Clustering: Unsupervised Learning

The k-means clustering algorithm

In the clustering problem, we are given a training set $\{x^{(1)}, \ldots, x^{(m)}\}$, and want to group the data into a few cohesive "clusters." Here, $x^{(i)} \in \mathbb{R}^n$ as usual; but no labels $y^{(i)}$ are given. So, this is an unsupervised learning problem.

- 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every i, set

$$c^{(i)} := \arg\min_{j} ||x^{(i)} - \mu_{j}||^{2}.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)} = j\}}.$$

}

K-means Clustering - continued

k is the number of clusters we want to find and is a parameter of the algorithm

 μ_j is the current centroid of cluster j. It is the current best guess for the position of the center of the cluster

The inner-loop of the algorithm repeatedly carries out two steps: (i) "Assigning" each training example $x^{(i)}$ to the closest cluster centroid μ_j , and (ii) Moving each cluster centroid μ_j to the mean of the points assigned to it.

K-means in Action

Training examples are shown as dots, cluster centroids are shown as crosses.

Gaussians – A Quick Review

Unit variance Gaussian

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$E[X] = 0$$

$$Var[X] = 1$$

$$H[X] = -\int_{x=-\infty}^{\infty} p(x) \log p(x) dx = 1.4189$$

Bivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
 Then define $X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

Where the Gaussian's parameters are...

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{pmatrix}$$

Where we insist that Σ is symmetric non-negative definite

Bivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
 Then define $X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

Where the Gaussian's parameters are...

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{pmatrix}$$

It turns out that $E[X] = \mu$ and $Cov[X] = \Sigma$.

Multivariate Gaussian distributions

• Gaussian distribution of a random vector \mathbf{x} in \mathbb{R}^d :

$$\mathcal{N}\left(\mathbf{x};\,\mu,\boldsymbol{\Sigma}\right) \;=\; \frac{1}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right)$$

• The $\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}$ factor ensures it's a pdf (integrates to one).

Multivariate Gaussians: intuition

$$\mathcal{N}\left(\mathbf{x}; \mu, \mathbf{\Sigma}\right) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)\right)$$

- This is the joint density of x₁,...,x_d.
- density falls off exponentially as a function of distance to the mean $||\mathbf{x} \mu||$;
- the covariance matrix Σ determines the shape of the density;

- The higher d the faster p(x) falls off.
- The determinant $|\Sigma|$ measures the "spread" (analogous to σ^2).

Other Shapes:

Clustering: Unsupervised Learning

we are given a training set $\{x^{(1)},\dots,x^{(m)}\}$, $x^{(i)}\in\mathbb{R}^n$, No Labels with the x's

model the data by specifying a joint distribution $p(x^{(i)}, z^{(i)}) = p(x^{(i)}|z^{(i)})p(z^{(i)})$ z's missing labels and parameter ϕ_j gives $p(z^{(i)} = j)$ $\sum_{j=1}^k \phi_j = 1$

 $z^{(i)}|z^{(i)}=j\sim \mathcal{N}(\mu_j,\Sigma_j)$, K is number of values that the $z^{(i)}$'s can take on

This is called the mixture of Gaussians model.

 $z^{(i)}$'s are latent random variables, meaning that they're hidden/unobserved.

The parameters of our model are thus ϕ , ϕ and Σ .

Assuming we know the labels:

likelihood =
$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{m} \log p(x^{(i)}|z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi).$$

MLE for Gaussian Mixture Model

$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{m} \log p(x^{(i)}|z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi).$$

Maximizing this with respect to ϕ , μ and Σ gives the parameters:

$$\phi_{j} = \frac{1}{m} \sum_{i=1}^{m} 1\{z^{(i)} = j\},$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} 1\{z^{(i)} = j\}x^{(i)}}{\sum_{i=1}^{m} 1\{z^{(i)} = j\}},$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{m} 1\{z^{(i)} = j\}(x^{(i)} - \mu_{j})(x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} 1\{z^{(i)} = j\}}$$

EM for Gaussian Mixture Model

(E-step) For each i, j, set

$$w_j^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)$$

(M-step) Update the parameters:

$$\phi_{j} := \frac{1}{m} \sum_{i=1}^{m} w_{j}^{(i)},$$

$$\mu_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}},$$

$$\Sigma_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{j}^{(i)}}$$

EM Continued

In the E-step, we calculate the posterior probability of our parameters the $z^{(i)}$'s, given the $x^{(i)}$ and using the current setting of our parameters. I.e., using Bayes rule, we obtain:

$$p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma) = \frac{p(x^{(i)} | z^{(i)} = j; \mu, \Sigma) p(z^{(i)} = j; \phi)}{\sum_{l=1}^{k} p(x^{(i)} | z^{(i)} = l; \mu, \Sigma) p(z^{(i)} = l; \phi)}$$

Here, $p(x^{(i)}|z^{(i)}=j;\mu,\Sigma)$ is given by evaluating the density of a Gaussian with mean μ_j and covariance Σ_j at $x^{(i)}$; $p(z^{(i)}=j;\phi)$ is given by ϕ_j , and so on. The values $w_j^{(i)}$ calculated in the E-step represent our "soft" guesses for the values of $z^{(i)}$

Gaussiar Mixture Example Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

