Learning and fusing multiple hidden substages for action quality assessment

1. Motivation

虽然过往的AQA模型表现很不错,但是仍存在一些问题: 1) 过往的模型直接建模了视觉特征与分数标签的关系。 忽略了其分数的来源规则(表现分*难度分); 2) AQA需要考虑一些专业知识,比如一个动作中有多个子步骤,每个步骤都会对表现分有一定的作用。

因此,作者设计了一个能够对多个hidden substages的动作质量进行建模并融合的模型。

2. Problem definition

According to the objective evaluation rules of diving, three assessment scenarios are defined: **the overall-score-guided scenario**, and **difficulty-level-based overall-score-guided scenario**.

(a) Overall-Score-Guided Method

(b) Execution-Score-Guided Method

(c) Difficulty-Level-Based Overall-Score-Guided Method

不太理解b和c的区别在哪里。

看了下面损失的设计好像有点明白了。对于训练的一个batch来说,b是简单的将所有得到的表现损失做平均,而c是将所有得到的表现根据难度系数加权平均。因此是不是会更倾向于对难度更大的动作进行优化呢?

3、Approach

该模型包括三个部分: temporal segmentation model (TSM), feature representation model (FRM), and score regression model (SRM).

3.1 temporal segmentation

作者用ED-TCN模型将diving动作分成5个substages,对应5个segment,写作 $V=\{p_1,\ldots,p_5\}$ 。

3.2 feature representation

作者使用P3D作为特征提取器,P3D基本block如下所示:

Fig. 3. The basic structure of P3D.

5个segments得到的特征表示为 $F=\{f_1,\ldots,f_5\}$ 。

3.3 score regression

过往回归分数的方法有early fusion和late fusion两种。也对应作者设计的两种回归module。

对于SSRM,作者采用了early fusion。模块的输出作为overall score,记为 S_s 。

对于MSRM,作者采用late fusion。每个分支首先回归出每个stage对应的分数,然后将其concat起来并通过最后的FC层得到最后的分数,记为 S_m 。

3.4 loss function

训练的损失对应上面提到的三个scenario。n表示第n个样本,那么

对OSG scenario:

$$loss^{osg} = rac{1}{N} \sum_{n=1}^N (S_n^o - G_n^o)^2$$

对 ESG scenario:

$$loss^{esg} = rac{1}{N} \sum_{n=1}^N (S_n^e - G_n^e)^2$$

对DLOSG scenario:

$$loss^{dlosg} = rac{1}{N} \sum_{n=1}^{N} (S_n^e * G_n^{dl} - G_n^e * G_n^{dl})^2 = rac{1}{N} \sum_{n=1}^{N} ((S_n^e - G_n^e)^2 * G_n^{dl}^2)$$

最终的损失是由SSRM和MSRM两个模块分别对三个场景进行计算得到的:

$$loss_{total}^{i} = loss_{s}^{i} + loss_{m}^{i}, i = osg, esg, dlosg$$

在测试的时候,会评估三个分数的效果: SSRM (Fusion model), MSRM (Fusion model) and AVG (Fusion model)。

4. Experiment

4.1 Ablation study

Table 2
Comparison results between the SSRM and MSRM.

Method	OSG	ESG	DLOSG
SSRM	0.7664	0.8046	0.7640
MSRM	0.7732	0.8367	0.8752
SSRM (Fusion model)	0.8173	0.8830	0.8618
MSRM (Fusion model)	0.8129	0.8776	0.8622
AVG (Fusion model)	0.8158	0.8798	0.8621

非fusion model就是单独对三个场景进行训练。会发现MSRM的表现会比SSRM好,说明sub stage确实有点东西。

另外,回归表现分而不是最终得分的效果会更好。我认为这是因为回归表现分更简单。

如果把三个场景和起来训练,那么在OSG和ESG上会有明显的提升,虽然DLOSG受到另外两个场景的影响有所下降,但是也下降的并不明显。

Table 4Comparison results of the different FC networks.

Method	OSG	ESG	DLOSG
MSRM+5FC	0.7797	0.8146	0.8119
MSRM+4FC	0.7732	0.8367	0.8752
MSRM+3FC	0.7166	0.8255	0.8269
MSRM+2FC	0.6167	0.8153	0.7991
MSRM+1FC	0.7028	0.8486	0.8141

因为文章用了不同于过往工作的FC,因此在这里也做了消融实验。发现总的来说4层FC效果最好。

4.2 comparison with SOTA methids

Table 5Comparison with the existing AQA studies. "-" means that the value was not reported in the literature.

Method	SRC	MSE
Pose+DCT+SVR [33]	0.53	_
Entropy feature ApEnFT [49]	0.45	_
C3D+LSTM [5]	0.36	-
C3D+LSTM+SVR [5]	0.66	_
C3D+SVR [5]	0.74	_
C3D+CNN [11]	0.80	_
ScoringNet [8]	0.84	_
S3D [7]	0.86	97.46
C3D-AVG-STL [10]	0.83	_
Joint Relation Graphs [12]	0.76	-
Deep Metric Learning [14]	0.76	105.62
FALCONS [13]	0.84	-
SCN+ATCN [36]	0.85	-
MSRM (ESG)	0.8367	125.83
MSRM (DLOSG)	0.8752	82.56
AVG (Fusion model+ESG)	0.8798	73.92
AVG (Fusion model+DLOSG)	0.8621	69.42

4.3 qualitative analysis

水花确实关键。

emmm感觉好像也没有很牛逼0.0