Package 'SIMPLICA'

September 3, 2025

Title Biclustering via Simplivariate Component Analysis
Version 1.0.0
Description Identifies constant, additive, multiplicative, and user-defined simplivariate components in numeric data matrices using a genetic algorithm. Supports flexible pattern definitions and provides visualization for general biclustering applications across diverse domains. The method builds on simplivariate models as introduced in Hageman et al. (2008) <doi:10.1371 journal.pone.0003259=""> and is related to biclustering frameworks as reviewed by Madeira and Oliveira (2004) <doi:10.1109 tcbb.2004.2="">.</doi:10.1109></doi:10.1371>
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 2.10)
LazyData true
LazyDataCompression xz
Imports GA, ggplot2, ggsci
<pre>URL https://github.com/joshageman/SIMPLICA</pre>
BugReports https://github.com/joshageman/SIMPLICA/issues
NeedsCompilation no
Author Jos Hageman [aut, cre]
Maintainer Jos Hageman < jos. hageman@wur.nl>
Repository CRAN
Date/Publication 2025-09-03 08:00:18 UTC
Contents
additiveMatrix

2 additiveMatrix

	defaultPatternFunctions	6
	fitness	7
	fitnessForOneComponent	8
	gaintegerMutation	9
	gaintegerOnePointCrossover	9
	gaintegerPopulationFactory	10
	globals	10
	multiplicativeMatrix	11
	multiplicativeMatrixFitter	11
	plotComponentResult	12
	print.summaryComponents	13
	SCAMonitorFactory	14
	simplica	14
	simplicaCV	17
	simplicaToy	19
	summaryComponents	19
Index		21

additiveMatrix

Generate an additive approximation of a data matrix

Description

Constructs a matrix with an additive structure based on the row means, column means, and the grand mean of the original matrix.

Usage

additiveMatrix(mat)

Arguments

mat

A numeric matrix or data frame with numeric entries.

Details

The result is an approximation A of the original matrix, where:

$$A[i,j] = rowMean[i] + colMean[j] - grandMean \\$$

This model captures main additive effects of rows and columns, commonly used in exploratory data analysis or baseline modeling.

Value

A numeric matrix of the same dimension as mat, approximating it using an additive model.

additiveMatrixFitter 3

Examples

```
m \leftarrow matrix(c(1, 2, 3, 4), nrow = 2) additiveMatrix(m)
```

additiveMatrixFitter Additive Pattern Fitter

Description

Fits an additive pattern to matrix data using training data specified by a mask. The pattern is based on row and column main effects, creating an additive model where each cell value is the sum of a row effect and column effect minus the overall mean.

Usage

```
additiveMatrixFitter(mat, trainMask)
```

Arguments

mat Numeric matrix containing the data to fit

trainMask Logical matrix of same dimensions as mat, indicating which cells to use for

training

Details

The function creates an additive pattern by:

- Masking non-training cells as NA to compute statistics only on training data
- Computing overall mean of training data
- Computing row means and column means from training data
- Replacing non-finite means with overall mean as fallback
- · Creating additive pattern as outer sum of row and column effects minus overall mean

Value

Numeric matrix of same dimensions as mat containing the fitted additive pattern

componentCVPatterns

Cross-Validation of Simplivariate Component Patterns

Description

Performs pure cross-validation over specified patterns with mandatory fitters. This function evaluates different pattern fitting models using cross-validation to determine the best model for a given data subset.

