Wybrane zagadnienia z geodezji wyższej Ćwiczenie nr 1 - sprawozdanie

Wykonanie:

Ćwiczenie zostało wykonane w języku programowania Python 3.10 z wykorzystaniem bibliotek matplotlib, numpy, pandas, geopandas, shapely.

Dane wejściowe lotu:

	T	1
φ[°]	λ [°]	wysokość[m]
52.1711	20.9486	221
52.1758	20.9325	518
52.1798	20.9174	693
52.1828	20.8981	770
52.1802	20.8747	968
52.1770	20.8514	1158
52.1736	20.8252	1334
52.1659	20.7706	1867
52.1607	20.7371	2172
52.1488	20.7092	2385
52.1304	20.6921	2675
52.1043	20.6895	2972
52.0823	20.7065	3239
52.0407	20.7759	3452
52.0048	20.8379	3894
51.9684	20.9004	4336
51.9310	20.9641	4740
51.8910	21.0322	5189
51.8522	21.0979	5517
51.8112	21.1671	5875
51.7718	21.2335	6226
51.7316	21.3011	6538
51.6908	21.3696	6843
51.6582	21.4186	7049
51.6290	21.4529	7224
51.5751	21.5053	7498
51.5231	21.5553	7734
51.4708	21.6053	7948
51.4147	21.6587	8138
51.3548	21.7156	8321
51.2990	21.7687	8527

LE1 2412	21 0227	0024
51.2412 51.1844	21.8237	8824
	21.8773	9114
51.1275	21.9308	9418 9708
51.0723	21.9825	9853
51.0157	22.0352	
50.9600	22.0867	9967
50.9023	22.1402	10196
50.8453	22.1929	10401
50.7913	22.2432	10592
50.7340	22.2964	10767
50.6775	22.3484	10912
50.6219	22.3994	11041
50.5658	22.4507	11140
50.5089	22.5024	11247
50.4511	22.5547	11278
50.3956	22.6047	11278
50.3392	22.6558	11278
50.2811	22.7084	11278
50.2250	22.7589	11278
50.1703	22.8081	11278
50.1128	22.8595	11278
50.0565	22.9088	11278
50.0005	22.9574	11278
49.9434	23.0068	11278
49.8787	23.0625	11278
49.8232	23.1102	11278
49.7613	23.1630	11278
49.7071	23.2093	11278
49.6532	23.2557	11278
49.5930	23.3071	11278
49.5376	23.3540	11278
49.4846	23.3989	11278
49.4268	23.4478	11278
49.3694	23.4961	11278
49.3062	23.5491	11278
49.2471	23.5986	11278
49.1912	23.6456	11278
49.1349	23.6925	11278
49.0785	23.7395	11278
49.0226	23.7856	11278
48.9663	23.8319	11278
48.9103	23.8784	11278
48.8571	23.9224	11278
48.7857	23.9807	11278
48.7301	24.0260	11278
48.6734	24.0721	11278

1.0.0	l	1
48.6157	24.1191	11278
48.5594	24.1647	11278
48.5036	24.2100	11278
48.4489	24.2540	11278
48.3916	24.3000	11278
48.3357	24.3451	11278
48.2790	24.3906	11278
48.2230	24.4356	11278
48.1688	24.4787	11278
48.1122	24.5238	11278
48.0558	24.5687	11278
47.9996	24.6132	11278
47.9419	24.6588	11278
47.8866	24.7020	11278
47.8278	24.7480	11278
47.7694	24.7937	11278
47.7129	24.8380	11278
47.6554	24.8829	11278
47.5994	24.9264	11278
47.5414	24.9714	11278
47.4851	25.0152	11278
47.4278	25.0593	11278
47.3719	25.1024	11278
47.3155	25.1455	11278
47.2602	25.1881	11278
47.2018	25.2328	11278
47.1440	25.2771	11278
47.0890	25.3190	11278
47.0314	25.3626	11278
46.9736	25.4061	11278
46.9179	25.4479	11278
46.8599	25.4916	11278
46.8031	25.5342	11278
46.7479	25.5758	11278
46.6912	25.6184	11278
46.6325	25.6623	11278
46.5745	25.7055	11278
46.5178	25.7475	11278
46.4603	25.7900	11278
46.4040	25.8315	11278
46.3472	25.8735	11278
46.2918	25.9141	11278
46.2360	25.9551	11278
46.1809	25.9954	11278
46.1250	26.0363	11278
46.0704	26.0763	11278
		===:0

