# **Multimedia Data Representation**

#### Issues to be covered:

- Digital Audio
- Sampling Theorem
- Digital Audio Signal Processing/Audio Effects
- Digital Audio Synthesis
- MIDI Synthesis and Compression Control
- Graphics/Image Formats
- Colour Representation/Human Colour Perception
- Digital Video
- Chroma Subsampling

#### **General Themes across all above**

- Sampling/Digitisation
- Sampling Artifacts Aliasing
- Compression requirements
- Data formats especially size
- Human Perception!compression ideas
- Compression Algorithms

# **Digital Audio**

#### What is Sound?

#### Source — Generates Sound

- Air Pressure changes
- Electrical Loud Speaker
- Acoustic Direct Pressure Variations

#### **Destination** — Receives Sound

- Electrical Microphone produces electric signal
- Ears Responds to pressure hear sound (MPEG Audio)

# **Digitising Sound**

- Microphone produces analog signal
- Computer like discrete entities

Need to convert Analog-to-Digital — Specialised

Hardware

Also known as Sampling

# **Digital Sampling**

# Sampling basically involves:

- Measuring the analog signal at regular discrete intervals
- Recording the value at these points



## **Sample Rates and Bit Size**

- •How do we store each sample value (Quantisation)? 8 Bit Value (0-255) 16 Bit Value (Integer) (0-65535)
- •How many Samples to take?
- 11.025 KHz Speech (Telephone 8 KHz)
- 22.05 KHz Low Grade Audio
- (WWW Audio, AM Radio)
- 44.1 KHz CD Quality

#### **Nyquist's Sampling Theorem**

Sampling Frequency is very important in order to accurately reproduce a digital version of an Analog Waveform.

#### **Nyquist's Theorem:**

The Sampling frequency for a signal must be at least twice the highest frequency component in the signal.



Figure 1: Sampling at Signal Frequency



Figure 2: Sampling at Twice Nyquist Frequency



Figure 3: Sampling at above Nyquist Frequency

# **Implications of Sample Rate and Bit Size**

# **Affects Quality of Audio**

- Ears do not respond to sound in a linear fashion (MPEG Audio)
- Decibel (dB) a logarithmic measurement of sound
- 16-Bit has a signal-to-noise ratio of 98 dB virtually inaudible
- 8-bit has a signal-to-noise ratio of 50 dB
- Therefore, 8-bit is roughly 8 times as noisy
- 6 dB increment is twice as loud
- Click Here to Hear Sound Examples

# Implications of Sample Rate and Bit Size (cont)

#### **Affects Size of Data**

| File Type     | 44.1 KHz | 22.05 KHz | 11.025 KHz |
|---------------|----------|-----------|------------|
| 16 Bit Stereo | 10.1 Mb  | 5.05 Mb   | 2.52 Mb    |
| 16 Bit Mono   | 5.05 Mb  | 2.52 Mb   | 1.26 Mb    |
| 8 Bit Mono    | 2.52 Mb  | 1.26 Mb   | 630 Kb     |

# **Practical Implications of Nyquist Sampling Theory**

## Must low pass filter signal before sampling:



Analog low pass filter used as signal is not yet digitised. Otherwise strange artifacts from high frequency signals would appear — Aliasing

# Why are CD Sample Rates 44.1 KHz?

# Upper range of human hearing is around 20-22 KHz — Apply Nyquist Theorem

#### **Emerging Theme throughout this course:**

- Perceptual traits of Human Auditory system.
- Don't both recording data above 22 KHz
- So filter them out low pass filter.

#### **Common Audio Formats**

- Popular audio file formats include
- .au (Origin: Unix, Sun),
- .aiff (MAC, SGI),
- -.wav (PC, DEC)
- Compression can be utilised in some of the above but is not Mandatory
- A simple and widely used (by above) audio compression method is Adaptive Delta Pulse Code Modulation (ADPCM).
- Based on past samples, it predicts the next sample and encodes the difference between the actual value and the predicted value.

## **Common Audio Formats (Cont.)**

- Many formats linked to audio applications
- Most use some compression
- Common ones:
- Sounblaster .voc (Can use Silence Deletion (More on this later (Audio Compression))
- Protools/Sound Designer .sd2
- Realaudio .ra.
- Ogg Vorbis .ogg
- AAC , Apple, mp4 More Later
- Flac .flac, More Later
- Dolby AC coding More Later
- MPEG AUDIO More Later (MPEG-3 and MPEG-4)

# **Synthetic Sounds** —reducing bandwidth?

- Synthesise sounds hardware or software
- Client produces sound only send parameters to control sound (MIDI/MP4 later)
- Many synthesis techniques could be used, For example:
- FM (Frequency Modulation) Synthesis used in low-end Sound Blaster cards, OPL-4 chip, Yamaha DX Synthesiser range popular in Early 1980's.
- Wavetable synthesis wavetable generated from sampled sound waves of real instruments
- Additive synthesis make up signal from smaller simpler waveforms

- Subtractive synthesis—modify a (complex) waveform but taking out (Filtering) elements
- Granular Synthesis use small fragments of existing samples to make new sounds
- Physical Modelling model how acoustic sound in generated in software
- Sample-based synthesis—record and play back recorded audio, often small fragments and audion processed.
- Most modern Synthesisers use a mixture of samples and synthesis.