Version 1.0 / 19.09.2019

Hydro power plant constraints forecast

1 4.1 Power blocks regression

2 Import libraries

Entrée [2]:

```
import math
import pandas as pd
import numpy as np
import array as arr
from pandas import ExcelWriter
from pandas import ExcelFile
import re
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_squared_error, mean_absolute_error
import statistics
from functools import reduce
import random
from sklearn import metrics
%matplotlib inline
```

2.0.1 Read source file into data frame and display columns

Entrée [3]:

```
dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d')

df = pd.read_csv("clean_dataframe.csv", parse_dates=['Date'], date_parser=dateparse, index_
# rename date column

df.rename(columns={ df.columns[0]: "Date"}, inplace=True)

df.index = df["Date"]
```

2.0.2 Check first few lines of imported file

Entrée [338]:

df.head()

Out[338]:

	Date	Min prod	Inflow lake 1 [m3]	Inflow lake 2 [m3]	Inflow lake 3 [m3]	Inflow lake 4 [m3]	Vol lake 1 [%]	Max lake 1 [1000m3]	Availability plant 1 [%]	Availability plant 2 [%]	
Date											
2014- 04-01	2014- 04-01	0.0	31.0	4.0	129.0	107.0	0.16467	30000.0	1.0	1.0	_
2014- 04-02	2014- 04-02	150.0	0.0	-14.0	148.0	116.0	0.15557	30000.0	1.0	1.0	
2014- 04-03	2014- 04-03	150.0	10.0	6.0	132.0	118.0	0.14765	30000.0	1.0	1.0	
2014- 04-04	2014- 04-04	150.0	19.0	6.0	150.0	118.0	0.13716	30000.0	1.0	1.0	
2014- 04-05	2014- 04-05	180.0	41.0	15.0	148.0	124.0	0.13091	30000.0	1.0	1.0	٠
5 rows	× 62 co	olumns									

Entrée [339]:

df.tail()

Out[339]:

	Date	Min prod	Inflow lake 1 [m3]	Inflow lake 2 [m3]	Inflow lake 3 [m3]	Inflow lake 4 [m3]	Vol lake 1 [%]	Max lake 1 [1000m3]	Availability plant 1 [%]	Availabi plant 2
Date										
2019- 06-26	2019- 06-26	479.633867	1179.8	-108.0	785.1	625.8	0.63993	30000.0	1.0	
2019- 06-27	2019- 06-27	569.565217	1735.9	-111.0	868.0	547.2	0.66066	30000.0	1.0	
2019- 06-28	2019- 06-28	509.610984	1786.9	79.0	644.6	595.3	0.68188	30000.0	1.0	
2019- 06-29	2019- 06-29	479.633867	1614.6	83.0	609.2	479.1	0.70126	30000.0	1.0	
2019- 06-30	2019- 06-30	479.633867	1516.5	-105.0	834.7	357.7	0.71942	30000.0	1.0	
5 rows	5 rows × 62 columns									

Entrée [6]:

display info about our dataframe, i.e. features types, labels, number of values including
df.info()

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1917 entries, 2014-04-01 to 2019-06-30
Data columns (total 23 columns):
Date
                            1917 non-null datetime64[ns]
Min prod
                            1917 non-null float64
Inflow lake 1 [m3]
                            1917 non-null float64
Inflow lake 2 [m3]
                           1917 non-null float64
Inflow lake 3 [m3]
                           1917 non-null float64
Inflow lake 4 [m3]
                           1917 non-null float64
Vol lake 1 [%]
                           1917 non-null float64
Max lake 1 [1000m3]
                           1917 non-null float64
Availability plant 1 [%] 1917 non-null float64
Availability plant 2 [%]
                          1917 non-null float64
Availability plant 3 [%]
                          1917 non-null float64
                            1917 non-null float64
Availability plant 4 [%]
                            1917 non-null float64
SDL [MWh]
Weekend
                            1917 non-null bool
Variante Prio
                            1917 non-null float64
                            1917 non-null float64
PrioH1
PrioP1
                            1917 non-null float64
                            1917 non-null float64
PrioH2
PrioP2
                            1917 non-null float64
PrioH3
                            1917 non-null float64
                            1917 non-null float64
PrioP3
PrioH4
                            1917 non-null float64
                            1917 non-null float64
PrioP4
dtypes: bool(1), datetime64[ns](1), float64(21)
memory usage: 346.3 KB
```

Entrée [7]:

```
# Read baseline for benchmark data as well
df_benchmark = pd.read_csv("baseline_dataframe.csv", parse_dates=['Date'], date_parser=date
# Force index to be date (as provided in the first column)
df_benchmark.index = df_benchmark['Date']

df_benchmark.info()
df_benchmark.head()
```

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1918 entries, 2014-04-01 to 2019-07-01
Data columns (total 10 columns):
                  1918 non-null datetime64[ns]
Date
P1 [MW]
                  1918 non-null float64
P2 [MW]
                  1918 non-null float64
P3 [MW]
                  1918 non-null float64
                  1918 non-null int64
P4 [MW]
                  1918 non-null int64
H1 [#]
                  1918 non-null int64
H2 [#]
H3 [#]
                  1918 non-null int64
Min Prod [MWh] 1918 non-null float64
                  1918 non-null float64
MaxEnergy
dtypes: datetime64[ns](1), float64(5), int64(4)
```

memory usage: 164.8 KB

Out[7]:

	Date	P1 [MW]	P2 [MW]	P3 [MW]	P4 [MW]	H1 [#]	H2 [#]	H3 [#]	Min Prod [MWh]	MaxEnergy
Date										
2014- 04-01	2014- 04-01	73.7	47.8	40.0	0	3	4	9	254.2	772.3
2014- 04-02	2014- 04-02	73.6	47.8	40.0	0	3	4	9	276.5	772.0
2014- 04-03	2014- 04-03	55.3	47.7	39.9	0	3	4	9	269.5	715.8
2014- 04-04	2014- 04-04	54.1	47.7	39.9	0	3	4	9	289.9	712.2
2014- 04-05	2014- 04-05	73.5	47.7	39.9	0	3	5	8	297.6	778.2

Entrée [8]:

```
# copy baseline values into main dataframe, using consistent labels
df["Baseline_Min prod"] = df_benchmark["Min Prod [MWh]"]
df["Baseline_Variante Prio"] = df_benchmark["MaxEnergy"]
```

2.1 Data preparation for ML

2.1.1 Test / train split and input / output features separation

Entrée [9]:

Entrée [10]:

```
# define train / test split ratio (applied to availabe data points in dataset)
splitRatio = 0.9
```

Entrée [26]:

```
# splits the input dataframe into train, test for target and input features, using the prov
def GetDataSplitMulti(df_input, regressors, target_features, ratio):
    # We split using a 90/10 ratio (parameter), but keeping the data in chronological order
    CutPoint = round(len(df.index)*ratio)
    df_model = df_input.filter(regressors, axis=1)

xTrain = df_model.iloc[:CutPoint, :]
    xTest = df_model.iloc[CutPoint:, :]
    yTrain = df[target_features][:CutPoint]
    yTest = df[target_features][CutPoint:]
    return [xTrain, xTest, yTrain, yTest]
```

Entrée [109]:

Entrée [110]:

```
df_hourly.head()
```

Out[110]:

Hours

2014-04-01 00:00:00 2014-04-01 00:00:00 2014-04-01 01:00:00 2014-04-01 01:00:00 2014-04-01 02:00:00 2014-04-01 02:00:00 2014-04-01 03:00:00 2014-04-01 03:00:00 2014-04-01 04:00:00 2014-04-01 04:00:00

Hours

```
Entrée [111]:
```

```
len(df_hourly.index)
```

Out[111]:

45984

Entrée [112]:

```
firstDate = df.index.min()
powerHours = np.zeros(45984)
powerHoursBaseline = np.zeros(45984)
# loop over all date
for myDate in df.index:
    # index is date difference times 24
    index = (myDate-firstDate).days * 24
    # compute hourly vector of original values, using the 4 pairs (power/nb of hours)
    currHour = index
    for iPair in range(1,4+1):
        pwrValue = df.loc[myDate, "PrioP"+str(iPair)]
        nbHours = int(df.loc[myDate, "PrioH"+str(iPair)])
        if pwrValue > 0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            powerHours[currHour:currHour+nbHours] = pwrValue
            currHour = currHour + nbHours
    # compute hourly vector of baseline values, using the 3 pairs (power/nb of hours)
    currHour = index
    for iPair in range(1,3+1):
        pwrValue = df_benchmark.loc[myDate, "P"+str(iPair)+" [MW]"]
        nbHours = int(df_benchmark.loc[myDate, "H"+str(iPair)+" [#]"])
        if pwrValue > 0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            powerHoursBaseline[currHour:currHour+nbHours] = pwrValue
            currHour = currHour + nbHours
```

Entrée [113]:

```
df_hourly["Power"] = powerHours
df_hourly["PowerBaseLine"] = powerHoursBaseline

df_hourly.head()
```

Out[113]:

Hours Power PowerBaseLine

Hours

2014-04-01 00:00:00	2014-04-01 00:00:00	73.8	73.7
2014-04-01 01:00:00	2014-04-01 01:00:00	73.8	73.7
2014-04-01 02:00:00	2014-04-01 02:00:00	73.8	73.7
2014-04-01 03:00:00	2014-04-01 03:00:00	73.8	47.8
2014-04-01 04:00:00	2014-04-01 04:00:00	66.0	47.8

Entrée [108]:

```
# compute error metrics over hourly values calculated above
print('Hourly comparison: prediction baseline vs. actual values')
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_hourly["Power"],df_hourly
print('MAE :'+ str(round( metrics.mean_absolute_error(df_hourly["Power"],df_hourly["PowerBaseLine"])*1
print('R^2 :'+ str(round(metrics.r2_score( df_hourly["Power"],df_hourly["PowerBaseLine"])*1
```

Hourly comparison: prediction baseline vs. actual values RMSE :20.31 MAE :14.41 R^2 :42.34

3 Model selection

3.1 Model selection using scikit-learn library

Entrée [33]:

```
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.pipeline import Pipeline
import math
from sklearn.preprocessing import StandardScaler, MinMaxScaler
```

Entrée [34]:

```
# function to produce plots out of models predictions
# plot actual value, prediction and baseline in one plot
# plot error along time below in another plot
# Add error metrics values at the bottom and model's parameters
# Produce file in SVG format, i.e. vector format for best quality import in final report
import matplotlib.pylab as pl
import matplotlib.gridspec as gridspec
from statsmodels.graphics.gofplots import qqplot
def plotModelPrediction(model, target label, y train, pred, y test, target baseline, test i
   # build dataframe to be plotted, plot graph and save it as a file
    if isinstance(model, str):
        model name = model
    else:
        model name = type(model). name
    df_pred = pd.DataFrame(pred, columns=['Forecast '+model_name], index = test_index)
    df_pred["Ground truth"] = y_test
    df_pred["Mean train values"] = y_train.mean()
    df_pred["Baseline"] = target_baseline
    fig size = plt.rcParams["figure.figsize"]
    fig_size[0] = 15
    fig_size[1] = 15
    plt.rcParams["figure.figsize"] = fig_size
    # Create 1x3 sub plots
    gs = gridspec.GridSpec(3, 2)
    fig = pl.figure()
    ax = pl.subplot(gs[0, :]) # row 0, col 0
    df_pred.plot(title = target_label+' forecast '+model_name+'(additional regressor: '+add
    # plot error along time
    ax = pl.subplot(gs[1, :]) # row 1, col 0
    df_error = pd.DataFrame(df_pred["Ground truth"]-df_pred['Forecast '+model_name], column
    df_error.plot(grid=True, ax=ax)
    # plot predicted vs actual values
    ax = pl.subplot(gs[2, 0]) # row 2, col 0
    plt.scatter(df_pred["Ground truth"], df_pred['Forecast '+model_name], c='b', alpha=0.3)
    plt.plot([1,1000], [1,1000], ls="--", c="r")
    plt.title("Predicted values vs ground truth")
    plt.xlabel("Ground truth")
    plt.ylabel("Predicted value")
    # plot residuals applot
    ax = pl.subplot(gs[2, 1]) # row 2, col 1
    qqplot(df_error, line = "s", ax=ax)
    # add textual elements: error metrics values, model name and parameters
    txt = 'Target :'+ target_label+" / "
    txt = txt + 'RMSE :'+ str(round(math.sqrt(metrics.mean squared error(y test,pred)),2))+
    txt = txt + 'MAE :'+ str(round(metrics.mean_absolute_error(y_test,pred),2))+" /
    txt = txt + 'R^2 :'+ str(round(metrics.r2_score(y_test,pred)*100, 2))+"
    fig.text(.5, .05, txt, ha='center')
    fig.savefig('Forecast'+target label+model name+'+'+addRegressor+'.svg', format='svg')
```

