Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

Chapter 11 Matrix Multiplication

Outline

- Sequential algorithms
 - Iterative, row-oriented
 - Recursive, block-oriented
- Parallel algorithms
 - Rowwise block striped decomposition
 - Cannon's algorithm

Iterative, Row-oriented Algorithm

Series of inner product (dot product) operations

Performance as *n* Increases

Reason: Matrix B Gets Too Big for Cache

 Computing a row of C requires accessing every element of B

Block Matrix Multiplication

- Replace scalar multiplication with matrix multiplication
- Replace scalar addition with matrix addition

Recurse Until B Small Enough

Comparing Sequential Performance

First Parallel Algorithm

Partitioning

- Divide matrices into rows
- Each primitive task has corresponding rows of three matrices

Communication

- Each task must eventually see every row of B
- Organize tasks into a ring

First Parallel Algorithm (cont.)

- Agglomeration and mapping
 - Fixed number of tasks, each requiring same amount of computation
 - Regular communication among tasks
 - Strategy: Assign each process a contiguous group of rows

Communication of B (1)

Communication of B (2)

Communication of B (3)

Communication of B (4)

Complexity Analysis

- Algorithm has p iterations
- During each iteration a process multiplies
 (n/p) × (n/p) block of A by (n/p) × n block of B: Θ(n³/p²)
- Total computation time: $\Theta(n^3 / p)$
- Each process ends up passing $(p-1)n^2/p = \Theta(n^2)$ elements of B

Isoefficiency Analysis

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(pn^2)$ Isoefficiency relation: $n^3 \ge Cpn^2 \implies n \ge Cp$

$$M(Cp)/p = C^2p^2/p = C^2p$$

This system does not have good scalability

Weakness of Algorithm 1

- Blocks of B being manipulated have p times more columns than rows
- Each process must access every element of matrix B
- Ratio of computations per communication is poor: only 2n/p

Parallel Algorithm 2 (Cannon's Algorithm)

- Associate a primitive task with each matrix element
- Agglomerate tasks responsible for a square (or nearly square) block of C
- Computation-to-communication ratio rises to n/\sqrt{p}

Elements of A and B Needed to Compute a Process's Portion of C

Blocks Must Be Aligned

$$\begin{bmatrix} A_{0,0} \\ B_{0,0} \end{bmatrix} \begin{bmatrix} A_{0,1} \\ B_{0,1} \end{bmatrix} \begin{bmatrix} A_{0,2} \\ B_{0,2} \end{bmatrix} \begin{bmatrix} A_{0,3} \\ B_{0,3} \end{bmatrix} \begin{bmatrix} A_{0,0} \\ B_{0,0} \end{bmatrix} \begin{bmatrix} A_{0,1} \\ B_{1,1} \end{bmatrix} \begin{bmatrix} A_{0,2} \\ B_{2,2} \end{bmatrix} \begin{bmatrix} A_{0,3} \\ B_{3,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{1,0} \\ B_{1,0} \end{bmatrix} \begin{bmatrix} A_{1,1} \\ B_{1,1} \end{bmatrix} \begin{bmatrix} A_{1,2} \\ B_{1,2} \end{bmatrix} \begin{bmatrix} A_{1,3} \\ B_{1,3} \end{bmatrix} \begin{bmatrix} A_{1,1} \\ B_{1,0} \end{bmatrix} \begin{bmatrix} A_{1,2} \\ B_{2,1} \end{bmatrix} \begin{bmatrix} A_{1,0} \\ B_{0,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{2,0} \\ B_{2,0} \end{bmatrix} \begin{bmatrix} A_{2,1} \\ B_{2,1} \end{bmatrix} \begin{bmatrix} A_{2,2} \\ B_{2,2} \end{bmatrix} \begin{bmatrix} A_{2,3} \\ B_{2,3} \end{bmatrix} \begin{bmatrix} A_{2,2} \\ B_{2,0} \end{bmatrix} \begin{bmatrix} A_{2,1} \\ B_{1,3} \end{bmatrix} \begin{bmatrix} A_{2,0} \\ B_{0,2} \end{bmatrix} \begin{bmatrix} A_{2,1} \\ B_{1,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{3,0} \\ B_{3,1} \end{bmatrix} \begin{bmatrix} A_{3,1} \\ B_{3,2} \end{bmatrix} \begin{bmatrix} A_{3,3} \\ B_{3,3} \end{bmatrix} \begin{bmatrix} A_{3,3} \\ B_{3,3} \end{bmatrix} \begin{bmatrix} A_{3,0} \\ B_{0,1} \end{bmatrix} \begin{bmatrix} A_{3,1} \\ B_{1,2} \end{bmatrix} \begin{bmatrix} A_{3,2} \\ B_{2,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{3,0} \\ B_{3,1} \end{bmatrix} \begin{bmatrix} A_{3,1} \\ B_{3,2} \end{bmatrix} \begin{bmatrix} A_{3,2} \\ B_{3,3} \end{bmatrix} \begin{bmatrix} A_{3,3} \\ B_{3,3} \end{bmatrix} \begin{bmatrix} A_{3,0} \\ B_{0,1} \end{bmatrix} \begin{bmatrix} A_{3,1} \\ B_{1,2} \end{bmatrix} \begin{bmatrix} A_{3,2} \\ B_{2,3} \end{bmatrix}$$

Before

After

Blocks Need to Be Aligned

- Each triangle represents a matrix block
- Only same-color triangles should be multiplied

Rearrange Blocks

Block Aij cycles left i positions

Block Bij cycles up j positions

Complexity Analysis

- Algorithm has \sqrt{p} iterations
- During each iteration process multiplies two $(n/\sqrt{p}) \times (n/\sqrt{p})$ matrices: $\Theta(n^3/p^{3/2})$
- Computational complexity: ⊕(n³/p)
- During each iteration process sends and receives two blocks of size $(n / \sqrt{p}) \times (n / \sqrt{p})$
- Communication complexity: $\Theta(n^2/\sqrt{p})$

Isoefficiency Analysis

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(\sqrt{pn^2})$

Isoefficiency relation: $n^3 \ge C \sqrt{pn^2} \implies n \ge C \sqrt{p}$

$$M(C\sqrt{p})/p = C^2 p/p = C^2$$

This system is highly scalable

Summary

- Considered two sequential algorithms
 - Iterative, row-oriented algorithm
 - Recursive, block-oriented algorithm
 - Second has better cache hit rate as n increases
- Developed two parallel algorithms
 - First based on rowwise block striped decomposition
 - Second based on checkerboard block decomposition
 - Second algorithm is scalable, while first is not