Rev. 1.1

FEATURES

Access time : 35/70ns (max.)

Low power consumption : Operating : 45/30 mA (typ.)

CMOS Standby: 2mA (typ.) normal

2 μA (typ.) L-version 1 μA (typ.) LL-version

■ Single 4.5V~5.5V power supply

■ Operating temperature : Commercial : 0°C ~70°C

All inputs and outputs TTL compatible

Fully static operation

Three state outputs

 Data retention voltage: 2V (min.)
 Package: 28-pin 600 mil PDIP 28-pin 330 mil SOP

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A12	Address Inputs
I/O1 - I/O8	Data Inputs/Outputs
CE1,CE2	Chip Enable Inputs
WE	Write Enable Input
ŌE	Output Enable Input
V _{cc}	Power Supply
V _{SS}	Ground
NC	No connection

GENERAL DESCRIPTION

The UT6264C is a 65,536-bit low power CMOS static random access memory organized as 8,192 words by 8 bits. It is fabricated using high performance, high reliability CMOS technology.

Easy memory expansion is provided by using two chip enable input.($\overline{\text{CE1}}$,CE2) ,and supports low data retention voltage for battery back-up operation with low data retention current.

The UT6264C operates from a single 4.5V~5.5V power supply and all inputs and outputs are fully TTL compatible.

PIN CONFIGURATION

UTRON TECHNOLOGY INC. P80028

1

ABSOLUTE MAXIMUM RATINGS*

PARAMETER		SYMBOL	RATING	UNIT
Terminal Voltage with Res	Terminal Voltage with Respect to V _{SS}		-0.5 to +7.0	V
Operating Temperature	Commercial	TA	0 to +70	\mathbb{C}
Storage Temperature		Tstg	-65 to +150	$^{\circ}$
Power Dissipation		PD	1	W
DC Output Current		lout	50	mA
Soldering Temperature (ur	nder 10 sec)	Tsolder	260	$^{\circ}$ C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE1	CE2	OE	WE	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Χ	Х	Х	High - Z	ISB, ISB1
Standby	Х	L	Х	Х	High - Z	ISB, ISB1
Output Disable	L	Н	Н	Н	High - Z	lcc,lcc1,lcc2
Read	L	Н	L	Н	Dоит	lcc,lcc1,lcc2
Write	L	Н	Χ	L	Din	lcc,lcc1,lcc2

note: H = VIH, L=VIL, X = Don't care.

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5V \sim 5.5V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Power Voltage	Vcc			4.5	5.0	5.5	V
Input High Voltage	ViH			2.2	-	Vcc+0.5	V
Input Low Voltage	VIL			- 0.5	-	8.0	V
Input Leakage Current	ILI	Vss ≦Vın ≦Vcc		- 1	-	1	μΑ
Output Leakage Current	lLO	Vss \leq V _{I/O} \leq Vcc; $\overline{CE1}$ = V _{IH} ;or or \overline{OE} = V _I H ;or \overline{WE} = V _I L	CE2=VIL;	- 1	ı	1	μΑ
Output High Voltage	Vон	I _{OH} = - 1mA		2.4	-	-	V
Output Low Voltage	Vol	I _{OL} = 4mA		-	-	0.4	V
	la.	Cycle time=Min,I _{I/O} = 0mA;	- 35	-	45	60	mA
	Icc	CE1 = VIL, CE2= VIH	- <mark>70</mark>	-	<mark>30</mark>	<mark>45</mark>	<mark>mA</mark>
Operating Power Supply Current	Icc1	Cycle time=1us; $I_{I/O}$ = 0mA; $\overline{\text{CE1}}$ =0.2V; CE2=Vcc-0.2V; other pins at 0.2V or Vcc-0.2V		-	20	30	mA
	Icc2	Cycle time=500ns; $I_{I/O}$ = 0mA; $\overline{\text{CE1}}$ =0.2V; CE2=Vcc-0.2V; other pins at 0.2V or Vcc-0.2V		-	10	15	mA
Chandley Commont (TTL)	1	CE1 = V _{IH} or CE2= V _{IL}	Normal	-	1	10	mA
Standby Current (TTL)	IsB		- L/- LL	-	0.3	3	<mark>mA</mark>
		CE1 ≥VCC-0.2V;	Normal	-	2	5	mA
Standby Current (CMOS)	I _{SB1}	or CE2≦ 0.2V;	- L	-	2	100	μA
		other pins at 0.2V or Vcc-0.2V	- LL	-	1	<mark>50</mark>	μA

