

# Mathématiques

Classe: BAC

Chapitre: Suites Réelles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba





## Exercice 1:

(S) 30 min

5 pts



Soit  $(u_n)$  la suite réelle définie sur *IN* par :  $u_0 = \frac{1}{4}$  et  $u_{n+1} = u_n \left(1 - \sqrt{u_n}\right)^2$ 

- **1°) a)** Montrer que pour tout  $n \in IN$  on a :  $0 < u_n < 1$ .
  - **b)** Montrer que  $(u_n)$  est décroissante.
  - c) En déduire que  $(u_n)$  est convergente et calculer sa limite.
- **2°)** Pour tout  $n \in IN$ ; On pose  $S_n = \sum_{k=0}^n u_k$ .
  - a) Montrer que pour tout  $k \in IN$  ,  $u_k = \sqrt{u_k} \sqrt{u_{k+1}}$  .
  - **b)** En déduire que pour tout  $n \in IN$ ;  $S_n = \frac{1}{2} \sqrt{u_{n+1}}$  et calculer  $\lim_{n \to +\infty} S_n$ .
- **3°)** Soit  $(v_n)$  la suite réelle définie sur IN par  $v_0 = \sqrt{2}$  et  $v_{n+1} = \frac{v_n}{\sqrt{1 + u_n \cdot v_n^2}}$ .
  - a) Montrer par récurrence que pour tout  $n \in IN$ ;  $v_n = \frac{1}{\sqrt{1 \sqrt{u_n}}}$ .
  - **b)** En déduire  $\lim_{n\to+\infty} v_n$ .

## Exercice 2:

© 24 min

4 pts



On pose, pour tout n de IN\*,  $u_n = \sqrt{n+1} - \sqrt{n}$ .

- **1°)** Montrer que pour tout  $n \in IN^*$ , on a :  $\frac{1}{2\sqrt{n+1}} < u_n < \frac{1}{2\sqrt{n}}$ .
- **2°)** En déduire la limite de la suite  $(u_n)$ .
- **3°)** Pour tout  $n \in IN^*$ , on pose :  $v_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$ .
  - a) Montrer que pour tout  $n \in IN^*$ , on a :  $v_n \ge \sqrt{n}$ . En déduire la limite de la suite  $(v_n)$ .
- **b)** En utilisant la double inégalité,  $u_n < \frac{1}{2\sqrt{n}} < u_{n-1}$ , montrer que la suite de terme générale  $\frac{v_n}{\sqrt{n}}$  converge vers le réel 2.





## Exercice 3:

(S) 36 min

6 pts



Soit  $(u_n)$  la suite définie sur *IN* par :  $\begin{cases} u_0 \in \ ]0,1[\ \cup\ ]1,+\infty[ \\ u_{n+1} = u_n - u_n^2 \ , \quad \text{pour tout } n \in \text{IN} \end{cases}$ 

- 1°) a) Montrer que la suite  $(u_n)$  est décroissante
  - **b)** Démontrer que **si** la suite  $(u_n)$  converge **alors**  $\lim_{n \to +\infty} u_n = 0$ .
- **2°)** On suppose dans cette question que  $0 < u_0 < 1$ .
  - a) Montrer que pour tout  $n \in IN$ ,  $0 < u_n < 1$ .
  - **b)** En déduire que  $(u_n)$  est convergente.
  - c) On pose pour tout  $n \in IN$ ,  $T_n = \sum_{k=0}^n u_k^2$ , Calculer  $\lim_{n \to +\infty} T_n$ .

Dans la suite, on prend  $u_0 > 1$ 

- **3°) a)** Vérifier que  $u_1 < 0$ .
  - **b)** Montrer par récurrence que pour tout  $n \in IN^*$ ,  $u_n \le u_1$ .
  - c) En déduire que la suite  $(u_n)$  n'est pas minorée, et déterminer sa limite.
  - **d)** On pose pour tout  $n \in IN^*$ ,  $S_n = \sum_{i=0}^{n-1} \frac{1}{1-u_i}$ .

Vérifier que pour tout  $k \in IN$ ,  $\frac{1}{1-u_k} = \frac{1}{u_{k+1}} - \frac{1}{u_k}$  et calculer  $\lim_{n \to +\infty} S_n$ .

### Exercice 4:

(5) 30 min 5 pts



**1°)** Dans la figure ci-contre on donne  $\,C_f\,$  la courbe d'une fonction f dérivable sur IR, et  $\Gamma$  la courbe de f' (fonction dérivée de f).

On a tracer sur le graphique les asymptotes à  $\Gamma$ 

(Droites en pointillés).

