N89-14161 7-26
174726
281

1988

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER UNIVERSITY OF CENTRAL FLORIDA

EVALUATION OF CANDIDATE ALLOYS FOR THE CONSTRUCTION OF METAL FLEX HOSES IN THE STS LAUNCH ENVIRONMENT

CC 291532

Prepared By:

Cordelia Ontiveros

Academic Rank:

Associate Professor

University and Department:

California State

Polytechnic University

Chemical and Materials Engineering

NASA/KSC:

Division:

Materials Science Laboratory

Branch:

Materials Testing Branch

NASA Counterpart:

Cole Bryan

Date:

August 26, 1988

Contract No.:

University of Central Florida

NASA-NGT-60002

ACKNOWLEDGMENT: I would like to thank the people at Kennedy Space Center for a very fruitful and worthwhile second year summer research experience. I have enjoyed my work here very much, and I am grateful to the NASA/ASEE Summer Faculty Fellowship Program for this opportunity.

I especially would like to thank Louis MacDowell and Loren Anderson for their help and support. I would also like to thank Mike Springer for his help with monitoring the samples. And thank you to all the people in the Materials Science Lab for their friendship.

NOTICE: This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.

The citation of manufacturer's names, trademarks or other product identification in this document does not constitute an endorsement or approval of the use of such commercial products.

ABSTRACT

Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested, for this application.

LIST OF ILLUSTRATIONS

Figure	Title
1	Salt Fog Results After 20 Weeks
2	Beach Exposure Results After 251 Days
3	Photos After Ferric Chloride Immersion
4	Ferric Chloride Immersion - Galvanic Samples

LIST OF TABLES

Table	Title
1	Candidate Alloys And Their Compositions
2	Properties of Candidate Alloys
3	Autogenous Weld Samples
4	Samples Welded To 304L Stainless Steel
5	Salt Fog/Acid Dip Results - 4 Weeks
6	Salt Fog/Acid Dip Results - 8 Weeks
7	Salt Fog/Acid Dip Results - 12 Weeks
8	Salt Fog/Acid Dip Results - 16 Weeks
9	Salt Fog/Acid Dip Results - 20 Weeks
10	Salt Fog/Acid Dip - Galvanic Welded Results
11	Beach Exposure/Acid Spray Results - 60 Days
12	Beach Exposure/Acid Spray Results - 251 Days
13	Beach Exposure/Acid Spray - Composite Welded
14	Ferric Chloride Immersion Results
15	Ferric Chloride Immersion - Composite Welded
A1	Summary Of Electrochemical Results

1.0 INTRODUCTION

- 1.1 Flexible hoses are used in various supply lines that service the Orbiter at the launch pad. These convoluted flexible hoses were originally made out of 304L stainless steel. The extremely corrosive environment of the launch site has caused pitting corrosion in many of these flex hose lines. In the case of vacuum jacketed cryogenic lines, failure of the flex hose by pitting causes a loss of vacuum and subsequent loss of insulation.
- 1.2 The atmosphere at the launch site has a very high chloride content caused by the proximity of the ocean. During a launch, the products from the fuel combustion reaction include concentrated hydrochloric acid. This combination of chloride and acid leads to a very corrosive environment. This type of environment causes severe pitting in some of the common stainless steel alloys.
- 1.3 A search was undertaken to find an alternative material for the flex hoses, to reduce the problems associated with pitting corrosion. An experimental study was carried out on 19 candidate alloys, including 304L stainless steel for comparison. These alloys were chosen on the basis of their reported resistance to chloride environments.
- 1.4 Data is available in the literature on the corrosion resistance of several of the alloys being considered in this study. The data generally is for seawater (1-3), chloride solutions (3-13), or acids (8,10,12,14,15) individually. Some information is available on combinations of these (8,10,11,13,16), but experimental results were not found for all of the alloys under the specific conditions of the environment of interest -- NaCl combined with HCl.
- 1.5 Tests to determine which of the candidate alloys would have the best corrosion resistance include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. The results of the electrochemical testing and preliminary results from the ferric chloride immersion test were reported previously (17,18). The electrochemical results are summarized here in Appendix A, for convenience. KSC personnel have been completing the ferric chloride immersion test and carrying out the salt fog chamber and beach exposure tests during the year since last summer. This report presents the results of these tests for all 19 of the candidate alloys.

2.0 MATERIALS AND EQUIPMENT

2.1 CANDIDATE ALLOYS

- 2.1.1 Nineteen alloys were chosen for testing as possible replacement material for the 304L stainless steel flex hoses. 304L stainless steel was included for comparison purposes. The 19 candidate alloys and their nominal compositions are shown in Table 1. These alloys were chosen for consideration based on their reported resistance to corrosion.
- 2.1.2 In addition to corrosion resistance, mechanical properties are also important to consider when selecting a new material. Some physical and mechanical properties for the candidate alloys are listed in Table 2.

2.2 SALT FOG CHAMBER/ACID DIP

- 2.2.1 Accelerated testing of the candidate alloys was performed in an Atlas Corrosive Fog Exposure System Model SF-2000. The solution used was the standard 5% sodium chloride mixture prepared as needed. The dipping solution used in the process was a 1.0N (about 9 vol%) hydrochloric acid/alumina (Al203) mixture. The particle size of the alumina was 0.3 micron. The solution was thoroughly stirred prior to dipping due to the settling of the alumina powder.
- 2.2.2 Flat test specimens exposed to these solutions were 1" x 2" samples of the identified alloys and were approximately 1/8" thick. One set of samples were base metals with an autogenous weld on one end as identified in Table 3. Another set of specimens were the candidate alloys welded to 304L stainless steel for galvanic studies and are identified in Table 4. All flat specimens had a 3/8" hole drilled in the center for mounting purposes. Stress corrosion cracking specimens were standard U-bend samples prepared with a weld in the center of the bend, using the same materials as given in Table 3. The specimens were obtained commercially from Metal Samples Company, RT. 1, Box 152, Munford, AL.

2.3 BEACH EXPOSURE/ACID SPRAY

2.3.1 All exposure in this test was carried out at the KSC Beach Corrosion Test Site which is approximately 100 feet from the high tide line. The site is located on the Atlantic Ocean approximately 1 mile south of Launch Complex 39A.

2.3.2 The acid solution used in the spray operation was 10% hydrochloric acid by volume (about 1.0N) mixed with the 0.3 micron alumina powder to form a slurry. The specimens used in this testing were duplicate specimens as described in the salt fog/acid dip tests.

2.4 FERRIC CHLORIDE IMMERSION

2.4.1 Large glass beakers (600 - 1000 ml) were used to hold the test solution. Specimens were suspended in the solution by a glass cradle. Test specimens were 1" x 2" flat samples as described in the salt fog/acid dip tests.

3.0 TEST PROCEDURES

3.1 SALT FOG CHAMBER/ACID DIP

- 3.1.1 Before mounting, the new corrosion specimens were visually checked and weighed to the nearest 0.1 milligram on a properly calibrated Mettler AE160 electronic balance. The specimens were then mounted on insulated rods and set in the salt fog chamber at about 15-20 degrees off the vertical.
- 3.1.2 The specimens were exposed to one week (168 hours) of salt fog per ASTM B117 (19). The temperature of the chamber was controlled at 95°F (35°C) ± 2°F. After the one week exposure, the specimens were removed and dipped in the hydrochloric acid/alumina mixture to simulate the booster effluent created during launch of the Space Shuttle. After one minute of immersion, the specimens were allowed to drain and dry overnight. Following this dipping procedure, the samples were installed in the salt fog chamber for the next one week cycle.
- 3.1.3 After a four week/four dip period, the specimens were removed from the mounting rod and inspected. The inspection procedure included cleaning, weighing, and visual characterization of the corrosion taking place. The corroded specimens were first cleaned using a nonabrasive pad and soapy water to remove heavy deposits of alumina. This was followed by chemical cleaning per ASTM G1 (20) to remove tightly adhering corrosion products. After cleaning, the specimens were allowed to dry overnight before weighing. The specimens were weighed to the nearest 0.1 milligram on the Mettler electronic balance. The coupons were visually

inspected with the naked eye and under 40x magnification. All observations were recorded in terms of appearance, sheen, pit severity/density, and stress cracking phenomena. After the inspection, the specimens were remounted and returned to the chamber for the next four week/four dip cycle of testing.

3.2 BEACH EXPOSURE/ACID SPRAY

- 3.2.1 The beach exposure test procedure was based on ASTM G50 (21), with the addition of an acid spray. The new duplicate specimens were first visually inspected and weighed to the nearest 0.1 milligram as was stated before. The coupons were mounted on short insulated rods that were attached to a plexiglas sheet. The orientation of the specimens was face side up and boldly exposed to the environment to receive the full extent of sun, rain, and sea spray. The U-bend specimens were mounted on 36" long insulated rods and secured with nylon tie wraps. Both the plexiglas sheet and the insulated rods were mounted on test stands at the beach corrosion test site using nylon tie wraps. The specimens were mounted facing east towards the ocean at a 45 degree angle.
- 3.2.2 Approximately every two weeks, the specimens received an acid spray with the solution described. The acid spray thoroughly wet the entire surface and was allowed to remain on the surface of the specimens until it dried or was rinsed off by rain.
- 3.2.3 After the first exposure period of 60 days, the specimens were brought to the laboratory for inspection. The inspection procedure was the same as that for the salt fog testing. The samples were remounted and returned to the beach site for continued exposure testing.

3.3 FERRIC CHLORIDE IMMERSION

- 3.3.1 The ferric chloride immersion test procedure was based on ASTM G48, Method A (22). The test solution was made by dissolving 100 grams of reagent grade ferric chloride (FeCl₃· $6H_2O$) in 900 ml of distilled water. The solution was then filtered to remove insoluble particles and allowed to cool to room temperature.
- 3.3.2 Samples were measured to calculate exposed surface area, cleaned, rinsed, and weighed before immersion in the

test solution. Each sample was placed in a glass cradle and lowered into the test solution. The beaker was covered with a watch glass and left for 72 hours.

- 3.3.3 After 72 hours, the samples were removed and rinsed with water. Corrosion products were removed, and the samples were then dipped in acetone or alcohol and allowed to air dry. Each specimen was weighed and examined visually for signs of pitting and weld decay. Specimens were also examined at low magnification and photographed.
- 3.3.4 Some of the samples that showed no sign of corrosion were put back into the test solution. These samples were periodically inspected and re-immersed for a total exposure time of 912 hours.

4.0 TEST RESULTS AND DISCUSSION

4.1 SALT FOG CHAMBER/ACID DIP

4.1.1 After four weeks of salt fog exposure and 4 dipping processes, the coupons were brought to the laboratory for analysis. After the cleaning procedure, the specimens were weighed to determine weight loss caused by the four week exposure. Using the weight loss results and the measured area of the coupons, corrosion rate calculations were made to compare the alloys' resistance to the salt fog/acid dip environment. The formula used to calculate the corrosion rate is

CORROSION RATE (MILS PER YEAR) = $\frac{534w}{dAt}$

where w is the weight loss in milligrams, d is the metal density in grams per cubic centimeter (g/cm3), A is the area of exposure in square inches (in2), and t is the exposure time in hours. This expression calculates the uniform corrosion rate over the entire surface and gives no indication of the severity of any localized attack (pitting) that could be occurring on the surface. To determine the severity of this localized attack, the coupons were examined visually with the naked eye and under 40 power magnification. The measured weight loss, the resulting calculated corrosion rate, and the visual observations for each of the alloys for the four week cycle are presented in Table 5. As can be seen from the table, several materials clearly separated from the rest and displayed superior corrosion resistance. These materials included three Hastelloy alloys (C-22, C-4, and C-276), Zirconium 702, Inconel 625, and Inco Alloy G-3. The

Inco Alloy G-3 marked the point at which the corrosion rates accelerated rapidly for the many stainless steel alloys included in the testing. The visual observations confirmed the corrosion resistance of the top alloys with no visual deterioration at 40x. These results were considered important but premature, and the specimens were returned to the salt fog chamber for further exposure.

- 4.1.2 Following another four week cycle, the specimens were brought to the laboratory for the eight week analysis. same procedures were conducted to clean, weigh, calculate, and observe the specimens. The eight week data is shown in Table 6. As can be seen from the table, not much changed in the ranking of the alloys, with the top six materials clearly superior to the rest. However, the Inco Alloy G-3 started showing signs of pitting at 40x, but these pits were small. The corrosion rates did not change much since the relationship between weight loss and time should stay fairly constant. However, some materials display a slight reduction in corrosion rate, and this is probably due to a slight slowing of the pitting after an initial accelerated attack. In comparison to the electrochemical data (17), two materials changed their relative positions in the rankings. The cyclic polarization in 1.0N HCl/3.55% NaCl showed the Zirconium 702 material to be a poor performer, but in the salt fog/acid dip testing, this material displayed excellent corrosion resistance. On the other hand, the electrochemical testing in the 1.0N HCl/3.55% NaCl showed the Ferralium 255 to perform well, but in the salt fog/acid dip testing, this material corroded rapidly and pitted badly. The reasons for this behavior are unclear, but continued testing confirmed this result.
- 4.1.3 Following another four week cycle, the specimens were brought to the laboratory for the 12 week analysis. The results of the 12 week testing are shown in Table 7. After 12 weeks in the salt fog chamber and 12 dips in the acid slurry, a clear trend started to emerge. The corrosion rates were remaining fairly constant with a slight reduction still being displayed by some materials. The alloys were settling into their positions for the ranking of corrosion resistance in this accelerated environment. The Inco Alloy G-3 lost its sheen and continued to display pitting attack and some deterioration of the weld. The observation of very small pits developing on the three Hastelloy materials and one Inconel material were barely detectable and were considered insignificant since the weight loss remained very low.
- 4.1.4 Following another four week cycle, the specimens were brought to the laboratory for the 16 week analysis. The 16

week data is presented in Table 8. As can be seen from the table, several materials displayed increased attack and fell lower in the rankings. Most notable were the 304L, 316L, and 317L stainless steels. This allowed several materials to move up in the rankings, most notably the Inconel 600, Inconel 825, and the Ferralium 255. The visual observations continued to be helpful in characterizing the alloy surface and type of corrosive attack. The top materials did not display any increase in pitting, and the weight loss data confirms this fact.

- 4.1.5 At the completion of another four week cycle, the specimens were brought to the laboratory for the 20 week analysis. The 20 week data is presented in Table 9. As can be seen from the table, the materials generally remained in their respective positions when compared to the 16 week data. The 304L stainless steel dropped slightly in the rankings due to severe weld attack. When the corrosion rate data is graphed, as in Figure 1, the great differences in performance can easily be seen. The level of performance of the top alloys is much higher than that of the lower materials. The cutoff line between the Incoloy G-3 and the Hastelloy B-2 shows a 15 fold increase in the corrosion rate. The corrosion rate of 304L stainless steel is approximately 260 times higher than that of Hastelloy C-22 in the salt fog/acid dip exposure test.
- In conjunction with the standard alloy coupons, specimens were tested in the composite welded configuration. These specimens were produced by joining dissimilar metals by welding the candidate alloys to 304L stainless steel. resulting composite coupons were exposed to the same conditions as the standard specimens to determine any undesirable galvanic effects at the weld area. This was considered necessary since the successful new alloy would be installed in an existing 304L stainless steel piping system, and galvanic corrosion in the weld area could become a source of system failure. The composite welded coupons were cleaned prior to examination in the same manner as described earlier. The 16 week observations are presented in Table 10. be seen from the table, most of the specimens suffered some For the alloys under consideration from type of weld decay. a corrosion resistance standpoint (Hastelloy C-22 and Inconel 625), the deterioration was mostly on the 304L surfaces adjacent to the weld. Since 304L stainless steel is anodic to these two alloys, this result was expected. The 304L is corroding preferentially and cathodically protecting the more corrosion resistant alloy. Since the particular application of the corrosion resistant alloy is to form thin wall convolutes welded to a heavy wall 304L stainless steel pipe,

the galvanic effect will be minimal. The effects can be further lessened by welding using the corrosion resistant alloy as the weld filler and coating the weld area with AR-7 to block any electrolyte from reaching the galvanic couple. The AR-7 material is readily available from KSC stock and is described fully in KSC-STD-C-0001B.

Further testing was conducted during the study to determine if any of the alloys under consideration would be susceptible to stress corrosion cracking in the Shuttle launch environment. This was considered important due to the forming operations used in fabricating flexible convoluted The convolutes are severely deformed during manufacture, and high residual tensile stresses could be This situation combined with a corrosive environment created concern to properly define the stress corrosion behavior of the candidate alloys. For this testing, standard U-bend specimens were exposed to the same set of conditions as the corrosion coupons. These U-bend specimens were welded in the middle of the bend to create the worst case condition. As of the time of this report, only two of the stress corrosion specimens have failed. stainless steel specimen cracked after eight weeks and eight The Ferralium 255 specimen cracked after 12 weeks and 12 acid dips. All other materials are continuing to display stress corrosion cracking resistance in the salt fog/acid dip environment.