UTRON TECHNOLOGY INC. P80028

2

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C. TEL: 886-3-5777882 FAX: 886-3-5777919

CAPACITANCE (T_A=25°C, f=1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	8	pF
Input/Output Capacitance	C _{I/O}	-	10	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 100 pF, I_{OH}/I_{OL} = -1 mA/4 mA$

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 4.5V~5.5V, T_A = 0°C to 70°C)

(1) READ CYCLE

PARAMETER	SYMBOL	UT6264C-35		UT6264C-70		UNIT
PARAMETER	STWIBOL	MIN.	MAX.	MIN.	MAX.	UNII
Read Cycle Time	t RC	35	-	70	-	ns
Address Access Time	taa	-	35	-	70	ns
Chip Enable Access Time	tace1, tace2	-	35	-	70	ns
Output Enable Access Time	toe	-	25	-	35	ns
Chip Enable to Output in Low-Z	tclz1*, tclz2*	10	-	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	5	-	ns
Chip Disable to Output in High-Z	tcHz1*, tcHz2*	-	25	-	35	ns
Output Disable to Output in High-Z	t _{OHZ*}	-	25	-	35	ns
Output Hold from Address Change	tон	5	_	5	-	ns

(2) WRITE CYCLE

PARAMETER	SYMBOL	UT6264C-35		UT6264C-70		UNIT
FARAMETER	STWIDOL	MIN.	MAX.	MIN.	MAX.	UNIT
Write Cycle Time	twc	35	-	70	-	ns
Address Valid to End of Write	taw	30	-	60	-	ns
Chip Enable to End of Write	tcw1, tcw2	30	-	60	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Write Pulse Width	twp	25	-	50	-	ns
Write Recovery Time	twr	0	-	0	-	ns
Data to Write Time Overlap	t _{DW}	20	-	30	-	ns
Data Hold from End of Write-Time	t DH	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	ns
Write to Output in High-Z	twnz*	-	15	-	25	ns

3

UTRON TECHNOLOGY INC. 1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C. TEL: 886-3-5777882 FAX: 886-3-5777919

^{*}These parameters are guaranteed by device characterization, but not production tested.

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2,4)

READ CYCLE 2 (CE1, CE2 and OE Controlled) (1,3,5,6)

Notes:

- WE is HIGH for a read cycle.
- 2. Device is continuously selected \overline{OE} , $\overline{CE1}$ =VIL and CE2=VIH.
- 3. Address must be valid prior to or coincident with $\overline{CE_1}$ low and CE2 high transition; otherwise tax is the limiting parameter.
- OE is low.
- 5. tcLz1, tcLz2, toLz, tcHz1, tcHz2 and toHz are specified with CL=5pF. Transition is measured ± 500mV from steady state.
- 6. At any given temperature and voltage condition, t_{CHZ1} is less than t_{CLZ1}, t_{CHZ2} is less than t_{CLZ2}, t_{CHZ} is less than t_{CLZ}.

WRITE CYCLE 1 (WE Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE1 and CE2 Controlled) (1,2,5)

Notes :

- 1. $\overline{\text{WE}}$ or $\overline{\text{CE1}}$ must be HIGH or CE2 must be LOW during all address transitions.
- 2. A write occurs during the overlap of a low $\overline{\text{CE}\,1}$, a high CE2 and a low $\overline{\text{WE}}$.
- 3. During a WE controlled with write cycle with OE LOW, two must be greater than twnz+tow to allow the I/O drivers to turn off and data to be placed on the bus.
- ${\bf 4.} \quad {\bf During\ this\ period,\ I/O\ pins\ are\ in\ the\ output\ state,\ and\ input\ singals\ must\ not\ be\ applied.}$
- 5. If the CE1 LOW transition occurs simultaneously with or after WE LOW transition, the outputs remain in a high Impedance state.
- 6. t_{OW} and t_{WHZ} are specified with CL=5pF. Transition is measured \pm 500mV from steady state.

