

Projet 8

Participez à une compétition Kaggle!

Bengali. Al Handwritten Grapheme Classification

Plan de présentation

- 1. Problématique
- 2. Exploration de données
- 3. Feature Engineering
- 4. Implémentation des modèles multi-output
- 5. Résultats
- 6. Conclusion

1. PROBLÉMATIQUE

1. Problématique

- Plateforme web organisant les compétitions en Data Science, créé en 2010 par Anthony Goldbloom
- Les compétitions consistent à résoudre des problèmes sur les données réelles, souvent fourni soit par les entreprises ou par les organismes de recherche
- Chaque compétition a son critère d'évaluation, souvent la précision des prédictions. Les meilleurs résultats peuvent être rémunérés financièrement, parfois aussi par une proposition d'embauche
- Kaggle rempli également une fonction éducative en proposant aussi des nombreux tutoriels. Les participants peuvent partager leurs notebooks et échanger sur le forum de discussion
- Mise à disposition d'une machine virtuelle équipée par GPU (utilisation gratuite 30h/semaine)
- Mise à disposition de données de nombreux domaines

1. Problématique

Compétition choisie : Classification de graphèmes de bengali écrit

- Bengali est 5^{ème} langue le plus parlé dans le monde, avec une population de centaines de millions de locuteurs
- Il s'agit de la langue officielle de Bangladesh et de Bengale Occidentale (Inde)
- Bengali est composé de 49 lettres (11 voyelles et 38 consonnes) et 18 accents (11 potentiellement attribuables aux voyelles et 7 aux consonnes)
- Les graphèmes sont formés par les syllabes. Le nombre de variations potentielles est donc d'ordre assez important (~13 000 graphèmes différents)

1. Problématique

Le but de la compétition est :

- Améliorer les approches de reconnaissance de Bengali écrit, qui sont potentiellement extensibles aux autres langues issue de la famille de sanscrit
- Démocratiser et accélérer la recherche dans les technologies linguistiques
- Promouvoir l'éducation en Machine Learning

Les conditions:

- Critère d'évaluation : Recall pondéré (graphème racine 2x plus de poids que les graphèmes diacritique)
- Temps d'exécution ne peut pas dépasser 2h sur GPU ou 9h sur CPU

Le but du projet est :

- Construire ou customiser un algorithme de machine learning pour classifier les graphèmes de bengali
- La sortie de modèle est multioutput : le modèle devrait être capable d'identifier à la fois le graphème racine et des potentiels graphèmes de diacritique voyelle et consonne
- Le but est de participer activement à la compétition Kaggle :
 - Créer un équipe avec les autres étudiants
 - o S'inspirer des kernels (notebooks) des autres utilisateurs
 - o Publier notre propre kernel et partager notre travail avec la communauté
 - Soumettre les résultats de notre modèle final

2. ANALYSE EXPLORATOIRE DE DONNÉES

2. Analyse exploratoire de données

Données de test

- 12 images de test
- 36 prédictions à faire et à stocker dans un fichier .csv

Description d'images

2. Analyse exploratoire de données

2. Analyse exploratoire de données

Signes de diacritique voyelle

Signes de diacritique consonne

2. Analyse exploratoire de données Graphème racine le plus courant

Version imprimée:

3. FEATURE ENGINEERING

3. Feature engineering

Deux possibilités de gestion de données d'entraînement :

1. Lecture fichier par fichier

- Le principe consiste en création d'une boucle d'entraînement, exécutée pour chaque fichier à la suite
- Avantages:
 - Possibilité de faire le traitement des images (par exemple augmentation etc.) à l'intérieur de la boucle d'entraînement
 - Moins exigeant au niveau de mémoire
- Désavantage :
 - Possibilité que les images ne sont pas classées de façon aléatoire => risque de déséquilibre de représentation de classes dans les batchs

2. Lecture de 4 fichiers à la fois

- Avantage :
 - Pas de risque de batchs déséquilibrés, tirage d'images de façon aléatoire
- Désavantages :
 - Exigeant au niveau de mémoire, il faut lire tous les images à la fois
 - Stockage d'images traitées

Kaggle met à disposition un environnement d'exécution avec 13 GB de RAM (si nous optons pour l'utilisation le GPU).

- => Pas assez de mémoire pour charger les 4 fichiers à la fois
- => Choix d'option #1

28/01/2020 Lenka Styfalova 13

3. Feature engineering

Feature engineering effectué:

1. Redimensionner les images

Taille originale : 137 x 236 pixels en NB

• Taille de sortie : 64 x 64 pixels en NB

- Normalisation
 - Les valeurs en pixels (entre 0 et 255) divisées par 255
- Data Augmentation :
 - Rotation de +/- 8°
 - Zoom de +/- 15 % de la taille d'image
 - Recentrage horizontale et verticale de +/- 15% de la taille d'image
- 4. Création d'une classe MultiOutputDataGenerator (classe enfant de ImageDataGenerator) afin de pouvoir attribuer plusieurs cibles aux images

28/01/2020 Lenka Styfalova 14

4. IMPLÉMENTATION DE MODÈLES MULTI-OUTPUT

4. Implémentation de modèles multi-output Présentation de familles de modèles

ResNet (Residual Network)

- Kaiming He et al. [4] a introduit le modèle qui a emporté la compétition ILSVCR en 2015
- Le modèle développe l'idée d'utiliser un grand nombre de couches avec un peu de paramètres
- Introduction « d'unité résiduelle » : Le signal qui rentre dans la couche est additionné à l'output de la couche située plus haut
- Quand la taille de output ne corresponde pas à la taille de input, le signal passe par « skip connexion »
- Variantes: ResNet18, ResNet34, ResNet50, ResNet152

Architecture de ResNet

Source : Aurélien Géron : Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow

28/01/2020 Lenka Styfalova 16

4. Implémentation de modèles multi-output Présentation de familles de modèles

SENet (Squeeze and Excitation Networks)

- Introduit par Jie Hu et col. [6], gagnant de compétition ILSVRC 2017
- Ajoute le module « squeeze and excitation » après chaque module Inception ou Unité résiduelle (ResNet)
- Module est composé par une couche Global average pooling et deux couches fully connected
- But : re-calibrer les poids de feature maps
- Pourquoi on souhaite re-calibrer les poids :
 - o Le modèle apprend des liens entre des éléments dans les images
 - o Exemple : Les yeux, le nez et la bouche sont souvent sur la même photo
 - o Si nous avons une forte activation des maps qui représentent les éléments nez
 - + yeux, mais une faible activation de map qui corresponde à la bouche, le modèle va booster la feature map correspondante à la bouche

Le module SE re-calibre feature maps à la sortie

4. Implémentation de modèles multi-output ResNet18

$$CV 3x3, 64, s=2 + BN + ReLU$$

$$CV 3x3, 64, s=1 + BN + ReLU$$

$$CV 3x3, 128, s=1 + BN + ReLU$$

$$CV 3x3, 256, s=2 + BN + ReLU$$

$$CV 3x3, 256, s=1 + BN + ReLU$$

$$CV 3x3, 512, s=2 + BN + ReLU$$

Average Pooling 2x2

FC Softmax, FC Softmax, FC Softmax, 7

Skip connexion

Identity connexion

Choix de ResNet18:

• Réduction de nombre de couches par rapport au ResNet50 => nombre de paramètres d'entraînement : 24 millions -> 5 millions

Modèle ResNet18 créé à l'aide de 3 fonctions :

- Indentity block => identity connexion
- Convolutional block => skip connexion
- ResNet18 pour mettre ensemble les différentes couches

Source: Kernel Bengali Grapheme: ResNet 50, architecture modifiés pour correspondre au ResNet18

Description de modèle :

