Introduction à la Théorie des Graphes

Partie 5: Chemins Optimaux

Dr. Guelzim ibrahim

Email: ib.guelzim@gmail.com

Sommaire

- Graphes valués
- Algorithme de Dijkstra
- Algorithme de Bellman-Ford

Introduction

- · Problème
 - o Dans un graphe orienté G(V,E), trouver les plus courts chemins à partir d'un sommet de départ $s \in V$ vers tous les autres sommets.
- · Pourquoi s'intéresse t-on à ces problèmes?
 - o Problèmes de tournées
 - o Ordonnancement
 - Routage
 - 0 ...
- Deux algorithmes
 - Algorithme de Dijkstra
 - o Algorithme de Bellman-Ford

Graphes valués

- Définition
 - \circ Soit G = (V, E) un graphe orienté ou non.
 - On dit que G est valué si l'on attribue à chacun de ses arcs (ou arêtes) une valeur numérique.
 - Un graphe est dit à valuations positives si toutes ces valeurs sont positives ou nulles.
 - O Dire que G est valué revient à dire qu'il existe une application v appelée valuation, définie sur E et à valeurs réelles : $V:E \longrightarrow R$ $(x, y) \rightarrow v(x, y)$
- · Si le graphe est non orienté, l'application valuation est symétrique

Graphes valués

• Exemple : Considérons le graphe G non orienté suivant

- · Ce graphe est valué, car chacune de ses arêtes possède une valeur réelle.
- En ce qui concerne l'application valuation, on a par exemple

$$\circ v(A, B) = v(B, A) = -1.$$

Graphes valués

• Considérons le graphe G orienté suivant :

• En ce qui concerne l'application valuation, on a par exemple

$$\circ v(B, E) = -2 \text{ et } v(E, B) = 4$$

Graphes valués: Représentation matricielle

- Défintion:
 - \circ Soit G = (V, E) un graphe valué orienté ou non d'ordre n dont on a numéroté les n sommets.
 - On peut le représenter par sa matrice de valuation, qui est une matrice carrée d'ordre n, comme suit :
 - $m_{ij} = v(i, j)$ $si(i, j) \in E$
 - $m_{ij} = +\infty$ sinon
- Contrairement à la matrice d'adjacence, on ne peut pas utiliser la valeur 0 pour indiquer qu'il n'y a pas d'arc (resp. d'arête) entre deux sommets.
- Cette valeur signifiera au contraire qu'il y a un arc (resp. une arête) et que la valuation de celui-ci (resp. celle-ci) vaut 0.
- Notre but étant de déterminer des plus courts chemin, nous utiliserons donc la valeur +∞ dans ce cas, afin de ne pas interférer avec notre recherche.

Graphes valués: Représentation matricielle

• Ex Graphe Non orienté, sa matrice de valuation :

• Par exemple, la valeur 7 située à l'intersection de la $5^{\text{ème}}$ ligne et de la $4^{\text{ème}}$ colonne signifie que les sommets E et D sont adjacents et que la valuation de l'arête les reliant est égale à v(E , D) = v(D , E) = 7

Graphes valués: Représentation matricielle

- Ex Graphe orienté G :
- sa matrice de valuation :

$$\circ M_{V}(5,2) = M_{V}(E,B) = v(E,B) = 4$$

$$\circ M_V(2,5) = M_V(B,E) = v(B,E) = -2$$
 (n'est pas symétrique)

Graphes valués: Valuation d'un parcours

- Définition
 - \circ Soit G=(V,E) un graphe valué orienté (resp. non orienté).
 - La <u>valuation d'un chemin</u> (resp. d'une chaîne) est la <u>somme</u> des valuations des arcs (resp. arêtes) le constituant.
 - o La valuation d'un chemin (resp. d'une chaîne) réduit à un sommet est nulle.

• Ces définitions à propos des chaînes et chemins s'appliquent aussi aux cas particuliers des cycles et circuits.

