HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Einführung

Wir haben schon viel über die wichtigsten Algorithmen gehört

- Shors-Algorithmus
- ► Grover-Algorithmus

Einführung

Wir haben schon viel über die wichtigsten Algorithmen gehört

- Shors-Algorithmus
- Grover-Algorithmus

Der HHL-Algorithmus

- erstellt von Aram Harrow, Avinatan Hassidim und Seth Lloyd
- lösen von sehr großen linearen Gleichungen

$$A\vec{x} = \vec{b}$$

Motivation

Es löst grundlegendes Probleme in der Mathematik

- Least square fitting
- Optimierungs Probleme
- Simulationen und Imageprocessing
- **.**..

Das Problem

Gegeben:

- ▶ Matrix A der Form $n \times n$
- ightharpoonup Vektor \vec{b}

Das Problem

Gegeben:

- ightharpoonup Matrix A der Form $n \times n$
- ightharpoonup Vektor \vec{b}

Löse das System:

$$A\vec{x} = \vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

Das Problem

Gegeben:

- ightharpoonup Matrix A der Form $n \times n$
- ightharpoonup Vektor \vec{b}

Löse das System:

$$A\vec{x} = \vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

Wir sind also daran interessiert das Inverse A^{-1} zu finden

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiver

Unser Ziel:

$$|x\rangle = A^{-1}|b\rangle$$

Unser Ziel:

$$|x\rangle = A^{-1}|b\rangle$$

Wenn $A = A^{\dagger}$:

$$|x\rangle = e^{-iAt} |b\rangle$$

Unser Ziel:

$$|x\rangle = A^{-1}|b\rangle$$

Wenn $A = A^{\dagger}$:

$$\ket{x}=e^{-i\mathsf{A}t}\ket{b}$$

Wenn $A \neq A^{\dagger}$:

$$A\vec{x} = \vec{b}
\begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}$$

Unser Ziel:

$$|x\rangle = A^{-1}|b\rangle$$

Wenn $A = A^{\dagger}$:

$$|x\rangle = e^{-iAt} |b\rangle$$

Wenn $A \neq A^{\dagger}$:

$$\begin{aligned}
A\vec{x} &= \vec{b} \\
\begin{pmatrix} 0 & A \\ A^{T} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} &= \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}
\end{aligned}$$

Wir können A diagonalisieren

$$A = U \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} U^T$$

$$\Rightarrow A^{-1} = U^T \begin{pmatrix} \lambda_1^{-1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda^{-1} \end{pmatrix} U$$

Ablauf

1. State Preparation

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf
- Messung

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf
- Messung
 - liest das Ergebnis $|x\rangle$ aus

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Matrix A und Vektor \vec{b} :

$$A = \begin{pmatrix} 1 & -\frac{1}{3} \\ -\frac{1}{3} & 1 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Matrix A und Vektor \vec{b} :

$$A = \begin{pmatrix} 1 & -\frac{1}{3} \\ -\frac{1}{3} & 1 \end{pmatrix}$$

Klassische Lösung

$$\vec{x} = \begin{pmatrix} \frac{3}{8} \\ \frac{9}{8} \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Verhältnis der Lösung:

$$\frac{|x_0|^2}{|x_1|^2} = \frac{\frac{9}{64}}{\frac{81}{64}} = \frac{1}{9}$$

Eigenvektoren von A sind:

$$\vec{u_0} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$
 $\vec{u_1} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$

Eigenvektoren von A sind:

$$\vec{u_0} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

$$\vec{u_1} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Enkodiert

$$|u_0\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{-1}{\sqrt{2}}|1\rangle$$
 $|u_1\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

Eigenvektoren von A sind:

$$\lambda_0 = \frac{2}{3}$$

$$\lambda_1 = \frac{4}{3}$$

Eigenvektoren von A sind:

$$\lambda_0 = \frac{2}{3} \qquad \qquad \lambda_1 = \frac{4}{3}$$

Einkodiert:

$$|\widetilde{\lambda_0}
angle = |01
angle \qquad |\widetilde{\lambda_1}
angle = |10
angle$$

- 1. Anzahl Qubit for a-register: 1
- 2. Anzahl Qubits für das c-Register: N=2
- 3. Anzahl Qubits für \vec{b} : $n_b = log_2(N) = log_2(2) = 1$

