

Parity

★The parity operator performs spatial inversion through the origin:

$$\psi'(\vec{x},t) = \hat{P}\psi(\vec{x},t) = \psi(-\vec{x},t)$$

• applying \hat{P} twice: $\hat{P}\hat{P}\psi(\vec{x},t) = \hat{P}\psi(-\vec{x},t) = \psi(\vec{x},t)$ so $\hat{P}\hat{P} = I$ \rightarrow $\hat{P}^{-1} = \hat{P}$

To preserve the normalisation of the wave-function

$$\langle \psi | \psi \rangle = \langle \psi' | \psi' \rangle = \langle \psi | \hat{P}^\dagger \hat{P} | \psi \rangle$$

$$\hat{P}^\dagger \hat{P} = I \qquad \stackrel{\hat{P}}{\longrightarrow} \quad \hat{P} \qquad \text{Unitary}$$
 • But since $\hat{P}\hat{P} = I \qquad \hat{P} = \hat{P}^\dagger \qquad \stackrel{\hat{P}}{\longrightarrow} \quad \hat{P} \qquad \text{Hermitian}$

- But since PP = I $P = P^{\dagger}$ \rightarrow P Hermitian which implies Parity is an observable quantity. If the interaction Hamiltonian commutes with \hat{P} , parity is an observable conserved quantity
- If $\psi(\vec{x},t)$ is an eigenfunction of the parity operator with eigenvalue P $\hat{P}\psi(\vec{x},t) = P\psi(\vec{x},t)$ \rightarrow $\hat{P}\hat{P}\psi(\vec{x},t) = P\hat{P}\psi(\vec{x},t) = P^2\psi(\vec{x},t)$ since $\hat{P}\hat{P} = I$ $P^2 = 1$

 \rightarrow Parity has eigenvalues $P=\pm 1$

- **★ QED** and **QCD** are invariant under parity
- **Experimentally observe that Weak Interactions do not conserve parity**

Prof. M.A. Thomson

Intrinsic Parities of fundamental particles:

Spin-1 Bosons

• From Gauge Field Theory can show that the gauge bosons have $\ P=-1$

$$P_{\gamma} = P_g = P_{W^+} = P_{W^-} = P_Z = -1$$

Spin-½ Fermions

- From the Dirac equation showed (handout 2):
 Spin ½ particles have opposite parity to spin ½ anti-particles
- Conventional choice: spin ½ particles have P=+1

$$P_{e^{-}} = P_{\mu^{-}} = P_{\tau^{-}} = P_{\nu} = P_{q} = +1$$

and anti-particles have opposite parity, i.e.

$$P_{e^+} = P_{\mu^+} = P_{\tau^+} = P_{\overline{v}} = P_{\overline{q}} = -1$$

★ For Dirac spinors it was shown (handout 2) that the parity operator is:

$$\hat{P} = \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Parity Conservation in QED and QCD

- Consider the QED process e⁻q e⁻q
- The Feynman rules for QED give:

$$-iM = \left[\overline{u}_e(p_3)ie\gamma^{\mu}u_e(p_1)\right] \frac{-ig_{\mu\nu}}{q^2} \left[\overline{u}_q(p_4)ie\gamma^{\nu}u_q(p_2)\right]$$

• Which can be expressed in terms of the electron and quark 4-vector currents: e^2

ents:
$$M = -\frac{e^2}{q^2} g_{\mu\nu} j_e^{\mu} j_q^{\nu} = -\frac{e^2}{q^2} j_e.j_q$$

with $j_e = \overline{u}_e(p_3) \gamma^\mu u_e(p_1)$ and $j_q = \overline{u}_q(p_4) \gamma^\mu u_q(p_2)$

- **★** Consider the what happen to the matrix element under the parity transformation
 - Spinors transform as

$$u \stackrel{\hat{P}}{\to} \hat{P}u = \gamma^0 u$$

Adjoint spinors transform as

$$\overline{u} = u^{\dagger} \gamma^{0} \xrightarrow{\hat{P}} (\hat{P}u)^{\dagger} \gamma^{0} = u^{\dagger} \gamma^{0\dagger} \gamma^{0} = u^{\dagger} \gamma^{0} \gamma^{0} = \overline{u} \gamma^{0}$$

$$\overline{u} \xrightarrow{\hat{P}} \overline{u} \gamma^{0}$$

Hence $j_e=\overline{u}_e(p_3)\gamma^\mu u_e(p_1)\stackrel{\hat{P}}{\longrightarrow}\overline{u}_e(p_3)\gamma^0\gamma^\mu\gamma^0 u_e(p_1)$

- Consider the components of the four-vector current
 - $i_a^0 \xrightarrow{\hat{P}} \overline{u} \gamma^0 \gamma^0 \gamma^0 u = \overline{u} \gamma^0 u = i_a^0$

since
$$\gamma^0 \gamma^0 = 1$$

k=1,2,3:
$$j_e^k \stackrel{\hat{P}}{\longrightarrow} \overline{u} \gamma^0 \gamma^k \gamma^0 u = -\overline{u} \gamma^k \gamma^0 \gamma^0 u = -\overline{u} \gamma^k u = -j_e^k$$
 since $\gamma^0 \gamma^k = -\gamma^k \gamma^0$

since
$$\gamma^0 \gamma^k = -\gamma^k \gamma^0$$

- The time-like component remains unchanged and the space-like components change sign

$$j_a^0 \stackrel{\hat{P}}{\longrightarrow} j_a^0$$

• Similarly
$$j_q^0 \stackrel{\hat{P}}{\longrightarrow} j_q^0$$
 $j_q^k \stackrel{\hat{P}}{\longrightarrow} -j_q^k$ $k = 1, 2, 3$

