Linear Regression Activity: Predicting Exam Scores We want to predict a student's Exam Score (y) based on the number of Hours Studied (x). Data Student Hours Studied (x) Exam Score (y)

Student	Hours Studied (x)	Exam Score (y)
1	1	52
2	2	57
3	3	61
4	4	65
5	5	70

$$\Sigma y = 52 + 57 + 61 + 65 + 70 = 305$$

$$\Sigma xy = 52 + 114 + 183 + 260 + 350 = 959$$

2. Compute the Slope m (5 points)

$$m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$m = ? 4.4$$

3: Compute the Intercept b (5 points)

$$b = \frac{\sum y - m \sum x}{n}$$

$$b = ?47.8$$

Solution 2

$$\sum x = 15$$

$$\Sigma y = 305$$

$$\sum x^2 = 55$$

$$n = 5$$

$$m = \frac{5(959) - (15)(305)}{5(55) - (15)^2}$$

$$m = 4.4$$

Solution 3

$$\sum x = 15 \text{ n} = 5$$

$$\Sigma y = 305 \text{ m} = 4.4$$

$$b = \frac{305 - (4.4)(15)}{5}$$
$$b = 47.8$$

4. Regression Equation (5 points)

Write the regression line:

$$y = mx + b$$

$$y = ?$$

$$m = 4.4$$
 $b = 47.8$

$$y = (4.4)(x) + 47.8$$

$$y = 4.4x + 47.8$$

Student	Х	y _{predict}
1	1	52.2
2	2	56.6
3	3	61.0
4	4	65.4
5	5	69.8

5. Draw the regression line using a scatter plot (10 points)

- Calculate $\mathcal{Y}_{predict}$ for each data points
- Draw a regression line using $y_{predict}$
- Use a circle of for all data points
- Use a red line for the regression line

Student	Hours Studied (x)	Exam Score (y)	Predicted Exam Score (y _{predict})
1	1	52	?
2	2	57	?
3	3	61	?
4	4	65	?
5	5	70	?

Student	Hours Studied (x)	Exam Score (y)
1	1	52
2	2	57
3	3	61
4	4	65
5	5	70

$\mathbf{y}_{ ext{predict}}$	$oldsymbol{oldsymbol{\gamma}}_{predict}$
52.2	y = 4.4(1) + 47.8 = 52.2
56.6	y = 4.4(2) + 47.8 = 56.6
61.0	y = 4.4(3) + 47.8 = 61.0
65.4	y = 4.4(4) + 47.8 = 65.4
69.8	y = 4.4(5) + 47.8 = 69.8

6. Calculate the Sum of Squared Errors (20 points)

 $SSE = \sum (yi - y{predict})^2$

Student	Hours Studied (Exam Score (y	Predicted Exam Score ($y_{predict}$)	$y_i - y_{predict}$	$(y_i - y_{predict})^2$
1	1	52	?	?	?
2	2	57	?	?	?
3	3	61	?	?	?
4	4	65	?	?	?
5	5	70	?	?	?
					SSE = ?

Student	Hours Studied (x)	Exam Score (y)	Predicted Exam Score (y _{predict})	$y_i - y_{predict}$	$(y_i - y_{predict})^2$
1	1	52	52.2	0.2	0.04
2	2	57	56.6	0.4	0.16
3	3	61	61.0	0	0
4	4	65	65.4	0.4	0.16
5	5	70	69.8	0.2	0.04
					<i>SSE</i> = 0.4

$y_i - y_{predict}$	$(y_i - y_{predict})^2$
52-52.2 = 0.2	$0.2^{2} = 0.2 \times 0.2 = 0.04$
57 - 56.6 = 0.4	$0.4^2 = 0.4 \times 0.4 = 0.16$
61 - 61 = 0	$0^{2} = 0 \times 0 = 0$
65 - 65.4 = 0.4	$0.4^{2} = 0.4 \times 0.4 = 0.16$
70 - 69.8 = 0.2	$0.2^{2} = 0.2 \times 0.2 = 0.04$

7. Calculate the Sum of Squared Total (20 points)

 \bullet Get \bar{y} using this formula :

$$\bar{y} = \frac{\sum y_i}{n}$$

• Get SST using this formula :

$$SST = \sum (y_i - \bar{y})^2$$

Student	Hours Studied (x)	Exam Score (y)	Mean (ỹ)	$y_i - \bar{y}$	$(y_i - \bar{y})^2$
1	1	52	61	9	81
2	2	57	61	4	16
3	3	61	61	0	0
4	4	65	61	4	16
5	5	70	61	9	81
					SST = 194

$$SST = \sum (y_i - \bar{y})^2$$

	·
Exam Score (y)	$y_i - \bar{y}$
52	52 - 61 = -9 = 9
57	57 - 61 = -4 = 4
61	61 - 61 = 0
65	65 - 61 = 4
70	70 - 61 = 9

$$(y_i - \bar{y})^2$$

$$9^{2} = 9 \times 9 = 81$$
 $4^{2} = 4 \times 4 = 16$
 $0^{3} = 0 \times 0 = 0$
 $4^{3} = 4 \times 4 = 16$
 $9^{3} = 9 \times 9 = 81$

8. Compute R^2 (20 points)

Get R² using this formula:

$$R^2 = 1 - \frac{SSE}{SST}$$

SSE = 0.4
SST = 194
$$R^2 = 1 - \frac{0.4}{194} = \underline{0.99}$$

$$R^2 = ?$$

m = 4.4, b = 47.8
y = m(6)+b
= 4.4(6)+47.8
=
$$74.2$$

9. Prediction (1 point)

Use your equation to predict the exam score for a student who studied 6 hours.