第十六章 注意力机制与多智能体强化学习

注意力机制 (Attention) 是一种重要的深度学习方法,它最主要的用途是自然语言处理,比如机器翻译、情感分析。本章的目的不是详细解释注意力机制的原理,而是它在多智能体强化学习 (MARL) 中的应用。第 16.1 简单介绍自注意力机制 (Self-Attention),它是一种特殊的注意力机制。第 16.2 将自注意力机制应用在 MARL,改进中心化训练或中心化决策。当智能体数量 m 较大时,自注意力机制对 MARL 有明显的效果提升。

16.1 自注意力机制

注意力机制(Attention)最初用于改进循环神经网络(RNN),提高 Sequence-to-Sequence (Seq2Seq)模型的表现。自注意力机制 (Self-Attention) 是注意力机制的一种扩展,不局限于 Seq2Seq模型,可以用于任意的 RNN。后来 Transformer模型将 RNN 剥离,只保留注意力机制。与 RNN + 注意力机制相比,只用注意力机制居然表现更好,在机器翻译等任务上的效果有大幅提升。本节不深入讨论注意力机制与 RNN、Seq2Seq 之间的关系,而只介绍本章所需的一些知识点。

考虑这样一个问题:输入是长度为m的序列 (x^1, \cdots, x^m) ,序列中的元素都是向量,要求输出长度同样为m的序列 (c^1, \cdots, c^m) ;如图 16.1 所示。问题还有两个要求:

- 第一,序列的长度 m 是不确定的,可以动态变化。但是神经网络的参数数量不能变化。
- 第二,输出的向量 c^i 不是仅仅 依赖于向量 x^i ,而是依赖于所 有的输入向量 (x^1, \cdots, x^m) 。

图 16.1: 将一个长度为m的向量序列映射到另一个同等长度的向量序列。

可以用简单的全连接网络逐个把向量 x^i 映射到 c^i ,但是这样得到的 c^i 仅依赖于 x^i 一个向量而已,不满足第二个要求。第 12 章介绍的 RNN 也不满足第二个要求;RNN 输出的向量 c^i 只依赖于 (x^1, \dots, x^i) ,而不依赖于 (x^{i+1}, \dots, x^m) 。

自注意力层 (Self-Attention Layer) 可以解决上述问题。如图 **16.2** 所示,自注意力层的 输入是序列 (x^1, \cdots, x^m) ,其中的向量的大小都是 $d_{\rm in} \times 1$ 。自注意力层有三个参数矩阵:

$$oldsymbol{W}_q \in \mathbb{R}^{d_q imes d_{ ext{in}}}, \qquad oldsymbol{W}_k \in \mathbb{R}^{d_q imes d_{ ext{in}}}, \qquad oldsymbol{W}_v \in \mathbb{R}^{d_{ ext{out}} imes d_{ ext{in}}}.$$

序列长度 m 不会影响参数的数量。不论序列有多长,参数矩阵只有 \mathbf{W}_q , \mathbf{W}_k , \mathbf{W}_v 。这三个参数矩阵需要从训练数据中学习。自注意力层通过以下步骤,把输入序列 $(\mathbf{x}^1,\cdots,\mathbf{x}^m)$ 映射到输出序列 $(\mathbf{c}^1,\cdots,\mathbf{c}^m)$,输出向量的大小都是 $d_{\text{out}}\times 1$ 。

图 16.2: 首先把 x^i 映射到三元组 (q^i, k^i, v^i) , $\forall i = 1, \dots, m$.

图 16.3: 然后用 q^i 和 (k^1, \dots, k^m) 计算权重向量 $\alpha^i \in \mathbb{R}^m, \ \forall i = 1, \dots, m$ 。

图 16.4: 最后用 α^i 和 $(\boldsymbol{v}^1,\cdots,\boldsymbol{v}^m)$ 计算输出向量 $\boldsymbol{c}^i\in\mathbb{R}^{d_{\mathrm{out}}},\ \forall\,i=1,\cdots,m$ 。

1. 如图 16.2 所示,对于所有的 $i=1,\cdots,m$,把输入的 x^i 映射到三元组 (q^i,k^i,v^i) :

$$egin{array}{lll} oldsymbol{q}^i &=& oldsymbol{W}_q oldsymbol{x}^i &\in \mathbb{R}^{d_q}, \ oldsymbol{k}^i &=& oldsymbol{W}_k oldsymbol{x}^i &\in \mathbb{R}^{d_{ ext{out}}}. \ oldsymbol{v}^i &=& oldsymbol{W}_v oldsymbol{x}^i &\in \mathbb{R}^{d_{ ext{out}}}. \end{array}$$