Consequently the four-vector scalar product

Consequently the four-vector scalar product
$$j_{e}.j_{q} = j_{e}^{0}j_{q}^{0} - j_{e}^{k}j_{q}^{k} \xrightarrow{\hat{P}} j_{e}^{0}j_{q}^{0} - (-j_{e}^{k})(-j_{q}^{k}) = j_{e}.j_{q} \quad k = 1,3$$

$$j^{\mu}.j^{\nu} \xrightarrow{\hat{P}} j_{\mu}.j_{\nu}$$

$$\stackrel{\hat{P}}{\longrightarrow} j_{\mu}.j_{\nu}$$

$$\begin{array}{ccc}
\mathbf{or} & j^{\mu} \stackrel{\hat{P}}{\longrightarrow} j_{\mu} \\
j^{\mu}.j^{\nu} & \stackrel{\hat{P}}{\longrightarrow} & j_{\mu}.j_{\nu} \\
\stackrel{\hat{P}}{\longrightarrow} & j^{\mu}.j^{\nu}
\end{array}$$

QED Matrix Elements are Parity Invariant

Parity Conserved in QED

The QCD vertex has the same form and, thus,

Parity Conserved in QCD

Parity Violation in β-Decay

The parity operator \hat{P} corresponds to a discrete transformation $x \to -x$, etc.

★ Under the parity transformation:

Vectors
$$\vec{r} \xrightarrow{\hat{P}} -\vec{r}$$
 Vectors $\vec{p} \xrightarrow{\hat{P}} -\vec{p}$ $(p_x = \frac{\partial}{\partial x}, etc.)$ Note B is an axial vector Axial-Vectors $\vec{L} \xrightarrow{\hat{P}} \vec{L}$ $(\vec{L} = \vec{r} \wedge \vec{p})$ $(\vec{B} \propto \vec{J} \wedge \vec{r} d^3 \vec{r})$ unchanged $\vec{\mu} \xrightarrow{\hat{P}} \vec{\mu}$ $(\vec{\mu} \propto \vec{L})$

★1957: C.S.Wu et al. studied beta decay of polarized cobalt-60 nuclei:

$$^{60}\text{Co} \rightarrow ^{60} Ni^* + e^- + \overline{\nu}_e$$

★Observed electrons emitted preferentially in direction opposite to applied field

If parity were conserved: expect equal rate for producing e⁻ in directions along and opposite to the nuclear spin.

★ Conclude parity is violated in WEAK INTERACTION

that the WEAK interaction vertex is NOT of the form $\overline{u}_e \gamma^\mu u_\nu$

Bilinear Covariants

*The requirement of Lorentz invariance of the matrix element severely restricts the form of the interaction vertex. QED and QCD are "VECTOR" interactions: $i^{\mu} = \overline{\psi} \gamma^{\mu} \phi$

- **★** This combination transforms as a 4-vector (Handout 2 appendix V)
- **★** In general, there are only 5 possible combinations of two spinors and the gamma matrices that form Lorentz invariant currents, called "bilinear covariants":

Туре	Form	Components	"Boson Spin"
* SCALAR	$\overline{\psi}\phi_{ar{z}}$	1	0
* PSEUDOSCALAR	$\overline{\psi}\gamma^5\phi$	1	0
* VECTOR	$\overline{\psi}\gamma^{\mu}\phi$	4	1
AXIAL VECTOR	$\overline{\psi}\gamma^{\mu}\gamma^{5}\phi$	4	1
* TENSOR	$\overline{\psi}(\gamma^{\mu}\gamma^{\nu}-\gamma^{\nu}\gamma^{\mu})$	(ϕ) 6	2

- **★** Note that in total the sixteen components correspond to the 16 elements of a general 4x4 matrix: "decomposition into Lorentz invariant combinations"
- ★ In QED the factor $g_{\mu\nu}$ arose from the sum over polarization states of the virtual photon (2 transverse + 1 longitudinal, 1 scalar) = (2J+1) + 1
- **★** Associate SCALAR and PSEUDOSCALAR interactions with the exchange of a SPIN-0 boson, etc. no spin degrees of freedom

V-A Structure of the Weak Interaction

- **★** The most general form for the interaction between a fermion and a boson is a linear combination of bilinear covariants
- **★** For an interaction corresponding to the exchange of a spin-1 particle the most general form is a linear combination of VECTOR and AXIAL-VECTOR
- **★**The form for WEAK interaction is <u>determined from experiment</u> to be VECTOR – AXIAL-VECTOR (V – A)

$$j^{\mu} \propto \overline{u}_{\nu_e} (\gamma^{\mu} - \gamma^{\mu} \gamma^5) u_e$$

V – A

- Can this account for parity violation?
- First consider parity transformation of a pure AXIAL-VECTOR current

$$j_{A} = \overline{\psi}\gamma^{\mu}\gamma^{5}\phi \qquad \text{with} \qquad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}; \quad \gamma^{5}\gamma^{0} = -\gamma^{0}\gamma^{5}$$

$$j_{A} = \overline{\psi}\gamma^{\mu}\gamma^{5}\phi \xrightarrow{\hat{P}} \overline{\psi}\gamma^{0}\gamma^{\mu}\gamma^{5}\gamma^{0}\phi = -\overline{\psi}\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{5}\phi$$

$$j_{A}^{0} = \xrightarrow{\hat{P}} -\overline{\psi}\gamma^{0}\gamma^{0}\gamma^{0}\gamma^{5}\phi = -\overline{\psi}\gamma^{0}\gamma^{5}\phi = -j_{A}^{0}$$

$$j_{A}^{k} = \xrightarrow{\hat{P}} -\overline{\psi}\gamma^{0}\gamma^{k}\gamma^{0}\gamma^{5}\phi = +\overline{\psi}\gamma^{k}\gamma^{5}\phi = +j_{A}^{k} \qquad k = 1,2,3$$
or
$$j_{A}^{\mu} \xrightarrow{\hat{P}} -j_{A\mu}$$

• The space-like components remain unchanged and the time-like components change sign (the opposite to the parity properties of a vector-current)

$$j^0_A \stackrel{\hat{P}}{\longrightarrow} -j^0_A; \quad j^k_A \stackrel{\hat{P}}{\longrightarrow} +j^k_A; \qquad j^0_V \stackrel{\hat{P}}{\longrightarrow} +j^0_V; \quad j^k_V \stackrel{\hat{P}}{\longrightarrow} -j^k_V$$

Now consider the matrix elements

$$M \propto g_{\mu\nu} j_1^{\mu} j_2^{\nu} = j_1^0 j_2^0 - \sum_{k=1,3} j_1^k j_2^k$$

For the combination of a two axial-vector currents

$$j_{A1}.j_{A2} \xrightarrow{\hat{P}} (-j_1^0)(-j_2^0) - \sum_{k=1,3} (j_1^k)(j_2^k) = j_{A1}.j_{A2}$$

- Consequently parity is conserved for both a pure vector and pure axial-vector interactions
- However the combination of a vector current and an axial vector current

$$j_{V1}.j_{A2} \xrightarrow{\hat{P}} (j_1^0)(-j_2^0) - \sum_{k=1,3} (-j_1^k)(j_2^k) = -j_{V1}.j_{A2}$$

changes sign under parity – can give parity violation!

★ Now consider a general linear combination of VECTOR and AXIAL-VECTOR (note this is relevant for the Z-boson vertex)

$$\psi_{1} \qquad \qquad \phi_{1} \qquad j_{1} = \overline{\phi}_{1}(g_{V}\gamma^{\mu} + g_{A}\gamma^{\mu}\gamma^{5})\psi_{1} = g_{V}j_{1}^{V} + g_{A}j_{1}^{A}$$

$$\frac{g_{\mu\nu}}{q^{2} - m^{2}}$$

$$\psi_{2} \qquad \qquad \phi_{2} \qquad j_{2} = \overline{\phi}_{2}(g_{V}\gamma^{\mu} + g_{A}\gamma^{\mu}\gamma^{5})\psi_{2} = g_{V}j_{2}^{V} + g_{A}j_{2}^{A}$$

$$M_{fi} \sim j_{1}.j_{2} = g_{V}^{2}j_{1}^{V}.j_{2}^{V} + g_{A}^{2}j_{1}^{A}.j_{2}^{A} + g_{V}g_{A}(j_{1}^{V}.j_{2}^{A} + j_{1}^{A}.j_{2}^{V})$$

Consider the parity transformation of this scalar product

$$j_1.j_2 \xrightarrow{\hat{P}} g_V^2 j_1^V.j_2^V + g_A^2 j_1^A.j_2^A - g_V g_A(j_1^V.j_2^A + j_1^A.j_2^V)$$

- If either g_A or g_V is zero, Parity is conserved, i.e. parity conserved in a pure VECTOR or pure AXIAL-VECTOR interaction
- Relative strength of parity violating part $\propto \frac{g_V g_A}{g_V^2 + g_A^2}$

Maximal Parity Violation for V-A (or V+A)

Chiral Structure of QED (Reminder)

★ Recall (Handout 4) introduced CHIRAL projections operators

$$P_R = \frac{1}{2}(1+\gamma^5); \qquad P_L = \frac{1}{2}(1-\gamma^5)$$

project out chiral right- and left- handed states

- **★** In the ultra-relativistic limit, chiral states correspond to helicity states
- **Any spinor can be expressed as:**

$$\psi = \frac{1}{2}(1+\gamma^5)\psi + \frac{1}{2}(1-\gamma^5)\psi = P_R\psi + P_L\psi = \psi_R + \psi_L$$

• The QED vertex $\overline{\psi}\gamma^{\mu}\phi$ in terms of chiral states:

$$\overline{\psi}\gamma^{\mu}\phi = \overline{\psi}_{R}\gamma^{\mu}\phi_{R} + \overline{\psi}_{R}\gamma^{\mu}\phi_{L} + \overline{\psi}_{L}\gamma^{\mu}\phi_{R} + \overline{\psi}_{L}\gamma^{\mu}\phi_{L}$$

conserves chirality, e.g.

$$\overline{\psi}_{R} \gamma^{\mu} \phi_{L} = \frac{1}{2} \psi^{\dagger} (1 + \gamma^{5}) \gamma^{0} \gamma^{\mu} \frac{1}{2} (1 - \gamma^{5}) \phi$$

$$= \frac{1}{4} \psi^{\dagger} \gamma^{0} (1 - \gamma^{5}) \gamma^{\mu} (1 - \gamma^{5}) \phi$$

$$= \frac{1}{4} \overline{\psi} \gamma^{\mu} (1 + \gamma^{5}) (1 - \gamma^{5}) \phi = 0$$

★ In the ultra-relativistic limit only two helicity combinations are non-zero

Helicity Structure of the WEAK Interaction

★ The charged current (**W**[±]) weak vertex is:

$$\frac{-ig_w}{\sqrt{2}}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$$

*****Since $\frac{1}{2}(1-\gamma^5)$ projects out left-handed chiral particle states:

$$\overline{\psi}_{\frac{1}{2}}\gamma^{\mu}(1-\gamma^5)\phi = \overline{\psi}\gamma^{\mu}\phi_L$$

(question 16)

***** Writing $\overline{\psi}=\overline{\psi}_R+\overline{\psi}_L$ and from discussion of QED, $\overline{\psi}_R\gamma^\mu\phi_L=0$ gives $\overline{\psi}_{\frac{1}{2}}\gamma^{\mu}(1-\gamma^{5})\phi = \overline{\psi}_{L}\gamma^{\mu}\phi_{L}$

Only the left-handed chiral components of particle spinors and right-handed chiral components of anti-particle spinors participate in charged current weak interactions

\star At very high energy $(E\gg m)$, the left-handed chiral components are helicity eigenstates:

$$\frac{1}{2}(1-\gamma^5)u \implies$$

$$\frac{1}{2}(1-\gamma^5)v \implies$$

LEFT-HANDED PARTICLES Helicity = -1

RIGHT-HANDED ANTI-PARTICLES Helicity = +1

In the ultra-relativistic limit only left-handed particles and right-handed antiparticles participate in charged current weak interactions

e.g. In the relativistic limit, the only possible electron – neutrino interactions are:

The helicity dependence of the weak interaction parity violation

e.g.
$$\overline{V}_e + e^- \to W^ \stackrel{\hat{P}}{\longrightarrow}$$
 RH anti-particle LH particle $\overline{V}_e \xrightarrow{\rightarrow}$ $\stackrel{P}{\longrightarrow}$ $\stackrel{$

Valid weak interaction

 $-\vec{p}_{\overline{\mathrm{v}}_{e}}$

Does not occur

Helicity in Pion Decay

★ The decays of charged pions provide a good demonstration of the role of helicity in the weak interaction

- Might expect the decay to electrons to dominate due to increased phase space.... The opposite happens, the electron decay is helicity suppressed
- **★** Consider decay in pion rest frame.
 - Pion is spin zero: so the spins of the $\overline{\mathbf{v}}$ and $\boldsymbol{\mu}$ are opposite
 - Weak interaction only couples to RH chiral anti-particle states. Since neutrinos are (almost) massless, must be in RH Helicity state
 - Therefore, to conserve angular mom. muon is emitted in a RH HELICITY state

$$\overline{\nu}_{\mu}$$
 \longrightarrow μ^{-}

But only left-handed CHIRAL particle states participate in weak interaction

★ The general right-handed helicity solution to the Dirac equation is

$$u_{\uparrow} = N egin{pmatrix} c \\ e^{i\phi}_{S} \\ |ec{p}| \\ E+m \\ c \end{pmatrix}$$
 with $c = \cos rac{ heta}{2}$ and $s = \sin rac{ heta}{2}$

 project out the left-handed <u>chiral</u> part of the wave-function using

$$P_L = \frac{1}{2}(1 - \gamma^5) = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

giving
$$P_L u_{\uparrow} = \frac{1}{2} N \left(1 - \frac{|\vec{p}|}{E+m} \right) \begin{pmatrix} e^{i\phi} s \\ -c \\ -e^{i\phi} s \end{pmatrix} = \frac{1}{2} N \left(1 - \frac{|\vec{p}|}{E+m} \right) u_L$$

In the limit $m \ll E$ this tends to zero

$$P_R u_{\uparrow} = \frac{1}{2} N \left(1 + \frac{|\vec{p}|}{E+m} \right) \begin{pmatrix} c \\ e^{i\phi} S \\ c \\ e^{i\phi} S \end{pmatrix} = \frac{1}{2} N \left(1 + \frac{|\vec{p}|}{E+m} \right) u_R$$

In the limit $m \ll E$, $P_R u_\uparrow o u_R$

Hence
$$u_{\uparrow} = P_R u_{\uparrow} + P_L u_{\uparrow} = \frac{1}{2} \left(1 + \frac{|\vec{p}|}{E+m} \right) u_R + \frac{1}{2} \left(1 - \frac{|\vec{p}|}{E+m} \right) u_L$$

RH Helicity RH Chiral

- In the limit $E\gg m$, as expected, the RH chiral and helicity states are identical
- Although only LH chiral particles participate in the weak interaction the contribution from RH Helicity states is not necessarily zero!

$$\overline{\nu}_{\mu} \longrightarrow \mu^{-}$$

$$m_{\nu} \approx 0: \text{ RH Helicity } \equiv \text{RH Chiral}$$

$$m_{\mu} \neq 0: \text{ RH Helicity has}$$

$$\text{LH Chiral Component}$$

★ Expect matrix element to be proportional to LH chiral component of RH Helicity electron/muon spinor

$$M_{fi} \propto rac{1}{2} \left(1 - rac{|ec{p}|}{E+m}
ight) = rac{m_{\mu}}{m_{\pi} + m_{\mu}}$$
 from the kinematics of pion decay at rest

† Hence because the electron mass is much smaller than the pion mass the decay $\pi^- \to e^- \overline{\nu}_e$ is heavily suppressed.

