浙江省大学生科技创新活动计划(新苗人才计划)

项目结题报告

项	目	编	뮹:	2015R403085					
项	目	名	称:	组合光学实验仪					
项	目负	责	人: _	施皓天					
学	校	名	称:	浙江工业大学					
主	要依	托	学科:	物理学					
结	题	日	期:	2016. 10. 10					
项	目	类	别:	大学生科技创新项目 □					
				大学生创新创业孵化项目□					
				大学生科技成果推广项目図					

一、项目情况

	7. 5.4.			/H & 31: 33					
	目名称	组合光学实验仪							
	目性质	()基础研究 (√)应用研究							
	目来源	()自主立题 (√)教师指导选题							
	上时间	7A FR 0	自 2015 年 1 月 至 2016 年 9 月						
项目状况	1、研发	阶段 2、	<u> </u>	√3、批量	<u>(</u> 規模)生	三产(选	:坝打 √) T		
项 姓名	施皓天	性别	男	出生年月	1994. 03	学历	本科		
负 责 人 学院	理学	보院 联系 电话		1506812021	1 信箱		shi94@1 .com		
	姓	名	性 别	学历	专业	具体	本分工		
项目组	吴	哲	男	本科	光信	结构	勾设计		
主要成员	唐靖		女	本科	数学	仪者			
	应功	印玘	女	本科	数学	实验	金设计		
	姓	名	魏高尧	性别	男 出生生	F月 1	1962. 10		
指 导	职	称	高级实 验师	联系	电话	13738133096			
教 师	主要研	究方向	1、光电子技术 2、音视频电路设计 3、实验仪器开发						
3、实验仪器开发 光学实验能让学生掌握现代光学技术及其应用,了解光学术的发展,在各种科学实验中占有非常重要的地位。 现在的光学实验大多只能做一个实验,而本项目开发的组光学实验仪,旨在把初中、高中、大学乃至研究生需要做的几光学实验和波动光学实验,统一到一个适当的实验平台上,将源、透镜、狭缝、接收屏以及 CCD 相机等实验仪器都放到统一准的导轨上,支柱、滑块、透镜等常用实验器材可以通用,以约资源,同时相对复杂的物理光学实验都有一个相应的标准块,便于放置存储,节省了实验室占地面积。所以,本项目开的产品具有重要现实意义。 本项目开发的组合光学实验仪采用模块化、标准化的的计,搭建简单,更加有利于学生动手能力的培养,加深学生对学理论的理解;更好地培养学生的综合思维能力、创新能力、析与解决问题的能力和设计与制作能力等。通过使用组合光学验仪,使得学生养成良好的实验习惯和严谨的科学作风,为后课程的学习打好基础,为今后从事物理教学、进行光学及其相科学研究奠定扎实的基础。 本项目所开发的组合光学实验仪产品具有模块化、标准化搭建简单、能做多种光学实验和便于教学设计等优点,所以该							发数上到用的页 化学能含 及 际的的,统,标目 的生力光为其 准组几将一以准开 的对、学后相 化合何光标节模发 设光分实续关 、		

二、项目实施情况总结

一、 项目实施情况

在魏高尧老师的指导和帮助之下,本项目的研究与开发过程在国家级物理实验教学示范中心——浙江工业大学物理实验中心进行,完成组合光学实验仪样机一套以及样机的相关实验手册一份,申请并获得授权实用新型专利1项(名称:多功能组合光学实验支架,专利号:201520997804.3),论文《组合光学实验仪的研制》被《物理实验》杂志收录(编号052,拟在2016年增刊发表),与杭州博源光电科技有限公司合作,实现效益40万元。

图 1 组合光学实验装置样机元件

表 1 组合光学实验仪技术参数

主要部件	参数
光源类型与工作波长	He-Ne 激光器,波长 632.8 nm
CCD/CMOS 相机	300 万像素
直流稳压电源	±12V
200 线光栅	200 线
精密导轨	1 m
精密调整架	孔径 40 mm, 二维可调
升降调节架	可调节范围 0-57 mm, 中心直径 10 mm
杆	长度 90 mm,直径 10 mm

托板	宽度 50 mm,横截面 78 mm×21.5 mm
光功率计	硅光探测器; 380-1100 nm 全波段可调,步进 1 nm; 光功率范围 1nw-10mw; 精度 0.1nw; 分辨率 1pw; 采样率 25Hz; 保存数据 3000 组数据; 可选智能背光 30 秒;

二、 项目研究内容及方法的创新

本项目开发的组合光学实验仪将初中、高中、大学以及研究生阶段涉及到的几何光学和波动光学实验,统一到同一个实验平台上,这套仪器具有模块化和标准化的特点,产品成本低廉,性能良好,扩展性强,安装快捷方便,适合实验教学。

仪器主要装置有:导轨、托板、升降调节架、二维调节架、狭缝调节支架、纵向精密调节架、转角测量盘、CCD 摄像机、He-Ne 激光器、光功率计、直流稳压电源以及各类光学器件(双凸透镜、平凸透镜、平面镜、半透半反镜、劈尖、双棱镜、双缝、光栅、毫米刻度尺、棱镜胶合容器、测微目镜和光屏)等。

组合光学实验仪能够进行的主要几何光学实验和物理光学实验如下:

- (1)基础光学与成像:利用全反射测量液体折射率、透镜成像焦距测量、光学 仪器(望远镜与显微镜)和基本光学量测量(光强、光功率等)等实验。
- (2)波动光学:双缝干涉实验、莫尔条纹实验、双棱镜实验、劈尖干涉实验、牛顿环(反射式)实验、迈克尔逊干涉仪实验和马赫-曾德尔干涉仪实验等。

组合光学实验仪具有与 PSACO 850 通用信息通信的功能,可实现数字化实验,利用计算机运算性能强,数据存储量大的特点,进行实验实时数据的采集和分析。相比于传统实验手段,组合光学实验仪能够对更为庞大的数据进行精确运算。

本项目主要创新点如下:

- (1)本项目开发的组合光学实验仪将初中、高中、大学以及研究生阶段涉及到的几何光学和波动光学实验,统一到同一个实验平台上,产品成本低廉,性能良好,扩展性强,安装快捷方便,适合实验教学。
- (2)本项目开发的组合光学实验仪具有标准化和模块化的特点。所谓标准化,是指将透镜、光屏、狭缝、光源等光学元器件固定在相同标准的支柱上,支柱可安装于统一的光学平台上,极大程度增加元器件的通用性;所谓模块化,是指该套仪器具有通用的接口,通过拆卸、组装与连接,可以像搭积木一样设计组成各种的光路,器件的管理与安装更加方便快捷。

三、 实验内容

具体的几何光学实验和物理光学,设计相应的光学仪器规格与实验方案,实验目录如下:

- (1)基础光学与成像:利用平板玻璃测量折射率,透镜成像焦距测量,光学 仪器(望远镜与显微镜),基本光学量测量(光强、光功率)。
- (2)物理光学:双缝干涉,莫尔条纹,双棱镜、劈尖干涉,牛顿环(反射式), 迈克尔逊干涉,马赫-泽德干涉。

3.1 利用平板玻璃测量折射率

平板玻璃折射率测量原理图如图 2 所示。

图 2 平板玻璃折射率测量原理图

图 3 平板玻璃折射率测量实际光路 a) 未放平板玻璃; b) 放平板玻璃平板玻璃折射率测量实验说明:

- (1) 光源采用光束尺寸较小的 He-Ne 光。平板玻璃的尺寸与其它反射镜的直径一致,以固定在调整架上。
 - (2) 为获得较大的光束位移,采用较厚的玻璃板(约10-20mm)。
- (3)设光束的入射角为 20°,玻璃板厚度为 15mm,光束位移约为 1mm,肉眼观看很难分辨,故采用数字相机接收。比较两个光束产生光点的中心位置的偏移,获得光束位移量。
- (4) 光束的入射角采用如下两方法之一: a) 测量入射表面的反射光的角度(通过某位置处的偏移量间接获得,如图 1 所示),需设计垂直主导轨的导轨,并上放可读刻度的移动台,通过光阑读取反射光束的位置; b) 平板玻璃安置在可旋转底座上。

3.2 透镜成像焦距测量

凸透镜焦距测量实验原理图如图 4 所示。

图 4 凸透镜焦距测量实验原理图

图 5 凸透镜焦距测量实验实际光路

凸透镜焦距测量实验说明:

- (1) 光源采用 He-Ne 光或红光 LD。平板玻璃的尺寸与其它反射镜的直径一致,以固定在调整架上。
- (2) 像采用光斑照射毛玻璃获得,毛玻璃有经纬刻度。接收面采用同样具有经纬刻度的毛玻璃。
 - (3) 透镜的孔径较大, 固定件需配合博光现有产品, 如无合适型号则需另设计。

3.3 光学仪器(望远镜与显微镜)

望远镜实验原理图如图 6 所示。

图 6 望远镜实验原理图

图 7 望远镜实验实际光路

望远镜实验说明:

- (1) 光源采用 He-Ne 光或红光 LD, 其后用扩束镜将光束扩束, 并照射在有经纬刻度的毛玻璃上。接收面采用同样具有经纬刻度的毛玻璃。
 - (2) 通过比较接收面上的光斑与入射面上的光斑尺寸,获得放大率。
 - (3)透镜的固定件需配合博光现有产品,如无合适型号则需另设计。 显微镜实验原理图如图 8 所示。

图 9 显微镜实验实际光路

显微镜实验说明:

- (1) 两透镜: 焦距大的透镜采用望远系统的较大焦距透镜, 另配一个更小焦距的透镜。具体焦距最好配合博光现有产品。
 - (2) 以毛玻璃上的刻度线作为被观测物。

3.4基本光学量测量(光强、光功率)

基本光学量(光强、光功率)测量实验原理图如图 10 所示。

图 10 基本光学量测量实验原理图

图 11 基本光学量测量实验实际光路

基本光学量(光强、光功率)测量实验说明:

- (1) 光源采用 He-Ne 光或红光 LD, 其后用扩束镜将光束扩束。
- (2)配合望远系统实验,再次将光束扩束为比较大的光束直径。将可调光阑(可读开孔直径)置于光斑范围内,利用光功率计测量,并计算光强。

3.5 双缝干涉

双缝干涉实验原理图如图 12 所示。

图 12 双缝干涉实验原理图

双棱镜干涉实验原理图如图 13 所示。

图 13 双棱镜干涉实验原理图

图 14 双棱镜干涉实验实际光路

双缝和双棱镜干涉实验说明:

- (1) 光源采用 He-Ne 激光或红光 LD, 其后用凸透镜将光束转为发散光束。
- (2) 双棱镜可参考现有方案; 双缝需另设计, 机械接口初步考虑与双棱镜相同。
- (3)接收屏采用有刻度的毛玻璃,或数字相机。

3.6 莫尔条纹

莫尔条纹实验原理图如图 15 所示。

图 15 莫尔条纹实验原理图

3.7牛顿环(反射式)

图 16 反射式牛顿环实验原理图

反射式牛顿环实验说明:

- (1) 光源采用 He-Ne, 其后用扩束镜将光束扩束。
- (2) 需设计半透半反镜,机械接口初步考虑与双棱镜相同,但通光孔径尽可能大。
 - (3) 接收屏采用有刻度的毛玻璃,或数字相机。
 - (4) 需设计垂直主导轨的导轨,用以安放接收屏或数字相机。
 - (5) 劈尖干涉和牛顿环干涉类似。

