

${\it ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ}\ {\it И}\ {\it ПРОЦЕССЫ УПРАВЛЕНИЯ}\ {\it N~4,~2015}$

Электронный журнал, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal \\ e-mail: jodiff@mail.ru$

Общая теория управления

Анализ устойчивости функциональных уравнений типа Вольтера с помощью метода реализации

1

Ю. А. Абдалова Ф. Райтманн

Математико-механический факультет, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Аннотация

Метод реализации операторов входа-выхода в виде абстрактных систем управления с дискретным временем и частотный метод используются для анализа устойчивости и неустойчивости класса нелинейных функциональных уравнений типа Вольтера. Для этого строится ассоциированная инвариантная относительно времени абстрактная система управления с дискретным временем в некоторых весовых функциональных пространствах. Рассматриваются эволюционные уравнения с импульсно-амплитудной модуляцией, которые генерируют типичные дискретные системы управления. Дано краткое описание абстрактного устойчивого метода Якубовича для дискретной нелинейной системы управления, который используется в настоящей статье.

ключевые слова: метод реализации, оператор входа-выхода, функциональное уравнение Вольтерра, дискретная по времени система

Abstract

Methods of realization of input-output operators by abstract discrete-time control systems and frequency method are used for the stability and instability

¹Работа выполнена при поддержке Немецко-российского междисциплинарного научного центра (G-RISC) и Германской службы академических обменов (DAAD), Министерства Образования и Науки РФ и Санкт-Петербургского государственного университета.

analysis of a class of nonlinear Volterra type functional equations. The key idea is to consider a time-discrete invariant control system generated by an abstract map in some weighted functional spaces. Evolution equations with impulse-amplitude modulation which generate typical discrete-time control systems are considered. A brief description of Yakubovich's abstract stability method for discrete-time nonlinear control system used in the present paper is given.

keywords:realization method, input-output operator, Volterra functional equation, discrete-time system

Введение

В настоящей работе рассматриваются нелинейные функциональные уравнения типа Вольтерра. Для описания таких уравнений используется оператор входа-выхода, который действует в некоторых пространствах последовательностей. Аналогично тому, как это было сделано для интегральных уравнений в [1,13], строится абстрактная система управления с дискретным временем, которая позволит получить некоторые свойства устойчивости и неустойчивости для исходного функционального уравнения.

Приведем краткое содержание работы. В первой главе описан класс эволюционных уравнений с амплитудно-импульсной модуляцией. Они представляют собой типичные системы управления с дискретным временем, которые используются для реализации функциональных уравнений типа Вольтерра. Во второй главе дается короткое описание метода абстрактной теории абсолютной устойчивости В. А. Якубовича ([7]) для дискретных нелинейных систем управления. Элементы этой теории используются в третьей главе работы для анализа абстрактных дискретных систем, полученных в результате применения метода реализации. Рассматриваются два способа реализации абстрактной дискретной системы управления в разных функциональных пространствах.

1 Эволюционно-импульсные уравнения с амплитудно-импульсной модуляцией

Пусть линейная система управления описывается двумя уравнениями

$$\dot{y} = \mathcal{A}y + \mathcal{B}u(t), y(0) = y_0, \tag{1.1}$$

$$z(t) = \mathcal{C}y(t), \tag{1.2}$$

где \mathcal{A} - генератор линейной полугруппы $\{e^{\mathcal{A}t}\}_{t\geq 0}$ класса C_0 в гильбертовом пространстве $Y,\ \mathcal{B}:U\to Y,\mathcal{C}:Y\to Z$ - линейные ограниченные операторы; U,Z - гильбертовы пространства.

Считаем, что для $u\in L^2_{loc}(0,\infty;Y)$ существует решение $y(\cdot)\in W^{1,2}_{loc}(0,\infty;Y)\cap C(0,\infty;Y)$. Уравнения (1.1), (1.2) описывает непрерывную по времени линейную часть системы, если под $u(\cdot)$ понимать произвольный сигнал из $L^2_{loc}(0,\infty;Y)$.

Если под $u(\cdot)$ понимать функцию, определенную по $y(\cdot)$ уравнением модулятора, то (1.1), (1.2) становится нелинейной системой.

Modyлятором называется ([1]) система, преобразующая модулирующий сигнал $y(\cdot)$ на его входе в сигнал $u(\cdot)$ на его выходе. Модулятор является реализацией нелинейного оператора \mathcal{M} , отображающей функцию $y(\cdot)$ в функцию $u(\cdot)$, то есть

$$u = \mathcal{M}y. \tag{1.3}$$

Считаем, что при этом для каждой функции $y(\cdot)$ имеется такая последовательность моментов времени $t_0 < t_1 < \ldots, t_k \to +\infty$ при $k \to +\infty$, что функция $u(\cdot)$ кусочно-непрерывна на каждом промежутке $[t_k, t_{k+1}]$ и выполняется условие причинности, то есть t_k зависит лишь от значения y(t) при $t \le t_k$, а величина u(t) зависит лишь от $y(\tau)$ при $\tau \le t$. Функция $u(\cdot)$ описывает на промежутке $[t_k, t_{k+1}]$ формулу k-того импульса.

