MySQL2

Maria José Bastilla Osorio

Laboratorio

campus lands
Programación
Bucaramanga , santander
2024

Tabla de contenido

Introducción	
Caso de Estudio	
Instalación General8	
Requisitos Previos8	
Problema – Laboratorio:	
Modelo Conceptual8	
Descripción9	
Descripción Técnica9	
Modelo Lógico11	
Descripción11	

Descripción Técnica	12
Primera Forma Normal (1FN)	12
Construcción del Modelo Físico	13
Descripción	13
Código	13
Descripción Técnica	15
Diagrama E-R	10
Descripción	10
Gráfica	10
Descripción Técnica	11
Tablas	15
Tabla sucursales	15
Descripción	15
Gráfica	15
Descripción Técnica	16
Tabla clientes	16
Descripción	16
Gráfica	16
Descripción Técnica	16
Tabla vehículos	16
Descripción	16
Gráfica	16
Descripción Técnica	17
Tabla empleados	17
Descripción	17
Gráfica	17
Descripción Técnica	17
Tabla alquileres	17
Descripción	17
Gráfica	18
Descripción Técnica	18
Relaciones entre Tablas.	18
Relaciones entre Tablas	18
Descripción	18
Descripción Técnica	18
Inserción de Datos	19

Descripción	19
Gráfica	19
Descripción Técnica	20
Funciones y Procedimientos	20
Funcion#1	20
Descripción:	20
Sintaxis	20
Parámetros	21
Salida/Retorno:	21
Ejemplo de Implementación:	21
Funcion#2	21
Descripción	21
Sintaxis	21
Parámetros	21
Salida/Retorno:	21
Ejemplo de Implementación	21
Triggers	23
Trigger#1	23
Descripción	23
Sintaxis	23
Parámetros	24
Salida/Retorno:	24
Ejemplo de Implementación	24
Trigger2	24
Descripción	24
Sintaxis	24
Parámetros	24
Salida/Retorno	24
Ejemplo de Implementación	24
Eventos	25
Eventos#1	25
Descripción	25
Sintaxis	25
Parámetros	25
Salida/Retorno	25
Ejemplo de Implementación	25

Consultas	26
Consultas de Cliente	26
Consulta# 1	26
Descripción	26
Sintaxis	26
Parámetros	26
Salida/Retorno	26
Ejemplo de Implementación	26
Consulta# 2	27
Descripción	27
-Sintaxis:	27
Parámetro	27
Salida/Retorno	27
Ejemplo de Implementación	27
Consulta #3	
Descripción	27
-Sintaxis	27
Parámetros	27
Salida/Retorno:	27
Ejemplo de Implementación:	27
Consulta #4	27
Descripción	27
Sintaxis	27
Parámetros	28
Salida/Retorno	28
- Lista de vehículos ordenados por referencia	28
Ejemplo de Implementación	28
Consulta #5	28
Descripción	28
Sintaxis	28
Parámetros	28
Salida/Retorno	28
-Ejemplo de Implementación	28
Consulta# 6	
Descripción	
Sintaxis	

	Parámetros	29
	Salida/Retorno	29
	Ejemplo de Implementación	29
C	Consulta# 7	29
	Descripción	29
	Sintaxis	29
	Parámetros:	29
	Salida/Retorno	29
	Ejemplo de Implementación	29
Cor	ısultas de Empleado	29
C	Consulta# 1	29
	Descripción	29
	Sintaxis	29
	Parámetros	30
	Salida/Retorno	30
	Ejemplo de Implementación	30
C	Consulta #2	30
	Descripción:	30
	Sintaxis	30
	Parámetros	30
	Salida/Retorno	30
	Ejemplo de Implementación	30
C	Consulta #3	30
	Descripción	30
	-Sintaxis	31
	Parámetros:	31
	Salida/Retorno	31
	Ejemplo de Implementación:	31
C	Consulta# 4	31
	-Descripción	31
	Sintaxis	31
	Salida/Retorno	31
	-Ejemplo de Implementación	31
C	Consulta# 5	31
	Descripción	31
	Sintaxis	31

Parámetros:	32
Usuarios y Accesos	32
Tabla de Usuarios	32
Referencias	32

Introducción

En este documento encontrarás detallados los pasos necesarios para la creación de la base de datos de la empresa Autorental. Este proceso es fundamental para organizar de manera efectiva todas las operaciones relacionadas con la gestión de datos, garantizando así un uso óptimo de la base de datos y proporcionando a la empresa un software integral y completo. Este enfoque no solo busca optimizar la estructura y el rendimiento de la base de datos, sino también asegurar que cada procedimiento esté claramente justificado y documentado.

El proceso se inicia con la extracción y análisis de la información proporcionada por la empresa. Esta información se transforma en diagramas y modelos que facilitan la optimización de datos y procesos. Esta fase inicial es crucial para comprender a fondo las necesidades y requisitos específicos de Autorental, permitiendo así diseñar una base de datos que no solo sea funcional, sino que también esté alineada con los objetivos estratégicos y operativos de la empresa.

