### 第9章 数字电视基础



#### 目录

- 9.1 电视简介
- 9.2 模拟彩色电视
  - 9.2.1 模拟彩色电视制
  - 9.2.2 电视扫描与同步
  - 9.2.3 彩色电视信号的 类型

- 9.3 数字电视
  - 9.3.1 电视图像数字化
  - 9.3.2 图像子采样
  - 9.3.3 数字电视原理及 标准
  - 9.3.4 数字电视图像格式

#### 目录

- 9.1 电视简介
- 9.2 模拟彩色电视
  - 9.2.1 模拟彩色电视制
  - 9.2.2 电视扫描与同步
  - 9.2.3 彩色电视信号的 类型

- 9.3 数字电视
  - 9.3.1 电视图像数字化
  - 9.3.2 图像子采样
  - 9.3.3 数字电视原理及 标准
  - 9.3.4 数字电视图像格式

### 9.1.1 运动幻觉





频闪视运动(Stroboscopic Apparent motion)

### 为什么运动幻觉起作用?

- ■视觉持久性理论:
  - 图像在帧之间的间隔期间持续存在于视觉系统中, 导致它们看起来是连续的。
  - 反对证据1:图像在视觉皮层中持续约100ms,这意味着10FPS(每秒帧数)是频闪视运动的最慢速度。
  - 反对证据2:存在无法用它来解释的频闪视运动,如 phi 现象和beta 运动。

### 为什么运动幻觉起作用?



### 为什么运动幻觉起作用?

■频闪视运动起作用的最可能原因是它触发了的神经运动检测电路。



#### 9.1.1 电视简介

- ■电视是什么
  - 英文 "television"的译名,简写为TV
    - tele来自希腊语,表示far(远)
    - vision来自拉丁语,表示看到的景物
  - 捕获、广播和重现活动图像和声音的远程通信系统

### 9.1.2 电视的分类

- ■按内容形式分:
  - 模拟黑白电视
  - 模拟彩色电视
  - 数字电视
  - 智能电视
  - 3D电视











### 9.1.2 电视的分类

- ■电视按广播系统分:
  - 地面电视广播系统
  - 有线电视广播系统
  - 卫星电视广播系统
  - 因特网电视广播系统









### 9.1.2 电视的分类

- ■按显示技术分类:
  - CRT
  - 数字光处理 (DLP)
  - 等离子Plasma
  - 液晶显示LCD
  - 有机发光二极管OLED















Panasonic's invisible OLED TV

#### 目录

- 9.1 电视简介
- 9.2 模拟彩色电视
  - 9.2.1 模拟彩色电视制
  - 9.2.2 电视扫描与同步
  - 9.2.3 彩色电视信号的 类型

- 9.3 数字电视
  - 9.3.1 电视图像数字化
  - 9.3.2 图像子采样
  - 9.3.3 数字电视原理及 标准
  - 9.3.4 数字电视图像格式

#### 9.2.1 模拟视频

- 真实的图形和声音是分别基于光亮度和声压值的 空间和时间的连续函数。
- ■早期的大部分电视信号是通过模拟信号传输的。

■摄像机生成的一维的模拟电信号负责对二维的时变图像进行采样。

# 9.2.1 逐行扫描(Progressive scanning)

■按照一定的时间间隔逐行扫描完整的图像帧。



应用: 高分辨率

显示器

# 9.2.1 隔行扫描(Interlaced scanning)

■ 先扫描奇数行,再扫描偶数行



### 9.2.1 隔行扫描(Interlaced scanning)

■这样产生"奇数场"和"偶数场",两个场组成一个帧。



应用: 电视、某些 显示器、多媒体标 准

## 9.2.1 隔行扫描(Interlaced scanning)



(a) 视频帧



(b) 奇数场



(c) 偶数场



(d) 两场的差别<sub>18</sub>

### 9.2.1 电视扫描和同步



■ 电压信号是一维的,如何知道视频新的一行什么时间开始呢?



