Problem A. Делители и не только

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 256 мебибайт

Маленький Костя очень любит учить своего младшего брата Андрея. Хоть тому еще далеко до школы, Костя уже сейчас учит брата арифметике. Рассказав о делителях, Костя еще решил немного разнообразить теорию и рассказал о *почти делителях*.

Натуральное число D называется ∂ елителем натурального числа N, если существует натуральное число K такое, что $K \cdot D = N$.

Назовем целое число A почти делителем натурального числа N, если хотя бы одно из чисел A-1, A, A+1 является делителем числа N.

Напишите программу, вычисляющую количество noumu deлumeлей заданного числа N.

Input

В единственной строке входных данных записано одно целое число N ($1 \le N \le 2 \cdot 10^9$).

Output

В единственной строке выведите количество normu делителей числа N.

standard input	standard output
8	9
1	3
200000000	324
479001600	2297
1745944200	4446

Problem B. Настольная игра

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 256 мебибайт

Мальчик Костя очень любит играть в настольные игры. В одной из игр карта состоит из N городов, пронумерованных от 1 до N. Стартовым городом является город 1, назовем его столицей. Между некоторыми городами на карте проложены дороги, движение по которым разрешено в обоих направлениях. Каждая дорога имеет некоторую длину. Дороги не обязательно проложены по прямой, поэтому между одной и той же парой городов может быть несколько дорог. Для упрощения перемещения по дорогам они пересекаются только в городах. Отметим, что не все дороги нанесены на карту, поэтому некоторые просто перечислены на специальных дополнительных карточках в игре (автору игры пришлось так сделать, чтобы сохранить требование пересечения дорог только в городах). Система дорог спланирована таким образом, что из каждого города можно попасть в каждый, двигаясь по дорогам. Никакая дорога не соединяет город с самим собой.

В целях оптимизации дорожного налога игроку требуется хранить как можно меньше активных дорог (нанесенных на карту и на специальных карточках). Но Костя хочет, чтобы в любой город из столицы можно было бы добраться по кратчайшему возможному пути. Под кратчайшим путем понимается такой путь, длина которого минимальна, где длина пути — это сумма длин всех дорог, входящих в этот путь.

В какой-то момент игры Костя завладел всеми дорогами. И сейчас хочет оставить только некоторые из них, но так чтобы можно было до любого города проехать по кратчайшему пути. Так как налог взимается пропорционально длине дороги, то требуется оставить дороги с минимальной возможной суммой длин дорог.

Помогите Косте определить, какие дороги нужно оставить.

Input

В первой строке входных данных записаны два целых числа N и M ($2 \le N \le 100$, $1 \le M \le 1000$) — количество город и дорог в игре. Далее в M строках записаны описания дорог по одной в строке. Каждая из M строк содержит три целых числа X_i , Y_i и L_i ($1 \le X_i$, $Y_i \le N$, $X_i \ne Y_i$, $1 \le L_i \le 10^6$) — города, соединяемые дорогой, и длина дороги соответственно.

Output

В единственной строке выведите целое число, равное минимальной суммарной длине дорог, которые нужно оставить.

Зимняя Компьютерная Школа 2015 Четвёртый отборочный тур, 8 февраля 2015 года

standard input	standard output
2 3	17
1 2 1000000	
2 1 123456	
1 2 17	
5 7	35
2 3 10	
3 5 10	
2 1 18	
5 1 21	
3 1 7	
2 4 8	
2 5 5	
5 7	17
3 5 1	
4 3 5	
2 3 10	
1 5 7	
4 2 5	
1 2 16	
3 1 6	

Problem C. Конфеты

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 256 мебибайт

Мальчик Костя очень любит конфеты, но мама не разрешает ему брать их слишком много. Поэтому каждый раз, когда Костя хочет съесть конфету, мама предлагает ему сыграть в игру.

Изначально у Кости нет конфет, а у мамы их N (они пронумерованы от 1 до N). На каждой конфете мама написала два числа A_i и C_i . Мама очень следит за уровнем вредности конфет, который получает ее сын. Изначально этот уровень равен 0. На каждом ходу игры Костя может взять одну конфету. Если Костя возьмет конфету с номером i, то уровень вредности увеличивается на A_i . Если сразу после этого уровень вредности становится большей C_i , то брать эту конфету запрещается.

Брать конфеты можно в произвольном порядке, но одну и ту же можно брать не более одного раза.

