

A MATLAB LIBRARY OF TEMPORAL DISAGGREGATION METHODS: SUMMARY

Enrique M. Quilis¹

Instituto Nacional de Estadística Paseo de la Castellana, 183 28046 - Madrid (SPAIN)

First version: December, 2002 Second version: November, 2003 This version: August, 2004

_

¹ The author thanks Ana Abad, Juan Bógalo and Silvia Relloso for their help.

1. INTRODUCTION

This release of the Matlab temporal disaggregation library includes some new features:

- stock first as a temporal disaggregation case (interpolation)
- new graphs for univariate Denton
- univariate Denton, proportional variant
- univariate temporal disaggregation by means of an ARIMA model-based procedure due to Guerrero (1990)
- multivariate temporal disaggregation by means of an two-step method due to Rossi (1982). The first step requires a preliminary univariate disaggregation that may be performed by Fernández, Chow-Lin or Litterman.

The library includes a set of function to perform temporal disaggregation (distribution, averaging and interpolation), according to the following structure:

Adjustment or quadratic programming methods:

- bfl (Boot-Feibes-Lisman)
- denton_uni, denton_uni_prop
- sw (Stram-Wei method)

served by: tduni_print (ASCII output), tduni_plot (graphic output)

Model-based (or BLUE) methods:

- chowlin
- fernandez
- litterman
- ssc (Santos Silva-Cardoso method: a dynamic version of Chow-Lin)

served by: td_print (ASCII output), td_plot (graphic output)

• guerrero

served by: td_print_G (ASCII output), td_plot (graphic output)

Multivariate methods that include a transversal restriction:

- rossi
- denton
- difonzo

served by: mtd_print (ASCII output), mtd_plot (graphic output)

Extrapolation is feasible using chowlin, fernandez, litterman, ssc and difonzo. Constrained extrapolation can be performed also by means of difonzo.

The presentation of the functions is self-contained: help text, script to run the function and output (ASCII file and plots).

This library is rather specific. Combining it with the *Econometrics Toolbox* of Professor James LeSage is a sensible decision. In fact, some procedures require to have access to it, although this dependence may be circumvented by appropriate code modification. For more information, consult his Internet site:

http://jpl.econ.utoledo.edu/faculty/lesage

2. BOOT-FEIBES-LISMAN

```
PURPOSE: Temporal disaggregation using the Boot-Feibes-Lisman method
     _____
SYNTAX: res=bfl(Y,ta,d,s);
.....
OUTPUT: res: a structure
   res.meth = 'Boot-Feibes-Lisman';
   res.N = Number of low frequency data
   res.ta = Type of disaggregation
   res.s = Frequency conversion
   res.d = Degree of differencing
   res.y = High frequency estimate
   res.et = Elapsed time
   .
INPUT: Y: Nx1 ---> vector of low frequency data
   ta: type of disaggregation
     ta=1 ---> sum (flow)
     ta=2 ---> average (index)
     ta=3 ---> last element (stock) ---> interpolation
     ta=4 ---> first element (stock) ---> interpolation
   d: objective function to be minimized: volatility of ...
     d=0 ---> levels
     d=1 ---> first differences
     d=2 ---> second differences
   s: number of high frequency data points for each low frequency data point
     s= 4 ---> annual to quarterly
     s=12 ---> annual to monthly
     s= 3 ---> quarterly to monthly
 _____
LIBRARY: sw
SEE ALSO: tduni_print, tduni_plot
REFERENCE: Boot, J.C.G., Feibes, W. y Lisman, J.H.C. (1967)
"Further methods of derivation of quarterly figures from annual data",
Applied Statistics, vol. 16, n. 1, p. 65-75.
```

Application:

```
Y=load('c:\x\td\\data\Y.anu');
res=bfl(Y,1,1,12);
tduni_print(res,'td.sal');
tduni_plot(res);
edit td.sal
```

```
*****************
TEMPORAL DI SAGGREGATION METHOD: Boot-Fei bes-Li sman
******************
Number of low-frequency observations
                                    22
Frequency conversion
                                    12
Number of high-frequency observations:
                                   264
Degree of differencing
                                     1
Type of disaggregation: sum (flow).
-----
High frequency series (columnwise):
4972. 2800
4971. 1389
. . . . . . . . .
. . . . . . . . .
7898. 7692
7899.3631
7899.6600
Elapsed time:
              0.3200
```


3. STRAM-WEI

```
PURPOSE: Temporal disaggregation using the Stram-Wei method.
            _____
SYNTAX: res = sw(Y,ta,d,s,v);
OUTPUT: res: a structure
    res.meth = 'Stram-Wei';
    res.N = Number of low frequency data
    res.ta = Type of disaggregation
    res.d = Degree of differencing
    res.s = Frequency conversion
    res.H = nxN temporal disaggregation matrix
    res.y = High frequency estimate
    res.et = Elapsed time
INPUT: Y: Nx1 ---> vector of low frequency data
    ta: type of disaggregation
        ta=1 ---> sum (flow)
        ta=2 ---> average (index)
        ta=3 ---> last element (stock) ---> interpolation
        ta=4 ---> first element (stock) ---> interpolation
    d: number of unit roots
    s: number of high frequency data points for each low frequency data point
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    v: (n-d)x(n-d) VCV matrix of high frequency stationary series
   LIBRARY: aggreg, aggreg_v, dif, movingsum
SEE ALSO: bfl, tduni_print, tduni_plot
REFERENCE: Stram, D.O. & Wei, W.W.S. (1986) "A methodological note on the
disaggregation of time series totals", Journal of Time Series Analysis,
vol. 7, n. 4, p. 293-302.
Application:
          Y=load('c:\x\td\data\Y.anu');
          N = length(Y); n = s*N;
          % Defining the VCV matrix of stationary high-frequency time series
          % Assumption of the example: IMA(d,2)
          th1 = 0.9552; th2 = -0.0015; va = 0.87242 * ((223.5965)^2);
          acf0 = va * (1+th1^2+th2^2); acf1 = -va * th1 * (1-th2); acf2 = -va * th2;
          a0(1:n-d)=acf0; a1(1:n-d-1)=acf1; a2(1:n-d-2)=acf2;
          v=diag(a0)+diag(a1,-1)+diag(a2,-2); v=v+tril(v)';
          res = sw(Y,1,1,4,v);
          tduni_print(res,'sw.sal');
          tduni plot(res);
```

edit sw.sal

****************** TEMPORAL DISAGGREGATION METHOD: Stram-Wei ************** Number of low-frequency observations : 22 Frequency conversion 4 Number of high-frequency observations: 88 _____ Degree of differencing 1 Type of disaggregation: sum (flow). -----High frequency series (columnwise): 4792.4658 5015.8665 . 28880.7153 28822.8148 Elapsed time: 0.1100

4. DENTON

```
PURPOSE: Temporal disaggregation using the Denton method
 SYNTAX: res=denton_uni(Y,x,ta,d,s);
 OUTPUT: res: a structure
     res.meth = 'Denton';
     res.N = Number of low frequency data
     res.ta = Type of disaggregation
     res.s = Frequency conversion
     res.d = Degree of differencing
     res.y = High frequency estimate res.x = High frequency indicator
     res.U = Low frequency residuals
     res.u = High frequency residuals
     res.et = Elapsed time
 INPUT: Y: Nx1 ---> vector of low frequency data
     x: nx1 ---> vector of low frequency data
     ta: type of disaggregation
       ta=1 ---> sum (flow)
       ta=2 ---> average (index)
       ta=3 ---> last element (stock) ---> interpolation
       ta=4 ---> first element (stock) ---> interpolation
     d: objective function to be minimized: volatility of ...
       d=0 ---> levels
       d=1 ---> first differences
       d=2 ---> second differences
     s: number of high frequency data points for each low frequency data point
       s= 4 ---> annual to quarterly
       s=12 ---> annual to monthly
       s= 3 ---> quarterly to monthly
  ._____
 LIBRARY: aggreg, bfl
 _____
 SEE ALSO: tduni_plot, tduni_print
 REFERENCE: Denton, F.T. (1971) "Adjustment of monthly or quarterly
 series to annual totals: an approach based on quadratic minimization",
 Journal of the American Statistical Society, vol. 66, n. 333, p. 99-102.
Application:
          Y=load('c:\x\td\data\Y.prn');
          x=load('c:\x\td\data\x.ind');
```

res=denton_uni(Y,x,1,1,4); tduni print(res,'td.sal');

tduni_plot(res); edit td.sal

***************** TEMPORAL DISAGGREGATION METHOD: Denton Number of low-frequency observations 22 Frequency conversion 4 Number of high-frequency observations: ______ Degree of differencing 1 Type of disaggregation: sum (flow). -----High frequency series (columnwise): 15374. 9285 15169.7571 . 24883.3098 20609.0705 24415. 4509 Elapsed time: 0.0500

