

ESTATÍSTICA PARA SAÚDE COLETIVA Aula 11

Seminários de hoje

Nomes (Aluno ou Dupla)	Nome do artigo
ALEX SILVA + WILLIAM	Quedas entre idosos brasileiros residentes em áreas urbanas: ELSI-Brasil
ELZA DA SILVA	Carga de trabalho de enfermagem em unidade de terapia intensiva destinada a pacientes com queimaduras
LETICIA GOMES	Clima organizacional e trabalho em equipe na estratégia saúde da família
THAIS RIBEIRO	Estudo quanti-qualitativo sobre amamentação exclusiva por gestantes de alto risco

Próxima aula

Nomes (Aluno ou Dupla)	Data seminário	Nome do artigo
CLAUDIA MARTINS	08/10/2020	Análise Espacial dos Casos de COVID-19 e leitos de terapia intensiva no estado do Ceará, Brasil
CLAUDINEIA SOARES TORRES	08/10/2020	Estimativas de impacto do Covid-19 na mortalidade de idosos institucionalizados no Brasil
PRISCILA PRATES	08/10/2020	Promoção comercial ilegal de produtos que competem com o aleitamento materno

Revisão + feedback lista 9 e 10

ANOVA

Revisão

Variável resposta

Variável preditora

Revisão (comparação de médias)

Variável resposta Variável preditora

Expectativa de vida

Renda, Sexo, UF

1 variável preditora

Variável resposta

Variável preditora

Expectativa de vida <

UF de residência

2 variáveis preditoras

Variável resposta Variáveis preditoras

Expectativa de vida — UF de residência + Sexo

Lista 9

Pergunta 6. Existe evidências de que há diferença na média de plaquetas (Coluna Plaquetas) entre diferentes estados (Coluna UF)? Assuma um nível de significância de 5%. Assuma que os pressupostos da ANOVA foram atendidos.

- Existe (sim) evidências de que há diferença.
- Não existe evidencias de que há diferença .
- Não é possível responder essa pergunta com os dados apresentados.
- Não consegui responder essa perguntar porque não entendi como aplicar o teste.
- Não consegui responder essa perguntar porque não tenho computador disponível para executar o teste.
- Não sei/Não quero responder essa pergunta.

Lista 9 — Pergunta 6

Lista 9 — Pergunta 6

> summary(modelo)

Resultado: P menor que 0.05

Conclusão: H₁ é verdadeira

Hipóteses testadas

H₀: Não há diferenças entre as médias de todos os grupos comparados

H₁: Existe diferença de pelo menos uma das médias comparadas

Portanto:

Existe evidências de ao menos 1 estado apresenta pessoas com número de plaquetas média diferente dos demais estados.

OBS: esse padrão poderia ser explicado por uso de equipamentos diferentes para fazer a contagem de plaquetas

Lista 9

Pergunta 7. Existe evidências de que há diferença no nível de insulina (Coluna Insulina) dependendo do estado (Coluna UF)? Assuma um nível de significância de 5%. Assuma que os pressupostos da ANOVA não foram atendidos.

- Existe (sim) evidências de que há diferença.
- Não existe evidencias de que há diferença .

- Não consegui responder essa perguntar porque não entendi como aplicar o teste.
- Não consegui responder essa perguntar porque não tenho computador disponível para executar o teste.
- Não sei/Não quero responder essa pergunta.

Lista 9 — Pergunta 7

Lista 9 — Pergunta 7

> kruskal.test(tabela1\$Insulina, tabela1\$UF)

Kruskal-Wallis rank sum test

data: tabela1\$Insulina and tabela1\$UF
Kruskal-Wallis chi-squared = 0.4302, df = 2, p-value = 0.8065

Resultado: P maior que 0.05

Conclusão: H₀ é verdadeira

Hipóteses testadas

H₀: Não há diferenças entre as medianas de todos os grupos comparados

H₁: Existe diferença de pelo menos uma das medianas comparadas

Portanto:

Não existe evidencias de que há diferença na insulina quanto ao estado de origem do paciente.

