A Non-Linear PDE-equation

Introduction. In the article Über eine nichtlineare Randwertaufgabe bei der Gleichung $\Delta u = 0$ (Mathematisches Zeitschrift vol. 9 (1921), Carleman considered the following equation: Let Ω be a bounded domain in \mathbf{R}^3 with C^1 -boundary and \mathbf{R}^+ the non-negative real line where t is the coordinate. Let F(t,p) be a real-valued and continuous function defined on $\mathbf{R}^+ \times \partial \Omega$. Assume that

$$(0.1) t \mapsto F(t, p)$$

is strictly increasing for every $p \in \partial \Omega$ and that $F(0,p) \geq 0$. Moreover,

$$\lim_{u \to \infty} F(t, p) = +\infty$$

holds uniformly with respect to p. For a given point $q_* \in \Omega$ one seeks a function u(x) which is harmonic in $\Omega \setminus \{q_*\}$ and at q_* it is locally $\frac{1}{|x-q_*|}$ plus a harmonic function. Moreover, it is requested that u extends to a continuous function on $\partial\Omega$ and that $u \geq 0$ in $\overline{\Omega}$. Finally, along the boundary the inner normal derivative $\partial u/\partial n$ satisfies the equation

(*)
$$\frac{\partial u}{\partial n}(p) = F(u(p), p) : p \in \partial\Omega$$

Remark. The case when $F(t,p) = kt^4$ for some positive constant k means that we regard the Stefan-Boltzmann equation whose physical interpretation ensures that (*) has a unique nonnegative solution u.

Theorem. For each F satisfying (0.1-0.2) the boundary value problem has a unique solution u.

The strategy in the proof is to consider a family of boundary value problems where one for each $0 \le h \le 1$ seeks u_h to satisfy

(*)
$$\frac{\partial u_h}{\partial n}(p) = (1-h)u_h + h \cdot F(u_h(p), p) \quad : p \in \partial \Omega$$

and u_h has the same pole as u above. Let us begin with

0.1 The case
$$h = 0$$

Here we seek u_0 so that

(i)
$$\frac{\partial u_0}{\partial n}(p) = u_0$$

To solve (i) we let G(p) be the Greens' function with a pole at q_* and determine a harmonic function h in Ω such that

$$(ii) u_0 = G - h$$

Since G(p) = 0 on $\partial \Omega$, the equation (i) holds if

(iii)
$$\frac{\partial h}{\partial n}(p) = h(p) + \frac{\partial G}{\partial n}(p) \quad : \ p \in \partial \Omega$$

This is a classic linear boundary value problem which has a unique solution h. See \S xx for further details.

0.2 Properties of u_0 . The construction in (ii) entails that u_0 is superharmonic in Ω and therefore attains its minimum on the boundary. Say that

$$u_0(p_*) = \min_{p \in \overline{\Omega}} u_0(p)$$

It follows that $\frac{\partial u_0}{\partial n}(p_*) \geq 0$ and the equation (i) gives

$$u_0(p_*) \ge 0$$

Hnece our unique solution u_0 is non-negative. We can say more. For consider the harmonic function h in (ii) which takes a maximu at some $p^* \in \partial \Omega$. Then $\frac{\partial h}{\partial n}(p^*) \leq 0$ so that (iii) gives

$$h(p^*) + \frac{\partial G}{\partial n}(p^*) \le 0$$

Hence

$$\max_{p \in \partial\Omega} h(p) \le -\frac{\partial G}{\partial n}(p^*)$$

which entails that

(0.2.1)
$$\min_{p \in \partial \Omega} u(p) = -\max_{p \in \partial \Omega} h(p) \ge \frac{\partial G}{\partial n}(p^*)$$

Here the function

$$p \mapsto \frac{\partial G}{\partial n}(p)$$

is continuous and positive on $\partial\Omega$ and if γ_* is the minimum value we conclude that

$$\min_{p \in \partial \Omega} u(p) \ge \gamma_*$$

Next, let h attain its minimum at some $p_* \in \partial \Omega$ which entails that $\frac{\partial h}{\partial n}(p_*) \geq 0$ and then (iii) gives

$$h(p_*) + \frac{\partial G}{\partial n}(p^*) \ge 0$$

It follows that

(0.2.3)
$$\max_{p \in \partial \Omega} u_0(p) = \min_{p \in \partial \Omega} h(p) = -h(p_*) \le \frac{\partial G}{\partial n}(p^*) \le \gamma^*$$

where

$$\gamma^* = \max_{p \in \partial\Omega} \frac{\partial G}{\partial n}(p)$$

So the unique solution u_0 in (i) satisfies

$$(0.2.5) \gamma_* \le u(p) \le \gamma^* : p \in \partial\Omega$$

where the positive constants γ_* and γ^* depend on the point $q_* \in \Omega$ and the given domain Ω .

