Optimal Sampling Algorithms for Frequency Estimation in Distributed Data

Zengfeng Huang Ke Yi Yunhao Liu

HKUST

Guihai Chen

Shanghai Jiaotong University

INFOCOM 2011

- Massive data
 - Impractical or impossible to store in a single machine

- Massive data
 - Impractical or impossible to store in a single machine

- Large distributed system
 - Sensor networks, distributed databases, data centers, etc.

- Massive data
 - Impractical or impossible to store in a single machine

- Large distributed system
 - Sensor networks, distributed databases, data centers, etc.
- Communication bandwidth: most valuable resource

Coordinator

- Model
 - Coordinator
 - To computing some function of the Data

- Model
 - Coordinator
 - To computing some function of the Data
 - \square Data distributed on n nodes
 - Nodes communicate with the Coordinator

- Model
 - Coordinator
 - To computing some function of the Data
 - \square Data distributed on n nodes
 - Nodes communicate with the Coordinator
 - Communication-efficiently

- Frequency Estimation
 - lacksquare Input: Multiset S of N items drawn from the universe $[1 \dots u]$

- Frequency Estimation
 - Input: Multiset S of N items drawn from the universe $[1 \dots u]$
 - \square Each node $j \in [n]$ holds a subset of S

- Frequency Estimation
 - Input: Multiset S of N items drawn from the universe $[1 \dots u]$
 - \square Each node $j \in [n]$ holds a subset of S
 - For any item $i \in [u]$ x_{ij} : total number of i's in node j (local count) $y_i = \sum_{j=1}^n x_{ij}$ (global count)

- Frequency Estimation
 - Input: Multiset S of N items drawn from the universe $[1 \dots u]$
 - \square Each node $j \in [n]$ holds a subset of S
 - For any item $i \in [u]$ x_{ij} : total number of i's in node j (local count) $y_i = \sum_{j=1}^n x_{ij}$ (global count)
 - \Box Compute y_i for each i

- Frequency Estimation
 - lacktriangleq Input: Multiset S of N items drawn from the universe $[1 \dots u]$
 - lacksquare Each node $j \in [n]$ holds a subset of S
 - For any item $i \in [u]$ x_{ij} : total number of i's in node j (local count) $y_i = \sum_{j=1}^n x_{ij}$ (global count)
 - \square Compute y_i for each i

- Frequency Estimation
 - Input: Multiset S of N items drawn from the universe $[1 \dots u]$
 - \square Each node $j \in [n]$ holds a subset of S
 - For any item $i \in [u]$ x_{ij} : total number of i's in node j (local count) $y_i = \sum_{j=1}^n x_{ij}$ (global count)
 - \square Compute y_i for each i

- Compute exactly: send everything
- lacktriangle Approximate each y_i within addtive error ϵN

- Compute exactly: send everything
- \square Approximate each y_i within addtive error ϵN
- Sketch: Each node computes a sketch of its own data and sends it to the coordinator.
 - Count-min, Space saving, etc.

- Compute exactly: send everything
- \square Approximate each y_i within addtive error ϵN
- Sketch: Each node computes a sketch of its own data and sends it to the coordinator.
 - Count-min, Space saving, etc.
 - □ Sketch size: $O(1/\varepsilon)$

- Compute exactly: send everything
- \square Approximate each y_i within addtive error ϵN
- Sketch: Each node computes a sketch of its own data and sends it to the coordinator.
 - Count-min, Space saving, etc.
 - \square Sketch size: $O(1/\varepsilon)$
 - \square Communication cost: $O(n/\varepsilon)$

- Compute exactly: send everything
- \square Approximate each y_i within addtive error ϵN
- Sketch: Each node computes a sketch of its own data and sends it to the coordinator.
 - Count-min, Space saving, etc.
 - □ Sketch size: $O(1/\varepsilon)$
 - \square Communication cost: $O(n/\varepsilon)$
- Random sampling

- Compute exactly: send everything
- $lue{}$ Approximate each y_i within addtive error ϵN
- Sketch: Each node computes a sketch of its own data and sends it to the coordinator.
 - Count-min, Space saving, etc.
 - \square Sketch size: $O(1/\varepsilon)$
 - \square Communication cost: $O(n/\varepsilon)$
- Random sampling
 - Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

