

电子电路基础

第三讲: 电路分析的基本方法和定理~part2

电路分析的基本方法和定理

- 2.1 电阻电路的一般分析方法
 - 2.1.1 电阻的串联和并联
 - 2.1.2 电阻的混联和Y-Δ等效变换
- 2.2 电容和电感的串联和并联
- 2.3 电路定理
 - 2.3.1 节点、支路、回路和网孔基本概念
 - 2.3.2 网孔电流法和节点电压法(包括不含受控源和含受控源的电路的分析)
 - 2.3.3 叠加定理和替代定理
 - 2.3.4 戴维南定理和诺顿定理
 - 2.3.5 最大功率传递定理
- 2.4 电路等效和输入电阻

Circuit Theorems - Chapter 4

- 4.1 Motivation
- 4.2 Linearity Property 线性性质
- 4.3 Superposition 叠加性
- 4.4 Source Transformation 电源变换
- 4.5 Thevenin's Theorem 戴维南定理
- 4.6 Norton's Theorem 诺顿定理
- 4.7 Maximum Power Transfer 最大功率传输
- 补充: 替代定理

4.1 Motivation (1)

If you are given the following circuit, are there any other alternative(s) to determine the voltage across 2Ω resistor?

What are they? And how? ①节点电压法; ②网孔电流法

4.2 线性性质

It is the property of an element describing a linear relationship between cause and effect.

A linear circuit is one whose output is <u>linearly related</u> (or directly proportional) to its input. 【输入和输出呈线性关系!】

Homogeneity (scaling) property

【①齐次性:输入放大k倍→输出亦放大k倍】

线性性质:即同时满足①齐次性;②可加性

$$v = iR \longrightarrow kv = (ki)R$$

Additive property

【②可加性:输入相加→输出相加】

$$v_1 = i_1 R \text{ and } v_2 = i_2 R$$

$$\longrightarrow v = (i_1 + i_2) R = v_1 + v_2$$

线性性质

- 电阻是线性元件,因为其电压-电流关系满足①齐 次性; ②可加性;
- 线性电路: 仅包含线性元件的电路;
- Q: 功率是线性的吗?

Figure 4.1

A linear circuit with input v_s and output i.

For example, when current i_1 flows through resistor R, the power is $p_1 = Ri_1^2$, and when current i_2 flows through R, the power is $p_9 = Ri_9^2$. If current $i_1 + i_9$ flows through R, the power absorbed is $p_3 =$ $R(i_1 + i_2)^2 = Ri_1^2 + Ri_2^2 + 2Ri_1i_2 \neq p_1 +$ p_2 . Thus, the power relation is nonlinear.

For the circuit in Fig. 4.2, find I_o when $v_s = 12 \text{ V}$ and $v_s = 24 \text{ V}$.

Example 4.1

Figure 4.2

For Example 4.1.

验证线性性质

线性性质的应用

*I_s*是"因",*I_o*是"果", "因"如果按比例缩放, "果"也会按比例缩放, 反之亦然。

我们先假设 I_o 为1A,反推出相应的 I_s ,然后根据得到的 I_s 与实际 I_s (15A)的比例关系,相应地缩放之前假设的 I_o (1A),得到实际的 I_o

Assume $I_o = 1$ A and use linearity to find the actual value of I_o in the circuit of Fig. 4.4.

Figure 4.4 For Example 4.2.

It states that the voltage across (or current through) an element in a linear circuit is the <u>algebraic sum</u> of the voltage across (or currents through) that element due to <u>EACH independent source acting alone</u>.

The principle of superposition helps us to analyze a linear circuit with more than one independent source by calculating the contribution of each independent source separately.

- · 分别计算每个独立源的贡献(考虑一个独立源时,其他独立源均设为零/turn off),再线性叠加
- 适用于有多个独立源的线形电路

We consider the effects of 8A and 20V one by one, then add the two effects together for final v_o .

Steps to apply superposition principle

- 1. <u>Turn off</u> all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
- 2. Repeat step 1 for each of the other independent sources.
- 3. <u>Find</u> the total contribution by adding <u>algebraically</u> all the contributions due to the independent sources.

Two things have to be keep in mind:

- 1. When we say turn off all other independent sources: 【独立电压源短路、独立电流源开路】
 - Independent voltage sources are replaced by 0 V (short circuit) and
 - Independent current sources are replaced by O A (open circuit).
- 2. Dependent sources <u>are left</u> intact because they are controlled by circuit variables. 【受控源不变】

 5Ω

8 A

$$v_o = \frac{20}{10} \times 2 = 4 \text{ V}$$

$$v_o = 4 \times 2 = 8 \text{ V}$$

 3Ω

 2Ω

$$v_o = 12 \text{ V}$$

节点电压法:

网孔电流法:

superposition - Multisim - [superposition *]

Example 4.3 ①不含受控源

Find i_o in the circuit of Fig. 4.9 using superposition.

②含受控源

Figure 4.9

For Example 4.4.

$$i_o = i'_o + i''_o$$

Figure 4.10

For Example 4.4: Applying superposition to (a) obtain i'_o , (b) obtain i''_o .

For the circuit in Fig. 4.12, use the superposition theorem to find i.

③含多个独立源(3个及以上)

$$i=i_1+i_2+i_3$$

Figure 4.12 For Example 4.5.

注: 根据线性叠加原理, 可以

- ① 每次考虑一个独立源, 计算三次;
- ② 一次考虑两个独立源,另一次考虑剩下的一个独立源,计算两次

端口(port)的概念

- 电路或网络的一个端口(a port),是指它向外引出的一对端子(a pair of terminals),这对端子可以与外部电源或其他电路相联结。
- 对一个端口来说,从它的一个端子流入的电流一定等于从另一个端子流出的电流。

• 这种具有向外引出一对端子(两对端子)的电路或网络称为一端口网络(二端口网络)

Linear network

Figure 19.1

(a) One-port network, (b) two-port network.

Linear network

电路等效

• 【概念】: 当电路中的某一部分用其**等效电路**代替后,未 被代替部分的电压和电流均应保持不变;

• 【方法】:接口处(端口)电压、电流保持不变;

4.4 Source Transformation 电源变换

- An equivalent circuit is one whose v-i characteristics are identical with the original circuit. 【等效的原则: v=i 特性保持不变,即不能对其余电路产生影响】
- It is the process of replacing <u>a voltage</u> source v_S in series with a resistor R by a current source i_S in parallel with a resistor R, or vice versa. 【电压源串联电阻 \leftarrow)电流源并联电阻】

4.4 Source Transformation

- (b) Dependent source transform
- ② 受控源和独立源一样处理

不适用于无损电源;

- The arrow of the current source is directed toward the positive terminal of the voltage source.
- The source transformation is not possible when R = 0 for voltage source and R = ∞ for current source.

Figure 4.15

Transformation of independent sources.

$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$

Figure 4.16

Transformation of dependent sources.

- 1) "电源变换",受控源也同样适用
- 2) 只适合于"一端口网络"

Use source transformation to find v_o in the circuit of Fig. 4.17.

Example 4.6

Solution:

We first transform the current and voltage sources to obtain the circuit in Fig. 4.18(a). Combining the 4- Ω and 2- Ω resistors in series and transforming the 12-V voltage source gives us Fig. 4.18(b). We now combine the 3- Ω and 6- Ω resistors in parallel to get 2- Ω . We also combine the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly applying source transformations, we obtain the circuit in Fig. 4.18(c).

Figure 4.17

For Example 4.6.

①不含受控源

Figure 4.18 For Example 4.6.

Figure 4.20 For Example 4.7.

a、b构成一端口

Find v_x in Fig. 4.20 using source transformation.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current source. We transform this dependent current source as well as the 6-V independent voltage source as shown in Fig. 4.21(a). The 18-V voltage source is not transformed because it is not connected in series with any resistor. The two 2- Ω resistors in parallel combine to give a 1- Ω resistor, which is in parallel with the 3-A current source. The current source is transformed to a voltage source as shown in Fig. 4.21(b). Notice that the terminals for v_x are intact. Applying KVL around the loop in Fig. 4.21(b) gives

$$-3 + 5i + v_x + 18 = 0 (4.7.1)$$

$$v_x = 3 - i$$

Figure 4.21

For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

输入电阻/等效电阻

• 针对一端口网络:

- 如果一端口网络内部**仅含电阻**。则应用电阻的串并联、Δ-Y变换等方法,可以求得它的等效电阻,该等效电阻就为输入电阻;
- 如果一端口网络内部除电阻外,还**含受控源**,但**不含任何独立电源**。不论内部如何复杂,端口电压和端口电流成正比,其比例就是输入电阻*R_i*【计算方法】:施加电压求电流/施加电流求电压
- 如果一端口网络内如含独立电源,则先将其turn off (电压源 → 0V → 短路; 电流源 → 0A → 开路),再计算;

Turn off 独立源, 若仅含电阻,则化简;若还含受控源,则施加激励求响应

4.5 Thevenin's Theorem 戴维南定理

It states that a **linear** two-terminal (-端口) circuit (Fig. a) **can be replaced** by an equivalent circuit (Fig. b) consisting of a voltage source V_{Th} in series with a resistor R_{Th} ,

where

• V_{Th} is the open-circuit voltage at the terminals.

【开路电压】

R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off. 【输入电阻/等效电阻】

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to the left of the terminals a-b. Then find the current through $R_L = 6$, 16, and 36 Ω .

① 对【32V和4ohm】用 "source transformation" 化简电路

② 若对【12ohm和2A】用"source transformation", c、b构成一端口

Figure 4.27

For Example 4.8.

Figure 4.28

For Example 4.8: (a) finding R_{Th} , (b) finding V_{Th} .

$$R_{\text{Th}} = 4 \parallel 12 + 1 = \frac{4 \times 12}{16} + 1 = 4 \Omega$$

$$-32 + 4i_1 + 12(i_1 - i_2) = 0,$$
 $i_2 = -2 \text{ A}$

Solving for i_1 , we get $i_1 = 0.5$ A. Thus,

Figure 4.29

The Thevenin equivalent circuit for Example 4.8.

$$V_{\text{Th}} = 12(i_1 - i_2) = 12(0.5 + 2.0) = 30 \text{ V}$$

Figure 4.31

For Example 4.9. ②含受控电压源

Figure 4.32 Finding R_{Th} and V_{Th} for Example 4.9.

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals *a-b*.

Solution:

This circuit contains a dependent source, unlike the circuit in the previous example. To find $R_{\rm Th}$, we set the independent source equal to zero but leave the dependent source alone. Because of the presence of the dependent source, however, we excite the network with a voltage source v_o connected to the terminals as indicated in Fig. 4.32(a). We may set $v_o = 1$ V to ease calculation, since the circuit is linear. Our goal is to find the current i_o through the terminals, and then obtain $R_{\rm Th} = 1/i_o$. (Alternatively, we may insert a 1-A current source, find the corresponding voltage v_o , and obtain $R_{\rm Th} = v_o/1$.)

Figure 4.33

The Thevenin equivalent of the circuit in Fig. 4.31.

Determine the Thevenin equi valent of the circuit in Fig. 4.35(a) at terminals a-b.

Example 4.10

③含受控电流源

 $R_{\mathrm{Th}} = -4\,\Omega.$

4.6 Norton's Theorem 诺顿定理

It states that a **linear** two-terminal $(-\sharp \Box)$ circuit **can be replaced** by an equivalent circuit of a current source I_N in parallel with a resistor R_N ,

Where

- I_N is the **short circuit current** through the terminals. 【短路电流】
- R_N is the input or equivalent resistance at the terminals when the independent sources are turned off. 【输入电阻/等效电阻】

The Thevenin's and Norton equivalent circuits are related by a source transformation. 【戴维南定理和诺

顿定理的关系~电源转换】

$$R_N = R_{\mathrm{Th}}$$

$$I_N = rac{V_{
m Th}}{R_{
m Th}}$$

Figure 4.39

For Example 4.11.

①不含受控源

先用source transformation化简

Figure 4.41

Norton equivalent of the circuit in Fig. 4.39.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at terminals a-b.

Figure 4.40

For Example 4.11; finding: (a) R_N , (b) $I_N = i_{sc}$, (c) $V_{Th} = v_{oc}$.

$$R_N = 5 \parallel (8 + 4 + 8) = 5 \parallel 20 = \frac{20 \times 5}{25} = 4 \Omega$$

$$i_1 = 2 \text{ A}, \qquad 20i_2 - 4i_1 - 12 = 0$$

From these equations, we obtain

$$i_2 = 1 A = i_{sc} = I_N$$

$v_{oc} = V_{Th} = 5i_4 = 4 \text{ V}$

ガショナ 🦻 信息与电子工程学院

 $\begin{array}{c|c}
2i_x \\
5\Omega \\
4\Omega
\end{array}$ $\begin{array}{c|c}
& & \\
& & \\
& & \\
\end{array}$ $\begin{array}{c|c}
& & \\
\end{array}$

Using Norton's theorem, find R_N and I_N of the circuit in Fig. 4.43 at terminals a-b.

