Machine Learning Model Tracking Document

1. Dataset Information

Dataset Name:	Well 160
Number of Samples:	160
Number of Features:	4 (Tf, Rs, Gg, Api)
Target Variable:	Bob
Outlier Handling:	None
Feature Engineering Applied:	None
Scaling/Normalization Applied:	None
Encoding Applied:	None

2. Preprocessing Steps

Step	Description
Train-Test Split	70% - 30%
Shuffling	Yes, using random_state=42
Handling Missing Data	None
Feature Scaling	SVR only
Feature Selection	None

3. Models Used & Hyperparameters

Model	Hyperparameters	Training Time	
Linear Regression	None	0.0009	
Ridge Regression	alpha = 0.167	0.0005	
Lasso Regression alpha = 0.001		0.0018	
Decision Tree max_depth = 12		0.0006	
KNN n_neighbors = 4		0.0006	
SVR		0.0029	

4. Evaluation Metrics

Model	MSE	RMSE	MAE	R ² Score	Adjusted R ²
Linear Regression	0.0003	0.0168	0.0140	0.9934	0.9927
Lasso Regression	0.0003	0.0184	0.0151	0.9920	0.9913
Ridge Regression	0.0003	0.0167	0.0139	0.9934	0.9928
Decision Tree	0.0013	0.0360	0.0252	0.9694	0.9666
KNN	0.0005	0.0218	0.0164	0.9888	0.9878
SVR	0.0006§	0.0255	0.0137	0.9707	0.9693

5. Cross-Validation Summary (5-Fold)

Model	RMSE Mean	RMSE Std	MAE Mean	MAE Std	R ² Mean	R ² Std
SVR	0.011691	0.001527	0.009008	0.001096	0.994291	0.000790
Ridge Regression	0.01948	0.00407	0.01474	0.00184	0.9905	0.00273
Linear Regression	0.01950	0.00414	0.01472	0.00190	0.9906	0.00270
Lasso Regression	0.02084	0.00367	0.01600	0.00171	0.9889	0.00371
KNN	0.02509	0.00496	0.01824	0.00418	0.9840	0.00547
Decision Tree	0.03050	0.00918	0.02210	0.00413	0.9754	0.01463

6. Visualizations

Figure 1: Actual vs. Predicted Values for Bob (Well 160)

Figure 2: Bar Charts of MSE, RMSE, MAE for Bob (Well 160)

Figure 3: Bar Charts of R^2 and Adjusted R^2 for Bob (Well 160)

Figure 4: Error Bars for RMSE and R² from CV for Bob (Well 160)

7. Observations & Next Steps

- **Best Performing Model**: SVR (RMSE: ~0.0152, R²: ~0.9944)
 - o SVR significantly outperformed all other models with the highest accuracy
 - o Ridge, Linear Regression, and Lasso followed closely with strong but slightly lower performance
 - o KNN and Decision Tree models performed moderately well compared to the others

8. Code Access

The complete source code for data preprocessing, model training, evaluation, and visualization is <u>available here</u>. The repository includes organized Jupyter notebooks for each phase, dataset, and target, as well as requirements for reproducibility.