____ (R)
/__ / ___/ / ___/
__/ / /___/ / /__/
Statistics/Data analysis

1 .

2

3 . **STEP 13: DESCRIPTIVE TABLE BY SEX AND RACE/ETHNICITY, WITHOUT TAKING INTO ACCOUNT SAMPLING DESIGN COMPLEXITY,

4.

5 . use finaldata_imputed_FINAL,clear

6.

8 . mi extract 0

9.

10 . save finaldata_unimputed_FINAL, replace
 file finaldata_unimputed_FINAL.dta saved

11 .

12 . su AGE2006 if sample_final==1

Variable	0bs	Mean	Std. dev.	Min	Max
AGE2006	6,991	78.08382	6.364904	60	104

13

14 . tab1 SEX RACE_ETHN education totwealth_2006 marital_2006 work_st_2006 smoking_2006 physic_act_2006 srh_2006 b

-> tabulation of SEX if sample_final==1

Cum.	Percent	Freq.	SEX
41.93	41.93	2,931	1
100.00	58.07	4,060	2
	100.00	6,991	Total

-> tabulation of RACE_ETHN if sample_final==1

RACE_ETHN	Freq.	Percent	Cum.
1	5,666	81.05	81.05
2	856	12.24	93.29
3	469	6.71	100.00
Total	6,991	100.00	

-> tabulation of education if sample_final==1

Cum.	Percent	Freq.	education
26.93	26.93	1,883	1
31.05	4.12	288	2
64.03	32.97	2,305	3
82.38	18.35	1,283	4
100.00	17.62	1,232	5
	100.00	6,991	Total

-> tabulation of totwealth_2006 if sample_final==1

totwealth_2 006	Freq.	Percent	Cum.
1	3,169	45.33	45.33
2	3,507	50.16	95.49
3	272	3.89	99.38
4	35	0.50	99.89
5	8	0.11	100.00
Total	6,991	100.00	

-> tabulation of marital_2006 if sample_final==1

marital_200 6	Freq.	Percent	Cum.
1	167	2.39	2.39
2	3,791	54.23	56.62
3	517	7.40	64.01
4	2,516	35.99	100.00
Total	6,991	100.00	

-> tabulation of work_st_2006 if sample_final==1

work_st_200 6	Freq.	Percent	Cum.
0 1	6,107 884	87.36 12.64	87.36 100.00
Total	6,991	100.00	

-> tabulation of smoking_2006 if sample_final==1

smoking_200 6	Freq.	Percent	Cum.
1	3,056	44.09	44.09
2	3,374	48.67	92.76
3	502	7.24	100.00
Total	6,932	100.00	

-> tabulation of physic_act_2006 if sample_final==1

physic_act_ 2006	Freq.	Percent	Cum.
1 2 3	2,060 1,306 3,623	29.47 18.69 51.84	29.47 48.16 100.00
Total	6,989	100.00	

^{-&}gt; tabulation of srh_2006 if sample_final==1

Tuesday December 12 07:59:03 2023 Page 3

Cum.	Percent	Freq.	srh_2006
65.60 100.00	65.60 34.40	4,586 2,405	1 2
· · · · · · · · · · · · · · · · · · ·	100.00	6,991	Total

-> tabulation of bmibr_2006 if sample_final==1

bmibr_2006	Freq.	Percent	Cum.
1	2,693	38.52	38.52
2	2,700	38.62	77.14
3	1,598	22.86	100.00
Total	6,991	100.00	

-> tabulation of cardiometcondbr_2006 if sample_final==1

cardiometco ndbr_2006	Freq.	Percent	Cum.
1 2	1,652 4,457	23.63 63.75	23.63 87.38
3	882	12.62	100.00
Total	6,991	100.00	

15

16 . reg AGE2006 i.SEX if sample_final==1

Source	SS	df	MS		er of obs	=	6,991
Model Residual	1545.00213 281633.878	1 6,989	1545.0021 40.296734	.3 Prob 6 R-sq	uared	= =	38.34 0.0000 0.0055
Total	283178.88	6,990	40.51		R-squared MSE	=	0.0053 6.348
AGE2006	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
2.SEX _cons	.9527156 77.53054	.1538628 .1172538	6.19 661.22	0.000 0.000	.651097 77.3006	-	1.254333 77.76039

17 . tab SEX RACE_ETHN if sample_final==1 , row col chi

Key
frequency row percentage column percentage

		RACE_ETHN		
SEX	1	2	3	Total
1	2,430	314	187	2,931
	82.91	10.71	6.38	100.00
	42.89	36.68	39.87	41.93
2	3,236	542	282	4,060
	79.70	13.35	6.95	100.00
	57.11	63.32	60.13	58.07
Total	5,666	856	469	6,991
	81.05	12.24	6.71	100.00
	100.00	100.00	100.00	100.00

Pearson chi2(2) = 12.6306 Pr = 0.002

18 . tab SEX education if sample_final==1 , row col chi

Key
frequency
row percentage
column percentage

			education			
SEX	1	2	3	4	5	Total
1	797	149	783	514	688	2,931
	27.19	5.08	26.71	17.54	23.47	100.00
	42.33	51.74	33.97	40.06	55.84	41.93
2	1,086	139	1,522	769	544	4,060
	26.75	3.42	37.49	18.94	13.40	100.00
	57.67	48.26	66.03	59.94	44.16	58.07
Total	1,883	288	2,305	1,283	1,232	6,991
	26.93	4.12	32.97	18.35	17.62	100.00
	100.00	100.00	100.00	100.00	100.00	100.00

Pearson chi2(4) = 171.2857 Pr = 0.000

19 . tab SEX totwealth_2006 if sample_final==1 , row col chi

Key
frequency
row percentage
column percentage

		to	twealth_200	6		
SEX	1	2	_3	4	5	Total
1	940	1,798	164	25	4	2,931
	32.07	61.34	5.60	0.85	0.14	100.00
	29.66	51.27	60.29	71.43	50.00	41.93
2	2,229	1,709	108	10	4	4,060
	54.90	42.09	2.66	0.25	0.10	100.00
	70.34	48.73	39.71	28.57	50.00	58.07
Total	3,169	3,507	272	35	8	6,991
	45.33	50.16	3.89	0.50	0.11	100.00
	100.00	100.00	100.00	100.00	100.00	100.00

Pearson chi2(4) = 371.8942 Pr = 0.000

20 . tab SEX marital_2006 if sample_final==1 , row col chi

Key
frequency
row percentage
column percentage

		marital	_2006		
SEX	1	2	3	4	Total
1	66	2,218	158	489	2,931
	2.25	75.67	5.39	16.68	100.00
	39.52	58.51	30.56	19.44	41.93
2	101	1,573	359	2,027	4,060
	2.49	38.74	8.84	49.93	100.00
	60.48	41.49	69.44	80.56	58.07
Total	167	3,791	517	2,516	6,991
	2.39	54.23	7.40	35.99	100.00
	100.00	100.00	100.00	100.00	100.00

Pearson chi2(3) = **978.5765** Pr = **0.000**

21 . tab SEX work_st_2006 if sample_final==1 , row col chi

Key
frequency row percentage column percentage

	work_st	_2006	
SEX	0	1	Total
1	2,426	505	2,931
	82.77	17.23	100.00
	39.72	57.13	41.93
2	3,681	379	4,060
	90.67	9.33	100.00
	60.28	42.87	58.07
Total	6,107	884	6,991
	87.36	12.64	100.00
	100.00	100.00	100.00

Pearson chi2(1) = 96.0430 Pr = 0.000

22 . tab SEX smoking_2006 if sample_final==1 , row col chi

Key
frequency
row percentage
column percentage

	smoking_2006							
SEX	1	2	3	Total				
1	822	1,858	214	2,894				
	28.40	64.20	7.39	100.00				
	26.90	55.07	42.63	41.75				
2	2,234	1,516	288	4,038				
	55.32	37.54	7.13	100.00				
	73.10	44.93	57.37	58.25				
Total	3,056	3,374	502	6,932				
	44.09	48.67	7.24	100.00				
	100.00	100.00	100.00	100.00				

Pearson chi2(2) = 523.4375 Pr = 0.000

23 . tab SEX physic_act_2006 if sample_final==1 , row col chi

Key
frequency
row percentage
column percentage

	physic_act_2006								
SEX	1	2	3	Total					
1	640	567	1,724	2,931					
	21.84	19.34	58.82	100.00					
	31.07	43.42	47.58	41.94					
2	1,420	739	1,899	4,058					
	34.99	18.21	46.80	100.00					
	68.93	56.58	52.42	58.06					
Total	2,060	1,306	3,623	6,989					
	29.47	18.69	51.84	100.00					
	100.00	100.00	100.00	100.00					

Pearson chi2(2) = 148.5759 Pr = 0.000

24 . tab SEX srh_2006 if sample_final==1, row col chi

Key
frequency
row percentage
column percentage

	srh_2	006	
SEX	1	2	Total
1	1,955	976	2,931
	66.70	33.30	100.00
	42.63	40.58	41.93
2	2,631	1,429	4,060
	64.80	35.20	100.00
	57.37	59.42	58.07
Total	4,586	2,405	6,991
	65.60	34.40	100.00
	100.00	100.00	100.00

Pearson chi2(1) = 2.7167 Pr = 0.099

25 . tab SEX bmibr_2006 if sample_final==1, row col chi

Key
frequency row percentage column percentage

		bmibr_2006		
SEX	1	2	3	Total
1	930	1,352	649	2,931
	31.73	46.13	22.14	100.00
	34.53	50.07	40.61	41.93
2	1,763	1,348	949	4,060
	43.42	33.20	23.37	100.00
	65.47	49.93	59.39	58.07
Total	2,693	2,700	1,598	6,991
	38.52	38.62	22.86	100.00
	100.00	100.00	100.00	100.00

Pearson chi2(2) = 135.1900 Pr = 0.000

26 . tab SEX cardiometcondbr_2006 if sample_final==1, row col chi

Key
frequency
row percentage
column percentage

	cardiometcondbr_2006								
SEX	1	2	3	Total					
1	649 22.14	1,849 63.08	433 14.77	2,931 100.00					
	39.29	41.49	49.09	41.93					
2	1,003	2,608	449	4,060					
	24.70	64.24	11.06	100.00					
	60.71	58.51	50.91	58.07					
Total	1,652	4,457	882	6,991					
	23.63	63.75	12.62	100.00					
	100.00	100.00	100.00	100.00					

Pearson chi2(2) = 23.6924 Pr = 0.000

27 .
28 . reg AGE2006 i.RACE_ETHN if sample_final==1

	Source	SS	df	MS	Number of obs	=	6,991
-					F(2, 6988)	=	10.91
	Model	881.57737	2	440.788685	Prob > F	=	0.0000
	Residual	282297.303	6,988	40.3974389	R-squared	=	0.0031
					Adj R-squared	=	0.0028
	Total	283178.88	6,990	40.512	Root MSE	=	6.3559

AGE2006	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
RACE_ETHN 2 3	9860947 73123	.2330731 .3053933	-4.23 -2.39	0.000 0.017	-1.442989 -1.329894	5292007 1325665
_cons	78.25362	.0844381	926.76	0.000	78.08809	78.41914

29 . reg cesd_2006 i.RACE_ETHN if sample_final==1

Source	SS	df	MS		er of obs 6507)	; = =	6,510 38.08
Model Residual	268.12522 22905.3734	2 6,507	134.06261 3.52011271	l Prob l R-sq	> F uared	=	0.0000 0.0116
Total	23173.4986	6,509	3.56022409		R-squared MSE	l = =	0.0113 1.8762
cesd_2006	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
RACE_ETHN 2 3	.4323734 .660584	.072215 .0958356	5.99 6.89	0.000 0.000	.29086 .47271	_	.5739386 .8484532
_cons	1.407213	.0257134	54.73	0.000	1.3568	806	1.457619

30 . tab RACE_ETHN SEX if sample_final==1, row col chi

Key
frequency
row percentage
column percentage

	SE	X	
RACE_ETHN	1	2	Total
1	2,430	3,236	5,666
	42.89	57.11	100.00
	82.91	79.70	81.05
2	314	542	856
	36.68	63.32	100.00
	10.71	13.35	12.24
3	187	282	469
	39.87	60.13	100.00
	6.38	6.95	6.71
Total	2,931	4,060	6,991
	41.93	58.07	100.00
	100.00	100.00	100.00

Pearson chi2(2) = 12.6306 Pr = 0.002

```
31 .
33 . **TAKE INTO ACCOUNT SAMPLING DESIGN COMPLEXITY, ON IMPUTED DATA***
34 . use finaldata_imputed_FINAL,clear
36 . mi svyset secu [pweight=kwgtr], strata(stratum)
  Sampling weights: kwgtr
               VCE: linearized
        Single unit: missing
          Strata 1: stratum
   Sampling unit 1: secu
             FPC 1: <zero>
38 . foreach x1 of varlist SEX RACE ETHN NonWhite education totwealth 2006 marital 2006 work st 2006 smoking 2006 g
  > _2006 {
    2.
                mi estimate: svy, subpop(sample final): prop `x1'
    3. }
  Multiple-imputation estimates
                                    Imputations
  Survey: Proportion estimation
                                    Number of obs
                                                           37,534
  Number of strata =
                              52
                                    Population size = 74,977,185
  Number of PSUs
                             104
                                    Subpop. no. obs =
                                    Subpop. size =
                                                       22,872,439
                                    Average RVI
                                                           0.0000
                                    Largest FMI
                                                           0.0000
                                    Complete DF
                                                              52
  DF adjustment:
                    Small sample
                                                            50.11
                                            min
                                                            50.11
                                            avg
  Within VCE type:
                     Linearized
                                                            50.11
                                            max
                                                    Normal
                                             [95% conf. interval]
                 Proportion
                               Std. err.
           SEX
            1
                    .4123283
                                .004864
                                             .4025592
                                                         .4220974
                                .004864
                                             .5779026
                                                         .5974408
            2
                    .5876717
  Note: 4 strata omitted because they contain no subpopulation
        members.
  Multiple-imputation estimates
                                    Imputations
                                                                5
                                    Number of obs =
  Survey: Proportion estimation
                                                           37,534
  Number of strata =
                             52
                                    Population size = 74,977,185
  Number of PSUs
                             104
                                    Subpop. no. obs =
                                                            6,758
                                    Subpop. size =
                                                       22,872,439
                                    Average RVI
                                    Largest FMI
                                    Complete DF
                                                               52
  DF adjustment:
                    Small sample
                                    DF:
                                            min
                                                            50.11
```

avg

max

Within VCE type:

Linearized

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
RACE ETHN				
_ 1	.8651006	.0101934	.8446277	.8855736
2	.0787142	.0056366	.0673934	.0900349
3	.0561852	.0084529	.039208	.0731624
4	0	(no observat	cions)	

Note: 4 strata omitted because they contain no subpopulation members. $\hspace{-0.5cm}$

Multiple-imputati	on estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	37,534
Number of strata	= 52	Population size	= •	74,977,185
Number of PSUs	= 104	Subpop. no. obs	5 =	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
NonWhite				
0	.8651006	.0101934	.8446277	.8855736
1	.1348994	.0101934	.1144264	.1553723

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates Survey: Proportion estimation	<pre>Imputations = Number of obs =</pre>	5 37,534
Number of strata = 52	Population size =	74,977,185
Number of PSUs = 104	Subpop. no. obs =	6,758
	Subpop. size =	22,872,439
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	max =	50.11

		Nor	mal
Proportion	Std. err.	[95% conf.	interval]
. 2495925	.0091656	.2311838	.2680013
.0385128	.0030135	.0324603	.0445652
.3368963	.0066191	.3236021	.3501904
.1901275	.0054983	.1790844	.2011706
.184871	.0090279	.1667388	.2030031
	.2495925 .0385128 .3368963 .1901275	.2495925 .0091656 .0385128 .0030135 .3368963 .0066191 .1901275 .0054983	.2495925 .0091656 .2311838 .0385128 .0030135 .0324603 .3368963 .0066191 .3236021 .1901275 .0054983 .1790844

Note: 4 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) +\left(1\right$

Multiple-imputation estimates	s Imputations =	5
Survey: Proportion estimation	n Number of obs =	37,534
Number of strata = 52	<pre>Population size =</pre>	74,977,185
Number of PSUs = 104	Subpop. no. obs =	6,758
	Subpop. size =	22,872,439
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	e DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	d max =	50.11

			Normal	
	Proportion	Std. err.	[95% conf.	interval]
totwealth_2006				
1	.441009	.0097015	.4215241	.4604939
2	.5102587	.0085205	.4931457	.5273716
3	.0413647	.0037529	.0338272	.0489021
4	.0058219	.0011753	.0034612	.0081825
5	.0015458	.000639	.0002625	.0028292

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates	Imputations =	5
Survey: Proportion estimation	Number of obs =	37,534
Number of strata = 52	Population size =	74,977,185
Number of PSUs = 104	Subpop. no. obs =	6,758
	Subpop. size =	22,872,439
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	max =	50.11

	Proportion	Std. err.	Norn [95% conf.	
marital 2006				
_ 1	.0252766	.0024715	.0203127	.0302405
2	.5378278	.0076835	.5223958	.5532597
3	.0769486	.0041956	.0685219	.0853754
4	.359947	.0067597	.3463705	.3735235

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates	Imputations	=	5
Survey: Proportion estimation	Number of obs	=	37,534

Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.	Nori [95% conf.	
work_st_2006				
0	.8715906	.0050139	.8615204	.8816608
1	.1284094	.0050139	.1183392	.1384796

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates	Imputations =	5
Survey: Proportion estimation	Number of obs =	37,526
Number of strata = 52	Population size =	74,954,762
Number of PSUs = 104	Subpop. no. obs =	6,750
	Subpop. size =	22,850,016
	Average RVI =	0.0063
	Largest FMI =	0.0090
	Complete DF =	52
DF adjustment: Small sample	DF: min =	49.71
	avg =	49.86
Within VCE type: Linearized	max =	50.03

			Norm	nal
	Proportion	Std. err.	[95% conf.	interval]
smoking_2006				
1	.4421847	.0077495	.4266197	.4577497
2	.4863698	.0065693	.4731731	.4995665
3	.0714455	.0040058	.063399	.079492

Note: 4 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) +\left(1\right$

Multiple-imputat:	ion estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	37,534
Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0007
		Largest FMI	=	0.0025
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.05
		avg	=	50.08
Within VCE type:	Linearized	max	=	50.10

	Proportion	Std. err.	Norm [95% conf.	
physic_act_2006 1 2 3	.2721582 .1875697 .5402721	.0078193 .0059854 .0084996	.2564535 .1755479 .5232008	.287863 .1995914 .5573434

Note: 4 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) +\left(1\right$

Multiple-imputation estimates Survey: Proportion estimation		parearezo	=	5 37,534
Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
_		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.	Nor [95% conf.	
srh_2006 1 2	.6737621 .3262379	.0086771 .0086771	.6563347 .3088104	.6911896 .3436653

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates		Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	37,534
Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
_		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.	Nor [95% conf.	
bmibr 2006				
1	.3954386	.0074122	.3805516	.4103257
2	.3812038	.0055944	.3699678	.3924398
3	.2233576	.0078586	.207574	.2391412

Note: 4 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right$

Multiple-imputation estimates	<pre>Imputations =</pre>	5
Survey: Proportion estimation	Number of obs =	37,534
Number of strata = 52	Population size =	74,977,185
Number of PSUs = 104	Subpop. no. obs =	6,758
	Subpop. size =	22,872,439
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	max =	50.11

			Nor	
	Proportion	Std. err.	[95% conf.	interval]
cardiometcondbr_2006				
1	.2487978	.0045557	.2396479	.2579478
2	.6340932	.0053883	.623271	.6449153
3	.117109	.0042044	.1086647	.1255534

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputati	ion estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	37,534
Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
<pre>DF adjustment:</pre>	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
hurd_dem				
0	.8574725	.0054198	.8465871	.8683579
1	.1425275	.0054198	.1316421	.1534129

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputation	n estimates	Imputations	=	5
Survey: Proportion	estimation	Number of obs	=	37,534
Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment: S	mall sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.	Nor [95% conf.	
expert_dem 0 1	.85126 .14874	.0053551 .0053551	.8405046 .1379846	.8620154 .1594954

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imputati	ion estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	37,534
Number of strata	= 52	Population size	=	74,977,185
Number of PSUs	= 104	Subpop. no. obs	=	6,758
		Subpop. size	=	22,872,439
		Average RVI		
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	_		Nor	
	Proportion	Std. err.	[95% conf.	interval]
lasso_dem				
0	.8401107	.0054483	.8291681	.8510533
1	.1598893	.0054483	.1489467	.1708319

Note: 4 strata omitted because they contain no subpopulation members.

			Nor	Normal	
	Proportion	Std. err.	[95% conf.	interval]	
alcohol 2006					
_ 1	.550711	.0108108	.528998	.572424	
2	.1777356	.0059584	.1657686	.1897027	
3	.1322154	.0061083	.1199472	.1444836	
4	.139338	.0068865	.1255068	.1531692	

Note: 4 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) +\left(1\right$

Within VCE type:

Linearized

```
39 .
41 . foreach x2 of varlist AGE2006 cesd_2006 poorsleep_2006 hurd_p expert_p lasso_p {
               mi estimate: svy, subpop(sample final): mean `x2'
    2.
    3. }
  Multiple-imputation estimates
                                  Imputations
                                                             5
  Survey: Mean estimation
                                  Number of obs =
                                                        37,534
  Number of strata =
                            52
                                  Population size = 74,977,185
  Number of PSUs
                            104
                                   Subpop. no. obs =
                                  Subpop. size = 22,872,439
                                  Average RVI
                                                        0.0000
                                  Largest FMI
                                                         0.0000
                                  Complete DF
                                                           52
  DF adjustment:
                   Small sample
                                                          50.11
                                          min
                                          avg
                                                          50.11
  Within VCE type:
                    Linearized
                                          max
                                                          50.11
                       Mean
                             Std. err.
                                         [95% conf. interval]
       AGE2006
                   78.13305
                              .0945062
                                           77.94324
                                                       78.32286
  Note: 4 strata omitted because they contain no subpopulation
        members.
  Multiple-imputation estimates
                                  Imputations
                                                             5
                                  Number of obs =
  Survey: Mean estimation
                                                        37,184
  Number of strata =
                            52
                                   Population size = 73,878,337
  Number of PSUs =
                            104
                                   Subpop. no. obs =
                                                         6,408
                                  Subpop. size = 21,773,591
                                  Average RVI = Largest FMI =
                                                     0.0000
                                                         0.0000
                                  Complete DF
                                                           52
                                                  =
  DF adjustment:
                  Small sample
                                  DF: min
                                                  =
                                                          50.11
                                                          50.11
                                          avg
  Within VCE type: Linearized
                                          max
                                                          50.11
                       Mean Std. err.
                                           [95% conf. interval]
     cesd 2006
                   1.477708
                            .0299768
                                           1.417501
                                                       1.537915
  Note: 4 strata omitted because they contain no subpopulation
        members.
  Multiple-imputation estimates
                                  Imputations
  Survey: Mean estimation
                                  Number of obs =
                                                        37,534
  Number of strata =
                                   Population size = 74,977,185
                            52
  Number of PSUs
                            104
                                   Subpop. no. obs =
                                                          6,758
                                  Subpop. size =
                                                     22,872,439
                                  Average RVI
                                                        0.0000
                                  Largest FMI
                                                         0.0000
                                  Complete DF
                                                          52
  DF adjustment:
                  Small sample
                                  DF:
                                         min
                                                          50.11
                                                          50.11
                                          avg
```

max

50.11

Tuesday Decen	nber 12 07:59:04	4 2023 Pa	ge 18	
	Mean	Std. err.	[95% co	nf. interval
oorsleep_2006	2.784199	.0304698	2.72300	2.84539
Note: 4 strata members.	omitted because	e they cont	ain no subp	opulation
Multiple-imputa	ntion estimates	Imputat		5
Survey: Mean es	stimation	Number	of obs =	37,534
Number of strat		•	ion size =	74,977,185
Number of PSUs	= 104		no. obs =	6,758
		Subpop. Average		22,872,439 0.0000
		Largest		0.0000
		Complet		52
OF adjustment:	Small sample	DF:	min =	50.11
_			avg =	50.11
Nithin VCE typ∈	e: Linearized		max =	50.11
	Mean S1	td. err.	[95% conf	. interval]
hurd_p	.1031424 .0	0031148	.0968865	.1093983
Survey: Mean es Number of strat Number of PSUs DF adjustment: Nithin VCE type	Small sample Linearized	Subpop. Subpop. Average Largest Complet DF:	ion size = no. obs = size = RVI = FMI = e DF = min = avg = max =	37,534 74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11 50.11
	Mean St	td. err.	[95% conf	. interval]
expert_p	.1288393 .0	0036236	.1215615	.1361171
Note: 4 strata members.	omitted because	e they cont	ain no subp	opulation
Multiple-imputa Survey: Mean es	ation estimates stimation	Imputat Number		5 37,534
Number of strat	:a = 52	Populat	ion size =	74,977,185
Number of PSUs	= 104		no. obs =	6,758
		Subpop.	size =	22,872,439
		Average		0.0000
		Largest		0.0000
		Complet		52
OF adjustment:	Small sample	DF:	min =	50.11
Balan Not 1			avg =	50.11
Nithin VCE type	e: Linearized		max =	50.11

	Mean	Std. err.	[95% conf.	interval]
lasso_p	.1326294	.0035166	.1255664	.1396924

Note: 4 strata omitted because they contain no subpopulation members.

42 .

43 .

44 . mi xeq 0: strate if sample_final==1

m=0 data:

-> strate if sample_final==1

Failure _d: died==1

Analysis time _t: (ageevent-origin)
Origin: time AGE2006
Enter on or after: time AGE2006

Estimated failure rates
Number of records = **6945**

D	Υ	Rate	Lower	Upper
4892	6.6e+04	0.073825	0.071785	0.075923

Notes: Rate = D/Y = failures/person-time.

Lower and Upper are bounds of 95% confidence intervals.

45 .

46 . capture drop Men

47 . mi passive: gen Men=1 if SEX==1 & sample_final==1
 m=0:
 (40,630 missing values generated)
 m=1:
 (40,630 missing values generated)
 m=2:
 (40,630 missing values generated)
 m=3:
 (40,630 missing values generated)
 m=4:
 (40,630 missing values generated)

48 . mi passive: replace Men=0 if Men~=1 & SEX~=. & sample_final==1 m=0:

(4,060 real changes made)

(40,630 missing values generated)

m=1:

(4,060 real changes made)

m=2:

(4,060 real changes made)

m=3:

(4,060 real changes made)

m=4:

(4,060 real changes made)

m=5:

(4,060 real changes made)

```
49 .
50 . capture drop Women
51 . mi passive: gen Women=1 if SEX==2 & sample final==1
   (39,501 missing values generated)
  m=1:
   (39,501 missing values generated)
  m=2:
   (39,501 missing values generated)
   m=3:
  (39,501 missing values generated)
  m=4:
  (39,501 missing values generated)
  m=5:
  (39,501 missing values generated)
52 . mi passive: replace Women=0 if Women~=1 & SEX~=. & sample_final==1
  m=0:
   (2,931 real changes made)
  m=1:
  (2,931 real changes made)
  m=2:
  (2,931 real changes made)
  m=3:
  (2,931 real changes made)
  m=4:
  (2,931 real changes made)
  m=5:
  (2,931 real changes made)
54 . capture drop NHW
55 . mi passive: gen NHW=1 if RACE_ETHN==1 & sample_final==1
   (37,895 missing values generated)
  m=1:
   (37,895 missing values generated)
   (37,895 missing values generated)
   m=3:
  (37,895 missing values generated)
  m=4:
  (37,895 missing values generated)
  (37,895 missing values generated)
56 . mi passive: replace NHW=0 if NHW~=1 & RACE_ETHN~=. & sample_final==1
  m=0:
   (1,325 real changes made)
  m=1:
   (1,325 real changes made)
  m=2:
   (1,325 real changes made)
  m=3:
  (1,325 real changes made)
  m=4:
   (1,325 real changes made)
  m=5:
   (1,325 real changes made)
```

```
57 .
58 . capture drop NHB
59 . mi passive: gen NHB=1 if RACE_ETHN==2 & sample_final==1
   (42,705 missing values generated)
   m=1:
   (42,705 missing values generated)
   m=2:
   (42,705 missing values generated)
   (42,705 missing values generated)
   m=4:
   (42,705 missing values generated)
   m=5:
   (42,705 missing values generated)
60 . mi passive: replace NHB=0 if NHB~=1 & RACE_ETHN~=. & sample_final==1
   m=0:
   (6,135 real changes made)
   m=1:
   (6,135 real changes made)
   m=2:
   (6,135 real changes made)
   m=3:
   (6,135 real changes made)
   m=4:
   (6,135 real changes made)
   m=5:
   (6,135 real changes made)
61 .
62 .
63 . capture drop HISP
64 . mi passive: gen HISP=1 if RACE_ETHN==3 & sample_final==1
   m=0:
   (43,092 missing values generated)
   (43,092 missing values generated)
   m=2:
   (43,092 missing values generated)
   m=3:
   (43,092 missing values generated)
   m=4:
   (43,092 missing values generated)
   (43,092 missing values generated)
65 . mi passive: replace HISP=0 if HISP~=1 & RACE_ETHN~=. & sample_final==1
   m=0:
   (6,522 real changes made)
   m=1:
   (6,522 real changes made)
   (6,522 real changes made)
   m=3:
   (6,522 real changes made)
   m=4:
   (6,522 real changes made)
   (6,522 real changes made)
```

(37,895 missing values generated)

(37,895 missing values generated)

(37,895 missing values generated)

m=5:

Multiple-imputation estimates

Survey: Proportion estimation

Imputations

Number of obs

```
75 . mi passive: replace NonWhite=1 if RACE_ETHN!=1 & RACE_ETHN!=. & sample_final==1
  (1,325 real changes made)
  m=1:
  (1,325 real changes made)
  m=2:
  (1,325 real changes made)
  m=3:
  (1,325 real changes made)
  m=4:
  (1,325 real changes made)
  m=5:
  (1,325 real changes made)
76 .
77 .
78 . save, replace
  (file C:\Users\baydounm\AppData\Local\Temp\ST_6434\_000002.tmp not found)
  file C:\Users\baydounm\AppData\Local\Temp\ST_6434_000002.tmp saved as .dta format
79 .
81 .
82 . **Men**
83 .
84 . foreach x1 of varlist SEX RACE_ETHN NonWhite education totwealth_2006 marital_2006 work_st_2006 smoking_2006 p
  > 2006 {
    2.
               mi estimate: svy, subpop(Men): prop `x1'
    3. }
  Multiple-imputation estimates
                                  Imputations
  Survey: Proportion estimation
                                  Number of obs
                                                         6,991
  Number of strata =
                            52
                                  Population size = 22,872,439
  Number of PSUs
                           104
                                  Subpop. no. obs =
                                                       2,869
                                  Subpop. size =
                                                     9,430,953
                                  Average RVI
                                                 =
                                  Largest FMI
                                  Complete DF
                                                            52
  DF adjustment:
                   Small sample
                                  DF:
                                         min
                                         avg
                                                 =
  Within VCE type:
                    Linearized
                                         max
                                                 Normal
                 Proportion
                             Std. err.
                                           [95% conf. interval]
           SEX
            1
                         1
            2
                            (no observations)
```

6,991

Number of strata	= 52	Population size :	= 22,872,439
Number of PSUs	= 104	Subpop. no. obs =	= 2,869
		Subpop. size =	9,430,953
		Average RVI =	= .
		Largest FMI =	- .
		Complete DF =	= 52
DF adjustment:	Small sample	DF: min =	= 50.11
		avg =	= .
Within VCE type:	Linearized	max =	= .

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
RACE ETHN				
1	.8752047	.011246	.8526177	.8977917
2	.070656	.0061094	.0583855	.0829264
3	.0541394	.0090474	.0359682	.0723106
4	0	(no observat	ions)	

Multiple-imputat:	Imputations	=	5	
Survey: Proportion	Number of obs	=	6,991	
Number of strata	= 52	Population size	=	22,872,439
Number of PSUs	= 104	Subpop. no. obs	=	2,869
		Subpop. size	=	9,430,953
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.	Nor [95% conf.	
NonWhite				
0	.8752047	.011246	.8526177	.8977917
1	.1247953	.011246	.1022083	.1473823

Multiple-imputation estimates Survey: Proportion estimation	<pre>Imputations = Number of obs =</pre>	5 6,991
		-,
Number of strata = 52	Population size =	22,872,439
Number of PSUs = 104	Subpop. no. obs =	2,869
	Subpop. size =	9,430,953
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	max =	50.11

					Nor	mal 1
	Proportion	Std	. err.	[95%		interval]
				[-5/0		
education						
1	.2565599	.01	07411	. 2349	9869	.2781329
2	.0481889	.00	45977	.0389	9546	.0574232
3	.2697008	.00	96671	. 2502	2849	.2891168
4	.1744865	.00	92343	.1559	399	.1930331
5	.2510639	.01	43358	. 2222	2711	.2798567
	<u> </u>					
Multiple-imput			Imputa		=	5
Survey: Propor	rtion estimat	ion	Number	of obs	=	6,991
Number of stra		52		tion siz		22,872,439
Number of PSUs	5 =	104		. no. ob)s =	2,869
			Subpop	. size	=	9,430,953
			Averag	e RVI	=	0.0000
			Larges	t FMI	=	0.0000
			Comple		=	52
DF adjustment:	: Small sam	ple	DF:	min	=	50.11
-		-		avg	=	50.11
Within VCE typ	oe: Lineari	zed		max	=	50.11
						ormal
	Proportio	n S	td. err.	[95	5% con	f. interval
totwealth_2006	_					
LULWEATIN 2000	o					
1	.311074	2.	0127976	. 28	353709	.336777
			0127976 .010538		353709 950088	
1	.311074	9		.59		.637338
1 2	.311074 .616173	9 1 .	.010538	.59	50088	.637338 .071748
1 2 3	.311074 .616173 .060116	9 1 . 4 .	.010538 0057916	. 59 . 00	950088 948484	.637338 .071748 .014521
1 2 3 4	.311074 .616173 .060116 .010292	9 1 . 4 .	.010538 0057916 0021056	. 59 . 00	950088 948484 960634	.637338 .071748 .014521
1 2 3 4 5 Multiple-imput	.311074 .616173 .060116 .010292 .002343	9 1 . 4 . 5 .	.010538 0057916 0021056 0013088 Imputa	.59 .00 00 tions	950088 948484 960634	.637338 .071748 .014521 .004972
1 2 3 4 5 Multiple-imput	.311074 .616173 .060116 .010292 .002343	9 1 . 4 . 5 .	.010538 0057916 0021056 0013088 Imputa	.59 .00 00	950088 948484 960634 902853	.637338 .071748 .014521 .004972
1 2 3 4 5 Multiple-imput Survey: Propor	.311074 .616173 .060116 .010292 .002343 tation estimates	9 1 . 4 . 5 .	.010538 0057916 0021056 0013088 Imputa Number	.59 .00 00 tions of obs	950088 948484 960634 902853 = = =	.637338 .071748 .014521 .004972 5 6,991
1 2 3 4 5 Multiple-imput Survey: Propor	.311074 .616173 .060116 .010292 .002343 tation estimated ata =	9 1 . 4 . 5 . tes	.010538 0057916 0021056 0013088 Imputa Number	.59 .00 00 tions of obs	950088 948484 960634 902853 = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869
1 2 3 4 5 Multiple-imput Survey: Propor	.311074 .616173 .060116 .010292 .002343 tation estimated ata =	9 1 4 5 tes ion	.010538 0057916 0021056 0013088 Imputa Number	tions of obs	950088 948484 960634 902853 = = =	.637338 .071748 .014521 .004972 5 6,991
1 2 3 4 5 Multiple-imput Survey: Propor	.311074 .616173 .060116 .010292 .002343 tation estimated ata =	9 1 4 5 tes ion	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop	tions of obs	950088 948484 960634 902853 = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869
1 2 3 4 5 Multiple-imput Survey: Propor	.311074 .616173 .060116 .010292 .002343 tation estimated ata =	9 1 4 5 tes ion	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag	tions of obs	950088 948484 960634 902853 = = e e = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953
1 2 3 4 5 Multiple-imput Survey: Propor	.311074 .616173 .060116 .010292 .002343 tation estimated ata =	9 1 4 5 tes ion	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges	tions of obs tion size RVI tFMI	950088 948484 960634 902853 = = = es = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra	.311074 .616173 .060116 .010292 .002343 tation estimated	9 1 .4 5 . tes ion 52 104	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag	tions of obs tion size RVI tFMI	950088 948484 960634 902853 = = = es = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra	.311074 .616173 .060116 .010292 .002343 tation estimated	9 1 .4 5 . tes ion 52 104	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple	tions of obs tion siz no. ob size e RVI t FMI te DF min	950088 948484 960634 902853 = = = e = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 .45 5 tes ion 52 104	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple	tions of obs tion size RVI t FMI te DF	950088 948484 960634 902853 = = = 0S = = = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 .45 5 tes ion 52 104	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple	tions of obs tion size e RVI t FMI te DF min avg	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 5 tes ion 52 104 ple zed	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple	tions of obs tion size e RVI t FMI te DF min avg max	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 .004972 .004972 .004972 .00499 .00999 .009 .0099 .0099 .009 .0099 .0099 .0099 .0099 .0099 .0099 .009
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 5 tes ion 52 104 ple zed	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple	tions of obs tion size e RVI t FMI te DF min avg max	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11
1 2 3 4 5	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 5 tes ion 52 104 ple zed	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple DF:	tions of obs tion size e RVI t FMI te DF min avg max	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11 50.11
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs DF adjustment: Within VCE typ	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 5 tes ion 52 104 ple zed	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple	tions of obs tion size e RVI t FMI te DF min avg max	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 .004972 .004972 .004972 .00499 .00999 .009 .0099 .0099 .009 .0099 .0099 .0099 .0099 .0099 .0099 .009
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs DF adjustment: Within VCE typ marital_2006	.311074 .616173 .060116 .010292 .002343 tation estimated at a = s = s = s = s = s = s = s = s = s =	9 1 5 tes ion 52 104 ple zed Std	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple DF:	tions of obs tion size e RVI t FMI te DF min avg max [95%	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11 50.11
1 2 3 4 5 Multiple-imput Survey: Propor Number of stra Number of PSUs DF adjustment: Within VCE typ marital_2006 1	.311074 .616173 .060116 .010292 .002343 tation estimated at a set	9 1 4 5 tes ion 52 104 ple zed .00 .00	.010538 0057916 0021056 0013088 Imputa Number Popula Subpop Subpop Averag Larges Comple DF: . err.	tions of obs tion size e RVI t FMI te DF min avg max [95%	950088 948484 960634 902853 = = = = = = = = = = = = = = = = = = =	.637338 .071748 .014521 .004972 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11 50.11

rucsuay beek	2 07.33.04 .	2025 Tage 20		
	tation estimates rtion estimation	Imputations Number of obs	=	5 6,991
Number of str	ata = 52	Population si	70 -	22,872,439
Number of PSU:		Subpop. no. o		2,869
Nulliber of P30:	5 = 104			
		Subpop. size	=	9,430,953
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment	: Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE typ	oe: Linearized	max	=	50.11
			No	rmal
	Proportion Std	. err. [95%	conf	. interval]
work_st_2006				
0			0282	.8398326
1	.1760696 .00	79176 .160	1674	.1919718
	L			
Multinle-imput	tation estimates	Imputations	=	5
	rtion estimation	Number of obs		6,985
Survey. Propor	rtion estimation	Number of obs	=	0,565
Number of stra	ata = 52	Population si	ze =	22,853,913
Number of PSU:	s = 104	Subpop. no. o	bs =	2,863
		Subpop. size	=	9,412,427
		Average RVI	=	0.0142
		Largest FMI	=	0.0224
		Complete DF	=	52
DF adjustment	: Small sample	DF: min	=	48.85
Di dajasemene	. Small Sample	avg	=	49.35
Within VCE typ	oe: Linearized	max	=	50.00
within ver cy	se. Einear izea	illux	_	30.00
			No	rmal
	Proportion Std	. err. [95%		. interval]
smoking_2006				
1	.2876795 .00	77044 .272	2048	.3031542
2	1		1516	.655206
3	1		8358	.0834476
Multiple-imput	tation estimates	Imputations	=	5
•	rtion estimation	Number of obs		6,991
				•,
Number of str	ata = 52	Population si	ze =	22,872,439
Number of PSU:		Subpop. no. o		2,869
		Subpop. No. o	=	
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DE adiustmant	. Cmall cample	•		
or adjustment	: Small sample	DF: min	=	50.11
Udahia Vot :	12	avg	=	50.11
Within VCE typ	pe: Linearized	max	=	50.11

