ALGORITMOS EM GRAFOS

CAMINHAMENTOS ALGORITMO DE DIJKSTRA

Prof. João Caram

PUC MINAS CIÊNCIA DA COMPUTAÇÃO

- Algoritmos, grafos, linguagens de programação, compiladores, sistemas operacionais e distribuídos, programação concorrente...
- A pronúncia aproximada em português para Edsger Dijkstra é étsrrar déikstra.

- Baseado na busca em largura
- Encontra a menor distância entre dois vértices de um grafo ponderado (grafo com pesos)
 - Encontra o menor caminho entre um vértice v_i e todos os demais vértices do grafo

- Define um vértice de origem v_o
- Utiliza um vetor de distâncias a partir de v_o
- Utiliza um vetor de caminhos a partir de v_o
- Utiliza um vetor de vértices não visitados do grafo

- Inicializações do algoritmo
 - $d[v_0] = 0$
 - Se existe $a[v_o, v_i], d[v_i] = peso(v_o, v_i)$
 - Inserir v_o- v_i no vetor de caminhos

Se não existe a[v₀, vᵢ], d[vᵢ] = max_value

- (1) Inicializações
- Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3)Marcar x como visitado
- **(4)** Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$
 - faça
 - (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
 - (ii) c(i) = c(x) + i
- (5)Se existirem vértices não visitados voltar para o passo (2)

Caminhos B D Ε G

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) C(i) = C(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for

NULO, termine o algoritmo

- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) C(i) = C(x) + i
- (5) Se existirem vértices não

visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for

NULO, termine o algoritmo

- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$ faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) C(i) = C(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x
 - se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$
 - (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
 - (ii) C(i) = C(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$
 - faça
 - (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
 - (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$ faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$ faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se d(A,B) + aresta(B,C) < d(A,C)

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) C(i) = C(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB		AD			

- (1) Inicializações
- Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3)Marcar x como visitado
- **(4)** Para cada vizinho i não visitado de x

se d(A,B) + aresta(B,C) < d(A,C)faça

- (i) d(A, C) = d(A, B) +aresta(B,C) (ii) c(C) = c(B) + C
- Se existirem vértices não (5)
- visitados voltar para o passo (2) 15

Caminhos

Α	В	С	D	E	F	G
Α	AB		AD			

PUC Minas – Ciência da Computação – Algoritmos em Grafos – Prof. João Caram

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se d(A,B) + aresta(B,C) < d(A,C)faça

- (i) d(A, C) = d(A, B) + aresta(B,C)
 - (ii) c(C) = c(B) + C
- (5) Se existirem vértices não

B

visitados voltar para o passo (2)

ABC AD

AB

Α

G)

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,C) < d(A,C)
 - faça
- (i) d(A, C) = d(A, B) + aresta(B,C)
- (ii) c(C) = c(B) + C
- (5) Se existirem vértices não
- visitados voltar para o passo (2)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se d(A,B) + aresta(B,E) < d(A,E)

- (i) d(A, E) = d(A, B) + aresta(B, E)
- (ii) c(E) = c(B) + E
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB	ABC	AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se d(A,B) + aresta(B,E) < d(A,E)faça

- (i) d(A, E) = d(A, B) + aresta(B, E)
- (ii) c(E) = c(B) + E
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- Se existirem vértices não visitados voltar para o passo (2)

Caminhos

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ABE		

(5)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for

NULO, termine o algoritmo

- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$ faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) C(i) = C(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for

NULO, termine o algoritmo

- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado

de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(V₀,x) + aresta(x,i) < d(V₀, i)

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

faça

(i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (ii) C(i) = C(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Caminhos

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ABE	ABC F	

24

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

(i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$

(ii) c(i) = c(x) + i

(5) Se existirem vértices não

visitados voltar para o passo (2)

não	Α	В	С	D	E	F	G
passo (2)	Α	AB	ABC	AD	ABE	ABC	
PUC Minas – Ci	ênoia da C	σπραιας	ao Aige	/11tt1105 Ci	π Οιαίου	F	oao oara

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(V₀,x) + aresta(x,i) < d(V₀, i)

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	Е	F	G
Α	AB	ABC	AD	ABE	ABC F	

G)

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Caminhos

PUC Minas - Ciência da Jornputação

Α	В	С	D	Е	F	G
Α	AB	ABC	AD	ADE	ABC	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

	Α	В	С	D	Е	F	G
	Α	AB	ABC	AD	ADE	ABC	
â					II VAIGHVO	F	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(V₀,x) + aresta(x,i) < d(V₀, i)

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
А	AB	ABC	AD	ADE	ABC	

- (1) Inicializações
- Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3)Marcar x como visitado
- **(4)** Para cada vizinho i não visitado de x

faça

(i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (ii) c(i) = c(x) + i
- (5)Se existirem vértices não visitados voltar para o passo (2)

Caminhos

não	Α	В	С	D	Е	F	G
passo (2)	Α	AB	ABC	AD	ADE	ADE	
PUC Minas – Ci	ênoia aa c	νοπιραιας	ao Aige	/11ti1105 Ci	π Οιαίος	F	oao oaral

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

	Α	В	С	D	E	F	G
	Α	AB	ABC	AD	ADE	ADE	
â						F	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x

se $d(V_0,x)$ + aresta(x,i) < $d(V_0, i)$

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
A	AB	ABC	AD	ADE	ADE F	

Dijkstra e movimentação de robôs

OBRIGADO.

Dúvidas?