XARXES (GEINF) **CURS 2016/17** Recuperació del segon examen parcial teoria i problemes (8 de febrer de 2017)

Nom:	
DNI: _	
La duració de l'examen és de 2 hor	es.
No es poden utilitzar apunts.	

La

Test (5 punts)

Una resposta correcta suma 0.500 punts, una incorrecta resta 0.125 punts, i una no contestada suma zero. Fes servir la taula que tens a sota (les respostes que no estiguin a la taula no es comptaran).

	R	espost	es	
1)	а	b	С	d
2)	а	b	С	d
3)	а	b	С	d
4)	а	b	С	d
5)	а	b	С	d
6)	а	b	С	d
7)	а	b	С	d
8)	а	b	С	d
9)	а	b	С	d
10)	а	b	С	d

- 1) Quant a les xarxes de commutació de circuits (XCC) basades en la FDM (Frequency Division Multiplexing), la WDM (Wavelength DM) o la TDM (Time DM) digital síncrona, quina és CERTA?
 - a. A través d'una XCC no es poden transportar fluxos de paquets.
 - b. En una XCC amb FDM o amb l'equivalent WDM, a cada enllaç hi viatja un senyal digital amb una seqüència de símbols digitals dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
 - c. En una XCC amb TDM digital síncrona, l'amplada de banda de cada enllaç està dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
 - d. Són exemples de XCC les "velles" xarxes de telefonia fixa (primer amb FDM i després amb TDM digital síncrona) i les "noves" xarxes òptiques (amb WDM).
- 2) La xarxa de la figura està formada per les estacions E1, E2... E6, el commutador Ethernet S i els Punts d'Accés Wi-Fi (alhora ponts Ethernet/Wi-Fi) AP1 i AP2. Quina és CERTA?
 - a. Quan la taula d'S està completa conté (amb el format [desti, interficie]): [@MAC AP1₀, S₀] i [@MAC AP2₀, S₁].
 - b. Quan la taula d'AP1 està completa conté (amb el format [desti, interficie]): [@MAC E1, E2 i E3, AP10] i [@MAC AP2₀, AP1₁].
 - c. Cada AP té una @MAC (o BSSID) diferent però es pot fer que tinguin el mateix identificador de xarxa Wi-Fi (o SSID).

- d. Un paquet d'informació Wi-Fi enviat per E1 a E5 porta les adreces MAC d'E1, E5, AP1₀ i AP2₀.
- 3) En una xarxa de commutació de paquets amb circuit virtual (VC), quina és FALSA?
 - a. Abans d'enviar-se paquets d'informació d'un determinat flux, cal que les taules de VCs dels commutadors del camí que es seguirà, tinguin una entrada corresponent a aquest flux.
 - b. Les taules d'encaminament es consulten durant la creació (l'establiment) d'un VC.
 - c. Per reenviar els paquets d'informació d'un flux, els commutadors no consulten les taules d'encaminament sinó les taules de VCs.
 - d. Si les taules d'encaminament canvien els paquets d'un VC aniran per un altre camí.

- 4) En una xarxa Wi-Fi amb una velocitat de transmissió de 54 Mbps, on $t_{AT} \cong T_{ix}$ (t_{AT} és el temps d'anada i tornada entre estació i Punt d'Accés Wi-Fi, i T_{ix} és el temps de transmissió d'un paquet d'informació), quina és FALSA?
 - a. Si només una estació transmetés, la velocitat efectiva o throughput que rebria seria 54 Mbps.
 - b. Si hi hagués tres estacions transmetent alhora, la velocitat efectiva o *throughput* que rebria cadascuna seria inferior a 18 Mbps, ja que possiblement hi haurien col·lisions, esperes, etc.
 - c. La velocitat efectiva o *throughput* és el valor mig de la velocitat dels paquets rebuts amb "èxit" durant un determinat període de temps.
 - d. Com que una xarxa Wi-Fi utilitza la tècnica CSMA/CA (*Carrier Sense Multiple Access / Collision Avoidance*), es garanteix que la velocitat efectiva o *throughput* que aconsegueix una estació és sempre de 54 Mbps, independentment del trànsit.
- 5) La xarxa de la figura la formen les estacions E1, E2... E4 i el commutador *Ethernet* S (a la dreta, el contingut de la seva taula). Quina és FALSA?
 - a. La taula d'S està completa.
 - b. No hi haurà mai col·lisions.
 - c. Cada estació té una taula amb l'adreça MAC de S.
 - d. Si l'estació E1 no envia durant força temps, la seva entrada a la taula d'S s'esborrarà.

