Computer Organization & Architecture

Chapter 5 —

Microprogrammed Control

Zhang Yang 张杨 cszyang@scut.edu.cn Autumn 2021

Content of this lecture

- Microprogrammed Control (See 5.7.2)
- Summary

Microprogrammed Control (1)

- It is possible to use a "software" approach, in which the desired setting of the control signals in each step is determined by a program stored in a special memory.
- Control Word (Microinstruction)
 - □ Suppose that n control signals are needed. Let each control signal be represented by a bit in an n-bit word, which is often referred to as a control word or a microinstruction.
- Microroutine (Microprogram)
 - □ A sequence of CWs corresponding to the control sequence of a machine instruction constitute the microroutine for that instruction.

Microprogrammed Control (2)

- Microprogram Memory or Control Store
 - □ The microprogram is stored on the processor chip in a small and fast memory called the microprogram memory or the control store.
- A processor instruction is implemented by a sequence of microinstructions that are placed in a control store.

Microprogrammed Control (3)

Microprogrammed Control Unit

Figure 5.27 Microprogrammed control unit organization.

Microprogrammed Control (4)

- Microinstruction Encoding Schemes
 - □Scheme1: Assigning one bit position to each control signal.
 - Drawbacks
 - Assigning individual bits to each control signal results in long microinstructions.
 - Only a few bits are set to 1 in any given microinstructions, so the available bit space is poorly used.

Microprogrammed Control (5)

- Microinstruction Encoding Schemes (ctd.)
 - □Scheme2: Grouping signals into fields
 - Signals can be grouped so that all mutually exclusive signals are placed in the same group. Further natural groupings can be made for the remaining signals.
 - Advantage
 - Reduce the number of bits in each microinstruction.
 - Drawback
 - Require a little more decoding circuits.

Microprogrammed Control (6)

- Microprogram Sequencing
 - □ uPC
 - A microroutine is entered by decoding the machine instruction into a starting address that is loaded into the uPC.
 - In most cases, the microinstructions are executed sequentially.
 - Some branching capability within the microprogram can be introduced through special branch microinstructions that specify the branch address.
 - Advantage: Standard software technique can be used in writing microprograms.
 - Disadvantage: It takes more time to carry out the required branch, so the execution time is longer.

Microprogrammed Control (7)

- Microprogram Sequencing (ctd.)
 - Microinstructions with Next-address Field
 - Include an address field as a part of every microinstruction to indicate the location of the next microinstruction to be fetched.

Microprogrammed Control (8)

- Microprogram Control Example (Lab4)
 - Microinstruction Format
 - 微指令字长 24 位,通过下址转移方式确定后续运行的微指令,即 微指令的 1-5 位表示下一条微指令地址 [uA4, uA0]。
 - 微指令的 6-7 位留给判断字段 Px(其中 P2 位空缺), P1=1, 表示本微指令是取指周期的微指令; P1=0,表示本微指令是执行周期的微指令。
 - 微指令的 8-24 位则是微命令字段,微命令即是数据通路中电平触发的微操作信号。某位置"1",表示该位微操作信号有效;反之,置"0"则表示该位微操作信号无效。

Microprogrammed Control (9)

- Microprogram Control Example (ctd.)
 - Microprogrammed Control Unit

10

Microprogrammed Control (10)

- Microprogram Control Example (ctd.)
 - Machine Instructions

指令	OP码 I ₇ I ₆ I ₅	机器语言程序示例	指令功能说明
NOP	000	00000000; NOP	"空"指令,不执行任何操作
HLT	111	11100000; HLT	硬件停机
JMP1	0 0 1	00100000; JMP1 xxxxxxxx; addr1	直接寻址:程序跳转一次到地址 addr1 执行 addr1 →PC;
JMP2	010	01000000; JMP2 xxxxxxxx; addr1	间接寻址:程序跳转二次到地址 addr2 执行 [addr1] = addr2, addr2 →PC;

Microprogrammed Control (11)

- Microprogram Control Example (ctd.)
 - □指令周期示意图

- 指令流(ROM->IR)是从存储器 PROGRAM 取出指令 ,经过总线 BUS 流向指令寄存器 IR。
- 数据流(ROM->PC)是从存储器 PROGRAM 取出数据,经过总线 BUS 流向程序计数器 PC。

Microprogrammed Control (12)

- Microprogram Control Example (ctd.)
 - □指令流/数据流的微操作信号列表

		有效的微操作信号	功能					
指令流	T1	\overline{OE} , AR_CLK (LDAR)	PC→AR, ROM→BUS					
ROM→IR	T2	OE, IR_CLK (LDIR), PC_CLK (PC_INC)	BUS→IR, PC+1					
数据流	T1	OE, LDPC, AR_CLK (LDAR)	PC→AR, ROM→BUS					
ROM → PC	T2	OE, LDPC, PC_CLK (PC_INC)	BUS→PC					

- ■无论是指令流还是数据流,信息都是先从一个部件打到 总线 BUS,再从总线 BUS打到另一个部件的过程。
- 所以为了保证上述操作的先后次序,指令流和数据流内部都可以分为两个周期 T1 和 T2。

Microprogrammed Control (13)

- Microprogram Control Example (ctd.)
 - □微指令代码表

Addr	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
00000	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	0	0
00001	0	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
00010	0	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1
00111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Microprogrammed Control (14)

- Microprogram Control Example (ctd.)
 - □微程序流程图

Benefits of Microprogramming

- The decoders and sequencing logic unit of a micro-programmed control unit are very simple pieces of logic, compared to the hardwired control unit.
- Simpler design means the control unit is cheaper and less error-prone to implement.
- It is also flexible as changes could be easily made to the design.

Exercise (1)

- 1. In a microprogram-control computer, the microinstructions are stored in a memory called the ().
 - □ A. direct memory
 - B. physical memory
 - □ C. virtual memory
 - □ D. control store

Exercise (2)

- 2. Micro-programmed control unit is () than hardwired but ().
 - □ A. cheaper, more error prone
 - □ B. faster, more error prone
 - □ C. less error prone, slower
 - □ D. faster, harder to change

Exercise (3)

- 3.In microprogram-controlled machines, the relationship between the machine instruction and the microinstruction is ().
 - A. a machine instruction is executed by a microinstruction
 - B. a microinstruction is composed of several machine instructions
 - □ C. a machine instruction is interpreted by a microroutine composed of microinstructions
 - □ D. a microroutine is executed by a machine instruction

Summary

- 知识点: Microprogram Control Unit
 - □ Principle of microprogram control: Figure 5.27
 - □ Terminologies
 - Control word : A control word is a word whose individual bits represent the various
 - Microprogram: A sequence of CWs corresponding to the control sequence of a machine instruction constitute the microroutine for that instruction.
 - Control store: The microinstruction for all instructions in the instruction set of a computer are stored in a special memory called *control store*.