第14章 固体干燥

- 14.1 概述
- 14.1.1固体去湿方法和干燥过程
- ・目的 去湿以便于贮藏、使用或进一步加工
- 物料的去湿方法
 - 机械去湿: 过滤, 离心
 - 吸附去湿: 干燥剂吸附
 - 供热干燥: 供热汽化湿分
 - 其他干燥方法: 真空干燥,冷冻干燥,微波 干燥

对流干燥过程的特点 热质同时反向传递

• 对流干燥操作的经济性

主要取决于能耗和热的利用率

热气和冷水接触:

气体温度高于水,热量从气体传递至水; 气相水的分压p_{水汽}<水温下的饱和蒸气压p_θ, 水由液体向气相蒸发; (反向传递) 热水的直接空气冷却: 热量从水传递至气相, $p_{\theta} > p_{x_{1}}$ 水汽化转到气相; (同向传递) 水汽化吸热、水汽冷凝放热,显然涉及传热! 过程方向判断: 传质, p_θ 和 p_{水汽}大小

传热与传质速率

$$q=lpha(heta_i-t)$$

$$N_A = k_g (p_\theta - p_{\chi \chi})$$

空气的湿度H:单位质量干气体带有水的质

量。 空气-水体系: $H = \frac{M_{\chi}}{M_{\chi}} \times \frac{p_{\chi\chi}}{p - p_{\chi\chi}}$

湿球温度tw:大量空气与少量水接触,传热 达到平衡时的温度。

湿空气的焓I:每1kg干气及其所带水 汽同时具有的焓。

$$I = C_g t + C_V H t + \gamma_0 H$$

$$I = (1.01 + 1.88H)t + 2500H$$

绝热饱和温度t_{as}:不饱和空气绝热增湿至饱和 且达到平衡(传质与传热)时的温度。

$$t_{as} = t - \frac{\gamma_{as}}{C_H} (H_{as} - H)$$

湿空气状态参数:

水汽分压p_{水汽}与露点温度t_d:

空气湿度H:

 $\varphi = \frac{p_{\chi \chi}}{q}$

相对湿度φ:

湿球温度 t_w (热平衡时)

湿空气的焓I:

绝热饱和温度t_{as}: (绝热饱和热平衡时)

湿空气的比体积v: 1kg干气及其所带Hkg水汽所

占的总体积。m³/kg干气

14.2 干燥静力学

14.2.1 湿气体的性质

温度,湿汽分压<u>(t,p)</u>——状态本质参数, 过程传递方向的判据

湿度,焓(<u>H,J)</u>——过程物料衡算、热量衡算 的基本参数

相对湿度 (如) ——饱和程度的度量

湿球温度 t_w ,绝热饱和温度 t_{as} ——过程的极限参数

露点温度 t_d —p的测量

湿气体比体积 2 计算气体体积流量的基本参数

$$v_H = (2.83 \times 10^{-3} + 4.56 \times 10^{-3} H)(t + 273)$$

空气-水系统的I-H图(总压100kPa)

14.2.2湿空气状态变化过程

- 加热与冷却过程不计阻力,湿空气经间壁加热或冷却过程属等压过程。
- · 加热: t升高p不变,p不变,H不变, ϕ 减小,表明湿空气接纳水汽的能力增强。
- 冷却: 若 t₂高于露点,则为等湿过程; 若 t₂低于露点,则必有部分水汽凝结出来,湿度降低。

绝热增湿过程

一般忽略绝热增湿过程的焓增量,将其视为等焓过程。

两股气流的混合

物料衡算:

干气: V₁+V₂=V₃

水分: $V_1H_1+V_2H_2=V_3H_3$

焓衡算: V₁I₁+V₂I₂=V₃I₃

显然,混点 C在A、B联线上,且符合杠杆规则

已知: t=50°C, H=0.016kg水/kg干气

求: Ι, p, φ, t_d, t_w=?

