1

JEE Questions 4

EE24BTECH11012 - Bhavanisankar G S

_ ·	iangle, the smallest angight angled triangle, the	_	ned by taking the reciprocal of the
a) $\frac{\sqrt{5}+1}{4}$	b) $\frac{\sqrt{5}-1}{2}$	c) $\frac{\sqrt{2}-1}{2}$	d) $\frac{\sqrt{5}-1}{4}$
2) If (α, β) is a point	int on $y^2 = 6x$, that is cl	osest to $(3, \frac{3}{2})$ then find 2	$2(\alpha + \beta)$

3) Consider the line **L** given by the equation $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{1}$. Let Q be the mirror image of the point (2,3,-1) with respect to **L**. Let a plane **P** be such that it passes through Q, and the line **L** is perpendicular to **P**. Then which of the following points is on the plane **P**?

c) 7

d) 5

a)
$$(-1,1,2)$$
 b) $(1,1,1)$ c) $(1,1,2)$ d) $(1,2,2)$

4) Let $g(t) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$, where $f(x) = \log\left(x + \sqrt{x^2 + 1}\right)$, $x \in \mathbb{R}$. Then which of the following is correct?

a)
$$g(1) = g(0)$$
 b) $\sqrt{2}g(1) = g(0)$ c) $g(1) = \sqrt{2}g(0)$ d) $g(1) + g(0) = 0$

5) Let P be a variable point on the parabola $y = 4x^2 + 1$. Then the locus of the mid-point of the point P and the foot of perpendicular drawn from the point P to the line y = x is :

a)
$$(3x - y)^2 + (x - 3y) + 2 = 0$$

b) $2(3x - y)^2 + (x - 3y) + 2 = 0$
c) $(3x - y)^2 + 2(x - 3y) + 2 = 0$

b) 9

d)
$$2(x-3y)^2 + (3x-y) + 2 = 0$$

a) 6

I. Integer-Type Questions

1) The sum of all the local minimum values of the twice differentiable function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3 - 3x^2 - \frac{3f''(2)}{2}x + f''(1)$ is :

2) For natural numbers m, n if $(1-y)^m (1+y)^n = 1 + a_1 y + a_2 y^2 + \dots + a_{m+n} y^{m+n}$ and $a_1 = a_2 = 10$ then he value of (m + n) is equal to :

3) The value of 21 $\tan \left(2 \tan^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13}\right)$ is : 4) Let a curve y = y(x) be given by the solutio of the differential equation

$$\cos\left(\frac{1}{2}\cos^{-1}e^{-x}\right)dx = \sqrt{e^{2x} - 1}dy$$

If it intersects y-axis at y = -1 and the intersection point of the curve with the x-axis is $(\alpha, 0)$, then e^{α} is equal to :

5) For $p \ge 0$, a vector $\mathbf{v_2} = 2\mathbf{i} + (p+1)\mathbf{j}$ is obtained by rotating the vector $\mathbf{v_1} = \sqrt{3}p\mathbf{i} + \mathbf{j}$ by an angle θ about the origin in counter clockwise direction. If $\tan \theta = \frac{\alpha\sqrt{3}-2}{4\sqrt{3}+3}$, then the value of α is equal to:

6) Consider a triangle with vertices $\mathbf{A}(-2,3)$, $\mathbf{B}(1,9)$, $\mathbf{C}(3,8)$. If a line \mathbf{L} passing through the circumcentre of the triangle ABC, bisects line BC, and intersects y-axis at point $(0, \frac{\alpha}{2})$ then the value of real number α is :

7) For $k \in \mathbb{N}$, let

$$\frac{1}{\alpha(\alpha+1)(\alpha+2)\dots(\alpha+20)} = \sum_{k=0}^{20} \frac{A_k}{\alpha+k}$$

where $\alpha > 0$. Then the value of $100 \left(\frac{A_{14} + A_{15}}{A_{13}}\right)^2$ is :

- 8) Let {a_n}_{n=1}[∞] be a sequence such that a₁ = 1, a₂ = 1 and a_{n+2} = 2a_{n+1} + a_n for all n ≥ 1. Then the value of 47 ∑_{n=1}[∞] a_{n/2} is equal to:
 9) Let r₁ and r₂ be the radii of the largest and smallest circles respectively which pass through the point (-4, 1) and having their centres on the circumference of the circle x² + y² + 2x + 4y 4 = 0 If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then a + b is equal to
- 10) The absolute value of $k \in \mathbf{R}$, for which the following system of linear equations

$$3x - y + 4z = 3 \tag{1}$$

$$x + 2y - 3z = -2 \tag{2}$$

$$6x + 5y + kz = -3 (3)$$

has infinitely many solutions is: