(19)日本国特許庁 (JP)

(12) 特 **☆**報(B2)

(11)特許出期公告各号

特公平6-75172

(24)(44)公告日 平成6年(1994)9月21日

4	****				
(51)Int.CL ⁵		識別記号	庁内監理番号	FI	技術表示箇所
G03C	7/305				
	7/32				
	7/42				

発明の数2(全83 頁)

(21)出班各号	特類學62-49081	(71)金顯人		
			官士写真フィルム株式会社	
(22)出盟日	昭和62年(1987) 3月 4日		神奈川県南足桥市中沼210番地	
		(72)発明者	坂上 惠	
(65)公開誊号	特開陪63—214752		神奈川県商足柄市中沼210番地	首士写真
(43)公開日	昭和63年(1988) 9月7日		フィルム様式会社内	
		(72)杂购者	市場 蠕司	
			神奈川県商足桥市中沼210番地	高十定章
	•		フィルム株式会社内	es al5-5-4
			> 1 1 1/0:DOMESTEE 3	
			EXCT. No. TEX	
		全位 目	原作司	
		1		

(54)【発明の名称】 ハロゲン化銀写真感光材料及びその処理方法

1

【特許請求の範囲】

【請求項1】支持体上に少なくとも一層の感光性ハロゲ ン化銀乳剤層を有するハロゲン化銀写真感光材料におい て、下記一般式(!)で表わされる漂白促進剤放出型カ プラーを含有することを特徴とするハロゲン化銀写真感 光衬料。

一般式 (i)

 $A = (t_x), B = (t_x)_x = Z$

式中、Aは現像主葉酸化体との反応により、(L,)。-B - (L_z), - Zとの結合が劉製する基を表わし、L, はAよ 19 式中、Aは現象主楽酸化体との反応により、(L,), - B り開製後B-(L,)。- ことの結合が開製する量を表わ し、BはA+L、)、より開製した後、現像主葉酸化体と反 応して(山)。- 2 との結合が顕設する基を表わし、山は Bより開製した後2との結合が開製する基を表わし、2 はAー(L,)、一Bー(L,)。より脚裂後、漂白促進作用を示

す甚を表わす。 v およびw は() または 1 を表わす。 【論求項2】支持体上に少なくとも一層の感光性ハロゲ ン化銀乳剤層を有し、下記一般式(1)で表わされる漂 白促進剤放出型カプラーを含有するハロゲン化銀写真感 光材料を発色現像後、水洗することなりに漂白定着浴中 で処理することを特徴とするハロゲン化銀写真感光材料 の処理方法。

一般式 { } }

 $A=(L_x)_x=B=(L_x)_y=Z$

-(L;)。- Zとの結合が開製する甚を表わし、LiはAよ り開製後B-(L:)。- Zとの結合が開製する基を表わ し、BはA+L、)、より関製した後、現像主薬酸化体と反 応して(山)。- 2との結合が開設する基を表わし、山は Bより開製した後2との結合が開製する基を表わし、2

(2)

はA-(L,)、-B-(L,)。より開裂後、原白促進作用を示 ず基を表わす。vおよびwは0または1を表わす。

【発明の詳細な説明】

(産業上の利用分野)

本発明は、漂白促進削放出型カブラーを含むハロゲン化 銀写真感光材料に関する。

(従来の技術)

漂白工程を含む方法によつて色素像を形成するのに有用 な写真材料は公知でありかつ市場で使用されている。こ ・ザ・フォトグラフイツク・プロセス(The Theory of the Photographic Process)、第4版、T.H.James編 集。462~463頁および335~361頁に記載されている。こ のような写真材料に漂白促進削放出型カプラーを使用す るととは、Resporch Disclosure 1973年 Trem No.11 449および特勝昭61-201247号に記載されている。

しかしながら、これらの漂白促進剤放出カプラーの離脱 基である漂白促進剤は、現像液が未使用の状態ではある 程度の効果を有するが、現像液等が漂白液、漂白定着液 にもちとまれた通常のランニング状態では漂白促進効果 20 を含有することを特徴とするハロゲン化銀写真感光材 がかなり劣化することを見出した。

この類像は以下のように考えられる。

現像液中で漂白促進剤離脱カプラーから離脱されて漂白 削は、現像銀に吸着する。この場合の活性種はチオール 又はジスルフィド体ということができるが、いずれか特 定することはむずかしい。がチオールは空気酸化等によ つてジスルフィドを生成する(特にアルカリ溶液中で速 い) ことが知られており(日本化学会領「新実験化学器 座 第14巻"p1735、丸蕃 (1978)) , 現像処理中にはジ スルフィドになつているのではないかと推察される。 さて、生成した脱銀促進剤であるチオール又はジスルフ イドは現象液中に存在する亜硫酸イオンによつて複摯を うけチオールスルフオネートを生成することが知られて టడి (L.C.Schorceter "Sulfur Dioxide". p.145. Perg amon Press (1956) に記載がある)。よつて、前述のよ **うにランニング状態において漂白促進効果が劣化するこ** とは現像液から漂白液に持ちこまれた藍硫酸イオンによ つてチオール、もしくはジスルフィドがチオールスルフ オネートイオンになり、現像銀への軽着力をうしなつて しまうことに原因があると考えられる。

よつて、これら公知の漂白促進剤放出カプラーは実際の ランニング状態での漂白促進効果が不十分であり、更に* *改良が望まれていた。

又、カンプリング位置にチオエーテル基を有するカプラ ーは、例えば米国特許第3,227,554号、同4,293,692号に 記載されている。これらのカブラーはいわゆるDIRカブ ラー、2 当費カプラーとしては有用であるが、原白促進 効果としては不充分であり、むしろ悪化させるものもあ

{発明が解決しようとする問題点} 従つて本発明の目的は、

のような材料および方法は、例えばザ・テオリー・オブ 10 第1 にランニング状態においても漂白促進効果が劣化し ない新規な漂白促進削離脱カプラーを提供することであ

> 第2に銀漂白速度が速く、迅速処理が可能なハロゲン化 銀カラー写真感光材料の処理法が提供することである。 (問題点を解決するための手段)

上記の目的は、

(1) 支持体上に少なくとも一層の感光性ハロゲン化銀 発剤層を有するハロゲン化類写真感光材料において、下 記一般式(!)で表わされる漂白促進剤放出型カプラー 嵙.

および

(2) 支持体上に少なくとも一層の感光性ハロゲン化銀 我剤層を有し、下記一般式(!)で表わされる漂白促進 削斂出型カブラーを含有するハロゲン化銀写真感光材料 を、発色現像後、水洗することなしに漂白定着浴中で処 理することを特徴とするハロゲン化銀写真感光材料の処 理方法

によつて達成された。

30 一般式(1)

 $A = (L_1)_1 = B = (L_2)_2 = Z$

式中、Aは現像主薬酸化体との反応により、(L.). - B -(L,)。- ことの結合が関裂する基を表わし、L,はAよ り開製後B-(Lz)。- Zとの結合が開製する墓を表わ し、BはA+L,)。より開設した後、現像主薬酸化体と反 応して(山)。-2との結合が期裂する基を表わし、しは Bより開裂した後2との結合が開製する基を表わし、2 はA-(L,),-B(L,)。より開製後漂白促進作用を示す基 を表わず。Vおよびwはりまたはしを表わず。

40 一般式(!)で表わされる化台物が現像時に2を放出す る反応過程は下記の反応式によつて表わされる。

$$A-(L_1)_{\overline{W}}B-(L_2)_{\overline{W}}Z \xrightarrow{T^{\bigoplus}}$$

$$(L_1)_{\overline{W}}B-(L_2)_{\overline{W}}Z \xrightarrow{} B-(L_2)_{\overline{W}}Z$$

$$\xrightarrow{T^{\bigoplus}} (L_2)_{\overline{W}}Z \xrightarrow{} Z$$

式中、A.L.、B. L.、2. マおよびwは一般式(I)に 50 おいて説明したのと同じ意味を表わし、下* は現像主葉

(3)

10

符公平6-75172

酸化体を表わす。

上記反応式において、

5

より

を生成する反応が本発明の優れた効果を特徴づける。すなわちこの反応は T^{Θ} と

$$B-(L_2)_{\overline{W}}Z$$

との二次反応である。つまりその反応速度はおのおのの 滤度に依存する。したがつてT[®] が多量に発生している ところでは

1t

をただちに生成する。それと対照的に $T^{\rm F}$ が少量しか発 20 生しないところでは

$$B-(L_2)\overline{Z}$$

は

$$(L_2) = Z$$

を選く生成する。このような反応過程が上記反応過程と 相まつて2の作用を効果的に発現する。

次に一般式(I)で示される化合物について詳しく詳明する。

一般式(!)においてAは詳しくはカブラー残差または 酸化還元基を表わす。

Aがカプラー展基を表わすとき公知のものが利用できる。例えばイエローカプラー残基(例えば閉鎖ケトメチレン型カプラー残基)、マゼンタカプラー残基(例えば5-ビラゾロン型、ビラゾロイミダゾール型、ビラゾロトリアゾール型なでのカブラー残基)。シアンカブラー残基(例えばフエノール型、ナフトール型などのカブラー残基)、および原星色カブラー残基(例えばインダノン型、アセトフエノン型などのカブラー残基)が挙げる 40 れる。また、米国特許第4,315,070号、同4,183,752号、同3,961,959号または同4,171,223号に記載のヘテロ環型のカブラー残差であつてもよい。

一般式(1)においてAがカプラー残差を表わすときAの好ましい例は下記一般式(Cp-1). (Cp-2)、

 $\{Cp-3\}$, $\{Cp-4\}$, $\{Cp-5\}$, $\{Cp-6\}$,

(Cp-7)、(Cp-8)、(Cp-9)または(Cp-10)で表わされるカプラー残基であるときである。これらのカプラーはカップリング速度が大きく好きしい。

──競式 (Cp-1)

--般式 (Cp-2)

--搬式 (Cp-3)

-- 皴式 (Co-4)

一般式 (Cp-5)

. . .

一般式 (Cp-7)

50 一般式 (Cp-8)

舒公平6-75172

* 上式においてカツブリング位より派生している自由結合 手は、カップリング離脱基の結合位置を表わす。

素数の総数が8ないし40、好きしくは10ないし30になる ように選択され、それ以外の場合、炭素数の総数は15以 下が好きしい。ビス型、テロマー型またはボリマー型の カプラーの場合には上記の衝換基のいずれかが二個基を

表わし、繰り返し単位などを連結する。この場合には炭

以下にないへない。はおよびもについて詳しく説明する。 以下でReiは脂肪族基。芳香族基または復素環基を最わ し、R.」は芳香族基または複素漿基を表わし、R.、、R.。お よびR。は水素原子、脂肪族基、芳香族基または複素環

Re, はRe, と同じ意味を表わす。Re, およびRe, は各々Re, と同じ意味を表わす。R。はR。と同じ意味の基

CONH-R61

一般式 (Cp-9)

一般式 (Cp-10)

10 素敵の範圍は頻定外であつてもよい。

基を表わす。

R., S-差、R., O-基、 R45NCON-基、 R43 R44

※たはN=C-基を表わす。RegはRegと同じ意味を表わ す。RaaおよびRadaを14、基と同じ意味の益、Ras-39 基. R.2〇-基、

Rucc-基,

R43

または

R44NCO-基金

を表わす。Relitracと同じ意味の基を表わす。Resitrac と同じ意味の葉、

(8)

特公平6-75172

R.O一基、R.S一基、ハロゲン原子または

(R41) 5

*を表わず。dはりないし3を表わず。dが複数のとき複

10 数個のR。は同じ置換基または異なる置換基を表わす。 またそれぞれのRisが2価基となつて連結し、環状機造 を形成してもよい。 環状構造を形成するための2 価基の 例としては

または

※が挙げられる。ここで f は 0 ない し 4 の整数、 g は 0 な いし2の整数。を各々嵌わす。ReltRelと同じ意味の基 を表わす。RiはRiと同じ意味の基を表わす。RiはRi と同じ意味の芸、R., COMH一基、R., COONH一基、R., SO, N

R₄O-墓。R₄S-基、ハロゲン原子または 基-N11R

★を表わす。R。」はR.1と同じ意味の基。

R₁, SO₆ - 基、R₁,000-基、R₁,0 - SO₆ - 基、ハロゲン原 子、エトロ基、シアノ基またはRacO一基を表わす。e は0ないし4の整数を表わす。複数個のR。またはR。が あるとき各々同じものまたは異なるものを表わす。 上記において脂肪熬基とは炭素数1~32、好ましくは1 ~22の飽和または不飽和、鎖状または環状、直鎖または 分岐、置換または無理機の脂肪蒸炭化水素基である。代 50 芳香族基とは炭素数6~20. 好きしくは置換もしくは無

豪的な例としては、メチル苺、エチル苺、プロビル基、 イソプロビル苺、ブチル苺、(t) - ブチル基、(1) ープチル基、(も)ーアミル基、ヘキシル基、シクロヘ キンル基、2-エチルヘキシル基、オクチル基、1,1,3, 3-テトラメチルブテル基、デシル基、ドデシル基、ヘ キサデシル基。またはオクタデシル基が挙げられる。

(6)

20

30

符公平6-75172

11

置換のフェニル基、または置換もしくは無置換のナフチ ル基である。

健素項基とは炭素数1~20. 好ましくは1~7の. 彼素 原子として窒素原子、酸素原子もしくはイオウ原子から 遊ばれる、好ましくは3員ないし8員頃の置換もしくは 無置換の復素環基である。接素環基の代表的な例として は2-ビリジル差、4-ビリジル基、2-チエニル基、 2-フリル基、2-イミダゾリル基、ビラジニル基、2 ービリミジニル墓、1ーイミダゾリル墓、1ーインドリ ル墓、フタルイミド基、1,3,4-チアジアゾールー2- *16

R48

Ri, NSG, -華、Rie SG, -基、Riv OGO-基、 R₄₇NCON-進、 R48 R49

R₃ と同じ意味の基。

R。COO-基、R., OSO、-基、シアノ基またはニトロ基が 挙げられる。ことでR。は脂肪族基、芳香族基、または 復素項基を衰わし、R.,、R.。およびR.。は各々脂肪族基、 芳香族基、徳素環基または水素原子を表わす。脂肪族 基。芳香族基または複素環基の意味を前に定義したのと 間じ意味である。

次にRe、~Real はおよびeの好ましい範囲について説明

Relは脂肪族基または芳香族基が好ましい。Rel、Relもま びRisは芳香族基が好ましい。RisはRis CONH-基、また は

が好ましい。Re,およびRe,は脂肪疾基、Re,〇一基、ま たはR.、S-基が好ましい。Re。は脂肪烷基または芳香族 基が好ましい。一般式(Cp-6)においてR。はクロー ル原子、脂肪族基またはR.、COM-基が好ましい。 dは 1または2が好ましい。R。は芳香熬基が好ましい。一 般式 (Co-7) においてRegはReg CDNH-基が好ましい。 一般式(Cp-7)において dは 1 が好ましい。R. は脂 肺族基または芳香族基が好ましい。一般式 {Cp-8} に おいてeはOまたはlが好ましい。RezとしてはRenOCON 50 ル基。2 - クロロー5 - オクチルオキシカルボニルフェ

ン蘇、2、4ージオキソー1,3-イミダゾリジンー5-イル墓、2、4ージオキソー1、3ーイミダゾリジン-3ーイ ル華、スクシンイミド基、フタルイミド基、1.2.4ート リアゾールー2-イル基または1-ビラゾリル基が挙げ **られる。** 前記脂肪族炭化水素基、芳香族基および複素環幕が環境

*イル芸、ペンゾオキサゾールー2-イル甚、2-キノリ

12

基を有するとき代象的な置換基としては、ハロゲン原 子. R,O-基、R,S-基.

H-基、R., CDNH-基、またはR., SD, NH-基が好ましくこ れらの置換位置はナフトール器の5位が好ましい。一般 式(Cp-9)においてRo,としてはRo,COMH-基、Ro,SO。 NH-幕、

ニトロ基またはシアノ基が好ましい。 一般式 (Co-10) においてRaは

R,OCO-基またはR,CO-基が好ましい。 次にR.、~R.。の代表的な例について説明する。 Raとしては(t)-ブチル基 4-メトキシフエニル 基. フエニル甚. 3-- {2-- {2,4-シーモーアミルフ エノキシ) ブタンアミド) フエニル甚、4ーオクタデシ ルオキシフエニル基またはメチル基が挙げられる。Rag 40 およびRっとしては2-クロロー5ードデシルオキシカ ルポニルフエニル基、2-クロロー5-ヘキサデシルス ルホンアミドフエニル基。2-クロロー5-テトラデカ ンアミドフエニル基、2-クロロー5-{4-(2,4-ジー tーアミルフエノキシ) ブタンアミギ ラエエル 基. 2-クロロー5- (2-(2,4-ジーも-アミルブ エノキシ) プタンアミド) フエニル基、2-メトキシフ エニル基、2-メトキシー5-テトラデシルオキシカル ポニルフエニル量、2-クロロー5-(1-エトキシカ ルボニルエトキシカルボニル) フエニル基、2ービリジ

ニル塩、2、4ージクロロフエニル益、2 ークロロー5-(1-ドデシルオキシカルボニルエトキシカルボニル) フエニル基、2-クロロフエニル基または2-エトキシ フエニル基が挙げられる。R.,としては3-{2-{2,4 ージーしーアミルフエノキシ》ブタンアミド》ベンズア ミド華、3~{4~{2,4~ジ~t~アミルフエノキ シ) ブタンアミド} ベンズアミド基、2-クロロー5-テトラデカンアミドアエリノ基、5-42,4-ジー1-アミルフエノキシアセトアミド) ベンズアミド墓、2-クロロー5 - ドデセニルスクシンイミドアニリノ芸、2 10 基。ブチル基。3 - (2,4-ジーミーアミルフエノキ ークロロー5 - {2 - (3 - t - プチルー4 - ヒドロキ シフフエノキシ)テトラデカンアミド}アニリノ墓、2、 2-ジメチルプロパンイミド基、2-(3-ペンタデン) ルフエノキシ) ブタンアミド基、ピロリジノ基またはN、 N-ジブチルアミノ墓が挙げられる。R.:としては、2,4、 6-1りクロロフエニル基、2-クロロフエニル基、2.5 ージクロロフエニル基、2.3-ジクロロフエニル基、2.5 ージクロロー4ーメトキシフエニル基、4ー(2 - (2、 セー ジーも~アミルフエノキシ) ブタンアミド} フエニ ル基または2,5-シクロロー4-メタンスルホニルフエ 29 -メチルベンゼンスルホンアミド基。ベンズアミド基、 ニル基が好きしい例である。R。としてはメチル基、エ チル墓、イソプロビル基、メトキシ墓、エトキシ墓、メ チルチオ基、エチルチオ差、3-フエニルウレイド基、 3-ブチルウレイド基、または3-(2.4-ジーモーア ミルフエノキシ) プロピル芸が挙げられる。氏,として は3~ (2,4-ジーtーアミルフエノキシ) プロピル 巻、3-[4-{2-{4-(4-ヒドロキシブエニル スルホニル) フエノキシ) テトラデカンアミド) フェニ ル〕プロピル蟇、メトキシ蟇、エトキシ基、メチルチオ 基. テチルチオ甚、メチル蟇、1-メチルー2- (2- 36 キシ) プロピルスルフアモイル基、メタンスルホニル オクテルオキシー5- (2-オクチルオキシー5-(1、 1.3.3-チトラメチルプチル》フエニルスルホンアミ ド) フエニルスルホンアミド} エチル華、3-{4-(4-ドデシルオキシフエニルスルホンアミド) フエニ ル》プロピル墓。1,1-ジメチル-2-{2-オクチル オキシー5ー(1,1、3、3ーテトラメチルブチル)フェニ ルスルホンアミド とまル基、またはドデシルチオ基が 挙げられる。 R.。としては2-クロロフェニル基、ペン タフルオロフエニル基、ヘブタフルオロプロピル基、1 - (2,4-ジーt-アミルフエノキシ)プロビル基、3 - (2,4-ジーt-アミルフエノキシ) プロビル基、2,4 ージーしーアミルメチル差。またはプリル基が挙げられ る。Reaとしてはクロル原子、メタル基、エタル基、ブ ロビル基、ブチル基、イソプロビル番、2~(2,4~ジ - も-アミルフエノキシ) ブタンアミド基、2~ (2,4 ージー1-アミルフエノキシ) ヘキサンアミド墓、2-⟨2,4-ジ-t-オグチルフエノキシ⟩ オグタンアミド 基.2- (2-クロロフエノキシ) テトラデカンアミド 基. 2,2-ジメチルプロバンアミド基、2-{4-{4

13

14 デカンアミド華、または2-{2-(2.4-ジー1-ア ミルフエノキシアセトアミド} フエノキシ》 ブタンアミ 下華が挙げられる。Roとしては4-シアノフエニル 基。2-シアノフエニル幕。4-ブチルスルホニルフェ ニル墓、4-プロピルスルポニルフエニル基、4-エト キシカルボニルフエニル葉、4-N,N-ジエチルスルフ アモイルフェニル基、3,4-ジクロロフェニル基または 3-メトキシカルボニルフエニル基が挙げられる。R. としてはドデシル基、ヘキサデシル基、シクロヘキシル シ) プロビル基。4 - (2,4-ジーしーアミルフエノキ シ) ブチル基。3ードデシルオキシプロピル基。2ーテ トラデンルオキシフエニル益、1ープチル基、2-(2 ーヘキシルデシルオキシ) フエニル基、2ーメトキシー 5-ドデシルオキシカルボニルフエニル基、2-ブトキ シフエニル基または1-ナフチル基が挙げられる。R., としてはイソブチルオキシカルボニルアミノ基。エトキ シカルボニルアミノ基、フエニルスルホニルアミド基、 メタンスルホンアミド基。プタンスルホンアミド基、4 トリフルオロアセトアミド華、3-フエニルウレイド 基。プトキシカルボニルアミノ基。またはアセトアミド 基が挙げられる。Rogとしては2,4-ジー1-アミルフェ ノキシアセトアミド基、2- (2.4-ジーも-アミルフ エノキシ〉 ブタンアミド盆、ヘキサデシルスルホンアミ 下墓。 N-メチル-N-オクタデシルスルフアモイル 基、N.N-ジオクチルスルフアモイル基、ドデシルオキ シカルポニル葢、クロール原子、フツ素原子、エトロ 基. シアノ基. N-3- (2,4-ジー1-アミルフエノ 基、N-{4-(2,4-ジ-1-アミルフエノキシ)プ チル)カルバモイル基またはヘキサデシルスルホニル基 が挙げられる。

一般式(I)においてAが酸化還元益を表わすとき、詳 しくは下記一般式(II)で表わされるものである。 一般式 (II)

 $A - P - \{X = Y\}_{a} - Q - A$

式中、PおよびQはそれぞれ独立に酸素原子または置換 もしくは無置換のイミノ基を表わし、n個のXおよびY 40 の少なくとも1個は

- (L1) - B(L2) - Z

を置換基として有するメタン基を表わし、その他のXお よびYは健健もしくは無置換のメチン語または窓索原子 を表わし、nはlないし3の整数を表わし(n個のX、 n個のYは同じものもしくは異なるものを表わす)、A およびA。はおのおの水素原子またはアルカリにより除去 されうる基を表わす。ここでP、X、Y、Q、Aおよび Aのいづれか2つの置換基が2価基となつて連結し環状 ーヒドロキシフエニルスルホニル) フエノキシ) テトラ 50 楼道を形成する場合も包含される。例えば(X=Y)。

(8)

が、置換基として

待公平6-75172

16

がペンゼン環、ビリジン環などを形成する場合である。 PおよびQが置換または無置換のイミノ基を表わすと き、好ましくはスルホニル基またはアシル基で置換され なイミノ基であるときである。

15

このときPおよびQは下記のように表わされる。

一般式 (N-1)

-- 鍛式 (N-2)

ことに*日はA、またはA、と結合する位置を表わし、** E には- (X=Y)。の自由結合手の一方と結合する位置を表わす。

式中、Gで表わされる基は炭素数1~32、好きしくは1~22の直鎖または分岐、鎖状または環状、飽和または不 26 飽和、置換または無置換の脂肪族基(倒えばメチル基、エチル基、ベンジル基、フェノキシブテル基、イソプロビル毒など)、炭素数6~10の置換または無置換の芳香族基(例えばフエニル基、4-メチルフエニル基、1-ナフチル基、4-ドデシルオキシルフエニル基など)、またはヘテロ原子として窒素原子、イオウ原子もしくは酸素原子より選ばれる4長ないして長環の疾素源差(例えば2-ビリジル基、1-フエニル・4-イミダゾリル基、2-フリル基、ベンゾチエニル甚など)が好ましい例である。 39

一般式 (II) においてPおよびQは好ましくはそれぞれ 独立に限素原子または一般式 (N-1) で表わされる基 である。

AおよびAがアルカリにより除去されるる基(以下、ブ レカーサー基という) を表わずとき、好ましくはアシル 基。アルコキシカルボニル荏、アリールオキシカルボニ ル基、カルバモイル基、イミドイル基、オキサブリル 基。スルホニル基などの風水分解されるる基、米国特許 第4,009,029号に記載の逆マイケル反応を利用した型の プレーカーサー基、米国特許第4,310,512号に記載の環 開設反応の後発生したアニオンを分子内求核基として利 用する型のプレーカーサー基、米国特許第3,674,478 号。同3,932,480号もしくは同3,993,661号に記載のアニ オンが共役系を介して電子移動しそれにより開製反応を 起こさせるプレカーサー基、米国特許4,335,200号に記 歳の環睛製後反応したアニオンの電子移動により開製版 応を起こさせるブレカーサー基または米国特許4,363,85 5号、同4,410,618号に記載のイミドメチル基を利用した プレカーサー基が挙げられる。

一般式(II)において好ましくはPが酸素原子を表わし、A,が水素原子を表わすときである。 一般式(II)においてさらに好きしくは、XおよびY

$$-(L_1)_{\overline{\mathbf{w}}}B-(L_2)_{\overline{\mathbf{w}}}Z$$

を育するメチン基である場合を除いて他のXおよびYが 魔換もしくは無魔像のメチン基であるときである。 一般式 (II) で表わされる基のなかで特に好ましいもの 10 は下記一般式 (III) または (IV) で表わされる。 一般式 (III)

- 授武 (IV) P A 1 Q A 2 (R64) Q A 2

式中、*f0は(L,), B(L,), Zの結合する位置を表わし、 P. Q、AおよびAは一般式 (II) において説明したの と同じ意味を表わし、R。は置換差を表わし、qはO. 1ないし3の整数を譲わす。 qが2以上のとき2つ以上 のR。は同じでも基なっていてもよく、また2つのR。が 隣接する炭素上の健険基であるときにはそれぞれ2価基 となつて連結し環状構造を表わず場合も包含する。その ときはベンゼン猫台環となり例えばナフタレン類、ベン ゾノルボルネン類、クロマン類、インドール類、ベンゾ チオフェン額、キノリン類、ペンゾプラン額、2、3-ジヒドロベンゾワラン額、インダン類、またはインデン 類などの環構造となり、これらはさらに1個以上の置換 46 基を有してもよい。これらの縮合環に置換基を有すると きの好ましい箇換基の例、およびR。が縮合環を形成し ていないときのな。の好ましい例は以下に挙げるもので ある。すなわち、R.、墓、ハロゲン原子、R., 〇一葉、R ...S-基、

R_{1,1}00C-基、R_{1,1}50₂-基.

符公平6-75172

20

R, co- = R, co- = R, R, so- = R 4 3 NCON - 基。
R 4 3 NCON - 基。
R 4 4 R 4 5

シアノ基、

R. 1050. - 華、

または

基が挙げられる。

ここでR₁、, R₁、, R₄、はよびR₅、は前に説明したのと同じで意味である。R₅。の代表的な例としては以下の例が参げられる。すなわち、メチル華、エチル華、モデンルチオ華、3ー (2,4-ジー(-アミルフエノキシ) プロビルチオ基、N-3ー(2,4-ジー(-アミルフエノキシ) プロビルカルバモイル華、N-メテルーN-オクタデシルカルバモイル華、N-メラルーN-オクタデシルカルバモイル基、メトキシカルボニル基、ドデシルオキシカルボニル基、プロビルカルバモイル基、ヒドロキシル基またはN,N-ジオクチルカルバモイル基が参げられる。2つのR₅、頒構造を形成する例としては

で表わされる基が挙げられる。

一般式 $\langle III \rangle$ おまび $\langle IV \rangle$ において、PおよびQは好ましくは酸素原子を表わす。

一般式(III)および(IV)においてA.およびA.は好ま しくは水素原子を衰わす。 一般式(1) においていおよびいで表わされる基は率発明において用いても用いなくてもよい。用いない方が好ましいが、目的に応じて適宜選択される。いおよびいで表わされる基を用いるときには以下の公知の連結基などが挙げられる。

16 (1)へミアセタールの開製反応を利用する基例えば米 国特設第4,145,396号、特関昭50-249148号および同60-2 49149号に記載があり下記一般式で表わされる基であ る。とこに*印は一般式(II)において左側に結合する 位置を表わし、**印は一般式(II)において右側に結 台する位置を表わす。

一般式 (T-1)

式中、Wは酸素原子、イオウ原子または - N - **基**

R.67

を表わし、R₂、およびR₂。は水業原子または置級甚を表わ し、R₂、は匿級基を表わし、1は1または2を表わす。 30 1が2のとき 2つの

$$R_{65}$$
 $-W-C-1$
 R_{66}

は同じものもしくは異なるものを表わす。 R_0 、および R_0 。が置換基を表わすときおよび R_0 の代表的な例は各々 R_0 。基、 R_0 の一基、 R_0 500 一基、

または

が挙げられる。とこでRe。は前に説明したRe」と同じ意味 50 の巻であり、Re」はRe」と同じ意味の巻である。Re」、Re』

(10)

20

19

およびR。,の各々は2個基を表わし、連結し、環状構造を形成する場合も包含される。一般式(T-1)で表わされる基の具体的例としては以下のような基が挙げられる

特公平6-75172

(2) 分子内状核医操反応を利用して開製反応を起こさせる基

例えば米国特許第4,248,962号に記載のあるタイミング 40 基が挙げられる。下記一般式で表わすことができる。 一般式 (T-2)

*-Nu-linK-E-**

式中、*印は一般式(II)において左側に結合する位置を表わし、**印は一般式(II)において右側に結合する位置を表わし、Muは求核差を表わし、酸素原子またはイオウ原子が求核種の例であり、Eは求電子基を表わし、Muより求核攻撃を受けて**印との結合を開裂できる差であり、LinkはMuとことが分子内求核置換反応することができるように立体的に関係づける連絡基を表わ

50 季。

(11)

19

20

30

待公平6-75172

一般式(T-2)で表わされる基の具体例としては例え ば以下のものである。

*-0
CH2-N-CO-**
NO2
CO2CH3

(3) 共役系に沿つた電子移動反応を利用して開裂反応 を起こさせる基

例えば米国特許第4,409,323号または同4,421,845号に記載があり、下記一般式で表わされる基である。 一般式(T-3)

$$*-W \leftarrow C = C \rightarrow_{1} CH_{2} - **$$

$$R_{65}R_{66}$$

式中、* \pm 位、* \pm 0、 \mathbb{W} R。 \mathbb{R}_{i} R。 \mathbb{R}_{i} R。 \mathbb{R}_{i} R $\mathbb{R$

(4) エステルの加水分解による勝裂反応を利用する基例えば西独公開特許第2,626,315号に記載のある連結基であり以下の基が挙げられる。式中*印むよび**60は 20一般式 (T-1) について説明したのと同じ意味である。 一般式 (T-4)

(5) イミノケタールの開製反応を利用する基 例えば米国特許第4,546,073号に記載のある連結基であり、以下の一般式で表わされる基である。 一般式(T-6)

$$*-W-C \stackrel{N-R_{01}}{\underset{*}{\sim}}$$

式中、米印、米米印むよび図は一般式(T-1)におい 40 て説明したのと同じ意味であり、R.はR.と同じ意味を表わす。一般式(T-6)で表わされる基の具体的例としては以下の基が挙げられる。

(13)

一般式(1)においてBで表わされる基は、詳しくはA ー(L₄)、より開製した後カプラーとなる基またはAー (L₄)、より開製した後酸化還元基となる基である。 カプラーとなる基としては例えばフエノール型カプラー の場合では水酸基の水素原子を除いた酸素原子において 50 A-(L₄)、と結合しているものである。また5-ピラゾ (14)

特公平6-75172

ロン型カプラーの場合には5-ヒドロキシピラゾールに 互変異性した型のヒドロキシル基よりも水業原子を除い た酸素原子においてA-(L,),と結合しているものであ る。これちの例ではそれぞれA-(L,)より酸脱して初 めてフェノール型カプラーまたは5-プラゾロン型カプ ラーとなる。それちのカツブリング位には

を有するのである。

BがA-(L)より開裂してカプラーとなる差を表わす とき、好ましくは下記一般式(V)、(VI)、(VII) または(VIII)で表わされる基である

-- 鍛式 (V)

$$\begin{array}{c}
*\\
0\\
\\
V_1\\
\end{array}$$

$$\begin{array}{c}
*\\
V_2\\
\end{array}$$

—發式 {VI}

一般式 {VII}

一般式 (VIII)

式中、V. およびV. は置換基を表わし、V. V. V. V. およびV. は窒素原子または置換もしくは無置換のメチン基を表わし、V. は電換基を表わし、X は 0 ないし 4 の整数を表わし、X が複数のとき V. は同じものまたは異なるものを表わし、2 つのV. が連結して頃状構造を形成してもよい。V. は一〇一基、- SQ. - 基、酸素原子または衝換イミノ

とともに5員ないし8員環を構成するための非金属原子 群を表わし、v.,は水素原子または置換基を表わす。但 しv.およびv.がそれぞれ2備基を表わし、連結して

とともに5頁ないし8頁環を形成してもよい。 V、は好ましくはR、甚を表わし、V、はR、基、R。200-基

20 8,50,-基、R,2S-基、R,2O-基。または

が好ましい例である。V、およびV、が連結して端を形成したときの例としてはインデン領、インドール領、ビラゾール類、またはベンゾチオフエン領が挙げられる。
V、、V、、V、、名、またはV、が置換メチン基を表わすとき好ましい置換基としてはR、・基、R、O-基、R、S-基、また
30 はR、・GONH-基が挙げられる。

V,の好きしい例としてはハロゲン原子、R, 甚、R, COMH 一基、R, 50, NH-基、R, O - 華、R, S - 基、

R,1CO-基またはR,100C-基が好ましい例である。複数のV,が連結して環状構造を形成するときの例としてはケフタレン額、キノリン額、オキシインドール額、ベング ジアゼピン-2,4-ジオン類、ベンズイミダゾール-2-オン類またはベンゾチオフエン類が挙げられる。 V,が函換イミノ甚を表わすとき好ましくは

である。 ∨₄が

4/28/2010

と構成する好ましい環構造はインドール額、イミダブリノン類、1,2,5-チアジアブリン-1,1-ジオキンド額、3-ビラブリン-5-オン類、3-イソオキサブリン-5-オン額、または

が挙げられる。

符公平6-75172

V.。の好ましい例はR.、基 R.、〇-基、 R73N-基、R71CON-基、 I R74 R73

30

またはた、8-基である。

前記においてR、およびR、は脂肪疾甚、芳香疾甚、また は複素濃基を表わし、R、R、R、およびR、は水素原子、脂 肪族基、芳香族基または複素濃基を表わす。ことで脂肪 10 疾基、芳香族基および復素環基は前にR、たついて説明 したのと同じ意味であるが、但しこれらの基に含まれる 総炭素数は好ましくは10以下である。

一般式(V)で表わされる墓の具体的な例としては以下の墓が挙げられる。以下の式で、*印は一般式(])において左方に結合する位置を表わし、**印は右方に結合する位置を表わす。

一般式 (VI) で表わされる墓の具体的な例としては以下

の葉が挙げられる。

一般式(VII)で表わされる基の具体的な例としては以下の葉が挙げられる。

(21)

一般式([)においてBで表わされる基がA - (に)よい り開裂して酸化還元基となる基を表わすとき、好ましく は下記一般式([x) で表わされる基である。

- 般式 (IX) *- P'-(X'=Y') _ ア Q'-A2'

*を置換基として得するメチン基を表わし、その他のX' およびY'は置換または無面換のメチン基または窒素原 50 子を表わす。ここでK'」、P'、Q' X'およびY' のいずれか2つの置換基が2価基となつて環状構造を形 成する場合も包含される。そのような環構造は例えばベ ンセン環またはビリシン環である。

