PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-107812

(43)Date of publication of application: 12.05.1988

(51)Int.CI.

C01F 17/00

(21)Application number: 61-255307

(71)Applicant: TDK CORP

(22)Date of filing:

27.10.1986

(72)Inventor: SAWAMURA KENTARO

UCHIKOBA FUMIO

(54) METHOD FOR PURIFYING YTTRIUM OXIDE POWDER

(57)Abstract:

PURPOSE: To obtain powdery Y2O3 with high purity and useful as an auxiliary sintering agent used for obtaining a sintered body of AIN of minor lattice defect and having an excellent heat conductivity, etc., by heat-treating a powdery Y2O3 in a gas stream contg. halogen in the presence of carbon.

CONSTITUTION: (A) The powdery Y2O3 with 0.1W10µ particle size is heat-treated at 1,300W1,600° C for 0.5W5hr in (C) the gas stream with a flow rate of 10W100cc/min (to 1kg A component) consisting of a gaseous halogen such as Cl2, Br2, HCl, HF or fluoroethane contg. (B) 5W50vol% of a carbon source in a gaseous form such as halogenated hydrocarbon or hydrocarbonic compd. and/or in the gas stream consisting of C component added with (B') 0.01W1wt% carbon source of A component amt. such as graphite, powdery carbon or pitch, tar and phenolic resin which are heat-decomposed to carbon.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 日本国特許庁(JP)

① 特許出願公開

母 公 開 特 許 公 報 (A) 昭63 - 107812

@Int.Cl.1

識別記号

庁内整理番号

母公開 昭和63年(1988)5月12日

C 01 F 17/00

7918-4G

審査請求 未請求 発明の数 1 (全4頁)

劉発明の名称 酸化イットリウム粉末の精製方法

②特 顋 昭61-255307

29出 顋 昭61(1986)10月27日

砲発 明 者 沢 村 建 太 郎

東京都中央区日本橋1丁目13番1号 ティーディーケィ株 式会社内

⁶ 郊発 明 者 内 木 場 文 男

東京都中央区日本橋1丁目13番1号 ティーディーケィ株

式会社内

の出 顋 人 ティーディーケィ株式

東京都中央区日本橋1丁目13番1号

会社

20代 理 人 弁理士 石井 陽一

明 細 春

1. 発明の名称

酸化イットリウム粉末の新製方法

2. 特許請求の範囲

(1)酸化イットリウム粉末を、炭素の存在下でハロゲンを含む気流中にて無処理することを 特徴とする酸化イットリウム粉末の精製方法。

(2) 熱処理温度が1300~1600℃である特許請求の範囲第1項に記載の酸化イットリウム粉末の特製方法。

3. 発明の詳細な説明

I 発明の背景

技術分野

本発明は、酸化イットリウムの精製方法に関する。

先行技術とその問題点

数化イットリウム(Y₂O₂)は種々の化合物の製造においてきわめて有用な物質であり、特に無機化合物の焼結体の製造等において、重要な役割をはたしている。

例えば電子部品の基板に用いられる窒化アルミニウム焼箱体は、ALN粉末にY。O。を焼結助剤として添加し焼結することにより、緻密な焼結体として得られるものである。

しかし、このようなALN焼結体は、原料であるALN粉末や焼結助剤中に不純物が存在すると、結晶中に格子欠陥が生じ、熱伝導性が著しく低下するものである。

このため、高純度のY。O。粉末を得るための特製方法の開発が狙まれている。

1 発明の目的

本発明の目的は、高純度な酸化イットリウム 粉末を得るための特製方法を提供することにある。

特開昭63-107812(2)

