for all $t \in (0, \delta)$. Note that if $||x||^m = 1$, then the maximum possible value of $|x_{i_1} \cdots x_{i_m}|$ is 1. So for any $x \neq 0$, we have $|x_{i_1} \cdots x_{i_m}| \leq ||x||^m$. Hence

$$\left|\frac{r(x)}{\|x\|^m}\right| \leq \frac{\epsilon}{m!} \sum_{i_1, \dots, i_m} \left|\frac{x_{i_1} \cdots x_{i_m}}{\|x\|^m}\right| \leq \frac{\epsilon n^m}{m!} \leq \epsilon \times \text{bounded quantity}.$$

This completes the proof.

Corollary: Taylor-I Let $E \subseteq \mathbb{R}^n$ be open, $f: E \to \mathbb{R}$ be in $\mathcal{C}^2(E)$ and $[a, a+x] \subseteq E$. Then [26.18]

$$f(a+x) = f(a) + \langle \nabla f(a), x \rangle + \frac{1}{2} x^t H(a) x + r(x),$$

where $\lim_{\|x\| \to 0} \frac{r(x)}{\|x\|^2} = 0$.

[26.19] Corollary: Taylor-II Let $E \subseteq \mathbb{R}^n$ be open, $f: E \to \mathbb{R}$ be in $\mathcal{C}^2(E)$ and $[a, a+x] \subseteq E$. Then $\exists t \in (0,1) \text{ such that}$

$$f(a+x) = f(a) + \langle \nabla f(a), x \rangle + \frac{1}{2} x^t H(a+tx) x.$$

[26.20] Taylor series Let $f: \mathbb{R}^n \to \mathbb{R}$ be infinitely differentiable. Then the Taylor series $T_f(x; a)$ of f about the point a is defined as

$$f(a) + \sum_{i} D_{i}f(a)(x-a)_{i} + \frac{1}{2!} \sum_{i,j} D_{ij}f(a)(x-a)_{i}(x-a)_{j} + \frac{1}{3!} \sum_{i,j,k} D_{ijk}f(a)(x-a)_{i}(x-a)_{j}(x-a)_{k} + \cdots$$

[26.21] <u>Example</u> Take $f(y, z) = y^2 z^4 + y z^3 - 5yz + 6$ and a = (1, 2). Find the coefficient of $(y - 1)^2 (z - 2)^2 + (y - 2)^2 +$ in $T_f((y,z);a)$ in two different ways.

$$yz^3 - 5yz + 6$$
 and $a = (1, 2)$. Find the coefficient of $(y-1)^2(z-2)^2$

$$\begin{cases}
4 & -7x^4 + 8x^3 \\
-7x^4 & -7x^4
\end{cases}$$

$$\begin{cases}
4 & -7x^4 + 8x^3 \\
-7x^4 & -7x^4
\end{cases}$$

$$\begin{cases}
4 & -7x^4 + 8x^3 \\
-7x^4 & -7x^4
\end{cases}$$

Answer. To apply Taylor's theorem, put w = (y, z) - (1, 2). Terms with degree 4 can only occur in

$$\frac{1}{4!} \sum_{i,j,k,l=1}^{2} D_{ijkl} f(a) \ w_i w_j w_k w_l.$$

We want $w_i w_j w_k w_l = (y-1)^2 (z-2)^2$, which can be done in $\frac{4!}{2!2!}$ ways. Hence, the coefficient is

$$\frac{1}{4!} \binom{4}{2} D_{1,1,2,2} f(a) = \frac{1}{2!2!} (2.4.3.2^2) = 24.$$

o Alternately, note that

$$f(y,z) = (y-1+1)^2(z-2+2)^4 - (y-1+1)(z-2+2)^3 - 5(y-1+1)(z-2+2) + 6.$$

The coefficient for $(y-1)^2(z-2)^2$ can only come from the first term. When expanded using binomial expansion, it will look like $(y-1)^2\binom{4}{2}(z-2)^22^2$. So the required coefficient is 24.

To remember the coefficients of Taylor series of $f: \mathbb{R}^n \to \mathbb{R}$ at a.

- a) Take $\alpha = (\alpha_1, \dots, \alpha_n)$ where α_i are nonnegative integers and take $a = (a_1, \dots, a_n)^t$.
- b) Use the notations $\boldsymbol{D}^{\boldsymbol{\alpha}} := D_1^{\alpha_1} D_2^{\alpha_2} \cdots D_n^{\alpha_n}, \quad \boldsymbol{x}^{\boldsymbol{\alpha}} := x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}, \quad \alpha! := \alpha_1! \alpha_2! \cdots \alpha_n!.$
- c) Then the coefficient of x^{α} in $T_f(x;a)$ is $\frac{1}{\alpha!}D^{\alpha}f(a)$.

Positive definite matrices

<u>Definition</u> Let $A \in M_n(\mathbb{C})$. [27.1]

a) It is called POSITIVE DEFINITE(pd) if $x^*Ax > 0$ holds $\forall x \in \mathbb{C}^n \setminus \{0\}$.

b) It is called Positive Semidefinite(psd) if $x^*Ax \geq 0$ holds $\forall x \in \mathbb{C}^n$.

