JARVIS ARMOR-X – Raumzeitlicher Exoanzug (V1.0)

Autor: M. Aichmayr

Datum: 2025-03-23

1. Einleitung

JARVIS ARMOR-X ist ein vollständiges Exosystem, das die Prinzipien der Aichmayr-Metrik, ϕ -Feld-Resonanz und neuronaler Rückkopplung in ein physikalisch reaktives System überführt.

Der Anzug basiert auf Jarvis CORE-Z und integriert Sensorik, Symbolik, Aktuatorik und Energieverwaltung in ein autonomes, lernfähiges System.

2. NeuroCore – φ-Matrix als Entscheidungszentrale

Das φ-Feld fungiert als neuronales Entscheidungszentrum. Es koppelt externe Reize (S), emotionale Gewichtung (E) und Gedächtnis (M) in eine dynamische Raumzeitstruktur. Die Entscheidungslogik erfolgt über $\varphi \ge 1.35$ als Schwelle für Aktivierung.

3. SensorShell - Erweiterte Sensorikmodule

Sensoren:

- IMUs (Lage, Beschleunigung)
- Drucksensoren (Körperkontakt)
- Blickerfassung (Eye Tracking)
- Mikrofone (Sprachinterpretation)
- Abstandssensoren (Radar/IR)

Diese werden direkt in die ϕ -Matrix eingespeist und als symbolischer Stimulus S(i,j) verarbeitet.

4. MuscleAct - Aktuatorische Reaktion

Aktoren (Servos, Hydraulik) werden durch die ϕ -Auswertung angesteuert. Je nach $\phi(i,j)$ Resonanzzone werden Gelenke, Bewegungen oder Flugmodule aktiviert.

5. EnergyGrid – Echtzeit-Energieverwaltung

Jarvis verwaltet Energiequellen basierend auf der Aktivitätsverteilung im ϕ -Feld. Regionen mit hoher Aktivität erhalten bevorzugt Versorgung. Potenzial für Supercaps, Solarzellen oder adaptive Leistungsregelung.

6. SymbOS – Symbolische Interaktion

Symbolisches Betriebssystem zur Gestensteuerung, Sprachtriggerung und Fokusinterpretation. Alle symbolischen Daten werden in S(i,j) übersetzt und im ϕ -Feld dynamisch integriert.

7. HUD Interface - Visualisierung

Ausgabe von Statuswerten (ϕ , Energie, Modus) über LED-Matrix oder Microdisplay im Helm. Reaktion auf Blickrichtung und Umgebung möglich.

8. Technische Datenflüsse und Modulverbindungen

ARMOR-X nutzt ein modulares Datenflusssystem zwischen Sensorik, ϕ -Matrix, Entscheidungslogik und Aktuatoren. Die Datenströme sind so ausgelegt, dass alle Reize in Echtzeit bewertet und priorisiert werden.

8.1 Datenflussstruktur

[Sensorsysteme] \rightarrow [Symbolumwandlung S(i,j)] \rightarrow [ϕ (i,j)-Matrix]

- → [Entscheidungslogik bei $\phi \ge 1.35$] → [Motorcontroller / Energiezuteilung]
- → [HUD Ausgabe / Feedbackschleife] → [Gedächtnisregister M(i,j)]

8.2 Intermodulare Verbindungen

- SensorShell → NeuroCore: konvertiert alle Sensorwerte in S(i,j)
- NeuroCore ↔ EnergyGrid: Aktivitätsmuster steuern Energiezuteilung
- NeuroCore → MuscleAct: Zielausgabe durch Clusteraktivierung
- HUD ↔ NeuroCore: Visualisierung + Fokusrückmeldung

8.3 Reaktionszeit & Priorisierung

Das System arbeitet mit einem ϕ -Auswertungstakt von <1 μ s pro Zelle. Gesamte Entscheidungszeit: ca. 10–50 μ s für 4x4 Cluster. Aktive Resonanzzonen werden priorisiert – andere unterdrückt oder verzögert.

9. Energieversorgung – ARMOR-X Batteriemodul

Die Energieversorgungseinheit (PowerCore) versorgt alle Module von ARMOR-X, angepasst an φ -Aktivitätsmuster. Ziel ist maximale Ausdauer bei minimalem Gewicht.

