Math 547: Mathematical Foundations of Statistical Learning Theory

Instructor: S. Minsker Scribe: S. Minsker

1.1 Exact recovery of sparse signals

Once again, assume that there is no noise $(\nu = 0)$. Can we recover λ exactly (with high probability)? We will positively answer this question below.

In what follows, assume that K is a convex set. Let E be the null space of \mathbf{X} , and let $\widehat{\lambda}$ be a solution to

$$\|\lambda'\|_{\mathcal{K}} \to \min$$
 subject to $\mathbf{X}\lambda' = Y$

Then $\widehat{\lambda} = \lambda \iff \mathcal{K} \cap \{\lambda + E\} = \{\lambda\}$ (in other words, the intersection of \mathcal{K} and the affine subspace $\lambda + E$ contains 1 point). Consider the descent cone of \mathcal{K} at the point λ ,

$$T_{\mathcal{K}}(\lambda) = \{ t(z - \lambda) : z \in K, t \ge 0 \}.$$

We have the following chain of implications (see figure 1.1 for the geometric depiction):

$$\{\lambda\} = \mathcal{K} \cap \{\lambda + E\} \iff$$
$$\{0\} = \{\mathcal{K} - \lambda\} \cap E \quad \text{if}$$
$$\{0\} = T_{\mathcal{K}}(\lambda) \cap E.$$

Next, define $S(\mathcal{K}, \lambda) = T_{\mathcal{K}}(\lambda) \cap S^{p-1}$ where $S^{p-1} = \{u \in \mathbb{R}^p : ||u||_2 = 1\}$. Then

$$T_{\mathcal{K}}(\lambda) \cap E = \{0\} \iff S(\mathcal{K}, \lambda) \cap E = \emptyset.$$

A estimate for the probability of the latter event is provided by the theorem below.

Theorem 1. The following inequality holds:

$$\Pr\left(\widehat{\lambda} \neq \lambda\right) = \Pr\left(S(\mathcal{K}, \lambda) \cap E \neq \emptyset\right) \le 2\sqrt{\frac{8\pi}{n}} \, w(S(\mathcal{K}, \lambda)).$$

Remark 1. It follows that if $n \gg w^2(S(K,\lambda))$, then the probability of exact recovery is large. For instance, for sparse vectors, $w^2(S(K,\lambda)) \lesssim s \log p$.

Proof. Apply Theorem 1 from last week's notes, together with the fact that for any set T,

$$\mathbb{E}\sup_{z\in T}|\langle z,g\rangle|\leq 2\mathbb{E}\sup_{z\in T}\langle z,g\rangle=w(T).$$

Choosing $T = S(\mathcal{K}, \lambda), E = \ker(\mathbf{X}), \varepsilon = 0$, we get that

$$\mathbb{E} \sup_{u \in S(\mathcal{K}, \lambda) \cap E} \|u\|_2 \le 2\sqrt{\frac{8\pi}{n}} \, w(S(\mathcal{K}, \lambda)).$$

Figure 1.1. Geometry of the exact recovery condition

Moreover, it is easy to see that

$$\sup_{u \in S(\mathcal{K}, \lambda) \cap E} \|u\|_2 = \begin{cases} 1, & S(\mathcal{K}, \lambda) \cap E \neq \emptyset \\ 0, & S(\mathcal{K}, \lambda) \cap E = \emptyset, \end{cases}$$

is the indicator function of the event $S(\mathcal{K}, \lambda) \cap E \neq \emptyset$, hence

$$\mathbb{E} \sup_{u \in S(\mathcal{K}, \lambda) \cap E} \|u\|_2 = \Pr \left(T_{\mathcal{K}}(\lambda) \cap S^{p-1} \neq \emptyset \right).$$

Note that this is not the most precise form of bound possible. Gordon's escape through a mesh theorem (that we are not going to prove) provides a sharper bound.