Entrée [35]:

```
# function to train the model and set its best parameters, then evaluate it
# return best parameters
def TrainEvalModel(X_train, X_test, y_train, y_test, target_label, target_baseline, test_ir
    pipeline = Pipeline([('preprocessor', StandardScaler()),
                         ('model', model)])
    print('Model: ', model)
    print(params)
    grid = GridSearchCV(pipeline, params, scoring='r2', n jobs=-1, cv=3, verbose=1)
    grid.fit(X_train, y_train)
    pred = grid.best_estimator_.predict(X_test)
    print('Target :', target_label)
    print('Regressors :', X_train.columns)
    print('Parameters: ', grid.best_params_ )
    print('Root Mean Square Error: %1.4f' % (math.sqrt(metrics.mean_squared_error(y_test,pr
    print('Mean Absolute Error: %1.4f' % (metrics.mean_absolute_error(y_test,pred)))
    print('R2 score : %1.4f' %(metrics.r2_score(y_test,pred)*100))
    print('\n\n')
    plotModelPrediction(model,target_label, y_train, pred, y_test, target_baseline, test_ir
    return [math.sqrt(metrics.mean_squared_error(y_test,pred)),
                      metrics.mean_absolute_error(y_test,pred),
                      metrics.r2_score(y_test,pred)*100,
                      grid.best_params_]
```

Entrée [36]:

```
# set random seed for reproducibility
random.seed( 42 )
```

Entrée [37]:

```
df.columns
```

Out[37]:

Entrée [39]:

```
# implement mutli-output random forest
fullRegressors = regressors
target_features = ['Min prod','Variante Prio', 'PrioH1', 'PrioP1', 'PrioH2', 'PrioP2', 'Pri
xTrain, xTest, yTrain, yTest = GetDataSplitMulti(df, fullRegressors, target_features,0.9)
yTest.head()
```

Out[39]:

	Min prod	Variante Prio	PrioH1	PrioP1	PrioH2	PrioP2	PrioH3	PrioP3	PrioH
Date									
2018- 12-21	119.908467	1241.052632	2.0	74.942792	14.0	65.949657	8.0	20.983982	0.
2018- 12-22	89.931350	1241.052632	2.0	74.942792	14.0	65.949657	8.0	20.983982	0.
2018- 12-23	89.931350	1241.052632	2.0	74.942792	14.0	65.949657	8.0	20.983982	0.
2018- 12-24	119.908467	1241.052632	2.0	74.942792	14.0	65.949657	8.0	20.983982	0.
2018- 12-25	119.908467	1241.052632	2.0	74.942792	14.0	65.949657	8.0	20.983982	0.
4									•

Entrée [41]:

```
from sklearn.ensemble import RandomForestRegressor
regr_rf = RandomForestRegressor()
regr_rf.fit(xTrain, yTrain)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: F utureWarning: The default value of n_estimators will change from 10 in versi on 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)

Out[41]:

Entrée [47]:

```
pred = regr_rf.predict(xTest)
pred.shape
```

Out[47]:

(192, 10)

Entrée [61]:

```
# build a dataframe to store results
df_pred = pd.DataFrame(data=pred, columns = target_features, index = yTest.index)
df_pred.head()
```

Out[61]:

		Min prod	Variante Prio	PrioH1	PrioP1	PrioH2	PrioP2	PrioH3	PrioP3	PrioH
	Date									
	018- 2-21	118.967963	1270.235858	4.3	71.911968	9.6	60.968261	8.3	36.173593	0
	018- 2-22	115.963387	1245.877803	4.1	72.356293	9.7	61.203043	7.5	36.799108	1
	018- 2-23	116.363387	1323.364256	5.9	71.096796	9.3	60.633318	8.4	35.389336	0
	018- 2-24	122.961098	1133.995126	3.4	74.215652	10.3	63.779657	7.3	29.448261	0
	018- 2-25	110.867963	1120.062998	2.9	73.861442	8.8	66.064645	7.4	38.959108	1
4										•

Entrée [62]:

```
# compute metrics on daily values, i.e minimum and maxium production
print('Daily values comparison: prediction vs. actual')
print('Minimum production')
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_pred["Min prod"],yTest["Min prod"]
print('MAE :'+ str(round(metrics.mean_absolute_error(df_pred["Min prod"],yTest["Min prod"]
print('R^2 :'+ str(round(metrics.r2_score( df_pred["Min prod"],yTest["Min prod"])*100, 2)))
print('Maximum production')
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_pred["Variante Prio"],yTest["Variante Prio"],yTest["Variante Prio"],yTest["Variante Prio"])
```

Daily values comparison: prediction vs. actual

Minimum production

RMSE :105.25 MAE :76.74 R^2 :35.13

Maximum production

RMSE :394.69 MAE :333.52 R^2 :-53.2

Entrée [63]:

```
# In order to compute the hourly metrics, build hourly values out of results
# apply first rounding algorithm
# 1) Basic rounding of hourly values
# 2) rounding keeping rounding account -> keep it as close as possible to zero
# 3) rouding hours value but correcting matching power value so the energy remains identica
# basic rounding
```

Entrée [118]:

```
df_pred.index.size
df_hourly.loc[df_pred.index.min():,].index.size
```

Out[118]:

4584

Entrée [129]:

```
# rounding function is floor
rounding_func = math.floor
# hourly dataframe to store restults, out of complete one
df_hourly_pred = df_hourly.loc[df_pred.index.min():,]
firstDate = df_pred.index.min()
powerHours = np.zeros(4584)
# loop over all date
for myDate in df_pred.index:
    # index is date difference times 24
    index = (myDate-firstDate).days * 24
    # compute hourly vector of original values, using the 4 pairs (power/nb of hours)
    currHour = index
    for iPair in range(1,4+1):
        pwrValue = df_pred.loc[myDate, "PrioP"+str(iPair)]
        nbHours = int(rounding_func(df_pred.loc[myDate, "PrioH"+str(iPair)]))
        if pwrValue > 0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            powerHours[currHour:currHour+nbHours] = pwrValue
            currHour = currHour + nbHours
df_hourly_pred["PredictedPower"]= powerHours
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:24: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand as-docs/stable/indexing.html#indexing-view-versus-copy)

Entrée [131]:

df_hourly_pred.head(24)

Out[131]:

	Hours	Power	PowerBaseLine	PredictedPower
Hours				
2018-12-21 00:00:00	2018-12-21 00:00:00	74.942792	85.2	71.911968
2018-12-21 01:00:00	2018-12-21 01:00:00	74.942792	85.2	71.911968
2018-12-21 02:00:00	2018-12-21 02:00:00	65.949657	76.3	71.911968
2018-12-21 03:00:00	2018-12-21 03:00:00	65.949657	46.8	71.911968
2018-12-21 04:00:00	2018-12-21 04:00:00	65.949657	46.8	60.968261
2018-12-21 05:00:00	2018-12-21 05:00:00	65.949657	46.8	60.968261
2018-12-21 06:00:00	2018-12-21 06:00:00	65.949657	46.8	60.968261
2018-12-21 07:00:00	2018-12-21 07:00:00	65.949657	46.8	60.968261
2018-12-21 08:00:00	2018-12-21 08:00:00	65.949657	46.8	60.968261
2018-12-21 09:00:00	2018-12-21 09:00:00	65.949657	46.8	60.968261
2018-12-21 10:00:00	2018-12-21 10:00:00	65.949657	46.8	60.968261
2018-12-21 11:00:00	2018-12-21 11:00:00	65.949657	46.8	60.968261
2018-12-21 12:00:00	2018-12-21 12:00:00	65.949657	46.8	60.968261
2018-12-21 13:00:00	2018-12-21 13:00:00	65.949657	46.8	36.173593
2018-12-21 14:00:00	2018-12-21 14:00:00	65.949657	46.8	36.173593
2018-12-21 15:00:00	2018-12-21 15:00:00	65.949657	46.8	36.173593
2018-12-21 16:00:00	2018-12-21 16:00:00	20.983982	0.0	36.173593
2018-12-21 17:00:00	2018-12-21 17:00:00	20.983982	0.0	36.173593
2018-12-21 18:00:00	2018-12-21 18:00:00	20.983982	0.0	36.173593
2018-12-21 19:00:00	2018-12-21 19:00:00	20.983982	0.0	36.173593
2018-12-21 20:00:00	2018-12-21 20:00:00	20.983982	0.0	36.173593
2018-12-21 21:00:00	2018-12-21 21:00:00	20.983982	0.0	0.000000
2018-12-21 22:00:00	2018-12-21 22:00:00	20.983982	0.0	0.000000
2018-12-21 23:00:00	2018-12-21 23:00:00	20.983982	0.0	0.000000

Entrée [132]:

```
# compute error metrics over hourly values calculated above
print('Hourly comparison: prediction vs. actual values')
print('RMSE : '+ str(round(math.sqrt(metrics.mean_squared_error(df_hourly_pred["Power"],df_h
print('MAE : '+ str(round( metrics.mean absolute error(df hourly pred["Power"],df hourly pred
print('R^2 :'+ str(round(metrics.r2_score( df_hourly_pred["Power"],df_hourly_pred["Predicte")
Hourly comparison: prediction baseline vs. actual values
RMSE :22.31
MAE :14.38
R^2:10.85
Entrée [138]:
# construct a vector of 24 hours values as target variable, to see how good it performs in
# create needed columns in the source dataset
for i in range (24):
    df["HourValue"+str(i)] = 0
# loop over all date
for myDate in df.index:
    # compute hourly vector of original values, using the 4 pairs (power/nb of hours)
    currHour = 0
    for iPair in range(1,4+1):
        pwrValue = df.loc[myDate, "PrioP"+str(iPair)]
        nbHours = int(df.loc[myDate, "PrioH"+str(iPair)])
        if pwrValue > 0 and nbHours>0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            df.loc[myDate, "HourValue"+str(currHour): "HourValue"+str(currHour+nbHours-1)] =
            currHour = currHour + nbHours
    # Add the 24 vectors to 24 columns in the dataset
df.iloc[0,:]
Date 2014-04-08 00:00:00, Pair 3, Pwr 42, Hours 8.000000
Date 2014-04-09 00:00:00, Pair 1, Pwr 72, Hours 4.000000
Date 2014-04-09 00:00:00, Pair 2, Pwr 66, Hours 4.000000
Date 2014-04-09 00:00:00, Pair 3, Pwr 42, Hours 8.000000
Date 2014-04-10 00:00:00, Pair 1, Pwr 70, Hours 3.000000
Date 2014-04-10 00:00:00, Pair 2, Pwr 58, Hours 2.000000
Date 2014-04-10 00:00:00, Pair 3, Pwr 51, Hours 3.000000
Date 2014-04-10 00:00:00, Pair 4, Pwr 37, Hours 6.000000
Date 2014-04-11 00:00:00, Pair 1, Pwr 70, Hours 3.000000
Date 2014-04-11 00:00:00, Pair 2, Pwr 58, Hours 2.000000
Date 2014-04-11 00:00:00, Pair 3, Pwr 51, Hours 3.000000
Date 2014-04-11 00:00:00, Pair 4, Pwr 37, Hours 6.000000
Date 2014-04-12 00:00:00, Pair 1, Pwr 70, Hours 3.000000
Date 2014-04-12 00:00:00, Pair 2, Pwr 58, Hours 2.000000
Date 2014-04-12 00:00:00, Pair 3, Pwr 51, Hours 3.000000
Date 2014-04-12 00:00:00, Pair 4, Pwr 37, Hours 6.000000
Date 2014-04-13 00:00:00, Pair 1, Pwr 70, Hours 3.000000
Date 2014-04-13 00:00:00, Pair 2, Pwr 58, Hours 2.000000
Date 2014-04-13 00:00:00, Pair 3, Pwr 51, Hours 3.000000
```

Entrée [142]:

```
# implement mutli-output random forest
fullRegressors = regressors
# create list of target features
target_features = ['HourValue'+str(i) for i in range(24)]

xTrain, xTest, yTrain, yTest = GetDataSplitMulti(df, fullRegressors, target_features,0.9)
yTest.head()
```

Out[142]:

	HourValue0	HourValue1	HourValue2	HourValue3	HourValue4	HourValue5	HourValue6	
Date								
2018- 12-21	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-22	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-23	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-24	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-25	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	
5 rows × 24 columns								

