

Quantum GIS

GRASS Integration

Fortgeschrittene Analysen mit dem GRASS Plugin

QGIS Anwendertreffen in Bern 21. April 2010

Otto Dassau www.gbd-consult.de

- I. Kurzer Überblick GRASS Projekt
- II. Funktionalitäten was bietet GRASS
- III. Datenmanagement
- IV. Daten analysieren mit dem GRASS Plugin
- V. Datenaustausch und Interoperabilität
- VI. QGIS und GRASS gemeinsam verwenden

Das GRASS GIS Projekt

- Hybrides GIS mit mehr als 300 Modulen
- GNU General Public License (GPL)
- OSGeo Projekt (grass.osgeo.org)
- Große Anwender- und Entwickler-Community
- Installionspakete f
 ür GNU/Linux, MS-Windows und Mac OSX und integriert in QGIS
 über das GRASS-Plugin.
- Umfangreiche Lernmaterialien und Beispieldaten
- Professioneller Support durch Firmen

Das GRASS GIS Projekt

	Public Domain	1984 1993 1997 1998 1999	GRASS 1.0 GRASS 4.1 GRASS 4.2 GRASS 4.2.1/4.3 GRASS 5.0	U.S. Army (1984 - 1995) U.S. Army (1984 - 1995) University of Baylor Universität Hannover ¹ Universität Hannover ²
	GPL	2001 2005	GRASS 5.1/5.7 GRASS 6.0	ITC-Irst ITC-Irst
		2006	GRASS 6.2	ITC-Irst
		2008	GRASS 6.3	Fondazione Bruno Kessler
		2009	GRASS 6.4	OSGeo

¹ Seit 1997 GRASS Development Team

² Seit 12/1999 CVS und seit 12/2007 SVN Quellcode Management

Welche Funktionen bietet GRASS GIS

- Mehrere GUIs sowie Arbeiten mit der Kommandozeile
- Raster und Bilddatenverarbeitung von 2D- und 3D-Daten
- 2D topologische Vektordatenverarbeitung
- Vektornetzwerkanalysen
- 2D- und 3D-Visualisierung von Vektor- und Rasterdaten
- Unterstützung zahlreicher (auch räumlicher) DBMS
- Definition von Koordinatensystemen und deren Transformation
- Hohe Interoperabilität und flexibler Datenaustausch
- Analyseumfang ist vergleichbar mit ArcInfo

Kommandozeile in GRASS GIS

Die Befehle in GRASS sind klar strukturiert. Die Funktionalität der Module werden über ihr <u>Präfix</u> einer Funktionsgruppe zugeordnet. Beispiele sind

Präfix	Funktionsgruppe	Bedeutung
g.*	General	Datenmanagement
d.*	Display	Visualisierung
r.*	Raster	Rasterdatenverarbeitung
V.*	Vektor	Vektordatenverarbeitung
i.*	Imagery	Bilddatenverarbeitung
db.*	Datenbank	Datenbankmanagement
r3.*	3D-Raster	Voxelverarbeitung

Überblick Datenmanagement in GRASS

GRASS Plugin in der QGIS Werkzeugleiste

Neue GRASS Location in QGIS erstellen

Vektorarchitektur in GRASS GIS

GRASS Werkzeugkiste in Quantum GIS

GRASS Shell in Quantum GIS

Vektoranalyse in GRASS GIS (Beispiele)

Es stehen mehr als 50 Analysemodule zur Verfügung, z.B.:

- · Verschneiden, Überlagern, Joinen, Puffern
- Selektion auf Basis von Attributen oder Geometrien
- Reklassifizierung, Abfragen, Statistik
- Korrektur topologischer Fehler (manuell / automatisiert)
- Editieren von Geometrien und Attributen
- Konvertierung zwischen Geometrietypen (z.B.: Linie, Boundary)

•

Ein Großteil der Module ist graphisch (einfach) in die Quantum GIS GRASS Werkzeugkiste integriert. Die anderen können über die GRASS Shell bedient werden.

