МГТУ им. Н. Э. Баумана, кафедра ИУ5 курс "Технологии машинного обучения"

Лабораторная работа №3

«Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

ВЫПОЛНИЛ:

Пученков Д.О.

Группа: ИУ5-61Б

ПРОВЕРИЛ:

Гапанюк Ю.Е.

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
 - -обработку пропусков в данных;
 - -кодирование категориальных признаков;
 - -масштабирование данных.

Выполненная работа:

Загрузка и первичный анализ данных

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
# Будем использовать только обучающую выборку
data = pd.read_csv('../datasets/vgsales.csv', sep=",")
# размер набора данных
data.shape
(16598, 11)
# типы колонок
data.dtypes
        int64
Rank
object
Platform object
Year
              object
object
Genre
Publisher
NA Sales
               float64
EU Sales
               float64
JP Sales
               float64
Other_Sales
               float64
Global Sales
              float64
dtype: object
# проверим есть ли пропущенные значения
data.isnull().sum()
Rank
Name
Platform
Year
               271
Genre
Publisher
                58
NA_Sales
EU_Sales
JP Sales
Other_Sales
Global Sales
dtype: int64
```

Первые 5 строк датасета data.head()

	Kalik	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	1.00	31.37

1. Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нулями

```
total_count = data.shape[0]
print('Bcero строк: {}'.format(total_count))

Всего строк: 16598

# Удаление колонок, содержащих пустые значения
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)

((16598, 11), (16598, 9))

# Удаление строк, содержащих пустые значения
data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)

((16598, 11), (16291, 11))
```

data.head() Publisher NA_Sales EU_Sales JP_Sales Other_Sales Global_Sales Rank Name Platform Year Genre 0 Wii Sports 2006.0 Sports Nintendo 41.49 29.02 3.77 82.74 Super Mario 1 2 NES 1985.0 Platform Nintendo 29.08 3.58 6.81 0.77 40.24 Bros 2 3 35.82 Mario Kart Wii Wii 2008.0 Racing 15.85 12.88 3.31 Nintendo 3.79 3 4 Wii Sports 2.96 Wii 2009.0 Sports Nintendo 15.75 11.01 3.28 33.00 Pokemon Role-4 5 1.00 Red/Pokemon GB 1996.0 Nintendo 11.27 8.89 10.22 31.37 Playing Blue

```
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе категориальные колонки
data_new_3 = data.fillna(0)
data_new_3.head()
```

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	1.00	31.37

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка Year. Тип данных float64. Количество пустых значений 271, 1.63%.

```
# Фильтр по колонкам с пропущенными значениями data_num = data[num_cols] data_num
```

	Year
0	2006.0
1	1985.0
2	2008.0
3	2009.0
4	1996.0
 16593	2002.0
 16593 16594	 2002.0 2003.0
16594	2003.0

16598 rows × 1 columns

```
# Гистограмма по признакам

for col in data_num:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()

/usr/local/lib/python3.7/dist-packages/numpy/lib/histograms.py:839: RuntimeWarning: invalid value encounte

red in greater_equal
    keep = (tmp_a >= first_edge)
/usr/local/lib/python3.7/dist-packages/numpy/lib/histograms.py:840: RuntimeWarning: invalid value encounte

