MATH 102: IDEAS OF MATH

WORKSHEET 6 LIVE SESSION

Problem 2. Prove that

$${x \in \mathbb{R} | x^2 \le 1} = [-1, 1].$$

We want to show that

$$\left\{x \in \mathbb{R} | x^2 \le 1\right\} \subseteq [-1, 1],$$

and

$$\left\{x \in \mathbb{R} | x^2 \le 1\right\} \supseteq [-1, 1].$$

- (\subseteq). First, to show $\{x \in \mathbb{R} | x^2 \le 1\} \subseteq [-1,1]$, let a be arbitrary in $\{x \in \mathbb{R} | x^2 \le 1\}$. By definition, $a^2 \le 1$, which means $a^2 1 \le 0$. Rewriting the left hand side, we have $(a-1)(a+1) \le 1$. Then it must be the case that a-1 and a+1 have opposite signs. There are two cases for this to happen.
 - (1) $a-1 \le 0$ and $a+1 \ge 0$. This means, $a \le 1$ and $a \ge -1$. By definition, $a \in [-1, 1]$.
 - (2) $a-1 \ge 0$ and $a+1 \le 0$. This means, $a \ge 1$ and $a \le -1$, which is a contradiction.

Therefore, $a \in [-1, 1]$. Because, a is arbitrary, $\{x \in \mathbb{R} | x^2 \le 1\} \subseteq [-1, 1]$.

(\supseteq). Secondly, to show $\{x \in \mathbb{R} | x^2 \le 1\} \supseteq [-1, 1]$, let a be arbitrary in [-1, 1]. By definition, $a \le 1$ and $a \ge -1$, which means $|a| \le 1$. This implies, $a^2 \le 1$. Sine a is arbitrary, $\{x \in \mathbb{R} | x^2 \le 1\} \supseteq [-1, 1]$.

Problem 3. Let a be arbitrary in $X \cap Y$. That means, $a \in X \land a \in Y$. This means, $a \in X$, which implies that $a \in X \lor a \in Y$. Therefore, $a \in X \cup Y$. Since a is arbitrary, $X \cap Y \subseteq X \cup Y$.

Date: October 5, 2023.