Grundlagen der Programmierung (Vorlesung 7)

Ralf Möller, FH-Wedel

- Vorige Vorlesung
 - Boole'sche Logik, Resolution
- Inhalt dieser Vorlesung
 - Prädikatenlogik erster Stufe
- Lernziele
 - Syntax, Semantik
 - Entscheidungsprobleme
 - Anwendungen

Über das was wir machen müssen!

Computer science is no more about computers than astronomy is about telescopes.

E. W. Dijkstra

Motivation

- Aussagenlogik: Aussagen als unteilbares Ganzes (atomare Formeln)
- Beispiel:
 - Wenn es regnet, werde ich naß: $R \rightarrow N$
 - Es regnet: R
 - Also: werde ich naß: N
- Wenn...dann: Wahrheitstabelle der Implikation
 - Wenn die Vorbedingung falsch ist, soll der ganze Implikationsterm wahr sein!
- Aussagenlogik recht m\u00e4chtig (wir konnten z.B. schlie\u00eden, da\u00ed Supermann nicht existiert)

Probleme (1)

- Gegeben
 - Alle Metalle leiten den Strom (A)
 - Kupfer ist ein Metall (B)
- Gewünschte Folgerung
 - Kupfer leitet den Strom (C)
- In Formeln (vielleicht):
 - $A \wedge B \rightarrow C$

Probleme (2)

- Gegeben
 - Alle Metalle leiten den Strom (A)
 - Eisen ist ein Metall (D)
- Gewünschte Folgerung
 - Eisen leitet den Strom (E)
- In Formeln (vielleicht):
 - $A \wedge D \rightarrow E$
- Neue Formeln für alle möglichen Metalle erforderlich!
- Gemeinsamkeiten nicht repräsentiert

Motivation (2)

- In Anwendungen ergeben sich Aussagen z.B. durch Analyse natürlichspracher Sätze (siehe Supermann-Beispiel)
- Sätze haben eine grammatische Struktur
- Wir betrachten einfach Satzstrukturen:
 - Subjekt-Prädikat: Ich schlafe
 - Subjekt-Prädikat-Objekt: Ich verfolge die Vorlesung

Subjekt-Prädikat-Strukturen

- Beispiel: Energie ist wertvoll
- Nutzung: Beschreibung von Eigenschaften
- Eigenschaften heißen Prädikate: Wertvoll-sein
- Wir betrachten einstellige Prädikate, die Eigenschaften eines "Subjekts" (auch Individuum genannt) beschreiben
- Formalisierung:
 - Prädikate mit Großbuchstaben: P, Q, R, ...
 - Subjekte mit Kleinbuchstaben: x, y, z, ...

Einstellige Prädikate

- Notation: Wertvoll(x), P(x), ...
- Subjekte wie x bezeichnet man auch als Variablen
- Belegung der Variable: Übergang zur Aussage:
 - Wertvoll(blaue-Mauritius)
 - Die blaue Mauritius ist wertvoll
- Mögliche Belegungen für x aus vorgegebener Grundmenge

Subjekt-Prädikat-Objekt-Strukturen

- Beispiel: Edelgard ist mit Wolfgang verheiratet
- Variablen für Subjekt (Edelgard) und Objekt (Wolfgang) benötigt
- Prädikat beschreibt Beziehung (oder Relation) zwischen Subjekt und Objekt

Zweistellige Prädikate

- Verheiratet-mit(x, y), P(x, y)
- Verheiratet-mit(Edelgard, Wolfgang)

Verallgemeinerung: n-stellige Prädikate

- Blankenese liegt zwischen Wedel und Altona.
- Prädikat: Zwischen
- Dreistellig
- Im allgemeinen: $P(x_1, x_2, ..., x_n)$

Notation

- Manchmal ist die Notation P(x,y) ungewohnt
- Beispiel: Prädikat Kleiner-als (<)
- Infix-Notation: x < y</p>

