FCC TEST REPORT

For

The One Technologies LLC

Wireless headphone

Test Model: SonoBass

Additional Model: SM-BT650, SL50

: The One Technologies LLC Prepared for

Address : 44 court street, suite 1217, Brooklyn, NY 11201, USA

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : Aug 24, 2016

Number of tested samples

Sample number : Prototype

Date of Test : Aug 24, 2016~Aug 30, 2016

Date of Report : Aug 30, 2016

FCC TEST REPORT FCC CFR 47 PART 15 C(15.247): 2015

Report Reference No.: LCS1608242098E

Date of Issue: Aug 30, 2016

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure......: Full application of Harmonised standards

Partial application of Harmonised standards \Box

Other standard testing method \square

Applicant's Name.....: The One Technologies LLC

Address: 44 court street, suite 1217, Brooklyn, NY 11201, USA

Test Specification

Standard : FCC CFR 47 PART 15 C(15.247): 2015 / ANSI C63.10: 2013

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: Wireless headphone

Trade Mark: SoundPal

Test Model: SonoBass

Ratings: DC 3.7V by li-ion battery(60mAh)

Recharge input: DC 5V, 150mA

Result: Positive

Compiled by: Sup

Supervised by: Approved by:

Calvin Weng

Calvin Weng/ Administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS1607282412E

Aug 30, 2016 Date of issue

Test Model..... : SonoBass EUT..... : Wireless headphone Applicant.....:: The One Technologies LLC Address..... : 44 court street, suite 1217, Brooklyn, NY 11201, USA Telephone..... : / Fax..... : / Manufacturer.....: : Senmai Electron Ltd. Address..... : Block 8, Wangxin Road, Shuiling Industrial Zone, Zhouwu District, Dongcheng, Dongguan, China Telephone..... : / Fax..... Factory.....: : Senmai Electron Ltd. Address..... : Block 8, Wangxin Road, Shuiling Industrial Zone, Zhouwu District, Dongcheng, Dongguan, China Telephone..... : / Fax.....

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-08-30	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	b
1.1. DESCRIPTION OF DEVICE (EUT) 1.2. SUPPORT EQUIPMENT LIST 1.3. EXTERNAL I/O 1.4. DESCRIPTION OF TEST FACILITY 1.5. LIST OF MEASURING EQUIPMENTS 1.6. STATEMENT OF THE MEASUREMENT UNCERTAINTY 1.7. MEASUREMENT UNCERTAINTY 1.8. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	
2.2. EUT EXERCISE	
2.3. GENERAL TEST PROCEDURES	11
3. SYSTEM TEST CONFIGURATION	12
3.1. JUSTIFICATION	12
3.2. EUT Exercise Software	
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
3.6. TEST SETUP	12
4. SUMMARY OF TEST RESULTS	
5. TEST RESULT	14
5.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	14
5.2. POWER SPECTRAL DENSITY MEASUREMENT	
5.3. 6 DB SPECTRUM BANDWIDTH MEASUREMENT	
5.4. RADIATED EMISSIONS MEASUREMENT	
5.5. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST	
5.6. POWER LINE CONDUCTED EMISSIONS	
5.7. Antenna Requirements	39

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Wireless headphone

Test Model : SonoBass

Additional Model

Number

: SM-BT650, SL50

Model Declaration : PCB board, structure and internal of the related model(s) are

the same, So no additional models were tested.

DC 3.7V by li-ion battery(60mAh)

Power Supply : Adapter input: AC 100V-240V, 50/60Hz

Recharge input: DC 5V, 150mA

Hardware Version : Main_Ver 1.0

Software Version : V1.0

Bluetooth

Frequency Range : 2.402-2.480GHz

Channel Number : 40 channels for Bluetooth V4.0 (DTS)

Channel Spacing : 2MHz for Bluetooth V4.0 (DTS)

Modulation Type : GFSK for Bluetooth V4.0 (DTS)

Bluetooth Version : V4.0

Antenna Description : PCB Antenna, 0dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	ADAPTER for notebook	ADP-90DD B	36001941	FCC
Lenovo	Notebook	B470	WB05067151	FCC

1.3. External I/O

I/O Port Description	Quantity	Cable
USB port	1	N/A

1.4. Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

There is one 3m semi-anechoic chamber and one line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10: 2013, CISPR 22/EN 55022 and CISPR16-1-4 SVSWR requirements.

