Práctica 2: Cálculo de latencias

cyclictestURJC									
	Laborator	ios	<u>Laboratorios</u>						
	Kernel NO RT		Kernel NO RT		Kernel RT				
	Latencia media (ns)	Latencia max (ns)	Latencia media (ns)	Latencia max (ns)	Latencia media (ns)	Latencia max (ns)			
S1	3782	4536654	23651	154566	21930	64836			
S2	6740	4605535	24416	272130	15039	107648			
S3	3549	5527614	20975	159251	22648	80101			

clictestURJC										
	Laborator	ios	<u>Laboratorios</u>							
	Kernel NO RT		Kernel NO RT		Kernel RT					
	Latencia media (ns)	Latencia max (ns)	Latencia media (ns)	Latencia max (ns)	Latencia media (ns)	Latencia max (ns)				
S1	3756	4273617	29767	68459	25492	61982				
S2	11502	4222995	32840	140033	27260	90501				
S3	4578	3875023	28000	80257	27941	75224				

Podemos ver como en los ordenadores del laboratorio, en el 1 caso (Idle) no hay mucha dispersión de latencias, pero en el caso 2(hackbench) si que hay mucha dispersión. Esto se debe a que el planificador esta estresado y por lo tanto hay mas dispersión de latencias. Con bonnie podemos ver como casi no hay dispersión de latencias, y es muy parecido al caso 1.

Como podemos ver en la rasberry pi (no RT), ocurre algo muy parecido a lo que ocurre en los ordenadores del laboratorio. En el caso 1 (Idle) no hay mucha dispersión de latencias, pero en el caso 2(hackbench) si que hay mucha dispersión. Y en el caso 3 (bonnie) no hay tanta dispersión de latencias.

En la rasberry pi(RT), vemos como hay una dispersión menor aunque parecida al resto. Pero en este caso al ser RT esta menos dispersión ya que tiene que intentar garantizar que los procesos se ejecuten en el tiempo que deberían. Sin embargo en los casos no RT, hay un poco mas de dispersión.

También podemos ver una gran diferencia entre los ordenadores del laboratorio y la rasberry pi. En los ordenadores del laboratorio, hay una diferencia notable en la dispersión, siendo mucho menor en los ordenadores del laboratorio. Al tener mas números de CPUs, el planificador puede ir mas rápido y por lo tanto hay menos dispersión.