

28) $A = \{1,2,3,6,9,18\}$ $\times Ry \iff \times |y| \text{ ende orden }?$ 1) $x \in A$, $x = 1 \cdot x \implies x | x \implies x \in R$ reflective

2) sean $x,y \in A / x | y \land y | x$. Luego teneuror que eusten k, $k \in \mathbb{Z}$ tales que $\begin{cases} y = kx \\ x = ky \end{cases} \implies y = k(ky) = (kk)y$

Por la tanta kl=1, entoncer k= = = El. fabenior que la unicor enteror tales que su inverso también er entero son 10-1, Caro 1: k=-1, luego y=kx 10 pero y E A y por la tanto y>0. Conclinion que el caro I no puede dans Caro 2: k=1 => y=1.x=x : Rantimustrica 3) rean X14, Z & A / X Ry 14 RZ, luego existen k, l & / taler que y = kx, z= ly Luego Z= l(kx)= (lk)x donde lk & 1/2 .. x R z y remeta R transitiva

Conduins que R er una relación de orden.
Diagrama de Hasse

29) a) $A = \{1,2,3,4,12\}$ $B = \{(1,1),(2,2),(3,3),(4,4),(12,12),(1,2),(1,3),(1,4),(1,12),(2,4),(2,12),(3,12),(4,12)\}$

31) (para el ez. 28)

Minimaler: 1

Maximaler: 18

Minimor: 1

Maximor: 18

36) Lea (X,B) cong. para ordenado y B = X

a) Ro=(B×B) NR défine un orden parval en B?

1) sea be B, heyo be X y como R en reflexiva entoncer bRb. Por lo tanto (b,b) E (B×B) DR y resulta bRBb. : RB reflexiva

2) rup que b, c e B taler que b R & C y c R & b entonner b B & y c R b (puer B & E R) y viendo R antirumétrica, b = c .: R & antirumétrica

3) sup que b RBC y CRB d con b, c, d ∈ B.

luego b RC y CRd y como R en

transitiva, bRd. fiendo b, d ∈ B resulta

b RBd: RB transitiva

Conclumor que BB en una relación de orden

36) b) sup que (X,K) totalmente orderado. deun b,c ∈ B luego b,c ∈ X y como R en de orden total, bRc o cRb. freido b,c ∈ B tenemor que bRBC o cRB b ∴ RB er de orden total.

c) si $(\mathcal{P}(x), \leq)$ con $X = \{1,2\}$, rabemor que mo er totalmente ordenado, pero ii $B = \{\{1,2\}\} \leq \mathcal{P}(X)$ le puede ver (ejercico) que (B, \leq_B) er totalmente ordenado.

37) a) Para las tres relaciones $(1R, \leq)$, (R, \leq) , (N, \leq) resulta que sup $\{x,y\} = m \acute{o}x \{x,y\}$ $\inf \{x,y\} = m \acute{o}n \{x,y\}$ $n x,y \in IR$, $Q \in IN$.

resultan entoncer las tres um reticulo b) is $X \neq \emptyset$, $(P(X), \subseteq)$ en un reticulo? $A, b \in P(X)$, resulta que sup $\{A, B\} = A \cup B \in P(X)$ inf $\{A, B\} = A \cap B \in P(X)$

resulta entoncer un reticulo.

38) a) Si xo er marinal para (X1,R1) y Yo " " (X21 K2), rera (xo, 40) maximal para (X1 x X2, R)? Verdadero Demoitración: por el abrudo uponemos que (xo, yo) no en maxi mal, luego exite (X,Y) & X1 x X2 tal que (X0,Y0) R(X1Y). Entoner xo Rix y Yo Rz y donde xo en maximal para (X1, R1) y Yo en maximal para (X2, R2) APSURDO Luego (xo, 40) er maximal para (X, xXz, R) (avalogamente se prueba para minimal) c) So (X1, K1) y (X2, R2) son totalmente ordenador entoncer (X1 x X2, R) er tatalmente ordonado " [FALSO] contraegenplo: (IR,5), (IR,5) con totalmente ordenador pero (IRXK, R) no lo en, en efecto (1,0) y (0,1) E IRXIR no con comparable (verificarlo), regin la relación R =0 39) a) (IN,5) está bien ordenado? fea B = IN y R_B = (B × B) N ≤.

rea b el minimo valor regin el orden usual del suborgento B. Dicho b es tal que b & c rara todo c & B. Por lo tanto b RBC para todo c & B y resulta entoner que (B, RB) tiene minimo.

c) (Q, \le) está bien ordevado?

fa B = { q \in Q / q > 0 \ n q^2 > 2 }.

Venficar que (B, RB) no tiene minimo (donde RB = (B \times B) \(\tau \) \(\text{donde} \) (Q, \(\le) \) no está bien ordevado.