5. CHOW-LIN

```
PURPOSE: Temporal disaggregation using the Chow-Lin method
SYNTAX: res=chowlin(Y,x,ta,s,type);
OUTPUT: res: a structure
     res.meth ='Chow-Lin';
     res.ta = type of disaggregation
     res.type = method of estimation
     res.N = nobs. of low frequency data
     res.n = nobs. of high-frequency data
     res.pred = number of extrapolations
     res.s = frequency conversion between low and high freq.
     res.p = number of regressors (including intercept) res.Y = low frequency data
     res.x = high frequency indicators
     res.y = high frequency estimate
     res.y_dt = high frequency estimate: standard deviation
     res.y_lo = high frequency estimate: sd - sigma
     res.y_up = high frequency estimate: sd + sigma
     res.u = high frequency residuals
     res.U = low frequency residuals
     res.beta = estimated model parameters
     res.beta sd = estimated model parameters: standard deviation
     res.beta_t = estimated model parameters: t ratios
     res.rho = innovational parameter
     res.aic = Information criterion: AIC
     res.bic = Information criterion: BIC
     res.val = Objective function used by the estimation method
     res.r = grid of innovational parameters used by the estimation method
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    type: estimation method:
      type=0 ---> weighted least squares
      type=1 ---> maximum likelihood
   LIBRARY: aggreg
SEE ALSO: litterman, fernandez, td_plot, td_print
-----
REFERENCE: Chow, G. y Lin, A.L. (1971) "Best linear unbiased
distribution and extrapolation of economic time series by related
series", Review of Economic and Statistics, vol. 53, n. 4, p. 372-375.
```

```
Y=load('c:\x\td\data\Y.prn');
x=load('c:\x\td\data\x.ind');
res=chowlin(Y,x,1,4,1);
td_print(res,'td.sal',1); % op1=1: series are printed in ASCII file
td_plot(res);
edit td.sal
```

```
*****************
TEMPORAL DISAGGREGATION METHOD: Chow-Lin
****************
Number of low-frequency observations: 22
Frequency conversion
Number of high-frequency observations: 88
Number of extrapolations : 0 Number of indicators (+ constant) : 2
_____
Type of disaggregation: sum (flow).
_____
Estimation method: Maximum likelihood.
______
Beta parameters (columnwise):
 * Estimate
 * Std. deviation
 * t-ratios

      215. 4518
      111. 7079
      1. 9287

      0. 9828
      0. 0069
      142. 0272

-----
Innovational parameter: 0.7600
AIC: 10.0340
BIC: 10. 1828
Low-frequency correlation
- levels : 0.9998
- yoy rates : 0.9617
-----
High-frequency correlation
- levels : 0.9998
- yoy rates : 0.9812
_____
High-frequency volatility of yoy rates
- estimate : 8.4282
- indicator : 9.0226
- ratio : 0.9341
```

High frequency series (columnwise):

- * Estimate
- * Std. deviation
- * 1 sigma lower limit * 1 sigma upper limit * Residuals

5400. 9896	114. 8247	5286. 1649	5515. 8143	112. 3095
5311. 2409	83. 7296	5227. 5112	5394. 9705	128. 7034
• • • • • • • • •	• • • • • • •	• • • • • • • • •		• • • • • • • •
30079. 6885	86. 7557	29992. 9328	30166. 4443	- 97. 4913
25874. 7702	86. 2867	25788. 4835	25961.0569	- 43. 9249
29614. 4998	116. 3242	29498. 1756	29730. 8240	- 16. 2417

Elapsed time: 1.8100

A variant to be applied with a fixed innovational parameter:

PURPOSE: Temporal disaggregation using the Chow-Lin method rho parameter is fixed (supplied by the user)

SYNTAX: res=chowlin_fix(Y,x,ta,s,type,rho);

6. FERNÁNDEZ

```
PURPOSE: Temporal disaggregation using the Fernandez method
SYNTAX: res=fernandez(Y,x,ta,s);
OUTPUT: res: a structure
      res.meth ='Fernandez';
      res.ta = type of disaggregation
      res.type = method of estimation
      res.N = nobs. of low frequency data
      res.n = nobs. of high-frequency data
      res.pred = number of extrapolations
      res.s = frequency conversion between low and high freq.
     res.p = number of regressors (including intercept)
      res.Y = low frequency data
      res.x = high frequency indicators
      res.y = high frequency estimate
      res.y_dt = high frequency estimate: standard deviation
      res.y_lo = high frequency estimate: sd - sigma
      res.y up = high frequency estimate: sd + sigma
      res.u = high frequency residuals
      res.U
             = low frequency residuals
      res.beta = estimated model parameters
      res.beta_sd = estimated model parameters: standard deviation
      res.beta t = estimated model parameters: t ratios
      res.aic = Information criterion: AIC
      res.bic = Information criterion: BIC
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
 LIBRARY: aggreg
_____
SEE ALSO: chowlin, litterman, td_plot, td_print
REFERENCE: Fernández, R.B.(1981) "Methodological note on the
estimation of time series", Review of Economic and Statistics,
vol. 63, n. 3, p. 471-478.
```

```
Y=load('c:\x\td\data\Y.prn');
x=load('c:\x\td\data\x.tri');
res=fernandez(Y,x,1,4);
td_print(res,'td.sal',1); % op1=1: series are printed in ASCII file
td_plot(res);
edit td.sal
```

```
******************
TEMPORAL DISAGGREGATION METHOD: Fernandez
****************
Number of low-frequency observations: 22
Frequency conversion : 4
Number of high-frequency observations:
_____
Type of disaggregation: sum (flow).
_____
Estimation method: Maximum likelihood.
-----
Beta parameters (columnwise):
 * Estimate
 ^{st} Std. deviation
 * t-ratios
-----

      564. 9834
      195. 9404
      2. 8834

      0. 9360
      0. 0292
      32. 0284

-----
Innovational parameter: 1.0000
______
AIC: 9.6079
BIC: 9.7567
Low-frequency correlation
- levels : 0.9998
- yoy rates : 0.9617
High-frequency correlation
 - levels : 0.9997
 - yoy rates : 0.9817
High-frequency volatility of yoy rates
 - estimate : 8.3477
- indicator : 9.1506
 - ratio : 0.9123
```

