

Stock Investment Customization

Team: Group 2

MA CHENGBIN A0261804J XIE SITENG A0261982W ZHOU JIECHENG A0261829W CHEN LIUJUN A0261904H LIN FANGZHOU A0261850H

1.1 Industry Overview

The development of the stock market played an important role in economic development. The market continues to increase.

Market Capitalization | Y2022

93.6 trillion (USD)

1.2 What We Offer?

Who we are

A regional leading asset management firm in Southeast Asia, working on stock investment.

What we offer

Make suitable portfolio which can maximize returns and minimize risks as well as making predictions on the stock price.

1.3 Business Objectives

Make Informed Investment Decisions
By Predicting stock return and Buy-and-sell-point

Provide Customized Asset Allocation &Optimization Solutions

For clients with different investment preferences

We help them achieve longterm financial success!

1.4 Technical Objectives

Prediction	Trading Strategy	Product Selection(Filter)	Portfolio Optimization
ARMA GARCH	based on $Return_{pred}$		
Survival Analysis RNN-LSTM	based on prediction of certain events based on Returnpred	Mature Return Volatility Number of transactions	Goal Programming
Multiple Factor Regression	based on Alpha value		

1.5 Project Management Plan

2.1 Data Understanding: Data Sources

Data Source: Win.d

The Dataset: Top 20 listed companies(by market capitalization) in the new energy industry.

Time covered: From initial public offering (IPO) to the present day.

2.2 Data Understanding

Data Dictionary

Column Name	Description	Туре
StockCode	identifier of a specific listed company	Char
StockName	name of the publicly traded company	Char
Date	Date of a trading day	Date
OpenPrice	the price at which the stock's trading session began for a trading day	Float
HighestPrice	the highest price at which the stock traded during a particular trading day	Float
LowestPrice	the lowest price at which the stock traded during a particular trading day	Float
Close Price	the price at which the stock's trading session end for a trading day	Float
Turnover	the total value of shares that were traded during a particular trading day	Float
TradingVolume	the total number of shares that were traded during a particular trading day	Int

2.1 Data Understanding

2.2 Data Preparation

3.1 ARMA-GARCH

3.1 ARMA-GARCH

Prediction Sample

Stock Name: Evemall Stock Code: 300014.SZ

Model: gjrGARCH

	Estimate	Std.Error	t value	Pr(> t)
mu	0.002516	0.000091	27.6877	0
omega	0.000002	0.000001	2.0349	0.041856
alpha1	0.009496	0.00057	16.6551	0
beta1	0.999992	0.00034	2941.909	0
gamma1	-0.02412	0.001431	-16.8556	0
skew	1.124542	0.03805	29.5541	0
shape	5.026918	0.715242	7.0283	0

RMSE: 0.031

3.3 LSTM - Problem Statement

 To accurately predict the future closing value of a given stock across a given period of time in the future.

3.3 LSTM

- Long Short-Term Memory (LSTM) is one type of recurrent neural network which is used to learn order dependence in sequence prediction problems.
- Due to its capability of storing past information, LSTM is very useful in predicting stock prices. This is because the prediction of a future stock price is dependent on the previous prices.

• We will use close price for prediction

002129.SZ TCL中环 2022-01-04 10:00 177.86 178.49 173.25 173.33 524.55 12676262 002129.SZ TCL中环 2022-01-04 10:30 173.37 173.67 171.04 171.64 347.83 8554656	code	name	date	open	highest	lowest	close	turnover	volume
002129.SZ TCL中环 2022-01-04 10:30 173.37 173.67 171.04 171.64 347.83 8554656	002129.SZ	TCL中环	2022-01-04 10:00	177.86	178.49	173.25	173.33	524.55	12676262
	002129.SZ	TCL中环	2022-01-04 10:30	173.37	173.67	171.04	171.64	347.83	8554656

• The next step is to scale the stock prices between (0, 1) to avoid intensive computation. Common methods include Standardization and Normalization as shown in figure. It is recommended to take Normalization, particularly when working on RNN with a Sigmoid function in the output layer.

We use timestep prices to predict the the timestep+1 price (one price)

Data import Feature scaling Data structure creation Modelling Result visualization We use timestep prices to predict the the timestep+1 price (one price) x = timestep days datay= timestep+1 data Then split the whole dataset, we want to predict the price from 2023.1.1 to 2023.3.30 Whole dataset: 2022.1.1 to 2023.3.30 Train dataset: Test dataset: 2022.1.1 to 2023.1.1- timestep 2022.1.1 to 2023.1.1+ timestep

By tuning hyperparameters to get the model with best performance for each stock

Hyperparameters	Pros	Cons		
Time step	remember historical information	computational complexity and training time.		
Number of layers	complexity and expressive power	the risk of overfitting and training time.		
Hidden dimension of each layer	complexity and expressive power	computational complexity and training time.		
Batch size	training speed and stability	consumes more memory resources and can lead to reduced generalization performance		
<u>Epochs</u>	fitting ability and performance	training time and the risk of overfitting.		

Data import

Feature scaling

Data structure creation

Modelling

Result visualization

Example Stock: Contemporary Amperex Technology Co.

3.3 Survival Analysis-Assumptions

Goal: find best **Buy-and-Sell-Point** by predicting return increase and decrease probability.

Two Events: A stock with at least α one-day rise (R_a) is the rise event; with at least β one-day drop (D_{β}) are is the drop event.

 α : the rate of stock return increase

β: the rate of stock return decrease

 γ_t : stock return

 μ_t : the turnover rate at time t.

For Return Increase:

Event: When α > 0.01, event is triggered and the event status is 1; when α < 0.01, event is not triggered and event status is 0.

Duration(T\alpha): Each Event's Living Time

For Return Decrease:

Event: When β < -0.01, event is triggered and the event status is 1; when β > -0.01, event is not triggered and event status is 0.

Duration(**T**β): Each Event's Living Time

3.3 Survival Analysis-Covariates Calculation

The following covariates are constructed based on stock activities observed from the last "event" time to current observation time.

Accumulated Rate of Change (AcROC): $x_1(T) = \sum_{t=T_c-T}^{T_c-1} \gamma_t$

The cumulative gains from the time point when the latest "event" happened to the current time point

Average Rate of Change (AvROC): $x_2(T) = \frac{\sum_{t=T_c-T}^{T_c-1} \gamma_t}{T}$

The average gains from the time point when the latest "event" happened to the current time point.

Accumulated Turnover (AcT): $x_3(T) = \sum_{t=T_c-T}^{T_c-1} \mu_t$

The cumulative turnover rate from the time point when the latest "event" happened to the current time point.

Average Turnover (AvT): $x_4(T) = \frac{\sum_{t=T_c-T}^{T_c-1} \mu_t}{T}$

The average turnover rate from the time point when the latest "event" happened to the current time point.

3.3 Survival Analysis-Covariates Calculation

Stochastic K% (K%): $x_5(T) = \frac{P_{T_{c-1}} - LL_T}{HH_T - LL_T} * 100\%$

This covariate refers to the point of a current price in relation to its price range over a period of time; HHT and LLT mean lowest low and highest high in the last T days, respectively

Stochastic D% (D%): $x_6(T) = \frac{\sum_{t=T_c-T}^{T_c-1} * K_t \%}{T}$

This covariate measures the average K% over the last n days.

Stochastic J% (J%): $x_7(T) = 3K_{T_{c-1}}\% - 2D_{c-1}\%$

This covariate is a derived form of the stochastic with the only difference being an extra line.

Relative Strength Index (RSI): $x_8(T) = 100 - \frac{100}{1 + RS}$ RS = $\frac{\sum_{t=T_c-T, \gamma_t \ge 0}^{T_c-1} \gamma_t}{\sum_{t=T_c-T}^{T_c-1} \gamma_t}$

This covariate is intended to chart the current and historical strength or weakness of a stock on the closing prices of a recent trading period.

Psychological Line (PSY): $x_9(T) = \frac{\sum_{t=T_c-T}^{T_c-1} I(\gamma_t)}{T}$ Where $I(\gamma_t)=1$ if $\gamma_t \ge 0$ and 0 otherwise

This covariate measures the ratio of the number of rising periods over the total number of periods.

