背景介绍 1

非线性优化中 Lagrange 方法在安全强化学习中的应用

西安交通大学,人工智能学院 吴天阳^a,郭涵伟^b 4124136039^a,3124136019^b

1 背景介绍

1.1 数学记号

定义 1 (Markov Decision Process, MDP). 设 $\mathcal{M} = \{S, A, \mathbb{P}, r, \mu, \gamma\}$,其中

- · S 为有限状态集合,
- · A 为有限动作集合,
- $\mathbb{P}(s'|s,a): S^2 \times A \rightarrow [0,1]$ 为状态转移概率分布,
- $\mu(s): S \to [0,1]$ 为初始状态分布,
- $r(s): S \to \mathbb{R}$ 为奖励函数,
- $\gamma \in (0,1)$ 为折扣系数.

将 M 称为 Markov 决策过程, 简称为 Markov 过程.

设 $\pi(a|s): A \times S \to [0,1]$ 为参数化策略函数,表示在状态 s 下动作 a 执行的概率大小. 在深度强化学习中,我们通常会使用深度神经网络近似策略函数 π ,因此通常也记为 π_{θ} 表示参数化的策略函数.

下面我们分别给出强化学习 (Reinforcement Learning, RL) 和安全强化学习 (Safe Reinforcement Learning, Safe RL) 中优化目标.

强化学习优化目标:设 $\tau := (s_0, a_0, s_1, \cdots)$ 表示一段轨迹, $\tau \sim \pi$ 表示基于策略 π 采样得到的 τ , 满足 $s_0 \sim \mu$, $a_t \sim \pi(\cdot|s_{t-1})$, $s_{t+1} \sim \mathbb{P}(\cdot|s_t, a_t)$. 记 $R(\tau) = \sum_{t=0}^{\infty} \gamma^t r(s_t)$ 表示折后回报,则强化学习的优化目标为最大化折后回报,即

$$\max_{\pi} \mathcal{J}^{R}(\pi) := \mathbb{E}_{\tau \sim \pi}[R(\tau)] = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}) \right]$$
 (1.1)

安全强化学习优化目标: 设 $C_1, \dots, C_m : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ 为 m 个成本函数 (Cost function), $d_1, \dots, d_m \in \mathbb{R}$ 为 m 个成本限制 (Cost limit), 成本函数的折后回报为

$$\mathcal{J}^{C_i}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t C_i(s_t, a_t, s_{t+1}) \right]$$
 (1.2)

则安全强化学习的优化目标为

$$\max_{\pi} \mathcal{J}^{R}(\pi)$$
s.t. $\mathcal{J}^{C_{i}}(\pi) \leqslant d_{i}, \quad (i = 1, \dots, m)$ (1.3)

背景介绍 2

1.2 Lagrange 对偶

考虑如下具有一般性的最优化问题,也称原始问题 (Primal problem)

$$\min_{x} f(x)$$

$$s.t. \quad h_i(x) \leq 0, \quad (i = 1, \dots, m),$$

$$l_j(x) = 0, \quad (j = 1, \dots, r).$$

$$(1.4)$$

定义其对应的 Lagrange 对偶形式为

$$\mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v}) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j l_j(x)$$
(1.5)

其中 $u \in \mathbb{R}^m$, $v \in \mathbb{R}^r$ 中的每个维度上的分量被成为 Lagrange 乘子.

引理 1. 对于任何满足 (1.4) 中约束的 x, 有 $f(x) = \max_{u_i \ge 0, v_j} \mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v})$, 并且右式取到最大值, 当且仅当, $u_i h_i(x) = 0, (i = 1, \dots, m)$.

证明.
$$\forall x$$
 满足式 (1.4) 中约束条件, $\forall u_i \geq 0$,有 $\mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v}) = f(x) + \sum_{i=1}^m u_i h_i(x) \leq f(x)$. 当且仅当, $u_i h_i(x) = 0$, $(i = 1, \dots, m)$ 时, $\mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v})$ 取到最大值.

引理 2. 设 f^* 为原始问题最优解,则 $f^* = \min_{\substack{x \ u_i \geqslant 0, v_i}} \max_{\substack{u_i \geqslant 0, v_i}} \mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v}).$

证明. 由引理 (1) 可知,只需证 \min_x 中取到的 x 满足式 (1.4) 中的约束条件. 假设存在 x 不属于可行域中,即存在 $h_{i_0}(x_0)>0$ 或 $l_{j_0}(x_0)\neq 0$,则当 $u_{i_0}\to\infty$ 或 $v_{j_0}h_{j_0}(x_0)\to\infty$ 时, $\max_{u_i\geqslant 0,v_j}\mathcal{L}(x,\boldsymbol{u},\boldsymbol{v})\to\infty$,与 f^* 存在矛盾,故原命题成立.