- Compute exactly: send everything
- $lue{}$ Approximate each y_i within addtive error ϵN
- Sketch: Each node computes a sketch of its own data and sends it to the coordinator.
 - Count-min, Space saving, etc.
 - □ Sketch size: $O(1/\varepsilon)$
 - \square Communication cost: $O(n/\varepsilon)$
- Random sampling
 - Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$
 - \square Communication cost: $O(n+1/\varepsilon^2)$

- Our result: $O(n + \frac{\sqrt{n}}{\varepsilon})$
 - \square Strictly better than $O(\frac{n}{\varepsilon})$ and $O(n + \frac{1}{\varepsilon^2})$

- Our result: $O(n + \frac{\sqrt{n}}{\varepsilon})$
 - □ Strictly better than $O(\frac{n}{\varepsilon})$ and $O(n + \frac{1}{\varepsilon^2})$
- We assume $n \leq \frac{1}{\varepsilon^2}$

 - Not theoretically interesting: if $n > \frac{1}{\varepsilon^2}$, the cost is dominated by n, and $\Omega(n)$ is a lower bound.

HT estimator [Horvitz and Thompson 56]

```
x_{ij}: local count of i at node j
```

- \square Sample each item randomly. if i is sampled, sends (i, x_{ij})
- \blacksquare The probability is a function of x_{ij}
 - Let $g: \mathbb{N} \to [0,1]$ be the sampling function

HT estimator [Horvitz and Thompson 56]

 x_{ij} : local count of i at node j

- \square Sample each item randomly. if i is sampled, sends (i, x_{ij})
- $lue{}$ The probability is a function of x_{ij}
 - Let $g: \mathbb{N} \to [0,1]$ be the sampling function

HT estimator for x_{ij} :

 $Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$ if it is sampled, otherwise 0

HT estimator [Horvitz and Thompson 56]

 x_{ij} : local count of i at node j

- \square Sample each item randomly. if i is sampled, sends (i, x_{ij})
- $lue{}$ The probability is a function of x_{ij}
 - Let $g: \mathbb{N} \to [0,1]$ be the sampling function

HT estimator for x_{ij} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \dots + Y_{i,n}$$

Variance of the HT estimator

Variance of the HT estimator

$$\operatorname{Var}[Y_{i,j}] = \left(\frac{x_{i,j}}{g(x_{i,j})} - x_{i,j}\right)^2 g(x_{i,j}) + (x_{i,j})^2 (1 - g(x_{i,j}))$$
$$= \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

Variance of the HT estimator

$$Var[Y_{i,j}] = \left(\frac{x_{i,j}}{g(x_{i,j})} - x_{i,j}\right)^2 g(x_{i,j}) + (x_{i,j})^2 (1 - g(x_{i,j}))$$
$$= \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

Estimator for item *i*

$$Y_i = Y_{i,1} + \dots + Y_{i,n}$$

$$Var[Y_i] = \sum_{j=1}^{n} Var[Y_{ij}] = \sum_{j=1}^{n} \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

lacktriangle Question: What sampling function g(x) should we use

- lacktriangle Question: What sampling function g(x) should we use
 - \square Accuracy: standard deviation less than εN

- ullet Question: What sampling function g(x) should we use
 - □ Accuracy: standard deviation less than εN A function is valid, if $Var[Y_i] \leq (\epsilon N)^2$ for all item i

- lacktriangle Question: What sampling function g(x) should we use
 - □ Accuracy: standard deviation less than εN A function is valid, if $\operatorname{Var}[Y_i] \leq (\epsilon N)^2$ for all item i
 - lacktriangle Communication cost: $\sum_{i,j} g(x_{ij})$

- lacktriangle Question: What sampling function g(x) should we use
 - □ Accuracy: standard deviation less than εN A function is valid, if $\operatorname{Var}[Y_i] \leq (\epsilon N)^2$ for all item i
 - lacktriangle Communication cost: $\sum_{i,j} g(x_{ij})$

Optimal valid g(x)?

A worst case optimal Sampling Function

$$g_1(x) = \frac{\sqrt{n}}{\varepsilon N}x$$
 $(g_1(x) = 1 \text{ if } \frac{\sqrt{n}}{\varepsilon N}x > 1)$

A worst case optimal Sampling Function

$$g_1(x) = \frac{\sqrt{n}}{\varepsilon N}x \ (g_1(x) = 1 \text{ if } \frac{\sqrt{n}}{\varepsilon N}x > 1)$$

$$\operatorname{Var}[Y_{i}] = \sum_{j=1}^{n} \frac{x_{i,j}^{2}(1 - x_{i,j}\sqrt{n}/\varepsilon N)}{x_{i,j}\sqrt{n}/\varepsilon N}$$

$$\leq \frac{\varepsilon N}{\sqrt{n}}y_{i} - \frac{1}{n}y_{i}^{2}$$

$$= -\left(\frac{y_{i}}{\sqrt{n}} - \frac{\varepsilon N}{2}\right)^{2} + \frac{(\varepsilon N)^{2}}{4} \leq \frac{1}{4}(\varepsilon N)^{2}.$$

$$g_1(x) = \frac{\sqrt{n}}{\varepsilon N}x \ (g_1(x) = 1 \text{ if } \frac{\sqrt{n}}{\varepsilon N}x > 1)$$

$$\operatorname{Var}[Y_i] = \sum_{j=1}^{n} \frac{x_{i,j}^2 (1 - x_{i,j} \sqrt{n}/\varepsilon N)}{x_{i,j} \sqrt{n}/\varepsilon N}$$

$$\leq \frac{\varepsilon N}{\sqrt{n}} y_i - \frac{1}{n} y_i^2$$

$$= -\left(\frac{y_i}{\sqrt{n}} - \frac{\varepsilon N}{2}\right)^2 + \frac{(\varepsilon N)^2}{4} \leq \frac{1}{4} (\varepsilon N)^2.$$

• Communication cost: $\sum_{i,j} g_1(x_{ij}) = O(\frac{\sqrt{n}}{\varepsilon})$

Theorem: any valid sampling function has cost $\Omega(\sqrt{n}/\varepsilon)$ on some input.

Theorem: any valid sampling function has cost $\Omega(\sqrt{n}/\varepsilon)$ on some input.

Hard Input:

$$y_i = \varepsilon \sqrt{n} N \le N \ (n \le \frac{1}{\varepsilon^2}) \text{ for } 1 \le i \le \frac{1}{\varepsilon \sqrt{n}}$$
 $x_{i,1} = x_{i,2} = \dots = x_{i,n} = \frac{\varepsilon N}{\sqrt{n}}$

Theorem: any valid sampling function has cost $\Omega(\sqrt{n}/\varepsilon)$ on some input.

Hard Input:

$$y_i = \varepsilon \sqrt{n} N \le N \ (n \le \frac{1}{\varepsilon^2}) \text{ for } 1 \le i \le \frac{1}{\varepsilon \sqrt{n}}$$
 $x_{i,1} = x_{i,2} = \dots = x_{i,n} = \frac{\varepsilon N}{\sqrt{n}}$

The total number of local counts is $\frac{\sqrt{n}}{\varepsilon}$

$$\operatorname{Var}[Y_i] = \sum_{j=1}^{n} \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$= \sum_{j=1}^{n} \frac{(\varepsilon N)^2 / n \cdot (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$= \frac{(\varepsilon N)^2 \cdot (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$\operatorname{Var}[Y_i] = \sum_{j=1}^{n} \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$= \sum_{j=1}^{n} \frac{(\varepsilon N)^2 / n \cdot (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$= \frac{(\varepsilon N)^2 \cdot (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$\square$$
 Cost: $\sum_{i,j} g(x_{i,j}) = \sqrt{n}/\varepsilon \cdot \frac{1}{2} = \Omega(\sqrt{n}/\varepsilon)$

$$g_2(x) = (g_1(x))^2 = \frac{n}{(\varepsilon N)^2} x^2$$

$$g_2(x) = (g_1(x))^2 = \frac{n}{(\varepsilon N)^2} x^2$$

$$\operatorname{Var}[Y_i] \leq (\varepsilon N)^2 \text{ for } g_2$$

$$g_2(x) = (g_1(x))^2 = \frac{n}{(\varepsilon N)^2} x^2$$

$$Var[Y_i] \le (\varepsilon N)^2 \text{ for } g_2$$

 $g_1(x) \ge g_2(x)$

 g_2 is better than g_1 in terms of communication cost g_1 is too accurate for some input

$$g_2(x) = (g_1(x))^2 = \frac{n}{(\varepsilon N)^2} x^2$$

$$\operatorname{Var}[Y_i] \leq (\varepsilon N)^2 \text{ for } g_2$$

 $g_1(x) \ge g_2(x)$

 g_2 is better than g_1 in terms of communication cost

 g_1 is too accurate for some input

lacksquare On input $I:\{x_{i,j}\}$, $opt(I)=\sum_{i,j}g_2(x_{i,j})$

lacksquare On input $I:\{x_{i,j}\}$, $opt(I)=\sum_{i,j}g_2(x_{i,j})$

 $g_2(x)$ is Instance Optimal:

On input $I: \{x_{i,j}\}$, any valid sampling function g(x) must have cost $\Omega(opt(I))$.

Claim: for any valid function g and any input I, $g(x_{i,j}) \geq \frac{1}{2}g_2(x_{i,j})$ for all $x_{i,j}$ in I.

- Claim: for any valid function g and any input I, $g(x_{i,j}) \geq \frac{1}{2}g_2(x_{i,j})$ for all $x_{i,j}$ in I.
- Prove by contradiction

If
$$g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j})$$
 for some $x_{i,j}$

Exist I', s.t. the variance of g on I' is greater than $(\varepsilon N)^2$

- Claim: for any valid function g and any input I, $g(x_{i,j}) \geq \frac{1}{2}g_2(x_{i,j})$ for all $x_{i,j}$ in I.
- Prove by contradiction

If
$$g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j})$$
 for some $x_{i,j}$

Exist I', s.t. the variance of g on I' is greater than $(\varepsilon N)^2$

Contradiction!

High level idea

High level idea

$$Y_i = Y_{i,1} + \dots + Y_{i,n}$$

extstyle ext

High level idea

$$Y_i = Y_{i,1} + \dots + Y_{i,n}$$

extstyle ext

The best we can do: $\operatorname{Var}[Y_{i,j}] \leq \frac{(\varepsilon N)^2}{n}$

Otherwise, I': $x'_{i,j} = x_{i,j}$ for all $1 \le j \le n$

$$\operatorname{Var}[Y_i] > (\varepsilon N)^2$$

□ Assumption: $g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j})$

lacksquare Assumption: $g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j})$

If
$$x_{i,j} \leq \frac{\varepsilon N}{\sqrt{n}}$$

$$I' \colon x'_{i,j} = x_{i,j}, 1 \leq j \leq n \text{ and } y_i = \varepsilon N \sqrt{n} \leq N$$
 Set other local count, s.t. $\sum_{i,j} x'_{i,j} = N$

lacksquare Assumption: $g(x_{i,j}) < rac{1}{2}g_2(x_{i,j})$

If
$$x_{i,j} \leq \frac{\varepsilon N}{\sqrt{n}}$$

$$I' \colon x'_{i,j} = x_{i,j}, 1 \leq j \leq n \text{ and } y_i = \varepsilon N \sqrt{n} \leq N$$
 Set other local count, s.t. $\sum_{i,j} x'_{i,j} = N$

$$g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j}) \le \frac{x_{i,j}^2 n}{2(\varepsilon N)^2}$$
$$\operatorname{Var}[Y_i] > n \left(\frac{2(\varepsilon N)^2}{n} - \left(\frac{\varepsilon N}{\sqrt{n}}\right)^2\right) = (\varepsilon N)^2$$

■ Assumption: $g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j})$

If
$$x_{i,j} > \frac{\varepsilon N}{\sqrt{n}} \ge \varepsilon^2 N, g_2(x_{i,j}) = 1$$

lacksquare Assumption: $g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j})$

If
$$x_{i,j}>\frac{\varepsilon N}{\sqrt{n}}\geq \varepsilon^2 N, g_2(x_{i,j})=1$$

$$I'\colon x'_{i,j}=x_{i,j}, 1\leq j\leq m, m=\min\{N/x_{i,j},n\}$$
 Set other local count, s.t. $\sum_{i,j}x'_{i,j}=N$

lacksquare Assumption: $g(x_{i,j}) < rac{1}{2}g_2(x_{i,j})$

If
$$x_{i,j} > \frac{\varepsilon N}{\sqrt{n}} \ge \varepsilon^2 N$$
, $g_2(x_{i,j}) = 1$
 I' : $x'_{i,j} = x_{i,j}$, $1 \le j \le m$, $m = \min\{N/x_{i,j}, n\}$
Set other local count, s.t. $\sum_{i,j} x'_{i,j} = N$
 $mx_{i,j}^2 > (\varepsilon N)^2$
 $g(x_{i,j}) < \frac{1}{2}g_2(x_{i,j}) = \frac{1}{2}$
 $\operatorname{Var}[Y_i] = mx_{i,j}^2 \left(\frac{1}{g(x_{i,j})} - 1\right) > (\varepsilon N)^2 \left(\frac{1}{g(x_{i,j})} - 1\right) = (\varepsilon N)^2$

