Теорема 1 (QR разложение).

 $\forall \ \underline{\underline{nesupoxcd}} \ \underline{A_{n \times n}} \ \exists \ y$ нитарн (opmor) Q и верхн треугольн. матрица R: $\underline{A = QR}$ (npasas "Right")

 \mathcal{A} оказательство. A невырожд. $\Leftrightarrow rg(A_1 \dots A_n) = n$ $A_k \in \mathbb{C}^n(\mathbb{R}^n)$ лин. нез. столбцы

 $A_1 \dots A_n \underset{\Gamma\text{-ШI нормируем}}{\leadsto} \underbrace{q_1 \dots q_n}_{\text{попарно-ортог. и нормир.}} q_k \in \mathbb{C}^n(\mathbb{R}^n)$

$$\begin{bmatrix} q_1 &=& u_{11}A_1 & Q = \underbrace{(q_1 \dots q_n)}_{\text{очевидно, унит. (ортог)}} \\ q_2 &=& u_{12}A_1 + u_{22}A_2 \\ q_3 &=& u_{13}A_1 + u_{23}A_2 + u_{33}A_3 \\ \dots & & U = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & \dots & u_{2n} \\ & & \ddots & \\ 0 & & & u_{nn} \end{pmatrix}$$

$$(q_1 \dots q_n) = Q_{\text{невыр}} = A_{\text{невыр}} U = (A_1 \dots A_n) \left(\left(\right) \left(\right) \left(\right) \left(\left(\begin{array}{c} u_{1n} \\ \vdots \\ u_{1n} \end{array} \right) \right) \Rightarrow U$$
 невыр. $\Rightarrow \exists U^{-1} = R_{\text{верхн. треуг.}}$

A = QR

Следствие 1. \forall невырожд. A $\exists Q$ унит. (ортог.), L нижн. треугол. : A = LQ

 \mathcal{A} оказательство. A^T невыр. $\Rightarrow \frac{\exists R \text{ верх. треуг.}}{\exists Q_1 \text{ унит. (ортог.)}}$

$$(A^T)^T = (Q_1 R)^T = \underbrace{R^T}_{\text{нижн. треуг. yhut. (ортог.)}} \cdot Q_1^T = LQ$$

Примеры.
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 2 \\ 4 & 0 & 3 \end{pmatrix}$$
 $A = QR$?

$$A_1 = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$q_1 = b_1 = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \frac{1}{5} = \begin{pmatrix} 3/5 \\ 0 \\ 4/5 \end{pmatrix}$$

$$b_2 = A_2 - c_1 A_1$$
 $c_1 = \frac{(A_2, A_1)}{(A_1, A_1)} = 0$

$$q_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$q_3 = b_3 = A_3 - c_1 b_1 - c_2 b_2$$

$$c_1 = \frac{(A_3, A_1)}{(A_1, A_1)} = \frac{15}{25} = \frac{3}{5}$$

$$b_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 9/5 \\ 0 \\ 12/5 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix} \qquad c_2 = \frac{(A_3, b_2)}{(b_2, b_2)} = 2$$

$$c_2 = \frac{(A_3, b_2)}{(b_2, b_2)} = 2$$

$$q_1 = \begin{pmatrix} 3/5 \\ 0 \\ 4/5 \end{pmatrix} = \frac{1}{5}A_1 \qquad q_2 = A_2 \qquad q_3 = -3/5A_1 - 2A_2 + A_3$$

$$U = \begin{pmatrix} 1/5 & 0 & -3/5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \qquad R = U^{-1} = \begin{pmatrix} 5 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Q = (q_1 \ q_2 \ q_3) = \begin{pmatrix} 3/5 & 0 & -4/5 \\ 0 & 1 & 0 \\ 4/5 & 0 & 3/5 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 2 \\ 4 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 3/5 & 0 & -4/5 \\ 0 & 1 & 0 \\ 4/5 & 0 & 3/5 \end{pmatrix} \begin{pmatrix} 5 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Теорема 2 (полярное разложение).

$$A = (A_{ij})_{n \times n}$$
 $a_{ij} \in \mathbb{C}(\mathbb{R})$

 $\exists U \ yhum. \ (Q \ opтогональная)$ матрица $\forall A$ $\exists ! H$ эрмитова (S - cимметр.) матрица

$$A = HU$$

$$A = SQ$$

Eсли, кроме того, A невырожденная, то и матрица U(Q) определяется единственным образом

Мы будем доказывать теорему для операторов, матрицы из теоремы будут матрицами этих операторов в о.н.б.

