Machine Learning as a Platform at PayPal Risk

基于实践经验总结和提炼的品牌专栏 尽在【极客时间】

重拾极客时间,提升技术认知

全球技术领导力峰会

通往年薪百万的CTO的路上, 如何打造自己的技术领导力?

扫描二维码了解详情

Start from a Sophisticated Payment Fraud Case

♦ The fraudsters scaled the attack by opening many accounts

♦ The attack cause this loss in just a few days

♦ It was a clean and sophisticated fraud with no links or velocity

Agenda

An End-to-End Machine Learning Platform

Deep Learning Inference Framework & Service

Best Practices & Learnings

Agenda

PayPal Risk: Building Trust in a New World

Industry Trends Redefining the Way PayPal Builds Trust Between Buyers and Sellers

40% of money is in the form of checks or cash; predicted to go down to 25%¹

MOBILE PAYMENTS BECOMING MAINSTREAM

Mobile spending projected to rise by roughly \$190B over the next 3 years²

CHIEF RISK OFFICER = CHIEF TRUST OFFICER

500M to 1B identities stolen globally; \$32M in U.S. retail fraud losses³

Sources: ¹ Nielsen, Dept of Commerce, JP Morgan; ² PayPal & IPSOS Study; ³ Symantec, Gemalto, LexisNexis

Hybrid Solution of Risk Fraud Detection & New Product Promotion

^{*} Different kinds of models adopted in different fraud cases

- * Strategies is tree based rules based on machine learning model scores
- * Rules for some fraud trend which cannot be reflected in models in time

More and More Machine Learning Scenarios at PayPal Risk

More and More Business Cases

Platform Requirements

New ML Model On Board

Agenda

Overview: An End-to-End Machine Learning Platform Offline Data/Feature Mart Management/Processing Data Data Processing / Acquisition Aggregation Feature Mart Data Cleaning End-to-End Training Pipeline Platform Model Deployment/Execution Management Portable Model Model Cycle Engine / Management Framework (Auto) Model Model Metrics Shifu/ Pipeline Management Resource Resource Auditing XGBoost/TF/ Manager Framework Cluster Unified

One Portal

Hadoop/HBase Data Storage

Offline
Data/Feature Mart

Offline/Online
Model Store

Unified
Compute/Model
Service

1. Data & Feature Platform

Pain point: > 50% of time is in feature engineering: data preparation, data cleaning, data transforming

- ♦ Feature data mart is built to solve feature engineering pain point
- ♦ Clean data daily before new data ETL to data mart
- ♦ Dashboard for users to check feature metrics
- ♦ UDF for user easy to do transform
- ♦ Built on Pig/Hive/SparkSQL, unified interface / pipeline

Statistical Features & Complicated/Embedding Features

Variable: traditional variable is profile/behavior based statistical variables like # of transactions in a period.

Example: transaction decay value in last 60 hours

Component: complicated variable developed by complicated data mining process like clustering or classifying on specified data set.

Example: fraud networks on clustering

Typical use case: collusion model

- 1. The fraudsters scaled the attack by opening many accounts
- 2. The attack causes this loss in just a few days
- 3. It was a clean and sophisticated fraud with no links or velocity

2. (Auto) End-to-End Training Platform

Training Pipeline Layer

Resource Management Layer

♦ Training Pipeline Layer

- → Full pipeline support without stepping out
- ♦ Flexible pipeline (restarting from every step)
- ♦ Large scale/high performance for more tries
- ♦ More training frameworks proactively adapted
- ♦ More AI approaches natively support
- ♦ Integrated with offline/online model store

- ♦ Such layer is transparent to front-end users
- ♦ Unified data input layer
- ♦ Multiple tenancy support for resources
- ♦ Scheduler for CPU & GPU resources

14

Ensemble/Segment/Embedding Model Native Support

Ensemble Models

Segment Models

Embedding Model

- 1. Meta model can be LR/NN/GBDT/LSTM ...
- 2. Ensemble model by LR or Poly-Regression by align different model scores into one score
- 3. Logic under ensemble is each mode has lift, by ensemble, can leverage all lifts

- Segment is business condition
- 3. Start from a general model, then deep into segments to 3. Model cascading like ensemble models check if segment model is needed
- 1. Embedding is useful for new feature generation
- 2. In different segments, models/features can be different 2. Final models leverage raw features and embedded features

3. (Auto) Model Deployment & Execution

PayPa

Offline & Online Model Cycle Management

Offline Model Cycle Management

♦ Offline Model Store

- ♦ Store historical models
- ♦ Key checkpoint model storage
- ♦ Link with model sync system for fast model push

♦ Model Profile Information

- ♦ Modeling platform, version
- ♦ Training data information, variable stats
- ♦ For ensemble, sub model profile information
- ♦ Variable importance
- ♦ Key training parameters

