Section 8.1: Equivalence Relations

Juan Patricio Carrizales Torres

May 9, 2022

Consider two sets A and B. A **relation** R **from** A **to** B is a subset of the cartesian product $A \times B$. Therefore, $(a, b) \in R$ means that $a \in A$ is related to $b \in B$ by R, namely, a R b. On the other hand, if $(a, b) \notin R$, then $a \in A$ is not related to $b \in B$ by R, namely, $a \not R b$.

Also, if $|A \times B| = n$ for some positive integer n, then there are 2^n possible relations from A to B. Note that R can be seen as a function with some domain and range. Hence

$$dom(R) = \{ a \in A : (a, b) \in R \text{ for some } b \in B \}$$

and

$$\operatorname{range}(R) = \{b \in B : (a, b) \in R \text{ for some } a \in B\}.$$

The relation R has too some type of inverse called the **inverse relation** R^{-1} , which is defined as

$$R^{-1} = \{(b, a) : (a, b) \in R\}.$$

However, functions are just a subset of relations. All functions are relations, but not all relations are functions. Finally, a **relation on a set** A is just a relation from A to A. Therefore, it is a subset of $A \times A$.

Problem 1. Let $A = \{a, b, c\}$ and $B = \{r, s, t, u\}$. Furthermore, let $R = \{(a, s), (a, t), (b, t)\}$ be a relation from A to B. Determine dom(R) and range(R).

Solution 1. The domain and range of the relation R are as follows:

$$dom(R) = \{a, b\}$$
 and $range(R) = \{s, t\}$

Problem 2. Let A be a nonempty set and $B \subseteq \mathcal{P}(A)$. Define a relation R from A to B by x R Y if $x \in Y$. Give an example of two sets A and B that illustrate this. What is R for these two sets?

Solution 2. Let $A = \{a, b, 3, 4\}$ and $B = \{\{a, b\}, \{3, 4\}, \emptyset\}$, and so $B \subseteq \mathcal{P}(A)$. Hence,

$$R = \{(x, Y) : x \in Y\}$$

= $\{(a, \{a, b\}), (b, \{a, b\}), (3, \{3, 4\}), (4, \{3, 4\})\}$

Problem 3. Let $A = \{0, 1\}$. Determine all the relations on A.

Solution 3. Since $|A \times A| = 4$, it follows that there are $|\mathcal{P}(A \times A)| = 2^4 = 16$ possible relations on A. These are the following

$$R_{1} = \emptyset$$

$$R_{2} = \{(0,0)\}$$

$$R_{3} = \{(0,1)\}$$

$$R_{4} = \{(0,0),(0,1)\}$$

$$R_{5} = \{(1,0)\}$$

$$R_{6} = \{(1,1)\}$$

$$R_{7} = \{(1,0),(1,1)\}$$

$$R_{8} = \{(0,0),(1,0)\}$$

$$R_{9} = \{(0,0),(1,1)\}$$

$$R_{10} = \{(0,1),(1,0)\}$$

$$R_{11} = \{(0,1),(1,1)\}$$

$$R_{12} = \{(0,0),(0,1),(1,0)\}$$

$$R_{13} = \{(0,0),(0,1),(1,1)\}$$

$$R_{14} = \{(1,0),(1,1),(0,0)\}$$

$$R_{15} = \{(1,0),(1,1),(0,1)\}$$

$$R^{16} = A \times A$$

Problem 6. A relation R is defined on \mathbb{N} by a R b if $a/b \in \mathbb{N}$. For $c, d \in \mathbb{N}$, under what conditions is $c R^{-1} d$?

Solution 6. Note that $d/c \in \mathbb{N} \iff d R c$. Also, we know that $d R c \iff c R^{-1} d$. Hence, $d/c \in \mathbb{N} \iff c R^{-1} d$.

From this colloraly we can derived some interesting and useful theorem:

Theorem inverse. Let R be a relation with condition P(). Then, the condition for R^{-1} is also P().

Proof. We know that
$$P(x,y) \iff (x,y) \in R$$
 and $(x,y) \in R \iff (y,x) \in R^{-1}$. Therefore, $P(x,y) \iff (y,x) \in R^{-1}$.

Problem 7. For the relation $R = \{(x, y) : x + 4y \text{ is odd}\}$ defined on \mathbb{N} , what is R^{-1} ?

Solution 7. Note that 4y = 2(2y) is even for all $y \in \mathbb{N}$. Therefore, x must be an odd integer in order for x + 4y to be odd. Using **theorem inverse**,

$$R^{-1} = \{(y, x) : x + 4y \text{ is odd}\}$$
$$= \{(y, x) : x \text{ is odd}\}$$
$$= \mathbb{N} \times \mathbb{I},$$

where \mathbb{I} is the set of odd positive integers.

Problem 8. For the relation $R = \{(x, y) : x \leq y\}$ defined on \mathbb{N} , what is R^{-1} ?

Solution 8. Using theorem inverse.

$$R^{-1} = \{(y, x) : x \le y\}$$

We can even change variables:

$$R^{-1} = \{(a, b) : b \le a\}$$

Problem 9. Let A and B be sets such that |A| = |B| = 4.

(a) Prove or disprove: If R is a relation from A to B where |R| = 9 and $R = R^{-1}$, then A = B.

Solution 9. This statement is false. Note that |R| = 9 = 3!. Let's give a counterexmaple. Let $A = \{2, 4, 6, 9\}$ and $B = \{2, 4, 6, 11\}$. Consider some relation R from A to B such that

$$R = \{(a, b) : a \text{ and } b \text{ are even}\}\$$

$$= \{(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)\}\$$

and so

$$R^{-1} = \{(2,2), (4,2), (6,2), (2,4), (4,4), (6,4), (2,6), (4,6), (6,6)\}.$$

Hence, |R| = 9 and $R = R^{-1}$. However, $A \neq B$.

(b) Show that by making a small change in the statement in (a), a different a different response to the resulting statement can be obtained.

Solution b. Lemma 9.b.l. Let A and B be two nonempty sets. Then, $A \times B = B \times A$ is a necessary and sufficient condition for A = B.

Proof. Let A = B. Then $A \times B = A \times A = B \times A$.

For the converse, assume that $A \neq B$. Then, either $A \not\subseteq B$ or $B \not\subseteq A$. Without loss of generality, let $A \not\subseteq B$ and so there is some $x \in A$ such that $x \notin B$. Then, there is some $(x,b) \in A \times B$. Since $x \notin B$, $(x,b) \notin B \times A$. Hence, $A \times B \neq B \times A$.

Theorem 9.b. If R is a relation from A to B where |R| = 16 and $R = R^{-1}$, then A = B.

Proof. Consider some sets A and B with |A| = |B| = 4. Sine |R| = 16 and $|A \times B| = 4 \cdot 4 = 16$, it follows, by definition of $R \subseteq A \times B$, that $R = A \times B$. Hence, $R^{-1} = \{(b, a) : (a, b) \in R = A \times B\} = B \times A$. However, we assumed that $R = R^{-1}$, which implies that $A \times B = B \times A$. By **Lemma 9.b.l**, A = B.

However, we are interested in the minimum amount of |R| to imply A = B. Since 3! = 9, adding another element would need for a fourth element of A and B to be equal.