#### Statistics One

Lecture 17
Mixed factorial ANOVA

#### Two segments

- Mixed factorial ANOVA: What's new?
- Mixed factorial ANOVA : Example in R

Lecture 17 Segment 1

Mixed factorial ANOVA:

What's new?

# Mixed factorial designs

- One IV is manipulated between groups
- One IV is manipulated within groups
  - Repeated measures

# Data structure (3x3: Ax(BxS))

| Subject | A | B1 | B2 | B3 |
|---------|---|----|----|----|
| 1       | 1 |    |    |    |
| 2       | 1 |    |    |    |
| 3       | 2 |    |    |    |
| 4       | 2 |    |    |    |
| 5       | 3 |    |    |    |
| 6       | 3 |    |    |    |
|         |   |    |    |    |

#### Data structure in R (3x3: Ax(BxS))

| Subject | A | DV |
|---------|---|----|
| 1       | 1 | B1 |
| 1       | 1 | B2 |
| 1       | 1 | B3 |
|         |   |    |
| 3       | 2 | B1 |
| 3       | 2 | B2 |
| 3       | 2 | В3 |

### Mixed factorial designs

- What's new?
  - Partitioning SS
  - Formulae for  $\overline{F_A}$ ,  $\overline{F_B}$ ,  $\overline{F_{AxB}}$
  - Error term for post-hoc tests
  - Approach to simple effects analyses
  - Assumptions

# Partitioning SS



#### df

• 
$$df_A = a - 1$$

• 
$$df_B = b - 1$$

• 
$$df_{AxB} = (a - 1)(b - 1)$$

• 
$$df_{S/A} = a(n - 1)$$

• 
$$df_{BxS/A} = a(b - 1)(n - 1)$$

• 
$$df_{Total} = (a)(b)(n) - 1$$

#### MS

- $MS_A = SS_A / df_A$
- $\overline{MS_B} = \overline{SS_B} / \overline{df_B}$
- $\overline{MS_{AxB}} = \overline{SS_{AxB}} / \overline{df_{AxB}}$
- $\overline{MS_{S/A}} = \overline{SS_{S/A}} / \overline{df_{S/A}}$
- $MS_{BxS/A} = SS_{BxS/A} / df_{BxS/A}$

#### F

- $F_A = \overline{MS_A} / \overline{MS_{S/A}}$
- $\overline{F_B = MS_B / MS_{BxS/A}}$
- $F_{AxB} = MS_{AxB} / MS_{BxS/A}$

#### Post-hoc tests on main effects

- Post-hoc tests on the between-groups IV are performed in the same way as with a one-way ANOVA
  - TukeyHSD

#### Post-hoc tests on main effects

- Post-hoc tests on the repeated measures IV are performed in the same way as with a one-way repeated measures ANOVA
  - Pairwise comparisons with Bonferroni correction

- Must choose one approach or the other
  - To report both is redundant
- (a) Simple effects of the between groups IV
- (b) Simple effects of the repeated IV

#### Data structure in R (3x4: Ax(BxS))

| Subject | A | DV |
|---------|---|----|
| 1       | 1 | B1 |
| 1       | 1 | B2 |
| 1       | 1 | B3 |
|         |   |    |
| 3       | 2 | B1 |
| 3       | 2 | B2 |
| 3       | 2 | В3 |

- Simple effects of the between groups IV
  - Simple effect of A at each level of B
    - $F_{A.at.b1} = MS_{A.at.b1} / MS_{S/A.at.b1}$

- Simple effects on the between groups IV
  - Simple comparisons use the same error term
    - MS<sub>S/A.at.b1</sub>

- Simple effect on the repeated measures IV
  - Simple effect of B at each level of A
    - $F_{B.at.a1} = MS_{B.at.a1} / MS_{BxS/A.at.a1}$

### Assumptions

- Each subject provides b scores
- Therefore, there are
  - b variances
  - -(b\*(b+1)/2) b covariances (correlations)
  - e.g., if b = 3 then 3 covariances
  - e.g., if b = 4 then 6 covariances

#### Assumptions

- Between-groups assumptions
  - The variances do not depend upon the group
    - Levene's test
      - If violated then calculate a new restricted error term
  - The covariances do not depend upon the group
    - Box's test of equality of covariance matrices

#### Box's test (a = 3, b = 3)

If violated then report Greenhouse-Geisser or Huynh-Feldt values. Alternatively, consider a moderation analysis.

### Assumptions

- Within-subjects assumptions
  - Sphericity: the variances of the different treatment scores (b) are the same and the correlations among pairs of treatment means are the same
  - Again, if violated then report Greenhouse-Geisser or Huynh-Feldt values

# Mixed factorial ~ Summary

- What's new?
  - Partitioning SS
  - Formulae for  $F_A$ ,  $F_B$ ,  $F_{AxB}$
  - Error term for post-hoc tests
  - Approach to simple effects analyses
  - Assumptions