Suites numériques

I. Généralités sur les suites numériques :

Activité D:

- 1. Compléter avec deux chiffres qui correspondent à la séquence de chacune des listes suivantes :
- a. 0, 3, 6, 9, ...
- b. 1, 2, 4, 8, ...
- c. $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$

Chacune des listes ci-dessus est appelée une **suite numérique** et les nombres qui la constituent sont appelés **termes** de cette suite.

2. Quelle est la relation que l'on adopte dans chaque liste pour passer d'un terme au terme suivant ?

1. Définition et Notation :

Soit p un entier naturel. On pose $I = \{n \in \mathbb{N}/n \ge p\}$.

Définition :

Tout fonction numérique u définie sur I est appelée suite numérique.

- L'image par u d'un entier n de I est notée u_n .
- u_n est appelé le terme général de la suite u.

O_Remarques:

- Une suite numérique u se note $(u_n)_{n\in I}$ ou $(u_n)_{n\geq p}$.
- Si $I = \mathbb{N}$, u se note (u_n) ou $(u_n)_n$ ou $(u_n)_{n>0}$ ou $(u_n)_{n\in\mathbb{N}}$.
- Si $I = \mathbb{N}^*$, u se note $(u_n)_{n \geq 1}$ ou $(u_n)_{n \in \mathbb{N}^*}$
- Le réel u_p est le premier terme de la suite $(u_n)_{n \ge p}$.

O Exemples:

- o La suite $(u_n)_{n\geq 0}$ telle que définie les multiples de 4. On a $u_0=0,\,u_1=4$ et $u_3=12$.
- o 1, 10, 100 et 1000 sont des termes de la suite $(v_n)_{n\geq 0}$ telle que $(\forall n\in\mathbb{N})$ $v_n=10^n$.
- o La suite de terme général $w_n = \sqrt{n-3}$ est définie $n \ge 3$. On la note donc par $(w_n)_{n\ge 3}$ et son premier terme est $w_3 = \sqrt{3-3} = 0$.

Application 0:

On considère la suite (u_n) définie par : $(\forall n \in \mathbb{N}^*)$: $u_n = 2 + \frac{3}{n}$.

- **1.** Calculer les trois premiers termes de (u_n) .
- **2.** Calculer $u_n + 1$, u_{n+1} , u_{2n} et u_{2n+1} pour tout n de \mathbb{N}^* .
- **3.** Trouver l'indice n tel que $u_n = \frac{43}{21}$.

O_Remarques:

On distingue deux types de suites numériques :

- Suite définie explicitement par son terme général. C'est une suite où le terme général est une fonction connue de l'entier n.
- *Suite récurrente*. C'est une suite définie par son premier terme et par une relation qui permet de calculer un terme à partir d'un ou de plusieurs termes précédents.

O Exemples:

On considère les suites (u_n) , (v_n) et (w_n) définies respectivement par :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 3u_n - 1; \ n \in \mathbb{N} \end{cases}, \begin{cases} v_n > ct \ (w_n) \text{ definites respectivement pair} \\ v_{n+2} = \frac{2v_{n+1}}{v_n}; \ n \in \mathbb{N} \end{cases} \text{ et } (\forall n \in \mathbb{N}) : w_n = 2^n - \frac{4}{n}.$$

Les suites (u_n) et (v_n) sont des suites récurrentes tandis que (w_n) est une Suite définie explicitement par son terme général.

Application @:

On considère les suites (u_n) et (v_n) définies respectivement par $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{1 + u_n}; n \in \mathbb{N} \end{cases}$ et $(v_0 = 2, v_1 = -1)$

$$\begin{cases} v_0 = 2 \text{ , } v_1 = -1 \\ v_{n+2} = 2v_{n+1} + v_n; \ n \in \mathbb{N} \end{cases}.$$

- **1.** Calculer u_1, u_2, v_3 et v_4 .
- **2.** Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $u_n = \frac{2}{2n+1}$.
 - 2. Suites majorée suites minorées suites bornées :

Activité 2:

On considère la suite (u_n) définie par $u_n = \frac{n+4}{n+1}$ pour tout $n \in \mathbb{N}$.

