1^a Lista de Revisão – Modelagem Matemática I – C03N

Modelagem

- 1) [de Andrade] Uma pequena manufatura produz dois modelos, Standard e Luxo, de um certo produto. Cada unidade do modelo Standard requer duas horas de lixação e uma hora de polimento. Cada unidade do modelo Luxo exige duas horas de lixação e três horas de polimento. A fábrica dispõe de duas lixadoras e três polidoras, cada qual trabalhando 40 horas semanais. As margens de lucro são R\$ 24 e R\$ 32, respectivamente, para cada unidade Standard e Luxo. Não existem restrições de demanda para ambos os modelos. Elabore um modelo de programação linear que permita calcular a produção semanal que maximiza a margem total de lucro do fabricante.
- 2) [de Andrade] Uma companhia produz três tipos de fertilizantes, a partir da mistura de ingredientes à base de nitrato, fosfato e potássio e de um componente inerte, conforme mostra a tabela abaixo, a qual apresenta também os preços de venda dos fertilizantes.

TIPO DE FERTILIZANTE	% PESO NITRATO	%PESO FOSFATO	%PESO POTÁSSIO	%PESO COMPONENTE INERTE	PREÇO DE MERCADO (R\$/ton)
A	5	10	5	80	800
В	5	10	10	75	960
C	10	10	10	70	1 100

Os dados sobre disponibilidade e custos dos ingredientes aparecem na tabela abaixo.

INGREDIENTES	DISPONIBILIDADE (ton)	CUSTO (R\$/ton)		
NITRATO	1 200	3 000		
FOSFATO	2 000	1 000		
POTÁSSIO	1 400	1 800		
COMP. INERTE	ILIMITADA	200		

O custo da mistura, empacotamento e promoção de vendas é estimado em R\$ 300 por tonelada para quaisquer produtos. A companhia possui contrato de longo prazo para fornecimento mensal de 6 500 toneladas de fertilizante A.

Elabore o modelo de PL de modo a propor a programação de produção para o próximo mês, com o objetivo de maximizar o lucro.

Método gráfico

3) [de Andrade] Dado o modelo de programação linear a seguir, obtenha a solução ótima pelo método gráfico

Maximizar
$$z = 3x_1 + 4x_2$$

Sujeito a:

$$3x_1 + 2x_2 \le 12$$

$$4x_1 + 6x_2 \le 24$$

$$x_1, x_2 \ge 0$$

4) [de Andrade] Dado o seguinte modelo:

$$Maximizar z = x_1 + x_2$$

Sujeito a:

$$4x_1 + 2x_2 \le 8 \text{ (Recurso 1)}$$

 $3x_1 + 5x_2 \le 15 \text{ (Recurso 2)}$
 $x_1, x_2 \ge 0$

- a) Ache a solução ótima pelo método gráfico
- b) Caso o recurso 2 tenha um acréscimo em sua disponibilidade de 15 para 20 unidades, quais as variações na estrutura do modelo?
- c) Qual a nova solução ótima?

Simplex

- 5) Resolva os seguintes modelos de programação linear pelo método Simplex:
 - a) Maximizar $z = 9x_1 + 3x_2$ Sujeito a:

$$2x_1 + x_2 \le 14$$

$$2x_1 + 3x_2 \le 24$$

$$x_1, x_2 \ge 0$$

b) Maximizar $z = 16x_1 + 12x_2$ Sujeito a:

$$2x_1 \le 8$$

$$2x_1 + 3x_2 \le 12$$

$$2x_1 + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

c) Maximizar $z = 3x_1 + 5x_2 + x_3$ Sujeito a:

$$2x_1 + 4x_2 + x_3 \le 16$$

$$6x_1 + 2x_2 \le 24$$

$$2x_2 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

Análise de Sensibilidade

6) [de Andrade] Uma empresa fabricante de móveis de copa trabalha com três modelos principais de conjuntos aos quais denomina MXA, MXB e MXC (x1, x2 e x3, respectivamente), cuja produção semanal deseja programar. As margens unitárias de lucro dos modelos são, respectivamente, R\$ 20, R\$ 8 e R\$ 3. Os três conjuntos utilizam as três principais seções da fábrica, que chamaremos Seção 1, Seção 2 e Seção 3, conforme os coeficientes unitários de utilização mostrados no modelo de programação linear abaixo. As seções dispõem das seguintes capacidades semanais de trabalho, respectivamente: 240 funcionários-horas (F · h), 320 F · h e 480 F · h. O modelo de programação linear utilizado pelo setor de planejamento da empresa para a produção da próxima semana é o seguinte:

Achar
$$x_1$$
, x_2 e x_3 de modo a Maximizar lucro = $20x_1 + 8x_2 + 3x_3$ Respeitando as restrições:
$$4x_1 + x_3 \le 240 \text{ (Seção 1)}$$

$$4x_1 + 2x_2 + 2x_3 \le 320 \text{ (Seção 2)}$$

$$3x_1 + 4x_2 \le 480 \text{ (Seção 3)}$$

O quadro a seguir mostra os resultados do processo de solução do Método Simplex.

BASE	x_1	x_2	x_3	y_1	y_2	y_3	=
	1	0	1/4	1/4	0	0	60
	0	1	1/2	-1/2	1/2	0	40
	0	0	-5/4	5/4	-2	1	140
LUCRO	0	0	6	1	4	0	1520

- a) Complete a coluna da "Base"
- b) Caso a empresa possa acrescentar mais $60 F \cdot h$ a alguma seção, qual deverá ser a seção escolhida? Por quê?
- c) Na hipótese anterior, quais os novos valores das produções ótimas e quais as novas utilizações dos recursos?