

هوش مصنوعي

تمرين پنجم

مائده اسماعیلزاده ۸۱۰۶۰۲۱۶۱

استاد: دکتر شریعت پناهی

دانشکده مهندسی مکانیک پردیس دانشکدههای فنی دانشگاه تهران

فهرست مطالب

٣	ادەسازى مدلھا	پيا
٣.	ا دەسازى مدلھا	
٩.	پیادهسازی شبکه عصبی پیچشی	
١,	پیادهسازی شبکه LSTM	
١,	تنظيم ابرپارامترها	
۱	پیادهسازی مدل ترکیبی CNN+LSTM	
۲	پیادهسازی معماری LSTM+Attention	
٣	ارزیابی عملکرد مدلها	١
٣	نمودارها و مقایسه بصری	
٣	معيارهای ارزيابی مدل	
٣	تحلیل عملکرد	

پیادهسازی مدلها

آمادهسازي دادهها

بارگذاری و انتخاب دادگان

در ابتدا کدهای زیر نوشته شده است تا زیرمجموعه FD001 بارگداری گردد. همانطور که مشاهده می شود در این کد ابتدا فایل آپلود شده در مسیر cmaps_data/استخراج می شود. این فایل حاوی فایل فشرده دوم (CMAPSSData.zip) است که داده های اصلی را شامل می شود. سپس فایل دوم از مسیر داخل فایل اول یافته و در پوشه ی جدیدی استخراج می شود. این فایل شامل چهار مجموعه داده اصلی با نامهای تا train_FD004.txt تا train_FD001.txt است. اطمینان از موفقیت در استخراج فایل ها، مسیر تمام فایل هایی داده اولی دوم استخراج شده اند، نمایش داده شده است. در نام گذاری، unit شناسه موتور،cycle چرخه زمانی، op-setting پارامترهای عملیاتی و در نهایت اندازه گیری سنسورها می باشند. در نهایت نیز با (df.head پنج سطر ابتدایی داده نمایش داده شده اند.

• برای حذف ویژگیهای با واریانس کم کد زیر نوشته شده است. در این مرحله، برای کاهش ابعاد و حذف ویژگیهای غیرمؤثر، از تکنیک Variance Threshold استفاده شده است. همانطور که مشاهده میشود آستانه ۰.۰۱ تنظیم شده است و ویژگیهای با واریانس کم به شرح زیر میباشند:

```
# Hazfe sutunhaye unit va cycle
sensor_data = df.drop(columns=['unit', 'cycle'])

# Filter variance
Var_selector = varianceThreshold(threshold=0.01)
Var_selector.fit(sensor_data)

# Entekhabe sutunhaye daraye variance kam
low_var = sensor_data.columns[-Var_selector.get_support()]
print('Vizhegihaye daraye variance kam:'n', list(low_var))

# Hazf
sensor_data2 = df.drop(columns=low_var)
baghimande = sensor_data2.columns.tolist()
print('Vizhegihaye baghimande:\n', baghimande)
```

Vizhegihaye daraye variance kam:

['op_setting_1', 'op_setting_2', 'op_setting_3', 'sensor_measurement_1', 'sensor_measurement_5', 'sensor_measurement_6', 'sensor_measurement_8', 'sensor_measurement_10', 'sensor_measurement_13', 'sensor_measurement_15', 'sensor_measurement_16', 'sensor_measurement_18', 'sensor_measurement_19']

Vizhegihaye baghimande:

['unit', 'cycle', 'sensor_measurement_2', 'sensor_measurement_3', 'sensor_measurement_4', 'sensor_measurement_7', 'sensor_measurement_9', 'sensor_measurement_11', 'sensor_measurement_12', 'sensor_measurement_12', 'sensor_measurement_21']

• ویژگیهای مشابه یا تکراری بصورت زیر شناسایی و یکی از آنها باقی ماند. با استفاده از ماتریس همبستگی ویژکیهای با همبستگی بیشتر از ۹۵.۰ بصورت ویژگیهای مشابه تعریف شده و در نهایت یکی از آنها باقی ماندند.

```
    import numpy as np

sensor_data_only = sensor_data2.drop(columns=['unit', 'cycle'])

# Matrix hambastegi
corr_matrix = sensor_data_only.corr().abs()
np.fill_diagonal(corr_matrix.values, 0)

to_drop = set()
vizhegi_moshabeh = []

for i in range(len(corr_matrix.columns)):
    coll = corr_matrix.columns[]
    coll = corr_matrix.columns[]
    if coll = corr_matrix.columns[]
    if corr_matrix.iloc[i, j] > 0.05:
    vizhegi_moshabeh.append((coll, coll2))
    if coll z not in to_drop:
        to_drop.add(coll2)

# Report

# Report

# Print("Yithegi moshabeh (hambastegi > 0.95):")

for pair in vizhegi_moshabeh.

# Print("Nvizhegihaye moshabeh (hambastegi > 0.95):")

# Hazf

# Sensor_data2 = sensor_data2.drop(columns=to_drop)

# Hazf

# Sensor_columns = sensor_data2.drop(columns=to_drop)

# Sensor_columns = sensor_data2.
```

 $\label{local_equation} Joft\ vizhegihaye\ moshabeh\ (hambastegi > 0.95):$

 $('sensor_measurement_9', 'sensor_measurement_14')\\$

Vizhegihaye hazf shode (yek az har joft):

['sensor_measurement_14']

Tedad vizhegihaye baghimande: 10

Vizhegihaye nahayi:

['sensor_measurement_2', 'sensor_measurement_3', 'sensor_measurement_4', 'sensor_measurement_7', 'sensor_measurement_9', 'sensor_measurement_11', 'sensor_measurement_12', 'sensor_measurement_20', 'sensor_measurement_21']

هوش مصنوعی تمرین پنجم

• در این بخش عمر مفید باقیمانده(RUL) برای هر سطر از دادهها بصورت زیر محاسبه شد:

ابتدا حداکثر چرخه عملیاتی (max_cycle) برای هر موتور (unit) استخراج شد. سپس با تفریق مقدار چرخه فعلی از مقدار (max_cycle باقی ماند که max_cycle باقی ماند که به عنوان هدف مدل یادگیری تعریف شده است. سپس با استفاده از تابع همبستگی، ضریب همبستگی بین هر ویژگی حسگر و مقدار به عنوان هدف مدل یادگیری تعریف شده است. سپس با استفاده از تابع همبستگی، ضریب همبستگی بین هر ویژگی حسگر و مقدار مقدار که در اینجا RULمحاسبه شد. ویژگیهایی که مقدار ضریب همبستگی مطلق آنها کمتر از ۰.۱ بود شناسایی و حذف میشوند که در اینجا هیچ ویژگیای این شرایط را نداشت.

```
### RUL

rul = sensor_data2.groupby('unit')['cycle'].max().reset_index()

rul.columns = ['unit', 'max_cycle']

df _with_rul = sensor_data2.merge(rul, on='unit', how='left')

df _with_rul = sensor_data2.merge(rul, on='unit', how='left')

df _with_rul = sensor_data2.merge(rul, on='unit', how='left')

df _with_rul.drop(columns=['max_cycle'], inplace=True)

### Chand satr

df _with_rul[['unit', 'cycle', 'RUL']].head()

### Entekhabe vizhegihaye sensor baraye hambastegi(az bakhshe ghabl)

Vizhegiha = ['sensor_measurement_2', 'sensor_measurement_3', 'sensor_measurement_1', 'sensor_measurement_1', 'sensor_measurement_2', 'sensor_measurement_1', 'sensor_measurement_2', 'sensor_
```

Hambastegie vizhegiha ba RUL:

```
      sensor_measurement_2
      -0.606484

      sensor_measurement_3
      -0.584520

      sensor_measurement_4
      -0.678948

      sensor_measurement_7
      0.657223

      sensor_measurement_9
      -0.390102

      sensor_measurement_11
      -0.696228

      sensor_measurement_12
      0.671983

      sensor_measurement_17
      -0.606154

      sensor_measurement_20
      0.629428

      sensor_measurement_21
      0.635662

      Name: RUL, dtype: float64
```

Vizhegihaye ba hambastegie kamtar az (abs) 0.1:

[]

Vizhegihaye nahayi pas az hazfe vizhegihaye kam ertebat:

['sensor_measurement_2', 'sensor_measurement_3', 'sensor_measurement_4', 'sensor_measurement_7', 'sensor_measurement_9', 'sensor_measurement_11', 'sensor_measurement_12', 'sensor_measurement_20', 'sensor_measurement_21']

• برای حذف ویژگیهای مهم با مدل Random Forest از کد زیر استفاده شده است. آستانه در این کد ۰.۰۵ در نظر گرفته شده است و ویژگیهای با اهمیت کمتر از ۰.۰۵ حذف شدند. نتیجه در پایین قابل مشاهده می باشد.

وش مصنوعی تمرین پنجم

Ahamiate vizhegiha bar asase Random Forest:

feature importance

Vizhegihaye ba ahamiat kamtar az 0.05: 0.05

Vizhegihaye nahayi pas az hazfe vizhegiha bar asase ahamiate model:

['sensor measurement 4', 'sensor measurement 7', 'sensor measurement 9', 'sensor measurement 11', 'sensor measurement 12']

*لازم به ذکر میباشد قسمتهای بعدی با همان ۱۰ ویژگی باقیمانده قبل از random forests انجام شدند. چون این قسمت امتیازی بود صرفا نتیجه آن در این بخش آمده است.

تقسیم دادهها به آموزش وآزمون

در این بخش، دادهها به مجموعههای آموزشی، اعتبارسنجی و آزمون تقسیم شدهاند. لازم به ذکر است چون دادهها وابسته به زمان df_final به نام DataFrame به نام ایجاد شده که ترتیب زمانی حفظ شود (یعنی بدون shuffle). ابتدا یک DataFrame به نام ایجاد شده که شامل cycle ، unit ، ویژگیهای نهایی باقیمانده از بخش قبل و RUL میباشد. سپس از دادههای آموزشی، حدود که شامل عنوان مجموعه اعتبارسنجی (Validation) جدا شدند.

```
from sklearn.model_selection import train_test_split

df_final = df_with_rul[['unit', 'cycle'] + final_features_after_rf + ['RUL']].copy()

# Taghsine asli

train_df, test_df = train_test_split(df_final, test_size=0.3, random_state=42, shuffle=False)

# Taghsine dade amuzesh be train va validation

train_df, val_df = train_test_split(train_df, test_size=0.2, random_state=42, shuffle=False)

print("Tedad nemuneha dar kole DataFrame:*, len(df_final))

print("Tedad nemuneha dar dadeye test:", len(train_df))

print("Tedad nemuneha dar dadeye test:", len(test_df))

print("Tedad nemuneha dar dadeye test:", len(test_df))

print("Tedad nemuneha dar dadeye test:", len(test_df))

print("Units dar amuzesh:", train_df['unit'].nunique())

Tedad nemuneha dar kole DataFrame: 20631
Tedad nemuneha dar kole DataFrame: 20631
Tedad nemuneha dar dadeye amuzesh: 11552
Tedad nemuneha dar dadeye test: 2889

Units dar muzesh: 59

Units dar test: 29
```