②含受控源

计算短路电流时, i_x 可先计算得出

At node a, KCL gives

$$i_{sc} = \frac{10}{5} + 2i_x = 2 + 2(2.5) = 7 \text{ A}$$

 $I_N = 7 \text{ A}$

Thus,

Figure 4.43

For Example 4.12.

$$R_N = \frac{v_o}{i_o} = \frac{1}{0.2} = 5 \,\Omega$$

 $\begin{array}{c|c}
2i_x \\
5\Omega \\
4\Omega
\end{array}$ $\begin{array}{c|c}
i_s \\
i_{sc} = I_N
\end{array}$

(b)

Figure 4.44

For Example 4.12: (a) finding R_N , (b) finding I_N .

(a)

淅 ז 大 🦻 信息与电子工程学院

4.7 Maximum Power Transfer 最大功率传输

If the entire circuit is replaced by its

Thevenin equivalent except for the load, the power delivered to the load is:

$$P = i^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2 R_L$$

• 如何求P的最大值?变量为 R_L

$$\frac{dp}{dR_L} = V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L)^2 - 2R_L(R_{\text{Th}} + R_L)}{(R_{\text{Th}} + R_L)^4} \right]$$

$$= V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L - 2R_L)}{(R_{\text{Th}} + R_L)^3} \right] = 0 \quad d^2p/dR_L^2 < 0$$

$$R_L = R_{\rm Th}$$

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}}$$

The power transfer profile with different R_L

Find the value of R_L for maximum power transfer in the circuit of Fig. 4.50. Find the maximum power.

Example 4.13

最大功率传输: 先计算戴维南等效电路

Figure 4.50

For Example 4.13.

Figure 4.51

For Example 4.13: (a) finding R_{Th} , (b) finding V_{Th} .

$$R_{\text{Th}} = 2 + 3 + 6 \| 12 = 5 + \frac{6 \times 12}{18} = 9 \Omega$$

$$-12 + 18i_1 - 12i_2 = 0, \quad i_2 = -2 \text{ A}$$

$$-12 + 6i_1 + 3i_2 + 2(0) + V_{Th} = 0 \implies V_{Th} = 22 \text{ V}$$

For maximum power transfer,

$$R_L = R_{\rm Th} = 9 \Omega$$

and the maximum power is

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_I} = \frac{22^2}{4 \times 9} = 13.44 \text{ W}$$

替代定理

在电路中,已知 N_A 、 N_B 两个一端口网络连接的电压为 u_p 和 i_p ,那么就可以用一个 $u_s = u_p$ 的电压源,或者一个 $i_s = i_p$ 的电流源来替代其中的一个网络

实际电源

Figure 4.59

(a) Practical voltage source connected to a load R_L , (b) load voltage decreases as R_I decreases.

- Figure 4.58
- (a) Practical voltage source, (b) practical current source.
- 电压源希望内阻Rs越小越好
- 电流源希望内阻R_p越大越好
 - Q: 如何测量 v_s 、 R_s ?调节 R_L 使 v_L = 0.5 v_{oc}

应用——电阻测量(惠斯通电桥)

Wheatstone bridge circuit diagram. The unknown resistance R_x is to be measured; resistances R_1 , R_2 and R_3 are known and R_2 is adjustable. If the measured voltage V_G is 0, then $R_2/R_1 = R_x/R_3$.

- R_x 是待测电阻; R₁、R₃已知; R₂可调
- 调节 R_2 ,使得电压表 V_G =0时,电桥平衡

$$R_x = \frac{R_3}{R_1} R_2$$

The circuit in Fig. 4.64 represents an unbalanced bridge. If the glvanometer has a resistance of 40 Ω , find the current through the galvanometer.

Example 4.18

当电桥不平衡时,用戴维 南定理等效a-b端口的网络

Figure 4.64
Unbalanced bridge of Example 4.18.

应用——基于惠斯通电桥的温度传感器

Figure 2. Temperature Measurement Using Thermistors

- 基于非平衡的惠斯通电桥
- R_T是温度敏感的电阻,一般随温度增加,阻值减小(NTC电阻,negative temperature coefficient)
- 通过测量 delta V,得出温度信息T

$$\Delta V = E \left(\frac{R_2}{R_2 + R_3} - \frac{R_T}{R_1 + R_T} \right)$$

Y. Qin et al. / Sensors and Actuators B 255 (2018) 781-790

Ag: 正温度 系数材料

PdO: 负温度 系数材料

メガショナ・学 信息与电子工程学院

Capacitors and Inductors Chapter 6

电容、电感,及它们的串并联

- 6.1 Capacitors 电容
- 6.2 Series and Parallel Capacitors
- 6.3 Inductors 电感
- 6.4 Series and Parallel Inductors

6.1 Capacitors 电容

• A capacitor is a **passive** (无源) element designed to **store energy** in its **electric field. 储存电场能量**

• A **capacitor** consists of two conducting plates separated by an insulator (or dielectric).

