2 Функциональные ряды

2.1 Основные понятия

Пусть дана последовательность функций $f_1(x)$, $f_2(x)$, , $f_n(x)$, , зависящих от переменной x (вещественной или комплексной). Пусть функции $f_n(x)$, $n=1,\ 2,\ 3,\ \ldots$ определены в точке x_0 . Будем говорить, что ряд

$$\sum_{n=1}^{\infty} f_n(x) = f_1(x) + f_2(x) + \dots,$$
 (79)

сходится в точке x_0 , если сходится числовой ряд $\sum_{n=1}^{\infty} f_n(x_0)$.

Пусть теперь функции $f_n(x)$ определены в некоторой области X. Ряд называется сходящимся в области X, если он сходится в каждой точке этой области. Из принципа сходимости Больцано-Коши (теорема 9) сразу же вытекает критерий сходимости функциональных рядов.

Теорема 15 (Критерий Коши)

Для того, чтобы функциональный ряд сходился в области X, необходимо и достаточно, чтобы $\forall \varepsilon > 0$ и $\forall x \in X$ можно было указать, вообще говоря, зависящее от ε и от x число $N(\varepsilon, x)$ такое, что для всех $n > N(\varepsilon, x)$ и всех $p = 1, 2, \ldots$ выполнялось неравенство:

$$|f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x)| < \varepsilon.$$
 (80)

Доказательство:

 $\overline{\text{При фиксированном } x}$ функциональный ряд превращается в числовой и для него будет выполнен принцип сходимости Больцано-Коши (Теорема 9).

В частности, при $p \to \infty$ мы получим оценку остатка ряда:

$$|r_n(x)| = \Big|\sum_{k=n+1}^{\infty} f_k(x)\Big| < \varepsilon$$
 при $n > N(\varepsilon, x), x \in X$.

Функциональный ряд, вообще говоря, является знакоопеременным, поэтому признаки сходимости положительных рядов для него неприменимы. Однако, можно исследовать его абсолютную сходимость, из которой обычная сходимость следует. Область абсолютной сходимости ряда $\sum_{n=1}^{\infty} f_n(x)$ может быть найдена с использованием признаков Даламбера и Коши. Для этого можно найти

$$\lim_{n \to \infty} \frac{|f_{n+1}(x)|}{|f_n(x)|} = d(x) \tag{81}$$

или
$$\lim_{n \to \infty} \sqrt[n]{|f_n(x)|} = c(x),$$
 (82)

и из неравенств d(x) < 1 или c(x) < 1 определить область X абсолютной сходимости функционального ряда.

Пусть ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится в области X и его сумма равна некоторой функции f(x). Тогда возникает вопрос о свойствах этой функции в зависимости от свойств функций $f_n(x)$.

Из теории пределов известно, что последовательность непрерывных функций может сходиться к разрывной функции. А так как сходимость ряда есть сходимость последовательности его частичных сумм, то аналогичное утверждение справедливо и для функциональных рядов: ряд из непрерывных функций не обязан сходиться к непрерывной функции.

Для прояснения этого вопроса необходимо более детально изучить сходимость.

2.2 Равномерная сходимость

Сумма ряда есть предел последовательности его частичных сумм. Поэтому рассмотрим подробно предел последовательности функций:

$$f(x) = \lim_{n \to \infty} f_n(x). \tag{83}$$

Для того, чтобы иметь дело с определенной числовой последовательностью, зафиксируем значение $x \in X$. Тогда согласно определению предела, равенство (83) означает следующее: $\forall \varepsilon > 0 \ \exists N(\varepsilon, x) : \ \forall n > N$ выполнено: $|f_n(x) - f(x)| < \varepsilon$, где под x подразумевается именно то значение, которое было заранее зафиксировано.