نرمالسازي دادهها

در این پروژه از روش Min-Max Scaling استفاده شده که دادهها را به بازه ی [0,1] تبدیل می کند. در نهایت نیز برای اطمینان از صحت نرمالسازی، میانگین و انحراف معیار تعدادی از ویژگیهای نرمالشده نمایش داده شده است همانطور که دیده می شود، میانگین بیشتر ویژگیها بین بازه [0,1] قرار دارد و انحراف معیار نیز در حد قابل قبولی است، که نشان می دهد نرمالسازی به درستی انجام شده است.

```
| 9| from sklearn.preprocessing import MinMaxScaler
| 8 Normalsazi faghat bar asase train
| scaler = MinMaxScaler()
| scaler.fit(train_df[final_features_after_rf])
| train_df[final_features_after_rf] = train_df[final_features_after_rf].astype(float)
| val_df[final_features_after_rf] = val_df[final_features_after_rf].astype(float)
| test_df[final_features_after_rf] = test_df[final_features_after_rf].astype(float)
| 8 Normalsazi ruye tamame dadeha
| train_df.loc[:, final_features_after_rf] = scaler.transform(train_df[final_features_after_rf])
| val_df.loc[:, final_features_after_rf] = scaler.transform(val_df[final_features_after_rf])
| test_df.loc[:, final_features_after_rf] = scaler.transform(test_df[final_features_after_rf])
| print("\Miangin va enheraf meyar chand vizhegie aval az dade train bad az normalsazi:")
| print(train_df[final_features_after_rf].describe().T[['mean', 'std']].head())
| Aliangin va enheraf meyar chand vizhegie aval az dade train bad az normalsazi:
| sensor_measurement_2 0.433661 0.134237
| sensor_measurement_3 0.441334 0.140455
| sensor_measurement_4 0.4081815 0.164007
| sensor_measurement_7 0.731761 0.143542
| sensor_measurement_7 0.720173 0.190924
```

تقسیم بندی داده ها با روش پنجره لغزان و برچسب گذاری پنجره ها با مقدار RUL

در این بخش برای تقسیمبندی دادههای سری زمانی به بخشهای هماندازه و پیوسته، از روش Sliding Window استفاده شد. برای هر پنجره، مقدار RUL آخرین چرخه به عنوان برچسب پنجره انتخاب شد. همچنین با در نظر گرفتن حداکثر مقدار مجاز برای

RUL(حداکثر ۱۳۰ چرخه)، از بروز برچسبهای غیرواقعبینانه جلوگیری شد.

لازم به ذکر است این فرایند به صورت مستقل برای دادههای آموزش، اعتبارسنجی و آزمون انجام شد. همچنین در این بخش فقط ستونهای ویژگیهای مهم انتخاب شده در مراحل قبل برای هر پنجره استخراج می شود. در نهایت ابعاد آرایههای داده و برچسبها نمایش داده شده است که نشان دهنده تعداد نمونههای پنجرهای و اندازه هر پنجره است. در نهایت یک مثال نیز آمده که بررسی شود مراحل درست انجام شده اند.

نتایج نشان میدهد برای X_train_windows پنجره ساخته شده است، هر پنجره شامل ۳۰ چرخه متوالی (window_size=30) است و در هر چرخه ۱۰ ویژگی وجود دارد. بردار برچسبها (y_train_windows) هم به تعداد پنجرهها یعنی ۹۸۵۷ مقدار دارد که به ازای هر پنجره یک مقدار RUL محدود شده است. مشابه همین ساختار برای دادههای تست با ۹۸۵۲ نمونه پنجرهای و همان اندازه پنجره و ویژگیها مشاهده می شود.

X_train_windows shape: (9857, 30, 10) y_train_windows shape: (9857,) X_test_windows shape: (5349, 30, 10) y_test_windows shape: (5349,)

X_train_windows:

[[0.17378049 0.42515379 0.25735561 0.72624799 0.109755 0.36526946 0.62197802 0.36363636 0.70866142 0.72548186] [0.27439024 0.47345637 0.3034871 0.62801932 0.1002423 0.37724551 0.75824176 0.36363636 0.66141732 0.73200113] [0.33536585 0.38619275 0.32273883 0.71014493 0.14004308 0.24550898 0.78901099 0.18181818 0.62204724 0.61947279] [0.33536585 0.26771474 0.28042136 0.74074074 0.12451763 0.16167665 0.88571429 0.36363636 0.56692913 0.66156463] [0.34146341 0.2690818 0.35942608 0.66827697 0.14995962 0.25149701 0.73846154 0.45454545 0.58267717 0.70479025] [0.25914634 0.30599225 0.21685434 0.77616747 0.12541506 0.17964072 0.62637363 0.27272727 0.64566929 0.65164399] [0.375 0.48484848 0.20595714 0.72302738 0.16781836 0.2994012 0.76703297 0.36363636 0.74015748 0.66652494] [0.39939024 0.27158806 0.26407555 0.64412238 0.08556942 0.22754491

تمرين پنجم

 $0.27272727\ 0.63779528\ 0.57185374]$

 $0.65054945\ 0.3636363636\ 0.7007874\ \ 0.70790816]$

 $[0.1402439 \ \ 0.46024151 \ \ 0.25481293 \ \ 0.60225443 \ \ 0.13447905 \ \ 0.10179641$

0.65054945 0.45454545 0.62204724 0.79691043]

 $[0.31402439\ 0.24401914\ 0.25808209\ 0.75523349\ 0.12510096\ 0.17365269$

0.56483516 0.36363636 0.61417323 0.8100907]

 $[0.24695122\ 0.28184097\ 0.24918271\ 0.75201288\ 0.12402405\ 0.19161677$

0.65274725 0.27272727 0.70866142 0.65036848]

 $[0.55487805\ 0.2540442\ \ 0.26153287\ 0.57809984\ 0.11258189\ 0.31137725$

 $0.66373626\ 0.45454545\ 0.60629921\ 0.52239229]$

 $[0.33536585\ 0.49920255\ 0.23120232\ 0.74557166\ 0.11504981\ 0.34730539$

 $0.62417582\ 0.45454545\ 0.80314961\ 0.67389456]$

 $[0.3597561 \ \ 0.2911825 \ \ 0.28514348 \ \ 0.61030596 \ \ 0.13681235 \ \ 0.26347305$

 $0.80659341\ 0.27272727\ 0.65354331\ 0.62769274]$

 $[0.26829268\ 0.38596491\ 0.32818743\ 0.65861514\ 0.12388944\ 0.22754491$

0.58461538 0.36363636 0.63779528 0.77650227]

 $[0.4054878 \ \ 0.31715653 \ \ 0.24555031 \ \ 0.63607085 \ \ 0.14892758 \ \ 0.15568862$

0.67252747 0.36363636 0.51181102 0.60204082]

 $[0.41768293\ 0.45568467\ 0.17598983\ 0.70048309\ 0.12483173\ 0.20958084$

0.64395604 0.36363636 0.57480315 0.69671202]

 $[0.16463415\ 0.37639553\ 0.25281511\ 0.69726248\ 0.14475455\ 0.32335329$

 $0.67252747\ 0.27272727\ 0.50393701\ 0.6225907\]$

 $[0.54573171\ 0.22943723\ 0.3414457\ \ 0.79871176\ 0.10845374\ 0.21556886$

 $0.71208791\ 0.3636363636\ 0.68503937\ 0.72973356]$

[0.34146341 0.34244703 0.21249546 0.68115942 0.11854976 0.17365269

 $0.78901099\ 0.3636363636\ 0.73228346\ 0.57114512]$

 $[0.46341463\ 0.49874687\ 0.25681075\ 0.60869565\ 0.17715157\ 0.22754491$

0.6967033 0.36363636 0.5984252 0.66907596]

 $[0.27134146\ 0.3907496\ \ 0.15110788\ 0.66505636\ 0.11015884\ 0.23353293$

0.59120879 0.36363636 0.61417323 0.77820295]

 $[0.3445122 \ 0.45089998 \ 0.22484562 \ 0.58615137 \ 0.0988513 \ 0.34730539$

0.72527473 0.36363636 0.66141732 0.65547052]

 $[0.46341463\ 0.52540442\ 0.23537959\ 0.66827697\ 0.14551737\ 0.2994012$

 $0.81978022\ 0.45454545\ 0.62204724\ 0.73937075]$

[0.27743902 0.41102757 0.17508173 0.68599034 0.11388316 0.23952096

 $0.75824176\ 0.54545455\ 0.5511811\ \ 0.7196712\]$

 $[0.36280488\ 0.44269765\ 0.2798765\ 0.67954911\ 0.11769721\ 0.30538922$

 $0.6967033\ \ 0.4545454545\ 0.65354331\ \ 0.76544785]$

[0.33536585 0.26885395 0.23065746 0.77777778 0.126133 0.32934132

0.82197802 0.18181818 0.66929134 0.53429705]

 $[0.20121951\ 0.31419458\ 0.26443879\ 0.70853462\ 0.12895989\ 0.22754491$

0.78681319 0.45454545 0.60629921 0.641439911

 $[0.28963415\ 0.51218956\ 0.17526335\ 0.72785829\ 0.10719734\ 0.32335329$

0.73846154 0.18181818 0.7007874 0.71414399]]

Brachasb:

130.0

پیادهسازی شبکه عصبی پیچشی

ورودی مدل به شکل (اندازه پنجره، تعداد ویژگیها) است که از دادههای پنجرهای آماده شده استخراج میشود. مطابق صورت سوال مدل به صورت متوالي (Sequential) تعریف شده و شامل لایههای زیر است:

- ۱. ConvlD با ۶۴ فیلتر: کرنل اندازه ۳، تابع فعال سازی ReLU ، پدینگ به صورت 'same' تا ابعاد خروجی ثابت
 - ىماند.
 - ۲. MaxPooling1D : کاهش اندازه دادهها با پنجرهی سایز ۲.
 - ۳. Conv1D با ۱۲۸ فیلتر: کرنل ۳، ReLU و یدینگ 'same'

هوش مصنوعی تمرین پنجم

- ۴. GlobalAveragePooling1D : میانگین گیری روی تمام طول توالی خروجی لایه کانولوشن، کاهش ابعاد به برداری یکبعدی.
 - ۵. Dense : لایه کاملاً متصل با ۶۴ نورون و فعال سازی A
 - ۶. Dropout : رهاسازی تصادفی ۲۰٪ نورونها برای جلوگیری از بیش برازش.
 - Dense . ۷ ؛ لایه خروجی با یک نورون

سپس مطابق سوال، مدل با تابع خطای میانگین مربعات خطا (MSE) کامپایل می شود، بهینه ساز Adam با نرخ یادگیری ۰.۰۰۱ استفاده شده و معیار ارزیابی میانگین قدر مطلق خطا (MAE) تعریف شده است.

در نهایت مدل روی دادههای آموزش (X_train_windows, y_train_windows) با اندازه دسته ۳۲ و تعداد دوره ۵۰ آموزش داده شده است. داده شده است. دادههای اعتبارسنجی (X_val_windows, y_val_windows) در هر دوره برای کنترل عملکرد استفاده می شوند. در نهایت نمودارها و مشخصه های خواسته شده در تمرین محاسبه و رسم شدهاند.

Epoch 1/50

 $309/309 - 7s - 22ms/step - loss: 1752.1079 - mae: 31.4640 - val_loss: 794.2220 - val_mae: 23.5446$

Epoch 2/50

309/309 - 1s - 3ms/step - loss: 641.6176 - mae: 19.8216 - val_loss: 760.4941 - val_mae: 22.6051

Epoch 3/50

309/309 - 1s - 4ms/step - loss: 599.5368 - mae: 19.1586 - val_loss: 790.1995 - val_mae: 23.2282

Epoch 4/50

309/309 - 2s - 5ms/step - loss: 586.6824 - mae: 18.8487 - val loss: 829.6028 - val mae: 23.7645

هوش مصنوعى

تمرين پنجم

- Epoch 5/50
- $309/309 2s 6ms/step loss: 558.2981 mae: 18.2266 val_loss: 835.1032 val_mae: 23.8402 val_mae:$
- Epoch 6/50
- 309/309 1s 3ms/step loss: 538.6989 mae: 17.8828 val_loss: 813.6921 val_mae: 23.5966 Epoch 7/50
- 309/309 1s 5ms/step loss: 513.1932 mae: 17.4828 val_loss: 725.7574 val_mae: 22.2257
- Epoch 8/50 309/309 2s 7ms/step loss: 498.1468 mae: 17.1495 val_loss: 704.6996 val_mae: 21.9516
- Epoch 9/50
- 309/309 1s 4ms/step loss: 490.1612 mae: 16.9948 val_loss: 745.0223 val_mae: 22.7875 Epoch 10/50
- 309/309 1s 4ms/step loss: 479.4615 mae: 16.8303 val_loss: 757.6230 val_mae: 22.9047 Epoch 11/50
- 309/309 1s 5ms/step loss: 463.6826 mae: 16.6061 val_loss: 720.4159 val_mae: 22.2598 Epoch 12/50
- 309/309 1s 4ms/step loss: 463.5093 mae: 16.5493 val_loss: 745.5660 val_mae: 22.7742 Epoch 13/50
- 309/309 1s 3ms/step loss: 448.7548 mae: 16.2535 val_loss: 735.1830 val_mae: 22.5870 Epoch 14/50
- 309/309 1s 3ms/step loss: 436.6946 mae: 16.0109 val_loss: 747.7476 val_mae: 22.8023 Epoch 15/50
- 309/309 2s 5ms/step loss: 426.5928 mae: 15.8322 val_loss: 762.9299 val_mae: 23.1530 Epoch 16/50
- 309/309 1s 4ms/step loss: 428.4519 mae: 15.8952 val_loss: 741.6001 val_mae: 22.7554 Epoch 17/50
- 309/309 1s 3ms/step loss: 418.1249 mae: 15.7030 val_loss: 707.9769 val_mae: 22.0128 Epoch 18/50
- 309/309 1s 3ms/step loss: 416.1113 mae: 15.5659 val_loss: 717.4688 val_mae: 22.3755 Epoch 19/50
- 309/309 1s 3ms/step loss: 405.4845 mae: 15.3824 val_loss: 716.1199 val_mae: 22.3282 Epoch 21/50
- 309/309 1s 3ms/step loss: 390.8886 mae: 15.1230 val_loss: 803.5231 val_mae: 23.7217 Epoch 22/50
- 309/309 1s 4ms/step loss: 386.7499 mae: 15.0162 val_loss: 708.9901 val_mae: 22.1445 Epoch 23/50
- 309/309 1s 3ms/step loss: 386.5551 mae: 15.0384 val_loss: 755.4164 val_mae: 22.7579 Epoch 24/50
- 309/309 1s 5ms/step loss: 377.4248 mae: 14.9021 val_loss: 661.0602 val_mae: 21.2446 Epoch 25/50
- 309/309 1s 4ms/step loss: 370.4015 mae: 14.7917 val_loss: 735.1842 val_mae: 22.5992 Epoch 26/50
- 309/309 2s 5ms/step loss: 357.4793 mae: 14.4930 val_loss: 645.3134 val_mae: 20.8177 Epoch 27/50
- 309/309 1s 3ms/step loss: 354.3963 mae: 14.4175 val_loss: 594.2355 val_mae: 20.0745 Epoch 28/50
- 309/309 1s 3ms/step loss: 349.7443 mae: 14.2829 val_loss: 576.5229 val_mae: 19.8057 Epoch 29/50
- 309/309 1s 3ms/step loss: 336.1053 mae: 14.0202 val_loss: 568.1516 val_mae: 19.6419 Epoch 30/50
- 309/309 1s 3ms/step loss: 325.6908 mae: 13.8122 val_loss: 589.6657 val_mae: 20.1546 Epoch 31/50
- 309/309 1s 3ms/step loss: 328.8303 mae: 13.8867 val_loss: 591.1899 val_mae: 20.2272
 Epoch 32/50
- 309/309 1s 3ms/step loss: 316.2696 mae: 13.5695 val_loss: 707.7805 val_mae: 22.1520 Epoch 33/50
- 309/309 1s 3ms/step loss: 311.1967 mae: 13.4758 val_loss: 534.3707 val_mae: 18.9620 Epoch 35/50

موش مصنوعي

 $309/309 - 1s - 4ms/step - loss: 313.1350 - mae: 13.4853 - val_loss: 635.5728 - val_mae: 20.7032$ Epoch 36/50 $309/309 - 2s - 5ms/step - loss: 306.9713 - mae: 13.3780 - val_loss: 520.7448 - val_mae: 18.6131$ Epoch 37/50

309/309 - 1s - 4ms/step - loss: 300.2816 - mae: 13.1827 - val_loss: 730.7276 - val_mae: 22.1462 Epoch 38/50

309/309 - 2s - 7ms/step - loss: 308.9963 - mae: 13.3672 - val_loss: 707.8040 - val_mae: 21.8442 Epoch 39/50

309/309 - 1s - 3ms/step - loss: 305.6000 - mae: 13.2794 - val_loss: 603.4782 - val_mae: 19.9825 Epoch 40/50

309/309 - 1s - 4ms/step - loss: 287.1256 - mae: 12.8678 - val_loss: 530.4536 - val_mae: 18.7772 Epoch 41/50

309/309 - 1s - 4ms/step - loss: 289.2954 - mae: 12.9224 - val_loss: 607.8920 - val_mae: 20.2109
Epoch 42/50

309/309 - 1s - 3ms/step - loss: 292.2492 - mae: 12.9603 - val_loss: 518.1780 - val_mae: 18.5616 Epoch 43/50

309/309 - 1s - 3ms/step - loss: 288.0579 - mae: 12.8667 - val_loss: 516.9916 - val_mae: 18.3114 Epoch 44/50

309/309 - 1s - 3ms/step - loss: 287.8311 - mae: 12.8291 - val_loss: 489.3580 - val_mae: 17.9281

Epoch 45/50

309/309 - 1s - 4ms/step - loss: 286.3511 - mae: 12.7996 - val_loss: 517.3658 - val_mae: 18.2659 Epoch 46/50

309/309 - 1s - 4ms/step - loss: 284.7812 - mae: 12.7633 - val_loss: 551.8780 - val_mae: 19.1881 Epoch 47/50

309/309 - 1s - 4ms/step - loss: 284.2140 - mae: 12.7641 - val_loss: 444.2758 - val_mae: 16.8730 Epoch 48/50

309/309 - 1s - 4ms/step - loss: 284.9115 - mae: 12.7727 - val_loss: 468.9955 - val_mae: 17.4532 Epoch 49/50

309/309 - 1s - 3ms/step - loss: 277.9487 - mae: 12.6080 - val_loss: 504.9226 - val_mae: 18.0963 Epoch 50/50

309/309 - 1s - 3ms/step - loss: 279.3629 - mae: 12.7143 - val loss: 607.0616 - val mae: 19.7633

Zamane amuzeshe model 66.61 sec

MSE: 481.7840 MAE: 17.1138 168/168

1s 3ms/step

RMSE: 21.9496 log RMSE: 0.3331 R² Score: 0.7469

باتوجه به ایپاکهای این مدل که در بالا قابل مشاهده میباشد، در ایپاک ۱ تا ۱۰، مقدار اولیه loss و MAE بسیار بالا هستند، همچنین کاهش سریعی در خطاها دیده میشود، اما اعتبارسنجی نوسان دارد. بنابراین بطور کلی مدل در حال یادگیری ویژگیهاست، ولی در ایپاکهای اولیه نشانههایی از نوسان و عدم پایداری در اعتبارسنجی دیده میشود.

در ایپاک ۱۱ تا ۳۰، کاهش training loss و MAE ادامه دارد، ولی validation loss همچنان نوسانی است(گاهی بهبود و generalize نمی و generalize نمی فراد البته مانطور که گفته شد بهبود با کارهایی مانند dropout earlystopping، ممکن است. اما از آنجاییکه قرار است شرایط تمام مدلها یکسان باشد تغییری در مدل ایجاد نمی کنیم.

در ایپاکهای پایانی ۳۱ تا ۵۰، Training loss به کمترین حد میرسد و در اواخر آموزش، نقاط بهینهای برای اعتبارسنجی داریم(ایپاک ۴۴ و ۴۷). در نتیجه میتوان گفت بطور کلی مدل در برخی نقاط توانایی درک بهتر الگو را دارد، اما به علت ضعف در درک وابستگی زمانی عملکردش پایدار نیست.

باتوجه به نمودار Train loss می توان گفت این نمودار به صورت یکنواخت کاهش یافته و در انتها به مقدار نسبتاً پایین رسیده است. اما نمودار Validation loss نوسانات زیادی دارد و روند کاهش واضحی مشاهده نمی شود. در نتیجه می توان گفت احتمالاً overfitting اتفاق افتاده است، زیرا مدل روی داده های آموزش عملکرد خوبی دارد اما در داده های اعتبار سنجی ضعیف تر عمل می کند.

با توجه به نمودار RUL واقعی و پیشبینی شده، مشاهده می شود خط قرمز (خط ایده آل) با نقاط فاصله زیادی دارد و پیشبینی ها در محدوده RUL های بالا پراکندگی بیشتری دارند. بطور کلی می توان گفت عملکرد قابل قبول است ولی دقت کلی متوسط است. (کاهش یکنواخت خطای آموزش و عدم بروز overfitting شدید). بطور کلی زمان آموزش بسیار کم، MSE نسبتا زیاد، AME متوسط رو به بالا، RMSE نسبتا بالاو دقت نسبتا خوبی دارد.

علت این اتفاق آن است که CNN فقط ویژگیهای محلی را میبیند، نه وابستگی بین زمانها. یعنی مدل CNN به تنهایی برای مطل این اتفاق آن است که RUL مناسب نیست، چون ساختار آن برای تحلیل وابستگیهای زمانی مناسب طراحی نشده است.

پیادهسازی شبکه LSTM

در این بخش کد زیر نوشته شده است. تمامی شرایط خواسته شده در صورت سوال رعایت شدهاند و معماری دقیقا همان معماری خواسته خواسته شده می باشد. با افزودن شرایطی مثل Earlystopping و .. که در بخش CallBack در کد کامنت شده است، می توان نتایج را بهبود بخشید اما از آنجاییکه گفته شده شرایط تمامی مدلها (Epoch و Batch size) یکسان باشد از آن بخش استفاده نشده است.

```
[] from tensorFlow.keras.models import Sequential
from tensorFlow.keras.lupers import LASI
from tensorFlow.keras.lupers import LASI
from sklearm.actrics import mean_squared_error
import remote have as of the state of the state
```



```
تمرين پنجم
                                                                                                                                                                          ↑ ↓ ♦ © □ ‡ □ □ :
              # Arzyabi ruye dade test
eval_results = model_lstm.evaluate(X_test_windows, y_test_windows, verbose=0)
              print(f"MSE: (eval_results[0]:.4f)")
print(f"MAE: (eval_results[1]:.4f)")
              y_pred_lstm = model_lstm.predict(X_test_windows)
rmse = np.sqrt(mean_squared_error(y_test_windows, y_pred_lstm))
y_pred_safel = np.maximum(y_pred_lstm, 0)
y_test_safel = np.maximum(y_test_windows, 0)
log_rmse = np.sqrt(np.mecan(np.square(np.log1p(y_test_safel) - np.log1p(y_pred_safel))))
              #log_rmse = np.log(rmse + 1e-10)
r2 = r2_score(y_test_windows, y_pred_lstm)
              print(f"RMSE: {rmse:.4f}")
print(f"log RMSE: {log_rmse:.4f}")
print(f"R<sup>2</sup> Score: {r2:.4f}")
              # Nemodarha
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(history_lstm.history['loss'], label='Train Loss (MSE)')
plt.plot(history_lstm.history['val_loss'], label='Walidation Loss (MSE)')
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.title('Loss Curve - LSTM'); plt.legend()
              plt.subplot(1,2,2)
plt.plot(history_lstm.history['mae'], label='Train MAE')
         plt.plot(history_lstm.history['val_mae'], label='Validation MAE')
plt.xlabel('Epoch'); plt.ylabel('MAE'); plt.title('MAE Curve - LSTM'); plt.legend()
                                                                                                                                                                          ↑ ↓ ♦ © 🗏 🏚 🗓 🖽 ᠄
               plt.tight_layout()
plt.show()
              Epoch 1/50
309/309 - 7s - 24ms/step - loss: 3366.1685 - mae: 48.3240 - val loss: 1928.8341 - val mae: 39.4596
Epoch 2/50
309/309 - 3s - 9ms/step - loss: 1940.5917 - mae: 38.7286 - val loss: 1921.3629 - val mae: 39.3537
Epoch 3/50
309/309 - 3s - 9ms/step - loss: 1931.9180 - mae: 38.6648 - val loss: 1925.8969 - val mae: 39.4190
Epoch 4/50
309/309 - 5s - 16ms/step - loss: 1920.5151 - mae: 38.5464 - val_loss: 1919.6014 - val_mae: 39.3284
Epoch 5/50
309/309 - 5s - 16ms/step - loss: 1700.4163 - mae: 35.6480 - val\_loss: 887.2142 - val\_mae: 25.3586
Epoch 6/50
309/309 - 3s - 10ms/step - loss: 483.2847 - mae: 16.9785 - val_loss: 343.0648 - val_mae: 14.4400
Epoch 7/50
309/309 - 3s - 8ms/step - loss: 381.2501 - mae: 14.8644 - val loss: 299.9770 - val mae: 13.9605
Epoch 8/50
309/309 - 2s - 8ms/step - loss: 339.5921 - mae: 13.8561 - val loss: 334.8543 - val mae: 14.3854
```