Además, durante la implementación de la base de datos, se aplican metodologías y prácticas recomendadas para garantizar la integridad, seguridad y eficiencia de los datos almacenados. Se establecen procedimientos de prueba rigurosos para validar la funcionalidad del software y su capacidad para manejar diferentes escenarios y cargas de trabajo. Este enfoque asegura que la base de datos no solo sea robusta desde el punto de vista técnico, sino que también sea fácilmente mantenible y escalable a medida que Autorental continúa creciendo y expandiéndose.

Caso de Estudio

Mediante la realización de este caso de estudio se busca resolver la problemática que esta sufriendo Autorental la cual no tiene el programa adecuado para la recolección y manejo de datos de su empresa lo que como consecuencia a tenido perdida de datos historiales de clientes entre otras , es necesario resolver este problema con urgencia ya que esta compañía se encuentra en expansión y sin el debido manejo de datos no podrá tener el control total de la

compañía, La solución recomendada es crear una base de datos donde la compañía tenga la visualización total de cada procedimiento que hace la empresa como lo son la entrada de usuarios y la optimización de detalles de cada servicio ofrecido por la compañía.

Instalación General

Requisitos Previos

- Servidor de Base de Datos: MySQL o MariaDB
- Herramienta de Administración de Base de Datos: MySQL Workbench, phpMyAdmin, o cualquier otro cliente SQL.
- Lenguaje de Programación: Se recomienda utilizar Python, Java, PHP o cualquier otro lenguaje compatible con bases de datos SQL.
- Entorno de Desarrollo: Un editor de texto como Visual Studio Code o un IDE como PyCharm, Eclipse, etc.

Problema – Laboratorio:

La empresa donde usted trabaja ha sido contratada para desarrollar un sistema de información para una empresa de alquiler de vehículos llamada AutoRental, y usted ha sido designado para diseñar una base de datos para ese sistema de información.

AutoRental cuenta con 5 sucursales en diferentes ciudades y se proyecta a expandirse a otras ciudades del país y cuenta con una flota propia de vehículos de diferentes tipos, modelos (año), capacidad, etc.

Los clientes de AutoRental podrán alquilar un vehículo en una sucursal y entregarlo en otra sucursal.

AutoRental ofrece descuentos sobre diferentes tipos de vehículos a lo largo del año. Los valores de alquiler dependen del tipo de vehículo (sedán, compacto, camioneta platón, camioneta lujo, deportivo, etc) y se cobran por días y/o semanas. Por ejemplo, si un alquila un vehículo por 9 días, el valor cotizado será de 1 semana y 2 días.

Si un cliente entrega el vehículo pasado la fecha de entrega contratada, se cobrarán los díasadicionales con un incremento del 8%.

A continuación se va a realizar el proceso para la creación y ejecución de la base de datos :

Modelo Conceptual

Se construye un diagrama modelo conceptual con los requerimientos propuestos por la compañía:

Descripción

Modelo conceptual que representa las 5 tablas principales que pide la compañía las cuales son , clientes , vehículos , alquileres , empleados y sucursales , acompañadas de todos los atributos o columnas actualmente necesarias para cada tabla , para finalmente encontrar 5 tipos de relaciones entre ellas .

Descripción Técnica

Modelo conceptual que contiene 5 nodos como representación de cada tabla , alrededor se visualiza a cada nodo con sus respectivos atributos .

El nodo de sucursales contiene dos tipo de relaciones de tipo (1-n) una con la tabla de empleados y alquileres debido a que dentro de los atributos de el nodo de empleados hay un dato de se recibe del nodo de sucursales y la otra con el nodo de alquileres por un dato en común al igual que las otras relaciones de tipo (1-n) hacia la tabla de alquileres .

Descripción de atributos

Sucursales

• Ciudad: Dato de tipo texto.

• Dirección: Dato de tipo texto.

• Teléfono fijo: Dato de tipo número.

• Celular: Dato de tipo número.

- Correo electrónico: Dato de tipo texto.
- Empleados
- Sucursal donde labora: Dato de tipo texto.
- Cédula: Dato de tipo número.
- Nombres: Dato de tipo texto.
- Apellidos: Dato de tipo texto.
- Dirección de residencia: Dato de tipo texto.
- Ciudad de residencia: Dato de tipo texto.
- Celular: Dato de tipo número.
- Correo electrónico: Dato de tipo texto.
- Clientes
- Cédula: Dato de tipo número.
- Nombres: Dato de tipo texto.
- Apellidos: Dato de tipo texto.
- Dirección de residencia: Dato de tipo texto.
- Ciudad de residencia: Dato de tipo texto.
- Celular: Dato de tipo número.
- Correo electrónico: Dato de tipo texto.
- Vehículos
- Tipo de vehículo: Dato de tipo texto.
- Placa: Dato de tipo texto.
- Referencia: Dato de tipo texto.
- Modelo: Dato de tipo número.
- Puertas: Dato de tipo número.
- Capacidad: Dato de tipo número.
- Sunroof: Dato de tipo booleano.
- Motor: Dato de tipo texto.
- Color: Dato de tipo texto.

- Alquileres
- Vehículo: Dato de tipo texto.
- Cliente: Dato de tipo número.
- Empleado: Dato de tipo número.
- Sucursal de salida: Dato de tipo texto.
- Fecha de salida: Dato de tipo fecha.
- Sucursal de llegada: Dato de tipo texto.
- Fecha de llegada: Dato de tipo fecha.
- Fecha esperada de llegada: Dato de tipo fecha.
- Valor de alquiler por semana: Dato de tipo número.
- Valor de alquiler por día: Dato de tipo número.
- Porcentaje de descuento: Dato de tipo número.
- Valor cotizado: Dato de tipo número.
- Valor pagado: Dato de tipo número.