一般式 (IX) において P' は好ましくは酸素原子を表わし、Q' 好ましくは酸素原子または下記で表わされるものである。ここに * 印は (X' = Y') 。 と結合する結合手を表わし、 * * 印は A と結合する結合手を表わす。

式中、Gは一般式 (N-1) および (N-2) において 説明したのと同じく意味を表わす。 Q'は特に好ましくは酸素原子または

> で表わされる葉である。 50 一般式 (IX) で表わされる墓において特に好ましい基は

(22)

10

特公平6-75172

下記一般式 (X) または (XI) で表わされるものである。

一般式 (X)

一般式 (XI)

式中、*EPIはA - (L)、と結合する位置を表わし、** EPIは(L) * 2と結合する位置を表わす。R,は一般式 (III) または (IV) において説明したR。と同じ意味で あるが、但しR。に含まれる絵炭素数は35以下であり16 以下が特に好ましい例である。

yはりないし3を表わし、yが複数のとき、R。は同じ ものまたは異なるものを表わす。また2つのR。が連結 し環状機造を形成する場合も包含される。

* ど)、ハロゲン原子(例えばフルオロ墓、クロロ墓など)、スルフアモイル基(例えばN - プロピルスルフア モイル基、スルフアモイル基など)、アシル基(例えば アセチル基、ベンゾイル基など)、ヒドロキシル基、カ ルボキシル基、またはヘテロ環チオ基(例えば1 - フエ ニルチトラゾリル-5 - チオ基、1 - エチルテトラゾリ ル-6 - チト基など)、またR。が2つ連結し環状構造 を形成する場合の代表的な例としては

44

(*印むよび**位は一般式(XI)で説明したのと同じ意味を表わす)が挙げられる。

一般式(!) において2で表わされる差は詳しくは公知の漂白促進前赎益が挙げられる。例えば米国特許第3,89
20 3,858号明細音、英國特許第1,138,842号明細音、特別昭 53-141623号公報に記載されている如き種々のメルカブト化合物、特別昭53-9530号公報に記載されている如きジスルフィド結合を有する化合物、特公昭33-9854号公報に記載されている如きデアゾリジン誘導体、特開昭53-94927号公報に記載されている如きデアゾリジン誘導体、特開昭53-94927号公報に記載されている如きイソチオ尿素誘導体、特別昭49-42349号公報に記載されている如きチオア素下化合物、特開昭55-2報に記載されている如きチオアまド化合物、特開昭55-26506号公報に記載されている如きチオアまド化合物、特開昭55-26506号公報に記載されている如きチオアよいとご敬趣 第、米国特許第4,552,834号明細書に記載されている如きアリーレンジアミン化合物等である。

これらの化合物は、分子中に含まれる面換可能なヘテロ 原子において、一般式(I)における

$$A-(L_1)_V B-(L_2)_{\overline{W}}$$

と結合するのが好ましい例である。 2で表わされる基はさらに好ましくは下記一般式(XI I)、(XIII)または(XIV)で表わされる基である。 一般式(XII)

$$* - S - R_1 - (X_1)_{\overline{\Gamma}} R_2 \mathcal{V}_2$$

$$(Y_1)_{\overline{m}}$$

─般式 (XIII)

$$*-s-X_2-((X_1)_{\overline{r}}R_2)_{\overline{q}}Y_2$$

4/28/2010

基を表わし、X、は炭素数6~100万香飯基を表わし、X 50 はSと結合する少なくとも1個の炭素原子を環内に有す

R 4

 R_3

(24)

る3員ないし8員職の、好ましくは5員または6員職の 彼素環基を表わし、Yiはカルボキシル墓もしくはその 塩、スルボ基もしくはその塩、ヒドロキシル基、ホスポ ン酸氢もしくはその塩、アミノ基 (炭素数1~4の脂肪 族誰で匿換されてもよい)、 - MEISQ - R もしくは - SQ BN-R-基を表わし《ここで塩とはナトリウム製、カリウギ

 $R_1 - \{(X_1)_{\overline{\Gamma}} R_2\}_{R_1} \times X_2 - \{(X_1)_{\overline{\Gamma}} R_2\}_{R_2}$

および

の基々の超幾可能な位置において結合し、mが複数のと きn個のY.は同じものまたは異なるものを表わし、!が 複数のとき!個の

は同じものまたは異なるものを表わす。ここでR、R、お よびR。は各々水素原子または炭素数1~8、好ましくは 1~5の脂肪族基を表わす。R.ないしR.が脂肪族基を表 わすとき銭状もしくは環状、直鎖もしくは分岐、酸額も 20 置換差として列挙したものなどが挙げられる。 しくは不飽和、置換もしくは無置換のいずれであつても よい。無置換が好ましいが、置換基としては例えばハロ ゲン原子、アルコキシ基(例えばメトキシ基、エトキシ 基)、アルキルチオ基(例えばメチルテオ基、エチルチ※

-SCH2CH2NCH3 -SCH2CHCH2OH

-- 504, 04, NH, .

— 50% 0% NHCOOM; , — 5(CH,), CO, K,

-SCHCO₂H. -SCHCO₂H. -SCHCO₂H. -SCHCO₂H. -SCHCO₂H. -SCHCO₂H. -SCHCO₂H. -SCHCOCH.CH. -SCHCOCH.CH. -SCHCOCH.CH.CH. -SCHCOCH.CH.CH. -SCHCOCH.CH.CH. -SCH₂CCH-CCH₃ . -SCH₂-CH-CH₃ . OH

- 50H, 0H, 50H, CO, H. - 50H, OH, OH, CO, H.

* ム塩もしくはアンモニウム塩などを意味する。)、Yeは Y、で説明したのと同じ意味の基もしくは水素原子を衰わ し、1は0または1を表わし、1は0ないも4の整数を

48

衰わし、nは1ないし4の整数の表わし、nは0ないし 4の整数を表わす。但し、m個のYiは

※才霊)などが挙げられる。

19 Aで表わされる芳香族基およびRが芳香族基を表わすと きの芳香族基は置換基を有してもよい。例えば、前記睛 助族基置換基として列挙したものが挙げられる。

%で表わされる極素環基およびRが慢素環基を表わすと きの検索環基は、ヘテロ原子として酸素原子、イオウ原 子もしくは窒素原子を有する胞鞘もしくは不飽和、置換 もしくは無置換の復素環幕である。例えばピリジン環、 イミダゾール類。ビベリジン環、オキシラン環、スルボ ラン頃、イミダブリジン環、チアゼビン環またはピラゾ ール頃などが挙げられる。密険基としては前記脂肪族基

一般式 (XII) で表わされる基の具体例としては例えば 以下のものが挙げられる。

- 504, 04, 00, H, - 504, 00, H,

★ ~ SCH, CONHON, CO, H.

-504,04,004,04,004,04,04,

一般式 (XIII) で表わされる基の具体例としては例えば 以下のものが挙げられる。

4/28/2010

以下のものが挙げられる。

http://www4.ipdl.inpit.go.jp/TD/web045/20100429011748710785.gif

一般式(XVI)で表わされる基の具体例としては例えば

本発明の一般式(1)で表わされる化合物は、ビス体、 チロマーあるいはポリマーである場合も含まれる。例え 体より誘導され、一般式 (XVI) で表わされる繰り返し 単位を有する重合体、あるいは、芳香族第1級アミン現 做主薬の酸化体とカップリングする能力をもたない少なメ

*くとも1個のエチレン基を含有する非発色性学量体の1 種以上との共重合体である。ここで、一般式 (XV) で表 はボリマーの場合、下記一般式 (XV) で表わされる単置 20 わされる単置体は、2 種以上が同時に重合されていても \$430

一般式 (xv)

---酸式 (WI)

式中Rは水素原子、炭素数1~4個の低級アルキル基、 または塩素原子を表わし、A、は一CCMI-、-MCCMI -, -MHCCO-, -COO-, -SO₂-, -CO-, -MHCO -, -5G,NH-, -NHSO, -, -0CO-, -0CONH-, -NH -又は-O-を表わし、A。は-COM-又は-CGO-を表 キレン基、アラルキレン基または無置換もしくは置換ア リーレン基を表わし、アルキレン基は直鎖でも分岐鎖で 65.63

《アルキレン芸としては倒えばメチレン、メチルメチレ ン。ジメチルメチレン、ジメチレン、トリメチレン、テ トラメチレン、ベンタメチレン、ヘキサメチレン、デシ ルメタレン、アラルキレン芸としては倒えばペリジリデ ン、アリーレン基としては例えばフエニレン、ナフチレ ンなど)

QQは、一般式(1)で表わされる化合物残基を表わし、 50 キシカルボニル基など)、スルホニル基(例えばメチル

とれるについて既に説明した置換基の2で表わされる基 を除くいずれの部位で結合していてもよい。

1. J、および k は 0 または 1 を表わすが、 1. J、お よびkが同時に()であるととはない。

ととでAcaで表わされるアルキレン基、アラルキレン基 わし、A₄は炭素数 1~10個の無面換もしくは置換アル 40 またはアリーレン基の置換差としてはアリール差(例え (はフェニル基)、ニトロ基、水酸基、シアノ基、スルホ 基、アルコキシ華(例えばメトキシ芸)、アリールオキ シ苣(例えばフエノキシ墓)、アシルオキシ基(例えば アセトキシ基)、アシルアミノ基(倒えばアセチルアミ ノ荏)、スルホンアミド荏(例えばメタンスルホンアミ ド囍)、スルフアモイル莓(例えばメチルスルフアモイ ル基)、ハロゲン原子(例えばフツ索、塩素、臭素な ど) カルボキン基、カルバモイル基(例えばメチルカ ルバモイル基)。アルコキシカルポニル基(例えばメト (28)

待公平6-75172

56

スルホニル基)が挙げられる。この置換基が2つ以上あるときは同じでも無つてもよい。

次に、芳香族一級アミン現像薬の酸化生成物とカツブリングしない非発色性エチレン機學登体としては、アクリル酸、αークロロアクリル酸、αーアルキルアクリル酸 およびこれらのアクリル酸類から誘導されるエステルもしくはアミド、メチレンピスアクリルアミド、ピニルエステル、アクリロニトリル、芳香族ピニル化合物。マレイン酸誘導体、ピニルピリジン類等がある。ここで使用する非発色性エチレン様不敵和學量体は、2種以上を同10時に使用することもできる。

一般式(1) において、A. L. B. Lおよび乙で豪わされる基の任意の2つが一般式(1)で豪わされる結合 手の他に結合手を持ち連結する場合も本類は包含する。この第2の結合手は現像時に切断されなくても本発明の効果が得ちれる。このような結合の例は、例えば以下のものである。

A-(L₁)-B-L₂-2

次に本発明における漂白促進剤放出カプラーの具体例で示すが、これに限定されるものではない。

57 { / }

(2)

(3)

(6)

(8)

(t)
$$C_5H_{11}$$
 OCH 2CONH

OH OH

OHON

OHON

CH2CH2CO2H

CO2CH3

(10)

(16)

(17)

(2/) (2/) (2/) (2/) (4)
$$C_2H_5$$
 (4) C_3H_{11} (4) C_3H_{11} (5) C_5H_{11} (6) C_5H_{11} (7) C_5H_{11} (7) C_5H_{11} (7) C_5H_{11} (7) C_5H_{11} (7) C_5H_{11} (8) C_5H_{11} (7) C_5H_{11} (8) C_5H_{11} (9) C_5H_{11} (9) C_5H_{11} (9) C_5H_{11} (1) $C_5H_{$

$$\begin{array}{c} \text{CO}_2\text{C}_{12}\text{H}_{25} \\ \text{CH}_3\text{O} & \begin{array}{c} \text{CO}_2\text{C}_{12}\text{H}_{25} \\ \text{COCHCONH} \end{array} \end{array}$$

64公平6-75172

(24)

(26)

台成例 例示化合物(1)の合成

*30*以下の合成ルートにより合成した。

1

2

/2

13

4/28/2010

(例形化合物(/))

◎第1工程(化合物10の合成)

9 () .Am.Chem.Soc., <u>81</u>,4605 (1959) に記載の方法によ り合成した), 147、7g、水酸化カリウム24.5gk3よび水1 びトルエンを共沸で留去した。残酷にN,N-ジメチルホ ルムアミド500ml、1. 70g. 塩化第一銅0.5gを加え120 でで4時間反応させた。室温に冷却した後塩酸12ml、水 150mlおよびメタノール500mlを加えた。析出した結晶を 口取することにより10を1200を得た。

②第2工程《化合物1100合成》

10の55,9gをエタノール300mlと水1600mlの混合溶媒に加 え窒素ガスを通じた。この溶液に水酸化カリウムの31.4 qを加え6時間加熱還流した。室温にまで冷却し塩酸を 加えて中和した。酢酸エテル500mlを加え分波ロートに 移し水洗浄した。袖層を分離し減圧下溶媒を図去した。 残渣(45.20)を全量次工程に用いた。

②第3工程(化合物12の合成)

段階ので得た化合物11の46、20を酢酸エチル500mlに溶解 した。室温で無水へブタフルオロブタン酸の47、3gを滴 下した。40分間その温度で反応させた後、炭酸ナトリウ ム水を加え中和した。分波ロートにて油層をとり水洗浄 した。油層を分離し減圧下溶媒を図去し残渣にクロロボ ルムを入れると結晶が析出した。これを除去し口液を濾 縮することにより化合物12の52.50を得た。これを全量 次工程に用いた。

の第4工程 (化合物13の合成)

前記で得た化合物12の52.5g、 還元鉄53g、 塩化アンモニ ウム3g 酢酸3mlをイソプロパノール280mlと水40mlの痕 台湾媒に加え1時間加熱還流した。熱いうちに口醤し口 液を凝圧で濃縮した。結晶が折出したところで造稿をと め冷却した。福出した結晶を口別することにより45.20 の化合物13を得た。

の第5工程(化合物14の合成)

化合物13の45、2gをアセトニトリル500m7に加え加熱産締 50 をクロロホルムとヘキサンで再稿品することにより目的

下2~ (2,4-ジー1-アシルフエノキシ) ブタノイル クロリドの28、30を滴下した。30分間垂流下反応さえた 後室端にまで冷却し酢酸エチル500mlを加え水洗浄し 5㎡をトルエン』&に加え1時間加熱環流した。水およ 20 た。協屋を分離し減圧で溶媒を図去した。残酒を酢酸エ チルとカーヘキサンより再結晶し140056.7gを得た。 ◎第6工程(化合物15の合成)

140056,7gをテトラヒドロフラン250㎝、アセトニトリル 250mlにN,N-ジメチルホルムアミド10mlの混合溶媒に加 え室温でチオニルクロリド42.40を満下した。30分間反 広させた後-10°Cに冷却した。この溶液にプロビルアミ ン67.7gをり℃以下に保ちなから滴下した。30分間その 湿度で反応させた後酢酸エチルを加え水洗浄した。油厚 を分離し減圧で溶填を図去した。残渣を酢酸エテルとへ キサンの複合溶媒より再結晶することにより45.2aの15 を得た。

の第7工程(化合物15の工程)

150045.2gをメタノール300mlと塩酸15mlの複合溶媒に加 え」時間加熱返流した。室温に冷却後水200miを加え折 出した結晶を口取することにより28.6qの16を得た。

◎第8工程(化合物17の合成)

16の28.6gをテトラヒドロフラン650mlに加えー10°Cに冷 類し塩化アルミニウム4.6gを加えた。この溶液にフエノ キシカルボニルメチルスルフエニルクロリド8.40を含有 40 するジクロロメタン終液500mlを滴下した。30分間-10 でで反応させた後酢酸エタルおよび水を加えた。分液ロ 一トにて油層を分離し水洗した。油層をとり減圧で溶媒 を留去し残渣をヘキサンとエタノールの混合溶媒より再 結晶することにより目的の化台物17の249を得た。

(9)第9工程(例示化合物(1)の合成)

前記工程で得た1700240を、250水酸化カリウムを溶解さ せた10%含水イソプロパノールに溶解させ3時間室温で 反応させた。反応液が酸性になるまで希望酸を削え許敬 エチルにより抽出した。溶媒を被圧で密去した後、残渣 とする例示化合物(1)を13.46得た。

本発明のカプラーは乳剤層および非悪光性中間層に添加 するととができる。 好ましくは乳剤層に含有させるのが よい。多量に添加する場合は非思光性中間層に添加する と感度低下等の副作用が少なくて済む。

85

添加量としては全途布銀煙の0.01モル%~100モル%。 好ましくは0.1モル%~50モル%で、特に好ましくは1 モル%~20モル%である。

本発明に用いられる写真感光材料の写真乳剤層に含有さ れる好ましいハロゲン化銀は塩化銀、泉化銀、沃泉化 銀、沃塩化銀もしくは沃塩臭化銀である。

写真乳剤中のハロゲン化鏡粒子は、立方体、八面体、十 四面体のような規則的な結晶形を有するもの、球状、板 状のような変則的な綺麗形を有するもの、双晶面などの 結晶欠陥を有するもの、あるいはそれらの複合形でもよ Ļs.

ハロゲン化銀の粒径は、約0.1ミクロン以下の微粒子で も殺影面譜直径が約10ミクロンに至る迄の大サイズ粒子 でもよく、多分散乳剤でも単分散乳剤でもよい。

本発明に使用できるハロゲン化銀写真乳剤は、例えばり 20 サーチ・デイスクロージヤー(RD),No.17643(1978年1 2月)、22~23頁、"I.乳剤製造(Emulsion preparatio n and types) ~ および同、No.18715(1979年11月). 5 48篇、グラフキデ書「写真の物理と化学」、ボールモン テル社刊(P.Clafkides,Chinne et Physique Photograp hique Paul Montel, 1967). ダフイン若「写真乳剤化 学」、フォーカルプレス社刊(G.F.Duffin, Photographi c Emulsion Chemistry (Focal Press,1966)、ゼリクマ ンら若「写真乳剤の製造と塗布」、フオーカルブレス社 Fig (V.L.Zelikman et al.Making and Coating Photogra 30 phic Emulsion, Focal Press, 1964) などに記載された方 法を用いて顕製することができる。米国特許第3,574、62 8号,同第3,655,394号および米国特許第1,413,748号な どに記載された単分散乳剤も好ましい。

また、アスペクト比が約5以上であるような平板状粒子 も本発明に使用できる。平板状粒子は、ガトフ著、フオ トグラフィク・サイエンス・アンド・エンジニアリング (Gutoff, Photographic Science and Engineering).