Usage

```
componentCVPatterns(
   df,
   rows,
   cols,
   patternFunctions,
   patternFitters,
   preferenceOrder = names(patternFunctions),
   nRepeats = 40,
   testFraction = 0.2,
   minCellsForModels = 25,
   parsimonyMargin = 0.05,
   requireFitters = TRUE,
   verbose = FALSE
)
```

Arguments

df A matrix or data frame containing the data

rows Row indices to subset from df cols Column indices to subset from df

patternFunctions

A named list of pattern functions to evaluate

patternFitters A named list of fitter functions corresponding to each pattern

preferenceOrder

Character vector specifying the preference order of patterns (default: names of

patternFunctions)

nRepeats Integer, number of cross-validation repeats (default: 40)

testFraction Numeric, fraction of data to use for testing in each CV fold (default: 0.2)

 ${\tt minCellsForModels}$

Integer, minimum number of cells required for reliable CV (default: 25)

parsimonyMargin

Numeric, margin for parsimony selection as fraction (default: 0.05)

requireFitters Logical, whether to require fitters for all patterns (default: TRUE) verbose Logical, whether to print progress messages (default: FALSE)

defaultPatternFitters 5

Value

A list containing:

decision Character, the selected best pattern name

reason Character, explanation of the selection reasoning

cv Data frame with CV summary statistics for each model repeats Data frame with detailed results from each CV repeat

meta List with metadata about the CV procedure

defaultPatternFitters Default Pattern Fitters for SIMPLICA

Description

Returns a list of default pattern fitting functions used in SIMPLICA. These fitters estimate different types of patterns (constant, additive, multiplicative) from matrix data using specified training cells.

Usage

defaultPatternFitters()

Details

Each fitter function takes two arguments:

- mat: Numeric matrix containing the data to fit
- trainMask: Logical matrix indicating which cells to use for training

All fitters return a fitted matrix of the same dimensions as the input.

Value

A named list containing pattern fitting functions:

- constant: Fits a constant value (mean of training data)
- additive: Fits an additive pattern using additiveMatrixFitter
- multiplicative: Fits a multiplicative pattern using multiplicativeMatrixFitter

6 defaultPatternFunctions

Examples

```
# Retrieve default pattern fitters
fitters <- defaultPatternFitters()</pre>
# Add a custom diagonal pattern fitter
diagonalFitter <- function(mat, trainMask) {</pre>
 # Extract diagonal values from training data
 minDim <- min(nrow(mat), ncol(mat))</pre>
 diagIndices <- cbind(1:minDim, 1:minDim)</pre>
 # Only use diagonal elements that are in the training mask
 validDiag <- trainMask[diagIndices]</pre>
 if (any(validDiag)) {
    diagVal <- mean(mat[diagIndices][validDiag])</pre>
 } else {
   diagVal <- mean(mat[trainMask]) # fallback to overall mean</pre>
 matrix(diagVal, nrow = nrow(mat), ncol = ncol(mat))
}
# Extend the list with your own pattern
fitters$diagonal <- diagonalFitter
```

defaultPatternFunctions

Default pattern generators for SIMPLICA

Description

Returns a named list of default matrix approximation functions used to score component patterns. Each function must take a numeric matrix (i.e., a component: subset of rows and columns) and return a matrix of the same dimensions that approximates the original matrix according to a specific structural pattern (e.g., constant, additive, etc.).

Usage

```
defaultPatternFunctions()
```

Details

This list can be passed to fitness2() via the patternFunctions argument. Users can extend or override the default patterns by modifying the returned list.

Requirements for pattern functions:

Custom pattern functions must:

- Take a numeric matrix as input.
- Return a numeric matrix of the same dimensions.
- Be compatible with sum(abs(...)) and sum((...)^2) operations for fitness scoring.

fitness 7

Value

A named list of functions, each representing a matrix approximation method.

Examples

```
# Retrieve default pattern functions
patterns <- defaultPatternFunctions()

# Add a custom pattern based on diagonal structure
diagonalPattern <- function(m) {
    diagVal <- mean(diag(as.matrix(m)))
    matrix(diagVal, nrow = nrow(m), ncol = ncol(m))
}

# Extend the list with your own pattern
patterns$diagonal <- diagonalPattern</pre>
```

fitness

Fitness function with automatic pattern selection per Simplivariate Component

Description

Fitness function with automatic pattern selection per Simplivariate Component

Usage

```
fitness(
   string,
   df,
   dfMean,
   penalty,
   patternFunctions = defaultPatternFunctions(),
   returnPatterns = FALSE,
   ...
)
```