Modelo Lógico

Se construye un diagrama modelo lógico con los requerimientos propuestos por la compañía:

Descripción

Se construye un modelo lógico con la referencia del modelo conceptual, se le añade a cada tabla un id para cada único para cada proceso en cada tabla para llevar mas control y darle un id único a cada proceso se definen cuales son las primary key y las llaves foráneas delante de cada atributo.

Diseño

Diagrama representa un sistema de gestión de alquiler de vehículos con cinco tablas principales: Sucursales, Clientes, Empleados, Vehículos y Alquileres. Las relaciones entre estas tablas se establecen mediante claves foráneas. La tabla Sucursales contiene información sobre cada sucursal y se relaciona con Empleados y Alquileres a través de id_sucursal. La tabla Clientes almacena datos de los clientes y se relaciona con Alquileres mediante id_cliente. La tabla Empleados, que incluye detalles de los empleados, está vinculada a Sucursales y Alquileres mediante id_sucursal y id_empleado, respectivamente. La tabla Vehículos contiene información de los vehículos disponibles y se relaciona con Alquileres mediante id_vehículo. Finalmente, la tabla Alquileres registra los detalles de cada alquiler, enlazando con las tablas Sucursales, Clientes, Empleados y Vehículos a través de sus respectivas claves foráneas.

Normalización

A continuación de normaliza el modelo lógico presentado anteriormente:

Primera Forma Normal (1FN)

Descripción

La primera forma normal (1FN) se enfoca en eliminar los grupos repetitivos dentro de una tabla, asegurando que cada campo contenga solo valores atómicos e indivisibles.

Descripción Técnica

En este diagrama, cada campo en las tablas `Sucursales`, `Clientes`, `Empleados`, `Vehículos` y `Alquileres` contiene valores únicos y atómicos, lo que significa que las tablas

están en la primera forma normal. No hay grupos repetitivos ni campos que contengan listas de valores.

Segunda Forma Normal (2FN)

Descripción

La segunda forma normal (2FN) se enfoca en eliminar la dependencia parcial, asegurando que cada campo no clave dependa completamente de la clave primaria.

Descripción Técnica

Para que las tablas estén en 2FN, deben estar en 1FN y todos los campos no clave deben depender completamente de la clave primaria. En este diagrama, las tablas `Sucursales`, `Clientes`, `Empleados`, `Vehículos` y `Alquileres` cumplen con esta forma normal, ya que cada campo no clave depende totalmente de su clave primaria respectiva. Por ejemplo, en la tabla `Alquileres`, los campos `fecha_salida`, `fecha_entrada`, `valor_semana`, etc., dependen completamente de la clave primaria `id_alquiler`.

Tercera Forma Normal (3FN)

Descripción

La tercera forma normal (3FN) se enfoca en eliminar la dependencia transitiva, asegurando que todos los campos no clave sean mutuamente independientes.

Descripción Técnica

Para que las tablas estén en 3FN, deben estar en 2FN y todos los campos no clave deben ser independientes entre sí. En este diagrama, las tablas están en 3FN. Por ejemplo, en la tabla `Empleados`, los campos `nombre`, `apellido`, `celular`, etc., dependen solo de `id_empleado` y no entre sí. No hay dependencias transitivas presentes, lo que garantiza que las tablas estén correctamente normalizadas en la tercera forma normal.

Construcción del Modelo Físico

A continuación se crea el modelo lógico de la base de datos :

Descripción

Dentro del modelo lógico empezamos creando la base datos para seguidamente crear las tablas mencionadas anteriormente , luego de esto se hace la inserción de los datos que van a estar dentro de la base de datos y finalmente se crean las consultas , los eventos , los triggers y los procedimientos necesarios usando para este proyecto.

