Problem

As shown in the figure below, in $\triangle ABC$, D, E are the midpoints of AB, AC, respectively. AB > AC. Take F, a point between DB such that DF = AE. Draw $FH \perp AH$, AH is the angle bisector of $\angle A$. Let H be the feet of the perpendicular to AH from F. FH meets BC at M. Show that BM = MC.

Solution

Extend FH to meet the extension of AC at G. Draw CK//AB. CK meets FG at K. Since CK//AB, $\angle B = \angle MCK$.

Since $FH \perp AH$, and AH is the angle bisector of $\angle A$, $\angle AFH = \angle AGH, AF = AG$. We also know that $\angle BMF = \angle CMK$ (vertical angles). $AF = AG \implies AD + DF = AE + EC + CG$ $\Rightarrow (DF + BF) + DF = AE + AE + CG$ Since DF = AE, (1) becomes: $AE + BF + AE = AE + AE + CG \implies BF = CG$. Since CK//AB, $\angle AFH = \angle AGH = \angle GKC$. Thus CG = CK = BF. Therefore, $\triangle BFM \cong \triangle CKM$ and BM = MC.