Sequence is and ordered list of numbers

$$\{a_n\}_{n=1}^{\infty} = \{a_1, a_2, \dots, a_n, \dots\}$$

- Example. Arithmetic Sequence $\{n\}_{n=1}^{\infty} = \{1, 2, ..., n, ...\}$
- Convergent and Divergent
 - If a sequence has the limit L, where L is a finite real number, $(\frac{1}{1000})$ we say the sequence converges to L.
 - If the limit does not exist, the sequence diverges.
- **Practice**
 - 1. Is the sequence $\{2n+1\}_{n=1}^{\infty}$ convergent or divergent?

2. $\left\{\frac{n^2+1}{2n^2-3n+5}\right\}_{n=1}^{\infty}$ convergent or divergent?

3. $\{(-1)^n\}_{n=1}^{\infty}$ convergent or divergent?

4. $\left\{\frac{1}{n}*(-1)^n\right\}_{n=1}^{\infty}$ convergent or divergent?

- Infinite series: Given a sequence $\{a_n\}$, $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$ is an infinite series.
 - True Sum $S = \sum_{n=1}^{\infty} a_n$
 - Partial Sum of a sequence: $S_n = \sum_{i=1}^n a_i$
 - Example. What is the partial sum of the sequence $\{n\}_{n=1}^{\infty} = \{1, 2, ..., n, ...\}$?

Example. What is the partial sum of the sequence
$$\{n\}_{n=1}^{\infty} = \{1,2,\ldots,n,\ldots\}$$
?
$$S_n = \frac{(1+h)h}{2}$$

$$\{S_n\}_{n=1}^{\infty} = \{S_1,S_2,\ldots,S_n,\ldots\} \text{ is a sequence.}$$

Recall: convergency of a sequence.

The series is convergent
$$\Leftrightarrow \frac{1}{n} \leq n = \frac{1}{n}$$

Otherwise, the series diverges.

Practice Ø

1. Is the series $\sum_{n=1}^{\infty} n$ convergent or divergent?

$$Sn = 1 + 2 + \dots + n = \frac{(1+n)n}{2}$$

 $lim Sn = \infty$ (DNF) Divergent.

2. Is the series $\sum_{n=1}^{\infty} (-1)^n$ convergent or divergent?

3. Is the telescoping series $\sum_{n=1}^{\infty} \frac{1}{k(k+1)}$ convergent or divergent?

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

$$Sh = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{h} - \frac{1}{h+1} = 1 - \frac{1}{h+1}$$
(im Short I convergent

4. Is the geometric series $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$ convergent or divergent?

$$S_{n} = \frac{\frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{n}\right)}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^{n}$$

$$\lim_{n \to \infty} S_{n} = 1 \qquad \text{(onvergent)}$$

5. Is the geometric series $\sum_{n=1}^{\infty} 2^{3n} 5^{1-n}$ convergent or divergent?

$$\Omega_{n} = 2^{3n} 5^{1-n} = \frac{8^{n}}{5^{n}} 5 = 5 \cdot (\frac{8}{5})^{n}$$

 $S_{n} = \frac{5 \cdot \frac{8}{5} \cdot [1 - (\frac{8}{5})^{n}]}{1 - \frac{8}{5}}$ | $I_{n \to \infty} S_{n} = \infty$ (DNE) divergent

Summary. Geometric series $\sum_{n=1}^{\infty} ar^{n-1}$

$$\lim_{N \to \infty} S_N = S \frac{CL}{1-r} , |r| < |$$

$$DNE , |r| > 1$$

$$DNE , r = 1 \leftarrow when r = 1 \sum_{h=1}^{\infty} \alpha$$

Sn= a. t lim Sh= 00 CONB

Summary, for geometric series, the series is convergent when IH < 1

Convergence of a sequence V.S. Convergence of a series

If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

This theorem provides a useful test for divergent series!

If the limit $\lim_{n\to\infty} a_n$ DNE or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example. $a_n = 1$ \lim \text{in an } \tau^2 \tag{ivergent}

$$a_n = \frac{1}{n}$$
 lim $a_n = 0$ heterm test fails

We can use the definition of convergent series to determine whether the series is convergent or divergent.