Código

CREATE TABLE sucursales (

id_sucursal INT PRIMARY KEY,

```
ciudad VARCHAR(100) NOT NULL,
 direccion VARCHAR(200) NOT NULL,
 telefono_fijo VARCHAR(15) NOT NULL,
 correo_electronico VARCHAR(100) NOT NULL
CREATE TABLE clientes (
 id_cliente INT PRIMARY KEY,
  nombre VARCHAR(100) NOT NULL,
 apellido VARCHAR(100) NOT NULL,
 cedula VARCHAR(15) NOT NULL,
 direccion_residencia VARCHAR(200) NOT NULL,
 ciudad_residencia VARCHAR(100) NOT NULL,
 celular VARCHAR(15) NOT NULL
CREATE TABLE vehiculos (
 id_vehiculo INT PRIMARY KEY,
 tipo_vehiculo VARCHAR(50) NOT NULL,
 placa VARCHAR(20) NOT NULL,
  referencia VARCHAR(50) NOT NULL,
 modelo INT NOT NULL,
 puertas INT NOT NULL,
 capacidad INT NOT NULL,
 sunroof BOOLEAN NOT NULL,
 motor VARCHAR(20) NOT NULL,
 color VARCHAR(30) NOT NULL
alter table vehiculos modify column placa VARCHAR(30);
CREATE TABLE empleados (
 id_empleado INT PRIMARY KEY,
 id_sucursal INT NOT NULL,
  nombre VARCHAR(100) NOT NULL,
  apellido VARCHAR(100) NOT NULL,
 cedula VARCHAR(15) NOT NULL,
 direccion_residencia VARCHAR(200) NOT NULL,
 correo_electronico VARCHAR(100) NOT NULL,
 celular VARCHAR(15) NOT NULL,
 FOREIGN KEY (id_sucursal) REFERENCES sucursales(id_sucursal)
CREATE TABLE alquileres (
 id_alquiler INT PRIMARY KEY,
 id_vehiculo INT NOT NULL,
 id_cliente INT NOT NULL,
  id_empleado INT NOT NULL,
```

```
id_sucursal_salida INT NOT NULL,
id_sucursal_entrada INT NOT NULL,
fecha_salida DATE NOT NULL,
fecha_entrada DATE NOT NULL,
fecha_esperada_llegada DATE NOT NULL,
valor_semana DECIMAL(10,2) NOT NULL,
valor_dia DECIMAL(10,2) NOT NULL,
porcentaje_descuento DECIMAL(5,2) NOT NULL,
valor_cotizado DECIMAL(10,2) NOT NULL,
valor_pagado DECIMAL(10,2) NOT NULL,
FOREIGN KEY (id_vehiculo) REFERENCES vehiculos(id_vehiculo),
FOREIGN KEY (id_cliente) REFERENCES clientes(id_cliente),
FOREIGN KEY (id_empleado) REFERENCES empleados(id_empleado),
FOREIGN KEY (id_sucursal_salida) REFERENCES sucursales(id_sucursal),
FOREIGN KEY (id_sucursal_entrada) REFERENCES sucursales(id_sucursal)
);
```

El script SQL define cinco tablas para un sistema de alquiler de vehículos: `sucursales` para los detalles de las sucursales, `clientes` para la información de los clientes, `vehiculos` para los datos de los vehículos, `empleados` para los datos de los empleados, y `alquileres` para gestionar los registros de alquileres. Las tablas están interrelacionadas mediante claves foráneas que conectan vehículos, clientes, empleados y sucursales, asegurando integridad referencial y registrando detalles clave de cada transacción de alquiler.

Tablas

Tabla sucursales

Descripción

Se crea tabla de sucursales para almacenar información crucial como lo son, id único para identificar, ciudad de permanecía, dirección, teléfono fijo y correo electrónico

Gráfica

Tabla de sucursales con la información de las 5 sucursales pertenecientes a la compañía , con una relación de (1-n) con la tabla de alquileres ya que comparte el dato de su id para informar acerca de las sucursales a donde llega y entra cada automóvil al momento d prestar un servicio a algún cliente.

Tabla clientes

Descripción

La tabla de clientes es creada para llevar un registro de las personas que han tomado o están interesados en tomar algún servicio con la empresa esto con el fin de llevar un control total de estos, esta contiene datos como: id único para cada cliente, nombre y apellido para tener un segundo identificar, su cedula como segundo identificador único, dirección de residencia, ciudad de residencia y celular.

Gráfica

Descripción Técnica

Se ha diseñado la tabla "clientes" con el propósito de mantener un registro exhaustivo de individuos que han utilizado o muestran interés en los servicios proporcionados por la empresa. Esta estructura de datos permite un control detallado de dichos clientes , la tabla mantiene una relación de (1-n) con la tabla de alquileres proporcionándole su id a dicha tabla para tener la información acerca de quien toma el servicio.

Tabla vehículos

Descripción

La tabla de vehículos es creada para llevar un control total de los vehículos pertenecientes a la empresa, esta tabla brinda información la cual podrá mirar el cliente para elegir su vehículo y la empresa para llevar el control y cambios de cada vehículo, tiene datos esenciales como : id unico para cada vehículo , tipo de vehículo (sedán, compacto, camioneta platón, camioneta lujo, deportivo, etc) , placa, referencia, modelo, puertas, capacidad de personas, sunroof , motor y color.

Gráfica

Se ha desarrollado la tabla "vehículos" con el objetivo de gestionar de manera integral los vehículos pertenecientes a la empresa. Esta estructura de datos facilita tanto a los clientes la visualización y selección de vehículos disponibles como a la empresa el control y mantenimiento de cada unidad, la tabla mantiene una relacion de (1-n) con la tabla de alquileres proporcionándole su id a dicha tabla para tener la informacion acerca de que automóvil esta tomado para el servicio.

Tabla empleados

Descripción

Se crea tabla de empleados para registrar cada empleado perteneciente a la compañía con el fin de llevar el control de las personas con diferentes permisos dentro de la base de datos de la empresa contiene atributos como: id único para cada empleado, id de la sucursal donde labora id obtenida de la tabla de sucursales, nombre, apellido, cedula, dirección de residencia, correo electrónico y celular.

Gráfica

Descripción Técnica

Se ha implementado la tabla "empleados" con el propósito de gestionar el registro detallado de cada empleado que forma parte de la compañía. Esta estructura de datos permite el control eficiente de las personas con diferentes niveles de permisos dentro del sistema de gestión de la empresa , la tabla mantiene una relación de (1-n) con la tabla de alquileres proporcionándole su id a dicha tabla para tener la información acerca de el empleado encargado del servicio.