Send an (item, count) pair if sampled

Cost: $O(\frac{\sqrt{n}}{\varepsilon})(\log u + \log N)$ bits

Send an (item, count) pair if sampled

Cost: $O(\frac{\sqrt{n}}{\varepsilon})(\log u + \log N)$ bits

Reduce to $O(\frac{\sqrt{n}}{\varepsilon})$ bits

Send an (item, count) pair if sampled

Cost: $O(\frac{\sqrt{n}}{\varepsilon})(\log u + \log N)$ bits

- Reduce to $O(\frac{\sqrt{n}}{\varepsilon})$ bits
- Bloom Filter

■ Bloom Filter

■ Bloom Filter

■ Data structure for membership queries with false positive error.

■ Bloom Filter

□ Data structure for membership queries with false positive error.

 $\bigcirc O(\log 1/q)$ bits per item, with false positive probability q.

$$Y_{i,j} = rac{x}{g_1(x)}$$
 if $x_{i,j}$ is sampled, otherwise 0

$$Y_{i,j} = \frac{x}{g_1(x)}$$
 if $x_{i,j}$ is sampled, otherwise 0

lacksquare Easy case: $x_{i,j} \leq rac{arepsilon N}{\sqrt{n}}$ for all i,j

 $Y_{i,j} = \frac{x}{g_1(x)}$ if $x_{i,j}$ is sampled, otherwise 0

lacksquare Easy case: $x_{i,j} \leq rac{arepsilon N}{\sqrt{n}}$ for all i,j

$$Y_{i,j}$$
 is either 0 or $\frac{\varepsilon N}{\sqrt{n}}$

Encode the sampled items in Bloom Filters.

 \square Query the n Bloom filters.

Let Z_i be the number of Bloom filter asserts the existence of i

 \square Query the n Bloom filters.

Let Z_i be the number of Bloom filter asserts the existence of i

$$\mathbf{E}[Z_i] = x + (n-x)q$$
, x is the exact number

$$Y_i = \frac{\varepsilon N}{\sqrt{n}} \cdot \frac{Z_i - nq}{1 - q}$$

 \square Query the n Bloom filters.

Let Z_i be the number of Bloom filter asserts the existence of i

$$\mathbf{E}[Z_i] = x + (n-x)q$$
, x is the exact number $Y_i = \frac{\varepsilon N}{\sqrt{n}} \cdot \frac{Z_i - nq}{1 - q}$

$$\mathbf{E}[Y_i] = y_i$$
; $\operatorname{Var}[Y_i] \leq \frac{(\varepsilon N)^2}{4(1-q)^2}$

 \square Query the n Bloom filters.

Let Z_i be the number of Bloom filter asserts the existence of i

$$\mathbf{E}[Z_i] = x + (n-x)q$$
, x is the exact number $Y_i = \frac{\varepsilon N}{\sqrt{n}} \cdot \frac{Z_i - nq}{1 - q}$

- $\mathbf{E}[Y_i] = y_i$; $\operatorname{Var}[Y_i] \leq \frac{(\varepsilon N)^2}{4(1-q)^2}$
- Set q to be a constant $\to O(1)$ bits per sampled item $O(\frac{\sqrt{n}}{\epsilon})$ bits of communication

lacksquare When $x_{i,j}>rac{arepsilon N}{\sqrt{n}}$, $g_1(x_{i,j})=1$

When $x_{i,j}>rac{arepsilon N}{\sqrt{n}}$, $g_1(x_{i,j})=1$ $Y_{i,j}$ is either 0 or $x_{i,j}$