State Preparation

- $ightharpoonup \vec{b}$ wird als Quantenzustand $|b\rangle$ kodiert
- in unserem Fall ist es sehr einfach

$$ec{b} = egin{pmatrix} 0 \ 1 \end{pmatrix} \Leftrightarrow \ket{b} = 0\ket{0} + 1\ket{1} = \ket{1}$$

State Preparation

Wir starten im 1 Zustand

$$|\Psi_1\rangle = |1\rangle_b \ |00\rangle_c \ |0\rangle_a = |1000\rangle$$

Quantum Phase Estimation

Wir erhalten:

$$egin{aligned} \ket{\Psi_2} &= \ket{b}_b\ket{\widetilde{\lambda}}_c\ket{0}_a \ \ket{\Psi_2} &= \left(-rac{1}{\sqrt{2}}\ket{u_0}\ket{01} + rac{1}{\sqrt{2}}\ket{u_1}\ket{10}
ight)\ket{0}_a \end{aligned}$$

Ancilla Roation - Eigenwerte invertieren

Wir invertieren das Ancilla Qubit:

$$|\Psi_3\rangle = \sum_{j=0}^{2^1-1} b_j |u_j\rangle |\widetilde{\lambda}_j\rangle \left(\sqrt{1-\frac{C^2}{\widetilde{\lambda}_j^2}}|0\rangle + \frac{C}{\widetilde{\lambda}_j}|1\rangle\right)$$

Wir gehen davon aus, dass wir $|1\rangle$ messen.

$$|\Psi_{3}\rangle = \sqrt{\frac{8}{5}} \left(-\frac{1}{\sqrt{2}} |u_{0}\rangle_{b} |01\rangle_{c} + \frac{1}{2\sqrt{2}} |u_{1}\rangle_{b} |10\rangle_{c} \right) |1\rangle_{a}$$

Ancilla Roation - Eigenwerte invertieren

$$\ket{\Psi_3} = \sqrt{rac{8}{5}} \left(-rac{1}{\sqrt{2}} \ket{u_0} \ket{01} \ket{1} + rac{1}{2\sqrt{2}} \ket{u_1} \ket{10}
ight) \ket{1}_{ extsf{a}}$$

Inverse Quantum Phase Estimation

Wir erhalten:

$$\begin{split} |\Psi_4\rangle &= |x\rangle_b |00\rangle_c |1\rangle_a \\ |\Psi_4\rangle &= \frac{1}{2} \sqrt{\frac{2}{5}} \left(|0\rangle + 3 |1\rangle\right) |00\rangle_b |1\rangle_a \end{split}$$

Measurment

Um die Wahrscheinlichkeit von $|u_0\rangle$ und $|u_1\rangle$ zu erhalten, müssen wir ihre Koeffizienten quadrieren

$$c_0 = \left| \frac{1}{2} \sqrt{\frac{2}{5}} * 1 \right|^2 = \frac{1}{20}$$
$$c_1 = \left| \frac{1}{2} \sqrt{\frac{2}{5}} * 3 \right|^2 = \frac{9}{20}$$

Das Verhältnis im b-Register ist wie erwartet 1 : 9.

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiver

Gauß Verfahren

$$\mathcal{O}(N^3)$$

- ▶ nicht der schnellste Algorithmus
- ▶ gleiche constraints sind zu beachten!!

Klassisch

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

$$\Rightarrow \mathcal{O}(N)$$

Quanten Version HHL

Klassisch

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

$$\Rightarrow \mathcal{O}(N)$$

Quanten Version HHL

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

$$\Rightarrow \mathcal{O}(log(N))$$

Klassisch

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

$$\Rightarrow \mathcal{O}(N)$$

- N := Anzahl an unbekannten
- $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$: condition number

Quanten Version HHL

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

$$\Rightarrow \mathcal{O}(log(N))$$

- $ightharpoonup \epsilon :=$ Fehler des Ergebnisses
- ▶ s := s-sparse Matrix: jede Zeile hat max. s Einträge

Klassisch

Quanten Version

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

$$\Rightarrow \mathcal{O}(N)$$

$$\Rightarrow \mathcal{O}(log(N))$$

Klassisch

Quanten Version

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

$$\Rightarrow \mathcal{O}(N)$$

$$\Rightarrow \mathcal{O}(log(N))$$

Klassisch

Quanten Version

Conjugate gradient descent

HHL

$$\mathcal{O}(\kappa s log\left(\frac{1}{\epsilon}\right) N) \qquad \qquad \mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

$$\Rightarrow \mathcal{O}(N) \qquad \qquad \Rightarrow \mathcal{O}(log(N))$$

Takeaway

- ▶ exponentialer speed up $\mathcal{O}(N)$ vs $\mathcal{O}(\log(N))$
- klassischer algorithmus hat bessere Fehlerabhängigkeit: $log(\frac{1}{\epsilon})$ vs $\frac{1}{\epsilon}$