red in less_equal
    keep &= (tmp_a <= last_edge)
```


Фильтр по пустым значениям поля LotFrontage data[data['Year'].isnull()]

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_
179	180	Madden NFL 2004	PS2	NaN	Sports	Electronic Arts	4.26	0.26	0.01	0.71	5.23
377	378	FIFA Soccer 2004	PS2	NaN	Sports	Electronic Arts	0.59	2.36	0.04	0.51	3.49
431	432	LEGO Batman: The Videogame	Wii	NaN	Action	Warner Bros. Interactive Entertainment	1.86	1.02	0.00	0.29	3.17
470	471	wwe Smackdown vs. Raw 2006	PS2	NaN	Fighting	NaN	1.57	1.02	0.00	0.41	3.00
607	608	Space Invaders	2600	NaN	Shooter	Atari	2.36	0.14	0.00	0.03	2.53
16307	16310	Freaky Flyers	GC	NaN	Racing	Unknown	0.01	0.00	0.00	0.00	0.01
16327	16330	Inversion	PC	NaN	Shooter	Namco Bandai Games	0.01	0.00	0.00	0.00	0.01
16366	16369	Hakuouki: Shinsengumi Kitan	PS3	NaN	Adventure	Unknown	0.01	0.00	0.00	0.00	0.01
16427	16430	Virtua Quest	GC	NaN	Role- Playing	Unknown	0.01	0.00	0.00	0.00	0.01
16493	16496	The Smurfs	3DS	NaN	Action	Unknown	0.00	0.01	0.00	0.00	0.01

```
# Запоминаем индексы строк с пустыми значениями flt_index = data[data['Year'].isnull()].index flt_index
```

Проверяем что выводятся нужные строки data[data.index.isin(flt_index)]

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global
179	180	Madden NFL 2004	PS2	NaN	Sports	Electronic Arts	4.26	0.26	0.01	0.71	5.23
377	378	FIFA Soccer 2004	PS2	NaN	Sports	Electronic Arts	0.59	2.36	0.04	0.51	3.49
431	432	LEGO Batman: The Videogame	Wii	NaN	Action	Warner Bros. Interactive Entertainment	1.86	1.02	0.00	0.29	3.17
470	471	wwe Smackdown vs. Raw 2006	PS2	NaN	Fighting	NaN	1.57	1.02	0.00	0.41	3.00
607	608	Space Invaders	2600	NaN	Shooter	Atari	2.36	0.14	0.00	0.03	2.53
16307	16310	Freaky Flyers	GC	NaN	Racing	Unknown	0.01	0.00	0.00	0.00	0.01
16327	16330	Inversion	PC	NaN	Shooter	Namco Bandai Games	0.01	0.00	0.00	0.00	0.01
16366	16369	Hakuouki: Shinsengumi Kitan	PS3	NaN	Adventure	Unknown	0.01	0.00	0.00	0.00	0.01
16427	16430	Virtua Quest	GC	NaN	Role- Playing	Unknown	0.01	0.00	0.00	0.00	0.01
16493	16496	The Smurfs	3DS	NaN	Action	Unknown	0.00	0.01	0.00	0.00	0.01

```
# фильтр по колонке
            data_num[data_num.index.isin(flt_index)]['Year']
            179
            377
                   NaN
            431
                   NaN
            470
                   NaN
            607
                   NaN
            16307
                   NaN
            16327
            16366
                   NaN
            16427
                   NaN
            16493
                   NaN
            Name: Year, Length: 271, dtype: float64
            data_num_MasVnrArea = data_num[['Year']]
            data_num_MasVnrArea.head()
               Year
             0
               2006.0
             1
               1985.0
               2008.0
             3
               2009.0
               1996.0
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_MasVnrArea)
mask_missing_values_only
array([[False],
       [False],
       [False],
       ...,
       [False],
       [False],
       [False]])
strategies=['mean', 'median', 'most_frequent']
def test num_impute(strategy_param):
    imp num = SimpleImputer(strategy=strategy_param)
    data num imp = imp num.fit transform(data num MasVnrArea)
    return data num imp[mask missing values only]
strategies[0], test_num_impute(strategies[0])
('mean', array([2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
        2006.40644331, 2006.40644331, 2006.40644331, 2006.40644331,
```

