一、简介

耐电压测试仪是测量耐压强度的仪器,它可以直观、准确、快速、可靠地测试各种被测对象的击穿电压、漏电流等电气安全性能指标,并可以作为高压源用来测试元器件和整机性能。同惠耐电压测试仪产品系列,是按照 IEC、CSA、UL、JIS 等国际国内的安全标准要求设计的,耐压输出 1kV~50kV,漏电流 0~200mA。适合各种家用电器、电源开关、电线电缆、变压器、接线端子、高压胶木电器、电机、医疗、化工、仪器仪表等,以及强电系统的安全耐压和漏电流的测试、同时也是科研实验室、技术监督部门不可缺少的耐压试验设备。

TL5502A 及 TL5510A 耐电压测试仪产品是在吸收、消化国内外先进耐压测试仪的基础上,结合众多用户的实际使用情况加以提高、完善设计而成的。测试电压、漏电流同时显示,功能丰富实用,可通过漏电流显示反映被测体漏电流的实际值和比较同类产品不同批次或不同厂家产品中的耐压好坏程度,确保你的产品安全性能万无一失,同时可利用漏电流显示功能,扩展测量高压硅堆的反向电压、反向漏电流、三极管的高反压管的反向电压、反向漏电流等,在技术性能和质量可靠性上处于国内领先水平。

二、技术规格(TL5502A、TL5510A)

- (1) 电压测试范围: AC/DC: 0~5kV 电压准确度: 5% FS;
- (2) 漏电流测试范围: AC: 0~2mA、2~20mA 两档 (TL5510A 含 100mA 档, 共三档)
 DC: 0~2mA、2~20mA 漏电流准确度: 5% FS;
- (3) 漏电流报警值预置范围: AC: 0.3~2mA、2~20mA 两档(TL5510A 含 100mA 档)
 DC: 0.3~20mA (连续设定):
- (4) 时间测试范围: 1s~99s, 连续设定和手动;
- (5) 变压器容量: 100VA (TL5502A) 500VA (TL5510A);
- (6) 输出波形: 正弦波 AC; DC;
- (7) 电源: 198V~242VAC 47.5Hz~52.5Hz;
- (8) 工作条件: 环境温度 0~40°C 相对湿度: ≤75% RH;
- (9) 体积: 长 X 高 X 宽= 335mm x 130mm x 325mm (TL5502A)

375mm x 190mm x 280mm (TL5510A)

(10) 重量:约 12kg(TL5502A) 约 15kg(TL5510A)

三、工作方框图:

四、面板使用说明:

见图(二)和图(三)

- 1) 电源开关;
- 2) 启动钮: 按下时,测试灯亮,此时仪器输出高压;
- 3) 复位钮:按下时,测试灯灭,此时无高压输出;
- 4) 电压调节钮:调节输出电压的大小,逆时为小,反之为大;
- 5) 测试灯: 该灯亮,表示高压已启动,灯灭则高压断开;
- 6) 超漏灯: 该灯亮, 表示被测物击穿超漏为不合格;
- 7) 高压输出端: -DC 高压输出端;
- 8) 高压输出端: AC 高压输出端;
- 9) 电压表:输出电压指示;
- 10) 时间定时器: 1s~99s 定时调节,可设定所需测试时间值;
- 11)漏电流量程选择开关:切换漏电流指示电流表量程,根据开关状态,分别为 0~2mA、2~20mA;
- 12)漏电流预置/测试开关:按下开关,可设定漏电流报警值,弹出开关,在常态时即为 测试状态,可通过"漏电流指示电流表"实时检测到漏电流值;
- 13) 漏电流指示电流表:根据"漏电流量程开关"位置,相应指示0~2mA、2~20mA、20~100mA;
- 14) 漏电流预置调节钮:按下预置开关,可连续设定漏电流报警值 0.3~2mA 报警值、2~

20mA 报警值、20~100mA 报警值;

(图二) TL5502A 面板示意图

第3页共8页

- 15) 定时开关:按下时定时测试,99s内任意调节;弹出时,定时器不工作,为手动;
- 16) 遥控插座: 插上遥控插头,可通过高压棒上的开关对仪器进行遥控控制;
- 17) 接地柱:连接测试接地地线用;
- 18) 电压转换开关: 按下为 DC 测试, 弹出为 AC 测试;
- 19) 100mA 漏电流开关: TL5510A 特有, 按下后可检测 100mA 交流漏电流值;
- 20) 时间显示窗:显示定时时间。

五、操作步骤及举例

操作时必须戴绝缘橡胶手套、座位下垫橡胶绝缘垫! 只有在测试灯熄灭状态,无高压输出状态时,才能进行 被测试品连接或拆卸操作!