♦ Model Evaluation Result

- ♦ Evaluation data stats
- ♦ Performance metrics

→

Online Model Cycle Management

♦ Model State Management

- ♦ Deploy -> Audit -> Serving -> Dead
- ♦ Version management
- ♦ Ensemble/segment model management

♦ Model Metrics Collection & Monitor

- ♦ Computation cost
- ♦ Memory cost
- ♦ Disk cost
- ♦ Feature cost

♦ Portable Model Engine / Service

- ♦ Easy to port into compute service/model service/...
- ♦ Isolate CPU with IO, enable CPU optimizations
- ♦ Isolate audit model & production model computation

♦

Machine Learning Pipeline Framework

Shifu is an open-source, end-to-end machine learning and data mining framework built on top of Hadoop.

- https://github.com/ShifuML/shifu
- 5+ orgs/companies leverage Shifu to train models outside of PayPal
- 5+ contributors for PR outside of PayPal

Fast & Powerful: Distributed training to handle large dataset.

Standard process and independent tool to build model

Data Scientist + Engineer = More Possible

18

- Variable ReBinning
- Sensitivity Analysis
- Correlation Analysis
- PARETO Variable Selection
- Segments Combine Training

Agenda

Deep Learning Inference Support in Compute Service

Java Inference Client

Compute Service

TF Java Client

Pros:

DNN/CNN/RNN are All Supported Natively

Cons:

CPU Bound, Not Isolated from Compute Service

Compute Service

Model Service
Client

Model Service
TF Java Client

Pros:

Dedicated Model Service

Cons:

Need Extra Resources

TensorFlow Serving

Pros:

TF Serving is Supported by Google

Cons:

Need Extra Resources

gRPC is http 2.0 based

Only TF model spec is supported

Generic Deep Learning Inference Framework

- * All inference implementations can be replaced by using different implementation
- * Interceptor mechanism supports logic pre and post inference
- * Same interceptor can be configured to different inference implementation

©2018 PayPal Inc. Confidential and proprietary.

21

Portable Model Engine & Smart Client

22

- * Models can be run in compute service or dedicated model service
- * Portable model engine means such model by dynamic configuring it run in compute service or model service
- * Real time compute service including data loading, feature computation and model computation
- * Smart client means no code change to call model from local or remote service

Unified/Scalable Deep Learning Model Service

Questions:

- 1. How to scale model service to 1000 models level?
- 2. How to dynamically call multiple models in one request?

Agenda

Model Performance: Stable > Accurate

♦ Deep model is good at first but later worse

- ♦ Ensemble & bagging model is the most stable one
- ♦ Cost of ensemble model < deep NN model

♦ Deep model (feature embedding) + ensemble model (stable performance)

PayPal ©2018 PayPal Inc. Confidential ar

More Intelligent Training Platform

Auto Tuning

Auto tune system parameters for run time performance

Auto Diagnose

- 1. Suggest solutions when failures
- 2. Auto recovery for some kind of failures

Auto ML

- 1. Automated parameter tuning
- 2. Automated algorithm selection
- 3. Automated feature selection
- 4. Automated model ensemble

26

P PayPal

Performance, Stability, Flexibility

Goal of Platform: Fast but Less Failures

- 1. 80% training jobs are finished in 2 hours in one week
- 2. 94% training jobs running successfully in last one week

Goal of Platform: Scalable but Less Resource Usage

- 1. # Of workers scaled to maximal 3000; (20T memory)
- 2. Memory reduction by leveraging float numbers in NN and short in tree-ensemble models

Goal of Platform: Automated but Flexible

- 1. Automated pipeline to support fast model refresh case
- 2. Whole pipeline is flexible and can be integrated into different tools/platforms

Unified Machine Learning System

- 1. Continuous evolvement framework/platform
- 2. Key is unified as one product
- 3. More data/feature/model governance

Python notebook/data visualization to enable better eco system

UI is very important!!!

- 1. Evolved in every domain of modeling
- 2. Better/quick feeding requests for domain teams
- 3. Support work for more/better adoptions
- 4. Collaborations with modeling/data science teams

Thank You!

GMTC 2018

全球大前端技术大会

大前端的下一站

<<扫码了解更多详情>>

关注 ArchSummit 公众号 获取国内外一线架构设计 了解上千名知名架构师的实践动向

Apple • Google • Microsoft • Facebook • Amazon 腾讯 • 阿里 • 百度 • 京东 • 小米 • 网易 • 微博

深圳站: 2018年7月6-9日 北京站: 2018年12月7-10日

全球软件开发大会【2018】

2018年10月18-20日

预售中,现在报名立减2040元

团购享更多优惠,截至2018年7月1日

扫码关注 获取更多培训信息

