2年生に向けた Step Up

1年	_組	氏名
9 年	絽	千名

実施記録

題問	実施日	コメント等	題問	実施日	コメント等
1	/		26	/	
2	/		27	/	
3	/		28	/	
4	/		29	/	
5	/		30	/	
6	/		31	/	
7	/		32	/	
8	/		33	/	
9	/		34	/	
10	/		35	/	
11	/		36	/	
12	/		37	/	
13	/		38	/	
14	/		39	/	
15	/		40	/	
16	/		41	/	
17	/		42	/	
18	/		43	/	
19	/		44	/	
20	/		45	/	
21	/		46	/	
22	/		47	/	
23	/		48	/	
24	/		49	/	
25	/		50	/	

数学力をつけるには「とにかく考えること」が重要である。今までに学んだ知識を使って試行錯誤を繰り返し、失敗と成功を繰り返すことが数学の学びでは大切である。答えは、QR コードを読み取れば確認できるが、安易に解答を見るのではなく、いろいろな試行錯誤をおこなった上で解答を確認してほしい。

以下の問いに答えよ. 【★】

- 以下の問いに答えよ. 【*】 $(1) \ A=a^2-a+1, B=2a^2+a, C=2a-1 \ \text{のとき}, \\ (2B-3C)-3(A-C) \ を計算せよ.$

(2) $(x-y)^2(x+y)^2$ を展開せよ.

(6) 不等式 $\frac{2-5x}{2}+3 \ge \frac{7x-4}{3}$ を解け.

(3) $12x^2 - xy - 6y^2$ を因数分解せよ.

(7) 方程式 |2x+1|=3 を解け.

- (4) |-5|+||3|-|-6|| の値を求めよ.
- (8) $\sqrt{5}$ の整数部分を a, 小数部分を b とする. $\frac{1}{b} \frac{1}{a+b}$ の値を求めよ.

- 2 以下の問いに答えよ. 【**】
 - (1) $x = \sqrt{3} 1$ のとき, y = |x 1| + |x + 1| の値を求めよ.
- (4) 不等式 $1 \le |x+1| \le 4$ を解け.

- (2) $x = \frac{1}{\sqrt{2}-1}$ のとき, $x^2 x + 1$ の値を求めよ.
- (5) 連立不等式 $\begin{cases} \frac{1}{2} \frac{1}{3}x & \geq \frac{5}{6} + \frac{1}{2}x \\ 1.4x 0.8 & < 2.6 \left(\frac{1}{5} 0.6x\right) \end{cases}$

(3) $x = \sqrt{2} + 1$ のとき, $\frac{1}{x^3} + x^3$ の値を求めよ.

- 3 以下の問いに実数範囲で答えよ. 【**】
 - (1) $x^2 3x y^2 y 2$ を因数分解せよ.
- (4) $x^4 x^2 12$ を因数分解せよ.

- (2) $x^2 + xy 2y^2 4x + y + 3$ を因数分解せよ.
- (5) (x+1)(x+2)(x+3)(x+4)-48 を因数分解せよ.

- (3) bc(b-c) + ca(c-a) + ab(a-b) を因数分解せよ.
- (6) $a^4 b^4 a^2 + b^2$ を因数分解せよ.

- 4 以下の問いに答えよ. 【**】
 - (1) $f(x) = ax^2 + bx + 2$ が, f(2) = 4, f(3) = 17 を満たすとき, 定数 a,b の値を求めよ.
- (4) 放物線 $y = -3x^2 + 4x + 7$ を平行移動したもので、 2 点 (1,1), (2,-8) を通る放物線の方程式を求めよ.

(2) $y = x^2 - 6x$ について、頂点の座標を求めて、グラフを描け、

(5) 3点 (-1,1),(1,7),(2,-5) を通る放物線の方程式を求めよ.

(3) $y = \frac{1}{2}x^2 + x + \frac{3}{2}$ について、頂点の座標を求めて、グラフを描け.

