MA50260 Statistical Modelling

Lecture 20: GLMMs Diagnostics and Summary

Ilaria Bussoli

April 26, 2024

Generalised Linear Mixed Models

Diagnostics (I)

To check whether the probability distribution and link function are appropriate, we can consider

Calculate the Pearson residuals

$$r_{i,j}^P = \frac{y_{i,j} - \hat{\mu}_{i,j}}{\sqrt{V(\hat{\mu}_{i,j})}}.$$

Derive the deviance residuals

$$r_{i,j}^D = \sqrt{D_{i,j}}\operatorname{sign}\left(y_{i,j} - \hat{\mu}_{i,j}\right).$$

- Examine residuals for patterns, outliers and normality.
- ▶ Plot the residuals vs the linear predictor $\hat{\eta}$.

Diagnostics (II)

Diagnostics (III)

To examine the random effects \mathbf{b} , we can, for example, consider

- Dot plots of random effects to see if any post-analysis would be of interest.
- ► Check normality of random effects (PP plots or QQ plots).
- ▶ Check whether autocorrelation exists in the residuals.

Diagnostics (IV)

Let's consider the estimated random effects for the seeds germination data.

\$Plate

Summary (I)

Summary (II) - Linear Regression Models

- Assumptions
- ▶ Estimation ⇒ Least square estimate
- Hypothesis Tests and Confidence Intervals
- ▶ Model Comparison ⇒ F-test
- Diagnostics

Summary (III) - Generalized Linear Models

- Assumptions
- ▶ Estimation ⇒ Fisher Scoring and IRWLS
- Hypothesis Tests and Confidence Intervals
- ► Model Comparison ⇒ AIC, BIC and Deviance
- Diagnostics

Summary (IV) - Linear Mixed Models

- Assumptions
- ► Estimation ⇒ Restricted Maximum Likelihood
- (Hypothesis Tests and Confidence Intervals)
- Diagnostics
- Nested and Crossed Designs

Summary (V) - Generalized Linear Mixed Models

- Assumptions
- ► Estimation ⇒ PQL and Gauss-Hermite quadrature
- Hypothesis Tests and Confidence Intervals
- ▶ Model Comparison ⇒ AIC and BIC
- Diagnostics