Conexión de una pantalla LCD 16x2 a la Raspberry Pi para la presentación de mensajes en pantalla.

Bryan V. Alvarado-Evelin E. Hidalgo-Carlos E. Orellana- Carlos S. Veloz

Departamento de Eléctrica y electrónica, Universidad de las Fuerzas Armadas "ESPE", Sangolquí, Ecuador

May 28, 2019

PLANTEAMIENTO DEL PROBLEMA

Se desconoce el funcionamiento, control y conexión de una Raspberry Pi a una pantalla LCD 16x2 para la presentación de mensajes, para lo cual se formularon las siguientes preguntas:

¿Cómo funciona una Raspberry Pi?

¿Cuál es el lenguaje de programación utilizado para controlar la pantalla LCD 16x2 para presentación de mensajes?

¿Cómo se conecta una pantalla LCD 16x2 a una Raspberry Pi?

Conectar una pantalla LCD 16x2 a una Raspberry Pi 3 - Modelo B para proyectar un mensaje en la LCD.

Comprender la estructura de control básica de Python para controlar una pantalla LCD 16X2 mediante una Raspberry Pi.

Conocer la función y estructura de cada pin que integra una LCD 16x2.

· Identificar los pines de configuración y las conexiones necesarias para establecer comunicación entre la pantalla LCD 16x2 y la Rapsberry Pi.

OBJETIVOS

OBJETIVO GENERAL

Conectar una pantalla LCD 16x2 a una Raspberry Pi 3 - Modelo B para proyectar un mensaje en la LCD.

OBJETIVOS ESPECÍFICOS

- Comprender la estructura de control básica de Python para controlar una pantalla LCD 16X2 mediante una Raspberry Pi.
- Conocer la función y estructura de cada pin que integra una LCD 16x2.
- ▶ Identificar los pines de configuración y las conexiones necesarias para establecer comunicación entre la pantalla LCD 16x2 y la Rapsberry Pi.

MARCO TEÓRICO

Raspberry Pi

Es un pequeño ordenador con arquitectura ARM el cual está montado en forma de placa de circuito integrado, pensado para ocupar un mínimo espacio de bajo coste y bajo consumo cuyos primeros modelos fueron lanzados en abril de 2012.

Pantalla LCD 16x2

El LCD(Liquid Crystal Dysplay) o pantalla de cristal líquido es un dispositivo empleado para la visualización de contenidos o información de una forma gráfica, mediante caracteres, símbolos o pequeños dibujos dependiendo del modelo. Está gobernado por un microcontrolador el cual dirige todo su funcionamiento.

Pin	Nombre del Pin	Función del Pin
1	Vss	Masa
2	VDD	+ 5 V
3	Vee	Ajuste de contraste
4	RS	Selección de modo
5	RW	Lectura / Escritura
6	EN	Habilitación (1) / Deshabilitación (0)
7	DB0	Línea de datos (LSB)
8	DB1	Línea de datos
9	DB2	Línea de datos
10	DB3	Línea de datos
11	DB4	Línea de datos
12	DB5	Línea de datos
13	DB6	Línea de datos
14	DB7	Línea de datos (MSB)
15	LED+	LED (ánodo)
16	LED-	LED (cátodo)

_						
1	Alternate Function					Alternate Function
١		3.3V PWR	1	E E	2 5V PWR	
١	I2C1 SDA	GPIO 2	3		4 5V PWR	
١	I2C1 SCL	GPIO 3	5		6 GND	
١		GPIO 4	7	E E	8 UARTO TX	
١		GND	9		10 UARTO RX	
١		GPIO 17	111		12 GPIO 18	
١		GPIO 27	13		14 GND	
١		GPIO 22	15		16 GPIO 23	
١		3.3V PWR	17		18 GPIO 24	
١	SPIO MOSI	GPIO 10	19		20 GND	
١	SPIO MISO	GPIO 9	21		22 GPIO 25	
١	SPIO SCLK	GPIO 11	23		24 GPIO 8	SPIO CSO
١		GND	25		26 GPIO 7	SPIO CS1
١		Reserved	27		28 Reserved	
١		GPIO 5	29		30 GND	
١		GPIO 6	31		32 GPIO 12	
١		GPIO 13	33		34 GND	
١	SPI1 MISO	GPIO 19	35		36 GPIO 16	SPI1 CS0
		GPIO 26	37		38 GPIO 20	SPI1 MOSI
VI		GND	39		40 GPIO 21	SPI1 SCLK