### 9.2.2 模拟彩色电视制



- 使用Y(亮度)和C1,C2(色差)传输的优点:
  - 亮度和色差相互独立,黑白电视亦可接收彩色电视信号
  - 可利用人的视觉特性来节省信号的带宽和功率

### 9.2.2 模拟彩色电视制



电视制(television system): 传输图像和声音的方法

### 9.2.2 NTSC (National Television System Committee) 电视制

- NTSC(国家电视系统委员会)电视标准主要在北美和日本使用。
- 图像的宽高比为4:3,525条扫描线,隔行扫描,30 帧每秒
- 视像带宽为4.2 MHz,使用YIQ信号,色度信号用正交幅度调制(quadrature amplitude modulation, QAM)
- 声音用调频制(FM),总的电视通道带宽为6 MHz

### 9.2.2 NTSC (National Television System Committee) 电视制



### 9.2.2 PAL (Phase-Alternative Line) 电视制

- PAL是西欧、中国、印度等国家广泛采用的电视值。
- 图像的宽高比为4:3,625条扫描线,隔行扫描,25 帧图像每秒
- 视像带宽至少为4 MHz,使用YUV颜色模型,色度信号用正交幅度调制
- 声音用调频制(FM),总的电视通道带宽为8 MHz
- 逐行倒相(Phase-Alternative Line, PAL), V分量的相位每隔一行反相一次来克服彩色失真

### 9.2.2 NTSC与PAL比较

不闪烁( >=50c/s)

(PAL制式: 25 frames/s, interlaced

NTSC制式: 30 frames/s, interlaced )



行频: 625x25=15.625kHz(P); 525x30=15.75kHz(N)

### 9.2.2 SECAM(顺序传送彩色与存储)电视制

- SECAM制在法国、俄罗斯、东欧和中东等地区和国家使用,第三大模拟电视制
- SECAM与PAL制相似,有相同的扫描线数(625线每帧)、帧频(25帧每秒,50场每秒)和图像宽高比(4:3),视像带宽最高为6 MHz,总带宽为8 MHz。
- SECAM制的色度信号使用频率调制(FM), PAL制用的 是正交幅度调制

### 9.2.3 模拟电视信号的类型

- ■复合电视信号
  - 包含亮度信号、色差信号和所有定时信号的单一信号
- ■分量电视信号
  - 每个基色分量作为独立的电视信号,如RGB,YIQ,YUV
- S-Video(Separate Video)信号
  - 使用单独的两条信号电缆线分别用于亮度和复合色差信号,减少亮度信号和色差信号间的干扰。





复合视频



S-视频



**VGA** 

#### 目录

- 9.1 电视简介
- 9.2 模拟彩色电视
  - 9.2.1 模拟彩色电视制
  - 9.2.2 电视扫描与同步
  - 9.2.3 彩色电视信号的 类型

#### • 9.3 数字电视

- 9.3.1 电视图像数字化
- 9.3.2 图像子采样
- 9.3.3 数字电视原理及标准
- 9.3.4 数字电视图像格式

#### 9.3 数字视频





ISDB-T NTSC

### 9.3 数字视频

- ■视频数字表示的优点:
  - 可存储在数字设备、存储器中,并可集成到多媒体应用程序中;
  - 可直接访问,进行处理(除噪,剪切和粘贴等), 很容易进行非线性视频编辑;
  - 多次复制不会降低图像质量。
  - 易于加密,对信道噪声的容忍度更高。

### 9.3.1 电视图像数字化

- 先分离后数字化
  - 先把模拟的彩色电视信号分离成彩色空间中的分量信号
  - 用三个A/D转换器分别对分量信号数字化
- 先数字化后分离
  - 用一个高速A/D转换器对彩色全电视信号进行数字化
  - 在数字域中分离出颜色空间中的分量数据

### 9.3.2 图像子采样





### 9.3.2 色度的二次采样

- 人眼对色度信号的敏感程度<对亮度信号的敏感程度
- 色差信号的采样频率<亮度信号采样频率
- 常见的色度二次采样方案: 4:4:4, 4:2:2, 4:1:1, 4:2:0



### 请计算它们的压缩 比分别为多少?

- Pixel with only Y value
- Pixel with only Cr and Cb values
- Pixel with Y, Cr, and Cb values