5 以下の方程式,不等式を解け.ただし,2次方程式は実数 範囲で解くこと.【**】

$$(1) \ x^2 + 9x + 20 = 0$$

$$(7) \ x^2 + 4x - 12 < 0$$

$$(2) \ 4x^2 - 4x - 3 = 0$$

(8)
$$x^2 - x - 12 \ge 0$$

$$(3) \ 3x^2 - 3x - 4 = 0$$

(4)
$$3(x-2)(x+5) = x^2 + 4x - 25$$

$$(9) \ 2x^2 - 3x + 2 < 0$$

(5)
$$x^4 - 1 = 0$$

$$(10) \ 25x^2 - 40x + 16 > 0$$

(6)
$$x^3 + 1 = 0$$

6 2 次方程式が () 内の条件を満たすように, 定数 *k* の値, またはその範囲を求めよ. 【**】

(1) $x^2 - 4x + k = 0$ (異なる 2 つの実数解を持つ)

(3) $3x^2 - kx - k = 0$ (重解解を持つ)

- (2) $-2x^2 + 3x k = 0$ (実数解を持たない)
- (4) $x^2 kx + 1 = 0$ (異なる 2 つの虚数解を持つ)

7 以下の問いに答えよ. 【***】

- (1) $y = x^2 px + 8 p$ と x 軸の共有点の個数は, p の 値によってどのように変わるか調べよ.
- (2) 2次不等式 $x^2 2(m-1)x + 4m + 9 > 0$ の解が全て の実数になるように, 定数 m の値の範囲を求めよ.

8 以下の問いに答えよ. 【**】

- (1) 放物線 $y = x^2 5x + 7$ と直線 y = -x + k が異なる 2 つの共有点をもつとき, 定数 k の値の範囲を求めよ.
- (3) 放物線 $y = x^2 x$ と直線 y = mx 1 が共有点をもつように、定数 m の値の範囲を求めよ.

- (2) 放物線 $y = x^2 5x + 7$ と直線 y = -x + k が接するとき, 定数 k の値を求めよ.
- (4) 放物線 $y = x^2 2x + 2$ と、直線 y = m(x 1) の共有点の個数は、m の値によってどのように変わるか調べよ.

- **9** 以下の問いに答えよ. 【★★】
 - (1) 2 次関数 $f(x) = ax^2 + bx + c$ が以下の条件を満たすように、 定数 a,b,c の値を定めよ.

$$f(1) = f(-1), \quad f(2) = 2f(1), \quad f(0) = 2$$

(3) $y = 2x^2$ を平行移動して、頂点が y = 2x - 3 上に くるようにすると、この放物線は点 (2,1) を通った. この放物線の方程式を求めよ.

(2) 2 次関数 $y = -x^2 - 6x + 7$ のグラフは, 2 次関数 $y = -x^2 + 4x - 5$ のグラフをどのように平行移動したものか.

10 以下の問いに答えよ. 【***】

- (1) $2 \le x \le 4, -3 < y \le 1$ のとき, 2x 3y のとりうる 値の範囲にある整数値の個数を求めよ.
- (3) 2 次方程式 $x^2 + ax + a^2 4 = 0$ が異符号の解をも つように, a の値の範囲を定めよ.

- (2) 2 次不等式 $x^2 (1+a)x + a < 0$ を満たす整数 x の 値が 2 だけとなるように, 定数 a の値の範囲を定め よ.
- (4) 2 つの 2 次方程式 $x^2 4ax 4a + 3 = 0$, $x^2 + (a 1)x + a^2 = 0$ のうち, 少なくとも一方が実数の解をもつように, 定数 a の値の範囲を定めよ.

11 以下の問いに答えよ. 【**】

- (1) x = -1 のとき最大値 5 をとり、グラフが点 (-2,4) を通るような 2 次関数を求めよ.
- (3) 2 次関数 $y=x^2-3x+c$ $(1 \le x \le 4)$ の最大値が 5 であるように、定数 c の値を定めよ. また、そのと きの最小値を求めよ.

- (2) 2 次関数 $y = -x^2 + ax + a$ の最大値が 3 となるように, 定数 a の値を定めよ.
- (4) 2 次関数 $f(x) = ax^2 ax + b$ (a < 0) の $-1 \le x \le 2$ における最大値が 3, 最小値が -22 であるとき, 定数 a,b の値を求めよ.

12 以下の問いに答えよ. 【***】

- (1) a を定数とする. 2 次関数 $y=x^2-4x+2$ の $0 \le x \le a$ における最大値, 最小値と, それらを与える x の値を求めよ.
- (2) a を定数とする. 2 次関数 $y=x^2-2ax+2$ の $0 \le x \le 3$ における最大値, 最小値と, それらを与える x の値を求めよ.

13 以下の問いに答えよ. 【****】

- (1) $y = -(x^2 2x)^2 + 2(x^2 2x)$ の最大値とそのとき の x の値を求めよ.
- (2) $y = -x^2 + 2ax 3a^2 + 2a + 4$ について、最大値 M を a で表せ、また、M の最大値とそのときの a の値を求めよ.

14 以下の問いに答えよ. 【****】

- (1) x,y が $x \ge 0, y \ge 0, x + 2y = 4$ を満たすとき、 $x^2 + 4y^2$ の最大値と最小値を求めよ.
- (2) 放物線 $y=-x^2+16$ と x 軸で囲まれる図形に内接 する長方形 ABCD について、周の長さの最大値を 求めよ.

15 以下の問いに答えよ. 【****】

- (1) 関数 f(x) = |x(x+2)| について, f(x) = 1 を満た すx の値を全て求めよ.
- (2) $|x-1|+|x+3| \le 5$ を解け.

(3) $\tan \theta = 3$ のとき, $\sin \theta$, $\cos \theta$ の値を求めよ.

(2) $\cos \theta = \frac{1}{4}$ のとき, $\sin \theta$, $\tan \theta$ の値を求めよ.

(4) 直線 y=x と直線 $y=-\sqrt{3}x$ のなす鋭角 θ を求めよ.

$$oxed{17}$$
 $0^{\circ} \le \theta \le 180^{\circ}$ とする. 以下の問いに答えよ. 【**】 (1) $\sin \theta = \frac{1}{\sqrt{2}}$ を満たす θ の値を求めよ.

(5) $\sin \theta < \frac{1}{\sqrt{2}}$ を満たす θ の値の範囲を求めよ.

(2)
$$\cos \theta = \frac{1}{2}$$
 を満たす θ の値を求めよ.

(6) $\sin\theta \ge \frac{\sqrt{3}}{2}$ を満たす θ の値の範囲を求めよ.

(3)
$$\cos \theta = -\frac{1}{\sqrt{2}}$$
 を満たす θ の値を求めよ.

(7) $\cos\theta \le -\frac{1}{2}$ を満たす θ の値の範囲を求めよ.

(4)
$$\tan \theta = \sqrt{3}$$
 を満たす θ の値を求めよ.

(8) $\tan \theta < 1$ を満たす θ の値の範囲を求めよ.

$$(1) \ 2\cos^2\theta + \cos\theta = 0$$

(3)
$$2 - 2\sin\theta - 2\cos^2\theta = 0$$

(2)
$$2\sin^2\theta + \sin\theta - 1 = 0$$

- 19 $0^{\circ} \le \theta \le 180^{\circ}$ とする. 以下の問いに答えよ. 【***】 (1) $\sin \theta + \cos \theta = \frac{1}{2}$ のとき, $\sin \theta \cos \theta$ の値を求めよ.
- (3) $\sin\theta + \cos\theta = \frac{1}{2}$ のとき, $\tan\theta + \frac{1}{\tan\theta}$ の値を求めよ.

(2) $\sin \theta + \cos \theta = \frac{1}{2}$ のとき, $(\sin \theta - \cos \theta)^2$ の値を求めよ.

20 $y = \cos^2 \theta - \sin \theta + 1 \ (0^\circ \le \theta \le 180^\circ)$ について、以下の問いに答えよ. 【* * **】

(1) $x = \sin \theta$ とおいて, y を x の関数で表せ.

(2) y の最大値, 最小値と, そのときの θ の値を求めよ.

- **21** △ABC において, 次のものを求めよ. 【★】
 - (1) $a=5, A=30^{\circ}, B=45^{\circ}$ のとき, b および外接円の 半径 R.
- (4) $a = \sqrt{2}, c = 1 + \sqrt{3}, B = 45^{\circ}$ のとき, b, A

- (2) $a=10\sqrt{3}$, 外接円の半径 R=10 のとき, A.
- (5) $a = \sqrt{3} 1, b = \sqrt{6}, c = 2$ のとき, A, B

- (3) $a=5, b=8, C=60^\circ$ のとき, $\cos B$
- (6) a:b:c=7:5:8 のとき、A

次のような △ABC の面積を求めよ.【★】

(1)
$$b = 3, a = 4, C = 30^{\circ}$$

(4)
$$a = b = 3, c = 4$$

(2)
$$a = \sqrt{2}, c = 3, B = 135^{\circ}$$

(5)
$$a = 2\sqrt{2}, b = \sqrt{3} + 1, c = \sqrt{3} - 1$$

(3)
$$c = 8, b = 6, A = 120^{\circ}$$

| 23 | 以下の問いに答えよ. 【***】

- (1) 円に内接する四角形 ABCD において, AB= 3, BC= 8, CD= 5, ∠BCD= 60° のとき, 四角形 ABCD の面積を求めよ.
- (2) \triangle ABC において, AB= 4, BC= 8, CA= 6 のとき, 内接円の半径 r を求めよ.

 $oxed{24}$ $\triangle {
m ABC}$ において、 $\dfrac{\sin A}{7}=\dfrac{\sin B}{5}=\dfrac{\sin C}{3}$ のとき、以下の問いに答えよ.【**】 (1) A を求めよ.

面積を求めよ.

(2) \triangle ABC が半径 6 の円に内接するとき, この三角形の

25 2 個のサイコロを同時に投げるとき,以下の問いに答え よ. 【**】 (1) 目の和が3の倍数になる確率を求めよ.	(4) 目の最大値が 5 になる確率を求めよ.
(2) 目の積が3の倍数になる確率を求めよ.	(5) 目の最小値が 2 になる確率を求めよ.
(3) 目の差が 3 になる確率を求めよ.	(6)目の積も目の和も3の倍数になる確率を求めよ.

(4) A, B, C の 3 人が順にくじを引く. C が当たる確率を求めよ. ただし, 引いたくじは戻すものとする.
(5) 3 人が順にくじを引く. 引いたくじをもとに戻す場合, 何番目に引けば一番当たりやすいか.
(6) 3 人が順にくじを引く. 引いたくじをもとに戻さない場合, 何番目に引けば一番当たりやすいか.

27 白 5 個, 赤 3 個, 青 2 個の計 10 個の玉が入った袋から, 同時に 3 個の球を取り出す. 以下の問いに答えよ. 【**】 (1) 全て白である確率を求めよ.	(4) 少なくとも 1 つ白が含まれる確率を求めよ.
(2) 全て赤である確率を求めよ.	
	(5) 白と赤が少なくとも1つずつ含まれる確率を求めよ.
(3) 全て異なる色である確率を求めよ.	

28 サイコロを 4 回投げる. 以下の問いに答えよ. 【**】 (1) 4 回とも 1 である確率を求めよ.	(4)4回とも同じ目が出る確率を求めよ.
(2) 3 回だけ 1 が出る確率を求めよ.	
	(5)出た目の和が奇数になる確率.
(3) 少なくとも1回1が出る確率を求めよ.	

一 投げて表のときは $+2$, 裏のときは -1 動く. 【 $\star\star\star$ 】 (1) 3 回投げて原点に戻ってくる確率を求めよ.	(4) 5 回投げたときの P の座標の期待値を求めよ.
(2) 3 回投げて P の座標が 3 である確率を求めよ.	
(3) 5 回投げて P の座標が 3 である確率を求めよ.	

29 原点を出発し, 数直線上を動く点 P について, コインを

30 AとBとCがジャンケンを行う. あいこの場合は, 勝者なしと判定する. 以下の問いに答えよ. 【****】 (1) 1 回ジャンケンを行い, 決着がつかない確率を求めよ.	(4) 3 回ジャンケンを行い, A が 3 勝する確率を求めよ.
(2)1 回ジャンケンを行い, A のみが勝つ確率を求めよ.	(5) 先に 2 勝すればこのゲームを終了する. 3 回目に A のみが勝利し, ゲームが終了する確率を求めよ.
(3) 1 回ジャンケンを行い, A が勝つ確率を求めよ.	

31 以下の問いに答えよ. 【**】

- (1) 3次方程式 $x^3 5x^2 + ax + b = 0$ の 1 つの解が 1+i であるとき、定数 a,b の値と、他の解を全て求めよ.
- (2) 3 次方程式 $x^3+1=0$ の虚数解の 1 つを ω とする. $\omega^2-\omega+1$ の値を求めよ.

(3) 3 次方程式 $x^3+1=0$ の虚数解の 1 つを ω とする. $\omega^{30}+\omega^{20}-\omega^{10}+1$ の値を求めよ.

32 3 点 A(2,5), B(−3,−5), C(−5,a) について, 以下の問いに答えよ. 【**】 (1) 2 点 A, B を通る直線 l の方程式を求めよ.	(4) 三角形 ABD の面積を求めよ.
(2) 3 点 A, B, C が同一直線上にあるように, a の値を 定めよ.	(5)放物線 $y=x^2$ と直線 l の共有点の座標を求めよ.
(3)直線 l と点 $\mathrm{D}(1,0)$ の距離を求めよ.	(6)放物線 $y=x^2$ が直線 l から切り取る線分の長さを求めよ.

33	次の円の方程式を求めよ.	[**]
----	--------------	------

(1) 中心(1,2), 半径3である円

(4) 3点(0,3),(-1,0),(2,-1)を通る円

- (2) 中心 (5,-1) で, 点 (-7,4) を通る円
- (5) 中心が (4,6) で直線 x-y-1=0 に接する円

- (3) 1 つの直径の両端が (-4,1),(3,-3) である.
- (6) 中心が (3,4) で、円 $x^2+y^2=1$ に外接する円

34	以下の問いに答えよ.	(**)
----	------------	------

- (1) $x^2 + y^2 = 25$ 上の点 (4, -3) における接線の方程式を求めよ.
- (4) $(x-1)^2 + (y-2)^2 = 25$ 上の点 (5,-1) における接線の方程式を求めよ.

- (2) $x^2 + y^2 = 4$ 上の点 $(-1, \sqrt{3})$ における接線の方程式を求めよ.
- (5) 点 (5,15) を通り、円 $x^2+y^2=25$ に接する直線の方程式と、その接点を求めよ.

(3) $x^2 + y^2 = 9$ 上の点 (3,0) における接線の方程式を求めよ.

35 円 $C_1: x^2 + y^2 = 9, C_2: x^2 + y^2 - 4x - 2y + 3 = 0$ について、以下の問いに答えよ. 【****】

(1) 円 C_1 と、直線 y=kx+6 の共有点の個数を調べよ.

(2) 2 つの円 C_1, C_2 の位置関係を調べよ.

(3) 2 つの円 C_1, C_2 の交点を通る直線の方程式を求めよ.

(4) 2 つの円 C_1, C_2 の交点と原点を通る図形の方程式を求めよ.

- 36 2 直線 l₁: x + y + 2 = 0, l₂: 3x + 2y 4 = 0 について、以下の問いに答えよ. 【★★★】

 (1) l₁, l₂ の交点と点 (-2,1) を通る直線の方程式を求めよ.

 (2) l₁, l₂ の交点を通り、直線 5x + 3y + 2 = 0 に垂直な直線の方程式を求めよ.
 - (4) 直線 l_1, l_2 と, $l_3: x+2y+a=0$ が 1 点で交わるように定数 a の値を定めよ.

(5) a は, (4) で求めた値とする. l_1, l_2, l_3 のうち, 原点と の距離が最も離れている直線はどれか.

(3) l_1, l_2 の交点を通り、直線 5x + 3y + 2 = 0 に平行な直線の方程式を求めよ.

- **37** xy 平面において、曲線 $y=x^2+1$ 上の点 $P(t,t^2+1)$ から直線 y=x に下ろした垂線 PH の長さを f(t) とする. 以下の問いに答えよ.
 - (1) t の関数 f(t) を求めよ.
 - (2) f(t) の最小値と、そのときの t を求めよ.
 - (3) f(t) を最小とするような P, H の座標を求めよ.

$$oxed{38}$$
 a,b,c,d は実数とする. 以下の不等式を示せ.
$$(1) \ \frac{a^2+b^2}{2} \geqq \left(\frac{a+b}{2}\right)^2$$

(2)
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$

(3)
$$\frac{a^2 + b^2 + c^2 + d^2}{4} \ge \left(\frac{a + b + c + d}{4}\right)^2$$

- 39 xy 平面上の 3 点 A(4,4), B(-1,1), C(2,-2) について, 以下の問いに答えよ.
 - (1) 点 A と点 C を通る直線に関して, 点 B と対称な点の座標を答えよ.
 - (2) 3 点 A, B, C を通る円の方程式を x と y を用いて表せ.
 - (3) 点 B と点 C を通る直線上に点 D がある. \triangle ABD の面積が \triangle ABC の面積の $\frac{1}{2}$ となる点 D の座標を全て求めよ. (4) 点 (1,-1) を通り, \triangle ABC の面積を 2 等分する直線の方程式を x と y を用いて表せ.

- 40 xy 平面において, $kx^2 + ky^2 + x y 4k + 1 = 0$ (k > 0) で表される円 C がある. 以下の問いに答えよ.
 - (1) k の値によらず円 C はある 2 点 A, B を通る. その 2 点を求めよ.
 - (2) 円 C の中心 D と点 $\mathrm{E}(1,5)$ を結ぶ線分 DE の長さが最小になるときの k の値と, そのときの円 C の半径 r を求めよ.

- **41** 実数 x について, $A = x^4 + 4x^3 + 4x^2 + 5$, $B = x^2 + 2x + 2$ とおく. 以下の問いに答えよ.
 - (1) 整式 A を整式 B で割った商と余りを求めよ.
 - (2) Aを Bの 2 次式で表せ.
 - (3) 設問 (2) で求めた式を用いて、 $\frac{A}{B}$ の最小値と、そのときの x の値を求めよ.

- 42 A 君と B 君はそれぞれ、0 から 5 までの数字が 1 つずつ書かれた 6 枚のカードが入った箱を 1 つもっている。2 人は、自分の箱の中から無作為に 3 枚のカードを取り出して得点を競うゲームをする。取り出された 3 枚のカードに 0 が含まれていない場合の得点は 3 枚のカードに書かれた数の平均点とし、0 が含まれている場合は残り 2 枚のカードに書かれた数の合計とする。以下の問いに答えよ。
 - (1) A君, B君の少なくとも一方が0を取り出して、しかも双方とも得点が3点となる確率を求めよ.
 - (2) A 君の得点が、B 君よりも多いときの、A 君の得点が整数ではない確率を求めよ.

- 43 1個のサイコロを3回投げて、以下のルールで各回の得点を決める.
 - 1回目は, 出た目が得点となる.
 - 2回目は、出た目が1回目と同じならば得点は0、異なれば出た目が得点となる.
 - 3回目は、出た目が1回目または2回目と同じならば得点は0、どちらとも異なれば出た目が得点になる.
 - 3回の得点の和を総得点とし、総得点がnとなる確率を p_n とする.
 - (1) 総得点 n の最大値, 最小値と, それらの n に対する確率 p_n を求めよ.
 - (2) p₆ を求めよ.

