EE538 Neural Networks

Homework 8

Due: 12:59 on June 11th, 2021

Feed

Forward

Multi-Head

Attention

- 1. For the multi-head Transformer model from Slide 3 to Slide 6 of Lecture Note 10, please answer the followings.
 - (a) Estimate the number of adaptive elements to be trained for a single Transformer module in the right. Please use the N_{xxx} notation (e.x., N_{voc}) in Slide 4. If necessary, you may define additional parameters. (5 points)
 - (b) Estimate the number of adaptive elements for the input and output embedding. (5 points)
 - (c) Estimate the number of adaptive elements for the whole transformer model including input/output embedding, encoder, and decoder modules. (5 points)
 - (d) Calculate the number of adaptive elements for the estimates in (a), (b), and (c), and the whole transformer model. You may use $N_{voc} = 50,000$, $N_{que} = N_{key} = N_{val} = 64$, $N_{head} = 8$, $N_{pos} = 384$, and the MLP at Step 5 on Slide 5 has one hidden-layer with $N_{hid} = 1,024$. Also, assume that both the encoder and decoder blocks include $N_{end} = N_{dec} = 6$ transformer modules. (10 points)

- (a) Now the encoder (i.e., feature extractor) may be represented as u = f(x). Derive a pdf p(u) in terms of p(x) and f(.). (10 points)
- (b) With a known p(x), derive a learning rule to minimize Mutual Information between the joint pdf p(u) and $\prod_i p(u_i)$. (10 points)
- (c) Assuming you use a one-hidden-layer Perceptron to learn u=f(x), simplify the results of (b). For further simplification, you may assume both x and u are 2-elements vectors, and the hidden-layer has 2 neurons. (10 points)
- 3. For the Variational AE, please answer the followings.
 - (a) For a Gaussian pdf with mean=0 and std=1 in 2-dimensional (x_1,x_2) space, and let a complex number defined as $z = x_1 + i x_2$. Please generate 300 samples with y=z/10+z/|z|. (5 points)
 - (b) Train a 2-hidden-layer Perceptron to learn a mapping from (x_1,x_2) to (Re(y),Im(y)). (10 points)
 - (c) Derive the KL-divergence between two Gaussian distributions as

$$\mathcal{D}[\mathcal{N}(\mu_0, \Sigma_0) || \mathcal{N}(\mu_1, \Sigma_1)] = \frac{1}{2} \left(\operatorname{tr} \left(\Sigma_1^{-1} \Sigma_0 \right) + (\mu_1 - \mu_0)^\top \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \log \left(\frac{\det \Sigma_1}{\det \Sigma_0} \right) \right).$$
(10 points)

- (d) Describe a learning procedure for the Conditional VAE. (10 points)
- (e) Derive a learning rule for the Conditional VAE. (10 points)