High frequency series (columnwise):

- * Estimate
- * Std. deviation
- * 1 sigma lower limit * 1 sigma upper limit * Residuals

5396. 6742	91. 6250	5305. 0492	5488. 2992	- 0. 0000
5297. 9198	60. 8871	5237. 0327	5358. 8069	2. 3349
• • • • • • • • •	• • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • •
30021. 1833	73. 6977	29947. 4856	30094. 8810	920. 9566
26022. 3844	108. 3992	25913. 9852	26130. 7837	977. 8951
29586. 1687	92. 9937	29493. 1750	29679. 1625	1006. 3644
28366. 5459	140. 8431	28225. 7028	28507. 3889	1006. 3644
29461. 6792	176. 5235	29285. 1557	29638. 2027	1006. 3644

Elapsed time: 0.0500

Graphs are the same than in the Chow-Lin case, except that the first one (objective function vs innovational parameter) is not generated.

7. LITTERMAN

```
PURPOSE: Temporal disaggregation using the Litterman method
SYNTAX: res=litterman(Y,x,ta,s,type);
OUTPUT: res: a structure
      res.meth ='Litterman';
      res.ta = type of disaggregation
      res.type = method of estimation
      res.N = nobs. of low frequency data
      res.n = nobs. of high-frequency data
      res.pred = number of extrapolations
      res.s = frequency conversion between low and high freq.
      res.p = number of regressors (including intercept)
      res.Y = low frequency data
      res.x = high frequency indicators
      res.y = high frequency estimate
      res.y_dt = high frequency estimate: standard deviation
      res.y_lo = high frequency estimate: sd - sigma
      res.y up = high frequency estimate: sd + sigma
      res.u = high frequency residuals
      res.U = low frequency residuals
      res.beta = estimated model parameters
      res.beta_sd = estimated model parameters: standard deviation
      res.beta t = estimated model parameters: t ratios
      res.rho = innovational parameter
      res.aic = Information criterion: AIC
      res.bic = Information criterion: BIC
      res.val = Objective function used by the estimation method
      res.r = grid of innovational parameters used by the estimation method
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    type: estimation method:
      type=0 ---> weighted least squares
      type=1 ---> maximum likelihood
LIBRARY: aggreg
SEE ALSO: chowlin, fernandez, td plot, td print
-----
REFERENCE: Litterman, R.B. (1983a) "A random walk, Markov model
for the distribution of time series", Journal of Business and
```

```
Y=load('c:\x\td\data\Y.prn');
x=load('c:\x\td\data\x.tri');
res=litterman(Y,x,1,4,0);
td_print(res,'td.sal',0); % op1=0: series are not printed in ASCII file
td_plot(res);
edit td.sal
```

```
***************
TEMPORAL DISAGGREGATION METHOD: Litterman
***************
Number of low-frequency observations: 22
Frequency conversion
Number of high-frequency observations: 90
Number of extrapolations : 2
Number of indicators (+ constant) : 2
Type of disaggregation: sum (flow).
  -----
Estimation method: Weighted least squares.
Beta parameters (columnwise):
 * Estimate
 \begin{tabular}{ll} * & Std. & deviation \\ \end{tabular}
 * t-ratios

      1205. 4851
      233. 5241
      5. 1621

      0. 7910
      0. 0480
      16. 4821

_____
Innovational parameter: 0.9700
_____
AIC: 7. 9478
BIC: 8. 0966
Low-frequency correlation
- levels : 0.9998
 - yoy rates : 0.9617
High-frequency correlation
- levels : 0.9994
 - yoy rates : 0.9735
High-frequency volatility of yoy rates
 - estimate : 7.6249
 - indicator : 9.1506
 - ratio : 0.8333
Elapsed time: 2.5300
```

A variant to be applied with a fixed innovational parameter:

PURPOSE: Temporal disaggregation using the Litterman method mu parameter is fixed (supplied by the user)

SYNTAX: res=litterman_fix(Y,x,ta,s,type,mu);

Graphical output contains the same information than in the Chow-Lin case.

