問題 3.1 (Lv.2)

次の逆三角関数の値を求めよ.

$$(1) \sin^{-1} \frac{\sqrt{3}}{2}$$

(2)
$$\cos^{-1} \frac{1}{2}$$

(2)
$$\cos^{-1} \frac{1}{2}$$
 (3) $\tan^{-1} \frac{1}{\sqrt{3}}$

$$(4) \sin^{-1}\left(-\frac{1}{2}\right)$$

(4)
$$\sin^{-1}\left(-\frac{1}{2}\right)$$
 (5) $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ (6) $\tan^{-1}\left(-\sqrt{3}\right)$

$$(6) \tan^{-1} \left(-\sqrt{3}\right)$$

$$(7) \sin^{-1} 1$$
 $(8) \cos^{-1} 0$

$$(8) \cos^{-1} 0$$

(9)
$$\tan^{-1}(-1)$$

問題 3.2 (Lv.4)

- (1) 関係式 $\sin^{-1}(-x) = -\sin^{-1}x$ を示せ.
- (2) 関係式 $\cos^{-1}(-x) = \pi \cos^{-1} x$ を示せ.

(3) 関係式
$$\tan^{-1}\frac{1}{x}=\left\{ \begin{array}{ll} \frac{\pi}{2}-\tan^{-1}x & (x>0) \\ -\frac{\pi}{2}-\tan^{-1}x & (x<0) \end{array} \right.$$
を示せ.

問題 3.3 (Lv.2)

- (1) 双曲線関数の値 sinh 0, cosh 0, tanh 0 を求めよ.
- (2) 関係式 $\sinh(-x) = -\sinh x$, $\cosh(-x) = \cosh x$ を示せ.
- (3) 関係式 $\tanh 2x = \frac{2\tanh x}{1+\tanh^2 x}$ を示せ.

問題 3.4 (Lv.3)

 $f(x) = x^2 + x + 1$ とする. (関数の終域は値域に制限しておく)

次の範囲を定義域とする関数 y=f(x) の逆関数 $x=f^{-1}(y)$ を求めよ.

(1)
$$0 \le x \le 2$$

$$(2) -1 \le x \le 1$$

(1)
$$0 \le x \le 2$$
 (2) $-1 \le x \le 1$ (3) $-2 \le x \le -1$

問題 3.5 (Lv.4)

点 $x \in [0, \pi]$ に値 $f(x) = \sin^{-1}(\sin x)$ を対応させて、関数 $f:[0, \pi] \to \mathbb{R}$ を定める.

- 関数 f の定義域、終域および値域を求めよ。
- (2) 終域を値域に制限して考えたとき、fが1対1対応になるか調べよ。

問題 3.6 (Lv.5)

関数 f は閉区間 $[a\ b]$ 上で狭義単調増加で連続, $f(a) = \alpha$, $f(b) = \beta$ とする.

(関数の定義域は $[a\ b]$ とし、終域は値域に制限しておくものとする)

- (1) 閉区間 $[\alpha \beta]$ 上に f の逆関数 f^{-1} が定まることを示せ.
- (2) 逆関数 f^{-1} も狭義単調増加で連続になることを示せ.

問題 3.1 (解答)

$$(1)$$
 $\sin \theta = \frac{\sqrt{3}}{2}$ の $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ における解より, $\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$

$$(2)$$
 $\cos \theta = \frac{1}{2}$ の $0 \le \theta \le \pi$ における解より, $\cos^{-1} \frac{1}{2} = \frac{\pi}{3}$

$$(3) \tan \theta = \frac{1}{\sqrt{3}} \, \mathbf{O} - \frac{\pi}{2} < \theta < \frac{\pi}{2} \,$$
における解より $, \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$

$$(4) \sin \theta = -\frac{1}{2}$$
 の $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ における解より $\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

$$(5)$$
 $\cos \theta = -\frac{1}{\sqrt{2}}$ の $0 \le \theta \le \pi$ における解より, $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3}{4}\pi$

$$(6)$$
 $an heta = -\sqrt{3}$ の $-rac{\pi}{2} < heta < rac{\pi}{2}$ における解より $,$ $an^{-1} \left(-\sqrt{3}
ight) = -rac{\pi}{3}$

$$(7)$$
 $\sin \theta = 1$ の $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ における解より, $\sin^{-1} 1 = \frac{\pi}{2}$

$$(8)$$
 $\cos \theta = 0$ の $0 \le \theta \le \pi$ における解より, $\cos^{-1} 0 = \frac{\pi}{2}$

$$(9)$$
 $an heta = -1$ の $-rac{\pi}{2} < heta < rac{\pi}{2}$ における解より $,$ $an^{-1}(-1) = -rac{\pi}{4}$