Verknüpfung von Aussagen

- Beispiel: 2 und 3 sind Teiler von 6
- Steht für
 - 2 ist Teiler von 6
 - 3 ist Teiler von 6
- In Prädikatenschreibweise
 - Teiler-von(2, 6) ∧ Teiler-von(3, 6)
- Beispiel: 4 ist nicht Teiler von 6
 - ¬Teiler-von(4, 6)

Namen für Funktionen

- Bei vielen Anwendungen bequem: Einführung von **Namen** für Funktionen
 - f, g, h, ... (rein syntaktische Namen, Funktorvariablen)
 - $f_1, f_2, f_3, ...$
- Funktoren haben eine festgelegte Stelligkeit und werden auf Variablen angewendet
- \blacksquare Terme: f(x, y)
 - Manchmal auch Infix-Schreibweise

Anwendung von Namen für Funktionen

- Beschreibung eines Objekts, das sich aus der Verknüpfung von x und y ergibt
- Beispiel:
 - Wenn y größer als 0, dann ist x+y größer als x
 - $(y > 0) \rightarrow ((x + y) > x)$
 - Oder: $(y, 0) \rightarrow (+(x, y), x)$

Quantisieren von Aussagen

- Eingangsbeispiel "Alle Metalle leiten den Strom" nicht von Subjekt-Prädikat-Struktur erfaßt
- Einstelliges Prädikat Leitet-den-Strom bezieht sich nicht auf einen einzelnen Gegenstand
- Vielmehr wird ausgesagt, daß alle Subjekte, die Metalle sind, diese Eigenschaft besitzen
- Formalisierung durch Allquantor (auch: Universalquantor, Generalisator)
- Für alle x gilt: wenn x ein Metall ist, dann leitet x den Strom

Quantisieren von Aussagen (2)

- Für alle x gilt: Metall(x) \rightarrow Leitet-Strom(x)
- Notation: $\forall x (Metall(x) \rightarrow Leitet-Strom(x))$
- Man beachte: Es muß nicht notwendigerweise überhaupt Metalle geben! Die Für-alle-Aussage ist ja dann nicht falsch
- Manchmal möchte man die Existenz aber fordern
- Es gibt ein x: Metall(x), oder genauer aber synonym:
- Es gibt mindestens ein x: Metall(x)
- Notation: $\exists x (Metall(x))$ Existenzquantor

Syntax der Prädikatenlogik

Danksagung

Die Folien zur Prädikatenlogik nach dem Buch "Logik für Informatiker" von Uwe Schöning wurden übernommen von Javier Esparza (http://wwwbrauer.in.tum.de/lehre/logik/SS99/)

Variablen, Symbole, Terme

Eine *Variable* hat die Form x_i mit $i = 1, 2, 3 \dots$

Ein Prädikatensymbol hat die Form P_i^k und ein Funktionssymbol hat die Form f_i^k mit i=1,2,3... und k=0,1,2... Hierbei heißt i jeweils der Unterscheidungsindex und k die Stellenzahl (oder Stelligkeit). Wir definieren nun die Terme durch einen induktiven Prozeß:

- 1. Jede Variable ist ein Term.
- 2. Falls f ein Funktionssymbol mit der Stellenzahl k, und falls t_1, \ldots, t_k Terme sind, so ist auch $f(t_1, \ldots, t_k)$ ein Term.

Hierbei sollen auch Funktionssymbole der Stellenzahl 0 eingeschlossen sein, und in diesem Fall sollen die Klammern wegfallen. Nullstellige Funktionssymbole heißen auch *Konstanten*.

Formeln

Nun können wir (wiederum induktiv) definieren, was *Formeln* (der Prädikatenlogik) sind.

- 1. Falls P ein Prädikatsymbol der Stelligkeit k ist, und falls t_1, \ldots, t_k Terme sind, dann ist $P(t_1, \ldots, t_k)$ eine Formel.
- 2. Für jede Formel F ist auch $\neg F$ eine Formel.
- 3. Für alle Formeln F und G sind auch $(F \wedge G)$ und $(F \vee G)$ Formeln.
- 4. Falls x eine Variable ist und F eine Formel, so sind auch $\exists xF$ und $\forall xF$ Formeln. Das Symbol \exists wird Existenz quantor und \forall *Allquantor* genannt.

