

PO No	Supplier	Line Item No	Rel No	Terms	Purchased Item	Description	For Part No	Project	Equipment ID	Order Qty	Due Date	Received Quantity	Accounting Job No	Serial No	Status	Receive Date	Price/Unit	Aging Days	Past Due	Total	Supplie Name
PO038191	MES002- VC	1	1	COD		4130 Bar 0.500 X 3.00: MATERIAL: AISI 4130N STEEL BAR PER MIL-S- 6758 OR AMS 6345/6348/6370/6528 receive ft				60		60		S007337	Stock	11/7/2017	\$ 30.38 / ft	0		\$1,822.63	Metaux Solution
		2				304 Bar .250 X .500 : MATERIAL: AISI 304/316 SS BAR OR AISI 304/316 SS PLATE AS PER ASTM A276 OR ASTM A240 NOTE: AISI 303 NOT ACCEPTABLE feceive ft				180		195		S007338	Stock	11/7/2017	\$4.25/ft	0		\$828.75	Metaux Solutions
		3		- 1	B0.500X1.250	AISI A2 Tool Steel Bar, 0.500 X 1.250 : MATERIAL: AISI A2 STEEL, ANNEALED CONDITION AS PER ASTM A681 receive ft				36		36		\$007339	Stock	11/7/2017	\$ 12.37 / R	0			Metaux Solutions
						1			Total:	276	-	291				-		_	-	\$2,426.59	

Plex 11/7/2017 10:00 AM Dart.Plouffe.Sonia

Shipping Order

03/11/2017

METAUX SOLUTIONS INC

Customer: 6323336

K6A 1K7

2625 BOUL JACQUES CARTIER EST

DART AEROSPACE LTD 1270, ABERDEEN STREET

HAWKESBURY, ONTARIO

LONGUEUIL, QUEBEC

J4N 1L7

Tel.: 450 641-3330

Order .

: 130034

Reference

: 38191

Ship

: PICK UP / PICK UP

Ship To

Same

Tel.: 1613 632-3336

Item No.	Description	Qty	Qty. Deliver	B/O Qty
MP124130N	******* FACTURER E-MAIL ********* SUPER IMPORTANT SUR LE PACKING SLIP INSCRIRE LES HEAT N 4130 NORM PLATE .500 THICK AMS 6345 51 X 3" X 14" HT/248571	14.79	14.79	\$
SF14124HR	304 STAIN FLA .25" X .500" HR 15 X 13' R/L HT; 56900655	195	195	\$
TP12A2	A-2 PLATE TFA 1/2" THICK 3 X 1.250" -0+0 X 145.75" R/L HT;PM91298	82	82	Ø
3-1	JOURNEY COLLECT	8	PA	7

Shipping Package No	•	Ref. :	:
Merchandise I	Received:		

NUCOR STEEL

4537 S. NUCOR ROAD; CRAWFORDSVILLE, IN 47933

REPORT OF TESTS

ATIN:	DATE: 1/20/15
FAX:	DATE: 1/20/15
SOLD TO:	JSTOMER ORDER # 081414MC
SIZE: 0.500" by 36" steel sheet	PRODUCT: HRPO light oil FINE GRAIN AIRCRAFT QUALITY 4130 AMS 6345 Rev C ASTM-A 506 ASTM-A-635 AMS 2301 Rev J [successor to MIL-S-18729 COND N.] NORMALIZED OR OTHER WISE HEAT TREATED

AMS 6345

COIL#	HEAT#	YIELD	TENSILE	ELONG
1961550	248571-06	81.5 ksj	1.15 ksi	20%

TEST	RESULT				
*Average austenite grain size	#8	Pass			
Decarburization (P/F)		Pass			
*Bend Test (P/F)		Pass			
*Response to Heat Treatment (P/F)	45 HRC	Pass			
*AMS 2301 Quality Freq/Sev (P/F)	0/0	Pass			

*These tests performed by outside lab, ISO 17025 certified.

NOV 0 7 2017

F	TENT A PRO II	1											
1	HEAT #	C	Mn	P	S	Al	Si	N	Cr	Ni	Cu	Ma	-
1	248571	0.287	0.55	0.006	0.000	0.028	0.208	0.007	0.860	0.017	0.042	1710	
- 1	/						0.200	0.007	0.000	0.017	0.043	0.165	į

WE HEREBY CERTIFY THE ABOVE IS CORRECT AS CONTAINED IN THE RECORDS OF THE CORPORATION.

