Computability and Complexity COSC 4200

Pushdown Automata

Definition

A (nondeterministic) pushdown automaton (PDA) is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set of states
- \bullet Σ is the *input alphabet*
- Γ is the *stack alphabet*
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function
- $q_0 \in Q$ is the *initial state*
- $F \subseteq Q$ is the set of accepting states

Definition

A (nondeterministic) pushdown automaton (PDA) is a 6-tuple $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ where

- Q is a finite set of states
- \bullet Σ is the *input alphabet*
- Γ is the stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function
- $q_0 \in Q$ is the *initial state*
- $F \subseteq Q$ is the set of accepting states

For each $p \in Q$, $a \in \Sigma_{\epsilon}$, $b \in \Gamma_{\epsilon}$, $\delta(p, a, b)$ is a subset of $Q \times \Gamma_{\epsilon}$.

Definition

A (nondeterministic) pushdown automaton (PDA) is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set of *states*
- \bullet Σ is the *input alphabet*
- Γ is the stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function
- $q_0 \in Q$ is the *initial state*
- $F \subseteq Q$ is the set of accepting states

For each $p \in Q$, $a \in \Sigma_{\epsilon}$, $b \in \Gamma_{\epsilon}$, $\delta(p, a, b)$ is a subset of $Q \times \Gamma_{\epsilon}$.

For each $(q, c) \in \delta(p, a, b)$, we have the following transition in a diagram for the PDA:

Transitions

This transition means that when the PDA is in state p, if the input symbol is a and the top of the stack is a b, then the PDA may transition to state q and replace b by c on the top of the stack.

When $a=\epsilon$, no input symbol is read. When $b=\epsilon$, no stack symbol is read or replaced.

"pop a \$ on the stack without reading any input"

"pop a \$ on the stack without reading any input"

"read a 0 from the input, push a 0 on the stack"

"pop a \$ on the stack without reading any input"

"read a 0 from the input, push a 0 on the stack"

"read a 1 from the input, pop a 0 from the stack"

Configurations

A *configuration* of *M* is a 3-tuple

$$(q, w, z) \in Q \times \Sigma^* \times \Gamma^*$$
.

Here q denotes the current state, w denotes the remaining input, and z denotes the current stack.

Configurations

A *configuration* of *M* is a 3-tuple

$$(q, w, z) \in Q \times \Sigma^* \times \Gamma^*$$
.

Here q denotes the current state, w denotes the remaining input, and z denotes the current stack.

The *initial configuration* of M on an input $w \in \Sigma^*$ is

$$(q_0, w, \epsilon).$$

Configurations

A *configuration* of *M* is a 3-tuple

$$(q, w, z) \in Q \times \Sigma^* \times \Gamma^*$$
.

Here q denotes the current state, w denotes the remaining input, and z denotes the current stack.

The *initial configuration* of M on an input $w \in \Sigma^*$ is

$$(q_0, w, \epsilon).$$

A configuration (q, w, z) is accepting if $q \in F$ and $w = \epsilon$, that is the state is accepting and no input remains.

$$(q, \epsilon, z)$$

Computation of PDA

Let (q_1, w_1, z_1) and (q_2, w_2, z_2) be two configurations.

Computation of PDA

Let (q_1, w_1, z_1) and (q_2, w_2, z_2) be two configurations. We say (q_1, w_1, z_1) yields (q_2, w_2, z_2) in one step and write

$$(q_1, w_1, z_1) \rightarrow (q_2, w_2, z_2)$$

if

$$w_1 = aw$$
 $w_2 = w$
 $z_1 = b_1 z$ $z_2 = b_2 z$

for some $a \in \Sigma_{\epsilon}$, $w \in \Sigma^*$, $b_1, b_2 \in \Gamma_{\epsilon}$, $z \in \Gamma$, so that

$$(q_2,b_2)\in\delta(q_1,a,b_1).$$

Computation of PDA

Let (q_1, w_1, z_1) and (q_2, w_2, z_2) be two configurations. We say (q_1, w_1, z_1) yields (q_2, w_2, z_2) in one step and write

$$(q_1, w_1, z_1) \rightarrow (q_2, w_2, z_2)$$

if

$$w_1 = aw$$
 $w_2 = w$
 $z_1 = b_1 z$ $z_2 = b_2 z$

for some $a \in \Sigma_{\epsilon}$, $w \in \Sigma^*$, $b_1, b_2 \in \Gamma_{\epsilon}$, $z \in \Gamma$, so that

$$(q_2,b_2)\in\delta(q_1,a,b_1).$$

$$(q_1, w_1, z_1) = (q_1, aw, b_1 z) \rightarrow (q_2, w, b_2 z) = (q_2, w_2, z_2)$$

$$q_1 \longrightarrow q_2$$

Language of PDA

We say that (q_1, w_1, z_1) yields (q_2, w_2, z_2) if there is a sequence of configurations $(p_1, x_1, y_1), \ldots, (p_k, x_k, y_k)$ such that

$$(q_1, w_1, z_1) \rightarrow (p_1, x_1, y_1) \rightarrow \cdots \rightarrow (p_k, x_k, y_k) \rightarrow (q_2, w_2, z_2).$$

Language of PDA

We say that (q_1, w_1, z_1) yields (q_2, w_2, z_2) if there is a sequence of configurations $(p_1, x_1, y_1), \ldots, (p_k, x_k, y_k)$ such that

$$(q_1, w_1, z_1) \rightarrow (p_1, x_1, y_1) \rightarrow \cdots \rightarrow (p_k, x_k, y_k) \rightarrow (q_2, w_2, z_2).$$

An input w is accepted by M if the initial configuration (q_0, w, ϵ) yields some accepting configuration.

Language of PDA

We say that (q_1, w_1, z_1) yields (q_2, w_2, z_2) if there is a sequence of configurations $(p_1, x_1, y_1), \ldots, (p_k, x_k, y_k)$ such that

$$(q_1, w_1, z_1) \rightarrow (p_1, x_1, y_1) \rightarrow \cdots \rightarrow (p_k, x_k, y_k) \rightarrow (q_2, w_2, z_2).$$

An input w is accepted by M if the initial configuration (q_0, w, ϵ) yields some accepting configuration.

The language of M is

$$L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}.$$

$$(q_1,000111,\epsilon)$$

$$(q_1,000111,\epsilon) \rightarrow (q_2,000111,\$)$$

$$(q_1,000111,\epsilon) \rightarrow (q_2,000111,\$) \rightarrow (q_2,00111,0\$)$$

$$(q_1,000111,\epsilon) \rightarrow (q_2,000111,\$) \rightarrow (q_2,00111,0\$) \rightarrow (q_2,0111,00\$)$$

$$(q_1,000111,\epsilon) \rightarrow (q_2,000111,\$) \rightarrow (q_2,00111,0\$) \rightarrow (q_2,0111,00\$) \rightarrow (q_2,111,000\$)$$

$$(q_1,000111,\epsilon)
ightarrow (q_2,000111,\$) \
ightarrow (q_2,00111,0\$) \
ightarrow (q_2,0111,00\$) \
ightarrow (q_2,111,000\$) \
ightarrow (q_3,111,000\$)$$

$$egin{array}{lll} (q_1,000111,\epsilon) &
ightarrow & (q_2,000111,\$) \
ightarrow & (q_2,00111,0\$) \
ightarrow & (q_2,0111,00\$) \
ightarrow & (q_2,111,000\$) \
ightarrow & (q_3,111,000\$) \
ightarrow & (q_3,11,00\$) \end{array}$$

$$egin{array}{lll} (q_1,000111,\epsilon) &
ightarrow & (q_2,000111,\$) \
ightarrow & (q_2,00111,0\$) \
ightarrow & (q_2,0111,00\$) \
ightarrow & (q_2,111,000\$) \
ightarrow & (q_3,111,000\$) \
ightarrow & (q_3,11,00\$) \
ightarrow & (q_3,1,0\$) \end{array}$$

$$egin{array}{lll} (q_1,000111,\epsilon) &
ightarrow & (q_2,000111,\$) \
ightarrow & (q_2,00111,0\$) \
ightarrow & (q_2,0111,00\$) \
ightarrow & (q_2,111,000\$) \
ightarrow & (q_3,111,000\$) \
ightarrow & (q_3,1,0\$) \
ightarrow & (q_3,\epsilon,\$) \end{array}$$

$$(q_1,000111,\epsilon)
ightarrow (q_2,000111,\$)
ightarrow (q_2,00111,0\$)
ightarrow (q_2,0111,00\$)
ightarrow (q_2,111,000\$)
ightarrow (q_3,111,000\$)
ightarrow (q_3,1,0\$)
ightarrow (q_3,\epsilon,\$)
ightarrow (q_4,\epsilon,\epsilon)$$

