Capítulo 16: Estruturas de sistemas distribuídos

Cap. 16: Estruturas de sistemas distribuídos

- Motivação
- Tipos de sistemas operacionais em rede
- Estrutura de rede
- Topologia de rede
- Estrutura de comunicação
- Protocolos de comunicação
- Robustez
- Aspectos de projeto
- Um exemplo: redes

Objetivos do capítulo

- Fornecer uma visão de alto nível dos sistemas distribuídos e as redes que os interconectam
- Discutir a estrutura geral dos sistemas operacionais distribuídos

Motivação

- Sistema distribuído é a coleção de processadores pouco acoplados, interconectados por uma rede de comunicações
- Os processadores são chamados de vários nomes, como nós, computadores, máquinas, hosts
 - Site é o local do processador
- Motivos para sistemas distribuídos
 - Compartilhamento de recursos
 - compartilhamento e impressão de arquivos em sites remotos
 - processamento de informações em um banco de dados distribuído
 - uso de dispositivos de hardware especializados
 - Aumento da velocidade de computação compartilhamento de carga
 - Confiabilidade detecta e recupera de falha do site, transferência de função, reintegra site que falhou
 - Comunicação passagem de mensagem

Um sistema distribuído

Tipos de sistemas operacionais distribuídos

- Sistemas operacionais de rede
- Sistemas operacionais distribuídos

Sistemas operacionais de rede

- Os usuários estão cientes da multiplicidade de máquinas. Acesso aos recursos de várias máquinas é feito explicitamente por:
 - Logging remoto na máquina remota apropriada (telnet, ssh)
 - Desktop remoto (Microsoft Windows)
 - Transferência de dados de máquinas remotas para máquinas locais, via mecanismo de File Transfer Protocol (FTP)

Sistemas operacionais distribuídos

- Usuários não cientes da multiplicidade de máquinas
 - Acesso a recursos remotos semelhante ao acesso a recursos locais
- Migração de dados transferência de dados transferindo arquivo inteiro, ou transferindo apenas as partes do arquivo necessárias para a tarefa imediata
- Migração da computação transferência da computação (ao invés dos dados) pelo sistema

Sistemas operacionais distribuídos (cont.)

- Migração de processo executa um processo inteiro, ou partes dele, em locais diferentes
 - Balanceamento de carga processos distribuídos pela rede, para equilibrar carga de trabalho
 - Ganho de velocidade de computação subprocessos podem executar simultaneamente em diferentes locais
 - Preferências de hardware execução do processo pode exigir processador especializado
 - Preferência de software software exigido pode estar disponível apenas em um local em particular
 - Acesso a dados executa processo remotamente, ao invés de transferir todos os dados localmente

Estrutura de rede

- Rede local (LAN) criada para abranger pequena área geográfica.
 - Rede de barramento multi-acesso, anel ou estrela
 - Velocidade ~ 10 100 megabits/segundo
 - Broadcast é rápido e barato
 - Nós:
 - normalmente, estações de trabalho e/ou computadores pessoais
 - alguns (normalmente um ou dois) mainframes

Representação de uma LAN típica

Tipos de rede (cont.)

- Rede remota (WAN) liga sites separados geograficamente
 - Conexões ponto-a-ponto por linhas de longa distância (normalmente, alugadas de uma companhia telefônica)
 - Velocidade ~ 1,544 45 megabits/segundo
 - Broadcast normalmente requer múltiplas mensagens
 - Nós:
 - normalmente, uma alta porcentagem de mainframes

Processadores de comunicação em uma rede remota

Topologia de rede

- Os sites no sistema podem ser conectados fisicamente de várias maneiras; eles são comparados com relação aos seguintes critérios:
 - Custo básico Qual o custo de ligar vários sites no sistema?
 - Custo de comunicação Quanto tempo é necessário para levar uma mensagem do site A ao site B?
 - Confiabilidade Se um enlace ou um site no sistema falhar, os sites restantes ainda podem se comunicar um com o outro?
- As diversas topologias são representadas como grafos cujos nós correspondem aos sites
 - Uma aresta do nó A ao nó B corresponde a uma conexão direta entre os dois sites

Topologia de rede

fully connected network

partially connected network

tree-structured network

star network

16.15

Estrutura de comunicação

O projeto de uma rede de *comunicação* deve enfocar quatro *questões* básicas:

- Nomeação e tradução de nomes Como dois processos localizam um ao outro para se comunicar?
- Estratégias de roteamento Como as mensagens são enviadas pela rede?
- Estratégias de conexão Como dois processos enviam uma seqüência de mensagens?
- Contenção A rede é um recurso compartilhado, logo, como resolvemos demandas em conflito pelo seu uso?

Nomeação e tradução de nomes

- Sistemas de nomes na rede
- Endereça mensagens com o process-id
- Identifica processos nos sistemas remotos com par <nome-host, identificador>
- Serviço de nome de domínio (DNS) especifica a estrutura de nomeação dos hosts, além de tradução de nome para endereço (Internet)

Estratégias de roteamento

- Roteamento fixo Um caminho de A para B é especificado a priori (fixo); o caminho só muda se uma falha de hardware o desativar
 - Normalmente é escolhido o caminho mais curto
 - Roteamento fixo não pode se adaptar a mudanças de carga
 - Garante que as mensagens serão entregues na ordem em que foram enviadas
- Circuito virtual Um caminho de A para B é fixado pela duração de uma sessão. Diferentes sessões envolvendo mensagens de A para B podem ter caminhos diferentes.
 - Remédio parcial para adaptar a mudanças de carga
 - Garante que as mensagens serão entregues na ordem em que foram enviadas

Estratégias de roteamento (cont.)

- Roteamento dinâmico O caminho usado para enviar uma mensagem do site A para o site B é escolhido apenas quando uma mensagem é enviada
 - Normalmente, um site envia uma mensagem para outro site no enlace menos usado nesse momento em particular
 - Adapta-se a mudanças de carga evitando mensagens de roteamento no caminho muito usado
 - Mensagens podem chegar fora de ordem
 - Esse problema pode ser remediado acrescentandose um número de seqüência a cada mensagem

Estratégias de conexão

- Comutação de circuitos Um enlace físico permanente é estabelecido pela duração da comunicação (por exemplo, sistema telefônico)
- Comutação de mensagem Um enlace temporário é estabelecido pela duração de uma transferência de mensagem (por exemplo, sistema de correios)
- Comutação de pacotes Mensagens de tamanho variável são dividida em pacotes de tamanho fixo, que são enviados ao destino
 - Cada pacote pode tomar um caminho diferente na rede
 - Os pacotes devem ser remontados em mensagens à medida que chegam
- Comutação de circuitos requer tempo de preparação, mas gera menos overhead para entrega de cada mensagem, e pode desperdiçar largura de banda de rede
 - Comutação de mensagem e pacote requer menos tempo de preparação, mas gera mais overhead por mensagem

Contenção

Vários sites podem querer transmitir informações por um enlace ao mesmo

tempo. Algumas técnicas para evitar colisões repetidas são:

- CSMA/CD Carrier sense with multiple access (CSMA); collision detection (CD)
 - Um site determina se outra mensagem está sendo atualmente transmitida por esse enlace. Se dois ou mais sites começarem a transmitir exatamente ao mesmo tempo, então eles registrarão uma CD e pararão de transmitir
 - Quando o sistema estiver muito ocupado, muitas colisões podem ocorrer, e o desempenho pode ser degradado
- CSMA/CD é usado com sucesso no sistema Ethernet, o sistema de rede mais comum

Contenção (cont.)

- Passagem de tokens Um tipo de mensagem exclusivo, conhecido como token, circula continuamente no sistema (normalmente, uma estrutura de anel)
 - Um site que deseja transmitir informações deve esperar até que o token chegue
 - Quando o site termina sua rodada de passagem de mensagens, ele retransmite o token
 - Um esquema de passagem de tokens é usado por alguns sistemas IBM e HP/Apollo
- Slots de mensagens Uma série de slots de mensagens de tamanho fixo circula no sistema (normalmente, uma estrutura de anel)
 - Como um slot só pode conter mensagens de tamanho fixo, uma única mensagem lógica pode ter que ser desmembrada em diversos pacotes menores, cada um enviado em um slot separado
 - Esse esquema tem sido adotado no Cambridge DigitalCommunication Ring experimental

Protocolo de comunicação

A rede de comunicação é dividia nas seguintes camadas múltiplas:

- Camada física trata dos detalhes mecânicos e elétricos da transmissão física de um stream de bits
- Camada de enlace de dados trata dos frames, ou partes de tamanho fixo dos pacotes, incluindo qualquer detecção e recuperação de erro que ocorreu na camada física
- Camada de rede fornece conexões e roteia pacotes na rede de comunicação, incluindo o tratamento do endereço dos pacotes de saída, decodificação do endereço dos pacotes que chegam e manutenção de informações de roteamento para a resposta apropriada em níveis de carga variáveis

Protocolo de comunicação (cont.)

- Camada de transporte responsável pelo acesso em baixo nível para a rede e pela transferência de mensagens entre os clientes, incluindo o desmembramento de mensagens em pacotes, manutenção da ordem dos pacotes, controle de fluxo e geração de endereços físicos
- Camada de sessão implementa sessões, ou protocolos de comunicação de processo a processo
- □ Camada de apresentação resolve diferenças nos formatos entre as diversas instalações na rede, incluindo conversões de caracteres e modos half-duplex e full-duplex (eco de caracteres)
- Camada de aplicação interage diretamente com os usuários, trata de transferência de arquivo, protocolos de login remoto e correio eletrônico, bem como esquemas para bancos de dados distribuídos

Comunicação via modelo de rede ISO

A camada de protocolos ISO

A mensagem de rede ISO

data-link-layer header
network-layer header
transport-layer header
session-layer header
presentation layer
application layer

message

data-link-layer trailer

As camadas do protocolo TCP/IP

ISO	TCP/IP
application	HTTP, DNS, Telnet SMTP, FTP
presentation	not defined
session	not defined
transport	TCP-UDP
network	IP
data link	not defined
physical	not defined

Robustez

- Detecção de falha
- Reconfiguração

Detecção de falhas

- A detecção de falha do hardware é difícil
- Para detectar uma falha de enlace, pode-se usar um protocolo de handshaking
- Suponha que o site A e o site B tenham estabelecido um enlace
 - Em intervalos fixos, cada site trocará uma mensagem estou-ativo, indicando que estão ativos e funcionando
- Se o site A não receber uma mensagem dentro do intervalo fixo, ele considera que (a) o outro site não está ativo ou (b) a mensagem se perdeu
- O site A pode agora enviar uma mensagem você está ativo? ao site B
- Se o site A não receber uma resposta, ele pode repetir a mensagem ou tentar uma rota alternativa ao site B

Detecção de falhas (cont.)

- Se o site A por fim não receber uma resposta do site B, ele conclui que houve algum tipo de falha
- Tipos de falhas:
 - Site B parado
 - O enlace direto entre A e B está interrompido
 - O elance alternativo de A para B está interrompido
 - A mensagem foi perdida
- Porém, o site A não pode determinar exatamente por que a falha ocorreu

Reconfiguração

- Quando o site A determina que uma falha ocorreu, ele deve reconfigurar o sistema:
 - 1. Se o enlace de A para B tiver falhado, isso precisa ser transmitido por broadcast a cada site no sistema
 - 2. Se um site tiver falhado, cada outro site também deve ser notificado, indicando que os serviços oferecidos pelo site que falhou não estão mais disponíveis
- Quando o enlace ou o site se tornarem disponíveis novamente, essa informação deve novamente ser transmitida por broadcast a todos os outros sites

Aspectos de projeto

- □ Transparência o sistema distribuído deve aparecer como um sistema convencional, centralizado ao usuário
- Tolerância a falhas o sistema distribuído deve continuar a funcionar em caso de falha
- Escalabilidade quando demandas aumentam, o sistema deve aceitar facilmente o acréscimo de novos recursos para acomodar a maior demanda
- Clusters uma coleção de máquinas semiautônomas que atuam como um único sistema

Um exemplo: redes

- A transmissão de um pacote da rede entre hosts em uma rede Ethernet
- Cada host possui um endereço IP único e um endereço Ethernet (MAC) correspondente
- A comunicação requer os dois endereços
- Domain Name Service (DNS) pode ser usado para adquirir endereços IP
- Address Resolution Protocol (ARP) é usado para mapear endereços MAC a endereços IP
- Se os hosts estiverem na mesma rede, ARP pode ser usado
 - Se os hosts estiverem em redes diferentes, o host enviando enviará o pacote a um roteador, que direciona o pacote para a rede de destino

Um pacote Ethernet

bytes		
7	preamble—start of packet	each byte pattern 10101010
1	start of frame delimiter	pattern 10101011
2 or 6	destination address	Ethernet address or broadcast
2 or 6	source address	Ethernet address
2	length of data section	length in bytes
0–1500	data	message data
0–46	pad (optional)	message must be > 63 bytes long
4	frame checksum	for error detection

Final do Capítulo 16