9.1 Energiequellen

- Hochstromfähige Lithium-Polymer-Zellen (LiPo) leicht & leistungsstark
- Optionale Superkondensatoren (Supercaps) für schnelle Schaltimpulse
- Photovoltaik-Erweiterung (Helm/Körperpanel) passive Erhaltungsladung

9.2 Intelligente Energieverteilung

Der φ-Core analysiert aktiv die Resonanzverteilung über das φ-Feld. Regionen mit hoher Aktivität ($\varphi \ge 1.2$) erhalten priorisierte Versorgung über MOSFET-gesteuerte Ausgänge.

Beispiel:

- ϕ -Feld in rechtem Arm stark aktiviert \rightarrow Strom zu Servos A3, A4 priorisiert
- ϕ -Feld stabilisiert \rightarrow Regelung zurück auf Grundlast

9.3 Sicherheits- und Abschaltlogik

Integrierter Watchdog überwacht:

- Zellspannung
- Temperatur
- Stromspitzen

Bei Anomalien erfolgt:

- Teilweises Abschalten von Modulen
- Priorisierte Notversorgung für Kernmodule (NeuroCore, HUD)

10. Intelligentes Energie-Managementsystem (EMS)

Das Energie-Managementsystem (EMS) steuert in Echtzeit die Energieverteilung basierend auf φ -Feldaktivität, Modulbedarf und Sicherheitskriterien.

10.1 Steuerlogik

Die Energiezuteilung erfolgt über eine priorisierte Score-Funktion je Modulregion:

Score_Z = $\Sigma \left[\varphi(i,j) \cdot E(i,j) \cdot M(i,j) \right]$ für alle Zellen in Zielregion Z

- → Der höchste Score erhält bevorzugte Energiezufuhr
- \rightarrow Bei niedrigem φ : Energiesparmodus aktiviert
- → Gesamtlastregelung durch Duty-Cycling (Pulsbreitenmodulation)

10.2 Beispiel: Reaktion auf Aktivierung

- 1. $\varphi(i,j)$ in Bein-Modul steigt über 1.35 \rightarrow Score_Bein steigt
- 2. EMS aktiviert MOSFET-Ausgänge für Motor B1, B2
- 3. Nach Bewegung sinkt $\phi \rightarrow B1$, B2 werden heruntergeregelt
- 4. HUD zeigt Stromverlauf in Echtzeit (Live-Monitoring)

10.3 Zusatzfunktionen

- Ladesteuerung bei Solarbetrieb (Auto-Umschaltung)
- Tiefentladungsschutz & Temperaturauswertung
- Watchdog für Gesamtstrom und Spannungsüberwachung
- φ-Logging → Energiemuster werden für Optimierung gespeichert

11. MOSFET-Steuerung für Energiekanäle

Zur gezielten Energieverteilung an Aktuatoren und Module verwendet ARMOR-X pro Region eine logikgesteuerte MOSFET-Schaltung.

11.1 Architektur der Energiekanäle

Jede Zielregion (z. B. Bein, Arm, Rücken, Helm) ist an einen eigenen N-Kanal-MOSFET-Ausgang angeschlossen, geschaltet durch die Entscheidung des ϕ -Cores.

Komponenten:

- Gate: gesteuert durch Score-Auswertung φ(i,j)
- Drain: Energieversorgung (z. B. LiPo-Ausgang 11.1 V)
- Source: Verbindung zum Modul (z. B. Motorcontroller)

11.2 Steuerlogik (PWM optional)

Wenn Score_Z \geq Schwellwert (z. B. 1.0), wird der zugeordnete MOSFET leitend. Die φ -Core-Logik kann ein PWM-Signal ausgeben, um die Leistung zu modulieren:

 $PWM_Z = min(1.0, Score_Z / \phi_max)$

- \rightarrow Geringe φ -Werte = kurze Impulsdauer = Energiesparmodus
- \rightarrow Hohe φ -Werte = volle Leistung

11.3 Sicherheitslogik

- Gate-Schutzwiderstand integriert
- Temperatur- & Stromsensor als Feedback (abschaltend bei Überlast)
- Bypass-Schaltung für Notfallversorgung von NeuroCore + HUD

12. Simulation der φ-Resonanzverläufe

Zur Evaluierung der Entscheidungs- und Energieverteilungslogik wurden mehrere Simulationsläufe durchgeführt. Dabei wurde insbesondere untersucht, in welchen Zielregionen (ARM, LEG, HUD) $\phi \ge 1.35$ erreicht wird – was einer Aktivierung entspricht.