- Première couche convolutionnelle 7x7 avec 64 filtres.
 - Paramètre s=2 signifie que la fenêtre de filtre « se déplace » avec un pas de 2 pixels
 - o Batch Normalisation : Normalise output de la couche précédente + ajoute deux paramètres aléatoires. Le premier est additionnés et le deuxième multiplie la valeur normalisée. Ces paramètres sont entraînés par le modèle
 - o ReLU: Ramène la valeur à 0 si négative
- MaxPooling 3x3 => Réduit les dimensions de la sortie de la couche précédente en renvoyant le max d'une fenêtre de taille 3x3 pixels
- 8 couches convolutionnelles avec le pas de 1 ou 2 pixels, chacune terminée par BN + ReLU
 - \circ Si le pas s=2, Identity block est remplacé par skip connexion pour (couche convolutionnelle 1x1, s=2) qui nous permet d'avoir la même taille d'input et d'output
- Average pooling 2x2 => renvoie la moyenne de la fenêtre de 2x2 pixels
- 3 couches fully connected activées par Softmax => une pour chaque output

4. Implémentation de modèles multi-output SE-ResNet18

Module SE

FC ReLU

Average Pooling

FC Sigmoid

Skip connexion

Identity connexion

Description de modèle :

- Même architecture de base comme ResNet18
- Chaque Identity block ou skip connexion est suivi d'un module SE

Construction de modèle :

- Ajoute d'une couche Average Pooling
- Une couche fully connected activée par ReLU de taille 1/16 de couche précédente (Squeeze)
- Une couche fully connected de taille originale (Excitation) activée par une fonction sigmoïde

4. Implémentation de modèles multi-output Options d'exécution

Workflow

- Boucle de 4 exécutions (par fichier de données)
 - Batch size = 512
 - Les batchs sont donc tirés à l'intérieur de chaque fichier
 - Nombre d'epochs = 25
 - A la fin de chaque 25 epochs, nous la mémoire est vidé et nous procédons à la lecture de fichier suivant

Callbacks:

- ReduceLROnPlateau = Si l'entraînement ne fait plus de progrès au bout de 3 epochs, réduire learning rate de 0.5. LR min = 10e-6
- ModelCheckpoint = enregistrement de meilleur modèle selon le minimum de fonction de perte de validation globale
- Early stopping = si la valeur de fonction de perte arrête de diminuer au bout de 10 epochs, arrêter l'entraînement
- Temps d'exécution (GPU Google colab) ~ 40min

Lenka Styfalova 20

5. RÉSULTATS

5. Résultats ResNet18

- Meilleure précision sur les données de validation :
 - o Graphème racine: 0.8566
 - o Graphème diacritique voyelle: 0.9689
 - o Graphème diacritique consonne: 0.9647
- Précision estimée (moyenne pondérée ou le poids de graphème racine = 2) : 0.9147

5. RésultatsSE-ResNet18

- Meilleure précision sur les données de validation :
 - o Graphème racine: 0.8588
 - o Graphème diacritique voyelle: 0.9691
 - o Graphème diacritique consonne : 0.9659
- Précision estimée (moyenne pondérée ou le poids de graphème racine = 2) : 0.9131

6. CONCLUSION

6. Conclusion

Participation à la compétition Kaggle :

o Résultats de la 1ère soumission :

ResNet18: 92.47 %SE-ResNet18: 80.81 %

Classification (le 27/01/2020): 671 /852

Le meilleur résultat : 99.23 %

Création d'un kernel public :

- https://www.kaggle.com/lenkast/bengali-graphemes-multioutput-resnet18-keras/notebook
- > 3 évaluations positives
- > 109 vues

La suite de projet:

- Nous serons ravis de continuer à améliorer nos résultats
- Les pistes à explorer :
 - > Approfondir la recherche dans la littérature et dans les autres kernels partagés
 - > Tests sur différentes options d'augmentation de données, taille d'images, etc.
 - Tuning de paramètres du modèle (learning rate, optimizers etc.)
 - > Tester d'autres modèles ou modifier la structure de modèle actuel