1,000,00	20 1150	11270
46.0166	26.1156	11278
45.9592	26.1566	11278
45.9037	26.1965	11278
45.8476	26.2376	11278
45.7892	26.2799	11278
45.7336	26.3199	11278
45.6777	26.3598	11278
45.6206	26.4007	11278
45.5649	26.4405	11278
45.5079	26.4812	11278
45.4509	26.5217	11278
45.3946	26.5615	11278
45.3384	26.6012	11278
45.2802	26.6423	11278
45.2246	26.6815	11278
45.1679	26.7215	11278
45.1133	26.7598	11278
45.0543	26.8011	11278
45.0002	26.8389	11278
44.9424	26.8791	11278
44.8860	26.9183	11285
44.8277	26.9587	11278
44.7727	26.9968	11278
44.7167	27.0355	11278
44.6635	27.0722	11278
44.6074	27.1108	11278
44.5501	27.1502	11278
44.4950	27.1879	11278
44.4397	27.2256	11278
44.3857	27.2622	11278
44.3296	27.3004	11278
44.2750	27.3376	11278
44.2187	27.3758	11278
44.1637	27.4131	11278
44.1085	27.4503	11278
44.0527	27.4878	11278
44.0001	27.5231	11278
43.9423	27.5618	11278
43.8869	27.5988	11278
43.8335	27.6345	11278
43.7788	27.6709	11278
43.7232	27.7080	11278
43.6688	27.7441	11278
43.6116	27.7821	11278
43.5584	27.8173	11278
43.5016	27.8547	11278
	•	•

ı	I	Ì
43.4477	27.8900	11278
43.3925	27.9262	11278
43.3386	27.9615	11278
43.2837	27.9976	11278
43.2280	28.0340	11278
43.1722	28.0704	11278
43.1164	28.1066	11278
43.0577	28.1447	11278
43.0024	28.1804	11278
42.9442	28.2181	11278
42.8882	28.2541	11278
42.8320	28.2904	11278
42.7746	28.3273	11278
42.7198	28.3624	11278
42.6617	28.3995	11278
42.6063	28.4348	11278
42.5503	28.4704	11278
42.4916	28.5078	11278
42.4368	28.5427	11278
42.3807	28.5784	11278
42.3231	28.6148	11278
42.2667	28.6503	11278
42.2124	28.6843	11278
42.1555	28.7201	11278
42.1143	28.7455	11278
42.0793	28.7600	11278
42.0326	28.7676	11278
41.9684	28.7704	11278
41.9080	28.7731	11278
41.8485	28.7755	11278
41.7864	28.7778	11278
41.7262	28.7800	11278
41.6609	28.7825	11278
41.5996	28.7849	11278
41.5414	28.7872	11278
41.4792	28.7897	11278
41.4207	28.7920	11278
41.3590	28.7944	11278
41.2970	28.7968	11278
41.2350	28.7992	11278
41.1741	28.8016	11278
41.1114	28.8044	11278
41.0499	28.8070	11278
40.9900	28.8095	11278
40.9510	28.8149	11278
40.8737	28.8369	11278
		<u> </u>

1	1	1
40.8131	28.8549	11278
40.7322	28.8788	11278
40.6800	28.8942	11278
40.6258	28.9103	11278
40.5351	28.9370	11278
40.4811	28.9529	11278
40.4136	28.9727	11278
40.3535	28.9903	11278
40.2923	29.0082	11278
40.2316	29.0259	11278
40.1737	29.0427	11278
40.1087	29.0615	11278
40.0492	29.0788	11278
39.9902	29.0960	11278
39.9297	29.1135	11278
39.8682	29.1312	11278
39.8058	29.1493	11278
39.7634	29.1668	11278
39.6835	29.2063	11278
39.6249	29.2350	11278
39.5624	29.2655	11278
39.5032	29.2945	11278
39.4451	29.3229	11278
39.3853	29.3522	11278
39.3253	29.3814	11278
39.2680	29.4092	11278
39.2071	29.4389	11278
39.1490	29.4669	11278
39.0868	29.4969	11278
39.0304	29.5242	11278
38.9708	29.5530	11278
38.9118	29.5814	11278
38.8527	29.6098	11278
38.7964	29.6367	11278
38.7642	29.6539	11278
38.6909	29.7115	11278
38.6287	29.7661	11278
38.5770	29.8116	11278
38.5204	29.8616	11125
38.4672	29.9084	10904
38.4143	29.9551	10683
38.3604	30.0028	10378
38.3040	30.0527	10036
38.2487	30.1013	9601
38.1961	30.1476	9243
38.1431	30.1938	8854

