NEPAL COLLEGE OF INFORMATION TECHNOLOGY

Model Set: II

Program : BE SE
Semester : I
Subject : DS
Time : 3 hrs
FM: 100
PM: 45

- ✓ Candidates are requested to give their answer as far as practicable in their own words.
- ✓ Attempt all questions
- ✓ Figure on the margin indicates full marks
- 1. (a) Explain the Hamiltonian path and Hamiltonian circuit with the help of a diagram. State the necessary and sufficient conditions for Euler circuits and paths. How is Euler circuit different from the Hamiltonian circuit?
 - (b) What is chromatic number of a complete graph and bipartite graph? Explain real world application of graph theory. [7]

OR

Explain different techniques of Graph Representation.

- **2.** (a) Define the terms Tautology, Contradiction and Logical Equivalences. Show that Implication and Contrapositive are Logically Equivalent. State the converse, contrapositive and Inverse of the statement: "A positive integer is prime only if it has no divisors other than 1 and itself. [8]
 - (b) Using rules of inferences, show that the hypotheses "if you send me an e-mail message, then I will finish writing the program," "if you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."
- **3.** (a) Translate the following statement using quantifiers and logical connectives:

[8]

- i. Some student in your class has voted for Balen.
- ii. Everyone who sees Mary loves Mary.
- iii. A goal without plan is just a dream.
- iv. Behind every successful man there is a women.

OR

Use Mathematical induction to show that:

2-2.7+2.72+....+2. (-7) n = [1-(-7) n+1]/4 whenever n is positive integer.

(b) Solve Tower of Hanoi puzzle using iterative approach.

[8]

[8]

- **4.** (a) Solve: $\mathbf{a_n 6a_{n-1} + 8a_{n-2} = 3}$ with initial condition $\mathbf{a_0} = 10$, $\mathbf{a_1} = 25$. [7]
 - (b) What is an Equivalence relation. Let 'm' be an integer with m > 1. Show that the relation
 - $R = \{(a, b) \mid a \equiv b \pmod{m}\}\$ is an equivalence relation on the set of integers.

5.	(a) What are key differences between DFA and NDFA? Design a Deterministic finite automata	that
	accepts all those strings that starts and ends with different symbol over (a, b).	[8]
	(b) Define grammar with an example. Write regular expression for following languages and convert it	ţ
	into equivalent Automata.	[7]
	i. L= {w: w starts with 'a' and ends with 'b' over (a, b)}	
	ii. L= $\{w: second symbol of w is '0' and fourth symbol is '1' over \{0, 1\}$	

- **6.** (a) What is pigeonhole principle? How many cards must be selected from a standard deck of 52 cards to guarantee that:
 - a) At least three cards of the same suit are chosen?
 - b) At least three cards of same value are selected?
 - (b) Define injective and surjective function. Determine whether a function f(x) = 2x + 3 from the set of real numbers to the set of real numbers is bijective? [5]
 - (c) Explain computer representation of sets and set operations. [5]
- 7. Write short notes on (any two): [2*5]
 - (a) Indirect proof
 - (b) Transport Network
 - (c) Predicate Logic