Self-Improving Diffusion Models with Synthetic Data

Sina Alemohammad Ahmed Imtiaz Humayun Shruti Agarwal John Collomosse Richard Baraniuk

Rice University, Adobe Research

ICLR 2025

Presenter: Haotian Liu

August 23, 2025

Introduction

Background Model Authophagy Disorder Diffusion Models Overview

Method

Experiments

Self-Improving Diffusion Models MAD prevention using SIMS Realistic Data in A Synthetic Augmentation Loop Distribution Shifts with SIMS

Introduction

Background Model Authophagy Disorder Diffusion Models Overview

Method

Experiments

Self-Improving Diffusion Models
MAD prevention using SIMS
Realistic Data in A Synthetic Augmentation Loop
Distribution Shifts with SIMS

Background

Task

▶ Using synthetic data to improve the performance of generative models, particularly diffusion models.

Limitations

- Over many generations of training, the quality and/or diversity of synthetic data will decrease, resulting in Model Autophagy Disorder (MAD) and Model Collapse.
- ► MADness arises because synthetic data, regardless of how accurately it is modeled and generated, is still an approximation of samples from the real data distribution.
- ► An autophagous loop causes any approximation errors to be compounded, ultimately resulting in performance deterioration and bias amplification.

Model Authophagy Disorder

 $\mathcal{A}(\cdot)$ is an algorithm that, given a training dataset \mathcal{D} as input, constructs a generative model with distribution \mathcal{G} , i.e., $\mathcal{G}=\mathcal{A}(\mathcal{D})$. Consider a sequence of generative models $\mathcal{G}^t=\mathcal{A}(\mathcal{D}^t)$ for $t\in\mathbb{N}$.

Let $\operatorname{dist}(\cdot,\cdot)$ denote a distance metric on distributions. A MAD generative process is a sequence of distributions $(\mathcal{G}^t)_{t\in\mathbb{N}}$ such that $\mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^t,p_{\mathbf{r}}\right)\right]$ increases with t. There are some main loop types:

- **Case 1: Fully Synthetic Loop.** Training data is purely synthetic: $\mathcal{D}_t = \mathcal{D}_s^{t-1}$
- ▶ Case 2: Synthetic Augmentation. Training data mixes a fixed real dataset \mathcal{D}_r with synthetic data: $\mathcal{D}_t = \mathcal{D}_r \cup \mathcal{D}_s^{t-1}$

In particular, for the fully synthetic loop, it has been shown theoretically and experimentally that $\mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^{\infty},p_{r}\right)\right]\to\infty$.

Model Authophagy Disorder

Mitigating MAD

Goal: Ensure performance does not diverge.

$$\mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^{\infty}, p_{\mathbf{r}}\right)\right] \leq C$$

However, performance is still worse than the initial model:

$$\mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^{\infty}, p_{\mathrm{r}}\right)\right] > \mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^{1}, p_{\mathrm{r}}\right)\right]$$

Achieved by: Synthetic augmentation, accumulating past data.

Preventing MAD

Goal: Maintain or improve initial performance.

$$\mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^{\infty}, p_{\mathrm{r}}\right)\right] \leq \mathbb{E}\left[\operatorname{dist}\left(\mathcal{G}^{1}, p_{\mathrm{r}}\right)\right]$$

Existing approaches that prevent MAD are not closed-loop. They rely on new external information at each step, such as a data verifier or filter, external guidance during generation, or a fresh stream of real data.

Background

Open Question

- ► How can we best exploit synthetic data in generative model training to improve real data modeling and synthesis?
- ► How can we exploit synthetic data in generative model training in a way that does not lead to MADness in the future?

Solution

Develop Self-IMproving diffusion models with Synthetic data (SIMS), a new learning framework for generative models that addresses both of the above issues simultaneously.

Diffusion Models Overview

Forward Process:

Start with a data instance $x_0 \sim p(x)$ and gradually add noise.

The distribution of the noisy sample x_t at time t given x_0 is a Gaussian:

$$q_t(x_t|x_0) = \mathcal{N}(x_t \mid \mu = a_t x_0, \Sigma = \sigma_t^2 I)$$
(1)

where a_t and σ_t are predefined scaling and noise schedules.