Epoch 9/50

309/309 - 2s - 8ms/step - loss: 323.6913 - mae: 13.5317 - val loss: 298.5952 - val mae: 13.7435 Epoch 10/50

309/309 - 3s - 9ms/step - loss: 312.7867 - mae: 13.1885 - val_loss: 489.6844 - val_mae: 17.2444 Epoch 11/50

309/309 - 5s - 16ms/step - loss: 297.1247 - mae: 12.8761 - val loss: 353.3381 - val mae: 14.7519 Epoch 12/50

309/309 - 2s - 8ms/step - loss: 298.6225 - mae: 12.8673 - val loss: 395.9778 - val mae: 15.4290 Epoch 13/50

309/309 - 3s - 8ms/step - loss: 291.9412 - mae: 12.7246 - val loss: 397.1234 - val mae: 15.5793 Epoch 14/50

309/309 - 3s - 10ms/step - loss: 295.4506 - mae: 12.7697 - val loss: 385.5269 - val mae: 15.7200 Epoch 15/50

309/309 - 3s - 8ms/step - loss: 287.9074 - mae: 12.6149 - val_loss: 345.4636 - val_mae: 14.3560 Epoch 16/50

309/309 - 2s - 8ms/step - loss: 278.5830 - mae: 12.4338 - val_loss: 350.4322 - val_mae: 14.5238 Epoch 17/50

309/309 - 3s - 8ms/step - loss: 279.6964 - mae: 12.3992 - val_loss: 331.6288 - val_mae: 14.0005 Epoch 18/50

309/309 - 3s - 9ms/step - loss: 278.4665 - mae: 12.3798 - val loss: 386.0461 - val mae: 15.3304

هوش مصنوعى

تمرين پنجم

- Epoch 19/50
- $309/309 5s 15ms/step loss: 277.0053 mae: 12.3095 val_loss: 390.8988 val_mae: 15.6987$
- Epoch 20/50
- $309/309 2s 8ms/step loss: 279.6289 mae: 12.3613 val_loss: 341.1932 val_mae: 14.3318$
- Epoch 21/50
- $309/309 3s 8ms/step loss: 277.7705 mae: 12.3462 val_loss: 366.4558 val_mae: 14.9113$
- Epoch 22/50
- 309/309 3s 10ms/step loss: 269.8778 mae: 12.1458 val_loss: 414.0476 val_mae: 15.8536
- Epoch 23/50
- $309/309 5s 15ms/step loss: 270.9143 mae: 12.2257 val_loss: 381.6169 val_mae: 15.1057$
- Epoch 24/50
- $309/309 3s 8ms/step loss: 265.8003 mae: 12.0179 val_loss: 303.7809 val_mae: 13.5017$
- Epoch 25/50
- 309/309 3s 8ms/step loss: 266.5339 mae: 12.0489 val_loss: 390.2833 val_mae: 15.5346
- Epoch 26/50
- $309/309 3s 10ms/step loss: 270.8489 mae: 12.1802 val_loss: 478.9626 val_mae: 16.7357 val_loss: 478.9626 val_loss:$
- Epoch 27/50
- 309/309 5s 15ms/step loss: 263.8727 mae: 12.0323 val_loss: 347.8285 val_mae: 14.3037
- Epoch 28/50
- $309/309 5s 17ms/step loss: 268.9483 mae: 12.0622 val_loss: 332.0685 val_mae: 14.1807 val_mae$
- Epoch 29/50
- 309/309 3s 9ms/step loss: 261.8083 mae: 11.9660 val_loss: 367.6436 val_mae: 14.4725
- Epoch 30/50
- $309/309 5s 16ms/step loss: 259.3731 mae: 11.8574 val_loss: 344.8060 val_mae: 14.3176$
- Epoch 31/50
- 309/309 2s 8ms/step loss: 258.4615 mae: 11.7675 val_loss: 328.6169 val_mae: 14.0737
- Epoch 32/50
- 309/309 3s 11ms/step loss: 258.2429 mae: 11.8192 val_loss: 398.0578 val_mae: 15.2909
- Epoch 33/50
- $309/309 5s 15ms/step loss: 254.1084 mae: 11.7462 val_loss: 342.7823 val_mae: 14.0005 val_loss: 342.7823 val_loss: 342.7823$
- Epoch 34/50
- $309/309 5s 16ms/step loss: 253.1110 mae: 11.6709 val_loss: 339.6804 val_mae: 13.9480$
- Epoch 35/50
- 309/309 5s 16ms/step loss: 254.1585 mae: 11.7445 val_loss: 348.6435 val_mae: 13.9557
- Epoch 36/50
- 309/309 3s 8ms/step loss: 251.8003 mae: 11.6331 val_loss: 312.5370 val_mae: 13.2357
- Epoch 37/50
- 309/309 3s 8ms/step loss: 243.7687 mae: 11.4327 val_loss: 290.4431 val_mae: 12.7106
- Epoch 38/50
- 309/309 3s 11ms/step loss: 246.0332 mae: 11.4871 val_loss: 345.1331 val_mae: 14.1198
- Epoch 39/50
- 309/309 4s 14ms/step loss: 243.1211 mae: 11.4124 val_loss: 334.4877 val_mae: 13.7050
- Epoch 40/50
- $309/309 5s 16ms/step loss: 244.6160 mae: 11.4660 val_loss: 317.8849 val_mae: 13.1994$
- Epoch 41/50
- $309/309 5s 16ms/step loss: 244.1124 mae: 11.4592 val_loss: 356.7004 val_mae: 14.0812$
- Epoch 42/50
- $309/309 3s 8ms/step loss: 238.6346 mae: 11.3420 val_loss: 333.4558 val_mae: 13.6134$
- Epoch 43/50
- $309/309 3s 8ms/step loss: 235.6059 mae: 11.2496 val_loss: 364.9118 val_mae: 14.1815$
- Epoch 44/50
- $309/309 3s 11ms/step loss: 242.7090 mae: 11.4008 val_loss: 345.8574 val_mae: 13.7915$
- Epoch 45/50
- $309/309 2s 8ms/step loss: 240.6930 mae: 11.3286 val_loss: 320.7698 val_mae: 13.2660$
- Epoch 46/50
- 309/309 3s 8ms/step loss: 237.5101 mae: 11.2784 val_loss: 286.9190 val_mae: 12.5257
- Epoch 47/50
- 309/309 3s 8ms/step loss: 239.5587 mae: 11.2874 val_loss: 291.6729 val_mae: 12.6974
- Epoch 48/50
- $309/309 3s 9ms/step loss: 237.7989 mae: 11.2335 val_loss: 324.9650 val_mae: 13.3028$
- Epoch 49/50

هوش مصنوعی تمرین پنجم

 $309/309 - 5s - 16ms/step - loss: 230.7903 - mae: 11.0972 - val_loss: 306.8300 - val_mae: 12.6764$

Epoch 50/50

309/309 - 2s - 8ms/step - loss: 233.4579 - mae: 11.1828 - val loss: 348.7077 - val mae: 13.7577

Training time: 2.88 minutes

MSE: 274.1943 MAE: 12.1496

168/168 1s 3ms/step

RMSE: 16.5588 log RMSE: 1.2694 R² Score: 0.8560

با توجه به نمودارهای نمودارهای MAE مشاهده می شود افت شدید در ۵ ایپاک اول، سپس تثبیت در مقادیر پایین دیده می شود. هم در داده های آموزش و هم اعتبار سنجی، مدل به خوبی همگرا شده است. نمودارها کاملاً پایدار و بدون نوسان شدید هستند که نشانه ای از generalization خوب مدل است.

باتوجه به نمودار RUL واقعی و پیشبینی شده مشاهده میشود نقاط پیشبینی شده بسیار نزدیک به خط ایده آل قرار گرفته اند و پیشبینی در تمام بازه های RUL نسبتاً دقیق است. در کل نسبت به CNN ، دقت پیشبینی بالاتر و پراکندگی کمتر است.

تنظيم ابر پارامترها

در این بخش از کد زیر استفاده شده است.

```
↑ ↓ ♦ © □ ‡ 🖟 🗓 :
import keras_tuner as kt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.callbacks import EarlyStopping
                 from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
import time
              def sliding_windows(df, feature_cols, window_size=30, max_rul=130):
    X_windows, y_labels = [], []
    for unit_number, unit_df in df.groupbly('unit'):
        unit_df = unit_df.sort_values('cycle').reset_index(drop=True)
        if len(unit_df) < window_size:
            continue
        for i in range(len(unit_df) - window_size + 1):
            window = unit_df.sloc[sistwindow_size]
            X_window = unit_df.sloc[sistwindow_size]
            X_window = window.lloc[-1]['NUL']
            rul_value = window.lloc[-1]['NUL']
            rul_capped = min(rul_value, max_rul)
            X_windows.append(X_window)
            y_labels.append(rul_capped)
            return np.array(X_windows), np.array(y_labels)</pre>
                 def build model(hp):
                         window_size = hp.Int('window_size', min_value=20, max_value=50, step=5)
batch_size = hp.Choice('batch_size', [32, 64, 128])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ↑ ↓ ♦ © ■ $ L 回 :
 0
                              X_train, y_train = sliding_windows(train_df, final_features_after_rf, window_size)
X_val, y_val = sliding_windows(val_df, final_features_after_rf, window_size)
                               model = Sequential()
                              model.add(Dropout(hp.Float('dropout_1', 0.1, 0.5, step=0.1)))
                              model.add(LSTM(units=hp.Int('lstm_units_2', 16, 64, step=16), return_sequences=False))
                              model.add(Dense(units=hp.Int('dense_units', 32, 128, step=32), activation='relu'))
model.add(Dropout(hp.Float('dropout_2', 0.1, 0.5, step=0.1)))
model.add(Dense(1))
                               # Nerkhe yadgiri
lr = hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])
                              # Bennessz
optimizer name = hp.choice('optimizer', ['adam', 'rmsprop'])
optimizer = Adam(learning_rate=lr) if optimizer_name == 'adam' else RMSprop(learning_rate=lr)
                               model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↑ ↓ ♦ © ■ ‡ | ☐ i :
                               model.x_train = x_train
model.y_train = y_train
model.x_val = x_val
model.y_val = y_val
                                 return model
                 tuner = kt.RandomSearch(
    build_model,
    objective='val_loss',
    max_trials=15,
    directory='kerastuner_logs',
    project_name='lstm_full_tuning'
                 X_start, y_start = sliding_windows(train_df, final_features_after_rf, window_size=30)
X_val_start, y_val_start = sliding_windows(val_df, final_features_after_rf, window_size=30)
                   batch_sizes = [16, 32, 64]
                   # Ejraye tuner
tuner.search(
    x=X_start,
    y=y_start,
    validation_data=(X_val_start, y_val_start),
    assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="font-start">assets="fo
```