Chi-quadrado de aderência

Revisão: Chi-quadrado de aderência

• Esse teste avalia se as observações estão distribuídos entre diferentes classes de forma semelhante a de uma expectativa prévia.

Figura. Mosaic plot representado as proporções esperadas vs. observadas

Lista 10

Pergunta 5. Existe evidências de que familiares de profissionais da saúde (Coluna Familiares) foram infectados por COVID numa razão diferente da distribuição de frequência de funcionários de um dado hospital (Coluna NumeroFuncionarios)? Assuma um nível de significância de 5%. Dados: "DadosHospital.xlsx"

1 🖨 pontos

- Existe (sim) evidências de que há diferença na distribuição de frequências de familiares infectados, da qual seria esperada se a distribuição fosse igual a distribuição de funcionários de um dado hospital. Não existe evidências de que há diferença na distribuição de frequências de familiares infectados, da qual seria esperada se a distribuição fosse igual a distribuição de funcionários de um dado hospital. Não é possível responder essa pergunta com os dados apresentados. Não consegui responder essa perguntar porque não entendi como aplicar o teste. Não consegui responder essa perguntar porque não tenho computador disponível para executar o teste. Não sei/Não quero responder essa pergunta.
- Adicionar feedback da resposta

Proporção

Lista 10

Esperada Observada Familiar da profissãao AuxiliarEnfermagem Enfermeiro Medico Nutricionista Psicologo

Chi-squared test for given probabilities

data: tabela1\$Familiares

X-squared = 3.9945, df = 4, p-value = 0.4067

Resultado: P maior que 0.05

Conclusão: H₀ é verdadeira

Hipóteses testadas

H₀: A distribuição das frequências observas NÃO difere das frequências esperadas

H₁: A distribuição das frequências observas difere (SIM) das frequências esperadas

Portanto:

Não existe evidências de que há diferença na distribuição de frequências de familiares infectados, da qual seria esperada se a distribuição fosse igual a distribuição de funcionários de um dado hospital.

Lista 10

Pergunta 6. Existe evidências de que há diferença a proporção de pessoas que pratica atividade física (Coluna PraticaAtividade) está distribuída em uma mesma frequência dos registros de estado civil (Coluna ProporcaolBGE)?

Assuma um nível de significância de 5%. Dados: "DadosEstadoCivil.xlsx"

1 🖨 pontos

Existe (sim) evidências de que há diferença na frequência de pessoas que praticam atividade física, da qual seria esperada se a distribuição fosse igual a frequência de registros de pessoas em cada categoria, dada pelo IBGE. Não existe evidências de que há diferença na frequência de pessoas que praticam atividade física, da qual seria esperada se a distribuição fosse igual a frequência de registros de pessoas em cada categoria, dada pelo IBGE. Não é possível responder essa pergunta com os dados apresentados. Não consegui responder essa perguntar porque não entendi como aplicar o teste. Não consegui responder essa perguntar porque não tenho computador disponível para executar o teste. Não sei/Não quero responder essa pergunta. Adicionar feedback da resposta

Proporção

Lista 10

Chi-squared test for given probabilities

data: tabela2\$PraticaAtividade X-squared = 0.10918, df = 4, p-value = 0.9986

Resultado: P maior que 0.05

Conclusão: H₀ é verdadeira

Hipóteses testadas

H₀: Não há associação entre as variáveis

H₁: Há (SIM) associação entre as variáveis

Portanto:

Não existe evidências de que há diferença na frequência de pessoas que praticam atividade física, da qual seria esperada se a distribuição fosse igual a frequência de registros de pessoas em cada categoria, dada pelo IBGE.

Aula de hoje

Teste de qui-quadrado de independência

Mapa para seleção do método estatístico

Teste de hipóteses

Ideia geral de uma analise multivariada

Variável resposta

Expectativa de vida, nível de estresse, nota no enem, etc...

