Ecuaciones Diferenciales -1° cuatrimestre 2017

Práctica 4: Transformada de Fourier

Notación: Notaremos por $\mathcal{F}[f]$ a la transformada de Fuorier de $f \in L^1(\mathbb{R}^n)$ definida por

 $\mathcal{F}[f] = \int f(x)e^{-2\pi ixy}dx.$

Ejercicio 1. Sea $f \in L^1(\mathbb{R}^n)$ y sean $\alpha \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$.

- 1. Si $g(x) = f(x)e^{2\pi i\alpha x}$, entonces $\mathcal{F}[g](y) = \hat{f}(y \alpha)$.
- 2. Si $g(x) = f(x \alpha)$, entonces $\mathcal{F}[g](y) = \hat{f}(y)e^{-2\pi i\alpha y}$. 3. Si $g(x) = f(\frac{x}{\lambda})$, entonces $\mathcal{F}[g](y) = \lambda^n \mathcal{F}[g](\lambda y)$.

Ejercicio 2. Mostrar que si $f \in L^1(\mathbb{R}^n)$ entonces $\mathcal{F}[f] \in L^{\infty}(\mathbb{R}^n)$ v

$$\|\mathcal{F}[f]\|_{L^{\infty}(\mathbb{R}^n)} \le \|f\|_{L^1(\mathbb{R}^n)}.$$

Ejercicio 3. Probar que si $f \in \mathcal{S}$, entonces $\mathcal{F}[\mathcal{F}[f(x)]] = f(-x)$. Concluir que si $f \in L^2(\mathbb{R}^n)$ es tal que $\mathcal{F}[f] = \lambda f$ para algún $\lambda \in \mathbb{C}$ entonces λ es una raíz cuarta de la unidad.

Ejercicio 4. Probar que la transformada de Fourier de una función f será una función real si y sólo si f es par.

Ejercicio 5. Hallar las transformadas de Fourier de las siguientes funciones:

$$\mathbf{1}_{[-1,1]}$$
, $\exp(-a|x|)$, $\frac{1}{(1+x^2)}$, $\exp(-\pi x^2)$.

Ejercicio 6. Sea $f:[0,\infty)\to\mathbb{R}$ una función L^1 . Se definen

1. La Transformada-coseno de Fourier como

$$\mathcal{F}_c[f](y) = \int_0^\infty f(x) \cos(xy) \, dx.$$

2. La Transformada-seno de Fourier como

$$\mathcal{F}_s[f](y) = \int_0^\infty f(x) \sin(xy) \, dx.$$

Mostrar que si se extiende f como una función par a toda la recta, tenemos

$$\mathcal{F}[f](y) = 2\mathcal{F}_c[f](2\pi y),$$

y que si se extiende a f como una función impar, se tiene

$$\mathcal{F}[f](y) = 2i\mathcal{F}_s[f](2\pi y).$$

Ejercicio 7. Sea $A \in \mathbb{R}^{n \times n}$ una matriz no singular. ¿Cómo se relacionan la transformada de Fourier de f(Ax) con la de f(x)? $(f \in L^1(\mathbb{R}^n))$. Usar este resultado para mostrar que la transformada de Fourier tranforma funciones radiales en funciones radiales.

Ejercicio 8. Probar que si $f \in L^1(\mathbb{R}^n)$ es de soporte compacto, entonces $\mathcal{F}[f] \in C^{\infty}(\mathbb{R}^n)$.

Ejercicio 9. Sea $f \in \mathcal{S}$. Probar que f * f = f si y sólo si f = 0 a.e.

Ejercicio 10.

1. Probar que si ϕ , ϕ' y ϕ'' pertenecen al conjunto

$$L^1(\mathbb{R}) \cap \left\{ g \in C(\mathbb{R}) \colon \lim_{|x| \to \infty} g(x) = 0 \right\}$$

entonces existe $f \in L^1(\mathbb{R})$ tal que $\mathcal{F}[f] = \phi$.

- 2. Sea $K \subset \mathbb{R}$ compacto y $U \subset \mathbb{R}$ abierto tal que $K \subset U$. Probar que existe $f \in L^1(\mathbb{R})$ tal que $\mathcal{F}[f](y) = 1$ para todo $y \in K$ y $\mathcal{F}[f](y) = 0$ para todo $y \in \mathbb{R} U$.
- 3. Probar que $\mathcal{F}[L^1(\mathbb{R})]$ es denso en el conjunto de funciones continuas que tienden a cero en el infinito. (Sug.: Stone-Weierstrass)

Ejercicio 11. Utilizar la transformada de Fourier para obtener una solucón explícita de la siguiente ecuación:

$$\begin{cases} \Delta u = u_{xx} + u_{yy} = 0 & \text{en } \mathbb{R}^2_+ = \{y > 0\}, \\ u(x,0) = f(x) & \text{en } \mathbb{R}, \end{cases}$$

donde $f \in L^2(\mathbb{R})$.

Ejercicio 12. Utilizar la transformada de Fourier para obtener una solución explícita de la siguiente ecuación:

$$-\Delta u + u = f \qquad \text{en } \mathbb{R}^n,$$

donde $f \in L^2(\mathbb{R}^n)$.

Ejercicio 13. Idem el ejercicio anterior para la ecuación de Schrödinger

$$\begin{cases} iu_t + \Delta u = 0 & \text{en } \mathbb{R}^n \times (0, +\infty) \\ u = g & \text{en } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

donde u y g son funciones a valores complejos y $g \in L^2(\mathbb{R}^n)$.