1. Détails de la fenêtre

Système de profilés:

Profilé du Dormant: Poids:
Profilé de Traverse: Poids:
Profilé Meneau: Poids:

Vitrage: ID des vitrages Poids Composition du vitrage

2. Charges appliquées

Pression du vent (W): kN/m^2 Charge d'exploitation horizontale (q_H): kN/m

Hauteur d'application de la charge d'exploitation: mm

3. Matériaux

Aluminium Limite élastique apparente à 0.2% $\beta_{0.2}$ = N/mm²

Rupture thermique

4. Flèche admissible

Flèche horizontale admissible

Flèche verticale admissible

SCHÜCO

Nom du projet:

Date:

Localisation:

Par:

5. Results

ld des profilés	Surface d'application	Coefficient de pression Cp	Charge de vent appliquée (kN/m²)	R	Réactions aux appuis (kN)				
·	de la charge (m²)			A_k	A_d	B_k	B _d		

	Contraintes dans les profilés d'aluminium (N/mm²)		Contraintes de cisaillement dans les ruptures thermiques (N/mm)			Déviation (mm)				
Id des profilés Statut			L'hiver		Été		Hors plan		Dans le plan	
	σ_{max}	U _R	T _{max_w}	U_R	T _{max_s}	U _R	δ_{hmax}	U _R	$\delta_{ m vmax}$	U _R

	***	•
SC	HU	

Project Name:

Location:

Date:

By: