MI-ARI

(Computer arithmetics) winter semester 2017/18

F2. Elementary functions II.

© Alois Pluháček, Pavel Kubalík, 2017 Department of digital design Faculty of Information technology Czech Technical University in Prague

F2. Elementary functions II.

- Exponential functions pseudo-division
- **Logarithm** pseudo-multiplication

Exponential functions

$$e^A = ?$$

 $\log_2 e \cdot \ln 2 = \log_2 e \cdot \log_e 2 = 1$

$$A = A \cdot \log_2 \mathbf{e} \cdot \ln 2 = W \cdot \ln 2$$
, where $W = A \cdot \log_2 \mathbf{e}$

$$U = \lfloor W \rfloor$$

$$\overline{V = W - U}$$

$$e^A = e^{(U+V) \cdot \ln 2} = e^{U \cdot \ln 2} \cdot e^{V \cdot \ln 2} =$$

$$=\left(\mathrm{e}^{\ln 2}
ight)^{\!U}\cdot\mathrm{e}^{V\cdot\ln 2} \!=2^{\!U}\cdot\mathrm{e}^{X}$$
 , where $X=V\cdot\ln 2$

$$0 \le V < 1 \implies 0 \le X < \ln 2$$

$$\mathbf{e}^{A} = \mathbf{e}^{X} \cdot 2^{U}$$

 $0 \le X < \ln 2$

U is integer

$$\ln 2 \doteq 0,693147181$$

 $\log_2 e \doteq 1,442695041$

Exponential functions ii

$$e^{X} = ?$$

$$0 < X < \ln 2$$

Let
$$X = \ln x_1 + \ln x_2 + \ln x_3 + \cdots$$
,

where x_1 , x_2 , x_3 , ... are "suitable" numbers.

Than
$$Y = \mathbf{e}^X = x_1 \cdot x_2 \cdot x_3 \cdot \cdots$$

When
$$oxed{X-\ln\,x_1-\ln\,x_2-\ln\,x_3-\cdots}
ightarrow oxed{0}$$
 ,

then
$$\frac{\mathrm{e}^X}{x_1 \cdot x_2 \cdot x_3 \cdot \cdots} o 1$$

and
$$oxed{x_1 \cdot x_2 \cdot x_3 \cdot \cdots}
ightarrow \mathbf{e}^{oldsymbol{X}}$$
 .

Exponential functions iii

Choose
$$x_i=1+\sigma_i\cdot 2^{-i}$$
 , where $\sigma_i=egin{cases} 0 \ 1 \end{cases}$ i.e. $x_i=egin{cases} 1 \ 1+2^{-i} \end{cases}$

Then multiplication x_i means

f no operation
shift and addition of
two numbers

Exponential functions iv

value determination of σ_i and $Y=\mathbf{e}^X$

$$K_j=\ln{(1+2^{-j})}$$
 — early calculated values It is assigning $Y:=1$ and for $i=1,\,2,\,\ldots,\,m$ (where m is given be required precision) is preformed:

1.
$$X := X - K_i$$

$$2. \ \sigma_i := \begin{cases} 0, \ \text{if} \ X < 0 \\ 1, \ \text{if} \ X \geq 0 \end{cases}$$

3.
$$Y:=Y+\sigma_i\cdot Y\cdot 2^{-i}$$

4.
$$\sigma_i = 0 \Longrightarrow X := X + K_i$$
 (restoring)

Constant K_j can be stored in memory ROM.

Exponential functions v

If values $K_{j-1}-K_j$ are also stored in memory ROM, "restoring" and following subtraction can be processed all at once, i.e.

assign $\sigma_0 := 1$, cancel step 4 and change step 1 so that:

$$X := \begin{cases} X + K_{i-1} - K_i, & \text{if } \sigma_{i-1} = 0 \\ X - K_i, & \text{if } \sigma_{i-1} = 1 \end{cases}$$

example

$oxed{j}$		K_{j}	$K_{j-1}-K_j$
1	1,100000	0,011010	
2	1,010000	0,001110	0,001100
3	1,001000	0,001000	0,000110
4	1,000100	0,000100	0,000100
5	1,000010	0,000010	0,000010
6	1,000001	0,000001	0,000001

Exponential functions vi

example — continue

Check: $e^{0.011000} \doteq 1.01110100$

Logarithm

$$\log_a A = ?$$

$$A = X \cdot 2^E$$

$$\log_a X = ?$$

$$\log_a X = \log_b X \cdot (\log_b a)^{-1}$$

$$\log_b X = ?$$
 pro $0.5 \le X < 2$

Logarithm ii

$$X \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_m = 1$$
 $\Rightarrow \log_b X + \sum_{i=1}^m \log_b x_i = 0$

$$\Rightarrow \qquad \boxed{Y = \log_b X = -\sum\limits_{i=1}^m \log_b x_i}$$

$$\left. egin{array}{l} X_0 = X \ X_i = X_{i-1} \cdot x_i \end{array}
ight\} \; \Rightarrow \; X_i = X \cdot x_1 \cdot x_2 \; \cdots \; x_i \end{array}$$