8. SANTOS SILVA-CARDOSO (ssc)

```
function res=ssc(Y,x,ta,s,type)
PURPOSE: Temporal disaggregation using the dynamic Chow-Lin method
          proposed by Santos Silva-Cardoso (2001).
SYNTAX: res=ssc(Y,x,ta,s,type);
OUTPUT: res: a structure
                          ='Santos Silva-Cardoso';
     res.meth
                      = type of disaggregation
= method of estimation
= nobs. of low frequency data
= nobs. of high frequency
     res.ta
     res.type
     res.N
     res.n
                         = nobs. of high-frequency data
                          = number of extrapolations
     res.pred
                          = frequency conversion between low and high freq.
     res.s
                          = number of regressors (+ intercept)
     res.p
                          = low frequency data
     res.Y
                          = high frequency indicators
     res.x
                          = high frequency estimate
     res.y
                          = high frequency estimate: standard deviation
     res.y dt
     res.y lo
                          = high frequency estimate: sd - sigma
                          = high frequency estimate: sd + sigma
     res.y_up
                          = high frequency residuals
     res.u
     res.U
                         = low frequency residuals
    res.gamma
res.gamma_sd
res.gamma
                          = estimated model parameters (including y(0))
                         = estimated model parameters: standard deviation
                                = estimated model parameters: t ratios
                          = dynamic parameter phi
     res.rho
                          = estimated model parameters (excluding y(0))
     res.beta
                         = estimated model parameters: standard deviation
     res.beta_sd
     res.beta t
                         = estimated model parameters: t ratios
                          = Information criterion: AIC
     res.aic
     res.bic
                          = Information criterion: BIC
                          = Objective function used by the estimation method
     res.val
                      = grid of dynamic parameters used by the estimation method
     res.r
                         = elapsed time
     res.et
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    type: estimation method:
      type=0 ---> weighted least squares
      type=1 ---> maximum likelihood
```

```
LIBRARY: aggreg
SEE ALSO: chowlin, litterman, fernandez, td_plot, td_print
______
REFERENCE: Santos, J.M.C. y Cardoso, F.(2001) "The Chow-Lin method
using dynamic models", Economic Modelling, vol. 18, p. 269-280.
Application:
        Y = load('c:\x\td\data\Y.prn');
        x=load('c:\x\td\data\x.tri');
        res=ssc(Y,x,1,4,1);
        td_print(res,'td.sal',0);
        edit td.sal;
        % Calling graph function
        td_plot(res);
ASCII file containing detailed output:
***************
TEMPORAL DISAGGREGATION METHOD: Santos Silva-Cardoso
Number of low-frequency observations: 32
Frequency conversion : 4
Number of high-frequency observations: 128
Number of extrapolations : 0
Number of indicators (+ constant) : 2
_____
Type of disaggregation: sum (flow).
   Estimation method: Maximum likelihood.
_____
Beta parameters (columnwise):
  * Estimate
  * Std. deviation
  * t-ratios

      1. 0946
      3. 7817
      0. 2895

      0. 6718
      0. 0049
      136. 9983

  -----
Dynamic parameter: 0.2600
  Long-run beta parameters (columnwise):
   1.4792
    0.9078
Truncation remainder: expected y(0):
  * Estimate
```

* Std. deviation * t-ratios

310. 3328 90. 5351 3. 4278

AIC: 5.2524
BIC: 5.3898

Low-frequency correlation
- levels : 0.9994
- yoy rates : 0.8561

High-frequency correlation
- levels : 0.9993
- yoy rates : 0.8881

High-frequency volatility of yoy rates
- estimate : 2.0592
- indicator : 2.3430
- ratio : 0.8789

Graphical output contains the same information than in the Chow-Lin case and includes a plot of the implied impulse-response function:

A variant to be applied with a fixed innovational parameter:

PURPOSE: Temporal disaggregation using the Santos Silva-Cardoso method Phi parameter is fixed (supplied by the user)

SYNTAX: res=ssc_fix(Y,x,ta,s,type,phi);

9. GUERRERO

```
function res=guerrero(Y,x,ta,s,rexw,rexd);
PURPOSE: ARIMA-based temporal disaggregation: Guerrero method
-----
SYNTAX: res=guerrero(Y,x,ta,s,rexw,rexd);
OUTPUT: res: a structure
    res.meth ='Guerrero';
    res.ta = type of disaggregation
          = nobs. of low frequency data= nobs. of high-frequency data
    res.N
    res.n
    res.pred = number of extrapolations
           = frequency conversion between low and high freq.
    res.s
    res.p = number of regressors (+ intercept)
res.Y = low frequency data
    res.x = high frequency indicators
    res.w = scaled indicator (preliminary hf estimate)
    res.y1 = first stage high frequency estimate
    res.y = final high frequency estimate
    res.y_dt = high frequency estimate: standard deviation
    res.y_lo = high frequency estimate: sd - sigma
    res.y_up = high frequency estimate: sd + sigma
    res.delta = high frequency discrepancy (y1-w)
    res.u = high frequency residuals (y-w)
    res.U = low frequency residuals (Cu)
    res.beta = estimated parameters for scaling x
    res.k = statistic to test compatibility
    res.et = elapsed time
 _____
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    rexw, rexd ---> a structure containing the parameters of ARIMA model
      for indicator and discrepancy, respectively (see calT function)
_____
LIBRARY: aggreg, calT, numpar, ols
_____
SEE ALSO: chowlin, litterman, fernandez, td print, td plot
REFERENCE: Guerrero, V. (1990) "Temporal disaggregation of time
series: an ARIMA-based approach", International Statistical
Review, vol. 58, p. 29-46.
```

```
Y = load('c:\x\td\data\Y.prn');
x = load('c:\x\td\data\x.tri');
% Inputs for td library
% Type of aggregation
ta=1;
% Frequency conversion
s=12;
% Model for w: (0,1,1)(1,0,1)
rexw.ar reg = [1];
rexw.d = 1;
rexw.ma_reg = [1 - 0.40];
rexw.ar_sea = [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]-0.85];
rexw.bd = 0;
rexw.ma_sea = [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0];
rexw.sigma = 4968.716^2;
% Model for the discrepancy: (1,2,0)(1,0,0)
% See: Martinez and Guerrero, 1995, Test, 4(2), 359-76.
rexd.ar\_reg = [1 - 0.43];
rexd.d = 2;
rexd.ma\_reg = [1];
rexd.ar sea = [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0];
rexd.bd = 0:
rexd.ma sea = [1];
rexd.sigma = 76.95^2;
% Calling the function: output is loaded in structure res
res=guerrero(Y,x,ta,s,rexw,rexd);
% Calling printing function
% Name of ASCII file for output
file sal='guerrero.sal';
output=0; % Do not include series
td_print_G(res,file_sal,output);
edit guerrero.sal;
% Calling graph function
td_plot(res);
```

```
* Std. deviation
           * t-ratios
219988.6766 974531.6756 4.4299
1723.8723 6174.6540 3.5819
                                                                                                                                         4.4299
   AIC: 7.5245
   BIC: 7.3683
Low-frequency correlation (Y,X)
       - levels : 0.9003
       - yoy rates : 0.9973
    ______
High-frequency correlation (y,x)
                                                       : 0.9289
       - levels
       - yoy rates : 0.9835
     _____
High-frequency volatility of yoy rates
       - estimate
                                                       : 3.6623
       - indicator : 6.2899
       - ratio
                                                       : 0.5823
High-frequency correlation (y,x*beta)
                                          : 0.9289
          - levels
       - yoy rates : 0.9832
   Compatibility test:
        - k : 0.9526
       ARIMA model for scaled indicator:
     (0 1 1) (1 0 1)
       - Regular AR operator:
       1.0000
     - Regular MA operator:
       1.0000 -0.4000
    - Seasonal AR operator:
    1.0000 \quad 0.0000 \quad 0
    - Seasonal MA operator:
    1.0000 \quad 0.0000 \quad 0.0000
 _____
    ARIMA model for discrepancy :
    (1 2 0)(1 0 0)
       - Regular AR operator:
       1.0000 -0.4300
    - Regular MA operator:
```

* Estimate

1.0000

```
- Seasonal AR operator:

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- Seasonal MA operator:

1.0000

Elapsed time: 0.4400
```

Graphical output contains the same information than in the Chow-Lin case.