6) Suposem els següents missatges HTTP entre un client i un servidor web. Quina és FALSA?

Client a Servidor	Servidor a Client
GET /imatges/dibuix.jpg HTTP/1.1	HTTP/1.1 404 Not Found
Host: bcds.udg.edu	Date: Mon, 06 Feb 2017 13:36:29 GMT
User-Agent: Mozilla/5.0 Firefox/51.0	Server: Apache/2.2.14 (Ubuntu)
Accept: text/html, application/xhtml+xml\r\n	Content-Length: 244
Accept-Language: ca,en-US;q=0.7,en;q=0.3	Keep-Alive: timeout=15, max=100
Connection: keep-alive	Connection: Keep-Alive
	Content-Type: text/html; charset=iso-8859-1

- a. El client demana un objecte amb URL http://bcds.udg.edu/imatges/dibuix.jpg.
- b. El client es troba a l'estació de nom DNS bcds.udg.edu.
- c. El client i el servidor han establert una connexió TCP persistent, és a dir, que es manté oberta per si el client fa noves peticions, i que es tanca per *timeout* si no hi ha activitat.
- d. El servidor respon al client que no té l'objecte demanat.
- 7) Una organització té assignat el prefix d'adreces IP amb adreça de xarxa 84.88.154.0 i *mask* (màscara) 255.255.254.0. Si es fa *subnetting*, aquesta xarxa es pot dividir en:
 - a. Dues xarxes, prefixos 84.88.154.0/23 i 84.88.155.0/23.
 - b. Dues xarxes, prefixos 84.88.154.0 i mask 255.255.255.0 i 84.88.154.1 i mask 255.255.255.0.
 - c. Dues xarxes, prefixos 84.88.154.0/24 i 84.88.154.128/24.
 - d. Tres xarxes, prefixos 84.88.154.0/25, 84.88.154.128/25 i 83.88.155.0/24.
- 8) Quant al protocol ICMP (Internet Control Message Protocol), quina és CERTA?
 - a. ICMP, un protocol que serveix per notificar errors en el lliurament de paquets IP i altres informacions relacionades, va dins paquets IP amb #protocol 6.
 - b. Quan un *router* rep un paquet IP, li reescriu el camp TTL restant-li u, i si surt 0, no el reenvia (el descarta); llavors el *router* envia a l'adreça destí un paquet ICMP indicant-ho.
 - c. Quan un *router* rep un paquet IP, li llegeix l'adreça destí i la busca a la taula d'encaminament per saber a on reenviar-lo; si no la troba, envia a l'adreça origen un paquet ICMP indicant-ho.
 - d. Quan una estació rep un paquet TCP o UDP amb un #port destí que no està associat a cap socket, no envia a l'adreça origen un paquet ICMP per indicar-ho sinó un paquet TCP o UDP.

9) Quina és FALSA?

- a. No hi ha cap estació a Internet amb una adreça IP dins el rang corresponent a 192.168.0.0/16.
- b. Si una estació que pertany a una xarxa IP que té el prefix 130.206.124.128/26 envia un paquet IP a 130.206.124.191, el paquet arriba a totes les estacions i *routers* de la xarxa, i si l'envia a 255.255.255.255 també.
- c. Quan a un *socket* (TCP o UDP) se li assigna l'adreça IP 0.0.0.0, se li estan assignant alhora totes les adreces IP de l'estació, i per tant podrà rebre paquets dirigits a qualsevol d'elles.
- d. Si una estació envia un paquet IP a 127.0.0.1, el paquet s'envia via la interfície de *loopback* cap a la xarxa, i llavors els dispositius de xarxa el retornen a l'estació via aquesta mateixa interfície.
- 10) Un router R té dues interfícies de xarxa i la següent taula d'encaminament IP. Quina és CERTA?