12.1 Standard-Resonanzsimulation

Die folgende Grafik zeigt den natürlichen Verlauf der ϕ -Werte über 50 Zeitschritte ohne externe Verstärkung.

12.2 Verstärkte φ-Dynamik

Mit gezielter ϕ -Verstärkung (höherer Feedbackfaktor) entwickelt sich ϕ in allen Regionen dynamischer.

Mehrere Resonanzzonen überschreiten $\phi \ge 1.35$ – insbesondere im ARM-Modul.

13. Entscheidungsweg in der φ-Logik

Die folgende Abbildung zeigt den zeitlichen Verlauf der ϕ -Feldwerte für ARM, LEG und HUD im Boosted-Modus.

Entscheidungen werden ausgelöst, sobald der ϕ -Wert ≥ 1.35 steigt.

Die markierten Punkte zeigen die tatsächlichen Aktivierungen ($\phi \ge$ Schwelle).

14. Clusterlogik für zielgerichtete Reaktionsmuster

Basierend auf den Entscheidungsdaten der ϕ -Feldsimulation wurde folgende Clusterlogik zur Ansteuerung modularer Zielregionen entwickelt. Ziel ist es, bei Erreichen von $\phi \geq 1.35$ in einer Region gezielt ganze Clustereinheiten zu aktivieren.

14.1 Dynamische Zielzuweisung durch Clusterschwellen

Für jede Region Z (z. B. ARM, LEG, HUD) wird ein Entscheidungscluster C_Z aktiviert, sobald $\varphi(i,j) \ge 1.35$ in einem benachbarten φ -Kern detektiert wird.

Entscheidungsregel:

Aktiviere Cluster C_Z, wenn:

- $max(\phi_Z) \ge 1.35$
- und $\langle \phi_{-}Z \rangle \ge 1.25$ über t = 3 Schritte

Dies verhindert spontane Einzelimpulse und stabilisiert Reaktionsmuster.

14.2 Clusterstruktur

Beispielhafte Zuordnung:

- Cluster C_ARM → Motoren A1-A4
- Cluster C_LEG → Motoren B1-B4

• Cluster C_HUD → Anzeige + Sensorfusion

Jede Clusterzone verfügt über:

- 4 φ-Zellen mit Rückkopplung
- 1 Decision-Gate
- 1 Energiesteuerungskanal

14.3 Erweiterte Kopplung

Erkannte Clustermuster können zukünftige φ-Verteilungen modulieren: Einmal aktivierte Cluster hinterlassen Spuren im Memory-Feld M(i,j), was zu schnellerer Reaktivierung führt.

- → Lernen durch Reaktionshistorie
- → Pfadabhängige Clusterentscheidungen
- 15. Erweiterte neuronale Antwortmatrix

Die neuronale Antwortmatrix beschreibt die dynamische Wechselwirkung zwischen drei Feldern:

- φ(i,j): Raumzeitlich motivierter Aktivitätszustand
- E(i,j): Emotionale Verstärkung
- M(i,j): Gedächtnisspur des Systems

15.1 Matrixformel

Die kombinierte Antwort R(i,j) ergibt sich aus:

$$R(i,j) = \varphi(i,j) \cdot E(i,j) \cdot (1 + 0.5 \cdot (\varphi(i,j) - M(i,j)))$$

Interpretation:

- E(i,i) moduliert die Intensität
- (φ M) verstärkt Erinnerungskopplung
- Hohe Werte führen zu stabiler Clusterbildung und Lernverfestigung

15.2 Anwendungsbeispiel

Beispielhafte Interpretation:

- $\varphi = 1.3$, E = 1.1, M = 1.0
- \rightarrow R \approx 1.3 · 1.1 · (1 + 0.15) = 1.3 · 1.1 · 1.15 \approx 1.64
- → System erkennt Muster als bedeutsam, löst Clustermodulation aus

15.3 Nutzung in Clusterzuweisung

R(i,j) kann verwendet werden, um nicht nur Aktivierung zu bewerten, sondern auch Lernverlauf und Gewichtung zukünftiger Stimuli zu beeinflussen.