10. MULTIVARIATE ROSSI

```
function res = rossi(Y,x,z,ta,s,type);
PURPOSE: Multivariate temporal disaggregation with transversal constraint
______
SYNTAX: res = rossi(Y,x,z,ta,s,type);
OUTPUT: res: a structure
    res.meth = 'Multivariate Rossi':
    res.N = Number of low frequency data
    res.n = Number of high frequency data
    res.pred = Number of extrapolations (=0 in this case)
    res.ta = Type of disaggregation
    res.s = Frequency conversion
    res.y = High frequency estimate
    res.et = Elapsed time
INPUT: Y: NxM ---> M series of low frequency data with N observations
   x: nxM ---> M series of high frequency data with n observations
   z: nx1 ---> high frequency transversal constraint
   ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
   s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
   type: univariate temporal disaggregation procedure used to compute
    preliminary estimates
      type = 1 ---> Fernandez
      type = 2 ---> Chow-Lin
      type = 3 ---> Litterman
   LIBRARY: aggreg, vec, desvec, fernandez, chowlin, litterman
-----
SEE ALSO: denton, difonzo, mtd print, mtd plot
REFERENCE: Rossi, N. (1982) "A note on the estimation of disaggregate
time series when the aggregate is known", Review of Economics and Statistics,
vol. 64, n. 4, p. 695-696.
di Fonzo, T. (1994) "Temporal disaggregation of a system of
time series when the aggregate is known: optimal vs. adjustment methods",
INSEE-Eurostat Workshop on Quarterly National Accounts, Paris, december.
```

```
Y=load('YY.anu'); % Loading low frequency data x=load('x.tri'); % Loading high frequency data z=load('z.prn'); % Loading high frequency transversal restriction res=rossi(Y,x,z,2,4,1); mtd_print(res,'mtd.sal'); edit mtd.sal; mtd_plot(res,z);
```

```
TEMPORAL DISAGGREGATION METHOD: Multivariate Rossi
***************
Number of low-frequency observations :
Frequency conversion
Number of high-frequency observations :
Number of extrapolations :
_____
Type of disaggregation: average (index).
_____
Preliminary univariate disaggregation: Fernandez
______
High frequency series (columnwise):
 * Point estimate
______
3424.2881 5311.2720
3436.0588 5280.4786
2835.1833 8614.4139
2899.5740 8625.9809
Elapsed time: 1.2600
```


11. MULTIVARIATE DENTON

```
function res = denton(Y,x,z,ta,s,d);
PURPOSE: Multivariate temporal disaggregation with transversal constraint
______
SYNTAX: res = denton(Y,x,z,ta,s,d);
OUTPUT: res: a structure
    res.meth = 'Multivariate Denton':
    res.N = Number of low frequency data
    res.n = Number of high frequency data
    res.pred = Number of extrapolations (=0 in this case)
    res.ta = Type of disaggregation
    res.s = Frequency conversion
    res.d = Degree of differencing
    res.y = High frequency estimate
    res.et = Elapsed time
INPUT: Y: NxM ---> M series of low frequency data with N observations
   x: nxM ---> M series of high frequency data with n observations
   z: nzx1 ---> high frequency transversal constraint
   ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
   s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    d: objective function to be minimized: volatility of ...
      d=0 ---> levels
      d=1 ---> first differences
      d=2 ---> second differences
  .....
LIBRARY: aggreg, aggreg_v, dif, vec, desvec
_____
SEE ALSO: difonzo, mtd_print, mtd_plot
REFERENCE: di Fonzo, T. (1994) "Temporal disaggregation of a system of
time series when the aggregate is known: optimal vs. adjustment methods",
```

INSEE-Eurostat Workshop on Quarterly National Accounts, Paris, december

```
Y=load('YY.anu'); % Loading low frequency data x=load('x.tri'); % Loading high frequency data z=load('z.prn'); % Loading high frequency transversal restriction res=denton(Y,x,z,2,4,1); mtd_print(res,'mtd.sal'); edit mtd.sal; mtd_plot(res,z);
```

TEMPORAL D	**************************************	var	iate D	enton
Number of	low-frequency observations	:	23	
	conversion	:	4	
	high-frequency observations	:	92	
	extrapol ati ons	:	0	
0	differencing saggregation: average (inde	: x).	1	
	ency series (columnwise): estimate			
3752. 9096	4982. 6505			
3459. 3681	5257. 1693			
2757. 8458	8545. 8074			
2825. 1411	8624. 4561			
2867. 5816	8657. 9733			
Elapsed tim	ne: 0. 2800			

12. DI FONZO

```
function res = difonzo(Y,x,z,ta,s,type,f);
PURPOSE: Multivariate temporal disaggregation with transversal constraint
 _____
SYNTAX: res = difonzo(Y,x,z,ta,s,type,f);
OUTPUT: res: a structure
    res.meth = 'Multivariate di Fonzo':
    res.N = Number of low frequency data
    res.n = Number of high frequency data
    res.pred = Number of extrapolations
    res.ta = Type of disaggregation
    res.s = Frequency conversion
    res.type = Model for high frequency innovations
    res.beta = Model parameters
    res.y = High frequency estimate
    res.d y = High frequency estimate: std. deviation
    res.et = Elapsed time
INPUT: Y: NxM ---> M series of low frequency data with N observations
 x: nxm ---> m series of high frequency data with n observations, m>=M see (*)
    z: nzx1 ---> high frequency transversal constraint with nz obs.
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
      ta=4 ---> first element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    type: model for the high frequency innvations
      type=0 ---> multivariate white noise
      type=1 ---> multivariate random walk
(*) Optional:
    f: 1xM ---> Set the number of high frequency indicators linked to
           each low frequency variable. If f is explicitly included,
           the high frequency indicators should be placed in
           consecutive columns
NOTE: Extrapolation is automatically performed when n>sN.
   If n=nz>sN restricted extrapolation is applied.
   Finally, if n>nz>sN extrapolation is perfored in constrained
   form in the first nz-sN observatons and in free form in
   the last n-nz observations.
LIBRARY: aggreg, dif, vec, desvec
SEE ALSO: denton, mtd_print, mtd_plot
REFERENCE: di Fonzo, T. (1990) "The estimation of M disaggregate time
series when contemporaneous and temporal aggregates are known", Review
of Economics and Statistics, vol. 72, n. 1, p. 178-182.
```

```
Y=load('YY.anu'); % Loading low frequency data x=load('x.tri'); % Loading high frequency data z=load('z.prn'); % Loading high frequency transversal restriction res = difonzo(Y,x,z,2,4,1); mtd_print(res,'mtd.sal'); edit mtd.sal; mtd_plot(res,z);
```

