Mjerenje uspješnosti investicijskih fondova

Priprema podataka

```
source_eval <- function(file) source(file, print.eval = TRUE)
source_eval('uncommon.r')
source('data_extraction.r')
xs <- read_normalize(CSV_DATA)</pre>
```

Priprema i analiza podataka

Podjela prema tipovima fondova

```
investment_funds <- c("ERSTEAdriaticEquity", "OTPMeridian20", "ZBAktiv")
pension_funds <- c("RaiffeisenDMF", "ERSTEPlaviEXPERT", "ERSTEPlaviPROTECT")
market_portfolio <- c("CROBEX")

xs.market_portfolio <- to_data_frame(xs, market_portfolio, xs.market_portfolio)
xs.investment <- to_data_frame(xs, investment_funds, xs.investment)
xs.pension <- to_data_frame(xs, pension_funds, xs.pension)

data_columns <- c(pension_funds, investment_funds, market_portfolio)
xs.funds <- xs[, data_columns]</pre>
```

Povrati

Računanje dnevnih povrata

```
diff_function_log <- function(St, St_minus_one) log(St) - log(St_minus_one)
xs.returns <- to_time_series_diff_df(xs, data_columns, diff_function_log)
#Postavljanje velikih skokova u 0
xs.returns$ERSTEAdriaticEquity[2211:2212] <- 0
#diff_function_sub <- function(St, St_minus_one) St - St_minus_one
#xs.returns <- to_time_series_diff_df(xs, data_columns, diff_function_sub)</pre>
```

Sažeci

```
xs.summary <- summary(xs.funds)
xs.returns.summary <- summary(xs.returns[data_columns] * 365)
# xs.log_returns.summary <- summary(xs.log_returns[data_columns])

df_summary <- function(summary) {
   return(data.frame(unclass(summary), check.names = FALSE, stringsAsFactors = FALSE))
}</pre>
```

df_summary(xs.returns.summary) ## RaiffeisenDMF ERSTEPlaviEXPERT **ERSTEPlaviPROTECT** ## 1 Min. :-5.79209 Min. :-5.73634 Min. :-2.06945 ## 2 1st Qu.:-0.18757 1st Qu.:-0.19025 1st Qu.:-0.05239 ## 3 Median : 0.02441 Median: 0.02279 Median : 0.04456 : 0.06451 : 0.06709 ## 4 Mean Mean : 0.07278 Mean 3rd Qu.: 0.20759 ## 5 3rd Qu.: 0.31443 3rd Qu.: 0.39346 ## 6 Max. : 8.91872 Max. : 4.58776 Max. : 3.22798 ERSTEAdriaticEquity OTPMeridian20 ## ZBAktiv ## 1 Min. :-18.0876 :-23.51025 :-13.47776 Min. Min. 1st Qu.: -0.4849 1st Qu.: -0.35673 1st Qu.: -0.41271 ## 3 Median: 0.0000 Median : 0.00000 Median: 0.00000 Mean : 0.0136 Mean : 0.01395 Mean 0.03645 ## 5 3rd Qu.: 0.4958 3rd Qu.: 0.63048 3rd Qu.: 0.61738 ${\tt Max.}$: 21.6702 : 13.60614 Max. : 34.35281 ## CROBEX ## 1 Min. :-17.43339 ## 2 1st Qu.: -0.58382 ## 3 Median : 0.00000 : -0.00203 ## 4 Mean ## 5 3rd Qu.: 0.67653

Mjere raspršenosti

: 31.25453

6 Max.

```
apply(xs.returns[,-1:-3], 2, var, na.rm=T)
##
         RaiffeisenDMF
                           ERSTEPlaviEXPERT
                                               ERSTEPlaviPROTECT
          3.463344e-06
                               4.429072e-06
                                                    9.234754e-07
##
## ERSTEAdriaticEquity
                              OTPMeridian20
                                                         ZBAktiv
                                                    2.212908e-05
##
          1.954405e-05
                               2.236156e-05
##
                CROBEX
##
          3.207109e-05
apply(xs.returns[,-1:-3], 2, sd, na.rm=T)
##
         RaiffeisenDMF
                           ERSTEPlaviEXPERT
                                               ERSTEPlaviPROTECT
##
          0.0018610062
                                                    0.0009609763
                               0.0021045360
## ERSTEAdriaticEquity
                              OTPMeridian20
                                                         ZBAktiv
##
          0.0044208655
                               0.0047288016
                                                    0.0047041558
##
                CROBEX
##
          0.0056631347
```

