

FIGURE 1

FIGURE 2

Seq							2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	
ld								4.5	
No	Gene	<u>Strain</u>	TATA BOX		Coding	Start	TATA to St	art (bp)	
				***************************************	CCCCCCATC		*	25	
81	Hypoth 03		SACT TTTAAT TGGG VACT TTTAAT TGGG					23	
82							• •	26	
83	Hypoth 02	A GGAAACT	TTG ATTATA CGGG	CGTGCTGCCC	CCCCCCCAI	C		26	
84			TTTG ATTATA CGGG						
85	ORF 02	A AAGGCAJ	GGT AATAAT AGCC	TGCCGTCTGT	AACGGCCGTA	TG~~~~~~		27	
86			AGGT AATAAT AGCC						
87	ORF 03	A CATGGA	ACTA GATATT AACC	GGTTCCGCGG	ATCCCATGCA	TG		27	
88			ACTA GATAAT AACC						
89	PPI	A ATACCG	AGAA GTTATA GCAG	GGTATGGAAT	GTGCGCGCGC	ATG		28	
90		B AGCACGA	ACAA GTTATA GCAG	GGTACAAAGG	AGCAGCGCAC	ATG			
91	GSAT		CTG ATTAAA TTAT					28	
92		B ATCCGG	CCTC ATTAAA TTAC	GGGGGGTACA	ACCTGCTGCC	GTG	-,		
	ORF 05	A CCTTCAT	TACA CATAAA TCCC	GCTTGGATGT	GCGGCTGCGC	ATG~~~~~	~~~~~	28	
	ORF US	B ACTTCA	TACA CATAAA TCCC	GCCTGAACGG	TCGTCCGCGC	ATG			
94			ATAC CATAAT ATGC				(<u>.</u>	2 97	
	deaminase		ATAC CATAAT ATGC					2.7	
96			AAAC CATAAA ACAA				15 124	29	
97 98	RNA helic	B GGGTAG	AAAC CATAAA ACAA	CAGGCCGCGG	CAGGGCG.CG	CGTG			
			CAG TATAAA CGGG					29	
99	0		GTGG TATAAA CAGA				~~		
100			GTTA TTTAAA ACTA				~~~~~~~	29	
	tRNA-tyr	A GCGATA	GTTA TTTAAA ACTA	GGATGCCGGG	CACCCGTCGT	CCCA			
102			CCCG GTTAAA ATAG				~~~~~~	30	
103	TBP	A CCGGGC	CCCG GTTAAA ATAG CCCG GTTAAA ATAG	ACTOCCOCC	GGCACCGGAT	CAATG			
104							C	36	
105	TIM	A GCGTCG	ATAG AATAAA TACG ATAG AATAAA TACG	CCCAGGGGGC	CCCCTCC	CATCGCCCGT	Garage		
106	i							45	
107	Hypoth 01	A ATTICA	ACTA CATAAA TGCC ACTA CATAAA TGCC	TAGTTACGCA	GAAATAGCAA	ACGACGIACI	TOGACTARTG		
108	:							52°	
109	ORF 01	A ACGGCA	GGCT ATTATT ACCT	TGCCTTGCGT	TGTA //G	CGGGGTGCGG	CAGGGGATG	. 75	
110)		GGCT ATTATT ACCI					104	
111	Wathwilesa	A CTACAA	CGAT TTTAAG TCGC	GCCCGGGGCA	GCCG.//G	ATGTGGGGCA	GGCAACATG	104	
112			AGAT TTTAAG ACGC					220	
113	1CC DNA	A TCGGCG	ATGG TTTATA TGCC	CATGGACGGG	CCGATCCGAT	CGTACGTGAC	GC.//AAT	220	
		B CCGGCG	ATGG TTTATA TGCC	CATGGACAAG	GCGATCCGAT	CGTACGTGAC	GC.//AAT		
114	Archaeal p	promoter							
	consensus		YTTAWA						

FIGURE 3

FIGURE 4

