PIANI DI CAMPIONAMENTO PER VARIABILI

$$n = \left(\frac{Z_{\alpha} + Z_{\beta}}{Z_{AQL} + Z_{LTPD}}\right)^{2} \left(1 + \frac{K^{2}}{2}\right)$$

$$K = \frac{-\left(Z_{\alpha}Z_{LPTD} + Z_{\beta}Z_{AQL}\right)}{Z_{\alpha} + z_{\beta}}$$

$$Z_{LSI} = \frac{\overline{x} - LSI}{\sigma}$$

$$P_{a} = \phi\left(\frac{\sqrt{n}(K + Z_{p})}{\sqrt{1 + \frac{k^{2}}{2}}}\right)$$

Metodo K

$$Z_{LSI} \geq K$$

Metodo M

$$\begin{aligned} Q_{LSI} &= Z_{LSI} \sqrt{\frac{n}{n-1}} \\ \widehat{p} &= \phi \left(-Q_{LSI} \right) \\ M &= \phi \left(-K \sqrt{\frac{n}{n-1}} \right) \\ \widehat{p} &< M \end{aligned}$$

PIANI DI CAMPIONAMENTO PER ATTRIBUTI

 α Rischio del fornitore

 β Rischio del committente

AQL Valore limite di difettositá al di sopra del quale il fornitore è disposto a vedersi rifiutare il lotto con rischio α

LTPD Valore limite di difettosità al di sotto del quale il commit-

tente accetta il lotto con rischio β

AOQ difettositá media in uscita

AOQL difettositá massima in uscita

 $ATI\quad$ Average Total Inspection, numero medio di controlli totali

$$\begin{cases} 1 - \alpha = \sum_{i=0}^{c} {n \choose i} AQL^{i} (1 - AQL)^{n-i} \\ \beta = \sum_{i=0}^{c} {n \choose i} LTPD^{i} (1 - LTPD)^{n-i} \end{cases}$$

$$P_{a} = \sum_{i=1}^{c} {n \choose i} p^{i} (1 - p)^{n-i}$$

Piano Singolo

		sostituzione	no sostituzione	
Г	ATI	$P_a n$ -	$+(1-P_a)N$	
	AOQ	$\frac{P_a p(N-n)}{N}$	$\frac{P_a p(N-n)}{N - p(ATI)}$	
	AOQL	$\frac{\partial AOQ}{\partial p} = 0 \rightarrow$	$\frac{\partial AOQ}{\partial p} = 0 \rightarrow \text{calcolato con } p_{max}$	

Piano Doppio

		sostituzione	no sostituzione
Ī	ATI	$n_1P_I + (n_1 + n_2)P_I$	$I + N(1 - P_I - P_{II})$
ĺ	AOQ	$\frac{P_I p(N-n_1) + P_{II} p(N-n_1-n_2)}{N}$	N-p(ATI)
	AOQL	$\frac{\partial AOQ}{\partial p} = 0 \rightarrow \text{calcolato con } p_{max}$	
ſ	ASN	$n_1P_I + (n_1 + n_2)(1 - P_I)$	

Piano A Catena

P(0,n) – Probabilitá di avere 1 difettoso

P(1,n) Probabilitá di avere 0 difettosi

$$P_a = P(0,n) + P(1,n)P(0,n)^i$$

Errori di ispezione

$$\begin{aligned} p_e &= (1-p)e_1 + p(1-e_2) \\ p_a(p_e) &= p_{eA} - ATI' = \\ &= \sum_i \left[n + (1-p_{eA})(N-n) \right] p_{eA}^i = \\ &= \frac{n + (1-p_{eA})(N-n)}{1-p_{eA}} \end{aligned}$$

CARTE DI CONTROLLO PER VARIABILI

CARTE DI CONTROLLO PER ATTRIBUTI

Carta X - R

$$\sigma_P = \frac{\overline{R}}{\overline{d_2}}$$

$$\mu_P = \overline{\overline{X}}$$

$$\sigma_X = \frac{\sigma_P}{\sqrt{n}}$$

$$\mu_X = \mu_P$$

$$\sigma_R = \sigma_P d_3$$

$$\mu_R = \overline{R}$$

$$LC_X = \mu_X \pm L\sigma_X$$

$$LC_R = \mu_R \pm L\sigma_R$$

Carta X - S

$$\sigma_P = \frac{S}{c_4}$$

$$\mu_P = \overline{\overline{X}}$$

$$\sigma_X = \frac{\sigma_P}{\sqrt{n}}$$

$$\mu_X = \mu_P$$

$$\sigma_S = \sqrt{1 - c_4^2} \sigma_P$$

$$\mu_S = \overline{S}$$

$$LC_X = \mu_X \pm L\sigma_X$$

$$LC_S = \mu_S \pm L\sigma_S$$

Carta $X - R_{mobile}$

$$\begin{split} \sigma_P &= \frac{\overline{R}}{d_2} \\ \mu_P &= \overline{\overline{X}} \\ \sigma_X &= \frac{\sigma_P}{\sqrt{n}} \\ \mu_X &= \mu_P \\ \sigma_R &= \sigma_P d_3 \\ \mu_R &= \overline{R} \\ LC_X &= \mu_X \pm L\sigma_X \\ LC_R &= \mu_R \pm L\sigma_R \end{split}$$

