

Fine-tune SLM on Azure

Alex Shen Senior Solution Specialist Al Global Black Belt Microsoft

SLM Innovator Lab Workshop 2024/11/13

Agenda

- · Small Language Models
 - ・Microsoft の SLM Phi-3
- · Fine-Tuning
 - ・Azure での Fine-Tuning

Small Language Models

Small Language Models (SLMs)とは

より小さく、計算負荷の低いモデルで、単純なタスクで優れたパフォーマンスを発揮します

Small Language Models (SLMs) のメリット

より小さく、計算負荷の低いモデルで、単純なタスクで優れたパフォーマンスを発揮します

高いコスト パフォーマンス

デプロイの柔軟性

極めて低いレーテンシー

容易な カスタマイズ(FT)

LLM on your phone?

推論メモリのニーズ:

32-bit precision:

Model parameters: 175 bil x 4 bytes = 700 GB

Intermediate activations: 700-1400 GB

Overheads: 10-20 GB **Total: 1410-2120 GB**

16-bit precision:

Model parameters: 175 bil x 2 bytes = 350 GB

Intermediate activations: 350-700 GB

Overheads: 10-20 GB **Total: 710-1070 GB**

SLM on your phone!!

Open Source with MIT License

Phi-3-mini (3.8B)

Phi-3-vision (4.2B)

Phi-3-small

Phi-3-medium (14B)

Phi-3.5-mini (3.8B)

Phi-3.5-vision (4.2B)

Phi-3.5-MoE (6.6B active / 42B total)

Introducing Phi-3

- 多言語マルチモーダルSOTA SLM ファミリー
- Microsoft Research から Open Weight リリース
- サイズに対する的画期的な性能

Instruction Tuned

RAI Safety Aligned

Available on

Hugging Face

ONNX Runtime

NVIDIA NIM

Ollama

LMStudio

VSCode Al Toolkit

Phi-3 サイズに対する画期的な性能

Phi-3.5 (2024/08)

SLMが適したユースケース

- デバイス上またはオンプレミスでオフライン環境でローカル推論が必要な場合
- 5
- 応答の速さが重要なレーテンシー・クリティカルなシナリオ
- コストに制約のあるユースケース、特に単純なタスク
- *
- リソースに制約のある環境
- J.

Fine-tuneによってパフォーマンスの向上を確認できる (out-of-boxのLLMと比較して)

Fine-Tuningの基本

Fine-Tuningとは?

ファインチューニングとは、**特定のタスク**または**新しいデータセット**に対する<u>追加のトレーニング</u>を行い、事前トレーニング済みのLLM/SLMをカスタマイズすることを指します。

Fine-Tuningのメリット

パフォーマンスの向上

Fine-Tuningにより、対象タスクに対するモデルの精度と有効性が向上し、より正確で信頼性の高い出力が得られます。

ドメイン/タスクの特化

Fine-Tuningされたモデルは、タスク対応により適切な挙動を示します。

Fine-Tuningされたモデルは、ドメイン固有のコンテンツをよりよく理解し、生成します。

効率の向上

Fine-Tuningされたモデルを使用すると、Few-shotプロンプトや複雑な指示トークンを省け、プロンプトトークンを節約できます。

Fine-TuningされたSLMを使用すると、LLM を使用する場合よりレーテンシーの改善を見込めます。

カスタマイゼーション目的別のFine-Tuningメソッド

LoRA (Low-Rank Adaptation of LLMs)

- モデル全体をトレーニングする代わりに、小さなアダプターをモデルに追加してFine-Tuningします
- アップデートするパラメーター数はモデルのパラメーター数の0.1%-5%

r: Low-rank dimension (smaller r makes model training faster and saves memory, but reduces accuracy)

e.g., If
$$r = 4$$
, $d = 512$, $W = 512*512*FP32(32bit) = 8,388,608$

$$W_A = 512*4*FP32 = 65,536$$

 $W_B = 4*512*FP32 = 65,536$

→ Only 1.56% parameters

Fine-Tuningの流れ

Azure上でのFine-Tuning

Azure AI Stack: GenAI ライフサイクルの完全サポート

Al Models

NVIDIA Model Family

Snowflake

Microsoft Research Azure OpenAl Model Family Model Family

enAI I mily M

Mistral Al Model Family M

Meta Llama Model Family Databricks Model Family Cohere Model Family **Hugging Face Model Family**

Azure Al

Azure Al Services

インテリジェントアプリケーション向けの事前ト レーニング済みのAIサービス

Azure Machine Learning

AIモデルを設計および管理するためのフルライ フサイクルツール

Responsible Al Tooling

信頼できるAIアプリの構築と管理

Azure Al Studio

カスタムCopilotを開発および展開するための包括的なプラットフォーム

Al Infrastructure

NC-series GPU (P100, V100, A100) ND-series GPU (A100, H100)

MI300 GPU

CPUs and FPGA

Azure AI または AOAI Studio での従量課金 Fine-Tuning

ベースモデルの選択

- AOAI models: Babbage-002, Davinci-002, GPT-3.5-Turbo, GPT-4o & GPT-4o mini, GPT-4
- Meta Llama 3.1/3/2
- Microsoft Phi-3mini/medium

準備済みデータの提供

- ・ 100以上のサンプルを収集・生成
- Chat または completionフォーマット に変換済み
- Training と validation セット指定
- データをアップロード

トレーニングと評価

- Epoch、Batch size、学習率などのハイパーパラメータを指定
- トレーニングとLoss評価
- トレーニングと精度評価

デプロイメント

• Fine-tuning したモデルをエンドポイントにデプロイ

Azure ML での完全にカスタマイズ可能な Fine-Tuning

• ベースモデル、Fine-Tuningメソッド、Training/Inferenceパイプライン、リソースの最適化とスケーリングに最高の柔軟性を提供しています

Azure ML: End-to-end ML platform for ML professionals

Key Elements of Azure ML

Compute リソース: Azure AI VM ポートフォリオ

Azure Instance →	NCasT4_v3	NC A100 v4	NC H100 v5	NDm A100 v5	ND H100 v5
Cores	4, 8, 16, 64	24, 48, 96	40, 80	96	96
GPU	1-4x Tesla T4	1-4x A100 GPU, PCIe	1-2x H100NVL GPU, PCle	8x A100 GPU, SXM	8x H100 GPU, SXM
Memory	28/56/110/440 GB	220/440/880 GB	320/640 GB	1900 GB	2048GB
Local Disk	180/360/2880 GB SSD	1123/2246/4492 GB SSD	4/8 TB SSD	6.4 TB SSD	36 TB SSD
Network	Azure Network	Azure Network + NVLink GPU Interconnect (pair)	Azure Network + NVLink GPU Interconnect (pair)	Azure Network + InfiniBand EDR + NVLink GPU Interconnect	Azure Network + InfiniBand NDR + NVLink GPU Interconnect
	NCv3 T4	NC A100v4	NC H100v5	NDm A100v4	ND H100v5
	1-4x T4	1-4x A100 80GB	1-2x H100 96GB	8x A100 80GB	8x H100 80GB