Arguments

string Vector with length nrow(df) + ncol(df): component labels for rows and columns

(in this order).

df Numeric matrix: full data. dfMean Scalar: global mean of df.

penalty Named vector with penalty weights per pattern.

patternFunctions

Named list of functions returning pattern-based approximations.

```
returnPatterns Logical: if TRUE, also returns chosen pattern per component.
... Additional arguments passed to the GA functions
```

Value

Either total fitness (numeric), or list(fitness, componentPatterns) if returnPatterns = TRUE.

fitnessForOneComponent

Compute best pattern-based fitness for a single Simplivariate Component

Description

Compute best pattern-based fitness for a single Simplivariate Component

Usage

```
fitnessForOneComponent(mat, dfMean, patternFunctions, penalty)
```

Arguments

mat A numeric matrix (the component)
dfMean Overall mean of the full data matrix

patternFunctions

Named list of functions for structure types

penalty Named numeric vector of penalties per pattern type

Value

Numeric fitness value (higher is better)

Examples

gaintegerMutation 9

Description

Applies mutation to a selected parent vector by replacing each gene with a random value (within bounds) with a given mutation probability. Used in integer-encoded GAs.

Usage

```
gaintegerMutation(object, parent, ...)
```

Arguments

object A GA object containing at least the slots @population, @upper, @lower, and

@pmutation.

parent An integer index indicating which individual in the population to mutate.

... Further arguments (unused, included for compatibility).

Value

A numeric vector representing the mutated individual.

```
gaintegerOnePointCrossover
```

One-point crossover operator for integer-encoded genetic algorithms

Description

Performs one-point crossover on two parent individuals. A single crossover point is selected, and all genes before (and including) that point are exchanged between the parents.

Usage

```
gaintegerOnePointCrossover(object, parents, ...)
```

Arguments

object A GA object with a @population slot (a matrix).

parents A 2-row matrix of values indexing the parents from the current population.

... Further arguments (unused, included for compatibility).

10 globals

Value

A list with two elements:

children A 2-row matrix of the resulting offspring.

fitness A numeric vector of NA values to be replaced by fitness evaluation.

gaintegerPopulationFactory

GA Integer Population Factory

Description

Creates a factory function for generating initial populations for genetic algorithms with integer chromosomes, where a specified fraction of variables are set to zero.

Usage

gaintegerPopulationFactory(zeroFraction, verbose = FALSE)

Arguments

zeroFraction Numeric value between 0 and 1 specifying the fraction of variables to set to zero

in each individual

verbose Logical indicating whether to print information about zero fraction

Value

A function that takes a GA object and returns an initial population matrix

globals Global Variables Declaration

Description

This file declares global variables used in the SIMPLICA package to avoid R CMD check notes about "no visible binding for global variable". These variables are typically used within ggplot2 aesthetics and data manipulation functions where they refer to column names in data frames created during execution.

multiplicativeMatrix 11

multiplicativeMatrix Generate an multiplicative approximation of a data matrix

Description

Approximates a data matrix using a low-rank multiplicative model based on a fixed outer product of centered row and column effects.

Usage

```
multiplicativeMatrix(mat)
```

Arguments

mat

A numeric matrix with values to approximate.

Details

The model assumes:

$$M[i,j] = mu + a * rowEffect[i] * colEffect[j]$$

where mu is the overall mean of the input matrix, and rowEffect and colEffect are centered integer sequences.

Value

A numeric matrix of the same size as mat, containing the fitted values.

```
multiplicativeMatrixFitter
```

Multiplicative Pattern Fitter

Description

Fits a multiplicative pattern to matrix data using training data specified by a mask. The pattern is based on the outer product of centered row and column effects, creating a bilinear surface that can capture multiplicative interactions between rows and columns.