Melted and Manufactured in the USA

Cold Mill Metallurgist

QF-0200, 10/17/05

	-	-	,
		1	¢
		Ξ	1
	-	1	_
		_	
	_		
d	-		

TUV CERT No. 01 100 030458

Abnahmeprützeugnis/Mill Test Certficate/Certif, de Qualidade

EN 10204:2004 / 3.1

0000119911

Unsure Innere Verweisung /Our Int. Ref/ N/ ref Int Bollinghaus Steel, SA DIN'EN ISO 9001:2008

Datum / Date /. Data

5600031591 000040

. 26.09:2016

No.: /-Nr.: /Nr.:

Normen / Standards / Normas

TYPE 304/UNS S30400 and TYPE 304L/UNS S30403 acc. to ASTM A479/A479M-16, A276/A276M-16a, SAE-AMS-OQ-S 763D, AMS5639H. AMS5647J, ASME SA479/SA479M, ASME SA278, ASTM A182/A182M-16a F304/304L, A193/A183M-16 CL. 1Gr. 98, ASTM A314-15, ASTM A320/A320M-15a, DOD-F24669/6, ASME SA182/SA182M, ASME SA 193/SA193M, ASME SA320 CL.1Gr.B8, ASTM A262-15 Practice E, grain size as per ASTM E112, NACE MR 0175, Mercury free statement, not weld repair statement, contents of N, Co. Mo and Cu., in hot rolled, solution

annested olckled straightened execution as per ASTM A484/A484M-16. Kunde / Customer / Cliente

Endgültiger Kunde / Final Customer / Cliente Final

	Acting .		
Bestell Nr./Order Nr./ Enc.Nr. C105024		Bestell Nr./ Order Nr./ Enc.Nr.	C105024.01
Produktgruppe / Braduct Group / Gr AISI 304/L FLAT 1/4 X 1/2"	upo Produta	Gewicht / Weight / Peso 1.059 lb	Bunde / Bundle / Atados
Werkstoff-Nr. Material-no. Qualidade 1.4307	Werkstoff-	Normbezelchnung / Material stand: X 2 CrNi 18-9	ard grade / Norma do material
Stainless steaf fiat bars, hot rolled, solution of US DRAR 252 225-7009. MELT SOURCE: U	annesled, straighten	g / Description / Descrição ad, pickled. G: Portugal	38 9-88 NOV 0 7 2017

Strendton Mr			Chen	nieche An	alyse l	n % / Che	mical c	ompositi	on In	% / Anall	se quin	nica em %		ý , au ús
56900658)c	0 030	Si	0.228	Mn	1.830	P	0.030	S	0.026	Cı	18 100	Ni	8.100
SEHOO 455	Mo	0.430	Co	0.205	Cu	0.298	N	0.084	Ti	0.003	Nb	0.021	Al	0.006

and spirit and the second	ASTM E399		A8TM A370										
Proben Nr. Yest no.	Kerbschlagerbeit Impact Test Resiliencia	Streckgrenze Yield point Tenséo ilmite	Oshingranze 1% point Limite de extensão	Zugfestigkeit Tenslie attength Tensao de rotura	Elor	nung gadan menento	Einschnüfung Reduction of oxes Coef, Estrição						
Amostra no.	(Charpy V)	Rp 0,2 %	Rp 1.0%	Rm	A5	40 er	Se & Zigner						
promy: 15	[1]	(Ksi)	[Ksi]	[Kai]	[%]	[%]	[%]						
4082619.01:01	1. 15	47.1	54.5	93.5	56.1	59.3	72.9						
						2							

nest uniformation	jer .		1		47.4		-			
Visigelik Kontrolle 🔣 Visual Inspection	ASTM E	190	ASTM A262 Practice E Hortostonalogatindigkeit KCTee	Warmetehandlung Host trealment Traismente térmic	10	, H'				
Inspeccillo visual OK	Qureza	[HB]	Corros de Intercelatalina Ok							
ASTM A484 Mankontrolle Dimensional inspection Inspector dimensional Ok	ASTM E1 Komgrösse Grain size Tamanho de grão	9	Werkeachverständiger Quality Control Representative Inspector da Qualitativ		uenched 1900 (water quench					
Verweichskungsprofung Teid of identify Tests its identification OK	Makroskopiscie Un Macrographi Material free from	lest o	Nuno Silva (n. NS)			19.1				
a management of the second	segregation defects	· Ok	Pollinghaus Stool SA							

