存储与应用环境

www.huawei.com

- 1. 存储的应用环境介绍
 - 1.1 存储的发展
 - 1.2主机内部存储环境
 - 1.3网络存储应用环境

存储的发展 — 什么是存储

- **存储**:就是根据不同的应用环境通过采取合理、安全、有效的方式 将数据保存到某些介质上并能保证有效的访问。
- 当前存储的主要体系结构有三种: DAS、NAS、SAN

存储的发展 — 现状和趋势

- 存储体系结构
 - □ 当前存储的主要体系结构有三种: DAS、NAS、SAN
- 存储发展趋势
 - □ 重复数据删除
 - □ SSD固态磁盘
 - □ 云存储
 - □ 虚拟化环境的保护
 - □ 一体化应用存储设备
 - □ 非结构化数据存储与管理
 - □ 备份容灾

主机内部存储环境

主机内部I/O流程各个环节共同构成了数据存储的内部应用环境。

主机内部存储环境 — 瓶颈

• 硬盘成为整个系统的

□有限的硬盘槽

□ 单个硬盘存放。 保证 思考:如何解 决内置存储瓶 颈呢?

- 存储空间利用率低
 - □ 本地存储,数据分散,难以共享
- 可扩展性不够
 - □ 总线结构,而非网络结构
 - □ 可连接的设备受到限制增加容量时, 需停机

网络存储应用环境

网络存储系统各层构成了网络存储系统的应用环境、决定了数据存储的可 靠性、性能和安全性。

- 2. 存储介质
 - 2.1 机械硬盘
 - 2.2 SSD硬盘
 - 2.3 硬盘接口

机械硬盘 — 结构

机械硬盘 — 结构(续)

数据传输芯片

高速缓存芯片

机械硬盘 — 磁头技术

机械部分

电子部分

机械硬盘 一 盘片的功能分布

机械硬盘 一 盘片逻辑结构

- 磁道(Track)
- 柱面 (Cylinder)
- 扇区 (Sector)
- 磁头数(Head number)

机械硬盘 一主要参数

- 硬盘容量(Volume) = 柱面数×磁头数×扇区数×512Bytes
- 转速(Rotational speed): 盘片转动圈数 / 分钟(rpm)
- 缓存(Cache)
- 平均访问时间
- 数据传输率

机械硬盘 — 平均访问时间

- 平均访问时间由以下两项构成:
 - 平均寻道时间(Average Seek Time)
 - □ 平均等待时间 (Average Latency Time)

机械硬盘 — 数据传输率

- 数据传输率(Data Transfer Rate)
 - □ 内部传输率(Internal Transfer Rate)
 - □ 外部传输率 (External Transfer Rate)

机械硬盘 — IOPS/Throughput

IOPS

□ IOPS (Input/Output Per Second) 即每秒的输入输出量(或读写次数),是衡量磁盘性能的主要指标之一。

Throughput

□ Throughput吞吐量:指单位时间内可以成功传输的数据数量。对于大量顺序读写的应用,如电视台的视频编辑,视频点播VOD(Video On Demand),则更关注吞吐量指标。

SSD硬盘

- 无高速旋转部件,性能高,功耗低
- 多通道并发,通道内Flash颗粒复用时序
- 支持TCQ/NCQ,一次响应多个IO请求
- 典型响应时间低于0.1ms

SSD硬盘 — 性能优势

• 响应时间短

机械硬盘的机械特性导致大部分时间浪费在寻道和机械延迟上,数据传输效率受到严重制约。

• 读写效率高

机械硬盘在进行随机读写操作时, 磁头不停地移动,导致读写效率低下,而SSD通过内部控制器计算出数据的存放位置,直接进行存取操作,故效率高。

SSD硬盘 — 功耗优势

SSD硬盘 — 环境适应优势

- SSD不含高速旋转的机械结构部件,可经得住严苛的环境考验,以华为SSD 硬盘为例:
 - □ HSSD可承受振动加速度16.4G,机械硬盘一般为0.5G以下
 - □ HSSD抗冲击1500G,机械硬盘一般为70G左右
- HSSD使用专用设备做过如下测试:
 - □ 静压试验、跌落试验、随机振动试验、冲击试验、碰撞试验

SSD硬盘 — 存储中的应用

硬盘接口 — ATA接口

- ATA (Advanced Technology Attachment) 高级技术附加装置
 - ATA硬盘也经常称为IDE Integrated Drive Electronics 硬盘
 - □ ATA接口为并行ATA技术

硬盘接口 — SCSI接口

• SCSI (Small Computer System Interface) 小型计算机系统接口

硬盘接口 — SATA接口

- SATA: Serial ATA (Serial ATA) 串行ATA
 - □ SATA采用串行方式进行数据传输,接口速率比IDE接口高,最低为 150MBps,并且第二代(SATA II)300MBps接口硬盘已经形成商用, 规划内的最高速率可达600MBps
 - □ SATA硬盘采用点对点连接方式,支持热插拔,即插即用

硬盘接口 — SAS接口

- SAS (Serial Attached SCSI) 串行连接SCSI
 - □ SAS是一种点对点、全双工、双端口的接口
 - □ SAS专为满足高性能企业需求而设计,实现与SATA的互操作,为企业用户带来前 所未有的灵活性和低成本
 - □ 速率每路600M
 - □ SAS具有高性能、高可靠性、强大的扩展性能

硬盘接口 — FC接口

- FC硬盘采用FC-AL(Fiber Channel Arbitrated Loop)光纤通道仲裁环
 - □ FC-AL是一种双端口的串行存储接口
 - □ FC-AL支持全双工工作方式
 - FC-AL利用类似SATA/SAS所用的4芯连接,提供一种单环拓扑结构,一个控制器能 访问126个硬盘

硬盘接口 — NL SAS

• NL SAS 采用SAS接口、SATA 盘体,也叫近线SAS。

类别	时效性	容量	性能	访问速度	成本
在线	即时服务	/]\	高	快	高
近线		较大	低	较快	低
离线	非即时的	大	低	慢	低

硬盘接口 — 比较

优势、应用	SAS	NL-NAS	SATA
优势	高可靠性 高性能 原生支持SCSI 支持双端访问 高级容错技术	原生支持SCSI 支持双端访问 高级容错技术 大容量 低功耗	大容量低功耗
推荐场景	业务量大,访问频 率较高,以小数据 块居多,数据较为 离散的高/中端用户。 比如:企业数据库, CRM、ERP等应用	更适合大数据块 业务,压力不大的用 户使用。比如:邮件 服务器、文件服务器	适合大数据块,业 务压力不大的用户 使用。比如:企业 备份数据,归档数 据,视频图片存储。

谢谢

www.huawei.com