2. 如图 16.3 所示,计算权重向量 $(\alpha^1, \dots, \alpha^m)$,每个权重向量的大小都是 $m \times 1$ 。第 i 个权重向量 α^i 依赖于 q^i 和 $(\mathbf{k}^1, \dots, \mathbf{k}^m)$:

$$\boldsymbol{\alpha}^{i} = \operatorname{softmax}\left(\left\langle \boldsymbol{q}^{i}, \, \boldsymbol{k}^{1} \right\rangle, \, \left\langle \boldsymbol{q}^{i}, \, \boldsymbol{k}^{2} \right\rangle, \, \cdots, \, \left\langle \boldsymbol{q}^{i}, \, \boldsymbol{k}^{m} \right\rangle \right), \qquad \forall \, i = 1, \cdots, m.$$

公式中的 $\langle \cdot, \cdot \rangle$ 是向量内积。由于向量 α^i 是 Softmax 函数的输出,它的元素都是正实数,而且相加等于 1。向量 α^i 的第 j 个元素(记作 α^i_j)表示 x_i 与 x_j 的相关性; x_i 与 x_j 越相关,那么元素 α^i_j 就越大。

3. 如图 16.4 所示,计算输出向量 $(\mathbf{c}^1, \dots, \mathbf{c}^m)$,每个输出向量的维度都是 d_{out} 。第 i 个输出向量 \mathbf{c}^i 依赖于 α^i 和 $(\mathbf{v}^1, \dots, \mathbf{v}^m)$:

$$\boldsymbol{c}^i = [\boldsymbol{v}^1, \boldsymbol{v}^2, \cdots, \boldsymbol{v}^m] \cdot \boldsymbol{\alpha}^i = \sum_{j=1}^m \alpha^i_j \boldsymbol{v}^j, \quad \forall i = 1, \cdots, m.$$

 c^i 是向量 v^1, \dots, v^m 的加权平均,权重是 $\alpha^i = [\alpha_1^i, \dots, \alpha_m^i]$ 。

为什么这种神经网络结构叫做注意力 (Attention) 呢?如图 16.5所示,向量 x^i 位置上的输出是 c^i ,它是做加权平均计算出来的:

$$\mathbf{c}^{i} = \alpha_{1}^{i} \mathbf{v}^{1} + \alpha_{2}^{i} \mathbf{v}^{2} + \cdots + \alpha_{m}^{i} \mathbf{v}^{m}.$$
权重 $\mathbf{\alpha}^{i} = [\alpha_{1}^{i}, \cdots, \alpha_{m}^{i}]$ 反映出 \mathbf{c}^{i} 最 "关注" 哪些输入的 $\mathbf{v}^{j} = \mathbf{W}_{v} \mathbf{x}^{j}$ 。
如果权重 α_{j}^{i} 大,说明 \mathbf{x}^{j} 对 \mathbf{c}^{i} 的影 响较大。 \mathbf{c}^{i} 应当重点关注对其影响 较大的 \mathbf{x}^{j} 。

图 16.5: 第 i 个输出向量 \mathbf{c}^i 由权重 $\mathbf{\alpha}^i = [\alpha_1^i, \cdots, \alpha_m^i]$ 和向量 $(\mathbf{v}^1, \cdots, \mathbf{v}^m)$ 决定。

上述自注意力层叫做**单头自注意力层** (Single-Head Self-Attention Layer),简称"单头"。实践中更常用的是**多头自注意力层** (Multi-Head Self-Attention Layer),简称"多头",它是多个单头的组合,见图 16.6。设多头由 l 个单头组成。每个单头有自己的 3 个参数矩阵,所以多头一共有 3l 个参数矩阵。它们的输入都是序列 (x_1, \dots, x_m) ,它们的输出都是长度为 m 的向量序列。

第 1 个自注意力层输出: $(c_1^1, c_1^2, c_1^3, \cdots, c_1^m),$

第 2 个自注意力层输出: $(c_2^1, c_2^2, c_2^3, \dots, c_2^m),$

第l个自注意力层输出: $(c_l^1, c_l^2, c_l^3, \cdots, c_l^m)$.