TN

Probabilitá di non identificare un fuori controllo β

Probabilitá di identificare un fuori controllo entro l'i-esimo $1-\beta^i$

 $\frac{1}{1-\beta}$ numero medio di campioni prima di rilevare un fuori con-ARL

 $\frac{1}{\alpha}$ ogni quanti campioni mi aspetto un falso fuori controllo $ARL\times h$ tempo che passa prima del verificarsi di un fuori ARL_0

ATS

Carta p

Binomiale

$$\begin{split} \widehat{p} &= \frac{difettosi}{n} \\ \overline{p} &= \frac{\sum \widehat{p}}{k} \\ LC &= \overline{p} \pm L \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \end{split}$$

Carta np

Binomiale

$$LC = n\overline{p} \pm L\sqrt{n\overline{p}(1-\overline{p})}$$

Carta c

Poisson

$$\overline{c} = \frac{\sum Difetti}{k}$$

$$LC = \overline{c} \pm L\sqrt{\overline{c}}$$

Carta u

Poisson

$$\begin{split} \widehat{u} &= \frac{difetti}{n} \\ \overline{u} &= \frac{\sum \widehat{u}}{k} \\ LC &= \overline{u} \pm L \sqrt{\frac{\overline{u}}{n}} \end{split}$$

DISTRIBUZIONI

N Numero di elementi nel lotto

mNumero di elementi difettosi nel lotto

Percentuali di elementi difettosi nel lotto

Numerositá del campione estratto dal lotto

Numero massimo di elementi difettosi che possono essere pre-

senti nel campione, numero di accettazione

 λ

Ipergeometrica

$$P_a(N, n, c, p) = \sum_{i=0}^{c} \frac{\binom{N-Np}{n-i} \binom{Np}{i}}{\binom{Np}{n}}$$

Binomiale

Carta p e carta np

$$P_a(n, c, p) = \sum_{i=0}^{c} {n \choose i} p^i (1-p)^{n-i}$$

Poisson

Carta c e carta u

$$P_a(\lambda, c) = \sum_{i=0}^{c} \frac{\lambda^i e^{-\lambda}}{i!}$$

Approssimazioni

N > 10n	Ipergeometrica \rightarrow Binomiale
p > 0.1	$Binomiale \rightarrow Poisson$
$np \ge 5 \land 0.1$	$Binomiale \rightarrow Poisson$
$np > 5 \land np(1-p) > 5$	$Binomiale \rightarrow Normale$
$\lambda > 10$	$Poisson \rightarrow Normale$

$$\overline{x} = \frac{\sum_{i} x_{i}}{n}$$

$$S = \sqrt{\frac{(x_{i} - \overline{x})^{2}}{n - 1}}$$

 σ nota - Test Normale

 $H_0 : \mu = \mu_0$

$$z_{sp} = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

$$-z_{1-\frac{\alpha}{2}} \le z_{sp} \le z_{1-\frac{\alpha}{2}}$$

 $H_0 : \mu_1 = \mu_2$

$$z_{sp} = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$-z_{1-\frac{\alpha}{2}} \le z_{sp} \le z_{1-\frac{\alpha}{2}}$$

 σ non nota, stimata da ${\bf S}$ - Test t di student

 $H_0 : \mu = \mu_0$

$$T_{sp} = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$

$$-t_{n-1,1-\frac{\alpha}{2}} \le T_{sp} \le t_{n-1,1-\frac{\alpha}{2}}$$

 $\mathbf{H_0}: \mu_{\mathbf{1}} = \mu_{\mathbf{2}}$ ipotesi $\mathbf{S_1} = \mathbf{S_2}$

$$S_{pool} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$
$$T_{sp} = \frac{\overline{x_1} - \overline{x_2}}{\frac{S_{pool}}{\sqrt{n_1 + n_2}}}$$

$$-t_{n_1+n_2-2,1-\frac{\alpha}{2}} \le T_{sp} \le t_{n_1+n_2-2,1-\frac{\alpha}{2}}$$

