Iterative Solution of a Mixed Finite Element Discretisation of an Incompressible Magnetohydrodynamics Problem

Michael Wathen

MSc presentation UBC Computer Science

August 2014

- MHD models electrically conductive fluids (such as liquid metals, plasma, salt water, etc) in an electic field
- Applications: electromagnetic pumping, aluminium electrolysis, the Earth's molten core and solar flares
- MHD models couple electromagnetism (governed by Maxwell's equations) and fluid dynamics (governed by the Navier-Stokes equations)
- Movement of the conductive material that induces and modifies any existing electromagnetic field
- Magnetic and electric fields generate a mechanical force on the fluid

- MHD models electrically conductive fluids (such as liquid metals, plasma, salt water, etc) in an electic field
- Applications: electromagnetic pumping, aluminium electrolysis, the Earth's molten core and solar flares
- MHD models couple electromagnetism (governed by Maxwell's equations) and fluid dynamics (governed by the Navier-Stokes equations)
- Movement of the conductive material that induces and modifies any existing electromagnetic field
- Magnetic and electric fields generate a mechanical force on the fluid

- MHD models electrically conductive fluids (such as liquid metals, plasma, salt water, etc) in an electic field
- Applications: electromagnetic pumping, aluminium electrolysis, the Earth's molten core and solar flares
- MHD models couple electromagnetism (governed by Maxwell's equations) and fluid dynamics (governed by the Navier-Stokes equations)
- Movement of the conductive material that induces and modifies any existing electromagnetic field
- Magnetic and electric fields generate a mechanical force on the fluid

- MHD models electrically conductive fluids (such as liquid metals, plasma, salt water, etc) in an electic field
- Applications: electromagnetic pumping, aluminium electrolysis, the Earth's molten core and solar flares
- MHD models couple electromagnetism (governed by Maxwell's equations) and fluid dynamics (governed by the Navier-Stokes equations)
- Movement of the conductive material that induces and modifies any existing electromagnetic field
- Magnetic and electric fields generate a mechanical force on the fluid

- MHD models electrically conductive fluids (such as liquid metals, plasma, salt water, etc) in an electic field
- Applications: electromagnetic pumping, aluminium electrolysis, the Earth's molten core and solar flares
- MHD models couple electromagnetism (governed by Maxwell's equations) and fluid dynamics (governed by the Navier-Stokes equations)
- Movement of the conductive material that induces and modifies any existing electromagnetic field
- Magnetic and electric fields generate a mechanical force on the fluid

Incompressible Navier-Stokes Equations:

$$\begin{aligned} -\nu \, \Delta u + (u \cdot \nabla) u + \nabla p &= f & \text{in } \Omega, \\ \nabla \cdot u &= 0 & \text{in } \Omega, \\ u &= u_D & \text{on } \partial \Omega \end{aligned}$$

- u: fluid velocity
- p: fluid pressure
- f: body force acting on the fluid
- ν: kinematic viscosity

Maxwell operator in mixed form:

$$\begin{split} \nabla \times (\nabla \times b) + \nabla r &= g & \text{in } \Omega, \\ \nabla \cdot b &= 0 & \text{in } \Omega, \\ b \times n &= b_D & \text{on } \partial \Omega, \\ r &= 0 & \text{on } \partial \Omega, \end{split}$$

- b: magnetic field
- r: scalar multiplier
- n: unit outward normal

MHD model: coupled Navier-Stokes and Maxwell's equations

$$\begin{split} -\nu \, \Delta u + (u \cdot \nabla) u + \nabla p - \kappa \, (\nabla \times b) \times b &= f \qquad \text{in } \Omega, \\ \nabla \cdot u &= 0 \qquad \text{in } \Omega, \\ \kappa \nu_m \, \nabla \times (\nabla \times b) + \nabla r - \kappa \, \nabla \times (u \times b) &= g \qquad \text{in } \Omega, \\ \nabla \cdot b &= 0 \qquad \text{in } \Omega, \end{split}$$

with appropriate boundary conditions.