□ 発明の開示

このような目的は、下記の本発明によって達成される。

すなわち、本発明は酸化イットリウム粉末を、炭素の存在下でハロゲンを含む気流中にて 然処理することを特徴とする酸化イットリウム 粉末の精製方法である。

Ⅳ 発明の具体的構成

以下、本発明の具体的構成について詳細に説明する。

本発明の酸化イットリウム(Y2O3)粉末の新製方法は、Y2O3粉末を炭素の存在下でハロゲンを含む気流(ハロゲン気流)中にて熱処理するものである。

この場合、用いるハロゲン気流は、ハロゲンを原子または化合物として含むものであり、常温では固体であっても液体であってもよいが、後述の処理温度で気体であり、金属、特に

また、必要に応じ、炭素源として、ハロゲン 気流中にさらに炭化水素系化合物を添加しても よい、

Y : O : 粉末は粒子径 O . 1 ~ 1 0 m 程度、特に O . 5 ~ 5 m 程度が好ましい。

本発明では、炭素をハロゲン気流中および/ またはY。O。粉末中に存在させて熱処理を行なうものである。

ハロゲン気流中に添加する炭素としては、上記のハロゲン化炭化水素、炭化水素系化合物等があり、またYェ O。粉末中に添加する炭素としては、黒鉛、カーボン粉、または熱分解してカーボンとなるピッチ、タール、フェノール樹脂等が好ましい。

このような炭素化合物等のハロゲン気流中での含有低は、ガスとして 5 ~ 5 0 vol % 程度が好ましい。 また、 Y 』 O 。 粉末中での炭素の含有低は O . 0 1 ~ 1 wt% 程度が好ましい。

炭素添加量が上記の範囲をこえると来反応 カーボンが残在するという不都合を生じ、また Ca、Mg、Sì、Fe、Cr、Ni符と反応 可能なものであることが好ましい。

従って、ハロゲン気放を構成するハロゲン系ガスとしては、塩素、臭素等のハロゲンガス、塩化水素、フッ化水素、臭化水素等のハロゲン化次化水素、パーフルオロエタン等のハロゲン化炭化水素などが挙げられる。

なおこれらのものを、不活性活性ガス等で希 駅することによって取り扱いが容易となる。

これらハロゲン系ガスは、一般に大気圧にて気流として粉末と接触させられる。 そして、その流位は、通常Y * O * 粉末 1 K g あたり、ハロゲン系ガス合有量で 1 O ~ 1 O O cc/min 程度とする。

流量が多すぎると、原料の昇落がおこり、また少なすぎると本発明の効果は実現しない。

なお、上記のハロゲン化炭化水素等を用いる場合には、ハロゲン気流中に炭素が含まれるので、後述の炭素は粉末に添加しなくてもよいことがある。

上記の範囲未満のときは、本発明の効果が実現 しない。

熱処理温度は 1 3 0 0 ~ 1 6 0 0 ℃程度、特に 1 4 5 0 ~ 1 6 0 0 ℃程度が好ましい。

熱処理温度が1600℃をこえると焼結がおこり好ましくない。 また、1300℃未満では、不純物を充分除去することができない。

熱処理時間は 0 . 5~.5 時間程度が好ましい。

このようなY 2 O 3 粉末を、炭素の存在下でハロゲン気流中にて熱処理することにより、Y 2 O 3 粉末に含まれる不純物としての金属酸化物は炭素によって違元されて金属となり、この金属は次にハロゲン気流中でハロゲン化物とる。 このようにして、生成したハロゲン化物は本発明の熱処理の条件下で昇華し、系外に揮散するため、きわめて高純度のY 2 O 3 粉末を得ることができる。

特開昭63-107812(3)

V 発明の具体的作用効果

本発明は、酸化イットリウム(Ya〇s)粉末を炭素の存在下でハロゲン気流中にて熱処理するものであり、YaOs粉末中の不純物は、 炭素により湿元された後ハロゲン気流中でハロゲン化物として昇華して系外に除去される。

このため、得られたY。〇。粉末は、きわめて高純度なものとなる。

VI 発明の具体的実施例

以下、本発明の具体的実施例を示し、本発明の効果をさらに詳細に説明する。

突筋例 1

表1に示される不純物を含有する酸化イット リクム (YaOs) の所定盤を、表1に示されるハロゲン気流中で熱処理を行なった。

なお、炭素源としては、表1に示される質の 黒鉛をY。O。に添加するか、あるいはハロゲン化炭化水素をハロゲン気流とした。 また、ハロゲン気流の流量は、10m²/minとし

Æ.