Grafički prikaz podataka

Prikaz vrijednosti CROBEX-a po danima

```
ggplot(xs, aes(Date, CROBEX)) + geom_line()
```


Prikaz vrijednosti investicijskih i mirovinskih fondova po danima

Prikaz boxplotova za sve fondove

Iz ovih se grafova vidi kako su investicijski fondovi (prva tri stupca) podložniji većim promjenama vrijednosti od mirovinskih na dnevnoj bazi.

Provjera normalnosti

Sljedećim q-q plotom želimo ispitati normalnost distribucije burzovnog indeksa. Iz prvog grafa vidimo kako podaci nisu u potpunosti normalni, a iz sljedećeg, gdje su isti podaci prikazani na histogramu, jasno je i zašto. Teške repove primjećujemo radi velike granulacije, tj. dnevnog računanja prinosa; u tako kratkom roku zna se dogoditi da pojedina dionica ili naglo naraste ili naglo padne u vrijednosti.

```
qqnorm(xs.returns$CROBEX)
qqline(xs.returns$CROBEX, col = "red")
```

Normal Q-Q Plot

Histogram of xs.returns\$CROBEX

Sljedećim grafom htjela se ispitati normalnost jednog mirovinskog fonda. Vidimo kako ni on nema baš normalnu distribuciju.

TODO: Kolmogorov-smirnov

qqnorm(xs.returns\$ERSTEPlaviEXPERT)
qqline(xs.returns\$ERSTEPlaviEXPERT)

Normal Q-Q Plot


```
#qqnorm(xs.returns$ZBAktiv)
#qqline(xs.returns$ZBAktiv)
\#qqnorm(apply.weekly(xts(xs.returns\$ZBAktiv, order.by = xs.returns\$Date), mean))
\#qqline(apply.weekly(xts(xs.returns$ZBAktiv, order.by = xs.returns$Date), mean))
#PerformanceAnalytics::chart.QQPlot(xs.returns$ZBAktiv)
#PerformanceAnalytics::chart.Regression(zbaktiv.ts, capm.m.ts, capm.rf.2010,
                                          excess.returns = TRUE, fit = c("loess", "linear"))
#PerformanceAnalytics::SharpeRatio(capm.m.ts)
\# xs.log\_returns \leftarrow lapply(xs[columns\_to\_log\_normalize], function(list) time\_series\_diff(list, diff\_full)
\# xs.log\_returns \leftarrow data.frame( c(xs[2:nrow(xs), !(colnames(xs) %in% columns\_to\_log\_normalize)], xs.log
\#xs.xts \leftarrow xts(xs['CROBEX'], order.by = xs$Date)
#head( PerformanceAnalytics::Return.calculate(xs.xts) )
#head( xs.log_returns$CROBEX )
#xs.returns[xs.returns$CROBEX > 50, c('Date', 'CROBEX')]
#plot_timeseries(xs, xs$Date, xs$CROBEX)
#xs.graphs.timeseries <- mapply( function(data_col, name) plot_timeseries(xs, xs$Date, data_col, name),</pre>
#class(xs.graphs.timeseries)
```

 $\#xs.log_returns.graphs.boxplots <- boxplot(xs.log_returns[get_data_cols_without_market_portfolio(xs.log_returns)]$

 $\#xs.graphs.boxplots \leftarrow boxplot(xs[get_data_cols_without_market_portfolio(xs)])$

Testovi fondova

Iako QQ grafovi pokazuju da povrati nisu normalno raspodijeljeni, radimo tu pretpostavku s obzirom na robusnost T-testa. Jasno je da globalni događaji (kriza, teroristički napadi,...) često utječu na cijelo tržište odjednom, pa koristimo T-testove za uparene podatke.

