1 BAĞINTILAR VE FONKSİYONLAR

Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz.

Tanım 1 $A \times B$ kümesinin her alt kümesine A dan B ye bir bağıntı denir. Bağıntılar genellikle α , β , γ ,...gibi sembollerle gösterilir. Eğer bağıntı A dan A ya ise, A da bir bağıntı veya A üzerinde bir bağıntı denir. β , A dan B ye bir bağıntı yani $\beta \subseteq A \times B$ olsun. $(x,y) \in \beta$ ise x ile y bağıntılıdır denir ve $x\beta y$ ile gösterilir. Eğer $(x,y) \notin \beta$ ise $x\beta y$ ile gösterilir.

Örnek 2 $A = \{1,2,3\}$, $B = \{a, b\}$ kümeleri için $A \times B$ kümesinin $\beta = \{(1,a),(2,a),(3,b)\}$ kümesi bir bağıntıdır.

Örnek 3 β , A dan B ye bir bağıntı olsun.

$$\beta^{-1} = \{ (b, a) : (a, b) \in \beta \}$$

olarak tanımlanan β^{-1} bağıntısına β nın ters bağıntısı denir. Bu durumda β^{-1} , B den A ya bir bağıntıdır.

Örnek 4 $A=\{1,2,3\}$, $B=\{a,\ b\}$ olmak üzere $\beta=\{(1,a)\,,(2,a)\,,(3,b)\}$ bağıntısının tersi

$$\beta^{-1} = \{(a,1), (a,2), (b,3)\}\$$

bağıntısıdır.

1.1 Bağıntının Özellikleri

Bu kısımda herhangi bir A kümesi üzerinde tanımlanan β bağıntısının özelliklerini inceleyeceğiz.

Tanım 5 A kümesinden alınan her x elemanı için $x\beta x$ oluyorsa β bağıntısı Yansıma özelliğine sahiptir denir.

Örnek 6 $A=\{1,2,3\}$ ve $\beta=\{(x,y):x,\ y\in A\ ve\ x=y\}$ bağıntısı verilsin. Bu durumda

$$\forall x \in A \Rightarrow (x, x) \in \beta$$

 $gerçeklendiğinden \beta yansıyandır.$

Tanım 7 β bağıntısı A kümesi üzerinde tanımlansın. Her $x, y \in A$ için $x\beta y$ olduğunda $y\beta x$ oluyorsa β bağıntısına simetriktir denir. Yani,

$$\beta \ simetriktir \Leftrightarrow \forall (x,y) \ icin \ [(x,y) \in \beta \Rightarrow (y,x) \in \beta]$$

olur.

Örnek 8 $A = \{1, 2, 3\}$ olmak üzere

$$\beta = \{(1,1), (1,2), (2,3), (2,1), (3,2), (3,3)\}$$

simetrik bir bağıntıdır.

Tanım 9 β , A kümesi üzerinde tanımlı bir bağıntı olsun. Her x, y, $z \in A$ için $x\beta y$ ve $y\beta z$ olduğunda $x\beta z$ oluyorsa β bağıntısını Geçişken özelliği vardır veya β Geçişken bir bağıntıdır denir. O halde

$$\beta \ \ Geçişkendir \Leftrightarrow \forall \, (x,y,z) \ \ için \ [(x,y) \in \beta \ \ ve \ \ (y,z) \in \beta \Rightarrow (x,z) \in \beta]$$
dır.

Örnek 10 $A = \{1, 2, 3\}$ olmak üzere

$$\beta = \{(1,1), (1,2), (2,3), (1,3), (3,2), (3,3)\}$$

geçişken bir bağıntıdır.

1.2 Denklik Bağıntı

Tanım 11 A kümesi üzerinde tanımlanan bir β bağıntısı yansıyan, simetrik ve geçişken ise β bağıntısına A kümesi üzerinde bir Denklik Bağıntısıdır denir.

Örnek 12 $A = \{1, 2, 3\}$ olmak üzere

$$\beta = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

bağıntısı yansıyan, simetrik ve geçişken olduğundan bir Denklik Bağıntısıdır.

Tanım 13 A boştan farklı bir küme olmak üzere A kümesinin altkümelerinin bir ailesi P olsun. Eğer P ailesi aşağıdaki özellikleri sağlıyorsa, P ye A kümesinin bir parçalanması denir.

- 1. P deki tüm kümeler boş olmayan kümelerdir.
- 2. P deki kümeler ikişer ayrık yani, her $A_1, A_2 \in A$ için $A_1 \cap A_2 = \emptyset$ dir.
- 3. A kümesinin her elemanı, P ye ait bir kümenin de elemanıdır.

Tanım 14 A kümesi üzerinde tanımlı bir denklik bağıntısı β olsun. $(x,y) \in \beta$ ise, y elemanına β bağıntısı ile bağlı x elemanına Denk Eleman denir. A kümesi üzerinde x elemanına denk olan bütün elemanların kümesine x in denklik sınıfı denir. Başka bir ifadeyle $x \in A$ için

$$A(x) = \{ y \in A : y\beta x \}$$

ile tanımlana A(x) kümesine β bağıntısının bir Denklik sınıfı denir. A kümesinden alınan her eleman için denklik sınıfı oluşturulabilir.

Örnek 15 Tamsayılar kümesi olan \mathbb{Z} de

$$\beta = \{(x, y) : x, y \in \mathbb{Z} \ ve \ x - y \ tek \ tamsayi\}$$

bir denklik bağıntısıdır. Şimdi 1 ve 2 elemanlarının denklik sınıflarını bulalım.

$$A(1) = \{y : y \in \mathbb{Z} \ ve \ 1 - y \ tek \ tamsayi\}$$

= \{..., -4, -2, 0, 2, 4, ...\}

ve

$$\begin{array}{lll} A\left(2\right) & = & \{y: y \in \mathbb{Z} \ ve \ 1-y \ tek \ tamsayi\} \\ & = & \{..., -3, \ -1, \ 1, \ 3, \ 5, ...\} \end{array}$$

elde edilir. Dikkat edilecek olursa A(1) bütün çift tamsayıların kümesini A(2) ise bütün tek tamsayıların kümesini oluşturmaktadır. Burada sadece A(1) ve A(2) denklik sınıflarını elde edebiliriz. Örneğin A(1) = A(7) ve A(2) = A(0) dır.

Ayrıca parçalanma tanımına dikkat edilirse A(1) ve A(2), \mathbb{Z} nin bir parçalanmasını oluştururlar.

Lemma 16 A boş olmayan bir küme ve A kümesi üzerinde tanımlı bir denklik bağıntısı β olsun. Bu durumda her $x \in A$ için $A(x) \neq \emptyset$ dir.

Proof. β bağıntısı yansıyan olduğundan $x \in A(x)$ olup $A(x) \neq \emptyset$ dir.

Lemma 17 $x, y \in A$ olsun. $x \in A(y)$ ise, $y \in A(x)$ olur.

Proof. $x \in A(y)$ olsun. Bu durumda β simetrik olduğundan $x\beta y \Rightarrow y\beta x$ olup $y \in A(x)$ bulunur.

Lemma 18 $x \in A(y)$ ise A(x) = A(y) dir.

İspat: İspatı iki adımda yapacağız. İlk olarak $A(x) \subseteq A(y)$ olduğunu gösterelim. $a \in A(x)$ olsun. O halde $a\beta x$ dir. Hipotezden $x \in A(y)$ olduğundan $x\beta y$ olup geçişme bağıntısından $a\beta y$ yani $a \in A(y)$ bulunur. Böylece

$$A\left(x\right) \subseteq A\left(y\right) \tag{1}$$

elde edilir. Şimdi $a \in A(y)$ olsun. O halde $a\beta y$ dir. Hipotezden $x \in A(y)$ olduğundan $x\beta y$ olup simetriden dolayı $y\beta x$ olup geçişme bağıntısından $a\beta x$ yani $a \in A(x)$ bulunur. Böylece

$$A(y) \subseteq A(x) \tag{2}$$

elde edilir. (1) ve (2) den A(x) = A(y) bulunur.

Lemma 19 $x \notin A(y)$ ise $A(x) \cap A(y) = \emptyset$ dir.

İspat: Lemmanın kontrapozitifini ispat edelim. Bu durumda $A(x) \cap A(y) \neq \emptyset$ ise $x \in A(y)$ dir. $A(x) \cap A(y) \neq \emptyset$ olduğundan en az bir $a \in A(x) \cap A(y)$ vardır. Bu taktirde $a\beta x$ ve $a\beta y$ dir. Simetriden dolayı $x\beta a$ olup geçişkenlikten $x\beta y$ bulunur. Böylece $x \in A(y)$ elde edilir.

Teorem 20 β , A üzerinde bir denklik bağıntısı olsun. β nın denklik sınıflarının P topluluğu A kümesinin bir parçalanmasını oluşturur.

İspat: Lemma (16) den denklik sınıflarının hiç birisi boş değildir. $x, y \in A$ verildiğinde Lemma (18) ve Lemma (19) den A(x) = A(y) olabilmesi için gerek ve yeter şart $A(x) \cap A(y) \neq \emptyset$ olduğu açıktır. O halde, P deki kümeler ikişer ikişer ayrıktır. $x \in A(x)$ olduğundan , A kümesindeki her eleman P deki kümelerden birisine aittir. Böylece parçalanmanın üç şartıda sağlanmış olur.

Teorem 21 P boş olmayan bir A kümesinin bir parçalanması olsun. $x, y \in A$ olmak üzere, A kümesi üzerindeki γ bağıntısı aşağıdaki gibi tanımlansın: " $x\gamma y$ olması için gerek ve yeter şart x ve y nin P parçalanmasına göre aynı kümenin elemanı olmasıdır."

Bu durumda γ , A kümesi üzerinde bir denklik bağıntısıdır.

Tanım 22 A kümesi üzerinde tanımlı bir denklik bağıntısı β olsun. β bağıntısının A cümlesinden ayırdığı tüm denklik sınıflarının kümesine A nın β bağıntısına göre Bölüm Kümesi denir ve A/β ile gösterilir.

Örnek 23 $\beta = \{(x,y) : x, y, k \in \mathbb{Z} \text{ ve } (x+y) = 3k\}$ bağıntısı \mathbb{Z} üzerinde bir denklik bağıntısıdır. Bu bağıntının denklik sınıfları,

$$A(0) = \{..., -9, -6, -3, 0, 3, 6, 9, ...\}$$

 $A(1) = \{..., -7, -4, -1, 2, 5, 8, 11, ...\}$

$$A(2) = \{..., -8, -5, -2, 1, 4, 7, 10, ...\}$$

elde edilir. Buna göre $\mathbb{Z}/\beta = \{A(0), A(1), A(2)\}\ dir.$

1.3 Kısmi Sıralamalar

Tanım 24 β bağıntısı A kümesi üzerinde tanımlansın. Her $x, y \in A$ için $x\beta y$ ve $y\beta x$ olduğunda x = y ise β bağıntısına antisimetriktir denir.

Tanım 25 A kümesi üzerinde bir \prec bağıntısı yansıyan, antisimetik ve geçişken ise bu bağıntıya A kümesinin bir Kısmi Sıralaması denir.

$$(x,y) \in \prec \Leftrightarrow x \prec y$$

 $dir. \ x \prec y \ ifadesi \prec sıralamasına göre x, y den önce gelir diye okunur.$

 \mathbb{R} de tanımlanan \leq bağıntısı bir kısmı sıralama bağıntısıdır.

Tanım 26 A kümesi üzerinde tanımlı bir sıralama bağıntısı \prec olmak üzere, $x, y \in A$ için $x \prec y$ ya da $y \prec x$ ise x ve y elemanlarına \prec bağıntısına göre karşılaştırılabilir elemanlar denir.

Tanım 27 A kümesinin her x, y eleman çifti bu küme üzerinde tanımlanan \prec bağıntısına göre karşılaştırılabiliyorsa, A kümesine Tam Sıralı küme denir. Bu tanıma göre A kümesinin tam sıralı olması için gerek ve yeter şart

$$\forall x,y \in A \ \textit{i} \ \textit{cin} \ x \prec y \lor y \prec x$$

olmasidir.

Tanım 28 Eğer \prec , A kümesi üzerinde bir kısmi sıralama ise (A, \prec) ikilisine Kısmi sıralanmış küme, \prec bir tam sıralama ise (A, \prec) ikilisine bir Tam Sıralanmış küme ya da kısaca Sıralı Küme denir.

Örnek 29 \mathbb{R} , \leq bağıntısı ile sıralı bir kümedir.

Örnek 30 $A = \{0, 1\}$ olmak üzere A kümesinin P(A) kuvvet kümesi üzerinde tanımlı \subseteq bağıntısı bir kısmi sıralama bağıntısı olduğu halde tam sıralama değildir. Örneğin $\{0\} \in P(A)$ ve $\{1\} \in P(A)$ olduğu halde $\{0\} \nsubseteq \{1\}$ ve $\{1\} \nsubseteq \{0\}$ dır.

Teorem 31 Bir A kümesinde tanımlanan bir sıralama bağıntısının tersi A kümesi üzerinde tanımlı bir sıralama bağıntısıdır.