2. LAPLACE TRANSFORMATION

LAPLACE TRANSFORMATION: It's used to transform time domain function to frequency domain function.

			1 3
$\mathcal{L} = \text{Laplace Operator}$ $X(t) = \sum_{s=0}^{\infty} \frac{\mathcal{L}\{X(t)\}}{s} - \sum_{s=0}^{\infty} \frac{\mathcal{L}\{X(t)\}$	Given $x(t), \forall t \geq 0$	$\int_{-\infty}^{\infty} e^{-st} x(t) dt = V(s)$	x(t) = Objective Function,
	\mathcal{L} = Laplace Operator	$\mathcal{L}\{x(t)\} = \int_0^\infty e^{-x(t)ut} = X(s)$	X(s) = Image Function (Frequency Domain Fun.),

$\mathcal{L}\left\{x(t)\right\} = X(s)$	$\mathcal{L}^{-1}\left\{X(s)\right\} = x(t)$	$\mathcal{L}\left\{x(t)\right\} = X(s)$	$\mathcal{L}^{-1}\left\{X(s)\right\} = x(t)$
$\mathcal{L}\left\{1\right\} = \frac{1}{-}$	$\mathcal{L}^{-1}\left\{\frac{1}{-}\right\} = 1$	"n" is Integer	"n" is Fraction
<u>S</u>	$\mathcal{L}^{-1}\left\{\begin{array}{c} (s) \\ \hline \end{array}\right\} = e^{at}$	$\mathcal{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}}$	$\mathcal{L}\left\{t^{n}\right\} = \frac{\sqrt{n+1}}{s^{n+1}}$
$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a}$	$\mathcal{L} = \{ \overline{s-a} \} \equiv e^{-s}$	(1) t^n	(1) t^n
$\mathcal{L}\left\{e^{-at}\right\} = \frac{1}{s+a}$	$\mathcal{L}^{-1}\left\{\frac{1}{s+a}\right\} = e^{-at}$	$\mathcal{L}^{-1}\left\{\frac{1}{s^{n+1}}\right\} = \frac{s}{n!}$	$\mathcal{L}^{-1}\left\{\frac{1}{S^{n+1}}\right\} = \frac{1}{\sqrt{n+1}}$
$\mathcal{L}\left\{\sin at\right\} = \frac{a}{s^2 + a^2}$	$\mathcal{L}^{-1}\left\{\frac{1}{s^2+a^2}\right\} = \frac{\sin at}{a}$	$\mathcal{L}\left\{\cos at\right\} = \frac{s}{s^2 + a^2}$	$\mathcal{L}^{-1}\left\{\frac{s}{s^2 + a^2}\right\} = \cos at$
$\mathcal{L}\left\{\sinh at\right\} = \frac{a}{s^2 - a^2}$	$\mathcal{L}^{-1}\left\{\frac{1}{s^2 - a^2}\right\} = \frac{\sinh at}{a}$	$\mathcal{L}\left\{\cosh at\right\} = \frac{s}{s^2 - a^2}$	$\mathcal{L}^{-1}\left\{\frac{s}{s^2 - a^2}\right\} = \cosh at$

GAMMA FUNCTION: $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx = (n-1)!$, for n > 0

	· · · · · · · · · · · · · · · · · · ·	
$\sqrt{n+1} = n\sqrt{n}$	$\Gamma\left(1/2\right) = \sqrt{\pi}$	$\Gamma\left(-1/2\right) = -2\sqrt{\pi}$

FIRST SHIFT PROPERTY:	$\mathcal{L}\left\{e^{-at}x(t)\right\} = X(s+a)$	$\mathcal{L}^{-1}\left\{X(s+a)\right\} = e^{-at}x(t)$
If $\mathcal{L}\{x(t)\} = X(s)$, then	$\mathcal{L}\left\{e^{-at}x(t)\right\} = X(s-a)$	$\mathcal{L}^{-1}\left\{X(s-a)\right\} = e^{at}x(t)$

THEOREM-I:	If $\mathcal{L}\left\{x(t)\right\} = X(s)$,	$\int_{0}^{\infty} (t^{n} x(t)) = (1)^{n} d^{n} y(t)$	$(-1)^{n} \begin{pmatrix} d^n \\ V(a) \end{pmatrix} = (-1)^{n+n} v(t)$
Multiplication by "t"	then	$L\left\{t^{n} x(t)\right\} = (-1)^{n} \frac{1}{ds^{n}} X(s)$	$\mathcal{L}^{-1}\left\{\frac{1}{ds^n}X(s)\right\} = (-1)^n t^n x(t)$