第14卷、248~257頁(1970年);米国特許第4,434,226 号、第4,414,310号、同4,433,048号。同4,439,520号标 よび英国特許第2,112,157号などに記載の方法により簡 単に諷製することができる。

結晶構造は一様なものでも、内部と外部とが興興なハロ ゲン組成からなる物でもよく、層状構造をなしていても よい。また、エピタキシャル接合によつて組成の異なる ハロゲン化銀が接合されていてもよく、また例えばロダ ン態。酸化鉛などのハロゲン化銀以外の化合物と接合さ れていてもよい。

また種々の結晶形の粒子の混合物を用いてもよい。

分光増感を行つたものを使用する。このような工程で使 用される添加剤はリサーチ・ディスクロージヤーNo.175 おおよび同Mo、18715に記載されており、その該当個所を 後獨の裏にまとめた。

86

本発明に使用できる公知の写真用添加剤も上記の2つの リサーチ・デイスクロージヤーに記載されており、下記 の表に記載個所を示した。

	添加剂種類	PD17643	RD18716
1	化学增感剂	23頁	648頁右機
2	感度上昇剤		同上
3	分光增感剂、強 色增感剂	23~24頁	648頁右微~649頁右機
4	岩白剤	24頁	
5	かぶり防止剤お よび安定剤	24~25頁	649頁右橢
6	光吸収剤、フイ ルター染料性外 装吸収剤	25~28頁	849頁右欄~850頁左欄
7	ステイン防止剤	25頁左從	650頁左~右關
8	色素画像安定前	25頁	
9	硬膜斜	26頁	651頁右彈
10	パインダー	26頁	同上
11	可控制、指指剂	27頁	850頁右欄
12	途布助制、豪國 活性制	26~27頁	同上
13	スタチヅク防止 剤	27頁	同上

本発明には狙々のカラーカブラーを使用することがで き、その具体倒は前出のリサーチ・デイスクロージャー (RD) No.17643. VII-C~Gに記載された特許に記載 されている。

イエローカプラーとしては、例えば米国特許第3.933,50 1号、同第4,022,620号、同第4,326,024号、同第4,401,7 52号,特公昭58-10739号,英国特許第1,425,629号,同 第1,476,760号等に記載のものが好ましい。

マゼンタカプラーとしては、5-ピラゾロン系及びピラ ゾロアゾール系の化合物が好ましく、米国特許第4,310、 619号、同第4、351,897号、欧州特許第73,636号、米国特 許第3,061,432号、同第3,725,067号。リサーチ・デイス 40 クロージヤーNo、24220(1984年6月)、特別昭50-33552 号、リサーチ・デイスクロージヤーNo.24230(1989年6 月)、特別昭50-43659号、米國特許第4,500,630号、同 第4,540,654号等に記載のものが特に好きしい。

シアンカプラーとしては、フェノール系及びナフトール 系カプラーが挙げられ、米国特許第4,052,212号、同第 4,145,396号、同算4,228,233号、同第4,295,200号、同 第2,369,929号、同第2,801,171号、同第2,772,162号。 同第2.895,825号、同第3,772,002号、同第3,758,308 号。同第4、334、011号、同第4,327,173号。 西独特許公娲

ハロゲン化銀乳剤は、連常、物理系成、化学系成および 50 第3,329,729号、欧州特許第121,3654号、米国特許第3,4

45,622号、同第4,333,999号、同第4,451,559号、同第4、 427,767号、欧州特許第161,626A号等に記載のものが好 きしい。

発色色素の不要吸収を補正するためのカラード・カブラ ーは、リサーチ・デイスクロージヤーNo.17643のVII-G項、米国特許第4、153、570号、特公昭57-39413号、米 国特許第4、004,929号。同第4,138,258号、英国特許第1、 146,368号に記載のものが好ましい。

発色色素が適度な拡散性を有するカプラーとしては、米 園特許第4、366,237号、英国特許第2,125,570号。欧州特 10 クチヤー・アンド・テレヴィジョン・エンジニアズ 許第96,570号、西独特許(公開)第3,234,533号に記載 のものが好ましい。

ポリマー化された色素形成カブラーの負型例は、米国特 許第3,451,820号、同第4,080,211号。同第4,367,282 号、英国特許第2,102,173号等に記載されている。

カツブリングに伴つて写真的に有用な残基を飲出するカ ブラーもまた本発明で好ましく使用できる。現像抑制剤 を放出するDIRカブラーは前述のRD17643、VII~F項に 記載された符款、特別昭57-151944号、同57-154234号、 同50-184248号、米国特許第4.248.962号に記載されたも、20 低減させる方法を、極めて有効に用いることができる。 のが好きしい。

現像時に、国像状に進核剤もしくは現像促進剤を放出す るカプラーとしては、英国特許第2,097,140号、同第2,1 31.188号、特開昭59-157638号、同59-170840号に記載の ものが好ましい。

その他、本発明の感光材料に用いることのできるカブラ ーとしては、米国特許第4,130,427号等に記載の競争お ブラー、米国特許第4,283,472号。同第4,338,393号、同 第4,310,618号等に記載の多当量カプラー、特開昭60-18 5950号等に記載のDIRレドックス化合物放出カプラー。 欧州特許第173,3024号に記載の離脱後復色する色素を放 出するカプラー等が挙げられる。

本発明に使用するカプラーは、程々の公知分散方法によ り感光材料中に導入できる。

水中油積分散法に用いられる高沸点有機溶媒の例は米国 特許第2、322、027号などに記載されている。

ラテツクス分散法の工程。効果および合徳用のラテック スの具体例は、米国特許第4,199,363号、西独特許出願 (GLS) 第2,541,274号および同第2,541,230号などに記 戴されている。

本発明に使用できる適当な支持体は、例えば、前述のR D、No.17643の28頁および间、No.18715の647頁右傾から 648頁左欄に記載されている。

本発明に従つたカラー写真感光材料は、前述のRD, No.1 7643の28~29頁および同、No.18716の651左欄~右額に 記載された通常の方法によって現像処理することができ

本発明のハロゲン化銀写真感光材料は、発色現像後、水 洗することなしに漂白定着浴中で処理することが好まし

本発明のハロゲン化銀カラー写真感光材料は、定着又は 漂白定者等の脱鏡処理後、水洗及び/又は安定工程を経 るのが一般的である。

88

水洗工程での水洗水量は、感光材料の特性(例えばカブ ラー等使用素材による〉、用途、見には水洗水温、水洗 タンクの数(段数)、向流、順流等の铺充方式、その外 種々の条件によって広範囲に設定し得る。このうち、多 段向流方式における水洗タンク数と水量の關係は、ジヤ ーナル・オブ・ザ・ソヴエテイ・オブ・モーション・ピ

(Journal of the Society of Motion Picture and Tell evision Enganeers) 第64卷、p.248-253 (1955年5月 号) に記載の方法で求めることができる。

前記文献に記載の多段向流方式によれば、水洗水量を大 市に減少し得るが、タンク内における水の滞留時間の増 加により、バクテリアが繁殖し、生成した浮遊物が感光 材料に付着する等の問題が生じる。本発明のカラー感光 材料の処理において、この様な問題の解決衰として、特 類昭51-131632号に記載のカルシウム、マグネシウムを また、特闘暗57-8542号に記載のイソチアゾロン化合物 やサイアベンダゾール類、塩素化イソシアヌール酸ナト リウム等の塩素系殺菌剤。その他ベンソトリアゾール 等。堀口傳著「防金防敵組の化学」、衛生技術会塩「微 生物の絨菌、殺菌、防磁技術」、日本防菌防療学会編 「防菌防蔽剤事典」に記載の殺菌剤を用いることもでき

本発明の感光材料の処理における水流水のpHは4-9で あり、好ましくは5-8である。水洗水温、水洗時間も 36 感光封料の特性、用途等で種々設定し得るが、一般に は、15-45℃で20秒-10分、好ましくは25-40℃で30秒 - 5 分の範圍が選択される。

更に、本発明の感光材料は、上記水洗に代り、直接安定 液によつて処理することもできる。この様な安定化処理 においては、特開昭57-8543号。同58-14834号。同59-18 4343号、同60-220345号、同60-238832号、同60-239784 号. 同60-239749号. 同61-4054号、同61-118749号等花 記載の公知の方法は、すべて用いることができる。特 に、1-ヒドロキシエチリデン-1,1-ジホスホン酸、

5-クロロー2-メチルー4-イソチアゾリン-3-オ ン、ビスマス化合物、アンモニウム化合物等を含有する 安定浴が好ましく用いられる。

又、前記水洗処理に続いて、更に安定化処理する場合も あり、その例として、疑影用カラー感光材料の最終落と して使用される。ホルマリンと界面活性剤を含有する安 定俗をあげることができる。

次ぎに本発明に使用できるリンス裕又は安定浴につい て、詳細を説明する。

リンス洛又は安定洛と定着能を有する浴との間には必要 50 に応じて行なう短時間の水洗やリンスが存在してもよ

い。本発明における"定着館を有する裕"とは、主に従 来の場合定者裕や定者裕を示し、これらの裕には後述す るようにチオ議散題を含有するのが好ましい。

89

上記リンス浴とは、カラー感光材料に付着又は咳蔵された処理液成分、並びに処理後の写真性能、画像の安定性 を確保するために除去されるべきカラー感光材料の構成 成分を洗い出すととを主目的した浴である。

又、安定裕とは上記リンス裕としての機能に加え、更に リンス裕では得ることのできない画像安定化級能を付与 された裕を指すもので、例えば、ホルマリンを含む裕な 10 使用しやすい。 どがこれに相当する。また前裕からの持ち込み葉とは、 この縁なイオン 感光材料に付着並びに吸感されてリンス裕に張入する前 ルンウム、マジ 裕の容章を意味し、リンス裕に入る直前に誤取したカラー感光材料を水に浸漬して前浴成分を抽出し、抽出液中 で、良好な締め の前浴成分質を測定するととによって算出し得る。 本発明のリンス

本発明のリンス裕又は安定裕は、通常を投以上の向権方式が好ましく。補充費は感光材料単位面積当り前給からの持込み量の0.5~50倍、好ましくは1.0~30倍と適席の水洗水畳の1/10以下である。

本発明のリンス俗または安定浴中には、水アカの発生や 20 処理後の感光特料に発生するカビの防止のため、種々の 防バクテリア削、防力ビ削を含有させることもできる。 これらの防バクテリア剤、防力ビ剤の倒としては特勝昭 57-157244号及び同58-105145号に示されるような、チア ゾリルベンズイミダゾール系化合物。あるいは特開館57 -8542号に示されるようなインチアゾロン系化合物、あ るいはトリクロロフェノールに代表されるようなクロロ フエノール系化合物、あるいはプロモフエノール系化合 物。あるいは、省機スズや有級亜鉛化合物、あるいは、 チオシアン酸やイソチオシアン酸系の化合物、あるい は、酸アミド系化合物、あるいはダイアジンやトリアジ ン系化合物、あるいは、チオ尿素系化合物、ベンゾトリ アゾールアルキルグアニジン化合物、あるいは、ベンズ アルコニウムクロライドに代表されるような4級アンモ ニウム塩、あるいは、ペニシリンに代表されるような抗 生物製等、ジヤーケル・アンテイバクテリア・アンド・ アンティファンガス・エイジェント(),Antibact.Antif ung.Agents) Vol1、No.5. p-207~223 (1983) 化記載 の汎用の防バイ剤を1種以上併用してもよい。

又、特別昭48-83820号に記載の種々の殺菌剤も用いるこ 49 とかできる。

ビニルベンゼンの共産合体が好ましく、特に製造時のジ ビニルベンゼン住込畳が全モノマー住込畳の4~16% (w/w) のものが好ましい。

このようなイオン交換制能の例として、三菱化成(株) 製商品名ダイヤイオンSK-18又はFK-216等を挙げることができる。

逆浸透暖器としては、種々のものを用い得るが、酢酸セルロース又はポリエーテルサルホンの膜を用いたものが適している。圧力はZOKg/cm/以下のものが騒音が小さく使用しなすい。

との鍵なイオン交換樹脂や逆浸透処理装置によつて、カルシウム、マグネシウムを低減させた水は、バクテリアやカビの繁殖が少なく、本発明と組合せることによって、良好な結果をもたらすものである。

本発明のリンス浴又は安定浴には、液安定性の点から特に、キレート剤を添加することが好ましい。キレート剤 としては、無機リン酸、アミノボリカルボン酸、有機リン酸、アミノボリホスホン酸、ホスホノカルボン酸等を あげることができる。

20 (実施例)

以下に参発明を実施例により更に説明するが、本発明は これらに限定されるものではない。

京総側1

下塗りを施した三酢酸セルロースフィルム支持体上に、 下記に示すような組成の各層よりなる多層カラー感光材 料である試料101を作成した。

(感光層の組成)

具色コロイド課

また増態色素については同一層内のハロゲン化銀 1 モル あたりのモル数で示した。

----0.2g/m²

30 第1層 (ハレーション防止層)

ゼラチン	1.3q/nf
カラードカプラーC- 1	0.06q/m²
紫外線吸収剤W-1	······ 6.1q/w
同上 uv-2	······ 0 . 2q/माँ
高諾点有機溶媒Cn1-1	······0.01cc/π [‡]
同上 6-1-2	0.01ac/w²
第2層(中間層)	
微粒子異化銀	
(平均拉径0.07μ)	0.15q/n²
ゼラチン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.0g/w
カラードカブラー0-2	
高游点有锈溶媒(m) - 1	0.1cc/m
第3層(低感度赤感乳劑層)	
沃奥化銀乳剤(沃化銀2モル%、	
平均位径0.3m)	銀5.4g/mi

	(4	15)	4	静公平6-75172
91.			92	
カブラーC - 3	ਹ . ਹ6q/ਜਾਂ		カプラーC-9	0.25g/m²
カプラーC 4	0.06q/nl		カプラーG-1	·····0.03q/m²
カプラーロー8	0,04g/m²		カプラーC-19	0.015q/m²
カプラーC – 2	0.03q/m²		カプラーC-5	·····0.01q/n³
高游点有级溶媒の1-1	903cc/ต่ำ		高端点有概溶媒(n1-1	⋯⋯0.2cc/ਯੰ
国上 (31-3	0.012cc/m²		第9層(高感度綠感乳劑層)	
第4層(中感度赤感乳剤層)	•		沃臭化銀乳剤(沃化銀6モル%、	
沃泉化銀乳剤(沃化銀5モル%、			平均粒径6.711)	銀0.85q/mi
平均前径0.5#)	·····0.7व/क्र [‡]		ゼラチン	1.0q/n²
增感色素 !	1×10*	10	给感色素VII	3,5× <u>1</u> 0**
造感色素II	3 × 10 *		增感色素VIII	1,4×10°
给感色素III	1 × 10°		カプラーC-11	0.01q/at
カプラーC-3	·····0,24q/m²		カプラーC-12	0.03q/ai
カプラーC-4	·····0.24g/m²		カブラーCー13	0.20g/m
カプラーG-8	·····0.04g/m²		カプラーC-1	0.02q/m
カプラーC-2	·····0.04g/πi		カプラーC-15	······0.02q/काँ
高遊点有機溶媒On1-1	9.15cc/ส		高游点有线熔媒(n1-1	0.20cc/m²
高游点有錢密媒(m1-3	9.92cc/m²		同上 017-2	0.05cc/ o f
第5層(高感度赤感乳剤層)	a raccy in		第10署(イエローフイルター層)	
沃臭化銀乳劑(沃化銀10~4%、		26	ゼラチン	1.2g/m²
平均位径0.74)	······銀1.0g/mi		貴色コロイド銀	0.08q/m²
ゼラテン	1.0q/m²		化合物Cod-B0.1q/m*	
治感色素!	1 ×10 *		高游点有级溶媒(n1-1	∂.∃cc/m³
增感色素II	3 × 10 '		第11層(低感度青感乳劑層)	
增感色素III	1 × 10 '		单分散沃奥化銀乳劑(沃化銀4 ·	E11%.
カプラーC - 6	0.05q/nf		平均位径9.311}	銭0,4q/m
カプラーCー7	0.1q/m		ゼラチン	1.0g/m
高游点有級密媒の1-1	0.01cc/n/		地感色素IX	2×10°
周上 0-1-2			カプラーC ー 14	0.9g/m²
第6層(中間層)		30	カブラーC-5	0.07q/ni
ゼラテン	·····1. Gg/cd		高遊点有緻密媒の1-1	······0.2cc/वर् [*]
化合物Cod-A	0.03q/m²		第12層(高感度青感乳剤層)	
高游点有缀溶媒(n) - 1	0.05cc/m		沃臭化銀(沃化銀10モル%。	
第7層(低感度綠感乳剤層)			平均粒径1.5% 〉	銀0.5q/mi
沃臭化銀乳化剤(沃化銀4モル%、			ゼラチン	9.6व/वर्ग
平均位径0.311)	0.30q/m		给感色素IX	1 ×10.
给感色素IV	5×10*		カプラーC -14	0.25q/m²
增感色素VI	0.3×10"		高沸点有機溶媒Cn7-1	0.07cc/เก้
治惑 色素 V	2×10,		第13据(第1保護層)	_
ゼラチン	1.0q/m²	40		0.8q/m²
カブラーG-9	6.2q/m²		紫外線吸収剤UV-1	0,1q/af
カプラーC-5	·····0.03q/m²		局上 UV-2	0.2q/m
カプラーC-5	·····0.03q/n²		高涛点有機溶媒cm1-1	0.01cc/m
高游点有锈溶媒(n)-1	0.5cc/m²		同上 011-2	·····0.01cc/m
第8層(中感度係感乳剤層)			第14階〈第2保護曆〉	
沃臭化銀乳剤(沃化銀5モル%、			微粒子臭化銀(平均粒経0.07μ	
平均粒径5、5μ)	0.4q/m²		ゼラチン	0.45q/m²
增感色素 IV	5×10'		ポリメチルメタアクリレート粒	
增感色素 V	2×1σ		(直径1.5µ)	9.2q/n²
增感色素VI	G.3×10*	50	短期的H-1	6.4g/rd

(47)

符公平6-75172

94

ホルムアルデヒドスカベンジヤーS-1 ----- 0.50/㎡ ホルムアルデヒドスカベンジヤーS-2 ---- 0.50/㎡ 各層には上記の成分の他に、雰面活性剤を塗布助剤として強剤した。以上のようにして作成した試料を試料101 * U V -- /

93

*とした。 次に本発明に用いた化合物の化学構造式または化学名を 下に示した:

x/y= 7/3 (重量比)

UV-2

$$C_2H_5$$
 N-CH=CH-CH=C $COOC_8H_{17}$ C_2H_5 $C_2C_6H_5$

の1-1 リン酸トリクレジル

※6-1-3 フタル酸ビス(2-エチルヘシル)

011-2 フタル酸ジプチル

C - I

C - 5

特公平6-75172

104

C = I = S

$$(CH_3)_3 CCOCHCONH \longrightarrow C_5 H_{11}(t)$$

$$C_5 H_{11}(t)$$

$$C_6 H_{11}(t)$$

$$C_7 H_{11}(t)$$

$$C_8 H_{11}(t)$$

Cpd A

*增感色素!