	Propor	tion	Std. e	nn	[95% c	Nor	mal interval
	гт орог	CIOII	Ju. e		[33% (.0111 •	Incer var
physic_act_200	1	c722	00000	4	1016		247670
	1 .199 2 .191	-	.00896		.18166	_	.217678
	.608		.01075		.58679	-	.629998
•	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				-		
Multiple-impu	tation esti	nates	Impu	itations	=		5
Survey: Propor	rtion estim	ation	Numb	er of ob	s =		6,991
Number of stra		52		ılation s		22,	872,439
Number of PSUs	5 =	104		op. no.		_	2,869
				op. size		9,	430,953
				age RVI est FMI	=		0.0000 0.0000
				lete DF	=		52
DF adjustment	Small s	ample	DF:	min	=		50.11
<u> </u>		•		avg	=		50.11
Within VCE typ	oe: Linea	rized		max	=		50.11
					No	rmal	
	Proportio	n St	d. err.	[95	% conf	· in	terval]
srh_2006							
1 2	.681271		122672		66334		7059093
	.318728	, .0	122672	. 23	40907	•	3433666
Multiple-impu	tation esti	nates	Impu	itations	=		5
Survey: Propor	rtion estim	ation	Numb	er of ob	s =		6,991
Number of stra		52	Popu	ılation s	ize =	22,	872,439
Number of PSUs	5 =	104		op. no.			2,869
				op. size		9,	430,953
				age RVI sest FMI	=		0.0000 0.0000
				lete DF	=		52
DF adjustment	Small s	ample	DF:	min	=		50.11
2. aajasee.		р_С		avg	=		50.11
Within VCE typ	oe: Linea	rized		max	=		50.11
					No	rmal	
	Proportio	n St	d. err.	[95			terval]
bmibr_2006							
1	.324668		092392		61116		3432247
2	.457405		094971		83314		4764803
3	.21792	ь .0	092508	.19	93462	•	2365058
Multiple-imput				itations	=		5
survev. Pronoi	rtion estima	ation	Numb	er of ob	s =		6,991

Number	of	strata	=	52	Populat:	ion size	=	22,872,439
Number	of	PSUs	=	104	Subpop.	no. obs	=	2,869
					Subpop.	size	=	9,430,953
					Average	RVI	=	0.0000
					Largest	FMI	=	0.0000
					Complete	e DF	=	52
DF adju	ustm	ent:	Small s	ample	DF:	min	=	50.11
						avg	=	50.11
Within	VCE	type:	Linea	rized		max	=	50.11

	Proportion	Std. err.		mal interval]
cardiometcondbr_2006 1 2 3	.2346812 .6257323 .1395865	.0095714 .0107366 .006736	.2154575 .6041684 .1260576	.2539049 .6472962 .1531155

Multiple-imputati	ion estimates	imputations	=)
Survey: Proportion	on estimation	Number of obs	=	6,991
Number of strata	= 52	Population size	=	22,872,439
Number of PSUs	= 104	Subpop. no. obs	=	2,869
		Subpop. size	=	9,430,953
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.		rmal interval]
hurd_dem 0	.8722435	.007949	.8562783	.8882086
1	.1277565	.007949	.1117914	.1437217

Multiple-imputation estimates	<pre>Imputations =</pre>	5
Survey: Proportion estimation	Number of obs =	6,991
Number of strata = 52	Population size =	22,872,439
Number of PSUs = 104	Subpop. no. obs =	2,869
	Subpop. size =	9,430,953
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	max =	50.11

	D	CT 1		F0E%		mal
	Proportion	Sta.	err.	[95%	cont.	interval]
expert dem						
0	.8741676	.008	3226	.857	4522	.8908831
1	.1258324	.008	3226	.109	1169	.1425478
	<u> </u>					
		_		_		_
Multiple-imput			Imputat:		=	5
Survey: Propor	rtion estimat	ion	Number o	of obs	=	6,991
Number of stra	ata =	52	Populat:	ion si	7 0 =	22,872,439
Number of PSUs		104	Subpop.			2,869
			Subpop.		=	9,430,953
			Average		=	0.0000
			Largest		=	0.0000
			Complete	e DF	=	52
DF adjustment	: Small sam	ple	DF:	min	=	50.11
				avg	=	50.11
Within VCE typ	oe: Lineari	zed		max	=	50.11
					Non	mal
	Proportion	C+4	err.	[OE%		interval]
	Proportion	Ju.	err.		COIII .	
lasso dem						
_ 0	.8621763	.008	3593	.845	3871	.8789655
1	.1378237	.008	3593	.121	9345	.1546129
	L					· · · · · · · · · · · · · · · · · · ·
Multiple-imput	tation octima	tos	Imputati	ions	=	5
Survey: Propor			Number of		_	6,857
Survey. Tropor	CION CSCIMAC.	1011	Number (003	_	0,057
Number of stra	ata =	52	Populat:	ion si:	7e =	22,436,454
Number of PSUs		104	Subpop.			2,735
			Subpop.		=	8,994,968
			Average	RVI	=	0.0000
			Largest	FMI	=	0.0000
			Complete	e DF	=	52
DF adjustment:	: Small sam	ple	DF:	min	=	50.11
				avg	=	50.11
Within VCE typ	oe: Lineari	zed		max	=	50.11
					Nor	mal
	Proportion	Std.	err.	[95%		interval]
alcohol 2006						
1	.4544947	.013	9149	.426	5473	.482442
2	.1792683		8893	.161	_	.1971294
3	.16648		8823	.148		.1842006
4	.199757	.010			9238	.220276
- T						

```
85 .
87 . foreach x2 of varlist AGE2006 cesd_2006 poorsleep_2006 hurd_p expert_p lasso_p {
               mi estimate: svy, subpop(Men): mean `x2'
    2.
    3. }
  Multiple-imputation estimates
                                   Imputations
                                                               5
  Survey: Mean estimation
                                   Number of obs =
                                                           6,991
  Number of strata =
                             52
                                   Population size = 22,872,439
  Number of PSUs
                            104
                                   Subpop. no. obs =
                                                           2,869
                                   Subpop. size =
                                                       9,430,953
                                   Average RVI
                                                          0.0000
                                                          0.0000
                                   Largest FMI
                                   Complete DF
                                                             52
  DF adjustment:
                   Small sample
                                                           50.11
                                           min
                                           avg
                                                           50.11
  Within VCE type:
                     Linearized
                                           max
                                                           50.11
                       Mean
                              Std. err.
                                            [95% conf. interval]
       AGE2006
                   77.64264
                              .1278824
                                             77.3858
                                                        77.89949
  Multiple-imputation estimates
                                   Imputations
                                                               5
                                   Number of obs =
  Survey: Mean estimation
                                                           6,790
  Number of strata =
                                   Population size = 22,248,667
                             52
                                   Subpop. no. obs =
  Number of PSUs
                            104
                                                           2,668
                                   Subpop. size =
                                                       8,807,181
                                   Average RVI
                                                          0.0000
                                   Largest FMI
                                                          0.0000
                                   Complete DF
                                                            52
                                                   =
  DF adjustment:
                   Small sample
                                   DF:
                                           min
                                                           50.11
                                                           50.11
                                           avg
  Within VCE type:
                     Linearized
                                           max
                                                           50.11
                                            [95% conf. interval]
                       Mean
                              Std. err.
     cesd_2006
                   1.181265
                              .0393009
                                            1.102332
                                                        1.260199
  Multiple-imputation estimates
                                   Imputations
  Survey: Mean estimation
                                   Number of obs =
                                                           6,991
  Number of strata =
                                   Population size = 22,872,439
                             52
  Number of PSUs
                            104
                                   Subpop. no. obs =
                                                           2,869
                                   Subpop. size =
                                                       9,430,953
                                   Average RVI
                                                          0.0000
                                   Largest FMI
                                                          0.0000
                                                   =
                                   Complete DF
                                                              52
  DF adjustment:
                   Small sample
                                   DF:
                                           min
                                                           50.11
                                                           50.11
                                           avg
  Within VCE type:
                                                           50.11
                     Linearized
                                           max
                                Std. err.
                                              [95% conf. interval]
                         Mean
   poorsleep_2006
                     2.461737
                                .0498795
                                              2.361556
                                                          2.561917
```

Multiple-imput Survey: Mean e	tation estimestimestimes	ates	Imputat: Number		=	5 6,991
Number of stra Number of PSUs		52 104	Populat Subpop. Subpop. Average Largest Complete	no. ol size RVI FMI		22,872,439 2,869 9,430,953 0.0000 0.0000 52
DF adjustment:	: Small sa	mple	DF:	min avg	=	50.11 50.11
Within VCE typ	oe: Linear	rized		max	=	50.11
	Mear	Std.	err.	[95%	conf.	interval]
hurd_p	.0916208	.004	6189	.08	2344	.1008976
Multiple-imput Survey: Mean e		ates	Imputat:		=	5 6,991
Number of stra Number of PSUs		52 104	Populati Subpop. Subpop. Average	no. ol size RVI	os = = =	22,872,439 2,869 9,430,953 0.0000 0.0000
			Largest Complete		=	52
DF adjustment:	: Small sa	mple	DF:	min	=	50.11
					=	
Within VCE typ	oe: Linear	ized		avg max	=	50.11 50.11
Within VCE typ	oe: Linear Mear		err.	max	=	
Within VCE type expert_p		Std.	err. 4194	max	= conf.	50.11
	Mear .1108593	Std.		max [95% . 099 9	= conf.	50.11 interval]
expert_p Multiple-imput	Mear .1108593 cation estimestimation ata =	Std.	4194 Imputat	[95% .0999 ions of obs ion size no. ol size RVI	= conf.	50.11 interval] .1217439
expert_p Multiple-imput Survey: Mean e Number of stra Number of PSUs	Mear .1108593 tation estimestimation ata = s =	Std. 3 .005 mates 52 104	Imputat. Number of Populat. Subpop. Subpop. Average Largest Complete	ions of obs ion size RVI FMI e DF	= conf. 2746 = = = = = = = = = = = = = = = = = = =	50.11 interval] .1217439 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52
expert_p Multiple-imput Survey: Mean &	Mear .1108593 tation estimestimation ata = = = = = = = = = = = = = = = = = =	5td. 3 .005 mates 52 104	Imputat. Number of Populat. Subpop. Subpop. Average Largest	ions of obs ion size RVI FMI	= conf. 9746 = = cos = = = = = = = = = = = = = = = = = = =	50.11 interval] .1217439 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000
expert_p Multiple-imput Survey: Mean e Number of stra Number of PSUs DF adjustment:	Mear .1108593 tation estimestimation ata = = = = = = = = = = = = = = = = = =	Std. 3 .005 mates 52 104 mmple	Imputat. Number of Populat. Subpop. Subpop. Average Largest Complete	ions of obs ion size RVI FMI e DF min avg max	= conf.	50.11 interval] .1217439 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11
expert_p Multiple-imput Survey: Mean e Number of stra Number of PSUs DF adjustment:	Mear .1108593 tation estimestimation ata = = = = = = = = = = = = = = = = = =	Std. 3 .005 hates 52 104 hmple rized	Imputat Number of Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min avg max	= conf.	50.11 interval] .1217439 5 6,991 22,872,439 2,869 9,430,953 0.0000 0.0000 52 50.11 50.11 50.11

```
Tuesday December 12 07:59:04 2023 Page 32
```

88 .

89 .

90 . mi xeq 0: strate if Men==1

m=0 data:

-> strate if Men==1

Failure _d: died==1

Analysis time _t: (ageevent-origin)

Origin: time AGE2006

Enter on or after: time AGE2006

Estimated failure rates
Number of records = 2912

D	Y	Rate	Lower	Upper
2162	2.7e+04	0.081099	0.077751	0.084590

Notes: Rate = D/Y = failures/person-time.

Lower and Upper are bounds of 95% confidence intervals.

91 . 92 . **Women**

93 .

94 .

95 . foreach x1 of varlist SEX RACE_ETHN NonWhite education totwealth_2006 marital_2006 work_st_2006 smoking_2006 pr > 2006 {

2. mi estimate: svy, subpop(Women): prop `x1'

3. }

Multiple-imputation estimates Imputations = 5 Survey: Proportion estimation Number of obs = 6,991

Number of strata = 52 Population size = 22,872,439 Number of PSUs = 104 Subpop. no. obs = 3,889 Subpop. size = 13,441,486 Average RVI = .

Largest FMI = .
Complete DF = 52

DF adjustment: Small sample DF: min = avg =

Within VCE type: Linearized max = .

				Norr	mal
	Proportion	Std. err.	[95%	conf.	interval]
SEX					
1	0	(no observati	.ons)		
2	1	•		•	

Number of strata	= 52	Population size =	22,872,439
Number of PSUs	= 104	Subpop. no. obs =	3,889
		Subpop. size =	13,441,486
		Average RVI =	•
		Largest FMI =	•
		Complete DF =	52
DF adjustment:	Small sample	DF: min =	50.11
		avg =	•
Within VCE type:	Linearized	max =	•

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
RACE ETHN				
1	.8580113	.0102271	.8374708	.8785519
2	.0843681	.005921	.072476	.0962601
3	.0576206	.0086582	.0402311	.0750101
4	0	(no observat	cions)	

Multiple-imputation estimates	<pre>Imputations =</pre>	5
Survey: Proportion estimation	Number of obs =	6,991
Number of strata = 52	Population size =	22,872,439
Number of PSUs = 104	Subpop. no. obs =	3,889
	Subpop. size =	13,441,486
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	52
DF adjustment: Small sample	DF: min =	50.11
	avg =	50.11
Within VCE type: Linearized	max =	50.11

	Proportion	Std. err.	Nor [95% conf.	
NonWhite				
0	.8580113	.0102271	.8374708	.8785519
1	.1419887	.0102271	.1214481	.1625292

Multiple-imputati Survey: Proportion		Imputations = Number of obs =	_
Number of strata	= 52	Population size =	22,872,439
Number of PSUs	= 104	Subpop. no. obs =	3,889
		Subpop. size =	13,441,486
		Average RVI =	0.0000
		Largest FMI =	
		Complete DF =	
DF adjustment:	Small sample	DF: min =	50.11
_		avg =	50.11
Within VCF type:	Linearized	max =	50.11