Beispiele Vektoranalysen

Quelle: http://grass.osgeo.org

Überblick Netzwerkanalysen in GRASS GIS

Digitalisieren eines GRASS Vektors in QGIS

Erzeugen eines neuen GRASS Vektorlayers

- Menü Plugins -> GRASS -> Neuen GRASS Vektorlayer anlegen
- Name, Einstellungen (Objekttyp, Attributtabelle, Snapping)

Wenn bereits ein GRASS Layer existiert

- Karte laden, anzeigen und auswählen
- Menü Plugins -> GRASS -> GRASS Vektorlayer bearbeiten

Digitalisieren eines GRASS Vektors in QGIS

Interpolation in GRASS GIS (Beispiele)

- Interpolation unregelmäßig verteilter 2D und 2,5D-Punktdaten (z.B.: Höhendaten oder Messstationen).
- Resampling regelmäßig verteilter Punktdaten (z.B.: Ausgabe als eine Rasteroberfläche auch in veränderter Datenauflösung).
- Berechnung von Vektor TINs aus unregelmäßig verteilten Punkten auf Basis von Triangulation.
- Auffüllen von 'No-Data' Bereichen mittels RST Interpolation (z.B.: SRTM oder ASTER).

Beispiele 2D Interpolation in GRASS GIS

IDW Interpolation

RST Interpolation

Quelle: http://skagit.meas.ncsu.edu/~helena/gmslab/viz/sinter.html

Interpolation von 3D Daten (Voxel)

 Interpolation von 3D Vektorpunktwolke in eine 3D-Voxelkarte auf Basis der RST Methode.

Rasteranalyse in GRASS GIS (Beispiele)

Es stehen mehr als 100 Analysemodule zur Verfügung, z.B.:

- Verschiedene Resampling und Interpolationsmethoden
- Maskierung von Datenbereichen mit r.mask
- Kartenalgebra mit r.mapcalc, Statistische Abfragen
- Hydrologische Modellierung
- Analyse von Reliefparametern
- ...

Ein Großteil der Module ist graphisch (einfach) in die Quantum GIS GRASS Werkzeugkiste integriert. Die anderen können über die GRASS Shell bedient werden.

Beispiele Rasteranalyse

Wassereinzugsgebiete

Curvature Analysen

Fernerkundung in GRASS (Beispiele)

- Geometrische und radiometrische Bilddatenaufbereitung und -verbesserung (z.B.: Atmosphärenkorrektur, Komponentenanalyse, Fouriertransformation, Pansharpening, ...).
- Orthophotoerstellung von analogen Luftbildern unter Einbezug eines Höhenmodells.
- Überwachte und unüberwachte Klassifizierung (Pixel- und geometrisch/radiometrisch kombiniert).
- Berechnung von Matrixfiltern
- Texturanalysen
- Berechnung von Vegetationsindices
- Verarbeitung von LIDAR (Laserscan) Daten
- Siehe auch http://svn.osgeo.org/grass/grass-addons/

Brovey Transformation: Pansharpening

Erstellung von Orthophotos aus analogen Daten

Beispiel unüberwachte pixelbasierte Klassifizierung

Klassen

(28,5m)

Unüberwachte Maximum Likelyhood Klassifikation mit 3

Das GRASS Plugin in QGIS

Beispiel Matrixfilter

NIR Kanal einer Quickbird Szene

Highpass Filter

Lowpass Filter

Berechnung von Texturparametern

- Normalized
- -a Angular Second Moment
- -c Contrast
- -k Correlation
- -v Variance
- -i Inverse Diff Moment
- -s Sum Average
- -w Sum Variance
- -x Sum Entropy
- -e Entropy
- -d Difference Variance
- -p Difference Entropy
- -m Measure of Correlation-1
- -n Measure of Correlation-2
- -o Max Correlation Coeff

QGIS und GRASS gemeinsam nutzen

- Quantum GIS und GRASS sind zwei eigenständige GIS
- Mit dem GRASS Plugin wird QGIS zu einer GRASS GUI
- Das GRASS Plugin deckt etwa 90% der GRASS Module ab
- Visualisierung und einfache (GRASS) Analysen sind mit QGIS intuitiver. Reduzierter Funktionsumfang der Module
- Komplexe Analysen werden meist über die Kommandozeile in GRASS bzw. QGIS durchgeführt
- Visualisierung und einfache Analysen mit QGIS
- Komplexe Analysen in der Kommandozeile