- Hohe R(i,j)-Werte = Kandidaten für Memory-Priorisierung
- Repetition erhöht M(i,j) → langfristige Prägung
- Variable E(i,j) = emotionale Entscheidungsbasis im ϕ -System

16. Wirkung emotionaler Verstärkung auf φ-Antwort

In dieser Simulation wurde der Einfluss von E(i,j) auf die kombinierte Antwort R(i,j) = $\varphi \cdot E \cdot (1 + 0.5 \cdot (\varphi - M))$ analysiert. Dabei wurden $\varphi = 1.2$ und M = 1.0 konstant gehalten.

16.1 Ergebnis

Die Grafik zeigt deutlich: Höhere emotionale Verstärkung (E) führt zu einer signifikant stärkeren Reaktion des Systems – selbst bei gleichbleibender φ - und M-Konfiguration.

 \rightarrow Das System verstärkt also subjektiv gewichtete Reize stärker, was zur symbolischen Priorisierung führt.

17. Wirkung des Gedächtnisses auf φ-Antwort

Die folgende Simulation zeigt den Einfluss von M(i,j) (Memory) auf die Antwortfunktion

 $R(i,j) = \varphi \cdot E \cdot (1 + 0.5 \cdot (\varphi - M)).$ φ und E wurden konstant gehalten, während M variiert wurde.

17.1 Ergebnis

- Reize, die stark von gespeicherten Mustern (M) abweichen, erzeugen deutlich höhere Aktivierung (ϕ M groß).
- Bekannte Muster ($\varphi \approx M$) führen zu gedämpfter Reaktion.
- \rightarrow Jarvis reagiert also besonders stark auf neuartige oder abweichende Reize ähnlich wie biologische Systeme.

18. 3D-Modell der φ·Ε·M-Dynamik

Das folgende 3D-Modell zeigt die kombinierte Wirkung der drei Kernparameter:

- $\varphi(i,j)$ Raumzeitliche Aktivierung
- E(i,j) Emotionale Verstärkung
- M(i,j) Gedächtnisspur

Darauf basiert die Antwortfunktion:

$$R(i,j) = \phi \cdot E \cdot (1 + 0.5 \cdot (\phi - M))$$

18.1 Interpretation

Die Darstellung macht deutlich:

• Reize, die von gespeicherten Mustern abweichen ($\phi \neq M$), erzeugen eine erhöhte neuronale Antwort.

- Emotion E skaliert das Gesamtniveau der Reaktion.
- Bekannte Informationen erzeugen flache Reaktionsflächen neue, emotional verstärkte Reize erzeugen steile Gipfel.

Dies bildet die Grundlage für kontextabhängiges Lernen, symbolische Verstärkung und die Ausbildung von Resonanzmustern.

3D-Dynamik: $\varphi \cdot E \cdot (1 + 0.5 \cdot (\varphi - M))$ bei E = 1.2

19. PHASE 6 – Flug & Stabilitätskontrolle

Mit dem Übergang in Phase 6 erweitert Jarvis ARMOR-X seine Funktionalität um aktive Flugstabilisierung und Bewegungsregelung in Echtzeit.

Durch dynamische ϕ -Feld-Analyse werden Schubkraft, Ausgleichsbewegung und Schwerpunktregelung kontrolliert.