Entrée [143]:

```
regr_rf = RandomForestRegressor()
regr_rf.fit(xTrain, yTrain)
pred = regr_rf.predict(xTest)
df_pred = pd.DataFrame(data=pred, columns = target_features, index = yTest.index)
df_pred.head()
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: F utureWarning: The default value of n_estimators will change from 10 in versi on 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)

Out[143]:

	HourValue0	HourValue1	HourValue2	HourValue3	HourValue4	HourValue5	HourValue6
Date							
2018- 12-21	70.182838	70.182838	65.144897	64.244897	58.874897	58.874897	58.874897
2018- 12-22	69.648558	69.648558	65.509931	64.609931	58.519931	58.519931	58.519931
2018- 12-23	70.182838	70.182838	65.144897	64.244897	58.874897	58.874897	58.874897
2018- 12-24	71.148696	71.148696	69.649840	67.849840	64.849840	64.849840	64.849840
2018- 12-25	70.794279	70.794279	67.614966	66.714966	61.194966	60.894966	60.894966

5 rows × 24 columns

Entrée [145]:

yTest[target_features]

Out[145]:

	HourValue0	HourValue1	HourValue2	HourValue3	HourValue4	HourValue5	HourValue6	HourValue7	
Date									
2018- 12-21	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-22	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-23	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-24	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	65.949657	
2018- 12-25	74.942792	74.942792	65.949657	65.949657	65.949657	65.949657	65.949657	65.949657	
2018-	7/ 0/2702	7/ 0/2702	65 0/0657	65 Q/Q657	65 0/0657	65 Q/Q657	65 Q/Q657	65 010657 •	•

Entrée [147]:

```
# compute metrics on daily values, i.e minimum and maxium production
print('Hourly values comparison (vector of 24 length): prediction vs. actual')
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_pred[target_features],yTe
print('MAE :'+ str(round(metrics.mean_absolute_error(df_pred[target_features],yTest[target
print('R^2 :'+ str(round(metrics.r2_score(df_pred[target_features],yTest[target_features])*
```

Hourly values comparison (vector of 24 length): prediction vs. actual

RMSE :21.44 MAE :15.39 R^2 :-162.82

Entrée [150]:

```
# recontruct the daily maximum energy out of predicted hourly values
df_pred["PredMaxEnergy"] = 0
for i in range(24):
    df_pred["PredMaxEnergy"] = df_pred["PredMaxEnergy"] + df_pred['HourValue'+str(i)]
```

Out[150]:

	HourValue0	HourValue1	HourValue2	HourValue3	HourValue4	HourValue5	HourValue6
Date							
2018- 12-21	70.182838	70.182838	65.144897	64.244897	58.874897	58.874897	58.874897
2018- 12-22	69.648558	69.648558	65.509931	64.609931	58.519931	58.519931	58.519931
2018- 12-23	70.182838	70.182838	65.144897	64.244897	58.874897	58.874897	58.874897
2018- 12-24	71.148696	71.148696	69.649840	67.849840	64.849840	64.849840	64.849840
2018- 12-25	70.794279	70.794279	67.614966	66.714966	61.194966	60.894966	60.894966

5 rows × 25 columns

Entrée [157]:

```
# plot comparison
plt.plot(df_pred["PredMaxEnergy"].index, df_pred["PredMaxEnergy"])
plt.plot(df.iloc[1920-192:,:].index, df.iloc[1920-192:,:]["Variante Prio"])
plt.legend()
```

Out[157]:

[<matplotlib.lines.Line2D at 0x185b7c43438>]

Entrée [167]:

```
# try adding additional regressors: daily values from previous models

df_MLPprediction = pd.read_csv("ForecastVariante PrioMLP (10,7,1) Act(lin, relu, relu) Drop
# rename first column
df_MLPprediction.rename(columns={ df_MLPprediction.columns[0]: "Prediction"}, inplace=True)
df_MLPprediction.head()
```

Out[167]:

Prediction Ground truth Mean train values Baseline **Date 2018-12-21** 849.08440 1241.052632 727.020546 855.1 **2018-12-22** 781.52800 1241.052632 727.020546 853.5 **2018-12-23** 779.63550 1241.052632 727.020546 824.0 **2018-12-24** 895.75410 1241.052632 727.020546 924.7 **2018-12-25** 817.40027 1241.052632 727.020546 868.5

Entrée [183]:

```
np.array([[['PrioH'+str(i),'PrioP'+str(i)][j] for i in range(1,4+1)] for j in range(1+1)]).
```

Out[183]:

Entrée [244]:

Out[244]:

	PrioH1	PrioH2	PrioH3	PrioH4	PrioP1	PrioP2	PrioP3	PrioP4
Date								
2018-12-21	2.0	14.0	8.0	0.0	74.942792	65.949657	20.983982	0.0
2018-12-22	2.0	14.0	8.0	0.0	74.942792	65.949657	20.983982	0.0
2018-12-23	2.0	14.0	8.0	0.0	74.942792	65.949657	20.983982	0.0
2018-12-24	2.0	14.0	8.0	0.0	74.942792	65.949657	20.983982	0.0
2018-12-25	2.0	14.0	8.0	0.0	74.942792	65.949657	20.983982	0.0

Entrée [245]:

```
regr_rf = RandomForestRegressor()
regr_rf.fit(xTrain, yTrain)
# prediction is made with the previously predicted daily maximum energy
xTest["Variante Prio"] = df_MLPprediction["Prediction"]
pred = regr_rf.predict(xTest)
df_pred = pd.DataFrame(data=pred, columns = target_features, index = yTest.index)
df_pred.head()
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: F utureWarning: The default value of n_estimators will change from 10 in versi on 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)

Out[245]:

	PrioH1	PrioH2	PrioH3	PrioH4	PrioP1	PrioP2	PrioP3	PrioP4
Date								
2018-12-21	4.6	4.1	4.0	7.0	67.914096	51.864691	36.655149	21.646505
2018-12-22	3.2	4.1	5.1	5.2	67.500000	56.850000	41.130000	24.560000
2018-12-23	2.8	4.5	5.2	5.2	68.809153	58.880343	38.062494	20.889029
2018-12-24	5.3	4.7	5.9	0.9	70.320000	55.350000	31.200000	2.220000
2018-12-25	3.3	3.6	3.8	6.5	69.829153	59.600343	44.542494	30.749029

