SMART WASTE COLLECTION

WHAT IS THE PROBLEM TO HANDLE?

- The problem is the one of emptying a group of public garbage bins in a smart and planned way.
 Smart means preventing them to be full for a long time or emitting foul smells, and at the same time do not gather the garbage too early.
- This could help also the citiziens to throw away the garbage in the best spot possible, which means the closest and the one which appropiate bins are still empty enough.

WHY IOT IS NEEDED?

IoT is needed because placing a node on each bin allow us to gather data in a capillar way so that we can serve each bin or group of bins in a targeted manner.

WHICH ARE THE COMPONENTS AND HOW THEY COMMUNICATE

- There will be a node on each bin.
- Each node will be provided with a LoRa Antenna to communicate with other peers.
- At least one node for autonomous system will have a wifi antenna to connect to the edge and so towards the cloud.

So peers will create chain of message passing to send/receive status, alerts and configuration updates to and from nodes connected to the internet

WHAT DATA ARE COLLECTED?

TEMPERATURE

To avoid the insurgence of fire

FILLING LEVEL

Ultrasound sensors to measure distance from the top of the bin to the garbage

TIME

To know time passed since last collection and avoid foul smells

BAD GAS LEVEL

Gas sensors to detect foul smells

HOW DO WE ARE GOING TO ACT?

- Sending a notification when a bin becomes too full.
- Sending an alarm when a fire or general problem due to temperature may arise.

WHAT WE ARE GOING TO LEARN?

Each bin will learn how fast it will be filled, so it will adjust the threshold to trigger the alarm to be gathered.

CONSTRAINTS

ENERGY

The batteries must last for years

BANDWIDTH

Limit message size between peers and reduce operations involving the cloud

DISTANCE

Bins have to communicate over hundreds of meters

LOAD BALANCING

Some nodes have more workload than others

CLOCK DRIFT

Synchronization must be enforced to support communication

EVALUATION METRICS FOR CONSTRAINTS

ENERGY CONSUMPTION

Monitor with a ina219 the energy consumption of different nodes

BANDWITH USAGE

Measure the quantity of data sent throught the cloud

PACKET DELIVERY

Ratio of delivered messages between peers

NUMBER OF FAILURES

Number of times that the bin becomes completely full or emits foul smells

WHICH EXTERNAL SERVICES ARE WE GOING TO USE?

- Cloud services to store data, like AWS
- MQTT message broker to send notifications and receive configuration updates

HOW TO MEASURE EFFECTIVENESS OF ACTIONS

- Average time passed since a bin becomes full and its collection.
- Average remaining space in the bins at time of collection