## 数字视频的CCIR和ITU-R数字化标准

- CCIR-601是CCIR(国际广播咨询委员会)制定的最重要的标准之一,用于分量数字视频。
  - 后改名为ITU-R BT.601,是专业视频应用的国际标准
  - 一些数字视频格式采用该标准,如DV视频

### 数字视频的CCIR和ITU-R数字化标准

- CIF代表CCITT指定的通用中间格式,为较低的比特率指定一种格式,使用逐行扫描。
- QCIF代表"四分之一CIF"。

#### ITU-R 数字视频规范

|                        | CCIR 601<br>525/60<br>NTSC | CCIR 601<br>625/50<br>PAL/SECA<br>M | CIF       | QCIF      |
|------------------------|----------------------------|-------------------------------------|-----------|-----------|
| Luminance resolution   | 720 x 480                  | 720 x 576                           | 352 x 288 | 176 x 144 |
| Chrominance resolution |                            |                                     |           |           |
| Colour Subsampling     | 4:2:2                      | 4:2:2                               | 4:2:0     | 4:2:0     |
| Fields/sec             | 60                         | 50                                  | 30        | 30        |
| Interlaced             | Yes                        | Yes                                 | No        | No        |



#### 9.3.3 数字电视

■数字电视使用数字压缩技术和数字传输技术,提供质量高于模拟电视的图像和声音

#### Codecs

- Video
  - HEVC
  - H.262/MPEG-2 Part 2
  - H.264/MPEG-4 AVC
  - AVS
  - VC-1

#### Audio

- MP2
- MP3
- AC-3
- E-AC-3
- AAC
- HE-AAC

#### 9.3.3 数字电视的原理



地面数字电视广播系统 (digital-terrestrial-television broadcasting system, DTTB)

### 9.3.3 数字电视标准



### 9.3.3 数字电视标准

- 美国的ATSC DTV(ATSC数字电视)标准
- 欧洲的DVB (数字电视广播)标准
- 日本的ISDB(综合业务数字广播)标准
- 中国采用AVS标准

#### 南京地面数字电视

|  | 接收频率 | 接收频率 频道商 频道名称 |             | 视频方式 | 锁码方式 | V-PID | A-PID | 备注 |
|--|------|---------------|-------------|------|------|-------|-------|----|
|  | 538  |               | 中央电视台综合频道   | AVS+ |      |       |       |    |
|  |      |               | 中央电视台经济频道   | AVS+ |      |       |       |    |
|  |      |               | 中央电视台中文国际频道 | AVS+ |      |       |       |    |
|  |      |               | 江苏城市        | AVS+ |      |       |       |    |
|  |      |               | 优漫卡通        | AVS+ |      |       |       |    |
|  |      |               | 中央电视台科教频道   | AVS+ |      |       |       |    |
|  |      |               | 江苏教育频道      | AVS+ |      |       |       |    |
|  |      |               | 江苏卫视        | AVS+ |      |       |       |    |

#### 香港地面数字电视

| 接收频率 | 频道商   | 频道名称     | 视频方式   | 锁码方式 | V-PID | A-PID |
|------|-------|----------|--------|------|-------|-------|
| 482  |       | 翡翠高清台    | MPEG-4 |      |       |       |
| 402  |       | ViuTV HD | MPEG-4 |      |       |       |
| 546  |       | 翡翠高清台    | MPEG-4 |      | 811   | 812   |
| 540  |       | ViuTV HD | MPEG-4 |      |       |       |
|      | J5 HD |          | MPEG-4 |      | 851   | 852   |

## 9.3.3 ATSC (Advanced Television Systems Committee)标准

#### 三种数字电视标准概要

| <del>に</del> )佐夕 | 美国ATSC DVT |      |     | 欧洲1     | DVB标准 | ŧ   | 日本ISDB标准 |      |     |
|------------------|------------|------|-----|---------|-------|-----|----------|------|-----|
| 标准名              | 地面         | 卫星   | 有线  | 地面      | 卫星    | 有线  | 地面       | 卫星   | 有线  |
| 调制方式范            | 8VSB/      | ODCE | QAM | 2k/8k载波 | QPSK  | QAM | COFDM    | QPSK | QAM |
|                  | 16VSB      | QPSK |     | COFDM   |       |     |          |      |     |