$$(q_1,01011010,\epsilon)$$

$$(q_1, 01011010, \epsilon) \to (q_2, 01011010, \$)$$

$$(q_1, 01011010, \epsilon)$$

 $\rightarrow (q_2, 01011010, \$)$
 $\rightarrow (q_2, 1011010, 0\$)$

$$(q_1, 01011010, \epsilon)$$

 $\rightarrow (q_2, 01011010, \$)$
 $\rightarrow (q_2, 1011010, 0\$)$
 $\rightarrow (q_2, 011010, 10\$)$

$$(q_1, 01011010, \epsilon)$$

 $\rightarrow (q_2, 01011010, \$)$
 $\rightarrow (q_2, 1011010, 0\$)$
 $\rightarrow (q_2, 011010, 10\$)$
 $\rightarrow (q_2, 11010, 010\$)$

$$egin{aligned} (q_1,01011010,\epsilon) \ &
ightarrow (q_2,01011010,0\$) \ &
ightarrow (q_2,1011010,10\$) \ &
ightarrow (q_2,11010,010\$) \ &
ightarrow (q_2,1010,1010\$) \end{aligned}$$

$$egin{aligned} &(q_1,01011010,\epsilon) \ &
ightarrow &(q_2,01011010,0\$) \ &
ightarrow &(q_2,1011010,10\$) \ &
ightarrow &(q_2,11010,010\$) \ &
ightarrow &(q_2,1010,1010\$) \ &
ightarrow &(q_3,1010,1010\$) \end{aligned}$$

$$egin{aligned} (q_1,01011010,\epsilon) \ &
ightarrow (q_2,01011010,0\$) \ &
ightarrow (q_2,1011010,10\$) \ &
ightarrow (q_2,11010,010\$) \ &
ightarrow (q_2,1010,1010\$) \ &
ightarrow (q_3,1010,1010\$) \ &
ightarrow (q_3,010,010\$) \end{aligned}$$

$$(q_1,01011010,\epsilon)$$
 $ightarrow (q_2,01011010,\$)$
 $ightarrow (q_2,1011010,10\$)$
 $ightarrow (q_2,011010,10\$)$
 $ightarrow (q_2,11010,1010\$)$
 $ightarrow (q_3,1010,1010\$)$
 $ightarrow (q_3,010,010\$)$
 $ightarrow (q_3,10,10\$)$

$$(q_1,01011010,\epsilon) \
ightarrow (q_2,01011010,\$) \
ightarrow (q_2,1011010,10\$) \
ightarrow (q_2,11010,010\$) \
ightarrow (q_2,1010,1010\$) \
ightarrow (q_3,1010,1010\$) \
ightarrow (q_3,010,010\$) \
ightarrow (q_3,10,10\$) \
ightarrow (q_3,0,0\$)$$

$$(q_1,01011010,\epsilon)$$
 $ightarrow (q_2,01011010,\$)$
 $ightarrow (q_2,1011010,0\$)$
 $ightarrow (q_2,011010,010\$)$
 $ightarrow (q_2,11010,010\$)$
 $ightarrow (q_3,1010,1010\$)$
 $ightarrow (q_3,010,010\$)$
 $ightarrow (q_3,10,10\$)$
 $ightarrow (q_3,0,0\$)$
 $ightarrow (q_4,\epsilon,\epsilon)$

$$\xrightarrow{a, \epsilon \to a} \xrightarrow{b, a \to \epsilon} \xrightarrow{b, \epsilon \to b} \xrightarrow{c, b \to \epsilon} \xrightarrow{(\downarrow)} \xrightarrow{\epsilon, \epsilon \to \epsilon} \xrightarrow{(q_2)} \xrightarrow{\epsilon, \$ \to \$} \xrightarrow{(q_3)} \xrightarrow{\epsilon, \epsilon \to \epsilon} \xrightarrow{(q_4)} \xrightarrow{\epsilon, \$ \to \epsilon} \xrightarrow{(q_5)}$$

Computation on aabbbbcc:

$$(q_0, aabbbbcc, \epsilon)$$

Computation on aabbbbcc:

$$(q_0, aabbbbcc, \epsilon)$$

 $\rightarrow (q_1, aabbbbcc, \$)$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow (\textit{q}_1, \textit{abbbbcc}, \textit{a\$})$$

- $(q_0, aabbbbcc, \epsilon)$
- \rightarrow $(q_1, aabbbbcc, \$)$
- \rightarrow $(q_1, abbbbcc, a\$)$
- $\rightarrow (\textit{q}_1, \textit{bbbbcc}, \textit{aa\$})$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow (\textit{q}_1, \textit{abbbbcc}, \textit{a}\$)$$

$$\rightarrow$$
 (q₁, bbbbcc, aa\$)

$$\rightarrow (\textit{q}_2,\textit{bbbbcc},\textit{aa\$})$$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow$$
 $(q_1, abbbbcc, a\$)$

$$\rightarrow (\textit{q}_1, \textit{bbbbcc}, \textit{aa\$})$$

$$\rightarrow$$
 (q₂, bbbbcc, aa\$)

$$\rightarrow (\textit{q}_2,\textit{bbbcc},\textit{a}\$)$$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow$$
 $(q_1, abbbbcc, a\$)$

$$\rightarrow (\textit{q}_1, \textit{bbbbcc}, \textit{aa\$})$$

$$\rightarrow$$
 (q₂, bbbbcc, aa\$)

$$\rightarrow (\textit{q}_2,\textit{bbbcc},\textit{a}\$)$$

$$\rightarrow$$
 $(q_2, bbcc, \$)$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow$$
 $(q_1, abbbbcc, a\$)$

$$ightarrow$$
 (q₁, bbbbcc, aa\$)

$$\rightarrow$$
 (q₂, bbbbcc, aa\$)

$$\rightarrow (\textit{q}_2,\textit{bbbcc},\textit{a}\$)$$

$$\rightarrow$$
 $(q_2, bbcc, \$)$

$$\rightarrow$$
 (q_3 , $bbcc$, $\$$)

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow$$
 $(q_1, abbbbcc, a\$)$

$$ightarrow$$
 (q₁, bbbbcc, aa\$)

$$\rightarrow$$
 $(q_2, bbbbcc, aa\$)$

$$\rightarrow$$
 $(q_2, bbbcc, a\$)$

$$\rightarrow$$
 $(q_2, bbcc, \$)$

$$\rightarrow$$
 (q_3 , $bbcc$, $\$$)

$$\rightarrow$$
 $(q_3, bcc, b\$)$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow$$
 $(q_1, aabbbbcc, \$)$

$$\rightarrow (\textit{q}_1, \textit{abbbbcc}, \textit{a}\$)$$

$$\rightarrow$$
 $(q_1, bbbbcc, aa\$)$

$$\rightarrow$$
 (q₂, bbbbcc, aa\$)

$$\rightarrow (\textit{q}_2,\textit{bbbcc},\textit{a}\$)$$

$$\rightarrow$$
 $(q_2, bbcc, \$)$

$$\rightarrow$$
 (q_3 , $bbcc$, $\$$)

$$\rightarrow$$
 $(q_3, bcc, b\$)$

$$\rightarrow$$
 $(q_3, cc, bb\$)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_3, cc, bbs)$

 \rightarrow $(q_4, cc, bb\$)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_3, cc, bbs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, cc, bbs)$

$$\xrightarrow{a, \epsilon \to a} \xrightarrow{b, a \to \epsilon} \xrightarrow{b, \epsilon \to b} \xrightarrow{c, b \to \epsilon}$$

$$\xrightarrow{q_0} \xrightarrow{\epsilon, \epsilon \to \$} \xrightarrow{q_1} \xrightarrow{\epsilon, \epsilon \to \epsilon} \xrightarrow{q_2} \xrightarrow{\epsilon, \$ \to \$} \xrightarrow{q_3} \xrightarrow{\epsilon, \epsilon \to \epsilon} \xrightarrow{q_4} \xrightarrow{\epsilon, \$ \to \epsilon} \xrightarrow{q_5}$$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, c, s)$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow (q_1, aabbbbcc, a\$)$$

$$\rightarrow (q_1, abbbbcc, a\$)$$

$$\rightarrow (q_2, bbbbcc, aa\$)$$

$$\rightarrow (q_2, bbbcc, aa\$)$$

$$\rightarrow (q_2, bbbcc, a\$)$$

$$\rightarrow (q_2, bbcc, \$)$$

$$\rightarrow (q_3, bbcc, \$)$$

$$\rightarrow (q_3, bcc, b\$)$$

$$\rightarrow (q_3, cc, bb\$)$$

$$\rightarrow (q_4, cc, bb\$)$$

$$\rightarrow (q_4, c, b\$)$$

$$\rightarrow (q_4, \epsilon, \$)$$

$$\rightarrow (q_5, \epsilon, \epsilon)$$

Computation on aabbbc:

 $(q_0, aabbbc, \epsilon)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, aas)$
 $\rightarrow (q_2, bbbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_3, cc, bbs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, \epsilon, s)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$(q_0, aabbbc, \epsilon)$$

