Data Structures and Algorithms

Nanjing University, Fall 2021 郑朝栋

Implement **Queue** with **CircularArray**

- CircularArray supports Queue operations in O(1)time.
- But what to do when the array 451 full?!
 - Allocate a new array of double size.
 - Copy existing items to the new array, and insert new element.
 - Delete old array.
- But now the **Insert** operation may take $\Theta(n)$ time! So a sequence of n operations can take $O(n^2)$ time

 $\Theta(n)$

- Technique for analyzing "average cost":
 - Often used in data structure analysis
 - (Expensive Op. and Cheap Op.) + (Expensive Op. can't be frequent)
 - => Average cost of Op. for *any* sequence of Op. must be low.
- In some sense, like "pay in installments".
 - Is using iPhone expensive?
 - Sure, average monthly salary in Jiangsu≈ 8635 / 53
 - But you don't but a new iPhone everyday!
 Pay < 550 per month if new iPhone every other yea

RMB 12999

- Technique for analyzing "average cost":
 - Often used in data structure analysis
 - (Expensive Op. and Cheap Op.) + (Expensive Op. not frequent)
 - => Average cost of Op. for *any* sequence of Op. must be low.
- **Definition:** Operation has <u>amortized cost</u> $\hat{c}(n)$, if for *every* $k \in \mathbb{N}^+$, the total cost of *any* k operations is $\leq \sum_{i=1}^k \hat{c}(n_i)$.

 (n_i) is the size of the data structure when applying the i^{th} op.)

Different operations may have different amortized costs.

- Consider a sequence operations: c_i = actual cost of the i^{th} op.; $\widehat{c_i}$ = amortized cost of the i^{th} op.
- For the amortized cost to be valid:

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} \widehat{c_i} \text{ for any } k \in \mathbb{N}^+$$

- Total cost of k operations is $\leq \sum_{i=1}^{k} \widehat{c_i}$, not $\leq k \cdot \max\{c_i\}$.
- Average cost of k operations is $\leq \frac{\sum_{i=1}^{k} \widehat{c_i}}{k}$, not $\leq \max\{c_i\}$.

- **Definition:** Operation has <u>amortized cost</u> $\hat{c}(n)$, if for *every* $k \in \mathbb{N}^+$, the total cost of *any* k operations is $\leq \sum_{i=1}^k \hat{c}(n_i)$. (n_i is the size of the data structure when applying the i^{th} op.)
- Different operations may have different amortized costs.
 - Consider CircularArray implementation of Queue.

```
Insert have amortized cost 20 (\hat{c} (n) = 1 if opnishing the cost alloc are possible and n insert (n) = 1 if op. is Remove.) Insert (n) = 1 if op. is n insert (n) = 1 if n i
```

Insert(c) 7+(4+1)=12 > 8+2=10

| C | C | C |

• **Definition:** Operation has amortized cost $\hat{c}(n)$, if for every $k \in \mathbb{N}^+$, the total cost of any k operations C So CircularArray operations has O(1) amortized cost?

(Even though some op. can cost $\Theta(n)$.) • Different . LuiarArray implementation of Queue.

Ignore cost of array alloc Remove has amortized cost 1? $(\hat{c}(n)_1 = 1 \text{ if 3 op. is}$ Remove.) Insert(c) 1+(1+1)=3 3+3=6

Insert(c) 1+(1+1)=3 3+3=6Insert(c) 3+(2+1)=6 6+3=9Insert(c) 6+1=7 9+3=12 Insert(c) 7+(4+1)=12 12+3=15

12+1=13 15+1=16 emove()

The Accounting Method

- Consider a sequence operations: c_i = actual cost of the the i^{th} op.; $\widehat{c_i}$ = amortized cost of the i^{th} op.
- For the amortized cost to be valid:

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} \widehat{c_i} \text{ for any } k \in \mathbb{N}^+$$

- Imagine you have a bank account B.
- For the i^{th} op., you spend $\widehat{c_i}$ money:
 - Recall the actual cost of the i^{th} op. is c_i .
 - If $\widehat{c_i} \ge c_i$, pay c_i for the op., and deposit $\widehat{c_i} c_i$ into B.
 - If $\widehat{c_i} < c_i$, pay c_i for the op., and withdraw $c_i \widehat{c_i}$ from B.
- Amortized analysis valid if $B = \sum_{i=1}^{k} (\widehat{c_i} c_i)$ always ≥ 0 .