Variável preditora

Grau de escolaridade, UF, Renda familiar Então, nessa disciplina só vamos trabalhar com 1 variável resposta

Variável resposta

Nessa disciplina aqui sempre será 1 única variável

Variável preditora

Desse lado pode ter 1 ou mais variáveis

Seleção do método estatístico

Assunto da última aula

Aqui temos

Variável resposta

Variável preditora

Nessa disciplina aqui sempre será 1 única variável 2 ou + variáveis que pode ser categóricas ou continuas

Seleção do método estatístico

Seleção do método estatístico

Aqui temos

Variável resposta

Variável preditora

1 variável que pode ser categórica ou continua

Qui-quadrado de independência

Qui-quadrado de independência

Variável resposta

Variável preditora

1 variável que categórica

1 variável que categórica

• OBS: Esse foi o método estatístico com maior numero de pessoas que enviaram propostas que poderiam ser respondidas com esse métodos

Tabelas de contingência

Distribuição de registros de obesidade dado o sexo dos pacientes

	Obes	idade	_	Frequência
Sexo	Sim	Não	Total	obesidade
Masculino	30	70	100	30%
Feminino	20	80	100	20%
Total	50	150	200	25%

Pergunta: A probabilidade de registro de obesidade depende do sexo do paciente?

	Obesidade			Frequência
Sexo	Sim	Não	Total	obesidade
Masculino	30	70	100	30%
Feminino	20	80	100	20%
Total	50	150	200	25%

Pergunta: A probabilidade de registro de obesidade depende do sexo do paciente?

		Obesidade			Frequência
Sexo		Sim	Não	Total	obesidade
Masculino	'	30	70	100	30%
Feminino		20	80	100	20%
Total		50	150	200	25%

Em outras palavras, existe diferença nas proporções observadas nas colunas, dependendo das linhas?

30/100 é diferente de 20/100?

	Obesidade		_	Frequência
Sexo	Sim	Não	Total	obesidade
Masculino	30	70	100	30%
Feminino	20	80	100	20%
Total	50	150	200	25%

ÚLTIMA AULA

 Na última aula comparamos se os registros de obesidade estavam distribuídos entre diferentes classes sociais, da mesma forma como as pessoas de toda população estão distribuídas entre as classes sociais

Figura. Mosaic plot representado as proporções esperadas vs. observadas

AULA DE HOJE

 Na aula de hoje, o procedimento por trás do teste será usar a combinação das observações, para estabelecer uma frequência esperada, em seguida o teste avalia se a distribuição de cada grupo difere da frequência observada

Figura. Mosaic plot representado as proporções esperadas vs. observadas

Na prática nós só vamos observar essas proporções

Proporções

Hipóteses

• H₀: Não há associação entre as variáveis

• H₁: Há (SIM) associação entre as variáveis

No exemplo de hoje, as hipóteses são:

 H₀: A probabilidade de relatar obesidade NÃO depende do sexo do paciente

• H₁: A probabilidade de relatar obesidade depende (SIM) do sexo do paciente

Exemplos de adaptações de perguntas da Lista um que podem ser respondidas com essa metodologia

- 1) Usar a máscara para sair na rua, reduz o risco de contrair COVID-19? (Adriana Barros, Jozielda, Thayla)
- 2) O uso de Ivermectina reduz o risco de morte por covid-19? (Claudia, Rafaela Reimberg)
- 3) O tratamento fornecido pelo SUS para tuberculose reduz o risco de morte do paciente? (Ana Lucia)
- 4) Escovar o dente antes de dormir, reduzem o risco de contrair cárie? (Claudineia)
- 5) O uso de remédios psiquiátricos altera a chance de pacientes desempregados encontrarem um emprego? (Marina Menotti)
- 6) Aferir a temperatura para detectar o COVID-19 é realmente eficaz? (Leticia)

	Pegou	COVID?		
Saia de casa de máscara?	Sim	Não	Total	Frequência de COVID
Sim	30	70	100	30%
Não	20	80	100	20%
Total	50	150	200	25%

• •	Mo	rte?	-	_ ^ •
Usou		. ~		Frequência
Ivermectina?	Sim	Não	Total	de morte
Sim	30	70	100	30%
Não	20	80	100	20%
Total	50	150	200	25%