$$x_i = egin{cases} 1 \ 1 + 2^{-q} \ 1 - 2^{-q} \end{cases}$$

$$X_i \rightarrow 1$$

$$\mathbf{1} \doteq \begin{cases} \mathbf{1,0} \dots \mathbf{0} \times \times \times_2 \\ \mathbf{0,1} \dots \mathbf{1} \times \times \times_2 \end{cases} \qquad \times \times \times \dots \text{ some bits}$$

$$k$$
 done of ones: 0, $\underbrace{1 \dots 1}_{t} \times \times \times_{2}$

$$k$$
 done of zeroes: 1, $\underbrace{0\dots0}_{k} \times \times \times_2$

$$k o \infty \implies \mathsf{number} o 1$$

Logarithm iv

$$\psi = \mathbf{0}, \underbrace{\mathbf{1} \dots \mathbf{1}}_{k} \times \times \times_{2}$$
 (k done of ones)

ullet example: $\psi = \mathbf{0}$, $\underbrace{\mathbf{1} \dots \mathbf{1}}_{k}$ $\mathbf{2}$ $= 1 - 2^{-k}$

$$(1-2^{-k})\cdot(1+2^{-k})=(1-2^{-2k})$$

k done of ones $ightarrow \ 2k$ done of ones

e.g.
$$0$$
 , $111 imes 1$, $001 = 0.1111111$

3 done of ones \rightarrow 6 done of ones

- ullet example: $\psi=0$, 111011 0, 111011 imes 1, 001 =1, 000010011 0 done of ones ullet only 4 done of ones (!!!)
- ullet generally: Multiplication ψ wit factor $1+2^{-k}$ increases the number of done bits at least by one.

Logarithm v

$$\xi = 1, \underbrace{0 \dots 0}_{k} \times \times \times_{2}$$
 (k done of zeroes)

ullet example: $\xi=1$, $\underbrace{0\dots0}_{k}$ 1_2 = $1+2^{-k-1}$

$$(1+2^{-k-1})\cdot (1-2^{-k-1}) = (1-2^{-2k-2})$$

k done of zeroes $\rightarrow 2k+2$ done of ones

i.e.
$$1,0001 \times 0,1111 = 0,111111111$$

3 done of zeroes \rightarrow 8 done of ones

- example: $\xi = 1$, 000 111
 - 1 , $000\,111\, imes 0$, $111\,=\,1$, $000\,010\,100\,1$

3 done of zeroes \rightarrow only 4 done of ones (!!!)

ullet generally: Multiplication ψ wit factor $1-2^{-k-1}$ increases the number of done bits at least by one.

Logarithm vi

procedure:

$$X_0 := X$$

$$Y_0 := 0$$

for i = 1, 2, ..., m perform:

determine σ_i

$oxed{BIT(X_{i-1},0)}$	$oxed{BIT(X_{i-1},-i)}$	σ_i
0	0	2
0	1	0
1	0	0
1	1	-1

$$x_i := 1 + \sigma_i \cdot 2^{-i}$$

$$X_i := X_{i-1} \cdot x_i$$

$$Y_i := Y_{i-1} + (-\log_b x_i)$$

Logarithm vii

$oldsymbol{j}$	$oxed{1-2^{-j}}$	$1+2^{-j}$	$\ln(1\!-\!2^{-j})$	$\left\lceil \ln(1\!+\!2^{-j}) ight ceil$
1	0,100000	1,100000	-0,101100	0,011010
2	0,110000	1,010000	-0,010010	0,001110
3	0,111000	1,001000	-0,001001	0,001000
4	0,111100	1,000100	-0,000100	0,000100
5	0,111110	1,000010	-0,000010	0,000010
6	0,111111	1,000001	-0,000001	0,000001

$oldsymbol{i}$	$-\ln(1+\sigma_i\cdot 2^{-i})$		
	$\sigma_i=2$	$\sigma_i = -1$	
1	-0,101100	0,101100	
2	-0,011010	0,010010	
3	-0,001110	0,001001	
4	-0,001000	0,000100	
5	-0,000100	0,000010	
6	-0,000010	0,000001	

Logarithm $viii$			
$i \hspace{0.5cm} X_i$	σ_i	Y_i	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		0, 0 0 0 0 0 0	
	-1	10 101100	
·	_	+0, 101100	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	0, 101100	
	_	0, 000000	
<u> </u>	_	$\frac{0, 101100}{}$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2	0, 10110	
+0, 001101	$\cdots \longleftrightarrow$	-0, 0 0 1 1 1 0	
$3 \phantom{00000000000000000000000000000000000$		$\overline{0,01110}$	
$4 \triangleright \triangleright$	0	0 0 0 0 0 0	
	_	0,00000	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		0, 0 1 1 1 1 0	
	-1	+0, 000010	
$5 \frac{0,000001}{1,0000001}$		$\frac{10,000000}{0,100000}$	
6 ×	-1	,	
-0, 000001	$. \longleftrightarrow$	+0, 000001	
$6 \overline{1,000000}$)	$\overline{0, 1 0 0 0 0 1}$	