Graphes valués: Valuation d'un parcours

• Considérons le graphe valué orienté suivant :

- La valuation du chemin (B,E,B,A,F) est égale à : -2+4+8+1, c'est-à-dire 11
- · La valuation du chemin (C) est égale à 0

- Définition
 - \circ Soit G = (V, E) un graphe valué orienté (resp. non orienté).
 - Soient x et y deux de ses sommets.
 - \circ Si l'ensemble des valuations des chemins (resp. chaînes) d'origine x et d'extrémité y admet un minimum, celui-ci est appelé distance de x à y et est noté d(x, y).
 - o Dans ce cas, un plus court chemin (resp. plus courte chaîne) de x à y sera un chemin (resp. une chaîne) dont la valuation est égale à d(x, y).

• Rq : Ce minimum n'existe pas forcément, comme nous le verrons par la suite.

- Exemple:
 - o Considérons le graphe valué orienté suivant

• La distance de B à E vaut -3, et correspond au (plus court) chemin (B,A,F,E).

- Considérons le graphe valué orienté ci-contre :
 - La valuation du chemin d'origine B et d'extrémité E défini par (B,A,F,E) est égale à -6
 - La valuation du circuit (E,B,A,F,E) est égale à -2
 - Si l'on parcourt ce circuit après le chemin on obtient un nouveau chemin d'origine B et d'extrémité E défini par (B,A,F,E,B,A,F,E) de valuation égale à -8
 - En parcourant ensuite de nouveau le circuit précédent, on obtient un chemin (B,A,F,E,B,A,F,E,B,A,F,E) de valuation égale à -10.
 - On peut répéter ce procédé autant de fois que l'on veut, dès que l'on effectuera un circuit supplémentaire, la valuation du chemin diminuera de 2.
 - o L'ensemble des valuations des chemins d'origine B et d'extrémité E n'a donc pas de minimum
 - o Il n'y a ainsi pas de plus court chemin allant de B à E.

Proposition

- \circ Soit G = (V; E) un graphe valué orienté (resp. non orienté).
- Etant donné deux sommets x et y, il y a trois possibilités :
 - 1. Il existe un ou plusieurs plus courts chemins (resp. chaînes) de x à y.
 - 2. Il n'existe pas de chemins (resp. chaînes) de x à y.
 - 3. Il existe des chemins (resp. chaînes) de x à y mais pas de plus court.

• Rq:

- Le 1er cas correspond à une distance finie entre x et y.
- Le 2ème et 3ème cas, correspondent à une distance infinie.

- Proposition
 - \circ Soit G = (V; E) un graphe valué orienté (resp. non orienté).
 - Oun circuit (resp. cycle) absorbant de 6 est un circuit (resp. cycle) de valuation strictement négative.
- Exemple : Le circuit (E,B,A,F,E) dans le graphe de l'exemple ci-contre est un circuit absorbant.
- Théorème
 - \circ Soit G = (V, E) un graphe valué orienté (resp. non orienté).
 - On suppose que G ne possède pas de circuit (resp. cycle) absorbant.
 - Si entre deux sommets fixés du graphe il existe un chemin (resp. une chaîne), alors entre ces deux sommets il existe un plus court chemin (resp. plus courte chaîne).

- L'algorithme de Dijkstra est un algorithme de recherche de plus court chemin entre un sommet fixé s et tous les autres sommets d'un graphe à valuations v positives.
- L'algorithme consiste en 2 phases,
 - 1. Initialisation
 - 2. Traitement (itérations)
- Si n est l'ordre du graphe, après une phase d'initialisation, cet algorithme procède en n-1 itérations (une itération / chaque sommet $x \neq s$).
- Initialisation:
 - \circ Attribuer au sommet s une distance nulle, d(s, s) = 0
 - \circ Attribuer à chaque sommet $x \neq s$ du graphe une distance provisoire = v(s, x)

- L'initialisation citée ci-haut consiste à :
 - \circ Attribuer au sommet s une distance nulle, d(s, s) = 0

o Attribuer à chaque sommet x successeur de s une distance provisoire d(s, x) = v(s, x)

 Les autres sommets n'étant pas reliés directement à s, on initialise leur distance avec la valeur +∞

- Traitement (itérations) :
 - 1) Choisir un sommet x parmi ceux qui <u>n'ont pas encore été traités</u>, dont la distance à s est **minimale**.
 - 2) Pour chacun des successeurs y de x, si d(s, y) > d(s, x) + v(x, y) on met à jour la distance d(s, y) \leftarrow d(s, x) + v(x, y)
 - 3) Quand tous les successeurs du sommet x ont été examinés, on rajoute x à la liste des sommets traités,
 - 4) S'il existe un sommet non traité, retour à 1)