Одна из наиболее важных форм импульсной модуляции — это амплитудно-импульсная модуляция. В таком случае $t_k=kT, k\in\mathbb{Z}_+$, где T>0 — некоторая постоянная, а $u(\cdot)$ определяется по формуле

$$u(t) = \begin{cases} \frac{1}{\tau} \phi(z(kT)), & kT \le t < kT + \tau, \\ 0, & kT + \tau \le t < (k+1)T, \end{cases}$$
 (1.4)

где $0<\tau< T$ — постоянная, $\phi(z)$ — непрерывная ограниченная скалярная функция со свойством $\phi(0)=0,$ и $\phi(z)>0$ при z>0.

В случае амплитудно-импульсной модуляции система (1.1)-(1.4) сводится к разностной системе с постоянным шагом. Для этого запишем решение

уравнения (1.1) с началом y(kT) при t = kT в виде ([4])

$$y(t) = e^{\mathcal{A}(t-kT)}y(kT) + \int_{kT}^{t} e^{\mathcal{A}(t-s)}\mathcal{B}u(s)ds.$$
 (1.5)

Полагая здесь $t=(k+1)T,\,y(kT)=:y_k,$ и $z(kT)=:z_k,$ в силу (1.5) приходим к равенству

$$y_{k+1} = e^{AT} y_k + \frac{1}{\tau} \int_{kT}^{kT+\tau} e^{A[(k+1)T-s]} \mathcal{B}\phi(z_k) \, ds.$$
 (1.6)

Благодаря (1.6) получим соотношение

$$y_{k+1} = Ay_k + B\phi(z_k), \ z_k = Cy_k, \ k \in \mathbb{Z}_+,$$
 (1.7)

где $A:=e^{\mathcal{A}T},\ B:=\frac{1}{\tau}A\mathcal{A}^{-1}(I-e^{-\mathcal{A}\tau})\mathcal{B},\ C:=\mathcal{C},\ I$ – единичный оператор.

В дальнейшем рассмотрим более общую систему управления с дискретным временем в виде ([16])

$$y_{k+1} = Ay_k + Bu_k,$$

$$z_k = Cy_k + Du_k, \ k \in \mathbb{Z}_+,$$
(1.8)

где $A \in \mathcal{L}(Y), B \in \mathcal{L}(U;Y), C \in \mathcal{L}(Y;Z), D \in \mathcal{L}(U,Z)$ и U, Y, Z – гильбертовы пространства.

Пусть $y_0 \in Y$. Тогда единственное решение на \mathbb{Z}_+ системы (1.8) с началом y_0 пишется в виде

$$y_k = A^k y_0 + \sum_{j=0}^{k-1} A^{k-1-j} B u_j,$$

$$z_k = C A^k y_0 + \sum_{j=0}^{k-1} C A^{k-1-j} B u_j + D u_k, \ k = 1, 2, \dots$$
(1.9)

.

2 Метод абстрактной теории абсолютной устойчивости для дискретных нелинейных систем управления

Пусть Y - комплексное гильбертово пространство со скалярным произведением (\cdot,\cdot) и нормой $|\cdot|$, соответственно. Пространство $\ell_{loc}(\mathbb{Z},Y)$ состоит из всех

последовательностей $\{y_k\}_{k\in\mathbb{Z}}$ на \mathbb{Z} , таких, что $y_k\in Y, k\in\mathbb{Z}$, с топологией определенной семейством полунорм

$$|y|_n := (\sum_{k=-n}^n (|y_k|^2))^{1/2}, n = 1, 2...$$

Дискретный интервал - это множество вида $\mathcal{J} = \{k \in \mathbb{Z} | a \leq k \leq b\}$, где $a, b \in \mathbb{Z}$, или $a = -\infty$, или $b = +\infty$. Для любого дискретного интервала $\mathcal{J} \subset \mathbb{Z}$ мы рассматриваем $\ell_{loc}(\mathcal{J}; Y)$ как подпространство $\ell_{loc}(\mathbb{Z}; Y)$. Предположим, что Z, U также комплексные гильбертовы пространства, относительно которых мы вводим пространства $\ell_{loc}(\mathcal{J}, Z)$ и $\ell_{loc}(\mathcal{J}, U)$. Предположим, что

$$\Phi: \mathbb{Z}_{+} \times \ell_{loc}(\mathbb{Z}_{+}; Z) \times \ell_{loc}(\mathbb{Z}_{+}; Y) \to \ell_{loc}(\mathbb{Z}_{+}; Z)$$
(2.1)