هوش مصنوعی تمرین پنجم


```
batch_size=kt.engine.hyperparameters.HyperParameters().choice('batch_size', batch_sizes),
callbacks=[EarlyStopping(monitor='val_loss', patience=8, restore_best_weights=True)],
verbose=2
                                                                                                                                                                                                                                                                              ↑ ↓ ♦ © Ⅲ ₽ Ы Ⅲ :
        # Behtarin parametrha
best_hp = tuner.get_best_hyperparameters(1)[0]
print("\n8ehtarin hyperparametrha:")
for k, v in best_hp.values.items():
    print(f"(k): (v)")
         best_window_size = best_ph_get('window_size')
X_train_best_y_train_best = sliding_windows(train_df, final_features_after_rf, best_window_size)
X_val_best_y_val_best = sliding_windows(val_df, final_features_after_rf, best_window_size)
X_test_best, y_test_best = sliding_windows(test_df, final_features_after_rf, best_window_size)
         batch_size = best_hp.get('batch_size')
        # Amuzeshe nahayi
start = time.time()
history = final_model.fit(
    X_train_best, y_train_best,
    validation_data=(X_val_best, y_val_best),
    restarts.
              epochs=90,
batch_size=batch_size,
callbacks=[EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)],
             verbose=2
                                                                                                                                                                                                                                                                             ↑ ↓ ♦ GD 🗏 🌣 🖟 🗓 🗓 :
0
        end = time.time()
print(f"\nZamane amuzeshe nahayi: {(end - start)/60:.2f} min")
         y_pred = final_model.predict(X_test_best)
         ry_near_nas_mode.predict(x_test_best, y_pred))
log_rmse = np.sqrt(np.mean(np.square(np.logip(np.maximum(y_test_best, 0)) - np.logip(np.maximum(y_pred, 0)))))
r2 = r2_score(y_test_best, y_pred)
        # Nemudarha
plt.figure(figsize=(12,5))
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val_Loss')
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.legend(); plt.title('Loss Curve')
plt.grid(True)
plt.show()
         plt.xlabel("Actual RUL")
plt.vlabel("Predicted RUL")
plt.vlabel("Predicted RUL")
plt.grid(True)
plt.tight_layout()
plt.show()
```

پیادهسازی مدل ترکیبی CNN+LSTM

در این بخش نیز ورودی مدل دارای شکل دو مدل قبل میباشد، که در این تمرین برابر (30, 10) میباشد (۳۰ سیکل متوالی از
۱۰ ویژگی منتخب). معماری مدل نیز دقیقا بهصورت گفته شده در صورت سوال پیادهسازی شده است. تمام شرایط دیگر نیز مانند
مدلهای قبلی میباشد. کد مورد استفاده در این بخش بصورت زیر میباشد:

تمرين پنجم


```
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ConvID, MaxPoolingID, LSTM, Dropout, Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from sklearn.metrics import mean_squared_error import numby as no
                         import numpy as np
import matplotlib.pyplot as plt
                         # CNN + LSTM
input_shape = X_train_windows.shape[1:]
                         model_cnn_lstm = Sequential(|
                                  Conv1D(filters=64, kernel_size=3, activation='relu', padding='same', input_shape=input_shape),
                                  MaxPooling1D(pool_size=2),
LSTM(100, return_sequences=False),
                                  Dense(64, activation='relu'),
                         model_cnn_lstm.compile(
   optimizer=Adam(learning_rate=0.001),
   loss='mse',
   metrics=['mae']
                         model_cnn_lstm.summary()
             [ ] # # Callbacks
# early stoppi
                           # early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
# reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=1e-6, ver
                         history_cnn_lstm = model_cnn_lstm.fit(
    X_train_windows, y_train_windows,
    validation_data=(X_val_windows, y_val_windows),
                                   batch size=32,
                                   epochs=50,
callbacks=[],
                                   verbose=2
                         rend_time = time.time()
print(f"Training time: {(end_time - start_time)/60:.2f} minutes")
                         eval_results = model_cnn_lstm.evaluate(X_test_windows, y_test_windows, verbose=0)
print(f"MSE: (eval_results[0]:.4f)")
print(f"MAE: (eval_results[1]:.4f)")
                         y_pred = model_cnn_lstm.predict(X_test_windows)
rmse = np.sqrt(mean_squared_error(y_test_windows, y_pred))
y_pred_safe2 = np.maximum(y_pred, 0)
y_test_safe1 = np.maximum(y_test_windows, 0)
                         \label{eq:constraints} $\log_{\tt rmse} = \text{np.sqrt(np.mean(np.square(np.log1p(y\_test\_safe1) - np.log1p(y\_pred\_safe2))))} $$ r^2 = r^2\_score(y\_test\_windows, y\_pred)$
              print(f"RMSE: {rmse:.4f}")
print(f"log RMSE: {log_rmse:.4f}")
print(f"R<sup>2</sup> Score: {r2:.4f}")
                          plt.figure(figsize=(12,5))
                          plt.rigure(rigure(rigs):e-(ix,y))
plt.subplot(1,2,1)
plt.plot(history_cnn_lstm.history['loss'], label='Train Loss (MSE)')
plt.plot(history_cnn_lstm.history['val_loss'], label='Validation Loss (MSE)')
plt.xlabel('Epoch'); plt.ylabel('toss'); plt.title('toss Curve - CNN+LSTM'); plt.legend()
                          plt.subplot(1,2,2)
plt.plot(history_cnn_lstm.history['mae'], label='Train MAE')
plt.plot(history_cnn_lstm.history['val_mae'], label='Validation MAE')
plt.xlabel('Epoch'); plt.ylabel('MAE'); plt.title('MAE Curve - CNW+LSTM'); plt.legend()
                          plt.tight_layout()
                                                            heyi va pishbini shode
                          "nemount vagues; va pisnout snow
plt.figuer(figsize-(6,6))
plt.scatter(y_test_windows, y_pred, alpha=0.5, edgecolors='k')
plt.plot(y_test_windows.min(), y_test_windows.max()],

"n_"lback" | lback | 
                       pt.viadows.min(), y_tc
'r--', lw=2)
plt.xlabel("Meghdare vagheyie RUL")
plt.ylabel("Meghdare RUL")
plt.title("Real vs Predicted RUL")
plt.grid(True)
plt.srid(True)
                         plt.tight_layout()
plt.show()
Epoch 1/50
309/309 - 4s - 13ms/step - loss: 2618.3308 - mae: 43.0691 - val loss: 1332.2490 - val mae: 32.7159
309/309 - 2s - 7ms/step - loss: 509.0211 - mae: 17.7358 - val loss: 539.5680 - val mae: 19.0562
Epoch 3/50
309/309 - 3s - 8ms/step - loss: 439.6791 - mae: 16.0428 - val_loss: 595.0062 - val_mae: 19.9731
Epoch 4/50
309/309 - 2s - 7ms/step - loss: 412.7113 - mae: 15.3466 - val_loss: 540.5478 - val_mae: 18.4320
309/309 - 2s - 6ms/step - loss: 361.6722 - mae: 14.2602 - val_loss: 438.5044 - val_mae: 16.8423
Epoch 6/50
309/309 - 2s - 8ms/step - loss: 277.3334 - mae: 12.4621 - val loss: 374.4758 - val mae: 15.5056
Epoch 7/50
309/309 - 2s - 8ms/step - loss: 255.3806 - mae: 11.8736 - val_loss: 332.5313 - val_mae: 14.2547
```

هوش مصنوعى

تمرين پنجم

- Epoch 8/50
- $309/309 2s 7ms/step loss: 236.6844 mae: 11.5241 val_loss: 358.3727 val_mae: 14.9899$
- Epoch 9/50
- $309/309 2s 6ms/step loss: 233.9507 mae: 11.3596 val_loss: 293.2041 val_mae: 13.3694 val_loss: 293.2041 val_los$
- Epoch 10/50
- $309/309 3s 8ms/step loss: 223.2796 mae: 11.1000 val_loss: 340.6988 val_mae: 14.6376 val_mae:$
- Epoch 11/50
- $309/309 3s 8ms/step loss: 224.9339 mae: 11.1002 val_loss: 299.0411 val_mae: 13.4105 val_loss: 299.0411 val_loss:$
- Epoch 12/50
- $309/309 2s 7ms/step loss: 221.7163 mae: 11.0199 val_loss: 319.5276 val_mae: 13.7773$
- Epoch 13/50
- $309/309 3s 9ms/step loss: 214.5772 mae: 10.7807 val_loss: 320.9280 val_mae: 13.8293$
- Epoch 14/50
- $309/309 2s 6ms/step loss: 214.6770 mae: 10.8321 val_loss: 291.7893 val_mae: 13.0157$
- Epoch 15/50
- 309/309 2s 8ms/step loss: 212.6980 mae: 10.7557 val_loss: 289.7533 val_mae: 13.1180
- Epoch 16/50
- $309/309 2s 6ms/step loss: 204.1898 mae: 10.5946 val_loss: 292.0098 val_mae: 13.0941$
- Epoch 17/50
- $309/309 3s 9ms/step loss: 208.5473 mae: 10.6332 val_loss: 292.4539 val_mae: 12.9773$
- Epoch 18/50
- 309/309 2s 8ms/step loss: 204.0630 mae: 10.5136 val_loss: 280.4218 val_mae: 12.6980
- Epoch 19/50
- $309/309 2s 7ms/step loss: 199.0636 mae: 10.3754 val_loss: 295.2343 val_mae: 13.0929 val_mae: 10.3754 val_loss: 295.2343 val_mae: 13.0929 val_ma$
- Epoch 20/50
- $309/309 2s 6ms/step loss: 203.1472 mae: 10.4672 val_loss: 329.4050 val_mae: 13.6415$
- Epoch 21/50
- 309/309 3s 8ms/step loss: 199.2770 mae: 10.3719 val_loss: 320.1825 val_mae: 13.7886
- Epoch 22/50
- $309/309 3s 9ms/step loss: 196.8971 mae: 10.3171 val_loss: 306.5001 val_mae: 13.1902$
- $Epoch\ 23/50$
- $309/309 2s 7ms/step loss: 195.3164 mae: 10.2939 val_loss: 294.6824 val_mae: 12.9814$
- Epoch 24/50
- $309/309 2s 8ms/step loss: 196.9901 mae: 10.3168 val_loss: 281.0188 val_mae: 12.4839$
- Epoch 25/50
- 309/309 2s 8ms/step loss: 194.9863 mae: 10.2774 val_loss: 299.4315 val_mae: 13.0598
- Epoch 26/50
- $309/309 2s 6ms/step loss: 190.7790 mae: 10.1698 val_loss: 304.6839 val_mae: 13.1269$
- Epoch 27/50
- 309/309 3s 10ms/step loss: 185.5423 mae: 10.0034 val_loss: 310.0092 val_mae: 13.2946
- Epoch 28/50
- $309/309 2s 7ms/step loss: 188.8601 mae: 10.0754 val_loss: 311.8035 val_mae: 13.3658$
- Epoch 29/50
- $309/309 2s 7ms/step loss: 187.7646 mae: 10.0521 val_loss: 325.7608 val_mae: 13.5388$
- Epoch 30/50
- $309/309 2s 6ms/step loss: 179.7982 mae: 9.8425 val_loss: 304.2903 val_mae: 12.9927$
- Epoch 31/50
- $309/309 2s 8ms/step loss: 179.5487 mae: 9.8488 val_loss: 305.9499 val_mae: 13.1888$
- Epoch 32/50
- $309/309 3s 9ms/step loss: 179.7593 mae: 9.8365 val_loss: 323.5071 val_mae: 13.9683$
- Epoch 33/50
- $309/309 2s 8ms/step loss: 176.9674 mae: 9.7853 val_loss: 299.7350 val_mae: 12.9661$
- Epoch 34/50
- 309/309 2s 6ms/step loss: 173.4926 mae: 9.6653 val loss: 367.2130 val mae: 14.5709
- Epoch 35/50
- 309/309 2s 6ms/step loss: 171.3853 mae: 9.6214 val_loss: 312.4105 val_mae: 13.1040
- Epoch 36/50
- 309/309 3s 8ms/step loss: 167.3157 mae: 9.4893 val_loss: 315.5608 val_mae: 13.3191
- Epoch 37/50
- 309/309 3s 9ms/step loss: 164.6430 mae: 9.4032 val_loss: 311.1996 val_mae: 13.0589
- Epoch 38/50

