

6.829: Computer Networks and Mobile Systems

Lecture 16:

Data Center Network Architectures

Fall 2017

What are Data Centers?

Large facilities with 10s of thousands of networked servers

- Compute, storage, and networking working in concert
- "Warehouse-Scale Computers"
- Huge investment: ~ \$0.5 billion for large datacenter

Data Center Costs

Amortized Cost*	Component	Sub-Components
~45%	Servers	CPU, memory, disk
~25%	Power infrastructure	UPS, cooling, power distribution
~15%	Power draw	Electrical utility costs
~15%	Network	Switches, links, transit

The Cost of a Cloud: Research Problems in Data Center Networks. Sigcomm CCR 2009. Greenberg, Hamilton, Maltz, Patel.

^{*3} yr amortization for servers, 15 yr for infrastructure; 5% cost of money

Server Costs

30% utilization considered "good" in most data centers!

Uneven application fit

 Each server has CPU, memory, disk: most applications exhaust one resource, stranding the others

Uncertainty in demand

Demand for a new service can spike quickly

Risk management

 Not having spare servers to meet demand brings failure just when success is at hand

Goal: Agility – Any service, Any Server

Turn the servers into a single large fungible pool

Dynamically expand and contract service footprint as needed

Benefits

- Lower cost (higher utilization)
- Increase developer productivity
- Achieve high performance and reliability

Achieving Agility

Workload management

- Means for rapidly installing a service's code on a server
- Virtual machines, disk images, containers

Storage Management

- Means for a server to access persistent data
- Distributed filesystems (e.g., HDFS, blob stores)

Network

 Means for communicating with other servers, regardless of where they are in the data center

Datacenter Networks

Datacenter Traffic Growth

♦ Source: "Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter Network", SIGCOMM 2015.

Conventional DC Network Problems

Conventional DC Network

Reference – "Data Center: Load balancing Data Center Services", Cisco 2004

Conventional DC Network Problems

Dependence on high-cost proprietary routers Extremely limited server-to-server capacity

Conventional DC Network Problems

Dependence on high-cost proprietary routers Extremely limited server-to-server capacity Resource fragmentation

And More Problems ...

Poor reliability

Lack of performance isolation

VL2 Paper

Measurements

VL2 Design

- Clos topology
- Valiant LB

http://research.microsoft.com/en-US/news/features/datacenternetworking-081909.aspx

 Name/location separation (precursor to network virtualization)

Measurements

DC Traffic Characteristics

Instrumented a large cluster used for data mining and identified distinctive traffic patterns

Traffic patterns are highly volatile

A large number of distinctive patterns even in a day

Traffic patterns are unpredictable

Correlation between patterns very weak

Traffic-aware optimization needs to be done frequently and rapidly

DC Opportunities

DC controller knows everything about hosts

Host OS's are easily customizable

Probabilistic flow distribution would work well enough, because ...

- Flows are numerous and not huge no elephants
- Commodity switch-to-switch links are substantially thicker (~
 10x) than the maximum thickness of a flow

DC network can be made simple

Intuition

Higher speed links improve flow-level load balancing (ECMP)

Prob of 100% throughput = 3.27%

Prob of 100% throughput = 99.95%

Virtual Layer 2

VL2 Goals

Clos Topology

Offer huge capacity via multiple paths (scale out, not up)

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Building Block: Merchant Silicon Switching Chips

Switch ASIC 6 pack

Facebook Wedge

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

VL2 Design Principles

Randomizing to Cope with Volatility

Tremendous variability in traffic matrices

Separating Names from Locations

Any server, any service

Embracing End Systems

- Leverage the programmability & resources of servers
- Avoid changes to switches

Building on Proven Networking Technology

- Build with parts shipping today
- Leverage low cost, powerful merchant silicon ASICs

VL2 Goals and Solutions

Objective

- 1. Layer-2 semantics
- 2. Uniform

 high capacity
 between servers
- 3. Performance Isolation

Approach

Employ flat addressing

Guarantee bandwidth for hose-model traffic

Enforce hose model using existing mechanisms only

Solution

Name-location separation & resolution service

Flow-based random traffic indirection (Valiant LB)

TCP

Addressing and Routing: Name-Location Separation

VL2 Agent in Action

Why use hash for Src IP?
Why anycast & double encap?

Other details

How does L2 broadcast work?

ARP requests is replaced by directory server (intercepted by VL2 agent)

How does Internet communication work?

- Servers that need to be directly reachable from the Internet(e.g., front-end web servers) are assigned two addresses: an LA in addition to the AA used for intra-data-center communication with backend servers
- This LA is drawn from a pool that is announced via BGP and is externally reachable.

VL2 Directory System

Read-optimized Directory Servers for lookups

Write-optimized
Replicated State
Machines for updates

Stale mappings?

» .	2010	2015
Compute Instances	100K	Millions
Azure Storage	10's of PB	Exabytes
Datacenter Network	10's of Tbps	Pbps