	_					mal
	Proportion	Std.	err.	[95%	conf.	interval]
education						
1	.244704	.010	6149	.2233	846	.2660235
2	.0317237		3132	.0250		.0383781
3	.3840426	.00	8923	. 3661	.212	.4019639
4	.2011016	.007	1122	.186	817	.2153862
5	.138428	.00	7371	.1236	236	.1532324
Multiple-impu	tation ostima	+05	Imputat	ions	=	5
Survey: Propo			Number		=	6,991
Number of str	ata =	52	Populat	ion siz	e =	22,872,439
Number of PSU:	s =	104	Subpop.		s =	3,889
			Subpop.		=	13,441,486
			Average		=	0.0000
			Largest		=	0.0000
DE - 14			Complet		=	52
DF adjustment	: Small sam	ьте	DF:	min	=	50.11 50.11
Within VCE ty	pe: Lineari	zed		avg max	=	50.11
within ver ty	pe. Lineari	Zeu		IIIax	_	50.11
					N	lormal
	Proportio	n St	d. err.	[95		ıf. interval
totwealth_2000	6					
1	.532175					FF2F70
	.5521/5	2.0	101591	.51	.17711	552579
2	.435945		101591 099268		.17711 .60078	
		3 .0		. 41		.455882
2 3 4	.435945 .028208 .002685	3 .0 1 .0 2 .0	099268 030446 008189	.41 .02 .00	.60078 20932 10405	3 .455882 2 .03432 3 .004329
2 3	.435945 .028208	3 .0 1 .0 2 .0	099268 030446	.41 .02 .00	.60078 20932	3 .455882 2 .03432 3 .004329
2 3 4 5	.435945 .028208 .002685 .000986	3 .0 1 .0 2 .0 2 .0	099268 030446 008189 005818	.41 .02 .00 00	.60078 20932 10405	3 .455882 2 .03432 5 .004329 3 .002154
2 3 4 5 Multiple-impu	.435945 .028208 .002685 .000986	3 .0 1 .0 2 .0 2 .0	099268 030446 008189 005818	.41 .02 .00 00	.60078 20932 10405 01823	3 .455882 2 .03432 5 .004329 3 .002154
2 3 4 5 Multiple-impu	.435945 .028208 .002685 .000986	3 .0 1 .0 2 .0 2 .0	099268 030446 008189 005818	.41 .02 .00 00	.60078 20932 10405 01823	3 .455882 2 .03432 5 .004329 3 .002154
2 3 4 5 Multiple-impu Survey: Propor	.435945 .028208 .002685 .000986 tation estimat	3 .0 1 .0 2 .0 2 .0	099268 030446 008189 005818 Imputat Number	.41 .02 .00 00	.60078 20932 10405 01823 = =	3 .455882 2 .03432 3 .004329 3 .002154 5 6,991
2 3 4 5 Multiple-impu Survey: Propor	.435945 .028208 .002685 .000986 tation estimatrion estimat	3 .0 1 .0 2 .0 2 .0 tes	099268 030446 008189 005818	.41 .02 .00 00 ions of obs	60078 20932 10405 01823 = = =	3 .455882 2 .03432 5 .004329 3 .002154
2 3 4 5 Multiple-impur Survey: Propor	.435945 .028208 .002685 .000986 tation estimatrion estimat	3 .0 1 .0 2 .0 2 .0 tes ion	099268 030446 008189 005818 Imputat Number	.41 .02 .00 00 ions of obs	60078 20932 10405 01823 = = =	3 .455882 2 .03432 3 .004329 3 .002154 5 .6,991 22,872,439
2 3 4 5 Multiple-impur Survey: Propor	.435945 .028208 .002685 .000986 tation estimatrion estimat	3 .0 1 .0 2 .0 2 .0 tes ion	099268 030446 008189 005818 Imputat Number Populat Subpop. Subpop. Average	ions of obs ion size RVI	60078 20932 10405 01823 = = = e = =	3 .455882 2 .03432 3 .004329 3 .002154 5 6,991 22,872,439 3,889
2 3 4 5 Multiple-impur Survey: Propor	.435945 .028208 .002685 .000986 tation estimatrion estimat	3 .0 1 .0 2 .0 2 .0 tes ion	1 mputat Number Populat Subpop. Subpop. Average Largest	ions of obs ion siz no. ob size RVI FMI	60078 220932 10405 01823 = = = e = =	5 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 0.0000
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU:	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion siz no. ob size RVI FMI e DF	60078 220932 10405 01823 = = = s = = =	5 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 0.0000
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU:	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	1 mputat Number Populat Subpop. Subpop. Average Largest	ions of obs ion size RVI FMI e DF min	60078 20932 10405 101823 = = = = = = = = = = = = = = = = = = =	5 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 0.0000 52 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min avg	60078 20932 10405 01823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 0.0000 52 50.11 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min	60078 20932 10405 101823 = = = = = = = = = = = = = = = = = = =	5 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 0.0000 52 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU:	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min avg	60078 20932 10405 001823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 52 50.11 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU:	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min avg max	.60078 20932 10405 001823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 0.0000 52 50.11 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU: DF adjustment Within VCE typ	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min avg max	.60078 20932 10405 001823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 52 50.11 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU: DF adjustment Within VCE typ	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s =	3 .0 1 .0 2 .0 2 .0 tes ion 52 104 ple zed	Imputat Number Populat Subpop. Subpop. Average Largest Complet	ions of obs ion size RVI FMI e DF min avg max	60078 20932 10405 001823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 52 50.11 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU: DF adjustment Within VCE type marital_2006	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s = : Small sam pe: Lineari	3 .0 1 .0 2 .0 2 .0 tes ion 52 104 ple zed	Imputat Number Populat Subpop. Average Largest Complet DF:	ions of obs ion size RVI FMI e DF min avg max	60078 20932 10405 001823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 52 50.11 50.11 50.11
2 3 4 5 Multiple-impur Survey: Propor Number of stra Number of PSU: DF adjustment Within VCE type marital_2006 1	.435945 .028208 .002685 .000986 tation estimat rtion estimat ata = s = : Small sam pe: Lineari Proportion	3 .0 1 .0 2 .0 2 .0 tes ion 52 104 ple zed Std. .003 .005	Imputat Number Populat Subpop. Average Largest Complet DF:	ions of obs ion size RVI FMI e DF min avg max [95%	60078 20932 10405 001823 = = = = = = = = = = = = = = = = = = =	3 .455882 2 .03432 3 .002154 5 .002154 5 .6,991 22,872,439 3,889 13,441,486 0.0000 52 50.11 50.11 50.11

	cation estimates rtion estimation	Imputations Number of obs	= 5 = 6,991
Number of stra Number of PSUs DF adjustment: Within VCE typ	S = 104 Small sample	Population siz Subpop. no. ob Subpop. size Average RVI Largest FMI Complete DF DF: min avg max	
			Normal
	Proportion Std.	err. [95%	conf. interval]
work_st_2006 0 1		.8943 .3226 .0842	
	cation estimates ction estimation	Imputations Number of obs	= 5 = 6,989
Number of stra Number of PSUs	5 = 104	Population siz Subpop. no. ob Subpop. size Average RVI Largest FMI Complete DF	0S = 3,887 = 13,437,589 = 0.0026 = 0.0049 = 52
DF adjustment: Within VCE typ		DF: min avg max	= 49.93 = 49.98 = 50.02
			Normal
	Proportion Std.	err. [95%	conf. interval]
smoking_2006 1 2 3	.3779331 .008	.5308 .5938 .3606 .4123 .062	
	cation estimates	Imputations Number of obs	= 5 = 6,991
Number of stra Number of PSUs		Population siz Subpop. no. ob Subpop. size Average RVI Largest FMI	os = 3,889 = 13,441,486 = 0.0015 = 0.0040
DF adjustment:	Small sample	Complete DF DF: min	= 52 = 49.98
Within VCE typ	pe: Linearized	avg max	= 50.04 = 50.10

	Proporti	on :	Std. err.		[95% c	Nor	mal interval]
	-						
physic_act_200	.323 01	65	.0096891		.30355	63	.3424768
-			.0067023		.17104		.197972
3			.0099652		.47245		.512488
	-						
Multiple-imput			Imputat		=		5
Survey: Propor	rtion estimat	ion	Number	of ob	s =		6,991
Number of stra		52	Populat			22,	872,439
Number of PSUs	5 = :	104	Subpop.		obs =		3,889
			Subpop.		=	13,	441,486
			Average Largest		=		0.0000 0.0000
			Complet		=		52
DF adjustment:	Small sam	ple	DF:	min	=		50.11
3				avg	=		50.11
Within VCE typ	oe: Lineari	zed		max	=		50.11
					No	rmal	
	Proportion	Std	. err.	[95			terval]
srh_2006							
1	.6684934	.01	02632	. 64	78804	•	6891065
2	.3315066	.01	02632 	.31	08935	•	3521196
Multiple-imput	ation estima	tac	Imputat	ions	=		5
Survey: Propor			Number				6,991
Number of stra	ata =	52	Populat	ion s	ize =	22,	872,439
Number of PSUs	5 = :	104	Subpop.	no.	obs =		3,889
			Subpop.		=	13,	441,486
			Average		=		0.0000
			Largest		=		0.0000
DF adjustment:	Small sam	nla	Complet DF:	e DF min	=		52 50.11
or aujustillent.	Siliatt Salii	рте	DF.	avg	=		50.11
Within VCE typ	oe: Lineari	zed		max	=		50.11
					N.c.	rmal	
	Proportion	Std	. err.	[95			terval]
bmibr_2006							_
1	.4450933		92721		64707		.463716
2	.3277381		68274		40257		3414505
3	.2271686	.00	95107	. 20	80668	•	2462703
Multiple-imput			Imputat		=		5
	rtion estimat:		NI	of ob	s =		6,991

Number of strata	= 52	Population size	=	22,872,439
Number of PSUs	= 104	Subpop. no. obs	=	3,889
		Subpop. size	=	13,441,486
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.		rmal interval]
cardiometcondbr_2006 1 2 3	.2587025 .6399594 .1013381	.0065767 .0078127 .0057267	.2454935 .624268 .0898364	.2719115 .6556507 .1128399

Murcipie-impucaci	ion estimates	imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	6,991
Number of strata	= 52	Population size	=	22,872,439
Number of PSUs	= 104	Subpop. no. obs	=	3,889
		Subpop. size	=	13,441,486
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
hurd dem				
_ 0	.8471088	.0066142	.8338246	.860393
1	.1528912	.0066142	.139607	.1661754

Multiple-imputati	ton estimates	imputations =	• 5
Survey: Proportion	on estimation	Number of obs =	6,991
Number of strata	= 52	Population size =	22,872,439
Number of PSUs	= 104	Subpop. no. obs =	3,889
		Subpop. size =	13,441,486
		Average RVI =	0.0000
		Largest FMI =	0.0000
		Complete DF =	52
DF adjustment:	Small sample	DF: min =	50.11
		avg =	50.11
Within VCE type:	Linearized	max =	50.11

	Γ					
						mal
	Proportion	Std.	err.	[95%	conf.	interval]
ovnont dom						
expert_dem 0	.8351873	.007	0154	.821	973	.8492774
1	.1648127	.007		.150		.1789027
Multiple in the second			T	•		_
Multiple-imput Survey: Propor			Imputat:		=	5 6,991
Survey. Propor	CION ESCIMAC	1011	Nulliber (005	_	0,551
Number of stra	ata =	52	Populat:	ion si	ze =	22,872,439
Number of PSUs	5 =	104	Subpop.			3,889
			Subpop.	size	=	13,441,486
			Average	RVI	=	0.0000
			Largest	FMI	=	0.0000
			Complete	e DF	=	52
DF adjustment:	: Small sam	ple	DF:	min	=	50.11
				avg	=	50.11
Within VCE typ	oe: Lineari	zed		max	=	50.11
					Nor	mal
	Proportion	Std.	err.	Γ95%		interval]
	11000101011					
lasso_dem						
0	.8246288	.006	5836	.81	1406	.8378515
1	.1753712	.006	5836	.162	1485	.188594
						· · · · · · · · · · · · · · · · · · ·
Multiple-imput	tation estima	tes	Imputati	ions	=	5
Survey: Propor			Number of		=	6,885
Number of stra	ata =	52	Populat:	ion si	ze =	22,492,175
Number of PSUs	5 =	104	Subpop.	no. ol	os =	3,783
			Subpop.	size	=	13,061,222
			Average	RVI	=	0.0000
			Largest	FMI	=	0.0000
			Complete	e DF	=	52
DF adjustment:	: Small sam	ple	DF:	min	=	50.11
				avg	=	50.11
Within VCE typ	oe: Lineari	zed		max	=	50.11
					Nor	·mal
	Proportion	Std.	err.	[95%		interval]
-1h-1 2006						
alcohol_2006	646073	04.5	2450	F03:	777	C44 FC03
1 2	.616973 .1766801	.012		.592		.6415683
,	TARGG/T	.00/	4022	.161	0 1 32	.191547
					2/127	1222027
3 4	.1086182	.007	3562	.093		.1233927 .1110901

```
96 .
97 .
98 . foreach x2 of varlist AGE2006 cesd_2006 poorsleep_2006 hurd_p expert_p lasso_p {
               mi estimate: svy, subpop(Women): mean `x2'
    2.
    3. }
  Multiple-imputation estimates
                                   Imputations
                                                              5
  Survey: Mean estimation
                                   Number of obs =
                                                           6,991
  Number of strata =
                             52
                                   Population size = 22,872,439
  Number of PSUs
                            104
                                   Subpop. no. obs =
                                                         3,889
                                   Subpop. size =
                                                      13,441,486
                                   Average RVI
                                                          0.0000
                                   Largest FMI
                                                          0.0000
                                   Complete DF
                                                             52
  DF adjustment:
                   Small sample
                                                           50.11
                                           min
                                           avg
                                                           50.11
  Within VCE type:
                     Linearized
                                           max
                                                           50.11
                       Mean
                              Std. err.
                                            [95% conf. interval]
       AGE2006
                   78.47714
                              .1078582
                                            78.26051
                                                        78.69376
  Multiple-imputation estimates
                                   Imputations
                                                               5
                                   Number of obs =
  Survey: Mean estimation
                                                           6,842
  Number of strata =
                                   Population size = 22,397,363
                             52
                                   Subpop. no. obs =
  Number of PSUs
                            104
                                                           3,740
                                   Subpop. size = 12,966,410
                                   Average RVI
                                                          0.0000
                                   Largest FMI
                                                          0.0000
                                   Complete DF
                                                            52
                                                   =
  DF adjustment:
                   Small sample
                                   DF:
                                                           50.11
                                           min
                                                           50.11
                                           avg
  Within VCE type:
                     Linearized
                                           max
                                                           50.11
                                            [95% conf. interval]
                       Mean
                              Std. err.
     cesd_2006
                   1.679061
                              .0366182
                                            1.605515
                                                        1.752607
  Multiple-imputation estimates
                                   Imputations
  Survey: Mean estimation
                                   Number of obs =
                                                           6,991
  Number of strata =
                                   Population size = 22,872,439
                             52
  Number of PSUs
                            104
                                   Subpop. no. obs =
                                                           3,889
                                   Subpop. size =
                                                      13,441,486
                                   Average RVI
                                                          0.0000
                                   Largest FMI
                                                          0.0000
                                   Complete DF
                                                              52
  DF adjustment:
                   Small sample
                                   DF:
                                           min
                                                           50.11
                                                           50.11
                                           avg
  Within VCE type:
                                                           50.11
                     Linearized
                                           max
                                Std. err.
                                              [95% conf. interval]
                         Mean
   poorsleep_2006
                     3.010448
                                 .031912
                                              2.946355
                                                          3.074542
```

Number of stra Number of PSU: DF adjustment Within VCE typ	: Small s	arized	Average Largest Complet DF:	FMI e DF min avg max	= = = = = = = conf	13,441,486 0.0000 0.0000 52 50.11 50.11 50.11 . interval]
Number of PSU:	: Small s		Average Largest Complet	RVI FMI e DF min avg	= = = =	0.0000 0.0000 52 50.11 50.11
Number of PSU:	: Small s		Average Largest Complet	RVI FMI e DF min	= = =	0.0000 0.0000 52 50.11
Number of PSU:		sample	Average Largest Complet	RVI FMI e DF	= = =	0.0000 0.0000 52
			Average Largest	RVI FMI	=	0.0000 0.0000
			Average	RVI	=	0.0000
			Subpop.	size	=	13,441,486
Number of stra	s =	104	Subpop.			3,889
	ata =	52	Populat	ion siz	ze =	22,872,439
Survey: Mean			Number	of obs	=	6,991
Multiple-impu		mates	Imputat	ions	=	5
expert_p	.141454	16 .004	17387	.1319	9372	.150972
	Mea	n Std.	err.	[95%	conf	. interval]
Within VCE ty	e: Linea	rized		max	=	50.11
	_			avg	=	50.11
DF adjustment	Small s	ample	DF:	min	=	50.11
			Complet		=	52
			Largest		=	0.0000
			Average		=	0.0000
			Subpop.		=	13,441,486
Number of PSU:		104	Subpop.			3,889
Number of str		52	Populat			22,872,439
Multiple-impu		mates	Imputat Number		=	5 6,991
hurd_p	.111226	.00.	86276	.1039	7404	.1185122
الـمـــــــــــــــــــــــــــــــــــ	Mea		err.			. interval]
				F = = 0/		
Within VCE typ	e: Line a	rized		max	=	50.11
Dr aujustillerit	Small s	ampre	Dr.	avg	=	50.11
DF adjustment	. Cmall c	-amplo	Complete DF:	e DF min	=	52 50.11
			Largest		=	0.0000
			Average		=	0.0000
			Subpop.		=	13,441,486
Nulliber of F30:		104	Subpop.			3,889
Number of PSU:		52	Populat	ion siz	70 =	22,872,439
Number of str	estimation		Imputat Number		=	5 6,991
		.mates			=	

Tuesday December 12 07:59:04 2023 Page 41

99 .

100 .

101 . mi xeq 0: strate if Women==1

m=0 data:

-> strate if Women==1

Failure _d: died==1

Analysis time _t: (ageevent-origin)

Origin: time AGE2006

Enter on or after: time AGE2006

Estimated failure rates
Number of records = **4033**

D	Υ	Rate	Lower	Upper
2730	4.0e+04	0.068928	0.066391	0.071563

Notes: Rate = D/Y = failures/person-time.

Lower and Upper are bounds of 95% confidence intervals.

102 .

103 .

104 . **NHW**

105 .

106 . foreach x1 of varlist SEX education totwealth_2006 marital_2006 work_st_2006 smoking_2006 physic_act_2006 srh_ 2. mi estimate: svy, subpop(NHW): prop `x1'

3. }

Multiple-imputation estimates Imputations = 5 Survey: Proportion estimation Number of obs = 6,991

> Largest FMI = 0.0000 Complete DF = 52

DF adjustment: Small sample DF: min = 50.11 avg = 50.11 Within VCE type: Linearized max = 50.11

	Proportion	Std. err.	Norn [95% conf.	
SEX 1 2	.4171441 .5828559	.0055392 .0055392	.4060189 .5717307	.4282693 .5939811

Number of strata	= 52	Population size =	22,872,439
Number of PSUs	= 104	Subpop. no. obs =	5,471
		Subpop. size =	19,786,961
		Average RVI =	0.0000
		Largest FMI =	9.0000
		Complete DF =	= 52
DF adjustment:	Small sample	DF: min =	50.11
		avg =	50.11
Within VCE type:	Linearized	max =	50.11

	Proportion	Std. err.	Nor [95% conf.	
education				
1	.2005952	.0071273	.1862804	.21491
2	.037676	.002986	.0316787	.0436733
3	.3557215	.007269	.341122	.370321
4	.2021794	.00601	.1901087	.2142501
5	.2038279	.0096292	.1844881	.2231676

Multiple-imputat	ion estimates	Imputations	=	5
Survey: Proporti	Number of obs	=	6,991	
Number of strata	= 52	Population size	=	22,872,439
Number of PSUs	= 104	Subpop. no. obs	=	5,471
		Subpop. size	=	19,786,961
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	52
DF adjustment:	Small sample	DF: min	=	50.11
		avg	=	50.11
Within VCE type:	Linearized	max	=	50.11

	Proportion	Std. err.	Norr [95% conf.	
totwealth 2006				
_ 1	.396891	.00911	.378594	.415188
2	.5474598	.0081876	.5310155	.5639041
3	.0472929	.0042169	.0388234	.0557624
4	.0067297	.0013296	.0040592	.0094002
5	.0016266	.0007231	.0001744	.0030789

Multiple-imputat:	ion estimates	Imputations =	5
Survey: Proportion	on estimation	Number of obs =	6,991
Number of strata	= 52	Population size =	22,872,439
Number of PSUs	= 104	Subpop. no. obs =	5,471
		Subpop. size =	19,786,961
		Average RVI =	0.0000
		Largest FMI =	0.0000
		Complete DF =	52
<pre>DF adjustment:</pre>	Small sample	DF: min =	50.11
		avg =	50.11
Within VCE type:	Linearized	max =	50.11

