Universidade do Minho Dep. de Matemática e Aplicações Mestrado Integrado em Engenharia Informática Introdução aos Sistemas Dinâmicos 2018/19

- sistemas dinâmicos discretos -

Consulte o ficheiro 'Folha13.wxm'.

Exercício 1. As aplicações lineares em dimensão 1 são da forma

$$f(x) = \lambda x$$

onde $\lambda \in \mathbb{R}$. Para todo o ponto $x_0 \in \mathbb{R}$ e todo o $n \in \mathbb{N}$ temos que

$$f^n(x_0) = \lambda^n x_0.$$

Para todo o $\lambda \in \mathbb{R}$, o ponto 0 é um ponto fixo. Além disso, se $\lambda \in \mathbb{R} \setminus \{1\}$ então o ponto 0 é o único ponto fixo. Se $\lambda = 1$ então todos os pontos da reta real são fixos.

1. Se $|\lambda| < 1$ temos que, para todo o $x_0 \in \mathbb{R}$,

$$\lim_{n \to +\infty} f^n(x_0) = \lim_{n \to +\infty} \lambda^n x_0 = 0.$$

Consequentemente, a trajetória de todo o ponto $x_0 \in \mathbb{R}$ converge para a origem. Então, $W^s(0) = \mathbb{R}$.

- 2. Se $\lambda = 1$ a transformação é a identidade e, portanto, todos os pontos são fixos. Consequentemente, $W^s(0) = \{0\}$.
- 3. Se $\lambda = -1$ temos que: o ponto 0 é um ponto fixo e todos os pontos da reta real diferentes de zero são pontos periódicos de período 2. Consequentemente, $W^s(0) = \{0\}$.
- 4. Se $|\lambda|>1$ temos que, para todo o $x_0\in\mathbb{R}\backslash\{0\}$,

$$\lim_{n\to+\infty}|f^n(x_0)|=+\infty.$$

Consequentemente, $W^s(0) = \{0\}.$

Exercício 2.

(a)
$$W^s(0) =]-1,1[.$$

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 \end{array}$$

(b)
$$\omega(x) = \{1\}$$
 para todo o $x \in \mathbb{R}$.

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 1 \end{array}$$

(c)
$$\omega(x) = \emptyset$$
 para todo o $x \in \mathbb{R}$.

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x+1 \end{array}$$

(d)
$$\omega(2) = \{-2, 2\}$$
 para todo o $x \in \mathbb{R}$.

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & -x \end{array}$$

(e) O conjunto
$$[-1,1]$$
 não contém pontos periódicos.

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x+1 \end{array}$$

(f)
$$\sqrt{3}$$
 é um ponto periódico de período 2.

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & -x \end{array}$$

(g)
$$f$$
 tem um único ponto fixo x e $W^s(x) = \mathbb{R}$.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x/2$$

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x \end{array}$$

(i) Todo o ponto da reta é recorrente.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x$$

(j) Todo o ponto da reta é não-errante.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x$$

(k) Nenhum ponto da reta é periódico.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x+2$$

(I) Nenhum ponto da reta é recorrente.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x+3$$

(m) O conjunto dos pontos recorrentes é [0,2].

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 2x & \text{se} \quad x < 0 \\ x & \text{se} \quad 0 \le x \le 2 \\ 2x - 2 & \text{se} \quad x > 2 \end{cases}$$

Exercício 3. Dê exemplo de, ou justifique por que não existe:

1. Uma transformação $f:[0,1] \rightarrow [0,1]$ que não tenha pontos fixos.

2. Uma transformação contínua $f:]0, 3[\rightarrow]0, 3[$ que não tenha pontos fixos.

3. Um homeomorfismo $f:\mathbb{R}\longrightarrow\mathbb{R}$ que não tenha pontos fixos.

$$\begin{array}{cccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x+1 \end{array}$$

Exercício 4.

$$\begin{array}{ccc} f: \llbracket \mathbf{0}, \mathbf{1} \llbracket & \rightarrow & \llbracket \mathbf{0}, \mathbf{1} \llbracket \\ x & \mapsto & \frac{1}{2}x + \frac{1}{2} \end{array}$$

Note que o conjunto [0,1[não é fechado!