Entrée [246]:

```
# rounding function is floor
rounding_func = round #math.floor
# hourly dataframe to store restults, out of complete one
df_hourly_pred = df_hourly.loc[df_pred.index.min():,]
firstDate = df_pred.index.min()
powerHours = np.zeros(4584)
# loop over all date
for myDate in df_pred.index:
    # index is date difference times 24
    index = (myDate-firstDate).days * 24
    # compute hourly vector of original values, using the 4 pairs (power/nb of hours)
    currHour = index
    for iPair in range(1,4+1):
        pwrValue = df_pred.loc[myDate, "PrioP"+str(iPair)]
        nbHours = int(rounding_func(df_pred.loc[myDate, "PrioH"+str(iPair)]))
        if pwrValue > 0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            powerHours[currHour:currHour+nbHours] = pwrValue
            currHour = currHour + nbHours
df_hourly_pred["PredictedPower"]= powerHours
# compute error metrics over hourly values calculated above
print('Hourly comparison: prediction vs. actual values')
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_hourly_pred["Power"],df | )
print('MAE : '+ str(round( metrics.mean_absolute_error(df_hourly_pred["Power"],df_hourly_pred
print('R^2 : '+ str(round(metrics.r2_score( df_hourly_pred["Power"],df_hourly_pred["Predicte")
Hourly comparison: prediction vs. actual values
RMSE:16.97
MAE :10.65
R^2:48.42
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.py:24: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand
as-docs/stable/indexing.html#indexing-view-versus-copy)
Entrée [247]:
# scale the target values to predict a profile, i.e. relative values and not absolute ones,
# i.e. power to be relative to daily maximum energy (taking advantage of relation linking t
maxValuesPerBlock = [df["PrioP"+str(i)].max() for i in range(1,4+1)]
maxValuesPerBlock
Out[247]:
[84.0, 75.0, 68.64759725400458, 60.2999999999999]
```

Entrée [322]:

```
# add new columns to dataframe with scaled power values
# NB: the definition of produced power "profile" is the sum of scaledPower * NoHours = 1
for i in range(1,4+1):
    scaledPower = np.zeros(len(df.index))
    for myLine in range(len(df.index)):
        #print(i, myLine, df.iloc[myLine,]["Date"], df.iloc[myLine,]["PrioP"+str(i)], df.il
        if df.iloc[myLine,]["Variante Prio"]>0:
            scaledPower[myLine] = df.iloc[myLine,]["PrioP"+str(i)] / df.iloc[myLine,]["Vari
        # scale number of hours too

    df["ScaledPowerBlock"+str(i)] = scaledPower
    df["ScaledHours"+str(i)] = df['PrioH'+str(i)]/24

df.fillna(value = 0.0, axis='columns',inplace = True)
```

Entrée [323]:

```
df.isnull().any().any()
```

Out[323]:

False

Entrée [324]:

Out[324]:

	ScaledHours1	ScaledHours2	ScaledHours3	ScaledHours4	ScaledPowerBlock1	ScaledPo
Date						
2018- 12-21	0.083333	0.583333	0.333333	0.0	0.060386	
2018- 12-22	0.083333	0.583333	0.333333	0.0	0.060386	
2018- 12-23	0.083333	0.583333	0.333333	0.0	0.060386	
2018- 12-24	0.083333	0.583333	0.333333	0.0	0.060386	
2018- 12-25	0.083333	0.583333	0.333333	0.0	0.060386	

Entrée [336]:

```
regr rf = RandomForestRegressor()
regr_rf.fit(xTrain, yTrain)
# prediction is made with the previously predicted daily maximum energy
xTest["Variante Prio"] = df_MLPprediction["Prediction"]
pred = regr rf.predict(xTest)
df pred = pd.DataFrame(data=pred, columns = target features, index = yTest.index)
# rescale to corresponding energy values
df pred["PredictedMaxEnergy"] = df MLPprediction["Prediction"]
df pred["MaxEnergyFromBlocks"] = 0
df_pred["profileSum"] = 0
for i in range(1,4+1):
    df_pred["PrioH"+str(i)] = df_pred["ScaledHours"+str(i)]*24
    df_pred["PrioP"+str(i)] = df_pred["ScaledPowerBlock"+str(i)]*df_pred["PredictedMaxEnerg"
    # compute "profile sum", i.e sum(scaledpower x nb hours)
    df_pred["profileSum"] += df_pred["ScaledPowerBlock"+str(i)]*df_pred["PrioH1"]
    df_pred["MaxEnergyFromBlocks"] += np.ceil(df_pred["PrioH"+str(i)])*df_pred["PrioP"+str(
df_pred.head()
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: F utureWarning: The default value of n_estimators will change from 10 in versi on 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)

Out[336]:

	Ocalcal loal of	0001001100102	oodiodi iodi oo	Ocaloal loal o	Coulour Official Dicont	Oouloui (
Date						
2018- 12-21	0.175000	0.212500	0.162500	0.220833	0.085299	
2018- 12-22	0.129167	0.150000	0.175000	0.220833	0.091121	
2018- 12-23	0.125000	0.162500	0.179167	0.204167	0.092819	
2018- 12-24	0.166667	0.162500	0.329167	0.008333	0.082243	
2018- 12-25	0.150000	0.154167	0.170833	0.195833	0.089755	
4						•

ScaledHours1 ScaledHours2 ScaledHours3 ScaledHours4 ScaledPowerBlock1 ScaledPo

Entrée [327]:

```
print("Max profile sum: ",df_pred["profileSum"].max())
print("Min profile sum: ",df_pred["profileSum"].min())
```

Max profile sum: 2.5038670502672185 Min profile sum: 0.5138748444129306

Entrée [337]:

```
# rounding function is ceiling function
rounding_func = math.ceil
# hourly dataframe to store restults, out of complete one
df_hourly_pred = df_hourly.loc[df_pred.index.min():,]
firstDate = df_pred.index.min()
powerHours = np.zeros(4584)
# loop over all date
for myDate in df_pred.index:
    # index is date difference times 24
    index = (myDate-firstDate).days * 24
    # compute hourly vector of original values, using the 4 pairs (power/nb of hours)
    currHour = index
    for iPair in range(1,4+1):
        pwrValue = df_pred.loc[myDate, "PrioP"+str(iPair)]
        nbHours = int(rounding_func(df_pred.loc[myDate, "PrioH"+str(iPair)]))
        if pwrValue > 0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            powerHours[currHour:currHour+nbHours] = pwrValue
            currHour = currHour + nbHours
df_hourly_pred["PredictedPower"]= powerHours
# compute error metrics over hourly values calculated above
print('Hourly comparison: prediction vs. actual values')
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_hourly_pred["Power"],df | )
print('MAE : '+ str(round( metrics.mean_absolute_error(df_hourly_pred["Power"],df_hourly_pred
print('R^2 : '+ str(round(metrics.r2_score( df_hourly_pred["Power"],df_hourly_pred["Predicte")
print('Mean power value :'+ str(round(df_hourly_pred["Power"].mean(), 2)))
# compare to baseline over this period
df hourly period = df hourly.iloc[int(len(df hourly.index)*0.9):,]
print('Hourly comparison: prediction baseline vs. actual values')
print('RMSE : '+ str(round(math.sqrt(metrics.mean_squared_error(df_hourly_period["Power"],df
print('MAE : '+ str(round( metrics.mean_absolute_error(df_hourly_period["Power"],df_hourly_p
print('R^2 :'+ str(round(metrics.r2_score( df_hourly_period["Power"],df_hourly_period["Power"])
#compare daily values: input (predicted by previous algo) and output (computed from predice
print('Daily values comparison: prediction (from blocks) vs. input values (predicted previous)
print('RMSE : '+ str(round(math.sqrt(metrics.mean_squared_error(df_pred["MaxEnergyFromBlocks")
print('MAE :'+ str(round( metrics.mean absolute error(df pred["MaxEnergyFromBlocks"],df pred
print('R^2 :'+ str(round(metrics.r2_score( df_pred["MaxEnergyFromBlocks"],df_pred["Predictet]
Hourly comparison: prediction vs. actual values
RMSE: 14.06
MAE: 8.78
R^2 :64.56
Mean power value :17.55
Hourly comparison: prediction baseline vs. actual values
RMSE: 24.18
MAE :19.05
R^2 :-4.39
Daily values comparison: prediction (from blocks) vs. input values (predic
ted previously)
RMSE: 87.28
```

MAE :78.03 R^2 :92.08

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:24: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

Entrée [333]:

