浅析简易数字信号传输性能分析仪

Ŧ 招 骆晓祥

(西南交通大学 理学院 四川 成都 611756)

摘 要:文章所分析的系统主要采用 FPGA 完成信号的产生与编码,配以相应硬件电路,总体上实现了简易数 字信号传输性能分析仪的要求。在软件上,FPGA完成了多路分频时钟的产生,m 序列的产生和数字信号的曼 切斯特编码。在硬件上,主要由低通滤波电路、信号衰减电路、信号加法电路、锁相环电路等几个模块组成。 关键词:FPGA:m序列:锁相环

中图分类号:TM935.21

文献标识码:A

文章编号:1006-8937(2011)24-0083-02

1 系统方案

本系统主要由数字信号发射机、模拟信道、接收机组 成构成数字信号传输性能分析仪。数字信号发生器由信 源发生器产生伪随机序列、码型形成模块通过低通滤波 器产生输出码型。模拟信道由伪随机序列发生器和可调 增益放大器组成,产生伪噪声信号,叠加到信道中。通信 接收机由信号接收调理电路和时钟恢复电路构成。

1.1 数字信号发生器模块的论证

FPGA 具有非常高的时钟和大的逻辑处理容量 ,灵活 的编程功能,它不仅能够非常方便的实现逻辑移位、逻辑 运算,以及数字信号处理能力,如数字低通滤波器、数字 带通滤波器等。同时对时钟分频,锁相,以及并行处理。因 此,通过一片 FPGA 可以兼顾信号的伪随机码产生和噪 声码的产生。

1.2 低通滤波器的论证

在本方案中,我们认为使用模拟滤波器方案比较成 熟,通过电阻的变化替代数字滤波器更为简单。使用巴 特沃斯滤波器 在技术方案中 使用双二次型巴特沃斯滤 波器。它与压控电压源或无限增益多路反馈滤波器相比, 它要用更多的元件,但却便于调整并具有很好的稳定性, 并且调整频率是独立的。

1.3 模拟(仿真)信道的论证

本设计使用 FPGA 产生伪随机码,使用运放和电位 器,手动调整噪声的幅度。其优点是噪声幅度连续可调, 缺点是智能化程度低。

系统理论的分析

2.1 m 序列

对于一个 n 级反馈移位寄存器来说 最多可以有 2/n 个状态,对于一个线性反馈移位寄存器来说,全"0"状态 不会转入其他状态,所以线性移位寄存器的序列的最长 周期为 2ⁿ-1。当 n 级线性移位寄存器产生的序列 {ai}的 周期为 T=2/n-1 时,称{ai}为n级m序列。当反馈函数f (a1,a2,a3,…an)为非线性函数时,便构成非线性移位寄存 器 其输出序列为非线性序列。输出序列的周期最大可达 2ⁿ ,并称周期达到最大值的非线性移位寄存器序列为 m 序列。

2.2 曼切斯特编码

Manchester 码的编码规则是将每个二进制的信息码 元变换成相位不同的一个方波。例如,信息码"0"对应的 波形为"01",电平在前半个时隙为低电平,后半个时隙为 高电平 .其中高电平为 V .低电平为 - V :信息码"1"对应 的波形为"10", 电平在前半个时隙为高电平, 后半个时隙 为低电平。此编码模式优点为没有直流分量 编码方式简 单,易于提取位定时。缺点是占用的频带增加了一倍。此 编码模式对应的是无记忆编码。

2.3 同步信号提取

通过数字锁相环同步频率由于曼彻斯特码具有双相 位特征 在频谱中包含有分离的时钟频率分量 因此 可 以直接使用锁相环来提取时钟。电路中锁相环锁定后, VCO 频率在曼码时钟上,即二倍 NRZ 码收发时钟。工作 原理如图 1 所示。

图 1 同步信号提取工作原理

2.4 眼图显示方法

观察眼图的方法。用一个示波器跨接在接收滤波器 的输出端 然后调整示波器扫描周期 使示波器水平扫描 周期与接收码元的周期同步,这时示波器屏幕上看到的 图形像人的眼睛的图像即为眼图。

