SEQUENCE LISTING

<110>	RIKEN KABUSHIKI KAISHA DNAFORM	
<120>	Method for utilizing the 5'end of mRNA for cloning and analysis	
<130>	1336(PCT)	
<150> <151>	JP 2002-171851 2002-06-12	
<150> <151>	JP 2002-235294 2002-08-12	
<160>	77	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>	DNA	
<220> <223>	First strand cDNA primer	
<220> <221> <222> <223>	misc_feature (73)(73) "v" is A, C or G	
<400> gagaga	l gaga aaggateetg ceattteatt acetetttet eegcaceega catagatttt	60
tttttt	tttt ttvn	74
<210> <211> <212> <213>	60	
<220> <223>	Upper oligonucleotide GN5	
<220> <221> <222> <223>	(56)(60)	
<400> agaga	2 gagac ctcgagtaac tataacggtc ctaaggtagc gacctaggtc cgacgnnnnn	60
<210> <211> <212> <213>	60 DNA	
<220> <223>		

<220> <221> <222> <223>	misc_feature (55)(60) "n" is any nucleotide	
<400> agagaga	3 agac etegagtaac tataaeggte etaaggtage gacetaggte egaennnnn	60
<210> <211> <212> <213>	4 54 DNA Artificial	
<220> <223>	Lower oligonucleotide	
<400> gtcggad	4 ccta ggtcgctacc ttaggaccgt tatagttact cgaggtctct ctct	54
<210> <211> <212> <213>	5 55 DNA Artificial	
<220> <223>	primer	
<400> agagaga	5 agac etegagtaac tataaeggte etaaggtage gacetaggte egaeg	5 5
<210> <211> <212> <213>	6 45 DNA Artificial	
<220> <223>	linker	
<400> tctaga	6 tcag gactetteta tagtgtcace taaagtetet etete	45
<210> <211> <212> <213>	7 47 DNA Artificial	
<220> <223>	linker	
<220> <221> <222> <223>	misc_feature (46)(47) "n" is any nucleotide	
<400> gagagaga	7 gaga ctttaggtga cactatagaa gagtcctgat ctagann	47
<210> <211> <212>	8 25, DNA Antificial	

<220> <223>	Primer 1 (uni-PCR)	
<400> gagaga	8 gaga ctttaggtga cacta	25
<210> <211> <212> <213>	25	
<220> <223>	Primer 2(MmeI-PCR)	
<400> agagag	9 agac ctcgagtaac tataa	25
<210> <211> <212> <213>	44	
<220> <223>	first strand oligo-dT primer	
<220> <221> <222> <223>	misc_feature (43)(43) "v" is A, C or G	
<222>	misc_feature (44)(44) "n" is any nucleotide	
<400> gagaga	10 ngaga ggatccttct ggagagtttt ttttttttt ttvn	44
<210> <211> <212> <213>	45	
<220> <223>	Oligonucleotide Bg-Gsu-GN5	
<220> <221> <222> <223>	misc_feature (41)(45) "n" is any nucleotide	
<400> agaga	11 gagaa ctaggcttaa taggtgacta gatctggagg nnnnn	45
<210> <211> <212> <213>	45 DNA	
<220> <223>		
<220>		

<210> 16

```
<221> misc_feature
<222> (40)..(45)
<223> "n" is any nucleotide
 <400> 12
 agagagaga ctaggcttaa taggtgacta gatctggagn nnnnn
                                                                                                             45
<210> 13
<211> 39
<212> DNA
<213> Artificial
 <220>
<223> Oligonucleotide Bg-Gsu-down
 <400> 13
ctggagatct agtcacctat taagcctagt tctctctct
                                                                                                             39
<210> 14
<211> 47
<212> DNA
<213> Artificial
 <220>
<223> Oligonucleotide Bg-Mme-GN5
<220>
<221> misc_feature
<222> (43)..(47)
<223> "n" is any nucleotide
<220>
<221> misc_feature
<222> (39)..(39)
           (39)..(39)
"r" is G or A
 <400> 14
agagagagaa ctaggcttaa taggtgacta gatcttccra cgnnnnn
                                                                                                             47
<210> 15
<211> 47
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide Bg-Mme-N6
 <220>
<221> misc_feature
<222> (42)..(47)
<223> "n" is any m
           (42)...(47)
"n" is any nucleotide
<220>
<221> misc_feature
<222> (39)..(39)
<223> "r" is G or A
agagagaga ctaggcttaa taggtgacta gatcttccra cnnnnn
                                                                                                             47
```