Evidence for V-A

★The V-A nature of the charged current weak interaction vertex fits with experiment

EXAMPLE charged pion decay

(question 17)

- Experimentally measure: $\frac{\Gamma(\pi^-\to e^-\overline{\nu}_e)}{\Gamma(\pi^-\to \mu^-\overline{\nu}_\mu)} = (1.230\pm 0.004)\times 10^{-4}$
- Theoretical predictions (depend on Lorentz Structure of the interaction)

V-A
$$(\overline{\psi}\gamma^{\mu}(1-\gamma^{5})\phi)$$
 or V+A $(\overline{\psi}\gamma^{\mu}(1+\gamma^{5})\phi)$ $\longrightarrow \frac{\Gamma(\pi^{-}\to e^{-}\overline{\nu}_{e})}{\Gamma(\pi^{-}\to \mu^{-}\overline{\nu}_{\mu})} \approx 1.3\times 10^{-4}$
Scalar $(\overline{\psi}\phi)$ or Pseudo-Scalar $(\overline{\psi}\gamma^{5}\phi)$ $\longrightarrow \frac{\Gamma(\pi^{-}\to e^{-}\overline{\nu}_{e})}{\Gamma(\pi^{-}\to \mu^{-}\overline{\nu}_{\mu})} = 5.5$

EXAMPLE muon decay

e.g. TWIST expt: 6x10° μ decays Phys. Rev. Lett. 95 (2005) 101805 Measure electron energy and angular distributions relative to muon spin direction. Results expressed in terms of general S+P+V+A+T form in "Michel Parameters"

$$\rho = 0.75080 \pm 0.00105$$

V-A Prediction: $\rho = 0.75$

Weak Charged Current Propagator

- **★** The charged-current Weak interaction is different from QED and QCD in that it is mediated by massive W-bosons (80.3 GeV)
- **★**This results in a more complicated form for the propagator:
 - in handout 4 showed that for the exchange of a massive particle:

$$\frac{1}{q^2} \longrightarrow \frac{1}{q^2 - m^2}$$

- In addition the sum over W boson polarization states modifies the numerator
- W-boson propagator

$$\frac{-i\left[g_{\mu\nu}-q_{\mu}q_{\nu}/m_W^2\right]}{q^2-m_W^2} \qquad \mu \qquad V$$

$$\mu$$
 q ν

- ***** However in the limit where q^2 is small compared with $m_W = 80.3 \,\mathrm{GeV}$ the interaction takes a simpler form.
- ullet W-boson propagator ($q^2 \ll m_W^2$)

$$\frac{ig_{\mu\nu}}{m_W^2}$$

• The interaction appears point-like (i.e no q² dependence)

Connection to Fermi Theory

★In 1934, before the discovery of parity violation, Fermi proposed, in analogy with QED, that the invariant matrix element for β -decay was of the form:

$$M_{fi}=G_{\rm F}g_{\mu\nu}[\overline{\psi}\gamma^\mu\psi][\overline{\psi}\gamma^\nu\psi]$$
 where $G_{\rm F}=1.166\times 10^{-5}\,{\rm GeV}^{-2}$

- Note the absence of a propagator : i.e. this represents an interaction at a point
- **★** After the discovery of parity violation in 1957 this was modified to

$$M_{fi} = \frac{G_{\rm F}}{\sqrt{2}} g_{\mu\nu} [\overline{\psi} \gamma^{\mu} (1 - \gamma^5) \psi] [\overline{\psi} \gamma^{\nu} (1 - \gamma^5) \psi]$$

(the factor of $\sqrt{2}$ was included so the numerical value of G_F did not need to be changed)

★ Compare to the prediction for W-boson exchange

$$M_{fi} = \left[\frac{g_W}{\sqrt{2}}\overline{\psi}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)\psi\right]\frac{g_{\mu\nu} - q_{\mu}q_{\nu}/m_W^2}{q^2 - m_W^2}\left[\frac{g_W}{\sqrt{2}}\overline{\psi}\frac{1}{2}\gamma^{\nu}(1-\gamma^5)\psi\right]$$

which for $q^2 \ll m_W^2$ becomes:

$$M_{fi} = \frac{g_W^2}{8m_W^2} g_{\mu\nu} [\overline{\psi}\gamma^{\mu} (1 - \gamma^5)\psi] [\overline{\psi}\gamma^{\nu} (1 - \gamma^5)\psi]$$

Still usually use $G_{\rm F}$ to express strength of weak interaction as the is the quantity that is precisely determined in muon decay

Strength of Weak Interaction

Strength of weak interaction most precisely measured in muon decay

- Here $q^2 < m_{\mu} (0.106 \, \text{GeV})$
- To a very good approximation the W-boson propagator can be written $\frac{-i\left[g_{\mu\nu}-q_{\mu}q_{\nu}/m_{W}^{2}\right]}{q^{2}-m_{W}^{2}}\approx\frac{ig_{\mu\nu}}{m_{W}^{2}}$

$$\frac{-i\left[g_{\mu\nu}-q_{\mu}q_{\nu}/m_W^2\right]}{q^2-m_W^2}\approx\frac{ig_{\mu\nu}}{m_W^2}$$

- In muon decay measure g_W^2/m_W^2 In muon decay measure g_W^2/m_W^2 Muon decay \longrightarrow $G_F = 1.16639(1) \times 10^{-5} \, \mathrm{GeV^{-2}}$

$$G_{\rm F} = 1.16639(1) \times 10^{-5} \,\rm GeV^{-2}$$

$$\frac{G_{\rm F}}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$

To obtain the intrinsic strength of weak interaction need to know mass of W-boson: $m_W = 80.403 \pm 0.029 \, \mathrm{GeV}$ (see handout 14)

The intrinsic strength of the weak interaction is similar to, but greater than, the EM interaction! It is the massive W-boson in the propagator which makes it appear weak. For $q^2 \gg m_W^2$ weak interactions are more likely than EM.

Summary

★ Weak interaction is of form Vector – Axial-vector (V-A)

$$\frac{-ig_w}{\sqrt{2}}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$$

★ Consequently only left-handed chiral particle states and right-handed chiral anti-particle states participate in the weak interaction

MAXIMAL PARITY VIOLATION

- **★** Weak interaction also violates Charge Conjugation symmetry
- **At low** q^2 weak interaction is only weak because of the large W-boson mass

 $\frac{G_{\rm F}}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$

★ Intrinsic strength of weak interaction is similar to that of QED

From W to Z

★ The W[±] bosons carry the EM charge - suggestive Weak are EM forces are related.

