제 5장 동특성의 파라미터 설계

개 요

• 파라미터 설계란?

산포를 **최소화**하고 동시에 **비용을 절감**시킬 수 있기 때문에 제품 성능과 품질 향상을 위한 중요한 해결 방법 중 하나

- 실제 사례를 검토해 가며 동특성(dynamic characteristics)을 선정한 프로젝트의 파라미터 설계 과정의 단계들에 초점을 맞추어 각 단계를 살펴본다. 특히 다음 절차에 대해 체계적으로 습득한다.
 - **동특성 로버스트 설계의** 형식화
 - **노이즈 인자** 전략
 - 제어 인자들을 위한 직교표 사용
 - **동특성 로버스트 설계의** 분석

목 적

- **동특성을 사용한 로버스트 설계 연구의** 형식화와 분석
- **파라미터 설계의 8-단계를** 동특성 프로젝트에 적용
- 다음에 나열한 **파라미터 설계 과정의** 완성
 - 동특성 S/N 비 계산
 - 반응표 작성
 - 2- 단계 최적화 적용
 - 추정
 - 확인 실험의 결과 해석

제품 기술 사례 : 자동차 브레이크

1 단계. 프로젝트의 범위 결정

- 시스템이 아주 클 때에는 보통 한 개의 하부시스템에서 로바스트 설계를 수행하는 것이 효과적
- 브레이크 시스템 중에서 결정적인 하부 시스템 패드/로타 (Pad/Rotor) 하부시스템에 중점 (상당한 에너지 전환)

(그림 1) 브레이크 시스템

시스템경영분석-파라메터설계:동특성 - 271

2 단계. 이상 기능 규명 - 무엇을 측정할까?

- 이 하부 시스템에서의 에너지 전환:
- 브레이크 line 이 압력을 caliper 에 보낸다.
- 압력이 패드를 로타 쪽으로 밀어 낸다.
- 패드가 마찰을 일으킨다.
- 마찰이 열을 발생시켜 방산(dissipate)한다.
- 마찰이 braking torque를 발생시킨다.

(그림 2) 이상 기능과 현실

3 단계. 신호와 노이즈 전략의 개발

- 신호인자와 수준
 - 실험의 범위와 이상 기능을 결정
 - 신호와 노이즈들을 실험에서 어떻게 변화 시킬 지를 결정 (신호 인자의 수준들을 현재 제품과 미래제품 전체의 사용 조건을 포함시킴)

• 브레이크 사례에서 선정한 신호 수준들:

M = 브레이크 Line 압력 (Kg/mm²)

$$M_1 = 0.008$$
 $M_2 = 0.016$ $M_3 = 0.032$ $M_4 = 0.064$

• 노이즈 인자들과 수준들

패드/로타 하부 시스템의 노이즈 인자들

화	경
_	

패드 온도 주행 기록

Wheels/Tires 염화 칼슘/부스러기 기타

열화/마모

패드 마모 로타 마모 기타

제조 산포

로타 Runout 로타 평면 조도 조립 산포

습기

Lot 간의 산포 기타

 \bullet 몇 개의 중요한 노이즈 인자들을 조합해서 $\mathbf{N_1}$, $\mathbf{N_2}$ 두 노이즈 조건으로 만든다.

 N_1 = 반응이 작게 되려는 경향이 있는 노이즈 조건

 N_2 = 반응이 크게 되려는 경향이 있는 노이즈 조건

• 노이즈 인자들은 2 수준으로 조합 된다.

 $N_1 = 60 \, \text{F}^{\circ}$ / 습함 / 80% 마모된 패드

 $N_2 = 360 \,\mathrm{F}^\circ$ / 건조함 / $10 \,\%$ 마모된 패드

- 이 노이즈 인자 (N)는 **사용, 환경, 열화의 노이즈 조건을 대표**
- 이 노이즈(N)에 대해 가장 로버스트 한 설계는 모든 다른 노이즈들에 대해서도 가장 로버스트 할 것임.

• 또 다른 중요한 노이즈 인자 :

<u>발생한 torque</u> 는 차가 제동 중 변하지 않아야 한다.