WO 03/106672

<212>	40 DNA Artificial	
<220> <223>	Oligonucleotide Bg-Mme-down	
<2222	misc_feature (3)(3) "y" is C or T	
<400> gtygga	16 gate tagteaceta ttaageetag ttetetetet	40
<210> <211> <212> <213>	47	
<220> <223>	oligonucleotide	
<220> <221> <222> <223>	misc_feature (46)(47) "n" is any nucleotide	
<400> gagaga	17 gaga ctttaggtga cactatagaa gagtcctgag aattcnn	47
<210> <211> <212> <213>	45	
<220> <223>	oligonucleotide	
<400> gaatte	18 etcag gactetteta tagtgteace taaagtetet etete	45
<210> <211> <212> <213>	49	
<220> <223>	linker	
<222>	misc_feature (45)(49) "n" is any nucleotide	
<400> agaga	19 gagag cttagatgag agtgactcga gcctaggtcc aacgnnnnn	49
<210> <211> <212> <213>		

<220> <223>	linker	
<220> <221> <222> <223>	misc_feature (44)(49) "n" is any nucleotide	
<400> agagag	20 agag cttagatgag agtgactcga gcctaggtcc aacnnnnnn	49
<212>	21 43 DNA Artificial	
<220> <223>	linker	
<400> gttgga	21 ccta ggctcgagtc actctcatct aagctctctc tct	43
<212>	42	
<220> <223>	second linker	
<400> gaattc	22 tacg cetetegate gaaateeega tetaggetag eg	42
<210> <211> <212> <213>	23 42 DNA Artificial	
<220> <223>	second linker	
<400> cttaag	23 atgc ggagagcgtg aatcgagttt aaggctagca tc	42
<210> <211> <212> <213>	24 25 DNA Artificial	
<220> <223>	primer	
<400> ttagat	24 gaga gtgactcgag cctag	25
<210> <211> <212> <213>		
<220> <223>	primer	
<400>	25	

ctacgatcgg aatttgagct aagtg	25
<210> 26 <211> 17 <212> DNA <213> Artificial	
<220> <223> primer	
<400> 26 caggaaacag ctatgac	17
<210> 27 <211> 16 <212> DNA <213> Artificial	
<220> <223> primer	
<400> 27 gtaaaacgac ggccag	16
<210> 28 <211> 596 <212> DNA <213> Homo sapiens	٠
<pre><220> <221> misc_feature <222> (432)(432) <223> "n" is any nucleotide</pre>	
<pre><220> <221> misc_feature <222> (436)(436) <223> "n" is any nucleotide</pre>	
<pre><220> <221> misc_feature <222> (456)(456) <223> "n" is any nucleotide</pre>	
<400> 28 tcgttaacta ttaggcgaat tgggccctct aggtcgacga gttctcagca gagccgccgt	60
ctagagecee geeeteegg geeacegteg gaeetagaat agttactega ggtetetegt	120
cggacctaga gtttttcgta tgtttgtcat cgtcggacct aggtccgacg gtccattcct	180
gagagtetet etaggteega egagagagag aggateette tgtetagace etgaegeegg	240
aaccgcaccg tcggacctag gtccgacgga aaagcagctt cctccactct aggtccgacg	300
gtgtgtgtgt gtgtgcgtgt tctagagact ggttcagatc aaaagtcgtc ggacctaggt	
ccgacggggc tggtgagatg gctcagtcta gatgcatgct cgagcggccg ccagtgtgat	420
ggatatetge enaatneeag cacaceggeg egegenacea gtggateega geeeggtace	480
aagettgatg catacetega gtateetata etgteaceta aatagettgg ggtaateatg	
gtcatagctg tctcctgtgt gaaattgtta tccgctcaaa attcccaaca acatag	596