```
# plot ground truth on test period
# loop over lines in the dataframe, check only test occurences
toPlotDataFrames = [df.iloc[int(len(df.index)*0.9):,], df pred]
labelPlots = ['Ground truth - daily energy with pairs details',
              'Predicted values - daily energy with pairs details']
for (df_plot,labelPlot) in zip(toPlotDataFrames, labelPlots):
    # loop over the 4 pairs : power, nb of hours
    for i in range(1, 4+1):
        df_plot["EnergyPair"+str(i)] = df_plot["PrioH"+str(i)]*df_plot["PrioP"+str(i)]
    # plot stacked graph for total period
    fig=plt.figure(figsize=(14, 6), dpi= 80, edgecolor='k')
    plt.bar(df_plot.index, df_plot.EnergyPair1, color = 'b', label="Pair 1")
    plt.bar(df_plot.index, df_plot.EnergyPair2, color = 'r', bottom = df_plot.EnergyPair1,
    plt.bar(df_plot.index, df_plot.EnergyPair3, color = 'y', bottom = df_plot.EnergyPair1+c
    plt.bar(df_plot.index, df_plot.EnergyPair4, color = 'c', bottom = df_plot.EnergyPair1+c
    plt.ylim(0, 1400)
    plt.title(labelPlot)
    plt.legend(loc='upper right')
    plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:11: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

This is added back by InteractiveShellApp.init_path()

Entrée []:

recompute

Entrée []:

```
# try with hourly values instead of power blocks
# (no need to reconstruct blocks)

# add 24 columns to dataset
# fill up the columns by filling up a 24 values np.array
# then assign it to dataframe
```

Entrée []:

```
# build neural network to do multi-regression
# -> on power blocks (4 + 4 targets)
# -> same but including previous
```

3.2 Multi-regression with Multi Layer Perceptron

Here we build a MLP to perform a mutli-output regression, still using previous maximum energy as input (on top of other inputs)

Entrée [350]:

```
# defined are xTrain, xTest, yTrain, yTest
#Scale the input data
stScaler = StandardScaler()
stScaler.fit(xTrain)
xTrainScaled = stScaler.transform(xTrain)
xTestScaled = stScaler.transform(xTest)
OutputTrainH1 = yTrain["ScaledHours1"]
OutputTrainP1 = yTrain["ScaledPowerBlock1"]
OutputTrainH2 = yTrain["ScaledHours2"]
OutputTrainP2 = yTrain["ScaledPowerBlock2"]
OutputTrainH3 = yTrain["ScaledHours3"]
OutputTrainP3 = yTrain["ScaledPowerBlock3"]
OutputTrainH4 = yTrain["ScaledHours4"]
OutputTrainP4 = yTrain["ScaledPowerBlock4"]
OutputTestH1 = yTest["ScaledHours1"]
OutputTestP1 = yTest["ScaledPowerBlock1"]
OutputTestH2 = yTest["ScaledHours2"]
OutputTestP2 = yTest["ScaledPowerBlock2"]
OutputTestH3 = yTest["ScaledHours3"]
OutputTestP3 = yTest["ScaledPowerBlock3"]
OutputTestH4 = yTest["ScaledHours4"]
OutputTestP4 = yTest["ScaledPowerBlock4"]
```

Entrée [349]:

yTrain.head()

Out[349]:

	ScaledHours1	ScaledHours2	ScaledHours3	ScaledHours4	ScaledPowerBlock1	ScaledPo
Date						
2014- 04-01	0.166667	0.166667	0.333333	0.0	0.081782	
2014- 04-02	0.166667	0.166667	0.333333	0.0	0.081782	
2014- 04-03	0.166667	0.166667	0.333333	0.0	0.081782	
2014- 04-04	0.166667	0.166667	0.333333	0.0	0.081782	
2014- 04-05	0.166667	0.166667	0.333333	0.0	0.080882	
4						>

Entrée [426]:

```
# building MLP model with 4x2 outputs
import keras
from keras.utils import plot model
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
visible = Input(shape=(10,))
hidden1 = Dense(10, activation='relu', name='Hidden1')(visible)
hidden2 = Dense(7, activation='relu', name='Hidden2')(hidden1)
hiddenH3 = Dense(5, activation='relu', name='Hidden13')(hidden2)
hiddenP3 = Dense(5, activation='relu', name='Hidden23')(hidden2)
# output layers use a linear activation function
NbHours1_ouput = Dense(1, activation='linear', name='NbHours1')(hiddenH3)
NbHours2_ouput = Dense(1, activation='linear', name='NbHours2')(hiddenH3)
NbHours4_ouput = Dense(1, activation='linear', name='NbHours3')(hiddenH3)
NbHours3_ouput = Dense(1, activation='linear', name='NbHours4')(hiddenH3)
power1_output = Dense(1, activation='linear', name='Power1')(hiddenP3)
power2_output = Dense(1, activation='linear', name='Power2')(hiddenP3)
power3_output = Dense(1, activation='linear', name='Power3')(hiddenP3)
power4_output = Dense(1, activation='linear', name='Power4')(hiddenP3)
model = Model(inputs=visible, outputs=[ NbHours1_ouput, NbHours2_ouput, NbHours3_ouput, NbH
                                           power1_output, power2_output, power3_output, power4
                                         1)
# summarize Layers
print(model.summary())
```

