INDEX

	1 1 2 2 2 2
* (wildcards), 152, 761	related work, 801–2
0-1 knapsack problem, 553	speedup over conventional systems,
1:1 mapping, 329–30	782–84
area/delay trade-offs, 329	Ad hoc testing, 96
PEs, 337	Adaptive Computing Systems (ACS), 57
pitch matching, 330	Adaptive lattice structures, 514
topology matching, 329-30	Adaptive nulling, CORDIC algorithm and,
	514
Absorbing boundary conditions (ABC), 702	Add/subtract FUs, 531, 532
Abstract Physical Model (APM), 322	Adder trees
Abstracted hardware resources, 234-36	computation, 598
Accelerated PathFinder, 418–22	creation, 598
limiting search expansion, 419	template-specific, 596
multi-terminal nets and, 420, 421	Adders, 504
parallelized, 215–16, 421	floating point implementation, 675–77
routing high-fanout nets first, 419	in reconfigurable dynamic ATR system,
scaling sharing/history costs, 419	609
See also PathFinder	
	Address indirection, 178
Accelerated simulated annealing, 415–18	Advanced Encryption Standard (AES), 459,
communication bandwidth and, 416–17	775
distributed, 415	A* heuristic, 373–374
hardware-assisted, 418	AIG, 285
parallelized, 416	Algebraic layout specification, 352–60
See also Simulated annealing	calculation, 353
Accelerating technology, 56–59	case study, 357-60
Actel ProASIC3, 83	Altera SignalTap, 271
Active Pages, 779–802	Altera Stratix, 19–23
activation portion, 788	block diagram, 19
algorithmic complexity, 786–94	DSP block, 21
array-insert, 788–90	LAB structure, 21
Central Processor, 782, 784–85, 788	logic architecture, 19-21
configurations, 782	logic element, 20
defect tolerance, 779, 799-801	MultiTrack, 21–22
DRAM hardware design, 780	routing architecture, 21-23
execution with parameters, 787	Altera Stratix-II, 68, 83, 300
hardware interface, 780	configuration information, 68
LCS, 791–94	horizontal/vertical routing, 308
multiplexing performance, 796	Alternative region implementations, 544,
Page Processor, 781	549
performance results, 781–86	heterogeneous, 550
performance versus random processor	number of, 550
defects, 800	obtaining, 550
processing time, 798	parallel program partitioning, 557
processor width performance, 796–97	sequential program partitioning, 549–50
processor-memory nonoverlap, 784–85	See also Hardware/software partitioning
programming model, 781	ALTOR, 313–14, 315
programming moder, 701	ALION, 313-14, 313

AMD/Intel, 55–56	fixed-point, 448-49
Amdahl's Law, 62, 542	implementation, 448–52
equation, 542	infinite-precision, 519
in hardware/software partitioning, 542,	Arithmetic logic units (ALUs), 5, 61, 114,
543	401
solution space pruning, 544	Array processors, 48, 226-30, 790,
Amtel AT40K, 70	2191–222
Analytic peak estimation, 479-84	Array-insert algorithm, 788-90
data range propagation, 482-84	processor and Active Pages computations
LTI system, 479–82	790
See also Peak estimation	simulation results, 790
Analytic placement, 315	Arrays
AND gates, 133	block reconfigurable, 74-75
Angle approximation error, 522-23	FPTAs, 745
Annotations	local, 177
absence of loop-carried memory	reconfigurable (RAs), 43
dependence, 178-79	See also FPGAs
pointer independence, 178	Artificial evolution, 727–29
Antifuse, 17–18	ASICs
use advantages, 18	cost, 440
Application development, 435–38	debug and verification, 440-41
challenges, 435	design time, 638
compute models, 93–107	development, 440
system architectures, 107–25	general-purpose hardware
Application-specific computation unit,	implementation, 458
603-4	power consumption, 440
Application-specific integrated circuits. See	replacement, 2
ASICs	time to market, 439–40
Applications 440, 52	vendors, 754
arithmetic implementation, 448–52	verification, 637, 638
characteristics and performance, 441–44	Associativity, 799–800
computational characteristics/	Asynchronous transfer mode (ATM)
performance, 441–43	networking, 755
configure-once implementation, 445	ATM adaptation layer 5 (AAL5), 758
embedded, 476	ATR, 591–610
implementation strategies, 445–48 implementing with FPGAs, 439–52	algorithms, 592–94 dynamically reconfigurable designs,
RTR, 446–47	594–600, 604–6
Architectural space modeling, 816–26	FOA algorithm, 592
efficiency, 817–25	with FPGAs, 591–610
raw density from architecture, 816–17	implementation methods, 604–7, 608
Area flow, 280	implementations, 604–9
Area models, 485–96	Mojave system, 604–6
high-level, 493–96	Myrinet system, 606–7
intersection mismatch, 823	reconfigurable computing models, 607–9
for multiple-wordlength adder, 495	reconfigurable static design, 600–4
width mismatch, 819–21	in SAR imagery, 591
Area-oriented mapping, 280–82	SLD, 592–94
Arithmetic Arithmetic	statically reconfigurable system, 606–7
BFP, 450	Automated worm detection, 766–67
complexity, 442–43	Automatic compilation, 162–75, 212–13
distributed, 503–11	dataflow graphs, building, 164–69

DFG optimization, 169-73	Block floating point (BFP), 450
DFG to reconfigurable fabric, 173-75	Block reconfigurable arrays, 74-75
hyperblocks, 164	BlockRAMs, 585, 708, 713, 766
memory node connections, 175	caching modules, 715
operation packing, 173-74	dual-ported, 716
pipelined scheduling, 174-75	latency, 713
runtime netlist, 413–14	Bloom filters, 762
scheduling, 174	payload scanning with, 762
TDF, 212	SIFT used, 766
See also C for spatial computing	Boolean expressions, 464
Automatic HW/SW partitioning, 175–76	Boolean operators, 465
Automatic partitioning trend, 540–42	Boolean satisfiability (SAT), 613–35
Automatic Target Recognition. See ATR	algorithms, 615–18
natomatic rarget recognition, occ nin	applications, 614
Back-pressure signal, 210	backtrack algorithm, 615–17
Backtrack algorithm, 615–17	backtrack algorithm improvement,
conflict analysis, 625	617–18
distributed control architecture, 620	clauses, 614
efficiency, 616	•
FSM, 621–22	CNF, 613
	complete algorithms, 615
implementing, 619–24 implication circuit, 620	formulas, mapping, 634
•	formulation, 282, 613–14
improved, 617–18, 626–27	incomplete algorithms, 615
improved, implementing, 624–27	parallel processing, 618–19
nonchronological backtracking, 618	problem, 613
reconfigurable solver, 618–27	problem analysis, 618–19
static variable ordering, 617	test pattern generation, 614, 615
terminating conditions, 616	See also SAT solvers
variable values, 619	Booth technique, 495
Basic blocks, 163	BORPH, 197
Batcher bitonic sorter, 357–60	Bottom-up structure synthesis, 853
BEE Platform Studio (BPS), 192, 193	Bottom-up technology, 855-58
BEE2 platform, 191–94	crosspoints, 857–58
design flow, 194	nanowires, 856–57
I/O, 200	Bulk Synchronous Parallelism (BSP),
Bellman-Ford algorithm, 386	118–19
Bernoulli's Law of Large Numbers, 835	Butterflies, 688
Bidirectional switches, 377	
Binary-level partitioning, 559	C++ language, 541
Binding	C compiler flow, 163
flexible, 236–38	C compiler frontend, 163-64
install time, 236–37	CFG, 163
runtime, 237–38	live variable analysis, 163
Bipartitioning, 312, 646	processing procedures, 164
Bitonic sorter, 357–60	C for spatial computing, 155–80
ilv combinator, 359	actual control flow, 159-60
layout and behavior specification, 358	automatic compilation, 162-75
merger, 359	automatic HW/SW partitioning, 175-76
recursion and layout, 360	common path optimization, 161-62
recursive structure, 357	data connections between operations,
Bitops (bit operations), 808	157
BLAS routines, 685	full pushbutton path benefits, 155-56
	= - =

C for spatial computing (cont.) hyperblocks, 164 if-then-else with multiplexers, 158–59 memory, 157–58 mixed operations, 157 partitioning, 155 programmer assistance, 176–80 C language, 155–159, 171, 179, 541 C-slow retiming, 390–93, 827 architectural change requirement, 395–96 benefits, 390 FPGA effects on, 391 interface, 391 latency improvement, 392 low-power environment effect, 392 memory blocks, 391 microprocessor application, 395 as multi-threading, 395–98 results, 392 as threaded design, 391 throughput, 392	Chimaera architecture, 42–44 high-level user design language, 44 overview illustration, 43 RFUOPs, 43 VICs, 43–44 Choice networks creating, 285 mapping on, 286 Church-Turing Thesis, 96 Circuit combinators, 352 Circuit emulation, 54–56, 637–68 AMD/Intel, 55–56 impacts, 56 in-circuit, 650 multi-FPGA, 641–44 single-FPGA, 640–41 system uses, 639–40 Virtual Wires, 56 VLE, 653–65 Circuit graph bidirectional switches, 377 de-multiplexers, 376–77
See also Retiming	edges, 377
Caches	extensions, 376–77
configurations, 83	model, 367
virtually addressed, 397	symmetric device inputs, 376
CAD	Circuit layout
JHDL system, 255, 265–68	algebraic specification, 352-60
Mentor Graphics, 56	calculation, 353
PipeRench tools, 34	deterministic, 352
runtime, 411	explicit Cartesian specification, 351–52
runtime processes, 238	no and totally explicit, 350
Teramac for, 58	problem, 347–51
tools, 44–45, 66	regularity, 319
Cadence Xcite, 642	specifying, 347–63
Case studies	verification for parameterized designs,
Altera Stratix, 19–23	360–62
Xilinx Virtex-II Pro, 23–26	CLAP tool, benchmarks, 336
CDFG, See Control dataflow graphs	Clause modules, 629–30
Cellular automata (CA), 122–23, 702–3 folded, 123	Clock cycles
	Clock cycles for circuit mapping, 649
two-dimensional, 122 well-known, 122	latency, 507
Cellular programming evolutionary	N/L, 510
algorithm, 738	packing operations into, 173–74
Central Limit Theorem, 835	reducing number of, 506
Centralized evolution, 736–37	Clock frequency, 506
Chameleon architecture, 40-41	Cloning, 54
price/performance, 41	Clustering, 213, 227, 228, 304-6
Channel width, 430	benefits, 304
Checkpointing, 272	goals, 304
Checksums, 847	iRAC algorithm, 306

mechanical, 423	population-oriented, 737-38
RASP system, 304–5	See also Evolvable hardware (EHW)
T-VPack algorithm, 305	Complete matching, 841
VPack algorithm, 305	Complex programmable logic devices
CMOS scaling, 507	(CPLDs), 292
CMX-2X, 60	Component reuse, 198-200
Coarse-grained architectures, 32–33	signal-processing primitives, 198
PipeRench, 32–34	tiled subsystems, 198–200
Codesign ladder, 541	See also Streaming FPGA applications
Coding phase, 582, 585-86	Computations
block diagram, 586	data-centric, 110
See also SPIHT	data-dependent, 104
Col combinator, 354–55	on dataflow graph, 99
Columns, skipping, 602	density of, 826
Common path, 161–62	deterministic, 95
Common subexpression elimination (CSE),	feedforward, 389
171	fixed-point, 475–99
Communicating Sequential Processes	memory-centric, 779–802
(CSP), 93, 106	models, 96
Communication, 243–48	nondeterministic, 96
I/O, 247	phased, 104
intertask, 251	SCORE, 205
latency, 247	spatial, 157
method calls, 244	stream, 203–17
point-to-point, 251	Compute bound algorithms, 443
shared memory, 243–44	Compute models, 92–107
streams, 244–46	applications and, 94
styles, 243–46	challenges, 93–97
virtual memory, 246–47	correctness reasoning, 95
Compaction, 324, 337–44	data parallel, 105
HWOP selection, 338	data-centric, 105–6
optimization techniques, 338–42	dataflow, 98-103
phases, 337–38	in decomposing problems, 94-95
regularity analysis, 338	diversity, 92
Compilation, 212–13	functions, 97
accelerating classical techniques, 414–22	multi-threaded, 93, 106
architecture effect, 427–31	object-oriented, 98
automatic, 162-75, 212-13	objects, 97–98
C, uses and variations, 175-80	parallelism existence, 95
fast, 411–32	SCORE, 74, 203–17
incremental place and route, 425-27	sequential control, 103-5
multiphase solutions, 422–25	taxonomy, 93
partitioning-based, 423	transformation permissibility, 95
PathFinder acceleration, 418–22	Turing-Complete, 97
runtime netlist, 411, 413-14, 432	Compute units, 319
simulated annealing acceleration,	Computing primitives, 95
415–18	Concurrent statements, 144, 150
slow, 411	Concurrent-error detection (CED), 846
for spatial computing, 155–80	Configurable Array Logic (CAL), 53
Compilation flow, 150–52	Configurable bitstreams, 16, 402–6
Complete evolution, 736–38	closed architecture, 402
centralized, 736–37	configuration, generation, 401-9

Configurable bitstreams (cont.)	in instance-specific designs, 456-57
control bits, 405	in logical expressions, 464–66
data generation software, 407–8	Constrained 2D placement, 335-6
downloading mechanisms, 406–7	Content-addressable memories (CAMs), 444
generation, 401–9	Context switching, 80
open, 408	Context-sensitive optimization, 340–42
sizes, 405, 406	superslices, 340, 341
tool flow, 408	See also Compaction
underlying data structure, 402	Control dataflow graphs (CDFGs), 319
Configurable logic blocks (CLBs), 23, 325	conversion to forest of trees, 330
complexity, 507	primitive operators, 332
flip-flops, 508	sequence, 334–35
multiple, 509	Control flow, 159–60
resource reduction, 508	implementation, 159
XC6200, 741	subcircuits, 160
Configuration transfer time reduction,	See also C for spatial computing
80–82	Control flow graph (CFG), 163, 164
architectural approaches, 81	Control nets, 322
compression, 81–82	Controller design, 124, 194–98
data reuse, 82	with Matlab M language, 195–97
Configuration upsets, 849–50	with Simulink blocks, 194–95
Configuration(s)	with Verilog, 197
architectures, 66–76	with VHDL, 197
block reconfigurable, 74–75	Controllers
cache, 83	configuration, 66, 73
caching, 77	delay line, 195–96
compression, 81–82	FSM, 124
controller, 66, 73	RaPiD, 39
cycles, number of, 68	sequential, 120
data reuse, 82	vector architecture, 120
data transfer, 67	Coordinate systems, CORDIC, 520–21
grouping, 76	Coprocessors
multi-context, 68–70	independent, 36–40
partially reconfigurable, 70–71	scalar processor with, 117
pipeline reconfigurable, 73–74	streaming, 109–10
relocation and defragmentation, 71-73	vector, 121–22
scheduling, 77–79	CORDIC, 437, 513–35
security, 82–83	adaptive lattice structures and, 514
single-context, 67–68	adaptive nulling and, 514
swapping, 72	alternatives, 513, 520
Configure-once implementation, 445	angle approximation error, 522–23
Configured switches, 216	architectural design, 526–27
Conjunctive normal form (CNF), 291, 613	computation noise, 522
Connection blocks, 8	computational accuracy, 521–26
detail, 10	convergence, 527–28
island-style architecture with, 9	coordinate systems, 520–21
Connection Machine, 221, 223	datapath rounding error, 523–26
Constant coefficient multipliers, 459, 495	engine, 527, 534
Constant folding, 169, 450–51	in FFT, 514
automated, 473	folded architecture, 528–30
constant propagation, 463	functions computed by, 521
implementations with/without, 451	implementation, 526–27

input mapping, 527 input sample, 525	Custom evolvable FPGAs, 743–45 axes, 744
iterations, 516, 527	POEtic tissue, 743–45
Kalman filters and, 514	See also Evolvable hardware (EHW)
micro-rotations, 526	Customizable instruction processors, 121,
parallel linear array, 530–33	461–62
PE, 532	Cut enumeration-based algorithm, 287
processing, 522	Cut generation, 279–80
quantization effects, 524	Cvt class, 266–68
realizations, 513–14	GUI, 267
result vector error, 523	implementation, 266–67
rotation mode, 514-17	implementation, 200 07
scaling, 517–19	7 A. A. 70
scaling compensation, 534	D-flip-flops, 596
shift sequences, 522	DA. See Distributed arithmetic
as shift-and-add algorithm, 513	DAOmap, 282–83
unified description, 520–21	area improvement, 283
variable format, 524	multiple cut selection passes, 283
vector rotation, 518	DAP, 221
vectoring mode, 514, 519-20, 525	Data Encryption Standard (DES), 459
in VLSI signal processing, 514	Data nets, 321
y-reduction mode, 519	Data parallel, 119–22
z-reduction mode, 517	application programming, 219–30
CORDIC processors	compute model, 105
datapath format, 526	languages, 222–23
datapath width, 523	SIMD, 120
effective number of result bites, 525	SPMD, 120
FPGA implementation, 527-34	system architecture, 119–22
FPGA realizations, 523	Data presence, 108–9, 110
full-range, 527, 528	Data queuing, 756
with multiplier-based scaling	Data range propagation, 482–84
compensation, 535	Data-centric, 105-6, 110
PE, 533	Data-dependent branching, 221
COordinate Rotation DIigital Computer.	Data-element size, 442–43
See CORDIC	Data-oriented specialization, 450–52
Cosine, 437	Dataflow, 98–103
Cost function, 440	analysis-based operator size reduction,
PathFinder, 368, 375	172
power-aware, 284	direction, 321
in simulated annealing, 306	dynamic streaming, 100–2
Coverification, 639–40, 650–51	dynamic streaming, with peeks, 102
flow between workstation and emulator,	single-rate synchronous, 99
665	streaming, with allocation, 102–3
performance, 650	synchronous, 99–100
simulation, 651	techniques, 93
use of, 640	Dataflow graphs (DFGs), 78, 319
VLE interfaces for, 664–65	building, 164
See also Logic emulation systems	circuit generation, 164
CPU blocks, 15	computation on, 99
Cray supercomputers, 60	control (CDFG), 319
Crosspoints, 857–58	DSP, 93
diode, 859	edges, 165
nanowire-nanowire, 866	edges, building and ordering, 166-68

	_ a
Dataflow graphs (DFGs) (cont.)	Defect maps
implicit type conversions, 172	with component-specific mapping, 836
live variables at exits, 168-69	model, 832
multirate, 100	Defect tolerance, 830–43
muxes, building, 167	Active Pages and, 779, 799-801
nodes, 165	associativity and, 800
operations in clock cycles, 173-74	concept, 830-32
optimization, 164	defect map model, 832
predicates, 167	global sparing, 836-37
scalar variables in memory, 169	local sparing, 838-39
single-rate static, 100	with matching, 840-43
as "stepping stone," 164-65	models, 831–32
top-level build algorithms, 165-66	nanoPLA, 869
See also DFG optimization	perfect component model, 831, 837-38
Dataflow Intermediate Language (DIL), 34	with sparing, 835–39
Dataflow single-rate synchronous, 99	substitutable resources, 832
Datapath composition, 319-44	testing, 835–36
device architecture impact, 324–26	yield, 832–35
interconnect effect, 326	Defects
interface to module generators, 326-29	faults and, 830
layout, 322–23	lifetime, 848–49
mapping, 329–33	rates, 829, 832
regularity, 320–22	Defragmentation, 71-73
tool flow overview, 323-24	device support, 77
Datapath pruning, 524	software-based, 79-80
Datapath rounding error, 523-26	Delay lines
Datapaths	controller, 195–96
butterfly, 688	synchronous, 194
with explicit control, 195	VPR computation, 309–10
FSM, 138–49	Delay Optimal Mapping algorithm. See
FSM communication with, 123-24	DAOmap
high-performance, 184	Delay(s)
HWOPs, 320, 321–22	configurable, 187
layout, 322–23	as cost approximation, 375
sharing, 109	delta, 150
SIMD, 815, 818	Delta delay, 150
word-wide, 216	De-multiplexers, 376–77, 862–63
dbC language, 224	Denial of service (DoS), 774
Deadlock, 96	Denormals, 673
Deadlock prevention, 249	Depth-first search order, 585
Debug circuitry synthesis, 271–72	Derivative monitors, 490
Debugging	Deterministic Finite Automata, 103
ASICs, 441	Device architecture, 3–27
FPGAs, 440–41	DFG. See Dataflow graphs
JHDL, 270–72	DFG optimization, 169-73
Decoders, 376-77, 862-63	Boolean value identification, 171
Dedicated-wire systems, 641	constant folding, 169
channel graph, 647	CSE, 171
recursive bipartitioning, 646	dataflow analysis-based operator size
routing problem, 646	reduction, 172
See also Multiplexed-wire systems	dead node elimination, 170–71
Deep pipelining, 706	identity simplification, 170

memory access optimization, 172	Dynamic Instruction Set Computer (DISC),
redundant loads removal, 172-73	447
strength reduction, 170	Dynamic partial reconfiguration, 742–43
type-based operator size reduction,	Dynamic reconfiguration, 552
171–72	Dynamic RPF, 29
See also Dataflow graphs (DFGs)	Dynamic scheduling, 240–41
Digital signal processors (DSPs), 49, 93	frontier, 240–41
Direct memory access (DMA), 246	runtime information, 240, 241
Discrete cosine transform (DCT), 389, 479,	See also Scheduling
511	Dynamic streaming dataflow, 101–2
Discrete Fourier transform (DFT)	with peeks, 102
output vector, 534	primitives, 101
symmetries, 687	Dynamic testbench, 269–70
Discrete wavelet transform (DWT), 567	Dynamically linked libraries (DLLs), 235,
architecture illustration, 575	773 Dynamically reconfigurable ATR system,
architectures, 571–75	604–6
computational complexity, 572	Dynamically reconfigurable designs,
engine runtime, 574	594–600
folded architecture, 571, 572	algorithm modifications, 594
generic 2D biorthogonal, 573–74	FPGAs over ASICs, 595–96
partitioned, 572, 573	image correlation circuit, 594–96
phase, 582	implementation method, 599–600
two-dimensional, 571	performance analysis, 596–97
Distributed arithmetic (DA), 503–11	template partitioning, 598–99
algorithm, 504	See also ATR
application on FPGA, 511	
FIR filters, 575	Edge mask display, 190
implementation, 504–7	Edges
LUT size and, 505	building, 166–67
performance, improving, 508–11	circuit graph model, 377
reduced memory implementation, 507	detection design driver, 185
theory, 503–4	liveness, 165
two-bit-at-a-time reduced memory	ordering, 167-68, 172, 173
implementation, 509	EDIF (Electronic Design Interchange
Division operation, 437	Format), 407
Djikstra's algorithm, 371	Effective area, 280
Dot product, 506, 683–86	Electric and magnetic field-updating
FPGA implementation, 685	algorithms, 700–1
maximum sustainable floating-point rate, 685	Embedded memory blocks (EMBs),
	mapping logic to, 291–92
multiply-accumulate, 686 multiply-add, 686	Embedded microprocessors, 197–98
performance, 685–87	Embedded multipliers, 514
Downloading mechanisms, 406–7	Embedded multiply-accumulator (MACC)
DRAMs	tiles, 514, 680
	EMB_Pack algorithm, 292
computational hardware, 786 dies, 831	Epigenesis, 726
	Epigenetic axis, 727, 744
hardware design, 780 high-density, 780	Error checking, 233
Dtb class, 270	Error estimation, 485–96
	fixed-point error, 486 high-level area models, 493–96
Dynamic FPGAs, 600	ingii-ievel area models, 493-90