<210> <211> <212> <213>	29 12 DNA Artificial		
<220> <223>	linker		
<220> <221> <222> <223>	<pre>misc_feature (1)(1) "n" is any nucleotide</pre>		
<400> nctagg	29 tccg ac	·	12
<210> <211> <212> <213>	30 20 DNA Artificial		
<220> <223>	linker	·.	
<220> <221> <222> <223>	(1)(1)		
<220> <221> <222> <223>			-
<400> ngttgg	30 acct aggtecaacn		20
<210> <211> <212> <213>	31 13 DNA Artificial		
<220> <223>	linker		
<400> tctagg	31 rtccg acg		13
<210> <211> <212> <213>	32 13 DNA Artificial		
<220> <223>	linker		
<400> cctag	32 stccg acg		13
<210>	33		

WO 03/106672

<212> <213>	DNA Artificial			
<220> <223>	tagl			
<400> gtggcc	33 cggg agggcggggc			20
<210> <211> <212> <213>	34 19 DNA Artificial			
<220> <223>	tag2			
<400> agagac	34 ctcg agtaactat			19
<210> <211> <212> <213>	35 20 DNA Artificial			
<220> <223>	tag3		•	
<400> atgaca	35 aaca tacgaaaaac			. 20
<210> <211> <212> <213>	36 19 DNA Artificial			
<220> <223>	tag4			
<400> gtccat	36 tect gagagtete			19
	37 20 DNA Artificial	·		
<220> <223>	tag5			
<400> agagag	37 agag gatccttctg			20
<210> <211> <212> <213>	38 20 DNA Artificial	÷	·	
<220> <223>	tag6			
<400> gtgcgg	38 ttcc ggcgtcaggg	•		20

<210> <211> <212> <213>	39 19 DNA Artificial			
<220> <223>	tag7			
<400> gaaaag	39 cagc ttcctccac			19
<210> <211> <212> <213>	20			
<220> <223>	tag8			
<400> gtgtgt	40 gtgt gtgtgcgtgt			20
<210> <211> <212> <213>	20			
<220> <223>	tag9			
<400> actttt	41 gatc tgaaccagtc			20
<210> <211> <212> <213>	20			
<220> <223>	tag10			
<400> gggctg	42 gtga gatggctcag		e sa	20
<210> <211> <212> <213>	19			
<220> <223>	tagl			
<400> gtacct	43 cctc gcatcccgc			19
<210> <211> <212> <213>	20			
<220> <223>	tag2			
<400> gt.ggt.g	44 tece tetceaaget			20

<210> 45 <211> 20 <212> DNA <213> Artificial	
<220> <223> tag3	
<400> 45 atggaccgag ggccccagcc	20
<210> 46 <211> 19 <212> DNA <213> Artificial	
<220> <223> tag4	
<400> 46 cggatcgggt gggtcggac	19
<210> 47 <211> 19 <212> DNA <213> Artificial	
<220> <223> tag5	
<400> 47 agaggtcgca gcagttcgt	19
<210> 48 <211> 20 <212> DNA <213> Artificial	
<220> <223> tag6	
<400> 48 tctccggagc cggcgctgtg	20
<210> 49 <211> 19 <212> DNA <213> Artificial	
<220> <223> tag7	
<400> 49 agactttgca ggctccgag	19
<210> 50 <211> 20 <212> DNA <213> Artificial	
<220> \\ <223> tag8	

<400> ggagct	50 gccg cagcgccgga	20
<210> <211> <212> <213>	51 20 DNA Artificial	
<220> <223>	tag9	
<400> acaccg	51 tegg acetggtege	20
<210> <211> <212> <213>	52 20 DNA Artificial	
<220> <223>	tag10	
<400> agacgt	52 tete geceagagte	20
<210> <211> <212> <213>	53 20 DNA Artificial	
<220> <223>	tag11	
<400> gccgtt	53 cctt gcttgctgga	20
<210> <211> <212> <213>	20	
<220> <223>	tag12	
<400> gggttg	54 ggga tttagctcag	20
<210> <211> <212> <213>	55 19 DNA Artificial	
<220> <223>	tag13	
<400> gagtaa	55 ctat aacggtcct	19
<210> <211> <212> <213>	56 19 DNA Artificial	
<220>		