Recebeu tratamento	Мо	rte?	_	Frequência
do SUS ?	Sim	Não	Total	de morte
<u>uo 303 ;</u>	JIIII	NUU	ΙΟται	de morte
Sim	30	70	100	30%
Não	20	80	100	20%
Total	50	150	200	25%

Escova o dente antes	Pegou	cárie?	_	Frequência
de dormir?	Sim	Não	Total	de cárie
Sim	30	70	100	30%
Não	20	80	100	20%
Total	50	150	200	25%

Uso de remédios	Arrumou u	m emprego?		Frequência
psiquiátricos?	Sim	Não	Total	de emprego
Sim	30	70	100	30%
Não	20	80	100	20%
Total	50	150	200	25%

	A nessoa esta	ava infectada?		
Detectou	71 pessou est	ava iiiicctaaa.		Frequência
COVID?	Sim	Não	Total	de emprego
Sim	30	70	100	30%
Não	20	80	100	20%
Total	50	150	200	25%

Desenho experimental

Ideia geral: Você precisa amostrar dados de forma que todas as células dessa tabela estejam preenchidas com dados

	Fenôme	no estudado		Frequência do
Grupos	Sim	Não	Total	fenômeno
Grupo 1	Ş	5	-	-%
Grupo 2	?	?	_	-%
Total	_	_	- -	-%

Desenho experimental

- a. Acompanhar pessoas que usam, e pessoas que não usam, máscara para sair na rua, e avaliar a proporção de cada uma delas que pegou e que não pegou COVID depois de 1 mês.
- b. Acompanhar pacientes em tratamento do COVID, que receberam, e não que não receberam, tratamento com Ivermectina, e avaliar a proporção óbitos em cada grupo.
- c. Acompanhar pacientes com Tuberculose que recebem, e que não receberam, tratamento fornecido pelo SUS, e avaliar a proporção óbitos em cada grupo.
- d. Acompanhar pessoas que escovam, e que não escovam, o dente antes de dormir, e avaliar a proporção de pessoas com cárie em cada um dos grupos.
- e. Acompanhar pessoas que usam de remédios psiquiátricos, e que não usam, e registrar a proporção destes que conseguiram arrumar um emprego depois de um intervalo de tempo.
- f. Requerir que baseado em medidas de temperatura por termômetro digital, um profissional avaliem se um grupo de pessoas está com covid ou não. Em seguida contrastar os resultados observados com os registros de COVID por outro método, tal como PCR.

Como fica uma tabela desse tipo de dado?

Nome	Usava máscara?	Pegou COVID?
Lorena	Não	Não
Livia	Não	Sim
Maria Luiza	Não	Não
Cecilia	Não	Sim
Eloa	Não	Sim
Giovanna	Não	Sim
Maria Clara	Sim	Não
Maria Eduarda	Sim	Sim
Mariana	Sim	Não
Lara	Sim	Não
Beatriz	Sim	Não
Antonella	Sim	Sim

• 1				~							
	lent	-11-14	ca	ca	\cap	М	\cap		a	1	
IU		51111	Cu	çи	\mathbf{c}	ч	\mathbf{c}	ч	u	и `	L

Agrupamento 1

Agrupamento 2

•	ما م
	4
	G

Nome	Usava máscar.	Pegou COVID?
Lorena	Não	Não
Livia	Não	Sim
Maria Luiza	Não	Não
Cecilia	Não	Sim
Eloa	Não	Sim
Giovanna	Não	Sim
Maria Clara	Sim	Não
Maria Eduarda	Sim	Sim
Mariana	Sim	Não
Lara	Sim	Não
Beatriz	Sim	Não
Antonella	Sim	Sim