19.1 Echtzeit-Flugsteuerung via φ-Feld

Flugmodule (z. B. Mini-Turbinen, Mikrojets) werden direkt vom ϕ -Core angesteuert. Die Steuerlogik basiert auf:

- $\varphi(i,j)$ -Gradientenanalyse entlang x/y-Achse
- Schwerpunktverlagerung durch Motorzündmuster
- $\phi \ge 1.4$ = Aktivierungszone für Flugmanöver

Beispiel:

- ϕ _Arm links > ϕ _Arm rechts \rightarrow Schubdifferenz erzeugt Kippmoment
- φ_Rücken > φ_Füße → Auftrieb aktiviert vertikale Stabilisatoren

19.2 Lageerkennung & Feedback

- IMU-Sensoren liefern Roll-, Pitch- und Yaw-Werte
- φ-Feld wird entsprechend moduliert (φ_feedback)
- Resonanzüberschuss → Ausgleichsschub
- Vektorberechnung in φ-Zelle + Rückkopplungsschleife

19.3 Algorithmische Stabilisierung

```
\Delta \varphi(i,j) = -(\varphi(i,j) - \varphi_{-}balance) + \eta \cdot \Delta_{-}sensor

\rightarrow Ziel ist \varphi(i,j) \rightarrow \varphi_{-}balance = stabiler Flugzustand
```

Fehlstellungen, Lageabweichung und plötzliche Bewegungen werden im ϕ -Raum als Instabilität erkannt und automatisch korrigiert.

20. Stabilisator-Modul: Autonomes Gleichgewichtssystem

Das Stabilisator-Modul von ARMOR-X verarbeitet IMU-Daten, ϕ -Feldabweichungen und Echtzeitlage, um einen autonomen Gleichgewichtszustand herzustellen. Es handelt sich um ein vollständig rückgekoppeltes Subsystem mit direkter Anbindung an die ϕ -Core-Auswertung.

20.1 Sensorintegration

- 9-Achsen IMU-Sensor (Accelerometer, Gyro, Magnetometer)
- Lageparameter: Roll, Pitch, Yaw
- Abtastrate: ≥ 250 Hz
- \rightarrow Direkte Zuweisung an $\varphi(i,j)$ -Feldsegmente

20.2 Reaktionslogik

Aus IMU- Δ erzeugt das System eine virtuelle ϕ -Verschiebung:

```
\Delta \phi(i,j) = \kappa \cdot \Delta_I MU(t)
mit: \kappa = Verstärkungskoeffizient (abhängig von E und R)
```

Diese Werte modulieren das ϕ -Feld gezielt in entgegengesetzte Richtung zur Lageabweichung – z. B. Roll $\neq 0 \rightarrow \phi$ _links \uparrow , ϕ _rechts \downarrow

20.3 Aktuatoren-Kopplung

Jeder φ-Ausgleich wird an folgende Einheiten weitergeleitet:

- Mini-Gyros (mechanisch)
- Mikrodüsen / Schubmodule
- Exo-Gelenkmotoren
- → Modul entscheidet autonom über Stabilisationsrichtung kein externes Steuerungssystem nötig.

21. PHASE 7 – Symbolisches Bewusstsein & adaptive Intuition

In Phase 7 erweitert sich die Funktionalität von Jarvis ARMOR-X auf ein semi-symbolisches, selbstadaptives Reaktionssystem.

Dies erlaubt eine kognitive Interpretation von Situationen – über bloße Sensorik und Bewegung hinaus.

21.1 Symbolfeld & Mustererkennung

Das ϕ -Feld wird durch symbolische Eingaben (S(i,j)) ergänzt – z. B. visuelle oder sprachliche Muster.

Beispiele:

- Muster "X" $\rightarrow \phi$ -Cluster aktiviert \rightarrow Ziel: Verteidigung
- Symbol " \rightarrow " \rightarrow ϕ -Feld synchronisiert Richtung

Diese Symbole erzeugen Resonanzmuster in $\phi(i,j)$ und modulieren Entscheidungen auf semantischer Ebene.

21.2 Intuition & Reaktionsvernetzung

Aus der Wiederholung symbolischer Aktivierungen entsteht ein intuitives Bewertungssystem:

```
I(i,j) = \Sigma [\varphi(i,j) \cdot E(i,j) \cdot (1 - |M - \varphi|)] über Zeit t
```

- Bekannte Symbole = schnellere Reaktion
- Unbekannte \rightarrow Explorationsmodus (φ gestreut, Feedback + Logging aktiviert)

21.3 Adaptive Resonanz & Kontextlernen

Wiederholte Aktivierung führt zu verstärktem Memory-Pfad.