Error estimation (cont.)	parallel program partitioning, 558
LTI systems, 487–89	sequential program partitioning, 552–57
noise model, 487–88	simple formulation, 552-53
noise propagation, 488-89	See also Hardware/software partitioning
nonlinear differentiable systems, 489-93	Extended logic, 12-16
quantization, 711–12	elements, 12–15
simulation, 486	fast carry chain, 13-14
simulation-based methods, 487	multipliers, 14–15
Evolution	processor blocks, 15
artificial, 727–29	RAM, 15
centralized, 736-37	Extreme subwavelength top-down
complete, 736–38	lithography, 853
extrinsic, 733	Extrinsic EHW, 733
intrinsic, 734–35	
open-ended, 738-39	$F^{2}PGA$, 735
population-oriented, 737-38	Factoring, 515–16
Evolutionary algorithms (EAs), cellular	False alarm rate (FAR), 592
programming, 738	Fast carry chain, 13-14
Evolutionary circuit design, 731, 733	Fast Fourier transform (FFT), 21, 389, 479
Evolutionary computation, 727	butterflies, 688
Evolvable hardware (EHW), 729-46	CORDIC algorithm and, 514
as artificial evolution subdomain, 731	data dependencies, 692
commercial FPGAs, 741-43	FPGA implementation, 689-91
complete evolution, 736-38	implementation factors, 692
custom, 743–45	parallel architecture, 689, 690
digital platforms, 739-45	parallel-pipelined architecture, 690, 691
dynamic partial reconfiguration, 742-43	performance, 691–93
evolvable components, 739-40	pipelined architecture, 689-91
extrinsic evolution, 733	radix-2, 687–88
future directions, 746	FDTD, 697–723
genome encoding, 731-32	ABCs, 702
intrinsic evolution, 734-35	accelerating, 702
JBits for, 743	advantages on FPGA, 705-7
living beings analogy, 729–30	algorithm, 701-3
off-chip, 732	applications, 703–5
on-chip, 732	background, 697-701
open-ended evolution, 738-39	breast cancer detection application, 703-4
taxonomy, 733–39	as CA, 702–3, 723
virtual reconfiguration, 741-42	as data and computationally intense, 702
Xilinx XC6200 family, 740-41	deep pipelining, 706
Exit nodes, 165	field-updating algorithms, 700-1
Explicit layout	fixed-point arithmetic, 706–7
Cartesian, 351–52	flow diagram, 701
no, 350	ground-penetrating radar application, 703
totally, 350	landmine detection application, 704
in VHDL, 351	method, 697–707
Explicit synchronization, 248	model space, 698, 702, 712
Exploration	parallelism, 705–6
0-1 knapsack problem, 553	PMLs, 702
complex formulations, 555–56	reconfigurable hardware implementation,
formulation with asymmetric	704
communication, 553–55	spiral antenna model 704 705

UPML, 702, 706	streams, 847
See also Maxwell's equations	token buffers, 102
FDTD hardware design case study, 707–23	Fine-grained architectures, 30-32
4 x 3 row caching model, 719	Finite-difference time-domain. See FDTD
4-slice caching design, 718	Finite-impulse response (FIR) filters, 21,
background, 707	98, 389, 479
data analysis, 709–12	4-tap, 510
dataflow and processing core	16-tap, 507, 508
optimization, 716–18	distributed arithmetic, 575
expansion to three dimensions, 718-19	general multipliers, 460
fixed-point quantization, 709–12	instance-specific multipliers, 460
floating-point results comparison, 710,	mapping onto FPGA fabric, 507
711	SPIHT implementation and, 576
hardware implementation, 712–22	taps, 503
managed-cache module, 717	Finite-precision arithmetic, 519
memory hierarchy and interface, 712–15	Finite-State Machine with Datapath
memory transfer bottleneck, 715–16	(FSMD), 112, 124 Finite state machines (FSMs), 112, 620, 621
model specifications, 711 parallelism, 720–21	Finite-state machines (FSMs), 112, 620, 621 coarse-grained, 125
performance results, 722	communicating with datapaths, 123–24
pipelining, 719–20	controller, 124
quantization errors, 710	datapath example, 138–49
relative error, 710, 711	states, 621–22
relative error for different widths, 712	VHDL programming, 130
requirements, 707–8	Firewalls, 754
results, 722	First-in, first-out. See FIFO
two hardware implementations, 721-22	Fixed instructions, 815
WildStar-II Pro PFGA board, 708-9	Fixed Order SPIHT, 578–80
Feedforward correction, 844-45	basis, 579
memory, 845	order, 579
TMR, 844	PSNR curve, 579
FF. See Flip-flops	SPIHT comparison, 581
Field effect transistors (FETs), 861	See also SPIHT
Field Programmable Port Extender (FPX)	Fixed-frequency FPGAs, 394–95
platform, 755, 756	Fixed-Plus-Variable (F + V) computer, 48 Fixed-point computation, 475–99, 706–7
applications developed for, 756 multiple copies, 770	analytic peak estimation, 479–84
physical implementation block diagram,	FDTD algorithm, 708
757	peak value estimation, 478–85
RAD circuits on, 770, 772	precision analysis for, 475–99
remote configuration on, 773	relative error, 712
in WUGS, 756–57	simulation-based peak estimation, 484
Field-programmable gate arrays. See FPGAs	Fixed-point error, 486
Field-programmable interconnect chips	Fixed-point number system, 448-49, 475-78
(FPICs), 643	2's complement, 709
Field-programmable transistor arrays	data structure, 710
(FPTAs), 745	in embedded applications, 476
Field-updating algorithms, 700–1	flexibility, 476
FIFO, 37, 585	multiple wordlength paradigm, 476–77
blocks, 586	reconfigurable logic, 476
buffers, 759	Fixed-point precision analysis, 575–78
queues between operators, 108	final variable representation, 578

Fixed-point precision analysis (cont.)	conflict analysis, 630
magnitude calculations, 576	creation methodology, 632
variable representation, 577	global topology, 628
See also SPIHT	implementation issues, 631-32
FLAME, 327–28	main control unit, 630
design data model, 327-28	optimized pipelined bus system,
library specification, 328	628, 629
Manager, 327	performance, 630-33
topology description, 328	shared-wire global signaling, 628
Flash memory, 17	structural regularity, 628
Flexible API for Module-based	system architecture, 627–30
Environments. See FLAME	See also Boolean satisfiability; SAT solvers
Flexible binding, 236–38	Forward error correction (FEC), 755
fast CAD for, 238	Forward propagation, 482–84
install time binding, 236–37	FPGA fabrics, 14–15, 40–41
preemption and, 242	arbitrary-precision high-speed
	adder/subtractors support, 530
runtime binding, 237–38	
See also Operating systems (OSs)	architectures, 30–34
FlexRAM, 801	dedicated paths, 511
Flip-flops (FFs), 286, 597	footprint, 527
CLB, 508	FPGA placement, 297–98
D, 5–6, 596	alternative, 297–98
retiming and, 286	analytic, 315
Floating point, 449–50, 671–79, 706	challenge, 316
adder block, 676	clustering, 304–6
adder implementation, 675-77	designer directives, 302-4
adder layout, 676	device legality constraints, 300-1
application case studies, 679–92	difficulty, 275
denormals, 673	general-purpose FPGAs, 299-316
difficulty, 671–78	homogeneous, 503
dot product, 683-86	importance, 299
FFT, 686–92	independence tool, 312
IEEE double-precision format, 672	inputs, 299
implementation, 692	legal, 300
implementation considerations, 673-75	optimization goals, 301-2
matrix multiply, 679–83	partition-based, 312-15
maximum sustainable rate, 685	problem, 299–304
multiplier block, 678	PROXI algorithm, 311–12
multiplier implementation and layout,	routability-driven algorithms, 301
678	routing architecture influence, 302
numbers, 672	simulated annealing, 306–12
summary, 692–94	simultaneous routing, 311–13
Floating region, 303	timing-driven algorithms, 301
Flow graphs, 78, 79	tools, 301
FlowMap algorithm, 279, 282	See also FPGAs
Focus of Attention (FOA) algorithm, 592	FPGAs, 1, 47
Folded CA, 123	antifuse, 17–18
Folded CORDIC architecture, 528–30	application implementation with,
Follow-on SAT solver, 627–33	439–52
characteristics, 628	arithmetic implementation, 448–52
clause modules, 629–30	
compilation time reduction, 627–33	ATR systems with, 591–610
comphanon time reduction, 021-33	backend phase, 151

as blank hardware, 16	FPgrep, 761
case studies, 18–23	FPsed, 761
circuit layout specification, 347-63	FPX. See Field Programmable Extender
clock rates, 441	platform
compilation flow, 151	Fractional fixed-point data, 523
computing, CORDIC architectures for,	Fractional guard bits, 522
513–35	FSM. See Finite-state machines
configuration, 16–18	FSM datapath, 138-49
configuration data transfer to, 67	adder representation, 144
configuration memory systems, 2	concurrent statements, 144
CORDIC processor implementation,	control signal generation, 145-48
527–34	control signal generation illustration, 146
cost, 440	design illustration, 139
DA application on, 511	multiplexer representation, 144
debug and verification, 440-41	multiplier representation, 144
dedicated processors, 15	next-state decoder, 149
development, 440	registers, 144–45
dynamic, 600	sequential statement execution, 149
efficiency of processors and, 825	structural representation, 138–41
emulation system, 55	time-shared datapath, 141-44
evolvable, 725-46	FSMD. See Finite-state machine with
fabric, 15	datapath
fixed-frequency, 394–95	Full-range CORDIC processors, 527, 528
flash memory, 17	input quadrant mapping, 528
flexibility, 87	micro-rotation engine, 529
floating point for, 671-94	See also CORDIC
general-purpose hardware	Function blocks. See Logic blocks
implementation, 458	Functional blocks (FBs), 741
island-style, 6, 7, 314	Functional mapping algorithms, 277
K-gate, 600	Functional Unit model, 41-43, 115-16
LUTs, 4–6, 279	Functions, 97
low-quality ASICs use, 1	
multi-context, 68–70	GAMA, 331, 333
network data processing with, 755–56	Garp's nonsymmetrical RPF, 30–32, 40
number formats, 436	configuration bits, 31
partially reconfigurable, 70–71	configurator, 32
performance, 438	number of rows, 30
power consumption, 440	partial array configuration support, 31
in reconfigurable computing role, 3	See also Fine-grained architectures; RPF
routing resources, 348, 367	General computational array model, 807–14
scaling, 411, 412, 431–32	implications, 809–14
SIMD computing on, 219–21	instruction distribution, 810–13
single-context, 67–68	instruction storage, 813–14
SRAM, 16–17	General-purpose FPGA placement. See
static, 600	FPGA placement
streaming application programming, 183–202	General-purpose programming languages
	(GPLs), 255, 256 Generic 2D biorthogonal DWT, 573–74
strengths/weaknesses, 439–41 testing after manufacture, 407	Genetic algorithms (GAs), 727–29
time to market, 439–40	components, 729
volatile static-RAM (SRAM), 6	crossover, 729
See also FPGA placement	decoding, 728
See also II OA placement	accoung, 720

Genetic algorithms (cont.)	pitch-matched, 322
fitness evaluation, 728	placement, 324
genetic operators, 728-29	regular structure, 320–21
initialization, 728	selection for compaction, 338
mutation, 729	swaps, 334
steps, 728–29	See also Datapaths; HWOP placement
variable-length (VGA), 735	Hardware protection, 250-51
Genome encoding, 731–32	Hardware prototyping, 411, 412–13, 432
fitness calculation, 732	reasons for employing, 412
high-level languages, 731	Taramac system and, 427
low-level languages, 732	Hardware/software partitioning, 539–59
Genomes, 728	alternative region implementation, 544,
Given's rotations, 514	549–50
Global RTR, 446, 447	exploration, 544, 552–57
Global sparing, 836–37	FPGA technology and, 539
Globally Asynchronous, Locally	granularity, 544, 545–47
Synchronous (GALS) model, 109	implementation models, 544, 550–52
Glue-logic, 441	of parallel programs, 557–58
Granularity, 30–34	partition evaluation, 544, 547–48
coarse, 32–34, 546	problem, 539–40
dynamically determined, 547	of sequential programs, 542–57
	speedup following Amdahl's Law, 543
fine-grained, 30–32, 546	Hash tables, 762
heterogeneous, 546	•
manual partitioning, 546	HDL Coder, 183 Heuristic search procedure, 496–97
parallel program partitioning, 557	Heuristics, 553, 555
region, 545	
sequential program partitioning, 545–47	greedy, 553–55
See also Hardware/software partitioning	neighborhood search, 556
Graph bipartitioning, 553	nongreedy, 553–55
GRASP, 618, 625, 632–33	simulated annealing, 555–56
Greedy heuristics, 553–55	Hierarchical annealing algorithm, 310–11
Ground-penetrating radar (GPR), 703, 704,	Hierarchical composition, 125
711	Hierarchical FPGAs, 313
Group migration, 554	Hierarchical routing, 10–12
TT 1 227 424	FPGA placements, 301
Hard macros, 336, 424	long wires, 11
Hardware-Accelerated Identification of	High-fanout nets, 419, 425
Languages (HAIL), 768	High-level languages (HLLs), 44–45, 52, 401
Hardware-assisted simulated annealing, 418	enabling use of, 44–45
Hardware description languages (HDLs),	genome encoding, 731
183, 235, 407, 541	Huffman decoding, 233
Hardware execution checkpoints, 272	HWOP placement, 333–37
Hardware operators (HWOPs)	constrained two-dimensional, 335–36
boundary dissolution, 337	linear, 333–35
compaction, 324	simultaneous tree covering and, 334
linear stripes, 335	styles, 333
mapping, 323	two-dimensional, 336–37
module generation, 323	HWSystem class, 272
multibit wide, 320	Hyperblocks
neighboring, 338	basic block selection for, 166
non-bit-sliced, 324	building DFGs for, 164-69
pitch, 321	formation, 168