 로타 runout 과 온도 차이 (로타나 패드 내)로 인해 차가 제동 중에 torque 가 변화 이 현상으로 인해 또 다른 노이즈 인자 (Q)를 고려

Q: 차가 제동 중의 torque

 \mathbf{Q}_1 = 차가 제동 중의 최대 torque

 Q_2 = 차가 제동 중의 최소 torque

• 신호와 노이즈 수준의 16개 조합을 채울 torque 를 측정해서 기록

	$\mathbf{M_1}$	$\mathbf{M_2}$	M_3	$\mathbf{M_4}$
N_1Q_1				
N_1Q_2				
N_2Q_1				
N_2Q_2				

(그림3)데이터 매트릭스

4 단계. 제어 인자와 수준 결정

• **브레인스토밍**을 통해서 패드와 로타의 설계 파라미터들 중에서 제어 인자들과 수준을 결정

제어 인자	수준 - 1	수준-2	수준-3
\mathbf{A} : 패드 재료	Type-1	Type-2	
B : 패드 모양	4	5	6
\mathbf{C} : 패드 곡선 모양	Type-1	Type-2	Type-3
D : 패드 첨가물	Low	Medium	High
E:로타 재료	Gray	Cast	Steel
F : 패드 Taper	Low	Medium	High
G : Tapering 두께	Low	Medium	High
H : 로타 구조	Type-1	Type-2	Type-3

(그림 4) 제어 인자와 수준

			M ₁ :	0.008			M ₂ :	0.016			M ₃ :	0.032			M ₄ :	0.064	
	ABCDEFGH	N	$\overline{I_1}$	N	$\overline{N_2}$	N	$\overline{N_1}$	N	$\overline{N_2}$	N	$\overline{I_1}$	N	$\overline{N_2}$	N	$\overline{N_1}$	N	$\overline{N_2}$
	1 2 3 4 5 6 7 8	Q_1	Q_2														
1	11111111																
2	1 1 2 2 2 2 2 2 2																
3	1 1 3 3 3 3 3 3																
4	1 2 1 1 2 2 3 3																
5	1 2 2 2 3 3 1 1																
6	1 2 3 3 1 1 2 2																
7	1 3 1 2 1 3 2 3																
8	1 3 2 3 2 1 3 1																
9	1 3 3 1 3 2 1 2																
10	2 1 1 3 3 2 2 1																
11	2 1 2 1 1 3 3 2																
12	2 1 3 2 2 1 1 3																
13	2 2 1 2 3 1 3 2																
14	2 2 2 3 1 2 1 3																
15	2 2 3 1 2 3 2 1																
16	2 3 1 3 2 3 1 2																
17	2 3 2 1 3 1 2 3																
18	2 3 3 2 1 2 3 1																

(그림 5)실험 배치

5 단계. 실험 수행 및 데이터 수집

		M ₁ :	0.008	M ₂ :	0.016	M ₃ :	0.032	M_4 :	0.064
	ABCDEFGH	N_1	N_2	N_1	N_2	N_1	N_2	N_1	N_2
	1 2 3 4 5 6 7 8	Q_1 Q_2	$Q_1 Q_2$	Q_1 Q_2	Q_1 Q_2	Q_1 Q_2	Q_1 Q_2	Q_1 Q_2	Q_1 Q_2
1	1 1 1 1 1 1 1 1	4.8 0.9	5.8 0.8	8.5 6.5	11.5 6.8	20.4 13.2	25.0 16.2	36.9 32.7	43.5 34.5
2	1 1 2 2 2 2 2 2 2	4.5 2.5	5.7 3.2	12.5 9.6	13.0 10.0	23.5 20.3	25.1 21.4	42.0 36.0	43.2 36.1
3	1 1 3 3 3 3 3 3	5.9 5.2	6.8 5.9	10.6 9.3	11.4 10.2	23.5 22.0	24.3 22.5	42.9 40.3	43.8 40.6
4	1 2 1 1 2 2 3 3	4.5 2.1	5.7 3.0	12.1 8.9	14.3 10.5	22.1 16.9	24.2 20.0	41.0 34.0	42.4 37.6
5	1 2 2 2 3 3 1 1	6.5 2.1	1	12.3 6.9					48.9 37.2
6	1 2 3 3 1 1 2 2	5.0 4.2	1	11.5 9.4					43.1 41.0
7	1 3 1 2 1 3 2 3	5.2 4.0		11.8 9.1					42.2 38.2
8	1 3 2 3 2 1 3 1	2.4 0.0	4.3 2.8						34.3 30.6
9	1 3 3 1 3 2 1 2	6.3 4.8	7.8 6.1	12.1 9.3					50.2 44.0
10	2 1 1 3 3 2 2 1	2.1 0.0	2.9 0.0	4.9 0.0	7.4 4.2	18.3 9.5	17.7 10.8	32.0 26.3	35.3 28.1
11	2 1 2 1 1 3 3 2	4.9 1.2	7.6 1.8	11.3 6.5	15.3 6.8				50.5 35.5
12	2 1 3 2 2 1 1 3	5.1 4.4	6.4 4.4	10.1 7.8	11.2 8.5	21.7 18.7	22.1 20.1	43.1 41.2	44.4 41.5
13	2 2 1 2 3 1 3 2	2.1 0.0	5.4 0.6	6.7 1.2	7.3 2.3	13.4 9.4	16.4 11.1	38.9 27.9	43.3 31.1
14	2 2 2 3 1 2 1 3	5.9 5.0	6.8 5.2	13.3 12.0	14.2 13.3	24.9 23.1	26.3 25.4	47.9 46.3	49.7 47.2
15	2 2 3 1 2 3 2 1	3.2 0.0	3.9 1.8	8.7 3.2	9.6 5.1	13.2 7.9	19.5 11.1	38.2 32.1	42.5 33.0
16	2 3 1 3 2 3 1 2	4.1 2.7	5.9 4.4	12.3 8.7	13.7 9.2	24.3 18.9	25.5 20.2	44.3 39.0	47.7 42.4
17	2 3 2 1 3 1 2 3	2.3 0.8	3.2 2.1	10.2 8.0	12.5 8.8	21.6 16.5	23.6 20.4	38.8 32.4	41.1 36.6
18	2 3 3 2 1 2 3 1	1.2 0.0	5.1 1.2	7.8 2.3	13.0 5.0	20.3 11.1	21.2 12.4	40.1 31.6	45.1 32.0