4.2 BEACH EXPOSURE/ACID SPRAY

4.2.1 After 60 days of beach exposure and 5 sprays with the acid slurry, the coupons were brought to the laboratory for analysis. After the cleaning procedure, the specimens were weighed, corrosion rate calculations were made, and visual examinations were conducted as described for the salt fog/acid dip process. The results of these analyses for each of the alloys for the 60 day/5 spray cycle are presented in As can be seen from the table, several materials clearly separated from the rest and displayed excellent corrosion resistance. The Hastelloy C-22 and Inconel 625 showed no detectable weight loss while the Hastelloy C-4 and C-276 were on the limits of measurement. The calculated corrosion rates for these materials are considered insignificant, and any one should be considered acceptable. The observations confirmed the resistance of these alloys with no visual deterioration at 40x. These results were considered important but premature, and the specimens were returned to the beach for further exposure.

- 4.2.2 After 251 days of beach exposure with 13 acid sprays, the specimens were brought to the laboratory for analysis. The same procedures as before were conducted to clean, weigh, calculate, and observe the coupons. The 251 day data is shown in Table 12. A graphical presentation of the corrosion rate data is shown in Figure 2. Following the 251 day exposure cycle, the same four materials displayed excellent corrosion resistance and were clearly superior to the remainder of the alloys. The same reduction in corrosion rate phenomenon was experienced as in the salt fog testing. This is probably due to a reduction in pitting rates over time as explained previously. The corrosion rates shown in Figure 2 display the same cutoff as for the salt fog data, except that the increase in corrosion rate is not as pronounced. Between the Incoloy G-3 and the Ferralium 255, there is only a 5 fold increase in corrosion rate. Since the corrosion rates of Hastelloy C-22 and Incomel 625 were not measurable, no numerical comparison factor can be found with respect to the other alloys. However, these two alloys are clearly superior to the stainless steel alloys in the beach exposure/acid spray testing.
- 4.2.3 When the beach results are compared to the salt fog results, many materials change positions relative to each other. In general, the materials at the top (Hastelloy C-22 and Inconel 625) and at the bottom (20Cb-3 and Monel 400) of each list remained in their respective positions. the standard stainless steel alloys such as 304L, 304LN, 316L, and 317L declined in relative performance while the duplex stainless alloys such as Ferralium 255 and ES 2205 improved in the rankings. This was an interesting occurrence and could be explained as follows. The main difference between the two tests is oxygen availability. While the specimens are in the salt fog chamber, the surfaces are continually wet, and this film of water could reduce the oxygen available to the metal surface. Since most corrosion resistant alloys depend on oxide films on their surface for protection, the suspicion is that the salt fog conditions could be hindering the formation of these protective oxide films on the duplex stainless steels, allowing accelerated corrosion to take place. The beach data, in contrast to the salt fog data, supports the electrochemical findings in regard to the Ferralium 255. The reasons for this are unknown but could be due to the formation of the protective oxide films.
- 4.2.4 For reasons stated earlier, composite welded coupons were tested in conjunction with the standard specimens to determine any undesirable effects of the galvanic couple.

The composite specimens were cleaned in the same manner prior to the examination. The 251 day beach exposure observations are shown in Table 13. As can be seen from the table, most specimens were suffering from weld decay. The severity was generally less than that observed in the salt fog testing, but the results are similar in nature with most of the attack concentrated on the 304L stainless steel surfaces. As stated before, coating of the weld area with the AR-7 material should reduce the galvanic effects to a minimum.

- 4.2.5 In conjunction with the salt fog testing, duplicate U-bend stress corrosion cracking specimens were exposed at the beach corrosion test site to determine the stress corrosion cracking susceptibility of the candidate alloys. As of the time of this report, none of the specimens exposed to the naturally occurring conditions at the beach site have experienced failure. Exposure of these specimens will continue, to determine if any specimens will crack in the future.
- 4.2.6 By comparing results from the salt fog to the beach testing, many differences have been noted. The beach testing is considered the best judge of an alloy's performance since it has naturally occurring conditions that reflect the conditions experienced at Launch Complex 39. However, the accelerated testing does give us insight into which materials have a good chance of performing well. In all the testing, by electrochemical methods, salt fog/acid dip, beach exposure/acid spray, and ferric chloride immersion, the same materials are at the top of the list. The Hastelloy C-22 has displayed superior corrosion resistance during all the testing, and coupled with its mechanical properties, it is the logical first choice for a replacement material for convoluted flex hose/bellows fabrication. Other materials may be selected by using the data presented, but caution should be exercised to properly determine the environment in which the materials will be used. This work concentrated on one specific environment that contains sodium chloride and hydrochloric acid. Since all these alloys are very environment specific, altering that environment even slightly may produce extreme changes in alloy performance. Other chemical environments such as high pH, stronger acids, other corrosives, or high temperatures may cause failure of the materials identified in this study. When dealing with high performance corrosion resistant alloys, thorough testing is an absolute requirement for choosing the right material for the job. The long term history received from the continued beach testing will be invaluable to completely characterize alloy behavior.

4.3 FERRIC CHLORIDE IMMERSION

- 4.3.1 Results for the samples with an autogenous weld are summarized in Table 14. Some samples showed no signs of corrosion. Others showed uniform corrosion, pitting corrosion, weld decay, or corrosive attack in the heat affected zone. Some representative photos, all at 2.2x, are shown in Figure 3. Figure 3a, of Inconel 625, shows no corrosion. The 316L in Figure 3b shows severe pitting corrosion. Hastelloy B-2, seen in Figure 3c, suffered uniform corrosion, and the Inconel 825 sample of Figure 3d shows severe pitting attack at the weld and in the heat affected zone.
- 4.3.2 Results for the samples welded to 304L stainless steel are given in Table 15. It was not possible to obtain a sample of Zirconium 702 welded to 304L; so Zirconium 702 does not appear in Table 15. The effect of galvanic corrosion can be seen clearly by noticing that the 304L part of each sample suffered severe pitting corrosion. This can be seen visually in Figure 4. Some additional discussion of the ferric chloride immersion results may be found in reference 18.

5.0 CONCLUSIONS

- 5.1 Several alloys were found that have superior resistance to pitting and crevice corrosion, compared to the 304L stainless steel that was originally used for construction of convoluted flexible joints.
- 5.2 Good agreement was found between all 4 of the corrosion tests. In particular, the cyclic polarization technique was found to give excellent agreement with the beach exposure and salt fog chamber results. So this electrochemical method may be used as a very quick way to evaluate alloys before performing long term field exposure tests.
- 5.3 Using the conditions found at the Space Shuttle launch site (high chloride content plus hydrochloric acid), the most resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3.
- 5.4 On the basis of corrosion resistance, combined with weld and mechanical properties, Hastelloy C-22 was determined to be the best material for construction of flex hoses for use at the Space Shuttle launch site.

Figure 1 Salt Fog/Acid Dip Results
After 20 Weeks/20 Acid Dips

Figure 2 Beach Corrosion Data 251 Days/13 Acid Sprays

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3 Photos After Ferric Chloride Immersion, 2.2x

a) Inconel 625

b) 316L

c) Hastelloy B-2

d) Inconel 825

195

Figure 4 Ferric Chloride Immersion - Galvanic Samples

a) 304L Welded to Hastelloy C-276

<--- 304L
 Severe Pitting</pre>

<--- Hastelloy C-276
No Corrosion</pre>

b) 304L Welded to 904L

<--- 304L
 Severe Pitting</pre>

<--- 904L
No Corrosion</pre>

196

ORIGINAL PAGE IS OF POOR QUALITY

OPPOR QUALITY

Table 1 Candidate Alloys and Their Nominal Compositions (wt%)