定义 2 (对偶问题). 设 $\theta_d(\boldsymbol{u}, \boldsymbol{v}) = \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v})$, 则原始问题的对偶问题为

$$g^* = \max_{u_i \geqslant 0, v_j} \theta_d(\boldsymbol{u}, \boldsymbol{v}) = \max_{u_i \geqslant 0, v_j} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v})$$
(1.6)

注意到 $\theta_d(\boldsymbol{u},\boldsymbol{v})$ 是关于 $\boldsymbol{u},\boldsymbol{v}$ 的仿射函数且为逐点下确界(由 \mathcal{L} 定义不难看出),因此 θ_d 为凹函数,故求解 g^* 属于凸优化问题.

命题 1 (弱对偶性). 上述定义的 f^*, g^* 满足弱对偶性 $g^* \leq f^*$.

证明. 设 $x^* \in \mathbb{R}$ 为 f^* 取到时对应的值, $u^* \in \mathbb{R}^m$, $v^* \in \mathbb{R}^r$ 为 g^* 取到时对应的值, 则

$$g^* = \max_{u_i \geqslant 0, v_j} \min_{x} \mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v}) = \min_{x} \mathcal{L}(x, \boldsymbol{u}^*, \boldsymbol{v}^*) \leqslant \mathcal{L}(x^*, \boldsymbol{u}^*, \boldsymbol{v}^*)$$

$$\leqslant \max_{u_i \geqslant 0, v_j} \mathcal{L}(x^*, \boldsymbol{u}, \boldsymbol{v}) = \min_{x} \max_{u_i \geqslant 0, v_j} \mathcal{L}(x, \boldsymbol{u}, \boldsymbol{v}) = f^*$$
(1.7)

Lagrange 对偶问题转换通常是消去约束条件的方法,一般情况下我们不会讨论 $g^* = f^*$ 的情况,而通过梯度下降的方法求解 x,并在迭代过程中,将系数 u 逐渐放大,从而将 x 限制到可行域中.

П

1.3 Lagrange 方法

我们将上述的 Lagrange 对偶方法与安全强化学习结合,对安全强化学习优化目标 (1.3) 转化为 Lagrange 对偶问题

$$\min_{\lambda_i \ge 0} \max_{\pi} \left[\mathcal{J}^R(\pi) - \lambda_i (\mathcal{J}^{C_i}(\pi) - d_i) \right], \quad (i = 1, \dots, m)$$
(1.8)

该问题为无约束的强化学习问题,因此可以使用任何强化学习算法解决,通常强化学习算法会基于当前与环境的交互,估计得到状态对应的折后回报期望,从而优化 π 使其最大化折后回报,因此我们只需要将 $-\lambda_i(\mathcal{J}^{C_i}(\pi)-d_i)$ 项加入到之前的折后回报 $\mathcal{J}^R(\pi)$ 中,使用任何强化学习算法对 π 进行更新,若新的 π 不满足约束条件,则增大 λ_i .

以一个约束条件 C 为例,记第 t 次迭代的成本误差为 $e_t = \mathcal{J}^C(\pi_t) - d$,下面给出一种最简单的调整 λ 的方法

$$\lambda_{t+1} = \max\left(\lambda_t + \eta e_t, 0\right) \tag{1.9}$$

其中 η_i 为 λ_i 对应的学习率.

这里的 Lagrange 乘子更新策略可以更加复杂,例如使用 PID(Proportion Integration Differentiation) 控制算法:

$$\lambda_{t+1} = \lambda_t + K_p e(t) + K_i \int e(t) dt + K_d \frac{de(t)}{dt}, \qquad (连续形式)$$

$$\lambda_{t+1} = \lambda_t + K_p e(t) + K_i \sum_{n=0}^t e(t) + K_d \left(\mathcal{J}^C(\pi_t) - \mathcal{J}^C(\pi_{t-1}) \right). \qquad (离散形式)$$

具体实现中通常会用指数平滑 (Exponential Moving Average, EMA) 代替 e(t) 和 $\mathcal{J}^C(\pi_t)$.

2 实验步骤与结果分析

Safety Gymnasium是在MuJoCo(机器人仿真环境)上加入成本函数的可视化,我们仅考虑其中两个包含速度限制的环境

环境名称	速度阈值	状态维度	动作维度
SafetyAntVelocity-v1	2.6222	27	8
SafetyHumanoidVelocity-v1	1.4149	376	17

表 1: 使用的两个环境的参数

3 结论与讨论