Quantitative Methods in Finance

Tutorial, Part 3: Calculation and interpretation of the parameters of an estimated regression model.

Example 1: In the example from the previous tutorial, we were estimating, based on the quantities stated below for 10 observations, the regression coefficients in a linear regression model of the type $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$:

$$\overline{y} = 2.4;$$
 $\overline{x}_2 = 0.4;$ $\overline{x}_3 = 0.8;$ $\sum y_i^2 = 184;$ $\sum x_{2i}x_{3i} = -2;$ $\sum x_{2i}^2 = 10;$ $\sum x_{3i}^2 = 12;$ $\sum y_i x_{2i} = 40;$ $\sum y_i x_{3i} = -2.$

Find out whether the regression coefficients are statistically significant. Calculate the relevant measures of adequacy (reliability) of the sample regression model, and establish whether the model as a whole explains the variability of our dependent variable satisfactorily.

Write down the estimated regression model with all the parameters calculated above. Also, calculate the elasticity estimates, and explain the differences between regression coefficients and elasticities for a linear regression model.

Example 2: We decided to analyse the housing market in a particular municipality. For this purpose, we gathered data on a sample of 30 apartments that are for sale (the data are provided in Stata Data file housing.dta, while the programming code is given in Stata Do file housing-commands.do). We have data available on the price of apartment (*PRICE*; in mil. monetary units), size (*M2*; in square meters), age (*AGE*; in years), and distance of apartment from the city centre (*DIS*; in kilometres).

Estimate the linear multiple regression model, where you investigate the effects of the above three explanatory variables on the price of apartment, and interpret the results. Also, calculate the fitted values and the residuals of the model, and write them out together with the observed values of the dependent variable.

Computer printout of the results in Stata:

. describe

Contains data from stanovanje.dta
obs: 30
vars: 4 DD Mmm YYYY HH:MM
size: 330

variable name	_	display format	variable label
price m2 dis age	float float byte byte	%8.0g %8.0g	 Price of apartment in mil. monetary units Size of apartment in square meters Distance of apartment from the city centre Age of apartment in years

Sorted by:

. sum

Variable	Obs	s Mean	Std. Dev.	Min	Max
n	30) 15.5	8.803408	1	30
price	30	14.21717	0 5.528791 2	7.3	31
m2	30	65.65	3 25.23567	33	136
dis	30	9.866667	7.233701	1	28
age	30	17.03333	10.49953	1	45

. scatter price m2

. scatter price age

. scatter price dis

. regress price m2 age dis

Source	SS				Number of obs		30 85.83 6
Model Residual	805.156707 81.3017384	3 26	268. 3.12	.385569 2698994 § 	F(3, 26) Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 7 0.9083 8
price	Coef.				 [95% Conf.	 In	 terval]
m2 age dis _cons	.2051172 00 0486017 03	.013	37199 28782 35379	14.95 00 -1.48		-	.2333188 .0189804 .0699481 5.420536

. estat vce

Covariance matrix of coefficients of regress model

e (V)	m2	age	dis	_cons
m2	.00018824			
age	00013912	.00108098		
dis	.00004938	00002756	.0020737	
cons	01047515	00900722	02323306	1.1745823

. estat ic

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	30	-93.35871	-57.52271 03	4	123.0454 09	128.6502 20

Note: N=Obs used in calculating BIC; see [R] BIC note

- . predict e, resid
- . predict pricehat, xb

. list price pricehat e, mean

	+		+
	price	pricehat	e
1. 2. 3. 4. 5.	13.16 16 15.5 20.8 13.7	12.43582 14.80242 18.18543 19.39813 16.83079	.7241774 1.197579 -2.685427 1.401871 -3.130794
6. 7. 8.	8.46 16.815 7.5	8.242655 14.80737 8.560676	.2173457 2.007628 -1.060675
29. 30. Mean	10.5 12.784 	11.12969 13.60394 	6296857 8199354 9.20e-09
	+		+

3

Solution of example 2

Interpretation of some of the model parameters:

• $s_{e} = 1.76833$ (4): standard error of regression:

Estimate of the standard deviation of the disturbances, measuring the deviations of observed values of the apartment price from its fitted values, obtained based on the multiple regression model, is equal to 1.768 mil. monetary units.

