Lecture_02

 Rule to find the next few terms of an A.P.

Lets find a & d a_1 a_2 a_3 a_4 We get its next term

1, 3, 5, 7,... $a = a_1 = 1$ $d = a_2 - a_1 = 3 - 1 = 2$

$$a = a_1 = 1$$

$$\mathbf{d} = \mathbf{a}_2 - \mathbf{a}_1 = 3 - 1 = 2$$

$$\mathbf{a_2} = \mathbf{a_1} + \mathbf{d} = 1 + 2 = 3$$

$$\mathbf{a_3} = \mathbf{a_2} + \mathbf{d} = 3 + 2 = 5$$

$$\mathbf{a_4} = \mathbf{a_3} + \mathbf{d} = 5 + 2 = 7$$

• Finding the next few terms of an A.P.

4) Which of the following are APs? If they form an AP, find the common difference d and write the In an AP difference between

In an AP difference between any two consecutive terms is constant

= -2

Sol:
$$a_1 = -1.2$$
, $a_2 = -3.2$, $a_3 = -5.2$, $a_4 = -7.2$

$$a_2 - a_1$$

$$= -3.2 - (-1.2)$$

$$= -3.2 + 1.2$$
By adding *d* to a term of AP

we get its next term

consecutive terms
$$= -3.2 + 3.2 + 3.2 = -1.2 + 3.2$$

= - 2

... As difference is constant, the given list of numbers is an AP.

$$a_5 = a_4 + d$$
 $a_6 = a_5 + d$ $a_7 = a_6 + d$
 $= -7.2 + (-2)$ $= -9.2 + (-2)$ $= -11.2 + (-2)$
 $= -7.2 - 2$ $= -9.2 - 2$ $= -11.2 - 2$
 $= -9.2$ $= -13.2$

= -2

d = -2, next three terms are -9.2, -11.2 and -13.2

4) Which of the following are APs? If they form an AP find the common difference d and write three. In an AP difference between any

two consecutive terms is constant

ii) 1^2 , 5^2 , 7^2 , 73, ...

a₅, a₆ & a₇

Sol: $a_1 = 1^2$, $a_2 = 5^2$, $a_3 = 7^2$, $a_4 = 73$ $a_2 - a_1$ $a_3 - a_2$ By adding *d* to a term of AP we get its next term

 $= 5^2 - 1^2$ $= 7^2 - 5^2$ $= 73 - 7^2$

= 25 - 1 = 49 - 25 = 73 - 49

= 24 = 24

As difference is constant, the given list of numbers is an AP.

 $a_5 = a_4 + d$ $a_6 = a_5 + d$ $a_7 = a_6 + d$ = 73 + 24 = 97 + 24 = 121 = 145

d = 24, next three terms are 97, 121 and 145.

• Finding the next few terms of an A.P.

4) Which of the following are APs In an AP difference between any common difference d and write three two consecutive terms is constant

iii) 3, 3 +
$$\sqrt{2}$$
, 3 + $2\sqrt{2}$, 3 + $3\sqrt{2}$, a_5 , a_6 & a_7

Sol:
$$a_1 = 3$$
, $a_2 = 3 + \sqrt{2}$, $a_3 = 3 + 2\sqrt{2}$, $a_4 = \frac{3 + 3\sqrt{2}}{3 + 3\sqrt{2}}$ By adding *d* to a term of AP we get its next term
$$a_3 - a_2$$

$$(3 + 2\sqrt{2}) + (2 + \sqrt{2})$$

$$(3 + 2\sqrt{2}) + (3 + \sqrt{2})$$

$$a_2 - a_1$$
 = $(3 + 2\sqrt{2}) - (3 + \sqrt{2})$ = $(3 + 3\sqrt{2}) - (3 + 2\sqrt{2})$
= $3 + \sqrt{2} - 3$ = $3 + 2\sqrt{2} - 3 - \sqrt{2}$ = $3 + 3\sqrt{2} - 3 - 2\sqrt{2}$

$$= \sqrt{2} \qquad = \sqrt{2} \qquad = \sqrt{2}$$

As difference is constant, the given list of numbers is an AP.

$$a_5 = a_4 + d$$
 $a_6 = a_5 + d$ $a_7 = a_6 + d$ $a_7 = a_6 + d$ $a_7 = a_6 + d$ $a_8 = 3 + 4\sqrt{2} + \sqrt{2}$ $a_8 = 3 + 5\sqrt{2} + \sqrt{2}$ $a_8 = 3 + 6\sqrt{2}$

d = $\sqrt{2}$, next three terms are 3 + $4\sqrt{2}$, 3 + $5\sqrt{2}$ & 3 + $6\sqrt{2}$

4) Which of the following are APs? If they form an AP. find the common difference d and write three In an AP difference between

In an AP difference between any two consecutive terms is constant

iv)
$$a, a^2, a^3, a^4, ...$$

Sol:
$$a_1 = a$$
, $a_2 = a^2$, $a_3 = a^3$, $a_4 = a^4$, $a_2 - a_1$ $a_3 - a_2$ $= a^2 - a$ $= a^3 - a^2$ $= a(a-1)$ $= a^2(a-1)$

Lets find difference between consecutive terms

As difference is not constant, the given list of numbers is not an AP.