(그림 6) 실험 데이터

시스템경영분석-파라메터설계:동특성 - 281

6 단계. 데이터 분석 실행

- S/N 비와 감도 계산
 - L18 직교표의 매 실험마다 16개의 측정치를 갖고 S/N 비와 감도 (ß) 를 계산

$$S/N \longrightarrow \frac{Useful output}{Harmful output}$$

Linear relationship between M and y
Variability around the linear relationship

$$\longrightarrow \frac{\beta^2}{\sigma^2}$$

$$\mathbf{B}$$
 = best - fit 선의 기울기

- 동특성 S/N비
- 동특성 출력 분석에는 두 종류의 S/N비
 - 원점 (Zero point) 비례식
 - 기준점 (Reference point) 비례식
 - 비례식에서의 **이상 기능은 원점(0,0**)을 통과
 - 이상 기능이 원점을 지나지 않으면 **가법성과 재현성**이 있는 결과가 나타나지 못할 수가 있다.
 - 이상 기능이 원점을 통과할 때 **원점 비례식과 기준점 비례식** 둘 다 사용
 - S/N비들은 ß 효과와 σ 효과 간의 관계를 평가
 - ß 는 기준점을 통과하는 best-fit 선의 기울기 (원점 비례식의 경우에는 기준점이 원점)
 - 응용범위가 원점에서 떨어져 있을 때에는 (원점에서 떨어진) 응용 범위 안에 기준점을 두는 것이 현실적이고 best-fit선은 이 기준점을 통과

• 브레이크 시스템에서는 **원점 주위의 응용이** 중요하기 때문에 원점 비례식 **S/N 비가 분석에** 사용

(그림 8) 원점과 기준점

시스템경영분석-파라메터설계:동특성 - 285

● 원점 비례식

- 원점 비례식은 best-fit 선이 원점을 통과
- 18개의 실험에서 매 실험마다 16개의 데이터 점들

	$M_1 = 0.008$	$M_2 = 0.016$	$M_3 = 0.032$	$M_4 = 0.064$
N_1Q_1	y ₁₁	y_{12}	y ₁₃	y ₁₄
N_1Q_2	y ₂₁	y_{22}	y_{23}	y_{24}
N_2Q_1	y ₃₁	y_{32}	y_{33}	y ₃₄
N_2Q_2	y ₄₁	y_{42}	y ₄₃	y_{44}

(그림 9) 데이터 매트릭스

• 각 노이즈 조건에 대한 선형식

$$L_{1} = M_{1}y_{11} + M_{2}y_{12} + M_{3}y_{13} + M_{4}y_{14}$$

$$L_{2} = M_{1}y_{21} + M_{2}y_{22} + M_{3}y_{23} + M_{4}y_{24}$$

$$L_{3} = M_{1}y_{31} + M_{2}y_{32} + M_{3}y_{33} + M_{4}y_{34}$$

$$L_{4} = M_{1}y_{41} + M_{2}y_{42} + M_{3}y_{43} + M_{4}y_{44}$$

• 입력(신호 인자 수준들) 제곱의 합

$$r = M_1^2 + M_2^2 + M_3^2 + M_4^2$$

• 총 (모든 데이터 점들의) 제곱의 합

$$oldsymbol{S_T} = \sum_{i=1}^{r_0} \sum_{j=1}^k oldsymbol{y}_{ij}^2 \quad \left[egin{array}{c} \mathbf{r}_0 = ext{선형식의 숫자} \\ \mathbf{k} = ext{신호 인자 수준의 숫자} \end{array}
ight]$$

 \bullet S_T 는 다음의 구성 요소로 분해

$$\mathbf{S}_{\mathbf{T}} = \mathbf{S}_{\beta} + \mathbf{S}_{\beta \times \mathbf{N}} + \mathbf{S}_{\mathbf{e}}$$