нелинейный оператор, порождающий ϕy нкициональное уравнение типа Воль-

$$z = \Phi(k, z, h). \tag{2.2}$$

Предположим также, что существует непрерывный линейный оператор, который называется *оператором входа-выхода*

$$\mathcal{T}: \ell_{loc}(\mathbb{Z}; U) \to \ell_{loc}(\mathbb{Z}; Z)$$
(2.3)

и нелинейный оператор

$$\phi: \mathbb{Z}_{+} \times \ell_{loc}(\mathbb{Z}_{+}; Z) \to \ell_{loc}(\mathbb{Z}_{+}; U)$$
(2.4)

такой, что оператор (2.1) может быть записан в виде

$$\Phi(k, z, h) = \mathcal{T}\phi(k, z) + h_k, \tag{2.5}$$

где $h \in \ell_{loc}(\mathbb{Z}_+; Z)$ рассматривается как возмущение или возмущающая последовательность.

Таким образом, функциональное уравнение типа Вольтерры имеет вид

$$z = \mathcal{T}u + h, (2.6a)$$

$$u = \phi(k, z). \tag{2.6b}$$

Мы называем (2.6а) линейной частью и (2.6b) нелинейной частью (2.5). Последовательность $z \in \ell_{loc}(\mathbb{Z}_+; Z)$ удовлетворяющая (2.6a), (2.6b) для всех $k \in \mathbb{Z}_+$ называется решением. Каждая пара (u, z), где z - решение (2.6a), (2.6b) и $(u = \phi(k, z), z)$ называется процессом ([7]), порожденным (2.6a), (2.6b).

Предположим ([7]), что для каждого $T \in \mathbb{Z}_+$ существует эрмитова форма

$$\mathcal{F}_T: \ell(0,T;U) \times \ell(0,T;Z) \to \mathbb{R}$$

такая, что семейства $\{\mathcal{F}_T\}_{T\in\mathbb{Z}_+}$ порождены равномерно ограниченными и самосопряженными линейными операторами в $\ell(0,T;U)\times\ell(0,T;Z)$. Допустим, что для любого процесса (u,z), порожденного (2.6a), (2.6b) существует последовательность $\{T_n\}_{n=1}^{\infty}$ положительных целых чисел, таких, что $T_n\to+\infty$ и

$$\mathcal{F}_{T_n}(\widetilde{\mathbf{P}}_{T_n}u; \mathbf{P}_{T_n}z) \ge 0, \ n = 0, 1, 2...$$
 (2.8)

Здесь $\mathbf{P}_T: \ell_{loc}(\mathbb{Z}_+; Z) \to \ell_{loc}(0, T; Z)$ и $\widetilde{\mathbf{P}}_T: \ell_{loc}(\mathbb{Z}_+; U) \to \ell_{loc}(0, T; U)$ обозначают для каждого $T \in \mathbb{Z}_+$ оператор срезки на [0, T].

Семейство всех последовательностей $(u,z) \in \ell_{loc}(\mathbb{Z}_+;U) \times (\mathbb{Z}_+;Z)$, для которых (2.8) выполнено с фиксированной последовательностью $\{T_k\}_{k=1}^{\infty}, T_k \in \mathbb{Z}_+, T_k \to \infty$, обозначается как $\mathbf{N}^{\{T_k\}}$. Семейство всех последовательностей $(u,z) \in \ell_{loc}(\mathbb{Z}_+;U) \times \ell_{loc}(\mathbb{Z}_+;Z)$, для которых существует как минимум одна последовательность $\{T_k\}_{k=1}^{\infty}$, удовлетворяющая (2.8), обозначены как \mathbf{N} .

Вместо (2.6а), (2.6b) мы рассматриваем расширенную систему

$$z = \mathcal{T}u + h, \tag{2.9a}$$

$$(u,z) \in \mathbf{N}.\tag{2.9b}$$

Назовем (2.9a) линейной частью и (2.9b) нелинейной частью расширенной системы. Пара последовательностей $(u,z) \in \ell_{loc}(\mathbb{Z}_+;U) \times \ell_{loc}(\mathbb{Z}_+;Z)$ называется процессом, заданным через (2.9a), (2.9b), если существует последовательность $h \in \ell_{loc}(\mathbb{Z}_+;Z)$ такая, что тройка (u,z,h) удовлетворяет (2.9a), (2.9b) для всех целых $k \geq 0$.

Процесс (u,z) заданный через (2.9a,),(2.9b), называется ycmoйчивым, если для всех $h \in \ell_{loc}(\mathbb{Z}_+;Z)$ таких, что (u,z,h) удовлетворяет (2.9a),(2.9b),

имеем $u \in \ell_{loc}(\mathbb{Z}_+; U)$ и $z \in \ell_{loc}(\mathbb{Z}_+; Z)$. В остальных случаях процесс называется $\mathit{неустойчивым}$.