Bemerkungen / Remarks / Observações

Country of origin: Portugal. No weld repair done. Material is tree of mercury and radiation contamination. Bollinghaus Steel, SA

Hiermit bestätigen wir, dass das Material der oben genannten Spezifikation entspricht

We confirm that this material meets the specification according ... the mentioned standards.

Confirmamos que este material respeita as especificações de acordo com as normas referidas.

Buck & Same

2625, Boul. Jacques-Carlier Est Longueuil (Québec) J4N 1L7

info@metauxsolutions.com T 450 641-3330 Ext: 1-800-967-2003

CERTIFICAT D'ANALYSE

DART AEROSPACE LTD 1270, ABERDEEN STREET HAWKESBURY, ONTARIO K6A 1K7

3 Nov 2017

Product Description A2-05000 1/2 X 32 15/16" X 146" A2 PLATE

Shipped Pcs 1.00

Back Ordred 0.00

PO LINE

ASTM A-681-08 **DFARS** Compliant

PLATE#: 420686A

Country of Origin USA C-0.9900 Cr-

Mn -5.0600 Mo - PM HEAT#:

P-

Cu -

0.7400

1.0100

0.0200 S-0.2500

91298

0.0020 0.3300 Si -0.3800

W-

348 38 Ni -

BHN 247.00

0.0600

0.3800

ITEM 3: 3 X 1.250" X 145.75"

COMMANDE: 130034

REF: 37489

7-8E MON O S JONS

Métaux Solutions inc. certifie que les analyses sur ce document sont exactes et que le matériel rencontre les spécifications énumérées.

MATERIAL RECEIPT INSPECTION FORM

MATERIAL: 145 +2 DATE: 17	- /4	1-0				
MATERIAL CERT REC'D:	Ye	5		HICKNESS ORDE		
QUANTITY RECEIVED:	3	6		HICKNESS RECE		
QUANTITY INSPECTED:	3	6.	SH	HEET SIZE ORDE	RED:	8
QUANTITY REJECTED:	1)	/	SH	HEET SIZE ORDE HEET SIZE RECE	VED:	0
	LNI	OR .				
DESCRIPTION	(Ch	eck N)		COMMEN	TS	
SURFACE DAMAGE	Y	0				
CORRECT FINISH	(8)	N				
CORROSION	Y	0				
CORRECT GRAIN DIRECTION	0	N				
CORRECT MATERIAL PER M-DRAWING	0	N				
CORRECT THICKNESS	(A)	N				
PHOTO REQUIRED	Υ	0				
CORRECT REF # TO LINK CERT	0	N				
CORRECT MATERIAL IDENTFICATION		N	H+ PMG	21288		
CORRECT M# ON THE MATERIAL	8	N				
DOES THIS MATERIAL REQUIRE ENGINEERING SIGN OFF	Υ	N				
DOES THIS REQUIRE AN EXTRUSION REPORT	Υ	2				
CUT SAMPLE PIECI			ERIAL AND PREFO		SS CHECK.	
			IRC HRB	DURA	DUR D	WEBSTER
TYPE OF MATERIAL						
SIZE OF TEST SAMPLE						
HARDNESS / DUROMETER READI	NG					

Attach this inspection sheet with the corresponding material cert and remit to be scanned and received in

ENGINEERING SIGNOFF (if required)

SIGNED OFF BY:

DATE:

MON 0 1 SOUL

QC 18 INSPECTION

INSPECTED BY: 35

DATE:

SPECIFICATION CONTROL DRAWING

5

9

0

PURCHASE MATERIAL: AISI A2 TOOL STEEL, ANNEALED CONDITION

0

ASTM A681 SPECIFICATION:

MSTEEL-A2-BT.TTT X W.WWW PART NUMBER:

WHERE "T.TTT" = THICKNESS IN INCHES
"W.WWW" = WIDTH IN INCHES

EG. 0.500" X 1.250" BAR = MSTEEL-A2-80.500X1.250

PER ASTM A681 AS FOLLOWING TOLERANCES:

U

TABLE 14 Hot-Rolled Flat Bars (Width and Thickness Tolerances)

Over 0031 (0.79) 0047 (1.19) 0.063 (1.60) 0.094 (2.39) 0.175 (3.39) Under 0.016 (0.41) 0.021 (0.75) 0.047 (1.19) 0.063 (1.60) 0.078 (1.99) 0.094 (2.39) To 1 (22.4, incl Over 1 to 3 (25.4 to 75), incl Over 3 to 5 (75 to 127), incl Over 5 to 7 (127 to 178), incl Over 7 to 10 (178 to 244), incl Over 10 to 12 (25.4 to 363), incl Specified Warths, in. (mm)

Specified				Thic	hickness Tolerannes for Specified Thicknesses,	arres for Spe	ecified Thicks	nesses, in imm	(LLL)					
Widths, in. (mm)	To 75 (6	To 74 (6.44), incl	Over 3	Over % to % (5.4 to 12.7), met	Over 15 to (12.7 to 25.4)	Over 15 to 1	Over 1 to 125 4 to 50.8)	Over 1 to 2 125 4 to 50.8) ind	Over 2 to 150 8 to 76).	2 to 3 76), mal	Over 3 to 4 (76 to 102), vid	3 to 4 32), viol		
	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Ower		
To 1 (25.4),	0.006 (0.15)	0.010 (0.25	0.008 (0.20)	006 (0.15) 0.010 (0.25 (0.08 (0.20) 0.012 (0.30) 0.10 (0.25) 0.16 (0.41	0 010 (0 25)	0.016 (0.41)		-		1	:			
Over 1 to 2 (25.4 to 50.8), inci	0.006 (0.15)	0.014 (0.36)	0.008 (0.20)	© 006 (0 15) 0 014 (0.36) 0 088 (0 20) 0.015 (0.41) 0 010 (0 25) 0 020 (0.51) 0 020 (0.51) 0 024 (0.61)	0.010 (0.25)	0 020 (0 51)	0.020 (0.51)	0.024 (0.61)	4	*	•			
Over 2 to 3 (50.8 to 76),ind	0 000 (0 12)	0,013 (0,46)	0.008 (0.20)	1 DECE (O 15½) O 13 (O 46) O 208 (O 201) O 020 (O 51½) O 10 (O 25½) O 024 (O 51½) O 027 (O 09½) O 026 (O 06½) O 034 (O 86)	0 010 (0.25)	0 024 (0.61)	0.029 (0.51)	0.927 (0.69)	0 026 (0 66)	0 034 10 86)	-			
Over 3 to 4 (76 to 102), and		0.020 (0.51)	0.010 (0.25)	6 608 (0 20) 0 020 (0.51) 0 010 (0.25) 0 022 (0 56) 0 013 (0 33) 0 024 (0 61) 0 024 (0 61) 0 030 (0.76) 0 032 (0 81) 0 042 (1 07) 0 040 (1 02) 0.018 (1 22)	0 013 (0 33)	0 024 (0 61)	0 024 (0,61)	0.030 (0.76)(0.032 (0.81)	0 042 (1 07)	0.040 (1.02)0	1.048 (1.22)		
Over 4 to 5 (102 to 1271 incl	0.010 (0.25)	0 020 (0.51)	0 012 (0 30)	0 010 (0 25) 0 GZ9 (0.51) 0 012 (0 50) 0 G24 (0 61) 9 G15 (0.38) 0 G30 (0.78) 0 BZ7 (0.88) 0 G35 (0.89) 0 G32 (0.81) 0 B42 (1.07) 0 G42	0.075 (0,38)	0.030 (0.76)	0.027 (0.89))(68 9) \$50.0	0.032 (0.81)	0.042 et 071¢	3042 (1.07)	0.050 (1.27)		
Over 5 to 6	0 0 12 (0 30)	0.020 (0.51)	0.014 (0.36)	0 012 (0 30) 0.021 (0.51) 0.014 (0.36) 0.030 (0.76) 0.030 (0.76) 0.030 (0.76) 0.030 (0.76) 0.036 (0.98) (0.93) 0.046 (1.17) 0.044 (1.12) 0.054 (1.37)	0.018 (0.46)	0 030 (0.76)	0 030 (0 76)	0.035 (0.89)	0.038 (0.91)	0.046 (117)	0.044 (1.12)0	1,054 (1,37)		
152) and													×	NEW IS:
Over 6 to 7	0.014 (0.36)	0.027 (0.69)	0.016 (0.41)	0.014 (0.36) 0.027 (0.58) 0.016 (0.41) 0.032 (0.81) 0.018 (0.46) 0.036 (0.89) 0.026 (0.76) 0.040 (1.02) 0.036 (0.91) 0.048 (1.12) 0.046 (1.12) 0.036 (1.12)	0.018 (0.4K)	0 035 (0.89)	(97.0) 00.00	0.040 (1.02)	0.036 (0.91;0	0.048 (1.22)	0.046 (1 17)n	(056 (142)	REV.	
(132 to													DESIGN	
Over 7 to 10	Over 7 to 10 to 018 (0.48) 0 C30 (0.78) 0 C30 (0.51) 0 O35 (0.80) 0 C31 (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.04) (0.05)	0 030 (0 76)0	0.020 (0.51)	0.035 (0.89)	0.024 (0.61)	0.040 (1.02)	1035 (0.89)	0 045 (1 14)0	1.040 (1.02)	0.054 (1.37)	052 11 3330	.064 (1.62)	DRAWN	
(178 to													CHECKED	۵
Over 10 to 12	Deer of to 1746 020 (0.51) 0.035 (0.8840.026 (0.6410.036 (1.02)0.030 (0.75)0.045 (1.13)0.040 (1.02)0.050 (1.02)0.040 (1.02)0.020 (1.02)0.0	0 035 10.8940	1.125 (0.64)	0.040 (1.02)(0	1.030 (D 76)	3.045 (1,14)0	0.046 (1.023)	3 650 (1 27)0	048 (4 17)0	0.030 (1.5230)	0.058 Ft a 25th	072 11 8/21	MFG. APPR.	PR.
(254 to													APPROVED	(ED
2027 1001					-			-						

REV. A

DART AEROSPACE LTD

AP

HAWKESBURY, ONTARIO, CANADA

ORAWING NO.

NJA

TITLE

TITLE

AP 12.09.06 BY DATE

NEW ISSUE

2012 -09- 12

NTS SHEET 1 OF 1

COPYRIGHT © 2012 BY DART AEROSPACE LTD SPRING TO AND CONTROL AND IS SUPPLIED ON THE SEMPLES CONCERN

THIS DOCUMENT NOT TO BE USE

12.09.06

DATE

A Out of square tolerance to be 35 of total width toterance max

00

AISI A2 TOOL STEEL

MATERIAL RECEIPT INSPECTION FORM

							/
MATERIAL: <u>H 304</u>	130	2.0	50 y 0,50	U	PO / BATCH	NO.: PO 38	191/50
DATE:	7.	11-	0 /				
MATERIAL CERT REC'D:	Ve	5		THIC	CKNESS ORDEI	RED: 6 Z 50	1.40.500
	100	- 1			KNESS RECEI		
QUANTITY RECEIVED:	185	- (0115	ET OUZE OPDE	DED:	0
QUANTITY INSPECTED:	185			SHE	ET SIZE ORDEI	HED:	~
QUANTITY REJECTED:	0			SHE	ET SIZE RECEI	VED:	P
		CR		,,, ·			
DESCRIPTION	,	eck N)			COMMENT	rs	
SURFACE DAMAGE		N	,				
CORRECT FINISH	(V)	N					
CORROSION	Y	N					
CORRECT GRAIN DIRECTION	W	N					
ORRECT MATERIAL PER M-DRAWING	Y	N					
CORRECT THICKNESS	8	N					
PHOTO REQUIRED	Y	(1)					
CORRECT REF # TO LINK CERT	0	N					
PRECT MATERIAL IDENTFICATION	0	Ν	HT	569	00655		
CORRECT M# ON THE MATERIAL	W	N					
DOES THIS MATERIAL REQUIRE ENGINEERING SIGN OFF	Υ	N					
DOES THIS REQUIRE AN EXTRUSION REPORT	Υ	Ν					
						00 0115014	
CUT SAMPLE PIECE			PERIAL AND ORD RESUL				
			HRC	HRB	DURA	DUR D	WEBSTER
YPE OF MATERIAL							
IZE OF TEST SAMPLE							
	NG						

QC 18 INSPECTION

ENGINEERING SIGNOFF (if required)

INSPECTED BY:

DATE:

DATE:

DATE:

DATE:

Attach this inspection sheet with the corresponding material cert and remit to be scanned and received in

DELEASED 10 2010 -11- 30

REV. C SCALE MTS SHEET 1 OF 10,11,25 09.07.15 05.06.10 DART AEROSPACE LTD
HAWKESBURY, ONTARIO, CANADA
M304B 304/316 BAR/PLATE

ODP/RIGHT @ 2805 BY DART AEROSPACE LTD

THE CONTROL OF THE EDITIES CHEET DESIGNED OF THE EDITIES CHEET DESI PH MB CP ADDED PLATE TO PURCHASE MATERIAL, ADDED PLATE EACHED SPECHEATIONS, AND EG. CHANGED TITLE FROM "304.31 B BAR" I D' "304/316 BAR" ID-ITE FROM "304.31 B BAR" I D' "304/316 BAR" ID-ITE REF PAR 09-020A. ADD SPECS (ZN D6-1). MFG. APPR.
APPROVED
DE APPR.
DATE 10 CHECKED DESIGN DRAWN U REV. 633

NOT TO RE A

10.11.25

SPECIFICATION CONTROL DRAWING

0

PURCHASE MATERIAL: AISI 304/316 SS BAR OR AISI 304/316 SS PLATE (NOTE: AISI 303 NOT ACCEPTABLE) SPECIFICATION:

ASTM A276 OR ASTM A240

PART NUMBER:

WHERE "T.TTT" = THICKNESS IN INCHES AND "WW.WWW" = WIDTH IN INCHES M304B T.TTT X WW.WWWY

EG. 0.5" x 3.0" BAR = M304B0.500X03.000 EG. 0.5" X 12.0" PLATE = M304B0.500X12.000 0

٥

U

<

U

MATERIAL RECEIPT INSPECTION FORM

UNIC. V	7 -	11-	07 07	000		PO/	BATCH	<u>ک</u> :.00	8/7/	1 / 5007
MATERIAL CERT REC'D: QUANTITY RECEIVED: QUANTITY INSPECTED: QUANTITY REJECTED:	Le Cel	5		-	THI	CKNESS CKNESS EET SIZE EET SIZE	RECEIV	'ED: _	0.5	_
DESCRIPTION	(Ch	CR eck (N)				COM	MENT	S		
SURFACE DAMAGE	Y	1								
CORRECT FINISH	0	N								
CORROSION	Y	0								
CORRECT GRAIN DIRECTION	(A)	N								
CORRECT MATERIAL PER M-DRAWING	(Y)	N								
CORRECT THICKNESS	8	N								
PHOTO REQUIRED	Υ	(N)								
CORRECT REF # TO LINK CERT	8	N								
CORRECT MATERIAL IDENTFICATION	Q	N	7	1+	24	857	/			
CORRECT M# ON THE MATERIAL	(3)	N								
DOES THIS MATERIAL REQUIRE ENGINEERING SIGN OFF	Υ	N								
DOES THIS REQUIRE AN EXTRUSION REPORT	Υ	N								
CUT SAMPLE PIEC			ERIAL /			W				
			HRC	H	IRB	DUI	RA	DU	R D	WEBSTER
TYPE OF MATERIAL										
SIZE OF TEST SAMPLE										
HARDNESS / DUROMETER READI	NG									

QC 18 INSPECTION	ENGINEERING SIGNOFF (if required)
INSPECTED BY: NOV 0	SIGNED OFF BY:
DATE:	7017 DATE:

Attach this inspection sheet with the corresponding material cert and remit to be scanned and received in

PURCHASE MATERIAL: AISI 4130N STEEL BAR PER MIL-S-6758 OR AMS 6345/6348/6370/6528

PART NUMBER:

M4130N-B T.TTT X WW.WWW

THICK

WHERE T.TTT = THICKNESS (IN INCHES) WW.WWW = WIDTH (IN INCHES)

EG. 0.5" X 3.0" BAR = M4130N-B0.500X03.000

WIDTH

В	ADD AMS 6345		PH	08.05.05				
Α	NEW ISSUE		DS	01.06.08				
REV.		DESCRIPTION	BY	DATE				
DESIG	N	DART AERO	SPACEL	TD				
DRAW	N Fet	HAWKESBURY, C						
CHECK	(ED IP	DRAWING NO.		REV. B				
MFG. A	PPR. NIX	2 M4130N-B		SHEET 1 OF 1				
APPRO		TITLE		SCALE				
DE API	PR.	4130 BAR		NTS				
DATE	08.05.05	THIS DOCUMENT IS PRIVATE AND CONFIDENTIAL AND NOT TO BE USED FOR ANY PURPOSE OR COPIED OF	COPYRIGHT © 2001 BY DART AEROSPACE LTD THIS DOCUMENT IS PRIVATE AND CONFIDENTIAL AND IS SUPPLIED ON THE EXPRESS CONDITION THAT (2.15) NOT TO BE USED FOR ANY PURPOSE OR COPIED OR COMMUNICATED TO ANY OTHER PERSON WHIHOUT WRITTEN PERMISSION FROM DART AEROSPACE LTD.					

Dart Hawkesbury 1270 Aberdeen St Hawkesbury, ON K6A 1K7 Canada

PURCHASE ORDER PO038191

Tel (613) 632-5200

Supplier:

MES002-VC

Metaux Solutions

2625 boul Jacques-Cartiler Est

Longueuil

QC

J4N 1L7 Canada Phone: 800 558 8858

Fax: 514 633 8044

Due Date:

PO No:

10/30/17

PO038191

PO Date:

Purchase Order

Revision:

Revision Date:

Ship-To Contact:

Lavoie, ChantalPhone:

clavoie@dartaero.com

Ship To:

1270 Aberdeen Street

Hawkesbury

ON

K6A 1K7 Canada Phone: 613-632-5200

Ground

Pymt Terms: Freight Terms:

Via:

COD

Special Comments:

			,	Items							
Line Item	Part	Rev	Description	Item Tax	Status	Due Date		Received Quantity		Unit Price (CAD)	Extended Price
1	M4130NB0.500X03.000		4130 Bar 0.500 X 3.00 : MATERIAL: AISI 4130N STEEL BAR PER MIL-S-6758 OR AMS 6345/6348/6370/6528 receive ft		Firmed		/ 60 ft	60 th	60 ft	\$30.37723/ft	\$1,822.63
Line Item Note	51 pcs cut to length 14" :	= 60/	ft				/				
2	M304B0.250x0.500	-/	304 Bar .250 X .500 : MATERIAL: AISI 304/316 SS BAR OR AISI 304/316 SS PLATE AS PER ASTM A276 OR ASTM A240 NOTE: AISI 303 NOT ACCEPTABLE receive ft		Firmed		/180 ft	195	180 ft	\$4.25/ft	\$765.00
_	MSTEEL-A2- B0.500X1.250	•	AISI A2 Tool Steel Bar, 0.500 X 1.250 : MATERIAL: AISI A2 STEEL, ANNEALED CONDITION AS PER ASTM A681 receive ft		Firmed		36 ft	368	36 ft	\$12.37/ft	\$445.32
	TOLERANCE -0+0" AS F CUT AT 1.25"	PER (QUOTATION #16619					80	A	11-	
								a	G	rand Total:	\$3,032.95

Order Notes

Procurement Quality Clauses A005 right of entry A012 chemical and physical test report A016 personnel qualification A017 raw material identification (as applicable)

Dart Hawkesbury 1270 Aberdeen St Hawkesbury, ON K6A 1K7 Canada

PURCHASE ORDER PO038191

Tel (613) 632-5200

Order Notes

A026 certification of material conformance A041 quality management system A042 dart notification by supplier A043 retention of quality documents

Terms & Condition of Purchasing(Suppliers) and Procurement Quality Clauses are an integral part of our AS9100 requirements. To learn in detail, please visit www.dartaerospace.com for further explanation.

Plex 10/31/17 2:52 PM dart.lavoie.chantal