Foundations2 Assignment 2020 Turing Machine multiplier

Sam Fay-Hunt sf52@hw.ac.uk

Contents

1	Turing machine multiplication	2	
	1.1 Graph	2	
	1.2 Formal definition	3	
2	Discussion of graph	3	
	2.1 Logic of graph	3	
	2.2 States & Symbols	4	
3	TM functionality	4	
4	Implementation of Turing machine		
5	Tests	4	
6	Efficiency of program	4	
7	Power of 3 machine	4	

1 Turing machine multiplication

1.1 Graph

1.2 Formal definition

 $States = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}, q_{12}\}$ $Symbols = \{\land, \Phi, \Psi, \Omega, 1, M, \Xi\}$

$M_{ex}(q_0,\wedge) = (q_{12},\wedge,0)$	$M_{ex}(q_0, 1) = (q_0, 1, R)$
$M_{ex}(q_0, \Psi) = (q_1, \Psi, R)$	$M_{ex}(q_0, \Phi) = (q_2, \Phi, R)$
$M_{ex}(q_1, 1) = (q_1, 1, L)$	$M_{ex}(q_1,\Psi)=(q_1,\Psi,L)$
$M_{ex}(q_1, \wedge) = (q_5, \wedge, R)$	$M_{ex}(q_1,\Phi)=(q_2,\Phi,R)$
$M_{ex}(q_2, 1) = (q_2, 1, R)$	$M_{ex}(q_2, \Psi) = (q_2, \Psi, R)$
$M_{ex}(q_2, \wedge) = (q_3, \Omega, R)$	$M_{ex}(q_2, \Omega) = (q_3, \Omega, R)$
$M_{ex}(q_2, \Phi) = (q_4, \Phi, L)$	$M_{ex}(q_3, \wedge) = (q_4, \Phi, L)$
$M_{ex}(q_4,\Omega) = (q_4,\Omega,L)$	$M_{ex}(q_4, 1) = (q_4, 1, L)$
$M_{ex}(q_4, \Phi) = (q_4, \Phi, L)$	$M_{ex}(q_4, \Psi) = (q_4, \Psi, L)$
$M_{ex}(q_4, \wedge) = (q_5, \wedge, R)$	$M_{ex}(q_5,\Phi)=(q_5,\Phi,R)$
$M_{ex}(q_5, 1) = (q_6, M, R)$	$M_{ex}(q_5,\Psi) = (q_{11},\Psi,L)$
$M_{ex}(q_6, \Phi) = (q_6, \Phi, R)$	$M_{ex}(q_6,\Psi)=(q_6,\Psi,R)$
$M_{ex}(q_6, 1) = (q_7, \Xi, R)$	$M_{ex}(q_6,\Omega) = (q_{10},\Omega,L)$
$M_{ex}(q_7,\Omega) = (q_8,\Omega,R)$	$M_{ex}(q_7, \wedge) = (q_8, \Omega, R)$
$M_{ex}(q_7, 1) = (q_7, 1, R)$	$M_{ex}(q_8, \wedge) = (q_9, 1, L)$
$M_{ex}(q_8, 1) = (q_8, 1, R)$	$M_{ex}(q_8, \Phi) = (q_8, \Phi, R)$
$M_{ex}(q_9,1) = (q_9,1,L)$	$M_{ex}(q_9, \Phi) = (q_9, \Phi, L)$
$M_{ex}(q_9,\Omega) = (q_9,\Omega,L)$	$M_{ex}(q_9,\Xi) = (q_6,1,R)$
$M_{ex}(q_{10}, 1) = (q_{10}, 1, L)$	$M_{ex}(q_{10}, \Phi) = (q_{10}, \Phi, L)$
$M_{ex}(q_{10}, \Psi) = (q_{10}, \Psi, L)$	$M_{ex}(q_{10}, M) = (q_5, 1, R)$
$M_{ex}(q_{11}, 1) = (q_{11}, 1, L)$	$M_{ex}(q_{11}, \Phi) = (q_{11}, \Phi, L)$
	$M_{ex}(q_{11}, \Psi) = (q_{11}, \Psi, L)$
$M_{ex}(q_{11}, \wedge) = (q_{12}, \wedge, R)$	
CW (111) · · / (112) · · / / - · /	

2 Discussion of graph

2.1 Logic of graph

describe the logic of the graph, why I chose this logical method. consider the correctness.

2.2 States & Symbols

Why I chose these states and symbols cut down version here

3 TM functionality

How the graph works, where to start, where you end and dealing with 0, and negative numbers

4 Implementation of Turing machine

Language choice

5 Tests

Tests, inleuding count of tapes printed, time to complete test

6 Efficiency of program

comment on the number of computation sequences produced and the time taked to complete each test

7 Power of 3 machine

asd