Если взять другое значение x, то получится другая числовая последовательность и при том же ε найденный пример N может оказаться уже непригодным. Тогда его пришлось бы заменить на бо́льший номер. Но так как значений x бесконечно много, то перед нами бесконечное множество различных числовых последовательностей, сходящихся к пределу. Для каждой из них в отдельности найдется свое N. Возникает вопрос: существует ли такой номер N, который (при заданном ε) подойдет для всех этих последовательностей?

Покажем на примерах, что в одних случаях такой номер N существует, а в других – его нет.

Примеры

1) Пусть

$$f_n(x) = \frac{x}{1 + n^2 x^2}, \quad 0 \le x \le 1.$$
 (84)

Тогда

$$\lim_{n \to \infty} f_n(x) = 0,$$

то есть:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon, x) : \ \forall n > N : \ |f_n(x) - 0| < \varepsilon \Leftrightarrow f_n(x) < \varepsilon$$
/Модуль можно не писать, так как $f_n(x) \ge 0$ при $0 \le x \le 1$.
$$f_n(x) = \frac{1}{2n} \cdot \underbrace{\frac{2nx}{1 + n^2x^2}}_{\le 1} \le \frac{1}{2n}.$$
(85)

$$/(1-nx)^2 = 1 - 2nx + n^2x^2 \ge 0 \iff 1 + n^2x^2 \ge 2nx \iff \frac{2nx}{1 + n^2x^2} \le 1$$

В силу формулы (85) ясно, что для осуществления неравенства $f_n < \varepsilon$ достаточно взять $n > \frac{1}{2\varepsilon}$. Таким образом, число $N = \left[\frac{1}{2\varepsilon}\right]$ (целая часть числа $\frac{1}{2\varepsilon}$) подходит одновременно для всех x.

2) Пусть теперь

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, \quad 0 \le x \le 1.$$
 (86)

Тогда $\lim_{n\to\infty} f_n(x) = 0$, то есть:

$$f_n(x) = \frac{nx}{1 + n^2 x^2} \le \frac{nx}{n^2 x^2} = \frac{1}{nx}.$$
 (87)

Для любого фиксированного x>0 достаточно взять $n>\frac{1}{x\varepsilon}$ чтобы было выполнено: $f_n(x)<\frac{1}{nx}<\varepsilon.$

С другой стороны, каким бы большим мы ни взяли число n, для функции $f_n(x)$ на отрезке [0,1] найдется точка $x=\frac{1}{n}$, в которой значение функции $f_n(\frac{1}{n})=\frac{1}{2}$, то есть за счёт увеличения n сделать $f_n(x)<\frac{1}{2}$ сразу для всех x от 0 до 1 нельзя. Иными словами, уже для $\varepsilon=\frac{1}{2}$ не существует номера N, который годился бы для для всех x одновременно.

Изобразим на рисунке графики функций $f_n(x) = \frac{nx}{1+n^2x^2}$ при n=4 и n=40.

Рис. 2: $f_n(x) = \frac{nx}{1+n^2x^2}$ при n=4 (слева) и n=40 (справа)

Для графиков функций характерен горб высоты $\frac{1}{2}$, передвигающийся с возрастанием n справа налево. Для каждого фиксированного x (то есть на каждой вертикальной прямой) точки графиков функций $y = f_n(x)$ стремятся к нулю при $n \to \infty$. Однако горбы графиков $y = f_n(x)$ с ростом n не уменьшаются по высоте, а только сдвигаются влево и сжимаются. Поэтому при любом n на графике остаются точки, удаленные от оси OX на расстояние $\frac{1}{2}$, то есть графики не становятся с ростом n ближе прилегающими к оси OX.

Дадим теперь определение равномерной сходимости последовательности.

Определение

Говорят, что последовательность $f_n(x)$ сходится равномерно на множестве X к функции f(x), если:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n > N, \ \forall x \in X : \ |f_n(x) - f(x)| < \varepsilon.$$
 (88)

Рассмотрим теперь сходимость функциональных рядов. Для согласования обозначений будем далее обозначать общий член ряда через $u_n(x)$, его частичную сумму как: $f_n(x) = \sum_{n=1}^{\infty} u_n(x)$, а сумму ряда через $f(x) = \sum_{n=1}^{\infty} u_n(x)$.

Множество значений x, при которых ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится, называется областью сходимости ряда.

Определение

Если частичные суммы $f_n(x)$ сходятся равномерно на множестве X к функции f(x), то говорят, что ряд равномерно сходится в этой области.

Замечание

Можно говорить в определении, что остаток ряда равномерно стремится к нулю.

Таким образом, в первом из приведенных примеров функция $f_n(x)$ стремится к нулю равномерно относительно x на отрезке [0,1], а во втором – нет.

Пример

Исследуем на равномерную сходимость ряд:

$$\sum_{n=1}^{\infty} x^{n-1}, \quad x \in (-1,1). \tag{89}$$

Остаток ряда после n-го члена:

$$r_n(x) = \sum_{k=n+1}^{\infty} x^{k-1} = \frac{x^n}{1-x}.$$
 (90)

При фиксированном $x \in (-1,1)$: $r_n(x) \xrightarrow[n \to \infty]{} 0$. Однако при заданном n: $\lim_{x \to 1-0} r_n(x) = \infty$, что говорит о том, что нельзя выбрать такое N, что при n>N для всех $x\in (-1,1)$ будет выполнено: $|r_n(x)|<\varepsilon$.

Следовательно, равномерной сходимости у ряда $\sum_{n=1}^{\infty} x^{n-1}$ на промежутке (-1,1) нет. Но если взять, например, промежуток $[0,\frac{1}{2}],$ то:

$$|r_n(x)| = \left| \frac{x^n}{1 - x} \right| < \frac{\frac{1}{2^n}}{1 - \frac{1}{2}} = \frac{1}{2^{n-1}} < \varepsilon \quad \text{при} \quad 2^{n-1} > \frac{1}{\varepsilon} \iff$$

$$\Leftrightarrow 2^{n-1} > 2^{\log_2 \frac{1}{\varepsilon}} \iff n > 1 + \log_2 \frac{1}{\varepsilon},$$

что выполнено для всех $x \in [0, \frac{1}{2}]$. Следовательно, на отрезке $[0, \frac{1}{2}]$ сходимость ряда равномерная.

Замечание

Данный пример показывает, что равномерная сходимость обусловлена не только видом общего члена функционального ряда, но и промежутком, на котором рассматривается сходимость.

2.3 Признаки равномерной сходимости

Теорема 16 (Условие равномерной сходимости)

Для того, чтобы последовательность $\{f_n(x)\}$ имела предельную функцию и сходилась к этой функции равномерно относительно x в области X, необходимо и достаточно, чтобы для каждого числа $\varepsilon > 0$ существовал такой не зависящий от x номер N, чтобы при n > N и любого $m = 1, 2, 3, \ldots$ неравенство

$$|f_{n+m}(x) - f_n(x)| < \varepsilon \tag{91}$$

имело место для всех $x \in X$ одновременно.

Замечание

Требование теоремы можно кратко сформулировать так: принцип сходимости Больцано-Коши для последовательности $\{f_n(x)\}$ должен осуществляться равномерно для всех x из X.

Доказательство:

Необходимость.

 $\overline{\text{Пусть } f_n(x)} \xrightarrow[n \to \infty]{} f(x)$ равномерно в X. Тогда согласно определению предела:

 $\forall \varepsilon>0$ найдется не зависящий от x номер N, такой, что при n>N будет выполнено:

$$|f_n(x) - f(x)| < \frac{1}{2}\varepsilon \quad \forall x \in X.$$
 (92)

Аналогично получим:

$$|f_{n+m}(x) - f(x)| < \frac{1}{2}\varepsilon, \quad m = 1, 2, 3, \dots$$
 (93)

Сравнивая формулы (92) и (93), получается:

$$|f_{n+m}(x) - f_n(x)| = |(f_{n+m}(x) - f(x)) - (f_n(x) - f(x))| \le \le |f_{n+m}(x) - f(x)| + |f_n(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$
(94)

что и доказывает формулу (91).

