Arquitectura de Sistemas e Computadores II 2ª Frequência e Exame

Departamento de Informática — Universidade de Évora

12 de Janeiro de 2013

- Os símbolos à esquerda de cada pergunta identificam a prova ou provas a que ela pertence:
 - **a** assinala as perguntas do exame;

 \Diamond assinala as perguntas da $2^{\underline{a}}$ frequência.

• Indique todos os cálculos efectuados

Desempenho

1. [2 valores] Durante a execução de um programa num dado computador, são executadas 100 milhões de instruções, com a sequinte distribuição e os CPIs indicados:

Tipo de instrução	Aritméticas	Acesso à memória	Saltos condicionais
%	50	30	20
CPI	1	2	3

Qual tempo de CPU necessário para este programa se a frequência do relógio for 2 GHz?

Implementação MIPS monociclo

2. Pretende-se acrescentar a instrução jr (jump register) à implementação MIPS monociclo. A instrução jr é uma instrução tipo-R com um único argumento 'jr rs' e com formato:

	0	rs	0	8
bits	6	5	15	6

O efeito desta instrução é transferir a execução para a instrução cujo endereço está no registo rs.

- (a) [2 valores] Quais das unidades funcionais existentes serão usadas para a execução desta instrução e que unidades funcionais é necessário acrescentar?
- (b) [2 valores] Que sinais de controlo é necessário acrescentar e quais os valores que os vários sinais de controlo deverão ter para a execução desta instrução?

(Não precisa de indicar o valor de ALUOp, basta dizer qual será a função da ALU na execução desta instrução.)

Se considerar necessário fazer alguma alteração ao caminho de dados, apresenta-a na Figura 1.

Pipeline MIPS de 5 andares

3. [2 valores] Pretende-se executar o código MIPS seguinte de modo a que o seu efeito seja exactamente o que teria se fosse executado na implementação monociclo do processador. No fim da execução do código, os valores nos registos \$4, \$5 e \$6 não são importantes.

1.		or	\$2,	\$0 ,	\$0
2.		or	\$4,	\$0 ,	\$0
3.	início:	beq	\$4,	\$9,	fim
4.		lw	\$5,	0(\$6	3)
5.		add	\$2,	\$2,	\$5
6.		${\tt addiu}$	\$6,	\$6,	4
7.		addi	\$4,	\$4,	1
8.		beq	\$0 ,	\$0 ,	início
9.	fim:				

Altere o código apresentado, reordenando as instruções e, se considerar útil, modificando o offset da instrução de acesso à memória, de modo a eliminar o maior número possível de atrasos durante a sua execução no pipeline com forwarding, com decisão dos saltos condicionais no andar ID e com um branch delay slot.

Cache

Considere que uma palavra tem 32 bits e que as palavras seguintes são acedidas pela ordem indicada:

- ♣ ♦ 4. [2,5 valores] Simule o funcionamento de uma cache direct-mapped com 8 posições e blocos de 2 palavras para a sequência de acessos indicada. Assuma que a cache inicialmente está vazia e, para cada palavra acedida, indique o número do bloco a que pertence, a posição que vai ocupar na cache e se há um hit ou um miss. Qual a miss rate verificada?
- ♣ ♦ 5. [2 valores] Se os endereços do sistema forem de 16 bits, qual o tamanho total da cache da pergunta 4 (em bits)? Justifique todos os cálculos efectuados.
 - ♦ 6. [1,5 valores] Calcule o tempo médio de acesso à memória para a sequência apresentada, sabendo que o hit time é de 1 ciclo e a miss penalty é de 40 ciclos. (Se não respondeu à pergunta 4, utilize o valor 50% para a miss rate.)
 - ♦ 7. [2,5 valores] Simule o funcionamento, para a sequência de acessos indicada, de uma cache 2-way set associative, com blocos de 1 palavra, capacidade para 8 palavras e usando a estratégia LRU na substituição de blocos. Assuma que a cache inicialmente está vazia e, para cada palavra acedida, indique o índice da posição da cache que irá ocupar, se há um hit ou um miss e, quando aplicável, o bloco que será substituído.

Memória virtual

- ♣ ♦ 8. [2 valores] Descreva o que acontece num processador MIPS quando é acedido um endereço virtual correspondente a uma página que não se encontra presente na memória física.
 - \diamond 9. [2 valores] Considere um sistema com páginas de 64 kB e em que os endereços virtuais e físicos têm 24 bits. Qual será o endereço físico (em hexadecimal) correspondente ao endereço virtual 04 83 7C₁₆ se o conteúdo da tabela de páginas do programa for:

	Pág.	física
0	3	32
1	:	2
2	!	9

	Pág. física
3	10
4	16
5	7

	Pág. física
6	2
7	DISCO
8	13

♣♦ 10. [2 valores] Qual o tempo médio necessário para transferir uma página com 4096 bytes para memória secundária, se esta residir num disco magnético com as seguintes características:

Velocidade	Seek time médio	Taxa de transferência	Latência do controlador
$6000\mathrm{rpm}$	$10\mathrm{ms}$	$100\mathrm{MB/s}$	$20\mu\mathrm{s}$

Se a frequência do relógio for 1 GHz, de quantos ciclos de relógio necessita a transferência de uma página, em média?

Multiprocessamento

- ♣ ♦ 11. Um programa corre num processador em 10 s. Se a parte sequencial do programa demorar 100 ms, qual o ganho de desempenho que se obtém usando 11 processadores:
 - (a) [2 valores] Se o trabalho for distribuído igualmente por todos?
 - (b) [1,5 valores] Se um dos processadores ficar com 10% do trabalho?
 - ♦ 12. [2 valores] Num multiprocessador de memória partilhada é executado um programa paralelo, sendo as instruções seguintes executadas no processador indicado:

Processador 1	Processador 2	Processador 3
x = 5;	y = x * 2;	z = x + 4;

Se, inicialmente, o valor de ${\tt x}$ for 2, quais as combinações de valores possíveis para ${\tt x}$, ${\tt y}$ e ${\tt z}$ depois da execução daquelas instruções?

Nome: _______ Número: ______

Figura 1: Diagrama de blocos da implementação MIPS monociclo