• $KV = \frac{s_e}{\overline{y}} = \frac{1.7683}{14.2172} = 0.124$: estimate of the coefficient of variation:

Coefficient of variation is a relative measure of the adequacy of a regression model. Its estimate amounts to 0.124, meaning that the standard error of regression represents 12.4 percent of the mean apartment price.

• Value of the *F*-statistic and the corresponding *p*-value for testing the null hypothesis:

$$H_0: \beta_j = 0; \quad \forall j = 2, 3, 4$$

 $H_1: \beta_j \neq 0; \quad \exists j = 2, 3, 4$

Value of the F-statistic for testing the null hypothesis that all partial regression coefficients are (simultaneously) equal to 0 amounts to 85.83 (3), while the exact level of statistical significance is p = 0.000 (3). Thus we can reject the null hypothesis and conclude that at least one partial regression coefficient is statistically significantly different from 0. We can conclude, based on sample data, that the regression model as a whole explains the variability of apartment price satisfactorily, and exhibits a linear relationship among the variables.

• $R^2 = 0.9083$ (3): estimate of the multiple determination coefficient:

Estimate of the multiple determination coefficient is equal to 0.9083, which means that almost 91 percent of the variability in apartment price is explained by the linear relationship between apartment price and its size, age and distance from the city centre.

• $b_2 = 0.205117$ (**100**): estimate of the (first) partial regression coefficient:

If the apartment size increases by one square meter, the apartment price increases on average by 205,117 monetary units, keeping the remaining two explanatory variables, i.e. apartment age and its distance from the city centre, unchanged.

• Value of the *t*-statistic and the corresponding *p*-value for testing: $H_0: \beta_2 = 0$

Value of the t-statistic for testing the null hypothesis that the second partial regression coefficient is equal to 0 amounts to 14.95 (\odot), while the exact level of statistical significance is p = 0.000 (\odot). Thus, we can reject the null hypothesis and conclude that the partial

regression coefficient β_2 is statistically significantly different from 0. We can conclude, based on sample data, that apartment size affects its price.

• Estimate of the (first) partial elasticity at the means:

$$\hat{\varepsilon}_{\overline{y},\overline{x}_2} = b_2 \frac{\overline{x}_2}{\overline{y}} = 0.20512 \cdot \frac{65.65}{14.2172} = 0.947; \qquad \overline{y} = 14.2172 \qquad \overline{x}_2 = 65.65$$

If the mean apartment size increases by one percent, the mean apartment price increases by 0.947 percent, keeping the remaining two explanatory variables, i.e. apartment age and its distance from the city centre, unchanged.

• Log-likelihood value of the model (03):

$$\ln L = -\frac{n}{2} \left[\ln(2\pi) + \ln\left(\frac{RSS}{n}\right) + 1 \right] = -57.52$$

• Akaike information criterion (19):

$$AIC = -2 \ln L + 2k = 123.05$$

• Schwarz criterion or Bayesian information criterion (20):

$$SC = BIC = -2 \ln L + k \ln(n) = 128.65$$

Representation of the regression model:

$$PRICE_{i} = \beta_{1} + \beta_{2}M2_{i} + \beta_{3}AGE_{i} + \beta_{4}DIS_{i} + u_{i}$$

$$\widehat{PRICE}_{i} = 3.19279 + 0.20512M2_{i} - 0.04860AGE_{i} - 0.16355DIS_{i}$$

$$p: \quad (0.007) \quad (0.000) \quad (0.151) \quad (0.001)$$

$$n = 30 \quad R^{2} = 0.9083 \quad \overline{R}^{2} = 0.8977 \quad s_{e} = 1.76833 \quad KV = 0.124 \quad F = 85.83 \quad (0.000)$$

5