Расширенная система (2.9a),(2.9b) абсолютно устойчива, если существует константа c>0 такая, что для любого $h\in \ell(\mathbb{Z}_+;Z)$ и любого процесса (u,z), для которых (u,z,h) удовлетворяет (2.9a),(2.9b), имеем свойство $z\in \ell(\mathbb{Z}_+;Z), u\in \ell(\mathbb{Z}_+;U)$. и

$$|u|_{\ell(\mathbb{Z}_+;U)}^2 + |z|_{\ell(\mathbb{Z}_+;Z)}^2 \le c|h|_{\ell(\mathbb{Z}_+;Z)}^2. \tag{2.10}$$

Расширенная система (2.9а),(2.9b) называется абсолютно неустойчивой, если для любой последовательности $\{T_k\}_{k=1}^{\infty}, T_k \geq 0, T_k \to +\infty$ сушествует эрмитовый оператор $\mathcal{P}: \ell(\mathbb{Z}_+; Z) \to \ell(\mathbb{Z}_+; Z)$ такой, что множество

$$M := \{ h \in \ell(\mathbb{Z}_+; Z) | (\mathcal{P}h, h)_{\ell(\mathbb{Z}_+; Z)} > 0 \}$$

непусто и для любого $h \in M$ имеем для каждой тройки (u, z, h), порожденной (2.9a), (2.9b) с последовательностью $\{T_k\}_{k=1}^{\infty}$ и свойствами $z \notin \ell(\mathbb{Z}_+; Z)$ и $u \notin \ell(\mathbb{Z}_+; U)$.

Будем говорить ([3,7]), что расширенная система (2.9a), (2.9b) минимально устойчива, если для любого $h \in \ell(\mathbb{Z}_+; Z)$ и любого процесса (u, z) таких, что (u, z, h) порождена (2.9a), (2.9b) с последовательностью $\{T_k\}_{k=1}^{\infty}$ существует последовательность процессов $\{(u^n, z^n)\}_{n=1}^{\infty}$ такая, что для любых n = 1, 2, 3... тройка (u^n, z^n, h) порождена системой (2.9a), (2.9b), $z^n \in \ell(\mathbb{Z}_+; Z), u^n \in \ell_{loc}(\mathbb{Z}_+; U)$ и выполнено

$$|u^n|_{\ell(\mathbb{Z}_+;U)}^2 + |z^n|_{\ell(\mathbb{Z}_+;Z)}^2 \ge |\widetilde{\mathbf{P}}_{T_n}u|_{\ell(0,T_n;U)}^2 + |\mathbf{P}_{T_n}z|_{\ell(0,T_n;Z)}^2. \tag{2.11}$$

Расширенная система (2.9a), (2.9b) называется минимально неустойчивой ([3]), если существуют возмущение $h \in \ell(\mathbb{Z}_+; Z)$ и процесс (u, z) такие, что тройка (u, z, h) порожденнная (2.9a), (2.9b) с последовательностью $\{T_k\}_{k=1}^{\infty}, z \notin \ell(\mathbb{Z}_+; Z), u \notin \ell(\mathbb{Z}_+; U)$ и существуют тройки $(u^n, z^n, h)_{n=1}^{\infty}$ процессов системы такие, что выполняется $\widetilde{\mathbf{P}}_{T_n}(u-u^n)=0, \mathbf{P}_{T_n}(z-z^n)=0, n=1,2...$

Следующая теорема получена с помощью общего утверждения из [3,4].

Теорема 2.1 Расссмотрим расширенную систему (2.9a), (2.9b) и соответствующие ей эрмитовы формы $\{\mathcal{F}_T\}_{T\in\mathbb{Z}_+}$ из (2.7). Предположим, что

существует число $\delta > 0$ такое, что

$$\lim_{T \to \infty} \sup \mathcal{F}_T(\widetilde{\mathbf{P}}_T u; \mathbf{P}_T z) \le -\delta[|u|_{\ell(\mathbb{Z}_+; U)}^2 + |z|_{\ell(\mathbb{Z}_+; U)}^2],$$

$$\forall (u, z) \in \ell(\mathbb{Z}_+; U) \times \ell(\mathbb{Z}_+; Z). \tag{2.12}$$

Тогда выполняются следующие утверждения:

- а) Если система (2.9a), (2.9b) минимально устойчива, тогда она абсолютно устойчива.
- b) Если система (2.9a), (2.9b) минимально неустойчива, тогда она абсолютно неустойчива.

Док-во. См. [3,4]. □

3 Реализация функционального уравнения типа Вольтерра в виде абстрактной системы управления с дискретным временем

Рассмотрим реализацию операторного уравнения (2.9a), (2.9b), в виде абстрактных разностных уравнений.