- Algorithme de Dijkstra
 - \circ Soit G = (V, E) un graphe orienté (ou non) à valuations positives d'ordre n.
 - Soit s le sommet à partir duquel on va rechercher les plus courts chemins.
 - Soit L un tableau de n cases destiné à contenir les distances de s aux autres sommets.
 - Soit P un tableau de n cases destiné à contenir le prédécesseur de chacun des sommets dans un plus court chemin d'origine s.
 - \circ Soit M la liste de tous les sommets déjà traités (et donc V \setminus M sera la liste de tous les sommets à traiter).

• Soit G = (V, E) un graphe orienté (ou non) d'ordre n à valuations positives.

Initialisation:

```
M \leftarrow \{s\}

L[s] \leftarrow 0

P[s] \leftarrow s

Pour tout x \neq s

L[x] \leftarrow v(s, x)

Si x est un successeur de s

P[x] \leftarrow s

Sinon

P[x] \leftarrow \emptyset

FinSi

FinPour
```

Traitement:

```
TantQue M \neq V Faire choisir x \in V \setminus M tq \forall y \in V \setminus M, L[x] \leq L[y]

Pour Tout y \in V \setminus M tq y soit un succ de x

Si L[y] > L[x] + v(x, y)

L[y] \leftarrow L[x] + v(x, y)

P[y] \leftarrow x

Finsi

Finpour

M \leftarrow M \cup \{x\}

FinTantQue
```

Exemple

M	$L\left[A ight]$	$L\left[B ight]$	$L\left[C ight]$	$L\left[D ight]$	$L\left[E ight]$	$L\left[F ight]$	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
\boldsymbol{A}	0	7	1	+∞	+∞	+∞	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	_	_	_

M	$L\left[A ight]$	$L\left[B ight]$	$L\left[C ight]$	$L\left[D ight]$	$L\left[E ight]$	$L\left[F ight]$	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
A	0	7	1	+∞	+∞	+∞	A	A	A	_	_	_
A, C	0	6	1	+∞	3	8	\boldsymbol{A}	C	A	_	C	C

M	$L\left[A ight]$	$L\left[B ight]$	$L\left[C ight]$	$L\left[D ight]$	$L\left[E ight]$	$L\left[F ight]$	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
A	0	7	1	+∞	+∞	+∞	\boldsymbol{A}	A	A	_	_	_
A, C	0	6	1	+∞	3	8	\boldsymbol{A}	C	\boldsymbol{A}	_	C	C
A, C, E	0	5	1	8	3	8	A	E	A	E	C	C

Exemple

M	$L\left[A ight]$	$L\left[B ight]$	$L\left[C ight]$	$L\left[D ight]$	L[E]	$L\left[F ight]$	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
A	0	7	1	+∞	+∞	+∞	A	A	\boldsymbol{A}	_	_	_
A, C	0	6	1	+∞	3	8	A	C	\boldsymbol{A}	_	C	C
A, C, E	0	5	1	8	3	8	A	E	\boldsymbol{A}	E	C	C
A, C, E, B	0	5	1	8	3	6	A	E	A	E	C	В

Exemple

M	L[A]	L[B]	$L\left[C ight]$	$L\left[D ight]$	L[E]	$L\left[F ight]$	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
A	0	7	1	+∞	+∞	+∞	A	A	A	_	_	_
A, C	0	6	1	+∞	3	8	A	C	A	_	C	C
A, C, E	0	5	1	8	3	8	A	E	A	E	C	C
A, C, E, B	0	5	1	8	3	6	A	E	A	E	C	B
A,C,E,B,F	0	5	1	8	3	6	A	E	A	E	C	В

M	L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
A	0	7	1	+∞	+∞	+∞	A	A	A	_	_	_
A, C	0	6	1	+∞	3	8	A	C	A	_	C	C
A,C,E	0	5	1	8	3	8	A	E	A	E	C	C
A, C, E, B	0	5	1	8	3	6	A	E	A	E	C	В
A,C,E,B,F	0	5	1	8	3	6	A	E	A	E	C	В
A, C, E, B, F, D	0	5	1	8	3	6	A	E	A	E	C	В

• Le plus court chemin entre A et F en partant de son extrémité (tableau P):

o Le prédécesseur de F est B.

o Le prédécesseur de B est E.

o Le prédécesseur de E est C.

o Le prédécesseur de C est A.

