

Computer Organization

COMP2120

Qi Zhao

January 24, 2024

Number Representation and arithmetic Part II

Floating-point representation

- Fixed-point representation. A fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor.
- Cannot represent large numbers or very small fractions.
- Scientific notation:

Value =
$$\pm$$
Significand \times 10 ^{\pm Exponent}

• Similar to a decimal floating point number, a binary floating point number can be represented as

$$\pm (1.xxxxx) \times 2^{Exponent}$$
 or $\pm (0.1xxxxx) \times 2^{Exponent}$

Floating-point representation

How to represent a floating-point number?

- ullet a sign bit \pm
- **Significant**: normalized to 1.xxxxx or 0.1xxxxx. The first digit is always 1, which can be omitted.
- **Exponent**: some signed number representation format (biased representation or excess $2^{m-1} 1$)

Floating-point representation

(b) Examples

Figure 10.18 Typical 32-Bit Floating-Point Format

• Biased exponent, excess 127 representation. $10010011 = 2^7 + 2^4 + 2 + 1 = 147$, 147 - 127 = 20

Expressible Numbers

Two complement integers

Floating-point numbers

Positive number between 2^{-127} and

$$(1+2^{-1}+\cdots+2^{-23})\times 2^{128}=(2-2^{-23})\times 2^{128}$$

Expressible Numbers

- Compared to two's complement integer representation, does the floating-point method represent more values? No, 2³².
- Do the represented numbers spaced evenly along the number line? No

Figure 10.20 Density of Floating-Point Numbers

• Trade-off between range and precision.

Single-, double-, and quadruple-precision floating point format

Table 10.3 IEEE 754 Format Parameters

Parameter	Format		
	Binary32	Binary64	Binary128
Storage width (bits)	32	64	128
Exponent width (bits)	8	11	15
Exponent bias	127	1023	16383
Maximum exponent	127	1023	16383
Minimum exponent	-126	-1022	-16382
Approx normal number range (base 10)	$10^{-38}, 10^{+38}$	$10^{-308}, 10^{+308}$	$10^{-4932}, 10^{+4932}$
Trailing significand width (bits)*	23	52	112
Number of exponents	254	2046	32766
Number of fractions	2 ²³	2 ⁵²	2112
Number of values	1.98×2^{31}	1.99×2^{63}	1.99×2^{128}
Smallest positive normal number	2^{-126}	2-1022	2^{-16362}
Largest positive normal number	$2^{128} - 2^{104}$	$2^{1024} - 2^{971}$	$2^{16384} - 2^{16271}$
Smallest subnormal magnitude	2^{-149}	2-1074	2^{-16494}

Note: * Not including implied bit and not including sign bit.

- Exponent uses excess-127 (1023). Actual value= E 127, (1023).
- S Sign bit, E biased exponent, M significant.
- After normalization, the actual value of significand is 1.M.
- Actual value is $(-1)^{s} \times 1.M \times 2^{E-127}$ (Single precision).
- Special Values:

The pattern of all 0 (000 . . . 00) and all 1 (111 . . . 11), or FF . . . F in the exponent field has special meaning.

0x00: not 0 - 127 = -127 0xFF: not 255 - 127 = 1280x means hexadecimal.

• Valid values in the exponent field is from -126 to 127 for single precision.

Exponent= 000 . . . 0

- Fraction = 000...0 represents values of 0 we have distinct +0 and -0.
- Fraction $f \neq 000...0$, subnormalized

$$(-1)^{\mathcal{S}}\times 0.f\times 2^{-126}$$

It is -126 not -127, why? Smallest positive normalized is

$$1.000...0 \times 2^{1-127} = 1.000...0 \times 2^{-126}$$

If we use -127,

$$0.111...1 \times 2^{-127}$$

use -126, closer to normalized number, largest positive subnormalized is

0 111
$$1 \times 2^{-126}$$

Exponent= 111 . . . 1

- Fraction $= 000\dots 0$ Represents value of infinity ∞ Result returned for operations that overflow Sign indicates positive or negative, $+\infty$, $-\infty$ E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$.
- Fraction $\neq 000\dots 0$ Not-a-Number (NaN) Represents the case when no numeric value can be determined E.g., $\sqrt{-1}$, $\infty - \infty$

Example

Binary 32-bit format:

1 bit sign, 8 bits for exponent, 23 bits for significand

- Write down the bit pattern corresponding to the value 13.375
- Write down the value corresponding to the bit pattern 3C05D00

Example

Binary 32-bit format:

1 bit sign, 8 bits for the exponent, 23 bits for significand

- $13 = 1101_2, 0.375 = 0.011_2, 13.375 = 1101.011_2$
- normalize it, $1101.011 = 1.101011 \times 2^3$
- Significand= 101 0110 0000 0000 0000 0000
- Exponent = $3 + 127 = 130 = 1000 \ 0010_2$.
- Bit pattern =

 $0100\ 0001\ 0101\ 0110\ 0000\ 0000\ 0000\ 0000$ $=41560000_{16}$

Example

Binary 32-bit format:

1 bit sign, 8 bits for the exponent, 23 bits for significand

• cof21000

$$= 1100\ 0000\ 1111\ 0010\ 0001\ 0000\ 0000\ 0000$$

$$= 1\ 100\ 0000\ 1\ 111\ 0010\ 0001\ 0000\ 0000\ 0000$$

- Sign bit= 1, Negative
- Exponent 100 0000 $1_2 127 = 2$
- Significand = 1.11100100001000000000000
- Value= $-1.11100100001 \times 2^2 = -7.5645$