Master's Thesis Notes

Shreyas Kalvankar

Contents

L	Fori	malization of the Neural Tangent Kernel (NTK)	1
	1.1	Setup and Assumptions	1
	1.2	Linearization around Initialization	1
	1.3	Neural Tangent Kernel	2
	1.4	NTK Characterization (one hidden layer, no biases)	2
	1.5	One Hidden Layer: Adding Biases	3
	1.6	Extension to Deep Fully-Connected Networks	4
	1.7	Training Dynamics under NTK	4
	1.8	Lazy Training Regime	-
	1.9	Finite Depth/Width Corrections to the NTK (Hanin–Nica)	-

1 Formalization of the Neural Tangent Kernel (NTK)

1.1 Setup and Assumptions

We consider a supervised learning setting with data $\{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. A neural network $f: \mathbb{R}^d \times \Theta \to \mathbb{R}$ is parameterized by $\theta \in \Theta \subseteq \mathbb{R}^p$, where p is the number of parameters.

Assumption 1.1 (Model and training).

- 1. (Differentiability) The network $f(x;\theta)$ is differentiable in θ .
- 2. (Random initialization) We initialize parameters θ_0 i.i.d. with zero mean and variance scaled according to layer input dimensions (e.g. NTK or Xavier/He schemes), so that activations and gradients remain well-behaved as depth/width grow [4, 2, 3].
- 3. (Training) We train f by gradient descent on the squared loss:

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} (f(x_i; \theta) - y_i)^2.$$

1.2 Linearization around Initialization

A first-order Taylor expansion of $f(x;\theta)$ around θ_0 gives

$$f(x;\theta) \approx f(x;\theta_0) + \nabla_{\theta} f(x;\theta_0)^{\top} (\theta - \theta_0).$$

• $f(x; \theta_0)$ is the network output at initialization (a bias term).

• $\phi(x) := \nabla_{\theta} f(x; \theta_0)$ is the feature vector induced at initialization.

Thus, locally, the network behaves as a linear model in θ :

$$f(x;\theta) \approx f(x;\theta_0) + \phi(x)^{\top} (\theta - \theta_0).$$

1.3 Neural Tangent Kernel

Definition 1.2 (Neural Tangent Kernel [2]). Given initialization θ_0 , the Neural Tangent Kernel (NTK) is

$$K(x, x') = \nabla_{\theta} f(x; \theta_0)^{\top} \nabla_{\theta} f(x'; \theta_0).$$

The NTK captures how parameter updates couple the outputs of x and x'. Remark 1.3.

- K(x, x') is positive semidefinite [2].
- In the infinite-width limit, under common initializations, K(x, x') converges almost surely to a deterministic kernel depending only on architecture and activation [2, 3].
- For finite but large width, K is still a random kernel due to random initialization, but it concentrates around its infinite-width expectation. Fluctuations vanish at rate $O(1/\sqrt{m})$ as width $m \to \infty$ [2, 3].

1.4 NTK Characterization (one hidden layer, no biases)

Consider a width-m one-hidden-layer network

$$f(x) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \, \sigma(w_r^{\top} x),$$

with parameters $\theta = \{(a_r, w_r)\}_{r=1}^m$, activation σ , and random initialization

$$a_r \sim \mathcal{N}(0, \sigma_a^2), \qquad w_r \sim \mathcal{N}\left(0, \frac{\sigma_w^2}{d} I_d\right),$$

independently across r.

Finite-width NTK at initialization

By definition,

$$K_m(x,x') = \nabla_{\theta} f(x)^{\top} \nabla_{\theta} f(x') = \sum_{r=1}^{m} \left[\underbrace{\nabla_{a_r} f(x) \nabla_{a_r} f(x')}_{\text{output-weight part}} + \underbrace{\nabla_{w_r} f(x)^{\top} \nabla_{w_r} f(x')}_{\text{hidden-weight part}} \right].$$

Compute the gradients:

$$\nabla_{a_r} f(x) = \frac{1}{\sqrt{m}} \sigma(w_r^\top x), \qquad \nabla_{w_r} f(x) = \frac{1}{\sqrt{m}} a_r \, \sigma'(w_r^\top x) \, x.$$

Hence,

$$K_m(x, x') = \frac{1}{m} \sum_{r=1}^m \sigma(w_r^{\top} x) \, \sigma(w_r^{\top} x') + \frac{1}{m} \sum_{r=1}^m a_r^2 \, \sigma'(w_r^{\top} x) \, \sigma'(w_r^{\top} x') \, x^{\top} x' \, \bigg|.$$

Infinite-width limit

The two sums are empirical averages of i.i.d. terms. Since a_r and w_r are independent with finite moments, the (strong) law of large numbers gives, almost surely,

$$\frac{1}{m} \sum_{r=1}^{m} \sigma(w_r^{\top} x) \, \sigma(w_r^{\top} x') \, \longrightarrow \, \mathbb{E}_w \big[\sigma(w^{\top} x) \, \sigma(w^{\top} x') \big],$$

$$\frac{1}{m} \sum_{r=1}^{m} a_r^2 \, \sigma'(w_r^\top x) \, \sigma'(w_r^\top x') \, \longrightarrow \, \sigma_a^2 \, \mathbb{E}_w \big[\sigma'(w^\top x) \, \sigma'(w^\top x') \big].$$

Thus, in the infinite-width limit, the empirical NTK converges almost surely to a deterministic kernel [2, 3].

$$K_{\infty}(x, x') = \mathbb{E}_{w} [\sigma(w^{\top}x) \, \sigma(w^{\top}x')] + \sigma_{a}^{2} \, x^{\top}x' \, \mathbb{E}_{w} [\sigma'(w^{\top}x) \, \sigma'(w^{\top}x')]$$

with $w \sim \mathcal{N}(0, \frac{\sigma_w^2}{d}I_d)$.

1.5 One Hidden Layer: Adding Biases

If we allow per-neuron biases, we get minimal changes from subsection 1.4. Consider

$$f(x) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \, \sigma(w_r^\top x + b_r), \quad a_r \sim \mathcal{N}(0, \sigma_a^2), \ w_r \sim \mathcal{N}\left(0, \frac{\sigma_w^2}{d} I_d\right), \ b_r \sim \mathcal{N}(0, \sigma_b^2),$$

independently across r. Let $u_r(x) := w_r^{\top} x + b_r$.

Finite width Gradients are

$$\nabla_{a_r} f(x) = \frac{1}{\sqrt{m}} \sigma(u_r(x)), \quad \nabla_{w_r} f(x) = \frac{1}{\sqrt{m}} a_r \sigma'(u_r(x)) x, \quad \nabla_{b_r} f(x) = \frac{1}{\sqrt{m}} a_r \sigma'(u_r(x)).$$

Thus

$$K_m(x,x') = \frac{1}{m} \sum_{r=1}^m \sigma(u_r(x)) \, \sigma(u_r(x')) + \frac{1}{m} \sum_{r=1}^m a_r^2 \, \sigma'(u_r(x)) \, \sigma'(u_r(x')) \left(x^\top x' + 1\right).$$

Infinite width (preactivation covariance picks up σ_b^2). With (U, V) jointly Gaussian:

$$\operatorname{Var}(U) = \frac{\sigma_w^2}{d} ||x||^2 + \sigma_b^2, \quad \operatorname{Var}(V) = \frac{\sigma_w^2}{d} ||x'||^2 + \sigma_b^2, \quad \operatorname{Cov}(U, V) = \frac{\sigma_w^2}{d} x^\top x' + \sigma_b^2,$$

we have

$$K_{\infty}(x, x') = \mathbb{E}[\sigma(U)\sigma(V)] + \sigma_a^2 (x^{\top}x' + 1) \mathbb{E}[\sigma'(U)\sigma'(V)]$$

1.6 Extension to Deep Fully-Connected Networks

No biases. Let $n_0 = d, n_1, \ldots, n_{L-1}$ be layer widths and define

$$\alpha^{(0)}(x) = x, \qquad \tilde{\alpha}^{(\ell+1)}(x) = W^{(\ell)}\alpha^{(\ell)}(x), \qquad \alpha^{(\ell+1)}(x) = \sigma(\tilde{\alpha}^{(\ell+1)}(x)).$$

for $\ell = 0, \dots, L-2$, with entries $W^{(\ell)} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \frac{\sigma_w^2}{n_\ell}\right)$. The scalar output is

$$f_{\theta}(x) = \frac{1}{\sqrt{n_{L-1}}} \sum_{r=1}^{n_{L-1}} a_r \, \alpha_r^{(L-1)}(x), \qquad a_r \sim \mathcal{N}(0, \sigma_a^2).$$

Define the activation covariance

$$\Sigma^{(\ell)}(x, x') := \mathbb{E}[\alpha_r^{(\ell)}(x) \, \alpha_r^{(\ell)}(x')], \qquad q^{(\ell)}(x) := \Sigma^{(\ell)}(x, x),$$

with base $\Sigma^{(0)}(x, x') = \frac{1}{d} x^{\top} x'$. Then the forward (NNGP) recursion is

$$\Sigma^{(\ell+1)}(x,x') = \mathbb{E}_{f \sim \mathcal{GP}\left(0, \ \sigma_w^2 \ \Sigma^{(\ell)}\right)} \left[\sigma(f(x)) \ \sigma(f(x')) \right] .$$

Define the derivative–correlation kernel

$$\dot{\Sigma}^{(\ell+1)}(x,x') := \mathbb{E}_{f \sim \mathcal{GP}\left(0, \ \sigma_w^2 \ \Sigma^{(\ell)}\right)} \left[\sigma'\!\!\left(f(x)\right) \sigma'\!\!\left(f(x')\right) \right] \ .$$

The limiting NTK satisfies

$$\Theta_{\infty}^{(1)}(x,x') = \Sigma^{(1)}(x,x'), \qquad \Theta_{\infty}^{(\ell+1)}(x,x') = \Theta_{\infty}^{(\ell)}(x,x') \, \dot{\Sigma}^{(\ell+1)}(x,x') + \Sigma^{(\ell+1)}(x,x')$$

For a dataset $\{x_i\}$:

$$\Theta^{(\ell+1)} = \Theta^{(\ell)} \odot \dot{\Sigma}^{(\ell+1)} + \Sigma^{(\ell+1)}, \qquad \Theta^{(1)} = \Sigma^{(1)}.$$

Setting L=2 recovers the two-term one-layer kernel.

1.7 Training Dynamics under NTK

We train with squared loss

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} (f(x_i; \theta) - y_i)^2,$$

and consider gradient flow in parameter space, i.e. the continuous-time limit of gradient descent as the step size $\eta \to 0$:

$$\frac{d\theta_t}{dt} = -\nabla_{\theta} L(\theta_t).$$

Let $f_t(x_i) := f(x_i; \theta_t)$. By the chain rule,

$$\frac{d}{dt}f_t(x_i) = \nabla_{\theta}f(x_i; \theta_t)^{\top} \frac{d\theta_t}{dt} = -\nabla_{\theta}f(x_i; \theta_t)^{\top} \nabla_{\theta}L(\theta_t).$$

Compute the parameter gradient of the loss:

$$\nabla_{\theta} L(\theta_t) = \sum_{j=1}^{n} (f_t(x_j) - y_j) \nabla_{\theta} f(x_j; \theta_t).$$

Substituting gives

$$\frac{d}{dt}f_t(x_i) = -\sum_{j=1}^n \underbrace{\nabla_{\theta} f(x_i; \theta_t)^{\top} \nabla_{\theta} f(x_j; \theta_t)}_{=: K_t(x_i, x_j)} (f_t(x_j) - y_j).$$

Stacking $f_t = (f_t(x_1), \dots, f_t(x_n))$ yields the vector ODE

$$\frac{d}{dt}f_t = -K_t(f_t - y),$$

where $[K_t]_{ij} = K_t(x_i, x_j)$ is the (time-dependent) NTK matrix.

Constant-kernel (NTK) regime. In the infinite-width limit (or under a lazy-training approximation), the kernel remains essentially constant during training, $K_t \approx K_0 =: K$ [2]. The ODE reduces to

$$\frac{d}{dt}f_t = -K(f_t - y).$$

Let $r_t := f_t - y$. Then $\dot{r}_t = -Kr_t$ with solution $r_t = e^{-Kt}r_0$, i.e.

$$f_t = y + e^{-Kt} (f_0 - y).$$

The convergence rate along eigenvector v_j of K is exponential with rate λ_j , the corresponding eigenvalue.

1.8 Lazy Training Regime

Training is in the *lazy regime* if parameter updates stay small relative to initialization:

$$\|\theta_t - \theta_0\| \ll \|\theta_0\|.$$

Then $\phi(x)$ and the NTK remain essentially constant and training is equivalent to kernel regression with fixed kernel K. When $\|\theta_t - \theta_0\|$ is not negligible, $\phi(x)$ evolves, yielding adaptive feature learning beyond NTK.

1.9 Finite Depth/Width Corrections to the NTK (Hanin–Nica)

The classical NTK result with fixed depth and width $\to \infty$ yields a deterministic, fixed kernel throughout training [2, 3]. In contrast, Hanin and Nica [1] analyze fully–connected ReLU networks at finite depth and width and show that when depth d and widths $\{n_\ell\}$ grow together, the NTK exhibits substantial stochasticity at initialization and evolves non–trivially during training.

Setup. Let the network have input dimension n_0 , hidden widths n_1, \ldots, n_{d-1} , output dimension $n_d = 1$, ReLU activations, zero biases at init (but biases are trainable), and standard variance—preserving scalings. Define the "inverse temperature"

$$\beta := \sum_{\ell=1}^{d-1} \frac{1}{n_{\ell}},$$
 (equal widths $n_{\ell} = n$ give $\beta = d/n$).

Fluctuations of the NTK at initialization. Denote the (on-diagonal) NTK by $K_N(x, x)$ for input x. Hanin-Nica prove

$$\mathbb{E}[K_N(x,x)] = d\left(\frac{1}{2} + \frac{\|x\|_2^2}{n_0}\right),$$

and show that the normalized second moment scales as

$$\frac{\mathbb{E}[K_N(x,x)^2]}{\mathbb{E}[K_N(x,x)]^2} \simeq \exp(5\,\beta) \left(1 + O(\sum_{\ell} n_{\ell}^{-2})\right).$$

In particular, for $n_{\ell} = n$ this ratio is $\simeq \exp(5d/n)$, so when d/n is bounded away from 0 the standard deviation is of the same order as the mean: the NTK is *not* concentrated (hence not deterministic) even if $d, n \to \infty$ jointly with $d/n = \Theta(1)$.

Training–time evolution at initialization. For squared loss and a single–example SGD step on x, the mean update of $K_N(x,x)$ at t=0 satisfies

$$\frac{\mathbb{E}\left[\Delta K_N(x,x)\right]}{\mathbb{E}[K_N(x,x)]} \approx \frac{d\beta}{n_0} \exp(5\beta) \left(1 + O(\sum_{\ell} n_{\ell}^{-2})\right),\,$$

which, for equal widths, becomes $\approx \frac{d^2}{n n_0} \exp(5d/n)$. Thus, unlike the fixed–depth infinite–width setting, the NTK generically *evolves* (data–dependently) when depth and width co–scale.

Remark 1.4 (Weak feature learning regime). The results suggest a regime with $0 < \beta \ll 1$ (e.g. $0 < d/n \ll 1$) where training remains numerically stable while K_N still evolves, enabling weak feature learning beyond the strictly lazy NTK limit. This gives a concrete knob (β) to interpolate between kernel-like behavior and feature adaptation.

Notes

• The constant-kernel ODE in $\S 1$ (gradient flow under fixed K) exactly matches the fixed-depth, infinite-width limit. When d and n co-scale, K_t becomes stochastic and time-varying, so the ODE becomes

$$\frac{d}{dt}f_t = -K_t(f_t - y), \quad K_t \text{ random and evolving},$$

with fluctuations and drift controlled by β .

• Practically, this could help explain empirical gaps between NTK predictions and real networks, and motivates experiments in the small- β region to observe "weak" feature learning.

References

- [1] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel, 2019. URL https://arxiv.org/abs/1909.05989.
- [2] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks, 2020. URL https://arxiv.org/abs/1806.07572.
- [3] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent *. Journal of Statistical Mechanics: Theory and Experiment, 2020 (12):124002, December 2020. ISSN 1742-5468. doi: 10.1088/1742-5468/abc62b. URL http://dx.doi.org/10.1088/1742-5468/abc62b.

[4] Radford M. Neal. *Priors for Infinite Networks*, pages 29–53. Springer New York, New York, NY, 1996. ISBN 978-1-4612-0745-0. doi: 10.1007/978-1-4612-0745-0_2. URL https://doi.org/10.1007/978-1-4612-0745-0_2.