

Computing Temporal Defeasible Logics

Guido Governatori and Antonino Rotolo¹

¹ CIRSFID, University of Bologna

RuleML 2013, Seattle, 14 July 2013

NICTA Funding and Supporting Members and Partners

Introduction

- Defeasible Logic is a simple and efficient (linear or polynomial time)
 non-monotonic formalism
- DL has been extended with time (temporalisation)
 - Natural representation of deadlines
 - Causality
 - Retroactivity

Introduction

- Defeasible Logic is a simple and efficient (linear or polynomial time)
 non-monotonic formalism
- DL has been extended with time (temporalisation)
 - Natural representation of deadlines
 - Causality
 - Retroactivity

Can we extend the good computational properties to temporal defeasible logic?

Basic(s) Defeasible Logic

- Derive (plausible) conclusions with the minimum amount of information.
 - · Definite conclusions
 - Defeasible conclusions
- Defeasible Theory
 - Facts
 - Strict Rules $(A_1, \ldots, A_n \to B)$
 - Defeasible rules $(A_1, \ldots, A_n \Rightarrow B)$
 - Defeaters (A₁,..., A_n → B)
 - Superiority relation over rules

Temporalised Defeasible Logic

Temporalised Defeasible Logic is an umbrella expression for a zoo of variants of logics.

- time points: A^t (A holds at time t)
 - intervals: $A : [t_s, t_e]$ (A holds from t_s to t_e)
- durations: A^d (A holds for d time units)

Temporalised Defeasible Logic

Temporalised Defeasible Logic is an umbrella expression for a zoo of variants of logics.

- time points: A^t (A holds at time t)
- intervals: $A : [t_s, t_e]$ (A holds from t_s to t_e)
- durations: A^d (A holds for d time units)
- ...

A temporalised defeasible theory

 ${\mathcal T}$ (discrete) total order of instants

Conclusion Types

- $+\partial p^t$: p has been defeasibly proved at time t (p holds at t)
- $-\partial p^t$: p has been defeasibly rejected at time t (p does not hold at t)

- propositions (literals) are associated with instants of time
 - C^t is persistent at time t, if C continues to hold after t unless some event occurs to terminate it.
 - C^t is transient at time t, if C is guaranteed to hold at time t only.

- propositions (literals) are associated with instants of time
 - C^t is persistent at time t, if C continues to hold after t unless some event occurs to terminate it.
 - C^t is transient at time t, if C is guaranteed to hold at time t only.
- partition the rules into persistent rules and transient rules

 $ClapHands^t \Rightarrow^{\tau} MakeSomeNoise^t$

 $TearPaper^t \Rightarrow^{\pi} ShreddedPaper^t$

- propositions (literals) are associated with instants of time
 - C^t is persistent at time t, if C continues to hold after t unless some event occurs to terminate it.
 - C^t is transient at time t, if C is guaranteed to hold at time t only.
- partition the rules into persistent rules and transient rules

$$ClapHands^t \Rightarrow^{\tau} MakeSomeNoise^t$$

$$TearPaper^t \Rightarrow^{\pi} ShreddedPaper^t$$

$$A_1^{t_1}, \ldots A_n^{t_n} \Rightarrow^{\chi} C^t$$

- propositions (literals) are associated with instants of time
 - C^t is persistent at time t, if C continues to hold after t unless some event occurs to terminate it.
 - C^t is transient at time t, if C is guaranteed to hold at time t only.
- partition the rules into persistent rules and transient rules

 $ClapHands^t \Rightarrow^{\tau} MakeSomeNoise^t$

TearPaper $^t \Rightarrow^{\pi} ShreddedPaper^t$

$$A_1^{t_1}, \ldots A_n^{t_n} \Rightarrow^{x} C^t$$

no constraints over t_1, \ldots, t_n and t.

- propositions (literals) are associated with instants of time
 - C^t is persistent at time t, if C continues to hold after t unless some event occurs to terminate it.
 - C^t is transient at time t, if C is guaranteed to hold at time t only.
- partition the rules into persistent rules and transient rules

 $ClapHands^t \Rightarrow^{\tau} MakeSomeNoise^t$

 $TearPaper^t \Rightarrow^{\pi} ShreddedPaper^t$

$$A_1^{t_1}, \ldots A_n^{t_n} \Rightarrow^{x} C^t$$

no constraints over t_1, \ldots, t_n and t.

Proving Persistence

- Generate an argument for the persistent conclusion now using persistent rules.
 - Take a rule for the conclusion that is applicable now or
 - Show there is a time in the past where the persistent conclusion obtains
- Consider all possible counterarguments for the conclusion
 - Take all rules for its negation that obtain now
 - Take all rules for its negation that have obtained since the time in the past.
- rebut the counterarguments
 - show that the rules have been discarded (not applicable or defeated).

Proving Conclusions in TDL

Proving Conclusions in TDL

Warning: The presenter wishes to advise that the content of the next slide is restricted to a mathematical audience

Proving Conclusions in TDL

If
$$P(n+1)=+\partial p^{t_p}$$
, then

1) $\exists r\in R_d^{\pi}[p^{t_p'}]$ such that

1) $\forall a^{t_a}\in A(r):+\partial a^{t_a}\in P[1..n]$, and

2) $\forall s\in R[\sim p^{t\sim p}]$ either

1) $\exists b^{t_b}\in A(s), -\partial b^{t_b}\in P[1..n]$ or

2) $\exists w\in R[p^{t\sim p}]$ such that

 $\forall c^{t_c}\in A(w):+\partial c^{t_c}\in P[1..n]$ and $w\succ s$.

where $t_p' \leq t_{\sim p} \leq t_p$

Facts: A⁰, B², C², D³

Rules: $r_1: A^t \Rightarrow^{\pi} E^t$

 $r_2: B^t \Rightarrow^{\pi} \neg E^t$

 $r_3: C^t \leadsto^{\pi} E^t$

 $r_4: D^t \Rightarrow^{\tau} \neg E^t$

Superiority relation:

 $r_3 > r_2$

 $r_1 > r_4$

0 1 2 3

Facts: A⁰, B², C², D³

Conclusions at time 0

Rules: $r_1: A^t \Rightarrow^{\pi} E^t$

 $r_2: B^t \Rightarrow^{\pi} \neg E^t$

 $r_3: C^t \rightsquigarrow^{\pi} E^t$

 $r_4: D^t \Rightarrow^{\tau} \neg E^t$

Superiority relation:

 $r_3 > r_2$

 $r_1 > r_4$

0

1

2

3

4

Facts: A^0 . B^2 . C^2 . D^3

Conclusions at time 0

Rules: $r_1: A^t \Rightarrow^{\pi} E^t$

A, E using r_1 (E is persistent)

 $r_2: B^t \Rightarrow^{\pi} \neg E^t$

 $r_3: C^t \rightsquigarrow^{\pi} E^t$

 $r_4: D^t \Rightarrow^{\tau} \neg E^t$

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

A, E

Rules: $r_1: A^t \Rightarrow^{\pi} E^t$

 $r_2: B^t \Rightarrow^{\pi} \neg E^t$

 $r_3: C^t \rightsquigarrow^{\pi} E^t$

 $r_4: D^t \Rightarrow^{\tau} \neg E^t$

Conclusions at time 0

A, E using r_1 (E is persistent)

Conclusions at time 1

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

0

2

3

4

Rules:
$$r_1: A^t \Rightarrow^{\pi} E^t$$

$$r_2: B^t \Rightarrow^{\pi} \neg E^t$$

$$r_3: C^t \rightsquigarrow^{\pi} E^t$$

$$r_{A}: D^{t} \Rightarrow^{\tau} \neg E^{t}$$

A, E using r₁ (E is persistent)
Conclusions at time 1
E

Conclusions at time 0

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

Facts: A⁰, B², C², D³

Rules: $r_1: A^t \Rightarrow^{\pi} E^t$

 $r_2: B^t \Rightarrow^{\pi} \neg E^t$

 $r_3: C^t \rightsquigarrow^{\pi} E^t$

 $r_4: D^t \Rightarrow^{\tau} \neg E^t$

Conclusions at time 0

A, E using r_1 (E is persistent)

Conclusions at time 1

Ε

Conclusions at time 2

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

0

1

2

2

Rules:
$$r_1: A^t \Rightarrow^{\pi} E^t$$

$$r_2: B^t \Rightarrow^{\pi} \neg E^t$$

$$r_3: C^t \rightsquigarrow^{\pi} E^t$$

$$r_{4}: D^{t} \Rightarrow^{\tau} \neg E^{t}$$

Conclusions at time 0

A, E using r_1 (E is persistent)

Conclusions at time 1

Ε

Conclusions at time 2

B, C, E

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

Rules:
$$r_1: A^t \Rightarrow^{\pi} E^t$$

$$r_2: B^t \Rightarrow^{\pi} \neg E^t$$

$$r_3: C^t \rightsquigarrow^{\pi} E^t$$

$$r_4: D^t \Rightarrow^{\tau} \neg E^t$$

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

0

1

2

,

4

Conclusions at time 0

A, E using r_1 (E is persistent)

Conclusions at time 1

Ε

Conclusions at time 2

B, C, E

Conclusions at time 3

Rules:
$$r_1: A^t \Rightarrow^{\pi} E^t$$

$$r_2: B^t \Rightarrow^{\pi} \neg E^t$$

$$r_3: C^t \rightsquigarrow^{\pi} E^t$$

$$r_4: D^t \Rightarrow^{\tau} \neg E^t$$

Superiority relation:

$$r_3 > r_2$$

$$r_1 > r_4$$

0

$$D, \neg E$$

B. C. E

F

Conclusions at time 3

Conclusions at time 0

Conclusions at time 1

Conclusions at time 2

A, E using r_1 (E is persistent)

D, $\neg E$ using r_4

Computing Temporal Defeasible Logics Guido Governatori and Antonino Rotolo

Rules: $r_1: A^t \Rightarrow^{\pi} E^t$

 $r_2: B^t \Rightarrow^{\pi} \neg E^t$

 $r_3: C^t \leadsto^{\pi} E^t$

 $r_4: D^t \Rightarrow^{\tau} \neg E^t$

Superiority relation:

 $r_3 > r_2$

 $r_1 > r_4$

Conclusions at time 0

A, E using r_1 (E is persistent)

Conclusions at time 1

Ε

Conclusions at time 2

B, C, E

Conclusions at time 3

D, $\neg E$ using r_4

Conclusion at time 4

0

1

2

3

4

Ø

How not to compute conclusions

If all rules $a_1^{t_1}, \ldots, a_n^{t_n} \Rightarrow p^t$ are such $\max(\{t_1, \ldots t_n\}) \leq t$.

- At time 0, consider the sub-theory restricted to the rules whose consequent is labelled by 0. Then use the basic algorithms for DL to compute the extension of the sub-theory at time 0.
- At time n + 1, consider the extension at time n. Then for each positive conclusion (i.e., conclusion whose proof tag is +∂) p_i:
 - introduce a rule $r_{p_i}^n : \Rightarrow^{\tau} p_i$
 - introduce an instance of the superiority relation $r_{p_i}^n \prec s$ for each s such that $C(s) = \sim p_i^{n+1}$;
 - remove p_iⁿ from the body of rules where it occurs;

For each negative conclusion q_j remove rules where q_j appears in the body. Compute the extension for the sub-theory restricted to the rules whose consequent is labelled with n + 1.

Theorem

Let *D* be a theory in TDL. For $y \in \{\pi, \tau\}$:

- 1 If $D \vdash +\partial p^t$, then $D \cup \{r : p_1^{t_1}, \dots, p_n^{t_n}, p^t \Rightarrow^y q\} \equiv D \cup \{r : p_1^{t_1}, \dots, p_n^{t_n} \Rightarrow^y q\}.$
- 2 if $D \vdash -\partial p^t$, then $D \cup \{r : p_1^{t_1}, \dots, p_n^{t_n}, p^t \Rightarrow^y q\} \equiv D$.

When is something provable

Theorem

Let D be a TDL theory. If $r: \Rightarrow^x p^t \in R$ and $R[\sim p^t] \subseteq R_{infd}$, then $D \vdash +\partial p^t$ and $D \vdash -\partial \sim p^t$.

where $R_{infd} = \{r : \exists s, s \succ r, \text{ and } A(s) = \emptyset\}.$

Theorem

Let *D* be a *TDL* theory. Let $t_p = \min\{t : \exists r \in R[p^t]\}$, then $D \vdash -\partial p^{t'}$, $t' < t_p$.

Computing the extension

- Conclusions are represented as (I, [t, t'])
- For persistent conclusions expand the interval till the time of the next rule for the complementary literal
- When removing rules update the intervals of the already proved conclusions

$$r: \Rightarrow^{\pi} p^1$$

$$s: q^5 \Rightarrow^{\tau} \neg p^{10},$$

$$v: \Rightarrow^{\pi} \neg p^{15}.$$

$$r: \Rightarrow^{\pi} p^{1}$$

$$r: \Rightarrow^{\pi} p^1, \qquad s: q^5 \Rightarrow^{\tau} \neg p^{10},$$

$$v: \Rightarrow^{\pi} \neg p^{15}.$$

$$(+\partial p,[1,10[),(+\partial \neg p,[15,\infty[)$$

$$r: \Rightarrow^{\pi} p^{1}$$
.

$$r: \Rightarrow^{\pi} p^1, \qquad s: q^5 \Rightarrow^{\tau} \neg p^{10},$$

$$v: \Rightarrow^{\pi} \neg p^{15}.$$

$$(+\partial p, [1, 10[), (+\partial \neg p, [15, \infty[)$$

 $(-\partial q, [0, \infty[) \text{ remove } s$

$$(+\partial p, [1, 10]), (+\partial \neg p, [15, \infty])$$

$$r: \Rightarrow^{\pi} p^1, \qquad s: q^5 \Rightarrow^{\tau} \neg p^{10},$$

$$v: \Rightarrow^{\pi} \neg p^{15}.$$

$$(-\partial q, [0, \infty[)]$$
 remove s
 $(+\partial p, [1, 15[)]$

Complexity

Theorem

The extension of TDL can be computed in $O(S*|\mathcal{T}|)$, where S is the number of instances of literals occurring in the theory an \mathcal{T} is the set of distinct times in the theory.

From Theory to Practice

 \Rightarrow^{π} presentation^{10:30} \sim^{τ} ¬presentation^{10:55} ¬presentation^{10:55} \Rightarrow^{π} questions^{10:55}

From Theory to Practice

 \Rightarrow^{π} presentation^{10:30} $\sim^{\tau} \neg presentation^{10:55}$ $\neg presentation^{10:55} \Rightarrow^{\pi} questions^{10:55}$

Questions?