Through-hole 直插式电容

6.1 Capacitors (2)

电容的定义:导板上的电荷和导板之间电势差的比值

Capacitance *C* is the ratio of the charge *q* on one plate of a capacitor to the voltage difference v between the two plates, measured in farads (F). 介电常数 平板面积

- Where *s* is the permittivity of the dielectric material between the plates, A is the surface area of each plate, d is the distance between the plates.
- Unit: F, pF (10^{-12}) , nF (10^{-9}) , and μ F (10^{-6})

6.1 Capacitors (3)

- If *i* is flowing into the +v terminal of C
 - 电流从+端流入→ 充电Charging
 - 电流从+端流出→ 放电Discharging

• 电容也是基本的电路元件,我们需要熟悉流过它的电流和它两端电压之间的关系,就如熟悉电阻一样。The current-voltage relationship of capacitor according to above convention is: 电容的"电压-电流"关系

$$i = \frac{dq}{dt}$$

$$q = Cv$$

$$i = C \frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau) \ d\tau + v(t_0)$$

6.1 Capacitors (4)

The energy, w, stored in the capacitor is (电容存储的电能):

$$p = vi = Cv \frac{dv}{dt}$$

$$w = C \int_{-\infty}^{t} v \frac{dv}{d\tau} d\tau = \frac{1}{2} C v^{2} \Big|_{v(-\infty)}^{v(t)}$$

$$w = \frac{1}{2} C v^2$$

- Figure 6.8
 Circuit model of a nonideal capacitor.
- an open circuit to dc (dv/dt = 0). 直流开路
- its voltage cannot change abruptly. 电容两端电压不能

• 电容的两个基本属性

$$i = C \frac{d v}{d t}$$
, v突变,则i为∞

Example 6.1

$$q = C v$$

$$w = \frac{1}{2} C v^2$$

- (a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
- (b) Find the energy stored in the capacitor.

Solution:

(a) Since q = Cv,

$$q = 3 \times 10^{-12} \times 20 = 60 \text{ pC}$$

(b) The energy stored is

$$w = \frac{1}{2}Cv^2 = \frac{1}{2} \times 3 \times 10^{-12} \times 400 = 600 \text{ pJ}$$

Example 6.2

The voltage across a 5- μ F capacitor is

$$v(t) = 10\cos 6000t \,\mathrm{V}$$

Calculate the current through it.

Solution:

By definition, the current is

$$i(t) = C\frac{dv}{dt} = 5 \times 10^{-6} \frac{d}{dt} (10\cos 6000t)$$
$$= -5 \times 10^{-6} \times 6000 \times 10\sin 6000t = -0.3\sin 6000t \text{ A}$$

Example 6.3

Determine the voltage across a $2-\mu F$ capacitor if the current through it is

$$i(t) = 6e^{-3000t} \,\mathrm{mA}$$

Assume that the initial capacitor voltage is zero.

Solution:

Since
$$v = \frac{1}{C} \int_0^t i \, dt + v(0)$$
 and $v(0) = 0$,

$$v = \frac{1}{2 \times 10^{-6}} \int_0^t 6e^{-3000t} \, dt \cdot 10^{-3}$$

$$= \frac{3 \times 10^3}{-3000} e^{-3000t} \Big|_0^t = (1 - e^{-3000t}) \text{ V}$$

$$v = \frac{1}{C} \int_{t_0}^{t} i \ d \ t + v(t_0)$$

Determine the current through a 200- μ F capacitor whose voltage is shown in Fig. 6.9.

