MA329 Statistical linear models

Assignment 4 (Due date: Nov 30, 11pm. For late submission, each day costs 10 percent)

1. (10 marks) Let

$$Y_1 = \theta + \epsilon_1$$

$$Y_2 = 2\theta - \phi + \epsilon_2$$

$$Y_3 = \theta + 2\phi + \epsilon_3$$

where $E[\epsilon_i] = 0$ (i = 1; 2; 3). Find the least squares estimates of θ and ϕ .

- 2. (15 marks) In order to estimate two parameters θ and ϕ , it is possible to make observations of three types:
 - (a) the first type have expectation θ .
 - (b) the second type have expectation $\theta + \phi$, and
 - (c) the third type have expectation $\theta 2\phi$.

All observations are subject to independent normal errors with zero means and common variance σ^2 . If m observations of type (a), m observations of type (b) and n observations of type (c) are made, find the least squares estimates $\hat{\theta}$ and $\hat{\phi}$. Prove that these estimates are uncorrelated if m = 2n.

3. (15 marks) Consider the linear regression model

$$y = \boldsymbol{X_{n \times p}} \boldsymbol{\beta_{p \times 1}} + \boldsymbol{\epsilon}$$

where $\epsilon \sim N(\mathbf{0}; \sigma^2 \mathbf{I})$. Let $\hat{\boldsymbol{\beta}}$ be the least squares estimate of $\boldsymbol{\beta}$. Define $\tilde{\boldsymbol{\beta}} = c\hat{\boldsymbol{\beta}}$ where $c \leq 1$. The mean squared error (MSE) of $\tilde{\boldsymbol{\beta}}$ is

$$MSE(\tilde{\boldsymbol{\beta}}) = E(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}).$$

- (a) Prove that $MSE(\tilde{\boldsymbol{\beta}}) = c^2 \sigma^2 tr(\boldsymbol{X}'\boldsymbol{X})^{-1} + (c-1)^2 \boldsymbol{\beta}' \boldsymbol{\beta}$.
- (b) Let c^* be the value of c such that $MSE(\tilde{\boldsymbol{\beta}})$ is a minimum. Find c^* .
- (c) Let $p=5, \sigma^2=1, \boldsymbol{\beta'}=(1;2;3;4;5)$ and the eigenvalues of $\boldsymbol{X'X}$ be 1, 2, 3, 4, 5. Evaluate c^* .
- 4. (20 marks) For the following model

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2 v_i) \text{ iid}, \quad i = 1, \dots, n,$$
 (1)

where v_i is given but σ^2 and $\boldsymbol{\beta} = (\beta_0, \dots, \beta_k)'$ are unknown.

- (a) For $\boldsymbol{\beta}$, find its generalized LSE $\hat{\boldsymbol{\beta}}$ and its distribution;
- (b) Find the distribution of $\tilde{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$, where \boldsymbol{y} and \boldsymbol{X} are vector and matrix forms of equation (1).
- (c) Prove that the variance of $\lambda'\hat{\beta}$ is not larger than the variance of $\lambda'\tilde{\beta}$ for any (k+1)-dimensional vector λ . You need to write down the detailed procedure.