

2019年「数字电路A」 水・ツをチ 神水大学 期末试题

考试时间: 2019 年 1 月

课程编号: A0402900

任课教师: 郑雪峰, 陈龙, 盛庆华等

解析制作: 未央物理讲师 Axia

HDU 邮电营

未央学社公众号

▶ 触发器

% 基础题 (共 24 分)

≥ 题目1 (本题14分)

下图所示是一个由**下降沿 D** 触发器构成的 A-B 触发器.

- 1. 写出电路的激励方程和状态方程(5分).
- 2. 电路时上跳沿触发还是下跳沿触发? 写出其状态转换真值表或功能特性表(5分).
- 3. 画出图中 Q 的波形 (Q 的初始值为 0) (4 分).

☑ 分析与解

1. 激励方程

$$D = \overline{\overline{A}\overline{Q^n} \cdot \overline{B}Q^n} \xrightarrow{\text{De Morgen}} A\overline{Q^n} + \overline{B}Q^n$$
 (3pt)

状态方程

$$Q^{n+1} = D = A\overline{Q^n} + \overline{B}Q^n$$
 (2pt)

- 2. 由于 CP 端口输入通路上有两个非门, 所以电路时上升沿触发.....(1pt)
 - 将 ABQ 所有的可能 (从 000 到 111) 代入状态方程即可得状态转换表
 - 将转换表中每一种 AB 对应的 Q^n 到 Q^{n+1} 的变化整理即可得到特性表

A	В	Q^n	Q^{n+1}	A	В	Q^n	Q^{n+1}	_
0	0	0	0	1	0	0	1	
0	0	1	1	1	0	1	1	(4pt)
0	1	0	0	1	1	0	1	_
0	1	1	0	1	1	1	0	_

						_
	СР	A	В	Q^{n+1}	功能描述	-
	↑	0	0	0	保持	-
)	\uparrow	0	1	0	复位	····· (4pt)
	↑	1	0	1	置一	
	↑	1	1	$\overline{\mathbb{Q}^n}$	翻转	
						-

3. 根据特性表即可画出 Q 的波形. · · · · · · · (4pt)

≥ 题目 2 (本题 10 分)

▶74LS161

74LS161 是同步 4 位二进制加法计数器, 其逻辑功能表如下. 试分析由 74LS161 组成的时序电路功能.

CR	ĪD	СТР	СТТ	СР	Q3	Q2	Q1	Q0
0	×	×	×	×	0	0	0	0
1	0	×	×	1	D3	D2	D1	D0
1	1	0	×	×	Q3	Q2	Q1	Q0
1	1	×	0	×	Q3	Q2	Q1	Q0
1	1	1	1	1	加	法	计	数

- 1. 画出电路的状态转移图.
- 2. 说明该电路的逻辑功能.

☑ 分析与解

1. 根据功能表和电路图可知,当 Q3Q2Q1Q0 = 1010 时电路清零,其余情况均在加法计数. 所以状态转移图为(6pt)

2. 由电路的状态转移图可知其"满十进一", 所以其功能为 10 进制的加法计数器. · · · · · · · · · · · · (4pt)

% 设计题 (共 36 分)

≥ 题目 3 (本题 16 分)

❤ 逻辑抽象, 74LS138

某机床由 A、B、C 三台电动机拖动, 根据加工要求为

- A 机必须开机运行
- 如开 B 机,则必须开 C 机
- A 机运行后, C 机器
- 也可以开机运行

满足上述要求时,指示灯亮,否则只是灯熄灭.设开机信号为1,指示灯亮为1.

- 1. 进行逻辑抽象和逻辑定义.
- 2. 设计出电路的真值表.
- 3. 使用 74LS138 译码器实现该电路,并画出电路图.

☑ 分析与解

1. A、B、C 三台电机分别用 A、B、C表示, 1表示开机, 0表示关机.....(2pt) 指示灯用 F表示, 1表示灯亮, 0表示灯灭....(2pt)

A	В	C	F	A	В	C	F
0	0	0	0	1	0	0	1
0	0	1	0	1	0	1	1
0	1	0	0	1	1	0	0
0	1	1	0	1	1	1	1

拿ノート

函数	译码器				
G X	高电平译码输出有效	低电平译码输出有效			
译码输出端	$Y_i = m_i = \overline{M_i}$	$Y_i = M_i = \overline{m_i}$			
最小项之和	外加或门	外加与非门			
最大项之和	外加或非门	外加与门			

≥ 题目 4 (本题 20 分)

▶逻辑抽象, D 触发器

步进电机的控制绕组有 4 种通电状态,分别为 A、B、C、D. 它的旋转增量为 1.8° ,旋转 200 步构成一周. 电机 X 正转时,按照 A \rightarrow B \rightarrow C \rightarrow D \rightarrow A 的通电次序;电机 X 反转时,按照 A \rightarrow D \rightarrow C \rightarrow B \rightarrow A 的通电次序. 如果控制绕组的通电次序用计数器控制实现(计数器的某一状态对应某一绕组的通电状态),电机每转一圈在 D 通电时,指示灯亮.

- 1. 进行逻辑抽象和逻辑定义,设计原始状态图、原始状态表(6分).
- 2. 列出状态转换真值表,求出方程组(10分).
- 3. 完成设计, 并用 D 触发器设计电路图.

☑ 分析与解

