Quantitative Sociological Analysis

Inferential Statistics Multivariate Statistics

Part 8

April 22-24, 2025

Multivariate LRM

$$Y = \beta_0 + \beta_1 X + \beta_2 X \dots + \beta_k X + \varepsilon$$

- When predicting an outcome (Y) as a function of an independent variable (X), this only
 - tells us how X alone is associated with Y
- What if another variable (Z) is associated with X and Y?
 - recall spuriousness (PPT 3)
- Multivariate modeling is a tool that can help address this issue
 - improve specification, the accuracy of the model
 - recall importance of theory

print(summary(model_3))

Multivariate LRM: example

$$\hat{Y}_{edu} = b_0 + b_1 white + b_2 polit$$

- We are interested in the association between edu and political party affiliation, but we also
 - know that race is associated with both

	Model 1	Model 2	Model 3
intercept	12.403***	12.851***	12.42***
white	0.712***		0.603***
republican		0.508***	0.382***
independent		- 0.278***	- 0.318***
R^2	0.008	0.008	0.014

- For each model can you interpret the:
 - intercept (β_0) , slope coefficient(s) (β_i) , and R^2
 - when more than 1 X, this is holding all other Xs "constant"

We are also concerned the association between edu and political affiliation may differ by race...

Moderation

- The effect of one predictor X_1 depends on the value of another X_2
 - in terms of strength and/or direction

- Can test with interaction terms
 - $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_{1*2} + \varepsilon$

Multivariate LRM: example

$$\hat{Y}_{edu} = b_0 + b_1 white + b_2 polit + b_{1*2} white \times polit$$

• We are interested in whether the association between edu and political party differs by race

	Model 1	Model 2	Model 3	Model 4
intercept	12.403***	12.851***	12.42***	12.44***
white	0.712***		0.603***	0.559***
republican		0.508***	0.382***	0.046
white*rep				0.371***
independent		- 0.278***	- 0.318***	-0.269***
white*ind				-0.058
R ²	0.008	0.008	0.014	0.014

- The inclusion of interaction terms alters the interpretation of slope coefficients
 - regarding their respective reference group
 - Notice how the coefficients change, and the association between edu and republican is no longer statistically significant

Let's further consider how interpret the results from this model with interaction terms...

Multivariate LRM: example

$$\hat{Y}_{edu} = b_0 + b_1 white + b_2 polit + b_3 white \times polit$$

• We are interested in whether the association between edu and political party differs by race

	Model 1	Model 2	Model 3	Model 4	
intercept	12.403***	12.851***	12.42***	12.44***	
white	0.712***		0.603***	0.559***	
republican		0.508***	0.382***	0.046	
white*rep				0.371***	
independent		- 0.278***	- 0.318***	-0.269***	
white*ind				-0.058	
R^2	0.008	0.008	0.014	0.014	

Interpretation guide

- Intercept: predicted years of edu for non-white dem
- White: among dem, white vs non-white edu
- Rep: among non-white, rep vs dem
- WRep: among white, rep vs dem
- Ind: among non-white, ind vs dem
- WInd: among white, ind vs dem

Multivariate LRM: example

1047 # let's run model 4 again using some different code 1048 # and plot the predicted values to aid interpretation

$$\hat{Y}_{edu} = b_0 + b_1 white + b_2 polit + b_3 white \times polit$$

• We are interested in whether the association between edu and political party differs by race

	Model 1	Model 2	Model 3	Model 4
intercept	12.403***	12.851***	12.42***	12.44***
white	0.712***		0.603***	0.559***
republican		0.508***	0.382***	0.046
white*rep				0.371***
independent		- 0.278***	- 0.318***	-0.269***
white*ind				-0.058
R ²	0.008	0.008	0.014	0.014

• See here for additional resources regarding interaction terms in LRM

Netflix survey data

- I augmented our dataset with 1,000 synthetic responses
 - retaining same data structure

- Download this augmented dataset, and
 - save in location where you can retrieve again

- Download the new Rscript, and
 - save in a location where you can retrieve again
- Recode comedy preference to better reflect a continuous variable, so we can
 - assume slope coefficients β_i from LRM reflect Y units

Let's run some LRM models with these augmented Netflix survey data...