• Le plus court chemin entre les sommets A et F est donc (A,C,E,B,F).

• Sur ce graphe figurent en rouge tous les plus courts chemins entre le sommet A et les autres sommets

- Exercice:
 - o Considérons le graphe non orienté valué suivant :

o Appliquer l'algorithme de Dijkstra à ce graphe en partant du sommet A.

• Exercice:

o Considérons le graphe non orienté valué suivant : Appliquer l'algorithme de

Dijkstra à ce graphe en partant du sommet A.

Solution:

$L\left[A ight]$	$L\left[B ight]$	$L\left[C ight]$	$L\left[D ight]$	$L\left[E ight]$	$L\left[F ight]$	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]
0	10	12	14	16	9	A	A	F	F	D	$oldsymbol{A}$

- Exercice 2:
 - o Considérons le graphe orienté valué suivant :

- 1. Appliquer l'algorithme de Dijkstra à ce graphe en partant du sommet A.
- 2. Est ce que la distance entre A et D calculée par l'algorithme de Dijkstra est optimale ?
- 3. Proposer une explication.

• Exercice 2: Correction

$L\left[A ight]$	L[B]	L[C]	L[D]	P[A]	P[B]	P[C]	P[D]
0	-3	2	3	A	C	A	B

- 1. la valeur du chemin (A,C,B,D) retournée par l'algorithme de Dijkstra = 3
- 2. Ce chemin a une valuation égale à -1, ce qui est mieux que 3.

Exercice 2: Correction

L[A]	L[B]	L[C]	L[D]	P[A]	P[B]	P[C]	P[D]
0	-3	2	3	A	C	A	В

3. Explication:

- o L'ordre dans lequel les sommets ont été traités est A,B,C,D.
- Lors du traitement du sommet B, la valeur L[D] a été mise à jour et elle n'a pas évolué ensuite car B est le seul prédécesseur de D.
- Mais, lors du traitement du sommet C, postérieur à celui de B, la valeur négative de la valuation v(C,B)
 a provoqué une màj de L[B].
- L'algorithme de Dijkstra ne traitant qu'une seule fois chacun des sommets, cette mise à jour de L[B]
 n'a pu entraîner celle de L[D].
- o Il "manque" donc des itérations à l'algorithme de Dijkstra en cas de valuations négatives.

Algorithme de Bellman-Ford

- L'algorithme de Bellman-Ford est un algorithme de recherche de plus court chemin entre un sommet fixé s et tous les autres sommets d'un graphe à valuations quelconques.
- L'algorithme consiste en deux phases, une d'initialisation la deuxième de traitement (itérations)

- Initialisation
 - On va attribuer la valeur +∞ comme distance provisoire à tous les sommets différents de l'origine.

• Traitement:

- o Lors de chaque itération on va traiter tous les sommets.
- Cela impliquera qu'à la fin du déroulement de l'algorithme, chaque sommet pourra avoir être traité plusieurs fois.
- o Pour chacun des successeurs y de x, on compare ensuite l'évaluation actuelle de la distance d(s, y) avec la distance d(s, x) + v(x, y)
- Quand tous les successeurs du sommet x ont été examinés, on passe à un autre sommet mais toujours dans la même itération.

v(x,y)

d(s,y)

d(s,x)

- Soit G = (V, E) un graphe orienté ou non à valuations quelconques d'ordre n.
- On suppose que G ne contient pas de circuits absorbants.
- Soit s : le sommet à partir duquel on va rechercher les plus courts chemins.
- Soit L : un tableau de n cases destiné à contenir les distances de s aux autres sommets.
- Soit P: un tableau de n cases destiné à contenir le prédécesseur de chacun des sommets dans un plus court chemin d'origine s.
- Soit Chnge: un booléen indiquant si l'on doit continuer ou non les itérations.