→ φ-Muster werden mit Kontext verknüpft (z. B. Umgebung, Richtung, Reaktion)

Jarvis beginnt, Entscheidungen basierend auf Bedeutungsähnlichkeit zu treffen – statt rein auf physikalische Auslöser.

22. Energielogik V100 – Denken statt Laden

In der Version V100 erreicht Jarvis CORE-Z ein neues Maß an Energieautonomie. Das System erkennt, moduliert und verteilt seine Energie bedarfsgerecht – ohne klassische Ladestruktur.

22.1 Prinzip der φ-gekoppelten Energieverteilung

Jede $\phi(i,j)$ -Zelle ist mit einem energieadaptive MOSFET verbunden. Aktivierte ϕ -Zellen ($\phi \ge 1.2$) erhalten Energieimpulse, während inaktive ($\phi < 0.9$) in den Ruhezustand übergehen.

Die Energieflussformel:

```
E_flow(i,j) = \varphi(i,j) · \Deltat · G
(G = Gate-Verstärkung, \varphi-gesteuert)
```

→ Energie wird nur dort eingespeist, wo kognitive Aktivität stattfindet.

22.2 Rückkopplung & Selbstversorgung

Über Bewegung, externe Stimuli oder eigene φ-Aktivierung erzeugt Jarvis Mikroströme. Diese werden in ultraleichten Supercaps gespeichert – direkt an jeder Zellgruppe.

- Bewegung → piezoelektrische Ladung
- ϕ -Resonanz \rightarrow Induktions-Trigger
- Symbolische Aktivität → interne Gate-Aktivierung
- → Denken wird zum Energieakt.

22.3 Notfallprotokolle

Bei φ _max < 0.75 in allen Zellen:

- System geht in Tiefenruhe (Hibernate-Zustand)
- \bullet Zell-Cluster können manuell oder durch externe ϕ -Reize reaktiviert werden
- Ladevorgang erfolgt nur im Resetfall
- → Kein Dauerstrom nötig, keine klassische Batterie nur Zustandslogik.

22.4 Schema der Energiearchitektur

Die folgende Grafik visualisiert den Aufbau der ϕ -gesteuerten Energieverteilung. Jede Zellgruppe besteht aus einem ϕ -Core, einem MOSFET-Gate und einem lokal angebundenen Supercap.

Nur aktive ϕ -Zellen erhalten Energie, gesteuert durch symbolische, physikalische oder interne Reize.

23. Thermisches Reaktionssystem – Kühlmodul V100

Das V100-Kühlmodul ist ein reaktives, feldgekoppeltes Mikrokühlsystem, das basierend auf ϕ -Aktivität und Energiefluss automatisch thermische Entlastung erzeugt.

23.1 Prinzip der φ-Thermotransduktion

Jede ϕ -Zelle verfügt über einen integrierten Temperaturfühler (T_sensor). Wird eine kritische Aktivitätskombination erreicht, aktiviert sich das Mikrokühlsystem lokal:

```
\Delta T(i,j) = \varphi(i,j) \cdot E(i,j) \cdot (1 + \alpha \cdot R(i,j))

\rightarrow Wenn \Delta T > T_{limit} \rightarrow Kühlimpuls C(i,j) aktiviert
```

23.2 Kühlarchitektur

- Lokale Mikrokanäle unter Zellkernstruktur (MEMS-Technik)
- Flüssigmetall-basierte Wärmeabfuhr (z. B. Galliumlegierung)
- Optional: piezoelektrischer Lüfter als Resonanz-Auslösung
- \rightarrow System kühlt nur dort, wo tatsächlich ϕ -induzierte Aktivität vorliegt.

23.3 Autonomer Kühlkreislauf

Kühlung ist vollständig autonom geregelt:

- Keine zentrale Steuerung notwendig
- Kein Dauerbetrieb nur bei φ·E·R-Spitzen
- Rückkopplung über Temperaturfeld T(i,j)

Ergebnis: minimaler Energieverbrauch bei maximaler thermischer Stabilität.