華東習工大學 EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY

解:
$$I = (1.01 + 1.88 H)t + 2500 H$$

$$= (1.01 + 1.88 \times 0.016) \times 50 + 2500 \times 0.016$$

$$=92kJ/kg$$

$$H = 0.622 \frac{p}{P - p} = 0.016 \Rightarrow p = 2.5 \text{kPa}$$

$$\varphi = \frac{p}{ps} = \frac{2.5}{12.335} = 20.27\%$$

$$p = p_s(t_d) \Rightarrow t_d = 21.07$$
°C

$$t_{\rm w} = t - \frac{r_{\rm w}}{1.09} (H_{\rm w} - H)$$
 试差得 $t_{\rm w} = 28.7$ °C

H-I图图示求解

湿空气性质小结

- (1) 当总压一定时,表征空气状态只有两个独立参数。即已知两个相互独立的参数即可(在I-H图上)确定一个湿空气状态点,其他参数也可以或确定。
- (2) t、 t_w 、 t_{as} 、 t_d 关系 $\varphi=1$, $t=t_w=t_{as}=t_d$ $\varphi<1$, $t>t_w=t_{as}>t_d$

14.2.3 水分在气-固两相间的平衡

単東理工大學 EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY

• 湿物料含水量的表示

干基: X_t kg水/kg绝对干料

湿基: w kg水/kg湿物料

$$X_{t} = \frac{w}{1 - w}$$

$$w = \frac{X_t}{1 + X_t}$$

G kg湿料,含水wkg水/kg湿料,

则绝对干料量
$$G_c = G(1-w)$$

• 结合水与非结合水

水分性质	结合力	平衡蒸汽压
非结合水	机械力	p_e = $p_{_S}$
结合水	化学力,物理化学力	$p_e \langle p_{_S} \rangle$

• 平衡蒸汽压曲线

- (1) 结合水与非结合水是以结合力来区分的, 表现为平衡蒸汽压不同,其大小只与湿固体的 性质有关而与气体状态无关。
- (2) 平衡水、自由水是以传质的平衡状态划分的,不仅与湿料的性质有关还与气体状态有关。相同湿料,气体 φ 越小则 X^* 越低。

• 平衡水分与自由水分 设用 $\phi=0.4$ 不饱和空气干燥湿固体,时间足够长。

>最初含非结合水, $p_e=p_s>p$

>结合水, $p_e \langle p_s p_e \rangle p$

> 当结合水 $p_e < p_s p_e = p$ 时,

此时,固体中的含水量X*称对应该空气状态的平衡水, X_t -X*(包括非结合水和部分结合水)为所有被指定状态空气带走的水分,称自由水。

- 14.3 干燥速率与干燥过程计算
- 14.3.1 物料在定态空气条件下的干燥速率

干燥动力学实验

恒定干燥:

干燥过程中,气体状态 t, φ ,u保持不变。记取物料试样的自由含水量 $X(=X_t-X^*)$ 与时间 t的关系,得到干燥曲线。

干燥曲线与干燥速率曲线

(1) 干燥曲线

定义:干燥速率

$$N_A = -\frac{GcdX}{Ad\tau}$$

 G_c : 试样中绝对干燥物料的 质量,kg;

A: 试样暴露于气流中的表面 积, \mathbf{m}^2 ;

X: 物料的自由含水量, $X = X_t - X^*$, kg水/kg干料;

(2) 干燥速率曲线

AB: 预热阶段

BC: 恒速段, $\theta = t_w$ 不变

$$N_{AE} = k_{H}(H_{W} - H) = \frac{\alpha}{r_{W}}(t - t_{W})$$

CD: 第一降速段, θ 上升 N_A 下降

DE: 第二降速段, θ 上升 N_4 下降

(3) 讨论

• 恒速阶段与降速阶段

	恒速阶段	降速阶段
去除水分	非结合水	内部非结合水,结合水
表面温度	θ=tw	$\theta = tw \sim t$
影响速率 主导因素	空气性质,流速 与物料性质无关	固体内部水分扩散速率

• 临界含水量 Xc

其他干燥条件相同,若物料分散越细,恒速阶段去除的非结合水越完全, *X*.越少;