Tabla alquileres

Descripción

Tabla de clientes se crea para llevar control total del servicio que se ofrece por la compañía que es el alquiler de autos dentro de esta tabla podemos encontrar datos del id del vehículo usado , id del cliente que va a usar el servicio , el id del empleado encargado del servicio , id de la sucursal de donde sale el carro , id de la sucursal donde llega el carro y finalmente datos detallados acerca del servicio obtenido por algún cliente (Se tiene que tener en cuenta que el id se llama de las tablas creadas con anterioridad para tener control de datos de las personas involucradas a este).

Gráfica

Descripción Técnica

Se ha desarrollado la tabla "servicios_alquiler_autos" para gestionar integralmente el servicio de alquiler de autos ofrecido por la compañía. Esta estructura de datos permite un control exhaustivo de cada transacción de alquiler , Es importante destacar que los IDs referidos son obtenidos de las tablas previamente creadas para asegurar un seguimiento efectivo de todos los datos relacionados con las personas involucradas en cada transacción.

Relaciones entre Tablas

Relaciones entre Tablas

Descripción

El diagrama muestra las relaciones entre las tablas de una base de datos de un sistema de alquiler de vehículos. Las tablas principales son "Sucursales", "Clientes", "Empleados", "Vehículos" y "Alquileres". Las relaciones se establecen principalmente a través de claves foráneas que conectan las tablas relacionadas.

Descripción Técnica

- 1. **Sucursales** (id_sucursal, ciudad, celular, telefono_fijo, direccion, correo_electronico)
 - Relacionada con **Empleados** mediante id_sucursal (clave foránea en Empleados).
 - Relacionada con **Alquileres** mediante id_sucursal_salida y id_sucursal_entrada (claves foráneas en Alquileres).
- 2. **Clientes** (id_cliente, nombre, apellido, cedula, celular, correo_electronico, direccion_residencia, ciudad_residencia)
 - Relacionada con **Alquileres** mediante id_cliente (clave foránea en Alquileres).
- 3. **Empleados** (id_empleado, nombre, apellido, cedula, celular, id_sucursal, correo_electronico, direccion_residencia)
 - Relacionada con **Sucursales** mediante id_sucursal (clave foránea en Empleados).
 - Relacionada con **Alquileres** mediante id_empleado (clave foránea en Alquileres).
- 4. **Vehículos** (id_vehiculo, tipo_vehiculo, modelo, referencia, placa, color, motor, sunroof, puertas, capacidad)

- Relacionada con Alquileres mediante id_vehiculo (clave foránea en Alquileres).
- 5. **Alquileres** (id_alquiler, id_vehiculo, id_cliente, id_empleado, id_sucursal_salida, id_sucursal_entrada, fecha_salida, fecha_entrada, fecha_esperada_llegada, valor_semana, valor_dia, porcentaje_descuento, valor_cotizado, valor_pagado)
 - Relacionada con **Clientes** mediante id_cliente.
 - Relacionada con **Empleados** mediante id_empleado.
 - Relacionada con Sucursales mediante id_sucursal_salida y id_sucursal_entrada.
 - Relacionada con Vehículos mediante id_vehículo.

Inserción de Datos

Descripción

Sucursales: Se establecen 5 inserciones con los datos de las 5 sucursales que hay en el pais con el siguiente formato.

Clientes: Se establecen 100 inserciones con los datos de los clientes que ha tenido la empresa con el siguiente formato.

Empleados: Se establecen 100 inserciones con los datos de los empleados actuales en la empresa con el siguiente formato.

Vehículos: Se establecen 100 inserciones con los datos de los vehiculos vinculados con la empresa para el servicio que se ofrece de autorentar con el siguiente formato u orden.

Alquileres: Se establecen 100 inserciones con los datos detallados de cada servicio que ha sido comprado y usado con el siguiente formato u orden.

Gráfica

```
INSERT INTO sucursales (id_sucursal, ciudad, direccion, telefono_fijo, correo_electronico) VALUES
(1, 'Bogotá', 'Calle 123 #45-67', '6011234567', 'bogota@sucursal.com'),
```

INSERT INTO clientes (id_cliente, nombre, apellido, cedula, direccion_residencia, ciudad_residencia, celular)
VALUES
(1, 'Pedro', 'Ramírez', '6789012345', 'Calle 16 #17-18', 'Bogotá', '3001234567'),

INSERT INTO empleados (id_empleado, id_sucursal, nombre, apellido, cedula, direccion_residencia, correo_electronico, celular) VALUES (1, 1, 'Pedro', 'Ramírez', '6789012345, 'Calle 16 #17-18', 'pedro.ramirez@autorental.com', '3101234567'),

INSERT INTO alquileres (id_alquiler, id_vehiculo, id_cliente, id_empleado, id_sucursal_salida, id_sucursal_entrada, fecha_salida, fecha_entrada, VALUES

(1 1 1 1 1 1 2 '2024-06-01' '2024-06-08' '2024-06-07' 700 00 100 00 10 00 800 00 720 00)

Descripción Técnica

sucursales (id_sucursal, ciudad, direccion, telefono_fijo, correo_electronico).

clientes (id_cliente, nombre, apellido, cedula, direccion_residencia, ciudad_residencia, celular).

empleados (id_empleado, id_sucursal, nombre, apellido, cedula, direccion_residencia, correo_electronico, celular).

vehículos (id_vehículo, tipo_vehículo, placa, referencia, modelo, puertas, capacidad, sunroof, motor, color).

alquileres (id_alquiler, id_vehículo, id_cliente, id_empleado, id_sucursal_salida, id_sucursal_entrada, fecha_salida, fecha_entrada, fecha_esperada_llegada, valor_semana, valor_dia, porcentaje_descuento, valor_cotizado, valor_pagado).