3.3 Survival Analysis-Cox Regression

Two thresholds(0.01, -0.01); two models:

Drop Model

- Covariates Selection: Wald Test
- Parameter Selection(Penalizer): Parameter grid, choose parameter with highest c-index
- C-index: indicates accordance and accuracy of survival analysis (range from 0-1, 0.5 means random prediction, above 0.7 means good prediction)

3.3 Survival Analysis- Example 中广核(P)CGN

Take CGNPC(China Guangdong Nuclear Power)as an example

the Rise Model

covariate	coef	exp(coef)	se(coef)	р	-log2(p)	
AcROC	-0.0293	0.9711	0.2783	0.9160	0.1265	
AvROC	0.4397	1.5523	0.6599	0.5052	0.9805	
AcT	0.0000	1.0000	0.0000	0.7626	0.3910	
AvT	0.0016	1.0016	0.0005	0.0006	10.5996	
K %	0.0102	1.0102	0.0027	0.0002	12.2754	
D%	0.0015	1.0015	0.0037	0.6770	0.5628	
J%	0.0038	1.0038	0.0009	0.0001	14.0510	
RSI	0.0246	1.0249	0.0082	0.0027	8.5468	
PSY	0.5493	1.7320	1.9480	0.7780	0.3622	

the Drop Model

covariate	coef	exp(coef)	se(coef)	р	-log2(p)
AcROC	-0.1050	0.9004	0.2055	0.6095	0.7143
AvROC	-0.2466	0.7814	0.4888	0.6139	0.7040
AcT	0.0000	1.0000	0.0000	0.9637	0.0534
AvT	0.0017	1.0017	0.0004	0.0000	17.3876
К%	-0.0028	0.9972	0.0021	0.1837	2.4443
D%	0.0049	1.0049	0.0030	0.0970	3.3666
J%	-0.0017	0.9983	0.0007	0.0227	5.4588
RSI	0.0061	1.0061	0.0067	0.3608	1.4709
PSY	-4.3025	0.0135	1.5320	0.0050	7.6498

Covariate importance for the rise model with α = 1%.

Covariate importance for the drop model with $\beta = -1\%$.

3.3 Survival Analysis- Example 中广核の CGN

3.4 Multiple Factor Regression-Select Model

- We utilized Fama-French Three Factor Model to do stock trading.
- This model introduces two additional factors on the basis of the Capital Asset Pricing Model (CAPM) to explain the variation of stock returns.
- Formula:

$$R_i = a_i + b_i R_M + s_i E(SMB) + h_i E(HML) + \varepsilon_i$$

• As shown above, stock return are influenced by three factors: E(SMB), E(HML) and RM(Rm-Rf).

3.4 Multiple Factor Regression-Factors

E(HML) E(SMB) **RM** SMB(Small Minus Big): RM = Rm-Rf: **HML(High Minus Low):** measures the excess return of measures the excess the expected excess rate of return of the market return of small-cap stocks stocks with high Book-torelative to large-cap stocks. Market Ratio relative to stocks relative to the risk-free with low book-to-market ratio. investment. **Rm(Market Return):** Rf(Risk-Free Rate): represents the average represents the yield **Three Key Factors for Modeling** return of some broad that an investor can market index over a earn in the absence specific period. of any risk.

3.4 Multiple Factor Regression-Steps

3.4 Multiple Factor Regression-Benefits of Settings

We Set the Rollback Day to 60 days

Data Smoothing

More Data Points

Adding Cyclical Considerations

Better Generalization

3.4 Multiple Factor Regression-Alpha Order

Alpha Order in 2023-02-20

3.4 Multiple Factor Regression-Alpha Order

Alpha Order in 2023-02-21

4.1 Trading Strategy- Testing Period

Short Position is not allowed!

