Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007 **3ª Aula Prática**

Soluções e algumas resoluções abreviadas

- 1. a) $A =]-\infty, -\frac{4}{3}] \cup [4, +\infty[$, logo $A \cap B = [-3, -\frac{4}{3}] \cup \{4\}.$
 - b) $\sup A$ não existe, porque A não é majorado; $\min(A \cap B) = -3$, $\max(A \cap B) = 4$; $\inf(A \cap B \cap C) = -3$, $\sup(A \cap B \cap C) = -\frac{4}{3}$, $\min(A \cap B \cap C)$ não existe, porque $-3 \notin A \cap B \cap C$.
- 2. $A = \mathbb{R}^+ \setminus \{1\}$: sup A, max A não existem, uma vez que A não é majorado; inf $A = 0 \notin A$, logo min A não existe. sup $A \cup B$ (e max $A \cup B$) não existem, porque $A \cup B$ não é majorado; inf $A \cup B = \min A \cup B = -1$.
- 3. A =]1, e]: Majorantes de A: $[e, +\infty[$, Minorantes de A: $]-\infty, 1]$, $\sup A = e = \max A$, $\inf A = 1$, $\min A$ não existe, porque $1 \notin A$. $B = \left\{1 \frac{(-1)^n}{n}, n \in \mathbb{N}_1\right\}$: Majorantes de B: $[2, +\infty[$, Minorantes de B: $]-\infty, \frac{1}{2}$], $\sup B = \max B = 2$, $\inf B = \min B = \frac{1}{2}$.
- 4. a) $x^2 + 2|x| > 3 \Leftrightarrow |x|^2 + 2|x| 3 > 0 \Leftrightarrow |x| > 1 \lor |x| < -3 \Leftrightarrow x < -1 \lor x > 1$. Assim, $A =]-\infty, -1[\cup]1, +\infty[$.
 - b) inf A não existe, porque A não é minorado; $A \cap B = \left] 1, \sqrt{2} \left[: \min A \cap B, \max A \cap B \text{ e } \max A \cap B \cap \mathbb{Q} \text{ não existem e inf } A \cap B \cap \mathbb{Q} = 1; \right]$ $\max C \text{ não existe; } \max B \setminus C \text{ não existe.}$
- 5. a) $A =]-\infty, -2] \cup [1, +\infty[.$
 - b) $A \cap B = \{-2\} \cup [1,2]$: $\min A \cap B = -2$, $\max A \cap B = 2$. $A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}) = [1,2[\cap (\mathbb{R} \setminus \mathbb{Q}): \sup A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}) = 2$, $\inf A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}) = 1$, $\min A \cap B \cap (\mathbb{R} \setminus \mathbb{Q})$ e $\max A \cap B \cap (\mathbb{R} \setminus \mathbb{Q})$ não existem, porque $1,2 \notin A \cap B \cap (\mathbb{R} \setminus \mathbb{Q})$.
- 6. b) $A\cap B=\left[-1+\sqrt{2},\,3\right]\cap\mathbb{Q}$: $\sup A\cap B=3$, $\max A\cap B=3$, uma vez que $3\in A\cap B$, $\inf A\cap B=-1+\sqrt{2}$, $\min A\cap B$ não existe, porque $-1+\sqrt{2}\notin A\cap B$.

 $C = \left\{ \frac{1}{k^2} : k \in \mathbb{N}_1 \right\}$: sup $C = \max C = 1$ (porque $1 \in C$ e 1 é majorante), inf C = 0, min C não existe porque $0 \notin C$.

- 7. b) $A \cap C = \left[-\frac{1}{2}, \, 0\right[\cup [1, \, +\infty[\, \cap \mathbb{Q} \colon \text{Majorantes de } A \cap C \colon \emptyset.$ $B = \{x : \, \text{sen } x = 0\} = \{k\pi : \, k \in \mathbb{Z}\}, \, \text{logo } B \cap C = \{0\}, \, \text{uma vez que } k\pi \notin \mathbb{Q}, \, \text{para } k \neq 0. \, \text{Majorantes de } B \cap C = [0, +\infty[.$ $\sup A \, \text{n\~ao} \, \text{existe}, \, \inf A \cap C = -1/2, \, \min A \cap C = -1/2, \, \min B \, n\~ao \, \text{existe}, \, \text{porque } B \, n\~ao \, \text{\'e} \, \text{minorado}, \, \min B \cap C = 0.$
- 8. a) Começamos por notar que

$$\frac{x^4 - 4}{|x - 1|} \le 0 \Leftrightarrow \frac{(x^2 - 2)(x^2 + 2)}{|x - 1|} \le 0$$

$$\Leftrightarrow x^2 - 2 \le 0 \land |x - 1| \ne 0 \quad \text{(porque } x^2 + 2 > 0 \text{ e } |x - 1| \ge 0\text{)}$$

$$\Leftrightarrow x \in \left[-\sqrt{2}, \sqrt{2}\right] \setminus \{1\}.$$

Então,

$$A = \left\{ x \in \mathbb{R} : x \ge 0 \ \land \ x \in \left[-\sqrt{2}, \sqrt{2} \right] \setminus \{1\} \right\} = \left[0, \sqrt{2} \right] \setminus \{1\}.$$

