

LSE at DEFT 2018: Classification of tweets based on Deep Learning

Antoine Sainson

Hugo Linsenmaier

Alexandre Majed

Xavier Cadet

Abdessalam Bouchekif

Introduction

- > Tasks 1 (0.894) and 2 (0.793).
- > Text Classification.
- Deep Learning models: CNN, LSTM, BLSTM, GRU.

Applications

- > Google news
- > Feedback of customers

Pipeline

Preprocessing

Lemmatization

- TreeTagger
- > Get rid of gender and number agreement
- > Transform word into its canonical form
 - Verbs to infinitive form:
 - "ai" -> "avoir"

Normalization

- > Lower Case
- > Remove useless information
 - URLs, emails, dates
 - "le", "de", "te", "ce"
- Keep negation words for sentiment analysis
- Group smiley by feelings

Concrete Example

Si vs avez pas le bac svp ne pensez pas a vous suicider sur la ligne du RER D merci

vs pas bac svp ne penser pas suicider ligne rer merci

Word Embeddings

Word Embeddings

- Scalar Vector Representation of a Word
- Context Sensitive
- > One hot representation
- > FastText

```
Le = \begin{bmatrix} 1, 0, 0, 0, 0 \end{bmatrix}

Bus = \begin{bmatrix} 0, 1, 0, 0, 0 \end{bmatrix}

Est = \begin{bmatrix} 0, 0, 1, 0, 0 \end{bmatrix}

En = \begin{bmatrix} 0, 0, 0, 1, 0 \end{bmatrix}

Retard = \begin{bmatrix} 0, 0, 0, 0, 0, 1 \end{bmatrix}
```

Skip-Gram

> Predict the context of words

Source Text

(Le, bus) Le bus est souvent en retard le matin. (Le, est) (bus, Le) Le bus est souvent en retard le matin. (bus, est) (bus, souvent) Le bus est souvent en retard le matin. (est, Le) (est, bus) (est, souvent) (est, en) Le bus est souvent en retard le matin. (souvent, bus) (souvent, est) (souvent, en) (souvent, retard)

Training Samples

N-Grams

P. Bojanowski et al, 2017

LSE

- > Way to deal with noisy data
- Each word is treated as a 'list' of subwords
- > Example for the french word 'retard':

[<re, ret, eta, tar, ard, rd>, <retard>]

Word2vec Learning

- > #RATP (169K)
- > #SNCF (453K)
- > #IleDeFrance (90K)
- External Corpus (~50K)

- > Context Window: 4
- > Min Count: 5
- > Skip-Gram

Thematic/Polarity Value > Probability of given word to belong to a

- Probability of given word to belong to a class.
- > "Bonheur":
 - 85% positive
 - 12% negative
 - 0% neutral
 - 3% mixed
- ➤ "Bus":
 - 77% transport
 - 23% unknown

Input Features

- > Word Embedding (100)
- > "Thematic/Polarity" value (2 or 4)

Models

Recurrent Models: LSTM, GRU, BLSTM

LSTM is capable of learning long term dependencies

> GRU is a simplified version of LSTM

BLSTM consists in running 2 LSTMs in parallel

Convolutional Neural Networks

Obtain good results on text classification tasks

Composed of convolutional layers, pooling layers and fully connected layers

Results

Parameters for RNNs

- Loss: binary/categorical crossentropy
- > LSTM: 8 epochs
- > GRU: 7 epochs
- BLSTM: 10 epochs

CNN₁

- Loss: binary/categorical cross-entropy
- > 10 epochs

CNN2

Dense layer

- Loss: binary/categorical cross-entropy
- > optimizer:
- > 6 epochs

CNN Kernel Merge

Results - Task 1

Type de réseau	Precision	F1-measure
CNN 1	0.799	0.888
CNN 2	0.798	0.888
CNN Kernel Merge	0.803	0.890
BLSTM	0.810	0.892
GRU	0.800	0.889
LSTM	0.795	0.886
Combination with NN	0.767	0.868
Average	0.808	0.894

Results - Task 2

Type de réseau	Precision	F1-measure
CNN 1	0.605	0.754
CNN 2	0.610	0.757
CNN Kernel Merge	0.639	0.780
BLSTM	0.623	0.768
GRU	0.641	0.781
LSTM	0.632	0.774
Combination with NN	0.610	0.757
Average	0.657	0.793

Results

Results - LSTM

Répartition des labels du modèle LSTM

Results - BLSTM

Répartition des labels du modèle BLSTM

Results - CNN

Répartition des labels du modèle CNN

Results - GRU

LSE

Répartition des labels du modèle GRU

Annotation

Ya intérêt que le bus soit à l'heure parce que en retard le premier jour c'est moyen

Si vs avez pas le bac svp ne pensez pas à vous suicider sur la ligne du RER D merci

Conclusion et perspectives (LSE

- > Transfert Learning
- Combination using logistic regression

Any Questions?

Let the fun begin

$$\sum_{t=1}^{T} \sum_{c \in \mathcal{C}_t} \log p(w_c \mid w_t)$$

$$\log\left(1 + e^{-s(w_t, w_c)}\right) + \sum_{n \in \mathcal{N}_{t,c}} \log\left(1 + e^{s(w_t, n)}\right)$$

$$\sum_{t=1}^{T} \left[\sum_{c \in \mathcal{C}_t} \ell(s(w_t, w_c)) + \sum_{n \in \mathcal{N}_{t,c}} \ell(-s(w_t, n)) \right]$$