Homework 8

Put your name and student ID here 2020-10-27

Q1: Let X_1, \ldots, X_n be i.i.d. sample of $X \sim N(\mu_1, \sigma^2)$, and Y_1, \ldots, Y_m be i.i.d. sample of $Y \sim N(\mu_2, \sigma^2)$, where X_i s and Y_j s are independent, $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma > 0$ are unknown parameters. Denote $S_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ and $S_Y^2 = \frac{1}{m} \sum_{i=1}^m (Y_i - \bar{Y})^2$. Let $S_w = \sqrt{(nS_X^2 + mS_Y^2)/(n + m - 2)}$

- (a) Prove that S_w^2 is an unbiased estimator for σ^2
- (b) Prove that

$$T_{a,b} := \frac{a(\bar{X} - \mu_1) - b(\bar{Y} - \mu_2)}{S_w \sqrt{\frac{a^2}{n} + \frac{b^2}{m}}} \sim t(n + m - 2),$$

where a, b are non-zero constants.

(c) Based on the result in (b), find a $100(1-\alpha)\%$ confidence interval for the parameter $\vartheta = a\mu_1 - b\mu_2$.

Q2: Problem 23 in Page 61 of our Chinese textbook.

Q3: Problem 27 in Page 62 of our Chinese textbook.

Q4: Problem 28 in Page 62 of our Chinese textbook.