Exercício 5. Utilize o software Maxima.

Exercício 6. Utilize o software Maxima para simular a evolução da dinâmica de cada um dos sistemas.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^3$

Para cada $n \in \mathbb{N}$, a iterada de ordem n é a transformação $f^n: \mathbb{R} \to \mathbb{R}$. $x \mapsto x^{3^n}$

4

- Os pontos fixos são os pontos -1, 0 e 1.
- Se $x_0 > 1$ então $\lim_{n \to \infty} f^n(x_0) = \lim_{n \to \infty} (x_0)^{3^n} = +\infty$.
- Se $x_0 < -1$ então $\lim_{n \to \infty} f^n(x_0) = \lim_{n \to \infty} (x_0)^{3^n} = -\infty$.
- Se $-1 < x_0 < 1$ então $\lim_{n \to \infty} f^n(x_0) = \lim_{n \to \infty} (x_0)^{3^n} = 0$.
- (b) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto -x^3$

Para cada $n\in\mathbb{N}$, a iterada de ordem n é a transformação $f^n:\mathbb{R}\to\mathbb{R}$. $x\mapsto\begin{cases}x^{3^n}&\text{se }n\text{ \'e par}\\-x^{3^n}&\text{se }n\text{ \'e impar}\end{cases}$

$$x \mapsto \begin{cases} x^{3^n} & \text{se } n \text{ \'e par} \\ -x^{3^n} & \text{se } n \text{ \'e impar} \end{cases}$$

 $x_0 = 0.9$

 $x_0 = 1.1$

 $x_0 = 1$

- O ponto 0 é o único ponto fixo.
- ullet $\{-1,1\}$ é uma órbita periódica de período 2.
- Se $|x_0| < 1$ então $\lim_{n \to \infty} f^n(x_0) = 0$.
- Se $|x_0| > 1$ a trajetória de x_0 é divergente. No entanto, $\lim_{n \to \infty} |f^n(x_0)| = +\infty$.

(c)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^{1/3}$

Comece por provar o seguinte resultado (que é uma consequência do Teorema de Lagrange): Seja $f: I \to \mathbb{R}$, onde I é um intervalo da reta real, tal que

$$\exists \lambda < 1 \colon \forall x \in I \mid |f'(x)| \leq \lambda.$$

Então

$$|f(x) - f(y)| \le \lambda |x - y|,$$

para todos $x, y \in I$ (i.e., f é uma contração).

- Os pontos fixos são os pontos -1, 0 e 1.
- A trajetória de todo o ponto $x_0 \in \mathbb{R}^+$ é convergente para o ponto 1.
 - (i) Seja $x_0 \in]0,1[$.

A restrição de f ao intervalo [0,1] é uma transformação contínua e crescente tal que $f([0,1])\subseteq [0,1]$. Consequentente, a trajetória $(f^n(x_0))_n$ é convergente (para um ponto fixo). Como a trajetória $(f^n(x_0))_n$ é crescente, $\lim_{n\to\infty} f^n(x_0)=1$.

(ii) Seja $x_0 \in]1, +\infty[$.

Consideremos a restrição de f ao intervalo $[1,+\infty[$. Temos que $f([1,+\infty[)\subseteq [1,+\infty[$. Além disso, $|f'(x)|\le 1/3$ para todo o $x\in [1,+\infty[$. Consequentemente, a restrição considerada é uma contração do conjunto fechado $[1,+\infty[$ e o Princípio das Contrações garante que a trajetória $(f^n(x_0))_n$ converge para o único ponto fixo 1 em $[1,+\infty[$.

- A trajetória de todo o ponto $x_0 \in \mathbb{R}^-$ é convergente para o ponto -1.
 - (iii) Seja $x_0 \in]-\infty, 0[$.

É suficiente notar que, porque f é ímpar, $\lim_{n\to\infty} f^n(x_0) = -\lim_{n\to\infty} f^n(-x_0) = -1$.

