Advanced Topics in Control 2020: Large-Scale Convex Optimization

Exercise 2: Convex Functions

Goran Banjac, Mathias Hudoba de Badyn, Andrea Iannelli, Angeliki Kamoutsi, Ilnura Usmanova

March 20, 2020

Date due: March 19, 2019 at 23:59.

Please submit your solutions via Moodle as a PDF with filename Ex01_Surname.pdf, replacing Surname with your surname.

1 Convex Functions

Show that the following functions from \mathbb{R}^n to $(-\infty, \infty]$ are convex. You may use convexity preserving operations.

- (a) $f_1(x) = \ln(e^{x_1} + \ldots + e^{x_n})$, where $x = (x_1, \ldots, x_n)$. *Hint*: f_1 is twice differentiable.
- (b) $f_2(x) = ||x||^p$ with $p \ge 1$. Hint: Use the composition rule in Slide 17. Consider the function $h(t) = t^p$, if $t \ge 0$ and h(t) = 0, elsewhere.
- (c) $f_3(x) = \frac{1}{f(x)}$, where $f: \mathbb{R}^n \to \mathbb{R}$ is concave and f(x) > 0, for all x.
- (d) $f_4(x) = ||Ax b||_2^2 + ||x||_1$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Hint: First show that $x \to ||x||_2^2$ is convex. Then use convexity preserving operations.
- (e) $f_5(x) = \sum_{i=1}^n (\max(0, 1 + x_i)) + ||x||_2^2$, where $x = (x_1, \dots, x_n)$. *Hint*: First show that for each $i = 1, \dots, n$, the function $x \to \max(0, 1 + x_i)$ is convex.
- (f) $f_6(x) = \sup_y (x^\top y g(y))$, with $g : \mathbb{R}^n \to \mathbb{R}$ not necessarily convex (this is called the conjugate function of g and is denoted by g^*).
- (g) $\phi_C(x) = \frac{1}{2}(\|x\|_2^2 d_C^2(x))$, where $C \subset \mathbb{R}^n$ is a nonempty compact (closed and bounded) set and $d_C(x) := \min_{y \in C} \|x y\|_2$ is the distance function to C.

 Hint: Note that $d_C^2(x) = \min_{y \in C} \|x y\|_2^2 = \|x\|_2^2 \max_{y \in C} \{2x^\top y \|y\|_2^2\}$.
- (h) $g(x) = \inf_{u \in \mathbb{R}^n} \{h_1(u) + h_2(x u)\}$, where $h_1, h_2 : \mathbb{R}^n \to (-\infty, \infty]$ are proper convex functions that have a *common affine minorant*, i.e. for some $(s, r) \in \mathbb{R}^n \times \mathbb{R}$,

$$h_i(x) \ge s^{\top} x - r$$
, for $i = 1, 2$ and all $x \in \mathbb{R}^n$.

We call g the infimal convolution of h_1, h_2 .

Hint: Note that since h_1 and h_2 have a common affine minorant, we ensure that $g(x) > -\infty$, for all $x \in \mathbb{R}^n$. Indeed, for arbitrary $x \in \mathbb{R}^n$ and x_1, x_2 such that $x_1 + x_2 = x$, we have by assumption that $h_1(x_1) + h_2(x_2) \ge s^{\top}x - 2r > -\infty$. So, $g(x) = \inf\{h_1(x_1) + h_2(x_2) : x_1 + x_2 = x\} \ge s^{\top}x - 2r > -\infty$. Then, show that g is proper. Finally use the partial minimization rule.

2 Strictly Convex Functions and Unique Minimizers

(a) Suppose that f is a *strictly convex* function, i.e., $f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$, for all $x \neq y$ and $\theta \in (0, 1)$. Show that if there exists a (global) minimizer x^* of f, then it is unique.

Hint: Assume for the sake of contradiction that there exists $x \neq x^*$ that satisfies $f(x) = f(x^*)$. Upper bound the term $f(\frac{1}{2}x + \frac{1}{2}x^*)$.

(b) Provide a strictly convex f whose infimum is not attained by any point.

3 Subdifferentials

- (a) Suppose that $g(x) = \sum_{i=1}^{n} g_i(x_i)$, where $x = (x_1, \dots, x_n)$. Show that $s \in \partial g(x)$ if and only if $s_i \in \partial g_i(x_i)$, where $s = (s_1, \dots, s_n)$.

 Hint: Assume first that $s = (s_1, \dots, s_n) \in \partial g(x)$. Then $g(y) \geq g(x) + s^{\top}(y x)$ (*), for all $y = (y_1, \dots, y_n) \in \mathbb{R}^n$. For arbitrary $j = 1, \dots, n$, set $x_i = y_i$, for all $i \neq j$ and use (*) to conclude that $s_j \in \partial g_j(x_j)$. For the other direction suppose that $s_i \in \partial g_i(x_i)$ and write the associated inequality. Summing over i gives the desired result.
- (b) Show that the subdifferential of the indicator function of a nonempty set C is the normal cone to C.

 Hint: Consider two cases: $x \in C$ and $x \notin C$. For the latter case you have to show that

4 Conjugate Functions

 $\partial \mathcal{I}_C(x) = \emptyset.$

- (a) Let $f(x) = ||x||_2$. Compute the conjugate f^* via the following steps.
 - (1) Show that $f^*(s) \ge 0$, for all s.
 - (2) Show that $f^*(s) \leq 0$, for all s with $||s||_2 \leq 1$. Hint: Use the Cauchy-Schwarz inequality $|s^{\top}x| \leq ||s||_2 ||x||_2$.
 - (3) Show that $f^*(s) = \infty$, for all s with $||s||_2 > 1$. Hint: Set x = ts with $t \ge 0$ to get $f^*(s) = \sup(s^\top x - ||x||_2) \ge t||s||_2(||s||_2 - 1)$.
 - (4) Combine the results to derive $f^*(s)$.
- (b) Use the conjugate to compute the subdifferential of $f(x) = ||x||_2$. Hint: Use the formula $\partial f(x) = \arg\max_s(s^\top x - f^*(s)) = \arg\max_{\|s\|_2 \le 1}(s^\top x)$. For x = 0 show that $\partial f(0) = \{s : \|s\|_2 \le 1\}$. For $x \ne 0$ show that $\partial f(x) = \{\frac{x}{\|x\|_2}\}$. You have to use once more the Cauchy-Schwarz inequality.