매트랩인덱싱

만든이: (오지게) 게으른 맽랩

같이 보면 좋은 곳: https://lazymatlab.tistory.com/28

행렬이란?

• 1차 연립 방정식을 좀 더 간단하게 써보자.

$$\left\{egin{array}{l} x+2y-4z=5 \ 2x+y-6z=8 \ 4x-y-12z=13 \end{array}
ight.$$

$$\begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -6 \\ 4 & -1 & -12 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 13 \end{bmatrix}$$

3×3 행렬

3×1 행렬 3×1 행렬 (벡터) (벡터)

$$2x + y + z = 1$$
$$5x - y + 7z = 0$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 5 & -1 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

2×3 행렬

(벡터)

• 1개 이상의 수, 식, 기호 등을 사각형의 배열로 나열한 것

행렬: 수학 vs 매트랩

- 매트랩에서는 모든 것이 행렬이다.
 - 순수 스칼라는 없다.
 - 모든 자료형에 size와 length를 쓸 수 있다.

tip1. 매트랩에서...

- array와 matrix는 같은 말
- scalar는 vector의 부분집합
- vector는 matrix의 부분집합
- scalar ⊂ vector ⊂ matrix

tip2. M×M: square matrix tip3. 3차원? 4차원? N차원?

값	용어	수학에서	매트랩에서
100	스칼라	값 1개	1×1 행렬
$\begin{bmatrix} 3 & 9 & 17 \end{bmatrix}, \begin{bmatrix} 5 \\ 8 \\ 13 \end{bmatrix}$	벡터	1×N 벡터 (행벡터) N×1 벡터 (열벡터)	1×N 행렬 (행벡터) N×1 행렬 (열벡터)
$\begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -6 \\ 4 & -1 & -12 \end{bmatrix}$	행렬	M×N 행렬	M×N 행렬

행렬을 만드는 방법 1 – 모든 원소를 직접 입력

```
a = [1,2,3,4];
b = [5 6 7 8];
c = [1,2,3; 4,5,6; 7,8,9];
d = [1 10 100
     2 20 200
     3 30 300];
e = [];
```

- 변수명 = [값1, 값2, 값3; 값4, 값5, 값6];
 - 값의 구분은 빈칸, 컴마 모두 가능 (가독성?)
 - 빈 행렬:[]
- 새로운 행 시작: 엔터 또는 세미콜론
 - 주의: 행이 너무 길어질 땐? → ...를 이용
 - 이때 새로운 행이 시작되는 것이 아님

- 명령창에서 입력하다가 실수했을 때?
 - ctrl+c
 - 대부분의 "취소"에 해당하는 단축키

행렬을 만드는 방법 2 – 콜론 연산자

$$a1 = 1:10;$$
 \Rightarrow $a1 = [1 2 3 4 5 6 7 8 9 10]$

$$a2 = 1:2:9;$$
 \Rightarrow $a2 = [1 3 5 7 9]$

$$b1 = 10:-1:5;$$
 \rightarrow $b1 = [1098765]$

$$b2 = 10:5;$$
 \Rightarrow $b2 = []$

$$c1 = 5:5;$$
 \rightarrow $c1 = 5$

$$c2 = 5:10:5;$$
 \rightarrow $c2 = 5$

$$d = 1:10:100;$$
 \rightarrow $d = [1 11 21 ... 91]$

- 변수명 = 시작값:간격:끝값
 - 간격은 생략하면 1
 - 음수 간격도 가능
 - 시작값>끝값이고 간격>0이면
 → 빈 행렬
 - 시작값<끝값이고 간격<0이면
 → 빈 행렬
 - 끝값에 도달할 수 없으면
 → 끝값 전 마지막 값까지

year = 1984:2:1996

→ year = [1984 1986 1988 1990 1992 1994 1996]