Testovi povrata investicijskih fondova u odnosu na CROBEX

```
lapply(xs.returns[investment_funds], function(r) t.test(xs.returns$CROBEX, r, paired = TRUE))
## $ERSTEAdriaticEquity
##
##
  Paired t-test
##
## data: xs.returns$CROBEX and r
## t = -0.45914, df = 2552, p-value = 0.6462
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0002257286 0.0001400758
## sample estimates:
## mean of the differences
            -4.282638e-05
##
##
##
## $OTPMeridian20
##
## Paired t-test
##
## data: xs.returns$CROBEX and r
## t = -0.42867, df = 2552, p-value = 0.6682
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0002440172 0.0001564677
## sample estimates:
## mean of the differences
##
            -4.377476e-05
##
##
## $ZBAktiv
##
## Paired t-test
##
## data: xs.returns$CROBEX and r
## t = -0.8207, df = 2552, p-value = 0.4119
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0003573138 0.0001464648
## sample estimates:
## mean of the differences
##
            -0.0001054245
```

Testovi povrata mirovinskih fondova u odnosu na CROBEX

```
lapply(xs.returns[pension_funds], function(r) t.test(xs.returns$CROBEX, r, paired = TRUE))
## $RaiffeisenDMF
##
##
   Paired t-test
##
## data: xs.returns$CROBEX and r
## t = -1.7891, df = 2552, p-value = 0.07372
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.821299e-04 1.750544e-05
## sample estimates:
## mean of the differences
            -0.0001823123
##
##
## $ERSTEPlaviEXPERT
##
## Paired t-test
##
## data: xs.returns$CROBEX and r
## t = -2.1255, df = 2552, p-value = 0.03364
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.940303e-04 -1.587034e-05
## sample estimates:
## mean of the differences
##
            -0.0002049503
##
##
## $ERSTEPlaviPROTECT
##
##
  Paired t-test
##
## data: xs.returns$CROBEX and r
## t = -1.7115, df = 2552, p-value = 0.08711
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.063254e-04 2.759556e-05
## sample estimates:
## mean of the differences
##
             -0.0001893649
```

Test povrata investicijskih fondova u odnosu na mirovinske fondove

Izračunate su sredine mirovinskih i investicijskih fondova pa je sproveden test njihovih vrijednosti. Dobivamo izrazito malu p-vrijednost, stoga uz veliku sigurnost zaključujemo da možemo odbaciti nul-hipotezu koja tvrdi da su sredine jednake.

```
MeansInvestment = rowMeans(xs.returns[investment_funds]))
t.test(grouped.return.means$MeansPension, grouped.return.means$MeansInvestment, paired = TRUE)

##
## Paired t-test
##
## data: grouped.return.means$MeansPension and grouped.return.means$MeansInvestment
## t = 2.202, df = 2552, p-value = 0.02776
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.403529e-05 2.423660e-04
## sample estimates:
## mean of the differences
## mean of the differences
## 0.0001282006
```

CAPM model

```
dates <- xs.returns$Date

year <- function(date) format(date, "%Y")
get_for_year <- function(df, dates, desired_year) df[year(dates) == desired_year, ]

xs.2010 <- get_for_year(xs.returns, xs.returns$Date, 2010)

zbaktiv.2010 <- xs.2010$ZBAktiv #xs.2010[c('Date', 'ZBAktiv')]
capm.market.2010 <- xs.2010$CROBEX #xs.2010[c('Date', 'CROBEX')]
capm.risk_free.2010 <- xs.2010$InterestRate.daily #[c('Date', 'InterestRate.daily')]
zbaktiv.model <- lm(formula = (zbaktiv.2010 - capm.risk_free.2010) ~ (capm.market.2010 - capm.risk_free</pre>
```

Provjera reziduala

TODO: regresija / vrijednosti i raspodjela reziduala

```
# https://www.r-bloggers.com/r-tutorial-series-simple-linear-regression/
zbaktiv.model.summary <- summary(zbaktiv.model)
zbaktiv.model.residuals <- zbaktiv.model.summary$residuals
hist(zbaktiv.model.residuals)</pre>
```

Histogram of zbaktiv.model.residuals

plot(zbaktiv.model.residuals)
abline(0,0)

qqnorm(rstandard(zbaktiv.model))
qqline(rstandard(zbaktiv.model))

Normal Q-Q Plot


```
ks.test(rstandard(zbaktiv.model), 'pnorm')

## Warning in ks.test(rstandard(zbaktiv.model), "pnorm"): ties should not be
## present for the Kolmogorov-Smirnov test

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(zbaktiv.model)

## D = 0.11279, p-value = 0.000205

## alternative hypothesis: two-sided
```

CAPM model 2

```
TODO: tablica modela (alpha / beta) <- VERIFY
require(quantmod)

## Loading required package: quantmod

## Loading required package: xts
```

```
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
```

```
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
require(PerformanceAnalytics)
## Loading required package: PerformanceAnalytics
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
library(xts)
get capm for year <- function(df, fund, desired year){</pre>
  xs.year = get_for_year(df, df$Date, desired_year)
  fund.year <- xs.year[c('Date', fund)]</pre>
  capm.market.year <- xs.year[c('Date', 'CROBEX')]</pre>
  capm.risk_free.year <- xs.year[c('Date', 'InterestRate.daily')]</pre>
  fund.ts <- xts(fund.year[, -1], order.by=fund.year$Date)</pre>
  capm.m.ts <- xts(capm.market.year[, -1], order.by=capm.market.year$Date)</pre>
  capm.rf.year <- xts(capm.risk_free.year[, -1], order.by=capm.risk_free.year$Date)</pre>
  data.frame(sprintf('%s-%d', fund, desired year), CAPM.alpha(fund.ts, capm.m.ts, capm.rf.year), CAPM.b
}
xs.years = seq(from = 2010, by = 1, length = 7)
xs.fund.names = c(investment_funds, pension_funds)
xs.capm <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
for (i in 1:length(xs.fund.names)){
  for (j in 1:length(xs.years)){
    xs.capm <- rbind(xs.capm, get_capm_for_year(xs.returns, xs.fund.names[i], xs.years[j]))</pre>
  }
}
colnames(xs.capm) <- c("fond - godina", "alpha", "beta")</pre>
xs.capm
##
                 fond - godina
                                        alpha
## 1 ERSTEAdriaticEquity-2010 -1.363158e-04 0.5669352275
## 2 ERSTEAdriaticEquity-2011 -3.331016e-04 0.4543998614
## 3 ERSTEAdriaticEquity-2012 -1.467188e-04 0.2646270122
## 4 ERSTEAdriaticEquity-2013 1.072103e-04 0.3940627807
## 5 ERSTEAdriaticEquity-2014 1.520230e-04 0.3489534496
## 6 ERSTEAdriaticEquity-2015 2.024548e-04 0.4975787045
## 7 ERSTEAdriaticEquity-2016 1.997474e-04 0.5976194634
## 8
            OTPMeridian20-2010 -1.401558e-05 0.4309319208
## 9
            OTPMeridian20-2011 -4.044461e-04 0.5599034422
```

OTPMeridian20-2012 2.005561e-04 0.3908358348

10

```
## 11
            OTPMeridian20-2013 2.280547e-04 0.2464292424
## 12
            OTPMeridian20-2014 5.006249e-05 0.2761167134
## 13
            OTPMeridian20-2015 1.400398e-04 0.4208172130
            OTPMeridian20-2016 -1.026420e-05 0.4574313828
## 14
## 15
                  ZBAktiv-2010 9.544554e-05 0.2194612955
## 16
                  ZBAktiv-2011 -4.358250e-04 0.1381375343
                  ZBAktiv-2012 2.009252e-04 0.1336074631
## 17
                  ZBAktiv-2013 5.840394e-05 0.1116804387
## 18
## 19
                  ZBAktiv-2014 1.375125e-04 0.2024930920
## 20
                               1.880294e-04 0.2632705419
                  ZBAktiv-2015
## 21
                  ZBAktiv-2016 1.448745e-04 0.3620458129
## 22
            RaiffeisenDMF-2010 1.378239e-04 0.1194627941
## 23
            RaiffeisenDMF-2011 -7.635330e-05 0.1405371249
## 24
            RaiffeisenDMF-2012 2.378826e-04 0.1359857205
## 25
            RaiffeisenDMF-2013 9.345165e-05 0.1687797266
## 26
            RaiffeisenDMF-2014 3.404221e-04 0.1610284601
## 27
            RaiffeisenDMF-2015
                               1.803462e-04 0.1697165854
## 28
            RaiffeisenDMF-2016 1.041926e-04 0.1389678904
## 29
         ERSTEPlaviEXPERT-2010
                               1.580814e-04 0.1750763495
## 30
         ERSTEPlaviEXPERT-2011 -2.905792e-05 0.2343404356
## 31
         ERSTEPlaviEXPERT-2012
                               3.950473e-04 0.1491048287
## 32
         ERSTEPlaviEXPERT-2013
                               5.594323e-05 0.1442715157
## 33
         ERSTEPlaviEXPERT-2014
                                2.469191e-04 0.1700392710
## 34
         ERSTEPlaviEXPERT-2015
                                1.991195e-04 0.2703175563
         ERSTEPlaviEXPERT-2016 1.542028e-04 0.2781643675
## 35
## 36
        ERSTEPlaviPROTECT-2010 1.528344e-04 0.0248670367
## 37
        ERSTEPlaviPROTECT-2011 3.855290e-05 0.0355562101
## 38
        ERSTEPlaviPROTECT-2012 3.418137e-04 0.0312794690
## 39
        ERSTEPlaviPROTECT-2013 4.735975e-05 0.0220619941
## 40
        ERSTEPlaviPROTECT-2014 2.035929e-04 0.0185440353
## 41
        ERSTEPlaviPROTECT-2015
                                9.710402e-05 0.0358210528
## 42
        ERSTEPlaviPROTECT-2016 1.639057e-04 0.0005997816
#PROVJERA REZIDUALA
zbaktiv.2010.res <- matrix(ncol = 1, nrow = 361)</pre>
zbaktiv.2010.alpha <- xs.capm[15, 2]</pre>
zbaktiv.2010.beta <- xs.capm[15, 3]</pre>
for (i in 1:length(zbaktiv.2010)) {
  zbaktiv.2010.res[i, 1] <- (zbaktiv.2010[i] - capm.risk_free.2010[i]) -</pre>
    (zbaktiv.2010.alpha + zbaktiv.2010.beta * (capm.market.2010[i] - capm.risk_free.2010[i]))
}
zbaktiv.2010.res
                   [,1]
##
     [1,] 3.025737e-03
##
     [2,] -4.470165e-04
##
     [3,] -1.125709e-03
##
     [4,] -4.469784e-03
##
     [5,] 5.749055e-03
##
     [6,] -1.422779e-04
##
     [7,] -4.060959e-03
##
     [8,] -1.413468e-02
##
     [9,] 1.628328e-03
##
    [10,] 1.153703e-03
    [11,] -3.923409e-03
```

[12,] 1.799371e-03 ## [13,] -1.422779e-04 [14,] -1.148207e-04 [15,] 3.090839e-03 ## [16,] -9.275865e-03 ## [17,] -1.312774e-02 [18,] -1.015904e-03 ## [19,] -6.830567e-03 ## [20,] -1.422779e-04 ## [21,] 1.360527e-03 [22,] -3.813505e-03 ## [23,] -3.062942e-03 [24,] 4.800227e-03 ## [25,] -4.606474e-03 ## [26,] 1.163421e-02 ## [27,] -1.422779e-04 ## [28,] 7.209681e-04 ## [29,] 4.670183e-03 ## [30,] -5.655227e-03 ## [31,] -1.558577e-02 ## [32,] 6.086355e-04 [33,] 2.601787e-03 [34,] -1.422779e-04 ## [35.] 1.641154e-04 ## [36,] 2.547114e-03 [37,] 3.003235e-03 ## [38,] 7.063579e-03 [39,] -3.612323e-03 ## [40,] 2.360591e-03 [41,] -1.422779e-04 [42,] 2.683753e-04 ## ## [43,] 3.523494e-03 ## [44,] -9.437075e-04 ## [45,] -3.287487e-03 [46,] 3.689455e-03 ## ## [47,] 6.840831e-04 ## [48,] -1.422779e-04 ## [49,] 7.620623e-04 ## [50,] -8.011311e-03 ## [51,] 3.911053e-03 [52,] -5.823963e-04 [53,] 8.150183e-03 ## [54,] 6.414179e-05 ## [55,] -1.422779e-04 [56,] -8.340212e-04 [57,] 3.518260e-03 ## ## [58,] 9.003503e-04 ## [59,] -6.551485e-03