1. Montrer que $u_n \le 4$ pour tout $n \in \mathbb{N}$.

On dit que la suite (u_n) est majorée par 4.

2. Montrer que $u_n \ge 1$ pour tout $n \in \mathbb{N}$.

On dit que la suite (u_n) est minorée par 1.

3. En déduire que $1 \le u_n \le 4$ pour tout $n \in \mathbb{N}$.

On dit que la suite (u_n) est bornée.

PP Définition :

Soit $(u_n)_{n\in I}$ une suite numérique.

- On dit que $(u_n)_{n\in I}$ est **majorée** si et seulement s'il existe un réel M tel que $(\forall n\in I): u_n\leq M$.
- On dit que $(u_n)_{n\in I}$ est **minorée** si et seulement s'il existe un réel m tel que $(\forall n \in I): U_n \geq m$.
- On dit que $(u_n)_{n\in I}$ est **bornée** si est à la fois majorée et minorée.

O Exemple: extrait de rat 2013

On considère la suite (u_n) définie par $u_0=2$ et $u_{n+1}=\frac{1}{5}u_n+\frac{4}{5}$ pour tout $n\in\mathbb{N}$.

Montrons par récurrence que la suite (u_n) est minorée par 1.

Application 3:

On considère la suite
$$(u_n)$$
 définie par
$$\begin{cases} U_0 = 4 \\ U_{n+1} = \frac{4U_n - 3}{U_n} & \forall n \in \mathbb{N} \end{cases}$$

Montrer que $(\forall n \in \mathbb{N}): U_n \geq 3$.

Exercice 1:

On considère la suite
$$(u_n)$$
 définie par
$$\begin{cases} U_0 = 0 \\ U_{n+1} = \frac{2U_n + 1}{U_n + 2} & \forall n \in \mathbb{N} \end{cases}.$$

Montrer que $(\forall n \in \mathbb{N}): 0 \le U_n \le 1$.

Propriété:

 $(u_n)_{n\in I}$ est une suite numérique.

 $(u_n)_{n\in I}$ est bornée si et seulement si $(\exists M\in\mathbb{R}^+_*)$; $(\forall n\in I): |U_n|\leq M$.

O Exemple:

On considère la suite (u_n) définie par $U_n = 2\cos(n^2 + 2) + 1$ pour tout $n \in \mathbb{N}$.

On a $(\forall n \in \mathbb{N}): |U_n| \le 3$, alors (u_n) est bornée.

3. Monotonie d'une suite :

PP Définition :

Soit $(u_n)_{n\in I}$ une suite numérique.

- On dit que $(u_n)_{n \in I}$ est **croissante** si et seulement si $(\forall p; q \in I): p < q \Rightarrow u_p \leq u_q$.
- On dit que $(u_n)_{n \in I}$ est **décroissante** si et seulement si $(\forall p; q \in I): p < q \Rightarrow u_p \geq u_q$.
- On dit que $(u_n)_{n \in I}$ est **constante** si et seulement si $(\forall p; q \in I): p < q \Rightarrow u_p = u_q$.

Propriété:

 $(u_n)_{n\in I}$ est une suite numérique.

- $(u_n)_{n \in I}$ est croissante si et seulement si $(\forall n \in I)$: $u_{n+1} \ge u_n$.
- $(u_n)_{n\in I}$ est décroissante si et seulement si $(\forall n\in I): u_{n+1} \leq u_n$

○ Soit (x_n) la suite définie par : $(\forall n \in \mathbb{N})$: $x_n = 2n - 3$.

Soit $n \in \mathbb{N}$, on a : $x_{n+1} - x_n = 2(n+1) - 3 - (2n-3)$ = 2n + 2 - 3 - 2n + 3 = 2 > 0

Donc : $(\forall n \in \mathbb{N})$: $x_{n+1} - x_n > 0$.

D'où (x_n) est croissante (plus précisément est strictement croissante).

○ Soit (y_n) la suite définie par : $(\forall n \in \mathbb{N})$: $y_n = 5 \times (\frac{2}{3})^n$.