Solution:

The voltage waveform can be described mathematically as

$$v(t) = \begin{cases} 50t \text{ V} & 0 < t < 1\\ 100 - 50t \text{ V} & 1 < t < 3\\ -200 + 50t \text{ V} & 3 < t < 4\\ 0 & \text{otherwise} \end{cases}$$

Since i = C dv/dt and $C = 200 \mu$ F, we take the derivative of v to obtain

$$i(t) = 200 \times 10^{-6} \times \begin{cases} 50 & 0 < t < 1 \\ -50 & 1 < t < 3 \\ 50 & 3 < t < 4 \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 10 \text{ mA} & 0 < t < 1 \\ -10 \text{ mA} & 1 < t < 3 \\ 10 \text{ mA} & 3 < t < 4 \\ 0 & \text{otherwise} \end{cases}$$

Thus, the current waveform is as shown in Fig. 6.10.

Example 6.4

Figure 6.9 For Example 6.4.

Figure 6.10 For Example 6.4.

淅 タヌ 犬、学 信息与电子工程学院

Figure 6.12 For Example 6.5.

电容: 直流开路

6.2 Series and Parallel Capacitors (1)

• The equivalent capacitance of *N* parallel-connected capacitors is the sum of the individual capacitances.

$$i = C \frac{d v}{d t}$$

(a)

$$C_{eq} = C_1 + C_2 + \dots + C_N$$

(b)

电容并联: 电压相等,电流相加 → C相加

6.2 Series and Parallel Capacitors (2)

• The equivalent capacitance of *N* series-connected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

$$v = \frac{1}{C} \int_{t_0}^{t} i \ d \ t + v(t_0)$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

$$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$$

电容串联:

电流相等,电压相加 →1/C相加 → 类似于电阻并联

Example 6.6

Find the equivalent capacitance seen between terminals a and b of the circuit in Fig. 6.16.

Figure 6.16

For Example 6.6.

For the circuit in Fig. 6.18, find the voltage across each capacitor.

Example 6.7

Solution:

We first find the equivalent capacitance $C_{\rm eq}$, shown in Fig. 6.19. The two parallel capacitors in Fig. 6.18 can be combined to get 40 + 20 = 60 mF. This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors. Thus,

$$C_{\text{eq}} = \frac{1}{\frac{1}{60} + \frac{1}{30} + \frac{1}{20}} \text{mF} = 10 \text{ mF}$$

The total charge is

$$q = C_{eq}v = 10 \times 10^{-3} \times 30 = 0.3 \text{ C}$$

This is the charge on the 20-mF and 30-mF capacitors, because they are in series with the 30-V source. (A crude way to see this is to imagine that charge acts like current, since i = dq/dt.) Therefore,

$$v_1 = \frac{q}{C_1} = \frac{0.3}{20 \times 10^{-3}} = 15 \text{ V}$$
 $v_2 = \frac{q}{C_2} = \frac{0.3}{30 \times 10^{-3}} = 10 \text{ V}$

Having determined v_1 and v_2 , we now use KVL to determine v_3 by

$$v_3 = 30 - v_1 - v_2 = 5 \text{ V}$$

Alternatively, since the 40-mF and 20-mF capacitors are in parallel, they have the same voltage v_3 and their combined capacitance is 40 + 20 = 60 mF. This combined capacitance is in series with the 20-mF and 30-mF capacitors and consequently has the same charge on it. Hence,

$$v_3 = \frac{q}{60 \text{ mF}} = \frac{0.3}{60 \times 10^{-3}} = 5 \text{ V}$$

Figure 6.18 For Example 6.7.

Figure 6.19

Equivalent circuit for Fig. 6.18.

串联电容的q相等 Q=CV, V之比等于1/C之比

6.3 Inductors 电感

- An inductor is a passive element designed to store energy in its magnetic field. 储存磁能
- An inductor consists of a coil of conducting wire.

Figure 6.23

Circuit symbols for inductors: (a) air-core, (b) iron-core, (c) variable iron-core.

copper coil (an inductor) was part of a wireless telegraph station built in New Jersey, USA in 1912. It could send a message 4000 miles (6400 km), all the way across the Atlantic Ocean to Germany. Wow. Needless to say, most inductors are *much* smaller.

6.3 Inductors (2)

• 电感也是基本的电路元件,我们需要熟悉流过它的电流和它两端电压之间的关系,就如熟悉电阻一样。 电感的 "电压-电流"关系:

$$v = L\frac{di}{dt} \qquad \longleftrightarrow \qquad i = \frac{1}{L} \int_{t_0}^t v(\tau)d\tau + i(t_0)$$

• The unit of inductors is Henry (H), mH (10^{-3}) and μ H (10^{-6}).