(d) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^3 + x$

- O ponto 0 é o único ponto fixo.
- Se $x_0 > 0$ então $\lim_{n \to \infty} f^n(x_0) = +\infty$.

Temos que $f(x_0) > x_0$ para todo o $x_0 \in]0, +\infty[$. Consequentemente, a trajetória $(f^n(x_0))_n$ é estritamente crescente. Suponhamos, por absurdo, que $(f^n(x_0))_n$ é majorada. Porque $(f^n(x_0))_n$ é majorada e estritamente crescente então é convergente para um ponto fixo maior ou igual do que x_0 (e, portanto, maior do que 0), o que é absurdo uma vez que 0 é o único ponto fixo. O absurdo resultou de termos suposto que a trajetória $(f^n(x_0))_n$ era majorada. Concluímos assim que $(f^n(x_0))_n$ é estritamente crescente e não majorada e, portanto, $\lim_{n\to\infty} f^n(x_0) = +\infty$.

- Se $x_0 < 0$ então $\lim_{n \to \infty} f^n(x_0) = -\infty$. É suficiente notar que, porque f é ímpar, $\lim_{n \to \infty} f^n(x_0) = -\lim_{n \to \infty} f^n(-x_0) = -\infty$.
- (e) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^3 - x$

- Os pontos fixos são os pontos $-\sqrt{2}$, 0 e $\sqrt{2}$.
- Se $-\sqrt{2} < x_0 < \sqrt{2}$ então $\lim_{n \to \infty} f^n(x_0) = 0$. Observemos que $|f(x_0)| \le |x_0|$ para todo o $x_0 \in]-\sqrt{2}, \sqrt{2}[$. A figura seguinte permite verificar geometricamente a desigualdade anterior.

Consequentemente, $(|f^n(x_0)|)_n$ é decrescente. Porque $(|f^n(x_0)|)_n$ é decrescente e minorada, é convergente para (um ponto fixo de |f|). Como a trajetória $(|f^n(x_0)|)_n$ é decrescente, concluímos que $\lim_{n\to\infty}|f^n(x_0)|=0$ e, portanto, $\lim_{n\to\infty}f^n(x_0)=0$.

• Se $x_0 > \sqrt{2}$ então $\lim_{n \to \infty} f^n(x_0) = +\infty$.

Temos que $f(x_0)>x_0$ para todo o $x_0\in]\sqrt{2},+\infty[$. Consequentemente, a trajetória $(f^n(x_0))_n$ é estritamente crescente. Suponhamos, por absurdo, que $(f^n(x_0))_n$ é majorada. Porque $(f^n(x_0))_n$ é majorada e estritamente crescente então é convergente para um ponto fixo maior ou igual do que x_0 (e, portanto, maior do que $\sqrt{2}$), o que é absurdo. O absurdo resultou de termos suposto que a trajetória $(f^n(x_0))_n$ era majorada. Concluímos assim que $(f^n(x_0))_n$ é estritamente crescente e não majorada e, portanto, $\lim_{n\to\infty} f^n(x_0) = +\infty$.

• Se $x_0 < -\sqrt{2}$ então $\lim_{n \to \infty} f^n(x_0) = -\infty$.

É suficiente notar que, porque f é impar, $\lim_{n\to\infty}f^n(x_0)=-\lim_{n\to\infty}f^n(-x_0)=-\infty$.

(f)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2 + 1/4$

- O ponto 1/2 é o único ponto fixo.
- Se $x_0 \in [-1/2, 1/2]$ então $\lim_{n \to \infty} f^n(x_0) = 1/2$.
 - (i) Seja $x_0 \in [0, 1/2]$.

A restrição de f ao intervalo [0,1/2] é uma transformação contínua e crescente tal que $f([0,1/2])\subseteq [0,1/2]$. Consequentente, a trajetória $(f^n(x_0))_n$ é convergente (para um ponto fixo). Logo, $\lim_{n\to\infty}f^n(x_0)=1/2$.

(ii) Seja $x_0 \in [-1/2, 0[$.