Soit
$$n \in \mathbb{N}$$
, on a: $y_{n+1} - y_n = 5 \times \left(\frac{2}{3}\right)^{n+1} - 5 \times \left(\frac{2}{3}\right)^n$
= $5 \times \left(\frac{2}{3}\right)^n \times \left(\frac{2}{3} - 1\right) = 5 \times \left(\frac{2}{3}\right)^n \times \left(\frac{-1}{2}\right) < 0$.

Donc $(\forall n \in \mathbb{N}): y_{n+1} - y_n < 0.$

D'où (y_n) est strictement décroissante.

Application @:

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ dans les cas suivants :

1. $u_n = \frac{3}{n+1}$

2. $u_n = n^2 + 2n$ **3.** $u_n = \sqrt{n+1}$

4. $u_n = (-1)^n$

O_Remarques:

 $(u_n)_{n\geq p}$ est une suite numérique.

• Si $(u_n)_{n \ge p}$ est croissante, alors $(\forall n \ge p)$: $u_n \ge u_p$.

• Si $(u_n)_{n \ge p}$ est décroissante, alors $(\forall n \ge p)$: $u_n \le u_p$.

Application 5:

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 6 \\ u_{n+1} = 4 - \frac{3}{u_n} \end{cases} ; \forall n \in \mathbb{N}$

1. Calculer u_1 et u_2 .

2. Montrer que $(\forall n \in \mathbb{N})$: $u_n > 3$.

3. a. Montrer que $(\forall n \in \mathbb{N}): U_{n+1} - U_n = \frac{(1 - U_n)(U_n - 3)}{U_n}$.

b. Etudier la monotonie de la suite (u_n) .

c. En déduire que $(\forall n \in \mathbb{N})$: $u_n \le 6$.

🗷 Exercice ②:

Soit (v_n) la suite définie par : $\begin{cases} v_0 = 3 \\ v_{n+1} = \frac{1}{2} \left(v_n + \frac{4}{v_n} \right) ; \forall n \in \mathbb{N} \end{cases}$

1. Calculer v_1 et v_2 .

2. Montrer que la suite (v_n) est minorée par 2.

3. Etudier la monotonie de la suite (v_n) .

4. En déduire que la suite (v_n) est majorée par 3.

Suite arithmétique : II. 0/2000

1. Définitions :

Activité 3:

On considère la suite (u_n) définie par $u_n=3n+2$ pour tout $n\in\mathbb{N}$.

1. Vérifier que $u_1 = u_0 + 3$, $u_2 = u_1 + 3$ et $u_3 = u_2 + 3$.

2. Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} = u_n + 3$.

On remarque que pour calculer un terme de cette suite on ajoute 3 au terme précédent. On dit que la suite (u_n) est **arithmétique** de **raison** r=3.

PP Définition :

Soit $(u_n)_{n\in I}$ une suite numérique.

On dit que $(u_n)_{n\in I}$ est **arithmétique** s'il existe un nombre réel r tel que $(\forall n \in I)$: $u_{n+1} = 1$ $u_n + r$.

Le nombre r est appelé **la raison** de la suite $(u_n)_{n \in I}$.

O_Technique:

Pour savoir si une suite (u_n) est arithmétique on calcule la différence $u_{n+1} - u_n$, si le résultat est une constante r indépendante de n, alors la suite est arithmétique de raison r.

O Exemples:

- \circ Montrons que la suite (u_n) définie par $(\forall n \in \mathbb{N})$: $u_n = -\frac{3}{2}n + 5$ est arithmétique.
- o Montrons que la suite (v_n) définie par $(\forall n \in \mathbb{N})$: $v_n = n^2 + 5$ n'est pas arithmétique.

Application 6:

Soit
$$(u_n)$$
 la suite définie par $:$ $\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{2u_n - 1}{u_n} \end{cases}$; $(\forall n \in \mathbb{N})$

On pose :
$$\forall n \in \mathbb{N}$$
 ; $v_n = \frac{1}{u_{n-1}}$

Montrer que (v_n) est une suite arithmétique, préciser sa raison et son premier terme.

2. Terme général d'une suite arithmétique :

Propriété:

 $(u_n)_{n\in I}$ est une suite arithmétique de raison r et de premier terme u_n .

Le terme général de $(u_n)_{n\in I}$ est : $u_n = u_p + (n-p) \times r$ pour tout $n \ge p$.

O_Remarque:

En particulier, si
$$p = 0$$
, on a : $u_n = u_0 + n \times r$.

Si
$$p = 1$$
, on a : $u_n = u_1 + (n - 1) \times r$.

O Exemple 0:

Soit (u_n) une suite arithmétique de raison $r = \frac{1}{2}$ et $u_6 = 3$. Calculons u_{30} .

On a:
$$u_{30} = u_6 + (30 - 6) \times \frac{1}{2} = 15$$
.

O Exemple @:

Soit (u_n) une suite arithmétique de raison r tel que $u_0 = 5$ et $u_{100} = -45$

Déterminons r et u_n en fonction de n

On a $u_{100} = u_0 + 100r$.

Donc:
$$100r = u_{100} - u_0 = -45 - 5 = -50$$
.

Donc:
$$100r = u_{100} - u_0 = -45 - 5 = -50$$
.
D'où: $r = \frac{-50}{100} = \frac{-1}{2}$ et par suite $u_n = u_0 + nr = -5 - \frac{1}{2}n$ pour tout $n \in \mathbb{N}$.

Application 7:

Soit (u_n) une suite arithmétique telle que $u_1 = 5$ et r = 2.

- **1.** Calculer u_5 ; u_{10} et u_{100} .
- **2.** Déterminer le terme général de la suite (u_n) .
- **3.** Est-ce que 203 est un terme de la suite (u_n) .

3. Somme de termes consécutifs d'une suite arithmétique :

Propriété:

 $(u_n)_{n\in I}$ est une suite arithmétique . On a :

$$(\forall n; p \in \mathbb{N}): p \le n: S_n = u_p + u_{p+1} + \dots + u_n = (n-p+1) \left(\frac{u_n + u_p}{2}\right).$$

- u_p : le premier terme de la somme.
- (n-p+1): le nombre des termes.

Application 8:

Soit (v_n) une suite arithmétique telle que $v_3 = 2$ et $v_7 = 14$.

- 1. Détermine la raison r de cette suite et son premier terme v_0 .
- **2.** Exprimer v_n en fonction de n.
- **3.** Calculer la somme : $S = v_4 + v_5 + v_6 + ... + v_{25}$.

🗷 Exercice 3:

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{5u_n - 1}{u_n + 3} \end{cases} ; (\forall n \in \mathbb{N})$

On pose : $\forall n \in \mathbb{N}$; $v_n = \frac{1}{u_{n-1}}$.

- **1.** Montrer que : $(\forall n \in \mathbb{N})$: $u_n > 1$.
- **2.** Etudier la monotonie de la suite (u_n) .
- **3.** Montrer que (v_n) est une suite arithmétique, préciser sa raison et son premier terme .
- **4.** Exprimer v_n puis u_n en fonction n.
- **5.** Calculer la somme : $S = v_0 + v_1 + v_2 + ... + v_n$.

III. Suite géométrique :

1. Définitions:

Activité @:

On considère la suite (u_n) définie par $u_n = 3 \times 2^n$ pour tout $n \in \mathbb{N}$.

- **3.** Vérifier que $u_1 = 2u_0$, $u_2 = 2u_1$ et $u_3 = 2u_2$.
- **4.** Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} = u_n + 3$.

On remarque que pour calculer un terme de cette suite on multiple terme précédent par 2. On dit que la suite (u_n) est **géométrique** de **raison** q=2.

PP Définition :

Soit $(u_n)_{n \in I}$ une suite numérique.

On dit que $(u_n)_{n\in I}$ est **géométrique** s'il existe un nombre réel q tel que $(\forall n \in I)$: $u_{n+1} = qu_n$.