3.8 迈克尔逊干涉仪

迈克尔逊干涉实验原理图如图 17 所示。

图 17 迈克尔逊干涉实验原理图

图 18 迈克尔逊干涉实验实际光路

迈克尔逊干涉实验说明:

- (1) 需设计垂直主导轨的导轨,用以安放反射镜和接收屏;
- (2) 由于相干长度的要求, 需采用 He-Ne 光源(相干长度约几十厘米)
- (3) 实验要求较高,完善详细实验步骤。

3.9 马赫-曾德尔干涉仪

马赫-曾德尔干涉实验原理图如图 19 所示。

图 19 马赫-曾德尔干涉实验原理图

图 20 马赫-曾德尔干涉实验实际光路

马赫-曾德尔干涉实验说明:

- (1)2个垂直主导轨的导轨,用以安放反射镜,接收屏(或数字相机)置于主导轨上。
- (2)由于相干长度的要求,需采用 He-Ne 光源(相干长度约几十厘米);但实验中半透半反镜和反射镜的距离仍需足够近(约 3cm),以易于产生干涉。
- (3) 半透半反镜和反射镜固定在一个基板上,但两个半透半反镜(标明镀膜面)和反射镜均独立可调。基板需另设计。
- (4)两个半透半反镜之间的主导轨上放置空气室,可连接吹气罐,以改变其折射率,观察干涉条纹中心的变化。

四、 项目成果的学术价值

光学是一门历史悠久的学科,光学实验能够让学生掌握一定的现代光学技术的应用,百闻不如一见,更不如一做,使学生形成感性与理性的认识,光学实验在各种科学实验中具有非常重要的意义。目前的光学实验装置大多是实验内容单一,实验装备之间的通用性较差,一般一种实验装置只能做一类的光学实验,如果需要做不同的光学实验,则需要准备多套实验设备,不仅使用很不方便,而且在存放于管理方面也带来了困难,成本高,效率低。

组合光学实验仪能够进行多种几何光学与物理光学的实验,将光源、透镜、狭缝、接收屏以及 CCD 相机等实验仪器都能够放到统一标准的导轨上,常用实验器材如支柱、滑块、透镜等可以通用,以节约资源,同时相对复杂的物理光学实验都有一个相应的标准模块,便于放置存储,节省了实验室占地面积;组装仪器的过程能够帮助学生掌握光学原理,锻炼学生的动手能力;学生在同一套仪器上能够进行多种光学实验,培养学生的创新意识,提高学生的综合素质和教学质量

五、 项目成果的社会效益和经济效益

现在越来越多的高校和研究机构重视光学实验,这使得组合光学实验仪产品的研究及开发更加具有实际意义,同时,模块化、标准化,搭建简单,便于教学的设计优点将使得组合光学实验仪产品更加具有竞争力,市场前景非常好,能够广泛应用于各所中学,大学与研究所的实验室,进行实验教学,具有非常好的社会效益。

本项目完成组合光学实验仪样机一套,申请并获得授权实用新型专利 1 项(名称:多功能组合光学实验支架,专利号:201520997804.3),论文《组合光学实验仪的研制》被《物理实验》杂志录用(编号052,拟在2016年增刊发表),与杭州博源光电科技有限公司合作,实现效益40余万元

注: 本栏可加页。

三、项目实现经济效益和知识产权情况

经济效益	年产值	(万元)	年利税 (万元)			
双亚	4	0				
		著作	= 类	技著作(种)		
知识	科技论文(篇)	1	科技著作(种)			
产权		专利	〕类			
	专利申请		发明专利数	实用新型专利1		
	受理 (件)		(件)	件		

	其他类(实物、模型等)									
	产品的样机1套									
获奖	国家级奖项	省级奖项	市级奖项	校级奖项						
情况	无	无	无	无						

四、项目成果统计

完成论文登记表(具体资料附页)