TEMPORAL D	**************************************
Number of	low-frequency observations : 23
Frequency	conversion : 4
Number of	high-frequency observations: 92
	extrapolations : 0
Type of di High frequ	the innovations: random walk. saggregation: average (index). ency series (columnwise): estimate
3413. 3839	5322. 1762
3447. 4092	
2758. 4657	8545. 1875
2817. 9882	8631. 6090
2856. 1605	8669. 3944

Elapsed time: 0.3300

APPENDIX: RELATIONSHIPS AMONG FUNCTIONS IN THE LIBRARY

The " $X \rightarrow Y$ " notation means "X function calls Y function".

- bfl → sw
- denton_uni → aggreg, bfl
- sw → aggreg, aggreg_v, dif, movingsum
- chowlin → aggreg
- fernandez → aggreg
- litterman → aggreg
- ssc → aggreg
- guerrero → aggreg, calT, numpar, ols^(*)
- rossi → aggreg, vec, desvec, fernandez, chowlin, litterman
- denton → aggreg, aggreg_v, dif, vec, desvec
- difonzo → aggreg, dif, vec, desvec
- bal → vec, desvec
- td_print → tasa, aggreg
- td_print_G → tasa, aggreg, mprint^(*)
- •
- td_plot → tasa
- tduni_plot → temporal_agg

^(*) From James Lesage's Econometric Toolbox

REFERENCES

- Boot, J.C.G., Feibes, W. and Lisman, J.H.C. (1967) "Further methods of derivation of quarterly figures from annual data", *Applied Statistics*, vol. 16, n. 1, p. 65-75.
- Bournay, J. and Laroque, G. (1979) "Réflexions sur la méthode d'elaboration des comptes trimestriels", *Annales de l'INSEE*, n. 36, p. 3-30.
- Chow, G. and Lin, A.L. (1971) "Best linear unbiased distribution and extrapolation of economic time series by related series", *Review of Economic and Statistics*, vol. 53, n. 4, p. 372-375.
- Denton, F.T. (1971) "Adjustment of monthly or quarterly series to annual totals: an approach based on quadratic minimization", *Journal of the American Statistical Society*, vol. 66, n. 333, p. 99-102.
- di Fonzo, T. (1990) "The estimation of M disaggregate time series when contemporaneous and temporal aggregates are known", *Review of Economic and Statistics*, vol. 72, p. 178-182
- di Fonzo, T. (1994) "Temporal disaggregation of a system of time series when the aggregate is known", INSEE-Eurostat Workshop on Quarterly National Accounts, París, diciembre.
- di Fonzo, T. (2002) "Temporal disaggregation of economic time series: towards a dynamic extension", Dipartimento di Scienze Statistiche, Università di Padova, Working Paper n. 2002-17.
- Fernández, R.B. (1981) "Methodological note on the estimation of time series", *Review of Economic and Statistics*, vol. 63, n. 3, p. 471-478.
- Guerrero, V. (1990) "Temporal disaggregation of time series: an ARIMA-based approach", *International Statistical Review*, volumen 58, no. 1, pag. 29-46.
- Litterman, R.B. (1983) "A Random Walk, Markov Model for the Distribution of Time Series", Journal of Business and Economic Statistics, vol. 1, n. 2, p. 169-173.
- Rossi, N. (1982) "A note on the estimation of disaggregate time series when the aggregate is known", *Review of Economics and Statistics*, vol. 64, n. 4, p. 695-696.
- Santos Silva, J.M.C. and Cardoso, F. (2001) "The Chow-Lin method using dynamic models", *Economic Modelling*, vol. 18, p. 269-280.
- Stram, D.O. and Wei, W.W.S. (1986) "A methodological note on the disaggregation of time series totals", *Journal of Time Series Analysis*, vol. 7, n. 4, p. 293-302.