ALLOY	Mi.	Fe	٥	No	Ne	Co+	Ca	C•	\$10	Pe	Ş+	Other
HASTELLOY C-4	Bal.	1.0	18	17	1.0	2.0		0.01	0.06	0.02	0. 01	7: 0.7
HASTELLOY C-22	Sal.	1.0	22	13	0.5	2.5		0.01	0,08	0.02	0.01	Ti 0.7
HOSTELLOY C-276	Bal.	7.0	17	17	1.0	2.5		0.01	0.08	0.02	0.01	V 0.3, W 3
HARTELLON 3-5	Bel.	2.0	1	26	1.0	1.0		0.01	0.1	0.02		V 0.3, W 4.5
INCOMEL 600	Bal.	E.O	16		1.0	•••	0.5	0.15	0.5	v. ug	0.01	
INCOMEL 625	Dal.	5.0	23	10	0.5	1.0	4. 3	0.10			0.01	
INCOME. \$25	Bel.	22.0	21	3	1.0		2.5		0.5	0.01	0.01	Cb 4.1
INCO 6-3	Bal.	20.0	22	,	1.0	5.0	2.0	0.05	0.5		0.03	
HONEL 400	Bal.	2.5	-	•	2.0	3.0		0.02	1.0	0.04	0.03	Cb 0.5, W 1.5
ZIRCONTUN 70P					Z. V		31	0. 30	0.5		0.02	
95 304L	10	≥1.	19		2.0							Ir 99.2, Hf 4.5
95 304LB	10	Bal.	19					0.03	1.0			
S 31 EL	12				20			0.03	1.0	0.04	0.03	N 0.13
S 317.		Del.	17	2.5	2.0			0. 03	1.0	0.04	0.03	
_	13	Sai.	19	3.5	2.0			0.03	1.0			
95 90AL	a	Bal.	51	4.5	2.0		1.5	0.02	1.0	0.04	0.03	
20 Cb-3	35	Bal.	50	2.5	2.0		3.5	0.07	1.0			
79o + N	4	Bal.	28	5	2.0			0.03	0. 6	0. 03	0.01	N 0.25
ES 2295	5	Sal.	22	3	2.0			0.03	1.0	0.03	0.02	N 0.14
FERRAL IUM 255	5	Bal.	æ	3	1.5		2.0	0.04	1.0	0.04	0.03	₩ 0.14 ₩ 0.17

^{*} Values are max.

Table 2 Physical and Mechanical Properties of the Candidate Alloys

ALLOY	Demaity (g/cm3)	Tensile Strength(ks:)	Yield Strongth (ksz)	Modulus of Elasticity(psi)		Impact Strength at -320F(ft 1b)	Coeff. of Thermal Expansion(in/in F)
HASTELLOV C-4	1.44	111	60	316+06	50 Rb	270	6. Œ-06
HRETELLOY C-22	4.69	116	77	30E+06	93 80	250	6. E-06
HARTELLOY C-276	8. 89	115	2	30E+06	90 B	83	6. 2E-06
HARLETTON 1-5	9.22	139	76	31E+06	7 B	23	5.45-06
INCOMEL 600	8.43	90	37	305+06	M Ro	61	7.4E-06
IICDEL 625	8.44	120		30E+06	77 10	35	7.1E-06
ncdel 125	6.14	112	64	30E+06	80 R	67	7. EE-06
INCO 8-3	&. 31	90	35	295+06	E5 R	26.3	8. 1E-06
E W	£ 12	7.7	37	35E+36	72 Bb	200	7.7E-06
ZIRCONIUN 702	6.30	35	16	11E+06	77 HB	•	2.95-06
95 304L	A. CE	79	n	286+06	70 10	71	9. Æ-06
SS 304UI	A. 02	79	33	205+06	70 D	•	1.2-0
\$ 31 Q .	L.CE	81	34	205 +06	75 6	51	1. Æ-06
\$\$ 31 7 L	F 05	15	25	246+06	* **	•	L E-06
95 904L	8.00	71	31	285.406	M 80	•	8. SE-06
20 Cb−3	8.06	99	23	205+06	90 Rb	•	L I -06
79a + N	7.75	110	81	295+06	99 Ab	٥	6. 4E-06
ES 2205	7. 80	100	70	265+06	30 Rc	Ŏ	7.56-06
FERRAL IUN 255	7.75	130	100	31E+06	3 k	Ó	£. £E-06

^{*} Data not available

Table 3 Autogenous Weld Samples

BASE ALLOY	FILLER	BASE ALLOY	FILLER
HASTELLOY C-4	C-4	55 304L	ER JOSL
HASTELLOY C-22	C-22	SS 304LH	ER 306L
HASTELLOY C-276	C-276	95 316L	ER 316L
HASTELLOY 8-2	B-2	SS 317L	ER 317
INCONEL 600	ERNICT-3	SS 904L	904L
INCONEL 625	ERNICTHO-3	20 Cb-3	ER 320
INCONEL 825	ERNiFeCr-1	7Ha • 18	ER312Ho
INCO G-3	Hestelloy G3	ES 2205	ER22. 0. 3L
HONEL 400	ERN1Co-7	FERRALIUM 255	F 255
ZIRCONIUM 702	ERZr2		. 233

Table 4 Samples Welded to 304L Stainless Steel

BASE ALLOY	FILLER	BASE ALLOY	FILLER
HASTELLOY C-4	ERN1CrNo-7	SS 304LN	ER 308L
HASTELLOY C-22	ERN1CrNo-10	95 316L	ER 316L
HASTELLOY C-276	ERN1CrHo-4	58 317L	ER 317
HASTELLOY B-2	ERN1No-7	SS 904L	ER 904L
INCONEL 600	ERN1Cr-3	20 Cb-3	ER 320
INCONEL 625	ERN1Cr-3	780 . N	ER312No
INCOMEL 825	ERN1Cr-3	ES 2205	ER22. 6. 3L
INCO G-3	Hestelloy G3	FERRALIUM 255	F 255
MONEL 400	ERN1Cr-3		

NOTE: It was not possible to obtain a sample of Zirconium 702 welded to 304L stainless steel

Table 5 Results of 4 Week Exposure in 5% Salt Fog and 4 Dips in 1.0N HCl - Alumina

MATERIAL NAME	WET LOSS(g) COR	r. rate (IPY)	REPARKS - DESERVATIONS AT IX AND NOT
**********		**********	
# 46 TELLETY C-22	3007	0.0140	NO PITTING AT IX - NO PITTING AT NO.
ZIRCONIUM 702	Ú. 300 6	0. 5210	NO PITTING, SAIGHT SHEEK AT IN - NO PITTING AT 408
HOSTELLOY C-4	0.0015	0. 3290	
HASTELLOY C-276	0.0018	0. 0340	
INCOVEL 625		0.0400	
INCOLON 6-1		0.1210	
HETELLOY B-2	0.0228		NO PITTING AT IX - UNIFORM CORROSION AT 401
35904L	0,0300	0.6200	VISIBLE PITTING, NO SHEEN AT IX - MODERATE PITTING AT AUX
SSJO4LN		0. 5320	VISIBLE PITTING, NO SEEN AT IX - MODERATE PITTING AT 401
5531 <i>6</i> L		0.6400	VISIBLE PITTING, NO SHEEN AT IX - MODERATE PITTING AT 401
S317L	0.0324		VISIBLE PITTING, NO SHEEN AT IN - MODERATE PITTING AT ANY
35,304L	0.0359		ALCOHOL STATEMENT OF THE PROPERTY OF THE PARTY OF THE PAR
NCOVEL 825	0.0386	0.8080	VISIBLE PITTING, NO SHEEN AT 11 - MODERATE PITTING AT 401
NCDIEL 600	0.0420	0.8770	VISIBLE PITTING, NO SHEEN AT 11 - HODERATE PITTING AT 401
No + N	0, 0469	1.0600	NO SHEEL AT 11 - NUERCUS SHALL PITS AT 408
ERRAL JUN 255	0.0476		NO PITTING, NO SEEN AT IX - VERY SLIGHT PITTING AT 402
\$ 2205	0.3675	1.0600	VISIBLE PITTING, 9.1847 SEEN AT 12 - NOVERDLE 9.1847 PITS AT 405
DNEL 400		1.2060	NO PITTING, NO SEEN AT 11 - VERY SLIGHT PITTING AT 401
0Cb-3	0.0893	1.7550	9.1947 SHEEK AT II - 9.1847 PITTING, ETCHED AT 401
VL0-3	0.0945	2.0300	VERY VISIBLE CORROGION AT IX - NUMEROUS LARGE PITS, SOME DEEP AT 401

Table 6 Results of 8 Week Exposure in 5% Salt Fog and 8 Dips in 1.0N HCl - Alumina

