课程内容

- •研究主体: 半导体中的电子
- 第一部分: 晶体结构
- 第二部分: 能带结构
- 第三部分: 热力学统计
 - 研究半导体中载流子数目在不同温度下的行为
- 第四部分: 载流子输运
- 第五部分: 非平衡载流子

小结: 温度和费米分布

- 确定的温度对应某种确定的粒子能量分布
- •对于电子,该分布为费米分布

$$f(E) = \frac{1}{e^{\frac{E - E_F}{k_B T}} + 1}$$

其中E代表能量,E_F表示费米能级,k_B为玻尔兹曼常数,T为温度 f(E)表示粒子占据能量为E的态的概率

- f(E)表示一个态中电子的平均个数
- <u>当状态数为g时,gf(E)表示能量为E的态中电子的</u> <u>(平均)个数</u>
- <u>当态密度为g(E)时,g(E)f(E)dE表示能量为E到</u> E+dE的态中电子的个数,积分得到载流子浓度

小结: 半导体的载流子浓度

导带电子浓度 $n = \int \frac{1}{V} g_C(E) f(E) dE$

导带C: 态密度g_c(E)

施主D: 状态数VN_D

N_D: 施主浓度

受主A: 状态数VN_A

N_D: 受主浓度

价带V: 态密度g_v(E)

电子数g_C(E)f(E)dE

电子数VN_Df(E)

电子数VN_Af(E) 空穴数VN_A(1-f(E))

电子数g_v(E)f(E)dE 空穴数g_v(E)(1-f(E))dE

V: 半导体体积

价带空穴浓度
$$p = \int \frac{1}{V} g_V(E) (1 - f(E)) dE$$

非简并半导体的载流子浓度

玻尔兹曼

导带电子浓度 $n = N_C e^{-\frac{E_C - E_F}{k_B T}}$

导带C: 状态数VNc

N_c: 导带等效状态浓度

施主D: 状态数VN_D

N_D: 施主浓度

受主A: 状态数VN_A

Nn: 受主浓度

价带V: 态密度VN_V

N_v: 价带等效状态浓度

■ 电子数VN_cf(E_c)

电子数VN_Df_D(E_D)

电子数VN_Af_A(E_A) 交交数VN (1-f (F)

空穴数VN_A(1-f_A(E_A))

电子数VN_Vf(E_V)

空穴数VN_V(1-f(E_V))

V: 半导体体积

价带空穴浓度 $p = N_V e^{-\frac{E_F - E_V}{k_B T}}$ 玻尔兹曼

要求:非简并 $-E_c$ 、 E_v 和 E_F 足够远(>几个 k_B T,"几"至少要有2.5)

小结: 本征半导体

• 未掺杂 (掺杂补偿) 半导体

电子-空穴浓度乘积

$$np = n_i^2 = N_C N_V e^{-\frac{E_g}{k_B T}} = \frac{(m_{dn}^* m_{dp}^*)^{3/2}}{2\pi^3 \hbar^6} (k_B T)^3 e^{-\frac{E_g}{k_B T}}$$

- 本征载流子浓度n_i与材料和 温度有关
- 同一材料,随温度升高而迅速增大
- •同一温度下,Eg越大,ni越小

图 3-7 硅、锗、砷化镓 的 $\ln n_i \sim 1/T$ 关系^[5]

小结: 掺杂半导体

- 多子
- 1. 低温弱电离区
- 2. 中间电离区
- 3. 强电离区(饱和)
- 4. 过渡区
- 5. 高温本征激发区
- •注意:少子浓度在非简并条件下一直都可以用np=n_i²计算

图 3-11 n型硅的电子浓度与 温度的关系^[8,9]曲线

n型半导体的费米能级

- 1. 低温弱电离区
- 2. 中间电离区
- 3. 强电离区

- 4. 过渡区
- 5. 高温本征激发区

n、p和EF随杂质浓度的变化

图 3-14 硅中载流子浓度与杂质浓度的关系

掺杂在一开始不影响载流子浓度。超过本征浓度之后,掺得越多载流子浓度越高

n、p和E-随杂质浓度的变化

掺杂浓度越高,载流子浓度越高 掺杂浓度越高, E_F越靠近带边

图 3-13 不同掺杂情况下的半导体的费米能级

霍耳效应

- 霍耳效应
 - 垂直的均匀磁场和电流产生正比于其值的横向电场, 比例系数为霍尔系数
 - 可用于直接测量载流子类型和浓度

$$E = \frac{JB}{\pm nq} = R_H JB$$

- p型半导体与n型半导体的霍耳系数方向相反
- 载流子浓度越小,霍耳系数越大