```
strategies[1], test_num_impute(strategies[1])
('median',
 array([2007., 2007., 2007., 2007., 2007., 2007., 2007., 2007., 2007.,
         2007., 2007., 2007., 2007., 2007., 2007., 2007., 2007.,
         2007., 2007., 2007., 2007., 2007., 2007., 2007., 2007., 2007.,
strategies[2], test num impute(strategies[2])
('most frequent',
array([2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009.,
        2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009.,
        2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009.,
        2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009.,
        2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009.,
        2009., 2009., 2009., 2009., 2009., 2009., 2009., 2009.,
               2009
                      2009
                             2009
                                     2009
                                             2009
                                                    2009
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled_data = data_num_imp[mask_missing_values_only]
    return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_data.size-1]
data[['Year']].describe()
      Year
 count 16327.000000
      2006.406443
 mean
      5.828981
 std
      1980.000000
 min
 25%
      2003.000000
 50%
      2007.000000
 75%
      2010.000000
      2020.000000
 max
test_num_impute_col(data, 'Year', strategies[0])
('Year', 'mean', 271, 2006.4064433147546, 2006.4064433147546)
```

```
test_num_impute_col(data, 'Year', strategies[0])

('Year', 'mean', 271, 2006.4064433147546, 2006.4064433147546)

test_num_impute_col(data, 'Year', strategies[1])

('Year', 'median', 271, 2007.0, 2007.0)

test_num_impute_col(data, 'Year', strategies[2])

('Year', 'most_frequent', 271, 2009.0, 2009.0)
```

1.2.2. Обработка пропусков в категориальных данных

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(count, temp_perc))

Колонка Publisher. Тип данных object. Количество пустых значений 58, 0.35%.
```

```
cat_temp_data = data[['Publisher']]
cat_temp_data.head()
```

```
Publisher

0 Nintendo

1 Nintendo

2 Nintendo

3 Nintendo

4 Nintendo
```

```
cat_temp_data['Publisher'].unique()
```

```
array(['Nintendo', 'Microsoft Game Studios', 'Take-Two Interactive',
          'Sony Computer Entertainment', 'Activision', 'Ubisoft',
          'Bethesda Softworks', 'Electronic Arts', 'Sega', 'SquareSoft', 'Atari', '505 Games', 'Capcom', 'GT Interactive',
          'Konami Digital Entertainment',
          'Sony Computer Entertainment Europe', 'Square Enix', 'LucasArts',
          'Virgin Interactive', 'Warner Bros. Interactive Entertainment',
          'Universal Interactive', 'Eidos Interactive', 'RedOctane',
          'Vivendi Games', 'Enix Corporation', 'Namco Bandai Games',
         'Palcom', 'Hasbro Interactive', 'THQ', 'Fox Interactive', 'Acclaim Entertainment', 'MTV Games', 'Disney Interactive Studios',
         nan, 'Majesco Entertainment', 'Codemasters', 'Red Orb', 'Level 5', 'Arena Entertainment', 'Midway Games', 'JVC', 'Deep Silver', '989 Studios', 'NCSoft', 'UEP Systems', 'Parker Bros.', 'Maxis', 'Imagic', 'Tecmo Koei', 'Valve Software', 'ASCII Entertainment',
          'Mindscape', 'Infogrames', 'Unknown', 'Square', 'Valve',
          'Activision Value', 'Banpresto', 'D3Publisher'
         'Oxygen Interactive', 'Red Storm Entertainment', 'Video System',
          'Hello Games', 'Global Star', 'Gotham Games', 'Westwood Studios',
         'GungHo', 'Crave Entertainment', 'Hudson Soft', 'Coleco',
'Rising Star Games', 'Atlus', 'TDK Mediactive', 'ASC Games',
          'Zoo Games', 'Accolade', 'Sony Online Entertainment', '3DO', 'RTL',
```

```
cat_temp_data[cat_temp_data['Publisher'].isnull()].shape
(58, 1)
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
data imp2 = imp2.fit transform(cat temp data)
data imp2
array([['Nintendo'],
        ['Nintendo'],
        ['Nintendo'],
        ['Activision'],
        ['7G//AMES'],
        ['Wanadoo']], dtype=object)
# Пустые значения отсутствуют
np.unique(data imp2)
array(['10TACLE Studios', '1C Company', '20th Century Fox Video Games', '2D Boy', '3DO', '49Games', '505 Games', '5pb', '7G//AMES', '989 Sports', '989 Studios', 'AQ Interactive', 'ASC Games',
        'ASCII Entertainment', 'ASCII Media Works', 'ASK', 'Abylight',
        'Acclaim Entertainment', 'Accolade', 'Ackkstudios', 'Acquire', 'Activision', 'Activision Blizzard', 'Activision Value',
        'Adeline Software', 'Aerosoft', 'Agatsuma Entertainment', 'Agetec',
        'Aksys Games', 'Alawar Entertainment', 'Alchemist',
        'Alternative Software', 'Altron', 'Alvion', 'American Softworks',
        'Angel Studios', 'Answer Software', 'Aqua Plus', 'Aques',
        'Arc System Works', 'Arena Entertainment', 'Aria', 'Arika',
        'ArtDink', 'Aruze Corp', 'Ascaron Entertainment',
        'Ascaron Entertainment GmbH', 'Asgard', 'Asmik Ace Entertainment',
        'Asmik Corp', 'Aspyr', 'Astragon', 'Asylum Entertainment', 'Atari',
        'Athena', 'Atlus', 'Avalon Interactive', 'Avanquest',
        'Avanquest Software'. 'Axela'. 'BAM! Entertainment'.
                    data imp3[data imp3=='!!!'].size
                    58
```

