Report No.: TRE12080112 Page 51 of 66 Issued:2012-09-27

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.90 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	398 mW input power	1.74 mW / g
SAR normalized	normalized to 1W	4.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.47 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.15 mW / g
SAR normalized	normalized to 1W	2.89 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.96 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1061_Sep10 Page 4 of 9

Report No.: TRE12080112 Page 52 of 66 Issued:2012-09-27

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.7 Ω - 7.4 jΩ	
Return Loss	- 20.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.6 Ω - 8.8 jΩ	
Return Loss	- 20.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.353 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	August 15, 2008	

Report No.: TRE12080112 Page 53 of 66 Issued:2012-09-27

DASY5 Validation Report for Head TSL

Date/Time: 15.09.2012 13:00:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1061

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\varepsilon_r = 43.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507; ConvF(6.62, 6.62, 6.62); Calibrated: 30.04.2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 23.04.2010

Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=398mW/d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 49.8 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 1.8 mW/g; SAR(10 g) = 1.19 mW/g

Maximum value of SAR (measured) = 1.92 mW/g

0 dB = 1.92 mW/g

Impedance Measurement Plot for Head TSL

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 15.09.2012 14:37:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1061

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: MSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³.

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507; ConvF(7.2, 7.2, 7.2); Calibrated: 30.04.2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 23.04.2010

• Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=398mW/d=15mm, Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.5 V/m; Power Drift = -0.00382 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.74 mW/g; SAR(10 g) = 1.15 mW/g

Maximum value of SAR (measured) = 1.86 mW/g

Impedance Measurement Plot for Head TSL

Impedance Measurement Plot for Body TSL

Report No.: TRE12080112 Page 57 of 66 Issued:2012-09-27

6.3. DAE4 Calibration Ceriticate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-1315_Feb12 CIQ SZ (Auden) CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 1315 Object QA CAL-06.v24 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) February 27, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards Cal Date (Certificate No.) Keithley Multimeter Type 2001 SN: 0810278 28-Sep-11 (No:11450) Sep-12 Secondary Standards Check Date (in house) Scheduled Check Calibrator Box V2.1 SE UWS 053 AA 1001 05-Jan-12 (in house check) In house check: Jan-13 Name Function Signature Calibrated by: Andrea Guntli Technician Approved by: Fin Bomholt **R&D** Director Issued: February 27, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued:2012-09-27 Report No.: TRE12080112 Page 58 of 66

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: TRE12080112 Page 59 of 66 Issued:2012-09-27

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV $\begin{array}{c} 6.1 \mu V \; , \\ 61 n V \; , \end{array}$ Low Range: 1LSB = DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.194 ± 0.1% (k=2)	405.031 ± 0.1% (k=2)	405.006 ± 0.1% (k=2)
Low Range	4.00179 ± 0.7% (k=2)	3.99504 ± 0.7% (k=2)	4.00535 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	20.0 ° ± 1 °
Connector Angle to be used in DAST system	20.0 I

Page 60 of 66 Issued:2012-09-27

Appendix

Report No.: TRE12080112

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)	
Channel X + Input	199993.07	-0.46	-0.00	
Channel X + Input	19998.21	0.29	0.00	
Channel X - Input	-19997.04	5.94	-0.03	
Channel Y + Input	199992.78	-1.05	-0.00	
Channel Y + Input	19995.99	-1.88	-0.01	
Channel Y - Input	-20001.41	1.50	-0.01	
Channel Z + Input	199996.23	3.02	0.00	
Channel Z + Input	19996.75	-0.72	-0.00	
Channel Z - Input	-20003.50	-0.24	0.00	

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.32	-1.73	-0.09
Channel X + Input	200.22	-1.03	-0.51
Channel X - Input	-198.55	0.32	-0.16
Channel Y + Input	1997.53	-3.28	-0.16
Channel Y + Input	199.64	-1.21	-0.60
Channel Y - Input	-199.77	-0.78	0.39
Channel Z + Input	1997.90	-2.04	-0.10
Channel Z + Input	199.23	-1.21	-0.61
Channel Z - Input	-200.63	-1.12	0.56

2. Common mode sensitivityDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-1.10	-3.09
	- 200	4.35	3.23
Channel Y	200	-22.09	-22.46
	- 200	21.74	22.31
Channel Z	200	-4.46	-4.92
	- 200	3.65	2.86

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-2.62	-3.29
Channel Y	200	6.73	-	-2.17
Channel Z	200	8.11	5.38	-

Report No.: TRE12080112 Page 61 of 66 Issued:2012-09-27

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16132	15682
Channel Y	16251	15151
Channel Z	15551	15659

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.32	0.22	2.38	0.46
Channel Y	-1.23	-2.04	-0.58	0.36
Channel Z	-1.89	-3.56	-1.12	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

7. Test Setup Photos

The EUT display towards phantom of battery 1#

The EUT display towards Ground of battery 1#

The EUT display towards Phantom of battery 1#

The EUT display towards Ground of battery 2#

8. **EUT Photos**

Battery 1#

Battery 2#

Headset

.....End of Report.....