1.5. List Of Measuring Equipments

Instrument	Manufacture	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Jun 18, 2016	Jun 17, 2017
Signal analyzer	Agilent	E4448A(Externa I mixers to 40GHz)	US443004 69	9kHz~40GHz	Jul 16, 2016	Jul 15, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
LISN	EMCO	3819/2NM	9703-1839	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
ISN	SCHAFFNE	ISN ST08	21653	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-H Y	30M-18GHz	Jun 18, 2016	Jun 17, 2017
Amplifier	SCHAFFNE	COA9231A	18667	9kHz-2GHzz	Apr 18, 2016	Apr 17, 2017
Amplifier	Agilent	8449B	3008A021	1GHz-26.5GHz	Apr 18, 2016	Apr 17, 2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	Apr 18, 2016	Apr 17, 2017
Loop Antenna	R&S	HFH2-Z2	860004/00	9k-30MHz	Apr 18, 2016	Apr 17, 2017
By-log Antenna	SCHWARZB	VULB9163	9163-470	30MHz-1GHz	Apr 18, 2016	Apr 17, 2017
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	Apr 18, 2016	Apr 17, 2017
Horn Antenna	SCHWARZB	BBHA9170	BBHA9170	15GHz-40GHz	Apr 18, 2016	Apr 17, 2017
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	Jun 18, 2016	Jun 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-H	1GHz-40GHz	Jun 18, 2016	Jun 17, 2017
Power Meter	R&S	NRVS	100444	DC-40GHz	Jun 18, 2016	Jun 17, 2017
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	Jun 18, 2016	Jun 17, 2017
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	Jun 18, 2016	Jun 17, 2017
AC Power Source	HPC	HPA-500E	HPA-9100	AC 0~300V	Jun 18, 2016	Jun 17, 2017
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	Jun 18, 2016	Jun 17, 2017
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103- 00	N/A	Jun 18, 2016	Jun 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	Jun 18, 2016	Jun 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	Jun 18, 2016	Jun 17, 2017
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	Jul 16, 2016	Jul 15, 2017
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	Oct 27, 2015	Oct 26, 2016
Wideband Radia Communication Tester	R&S	CMW500	1201.0002 K50	N/A	Nov 19, 2016	Nov 18, 2016
MXG Vector Signal Generator	Agilent	N5182A	MY470711 51	250KHz~6GHz	Oct 27, 2015	Oct 26, 2016
MXG Vector Signal Generator	Agilent	E4438C	MY420813 96	250KHz~6GHz	Oct 27, 2015	Oct 26, 2016
PSG Analog Signal Generator	Agilent	N8257D	MY465205 21	250KHz~20GHz	Nov 19, 2016	Nov 18, 2016
MXA Signal Analyzer	Agilent	N9020A	MY505101 40	10Hz~26.5GHz	Oct 27, 2015	Oct 26, 2016
DC Power Supply	Agilent	E3642A	/	0-8V,5A/0-20V,2	May 20,	May 19, 2017
RF Control Unit	Tonscend	JS0806-1	/	/	Nov 19, 2016	Nov 18, 2016
LTE Test Software	Tonscend	JS1120-1	/	Version: 2.5.7.0	N/A	N/A

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 8 of 40

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID:2	AIWR-SONOBASS	Report No.: 1	LCS1608242098E
X-series USB Peak an d Average Power Sens or Agilent	Agilent	U2021XA	MY540800 22	1	Oct 27, 2015	Oct 26, 2016
4 Ch.Simultaneous Sa mpling 14 Bits 2 MS/s	Agilent	U2531A	MY540800 16	/	Oct 27, 2015	Oct 26, 2016
Test Software	Ascentest	AT890-SW	20141230	Version:	N/A	N/A
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400 424	1	Oct 27, 2015	Oct 26, 2016
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	/	Oct 27, 2015	Oct 26, 2016
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	1	Oct 27, 2015	Oct 26, 2016

1.6. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		9KHz~30MHz	3.10dB	(1)
	:	30MHz~200MHz	2.96dB	(1)
		200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	•	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Description Of Test Modes

The EUT has been tested under operating condition.

For pre-testing, when performed power line conducted emission measurement, the input Voltage/Frequency AC 120V/60Hz and AC 240V/60Hz were used. Only recorded the worst case in this report.