LISTA DE COMPONENTES

- Raspberry Pi
- raspbian
- ▶ Python 3IDLE
- ► 1 Cable HDMI a VGA

The state of the s

- Potenciómetro 10K
- Cables conectores
- ► Pantalla LCD 16x2
- Proto board
- ► Micro SD de 8 GB

EJECUCIÓN DEL TRABAJO DE INVESTIGACIÓN

Para ejecutar el código en Python en la Raspberry pi 3 – modelo B, primero se debe instalar el sistema operativo en el micrordenador, la descarga del software se la realiza directamente de la página oficial de Raspberry: https://www.raspberrypi.org

Descargar la interfaz NOOBS, por defecto tiene precargado el sistema operativo RASBIAN, en esta interfaz se va a implementar el código fuente de Python para realizar el control de leds, NOOBS se descarga como un archivo comprimido

Para guardar el sistema operativo se utiliza una tarjeta Micro SD, pero antes se la debe formatear, el programa que se utiliza para formatear la tarjeta es de libre acceso en el siguiente link: https://www.sdcard.org/downloads/formatter4/eulawindows/

Según el equipo se realiza la descarga para 32 o 64 bits, en este caso es para 64 bits. Al ejecutar el programa debemos seleccionar la unidad del disco donde se encuentra la Micro SD y el formato deseado.

SD Card Formatter			×
File Help			
Select card			
G:\			~
			Refresh
Card information			
Type	SDHC		53
Capacity	28.97 GB		==
Formatting options © Quick format			
Overwrite format			
CHS format size adj	justment		
Volume label			
Progress: 28 %			Format
SD Logo, SDHO	Logo and SDXC	Logo are trademarks	of SD-3C, LLC.

Una vez formateada se debe copiar el archivo NOOBS_v3_0_1.zip en la tarjeta y descomprimirlo

Second Section


```
"untitled"
File Edit Format Run Ontions Window Heln
                # Esta libreria sirve para asignar constantes filas a los pines
                # del tablero, esto hace que usar el módulo de la placa sea
                # más seguro v confiable
 import digitalio # Este módulo sirve utilizar la pantalla LCD con una
                   # retroalimentación de un solo color, en el caso que se
                   # desee una retroalimentación RGB (varios colores) se debe
                   # definir los pines de salida según su ubicación en el board
                   # v el color
 import adafruit character lcd.character lcd as characterlcd
            # Este módulo permite escribir fácilmente el código de Python
            # que controla una LCD de caracteres (va sea con luz de fondo
            # individual o con luz de fondo RGB)
#---- TAMAÑO DE LA PANTALLA LCD -----
 lod columns = 16 # Estas lineas de código definen el tamaño de caracteres de
1cd rows = 2
                   # nuestra LCD, en este caso la phatalla LCD es de 16 columns
                   # v 2 filas, si se tiene una LCD de caracteres de diferente
                   # tamaño se debe modificar estos valores
 #---- ASIGNACIÓN DE LOS PINES DE CONFIGURACIÓN DE LA RASPBERRY PI Y LCD ------
 #Según la ubicación en la placa :
                                            -LCD- -RASPBERRY PI 3-MODELO B-
 lcd rs = digitalio.DigitalInOut(board.D22) # pin 4
                                                            nin 15
lcd en = digitalio.DigitalInOut(board.D17) # pin 6
                                                            pin 11
 lcd d4 = digitalio.DigitalInOut(board.D25) # pin 11
                                                            pin 22
 1cd d5 = digitalio.DigitalInOut(board.D24) # min 12
                                                            pin 18
1cd d6 = digitalio.DigitalInOut(board.D23) # pin 13
                                                            pin 16
 lcd d7 = digitalio.DigitalInOut(board.Dl8) # pin 14
                                                            nin 12
 # INTCIDITIONNOS LA CLASE LCD
 lod = characterlod.Character LCD Mono(lod rs. lod en. lod d4. lod d5. lod d6.
```

