Report HW#3

Shiva vafadar 810899074 شکل زیر را در نظر میگیریم که یک Damped mass-spring system with two degrees of freedom هست.

ابتدا کل سستم را در محیط سیمولینک پیاده سازی میکنیم به شکل زیر:

و ورودی پله میدهیم به F ، و خروج به شکل زیر در میاید:

زرد برای x1 آبی برای x2 و ما با آبی کار داریم.

حال با تابع تبدیل به دست أمده برای سوال ۴، که به شکل زیر است:

-

$$\frac{X_2(s)}{U(s)} = \frac{1}{\left[m_2 s^2 + c_2 s + k_2 - \frac{(k_2 + c_2 s)^2}{m_1 s^2 + (c_1 + c_2)s + k_1 + k_2}\right]}$$

یک تابع تبدیل در سیمولینک قرار میدهیم. (در هردو بخش، مقدار پارامتر ها، همان مقدار که در بالا اورده شده، ست شده است.)

با قرار دان مقدار پارامترها و ساده سازی، تابع تبدیل به شکل بالا درمیاید. حال یک ورودی پله قرار میدهیم و خروجی آن به شکل زیر میشود:

خروجی های به دست أمده، در هر دو حالت یکسان میشود.

برای این سوال، من از مرجع Richard_C_Dorf,_Robert_H_Bishop_Modern_Controlz_lib_org_2.pdf استفاده میکنم و در صفحه ۱۰۶

Chapter 2 Mathematical Models of Systems

 $L_a = 1$

Table 2.7	Parameters of a Large DC Motor
$K_{m} = 10$	J=2
$R_a = 1$	b = 0.5

 $K_b = 0.1$

و با توجه به رابطه موتور dc که استاد در کلاس گفتند، تابع تبدیل آن به صورت زیر میشود:

 $G(s)=1/ls^2+cs$

که ا ممان اینرسی است و c هم ضریب c میشود، که حالصش با این مقادیر 2.5 میباشد. حال مقادیر مختلفة برای ممان اینرسی قرار میدهیم و خروج ها به شکل زیر لیست میشوند:

I=1

I=100

I=-1

I=-100