• 원점 best-fit 선의 기울기로 인한 제곱의 합 (즉 ß 효과)

$$S_{\beta} = \frac{(L_1 + L_2 + L_3 + L_4)^2}{r \times r_0}$$

• 노이즈 수준간 기울기 차이로 인한 제곱의 합 (즉 노이즈 효과)

$$S_{\beta \times N} = \frac{L_1^2 + L_2^2 + L_3^2 + L_4^2}{r} - S_{\beta}$$

• best-fit 선 주위에 있는 변동으로 인한 제곱의 합(즉 lack of fit)

$$S_e = S_T - (S_\beta + S_{\beta \times N})$$

• 노이즈와 lack-of-fit으로 인한 평균제곱

$$V_{N} = \frac{S_{\beta \times N} + S_{e}}{r_{0} \times k - 1}$$

• lack-of-fit으로 인한 평균제곱

$$V_e = \frac{S_e}{r_0 \times (k-1)}$$

• dB로 표시한 S/N 비와 ß 는

$$\mathbf{S/N} = \eta_{dB} = 10 \times \log \frac{\frac{1}{r \times r_0} (S_\beta - V_e)}{V_N}$$

$$eta = \sqrt{rac{1}{r imes r_{
m o}}} (S_{eta} - V_{e})$$

• L₁₈의 1번 실험 데이터를 사용한 계산 예

	$M_1 = 0.008$	M ₂ =0.016	$M_3 = 0.032$	$M_4 = 0.064$
N_1Q_1	4.8	8.5	20.4	36.9
N_1Q_2	0.9	6.5	13.2	32.7
N_2Q_1	5.8	11.5	25.0	43.5
N_2Q_2	0.8	6.8	16.2	34.5

• 선형식

$$\begin{split} L_1 &= 0.008(4.8) + 0.016(8.5) + 0.032(20.4) + 0.064(36.9) = 3.1888 \\ L_2 &= 0.008(0.9) + 0.016(6.5) + 0.032(13.2) + 0.064(32.7) = 2.6264 \\ L_3 &= 0.008(5.8) + 0.016(11.5) + 0.032(25.0) + 0.064(43.5) = 3.8144 \\ L_4 &= 0.008(0.8) + 0.016(6.8) + 0.032(16.2) + 0.064(34.5) = 2.8416 \end{split}$$

• 입력의 제곱의 합

$$r = 0.008^2 + 0.016^2 + 0.032^2 + 0.064^2 = 0.00544$$

• 총제곱의 합과 그 분해

$$S_{T} = 4.8^{2} + 0.9^{2} + 5.8^{2} + 0.8^{2} + 8.5^{2} + \cdots + 34.5^{2} = 7342.36 \qquad (f = 16)$$

$$S_{B} = \frac{(3.1888 + 2.6264 + 3.8144 + 2.8416)^{2}}{4 \times 0.00544} = 7147.5565 \qquad (f = 1)$$

$$S_{B \times N} = \frac{3.1888^{2} + 2.6264^{2} + 3.8144^{2} + 2.8416^{2}}{0.00544} - S_{B} = 148.5391 \qquad (f = 3)$$

$$S_{e} = 7342.36 - (7147.5565 + 148.5391) = 46.2644 \qquad (f = 12)$$

• 분산 (평균 제곱)

$$V_{N} = \frac{148.5391 + 46.2644}{15} = 12.9869$$
 $V_{e} = \frac{46.2644}{12} = 3.8544$

• S/N 비와 β

$$S/N = \eta_{dB} = 10 \times \log \frac{\frac{1}{4 \times 0.00544}}{12.9869}$$

$$= 44.03 dB$$

$$\beta = \sqrt{\frac{1}{4 \times 0.00544}} (7147.5565 - 3.8554)$$

$$= 572.97$$

<다음 표를 완성하시오>

	A 1	В 2	C 3	D 4	E 5	F 6	G 7	Н 8	S/N 出	β
1	1	1	1	1	1	1	1	1	44.03	573.12
2	1	1	2	2	2	2	2	2	47.41	634.44
3	1	1	3	3	3	3	3	3	53.21	667.94
4	1	2	1	1	2	2	3	3	46.91	617.53
5	1	2	2	2	3	3	1	1	45.28	651.61
6	1	2	3	3	1	1	2	2	52.45	644.22
7	1	3	1	2	1	3	2	3	51.35	613.64
8	1	3	2	3	2	1	3	1	44.96	465.77
9	1	3	3	1	3	2	1	2	48.88	718.01
10	2	1	1	3	3	2	2	1	41.55	454.70
11	2	1	2	1	1	3	3	2	42.44	622.24
12	2	1	3	2	2	1	1	3	53.29	657.16
13	2	2	1	2	3	1	3	2	39.04	489.81
14	2	2	2	3	1	2	1	3	55.34	755.91
15	2	2	3	1	2	3	2	1	41.45	527.68
16	2	3	1	3	2	3	1	2	48.45	679.30
17	2	3	2	1	3	1	2	3	46.30	590.81
18	2	3	3	2	1	2	3	1	41.23	556.65