- $oxedge{44}$ 座標平面上で,x 座標と y 座標が共に整数である点を格子点という.格子点上を次の規則に従って動く点 P を考える.
 - 最初に, 点 P は原点 O にある.
 - 点 P は 1 秒ごとに隣接する格子点に 1 マス移動する. ここで隣接するとは, 例えば (2,3) に対して (1,3),(3,3),(2,2),(2,4) の 4 点のことである.
 - 4 点それぞれ,移動する確率は $\frac{1}{4}$ である. (1) 点 P が最初から 6 秒後に直線 y=x 上にある確率を求めよ.

 - (2) 点 P が最初から 6 秒後に原点 O にある確率を求めよ.

45 連立方程式 $\begin{cases} x^2=yz+7\\ y^2=zx+7 \end{cases}$ を満たす整数の組 (x,y,z) で, $x\leq y\leq z$ を満たすものを全て求めよ. $z^2=xy+7$

46 AとBの2人が次のゲームを行う.

「1 から 18 までの数字が 1 つずつ書かれた 18 個の玉が入った袋がある.袋から玉を 1 個取り出し, 玉の数字が 3 の倍数ならば A に 2 点を加え, それ以外ならば B に 1 点を与える.取り出した玉は袋に戻さずに, この試行を繰り返す.」

- (1) 2点先取した方が勝ちというルールのとき, Aが勝つ確率を求めよ.
- (2) 12 点先取した方が勝ちというルールのとき, A が勝つ確率を求めよ.

- $\boxed{\bf 47}$ $\triangle ABC$ において、 $\angle A$ は直角で、 $\angle B < \angle C$ とし、BC = 2 とする. $\angle B = \theta$ とおくとき、以下の問いに答えよ.
 - (1) 辺 AB, AC の長さ, および \triangle ABC の面積 S を, θ を用いて表せ.
 - (2) \triangle ABC の内接円の半径 r を, θ を用いて表せ.
 - (3) 辺 BC の垂直二等分線が、内接円 O と接するとき、 θ と r の値を求めよ.

48 座標平面上で,不等式

$$2|x-4| + |y-5| \le 3, \ 2||x|-4| + ||y|-5| \le 3$$

が表す領域をそれぞれ A, B とする.

- (1) 領域 A を図示せよ.
- (2) 領域 B を図示せよ.
- (3) 領域 B の点 (x,y) で, x が正の整数, y は整数であって, 自然数 p,q を用いて $x^p=y^q$ と表せるものを全て求めよ.

- 49 次のような競技を考える. 競技者がサイコロを振る. もし、出た目が気に入ればその目を得点とする. そうでなければ、もう 1 回サイコロを振って、2 つの目の合計を得点とすることができる. ただし、合計が 7 以上となった場合は得点は 0 点とする. この取り決めによって、2 回目を振ると得点が下がることもあることに注意しよう.
 - (1) 競技者が常にサイコロを2回振るとすると,得点の期待値はいくらか.
 - (2) 競技者が最初の目が6のときだけ2回目を振らないとすると, 得点の期待値はいくらか.
 - (3) 得点の期待値を最大にするためには、競技者は最初の目がどの範囲にあるときに2回目を振るとよいか.

$$ax^2 + bx + c = 0$$

を考える. 以下の問いに答えよ.

- (1) 2次方程式が異なる 2 つの実数解を持つとき, 積 ac の取りうる値の範囲を求め, 積 ac の各値ごとに可能な a と c の組 (a,c) がそれぞれ何通りあるかを求めよ.
- (2) 2 次方程式が異なる 2 つの有理数解をもつ確率を求めよ. ただし, 一般に自然数 n が自然数の 2 乗でなければ \sqrt{n} は無理数であることを用いてよい.