Cpd B

增感色素II

给感色素III

(53)

特公平6-75172

维感色素 IV

增感色素V

增感色素VI

$$\begin{array}{c} C_2H_5 \\ O \\ CH=C-CH= \\ N \\ CH_2 \\ SO_3\Theta \\ CH_2 \\ O \\ SO_3K \\ \end{array}$$

岩感色素VII

$$\begin{array}{c} C_2H_5 \\ \bigoplus_{N} CH = C - CH = \\ (CH_2)_2SO_3 \\ \oplus \\ (CH_2)_2SO_3 \\ \end{array}$$

增感色素VIII

(54)

待公平6-75172

108

增感色素IX

H - I

107

$$\begin{array}{c} \text{CH}_2 = \text{CH-SO}_2 - \text{CH}_2 - \text{CONH-CH}_2 \\ \text{CH}_2 = \text{CH-SO}_2 - \text{CH}_2 - \text{CONH-CH}_2 \end{array}$$

20

30

$$S - a$$

以上の如くして作製した試料を101とした。 試料102~1100作製

試料101において第3層、第4層のカプラーC-3のかわりに表1に示したカプラーに等モルおきかえた以外試料101と同様にして作成した。

試料101~110を35m/m巾に叙断したのち標準的な被写体を探影し、下記処難工程(I)~(III)を適して各々50mのランニングテストをおこなつた。ランニング終了後、試料101~110を白光で200mの35光を与え、下記頻像処理をおこなつた。

現像清の試料の残響銀畳を螢光X線で分析した結果を表 40 1に示した。

本発明のカプラーを用いた場合はランニング状態に起い ても十分に脱誤促進効果を発揮していることがわかる。 比較カプラーA

リサーチデイスクロージヤーNo.11449(1973)に記載の 化合物

比較カプラーB

リサーチデイスクロージヤーNo.11449(1973)に記載の 化合物

比較カプラーC

符公平6-75172

109		110
OH	CONH (CH2)40-	_1 C 5 H 11
	t C s	→ H ₁₁
d ,	v-cosch2ch2-n	CH3
	V—COBCII 2 OII 2 IX CH3	CH₃
NO ₂		

特開昭61-201247に記載の化合物 比較カプラーD

特開昭61-201247に記載の化合物 表-5 処理工程(Ⅰ) (温度38℃)

	処理(I)					
工程	時間	補充量*				
完色戦隊	3 5) 15&	15mì				
漂白	3 /3 00&	5xi				
定着	4分00秒	30 mi				
安定①	3045	_				
安定②	30 £9	_				
安定③	3069	30ml				
吃 嫁	1分30g 50°C					

本 35%向1m当り

上記処理工程において、安定の、の、のはの一の一のへ の向流方式とした。又、定着液の水洗タンクへの持ち込 40 重要端酸ナトリウム み堂は1m当り2mlであつた。

母液(g)

《尧色現像液》

ジエチレン	1.0	2.0	pH
トリアミン五酢酸			《安定液》
1 - ヒドロキシ	2.0	3.3	
エチリデンー1.			ポルマリン
1 - ジホスホン酸			(37%w/y)
亜鞣酸ナトリウム	4.9	5.0	ポリオキシエテレン
炭酸カリウム	30.6	38.0 50	- p - モノノニル

缩充液 (g)

異化カリウム 1.4 1.300 沃化カリウム ヒドロキシアミン 2.4 3.2 4 - {N-エチルー4.5 NーRーヒドロキシ エチルアミノ) -2-20 メチルアニリン議酸塩

12 水を加えて 1 € 10.00 10.05 ρH 《漂白液》 母液(g) 續充液 (g)

60 エタレンジアミン 50 四酢酸第2歳アンモ ニウム塩 1,3ージアミノブ 72 60 パン四酢酸氧2鉄 30 アンモニウム塩 硝酸アンモニウム 10.0 12.0q 異化アンモニウム 155q 170g 1 £ 水を加えて 1 E pH 《定者液》 母液 (g) 請充波 (g) 1.0

エチレンジアミン四 酢酸ニナトリウム塩 亜硫酸ナトリウム 4.0 5.0 4.6 5.8 チオ醯酸アンモニウム 174ml 200a1 水溶液 (70%) <u>1</u> & 水を加えて 1 e 5.5 5.6 23 母液(g) **領充液(g)** 3.0ml

2.5mì

0.3

0.45

(56)

特公平6-75172

117

フエニルエーテル (平均重合度10) 5-クロローミーメチル 0.03 0.045 ー4ーイソチアゾリンー

3ーオン 水を加えて

1 &

処理工程(Ⅱ)(温度38℃)

re l	始理(II)						
TE	処理時間	補充量*					
売色現像	3 /2) 15 1/	15m2					
海白	1分00秒	10mi					
孫白定着	3分15秒	15±1					
水洗①	400	_					
水洗②	1分00秒	1200ml					
安定	2069	151sl					
乾燥	1分1569 (60°C)	-					

* 補充量は35%市10長さ当り

上記処理工程において、水洗のとのは、のからのへの向 29 造水洗方式とした。次に、各処理液の組成を記す。

《発色現像統》

(完四班隊派)						
*		ž (g)		本 感光材料35%巾1重長	ざ当り	
ジエチレン	1.0	1.1				
トリアミン五酢酸				《尧色現像液》		
1-ヒドロキシ					母液(g) 箱充油	€(℃)
エチリデンー1,1~	5.0	2.2		ジエチレントリアミン	1.6	1.2
ジホスホン酸				知和正		
亜磷酸ケトリウム	4.0	4.9		1 - ヒドロキシエチリ	5.0	2.4
炭酸カリウム	30.9	42.0	30	デン-1.1-ジホスホン酸		
臭化カリウム	1.6	***		亜硫酸ナトリウム	2.0	4.8
沃化カリウム	2.5mg	****		炭酸カリウム	35.0	45.0
ヒドロキシアミン	2.4	3. 5		臭化カリウム	1.6	_
4…(N-エチルー	5.0	7.3		沃化カリウム	2.040	-
N-B-ヒドロキシ				ヒドロキシルアミン	2.0	3.5
エチルアミノ) -2ーメチル				4 - (N-エチル-N-	5.0	7.5
アニリン硫酸塩				βーヒドロキンジエチル		
水を加えて	1 €	1 &		アミノ) ー名ーメチル		
pH	10.00	10.05		アニリン硫酸塩		
《嫖白液》母液・鴒充液共通			40	水を加えて	1 €	<u>1</u> &
エチレンジアミン四酢酸第二鉄	:	120.0q		pH(水酸化カリウム	10.20	10.35
アンモニウム塩				を用いて)		
エチレンジアミン四酢酸ニナト	リウム塩	19.0q		《漂白定者液》		
硝酸アンモニウム		10.0q			母液(g) 缩充流	定(8)
奥化アンモニウム		109.0q		エチレンジアミン	40	45
アンモニア水を削えて		gH5.3		四酢酸第2 統		
水を加えて		1.01		アンモニウム塩		
《漂白定者液》母液·循充液共	通			ジエチレントリアミン	40	45
エテレンジアミン四酢酸第二醇		50.0g		五酢酸第2餘		
アンモニウム塩			50	アンモニウム塩		

112 エチレンジアミン四酢酸二ナトリウム塩 5.Gq 亜硫酸ナトリウム 12.0q チオ藤酸アンモニウム水溶液 (70%) 240m pH7.3 アンモニア水を加えて 1 2 水を加えて 《水洗水》

水洗水としては、水道水をNa型強酸性カチオン交換樹脂 (三菱化成 (株) 製 ダイヤイオンSK-18) を充てんし たカラムに運水し、カルシウム2mg/1、マグネシウム1.2 15 mg/1の水質にしたものを用いた。

《安定液》

処理工程(1)と同じ

処理工程(II)(温度38℃)

工程	处理時間	タンク容量	續充量*
発色現像	3分15秒	8 €	15=4
漂白定着	2分30秒	8.2	25m1
水洗①	20秒	48 -	-1
水洗②	2019	4.2	3段的流方式
水洗⑨	20秒	4.6	10m2
安定	20%	4.2	10ml