1/0 247	compone 455
I/O, 247	concept, 455 constant coefficient multipliers, 459
bound algorithms, 443	constant coefficient multipliers, 439 constant folding, 456–57
performance, 443–44	customizable instruction processors,
IDCT, 233	461–62
IEEE double-precision floating-point format, 672	examples, 459–62
If-then-else, 158–59	function adaptation, 457
*	implementation, 456
IKOS Logic Emulator, 630–31	key-specific crypto-processors, 459–60
IKOS VirtualLogic SLI Emulator, 623 Illinois Pular-based Optical Interconnect	NIDS, 460–61
(iPOINT), 755	optimizations, 456–57
Ilv combinator, 359	partial evaluation, 462–73
Image correlation circuit, 594–96	requirements, 456
Image-processing design driver, 185–94	taxonomy, 456–57
2D video filtering, 187–91	use examples, 457
horizontal gradient, 188, 189	Instruction augmentation, 115–16
mapping video filter to BEE2 FPGA	coprocessor model, 116
platform, 191–94	Functional Unit model, 115-16
RGB video conversion, 185–87	instruction augmentation model, 116
vertical gradient, 188, 189	manifestations, 115
See also Streaming FPGA applications	Instruction distribution, 810-13
IMap algorithm, 281–82	assumptions, 811
Implementation models	wiring, 811
dynamic reconfiguration parameter, 552	Instruction Set Architecture (ISA)
parallel program partitioning, 557–58	processor models, 103
parameters, 551–52	Instruction-level parallelism, 796
real-time scheduling, 558	Instructions
sequential program partitioning, 550–52	array-wide, 814
See also Hardware/software partitioning	base, 115
Implicit synchronization, 248–49	controller issuance, 113
Imprint lithography, 870–71	fixed, 815 shared, 815–16
Impulse project, 802	storage, 813–14
In-circuit emulation, 639, 650	Integer linear programming (ILP), 497, 553
Incremental mapping, 425-27	Integrated mapping algorithms, 284–89
design clock cycle, 663	integrated retiming, 286–87
See also Mapping	MIS-pga, 288
Incremental partitioning, 661	placement-driven, 287–89
Incremental place and route, 425-77	simultaneous logic synthesis, 284–86
Incremental rerouting, 374–75	See also Technology mapping
Incremental routing, 661	Integrated retiming, 286–87
Independence tool, 312	Interconnect
Induced architectural models, 814-16	Altera Stratix MultiTrack, 21-22
fixed instructions, 815	connection block, 8-10
shared instructions, 815–16	effect on datapath placement, 326
Infinite-impulse response (IIR) filters, 21,	hierarchical, 10-12
98, 479	nearest neighbor, 7–8
Install time binding, 236–37	optimization, 110
Instance-specific design, 411, 413, 432,	programmability, 12
455–73	segmented, 8–10
approaches, 457–58	sharing, 110
architecture adaptation, 457	structures, 7–12
changing at runtime, 456	switch block, 8-10

Internet key exchange (IKE), 775	JHDL classes
Internet Protocol Security (IPSec), 775	cvt, 266–68
Internet worms, 760	dtb, 270
Interslice nets, 322	HWSystem, 272
Intertask communication, 251	Logic, 259-61, 272
Intraslice nets, 322	Techmapper, 260, 264, 272
Intrinsic evolution, 734–35	Johnson's algorithm, 809
Intrusion detection, 756, 762-67	• • • • • • • • • • • • • • • • • • •
Intrusion detection and prevention system	K-input lookup tables (K-LUTs), 277
(IDPS), 763	K-Means clustering algorithm, 227, 228
Intrusion detection system (IDS), 762	Kalman filters, 514
Intrusion prevention, 756, 762–67	Key-specific crypto-processors, 459–60
Intrusion prevention system (IPS), 754, 763	riej speeme erjpts processors, les es
IP processing, 758	Lagrangian multipliers and relaxation, 376
iRAC clustering algorithm, 305–6	Lambda Calculus model, 96
Island-style FPGAs, 6, 7	Langmuir–Blodgett (LB) flow techniques,
with connect blocks, 9	857
partitioning, 314	Language identification, 767–68
-	Latency
Isolation, 251	BlockRAMs, 713
Iterative mapping, 288	butterfly path, 694
Java, 541	C-slow retiming, 392
JBits, 408, 631	clock cycle, 507
	communication, 247
for evolving circuits, 743	Lattice ECP2, 83
JHDL with, 271	
JHDL, 88, 89, 255–72	Lava, 352
advanced capabilities, 269–72	LCS algorithm, 791–94
behavior synthesis, 270	parallel execution, 791
CAD system, 255, 265–68	simulation results, 793, 794
checkpointing, 272	three-dimensional, 793–94
circuit data structure, 257	two-dimensional, 791–92
as circuit design language, 264–65	Least significant bit (LSB), 321, 510
debug circuitry synthesis, 271–72	Leiserson's algorithm, 384–86
debugging capabilities, 270–72	LEKO, 282
descriptions, 264	LEON benchmark, 398
design process illustration, 257	Lifetime defects, 848–49
dynamic testbenches, 269–70	detection, 848–49
as embedded design language, 256	repair, 849
hardware mode, 268–69	See also Defects; Defect tolerance
Logic Library, 270	Linear placement, 333–35
module generators, 263	Linear time-invariant (LTI) systems, 479–82
motivation, 255–57	analytic technique, 487–89
open-source license, 272–73	error sensitivity, 489
placement attributes, 263	scaling with transfer functions, 481–82
primitive instantiation, 257–59	transfer function calculation, 479–80
primitives library, 257	Linear-feedback shift registers (LFSRs), 98
programmatic circuit generation, 261–63	Linearization, 490
Sea Cucumber and, 270	List of insignificant pixels (LIP), 569
simulation/hardware execution	List of insignificant sets (LIS), 569, 570
environment, 268	List of significant pixels (LSP), 569, 570,
as structural design language, 263–64	586
testbenches, 265–66	Lithographic scaling, 854–55

7.1	D. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Liveness edges, 165	DA implementation and, 505
Local arrays, 177	defective, 838
Local minima, 554	exponential growth, 504
Local RTR, 446–47, 448	functionality, 403
Local sparing, 838–39	inputs, 404
Location update chain, 417	K-input, 277
Logic, 3–6	logic block illustration, 6
duplication, 284	as logic "islands," 404
elements, 4–6	mapping to, 289–90
extended, 12–16	as memory element, 403
fast carry chain, 13-14	memory size, 509
glue, 441	number per logic block, 5
mapping to EMBs, 291–92	outputs, 404
multivalued, 150	physical, 151
optimization, 342	size, 5
programmability, 6	synchronous, 510
in RTL, 133	Loops
simultaneous synthesis, 284-86	fission, 177
unnecessary removal, 466	fusion, 177
verification, 638	interchange, 177
Logic blocks, 5, 6, 13	memory dependencies, 178-79
Logic class, 259–61	nest, 177
methods, 260-61	reversal, 177
MUX example, 259–60	Loosely coupled RPF and processor
subroutines, 259	architecture, 41
Logic emulation systems, 411, 412–13, 432,	Lossless synthesis, 285
637–68	Low-level languages, genome encoding, 732
background, 637–39	Low-temperature anneal, 311
case study, 653–65	Low-voltage differential signaling (LVDS),
complexity, 639	667
configuration illustration, 639	LTI. See Linear time-invariant systems
coverification, 639–40, 650–51	
fast FPGA mapping, 652–53	M-tap filter, 509–10
FPGA-based, 637–39	Macrocells, mapping to, 292
FPGA-based, advantages, 667	Macros
future trends, 666–67	hard, 336, 424
in-circuit emulation, 639, 650	identification, 424
issues, 650–51	parameterizable, 493
logic analysis, 651	soft, 336, 424
multi-FPGA, 641–44	Malware, 762
processor-based, 666	appearance, 764
single-FPGA, 640–41	propagation, 764
types, 640–50	Manual partitioning, 540, 546
use of, 639–40, 651	Mapping, 329–33
VirtuaLogic VLE, 639, 653–65	1:1, 329–30
Logic fabric, 3–34, 14–15, 514	combined approach, 332–33
Logic gates, 278	component-specific, 837
Logic networks, 278	DA onto FPGAs, 507–8
Logic processors, 666–67	dedicated-wire, 641
LogicGen, 332–33	design, with multiple asynchronous
Lookup table (LUT), 4–6, 264, 409, 503	clocks, 657–61
4-input, 507	incremental, 425–27, 662–63

Mapping (cont.)	performance of FPGAs and
LUT, 471–72	microprocessors, 684
multi-FPGA emulator flow, 645	Maximal matching, 841
multiplexed-wire, 642	Maximum magnitude phase, 582, 583-85
multiported memory, 657	block diagram, 585
<i>N</i> :1, 330–32	calculation, 583
stages, 414	See also SPIHT
Mapping algorithms, 277-93	Maxwell's equations, 697
area-oriented, 280-82	curl, 698
complex logic blocks, 290-91	discovery, 697
DAOmap, 282–83	in rectangular coordinates, 699
delay optimal, 283	as set of linear equations, 700
FlowMap, 279, 282	solving, 697
functional, 277	Memory
for heterogeneous resources, 289–92	access operations, 158
IMap, 281–82	access optimization, 172
integrated, 278, 284–89	C for spatial computing, 157–58
iterative, 288	CAM, 444
LEKO, 282	FDTD hardware implementation, 712–15
logic to EMBs, 291–92	FPGA elements, 444
LUTs of different input sizes, 289–90	instruction, 814
macrocells, 292	nodes, 175
matching formulation, 841	PE, 221
MIS-pga, 288	ports, 175, 444
optimal-depth, 287	retiming, 387
performance-driven, 282–83	scalar variables in, 169
placement-driven, 287–89	SDRAM, 760
PLAmap, 292	shared, 124–25, 243–44
power-aware, 283–84	single pool, 104–5
PRAETOR, 280–81	total amount of, 444
structural, 277, 278–84	virtual, 246–47
times, 837	Memory management unit (MMU), 246,
Markov Models, 78, 768	247
	Memory-centric computation, 779–802
Mask parameters, 184, 187 MasPar, 221	algorithmic complexity, 786–94
	parallelism, 794–99
Master slices, 320, 321	performance results, 781–86
Matching	See also Active Pages
complete, 841	-
defect tolerance with, 840–43	Message authentication code (MAC), 775
fine-grained Pterm, 841–42	Message passing, 124, 244
formulation, 841	Method calls, 244
maximal, 841	Microplacement, 342, 343
MATLAB, 88, 195–97, 198	Microprocessors, 439, 441
Matrix multiply, 679–83	MIS-pga algorithm, 288
decomposition, 680	Modula robotics, 739
FPGA implementation, 680–81	Module generator interface, 326–29
implementation, 681	data model, 327–28
MACC operations, 680	flow, 327
maximum achievable performance versus	intra-module layout, 328–29
memory bandwidth, 683	library specification, 328
memory accesses, 682	Module generators
performance, 679, 682-83	FLAME-based libraries, 327