問題 3.2 (解答)

(2)
$$\theta = \cos^{-1} x$$
 とおくと, $\cos \theta = x$ かつ $0 \le \theta \le \pi$ より,
$$\cos(\pi - \theta) = -\cos \theta = -x$$
 かつ $0 \le \pi - \theta \le \pi$ だから, 逆三角関数の定義より, $\cos^{-1}(-x) = \pi - \theta = \pi - \cos^{-1} x$

(3)
$$\theta = \tan^{-1}x$$
 とおくと, $\tan\theta = x$ かつ $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ $x > 0$ のときは, $0 < \theta < \frac{\pi}{2}$ より, $\left(-\frac{\pi}{2} <\right) 0 < \frac{\pi}{2} - \theta < \frac{\pi}{2}$ であり, $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{\sin\left(\frac{\pi}{2} - \theta\right)}{\cos\left(\frac{\pi}{2} - \theta\right)} = \frac{\cos\theta}{\sin\theta} = \frac{1}{\tan\theta} = \frac{1}{x}$ だから, 逆三角関数の定義より, $\tan^{-1}\frac{1}{x} = \frac{\pi}{2} - \theta = \frac{\pi}{2} - \tan^{-1}x$ $x < 0$ のときは, $-\frac{\pi}{2} < \theta < 0$ より, $-\frac{\pi}{2} < -\frac{\pi}{2} - \theta < 0$ ($<\frac{\pi}{2}$) であり, $\tan\left(-\frac{\pi}{2} - \theta\right) = \frac{\sin\left(-\frac{\pi}{2} - \theta\right)}{\cos\left(-\frac{\pi}{2} - \theta\right)} = \frac{-\cos\theta}{-\sin\theta} = \frac{1}{\tan\theta} = \frac{1}{x}$ だから, 逆三角関数の定義より, $\tan^{-1}\frac{1}{x} = -\frac{\pi}{2} - \theta = -\frac{\pi}{2} - \tan^{-1}x$

問題 3.3 (解答)

(1)
$$\sinh x = \frac{e^x - e^{-x}}{2} \, \sharp \, \mathcal{O}, \, \sinh 0 = \frac{e^0 - e^{-0}}{2} = \frac{1 - 1}{2} = 0$$

$$\cosh x = \frac{e^x + e^{-x}}{2} \, \sharp \, \mathcal{O}, \, \cosh 0 = \frac{e^0 + e^{-0}}{2} = \frac{1 + 1}{2} = 1$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \, \sharp \, \mathcal{O}, \, \tanh 0 = \frac{e^0 - e^{-0}}{e^0 + e^{-0}} = \frac{1 - 1}{1 + 1} = 0$$

(2)
$$\sinh(-x) = \frac{e^{(-x)} - e^{-(-x)}}{2} = \frac{e^{-x} - e^{x}}{2} = -\frac{e^{x} - e^{-x}}{2} = -\sinh x$$

 $\cosh(-x) = \frac{e^{(-x)} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2} = \frac{e^{x} + e^{-x}}{2} = \cosh x$

問題 3.4 (解答)

$$f(x)=x^2+x+1=\left\{\left(x+rac{1}{2}
ight)^2-rac{1}{4}
ight\}+1=\left(x+rac{1}{2}
ight)^2+rac{3}{4}$$
 より、 $y=f(x)$ のグラフは、頂点が $\left(-rac{1}{2},rac{3}{4}
ight)$ の下に凸な放物線 $f(x)$ は $x\leq -rac{1}{2}$ では狭義単調減少、 $-rac{1}{2}\leq x$ では狭義単調増加