其中每个向量 \mathbf{c}_{j}^{i} 的大小都是 $d_{\text{out}} \times 1$ 。多头的输出记作序列 $(\mathbf{c}^{1}, \dots, \mathbf{c}^{m})$,其中每个 \mathbf{c}^{i} 都是做连接 (Concatenation) 得到的:

$$oldsymbol{c}^i = \left[oldsymbol{c}_1^i; \, oldsymbol{c}_2^i; \, \cdots; \, oldsymbol{c}_l^i
ight] \, \in \, \mathbb{R}^{ld_{ ext{out}}}, \qquad orall \, i = 1, \cdots, m.$$

图 16.6: 这个例子中,多头自注意力层由 l=4 个单头自注意力层组成。

总结一下,多头自注意力层把长度为 m 的向量序列映射到同等长度的向量序列。长度 m 可以任意变化,神经网络结构无需改变。实现一个多头自注意力层需要指定三个超参数:单头的数量 l、每个单头输出的大小 d_{out} 、向量 q^i 和 k^i 的大小 d_q 。多头的输出是长度为 m 的向量序列,每个向量的大小是 $ld_{\mathrm{out}} \times 1$ 。超参数 d_q 不影响输出的大小,它只在计算权重向量 $\alpha^1, \cdots, \alpha^m$ 的时候使用。

16.2 自注意力在中心化训练中的应用

自注意力机制 (Self-Attention) 是改进多智能体强化学习 (MARL) 的一种有效技巧,可以应用在中心化训练或中心化决策当中。多智能体系统中有 m 个智能体,每个智能体有自己的观测(记作 o^1, \dots, o^m)和动作(记作 a^1, \dots, a^m)。我们考虑非合作关系的MARL。如果做中心化训练,需要用到 m 个状态价值网络

$$v([o^1,\cdots,o^m]; \boldsymbol{w}^1), \qquad \cdots, \qquad v([o^1,\cdots,o^m]; \boldsymbol{w}^m),$$

或 m 个动作价值网络

$$q([o^1, \dots, o^m], [a^1, \dots, a^m]; \mathbf{w}^1)$$
, \dots , $q([o^1, \dots, o^m], [a^1, \dots, a^m]; \mathbf{w}^m)$. 由于是非合作关系, m 个价值网络有各自的参数,而且它们的输出各不相同。我们首先以状态价值网络 v 为例讲解神经网络的结构。

不使用自注意力的状态价值网络:

图 16.7 是状态价值网络 $v(s; \boldsymbol{w}^i)$ 最简单的实现。每个价值网络是一个独立的神经网络,有自己的参数。底层提取特征的卷积网络可以在 m 个价值网络中共享(即复用),而上层的全连接网络不能共享。神经网络的输入是所有智能体的观测的连接 (Concatenation),输出是实数

$$\widehat{v}^i = v([o^1, \cdots, o^m]; \mathbf{w}^i).$$

这种简单的神经网络结构有几个不足之处。

智能体数量 m 越大,神经网络的参数越多。神经网络的输入是 m 个观测的连接,它们被映射到特征向量 x。m 越大,我们就必

图 16.7: 第 i 号状态价值网络最简单的实现。

须把向量 x 维度设置得越大,否则 x 无法很好地概括 $[o^1, \cdots, o^m]$ 的完整信息。x 维度越大,全连接网络的参数就越多,神经网络就越难训练(即需要收集更多的经验才能训练好神经网络)。

- 当 m 很大的时候,并非所有智能体的观测 o^1, \dots, o^m 都与第 i 号智能体密切相关。 第 i 号智能体应当学会判断哪些智能体最相关,并重点关注密切相关的智能体,避免决策受无关的智能体干扰。
- 图 16.7 中价值网络的输入是 $[o^1, \dots, o^m]$,即所有观测的连接。如果交换其中 o^j 和 o^k 的位置,那么价值网络输出的 \hat{v}^i 会发生变化,这是没有道理的。理想情况下,只要 $j \neq i$ 、 $k \neq i$,那么交换 o^j 和 o^k 的位置就不该改变第 i 号价值网络的输出值 \hat{v}^i 。

使用自注意力的状态价值网络:图 16.8 是对状态价值网络更好的实现方式,避免了上面讨论的三种不足之处。神经网络的结构是这样的:

- 输入仍然是所有智能体的观测 o^1, \dots, o^m 。对于所有的 i ,用一个卷积网络把 o^i 映射到特征向量 x^i 。这些卷积网络的参数都是相同的。
- 自注意力层的输入是向量序列 $(\boldsymbol{x}^1,\cdots,\boldsymbol{x}^m)$,输出是序列 $(\boldsymbol{c}^1,\cdots,\boldsymbol{c}^m)$ 。向量 \boldsymbol{c}^i 依赖于所有的观测 $\boldsymbol{x}^1,\cdots,\boldsymbol{x}^m$,但是 \boldsymbol{c}^i 主要取决于最密切相关的一个或几个 \boldsymbol{x} 。
- 第i号全连接网络把向量 \mathbf{c}^i 作为输入,输出一个实数 \hat{v}^i ,作为第i号价值网络的输出。在非合作关系的设定下,m个价值网络是不同的,因此 m个全连接网络不共享参数。

