Job No.:
 2403004
 Address:
 25 Willow Street, Takaka, New Zealand
 Date:
 20/03/2024

 Latitude:
 -40.862694
 Longitude:
 172.807439
 Elevation:
 11.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	40.3 m/s
Wind Pressure	0.97 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp,i = -0.3

For roof CP,e from 0 m To 1.65 m Cpe = -1.0739 pe = -0.94 KPa pnet = -0.94 KPa

For roof CP,e from 1.65 m To 3.30 m Cpe = -0.813 pe = -0.71 KPa pnet = -0.71 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 4.60 m Cpe = 0.7 pe = 0.61 KPa pnet = 0.90 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.57 KPa pnet = -0.57 KPa

Maximum Upward pressure used in roof member Design = 0.94 KPa

Maximum Downward pressure used in roof member Design = 0.47 KPa

Maximum Wall pressure used in Design = 0.90 KPa

Maximum Racking pressure used in Design = 1.05 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 5250 mm Try Purlin 240x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.51 S1 Downward =13.82 S1 Upward =23.49

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M 1.35D	1.05 Kn-m	Capacity	2.73 Kn-m	Passing Percentage	260.00 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	2.39 Kn-m	Capacity	3.64 Kn-m	Passing Percentage	152.30 %
M0.9D-WnUp	-2.22 Kn-m	Capacity	-2.48 Kn-m	Passing Percentage	111.71 %

First Page

Pole Shed App Ver 01 2022							
V _{1.35D}	0.80 Kn	Capacity	10.42 Kn	Passing Percentage	1302.50 %		
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.82 Kn	Capacity	13.89 Kn	Passing Percentage	763.19 %		
$ m V_{0.9D ext{-WnUp}}$	-1.69 Kn	Capacity	-17.37 Kn	Passing Percentage	1027.81 %		
▼ 0.7D-W IIOp	-1.07 IXII	Сараспу	- 1 / .5 / IXII	i assing i ciccinage	102/.01/0		

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 14.80 mm

Deflection under Dead and Service Wind = 18.13 mm

Limit by Woolcock et al, 1999 Span/240 = 21.67 mm Limit by Woolcock et al, 1999 Span/100 = 52.00 mm

Reactions

Maximum downward = 1.82 kn Maximum upward = -1.69 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5400 mm

Internal Rafter Span = 4450 mm

Try Rafter 2x240x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.71 S1 Upward = 6.71

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	4.51 Kn-m	Capacity	19.9 Kn-m	Passing Percentage	441.24 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	10.29 Kn-m	Capacity	26.54 Kn-m	Passing Percentage	257.92 %
$M_{0.9D\text{-W}nUp}$	-9.56 Kn-m	Capacity	-33.18 Kn-m	Passing Percentage	347.07 %
V _{1.35D}	4.06 Kn	Capacity	36.82 Kn	Passing Percentage	906.90 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	9.25 Kn	Capacity	49.08 Kn	Passing Percentage	530.59 %
$ m V_{0.9D-WnUp}$	-8.59 Kn	Capacity	-61.36 Kn	Passing Percentage	714.32 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7.455 mm Deflection under Dead and Service Wind = 10.145 mm Limit by Woolcock et al, 1999 Span/240 = 19.17 mm Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = 9.25 kn Maximum upward = -8.59 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Second page

Joint Group for Rafters = J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -8.59 Kn

Rafter Design External

External Rafter Load Width = 2700 mm

External Rafter Span = 3370 mm

Try Rafter 240x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.94 S1 Downward =13.82 S1 Upward =13.82

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	1.29 Kn-m	Capacity	9.37 Kn-m	Passing Percentage	726.36 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.95 Kn-m	Capacity	12.49 Kn-m	Passing Percentage	423.39 %
$M_{0.9D\text{-W}nUp}$	-2.74 Kn-m	Capacity	-15.61 Kn-m	Passing Percentage	569.71 %
V _{1.35D}	1.54 Kn	Capacity	18.41 Kn	Passing Percentage	1195.45 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	3.50 Kn	Capacity	24.54 Kn	Passing Percentage	701.14 %
$ m V_{0.9D ext{-}WnUp}$	-3.25 Kn	Capacity	-30.68 Kn	Passing Percentage	944.00 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 2.90 mm

Deflection under Dead and Service Wind = 3.56 mm

Limit by Woolcock et al, 1999 Span/240= 14.75 mm Limit by Woolcock et al, 1999 Span/100 = 35.40 mm

Reactions

Maximum downward = 3.50 kn Maximum upward = -3.25 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -30.05 \text{ kn} > -3.25 \text{ Kn}$

Single Shear Capacity under short term loads = -14.56 Kn > -3.25 Kn

Intermediate Design Front and Back

Intermediate Spacing = 2700 mm

Intermediate Span = 3450 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.60

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 3.62 Kn-m
 Capacity
 4.2 Kn-m
 Passing Percentage
 116.02 %

 V0.9D-WnUp
 4.19 Kn-m
 Capacity
 -24.12 Kn-m
 Passing Percentage
 575.66 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 29.515 mm

Limit byWoolcock et al, 1999 Span/100 = 34.50 mm

Reactions

Maximum = 4.19 kn

Girt Design Front and Back

Girt's Spacing = 900 mm

Girt's Span = 2700 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.77 S1 Downward =10.36 S1 Upward =17.95

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.74 Kn-m Capacity 1.27 Kn-m Passing Percentage 171.62 % V0.9D-WnUp 1.09 Kn-m Capacity 10.13 Kn-m Passing Percentage 929.36 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 8.13 mm

Limit by Woolcock et al, 1999 Span/100 = 27.00 mm

Sag during installation = 3.98 mm

Reactions

Maximum = 1.09 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 3540 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =10.36 S1 Upward =14.53

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

1.27 Kn-m Capacity 1.51 Kn-m Passing Percentage 118.90 % $M_{Wind+Snow}$ $V_{0.9D\text{-}WnUp}$ 1.43 Kn-m Capacity 10.13 Kn-m Passing Percentage 708.39 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 24.02 mm

Limit by Woolcock et al. 1999 Span/100 = 35.40 mm

Sag during installation =11.76 mm

Reactions

Maximum = 1.43 kn

Middle Pole Design

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level) Dry Use Height 3300 mm 35448 mm2 26585.7421875 mm2 Area As 100042702 mm4 941578 mm3 ZxIx Iy 100042702 mm4 Zx 941578 mm3

Lateral Restraint 3400 mm c/c

Loads

Total Area over Pole = 12.42 m2

3.10 Kn 3.10 Kn Dead Live Wind Down 5.84 Kn Snow 0.00 Kn

Moment wind 13.74 Kn-m

Phi 0.8 K8 0.86 K1 snow 0.8 K1 Dead 0.6 1

K1wind

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	438.78 Kn	PhiMnx Wind	23.50 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	263.27 Kn	PhiMnx Dead	14.10 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.61 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.37 < 1 OK$

Deflection at top under service lateral loads = 24.77 mm < 33.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1600 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 13.74 Kn-m Shear Wind = 5.09 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.49 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 13.91 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.83 Kn

Uplift on one Pile = 8.88 Kn

Uplift is ok