The Accounting Method

Example: CircularArray based Queue

- $\widehat{c_i} = 3$ if the i^{th} op is **Insert**, $\widehat{c_i} = 1$ if the i^{th} op is **Remove**.
- **Goal:** Prove $\sum_{i=1}^k c_i \le \sum_{i=1}^k \widehat{c_i}$ for any $k \in \mathbb{N}^+$ operations.
- **Strategy:** account always non-negative via induction on *k*.
- [Basis] Prior to 1st op., account value is 0.
- [Hypothesis] Prior to i^{th} op., account value is always non-negative.
- [Inductive Step] Consider the *i*th op.
 - If it's **Remove**, then we make no change to account value.
 - If it's **Insert** without expansion, we add 2 to account value.
 - If it's **Insert** with expansion. Assume expand from n to 2n. Last expand must be from n/2 to n.

Since last expand, each **Insert** adds 2, each **Remove** makes no change.

The Accounting Method

Example: Binary Counter

- Use length n binary array A to represent a number.
- The number is 0 initially, and **Inc** op. adds 1 to this number.
- Cost of Inc: number of bits it flipped.
- Average cost of k Inc operations?
 - Easy answer: O(n)
 - More careful analysis... (Amortized analysis...)


```
Inc(A):
i=0
while (i<n and A[i]==1)
   A[i]=0
   i=i+1
if (i<n)
   A[i]=1</pre>
```

The Accounting Method

Example: Binary Counter

- The number is 0 initially, and Inc op. adds 1 to this number.
- Cost of Inc: number of bits it flipped.
- In each Inc: $0 \rightarrow 1$: at most 1 bit; $1 \rightarrow 0$: many bits.
- But a bit has to be set to 1 before it resets to 0!
- If we deposit 1 whenever we $0 \rightarrow 1$, later $1 \rightarrow 0$ are "free"!

The Potential Method

- Consider a sequence operations: $c_i = \text{actual cost of } i^{\text{th}} \text{ op.}; \ \widehat{c_i} = \text{amortized cost of } i^{\text{th}} \text{ op.}$
- For the amortized cost to be valid:

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} \widehat{c_i} \text{ for any } k \in \mathbb{N}^+$$

- Design a **potential function** Φ that maps D.S. status to real values.
 - $\Phi(D_0)$: initial potential of D.S., usually set to 0.
 - $\Phi(D_i)$: potential of D.S. after i^{th} operation.
- Define $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$
- For amortized cost to be valid, need $\Phi(D_k) \ge \Phi(D_0)$ for all k.
- "Potential" is like the **balance in account** in "Counting Method".
 - Potential slowly accumulates during "cheap" operations (deposit).
 - Potential drops a lot after an "expensive" operation (withdraw).
- But the Potential Method could be more powerful in general...

The Potential Method

Example: Binary Counter

- Design a **potential function** Φ that maps D.S. status to real values.
 - $\Phi(D_0)$: initial potential of D.S., usually set to 0.
 - $\Phi(D_i)$: potential of D.S. after i^{th} operation.
- Define $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$, need $\Phi(D_k) \ge \Phi(D_0)$ for all k.
- How to define $\Phi(D_i)$ for Binary Counter? (Recall potential is like "balance".)
- $\Phi(D_i)$ = number of 1s in the array after the i^{th} Inc operation.
- Clearly " $\Phi(D_k) \ge \Phi(D_0)$ for all k" is satisfied, how large is $\widehat{c_i}$?

•
$$\Phi(D_i) - \Phi(D_{i-1}) = (\# \text{ of bits } 0 \to 1) + (\# \text{ of bits } 1 \to 0)$$

• $\Phi(D_i) - \Phi(D_{i-1}) = (\# \text{ of bits } 0 \to 1) - (\# \text{ of } 0 \ 1 \ 0 \ 0 \ 1 \ 1$

• $\widehat{c_i} = 2 \cdot (\# \text{ of bits } 0 \rightarrow 1) \leq 2$

Inc()

Back to CircularArray based Queue

- Problem: Array has limited size, what to do when it's full?
- **Solution:** Double the size when array is full and **Insert** comes. (Copy items to new array, insert new item, and delete old array.)
- Solution is Good: amortized cost of Insert and Remove both O(1).
- New Problem: Lots of Insert, then lots of Remove. A lot of space wasted!
- Solution: Reduce array size to half when array only half loaded after Remove.
 (Allocate new array of half size, copy items to new array, and delete
 - (Allocate new array of half size, copy items to new array, and delete old array.)
- Does the above solution achieves O(1) amortized cost?
- No! Consider a full array and following ops: Insert, Remove, Insert, Remove, ...
- Better solutions? How to prove new solutions indeed

Reading

• [CLRS] Ch.17 (including 17.4)