Initialisation:

```
L[s] \leftarrow 0

P[s] \leftarrow s

Pour tout x \neq s

L[x] \leftarrow +\infty

P[x] \leftarrow \emptyset

FinPour

Chnge \leftarrow Vrai
```

Traitement:

```
TantQue Chnge Faire
Chnge ← Faux
Pour tout x \in V
   Pour tout y \in V tq y soit un successeur de x
        Si L[y] > L[x] + v(x, y) alors
             L[y] > L[x] + v(x, y)
             P[y] \leftarrow x
             Chnge ← Vrai
        FinSi
   FinPour
FinPour
FinTantQue
```


L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	$L\left[G ight]$	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
0	+∞	+∞	+∞	+∞	+∞	+∞	+∞	A	_	_	_	_	_	_	_

• Exemple : Sommet A

L	[A]	$L\left[B ight]$	$L\left[C\right]$	L[D]	L[E]	$L\left[F ight]$	$L\left[G ight]$	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
	1	$+\infty$	$+\infty$	+∞	$+\infty$	$+\infty$	+∞	$+\infty$	\boldsymbol{A}	_	_	_	_	_	_	_
	0	2	$+\infty$	4	+∞	$+\infty$	+∞	+∞	A	\boldsymbol{A}	_	A	_	_	_	_

- On étudie ici les sommets successeurs de A, à savoir B et D.
- La distance courante L[B] du sommet B est égale à +∞.
- On la compare donc avec L[A]+v(A,B), quantité égale à 0+2=2.
- Il faut màj la distance L[B], ainsi que le prédécesseur de B qui devient A.
- Même chose pour le sommet D.

• Exemple: Sommet B

$L\left[A ight]$	$L\left[B ight]$	L[C]	L[D]	L[E]	$L\left[F ight]$	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	$+\infty$	+∞	$+\infty$	+∞	$+\infty$	$+\infty$	A	_	_	_	_	_	_	_
0	2	$+\infty$	4	$+\infty$	$+\infty$	$+\infty$	$+\infty$	A	A	_	A	_	_	_	_
0	2	$+\infty$	1	6	7	+∞	$+\infty$	A	\boldsymbol{A}	_	B	B	B	_	_

- On étudie ici les sommets successeurs de B, à savoir D, E et F.
- La distance courante L[D] du sommet D est égale à 4.
- On la compare donc avec L[B]+v(B,D), quantité égale à 2+(-1)=1.
- Il faut màj la distance L[D], ainsi que le prédécesseur de D qui devient B.
- Même chose pour les sommet E et F.

• Exemple: Sommet C

$L\left[A ight]$	$L\left[B ight]$	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	+∞	+∞	+∞	+∞	+∞	\boldsymbol{A}	_	_	_	_	_	_	_
0	2	+∞	4	+∞	+∞	+∞	$+\infty$	\boldsymbol{A}	\boldsymbol{A}	_	\boldsymbol{A}	_	_	_	_
0	2	$+\infty$	1	6	7	$+\infty$	$+\infty$	\boldsymbol{A}	\boldsymbol{A}	_	В	В	В	_	_

• Puisque la distance courante L[C] du sommet C est égale à $+\infty$, il n'y aura aucune màj à faire sur ses successeurs.

Exemple: sommet D

$L\left[A ight]$	$L\left[B ight]$	L[C]	L[D]	L[E]	$L\left[F ight]$	$L\left[G ight]$	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	+∞	$+\infty$	$+\infty$	+∞	+∞	A	_	_	_	_	_	_	_
0	2	+∞	4	$+\infty$	$+\infty$	+∞	$+\infty$	A	A	_	\boldsymbol{A}	_	_	_	_
0	2	+∞	1	6	7	+∞	+∞	A	A	_	В	В	В	_	_
0	2	3	1	6	7	+∞	+∞	A	A	D	В	В	В	_	_

- On étudie ici l'unique sommet successeur de D, à savoir C.
- La distance courante L[C] du sommet C est égale à $+\infty$.
- On la compare donc avec L[D]+v(D,C), quantité égale à 1+2=3.
- Il faut donc mettre à jour la distance L[C], ainsi que le prédécesseur de C qui devient D.

Exemple: sommet E

$L\left[A ight]$	L[B]	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	$+\infty$	+∞	$+\infty$	$+\infty$	+∞	+∞	\boldsymbol{A}	_	_	_	_	_	_	_
0	2	+∞	4	+∞	+∞	+∞	+∞	\boldsymbol{A}	\boldsymbol{A}	_	\boldsymbol{A}	_	_	_	_
0	2	+∞	1	6	7	+∞	+∞	\boldsymbol{A}	\boldsymbol{A}	_	B	B	B	_	_
0	2	3	1	6	7	+∞	+∞	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	_
0	2	3	1	6	7	+∞	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	E

- étude de l'unique sommet successeur de E, à savoir H.
- La distance courante L[H] du sommet H est égale à +∞.
- On la compare donc avec L[E]+v(E,H), quantité égale à 6+2=8.
- Il faut donc mettre à jour la distance L[H], ainsi que le prédécesseur de H qui devient E.

• Exemple: sommet F

L[A]	L[B]	L[C]	L[D]	L[E]	$L\left[F ight]$	$L\left[G ight]$	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	+∞	+∞	$+\infty$	+∞	+∞	A	_	_	_	_	_	_	_
0	2	$+\infty$	4	$+\infty$	$+\infty$	$+\infty$	$+\infty$	A	\boldsymbol{A}	_	A	_	_	_	-
0	2	$+\infty$	1	6	7	$+\infty$	$+\infty$	A	A	_	В	В	В	_	_
0	2	3	1	6	7	$+\infty$	$+\infty$	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	_
0	2	3	1	6	7	+∞	8	\boldsymbol{A}	A	D	B	B	B	_	E
0	2	3	1	6	7	10	8	A	A	D	B	B	B	F	E

- La distance courante L[G] du sommet G est égale à $+\infty$
- On la compare donc avec L[F]+v(F,G), quantité égale à 7 + 3 = 10
- Il faut màj la distance L[G], ainsi que le prédécesseur de G qui devient F.

• Exemple: sommet G

L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	$+\infty$	+∞	+∞	+∞	+∞	A	_	_	_	_	_	_	_
0	2	+∞	4	+∞	+∞	+∞	+∞	A	A	_	A	_	_	_	_
0	2	+∞	1	6	7	+∞	+∞	A	A	_	В	В	В	_	_
0	2	3	1	6	7	+∞	+∞	A	A	D	В	В	В	_	_
0	2	3	1	6	7	+∞	8	A	A	D	В	В	В	_	E
0	2	3	1	6	7	10	8	A	A	D	В	В	В	F	E

- La distance courante L[D] du sommet D est égale à 1. On la compare donc avec L[G]+v(G,D), quantité égale à 10+(-2)=8
- Il ne faut pas màj la distance L[D] et P[D] non plus, de même pour le sommet H.

- Exemple: sommet H
- On étudie le sommet successeur de H, à savoir F.
- La distance courante L[F] du sommet F est égale à 7.

L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	$+\infty$	$+\infty$	+∞	$+\infty$	+∞	$+\infty$	$+\infty$	A	_	_	_	_	_	_	_
0	2	+∞	4	+∞	+∞	+∞	+∞	A	A	_	A	_	_	_	_
0	2	+∞	1	6	7	+∞	+∞	A	A	_	В	В	В	_	_
0	2	3	1	6	7	+∞	+∞	A	A	D	В	В	В	_	_
0	2	3	1	6	7	+∞	8	A	A	D	В	В	В	_	\boldsymbol{E}
0	2	3	1	6	7	10	8	A	A	D	В	В	В	F	E
0	2	3	1	6	5	10	8	A	A	D	В	В	H	F	E

- On la compare donc avec L[H]+v(H,F), quantité égale à 8+(-3)=5.
- Il faut màj la distance L[F], ainsi que le prédécesseur de F qui devient H.

- o La première itération est terminée.
- o Lors de la seconde, Re-traiter tous les sommets un par un.
- Nous n'indiquerons ici que les sommets qui ont conduit à une màj
 des distances mais il est cependant nécessaire de tous les examiner.

