Chapitre 1 – Rappels de probabilités – L'essentiel du cours

CH1DEF1. L'univers Ω d'une expérience aléatoire est l'ensemble des événements élémentaires résultant de cette expérience. Une tribu est un ensemble $\mathscr T$ de parties de Ω vérifiant : (i) $\Omega \in \mathscr T$ (ii) $A \in \mathscr T \Rightarrow A^c \in \mathscr T$ (iii) si $(A_n)_{n \in \mathbb N}$ est une suite d'éléments de $\mathscr T$ alors $\cup_{n \in \mathbb N} A_n \in \mathscr T$. Les éléments d'une tribu sont des événements.

Une mesure de probabilité est une application $\mathbb{P}: \mathscr{T} \to [0,1]$ vérifiant : $\mathbb{P}(\Omega) = 1$ et pour toute suite $(A_n)_{n \in \mathbb{N}}$ d'éléments de $\mathscr{T}, \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) \leq \sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$.

Le triplet $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé.

CH1PROP1. $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé et $A, B \in \mathcal{T}$. Alors :

(a)
$$\mathbb{P}(A^{c}) = 1 - \mathbb{P}(A)$$
 (b) $\mathbb{P}(A^{c} \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$ (c) $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ (d) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

CH1PROP2. $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ est une suite d'éléments de \mathcal{T} croissante pour l'inclusion : $\forall k \in \mathbb{N}, A_k \subset A_{k+1}$. Alors : $\mathbb{P}(\cup_{n \in \mathbb{N}} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$ (théorème de la limite monotone). De même, si $(A_n)_{n \in \mathbb{N}}$ est une suite d'éléments de \mathcal{T} décroissante pour l'inclusion : $\forall k \in \mathbb{N}, A_{k+1} \subset A_k$, alors $\mathbb{P}(\cap_{n \in \mathbb{N}} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$.

CH1PROP3. $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé et $A \in \mathcal{T}$ un événement de probabilité non nulle. Pour $B \in \mathcal{T}$, on note $\mathbb{P}_A(B) = \mathbb{P}(B|A) = \mathbb{P}(A \cap B)/\mathbb{P}(A)$. \mathbb{P}_A définit une nouvelle mesure de probabilité sur \mathcal{T} dite conditionnelle à la réalisation de A; $(\Omega, \mathcal{T}, \mathbb{P}_A)$ est un nouvel espace probabilisé. En particulier : $\mathbb{P}(B^c|A) = 1 - \mathbb{P}(B|A)$.

CH1PROP4. $(\Omega, \mathscr{T}, \mathbb{P})$ est un espace probabilisé et $K \subset \mathbb{N}$. Une suite $(A_k)_{k \in K}$ d'éléments de \mathscr{T} est un système complet d'événements (SCE) si : (i) $\forall k \neq \ell, A_k \cap A_\ell = \emptyset$ (ii) $\bigcup_{k \in K} A_k = \Omega$. Dans un tel cas, pour tout $B \in \mathscr{T}, \mathbb{P}(B) = \sum_{k \in K} \mathbb{P}(B \cap A_k)$ et si chaque événement A_k est de probabilité non nulle : $\mathbb{P}(B) = \sum_{k \in K} \mathbb{P}_{A_k}(B)\mathbb{P}(A_k)$ (formule des probabilités totales).

CH1PROP5. $A_1, \ldots, A_n \in \mathscr{T}$ et $\mathbb{P}(\cap_{i=1}^n A_i) > 0$. Alors : $\mathbb{P}(\cap_{i=1}^n A_i) = \mathbb{P}(A_1) \prod_{i=2}^n \mathbb{P}(A_i | \cap_{j=1}^{i-1} A_j)$ (formule des probabilités composées).

CH1PROP6. $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé, $A, B \in \mathcal{T}$ sont deux événements de probabilité non nulle. Alors : $\mathbb{P}_A(B) = \mathbb{P}_B(A)\mathbb{P}(B)/\mathbb{P}(A)$ (formule de Bayes).

CH1DEF2. $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé. Deux événements $A, B \in \mathcal{T}$ sont indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$.

CH1PROP7. $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé. Deux événements $A, B \in \mathcal{T}$ de probabilité non nulle sont indépendants si et seulement si : $\mathbb{P}_A(B) = \mathbb{P}(B)$ ou $\mathbb{P}_B(A) = \mathbb{P}(A)$.

CH1PROP8. (a) \emptyset et Ω sont indépendants (b) si A et B sont deux événements indépendants, A^c et B^c le sont ausssi.

CH1DEF3. $A_1, \ldots, A_n \in \mathscr{T}$ sont mutuellement indépendants si : $\forall K \subset \{1, \ldots, n\}$: $\mathbb{P}(\cap_{k \in K} A_k) = \prod_{k \in K} \mathbb{P}(A_k)$. A_1, \ldots, A_n sont indépendants deux à deux si : $\forall k \neq \ell$: $\mathbb{P}(A_k \cap A_\ell) = \mathbb{P}(A_k) \times \mathbb{P}(A_\ell)$.

CH1PROP9. Des événements $A_1, \ldots, A_n \in \mathcal{T}$ mutuellement indépendants sont indépendants deux à deux.