However, it is always hard to find the expression of S_n . So, we need other methods to test it.

The Integral Test $= \frac{1}{n}$, $f(x) = \frac{1}{n}$.

The Integral Test $f(x) = \frac{1}{n}$, $f(x) = \frac{1}{n}$.

If f is negative, ctns, increasing ...: $\sum_{n=1}^{\infty} a_n = -\sum_{n=1}^{\infty} (-a_n)$

Note: The fact that the integral Converges to L' does not

= positive, ctns, decreasion

Truply that = the series converges

Area =
$$a_1 + a_2 + a_3 + \dots = \prod_{i=1}^{\infty} a_i \le \int_0^{\infty} f(x) dx = \int_0^1 f(x) dx + \int_1^{\infty} f(x) dx$$

= E an - So fox dx & Si fox dx

: If Sinfandx is convergent, the series is convergent.

x = an > 5° fixedx : If 5° fixedx is divergent, the series is disorgent. Summary: A p-series is convergent if p > |

Determine whether the p-series convergent or divergent.

$$f(x) = (x)^{p}$$
 positive, decreasing, ctns on $E(x)^{\infty}$)

 $f(x) = (x)^{p}$ positive, decreasing, ctns on $E(x)^{\infty}$)

 $f(x) = (x)^{p}$ of $f(x)$

 \Leftrightarrow Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n}$

When p = 1, the p-series is called harmonic series.

- \Leftrightarrow General Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{an+b}$
- **Practice**

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2+1} \quad f(x) = x + 1 \quad \text{is ctns. positive and decreasing on } \underline{L}_{1,\infty}$$
). So we
$$\int_{1}^{\infty} \frac{1}{x^2+1} \, dx = \left[\arctan x\right]_{1}^{\infty} = \frac{\pi}{2} - \frac{7}{4} = \frac{7}{4} \quad \text{can use the integral}$$

So the series converges.

2.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

The function $f(x) = \frac{\ln x}{x}$ is ctns positive and decreasing on $C(1+\infty)$.
So we we the integral test: $\int_{1}^{\infty} \frac{\ln x}{x} dx = \int_{1}^{\infty} \ln x d(\ln x)$
 $= \left[\frac{1}{2}(\ln x)^{2}\right]_{1}^{\infty} = \infty$

3. $\sum_{n=1}^{\infty} n^{1-n}$... the series divergent $f(x) = x^{1-T_L}$ ctns, positive, $\sqrt{\frac{1}{2}}$ on C(1+1) ... Integral Test: $\int_{-\infty}^{\infty} x^{1-T_L} dx = \left[\frac{1}{2-T_L}x^{2-T_L}\right]_{n=1}^{\infty} = \frac{1}{T_L-2}$

Method 2. The p-series is convergent since p=TC-1 >1

4.
$$1 + \frac{1}{\sqrt[3]{4}} + \frac{1}{\sqrt[3]{5}} + \frac{1}{\sqrt[3]{16}} + \frac{1}{\sqrt[3]{25}} + \cdots$$

| This is a pseries with $p = \frac{2}{5} < 1$
| So the series diverges.

5.
$$\sum_{n=1}^{\infty} (\frac{1}{2})^n$$

This series is convergent since this is a geometric Series with common ratio $q=\frac{1}{2}\in(111)$

> The Comparison Test

Let $0 \le a_n \le b_n$ for all n.