Pré-requisitos

- Existem divergências (Levine et al 2012)
 - Nenhuma célula de frequência esperada apresentar valor inferior à 0,5 (Lewontin & Felsenstein 1965 Biometrics)
 - Não mais que 20% das célula de frequência esperada apresentar valor inferior à 5 (Dixon & Massey-Jr 1983 Introduction to statistical analysis)
 - Solução conciliatória: nenhuma célula de frequência esperada apresentar valor inferior à 1 (Levine et al 2012)
- Minha sugestão, se no seu estudo houver uma célula de observações esperadas for menor do que 5, avalie a viabilidade de:
 - Aumentar seu tamanho de amostra
 - Consolidar duas ou mais categorias em apenas uma
 - Utilizar métodos alternativos (ex. teste exato de Fisher ou Barnard)

Dimensões das tabelas

Tabelas de contingência 2x2

	Gostou do atendimento do hospitalar?			Frequência de
				avaliações
Sexo	Sim	Não	Total	positivas
Masculino	30	70	100	30%
Feminino	20	80	100	20%
Total	50	150	200	25%
		<u> </u>		

Tabelas de contingência de outras dimensões

	Como avalia				
Sexo	Excelente	Bom	Regular	Ruim	Total
Masculino	10	15	30	20	75
Feminino	15	10	20	30	75
Total	25	25	50	50	150

Prática

Prática – 1 O diagnostico de COVID está associado com o sexo?

- Tabela "Dados Fleury.xlsx"
 - OBS: dados reais
- Covid19PCR: Diganostico de COVID por PCR.
 - Respostas possíveis: positivo ou negativo

- Sexo: Sexo biológico do paciente.
 - Respostas possíveis: Masculino ou feminino

Dados

	Se	exo		Frequência de	
Diagnóstico	Feminino	Masculino	Total	mulheres	
Negativo	291	190	481	60,5%	
Positivo	61	39	100	61,0%	
Total	352	229	581	60,58%	

Negativo **Positivo**

Interpretação dos resultados

Pearson's Chi-squared test with Yates' continuity correction

```
data: TabCont
X-squared = 2.772e-30, df = 1, p-value = 1
```

Resultado: P maior que 0.05 Conclusão: H₀ é verdadeira

Hipóteses testadas

H₀: Não há associação entre as variáveis H₁: Há (SIM) associação entre as variáveis

Prática – 2 O risco de pegar COVID é influenciado pelo uso de mascara?

- Tabela "TabelaContingencia1.xlsx"
 - OBS: dados hipotéticos
- COVID: Diagnóstico de COVID por PCR.
 - Respostas possíveis: positivo ou negativo

- Mascara: a pessoa usava mascara para sair de casa?
 - Respostas possíveis: Usava mascara ou Não usava mascara

Dados

Diagnóstico	Usava n	náscara?	-	Frequência
COVID	Sim	Não	Total	de COVID
Positivo	40	60	100	40%
Negativo	60	40	100	60%
Total	100	100	200	50%

Interpretação dos resultados

Pearson's Chi-squared test

```
data: TabCont
```

X-squared = 13.934, df = 2, p-value = 0.0009423

Resultado: P menor que 0.05

Conclusão: H₁ é verdadeira

Hipóteses testadas

H₀: Não há associação entre as variáveis

H₁: Há (SIM) associação entre as variáveis

Prática – 3 A percepção de qualidade do atendimento depende do sexo do paciente?

- Tabela "TabelaContingencia2.xlsx"
 - OBS: dados hipotéticos
- Sexo: Sexo biológico do paciente.
 - Respostas possíveis: Masculino ou feminino
- QualidadeAtendimento: avaliação do paciente sobre a qualidade do atendimento
 - Respostas possíveis: Excelente, Bom, Regular ou Ruim

Dados

	Como avali				
Sexo	Excelente	Bom	Regular	Ruim	Total
Feminino	40	30	48	32	150
Masculino	15	13	9	13	50
Total	55	43	57	45	200

Interpretação dos resultados

Pearson's Chi-squared test

```
data: TabCont
```

X-squared = 3.7213, df = 3, p-value = 0.2932

Resultado: P maior que 0.05

Conclusão: H₀ é verdadeira

Hipóteses testadas

H₀: Não há associação entre as variáveis

H₁: Há (SIM) associação entre as variáveis