MATERIAL HAVE	WET LOSS(g) COM	A, BATE (MPY)	REMANUS - DESERVATIONS AT IT AND 401
HASTELLOY C-22	0.0015	0. 0150	NO PITTING, BRIGHT SHEEN AT IX - NO PITTING, NO MELD DECAY AT 40X
ZIRCONIUM 702	0.0012	0. 01 50	SOME STAINING, BRIGHT SHEEN AT IX - NO PLITTING, NO WELD DECAY AT 40%
HOSTELLOY C-276	0.0026	0.0260	NO PITTING, MAIGHT SHEEN AT 1X - NO PITTING, NO WELD DECAY AT 40X
INCOME. 625	0.0027	0.0270	NO PITTINS, BRIGHT SHEEN AT IX - NO PITTINS, NO WELD DECAY AT 40X
HARTELLOY C-	0.0029	0.0280	NO PITTING, BRIGHT SHEEM AT 1X - NO PITTING, NO WELD DECRY AT 40X
INCOLOY 8-3	6,0071	0.0730	NO PITTING, SLIGHT SHEEN AT IX - NODERATE SHALLOW PITTING, SOME PITTING OF WELD AT 402
HOSTELLOY B-2	0.0420	0, 3820	NO PITTING, NO SMEEN AT IX - UNIFORM CORROSION WITH LOCALIZED ATTROX AT 40X
95304UN	0, 0620	0.6050	VISIBLE PITTING, NO SMEEN AT 11 - NUMEROUS PITS, SOME LANGE, NO WELD DECRY AT 401
9531 GL	0,0631	0.6730	VISIBLE PITTING, NO SHEEN AT 1X - NUMEROUS SHALLON PITS, SOME MELD DECAY AT 40X
95304L	0.0672	0.6900	VISIBLE PITTING , NO SMEEN AT IX - MUMERCUS PITS, SOME LARGE, NO WELD DECRY AT 401
95904L	0.0695	0. 7280	VISIBLE PITTING, NO SHEEN AT 1X - NUMEROUS LARGE SHALLOM PITS, PITTING OF WELD AT 40X
95317L	0.0699	0, 7520	VISIBLE PITTING , NO SHEEK AT IX - MODERATE PITTING, SOME MELD DECAY AT 401
INCOMEL 425	0. 0854	0. 8930	VISIBLE PITTING, NO SHEEN AT IX - VERY NUMEROUS PITS, PITTING OF WELD AT NOX
INCOMET 600	0.0915	0. 9420	NO SHEEDI AT 18 - UNIFORM AFTADIL, NO WELD DECRY AT 408
7No + N	0.0916	1.0350	NO PITTING, NO SMEEN AT 1X - UNIFORM CORROSION, MODERATE MELD DECAY AT 40X
FERRALIUM 255	0. 0939	1.0450	VISIBLE PITTING, NO SHEEN AT 1X - UNIFORM ATTACK WITH MUMEROUS PITS, PITTING OF WELD AT ACK
ES 2206	0.1286	1.1500	VISIBLE PITTING, NO SHEEN AT 12 - SLIGHT PITTING WITH CHEVICE CONNOCION, PITTING OF HELD AT NOX
20Cb-3	0.1705	1.6300	VISIBLE PITTING, NO SHEEM AT IN - HEAVY PITTING, NOWY LANCE AND DEEP, SEVERE PITTING OF WELD AT 40%
NOMEL 400	0, 1906	1.8750	NO SHEEN AT 11 - UNIFORM CORROSION, SOME PITTING OF WELD AT 40%

Table 7 Results of 12 Week Exposure in 5% Salt Fog and 12 Dips in 1.0N HCl - Alumina

SATERIAL NOVE	-		PENARUS - CREERVATIONS AT 11 AND 401
estellov 1-32	v. úut 3	ú.⊎1 20	NO PITTING, SRIGHT SHEEN AT 11 - A FEW SWALL PITS AT NOX
1:300HUB 702	9, 9015	0.0130	NO PITTING, SRIGHT SHEEK AT IX - SLIGHT UNIFORM CORROSION, NO PITTING AT 40%
4COEL 625	0.0029	0.0190	NO PETTING, BRIGHT SHEEK AT LE - FEW VERY SHALL PLIS AT NOX
ASTELLON C-276	0.0031	0.0130	NO PLITING, SALENT SHEEK AT 11 - FEW HERY SHALL PLTS AT NOT
PSTELLOY C-4	0.0036	0.0230	NO PITTING, GRIGHT GHEEN AT 18 - FEW PITS AT NOS
HCOLOY 6-3	0.0000	0. <i>√</i> 550	9LIGHT PITTING, NO SHEEN AT 18 - FEW SHALL PITS, UNIFORM CORROSION AT 401
S-E VOLLETION	0.0662	0.4010	NO PITTING, NO SHEED/STAINED AT 12 - FEW PITS, UNIFORM CORROSION AT 40%
SS304LN	0.1081	0, 7030	SOME PITTING, NO SHEEK, VISIBLE RUST AT 12 - NUMEROUS PITS AT 401
ES704L	0. 1031	0.7300	VISIBLE PITTING, NO SHEEK AT IX - NUMEROUS SHALL PITS, SOME LARGE AND DEEP AT NOX
SS304L	0.1094	0.7430	VISIBLE PITTING, NO SPEEM AT IX - NUMEROUS WARRE PITS AT NOX
531 6L	0. 1071	0.7610	VISIBLE PITTING, NO SHEEM AT IX - LARGE DEEP PITS, UNIFORM CORROSION AT AOX
ESJI 7L	0.1124	0. 8060	SOME LARGE PITS, NO SHEEK AT IX - LARGE DEEP PITS AT 40%
COE. 925	0. 1250	0.8720	VISIBLE PITTING, NO SHEEDI AT 11 - NUMEROUS LARGE PITS, FAIRLY DEEP AT 401
FERMALIUM 255	0.1294	0.9600	NUMEROUS PITS, NO SEEDI AT 18 - SEVERAL LANGE PITS AT NOS
HCONEL 600	0.1417	0.9730	40 PITTING, 40 SHEEK AT 12 - UNIFORM CORROSION AT 402
ES 2205	0.1326	1.1470	VISIBLE PITTING, NO SHEEK AT IX - 30NE LARGE PITS AT 40X
710 + N	0. 1547	1.1653	MB PLTTIME, MB SHEEM AT IX - FEW LANGE DEEP PITS, UNIFORM CORROSION AT 40X
30Cb−3	0.2430	1.7420	LAMBE VISIBLE PITS, NO SHEEK AT IX - VERY LARGE PITS, SEVERE CORROSION AT 40X
DEL 400	0 BN	2.1180	NG PITTING, NG SHEEN AT 11 - NEMEROUS PITS, SEVERE UNIFORM CORROSION AT 401

ORIGINAL PAGE IS OF POOR QUALITY

Table 8 Results of 16 Week Exposure in 5% Salt Fog and 16 Dips in 1.0N HCl - Alumina

ATERIAL NOE	vet lass(p) con	R. MATE (MPY)	REMANUS - DESERVATIONS AT 11 AND NOR
-		***********	
RETELLUY C-22	0.0014	J. 3068	NO PITTING, BRIGHT SHEEN AT IN - SOME HERY SHALL PITS, NO DEPOSITS AT ADM
പ്രദേഷ	0. XX2	0.0110	NO PITTING, BAIGHT SEEDI AT IX - FEW CEDIUM SIZED PITS AT 401
I PCONTUR 702	0. (40)	0.0119	9.1947 PITTING, SENI BAIGHT SEEN AT 11 - NO PITS, PATCHES OF CORROSION AT NOR
RETELLOY C-276	0.0032	0.0151	NO PITTING, DAIGHT SHEEK AT IN - SOME MERY SHALL PITS, NO DEPOSITS AT NO.
ASTELLOY C-	0.0035	0. 9176	NO PITTING, BRIGHT GREEN AT IN - SOME YEARY GRALL PITS, NO DEPOSITS AT NON
MODEDA 6-3	0.0086	0.0442	NO PITTING, SAIGHT DEEDS AT IN - FEW DOLL PITS, NO DEPOSITS AT ADM
RETELLIN 3-5	0, 1186	0. 5390	NO PITTING, DISCOLUMNTION, NO SHEEN AT IX - SHALLON LARGE PITS, UNIFORM CORROSION AT HOS
ERMALIUM 255	0.1506	0. 8381	VISIBLE PITTING, NO SHEEK AT IN - MUNEROUS LARGE AND SHALL PITS, NO DEPOSITS AT NOT
5304L	0.1672	0. 8761	VISIBLE PITTING, NO SHEEN AT IN - NUMEROUS LARGE IND DEED PITS AT NON
KO 6. 125	0.1584	0. 3819	THEROLE PITS, NO SEEDS AT 11 - NUMBROUB LARGE RIG DEEP PITS, NELD SECON AT AGE
S304LII	0. : 501	0. 3176	SHALL PITS, DISCLOSED, NO SHEEK AT IS - MUNEROUS PITS, SOME DEPOSITS AT NOS
5304L	0.1864	0. 3573	VISIBLE PITTING, NO SHEEN AT IX - WANY PITS, SOME WELD DECAY AT NOX
CDE_500	0. 1931	0. 3942	NO PITTING, DISCOLIMATION, NO SHEEK AT IN - UNIFCAN CORROSION, SHALL PITS AT NOT
53171	0.1962	1.0016	VISIBLE PLTTING, NO SHEEK AT IX - MUNEROUS LANGE NO CEEP PLTS AT AND
531 @ .	Q. 1913	1.0210	VISIBLE PETTING, NO SHEEN AT 18 - NIME POUR LANGE RING DEEP PETS AT NOS
No + 1	0.1863	1.0526	FEM PITS, BISCOLDERTICAL NO SEEM AT 18 - FEW LAME PITS WELD DECRY, UNIFORM CORROSION AT 408
3 2205	0.2309	1. 2226	VISIBLE PITTING, SARK COLOR, NO SHEDR AT 12 - SOME LARSE DIG WARM SHELL PITS AT AGE
7C3-3	6. 1352	1. 5022	EXTENSIVE PITTING, NO SHEEK AF IZ - EXTENSIVE LANGE, DEEP PITS, NO DEPOSITS AT NOR
DEL 400	0. 4854	2. 4009	IN PITTING, IN SEED AT 18 - UNIFORM COMMODION, PITS IN WELD, HE DEPORTED AT MA