Funciones y Procedimientos

A continuación podra visualizar las funciones y procedimientos dentro de la base de datos :

Funcion#1

Descripción:

Esta función calcula el valor cotizado de un alquiler basado en el tipo de vehículo y la cantidad de días de alquiler.

Sintaxis

CREATE FUNCTION calcular_valor_cotizado(tipo_vehiculo VARCHAR(50), dias INT) RETURNS DECIMAL(10,2)

...

- `tipo_vehiculo`: Tipo de vehículo (VARCHAR(50)).
- `dias`: Número de días de alquiler (INT).

Salida/Retorno:

- `DECIMAL(10,2)`: Valor cotizado del alquiler.

Ejemplo de Implementación:

SELECT calcular_valor_cotizado('Sedán', 10);

Funcion#2

Descripción

Esta función calcula el valor pagado de un alquiler considerando posibles retrasos en la devolución.

Sintaxis

CREATE FUNCTION calcular_valor_pagado(fecha_devolucion DATE, fecha_esperada_llegada DATE, valor_cotizado DECIMAL(10,2), valor_dia DECIMAL(10,2))

RETURNS DECIMAL(10,2)

Parámetros

- `fecha devolución : Fecha de devolución del vehículo (DATE).
- `fecha_esperada_llegada`: Fecha esperada de devolución del vehículo (DATE).
- `valor_cotizado`: Valor cotizado del alquiler (DECIMAL(10,2)).
- `valor_dia`: Valor diario del alquiler (DECIMAL(10,2)).

Salida/Retorno:

- `DECIMAL(10,2)`: Valor pagado del alquiler considerando retrasos.

Ejemplo de Implementación

SELECT calcular_valor_pagado('2024-06-15', '2024-06-10', 1000.00, 50.00);

Procedimientos

Procedimiento#1

Descripción

Un procedimiento almacenado para registrar un nuevo alquiler en la base de datos.

```
Sintaxis
```

```
DELIMITER //
CREATE PROCEDURE registrar alquiler(
  IN p_id_alquiler INT,
  IN p_id_vehiculo INT,
  IN p_id_cliente INT,
  IN p_id_empleado INT,
  IN p id sucursal salida INT,
  IN p_id_sucursal_entrada INT,
  IN p_fecha_salida DATE,
  IN p_fecha_entrada DATE,
  IN p_fecha_esperada_llegada DATE,
  IN p_valor_semana DECIMAL(10,2),
  IN p_valor_dia DECIMAL(10,2),
  IN p_porcentaje_descuento DECIMAL(5,2),
  IN p valor cotizado DECIMAL(10,2),
  IN p_valor_pagado DECIMAL(10,2)
)
BEGIN
  INSERT INTO alquileres (
    id alguiler, id vehiculo, id cliente, id empleado, id sucursal salida,
    id_sucursal_entrada, fecha_salida, fecha_entrada, fecha_esperada_llegada,
    valor_semana, valor_dia, porcentaje_descuento, valor_cotizado, valor_pagado
  )
  VALUES (
    p_id_alquiler, p_id_vehiculo, p_id_cliente, p_id_empleado, p_id_sucursal_salida,
    p_id_sucursal_entrada, p_fecha_salida, p_fecha_entrada, p_fecha_esperada_llegada,
    p_valor_semana, p_valor_dia, p_porcentaje_descuento, p_valor_cotizado,
p_valor_pagado
  );
END //
```

DELIMITER;

```
p_id_alquiler: ID del alquiler (INT).

p_id_vehiculo: ID del vehículo (INT).

p_id_cliente: ID del cliente (INT).

p_id_empleado: ID del empleado (INT).

p_id_sucursal_salida: ID de la sucursal de salida (INT).

p_id_sucursal_entrada: ID de la sucursal de entrada (INT).

p_fecha_salida: Fecha de salida (DATE).

p_fecha_entrada: Fecha de entrada (DATE).

p_fecha_esperada_llegada: Fecha esperada de llegada (DATE).

p_valor_semana: Valor semanal del alquiler (DECIMAL).

p_valor_dia: Valor diario del alquiler (DECIMAL).

p_valor_cotizado: Valor cotizado para el alquiler (DECIMAL).

p_valor_pagado: Valor pagado por el cliente (DECIMAL).
```

Salida/Retorno

Inserción de un nuevo registro en la tabla alquileres.

Ejemplo de Implementación

```
CALL registrar_alquiler(
1, 101, 201, 301, 1, 2, '2024-07-01', '2024-07-07', '2024-07-07', 700.00, 100.00, 10.00, 650.00, 650.00
);
```

Triggers

Trigger#1

Descripción

Este trigger verifica que el modelo de un vehículo no sea anterior a 2012 antes de insertar o actualizar un registro en la tabla `vehículos`.