Output Shape	Param #	Connected
(None, 10)	0	
(None, 10)	110	input_6
(None, 7)	77	Hidden1
(None, 5)	40	Hidden2
(None, 5)	40	Hidden2
(None, 1)	6	Hidden13
	(None, 10) (None, 10) (None, 7) (None, 5)	(None, 10) 110 (None, 7) 77 (None, 5) 40

Entrée [427]:

```
Train on 1725 samples, validate on 192 samples
Epoch 1/200
NbHours1_loss: 0.0541 - NbHours2_loss: 0.1246 - NbHours4_loss: 0.1162 - Nb
Hours3_loss: 0.0710 - Power1_loss: 0.0231 - Power2_loss: 0.0051 - Power3_1
oss: 0.0278 - Power4_loss: 0.0160 - val_loss: 0.6486 - val_NbHours1_loss:
0.0412 - val_NbHours2_loss: 0.0938 - val_NbHours4_loss: 0.0511 - val_NbHou
rs3_loss: 0.0471 - val_Power1_loss: 0.0798 - val_Power2_loss: 0.0137 - val
_Power3_loss: 0.1957 - val_Power4_loss: 0.1262
Epoch 2/200
1725/1725 [=============== ] - 0s 209us/step - loss: 0.1522
- NbHours1 loss: 0.0241 - NbHours2 loss: 0.0273 - NbHours4 loss: 0.0370 -
NbHours3 loss: 0.0340 - Power1 loss: 0.0172 - Power2 loss: 0.0033 - Power3
_loss: 0.0059 - Power4_loss: 0.0032 - val_loss: 0.3715 - val_NbHours1_los
s: 0.0262 - val_NbHours2_loss: 0.0542 - val_NbHours4_loss: 0.0337 - val_Nb
Hours3_loss: 0.0292 - val_Power1_loss: 0.0676 - val_Power2_loss: 0.0106 -
val_Power3_loss: 0.0930 - val_Power4_loss: 0.0569
Epoch 3/200
1725/1725 [=============== ] - 0s 234us/step - loss: 0.1337
               0 0040 MELL 0 1
```

Entrée [428]:

```
print(history.history.keys())
# "Loss"
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
```

dict_keys(['val_loss', 'val_NbHours1_loss', 'val_NbHours2_loss', 'val_NbHour
s4_loss', 'val_NbHours3_loss', 'val_Power1_loss', 'val_Power2_loss', 'val_Po
wer3_loss', 'val_Power4_loss', 'loss', 'NbHours1_loss', 'NbHours2_loss', 'Nb
Hours4_loss', 'NbHours3_loss', 'Power1_loss', 'Power2_loss', 'Power3_loss',
'Power4_loss'])

Entrée [429]:

```
yPred= model.predict(xTestScaled)
len(yPred[0])
```

Out[429]:

192

Entrée [430]:

```
yPreNp = np.array(yPred)
yPreNp.transpose()[0].shape
```

Out[430]:

(192, 8)

Entrée [431]:

```
yTest.columns
```

Out[431]:

Entrée [434]:

```
df_pred = pd.DataFrame(data = yPreNp.transpose()[0], columns = yTest.columns, index = yTest
df_pred.head(5)
```

Out[434]:

	ScaledHours1	ScaledHours2	ScaledHours3	ScaledHours4	ScaledPowerBlock1	ScaledPo
Date						
2018- 12-21	0.169246	0.182461	0.183397	0.207927	0.074634	
2018- 12-22	0.169753	0.181891	0.174261	0.214651	0.074809	
2018- 12-23	0.169615	0.182046	0.176752	0.212818	0.074761	
2018- 12-24	0.204813	0.247420	0.204125	0.101257	0.073105	
2018- 12-25	0.174739	0.201008	0.190202	0.187762	0.074094	
4						•

Entrée [433]:

Out[433]:

<matplotlib.axes._subplots.AxesSubplot at 0x185d2da1cf8>

Entrée []:

```
# rounding function is ceiling function
rounding_func = math.ceil
# hourly dataframe to store restults, out of complete one
df_hourly_pred = df_hourly.loc[df_pred.index.min():,]
firstDate = df_pred.index.min()
powerHours = np.zeros(4584)
# loop over all date
for myDate in df_pred.index:
    # index is date difference times 24
    index = (myDate-firstDate).days * 24
    # compute hourly vector of original values, using the 4 pairs (power/nb of hours)
    currHour = index
    for iPair in range(1,4+1):
        pwrValue = df_pred.loc[myDate, "PrioP"+str(iPair)]
        nbHours = int(rounding_func(df_pred.loc[myDate, "PrioH"+str(iPair)]))
        if pwrValue > 0:
            #print("Date %s, Pair %i, Pwr %d, Hours %f" %(myDate, iPair, pwrValue, nbHours)
            powerHours[currHour:currHour+nbHours] = pwrValue
            currHour = currHour + nbHours
df_hourly_pred["PredictedPower"]= powerHours
# compute error metrics over hourly values calculated above
print('Hourly comparison: prediction vs. actual values')
print('RMSE : '+ str(round(math.sqrt(metrics.mean squared error(df hourly pred["Power"],df h
print('MAE : '+ str(round( metrics.mean_absolute_error(df_hourly_pred["Power"],df_hourly_pred
print('R^2 : '+ str(round(metrics.r2_score( df_hourly_pred["Power"],df_hourly_pred["Predicte")
print('Mean power value :'+ str(round(df_hourly_pred["Power"].mean(), 2)))
# compare to baseline over this period
df hourly period = df hourly.iloc[int(len(df hourly.index)*0.9):,]
print('Hourly comparison: prediction baseline vs. actual values')
print('RMSE : '+ str(round(math.sqrt(metrics.mean_squared_error(df_hourly_period["Power"],df
print('MAE : '+ str(round( metrics.mean_absolute_error(df_hourly_period["Power"],df_hourly_p
print('R^2 :'+ str(round(metrics.r2_score( df_hourly_period["Power"],df_hourly_period["Power"])
#compare daily values: input (predicted by previous algo) and output (computed from predice
print('Daily values comparison: prediction (from blocks) vs. input values (predicted previous)
print('RMSE :'+ str(round(math.sqrt(metrics.mean_squared_error(df_pred["MaxEnergyFromBlocks"))
print('MAE :'+ str(round( metrics.mean absolute error(df pred["MaxEnergyFromBlocks"],df pred
print('R^2 :'+ str(round(metrics.r2_score( df_pred["MaxEnergyFromBlocks"],df_pred["Predictet]
```

Entrée []: