LA03_Ex3_DataUnderstanding

April 26, 2018

- 1 Hochschule Bonn-Rhein-Sieg
- 2 Learning and Adaptivity, SS18
- 3 Assignment 03 (24-April-2018)
- 3.1 Sathiya Ramesh, Pradheep Krishna Muthukrishnan Padmanabhan, Naresh Kumar Gurulingan
- 4 Data Understanding

Iris dataset

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from __future__ import print_function
        url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
        names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
        dataset = pd.read_csv(url, names=names)
```

- 4.1 Task 1: Summary of the Dataset
 - Dimensions of the dataset.
 - Peek at the data itself.
 - Statistical summary of all attributes.
 - Breakdown of the data by the class variable.

```
Out [3]:
           sepal-length sepal-width petal-length petal-width
        0
                    5.1
                                 3.5
                                                1.4
                                                             0.2
                                                                 Iris-setosa
                    4.9
                                 3.0
                                                1.4
                                                             0.2 Iris-setosa
        1
        2
                    4.7
                                 3.2
                                                1.3
                                                             0.2 Iris-setosa
        3
                    4.6
                                 3.1
                                                1.5
                                                             0.2 Iris-setosa
                    5.0
                                 3.6
                                                1.4
                                                             0.2 Iris-setosa
```

Statistical summary of all attributes in the dataset:

```
Out [4]:
               sepal-length
                              sepal-width petal-length petal-width
        count
                 150.000000
                               150.000000
                                              150.000000
                                                           150.000000
                    5.843333
                                 3.054000
                                                3.758667
        mean
                                                             1.198667
        std
                   0.828066
                                 0.433594
                                                1.764420
                                                             0.763161
        min
                    4.300000
                                 2.000000
                                                1.000000
                                                             0.100000
        25%
                    5.100000
                                 2.800000
                                                1.600000
                                                             0.300000
        50%
                   5.800000
                                 3.000000
                                                4.350000
                                                             1.300000
        75%
                   6.400000
                                 3.300000
                                                5.100000
                                                             1.800000
                   7.900000
                                 4.400000
                                                6.900000
                                                             2.500000
        max
```

	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
	sepal-length	sepal-width	petal-length	petal-width	class
50	7.0	3.2	4.7	1.4	Iris-versicolor
51	6.4	3.2	4.5	1.5	Iris-versicolor
52	6.9	3.1	4.9	1.5	Iris-versicolor
53	5.5	2.3	4.0	1.3	Iris-versicolor
54	6.5	2.8	4.6	1.5	Iris-versicolor
	sepal-length	sepal-width	petal-length	n petal-width	n class
100	6.3	3.3	6.0	2.5	Tris-virginica
101	5.8	3 2.7	5.1	1.9	9 Iris-virginica
102	2 7.1	3.0	5.9	2.1	l Iris-virginica
103	6.3	3 2.9	5.6	1.8	3 Iris-virginica
104	6.5	3.0	5.8	3 2.2	2 Iris-virginica

4.2 Task 2: Data Visualization

• Univariate plots, visualisation of each individual feature for better understand.

• Multivariate plots, visualisation relationships between attributes.

Reference: Visualize Machine Learning Data in Python With Pandas

```
In [6]: fig = plt.figure()
        fig.set_figheight(7)
        fig.set_figwidth(15)
        plt.tight_layout()
        fig.add_subplot(221)
        dataset['sepal-length'].value_counts().plot.bar()
        plt.title('sepal-length')
        fig.add_subplot(222)
        dataset['sepal-width'].value_counts().plot.bar()
        plt.title('sepal-width')
        fig.add_subplot(223)
        dataset['petal-length'].value_counts().plot.bar()
        plt.title('petal-length')
        fig.add_subplot(224)
        dataset['petal-width'].value_counts().plot.bar()
        plt.title('petal-width')
        plt.tight_layout()
        fig.suptitle('Univariate plots')
        plt.show()
```



```
In [7]: correlations = dataset.corr()
    # plot correlation matrix
    fig = plt.figure()
    fig.suptitle('Multi-variate plot')
    ax = fig.add_subplot(111)
    cax = ax.matshow(correlations, vmin=-1, vmax=1)
```

```
fig.colorbar(cax)
ticks = np.arange(0,4,1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(names)
ax.set_yticklabels(names)
plt.show()
```


4.3 Task 3: Validation set

We will split the loaded dataset into two, 80% of which we will use to train our models and 20% that we will hold back as a validation dataset.

So 20% of train dataset means we need= 30.0 Train dataset after splitting 120 Test dataset after splitting 30