Лекция 14: Проектирование распределённых приложений

Часть вторая: стратегические вопросы

Юрий Литвинов y.litvinov@spbu.ru

14.12.2021

Representational State Transfer (REST)

- Модель клиент-сервер
- Отсутствие состояния
- Кэширование
- Единообразие интерфейса
- Слои

Интерфейс сервиса

- Коллекции
 - http://api.example.com/resources/
- Элементы
 - http://api.example.com/resources/item/17
- HTTP-методы
 - GET
 - PUT
 - POST
 - ▶ DELETE
- Передача параметров прямо в URL
 - http://api.example.com/resources?user=me&access_token=ASFQF

Пример, Google Drive REST API

- GET https://www.googleapis.com/drive/v2/files список всех файлов
- GET https://www.googleapis.com/drive/v2/files/fileId метаданные файла по его Id
- POST https://www.googleapis.com/upload/drive/v2/files загрузить новый файл
- PUT https://www.googleapis.com/upload/drive/v2/files/fileId обновить файл
- DELETE https://www.googleapis.com/drive/v2/files/fileId удалить файл

Достоинства

- Надёжность
- Производительность
- Масштабируемость
- Прозрачность системы взаимодействия
- Простота интерфейсов
- Портативность компонентов
- Лёгкость внесения изменений

Микросервисы

- Набор небольших сервисов
 - Разные языки и технологии
- Каждый в собственном процессе
 - Независимое развёртывание
 - Децентрализованное управление
- Легковесные коммуникации

Монолитные приложения

- Большой и сложный MVC
- Единый процесс разработки и стек технологий
- Сложная архитектура
- ▶ Сложно масштабировать
- Сложно вносить изменения

Разбиение на сервисы

monolith - multiple modules in the same process

microservices - modules running in different processes

Основные особенности

- Микросервисы и SOA
- Smart endpoints and dumb pipes
- Проектирование под отказ
- Асинхронные вызовы
- Децентрализованное управление данными
- Автоматизация инфраструктуры
- Эволюционный дизайн

Основные проблемы

- Сложности выделения границ сервисов
- Перенос логики на связи между сервисами
 - Большой обмен данными
 - Нетривиальные зависимости
- Нетривиальная инфраструктура
- Нетривиальная переиспользуемость кода

Архитектура Peer-to-Peer

- Децентрализованный и самоорганизующийся сервис
- Динамическая балансировка нагрузки
 - Вычислительные ресурсы
 - Хранилища данных
- Динамическое изменение состава участников

Skype: Overlayed P2P

BitTorrent: Resource Trading P2P

- Обмен сегментами
- Поиск не входит в протокол
- Трекеры
- Метаданные
- Управление приоритетами
- Бестрекерная реализация

Docker

- Средство для "упаковки" приложений в изолированные контейнеры
- Что-то вроде легковесной виртуальной машины

 Широкий инструментарий: DSL для описания образов, публичный репозиторий, поддержка оркестраторами

Docker Image

- Окружение и приложение
- Состоит из слоёв
 - Все слои read-only
 - Образы делят слои между собой как процессы делят динамические библиотеки
- На основе одного образа можно создать другой

Docker Container

- Образ с дополнительным write слоем
- Содержит один запущенный процесс
- Может быть сохранен как новый образ

DockerHub

- Внешний репозиторий образов
 - Официальные образы
 - Пользовательские образы
 - Приватные репозитории
- ▶ Простой CI/CD
- Высокая доступность

Базовые команды

- docker run запускает контейнер (при необходимости делает pull)
 - -d запустить в фоновом режиме
 - -p host_port:container_port прокинуть порт из контейнера на хост
 - -i -t запустить в интерактивном режиме
 - ▶ Пример: docker run -it ubuntu /bin/bash
- docker ps показывает запущенные контейнеры
 - ▶ Пример: docker run -d nginx; docker ps
- docker stop останавливает контейнер (шлёт SIGTERM, затем SIGKILL)
- ▶ docker exec запускает дополнительный процесс в контейнере

Dockerfile

Use an official Python runtime as a parent image FROM python:2.7-slim

Set the working directory to /app WORKDIR /app

Copy the current directory contents into the container at /app ADD . /app

Install any needed packages specified in requirements.txt RUN pip install --trusted-host pypi.python.org -r requirements.txt

Make port 80 available to the world outside this container EXPOSE 80

Define environment variable

ENV NAME World

Run app.py when the container launches CMD ["python", "app.py"]

Балансировка нагрузки

docker-compose.yml

```
version: "3"
services:
  web.
    # replace username/repo:tag with your name and image details
    image: username/repo:tag
    deploy:
      replicas: 5
      resources:
        limits:
          cpus: "0.1"
          memory: 50M
      restart_policy:
        condition: on-failure
    ports:
      - "80:80"
    networks:
      - webnet
networks:
  webnet:
```

Swarm-ы

- Машина, на которой запускается контейнер, становится главной
- Другие машины могут присоединяться к swarm-у и получать копию контейнера
- Docker балансирует нагрузку по машинам

ingress network

© https://www.docker.com

4 D F 4 M F 4 B F 4 B F