Notemos que, se $x_0 \in [-1/2, 0[$ então $f(x_0) \in]0, 1/2]$. Consequentemente, porque a trajetória de qualquer ponto em]0, 1/2] converge para 1/2, concluímos que $\lim_{n\to\infty} f^n(x_0) = 1/2$.

- Se $x_0 \in \mathbb{R} \setminus [-1/2, 1/2]$ então $\lim_{n \to \infty} f^n(x_0) = +\infty$.
 - (i) Seja $x_0 \in]1/2, +\infty[$.

Temos que $f(x_0) > x_0$ para todo o $x_0 \in]1/2, +\infty[$. Consequentemente, a trajetória $(f^n(x_0))_n$ é estritamente crescente. Suponhamos, por absurdo, que $(f^n(x_0))_n$ é majorada. Porque $(f^n(x_0))_n$ é majorada e estritamente crescente então é convergente para um ponto fixo maior ou igual do que x_0 (e, portanto, maior do que 1/2), o que é absurdo uma vez que 1/2 é o único ponto fixo. O absurdo resultou de termos suposto que a trajetória $(f^n(x_0))_n$ era majorada. Concluímos assim que $(f^n(x_0))_n$ é estritamente crescente e não majorada e, portanto, $\lim_{n\to\infty} f^n(x_0) = +\infty$.

(ii) Seja $x_0 \in]-\infty, -1/2[.$

Observemos que, se $x_0 \in]-\infty, -1/2[$ então $f(x_0) \in]1/2, +\infty[$. Consequentemente, porque o limite da trajetória de qualquer ponto em $]1/2, +\infty[$ é $+\infty$, concluímos que $\lim_{n\to\infty} f^n(x_0) = +\infty$.

(g) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto |x-1|$

f

 f^2

• O único ponto fixo é o ponto 1/2. Determine $W^s(1/2)$.

- Se $x_0 \in [0,1] \setminus \{1/2\}$ então x_0 é um ponto periódico de período 2. Com efeito, temos que $f^2(x_0) = f(f(x_0)) = f(-x_0 + 1) = -(-x_0 + 1) + 1 = x_0$.
- Se $x_0 \in]-\infty, 0[\cup]1, +\infty[$ então existe algum tempo $n \geq 1$ tal que $f^n(x_0) \in [0,1]$ e, portanto, x_0 é um ponto pré-periódico.

(h) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \operatorname{sen} x$

- O único ponto fixo é o ponto 0.
- A trajetória de todo o ponto $x_0 \in \mathbb{R}$ converge para 0.
 - (i) Seja $x_0 \in [-\pi/2, \pi/2]$.

A restrição de f ao intervalo $[-\pi/2,\pi/2]$ é uma transformação contínua e crescente tal que $f([-\pi/2,\pi/2])\subseteq [-\pi/2,\pi/2]$. Consequentente, a trajetória $(f^n(x_0))_n$ é convergente (para um ponto fixo). Logo, $\lim_{n\to\infty} f^n(x_0)=0$.

(ii) Seja $x_0 \in \mathbb{R} \setminus [-\pi/2, \pi/2]$.

Notemos que, se $x_0 \in \mathbb{R} \setminus [-\pi/2, \pi/2]$ então $f(x_0) \in [-\pi/2, \pi/2]$. Consequentemente, porque a trajetória de qualquer ponto em $[-\pi/2, \pi/2]$ converge para 0, concluímos que $\lim_{n \to \infty} f^n(x_0) = 0$.

Exercício 7. A resolução deste exercício é análoga à do exercício 6.(c).

Exercício 8.

(a) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 - x/2$

Os pontos fixos da transformação f são as soluções da equação f(x)=x. Temos que

$$f(x) = x \Leftrightarrow x^2 - x/2 = x \Leftrightarrow x = 0 \lor x = 3/2.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, $x \mapsto 2x - 1/2$

 $|f'(\mathbf{0})|=1/2<1$ e, portanto, $\mathbf{0}$ é um ponto fixo atrativo

e

|f'(3/2)| = 5/2 > 1 e, portanto, 3/2 é um ponto fixo repulsivo.