- $(\nabla \times b) \times b$: Lorentz force accelerates the fluid particles in the direction normal to the electric and magnetic fields.
- $\nabla \times (u \times b)$: electromotive force modifying the magnetic field

MHD model: coupled Navier-Stokes and Maxwell's equations

$$\begin{split} -\nu \, \Delta u + (u \cdot \nabla) u + \nabla p - \kappa \, (\nabla \times b) \times b &= f &\quad \text{in } \Omega, \\ \nabla \cdot u &= 0 &\quad \text{in } \Omega, \\ \kappa \nu_m \, \nabla \times (\nabla \times b) + \nabla r - \kappa \, \nabla \times (u \times b) &= g &\quad \text{in } \Omega, \\ \nabla \cdot b &= 0 &\quad \text{in } \Omega, \end{split}$$

with appropriate boundary conditions.

- $(\nabla \times b) \times b$: Lorentz force accelerates the fluid particles in the direction normal to the electric and magnetic fields.
- $\nabla \times (u \times b)$: electromotive force modifying the magnetic field

Discretisation

- Finite element discretisation based on the formulation in Schötzau 2004
- ullet Fluid variables: lowest order Taylor-Hood $(\mathcal{P}_2/\mathcal{P}_1)$
- Magnetic variables: mixed Nédélec element approximation
- Nédélec elements capture solutions correctly on non-convex domains

Non-linear solver

- MHD model is non-linear: $\mathcal{K}(x)x = b$
- Standard Oseen iteration: $\mathcal{K}(x_k)x_{k+1} = b$
- Re-arrange to solve for updates
- $\mathcal{K}(x_k)\delta x = b \mathcal{K}(x_k)x_k$ where $x_{k+1} = x_k + \delta x$

Discretised and linearised MHD model:

$$\begin{pmatrix} A + O(u) & B^T & C(b)^T & 0 \\ B & 0 & 0 & 0 \\ -C(b) & 0 & M & D^T \\ 0 & 0 & D & 0 \end{pmatrix} \begin{pmatrix} \delta u \\ \delta p \\ \delta b \\ \delta r \end{pmatrix} = \begin{pmatrix} r_u \\ r_p \\ r_b \\ r_r \end{pmatrix},$$

with

$$r_u = f - Au - O(u)u - C(b)^T b - B^T p,$$

$$r_p = -Bu,$$

$$r_b = g - Mu + C(b)b - D^T r,$$

$$r_r = -Db.$$

A: discrete Laplacian operator, O: discrete convection operator,

B: discrete divergence operator, M: discrete curl-curl operator,

C: coupling terms, D: discrete divergence operator.

Decoupling schemes

Magnetic Decoupling (MD):

$$\mathcal{K}_{\text{MD}} = \begin{pmatrix} A + O(u) & B^T & 0 & 0 \\ B & 0 & 0 & 0 \\ \hline 0 & 0 & M & D^T \\ 0 & 0 & D & 0 \end{pmatrix}$$

Complete Decoupling (CD):

$$\mathcal{K}_{ ext{CD}} = egin{pmatrix} A & B^T & 0 & 0 \ B & 0 & 0 & 0 \ \hline 0 & 0 & M & D^T \ 0 & 0 & D & 0 \end{pmatrix}$$

Linear solver and Preconditioning

Consider

$$Ax = b$$

to iteratively solve:

find
$$x_k \in x_0 + \text{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}$$

where $r_0 = b - Ax_0$ and x_0 is the initial guess.

