Hochschule Flensburg

SmartCars

Maker's Lab - Things that Think

Abschlussbericht

vorgelegt von:

Simon Hauck 660158 Hochschule Flensburg simon.hauck@stud.hs-flensburg.de Nils Jensen 670758 Hochschule Flensburg nils.jensen2@stud.hs-flensburg.de

Inhaltsverzeichnis

1	Einleitung		
	1.1	Motivation	
	1.2	Projektidee	
2	Kor	nzept	
	2.1	Umsetzung	
3	Kor	mponenten	
	3.1	Hardware	
		3.1.1 Fahrzeuge	
		3.1.2 Visualisierung	
	3.2	Software	
		3.2.1 Modellierung und Slicing	
	3.3	Werkzeuge	
4	1. I	Design-Iteration 5	
	4.1	Fahrzeuge	
	4.2	Hard- und Software	
	4.3	Darstellung	
	4.4	Ergebnis	
5	2. Design-Iteration		
	5.1	Fahrzeuge	
	5.2	Hard- und Software	
	5.3	Darstellung	
	5.4	Ergebnis	
6	3. Г	Design-Iteration 16	
	6.1	Fahrzeuge	
	6.2	Hard- und Software	
	6.3	Darstellung	
	6.4	Ergebnis	
7	4. Design-Iteration 22		
		Fahrzeuge	
	7.2	Hardware	
	7.3	Darstellung	
	7.4	Ergebnis	
8	Faz	it 27	
-		Ausblick	

1 Einleitung

Im Zuge der Veranstaltung "Maker's Lab - Things that Think" wurde die Entwicklung interaktiver Systeme, bestehend aus Hard- sowie Software, thematisiert. Neben dem Fokus auf der Verwendung von Raspberry Pi beziehungsweise Arduino als Hardware-Komponenten lag ein weiterer Schwerpunkt auf der Verwendung von Techniken und Praktiken aus den Bereichen *making* und *rapid prototyping*. Unter Berücksichtigung dieser Punkte galt es, eine "anfassbare" Schnittstelle zwischen Mensch und Computer zu schaffen, welche gleichzeitig thematisch dem Klimapakt Flensburg und seiner Mission entspricht. Nachfolgend soll einerseits die Motivation und andererseits die daraus resultierende Projektidee umschrieben werden.

1.1 Motivation

Mit dem Ziel, die Folgen alltäglichen Handelns des Einzelnen für die Umwelt besser veranschaulichen zu können, soll die tägliche Verwendung des eigenen PKWs thematisiert werden. Bei der späteren Interaktion mit dem fertigen Prototypen soll vor allem der Fokus darauf liegen, generationsübergreifend eine möglichst intuitive und zugängliche Bedienung zu bieten. Vor diesem Hintergrund sollen bereits bekannte Konzepte und Komponenten aufgegriffen werden und die Möglichkeit bieten, auf spielerische Art und Weise zu lernen.

1.2 Projektidee

Es soll eine Kombination aus Eingabegerät und Darstellung geschaffen werden, die sich grob an der Bewegung von Spielzeug-Autos auf einem, mit einer abstrakten Stadt und ihrer Verkehrsinfrastruktur bedruckten Teppich orientiert. Gleichzeitig soll maßstabsgetreu die Bewegung der Fahrzeuge aufgenommen und in ihre entsprechende CO2-Emmission übersetzt werden. Die so anfallende Belastung für die Umwelt soll auf einem Display optisch ansprechend aufbereitet und mit anschaulichen, zusätzlichen Informationen zusammen gebracht werden. Hierdurch sollen die Konsequenzen des eigenen Handelns verdeutlicht und so einem Nutzer näher gebracht werden können, als es durch das Auflisten von Statistiken oder Ähnlichem möglich wäre.

2 Konzept

Im Folgenden soll nun umrissen werden, wie die in 1.2 formulierte Idee zu realisieren ist. Als Kontaktpunkt des Nutzers mit dem System sollen eins oder mehrere der erwähnten Fahrzeuge eingesetzt werden. Diese sollen per Hand bewegt werden. Im Kontrast hierzu stünde eine Umsetzung, in der die Fahrzeuge zum Beispiel mit Hilfe einer App fern gesteuert werden können. Dies soll zum Einen eine einfachere, vor allem aber auch kostengünstigere Umsetzung ermöglichen und zum Anderen ein intuitiveres Bedienerlebnis bieten. Um hierauf aufzubauen und den thematischen Schwerpunkt des Klimapakts Flensburg aufzugreifen, soll die Möglichkeit in Betracht gezogen werden, anstelle eines generischen Teppichs eine maßstabsgetreue Darstellung der Flensburger Innenstadt sowie eventuell des Umlands zu verwenden. Auf diesem Wege wäre es weiter möglich, die Konsequenzen auch kürzerer Fahrten zu verdeutlichen. Die Darstellung mittels des Displays könnte neben aufbereiteten Zahlen weiter um eine Repräsentation der Emissionen in weniger abstrakter Form, wie eine Menge an bestimmten Lebensmitteln, deren Produktion und Transport gleiche Werte verursachen, ergänzt werden. Weiter könnte das Display um eine zusätzliche Luftpumpe ergänzt werden, welche Ballons entsprechend der Emissionen aufpumpt.

2.1 Umsetzung

Um die Anforderungen an die Fahrzeuge erfüllen zu können, wurde einerseits evaluiert, fertige Spielzeugautos zu erwerben und um die elektronischen Komponenten zu erweitern, die zur Messung der zurück gelegten Distanz und der Kommunikation benötigt werden. Allerdings hätte sich vorab nicht ohne Zweifel sagen lassen können, ob der für diese Erweiterungen erforderliche Platz vorhanden ist oder sich schaffen lässt, ohne das Auto seiner Funktion zu berauben. Andererseits bestand die Option, die Fahrzeuge von Grund auf selbst herzustellen. Auf diese Weise kann sichergestellt werden, dass genug Platz für die erforderliche Technik vorhanden ist. An dieser Stelle ensteht jedoch ein Konflikt zwischen dem Platzbedarf der zu ermittelnden Komponenten und einem der Projektidee entsprechenden Formfaktor der Fahrzeuge. Weiter sollen die Fahrzeuge in einer Form geschaffen werden, die es erlaubt, ohne weitere Konfiguration "los zu fahren", sobald eine initiale, quasi werksseitige, Konfiguration durchgeführt wurde und die Stromversorgung hergestellt ist. Die Stromversorgung der Fahrzeuge soll mit Hilfe von Akkus umgesetzt werden, damit keine Kabel etwaiger Netzteile bei den Bewegungen der Fahrzeuge berücksichtigt werden müssen oder diese gar behindern. Ein Verzicht auf Kabel soll auch in der Kommunikation der Fahrzeuge mit der Steuerung der Darstellung gewahrt bleiben. Hierdurch entsteht die Anforderung, beide Seiten des Systems mit solchen Bauteilen auszustatten, die eine drahtlose Kommunikation erlauben. Die erforderlichen Komponenten sollen so gewählt und installiert werden, dass eine Wartung ohne unverhältnismäßigen Aufwand möglich ist. Weiter soll durch die Durchführung der Montage gewährleistet werden, dass kostspieligere Bauteile entfernt und anderweitig erneut eingesetzt werden können.

3 Komponenten

3.1 Hardware

Das Projekt besteht aus zwei Teilen, den Fahrzeugen und der Visualisierung. Die hierfür benötigte Hardware soll im Folgenden vorgestellt werden. Die genannten Komponenten beziehen sich auf das Konzept, welches in Kapitel 2 vorgestellt wurde.

3.1.1 Fahrzeuge

Die Basis für die Fahrzeuge sollen Microcontroller sein. Diese benötigen wenig Strom und ermöglichen so ein längeres Spielvergnügen. Für die Fahrzeuge soll der Arduino MKR Wifi 1010 verwendet werden. Dieser ist ca. 62mm lang und 25mm breit und somit bedeutend kleiner als der Arduino Uno. Zusätzlich ist der Arduino besonders für IoT Projekte geeignet, da ein Low Power Prozessor (SAMD21) verwendet wird. Das Board besitzt zudem eine integrierte Ladeschaltung und einen Anschluss für einen Lithium-Polymer-Akku. Hierfür wird ein Modell mit einer Kapazität von 1000mAh verwendet, welches einen Kompromiss zwischen Größe des Akkus und dem Formfaktor bietet. Des weiteren besitzt der verwendete Arduino ein integriertes Wifi Modul, welches später zur Kommunikation mit der Visualisierung verwendet wird.

Neben dem Microcontroller wird jedes Fahrzeug mit einem oder mehreren Magneten sowie einem Hall-Sensor ausgestattet. Der Hall-Sensor gibt ein Signal an den Arduino, wenn ein Magnet sich in dessen Nähe befindet. Diese werden später zur Erkennung von Radumdrehungen verwendet. Zuletzt werden zwei LEDs mit den dazugehörigen Widerständen als Scheinwerfer verwendet.

3.1.2 Visualisierung

Die Basis für die Visualisierung soll ein Raspbbery Pi 4 sein. An diesen kann ein Display angeschlossen werden, welches später die erfassten Daten aufbereitet anzeigt. Der Raspberry Pi fungiert zusätzlich als WLAN Access Point. Die in den Fahrzeugen verwendeten Arduinos können sich direkt mit diesem verbinden und somit ist die kabellose Übertragung der Daten gewährleistet. Dieser Aufbau hat den Vorteil, dass keine weitere Hardware, wie zum Beispiel ein Router zwischen den Komponenten, benötigt wird.

3.2 Software

Für das Projekt werden zwei verschiedene Programmiersprachen verwendet. Die Arduinos verwenden standardmäßig eine C- beziehungsweise C++-ähnliche Programmiersprache, für welche die Entwicklungsumgebung Arduino IDE verwendet wird. Für die Visualisierung stehen verschiedene Programmiersprachen zur Auswahl. Für dieses Projekt soll Python 3.7 verwendet werden. Diese Sprache ermöglicht das einfache Erstellen eines Webservers, welcher zum Empfangen der Daten genutzt wird und das Ansteuern der IO-Pins beziehungsweise des Displays von dem Raspberry Pi.

3.2.1 Modellierung und Slicing

Um die für die Herstellung der Fahrzeuge mit Hilfe von 3D-Druck benötigten Modelle anfertigen zu können, war es erforderlich, eine geeignete Software zur Modellierung auszuwählen.

Zweierlei Lösungen wurden hierfür in Betracht gezogen. Zum Einen Blender, da das nach eingangs erfolgter Recherche erfoderliche Dateiformat stl nativ unterstützt wird und derartig weit verbreitete Open Source Lösungen oft eine entsprechend große Community vorweisen können. Zum Anderen SketchUp, welches zwar nur mit verringertem Funktionsumfang frei verfügbar ist, aber besonders durch seine einfache Bedienung überzeugen kann

Die Wahl fiel darauf, zunächst erste Gehversuche mit Blender zu unternehmen und im Fall größerer Schwierigkeiten in der Bedienung auf SketchUp zurück zu greifen, da mit dieser Software bereits Erfahrungen gesammelt wurden. Die Unterstützung für das stl Format muss in diesem Fall jedoch über Erweiterungen sichergestellt werden.

Zur Vorbereitung etwaiger Modelle für den Druck war es weiter nötig, eine geeignete Software für den Slicing-Vorgang zu finden. Nach erfolgter Recherche und auf Anraten des FabLab der Hochschule Flensburg fiel die Wahl auf Cura. Neben einfacher Handhabung überzeugt Cura durch die Unterstützung der zur Durchführung des Projekts verfügbaren Drucker und dem stl- Format.

3.3 Werkzeuge

4 1. Design-Iteration

4.1 Fahrzeuge

Vor Beginn erster Modellierungsarbeiten wurden zunächst bemaßte Skizzen, zu sehen in Abbildung 1, angefertigt. Hierdurch war es möglich, den ermittelten Platzbedarf der Hardware Komponenten abzuschätzen und einen ersten Eindruck der Dimensionen der Fahrzeuge zu erhalten.

Abbildung 1: Erste Skizze eines Fahrzeugs

Bei der eigentlichen Modellierung wurde versucht, zunächst mit so wenig Details wie möglich, die grobe Form eines PKW nachzubilden. Hierzu wurde mit *Blender* zunächst ein Quader geschaffen, der in seinen Dimensionen der Skizze entspricht.

Allerdings zeichnete sich bereits bei der Modellierung dieser Rohform ab, dass die Arbeiten mit Blender in keinem zufriedenstellenden Tempo voran schreiten können. Aus diesem Grund wurde die in 3.2.1 zur Sprache gekommene Ausweichlösung in Form von SketchUp für den Rest der Arbeiten verwendet.

Der auf diesem Wege, nun in SketchUp, geschaffene Quader wurde in seiner Form dahingehend manipuliert, dass er äußerlich eher als PKW zu erkennen ist. Neben einer angedeuteten Frontsektion mit Motorhaube und abgeschrägter Scheibe wurden bereits in diesem Schritt Radkästen und Aussparungen für die später benötigten Achsen geschaffen. Bei der Dimensionierung der Räder und infolgedessen auch der Radkästen galt es zu beachten, dass die verwendeten Magneten ausreichend Platz finden, ohne später die strukturelle Integrität des Drucks zu gefährden oder sich so nah bei einander befinden, dass vom Hall-Sensor keine einzelnen Magneten mehr erkannt werden können.

Um den Raum für die elektronischen Komponenten zu schaffen, wurde das Fahrzeug horizontal in etwa in der Mitte seiner Höhe in zwei Teilmodelle aufgebrochen. In sowohl die

untere als auch die obere Hälfte wurde nun eine rechteckige Aussparung eingearbeitet, die der Skizze aus Abbildung 1 entsprechend, ausreichend Platz bietet. Hierbei galt es zu beachten, Änderungen an den Dimensionen der einen Hälfte präzise auf die andere anzuwenden.

Die hier beschriebenen Arbeitsschritte sind in den Abbildungen 2 und 3 zu sehen.

Abbildung 2: Seitenansicht des ersten Modells

Abbildung 3: Aussparung im ersten Modell

Abbildung 2 zeigt weiter einen ersten Ansatz, um beide Fahrzeughälften miteinander verbinden und so fixieren zu können. In der unteren Hälfte werden Aussparungen vorgesehen, in die entsprechende Elemente der oberen eingelassen werden können. Diese zeichnen sich durch eine ösenartige Form aus. Somit ist es möglich, entsprechend bemessene Bolzen durch beide Hälften zur gleichen Zeit zu führen, um diese zu fixieren.

Um zu gewährleisten, dass die aus der Skizze übernommenen Maße zufriedenstellend sind, wurde an dieser Stelle mit einem ersten Druck begonnen. Die in *Cura* verwendeten Einstellungen wurden unter Anleitung des *FabLab* Personals an den jeweiligen Drucker angepasst. Abbildung 4 zeigt das Ergebnis dieses Drucks.

Abbildung 4: Druck des ersten Modells

4.2 Hard- und Software

Fahrzeug

Nachdem die Hardware eingetroffen ist, soll in einem ersten Schritt die Funktionalität des Hall-Sensors testweise implementiert werden. Das Ziel ist herauszufinden, bis zu welchem Abstand der Sensor die Magneten erkennt und ob der Einsatz von mehreren Magneten in den Reifen möglich ist. Für den Sensor steht nur Dokumentation im Rahmen eines Datenblattes zur Verfügung.

Hierbei erweist es sich als schwierig, die Bedeutung der drei Pins zu erkennen. Letztendlich stell sich heraus, dass der linke Pin+, der mittlere GND und der letzte das Output Signal ist.

Beim Erstellen der Schaltung entsteht ein weiteres Problem. Der Sensor benötigt für den Betrieb mindestens 3.7V. Somit muss der + Pin an den 5V Pin des Arduinos angeschlossen werden. Der Output Pin liefert dementsprechend auch 5V muss mit einem IO-Pin des Arduinos verbunden werden, damit das Signal von diesem eingelesen werden kann. Allerdings vertragen diese maximal 3.3V oder das Board kann beschädigt werden.

Abbildung 5: Erstes Konzept des Schaltplans für die Fahrzeuge

Mit einem 1k Ω und 2k Ω Widerstand können Spannungen von 5V auf 3.3V runter gesetzt werden. Zusätzlich soll ein 10k Ω Pull-Up Widerstand verwendet werden, welcher den verwendeten Pin des Arduinos auf HIGH zieht, solange kein Magnet erkannt ist. Das verwendete Diagramm ist in Abbildung 5 dargestellt. Hierbei werden zusätzlich zwei LEDs hinzugefügt, welche später als Scheinwerfer in dem Fahrzeug verwendet werden. Beim Testen der Schaltung wird festgestellt, dass die Kombination aus Pegelwandler und dem Pull-Up Widerstand nicht funktioniert und kein Auslesen von Sensorwerten möglich ist.

4.3 Darstellung

Da bereits vor der ersten Materialbestellung deutlich wurde, dass geeignete Displays den finanziellen Rahmen des Projekts sprengen würden, wurden Konzepte für alternative Formen der Visualisierung erarbeitet.

Obwohl die Machbarkeit zu diesem frühen Zeitpunk der Durchführung nicht abschließend geklärt werden konnte, fiel die Wahl auf eine abstraktere Art der Darstellung in Form eines Baums mit beweglichen Ästen.

Bei zunehmenden Emissionen sollen diese Äste mit Hilfe von Servomotoren abgesenkt und gleichermaßen nach einer bestimmten Zeit wieder angehoben werden können. Um das so entstehende Bild weiter ausprägen zu können, soll der gesamte Baum in einer Kiste montiert werden, welche in ihrem inneren mit LEDs umrandet ist. Diese sollen, abhängig von der Position der Äste, ihre Farbe von grün zu rot wechseln. Abbildung 6 zeigt eine frühe Konzeptskizze der Umsetzung dieses Baums.

Abbildung 6: Erste Skizze des neuen Visualisierungskonzepts

4.4 Ergebnis

Obwohl die in 4.1 gezeigte Skizze die Dimensionen der zu installierenden Komponenten genau berücksichtigte, war der im Inneren des Fahrzeugs vorgesehene Platz nicht ausreichend bemessen. Zu sehen ist diese Abweichung in Abbildung 7. Der Grund hierfür war, dass die Spezifikationen des gewählten Akkus nicht berücksichtigten, dass der Akku selbst zusätzlich in einer schützenden Hülle verpackt ist.

Um diese Hülle nicht entfernen zu müssen, wurden die Maße der Aussparung im Inneren des Fahrzeugs angepasst. Dadurch ergab sich weiter der Bedarf, diesen Zuwachs auch auf die Außenmaße anzuwenden.

Außerdem wurde deutlich, dass das beispielsweise für die Radkästen benötigte Stützmaterial auch in den Hohlräumen der Befestigungsvorrichtung eingesetzt wurde. Cura verfügt nicht über die Option, Stützmaterial nur punktuell einzusetzen. Es wird entweder an jeder ermittelten Stelle verwendet oder an keiner.

Abbildung 7: Abweichende Maße des Akkus durch Hülle

Durch die Wahl einer abstrakteren Art der Darstellung für die anfallenden Emissionen hätte der persönliche Bezug zu diesen, durch die Bewegung der Fahrzeuge auf der in 2 zur Sprache gekommenen Unterlage, seine Wirkung verlieren können. Obwohl also durch die Umsetzung mit Hall-Sensoren eine recht präzise Messung der zurückgelegten Distanz möglich gewesen wäre, fiel an dieser Stelle die Entscheidung, auf jedwede Art von Untergrund für die Fahrzeuge zu verzichten.

5 2. Design-Iteration

5.1 Fahrzeuge

Um die in 4.4 identifizierten Probleme hinsichtlich des Platzbedarfs zu lösen, wurden die Maße des Fahrzeugs angepasst. Da der erste Eindruck der Beschaffenheit des in Abbildung 4 gezeigten Drucks hinsichtlich seiner Stabilität die anfänglichen Erwartungen übertroffen hat, wurden zunächst die zu den Seiten des Fahrzeugs gelegenen Außenwände der Aussparung in ihrer Stärke halbiert. Weiter wurde das gesamte Modell in der Länge erweitert und der Hohlraum im Fahrzeug so weit wie möglich in diese Richtung vergrößert. Hierdurch soll zukünftigen Platz-Engpässen vorgebeugt werden.

An dieser Stelle wurde ein weiterer Druck durchgeführt, um das Zusammenspiel mit Reifen und Befestigung zu prüfen. Hierbei wurden alle Einzelteile für den Druck in einem einzigen Drucker arrangiert.

Abbildung 8: Alle Komponenten eines Fahrzeugs aus einem Druck

Abbildung 9: Fahrzeughälften mit montierten Rädern

Während Abbildung 8 das Ergebnis dieses Drucks zeigt, vermittelt Abbildung 9 einen Eindruck von Form und Dimensionen des fertigen Produkts.

5.2 Hard- und Software

Fahrzeug

Weitere Nachforschungen bezüglich der Fahrzeugschaltung haben ergeben, dass der Output Pin des Hall Sensor mit einem 1k Ω Widerstand an den 3.3V sowie den gewählten IO-Pin angeschlossen werden muss. Das neue Diagramm ist in Abbildung xy dargestellt.

Mit dieser Schaltung funktioniert das Auslesen des Sensors ohne Probleme. Die maximale Distanz, bis zu welcher Magnete erkannt werden können beträgt ca. 1cm. Die Magnete müssen sich hierfür direkt vor dem Sensor befinden. Somit ist es möglich, mehrere Magnete in den Reifen des Fahrzeugs unterzubringen, was eine genauere Messung der zurückgelegten Strecke ermöglicht. Zusätzlich werden die LEDs, welche als Scheinwerfer verwendet werden an je einen eigenen IO-Pin angeschlossen. Somit können diese einzeln angesteuert werden. Diese Eigenschaft wird genutzt um Statusinformationen auszugeben, wie zum Beispiel wenn der Controller sich mit dem Wlan Netzwerk verbindet oder Fehler beim Sendern der Daten auftreten. Somit ist ein leichtes Erkennen von Fehlern möglich, auch wenn das Fahrzeug nicht per USB-Kabel an einen PC angeschlossen ist. Mit der funktionierenden Hardware wird das komplette Programm entworfen. Eine Änderung des Signals vom Hall Sensor wird durch einen Interrupt erkannt. Somit gehen keine Messerwerte verloren, auch wenn der Arduino eine lange Aktion, wie das Senden von Daten, ausführt.

Der Arduino wartet eine Zeit x ab, welcher von der Konfiguration abhängt. Danach überprüft er, ob das Fahrzeug sich bewegt hat und Messwerte vorliegen. Ist dies der Fall werden diese in ein JSON Objekt kodiert und anschließend an die Visualisierung gesendet. Liegen mehrere Messwerte vor, werden diese kombiniert. Neben den Messwerten enthalten die Nachrichten zusätzlich den Fahrzeugtyp. Dieser wird für die Berechnung der erzeugten Emissionen verwendet.

Zum Senden der Daten wird das integrierte WLAN Modul genutzt. Mit diesem und den erfassten Daten wird ein Post-Request durchgeführt.

Ist das Senden erfolgreich, startet der gesamte Prozess von vorne. Verliert der Arduino die Verbindung zum WLAN, versucht er diese wiederherzustellen und zeigt dies durch ein abwechselndes Blinken der LEDs an. In dieser Zeit werden alle vom Sensor erfassten Daten ignoriert. Scheitert der Sendevorgang wird über die LEDs ein schnelles Blinken abgegeben und mit dem Programmablauf wird normal fortgefahren.

5.3 Darstellung

Die im Zuge der vorangegangenen Iteration erdachte Umsetzung einer abstrakteren Darstellungsweise wurde in diesem Arbeitsschritt vorangetrieben.

Anhand eines ersten Papierprototypen, zu sehen in Abbildung 10, wurde begonnen, das bereits bei der Herstellung der Fahrzeugprototypen gewonnene Wissen auf die Schaffung eines druckfähigen Baummodels anzuwenden.

Abbildung 10: Papierprototyp des Baums

Mit den Maßen der Servomotoren als Referenz wurde mit den Modellierungsarbeiten begonnen. Eben diese Maße führten jedoch dazu, dass die geplante Umsetzung des Baums zu verhältnismäßig dicken Ästen führt. Die daraus resultierenden Dimensionen, insbesondere in die Tiefe, zeigt Abbildung 11.

Abbildung 11: Dimensionen des Baummodels

5.4 Ergebnis

Während das in 4 zum Vorschein gekommene Problem des Platzmangels im Fahrzeuginneren gelöst werden konnte, wurde deutlich, dass es nicht möglich ist, wie in 5.1 beschrieben, alle Komponenten in einem Druckvorgang herzustellen. Obwohl die beiden Hälften des Fahrzeugs mit einer Füllmaterialdichte von 30% eine ausreichende Stabilität erreichen, ist dies bei den Achsen und Bolzen zur Befestigung nicht der Fall. Bereits bei der zweiten Montage sind die an den Rädern befindlichen Achsen, wie in Abbildung 12 gezeigt, gebrochen.

Abbildung 12: Achsbruch durch Mangel an Füllmaterial

Darüber hinaus konnte auch das Problem des Stützmaterials in eigentlich dringend benötigten Hohlräumen zur Befestigung noch nicht behoben werden. Auch die in 5.3 beschriebene Lösung zur Darstellung der Verschmutzung ist in dieser Form noch nicht zufriedenstellend.

6 3. Design-Iteration

6.1 Fahrzeuge

Um alle Komponenten so einfach wie möglich montieren zu können, wurden weitere Anpassungen am Modell vorgenommen. Zunächst wurden im Frontbereich Aussparungen für die LED-"Scheinwerfer" geschaffen. Hierzu wurde der Durchmesser der LEDs aufgenommen und in Form von zwei "Tunneln" durch das Modell eingearbeitet. Mit dem Ziel einen sichereren Halt zu realisiern, wurde dieser Tunnel in etwa hinter der Länge der LEDs verengt. Auf diesem Wege soll eine LED an ihrem Platz bleiben können, während die erforderlichen Kabel trotzdem weiter in das Innere des Fahrzeugs geführt werden können. Nach dem selben Prinzip wurde darüber hinaus ein Platz zur Montage des Hall-Sensors im Radkasten geschaffen. Da keine genauen Maße zur Verfügung standen, wurde der Platzbedarf näherungsweise per Hand bestimmt und etwas erweitert, um etwaigen Messfehlern vorzubeugen. Da sich das Problem um die übereifrige Platzierung von Stützmaterial durch Cura in den vorherigen Iterationen nicht ausmerzen ließ, sollte dieser Stand des Modells nun zu Evaluationszwecken gänzlich ohne Stützmaterial gedruckt werden.

6.2 Hard- und Software

Visualisierung

Die erste funktionsfähige Fahrzeugsoftware bildet die Grundlage für die Implementation der Visualisierung. Die Basis hierfür ist das Webframework *Flask*. Mit diesem wird eine REST-Schnittstelle entworfen, welche die gesendeten Fahrzeugdaten empfängt.

In einer Konfigurationsdatei werden die verschiedenen Fahrzeugtypen und die zugehörigen

Fahrzeugeigenschaften gespeichert. Die Eigenschaften umfassen eine eindeutige ID, den Namen des Typs, den Radius der Räder, die Anzahl an Magneten in diesen und die verursachte Verschmutzung pro gefahrenem Zentimeter. Somit muss der Programmcode auch bei zukünftigen Änderungen nicht angepasst werden und verschiedene Fahrzeugtypen können einfach eingefügt und abgebildet werden.

Wenn ein Fahrzeug sich bewegt, sendet es die Anzahl an erfassten Magnetkontakten und die ID des Fahrzeugs an den Raspberry Pi. Dieser berechnet im ersten Schritt, mithilfe der spezifizierten Werten in der Konfigurationsdatei, die verursachte Verschmutzung. Das Ergebnis wird im zweiten Schritt mit einem Zeitstempel versehen und gespeichert. Da die Messwerte nur wenige Sekunden aktuell sind und keine persistente Speicherung benötigen, wird keine Datenbank aufgesetzt. Die Werte werden lediglich im RAM gespeichert.

Das Programm startet zu Beginn einen weiteren Thread. Dieser ist für die Steuerung der Hardwarekomponenten verantwortlich. Hierfür wird alle x Sekunden eine Funktion aufgerufen. Diese iteriert zuerst über alle gespeicherten Verschmutzungseinträge und löscht die veralteten. Hierfür wird die aktuelle Systemzeit und der Zeitstempel des Eintrags verglichen. Die Gültigkeit von diesen kann in der Konfigurationsdatei angepasst werden. Danach werden die verbleibenden gültigen Werte addiert und ergeben die gesamte Verschmutzung. Diese wird an die einzelnen Hardware Komponenten weitergeleitet.

Für die Steuerung der Servo Motoren wird ein PWM Signal verwendet. Mit der zuvor berechneten Verschmutzung wird die Rotation von diesen bestimmt. Dabei entspricht 0° keiner und 180° der maximalen Verschmutzung.

Für die LEDs wird der WS2812B LED-Streifen von der Firma Adafruit verwendet. Dieser wird über die dazugehörige Python Bibliothek angesteuert. Je nach Verschmutzung setzt sich die Farbe aus Grün und Rot zusammen.

Die hierfür verwendet Schaltung ist in Abbildung xy dargestellt. Diese enthält zusätzlich einen Kondensator und eine Schnittstelle für eine externe Stromversorgung. Der Kondensator soll Schwankungen der Spannung ausgleichen. Das Netzteil wird verwendet, da der Raspberry Pi nicht genug Strom für die LEDs bereitstellen kann. Mit der vorgestellten Schaltung kann das externe Netzteil zusätzlich den Raspberry Pi über den 5V Pin mit Strom versorgen. Somit wird nur ein Netzeil für alle Komponenten benötigt.

Fahrzeug

Beim Testen der Visualisierung mit der Fahrzeugschaltung ist ein Problem aufgetreten. Ist das Fahrzeug mit einem USB Kabel an den PC angeschlossen funktioniert die Sensorerkennung. Wird diese nur mit dem Akku betrieben, können keine Sensorwerte erkannt werden.

Beim Ausmessen der verfügbaren Spannung zeigt sich, dass im Betrieb mit dem Akku nur 3.3V an dem 5V Pin verfügbar sind. Wie in Kapitel 4.2 beschrieben, benötigt der Hall-Sensor mindestens 3.7V.

Zum lösen dieses Problems muss die Spannung angehoben werden, was kein triviales Problem ist. Der erste Lösungsansatz ist ein *Logic-Level-Converter*, welcher zwischen dem Sensor und dem Arduino eingebaut werden kann. Dieser kann Signale in bidirektio-

naler Richtung zwischen zwei Spannungen, wie zum Beispiel $5V \longleftrightarrow 3.3V$ wandeln. Das Problem hierbei ist, dass an einem Pin des Moduls eine 5V Spannung angelegt werden muss, welche nicht verfügbar ist.

Der zweite Ansatz ist das verwenden eines Step-UpBoost-Converters, mit welchem das Problem erfolgreich gelöst werden kann. Das in Abbildung xy dargestellte Modul wird in diesem Fall verwendet. Dieses akzeptiert eine Eingangsspannung zwischen 2-24V und hat eine Ausgangsspannung von 5-28V. Die Ausgangsspannung kann mit einem Potentiometer eingestellt werden. Die Schaltung des Fahrzeugs wird mit diesem Modul abgeändert. Die neue Version ist in Abbildung xy dargestellt. Der + und GND Pin des Sensors werden an den Output des Step-UpBoost-Converters angeschlossen, welcher auf 5V eingestellt wird. Die benötigte Eingangsspannung für das Modul wird vom 3.3V Pin des Arduinos geliefert. Somit funktioniert die Schaltung sowohl im Betrieb mit einem USB Kabel als auch mit einem Akku.

6.3 Darstellung

Da wegen der Dimensionen der Servomotoren keine zufriedenstellende Lösung mit in den Ästen integrierten Motoren gefunden werden konnte, wurde ein neues Konzept erarbeitet. Während an der Idee, den Baum in einer mit LEDs umrandeten Kiste zu montieren, festgehalten wurde, sah der neue Ansatz vor, die Äste des Baums über Schnüre oder Ähnliches zu bewegen. Diese sollen idealerweise von oberhalb des Baums, bewegt durch die Servomotoren, eine marionettenartige Funktionalität herstellen. Der schematische Aufbau dieser Lösung ist in Abbildung 13 dargestellt.

Abbildung 13: Überarbeitetes Darstellungskonzept

Aufgrund der Tatsache, dass sich keine geeignete Umsetzung des Baums mittels 3D Druck erzielen ließ, wurde ein Bild einer Baumsilhouette gesucht. Mit diesem war es, ein geeignetes Format vorausgesetzt möglich, einen qualitativ hochwertigen Baum mit

Hilfe des Lasercutters des FabLabs herzustellen. Auf dem gleichen Weg war es weiter ein Leichtes, die benötigte Kiste zu realisieren. In Abbildung 14 ist ein erster Eindruck hiervon zu sehen.

Abbildung 14: Ausgeschnittener Baum in Kiste

6.4 Ergebnis

Obgleich die gewünschten Freiräume im Fahrzeuginneren erhalten werden konnten, indem ohne Stützmaterial gedruckt wurde, ergaben sich hierdurch neue Probleme. Da nun gar keine Stützen mehr gesetzt wurden, konnten einige Außenflächen wie beispielsweise an der Motorhaube nicht zufriedenstellend gedruckt werden. Auch die Unterseite des Fahrzeugs ist betroffen, wenn auch weniger stark. Beide Stellen sind in Abbildung 15 zu sehen. Des Weiteren wurde deutlich, dass sich durch Zusammenspiel aus modellierten Maßen und den vom Drucker erreichbaren Präzisionsintervallen Aussparungen ergaben, die kleiner als geplant produziert wurden. Hiervon betroffen waren die Scheinwerfer und der Hall-Sensor.

Abbildung 15: Probleme beim Druck ohne Stützmaterial

Während der neue Ansatz zur Visualisierung konzeptionell durchaus vielversprechend schien, so konnte mit den in Abbildung 14 gezeigten Bauteilen nicht fortgefahren werden. Sowohl die Box als auch der Baum selbst wurden aus Holzplatten von 3mm Stärke ausgeschnitten. Insbesondere der Baum war auf Grund der Kombination aus filigranen Blättern und Ästen mit dem zu schwach gewählten Material nicht weiter zu verwenden. Bereits durch den Transport aus den Räumlichkeiten des FabLab verlor er eine Vielzahl an Blättern. Weiter hätten die Äste geteilt werden müssen, um das in 6.3 vorgestellte Konzept umzusetzen.

Die Box selbst wurde als zu instabil beurteilt, als dass sie die Montage der Motoren und des Raspberry Pi hätte verkraften können.

7 4. Design-Iteration

7.1 Fahrzeuge

Da die vorangegangene Iteration 6 gezeigt hat, dass auch ohne Stützmaterial kein zufriedenstellendes Ergebnis erzielt werden kann, wurde der Versuch unternommen, ein alternative Befestigungslösung zu erarbeiten. Die dem Druck mit Stützmaterial zugrunde liegende Problematik äußert sich in den horizontal durch das Fahrzeug geführten Hohlräumen für die Bolzen. Deshalb wurde der Versuch unternommen, diese nun vertikal anzubringen. Darüber hinaus sollte zusätzliche Stabilität in Längsrichtung gewonnen werden, indem eine Vorrichtung zum "Einhängen" geschaffen wird. Beides ist in den Abbildungen 16 und 17 zu sehen.

Abbildung 16: Neues Befestigungskonzept (obere Hälfte)

Abbildung 17: Neues Befestigungskonzept (untere Hälfte)

Außerdem wurden die Aussparungen für Scheinwerfer und Hall-Sensor erweitert, um umständlichen Berechnungen und Probedrucken entgegen zu wirken.

7.2 Hardware

Visualisierung

Der Programmcode und die benötigte Hardware für die Visualisierung funktionieren bereits, trotzdem müssen noch kleine Optimierungen vorgenommen werden. Zuerst wird die Funktionsweise des LED-Streifens überarbeitet. Zuvor haben alle LEDs dieselbe Farbe angezeigt, welche sich aus Rot und Grün zusammensetzt. Die Farbe Grün ist viel dominanter, sodass die LEDs auch bei mittlerer Verschmutzung noch die Farbe grün anzeigen. Erst bei starker Verschmutzung färben sie sich orange und danach rot. Mit der neuen

Implementierung zeigen die LEDs unterschiedliche Werte an. Je nach Verschmutzungsgrad färbt sich ein Teil der LEDs rot (Abbildung xy). Ist die maximale Verschmutzung erreicht, sind alle LEDs rot. Hierdurch wird die gesamte Verschmutzung eindeutig dargestellt

Im nächsten Schritt wird noch eine Platine für den Raspberry Pi erstellt. Diese kann wie ein Shield auf die Pins gesteckt werden und die Servo Motoren sowie der LED-Streifen können direkt angeschlossen werden. Dies reduziert die Anzahl an benötigten Kabeln und erhöht die Übersichtlichkeit.

Zuletzt wird die Konfiguration des Raspberry Pi überarbeitet. Der Flask-Webserver soll automatisch mit jedem hochfahren des Systems gestartet werden. Somit muss, wie auch bei den Fahrzeugen, nur die Stromversorgung hergestellt werden, um den Prototypen zu benutzen.

Fahrzeug

Für die voll funktionsfähige und getestete Schaltung muss eine Prototyp Platine erstellt werden. Die Basisplatine hat dieselbe Größe wie der Arduino. Somit kann die fertige Platine wie ein Shield auf den Arduino gesteckt werden und verbraucht wenig Platz. Allerdings muss das Layout wegen der begrenzten Größe vorher geplant werden. Eine Skizze hierfür ist in Abbildung xy dargestellt. Die fertige Platine kann auf den Arduino gesteckt werden, welcher zusammen mit dem Akku, dem Step-UpBoost-Converter, dem Sensor und den LEDs in das Auto eingebaut wird. Zusätzlich ermöglicht ein Schalter das einfache an- beziehungsweise ausschalten der Batterie.

Alle Verbindungen zwischen den Komponenten sind mit JST-Steckern realisiert. Dies ermöglicht es, jede Komponente einzeln austauschen, sollte ein Teil defekt sein oder für ein anderes Projekt wiederverwendet werden. Zudem wird so das Zusammensetzen der Fahrzeuge erleichtert, da einige Komponenten wie die LEDs fest in diesen verklebt sind. Zuletzt wird noch die Konfiguration der Fahrzeuge optimiert. Zuvor haben diese jede Sekunde 1 mal die erfassten Sensordaten gesendet. Da die durchschnittliche Ausführungszeit der loop-Funktion bei ca. 100ms liegt, wird dieser Wert auf 250ms Sekunden reduziert. Die Fahrzeuge senden häufiger Daten und die Animation bei der Visualisierung werden infolgedessen weicher.

7.3 Darstellung

Aufbauend auf den in 6 gewonnenen Erkenntnissen wurden ein neuer Baum und eine neue Box aus 6mm dickem Holz ausgeschnitten. Obgleich auch hier wieder einige Blätter verloren gingen, war das Resultat weitaus stabiler und wurde für die folgenden Montageschritte als geeignet befunden.

Das in 13 gezeigte Konzept sah noch eine Montage der Servomotoren hinter dem Baum, am Boden der Kiste vor. Um die Bewegung einfacher umsetzen zu können und die Montage des Raspberry Pis im Inneren zu erleichtern, wurde aus Holzresten des FabLab eine Art Zwischenboden über dem Baum geschaffen. Die Aufhängung der Äste soll auf diesem Weg ohne weitere Umwege am Rand der Box realisiert werden können.

7.4 Ergebnis

Mit den in 7.1 vorgenommenen Änderungen am Modell konnte zwar genügend Platz für die Montage der kleineren Komponenten geschaffen werden, jedoch musste nun mit einer Klebepistole nachgeholfen werden, um einen sicheren Halt der Bauteile zu gewährleisten. Auch wenn die vertikale Anordnung der Befestigung die Problematik um das Stützmaterial lösen konnte, wurde der Mangel an Füllung, der in Abbildung 16 gezeigten Vorrichtung, bei der Montage zum Verhängnis. Da eine Erhöhung der Fülldichte bei den ohnehin schon größeren Fahrzeughälften die Druckzeit unverhältnismäßig verlängert hätte und die vorgesehenen Schächte für die Bolzen einwandfrei waren, wurde eine rustikalere Form der Befestigung gewählt. In den Räumen der Analog-Werkstatt des FabLab fanden sich geeignete Werkzeuge. Nach kurzer Recherche nach den genauen Maßen wurden die bereits vorhandenen Löcher in der unteren Hälfte und die eigentlich für Bolzen vorgesehenen Schächte mittels eines Bohrers erweitert. In die untere Hälfte wurden nun für M3 Schrauben passende Muttern eingearbeitet. Unter Zuhilfenahme eines Hammers und der Heißklebepistole konnten diese fest mit dem Druck vereint werden. Mittels den Maßen des Fahrzeugs entsprechend gekürzten Schrauben war es nun möglich, die Hälften sicher zu vereinigen.

Abbildung 18 zeigt das Ergebnis all dieser Arbeitsschritte. Auch die transparenten Plastik-Muttern sind hier zu erkennen.

Abbildung 18: Befestigung mit konventionellen Mitteln

Da das erste Fahrzeug die gestellten Anforderungen erfüllt, wurde ein weiteres in Form eines Busses hergestellt. Hierzu war es ausreichend, die äußere Form des Modells zu bearbeiten und einige Details hinzuzufügen, die den Wiedererkennungswert steigern. Hinsichtlich der Befestigung wurde jedoch gleich auf die oben ausgeführte Methode mit Schrauben und Muttern gesetzt.

Auch die stabileren Ausführungen von Baum und Box konnten nun montiert werden. Zunächst wurden die Äste des Baums an ihren jeweils dicksten Stellen mit einer feinen Holzsäge getrennt. An beiden so entstandenen Verbindungsstellen wurden mit einem Bohrer Löcher geschaffen, die in ihrem Durchmesser leicht über die Maße einer M3-Schraube hinaus gehen. Solche Schrauben wurden nun durch die Löcher geführt und die Äste mit Muttern in Position gebracht. Auf diese Weise konnten die Äste beweglich gemacht werden.

Der Baum selbst wurde mit Hilfe eines einfachen Winkels an seiner endgültigen Position fixiert.

Auf die gleiche Weise wurde der in 7.3 erdachte Zwischenboden montiert. Im Anschluss konnten die Servomotoren hier angebracht werden. Um diese etwas kostspieligeren Komponenten wiederverwendbar zu halten, kam erneut die Klebepistole zum Einsatz.

Die Verbindung zwischen den Servomotoren und den Ästen, die sie bewegen sollen,

übernahm konventioneller Faden, auch wenn die Befestigung über Knoten unerwartet zeitintensiv war. Der Grund hierfür war, dass es sich schwierig gestaltete, ein Gleichgewicht zwischen erforderlichem Halt und optisch ansprechender Anfangs- sowie Endposition zu finden.

Weiter fand die Steuerung der Visualisierung ihren Platz auf Abstandhaltern auf dem Zwischenboden, welche ebenfalls mit Schmelzkleber fixiert wurden. In die Außenwand der Kiste wurde auf dieser Höhe ein Loch gebohrt, um die Stromversorgung ins Innere führen zu können. Abschließend wurde der LED-Streifen um den Baum herum montiert, wobei statt der oberen Hülle der Box nun die Unterseite des Zwischenbodens gewählt wurde. Auch hier konnte sicher gestellt werden, dass das Bauteil erneut verwendbar ist, indem die Befestigung mit doppelseitigem Klebeband realisiert wurde.

Um den Fokus des Betrachters nicht vom Baum abzulenken, wurde weiter eine Blende installiert, welche die Vorgänge auf dem Zwischenboden verbirgt.

8 Fazit

Der im Zuge der vier genannten Iterationen entwickelte und geschaffene Prototyp wird nachfolgend mit Bezug auf die Projektidee bewertet. Mit den beiden Fahrzeugen ist eine anfassbare Schnittstelle zum System realisiert worden. Die Fahrzeuge sind mittels 3D-Druck hergestellt und mit je einem Arduino ausgestattet. Hierdurch ist die drahtlose Kommunikation mit dem dahinterstehenden System möglich. Die Kombination aus der verwendeten Hardware und dem Herstellungsprozess der Fahrzeuge ermöglicht es, den gewünschten Formfaktor zu erreichen. Trotz der verbauten Hardware sind die Fahrzeuge leicht und können auch von Kindern in eine Hand genommen und bedient werden. Zur Inbetriebnahme muss lediglich die Stromversorgung der Fahrzeuge mittels eines Schalters hergestellt werden. Die Arduinos sind so programmiert und konfiguriert, dass sie automatisch die Kommunikation mit dem dahinterliegenden System aufnehmen.

Dieses System übernimmt Empfang und Verarbeitung der übermittelten Daten sowie die Koordination der Darstellung. Obwohl die ursprüngliche Idee der Verwendung eines Displays verworfen werden musste, wird eine gleichwertige Darstellung auf Basis eines beweglichen Baums erzielt. Auch wenn es so nicht mehr möglich ist, genaue Messwerte anzuzeigen, wird der Umwelteinfluss verschiedener Fahrzeugtypen deutlich. Dieser Eindruck wurde durch den Kontakt mit projektfremden Personen, unter anderem im FabLab, bestätigt. Wie zuvor bei den Fahrzeugen auch, muss für den Betrieb lediglich der Raspberry Pi mit Strom versorgt werden.

Abschließend lässt sich festhalten, dass die zu Beginn formulierte Idee trotz angefallener Änderungen erfolgreich umgesetzt werden konnte. Die Komponenten des Gesamtsystems interagieren reibungslos miteinander und können den gewünschten Lerneffekt bieten, beziehungsweise damit zu einer Verhaltensänderung anregen.

8.1 Ausblick

Da im Rahmen der Veranstaltung auf Grund der begrenzten Zeit und Ressourcen nur die Entwicklung eines einfachen Prototypen möglich ist, werden im Folgenden etwaige Erweiterungen und Optimierungen vorgestellt.

• Anpassung des SUV-Modells:

Das erste SUV-Fahrzeugmodell diente nur zum Herstellen der Funktionalität. Deshalb wurde auf eine detailreiche Modellierung verzichtet. Vor einem weiteren Druck des Modells sollte es überarbeitet werden.

• Weitere Fahrzeugtypen:

Da die für die Funktion erforderliche Elektronik einen fest definierten Platzbedarf hat, können weitere Fahrzeuge einfach erstellt werden. Hierzu muss lediglich die äußere Form angepasst und auf dem Arduino der Fahrzeugtyp hinterlegt werden.

• Baum:

Für den Baum wurde eine Vorlage aus dem Internet verwendet. Für einen lang-

fristigen Einsatz sollte eine auf den Anwendungskontext zugeschnittene Version erstellt werden.

• Kiste für den Baum:

Für eine einfachere Montage und ein stimmigeres Gesamtbild kann die Kiste mit Aussparungen und Einbauhilfen für die Komponenten ausgestattet werden. Somit sind keine manuellen Anpassungen mehr nötig.

• Display:

Mit weiteren finanziellen Mitteln kann die Darstellung, entsprechend dem ursprünglichen Konzept, um ein Display erweitert werden.

• Unterlage:

Mit dem Hall-Sensor kann die gefahrene Strecke sehr genau ermittelt werden. Stünden eine maßstabsgetreue Karte als Unterlage und das oben genannte Display zur Verfügung, könnten gefahrene Strecken und deren Emissionen genau berechnet und abgebildet werden.

• Platine:

Da die manuelle Fertigung der Platinen sehr aufwändig ist, sollten diese bei größeren Produktionsmengen professionell hergestellt werden.