309/309 - 2s - 8ms/step - loss: 161.8327 - mae: 9.3307 - val loss: 319.5019 - val mae: 13.3417

Epoch 39/50

309/309 - 2s - 7ms/step - loss: 161.2951 - mae: 9.3070 - val_loss: 311.5931 - val_mae: 13.2678

Epoch 40/50

309/309 - 3s - 9ms/step - loss: 157.9538 - mae: 9.2118 - val_loss: 334.4437 - val_mae: 13.4539

Epoch 41/50

309/309 - 2s - 8ms/step - loss: 159.7740 - mae: 9.2564 - val_loss: 325.1090 - val_mae: 13.2885

Epoch 42/50

309/309 - 3s - 9ms/step - loss: 149.6931 - mae: 8.9627 - val_loss: 347.9361 - val_mae: 13.7217

Epoch 43/50

309/309 - 2s - 7ms/step - loss: 153.6581 - mae: 9.0686 - val loss: 348.4548 - val mae: 13.8016

Epoch 44/50

309/309 - 2s - 6ms/step - loss: 147.9862 - mae: 8.9074 - val loss: 335.8564 - val mae: 13.5772

Epoch 45/50

309/309 - 2s - 6ms/step - loss: 145.5624 - mae: 8.8059 - val_loss: 394.3321 - val_mae: 14.5495

Epoch 46/50

309/309 - 3s - 8ms/step - loss: 143.3685 - mae: 8.7402 - val_loss: 342.2191 - val_mae: 13.6533

Epoch 47/50

309/309 - 2s - 6ms/step - loss: 140.3242 - mae: 8.6440 - val_loss: 327.1191 - val_mae: 13.1486

Epoch 48/50

309/309 - 2s - 8ms/step - loss: 138.1750 - mae: 8.5561 - val loss: 379.7982 - val mae: 14.2522

Epoch 49/50

309/309 - 2s - 6ms/step - loss: 138.1105 - mae: 8.5683 - val_loss: 376.0762 - val_mae: 14.1977

Epoch 50/50

309/309 - 2s - 6ms/step - loss: 131.7626 - mae: 8.3441 - val_loss: 377.9645 - val_mae: 14.1292

Training time: 1.98 minutes

MSE: 316.1653 MAE: 12.6833

168/168 1s 3ms/step

RMSE: 17.7810 log RMSE: 1.2154 R² Score: 0.8339

در نمودار LOSS و MAE افت سریع در ابتدا، سپس کاهش یکنواخت مشاهده می شود. عملکرد مدل در validation تقریباً پایدار LSTM و CNN و CNN است اما مقدار آن از train بیشتر است (فاصله بین دو منحنی زیاد نیست). بطور کلی این مدل تعادل خوبی بین CNN و CNN ایجاد کرده است.

در نمودار RUL پیش بینی شده و واقعی، شبیه به مدل LSTM نقاط پیش بینی شده نزدیک به خط ایده آل هستند. در بخش هایی از نمودار مربوط به مدل ترکیبی CNN+LSTM نسبت به LSTM پراکندگی کمتری دیده می شود. بطور کلی دقت پیش بینی عالی و توزیع متقارن اطراف خط قرمز مشاهده می شود.

برای بخش LSTM+CNN از کد زیر استفاده شده است. لازم به ذکر است در این حالت با تغییر ترتیب اولیه با ارور مواجه می شویم لیخش LSTM+CNN از کد زیر استفاده شده است. لازم به ذکر است در این حالت با تغییر ترتیب اولیه با ارور مواجه می شویم زیرا آرایه LSTM است، ولی تابع LSTM و تابع LSTM دوبعدی (3D) یا کمتر را قبول می کند. زیرا زمانی که در مدل LSTM + CNN لایهی LSTM مقدار return_sequences=True دارد و بعد از آن لایه کانولوشن استفاده می شود، خروجی نهایی مدل ممکن است شکل سه بعدی باقی بماند. در نتیجه، (model.predict) نیز خروجی سه بعدی می دهد. بنابراین برای تبدیل خروجی به شکل مناسب، باید pred را به یک بردار ۱ بعدی فشرده کنیم. نتایج در زیر قابل مشاهده می باشند.

هوش مصنوعى

start_time = time.time()

↑ ↓ **♦** © 🗏 🗘 🗓 :

```
history cnn lstm = model cnn lstm.fit(
                             X train_windows, y_train_windows, validation_data=(X_val_windows, y_val_windows), batch_size=32,
                              callbacks=[],
                      end_time = time.time()
print(f"Training time: {(end_time - start_time)/60:.2f} minutes")
                      eval_results = model_cnn_lstm.evaluate(X_test_windows, y_test_windows, verbose=0)
print(f"\nMSE: (eval_results[0]:.4f)")
print(f"MAE: {eval_results[1]:.4f}")
                      y_pred = model_cnn_lstm.predict(X_test_windows)
rmse = np.sqrt(mean_squared_error(y_test_windows, y_pred))
                      rmse = np.sqrt(mean squared error(y test_wind
r2 = r2_score(y_test_windows, y_pred)
y_pred_safe2 = np.maximum(y_pred, 0)
y_test_safe1 = np.maximum(y_test_windows, 0)
                      log\_rmse = np.sqrt(np.mean(np.square(np.log1p(y\_test\_safe1) - np.log1p(y\_pred\_safe2))))
                      print(f"log RMSE: {log_rmse:.4f}")
print(f"RMSE: {rmse:.4f}")
print(f"R2 (Coefficient of Determination): {r2:.4f}")
                                                                                                                                                                                                                                                                   ↑ ↓ ♦ @ □ ‡ L ii :
                      plt.subplot(1,2,1)n
plt.plot(history.cnn_lstm.history['loss'], label='Train Loss (MSE)')
plt.plot(history.cnn_lstm.history['val loss'], label='Validation Loss (MSE)')
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.title('Loss Curve - CNN+LSTM'); plt.legend()
                      plt.plot(history_cnn_lstm.history['mae'], label='Train MAE')
plt.plot(history_cnn_lstm.history['val_mae'], label='Validation MAE')
plt.xlabel('Epoch'); plt.ylabel('MAE'); plt.title('MAE Curve - CNMHLSTM'); plt.legend()
                      plt.tight_layout()
plt.show()
                    Epoch 1/50
309/309 - 4s - 13ms/step - loss: 1880.7828 - mae: 35.1136 - val loss: 888.2714 - val mae: 24.3161 - learning rate: 1.0000e-03
Epoch 2/50
309/309 - 2s - 8ms/step - loss: 742.7701 - mae: 21.7009 - val loss: 987.7303 - val mae: 23.1104 - learning rate: 1.0000e-03
Epoch 3/50
309/309 - 2s - 8ms/step - loss: 745.0851 - mae: 21.6627 - val\_loss: 664.8163 - val\_mae: 21.9099 - learning\_rate: 1.0000e-03 - learning\_rate:
Epoch 4/50
309/309 - 3s - 9ms/step - loss: 508.2572 - mae: 17.5806 - val loss: 700.8996 - val mae: 19.6527 - learning rate: 1.0000e-03
Epoch 5/50
309/309 - 2s - 7ms/step - loss: 406.8119 - mae: 15.4694 - val loss: 439.2726 - val mae: 16.5421 - learning rate: 1.0000e-03
Epoch 6/50
309/309 - 2s - 7ms/step - loss: 326.1360 - mae: 13.6131 - val loss: 391.4900 - val mae: 15.4416 - learning rate: 1.0000e-03
Epoch 7/50
309/309 - 2s - 7ms/step - loss: 312.1475 - mae: 13.2562 - val_loss: 374.6626 - val_mae: 15.2578 - learning_rate: 1.0000e-03
Epoch 8/50
309/309 - 3s - 8ms/step - loss: 296.3859 - mae: 12.9185 - val loss: 360.5879 - val mae: 14.7337 - learning rate: 1.0000e-03
Epoch 9/50
309/309 - 3s - 9ms/step - loss: 292.6331 - mae: 12.7769 - val_loss: 358.1679 - val_mae: 14.5185 - learning_rate: 1.0000e-03
Epoch 10/50
309/309 - 4s - 14ms/step - loss: 285.7373 - mae: 12.6421 - val loss: 366.0318 - val mae: 14.5584 - learning rate: 1.0000e-03
Epoch 11/50
309/309 - 2s - 8ms/step - loss: 282.1852 - mae: 12.5342 - val loss: 380.8348 - val mae: 14.5106 - learning rate: 1.0000e-03
Epoch 12/50
309/309 - 3s - 8ms/step - loss: 277.3513 - mae: 12.4682 - val loss: 340.2207 - val mae: 14.0541 - learning rate: 1.0000e-03
Epoch 13/50
```


تمرين پنجم

309/309 - 3s - 11ms/step - loss: 269.8197 - mae: 12.2956 - val_loss: 375.5051 - val_mae: 14.2746 - learning_rate: 1.0000e-03 Epoch 14/50

309/309 - 2s - 7ms/step - loss: 270.2611 - mae: 12.2614 - val_loss: 335.8754 - val_mae: 14.4005 - learning_rate: 1.0000e-03 Epoch 15/50

 $309/309 - 2s - 8ms/step - loss: 264.6187 - mae: 12.1527 - val_loss: 339.3054 - val_mae: 14.0844 - learning_rate: 1.0000e-03 \\ Epoch 16/50$

309/309 - 2s - 7ms/step - loss: 267.6993 - mae: 12.2693 - val_loss: 340.9465 - val_mae: 13.9130 - learning_rate: 1.0000e-03 Epoch 17/50

 $309/309 - 3s - 8ms/step - loss: 269.2409 - mae: 12.3026 - val_loss: 338.2405 - val_mae: 13.8889 - learning_rate: 1.0000e-03$ Epoch 18/50

309/309 - 3s - 9ms/step - loss: 265.1464 - mae: 12.1991 - val_loss: 336.7134 - val_mae: 14.1780 - learning_rate: 1.0000e-03 Epoch 19/50

Epoch 19: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.