> [60,] 4.532554e-03 [61,] 5.709594e-03

[62,] -1.422779e-04

[63,] -2.551600e-04

[64,] -2.693673e-03 [65,] 1.644888e-03

##

##

##

##

17

[66,] -3.936817e-03 ## [67,] -2.757829e-03 [68,] -2.199680e-03 ## [69,] -1.422779e-04 ## [70,] -1.311595e-04 ## [71,] 3.144101e-03 [72,] 2.084115e-03 [73,] -6.736422e-03 ## ## [74,] 1.892815e-03 ## [75,] 4.760239e-04 [76,] -1.422779e-04 [77,] 1.554342e-03 ## ## [78,] 2.222416e-04 ## [79,] -5.274909e-04 ## [80,] 3.821001e-03 ## [81,] 2.621817e-03 ## [82,] 5.466834e-03 ## [83,] -1.422779e-04 ## [84,] 4.284530e-04 ## [85,] -2.880095e-03 ## [86,] 2.930759e-03 [87,] 9.567567e-03 ## [88,] -6.452707e-04 ## [89,] 4.175215e-03 ## [90,] -1.422779e-04 [91,] -1.422779e-04 ## [92,] -9.864963e-04 [93,] 5.257048e-03 ## [94,] 3.830297e-03 [95,] 5.113058e-03 ## [96,] -5.477205e-03 ## [97,] -1.422779e-04 ## [98,] 3.265466e-04 [99,] -8.945669e-03 ## [100,] 1.245684e-02 ## [101,] -1.753043e-03 ## [102,] -4.178301e-03 ## [103,] -2.520872e-03 ## [104,] -1.422779e-04 ## [105,] 2.327119e-03 ## [106,] 4.479376e-03 ## [107,] -2.213307e-03 ## [108,] 5.564066e-03 ## [109,] 4.111644e-03 ## [110,] 9.326233e-04 ## [111,] -1.422779e-04 ## [112,] -2.355763e-03 ## [113,] -6.856218e-03 ## [114,] 2.781178e-03 ## [115,] 9.708215e-03 ## [116,] -3.532648e-03 ## [117,] 2.400760e-03 ## [118,] -1.422779e-04

[119,] 3.436363e-04

[120,] -1.081434e-02 ## [121,] -6.628933e-03 ## [122,] -8.098720e-03 ## [123,] -9.129489e-03 ## [124,] 2.720435e-02 ## [125,] -1.422779e-04 ## [126,] -3.705188e-03 ## [127,] -9.529607e-03 ## [128,] 2.195334e-02 ## [129,] -2.896920e-03 ## [130,] -5.148515e-03 ## [131,] -5.711107e-03 ## [132,] -1.422779e-04 ## [133,] 2.663304e-03 ## [134,] -4.233461e-03 ## [135,] -1.211006e-02 ## [136,] -6.356160e-03 ## [137,] -3.078393e-03 ## [138,] -4.673230e-03 ## [139,] -1.422779e-04 ## [140,] 1.063729e-03 ## [141,] -7.666737e-03 ## [142,] 8.450477e-03 ## [143,] 1.350024e-02 ## [144,] -1.992360e-03 ## [145,] -6.670915e-03 ## [146,] -1.422779e-04 ## [147,] 1.633695e-03 ## [148,] 4.627718e-04 ## [149,] 1.518149e-02 ## [150,] -1.921379e-02 ## [151,] -8.263972e-04 ## [152,] -6.857526e-03 ## [153,] -1.422779e-04 ## [154,] 4.507199e-03 ## [155,] 5.261117e-03 ## [156,] 1.842133e-03 ## [157,] 6.062512e-03 ## [158,] 1.037744e-03 ## [159,] 3.683170e-04 ## [160,] -1.422779e-04 ## [161,] -3.524443e-03 ## [162,] 2.227869e-03 ## [163,] 2.789750e-03 ## [164,] -1.465069e-03 ## [165,] -6.280174e-03 ## [166,] 6.389691e-03 ## [167,] -1.422779e-04 ## [168,] 5.236598e-04 ## [169,] -1.345533e-02 ## [170,] 1.088195e-04 ## [171,] -1.804282e-04 ## [172,] 4.177383e-03