(그림 10) S/N 비와 감도

(그림 11) 데이터 타점

• 반응표 완성 및 해석 : S/N 비와 감도에 대한 반응표

(망목 특성 분석과 유사점이 많은 것에 유의)

		
반응표 S / N 비	T = 46.92	<다음 표를 완성하시오>

수준	A	В	C	D	Е	F	G	Н
1	48.28	46.99		45.00	47.81	46.84	49.21	43.08
2	45.56	46.91		46.43	47.08	46.89	46.75	46.61
3		46.86		49.33	45.87	47.03	44.80	51.07
Δ	2.71	0.13	3.04	4.33	1.94	0.19	4.42	7.98
순위	5	8	4	3	6	7	2	1

반응표 eta T=607.4 < 다음 표를 완성하시오>

수준	A	В	С	D	Е	F	G	Н
1	620.6		573.7	608.1	627.5	572.5	672.5	538.0
2	594.1		620.0	602.9	596.8	622.7	577.4	633.7
3			628.4	611.2	597.8	626.9	572.3	650.4
Δ	26.5	15.3	54.8	8.3	30.7	54.4	100.2	112.5
순위	6	7	3	8	5	4	2	1

(그림 12) 반응표

시스템경영분석-파라메터설계:동특성 - 296

S/N 반응 그래프

(그림 13.1) S/N 비 반응 그래프

반응 그래프

(그림 13.2) ß 반응 그래프

• 2-단계 최적화 실행

: 두 반응표에서 각 제어인자가 S/N 비와 감도에 미치는 영향을 파악

2-단계 최적화를 적용

1 - 단계: 기능의 산포를 줄인다. (S/N 비를 최대화한다)

2 - 단계: 원하는 수준으로 감도를 조정한다.

: 높은 효율을 위해서 더 큰 감도가 바람직하다.(비용, 크기, 무게 감소)

최적화는:

1 - 단계: S/N 비의 최대화

A _ B _C _ D _ E _ F _ G _ H _

2 - 단계: 감도 조정(원하는 기울기)

A _ B _C _ D _ E _ F _ G _ H _

• 추 정 : 최적 조합 설계와 초기 설계 아래서의 S/N 비와 감도의 추정치 계산

<u>추정치</u>

- S/N II

$$\hat{\eta}_{\bar{z}|\bar{z}|} = \overline{T} + (\overline{A}_1 - \overline{T}) + (\overline{C}_3 - \overline{T}) + (\overline{D}_3 - \overline{T}) + (\overline{E}_1 - \overline{T}) + (\overline{G}_1 - \overline{T}) + (\overline{H}_3 - \overline{T})$$

$$= \overline{A}_1 + \overline{C}_3 + \overline{D}_3 + \overline{E}_1 + \overline{G}_1 + \overline{H}_3 - 5\overline{T}$$

$$= 48.28 + 48.42 + 49.33 + 47.81 + 49.21 + 51.07 - (5 \times 46.92)$$

$$= 59.52(dB)$$

$$\hat{\eta}_{\bar{\Xi}^{||}} = \overline{T} + (\overline{A}_1 - \overline{T}) + (\overline{C}_2 - \overline{T}) + (\overline{D}_2 - \overline{T}) + (\overline{E}_2 - \overline{T}) + (\overline{G}_2 - \overline{T}) + (\overline{H}_2 - \overline{T})$$

$$= 47.51(dB)$$

- 감도 β

$$\hat{\beta}_{\bar{z}|\bar{z}|} = \bar{T} + (\bar{A}_1 - \bar{T}) + (\bar{C}_3 - \bar{T}) + (\bar{D}_3 - \bar{T}) + (\bar{E}_1 - \bar{T}) + (\bar{G}_1 - \bar{T}) + (\bar{H}_3 - \bar{T})$$

$$= \bar{A}_1 + \bar{C}_3 + \bar{D}_3 + \bar{E}_1 + \bar{G}_1 + \bar{H}_3 - 5\bar{T}$$

$$= 620.6 + 628.4 + 611.2 + 627.5 + 672.5 + 650.4 - (5 \times 607.4)$$

$$= 773.6$$

$$\hat{\beta}_{\bar{z}} = \overline{T} + (\overline{A}_1 - \overline{T}) + (\overline{C}_2 - \overline{T}) + (\overline{E}_2 - \overline{T}) + (\overline{F}_2 - \overline{T}) + (\overline{G}_2 - \overline{T}) + (\overline{H}_2 - \overline{T})$$