15 10 10 10 10 10 10 10					(57)	特公平	6-75172
四部配二・チトリウム塩 15 70 20 素と素に (中部階) 15 70 20 素と (中部階) 25 70 20 素と (東京 中本			113				114	
### できる	エチレンジア	ミン	10		10			0.2
	四酢酸二・ナ	トリウム塩					高沸点有機溶媒GIL-1	0.92
# A a a a a a a a a a a a a a a a a a a	亜鞣酸ケトリ	ウム	15	;	20		第2層 (中間層)	
アンモニア水(20%) 1 m 1 1 m 1 1 m 1 m 1 m 1 m 1 m 1 m 1	チオ磷酸アン	モニウム	240	ļ	270		凝粒干臭化銀(平均粒径0.07μ)	6.15
求き加えて 1 6 1 8	水溶液(70%	w/v)					ゼラチン	1.0
付入機・			140]		1261		第3層(低感度赤感乳剤層)	
(水洗水	水を削えて		1 €		3 [沃臭化銀乳剤	
(大成水) と である			5.7		5.5		(沃化鉄2モル%、平均粧径0.3μ)	1.5
15	•						ゼラテン	0.9
(1) 水温水		を頂いた。				35	* *	1.6×10*
カルンウム 26mg/ カブラーD-1 0.5 マグネシウム 9mg/ カブラーD-2 0.2 四円 7.2 カブラーD-3 6.92 (2) イオン交換処理水 カブラーD-4 6.01 三菱化成 (株) 鍵盤配性カテオン交換開脂 (Na形) を用 かブラーD-4 6.01 カルシウム 1.1mg/ 5.6 20 (派化銀5 モル%、平均能径0.7 μ) 1.2 (3) キレート部派加した水温水 6.7 カジラーD-1 0.16 別上記載の知くの工程及び処理液にて、変起した。 第8点有機を繰り1-2 第4層(高速度赤底泉利層) 単分散状度化は到乳剤 は2を500mg/lを添加した。 6.7 カブラーD-1 0.10 別上記載の如くの工程及び処理液にて、変起した。 第3. 第4個 におけるカ グラーD-1 0.10 別提記載の知くの工程及び処理液にて、変起した。 カブラーD-1 0.10 別提及び処理液にて、変起した。 カブラーD-2 0.03 素3. 第4個 におけるカ 22 34 36 30 20 20 20 20 20 20 20 20 20 20 20 20 20								
マグネシウム Smg/l カブラーD-2 0.2 内 7.2 カブラーD-3 0.02 (2) イオン交換処理水 カブラーD-4 9.61 三酸化成(特) 跳蜒酸性カタオン交換樹脂(MaF) を用いたした。計算のよりのよきがありないのように表別機能を対した。 あまれでした。 あまれでした。 0.1 カブラーD-4 9.61 カブラーD-4 9.61 カボターした。 0.1 0.1 カボタールト削添加した水道水 5.6 20 (天代銀5 モル%、平均額後6.7μ) 1.2 は3) キレート削添加した水道水 6.7 カブラーD-1 1.2 塩を500mq/lを添加した。 6.7 カブラーD-2 0.5 地を500mq/lを添加した。 6.7 カブラーD-1 0.10 変材地 6.7 カブラーD-2 0.03 が対した状態の加くの工程及び処理液化でて、変施した。 カブラーD-1 0.10 変材地 7.7~性の機能などの加を多位の大力グラールを多数を含性の大力グラーD-2 0.03 101(control) C-3 45 48 52 102(比較例) A 32 34 36 30 103 // B 3 31 34 37 104 // B C 3 48 52 第6 層 (世間管) 105 // B 7 13 34 35 106 // B 7 13 34 36 36 107 // B 7 48 32 34 36 36 106 // B 7 13 34 37 </td <td></td> <td>•</td> <td>36***</td> <td>./1</td> <td></td> <td></td> <td></td> <td></td>		•	36***	./1				
ウェース								•
(2) イナン交換処理水 カブラーD-4 9.01 - 菱化成(株) 製地酸性カチオン交換樹脂(Na形)を用いて上記水道水を処理し、下記水質とした。		•						
三菱化成(株) 親師随性カチオン交換樹脂(Na形)を用かいた記水道水を処理し、下記水質とした。	•	white are two for	•				· · · · · · · · · · · · · · · · · · ·	
いて上記水道水を処理し、下記水質とした。			and a number letter					
カルシウム 1.1mq/1 第4層 (高感度素感兒利層) マグネシウム 0.5mq/1 第4層 (高感度素感兒利層) ロー 5.5 20 (沃化銀5モル%、平均銭億0.7μ) 1.2 (3) キレート熱感加した水道水 ゼラテン 1.0 極を S00mq/1を添加した。 6.7 カブラーD-1 0.10 以上記載の如くの工程及び処理液にて、実施した。 カブラーD-1 カブラーD-2 0.03 最初版 ブラーM 機理工程(I) (II) (II) カブラーD-3 0.02 設別版 ブラーM 処理工程(I) (II) (II) カブラーD-3 0.02 100(Cutk例) A 32 34 86 52 37 40 1.6物収の一A 0.02 103 // B 31 34 37 45 48 52 35 58 個(中間層) 1.0 103 // B 31 34 37 45 48 52 35 58 個(中間層) 1.0 105 // D D 34 38 42 55 58 個(低級度線匹規) 2.05 106(本売明) (2) 11 18 20 第6層 (低級度線配規) (上会板の検察見) 0.5 109 // (21) 14 16 19 (沃化銀3 モル外、平均就優り、3μ) 0.6 200 // (32) 14 20 23 22 分談所見 22 × 10 が 200 // (22) 14 20 23 22 分談所見		** *			2) 化用		,	
世		体を処理し.		-				0.1
日							20	
(3)キレート削添加した水造水 ゼラチン 1.0 簡記水道水に、エチレンジアミン四酢酸二・ナトリウム 塩を 500mq/1を添加した。 塩砂色素 2 ×10 *	マグネシウム		0.5m	g/1				
簡記水道水に、エチレンジアミン四酢酸二・ナトリウム 塩感色素A 3×10′ 塩を50cmq/1を添加した。 6.7 カブラーD-1 0.10 以上記載の如くの工程及び処理液にて、実施した。 カブラーD-2 0.03 ※ 1 カブラーD-5 0.61 ※33、第4個 法解験量(mp/nl) (到) カブラーD-4 0.02 におけるカ ブラール 4 0.02 におけるカ ブラール 4 0.02 におけるカ 7ラール 4 0.02 におけるカ 1 34 34 37 0.02 に比較例 A 32 34 36 30 56 個 (中間層) でラシ 1.0 103 # 8 31 34 37 105 個 (中間層) でラシ 1.0 104 # C 35 37 46 16を物口の一A 0.05 105 # D 34 38 42 高海点有機溶媒の11-2 0.05 106(本発明) (2) 11 18 20 毎6 個 (低風破縁感乳溶解) 毎6 個 (13) 14 16 19 (沃化銀 3 モル外、平均粒径 0.3 μ) 0.5 109 # (20) 14 20 22 毎分飲天具化暖乳剤 (沃化銀 6 モル外、平均粒径 0.5 μ) 0.7 定用上は残窟領蓋が30両向をこえると色再視及び/又 40 増減色素C 3×10″ 定用上は残窟領蓋が30両向をこえると色再視及び/又 40 増減色素C 3×10″ をごうシンス上大きく性能が劣化することが知られて 1.0 16 18 (沃化銀 6 モル外、平均粒径 0.5 μ) 0.7 定用上は残窟領蓋が30両向をこえると色再視及び/又 40 増減色素C 3×10″ を添め素D 2×10″ を添め素D 2×10″ が感め素D 2×10″ が高め素D 2×10″ があめまたD 3×10″ が高め素D 2×10″ が高め素D 2×10″ が高め素D 2×10″ が高め素D 2×10″ が高め素D 3×10″ が高め素D 2×10″ が高め素D 2×10″ を高級は表型の 2×10″ が高め素D 2×10″ が高め素D 2×10″ が高め素D 2×10″ が高め素D 2×10″ が高め素D 2×10″ を高級検験をD 2×10″ のがラーD - 8 6.92 カブラーD - 9 6.61 高源皮有機溶硬のIL - 2 9・05 新りを作製し、試料201とした。 第7 8 高級破験をD 5 分散状具化緩乳剤 を分散状具化緩乳剤 を分散は異なのIL - 2 9・05 第7 8 高級破験をD 5 分散状具化緩乳剤 を分散は異なのIL - 2 9・05 第7 8 高級破験をD 5 分散状具化緩乳剤 を分散は異なのIL - 2 9・05 第7 8 高級破験をD 5 分散が異してした。 5 9 8 8 18 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	рH		*	5.5		50		
題を50cmq/1を添加した。	(3) キレー	・ト剤添加した	水道水					
Pi	前記水道水に	. エチレンジ	アミン四酢酸二	· ナト	トリウム		增感色素A	
以上記載の如くの工程及び処理液にで、変施した。 カブラーD - 2 0.03	塩を500mg/1:	を添加した。					给感色素 B	2×10°
表 1 カブラーD-5 0.61 第3、第4個 におけるカ ブラー施 残留製量(no/nt) カブラーD-4 0.02 101(control) C-3 45 48 52 カブラーD-3 0.02 102(比較例) A 32 34 36 39 第5 層 (中間層) 0.1 103 B 31 34 37 ゼラチン 1.0 104 B 31 34 37 ゼラチン 1.0 105 B 31 34 37 ゼラチン 1.0 105 B 31 34 37 ゼラチン 1.0 106 B 31 34 37 ゼラチン 1.0 108 D 34 38 42 高勝点有機密媒派列配 1.0 107 (11) 13 15 22 学分散沃具化銀乳和 (法化銀3至地外、平均並径の.3µ) 0.5 108 (20) 14 16 19 学分散沃具化銀3和 (法化銀3至地外、平均並径の.3µ) 0.5 支用上は残留襲歴が300点 21 (20) 16 18 (法化銀3至土外、平均並径の.5µ) 0.7 支用上は残留	pH		•	6.7			カプラーD-1	0.10
第3、第4回 法解数型(my/ml)	以上記載の如	6くの工程及び	処理液にて、多	に施した	٤.		カプラーDー2	0.03
記録		寲	1				カプラーDー5	0.61
対対性 グラート 加速工産(1) (1) (1) (1) がかっして があ点有銭落蝶(011-2 0.1 102(比較例) A 32 34 36 39 第5層(中間層) 103 # 8 31 34 37 ぜラチン 1.0 104 # C 35 37 40 化合物Cpd-A 9.05 108(本発明) (2) 11 18 20 第6層(低感度疑惑系統層) 107 # (11) 13 15 22		第3、第4图	英留銀量(तक ∕ गर्दे	(!)		カプラーD-4	0.02
Tolicontrol C-3	2242 No.	におけるカ プラーNo	机硬工程(1)	(II)	(30)		カプラーD-3	0.62
102(比較例) A 32 34 36 30 第5層 (中間層) 103 # 8 31 34 37 ゼラテン 1.0 104 # C 35 37 46 化合物Cpd-A 9.05 105 # D 34 38 42 高夢点有機溶媒のL-2 9.05 106(本発明) (2) 11 18 20 第6層(低限度疑惑乳剤層) 107 # (11) 13 15 22 学分散沃果化錠乳剤 108 # (18) 14 16 19 (沃化銀3モル%、平均粒径0.3μ) 0.6 109 # (20) 14 20 23 学分散沃果化錠乳剤 110 # (21) 16 16 18 (沃化銀6モル%、平均粒径0.5μ) 0.7 実用上は残盥鍵置が30mg/wをこえると色再現及び/又 40 増減色素C 3×10・ は階調バランス上大きく性能が劣化することが知られている。上表で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることが知られている。上表で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることが知られている。上表で明らかなように本発明の化合物を用いると、通速処理においても実用上支険のない範囲であることが知られている。上表で明らかなように本発明の化合物を用いると、通速処理においても実用上支険のない範囲であることが知られている。上表で明らかなように本発明の化合物を用いると、通速処理においても実用上支険のない範囲であることが知られている。上表で明らかなように本発明の化合物を用いると、通速処理においても実用上支険のない範囲であるこかブラーD-6 0.4 と、通速処理においても実用上支険のない範囲であるこかブラーD-7 0.1 を対わかる。 実施例2 実施例1 と間様な支持体に下記の各層よりなる多層感光 3・ガブラーD-8 5・0.92 対対を作製し、試料201とした。第7層(高感度録感歴) 5・分散沃泉化銀乳剤 2・18							高沸点有機溶媒GIL-2	0.1
103 # B 31 34 37 ゼラチン 1.0 104 # C 35 37 40 化合物Cpd-A 9.05 105 # D 34 38 42 高海点有機溶媒のL-2 0.05 106(本発明) (2) 11 18 20 第6層(低感度緑感乳剤層) 107 # (11) 13 15 22 学分散沃臭化銀乳剤 108 # (18) 14 16 19 (沃化銀3モル%、平均粒径0.3 #) 0.6 109 # (20) 14 20 23 学分散沃臭化銀乳剤 110 # (21) 10 16 18 (沃化銀6モル%、平均粒径0.5 #) 0.7 セラチン 1.0 実用上は残留競量が30両がをこえると色再現及び/又は陰調バランス上大きく性能が劣化することが知られている。上裏で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることが知られている。上裏で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることが知られている。上裏で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることがカブラーD-6 0.4 と、迅速処理においても実用上支険のない範囲であることがカブラーD-7 0.1 をがわかる。 カブラーD-7 0.1 をがわかる。 カブラーD-9 5.61 実施例1と間様な支持体に下記の各層よりなる多層感光 カブラーD-9 5.61 実施例1と間様な支持体に下記の各層よりなる多層感光 高源点有機溶媒のL-2 9.05 材料を作製し、減料201とした。第7 層(高感度緑感風) 第1 層 (ハレーション防止層) 多分散沃臭化銀乳剤 具菌コロイ下銀 6.22		•				30	第5層(中間層)	
104 // C 35 37 40 (比合物Cpd-A 9.05 105 // D 34 38 42 高海点有機溶媒のL-2 9.05 106(本発明) (2) 11 18 20 第6層(低感度緑感乳剤層) 107 // (11) 13 15 22 學分散沃臭化銀乳剤 108 // (18) 14 16 19 (沃化銀3モル%、平均粒径0.3 // 平均粒径0.5 // 20) 14 20 23 学分散沃臭化銀乳剤 110 // (21) 10 16 18 (沃化銀6モル%、平均粒径0.5 // ゼラチン 1.0 東用上は残留領量が30元/でをこえると色再現及び/又は陰調バランス上大きく性能が劣化することが知られている。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支障のない範囲であることが知られている。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支障のない範囲であることが知られている。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支障のない範囲であることがカブラーD-6 0.4 カブラーD-7 0.1 をがわかる。 カブラーD-8 5.62 カブラーD-9 5.61 高沸点有機溶媒のL-2 第7層(高感度緑感層) 2 5.65 新料を作製し、減料201とした。 第7層(高感度緑感層) 2 9.05 対料を作製し、減料201とした。 第7層(高感度緑感層) 2 9.05 対対を作製し、減料201とした。 第7日(高感度緑感層) 2 9.05 対対を作製し、減料201とした。 第7日(高感度緑感層) 2 9.05 対対を作業し、減料201とした。 第7日(高感度緑感層) 2 9.05 対対を作業し、変化201とした。 第7日(高感度経過度) 2 9.05 対対を作用など201とした。 第7日(高感度経過度) 2 9.05 対対を発見に対して2 9.05 対対を作用など201とした。 第7日(高感度経過度) 2 9.05 対対を作用など201とした。 第7日(高感度経過度) 2 9.05 対対を表し、2 9.05 対対を応息を使用など201とした。 2 9.05 対対を作用など201とした。 2 9.05 対対を応息を使用など201とした。 2 9.05 対対を応息の表した。 2 9.05 対対を応息を使用など201とした。 2 9.05 対対を応息を使用など201とした。 2 9.05 対対を応息を使用など201とした。 2 9.05 対対を応息を使用など201とした。 2 9.05 対対を使用など201とした。 2 9.05 対対を応息を使用など201とした。 2 9.05 対対を応息を使用など201ととした。 2 9.05 対対を応息を使用など201ととした。 2 9.05 対対を応息を使用など201ととした。 2 9.05 対対を応息を使用など201ととした。 2 9.05 対対を応息を使用など201ととしたなど201ととした。 2 9.05 対対を応息を使用など201ととした。 2 9.05 対対を使							ゼラチン	1.0
108 # D 34 38 42 高海点有機溶媒のL-2 0.05 106(本発明) (2) 11 18 20 第6層 (低感度緑感乳剤膏) 107 # (11) 13 15 22 単分散沃臭化腺乳剤 108 # (13) 14 16 19 (沃化銀3モル%、平均粒径0.3μ) 0.6 109 # (20) 14 20 23 単分散沃臭化腺乳剤 110 # (21) 10 16 18 (沃化銀6モル%、平均粒径0.5μ) 0.7 セラチン 1.0 東用上は残留線置が30両がをこえると色再現及び/又 46 増感色素C 3×10° は階調バランス上大きく性能が劣化することが知られて 増感色素D 2×10° いる。上衰で明らかなように本発明の化合物を用いる カブラーDー6 0.4 と、迅速処理においても実用上支険のない範囲であるこ カブラーDー7 0.1 とがわかる。 実施例2 カブラーDー8 5.62 実施例1 と間様な支持体に下記の各層よりなる多層感光 高沸点有機溶媒のL-2 3・55 材料を作製し、淀料201とした。 第7層(高速度緑感層) 5分散沃臭化銀乳剤 具菌コロイド銀 6.2 (沃化銀7モル%、平均粒径0.8μ) 0.8	***						化合物Cod-A	9.95
108(本発明) (2) 11 18 20 第6層 (低感度緑感乳剤層) 107 # (11) 13 15 22 単分散沃臭化銀乳剤 108 # (18) 14 16 19 (沃化銀3モル%、平均粒径0.3μ) 0.6 109 # (20) 14 20 23 単分散沃臭化銀乳剤 110 # (21) 10 16 18 (沃化銀6モル%、平均粒径0.5μ) 0.7 ゼラチン 1.0 2月上は残留銀墨が30両値をこえると色再現及び/又 40 増感色素C 3×10° は階調バランス上大きく性能が劣化することが知られて 103。上衰で明らかなように本発明の化合物を用いる カブラーDー6 0.4 と、迅速処理においても実用上支険のない範囲であるこ カブラーDー7 0.1 とがわかる。 実施例2 実施例1 と間様な支持体に下記の各層よりなる多層感光 南ボ点有機溶媒の11-2 第7層(高速度緑感圏) 5.51 有線を作製し、減料201とした。 第7層(高速度緑感圏) 5分散沃臭化銀乳剤 1層(ハレーション防止層) 8分散沃臭化銀乳剤 2.8								0.05
107		_						
108 # (18) 14 16 19 (沃化銀3モル%、平均競径0.3μ) 0.5 109 # (20) 14 20 23 単分散沃臭化銀乳剤 110 # (21) 10 16 18 (沃化銀6モル%、平均錠径0.5μ) 0.7 ゼラチン 1.0 実用上は残留領量が30両がをこえると色再現及び/又 46 増感色素C 3×10・10・2・10・2・10・2・10・2・10・3・上表で明らかなように本発明の化合物を用いる カブラーDー6 0.4 と、迅速処理においても実用上支険のない範囲であるこ カブラーDー7 0.1 とがわかる。 カブラーDー8 5.02 実施例2 カブラーDー9 0.01 会議例1 と間様な支持体に下記の各層よりなる多層感光 商源点有機溶媒のL-2 第7層(高感度緑感層) 5.05 対針を作製し、試料201とした。 第7層(高感度緑感層) 5分散沃臭化銀乳剤 2・18 (沃化銀7モル%、平均粒径0.8μ) 0.8	•							
109 # (20) 14 20 23 単分散沃臭化銀乳剤 110 # (21) 16 16 18 (沃化銀6モル%、平均粒径0.5μ) 0.7 支用上は残留領量が30mm/でをこえると色再現及び/又 46 増感色素C 3×10で は陰調バランス上大きく性能が劣化することが知られている。上衰で明らかなように本発明の化合物を用いる カブラーDー6 0.4 と、迅速処理においても実用上支険のない範囲であるこ カブラーDー7 0.1 とがわかる。 カブラーDー8 9.62 実施例2 カブラーDー9 0.01 実施例1と間様な支持体に下記の各層よりなる多層感光 商源点有機溶媒のUー2 9.65 材料を作製し、証料201とした。 第7層 (高感度緑感層) 多分散沃臭化銀乳剤 具角コロイド銀 0.2 (沃化銀7モル%、平均粒径0.8μ) 0.8								0.6
110 # (21) 16 16 18 (沃化銀6モル%、平均粒径0.5μ) 0.7 ゼラチン 1.0 実用上は残留領量が30mm/でをこえると色再視及び/又は陰調バランス上大きく性能が劣化することが知られている。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることがわかる。 カブラーDー7 0.1 とがわかる。 カブラーDー8 9.62 実施例2 東旋例1と間様な支持体に下記の各層よりなる多層感光 荷沸点有機溶媒のL-2 9.65 材料を作製し、証料201とした。 第7層(高感度緑感図) 第7号 (高感度緑感図) 第7号 (高感度緑感図) 9.85 第1層 (ハレーション防止層) 9.80 (沃化銀7モル%、平均粒径0.8μ) 0.8		, ,						•
実用上は残留競量が30mm/㎡をこえると色再頻及び/又は階調バランス上大きく性能が劣化することが知られている。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることがわかる。実施例2 40 増成色素D 3×10° と、迅速処理においても実用上支険のない範囲であることがわかる。実施例2 カブラーDー6 0.4 実施例1と間様な支持体に下記の各層よりなる多層感光材料を作戦し、試料201とした。第7層(高感度疑感恩)第1層(ハレーション防止層) 高夢点有疑意媒のL-2 9.65 対料を作戦し、試料201とした。第7層(高感度疑感恩)多分散沃泉化競乳剤具高コロイ下銀 6.2 (沃化銀7モ丸%、平均粒径9.8μ) 0.8								0.7
実用上は残留領量が30mmでをこえると色再現及び/又は階調バランス上大きく性能が劣化することが知られている。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であることがわかる。実施例2 地感色素D 2×15・ と、迅速処理においても実用上支険のない範囲であることがわかる。実施例2 カブラーD-7 0.1 実施例1と間様な支持体に下記の各層よりなる多層感光材料を作戦し、試料201とした。第7層(高感度疑惑層)第1層(ハレーション防止層) 高夢点有疑定域の11-2 0.05 対料を作戦し、試料201とした。第7層(高感度疑惑層)多分散沃泉化銀乳剤具角コロイ下銀 多分散沃泉化銀乳剤 0.8	114 #	(21)	ŢĠ.	19	10			
は階調バランス上大きく性能が劣化することが知られて いる。上衰で明らかなように本発明の化合物を用いる と、迅速処理においても実用上支険のない範囲であることがわかる。 実施例2 実施例1と間様な支持体に下記の各層よりなる多層感光 材料を作戦し、証料201とした。 第1層(ハレーション防止層) 黒角コロイド銀 0.2 を施展を表現した。 第7層(高感度疑惑層) 多分散沃泉化観乳剤 具角コロイド銀 0.8	eiros Laures	33 A45 WK-JA (5).		THE SHE TH	28 ZV	AC.		
いる。上衰で明らかなように本発明の化合物を用いると、迅速処理においても実用上支険のない範囲であるととがわかる。 カプラーDー7 0.1 とがわかる。 カブラーDー8 5.52 実施例2 カブラーDー9 0.0 実施例1と間様な支持体に下記の各層よりなる多層感光 高夢点有機溶媒のLー2 0.65 材料を作戦し、試料201とした。 第7層(高感度疑惑層) 第1層(ハレーション防止層) 多分散沃泉化銀乳剤 県自コロイ下銀 0.2 (沃化銀7モル%、平均粒径9.8μ) 0.8		•				40		
と、迅速処理においても実用上支陰のない範囲であるこ カブラーD-7 0.1 とがわかる。 カブラーD-8 5.62 実施例2 カブラーD-9 5.61 高端点有機溶媒のIL-2 5.65 対対を作戦し、試料201とした。 第7届(高感度録感層) 5.75 対科を作戦し、試料201とした。 第7届(高感度録感層) 5.75 が計算では、 5.75 では、 5.7								
とがわかる。 カブラーD - 8 5.62 実施例2 カブラーD - 9 5.61 実施例1 と同様な支持体に下記の各層よりなる多層感光 高沸点有機溶媒のL - 2 9.65 材料を作戦し、試料201とした。 第7層(高感度緑感層) 第1層 (ハレーション防止層) 多分散沃泉化銀乳剤 黒色コロイド銀 0.2 (沃化銀7モル%、平均粒径6.8μ) 0.8								
実施例2 カブラーD-9 5.51 実施例1と同様な支持体に下記の各層よりなる多層感光 高游点有機溶媒のL-2 9.55 材料を作戦し、試料201とした。 第7層(高感度線感層) 第1層(ハレーション防止層) 多分散沃泉化銀乳剤 県首コロイ下銀 0.2 (沃化銀7モル%、平均粒径5.8μ) 0.8			用上文庫のは	7年2日	てのむし			
実施例1と間様な支持体に下記の各層よりなる多層感光 高沸点有機溶媒のL-2 0.05 材料を作業し、減料201とした。 第7層(高感度疑惑層) 第1層(ハレーション防止層) 多分散沃泉化銀乳剤 裏首コロイ下銀 0.2 (沃化銀7モル%、平均粒径6.8μ) 0.8	-							
材料を作製し、減料201とした。	,							
第1層 (ハレーション防止層) 多分散沃臭化銀乳剤 具色コロイド銀 0.2 (沃化銀7モル%、平均粒径6.8μ) 0.8				りなる	多層感光			0.05
具色コロイド銀 0.2 (沃化銀7モル%、平均粒径9.8μ) 0.8								
777	第1層(ハ	レーション防止	(層)					
ゼラチン 1.0 50 ゼラチン 0.9	温色コロイ	下銀						
	ゼラチン				1.0	3 20	ゼラデン	0.9

	(58)		特公平6-75172
11.5	`	,		115
始感色素 C	2×10°	*	ド高沸点有機溶媒OIL-3	0.61
绝感色素 D	1.5×10°		第11層(高感度青感乳剂層)	
カプラーD-6	5.08		单分散沃吳化銀乳剤	
カプラーD-?	0.05		(沃化銀8モル%、平均粒径	1.5µ) 0.7
カプラーD-9	6.02		ゼラチン	0.5
高游点有级控媒OIL-1	0.08		给感色素 E	5×10*
高游点有魏洛媒CIL-3	9.03		给憨色素 F	5 × 10 °
第8層(中間層)			カプラーD - 10	5.0
ゼラヂン	1.2		カプラーD-4	0.95
化合物Cpd-A	0.5	10	高游点有镀缩媒OIL-3	0.61
高沸点有锹溶媒GIL-1	0.3		第12層(第1保護層)	
第9層 (イエローフィルター層)			ゼラチン	0.5
黄色コロイド銀	0.1		微粒子與化銀乳剤	
ゼラチン	0.8		{平均粒径9.07μ}	0.33
化合物Cpd-A	0.2		カブラーD ~11	0.1
高沸点有機溶媒OIL-1	0.1		紫外線吸収剤EV-2	0.1
第10層(低感度肯感乳剤層)			紫外線吸収剤W-3	0.2
学分散沃奥化讓乳剤			高游点有機溶媒GIL-4	9.91
{沃化銀6モル%、平均粒径0.3μ)	0.3		第13層〈第2保護層〉	
单分散沃奥化銀乳剂		20	ゼラテン	0.8
(沃化銀5モル%、平均粒径0.6μ)	0.3		ポリメチルメタクリレート勉	:
ゼラチン	1.0		(直径1,5µ)	0.2
增感色素区	1 × 10 *		ホルムアルデヒドスカベンジ	γγ-H- 10.5
给感色素 F	1 × 10 *		その他界面活性剤W-1.第	腹剤丼-1を添加した。
カプラーD-15	0.9		カプラー D-↓	
カブラーD-4	6.65	*		
			OH /	
	CaHe	ć	NHCONH-(<i>}</i> }− <i>c</i> ≀
. (1)	1		.	
$H_{11} C_{5}^{t} - \langle \rangle$	OĆHCONI			СИ
\/	_			-2.
\t ₍	C ₅ H ₁₁			
カプラー Dー2	012			
77 5 5 2 OH				
Ų.i.				
	CONH(C	H_2	$)_40-\langle \rangle_{-}^{t}C_5H$	11
			^t C'5H ₁₁	
<u></u>			U Lik	
Y				
[]				
Ţ		νH(COCH ₃	
N=N		Ĺ		
	TI	1	}	

(59)

特公平6-75172 118

117

カブラー D-3

カプラー ローム

カプラー D-5

カブラー D~6

特公平6-75172 120

カプラー D-?