 $309/309 - 2s - 7ms/step - loss: 264.6819 - mae: 12.1877 - val_loss: 345.1955 - val_mae: 14.4785 - learning_rate: 1.0000e-03$ Epoch 20/50

 $309/309 - 2s - 8ms/step - loss: 252.7438 - mae: 11.8716 - val_loss: 393.4560 - val_mae: 15.6189 - learning_rate: 5.0000e-04$ Epoch 21/50

309/309 - 3s - 9ms/step - loss: 248.1903 - mae: 11.7401 - val_loss: 357.0158 - val_mae: 14.7505 - learning_rate: 5.0000e-04 Epoch 22/50

309/309 - 2s - 8ms/step - loss: 251.6751 - mae: 11.8019 - val_loss: 367.9651 - val_mae: 14.9881 - learning_rate: 5.0000e-04 Epoch 23/50

309/309 - 3s - 9ms/step - loss: 248.5506 - mae: 11.7124 - val_loss: 370.8950 - val_mae: 14.9963 - learning_rate: 5.0000e-04 Epoch 24/50

Epoch 24: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.

309/309 - 2s - 7ms/step - loss: 246.8369 - mae: 11.6835 - val loss: 355.1582 - val mae: 14.6049 - learning rate: 5.0000e-04

پیادهسازی معماری LSTM+Attention

در این بخش از کد زیر استفاده شده است. در این کد یک لایه Attention طراحی شده است که روی خروجیهای زمانی Attention کار می کند. (return_sequences=True) و وزن توجه (Attention weights) را با استفاده از softmax محاسبه می کند. سپس ضرب وزندار بین attention و خروجی LSTM گرفته می شود. در نهایت با K.sum ترکیب (aggregate) می شود.

بطور کلی و خلاصه ابتدا معماری مدل با استفاده از لایه Input و یک لایه LSTM با ۱۰۰ واحد و خروجی در تمامی گامهای زمانی طراحی شد. سپس لایه Attention سفارشی که بهصورت کلاس جداگانه تعریف شده بود، بر خروجیهای زمانی را برای هر گام زمانی محاسبه کرده و با استفاده از این وزنها، ترکیب وزندار شدهای اعمال گردید. این لایه وزنهایی قابل یادگیری را برای هر گام زمانی محاسبه کرده و با استفاده از این وزنها، ترکیب وزندار شدهای از خروجیهای LSTM تولید می کند. این ترکیب نهایی در واقع تجمیعی از اطلاعات مهم تر در دنباله زمانی ورودی است. پس از لایه Dropout با نرخ ۳۰ درصد برای جلوگیری از overfitting استفاده شد. سپس، لایهای کاملاً متصل بس از لایه کاورون و تابع فعال سازی ReLU اضافه شد و نهایتاً، خروجی مدل از طریق یک لایه Dense با یک نورون به دست آمد.

مدل طراحی شده با استفاده از بهینه ساز Adam و نرخ یادگیری ۲۰۰۰۱ کامپایل شد. تابع خطای مورد استفاده از بهینه ساز Adam و نرخ یادگیری (MAE) نیز به عنوان معیار ارزیابی استفاده شد. آموزش مدل روی داده های آموزشی بنجره بندی شده انجام گرفت و از داده های اعتبار سنجی برای پایش عملکرد مدل استفاده شد. فرآیند آموزش به مدت ۵۰ دوره و با اندازه دسته (batch size) برایر ۳۲ انجام شد.

```
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer
from tensorflow.keras.layers import Permute, Multiply, Lambda, RepeatVector
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
                                                                                                                                                                                                                                                                                                          ↑ ↓ ♦ ഔ 🗏 💠 🖟 🔟 : 📗
          from sklearn.metrics import mean_squared_enimport tensorflow.keras.backend as K import matplotlib.pyplot as plt import numpy as np
          # Laye Attention
class Attention(Layer):
    def __init__(self, **kwargs):
        super(Attention, self).__init__(**kwargs)
                def build(self, input_shape):
    self.w = self.add_weight(name='att_weight', shape=(input_shape[-1], 1),
                                                                           (name= att_metght , shape=(input_shape[1])
initializer='random_normal', trainable=True
(name='att_bias', shape=(input_shape[1], 1),
initializer='zeros', trainable=True)
                         self.b = self.add weight(nam
                         super(Attention, self).build(input_shape)
                def call(self, x):
e = K.tanh(K.dot(x, self.W) + self.b)  # Energy attention
a = K.softmax(e, axis=1)  # normalsazie vaznha
output = x * a  # wazndehî be khurujihaye LSTM
return K.sum(output, axis=1)  # Tajmî'e vazndar
            def compute_output_shape(self, input_shape):
    return (input_shape[0], input_shape[-1])
                                                                                                                                                                                                                                                                                                           ↑ ↓ ♦ © ■ $ ☑ ⊞ :
          # LSTM + Attention
          input_shape = X_train_windows.shape[1:]
inputs = Input(shape=input_shape)
          x = LSTM(100, return_sequences=True)(inputs) # Khurujie gamhaye zamani
= __affection//(x) # Laye attention ruye khurujihaye zamani
         model_lstm_attention = Model(inputs, outputs)
        model_lstm_attention.compile(
    optimizer=Adam(learning_rate=0.001),
                 loss='mse',
metrics=['mae']
         model_lstm_attention.summary()
          # early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
# reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=1e-6, verbo
```


تمرين پنجم


```
history_lstm_attention = model_lstm_attention.fit(
                                                                                                                                                                                                                                                                       ↑ ↓ ♦ © 🗏 💠 🗓 🗓 :
               X_train_windows, y_train_windows,
validation_data=(X_val_windows, y_val_windows),
               batch_size=32,
               callbacks=[],
       'end_time = time.time()
print(f"\nTraining time: {(end_time - start_time)/60:.2f} minutes")
       \label{eq:continuous} $$ eval_results = model_lstm_attention.evaluate(X_test_windows, y_test_windows, verbose=0) $$ print(f"MSE: {eval_results[0]:.4f}") $$ print(f"MAE: {eval_results[1]:.4f}") $$
       y_pred = model_lstm_attention.predict(X_test_windows)
y_pred = y_pred.squeeze()
       r2 = r2_score(y_test_windows, y_pred)
       y_pred_safe2 = np.maximum(y_pred, 0)
y_test_safe1 = np.maximum(y_test_windows, 0)
       log_rmse = np.sqrt(np.mean(np.square(np.log1p(y_test_safe1) - np.log1p(y_pred_safe2))))
       rmse = np.sqrt(mean_squared_error(y_test_windows, y_pred))
       print(f"RMSE: {rmse:.4f}")
print(f"log RMSE: {log_rmse:.4f}")
print(f"R2 Score: {r2:.4f}")
                                                                                                                                                                                                                                                                      # Nemudarha
plt.figure(figsize=(12,5))
       plt.subplot(1,2,1)
       par.supplof(1,2,1)
plt.plot(history_lstm_attention.history['loss'], label='Train Loss (MSE)')
plt.plot(history_lstm_attention.history['val_loss'], label='validation Loss (MSE)')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss')
plt.title('Loss Curve - LSTM + Attention')
plt.tlegend()
       plt.subplot(1,2,2)
plt.plot(history_lstm_attention.history['mae'], label='Train MAE')
plt.plot(history_lstm_attention.history['val_mae'], label='Validation MAE')
plt.xlabel('Epoch')
plt.ylabel('MAE')
plt.title('MAE Curve - LSTM + Attention')
plt.legend()
       plt.tight layout()
       # Nemudare vagheyi va pishbini shode
plt.figure(figsize=(6,6))
plt.scatter(y_test_windows, y_pred, alpha=0.5, edgecolors='k')
plt.plot([y_test_windows.min(), y_test_windows.max()],
       [y_test_windows.min(), y_test_windows.max()],
    'r.-', lw-2)
plt.xlabel("Meghdare vagheyie RUL")
plt.ylabel("Meghdare RUL")
plt.title("Real vs Predicted RUL")
plt.title("Real vs Predicted RUL")
                                                                                                                                                                                                                                                                     ↑ ↓ ♦ © 🗏 🗘 🗓 :
       plt.grid(True)
plt.tight_layout()
plt.show()
```

Epoch 1/50

309/309 - 4s - 13ms/step - loss: 2532.1130 - mae: 41.0396 - val_loss: 1047.2261 - val_mae: 27.4218

Epoch 2/50

309/309 - 2s - 8ms/step - loss: 802.1819 - mae: 22.7094 - val loss: 859.6444 - val mae: 24.7506

Epoch 3/50

309/309 - 2s - 8ms/step - loss: 590.4273 - mae: 18.8552 - val_loss: 638.7042 - val_mae: 20.2296

Epoch 4/50

309/309 - 2s - 7ms/step - loss: 463.3655 - mae: 16.6353 - val loss: 563.6229 - val mae: 18.8387

Epoch 5/50

309/309 - 2s - 6ms/step - loss: 422.9155 - mae: 15.8450 - val loss: 483.4717 - val mae: 18.0264

Epoch 6/50

309/309 - 3s - 8ms/step - loss: 366.1019 - mae: 14.6049 - val loss: 402.4351 - val mae: 16.0818

Epoch 7/50

309/309 - 3s - 9ms/step - loss: 335.2005 - mae: 13.9567 - val_loss: 375.6992 - val_mae: 15.4882

Epoch 8/50

309/309 - 3s - 8ms/step - loss: 305.8845 - mae: 13.2400 - val_loss: 375.5912 - val_mae: 15.1125

Epoch 9/50

309/309 - 2s - 6ms/step - loss: 298.1722 - mae: 13.0422 - val loss: 361.8155 - val mae: 14.6395

Epoch 10/50

309/309 - 2s - 7ms/step - loss: 289.0920 - mae: 12.8384 - val loss: 347.9315 - val mae: 14.3671

Epoch 11/50

309/309 - 3s - 8ms/step - loss: 279.1949 - mae: 12.5005 - val_loss: 350.4487 - val_mae: 14.3026

Epoch 12/50

309/309 - 2s - 7ms/step - loss: 270.2689 - mae: 12.2871 - val_loss: 339.4127 - val_mae: 13.8574

Epoch 13/50

309/309 - 3s - 9ms/step - loss: 264.9520 - mae: 12.1740 - val_loss: 351.5461 - val_mae: 14.4202

