Bucket Sort When You Know The Distribution.

David Ponarovsky

January 20, 2023

Abstract

We propose a new simple construction based on Tanner Codes, which yields a good LDPC code with testability query complexity of $\Theta(n^{1-\varepsilon})$ for any $\varepsilon > 0$.

The problem. Let $f:[0,1] \to [0,1]$ a fixed distribution function. Write an algorithm that sort n draws $x_1...x_n$ at linear expectation time.

Solution. We will define a partition of the input into a seira of n buckets $\mathcal{B} = \{B_k = [t_k, t_{k+1}] : k \in [n]\}$ such that $\mathbf{Pr}\left[x \in B_i\right] = \frac{1}{n}$ for any bucket.

$$\mathbf{E} \left[B_i^2 \right] = \mathbf{E} \left[\left(\sum_j X_{ij} \right)^2 \right]$$

$$= \mathbf{E} \left[\sum_{j,j'} X_{ij} X_{ij'} \right] = \sum_{j,j'} \mathbf{E} \left[X_{ij} \right] \mathbf{E} \left[X_{ij'} \right]$$

$$= \sum_{j \neq j'} \mathbf{E} \left[X_{ij} \right] \mathbf{E} \left[X_{ij'} \right] + \sum_j \mathbf{E} \left[X_{ij} \right]$$

$$= \frac{1}{n^2} \binom{n}{2} + 1 = O(1)$$

$$\mathbf{E} \left[B_i^4 \right] = \mathbf{E} \left[\left(\sum_j X_{ij} \right)^4 \right]$$

$$= \mathbf{E} \left[\sum_{j,j'} \mathbf{I} X_{ij} \right] = \sum_{j,j'} \mathbf{E} \left[X_{ij} \right] \mathbf{E} \left[X_{ij'} \right]$$

$$= \sum_{j \neq j'} \mathbf{E} \left[X_{ij} \right] \mathbf{E} \left[X_{ij'} \right] + \sum_j \mathbf{E} \left[X_{ij} \right]$$

$$= \sum_{l \in [4]} \frac{1}{n^l} \binom{n}{l} = O(1)$$

$$\mathbf{V} \left[B_i^2 \right] = \sum_{l \in [4]} \binom{n}{l} \left(\frac{1}{n^l} - \frac{1}{n^4} \right) \le e$$

$$\mathbf{E} \left[\left(B_i^2 \right)^k \right] \le \left(1 + \frac{1}{n} \right)^n \le e$$

$$\mathbf{Pr} \left[B_i \ge t \right] \le \frac{e}{t^k}$$

$$\frac{1}{n} = \mathbf{Pr} \left[x \in B_k \right] = f(t_{k+1}) - f(t_k)$$

$$\frac{1}{n} = \mathbf{Pr} \left[x \in B_k \right] = f(t_{k+1}) - f(t_k)$$

$$\Rightarrow t_{k+1} \leftarrow f^{-1} \left(\frac{1}{n} + f(t_k) \right)$$