- 美国高级电视系统委员会(ATSC)制定的数字电视标准
- 涵盖视频编码、多声道环绕声、数据广播、卫星直播等方面的规范

## 9.3.3 DVB(Digital Video Broadcasting)标准

- 欧洲1992年由欧洲电信标准学会(ETSI)制定的数字电视广播标准
- DVB的核心标准包括:
  - DVB-T: 地面数字电视广播系统标准
  - DVB-S:卫星数字电视广播系统标准
  - DVB-C: 有线数字电视广播系统标准
  - DVB-H: 移动数字电视广播系统标准

## 9.3.3 DVB(Digital Video Broadcasting)标准



- DVB标准已成为目前世界上影响力最大的数字电视标准体系
  - DVB-S已成为世界性的数字卫星电视标准
  - DVB-C也在全世界范围内被广泛采纳,成为世界性的有线数字电视标准

## 9.3.3 ISDB(Integrated Services Digital Broadcasting)标准

• 日本数字广播专家组(Digital Broadcasting Experts Group,DiBEG)发布的数字电视广播系统标准

- ISDB的标准包括:
  - ISDB-S:卫星数字电视广播系统标准
  - ISDB-T: 地面数字电视广播系统标准
  - ISDB-C: 有线数字电视广播系统标准
  - 2.6 GHz带宽的移动广播系统标准

### 9.3.3 AVS(Audio Video Standard) 标准

- AVS标准是我国自主知识产权的信源编码标准
  - 第一代AVS标准: AVS1, AVS+。AVS+的压缩效率与 H.264/AVC最高档次(High Profile)相当。目前已经 有上千套AVS+的高清内容上星播出。
  - 第二代AVS标准: AVS2, 首要应用目标是超高清晰度视频, 支持超高分辨率(4K以上)、高动态范围视频的高效压缩。

## 9.3.4 高清电视(high definition TV, HDTV)

- ATSC只考虑了NTSC制, 定义的电视图像格式
  - SDTV (标清电视): NTSC电视或更高版本。
  - EDTV(增强清晰度电视): 480行或以上的有效行
  - HDTV(高清电视): 720条有效线路或更高
  - 欧洲电信标准学会(ETSI)同时考虑了PAL制和NTSC制,定义了用于SDTV格式和HDTV格式,但未定义EDTV格式

# 9.3.4 高清电视(high definition TV, HDTV)

- HDTV(高清电视)的主要目的不是要增加每个单位 区域的"清晰度",而是要增加视野,尤其是其宽 度。
- 由于未压缩的HDTV很容易需要超过20 MHz的带宽, 而当前频道带宽只有6 MHz或8 MHz,因此需研究各 种压缩技术。

## 9.3.4 高清电视(high definition TV, HDTV)

ATSC支持的高级数字电视格式

| # of Active<br>Pixels per<br>line | # of Active<br>Lines | Aspect<br>Ratio | Picture Rate    |
|-----------------------------------|----------------------|-----------------|-----------------|
| 1,920                             | 1,080                | 16:9            | 60P 60I 30P 24P |
| 1,280                             | 720                  | 16:9            | 60P 30P 24P     |
| 704                               | 480                  | 16:9 or 4:3     | 60P 60I 30P 24P |
| 640                               | 480                  | 4:3             | 60P 60I 30P 24P |

对于视频,选择MPEG-2作为压缩标准。对于音频,AC-3 是标准配置,支持5.1声道杜比环绕声

常规电视与高清电视差别是什么?

## 9.3.4 超高清电视(Ultra high definition TV, UHDTV)

- UHDTV是新一代的HDTV支持4K UHDTV: 2160P(3,840×2,160,逐行扫描)和8K UHDTV: 4320P(7,680×4,320,逐行扫描)。
- 长宽比为16: 9。位深度最多可以为12位,色度二次 采样可以为4: 2: 0或4: 2: 2。
- 支持的帧速率已逐渐提高到120 fps。
- 与IMAX电影相比,UHDTV将提供卓越的图像质量, 但是它将需要更高的带宽和比特率。

### 常见显示分辨率



### 电影帧率



### **END**

第9章 数字电视基础

