdadero si el árbol binario es completo.

## [Ej. 3] [operativos (total = 80 puntos)]

- a) [rec-arbol (30 ptos)] Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son
  - ORD\_PRE = $\{C, Z, Q, R, A, M, P, K, L, T\},\$
  - ORD\_POST =  $\{Z, A, P, M, K, L, R, T, Q, C\}$ .
- b) [huffman (30 ptos)] Dados los caracteres siguientes con sus correspondientes probabilidades, construir el código binario y encodar la palabra PAPAFRITA P(P) = 0.05, P(A) = 0.2, P(F) = 0.1, P(R) = 0.05, P(I) = 0.2, P(T) = 0.15, P(Q) = 0.15, P(S) = 0.1 Calcular la longitud promedio del código obtenido.
- c) [misc-arbol (10pt)]: Dado el árbol (c q (t (r u (v z)))),
  - 1) Cuál es el nodo que está a la vez a la izquierda de v y no es descendiente de r?
  - 2) Particione el árbol con respecto al nodo q, es decir indique cuales son sus antecesores y descendientes propios, derecha e izquierda.
- d) [colorear-grafo (10 ptos)]

| Apellido y Nombre: |                        |  |
|--------------------|------------------------|--|
|                    |                        |  |
| Carrera            | DNI:                   |  |
|                    | la de imprenta GRANDEI |  |

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos



trategia heurística para tratar de usar el me-

[Ej. 4] [Preguntas (total = 20 puntos, 5puntos por pregunta)] Responder según el sistema "multiple choice", es decir marcar con una cruz el casillero apropiado. Atención: Algunas respuestas son

| intencionalmente "descabelladas" y tienen puntajes <b>negativos</b> !!]                                                                                                                                                        |                                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sea el árbol (a b (c d e)). ¿Cuál de las opcion ra?                                                                                                                                                                            | Tiene dos raíces y altura 2.  Tiene 3 hojas y altura 3.  Tiene 3 hojas y altura 2.  Tiene 4 nodos a profundidad 1 y 3 hoja                                               |  |  |
| ¿Cuál es el tiempo de ejecución para<br>la función find(x) en conjuntos im-<br>plementados con árboles binarios de<br>búsqueda?                                                                                                | Caso promedio $O(n)$ , peor caso $O(n)$ .  Siempre $O(n \log n)$ .  Caso promedio $O(n \log n)$ , peor caso $O(n^2)$ .  Caso promedio $O(n \log n)$ , peor caso $O(n)$ . |  |  |
| Sea L una lista conteniendo los elementos (1,3,4 pués de aplicar las siguientes líneas list <int>::iterator p,q; p = L.begin(); q = ++p; p = L.erase(q); p++; q = p; q++; ¿Cuál de las siguientes opciones es verdadera?</int> | #p=2, *q=5.  #p=2, q es inválido.  #p=4, *q=2  #p=4, q es inválido.                                                                                                      |  |  |
| ¿Cuál es el tiempo de ejecución para intersección conjuntos por vectores de bits? ( $N$ es el número elementos en el conjunto universal, $n$ el número elementos en el conjunto dado.)                                         | $de \qquad \Box O(N)$                                                                                                                                                    |  |  |

2

Examen Final. [29 de Julio de 2004]