- 1. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges
- 2. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ Converges

Practice

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2+1} \quad 0 \leq \frac{1}{n^2+1} \leq \frac{1}{n^2} \quad \text{for all } n$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2+1} \quad 0 \leq \frac{1}{n^2+1} \leq \frac{1}{n^2} \quad \text{for all } n$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2+1} \quad \text{is a p-series with } p=2>1 \quad \text{, it is convergent}$$

$$So, \quad \sum_{n=1}^{\infty} \frac{1}{n^2+1} \quad \text{is convergent.by the Direct Companison Test.}$$

2.
$$\sum_{n=1}^{\infty} \frac{n}{n^{2}-3} \qquad 0 \leq \frac{n}{N^{2}} \leq \frac{n}{n^{2}-3} \qquad \text{for all } n \geq 2$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{2}-3} \qquad \text{is divergent since it is a } p\text{-series with } p=1.$$
Therefore,
$$\sum_{n=1}^{\infty} \frac{n}{n^{2}-3} = -\frac{1}{2} + \sum_{n=1}^{\infty} \frac{n}{n^{2}-3} \qquad \text{is divergent by the}$$

$$\sum_{n=1}^{\infty} \frac{n}{n^{2}-3} \qquad \text{Pirect (one parison Test.}$$

3.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{\sqrt{n^3+1}} \sim h^{\frac{3}{2}}$$

$$0 < \frac{\sin^2 n}{\sqrt{n^2+1}} < \frac{1}{\sqrt{n^3}} = \frac{1}{n^{\frac{3}{2}}} \text{ for all } n > 1$$

$$\sum_{n=1}^{\infty} \frac{1}{n^5+1} \text{ is a convergent } p\text{-series Since } p = \frac{3}{5} > 1.$$

$$4. \sum_{n=1}^{\infty} \frac{n^2 \cos^4 n}{n^5+1} \text{ is convergent by the Direct Comparison Test.}$$

$$0 < \frac{n^2 \cosh}{n^5 + 1} < \frac{n^2}{n^5} = \frac{1}{h^3} \quad \text{for all } n \ge 1$$

? How to select $b_n \Rightarrow$ 已知收益 赞成 中质的 Series . eg . p—Series . geometric You can disregard all but the highest powers of n in both the numerator and denominator. Series .

- leading term"

Limit Comparison Test

ZFO收敛发散性质发泡的.

by (BITA): p-series, geometric series.

If $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, where $\lim_{n \to \infty} \frac{a_n}{b_n$

Practice

1.
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$$

$$\lim_{n \to \infty} \frac{1}{\frac{1}{2^{n}}} = 1$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+4}}$$
line
$$\frac{1}{\ln 2} = 1$$

$$\sum_{n=1}^{\infty} \frac{1}{\ln 2} = 1$$

3.
$$\sum_{n=3}^{\infty} \frac{2^n}{3^{n+1}}$$

$$\lim_{N \to \infty} \frac{2^{N}}{3^{n+1}}$$

$$\lim_{N \to \infty} \frac{2^{N}}{3^{n+1}}$$
is convergent.

So, the series $\lim_{N \to \infty} \frac{2^{N}}{3^{n+1}}$ is convergent by the limit comparison Test

Alternating Series Test

Let $a_n > 0$. The alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ and $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converge if

2 nth term test

 $\lim_{n\to\infty} a_n = 0$ **AND** 2. $a_{n+1} \le a_n$ for all n greater than some integer N.

True Sum = SN+RN = [-ann, ann] When N>0, an>0

Alternating Series Estimation Theorem (Error Bound)

If $S = \sum_{n=1}^{\infty} (-1)^n a_n$ is the sum of a convergent alternating series that satisfies the condition $a_{n+1} \le a_n$, then the

Rn= (+) n+ ant 1 + (+1) n+2 ant 2 + ...

=(1)ntl. [anti - anti + anti) - anty +...] =>

1. Determine whether the series is convergent or divergent.

(a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2n-1}$

lim 1 =0

1/4/ < 1/2

Lim (+)" = + = + = LDNZ)

: the senes diverges by

the series is convergent

by the Atternating Series Test 2. $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$

 $\frac{1}{n} > 0$

THIS IN

WW 1 =0

: the series converges by the A.S.T.

anti-anti + anti-anti + anti-anti +...

| anti-anti) = anti

Therefore, |Rn| & anti

the series converges to L

Apparently 1R31 5A4

3.
$$1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots + \frac{(-1)^{n+1}}{(2n-1)!} + \dots$$

: the series converges by the A-S-T

$$\frac{1}{(2n+1)!} \leq \frac{1}{(2n-1)!}$$

4. Let
$$f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -\frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

Use the alternating series error bound to show that $1 - \frac{1}{2!} + \frac{1}{4!}$ approximates f(1)

with an error less than $\frac{1}{500}$.

$$f(1) = 1 - \frac{x^{2}}{21} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$\frac{1}{6!} < 5\infty$$

I an converges?