4.1 Trading Strategy-Single Stock

Survival Function

ARMA GARCH & LSTM

• Thresholds and transaction interval is set by traversal

4.1Trading Strategy- For Multiple Stocks

Portfolio(Multiple Stocks) Change: Only for Multi Factor Method

Parameters to consider:

- 1. Rebalancing interval
- 2. Maximum stocks in the portfolio

4.2 Filtering Conditions

	ARMA GARCH	LSTM	Survival Analysis	Multi Factor Method
Filter 1				
Delete products that have low number of transactions	521	37	1434	141
•				
Filter 2				
Delete products that have negative mature return	133	30	131	0
Further Optimization				

Note: The Multi Factor Method has not formed an effective product, mainly due to the overall downward trend of new energy stocks in the first three months of FY23

5.1 Optimization - Efficient Frontier (NLP)

5.2 Optimization - Monte Carlo

Imputation

More than 10 Strategy Detected

5.2 Optimization- Product

	Stock	Return	Risk	Maximum Drawdown	Applied Model	
	CGNPC	1.30%~9.02%	0.44%~0.91%	3.16%~4.16%	GARCH SURVIVAL LSTM	5 Products
	CNNP	2.15%	0.74%	7.48%	GARCH	1 Products
	TCL	11.48%~40.28%	1.47%~4.57%	7.10%~18.77%	GARCH LSTM	7 Products
4	JSG	13.86%	1.68%	6.85%	LSTM	1 Products
						14 Products

5.3 Optimization- Customer Risk Profile

Different clients have different needs

5.4 Optimization- Solution

We utilize Goal Programming in Excel solver

	Constrains	Expression
	Return	SUMPRODUCT(Weights, Returns) + d-1 - d+1 >= Preset Value1
Goals	Risk	SUMPRODUCT(Weights, Risks) + d ₋₂ - d ₊₂ <= Preset Value2
	Maximum Drawdown	SUMPRODUCT(Weights, Maximum drawdowns) + d-3 - d+3 <= Preset Value3
,	Budget	SUM(Weights) = 1
	Positive Variables	Weights, d₁, d₁>=0

Variables

- "Weights": the allocation of the total budget as a proportion for each individual stock.
- "di": proportional deviation

The GP objective is to minimise the **objective function**, **Z**

$$Z = \sum_{i=1}^{3} (d_{-i} + d_{+i})/t$$

5.4 Optimization- Example

Middle Class Family

• Seek for normal return rate

Budget: 50k SGD

	Return	Risk	Maximum Drawdown
Level	Mid	Mid	Mid
Set Value	12%	3%	10%

Product	Return	Risk	Max down	Invest Amount
No.14	40.28%	4.57%	4.35%	12000
No.1	1.3%	0.44%	3.16%	3000
<u>Total</u>	21.4%	2.5%	<u>8%</u>	<u>50k</u>

5.4 Optimization- Example

Budget: 10k SGD

	Return	Risk	Maximum Drawdown
Level	Low	Low	Low
Set Value	6%	1%	5%

			<u> </u>	
Product	Return	Risk	Max down	Invest Amount
No.14	40.28%	4.57%	4.35%	7300
No.1	1.3%	0.44%	3.16%	2600
	•••			
<u>Total</u>	7.6%	0.87%	2.2%	<u>10k</u>

5.4 Optimization- Example

Rich Guys Seek for maximum return, able to bear high risk.

Budget: 100k SGD

	Return	Risk	Maximum Drawdown
Level	High	High	High
Set Value	30%	5%	15%

Product	Return	Risk	Max down	Invest Amount
No.1	1.3%	0.44%	3.16%	12000
No.2	2.15%	0.74%	7.48%	6000
	•••			
<u>Total</u>	<u>36%</u>	4.4%	<u>15%</u>	<u>100k</u>

6. Outcome Discussion

The products utilizing **Survival Analysis** have attributes of low return and low risk. e.g. it is more fit for current and short-term investment in small amount.

The **Multifactor Method** is not able to construct profitable products in our analytics as this method is highly influenced by the market performance and new energy industry is in loss in our testing period(Mar 2023).

6. Limitations & Further Prospects

The scope of stock is not wide enough.

e.g., stratified sampling based on capitalization in an industry stocks in multiple industries

The scope of test set is not wide enough e.g., longer period as test set (not limited to 3 months)

No quantitative evaluation for customer risk, e.g. conjoint analysis

Thank you for listening!