Помогите Косте взять как можно больше конфет (вне зависимости от финального уровеня вредно-cmu).

Input

В первой сроке входных данных записано целое число N ($1 \le N \le 1000$) — количество видов конфет. Во второй строке записаны N целых чисел A_i ($1 \le A_i \le 10^6$). В третей строке записаны N целых чисел C_i ($1 \le C_i \le 10^9$).

Output

В единственной строке выведите целое число, равное максимальному количеству конфет, которые может взять Костя.

standard input	standard output
3	0
3 9 5	
2 1 3	
3	3
5 4 5	
14 14 14	
7	5
1 5 5 1 3 4 1	
6 7 6 6 11 7 4	

Problem D. Мозаика

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 256 мебибайт

Мальчик Костя очень любит не только собирать мозаики, но и с удовольствием придумывает различные игры во время складывания их обратно в коробку.

Мозаика имеет форму прямоугольника $M \times N$, каждая клетка которого содержит одну плитку. На каждой плитке написано целое число от 1 до $M \cdot N$ (на всех плитках числа различны). В собранном виде мозаика имеет следующий вид:

1	2	3	 N-1	N
N+1	N+2	N+3	 $2 \cdot N - 1$	$2 \cdot N$
$(M-1)\cdot N+1$	$(M-1)\cdot N+2$	$(M-1)\cdot N+3$	 $M \cdot N - 1$	$M \cdot N$

Костя хочет сыграть в игру, в которой требуется убрать как можно больше плиток мозаики по определенным правилам. За один ход можно убрать любую плитку, у которой есть 4 соседних плитки (плитки считаются соседними, если они находятся в соседних клетках в одной строке или в одном столбце).

Напишите программу, которая определит максимально возможное количество плиток, которые можно убрать по описанным выше правилам. А также найдите какой-либо корректный максимальный набор плиток.

Input

В единственной строке входных данных записаны два целых числа M и N $(1 \le M, N \le 100)$ — высота и ширина мозаики.

Output

В первой строке выведите максимальное количество плиток, которые Костя может убрать по описанным выше правилам. Во второй строке выведите номера плиток в порядке, в котором их следует убирать. Если существует несколько решений, выведите любое из них.

standard input	standard output
3 3	1
	5
2 1	0
4 4	2
	6 11
4 5	3
	7 9 13

Problem E. Числа-палиндромы

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 256 мебибайт

Недавно папа рассказал мальчику Косте про интересный класс чисел — nanundpomoi. Целое неотризательное число называется nanundpomoi, если его десятичная запись (без ведущих нулей) читается слева направо и справа налево одинаково. Мальчик очень увлекся этой темой и даже придумал несколько задач, которые будет решать младший брат, когда подрастет.

В первой задаче, которую придумал Костя, нужно проверить, является ли сумма двух целых чисел X и Y nanundpomom.

А сейчас мальчик Костя хотел бы попросить помощи, так как сам написать программу для проверки заданий он не может.

Input

В единственной строке входных данных записаны два целых числа X и Y ($-10^9 \le X, Y \le 10^9$).

Output

Выведите единственную строку Yes, если сумма является числом-палиндромом, иначе выведите No.

standard input	standard output
1 3	Yes
7 4	Yes
5 5	No
-5 4	No

Problem F. И снова последовательность

Input file: standard input
Output file: standard output

Time limit: 1 секунда Memory limit: 256 мебибайт

Папа редко читаем Косте сказки, но читая одну математическую книжку, они наткнулись на следующую последовательность чисел a_i $(i \ge 1)$:

$$1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, \dots$$

Оказывается, эта последовательность называется camoonucameльной и это смутило Костю. Папа при этом указал на замечательное свойство последовательности: число N входит в последовательность ровно a_N раз. Также в книге было написано, что существует только одна неубывающая camoonucamenьная последовательность.

Костя так и не смог найти закономерность, чтобы вычислить чему равен i-ый член последовательности.

Удовлетворите любопытство Кости. Напишите программу, вычисляющую N-й элемент описанной в условии задачи camoonucame nbhoù последовательности.

Input

В единственной строке входных данных записано одно целое число N ($1 \le N \le 2 \cdot 10^9$).

Output

В единственной строке выведите N-ый элемент самоописательной последовательности.

standard input	standard output
1	1
8	4
2	2
2015	132