Consider the optimization problem $\min \ f(x) = -(1)$ Subject to $x \in \Omega$

- O The function $f: \mathbb{R}^n \to \mathbb{R}$ that we wish to minimize \dot{u} called objective function on cost function.
- (2) $x = (x_1, x_2, ..., x_n)$ are called the desicion variable
- 3) The set $\Omega \leq \mathbb{R}^n$ is called the feasible set.

The above problem is a decision problem that involves finding a vector x* that results the smallest value at the objective function.

Note Maximization problem can be represented equivalently in the born of a minimization problem because maximization f(x) is equivalent to minimizing -f(-x).

Note 2 The above problem (1) is known as constrained Optionization problem. If $N = \mathbb{R}^n$, then

the above problem (1) is called unconstrained optimization problem.

Del Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a real valued function. A point $x^* \in \mathbb{R}^n$ is said to be a local onenima at f if there exists an E>0 such that $f(x) \geq f(x^*)$ for all x satisfying $|x-x^*| \leq E$

of A point $n^* \in \mathbb{R}^n$ is a global omnima of f if $f(n) \ge f(n^*) + \times \in \mathbb{R}^n$.

Remark An optimization problem is solved only when a global minimizer is found. However, it is difficult to find a global minima. Thus we have to find local minima in practice.

Notation Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then the first order derivative at f is denoted by Df is $Df = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$

Let f be trice differentiable, that is, I is differentiable and me write derivative et I as

$$\frac{3\pi x^{2}}{3\pi t} = \frac{3\pi^{2}}{3\pi t} = \frac{3\pi^{2}}{3\pi t}$$

$$\frac{3\pi^{2}}{3\pi t} = \frac{3\pi^{2}}{3\pi t} = \frac{3\pi^{2}}{3\pi t}$$

$$\frac{3\pi^{2}}{3\pi t} = \frac{3\pi^{2}}{3\pi t} = \frac{3\pi^{2}}{3\pi t}$$

The moderix orf is called the Hessian moderix of f at the and denoted by Fox).

First order necessary condition for local minima (forc) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $x \times$ and $x \times$ is a local minima of f, then $\nabla f(x^*) = 0$

Note $\nabla f(x^*) = 0$ is not a sufficient condition for x^* to be come a local minima.

 $\chi_1 = \chi_2 = 0$

Suppose n'=(0,0) is a local minima. But $f(\frac{\epsilon}{2},0) = \frac{\epsilon^2}{4} > f(0,0)$

and f(0, \frac{\xi}{2}) = -\frac{\xi^2}{4} \lambda \frac{\xi(0,0)}{4}

Moon, Both the Points $(\frac{\mathcal{E}}{2}, 0)$ and $(0, \frac{\mathcal{E}}{2})$ having distance from $n^{\alpha} = (0, 0)$ is less than \mathcal{E} for any $\mathcal{E} > 0$.

1. 2x = (0,0) i not a local minim

Second onder necessary condition (SONC)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable at x^* and x^* is a local minima of f.

Then $\frac{\nabla f(n^*)}{\partial n} = 0$ and $\frac{\nabla f(n^*)}{\partial$

[note: A non matrix F is said to DSD If

ATF 20 + XEIRT]

prob1 consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x) = x^{T} \left(\frac{1}{4} \frac{2}{7} \right) x + x^{T} \left(\frac{3}{5} \right) + 6$ where $x = \left(\frac{x_1}{x_2} \right)$

@ Find the gradient and Helsian matrix of f at the point [!].

(b) Find a point that satisfy FONC for f.

Some

Check that the point satisfy the SONC

On not.

(b)
$$f(x_1, y_2) = x_1^2 + 6x_1y_2 + 7x_2^2 + 3x_1 + 5x_2 + 6$$

$$\Rightarrow f(\alpha_1, \alpha_2) = (0, 0)$$

$$=$$
) $\chi_1 = [.5, \chi_2 = -1]$

1. (1.5,-1) satisfies the FONC.

$$H(\alpha_{1j}\alpha_2) = \begin{pmatrix} 2 & 6 \\ 6 & 14 \end{pmatrix}$$

Let
$$d = [d_1]$$
, Now $dT + d = [d_1 d_2]$ $[d_1 + 1qd_2]$ $[d_1 + 1qd_2]$

take
$$(d_1 d_2) = (2, -1)$$
, then

dTHd= 8-24+14=-2 LO

1. the Hessian matrix is not PSD.

This implies that SONC is not societying. Hence $x^* = (1.5, -1)$ is not a local

minima.

s. The lunction has no optimal soln,

Prob2 Let $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x_1, x_2) = (x_1 - x_2)^4 + x_1^2 - x_2^2 - 2x_1 + 2x_2 + 1$

Find all points satistyng FONC.

(1,1) $X_1 = X_2$