هوش مصنوعى

تمرين پنجم

- Epoch 14/50
- $309/309 2s 7ms/step loss: 259.4541 mae: 12.0141 val_loss: 331.1108 val_mae: 13.5824$
- Epoch 15/50
- $309/309 2s 7ms/step loss: 265.6764 mae: 12.1258 val_loss: 350.7772 val_mae: 14.4543$
- Epoch 16/50
- $309/309 2s 6ms/step loss: 249.9807 mae: 11.7478 val_loss: 337.9338 val_mae: 14.1891$
- Epoch 17/50
- 309/309 2s 7ms/step loss: 241.2945 mae: 11.5242 val_loss: 335.2358 val_mae: 14.0675
- Epoch 18/50
- 309/309 3s 8ms/step loss: 240.7964 mae: 11.5022 val_loss: 323.4703 val_mae: 13.6267
- Epoch 19/50
- $309/309 5s 15ms/step loss: 249.4768 mae: 11.6414 val_loss: 361.0088 val_mae: 14.2835$
- Epoch 20/50
- $309/309 2s 8ms/step loss: 249.6444 mae: 11.7212 val_loss: 337.0062 val_mae: 14.0602 val_mae:$
- Epoch 21/50
- $309/309 3s 8ms/step loss: 237.9267 mae: 11.4607 val_loss: 330.3635 val_mae: 13.7091$
- Epoch 22/50
- 309/309 3s 8ms/step loss: 232.8600 mae: 11.3230 val_loss: 389.8926 val_mae: 15.2272
- Epoch 23/50
- 309/309 5s 15ms/step loss: 222.8217 mae: 11.0756 val loss: 304.3416 val mae: 13.1781
- Epoch 24/50
- $309/309 3s 8ms/step loss: 231.1581 mae: 11.2665 val_loss: 347.8812 val_mae: 14.1675$
- Epoch 25/50
- $309/309 2s 6ms/step loss: 228.1826 mae: 11.2084 val_loss: 335.1828 val_mae: 13.8246 val_loss: 335.1828 val_loss: 335.1$
- Epoch 26/50
- 309/309 3s 10ms/step loss: 219.6675 mae: 10.9530 val_loss: 454.7964 val_mae: 16.2152
- Epoch 27/50
- $309/309 2s 7ms/step loss: 217.0030 mae: 10.9395 val_loss: 537.7012 val_mae: 17.7403 val_mae:$
- Epoch 28/50
- $309/309 2s 7ms/step loss: 217.5040 mae: 10.9133 val_loss: 352.0812 val_mae: 14.0616$
- Epoch 29/50
- $309/309 2s 6ms/step loss: 219.5073 mae: 11.0133 val_loss: 422.0312 val_mae: 15.9036$
- Epoch 30/50
- $309/309 2s 6ms/step loss: 216.3885 mae: 10.9381 val_loss: 338.1909 val_mae: 13.9021$
- Epoch 31/50
- $309/309 2s 8ms/step loss: 209.5217 mae: 10.7004 val_loss: 320.9338 val_mae: 13.4452$
- Epoch 32/50
- 309/309 2s 8ms/step loss: 211.7155 mae: 10.7246 val_loss: 359.9117 val_mae: 14.2604
- Epoch 33/50
- 309/309 2s 7ms/step loss: 213.2395 mae: 10.8116 val_loss: 325.7417 val_mae: 13.5193
- Epoch 34/50
- $309/309 2s 6ms/step loss: 217.0218 mae: 10.8998 val_loss: 345.3510 val_mae: 14.0235$
- Epoch 35/50
- $309/309 3s 8ms/step loss: 204.2509 mae: 10.5629 val_loss: 330.0336 val_mae: 13.6770$
- Epoch 36/50
- $309/309 3s 10ms/step loss: 209.9718 mae: 10.7242 val_loss: 344.5232 val_mae: 13.9972$
- Epoch 37/50
- $309/309 2s 7ms/step loss: 202.5690 mae: 10.4786 val_loss: 423.6386 val_mae: 15.6906$
- Epoch 38/50
- 309/309 2s 6ms/step loss: 203.6226 mae: 10.5899 val_loss: 329.0994 val_mae: 13.9610
- Epoch 39/50
- $309/309 3s 9ms/step loss: 201.0897 mae: 10.4695 val_loss: 421.2580 val_mae: 15.5915$
- Epoch 40/50
- $309/309 2s 8ms/step loss: 201.9473 mae: 10.4744 val_loss: 439.7568 val_mae: 16.0929$
- Epoch 41/50
- $309/309 2s 8ms/step loss: 202.6759 mae: 10.4714 val_loss: 409.0469 val_mae: 15.4019$
- Epoch 42/50
- $309/309 2s 7ms/step loss: 198.5703 mae: 10.3654 val_loss: 421.0331 val_mae: 15.7096$
- Epoch 43/50
- $309/309 2s 7ms/step loss: 197.1288 mae: 10.3696 val_loss: 338.5336 val_mae: 13.8132$
- Epoch 44/50

تمرين پنجم

309/309 - 2s - 6ms/step - loss: 193.3599 - mae: 10.2227 - val loss: 477.1730 - val mae: 16.5847

Epoch 45/50

309/309 - 3s - 8ms/step - loss: 199.9813 - mae: 10.4207 - val loss: 523.4717 - val mae: 17.5213

Epoch 46/50

309/309 - 2s - 8ms/step - loss: 190.9487 - mae: 10.1464 - val_loss: 442.7521 - val_mae: 16.1729

Epoch 47/50

309/309 - 2s - 7ms/step - loss: 194.7238 - mae: 10.2449 - val_loss: 467.0367 - val_mae: 16.6254

Epoch 48/50

309/309 - 2s - 6ms/step - loss: 189.5080 - mae: 10.0881 - val loss: 398.9907 - val mae: 15.1378

Epoch 49/50

309/309 - 3s - 8ms/step - loss: 191.9101 - mae: 10.1698 - val loss: 403.2309 - val mae: 15.1262

Epoch 50/50

309/309 - 3s - 8ms/step - loss: 189.2086 - mae: 10.0792 - val loss: 375.6285 - val mae: 14.7027

Training time: 2.06 minutes

MSE: 281.1054 MAE: 12.4965

168/168 1s 3ms/step

RMSE: 16.7662 log RMSE: 0.2471 R² Score: 0.8523

در این مدل log RMSE بسیار پایین است یعنی مدل در مقادیر کوچک RUL بسیار دقیق است. دقت این مدل نیز فقط کمی

کمتر از LSTM است. بطورخلاصه در این مدل، زمان آموزش کمتر از LSTM است، درحالی که دقت آن تقریباً یکسان یا حتی کمی بهتر در RUL است. بعنوان نتیجه گیری MAE است. بعنوان نتیجه گیری کمی بهتر در RUL های پایین است. بعنوان نتیجه گیری دره است تا روی بازههای می توان گفت این مدل بین دقت و سرعت، توازن خوبی دارد، در حقیقت Attention به LSTM کمک کرده است تا روی بازههای بحرانی (مانند شروع یا پایان سیکل موتور) تمرکز بیشتری داشته باشد.

ارزيابي عملكرد مدلها

نمودارها و مقایسه بصری

تمامی کدها و نمودارهای خواسته شده در این بخش در بخشهای قبل و مربوط به هر مدل آمده و تحلیل شدهاند.

معیارهای ارزیابی مدل

تمامی معیارهای خواسته شده در بخشهای قبل محاسبه و تحلیل شدند که در جدول زیر آمدهاند:

Time	\mathbb{R}^2	MAE	RMSE	مدل
۶۶.۶۱ ثانیه	٠.٧۴۶٩	۱۷.۱۱۳۸	71.9498	CNN
۸۸.۲ دقیقه	٠.٨۵۶٠	17.1498	18.00.4	LSTM
۱.۹۸ دقیقه	۴۳۳۸. ۰	17.8.77	١٧.٧٨٠	CNN+LSTM
۲.۰۶ دقیقه	7761.	17.4980	18.7887	LSTM+Attention

تحليل عملكرد

قبل از پاسخ به سوالات، بطور خلاصه مدلها مقایسه میشوند.

- مدل CNN: سرعت بالا، دقت پایین، overfitting، نامناسب
- مدل LSTM: بالاترین دقت کلی (R^2) ، زمان زیاد آموزش، دقیق ترین
- مدل CNN+LSTM: تعادل بین دقت و سرعت، دقت کمی کمتر از LSTM
 - مدل LSTM+Attention: دقت بالا، پیچیدگی کمی بیشتر از

بطور کلی اگر بخواهیم یک مدل واحد را به عنوان بهترین انتخاب برای تخمین RUL معرفی کنیم، RULبهترین بطور کلی اگر بخواهیم یک مدل واحد را به عنوان بهترین انتخاب برای تخمین LSTM معرفی کنیم، RUL است و تعمیم پذیری خوب همراه گزینه است، زیرا دقت هم در R^2 و هم در R^2 بسیار بالاست، آموزش سریعتر از R^2 است و تعمیم پذیری خوب همراه

با تمرکز روی نواحی مهم تر داده ها دارد. بطور کلی برای استفاده نهایی LSTM یا LSTM+Attention مناسب بوده و اگر سرعت اجرا مهم است و مدل سبک تر مد نظر باشد، CNN+LSTM مناسب است.

- مدل LSTM دقیق ترین پیش بینی را ارائه داده است. زیرا نسبت به بقیه مدل ها LSTM و RMSE کمتر و بالاترین دقت پیش بینی را دارد. زیرا LSTM توانایی در درک وابستگیهای زمانی بلندمدت دارد و دادههای C-MAPSS بهشدت وابسته به زمان هستند (سری زمانی). همچنین این مدل می تواند اطلاعات وضعیت موتور را در طول زمان به خوبی دنبال کند و الگوهای تغییر را یاد گرفته و اطلاعات گذشته را بدون فراموشی ناگهانی حفظ کند؛ برخلاف CNN که فقط اطلاعات محلی کوتاهمدت را بررسی می کند. البته لازم به ذکر است مدل LSTM+Attention نیز عملکرد بسیار مشابه با LSTM+Attention اگر چه مفیدند، اما داشته و عملکرد خوب بوده است. مدلهای ترکیبی مانند CNN+LSTM یا CNN+Attention اگر چه مفیدند، اما ممکن است اگر به خوبی تنظیم نشده باشند، باعث افزایش نویز یا overfitting شوند.
- Overfitting زمانی رخ میدهد که مدل عملکرد خوبی روی دادههای آموزش دارد ولی نتایج ضعیفی روی دادههای الموزش دارد ولی نتایج ضعیفی روی دادههای المتارسنجی (validation) نشان میدهد. در اینجا برخی مدلها تا حد کمی دارای (validation) نشان میدهد. در اینجا برخی مدلها تا حد کمی دارای المتنارسنجی (validation) نشان میدهد. در اینجا برخی مدلها تا حد کمی دارای بیشترین و تست، نمودارهای Loss و دارای بیشترین و تست، نمودارهای vialdation و دارای بیشترین و تست، نمودارهای RMSE دوت در طول epoch ها، دقت بالا ولی خطای بزرگ روی دادههای دیدهنشده و افت R2 یا افزایش ناگهانی RMSE در تست می باشد.
- مدل CNN با اینکه سریع ترین زمان آموزش را (حدود ۶۶ ثانیه) دارد، اما پایین ترین دقت را نیز ارائه داده است .این مدل به دلیل ساختار ساده و تعداد پارامترهای کمتر، زمان آموزش کمی دارد، اما توانایی کافی برای یادگیری روابط پیچیده در دادههای زمانی را ندارد.در مقابل، مدل LSTM دقیق ترین پیشبینی را ارائه داده ، اما بیشترین زمان آموزش را نیز دارد (حدود ۲.۸۸ دقیقه). این مدل با بهره گیری از حافظه بلندمدت، قادر به درک بهتر الگوهای زمانی در دادههاست، اما ساختار پیچیده تری دارد که آموزش آن را زمان بر می کند .مدل ترکیبی CNN + LSTM از لحاظ زمان آموزش در سطح متوسطی قرار دارد (حدود ۲ دقیقه) اما دقت آن کمتر از LSTM بوده است. ترکیب این دو مدل در این مسئله خاص، نتوانسته به بهینه ترین عملکرد برسد، احتمالاً به دلیل اینکه ویژگیهایی که CNN استخراج کرده برای یادگیری LSTM به خوبی قابل استفاده نبوده اند.

در نهایت، مدل LSTM + Attention تعادل بسیار خوبی بین دقت و زمان ایجاد کند. این مدل با زمان در نهایت، مدل LSTM ($R^2=0.8523$) نشان می دهد که استفاده از مکانیزم توجه آموزش حدود ۲ دقیقه و دقتی نزدیک به ($R^2=0.8523$) نشان می دهد که استفاده از مکانیزم توجه (Attention) باعث بهبود تمرکز مدل روی ویژگی های مهم تر داده شده و عملکرد آن را بدون افزایش زمان آموزش، بهبود داده است.

به طور خلاصه، اگر محدودیت زمانی یا پردازشی وجود داشته باشد، مدل CNN انتخاب مناسبی است. اما اگر دقت بالا در اولویت باشد، مدل LSTM یا LSTM همراه با Attention بهترین گزینه خواهند بود. در بسیاری از کاربردها، مدل LSTM + Attention بهترین انتخاب محسوب می شود.

لازم به ذکر است گزارش و کد در گیت هاب نیز ارائه شده است. لینک آن در زیر آمده است

https://github.com/maedehesmz8010/HW5_Esmaeilzade_810602161

هوش مصنوعی تمرین پنجم