Relativamente a B começamos por notar que se existe um $k \in \mathbb{N}$ tal que $kx \notin \mathbb{Q}$ então $x \notin \mathbb{Q}$ pois, caso contrário, $kx \in \mathbb{Q}$ para todo o $k \in \mathbb{N}$. Portanto $B \subset \mathbb{R} \setminus \mathbb{Q}$. Reciprocamente, se $x \in \mathbb{R} \setminus \mathbb{Q}$ então $1 \cdot x = x \notin \mathbb{Q}$. Portanto B é de facto o conjunto dos números irracionais positivos.

b) Notamos que $A \setminus B = ([0, \sqrt{2}[\setminus \{1\}]) \cap \mathbb{Q}$. Então,

$$\sup A = \sup A \setminus B = \sqrt{2} = \max A,$$
 inf $A = \inf A \setminus B = 0 = \min A = \min A \setminus B.$

 $A \setminus B$ não tem máximo pois $\sup A \setminus B = \sqrt{2} \not \in \mathbb{Q}.$

9. a)

$$\frac{x^2 - 2}{|x| - 1} \le 0 \iff (x^2 < 2 \land |x| > 1) \lor (x^2 \ge 2 \land |x| < 1)$$

$$\Leftrightarrow -\sqrt{2} < x < \sqrt{2} \land (x < -1 \lor x > 1),$$

uma vez que $|x|<1\Rightarrow x^2<1,$ logo $x^2\geq 2 \land |x|<1$ é impossível. Assim, $A=\left[-\sqrt{2},-1\right[\ \cup\ \left]1,\sqrt{2}\right].$

- b) $A \cap \mathbb{Q} = (]-\sqrt{2}, -1[\ \cup\]1, \sqrt{2}[) \cap \mathbb{Q}$. $\sup A \cap \mathbb{Q} = \sqrt{2} \notin A \cap \mathbb{Q}$, logo $A \cap \mathbb{Q}$ não tem máximo, inf $A \cap \mathbb{Q} = -\sqrt{2} \notin A \cap \mathbb{Q}$, logo $A \cap \mathbb{Q}$ não tem mínimo.
 - $B=\{2^{n/2}:n\in\mathbb{N}_1\}.$ inf $B=\min B=\sqrt{2},\,\sup B$ e maxBnão existem, porque Bnão é majorado.
 - $B \cap \mathbb{Q}$: temos $2^{n/2} \in \mathbb{Q}$ sse n é par, ou seja, $B \cap \mathbb{Q} = \{2^n : n \in \mathbb{N}_1\}$. inf $B \cap \mathbb{Q} = \min B \cap \mathbb{Q} = 2$, sup $B \cap \mathbb{Q}$ e max $B \cap \mathbb{Q}$ não existem, porque B não é majorado.
- 10. Se m é majorante de A e $m \neq \sup A$ então $m > \sup A$. Tem-se $x \leq \sup A < m$, para qualquer $x \in A$, logo, para $0 < \epsilon < m \sup A$, $V_{\epsilon}(m) \cap A = \emptyset$.
- 11. Se B é majorado e $A \subset B$, então A é majorado e qualquer majorante de B é majorante de A (directamente da definição de majorante). Por outro lado $A \neq \emptyset \land A \subset B \Rightarrow B \neq \emptyset$. Logo como A e B são majorados e nãovazios, o axioma do supremo garante que sup A e sup B existem. Como sup B é majorante de B será também majorante de A, logo sup $A \leq \sup B$.
- 12. a) $x \in U \Rightarrow x \le \sup U < \sup V$.
 - b) Se para qualquer $y \in V$, $y \leq \sup U$, então $\sup U$ é majorante de V e seria $\sup U \geq \sup V$.
- 13. b) $\sup A > \inf B \wedge \sup B > \inf A$, por exemplo: $A = [0,1], B = [\frac{1}{2},2]: A \cap B \neq \emptyset;$
 - $A = \{0, 1\}, B = \{\frac{1}{2}, 2\} \text{ (ou } A = [0, 1] \cap \mathbb{Q}, B = [\frac{1}{2}, 2] \cap \mathbb{R} \setminus \mathbb{Q}) : A \cap B = \emptyset.$