Atomare Formeln nennen wir genau die, die gemäß 1. aufgebaut sind. Falls F eine Formel ist und F als Teil einer Formel G auftritt, so heißt F Teilformel von G.

Freie und gebundene Variablen, Aussagen

Alle Vorkommen von Variablen in einer Formel werden in *freie* und *gebundene* Vorkommen unterteilt. Dabei heißt ein Vorkommen der Variablen x in der Formel F gebunden, falls x in einer Teilformel von F der Form $\exists xG$ oder $\forall xG$ vorkommt. Andernfalls heißt dieses Vorkommen von x frei.

Eine Formel ohne Vorkommen einer freien Variablen heißt *geschlossen* oder eine *Aussage*.

Die *Matrix* einer Formel F ist diejenige Formel, die man aus F erhält, indem jedes Vorkommen von \exists bzw. \forall , samt der dahinterstehenden Variablen gestrichen wird. Symbolisch bezeichnen wir die Matrix der Formel F mit F^* .

Aufgabe

NF: Nicht-Formel F: Formel, aber nicht Aussage A: Aussage

	NF	F	A
$\forall x P(a)$			
$\forall x \exists y (Q(x,y) \lor R(x,y))$			
$\forall x Q(x, x) \to \exists x Q(x, y)$			
$\forall x P(x) \lor \forall x Q(x,x)$			
$\forall P(x)$			
$P(x) \to \exists x$			
$\forall \exists P(x)$			
$\forall x \neg \forall y Q(x, y) \land R(x, y)$			
$\exists z (Q(z,x) \lor R(y,z)) \to \exists y (R(x,y) \land Q(x,z))$			
$\exists x (\neg P(x) \lor P(a))$			
$P(x) \to \exists x P(x)$			
$\exists x \forall y ((P(y) \to Q(x,y)) \lor \neg P(x))$			

Semantik der Prädikatenlogik

Struktur, passende Strukturen

Eine Struktur ist ein Paar $A = (U_A, I_A)$ wobei U_A eine beliebige aber nicht leere Menge ist, die die Grundmenge von A (oder der Grundbereich, der Individuenbereich, das Universum) genannt wird. Ferner ist I_A eine Abbildung, die

- jedem k-stelligen Prädikatensymbol P (das im Definitionsbereich von I_A liegt) ein k-stelliges Prädikat über U_A zuordnet,
- jedem k-stelligen Funktionssymbol f (das im Definitionsbereich von I_A liegt) eine k-stellige Funktion auf U_A zuordnet,
- jeder Variablen x (sofern I_A auf x definiert ist) ein Element der Grundmenge U_A zuordnet.

Sei F eine Formel und $A = (U_A, I_A)$ eine Struktur. A heißt zu F passend, falls I_A für alle in F vorkommenden Prädikatsymbole, Funktionssymbole und freien Variablen definiert ist.

Mit anderen Worten, der Definitionsbereich von I_A ist eine

 $I_A(x)$ einfach x^A .

Teilmenge von $\{P_i^k, f_i^k, x_i | i = 1, 2, 3, \dots \text{ und } k = 0, 1, 2, \dots\}$, und der Wertebereich von I_A ist eine Teilmenge aller Prädikate und Funktionen auf U_A , sowie der Elemente von U_A . Wir schreiben

abkürzend statt $I_A(P)$ einfach P^A , statt $I_A(f)$ einfach f^A und statt

Zusammenfassung, Kernpunkte

- Prädikatenlogik
 - Syntax, Formeln
 - Semantik, Belegung, Modell
 - Entscheidungsprobleme
 - Äquivalente Transformation von Formeln
 - Normalformen
- Anwendungsmotivation:
 - Bedingungen in Algorithmen
- Beweistechniken

Was kommt beim nächsten Mal?

- Spezifikationen
- Algorithmen
- Anweisungen
 - Syntax
 - Semantik