Для любого дискретного интервала $\mathcal{J}\subset\mathbb{Z}$, гильбертова пространства Y и любого $k\in\mathbb{Z}$, обозначим через σ^k оператор сдвига, определенный для последовательности $f_{(\cdot)}:\mathcal{J}\to Y$ как

$$\sigma^k f_j := \begin{cases} f_{k+j}, & k+j \in \mathcal{J}, \\ 0, & k+j \notin \mathcal{J}. \end{cases}$$

Оператор входа-выхода (2.3) называется ([11]) инвариантным относительно времени, если $\sigma^k \mathcal{T} = \mathcal{T} \sigma^k$ для любого $k \in \mathbb{Z}$ и называется причинным, если для любого $T \in \mathbb{Z}_+$ выполняется

$$u_k = 0, \forall k \leq T, k \in \mathbb{Z} \Rightarrow (\mathcal{T}u)_k = 0, \ \forall k \leq T, k \in \mathbb{Z}.$$

Отсюда вытекает, что \mathcal{T} в (2.3) определен как сужение

$$\mathcal{T}: \ell_{loc}(\mathbb{Z}_+; U) \to \ell_{loc}(\mathbb{Z}_+; Z). \tag{3.1}$$

Для любого дискретного интервала $\mathcal{J} \subset \mathbb{Z}$, гильбертова пространства Y и любого параметра $r \in \mathbb{R}, r > 0$, введем весовые пространства

$$\ell_r(\mathbb{Z}; Y) = \{ \{ f_k \}_{k \in \mathbb{Z}} | f_k \in Y, \sum_{k = -\infty}^{\infty} r^{-2k} | f_k |_Y^2 < \infty \}.$$

Предположим, что оператор входа-выхода ${\mathcal T}$ может быть рассмотрен как ограниченный линейный оператор

$$\mathcal{T}: \ell_r(\mathbb{Z}; U) \to \ell_r(\mathbb{Z}; Z). \tag{3.2}$$

Введем понятие cucmeмы управления, инвариантной относительно времени ([11,14,16]). Пусть U,Y,Z - гильбертовы пространства и заданы два отображения

$$\ell_{loc}(\mathbb{Z}_+; U) \times Y \to c_{loc}(\mathbb{Z}_+; Y), \quad (u, y) \mapsto \varphi^{(\cdot)}(u, y),$$

$$\ell_{loc}(\mathbb{Z}_+; U) \times Y \to \ell_{loc}(\mathbb{Z}_+; Z), \quad (u, y) \mapsto \psi^{(\cdot)}(u, y),$$

которые удовлетворяют следующим условиям:

(і) Начальные условия:

$$\varphi^0(u,y) = y, \forall u \in \ell_{loc}(\mathbb{Z}_+; U), \forall y \in Y.$$

(ii) Условия причинности:

$$u_k = 0, \forall k \le T, k \in \mathbb{Z}_+ \implies \varphi^k(u, 0) = 0, \psi^k(u, 0) = 0, \forall k \le T, k \in \mathbb{Z}_+.$$

(iii) Инвариантность относительно времени:

$$\varphi^{k+j}(u,y) = \varphi^k(\sigma^j(u), \varphi^j(u,y)),$$

$$\psi^{k+j}(u,y) = \psi^k(\sigma^j(u), \varphi^j(u,y)).$$

Относительно решений (1.8) системы (1.7) вводим отнображения φ, ψ следующим образом:

$$\varphi^{k}(u,y) = A^{k}y + \sum_{j=0}^{k-1} A^{k-1-j}Bu_{k},$$

$$\psi^{k}(u,y) = CA^{k}y + \sum_{j=0}^{k-1} CA^{k-1-j}Bu_{k}.$$
(3.3)

Тогда отображения (3.3) удовлетворяют условиям (i)-(iii). Заметим, что понятие инвариантной относительно времени системы управления является обобщенным понятием коцикла с дискретным временем над базисным потоком ([5]). Для того, чтобы для заданной инвариантной относительно времени системы найти генерирующую систему (1.8), введем некоторые понятия. Пусть $\mathbb{D} = \{\lambda \in \mathbb{C} | |\lambda| < 1\}$ - открытый диск в \mathbb{C} , $\mathbb{T} = \{\lambda \in \mathbb{C} | |\lambda| = 1\}$ - единичная окружность в \mathbb{C} . Если U - гильбертово пространство и $1 - параметр, то <math>H^p(\mathbb{D}; U)$ - пространство Харди U - значных функций f на \mathbb{D} , для которых

$$||f||_p = \sup_{0 < \tau < 1} \left(\int_{\mathbb{T}} ||f(\tau \lambda)||_U^p dm(\lambda) \right)^{\frac{1}{p}} < \infty.$$

Пространство Харди $H^\infty(\mathbb{D};U)$ - пространство U - значных ограниченных функций на \mathbb{D} с нормой

$$||f||_{\infty} = \sup_{\lambda \in \mathbb{D}} ||f(\lambda)||_{U}.$$

 $H^p(\mathbb{D};U)$ можно рассматривать как подпространство $L^p(\mathbb{T};U)$ и характеризовать тем, что

$$H^p(\mathbb{D}; U) = \{ f \in L^p(\mathbb{T}; U) | \hat{f}_n = 0, n < 0 \},$$

где \hat{f}_n – n-й коэффициент преобразования Фурье функции f.