The homotopy method. To proceed from h=0 to h=1 the idea is to use a "homotopy argument" which can be pursued thanks to precise estimates of solutions to Neumann's linear boundary value problem which are presented in \S B. Thanks to this and some uniquness properties in \S A below, the reduction to the case when F is real-analytic is easy, while the crucial steps during the proof appear in \S C where a "homotoy procedure" gives solutions in (*) as h increases from zero to one.

A.0. Proof of uniqueness.

Suppose that u_1 and u_2 are two solutions to the equation in the main theorem. Notice that $u_2 - u_1$ is harmonic in Ω . If $u_1 \neq u_2$ we may without loss of generality we may assume that the maximum of $u_2 - u_1$ is > 0. The maximum is attained at some $p_* \in \partial \Omega$ and the strict maximum principle for harmonic functions gives:

(i)
$$u_2(x) - u_1(x) < u_2(p_*) - u_1(p_*)$$

for all $x \in \Omega$. With $v = u_2 - u_1$ we have

$$\frac{\partial v}{\partial n}(p) = F(u_2(p), p) - F(u_1(p), p)$$

Here (0.1) entails that $\frac{\partial v}{\partial n}(p_*) > 0$ and since we have an inner normal derivative this violates (i) which proves the uniqueness.

A.1 Montonic properties.

Let F_1 and F_2 be two functions which both satisfy (0.1) and (0.2) where

$$F_1(u,p) \leq F_2(u,p)$$

hold for all $(u, p) \in \mathbf{R}^+ \times \partial \Omega$. If u_1 , respectively u_2 solve (*) for F_1 and F_2 it follows that $u_2(q) \leq u_1(q)$ for all $q \in \Omega$. To see this we set $v = u_2 - u_1$ which is harmonic in Ω . If $p \in \partial \Omega$ we get

(i)
$$\frac{\partial v}{\partial n}(p) = F_2(u_2(p), p) - F_1(u_1(p), p) \ge 0$$

Suppose that the maximum of v is > 0 and let the maximum be attained at some point p_* . Since (i) is an inner normal it follows that we must have $0 = \frac{\partial v}{\partial n}(p)$ which would entail that

$$F_2(u_2(p_*)p_*) > F_2(u_1(p_*), p_*) \ge F_1(u_1(p_*), p_*) \implies$$

and this contradicts the strict inequality $u_2(p_*) > u_1(p_*)$ since we have an increasing function in (0.1).

A.2. A bound for the maximum norm. Let G be the Green's function which has a pole at q_* while G = 0 on $\partial\Omega$. Then

$$p \mapsto \frac{\partial G}{\partial n}(p)$$

is a continuous and positive function on $\partial\Omega.$ Set

$$m_* = \min_{p \in \partial \Omega} \frac{\partial G}{\partial n}(p) : m^* = \max_{p \in \partial \Omega} \frac{\partial G}{\partial n}(p)$$

Next, let $0 \le h \le 1$ and suppose that u_h is a solution to (*). Put

(*)
$$m(h) = \min_{p \in \partial \Omega} u_h(p) : M(h) = \max_{p \in \partial \Omega} u_h(p)$$

To estimate these numbers we proceed as follows. Choose $p^* \in \partial \Omega$ such that

$$(1) u_h(p^*) = M(h)$$

Now the function

$$H = u - G - M(h)$$

is harmonic function in Ω and non-negative on the boundary. Hence H is positive in Ω and since $H(p^*)=0$ we have

$$\frac{\partial H}{\partial n}(p^*) \leq 0 \implies$$

which via the equation (*) give

(2)
$$(1-h)M(h) + h \cdot F(M(h), p^*) \le \frac{\partial G}{\partial n}(p^*) \le \gamma^*$$

Next, the hypothesis on F entails that

$$(3) t \mapsto (1-h)t + h \cdot F(t, p^*)$$

is a strictly increasing function for each fixed $0 \le h \le 1$ and the hypothesis (0.2) together with the inequality (2) above, give a positive constant A^* which is independent of h such that

(3)
$$M(h) \le A^* : 0 \le h \le 1$$

Next, let m(h) be the minimum of u_h on $\partial\Omega$ and this time we consider the harmonic function

$$H = u - m(h) - G$$

Here $H \geq 0$ on $\partial \Omega$ and if $u_h(p_*) = m(h)$ we have $H(p_*) = 0$ p_* is a minimum for H. It follows that

$$\frac{\partial H}{\partial n}(p_*) \ge 0 \implies F(u(p_*), p) = \frac{\partial u}{\partial n}(p_*) \ge \frac{\partial G}{\partial n}(p_*)$$

So with

$$\gamma_* = \min_{p \in \partial\Omega} \frac{\partial G}{\partial n}(p)$$

one has the inequality

$$(4) F(m(h), p^*) \ge \gamma_*$$

Above γ^* is the constant from (xx) and the properties of F give a positive constant A_* such that

$$m(h) \ge A_*$$

Conclusion. Above $0 < A_* < A^*$ are constants which are independent of h. Hence the maxima and the minima of u_h stay in a fixed interval $[A_*, A^*]$ as soon as u_h exists.

B. The linear equation.

Let f(p) and W(p) be a pair of continuous functions on the boundary $\partial\Omega$ where W is positive, i.e. W(p) > 0 for every boundary point. Set

$$w_* = \min_p W(p)$$

So by the assumption on W we have $w_* > 0$. The classical Neumann theorem asserts that there exists a unique function U which is harmonic in Ω , extends to a continuous function on the closed domain and its inner normal derivative satisfies:

(1)
$$\partial U/\partial n(p) = W(p) \cdot U(p) + f(p) \quad p \in \partial \Omega$$

For the unique solution in (1) some estimates hold. Namely, set

$$M^* = \max_p U(p)$$
 and $m_* = \min_p U(p)$

Since U is harmonic in Ω the maximum and the minimum are both taken on the boundary. If $U(p^*) = M^*$ for some $p^* \in \partial \Omega$ we have $\partial U/\partial n(p^*) < 0$ which together with (1) entails that

$$M^* \cdot W(p^*) + f(p^*) \le 0 \implies M^* \le \frac{|f|_{\partial\Omega}}{w_*}$$

where $|f|_{\partial\Omega}$ is the maximum norm of f on the boundary. In the same way one verifies that

$$m_U \ge -\frac{|f|_{\partial\Omega}}{w_*}$$

Hence the following inequality holds for the maximum norm $|U|_{\partial\Omega}$:

(B.0)
$$|U|_{\partial\Omega} \le \frac{|f|_{\partial\Omega}}{w}.$$

Notoice that (B.0) and the equation (1) entails that Suppose that $W \in C^0(\partial\Omega)$ satisfies

$$w_* \le W(p) \le w^*$$

for a pair of positive constants. If $|f|_{\partial\Omega}$ is the maximum norm of f it follows from (B.0) that

$$|W(p) \cdot U(p) + f(p)| \le (1 + \frac{w^*}{w_*}) \cdot |f|_{\partial\Omega}$$

Hence the equation (1) gives

(B.1)
$$\max_{p \in \partial \Omega} |\frac{\partial U}{\partial p}(p)| \le (1 + \frac{w^*}{w_r}) \cdot |f|_{\partial \Omega}$$

B.2 An estimate for first order derivatives. Let $p \in \partial \Omega$ and denote by N the inner normal at p. Since $\partial \Omega$ is of class C^1 a sufficiently small line segment from p along N stays in Ω . So for small positive ℓ we have points $q = p + \ell \cdot N$ in Ω and take the directional derivative of U along N_p . This gives a function

$$\ell \mapsto \partial U/\partial N(p + \ell \cdot N)$$

Since the boundary is C^1 these functions are defined on a fixed interval $0 \le \ell \le \ell^*$ for all boundary points p. A classic result which appears in $Der\ zweite\ Randwertaufgabe\ gives\ a\ constant\ B\ such\ that$

$$\left| \partial U / \partial N(p + \ell \cdot N) \right| \le B \cdot \max_{p \in \partial \Omega} \left| \frac{\partial U}{\partial n}(p) \right|$$

hold for all $p \in \partial \Omega$ and $0 \le \ell \le \ell^*$.