$$= 607.4 + 13.2 + 12.6 - 10.6 + 15.3 - 30.0 + 26.3$$

$$= 634.2$$

추정치 요약

추 정	S/N II	β
초기 설계	47.51	634.52
최적 설계	59.52	773.6
이 득	12.01	139.08

7 단계. 확인 실험 실행

브레이크 하부 시스템 로바스트 설계

		M_1	M_2	M_3	M_4		
		0.008	0.016	0.032	0.064	S/N 비	β
초기설계	N_1Q_1	4.8	11.1	23.1	42.0	47.56	634.7
	N_1Q_2	1.2	8.6	18.1	36.0		
	N_2Q_1	5.7	13.0	25.1	43.2		
	N_2Q_2	4.4	11.8	21.4	37.6		
•		M_1	M_2	M_3	M_4		
		0.008	0.016	0.032	0.064	S/N 비	β
최적설계	N_1Q_1	5.3	12.2	24.6	49.3	57.37	757.9
	N_1Q_2	4.6	10.1	23.1	47.1		
	N_2Q_1	5.8	13.2	25.0	50.1		
	N_2Q_2	5.4	11.9	24.3	48.2		
						9.81	19.4%

	추	정	확 인		
	S/N II	β	S/N II	β	
초기설계	47.51	634.52	47.56	634.7	
최적설계	59.52	773.6	57.37	757.9	
이득	12.01	139.08	9.81	123.2	

(그림 14) 확인 실험 결과

8 단계. 결과를 이해하고 문서화 함

공정 기술 사례 : Nissan 자동차의 NC Machining 기술

1 단계. 프로젝트 범위 결정

- 내구성 있는 자동차 트랜스미션의 생산을 위해
- 기존방식
 - 10시간 열처리하는 강철 침탄(carburization) 공정
- 도입방식
 - 단지 1 분간의 고주파로 열처리하는 공정

 - 단점: | 고경도 강철 사용
 - ⇒ 기존 강철에 비해 30단위 (Rockwell C-scale) 나 경도가 높은 강철
 - 치차 소음 발생
 - 일관성 있는 절삭 가공 목표 치수 달성 곤란
 - 절삭 가공 시 치수 산포 문제 발생

- ◆ 프로젝트 범위 : NC 절삭 가공의 로버스트니스 향상
- ◆ Nissan의 목표: NC 절삭 가공 기술의 최적화
 - •경도가 더 큰 강철을 사용하면서
 - 트랜스미션 치차를 **프로그램한 치수대로** 생산할 수 있는 능력을 보유하면서
 - •시스템에 비용 증가를 주지 않는 것

2단계. 이상 기능 규명 - 무엇을 측정

• 이상 기능 : "전사성 (transformability)" 사용

입력 신호:

M = 프로그램 치수

출력 반응:

y = 제품 치수

• 이상 기능 : y=βM

(그림 15) 이상 기능과 현실

(그림 16) NC 절삭 가공 공학 시스템

3 단계. 신호와 노이즈 전략 개발

• 신호 인자와 수준

- **신호수준** : 현재 및 장래 제품 그룹의 사용 조건 모두 포함

- 실제 치차가 아닌 시편(test piece) 설계
- Nissan의 전략

연구결과 응용: 현재의 치차 및 장래 개발 제품

⇒ 기술 개발

(그림 17) NC 절삭 가공을 위한 시편

```
신호 인자와 수준
     M=프로그램 치수(mm)
     (a1, a2, ....., c4 중 어느 두 점간의 거리)
  M<sub>1</sub>=a1 에서 a2
  M<sub>2</sub>=a1 에서 a3
  M<sub>3</sub>=a1 에서 a4
  M<sub>4</sub>=a1 에서 b1
  M<sub>5</sub>=a1 에서 b2
  M<sub>66</sub>=c3 에서 c4
```

(그림 18) 결정한 신호 인자와 수준

노이즈 인자

<u>환경</u>

절삭유 상태 재료 lot 기타 재료경도산포 공작기계 setting 산포

열화/마모

공구 마모

기타

절삭유 사용 기간

제조 산포

Machining center의 제조 산포

: 재료가 <u>연할 수록</u> 더 많이 절삭 가공 될 것이고 <u>강할 수록</u> 덜 깎일 것이다. • 노이즈 인자: N = 재료 경도

 N_1 =경도 사양 내에서 연한 재료 = 32Hc

 N_2 =경도 사양 내에서 강한 재료 = 38Hc

- N에 대해 가장 로버스트한 설계
 - ⇒ **다른 모든 노이즈에** 대해서도 가장 로버스트한 설계
- 경도 산포 불량 ⇒ micron 단위 표면 조도 불량
- 이 노이즈 인자에 대해 가장 로버스트한 설계
 - ⇒좋은 평면 조도
- Nissan 은 아주 작은 양의 절삭유 사용
 - ⇒ 노이즈 인자 N 이외에 더 적극적인 노이즈 통합 전략