	Proportion	Std.	err.	[95%		rmal . interval]
				[23,0		
marital_2006						
1	.0228526	.002		.0176		.0280776
2	.5525676	.008	6244	.5352	2459	.5698893
3	.0703148	.004	6307	.0616	142	.0796154
4	.3542651	.007	6008	.3389	9992	.3695309
Multiple-impu	tation estimat	es	Imputa	tions	=	5
Survey: Propo				of obs	=	6,991
Number of str	ata =	52	Popula	tion siz	ze =	22,872,439
Number of PSU:	s = 1	L04		. no. ob		5,471
				. size	=	19,786,961
			Averag		=	0.0000
			Larges		=	0.0000
			_			
DE - 44			Comple		=	52
DF adjustment	: Small samp	оте	DF:	min	=	50.11
				avg	=	50.11
Within VCE typ	pe: Lineariz	zed		max	=	50.11
					Nor	-mal
	Proportion	Std.	err.	[95%		. interval]
work_st_2006						
0	.8680978	995	4879	.8576	756	.8791201
1	.1319022		4879	.1208		.1429244
	.1313022	.005		.1200		. 1427244
Multiple-impu	tation estimat	-65	Imputa	tions	=	5
Survey: Propor				of obs	=	6,988
-						
Number of stra		52		tion siz		22,860,631
Number of PSU:	s = 1	L04	Subpop	. no. ob)s =	5,468
			Subpop	. size	=	19,775,153
			Averag	e RVI	=	0.0061
			Larges	t FMI	=	0.0093
			Comple		=	52
DF adjustment	: Small samp	ole.	DF:	min	=	49.69
2. aajaseee			2	avg	=	49.82
Within VCE tw	oo: Linoani-			•		49.90
Within VCE ty	oe: Lineari z	zeu		max	=	49.90
					Nor	rmal
	Proportion	Std.	err.	[95%	conf.	. interval]
smoking_2006						
1	.4375676	.0	0847	.4205	5543	.454581
2	.4926957	.007		.4782		.5071059
3	.0697367	.004		.0616		.0784055
	.005/30/	. 504		.0016		.0704033
Multiple in	bobion sabiusa		T.m.rc+ -	+:		-
Multiple-imput			Imputa		=	5
Survey: Propor	rtion estimati	Lon	Number	of obs	=	6,991

Number of strata Number of PSUs DF adjustment: Within VCE type:	= 104 Small sample	Population s Subpop. no. Subpop. size Average RVI Largest FMI Complete DF DF: min avg max	obs = 5,471
	Dropontion	Std onn	Normal [95% conf. interval]
	Proportion	Std. err.	[95% CONT. INTERVAL]
physic_act_2006 1 2 3	.1825006	.0079751 .0064993 .0085548	.2446213 .2766566 .1694466 .1955545 .5396782 .5740428
Multiple-imputat Survey: Proporti		Imputations Number of ob	= 5 s = 6,991
Number of strata Number of PSUs DF adjustment:	= 52 = 104 Small sample	Population s Subpop. no. Subpop. size Average RVI Largest FMI Complete DF DF: min avg	obs = 5,471
Within VCE type:	Linearized	max	= 50.11
			Marama I
P	roportion Std	. err. [95	Normal % conf. interval]
srh_2006 1 2			91002 .7206751 93249 .3108998
Multiple-imputat Survey: Proporti		Imputations Number of ob	= 5 s = 6,991
Number of strata Number of PSUs	= 52 = 104	Population s Subpop. no. Subpop. size Average RVI Largest FMI	obs = 5,471
DF adjustment:	Small sample	Complete DF DF: min	= 52 = 50.11
Within VCE type:	Linearized	avg max	= 50.11 = 50.11

	Proport	ion	Std.	err.	[95%		rmal interval]	-
	.4100	924	.008	1084	.393	8807	.4263778	-
2 3	.3788		.006		.3660 .1933		.3916961 .2287257	
Multiple-imput Survey: Propor					tions of obs	=	5 6,991	
Number of stra Number of PSUs		:	52 104	Subpor Subpor Averag			22,872,439 5,471 19,786,961 0.0000	!
DF adjustment:		l samı neari:		Larges Comple DF:		= = = =	0.0000 52 50.11 50.11 50.11	
		Prop	portio	n Sto	l. err.	[9	Norma 95% conf. i	
cardiometcond	or_2006 1 2 3	. (254852 530466 114680	9 .00	953945 962161 947506	.6	2440175 3179821 .051396	.2656868 .6429517 .1242222
Multiple-imput Survey: Propor				Imputa Number	tions of obs	=	5 6,991	
Number of stra Number of PSUs		:	52 104	Subpor Subpor Averag Larges)S = = = =	22,872,439 5,471 19,786,961 0.0000 0.0000	!
DF adjustment:		l samp		Comple DF:	ete DF min avg max	= = = =	52 50.11 50.11 50.11	
	Proport	ion	Std.	err.	[95%		rmal interval]	-
hurd_dem 0 1	.8653 .1346		.005 .005		.854 .1237		.8762726 .145671	
Multiple-imput Survey: Propor				Imputa Number	ntions of obs	=	5 6,991	

Number of PSUs = 104 Subpop. no. obs = 5,473 Subpop. size = 19,786,963 Average RVI = 0.0006 Largest FMI = 0.0006 Complete DF = 52 DF adjustment: Small sample DF: min = 50.13 avg = 50.13	expert_d	em 0 .861	8388 .005	3953 .851	0 025	.872675
Number of PSUs = 104 Subpop. no. obs = 5,473 Subpop. size = 19,786,963 Average RVI = 0.0006 Largest FMI = 0.0006 Complete DF = 52 DF adjustment: Small sample DF: min = 50.13 avg = 50.13		Propor	tion Std.	err. [95%		
Number of PSUs = 104 Subpop. no. obs = 5,473 Subpop. size = 19,786,963 Average RVI = 0.0006 Largest FMI = 0.0006 Complete DF = 52 DF adjustment: Small sample DF: min = 50.13	Within VCE	type: Li	nearized	J		50.11
Number of PSUs = 104 Subpop. no. obs = 5,471 Subpop. size = 19,786,961 Average RVI = 0.0000 Largest FMI = 0.0000	DF adjustm	ent: Smal	l sample			50.11
Number of PSUs = 104 Subpop. no. obs = 5,471 Subpop. size = 19,786,961 Average RVI = 0.0000				•		52
Number of PSUs = 104 Subpop. no. obs = 5,473				Average RVI	=	19,786,961 0.0000 0.0000
			52 104	Subpop. no. o	os =	5,471

1	.1381612	.0053953	.127	325	.1489975
Multiple-imputations Survey: Proportion			tations er of obs		5 6,991
Number of strata Number of PSUs		L 04 Subp Subp Aver Larg	lation siz op. no. ob op. size age RVI est FMI lete DF)S = = =	19,786,961 0.0000
DF adjustment: Within VCE type:	Small samp	ole DF:		= = =	50.11 50.11 50.11

	Proportion	Std. err.	Nor [95% conf.	
lasso_dem 0 1	.8523776 .1476224	.0057372 .0057372	.8408548 .1360995	.8639005 .1591452

Survey: Proportion estimation	Number of obs =	6,786
Number of strata = 52 Number of PSUs = 104	Population size = Subpop. no. obs = Subpop. size = Average RVI =	5,266 19,056,874
	Largest FMI = Complete DF =	
DF adjustment: Small sample	DF: min = avg =	50.11 50.11
Within VCE type: Linearized	max =	50.11

Std. err.

Proportion

107 108 109

cesd_2006

1.404631

Multiple-imputation estimates Survey: Mean estimation

.0312576

Imputations

Number of obs =

1.341852

1.46741

5

6,991

alcohol_2006 1 2 3 4	.1832084 .00 .1406382 .00	17486 65296 67631 75983	.4979743 .170094 .1270549 .1393223	.196322 .154221	8 5	
	of varlist AGE2006 mi estimate: svy,				d_p expert_p	lasso_p {
Multiple-impu	tation estimates estimation	Imputat Number		: : 6,99	5 1	
Number of str Number of PSU		Subpop.	no. obs = size = RVI = FMI =	22,872,43 5,47 19,786,96 0.000 0.000	1 1 0 0	
DF adjustment	: Small sample	DF:	min =	50.1	1	
Within VCE ty	pe: Linearized		- 0	50.1 50.1		
	Mean Std	. err.	[95% cor	nf. interval	-]	
AGE2006	78.25809 .10	03802	78.05648	78.459	_ 7 _	
Multiple-impu Survey: Mean	tation estimates estimation	Imputat Number		: : 6,75	5 5	
Number of str. Number of PSU		Subpop Subpop Average Largest	no. obs = size = RVI = FMI =	18,953,93 0.000 0.000	5 5 0	
DF adjustment	·	DF:	avg =	50.1 50.1 50.1	1 1	
	Mean Std	. err.	[95% cor	nf. interval	-] -	

Normal [95% conf. interval]

Number of stra Number of PSUs		Population size Subpop. no. obs Subpop. size Average RVI Largest FMI	
		Complete DF	= 52
DF adjustment:	Small sample	DF: min	= 50.11
Di aujustilleric.	Jilaii Jalipie	avg	= 50.11
Within VCE typ	e: Linearized	max	= 50.11
Michigan Vel eyp	c. 11.1.cu. 12.cu	max.	30.11
	Mean S	td. err. [95%	conf. interval]
poorsleep_2006	2.803106 .0	0321819 2.7 3	38471 2.867742
Multiple imput	ation actimates	Imputations	-
	ation estimates	Imputations Number of obs	= 5
Survey: Mean e	Stimation	Number of obs	= 6,991
Numban of stas	+- 53	Danulation size	22 072 420
Number of stra Number of PSUs		Population size	
Nulliber OT PSUS	= 104	Subpop. no. obs Subpop. size	5 = 5,471 = 19,786,961
		Average RVI Largest FMI	= 0.0000 = 0.0000
		Complete DF	= 0.0000
DF adjustment:	Small sample	DF: min	= 50.11
or aujustillent.	Siliati Sallipie		= 50.11
Within VCE typ	e: Linearized	avg max	= 50.11
			conf. interval]
hurd_p	.0934427 .003	30907 .08723	.0996501
Multiple-imput	ation estimates	Imputations	= 5
Survey: Mean e	stimation	Number of obs	= 6,991
Number of stra	ta = 52	Population size	e = 22,872,439
Number of PSUs		Subpop. no. obs	
		Subpop. size	= 19,786,961
		Average RVI	= 0.0000
		Largest FMI	= 0.0000
		Complete DF	= 52
DF adjustment:	Small sample	DF: min	= 50.11
3	•	avg	= 50.11
Within VCE typ	e: Linearized	max	= 50.11
	Mean Std	. err. [95% c	conf. interval]
expert_p	.1175741 .00	36409 .11026	.1248868
Multiple-imput Survey: Mean e	ation estimates stimation	Imputations Number of obs	= 5 = 6,991

Tuesday December 12 07:59:05 2023 Page 49

Number of strata = 52 Population size = 22,872,439 Number of PSUs 104 Subpop. no. obs = 5,471 Subpop. size = **19,786,961** Average RVI = Largest FMI = Complete DF = 0.0000 0.0000 52 DF adjustment: Small sample DF: min = 50.11 50.11 avg Within VCE type: Linearized max 50.11

	Mean	Std. err.	[95% conf.	interval]
lasso_p	.1241744	.0035234	.1170979	.131251

110 .

111 .

112 . mi xeq 0: strate if NHW==1

m=0 data:

-> strate if NHW==1

Failure _d: died==1

Analysis time _t: (ageevent-origin)

Origin: time AGE2006 Enter on or after: time AGE2006

Estimated failure rates
Number of records = **5630**

D	Υ	Rate	Lower	Upper
3969	5.4e+04	0.073925	0.071661	0.076261

Notes: Rate = D/Y = failures/person-time.

Lower and Upper are bounds of 95% confidence intervals.

113 .

114 .

115 . **NonWhite**

116 .

117 . foreach x1 of varlist SEX education totwealth_2006 marital_2006 work_st_2006 smoking_2006 physic_act_2006 srh
2. mi estimate: svy, subpop(NonWhite): prop `x1'
3. }

Multiple-imputation estimates Imputations Survey: Proportion estimation Number of obs = 6,749 Number of strata = Population size = 22,055,744 50 Number of PSUs 100 Subpop. no. obs = 1,287 Subpop. size = 3,085,478 Average RVI 0.0000 Largest FMI 0.0000 Complete DF 50 DF adjustment: Small sample DF: min 48.11 48.11 avg Within VCE type: Linearized 48.11 max

	Proportion	Std. err.	Norr [95% conf.	
SEX				
1	.3814446	.0118361	.357648	.4052412
2	.6185554	.0118361	.5947588	.642352

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right)$ members.

Multiple-imputati	ion estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	6,749
Number of strata	= 50	Population size	=	22,055,744
Number of PSUs	= 100	Subpop. no. obs	=	1,287
		Subpop. size	=	3,085,478
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	50
DF adjustment:	Small sample	DF: min	=	48.11
		avg	=	48.11
Within VCE type:	Linearized	max	=	48.11

	Proportion	Std. err.	Norr [95% conf.	
education				
1	.5638089	.02534	.5128624	.6147554
2	.0438788	.0064071	.0309972	.0567604
3	.2161714	.0178912	.1802009	.2521418
4	.1128392	.0098265	.0930829	.1325956
5	.0633017	.0077601	.0476999	.0789035

Note: 2 strata omitted because they contain no subpopulation members.

Multiple-imputati	on estimates	Imputations	=	5
Survey: Proportio	n estimation	Number of obs	=	6,749
Number of strata	= 50	Population size	=	22,055,744
Number of PSUs	= 100	Subpop. no. obs	=	1,287
		Subpop. size	=	3,085,478
		Average RVI	=	•
		Largest FMI	=	•
		Complete DF	=	50
DF adjustment:	Small sample	DF: min	=	48.11
		avg	=	•
Within VCE type:	Linearized	max	=	•

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
totwealth_2006				
1	.7239345	.0174039	.6889437	.7589254
2	.2716905	.0172825	.2369439	.3064371
3	.0033473	.0014846	.0003625	.0063321
4	0	(no observat	lons)	
5	.0010277	.001028	0010391	.0030946

Note: 2 strata omitted because they contain no subpopulation

members.

Multiple-imputation estimates Survey: Proportion estimation		Imputat:		=	5 6,749
survey. Troporezon es	C1	Trainiber .	0. 005		0,7-15
Number of strata =	50	Populat	ion size	=	22,055,744
Number of PSUs =	100	Subpop.	no. obs	=	1,287
		Subpop.	size	=	3,085,478
		Average	RVI	=	0.0000
		Largest	FMI	=	0.0000
		Complete	e DF	=	50
DF adjustment: Smal	l sample	DF:	min	=	48.11
			avg	=	48.11
Within VCE type: Li	nearized		max	=	48.11

			Nor	Normal		
	Proportion	Std. err.	[95% conf.	interval]		
marital 2006						
_ 1	.0408216	.0061209	.0285154	.0531277		
2	.4433025	.0179412	.4072315	.4793734		
3	.119491	.0098586	.0996702	.1393119		
4	.3963849	.0156568	.3649066	.4278632		

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) =\left(1\right)$

Multiple-imputation estimates Survey: Proportion estimation	<pre>Imputations = Number of obs =</pre>	5 6,749
Number of strata = 50 Number of PSUs = 100	Population size = Subpop. no. obs =	
	Subpop. size =	3,085,478
	Average RVI =	
	Largest FMI =	0.0000
	Complete DF =	50
DF adjustment: Small sample	DF: min =	48.11
	avg =	48.11
Within VCE type: Linearized	max =	48.11

	Proportion	Std. err.	Norm [95% conf.	
work_st_2006 0 1	.8939895 .1060105	.0128683 .0128683	.8681177 .0801387	.9198613 .1318823

Note: 2 strata omitted because they contain no subpopulation members.

Number of strata	= 50	Population size	=	22,045,129
Number of PSUs	= 100	Subpop. no. obs	-	1,282
		Subpop. size	=	3,074,863
		Average RVI	=	0.0252
		Largest FMI	=	0.0378
		Complete DF	=	50
DF adjustment:	Small sample	DF: min	=	45.81
		avg	=	46.74
Within VCE type:	Linearized	max	=	47.28

			Nor	nal
	Proportion	Std. err.	[95% conf.	interval]
smoking 2006				
1	.4718781	.0151004	.4415022	.502254
2	.4456866	.0152306	.4150513	.4763219
3	.0824353	.0084976	.0653286	.0995419

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) \left(1\right)$ members.

Multiple-imputations Survey: Proportion		Imputations Number of obs	=	5 6,749
Number of strata	= 50	Population size		22,055,744
Number of PSUs	= 100	Subpop. no. obs	=	1,287
		Subpop. size	=	3,085,478
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	50
DF adjustment:	Small sample	DF: min	=	48.11
		avg	=	48.11
Within VCE type:	Linearized	max	=	48.11

			Normal	
	Proportion	Std. err.	[95% conf. in	terval]
physic act 2006				
1	.3460307	.0143561	.3171675	3748938
2	.2200774	.0126062	.1947325	2454223
3	.4338919	.0159245	.4018755 .4	4659084

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right)$ members.

Multiple-imputation estimates	Imputations =	5
Survey: Proportion estimation	Number of obs =	6,749
Number of strata = 50	Population size =	22,055,744
Number of PSUs = 100	Subpop. no. obs =	1,287
	Subpop. size =	3,085,478
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	50
DF adjustment: Small sample	DF: min =	48.11
	avg =	48.11
Within VCE type: Linearized	max =	48.11

	Proportion	Std. err.	Nor [95% conf.	
srh 2006				
_ 1	.4741564	.017121	.4397344	.5085783
2	.5258436	.017121	.4914217	.5602656

Multiple-imputat:	ion estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	6,749
Number of strata	= 50	Population size	=	22,055,744
Number of PSUs	= 100	Subpop. no. obs	=	1,287
		Subpop. size	=	3,085,478
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	50
DF adjustment:	Small sample	DF: min	=	48.11
		avg	=	48.11
Within VCE type:	Linearized	max	=	48.11

			Nor	nal
	Proportion	Std. err.	[95% conf.	interval]
bmibr_2006				
1	.3014651	.0142943	.2727262	.3302041
2	.3962796	.0135727	.3689916	.4235676
3	.3022553	.0122639	. 2775985	.326912

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) =\left(1\right)$ members.

Multiple-imputat:	ion estimates	Imputations	=	5
Survey: Proportion	on estimation	Number of obs	=	6,749
Number of strata	= 50	Population size	=	22,055,744
Number of PSUs	= 100	Subpop. no. obs	=	1,287
		Subpop. size	=	3,085,478
		Average RVI		
		Largest FMI	=	0.0000
		Complete DF	=	50
DF adjustment:	Small sample	DF: min	=	48.11
		avg	=	48.11
Within VCE type:	Linearized	max	=	48.11

	Proportion	Std. err.		mal interval]
cardiometcondbr_2006 1 2 3	.2099717 .6573481 .1326803	.0112765 .0121209 .0090224	.1873001 .6329789 .1145405	.2326433 .6817172 .15082

Note: 2 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates Imputations = 5 Survey: Proportion estimation Number of obs = 6,749

Number of st	rata = 50	Population s	ize =	22,055,744
Number of PS	Us = 100	Subpop. no.	obs =	1,287
		Subpop. size	=	3,085,478
		Average RVI	=	0.0000
		Largest FMI	=	0.0000
		Complete DF	=	50
DF adjustmen	t: Small sample	DF: min	=	48.11
		avg	=	48.11
Within VCE t	ype: Linearized	max	=	48.11

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
hurd dem				
_ 0	.8072704	.0135157	.7800969	.8344438
1	.1927296	.0135157	.1655562	.2199031

Multiple-imputation estimates	Imputations	=	5
Survey: Proportion estimation	Number of obs	=	6,749
Number of strata = 50	Population size	=	22,055,744
Number of PSUs = 100	Subpop. no. obs	=	1,287
	Subpop. size	=	3,085,478
	Average RVI	=	0.0000
	Largest FMI	=	0.0000
	Complete DF	=	50
DF adjustment: Small sample	DF: min	=	48.11
	avg	=	48.11
Within VCE type: Linearized	max	=	48.11

	Proportion	Std. err.	Nor [95% conf.	
expert_dem 0 1	.7834193 .2165807	.0130143 .0130143	.7572538 .1904152	.8095848 .2427462

Note: 2 strata omitted because they contain no subpopulation members.