若恒速阶段干燥速率越快,则可能有更多的内部非结合水来不及去除,从就越多。

- 空气条件对 N_{All} 、 X_c 和X*的影响
- (1) 空气温度 t、湿度H不变,流速u增加,则 N_A 加快,从而导致 X_c 上升,而X*而不变;
- (2) 空气湿度H、流速u不变,温度t升高,则 N_A 加快, X_c 升高,X*因空气H不变,t升高即 φ 下降。

14.3.2 间歇干燥过程的计算

命题

已知:干料量 G_c ,干燥面积A,干燥速率曲线

求: $X_1 \rightarrow X_2$ 的干燥时间

14.3.2.1恒速阶段的干燥时间 τ_1 因为

$$N_A = -\frac{G_c dX}{A d\tau} = const$$

所以

$$\tau_1 = \frac{G_c}{A} \quad \frac{X_1 - X_2}{N_{A \mid \Xi}}$$

其中
$$N_{A} \equiv k_H (H_w - H) = \frac{\alpha}{r_w} (t - t_w)$$

• 传质速率的估算

$$N_{A\boxtimes} = k_H(H_w - H) = \frac{\alpha}{r_w}(t - t_w)$$

干燥计算中常用经验的给热系数进行计算

- (1) 空气平行于物料表面流动
- (2) 空气自上而下或自下而上穿过颗粒堆积层
- (3) 单一球形颗粒悬浮于气流中

14.3.2.2降速阶段的干燥时间 τ₂

$$:: N_A = -\frac{G_c dX}{A d\tau} = K_x (X - X^*)$$

若降速段干燥速率曲线为直线, K_x =const

$$\int_0^{\tau} d\tau = \frac{-G_c}{AK_x} \int_{X_c}^{X_2} \frac{dX}{X - X^*}$$

$$\therefore \tau_2 = \frac{G_c}{AK_r} \ln \frac{X_c - X^*}{X_2 - X^*}$$

所以,间歇干燥时间 $\tau = \tau_1 + \tau_2$

14.3.3 连续干燥过程的一般特性

连续干燥过程的特点

- (1) 沿设备长度方向,气体状态不再恒定,t ↑, H↓。
- (2) 无恒速阶段、降速阶段, 只分为预热阶段、 表面汽化阶段和升温阶段。
- (3) 若忽略热损失,表面 汽化阶段: 物料 $\theta = t_w = \text{const}$, 气体为绝热增湿,等焓

14.3.4连续干燥过程的物料衡算与热量衡算预热器的物料衡算与热量衡算

- 预热器: 取控制体 [____]
- 物料衡算: *H*₀=*H*₁
- 热量衡算: $Q_{\overline{M}} = V(I_1 I_0) = V(1.01 + 1.88 H_0) (t_1 t_0)$

干燥器的物料衡算与热量衡算

取控制体 [____]

物料衡算: $V(H_2-H_1)=G_c(X_1-X_2)=W$

热量衡算: $VI_1+G_ci_1+Q_h=VI_2+G_ci_2+Q_H$

其中: 物料的焓 $i=(C_S+C_LX)\cdot\theta_2$

 C_s —一绝干料比热; C_L ——湿分比热;

14.3.5干燥器内热量分配及热效率

単東理工人學 EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY

• 空气在干燥器中放出热量的分析

设 Q_h =0,则整个干燥过程共加入热量即为

$$Q_{\overline{M}} = VC_{H1} (t_1 - t_0)$$

	带入干燥器/ サ出干燥器焓
空气	VCH1t1+r0H1 VCH1t2+r0H1 VCH2t2+r0H2
(干气量V)	W(r0+Cvt2) 7 VOH2 C2 110112
物料	GcCm ₁ 0 ₁ { WCL0 ₁
(干料量Gc)	$G_{C}Cm_{2}\theta_{1} \longrightarrow G_{C}Cm_{2}\theta_{2}$

其中
$$V = G_c(X_1 - X_2) = V(H_2 - H_1)$$
;
$$C_{H1} = C_g + C_v H_1;$$

$$C_{M2} = C_s + C_L X_2$$

• 热量分配

结论:

- ▶预热器提供的热量除一部分在干燥器内释放外,尚有部分未被利用。
- ▶气体在预热器内所释放的热量,主要消耗于三个方面,即直接用于干燥目的的水分汽化升温 Q₁,为达到规定含水量不可避免的物料升温 Q₂和干燥过程的热量损失 Q₃。

