

analisi	Liententi di ropologia della l'erra		
nome	definizione		
insieme	l'insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi:		
	"Per insieme si intende un raggruppamento, concepito come un tutto, di oggetti ben distinti della nostra intuizione o del nostro pensiero"		
	esempi		
	$A = \{ a, b, c, d \}$ $B = \{ 0, 1, 2, 3, 4 \}$ $C = \{ 1, 2, 3 \} \cup \{ 6 \}$		
	$D = (1,5]$ $E = 1 < x < 5$ $F = \emptyset$		
intervallo	un intervallo è l'insieme di tutti i valori compresi tra due estremi (finiti o infiniti)		
	esempi		
	l'insieme [1,4) è un intervallo perché contiene tutti i numeri compresi tra 1 e 4		
	fai attenzione che un intervallo è anche un insieme ma non è detto che un insieme sia un intervallo. Ad esempio l'insieme: { 1, 2, 3, 4} non è un intervallo perché contiene solo i quattro numeri indicati e non tutti i numeri tra 1 e 4		
	l'intorno completo di un punto è un qualsiasi intervallo aperto che contiene il punto		
intorno	esempi		
completo di un punto	dato il punto $x_0 = 5$ l'intervallo (4,10) è un intorno completo di 5		
intorno circolare di un punto	l'intorno circolare di un punto è un intervallo aperto di centro il punto stesso		
	esempi		
	dato il punto $x_0 = 7$		
	l'intervallo (4,10) è un intorno circolare di 7		
	la parte (4,7) si chiama intorno sinistro di 7		
	la parte (7,10) si chiama intorno destro di 7		
	il minimo di un insieme A, se esiste è l'elemento più piccolo appartenente all'insier		
minimo di un insieme	in simboli: $m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	esempi		
	dato l'insieme [2,5) il minimo è 2		

osserva che il minimo di un insieme esiste solo se l'insieme è chiuso inferiormente

Elementi di topologia della retta

massimo di un insieme	il massimo di un insieme A , se esiste, è l'elemento più grande appartenente all'insieme. in simboli: M è il massimo di A se $\begin{cases} M \geq x & \forall x \in A \\ M \in A \end{cases}$		
	esempi		
	dato l'insieme (2,5] il massimo è 5		
	dato l'insieme (2,5) il massimo <i>non esiste</i>		
	osserva che il massimo di un insieme esiste solo se l' insieme è chiuso superiormente		
	un minorante di un insieme è un qualsiasi elemento minore o uguale di tutti gli elementi dell'insieme.		
	il minorante non deve necessariamente appartenere all'insieme e, se esiste, non è unico		

minorante di un insieme

dato l'insieme [2,5) l'insieme dei minoranti è l'intervallo ($-\infty$,2]

dato l'insieme (2,5) l'insieme dei minoranti è sempre l'intervallo ($-\infty$, 2]

Osserva che l'insieme dei minoranti, se non è vuoto, è sempre chiuso superiormente

maggiorante di un

insieme

un maggiorante di un insieme è un qualsiasi elemento **maggiore o uguale** di tutti gli elementi dell'insieme.

esempi

Il maggiorante non deve necessariamente appartenere all'insieme e, se esiste, non è unico

esempi

dato l'insieme [2, 5) 5, 6, 7... sono maggioranti

dato l'insieme [2,5) 2, 1, 0 ... sono minoranti

dato l'insieme [2,5) l'insieme dei maggioranti è l'intervallo [5, $+\infty$)

dato l'insieme [2,5] l'insieme dei maggioranti è sempre l'intervallo [5, $+\infty$)

osserva che l'insieme dei maggioranti, se non è vuoto, è sempre chiuso inferiormente

estremo inferiore di un insieme l'estremo inferiore di un insieme limitato inferiormente è il **massimo dei minoranti** dell'insieme stesso e si indica con il simbolo inf(A)

esempi

dato l'insieme A = (2,5] l'estremo inferiore di $A \in \mathbf{2}$ in simboli: $inf(A) = \mathbf{2}$

infatti l'insieme dei minoranti di A è $(-\infty, 2]$ il cui massimo è $\mathbf{2}$

 \triangle se l'insieme non è limitato inferiormente, l'estremo inferiore è $-\infty$

 $B = (-\infty, 5] \quad inf(B) = -\infty \qquad C = (1, 4] \quad inf(C) = 1 \qquad D = [1, 4] \quad inf(D) = 1$

proprietà

dato un A insieme **limitato** inferiormente l'estremo inferiore inf(A) gode delle seguenti due proprietà:

- 1. $inf(A) \le x \quad \forall x \in A$
- 2. $\forall \varepsilon > 0 \exists x \in A : x < (inf(A) + \varepsilon)$

l'estremo superiore di un insieme limitato superiormente è il **minimo dei maggioranti** dell'insieme stesso e si indica con il simbolo *sup (A)*

esemp

dato l'insieme A = (2, 5) l'estremo superiore di A è **5** in simboli: $sup(A) = \mathbf{5}$

infatti l'insieme dei maggioranti di A è $[5, +\infty)$ il cui minimo è $\mathbf{5}$

estremo superiore di un insieme

extstyle ext

$$B = (3, +\infty) \quad sup(B) = +\infty \quad C = (3, 7) \quad sup(C) = 7 \quad D = (3, 7) \quad sup(D) = 7$$

proprietà

dato un insieme A **limitato** superiormente l'estremo superiore sup(A) gode delle seguenti due proprietà:

2.
$$\forall \varepsilon > 0 \exists x \in A : x > (sup(A) - \varepsilon)$$

esempi di riepilogo

dato l'insieme A = (1, 9] si ha che:

- A è un intervallo limitato
- A è aperto inferiormente e chiuso superiormente
- il minimo di A non esiste, il massimo di A è 9
- l'insieme dei minoranti di A è l'intervallo $(-\infty, 1]$
- l'insieme dei maggioranti di A è l'intervallo $[9, +\infty)$
- l'estremo inferiore di A è 1, l'estremo superiore è 9

dato l'insieme $B = [1, +\infty)$ si ha che:

- B è un intervallo non limitato superiormente
- B è chiuso inferiormente e aperto superiormente •
- il minimo di B è 1, il massimo di B non esiste
- l'insieme dei minoranti di B è l'intervallo $(-\infty, 1]$
- l'insieme dei maggioranti di B è vuoto
- l'estremo inferiore di B è 1, l'estremo superiore è +∞

dato l'insieme $C = (-\infty, 2)$ si ha che:

- C è un intervallo non limitato inferiormente
- C è aperto inferiormente e superiormente
- il minimo e il massimo di C non esistono
- l'insieme dei minoranti di C è vuoto
- l'insieme dei maggioranti di C è l'intervallo [2, +∞)
- l'estremo inferiore di C è $-\infty$, l'estremo superiore è 2

punto di accumulazione per un insieme

un punto x_0 si dice di accumulazione per un insieme A se **ogni** intorno del punto contiene **almeno** un elemento dell'insieme A distinto dal punto stesso

fai attenzione che:

- l'appartenenza del punto all'insieme **non** implica che il punto sia di accumulazione per l'insieme
- la **non** appartenenza del punto all'insieme **non** implica che il punto **non** sia di accumulazione per

i successivi esempi illustrano i quattro possibili casi

esempi				
x_0 appartiene ad A	$\sin x_0 = 3 \text{ ed } A = (2,6)$			
x_0 è di accumulazione per A	3 appartiene ad A ed è di accumulazione per A	2 3 6		
x_0 <i>non</i> appartiene ad A	$\sin x_0 = 2 \text{ ed } A = (2,6)$			
x_0 è di accumulazione per A	2 non appartiene ad <i>A</i> ed è di accumulazione per A	2 6		
x_0 <i>non</i> appartiene ad A	$\sin x_0 = 1 \text{ ed } A = (2,6)$			
x_0 non è di accumulazione per A	1 non appartiene ad A ma non è di accumulazione per A	1 2 6		
x_0 appartiene ad A	$\sin x_0 = 1 \text{ ed } A = \{1\} \cup (2,6)$			
x_0 non è di accumulazione per A	1 appartiene ad A ma non è di accumulazione per A	1 2 6		

un punto che appartiene ad un insieme ma non è di accumulazione per l'insieme stesso si dice **punto isolato**

sia A un insieme / A⊆R l'insieme dei suoi punti di accumulazione si chiama il derivato di A e si indica con **Dr(A)**

si dimostra che: $-\infty$ è di accumulazione per un insieme se e solo se l'insieme **non** è limitato inferiormente e che $+\infty$ è di accumulazione per un insieme se e solo se l'insieme **non** è limitato superiormente

ulteriori esempi dato l'insieme $A = \{1, 2, 3, 4\}$ nessuno dei quattro elementi di A è un punto di accumulazione per A. Infatti, scelto ad esempio l'elemento 3, esiste un suo intorno (2,5,3,5) che non contiene alcun elemento di A distinto da 3 stesso. Analoga conclusione per gli altri tre elementi di A insieme dei insieme dei minoranti maggioranti dato l'insieme $B = (0,7) \cup (7,9]$ si ha che l'estremo superiore di B è 9 il minimo di B non esiste, il massimo di B è 9 0 7 e 9 sono di accumulazione per B l'insieme dei minoranti di B è $(-\infty, 0]$ tutti i numeri tra 0 e 9 sono punti di accumulazione l'insieme dei maggioranti di B è $[9, +\infty)$ per l'insieme B l'estremo inferiore di B è 0 il derivato di B Dr(B) = [0,9]