Soluzione Test MD1 - 29/01/2018

Soluzioni

Domanda n. 1: [8] Un bersaglio per il gioco delle freccette è costituito da 10 anelli concentrici, ognuno colorato con un colore diverso sia da quello del precedente che del successivo.

Supponendo di avere a disposizione i 5 colori Rosso, Blu, Nero, Giallo, Verde, ci chiediamo

- 1. quanti sono i bersagli diversi possibili?
- 2. quanti sono i bersagli in cui almeno uno degli anelli è rosso?
- 3. quanti sono i bersagli in cui esattamente uno degli anelli è nero?

Agli anelli vengono assegnati i valori 1, 2, ..., 10, partendo dall'anello più esterno fino all'anello centrale. Supponiamo che venga colpito il bersaglio con una freccetta k volte, totalizzando p_1 con il primo lancio, p_2 con il secondo, ..., p_k con l'ultimo. Chiamiamo la sequenza $p = (p_1, \ldots, p_k)$ una giocata di k tiri, e $v(p) := \sum_{i=1}^k p_i$ il suo punteggio. Ci chiediamo

4. Quante sono le giocate di 5 tiri il cui punteggio è 22?

Risp:

1. Il centro può avere 5 colori. Proseguendo verso l'esterno ogni anello può avere uno tra 4 colori (tutti tranne quello dell'anello precedente). In totale si hanno

$$5 \times 4^9 = 1,310,720$$

bersagli

2. Consideriamo il problema complementare, ossia "nessuno degli anelli è rosso". Vuol dire che si hanno 4 colori e, ragionando come prima, i bersagli senza il rosso sono

$$4 \times 3^9 = 78,732$$

Ne consegue che i bersagli che contengono il rosso sono

$$5 \times 4^9 - 4 \times 3^9 = 1,231,988$$

- 3. Distinguiamo i 2 casi, ossia quando l'anello nero è (i) estremo (primo o ultimo) o (ii) interno.
 - (i) Se è estremo, allora il successivo ha 4 possibilità, mentre i successivi ancora ne hanno 3 ciascuno, per un totale di

$$2 \times 4 \times 3^8 = 52.488$$

bersagli (il primo "2" è dovuto al fatto che i casi estremi sono due)

(ii) Se è interno (e può esserlo in 8 modi) allora sia per l'anello precedente che successivo ci sono 4 possibili colori, mentre per tutti gli altri le possibilità sono 3, per un totale di

$$8 \times 4^2 \times 3^7 = 279,936$$

Quindi in tutto i bersagli possibili con un anello nero sono 332,424.

4. Le giocate sono tante quante le soluzioni intere dell'equazione

$$p_1 + p_2 + p_3 + p_4 + p_5 = 22$$

con variabili $1 \le p_i \le 10$ per ogni i. Introduciamo variabili non-negative x_i tali che $p_i = 1 + x_i$. Allora le soluzioni sono tante quante le soluzioni intere di

$$x_1 + x_2 + x_3 + x_4 + x_5 = 22 - 5 = 17$$

con ogni $0 \le x_i \le 9$. Se ignoriamo il fatto che ogni x_i deve essere ≤ 9 si avrebbero

$$\binom{17+4}{4} = \binom{21}{4} = 5985$$

soluzioni. Da queste dobbiamo togliere quelle in cui qualcuno degli x_i è ≥ 10 . Siccome la somma deve essere 17, è ovvio che al massimo uno degli x_i può essere ≥ 10 . Calcoliamo allora quante sono le soluzioni in cui $x_5 \geq 10$, e poi motiplicheremo tale numero per 5, visto che potevamo scegliere qualsiasi x_i al posto di x_5 .

Se $x_5 \ge 10$, allora $0 \le 17 - x_5 \le 7$. Detto $t = 17 - x_5$ si ha l'equazione

$$x_1 + x_2 + x_3 + x_4 = t$$

che ha $\binom{t+3}{3}$ soluzioni. Quindi, il numero complessivo di soluzioni in cui $x_5 \geq 10$ è

$$\sum_{t=0}^{7} {t+3 \choose 3} = 1 + 4 + 10 + 20 + 35 + 56 + 84 + 120 = 330$$

Moltiplicando per 5 si hanno tutte le soluzioni in cui uno degli x_i è ≥ 10 , che sono $330 \times 5 = 1650$.

In conclusione, le soluzioni in cui ognuno degli x_i è ≤ 9 (ossia tutte le giocate possibili di somma 22) sono

$$5985 - 1650 = 4335$$

Domanda n. 2: [4] In un albero ci sono 110 nodi interni, di cui: 50 nodi hanno grado 4, 30 nodi hanno grado 3 e 30 nodi hanno grado 2. Quante sono le foglie?

Risp: Sia x il numero di foglie, n il numero di nodi e m il numero di archi. Abbiamo n=110+x. Inoltre, $2m=50\times 4+30\times 3+30\times 2+x=350+x=2(n-1)=2(109+x)=218+2x$

Quindi x = 350 - 218 = 132.