Достаточность.

Пусть условие (91) выполнено. Тогда для любого $x \in X$ последовательность $\{f_n(x)\}$ будет удовлетворять условиям Больцано-Коши. Следовательно, для этой последовательности существует конечный предел f(x). Теперь сделаем в неравенстве (91) предельный переход при $m \to \infty$:

$$|f(x) - f_n(x)| \le \varepsilon \quad \forall n > N, \quad \forall x \in X.$$
 (95)

Но это и означает равномерную сходимость последовательности $\{f_n(x)\}$ на множестве X.

Замечание

Условие равномерной сходимости ряда $\sum_{n=1}^{\infty} u_n(x)$ аналогично с заменой неравенства на следующее:

$$\left| \sum_{k=n+1}^{n+m} u_k(x) \right| = |u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+m}| < \varepsilon \quad \forall n > N, \quad \forall x \in X. \quad (96)$$

Следствие

Если все члены ряда $\sum_{n=1}^{\infty} u_n(x)$, равномерно сходящегося в области X, умножить на одну и ту же функцию v(x), ограниченную в X:

$$|v(x)| \le M,\tag{97}$$

то равномерная сходимость сохранится.

Замечание

На практике проверка условия равномерной сходимости (критерия Коши) затруднительна даже для числовых рядов, поэтому встает вопрос об эффективных признаках равномерной сходимости функционального ряда.

Теорема 17 (Признак Вейерштрасса равномерной сходимости)

Если члены функционального ряда $\sum_{n=1}^{\infty} u_n(x)$ удовлетворяют в области X неравенствам

$$|u_n(x)| \le c_n, \quad n = 1, 2, 3, \dots,$$
 (98)

где c_n – члены некоторого сходящегося числового ряда $\sum_{n=1}^{\infty} c_n$, то ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится в X равномерно.

Доказательство:

В силу неравенства (98) получаем:

$$|u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+m}(x)| \le c_{n+1} + c_{n+2} + \dots + c_{n+m}.$$
 (99)

Это неравенство справедливо одновременно для всех $x \in X$.

Так как ряд $\sum_{n=1}^{\infty} c_n$ сходится, то согласно принципу сходимости Больцано-Коши (теорема 9) будет выполнено:

$$\forall \varepsilon > 0 \ \exists N > 0: \ |c_{n+1} + c_{n+2} + \dots + c_{n+m}| < \varepsilon.$$
 (100)

Тогда по неравенству (99) получим:

$$|u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+m}(x)| < \varepsilon$$

для всех $x \in X$ одновременно. Тогда по условию равномерной сходимости (теорема 16) ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится в X равномерно.

Замечание

При наличии неравенства (98) говорят, что ряд $\sum_{n=1}^{\infty} u_n(x)$ мажорируется рядом $\sum_{n=1}^{\infty} c_n$ (или ряд $\sum_{n=1}^{\infty} c_n$ служит мажорантным рядом для $\sum_{n=1}^{\infty} u_n(x)$).

$$\sum_{n=1}^{\infty} a_n \sin nx \quad \text{if} \quad \sum_{n=1}^{\infty} a_n \cos nx,$$

если ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно. Действительно, ряд $\sum_{n=1}^{\infty} |a_n|$ играет роль мажорантного ряда:

$$|a_n \sin nx| \le |a_n|, \quad |a_n \cos nx| \le |a_n|.$$

Замечание

Условие мажорируемости $|u_n(x)| \le c_n \quad \forall x \in X$ ряда $\sum_{n=1}^{\infty} u_n(x)$ является достаточным для равномерной сходимости, однако не является необходимым.

2.4 Функциональные свойства суммы ряда

Функциональные ряды, равномерно сходящиеся в некоторой области X, обладают в этой области свойствами обычных конечных сумм. Мы сформулируем и докажем несколько теорем о рядах, членами которых являются функции вещественной переменной x. Впрочем, эти теоремы будут справедливы и в случае функции комплексной переменной z.