[173,] -1.422779e-04

[174,] -1.422779e-04 ## [175,] 1.946542e-03 ## [176,] -1.433795e-02 ## [177,] 5.475015e-03 ## [178,] -3.573459e-03 ## [179,] 3.947895e-03 ## [180,] -1.372501e-02 ## [181,] -1.422779e-04 ## [182,] 2.827835e-04 ## [183,] 1.012240e-03 ## [184,] 1.256244e-03 ## [185,] 1.602491e-04 ## [186,] 2.919647e-03 ## [187,] -2.147027e-03 ## [188,] -1.422779e-04 ## [189,] 4.575906e-03 ## [190,] 4.245051e-03 ## [191,] 4.731801e-03 ## [192,] -1.045075e-02 ## [193,] -1.311676e-02 ## [194,] -8.247260e-03 ## [195,] -1.422779e-04 ## [196,] 6.078356e-04 ## [197,] 6.072006e-03 ## [198,] -3.854281e-03 ## [199,] 1.192621e-02 ## [200,] 5.319148e-03 ## [201,] -3.726342e-05 ## [202,] -1.422779e-04 ## [203,] 2.539422e-03 ## [204,] -2.526232e-03 ## [205,] -6.536442e-03 ## [206,] -1.104574e-03 ## [207,] 4.254821e-04 ## [208,] 1.025097e-02 ## [209,] -1.422779e-04 ## [210,] -1.705335e-03 ## [211,] -5.434077e-03 ## [212,] -2.436291e-03 ## [213,] -1.194577e-03 ## [214,] -1.422779e-04 ## [215,] 1.330631e-03 ## [216,] -1.422779e-04 ## [217,] -4.137103e-04 ## [218,] -8.891545e-03 ## [219,] -5.873309e-03 ## [220,] 8.942820e-03 ## [221,] 6.892917e-03 ## [222,] 9.606738e-03 ## [223,] -1.422779e-04 ## [224,] -1.660525e-04 ## [225,] 4.668321e-03 ## [226,] 4.298550e-03

[227,] 1.887936e-03

[228,] 3.795401e-03 ## [229,] 8.813685e-04 ## [230,] -1.422779e-04 ## [231,] -5.437598e-04 ## [232,] -3.940435e-03 ## [233,] -1.326203e-03 ## [234,] -1.502456e-03 ## [235,] 4.632617e-03 ## [236,] 3.242167e-03 ## [237,] -1.422779e-04 ## [238,] 2.152822e-04 ## [239,] 2.483562e-03 ## [240,] 8.607901e-03 ## [241,] -4.497131e-05 ## [242,] -2.835148e-04 ## [243,] -5.700936e-03 ## [244,] -1.422779e-04 ## [245,] 1.408947e-03 ## [246,] -7.952797e-03 ## [247,] 6.378684e-03 ## [248,] 2.539374e-03 ## [249,] 1.801488e-03 ## [250,] 5.979473e-03 ## [251,] -1.422779e-04 ## [252,] -1.491068e-03 ## [253,] 8.590525e-04 ## [254,] -1.488771e-03 ## [255,] -5.489203e-03 ## [256,] -3.639121e-03 ## [257,] 3.394330e-03 ## [258,] -1.422779e-04 ## [259,] -7.560073e-04 ## [260,] -1.369226e-03 ## [261,] -1.585540e-03 ## [262,] -1.103781e-02 ## [263,] 4.775733e-03 ## [264,] 6.709783e-04 ## [265,] -1.422779e-04 ## [266,] -1.191407e-03 ## [267,] 1.195004e-03 ## [268,] 8.979011e-04 ## [269,] -4.279850e-03 ## [270,] 1.921430e-03 ## [271,] -3.803051e-03 ## [272,] -1.422779e-04 ## [273,] 1.103877e-03 ## [274,] 1.125771e-02 ## [275,] -2.868345e-03 ## [276,] -6.645688e-03 ## [277,] -4.475437e-04 ## [278,] -1.422779e-04 ## [279,] -1.422779e-04 ## [280,] -5.374225e-04