图 16.8 中只用了一个自注意力层。其实可以重复自注意力层,比如:

··· → 自注意力层 → 全连接层 → 自注意力层 → 全连接层 → ··· 自注意力的层数是一个超参数,需要用户自己调。

图 16.8: 带有自注意力的状态价值网络。图中的 $\hat{v}^i=v\left([o^1,\cdots,o^m]; {m w}^i\right)$ 是第 i 个价值网络的输出。

使用自注意力的动作价值网络: 上一章介绍了 MADDPG, 它是一种连续控制方法, 用于非合作关系的设定。它的架构是"中心化训练+去中心化决策", 在中央控制器上部署 m 个动作价值网络, 把第 i 个记作:

$$\widehat{q}^i = q([o^1, \cdots, o^m], [\boldsymbol{a}^1, \cdots, \boldsymbol{a}^m]; \boldsymbol{w}^i).$$

它的输入是所有智能体的观测和动作,输出是实数 \hat{q} ,表示动作价值。可以按照图 16.9

实现动作价值网络。在 MADDPG 中使用这样的神经网络结构可以提高 MADDPG 的表现,尤其是当m较大的时候,效果的提升较大。

图 16.9: 带有自注意力的动作价值网络。图中的 $\hat{q}^i = q([o^1, \cdots, o^m], [a^1, \cdots, a^m]; \boldsymbol{w}^i)$ 是第 i 个动作价值网络的输出。

使用自注意力的中心化策略网络: 对于"中心化训练 + 中心化决策"的系统架构,需要在中央控制器上部署 m 个策略网络,每个策略网络都需要知道所有 m 个智能体的观测 o^1, \dots, o^m 。

• 对于离散控制, 第 i 号策略网络记作:

$$\widehat{\boldsymbol{f}}^i = \pi \left(\cdot \mid [o^1, \cdots, o^m]; \boldsymbol{\theta}^i \right).$$

策略网络的输出是向量 $\hat{\pmb{f}}^i$,它的维度是第 i 号动作空间的大小 $|A^i|$, $\hat{\pmb{f}}^i$ 的元素表示每种动作的概率。根据 $\hat{\pmb{f}}^i$ 做随机抽样,得到动作 a^i ,第 i 号智能体执行这个动作。

• 对于连续控制, 第 i 号策略网络记作:

$$\boldsymbol{a}^i = \boldsymbol{\mu} \Big([o^1, \cdots, o^m]; \boldsymbol{\theta}^i \Big).$$

它的输出是动作 \mathbf{a}^i ,它是 d 维向量,d 是连续控制问题的自由度。第 i 号智能体执行动作 \mathbf{a}^i 。

不管是离散控制还是连续控制,上述两种策略网络中都可以使用自注意力层,神经网络的结构与图 16.8 中的 $v(s; \boldsymbol{w}^i)$ 几乎一样,唯一区别是神经网络的输出由实数 $\hat{v}^1, \dots, \hat{v}^m$

变成向量 $\hat{\boldsymbol{f}}^1,\cdots,\hat{\boldsymbol{f}}^m$ 或者 $\boldsymbol{a}^1,\cdots,\boldsymbol{a}^m$ 。

总结: 自注意力机制在**非合作关系**的 MARL 中普遍适用。如果系统架构使用**中心化** 训练,那么 *m* 个价值网络可以用一个神经网络实现,其中使用自注意力层。如果系统架构使用**中心化决策**,那么 *m* 个策略网络也可以实现成一个神经网络,其中使用自注意力层。在 *m* 较大的情况下,使用自注意力层对效果有较大的提升。

☞ 第十六章 相关文献 ~

注意力机制 (Attention) 由 2015 年的论文 [6] 提出;这篇论文将注意力机制与 RNN 结合,大幅提升 RNN 在机器翻译任务上的表现。2017 年的论文 [110] 提出 Transformer 模型,去掉 RNN,只保留注意力,在机器翻译任务上取得了远优于 RNN 加注意力的表现。2019 年的论文 [52] 将注意力层用到多智能体的 Actor-Critic 中。

《深度强化学习》 2021-02-19 尚未校对,仅供预览。如发现错误,请告知作者 shusen . wang @ stevens . edu