Key for success: preconditioning

- 1. the preconditioner P approximates A
- 2. P easy to solve for than A

Want eigenvalues of $P^{-1}A$ to be clusters

Ideal preconditioning

Non-singular (1,1) block

$$\mathcal{K} = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}; \quad \mathcal{P} = \begin{pmatrix} F & B^T \\ 0 & BF^{-1}B^T \end{pmatrix}$$

Murphy, Golub & Wathen 2000 showed exactly two eigenvalues: ± 1

Singular (1,1) block

$$\mathcal{K} = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}; \quad \mathcal{P} = \begin{pmatrix} F + B^T W^{-1} B & 0 \\ 0 & W \end{pmatrix}, \text{ where } W \text{ is SPD}$$

Greif & Schötzau 2006 showed exactly two eigenvalues: ±1

Ideal preconditioning

Non-singular (1,1) block

$$\mathcal{K} = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}; \quad \mathcal{P} = \begin{pmatrix} F & B^T \\ 0 & BF^{-1}B^T \end{pmatrix}$$

Murphy, Golub & Wathen 2000 showed exactly two eigenvalues: ± 1

Singular (1,1) block

$$\mathcal{K} = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}; \quad \mathcal{P} = \begin{pmatrix} F + B^T W^{-1} B & 0 \\ 0 & W \end{pmatrix}, \text{ where } W \text{ is SPD}$$

Greif & Schötzau 2006 showed exactly two eigenvalues: ± 1

Navier-Stokes subproblem

$$\mathcal{K}_{\text{NS}} = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}$$

where F = A + O is the discrete convection diffusion operator. Shown in Elman, Silvester & Wathen 2005/2014 that

$$\mathcal{P}_{\text{NS}} = \begin{pmatrix} F & B^T \\ 0 & S \end{pmatrix}, \quad S = A_p F_p^{-1} Q_p$$

is a good approximation to the Schur complement preconditioner. A_p : pressure space Laplacian, F_p : pressure space convection-diffusion operator, Q_p : pressure space mass matrix

Maxwell subproblem

$$\mathcal{K}_{\mathrm{NS}} = \begin{pmatrix} M & B^T \\ B & 0 \end{pmatrix}$$

Note: M is highly rank defficient.

Greif & Schötzau 2007 shows that L (scalar Laplacian) is the appropriate choice for W

$$\mathcal{P}_{iM} = \left(\begin{array}{cc} M + B^T L^{-1} B & 0\\ 0 & L \end{array} \right)$$

Practical preconditioner

$$\mathcal{P}_{ ext{M}} = \left(egin{array}{cc} M+X & 0 \ 0 & L \end{array}
ight)$$

where X vector mass matrix is spectrally equivalent to $B^T L^{-1} B$

Maxwell subproblem

$$\mathcal{K}_{\mathrm{NS}} = \begin{pmatrix} M & B^T \\ B & 0 \end{pmatrix}$$

Note: M is highly rank defficient.

Greif & Schötzau 2007 shows that L (scalar Laplacian) is the appropriate choice for W

$$\mathcal{P}_{iM} = \left(\begin{array}{cc} M + B^T L^{-1} B & 0 \\ 0 & L \end{array} \right)$$

Practical preconditioner:

$$\mathcal{P}_{\mathbf{M}} = \left(\begin{array}{cc} M + X & 0 \\ 0 & L \end{array} \right)$$

where X vector mass matrix is spectrally equivalent to $B^T L^{-1} B$

MHD problem

Combining the Navier-Stokes and Maxwell preconditioners

$$\mathcal{P}_{\text{MH}} = \left(\begin{array}{cccc} F & B^T & C^T & 0 \\ 0 & -S & 0 & 0 \\ -C & 0 & M+X & 0 \\ 0 & 0 & 0 & L \end{array} \right)$$

with the inner preconditioner

$$\mathcal{P}_{\text{innerMH}} = \begin{pmatrix} F & B^T & 0 & 0\\ 0 & -S & 0 & 0\\ 0 & 0 & M+X & 0\\ 0 & 0 & 0 & L \end{pmatrix}$$

