Exercice 22

1. Pour $n \in \mathbb{N}$, on pose P_n : « $0 \le u_{n+1} \le u_n$ » Procédons alors par récurrence :

Initialisation : $u_0 = 5$ et $u_1 = \frac{1}{10}(u_0 + 1)^2 = \frac{(5+1)^2}{10} = \frac{36}{10} = 3,6$ Puisque $0 \le 3, 6 \le 5$, alors $0 \le u_1 \le u_0$ et donc P_0 est vraie.

Hérédité : Supposons qu'il existe $n \in \mathbb{N}$ tel que P_n soit vraie, c'est à dire que $0 \le u_{n+1} \le u_n$. Montrons que P_{n+1} est vraie :

$$0 \le u_{n+1} \le u_n \iff 0 \le u_{n+1} + 1 \le u_n + 1$$

$$\iff 0^2 \le (u_{n+1} + 1)^2 \le (u_n + 1)^2 \qquad \text{car } u_{n+1} + 1 \ge 0 \text{ et } u_n + 1 \ge 0$$

$$\iff \frac{1}{10} \times 0 \le \frac{1}{10} (u_{n+1} + 1)^2 \le \frac{1}{10} (u_n + 1)^2 \qquad \text{car } \frac{1}{10} \ge 0$$

$$\iff 0 \le u_{n+2} \le u_{n+1}$$

Donc P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_0 est vraie et (P_n) est héréditaire donc P_n est vraie pour tout $n \in \mathbb{N}$.

- **2.** D'après la question précédente, (u_n) est décroissante et minorée par 0 donc (u_n) est convergente.
- **3**. Cherchons les nombres l tels que $l = \frac{1}{10}(l+1)^2$:

$$l = \frac{1}{10}(l+1)^2 \iff 10l = l^2 + 2l + 1 \iff l^2 - 8l + 1 = 0$$

Calculons le discriminant de cette équation du second degré : $\Delta = (-8)^2 - 4 \times 1 \times 1 = 64 - 40 = 60 > 0$

Donc l'équation possède deux solutions $x_1 = \frac{8 - \sqrt{60}}{2}$ et $x_2 = \frac{8 + \sqrt{60}}{2}$. La limite l vaut donc x_1 ou x_2 . Or on sait que $l \le 5$ et que $x_2 > 5$ donc :

$$l = x_1 = \frac{8 - \sqrt{60}}{2}$$

Exercices 23

1. La fonction f est définie et dérivable sur $\mathbb{R} \setminus \left\{ \frac{5}{12} \right\}$. Pour tout $x \in \mathbb{R} \setminus \left\{ \frac{5}{12} \right\}$, on a :

$$f'(x) = \frac{-60(-12x+5) - (-12)(-60x+58)}{(-12x+5)^2} = \frac{720x - 300 - 720x + 696)}{(-12x+5)^2} = \frac{396}{(-12x+5)^2} > 0$$

Donc f est croissante sur son domaine de définition.

2. Soit $x \in [2,4]$, puisque f est croissante, on a $f(2) \le f(x) \le f(4)$. Or, $f(2) = \frac{-52}{-19} \approx 2, 7 \ge 2$ et $f(4) = \frac{-172}{-43} = 4$. Donc $2 \le f(x) \le 4$. **3**. Pour $n \in \mathbb{N}$, on pose $P_n : \langle 2 \leq u_n \leq 4 \rangle$ Procédons alors par récurrence :

Initialisation : $u_0 = 3$ d'où $2 \le u_0 \le 4$ et donc P_0 est vraie.

Hérédité : Supposons qu'il existe $n \in \mathbb{N}$ tel que P_n soit vraie, c'est à dire que $2 \le u_n \le 4$. Montrons que P_{n+1} est vraie.

Puisque $u_n \in [2,4]$, par hypothèse de récurrence, alors d'après la question 2, on a que $f(u_n) \in [2,4]$.

Donc $u_{n+1} = f(u_n) \in [2,4]$. Ainsi, P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_0 est vraie et (P_n) est héréditaire donc P_n est vraie pour tout $n \in \mathbb{N}$.

4. **a.** Soit $n \in \mathbb{N}$, on a :

$$u_{n+1} - u_n = \frac{-60u_n + 68}{-12u_n + 5} - u_n$$

$$= \frac{-60u_n + 68}{-12u_n + 5} - \frac{u_n(-12u_n + 5)}{-12u_n + 5}$$

$$= \frac{-60u_n + 68 - (-12u_n^2 + 5u_n)}{-12u_n + 5}$$

$$= \frac{12u_n^2 - 65u_n + 68}{-12u_n + 5}$$

b. On pose $g: x \mapsto 12x^2 - 65x + 68$.

Premièrement: $-12x + 5 \ge 0 \iff 12x \le 5 \iff x \le \frac{5}{12}$.

Ensuite, on étudie la fonction polynomiale du second degré $x \mapsto 12x^2 - 65x + 68$.

Puisque 12 > 0, alors g sera négative entre ses racines et positives sinon.

Déterminons les racine en calculant le discriminant :

$$\Delta = 65^2 - 4 \times 12 \times 68 = 4225 - 3264 = 961 = 31^2$$

On a alors les racines $x_1 = \frac{65 - 31}{24} = \frac{17}{12} \approx 1, 4$ et $x_2 = \frac{65 + 31}{24} = 4$

On a finalement le tableau de signe suivant :

X	$-\infty$		$\frac{5}{12}$		x_1		x_2		+∞
-12x + 5		+	0			_			
$12x^2 - 65x + 68$			+		0	_	0	+	
g(x)		+		_	0	+	0	_	

c. D'après la question précédente, on a que pour tout $x \in [2,4]$, $g(x) \ge 0$.

Soit $n \in \mathbb{N}$, on sait que $u_n \in [2,4]$, et ainsi, $g(u_n) \ge 0$.

Finalement, on sait que $u_{n+1} - u_n = g(u_n)$ et donc $u_{n+1} - u_n \ge 0$.

Donc (u_n) est croissante et majorée par 4 donc convergente.

Exercices 24

1. a. et b.:

- **c.** On peut conjecturer, à l'aide des questions précédentes, que (u_n) est croissante, minorée par 1 et majorée par 8.
- **2**. Prouver l'ensemble de ces conjecture revient à prouver, pour tout $n \in \mathbb{N}$, la proposition :

$$P_n$$
 : « $0 \le u_n \le u_{n+1} \le 8$ »

Procédons par récurrence :

Initialisation : $u_0 = 1$ et $u_1 = 4,5$ donc $1 \le u_0 \le u_1 \le 8$ et donc P_0 est vraie.

Hérédité : Supposons qu'il existe $n \in \mathbb{N}$ tel que P_n soit vraie, c'est à dire que $1 \le u_n \le u_{n+1} \le$ 8. Montrons que P_{n+1} est vraie :

$$1 \le u_n \le u_{n+1} \le 8 \iff \frac{1}{2} \times 1 \le \frac{1}{2} u_n \le \frac{1}{2} u_{n+1} \le \frac{1}{2} \times 8 \qquad \operatorname{car} \frac{1}{2} > 0$$

$$\iff \frac{1}{2} + 4 \le \frac{1}{2} u_n + 4 \le \frac{1}{2} u_{n+1} + 4 \le 4 + 4 \qquad \iff 4, 5 \le u_{n+1} \le u_{n+2} \le 8$$

En particulier, on a donc que : $1 \le u_{n+1} \le u_{n+2} \le 8$ donc P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_0 est vraie et (P_n) est héréditaire donc P_n est vraie pour tout $n \in \mathbb{N}$.

- 3. La suite (u_n) est majorée par 8 et est croissante, donc elle converge.
- **4.** (Question assez difficile en terminale) D'après le graphique de la question 1, on peut penser que (u_n) converge vers 8.

De ce fait, regardons la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n - 8$. Ainsi, si on arrive à montrer que (v_n) converge vers 0, alors on aura que $\lim_{n \to +\infty} u_n = 8$.

On a:

$$v_{n+1} = u_{n+1} - 8 = \frac{1}{2}u_n + 4 - 8 = \frac{1}{2}u_n - 4 = \frac{1}{2}(u_n - 8) = \frac{1}{2}v_n$$

Donc (v_n) est géométrique de raison $\frac{1}{2}$ et donc $v_n \xrightarrow[n \to +\infty]{} 0$. Ainsi, $u_n \xrightarrow[n \to +\infty]{} 8$.