Jim and the Orders

Jim's Burgers has n hungry burger fans waiting in line. Each unique order, i, is placed by a customer at time t_i , and the order takes d_i units of time to process.

Given the information for all n orders, can you find and print the order in which all n customers will receive their burgers? If two or more orders are fulfilled at the exact same time t, sort them by ascending order number.

Input Format

The first line contains a single integer, n, denoting the number of orders.

Each of the n subsequent lines contains two space-separated integers describing the respective values of t_i and d_i for order i.

Constraints

- $1 < n < 10^3$
- $1 \le i \le n$
- $1 < t_i, d_i < 10^6$

Output Format

Print a single line of n space-separated order numbers (recall that orders are numbered from 1 to n) describing the sequence in which the customers receive their burgers. If two or more customers receive their burgers at the same time, print the smallest order number first.

Sample Input 0

3 1 3 2 3 3 3

Sample Output 0

123

Explanation 0

Jim has the following orders:

- 1. $t_1=1, d_1=3$. This order is fulfilled at time t=1+3=4.
- 2. $t_2=2, d_2=3$. This order is fulfilled at time t=2+3=5.
- 3. $t_3=3, d_3=3$. This order is fulfilled at time t=3+3=6.

As you can see, order 1 was fulfilled at time t=4, order 2 was fulfilled at time t=5, and order 3 was fulfilled at time t=6. Thus, we print the sequence of order numbers in the order in which they were fulfilled as $1 \ 2 \ 3$.

Sample Input 1

5			
8 1			
4 2			
5 6			
3 1			
4 3			

Sample Output 1

42513

Explanation 1

Jim has the following orders:

1.
$$t_1=8, d_1=1$$
. This order is fulfilled at time $t=8+1=9$.

2.
$$t_2=4, d_2=2$$
. This order is fulfilled at time $t=4+2=6$.

3.
$$t_3=5, d_3=6$$
. This order is fulfilled at time $t=5+6=11$.

4.
$$t_4=3, d_4=1$$
. This order is fulfilled at time $t=3+1=4$.

5.
$$t_5=4, d_4=3$$
. This order is fulfilled at time $t=4+3=7$.

When we order these by ascending fulfillment time, we get:

• t = 4: order 4.

• t = 6: order 2.

• t = 7: order 5.

• t = 9: order 1.

• t = 11: order 3.

We print the ordered numbers in the bulleted listed above as 4 2 5 1 3.

Note: While not demonstrated in these sample cases, recall that any orders fulfilled at the same time must be listed by ascending order number.