Multiple-imputation estimates	<pre>Imputations =</pre>	5
Survey: Proportion estimation	Number of obs =	6,749
Number of strata = 50	Population size =	22,055,744
Number of PSUs = 100	Subpop. no. obs =	1,287
	Subpop. size =	3,085,478
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	50
DF adjustment: Small sample	DF: min =	48.11
	avg =	48.11
Within VCE type: Linearized	max =	48.11

	Proportion	Std. err.	Norn [95% conf.	
lasso_dem 0 1	.7614434 .2385566	.0112952 .0112952	.7387343 .2158474	.7841526 .2612657

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) \left(1\right)$ members.

ion estimates	Imputations	=	5
on estimation	Number of obs	=	6,539
= 49	Population size	=	21,212,630
= 98			
	Subpop. size	=	2,999,316
	Average RVI	=	0.0000
	Largest FMI	=	0.0000
	Complete DF	=	49
Small sample	DF: min	=	47.12
	avg	=	47.12
Linearized	max	=	47.12
	= 98 Small sample	en estimation Number of obs = 49 Population size = 98 Subpop. no. obs Subpop. size Average RVI Largest FMI Complete DF Small sample DF: min avg	en estimation Number of obs = = 49

			Nor	mal
	Proportion	Std. err.	[95% conf.	interval]
alcohol_2006				
1	.7358614	.0148459	.7059973	.7657256
2	.1429629	.0106707	.1214977	.1644282
3	.0786993	.008641	.0613169	.0960816
4	.0424764	.0061524	.0301001	.0548526

Note: 3 strata omitted because they contain no subpopulation members.

Linearized

Within VCE type:

```
118 .
120 . foreach x2 of varlist AGE2006 cesd 2006 poorsleep 2006 hurd p expert p lasso p {
                mi estimate: svy, subpop(NonWhite): mean `x2'
     2.
     3. }
   Multiple-imputation estimates
                                   Imputations
   Survey: Mean estimation
                                   Number of obs =
                                                           6,749
   Number of strata =
                                   Population size = 22,055,744
                             50
   Number of PSUs =
                            100
                                   Subpop. no. obs =
                                                           1,287
                                   Subpop. size =
                                                       3,085,478
                                   Average RVI
                                                         0.0000
                                   Largest FMI
                                                          0.0000
                                   Complete DF
                                                             50
   DF adjustment:
                   Small sample
                                           min
                                                           48.11
                                                          48.11
                                           avg
```

max

48.11

	Mean	Std.	err.	[95%	conf.	interval]
AGE2006	77.33121	.196	1363	76.93	688	77.72555
Note: 2 strata (omitted becau	use th	hey cont	ain no	subpo	pulation
Multiple-imputa [.] Survey: Mean es [.]		es	Imputat: Number		=	5 6,635
Number of strata	a = 5	50	Populat	ion siz	e =	21,789,922
Number of PSUs	= 16	90	Subpop.		s =	1,173
			Subpop.		=	2,819,656
			Average		=	0.0000
			Largest		=	0.0000
S= 1.1			Complete		=	50
DF adjustment:	Small samp	re	DF:	min	=	48.11
dithin VCE type	· linoaniza	nd.		avg	=	48.11 48.11
Within VCE type	: Linearize	eu		max	=	48.11
	Mean	Std.	err.	[95%	conf.	interval]
cesd_2006	1.968939	.0698	8564	1.828	492	2.109386
members. Multiple-imputa Survey: Mean es		es	Imputat:		=	5 6,749
Number of strata	a = "	50	Populat	ion siz	Δ -	
Number of PSUs	= 16		•	1011 312		22 055 744
			Subpop.	no. oh		22,055,744
	_,	90	Subpop.		s =	1,287
		90	Subpop.	size		
		00		size RVI	s = =	1,287 3,085,478
		96	Subpop. Average	size RVI FMI	S = = =	1,287 3,085,478 0.0000
DF adjustment:	Small sampl		Subpop. Average Largest	size RVI FMI	S = = = =	1,287 3,085,478 0.0000 0.0000
•	Small sampl	le	Subpop. Average Largest Complete	size RVI FMI e DF	S = = = = =	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11
•	Small sampl	le	Subpop. Average Largest Complete	size RVI FMI e DF min	S = = = = = = = = = = = = = = = = = = =	1,287 3,085,478 0.0000 0.0000 50 48.11
•	Small sampl	le ed	Subpop. Average Largest Complete	size RVI FMI e DF min avg max	S = = = = = = = = = = = = = = = = = = =	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11
Within VCE type	Small sampl	le ed Sto	Subpop. Average Largest Complete DF:	size RVI FMI e DF min avg max	S = = = = = = = = = = = = = = = = = = =	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11
Within VCE type	Small sampl : Linearize Mean 2.662947	le ed Sto	Subpop. Average Largest Complete DF: d. err.	size RVI FMI e DF min avg max	s = = = = = = = % con	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 2.79110
within VCE type poorsleep_2006 Note: 2 strata (members.	Small sampl : Linearize Mean 2.662947 omitted becau	Sto	Subpop. Average Largest Complete DF: d. err.	size RVI FMI e DF min avg max [95	s = = = = = = = % con	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 2.79110
Vithin VCE type Doorsleep_2006 Note: 2 strata of members. Multiple-imputar	Small sampl : Linearize Mean 2.662947 omitted becaution estimate	Sto	Subpop. Average Largest Complete DF: d. err. 637433 hey conta	size RVI FMI e DF min avg max [95 2. ain no	s = = = = = = = % con	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 2.79110 pulation
Doorsleep_2006 Note: 2 strata of members. Multiple-imputation	Small sample: Linearize Mean 2.662947 omitted becaution estimate timation	Sto	Subpop. Average Largest Complete DF: d. err. 637433 hey contain Number of	size RVI FMI e DF min avg max [95 2. ain no ions of obs	s = = = = = = = % con 53479 subpo	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 f. interval 2.79110 pulation 5 6,749
Doorsleep_2006 Note: 2 strata of members. Multiple-imputation	Small sample: Linearize Mean 2.662947 omitted becaution estimate timation a = 5	le Sto	Subpop. Average Largest Complete DF: d. err. 637433 hey contain Number of Populat Subpop.	size RVI FMI e DF min avg max [95 2. ain no ions of obs ion siz no. ob	s = = = = = = = % con 53479 subpo	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 f. interval 2.79110 pulation 5 6,749 22,055,744 1,287
within VCE type poorsleep_2006 Note: 2 strata of members. Multiple-imputation Survey: Mean est	Small sample: Linearize Mean 2.662947 omitted becaution estimate timation a = 5	Sto	Subpop. Average Largest Complete DF: d. err. 637433 hey contain Number of Populat Subpop. Subpop.	size RVI FMI e DF min avg max [95 2. ain no ions of obs ion siz no. ob size	s = = = = = = = % con 53479 subpo	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 f. interval 2.79110 pulation 5 6,749 22,055,744 1,287 3,085,478
within VCE type poorsleep_2006 Note: 2 strata of members. Multiple-imputar Survey: Mean est	Small sample: Linearize Mean 2.662947 omitted becaution estimate timation a = 5	Sto	Subpop. Average Largest Complete DF: d. err. 637433 hey conta Number of Populat Subpop. Subpop. Average	size RVI FMI e DF min avg max [95 2. ain no ions of obs ion size RVI	s =	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 f. interval 2.79110 pulation 5 6,749 22,055,744 1,287 3,085,478 0.0000
DF adjustment: Within VCE type poorsleep_2006 Note: 2 strata members. Multiple-imputar Survey: Mean es: Number of strata	Small sample: Linearize Mean 2.662947 omitted becaution estimate timation a = 5	Sto	Subpop. Average Largest Complete DF: d. err. 637433 hey contain Number of Populat Subpop. Subpop.	size RVI FMI e DF min avg max [95 2. ain no ions of obs ion size RVI FMI	s = = = = = = = \$ \$ con \$53479 \$ subpo	1,287 3,085,478 0.0000 0.0000 50 48.11 48.11 48.11 f. interval 2.79110 pulation 5 6,749 22,055,744 1,287 3,085,478

Within VCE type:

Linearized

min avg

max

48.11 48.11 48.11

	Mean	Std. err.	[95% conf.	interval]
hurd_p	.1653463	.0091303	.1469897	.183703

Multiple-imputation estimates		timates	Imputations	=	5	
	Survey: Mean esti	imation	า	Number of ob	s =	6,749
	Number of strata	=	50	Population s	ize =	22,055,744
	Number of PSUs	=	100	Subpop. no.	obs =	1,287
				Subpop. size	=	3,085,478
				Average RVI	=	0.0000
				Largest FMI	=	0.0000
				Complete DF	=	50
	DF adjustment:	Small	sample	DF: min	=	48.11

avg = 48.11 Within VCE type: Linearized max = 48.11

	Mean	Std. err.	[95% conf.	interval]
expert_p	.201082	.009204	.1825772	.2195867

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right$

Multiple-imputation estimates	Imputations =	= 5
Survey: Mean estimation	Number of obs =	6,749
Number of strata = 50	Population size =	22,055,744
Number of PSUs = 100	Subpop. no. obs =	1,287
	Subpop. size =	3,085,478
	Average RVI =	0.0000
	Largest FMI =	0.0000
	Complete DF =	= 50
DF adjustment: Small sample	DF: min =	48.11
	avg =	48.11
Within VCE type: Linearized	max =	48.11

	Mean	Std. err.	[95% conf.	interval]
lasso_p	.1868504	.0088598	.1690377	.204663

Note: 2 strata omitted because they contain no subpopulation $% \left(1\right) =\left(1\right) =\left(1\right)$

```
123 . mi xeq 0: strate if NonWhite==1
                     m=0 data:
                      -> strate if NonWhite==1
                                                                   Failure _d: died==1
                                    Analysis time _t: (ageevent-origin)
                                                                                       Origin: time AGE2006
                                Enter on or after: time AGE2006
                      Estimated failure rates
                      Number of records = 1315
                                                     D
                                                                                                                                                  Rate
                                                                                                                                                                                                                                                                 Upper
                                                                                                                                                                                                       Lower
                                          923
                                                                        1.3e+04
                                                                                                                        0.073396 0.068810
                                                                                                                                                                                                                                                 0.078287
                                     Notes: Rate = D/Y = failures/person-time.
                                                                         Lower and Upper are bounds of 95% confidence intervals.
124 .
125 .
126 . save, replace
                      (file C:\Users\baydounm\AppData\Local\Temp\ST_6434_000002.tmp not found)
                     \label{thm:c:users} \textbf{ file C:} \textbf{Users} \textbf{ baydounm} \textbf{ AppData} \textbf{ Local} \textbf{ Temp} \textbf{ ST\_6434\_000002.tmp} \  \, \textbf{ saved as .dta format} \\ \textbf{ file C:} \textbf{ C:} \textbf{ Users} \textbf{ baydounm} \textbf{ AppData} \textbf{ Local} \textbf{ Temp} \textbf{ ST\_6434\_000002.tmp} \\ \textbf{ saved as .dta format} \textbf{ C:} \textbf{ 
127 .
131 . foreach x1 of varlist RACE_ETHN NonWhite education totwealth_2006 marital_2006 work_st_2006 smoking_2006 physical 
                     > 06 {
                                                                                         mi estimate: svy, subpop(sample_final): mlogit `x1' SEX
                               2.
                               3. }
                      Multiple-imputation estimates
                                                                                                                                                                                                                                                                            Imputations
                      Survey: Multinomial logistic regression
                                                                                                                                                                                                                                                                           Number of obs
                                                                                                                                                                                                                                                                                                                                                                                                              37,534
                      Number of strata =
                                                                                                                                                                  52
                                                                                                                                                                                                                                                                           Population size = 74,977,185
                      Number of PSUs
                                                                                                                                                             104
                                                                                                                                                                                                                                                                           Subpop. no. obs
                                                                                                                                                                                                                                                                                                                                                                                                                    6,758
                                                                                                                                                                                                                                                                           Subpop. size
                                                                                                                                                                                                                                                                                                                                                                                         22,872,439
                                                                                                                                                                                                                                                                          Average RVI
                                                                                                                                                                                                                                                                                                                                                                                                             0.0000
                                                                                                                                                                                                                                                                           Largest FMI
                                                                                                                                                                                                                                                                                                                                                                                                              0.0000
                                                                                                                                                                                                                                                                           Complete DF
                                                                                                                                                                                                                                                                                                                                                                                                                                   52
                     DF adjustment:
                                                                                                            Small sample
                                                                                                                                                                                                                                                                          DF:
                                                                                                                                                                                                                                                                                                                                                                                                                 50.11
                                                                                                                                                                                                                                                                                                                    min
                                                                                                                                                                                                                                                                                                                                                                                                                  50.11
                                                                                                                                                                                                                                                                                                                     avg
                                                                                                                                                                                                                                                                                                                                                                        =
                                                                                                                                                                                                                                                                                                                                                                         =
                                                                                                                                                                                                                                                                                                                                                                                                                  50.11
                                                                                                                                                                                                                                                                                                                    max
                      Model F test:
                                                                                                                              Equal FMI
                                                                                                                                                                                                                                                                          F(2, 50.1) =
                                                                                                                                                                                                                                                                                                                                                                                                                    5.46
                                                                                                                        Linearized
                                                                                                                                                                                                                                                                          Prob > F
                                                                                                                                                                                                                                                                                                                                                                                                              0.0071
                      Within VCE type:
```

Tuesday December 12 07:59:05 2023 Page 58

122 .

RACE_ETHN							
	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	me)					
2							
SEX _cons	.1972069 -2.713842	.0605715 .138962	3.26 -19.53	0.002 0.000	.075! -2.992		.3188618 -2.434744
3							
SEX _cons	.0821593 -2.865055	.0985042 .2390897	0.83 -11.98	0.408 0.000	1156 -3.34		.2800001 -2.38485
Note: 4 strata	omitted beca	use they co	ntain no	subpopul	ation me	embers	; .
Multiple-imput	ation estimat	es		Imputati	.ons	=	
Survey: Multin			n	Number o		=	37,534
Number of stra		52		Populati		=	74,977,185
Number of PSUs	= 1	.04		Subpop.		=	6,758
				Subpop.		=	22,872,439
				Average		=	0.000
				Largest		=	0.0000 5
OF adjustment:	Small samp	10		Complete DF:	min	=	50 .1 :
r aujustillerit.	Siliati Saliip	16		DF.	avg	=	50.1
					max	_	50.1
Model F test:	Equal F	мт		F(1 ,	50.1)	=	6.79
Within VCE typ	•			Prob > F	•	=	0.0126
NonWhite	Coefficient	Std. err.					
-		Jear cirr	t	P> t	[95%	conf.	interval]
	(base outco		t	P> t	[95%	conf.	interval]
0			t	P> t	[95%	conf.	interval]
9			2.61 -14.58	P> t 0.012 0.000	.0342 -2.389	1436	.263682 -1.807819
SEX _cons	(base outco .1489128 -2.096695	me) .0571431 .1438304	2.61 -14.58	0.012 0.000	.034:	1436 5572	.263682 -1.807819
3 SEX _cons Note: 4 strata	(base outco .1489128 -2.096695 omitted beca	.0571431 .1438304 use they co	2.61 -14.58	0.012 0.000 subpopul	.034: -2.38! ation me	1436 5 572 embers	.263682 -1.807819
SEX _cons Note: 4 strata	(base outco .1489128 -2.096695 omitted beca	.0571431 .1438304 use they co	2.61 -14.58 ontain no	0.012 0.000	.034: -2.38! ation me	1436 5572	.263682 -1.807819
SEX _cons Note: 4 strata Multiple-imput Survey: Multin	(base outco .1489128 -2.096695 omitted beca cation estimat comial logisti	me) .0571431 .1438304 use they co	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o	.034: -2.38! ation me ons ons ons ons on size	1436 5572 embers = = =	.263682 -1.807819 37,534
SEX _cons Note: 4 strata Multiple-imput Survey: Multin	(base outco .1489128 -2.096695 omitted beca cation estimat comial logisti	.0571431 .1438304 use they co	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o	.034: -2.38! ation me ons ons on size no. obs	1436 5572 embers = = =	.263682 -1.807819 37,534 74,977,189
SEX _cons Note: 4 strata Multiple-imput Survey: Multin	(base outco .1489128 -2.096695 omitted beca cation estimat comial logisti	me) .0571431 .1438304 use they co	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop.	.034: -2.38! ation me ons ons on size no. obs size	1436 5572 embers = = = =	.263682 -1.807819 37,534 74,977,189 6,758 22,872,439
SEX _cons Note: 4 strata Multiple-imput Survey: Multin	(base outco .1489128 -2.096695 omitted beca cation estimat comial logisti	me) .0571431 .1438304 use they co	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop. Average	.034: -2.38! ation me ons ons on size no. obs size RVI	1436 5572 embers = = = = = =	.263682 -1.807819 37,534 74,977,189 6,758 22,872,439
SEX _cons Note: 4 strata Multiple-imput Survey: Multin	(base outco .1489128 -2.096695 omitted beca cation estimat comial logisti	me) .0571431 .1438304 use they co	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop. Average Largest	.034: -2.38! ation me ons on size no. obs size RVI FMI	1436 5572 embers = = = = = = = =	.263682 -1.807819 37,534 74,977,189 6,758 22,872,439 0.0000 0.0000
SEX_cons Note: 4 strata Multiple-imput Survey: Multin Number of stra	(base outco .1489128 -2.096695 comitted beca cation estimat comial logisti cata = cata =	me) .0571431 .1438304 use they co es c regressio 52 04	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop. Average Largest Complete	.034: -2.38! ation me ons on size no. obs size RVI FMI DF	1436 5572 embers	.26368: -1.807819 37,534 74,977,18: 6,75; 22,872,43: 0.0000 0.0000
SEX_cons Note: 4 strata Multiple-imput Survey: Multin Number of stra	(base outco .1489128 -2.096695 comitted beca cation estimat comial logisti cata = cata =	me) .0571431 .1438304 use they co es c regressio 52 04	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop. Average Largest	.034: -2.38! ation me ons on size no. obs size RVI FMI DF min	1436 5572 embers	.26368: -1.807819 37,534 74,977,18: 6,75; 22,872,43: 0.0000 0.0000 55
SEX_cons Note: 4 strata Multiple-imput Survey: Multin Number of stra	(base outco .1489128 -2.096695 comitted beca cation estimat comial logisti cata = cata =	me) .0571431 .1438304 use they co es c regressio 52 04	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop. Average Largest Complete	.034: -2.38! ation me ons on size no. obs size RVI FMI DF min avg	1436 5572 embers	.263682 -1.807819 37,534 74,977,189 6,758 22,872,439 0.0000 50.12 50.12
a 1 SEX	(base outco .1489128 -2.096695 comitted beca cation estimat comial logisti cata = cata =	me) .0571431 .1438304 use they co es c regressio 52 04	2.61 -14.58 ontain no	0.012 0.000 subpopul Imputati Number o Populati Subpop. Subpop. Average Largest Complete	.034: -2.38! ation me ons on size no. obs size RVI FMI DF min avg max	1436 5572 embers	.263682 -1.807819

	education	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
1							
_	SEX	4007526	.0645862	-6.20	0.000	5304708	2710343
	_cons	.3508012	.1039069	3.38	0.001	.1421093	.5594931
2							
	SEX	7715034	.1337484	-5.77	0.000	-1.040131	5028763
	_cons	9506818	.2125115	-4.47	0.000	-1.377501	5238629
3		(base outco	ome)				
4							
	SEX	2114769	.0914916	-2.31	0.025	3952333	0277206
	_cons	2239891	.1611376	-1.39	0.171	547626	.0996479
5							
	SEX	9487973	.0873687	-10.86	0.000	-1.124273	7733216
	_cons	.8771915	.1544261	5.68	0.000	.5670343	1.187349

Note: 4 strata omitted because they contain no subpopulation members.