flexibility, 326	Multiplexed-wire systems, 642
PARAMOG library, 338	circuit mapping, 649
Mojave ATR system, 594, 604-6	incremental compilation, 662
machine comparison, 606	inter- and intra-FPGA connections, 647
photograph, 605	partitioning for, 646
results, 604	routing, 648
used resources, 605	utilization of wires, 648
Moore's Law, 637, 753	See also Dedicated-wire systems
circuit density growth, 49	Multiplexers, 401
process scaling, 826	2-input, 130–32, 403
MORPH project, 801	4-input, 134–35, 136–38, 404
Morton Scan Ordering, 584	FSM datapath, 144
Most significant bit (MSB), 321, 493, 494,	if-then-else, 158–59
510	inputs, 403
Multi-context devices, 68–70	logical equations, 133–34
benefits, 69	primitive instantiation example, 258
configuration bits, 69	pseudo, 377
drawbacks, 69–70	Multiplexing
physical capacity, 69	factors, 796
Multidomain signal transport, 658, 659, 660	nonactive memory and, 798
requirement, 660	performance, 796
retimed, 660	processor width versus, 797–99
Multi-FPGA emulation, 641–44	Multiplication function, 405
as complex verification platforms, 641	
	Multipliers, 14–15
constraints, 644	area estimation, 495
crossbar topology, 643	constant coefficient, 459, 495
dedicated-wire mapping, 641, 642	embedded, 514, 712
design mapping, 644–45	floating point, 677–78
high-level flow, 644	general cell, 466
inter- and intra-FPGA connections, 647	instance-specific, 460
inter-partition logic communication, 641	Lagrangian, 376
interconnection, 647	partial evaluation of, 466–70
mapping flow, 645	shift-add, 467
mesh topology, 643	Multiply-accumulate (MACC) operations,
multiplexed-wire mapping, 642	680
partitioning approach, 645–46	Multiported memory mapping, 657
placement approach, 645–46	Multiprocessing environments, 799
routing approaches, 646–50	Multivalued logic, 150
topologies, 641, 643	Multiway partitioning, 313
See also Logic emulation systems	Muxes, building, 167
Multi-SIMD coarse-grained array, 228	Myrinet ATR system, 606–7
Multi-terminal nets, 420, 421, 425	host, 606
Multi-threaded, 106, 123-25	photograph, 607
FSMs with datapaths, 123-24	simulations, 607
message passing, 124	
model, 93	N:1 mapping, 330–32
processors with channels, 124	NanoPLA, 841
shared memory, 124-25	architecture, 864–70
Multiple wordlength	basic logic block, 864-67
adder formats, 494	block illustration, 865
optimization for, 478	blocks, 867
paradigm, 476–77	defect tolerance, 869

NanoPLA (cont.)	Network processing
density benefits, 870	build motivation, 753–54
design mapping, 869	complete system, 770-75
interconnect architecture, 867–69	control and configuration, 771-72
memories, 869	control channel security, 774-75
tiling with edge I/O, 868	data, with FPGAs, 755-56
wired-OR planes, 867	dynamic hardware plug-ins, 773
Nanoscale architecture, 853–73	hardware/software packet, 754–55
bottom-up technology, 855-58	intrusion detection/prevention, 762-67
challenges, 858–59	IP wrappers, 758
CMOS pitch matching via tilt, 872	layered protocol wrapper
design alternatives, 870–72	implementation, 759
imprint lithography, 870–71	partial bitfile generation, 773-74
interfacing, 871-72	payload processing with regular
lithographic scaling, 854–55	expression scanning, 761-62
nanoPLA, 864–70	payload scanning with Bloom filters, 762
nanowire circuits, 859-62	payload-processing modules, 760-61
restoration, 872	protocol, 757–62
statistical assembly, 862-64	rack-mount chassis form factor, 770-71
Nanovia, 871	with reconfigurable hardware, 753-57
Nanowire circuits, 859-62	reconfiguration mechanisms, 772-73
inverter, 862	semantic, 767–70
restoration, 860–62	system modularity, 756-57
wired-OR diode logic array, 859-60	TCP wrappers, 758–60
Nanowires, 856–57	Next-state decoder, 149
addressing, 866	Nodes
angled, 871	dead, elimination, 170-71
assembly, 857	exit, 165
decoder for, 863	memory, connecting, 175
doping profiles, 857–58	Seed, 291
field effect controlled, 861	Noise injection, 490–93
Langmuir-Blodgett alignment, 857	Noise model, 487–88
statistical selection, 863	Noise propagation, 488–89
switchable modules between, 858	Nonchronological backtracking, 618
NBitAdder design, 262	Nondeterministic finite automata (NFA),
NBTI, 848	761
NCHARGE API, 772	Nonlinear differentiable systems, 489–93
Nearest-neighbor connectivity, 7–8	derivative monitors, 490
Negotiated Analytic Placement (NAP)	hybrid approach, 489–93
algorithm, 315	linearization, 490
Negotiated Congestion Avoidance	noise injection, 490–93
algorithm, 369	perturbation analysis, 489
Negotiated congestion router, 367–72 algorithm, 370–71	Nonrecurring engineering (NRE), 855
first-order congestion, 368	Not a number (NAN), 449
iterative, 369	Number formats, 436
priority queue, 371	Object-oriented model, 98
second-order congestion, 370	Objects, 97–98
Negotiated congestion/delay router, 372–73	On-demand scheduling, 239
NetFPGA, 776	One-time programmable (OTP), 17
Network Intrusion Detection System	Ontogenetic axis, 727, 744
(NIDS), 460–61	Ontogeny, 726

Open Systems Interconnection (OSI)	Parallel linear array, 531
Reference Model, 757	based on Virtex-4 DSP48 embedded tile,
Open-ended evolution, 738-39	533
Operating system (OS)	CORDIC, 530–33
abstracted hardware resources, 234-36	Parallel PathFinder, 377-79
communication, 243–48	Parallel program partitioning, 557–58
demands, 232	alternative region implementations, 557
dynamic scheduling, 240-41	evaluation, 557
flexible binding, 236–39	exploration, 558
on-demand scheduling, 239	granularity, 557
preemption, 242	implementation models, 557–58
protection, 231, 249–51	Parallel programs, 540
quasi-static scheduling, 241	data dependence, 102
real-time scheduling, 241–42	data parallel, 105
roles, 231	data-centric, 105–6
scheduling, 239–42	multi-threaded, 106
security, 231	sequentialization and, 104–5
static scheduling, 239–40	synchronization, 248–49
support, 231–52	Parallelism, 99, 105, 118, 248
Operations	artificial, 105
C for spatial computing, 157	bulk synchronous, 118–19
DFG, 173–74	in compute models, 95
MACC, 680	data, 95, 234, 442
memory access, 158	FDTD, 705–6
packing into clock cycles, 173-74	FDTD hardware design case study,
Operator size reduction, 171–72	720–21
dataflow analysis-based, 172	in FFT computation, 689
type-based, 171-72	instruction-level, 95, 234, 796
Optimization(s)	maximum possible, 236
common path, 161-62	memory-centric computation, 794-99
compaction, 338–42	PathFinder qualities, 379
context-sensitive, 340–42	raw spatial, 219
decidable, 97	task, 95
DFG, 164, 169–73	Parameterizable macros, 493
FPGA placement, 301-2	Parametric generation, 136–38
instance-specific, 456-57	PARAMOG module generator library, 338
interconnect, 110	PARBIT tool, 773–74
logic, 342	Partial evaluation, 462–73
memory access, 172	accomplishing, 462
for multiple wordlength, 478	cell logic, 468-69
SPIHT, 586	constant folding in logical expressions,
undecidable, 97	464–66
wordlength, 485-97	FPGA-specific concerns, 471–73
word-level, 339–40	functional specialization, 468-70
Ordering edges, 167–68	geometric specialization, 470
absence, 173	LUT mapping, 471–72
existence, 173	motivation, 463
false, removing, 172	of multipliers, 466–70
<u>.</u>	optimized multiplication circuitry, 468
Packet inspection applications, 761	in practice, 464–66
Packet switches, 216	process of specialization, 464
Parallel compilation, VLE system, 665	at runtime, 470–71

D (1 1 (1 ()	10 - 11 - 1
Partial evaluation (cont.)	distributed memory multiprocessor
static resources, 472	implementation, 378
true x value, 470	enhancements/extensions, 374–77
unnecessary logic removal, 466	implementation, 366
verification of runtime specialization,	incremental rerouting, 374–75
472–73	in incrementally rerouting signals, 379
of XOR gate, 463	Lagrangian relaxation relationship, 376
Partial evaluators, 464	Nair algorithm versus, 370
Partially reconfigurable designs, 70–71	negotiated congestion router, 367–72
Partition evaluation, 544, 547	negotiated congestion/delay router,
design metric, 547	372–73
dynamic, 548	parallel, 377–78
heterogeneous, 548	parallelized, 421
objective function, 547	QuickRoute and, 379
parallel program partitioning, 557	resource cost, 375
sequential program partitioning, 544,	SC-PathFinder, 366
547–48	in scheduling communication in
trade-off, 547–48	computing graphs, 379
Partition-based placement, 312–15	single-processor, 421
bipartitions, 312	symmetric device inputs, 376
hierarchical FPGAs, 313	Pattern matchers, 470–71
multiway partitioning, 312	general bit-level, 471
recursive partitioning, 313–14	instance-specific, 472
See also FPGA placement	requirements, 470
Partitioned DWT, 572, 573	Pattern matching, 470
Partitioning, 155, 507	Payload processing, 760–62
automatic HW/SW, 175–76	with Bloom filters, 762
automatic, trend, 540–42	modules, 760–61
binary-level, 559	with regular expression, 761–62
hardware/software, 539-59	PE. See Processing elements
incremental, 661	Peak estimation, 478–85
for island-style FPGAs, 314	analytic, 479–84
manual, 540, 546	simulation-based, 484
multi-FPGA, 645–46	See also Fixed-point computation
for multiplexed-wire systems, 646	Perfect component model, 831, 837–38
multiway, 312	Perfect matched layers (PMLs), 702
recursive, 313–14	Performance
super-HWOP, 340	Active Pages, 781–86
template, 598–99	application, 441–44
Partitions, 540	computation, 441–43
PassAddOrConstant, 673, 674	coverification, 650
PATH algorithm, 310	DA, 508–11
PathFinder, 216, 312, 365-80	dot product, 685-86
accelerating, 418–22	FDTD hardware design case study,
applying A* to, 373–74	722–23
for asymmetric architectures, 373	FFT, 691–92
bidirectional switches, 377	FPGA, 438
circuit graph extensions, 376-77	I/O, 443–44
circuit graph model, 367	matrix multiply, 682-83
communication bandwidth, 421	multiplexing, 796
cost function, 368, 375	processor width, 796
de-multiplexers, 376-77	Performance-driven mapping, 282-83

Perturbation analysis, 489	Power-based ranking, 284
Peutil.exe utility, 587	PRAETOR algorithm, 280-82
Phased computations, 104	area reduction techniques, 281
Phased reconfiguration, 210-11	See also Mapping algorithms
manager, 117	PRAM, 786
schedule, 215	Predicates, 167
Phylogenetic axis, 727	Preemption, 242
POEtic tissue, 744	Prefetching, 77
subdivision, 735	Primary inputs (PIs), 278, 279
Phylogeny, 726	Primary outputs (POs), 278, 279
Physical synthesis, 316	Primitive instantiation, 257–59
PIM project, 801	Primitive instruction, 808
Pipe and Filter, 108	PRISM, 53
Pipeline operators, 184	Probability of detection (PD), 592
Pipeline reconfigurable architecture, 73–74	Processing elements (PEs), 29, 221–22,
Pipelined scheduling, 174–75	225–26
Pipelined SIMD/vector processing, 228–29	data exchange, 221
Pipelining, 443	index calculation, 227
deep, 706	memory, 221
FDTD hardware design case study,	resetting, 221
719–20	SIMD, 317 Processor width
READ/CALCUATE/WRITE, 716	multiplying versus, 797–99
PipeRench, 32–35	performance, 796–97
CAD tools, 34	Processors
DIL, 34	with channels, 124
PEs, 33	connecting with communication
physical stripe, 32	channels, 124
pipelined configuration, 32	customizable instruction, 461–62
virtual pipeline stages, 34	SIMD, 219
See also Coarse-grained architectures;	VLIW, 164
RPF	Programmable Active Memories (PAM),
Pipes, 99, 213	49–50
Pitch matching, 330	Programmable chips, 2
Placement directives, 302–4	Programmable logic blocks (PLBs), 290-91
fixed region, 303	Programmatic circuit generators, 261-63
floating region, 303	Programmer assistance (C compilation),
results, 304	176–80
See also FPGA placement	address indirection, 178
Placement-driven algorithms, 287–89	annotations, 178-79
PLAmap algorithm, 292, 869	control structure, 177-78
Plasma architecture, 427, 428	data size declaration, 178
POE model, 725–27	large block integration, 179-80
axes, 727	local arrays, 177
paradigms, 727	loop fission and fusion, 177
POEtic tissue, 743–45	loop interchange, 177
Pointer independence, 178	operator-level module integration, 179
Poly-phase filter bank (PFB), 200	useful code changes, 176–77
Population-oriented evolution, 737–38	Protection, 249–51
Port mapping, 133	hardware, 250–51
Power cost, 284	task configuration, 251
Power estimation, 488–89	PROXI algorithm, 311–12
Power-aware mapping, 283–84	Pterm matching, 841–42