This process can also be described by a Stochastic Differential Equation (SDE):

$$dx = f(x, t) dt + g(t) dw (2)$$

where w is the standard Wiener process (i.e., Brownian motion).

Note: For more details, see this link,

Diffusion Models Overview

Reverse Process: Generating Data

To generate data, we need to solve the reverse-time SDE, which starts from noise x_T and evolves towards a clean sample x_0 . The reverse SDE is given by:

$$dx = \left[f(x,t) - g^2(t) \nabla_{x_t} \log q_t(x_t) \right] dt + g(t) d\bar{w}$$
(3)

Train a neural network $s_{\theta}(x_t, t)$ to approximate the unknown score function:

$$s_{\theta}(x_t, t) \approx \nabla_{x_t} \log q_t(x_t)$$

The model is trained by minimizing the following score-matching objective:

$$\min_{\theta} \frac{1}{|D|} \sum_{t} \mathbb{E}_{t, x_t \sim q_t(x_t|x_0)} \left[\lambda(t) \| s_{\theta}(x_t, t) - \nabla_{x_t} \log q_t(x_t) \|^2 \right]$$
 (4)

where D is the training set and $\lambda(t)$ is a weighting function.

Introduction

Background Model Authophagy Disorder Diffusion Models Overview

Method

Experiments

Self-Improving Diffusion Models
MAD prevention using SIMS
Realistic Data in A Synthetic Augmentation Loop
Distribution Shifts with SIMS

Method

- ► Training a first-generation base diffusion model on exclusively real data results in a score function in the vicinity of the ground truth.
- Naïvely fine-tuning on synthetic data creates an auxiliary model (s_{θ_s}) that drifts **further** away from the Ground Truth, following the trajectory towards MADness.
- Instead of accepting degradation, SIMS uses the drift vector $(s_{\theta_s} s_{\theta_r})$ to **linearly extrapolate backwards**. This pushes the final model into the inaccessible region, creating samples closer to the truth than the original base model.

Method

Algorithm 1 SIMS Procedure

Input: Training dataset \mathcal{D}

Hyperparameters: Synthetic dataset size n_s , guidance strength ω , training budget \mathcal{B}

- 1: **Train base diffusion model**: Use dataset \mathcal{D} to train the diffusion model using standard training, resulting in the score function $s_{\theta_t}(x_t, t)$.
- 2: Generate auxiliary synthetic data: Create an internal synthetic dataset S by generating $n_s = |S|$ samples from the base diffusion model.
- 3: **Train auxiliary diffusion model**: Fine-tune the base model using only S within the training budget B to obtain $s_{\theta_a}(x_t, t)$. Discard S.
- 4: Extrapolate the score function: Use $s_{\theta_s}(x_t,t)$ to extrapolate backwards from $s_{\theta_r}(x_t,t)$ to the SIMS score function

$$\boldsymbol{s}_{\theta}(\boldsymbol{x}_t,t) = \boldsymbol{s}_{\theta_{\mathrm{r}}}(\boldsymbol{x}_t,t) - \omega(\boldsymbol{s}_{\theta_{\mathrm{s}}}(\boldsymbol{x}_t,t) - \boldsymbol{s}_{\theta_{\mathrm{r}}}(\boldsymbol{x}_t,t)) = (1+\omega)\boldsymbol{s}_{\theta_{\mathrm{r}}}(\boldsymbol{x}_t,t) - \omega\boldsymbol{s}_{\theta_{\mathrm{s}}}(\boldsymbol{x}_t,t).$$

Synthesize: Generate synthetic data from the model using the SIMS score function $s_{\theta}(x_t, t)$.

- **Synthetic Dataset Size** (n_s) : Too large implies No guidance. Too small implies a Poor estimate of drift, which means Ineffective guidance. Match the real dataset size.
- ▶ Auxiliary Training Budget (𝔞): The goal is a score function that is "not too different, not too similar". Must find the optimal stopping point.
- ► Inference Computational Cost: SIMS requires twice the function evaluations at inference time. Apply guidance only within a limited time interval.