Теорема 3 (полярное разложение линейного оператора).

$$\mathcal{A} \in End(V)$$
 $(V, (\cdot, \cdot))$ унит. (евкл)

 $\forall \mathcal{A} \exists U \in End(V)$ изометрич, $\exists ! H \in End(V)$ самосоряж, т.ч.

$$A = HU$$

Eсли, кроме того, A невырожд, то U определяется однозначно.

Утверждение. $\forall A \in End(V)$ o.n.c, m.ч. все с.ч. $\lambda \geq 0 \Rightarrow$

 $\Rightarrow \exists ! \mathcal{B} \in End(V) : |\mathcal{B}^2 = \mathcal{A}|, m.ч.$ все с.ч. \mathcal{B} неотрии.

$$\mathcal{B} = \sqrt{\mathcal{A}}$$

Доказательство. (утверждения) \mathcal{A} о.п.с. $\Rightarrow V = \bigoplus_{\lambda \text{ с.ч.собств. подпр.}} V_{\lambda}$ $\lambda \geq 0$

$$V = span(v_1 \dots v_n) : \quad \mathcal{A}v_i = \lambda_i v_i$$
c.b. \mathcal{A}

Определим:
$$\mathcal{B}v_i = \sqrt{\lambda_i}v_i \Rightarrow$$
 очевидно, $\sqrt{\lambda_i}$ с.ч. \mathcal{B} и v_i с.ч. $\sqrt{\lambda_i} \geq 0$

$$\forall$$
 базисн. v_i $\mathcal{B}^2 v_i = \lambda_i v_i = \mathcal{A} v_i \Leftrightarrow \mathcal{B}^2 v = \mathcal{A} v$ $\forall v \in V \Leftrightarrow \boxed{\mathcal{B}^2 = \mathcal{A}}$

Единственность:
$$\sqsupset \underset{\text{o.п.с.}}{C} \in End(V)$$
 т.ч. $C^2 = \mathcal{A}$ и все с.ч. $C \geq 0$

$$V = \bigoplus_{\lambda} V_{\lambda} \qquad V_{\lambda} = Ker(\mathcal{A} - \lambda \mathcal{E}) \text{ } \underline{\text{ инвариантно отн-но}} \ C : \qquad (\mathcal{A} - \lambda \mathcal{E})(CV_{\lambda}) = C \underbrace{(\mathcal{A} - \lambda \mathcal{E})V_{\lambda}}_{\mathbb{Q}} = \mathbb{Q}$$

Сужение:
$$C|_{V_{\lambda}} \stackrel{?}{=} \mathcal{B}|_{V_{\lambda}}$$

$$\chi_C(t)$$
і $\chi_{C|_{V_\lambda}}(t) \Rightarrow$ все с.ч. $C|_{V_\lambda}$ неотриц.

T.K.
$$C$$
 o.fi.c. $\Rightarrow V_{\lambda} = span(\omega_1 \dots \omega_k)$

$$V = \bigoplus_{\mu \text{ с.ч. } C \text{собств. подпр. } C} W_{\mu} = span(\omega_1 \dots \omega_n)$$

$$\omega_j$$
 с.ч. C отвеч. $\mu_j \Rightarrow C\omega_j = \mu_j\omega_j \quad \mu_j \geq 0$

$$\omega_i$$
 с.в. \mathcal{A} отвеч. λ

$$\lambda \omega_j = \mathcal{A}\omega_j = C^2 \omega_j = \mu_i^2 \omega_j \Rightarrow \lambda = \mu_i^2 \Rightarrow \mu_j = \sqrt{\lambda}$$

$$C\omega_j=\sqrt{\lambda}\omega_j=\mathcal{B}\,\omega_j\Rightarrow C|_{V_\lambda}=B|_{V_\lambda}\Rightarrow C=B$$
 на V

Доказательство. (Теоремы)

 $\mathcal{A}\mathcal{A}^*$ $\mathcal{A}^*\mathcal{A}$ самосопряжен.

$$(\mathcal{A}\mathcal{A}^*)^* = (\mathcal{A}^*)^*\mathcal{A}^* = \mathcal{A}\mathcal{A}^*$$
 аналогично $\mathcal{A}^*\mathcal{A}$

$$\mathcal{A}\mathcal{A}^* \ge 0 \qquad \mathcal{A}^*\mathcal{A} \ge 0$$

$$\forall u \neq 0 \quad (\mathcal{A}\mathcal{A}^*u, u) = (\mathcal{A}^*u, \mathcal{A}^*u) \geq 0 \Leftrightarrow \text{все с.ч. } \mathcal{A}\mathcal{A}^* \geq 0$$