 $\rightarrow (q_1, aabbbc, \$)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, as)$
 $\rightarrow (q_2, bbbbcc, as)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, \epsilon, s)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$(q_0, aabbbc, \epsilon)$$

 $\rightarrow (q_1, aabbbc, \$)$
 $\rightarrow (q_1, abbbc, a\$)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_3, cc, bbs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, \epsilon, s)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$egin{aligned} (q_0, aabbbc, \epsilon) \ &
ightarrow (q_1, aabbbc, \$) \ &
ightarrow (q_1, abbbc, a\$) \ &
ightarrow (q_1, bbbc, aa\$) \end{aligned}$$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, \epsilon, s)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$(q_0, aabbbc, \epsilon)$$

 $ightarrow (q_1, aabbbc, \$)$
 $ightarrow (q_1, abbbc, a\$)$
 $ightarrow (q_1, bbbc, aa\$)$
 $ightarrow (q_2, bbbc, aa\$)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, bs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, \epsilon, s)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$(q_0, aabbbc, \epsilon)$$
 $ightarrow (q_1, aabbbc, \$)$
 $ightarrow (q_1, abbbc, a\$)$
 $ightarrow (q_1, bbbc, aa\$)$
 $ightarrow (q_2, bbbc, aa\$)$
 $ightarrow (q_2, bbc, a\$)$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow (q_1, aabbbbcc, a\$)$$

$$\rightarrow (q_1, abbbbcc, a\$)$$

$$\rightarrow (q_2, bbbbcc, aa\$)$$

$$\rightarrow (q_2, bbbcc, aa\$)$$

$$\rightarrow (q_2, bbbcc, a\$)$$

$$\rightarrow (q_2, bbcc, \$)$$

$$\rightarrow (q_3, bbcc, \$)$$

$$\rightarrow (q_3, bcc, b\$)$$

$$\rightarrow (q_3, cc, bb\$)$$

$$\rightarrow (q_4, cc, bb\$)$$

$$\rightarrow (q_4, c, b\$)$$

$$\rightarrow (q_4, \epsilon, \$)$$

$$\rightarrow (q_5, \epsilon, \epsilon)$$

$$(q_0, aabbbc, \epsilon)$$

 $\rightarrow (q_1, aabbbc, \$)$
 $\rightarrow (q_1, abbbc, a\$)$
 $\rightarrow (q_1, bbbc, aa\$)$
 $\rightarrow (q_2, bbbc, aa\$)$
 $\rightarrow (q_2, bbc, a\$)$
 $\rightarrow (q_2, bc, \$)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, \$)$
 $\rightarrow (q_1, abbbbcc, a\$)$
 $\rightarrow (q_1, bbbbcc, aa\$)$
 $\rightarrow (q_2, bbbbcc, aa\$)$
 $\rightarrow (q_2, bbbcc, a\$)$
 $\rightarrow (q_2, bbcc, \$)$
 $\rightarrow (q_3, bbcc, \$)$
 $\rightarrow (q_3, bcc, b\$)$
 $\rightarrow (q_4, cc, bb\$)$
 $\rightarrow (q_4, c, b\$)$
 $\rightarrow (q_4, \epsilon, \$)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$(q_0, aabbbc, \epsilon)$$
 $ightarrow (q_1, aabbbc, s)$
 $ightarrow (q_1, abbbc, as)$
 $ightarrow (q_1, bbbc, aas)$
 $ightarrow (q_2, bbbc, aas)$
 $ightarrow (q_2, bbc, as)$
 $ightarrow (q_2, bc, s)$
 $ightarrow (q_3, bc, s)$

$$(q_0, aabbbbcc, \epsilon)$$
 $\rightarrow (q_1, aabbbbcc, s)$
 $\rightarrow (q_1, abbbbcc, as)$
 $\rightarrow (q_1, bbbbcc, aas)$
 $\rightarrow (q_2, bbbbcc, aas)$
 $\rightarrow (q_2, bbbcc, as)$
 $\rightarrow (q_2, bbbcc, s)$
 $\rightarrow (q_3, bbcc, s)$
 $\rightarrow (q_3, bcc, s)$
 $\rightarrow (q_3, cc, bbs)$
 $\rightarrow (q_4, cc, bbs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, c, bs)$
 $\rightarrow (q_4, \epsilon, s)$
 $\rightarrow (q_5, \epsilon, \epsilon)$

$$egin{aligned} (q_0,aabbbc,\epsilon) \ &
ightarrow (q_1,aabbbc,a\$) \ &
ightarrow (q_1,abbc,aa\$) \ &
ightarrow (q_2,bbbc,aa\$) \ &
ightarrow (q_2,bbc,a\$) \ &
ightarrow (q_2,bc,\$) \ &
ightarrow (q_3,bc,\$) \ &
ightarrow (q_3,c,b\$) \end{aligned}$$