Page 1 of 1

特公平6-75172 124

123

增感色素C

(62)

增感色素 D

培感色素E

增感色素F

高沸点有微溶媒CIL-1

COOCH2COOC2H5

COOC₂H₅

高涛点有機溶媒CTL-2

紫外領吸収剤UV-2

高游点有级溶媒OIL-3

(63)

特公平6-75172

126

化合物CpdA

硬膜剤目 - 1 Ot = Of52。(Ot)。50。CH= Ot。 試料202~215の作製 試料201において第3層、第4層のカブラーD-1のか わりに表1に示したカブラーに等モルおきかえた以外試※ ※料201と同様にして作成した。

試料211~214

試料2位において第6層、第7層のカプラーD-6のかわりに表2に示したカプラーに等モルおきかえた以外試料201と同様にして作説した。得られた試料を実施所1と同様にして処理工程(III)のランニング処理をした後、ストリンプスして200kSの露光を与えて処理し、幾20 智線量を測定した。

結集を衰2に示した。

本発明のカプラーを用いた場合はいずれも残器銀雲が少なく、ランニング状態においても十分に源白促進効果を有していることがわかる。

比較カブラーE

比較カプラーF

50

(いずれも特開昭61-201247に記載の化合物)

	AND A 200 A		
la.	第3回、第4 層における カプラーMa	第6層、第7 層における カプラー版	残智銀量 (麻/ポ) 処理工程(重)
rol)	()-1	D-6	47
(智)	A	#	32
,	8	11	34
•	С	B	35
	ia (rol) (BI)	Na カプラーNa trol) ()-1 を例) A ソ B	Na カブラーNa カブラーNa (rol) ()-1 D-8 (が) A " g "

205 " D " 35 206(本発明) (2) " 17 207 " (11) " 18	R版 ng) 2(11)
200/14-2024)	
207 # (11) # 18	
208 # (13) # 18	
209 " (20) " 19	l
216 # (21) # 16	i

特公平6-75172

178

		127					128	
	第3層、第4	第6屆、第7	残留級量		增感色素:	S-345VS-	- 4を含有する沃奥	化銀乳剤
武物區	層におけるカプラーと	癌における カプラーMa	(m/nt) 处理工程(图)		{平均粒距	포0.3개m. AqT은	(量4 モル%)	
211(比較例)	B J	E	32			銀堂		0.7g/m²
212 //	"	ř	35		カブラー	F - 3		0.02q/m²
213(本発明)	"	(5)	23		カブラー			0.10g/m
214 #); }	(6)	25		高沸点有	幾密媒(n1~ l		G.25cc/nf
217 "					を含むせる	ラチン層 (乾燥器	類厚 1 # }	
本発明の化合	物を用いた場	合はいざれも	実用上問題のな			第2条感乳剂層		
いレベルにな					增感色素的	S-3およびS-	- 4を含有する沃奥	化銀乳剤
实施例3				10	(平均拉征	隆0.5µm. Aque	5堂2.5モル%)	
下塗りを施し	た三酢酸セル	レロースフィル	レム支持体上に、			銀鳖	•	G.7q/m²
			フラー悪光材料を		カブラー	F - 4		$0.16a/\sigma$
作製し、試料	301とした。				カブラー	F - 5		$0.10 \mathrm{g/d}^3$
第1層:ハレ	・一ション防止	上署			高游点有	漆溶媒0n1−2		0.05cc/m
黒色コロイド	鍍		0.25q/m²		体桌	D 3		0.05q/m²
常外领暖取消	IU - 1		0.04g/ai		を含むせ	ラチン層(乾燥	奠厚2.5μ)	
紫外海吸収剂	IU - 2		5.1g/m²		第8層:	中間層		
紫外線吸収剤	JU - 3		0.14/11		化合物	CpdC		0.05g/m²
高沸点有级花	鋏(n1-2		9.91cc/m²		高游点有	機溶媒(n1-2		0.1cc/m² ′
を含むゼラチ	・ン層(乾燥器	護摩2μ)		20	集件	D-1		$0.01 \mathrm{m/m}^{\ell}$
第2層:中間	層					ラチン層(乾燥		
化合物 Chd	Ç		0.05q/m²		第9層:	黄色フィルター	書	
化合物 i-	- 1		0.05g/mi		費色コロ	イド銀		$9.1a/a^{3}$
高游点有微弦	e媒(n) l		0.05cc/m²		化合物	C pdC		บ.02q/ต <i>้</i>
を含むゼラチ	・ン層(乾燥)	崇厚! μ 〉			化合物	C pdB		0.03व/वर्
第3層:第1						(实施)	例 1 と同じ)	
		- 2で分光増9	感された臭化銀乳		高歲点有	機容媒Cn1−1		0.04cc/ต่ำ
剤(平均粒質	로0.3# AgI全i	量4モル%)			を含むせ	ラチン層(乾燥	装厚1μ)	
£	R重		G. 5a/m			第1 青部乳剤層		
カプラー F	7 - 1		0.2q/m²	30			る平板沃臭化銀乳資	
カプラー F	7-2		0.05q/m²		ベクト比	8、平均拉隆0.	7μm. AqI合量24	EJV%)
化合物 i-	- 2		2 × 10° ' q/m²			銀墨		0.6q/n²
高游点有概念	容媒(n)		$0.12cc/m^2$			F-6		$0.1q/n^i$
を含むゼラミ	チン層{乾燥)	費厚1 μ }			カブラー	F - 7		ઉ.4q/n²
第4層:第2	2 赤怒乳剂層				高游点有	「機溶媒Cn1-1		0.1cc/of
增感色素 S-	- 1 to \$ to S	- 2で分光増	感された無化銀乳			(ラチン層 (乾燥		
		含量3 モル%				第2有感乳剂图		
#	限量		6.8q/m²		增感色素	S-6を含有す	る平板沃集化銀乳剤	創 (平均アス

ベクト比12、平均粒経1.2μm、AqI含量2モル%)

銀堂

高沸点有镊挖媒(m)-1

第12層:第1條護層

紫外領吸収剤U-1

紫外領吸収剤U-2

紫外線吸収剤U-3

50 高游点有级溶媒(m1-2

を含むゼラチン層(乾燥膜厚3 11)

カブラー F-6

カプラー F-8

染料 D-5

-----1.5g/m²

5.4q/m

0.8q/m

0.23cc/w/

0.02q/m

 $0.02q/m^2$

0.32q/m²

0.03g/al

0.28cc/m

(64)

を含むゼラチン層〈乾燥装厚2.5μ〉

を含むゼラチン層(乾燥器厚1μ)

カブラー F-1

カプラー F-2

高游点有缀溶媒(m)--!

高游点有機溶媒On1-1

D-2

第6層:第1绿感乳剂層

化合物 !-2

染料 D-1

第5層;中間層

化合物 CodC

學科

0.550/m

1 × 15 ' a/m²

0.33cc/sf

0.02q/m

9.1q/m

 $0.1cc/m^{2}$

0.02g/m²

0.14q/m² 40

(65)

待公平6-75172

179

を含むゼラチン層(乾燥機厚2 μ)

第13階;第2保護層

表面をかぶらせた微粒子沃臭化銀乳剤

-----0.1g/ni (ヨード含置] モル%、平均粒子サイズ0.0511) F-/

130 *ポリメチルメタクリレート粒子(平均锭径1.5μ)

を含むゼラチン層(乾燥膜厚2.5μ) 各層には上記組成物の他に、ゼラチン硬化剤H-1(案 旋側1のものと同じ)、および昇面活性剤を添加した。

試料を作るのに用いた化合物を以下に示す。

F - 2

F - #

$$\begin{array}{c} \text{CH}_{8} \\ \text{+CH}_{2}\text{-}\overset{\text{C}}{\text{C}} \xrightarrow{\text{0.5}} \\ \text{CONH} \\ \text{COOC}_{4}\text{H}_{9} \\ \end{array}$$

F - 5

F - 6

$$\begin{array}{c|c} CH_3 & COOC_{12}H_{25}-n \\ \hline CH_3 & COCHCONH \\ \hline CH_3 & COCHCONH \\ \hline CH_2 & COCHCONH \\ \hline \\ CH_2 & COCHCONH \\ \hline \end{array}$$

待公平6-75172

134

133 F - 7

(CH₃)₃CCOCHCONH—C2
COOC₃H₇(I)

F - 8

化合物 [-]

化合物 i-2

特公平6-75172

138

8---3

$$\begin{array}{c} C_2H_5 \\ \bigoplus \\ CH = C - CH = \\ O \\ O \\ CH_2)_3SO_3 & (CH_2)_3SO_3 & \bigoplus \\ (CH_2)_3SO_3 & (CH_$$

S - #

137

S - 5

20

140

D - /

D-2

`D - 3

D - 4

(71)

特公平6-75172

142

141 D - 5

$$N_{a}O_{3}S$$
 COONa

HO

No analogo SO ana

尚、高沸点有機路線のi1-1及び2は実施例1で使用したものと同じである。

試約302~31000作製

試終30½において第3層、第4層におけるカブラードー $1 \cdot F = 2$ の合計を表3に示したカブラーに等モルおきかえる以下試終30½に同様にして作成した。

以上のようにして作成した試料を実施例1と同様に下記 20 処理にてランニングテストをおこない。この場合未露光 部の残留銀畳を測定した。結果を表3に示した。

起度工程。	温度	時間	補充量	タンク容量
第一現像	38°C	6分	2200 ml	16 <i>L</i>
第一リンス	Ħ	13	2200 ml	2.2
反転	#	1分	1100mi	2.2
発色現像	#	6分	2200mL	10 <i>2</i>
選白	Ħ	25	2200 ± 1	5€
漂白定若	Ħ	8分	1100ml	5.€
水洗①	33°C	化】	_	2.2
水洗图	Ħ	19	$2100\pi!$	22
安定	#	1分	1100mt	2.0
乾燥	eg°C	2分	_	_

ことで水洗浴への絹充方式は、水洗のに絹充液を入れ、 水洗ののオーバーフローを水洗のに燃く、いわゆる向澆 絹充方式とした。

また、漂白液のオーバー・プローは、漂白定着液に導い を

処理液組成は以下の通りであつた。

第一現像液

	タンク被	詞流液
ニトリローN, N, Nートリメチレン ホスホン酸5ナトリウム塩	2.0g	2.0g
更硫酸ナトリウム	30g	30g
ハイドロキノン・モノスルホン酸 カリウム	20g	20g
炭酸カリウム	33g	33g

	タンク被	锚充液
1-フェニルー4-メテルー4ーヒ ドロキシメチルー3-ピラブリド ン	2,0₹	2.0g
臭化カリウム	2.5g	
チオシアン酸カリウム	1, 2g	1,2g
长化カリウム(0,1%液)	2mi	-
水を加えて	1000ml	1000mi
ila ila	9,60	9,65

pHは塩酸又は水酸化カリウムで調整する。 第一リンス液 (タンク液、(熱充液とも) 第一リンス液 KH_k PG_t 5-スルポサリテル酸 1.59 水を狙えて 1000ml 7.0 30 反転波 (タンケ波、循充波とも) ニトリローM,N,Nートリメチレン ホスホン酸5ナトリウム塩 3.0g 塩化第一スズ(2水塩) 1.6qpーアミノフエノール 5.1q 水酸化ケトリウム 8q 水酢酸 15m] 1000ml 氷を加えて 5.0 phは、塩酸又は水酸化ナトリウムで調製する。 40 発色現像液

	タンク液	補充液
ニトリローN,N,Nートリメチレン ホスホン酸5テトリウム塩	2.08	2,0g
豆硫酸ナトリウム	7.0g	7. 0g
リン酸3ナトリウム(12水塩)	36g	RE
臭化カリウム	1.0g	0. 3g
沃化カリウム(0.1%液)	90#4	****
水酸化ナトリウム	3, 0g	3. 0g
シトラジン酸	1,5g	1.5g

50

			(72)
143			
	タンク液	相光液	
Nーエチルードー(B-メタンスル ホンアミドエチル)ー3ーメチルー 4ーアミノアニリン酸塩	ilg	11g	
3,6ージチアオクタンー1,8ージオール	1,0g	1.0g	
水を加えて	1000m2	1000ml	
рH	11.8	12.	35
pHは塩酸又は水酸化ナトリウムで	調整する。		
[绿白液]			10
<u>タンク液、補充液</u>	63		
異化アンモニウム	1000	1	
エチレンジアミン四酢酸			
第2鉄アンモニウム塩	1200	1	
エチレンジアミン四酢酸			
2ナトリウム塩	10.00	3	
硝酸ナトリウム	19.00	2	
水を加えて	1000	Dayl	_
pH	5.	5	
(學白定營被)			20
	タンク液	補充液	
臭化アンモニウム	50g		
エチレンジアミン四酢蝕第2鉄ア ンモニウム塩	60 g		
エチレンジアミン四番酸2ナトリ ウム塩	Sg	1, 9g	
硝酸アンモニウム	5g	****	

12,0g

240m

1000mt

7,3

12.0g

 $400\pi L$

1000mi

8,0

40

安定波	
水	800ml
ホルマリン(37%)	5.0a1
富士ドライウエル	5.0al
水を加えて	1960ml

産硫酸ナトリウム

水を加えて

チオ協議ナトリウム

試料Na

301(0	ontro!)	F-1/F-2	59
302(比较例)	A	41
303	n	В	39
304	H.	Ç	33
305	11	D	36
306(本発明)	(2)	21
307	H	(11)	23
308	n	(13)	22
309	N	(20)	24
310	t)	(21)	20

上表より明らかなように本発明の試料では残留銀量は実 50 粒子、直径/厚み比5.0)

144 用上許容内であることがわかる。 実施例4

下途りを施した三酢酸セルロースフィルム支持体上に、 下記に示すような組成の各層よりなる多層カラー感光材 料である試料401を作製した。

(感光層の組成)

塗布量はハロゲン化銀およびコロイド銀については銀の g/mf単位で表わした置を、またカプラー、添加剤および ゼラテンについてはg/ml単位で表わした費を、また増感 色素については同一層内のハロゲン化銀1モルあたりの モル数で示した。

第1層 (ハ	レーション新止層)	
具色コロイ	下鎖	2

,.,,um		
ゼラチン	*** *** *** *** *** *** *** *** *** ***	1.3
exa-9	******	0.05
W- 1		0.03
W-2		0.05
w-3		0.05
Solv- 1		0.15
Soly~ 2		0.15
501v-3		0.65
第2階(四	中間層)	

0.03
50.0
0,004

501v-2 30 第3層(低感度赤感乳劑層)

沃奥比銀乳剤(AqI4モル%、均一AqI型、球相当径9.5 μ、球相当径の変動係数25%、板状粒子、直径/厚み比 3.0}

塗布銀費………1.2

沃臭化銀乳剤(AgI3モル%、均一AgI型、球钼当径6.3 11. 除相当径の変動係数15%、球形粒子、直径/厚み比 1.0)

	四个现在
ゼラチン	<u>1.</u> 0
Ex5 1	
Ex5-2	5 × 15 °
ExC-1	
ExC-2	
ExC-3	
ExC-4	0.12
ExC-5	0.01
第4層 (7	(頭房未成爲 割屬)

