2019-04-15 Sequence Alignment

Monday, April 15, 2019 3:01 PM

- Similar idea to edit distance algorithm
- Goal of sequence alignment is to align two strings based on three factors
 - o Reward for a match
 - o Penalty for a mismatch
 - Penalty for a "gap"
- Commonly used in genetics (aligning DNA sequences), activity recognition (AI / ML)

Example:

1. AABABBA

2. ABAABA

					1		3 possible rosult
Α	Α	В	Α	В	В	Α	y possion mismaton isn't
Α	-	В	А	Α	В	Α	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
						cansto alisn	rmations, gap isn't a problem

								γ	poss,ble mismatch	Hurs	mpen
Α	Α	В	Α	-	В	В	Α	4	nismatch	is very	bed
Α	-	В	Α	Α	В	-	Α				

Test of Knowledge

Match: 1 Mismatch: -1 Gap: -2

Α	В	В	Α
В	Α	В	_

Match: 1 Mismatch: -1 Gap: -1

Α	В	В	Α	-
-	В	-	Α	В

Saa:-1

Bottom-Up Matrix

Gap = -2, mismatch: -1, match: 1

		В	Α	В
	0	-2	-4	-6
Α	-2	-1 🤨	-1 K	-3 🕊
В	-4	-1 <	-2 💆	0 /
В	-6	-3 \ \	-2 🤨	-1 🤦
Α	-8	-5 7 1	-2 🤨	-3 1

Above us: take the gap
Left of us: take the gap
Diagonal: take match or mismatch

В	Α	В	-
Α	В	В	Α

Bottom-Up Matrix

Gap = -1, mismatch: -1, match: 1

		В	Α	В
	0	-1	-2	-3
Α	<u>-1</u>	-1 🔨	0 🔨	-1 <
В	-2	0 5	-1 <u>~</u> 1	1 7
В	-3	-17[-1 🦎	170
Α	-4	-2 🕇	07	<u>-1←↑</u>

-	В	-	Α	В
Α	В	В	Α	_

- Unlike levenshtein, needleman-wunch restricts back paths.
- Thus, we need to track not only cost of each cell, but how we got there as well
 - o To do so, don't store INTs in your mem, store complex classes that have:
 - Direction pointers AND cell value