Определение 1. Перестановка чисел $1, \ldots, n$ – это взаимно однозначное отображение множества $\{1, \ldots, n\}$ на себя. Множество перестановок чисел $1, \ldots, n$ обозначается S_n и называется симметрической группой.

Задача 1. Сколько элементов в симметрической группе S_n ?

Перестановки записывают таблицами вида $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$; такая таблица означает перестановку $1\mapsto 2$ (то

есть 1 переходит в 2), $2\mapsto 4,\ 3\mapsto 1,\ 4\mapsto 3$. Вообще, если $\sigma\in S_n$, то $\sigma=\begin{pmatrix} 1 & 2 & \dots & n\\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$. Для наглядности, ту же перестановку можно изобразить картинкой вида

Определение 2. Произведение перестановок $\sigma, \tau \in {}^2S_n$ определяется так: $\sigma\tau(i) = \sigma(\tau(i))$ (для произвольных отображений σ и τ такое произведение обычно называется композицией отображений). Например, если

Отметим, что сначала применяется второй сомножитель, а потом первый.

Задача 2. а) Всегда ли
$$\sigma \tau = \tau \sigma$$
? б) Пусть $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}, \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$. Найти $\sigma \tau$ и $\tau \sigma$.

Задача 3. а) Найдите перестановку e, удовлетворяющую условию $e\sigma = \sigma e = \sigma$ для любой перестановки $\sigma \in S_n$. Докажите, что такая перестановка единственна (её называют единичной или тождественной.) б) Докажите, что для любой перестановки σ существует единственная перестановка σ^{-1} такая, что $\sigma\sigma^{-1} = e = \sigma^{-1}\sigma$. (Эта перестановка называется обратной к σ . Почему?) в) Докажите, что для любых $\sigma, \tau, \eta \in S_n$ имеет место равенство $\sigma(\tau\eta) = (\sigma\tau)\eta$. г) Докажите, что если $\sigma\tau = \sigma\eta$, то непременно $\tau = \eta$.

Задача 4. Докажите, что для любой перестановки $\sigma \in S_n$ существует такое натуральное число k, что $\sigma^k = e$. Минимальное k с этим свойством называется $nopя\partial ком$ перестановки σ и обозначается ord σ .

Задача 5. Найдите порядки перестановок:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}$.

Определение 3. *Циклом* (a_1, a_2, \ldots, a_k) называется перестановка, циклически переставляющая элементы a_1, a_2, \ldots, a_k (то есть $a_1 \mapsto a_2, a_2 \mapsto a_3, \ldots, a_k \mapsto a_1$; имеется в виду, что все элементы a_1, a_2, \ldots, a_k различны; все остальные элементы множества $\{1, \ldots, n\}$ переходят в себя). Число k называется ∂ линой цикла.

Задача 6. Какие из перестановок в задаче 5 являются циклами?

Задача 7. Каков порядок цикла длины k? Сколько всего циклов длины k в S_n ?

Задача 8. а) Докажите, что если σ и τ — циклы, множества элементов которых не пересекаются (такие циклы называются *независимыми*), то $\sigma\tau = \tau\sigma$ (циклы *коммутируют*). **б)** Верно ли, что циклы коммутируют тогда и только тогда, когда они независимы?

Задача 9. Представьте перестановки из задачи 5 в виде произведения независимых циклов.

Задача 10. Докажите, что любую перестановку можно представить в виде произведения независимых циклов. Сколькими способами (с точностью до перестановки множителей)?

Задача 11. а) Пусть порядок перестановки равен двум. Разложим её в произведение независимых циклов. Какими могут быть длины этих циклов? **б)** Пусть σ — это k-я степень цикла (1, 2, ..., n). На сколько независимых циклов раскладывается σ ? Каковы длины этих циклов?

Задача 12. Найдите максимальный порядок перестановки **a)** из S_5 ; **б)** из S_{13} ; **в)*** из S_n .

Задача 13. Докажите, что число ord σ делит n! для любой перестановки $\sigma \in S_n$.

Задача 14. Текст зашифрован программой, заменяющей взаимно однозначно каждую букву на некоторую другую. a) Докажите, что существует такое число k, что текст расшифровывается применением k раз шифрующей программы. **б)** Найдите хотя бы одно такое k.

1	2 a	2 6	3 a	3 6	3 B	3 Г	4	5	6	7	8 a	8 6	9	10	11 a	11 б	12 a	12 б	12 B	13	14 a	14 б

Определение 4. Транспозиция — это цикл длины два. Транспозицию вида (i, i+1) называют элементарной.

Задача 15. а) Докажите, что любая перестановка представляется как произведение транспозиций.