Multiple-imput Survey: Multin			n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs DF adjustment	5 = 1	52 04 1e			no. obs size RVI FMI	= = = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11
Model F test: Within VCE tyμ	Equal F pe: Lineariz			F(4, Prob > F	,	= = =	50.11 83.79 0.0000
totweal~2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX _cons	.8829537 -1.566451	.0536529 .1018562	16.46 -15.38	0.000 0.000	.7751 -1.771		.9907129 -1.361878
2	(base outco	me)					
SEX _cons	4106554 -1.916596	.1005076 .1637224	-4.09 -11.71	0.000 0.000	61 -2.245	L252 5425	2087908 -1.587768
4 SEX _cons	9976389 -3.094486	.2761969 .3745405	-3.61 -8.26	0.001 0.000	-1.552 -3.846		4429109 -2.34224
SEX _cons	5195089 -5.052395	.8124908 1.264584	-0.64 -4.00	0.525 0.000	-2.151 -7.59		1.112339 -2.512539

Multiple-imput Survey: Multir			n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs DF adjustment:	s = 1	52 04 1e			no. obs size RVI FMI	= = = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11
Model F test: Within VCE typ	•			F(3 , Prob > F	,	= = =	50.11 336.68 0.0000
marital_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX _cons	.6535049 -4.045214	.1626287 .2650085	4.02 -15.26	0.000 0.000	.3268 -4.57		.9801366 -3.512957
2	(base outco	me)					
SEX _cons	1.035113 -3.556523	.1241018	8.34 -16.09	0.000 0.000	.7858 -4.000		1.284365 -3.112675
4 SEX _cons	1.688008 -3.152891	.0544564 .0918292	31.00 -34.33	0.000 0.000	1.578 -3.337		1.797381 -2.968457
Note: 4 strata	a omitted beca	use they co	ntain no	subpopul	ation me	mbers	· .
Multiple-imput Survey: Multir			n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs		52 04		Populati Subpop. Subpop. Average Largest Complete	no. obs size RVI FMI	= = = =	22,872,439 0.0000
DF adjustment:	: Small samp	le		DF:	min avg	=	50.11 50.11
Model F test: Within VCE typ				F(1 , Prob > F	,	= = =	50.11 93.78 0.0000
	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
SEX _cons	7112055 832001	.0734405	-9.68 -7.32	0.000 0.000	8587 -1.060	9203	5637039 6037988

Multiple-imputation estimates Imputations = 5 Survey: Multinomial logistic regression Number of obs = 37,526

Number of stra Number of PSUs		52 04		Populati Subpop. Subpop. Average Largest	no. obs size RVI FMI	= = = =	74,954,762 6,750 22,850,016 0.0087 0.0213
DF adjustment	: Small samp	le			min avg	= = =	48.93 49.43
Model F test: Within VCE typ	Equal F De: Lineariz			F(2 , Prob > F	,	= = =	49.87 345.32 0.0000
smoking_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1 SEX _cons	1.177405 -1.978866	.0449668 .0702212	26.18 -28.18	0.000 0.000	1.087 -2.119		1.267729 -1.83781
2	(base outco	me)					
SEX _cons	.5358608 -2.734532	.1019514 .1810675	5.26 -15.10	0.000 0.000	.3309 -3.098		.7407285 -2.37065
Note: 4 strata	omitted beca	use they co	ntain no	subpopul	ation me	embers	
Multiple-imput Survey: Multin	tation estimat nomial logisti		n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs		52 04		Populati Subpop. Subpop. Average Largest	no. obs size RVI	= = = =	74,977,185 6,758 22,872,439 0.0010 0.0038
DF adjustment	: Small samp	le		Complete DF:		= = =	52 49.99 50.06 50.11
Model F test: Within VCE typ	Equal F De: Lineariz			F(2 , Prob > F	50.1)	=	62.84 0.0000
physic_~2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX _cons	.6924137 -1.806564	.0621154 .1116845	11.15 -16.18	0.000 0.000	.5676 -2.036		.8171702 -1.582251
SEX _cons	.1719572 -1.325652	.0526326 .0912956	3.27 -14.52	0.002 0.000	.0662 -1.509		.2776736 -1.142286
3	(base outco	me)					

Multiple-imputation estimates Imputations = 5 Survey: Multinomial logistic regression Number of obs = 37,534

Number of stra		52 04		Population		=	74,977,185 6,758
				Subpop.		=	22,872,439
				Average F		=	0.0000
				Largest F		=	0.0000 52
DF adjustment	: Small samp	م1		Complete DF: r	טר nin	=	50.11
Di aujustillerit	. Jiliaii Saliip	16			avg	=	50.11
					nax	=	50.11
Model F test:	Equal F	MI		F(1 ,	50.1)	=	0.81
Within VCE typ	oe: Lineariz	ed		Prob > F		=	0.3729
srh_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	me)					
2							
SEX _cons	.0582416 8178621	.0647786 .1123873	0.90 -7.28	0.373 0.000	0718 -1.043		.1883463 5921377
Note: 4 strata	a omitted beca	use they co	ntain no	subpopula	ation me	embers	
Multiple-imput	tation estimat	۵۵		Imputatio	nns	=	5
Survey: Multin			n	Number of		=	37,534
Number of stra	ata =	52		Populatio	on size	=	74,977,185
Number of PSUs	s = 1	04		Subpop. 1	no. obs	=	6,758
				Subpop. 9	size	=	22,872,439
				Average F		=	0.0000
				Largest F		=	0.0000
DE addustment	. Cmall came	1.0		Complete		=	52 50 11
DF adjustment	: Small samp	ıe			min avg	=	50.11 50.11
					nax	=	50.11
Model F test:	Equal F	MT		F(2,		=	69.88
Within VCE typ	•			Prob > F	2002)	=	0.0000
bmibr_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	me)					
2							
SEX _cons	6488367 .9916042	.0550705 .0927493	-11.78 10.69	0.000 0.000	7594 .8053		5382304 1.177887
3							

.0666775

.1136976

SEX

_cons

-.2739438

-.1247041

Multiple-imputation estimates Imputations = 5 Survey: Multinomial logistic regression Number of obs = 37,534

-4.11

-1.10

0.000

0.278

-.4078622

-.3530602

-.1400254

.103652

Number of stra Number of PSUs DF adjustment:	s = 1	52 04 1e			no. obs size RVI FMI DF min avg	= = = = = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11
Model F test: Within VCE typ	Equal F be: Lineariz			F(2 , Prob > F	,	= = =	50.11 9.19 0.0004
cardi~r_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1 SEX _cons	.0749689 -1.055664	.0747694 .126764	1.00 -8.33	0.321 0.000	0752 -1.316		.2251395 8010645
2	(base outco	me)					
3 SEX _cons	342704 -1.157534	.0903476 .1379494	-3.79 -8.39	0.000 0.000	5241 -1.434		1612454 8804693
Note: 4 strata	omitted beca	use they cor	tain no	subpopul	ation me	embers	; .
Multiple-imput Survey: Multir			ı	Imputati Number o		=	5 37,534
Number of stra Number of PSUs		52 04		Populati Subpop. Subpop. Average Largest	no. obs size RVI FMI	= = = =	74,977,185 6,758 22,872,439 0.0000 0.0000
DF adjustment:	Small samp	le			min avg	= =	52 50.11 50.11
Model F test: Within VCE typ	Equal F be: Lineariz			F(1 , Prob > F		= = =	50.11 6.56 0.0135
hurd_dem	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
SEX _cons	.2088395 -2.129782	.0815433 .1444558	2.56 -14.74	0.013 0.000	.0456		.3726153 -1.839649

Multiple-imputation estimates Imputations = 5 Survey: Multinomial logistic regression Number of obs = 37,534

Number of stra Number of PSUs DF adjustment: Model F test: Within VCE typ	S = 1 Small samp	MI			no. obs size RVI FMI DF min avg max 50.1)	= = = = = = = = = = = = = = = = = = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11 11.94 0.0011
expert_dem	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
1 SEX _cons	.315475 -2.253797	.0913068 .1597668	3.46 -14.11	0.001 0.000	.1326		.4988602 -1.932913
Note: 4 strata	omitted beca	use they co	ntain no	subpopul	ation me	embers	· .
Multiple-imput Survey: Multir			n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs		52 04		Populati Subpop. Subpop. Average Largest	no. obs size RVI	= = = =	74,977,185 6,758 22,872,439 0.0000 0.0000
DF adjustment:					min avg max	= = = =	52 50.11 50.11 50.11
Model F test: Within VCE typ	Equal F De: Lineariz			F(1 , Prob > F	,	=	12.79 0.0008
lasso_dem	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
SEX _cons	.2854561 -2.11894	.0798089 .1434015	3.58 -14.78	0.001 0.000	.1251 -2.406		.4457483 -1.830926

Multiple-imputation estimates Imputations = 5 Survey: Multinomial logistic regression Number of obs = 37,294

Number of str	a+ a	52		Donulati			74 160 036
Number of PSU		.04			ion size no. obs		74,160,936 6,518
Number of 150		.04		Subpop.		=	22,056,190
				Average		=	0.0000
				Largest		=	0.0000
				Complete		=	52
DF adjustment	: Small samp	ole .		DF:	min	=	50.11
J	•				avg	=	50.11
					max	=	50.11
Model F test:	Equal F	MI		F(3,	50.1)	=	79.40
Within VCE ty	pe: Lineariz	:ed		Prob > F	Ē	=	0.0000
alcohol_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	ome)					
2							
SEX	3201821	.0830256	-3.86	0.000	486	9348	1534293
_cons	6101203	.1408675	-4.33	0.000	893	0459	3271948
3							
SEX	7326754	.09808	-7.47	0.000	929	6643	5356865
_cons	2716358	.1531507	-1.77	0.082	579	2315	.0359599
4							
SEX	-1.020545	.0734885	-13.89	0.000	-1.16	8143	8729468
cons	.1984606	.1231482	1.61	0.113	048	8766	. 4457977

Note: 4 strata omitted because they contain no subpopulation members.

```
132 .
133 .
```

134 . foreach x1 of varlist SEX education marital_2006 work_st_2006 smoking_2006 physic_act_2006 srh_2006 bmibr_2006 2. mi estimate: svy, subpop(sample_final): mlogit `x1' NonWhite 3. }

ion estimates	Imputations	=	5
ial logistic regression	Number of obs	=	37,534
= 52	Population size	=	74,977,185
= 104	Subpop. no. obs	=	6,758
	Subpop. size	=	22,872,439
	Average RVI	=	0.0000
	Largest FMI	=	0.0000
	Complete DF	=	52
Small sample	DF: min	=	50.11
	avg	=	50.11
	max	=	50.11
Equal FMI	F(1, 50.1)	=	6.79
Linearized	Prob > F	=	0.0120
	<pre>ial logistic regression = 52 = 104 Small sample Equal FMI</pre>	ial logistic regression Solution size	Small sample Small FMI F(1, 50.1) Equal FMI F(1, 50.1) Equal FMI Equal FMI

	SEX	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
1	NonWhite _cons	1489124 3345083	.0571431 .0227824	-2.61 -14.68	0.012 0.000	2636816 3802656	0341433 288751
2		(base outco	me)				

Note: 4 strata omitted because they contain no subpopulation members.

	tation estimat nomial logisti		n	Imputation		=	5 37,534
Number of str Number of PSU DF adjustment	S = 1	52 104 Dle			no. obs size RVI FMI DF min	= = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11
Model F test: Within VCE ty	Equal F pe: Lineariz				avg max 50.1)	= = =	50.11 50.11 70.60 0.0000
education	Coefficient	Std. err.	t	P> t	[95%	conf.	. interval]
NonWhitecons	1.531503 572859	.1301158 .0418929	11.77 -13.67	0.000 0.000	1.270 6569		1.792834 4887191
NonWhitecons	.6504837 -2.245124	.1512224 .0783165	4.30 -28.67	0.000 0.000	.346 -2.402		.9542063 -2.087829
3	(base outco	ome)					
4 NonWhite _cons	0851147 5649926	.1084225 .0435	-0.79 -12.99	0.436 0.000	302 6523		.1326467 477625
NonWhite _cons	6712871 5568722	.1573738 .059593	-4.27 -9.34	0.000 0.000	9873 6765		3552095 4371826
Note: 4 strat	a omitted beca	use they co	ntain no	subpopula	ation me	mbers	5.
	tation estimat nomial logisti		n	Imputation		=	5 37,534
Number of str Number of PSU		52 104		Population Subpop. Sub	no. obs size RVI FMI	= = = =	74,977,185 6,758 22,872,439 0.0000 0.0000
DF adjustment	: Small samp	ole		ä	min avg max	= = =	52 50.11 50.11 50.11
Model F test: Within VCE ty	Equal F pe: Lineari z			F(3, Prob > F	50.1)	=	12.46 0.0000

mar:	ital_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	NonWhite _cons	.8004698 -3.185512	.1952249 .1174603	4.10 -27.12	0.000 0.000	.4083 -3.42		1.192569 -2.949599
2		(base outco	me)					
3								
	NonWhite _cons	.7505827 -2.061594	.1389083	5.40 -27.38	0.000	.471 -2.21	5922 2842	1.029573 -1.910346
4	NonWhite _cons	.3326638 4445303	.0869693 .0347732	3.83 -12.78	0.000 0.000	.1579 514		.5073373 3746901
Not	e: 4 strata	omitted beca	use they co	ntain no	subpopul	lation me	embers	· .
Mul [.]	tiple-imput	tation estimat	es		Imputati	ions	=	5
		nomial logisti		n	Number o	of obs	=	37,534
	ber of stra		52 04		•	ion size no. obs	=	74,977,185 6,758
					Subpop.		=	22,872,439
					Average Largest		=	0.0000 0.0000
					Complete		=	52
DF a	adjustment:	: Small samp	le		DF:	min	=	50.11
DF a	adjustment:	: Small samp	le					
					DF:	min avg max	= = =	50.11 50.11 50.11
Mode	adjustment: el F test: hin VCE typ	Equal F	MI			<pre>min avg max 50.1)</pre>	=	50.11
Mod Wit	el F test: hin VCE typ	Equal F pe: Lineariz	MI ed		<pre>F(1, Prob > F</pre>	min avg max 50.1)	= = =	50.11 50.11 2.87 0.0966
Mode With work	el F test:	Equal F De: Lineariz Coefficient	MI ed Std. err.	t	DF: F(1,	min avg max 50.1)	= = =	50.11 50.11 2.87
Mode With work	el F test: hin VCE typ	Equal F pe: Lineariz	MI ed Std. err.	t	<pre>F(1, Prob > F</pre>	min avg max 50.1)	= = =	50.11 50.11 2.87 0.0966
Mode With work	el F test: hin VCE typ	Equal F De: Lineariz Coefficient	MI ed Std. err.	-1.69 -39.31	<pre>F(1, Prob > F</pre>	min avg max 50.1)	= = = = = conf.	50.11 50.11 2.87 0.0966
Mode With work 0	el F test: hin VCE typ k_st_2006 NonWhite _cons	Equal Foe: Lineariz Coefficient (base outco	MI ed Std. err. me) .1464259 .0479278	-1.69 -39.31	DF: F(1, Prob > F P> t 0.097 0.000	min avg max 50.1) [95%	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval]
Mode With work 0 1	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput	Equal Foe: Lineariz Coefficient (base outco 2479122 -1.884244	MI ed Std. err. me) .1464259 .0479278 use they co	-1.69 -39.31 ntain no	DF: F(1, Prob > F P> t 0.097 0.000	min avg max 50.1) [95% 5420 -1.980	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983
Mode With work 0 1	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan tation estimate toomial logisti	MI ed Std. err. me) .1464259 .0479278 use they co	-1.69 -39.31 ntain no	DF: F(1, Prob > F P> t 0.097 0.000 subpopul Imputation	min avg max 50.1) = [95%5420 -1.980 lation means of obs	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983
Mode With work 0 1 Note Surv	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan attain estimate attain estima	MI ed Std. err. me) .1464259 .0479278 use they co	-1.69 -39.31 ntain no	Populati	min avg max 50.1) [95% 5420 -1.980	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983
Mode With work 0 1 Note Surv	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of stra	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan attain estimate attain estima	MI ed Std. err. me) .1464259 .0479278 use they co	-1.69 -39.31 ntain no	Populations Subpopo.	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs ion size no. obs size	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983
Mode With work 0 1 Note Surv	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of stra	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan attain estimate attain estima	MI ed Std. err. me) .1464259 .0479278 use they co	-1.69 -39.31 ntain no	Population Subpopulation Subpo	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs ion size no. obs size RVI	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983 5 37,526 74,954,762 6,750 22,850,016
Mode With work 0 1 Note Num	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of stra	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan attain estimate attain estima	MI ed Std. err. me) .1464259 .0479278 use they co	-1.69 -39.31 ntain no	Population Subpopulation Subpo	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs ion size no. obs size RVI FMI	= = = = = = = = = = = = = = = = = = =	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983 5. 5. 74,954,762 6,756 22,850,016 0.0164 0.0294
Mode With Work 0 1 Note Surv Numl	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of strata ber of PSUs	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan tation estimat nomial logistimat at = s = 1	MI ed Std. err. me) .1464259 .0479278 use they co es c regression 52 04	-1.69 -39.31 ntain no	Population Subpopulation Subpo	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs size no. obs size RVI FMI e DF	conf.	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983 5.
Mode With Work 0 1 Note Surv Numl	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of stra	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan tation estimat nomial logistimat at = s = 1	MI ed Std. err. me) .1464259 .0479278 use they co es c regression 52 04	-1.69 -39.31 ntain no	Population Subpopulation Subpo	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs size no. obs size RVI FMI e DF min	conf.	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983 52,850,016 0.0164 0.0294 52,48.35
Mode With Work 0 1 Note Surv Numl	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of strata ber of PSUs	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan tation estimat nomial logistimat at = s = 1	MI ed Std. err. me) .1464259 .0479278 use they co es c regression 52 04	-1.69 -39.31 ntain no	Population Subpopulation Subpo	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs size no. obs size RVI FMI e DF	conf.	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983 537,526 74,954,762 6,750 22,850,016 0.0164 0.0294 52 48.35 49.27
Mode With Work 0 1 Note Surv Numl	el F test: hin VCE typ k_st_2006 NonWhite _cons e: 4 strata tiple-imput vey: Multir ber of strata ber of PSUs	Equal Foe: Lineariz Coefficient (base outco2479122 -1.884244 a omitted becan tation estimat nomial logistimat at = s = 1	MI ed Std. err. me) .1464259 .0479278 use they co es c regression 52 04	-1.69 -39.31 ntain no	Population Subpopulation Subpo	min avg max 50.1) [95% 5420 -1.980 Lation medions of obs size no. obs size RVI FMI e DF min avg	conf.	50.11 50.11 2.87 0.0966 interval] .046177 -1.787983 537,526 74,954,762 6,750 22,850,016 0.0164 0.0294 52 48.35

smoking_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	. interval]
1							
NonWhite _cons	.1757651 1186604	.0699631 .0327371	2.51 -3.62	0.015 0.001	.0351 1844		.3163533 0528997
2	(base outco	ome)					
3							
NonWhite cons	.2674527 -1.95517	.1318875 .0631956	2.03 -30.94	0.048 0.000	.0023 -2.082	_	.532581 -1.828226
-							
Note: 4 strata	omitted beca	use they co	ntain no	subpopul	ation me	embers	5.
Multiple-impu	tation estimat	es		Imputati	ons	=	5
Survey: Multi			n	Number o	f obs	=	37,534
Number of str	ata =	52		Populati	on size	=	74,977,185
Number of PSU:	s = 1	.04		Subpop.		=	6,758
				Subpop.		=	22,872,439 0.0004
				Average Largest		=	0.0028
				Complete		=	52
DF adjustment	: Small samp	le		•	min	=	50.04
J	•				avg	=	50.08
					max	=	50.11
Model F test:	Equal F			F(2 ,	,	=	25.37
	oe: Lineariz	ed		Prob > F		=	0.0000
Within VCE typ							
Within VCE ty physic_~2006	Coefficient	Std. err.	t	P> t	[95%	conf	. interval]

phy	/sic_~2006	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
1	NonWhite	.5329106	.0786868	6.77	0.000	.3748717	.6909495
	_cons	7591787	.0427046	-17.78	0.000	8449492	6734081
2	NonWhite	.4367458	.0910431	4.80	0.000	.2538886	.619603
	_cons	-1.115562	.0448794	-24.86	0.000	-1.205703	-1.025421
3		(base outco	ome)				

Note: 4 strata omitted because they contain no subpopulation members.

Imputations	=	5
Number of obs	=	37,534
Population size	=	74,977,185
Subpop. no. obs	=	6,758
Subpop. size	=	22,872,439
Average RVI	=	0.0000
Largest FMI	=	0.0000
Complete DF	=	52
DF: min	=	50.11
avg	=	50.11
max	=	50.11
F(1, 50.1)	=	188.08
Prob > F	=	0.0000
	Number of obs Population size Subpop. no. obs Subpop. size Average RVI Largest FMI Complete DF DF: min avg max F(1, 50.1)	Number of obs = Population size = Subpop. no. obs = Subpop. size = Average RVI = Largest FMI = Complete DF = DF: min = avg = max = F(1, 50.1) =

srh_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	me)					
NonWhite _cons	.974149 8706822	.0710316 .0377872	13.71 -23.04	0.000 0.000	.8314 946!		1.116812 7947885
Note: 4 strata	omitted beca	use they co	ntain no	subpopul	ation me	embers	; .
Multiple-imput Survey: Multin			n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs DF adjustment	5 = 1	52 04 1e			no. obs size RVI FMI		74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11
Model F test: Within VCE typ	Equal F De: Lineariz			F(2 , Prob > F	•	= = =	50.11 23.39 0.0000
bmibr_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	me)					
NonWhite _cons	.3527001 0792344	.0818084 .0293931	4.31 -2.70	0.000 0.010	.1883 138		.5170083 0201998
NonWhite _cons	.6668827 6642651	.0978618 .0575355	6.81 -11.55	0.000 0.000	.4703 7798	3322 3225	.8634333 5487078
Note: 4 strata	a omitted beca	use they co	ntain no	subpopul	ation me	embers	· .
	tation estimat nomial logisti		n	Imputati Number o		=	5 37,534
Number of stra Number of PSUs	s = 1	52 04		Populati Subpop. Subpop. Average Largest Complete	no. obs size RVI FMI DF	= = = =	74,977,185 6,758 22,872,439 0.0000 0.0000
DF adjustment Model F test: Within VCE ty	Equal F				min avg max 50.1)	= = =	50.11 50.11 50.11 5.30

cardi~r_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
NonWhite	235464 905777	.0790433 .0287474	-2.98 -31.51	0.004 0.000	3942 9635		0767094 8480393
2	(base outco	me)					
NonWhitecons	.1040354 -1.704307	.0947048 .0475105	1.10 -35.87	0.277 0.000	0861 -1.799		.2942453 -1.608885
Note: 4 strata	a omitted beca	use they co	ntain no	subpopula	ation me	mbers	· .
	tation estimat nomial logisti		n	Imputation		=	5 37,534
Number of stra Number of PSUs DF adjustment	s = 1	52 04 1e		Population Subpop. In Subpop.	no. obs size RVI FMI	= = = =	74,977,185 6,758 22,872,439 0.0006 0.0006 52 50.11
Model F test: Within VCE typ	Equal F pe: Lineariz			F(1 , Prob > F	avg nax 50.1)	= = =	50.11 50.11 20.08 0.000
hurd_dem	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
NonWhite _cons	.4276627 -1.860033	.0954398 .046869	4.48 -39.69	0.000 0.000	.2359 -1.954		.6193488 -1.765899
Note: 4 strata	a omitted beca	use they co	ntain no	subpopula	ation me	mbers	· .
	tation estimat nomial logisti		n	Imputation		=	5 37,534
Number of stra Number of PSU: DF adjustment	s = 1	52 04 1e		Population Subpop. It Subpop. It Subpop. It Average If Largest If Complete DF:	no. obs size RVI FMI	= = = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11
Model F test: Within VCE typ	Equal F pe: Lineariz				avg nax 50.1)	= = = =	50.11 50.11 43.18 0.0000

Model F test: Equal FMI Within VCE type: Linearized

expert_dem	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
NonWhite _cons	.5449427 -1.830647	.0829311 .0453113	6.57 -40.40	0.000 0.000	.3783 -1.923		.7115057 -1.739641
Note: 4 strata	omitted beca	use they co	ntain no	subpopu]	lation me	embers	
Multiple-imput Survey: Multir			n	Imputati Number o		=	37,534
Number of stra Number of PSUs DF adjustment: Model F test: Within VCE typ	s = 1 : Small samp Equal F	MI		•	RVI FMI DF min avg max 50.1)	= = = = = = =	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11 71.93 0.0000
lasso_dem	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
0	(base outco	me)					
NonWhite _cons	.5927637 -1.753372	.0698895 .0455946	8.48 -38.46	0.000 0.000	.452 -1.84		.7331332 -1.661798
Note: 4 strata	omitted beca	use they co	ntain no	subpopu]	lation me	embers	•
Multiple-imput Survey: Multir			n	Imputati Number o		=	37,294
Number of stra Number of PSUs	5 = 1	52 04		Subpop. Subpop. Average Largest Complete	RVI FMI DF	= = = =	74,160,936 6,518 22,056,196 0.0006 0.0006
DF adjustment:	: Small samp	1e		DF:	min avg max	= =	50.11 50.11 50.11

47.92 0.0000

F(3, 50.1) = Prob > F =

alcohol_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
1	(base outco	me)					
NonWhite _cons	5922363 -1.04622	.0999605 .0499366	-5.92 -20.95	0.000 0.000	7930 -1.146		3914705 9459249
NonWhite _cons	9247537 -1.310654	.1290637 .0646952	-7.17 -20.26	0.000 0.000	-1.183 -1.440		6655355 -1.180717
4 NonWhite _cons	-1.63598 -1.216115	.1627829 .065241	-10.05 -18.64	0.000 0.000	-1.962 -1.347		-1.309038 -1.085081
Note: 4 strata	omitted beca	use they co	ntain no	subpopula	tion me	mbers	5.
<pre>5 . 6 . 7 . foreach x2 c</pre>	ni estimate: s	vy, subpop(`x2' S		pert_p lasso 5
Survey: Linear				Number of	obs	=	37,534
Number of stra Number of PSUs		52 04		Population Subpop. n Subpop. s Average R Largest F	o. obs ize VI MI	= = = = =	22,872,439 0.0000 0.0000
DF adjustment:	Small samp	le			DF in vg	= = =	52 50.11 50.11
Model F test: Within VCE typ	Equal F pe: Lineariz			F(1 , Prob > F	50.1)	= = =	50.11 34.15 0.0000
AGE2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX _cons	.8344925 76.80815	.1428071 .2487211	5.84 308.81	0.000 0.000	.5476 76.30		1.121314 77.3077
Note: 4 strata	omitted beca	use they co	ntain no	subpopula	tion me	mbers	· .
Multiple-imput Survey: Linear		es		Imputatio Number of		=	5 37,184
Number of stra Number of PSUs		52 04		Population Subpop. In Subpop. S Average R Largest F	o. obs ize VI MI	= = = =	73,878,337 6,408 21,773,591 0.0000 0.0000
DF adjustment:				a m	in vg ax	= = = =	52 50.11 50.11 50.11
Model F test: Within VCE typ	Equal F be: Lineariz			F(1 , Prob > F	50.1)	=	110.43 0.0000

cesd_2006	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX _cons	.4977958 .6834697	.0473706 .0789694	10.51 8.65	0.000 0.000	.4026 .5248		.5929372 .8420759
Note: 4 strata	omitted beca	use they con	tain no	subpopula	ation me	embers	·•
Multiple-imput	ation estimat	es		Imputatio	ons	=	5
Survey: Linear	regression			Number of	obs	=	37,534
Number of stra	nta =	52		Populatio	on size	=	74,977,185
Number of PSUs	; = 1	04		Subpop. r	no. obs	=	6,758
				Subpop. s		=	22,872,439
				Average R		=	0.0000
				Largest F		=	0.0000
				Complete		=	52
DF adjustment:	Small samp	le			nin	=	50.11
					avg	=	50.11
					nax	=	50.11
Model F test:	Equal F	MI		F(1 ,	50.1)	=	107.26
Within VCE typ	•			Prob > F	ŕ	=	0.0000
poorsleep_~6	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX	.5487114	.0529805	10.36	0.000	.442	2027	.6551201
_cons	1.913025	.0978336	19.55	0.000	1.71		2.109519
Note: 4 strata	omitted beca	use they con	tain no	subpopula	ation me	embers	
Multiple-imput	ation estimat	es		Imputatio	ons	=	5
Survey: Linear				Number of		=	37,534
Number of stra	nta =	52		Populatio	on size	=	74,977,185
Number of PSUs	s = 1	04		Subpop. r	no. obs	=	6,758
				Subpop. s	size	=	22,872,439
				Average R	RVI	=	0.0000
				Largest F	MI	=	0.0000
				Complete	DF	=	52
DF adjustment:	Small samp	le		DF: n	nin	=	50.11
				a	avg	=	50.11
				n	ıax	=	50.11
Model F test:	Equal F	MI		F(1 ,	50.1)	=	13.79
Within VCE typ	e: Lineariz	ed		Prob > F		=	0.0005
hurd_p	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
SEX _cons	.0196055 .0720153	.0052797	3.71 7.80	0.001 0.000	.0090		.0302094

Multiple-imputation estimates Imputations = 5 Survey: Linear regression Number of obs = 37,534

Number of strata = 52 Population size = 74,977,185 Number of PSUs 104 Subpop. no. obs 6,758 Subpop. size 22,872,439 0.0000 Average RVI = 0.0000 Largest FMI = Complete DF 52 = DF adjustment: Small sample DF: min = 50.11 avg 50.11 50.11 max Model F test: Equal FMI F(1, 50.1) 18.65 Within VCE type: Linearized Prob > F 0.0001 P>|t| expert_p Coefficient Std. err. t [95% conf. interval] SEX .0305953 .0070837 4.32 0.000 .016368 .0448226 cons .0802639 .0116894 6.87 0.000 .0567863 .1037416 Note: 4 strata omitted because they contain no subpopulation members. Multiple-imputation estimates Imputations 5 Survey: Linear regression Number of obs 37,534 Number of strata = 52 Population size 74,977,185 Number of PSUs 104 Subpop. no. obs 6,758 Subpop. size 22,872,439 Average RVI 0.0000 Largest FMI 0.0000 Complete DF 52 DF adjustment: Small sample DF: min 50.11 50.11 avg 50.11 max Model F test: Equal FMI F(1, 25.30 50.1) Linearized Within VCE type: Prob > F 0.0000 lasso_p Coefficient Std. err. t P>|t| [95% conf. interval] SEX .0317965 .0063218 5.03 0.000 .0190994 .0444935 .1030499 cons .082147 .0104074 7.89 0.000 .0612442

Note: 4 strata omitted because they contain no subpopulation members.

138 .

139

Number of stra Number of PSUs DF adjustment Model F test: Within VCE typ	s = 10 : Small sampl Equal FM	4 e I		Population Subpop. no. Subpop. siz Average RVI Largest FMI Complete DF DF: min avg max F(1, 5 Prob > F	obs	=	74,977,185 6,758 22,872,439 0.0000 0.0000 52 50.11 50.11 399.42 0.0000
totweal~2006	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
NonWhite _cons		.0193263 .0128779	-19.99 129.58	0.000 - 0.000	.42506 1.6428		3474293 1.694606
Note: 4 strata	a omitted becau	se they co	ntain no	subpopulati	on mem	bers	
Multiple-imput Survey: Linear	tation estimate regression	S		Imputations Number of o		=	5 37,534
Number of stra Number of PSUs				Population Subpop. no. Subpop. siz Average RVI Largest FMI	obs e	=	74,977,185 6,758 22,872,439 0.0000 0.0000
DF adjustment	: Small sampl	e		Complete DF DF: min avg	1	= = =	52 50.11 50.11
Model F test: Within VCE typ	Equal FM be: Linearize			max F(1 , 5 Prob > F	(5 0.1)	= = =	50.11 20.92 0.0000
AGE2006	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
NonWhite _cons		.2026398 .1003802	-4.57 779.62	0.000 - 0.000	1.3338 78.056		5198833 78.4597
Note: 4 strata	a omitted becau	se they co	ntain no	subpopulati	on mem	bers	
Multiple-imput Survey: Linear	tation estimate r regression	S		Imputations Number of o		= =	5 37,184
Number of stra Number of PSUs				Population Subpop. no. Subpop. siz Average RVI Largest FMI	obs e	= = ; = =	6,408 21,773,591 0.0000 0.0000
-	: Small sampl			Complete DF DF: min avg max) [= = =	52 50.11 50.11 50.11
Model F test: Within VCE typ	Equal FM be: Linearize			F(1 , 5 Prob > F	50.1)	=	53.15 0.0000

cesd_2006	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]
NonWhite _cons	.5643081 1.404631	.0774065 .0312576	7.29 44.94	0.000 0.000	.408841 1.341852	.7197752 1.46741
Note: 4 strata	omitted beca	use they co	ntain no	subpopula	ation members	5.
Multiple-imput	ation estimat	es		Imputatio	ons =	5
Survey: Linear				Number of	f obs =	37,534
Number of stra	ata =	52		Populatio	on size =	74,977,185
Number of PSUs	s = 1	04		Subpop. r	no. obs =	6,758
				Subpop. s	size =	22,872,439
				Average F	RVI =	0.0000
				Largest F	MI =	0.0000
				Complete	DF =	52
DF adjustment:	Small samp	le		DF: r	nin =	50.11
				ā	avg =	50.11
				n	nax =	50.11
Model F test:	Equal F			F(1 ,	50.1) =	4.43
Within VCE typ	oe: Lineariz	ed		Prob > F	=	0.0404
poorsleep_~6	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]
NonWhite	1401599	.0666106	-2.10	0.040	2739441	0063757
_cons	2.803106	.0321819	87.10	0.000	2.738471	2.867742
Note: 4 strata	omitted beca	use they co	ntain no	subpopula	ation members	5.
Multiple-imput	ation estimat	es		Imputatio	ons =	5
Survey: Linear				Number of		37,534
Number of stra	ata =	52		Populatio	on size =	74,977,185
Number of PSUs		0 4		Subpop. r		6,758
	_			Subpop. S		22,872,439
				Average F		0.0000
				Largest F		0.0000
				Complete		52
DF adjustment:	Small samp	le			nin =	50.11
2. aaja3eee.	J				avg =	50.11
					nax =	50.11
Model F test:	Equal F	MT		F(1,	50.1) =	52.44
Within VCE typ	•			Prob > F	=	0.0000
hurd_p	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]
NonWhite	.0719037	.0099297	7.24	0.000	.0519604	.091847
_cons	.0934427	.0030907	30.23	0.000	.0872352	.0996501

Multiple-imputation estimates Imputations = 5 Survey: Linear regression Number of obs = 37,534

Number of stra	ata =	52		Population	on size	=	74,977,185
Number of PSUs	s = 1	04		Subpop. 1	no. obs	=	6,758
				Subpop. s	size	=	22,872,439
				Average F	RVI	=	0.0000
				Largest F	MI	=	0.0000
				Complete	DF	=	52
DF adjustment:	Small samp	le		DF: r	nin	=	50.11
				á	avg	=	50.11
				r	nax	=	50.11
Model F test:	Equal F			F(1 ,	50.1)	=	74.33
Within VCE typ	oe: Lineariz	ed		Prob > F		=	0.0000
expert_p	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
NonWhite _cons	.0835079 .1175741	.0096858 .0036409	8.62 32.29	0.000 0.000	.0646		.1029613 .1248868
Multiple-imput Survey: Linear		es		Imputation		=	5 37,534
Number of stra	nta =	52		Populatio	on cizo	=	74,977,185
Number of PSUs		94		Subpop. 1		_	6,758
Number of 1503	,	04		Subpop. 9		_	22,872,439
				Average F		=	0.0000
				Largest F		=	0.0000
				Complete		=	52
DF adjustment:	Small samp	le			nin	=	50.11
•	·			á	avg	=	50.11
				r	nax	=	50.11
Model F test:	Equal F	MI		F(1 ,	50.1)	=	44.62
Within VCE typ	oe: Lineariz	ed		Prob > F		=	0.0000
lasso_p	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
NonWhite _cons	.062676 .1241744	.0093824 .0035234	6.68 35.24	0.000 0.000	.0438		.0815201 .131251

Note: 4 strata omitted because they contain no subpopulation members.

141 .

142 .

143 . save, replace

(file C:\Users\baydounm\AppData\Local\Temp\ST_6434_000002.tmp not found)
file C:\Users\baydounm\AppData\Local\Temp\ST_6434_000002.tmp saved as .dta format

144 .

145

146 . capture log close