destí	següent	interfície
100.100.100.0/24	directe	R ₀ (100.100.100.1)
100.100.101.0/24	directe	R ₁ (100.100.101.1)
resta	100.100.101.2	R ₁ (100.100.101.1)

- a. Un paquet amb adreça origen 100.100.101.25 i adreça destí 100.100.100.30 serà reenviat pel router a través de la interfície R₁ cap a 100.100.100.30.
- b. Un paquet amb adreça origen 100.100.100.7 i adreça destí 100.100.101.15 serà reenviat pel *router* a través de la interfície R₀ cap a 100.100.101.15.
- c. Un paquet amb adreça origen 100.100.100.3 i adreça destí 200.200.200.7 serà reenviat pel router a través de la interfície R₁ cap a 100.100.101.2.
- d. Un paquet amb adreça origen 84.35.10.49 i adreça destí 100.100.100.7 serà reenviat pel *router* a través de la interfície R₁ cap a 100.100.101.2.

Exercici (5 punts)

La xarxa d'una organització (veieu la figura) està formada per les estacions E1, E2, ...E9, els commutadors *Ethernet* S1, S2 i S3, i els *routers* R1, R2 i R3, units entre si per línies sèrie (amb el protocol *Point-to-Point Protocol* o PPP). Les adreces MAC de totes les interfícies es troben a les taules de sota.

El *router* R2 uneix la xarxa de l'organització a la resta d'Internet. La seva interfície R2₃ és ADSL, té l'adreça IP 31.42.53.133, la màscara 255.255.255.128 i un únic "següent" *router* d'adreça IP 31.42.53.189. Els prefixos de cada xarxa IP de l'organització es troben a la figura.

Es demana el següent:

- a) Quantes xarxes IP hi ha a l'organització i qui en forma part (és a dir, els que tenen adreça IP)?
- b) Escriviu el rang d'adreces IP de cada xarxa IP.
- c) Feu l'assignació de les adreces IP (feu servir la notació @IPE1, @IPR10, etc.).
- d) Escriviu les taules d'encaminament IP de l'estació E4 i dels *routers* R2 i R3, segons el criteri del camí més curt mesurat en nombre de salts. Feu servir el format [destí, següent, interfície], i indiqueu tant el nom (és a dir, x1, E1, R1₀, etc.) com l'adreça corresponent.
- e) Suposeu que les taules dels commutadors S1, S2 i S3 estan totalment completes, i escriviu el contingut de la taula de S1. Feu servir el format [destí, interfície], i indiqueu tant el nom (és a dir, E1, R1₀, etc.) com l'adreça corresponent.
- f) Suposeu que darrerament l'estació E4 només ha enviat paquets IP a E6, E1 i E8, i escriviu el contingut de la seva taula ARP. Feu servir el format [@IP, @MAC], i indiqueu tant el nom (és a dir, E1, R1₀, etc.) com l'adreça corresponent.
- g) En el supòsit dels apartats anteriors, expliqueu com es transporta un paquet IP des de l'estació E4 fins a l'E8, és a dir, expliqueu com actuen les estacions i dispositius de xarxa implicats (commutadors i *routers*; consulta en taules; a quines estacions arriba un paquet, etc.), i dibuixeu els paquets IP i ARP que es generen (amb adreces, etc.; feu servir la notació @IPE1, @IPR1₀, @MACE1, @MACR1₀, etc.).