- 1、选择交流测试,弹出电压转换开关,在交流高压输出端连接被测物体;选择直流测试,按下电压转换开关,在直流输出端连接被测物体,确定电压表指示为"0",测试灯熄灭,并连接地线:
- 2、设定漏电流测试所需值:
- 1) 按下预置/测试开关;
- 2) 选择电流量程档, 0~2mA 量程、2 mA~20mA 量程或 20 mA~100 mA 量程:
- 3) 调节所需漏电流报警值:
- 4) 弹出预置/测试开关。
- 3、手动测试:
- 1) 将定时开关置为关状态,按下启动钮,测试灯亮,将电压调节钮旋到需要的指示值;
- 2) 如果被测物体的漏电流指标超过规定漏电流值,则仪器自动切断输出电压,同时蜂鸣器报警,超漏指示灯亮,此时被测物的漏电流指标为不合格,按下复位键,即可消除报警声。
- 4、定时测试:
- 1) 按下定时开关,调整时间定时器数值,设定所需测试时间值;
- 2) 设定漏电流报警值,按下启动钮,将电压调到所需测试值;
- 3) 如定时时间到,测试电压被切断,测试灯熄灭,则被测物体的漏电流指标为合格,

若电流过大,在计时过程中超漏灯亮,蜂鸣器报警,被测物体的漏电流指标为不合格,按下

复位键,即可消除报警声。

5、遥控测试:

在面板的遥控插座上插入高压棒的遥控插头,按下高压棒上的开关,高压棒上的指示灯亮,同时测试灯亮,将电压调到所需测试值;如要复位,松开高压棒上的开关即可。

6、应用举例:

1) 电器整机耐电压强度试验

按图4将耐电压测试仪与被测整机连接,接通被测整机电源开关,根据被测整机产品标准 设置漏电流报警值,然后再按4条或5条所进行测试。如若被测整机产品标准没有规定具体漏 电流报警值,则推荐按下式计算:

$$Iz=Kp \times \frac{U}{R}$$
 (1)

式中: Iz-漏电流报警值, A;

U—试验电压, V:

R—允许最小绝缘电阻值, Ω ;

Kp—动作系数,一般取1.2~1.5

例如:某电器规定其最小绝缘电阻为 $2 \times 1000000\Omega$,试验电压为1500V,按(1)式,则

Iz=Kp x
$$\frac{\mathbf{U}}{\mathbf{R}}$$
 = (1.2~1.5) × (1500/2000000) = (1.2~1.5) × 0.75 x 0.001 \approx 1mA

2) 变压器或电机的耐电压强度试验

按图5将耐电压测试仪与被测变压器或电机连接,根据被测变压器或电机技术指标设置漏电流报警值,然后再按4条或5条所示进行测试。

六、使用注意事项

- 1、操作者必须戴橡胶绝缘手套,座位下垫橡胶绝缘垫,以防高压电击;
- 2、仪器必须可靠接地;
- 3、在连接被测体时,必须保证高压输出"0"及在"复位"状态;
- 4、测试时, 仪器接地端与被测体要可靠相接, 严禁开路;
- 5、切勿将输出地线与交流电源线短路,以免外壳带有高压,造成危险;
- 6、尽可能避免高压输出端与地短路,以防发生意外;
- 7、测试灯、超漏灯、一旦损坏,必须立即更换,以防造成误判;
- 8、排除故障时,必须切断电源;
- 9、仪器空载调整高压时,漏电流指示有起始电流,属正常,不影响测试精度:
- 10、仪器避免阳光正面直射,不要在高温潮湿多尘的环境中使用或存放;
- 11、仪器使用一年后,必须按照国家技术监督部门要求送计量部门或回厂检定,合格后,方可继续使用。

七、校准

- 1、校准
- 1) 电压校准
- (1) 仪器处在复位模式, 电压调节钮逆时针旋到底;
- (2) 将高压表与耐电压测试仪连接好;
- (3) 按下启动钮,调整电压输出钮,使高压表的读数为表1所示的检测点数值
- (常选用满量程值)调整相应的电位器, 使表头指示与高压表指示的误差满足技术要求。

表1

交直流电压	电压范围	电位器	检测点	准确度
	1.5 kV	W4(AC) W5(DC)	0.5; 1; 1.5(kV)	
AC/DC	3 kV	W4(AC) W5(DC)	1; 2; 3(kV)	±5%
(kV)	5 kV	W4(AC) W5(DC)	1; 3; 5(kV)	

2)漏电流校准

- (1) 将数字电流表与耐电压测试仪连接好;
- (2) 仪器处在复位模式,电压调节钮逆时针旋到底,漏电流选择开关放在 2mA 档(2mA 为校准漏电流基准档);
- (3) 按表 2 将调试选择合适的负载电阻;

表 2 校准电压为 500V

电流(mA)	0.5	1	2	5	10	20
电阻(kΩ/W)	1000/1	500/1	250/1	100/1	50/5	25/10

- (4) 将负载电阻串联到数字万用表和测试回路中;
- (5) 按下启动钮使仪器处在测试状态,缓慢调整输出电压约 500V,看数字表电流显示在 1mA 处,然后调整电位器 W8(AC)或 W6(DC),使仪器电流表指示到 1mA;
- (6) 在校准基准电流 1mA 处正确无误时,调节报警门限电流(门限电流=1mA)可调节电位器W7 使之报警;
- (7) 检查 0.5mA、2mA、5mA、10mA、20mA 各点的报警值应在±5%范围内为合格;
- (8) 若有个别档超差,可根据超差值的高低,适当地将报警值调低或调高。