행렬을 만드는 방법 3 – linspace

- a1 = linspace(1,10,10); \rightarrow a1 = [1 2 3 4 5 6 7 8 9 10]
- a2 = linspace(1,9,5); \Rightarrow a2 = [1 3 5 7 9]
- a3 = linspace(1,100); \Rightarrow a3 = [1 2 3 ... 99 100]
- b1 = linspace(9,1,5); \Rightarrow b1 = [9 7 5 3 1]
- b2 = linspace(100,10,1); \Rightarrow b2 = 10
- b3 = linspace(100,10,2); \rightarrow b3 = $[100 \ 10]$
- c1 = linspace(10,10); \rightarrow c1 = [10 10 10 ... 10]

- linspace(시작값,끝값,개수)
 - 간격은 알아서 계산 (=(끝값-시작값)/(개수-1))
 - 참고: 콜론 연산자는 개수를 알아서 계산
 - 개수를 생략하면 100개
 - 끝점은 항상 포함
- 콜론 연산자 vs linspace
 - 간격을 알 때 > 콜론 연산자
 - 1920년에서 5년 간격으로 2020년까지
 - 개수를 알 때 → linspace
 - 0~pi를 1000등분

- x = linspace(0, pi, 1000);
- \rightarrow x = [0 0.0031 0.0063 ... 3.1416];
- ※ 열벡터를 만드는 방법
- 1) 세미콜론
- 2) 행벡터 + transpose(')

행렬을 만드는 방법 4 – 이미 있는 행렬을 합침

```
\Rightarrow a1 = [1,2,3];
\Rightarrow a2 = [4,5,6];
>> ar = [a1 a2]
ar =
                                  5
>> ac = [a1; a2]
ac =
>> at = [a1' a2']
at =
             4
             6
```

```
\Rightarrow a3 = [1:3, 4:7]
a3 =
       2 3
                      4
>> a4 = [1:5; 6:10]
a4 =
                           10
>> al = [linspace(10,20,6); linspace(20,30,6)]
al =
    10
         12
               14
                     16
                           18
                                 20
    20
          22
               24
                      26
                           28
                                 30
```


행렬을 만드는 방법 4 – 이미 있는 행렬을 합침

```
\Rightarrow a = [1 2; 3 4];
>> b = [a a ; a a]
b =
     1
          2 1
     3
           4 3
                       4
     1
           2 1
                       2
     3
                       4
>> a = [1 2; 3 4];
>> b = [5 6]';
>> c = [7 8];
>> d = 9;
>> e = [a b ;c d]
e =
     1
           2
     3
           8
                 9
```

```
\Rightarrow a = [1 2; 3 4];
>> b = [5 6];
>> a = [a;b]
a =
    1
    3
    5
          6
>> a = [a (1:3)']
a =
    1
    3
>> a = [1 2 3; 4 5 6];
>> b = [4 5 6]';
>> c = [a b]
다음 사용 중 오류가 발생함: horzcat
결합하려는 배열의 차원이 일치하지 않습니다.
```


행렬을 만드는 방법 5 - 특별한 함수들

```
>> ones(3,4)
ans =
>> ones(5)
ans =
                         1
                               1
>> zeros(2,4)
ans =
     0
           0
     0
>> zeros(3)
ans =
     0
                  0
     0
```

```
\Rightarrow a = 1:5;
>> b = repmat(a,3,1)
b =
                                    5
                                    5
                                    5
                            4
\Rightarrow a = 1:30;
\Rightarrow b = reshape(a,5,6)
b =
             6
                           16
                                   21
                                          26
                    11
                                          27
                    12
                           17
                                   22
             8
                    13
                           18
                                   23
                                          28
             9
                                          29
                    14
                           19
                                   24
            10
                    15
                                   25
                                          30
                           20
```