6.3 Inductors (3)

The power stored by an inductor:

$$p = vi = \left(L\frac{di}{dt}\right)i$$

$$w = L \int_{-\infty}^{t} \frac{di}{d\tau} i \, d\tau = \frac{1}{2}Li^{2}(t) - \frac{1}{2}Li^{2}(-\infty)$$

$$w = \frac{1}{2}Li^{2}$$

Figure 6.26Circuit model for a practical inductor.

- 电感的两个基本属性:
- ①直流短路(di/dt = 0); ②电流不能突变, Why?

$$v = L \frac{di}{dt}$$
, i突变,则v无穷大

Example 6.8

$$v = L \frac{d i}{d t}$$

$$w = \frac{1}{2} L i^2$$

The current through a 0.1-H inductor is $i(t) = 10te^{-5t}$ A. Find the voltage across the inductor and the energy stored in it.

Find the current through a 5-H inductor if the voltage across it is

Example 6.9

$$v(t) = \begin{cases} 30t^2, & t > 0 \\ 0, & t < 0 \end{cases}$$

Also, find the energy stored at t = 5 s. Assume i(v) > 0.

$$i = \frac{1}{L} \int_{t_0}^t v(t) \, dt + i(t_0)$$

Example 6.10

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, v_C , and i_L , (b) the energy stored in the capacitor and inductor.

电容直流开路; 电感直流短路

6.4 Series and Parallel Inductors (1)

• The equivalent inductance of **series-connected** inductors is the sum of the individual inductances.

$$v = L \frac{d i}{d t}$$

$$L_{eq} = L_1 + L_2 + \dots + L_N$$

电感串联: 电流相等,电压相加 → L相加

6.4 Series and Parallel Inductors (2)

 The equivalent capacitance of parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances.

$$i = \frac{1}{L} \int_{t_0}^t v(t) \, dt + i(t_0)$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

若N=2:
$$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$$

电感并联: 电压相等,电流相加 → 1/L 相加

(b)

Example 6.11

Figure 6.31 For Example 6.11.

Find the equivalent inductance of the circuit shown in Fig. 6.31.

For the circuit in Fig. 6.33, $i(t) = 4(2 - e^{-10t})$ mA. If $i_2(0) = -1$ mA, find: (a) $i_1(0)$; (b) v(t), $v_1(t)$, and $v_2(t)$; (c) $i_1(t)$ and $i_2(t)$.

Example 6.12

Solution:

(a) From
$$i(t) = 4(2 - e^{-10t})$$
 mA, $i(0) = 4(2 - 1) = 4$ mA. Since $i = i_1 + i_2$,

$$i_1(0) = i(0) - i_2(0) = 4 - (-1) = 5$$
 mA

(b) The equivalent inductance is

$$L_{eq} = 2 + 4 \| 12 = 2 + 3 = 5 \text{ H}$$

Thus,

$$v(t) = L_{eq} \frac{di}{dt} = 5(4)(-1)(-10)e^{-10t} \text{ mV} = 200e^{-10t} \text{ mV}$$

and

$$v_1(t) = 2\frac{di}{dt} = 2(-4)(-10)e^{-10t} \text{ mV} = 80e^{-10t} \text{ mV}$$

Since $v = v_1 + v_2$,

$$v_2(t) = v(t) - v_1(t) = 120e^{-10t} \text{ mV}$$

Figure 6.33

For Example 6.12.

电感:根据电压求电流,需要先求出各电感的初始电流值

(c) The current i_1 is obtained as

$$i_1(t) = \frac{1}{4} \int_0^t v_2 dt + i_1(0) = \frac{120}{4} \int_0^t e^{-10t} dt + 5 \text{ mA}$$
$$= -3e^{-10t} \Big|_0^t + 5 \text{ mA} = -3e^{-10t} + 3 + 5 = 8 - 3e^{-10t} \text{ mA}$$

Similarly,

$$i_2(t)$$
 也可以用 $i-i_1(t)$ 获得

$$i_2(t) = \frac{1}{12} \int_0^t v_2 dt + i_2(0) = \frac{120}{12} \int_0^t e^{-10t} dt - 1 \text{ mA}$$

$$=-e^{-10t}\Big|_{0}^{t}-1 \text{ mA} = -e^{-10t}+1-1=-e^{-10t} \text{ mA}$$

important characteristics of the basic elements.†

Resistor (R) Capacitor (C)Relation Inductor (L)

v-i:
$$v = iR$$
 $v = \frac{1}{C} \int_{t}^{t} i(\tau) d\tau + v(t_0)$ $v = L \frac{di}{dt}$