Usage

```
multiplicativeMatrixFitter(mat, trainMask)
```

Arguments

mat Numeric matrix containing the data to fit

trainMask Logical matrix of same dimensions as mat, indicating which cells to use for

training

12 plotComponentResult

Details

The function creates a multiplicative pattern by:

- Computing the mean of training data as baseline
- Creating centered row effects (0 to nRows-1, mean-centered)
- Creating centered column effects (0 to nCols-1, mean-centered)
- Taking outer product to form bilinear pattern
- Fitting scaling coefficient using least squares on training data
- Returning baseline plus scaled pattern

Value

Numeric matrix of same dimensions as mat containing the fitted multiplicative pattern

plotComponentResult Plot non-contiguous simplivariate components by pattern type, with optional reordering

Description

Visualizes GA-detected simplivariate components on the original matrix as outlined cells, colored by pattern type.

Usage

```
plotComponentResult(
   df,
   string,
   componentPatterns,
   componentScores,
   scoreCutoff = 0,
   showAxisLabels = TRUE,
   showComponentLabels = TRUE,
   title = "Detected Components",
   rearrange = FALSE,
   grayscale = TRUE
)
```

Arguments

```
df Original data matrix

string Best GA string (vector of length nrow(df) + ncol(df); rows first, then cols)

componentPatterns

Vector of component types (from fitness(..., returnPatterns = TRUE))
```

componentScores

Vector of fitness scores per component

scoreCutoff Minimum score a component must have to be shown (default: 0 = show all)

showAxisLabels Logical: show axis tick labels (default: TRUE)

showComponentLabels

Logical: show component labels inside clusters (default: TRUE)

title Title for the plot (default: "Detected Components")

rearrange Logical: reorder rows and columns to group components (default: FALSE)

grayscale Logical: use grayscale for heatmap background (default: TRUE)

Value

ggplot object

print.summaryComponents

Print method for summaryComponents

Description

Print method for summaryComponents

Usage

```
## S3 method for class 'summaryComponents'
print(x, showDetails = FALSE, maxLinesDetails = 200L, ...)
```

Arguments

x An object produced by summaryComponents().

showDetails Logical. If TRUE, also print row/column indices per component.

maxLinesDetails

Integer. Max number of indices to print per dimension (rows/cols) before trun-

cation (default 200).

... Further arguments passed to or from other methods (not used here).

Value

The input object x, invisibly. Called for its side effect of printing a formatted component summary to the console.

14 simplica

SCAMonitorFactory	Simplivariate Component Analysis monitoring function factory for GA
	progress

Description

Creates a monitoring function that prints the current generation and the best fitness score to the console at specified intervals. Intended for use as a monitor function in GA runs.

Usage

```
SCAMonitorFactory(interval = 100)
```

Arguments

interval

An integer specifying the interval for printing progress updates. Default is 100 (prints every 100 generations).

Value

A monitoring function that can be used with GA. The returned function takes a GA object and prints progress information at the specified interval.

Examples

```
# Create monitor that prints every 100 generations (default)
monitor <- SCAMonitorFactory()
# ga(..., monitor = monitor)

# Create monitor that prints every 50 generations
monitor <- SCAMonitorFactory(50)
# ga(..., monitor = monitor)</pre>
```

simplica

SIMPLICA: Simultaneous Identification of Simplivariate Components

Description

Implements the SIMPLICA algorithm to identify Simplivariate Components in data matrices using a genetic algorithm. These components are related to clusters or biclusters, but defined here in terms of specific structural patterns (constant, additive, multiplicative, or user-defined).

simplica 15

Usage

```
simplica(
  df,
 maxIter = 2000,
 popSize = 300,
 pCrossover = 0.6,
 pMutation = 0.03,
  zeroFraction = 0.9,
  elitism = 100,
  numSimComp = 5,
  verbose = FALSE,
 mySeeds = 1:5,
  interval = 100,
 penalty = c(constant = 0, additive = 1, multiplicative = 0),
  patternFunctions = defaultPatternFunctions(),
 doSimplicaCV = TRUE,
  cvControl = NULL
)
```

Arguments

	df	A numeric data matrix to analyze
	maxIter	Maximum number of generations for the genetic algorithm (default: 2000)
	popSize	Population size for the genetic algorithm (default: 300)
	pCrossover	Crossover probability for genetic algorithm (default: 0.6)
	pMutation	Mutation probability for genetic algorithm (default: 0.03)
	zeroFraction	Fraction of population initialized with zeros (default: 0.9)
	elitism	Number of best individuals preserved between generations (default: 100)
	numSimComp	Number of Simplivariate Components simultaneously optimized (default: 5)
	verbose	Logical, whether to print SIMPLICA progress information (default: FALSE)
	mySeeds	Vector of random seeds for replicate runs (default: 1:5)
	interval	Interval for monitoring GA progress (default: 100)
	penalty	Named vector of penalty values for each pattern type (default: $c(constant = 0, additive = 1, multiplicative = 0))$
patternFunctions		
		List of pattern functions used for fitness evaluation (default: defaultPatternFunctions())
	doSimplicaCV	Logical, run cross-validated relabeling with simplica CV() after GA (default: $\ensuremath{TRUE})$
	cvControl	Optional list to tune simplica CV; fields passed to simplica CV via do. call. Defaults if omitted:

patternFitters = defaultPatternFitters()
 preferenceOrder = names(patternFunctions)

16 simplica

```
• nRepeats = 40
```

- testFraction = 0.2
- minCellsForModels = 25
- parsimonyMargin = 0.05
- requireFitters = TRUE
- updateObject = TRUE
- verbose = verbose

Value

A list with:

- best: simplica object (includes original GA result; if doSimplicaCV=TRUE, also component-PatternsUpdated and componentAudit)
- raw: list of "ga" objects (one per seed, from the GA package)

References

Hageman, J. A., Wehrens, R., & Buydens, L. M. C. (2008). "Simplivariate Models: Ideas and First Examples." PLoS ONE, 3(9), e3259. doi:10.1371/journal.pone.0003259

Madeira, S. C., & Oliveira, A. L. (2004). "Biclustering Algorithms for Biological Data Analysis: A Survey." IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 24–45. doi:10.1109/TCBB.2004.2

Examples

```
data("simplicaToy")
# Minimal run just to demonstrate function usage, run with default GA parameters
fit <- simplica(df = simplicaToy$data,</pre>
               maxIter = 200,
               popSize = 50,
               mySeeds = 1,
               elitism = 1,
               verbose = TRUE)
plotComponentResult(df = simplicaToy$data,
                   string
                            = fit$best$string,
                   componentPatterns = fit$best$componentPatternsUpdated,
                   componentScores = fit$best$componentScores,
                   showAxisLabels = FALSE,
                   title = "SIMPLICA on simplicaToy",
                   scoreCutoff = 25000)
```

simplicaCV 17

simplicaCV	Test Simplivariate Components with Cross-Validation Pattern Selection
	<i>work</i>

Description

This function performs cross-validation-based pattern testing for Simplivariate Components in a SIMPLICA object. It evaluates different pattern functions using cross-validation and selects the best performing pattern for each component. Fitters are required for all patterns with no fallback options.

Usage

```
simplicaCV(
  foundObject,
  df,
  patternFunctions = defaultPatternFunctions(),
  patternFitters = defaultPatternFitters(),
  preferenceOrder = names(patternFunctions),
  nRepeats = 40,
  testFraction = 0.2,
  minCellsForModels = 25,
  parsimonyMargin = 0.05,
  requireFitters = TRUE,
  updateObject = TRUE,
  verbose = FALSE,
  ignoreNaComponents = TRUE
)
```

Arguments

```
foundObject
                  A simplica object containing Simplivariate Components
df
                  Data frame or matrix with the original data
patternFunctions
                  List of pattern functions to evaluate (default: defaultPatternFunctions())
patternFitters List of pattern fitting functions (default: defaultPatternFitters())
preferenceOrder
                  Character vector specifying preference order for pattern selection (default: names(patternFunctions))
nRepeats
                  Integer, number of cross-validation repeats (default: 40)
testFraction
                  Numeric, fraction of data to use for testing (default: 0.2)
minCellsForModels
                  Integer, minimum number of cells required for model fitting (default: 25)
parsimonyMargin
                  Numeric, margin for parsimony-based model selection (default: 0.05)
requireFitters Logical, whether fitters are required for all patterns (default: TRUE)
```