Table 9 Results of 20 Week Exposure in 5% Salt Fog and 20 Dips in 1.0N HCl - Alumina

WENTER WE	சு பண்டு வ	E WITE HPYS	REJARACS - DESERVATIONS AT 11 AND 408
-16 1 <u>0</u> ±31 €-22	5. YW9	0. 70 33	NO PITTING, PRIGHT SHEEK AT IE - VERY FEW TIMY PLTS, NO DEPOSITS AT NO.
:೮೦೬ ಪ	a. 1025	0.0100	NO PRITTING, BACCART SEEDS AT 12 - VERY FEW SMILL PRITS AT NOS
234C391.UR 702	0.0020	0.0106	9.1947 PITTING, SENI SAISHT SHEEK AT 18 - NO PITS, SUFFRCE CORRESION PATCHES AT NOT
WELT ACTE	0.0035	0.01	NO PITTING, MIGHT SHEEK AT IX - VERY FEW TONY PITS AT NOT
ASTELLAY C-4	0, 0037	0.0143	NO PITTING, SRIGHT SHEEK AT IX - FEW VERY SWILL PITS, NO DEPOSITS AT NO.
NCJLOV 6-3	0.0093	0.0383	NO PITTING, MIGHT SEED AT 12 - SOME SHALLOW PITTING AT 402
RELETTA P-S	0. 1547	0.5625	NO PITTING, DISCOLORATION, DULL SHEEN AT 12 - SHELON LANGE PITS, UNIFORM CORROSION AT NOT
EEE NULIMIES	Q. 1584	0.7039	NUMEROUS PITS, NO SEED AT 12 - NUMEROUS SHOULD PITTING AT AGE
2304F	0.1735	0. 7525	VISIBLE PITTING, DISCOLDED, NO SEEN AT IE - WAN HIDE SHELL NO SHELL DEEP PITS AT HOE
COEL 25	0. : 356	0.7773	VISIALE SERVY PITTING, NO SEEDS AT IN - HONY DEEP PITS, SERVE WELD STREET AT ANY
SS04UB	0.2250	0. 3329	VISIBLE SHALL PITS, DISCLOSED, NO SEEN AT IT - NUMEROUS PITS, WAN DEED AT NOT
3 205	0.2518	0, 9001	VISIBLE PITTING, NO SHEEK AT IX - SOE MEDIUM PITTING, UNIFORM COMOSION AT AND
SUL	0.2122	0.3088	VISIALE PITTING, DISCOLUGE, NO SEEM AT IN - NAW WINE SHELLOW WE SHOLL DEED PITS AT HOM
SJOAL	0. 2269	0.9323	VISIBLE SMALL PITS, DISCRIPTED, NO SEERS AT 12 - VINEARLE PITS, SOME DEEP ON VELS AT MOS
10 + M	0. 2072	0.9365	VISIBLE PLITTING ON WELD, NO SHEEK AT 18 - MUEROUS PLTS, SIDE DEEP, JELD ATTACK AT HOE
CDEL 509	0. 2236	0.3465	NO PLITTING, NO SHEEN AT IX - TIMY PLTS, UNIFORM CORPOSION AT 408
53: 4L	0. 2276	0. 9708	VISIBLE HEAVY PITTING, DISCREPEN, NO SHEER AT IX - MANY WIDE SHELDH AND SHELL DEEP PITS AT NOX
VO-3	0. 3746	1.6112	VISIBLE VERY HEAVY PLITTING, NO SHEER AT 18 - EXTREME PLITTING, NOW VERY DEED AT 400
DE. 460	0.61%	2.135	NO PITTUR, DISCOLUENT, NO SEES NO 12 - TOW PITTS WITH JULY DISCOLUENT AND ME

ORIGINAL PAGE IS OF POOR QUALITY

Table 10 Results of 16 Week Exposure in 5% Salt Fog and 16 Dips in 1.0N HCl - Alumina

Composite Galvanic Weld Specimens

DAL - C-276	SOME WELD DEDRY ON BOTH SIDES AT 1X - LARGE PITS ALDNG BOAL SIDE AT 40X
4L - D-E	SIDE DEDAY ON JOAL SIDE AT 11 - JOAL SIDE HAS SIDE WELD BEDAY AT AND
XL - C-4	SINE WELD DEDNY AT 11 - LARGE PITS AND DEDNY ON BOAL SINE AT 407
304L - C-22	SIDE WILD DEDRY DN 304L SIDE AT 1X - LARGE PITTING ALDNG 304L SIDE AT 400
IONL - MAGO	EXTREME HELD BEDRY ON BOAL SIDE AT IX - WELD DEDRY ON BOTH SIDES AT 40%
XL - 304LH	SLIGHT WELD PITTING AT IX - SHALL PITS AND DEPOSITE ON WELD AT 400
DAL - 319L	SIDE DETAY ON JOH, SIDE AT 11 - SHILL PITS ON NELD AT NOT
104L - 317L	SINE PITTING OF WELD AT 11 - WELD SEDRY AND PITTING AT ACK
304L - 904L	SLIGHT WELD DEDRY ON 30AL SIDE AT 11 - SWELL PITS ON WELD AT 40E
004L - I-600	MELD DEDRY ON BOAL SIDE AT 11 - BOAL SIDE MELD DEDRY AT NOT
304 1-625	WELD PITTING AT 11 - 304L SIDE WELD DEDRY AND PITTING AT 40E
304L - 1-825	WELD PITTING AT IX - WELD PITTING ON BOTH SIDES AT 40%
304L - 9-3	erner pytyting the MPLD AT 11 - PITS ON G-3 SIDE OF MBLD AT 400
304L - 20CD-3	THE PARTY OF A PARTY OF AN ADDRESS OF AN ADDRESS OF AN ADDRESS OF
304L - 780H	VISIBLE WELD PITTING AT IX - LARGE PITS AND WELD DECAY ON BOTH SIDES AT NOT
	ALTER OF THE STATE
304L - ES 2705	WELD DECRY ON BOAL SIDE AT 11 - PITTING AND DETRY OF WELD ON BOTH SIDES AT ADI

Table 11 Results of 60 Day Exposure to Beach Corrosion Site and 5 Sprays with 10 vol% HCl - Alumina

