Math 131B: Homework 8

Owen Jones

6/2/2023

Problem 1. Exercise 4.7.3

- (a) The sum of angles identity gives us $\cos(x+\pi) = \cos(x)\cos(\pi) \sin(x)\sin(\pi)$ and $\sin(x+\pi) = \sin(x)\cos(\pi) + \sin(\pi)\cos(x)$. Definition 4.7.4 tells us that $\cos(\pi) = -1$ and $\sin(\pi) = 0$, so $\cos(x)\cos(\pi) \sin(x)\sin(\pi)$ and $\sin(x+\pi) = \sin(x)\cos(\pi) + \sin(\pi)\cos(x)$ reduce to $\cos(x)(-1) \sin(x)(0) = -\cos(x)$ and $\sin(x)(-1) + (0)\cos(x) = -\sin(x)$ respectively. It follows $\sin(x+2\pi) = -\sin(x+\pi) = \sin(x)$ and $\cos(x+2\pi) = -\cos(x+\pi) = \cos(x)$, so $\sin(x)$ and $\cos(x)$ are periodic with period 2π .
- (b) By Theorem 4.7.5(a), $\sin(x) = -\sin(x + \pi)$, so if $\sin(0) = 0$, then for all positive multiples of $\pi \sin(k\pi) = 0$. (This easily follows from a simple induction). Because $\sin(-x) = -\sin(x)$, the same holds for all negative multiples of π . Thus, $\frac{k\pi}{\pi} = k$ which is an integer. If $\frac{x}{\pi}$ is an integer, then x is a multiple of π , but we showed already that the sin of every multiple of π is 0, so $\sin(x) = 0$.
- (c) The sum of angles identity gives us $\sin(\pi) = \sin(\frac{\pi}{2} + \frac{\pi}{2}) = 2\sin(\frac{\pi}{2})\cos(\frac{\pi}{2})$. Since $\sin(\pi) = 0$ and $\sin(\frac{\pi}{2}) \neq 0$ by Definition 4.7.4, $\cos(\frac{\pi}{2})$ must equal 0. We use Theorem 4.7.5(a) as we did in part (b) to show $\cos(x) = 0$ for $x \in \{k\pi \frac{\pi}{2} : k \in \mathbb{N}\}$. We then use $\cos(-x) = \cos(x)$ to show $\cos(x) = 0$ for $x \in \{k\pi + \frac{\pi}{2} : k \in \mathbb{Z}\}$. Since $\frac{k\pi + \frac{\pi}{2}}{\pi} = k + \frac{1}{2}, \frac{x}{\pi}$ is an integer plus $\frac{1}{2}$. If $\frac{x}{\pi}$ is an integer plus $\frac{1}{2}$, then x is a multiple of π plus $\frac{\pi}{2}$, but we already showed that the cos of every multiple of π plus $\frac{\pi}{2}$ is 0, so $\sin(x) = 0$.

Lemma

WTS $\sin(\frac{\pi}{2}) = 1$ and $\sin(-\frac{\pi}{2}) = -1$. Note: We showed $\cos(\frac{\pi}{2}) = 0$ in Exercise 4.7.3(c). $1 = \cos(0) = \cos(\frac{\pi}{2} + (-\frac{\pi}{2})) = \cos(\frac{\pi}{2})\cos(-\frac{\pi}{2}) - \sin(\frac{\pi}{2})\sin(-\frac{\pi}{2}) = 0 - \sin(\frac{\pi}{2})(-\sin(\frac{\pi}{2})) = \sin(\frac{\pi}{2})^2$ Since $\sin'(0) = \cos(0) = 1$ and $\frac{\pi}{2} < \pi$, the intermediate value theorem tells us $\sin(\frac{\pi}{2}) > 0$, so $\sin(\frac{\pi}{2})^2 = 1 \Rightarrow \sin(\frac{\pi}{2}) = 1$ and $-\sin(\frac{\pi}{2}) = \sin(-\frac{\pi}{2}) = -1$.

Problem 2. Exercise 4.7.4

Let x,y be real numbers such that $x^2+y^2=1$. It follows that $x=\pm\sqrt{1-y^2}$. In particular, $0\le x^2$ and $0\le y^2$, so $0\le 1-y^2\le 1\Rightarrow |x|\le 1$. Since $\sin(\theta)$ is a continuous function that assumes values of -1 and 1 on the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, the intermediate value theorem states there exists $\theta_1\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ s.t $\sin(\theta_1)=x$. In addition, $\sin(-\theta)=-\sin(\theta)$ and $\sin(\pi+\theta)=-\sin(\theta)\Rightarrow\sin(-(\pi\pm\theta))=\sin(\theta)$. This tells there exists $\theta_2=-(\theta_1+\pi)$ for $\theta_1\in\left[-\frac{\pi}{2},0\right]$ and $\theta_2=-(\theta_1-\pi)$ for $\theta_1\in(0,\frac{\pi}{2}]$ s.t $\sin(\theta_2)=x$. It remains to show $y=\cos(\theta_1)$ or $y=\cos(\theta_2)$. Since $\theta_2=-(\theta_1\pm\pi)\Rightarrow\cos(\theta_2)=\cos(-(\theta_1\pm\pi))=\cos((\theta_1\pm\pi))=\cos((\theta_1\pm\pi))=\cos((\theta_1)$. Thus, $y=\pm\sqrt{1-x^2}=\pm\sqrt{1-\sin(\theta_1)^2}$ (or $\pm\sqrt{1-\sin(\theta_2)^2})=\pm\sqrt{\cos(\theta_1)^2}=\pm\cos(\theta_1)=\cos(\theta_1)$ or $\cos(\theta_2)$

Problem 3. Exercise 4.7.10

(a) The Weierstrauss M-test tells us that if $\sum_{n=1}^{\infty}||f^{(n)}||_{\infty}$ converges, then $\sum_{n=1}^{\infty}f^{(n)}(x)$ converges uniformly to f(x). Since $|\cos(x)| \leq 1$, $\sum_{n=1}^{\infty}||f^{(n)}||_{\infty} = \sum_{n=1}^{\infty}4^{-n} = \frac{1}{3}$ by the sum of a geometric series, so $\sum_{n=1}^{\infty}4^{-n}\cos(32^n\pi x)$ converges uniformly to f(x).

(b) We will show $|f(\frac{j+1}{32^m}) - f(\frac{j}{32^m})| \ge 4^{-m}$ to be true by induction on m. For the base case choose m = 1 and let j be arbitrary.

$$|f(\frac{j+1}{32^1}) - f(\frac{j}{32^1})| = |\sum_{n=1}^{\infty} 4^{-n} (\cos(32^n \pi \frac{j+1}{32}) - \cos(32^n \pi \frac{j}{32}))|$$

Using the identity $\sum_{n=1}^{\infty} a_n = (\sum_{n=1}^{m-1} a_n) + a_m + \sum_{n=m+1}^{\infty} a_n$, the fact that cosine is periodic with period of 2π , and the fact that $\cos(x) = -\cos(x+\pi)$ we obtain

$$|f(\frac{j+1}{32^1}) - f(\frac{j}{32^1})| = |4^{-1}(2\cos(j\pi + \pi)) + \sum_{n=2}^{\infty} 4^{-n}(\cos(2\pi k_n) - \cos(2\pi l_k))|$$
(where $k_n = \frac{32^{n-1}(j+1)}{2}$ and $l_n = \frac{32^{n-1}(j)}{2}$ which are clearly integers)
$$= |4^{-1}(\pm 2) + \sum_{n=2}^{\infty} 4^{-n}(1-1)| = \frac{1}{2} \ge \frac{1}{4}$$

, so the claim holds for m=1. Next, we assume for some arbitrary $m \geq 1$, the claim $|f(\frac{j+1}{32^m}) - f(\frac{j}{32^m})| \geq 4^{-m}$ holds. Thus, it remains to show the claim holds for m+1.

$$|f(\frac{j+1}{32^{m+1}}) - f(\frac{j}{32^{m+1}})| = |\sum_{n=1}^{\infty} 4^{-n} (\cos(32^n \pi \frac{j+1}{32^{m+1}}) - \cos(32^n \pi \frac{j}{32^{m+1}}))|$$

Using the identity $\sum_{n=1}^{\infty} a_n = (\sum_{n=1}^{m-1} a_n) + a_m + \sum_{n=m+1}^{\infty} a_n$, the fact that cosine is periodic with period of 2π , and the fact that $\cos(x) = -\cos(x+\pi)$ we obtain

$$|f(\frac{j+1}{32^{m+1}}) - f(\frac{j}{32^{m+1}})| = |\sum_{n=1}^{m} 4^{-n} (\cos(32^n \pi \frac{j+1}{32^{m+1}}) - \cos(32^n \pi \frac{j}{32^{m+1}})) + 4^{-m-1} (2\cos(j\pi + \pi)) + \sum_{n=m+2}^{\infty} 4^{-n} (\cos(2\pi k_n) - \cos(2\pi l_k))|$$
 (where $k_n = \frac{32^{n-m-1}(j+1)}{2}$ and $l_n = \frac{32^{n-m-1}(j)}{2}$ which are clearly integers)

 $\sum_{n=m+2}^{\infty} 4^{-n} (\cos(2\pi k_n) - \cos(2\pi l_k)) = 0 \text{ because cosine is periodic with period of } 2\pi, \text{ so it suffices to show } |\sum_{n=1}^{m} 4^{-n} (\cos(32^n \pi \frac{j+1}{32^{m+1}}) - \cos(32^n \pi \frac{j}{32^{m+1}})) + 4^{-m-1} (2\cos(j\pi + \pi))| \ge 4^{-m-1}.$ Using the identity $|\cos(x) - \cos(y)| \le |x - y|$, we obtain

$$\begin{split} \sum_{n=1}^{m} 4^{-n} (\cos(32^n \pi \frac{j+1}{32^{m+1}}) - \cos(32^n \pi \frac{j}{32^{m+1}})) \\ \leq \sum_{n=1}^{m} 4^{-n} |(\cos(32^n \pi \frac{j+1}{32^{m+1}}) - \cos(32^n \pi \frac{j}{32^{m+1}}))| \\ \leq \sum_{n=1}^{m} 4^{-n} |\frac{32^n \pi}{32^{m+1}}| = \sum_{n=1}^{m} 8^n \frac{\pi}{32^{m+1}} = \frac{8^{m+1} - 1}{7} \frac{\pi}{32^{m+1}} \leq \frac{\pi}{2^{2(m+1)} \cdot 7} \leq \frac{4^{-m-1}}{2} \end{split}$$

Using the reverse triangle innequality, we obtain

$$\begin{split} |\sum_{n=1}^{m} 4^{-n} (\cos(32^{n} \pi \frac{j+1}{32^{m+1}}) - \cos(32^{n} \pi \frac{j}{32^{m+1}})) + 4^{-m-1} (2\cos(j\pi + \pi))| \\ & \ge ||4^{-m-1} (2\cos(j\pi + \pi))| - |\sum_{n=1}^{m} 4^{-n} (\cos(32^{n} \pi \frac{j+1}{32^{m+1}}) - \cos(32^{n} \pi \frac{j}{32^{m+1}}))|| \\ & \ge |2 \cdot 4^{-m-1} - \frac{4^{-m-1}}{2}| = \frac{3 \cdot 4^{-m-1}}{2} \ge 4^{-m-1} \end{split}$$

, so the claim holds for m+1. Hence, by induction, the claim holds for all $m \geq 1$ and j.

(c) Let x_0 be arbitrary and let $s_m = \frac{j_m}{32^m}$ and $t_m = \frac{j_m+1}{32^m}$ be sequences of rational numbers where j_m is an integer s.t $j_m \leq 32^m x_0 \leq j_m+1$. Assume for sake of contradiction that f is differentiable at x_0 . If x_0 is a rational number whose denominator is a power of 2, then for all but finitely many m there exists j_m s.t $j_m = 32^m x_0$. Since t_m converges to x_0 and $t_m \neq x_0$ for all m, $\lim_{m \to \infty} \frac{f(t_m) - f(x_0)}{t_m - x_0}$ converges to $f'(x_0)$. Then by the definition of the derivative and the continuity of f

$$|f'(x_0)| = \lim_{m \to \infty} \left| \frac{f(t_m) - f(x_0)}{t_m - x_0} \right| = \lim_{m \to \infty} \left| \frac{f(t_m) - f(s_m)}{t_m - s_m} \right| \ge \lim_{m \to \infty} \left| \frac{32^m}{4^m} \right| = \infty$$

If not, then s_m and t_m converge to but never equal x_0 , and $s_m < x_0 < t_0$. Thus, using the triangle innequality and the limit defintion of the derivative, we obtain

$$|f'(x_0)| = \lim_{m \to \infty} \frac{\left| \frac{f(x_0) - f(s_m)}{x_0 - s_m} \right| + \left| \frac{f(x_0) - f(t_m)}{x_0 - t_m} \right|}{2}$$

$$\geq \lim_{m \to \infty} \frac{\left| \frac{f(x_0) - f(s_m)}{\frac{1}{32^m}} \right| + \left| \frac{f(x_0) - f(t_m)}{\frac{1}{32^m}} \right|}{2}$$
because $\frac{1}{32^m} = \frac{1}{t_m - s_m} \leq \frac{1}{t_m - x_0}$ and $\leq \frac{1}{x_0 - s_m}$

$$\geq \lim_{m \to \infty} \frac{\left| \frac{f(s_m) - f(t_m)}{\frac{1}{32^m}} \right|}{2}$$

$$\geq \lim_{m \to \infty} \frac{32^m}{2 \cdot 4^m}$$

$$= \infty$$

, so there exists at least one sequence that converges to x_0 where the limit definition of the derivative diverges. Thus, we have a contradiction, so f is not differentiable at x_0 .

(d)
$$\sum_{n=1}^{\infty} ||f_n'||_{\infty} = \sum_{n=1}^{\infty} ||-8^n \pi \sin(32^n \pi x)||_{\infty} = \sum_{n=1}^{\infty} 8^n \pi \text{ which does not converge, so } \sum_{n=1}^{\infty} ||f_n'||_{\infty} \text{ is not absolutely convergent.}$$

Problem 4. Exercise 6.2.1

If f is differentiable at x_0 and $f'(x_0) = L$ then by the limit definition of the derivative $\lim_{x \to x_0; x \in E \setminus \{x_0\}} \frac{f(x) - f(x_0)}{x - x_0} = 0$

L. It follows
$$L = L \frac{x - x_0}{x - x_0}$$
 because $x - x_0 \neq 0$. Subtracting $L \frac{x - x_0}{x - x_0}$ from both sides, we obtain,
$$\lim_{x \to x_0; x \in E \setminus \{x_0\}} \frac{f(x) - f(x_0) - L(x - x_0)}{x - x_0} = \lim_{x \to x_0; x \in E \setminus \{x_0\}} \frac{f(x) - (f(x_0) + L(x - x_0))}{x - x_0} = 0.$$

It follows from a proof from 131a that
$$\lim_{\substack{x \to x_0; x \in E \setminus \{x_0\} \\ (a) \Rightarrow (b).}} \frac{f(x) - (f(x_0) + L(x - x_0))}{x - x_0} = 0 \Leftrightarrow \lim_{\substack{x \to x_0; x \in E \setminus \{x_0\} \\ (a) \Rightarrow (b).}} \left| \frac{f(x) - (f(x_0) + L(x - x_0))}{x - x_0} \right| = 0, \text{ so }$$

$$\lim_{x \to x_0; x \in E \setminus \{x_0\}} \left| \frac{f(x) - (f(x_0) + L(x - x_0))}{x - x_0} \right| = 0 \text{ then } \lim_{x \to x_0; x \in E \setminus \{x_0\}} \frac{f(x) - (f(x_0) + L(x - x_0))}{x - x_0} = 0.$$

By algebra, $\lim_{x \to x_0; x \in E \setminus \{x_0\}} \frac{f(x) - (f(x_0) + L(x - x_0))}{x - x_0} + L \frac{x - x_0}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} = L \frac{x - x_0}{x - x_0} = L$. This is the limit definition of the derivative, so of course, f is differentiable at x_0 with $f'(x_0) = L$. Thus, $(b) \Rightarrow (a)$.

Problem 5. Exercise 6.2.2

Suppose for the sake of contradiction that L_1 and L_2 are distinct linear transformations that satisfy $\lim_{x\to x_0; x\in E\setminus\{x_0\}} \frac{|f(x)-(f(x_0)+L(x-x_0))|}{||x-x_0||} = 0$. It follows there exists at least one non-zero vector v s.t $L_1v\neq L_2v$, so we make the change of variables $x\to x_0+vt$ where t is a scalar. It follows by the definition of a derivative

$$\lim_{t \to 0; t > 0, x_0 + vt \in E} \frac{||f(x_0 + vt) - (f(x_0) + L_1 vt)||}{||vt||} = \lim_{t \to 0; t > 0, x_0 + vt \in E} \frac{||f(x_0 + vt) - (f(x_0) + L_2 vt)||}{||vt||} = 0$$

Thus,

$$\lim_{t \to 0; t > 0, x_0 + vt \in E} \frac{||L_1 vt - L_2 vt||}{||vt||} \le \lim_{t \to 0; t > 0, x_0 + vt \in E} \frac{||f(x_0 + vt) - (f(x_0) + L_1 vt)||}{||vt||} + \frac{||f(x_0 + vt) - (f(x_0) + L_2 vt)||}{||vt||}$$

by triangle innequality

so by the squeeze theorem

$$\lim_{t\to 0; t>0, x_0+vt\in E}\frac{||L_1vt-L_2vt||}{||vt||}=\lim_{t\to 0; t>0, x_0+vt\in E}\frac{||L_1v-L_2v||\cdot |t|}{||v||\cdot |t|}=\lim_{t\to 0; t\neq 0}\frac{||L_1v-L_2v||}{||v||}=0$$

which is impossible because $L_1v - L_2v \neq 0$, so we obtain a contradiction and $L_1 = L_2$.