Аналогично все с.ч. $\mathcal{A}^*\mathcal{A} \geq 0$

$$\mathcal{A}^*\mathcal{A}$$
 самосопр. \Rightarrow о.п.с., все с.ч. $\lambda \geq 0$

$$V_{\lambda} \perp V_{\mu}$$
 $V = \bigoplus_{\lambda \text{ c.q. } \mathcal{A}^*\mathcal{A}} V_{\lambda} = span(\underbrace{v_1 \dots v_n}_{\text{o.h.6. M3 c.b. } \mathcal{A}\mathcal{A}^*})$

$$(\mathcal{A}^* A v_i, v_j) \qquad = (\mathcal{A} v_i, \mathcal{A} v_j)$$

$$(\lambda_i v_i, v_j) = \lambda_i (v_i, v_j) = \lambda_i \delta_{ij}$$

$$\lambda_i > 0 \to \mathcal{A}v_i \perp \mathcal{A}v_j \ i \neq j$$

$$\lambda_i = 0 \to (\mathcal{A}v_i, \mathcal{A}v_j) = 0$$

 $(\mathcal{A}v_1,\ldots,\mathcal{A}v_n)$ дополним до о.н.б. V

Какие-то векторы – $\mathbb{O}(\lambda_i = 0)$, остальные попарно-ортогон.

$$z_1 \dots z_n$$
 о.н.б. V $\mathcal{A}v_i = \sqrt{\lambda_i} z_i$ $(z_i = \frac{1}{\sqrt{\lambda_i}} \mathcal{A}v_i)$

Определим:

$$Hz_i := \sqrt{\lambda_i} z_i \quad i = 1 \dots n$$

$$Uv_i = z_i$$
 o.h.б. $v \leadsto$ o.h.б. $z \Rightarrow \mathcal{A}v_i = \sqrt{\lambda_i}z_i = Hz_i = HUv_i$

$$V = span(v_1 \dots v_n) \Rightarrow \mathcal{A} = HU$$

$$U$$
: о.н.б. \rightsquigarrow о.н.б. $\underset{\text{(св-ва изометр.)}}{\Rightarrow} U$ изометр., т.е. $U^* = U^{-1}$

$$H$$
 : о.п.с. $H=H^*$ из def $\sqrt{\lambda_i}$ с.ч. $H\geq 0, z_i$ о.н.с.в. H

A = HU

$$\mathcal{A}^* = U^* H^* = U^{-1} H \qquad \mathcal{A} \mathcal{A}^* > 0$$

 $\mathcal{A}\mathcal{A}^* = HUU^{-1}H = H^2 \Rightarrow H = \sqrt{\mathcal{A}\mathcal{A}^*}$, все с.ч. ≥ 0 , определяется единственным образом из утверждения.

 $\supset \mathcal{A}$ невырожд. $\Rightarrow \mathcal{A}^*$ невырожд. $\Rightarrow H = \sqrt{\mathcal{A}\mathcal{A}^*}$ невырожд. $H^2 = \mathcal{A}\mathcal{A}^* \Rightarrow$

$$\Rightarrow \mathcal{A} = HU \Rightarrow U = H^{-1}\mathcal{A} \Rightarrow U$$
 ед. образом.

Следствие 1.
$$\forall A \in End(V)$$
 $\exists U \in End(V)$ $\underbrace{usomemp.}_{camoconp.}$, $m.ч.$ $\boxed{A = UH}$

Kроме того, если A невырожd, то U определяется единственным образом.

Доказательство.
$$\mathcal{A}^* = H_1 \cdot U_1$$
 $H_1 = \sqrt{\mathcal{A}^*(\mathcal{A}^*)^*} = \sqrt{\mathcal{A}^*\mathcal{A}}$ самосопр. $H_1 = \sqrt{\mathcal{A}^*(\mathcal{A}^*)^*} = \sqrt{\mathcal{A}^*\mathcal{A}}$

$$\Rightarrow \mathcal{A} = (\mathcal{A}^*)^* = (H_1 U_1)^* = U_1^* H_1^* = \underbrace{U_1^{-1}}_{\text{изометр}} H_1 = U H,$$
 где $\underbrace{U = U_1^{-1}}_{H = H_1 = \sqrt{\mathcal{A}^*} \mathcal{A}}$

$$\Rightarrow \mathcal{A}$$
 невыр. $\Rightarrow U = \mathcal{A}H^{-1}$ единств. обр.