XX Ax SO AX E CD

[27.2]Facts and examples

a) Let $A \in M_n(\mathbb{C})$ be pd. Then $a_{ii} = e_i^t A e_i > 0$.

UCMA ** OFME

a') Let $A \in M_n(\mathbb{C})$ be psd. Then $a_{ii} = e_i^t A e_i \geq 0$.

b) Take any matrix $A \in M_n(\mathbb{C})$. Then A^*A and AA^* are psd. If A is nonsingular, then they are pd.

Proof. (Self) For each x, we have $x^*A^*Ax = (Ax)^*Ax = ||Ax||^2 \ge 0$. If $x \ne 0$ and A is nonsingular, then $Ax \neq 0$ and so $||Ax||^2 > 0$.

2* (A* A)x = (Ax) Ax = 1Ax127,0

Let A = 0. Then A = 0, S = 0, A = 0.

The matrix I is pd. The zero matrix is a S = 0.

2 1 M = M1 >0

d) A pd matrix is by definition a psd matrix.

e) A singular matrix cannot be pd.

27 Ar = 0, soit convot be pol

[27.3]<u>Fact</u> (Psd implies Hermitian) Let $A \in M_n(\mathbb{C})$ be a psd matrix. Then $A^* = A$.

Proof. (Self) Fix $i, j, i \neq j$. Let $v = e_i + e_j$. As $v^*Av \geq 0$, we have $a_{ii} + a_{ij} + a_{ji} + a_{jj} \geq 0$. But we already know that $a_{ii} + a_{jj} \ge 0$. So, we get $a_{ij} + a_{ji} \in \mathbb{R}$. That is, $Im(a_{ij}) = -Im(a_{ji})$.

Now take $v = e_i + ie_j$. As $v^*Av \ge 0$, we have $a_{ii} + ia_{ij} - ia_{ji} + a_{jj} \ge 0$. But we already know that $a_{ii} + a_{jj} \ge 0$. So, we get $a_{ij} - a_{ji} \in i\mathbb{R}$. That is, $Re(a_{ij}) = -Re(a_{ji})$.

7,0

So $\overline{a_{ij}} = a_{ji}$.

Pld => ling embries 162

[27.4]**<u>Lemma</u>** Let $A \in M_n(\mathbb{R})$.

- (a) Then A is pd iff $A^t = A$ and $x^t A x > 0$ holds $\forall x \in \mathbb{R}^n, x \neq 0$.
 - b) Then A is psd iff $A^t = A$ and $x^t A x \ge 0$ holds $\forall x \in \mathbb{R}^n$.

Proof. (Self) a) Let A be a real pd matrix. As A is pd, it is Hermitian, and in our case it is symmetric. and $x^t Ax > 0$ for all real $x \neq 0$.

Conversely, suppose that A is real symmetric and $x^t Ax > 0$ for all real $x \neq 0$. Note that, for a real symmetric matrix A, we have $x^tAy = y^tAx$. Hence

$$(x + iy)^* A(x + iy) = x^t Ax + y^t Ay + i(x^t Ay - y^t Ax) = x^t Ax + y^t Ay > 0,$$

if $x + iy \neq 0$. The proof for b) is similar.

at Ax >0 \ x x to red => A is pl, ax Ax >0

- $\underline{\mathbf{Theorem}}$ (Equivalent conditions for pd/psd) Let $A \in M_n(\mathbb{C})$. TFAE. [27.5]
- \checkmark a) A is pd (resp. psd).
- ✓ b) $A^* = A$ and the eigenvalues of A are positive (resp. nonnegative).
- \checkmark c) $A = B^*B$ for some nonsingular (resp. not necessarily nonsingular) matrix B.

Proof. (Self) a) \Rightarrow b). Let A be pd. We already know that $A^* = A$. Let (λ, x) be an eigenpair. Then $x^*Ax = x^*x\lambda \Rightarrow \lambda = \frac{x^*Ax}{x^*x} > 0$, as A is pd.

b) \Rightarrow c). Suppose that $A^* = A$ and all eigenvalues of A are positive. Then, by spectral theorem (for Hermitian matrices), there exists a unitary matrix U and a diagonal matrix $\Lambda = diag(\lambda_1, \ldots, \lambda_n), \lambda_i > 0$ such that $A = U^* \Lambda U$. So

$$A = U^* \Lambda^{1/2} \Lambda^{1/2} U = U^* \Lambda^{1/2} U U^* \Lambda^{1/2} U = B^* B.$$

Notice that B is nonsingular as Λ has positive diagonal entries.