행렬의 연산 – 더하기, 빼기, *스칼라, /스칼라

- 1) 행렬+행렬
 - 크기가 같은 행렬만 가능
 - 각 위치 원소별로 더하기 or 빼기

- 2) 행렬 + 스칼라 (1×1 행렬)
 - 행렬의 모든 원소에 일괄적으로 스칼라를 더함

- 3) *스칼라,/스칼라
 - 모든 원소를 동일하게 곱하거나 나눔

```
>> a = (1:5);
    12
          14
>> c = c+10
C =
          24
                              30
>> c = c*2
c =
>> c = c/4
C =
```


행렬의 연산 – 곱하기 (행렬곱)

$$\left\{egin{array}{l} x+2y-4z=5 \ 2x+y-6z=8 \ 4x-y-12z=13 \end{array}
ight.$$

$$\begin{cases} x + 2y - 4z = 5 \\ 2x + y - 6z = 8 \\ 4x - y - 12z = 13 \end{cases} \begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -6 \\ 4 & -1 & -12 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 13 \end{bmatrix}$$

- N=P이어야 행렬곱이 정의됨
- 곱의 결과 = M×Q 행렬

$$2x + y + z = 1$$
$$5x - y + 7z = 0$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 5 & -1 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 3 \\ 2 & 6 & 1 \\ 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} (1 \cdot 5 + 4 \cdot 1 + 3 \cdot 2) & (1 \cdot 4 + 4 \cdot 3 + 3 \cdot 6) \\ (2 \cdot 5 + 6 \cdot 1 + 1 \cdot 2) & (2 \cdot 4 + 6 \cdot 3 + 1 \cdot 6) \\ (5 \cdot 5 + 2 \cdot 1 + 8 \cdot 2) & (5 \cdot 4 + 2 \cdot 3 + 8 \cdot 6) \end{bmatrix} = \begin{bmatrix} 15 & 34 \\ 18 & 32 \\ 43 & 74 \end{bmatrix}$$

행렬의 연산 – 곱하기 (행렬곱)

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \\ A_{41} & A_{42} & A_{43} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix}$$

- (M×N 행렬) × (P×Q 행렬)
 - N=P이어야 행렬곱이 정의됨
 - 곱의 결과 = M×Q 행렬

$$A \times B = \begin{bmatrix} (A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31}) & (A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32}) \\ (A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31}) & (A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32}) \\ (A_{41}B_{11} + A_{42}B_{21} + A_{43}B_{31}) & (A_{41}B_{12} + A_{42}B_{22} + A_{43}B_{32}) \end{bmatrix}$$

 $(A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31})$ $(A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32})$

행렬의 연산 – 곱하기 (행렬곱)

```
>> a
                        10
                        11
                        12
>> b
b =
    16
            2
                   3
           11
                 10
     9
           14
                 15
>> c = a*b
c =
   139
          235
                235
   173
          269
                269
   207
          303
                303
```

```
>> a = [1 2 3 4 5];
>> b = [1 2 3 4 5]';
>> c = a*b
c =
    55
```

- 행렬곱이 정의되려면
 → (앞 행렬의 열 개수) = (뒤 행렬의 행 개수)
- (M×N 행렬) × (P×Q 행렬)
 - N=P이어야 행렬곱이 정의됨
 - 곱의 결과 = M×Q 행렬
- 행렬의 거듭제곱
 - square matrix에 대해서만 정의됨
- 행렬곱의 특징
 - 결합법칙 O A(BC) = (AB)C
 - 분배법칙 O A(B+C) = AB + AC
 - 교환법칙 X AB≠BA

