Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3207</u>	К работе допущен
Студент Садовой Григорий Владимирович	Работа выполнена
Преполаватель Агабабаев В А	Отчет принят

Отчет по лабораторной работе № 1.01

Исследование распределения случайной величины

Цель работы:

Исследовать распределения случайной величины на примере многократных измерений определённого интервала времени.

Задачи, решаемые при выполнении работы:

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

Объект исследования:

Случайная величина – результат измерения промежутка времени, за которое секундная стрелка проходит 10 делений

Метод экспериментального исследования:

Многократное прямое измерение определенного интервала времени и проверка закономерностей распределения значений этой случайной величины.

- **Рабочие формулы и исходные данные.** $\langle t \rangle_N = \frac{1}{N} \, (t_1 \, + \, t_2 + \ldots + t_N) = \frac{1}{N} \, \sum_{i=1}^N t_i \, \,$ среднее арифметическое всех результатов
- $\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$ максимальное значение плотности распределения.
- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2}$ среднеквадратичное отклонение среднего значения.
- $\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$ нормальное распределение, описываемое функцией Гаусса.
- $\Delta t = t_{\alpha,N} \cdot \sigma_{(t)}$ доверительный интервал.

Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Электронный	0 – 15 c	0.01 c

Схема установки:

Дорога с движущимися автомобилями и электронный секундомер с погрешностью 1 секунда на 24 часа. Измеряется интервал времени, за которое секундная стрелка механических часов проходит 10 делений.

Точка на дороге

Ход работы

- 1. Проведем N = 50 раз измерения времени интервала между машинами, проезжающими определенную точку на дороге, и запишем результаты в столбец 1 таблицы №1
- **2.** Отыщем $t_{min}=0.31~c$, $t_{max}=3.02~c$ и разобьем интервал [0,31; 3,02] на 7 ($\sqrt{N}=\sqrt{50}\approx7$) равных частей, Для этого найдем $\Delta t=\frac{t_{max}-t_{min}}{7}=\frac{3.02-0.31}{8}\approx0.39~c$
- 3. Подсчитаем число результатов изменений ΔN_i , попавших в каждый из интервалов Δt , заполнив столбец 2 Таблицы №2 Затем, вычислим опытное значение плотности вероятности по формуле $\frac{\Delta N}{N\Delta t}$ и занесем в столбец 3 Таблицы №2. Построим гистограмму.

- **4.** Вычислим выборочное значение среднего $\langle t \rangle_N$ и выборочное среднеквадратичное отклонение σ_N и занесем их в «подвал» Таблицы №1
- **5.** Вычислим и запишем в Таблицу №1 значение: $\sum_{i=1}^{N} (t_i \langle t \rangle_N)$ для контроля правильности нахождения $\langle t \rangle_N$
- 6. Вычислим максимальное значение плотности распределения ρ_{max} и занесем его в «подвал» Таблицы №1
- 7. Найдем значения t, соответствующие серединам выбранных ранее интервалов и занесем их в столбец 4 Таблицы №2. Для этих значений, используя параметры $\langle t \rangle_N$ и σ_N в качестве $\langle t \rangle$ и σ соответственно, вычислим по формуле $\rho(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t-\langle t \rangle)^2}{2\sigma^2}\right)$ значения плотности распределения $\rho(t)$. Нанесем расчетные точки на график и проведем через них кривую.
- 8. Проверим точность выполнения соотношения между вероятностями и долями $\frac{\Delta N_{\sigma}}{N}$, $\frac{\Delta N_{2\sigma}}{N}$, $\frac{\Delta N_{3\sigma}}{N}$. Для этого вычислим границы стандартных доверительных интервалов для найденных значений $\langle t \rangle_N$ и σ_N , занесем их в столбцы 2 и 3 Таблицы №3
- 9. По данным Таблицы №1 подсчитаем и занесем количество измерений, попадающих в каждый из этих интервалов и отношение этого количества к общему числу измерений. Сравним их с соответствующими нормальному распределению значениями Р вероятности.
- 10. Рассчитаем среднеквадратичное отклонение среднего значения по формуле:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (\mathsf{t}_i - \langle \mathsf{t} \rangle_N)^2} \approx 0.091 \,\mathrm{c}$$

11. Найдем табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$ и найдем соответствующий доверительный интервал:

$$\overline{\Delta t} = t_{\alpha,N} \ \sigma_{\langle t \rangle} = 2,009 * 0,091 = 0,182816 c$$

$$\Delta t = \sqrt{\Delta \bar{t}^2 + (\frac{2}{3} \Delta_{ux})^2} = \sqrt{0,182816^2 + \frac{2}{3} * 0.01^2} = 0,183c$$

Приложение

Таблица 1. Результаты прямых измерений.

№	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	0,31	-0,82	0,6724
2	0,36	-0,77	0,5929
3	0,38	-0,75	0,5625
4	0,43	-0,70	0,49
5	0,46	-0,67	0,4489
6	0,48	-0,65	0,4225
7	0,49	-0,64	0,4096
8	0,49	-0,64	0,4096
9	0,51	-0,62	0,3844
10	0,53	-0,60	0,36
11	0,54	-0,59	0,3481
12	0,54	-0,59	0,3481
13	0,61	-0,52	0,2704
14	0,63	-0,50	0,25
15	0,63	-0,50	0,25
16	0,73	-0,40	0,16
17	0,79	-0,34	0,1156

18	0.94	0.20	0.0041	
	0,84	-0,29	0,0841	
19	0,86	-0,27	0,0729	
20	0,88	-0,25	0,0625	
21	0,93	-0,20	0,04	
22	0,98	-0,15	0,0225	
23	0,98	-0,15	0,0225	
24	0,99	-0,14	0,0196	
25	1,03	-0,10	0,01	
26	1,03	-0,10	0,01	
27	1,03	-0,10	0,01	
28	1,04	-0,09	0,0081	
29	1,04	-0,09	0,0081	
30	1,08	-0,05	0,0025	
31	1,11	-0,02	0,0004	
32	1,16	0,04	0,0016	
33	1,19	0,07	0,0049	
34	1,21	0,09	0,0081	
35	1,24	0,12	0,0144	
36	1,31	0,19	0,0361	
37	1,36	0,24	0,0576	
38	1,36	0,24	0,0576	
39	1,44	0,32	0,1024	
40	1,54	0,42	0,1764	
41	1,63	0,51	0,2601	
42	1,81	0,69	0,4761	
43	1,91	0,79	0,6241	
44	1,94	0,82	0,6724	
45	2,08	0,96	0,9216	
46	2,21	1,09	1,1881	
47	2,22	1,10	1,21	
48	2,22	1,10	1,21	
49	2,76	1,64	2,6896	
50	3,02	1,90	3,61	
	$\langle t \rangle_{N} = \frac{1}{N} \sum_{i=1}^{N} t_{i}$ $= 1,1267 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0.03 c$	$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}}$ $= 0.6215c$ $\rho_{max} = \frac{1}{\sigma_{N} \sqrt{2\pi}} = 0.6419 c^{-1}$	
			$\sigma_{\rm N}\sqrt{2\pi}$	

Таблица 2. Данные для построения гистограммы.

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, C^{-1}	t, c	ρ, c^{-I}	
0,31	15	0,77	0,50	0,388	
0,70 0,70	15	0.77	0.00	0.501	
1,08	15	0,77	0,89	0,581	

1,08 1,47	10	0,52	1,28	0,605	
1,47 1,86	3	0,15	1,67	0,437	
1,86 2,25	6	0,31	2,05	0,22	
2,25 2,63	0	0,00	2,44	0,077	
2,63 3,02	1	0,05	2,83	0,019	

Таблица 3. Стандартные доверительные интервалы

	Интервал, <i>с</i>		A 37	ΔN	n
	ОТ	до	ΔN	N	P
$\langle t angle_{N} \pm \sigma$	0,48	1,77	35	0,7	0,683
$\langle t \rangle_N \pm 2\sigma$	-0,16	2,41	48	0,96	0,954
$\langle t \rangle_N \pm 3\sigma$	-0,80	3,05	50	1	0,997

Расчет погрешностей измерений:

Абсолютная погрешность:

$$\Delta t = \sqrt{\Delta \bar{t}^2 + (\frac{2}{3}\Delta_{ux})^2} = \sqrt{0.182816^2 + (\frac{2}{3}*0.01)^2} = 0.183c$$

Относительная погрешность измерения: $\varepsilon_t = \frac{\Delta t}{\bar{t}} \cdot 100\% = \frac{0.183}{1,127} * 100\% \approx 16,2\%$ Конечный результат: $t = \bar{t} \pm \Delta t = (1,13 \pm 0,18)c$ $\varepsilon_t = 16.2\%$ $\alpha = 0.95$

Окончательные результаты:

- Среднеквадратичное отклонение среднего значения: $\sigma_{\langle t \rangle} + 0.091$.
- Табличное значение коэффициента Стьюдента $t_{a,N}$ до доверительной вериятности:

$$\alpha = 0.95$$
 , $t_{\alpha.N} = 2,009$

- Доверительный интервал: $\Delta t \approx 0.18c$
- Среднее арифметическое всех результатов измерений:

$$\langle t \rangle_{N} = \frac{1}{N} \sum_{i=1}^{N} t_{i} = 1.13 \text{ c}$$

• Выборочное среднеквадратичное отклоение:

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}} = 0.62c$$

• Максимальное значение плотности распределения:

$$\rho_{\text{max}} = \frac{1}{\sigma_{\text{N}} \sqrt{2\pi}} = 0.64 \text{ c}^{-1}$$

• Конечный результат: $t=(1.13\pm0.18)c$ $\varepsilon_t=16.2\%$ $\alpha=0.95$

График 1 – Гистограмма и функция Гаусса

Выводы и анализ результатов работы.

Во время выполнения данной лабораторной работы я изучил особенности распределения случайной величины и сравнил его с нормальным распределением. Построенная гистограмма показала, что распределение случайной величины не всегда совпадает с нормальным. При увеличении количества измерений можно ожидать, что точность результатов будет возрастать и стремиться к нормальному распределению. В данном эксперименте относительная погрешность составила 16,2%, что свидетельствует о приемлемом уровне точности, хотя и с определёнными отклонениями.