CO 250: Introduction to Optimization

Module 1: Formulations (Optimization on Graphs)

© University of Waterloo 1/

Shortest Paths

- Familiar problem: Starting at location s, we wish to travel to t. What is the best (i.e., shortest) route?
- In the figure above, such a route is indicated in bold.

©University of Waterloo 2/

Shortest Paths

 Goal: Write the problem of finding the shortest route between s and t as an integer program!
 ... How?

© University of Waterloo 3

Graph Theory 101

Rephrasing this problem in the language of graph theory helps!

A graph G consists of ...

- vertices $u, w, \ldots \in V$ (drawn as filled circles)
- edges $uw, wz, \ldots \in E$ (drawn as lines connecting circles)

Two vertices u and v are adjacent if $uv \in E$. Vertices u and v are the endpoints of edge $uv \in E$, and edge $e \in E$ is incident to $u \in V$ if u is an endpoint of e.

©University of Waterloo 4/:

Graphs – Why do we care?

Graphs are useful to compactly model many real-world entities. For example:

- Modeling circuits in chip design
- Social networks
- Trade networks
- and many more!

Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Late_Medieval_Trade_Routes.jpg

©University of Waterloo 5/2

The Map of Water Town

- We can think of the street map as a graph, G.
- Vertices: Road intersections
- Edges: Road segments connecting adjacent intersections

©University of Waterloo 6/:

The Map of Water Town

- Each edge $e \in E$ is labelled by its length $c_e \ge 0$.
- We are looking for a path connecting s and t of smallest total length!

© University of Waterloo 7 /

Paths

An s, t-path in G = (V, E) is a sequence

$$v_1v_2, v_2v_3, v_3v_4, \dots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

where

- $v_i \in V$ and $v_i v_{i+1} \in E$ for all i, and
- $v_1 = s$, $v_k = t$, and $v_i \neq v_j$ for all $i \neq j$. (Without this, it is called an s, t-walk)

©University of Waterloo 8

Paths

The length of a path $P = v_1 v_2, \dots, v_{k-1} v_k$ is the sum of the lengths of the edges on P:

$$c(P) := \sum (c_e : e \in P).$$

©University of Waterloo 9 / 2

Shortest Path Problem

- Given: Graph G=(V,E), lengths $c_e\geq 0$ for all $e\in E$, $s,t\in V$
- Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths! \longrightarrow Later!

©University of Waterloo

Example: Matchings

WaterTech - Job Assignment

WaterTech has a collection of important jobs:

$$J = \{1', 2', 3', 4'\}$$

that it needs to handle urgently.

It also has 4 employees:

$$E = \{1, 2, 3, 4\}$$

that need to handle these jobs.

Employees have different skill-sets and may take different amounts of time to execute a job.

Employees	Jobs				
	1'	2'	3'	4'	
1	_	5	-	7	
2	8	-	2	-	
3	-	1	-	-	
4	8	-	3	_	

Note: Some workers are not able to handle certain jobs!

Goal: Assign each worker to exactly one task so that the total execution time is smallest!

 \longrightarrow We will rephrase this in the language of graphs

©University of Waterloo 12/2

Matchings

Create a graph with one vertex for each employee and job.

Add an edge ij for $i \in E$ and $j \in J$ if employee i can handle job j.

Let the cost c_{ij} of edge ij be the amount of time needed by i to complete j.

Employees	Jobs				
	$\overline{1'}$	2'	3'	4'	
1	_	5	-	7	
2	8	-	-	4	
3	-	1	-	-	
4	8	-	3	-	

©University of Waterloo 13/2

Matchings

Definition

A collection $M\subseteq E$ is a matching if no two edges $ij,i'j'\in M$ $(ij\neq i'j')$ share an endpoint; i.e., $\{i,j\}\cap \{i',j'\}=\emptyset$.

- 1. $M = \{14', 21', 32', 43'\}$ is a matching.
- 2. $M = \{14', 32', 41', 43'\}$ is not a matching.

©University of Waterloo 14 / 2

Matchings

The cost of a matching M is the sum of costs of its edges:

$$c(M) = \sum (c_e : e \in M)$$

e.g.,
$$M = \{14', 21', 32', 43'\}$$

 $\longrightarrow c(M) = 19$

Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.

E.g., matching in figure is perfect, and this one is not!

©University of Waterloo 15 / 2

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.

Note: Perfect matchings correspond to feasible assignments of workers to jobs!

E.g., the matching shown corresponds to the following assignment:

$$1 \rightarrow 4', \, 2 \rightarrow 1', \, 3 \rightarrow 2', \text{ and } 4 \rightarrow 3'$$

whose execution time equals c(M) = 19!

Restatement of original question:

Find a perfect matching M in our graph of smallest cost.

©University of Waterloo 16 / 2

A Little More Notation...

Notation: Use $\delta(v)$ to denote the set of edges incident to v; i.e.,

$$\delta(v) = \{e \in E \,:\, e = vu \text{ for some } u \in V\}.$$

Definition

Given G=(V,E), $M\subseteq E$ is a perfect matching iff $M\cap \delta(v)$ contains a single edge for all $v\in V$.

Examples

- $\delta(2) = \{21', 24'\}$
- $\delta(3') = \{43'\}$

©University of Waterloo 17 / 2

An IP for Perfect Matchings

Definition

Given G=(V,E), $M\subseteq E$ is a perfect matching iff $M\cap \delta(v)$ contains a single edge for all $v\in V$.

The IP will have a binary variable x_e for every edge $e \in E$. Idea:

$$x_e = 1 \leftrightarrow e \in M$$

Constraints: For all $v \in V$, need

$$\sum (x_e : e \in \delta(v)) = 1$$

Objective:

$$\sum (c_e x_e : e \in E)$$

©University of Waterloo 18 / 2

An IP for Perfect Matchings

$$\min \sum (c_e x_e : e \in E)$$
 s.t.
$$\sum (x_e : e \in \delta(v)) = 1 \ (v \in V)$$

$$x \ge \emptyset, \ x \text{ integer}$$

min
$$(5, 1, 3, 4)x$$

 $x \ge 0$ integer

©University of Waterloo 19/2

Optimization on Graphs

Recap

- Graphs consist of vertices V and edges E ... and are very useful in modeling many practical problems.
- In particular, graphs can be used to model road networks, where roads are edges and street intersections are vertices.
- In the shortest path problem, each edge $e \in E$ has an associated weight c_e , and we are looking for a path connecting two specific vertices of smallest total weight.
- A matching is a collection of edges, no two of which share an endpoint. A perfect matching is a matching that covers all vertices in V.

©University of Waterloo