Chemin dans une matrice

Étant donnée une matrice d'entiers $M = (a_{i,j})$ de taille $n \times k$, on veut connaître un chemin (n'utilisant que des déplacements \to ou \downarrow) de la case en haut à gauche (de coordonnées (0,0)) à la case en bas à droite (de coordonnées (n-1,k-1)) maximisant la somme des entiers rencontrés (le **poids** du chemin).

Voici un exemple de matrice M avec un chemin de poids maximum en gras:

$$\begin{pmatrix} \mathbf{2} & \mathbf{39} & \mathbf{12} & \mathbf{49} & \mathbf{47} & 18 & 22 & 19 \\ 37 & 21 & 34 & 26 & \mathbf{10} & 2 & 35 & 39 \\ 31 & 21 & 12 & 26 & \mathbf{34} & \mathbf{27} & 7 & 22 \\ 20 & 46 & 16 & 2 & 11 & \mathbf{40} & \mathbf{36} & \mathbf{13} \\ 18 & 30 & 32 & 37 & 28 & 24 & 9 & \mathbf{6} \end{pmatrix}$$

- 1. Quelle serait la complexité d'un algorithme de recherche exhaustive, énumérant tous les chemins possibles de (0,0) à (n-1,n-1)? (on suppose pour simplifier que n=k, dans cette question)
- 2. Supposons qu'un chemin C de poids maximum de (0,0) à (n-1,k-1) passe par la case (i,j). Montrer que le sous-chemin de C de (0,0) à (i,j) est de poids maximum (c'est une propriété de **sous-optimalité**).
- 3. Soit $p_{i,j}$ le poids maximum d'un chemin de (0,0) à (i,j). Donner, en la prouvant, une formule de récurrence sur $p_{i,j}$ pour i>0 et j>0.
- 4. En déduire une fonction récursive simple poids_max tel que poids_max(m, i, j) renvoie le poids maximum d'un chemin de (0,0) vers (i,j) dans la matrice m. Que dire de sa complexité?
- 5. Écrire une fonction poids_max_dp(m) donnant le poids maximum d'un chemin de la case en haut à gauche à la case en bas à droite dans la matrice m, en utilisant une méthode par programmation dynamique. Comparer sa complexité avec la méthode précédente.
- 6. La fonction précédente ne donne que le poids maximum d'un chemin... Expliquer comment faire pour trouver un chemin de poids maximum.

7.	7. (à faire seulement si vous avez fini tout le reste) Écrire une fonction chemin_max_dp(m) renvoyant la liste des chemin de poids maximum de $(0,0)$ à $(n-1,k-1)$ dans la matrice m.	cases d'un