沃典化銀乳剤(Aqi6モル%、コアシエル比1:100内部高4 QI型、球相当径0.7μ、球相当径の変動係数15%、板状

### 25	(73)	特公平6-75172
### 25			145
ESS-1 3×10* 沃臭化銀乳剤(Ac(ロマル外、コアシエル比1:100内部高Ac(200、原料性温をの変動体数1分。板材 放力・ (取材 放力) (取材)	途布銀置 ··························		501v-10.50
DS-2	ゼラチン1.0		第9層(赤感層に対する重層効果のドナー層)
BCC - 2	Ex5-1 3×10°		沃奥化銀乳剤(AgIZモル%、コアシエル比2:100内部高A
EXC- 7	Ex5-22.3×15°		可型、球相当径1.0μ、球相当径の変動係数15%、板状
EXC- 4	ExC- 2		拉子、直径/厚み比6.5)
Solv-1 0.05	ExC- 7		塗布銀置
501v-3 対5 関(中間層) 10	ExC 40.05		沃臭化銀乳剤(AdIZモル%、コアシエル比1:10内部高A
第5層 (中間層) ゼラチン 0.5 (内d-1 0.1 0.1 50)マー1 0.05 対方を (配慮を縁風急時間) 0.05 対方を (配慮を縁風急時間) 2.5(大臭(似乳剤((AGI4モルル))、コアシエル比1:1の表面高A GI型 : 味相当径の5 から称数25%、 外非粒子、値径/厚み比4.6)	Solv=1		重型、球相当径0.4μ、球相当径の変動係数20%、球形
世ラチン 0.5 Cpd - 1 0.1 0.1 55 57 3 8 X 15 7 50 1 - 1 0.05 57 1 - 1 0.05 57 1 - 1 0.05 57 1 - 1 0.05 57 1 50	5o1y - 3		拉干。直径/厚み比6.9)
Cyd-1 Cyl-1 C	第5層(中間層)	10	塗布銀置
Solv-1	ゼラチン0.5		ゼラチン
第6唱〈低應検録恐乳剤階〉 沃男ሲ銀乳剤(Add4年ル外、コアシエル比1:切灸面高A 在型 禁相当径の5μ 禁相当径の変助が数15%、板が	Cpd-1G.1		Exs-38 × 15 *
大奥・佐銀乳剤(Acti 4年 19% コアシェル比1:100表面高A	50]v- <u>1</u> 0.05		ExY= 13
	第6唱(低感度绿感乳削層)		Exi4-120.03
接主・ 直径/厚み比4.0)	沃臭化銀乳剤(AdI4モル%、コアシエル比1:10)表面高A		ExN-140,10
接有談置 0.35 特別当後0.3 ル、球相当後の変助係数25%、球形位子、直径/早み比 1.0	αI型 球相当径0.5μ. 球相当径の変助係数15%、板状		Solv-10.20
決臭化銀乳剤(AqI3モル% 均一AqI型、稼相当径0.3	粒子、直径/厚み比4.G)		第16層(イエローフィルター層)
## 原籍 20	塗布装置		黄色コロイド銀
## 原籍 20	沃臭化銀乳劑(Agi 3モル%,均一Agi型、球相当径0.3		ゼラテン0.5
1.0 金布銀音		20	Cpd-20.13
並布設置 0.20 第12層(低感度者感乳剤層) 大臭化銀乳剤(AQIA.5モル%、均一AQI型。球相当径0.7 ル、球相当径の変動係数15%、板状粒子、直径/厚み比 たS-5 1×10' 連布設置 0.3 たM-8 0.4 天臭化銀乳剤(AQIAモル%、均一AQI型、球相当径0.3 ル、球相当径の変動係数25%、板状粒子、直径/厚み比 たM-10 0.02 7.0) をAで設置 0.3 大臭化銀乳剤(AQIAモル%、均一AQI型、球相当径0.3 ル、球相当径の変動係数25%、板状粒子、直径/厚み比 たM-10 0.02 7.0) を存設置 0.15 たM-10 0.02 7.0) を存設置 0.15 たM-10 0.01 をS-6 2×10' 第7層(高感度發感乳剤層) 大臭化銀乳剤(AQIAモル%、コテシエル比1:3の内部高A 成型、球相当径0.7μ、球相当径0.3 をAで設置 0.15 たM-3 0.05 をX-16 0.05 たM-3 0.09 をX-13 0.07 をX-13 0.07 をX-13 0.07 をX-13 0.07 たX-1 0.07 をX-1 0.07 をX-1 1 0.20 をX-1 1 0.20 をX-2 0.5 をX-1 1 0.20 をX-2 0.5 をX-1 1 0.20 をX-2 0.5 をX-1 1 0.20 をX-2 0.5 をX-1 1 0.20 をX-2 0.5 をX-2 0.5 をX-2 0.5 をX-3 0.01 をX-2 0.01 をX-3 0.01 をX-3 0.01 をX-3 0.01 をX-1 0.01			
EXS-3 5×10° μ、球相当径の変動係数15%、板状粒子、直径/厚み比 EXS-4 3×10° 7.0) EXS-5 1×10° 鱼布銀置 0.3 EXM-8 0.4 天泉化銀乳剤(AGI3モル%、均一AGI型、球钼当径0.3 μ、球相当径の変動係数25%、板状粒子、直径/厚み比 EXM-9 0.00 7.0) 少年相当径の変動係数25%、板状粒子、直径/厚み比 EXM-10 0.03 30 鱼布銀置 0.15 Solv-1 0.2 ゼラチン 1.6 2×10° Solv-4 0.01 EXS-6 2×10° EXC-16 0.05 沃泉化銀乳剤(AGI4モル%、コアシエル比1:3の内部高AGIX EXC-16 0.05 EXC-16 0.05 大泉化銀乳剤(AGI4モル%、コアシエル比1:3の内部高AGIX EXC-16 0.05 EXC-16 0.05 大泉化銀乳剤(AGI4モル%、コアシエル比1:3の内部高AGIX EXC-16 0.05 EXC-15 0.07 世帯電量 0.8 EXC-15 0.05 EXC-16 0.05 EXS-3 5×10° EXC-16 0.07 EXY-13 0.07 EXS-5 1×10° 46 第12層 (高級食育成乳剤膏) EXY-13 0.20 EXY-11 0.03 EX/GIAR科(AGI10			
EXS-4 3×10' 7.0'			沃典化銀乳剤(AgI4.5モル%、均一AgI型。球相当径0.7
EXS-5 1 X10'	Exs-35 × 10 *		μ、球相当径の変動係数15%、板状粒子、直径/厚み比
EXS-5 1 X10'	EXS-43 × 10 *		7,0)
EMH-9 0.07 μ. 端相当径の変動係数25%、板状粒子、直径/厚み比 EXM-16 0.02 7.0) EXY-11 0.03 30 塗布録登 0.15 Solv-1 6.2 ゼラテン 1.6 5.0 2×10° 5.0 Solv-4 0.01 EXS-6 2×10° 5.0 5.0<			途布銀費0.3
EXM-10	ExN-80.4		沃泉化銀乳剤(AgI3モル%)均一AgI型、球钼当径0.3
EMM-10 0.03 7.0) EXY-11 0.03 30 塗布銀費 0.15 Solv-1 0.2 ゼラチン 1.6 1.6 Solv-4 0.01 EXS-6 2×10° 第7 第7 6 2×10° 第2 1.6 0.05 第2 1.0 <td< td=""><td>ExM-90,57</td><td></td><td>μ、球相当径の変動係数25%、板状粒子、直径/厚み比</td></td<>	ExM-90,57		μ、球相当径の変動係数25%、板状粒子、直径/厚み比
Solv-1 6.2 ゼラテン 1.6 Solv-4 0.51 ExS-6 2×15 [*] 第7層(高感度緑感乳剤層) ExC-16 0.05 沃泉化銀乳剤(Aq14モル%、コアシエル比1:300内部高A ExC-2 0.10 q1型、球相当径0.7μ、球相当径の変動係数20%、板状 ExM-3 0.02 粒子、直径/厚み比5.0) ExY-13 0.07 塗布競量 0.8 ExY-15 6.5 EXS-3 5×10 [*] ExC-17 1.0 EXS-4 3×10 [*] Solv-1 0.20 EXS-5 1×10 [*] 40 第12層(高感度育感乳剤層) EXM-8 0.1 沃泉化銀乳剤(Aq10をル%、内部高Aq1速、球間当径1. EXM-9 0.02 0.03 程/厚み比2.0 EXC-1 0.03 程/厚み比2.0 金布銀置 0.5 EXM-14 0.03 世グラン 0.5 Solv-1 0.01 セグラン 0.5 Solv-1 0.02 セグラン 0.5 Solv-4 0.01 EXY-15 0.20 第8層(中間層) EXY-13 0.01 セブラチン 0.01 EXY-13 0.01 セブラチン 0.01 0.01 <td></td> <td></td> <td>7.0)</td>			7.0)
Solv-4 0.01 EXS-6 2×10° 第7層(高感度録感兒利層) EXC-16 0.05 沃夫化銀乳剤(AQI4モル%、コアシエル比1:300内部高A EXC-2 0.10 QI型、球相当径の変動係数20%、板状 EXM-3 0.02 粒子、値径/厚み比5.0) EXY-13 0.07 塗布競費 0.8 EXY-15 0.5 EXS-3 5×10° EXC-17 1.0 EXS-4 3×10° EXC-17 1.0 EXS-5 1×10° 40 第12層(高感度育感乳剤層) EXM-8 0.1 沃果化銀乳剤(AQI10至ル%、内部高AQI型、冰相当径1. EXM-9 0.02 0.03 径/厚み比2.0) EXC-1 0.03 径/厚み比2.0) EXC-1 0.03 径/厚み比2.0) EXC-2 0.03 径/厚み比2.0) EXC-2 0.03 径/厚み比2.0) EXC-2 0.05 シーラシン EXM-14 0.01 ゼラチン 0.5 Solv-1 0.20 年来 50lv-4 0.01 EXY-15 0.20 40 年末 0.01 日本 EXX-10 日本 0.5 0.5 EXX-10	ExY-110,93	30	塗布螺置 0.15
Solv-4 0.01 EXS-6 2×10° 第7層(高感度線感見剝層) EXC-16 0.05 沃泉化銀乳剤(AQI4モル%、コアシエル比1:3の内部高A EXC-2 0.10 QI型、球相当径の変動係数20%、板状 EXM-3 0.02 粒子、直径/厚み比5.0) EXY-13 0.07 塗布競量 0.8 EXY-15 6.5 EXS-3 5×10° EXC-17 1.0 EXS-4 3×10° EXC-17 1.0 EXS-5 1×10° 40 第12層(高感度背感乳剤層) EXM-8 0.1 沃泉化銀乳剤(AQI10モル%、内部高AQI型、沃钼当径1. EXM-9 0.02 0.03 径/厚み比2.0) EXC-1 0.03 径/厚み比2.0) EXC-1 0.03 企布銀置 0.5 EXM-14 0.03 径/厚み比2.0) 金布銀置 0.5 EXM-14 0.01 ゼラチン 0.5 Solv-1 0.02 EXS-6 1×10° Solv-4 0.01 EXY-15 0.20 第8層(中間層) EXY-13 0.01 セブラチン 0.01 0.01 セブラチン 0.01 0.01 EXS-6 1×10° 0.01 </td <td>Solv- 1</td> <td></td> <td>ゼラテン1.6</td>	Solv- 1		ゼラテン1.6
沃臭化銀乳剤(AQI4モル%、コアシエル比1: 30内部高AQI型、球相当径の変動係数20%、板状 EXC-2 0.10 位工型、球相当径の変動係数20%、板状 EXM-3 0.02 粒子、値径/厚み比5.0) EXY-13 0.07 塗布競量 0.8 EXY-15 0.5 EXS-3 5×10° EXC-17 1.0 EXS-4 3×10° EXC-17 1.0 EXS-5 1×10° 40 第12層 (高級度育感乳剤層) EXM-8 0.1 沃臭化銀乳剤(AQI10至ル%、内部高AQI型、球相当径1 EXM-9 0.02 0μ、球相当径の変助係数25%。多重双晶板状粒子、直至XY-11 EXY-11 0.03 径/厚み比2.0) EXC-2 0.03 企布銀置 0.5 EXM-14 0.01 ゼラチン 0.5 Solv-1 0.01 EXY-15 0.20 第8層(中間層) EXY-15 0.20 第8層(中間層) EXY-13 0.01 ゼラチン 0.01 EXY-13 0.01 ゼラチン 0.01 EXY-15 0.20 第8層(中間層) EXY-13 0.01			ExS-62 × 10 *
gi型、球相当後0.7μ、球相当後の変動係数26%、板状 粒子、値径/厚み比5.6) 塗布競量	第7層(高感度绿感混剂層)		ExC= 16
gi型、球相当後0.7μ、球相当後の変動係数26%、板状 粒子、値径/厚み比5.6) 塗布競量	沃臭化銀乳剤(AGI4モル%、コアシエル比1:300内部高A		ExC-20.10
金布競音			ExM= 30.02
EXS-3 5×10 5×10 EXC-17 1.0 EXC-4 3×10 50ly-1 0.20 5xS-4 3×10 50ly-1 0.20 5xS-5 1×10 40 第12層 (高感度育感乳剤層) 5xM-8 0.1 法臭化銀乳剤(AGI16をル%、内部高AGI型、球钼当座1、EXM-9 0.02 0μ、球钼当径の変助係数25%。多量双晶板状粒子、直 EXY-11 0.03 径/厚み比2.0 金布製置 0.5 EXM-14 0.61 ゼラチン 0.5 Soly-1 0.2 EXS-6 1×10 50ly-4 0.01 EXY-15 0.20 第8層(中間層) EXY-13 0.01 ゼラチン 0.5 Soly-1 0.5 Soly-1 0.5 Soly-1 0.5 Soly-1 0.01 EXY-15 0.20 5xY-13 0.01	粒子、直径/厚み比5.0)		EXY = 130.07
EXS-4 3×10* Soly-1 0.20 EXS-5 1×10* 49 第12層 (高感度育感見創層) EXM-8 0.1 沃泉化銀乳剤(AdI10モル%、内部高AdI型、球钼当径1. EXM-9 0.02 0.02 EXY-11 0.03 径/厚み比2.0 EXC-2 0.03 金布銀費 EXM-14 0.01 ゼラチン Solv-1 0.2 EXS-6 Solv-4 0.01 EXY-15 Solv-13 0.01 ゼラチン 0.01 セソー13 0.01 ゼラチン 0.01	塗布競量		EXY-15
EXS-4 3×10* Soly-1 0.20 EXS-5 1×10* 49 第12層 (高感度育感見創層) EXM-8 0.1 沃泉化銀乳剤(AdI10モル%、内部高AdI型、球钼当径1. EXM-9 0.02 0.02 EXY-11 0.03 径/厚み比2.0 EXC-2 0.03 金布銀費 EXM-14 0.01 ゼラチン Solv-1 0.2 EXS-6 Solv-4 0.01 EXY-15 Solv-13 0.01 ゼラチン 0.01 セソー13 0.01 ゼラチン 0.01	Exs-35×15*		EXC-171.0
EXM-8 0.1 沃泉化銀乳剤(AdI10モル%、內部高AdI型、球钼当径1. EXM-9 0.02 0μ、球钼当径の変跡係数25%。多量双晶板状粒子、直 EXY-11 0.03 径/厚み比2.0) EXC-2 0.03 金布銀畳 EXM-14 0.01 ゼラチン Solv-1 0.2 EXS-6 1×15 Solv-4 0.01 EXY-15 0.20 第8層(中間層) EXY-13 0.01 ゼラチン 0.5 Solv-1 0.10	•		Solv- j0.20
EXN-9 0.02 04, 球相当径の変助係数25%。多量双晶板状粒子、直至XY-11 EXY-11 0.03 径/厚み比2.0) EXC-2 0.03 塗布銀置 EXM-14 0.01 ゼラチン 0.5 Solv-1 0.2 EXS-6 1×10° Solv-4 0.01 EXY-15 0.20 第8層(中間層) EXY-13 0.01 ゼラチン 0.5 Solv-1 0.10	ExS-51 × 10°	40	第12層(高感度青感乳劑層)
EXY-11 0.03 径/厚み比2.0) EXC-2 0.53 塗布銀査 0.5 EXM-14 0.01 ゼラチン 0.5 Solv-1 0.2 EXS-6 1×15 Solv-4 0.01 EXY-15 0.20 第8層 (中間層) EXY-13 0.01 ゼラチン 0.5	ExM-80.1		沃典化銀乳剤(AgI10モル%、内部高Agi型、球钼当径1、
EXC-2 0.53 塗布装置 0.5 EXM-14 0.01 ゼラチン 0.5 Solv-1 0.2 EXS-6 1×15* Solv-4 0.01 EXY-15 0.20 第8層 (中間層) EXY-13 0.01 ゼラチン 0.5	ExN-90.02		04、鉢組当径の変動係数25%。多重双晶板状粒子、直
EXC-2	ExY 11 0.03		径/厚み比2.0)
EXM-14			途布銀置 - 9.5
Solv-1			
Soly-4			
第8層 (中間層) ExY-130.01 ゼラチン0.5 Solv-10.10			
ゼラチン			
The same and the s			
when a constant of the constan	Cpd 1	50	第13層(第1保護層)

	(74)		特公平6-75172
14?			148
ゼラヂンG.8	*	UV-2	
W-49.1			но
₩-5 ······0.15			H C
Solv-1		N	
Solv-20.01			1 - ('_')
第14階(第2保護層)		N.	\subseteq
像粒子與化銀乳劑(Agizモル%、均一Agi型。球相当行	<u>&</u>		t B u
9.07μ)		TT 70 . #	
	40	$\mathbf{U} \mathbf{V} - \mathbf{s}$	sec
	10		HO Bu
ボリメチルメタクリレート競子 6径1.5g		N.	· >(
come form to A to I a			$N - \langle \rangle$
., .		W/W	
400		~ -1	4.37
	~ ~		t B u
各層には上記の成分の他に乳剤の安定化剤Cpd-3(6)			
4q/m)、界面活性的Cpd-4(0.02q/m)を途布助剤			
して添加した。その他以下の化合物Cpd-5(0.5g/m	7		
~Cpd-6 (9.5q/m²) を添加した。			
U V - /	50		
HO tBu			
CZ N N N N N N N N N N N N N N N N N N N			
tBu	*		
U V - 4		CH ₃	CHa
•		l	1
	-+CH	$C \rightarrow_{\mathbf{x}} + CH_2 - C$	Č-}
	L. L	1 X	l 'y
COOC	H2CH2O	CO (COOCH ₃
	-		
$CH_3 - \langle \rangle - CH = C$			
CN	(x / y	=7/3(重す	量比 }
U V — 5			
C_2H_5 $N-C_1$		_0000	8H17
_N-Ci	H=CH-C	H=C(
C 2H 5		`\$0 ₂ C	6H5
Solv L リン酸トリクレジル	Q	0 l v - 3	
Soly-2 フタル酸ジブチル	U		A
COLV CO A SECURICA A SEC			VCOO€8H17
			COOC ₈ H ₁₇
			COOC 8 H 17
			~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

ExC-3

待公平6-75172

154

E x C - #

E x C - 3

E x C - 7

ExM-8

CH3 COOC4H9

-CH2-CH — CH-N
N
CONH— CH-N
N
Ce — 
$$m = 2.5$$
 $m = 2.5$ 
 $m = 2.5$ 
 $m = 2.5$ 

 $E \times M - 9$ 

$$\begin{array}{c} C_2H_5 \\ C_5H_{11}(t) \\ \end{array} \begin{array}{c} C_5H_{$$

$$(CH_3)_3 CCOCHCONH$$

$$C$$

$$NHCO(CH_2)_3 O$$

$$C _5H_{11}(t)$$

$$C$$

$$N$$

$$CH_3$$

# ExM-/2

# E x Y - /3

$$E \times M - / \#$$

$$C_{2}H_{5}$$
(t)  $C_{5}H_{11}$ 
(t)  $C_{5}H_{11}$ 
(c)  $C_{5}H_{11}$ 
(c)  $C_{5}H_{11}$ 
(c)  $C_{5}H_{11}$ 

E x Y - / 5

$$CH_{3}O \longrightarrow COCHCONH \longrightarrow$$

E x Y - / 7

E x S - /

特公平6-75172 164

E x S - 2

$$C_{2H_{5}}$$

E x S - 3

E x S - #

ExS-5

E x S - 6

166

165 H - /

$$CH_2 = CH - SO_2 - CH_2 - CONH - CH_2$$
  
 $CH_2 = CH - SO_2 - CH_2 - CONH - CH_2$ 

ExF-/

(試料402~41000作製)

試料40世において第3層、第4層のカプラーExt-2のか わりに表』に示したカプラーA、B.C、D、(2)、 (11)、(13)、(20)、(21)にそれぞれ等を見おき 20 の結果、実施関1と同様な結果を得た。

かえした以外、試料401と同様にして作製した。 得られた試料451~410を実施例1の処理工程(III)と 同様にしてランニング処理し、残留領土を測定した。そ