[281,] 2.288253e-03

[282,] 1.156389e-02 ## [283,] -4.725935e-03 ## [284,] -4.903897e-03 ## [285,] 3.093971e-03 ## [286,] -1.422779e-04 ## [287,] 3.744887e-05 ## [288,] -3.066246e-03 ## [289,] 8.768418e-03 ## [290,] 3.482126e-03 ## [291,] -9.970657e-03 ## [292,] 9.641450e-03 ## [293,] -1.422779e-04 ## [294,] -1.645404e-04 ## [295,] -3.434870e-03 ## [296,] -4.409031e-03 ## [297,] 5.384932e-03 ## [298,] -1.997990e-03 ## [299,] -1.453621e-03 ## [300,] -1.422779e-04 ## [301,] -1.422779e-04 ## [302,] 3.007639e-04 ## [303,] -1.689232e-03 ## [304,] 2.917322e-03 ## [305,] -7.627164e-03 ## [306,] 3.701935e-03 ## [307,] -1.422779e-04 ## [308,] 5.693470e-04 ## [309,] 4.465995e-03 ## [310,] 2.048680e-03 ## [311,] 4.475803e-03 ## [312,] -8.079041e-03 ## [313,] -3.776443e-03 ## [314,] -1.422779e-04 ## [315,] 2.090019e-03 ## [316,] -9.689355e-03 ## [317,] 1.309399e-03 ## [318,] 1.868545e-02 ## [319,] -3.265047e-03 ## [320,] -2.151925e-03 ## [321,] -1.422779e-04 ## [322,] 1.186260e-03 ## [323,] -1.156389e-02 ## [324,] 1.124880e-02 ## [325,] 9.888699e-03 ## [326,] -6.115202e-03 ## [327,] 1.971143e-03 ## [328,] -1.422779e-04 ## [329,] 5.559793e-04 ## [330,] -2.423560e-03 ## [331,] 1.422789e-02 ## [332,] 4.458778e-03 ## [333,] 5.019436e-03 ## [334,] 4.157123e-03

[335,] -1.422779e-04

```
## [336,] -3.464611e-04
## [337,] -6.119012e-03
## [338,] -9.105849e-03
## [339,] 5.169520e-03
## [340,] 3.956129e-03
## [341,] -1.600784e-03
## [342,] -1.422779e-04
## [343,] -1.063484e-04
## [344,] -1.050462e-02
## [345,] -5.344082e-03
## [346,] 5.311828e-03
## [347,] 6.023031e-04
## [348,] -7.996102e-03
## [349,] -1.422779e-04
## [350,] 4.155997e-04
## [351,] 7.826397e-03
## [352,] -3.884351e-03
## [353,] -2.913583e-03
## [354,] -1.270480e-03
## [355,] -2.762494e-03
## [356,] -1.422779e-04
## [357,] 1.475022e-03
## [358,] 8.852416e-04
## [359,] 8.396256e-04
## [360,] 5.108636e-03
## [361,] -2.232326e-03
qqnorm(zbaktiv.2010.res)
qqline(zbaktiv.2010.res)
```

Normal Q-Q Plot


```
#zbaktiv.2010 <- xs.2010[c('Date', 'ZBAktiv')]
#capm.market.2010 <- xs.2010[c('Date', 'CROBEX')]</pre>
#capm.risk_free.2010 <- xs.2010[c('Date', 'InterestRate.daily')]</pre>
#zbaktiv.ts <- xts(zbaktiv.2010[, -1], order.by=zbaktiv.2010$Date)</pre>
#capm.m.ts <- xts(capm.market.2010[, -1], order.by=capm.market.2010$Date)</pre>
\# capm.rf.2010 \leftarrow xts(capm.risk\_free.2010[, -1], order.by = capm.risk\_free.2010\$Date)
#CAPM.alpha(zbaktiv.ts, capm.m.ts, capm.rf.2010)
#CAPM.beta(zbaktiv.ts, capm.m.ts, capm.rf.2010)
anova(zbaktiv.model)
## Analysis of Variance Table
##
## Response: (zbaktiv.2010 - capm.risk_free.2010)
                                      Mean Sq F value
##
                     Df
                            Sum Sq
                                                          Pr(>F)
## capm.market.2010
                      1 0.0010622 0.00106222 35.877 5.107e-09 ***
                    359 0.0106290 0.00002961
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

TODO: ANOVA