cat_enc	=	pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc		

	c1			
0	Nintendo			
1	Nintendo			
2	Nintendo			
3	Nintendo			
4	Nintendo			
16593	Kemco			
16594	Infogrames			
16595	Activision			
16596	7G//AMES			
16597	Wanadoo			

2. Преобразование категориальных признаков в числовые

<pre>cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})</pre>	
cat_enc	

	c1
0	Nintendo
1	Nintendo
2	Nintendo
3	Nintendo
4	Nintendo
16593	Kemco
16594	Infogrames
16595	Activision
16596	7G//AMES
16597	Wanadoo

2.1. Кодирование категорий целочисленными значениями - label encoding

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

```
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
cat_enc['c1'].unique()
array(['Nintendo', 'Microsoft Game Studios', 'Take-Two Interactive',
                'Sony Computer Entertainment', 'Activision', 'Ubisoft',
               'Bethesda Softworks', 'Electronic Arts', 'Sega', 'SquareSoft',
'Atari', '505 Games', 'Capcom', 'GT Interactive',
               'Konami Digital Entertainment',
               'Sony Computer Entertainment Europe', 'Square Enix', 'LucasArts',
               'Virgin Interactive', 'Warner Bros. Interactive Entertainment', 'Universal Interactive', 'Eidos Interactive', 'RedOctane',
              'Vivendi Games', 'Enix Corporation', 'Namco Bandai Games',
'Palcom', 'Hasbro Interactive', 'THQ', 'Fox Interactive',
'Acclaim Entertainment', 'MTV Games', 'Disney Interactive Studios',
'Majesco Entertainment', 'Codemasters', 'Red Orb', 'Level 5',
'Arena Entertainment', 'Midway Games', 'JVC', 'Deep Silver',
'989 Studios', 'NCSoft', 'UEP Systems', 'Parker Bros.', 'Maxis',
'Imagic', 'Tecmo Koei', 'Valve Software', 'ASCII Entertainment',
'Minderage', 'Infogrammes', 'Lloknown', 'Square', 'Valve'
```