EVALUATION OF DEFINITE INTEGRAL USING L.T. TECHNIQUE:

THEOREM-II: If $\mathcal{L}\{x(t)\} = X(s)$, then	$\mathcal{L}\left\{\frac{x(t)}{t}\right\} = \int_{s}^{\infty} X(s) ds$	$\mathcal{L}^{-1}\left\{\int_{s}^{\infty}X(s)\ ds\right\} = \frac{x(t)}{t}$
---	---	---

THEOREM-III: If $\mathcal{L}\{x(t)\} = X(s)$, then	$\mathcal{L}\left\{x'(t)\right\} = sX(s) - x(0)$
$\mathcal{L}\{x''(t)\} = s^2 X(s) - sx(0) - x'(0)$	$\mathcal{L}\left\{x'''(t)\right\} = s^3 X(s) - s^2 x(0) - s x'(0) - x''(0)$

THEOREM-IV:	If $\mathcal{L}\{x(t)\} = X(s)$, then	$\mathcal{L}\left\{\int_0^t x(t) dt\right\} = \frac{X(s)}{s}$	$\mathcal{L}^{-1}\left\{\frac{X(s)}{s}\right\} = \int_0^t x(t) dt$

UNIT STEP FUNCTION:	SHIFTED UNIT STEP FUNCTION:
$U(t) = \begin{cases} 1; t > 0 \\ 0; t < 0 \\ 1/2; t = 0 \end{cases}$	$U(t-a) = \begin{cases} 0; t > a \\ 1; t < a \\ 1/2; t = a \end{cases}$
$U(t) = \left\{ 0; t < 0 \right.$	$U(t-a) = \left\{ 1; t < a \right.$
(1/2; t = 0	(1/2; t = a
THEOREM-A	THEOREM-B
$\mathcal{L}\left\{U(t)\right\} = \frac{1}{s} \qquad \qquad \mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = U(t)$	$\mathcal{L}\left\{U(t-a)\right\} = \frac{e^{-as}}{s} \qquad \qquad \mathcal{L}^{-1}\left\{\frac{e^{-as}}{s}\right\} = U(t-a)$
(x(t-a); t > a)	THEOREM-C
$x(t-a) \ U(t-a) = \begin{cases} x(t-a); t > a \\ 0; t < a \\ x(0)/2; t = a \end{cases}$	$\mathcal{L}\left\{x(t-a)\ U(t-a)\right\} = e^{-as}\ X(s) = e^{-as}\ \mathcal{L}\left\{x(t)\right\}$
(x(0)/2; t = a	$\mathcal{L}^{-1}\left\{e^{-as}X(s)\right\} = x(t-a)\ U(t-a)$
(x(t); t > a)	THEOREM-D
$x(t) U(t-a) = \begin{cases} x(t); t > a \\ 0; t < a \\ x(a)/2; t = a \end{cases}$	$\mathcal{L}\left\{x(t)\ U(t-a)\right\} = e^{-as}\ \mathcal{L}\left\{x(t+a)\right\}$
(x(a)/2; t = a)	

LAPLACE OF SEMI PERIODIC FUNCTION:	$1 \int_{-T}^{T} dt dt$
If $x(t)$, $\forall t \ge 0 \& x(t-T) = x(t)$, then	$\mathcal{L}\{x(t)\} = \frac{1}{1 - e^{-sT}} \int_{0}^{\infty} e^{-st} x(t) dt$

CONVOLUTION THEOREM:	ct
If $\mathcal{L}^{-1}\{X_1(s)\} = x_1(t) \& \mathcal{L}^{-1}\{X_2(s)\} = x_2(t)$, then	$\mathcal{L}^{-1}\{X_1(s)X_2(s)\} = \int_0^{\infty} x_1(u) x_2(t-u) du$

INVERSE LAPLACE TRANSFORMATION USING PARTIAL FRACTIONS:

FORM-I:	p(s) $p(s)$ A B
Non-Repeated Linear Factor	$\frac{1}{q(s)} = \frac{1}{(s-a)(s-b)} = \frac{1}{(s-a)} + \frac{1}{(s-b)}$
FORM-II:	p(s) $p(s)$ A B C
Repeated Linear Factor	$\frac{1}{q(s)} = \frac{1}{(s-a)(s-b)^2} = \frac{1}{(s-a)} + \frac{1}{(s-b)} + \frac{1}{(s-b)^2}$
FORM-III:	p(s) $p(s)$ A $Bs+C$
Quadratic Factor	$\overline{q(s)} = \overline{(s^2 + a^2)(s - b)} = \overline{(s - b)} + \overline{(s^2 + a^2)}$

Where, Degree(p(s)) < Degree(q(s))