Hugo Marquerie 17/03/2025

Convergencia en probabilidad implica la existencia de una subsucesión que converge casi seguro

Proposición 1. Sea $(X_n)_{n\in\mathbb{N}}$ tal que $X_n \xrightarrow[n\to\infty]{\mathbb{P}} X \implies \exists (X_{n_k})_{k\in\mathbb{N}} : X_{n_k} \xrightarrow[k\to\infty]{c.s.} X$.

Demostración: Definimos $\forall k \in \mathbb{N} : n_k = \min \left\{ n \in \mathbb{N} : \mathbb{P}\left(|X_n - X| > 2^{-k}\right) \le 2^{-k}\right\} \text{ y}$ llamaremos $A_k := \left\{ |X_{n_k} - X| > 2^{-k}\right\}$. Como $\mathbb{P}\left(|X_n - X| > \varepsilon\right) \xrightarrow{n \to \infty} 0, \forall k \in \mathbb{N} : \exists n_k \in \mathbb{N}$

$$\implies \sum_{k=1}^{\infty} \mathbb{P}(A_k) \le \sum_{k=1}^{\infty} 2^{-k} = 1 < \infty.$$

Entonces, por el Lema de Borel-Cantelli I, $\mathbb{P}\left(\limsup_{k\to\infty}A_k\right)=0.$

Por otro lado, afirmamos que $\left\{\omega\in\Omega: \limsup_{n\to\infty}|X_{n_k}(\omega)-X(\omega)|\neq 0\right\}\subset \limsup_{k\to\infty}A_k.$

En efecto, si $\omega \in \Omega$ es tal que $\limsup_{n \to \infty} |X_{n_k}(\omega) - X(\omega)| \neq 0$, entonces \exists infinitos índices k tales que $\omega \in A_k$. Por tanto, $\omega \in \limsup_{k \to \infty} A_k$.