<223> tag14 <400> 56 19 gattccgcct ggagctcgc <210> 57 <211> 18 <212> DNA <213> Artificial <220> <223> tag15 <400> 57 agggaccgct gcggtccg 18 <210> 58 <211> 18
<212> DNA
<213> Artificial <220> <223> zzb21106i09t3 junk <400> 58 18 cattagggga ttgggccc <210> 59 <211> 28 <212> DNA <213> Artificial <220> <223> zzb21106i09t3 junk <400> 59 . 28 acccggggg cgggactaac cgtcggac <210> 60 <211> 20 <212> DNA <213> Artificial <220> <223> tag1 <400> 60 20 gacgcggaag gcgcggcggc <210> 61 <211> 21 <212> DNA <213> Art Artificial <220> <223> tag2 <400> 61 ggagggcggg cggcggccct c 21 <210> 62 <211> 19 <211> 19 <212> DNA

<213> Artificial

WO 03/106672 PCT/JP03/07514

<220> <223>	tag3	
<400> caaaaaa	62 aaaa aaaaaaact	19
<210> <211> <212> <213>	63 20 DNA Artificial	
<220> <223>	tag4	
	63 tgct cgctctgccc	20
<210> <211> <212> <213>	64 19 DNA Artificial	
<220> <223>	tag5	
<400> acttct	64 gatt etgacagac	19
<210> <211> <212> <213>	65 19 DNA Artificial	
<220> <223>	tag6	
<400> acagtg	65 gcgt ctgcaaagc	19
<210> <211> <212> <213>	66 20 DNA Artificial	
<220> <223>	tag7	
<400> ggaaag	66 tcca ggtggacttt	20
<210> <211> <212> <213>	67 19 DNA Artificial	
<220> <223>	tag8	
<400> gccgcc	67 gagg ccgcgcagg	19
<210> <211>	68 19	

PCT/JP03/07514

nccatggaac agccacact	19
<210> 74 <211> 26 <212> DNA <213> Artificial	
<220> <223> junk1	
<400> 74 tgataaggca atggcctcta atgctg	26
<210> 75 <211> 16 <212> DNA <213> Artificial	
<220> <223> tag	
<400> 75 acctccctcc gcggag	16
<210> 76 <211> 2745 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (842)(2017) <223>	
<400> 76 acctccctcc gcggagcagc cagacagcga gggccccggc cgggggcagg ggggacgcc	cc 60
cgtccggggc acccccccg gctctgagcc gcccgcgggg ccggcctcgg cccggagc	gg 120
aggaaggagt cgccgaggag cagcctgagg ccccagagtc tgagacgagc cgccgccgc	cc 180
cccgccactg cggggaggag ggggaggagg agcgggagga gggacgagct ggtcgggag	ga 240
agaggaaaaa aacttttgag acttttccgt tgccgctggg agccggaggc gcgggggac	ct 300
cttggcgcga cgctgccccg cgaggaggca ggacttgggg accccagacc gcctccctt	tt 360
gccgccgggg acgcttgctc cctccctgcc ccctacacgg cgtccctcag gcgccccca	at 420
teeggaccag ceetegggag tegeegacce ggeeteegge aaagaetttt ceecagacc	et 480
egggegeace ecetgeacge egeetteate eeeggeetgt eteetgagee eeeggeat	tc 540
ctagaccett tetectecag gagaeggate teteteegae etgecacaga teccetati	tc 600
aagaccaccc accttctggt accagatege geccatetag gttattteeg tgggatact	tg 660
agacaccece ggtecaagee teccetecae cactgegeee ttetecetga ggageetea	ng 720
ctttccctcg aggccctcct accttttgcc gggagacccc cagcccctgc aggggcggg	sg 780
cetececace acaccagece tgttegeget eteggeagtg eeggggggg eegectee	cc 840
c atg ccg ccc tcc ggg ctg cgg ctg ctg ccg ctg ct	g 889