18 simplicaCV

updateObject Logical, whether to update and return the input object (default: TRUE)

verbose Logical, whether to print progress messages (default: FALSE)

ignoreNaComponents

Logical, whether to skip components with NA patterns (default: TRUE)

Details

The function performs the following steps:

- Validates the input simplica object and data dimensions
- Checks that all pattern functions have corresponding fitters
- For each simplivariate component, performs cross-validation pattern evaluation
- Selects the best performing pattern based on RMSE and parsimony
- Updates component patterns and provides detailed test information

Value

If updateObject = TRUE, returns the input simplica object with two new fields:

componentPatternsUpdated Character vector with the selected pattern per component after cross-validation. If a component is skipped or empty, the entry is NA.

componentAudit Data frame containing detailed cross-validation results for each component, with the following columns:

componentId Numeric ID of the component.

originalPattern Pattern label originally assigned.

selectedPattern Pattern chosen after CV-based evaluation.

reason Explanation of why a pattern was selected or skipped.

nRows, nCols, nCells Dimensions of the component.

nRepeats, testFraction, parsimonyMargin CV settings used.

cvMean_<pattern> Mean RMSE over CV folds for each tested pattern.

cvSd_<pattern> Standard deviation of RMSE across CV folds.

winFrac_<pattern> Fraction of CV repeats where the pattern was the best performer.

If updateObject = FALSE, returns a list with the same two elements (componentPatternsUpdated, componentAudit).

simplicaToy 19

simplicaToy	Toy matrix with one multiplicative and one additive bicluster

Description

A small 30×60 matrix to demonstrate SIMPLICA in a controlled setting. Contains one multiplicative and one additive simplivariate component (non-overlapping).

Usage

```
data(simplicaToy)
```

Format

A list with three elements:

```
\begin{tabular}{ll} \mbox{\bf data} & \mbox{numeric matrix of dimension } 30 \times 60 \\ \mbox{\bf trueComponents} & \mbox{list of length 2 with type, rows, cols} \\ \mbox{\bf description} & \mbox{character string} \\ \end{tabular}
```

Examples

```
data("simplicaToy")
str(simplicaToy)
image(t(simplicaToy$data))
```

summaryComponents

Summarize GA-found Simplivariate Components

Description

Compute a tidy summary of simplivariate Components found by SIMPLICA. Returns a data.frame with class "summaryComponents" and an attribute holding row/column index lists for printing details.

Usage

```
summaryComponents(results, scoreCutoff = 0)
```

Arguments

results A list or 'simplica' object with fields: nRows, nCols, string, componentScores,

and either component Patterns Updated or component Patterns.

scoreCutoff Numeric. Minimum score to include a component (default 0).

Value

A data.frame with columns: componentId, pattern, score, rows, cols, size; class is c("summaryComponents", "data.fr The attribute "indices" stores a list with per-component rowIdx and colIdx.

Index

```
* datasets
    simplicaToy, 19
additiveMatrix, 2
{\it additive Matrix Fitter}, {\it 3}
\verb|componentCVPatterns|, 4
defaultPatternFitters, 5
{\tt defaultPatternFunctions}, {\tt 6}
fitness, 7
{\tt fitnessForOneComponent, 8}
gaintegerMutation, 9
gaintegerOnePointCrossover, 9
{\tt gaintegerPopulationFactory},\, 10
{\tt globals}, {\tt 10}
multiplicativeMatrix, 11
\verb|multiplicativeMatrixFitter|, 11|\\
plotComponentResult, 12
print.summaryComponents, 13
SCAMonitorFactory, 14
simplica, 14
simplicaCV, 17
simplicaToy, 19
summaryComponents, 19
```