MAST90104 - Lecture 6 Supplementary

Weichang Yu

Room 108, Old Geology South Bldg School of Mathematics and Statistics, University of Melbourne Consider a less than full-rank model:

$$y = X\beta + \epsilon$$
,

where assumptions (I) and (V) hold. How do I perform hypothesis tests?

Step 1: Frame your hypothesis as linear combination(s) of β

In particular, frame it as

$$H_0: \mathbf{L}\boldsymbol{\beta} = \mathbf{0}, \text{ against } ; H_1: \mathbf{L}\boldsymbol{\beta} \neq \mathbf{0}$$

where

$$\mathbf{L} = \begin{pmatrix} \mathbf{t}_1^T \\ \vdots \\ \mathbf{t}_m^T \end{pmatrix}$$
.

Make sure that $m \leq r$, where $r = r(\mathbf{X})$.

Step 1: Frame your hypothesis as linear combination(s) of β

Example: Consider the one-way ANCOVA with interaction:

$$y_{ij} = \mu + \tau_i + \beta x_{ij} + \xi_i x_{ij} + \epsilon_{ij},$$

where we have I=3 levels for our factor τ . Suppose we want to test whether interaction is signficant, i.e., whether different populations should have the same slope. Under interaction model:

Slope for level
$$i = \beta + \xi_i$$
.

Hence, we want to test $\xi_1=\xi_2=\xi_3$, or equivalent $\xi_1=\xi_2$ AND $\xi_1=\xi_3$.

Step 1: Frame your hypothesis as linear combination(s) of $\boldsymbol{\beta}$

Now $\beta = (\mu, \tau_1, \tau_2, \tau_3, \beta, \xi_1, \xi_2, \xi_3)^T$. Our hypothesis can be expressed as:

$$H_0: \mathbf{L}\boldsymbol{\beta} = \begin{pmatrix} \mathbf{t}_1^T \boldsymbol{\beta} \\ \mathbf{t}_2^T \boldsymbol{\beta} \end{pmatrix} = \mathbf{0}.$$

where $\mathbf{t}_1^T = (0, 0, 0, 0, 0, 1, -1, 0)$ and $\mathbf{t}_2^T = (0, 0, 0, 0, 0, 1, 0, -1)$.

Step 2: Write down your reparameterised full rank model

Let $r = r(\mathbf{X})$. Choose a p by r matrix \mathbf{C} such that $\widetilde{\mathbf{X}} = \mathbf{XC}$ is full rank.

C can be chosen using contr.treatment or contr.sum.

Write down your full rank model: $\mathbf{y} = \widetilde{\mathbf{X}} \boldsymbol{\gamma} + \epsilon$.

Express γ as a linear combination of β .

Step 2: Write down your reparameterised full rank model

Example: Back to one-way ANCOVA example.

$$\boldsymbol{\mathsf{X}} = \left[\boldsymbol{\mathsf{Z}}_1 | \boldsymbol{\mathsf{Z}}_2\right]$$

where \mathbf{Z}_1 is the one-way ANOVA part of the design matrix and \mathbf{Z}_2 is the continuous prediction regression part.

Let's say we choose

$$C = \begin{pmatrix} Q \\ Q \end{pmatrix}$$

based on contr.treatment, where

$$\mathbf{Q} = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

What is X? And what is X

Step 2: Write down your reparameterised full rank model

Example: By forcing the constraint $\mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\gamma}$, we have

$$\gamma_1 = \mu + \tau_1$$

$$\gamma_2 = \tau_2 - \tau_1$$

$$\gamma_3 = \tau_3 - \tau_1$$

$$\gamma_4 = \beta + \xi_1$$

$$\gamma_5 = \xi_2 - \xi_1$$

$$\gamma_6 = \xi_3 - \xi_1$$

Step 3: Check that your hypothesis is testable

Our null hypothesis is H_0 : $\mathbf{L}\beta = \mathbf{0}$. Definition 6.7 requires us to check that

- RHS of our null hypothesis is **0**.
- For each $\mathbf{t}_j^T \boldsymbol{\beta}$, there exists a *r*-dimensional vector $\widetilde{\mathbf{t}}_j$ such that $\mathbf{t}_j^T \boldsymbol{\beta} = \widetilde{\mathbf{t}}_j^T \boldsymbol{\gamma}$. Proof left as an exercise.
- $\{\mathbf{t}_1, \dots, \mathbf{t}_m\}$ is a linearly independent set.

Step 3: Check that your hypothesis is testable

Example: Our hypothesis is H_0 : $\mathbf{L}\boldsymbol{\beta} = \mathbf{0}$, where the first entry on LHS is $\xi_1 - \xi_2$ and the second entry is $\xi_1 - \xi_3$.

- RHS of our null hypothesis is indeed **0**.
- $\xi_1 \xi_2 = \gamma_4 \gamma_5$ and $\xi_1 \xi_3 = \gamma_4 \gamma_6$. Hence

$$\mathbf{L}\boldsymbol{\beta} = \widetilde{\mathbf{L}}\boldsymbol{\gamma} = \begin{pmatrix} \widetilde{\mathbf{t}}_1^T \boldsymbol{\gamma} \\ \widetilde{\mathbf{t}}_2^T \boldsymbol{\gamma} \end{pmatrix} = \mathbf{0},$$

where
$$\widetilde{\mathbf{t}}_1^T = (0, 0, 0, 0, -1, 0)$$
 and $\widetilde{\mathbf{t}}_1^T = (0, 0, 0, 0, 0, -1)$

• Clearly, $\{t_1, t_2\}$ is a linearly independent set.

Here, $\widetilde{\mathbf{L}}$ allows us to express $\mathbf{L}\boldsymbol{\beta}$ as linear combinations of $\boldsymbol{\gamma}$.

Step 4: Compute estimate for $\mathbf{L}\widehat{\boldsymbol{\beta}}$

Under assumptions (I) and (V), the UMVUE for γ is:

$$\widehat{\boldsymbol{\gamma}} = (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y}.$$

Since $\mathbf{L}\boldsymbol{\beta} = \widetilde{\mathbf{L}}\boldsymbol{\gamma}$, our UMVUE for $\mathbf{L}\boldsymbol{\beta}$ is

$$\mathbf{L}\widehat{\boldsymbol{\beta}}=\widetilde{\mathbf{L}}\widehat{\boldsymbol{\gamma}}.$$

Hence, a shortcut to computing $L\widehat{\beta}$ is to simply compute $\widetilde{L}\widehat{\gamma}$.

Step 5: Compute the F-statistic

Compute the residual sum of squares:

$$SS_{res} = \|\mathbf{y} - \widetilde{\mathbf{X}}\widehat{\boldsymbol{\gamma}}\|^2.$$

Under assumption (I) and (V), SS_{res}/σ^2 has a central chi-square distribution with df = n - r.

Plug SS_{res} , $\widetilde{\mathbf{X}}$, \mathbf{L} , $\widetilde{\mathbf{L}}$, and $\widehat{\boldsymbol{\beta}}$ into F-statistic formula:

$$f = \frac{(\mathbf{L}\widehat{\boldsymbol{\beta}})^T [\widetilde{\mathbf{L}}(\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{L}}^T]^{-1} \mathbf{L}\widehat{\boldsymbol{\beta}}/m}{SS_{Res}/(n-r)},$$

where $r(\mathbf{L}) = m$.

Under H_0 , $f \sim F_{m,n-r}$.