행렬의 연산 – 곱하기 (원소별 곱셈)

$$a = [1 \ 2 \ 3]$$
 $\Rightarrow a = [1 \ 2 \ 3];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [1 \ 2 \ 3];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [1 \ 2 \ 3];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [1 \ 2 \ 3];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [1 \ 2 \ 3];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [1 \ 2 \ 3];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1];$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1]$
 $b = [4 \ 3 \ 1]$
 $\Rightarrow a = [4 \ 3 \ 1]$
 $b = [4 \ 3 \ 3]$
 $\Rightarrow a = [4 \ 3 \ 3]$
 $b = [4 \ 3 \ 3]$
 $\Rightarrow a = [4 \ 3 \ 3]$
 $b = [4 \ 3 \ 3]$
 $\Rightarrow a = [4 \ 3 \ 3]$
 $b = [4 \ 3 \ 3]$
 $\Rightarrow a = [4 \ 3 \ 3]$
 $b = [4 \ 3 \ 3]$
 $\Rightarrow a = [4 \ 3 \ 3]$
 $a = [4 \ 3 \ 3]$
 $\Rightarrow a = [4 \ 3 \ 3]$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$
 and $B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$ • *는 앵털곱
• .*는 원소별 곱셈
• 두 앵렬의 크기는 같아야 함

- *는 행렬곱

```
>> s = magic(3)
>> s^2
ans =
    91
           67
                  67
           91
                - 67
    67
           67
                  91
>> 5.^2
ans =
                  36
                  49
           81
                   4
```

$$A \cdot * B = \begin{bmatrix} A_{11}B_{11} & A_{12}B_{12} & A_{13}B_{13} \\ A_{21}B_{21} & A_{22}B_{22} & A_{23}B_{23} \\ A_{31}B_{31} & A_{32}B_{32} & A_{33}B_{33} \end{bmatrix} \quad A \cdot ^n = \begin{bmatrix} (A_{11})^n & (A_{12})^n & (A_{13})^n \\ (A_{21})^n & (A_{22})^n & (A_{23})^n \\ (A_{31})^n & (A_{32})^n & (A_{33})^n \end{bmatrix}$$

$$A ^{n} = \begin{pmatrix} (A_{11})^{n} & (A_{12})^{n} & (A_{13})^{n} \\ (A_{21})^{n} & (A_{22})^{n} & (A_{23})^{n} \\ (A_{31})^{n} & (A_{32})^{n} & (A_{33})^{n} \end{pmatrix}$$

행렬의 연산 – 곱하기 (원소별 곱셈)

- 행렬의 원소별 곱셈 > 연산자 앞에 점(.)을 찍음
 - 두 행렬을 원소별 곱셈 → A.*B
 - 한 행렬을 원소별 거듭제곱 → A.^n
 - 스칼라.^행렬 > 스칼라를 행렬 각 원소별로 거듭제곱

```
>> s1*s2
다음 사용 중 오류가 발생함: _*
행렬 곱셈의 차원이 잘못되었습니다. 첫 번째 행렬의 열 개수가 두 번째 행렬의 행 개수
와 일치하는지 확인하십시오. 요소별 곱셈 연산을 수행하려면 '.*'를 사용하십시오.
>> s1.*s2
ans =
>>
>> s1^2
다음 사용 중 오류가 발생함: _^ (line 51)
차원이 정확하지 않아 행렬을 거듭제곱할 수 없습니다. 행렬이 정사각 행렬이고 지수 값이 스칼라인지
확인하십시오. 요소별 행렬 거듭제곱 연산을 수행하려면 '.^'을 사용하십시오.
>> s1.^2
ans =
```

```
>> s1
s1 =
>> 52
s2 =
```

```
>> 2.^[1 2 ; 3 4]
ans =
           4
          16
```


행렬의 연산 - 나누기 (역행렬)

	덧셈 항등원	곱셈 항등원	곱셈 역원	
정의	더해도 값이 그대로인 수 $a + e = e + a = a$	곱해도 값이 그대로인 수 $a \times e = e \times a = a$	곱해서 곱셈 항등원이 나오는 수 $a \times x = x \times a = e$	
실수	e = 0	e = 1	$x = \frac{1}{a} \ (a \neq 0)$	
해렬 ^	$O = 영행렬$ $O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $O = zeros(N);$	$E = 단위행렬$ $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $E = eye(N);$ ※ $E \vdash square\ matrix$	$x = 역행렬$ $x = a^{-1}$ $x = inv(a)$ ※ square matrix에 대해서만 존재 ※ a 가 invertible할 때만 존재	