ı		I	l
	38.0938	30.2369	8519
	38.0379	30.2852	8001
	38.0017	30.3100	7757
	37.9598	30.3285	7483
	37.8998	30.3485	7209
	37.8407	30.3678	6629
	37.7801	30.3872	6226
	37.7259	30.4050	5845
	37.6694	30.4228	5448
	37.6151	30.4401	5166
	37.5555	30.4586	4869
	37.4975	30.4768	4580
	37.4490	30.4923	4321
	37.4009	30.5087	4046
	37.3543	30.5247	3810
	37.3089	30.5411	3543
	37.2641	30.5561	3345
	37.2217	30.5707	3162
	37.1878	30.5829	3040
	37.1492	30.5969	2842
	37.1101	30.6105	2614
	37.0863	30.6190	2469
	37.0466	30.6328	2256
	37.0065	30.6444	2096
	36.9690	30.6545	1951
	36.9432	30.6622	1844
	36.9046	30.6673	1669
	36.8755	30.6657	1539
	36.8391	30.6605	1364
	36.8044	30.6555	1234
	36.7700	30.6512	1082
	36.7463	30.6500	953
	36.7274	30.6571	831
	36.7143	30.6759	716
	36.7123	30.6978	640
	36.7145	30.7324	594
	36.7179	30.7559	564
	36.7266	30.7719	503
	36.7470	30.7874	480
	36.7698	30.7915	396
	36.7827	30.7929	404
	36.7986	30.7950	427
	36.8230	30.7991	381
	36.8343	30.8009	372
	36.8857	30.8079	8

Opis układów odniesienia:

Układ $\phi\lambda h$ (geodezyjny) pokazuje położenie miarami kątowymi punkt przecięcia prostej od wybranego punktu do punktu środkowego elipsoidy oraz odległość na tej prostej wybranego punktu od tego punktu przecięcia.

Układ xyz pokazuje położenie na trzech prostopadłych do siebie osiach. Punktem (0, 0, 0) jest środek elipsoidy, a oś brotu Ziemi jest równoległa do jednej z tych osi.

Układ neu pokazuje położenie tak jak układ xyz na trzech prostopadłych do siebie osiach, ale wektor normalny płaszczyzny xy jest prostopadły do płaszyzny elipsoidy w wybranym punkcie na elipsoidzie, który staje się punktem (0, 0, 0). Oś z przyjmuje wartości dodatnie gdy się oddalamy od środka elipsoidy.

Cel ćwiczenia:

Zastosowanie różnych układów odniesienia do prawdziwych danych, w celu zobaczenia różnic pomiędzy nimi co do ich zastosowań praktycznych.

Wyniki:

Mapa lotu $(\varphi \lambda h)$

Wykres n(e)

Patrząc z lotniska w Antalii na samolot z niego lecący w stronę Warszawy samolot znika za horyzont po około siedmiu minutach.

Wnioski:

Zastosowanie układu neu jest praktyczniejsze niż układu geodezyjnego w tym ćwiczeniu, gdyż chcieliśmy zobaczyć kiedy samolot znika za horyzontem, co łatwo można w układzie neu ustalić.

Zastosowanie układu neu jest mniej praktyczne niż układu geodezyjnego w tym ćwiczeniu, gdyż nie jest on powszechny, więc wszystkie dane trzeba przeliczać, poza tym trudno jest się w nim zorientować w jakiej odległości od powierzchni elipsoidy się znajduje dany punkt.