- (1) 定義域 $0 \le x \le 2$ において、f(x) は狭義単調増加、f(0) = 1、f(2) = 7 定義域と値域が 1 対 1 に対応し、値域 $1 \le y \le 7$ 上に逆関数が定まる。 2 次方程式の解の公式を用いて、 $y = x^2 + x + 1$ を x について解くと、 $x^2 + x + (1 y) = 0$ より、 $x = \frac{-1 \pm \sqrt{1 4(1 y)}}{2} = \frac{-1 \pm \sqrt{4y 3}}{2}$ $x = \frac{-1 + \sqrt{4y 3}}{2}$ の方が $1 \le y \le 7$ から $0 \le x \le 2$ への逆対応になるので、 $y = x^2 + x + 1$ ($0 \le x \le 2$) の逆関数は、 $x = \frac{-1 + \sqrt{4y 3}}{2}$ ($1 \le y \le 7$)
- (2) f(0)=1, f(-1)=1 より, f(x) は異なる点 x=0 と x=-1 で同じ値になる. 定義域 $-1 \le x \le 1$ では, 値域と 1 対 1 に対応しないので, 逆関数は存在しない.
- (3) 定義域 $-2 \le x \le -1$ において、f(x) は狭義単調減少、f(-2) = 3、f(-1) = 1 定義域と値域が 1 対 1 に対応し、値域 $1 \le y \le 3$ 上に逆関数が定まる。
 (1) と同様に、 $y = x^2 + x + 1$ を x について解くと、 $x = \frac{-1 \pm \sqrt{4y 3}}{2}$ $x = \frac{-1 \sqrt{4y 3}}{2}$ の方が $1 \le y \le 3$ から $-2 \le x \le -1$ への逆対応になるので、 $y = x^2 + x + 1$ $(-2 \le x \le -1)$ の逆関数は、 $x = \frac{-1 \sqrt{4y 3}}{2}$ $(1 \le y \le 3)$

問題 3.5 (解答)

- (1) $f:[0\ \pi] \to \mathbb{R}$ だから, f の定義域は閉区間 $[0\ \pi]$, 終域は実数全体 \mathbb{R} $[0\ \pi]$ 上で $\sin x$ の値域は $[0\ 1]$ であり, $[0\ 1]$ 上で $\sin^{-1}x$ の値域は $[0\ \frac{\pi}{2}]$ ゆえに, $[0\ \pi]$ 上で合成関数 $f(x) = \sin^{-1}(\sin x)$ の値域は $[0\ \frac{\pi}{2}]$ となる.

問題 3.6 (解答)

- (1) 点 $x_1, x_2 \in [a \ b]$ とし、 $x_1 \neq x_2$ ($x_1 < x_2$) とすると、関数 f が狭義単調増加より、 $x_1 < x_2$ から $f(x_1) < f(x_2)$ となり、関数の値は異なる ($f(x_1) \neq f(x_2)$). また、点 $x \in [a \ b]$ のとき、 $a \le x \le b$ より、 $f(a) \le f(x) \le f(b)$ だから、 $\alpha \le f(x) \le \beta$ となり、関数の値 f(x) は閉区間 [$\alpha \beta$] 内にあるが、逆に、点 $y \in [\alpha \beta]$ とすると、 $\alpha \le y \le \beta$ より、 $f(a) \le y \le f(b)$ 関数 f が閉区間 [a b] 上で連続だから、中間値の定理を適用すると、f(x) = y となる点 $x \in [a \ b]$ の存在が保証され、f の値域は閉区間 [$\alpha \beta$] となる. よって、定義域 [a b] と値域 [$\alpha \beta$] が 1 対 1 に対応し、[$\alpha \beta$] 上に逆関数が定まる.
- (2) $y_1,y_2\in [\alpha\ \beta], y_1< y_2$ とし、 $x_1=f^{-1}(y_1), x_2=f^{-1}(y_2)$ とする. f の逆関数が f^{-1} より、 $f(f^{-1}(y))=y$ であり、 $f(x_1)=y_1$ 、 $f(x_2)=y_2$ となる. $x_1\geqq x_2$ と仮定すると、 $f(x_1)\geqq f(x_2)$ だから、 $y_1\geqq y_2$ となり、 $y_1< y_2$ に反する. ゆえに、 $x_1< x_2$ つまり $f^{-1}(y_1)< f^{-1}(y_2)$ となり、逆関数 f^{-1} は狭義単調増加連続性は、任意の点 $y_0\in [\alpha\ \beta]$ において、 $\lim_{y\to y_0}f^{-1}(y)=f^{-1}(y_0)$ を示せばよい、 f^{-1} が単調増加だから、y を y_0 に右から近づけるとき $(y\to y_0+0$ のとき)、 $f^{-1}(y)$ の値は、下に有界($extile a=f^{-1}(\alpha)$)であり、かつ、単調に減少していく、ゆえに、極限値 $extile y=y_0+0$ が存在するので、その値を $extile x_0$ とする. $extile y=y_0+0$ が連続関数より、極限値における関数の値は、関数の値の極限値と一致する. $extile y=y_0+0$ が連続関数より、 $extile x_0$ 0 となり、 $extile x_0$ 0 となり、 $extile x_0$ 1 となり、 $extile x_0$ 2 に同様にして $extile x_0$ 3 に $extile x_0$ 4 に $extile x_0$ 5 に $extile x_0$ 6 に $extile x_0$ 6 に $extile x_0$ 7 に $extile x_0$ 7 に $extile x_0$ 9 に $extile x_0$ 9