Plus courts chemins

© N. Brauner, 2019, M. Stehlik 2020

- Graphes orientés
- Plus court chemin
- Poids unitaires : algorithme BFS
- 4 Poids positifs: l'algorithme de Dijkstra
- 5 Compléments : algorithme de Bellman

•000000000

- Graphes orientés

Définition

Un graphe orienté est un couple G = (V, A) où

- V est un ensemble fini
- A est un ensemble de couples d'éléments de V

couple ordonné : $uv \neq vu^1$

A est l'ensemble des arcs du graphe

1. Formellement l'arc uv devrait s'écrire (u, v)

Graphes orientés 000000000

Exercice

Soit G = (V, E) un graphe non orienté. En orientant toutes les arêtes de G, combien de graphes différents peut-on créer?

000000000

Définitions

Pour un sommet $u \in V$

- $d^-(u) = |\{v/vu \in A\}|$ est le degré entrant de u [in-degree]
- $d^+(u) = |\{v/uv \in A\}|$ est le **degré sortant** de u [out-degree]

Définitions

Pour un sommet $\mu \in V$

- $d^-(u) = |\{v/vu \in A\}|$ est le **degré entrant** de *u* [in-degree]
- $d^+(u) = |\{v/uv \in A\}|$ est le **degré sortant** de u [out-degree]
- si $d^-(u) = 0$ alors u est une source

[source]

• si $d^+(u) = 0$ alors u est un puits

[sink]

Graphe orienté

Définitions

Pour un sommet $u \in V$

- $d^-(u) = |\{v/vu \in A\}|$ est le **degré entrant** de *u* [in-degree]
- $d^+(u) = |\{v/uv \in A\}|$ est le **degré sortant** de u [out-degree]
- si $d^-(u) = 0$ alors u est une source

source

• si $d^+(u) = 0$ alors u est un **puits**

[sink]

$$\sum_{i \in V} d^{-}(i) = \sum_{i \in V} d^{+}(i) = |A|$$

Graphe orienté

Rappel: cocycle dans un graphe non orienté G = (V, E)

Soit S un ensemble de sommets de V. On appelle cocycle de S l'ensemble des arêtes ayant exactement une extrémité dans V. On note:

$$\delta(S) = \{uv \in E \mid u \in S \text{ et } v \notin S\}$$

Rappel: cocycle dans un graphe non orienté G = (V, E)

Soit S un ensemble de sommets de V. On appelle cocycle de Sl'ensemble des arêtes ayant exactement une extrémité dans V. On note:

$$\delta(S) = \{uv \in E \mid u \in S \text{ et } v \notin S\}$$

Définition : cocycle positif et négatif dans un graphe orienté G = (V, A)

cocycle positif (sortant) :

$$\delta^+(S) = \{ uv \in A \mid u \in S \text{ et } v \notin S \}$$

cocycle négatif (entrant) :

$$\delta^{-}(S) = \{ uv \in A \mid u \notin S \text{ et } v \in S \}$$

Rappel: cocycle dans un graphe non orienté G = (V, E)

Soit S un ensemble de sommets de V. On appelle cocycle de Sl'ensemble des arêtes ayant exactement une extrémité dans V. On note:

$$\delta(S) = \{uv \in E \mid u \in S \text{ et } v \notin S\}$$

Définition : cocycle positif et négatif dans un graphe orienté G = (V, A)

cocycle positif (sortant) :

$$\delta^+(S) = \{ uv \in A \mid u \in S \text{ et } v \notin S \}$$

cocycle négatif (entrant) :

$$\delta^{-}(S) = \{ uv \in A \mid u \notin S \text{ et } v \in S \}$$

Définition

Un chemin d'un graphe orienté G = (V, A) est une séquence alternée de sommets et d'arcs de la forme $(x_0, a_1, x_1, \dots, a_k, x_k)$ où

- $x_i \in V$
- $a_i \in A$
- $a_i = x_{i-1}x_i \text{ pour } i = 1, ..., k.$
- x_0x_k -chemin (chemin de x_0 à x_k)
- si pas d'ambiguïté, on note : $(x_0, x_1, \dots x_{k-1}, x_k)$
- les x_i ne sont pas nécessairement distincts.
- longueur d'un chemin = nombre d'arcs = k
- un chemin est orienté

chemin

× pas un chemin

Définition

Un <u>circuit</u> dans un graphe orienté G = (V, A) est une suite de la forme $(x_0, a_1, x_1, ..., a_k, x_0)$ où

- $x_i \in V$
- \bullet $a_i \in A$
- $a_i = (x_{i-1}, x_i)$ pour i = 1, ..., k.

• L'entier k est la longueur du circuit.

On note $x \rightsquigarrow y$ s'il existe une chemin de x à y.

La relation \rightsquigarrow n'est pas symétrique.

 $\exists x, y \in V$ tels que $x \rightsquigarrow y$ et $y \rightsquigarrow x$ \Leftrightarrow

G contient un circuit

Définition

Un graphe est fortement connexe si et seulement s'il existe un chemin entre chaque paire de sommets : $\forall x, y \in V, x \rightsquigarrow y$

Définition

Graphes orientés

000000000

Graphe orienté pondéré G = (V, A, w):

- graphe orienté G = (V, A)
- muni d'une fonction de poids sur les arcs : $w:A\to\mathbb{R}$ [weighted directed graph]

Définition

Soit G = (V, A, w) un graphe orienté pondéré.

La longueur (ou poids) d'un chemin est définie comme la somme des poids des arcs du chemin.

- Plus court chemin

Les problèmes des plus courts chemins

G=(V,A,w)

(P1) Plus court chemin entre deux sommets donnés

Soient s et t deux sommets de G. Trouver un chemin de longueur minimum entre s et t dans G.

(P2) Plus courts chemins à partir d'un sommet

Soit s un sommet de G. Pour tous les sommets v de G, trouver un chemin de longueur minimum entre s et v dans G.

(P3) Plus courts chemins entre chaque paire de sommets

Pour chaque paire de sommets u, v de G, trouver un chemin de longueur minimum entre u et v dans G.

(P2) permet de résoudre (P1) et (P3)

Pour (P3), voir l'algorithme de Floyd ²

^{2.} non étudié dans ce cours, mais on vous le fera programmer en TP

Définition

Soient u, v deux sommets dans un graphe orienté pondéré G = (V, A, w). La distance de u à v est définie comme

$$dist(u, v) = min\{w(P) : P \text{ est un chemin de } u \text{ à } v \}$$

 $dist(u, v) \leq 8$

Définition

Soient u, v deux sommets dans un graphe orienté pondéré G = (V, A, w). La distance de u à v est définie comme

$$dist(u, v) = min\{w(P) : P \text{ est un chemin de } u \text{ à } v \}$$

 $dist(u, v) \leq 7$

Définition

Soient u, v deux sommets dans un graphe orienté pondéré G = (V, A, w). La distance de u à v est définie comme

$$dist(u, v) = min\{w(P) : P \text{ est un chemin de } u \text{ à } v \}$$

Plus courts chemins

Les problèmes de plus courts chemins (reformulation) G = (V, A, w)

(P1) Plus court chemin entre deux sommets donnés

Trouver la distance (et le chemin correspondant) entre s et t dans G: dist(s,t).

(P2) Plus courts chemins à partir d'un sommet

Trouver la distance (et le chemin correspondant) entre s et tous les sommets de G : dist(s, v), $\forall v \in V$.

(P3) Plus courts chemins entre chaque paire de sommets

Trouver la distance (et le chemin correspondant) entre chaque paire de sommets de G: dist(u, v), $\forall u, v \in V$.

3. "Le chemin le plus court d'un point à un autre est la ligne droite, à condition que les deux points soient bien en face l'un de l'autre." Pierre Dac

Plus courts chemins

Graphes orientés

Y a-t-il toujours un plus court chemin?

Donnez des exemples de graphes pour lesquels, il n'y a pas de plus court chemin entre deux sommets donnés.

Y a-t-il toujours un plus court chemin?

Donnez des exemples de graphes pour lesquels, il n'y a pas de plus court chemin entre deux sommets donnés.

Remarque

Il peut ne pas exister de plus court chemin de s à t:

- S'il n'y a aucun chemin de s à t : dist $(s, t) = +\infty$
- S'il y a un circuit de longueur strictement négative (circuit absorbant) : $dist(s, t) = -\infty$

Exemple de circuit absorbant

Plus courts chemins

Graphes orientés

Exemple de circuit absorbant

S'il existe un *st*-chemin, alors, si on considère seulement les chemins élémentaires entre s et t, il existe un plus court st-chemin élémentaire.

Le problème des plus courts chemins est bien défini si :

- soit on cherche un chemin élémentaire
- soit les poids sont positifs
- soit le graphe ne contient pas de circuit

(P2) Plus courts chemins à partir d'un sommet

Trouver la distance entre s et tous les sommets de G.

Principe de sous-optimalité

Dans un graphe orienté pondéré G = (V, A, w), soit P un plus court chemin de s vers x. Alors, en notant x' le prédécesseur de xdans ce chemin, le sous-chemin de P qui va de s vers x', noté P[s, x'] est un plus court chemin de s vers x'.

Principe de sous-optimalité

Dans un graphe orienté pondéré G = (V, A, w), soit P un plus court chemin de s vers x. Alors, en notant x' le prédécesseur de x dans ce chemin, le sous-chemin de P qui va de s vers s', noté P[s, x'] est un plus court chemin de s vers s'.

Démonstration par l'absurde

S'il existe P' de s vers x' de poids strictement inférieur au sous-chemin de P de s vers x' alors en concaténant P' à xx' on aurait un chemin de s vers x de poids strictement inférieur à celui de P, contradiction.

Plus courts chemins

Graphes orientés

Principe de sous-optimalité

- Plus généralement : les sous-chemins des plus courts chemins sont des plus courts chemins
- Conséquence : structure d'arborescence (arbre enraciné) des plus courts chemins

Intuition de l'algorithme

Graphes orientés

- On maintient des distances provisoires, $\lambda(v)$ (poids d'un chemin de s à v trouvé à un certain stade de l'exécution de l'algorithme)
- lorsque $\lambda(u) + w(uv) < \lambda(v)$ pour un arc uv, alors on a trouvé un meilleur chemin jusqu'à v et donc on met à jour $\lambda(v)$

Intuition de l'algorithme

Graphes orientés

- On maintient des distances provisoires, $\lambda(v)$ (poids d'un chemin de s à v trouvé à un certain stade de l'exécution de l'algorithme)
 - et une arborescence π décrivant ces chemins
- lorsque $\lambda(u) + w(uv) < \lambda(v)$ pour un arc uv, alors on a trouvé un meilleur chemin jusqu'à v et donc on met à jour $\lambda(v)$ et π

Plus courts chemins : Algorithmes

- π n'est modifié que s'il y a une amélioration stricte, jamais pour changer et trouver un autre chemin de même poids
- à tout moment dans l'algorithme, $\lambda(v)$ est la longueur d'un sv-chemin existant

courts chemins . Algorithmes

- π n'est modifié que s'il y a une amélioration stricte, jamais pour changer et trouver un autre chemin de même poids
- à tout moment dans l'algorithme, $\lambda(v)$ est la longueur d'un sv-chemin existant

 $\lambda(v) \ge \operatorname{dist}(s, v)$ pour tout sommet v.

Plan

Graphes orientés

- Poids unitaires : algorithme BFS

Graphes orientés

Plus courts chemins dans un graphe non pondéré

Poids unitaires : $\forall a \in A$ w(a) = 1

- L'algorithme BFS (parcours en largeur) trouve les plus courts chemins
- c'est le meilleur et le plus simple algorithme

Plus courts chemins dans un graphe non pondéré **Certificat** dist(s, t) = k

• $\operatorname{dist}(s,t) \leq k$:

Graphes orientés

Plus courts chemins dans un graphe non pondéré **Certificat** dist(s, t) = k

- $dist(s, t) \le k$: exhiber un st-chemin de longueur k
- $\operatorname{dist}(s,t) \geq k$?

Algorithme 1: BFS

Données : Un graphe orienté G = (V, A) et un sommet s de G **Résultat** :

- une arborescence de plus courts chemins d'origine s
- Les distances dist(s, v) de s à tous les sommets v de G

$$\begin{array}{lll} \lambda(v) \leftarrow +\infty & \forall v \text{ sommet de } G & F \text{ une file vide} \\ \text{Ajouter } s \text{ à } F & \lambda(s) \leftarrow 0 \\ \textbf{tant que } F \text{ est non vide faire} \\ & \text{Défiler un sommet de } F : v \\ \textbf{pour } chaque \text{ sommet } w \text{ tel que } vw \in A \text{ faire} \\ & \text{si } \lambda(w) = +\infty \text{ alors} \\ & \text{ Enfiler } w \text{ dans } F \\ & \pi(w) \leftarrow v \\ & \lambda(w) \leftarrow \lambda(v) + 1 \end{array}$$

retourner λ, π

Graphes orientés

Définition

Soient s et t deux sommets. $S \subset V$ est une st-coupe si $s \in S$ et *t* ∉ *S*

Certificat $dist(s, t) \ge k$

• Si S est une st-coupe alors chaque chemin de s à t contient au moins un arc sortant de S ($uv \in A$ avec $u \in S$ et $v \notin S$)

Définition

Soient s et t deux sommets. $S \subset V$ est une st-coupe si $s \in S$ et t ∉ S

Certificat dist(s, t) > k

- Si S est une st-coupe alors chaque chemin de s à t contient au moins un arc sortant de S ($uv \in A$ avec $u \in S$ et $v \notin S$)
- Si on a une famille de k st-coupes dont les ensembles d'arcs sortants sont disjoints deux-à-deux (ie dont les cocycles positifs sont disjoints deux à deux), alors, dist $(s, t) \ge k$

Définition

Soient s et t deux sommets. $S \subset V$ est une st-coupe si $s \in S$ et t ∉ S

Certificat dist(s, t) > k

- Si S est une st-coupe alors chaque chemin de s à t contient au moins un arc sortant de S ($uv \in A$ avec $u \in S$ et $v \notin S$)
- Si on a une famille de k st-coupes dont les ensembles d'arcs sortants sont disjoints deux-à-deux (ie dont les cocycles positifs sont disjoints deux à deux), alors, dist $(s, t) \ge k$
- BFS fournit une telle famille :

Définition

Soient s et t deux sommets. $S \subset V$ est une st-coupe si $s \in S$ et t ∉ S

Certificat dist(s, t) > k

- Si S est une st-coupe alors chaque chemin de s à t contient au moins un arc sortant de S ($uv \in A$ avec $u \in S$ et $v \notin S$)
- Si on a une famille de k st-coupes dont les ensembles d'arcs sortants sont disjoints deux-à-deux (ie dont les cocycles positifs sont disjoints deux à deux), alors, dist $(s, t) \ge k$
- BFS fournit une telle famille : $S_i = \{ v \in V / \lambda(v) \le i \}$ pour i = 0, 1...k - 1

Définition

Soient s et t deux sommets. $S \subset V$ est une st-coupe si $s \in S$ et $t \notin S$

Certificat dist $(s, t) \ge k$

- Si S est une st-coupe alors chaque chemin de s à t contient au moins un arc sortant de S ($uv \in A$ avec $u \in S$ et $v \notin S$)
- Si on a une famille de k st-coupes dont les ensembles d'arcs sortants sont disjoints deux-à-deux (ie dont les cocycles positifs sont disjoints deux à deux), alors, dist $(s,t) \geq k$
- BFS fournit une telle famille :
 - $S_i = \{ v \in V / \lambda(v) \le i \} \text{ pour } i = 0, 1...k 1$
 - st-coupes : $\lambda(s) = 0$ donc $s \in S_i$, $\lambda(t) \ge k$ donc $t \notin S_i$,

Poids unitaires

Définition

Soient s et t deux sommets. $S \subset V$ est une st-coupe si $s \in S$ et $t \notin S$

Certificat dist $(s, t) \ge k$

- Si S est une st-coupe alors chaque chemin de s à t contient au moins un arc sortant de S ($uv \in A$ avec $u \in S$ et $v \notin S$)
- Si on a une famille de k st-coupes dont les ensembles d'arcs sortants sont disjoints deux-à-deux (ie dont les cocycles positifs sont disjoints deux à deux), alors, dist $(s,t) \ge k$
- BFS fournit une telle famille :

$$S_i = \{ v \in V / \lambda(v) \le i \} \text{ pour } i = 0, 1...k - 1 \}$$

- st-coupes : $\lambda(s) = 0$ donc $s \in S_i$, $\lambda(t) \ge k$ donc $t \notin S_i$,
- ens. arcs sortants disjoints : Si $uv \in A$ alors $\lambda(v) \leq \lambda(u) + 1$

Graphes orientés

Généralisation

• Idée pour encoder un poids entier positif *p* :

Graphes orientés

Généralisation

- Idée pour encoder un poids entier positif p : subdiviser un arc en p arcs (bonne idée?)
- Idée pour encoder un poids négatif : personne ne l'a trouvée

- 4 Poids positifs: l'algorithme de Dijkstra

Algorithme de Dijkstra

- Graphe avec des poids positifs
- garantit qu'il n'y a pas de circuit négatif

Algorithme de Dijkstra : idées

À chaque étape :

- $V = S \cup V \setminus S$
- Si $v \in S$, $\lambda(v) = \text{dist}(s, v)$
- Si $v \notin S$, $\lambda(v) \geq \operatorname{dist}(s, v)$ $\lambda(v) = \text{longueur d'un plus court } sv\text{-chemin qui n'utilise que}$ des sommets de S.
- Le sommet suivant t qui rentre dans S : valeur de λ minimale dans $V \setminus S$.
- Puis mise à jour des voisins de t si on peut améliorer

Dijkstra(s)

Graphes orientés

Données : un graphe G = (V, A, w) avec des poids positifs et un sommet s de G

Résultat :

- une arborescence de plus courts chemins d'origine s
- Les distances dist(s, v) de s à tous les sommets v de G

pour v sommet de G faire

$$S \leftarrow \emptyset$$
 $\lambda(s) \leftarrow 0$ tant que $S \neq V$ faire

 $t \leftarrow$ un sommet de $V \setminus S$ tel que $\lambda(t)$ soit minimum

 $S \leftarrow S \cup \{t\}$ tant que il existe $v \notin S$ avec $tv \in A$ faire

si $\lambda(v) > \lambda(t) + w(tv)$ alors

$$\begin{array}{c} \lambda(v) \leftarrow \lambda(t) + w(tv) \\ \lambda(v) \leftarrow \lambda(t) + w(tv) \\ \pi(v) \leftarrow t \end{array}$$

valeurs de λ $s=0$					
	0	1	2	3	4
	0	∞	∞	∞	∞
	0	2 (0)	5 (0)	∞	∞
	0	2 (0)	4 (1)	9 (1)	∞

Algorithme de Dijkstra

valeurs de λ $s=0$					
	0	1	2	3	4
_	0	∞	∞	∞	∞
	0	2 (0)	5 (0)	∞	∞
	0	2 (0)	4(1)	9 (1)	∞
	0	2 (0)	4 (1)	9 (1)	12 (2)

valeurs de λ $s=0$					
	0	1	2	3	4
	0	∞	∞	∞	∞
	0	2 (0)	5 (0)	∞	∞
	0	2 (0)	4 (1)	9 (1)	∞
	0	2 (0)	4 (1)	9 (1)	12 (2)
	0	2 (0)	4 (1)	9 (1)	12 (2)

valeurs de λ $s=0$				
0	1	2	3	4
0	∞	∞	∞	∞
0	2 (0)	5 (0)	∞	∞
0	2 (0)	4 (1)	9 (1)	∞
0	2 (0)	4 (1)	9 (1)	12 (2)
0	2 (0)	4 (1)	9 (1)	12 (2)
0	2 (0)	4 (1)	9 (1)	12 (2)

Graphes orientés

1 tout s'exécute correctement

Poids Positifs

00000 • 000000000000000

Algorithme de Dijkstra

- 1 tout s'exécute correctement
- 2 en un nombre fini d'étapes

- 1 tout s'exécute correctement
- 2 en un nombre fini d'étapes
 - $S \subset V$ et à chaque étape |S| augmente de 1
- en cas d'arrêt, on obtient l'objet souhaité