132개 (66×2)의 신호와 노이즈 수준 조합의 제품치수를 측정 기록

	\mathbf{M}_1	M_2	M_3	M_4	•••••	M_{65}	M ₆₆
N_1					• • • • •		
\overline{N}_1					• • • • •		

(그림 19) 데이터 매트릭스

4 단계. 제어 인자와 수준 결정

제어 인자	수준-1	수준-2	수준-3
A: 공구 이송 방향	위로	아래로	
B: 이송 속도(m/min)	저속	표준	고속
C: 재료 속도(m/min)	저속	표준	고속
D: 공구 재료	연함	표준	강함
E: 공구 강도	낮음	표준	높음
F: 공구 각도-1	작음	표준	
G: 공구 각도-2	작음	표준	높음
H: 절삭 깊이(mm)	낮음	표준	ョ

(그림 20) 제어 인자와 수준

L_{18}	A	В	C	D	E	F	G	Н	\mathbf{N}	\mathbf{I}_1	N	\mathbf{M}_2	• • •	\mathbf{N}	I_{66}
	1	2	3	4	5	6	7	8	N_1	N_2	N_1	\overline{N}_2	• • •		N_2
1									•	•	•	•	• • •	•	•
2															
:										ᆽ	. ⊃ ⊣	нι	\circ		
•										至		반	5		
•															
18															

(그림 21) 실험 배치

5 단계. 실험 수행 및 데이터 수집

 L_{18} 에 정해진 18개 실험

매 실험 당 2개(연한것, 강한 것)

CMM (Coordinate Measurement Machine) ⊇**Ξ**

12좌표 측정

M₁ ~ M₆₆ 치수 계산(총 132개)

6 단계. 데이터 분석 실행

• S/N 비와 감도 계산

: L₁₈ 직교표의 각 실험 당 132개의 데이터를 측정해 S/N 비와 감도를 계산

 $S/N \longrightarrow \frac{Useful\ output}{Harmful\ output}$ $\longrightarrow \frac{Linear\ relationship\ between\ M\ and\ y}{Variability\ around\ the\ linear\ relationship}$ $\longrightarrow \frac{\beta^2}{\sigma^2}$

	A	В	C	D	E	F	G	H	S/N 出	ß
	1	2	3	4	5	6	7	8	9 / IV UI	β
1	1	1	1	1	1	1	1	1	31.41	0.99975
2	1	1	2	2	2	2	2	2	39.70	1.00067
	1	1	3	3	3	3	3	3	39.68	1.00032
4	1	2	1	1	2	2	3	3	9.25	1.00844
5	1	2	2	2	3	3	1	1	44.56	0.99999
	1	2	3	3	1	1	2	2	42.02	1.00023
7	1	3	1	2	1	3	2	3	33.75	1.00066
8	1	3	2	3	2	1	3	1	44.59	1.00003
0	1	3	3	1	3	2	1	2	19.18	1.00131
10	2	1	1	3	3	2	2	1	42.80	1.00013
11	2	1	2	1	1	3	3	2	30.55	1.00167
	2	1	3	2	2	1	1	3	26.41	1.00191
13	2	2	1	2	3	1	3	2	25.86	1.00171
14	2	2	2	3	1	2	1	3	35.24	1.00064
15	2	2	3	1	2	3	2	1	42.52	1.00025
16	2	3	1	3	2	3	1	2	41.01	0.99990
17	2	3	2	1	3	1	2	3	2.63	1.02095
18	2	3	3	2	1	2	3	1	39.30	1.00029
10							평	균	32.80	1.00216

(그림 23) 계산한 S/N 비와 감도

• 반응표 완성 및 해석

반응표S/N비

 $\overline{T} = 32.80$

수준	A	В	С	D	Е	F	G	Н
1	33.79	35.09	30.68	22.59	35.38	28.82	32.97	40.86
2	31.81	33.24	32.88	34.93	33.91	30.91	33.90	33.05
3		30.08	34.85	40.89	29.12	38.68	31.54	24.49
Δ	1.98	5.02	4.17	18.30	6.26	9.86	2.36	16.37
순위	8	5	6	1	4	3	7	2

반응표 β

 $\bar{T} = 1.00216$

수준	A	В	С	D	Е	F	G	Н
1	1.00127	1.00074	1.00176	1.00540	1.00054	1.00410	1.00058	1.00007
2	1.00305	1.00188	1.00399	1.00087	1.00187	1.00191	1.00381	1.00091
3		1.00386	1.00072	1.00021	1.00407	1.00046	1.00208	1.00549
Δ	0.00178	0.00312	0.00327	0.00519	0.00353	0.00363	0.00323	0.00542
순위	8	7	5	2	4	3	6	1

(그림 24) 반응표

Signal-to-Noise Ratio Repons

(그림 25.1) S/N비 반응 그래프

Response

(그림 25.2) 감도 반응 그래프

• 2-단계 최적화 실행

두 반응표는 각 제어인자가 S/N 비와 감도에 어떤 영향을 주는지를 보여 준다.

2-단계 최적화

1 - 단계: 기능의 산포를 줄인다. (S/N 비를 최대화한다)

2 - 단계: 원하는 수준으로 감도 (β)를 조정한다.

이번 사례에서는 결국 감도를 1.0000으로 조정 (실제에서는 최적 조합에서의 감도를 관찰한 후 조정을 실행)

최적화는:

1 - 단계: S/N 비의 최대화

 A_1 B_1 C_3 D_3 E_1 F_3 G_2 H_1

2 - 단계: 감도(β) 조정

입력 프로그램에 상수를 곱해서 조정

초기 설계:

 \mathbf{A}_{1} \mathbf{B}_{2} \mathbf{C}_{2} \mathbf{D}_{2} \mathbf{E}_{2} \mathbf{F}_{2} \mathbf{G}_{2} \mathbf{H}_{2}

• S/N 비와 감도의 추정치 계산

$$\hat{\eta}_{\bar{z}|Z_{3}} = \overline{A}_{1} + \overline{B}_{1} + \overline{C}_{3} + \overline{D}_{3} + \overline{E}_{1} + \overline{F}_{3} + \overline{G}_{2} + \overline{H}_{1} - 7\overline{T}$$

$$= 33.79 + 35.09 + 34.85 + 40.89 + 35.38 + 38.68 + 33.90 + 40.86 - (7 \times 32.80)$$

$$= 63.82(dB)$$

$$\hat{\beta}_{\bar{z}|Z_{3}} = \overline{A}_{1} + \overline{B}_{1} + \overline{C}_{3} + \overline{D}_{3} + \overline{E}_{1} + \overline{F}_{3} + \overline{G}_{2} + \overline{H}_{1} - 7\overline{T}$$

$$= 1.00127 + 1.00074 + 1.00072 + 1.00021 + 1.00054 + 1.00046 + 1.00381 + 1.00007 - (7 \times 1.00216)$$

$$= 0.99271$$

$$\hat{\eta}_{\Xi \supset |} = \overline{A}_1 + \overline{B}_2 + \overline{C}_2 + \overline{D}_2 + \overline{E}_2 + \overline{F}_2 + \overline{G}_2 + \overline{H}_2 - 7\overline{T}$$

$$= 31.79 + 33.24 + 32.88 + 34.93 + 33.91 + 30.91 + 33.90 + 33.05 - (7 \times 32.80)$$

$$= 36.99(dB)$$

$$\hat{\beta}_{\Xi \supset |} = \overline{A}_1 + \overline{B}_2 + \overline{C}_2 + \overline{D}_2 + \overline{E}_2 + \overline{F}_2 + \overline{G}_2 + \overline{H}_2 - 7\overline{T}$$

$$= 1.00127 + 1.00188 + 1.00399 + 1.00087 + 1.00187 + 1.00191 + 1.00381 + 1.00091 - (7 \times 1.00216)$$

$$= 1.00140$$

7 단계. 확인 실험 실행

확인 실험 결과:

	추	정	확인		
	S/N II	β	S/N 비	β	
초기 설계 최적 설계	36.99 63.82	1.0014 0.9927	34.71 54.09	0.9992 0.9939	
이득(dB)	26.83		19.38		

• 19.38dB 이득은 산포 범위를 다음과 같이 줄이는 것과 같다.

$$0.5^{\frac{19.38}{6}} = 0.107 = 10.7\%$$

• 2단계 최적화: 감도 조정

$$y=\beta M$$

Minitab의 활용이 가능한가?

$$M = y/\beta = y/0.9939 = 1.0061y$$

요 약

- 26.83dB 이득이 추정되어서 19.38dB이 확인되었다. 완전하지는 않지만 매우 좋은 재현성을 보여 주고 있고 실험의 성공을 확인 해 준다.
- 이 연구 결과로 시편 절삭 가공에 있어 가공된 치수의 표준편차를 10%로 줄였다.
- 이 연구 결과는 이 machining center에서 생산하는 다른 제품에도 응용할 수 있었다.
- 로버스트 기술을 개발하는데 시편을 사용하는 것은 효과적인 방법이다. 이런 종류의 연구는 특정한 제품에 대한 문제 해결과는 달리 기술 개발이라고 한다.