

Youmi Suk

School of Data Science, University of Virginia

2.2.2022

Overview

- 1. Motivating Example
- 2. Conditional Distribution and Conditional Expectation
- 3. Binning
- 4. Local Averaging and Kernel Estimation

Motivating Example

• Income and Occupational Experience:

• Example: simulated data of monthly net income (1922 observations)

Example: Income ~ Occup. Experience

• Scatterplot with a regression smoother:

What is Regression Analysis?

- Fox (2008):
 - Regression analysis examines the relationship between a quantitative response variable Y, and one or more quantitative explanatory variables X_1, \ldots, X_k .
 - \circ Regression analysis traces the conditional distribution of Y—or some aspect of this distribution, such as its mean—as a function of explanatory variables X_1, \ldots, X_k , i.e., how does the distribution/mean of Y change with changes in the Xs?
- Conditional distribution

$$p(Y|x_1,x_2,\ldots,x_k)=g(x_1,x_2,\ldots,x_k)$$

Conditional expectation

$$E(Y|X_1,X_2,\ldots,X_k)=f(X_1,X_2,\ldots,X_k)$$

Regression Analysis: Example

• Scatterplot: *Income* by *Occupational Experience*

```
(p <- ggplot(dat, aes(x=oexp, y=income)) + geom_point() + labs(x = '(</pre>
```


Conditional Distribution: Example

```
ggplot(dat, aes(x=oexp, y=income)) + geom_boxplot(aes(group=oexp)) +
```


Conditional Expectation: Example

```
p + stat_summary(fun = mean, geom = 'point', col = "red", size=2.5) -
stat_summary(fun = mean, geom = 'line', col = "red", size=1)
```


Conditional Expectation Function (Path of Means)

The conditional expectation

$$E(Income|Occ.Experience = x)$$

tells us how the population average of *Income* changes as we move the conditioning variable (*Occ. Experience*) over all possible values. For every value of *Occupational Experience*, we might get a different average income. The collection of all such averages is called the conditional expectation function (CEF) and denoted as:

(without the specific value x for Occ. Experience)

More generally:

$$E(Y|X_1,X_2,\ldots,X_k)$$

Nonparametric Regression

- We investigate the conditional distribution/mean of a response variable without making any assumptions about the functional form or the shape of the distribution → nonparametric regression.
 - If an explanatory variable is discrete like age in years or educational level, we can estimate the conditional distribution/mean of Y directly.
 - If an explanatory variable is continuous (age measured in days, achievement scores) we don't have enough observations for each unique value; thus we may aggregate the explanatory variable into a large number of narrow bins and take the mean (or other statistic) value → binning

Binning

5-year bins: $C \in \{0-4, 5-9, \ldots, 45-49\}$ conditional mean given bins C

Binning

Conditional means as a step-function

Regression/Scatterplot Smoothers

- Binning is a very rough method and depends, of course, on the location and size of the bins.
- An alternative approach are so called regression or scatterplot smoothers which construct a separate bin (=window) for each unique x-value and then calculates the mean (or other statistic) from the data within the window. The window is typically defined by kernel weights.
 - Local averaging & kernel estimation
 - Local polynomial regression
 - Locally weighted regression (loess/lowess)

Local Averaging

- Local averaging calculates the mean (or other statistic) for a window centered at a specific value x_0 .
- Procedure for local averaging:
- 1. Define value x_0 for which you want to calculate the mean
- 2. Construct a symmetric neighborhood around x_0 (=window); choose a window width using either
 - bandwidth (=half the window width in absolute measurement units of x) or
 - span (=a fraction of the data covered by the window, e.g., .3 = 30%).
- 3. For observations within the window, compute the mean of Y.
- 4. Do so for all other x-values

Local Averaging

ullet More formally, the weighted local average for a given value x_0 is given by

$$\overline{Y}|x_0=rac{\sum_{i=1}^n w_i Y_i}{\sum_{i=1}^n w_i}$$

where weight $w_i = 1$ if observation i lies within the window and $w_i = 0$ if it is outside the window:

$$w_i = egin{cases} 1 & ext{for } |(x_i-x_0)/h| < 1 \ 0 & ext{for } |(x_i-x_0)/h| \geq 1 \end{cases}$$

h is the bandwidth of the window (half of the window width). Note that the weight function is identical to a rectangular kernel.

Local Averaging

Local Averaging: Example

Kernel Estimation

- We can do a local averaging by using different weighting functions, i.e., kernels
- Weights are defined by kernels (like in kernel density estimation), e.g.
 - Rectangular (uniform) kernel: same weight for all observations within the window = local averaging
 - \circ Triangular, normal, tricube, Epanechnikov kernel: observations closer to the x_0 under consideration get more weight than observations further away

Kernel Estimation: Normal Kernel

Kernel Estimation: Tricube Kernel

X

R Demonstration

Boundary Bias

Regression/Scatterplot Smoothers

- Binning is a very rough method and depends, of course, on the location and size of the bins.
- An alternative approach are so called regression or scatterplot smoothers which construct a separate bin (=window) for each unique x-value and then calculates the mean (or other statistic) from the data within the window. The window is typically defined by kernel weights.
 - Local averaging & kernel estimation
 - Local polynomial regression
 - Locally weighted regression (loess/lowess)