- tout s'exécute correctement
- en un nombre fini d'étapes
 - $S \subset V$ et à chaque étape |S| augmente de 1
- en cas d'arrêt, on obtient l'objet souhaité
 - A démontrer : $\lambda(v) = \text{dist}(s, v)$ pour tout $v \in S$

Preuve par récurrence que $\lambda(v) = \text{dist}(s, v)$ pour tout $v \in S$

- Vrai pour s (trivial)
- On suppose que c'est vrai à l'itération k-1.
- On démontre que la propriété est maintenue à l'itération suivante
 - c'est-à-dire, $\lambda(t) = \text{dist}(s, t)$ lorsque t est ajouté dans S

Serremine de Dijnocia

Juste avant l'ajout de t dans S,

- ullet Soit P un chemin quelconque de s à t
- Soit t^P le premier sommet de P non dans S (existe car $s \in S$ et $t \notin S$)
- ullet Soit s^P le prédécesseur de t^P dans P
- Soit P^S le sous chemin de P de s à s^P

Algorithme de Dijkstra

$$w(P) \ge w(P^s) + w(s^P t^P)$$

car P^S plus l'arc $s^P t^P$ sous chemin de P

$$w(P) \ge w(P^s) + w(s^P t^P) \ge \lambda(s^P) + w(s^P t^P)$$

car $\lambda(s^P) = \operatorname{dist}(s, s^P)$ par l'hypothèse de récurrence

$$w(P) \ge w(P^s) + w(s^P t^P) \ge \lambda(s^P) + w(s^P t^P) \ge \lambda(t^P)$$

mis à jour lorsque l'arc $s^P t^P$ a été vu

$$w(P) \ge w(P^s) + w(s^P t^P) \ge \lambda(s^P) + w(s^P t^P) \ge \lambda(t^P) \ge \lambda(t)$$

choix du λ minimum hors de S

$$w(P) \ge w(P^s) + w(s^P t^P) \ge \lambda(s^P) + w(s^P t^P) \ge \lambda(t^P) \ge \lambda(t)$$

Donc quel que soit le chemin P de s à t, $w(P) \ge \lambda(t)$. Donc $\lambda(t) \leq \operatorname{dist}(s,t)$

Algorithme de Dijkstra

Il faut encore montrer que $\lambda(t) \geq \operatorname{dist}(s,t)$

- $\exists s' \in S$ tel que $\lambda(t) = \lambda(s') + w(s't)$
- Soit P' un plus court chemin de s à s' de longueur $\lambda(s')$ (par hypothèse de récurrence)
- $\lambda(t)$ est la longueur du chemin composé de P' augmentée de w(s't). Donc $\lambda(t) \geq \operatorname{dist}(s,t)$

Donc lorsque t est ajouté à S, on a $\lambda(t) = \text{dist}(s, t)$

Remarques

Graphes orientés

- Si on tombe dans l'algo sur t avec $\lambda(t) = \infty$ est-ce que ça vaut le coup de continuer?
- extension graphe non orienté avec longueurs positives

Donnez un exemple de graphe sans circuit absorbant où l'algorithme de Dijkstra ne donne pas les plus courts chemins.

Comment coder efficacement l'algorithme de Dijkstra?

- = comment enlever rapidement l'élément de λ minimum? \Rightarrow on utilise une file de priorité
- → Structure de données : tas binaire [Binary heap]
 - permet d'encoder des ensembles, d'ajouter des éléments, de retirer l'élément de plus petite étiquette...
 - ex : heap sort

Graphes orientés

Tas binaire : arbre enraciné qui vérifie les propriétés suivantes

- c'est un arbre binaire parfait :
 - Les nœuds du dernier niveau n'ont pas de fils
 - Les nœuds de l'avant dernier niveau ont au plus deux fils
 - Tous les autres nœuds ont deux fils
 - si le dernier niveau n'est pas totalement rempli, alors il est rempli de gauche à droite
- c'est un tas :
 - chaque nœud contient une étiquette
 - l'étiquette du père est plus petite que les étiquettes de ses fils

Tas binaires

Graphes orientés

Tas binaires : opérations

- ajouter un élément
 - L'élément s est d'abord rajouté en dernière position au tas. Puis, tant qu'il n'est pas la racine et qu'il est plus petit que son père, on échange les positions entre s et son père.