(b) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto 4x - x^2$

Os pontos fixos da transformação f são as soluções da equação f(x) = x. Temos que

$$f(x) = x \Leftrightarrow 4x - x^2 = x \Leftrightarrow x = 0 \lor x = 3.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, $x \mapsto 4-2x$

|f'(0)|=4>1 e, portanto, 0 é um ponto fixo repulsivo

е

|f'(3)| = 2 > 1 e, portanto, 3 é um ponto fixo repulsivo.

(c) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 - 1$

Os pontos fixos da transformação f são as soluções da equação f(x) = x. Temos que

$$f(x) = x \Leftrightarrow x^2 - 1 = x \Leftrightarrow x = \frac{1 - \sqrt{5}}{2} \lor x = \frac{1 + \sqrt{5}}{2}.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, $x \mapsto 2x$

$$\left|f'\left(\frac{1+\sqrt{5}}{2}\right)\right|=1+\sqrt{5}>1$$
 e, portanto, $\frac{1+\sqrt{5}}{2}$ é um ponto fixo repulsivo e

e $\left|f'\left(\frac{1-\sqrt{5}}{2}\right)\right|=\sqrt{5}-1>1 \text{ e, portanto, } \frac{1-\sqrt{5}}{2} \text{ \'e um ponto fixo repulsivo.}$

(d)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \operatorname{sen} x$

Os pontos fixos da transformação f são as soluções da equação f(x)=x. Temos que

$$f(x) = x \Leftrightarrow \operatorname{sen} x = x \Leftrightarrow x = 0.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, |f'(0)| = 1. $x \mapsto \cos x$

No exercício 6.h) mostrámos que a trajetória de todo o ponto $x_0 \in \mathbb{R}$ converge para 0. Em particular, podemos concluir que o ponto fixo 0 é atrativo.

(e)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x + x^3$

Os pontos fixos da transformação f são as soluções da equação f(x) = x. Temos que

$$f(x) = x \Leftrightarrow x^3 + x = x \Leftrightarrow x = 0.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, |f'(0)|=1. $x\mapsto 3x^2+1$

No exercício 6.d) mostrámos que, se $x_0>0$ então $\lim_{n\to\infty}f^n(x_0)=+\infty$ e que se $x_0<0$ então $\lim_{n\to\infty}f^n(x_0)=-\infty$. Em particular, podemos concluir que o ponto fixo 0 é repulsivo.

(f) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x - x^3$

Os pontos fixos da transformação f são as soluções da equação f(x)=x. Temos que

$$f(x) = x \Leftrightarrow x - x^3 = x \Leftrightarrow x = 0.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, |f'(0)|=1. $x \mapsto 1-3x^2$

A restrição de f ao intervalo $[-\sqrt{3}/3,\sqrt{3}/3]$ é uma transformação contínua e crescente tal que $f([-\sqrt{3}/3,\sqrt{3}/3])\subseteq [-\sqrt{3}/3,\sqrt{3}/3]$. Consequentente, a trajetória de todo o ponto $x_0\in [-\sqrt{3}/3,\sqrt{3}/3]$ é convergente para o ponto fixo 0. Em particular, podemos concluir que o ponto fixo 0 é atrativo.

(g) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x + x^2$

Os pontos fixos da transformação f são as soluções da equação f(x) = x. Temos que

$$f(x) = x \Leftrightarrow x + x^2 = x \Leftrightarrow x = 0.$$

A derivada de f é a transformação $f': \mathbb{R} \to \mathbb{R}$. Em particular, |f'(0)| = 1. $x \mapsto 1 + 2x$

O ponto fixo 0 não é nem atrativo nem repulsivo. Com efeito, se $x_0 \in [-1/2, 0]$ então a trajetória de x_0 converge para 0 e se $x_0 \in]0, +\infty[$ então $\lim_{n\to\infty} f^n(x_0) = +\infty.$

A restrição de f ao intervalo [-1/2,0] é uma transformação contínua e crescente tal que $f([-1/2,0]) \subseteq [-1/2,0]$. Consequentente, a trajetória de todo o ponto $x_0 \in [-1/2,0]$ é convergente para o ponto fixo 0.

