Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Систем Управления и Информатики Группа Р3340 Кафедра

Лабораторная работа №7 "Анализ точности систем управления" Вариант - 09

Зыполнил				
		(фамилия, и.о.)		_ (подпись)
Іроверил				(подпись)
1 1		(фамилия, и.о.)		
	20г.	Санкт-Петербург,	20г.	
Работа выпо	олнена с оценкой			
Ц ата защиті	ы ""20_			

Цель работы.

Исследование точностных свойств систем управления.

Исходные данные

Передаточная функция
$$W(s)$$
 $= A$ $= Vt$ $\frac{3}{2.5s+1}$ $= 2$ $= 2t$

Исследование системы с астатизмом нулевого порядка. Исследуемая система: $W(s) = \frac{3}{2.5s+1}$

Рис. 1: Система с астатизмом нулевого порядка.

g(t) = A - cтационарный режим работы. A = 2

Рис. 2: График переходного процесса

Рис. 3: График ошибки переходного процесса

Предельное значение ошибки рассчитывается по формуле:

$$\varepsilon = \lim_{s \to 0} \Phi_e(s)g = \frac{A}{1 + 3k} \tag{1}$$

Расчитав значение установившейся ошибки аналитическим методом, можно просмотреть зависимость коэффициента от ошибки.

Таблица 1: Зависимость коэффициента от ошибки

K	1	5	10
ε	0.5	0.125	0.064

Значение ε полученные аналитическим методом полностью совпадают с установившимися значениями ошибки на графике

б) g(t) = Vt – движение с постоянной скоростью. V=2

Рассмотрим переходные процессы Y(t) и e(t)

Рис. 4: График переходного процесса

Рис. 5: График ошибки переходного процесса

$$\epsilon_y(t)=\lim_{s o 0}srac{1}{1+W(s)}rac{V}{s^2}=\lim_{s o 0}rac{1}{1+k}rac{V}{s}=\infty$$
 Во всех случаях $\epsilon o\infty$

Вывод. СУ с нулевым порядком астатизма неспособна отработать изменяющееся задающее воздействие без ошибок, причем с течением времени ошибка увеличивается.

Исследование системы с астатизмом первого порядка. Исследуемая система: $W(s) = \frac{s+2}{0.5s^2+s+2}$

Рис. 6: Система с астатизмом первого порядка.

g(t) = A – стационарный режим работы. A = 2.

Рис. 7: График переходного процесса

Рис. 8: График ошибки переходного процесса

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=0$. Это значение подтверждается аналитическим расчетом: $\epsilon_y(t)=\lim_{s\to 0}\frac{s}{s+k}A=0$

Во всех трех случаях $\epsilon=0$

Вывод. СУ с астатизмом первого порядка (и выше) отрабатывает постоянное задающее воздействие с нулевой установившейся ошибкой.

$$\mathbf{g}(\mathbf{t}) = \mathbf{V}\mathbf{t}$$
 – движение с постоянной скоростью. $V = 2; \epsilon = \frac{V}{K}$

Рис. 9: График переходного процесса

Рис. 10: График ошибки переходного процесса

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=2$. Это значение подтверждается аналитическим расчетом: $\epsilon_y(t)=\lim_{s\to 0}\frac{s}{s+k}V=\frac{V}{k}=2$ k5

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=0.4$. Это значение подтверждается аналитическим расчетом: $\epsilon_y(t)=\lim_{s\to 0}\frac{s}{s+k}V=\frac{V}{k}=0.4$

Рассмотрим переходные процессы Y(t) и e(t) при K=10

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=0.2$. Это значение подтверждается аналитическим расчетом: $\epsilon_y(t)=\lim_{s\to 0}\frac{s}{s+k}V=\frac{V}{k}=0.2$

K	1	5	10
ϵ	2	0.4	0.2

Таблица 2: Зависимость коэффициента от ошибки

Вывод. У системы управления (СУ) с первым порядком астатизма при линейно изменяющимся задающем воздействии (Vt) установившаяся ошибка равна $\epsilon = V/K$

 $g(t) = at^2/2$ – движение с постоянным ускорением.

Рис. 11: График переходного процесса

Рис. 12: График ошибки переходного процесса

Исследование влияния внешних возмущений.

$$f_1 = 2, f_2 = 0.5$$

Рис. 13: Схема моделирования влияния внешних возмущений.

Зададим
$$f_2(t) = 0, g(t) = 1(t)$$

Рис. 14: График переходного процесса при $f_2(t)=0$

Рис. 15: График ошибки переходного процесса при $f_2(t)=0$

Зададим $f_1(t) = 0, g(t) = 1(t)$

Рис. 16: График переходного процесса при $f_1(t)=0$

Рис. 17: График ошибки переходного процесса при $f_1(t)=0$

Из графика видно, что предельное значение установившейся ошибки $e_y(t)=-0.5$. Это значение подтверждается аналитическим расчетом: $e_y(t)=F_2=-0.5$

Исследование установившейся ошибки при произвольном входном воздействии. Рассмотрим систему при:

$$H(s) = 1;$$

$$W(s) = \frac{2}{0.5s^2 + s + 2};$$

$$g(t) = 2 + 0.1t^2;$$

Рис. 18: Схема моделирования произвольного входного воздействия.

Рис. 19: График переходного процесса.

Рис. 20: График ошибки переходного процесса.

 $e_y(t) \to \infty$, т.к. СУ с астатизмом нулевого порядка не может отработать линейно нарастающее задающее воздействие.

$$e_y(t) = c_0 g(t) + c_1 rac{d}{dt} g(t) + rac{c_2}{2!} rac{d^2}{dt^2} g(t) + \dots$$
 - где постоянные c_i - коэффициенты ошибок.

 $\Phi_e(s) = \frac{1}{1+W(s)}$, где W(s) – передаточная функция разомкнутой системы, $\Phi_e(s)$ – передаточная функция замкнутой системы по ошибке слежения (относительно задающего воздействия).

$$W(s) = \frac{2}{0.5s^2 + s + 2};$$

$$\Phi_e(s) = \frac{0.5s^2 + s + 2}{0.5s^2 + s + 4}$$

$$c_0 = \Phi_e(s)|_{s=0} = 0.5$$

$$c_1 = 0.125$$

$$c_2 = 0.375$$

$$e_y(t) = 0.5(2 + 0.1t^2) + 0.125 * 0.1t + 0.125 * 0.1$$

Рис. 21: Схема моделирование. Ряд Тейлора.

Рис. 22: График ошибки переходного процесса.

Вывод. В данной работе мы исследовали передаточные функции с различным остатизмом, при наличии внешних возмущений и без них. Получили установившиеся значения ошибки и сигнала. Проведенные исследования показали, что когда сигнал g = A, при увеличении коэффициента усиления K, ошибка стремится к нулю. Также на факт наличия или отсутствия установившейся ошибки влияет порядок астатизма. При увеличении порядка астатизма ошибка исчезает, становится равной нулю. Сильно влияют и внешние возмущения, при их наличии входной сигнал увеличивается.