L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	+∞	+∞	$+\infty$	+∞	+∞	A	_	_	_	_	_	_	_
0	2	+∞	4	+∞	+∞	+∞	+∞	A	A	_	A	_	_	_	_
0	2	$+\infty$	1	6	7	+∞	+∞	\boldsymbol{A}	A	_	В	В	В	_	_
0	2	3	1	6	7	+∞	+∞	\boldsymbol{A}	A	D	В	В	В	_	_
0	2	3	1	6	7	+∞	8	\boldsymbol{A}	A	D	B	В	В	_	E
0	2	3	1	6	7	10	8	\boldsymbol{A}	A	D	B	В	В	F	E
0	2	3	1	6	5	10	8	\boldsymbol{A}	A	D	В	В	H	F	E
0	2	3	1	6	5	4	8	\boldsymbol{A}	A	D	В	В	H	C	E

L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	+∞	+∞	+∞	+∞	+∞	\boldsymbol{A}	_	_	_	_	_	_	_
0	2	+∞	4	$+\infty$	$+\infty$	+∞	+∞	\boldsymbol{A}	\boldsymbol{A}	_	\boldsymbol{A}	_	_	_	_
0	2	+∞	1	6	7	+∞	+∞	\boldsymbol{A}	\boldsymbol{A}	_	B	B	B	_	_
0	2	3	1	6	7	$+\infty$	+∞	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	_
0	2	3	1	6	7	$+\infty$	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	E
0	2	3	1	6	7	10	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	F	E
0	2	3	1	6	5	10	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	H	F	E
0	2	3	1	6	5	4	8	\boldsymbol{A}	\boldsymbol{A}	D	В	В	Н	C	E
0	2	3	1	6	5	4	6	\boldsymbol{A}	\boldsymbol{A}	D	B	B	Н	C	G

L[A]	L[B]	L[C]	L[D]	L[E]	L[F]	L[G]	L[H]	P[A]	P[B]	P[C]	P[D]	P[E]	P[F]	P[G]	P[H]
1	+∞	+∞	+∞	+∞	+∞	+∞	+∞	\boldsymbol{A}	_	_	_	_	_	_	_
0	2	+∞	4	+∞	+∞	$+\infty$	+∞	\boldsymbol{A}	\boldsymbol{A}	_	\boldsymbol{A}	_	_	_	_
0	2	+∞	1	6	7	$+\infty$	+∞	\boldsymbol{A}	\boldsymbol{A}	_	B	B	B	_	_
0	2	3	1	6	7	$+\infty$	+∞	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	_
0	2	3	1	6	7	$+\infty$	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	_	\boldsymbol{E}
0	2	3	1	6	7	10	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	B	F	\boldsymbol{E}
0	2	3	1	6	5	10	8	\boldsymbol{A}	\boldsymbol{A}	D	B	B	H	F	\boldsymbol{E}
0	2	3	1	6	5	4	8	\boldsymbol{A}	\boldsymbol{A}	D	B	В	H	C	\boldsymbol{E}
0	2	3	1	6	5	4	6	A	\boldsymbol{A}	D	В	В	H	C	G
0	2	3	1	6	3	4	6	\boldsymbol{A}	\boldsymbol{A}	D	В	В	H	C	G

• Sur le graphe ci-contre, figurent en rouge tous les plus courts chemins entre le sommet A et les autres sommets

- Exercice:
 - o Considérons le graphe orienté valué suivant :

o Appliquer l'algorithme de Bellman-Ford à ce graphe en partant du sommet A.

- Exercice : Solution
 - o Considérons le graphe orienté valué suivant :

$L\left[A ight]$	L[B]	L[C]	L[D]	L[E]	P[A]	P[B]	P[C]	P[D]	P[E]
0	3	1	-6	4	A	A	\boldsymbol{E}	\boldsymbol{C}	В

TD 4

- Dans le graphe orienté G = (X, U) ci-contre, valué par des longueurs d'arcs positives :
 - Utiliser l'algorithme de Dijkstra, pour déterminer le plus cours chemin depuis le sommet a jusqu'au sommet f.

o Refaire la question via l'algorithme de Bellman-Ford

TD 4: Ex 2

- Dans le graphe orienté
 G = (X, U) ci-contre,
- Utiliser l'algorithme de Bellman-Ford, pour déterminer le plus cours chemin depuis le sommet a jusqu'au sommet f.