Теорема 18 (Теорема о непрерывности суммы ряда)

Пусть функции $u_n(x)$ $(n=1, 2, 3, \dots)$ определены в промежутке X=[a,b] и все непрерывны в некоторой точке $x=x_0$ этого промежутка. Если ряд $\sum_{n=1}^{\infty}u_n$ в промежутке X сходится равномерно к функции f(x), то и сумма ряда f(x) в точке $x=x_0$ также будет непрерывна.

Замечание

Впервые подобное утверждение было сформулировано Коши. Однако он придал ему слишком общую форму, не выдвинув требования равномерности, без которого оно предстает быть верным.

Доказательство:

 $\overline{\text{Сумму ряда } f(x)}$ можно представить в следующем виде:

$$f(x) = f_n(x) + r_n(x), \tag{101}$$

где $f_n(x)$ есть частичная сумма ряда, $r_n(x)$ – остаток ряда после n-го члена. В частности, при $x=x_0$ получим:

$$f(x_0) = f_n(x_0) + r_n(x_0). (102)$$

Следовательно,

$$|f(x) - f(x_0)| \le |f_n(x) - f_n(x_0)| + |r_n(x)| + |r_n(x_0)|. \tag{103}$$

Так как частичные суммы $f_n(x) = \sum_{k=1}^n u_k(x)$ сходятся к $f(x) = \sum_{k=1}^\infty u_k(x)$ равномерно на промежутке X, то:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N, \ \forall x \in X : \ |f(x) - f_n(x)| < \frac{\varepsilon}{3},$$
 (104)

то есть выполнено:

$$|r_n(x)| = |f(x) - f_n(x)| < \frac{\varepsilon}{3},\tag{105}$$

$$|r_n(x_0)| = |f(x_0) - f_n(x_0)| < \frac{\varepsilon}{3}.$$
 (106)

При фиксированном n функция $f_n(x)$ есть сумма конечного числа непрерывных функций $u_k(x)$, а значит она сама является непрерывной в точке x_0 , то есть выполнено:

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad |x - x_0| < \delta \implies |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}, \tag{107}$$

Тогда при $|x-x_0|<\delta$ из неравенств (105) – (107) получим:

$$|f(x) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$
 (108)

Следствие

Если функции $u_n(x)$ непрерывны на всем промежутке X = [a, b], то при наличии равномерной сходимости и сумма ряда f(x) будет непрерывна на всем промежутке.

Теорема 19 (Почленный переход к пределу)

Пусть ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на промежутке X. Пусть каждая из функций $u_n(x)$ $(n=1,\ 2,\ 3,\ \dots)$ определена в области X и имеет, при стремлении x к x_0 , конечный предел:

$$\lim_{x \to \infty} u_n(x) = c_n. \tag{109}$$

Тогда ряд $\sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x)$ сходится и выполнено:

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x).$$
 (110)

Доказательство:

Введем обозначения:

$$\sum_{n=1}^{\infty} c_n = C, \quad \sum_{n=1}^{\infty} u_n(x) = f(x).$$
 (111)

Так как ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на X, то по формуле (96) имеем:

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N, \quad \forall x \in X : \quad |u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+m}(x)| < \varepsilon.$$
 (112)

Переходя к пределу в последнем неравенстве при $x \to x_0$, получим:

$$|c_{n+1} + c_{n+2} + \dots + c_{n+m}| \le \varepsilon, \tag{113}$$

то есть для ряда $\sum\limits_{n=1}^{\infty}c_n$ выполняется условие сходимости Больцано-Коши. Следовательно, ряд $\sum\limits_{n=1}^{\infty}c_n$ сходится.

