

Fig. 2

Betas for Selected Components of NAICS: Household Appliance Manufacturing

Fig. 3

$$\text{Beta}_i = \text{Beta}_I (1 - \dot{\mu}_i)$$

$$\dot{\mu}_i = 1 - (\text{OP}_i / \text{OP}_I) * (\dot{\sigma}_i / \dot{\sigma}_I)$$

where:

- Beta_I = aggregate industry Beta
- OP_i = average growth index in operating profits for bizownerHQ sector
- OP_I = average growth index in operating profits for aggregate sector
- $(\dot{\sigma}_i / \dot{\sigma}_I)$ = ratio of standard deviation of operating profit growth index of bizownerHQ sector to standard deviation of its aggregate sector

Fig. 4

$$ATWACC = W_{ld} * R_{bl} * (1 - T) + W_{sd} * R_{bs} * (1 - T) + W_{cs} * R_{cs} + W_{ps} * R_{ps}$$

where:

- $W_{ld}, W_{sd}, W_{cs}, W_{ps}$ = percentage of capital structure financed with long-term debt, short-term debt, common stock, preferred stock respectively
- $R_{bl}, R_{bs}, R_{cs}, R_{ps}$ = cost of long-term debt, short-term debt, common stock, preferred stock respectively
- T = combined marginal federal and state income tax rate

Fig. 5

$$V = V_{ops} + V_{nops} + V_{tax-exempt} + V_{ec\&s}$$

$$MVMCE = V - BV_{debt} - BV_{ps} - BV_{ol}$$

where:

- V = value of the firm
- V_{ops} = value of firm operations
- V_{nops} = value of firm non-operating cash flows
- $V_{tax-exempt}$ = value of tax-exempt interest
- $V_{ec\&s}$ = value of excess cash & securities
- $MVMCE$ = market value of minority interest in common equity
- BV_{debt} = book value of debt
- BV_{ps} = book value of preferred stock
- BV_{ol} = book value other liabilities

Fig. 6

**Representative Studies That Attempt to
Measure the Liquidity Discount**

<i>Author(s)</i>	<i>Peer Reviewed Study</i>	<i>Average Discount</i>	<i>Reported Dispersion</i>	<i>Type of Study</i>
<i>William Silber¹</i>	Yes	35%;	14% for large creditworthy companies; 50% for small firms with negative earnings .2%-43.7%	Restricted stock study
<i>Michael Hertz and Richard Smith²</i>	Yes	Not Reported		Private Equity Study
<i>John Emory³</i>	Yes	47%	Not Specified	Pre-IPO Study
<i>John Koeplin et.al.⁴</i>	Yes	20.39%	Depending on the multiple used, discount varied from 0% discount based on sales revenue to 28.26% using the ratio of Enterprise Value to EBIT	Identified all acquisitions of private firms between 1984 and 1998
<i>Willamette Associates⁵</i>	No	40.1%	Wide dispersion from a premium to a maximum discount of 99%	Pre-IPO Study

Fig. 7

CEO Wage Data by Industry and Firm Asset Size

Fig. 8

Ceo Wage for Offices of Dentists by State and Firm Asset Size

Fig. 9

Year	# of Transactions	Historical Control Premiums: Median Values, %
1998	512	30.1
1997	487	27.5
1996	381	27.3
1995	324	29.2
1994	260	35
1993	173	33
1992	142	34.7
1991	137	29.4
1990	175	32
1989	303	29

Fig. 10

$$RR_t = E(R_t) + AR_t \quad (1)$$

$$E(R_t) = R_{ft} + Beta * (R_{mt} - R_{ft}) \quad (2)$$

$$E(AR_t) = B_1 * CP_{capital} + B_2 * CP_{synergy} \quad (2a)$$

where:

- RR_t = *ex post control premium: percent change in target firm share price on date of takeover announcement*
- AR_t = *abnormal return on takeover announcement date*
- $E(AR_t)$ = *expected value of AR_t prior to announcement date*
- $E(R_t)$ = *expected daily target firm rate of return on takeover announcement date*
- $CP_{capital}$ = *control premium due to reduction in cost of capital*
- $CP_{synergy}$ = *control premium due to synergy value created by acquirer*
- B_1, B_2 = *relative importance of $CP_{capital}$ & $CP_{synergy}$ respectively*
- R_{ft} = *expected daily rate of return on 1 year Treasury Bill on takeover announcement date*
- $Beta$ = *measure of target firm's systematic risk*
- R_{mt} = *expected daily rate of return on a diversified portfolio of assets on takeover announcement date*

Fig. 11

The expected value of the control premium is defined as:

$$E(AR)_t = [P_{aa} - P_{ba}] / P_{ba} \quad (3)$$

$$P_{ba} = CF_b / R_b \quad (4)$$

CF_b is constant level of cash flow before announcement

$$P_{aa} = CF_b / R_b - \emptyset \quad (5)$$

∴

$$E(AR)_t = \emptyset / R_b - \emptyset \quad (6)$$

$$AR_t = E(AR)_t + \dot{a}_t ; E(\dot{a}_t) = 0 \quad (7)$$

Fig. 12

$$E(R_{ndt}) = R_{ft} + Beta_{nd} * (R_{mt} - R_{ft}) \quad (8)$$

$$E(R_{dt}) = R_{ft} + Beta_{nd} * (R_{mt} - R_{ft}) * [1 + (D/E) * (I - T)] \quad (9)$$

where:

- D/E = debt to equity ratio for target firm
- T = combined federal and state marginal tax rate on target firm's business income

Fig. 13

Control Premium Values Vary With R and g

Fig. 14

Control Premium Values for Combinations of the Cost of Capital and

<i>Cost of Capital</i>	Values for ψ					
	0.02	0.025	0.03	0.035	0.04	0.045
0.1	25.00%	33.33%	42.86%	53.85%	66.67%	81.82%
0.11	22.22%	29.41%	37.50%	46.67%	57.14%	69.23%
0.12	20.00%	26.32%	33.33%	41.18%	50.00%	60.00%
0.13	13.38%	16.73%	20.08%	23.42%	26.77%	30.12%
0.14	12.29%	15.36%	18.43%	21.50%	24.57%	27.64%
0.15	11.33%	14.17%	17.00%	19.83%	22.67%	25.50%
0.2	8.00%	10.00%	12.00%	14.00%	16.00%	18.00%
0.25	6.00%	7.50%	9.00%	10.50%	12.00%	13.50%
0.3	4.67%	5.83%	7.00%	8.17%	9.33%	10.50%
0.4	3.00%	3.75%	4.50%	5.25%	6.00%	6.75%
0.5	2.00%	2.50%	3.00%	3.50%	4.00%	4.50%

Fig. 15

$$1+\%OP_i = (1+\%REV_i) * (1+\%OPM_i)$$

$$REV_i = \sum_{i=1}^n industry_i + \sum_{j=1}^k fd_{ij}$$

$$(1+\%OPM_i) = b_i * (1+\%OPM_e) * (\sigma_i / \sigma_e)$$

where:

- $1+\%OP_i$ = growth index of operating profits for industry i
- $(1+\%REV_i)$ = growth index of revenue for industry i
- $(1+\%OPM_i)$ = growth index of operating profit margin for industry i
- $(1+\%OPM_e)$ = growth index of operating profit margin for all industries
- b_i = ratio of average growth index for industry i to the average growth index for all industries
- (σ_i / σ_e) = ratio of growth index standard deviations
- $industry_i$ = sales of industry i output to other industries
- fd_{ij} = sales of industry i to categories j of final demand; e.g. consumption, investment

Fig. 16