Определение 1.

$$\sqrt{\mathcal{A}\mathcal{A}^*}$$
 левый модуль оператора \mathcal{A}

$$\sqrt{\mathcal{A}^*\mathcal{A}}$$
 правый модуль оператора \mathcal{A}

Замечание. $A_{n\times n}$ $\mathcal{A}\mathcal{A}^*$ диагонализируемая матрица, самосопряж.

$$v_1 \dots v_n$$
 о.н.с.в. $T = (v_1 \dots v_n) \leftarrow$ унит. (ортог.)

$$T^{-1}(AA^*)T = \overline{T^T}(AA^*)T = \Lambda = diag(\lambda_1 \dots \lambda_n) \qquad \lambda_i > 0$$

$$AA^* = T\Lambda T^{-1}$$
 $\sqrt{\Lambda} = diag(\sqrt{\lambda_1} \dots \sqrt{\lambda_n})$

$$\sqrt{AA^*} = T\sqrt{\Lambda}T^{-1} = T\sqrt{\Lambda}T^T$$

1 Квадратичные формы

1.1 Основные понятия

Определение 1. $f: \mathbb{R}^n \to R, m.ч.$

$$\forall x \in \mathbb{R}^n \ f(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \ \textit{где} \ a_{ij} = a_{ji} \in \mathbb{R} \ - \underline{\textit{Квадратичная форма}}$$

$$f(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Матричная форма записи:
$$A = (a_{ij})_{n \times n}$$
 $a_{ij} = a_{ji}$ $A^* = A^T = A$

$$f(x) = x^T A x$$
 = $(x, Ax) = (A^*x, x) = (Ax)^T x = x^T A^T x$

 $\Gamma = E$ канонический базис.

Замечание.

1. Другой подход к def кв. ф.

 $\alpha: V \times V \to \mathbb{R}$ билинейная форма

$$e_1 \dots e_n$$
 базис V
$$x \in V \leftrightarrow x \in \mathbb{R}^n$$
 $y \in V \leftrightarrow y \in \mathbb{R}^n$

$$\alpha(x,y) = \alpha(y,x)$$
 симметр. $\forall x,y \in V$

$$\alpha(x,y)=\sum_{i=1}^n\sum_{j=1}^n a_{ij}x_iy_j$$
 $a_{ij}=\alpha(e_i,e_j)=\alpha(e_j,e_i)=a_{ji}$ α симметрична

Определение 2. Квадратичная форма
$$f(x) = \alpha(x,x) \quad \forall x \in V$$

2. В комплексном линейном пр-ве вводится объект подобный кв. ф. в \mathbb{R}^n

Определение 3. Эрмитова форма:

$$\forall x \in \mathbb{C}^n$$
 $f(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i \overline{x_j}, \ e \partial e \ a_{ij} = \overline{a_{ji}}$

Очевидно
$$\overline{f(x)} = f(x) \Rightarrow \forall x \in \mathbb{C}^n \quad f(x) \in \mathbb{R} \quad \boxed{f : \mathbb{C}^n \to \mathbb{R}}$$

$$A = (a_{ij})$$
 $A^* = \overline{A^T} = A$ А эрмитова матрица.

$$\underline{\underline{\mathsf{И}}}_{\underline{\mathsf{N}}\underline{\mathsf{U}}} \alpha: V \times V \to \mathbb{C}$$
 $e_1 \dots e_n$

 α полуторалинейная эрмитова форма

 α линейна по 1 аргументу

 α аддитивна по 2 аргументу

 α псевдооднородна по 2 аргументу

$$\forall x, y \in V$$
 $\alpha(x, y) = \overline{\alpha(x, y)}$ $\alpha(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i \overline{y}_j$

$$a_{ij} = \alpha(e_i, e_j) = \overline{\alpha(e_j, e_i)} = \overline{a_{ji}}$$

$$\forall x, y \in V \quad \alpha(x, \lambda y) = \overline{\lambda}(x, y)$$

Определение 4. Эрмитова форма:

$$\forall x \in V \quad f(x) = \alpha(x, x)$$

$$\forall x, y \in V \quad \alpha(x, y) = x^T A \overline{y} = (x, \overline{A}y) = (A^T x, y)$$

∀ скал. пр-е в Евклидовом пространстве с билинейная форма

∀ псевдоскалярное пр-е в унитарном пространстве с полуторалинейная форма.

 $\underline{\underline{\mathbb{R}}} \qquad f(x) = x^T A x \qquad A^T = A \ - \ \mathrm{M}$ ы занимаемся такими.

Определение 5. rgf = rgA ранг квадратичной формы

Определение 6. Будем говорить, что к кв. ф. применено <u>линейное преоб.</u> Q, если $x_i \rightsquigarrow y_i$ по следующему правилу

$$x = Qy$$
 $Q_{n \times n}$

Будем рассматривать только невырожд Q

$$f(x) = x^T A x = (Qy)^T A Q y = y^T \boxed{Q^T A Q} y = y^T B y = g(y)$$

$$B^T = Q^T A^T Q = Q^T A Q = B$$
 B симметр.

$$f \underset{\kappa e. \ \phi.}{\overset{Q}{\leadsto}} g \\
 B = Q^T A Q \quad Q \quad \underline{nesup.}$$

rgB = rgA rgf инвариант относительно невыр. лин. преобр. Q