Tas binaire : ajouter

Graphes orientés

Tas binaires : opérations

- ajouter un élément
 - L'élément s est d'abord rajouté en dernière position au tas. Puis, tant qu'il n'est pas la racine et qu'il est plus petit que son père, on échange les positions entre s et son père.

retirer

- renvoie la valeur du sommet racine du tas, qui correspond au sommet qui a la plus petite valeur.
- met le tas à jour : remplace la valeur à la racine par celle du dernier sommet du tas puis tant que ce sommet a des fils et qu'il est strictement supérieur à ses fils, échanger sa position avec celle du plus petit de ses fils.

Tas binaire: retirer

Tas binaires

Graphes orientés

Tas binaires : opérations

 diminuer l'étiquette d'un nœud Il faut faire attention de maintenir la structure de tas en faisant éventuellement remonter le nœud qui a été modifié dans l'arbre comme lorsqu'on ajoute un sommet.

Remarque: en pratique, pour appliquer l'algorithme de Dijkstra, on stocke pour chaque sommet le numéro du sommet et l'étiquette correspondante sera la valeur de λ pour ce sommet.

Tas binaires

Tas binaires : complexité

Le nombre d'opérations de chaque fonction est borné par la hauteur de l'arbre.

Arbre binaire complet \Rightarrow profondeur \leq logarithme du nombre de nœuds.

Chaque opération sur le tas binaire a donc une complexité $O(\log n)$ L'algorithme de Dijkstra a donc une complexité $O((|V| + |E|) \log |V|)$

Conclusion

- poids unitaires : BFS
- coûts positifs : algorithme de Dijkstra
- pas de circuit : algorithme de Bellman (extension possible aux plus longs chemins)
- Algorithme de Bellman Ford : caractérisation des graphes orientés pondérés sans circuit absorbant.

Plan

- Graphes orientés
- 2 Plus court chemin
- 3 Poids unitaires : algorithme BFS
- 4 Poids positifs : l'algorithme de Dijkstra
- 5 Compléments : algorithme de Bellman

Graphe sans circuit

Graphe sans circuit

- Directed Acyclic Graph ou DAG
- Utilisé en programmation dynamique (états associés à une formule de récurrence)

Décrivez un graphe qui n'a ni source, ni puits.

Un DAG a toujours une source et un puits 5

preuve? (algorithmique, par contre-exemple maximal)

Graphe sans circuit

Propriété

Graphes orientés

Un graphe est sans circuit si et seulement si il admet un ordre topologique.

- Un ordre $v_1 = s, \dots, v_n$ des sommets est topologique si tous les arcs sont de la forme $v_i v_i$ avec i < j.
- l'algorithme DFS permet d'obtenir un ordre topologique en temps linéaire. (Fournier, page 216)
- autre algorithme?

Algorithme de Bellman

Algorithme 3: Plus court chemin dans un DAG

Données : un graphe orienté valué G sans circuit et un

sommet *s*

Résultat : une arborescence de plus courts chemins d'origine s

Soit v_1, v_2, \dots, v_n un ordre topologique des sommets de G

Pour tout sommet v, $d(v) \leftarrow \infty$

$$d(s) \leftarrow 0$$

pour
$$k = 1$$
 à n faire

Pour chaque sommet v tel que $v_k v \in A$

si
$$d(v) > d(v_k) + w(v_k v)$$
 alors
 $| d(v) \leftarrow d(v_k) + w(v_k v)$

$$\pi(v) \leftarrow v_k$$

Extensions

Graphes orientés

• Plus long chemin : chemin orienté dont le poids est maximum :

Algorithme de Bellman

Extensions

- Plus long chemin : chemin orienté dont le poids est maximum : opposé des poids.
- Plus sûrs chemins :

Algorithme de Bellman

Extensions

Graphes orientés

- Plus long chemin : chemin orienté dont le poids est maximum : opposé des poids.
- Plus sûrs chemins : logarithme des poids.

cf feuille d'exercice