> Absolute and Conditional Convergence

- $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges.
- $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ is conditionally convergent if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.

Absolutely Ian con convergent

Conditionally div

Practice. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$1. \sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt[n]{e}}{n^2}$$

$$0 < \frac{\sqrt[n]{e}}{N^2} = \frac{e^h}{N^2} < \frac{e}{N^2} \quad \text{for } N > 1$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} n^{-\frac{2}{3}}$$

$$\sum |L| + ||n| +$$

Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero terms. $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = q$

- If q < 1, the series converges absolutely.
- If q > 1 or the limit DNE, the series diverges
- If q = 1, the ratio test fails.

geometric series with common ratio q. for n>N N: a finite large rumber. So we can use the conclusion

of the geometric series.

1.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
 (in this is a second of the s

:. the series is convergent by the Ratio Test

2.
$$\sum_{n=1}^{\infty} (-1)^{n} \frac{n^{3}}{5^{n}}$$

$$\lim_{N \to \infty} \left| \frac{(-1)^{N+1} - (N+1)^{3}}{(-1)^{N} - (N+1)^{3}} \right| = \frac{1}{5} < 1$$

: convergent by the ratio test.

Determine whether the series below is conditionally convergent or absolute convergent.

3.
$$\sum_{n=1}^{\infty} \frac{3^n}{2^{n-1}} \qquad \lim_{N \to \infty} \frac{3^N}{2^N} = \infty \; (DNZ)$$

i divergent by the 14th term test

4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+3} \qquad \sum |+1)^n \frac{\sqrt{n}}{n+3}| = \sum \frac{\sqrt{n}}{n+3} \qquad \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n}} = |$$

$$\frac{\sqrt{n}}{\sqrt{n}} > 0 \qquad \text{Therefore, the given} \qquad P = \frac{1}{2} < 1$$

$$\frac{\sqrt{n}}{\sqrt{n}} = 0 \qquad \text{Sevies is conditionally} \qquad \sum \frac{\sqrt{n}}{\sqrt{n}} \text{ is divergent by the}$$

$$\frac{\sqrt{n}}{\sqrt{n}} = 0 \qquad \text{Sevies is conditionally} \qquad \sum \frac{\sqrt{n}}{\sqrt{n}} \text{ is divergent by the}$$

$$\frac{\sqrt{n}}{\sqrt{n}} = 0 \qquad \text{Convergent.} \qquad \text{Limit Companison Test.}$$

$$\frac{\sqrt{n}}{\sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n}} \text{ is convergent by the A.s.T.}$$

$$\frac{\sqrt{n}}{\sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n}} = 0 \qquad \text{Limit Companison Test.}$$

: the series is absolutely convergent by the Ratio Test.

NO n-th term test divergent lim an=0? 1 Yes special series? `Test" p-series $Q_N = \frac{1}{nP}$ Direct Companison Test Comparison P>1 : convergent 0 ≤ an ≤ bn ∑bn converges Test PEI: divergent (pick Ebng) geometric series an=a. rn- (= a.rn-I an converges 111<1: convergent 1H>1: divergent osbnean Alternating Series Oun= (4) ho or (4) ho E.bn diverges 20 an diverges bn > 0 lim bu=0 AND bn+1 = bn Limit Comparison Test then convergent Vin an = L >0 Telescoping series Find Sn, lim Sn = L anibn>0 The limit exists: convergent ∑an con, div DNE : divergent 12 atio Integral an=fin) Test I an anto fix): ctns, positive, Vim an = 9 decreasing on

9<1 convergent cabsolutely)

9>1, DNZ divergent

9=1 the ratio test fails

TIITO)

Jo foods div, con

E an