LINEAR REGRESSION MODELS W4315

HOMEWORK 5 QUESTIONS

December 6, 2011

Instructor: Frank Wood

1. (10 points) ¹ Bonferroni inequality (4.2a) which is given as

$$P(\bar{A}_1 \cap \bar{A}_2) \ge 1 - \alpha - \alpha = 1 - 2\alpha$$

deals with the case of two statements, A_1 and A_2 . Extend the inequality to the case of n statements, namely, $A_1, A_2 \ldots, A_n$, each with statement confidence coefficient $1 - \alpha$.

2. (30 points) ³ In a small-scale regression study, the following data were obtained: Assume

i:	1	2	3	4	5	6
X_{i1}	7	4	16	3	21	8
X_{i2}	33	41	7	49	5	31
Y_{i}	42	33	75	28	91	55

that regression model (1) which is:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta X_{i2} + \epsilon_i \tag{1}$$

with independent normal error terms is appropriate. Using matrix methods, obtain (a) **b**; (b) **e**; (c) **H**; (d) SSR; (e) $s^2\{\mathbf{b}\}$; (f) \hat{Y}_h when $X_{h1} = 10$, $X_{h2} = 30$; (g) $s^2\{\hat{Y}_h\}$ when $X_{h1} = 10$, $X_{h2} = 30$. For the notations, please refer to section 6.4.

3. (30 points) Consider the classical regression setup

$$\mathbf{v} = \mathbf{X}\beta + \epsilon$$

We want to find the maximum likelihood estimate of the parameters.

a. if $\epsilon \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I})$. Derive the maximum likelihood estimate of β and σ^2 .

b. if $\epsilon \sim \mathbf{N}(\mathbf{0}, \mathbf{\Sigma})$ and Σ is known. Derive the maximum likelihood estimate of β .

¹This is problem 4.22 in 'Applied Linear Regression Models(4th edition)' by Kutner etc.

³This is problem 6.27 in 'Applied Linear Regression Models(4th edition)' by Kutner etc.

- **4.** (30 points) Suppose $X_1, ..., X_n$ are i.i.d. samples from $N(0, \sigma^2)$. Denote \bar{X} as the sample mean. Prove $S = \sum_{i=1}^{n} (X_i \bar{X})^2 \sim \sigma^2 \chi^2 (n-1)$ following the steps below using Cochran's theorem:
- a. Remember that we have the decomposition

$$\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n\bar{X}^2$$

Show the matrices corresponding to all the three quadratic terms in (3).

- b. Derive the rank of each matrix above.
- c. Use Cochran's theorem to prove $S \sim \sigma^2 \chi^2 (n-1)$.