Sintaxis

```
CREATE TRIGGER trigger_check_modelo_before BEFORE INSERT OR UPDATE ON vehiculos
```

- Ninguno.

Salida/Retorno:

- Ninguno.

Ejemplo de Implementación

```
CREATE TRIGGER trigger_check_modelo_before
BEFORE INSERT
ON vehiculos FOR EACH ROW
BEGIN
IF NEW.modelo < 2012 THEN
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'El modelo no puede ser anterior a 2012.';
END IF;
END;
```

Trigger2

Descripción

Este trigger guarda el cambio de número de celular de los clientes en una tabla de logs cada vez que se actualiza el campo `celular` en la tabla `clientes`.

Sintaxis

```
CREATE TRIGGER trigger_guardar_celular_after_update AFTER UPDATE ON clientes
```

Parámetros

- Ninguno.

Salida/Retorno

- Ninguno.

Ejemplo de Implementación

CREATE TRIGGER trigger_guardar_celular_after_update

```
AFTER UPDATE ON clientes

FOR EACH ROW

BEGIN

IF OLD.celular <> NEW.celular THEN

INSERT INTO log_cambios_celular (id_cliente, old_celular, new_celular)

VALUES (OLD.id_cliente, OLD.celular, NEW.celular);

END IF;

END;
```

Eventos#1

Descripción

Un evento programado para actualizar el estado de los alquileres vencidos diariamente.

Sintaxis

```
DELIMITER //
```

```
CREATE EVENT actualizar_estado_alquileres_vencidos
ON SCHEDULE EVERY 1 DAY
STARTS '2024-07-01 00:00:00'
DO
BEGIN
    UPDATE alquileres
    SET valor_pagado = valor_pagado + (DATEDIFF(CURDATE(), fecha_esperada_llegada)
* valor_dia * 1.08)
    WHERE fecha_esperada_llegada < CURDATE() AND fecha_entrada IS NULL;
END //
```

DELIMITER;

Parámetros

- Ninguno.

Salida/Retorno

Actualización del campo valor_pagado para alquileres vencidos.

Ejemplo de Implementación

El evento se ejecutará automáticamente todos los días a medianoche.

Consultas

Consultas de Cliente

Consulta#1

Descripción

Esta consulta obtiene los vehículos tipo 'Sedán' disponibles para alquiler en junio de 2024, con un valor semanal entre 500 y 1000.

Sintaxis

SELECT v.id_vehiculo, v.tipo_vehiculo, v.placa, v.referencia, v.modelo, v.color, a.valor_semana, a.valor_dia

FROM vehiculos v

LEFT JOIN alquileres a ON v.id_vehiculo = a.id_vehiculo

WHERE (a.fecha_salida IS NULL OR a.fecha_entrada < CURDATE())

AND v.tipo_vehiculo = 'Sedán'

AND a.valor semana BETWEEN 500 AND 1000

AND CURDATE() BETWEEN '2024-06-01' AND '2024-06-30';

Parámetros

- Ninguno.

Salida/Retorno

- Una lista de vehículos tipo 'Sedán' disponibles para alquiler.

Ejemplo de Implementación

SELECT v.id_vehiculo, v.tipo_vehiculo, v.placa, v.referencia, v.modelo, v.color, a.valor_semana, a.valor_dia

FROM vehiculos v

LEFT JOIN alquileres a ON v.id_vehiculo = a.id_vehiculo

WHERE (a.fecha_salida IS NULL OR a.fecha_entrada < CURDATE())

AND v.tipo_vehiculo = 'Sedán'

AND a.valor_semana BETWEEN 500 AND 1000

AND CURDATE() BETWEEN '2024-06-01' AND '2024-06-30';

Consulta# 2

Descripción

Esta consulta muestra todos los registros de la tabla `alquileres`.

-Sintaxis:

SELECT * FROM alquileres;

Parámetro

- Ninguno.

Salida/Retorno

- Todos los registros de la tabla `alquileres`.

Ejemplo de Implementación

SELECT * FROM alquileres;

Consulta #3

Descripción

Esta consulta obtiene el historial de alquileres de un cliente específico (con `id_cliente` 91).

-Sintaxis

```
SELECT id_alquiler, fecha_entrada, fecha_salida, valor_pagado FROM alquileres
WHERE id_cliente = 91;
```

Parámetros

- `id_cliente`: ID del cliente (INT).

Salida/Retorno:

- Historial de alquileres del cliente con ID 91.

Ejemplo de Implementación:

```
SELECT id_alquiler, fecha_entrada, fecha_salida, valor_pagado FROM alquileres
WHERE id_cliente = 91;
```

Consulta #4

Descripción

Esta consulta permite a los clientes ver todos los vehículos disponibles ordenados por referencia.

Sintaxis

SELECT * FROM vehiculos ORDER BY referencia;

- Ninguno.

Salida/Retorno

- Lista de vehículos ordenados por referencia.

