Advance Algorithm Analysis (COMP 502 A)

Sharoon Nasim

sharoonnasim@fccollege.edu.pk

Office Hours:

Office: S-426 D

Pre-requisite: Design and Analysis of Algorithms

Course Description:

This course is an introductory graduate-level and advanced undergraduate course on design and analysis of algorithms. Techniques such as divide-and-conquer, dynamic programming, randomized algorithms, and graph algorithms will be taught.

Course Material

Textbooks:

- Introduction to Algorithms by T. Cormen, C. Lieserson et al.
- Algorithms 2006 (DPV) S. Dasgupta, .et al
- Algorithm Design by J. Kleinberg and E. Tardos

Lectures

Will be uploaded on Moodle.

Lectures and Examinations:

- One weekly lecture of 150 minutes duration
- Two in-class midterm examinations
- Comprehensive final examination
- Home works

Course Assessment (Tentative):

Attendance	5%	
Class Activities/ Participation	5%	
Assignments/ Homework	10 %	
Quizzes	15 %	
Midterm – 1	15 %	
Midterm - 2	20%	
Final Exam	30 %	
Total	100.00%	

Assessment

What is the difference between dynamic Programming and Divide and Conquer?

What is Recursion?

What approach do you use to crack a password?

Best sorting algorithm and its complexity?

What is the Edit distance problem and which approach is used to solve this problem?

Difference between P and NP class?

Algorithm

An algorithm is a

- sequence of computational steps
- to solve any problem that transforms input into output.

It should be Correct & Terminate in finite amount of time

Basic Goal for an Algorithm

- always correct
- always terminates
- This class: performance
 - Performance often draws the line between what is possible and what is impossible.

Focus of this Course

- Understanding Problem
- Design Algorithm (Different Approaches)
 OR Understand the existing Algorithm
- Analysis of Algorithm (Complexity)

Approach

- Brute Force Algorithm
- Divide and Conquer
- Dynamic Programing Algorithm
- Greedy Algorithm
- Backtracking Algorithm

Class Activity

Think of Logic to guess a number between (1 - 100)At every guess, you will know that your guess is lower or above. In how many attempts you can guess any number?

- 4 bottles of milk, one bottle is poisonous
- For testing, feed the milk samples to Rat
- Poison takes effect at 10 hr
- → Within 24 hr, you must consume 3 bottles... else you die

PUZZLE

What strategy would ensure that you drink 3 bottles of milk within 24 hours?

Who will shout first and tells his hat colour?

Hat Problem

You have total number 25 horses.

$$O(n^{\frac{1}{2}})$$
 O(log log n)
O (log n) O(1)
 $O(n^{2})$ $O(n^{n})$
 $O(n)$ $O(2^{n})$
 $O(2^{2^{n}})$ $O(n^{3})$

$$O(1) < O(\log \log n) < O(\log n)$$

$$< O(n^{\frac{1}{2}}) < O(n) < O(n^2) < O(n^3)$$

$$< O(2^n) < O(2^{2^n}) < O(n^n)$$

Fibonacci Series: 0,1,1,2,3,5,8,13,21,34,55,.....

Each number is the sum of the previous two number

Iterative Approach

```
def fib(n):
    a,b = 0,1
    for i in range(n):
        a,b = b,a+b
    return a
                        O(n)
```

Recursive Algorithm for fib(7)Fibonacci Series fib(6) fib(5)fib(5)fib(4)fib(3)fib(4)fib(3)fib(4)fib(3)fib(2)fib(2)fib(3)fib(1)fib(2)fib(2)fib(2)fib(1)fib(1) fib(2)fib(1)fib(3)fib(1)fib(2)def recursive fib(n): if $n \leq 1$: return n else: return (recursive fib(n-1) + recursive fib(n-2))

f = Big O(g)
can be thought of as
f <= g</pre>

f = Big Omega (g) can be thought of as f >= g

f = Big Theta (g)can be thought of asf = g

Posterior and Priori Analysis

Posteriori analysis is a relative analysis. It depends on the compiler's language and the hardware type. time algorithm takes to execute on the system.

Priori analysis is an absolute analysis. It is independent of the compiler's language and the hardware types. Asymptotic Notations are used to estimate run time instead of running it on the machine.

Tractability vs Intractability

Tractable Problem: a problem that is solvable by a polynomial-time algorithm. The upper bound is polynomial.

P Class

Intractable Problem: a problem that cannot be solved by a polynomial-time algorithm. The lower bound is exponential.

NP Class

	10	50	100	300	1000
5n	50	250	500	1500	5000
$n \times$	33	282	665	2469	9966
$\log n$					
n^2	100	2500	10000	90000	1 million
					(7 digits)
n^3	1000	125000	1 million	27 million	1 billion
			(7 digits)	(8 digits)	(10 digits)
2^n	1024	a 16-digit	a 31-digit	a 91-digit	a 302-digit
		number	number	number	number
n!	3.6 million	a 65-digit	a 161-digit	a 623-digit	unimaginably
	(7 digits)	number	number	number	large
n^n	10 billion	an 85-digit	a 201-digit	a 744-digit	unimaginably
	(11 digits)	number	number	number	large

Interval Scheduling

Goal: Select a compatible subset of requests of maximum size.

Claim: We can solve this using a greedy algorithm. A greedy algorithm is a myopic algorithm that processes the input one piece at a time with no apparent look ahead.

Greedy Interval Scheduling

- 1. Use a simple rule to select a request i.
- 2. Reject all requests incompatible with i.
- 3. Repeat until all requests are processed

Possible rules?

- 1. Select request that starts earliest, i.e., minimum s(i).
- 2. Select request that is smallest, i.e., minimum f(i) s(i).
- 3. For each request, find number of incompatibles, and select request with minimum such number
- Select request with earliest finish time, i.e., minimum f(i)

Claim: Given list of intervals L, greedy algorithm with earliest finish time produces k* intervals, where k* is optimal.

Proof. Induction on k*.

Base case: k* = 1: this case is easy, any interval works.

Inductive step:

Suppose claim holds for k* and we are given a list of intervals whose optimal schedule has k* + 1 intervals, namely

$$S^*[1, 2, \dots, k^* + 1] = \langle s(j_1), f(j_1) \rangle, \dots, \langle s(j_{k^*+1}), f(j_{k^*+1}) \rangle$$

Say for some generic k, the greedy algorithm gives a list of intervals

$$S[1, 2, ..., k] = \langle s(i_1), f(i_1) \rangle, ..., \langle s(i_k), f(i_k) \rangle$$

By construction, we know that $f(i1) \le f(j1)$, since the greedy algorithm picks the earliest finish time.

Now we can create a schedule

$$S^{**} = \langle s(i_1), f(i_1) \rangle, \langle s(j_2), f(j_2) \rangle, \dots, \langle s(j_{k^*+1}), f(j_{k^*+1}) \rangle$$

since the interval < s(i1), f(i1) > does not overlap with the interval < s(j2), f(j2) > and all intervals that come after that. Note that since the length of S** is k* +1, this schedule is also optimal.

L' = list of intervals that are compatible

L' is the set of intervals with $s(i) \ge f(i1)$.

Since S** is optimal for L,

S**[2, 3, ..., k* + 1] is optimal for L', which implies that the optimal schedule for L' has k* size.

We now see by our initial inductive hypothesis that running the greedy algorithm on L' should produce a schedule of size k*. Hence, by our construction, running the greedy algorithm on L' gives us S[2, ..., k].

This means k - 1 = k* or k = k* + 1,

which implies that S[1, ..., k] is indeed optimal, and we are done.

Weighted Interval Scheduling

Each request i has weight w(i). Schedule subset of requests that are non-overlapping with maximum weight.

Greedy Approach

Weighted Interval Scheduling – Dynamic Programming

```
WIS(1...n) = max { W1 + WIS(R) , WIS(2 ... n) }
# R > remaining compatible requests
```

Sort all interval according to start time in ascending order.

	Intervals	W	Intervals (sorted)	WIS(1n) = max { W1 + WIS(R) , WIS(2 n) }
1	1-3	5	1-3	WIS(1n) = max { W1 + WIS(R), WIS(2n) } by the second of the seco
2	2-5	6	2-5	6 $\frac{11}{4}$ $\frac{11}{4$
3	4-6	7	4-6	$\langle \mathcal{A} \mathcal{A} $
4	6-7	4	5-8	$\frac{11}{11}$
5	5-8	11	6-7	4 27 Wishers
6	7-9	2	7-9	2 / (3-6) = max (++ n) (3-1)
				11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2