 $\times E \stackrel{\leftarrow}{\vdash}$ square matrix

행렬의 연산 – 나누기 (역행렬)

```
>> a = magic(3);
>> b = inv(a)
b =
    0.1472
             -0.1444
                        0.0639
   -0.0611
              0.0222
                        0.1056
   -0.0194
              0.1889
                       -0.1028
>> a*b
ans =
   1.0000
                        -0.0000
                   0
   -0.0000
              1.0000
    0.0000
                        1.0000
                   0
>> b*a
ans =
    1.0000
                        -0.0000
              1.0000
                              0
              0.0000
                        1.0000
         0
```

```
a =
                  10
                  11
                  12
>> inv(a)
다음 사용 중 오류가 발생함: <u>inv</u>
행렬은 정사각 행렬이어야 합니다.
a =
         2
              3
         4
>> inv(a)
경고: 행렬이 설정된 작업 정밀도에서 특이 행렬입니다.
ans =
  Inf
       Inf
            Inf
  Inf
       Inf
            Inf
```

Inf

Inf

Inf

행렬의 연산 – 나누기 (역행렬)

$$\left\{egin{array}{l} x+2y-4z=5 \ 2x+y-6z=8 \ 4x-y-12z=13 \end{array}
ight.$$

$$\begin{cases} x + 2y - 4z = 5 \\ 2x + y - 6z = 8 \\ 4x - y - 12z = 13 \end{cases} \begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -6 \\ 4 & -1 & -12 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 13 \end{bmatrix}$$

$$A \cdot x = b$$

$$A^{-1} \cdot A \cdot x = A^{-1} \cdot b$$

$$E \cdot x = A^{-1} \cdot b$$

$$x = A^{-1} \cdot b$$

```
>> b
b =
>> x = inv(a)*b
    5.0000
    1.0000
    0.5000
>> a*x
ans =
    13
```


행렬의 연산 – 나누기 (원소별 나눗셈)

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 $b = \begin{bmatrix} 4 & 3 & 1 \end{bmatrix}$
 $c = \begin{bmatrix} \frac{1}{4} & \frac{2}{2} & 3 \end{bmatrix}$

```
>> a = [1 2 3];
>> b = [4 3 1];
>> a/b
ans =
    0.5000 ??
>> a./b
ans =
    0.2500    0.6667    3.0000
OK
```

- 원소별 곱셈과 동일
- / 대신 ./ 사용
- 두 행렬의 크기는 같아야 함

```
>> s1
s1 =
>> 52
s2 =
>> s1/s2
경고: 랭크 부족, rank = 1, tol = 4.864754e-15.
ans =
   0.3333
   0.6667
   1.0000
>> s1./s2
ans =
   1.0000
              0.5000
                        0.3333
                                  0.2500
   2.0000
              1.0000
                        0.6667
                                  0.5000
    3.0000
              1.5000
                        1.0000
                                  0.7500
```


행렬의 연산 – 나누기 (원소별 나눗셈)

- 행렬의 원소별 나눗셈 → 연산자 앞 점(.)을 찍음 원소별 연산으로
- ※실습: "복잡한 수식"을 원소별 연산으로

- 두 행렬을 원소별 나눗셈 → A./B
- 행렬의 각 원소의 역수 → 1./A

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$$

$$A ./B = \begin{bmatrix} A_{11}/B_{11} & A_{12}/B_{12} & A_{13}/B_{13} \\ A_{21}/B_{21} & A_{22}/B_{22} & A_{23}/B_{23} \\ A_{31}/B_{31} & A_{32}/B_{32} & A_{33}/B_{33} \end{bmatrix}$$

