Scientific Computing (MATH6183001)

Problem Set 5 - Context-Free Grammars and Context-Free Languages

July 23, 2024

Solve totally 3 problems and at least one subproblem from each of the sections.

1 Understanding CFG

Problem 1. Show the derivation and the parse tree for the string 011100 generated by the following CFG:

 $S \to 0S1S|1S0S|\epsilon$

Problem 2. Show the derivation and the parse tree for the string 01011010 generated by the following CFG:

 $S \to 0X|1Y|\epsilon$

 $X \to 0S|1Z$

 $Y \to 1S|0Z$

 $Z \to 0Y|1X$

Problem 3. Describe the language that is generated by the following CFG. Give 5 examples from this language.

 $S \to aSa$

 $S \rightarrow bSb$

 $S \to c$

2 Designing CFG

Problem 4. Convert the following DFA to a corresponding CFG.

Figure 1: (a)

Figure 2: (b)

Figure 3: (c)

Problem 5. Give context-free grammars that generate the following languages. In all parts, the alphabet Σ is $\{0,1\}$.

a. $\{w \mid w \text{ starts and ends with the same symbol}\}$

b. $\{w \mid \text{ the length of } w \text{ is odd } \}$

c. $\{w \mid w = w^R, \text{ that is, } w \text{ is a palindrome } \}$

d. The empty set

e. The complement of the language { $0^n1^n \mid n \geq 0$ }

Problem 6. Give context-free grammars that generates the language:

 $A = \{a^i b^j c^k \mid i = j \text{ or } j = k \text{ where } i, j, k \ge 0\}.$

3 Chomsky normal form

Problem 7. Convert the following CFG into an equivalent CFG in Chomsky normal form.

 $A \to BAB|B|\epsilon$

 $B \to 00 | \epsilon$

Problem 8. Convert the following CFG into an equivalent CFG in Chomsky normal form.

 $S \to ASB$

 $A \to aAS|a|\epsilon$

 $B \to SbS|A|bb$

Problem 9. Convert the following CFG into an equivalent CFG in Chomsky normal form.

 $S \to a|aA|B$

 $A \to aBB|\epsilon$

 $B \to Aa|b$