Xử lý tín hiệu số

Chương 4. Phân tích tín hiệu và hệ thống trên miền tần số 4.2. Phân tích tín hiệu rời rạc trên miền tần số

TS. Nguyễn Hồng Quang

Viện Công nghệ thông tin và Truyền thông Trường Đại học Bách Khoa Hà Nội

Nội dung

- 4.2.1. The Fourier Series for Discrete-Time Periodic Signals
- 4.2.2. Power Density Spectrum of Periodic Signals
- 4.2.3. The fourier Transform of Discrete-Time Aperiodic Signals
- 4.2.4. Convergence of the Fourier Transform
- 4.2.5. Energy Density Spectrum of Aperiodic Signals
- 4.2.6. Relationship of the Fourier Transform to the z Transform

4.2.1. Biểu diễn chuỗi Fourier cho tín hiệu rời rạc tuần hoàn

$$s_{k}(n) = e^{j2\pi kn/N} = e^{j\omega_{k}n}$$

$$x(n) = \sum_{k=0}^{N-1} c_{k} e^{j\omega_{k}n} \quad \omega_{k} = k \cdot \frac{2\pi}{N} \quad s_{k}(n) = s_{k+N}(n) \quad c_{k+N} = c_{k}$$

$$x(n) \text{ thực } c_{k}^{*} = c_{-k} \quad x(n) = c_{0} + 2\sum_{k=1}^{L} |c_{k}| \cos\left(\frac{2\pi}{N}kn + \theta_{k}\right)$$

$$a_{0} = c_{0}$$

$$a_{k} = 2|c_{k}| \cos\theta_{k}$$

$$= a_{0} + \sum_{k=1}^{L} \left(a_{k} \cos\frac{2\pi}{N}kn - b_{k} \sin\frac{2\pi}{N}kn\right)$$

$$b_k = 2|c_k|\sin\theta_k$$

$$= a_0 + \sum_{k=1}^{L} \left(a_k \cos \frac{2\pi}{N} kn - b_k \sin \frac{2\pi}{N} kn \right)$$

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 Fourier của các tín hiệu sau, từ đó vẽ phổ biên độ

Xác định các hệ số chuỗi

(b) $x(n) = \cos \pi n/3$ và phổ pha:

(c) x(n) is periodic with period N=4 and

$$x(n) = \{1, 1, 0, 0\}$$

Bài tập 2. Tìm các hệ số chuỗi Fourier và vẽ phổ biên độ, phổ pha của các tín hiệu sau:

- **Bài 1.** $x(n) = cos(2\pi n/5 + \pi/3)$
- **Bài 2.** $x(n) = 9 + 3.\sin(2\pi n/5 + \pi/4) + 7.\cos(6\pi n/5 + \pi/3)$

Bài 3. Một tín hiệu x(n) tuần hoàn với chu kỳ N=7:

$$x(n) = 1 + \sin(2\pi n/N + \pi/6) + 3.\cos(4\pi n/N + \pi/4) j \frac{\pi}{6}$$
Bài 4. $x(n)$ thực, tuần hoàn với chu kỳ N=5, $c_0 = 2$ $c_2 = 2$ e
 $j \frac{\pi}{3}$
Bài 5. Xác định $x(n)$ biết: $x(n)$ tuần hoàn với chu kỳ
 $c_4 = 4 \cdot e$

$$\sum_{n=0}^{N-5} 6x(n) = 2\sum_{n=0}^{5} (-1)^n \cdot x(n) = 1$$

Bài 6. x(n) là tín hiệu tuần hoàn với N=7, x(n) là tín hiệu thực, lẻ. Biết a_{15} =j, a_{16} =2j, a_{17} =3j.

Hãy xác định tín hiệu x(n)

x(n) là tín hiệu có công suất nhỏ nhất (trên một chu kỳ) trong số các tín hiệu thỏa mãn 3 điều kiện trên

<u>Bài 7.</u> Biết x(n) thực, chẵn, tuần hoàn với chu kỳ N=10, $a_{11} = 5$

Biết x(n) = A.cos(Bn+C)

Hãy tìm các hệ số A, B, C

$$x(n) = \sum \left(4\delta(n-4m) + 8\delta(n-1-4m)\right)$$

4.2.2 Phổ mật độ công suất

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 \quad P_x = \sum_{k=0}^{N-1} |c_k|^2$$

$$k=0,+N,\pm 2N,\ldots$$

 $c_{k} = \begin{cases} \frac{AL}{N}, \\ \frac{A}{N}e^{-j\pi k(L-1)/N} \frac{\sin(\pi kL/N)}{\sin(\pi k/N)}, \end{cases}$

otherwise

$$|c_k|^2 = \begin{cases} \left(\frac{AL}{N}\right)^2, & k = 0, +N, \pm 2N, \dots \\ \left(\frac{A}{N}\right)^2 \left(\frac{\sin \pi k L/N}{\sin \pi k/N}\right)^2, & \text{otherwise} \end{cases}$$

20

30

4.2.3. Biến đổi Fourier của tín hiệu rời rạc không tuần hoàn

- Phổ tín hiệu : $x(n) \rightarrow X(\omega)$: a_k
- Phổ biên độ: $R(\omega) = |X(\omega)| : A_k$
- Phổ pha : $\varphi(\omega) = \arg(X(\omega)) : \varphi_k$

$$\begin{array}{l} \mathsf{DTFT}: \quad X\left(\omega\right) = \sum_{n=-\infty}^{\infty} x(n).e^{-j\omega n} \\ \mathsf{IDTFT}: \quad x(n) = \frac{1}{2\pi} \int_{2\pi} X\left(e^{j\omega}\right).e^{j\omega n} d\omega \\ \\ X\left(e^{j\omega}\right) = R(\omega).e^{j.\varphi(\omega)} \\ \\ R(\omega) = |X\left(e^{j\omega}\right)| \geqslant 0 \\ \\ -\pi \leqslant \varphi(\omega) = arg\left[X\left(e^{j\omega}\right)\right] \leqslant \pi \end{array}$$