>> s = magic(3)			
s =			
8	1	6	
3	5	7	
4	9	2	
>> 1./s			
ans =			
0.1250	1.	0000	0.1667
0.3333	0.	2000	0.1429
0.2500	0.	1111	0.5000
>> 10./s			
ans =			
1.2500	10.	0000	1.6667
3.3333	2.	0000	1.4286
2.5000	1.	1111	5.0000

함수명	동작	예시	참고
min [i, v] = min(A)	행렬의 최소값 [i, v] → 최소값의 위치도 반환	>> min([5 3 1 2 4]) ans = 1	2차원일 경우 각 열의 최소값을 1행으로 반환
max [i, v] = max(A)	행렬의 최대값 [i, v] → 최대값의 위치도 반환	>> max([5 3 1 2 4]) ans = 5	2차원일 경우 각 열의 최대값을 1행으로 반환
size	행렬의 크기	>> size(magic(5)) ans = 5 5	N차원 행렬일 경우 길이가 N인 벡터 반환
length	행렬의 길이	>> length(magic(5)) ans = 5	size의 결과 중 최대값과 같음
numel	모든 원소의 개수	>> numel(magic(5)) ans = 25	size의 결과 원소를 모두 곱한 것과 같음

함수명	동작	예시	참고
transpose	전치행렬	>> (1:2)' ans = 1 2	정확히는 conjugate transpose (ctranspose) non-conjugate는 .'
flipud	행렬을 위아래로 뒤집음	>> flipud([1 2; 3 4]) ans = 3 4 1 2	
fliplr	행렬을 좌우로 뒤집음	>> fliplr([1 2; 3 4]) ans = 2 1 4 3	
reshape	행렬의 원소를 재배열	>> reshape(1:6,2,3) ans = 1 3 5 2 4 6	reshape(a,m,n) a의 원소 개수가 m×n과 같아야 함
repmat	행렬을 복제하여 이어붙임	>> repmat(1:3,2,2) ans = 1 2 3 1 2 3 1 2 3 1 2 3	23

함수명	동작	예시	참고
ones	모든 원소가 1인 행렬 ones(m, n) → m×n 크기의 행렬 ones(n) → n×n 크기의 행렬	>> ones(1,5) ans = 1 1 1 1 1	모든 원소가 100인 행렬 100*ones(m,n)
zeros	모든 원소가 0인 행렬 zeros(m, n) → m×n 크기의 행렬 zeros(n) → n×n 크기의 행렬	>> zeros(1,4) ans = 0 0 0 0	
norm	벡터 노름(norm) $\ \mathbf{x}\ _2 = \left(\sum_{i=1}^N x_i ^2\right)^{1/2} = \sqrt{x_1^2 + x_2^2 + \ldots + x_N^2}$	>> norm([3,4]) ans = 5	
find [i, j] = find(a)	행렬의 0이 아닌 원소의 위치 반환 [i, j] = find(a) → 0이 아닌 원소의 위치를 2차원 인덱스로 반환	>> find([1 2 0 0 2]) ans = 1 2 5	
sort [i, v] = sort(a)	행렬을 오름차순으로 정렬 2차원 행렬 → 각 열을 정렬 [i, v] = sort(A) → 정렬 후 인덱스 변화도 반환	>> sort([1 3 5 4 2]) ans = 1 2 3 4 5	'descend' 옵션 사용 시 내림차순 정렬

함수명	동작	예시	참고
mean mean2	mean(A) 또는 mean(A,1) → 행방향 평균 mean(A,2) → 열방향 평균 mean2(A) → 2차원 평균	>> mean([1 3 5 ; 3 5 7]) ans = 2 4 6	
std std2	std(A) 또는 std(A,1) → 행방향 표준편차 std(A,2) → 열방향 표준편차 std2(A) → 2차원 표준편차	>> std(magic(4)) ans = 5.4467 5.1962 5.1962 5.4467	
sum	sum(A) 또는 sum(A,1) → 행방향 합 sum(A,2) → 열방향 합	>> sum([1 3 5 ; 3 5 7]) ans = 4 8 12	
cumsum	벡터 → 누적합 행렬 → 각 열의 누적합	>> cumsum([1 2 3 4 5]) ans = 1 3 6 10 15	
median	중간값 짝수개일 경우 두 중간값의 평균	>> median([1 3 5 7]) ans = 4	

함수명	동작	예시	참고
rand	0~1 범위의 균등분포 난수 rand(m, n) → m×n 크기의 행렬 rand(n) → n×n 크기의 행렬	>> rand(2,4) ans = 0.8147 0.1270 0.6324 0.2785 0.9058 0.9134 0.0975 0.5469	hist로 분포 확인 가능
randn	평균 0, 표준편차 1인 정규분포 난수 randn(m, n) → m×n 크기의 행렬 randn(n) → n×n 크기의 행렬	>> randn(2,3) ans = 0.3480 -0.6357 -0.7615 -0.4551 -0.9799 -1.2835	hist로 분포 확인 가능
randi	균등 분포의 정수 난수 값 범위, 크기 설정 가능	>> randi([1,50],[2,3]) ans = 21 42 5 8 37 42	도움말 확인

행렬을 입력으로 받는 내장함수

- 여러 내장함수들 (sqrt, exp, log, sin, round, ...)
 - M×N 행렬을 넣으면
 - 알아서 각 원소를 연산하여 M×N 행렬을 반환

변수명(행범위, 열범위)

변수명(행범위, 열범위)

행렬의 인덱싱 (indexing)

변수명(행범위, 열범위)

tip1. A(:,1:2:5)도 가능

tip2. A(:,[5 3 1])=?

행렬의 인덱싱 (indexing) – 벡터의 경우

B([1,3,5],1) 또는 B(1:2:5,:) 또는 B([1,3,5])

tip. B([5 3 1])=? (행렬의 reorder)

행렬의 인덱싱 (indexing) - end의 활용

행렬의 인덱싱 (indexing) - end의 활용

행렬의 인덱싱 (indexing) - (:)의 활용

1	2	3
4	5	6
7	8	9
10	11	12

а

Arrangement in Computer Memory

•	
•	
1	a(1,1)
4	a(2,1)
7	a(3,1)
10	a(4,1)
2	a(1,2)
5	a(2,2)
8	a(3,2)
11	a(4,2)
3	a(1,3)
6	a(2,3)
9	a(3,3)
12	a(4,3)

행렬을 수정하는 방법

행렬을 수정하는 방법

```
\Rightarrow a = [a ones(4,1)]
a =
     1
            5
                  -1
                         -1
                               17
     2
            6
                               18
                  -1
                         -1
                               42
    10
           11
                  42
                         42
    12
           13
                  42
                         42
                               42
```

```
>> a = [a \ 2*ones(size(a,1),1)]
a =
           5
                            17
                -1
                      -1
           6
                                         2
    2
                -1
                      -1
                            18
    10
                            42
          11
                42
                      42
    12
          13
                42
                      42
                            42
```

```
>> a = [a; 5*(1:size(a,2))]
a =
           5
                             17
                -1
                       -1
     2
           6
                             18
                -1
                       -1
    10
                             42
          11
                42
                       42
    12
          13
                42
                       42
                             42
     5
          10
                15
                             25
                                         35
                       20
                                   30
```

```
>> a = a(1:end-1, 1:end-2)
a =
                            17
                -1
                      -1
                -1
                      -1
                            18
    10
          11
                42
                      42
                            42
    12
          13
                42
                      42
                            42
>> a(end,:) = []
a =
                -1
                            17
                      -1
                -1
                      -1
                            18
    10
          11
                42
                      42
                            42
>> a(:,4:end) = []
a =
           5
               -1
                -1
    10
          11
                42
\Rightarrow a(5,5) = -100
a =
           5
                -1
           6
                -1
                       0
    10
          11
                42
           0
                 0
                       0
           0
                          -100
```