Рассмотрим оператор входа-выхода (2.3). Пусть $\{u_k\}_{k=0}^{\infty}$ – входной сигнал с $u_0=1$ и $u_k=0, k\geq 1$, и пусть $\{g^k\}_{k=0}^{\infty}$ – соответствующий выходной сигнал. Рассмотрим формальный ряд

$$\chi(\lambda) = \sum_{k>0} g_k \lambda^k. \tag{3.4}$$

Из свойств линейности, инвариантности относительно времени, и причинности следует, что для каждой последовательности $\{u_k\}$ с ограниченным носи-

телем состояний выхода может быть написан в виде

$$\hat{u}(\lambda) = \sum_{k \in \mathbb{Z}_+} u_k \lambda^k, \quad \hat{z}(\lambda) = \sum_{k \in \mathbb{Z}_+} z_k \lambda^k.$$

Тогда

$$\hat{z}(\lambda) = \chi(\lambda)\hat{u}(\lambda). \tag{3.5}$$

Пусть оператор входа-выхода $\mathcal T$ удовлетворяет соотношению

$$\mathcal{T}\ell(\mathbb{Z}_+;Y) \subset \{\{y_k\}_{k\geq 0} | \sum_{k\geq 0} r^{-2k} |y_k|^2 < \infty\}.$$
 (3.6)

Тогда соотношение (3.6) эквивалентно тому, что степенной ряд (3.4) сходится внутри некоторого диска с положительным радиусом.

 $\chi(\cdot)$ называается nepedamoчной функцией оператора входа-выхода (3.1) с дискретным временем.

Вводим сейчас передаточную функцию относительно системы управления с дискретным временем (1.8). Пусть $\{u_k\}_{k\in\mathbb{Z}}$ - финитная последовательность из U, для которой $u_k=0$ и, соответственно, $y_k=0$ при k<0. Если вставить формальные степенные ряды

$$\hat{u}(\lambda) = \sum_{k \ge 0} \lambda^k u_k, \quad \hat{y}(\lambda) = \sum_{k \ge 0} \lambda^k y_k, \quad \hat{z}(\lambda) = \sum_{k \ge 0} \lambda^k z_k$$

в уравнения (1.8), то получим соотношение

$$\hat{z}(\lambda) = (\lambda C(I - \lambda A)^{-1}B + D)\hat{u}(\lambda). \tag{3.7}$$

Соотношение (3.7) определяет передаточную функцию системы (1.8) в виде

$$\lambda \mapsto \lambda C(I - \lambda A)^{-1}B + D.$$

Если задан оператор входа-выхода (3.1) с передаточной функцией (3.4), то будем говорить, что система управления (1.8) есть *реализация* оператора входа-выхода (3.1) с передаточной функцией (3.4), если

$$\chi(\lambda) = \lambda C(I - \lambda A)^{-1}B + D. \tag{3.8}$$

Опишем сначала реализацию оператора входа-выхода (3.1) с помощью оператора обратного сдвига ([9]). Предположим для этого, что функция χ из соотношения (3.4) $\mathcal{L}(U,Z)$ - значная функция, порождающая ограниченный оператор Ганкеля $\{\hat{g}_{j+k+1}\}_{j,k\geq 0}$, отображающі $\ell(\mathbb{Z}_+;U)$ в $\ell(\mathbb{Z}_+;Z)$. Положим

 $Y:=H^2(\mathbb{D};Z)$ и определим операторы $A:Y\to Y, B:U\to Y$ и $C:Y\to Z$ формулами

$$Bu = \frac{1}{\lambda}\chi(\lambda)u, \ u \in U,$$

$$Af = \frac{1}{\lambda}(f - f(0)), \ f \in H^2(\mathbb{D}; Z),$$

$$Cf = f(0), \ f \in H^2(\mathbb{D}; Z).$$

Другой метод реализации изложен для систем с непрерывным временем в [8,12,13]. Используем этот метод для систем с дискретным временем и рассмотрим нелинейную систему

$$z_k = h_k + \sum_{j=0}^{k-1} g_{k-j-1}\phi(j, z_j), \ k = 1, 2, \dots$$
 (3.9)