• Finding the next few terms of an A.P.

4) Which of the following are APs ? If they form an AP find the common difference d and write three In an AP difference between any

two consecutive terms is constant

(v)
$$\sqrt{2}$$
, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$,.....

Sol: $a = \sqrt{2} \sqrt{4 \times 2} = \sqrt{8}$,

$$1 = \sqrt{2} \sqrt{4 \times 2} = \sqrt{8},$$

$$a = \sqrt{2} \sqrt{4 \times 2} = \sqrt{8},$$
 $a_3 = \sqrt{8} - \sqrt{2}$
 $a_4 = \sqrt{18} - \sqrt{8}$
 $a_5 = \sqrt{32} - \sqrt{8}$
 $a_6 = \sqrt{32} - \sqrt{8}$

$$= 2\sqrt{2} - \sqrt{2}$$
 $= 3\sqrt{2} - 2\sqrt{2}$ $= 4\sqrt{2} - 3\sqrt{2}$

$$\sqrt{9\times2}$$
 $\sqrt{16\times}$

By adding d to a term we get a next term

$$= 4\sqrt{2} - 3\sqrt{2}$$

$$=\sqrt{2}$$
 $=\sqrt{2}$ $=$

As difference is constant $\sqrt{25 \times 2}$ ven list of $\sqrt{36 \times 2}$ rs is an A.P.

$$a_{5} = a_{4} + d$$
 $a_{6} = a_{5} + d$
 $= \sqrt{32}$
 $= 4\sqrt{2}$
 $= 5\sqrt{2}$
 $= 6\sqrt{2}$
 $= \sqrt{50}$
 $= \sqrt{2}$
 $= \sqrt{2}$

 \therefore d = $\sqrt{2}$, next three terms are $\sqrt{50}$, $\sqrt{72}$, and $\sqrt{98}$.

Finding the next few terms of an A.P.
 when values of 'a' and 'd' are given

5) Write the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first

BY ADDING 'd' TO A TERM OF AN A.P.
WE GET NEXT TERM

i)
$$a = 10, d = 10$$

Sol:
$$a = 10, d = 10$$

Here,

$$a_1 = a = 10$$
 a_1
 $a_2 = a_1 + d = 10 + 10 = 20$
 $a_3 = a_2 + d = 20 + 10 = 30$
 a_3
Add 'd' to
 a_2
 a_3

The first four terms of the A.P. are 10, 20, 30, and 40.

 $a_4 = a_3 + d = 30 + 10 = 40$

5) Write the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first a_1 , a_2 , a_3 , a_4 , $a_$

BY ADDING 'd' TO A TERM OF AN A.P.
WE GET NEXT TERM

Add 'd' to

 \mathbf{a}_3

ii)
$$a = -2, d = 0$$

Sol:
$$a = -2$$
, $d = 0$

Here,
$$a_1 = a = -2$$
Add 'd' to
$$a_1$$

$$a_2 = a_1 + d = -2 + 0 = -2$$

$$a_3 = a_2 + d = -2 + 0 = -2$$

$$a_4 = a_3 + d = -2 + 0 = -2$$

The first four terms of the A.P. are -2, -2, and -2,.

Finding the next few terms of an A.P.
 when values of 'a' and 'd' are given

5) Write the first a_1 , a_2 , a_3 , a_4 of the common difference 'd' and the first

BY ADDING 'd' TO A TERM OF AN A.P.
WE GET NEXT TERM

iii)
$$a = 4, d = -3$$

Sol:
$$a = 4$$
, $d = -3$

Here,

Add 'd' to

$$a_1 = a = 4$$

 \mathbf{a}_1

$$a_2 = a_1 + d = 4 + (-3) = 4 - 3 = 1$$

a₂

$$a_3 = a_2 + d = 1 + (-3) = 1 - 3 = -2$$

 \mathbf{a}_3

Add 'd' to

$$a_4 = a_3 + d = -2 + (-3) = -2 - 3 = -5$$

The first four terms of the A.P. are 4, 1, -2, and -5.

5) Write the first a_1 , a_2 , a_3 , a_4 of common difference 'd' and the

BY ADDING 'd' TO A TERM OF AN A.P. WE GET NEXT TERM

Add 'd' to

 $\mathbf{a_2}$

Add 'd' to

iv)
$$a = -1$$
, $d = \frac{1}{2}$

Sol:
$$a = -1$$
, $d = \frac{1}{2}$

Here,

$$a_1 = a = -1$$

Here,

$$a_1 = a = -1$$
 a_1
 $a_2 = a_1 + d = -1 + \frac{1}{2} = \frac{-2 + 1}{2} = \frac{-1}{2}$

$$a_3 = a_2 + d = \frac{-1}{2} + \frac{1}{2} = 0$$

$$a_4 = a_3 + d = 0 + \frac{1}{2} = \frac{1}{2}$$

The first four terms of the A.P.

are -1,
$$\frac{-1}{2}$$
, 0 and $\frac{1}{2}$.

5) Write the firs a_1 , a_2 , a_3 , a_4 or common difference 'd' and the

BY ADDING 'd' TO A TERM OF AN A.P.
WE GET NEXT TERM

(v)
$$a = -1.25$$
, $d = -0.25$

Sol:
$$a = -1.25$$
, $d = -0.7$
Add 'd' to $a_1 = a = -1.25$

$$a_2 = a_1 + d = -1.25 + (-0.25) = -1.25 - 0.25 = -1.50$$

$$a_3 = a_2 + d = -1.50 + (-0.25) = -1.50 - 0.25 = -1.75$$

$$a_4 = a_3 + d = -1.75 + (-0.25) = -1.75 - 0.25 = -2.00$$

.. The first four terms of the A.P are

- 1.25, - 1.50, - 1.75 and - 2.00

Add 'd' to

 $\mathbf{a_2}$

 $\mathbf{a_3}$

Introduction of 'a_n' formula

a₁ → First term

a, -> Second term

a₃ -> Third term

a_n nth term /Any term / General term where 'n' is the term position / term number

E.g. – For 25th Term, n = 25 For 28th Term, n = 28

$$\therefore a_n = a + (n - 1) d \text{ is the } n^{\text{th}} \text{ term of an AP}$$

• Sums based on 't_n' formula

1) Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:

We need to find a_n

	a		d		n	a_n
i)	7		3		8	·

Sol: We know that,

$$a_n = a + (n-1) d$$

= 7 + (8-1)(3)
= 7 + 7(3)
= 7 + 21

$$\therefore a_n = 28$$

а	d	n	\boldsymbol{a}_n
7	3	8	28

1) Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:

We need to find d

	a	d	n	a_n	
ii)	-18	: /	10	0	

Sol: We know that,

$$a_n = a + (n-1) d$$

$$(10 - 1)(d)$$

$$0 = -18 + 9 d$$

$$\therefore 18 = 9 d$$

$$d = \frac{18}{9}$$

$$\therefore d = 2$$

а	d	n	a_n
-18	2	10	0

• Sums based on 'a_n' formula

1) Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:

	a		d	n	a_n	
iii)	-18.9		2.5		3.6	

Sol: We know that,

$$= a + (n-1) d$$

$$\therefore 3.6 = -18.9 + (n-1)(2.5)$$

$$\therefore 3.6 + 18.9 = \left(\frac{22.5}{2.5} = \frac{225}{25} = 9\right)$$

$$\therefore 22.5 = 12.5$$

$$\therefore \frac{22.5}{2.5} = (n-1)$$

$$\therefore n-1 = 9$$

$$\therefore n = 9 + 1$$

$$\therefore$$
 n = 10

а	d	n	a_n
-18.9	2.5	10	3.6

We need to find n

1) Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:

	a	d	n		a_n	
iv)		-3	18		-5	

Sol: We know that, We need to find a

$$a_n = a + (n-1) d$$

$$\therefore$$
 -5 = a + (18 - 1) (-3)

$$\therefore -5 = a + (17)(-3)$$

$$\therefore -5 = a - 51$$

$$\therefore -5 + 51 = a$$

$$\therefore$$
 a = 46

а	d	n	a_n
46	-3	18	-5

• Sums based on 'a_n' formula

1) Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:

	a		d		n	\boldsymbol{a}_n
v)	3.5		0		105	<i>"</i>

Sol: We know that,

$$a_n = a + (n-1) d$$
 We need to find a_n

$$= 3.5 + (105 - 1)(0)$$
$$= 3.5 + 0$$

$$\therefore a_n = 3.5$$

а	d	n	\boldsymbol{a}_n
3.5	0	105	3.5

2) Choose the correct choice in the following and justify.

i) 30th term of AP: 10, 7, 4, ..., is

(A) 97 (B) (C) -77 (D)

Sol: a = 10, We need to find a_{30}

For the given AP lets find value of a & d

$$a_{30} = a + 29 d$$

$$= 10 + 29(-3)$$

$$= 10 - 87$$

$$= -77$$

.. Option (C) is correct

2) Choose the correct choice in the following and justify.

ii) 11th term of AP: -
$$3, \frac{-1}{2}, 2, ...,$$
 is

(A) 28 (B) We need to find a_{11}

Sol: a = -3, $d = \frac{1}{2} - (-3) = \frac{1}{2} + \frac{1}{2}$

For the given AP lets find value of a & d

$$a_{11} = a + 10 d$$

$$= -3 + 10 \times \frac{5}{2} \times \frac{5}{2}$$

$$= -3 + 25$$

$$= 22$$

: Option (B) is correct

Thank You