Представим суммы рядов через частичные суммы и остаток:

$$f(x) = f_n(x) + r_n(x), \tag{114}$$

$$C = C_n + \gamma_n. \tag{115}$$

Тогда:

$$f(x) - C = f_n(x) - C_n + r_n(x) - \gamma_n.$$
(116)

Следовательно,

$$|f(x) - C| \le |f_n(x) - C_n| + |r_n(x)| + |\gamma_n|. \tag{117}$$

Так как частичные суммы $f_n(x) = \sum_{k=1}^n u_k(x)$ сходятся к $f(x) = \sum_{k=1}^n u_k(x)$ равномерно на X, а частичные суммы $C_n = \sum_{k=1}^n c_k$ сходятся к $C = \sum_{k=1}^\infty c_k$, то выполнено:

$$\forall \varepsilon > 0 \ \exists N : \ \forall x \in X \ \forall n > N : \begin{cases} |r_n(x)| < \frac{\varepsilon}{3}, \\ |\gamma_n| < \frac{\varepsilon}{3}. \end{cases}$$
 (118)

Так как предел конечной суммы равен сумме пределов:

$$\lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \sum_{k=1}^n u_k(x) = \sum_{k=1}^n \lim_{x \to x_0} u_k(x) = \left. \middle/ \Phi \text{ормула (109)} \middle/ = \sum_{k=1}^n c_k = C_n, \right.$$
(119)

то найдется такое S>0, что при $|x-x_0|<\delta$ будет выполнено:

$$|f_n(x) - C_n| < \frac{\varepsilon}{3}. ag{120}$$

Тогда, при указанных значениях x, в силу неравенств (117), (118), (120) будет выполняться неравенство:

$$|f(x) - C| < \varepsilon, \tag{121}$$

то есть:

$$\lim_{x \to x_0} f(x) = C \iff \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x), \tag{122}$$

что и доказывает теорему.

Теорема 20 (Почленное интегрирование рядов)

Если функции $u_n(x)$ $(n=1, 2, 3, \dots)$ непрерывны на промежутке X=[a,b] и ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится в этом промежутке равномерно, то интеграл от суммы f(x) ряда $\sum_{n=1}^{\infty} u_n(x)$ представим в виде:

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x)dx =$$

$$= \int_{a}^{b} u_{1}(x)dx + \int_{a}^{b} u_{2}(x)dx + \dots + \int_{a}^{b} u_{n}(x)dx + \dots$$
 (123)

Доказательство:

Ввиду непрерывности функций $u_n(x)$ и f(x), все интегралы в формуле (123) существуют. Проинтегрируем тождество на промежутке [a, b]:

$$f(x) = \underbrace{u_1(x) + u_2(x) + \dots + u_n(x)}_{\text{частичная сумма ряда}} + r_n(x), \tag{124}$$

где $r_n(x)$ – остаток ряда. Мы получим:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} u_{1}(x)dx + \int_{a}^{b} u_{2}(x)dx + \dots + \int_{a}^{b} u_{n}(x)dx + \int_{a}^{b} r_{n}(x)dx.$$

Таким образом, сумма n членов ряда (123) отличается от интеграла $\int_a^b f(x) dx$ лишь дополнительным членом $\int_a^b r_n(x) dx$. Докажем, что:

$$\lim_{n \to \infty} \int_{a}^{b} r_n(x)dx = 0. \tag{125}$$

Так как ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно, то:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N : \ |r_n(x)| < \varepsilon \ \forall x \in X.$$
 (126)

Тогда для тех же значений n будет:

$$\left| \int_{a}^{b} r_n(x) dx \right| \le \int_{a}^{b} |r_n(x)| dx < (b-a) \cdot \varepsilon, \tag{127}$$

что и доказывает предельное соотношение (125).

Замечание

Равенство (123) может быть записано в виде:

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} u_n(x)\right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} u_n(x) dx\right),\tag{128}$$

то есть в случае равномерно сходящегося ряда интеграл от суммы ряда равен сумме интегралов его членов. Иными словами, допустимо почленное интегрирование ряда.

Замечание

Условие равномерной сходимости является существенным, но не является необходимым.

Теорема 21 (Почленное дифференцирование рядов)

Пусть функции $u_n(x)$ $(n = 1, 2, 3, \dots)$ определены на промежутке X = [a, b] и имеют в нем непрерывные производные $u'_n(x)$. Если в этом промежутке сходится ряд $\sum_{n=1}^{\infty} u_n(x)$, а также равномерно сходится ряд, составленный из производных:

$$\sum_{n=1}^{\infty} u'_n(x) = u'_1(x) + u'_2(x) + \dots + u'_n(x) + \dots,$$
(129)

то сумма f(x) ряда $\sum_{n=1}^{\infty} u_n(x)$ дифференцируема в X и выполнено:

$$f'(x) = \sum_{n=1}^{\infty} u'_n(x).$$
 (130)

Доказательство:

Обозначим через $f^*(x)$ сумму ряда (129). Функция $f^*(x)$ будет непрерывной, так как равномерно сходящийся ряд непрерывных функций $u'_n(x)$ сам является непрерывной функцией (смотри теорему 18).

Согласно теореме 20, равномерно сходящийся ряд $\sum_{n=1}^{\infty} u'_n(x)$ можно почленно интегрировать. Проинтегрируем его на промежутке от a до x, где $x \in X$:

$$\int_{a}^{x} f^{*}(t)dt = \int_{a}^{x} \sum_{n=1}^{\infty} u'_{n}(t) = \sum_{n=1}^{\infty} \int_{a}^{x} u'_{n}(t)dt \Leftrightarrow \left/ \int_{a}^{x} u'_{n}(t)dt = u_{n}(x) - u_{n}(a) \right/ \Leftrightarrow (131)$$

$$\Leftrightarrow \int_{a}^{x} f^{*}(t)dt = \sum_{n=1}^{\infty} (u_n(x) - u_n(a)). \tag{132}$$

Ввиду сходимости ряда $\sum_{n=1}^{\infty} u_n(x)$, ряд (132) можно разбить на разность двух рядов:

$$\int_{a}^{x} f^{*}(t)dt = \sum_{n=1}^{\infty} u_{n}(x) - \sum_{n=1}^{\infty} u_{n}(a) = f(x) - f(a).$$
(133)

Поскольку функция $f^*(x)$ непрерывна, то по теореме Барроу $\int\limits_a^x f^*(t)dt$ дифференцируем по верхнему пределу и производная от него равна значению подынтегральной функции в точке верхнего предела:

$$\left(\int_{a}^{x} f^*(t)dt\right)' = f^*(x). \tag{134}$$

Таким образом, в левой части равенства (133) стоит дифференцируемая функция. Значит и правая часть (133) дифференцируема. Тогда, продифференцировав формулу (133), получим:

$$f^*(x) = f'(x). (135)$$

Учитывая, что: $f^*(x) = \sum_{n=1}^{\infty} u'_n(x)$, приходим к требуемому соотношению:

$$\sum_{n=1}^{\infty} u'_n(x) = f'(x). \tag{136}$$

Замечание

Равенство (130) может быть записано в виде:

$$\left(\sum_{n=1}^{\infty} u_n(x)\right)_x' = \sum_{n=1}^{\infty} u_n'(x).$$
 (137)

Теорему 21 кратко можно сформулировать так: ряд можно почленно дифференцировать, если ряд из производных сходится равномерно.

2.5 Степенные ряды

Определение

Функциональный ряд вида

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0) + \dots + a_n (x - x_0)^n + \dots, (138)$$

где a_n — постоянные числа, называется степенным рядом по степеням $(x-x_0)$. В частности, при $x_0=0$ получаем степенной ряд по степени x:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (139)

Для выяснения характера области сходимости степенного ряда сформулируем и докажем следующую теорему:

Теорема 22 (Теорема Абеля)

Если ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ сходится в некоторой точке x_1 , то он сходится, причем абсолютно, на целом интервале, симметричном относительно точки x_0 (то есть для любого x, удовлетворяющего неравенству: $|x-x_0| < |x_1-x_0|$).

Рис. 3: Область сходимости