MPC with Casadi/Python

Michael Risbeck

June 10, 2015

What's in mpc-tools-casadi?

A Python package: mpctools¹

- You should put the mpctools folder somewhere on your Python path.
- In Python, use import sys; print sys.path to see what folders are on your path.

A cheatsheet (in the doc folder).

- Should get you started writing your own code.
- Compares plain CasADi vs. CasADi + mpctools.

A bunch of example files, e.g.,

- nmpcexample.py: Example of linear vs. nonlinear MPC.
- cstr_startup.py: startup and a setpoint change (with no disturbances) for the CSTR system from Example 1.11.

Michael Risbeck MPC with Casadi/Python June 10, 2015 2 / 16

¹See install.pdf for detailed installation instructions.

Why did we write this code?

- We plan to solve nonlinear MPC problems.
- CasADi is more robust than our mpc-tools
- However, setting up an MPC problem in CasADi takes a fair bit of code
- Everyone copy/pasting their own code is bad.
- A simpler interface means we (and others) can save a lot of time.

From official CasADi Examples

```
# For all collocation points: eq 10.4 or 10.17 in Biegler's book
# Construct Lagrange polynomials to get the polynomial basis at
# the collocation point
for j in range(deg+1):
    I. = 1
    for i2 in range(deg+1):
        if j2 != j:
            L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2])
    lfcn = SXFunction([tau],[L])
    lfcn init()
    # Evaluate the polynomial at the final time to get the
    # coefficients of the continuity equation
    lfcn.setInput(1.0)
    lfcn.evaluate()
    D[j] = lfcn.getOutput()
    # Evaluate the time derivative of the polynomial at all
    #collocation points to get the coefficients of the
    #continuity equation
    tfcn = lfcn.tangent()
    tfcn.init()
    for j2 in range(deg+1):
        tfcn.setInput(tau_root[j2])
        tfcn_evaluate()
        C[j][j2] = tfcn.getOutput()
```

We don't want everyone writing this themselves!

Python Basics

For our purposes Python+Numpy isn't that much different from Octave/ Matlab .

Octave/MATLAB	Python+Numpy
A = zeros(3,2);	A = np.zeros((3,2))
x = ones(2,1); %2D.	x = np.ones((2,)) #1D.
y = A*x;	y = A.dot(x)
z = y.^2; % Elementwise.	z = y**2 # Elementwise.
A(1,1) = 2; % One-based.	A[0,0] = 2 # Zero-based.
A(2,:) = [3,4];	A[1,:] = np.array([3,4])
s = struct('field',1);	s = {"field" : 1}
<pre>disp(s.field);</pre>	<pre>print s["field"]</pre>

General Tips

- Remember that indexing is 0-based.
- Use NumPy's array instead of matrix.
 - ullet Despite what Octave/MATLAB says, everything is *not* a matrix of doubles
 - Have to use A.dot(x) instead of A*x
 - However, indexing is MUCH easier with arrays
- Use bmat([[A,B],[C,D]]).A to assemble matrices from blocks.
 - ullet Equivalent to [A, B; C, D] in Octave/MATLAB
 - Trailing .A casts back to array type from matrix
- Use scipy.linalg.solve(A,b) to compute $A^{-1}b$.

Start by defining the system model as a Python function.

```
def ode(x,u,d):
    # Grab the states, controls, and disturbance.
    [c, T, h] = x[:Nx]
    [Tc, F] = u[:Nu]
    [FO] = d[:Nd]
    # Now create the right-hand side function of the ODE.
    rate = k0*c*np.exp(-E/T)
    dxdt = \Gamma
        F0*(c0 - c)/(np.pi*r**2*h) - rate,
        F0*(T0 - T)/(np.pi*r**2*h)
        - dH/(rho*Cp)*rate
        + 2*U/(r*rho*Cp)*(Tc - T),
        (F0 - F)/(np.pi*r**2)
    return np.array(dxdt)
```

System Simulation

The nonlinear system can be simulated using CasADi integrator objects with a convenient wrapper.

Calls to LQR and LQE

The functions dlqr and dlqe are also provided in mpc-tools-casadi.