led d7. led columns, led rows)

a "untitled" File Edit Format Run Ontions Window Help THE EDIC FORMAL KUN OPTIONS WHILDOW FIELD # INICIALIZAMOS LA CLASE LCD lcd = characterlcd.Character LCD Mono(lcd rs, lcd en, lcd d4, lcd d5, lcd d6, 1cd d7, 1cd columns, 1cd rows) # Esta linea de código especifica el tipo de retroalimentación de la pantalla # reconociendo la función de cada pin de la LCD, la retroalimentacion t es de un solo color, esto gueda especificado en el argumento "Mono", para varios # colores el argumento seria "RGB" # CUERPO (VOID) print (' Mensaje Proyectado \n') # En esta linea se imprime un mensaje que # indique que el texto va se provecto en la LCD # el mensate que se va a provectar # en la pantalla LCD, tomando en cuenta # que solo se pueden escribir 16 caracteres # por linea de texto, para escribir # en la siguiente linea se utiliza # el argumento "\n" print ('Digite 2 para horrar la papealla LCD') # En esta linea se imprime un mensate # que indica al usuario quede digitar el # numero 2 para borrar la pantalla del LCD a= int(input()) # Se quarda en una variable el valor ingresado por el usuario, el valor es # de tipo entero "int" e "input" debido a que es un dato de entrada if a==2: # Primera condición a cumplir según el dato que ingrese el usuario lcd.clear() # Esta linea sirve para BORRAR la pantalla LCD else: # Contra nunto de la primera condición print ('Opcion incorrecta') # En el caso que se digite un numero distinto a 2 se imprime # el signiente mensale

18 / 23

Asignación de pines Raspberry Pi-LCD16x2

	RASPBERRY PI 3	i i	LCD
GND	PIN 6	VSS	PIN 1
		RW	PIN 5
		K(-)	PIN 16
5V PWR	PIN 2	VDD	PIN 2
		A(+)	PIN 15
GPIO 25	PIN 22	D4	PIN 11
GPIO 24	PIN 18	D5	PIN 12
GPIO 23	PIN 16	D6	PIN 13
GPIO 18	PIN 12	D7	PIN 14
GPIO 22	PIN 15	RS	PIN 4
GPIO 17	PIN 11	E	PIN 6
	POTENCIOMETRO	2	LCD
TERMINAL	SEÑAL	Vo/VE	PIN 3
GND	PROTO -		W. 100 W.
5V	PROTO +		

RESULTADOS

APORTACIONES

CONCLUSIONES

En conclusión:

- La mejor forma de establecer la comunicación entre la Raspberry Pi y la pantalla LCD, es mediante la utilzación de la interfaz de Python, simplemente se debe importar la librería Adafruit y definir los pines de salidas de datos, los dispositivos actuaran según las instrucciones que se indiquen en el código fuente.
- Los pines de la pantalla LCD cumplen con una función específica para la transmisión y respuesta de datos, esto facilita la interacción entre el usuario y la consola, resultado de dicha interacción es la proyección del mensaje en la LCD.
- Tanto la Raspberry Pi como la pantalla LCD son dispositivos fácilmente adaptables a un entorno de programación con Python siempre y cuando se limite de forma correcta sus variables y se identifique tanto sus pines de control de datos como los pines de configuración y de alimentación.

BIBLIOGRAFÍA

[1]Akila, IS, Akshaya, B., Deepthi, S., y Sivadharshini, P. (2018). Un lector de texto para discapacitados visuales utilizando Raspberry Pi. 2018 Segunda Conferencia Internacional sobre Metodologías de Computación y Comunicación (ICCMC). doi: 10.1109 / iccmmc.2018.8487513

[2] Pattichis, MS, Celedon-Pattichis, S., y LopezLeiva, C. (2017). Enseñanza de imágenes y procesamiento de video utilizando las matemáticas de la escuela media y la Raspberry Pi. Conferencia Internacional IEEE 2017 sobre Acústica, Procesamiento de Voz y Señal (ICASSP). doi: 10.1109 / icasssp.2017.7953378