NOTA:

- Els commutadors S1, S2 i S3 no són dispositius de xarxa gestionables remotament.
- Feu servir la següent notació: @IPx1 per al prefix de la xarxa IP x1, @IPE1 per a l'adreça IP (@IP) de l'estació E1, @IPR1₀ per a l'@IP de la interfície 0 del *router* R1, @MACE1 per a l'adreça MAC (@MAC) de l'estació E1, @MACR1₀ per a l'@MAC de R1₀, etc.
- El format "resumit" d'un paquet Ethernet (Ethernet II o IEEE 802.3 Ethernet + IEEE 802.2 LLC) és delim. | altres | @destí | @origen | @prot.sup | info. | CE |
- on "@prot.sup." indica el protocol usuari i "info." és el paquet del protocol usuari (IP, ARP, etc.).
- El format "resumit" d'un paquet PPP és

delim. | altres | protocol | info. | CE ,

on "protocol" indica el protocol usuari i "info." és el paquet del protocol usuari (IP, LCP, etc.).

- El format "resumit" d'un paquet IP (IPv4) és

altres | @origen | @destí | #protocol | CE | info. (CE no inclou "info."), on "#protocol" indica el protocol usuari i "info." és el paquet del protocol usuari (TCP, UDP, etc.).

- El format "resumit" dels paquets ARP és

altres | tipus | @MACorigen | @IPorigen | @MACdestí | @IPdestí

on "tipus" indica el seu significat (petició o resposta).

Quines xarxes IP hi ha? (i)

Una xarxa IP és un conjunt d'interfícies (de nodes, és a dir, hosts o routers) que tenen un mateix prefix d'@IP

Quins "elements" tenen capa IP? Estacions i routers, és a dir, les estacions Ex i els router Rx. A sota d'IP, tots tenen una capa de xarxa Ethernet o PPP o ADSL. Recordeu que cada capa de xarxa té les seves pròpies adreces de xarxa, p.e., a Ethernet, les adreces MAC (IEEE 802 EUI-48).

Quins "elements" no tenen capa IP? Els switchs Ethernet Sx. A més un switch no té adreça MAC. Dit això, si un switch fos configurable remotament, llavors sí tindria una @IP, capa IP, etc., i una @MAC.

Quines xarxes IP hi ha? (ii)

Rang d'adreces IP de cada xarxa IP (i)

Rang d'adreces IP de cada xarxa IP (ii)

Assignació d'adreces IP

 Les adreces d'un rang es poden assignar a interfícies de hosts i routers de cada xarxa IP com es vulgui, excepte 2: la primera (prefix+0s) indica la xarxa IP (p.e., 192.168.4.0 a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa IP (p.e.,

- P.e., una possible assignació seria:
 - (x1): @IPR1₀ = 143.26.60.1 @IPE1 = 143.26.60.2, @IPE2 = 143.26.60.3, @IPE3 = 143.26.60.4
 - (x2): @IPR2₀ = 143.26.62.65 @IPE4 = 143.26.62.66, @IPE5 = 143.26.62.67, @IPE6 = 143.26.62.68
 - (x3): @IPR3₀ = 143.26.64.1 @IPE7 = 143.26.64.2, @IPE8 = 143.26.64.3, @IPE9 = 143.26.64.4
 - (x4): @IPR1₁ = 143.26.104.1, @IPR2₂ = 143.26.104.2
 - (x5): @IPR1₂ = 143.26.104.5, @IPR3₁ = 143.26.104.6
 - (x6): $@IPR2_1 = 143.26.104.9$, $@IPR3_2 = 143.26.104.10$

(R2₃ no forma part d'aquestes xarxes; ens diuen que té @IP 31.42.53.133)

Taules d'encaminament IP: E4, R2 i R3

Taules d'encaminament IP: E4

Ei! El switch Ethernet S2 de la xarxa x2 no en sap d'IP (no té capa IP 1), sinó només sap Ethernet! Té una taula [destí, interfície] amb les 4 @MAC de R2₀, E4, E5 i E6!

si el destí és algú de la meva xarxa, el lliurament és directe: següent = destí ("directe") Són R2₀, E4, E5 i E6, i també la resta d'@lPs "Iliures" del rang de 64 @lP d'x2 ²

si el destí és algú altre, el lliurament és indirecte via router: següent = router, (la interfície del router a la meva xarxa)

64 destins 2³² - 64

	estació E4		
	destí	següent	interfície
S	x1 (143.26.62.64/26)	directe	E4 (143.26.62.66)
	resta	R2 ₀ (143.26.62.65)	E4 (143.26.62.66)