ATERIAL YOPE	-		PERMARUS - CRESERVATIONS AT 11 PMS 401
		14 mars 1 mars - 1 mars	
estelloy c-22	č. ∧∕30	3.300	NO PITTING, SRIGHT SHEEM AT IN - NO PITTING, NO WELD DECOM AT NOT
NUMBL SES	0.000	ა, აბიი	NO DITTING APPRIL DEEM AT LE - NO PITTING, NO WELD DEEMY AT 40%
OSTELLOY C-276	0.3001	0.0009	MD PITTING, RAIGHT SHEEN AT 11 - NO PITTING, NO WELD DECRY AT 408
SELETTON C→	0.0001	0.0009	MAD PITTING. BRIGHT SHEEDLAT II - NO PITTING, NO HELD DECRY AT 40%
IRODHIUM 702	0.0007	0.0000	CTOINER OF CHECKY AT IT - INIFORM CORROSION, NO PITTING RT 40%
NOTEDY 6-3	0.0015	0. 91 40	NO PITTING, BRIGHT SHEEK AT IX - NINOR PITTING, UNIFORM COMMUSION OF WELL HE WAS
S 2205	0. 0121	0.0990	NO DITTING. NO SEEM AT 12 - NOBERATE SHELLOW PITTING MY NOB
ERRALIUM 255	0.0105	0.1100	WA DITTIME DATE OF THE OF THE - UNIFFER CORRUSTON, PITTIME AT MELD AT 401
NOMEL 325	0.0124	0.1200	UISTRE OUTTING CLICKE SHEEN OF IL - SLIGHT PITTING, NINOR PITTING IF WELD HI WOL
7No + N	0.3130	0.1387	AND OUTSTAND AND SAFERM AT AN - INVESTIGATION CORROSION, SEVERE PITTING OF MELLS HE AND
5304L	0.0147	0.1440	UICIDE DITTING GIRNT GATH AT 11 - SHALON PITTING, UNIFORM DEERY OF HELD HI HOR
95317L	0.0186	0. 1870	UISINES PETTING, SEIGHT SHEED AT IX - SLIGHT PITTING/SDE DEEP, NO WELD DELD'T HE WA
INCOMEL 600	0.0203	0.1350	UTCIDE COTTING NO SHEEN OF 18 - SHOLLDN PITTING, NO WELD DECRY AT 408
953164	0.0247	0.2450	UTCOME DITTING MO CAFFM AT IN - MIDERATE PITTING, SLIGHT PITTING UP MALE HE WAS
SS304L	0. 3277	0.2780	VISIBLE PITTING, NO SHEEN AT 12 - HODERATE PITTING, SOME PITTING OF HELD AT 401
HOSTELLOY B-2	0.0329	0.2800	ME OUTTING AT 18 - FEW PLTS WITH UNIFORM CORROSION, SOME WELD DECRY AT 408
SS304LW	0.0348	0.3200	VISIBLE PITTING, NO SHEEN AT IS - SLIGHT PITTING, SOME PITTING OF HELB AT HOS
200-3	0.0431	0. 4330	VISIBLE PITTING. 9.1947 SHEEN AT II - HEAVY PITTING/SIDE DEEP, SEVERE PITTING UP WELL HI WAS
MONEL 400	0.0954	0.8710	NO PITTING, NO SEEN AT 11 - UNIFORM CORROSION, NO PITTING AT 408

Table 12 Results of 251 Day Exposure to Beach Corrosion Site and 13 Sprays with 10 vol% HCl - Alumina

STERIAL YOU	ACT LOSS(p) COR	RL BRITE (MPY)	SENARICS - CESERVATIONS AT 12 AND 402
nissingi Çincə AAA: ::	1124:124:124:124:124		
497\$1.0Y 0-33	3. 350	g, *•.0	NO PETTING, ENERSHIT ENERSHAT ER - NO PETTING, NO CORROSSION AT NOT
€2.00.	0.000	U. WWW	NO PITTING, BRIGHT GHEEN AT IX - NO PITTING, NO HELD DECAY AT HOX
RETELEN C→	0,0001	0.0009	NO PITTING, SAISHT SHEEM AT IX - NO PITTING AT NO.
ASTELLOY C-276	0.0001	9, 900 9	NO PITTING, BRIGHT SEEN AT IN - VERY FEW SHALL PITS, NO WELD DECAY AT NON
19C3N1UR 702	3, 3014	0.0040	3.1347 PETTING, 3.1347 3650 AT 12 - UNIFORM CONNESSION, NO PETTING AT 402
YCOLOY 5-3	9, 9034	9, 9077	NO PLITTING, BRIGHT GREEN AT IX - FEW GRALL PLIS, UNIFORM WELD DECAY AT NOX
ERRALIUM 255	0.0139	0.0343	SLIGHT PITTING, NEDIUM GNEEM AT 18 - UNIFORM CORNOSION, WELD DECAY AT 408
\$ 2205	0.0251	0.0490	SLIGHT PITTING, NO SHEEN AT IX - SWILL PITS, UNIFORM CORROSION SEVERE WELD DECRY AT NOX
¥o + N	0.0220	0.0561	SLIGHT PITTING, NO SHEEM AT IN - UNIFORM CORROSION, LARGE DEEP PITS ON WELD AT NON
CS .BC3*	0. 3256	0.)680	VISIBLE PITTING, 921941 3-EEN AF 11 - HONY SWILL SHOLDN PITS, PITS ON HELD AT HOL
S904L	o. 0 293	0. 0 685	VISIBLE PITTING, LOW SHEEK AT IX - HOW SHALL PITS, WELD PITTING AT 408
SJ: 7L	9, 0450	9. 1969	VISIBLE PITTING, NO SEEN AT IN - SOME SHALL PITS, SURFACE CORPOSION, WELD PITTING AT HAN
VCD/EI 500	0.0497	0.1140	SLIGHT PITTING, NO SHEEN AT 11 - UNIFORM GRALL PITS, NO HELD DECRY AT NOR
531 6 .	0.0566	0.1344	NUMEROUS PITS, NO SKEEN AT 18 - NAME SALL PITS, SOME WELD PITTING AT NOR
5304	0.0612	0.1467	VISIBLE PITTING, NO SEED AT 11 - LANGE AND SHALL SHALLOW PITS, WELD DECAY AT NOR
S304UI	0. 0816	0.1758	VISIBLE PITTING, NO SHEEN AT IR - SOME PITTING WITH DEPOSITS, WELR DECRY AT HOR
SELETTA 3-5	0.1364	0.2177	NO PITTING, NO SHEEK AT IX - FEW PITS, UNIFORM CORPOSION, NO WELD DECAY AT HOX
MP-3	0.1074	0. 2 59 0	EXTENSIVE PITTING, NO SHEEK AT IX - EXTENSIVE PITTING, SOME LIMBE, UNIFORM WELD DECAY AT NO
ONEL 400	0, 2447	0. 5340	O PITTING, NO DEED AT IN - NO PITTING, UNIFORM CORPOSION AT AND

Table 13 Results of 251 Day Exposure to Beach Corrosion Site and 13 Sprays with 10 vol% HCl - Alumina Composite Galvanic Weld Specimens

MITERIA, NOS	REMARKS - DISERVATIONS AT 18 AND 408
95304L - C-276	PITING ON JOAL SIDE AT IX - SEVENE WELD BEDRY ON JOAL SIDE AT HOX
3270AF - 11-5	NO VISIBLE DECRY AT 11 - 9LIBHT WELD DECRY ALDMG 304L SIDE AT 408
95304L - C-4	NO VISIBLE DECRY AT IX - BLIGHT WELD DECRY ON 304L SIDE AT 408
953041 - [-22	SLIGHT WELD DECRY ON 304L SIDE AT 11 - SLIGHT WELD DECRY ON 304L SIDE AT 401
95304L - M400	9.18HT WELD DEDAY ON JOHL SIDE AT 11 - WELD DEDAY ON JOHL SIDE AT 408
95304L - JO4LN	NG VISIBLE DECAY AT 18 - PITTING OF WELD ON BOTH SIDES AT 448.
95304L - 31@L	NO VISIBLE DECOY AT IX - PITTING 240 WELD DECOY ON BOTH SIDES AT 440
95304L - 317L	NO VISIBLE DEDAY AT 11 - WELD DECAY AND PITTING ON BOAL SIDE, PITTING DALY ON 317L SIDE AT 408
95304L - 904L	NO VISIBLE DECRY AT 11 - IMIFORM WELD DECRY ON 304L SIDE AT 40%
95304L - 1-600	NO VISIBLE DEDAY AT 11 - WELD DEDAY ON BOAL SIDE, SLIBAT DEDAY ON 1-600 SIDE AT 400
95304L - 1-425	
95304L - 1-625	
95304L - F-3	
95304 - 20Cb-3	
95304L - 7864N	
95304 - ES 2295	
95304L - F-258	WELD DECOM ON JOHL SIJE MY 12 - SEVENE WELD SECON ON JOHL SIJE, SLIDHT PITTING ON F-255 SIJE AT 408

Table 14 Ferric Chloride Immersion Results Autogenous Weld Samples .

ALLOY	HOURS INHERSED	RESULTS
HASTELLOY C-4	912	NO CORROSION
HASTELLOY C-22	72	NO CORROSION
HASTELLOY C-276	912	NO CORROSION
HASTELLOY 8-2	72	UNIFORM CORROSION
INCONEL 600	72	HODERATE PITTING
INCONEL 625	912	NO CORROSION
INCONEL 825	72	SEVERE PITTING IN
INCONEL DED		HEAT AFFECTED ZONE
INCO G-3	912	NO CORROSION
HONEL 400	72	UNIFORM CORROSION
ZIRCONIUM 702	72	HODERATE PITTING
SS 304L	72	SEVERE PITTING
SS 304LW	72	SEVERE PITTING
SS 316L	72	SEVERE PITTING
55 317L	72	MILD PITTING AND
30 01/0		WELD DECAY
SS 904L	72	NO CORROSION
20 Ch-3	72	SEVERE PITTING IN
10 00 0		HEAT AFFECTED ZONE
780 • N	72	WELD DECAY
ES 2205	72	WELD DECAY
FERRALIUM 255	72	NO CORROSION

Table 15 Ferric Chloride Immersion Results
Samples Welded to 304L Stainless Steel

ALLOY	OBSERVATIONS ON CANDIDATE ALLOY	ALLOY	OBSERVATIONS ON CANDIDATE ALLOY
HASTELLOY C-4 HASTELLOY C-22 HASTELLOY C-276 HASTELLOY B-2 INCONEL 600 INCONEL 625 INCONEL 625 INCO B-3 HODEL 400	NO CORROSION NO CORROSION NO CORROSION UNIFORM CORROSION UNIFORM CORROSIOM NO CORROSION NO CORROSION NO CORROSION UNIFORM CORROSION UNIFORM CORROSION	SS 304LN SS 3%6L SS 317L SS 904L 20Cb 3 7 No - N ES 2205 FERRALIUM 255	SEVERE PITTING SOME PITTING NO CORROSION NO CORROSION SLIGHT PITTING NO CORROSION NO CORROSION NG CORROSION

NOTE: All samples were immersed for 72 hours.
In each case, the 304L portion of the sample suffered severe pitting.