QRD-RLS (recursive least squares) filtering, 514 Quartz system, 361 Quasi-static scheduling, 241 QuickRoute, 379 Rack-mount chassis form factor, 770–71 RAM dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 Ranking, power-based, 284 RaPiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Rack-mount chassis form factor, 770–71 Radiditional processor/coprocessor arrangement, 48 VCC, 50–51 Virtual Wires, 56 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
Quartz system, 361 Quasi-static scheduling, 241 QuickRoute, 379 Rack-mount chassis form factor, 770–71 RAM dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 Ranking, power-based, 284 RapiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 traditional processor/coprocessor arrangement, 48 VCC, 50–51 Virtual Wires, 56 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable Pipelined Datapaths. See RaPiD Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2
Quasi-static scheduling, 241 QuickRoute, 379 Rack-mount chassis form factor, 770–71 RAM dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 RaPiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Rack-mount chassis form factor, 770–71 Virtual Wires, 56 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2
QuickRoute, 379 VCC, 50–51 Virtual Wires, 56 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 VCC, 50–51 Virtual Wires, 56 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2
Rack-mount chassis form factor, 770–71 RAM dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 RapiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Virtual Wires, 56 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
Rack-mount chassis form factor, 770–71 RAM dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 RapiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 XC6200, 53–54 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also RFU and processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2
RAM dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 RaPiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Rame propagation, 482–84 Reconfigurable functional units (RFUs), 41 processor pipeline with, 42 as RAs, 43 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
dedicated, 15 static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 Rapid, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Range propagation, 482–84 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
static (SRAM), 6, 15, 16–17, 767, 775 Range propagation, 482–84 Ranking, power-based, 284 RaPiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Ranking, power-based, 284 RFUOPs, 43 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
Range propagation, 482–84 Ranking, power-based, 284 Ranking, power-based, 284 RapiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RaPiD Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
Ranking, power-based, 284 RaPiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 super-scalar processor with, 116 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
RaPiD, 36–40, 801 application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 See also RFU and processor architecture Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also RFU and processor architecture Reconfigurable image correlator, 602–3 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2
application design, 36 architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Reconfigurable image correlator, 602–3 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
architecture block diagram, 37 datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Reconfigurable Pipelined Datapaths. See RaPiD Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
datapath overview, 38 instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RAPiD Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
instruction generator, 39 PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Reconfigurable processing fabric. See RPF Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
PEs, 38 programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 Reconfigurable static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
programmable controller, 39 programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RECOMBIGITABLE Static design, 600–4 application-specific computation unit, 603–4 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
programming, 39–40 stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RASP system, 304–5 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RASP system, 304–5 RASP system
stream generator, 37 VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 correlation task order, 601–2 design-specific parameters, 601 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
VICs, 39 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RASP system, 304–5 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
RASP system, 304–5 RAW project, 801 Real-time scheduling, 241–42, 558 RASP system, 304–5 reconfigurable image correlator, 602–3 zero mask rows, 601–2 See also ATR
RAW project, 801 Real-time scheduling, 241–42, 558 Real-time scheduling, 241–42, 558 Real-time scheduling, 241–42, 558
Real-time scheduling, 241–42, 558 Zero mask rows, 601–2 See also ATR
See also AIR
December weekle Application Cresific
Reconfigurable Application Specific Processor (PASP) 60 Reconfigurable supercomputing, 59–60
Processor (RASP), 60 Reconfigurable arrays (RAs), 42 CMX-2X, 60
Reconfigurable arrays (RAs), 43 Cray, 60 Cray, 60
Reconfigurable Communications Processor (RCP), 41 Cray, 60 Silicon Graphics, 60
(RCI), 41
Reconfigurable computing architectures, 29–45 Reconfiguration
fabric, 30–34 configuration, 66–76
impact on datapath composition, 324–26 overhead, 65
independent RPF coprocessor, 36–40 phased, 210–11
processor + RPF, 40–44 phased manager, 117
RPF integration, 35–44 process management, 76–80
Reconfigurable computing systems, 47–62 RTR, 65, 446–47
accelerating technology, 56–59 virtual, 741–42
AMD/Intel, 55–56 Reconfiguration management, 65–83
CAL, 53 configuration caching, 77
circuit emulation, 54–56 configuration compression, 81–82
cloning, 54 configuration data reuse, 82
early, 47–49 configuration grouping, 76
F + V, 48 configuration scheduling, 77–79
future, 62 configuration security, 82–83
issues, 61–62 configuration transfer time reduction,
non-FPGA research, 61 80–82
PAM, 49–50 context switching, 80
PRISM, 53 software-based relocation and
small-scale, 52–54 defragmentation, 78–80
Splash, 51–52 Recursive partitioning, 313–14

Recursive Pyramid Algorithm (RPA), 572	See also C-slow retiming
Reflection, 269	RFU and processor architecture, 41-42
Register Transfer Level (RTL), 87, 129	datapath, 42
logic organization, 133	processor pipeline example, 42
VHDL description, 133–36	RGB data
Regular expression (RE), 761	conversion, 185–87
Regularity	cycle alignment, 186
circuit layout, 319	RightSize, 493
datapath composition, 320–22	Rock's Law, 855
importance, 344	Rollback, 845-48
inter-HWOP, 339	communications, 847-48
Relocation, 71–73, 237	detection, 846
device support, 77	recovery, 847
software-based, 79–80	scheme, 849
support problem, 80	for tolerating configuration upsets,
Rent's Rule, 642	849–50
	Rotation
Repipelining, 389–90	CORDIC, 515–18
feedforward computations, 389	Given's, 514
FPGA effects on, 391	in matrix form, 515
latency cycles, 390	micro-rotations, 526
retiming derivation, 389	as product of smaller rotations, 515
throughput improvement, 390	signal flow graph, 518
Reprogrammable application devices	vector growth factor, 518
(RADs), 756	Rotation mode, 514-17
Resonant-tunneling diodes (RTDs), 872	micro-rotation extensions, 516
Resource cost, PathFinder, 375	as z-reduction mode, 517
Retiming	See also CORDIC
adoption limitation factors, 398	Routability-driven algorithms, 301
area-time tradeoffs, 111	Routing, 215–16
Bellman-Ford algorithm, 386	congestion, 302
benefit, 388	FPGA resources, 348
constraint system, 385	global, 366
correctness, 386	hierarchical, 10–12, 301
covering and, 286	horizontal, 308
design limitations, 387	incremental, 661
effect, 287	multi-FPGA emulation, 646–50
FFs, 286	multiplexed-wire systems, 648
on fixed-frequency FPGAs, 394-95	nearest-neighbor, 7–8
FPGA effects on, 391	negotiated congestion, 367–372
global set/reset constraint, 387	Pathfinder-style, 422
goal, 384	physical FPGA modifications for, 430
implementations, 393–94	programmable resources, 12
with initial conditions, 387	SCORE, 215–16
integrated, 286–87	search wave, 419
Leiserson's algorithm, 384–86	segmented, 8–10
memories, 387	simultaneous placement and, 311–13
multiple clocks and, 387–88	solutions, 365–66
operation, 383	vertical, 308
problem and results, 388	VPR, 314, 372
sequential control, 110	Rows skipping, 602
as superlinear, 398	zero mask, 601–2
as superimear, 370	2010 mask, 001-2

RPF and processor architectures, 40-44	system architecture, 627-30
Chimaera, 42–44	system-level design and synthesis
loosely coupled, 41	methodologies, 634
tightly coupled, 41–42	See also Boolean satisfiability
RPFs, 29	Satisfiability (SAT)
architectures, 30-34	Boolean, 282, 613-35
coarse-grained, 32-33	FPGA-based solvers, 413
dynamic, 29	problem, 413
fine-grained, 30-32	Sblocks, 742
independent coprocessor, 36-40	SC-PathFinder, 366
integration into traditional systems,	Scaling
35–44	CORDIC algorithm, 517-19
integration types, 35–36	CORDIC, compensation, 534
locations in memory hierarchy, 35	FPGA, 411, 412, 431–32
RaPiD, 36–40	Moore's Law process, 826
static, 29, 901	with transfer functions, 481-82
RTL. See Register Transfer Level	wordlength, 477
Rule tables, 738	Scheduling
Runtime binding, 237–38	configuration, 77–79
Runtime netlist compilation, 213, 411,	dynamic, 240-41
413–14	module-mapped DFG, 174
dynamically compiled applications and,	on-demand, 239
414	operating system, 239-42
requirement, 432	pipelined, 174–75
Runtime reconfiguration (RTR), 65, 446–47	preemption, 242
applications, 447	quasi-static, 241
global, 446, 447	real-time, 241-42, 558
local, 446-47, 448	SCORE, 213-15
Runtime Reconfigured Artificial Neural	static, 239–40
Network (RRANN), 447	window-based, 79
Runtime specialization, 472–73	SCORE, 74, 203-217
•	application illustration, 204
Sandia algorithm, 594	back-pressure signal, 210
SAR. See Synthetic Aperture Radar	C++ integration and composition, 206-8
SAT solvers, 618–27	compilation, 212–13
algorithms, 633	compilation flow, 212
backtrack algorithm implementation,	computations, 205
619–24	execution patterns, 208–12
differences among, 633	fixed-size, 211–12
follow-on, 627–33	as higher-level programming model, 203
future research, 634–35	highlights, 217
global topology, 621	operators, 205, 206, 207
HW/SW organization, 633	phased reconfiguration, 210-11
implementation issues, 631–33	platforms, 215
improved backtrack algorithm	programming, 205–8
implementation, 624–27	runtime, 203, 213–16
logic engine implementation, 633	scalability, 203
performance, 630–31	scheduling, 213–15
problem analysis, 618–19	sequential versus parallel, 211
runtime performance, 623	standard I/O page, 211–12
simultaneous exploration of multiple	stream support, 209–10
states, 635	system architecture, 208–12

TDF, 205-6 virtualization model, 213 SCPlace algorithm, 310 SDF, 88, 99-100, 184 SDRAM memory, 760, 775 Sea Cucumber, 270 Search alternative procedures, 497 heuristic procedure, 496-97 techniques, 496-97 Search space, 728 Second-Level Detection (SLD), 592-94 as binary silhouette matcher, 593 shape sum, 593 stape, 593-9-4 target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data dependencies, 110 data dependencies, 110 data-dependent calculations, 104 PSMD, 112 instruction augmentation, 115-16 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 547-48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SPIHT Schame memory, 760, 775 Shared wirre global signaling, 628 Signal-to-noise ratio (SONR), 486 Signal-to-quantization-noise ratio (SONR), 486 Signal-to-quantization-noise ratio (SONR), 486 Silicon Graphics supercomputers, 60 SIMD (single-instruction multiple data), 120, 219-22 algorithm compilation, 226 alternative region implementation, 544, 549-50 array size, 224 bit-processing elements, 817 computing on FPGAs, 219-21 datapaths, 815, 818 dot-product machine, 220-21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226-28 with pipelined vector units, 229 processing array, 221, 222 processing array, 221, 222 processing array, 221, 222 processing array, 221, 222 processing array, 228 multiple SIMD coarse-grained array, 228 multiple SIMD coarse-grained array, 228 multiple SIMD coarse-grained array,		21 1
SCPlace algorithm, 310 SDF, 88, 99–100, 184 SDRAM memory, 760, 775 Sea Cucumber, 270 Search alternative procedures, 497 heuristic procedure, 496–97 techniques, 496–97 techniques, 496–97 Search space, 728 Second-Level Detection (SLD), 592–94 as binary silhouette matcher, 593 shape sum, 593 steps, 593–94 target models, 593 See also ATR Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative procedures, 497 heuristic procedure, 496–97 techniques, 496–90 table fountion, 508 signal-to-noise ratio (SNR), 86 Signal-to-quantization-noise ratio (SNR), 86 Signal-to-quantization-noise ratio (SNR), 486 Signal-to-quantization-noise ratio (SNR), 86 signal-to-quantization-noise ratio (SNR), 486 Signal-to-quantization-noise ratio (SNR), 486 Signal-		
SDF, 88, 99–100, 184 SDRAM memory, 760, 775 Sea Cucumber, 270 Search alternative procedure, 497 heuristic procedure, 496–97 techniques, 496–97 Search space, 728 Second-Level Detection (SLD), 592–94 as binary silhouette matcher, 593 shape sum, 593 steps, 593–94 target models, 593 See also ATR Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 545–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequential Turing in Hierarchical Trees. See		
SDRAM memory, 760, 775 Sear Cucumber, 270 Search alternative procedures, 497 heuristic procedure, 496-97 techniques, 496-97 Search space, 728 Second-Level Detection (SLD), 592-94 as binary silhouette matcher, 593 shape sum, 593 steps, 593-94 target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data dependencies, 110 data dependencies, 110 data dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115-16 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 552-57 granularity, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 partition evaluation, 544, 547-48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
Sea Cucumber, 270 Search Search alternative procedures, 497 heuristic procedure, 496-97 techniques, 496-97 Search space, 728 Second-Level Detection (SLD), 592-94 as binary silhouette matcher, 593 shape sum, 593 steps, 593-94 target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data dependencies, 110 data dependencies, 110 data dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 FSMD, 112 FSMD, 112 phased computations, 104 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdah's Law and, 542, 543 automatic, 175-76 exploration, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 exploration, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 partition evaluation, 544, 547-48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
Search alternative procedures, 497 heuristic procedure, 496–97 Search space, 728 Signal-to-noise ratio (SNR), 486 Signal-to-quantization-noise ratio (SQNR), 486 Silcon Graphics supercomputers, 60 SIMD (single-instruction multiple data), 120, 219–22 algorithm compilation, 226 ALU control, 826 array size, 224 bit-processing elements, 817 computing on FPGAs, 219–21 datapaths, 815, 818 dot-product machine, 220–21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226–28 with pipelined vector units, 229 processing array, 221, 222 processing array, 226 SimDlyvector processing, 100–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 26–28 simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temp		
alternative procedures, 497 heuristic procedure, 496–97 techniques, 496–97 Search space, 728 Second-Level Detection (SLD), 592–94 as binary silhouette matcher, 593 shape sum, 593 steps, 593–94 target models, 593 See also ATR Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 Compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 545–57 granularity, 544, 545–71 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partititioning in Hierarchical Trees. See		
heuristic procedure, 496-97 techniques, 496-97 das binary silhouette matcher, 593 shape sum, 593 steps, 593-94 target models, 593 see also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 sensitivity list, 135 sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data-dependencies, 110 data-dependencies, 110 data-dependencies, 110 data-dependencies, 110 data-dependencies, 110 data-dependencies, 110 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 sequential Turing Machines, 103 sequential Turing missing in the metabolic market and the processor of manufacture, 220-21 extended architecture, 220-21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226-28 with pipelined vector units, 229 processing arrhitectures, 221-22 processors, 219 width mismatches, 820 width selections, 820 SIMD/vector processing, 120-22 model, 229-30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226-28 spipelined, 228-29 reconfigurable computers for, 223-26 SPMD model, 228 variations, 226-28 Simulated annealing, 306-12 accelerating, 415-18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310-11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
techniques, 496-97 Search space, 728 Search space, 728 Second-Level Detection (SLD), 592-94 as binary silhouette matcher, 593 shape sum, 593 steps, 593-94 target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115-16 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 552-57 granularity, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 partition eugluation, 544, 547-48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See Silicon Graphics supercomputers, 60 SilMD (single-instruction multiple data), 120, 219-22 algorithm compilation, 226 ALU control, 826 array size, 224 bit-processing elements, 817 computing on FPGAs, 219-21 datapaths, 815, 818 dot-product machine, 220-21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226-28 with pipelined vector units, 229 processing arrchitectures, 221-22 processing array, 221, 222 processors, 219 width mismatches, 820 with pipelined vector units, 229 processing architectures, 221-22 processing array, 221, 222 processing arehitectures, 221-22 processing arehitectures, 221-22 processing architectures, 221-22 processing array, 21, 222 processing array, 228 with pipelined vector units, 229 processing array, 21, 222 processing array, 221, 222 processing array, 21, 222 processing array		
Search space, 728 Second-Level Detection (SLD), 592–94 as binary silhouette matcher, 593 shape sum, 593 steps, 593–94 target models, 593 See also ATR Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
Second-Level Detection (SLD), 592-94 as binary silhouette matcher, 593 shape sum, 593 steps, 593-94 target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115-16 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 552-57 granularity, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 partition evaluation, 544, 547-48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
as binary silhouette matcher, 593 shape sum, 593 steps, 593–94 target models, 593 See also ATR Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data-dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
shape sum, 593 steps, 593–94 target models, 593 See also ATR Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See algorithm compilation, 226 array size, 224 bit-processing elements, 817 computing on FPGAs, 219–21 datapaths, 815, 818 dot-product machine, 220–21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226–28 with pipelined vector units, 229 processing array, 221, 222 processing array, 221, 222 processing, 210–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 spipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
steps, 593-94 target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 peterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115-16 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 552-57 granularity, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 partition evaluation, 544, 547-48 Sequential Turing Machines, 103 Seet Partitioning in Hierarchical Trees. See ALU control, 826 array size, 224 bit-processing elements, 817 computing on FPGAs, 219-21 datapaths, 815, 818 dot-product machine, 220-21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226-28 with pipelined vector units, 229 processing architectures, 221-22 processing array, 221, 222 processing array, 221, 222 processing array, 221, 222 processing array, 221, 222 processing array, 221-22 processing array, 221-22 processing array, 226-28 with pipelined vector units, 229 processing architectures, 221-22 processing array, 22-28 with pipelined vector units, 229 processing array, 221-22 processing array, 22-28 with pipelined vector units, 229 processing array, 22-22 processing array, 22-22 processing array, 22-22 processing array, 22-28 with pipelined vector units, 229 processing array, 22-22 processing array, 22-22 processing array, 22-22 suddl' mistricture, 221-22 processing array, 22-28 simulatel annealing, 306-12 acce		•
target models, 593 See also ATR Semantic processing, 767-70 dataflow, 769 language identification, 767-68 of TCP data, 768-70 Sensitivity list, 135 Sequential control, 103-5, 110-18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115-16 phased computations, 104 phased reconfiguration manager, 117 processor, 114-15 single memory pool, 104-5 VLIW, 113-14 worker farm, 117-18 Sequential program partitioning, 540 alternative region implementation, 544, 549-50 Amdahl's Law and, 542, 543 automatic, 175-76 exploration, 544, 552-57 granularity, 544, 545-47 ideal speedups, 543 implementation models, 550-52 manual, 176 partition evaluation, 544, 547-48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Seet Partitioning in Hierarchical Trees. See array size, 224 bit-processing elements, 817 computing on FPGAs, 219-21 datapaths, 815, 818 dot-product machine, 220-21 extended architecture, 227 interprocessor communication model, 224 multiple engines, 226-28 with pipelined vector units, 229 processing array, 221, 222 processors, 219 width mismatches, 820 width selections, 820 width selections, 820 multiple SIMD coarse-grained array, 228 multiple SIMD engines, 226-28 Simulated annealing, 306-12 accelerating, 415-18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310-11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
See also ATR Semantic processing, 767–70 dataflow, 769 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See bit-processing elements, 817 computing on FPGAs, 219–21 datapaths, 815, 818 dot-product machine, 220–21 extended architecture, 227 interprocessor communication model, 224 with pipelined vector units, 229 processing architectures, 221–22 processing architectures, 226–28 with pipelined vector units, 229 processors, 219 width mismatches, 820 SIMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 competition, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
Semantic processing, 767–70 dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
dataflow, 769 language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
language identification, 767–68 of TCP data, 768–70 Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 545–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See extended architecture, 227 interprocessor communication model, 224 multiple engines, 226–28 with pipelined vector units, 229 processing array, 221, 222 processors, 219 width mismatches, 820 siMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 SimUnited architecture, 227 interprocessor communication model, 224 multiple engines, 226–28 with pipelined vector units, 229 processing array, 221, 222 processors, 219 width mismatches, 820 SIMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 pipelined, 228–29 reconfigurations, 306 spipelined, 228–29 reconfigurations, 306 spipelined, 228–29 reconfigurations, 326–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
Sensitivity list, 135 Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
Sequential control, 103–5, 110–18 with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
with allocation, 104 compute task, 110 data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		•
compute task, 110 data dependencies, 110 data dependencies, 110 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
data dependencies, 110 data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Set Partitioning in Hierarchical Trees. See		
data-dependent calculations, 104 Deterministic Finite Automata, 103 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
processors, 219 finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SIMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 pipelined, 228–29 pipelined, 228–29 simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
finite-state, 104 FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SIMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 pipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
FSMD, 112 instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SIMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 pipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
instruction augmentation, 115–16 phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SIMD/vector processing, 120–22 model, 229–30 multi-SIMD coarse-grained array, 228 multiple SIMD engines, 226–28 spipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
phased computations, 104 phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See multiple SIMD engines, 226–28 pipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		•
phased reconfiguration manager, 117 processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See multiple SIMD engines, 226–28 multiple SIMD engines, 226–28 spipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
processor, 114–15 single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See splipelined, 228–29 reconfigurable computers for, 223–26 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
single memory pool, 104–5 VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
VLIW, 113–14 worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
worker farm, 117–18 Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 SPMD model, 228 variations, 226–28 Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See		
Sequential program partitioning, 540 alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
alternative region implementation, 544, 549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See Simulated annealing, 306–12 accelerating, 415–18 annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
549–50 Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Set Partitioning in Hierarchical Trees. See annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
Amdahl's Law and, 542, 543 automatic, 175–76 exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Set Partitioning in Hierarchical Trees. See annealing schedule, 307 complexity, 556 cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		<u> </u>
automatic, 175–76 complexity, 556 exploration, 544, 552–57 cost function, 306 granularity, 544, 545–47 distributed, 415 ideal speedups, 543 hardware-assisted, 418 implementation models, 550–52 hierarchical algorithm, 310–11 manual, 176 key feature, 556 partition evaluation, 544, 547–48 low-temperature anneal, 311 Sequential Turing Machines, 103 meta-heuristics, 497 Sequentialization, 117 move generator, 306 Set Partitioning in Hierarchical Trees. See		
exploration, 544, 552–57 granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Set Partitioning in Hierarchical Trees. See cost function, 306 distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
granularity, 544, 545–47 ideal speedups, 543 implementation models, 550–52 manual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Set Partitioning in Hierarchical Trees. See distributed, 415 hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
ideal speedups, 543 implementation models, 550–52 imanual, 176 partition evaluation, 544, 547–48 Sequential Turing Machines, 103 Sequentialization, 117 Set Partitioning in Hierarchical Trees. See hardware-assisted, 418 hierarchical algorithm, 310–11 key feature, 556 low-temperature anneal, 311 meta-heuristics, 497 move generator, 306 parallelized, 416		
implementation models, 550–52 hierarchical algorithm, 310–11 manual, 176 key feature, 556 partition evaluation, 544, 547–48 low-temperature anneal, 311 Sequential Turing Machines, 103 meta-heuristics, 497 Sequentialization, 117 move generator, 306 Set Partitioning in Hierarchical Trees. See parallelized, 416		
manual, 176 key feature, 556 partition evaluation, 544, 547–48 low-temperature anneal, 311 Sequential Turing Machines, 103 meta-heuristics, 497 Sequentialization, 117 move generator, 306 Set Partitioning in Hierarchical Trees. See parallelized, 416		
partition evaluation, 544, 547–48 low-temperature anneal, 311 Sequential Turing Machines, 103 meta-heuristics, 497 Sequentialization, 117 move generator, 306 Set Partitioning in Hierarchical Trees. See parallelized, 416	=	
Sequential Turing Machines, 103 meta-heuristics, 497 Sequentialization, 117 move generator, 306 Set Partitioning in Hierarchical Trees. See parallelized, 416		
Sequentialization, 117 move generator, 306 Set Partitioning in Hierarchical Trees. See parallelized, 416		
Set Partitioning in Hierarchical Trees. See parallelized, 416		
	SPIHT	schedule, 307