¹ De fet, si fos un *switch* configurable remotament, llavors <mark>sí tindri</mark>a una @IP, capa IP, etc., i també una @MAC. Es modelaria com una "nova" estació, p.e. "E10", connectada al *switch*

Taules d'encaminament IP: R2

A la resta d'Internet hi ha moltíssimes xarxes IP unides per *routers*. Entre elles la xarxa IP on està R2₃: en diem la xarxa xz, és ADSL, la formen R2₃, potser altres estacions i la interfície d'un *router* que p.e., en diem Rz₁

@IPR2₃ = 31.42.53.133, mask 255.255.255.128 ⇒ xarxa xz: 31.42.53.128/25 Hi ha un únic "següent" *router* Rz

amb @IPR $z_0 = 31.42.53.189$

router R2			
destí	següent	interfície	
x2 (143.26.62.64/26)	directe	R2 ₀ (143.26.62.65)	
x4 (143.26.104.0/30)	directe	R2 ₂ (143.26.104.2)	
x6 (143.26.104.8/30)	directe	R2 ₁ (143.26.104.9)	
x1 (143.26.60.0/24)	R1 ₁ (143.26.104.2)	R2 ₂ (143.26.104.2)	F
x3 (143.26.64.0/23)	R3 ₂ (143.26.104.6)	R2 ₁ (143.26.104.9)	F
x5 (143.26.104.4/30)	R1 ₁ (143.26.104.2)	R2 ₂ (143.26.104.2)	
xz (31.42.53.128/25)	directe	R2 ₃ (31.42.53.133)	
resta	Rz ₀ (31.42.53.189)	R2 ₃ (31.42.53.133)	

Per R3 és més llarg Per R1 és més llarg O bé per R3

² Recordeu que les @IP "Iliures" cap altra xarxa IP les pot fer servir

Taules d'encaminament IP: R3

router R3		
destí	següent	interfície
x3 (143.26.64.0/23)	directe	R3 ₀ (143.26.64.1)
x5 (143.26.104.4/30)	directe	R3 ₁ (143.26.104.6)
x6 (143.26.104.8/30)	directe	R3 ₂ (143.26.104.10)
x1 (143.26.60.0/24)	R1 ₂ (143.26.104.5)	R3 ₁ (143.26.104.6)
x2 (143.26.62.64/26)	R2 ₁ (143.26.104.9)	R3 ₂ (143.26.104.10)
x4 (143.26.104.0/30)	R1 ₂ (143.26.104.5)	R3 ₁ (143.26.104.6)
resta	R2 ₁ (143.26.104.9)	R3 ₂ (143.26.104.10)

Per R2 és més llarg Per R1 és més llarg O bé per R2 Per R1 és més llarg

Taula del switch S1

... quan la taula de S1 està completa

Les taules indiquen la "interfície" (port) on es troba una estació "destí", és a dir, la "interfície" a la qual cal reenviar un paquet dirigit a "destí"

La taula local ARP d'E4...

... si darrerament* l'estació E4 només ha enviat paquets IP a E6, E1 i E8

- Darrerament* E4 només ha enviat paquets IP a E6, E1 i E8
- El camí seguit per aquests paquets ve donat per les taules d'encaminament IP
 - E4 → E6: E4 E6, on el "següent" = "directe", és a dir E6
 - E4 \rightarrow E1: E4 R2 R1 E1, on el "següent" = R2₀
 - E4 \rightarrow E8: E4 R2 R3 E8, on el "següent" = R2₀
- E4, per enviar-ho al "següent", haurà fet servir les @MAC d'E6 i R2₀, i per tant la seva taula ARP només conté aquestes entrades:

	estació E4		
	@IP	@MAC	
E6	E6 (143.26.62.68)	E6 (00-34-D6-11-AB-6D)	
R2 ₀	R2 ₀ (143.26.62.65)	R2 ₀ (00-1D-60-E <mark>E-4</mark> F-5F)	

 Fixeu-vos també que a la taula local ARP de R1 hi haurà l'entrada corresponent a E1, i que a la taula local ARP de R3 hi haurà l'entrada corresponent a E8