Tính phổ tín hiệu, vẽ phổ biên độ và phổ pha : $x(n) = \delta(n)$, $\delta(n-1)$, $\delta(n-2)$, $rect_3(n)$, $\delta(n+1) + \delta(n-1)$, $x(n) = (1/2)^n \cdot u(n)$

4.2.4. Tính hội tụ của phép biến đối Fourier

$$X_N(\omega) = \sum_{n=-N}^{N} x(n)e^{-j\omega n} \quad \lim_{N \to \infty} \left\{ \sup_{\omega} |X(\omega) - X_N(\omega)| \right\} = 0$$

$$\text{converges uniformly to X(w) as } N \to \infty$$

$$\lim_{N \to \infty} \left\{ \sup_{\omega} |X(\omega) - X_N(\omega)| \right\} = 0$$

every ω , $X_N(\omega) \to X(\omega)$, as $N \to \infty$

if x(n) is absolutely summable: $\sum |x(n)| < \infty$

$$\sum_{n=-\infty}^{\infty} |x(n)| < \infty$$

if x(n) is absolutely summable:
$$\sum_{n=-\infty} |x(n)| < \infty$$
 weaker condition: finite-energy sequences
$$E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 < \infty$$

$$X(\omega) = \begin{cases} 1, & |\omega| \le \omega_c & \lim_{N \to \infty} \int_{-\pi}^{\pi} |X(\omega) - X_N(\omega)|^2 d\omega = 0 \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

$$\int \frac{\omega_c}{\pi} e^{-\pi} dx = 0$$

$$x(n) = \begin{cases} \frac{\omega_c}{\pi}, & n = 0\\ \frac{\omega_c}{\pi} \frac{\sin \omega_c n}{\omega_c n}, & n \neq 0 \end{cases}$$

$$x(n) = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

Hiệu ứng Gibbs Gibbs phenomenon

$$x(n) = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

$$\sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} = \sum_{n=-\infty}^{\infty} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

x(n) is not absolutely summable, so this series does not converge uniformly for all w

However, the sequence x(n) has a finite energy $E_x = \omega_c/\pi$

So this series guaranteed to converge to the X(w) given in the mean-square sense.

$$X_N(\omega) = \sum_{n=-N}^{N} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

There is a significant oscillatory overshoot at $\omega = \omega_c$, independent of the value of N.

As N increases, the oscillations become more rapid, but the size of the ripple remains the same.

One can show that as N $\rightarrow \infty$, the oscillations converge to the point of the discontinuity at $\omega = \omega_c$, but their amplitude does not go to zero.

However, $X_N(\omega)$ converges to $X(\omega)$ in the mean-square sense. The Gibbs phenomenon will be encountered again in the design of practical, discrete-time FIR systems considered in Chapter 10.

Figure 4.2.5 Illustration of convergence of the Fourier transform and the Gibbs phenomenon at the point of discontinuity.

4.2.5. Energy Density Spectrum of Aperiodic Signals

Parseval's relation for discrete-time aperiodic signals with finite energy.

$$E_x = \sum_{n = -\infty}^{\infty} x^*(n)x(n) \quad E_x = \sum_{n = -\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

$$X(\omega) = |X(\omega)|e^{j\Theta(\omega)}$$
 $\Theta(\omega) = \angle X(\omega)$ is the phase spectrum $|X(w)|$ is the magnitude spectrum

 $S_{xx}(\omega) = |X(\omega)|^2$ energy density spectrum of x(n)

$$X^*(\omega) = X(-\omega)$$

$$|X(-\omega)| = |X(\omega)|$$

$$\angle X(-\omega) = -\angle X(\omega)$$

$$S_{xx}(-\omega) = S_{xx}(\omega)$$

x(n) real the frequency range of real discrete-time signals can be limited further to the range $0 \le \omega \le \pi$ or $0 \le F \le Fs/2$

> Example 4.2.3. Determine and sketch the energy density spectrum

$$x(n) = a^n.u(n), -1 < a < 1$$
 $a = 0.5 \text{ và } a = -0.5$

EXAMPLE 4.2.4. Determine the Fourier transform and the energy density spectrum of the sequence

$$x(n) = \begin{cases} A, & 0 \le n \le L - 1 \\ 0, & \text{otherwise} \end{cases}$$

4.2.6. Mối quan hệ giữa phép biến đổi Fourier và phép biến đổi Z

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n} \quad z = re^{j\omega} \quad r = |z| \\ \omega = \angle z \quad X(z)|_{z = re^{j\omega}} = \sum_{n = -\infty}^{\infty} [x(n)r^{-n}]e^{-j\omega n}$$

ROC: $r_2 < |z| < r_1$ X (z) can be interpreted as the Fourier transform of the signal sequence x(n)r⁻ⁿ.

if X (z) converges for
$$|z| = 1$$
 $X(z)|_{z=e^{j\omega}} \equiv X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$

The Fourier transform can be viewed as the z-transform of the sequence evaluated on the unit circle.

If X(z) does not converge in the region |z| = 1 [i.e. if the unit circle is not contained in the region of convergence of X(z)], the Fourier transform X(w) does not exist.

Tính phổ tín hiệu, vẽ phổ biên độ và phổ pha : $x(n) = (1/2)^n \cdot u(n)$