1	Met 1 1	Pro :	Pro	Ser	Gly 1 5	Leu .	Arg 1	Leu :	Leu :	Pro 10	Leu	Leu	Leu 1	Pro	Leu Le 15	eu
tg; Trj	g cta p Le	act, uLe	g gt u Va 20	g cta l Le	g aca u Thi	g cc ⁻	t gg o Gl	c cc; y Pr 25	g cc; o Pr	g gc o Ala	c gc a Al	g gg a Gl	a cta y Lei 30	a to u Se	c acc r Thr	937
O.J.	o my	35	. 110	e nai	o ne	r an	40	ı va.	T TÀ:	S Ar	g tà	s Ar 45	g lle	e Gli	g gcc u Ala	985
ato Ile	c cgo Arg 50	gge Gly	c cag	ato Ile	c cta e Leu	tco Ser 55	c aag Lys	cta Lei	g cgg	g cte	c gc 1 Al 60	c age	c ccc r Pro	c ccg	g agc Ser	1033
cag Glr 65	ggg Gly	gag Glu	g gtg 1 Val	ccs Pro	cco Pro 70	ggo Gly	ccg Pro	cte Le	cco Pro	gag Glu 75	g gc	c gta a Va	cto Lev	gco Ala	ctg Leu 80	1081
				00					90					95	gag Glu	1129
			100					100	•				110	1	cta Leu	1177
ME C	141	115	TIII	urs	ASN	GIU	120	Tyr	' Asp) Lys	Phe	125	GIn	Ser	aca Thr	1225
III	130	116	131	net	rue	135	ASII	Inr	Ser	Glu	140	Arg	Glu	Ala	val.	1273
145	ulu	110	101	Ten	150	ser	wig	Ala	aru	155	Arg	Leu	Leu	Arg	160	1321
Dog	D , 0	Dou	ш, 5	165	UIU	GIH	nis	vai	170	ren	lyr	GIN	aaa Lys	17r 175	Ser	1369
11311	non	DCI	180	m.g	ŢŢſ	rea	ser	185	Arg	Leu	Leu	Ala	ccc Pro 190	Ser	Asp	1417
	110	195	11.5	neu	per	rne	200	vai	ınr	gly	Val	205	cgg Arg	Gin	Trp	1465
	210					213					220		gcc Ala			1513
225	0,3	пор	DCI	ш6	230	usii	Inr	Leu	GID	235	Asp	He	aac Asn	Gly	Phe 240	1561
****	1111	ui,	ш6	245	ary	vzħ	Leu	ATA	250	TIE	HIS	Gly	atg Met	Asn 255	Arg	1609
110	i nc	DCu .	260	neu	rie c	nia	ш	265	rea	ara	Arg	Ala	cag Gln 270	HIS	Leu	1657
caa Gln	DCI	tcc Ser 275	cgg Arg	cac His	cgc Arg	ur.g	gcc Ala 280	ctg Leu	gac Asp	acc Thr	aac Asn	tat Tyr 285	tgc Cys	ttc Phe	agc Ser	1705

tcc acg gag aag aac tgc tgc gtg cgg cag ctg tac att gac ttc cgc Ser Thr Glu Lys Asn Cys Cys Val Arg Gln Leu Tyr Ile Asp Phe Arg 290 295 300	1753
aag gac ctc ggc tgg aag tgg atc cac gag ccc aag ggc tac cat gcc Lys Asp Leu Gly Trp Lys Trp Ile His Glu Pro Lys Gly Tyr His Ala 305 310 315	1801
aac ttc tgc ctc ggg ccc tgc ccc tac att tgg agc ctg gac acg cag Asn Phe Cys Leu Gly Pro Cys Pro Tyr Ile Trp Ser Leu Asp Thr Gln 325 330 335	1849
tac agc aag gtc ctg gcc ctg tac aac cag cat aac ccg ggc gcc tcg Tyr Ser Lys Val Leu Ala Leu Tyr Asn Gln His Asn Pro Gly Ala Ser 340 345 350	1897
gcg gcg ccg tgc tgc gtg ccg cag gcg ctg gag ccg ctg ccc atc gtg Ala Ala Pro Cys Cys Val Pro Gln Ala Leu Glu Pro Leu Pro Ile Val 355 360 365	1945
tac tac gtg ggc cgc aag ccc aag gtg gag cag ctg tcc aac atg atc Tyr Tyr Val Gly Arg Lys Pro Lys Val Glu Gln Leu Ser Asn Met Ile 370 375 380	1993
gtg cgc tcc tgc aag tgc agc tga ggtcccgccc cgccccggca Val Arg Ser Cys Lys Cys Ser 385	2047
ggcccggccc caccccgccc cgcccccgct gccttgccca tgggggctgt atttaaggac	2107
acceteccc aagcccacct ggggccccat taaagatgga gagaggactg cggatctctg	2167
tgtcattggg cgcctgcctg gggtctccat ccctgacgtt cccccactcc cactccctct	2227
ctctccctct ctgcctcctc ctgcctgtct gcactattcc tttgcccggc atcaaggcac	2287
aggggaccag tggggaacac tactgtagtt agatctattt attgagcacc ttgggcactg	2347
ttgaagtgcc ttacattaat gaactcattc agtcaccata gcaacactct gagatggcag	2407
ggactctgat aacacccatt ttaaaggttg aggaaacaag cccagagagg ttaagggagg	2467
agtteetgee caccaggaac etgetttagt gggggatagt gaagaagaca ataaaagata	2527
gtagttcagg ccaggcgggg tgctcacgcc tgtaatccta gcacttttgg gaggcagaga	2587
tgggaggata cttgaatcca ggcatttgag accagcctgg gtaacatagt gagaccctat	2647
ctctacaaaa cacttttaaa aaatgtacac ctgtggtccc agctactctg gaggctaagg	2707
tgggaggatc acttgatcct gggaggtcaa ggctgcag	2745