热效率 n

定义
$$\eta = \frac{Q_1 + Q_2}{Q_{\mathfrak{M}}}$$

按上述分析,则

$$\eta = \frac{Q_1 + Q_2}{Q_{\overline{M}}} = \frac{Q_{\dot{M}} - Q_{\dot{H}}}{Q_{\overline{M}}} = \frac{Q_{\overline{M}} - Q_3 - Q_{\dot{H}}}{Q_{\overline{M}}}$$

所以,提高干燥器热效率的措施

- > 减少干燥器热损失
- $> 减少废气带出热<math>Q_3$,提高 t_1 ,降低 t_2 。
- > 采用废气循环及中间加热等方式

14.3.6 理想干燥过程的计算

干燥过程的简化——理想干燥过程

定义: ① $\theta_1 = \theta_2$ (物料不升温 $Q_2 = 0$)

- ② *WC_L* θ₂≈0;
- ③ Q_损≈0

特点:理想干燥过程中气体经历了等焓过程(绝热增湿过程),即 $I_1=I_2$

• 理想干燥过程的热效率

$$\eta = \frac{Q_1 + Q_2}{Q_{\overline{M}}} = \frac{Q_1}{Q_{\overline{M}}}$$

$$\eta = \frac{Q_{\overline{\mathfrak{N}}} + Q_{\overline{\mathfrak{N}}}}{Q_{\overline{\mathfrak{N}}}} = \frac{Q_{\overline{\mathfrak{N}}}}{Q_{\overline{\mathfrak{N}}}} = \frac{t_1 - t_2}{t_1 - t_0}$$

显然, t_1 个, t_2 ↓ 则 η ↑

- 14.4 干燥器
- 14.4.1 干燥器的基本要求
 - (1) 能够适应被干燥物料
 - (2) 设备的生产能力要高
 - (3) 能耗的经济性

14.4.2 常用工业干燥器 厢式干燥器

又称烘箱或烘房

特点:结构简单,对物料适应性强,但生产效率低,劳动强度大,产品质量不均匀

适用:规模小,干燥品种需经常更换,干燥条件变动大,干燥时间长的场合。

喷雾干燥器

干燥介质加热和输送系统 喷雾干燥器 气固分离系统

优点:物料停留时间短,适 宜热敏性物料,过程易于连 续化自动化。

缺点:设备占空间大,气固混合物分离要求高。

雾化器类型 压力喷嘴,离心转盘,气流式喷嘴

气流干燥器

干燥介质加热输送系统

被干燥物料的加入系统:干燥

管;气固分离和粉尘回收系统。

常用加料器:滑板,星形,转

盘,螺旋式,锥体。

优点:结构简单,占地面积小,活动部件少,造价低,操作稳定便于控制,热损失低,热效率高。尤其适宜于非结合水的干燥。

缺点:流动阻力大,对粉尘回收装置要求 高。对结块,不易分散的物料需性能好 的加料装置,有时还需附加粉碎过程

流化干燥器

特点:结构简单,造 价低,活动部件少, 操作维修方便,与气 流相比阻力较低,磨 损轻,气固分离易以 及热效率高。适宜处 理粒径6~30mm粉粒状 物料。

基本类型: 单层 多层流化床 卧式多室

转筒干燥器

转筒是一个与水平成1/15~1/50

倾斜度的圆筒。有直接加热和间接加热两种方式。

特点:机械化程度高,操作稳定可靠,对不同物料适应性强,产品质量均匀。生产能力大,流动阻力小。

缺点:设备笨重,结构 复杂,成本高,制造安 装检修麻烦。占地面积 大,热效率低。

- 抄板爪直立式——处理粘性或较湿物料
- · 抄板爪45°/90°——处理散粒料或较干的物料

耙式真空干燥器

间接加热,密闭操作且一般为间歇

优点:对物料适应性强,可处理浆状,膏状,粉状物料以及在空气中易氧化的有机物。

缺点:干燥时间长,生产能力低,结构复杂,维修量大。