UTRON TECHNOLOGY INC.

P80028

DATA RETENTION CHARACTERISTICS (TA = 0°C to 70°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Vcc for Data Retention	V_{DR}	$\overline{\text{CE1}} \ge \text{Vcc-0.2V} \text{ or CE2} \le 0.2\text{V}$		2.0	-	5.5	٧
Data Retention Current		Vcc=2V	-L	-	1	50	μΑ
	IDR	$\overline{\text{CE1}} \ge V_{\text{CC}}$ -0.2V or CE2 \le 0.2V	-LL	-	0.5	<mark>20</mark>	μA
Chip Disable to Data Retention Time	tcdr	See Data RetentionWaveforms (below)		0	-	-	ns
Recovery Time	t_R			t _{RC*}	-	-	ns

t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE1 controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

PACKAGE OUTLINE DIMENSION

28 pin 600 mil PDIP Package Outline Dimension

UNIT	INCH(BASE)	MM(REF)
A1	0.010 (MIN)	0.254 (MIN)
A2	0.150± 0.005	3.810± 0.127
В	0.020 (MAX)	0.508(MAX)
B1	0.055 (MAX)	1.397(MAX)
С	0.012 (MAX)	0.304 (MAX)
D	1.430 (MAX)	36.322 (MAX)
E	0.625 (MAX)	15.87 (MAX)
E1	0.52 (MAX)	13.208 (MAX)
е	0.100 (TYP)	2.540(TYP)
eB	0.6 (TYP)	15.24 (TYP)
L	0.180(MAX)	4.572(MAX)
S	0.06 (MAX)	1.524 (MAX)
Q1	0.08(MAX)	2.032(MAX)
θ	15°(MAX)	15°(MAX)

P80028

28 pin 330 mil SOP Package Outline Dimension

UNIT	INCH(REF)	MM(BASE)
Α	0.112(max)	2.845(max)
A1	0.004(MIN)	0.102(MIN)
A2	0.098±0.005	2.489±0.127
b	0.016(TYP)	0.406(TYP)
С	0.010(TYP)	0.254(TYP)
D	0.713±0.005	18.110±0.127
E	0.331±0.005	8.407±0.127
E1	0.465±0.012	11.811±0.305
е	0.050(TYP)	1.270(TYP)
L	0.0404±0.008	1.0255±0.203
L1	0.067±0.008	1.702±0.203
S	0.047(MAX)	1.194(MAX)
y	0.003(MAX)	0.076(MAX)
θ	0°~10°	0°~10°

UTRON TECHNOLOGY INC. P80028

8

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C. TEL: 886-3-5777882 FAX: 886-3-5777919

ORDERING INFORMATION

PART NO.	ACCESS TIME (ns)	STANDBY CURRENT (µA) (TYP.)	PACKAGE
UT6264CPC-35	35	2mA	28 PIN PDIP
UT6264CPC-35L	35	2 _µ A	28 PIN PDIP
UT6264CPC-35LL	35	1µA	28 PIN PDIP
UT6264CPC-70	70	2mA	28 PIN PDIP
UT6264CPC-70L	70	2µA	28 PIN PDIP
UT6264CPC-70LL	<mark>70</mark>	1 _µ A	28 PIN PDIP
UT6264CSC-35	35	2mA	28 PIN SOP
UT6264CSC-35L	35	2µA	28 PIN SOP
UT6264CSC-35LL	35	1µA	28 PIN SOP
UT6264CSC-70	70	2mA	28 PIN SOP
UT6264CSC-70L	70	2µA	28 PIN SOP
UT6264CSC-70LL	70	1µA	28 PIN SOP

REVISION HISTORY

REVISION	DESCRIPTION	DATE
Preliminary Rev. 0.1	Original.	May 3 ,2001
Rev. 1.0	The timeing waveforms add CE2 control pin.	Jun.4,2001
Rev. 1.1	Revised package outline dimension.	Jan 15,2002
	2. Revised waveform.	

P80028