然処理後のY2Os 初末中の不純物質を測定し、結果を表1に示す。

なお、不純物量の測定はICPにて行なった。

表 1 (その1)

サンブル No	ハロゲン 気 流	川 約 含有量	然知理 温 III	不能物合有纽 (ppn)					ă
	A V-	(wt%)	(2)	Si	Ca	Cr	Cu	Fe	N
0		_	_	90	10	10	10	10	41
(無処理)									
[-]	パーフルオルエタン	_	1300	80	8	_	_	-	-
1-2	パーフルオルエタン	-	1350	90	В	-	-	_	-
1-3	パーフルオルエタン	-	1400	50	8	_	_	_	-
1-4	パーフルオルエタン	-	1450	10	8	-	_	_	-
1-5	パーフルオルエタン	_	1500	-	7	_	_	_	-
1 - 8	パーフルオルエタン	_	1550	_	8	_	_	_	-
1-7	パーフルオルエタン	_	1600	_	6	-	-	_	-
2-1	塩化水素	0.1	1300	90	9	-	_	_	•
2-2	塩化水浆	0.1	1350	90	9	-	_	_	-
2-3	坦化水 器	0.1	1400	90	9	_	_	_	•
2-4	型化水素	0.1	1450	40	9	-	-	_	
2-5	塩化水 器	0.1	1500	30	9	-	_	-	
2-6	塩化水素	0.1	1550	16	8	_	-	-	
2-7	以化水泥	0.1	1600	12	8	_	_	_	
3-1	些 森	0.1	1300	90	10	-	_	_	
3-2	塩 ※	0.1	1350	80	10	_	_	_	
3-3	塩素	0.1	1400	90	10	_	_	-	
3-4	塩 素	0.1	1450	80	10	_	_	_	
3-5	塩 楽	0.1	1500	70	10	_	-	-	
3-6	塩 楽	0.1	1550	50	4	-	_	_	
3-7	重楽	0.1	1600	50	3	_	٠ ــ	-	

表 1(その2)

サンブル No	ハロゲン 気 旋	川 鉛 含有量	然処理 塩 度	不純物合有值(ppm)					
		(#t%)	ີ (ອີ	Si	Ca	Cr	Cu	Fe	Ni
4-1	フッ化水来	0.1	1300	90	10	_	_	_	_
4-2	ファ化水梁	0.1	1350	90	10	_	-	_	_
4-3	フッ化水素	0.1	1400	80	10	_	_	_	_
4-4	ファ化水楽	0.1	1450	80	10	_	_	-	_
4-5	ファ化水楽	0.1	1500	75	7	_	_	-	_
4-6	ファ化水素	0.1	1550	75	7	_	_	_	_
4-7	フッ化水素	0.1	1600	75	6	_	_	-	_
5-1	鬼化水素	1.0	1300	90	10	_	_	_	_
5-2	臭化水素	0.1	1350	90	9	_	_	_	_
5-3	與化水深	0.1	1400	90	9	_	_	_	_
5-4	奥化水森	0.1	1450	85	9	_	_	_	_
5-5	與化水源	0.1	1500	85	8	_	_	_	_
5-8	以化水梁	0.1	1550	80	8	_	_	_	_
5-7	奥化水梁	0.1	1800	80	8	_	_ `	_	-

注)不純物含有量の「一」は微量で測定不能なことを示す。

表 1 に示される結果より本発明の効果は明ら かである。

> 出順人 ティーディーケィ株式会社 代理人 弁理士 石 井 陽 一 印度