$(q_0, aabbbbcc, \epsilon)$ \rightarrow $(q_1, aabbbbcc, \$)$ \rightarrow $(q_1, abbbbcc, a\$)$ \rightarrow $(q_1, bbbbcc, aa\$)$ \rightarrow (q_2 , bbbbcc, aa\$) \rightarrow $(q_2, bbbcc, a\$)$ \rightarrow (q_2 , bbcc, \$) \rightarrow (q_3 , bbcc, \$) \rightarrow $(q_3, bcc, b\$)$ \rightarrow (q₃, cc, bb\$) \rightarrow $(q_4, cc, bb\$)$ \rightarrow $(q_4, c, b\$)$ \rightarrow $(q_4, \epsilon, \$)$ $\rightarrow (q_5, \epsilon, \epsilon)$

$$egin{array}{l} (q_0,aabbbc,\epsilon) \
ightarrow (q_1,aabbbc,a\$) \
ightarrow (q_1,abbbc,aa\$) \
ightarrow (q_2,bbbc,aa\$) \
ightarrow (q_2,bbc,a\$) \
ightarrow (q_2,bc,\$) \
ightarrow (q_3,bc,\$) \
ightarrow (q_3,c,b\$) \
ightarrow (q_4,c,b\$) \end{array}$$

$$(q_0, aabbbbcc, \epsilon)$$

$$\rightarrow (q_1, aabbbbcc, a\$)$$

$$\rightarrow (q_1, abbbbcc, a\$)$$

$$\rightarrow (q_1, bbbbcc, aa\$)$$

$$\rightarrow (q_2, bbbbcc, aa\$)$$

$$\rightarrow (q_2, bbbcc, a\$)$$

$$\rightarrow (q_2, bbcc, \$)$$

$$\rightarrow (q_3, bbcc, \$)$$

$$\rightarrow (q_3, bcc, b\$)$$

$$\rightarrow (q_3, cc, bb\$)$$

$$\rightarrow (q_4, cc, bb\$)$$

$$\rightarrow (q_4, c, b\$)$$

$$\rightarrow (q_4, \epsilon, \$)$$

$$\rightarrow (q_5, \epsilon, \epsilon)$$

$$(q_0, aabbbc, \epsilon)$$
 $ightarrow (q_1, aabbbc, s)$
 $ightarrow (q_1, abbbc, as)$
 $ightarrow (q_1, bbbc, aas)$
 $ightarrow (q_2, bbbc, aas)$
 $ightarrow (q_2, bc, s)$
 $ightarrow (q_3, bc, s)$
 $ightarrow (q_3, c, bs)$
 $ightarrow (q_4, c, bs)$
 $ightarrow (q_4, \epsilon, s)$

$(q_0, aabbbbcc, \epsilon)$ \rightarrow $(q_1, aabbbbcc, \$)$ \rightarrow $(q_1, abbbbcc, a\$)$ \rightarrow $(q_1, bbbbcc, aa\$)$ \rightarrow (q_2 , bbbbcc, aa\$) \rightarrow $(q_2, bbbcc, a\$)$ \rightarrow (q_2 , bbcc, \$) \rightarrow (q_3 , bbcc, \$) \rightarrow $(q_3, bcc, b\$)$ \rightarrow (q₃, cc, bb\$) \rightarrow $(q_4, cc, bb\$)$ \rightarrow $(q_4, c, b\$)$ \rightarrow $(q_4, \epsilon, \$)$ $\rightarrow (q_5, \epsilon, \epsilon)$

$$(q_0, aabbbc, \epsilon)$$
 $ightarrow (q_1, aabbbc, s)$
 $ightarrow (q_1, abbbc, as)$
 $ightarrow (q_2, bbbc, as)$
 $ightarrow (q_2, bbc, as)$
 $ightarrow (q_2, bc, s)$
 $ightarrow (q_3, bc, s)$
 $ightarrow (q_3, c, bs)$
 $ightarrow (q_4, c, bs)$
 $ightarrow (q_4, \epsilon, s)$
 $ightarrow (q_5, \epsilon, \epsilon)$