При этом начало z_0 задано, $h_{(\cdot)}: \mathbb{Z}_+ \to U$ - возмущение, где U - гильбертово пространство. Далее предполагаем, что $g_j \in \mathcal{L}(U,U)$ и $\phi: \mathbb{Z}_+ \times U \to U$ - нелинейная функция. Применяем дискретное преобразование Лапласа к уравнению (3.9), получаем передаточную функцию $\chi(\lambda) = \sum_{k=0}^{\infty} \hat{g}_k \lambda^{-k}$. Вводим также функцию $T(\lambda) := \chi(\frac{1}{\lambda}) = \hat{g}_0 + \hat{g}_1 \lambda + \hat{g}_2 \lambda^2 + \dots$

Делаем следующие предположения:

- (A1) Существуют константы c > 0 и $r \in (0,1)$ такие, что $|g_k|_{\mathcal{L}(U,U)} \le cr^k, \ k = 1,2...$
- (A2) Существуют операторы $F_1 = F_1^* \in \mathcal{L}(Z,Z), F_2 \in \mathcal{L}(U,Z)$ и $F_3 \in \mathcal{L}(U,U)$ такие, что $(z_k, F_1 z_k)_Z + 2(z_k, F_2 \phi(k, z_k))_Z + (\phi(k, z_k), F_3 \phi(k, z_k))_U \le 0$ для всех $k \in \mathbb{Z}_0$, где $\{z_k\}_{k \ge 0}$ произвольные решения (3.9).

Пусть $\ell_{\frac{1}{r}}(1,\infty;U)$ с 0< r< 1 семейство всех последовательностей $u=\{u_k\}_{k\geq 1}$ с $u_k\in U$, для которых $\{r^ku_k\}_{k\geq 1}$ принадлежит к $\ell(1,+_\infty;U)$, т. е. для которых $\sum_{k=1}^\infty r^{2k}|u_k|_U^2<\infty$

(А3) Линейная часть итерации (3.9) устройчива в следующем смысле: Существует r>0 такое, что для любой последовательности $u\in \ell(1,\infty;U)$ соответствующая последовательность $z_k:=\sum_{j=1}^{k-1}g_{k-j-1}u_j$ принадлежит пространству $\ell_r(1,\infty;U)$.

Строим реализацию для (3.9) в следующем виде:

1) Положим $A = \sigma$, где

$$\sigma: \ell_r(1,\infty;U) \to \ell_r(1,\infty;U)$$

- оператор сдвига, заданный как $\sigma(u_1,u_2,\dots)=(u_2,u_3,\dots)$ для любой последовательности $\{u_k\}_{k\geq 1}\in \ell_r(1,\infty;U).$

2) Положим $B:U\to \ell_r(1,\infty;U)$ через

$$Bu := (\hat{g}_1 u, \hat{g}_2 u, \dots) \ \forall \ u \in U.$$

3) Определим оператор $C: \ell_r(1,\infty;U) \to U$ через

$$C(u_1, u_2, \dots) = u_1$$

для любой последовательности $(u_1, u_2, ...) \in \ell_r(1, \infty; U)$. Тогда получаем систему

$$\begin{cases} y_{k+1} = Ay_k + Bu_k, \\ z_k = Cy_k, \ y_0 \in \ell_r(1, \infty; U), \\ u_k = \phi(k, z_k), \ k = 0, 1, 2... \end{cases}$$
 (3.10)

Пример 1. Рассмотрим итерацию

$$z_{n+2} + z_{n+1} + \phi(n, z_n) = 0, \ n = 0, 1, 2, \dots$$
 (3.11)

где $z_0, z_1 \in \mathbb{R}$ - заданы и $\phi: \mathbb{Z}_0 \times \mathbb{R} \to \mathbb{R}$ - непрерывная функция относительно второго аргумента. Применяя к (3.11) дискретное преобразование Лапласа, получим $\lambda^2 \hat{z} + \lambda \hat{z} = -\hat{\phi}$. Отсюда вытекает, что $\chi(\lambda) = \frac{1}{\lambda^2 + \lambda}$ и $T(\lambda) = \chi(\frac{1}{\lambda}) = \frac{\lambda^2}{1+\lambda} = \lambda - 1 + \frac{1}{1+\lambda} = \lambda - 1 + \sum_{n=0}^{\infty} (-1)^n \lambda^n = \lambda^2 - \lambda^3 + \lambda^4 - \dots$ Следовательно имеем

$$\hat{g}_m = \begin{cases} 0, \ m = 0, 1, \dots, \\ (-1)^m, \quad m = 2, 3, \dots. \end{cases}$$

В соответствии с вышеизложенным алгоритмом реализация для итерации (3.11) принимает вид

$$(y_1^{(k+1)}, y_2^{(k+2)}, \dots) = \sigma(y_1^k, y_2^k, \dots) + (0 + \phi(k, z_k), -\phi(k, z_k), \dots), \ k = 0, 1, 2, \dots$$

Используя метод реализации можно получить следующую теорему об устойчивости и неустойчивости дискретной по времени системы. Для случая системы с непрерывным временем аналогичная теорема доказана в [12].