Simulated annealing (cont.)	Sorter
simultaneous placement and routing,	case study, 357–60
311–12	with layout information removed, 362
strengths, 307	recursion and layout, 360-61
temperature schemes, 415	recursive structure, 357
VPR/related algorithms, 307–11	Sparing 1 225 20
Simulated annealing placer, 836	defect tolerance through, 835–39
Simulation, 486	global, 836–37
Simulation-based peak estimation, 484	local, 838–39
Simulink	row and column, 837
2D video filtering, 187–91	yield with, 834–35
component reuse, 198–200	Spartan-3E, 530
control specification, 194–98	Spatial computations, 157
high-level algorithm designer, 188	Spatial computing, 155–80
image-processing design driver, 185–94	Spatial orientation trees, 569, 584
library browser, 196	Spatial simulated annealing, 215
mapping video filter to BEE2 platform, 191–94	SPIHT, 565–88
Mask Editor, 198	architecture phases, 581–82
mask parameters, 184	bitstream, 578, 579 coding algorithm, 570
operator primitives, 183	coding engine, 568–71
pipeline operators, 184	coding phase, 582, 585–86
programming streaming FPGA	design considerations/modifications,
applications in, 183–202	571–80
RGB video conversion, 185–87	design overview, 581–82
RGB-to-Y diagram, 286	design results, 587–88
SDF, 184	DWT architectures, 567, 571–75
subsystems, 184	DWT phase, 582
System Generator, 184	engine runtimes, 588
top-level testbench, 192–93	Fixed Order, 578–80
Simultaneous logic synthesis, 284–86	fixed-point precision analysis, 575-78
Sine, 437	hardware implementation, 580–86
Single-context FPGAs, 67–68	image compression, 565–88
Single-FPGA emulation, 640-41	image quality, 568
Single-instruction multiple data. See SIMD	LIP, 569
Single memory pool, 104–5	LIS, 569, 570
Single program, multiple data. See SPMD	LSP, 569, 570, 586
Single-rate synchronous dataflow, 99	maximum magnitude phase, 582, 583-85
Singular value decomposition (SVD), 514	Morton Scan Ordering, 584
SLD. See Second-level Detection	optimization, 586
Small-scale reconfigurable systems,	performance numbers, 587
52–54	spatial orientation trees, 569, 584
SMAP algorithm, 291	target hardware platform, 581
Snapshots, 847	wavelet coding, 569
SNORT, 445, 775	Spiral antenna model, 704, 705
CPU time, 461	Splash, 51–52
database, 761	SPMD (single program, multiple data), 120
intrusion detection, 753	in parallel processing clusters, 228
intrusion filter for TCP (SIFT), 765	SIMD versus, 228
rule-based NID sensor, 763	Springtime PCI (SPCI) card, 664
Sobel edge detection filter, 188, 191, 201	Square-root operation, 437
Soft macros, 336, 424	SRC supercomputers, 60

Standalone Board-level Evolvable System	stream-based filtering, 190–91
(SABLES), 745	tiled, 198–200
Static FPGAs, 600	Super-HWOP, 340–41
Static RPF, 29	building, 342–43
Static scheduling, 239–40	microplacement, 342, 343
Static-RAM (SRAM), 6, 15, 16–17, 814	partitioning, 340
analyzer, 767	Superslices, 340, 342
cells, 17, 814	Swap negotiation, 417
drawbacks, 17	Swappable logic units (SLU), 74
parallel banks of, 775	SWIM project, 801
Straight-line code, 156	Switch blocks
Stream computations, 217	example architecture, 10
compilation, 212–13	island-style architecture with, 9
execution patterns, 208–12	Switch boxes, 409
organization, 203–17	connectivity, 429
programming, 205–8	style and routability, 429
runtime, 213–16	Synchronization, 248-49
system architecture, 107-110, 208-12	deadlock prevention, 249
Stream generator, 37	explicit, 248
Streaming dataflow, 107-10	implicit, 248–49
with allocation, 102-3	thread-style, 248
data presence, 108-9	Synchronous Data Flow. See SDF
datapath sharing, 109	Synopsys FPGA compiler, 393
dynamic, 100–2	Synoptix, 493
interconnect sharing, 110	Synplicity Identify tool, 272
streaming coprocessors, 109-10	Synthetic Aperture Radar (SAR)
Streaming FPGA applications, 183–202	ATR in, 591
component reuse, 198-200	Sandia real-time, 592
high-performance datapaths, 184	System architectures, 107–25
image-processing design driver, 185-94	bulk synchronization pattern, 118–19
Streams, 37, 99, 244–46	cellular automata, 122–23
abstraction, 245-46	data parallel, 119–22
input, 99	hierarchical composition, 125
multirate, 100	
persistence, 245–46	multi-threaded, 123–25
SCORE, 209-10	sequential control, 110–18
video, 185, 202	streaming dataflow, 107–10
write, 206	System Generator library, 184
Structural mapping algorithms, 278-84	SystemC, 205, 542
area-oriented, 280-82	Systolic image array pipeline, 603-4
cut generation, 279	
DAOmap, 282–83	T-VPack algorithm, 305, 306
dynamic programming basis, 278-79	Tail duplication, 164
FlowMap, 279, 282	Task configuration protection, 251
IMap, 281–82	Task Description Format (TDF), 205-6
LEKO, 282	behavioral operator, 206
performance-driven, 282-83	compositional operator, 208
power-aware, 283–84	operators, 208
PRAETOR, 281–82	as portable assembly language, 207
See also Technology mapping	specification, 206, 207
Subsystems, 184	Taylor coefficients, 490
with configurable delays, 187	Taylor expansion transformation, 490

TCP processing, 758–60 block diagram, 760	Triple modular redundancy (TMR), 844–45 849
circuit development, 759	Triple-key DES, 83
semantic, 768–70	Truth tables, 4
See also Network processing	Turing Machine, 96
Techmapper class, 260, 264, 272	Turing-Complete compute models, 97, 119
Technology mapping, 277–93	Two-dimensional placement, 336–37
algorithms, 277	bin-based, 336
algorithms for heterogeneous resources,	constrained, 335-36
289–92	Two-dimensional video filtering, 187-91
functional algorithms, 277	
integrated, 278, 284-89	Uniaxial PML (UPML), 702, 706, 721
in logic synthesis flow, 278	User datagram protocol (UDP), 758
optimal solutions, 285	
structural algorithms, 277, 278-84	Variable fixed-rate representation, 577
Templates	Variable-length chromosome GAs (VGAs),
correlation between, 598	735
grouping example, 599	Variables live at exits, 168–69
partitioning, 598–99	scalar, in memory, 169
Teramac, 57–59	Vector architectures, 120–21
applications, 58–59	functional units, 121
features, 58	motivation, 120
in hardware prototyping applications, 427	sequential controller, 120
Terasys Integrated Circuit, 221	Vector coprocessors, 121–22
Terminal propagation, 314, 315	Vector functional units, 121, 229
Ternary content addressable memory	Vectoring mode, 519-20
(TCAM), 764	convergence, 520
Test pattern generation, 614, 615	implementations, 519
Testbenches	range extension, 525
dynamic, 269–70	simulation, 519
JHDL, 265–66 The continuing and aminoring 207, 27	as y-reduction mode, 519
Theoretical underpinnings, 807–27 Tightly coupled RPF and processor	See also CORDIC
architecture, 41–42	Verilog, controller design with, 197
Tiled subsystems, 198–200	Very High-Speed Integrated Circuit
Timing-driven algorithms, 301, 302	Hardware Description Language
Topology matching, 329	(VHDL), 87–88, 129–53
Transaction application protocol interface	Active Pages, 782 concurrent statements, 144, 150
(TAPI), 664	controller design with, 197
Transaction-based host-emulator	delta delay, 150
interfacing, 650-51	design development, 130
Transfer functions	FSM datapath example, 138–49
for nonrecursive systems, 480	gates, 130
scaling, 481–82	hardware compilation flow and, 150–52
Transformations, 555	hardware descriptions, 153
Transient faults, 830	hardware module description, 132-33
feedforward correction, 844-45	limitations, 153
rollback, 845-48	multivalued logic, 150
tolerance, 843-48	parametric hardware generation, 136-38
Translation lookaside buffer (TLB), 247,	popularity, 129
397	port mapping, 133

ports, 133	specialized mapping techniques, 657
programming, 130–50	statically scheduled routing, 656
RTL description, 133-36	structure, 653–54
sequential, comparison, 149	See also Logic emulation systems
signals, 133	Virus protection, 763–64
structural description, 130-33	VLSI, CORDIC algorithm in, 514
submodules, 133	VPack algorithm, 305
syntax, 153	VPR, 307–11
Very long instruction word (VLIW), 61,	annealing schedule, 307
113–14, 795–97	delay computation, 309-10
computational elements, 795	enhancements, 310
processors, 164	move generator, 307
of single multiply and add datapath, 113	range limit update, 307–8
time-slicing, 795	recomputation, 310
width, 797	router, 314, 372
Virtual circuit identifier (VCI), 756	VStation family, 642
Virtual Computer, 50–51	V Station family, 042
Virtual instruction configurations (VICs), 29	Washington University Gigabit Switch
Chimaera architecture, 43–44	(WUGS), 756
RaPiD, 39	Wavelets, 567
	coding, 569
speculative execution, 43 Virtual memory, 246–47	9
	spatial orientation trees, 569
Virtual path identifier (VPI), 756	Wildcards (*), 152, 761
Virtual reconfiguration, 741–42	WildStar-II Pro PFGA board, 708–9
Virtual Wires, 56	block diagram, 709
Virtualized I/O, 72	features, 708
Virtually addressed caches, 397	memory hierarchy levels, 713
VirtuaLogic family, 642	Xilinx Virtex–II Pro FPGAs on, 722
VirtuaLogic VLE emulation system, 639,	Window-based scheduling, 79
653–65	Wire congestion, 312
array boards, 653–55	Wired-OR diode logic array, 859–60
case study, 653–65	Wordlength
design clock cycle, 656	control over, 523
design partitions, 655	scaling, 477
emulation mapping flow, 654	Wordlength optimization, 485–97
emulator system clock speed, 665	area models, 485-96
incremental compilation of designs,	error estimation, 485-96
661–64	problem, 499
incremental mapping, 662	search techniques, 496-97
incremental partitioning, 661	simulation-based methods, 487
incremental path identification, 661	Word-level optimization, 339-40
incremental routing, 661	Word-wide datapaths, 216, 815
inter-FPGA communication, 656	Worker farms, 117–18
interfaces for coverification, 664-65	Worm detection, 766-67
intra-FPGA computation, 656	Worm protection, 763–64
multidomain signal transport, 658, 659,	
660	Xilinx 6200 series FPGA, 53-54, 81
multiported memory mapping, 657	cell configuration, 732
netlist comparison, 661	CLBs, 741
parallel FPGA compilation, 665	EHW platforms and, 740-41
partitioning, 654	"open" bitstream, 408
software flow, 654-57	wildcard registers, 81

Xilinx ChipScope, 271 Core Generator IP, 348 EasyPath series, 842 Embedded Development Kit (EDK), 197 MicroBlaze, 194, 347 Virtex 2000E FPGA, 581 Virtex-4, 530, 533 XC 4036EX FPGA, 632 XC4VLX200 FPGA, 623 XC4000 library, 596 Xilinx Virtex-II Pro, 23-26, 68, 83, 530, 721 CLBs, 23-24 IBM PowerPC 405-D5 CPU cores, 25 logic architecture, 23-25 multiplier blocks, 24

routing architecture and resources, 25–26 SelectRAM+, 24, 25 on WildStar-II Pro board, 722 XC2VP100, 24 XOR gates, 463, 464 *Y*-reduction mode, 519

Y-reduction mode, 519
YaMoR, 739
Yield, 832–85
Law of Large Numbers impact, 835
perfect, 833–34
with sparing, 834–35
See also Defect tolerance

Z-reduction mode, 517 Zero mask rows, 601–2