- When $x_{i,j}>rac{arepsilon N}{\sqrt{n}}$, $g_1(x_{i,j})=1$ $Y_{i,j}$ is either 0 or $x_{i,j}$
- $x_{i,j} = a_{i,j} \frac{\varepsilon N}{\sqrt{n}} + b_{i,j}, \ a_{i,j} \le \frac{\sqrt{n}}{\varepsilon}, b_{i,j} < \frac{\varepsilon N}{\sqrt{n}}$ $y_i = \frac{\varepsilon N}{\sqrt{n}} \sum_{j=1}^n a_{i,j} + \sum_{j=1}^n b_{i,j}$

- When $x_{i,j}>rac{arepsilon N}{\sqrt{n}}$, $g_1(x_{i,j})=1$ $Y_{i,j}$ is either 0 or $x_{i,j}$
- $x_{i,j} = a_{i,j} \frac{\varepsilon N}{\sqrt{n}} + b_{i,j}, \ a_{i,j} \le \frac{\sqrt{n}}{\varepsilon}, b_{i,j} < \frac{\varepsilon N}{\sqrt{n}}$ $y_i = \frac{\varepsilon N}{\sqrt{n}} \sum_{j=1}^n a_{i,j} + \sum_{j=1}^n b_{i,j}$
- Estimate $\sum_{j=1}^{k} b_{i,j}$ as before Encode each bit of the binary form of $a_{i,j}$ separately

 \blacksquare Each node j uses multiple bloom filters

- \square Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$

- $lue{}$ Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$
 $a_{1,j}=101,\ a_{2,j}=011,\ a_{3,j}=111$ $B_0=\{1,2,3\},\ B_1=\{2,3\},\ B_2=\{1,3\}$

- \square Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$
 $a_{1,j}=101$, $a_{2,j}=011$, $a_{3,j}=111$ $B_0=\{1,2,3\}$, $B_1=\{2,3\}$, $B_2=\{1,3\}$

 \square Enough to set the false positive rate for B_r to be $1/2^r$

- $lue{}$ Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$
 $a_{1,j}=101$, $a_{2,j}=011$, $a_{3,j}=111$ $B_0=\{1,2,3\}$, $B_1=\{2,3\}$, $B_2=\{1,3\}$

Enough to set the false positive rate for B_r to be $1/2^r$ Each 1-bit at position r costs $\log 2^r = r$ bits

- \square Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$
 $a_{1,j}=101,\ a_{2,j}=011,\ a_{3,j}=111$ $B_0=\{1,2,3\},\ B_1=\{2,3\},\ B_2=\{1,3\}$

Enough to set the false positive rate for B_r to be $1/2^r$ Each 1-bit at position r costs $\log 2^r = r$ bits Each 1-bit at position r represents $2^r \cdot \frac{\varepsilon N}{\sqrt{n}}$ items

- \blacksquare Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$
 $a_{1,j}=101,\ a_{2,j}=011,\ a_{3,j}=111$ $B_0=\{1,2,3\},\ B_1=\{2,3\},\ B_2=\{1,3\}$

Enough to set the false positive rate for B_r to be $1/2^r$ Each 1-bit at position r costs $\log 2^r = r$ bits Each 1-bit at position r represents $2^r \cdot \frac{\varepsilon N}{\sqrt{n}}$ items Each copy of $\frac{\varepsilon N}{\sqrt{n}}$ items costs $\frac{r}{2^r} \leq O(1)$ bits

- \square Each node j uses multiple bloom filters
- Let a[r] be the r-th rightmost bit of a. The rth bloom filter B_r encodes the items

$$\{i|a_{i,j}[r]=1\}$$
 $a_{1,j}=101$, $a_{2,j}=011$, $a_{3,j}=111$ $B_0=\{1,2,3\}$, $B_1=\{2,3\}$, $B_2=\{1,3\}$

Enough to set the false positive rate for B_r to be $1/2^r$ Each 1-bit at position r costs $\log 2^r = r$ bits Each 1-bit at position r represents $2^r \cdot \frac{\varepsilon N}{\sqrt{n}}$ items Each copy of $\frac{\varepsilon N}{\sqrt{n}}$ items costs $\frac{r}{2^r} \leq O(1)$ bits Total cost is at most $O(\frac{\sqrt{n}}{\varepsilon})$ bits

Final Remarks

lacktriangledown More general sampling models different $g_{i,j}$ for each $x_{i,j}$

Final Remarks

lacktriangledown More general sampling models different $g_{i,j}$ for each $x_{i,j}$

General communication model

The End

THANK YOU

Q and A