			论文被	论文类别(打 √)				
主要作者	论文名称	刊物名称、年、 卷、期、页或论 文集名称、出版 社、页	吃引 况 大 收 机 大 收 况 大 收 况	国外重要刊物	国内重要刊物	学会论 国外	议	其他 刊物
魏尧施天宣楠	组合光学实验仪的研制	文章编号 052, 拟 在 2016 年增刊发 表	无		√			

完成论著及其它成果登记表(具体资料附页)

获奖成果名称	主要完成者	授奖单位	奖励名	称	等级	日期	
专利名称	申请人或专 利权人	发明人	申请号或 授权号	专利 国别	申请日	授权日	
多功能组合光学实 验支架	浙江工业大学,杭州博 源光电科技 有限公司	魏高尧,施皓天,童珺怡	20152099 7804.3	中国	2015.1 2.07	2016.09	
论著名称	主要作者	出版时间	字数 (万字)	出版社			
推广成果名称	应用单	单位	社会效益				
技术转让合作协议	杭州博源光明 公司	 自科技优先	产值已达四十多万元,深受用户好评				
评议、鉴定成果名称	P议、鉴定成果名称			评议、鉴	定日期		

五、项目经费使用情况

浙江省大学生科技创新活动计划(新苗人才计划)项目经费收入及支出明细表

项	目	金	额 (元)	备注
一、经费收入				
1、省财政经费		5000		
2、学校配套经费				
3、自筹经费				
4、其它				
二、经费支出				
1、设备费				
(1) 购置设备费				
(2) 试制设备费				
(3)设备租赁费				
2、材料费				
3、测试化验加工费				
4、燃料动力费				
5、差旅费		2052		
6、会议费				
7、合作、协作研究与交流费	,			
8、出版/文献/信息传播/知识	产权事务费	2710		其中专利申请费 1700 ,版面费 1010
9、人员劳务费				
10、专家咨询费				
11、其他开支		116		邮寄费
三、经费结余		122		

- 注: 1、经费收入 = 经费支出 + 经费结余;
 - 2、务必加盖学校财务处公章,无公章无效;

指导老师签名:

年 月 日

财务处:(盖章)

年 月 日

六、项目组承诺书

承诺书

- 1、本申请书中所填写的各栏目内容真实、准确。
- 2、提供验收的技术文件和资料真实、可靠,技术(或理论)成果事实存在。
- 3、提供验收的实物(样品)与所提供鉴定的技术文件和资料一致,并事实存在。
- 4、本项目的知识产权或商业秘密明晰完整,未剽窃他 人成果、未侵犯他人的知识产权或商业秘密。

若发生与上述承诺相违背的事实,由本项目组承担全部 法律责任。

项目组全体成员(签章):

年 月 日

七、指导老师意见

有别于传统的一套光学仪器做一种光学实验的状况,本项目开发的组合 光学实验仪覆盖中学、大学、研究生阶段的几何光学和物理光学实验,可以 做一系列的光学实验。项目在仪器的模块化和标准化上进行了大胆的创新, 其组件安装便捷,有利于学生开展自主性研究性学习,提高学生的实验动手 能力,培养学生的创新精神和创新能力。该项目已获授权专利1项,发表学 术论文1篇(已接受),所研制的仪器具有广阔的市场前景,并已经产生一 定的社会经济效益。

本项目的研究已经完成了预定的研究内容,取得了预期的研究成果,本人推荐本项目作为浙江省大学生科技创新活动计划项目结题。

指导老师签名:

年 月 日

(盖章)	年	月	日
(盖章)	年	月	日
专家组组	1长(签	(章	
	年	月	E
(盖章)		月	日
	(盖章) 专家组组	年 (盖章) 年 专家组组长年 (盖章)	年月 (盖章) 年月 专家组组长(签章) 年月