Introduction

Background Model Authophagy Disorder Diffusion Models Overview

Method

Experiments

Self-Improving Diffusion Models MAD prevention using SIMS Realistic Data in A Synthetic Augmentation Loop Distribution Shifts with SIMS

Main Experiment

- ▶ Dataset: 32×32 resolution CIFAR-10 (50k images); 64 × 64 resolution FFHQ-64 (70k images), 64 × 64 resolution ImageNet-64, and 512 × 512 resolution ImageNet-512 (1.2M images).
- ▶ Base Model: For CIFAR-10 and FFHQ-64, use the unconditional Variance Preserving (VP) variant of the EDM diffusion model as the base model for SIMS. For ImageNet-64 and ImageNet-512, use the conditional EDM2-S model.
- ▶ Baseline Comparison: Standard diffusion-based image generation baselines, including ADM, RIN, EDM2-{S, M, L, XL}, DDPM, EDM-VP, NCSN++. Generative adversarial networks, including StyleGAN-XL and StyleGAN-2-ADA. Discriminator guided models EDM-G++ and LSGM-G++. Autoguidance guided models EDM2-{S,XL}.

Qualitative Results

Model	FID \	NFE ↓	Mparams
DDPM (Ho et al., 2020)	3.17	1000	
StyleGAN2-ADA (Karras et al., 2020)	2.92	1	
LSGM (Vahdat et al., 2021)	2.10	138	-
NCSN++ (Song et al., 2021)	2.20	2000	
GDD Distill. (Zheng and Yang, 2024)	1.66	1	
GDD-I Distill. (Zheng and Yang, 2024)	1.54	1	
EDM-VP (Karras et al., 2022)	1.97	35	280
EDM-G++ (Kim et al., 2023)	1.77	35	
LSGM-G++ (Kim et al., 2023)	1.94	138	
EDM-VP + SIMS (Ours)	1.41	70	560
EDM-VP + SIMS + ST (Ours)	1.33	70	560

FFHQ 64×64				
Model	FID↓	NFE↓	Mparams	
EDM-VE (Karras et al., 2022)	2.53	79	280	
EDM-VP (Karras et al., 2022)	2.39	79	280	
EDM-G++ (Kim et al., 2023)	1.98	71		
GDD Distill. (Zheng and Yang, 2024)	1.08	1		
GDD-I Distill. (Zheng and Yang, 2024)	0.85	1		
EDM-VP + SIMS (Ours)	1.04	158	560	
EDM-VP + SIMS + ST (Ours)	1.03	158	560	

ImageNet 64×64				
Model	FID ↓	NFE↓	Mparams	
ADM (Dhariwal and Nichol, 2021)	2.07	250		
StyleGAN-XL (Sauer et al., 2022)	1.51	1		
RIN (Jabri et al., 2023)	1.23	1000	280	
EDM2-S (Karras et al., 2024a)	1.58	63	280	
EDM2-M	1.43	63	498	
EDM2-L	1.33	63	777	
EDM2-XL	1.33	63	1119	
AutoGuidance-S (Karras et al., 2024b)	1.01	126	560	
GDD-I Distill. (Zheng and Yang, 2024)	1.21	1		
EDM2-S + SIMS (Ours)	0.92	126	560	

Model	FID↓	NFE ↓	Mparams
ADM-G (Dhariwal and Nichol, 2021)	7.72	250	
StyleGAN-XL (Sauer et al., 2022)	2.41	1	
RIN (Jabri et al., 2023)	3.95	1000	320
EDM2-S (Karras et al., 2024a)	2.56	63	280
EDM2-M	2.25	63	498
EDM2-L	2.06	63	777
EDM2-XL	1.96	63	1119
EDM2-XXL	1.91	63	1523
AutoGuidance-S (Karras et al., 2024b)	1.34	126	560
AutoGuidance-XL (Karras et al., 2024b)	1.25	126	2236
EDM2-S + SIMS (Ours)	1.73	126	560

- ► Self-improvement with synthetic data is more effective than simply scaling up model parameters.
- ► Guiding away from the model's flawed distribution is a more powerful strategy than guiding towards a realism score.