Temos que $f(x_0) > x_0$ para todo o $x_0 \in]0, +\infty[$. Consequentemente, a trajetória $(f^n(x_0))_n$ é estritamente crescente. Suponhamos, por absurdo, que $(f^n(x_0))_n$ é majorada. Porque $(f^n(x_0))_n$ é majorada e estritamente crescente então é convergente para um ponto fixo maior ou igual do que x_0 (e, portanto, maior do que 0), o que é absurdo uma vez que 0 é o único ponto fixo. O absurdo resultou de termos suposto que a trajetória $(f^n(x_0))_n$ era majorada. Concluímos assim que $(f^n(x_0))_n$ é estritamente crescente e não é majorada e, portanto, $\lim_{n\to\infty} f^n(x_0) = +\infty$ para todo o $x_0 \in]0, +\infty[$.

(h)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x - x^2$

Os pontos fixos da transformação f são as soluções da equação f(x)=x. Temos que

$$f(x) = x \Leftrightarrow x - x^2 = x \Leftrightarrow x = 0.$$

A derivada de f é a transformação f' : $\mathbb{R} \to \mathbb{R}$. Em particular, |f'(0)| = 1. $x \mapsto 1-2x$

O ponto fixo 0 não é nem atrativo nem repulsivo. Com efeito, se $x_0 \in [0, 1/2]$ então a trajetória de x_0 converge para 0 e se $x_0 \in]-\infty, 0[$ então $\lim_{n\to\infty} f^n(x_0) = -\infty.$

A restrição de f ao intervalo [0,1/2] é uma transformação contínua e crescente tal que $f([0,1/2]) \subseteq [0,1/2]$. Consequentente, a trajetória de todo o ponto $x_0 \in [0,1/2]$ é convergente para o ponto fixo 0.

Temos que $f(x_0) < x_0$ para todo o $x_0 \in]-\infty,0[$. Consequentemente, a trajetória $(f^n(x_0))_n$ é estritamente decrescente. Suponhamos, por absurdo, que $(f^n(x_0))_n$ é minorada. Porque $(f^n(x_0))_n$ é minorada e estritamente decrescente então é convergente para um ponto fixo menor ou igual do que x_0 (e, portanto, menor do que 0), o que é absurdo uma vez que 0 é o único ponto fixo. O absurdo resultou de termos suposto que a trajetória $(f^n(x_0))_n$ era minorada. Concluímos assim que $(f^n(x_0))_n$ é estritamente decrescente e não é minorada e, portanto, $\lim_{n\to\infty} f^n(x_0) = -\infty$ para todo o $x_0 \in]-\infty,0[$.

(i) $f: \mathbb{R} \rightarrow \mathbb{R}$

$$x \mapsto \begin{cases} 2x & \text{se } x \le 1/2 \\ 2 - 2x & \text{se } x > 1/2 \end{cases}$$

Os pontos fixos da transformação f são as soluções da equação f(x)=x. Temos que

$$f(x) = x \Leftrightarrow x = 0 \lor x = 2/3.$$

A derivada de f é a transformação $f': \mathbb{R} \backslash \{1/2\} \rightarrow \mathbb{R}$.

$$x \mapsto \left\{ \begin{array}{ll} 2 & \text{se} & x < 1/2 \\ -2 & \text{se} & x > 1/2 \end{array} \right.$$

Em particular,

|f'(0)|=2>1 e, portanto, 0 é um ponto fixo repulsivo.

e

|f'(2/3)| = 2 > 1 e, portanto, 2/3 é um ponto fixo repulsivo.

Exercício 9.

(a) $\sqrt{2}$ é um ponto fixo repulsivo.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 2x - \sqrt{2}$$

(b) $\sqrt{3}$ é um ponto fixo atrativo.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt{3}$$

(c) π e $-\pi$ são pontos fixos repulsivos.

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{x^3}{\pi^2} \end{array}$$