§1 Теорема Безу

Определение. Многочленом степени n называется формальная запись вида $a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$, где a_n, a_{n-1}, \dots, a_0 — действительные числа называемые коэффициентами многочлена, $a_n \neq 0$, x — формальная переменная. Число a_n называется старшим коэффициентом, a_0 называется свободным членом. Степень многочлена f обозначается deg f.

Определение. Многочлен A **делится** на ненулевой многочлен B, если существует многочлен Q, называемый *частным* такой, что $A = B \cdot Q$.

Определение. Разделить многочлен A на ненулевой многочлен B с остатком — это найти многочлены Q,R такие, что выполнено равенство $A=B\cdot Q+R$, причем degR < degB или R=0. Многочлен Q называется неполным частным, многочлен R называется остатком.

Задача 1.1. Найдите все натуральные n, при которых число $n^3 + 2n^2 + 4n + 3$ делится на число $n^2 + 1$.

Задача 1.2. Найдите все натуральные n>2, для которых многочлен x^n+x^2+1 делится на многочлен x^2+x+1 .

Theorem 1.3 (Теорема Безу)

Докажите, что остаток от деления многочлена P на (x-a) равен P(a):

$$P(x) = H(x)(x - a) + P(a).$$

Theorem 1.4 (Следствие)

Число a является корнем многочлена P(x) тогда и только тогда, когда P(x) делится на (x-a).

Задача 1.5. (a) При каких значениях параметра а многочлен $P(x) = x^n + ax^{n-2}$ (n > 2) делится на x - 2?

(b) При каких a и b многочлен $x^4 - 3x^3 + 3x^2 + ax + b$ делится на (x-1)(x-2)?

Задача 1.6. (a) Многочлен $x^2 + px + q$ имеет на интервале (0,2) два корня. Докажите, что -2 .

(b) Многочлен $x^3 + px^2 + qx + r$ имеет на интервале (0,2) три корня. Докажите, что -2 .

Задача 1.7. Дан многочлен $f(x) = x^4 + ax^3 + bx^2 + cx$. Известно, что каждое из уравнений f(x) = 1 и f(x) = 2 имеет четыре корня. Докажите, что если для корней первого уравнения выполняется равенство $x_1 + x_2 = x_3 + x_4$, то и для корней второго уравнения выполняется аналогичное равенство.

Задача 1.8. Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, а многочлен P(Q(x)), где $Q(x)=x^2+x+2019$, действительных корней не имеет. Докажите, что $P(2019)>\frac{1}{64}$.