★ W bosons can be produced in e⁺e⁻ annihilation

★ With just these two diagrams there is a problem: the cross section increases with C.o.M energy and at some point violates QM unitarity

UNITARITY VIOLATION: when QM calculation gives larger flux of W bosons than incoming flux of electrons/positrons

★ Problem can be "fixed" by introducing a new boson, the Z. The new diagram interferes negatively with the above two diagrams fixing the unitarity problem

$$|M_{\gamma WW} + M_{ZWW} + M_{VWW}|^2 < |M_{\gamma WW} + M_{VWW}|^2$$

 \star Only works if Z, γ , W couplings are related: need ELECTROWEAK UNIFICATION

SU(2),: The Weak Interaction

★ The Weak Interaction arises from SU(2) local phase transformations

$$\psi \to \psi' = \psi e^{i\vec{\alpha}(x).\frac{\vec{\sigma}}{2}}$$
 where the $\vec{\sigma}$ are the generators of the SU(2) symmetry, i.e the three Pauli

spin matrices

 \Longrightarrow 3 Gauge Bosons $W_1^{\mu}, W_2^{\mu}, W_3^{\mu}$

$$W_1^{\mu}, W_2^{\mu}, W_3^{\mu}$$

The wave-functions have two components which, in analogy with isospin, are represented by "weak isospin"

The fermions are placed in isospin doublets and the local phase transformation corresponds to

 $\begin{pmatrix} v_e \\ e^- \end{pmatrix} \rightarrow \begin{pmatrix} v_e \\ e^- \end{pmatrix}' = e^{i\vec{\alpha}(x) \cdot \frac{\vec{\sigma}}{2}} \begin{pmatrix} v_e \\ e^- \end{pmatrix}$

★ Weak Interaction only couples to LH particles/RH anti-particles. hence only place LH particles/RH anti-particles in weak isospin doublets: $I_W=rac{1}{2}$ RH particles/LH anti-particles placed in weak isospin singlets: $I_W = 0$

Weak Isospin

$$I_W = \frac{1}{2}$$
 $\begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$, $\begin{pmatrix} v_\mu \\ \mu^- \end{pmatrix}_L$, $\begin{pmatrix} v_\tau \\ \tau^- \end{pmatrix}_L$, $\begin{pmatrix} u \\ d' \end{pmatrix}_L$, $\begin{pmatrix} c \\ s' \end{pmatrix}_L$, $\begin{pmatrix} t \\ b' \end{pmatrix}_L$ $I_W^3 = +\frac{1}{2}$

$$I_W=0$$
 $(v_e)_R,\;(e^-)_R,\,...(u)_R,\;(d)_R,...$ Note: RH/LH refer to chiral states

***** For simplicity only consider
$$\chi_L = \begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$$

• The gauge symmetry specifies the form of the interaction: one term for each of the 3 generators of SU(2) - [note: here include interaction strength in current]

$$j_{\mu}^{1} = g_{W}\overline{\chi}_{L}\gamma^{\mu}\frac{1}{2}\sigma_{1}\chi_{L} \qquad j_{\mu}^{2} = g_{W}\overline{\chi}_{L}\gamma^{\mu}\frac{1}{2}\sigma_{2}\chi_{L} \qquad j_{\mu}^{3} = g_{W}\overline{\chi}_{L}\gamma^{\mu}\frac{1}{2}\sigma_{3}\chi_{L}$$

★ The charged current W⁺/W⁻ interaction enters as a linear combinations of W₁, W₂

$$W^{\pm\mu} = \frac{1}{\sqrt{2}}(W_1^{\mu} \pm W_2^{\mu})$$

★ The W[±] interaction terms

$$j_{\pm}^{\mu} = \frac{g_W}{\sqrt{2}}(j_1^{\mu} \pm i j_2^{\mu}) = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \frac{1}{2} (\sigma_1 \pm i \sigma_2) \chi_L$$

***** Express in terms of the weak isospin ladder operators $\sigma_{\pm} = \frac{1}{2}(\sigma_1 \pm i\sigma_2)$

$$j_\pm^\mu = rac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^\mu \sigma_\pm \chi_L$$
 $brace$ Origin of $rac{1}{\sqrt{2}}$ in Weak CC

corresponds to
$$j_+^\mu = rac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^\mu \sigma_+ \chi_L$$

Bars indicates adjoint spinors

which can be understood in terms of the weak isospin doublet

$$j_{+}^{\mu} = \frac{g_{W}}{\sqrt{2}} \overline{\chi}_{L} \gamma^{\mu} \sigma_{+} \chi_{L} = \frac{g_{W}}{\sqrt{2}} (\overline{v}_{L}, \overline{e}_{L}) \gamma^{\mu} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v \\ e \end{pmatrix}_{L} = \frac{g_{W}}{\sqrt{2}} \overline{v}_{L} \gamma^{\mu} e_{L} = \frac{g_{W}}{\sqrt{2}} \overline{v} \gamma^{\mu} \frac{1}{2} (1 - \gamma^{5}) e$$

★ Similarly

$$e^- \xrightarrow{g_W} \stackrel{V_e}{h_W^-}$$

corresponds to

$$j_-^\mu = rac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^\mu \sigma_- \chi_L$$

$$j_{-}^{\mu} = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \sigma_{-} \chi_L = \frac{g_W}{\sqrt{2}} (\overline{v}_L, \overline{e}_L) \gamma^{\mu} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ e \end{pmatrix}_L = \frac{g_W}{\sqrt{2}} \overline{e}_L \gamma^{\mu} v_L = \frac{g_W}{\sqrt{2}} \overline{e} \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) v$$

★ However have an additional interaction due to W³

expanding this:

$$j_3^{\mu} = g_W \overline{\chi}_L \gamma^{\mu} \frac{1}{2} \sigma_3 \chi_L$$

$$j_3^{\mu} = g_W \frac{1}{2} (\overline{v}_L, \overline{e}_L) \gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} v \\ e \end{pmatrix}_L = g_W \frac{1}{2} \overline{v}_L \gamma^{\mu} v_L - g_W \frac{1}{2} \overline{e}_L \gamma^{\mu} e_L$$

NEUTRAL CURRENT INTERACTIONS!

Electroweak Unification

- ***** Tempting to identify the W^3 as the Z
- *However this is not the case, have two physical neutral spin-1 gauge bosons, γ, Z and the W^3 is a mixture of the two,
- * Equivalently write the photon and Z in terms of the W^3 and a new neutral spin-1 boson the B
- **The physical** bosons (the Z and photon field, A) are:

$$A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$$

 $Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W$

 θ_W is the weak mixing angle

- **★**The new boson is associated with a new gauge symmetry similar to that of electromagnetism : U(1),
- \star The charge of this symmetry is called WEAK HYPERCHARGE Y

$$Y = 2Q - 2I_W^3$$
• By convention

• By convention the coupling to the B_{μ} is $\frac{1}{2}g'Y$

$$e_L: Y = 2(-1) - 2(-\frac{1}{2}) = -1$$
 $v_L: Y = +1$

$$e_R: Y = 2(-1) - 2(0) = -2$$

$$v_R: Y=0$$

(this identification of hypercharge in terms of Q and I₃ makes all of the following work out)

★ For this to work the coupling constants of the W³, B, and photon must be related e.g. consider contributions involving the neutral interactions of electrons:

$$j_{\mu}^{em} = e \overline{\psi} Q_e \gamma_{\mu} \psi = e \overline{e}_L Q_e \gamma_{\mu} e_L + e \overline{e}_R Q_e \gamma_{\mu} e_R$$

$$V^3 \qquad j_{\mu}^{W^3} = -\frac{g_W}{2} \overline{e}_L \gamma_{\mu} e_L$$

$$J_{\mu}^{Y} = \frac{g'}{2} \overline{\psi} Y_e \gamma_{\mu} \psi = \frac{g'}{2} \overline{e}_L Y_{e_L} \gamma_{\mu} e_L + \frac{g'}{2} \overline{e}_R Y_{e_R} \gamma_{\mu} e_R$$

The relation $A_{\mu}=B_{\mu}\cos\theta_{W}+W_{\mu}^{3}\sin\theta_{W}$ is equivalent to requiring

$$j_{\mu}^{em} = j_{\mu}^{Y} \cos \theta_{W} + j_{\mu}^{W^{3}} \sin \theta_{W}$$

• Writing this in full:

$$\begin{split} e\overline{\mathbf{e}}_LQ_{\mathbf{e}}\gamma_{\mu}\mathbf{e}_L + e\overline{\mathbf{e}}_RQ_{e}\gamma_{\mu}\mathbf{e}_R &= \tfrac{1}{2}g'\cos\theta_W [\overline{\mathbf{e}}_LY_{\mathbf{e}_L}\gamma_{\mu}\mathbf{e}_L + \overline{\mathbf{e}}_RY_{\mathbf{e}_R}\gamma_{\mu}\mathbf{e}_R] - \tfrac{1}{2}g_W\sin\theta_W [\overline{\mathbf{e}}_L\gamma_{\mu}e_L] \\ -e\overline{\mathbf{e}}_L\gamma_{\mu}\mathbf{e}_L - e\overline{\mathbf{e}}_R\gamma_{\mu}\mathbf{e}_R &= \tfrac{1}{2}g'\cos\theta_W [-\overline{\mathbf{e}}_L\gamma_{\mu}\mathbf{e}_L - 2\overline{\mathbf{e}}_R\gamma_{\mu}\mathbf{e}_R] - \tfrac{1}{2}g_W\sin\theta_W [\overline{\mathbf{e}}_L\gamma_{\mu}e_L] \\ \text{which works if:} \qquad e = g_W\sin\theta_W = g'\cos\theta_W \qquad \text{(i.e. equate coefficients of L and R terms)} \end{split}$$

★ Couplings of electromagnetism, the weak interaction and the interaction of the U(1)_y symmetry are therefore related.

The Z Boson

★In this model we can now derive the couplings of the Z Boson

$$Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W \qquad \boxed{I_W^3} \qquad \text{for the electron } I_W^3 = \frac{1}{2}$$

$$j_{\mu}^Z = -\frac{1}{2}g' \sin \theta_W [\overline{e}_L Y_{e_L} \gamma_{\mu} e_L + \overline{e}_R Y_{e_R} \gamma_{\mu} e_R] - \frac{1}{2}g_W \cos \theta_W [e_L \gamma_{\mu} e_L]$$

Writing this in terms of weak isospin and charge:

$$j_{\mu}^{Z} = -\frac{1}{2}g'\sin\theta_{W}\left[\overline{e}_{L}\left(2Q - 2I_{W}^{3}\right)\gamma_{\mu}e_{L} + \overline{e}_{R}\left(2Q\right)\gamma_{\mu}e_{R}\right] + I_{W}^{3}g_{W}\cos\theta_{W}\left[e_{L}\gamma_{\mu}e_{L}\right]$$

For RH chiral states I₃=0

Gathering up the terms for LH and RH chiral states:

$$j_{\mu}^{Z} = \left[g' I_{W}^{3} \sin \theta_{W} - g' Q \sin \theta_{W} + g_{W} I_{W}^{3} \cos \theta_{W} \right] \overline{e}_{L} \gamma_{\mu} e_{L} - \left[g' Q \sin \theta_{W} \right] e_{R} \gamma_{\mu} e_{R}$$

• Using: $e = g_W \sin \theta_W = g' \cos \theta_W$ gives

$$j_{\mu}^{Z} = \left[g' \frac{(I_{W}^{3} - Q \sin^{2} \theta_{W})}{\sin \theta_{W}} \right] \bar{e}_{L} \gamma_{\mu} e_{L} - \left[g' \frac{Q \sin^{2} \theta_{W}}{\sin \theta_{W}} \right] e_{R} \gamma_{\mu} e_{R}$$

$$j_{\mu}^{Z} = g_{Z}(I_{W}^{3} - Q\sin^{2}\theta_{W})[\overline{e}_{L}\gamma_{\mu}e_{L}] - g_{Z}Q\sin^{2}\theta_{W}[e_{R}\gamma_{\mu}e_{R}]$$

with
$$e = g_Z \cos \theta_W \sin \theta_W$$
 i.e. $g_Z = \frac{g_W}{\cos \theta_W}$

★ Unlike for the Charged Current Weak interaction (W) the Z Boson couples to both LH and RH chiral components, but not equally...

$$\begin{split} j_{\mu}^{Z} &= g_{Z}(I_{W}^{3} - Q\sin^{2}\theta_{W})[\overline{\mathbf{e}}_{L}\gamma_{\mu}\mathbf{e}_{L}] - g_{Z}Q\sin^{2}\theta_{W}[\mathbf{e}_{R}\gamma_{\mu}e_{R}] \\ &= g_{Z}c_{L}[\overline{\mathbf{e}}_{L}\gamma_{\mu}\mathbf{e}_{L}] + g_{Z}c_{R}[\mathbf{e}_{R}\gamma_{\mu}e_{R}] \\ \mathbf{e}_{L}^{-} & c_{R}.g_{Z} & e_{R}^{-} \\ & c_{R} & J_{Z} \\ \hline c_{L} &= I_{W}^{3} - Q\sin^{2}\theta_{W} & c_{R} &= -Q\sin^{2}\theta_{W} \\ \mathbf{B}_{\mu} \text{ part of Z couples equally to } \\ \mathbf{L} \mathbf{H} \text{ components (like } \mathbf{W}^{\pm}) & \mathbf{L} \mathbf{H} \text{ and RH components} \end{split}$$

Use projection operators to obtain vector and axial vector couplings

$$\overline{u}_{L}\gamma_{\mu}u_{L} = \overline{u}\gamma_{\mu}\frac{1}{2}(1-\gamma_{5})u \qquad \overline{u}_{R}\gamma_{\mu}u_{R} = \overline{u}\gamma_{\mu}\frac{1}{2}(1+\gamma_{5})u
j_{\mu}^{Z} = g_{Z}\overline{u}\gamma_{\mu}\left[c_{L}\frac{1}{2}(1-\gamma_{5}) + c_{R}\frac{1}{2}(1+\gamma_{5})\right]u$$

$$j_{\mu}^{Z} = \frac{g_{Z}}{2} \overline{u} \gamma_{\mu} \left[\left(c_{L} + c_{R} \right) + \left(c_{R} - c_{L} \right) \gamma_{5} \right] u$$

* Which in terms of V and A components gives:
$$j_{\mu}^{Z} = \frac{g_{Z}}{2} \overline{u} \gamma_{\mu} \left[c_{V} - c_{A} \gamma_{5} \right] u$$

$$c_V = c_L + c_R = I_W^3 - 2Q\sin^2\theta_W$$
 $c_A = c_L - c_R = I_W^3$

$$c_A = c_L - c_R = I_W^3$$

Hence the vertex factor for the Z boson is:

$$-ig_{Z}rac{1}{2}\gamma_{\mu}\left[c_{V}-c_{A}\gamma_{5}
ight]$$

Using the experimentally determined value of the weak mixing angle:

 $\sin^2 \theta_W \approx 0.23$

Fermion	Q	I_W^3	c_L	c_R	c_V	c_A
$v_e, v_\mu, v_ au$	0	$+\frac{1}{2}$	$+\frac{1}{2}$	0	$+\frac{1}{2}$	$+\frac{1}{2}$
e^-,μ^-, au^-	- 1	$-\frac{1}{2}$	-0.27	0.23	-0.04	$-\frac{1}{2}$
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	0.35	-0.15	+0.19	$+\frac{1}{2}$
d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	-0.42	0.08	-0.35	$-\frac{1}{2}$

Summary

- **★** The Standard Model interactions are mediated by spin-1 gauge bosons
- **★** The form of the interactions are completely specified by the assuming an underlying local phase transformation → GAUGE INVARIANCE

★ In order to "unify" the electromagnetic and weak interactions, introduced a new symmetry gauge symmetry : U(1) hypercharge

$$U(1)_{Y}$$
 \Longrightarrow B_{μ}

★ The physical Z boson and the photon are mixtures of the neutral W boson and B determined by the Weak Mixing angle

$$\sin \theta_W pprox 0.23$$

- **★** Have we really unified the EM and Weak interactions? Well not really...
 - Started with two independent theories with coupling constants g_W, e
 - Ended up with coupling constants which are related but at the cost of introducing a new parameter in the Standard Model $\, heta_{\!W}$
 - Interactions not unified from any higher theoretical principle... but it works!