C. Proof of Theorem when $t \mapsto F(t, p)$ is analytic.

Assume that $t \mapsto F(t,p)$ is a real-analytic function on the positive real axis for each $p \in \partial\Omega$ where local power series converge uniformly with respect to p. In this situation we shall prove the *existence* of a solution u in the Theorem. To attain this we proceed as follows. To each real number $0 \le h \le 1$ we seek a solution u_h where

(1)
$$\frac{\partial u_h}{\partial n}(p) = h \cdot F(u_h, p) + (1 - h) \cdot u_h(p)$$

When h = 0 we found the solution u_0 in \S xx. Next, suppose that $0 \le h_0 < 1$ and that we have found the solution u_{h_0} to (1). By the result in \S B there exists a pair of positive constants $A_* < A^*$ such that

$$(*) A_* \le u_{h_0}(p) \le A^*$$

which are independent of h_0 and of p.

Set $u_0 = u_{h_0}$ and with $h = h_0 + \alpha$ for some small $\alpha > 0$ we shall find u_h by a series

$$(2) u_h = u_{h_0} + \sum_{\nu=1}^{\infty} \alpha^{\nu} \cdot u_{\nu}$$

The pole at q_* occurs already in u_0 . So u_1, u_2, \ldots is a sequence of harmonic functions in Ω and there remains to find them so that u_h solves (1). We will show that this can be achieved when α is sufficiently small. Keeping h_0 fixed we set

$$u_0 = u_{h_0}$$

The analyticity of F with respect to t gives for every $p \in \partial \Omega$ a series expansion

(3)
$$F(u_0(p) + \alpha, p) = F(u_0(p), p) + \sum_{k=1}^{\infty} c_k(p) \cdot \alpha^{\nu}$$

where $\{c_k(p)\}$ are continuous functions on $\partial\Omega$. Here (*) and the hypothesis on F entail that the radius of convergence has a uniform bound below, i.e. there exists $\rho > 0$ which is independent of $p \in \partial\Omega$ and a constant K such that

(4)
$$\sum_{k=1}^{\infty} |c_k(p)| \cdot \rho^k \le K$$

Now the equation (1) can be solved via a system of equations where the harmonic functions $\{u_{\nu}\}$ are determined inductively while α -powers are identified. The linear α -term gives the equation

(i)
$$\frac{\partial u_1}{\partial n} = F(u_0(p), p) - u_0(p) + (1 - h_0)u_1 + h_0 \cdot c_1(p) \cdot u_1(p)$$

For u_2 we find that

(ii)
$$\frac{\partial u_2}{\partial n} = (1 - h_0)u_2 - u_1 + h_0 c_1(p)u_2 + c_1(p)u_1 + c_2(p)u_1^2$$

In general we have

(iii)
$$\frac{\partial u_{\nu}}{\partial n} = (1 - h_0 + h_0 \cdot c_1(p)) \cdot u_{\nu} + R_{\nu}(u_0, \dots, u_{\nu-1}, p) : \nu \ge 1$$

where $\{R_{\nu}\}\$ are polynomials in the preceding *u*-functions whose coefficients are continuous functions obtained from the *c*-functions. The function $c_1(p)$ is given by

$$c_1(p) = \frac{\partial F}{\partial t}(u_0(p), p)$$

which by the hypothesis on F is a positive continuous function on $\partial\Omega$. It follows that the function

(iv)
$$W(p) = (1 - h_0) + h_0 \cdot c_1(p)$$

also is positive on $\partial\Omega$ and in the recursion above we have

(v)
$$\frac{\partial u_{\nu}}{\partial n} = W(p) \cdot u_{\nu}(p) + R_{\nu}(u_0, \dots, u_{\nu-1}, p) : \nu = 1, 2, \dots$$

Above we encounter linear equations exactly as in (B.0) where the the f-functions are the R-polynomials. Put

$$w_* = \min_{p \in \partial\Omega} W(p)$$

From § B.XX we get

(vi)
$$|u_{\nu}|_{\partial\Omega} \leq w_*^{-1} \cdot |R_{\nu}(u_0, \dots, u_{\nu-1}, p)|_{\partial\Omega}$$

Finally, (vi) and a majorising positive series expressing maximum norms imply that if α is sufficiently small then the series (2) converges and gives the requested solution for (1). Moreover, α can be taken *independently* of h_0 . Together with the established uniqueness of solutions u_h whenever they exist, it follows that we can move from h=0 until h=1 and arrive at the requested solution in Theorem 1.

Remark. The reader may consult page 106 in [Carleman] where the existence of a uniform constant $\alpha > 0$ for which the series (2) converge for every h is demonstrated by an explicit majorant series.