Theorem 2 (Gordon's "Escape Through a Mesh" theorem). Let S be a fixed subset of S^{p-1} , and let E be a subspace of \mathbb{R}^p of dimension p-n chosen uniformly at random. Assume that

$$\bar{w}(S) := \mathbb{E} \sup_{u \in S} \langle g, u \rangle < \sqrt{n}.$$

Then

$$\Pr\left(S \cap E \neq \emptyset\right) \le 2.5 \exp\left(-\left(n/\sqrt{n+1} - \bar{w}(S)\right)^2/18\right).$$

Finally, we will botain a bound on $w(S_{\mathcal{K}}(\lambda))$ where λ is s-sparse and $\mathcal{K} = \|\lambda\|_1 B_{\|\cdot\|_1}$. Let $J = J(\lambda)$ be the support of λ defined as

$$J = \{j \in \{1, \dots, p\} : \lambda_j \neq 0\},\$$

and let u_J be the vector u restricted to the set of coordinates with indices in the set J. Note that the cardinality of J is equal to s.

Lemma 1. The following statements hold: for any $\lambda' \in \mathcal{K}$,

(a)
$$\|(\lambda' - \lambda)_{J^c}\|_1 \le \|(\lambda' - \lambda)_J\|_1$$
;

(b)
$$\|\lambda' - \lambda\|_1 \le 2\sqrt{s} \|\lambda' - \lambda\|_2$$
.

Proof.

- (a) Note that
 - (1) $\|\lambda'\|_1 \leq \|\lambda\|_1$ by definition of \mathcal{K} ;

(2)
$$\|\lambda'\|_1 = \|\lambda + (\lambda' - \lambda)\|_1 = \|\lambda_J + (\lambda' - \lambda)_J\|_1 + \|\underbrace{\lambda_{J^c}}_{=0} + (\lambda' - \lambda)_{J^c}\|_1.$$

Applying the triangle inequality, we get $\|\lambda'\|_1 \ge \|\lambda_J\|_1 - \|(\lambda - \lambda)_J\|_1 + \|(\lambda' - \lambda)_{J^c}\|_1$. Combined with (1), it implies part (a).

(b) To prove the second inequality, note that

$$\|\lambda' - \lambda\|_1 = \|(\lambda' - \lambda)_J\|_1 + \|(\lambda' - \lambda)_{J^c}\|_1$$

$$\leq 2\|(\lambda' - \lambda)_J\|_1 \leq 2\sqrt{s}\|(\lambda' - \lambda)_J\|_2 \leq 2\sqrt{s}\|\lambda' - \lambda\|_2$$

Let $u := u(\lambda') = \frac{\lambda' - \lambda}{\|\lambda' - \lambda\|_2}$, and note that

- 1. $u \in S^{p-1}$ and
- 2. $u \in T_{\mathcal{K}}(\lambda)$.

Hence, $u \in S_{\mathcal{K}}(\lambda)$. It follows from part (b) of Lemma 1 that

$$u \in T_s = \{ v \in S^{p-1} : ||u||_1 \le 2\sqrt{s} \},$$

meaning that $S_{\mathcal{K}}(\lambda) \subseteq T_s$. Hence, it is enough to estimate $w(T_s)$. Note that

$$w(T_s) = 2\mathbb{E} \sup_{u \in T_s} \langle g, u \rangle = 4\sqrt{s} \,\mathbb{E} \sup_{u \in B_{\|\cdot\|}(1)} \langle g, u \rangle$$
$$= 4\sqrt{s} \,\mathbb{E} \max_{j=1,\dots,p} |\langle g, e_j \rangle|,$$

where we used the fact that $B_{\|\cdot\|}(1) = \operatorname{co}\{\pm e_j, \ j = 1, \dots, p\}$ where e_1, \dots, e_p is the canonical basis, and the invariance of the Gaussian mean width with respect to taking the convex hull. Finally, $4\sqrt{s} \mathbb{E} \max_{j=1,\dots,p} |\langle g, e_j \rangle| \leq 4\sqrt{2}\sqrt{s\log(2p)}$, hence we deduce that

$$w(S_{\mathcal{K}}(\lambda)) \le 4\sqrt{2}\sqrt{s\log(2p)},$$

which implies that recovery is exact with high probability whenever $n \gg s \log(2p)$.

Remark 2. The latter condition can be improved to $n \gg s \log(p/s)$ via a more delicate argument. This argument will be outlined in your last (optional) homework assignment.