Octave/MATLAB

CasADi/Python

Octave/MATLAB

```
for i = 1:ntimes
 % Take plant measurement.
 v(:,i) = C*x(:,i) + v(:,i):
 % Update state estimate with measurement.
 ev = v(:,i) - C*xhatm(:,i) -Cd*dhatm(:,i):
 xhat(:,i) = xhatm(:,i) + Lx*ev:
 dhat(:,i) = dhatm(:,i) + Ld*ey;
 % Steady-state target.
 H = [1 \ 0 \ 0; \ 0 \ 0 \ 1];
 G = [eve(n)-A, -B; H*C, zeros(size(H,1), m)];
 qs = G\[Bd*dhat(:,i); ...
     H*(target.vset-Cd*dhat(:.i))]:
 xss = qs(1:n):
 uss = qs(n+1:end):
 % Regulator.
 u(:,i) = K*(xhat(:,i) - xss) + uss;
 if (i == ntimes) break; end
 % Simulate with nonlinear model.
 t = [time(i); mean(time(i:i+1)); time(i+1)];
 z0 = x(:,i) + zs; F0 = p(:,i) + Fs;
 Tc = u(1,i) + Tcs; F = u(2,i) + Fs;
 [tout, z] = ode15s(@massenbal, t, z0, opts);
 x(:,i+1) = z(end,:)' - zs;
 % Advance state estimate.
 xhatm(:,i+1) = A*xhat(:,i)
     + Bd*dhat(:,i) + B*u(:,i);
 dhatm(:,i+1) = dhat(:,i);
end
```

Python + Numpy

```
for n in range(Nsim + 1):
    # Take plant measurement.
    v[n,:] = C.dot(x[n,:]) + v[n,:]
    # Update state estimate with measurement.
    err[n,:] = (v[n,:] - C.dot(xhatm[n,:])
        - Cd.dot(dhatm[n.:1))
    xhat[n.:] = xhatm[n.:] + Lx.dot(err[n.:])
    dhat[n.:] = dhatm[n.:] + Ld.dot(err[n.:])
    # Make sure we aren't at the last timestep.
    if n == Nsim: break
    # Steady-state target.
    rhs = np.concatenate((Bd.dot(dhat[n.:]),
        H.dot(ysp[n,:] - Cd.dot(dhat[n,:]))))
    gsp = linalg.solve(G.rhs) # i.e. G\rhs.
    xsp = qsp[:Nx]
    usp = qsp[Nx:]
    # Regulator.
    u[n,:] = K.dot(xhat[n,:] - xsp) + usp
    # Simulate with nonlinear model.
    x[n+1.:] = cstr.sim(x[n,:] + xs,
        u[n,:] + us, d[n,:] + ds) - xs
    # Advance state estimate.
    xhatm[n+1,:] = (A.dot(xhat[n,:])
        + Bd.dot(dhat[n,:]) + B.dot(u[n,:]))
    dhatm[n+1,:] = dhat[n,:]
```


What can we do with mpc-tools-casadi?

- Discrete-time linear MPC
- Discrete-time nonlinear MPC
 - Explicit models
 - Runge-Kutta discretization
 - Collocation
- Discrete-time nonlinear MHE
 - Explicit models
 - Runge-Kutta discretization
 - Collocation
- Basic plotting function
- Example scripts
 - Linear
 - Solution of linear as nonlinear
 - Periodic linear
 - Example 2-8
 - Simple collocation
 - Example 1-11

Example: Van der Pol Oscillator

For this problem, nonlinear MPC performs slightly better.

- The computation isn't much more time-consuming because of the power of Casadi.
- The problem isn't difficult to set up because of mpc-tools-casadi.

More Complicated Example

Using mpc-tools-casadi, we can replace the LQR and KF from Example 1.11 with nonlinear MPC and MHE.

- cstr_startup.py shows basic structure and a setpoint change.
- cstr_nmpc_nmhe.py shows steady-state target finding and NMHE.
- See the cheatsheet for important functions and syntax.

cstr_startup.py

Here, nonlinear MPC knows to be less aggressive.

What can't we do yet?

- True continuous-time formulation
 - Continuous-time models with explicit time dependence are not supported
 - Quadrature for continuous-time objective function is available via collocation
 - DAE systems are possible in principle
- Quality guess generation
 - Solve sequence of smaller problems
 - Use as initial guess for large problem
 - Must do "by hand"