Summary of decoupling scheme preconditioners

Iteration	Coefficient	Preconditioner
scheme	matrix	
(MD)	$ \left(\begin{array}{c cccc} F & B^T & 0 & 0 \\ B & 0 & 0 & 0 \\ \hline 0 & 0 & M & D^T \\ 0 & 0 & D & 0 \end{array}\right) $	$ \left(\begin{array}{c ccc} F & B^T & 0 & 0 \\ 0 & -S & 0 & 0 \\ \hline 0 & 0 & M+X & 0 \\ 0 & 0 & 0 & L \end{array} \right) $
(CD)	$ \left(\begin{array}{ccccc} A & B^T & 0 & 0 \\ B & 0 & 0 & 0 \\ \hline 0 & 0 & M & D^T \\ 0 & 0 & D & 0 \end{array}\right) $	$ \left(\begin{array}{c cccc} A & 0 & 0 & 0 \\ 0 & \frac{1}{\nu}Q_p & 0 & 0 \\ \hline 0 & 0 & M+X & 0 \\ 0 & 0 & 0 & L \end{array}\right) $

TABLE : Summary of coefficient matrices and corresponding preconditioners for each the decoupling scheme

Numerical software used

- Finite element software FEniCS: core libraries are the problem-solving interface DOLFIN, the compiler for finite element variational forms FFC, the finite element tabulator FIAT for creating finite element function spaces, the just-in-time compiler Instant, the code generator UFC and the form language UFL.
- Linear algebra software: HYPRE as a multigrid solver and the sparse direct solvers UMFPACK, PASTIX, SuperLU and MUMPS

Navier-Stokes subproblem in isolation: 2D

ℓ	Dofs	Average iterations				
	u_h/p_h	$\nu = 10$	$\nu = 1$	$\nu = 0.1$	$\nu = 0.01$	
5	8,450/1,089	17	17	21	58	
6	33,282/4,225	17	17	22	30	
7	132,098/16,641	18	17	22	21	
8	526,338/66,049	18	18	22	20	
9	2,101,250/263,169	18	19	22	21	

Table : Iteration table for a PCD preconditioned for various values of u

Maxwell subproblem in isolation: 2D

ℓ	Dofs b_h/r_h	Number of iterations						
		$\nu_m = 10$	$\nu_m = 100$	$\nu_m = 1000$	$\nu_m = 10000$			
5	10,368/4,225	5	4	6	6			
6	41,216/16,641	5	6	6	6			
7	164,352/66,049	5	6	6	6			
8	656,384/263,169	5	6	6	8			
9	2,623,488/1,050,625	4	6	6	8			
10	10,489,856/4,198,401	4	6	8	10			

TABLE: Iteration count for Maxwell preconditioner

MHD: why inner-outer?

		$\kappa = 0.1$		$\kappa = 1$		$\kappa = 10$			$\kappa = 100$				
ℓ	Dofs	Its_{NL}	lts_{O}	Its_{I}	lts_{NL}	Its_{O}	Its_{I}	Its_{NL}	Its_{O}	Its_{I}	Its_{NL}	Its_{O}	Its_{I}
4	6,180	5	22.2	15.4	6	18.8	14.7	7	30.7	14.1	9	61.4	24.4
5	24,132	5	23.8	11.4	6	27.3	15.2	8	43.8	24.0	10	80.3	37.9
6	95,364	5	28.0	17.4	6	20.2	15.3	7	41.1	15.4	9	74.6	31.1
7	379,140	5	18.6	14.6	7	16.3	14.2	7	37.4	16.4	14	73.9	34.7
8	1,511,940	5	20.4	15.2	8	24.3	14.9	7	39.6	18.4	11	75.4	33.3

TABLE : Number of non-linear and average number of preconditioning iterations for various values of κ with $\nu=1$ and $\nu_m=10$.