Ejemplo de Implementación

SELECT * FROM vehiculos ORDER BY referencia;

Consulta #5

Descripción

Esta consulta permite a los clientes ver su historial de alquileres con el total pagado y fechas correspondientes

Sintaxis

```
SELECT a.*, SUM(valor_pagado) AS total_pagado
FROM alquileres a
WHERE a.id_cliente = :id_cliente
GROUP BY a.id_alquiler, a.fecha_salida, a.fecha_entrada, a.fecha_esperada_llegada,
a.valor_semana, a.valor_dia, a.porcentaje_descuento, a.valor_cotizado;
```

Parámetros

- `id_cliente`: ID del cliente (INT).

Salida/Retorno

- Historial de alquileres con total pagado y fechas.

-Ejemplo de Implementación

```
SELECT a.*, SUM(valor_pagado) AS total_pagado
FROM alquileres a
WHERE a.id_cliente = 101
GROUP BY a.id_alquiler, a.fecha_salida, a.fecha_entrada, a.fecha_esperada_llegada,
a.valor_semana, a.valor_dia, a.porcentaje_descuento, a.valor_cotizado;
```

Consulta# 6

Descripción

Esta consulta permite a los clientes ver las especificaciones de un vehículo con el nombre del carro.

Sintaxis

SELECT * FROM vehiculos WHERE referencia = :nombre_carro;

- `nombre carro`: Nombre del carro (VARCHAR).

Salida/Retorno

- Especificaciones del vehículo con el nombre dado.

Ejemplo de Implementación

SELECT * FROM vehiculos WHERE referencia = 'Toyota Corolla';

Consulta#7

Descripción

Esta consulta permite a los clientes ver los empleados disponibles en una sucursal específica para solicitar ayuda.

Sintaxis

```
SELECT e.id_empleado, e.nombre, e.apellido, e.correo_electronico, e.celular FROM empleados e
WHERE e.id_sucursal = :id_sucursal;
```

Parámetros:

- `id_sucursal`: ID de la sucursal (INT).

Salida/Retorno

- Lista de empleados disponibles en la sucursal dada.

Ejemplo de Implementación

```
SELECT e.id_empleado, e.nombre, e.apellido, e.correo_electronico, e.celular FROM empleados e WHERE e.id_sucursal = 1;
```

Consultas de Empleado

Consulta#1

Descripción

Esta consulta permite a los empleados ver el historial de empleados por sucursal.

Sintaxis

```
SELECT e.*
FROM empleados e
WHERE e.id_sucursal = :id_sucursal;
```

- `id_sucursal`: ID de la sucursal (INT).

Salida/Retorno

- Historial de empleados por sucursal.

Ejemplo de Implementación

```
SELECT e.*
FROM empleados e
WHERE e.id_sucursal = 2;
```

Consulta #2

Descripción:

Esta consulta permite a los empleados ver el historial de alquileres por sucursal.

Sintaxis

```
SELECT a.*
FROM alquileres a
WHERE a.id_sucursal_salida = :id_sucursal
OR a.id_sucursal_entrada = :id_sucursal;
```

Parámetros

- `id_sucursal`: ID de la sucursal (INT).

Salida/Retorno

- Historial de alquileres por sucursal.

Ejemplo de Implementación

```
SELECT a.*
FROM alquileres a
WHERE a.id_sucursal_salida = 2
OR a.id_sucursal_entrada = 2;
```

Consulta #3

Descripción

Esta consulta permite a los empleados ver todos los vehículos ordenados alfabéticamente por referencia.

-Sintaxis

SELECT * FROM vehiculos ORDER BY referencia:

Parámetros:

- Ninguno.

Salida/Retorno

- Lista de vehículos ordenados alfabéticamente.

Ejemplo de Implementación:

SELECT * FROM vehiculos ORDER BY referencia;

Consulta# 4

-Descripción

Esta consulta permite a los empleados ver las veces que un empleado ha estado involucrado en un alquiler

Sintaxis

SELECT e.id_empleado, e.nombre, e.apellido, COUNT(a.id_alquiler) AS num_alquileres FROM empleados e
JOIN alquileres a ON e.id_empleado = a.id_empleado
GROUP BY e.id_empleado, e.nombre, e.apellido;
- Ninguno.

Salida/Retorno

- Número de alquileres en los que ha estado involucrado cada empleado.

-Ejemplo de Implementación

SELECT e.id_empleado, e.nombre, e.apellido, COUNT(a.id_alquiler) AS num_alquileres FROM empleados e
JOIN alquileres a ON e.id_empleado = a.id_empleado
GROUP BY e.id_empleado, e.nombre, e.apellido;

Consulta#5

Descripción

Esta consulta permite a los empleados ver los alquileres en los que se pagó menos de lo cotizado.

Sintaxis

SELECT *

FROM alquileres

WHERE valor_pagado < valor_cotizado;

- Ning

Usuarios y Accesos

Tabla de Usuarios

Usuario	Acceso	Descripción	Comandos	Funciones/Procedi mientos / consultas
Cliente (websofware)	%	Este usuario fue creados para que los clientes pudieran entrar a la plataforma y hacer cierto tipo de consultas sin entrar o tener control total de los datos de la compañia	GRANT SELECT ON	Consultas clientes
Empleado	%	Este usuario fue creado para que los empleado (administracion, generencia, empleados) puedan tener control para seleccionar, visualizar insertar y actualizar datos acerca de todas las tablas pero nunca para eliminar.	GRANT SELECT, INSERT, UPDATE	funcion1(), Funcion2(), Consultas empleados

Referencias