Markov Decision Processes (part 2)

CS 3600 Intro to Al

Jim Rehg
College of Computing
Georgia Institute of Technology

Computing Utilities for States

Need to do something smart to avoid exponential blowup

Key Idea: Decompose into subproblems (subtrees)

1-D Example

1-D Example

$$U^{*}(s_{t}) = R(s_{t}) + \gamma \max_{a \in A(s_{t})} \sum_{s_{t+1}} P(s_{t+1} \mid s_{t}, a) U^{*}(s_{t+1})$$

Optimal Utility at t

Expected Optimal Utility at t+1

1-D Example

$$U^*(s_T) = R(s_T)$$

Optimal Utility at the terminal T

Bellman Equations for Utility

$$\begin{split} U(s_{t}^{u}) &= -0.04 + \gamma \max_{a_{t}} \{ [0.8U(s_{t+1}^{u}) + 0.2U(s_{t+1}^{m})] J(a_{t}^{u}) & \text{upper -> upper} \\ &+ [0.2U(s_{t+1}^{u}) + 0.8U(s_{t+1}^{m})] J(a_{t}^{m}) \} & \text{upper -> middle} \\ U(s_{t}^{m}) &= -0.04 + \gamma \max_{a_{t}} \{ [0.8U(s_{t+1}^{u}) + 0.2U(s_{t+1}^{m})] J(a_{t}^{u}) & \text{middle -> upper} \\ &+ [0.1U(s_{t+1}^{u}) + 0.8U(s_{t+1}^{m})] J(a_{t}^{m}) \\ &+ [0.2U(s_{t+1}^{m}) + 0.8U(s_{t+1}^{l})] J(a_{t}^{l}) \} & \text{middle -> middle} \end{split}$$

CS 3600 Intro to AI

middle -> lower

Value Iteration

Iteratively solve the system of coupled nonlinear equations

Bellman update:

$$U_{i+1}(s_t) \leftarrow R(s_t) + \gamma \max_{a \in A(s_t)} \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a) U_i(s_{t+1})$$

Convergence of Value Iteration

- Guaranteed to converge to a unique solution that gives an optimal policy
- Intuition: Utility values only need to be relatively correct to select for the best action

Policy Iteration

- Alternative way to solve for the optimal policy
- Beginning with an initial policy, alternative between:
 - Policy Evaluation: What is the utility of each state under the policy?
 - Policy Improvement: Update the policy to maximize the expected utility

· When no improvements can be made, we've converged

Policy Evaluation

- Easier than the Bellman Equations
- Policy is fixed, so no search over action
- Just solve linear system updated utilities!

$$U_{i}(s_{t}) = R(s_{t}) + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_{t}, \pi_{i}(s_{t})) U_{i}(s_{t+1})$$

Policy Update

Modify the policy at each state

$$\pi_i(s_t) \leftarrow \underset{a \in A(s_t)}{\operatorname{arg\,max}} \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a) U_i(s_{t+1})$$

Algorithm

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, transition model T
   local variables: U, U', vectors of utilities for states in S, initially zero
                        \pi, a policy vector indexed by state, initially random
   repeat
        U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
        unchanged? \leftarrow true
       for each state s in S do
            if \max_a \sum_{s'} T(s, a, s') \ U[s'] > \sum_{s'} T(s, \pi[s], s') \ U[s'] then \pi[s] \leftarrow \operatorname{argmax}_a \sum_{s'} T(s, a, s') \ U[s']
                 unchanged? \leftarrow false
   until unchanged?
   return \pi
```