 $\mathbf{H_0}: \mu_{\mathbf{1}} = \mu_{\mathbf{2}}$ ipotesi $\mathbf{S_1} \neq \mathbf{S_2}$

$$\overline{n} = \frac{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}{\frac{(\frac{S_1^2}{n_1})^2}{n_1 - 1} + \frac{(\frac{S_2^2}{n_2})^2}{n_2 - 1}}$$

$$T_{sp} = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$-t_{n_1+n_2-2,1-\frac{\alpha}{2}} \le T_{sp} \le t_{n_1+n_2-2,1-\frac{\alpha}{2}}$$

Test χ^2

$$\mathbf{H_0}: \sigma^{\mathbf{2}} = \sigma^{\mathbf{2}}_{\mathbf{0}}$$

$$\chi_{sp}^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

$$\chi^{2}_{n-1;\frac{\alpha}{2}} \leq \chi^{2}_{sp} \leq \chi^{2}_{n-1;1-\frac{\alpha}{2}}$$

Test Fisher

$$H_0 : \sigma_1^2 = \sigma_2^2$$

$$F_{sp} = \frac{S_1^2}{S_2^2}$$

$$F_{n_1-1;n_2-1;\frac{\alpha}{2}} \leq F_{sp} \leq F_{n_1-1;n_2-1;1-\frac{\alpha}{2}}$$

$$F_{A;B;1-\alpha} = \frac{1}{F_{B;A;\alpha}}$$

DIFETTOSITÁ REALE E APPARENTE

$$\begin{split} p_{reale} &= p_{apparente} - \text{falsi difettosi} + \text{falsi buoni} \\ &= p_{apparente} - (1 - p_{reale})\alpha + p_{reale}\beta \end{split}$$

METODI DI VOTO

	α	β	γ	ρ
produzione I_1	360	362	359	358
difetti I_2	35	32	36	40
difettositá I_3	4%	5.5%	4.5%	5%

Metodo Best of the best

$$I_1 = \gamma > \beta > \alpha > \rho$$

$$I_2 = \beta > \alpha > \gamma > \rho$$

$$I_3 = \alpha > \gamma > \rho > \beta$$

Metodo Borda

bottom to top: $\alpha > \beta > \gamma > \rho$

Metodo Condorcet

top to bottom: $\beta > \alpha > \gamma \sim \rho$

SCALE

TRASFORMAZIONI	TIPOLOGIA	ESEMPI
$\phi(x) = x$	Assoluta	conteggi
Similitudine $\phi(x) = \alpha x$	Rapporto	massa, temperatura in kelvin, tempo, suono, lucen- tezza
Lineare $\phi(x) = \alpha x + \beta$	Intervallo	temperatura, calendario
$x \ge y \Leftrightarrow \phi(x) \ge \phi(y)$	Ordinale	classifiche, qualitá dell'aria, durezza
Qualsiasi a uno a uno	Nominale	maglie giocatori, colore occhi

Compensazione

$$\begin{split} OEE &= A \times B \times C \rightarrow \\ \rightarrow A &= \frac{OEE}{B \times C} \rightarrow \\ \rightarrow \frac{\partial A}{\partial B} &= \frac{OEE}{B^2 \times C} \rightarrow \\ \rightarrow \partial A &= \frac{A \times B \times C}{B_T^{\frac{1}{2}} \times C} \rightarrow \\ \rightarrow \Delta A &= -A \frac{\Delta B}{B} \rightarrow \end{split}$$

Monotonia

$$\frac{\partial I}{\partial A} \geq 0$$

INDICI DI CAPACITÁ

Indice C_p

$$C_p = \frac{LSS - LSI}{6\sigma_p} > 1.33$$

Indice C_p

$$C_{pi} = \frac{\mu - LSI}{3\sigma_p} > 1.25$$

$$C_{ps} = \frac{LSS - \mu}{3\sigma_p} > 1.25$$

$$C_{pk} = min(C_{pi}, C_{ps}) > 1.33$$

GEOMETRIA

Trigonometria

$$a = c \sin(\alpha)$$

$$a = c \cos \beta$$

$$b = c \sin \beta$$

$$b = c \cos \alpha$$

Grandezze

Circonferenza:	$2\pi r$
Cerchio:	πr^2
Superficie sfera:	$4\pi r^2$
Volume sfera:	$\frac{4}{3}\pi r^3$

ELETTROTECNICA

Parallelo

$$\begin{cases} R_1 \\ R_2 \end{cases} \qquad \begin{cases} R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = \frac{R_1 R_2}{R_1 + R_2} \end{cases}$$

Serie

$$R_{eq} = R_1 + R_2$$

Partitore di Corrente

$$i_1 = i_s \frac{R_2}{R_1 + R_2}$$

$$i_2 = i_s \frac{R_1}{R_1 + R_2}$$

Partitore di Tensione

$$V_1 = V_s \frac{R_1}{R_1 + R_2}$$

$$V_2 = V_s \frac{R_2}{R_1 + R_2}$$