$$v = L \frac{di}{dt}$$

$$i-v$$
: $i=v/R$

$$i-v: i=v/R i=C\frac{dv}{dt}$$

$$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$$

p or w:
$$p = i^2 R = \frac{v^2}{R}$$
 $w = \frac{1}{2}Cv^2$

$$w = \frac{1}{2}Cv^2$$

$$w=\frac{1}{2}Li^2$$

Series:
$$R_{\text{eq}} = R_1 + R_2$$
 $C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$

$$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$$

$$L_{\rm eq} = L_1 + L_2$$

Parallel:
$$R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}$$
 $C_{\text{eq}} = C_1 + C_2$

$$C_{\rm eq} = C_1 + C_2$$

$$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$$

At dc:

Same

Open circuit

Short circuit

Circuit variable

that cannot

change abruptly: Not applicable v

† Passive sign convention is assumed.

- **线性电路**: 仅由线性元件构成的电路,比如仅由电源和电阻构成的电路。1) 齐次性:输入放大k倍,则输出也放大k倍;2) 可加性:输入相加,则输出也相加;3) 线性电路的电压、电流具有线性性质,但功率不具有线性性质。
- **线性性质的应用1**:如果从"因"推出"果"比较复杂,但从"果"反 推出"因"比较简单,则可以先假设"果"为1,计算出"因",再 按比例缩放,得出实际的"果"。
- 线性性质的应用2: **叠加定理**。适合于电路中有多个独立源的情况,分别考虑每个独立源的作用,最后再线性相加得到共同作用的结果。 Turn off 其他独立源 → set zero (电压源置零→短路; 电流源置零→开路)

• 电源变换

Figure 4.15

Transformation of independent sources.

- 端口port: 一对端子terminals
- 一端口网络的输入电阻/等效电阻: turn off独立源,若仅含电阻,则简化;若还含独立源,则施加激励求响应;
- 戴维南定理:一端口网络可用开路电压(V_{Th})串联其等效电阻(R_{Th})替代
- 诺顿定理: 一端口网络可用短路电流(I_N)并联其等效电阻(I_N)替代

- **最大功率传输**: 【对于纯电阻电路】当负载等于电压源内阻时,功率 传输最大;
- 实际电源: 电压源要求内阻小; 电流源要求内阻大;
- 惠斯通电桥: 精确测量电阻、温度传感器的基本解决方案
- 电容: 电流从 "+" 端流入为充电; 从 "+" 端流出为放电; 直流相当于开路; 电容两端电压不能突变。

$$i = C \frac{dv}{dt}$$

$$w = \frac{1}{2} C v^2$$

• 电感: 直流短路,流过电感的电流不能突变

$$v = L\frac{di}{dt}$$

$$w = \frac{1}{2}Li^2$$

- **电容并联: C**相加; **电容串联:** 相当于电阻并联;
- 电感的串并联相当于电阻的串并联
- 电容,根据电流求电压,需要先求电容两端电压的初始值;
- 电感,根据电压求电流,需要先求流过电感的电流初始值;

$$v(t) = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$$

$$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$$

作业

Practice Problem 4.6

Find i_o in the circuit of Fig. 4.19 using source transformation.

Figure 4.19

For Practice Prob. 4.6.

Answer: 1.78 A.

电源转换, 简化电路再计算

Practice Problem 4.12

Figure 4.45

For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at terminals a-b.

Answer: $R_N = 1 \Omega$, $I_N = 10 A$.

诺顿定理,含受控源:

①短路电流;②turn off独立源,外加测试电源,计算输入电阻

Practice Problem 4.13

Figure 4.52 For Practice Prob. 4.13.

Determine the value of R_L that will draw the maximum power from the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 4.222Ω , 2.901 W.

最大功率传输, 先计算戴维南等效电路

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: $v_1 = 75 \text{ V}, v_2 = 75 \text{ V}, v_3 = 25 \text{ V}, v_4 = 50 \text{ V}.$

电容串并联; 串联电容的q相等

Practice Problem 6.7

Figure 6.20

For Practice Prob. 6.7.

Practice Problem 6.10

Figure 6.28

For Practice Prob. 6.10.

Determine v_C , i_L , and the energy stored in the capacitor and inductor in the circuit of Fig. 6.28 under dc conditions.

Answer: 15 V, 7.5 A, 450 J, 168.75 J.

电容直流开路; 电感直流短路