The EUT was set to transmit at 100% duty cycle. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in Y position.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was determined to be BLE mode(TX-High Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was determined to be BLE mode(TX-High Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

BLE 4.0: 1Mbps, GFSK

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

Channel List & Frequency BLE 4.0

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2402	21	2442
	2	2404		
2402~2480MHz	3	2406		
2402~2460WITIZ			38	2476
			39	2478
	20	2440	40	2480

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas Guidance v03r05 is required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C					
FCC Rules	Result				
§15.247(b)(3)	Maximum Conducted Output Power	Compliant			
§15.247(e)	Power Spectral Density	Compliant			
§15.247(a)(2) 6dB Bandwidth		Compliant			
§15.209, §15.247(d) Radiated and Conducted Spurious Emissions		Compliant			
§15.205	Emissions at Restricted Band	Compliant			
§15.207(a)	Line Conducted Emissions	Compliant			
§15.203	Compliant				
Note: This is a DTS test report for Wireless headphone (SonoBass)					

5. TEST RESULT

5.1. Maximum Conducted Output Power Measurement

5.1.1. Standard Applicable

According to § 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850MHz bands: 1 Watt.

5.1.2. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

5.1.3. Test Setup Layout

5.1.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.5. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	BLE 4.0

Mode	Channel	Frequency (MHz)	Conducted Power (dBm, Peak)	Max. Limit (dBm)	Result
	1	2402	-2.50	30	Complies
BLE 4.0	20	2440	-3.12	30	Complies
	40	2480	-2.45	30	Complies

5.2. Power Spectral Density Measurement

5.2.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2.2. Test Procedures

- 1) The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2) The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3) Set the RBW = 3 kHz.
- 4) Set the VBW \geq 3*RBW
- 5) Set the span to 1.5 times the DTS channel bandwidth.
- 6) Detector = peak.
- 7) Sweep time = auto couple.
- 8) Trace mode = max hold.
- 9) Allow trace to fully stabilize.
- 10) Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

5.2.3. Test Setup Layout

5.2.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.5. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%	
Test Engineer	Chaz	Configurations	BLE 4.0	

Mode	Channel	Frequency (MHz)	Power Density (dBm/3KHz)	Max. Limit (dBm/3KHz)	Result
	1	2402	-14.085	8	Complies
BLE 4.0	20	2440	-14.627	8	Complies
	40	2480	-14.059	8	Complies

Note: The measured power density (dBm) has the offset with cable loss already.

BLE 4.0 power density

5.3. 6 dB Spectrum Bandwidth Measurement

5.3.1. Standard Applicable

According to §15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.2. Instruments Setting

The following table is the setting of the Spectrum Analyzer.

	•
Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.3.3. Test Procedures

- 1) The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2) The resolution bandwidth and the video bandwidth were set according to KDB558074 D01 DTS Meas. Guidance v03r05.
- 3) Measured the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	BLE4.0

Mode	Channel	Frequency	6dB Bandwidth (KHz)	Min. Limit (kHz)	Result
	1	2402	631.9	500	Complies
BLE 4.0	20	2440	633.0	500	Complies
	40	2480	637.4	500	Complies

BLE 4.0 channel, 6dB bandwidth

5.4. Radiated Emissions Measurement

5.4.1. Standard Applicable

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.4.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

The following table is the setting of sp	The following table is the setting of spectrum unaryzer and receiver.				
Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average				
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.4.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0 ° to 315 ° using 45 ° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0 ° to 315 ° using 45 ° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45 °) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0 ° to 315 ° using 45 ° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45 °) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.4.4. Test Setup Layout

Below 30MHz

Below 1GHz

Above 1GHz

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	BLE 4.0

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.4.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	BLE(High Channel)

Horizontal:

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that ate 20db blow the offficial limit are not reported

Vertical:

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that ate 20db blow the offficial limit are not reported

***Note:

Pre-scan all mode and recorded the worst case results in this report BLE(High channel) at 120VAC,50Hz.

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.4.8. Results for Radiated Emissions (Above 1GHz)

Note: Only recorded the worst test result.

BLE 4.0

TX-Low Channel

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.01	44.56	33.06	35.04	3.94	46.52	74	-27.48	Peak	Horizontal
4804.03	35.81	33.06	35.04	3.94	37.77	54	-16.23	Average	Horizontal
4804.01	45.47	33.06	35.04	3.94	47.43	74	-26.57	Peak	Vertical
4804.03	36.26	33.06	35.04	3.94	38.22	54	-15.78	Average	Vertical

TX-Middle Channel

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4880.02	44.30	33.16	35.15	3.96	46.27	74	-27.73	Peak	Horizontal
4880.10	34.31	33.16	35.15	3.96	36.28	54	-17.72	Average	Horizontal
4880.02	45.45	33.16	35.15	3.96	47.42	74	-26.58	Peak	Vertical
4880.10	35.93	33.16	35.15	3.96	37.90	54	-16.10	Average	Vertical

TX-High Channel

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.04	44.55	33.26	35.14	3.98	46.65	74	-27.35	Peak	Horizontal
4960.02	34.98	33.26	35.14	3.98	37.08	54	-16.92	Average	Horizontal
4960.04	44.65	33.26	35.14	3.98	46.75	74	-27.25	Peak	Vertical
4960.02	37.34	33.26	35.14	3.98	39.44	54	-14.56	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 30MHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. The radiated emissions from 18GHz to 25GHz are at least 20dB below the official limit and no need to report.

