Shape from Sensors

A new approach to 3D reconstruction using inertial sensors

Tibor Stanko

- ¹CEA-Leti
- ² Université Grenoble Alpes
- ³ CNRS (Laboratoire Jean Kuntzmann), Inria

thesis supervised by S. Hahmann^{2,3}, G.-P. Bonneau^{2,3} & N. Saguin-Sprynski^{1,2}

Framework overview

Main challenges • no positions, only orientations • inconsistent data at curve intersections • noisy sensor measurements •

Key ingredients • general, unified formulation • discrete representation (polylines, meshes) • constrained optimization •

a) Orientation filtering via regression on SO(3) "Riemannian smoothing spline & normal constraints at intersections"

minimize $E_{approx} + \lambda E_{stretch} + \mu E_{bend} + \xi E_{normal}$

raw orientations (normal component)

filtered orientations (normal component)

b) Poisson reconstruction of curve positions "Laplacian of curve positions is the divergence of the tangent field"

$$\Delta x = \nabla \cdot T \rightarrow \text{solve } Ax = b$$

direct integration using forward Euler

Poisson integration of orientations

c) Variational surfacing with normal control "Laplacian of surface positions is the mean curvature normal"

$$\Delta s = -2HN \rightarrow \text{minimize} \iint_{M} || \Delta s + 2HN ||^{2}$$

final shape is guided by the normal field along constrained curves

tiborstanko.sk

tibor.stanko@inria.fr

Full pipeline