- б) Проделайте это для перестановок из задачи 5.
- в) Любая ли перестановка представляется как произведение элементарных транспозиций?
- г) Представьте в виде произведения элементарных транспозиций перестановки из задачи 5.

 ${f 3}$ адача ${f 16}$. Несколько жителей города N хотят обменяться квартирами. У каждого есть по квартире, но каждый хочет переехать в другую (разные люди хотят переехать в разные квартиры). По законам города разрешены только парные обмены: если два человека обмениваются квартирами, то в тот же день они не участвуют в других обменах. Докажите, что можно устроить парные обмены так, что уже через два дня каждый будет жить в той квартире, куда хотел переехать.

Задача 17. а) Любую ли перестановку из S_n можно представить как произведение транспозиций вида (1,k)? 6)* Пусть T — некоторое множество транспозиций из S_n . Отметим на плоскости n точек A_1, \ldots, A_n и соединим некоторые из них рёбрами по правилу: точки A_i и A_j соединяются ребром, если во множестве T есть транспозиция (i,j). Докажите, что получившийся граф будет связным если и только если любая перестановка из S_n разлагается в произведение транспозиций, принадлежащих множеству T.

Определение 5. Беспорядок или инверсия в перестановке σ — это такая пара (i,j), что i < j и $\sigma(i) > \sigma(j)$. Перестановка называется чётной, если число инверсий в ней чётно, и нечётной в противном случае. Множество всех чётных перестановок из S_n обозначается A_n и называется знакопеременной группой.

Задача 18. Как увидеть (геометрически) инверсии на картинках из определения 2?

Задача 19. а) Какие перестановки в задаче 5 чётные? б) Сколько инверсий у $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{pmatrix}$?

Задача 20. Можно ли сказать, сколько инверсий у перестановки σ^{-1} , зная лишь число инверсий у σ ?

Задача 21. Докажите, что любая транспозиция — нечётная перестановка.

Задача 22. Докажите, что при умножении на транспозицию чётность перестановки меняется.

Задача 23. Докажите, что чётность цикла зависит только от его длины. Как?

Задача 24. Докажите, что произведение двух перестановок одной чётности — чётная перестановка, а произведение двух перестановок разной чётности — нечётная перестановка.

Задача 25. Сколько элементов в A_n ?

Задача 26*. а) Почему задача Ллойда об игре в 15 неразрешима? **б)** Двудольный граф правильно раскрашен в 2 цвета. В каждой его вершине записано по числу (числа разные). За ход можно менять местами любые 2 числа, соединённые ребром. Может ли после нескольких ходов оказаться, что 2 числа одного цвета поменялись местами, а остальные числа на своих местах?

Задача 27*. У отца было 7 дочерей. Всякий раз, когда одна выходила замуж, каждая её старшая сестра, оставшаяся в невестах, жаловалась отцу, что нарушен обычай выходить замуж по старшинству. После того, как вышла замуж последняя дочь, оказалось, что отец услышал всего 7 жалоб. В каком порядке дочери могли выходить замуж (приведите пример)? Сколько всего таких порядков?

Задача 28*. Для каких k в S_n существует перестановка, у которой ровно k инверсий?

Задача 29. В каждой клетке таблицы $2 \times n$ стоит одно из целых чисел от 1 до n, причём в каждой строке стоят разные числа, и в каждом столбце стоят разные числа. Сколько таких таблиц?

Задача 30*. P(x) и Q(x) — многочлены с целыми коэффициентами. Пусть при любом целом x число P(Q(x))-x делится на 100. Докажите, что тогда при любом целом x число Q(P(x))-x делится на 100.

Задача 31*. В таблице n строк и m столбцов. Γ оризонтальный xod— это любая перестановка элементов таблицы, при которой каждый элемент остается в той же строке, что и до перестановки. Аналогично определяется ϵ ертикальный xod. За какое наименьшее число горизонтальных и вертикальных ходов всегда удастся получить любую перестановку элементов таблицы?

Задача 32*. а) Постройте соответствие между перестановками трёх элементов и движениями плоскости, переводящими равносторонний треугольник в себя такое, что композиции перестановок будет соответствовать композиция соответствующих движений.

б) Аналогично постройте соответствие между чётными перестановками четырёх элементов и вращениями пространства, переводящих правильный тетраэдр в себя.

в) Аналогично постройте соответствие между перестановками четырёх элементов и вращениями пространства, переводящих куб в себя.

15 a	15 б	15 B	15 г	16	17 a	17 б	18	19 a	19 б	20	21	22	23	24	25	26 a	26 6	27	28	29	30	31	32 a	32 6	32 B