5.4.9. Results of Band Edges Test (Radiated)

Note: Only recorded the worst test result.

BLE 4.0

TX-Low Channel

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
2375.8	43.57	33.06	35.18	3.6	45.05	74	-28.95	Peak	Horizontal
2377.8	35.19	33.08	35.18	3.6	36.69	54	-17.31	Average	Horizontal
2390.0	45.82	33.08	35.18	3.62	47.34	74	-26.66	Peak	Horizontal
2390.0	36.56	33.08	35.18	3.62	38.08	54	-15.92	Average	Horizontal
2400.0	51.49	33.06	35.18	3.6	52.97	74	-21.03	Peak	Horizontal
2400.0	41.84	33.08	35.18	3.6	43.34	54	-10.66	Average	Horizontal
2375.8	43.49	33.08	35.18	3.62	45.01	74	-28.99	Peak	Vertical
2377.8	34.69	33.08	35.18	3.62	36.21	54	-17.79	Average	Vertical
2390.0	46.05	33.06	35.18	3.6	47.53	74	-26.47	Peak	Vertical
2390.0	36.19	33.08	35.18	3.6	37.69	54	-16.31	Average	Vertical
2400.0	51.28	33.08	35.18	3.62	52.80	74	-21.20	Peak	Vertical
2400.0	43.48	33.08	35.18	3.62	45.00	54	-9.00	Average	Vertical

TX-High Channel

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
2483.5	45.65	33.06	35.18	3.6	47.13	74	-26.87	Peak	Horizontal
2483.5	36.22	33.08	35.18	3.6	37.72	54	-16.28	Average	Horizontal
2487.5	42.70	33.08	35.18	3.62	44.22	74	-29.78	Peak	Horizontal
2487.5	33.59	33.08	35.18	3.62	35.11	54	-18.89	Average	Horizontal
2483.5	47.17	33.06	35.18	3.6	48.65	74	-25.35	Peak	Vertical
2483.5	37.77	33.08	35.18	3.6	39.27	54	-14.73	Average	Vertical
2487.5	44.56	33.08	35.18	3.62	46.08	74	-27.92	Peak	Vertical
2487.5	35.42	33.08	35.18	3.62	36.94	54	-17.06	Average	Vertical

5.5. Conducted Spurious Emissions and Band Edges Test

5.5.1. Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a)is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.5.2. Instruments Setting

The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.5.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.3.4.

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Test Results of Conducted Spurious Emissions

BLE 4.0

5.5.7. Test Results of Band Edges Test

BLE 4.0

5.6. Power line conducted emissions

5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

5.6.2 Block Diagram of Test Setup

5.6.3 Test Results

PASS.

The test data please refer to following page.

Test Result For Line Power Input AC 120V/60Hz (Worst Case) Horizontal:

Remarks: 1. Measured = Reading + Lisn Factor +Cable Loss+Atten_Fac.
The emission levels that are 20dB below the official limit are not reported.

Vertical:

Measured = Reading + Lisn Factor +Cable Loss+Atten_Fac. The emission levels that are 20dB below the official limit are not reported.

***Note: Pre-scan all mode and recorded the worst case results in this report (BLE (TX-High Channel)).

5.7. Antenna Requirements

5.7.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.7.2. Antenna Connector Construction

The antenna used for BLE transmitting is permanently attached and no consideration of replacement, please see EUT photo for details.

The BLE uses a PCB antenna, and the maximum antenna gain is 0dBi.

5.7.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refer ANSI C63.10:2013 Output power test procedure for DTS devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter						
Detector:	Peak					
Sweep Time:	Auto					
Resolution bandwidth:	3MHz					
Video bandwidth:	3MHz					
Trace-Mode:	Max hold					

Limits

_	Billius					
	FCC	IC				
	Antenna Gain					
	6 dB	ii				

BLE

T _{nom}	V_{nom}	Lowest Channel 2402 MHz	Middle Channel 2440 MHz	Highest Channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation Radiated power [dBm] Measured with GFSK modulation		-2.50	-3.12	-2.45
		-3.12	-3.58	-3.12
Gain [dBi] Calculated		-0.62	-0.46	-0.67
М	easurement unce	ertainty	± 1.6 dB (cond.)) / ± 3.8 dB (rad.)

Result: -/-

-----THE END OF REPORT-----