Теорема 3.1 Рассмотрим итерацию (3.9) при предположениях (A1)-(A3). Пусть $\chi(\lambda) = \sum_{k=0}^{\infty} \hat{g}_k \lambda^{-k}$ дискретное преобразование Лапласа последовательности $\{g_k\}_{k\geq 0}$ и выполнены следующие условия:

- 1) Класс нелинейностей, описанный предположением (A2) содержит по крайней мере одну линейную функцию $\phi(k,z) = Kz$, где $K \in \mathcal{L}(U,U)$, и оператор $(I \chi(\lambda)K)^{-1}$ имеет конечное число сингулярностей в кольце $1 < \epsilon_1 \le |\lambda| \le \epsilon_2$, где ϵ_1 , ϵ_2 параметры.
- 2) $\chi^*(\lambda)F_1\chi(\lambda) + 2Re(F_2^*\chi(\lambda)) + F_3 > 0$ для всех $\lambda \in \mathbb{C}, |\lambda| = 1$.

Тогда существует линейный ограниченный оператор $P = P^* : \ell_r(1, \infty; U) \to \ell_r(1, \infty; U)$ со следующими свойствами:

- а) Если для h из (3.9) имеет место $(h, Ph)_{\ell_r(1,\infty;U)} < 0$, то для соответствующих решений имеем $z \in \ell_r(1,\infty;U)$, т.е. z устойчиво .
- b) Если для h из (3.9) имеет место $(h, Ph)_{\ell_r(1,\infty;U)} > 0$, соответствующее решение неустойчиво.

Список литературы

- [1] Брусин В. А, Аппарат абстрактных дифференциальных уравнений в исследовании интегральных уравнений типа Вольтерра, *Сибирс. математич. экурнал*, 1977, т. XVIII, №6, 1246-1258.
- [2] Гелиг А. Х., Чурилов А. Н., Колебания и устойчивость нелинейных импульсных систем, Изд-во С.-Петерб. ун-та, Санкт-Петербург, 1993.
- [3] Жарков А. В. Критерий абсолютной неустойчивости, дихотомии и диссипативности нелинейных систем управления, Диссертация, Ленинградский государственный университет имени А.А. Жданова, 1978.
- [4] Крейн С. Г., Линейные дифференциальные уравнения в банаховых пространствах, Наука, Москва, 1967.
- [5] Мальцева А.А., Райтманн Ф., Устойчивость в целом и бифуркации инвариантных мер для дискретных коциклов уравненя проводящей системы

- сердца. Дифференциальные уравнение и процессы управления, 2014, №3, 32-54.
- [6] Пеллер, В.В., Операторы Ганкеля и их приложения. Издательство R & C Dynamics, Москва-Ижевск, 2005.
- [7] Якубович В. А., К абстрактной теории абсолютной устойчивости нелинейных систем. *Вестник С.-Петерб. ун-та,Сер. 1, Мат., мех. и астрон.*, 1977, №13, стр. 99-118.
- [8] Baras, J. S., Brockett, R.W., H^2 -functions and infinite-dimensional realisation theory, SIAM 7. Control, 1975, v. 13, \mathbb{N}^2 1.
- [9] Fuhrmann, P.A., On realizations of linear systems and applications to some questions of stabiblity. *Math. Syst. Th.*, 1974, 8, 132-141.
- [10] Helton, J. W., Discrete time systems, operator models and scattering theory, Journal of Functional Analysis, 1974, 16, 15-38.
- [11] Kalman R.E., Arbib M., Falb P., *Topics in Mathematical Systems Theory*, McGraw-Hill Book company, New York ,1969
- [12] Reitmann V., Realization theory methods for the stability investigation of non-linear infinite-dimensional input-output systems, *MATHEM. BOHEMICA*, 2011, v.136, № 2, 185-194.
- [13] Reitmann V., Kantz H., Stability investigation of Volterra integral equations by realization theory and frequency-domain methods, *Preprint-Series DFG-SPP* 1114, 2004, No. 61.
- [14] Salamon D., Realization theory in Hilbert space, *Math. Systems Theory*, 1989, 21, 147-164.
- [15] Staffans O. J., Well-Posed Linear Systems, Cambridge University Press, Cambridge, 2005.
- [16] Yamamoto Y., Realization theory of infinite-dimensional linear systems, Parts I and II. Math.Systems Theory, 1981/2, v.15, 55-77, 169-190.