Le nombre q est appelé *la raison* de la suite $(u_n)_{n \in I}$.

O Exemples:

- \circ Montrons que la suite (u_n) définie par $(\forall n \in \mathbb{N})$: $u_n = -7 \times 5^n$ est géométrique.
- o Montrons que la suite (v_n) définie par $(\forall n \in \mathbb{N})$: $v_n = n^2 + 5$ n'est pas géométrique.

Application 9:

Soit
$$(u_n)$$
 la suite définie par :
$$\begin{cases} u_0 = -2 \\ u_{n+1} = \frac{2}{3}u_n - 1 ; \ (\forall n \in \mathbb{N}) \end{cases}$$

On pose : $\forall n \in \mathbb{N}$; $\mathbf{v}_n = u_n + 3$

Montrer que (v_n) est une suite géométrique, préciser sa raison et son premier terme.

2. Terme général d'une suite arithmétique :

Propriété:

 $(u_n)_{n\in I}$ est une suite géométrique de raison q et de premier terme u_p .

Le terme général de $(u_n)_{n\in I}$ est : $u_n = u_p \times q^{n-p}$ pour tout $n \ge p$.

$O_Remarque$:

En particulier, si p = 0, on a : $u_n = u_0 \times q^n$.

Si
$$p = 1$$
, on a : $u_n = u_1 \times q^{n-1}$.

O Exemple.

Soit (u_n) une suite géométrique telle que $u_2 = \frac{3}{16}$ et $u_5 = \frac{3}{1024}$.

Déterminons u_n en fonction de n.

Soit qla raison de cette suite.

On a:
$$u_5 = u_2 \times q^{5-2}$$
. Donc $q^3 = \frac{u_5}{u_2} = \frac{1}{64} = \left(\frac{1}{4}\right)^3$.

Alors
$$q = \frac{1}{4}$$
.

Il en résulte d: $u_n = u_2 \times q^{n-2} = \frac{3}{16} \times \left(\frac{1}{4}\right)^{n-2}$.

Par suite : $u_n = 3 \times \left(\frac{1}{4}\right)^n$.

\boldsymbol{z} Application $\boldsymbol{\mathcal{Q}}\boldsymbol{\mathcal{Q}}$:

Soit (v_n) une suite de raison q = 2 et de premier terme $v_1 = 5$.

- 1. Calculer u_4 .
- **2.** Exprimer v_n en fonction de n.

3. Somme de termes consécutifs d'une suite arithmétique :

Propriété:

Soit (u_n) une suite géométrique de raison q, on a : $\forall n; p \in \mathbb{N}$; $p \leq n$: $S_n = u_p + u_{p+1} + \ldots + u_n$.

- $ightharpoonup ext{Si } q \neq 1, ext{ alors } S_n = u_p ext{\times} \Big(\frac{1 q^{n-p+1}}{1 q} \Big).$
- ightharpoonup Si q=1, alors $S_n=(n-p+1)\times u_p$.
- u_p : le premier terme de la somme.
- (n-p+1): le nombre des termes.

O_Remarque:

Pour tout $q \in \mathbb{R}^* \setminus \{1\}$, on $a: 1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$

Application OO:

Soit (u_n) une suite géométrique telle que q=3 et $U_4=12$. Calculer la somme $S=U_4+U_5+U_6+\ldots+U_{2006}$.

Exercice Exercic Exercice Exercice Exercic Exercic

Soit (u_n) la suite définie par $:\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2u_n + 3}{u_n + 4} \end{cases}$; $(\forall n \in \mathbb{N})$

On pose : $\forall n \in \mathbb{N}$; $v_n = \frac{u_n - 1}{u_n + 3}$.

- **1.** Montrer que : $(\forall n \in \mathbb{N})$: $0 < u_n < 1$.
- **2.** En déduire la monotonie de la suite (u_n) .
- ${f 3.}$ Montrer que (v_n) est une suite géométrique , préciser sa raison et son premier terme .
- **4.** Exprimer v_n puis u_n en fonction n.
- **5.** Calculer la somme : $S = v_0 + v_1 + v_2 + ... + v_n$.