		$\kappa = 0.1$		$\kappa = 1$		$\kappa = 10$			$\kappa = 100$				
ℓ	Dofs	lts_{NL}	Its_{NS}	Its_{M}	Its_{NL}	Its_{NS}	Its_{M}	Its_{NL}	lts_{NS}	Its_{M}	Its_{NL}	lts_{NS}	Its_{M}
4	6,180	4	22.5	4.5	5	23.0	3.4	10	21.9	2.3	-	22.2	2.2
5	24,132	4	22.1	4.5	5	22.0	3.4	10	21.4	2.3	-	21.7	2.2
6	95,364	4	21.5	4.5	5	21.2	3.4	10	21.1	2.3	-	21.5	2.3
7	379,140	4	21.5	4.8	5	21.2	3.4	10	21.1	2.4	-	21.6	2.2
8	1,511,940	4	21.5	4.8	5	21.4	3.4	10	21.1	2.4	-	21.7	2.2

TABLE : Number of non-linear iterations and average number of iterations to solve the Navier-Stokes and Maxwell's subproblem for the MD scheme with $\nu=1$ and $\nu_m=10$.

MHD: (MD) scheme 2D

$\overline{\ell}$	Dofs	Av solve time	Total time	Its_{NL}	Its_{NS}	Its_{M}
5	24,132	0.5	7.3	5	22.0	3.4
6	95,364	2.5	30.4	5	21.2	3.4
7	379,140	13.1	134.7	5	21.2	3.4
8	1,511,940	69.8	627.3	5	21.4	3.4
9	6,038,532	407.7	3159.7	5	21.6	3.2
10	24,135,684	3022.1	19668.3	5	21.6	3.4

TABLE : Number of non-linear iterations and average number of iterations to solve the Navier-Stokes and Maxwell's subproblem for the MD scheme with $\kappa=1,\ \nu=1$ and $\nu_m=10$.

MHD: (MD) scheme 3D

I	Dofs	Av solve time	Total time	Its_{NL}	Its_{NS}	Its_{M}
1	963	0.04	2.7	5	23.2	3.4
2	5977	0.20	17.2	5	34.2	3.0
3	41805	4.86	151.1	5	34.2	3.4
4	312,085	242.1	2222.8	5	32.4	3.4
5	2,410,533	30222.3	159032.8	5	30.8	3.2

TABLE : Number of non-linear iterations and average number of iterations to solve the Navier-Stokes and Maxwell's subproblem for the MD scheme with $\kappa=1, \ \nu=1$ and $\nu_m=10$ in 3D.

MHD: (CD) scheme 2D

ℓ	Dofs	Av solve time	Total time	lts_{NL}	Its_{S}	Its_{M}
5	24,132	0.4	7.7	11	29.0	3.3
6	95,364	2.6	38.8	11	28.5	3.4
7	379,140	13.0	181.7	11	27.5	3.4
8	1,511,940	66.5	888.0	11	28.3	3.5
9	6,038,532	358.0	4565.4	11	28.3	3.4
10	24,135,684	2335.7	28337.4	11	27.4	3.5

TABLE : Number of non-linear iterations and average number of iterations to solve the Stokes and Maxwell's subproblem for the CD scheme with $\kappa=1$, $\nu=1$ and $\nu_m=10$.

MHD: (CD) scheme 3D

ℓ	Dofs	Av solve time	Total time	lts_{NL}	Its_{S}	Its_{M}
1	963	0.03	1.8	6	30.0	3.5
2	5,977	0.20	9.9	6	45.7	3.2
3	41,805	4.32	89.2	6	43.0	2.8
4	312,085	214.3	1786.5	6	42.3	2.8
5	2,410,533	26954.4	165671.1	6	41.3	2.8

TABLE : Number of non-linear iterations and average number of iterations to solve the Stokes and Maxwell's subproblem for the CD scheme with $\kappa=1,~\nu=1$ and $\nu_m=10$ in 3D.

Future work:

- Scalable inner solvers
- Release code on a public repository
- Parallelisation of the code
- Robustness with respect to kinematic viscosity
- Other non-linear solvers
- Different mixed finite element discretisations