Montrer que  $g: x \mapsto f(x) + x$  est croissante sur  $\begin{bmatrix} -4,4 \end{bmatrix}$ 

**2°)** Soit  $(u_n)$  la suite définie sur *IN* par :



$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + f(u_n), \text{ pour tout } n \in IN \end{cases}$$

- a) Montrer que pour tout  $n \in IN : 0 \le u_n \le 4$ .
- **b)** Montrer que  $(u_n)$  est croissante.
- c) Déduire que  $(u_n)$  est convergente et déterminer sa limite.





- **2°)** Pour tout  $n \in IN$ , on pose :  $v_n = \sum_{k=0}^n f(u_k)$ . Montrer que  $v_n = u_{n+1} 1$  et déduire  $\lim_{n \to +\infty} v_n$ .
- **3°)** Pour tout  $n \in IN$ , on pose :  $W_n = \sum_{k=0}^n (u_{k+1} + u_k)$ .

Montrer que pour tout  $k \in IN : u_{k+1} + u_k \ge 2$  . En déduire  $\lim_{n \to +\infty} w_n$  .

## Exercice 5:



4 pts



On considère la suite  $\left(U_n\right)$  définie par :  $\begin{cases} U_0=0 &; \quad U_1=1\\ U_{n+2}=\frac{2}{3}U_{n+1}-\frac{1}{9}U_n, \text{ pour tout } n\in IN \end{cases}$ 

Soient  $(V_n)$  et  $(W_n)$  deux suites définie sur *IN* par :  $V_n = U_{n+1} - \frac{1}{3}U_n$  et  $W_n = 3^nU_n$ .

- 1°) Montrer que  $(V_n)$  est une suite géométrique et déterminer sa raison, puis déterminer  $V_n$  en fonction de n.
- **2°)** Montrer que  $(W_n)$  est une suite arithmétique.
- **3°)** Déterminer l'expression de  $U_n$  en fonction de n.
- **4°) a)** Montrer que pour tout entier naturel  $n \in IN^*$  on a :  $0 < U_{n+1} \le \frac{2}{3}U_n$ .
  - **b)** Déduire que pour tout entier naturel  $n \in IN^*$ :  $0 < U_n \le \frac{3}{2} \left(\frac{2}{3}\right)^n$ .
  - **c)** Calculer alors  $\lim_{n\to+\infty} U_n$ .

## Exercice 6:

(5) 24 min

4 pts



Soit  $(u_n)$  la suite définie par :  $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{u_n}{\sqrt{2 - u_n^2}}, \text{ pour tout } n \in IN \end{cases}$ 

- **1°)** Montrer que pour tout  $n \in IN$  , on a :  $0 \le u_n \le 1$  .
- **2°)** Montrer que  $(u_n)$  est décroissante, en déduire qu'elle est convergente et calculer sa limite.





**3°) a)** Montrer que pour tout  $n \in IN$ , on a :  $u_{n+1} \le \frac{2\sqrt{7}}{7} u_n$ . En déduire que pour tout  $n \in IN$ ,

on a:

$$u_n \leq \frac{1}{2} \left( \frac{2\sqrt{7}}{7} \right)^n$$
.

- **b)** Retrouver alors  $\lim_{n\to+\infty} u_n$ .
- **4°)** Soit  $(S_n)$  la suite réelle définie sur IN par :  $S_n = \sum_{k=0}^n u_k$  .
  - a) Montrer que  $(S_n)$  est majorée.
  - b) En déduire qu'elle est convergente.

#### Exercice 7:



5 pts



On considère les suites  $(a_n)$  et  $(b_n)$  définies par :  $a_0=3$  ,  $b_0=1$  et pour tout entier naturel n on a :  $a_{n+1}=\frac{2a_n+b_n+3}{3}$  et  $b_{n+1}=\frac{a_n+2b_n+3}{3}$  . On pose  $u_n=a_n-b_n$ 

- **1°) a)** Montrer que pour tout entier naturel n,  $u_n = 2\left(\frac{1}{3}\right)^n$ .
  - **b)** En déduire la limite de  $(u_n)$
- **2°)** On pose , pour  $n \in IN^*$  ,  $v_n = \frac{a_n + b_n}{n}$ 
  - a) Montrer que pour tout  $n \ge 1$  on a :  $v_n \ge 2$ .
  - **b)** Montrer que pour tout  $n \ge 1$  on a :  $v_{n+1} = v_n + \frac{2 v_n}{n+1}$ .
  - **c)** En déduire que  $(v_n)$  converge vers un réel 1>0 .
- **3°)** Exprimer alors  $a_n$  et  $b_n$  en fonction de  $u_n$ ,  $v_n$  et n puis déterminer les limites des suites  $(a_n)$  et  $(b_n)$ .









Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba



www.takiacademy.com



**73.832.000**