<210> 77

<211> 391 <212> PRT

<213> Homo sapiens

<400> 77

Trp Leu Leu Val Leu Thr Pro Gly Pro Pro Ala Ala Gly Leu Ser Thr $\frac{1}{20}$

Cys Lys Thr Ile Asp Met Glu Leu Val Lys Arg Lys Arg Ile Glu Ala

35

40

45

Ile Arg Gly Gln Ile Leu Ser Lys Leu Arg Leu Ala Ser Pro Pro Ser 50 60

Gln Gly Glu Val Pro Pro Gly Pro Leu Pro Glu Ala Val Leu Ala Leu 65 70 75 80

Tyr Asn Ser Thr Arg Asp Arg Val Ala Gly Glu Ser Ala Glu Pro Glu 85 90 95

Pro Glu Pro Glu Ala Asp Tyr Tyr Ala Lys Glu Val Thr Arg Val Leu 100 105 110

Met Val Glu Thr His Asn Glu Ile Tyr Asp Lys Phe Lys Gln Ser Thr

His Ser Ile Tyr Met Phe Phe Asn Thr Ser Glu Leu Arg Glu Ala Val 130 135 140

Pro Glu Pro Val Leu Leu Ser Arg Ala Glu Leu Arg Leu Leu Arg 145 150 160

Leu Lys Leu Lys Val Glu Gln His Val Glu Leu Tyr Gln Lys Tyr Ser 165 170 175

Asn Asn Ser Trp Arg Tyr Leu Ser Asn Arg Leu Leu Ala Pro Ser Asp 180 180

Ser Pro Glu Trp Leu Ser Phe Asp Val Thr Gly Val Val Arg Gln Trp 195 200 205

Leu Ser Arg Gly Gly Glu Ile Glu Gly Phe Arg Leu Ser Ala His Cys 210 215

Ser Cys Asp Ser Arg Asp Asn Thr Leu Gln Val Asp Ile Asn Gly Phe 225 230 235

Thr Thr Gly Arg Gly Asp Leu Ala Thr Ile His Gly Met Asn Arg 245 255

Pro Phe Leu Leu Met Ala Thr Pro Leu Glu Arg Ala Gln His Leu 260 265

Gln Ser Ser Arg His Arg Arg Ala Leu Asp Thr Asn Tyr Cys Phe Ser 275 285

Ser Thr Glu Lys Asn Cys Cys Val Arg Gln Leu Tyr Ile Asp Phe Arg 290 295 300

Lys Asp Leu Gly Trp Lys Trp Ile His Glu Pro Lys Gly Tyr His Ala 305 310 315 320 WO 03/106672 PCT/JP03/07514

Tyr Ser Lys Val Leu Ala Leu Tyr Asn Gln His Asn Pro Gly Ala Ser 340 340

Ala Ala Pro Cys Cys Val Pro Gln Ala Leu Glu Pro Leu Pro Ile Val 355

Tyr Tyr Val Gly Arg Lys Pro Lys Val Glu Gln Leu Ser Asn Met Ile 370 380

Val Arg Ser Cys Lys Cys Ser 385