### ЛАБОРАТОРНА РОБОТА №1

## ПОПЕРЕДНЯ ОБРОБКА ТА КОНТРОЛЬОВАНА КЛАСИФІ-КАЦІЯ ДАНИХ

Мета заняття: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити попередню обробку та класифікацію даних.

## Хід роботи

### Варіант №5

GitHub репозиторій:

#### Завдання 1

```
ื task1.py
import numpy as np
from sklearn import preprocessing
input_data = np.array([[5.1, -2.9, 3.3],
data_binarized = preprocessing.Binarizer(threshold=2.1).transform(input_data)
print("\n Binarized data:\n", data_binarized)
 D:\University\4(2)\AI\lab1\Scripts\python.exe D:/University/4(2)/AI/lab1/task1.py
  Binarized data:
 [[1. 0. 1.]
 [1. 0. 0.]
 Process finished with exit code 0
```

Рис. 1.1.1 Бінарізація

|           |          |               |        |      | ЖИТОМИРСЬКА ПОЛІТЕХНІКА.21.121.05.000 – Лр1 |   |       |      |         |
|-----------|----------|---------------|--------|------|---------------------------------------------|---|-------|------|---------|
| 3мн.      | Арк.     | № докум.      | Підпис | Дата | <u> </u>                                    |   |       |      | 1       |
| Розра     | б.       | Горєлко О. В. |        |      |                                             | Л | im.   | Арк. | Аркушів |
| Перев     | зір.     | Пулеко I. B.  |        |      | n :                                         |   |       | 1    | 3       |
| Керів     | Керівник |               | Звіт з |      |                                             |   |       |      |         |
| Н. контр. |          |               |        |      | лабораторної роботи $\phi$ ІКТ Гр.          |   | ПІ-59 |      |         |
| Зав. к    | аф.      |               |        |      |                                             |   |       |      |         |

Рис. 1.1.2 Виключення середнього

Рис. 1.1.3 Масштабування

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |

Рис. 1.1.4 Нормалізація

L1-нормалізація використовує метод найменших абсолютних відхилень (Least Absolute Deviations), що забезпечує рівність 1 суми абсолютних значень вкожному ряду. L2-нормалізація використовує метод найменших квадратів, що забезпечує рівність 1 суми квадратів 4 значень. Тому можна зробити висновки, що L1 нормалізація є більш надійною у порівняні з L2.

Рис. 1.1.5 Кодування міток

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |

Macub Input\_labels був пересортований за алфавітним порядком, та бувпроіндексований від 0 до 4. Наступна частина коду демонструє роботу кодувальника, (слова заміняються числами). Третя частина коду демонструєзворотню процедуру.

Завдання 2: Попередня обробка нових даних



Рис. 1.3 Результат

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |

## Завдання 3: Класифікація логістичною регресією або логістичний класифікатор



Рисунок 1.4 Візуалізація класифікації логістичною регресією

# Завдання 4: Класифікація наївним байєсовським класифікатором

Обидва прогони дали ідентичний результат, оскільки генерувались однакові набори даних для навчання й тестування.

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |



Рисунок 1.5 Класифікація наївним байєсовським класифікатором

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |



Рисунок 1.6. Класифікація наївним байєсовським класифікатором з обчисленням якості, точності та повноти

Завдання 5: Вивчити метрики якості класифікації



Рисунок 1.7. Порівння моделей RF та LF на кроках 0.25 та 0.5

|      |      | Горєлко О. В. |        |      |                                             | Арк |
|------|------|---------------|--------|------|---------------------------------------------|-----|
|      |      | Пулеко I. B.  |        |      | ЖИТОМИРСЬКА ПОЛІТЕХНІКА.21.121.05.000 — Лр1 | 7   |
| Змн. | Арк. | № докум.      | Підпис | Дата |                                             | ′   |

При порозі 0.5 якість та точність значно вищі, у разі використання моделі RF, тому, як на мене вона  $\epsilon$  більш оптимальною, але при порозі 0.25 LR модель справляється краще, тому остаточний вибір варто робити виходячи з вхідних даних.



Рисунок 1.8. Порівняння моделей за допомогою кривих ROC

Завдання 6: Розробіть програму класифікації даних

```
| Studies | Studies | Strong skiesens | Strong s
```

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |



Рисунок 1.9 порівняння класифікаторів наївного байєса та SVM

**Висновок:** використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідив попередню обробку та класифікацію даних.

|      |      | Горєлко О. В. |        |      |
|------|------|---------------|--------|------|
|      |      | Пулеко I. B.  |        |      |
| 3мн. | Арк. | № докум.      | Підпис | Дата |