SÉRIE TD N≗3

RELATIONS BINAIRES

Exercice 1:

Soit \mathbb{P}^* l'ensemble des nombres premiers strictement supérieurs a 2, et soit \mathcal{R} une relation binaire sur l'ensemble \mathbb{P}^* définie par :

$$\forall (x,y) \in \mathbb{P}^* \times \mathbb{P}^*, \qquad x\mathcal{R}y \Longleftrightarrow \frac{x+y}{2} \in \mathbb{P}^*$$

- La relation \mathcal{R} est elle réflexive? symétrique? transitive? antisymétrique?

Exercice 2:

Soit \mathcal{R} une relation binaire sur \mathbb{Z} définie par :

$$\forall (x,y) \in \mathbb{Z} \times \mathbb{Z}, \qquad x \mathcal{R} y \Longleftrightarrow x \equiv y[3]$$

- Montrer que \mathcal{R} est une relation d'équivalence.
- Donner la classe d'équivalence de 0, 1, 2.

Exercice 3:

Soit \mathcal{R} une relation binaire sur \mathbb{R} définie par :

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, x\mathcal{R}y \iff x^2 - y^2 = x - y$$

- Montrer que \mathcal{R} est une relation d'équivalence.
- Déterminer la classe d'équivalence \bar{x} pour tout réel x.
- Déterminer l'ensemble quotient.

Exercice 4:

Soit l'application $f: E \to F$, on définit une relation binaire \mathcal{R} sur E par :

$$\forall (x,y) \in E \times E, x\mathcal{R}y \Leftrightarrow f(x) = f(y)$$

- Montrer que \mathcal{R} est une relation d'équivalence.
- Décrire la classe d'équivalence \bar{x} de l'élément $x \in E$.

Soit l'application $g: E/_{\mathcal{R}} \to F$

$$\bar{x} \rightarrow g(\bar{x})$$

- g est elle bien définie ?
- Montrer que g est injective. Que peut on conclure sur l'ensemble quotient $E/_{\mathcal{R}}$.

Exercice 5:

Soit \mathcal{R} une relation binaire sur \mathbb{N}^* définie par : $\forall (a,b) \in \mathbb{N}^* \times \mathbb{N}^*$, $a\mathcal{R}b \iff a \ divise \ b$

- Démontrer que $\mathcal R$ est une relation d'ordre.
- \mathcal{R} est une relation d'ordre total ou partiel ?

Exercice 6:

Dans \mathbb{N}^* , on définit une relation \ll par :

$$\forall (a,b) \in \mathbb{N}^* \times \mathbb{N}^*, \quad x \ll y \iff \exists n \in \mathbb{N}^*/y = x^n$$

- Démontrer que ≪ est une relation d'ordre partiel.
- Soit deux ensembles $A = \{2,4,16\}$ et $B = \{3,9,27,729\}$.

Déterminer le plus grand élément et le plus petit élément de A et B.