A pd = s eig volus

(7,x) -> eigen pair $c) \Rightarrow a$). Already done. The proof for the psd part is similar. Matrix alors

matrix alors

eigenaturs H

163

[27.6]Definition

- a) Let $A \in M_n(\mathbb{C})$ and $S \subseteq [n]$. By A(S, S), we denote the submatrix of A whose entries are indexed by S.
- This is called the PRINCIPAL SUBMATRIX of A indexed by S.

 b) For $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \\ 0 & 2 & 3 & 1 \\ 9 & 8 & 7 & 6 \end{bmatrix}$ and $S = \{1,4\}$, we have $A(S,S) = \begin{bmatrix} 1 & 4 \\ 9 & 6 \end{bmatrix}$.

c) A LEADING PRINCIPAL SUBMATRIX is one for which the subset S is $\{1, 2, \dots, k\}$ for some k.

$$S = \{1,2\}$$
 [1]
 $S = \{1,2\}$ [1,2]
 $S = \{1,2,3\}$ [1,23]
 $S = \{1,2,3\}$ [1,23]

- d) For the matrix A in b), and $S = \{1, 2\}$, we have $A(S, S) = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. It is a leading principal submatrix.
- e) The matrix A in b), has only four leading principal submatrices.
- f) The determinant of a square submatrix is called a MINOR. The determinant of a leading principal submatrix is called a 'leading principal minor'.
- g) Sometimes we use A(S|S) to mean the matrix $A(S^c, S^c)$.

A(S\S):= A(S,S)

We will need the following two results from advanced linear algebra.

<u>Cauchy interlacing theorem</u> Let A and $B = \begin{bmatrix} A & y \\ y^* & b \end{bmatrix}$ be Hermitian. Let $\lambda_1 \leq \cdots \leqslant \lambda_n$ be the eigenvalues of A and $\mu_1 \leq \cdots \leq \mu_{n+1}$ be the eigenvalues of B. Then $\mu_1 \leq \lambda_1 \leq \mu_2 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \mu_{n+1}.$

That is, the eigenvalues of A and B interlace.

[27.8]**Theorem** The eigenvalues of a matrix A are continuous functions of its entries.

Now we can give two useful conditions to test whether a matrix is pd/psd.

- [27.9]<u>Theorem</u> (Test for pd/psd) Let $A \in M_n(\mathbb{C})$.
- a) Then A is pd iff $A^* = A$ and the leading principal minors of A are positive.
- b) Then A is psd iff $A^* = A$ and all principal minors are nonnegative.

Leading principal minors

Leading principal minors $\lambda_1 \quad \alpha_{11} < \lambda_2 < 70$

Proof. (Not for exam) a) Suppose that A is pd. Then $A^* = A$ and the eigenvalues $\lambda_i > 0$. By Cauchy interlacing theorem, the eigenvalues of the leading principal matrices are > 0. Hence their determinant is positive.

Conversely, suppose that $A^* = A$ and the leading principal minors are positive. By use of interlacing, we see that eigenvalues of A are positive. So A is pd.

b) If A is psd, then showing all principal minors ≥ 0 is similar to that of a). To prove the converse, let $A^* = A$ and assume that all principal minors are ≥ 0 . Note that

$$|A + \epsilon e_1 e_1^t| = (a_{11} + \epsilon)|A(1|1)| - a_{12}|A(1|2)| + a_{13}|A(1|3)| - \dots = |A| + \epsilon|A(1|1)| \ge |A|,$$

so that adding $\epsilon > 0$ to a diagonal entry does not decrease the determinant. Notice that we get $|A + \epsilon e_1 e_1^t| > |A|$, if |A(1|1)| > 0 and $\epsilon > 0$.

Next we show that $|A + \epsilon I| > 0$ whenever A has all minors nonnegative. We proceed by induction. Assume that it is true for n-1. Consider the case for n and let B be obtained by adding ϵ to all diagonal entries of A except the first. Notice that A(1|1) is Hermitian and it has all principal minor ≥ 0 . By induction hypothesis, we have that |B(1|1)| > 0. Hence by earlier argument |B| > 0.

It now follows that $A + \epsilon I$ is pd. This is true for each $\epsilon > 0$. As eigenvalues are continuous functions of the entries, it follows that eigenvalues of A are nonnegative. Hence A is psd.

[27.10] <u>NoPen</u>

- a) If we say 'a matrix $A \in M_n(\mathbb{C})$ is psd iff $A^* = A$ and all leading principal minors are nonnegative', what would go wrong?
- b) Let $A \in M_n(\mathbb{C})$ be pd. Should every (nonempty) principal submatrix of A be pd?
- c) Let $A \in M_n(\mathbb{C})$ have positive eigenvalues. Must it be similar to a positive definite matrix?
- d) If A is pd and S is a nonsingular matrix, is S^*AS necessarily pd?
- e) How do I create a pd matrix $A \in M_{20}(\mathbb{R})$ which does not have a zero entry?
- f) Let $f \in \mathcal{C}^2(E)$, $E \subseteq \mathbb{R}^n$ be open and $a \in E$. Suppose that $B_{\delta}(a) \subseteq E$ and for each $x \in B_{\delta}(a)$, $x \neq a$, we see that H(x) is a pd matrix. Can we conclude that H(a) is a psd matrix?

[27.11] Exercise(E+) Let $A \in M_n(\mathbb{C})$ be a positive definite matrix and $\lambda > 0$ be the smallest eigenvalue of A. Show that, for each $x \in \mathbb{C}^n$, we have $x^*Ax \ge \lambda x^*x$.