MAD prevention using SIMS

- Learn a simple two-dimensional Gaussian distribution $p_{\mathrm{r}} = \mathcal{N}(\mu, \Sigma)$ with mean $\mu = [0,0]^{\top}$ and covariance $\Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ using a DDPM diffusion model.
- ▶ Sample a real dataset \mathcal{D}_r of size $|\mathcal{D}_r| = 1000$ from $\mathcal{N}(\mu, \Sigma)$ and train the base model $\mathcal{G}^1 = \mathcal{A}(\mathcal{D}_r)$.
- lacktriangle Then form a synthetic augmentation loop, $\mathcal{G}^t = \mathcal{A}(\mathcal{D}_{
 m r} \cup \mathcal{D}_{
 m s}^{t-1}).$
- ▶ Calculate the Wasserstein distance $\operatorname{dist}(\cdot, \cdot)$ between the synthetic and real data distributions $\mathbb{E}[\operatorname{dist}(\mathcal{G}^t, p_r)]$.
- Two different training approaches: Standard training and SIMS.

Results

- Standard training on polluted data consistently degrades model performance.
- ▶ SIMS successfully counters this degradation, and with optimal guidance, can completely prevent MADness.
- ► The ability to prevent MAD depends on a **threshold**; too much synthetic data pollution limits SIMS to mitigation only.

Realistic Data in A Synthetic Augmentation Loop

- ▶ Use the EDM-VP model trained on CIFRA-10 and FFHQ-64.
- ▶ Standard training with purely real data, $\mathcal{G}_{\mathsf{ST-I}}^1$.
- ▶ Ideal SIMS training with purely real data, $\mathcal{G}_{\mathsf{SIMS-I}}^1$.
- ▶ Standard training with polluted real data, $\mathcal{G}^2_{\mathsf{ST-P}}$.
- ▶ SIMS training with polluted real data, $\mathcal{G}_{\mathsf{SIMS-P}}^2$.

Results

- ▶ Standard training is fragile: Its performance degrades severely with data pollution.
- ▶ SIMS is robust: Its performance is remarkably insensitive to the same data pollution.
- ► SIMS exploits pollution: It can leverage polluted data to surpass the original, clean-data model.

Distribution Shifts with SIMS

- ► **Goal**: Can SIMS not only improve sample quality but also **steer the output distribution** towards a desirable target, different from the training data?
- ► **Test Case:** Shift the gender representation in FFHQ-64 generations from the base model's **50% female** / **50% male** to a target of **70% female** / **30% male**.
- ► "Negative Guidance" Method: create a synthetic dataset S that is intentionally biased to be 30% female and 70% male.
- ▶ Execute SIMS: By guiding away from the male-dominant auxiliary model, the final output is pushed towards the female-dominant target.

Results

- **Distribution is Controllable:** The percentage of female faces smoothly and predictably increases with guidance strength ω , reaching the 70% target.
- **Quality is Simultaneously Improved:** The FID scores for both male and female images improve, reaching optimal quality at specific ω values.
- ▶ A Minor Trade-off Exists: The optimal ω for distribution accuracy may not perfectly align with the optimal ω for image quality.

Introduction

Background Model Authophagy Disorder Diffusion Models Overview

Method

Experiments

Self-Improving Diffusion Models
MAD prevention using SIMS
Realistic Data in A Synthetic Augmentation Loop
Distribution Shifts with SIMS

Conclusion

Conclusion: This paper introduces a new algorithm that uses synthetic data for negative guidance rather than data aggregation, steering models away from their flaws. It achieves new SOTA results on major benchmarks and offers a powerful tool to mitigate bias.

Open Research Questions

- 1. Why does SIMS not only tolerate but capitalize on data pollution to improve performance?
- Can this negative guidance principle be adapted to other architectures like GANs or VAEs?
- 3. Could two *different* high-performing models guide each other, creating a general defense against diverse synthetic data?
- 4. Can SIMS be extended to align with human preferences by using user feedback to shape the "negative" distribution?

Thank you!