3 电路与程序设计

3.1 系统总体框图

系统总体框图如图 2 所示。

3.2 程序的设计

3.2.1 程序功能描述与设计思路

- ①程序功能描述。信号产生部分:通过对可编程逻辑器件 FPGA 进行编程产生随机码信号和伪随机信号;选择部分:通过拨码开关选择输出的信号类型(曼切斯特码)以及输出的信号数据率。
- ②程序设计思路。本次设计的软件部分主要在 FPGA 上完成。系统框图中的数字信号发生部分和伪随机信号发生部分都由 FPGA 编程实现。程序总体可分为分频 M序列产生 曼切斯特编码这几部分。分频通过计数器实现。M序列通过移位寄存器实现 参与反馈的各级

输出经过异或运算把最后结果送到第一级作为输入信号。曼切斯特编码是将产生的数字信号与信号产生时钟进行异或运算,后面又连了一个 D 触发器去除毛刺,然后输出较为理想的曼切斯特码。

3.2.2 程序流程图

程序流程如图 3 所示。

图 3 程序流程

参考文献:

[1] 康华光.电子技术基础[M].北京:高等教育出版社,2006.

(上接第82页)

3 研究内容

调研动车组检修岗位、驾驶岗位动车组电气线路检修典型工作任务;研制技能训练方案、设计学习情境;设计高速动车组电气线路教学仿真系统建设方案;建设高速动车组电气线路教学仿真系统;技能训练实践探索。

4 研究目标

通过对以上内容的研究与开发将形成多项研究成果,包括高速动车组电气线路检修技能训练方案、高速动车组电气线路教学仿真系统设计方案、高速动车组电气线路教学仿真系统。该系统具备以下功能:教学功能,可以开展与实际电气线路联动的多媒体教学、操作技能演示与学生训练,故障设置,通过电脑软件设置或者专用故障设置电路板,可以灵活的模拟实际的电气线路故障,评价功能,通过软件能够对学生的操作、时间、结果、步骤、方法等自动地给出综合评价;可扩展,预留系统升级,将来动车组更新换代后,能以较低的成本、方便地适应其他型动车组的教学。

利用该教学仿真系统,可以开展动车组电气试验、动车组运行操纵、动车组模拟驾驶、动车组故障检查、动车组电气线路故障处理、动车组电气线路应急故障处理、动车组非正常情况处理、各电气部件的专项检查与检修等技能训练。由于采用"教、学、练一体化",可以极大地缩减培训成本和周期,可以保证安全(人员和设备),可以减少对正常运输生产的干扰。

研究与开发出的成果将在以下方面发挥作用:服务教学,为学生训练提供条件;示范同类学校,起到借鉴作用,具有推广价值;服务企业,开展职工培训;服务社会,开展职业技能鉴定;服务其他学校、企业,提供师资培训;专业教师自身提高,开展教学及科学研究。

5 拟解决的关键问题

动车组电气线路教学仿真系统技能训练方案;动车组电气线路教学仿真系统建设方案;现场专家及教学专家研讨会。邀请企业专家、技术人员、学校专职教师,组织专项研讨会,总结出结论,动车组驾驶专业、动车组检修专业对应于电气系统方面的实训项目、教学内容、训练方法、训练方式、应该掌握的深度及熟练程度等,归纳出《动车组电气线路技能训练方案》,教学设备生产厂家专家及教学专家研讨会:组织设备研讨会,根据《动车组电气线路教学仿真系统建设方案》;动车组电气线路教学仿真系统设计,动车组电气线路教学仿真系统建设、安装、调试,技能训练实践探索。

6 关键技术

高速动车组电气线路教学仿真系统及系统连接的网络化配置;故障设置系统与电气线路硬件系统接口及软件配置;考核评价软件开发;人机交互技术。

参考文献:

- [1] 马强.城市轨道交通控制综合培训与仿真支撑平台设计构想[J].石家庄铁路职业技术学院学报,2009,(2).
- [2] 刘菊香.电力机车辅助电路系统仿真[J].机车车辆工艺,2006, (4).
- [3] 尹仁发,胡汉春.列车牵引运行仿真系统的设计[J].机电产品开发与创新,2007,(3).
- [4] 牟岩.基于 TCN 网络的机车电传动模拟系统[J].铁道机车车辆,2008,(12).
- [5] 张攀锋,胡汉春,杨培盛.机车电路动态仿真教学系统的开发[J].机电产品开发与创新,2007,(1).