Transport d'un paquet IP d'E4 a E8 (i)

^{*} Recordeu que les entrades de la taula tenen un temps de vida, passat el qual s'esborren

Transport d'un paquet IP d'E4 a E8 (ii)

- La capa superior "SUP" (p.e., TCP, UDP, etc.) usuària de la capa IP d'E4 vol enviar un paquet "paqSUP" a l'"@IPdestí" = @IPE8
 - la capa "SUP" crida IPenv(@IPE6, "paqSUP"); la capa IP construeix un paquet amb @origen=@IPE4, @destí=@IPE8, #prot="SUP", info="paqSUP", etc., i consulta la taula d'encaminament IP per saber "següent": per @IPE8 = 143.26.64.3 la 2a línia aplica ("resta"), i llavors següent = R2₀, amb @IPR2₀ =143.26.62.65; ara la capa IP cridaria ETHenv(@MACR2₀, "paqIP") però no sap l'@MACR2₀
 - per descobrir-ho la capa IP crida a ARPresol(@MACR2₀?,@IPR2₀); la capa ARP ho busca primer a la seva taula local ARP, i si no hi fos es faria servir ARP... En aquest cas SÍ hi és: @IPR2₀ (143.26.62.65) ---- @MACR2₀ (00-1D-60-EE-4F-5F)
 - la capa IP crida ETHenv(@MACR2₀, "paqIP"); la capa Ethernet construeix un paquet amb @origen=@MACE4, @destí=@MACR2₀, type="IP", info="paqIP", etc., i l'envia

el paquet Ethernet arriba al switch S2 (per la interfície 0), que llegeix que l'@destí =
 @MACR20, consulta la seva taula, i el reenvia només a la interfície 3, cap a R20

Transport d'un paquet IP d'E4 a E8 (iii)

- El router R2 (via R2₀) rep el paquet Ethernet, el desencapsula, i extrau el paquet IP. Ha de reenviar un paquet IP dirigit a l'"@IPdestí" = @IPE8
 - la capa IP consulta la taula d'encaminament IP per saber el "següent": per @IPE8 = 143.26.64.3 la 5a línia aplica ("xarxa x6"), i llavors següent = R3₂, amb @IPR3₂ = 143.26.104.10; ara la capa IP haurà de cridar PPPenv("paqIP")
 - la capa IP crida a PPPenv("paqIP") per enviar via R2₁ (cap a R3₂); la capa PPP construeix un paquet amb protocol="IP", info="paqIP", etc., i l'envia via R2₁

- el paquet PPP arriba al router R3 (a la interfície R3₂)

Transport d'un paquet IP d'E4 a E8 (iv)

- El router R3 (via R3₂) rep el paquet PPP, el desencapsula, i extrau el paquet IP. Ha de reenviar un paquet IP dirigit a l'"@IPdestí" = @IPE8
 - la capa IP consulta la taula d'encaminament IP per saber el "següent": per @IPE8 = 143.26.64.3 la 1a línia aplica ("xarxa x3"), i llavors següent = directe, és a dir, següent = E8 (amb @IPE8 = 143.26.64.3), al destí E8 directament, via la interfície R3₀; ara la capa IP haurà de cridar ETHenv(@MACE8,"paqIP") via R3₀ però no sap l'@MACE8
 - per descobrir-ho la capa IP crida a ARPresol(@MACE8?,@IPE8); la capa ARP ho busca primer a la seva taula local ARP, i si no hi fos es faria servir ARP. En aquest cas Sí hi és:
 @IPE8 (143.26.64.3) ---- @MACE8 (00-16-B6-83-E4-51)
 - la capa IP crida ETHenv(@MACE8,"paqIP") via R3₀; la capa Ethernet construeix un paquet amb @origen=@MACR3₀, @destí=@MACE8, type="IP", info="paqIP", etc., i l'envia via R3₀

el paquet Ethernet arriba al switch S3 (per la interfície 3), que llegeix que l'@destí =
 @MACE8, consulta la seva taula, i el reenvia només a la interfície 1, cap a E8