2.2. Кодирование категорий наборами бинарных значений - one-hot encoding

'Mindscape', 'Infogrames', 'Unknown', 'Square', 'Valve',

```
np.unique(cat_enc_le)
                         3,
        0,
              1,
                              4,
                                    5,
                                         6,
                                              7,
                                                   8,
                                                         9,
                                                             10,
                                                                  11,
                                                                        12,
array([
                    2,
        13,
             14,
                  15,
                        16,
                             17,
                                   18,
                                        19,
                                             20,
                                                  21,
                                                        22,
                                                             23,
                                                                  24,
                                                                        25,
                        29,
                                             33,
                                                        35,
                                                  34,
        26.
             27,
                  28.
                             30.
                                  31,
                                        32,
                                                             36.
                                                                  37.
                                                                        38.
                                                  47,
             40,
                  41,
                        42,
                             43,
                                  44,
                                        45,
                                             46,
                                                        48,
                                                             49,
                                  57,
        52,
             53,
                  54,
                        55,
                             56,
                                        58,
                                             59,
                                                  60,
                                                        61,
                                                             62,
                                                                  63,
                                                                        64,
                                             72,
                        68,
                                  70,
                                                  73,
                                                        74,
                                                             75,
                                                                  76,
                                                                       77,
        65,
             66,
                  67,
                             69,
                                        71,
        78,
             79,
                  80,
                        81,
                             82,
                                  83,
                                        84,
                                             85,
                                                  86,
                                                       87,
                                                             88,
                                                                  89,
             92,
                  93,
                        94,
                             95,
                                  96,
                                        97,
                                             98,
                                                  99, 100,
                                                           101, 102,
        91.
       104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
       117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
       130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
       143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
       156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
                                                                      168.
       169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,
       182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,
       195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
       208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
       221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
       234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
       247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258,
       260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
       273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
       286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,
       299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311,
       312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,
       325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350,
       351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363,
       364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,
       377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389,
       390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402,
       403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415,
       416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428,
       429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441,
       442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454,
       455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467,
       468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,
       481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493,
       494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506,
       507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,
       520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,
       533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545,
       546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558,
       559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,
       572, 573, 574, 575, 576, 577])
le.inverse_transform([0, 1, 2, 3])
```

array(['10TACLE Studios', '1C Company', '20th Century Fox Video Games', '2D Boy'], dtype=object)

```
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
cat_enc.shape
(16598, 1)
cat_enc_ohe.shape
(16598, 578)
cat_enc_ohe
<16598x578 sparse matrix of type '<class 'numpy.float64'>'
          with 16598 stored elements in Compressed Sparse Row format>
cat_enc_ohe.todense()[0:10]
matrix([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., 0., 0., 0.],
          [0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
cat_enc.head(10)
   c1
0 Nintendo
1 Nintendo
2 Nintendo
 3 Nintendo
 4 Nintendo
 5 Nintendo
 6 Nintendo
 7 Nintendo
 8 Nintendo
9 Nintendo
```

2.3. Pandas get_dummies - быстрый вариант one-hot кодирования

pd.get_dummies(cat_enc).head() c1_20th Century c1_10TACLE c1_1C c1_2D c1_505 c1_989 c1 Zushi c c1_3DO c1_49Games c1_5pb c1_7G//AMES Studios Company Games Sports Games Boy Video Games 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0

5 rows × 578 columns

| pd.get_dummies(cat_temp_data, dummy_na=True).head()

	Publisher_10TACLE Studios	Publisher_1C Company	Publisher_20th Century Fox Video Games	Publisher_2D Boy	Publisher_3DO		Publisher_505 Games
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0

3. Масштабирование данных. МіпМах масштабирование

```
data = pd.read_csv('../datasets/USvideos.csv', sep=",")
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['views']])
plt.hist(data['views'], 100)
plt.show()
```



```
plt.hist(sc1_data, 100)
plt.show()
```


3.2. Масштабирование данных на основе **Z-оценки** - **StandardScaler**

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['views']])
plt.hist(sc2_data, 100)
plt.show()
```


3.3. Нормализация данных

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['views']])
plt.hist(sc3_data, 100)
plt.show()
```

