Paging ex

Memory Size= 7 bits=> 2**7 = 126 bytes in my memory
Frame/page size=> number of bits per frame=> want 16 bytes/page
=> In base 2 of 16 = 4 bits
Can address up to 2**3 VP's

Page Table P1

VP#	valid	PP
0=000	1	2=010
1=001	1	5=101
2=010	1	3=011
3=011	0	
4	0	
5	:	
6		
7		

Page Table P2

VP #	valid	PP
0=000	1	100
1=001	1	110
2=010	0	
3=011	0	
4	0	
5	:	
6		
7		

What is the valid range of virtual addresses?

For P1 -> 7 bit system, virtual addresses can go from 000 0000-> 010 1111 (see valid bits)

For P2 000 0000-> 001 1111

Physical memory

000 0000 000 1111	
001 0000 001 1111	
010 0000 010 1111	P1-0
011	P1-2
100	P2-0
101	P1 -1
110	P2-1

For a 32 bit system 20 bits VPN, 12 bits offset

Outer=10 bits	Inner=10 bits	Offset=>12 bits
---------------	---------------	-----------------

0x0000000 Code Heap

1 Meg => how many pages? 2^20 pages/2^12 bytes/page =2^8 or 256=> 256 rows for Code and Heap Remember: If using 4K pages=> (2^12 bits) 2^10 ~1000 2^20 ~1,000,000

If using single page table

2^20 = 1,000,000 rows

2^20 *4 = 4MB for page table

2^20 rows ~ 1,000,000 1,000,000 -512 = ~999,500 rows wasted

Then have 2⁽²⁰⁾ potential pages

Stack

1 Meg needs 256 pages=> 256 rows for Stack

For a 32 bit system 20 bits VPN, 12 bits offset

If using 4K pages=> (2^12 bits) 2^10 ~1000 2^20 ~1,000,000

If using multilevel page table

Remember a single level page table uses 2^20 * 4bytes entry = 4MB

Multilevel page table uses
Outer = 2^10*4bytes = 4kB
Inner? Only 2 inner pages
Allocated
2 * 2^10*4bytes = 8kB
Total= 12kB