Advanced Calculus

Tougaloo College

Finite, Countable, and Uncountable Sets

Definition 1.

For any positive integer n, let J_n be the set whose elements are the integers 1, 2, 3, ..., n.

Let J be the set consisting of all positive integers.

For any set A, we say,

- 1. A is finite, if $A \sim J_n$.
- 2. *A* is infinite if *A* is not finite. (or *A* is infinite if *A* is equivalent to one of its proper subsets.)
- 3. *A* is countable if $A \sim J$.
- 4. A is uncountable if A is neither finite nor countable.
- 5. A is at most countable if A is finite or countable.

Finite, Countable, and Uncountable Sets (ii)

Example: Let A be the set of all integers (of course not finite). Prove that A is countable.

Goal: $J \sim A$

We can define a piecewise function $f: J \to A$.

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ even} \\ -\frac{n-1}{2} & \text{if } n \text{ odd} \end{cases}$$

f is 1-1.

for any $n_1 \neq n_2$, $f(n_1) \neq f(n_2)$.

f is onto.

This is trivial because for any $y \in A$, you have a $n \in J$.

Therefore we have 1-1 correspondence. By the definition, A is countable.

Finite, Countable, and Uncountable Sets (iii)

Definition 2: Sequence.

A sequence is a function f defined on the set of all positive integers. If $f(n) = x_n$, for $n \in \mathbb{Z}^+$ denote the sequence f by the symbol $\{x_n\}$. The values of f (the elements x_n), are called the **terms** of the sequence.

If A is a set and if $x_n \in A$ for all $n \in \mathbb{Z}^+$, then $\{x_n\}$ is said to be a sequence in A.

Examples:

$$\{2, 4, 6, 8, ...\}$$

 $\{1, 1, 1, ...\}$

Finite, Countable, and Uncountable Sets (iv)

Theorem 1.

Every infinite subset of a countable set A is countable.

Proof:

Suppose $E \subset A$, and E is infinite.

Arranging the elements x of A in a sequence $\{x_n\}$ of distinct elements.

Construct a sequence $\{n_k\}$ as follows:

Let n_1 be the smallest integer such that $x_{n_1} \in E$.

Having chosen $n_1,...,n_{k-1}$, let n_k be the smallest integer greater than n_{k-1} such that $x_{n_k} \in E$.

Define $f: J \to E$ such that $f(k) = x_{n_k}$

f is one to one and onto.

Therefore we obtain a 1-1 correspondence between E and J.

E is countable.

Finite, Countable, and Uncountable Sets (v)

Definition 3.

Let A and Ω be sets, and suppose that with each element α of A there is associated a subset E_{α} of Ω .

The set whose elements are the sets E_{α} is denoted by $\{E_{\alpha}\}$.

This is set of sets.

The union of the sets E_{α} is defined to be the set S such that $x \in S$ if and only if $x \in E_{\alpha}$ for at least on $\alpha \in A$.

$$S = \cup_{\alpha \in A} E_{\alpha}$$

If A consists of the integers 1, 2, ..., n

$$S = \cup_{m=1}^n E_m = E_1 \cup E_2 \cup E_n$$

If *A* is the set of all positive integers,

$$S = \cup_{m=1}^{\infty} E_m$$

Finite, Countable, and Uncountable Sets (vi)

The intersection of the sets E_{α} is the set P such that $x \in P$ if and only if $x \in E_{\alpha}$ for every $\alpha \in A$.

$$P = \cap_{\alpha \in A} E_{\alpha}$$

or

$$P = \cap_{m=1}^n E_m = E_1 \cap E_2 \cap \ldots \cap E_m$$

or

$$P = \cap_{m=1}^{\infty} E_m$$

If $A \cap B$ is empty, we say that A and B are disjoint.

Finite, Countable, and Uncountable Sets (vii)

Example:

Suppose

$$E_1 = \{1, 2, 3\}$$

and

$$E_2 = \{2, 3, 4\}$$

- 1. What is $E_1 \cup E_2$?
- 2. What is $E_1 \cap E_2$?

Finite, Countable, and Uncountable Sets (viii)

Example:

Let A be the set of real numbers x such that $0 < x \le 1$. For every $x \in A$, let E_x be the set of real numbers y such that 0 < y < x. Prove that

- 1. $E_x \subset E_z$ if and only if $0 < x \le z \le 1$.
- $2. \ \cup_{x \in A} E_x = E_1$
- 3. $\cap_{x \in A} E_x$ is empty.