1. niedrige condition number κ

- 1. niedrige condition number κ
- 2. A muss s-sparse sein

- 1. niedrige condition number κ
- 2. A muss s-sparse sein
- 3. nicht jeder Eintrag von $|x\rangle$ auslesbar

- 1. niedrige condition number κ
- 2. A muss s-sparse sein
- 3. nicht jeder Eintrag von $|x\rangle$ auslesbar
- 4. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$

- 1. niedrige condition number κ
- 2. A muss s-sparse sein
- 3. nicht jeder Eintrag von $|x\rangle$ auslesbar
- 4. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
- 5. Der Ressourcenbedarf ist hoch

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Hauptproblem

- ► Hauptproblem: gibt keinen vollständigen Vektor aus
- ► Aber einige Probleme können mit dieser Methode gelöst werden:

Machine Learning: Least-Square-Fitting

- ► Datenanpassung mit Least Square Fitting
- durch Berechnung einer Schätzung der inversen Matrix

Machine Learning: Least-Square-Fitting

- Datenanpassung mit Least Square Fitting
- durch Berechnung einer Schätzung der inversen Matrix

Simulationen von großen Systemen

- Elektrizitätsnetz vielen verbundenen Komponenten
- geringe Anzahl Verbindungen zwischen den Komponenten
- Berechnung des Widerstands durch approximation von Erwartungswerten

Machine Learning: Least-Square-Fitting

- Datenanpassung mit Least Square Fitting
- durch Berechnung einer Schätzung der inversen Matrix

Simulationen von großen Systemen

- Elektrizitätsnetz vielen verbundenen Komponenten
- geringe Anzahl Verbindungen zwischen den Komponenten
- Berechnung des Widerstands durch approximation von Erwartungswerten

Es wäre wichtig, mehr Anwendungen zu finden, welche den Anforderungen entsprechen.

Anwendung in IT-Security

HHL in der IT-Security

- in erster Linie nur für Lösen von linearen Systemen
- nicht direkt mit IT-Security verbunden
- ▶ aber Potenzial als Subroutine angewendet zu werden

Anwendung in IT-Security

HHL in der IT-Security

- in erster Linie nur für Lösen von linearen Systemen
- nicht direkt mit IT-Security verbunden
- aber Potenzial als Subroutine angewendet zu werden

Mögliche Anwendungen

- secure multi-party computation
- zero-knowledge proofs
- cryptographic key generation and management
- big data analysis/pattern recognition (für Betrugserkennung)

Variationen

Modifikationen und Optimierung

ightharpoonup QRAM zur Vorbereitung von $|b\rangle$

Variationen

Modifikationen und Optimierung

- ► QRAM zur Vorbereitung von |b⟩
- kein Ancilla-Bit erforderlich unter bestimmten Voraussetzungen

Variationen

Modifikationen und Optimierung

- ▶ QRAM zur Vorbereitung von |b⟩
- kein Ancilla-Bit erforderlich unter bestimmten Voraussetzungen
- ightharpoonup Variable time amplitude amplification um condition number κ zu verbessern

► Großer Einfluss im Bereich Quantum Machine Learning

- ▶ Großer Einfluss im Bereich Quantum Machine Learning
- noch keine bahnbrechenden Anwendungen (wie z.B. Shors Algorithmus zum Brechen von RSA)

- ► Großer Einfluss im Bereich Quantum Machine Learning
- ▶ noch keine bahnbrechenden Anwendungen (wie z.B. Shors Algorithmus zum Brechen von RSA)
- aber viel aktive Forschung um neue Verbesserungen im Algorithmus zu finden

- ▶ Großer Einfluss im Bereich Quantum Machine Learning
- noch keine bahnbrechenden Anwendungen (wie z.B. Shors Algorithmus zum Brechen von RSA)
- aber viel aktive Forschung um neue Verbesserungen im Algorithmus zu finden
- zeigt deutlichen Fortschritt in der Quantencomputing Welt