APPENDIX A

Table A1 Summary of Electrochemical Results

	3.55% NaC1 + 0.1N HC1	3.55% NaCl + 1.0N HCl
ALLOY		
HASTELLOY C-4	Stable, Noble Ecorr	Stable, Noble Ecorr
POINTE 4	Very Small Hysteresis Area	Very Small Hysteresis Area
	Excellent Pitting Resistance	Excellent Pitting Resistance
INSTELLOY C-22	Stable, Noble Ecorr	Stable, Noble Ecorr
POILED O LE	Very Small Hysteresis Area	Very Small Hysteresis Area
	Excellent Pitting Resistance	Excellent Pitting Resistance
HOSTELLOY C-276	Stable, Fairly Hoble Ecorr	Stable, Fairly Noble Ecorr
	Very Small Hysteresis Area	Very Small Hysteresis Area
	Excellent Pitting Resistance	Excellent Pitting Resistance
HOSTELLOY B-2	Stable, Slightly Active Ecory	
	Uniform Corrosion	
INCOMEL 600	Unstable, Fairly Active Ecorr	
	Uniform Corrosion & Pitting	
INCONEL 625	Stable, Very Noble Ecorr	Stable, Very Noble Ecore
	Small Hysteresis Area	Very Small Hysteresis Area
	Very Good Pitting Resistance	Excellent Pitting Resistance
INCONEL 825	Stable, Noble Ecorr	•
	Large Area,Low Pitting Resistance	
INCO 6-3	Stable, Noble Ecorr	Very Noble Ecorr
	Excellent Pitting Resistance	Excellent Pitting Resistance
NONEL 400	Stable, Slightly Active Ecorr	-
	Uniform Corrosion	
ZIRCONIUM 702	Stable, Fairly Active Ecorr	
	Low Resistance To Pitting	
95 304L	Fairly Stable, Active Ecorr	Fairly Stable, Active Ecorr
	Poor Resistance To Pitting	Uniform Corrosion
SS 304LN	Unstable, Active Ecorr	
	Large Hysteresis Area	
	Poor Pitting Resistance	
35 316L	Fairly Stable, Slightly Active Ecory	
	Large Hysteresis Area	
	Very Poor Pitting Resistance	
9S 317L	Stable, Slightly Active Ecorr	
	Large Hysteresis Area	
55 5441	Very Poor Pitting Resistance	.
SS 904L	Stable, Noble Ecorr	Fairly Stable, Active Ecorr
	Some Pitting Resistance	Poor Pitting Resistance
20 Cb-3	Fairly Stable, Slightly Active Eccor	
5 4 . 4	Extremely Poor Resistance To Pitting	
796 + N	Stable, Noble Ecorr	Stable, Active Ecorr
	Moderate Pitting and	Some Pitting and
ES 2205	Uniform Corrosion	Uniform Corrosion
בש נמש	Stable, Noble Ecorr	Active, Fairly Stable Ecorr
EERDON TIME SEE	Moderate Pitting	Some Pitting, Uniform Corrosio
FERRAL TUN 255	Stable, Noble Ecorr	Stable, Active Ecorr
	Small Hysteresis Area	Good Pitting Resistance
	Very Good Pitting Resistance	

REFERENCES

- 1. J. J. Dundas, A. P. Bond, Corrosion Resistance of Stainless Steels in Seawater, Materials Performance, Vol.24, No.10, p.54, 1985.
- 2. A. P. Bond, H. J. Dundas, Resistance of Stainless Steels to Crevice Corrosion in Seawater, Materials Performance, Vol.23, No.7, p.39, 1984.
- 3. A. Garner, Crevice Corrosion of Stainless Steels in Sea Water: Correlation of Field Data With Laboratory Ferric Chloride Tests, Corrosion, Vol.37, No.3, p.178, 1981.
- 4. W. F. Bogaerts, A. A. VanHaute, Chloride Pitting and Water Chemistry Control in Cooling or Boiler Circuits, Corrosion Science, Vol.25, No.12, p.1149, 1985.
- 5. A. Kawashima, K. Hashimoto, The Pitting Corrosion Behavior of Rapidly Solidified Fe-Cr Alloys in 0.5 M NaCl Solution, Corrosion Science, Vol.26, No.6, p.467, 1986.
- 6. B. E. Wilde, The Influence of Silicon on the Pitting Corrosion Resistance of an 18Cr-8Ni Stainless Steel, Corrosion, Vol.42, No.3, p.147, 1986.
- 7. J. R. Park, Z. Szklarska-Smialowska, Pitting Corrosion of Inconel 600 in High-Temperature Water Containing CuCl2, Corrosion, Vol.41, No.11, p.665, 1985.
- 8. A. I. Asphahani, Corrosion Resistance of High Performance Alloys, Materials Performance, Vol.19, No.12, p.33, 1980.
- 9. P. B. Lindsay, Effect of Heat Treatment on the Corrosion Resistance of High-Alloy Stainless Steel and Nickel-Base Alloys, Materials Performance, Vol.25, No.12, p.23, 1986.
- 10. A. I. Asphahani, Effect of Acids on the Stress Corrosion Cracking of Stainless Materials in Dilute Chloride Solutions, Materials Performance, Vol.19, No.11, p.9, 1980.
- 11. A. I. Asphahani, Localized Corrosion of High Performance Alloys, Materials Performance, Vol. 19, No.8, p.9, 1980.
- 12. D. R. Knittel, A. Bronson, Pitting Corrosion on Zirconium A Review, Corrosion, Vol.40, No.1, p.9, 1984.
- 13. R. Bandy, D. Van Rooyen, Pitting-Resistant Alloys in Highly Concentrated Chloride Media, Corrosion, Vol.39, No.6, p.227, 1983.

- 14. T. S. Lee, III, F. G. Hodge, Resistance of "Hastelloy" Alloys to Corrosion by Inorganic Acids, Materials Performance, Vol.15, No.9, p.29, 1976.
- 15. P. E. Manning, J. D. Smith, J. L. Nickerson, New Versatile Alloys for the Chemical Process Industry, Materials Performance, Vol.27, No.6, p.67, 1988.
- 16. P. E. Manning, Comparison of Several Accelerated Laboratory Tests for the Determination of Localized Corrosion Resistance of High-Performance Alloys, Corrosion, Vol.39, No.3, p.98, 1983.
- 17. C. Ontiveros, Localized Corrosion of Candidate Metal Alloys for Construction of Flex Hoses, 1987 Research Reports, NASA/ASEE Summer Faculty Fellowship Program for Kennedy Space Center, The University of Alabama Bureau of Engineering Research, Report No. 413-94, University, AL, 1987.
- 18. F. L. Benitez, Search for a More Corrosion Resistant Material for Construction of Vacuum Jacket Cryogenic Lines, 1987 Research Reports, NASA/ASEE Summer Faculty Fellowship Program for Kennedy Space Center, The University of Alabama Bureau of Engineering Research, Report No. 413-94, University, AL, 1987.
- 19. ASTM B117-85, Standard Method of Salt Spray (Fog) Testing, 1986 Annual Book of ASTM Standards, Volume 03.02, ASTM, Philadelphia, PA, 1986.
- 20. ASTM G1-81, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, 1986 Annual Book of ASTM Standards, Volume 03.02, ASTM, Philadelphia, PA, 1986.
- 21. ASTM G50-76, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, 1986 Annual Book of ASTM Standards, Volume 03.02, ASTM, Philadelphia, PA, 1986.
- 22. ASTM G48-76, Standard Test Methods For Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys By The Use Of Ferric Chloride Solution, 1986 Annual Book of ASTM Standards, Volume 03.02, ASTM, Philadelphia, PA, 1986.