

ANTIMICROBIAL GLASS AND RESIN COMPOSITION**Publication number:** JP11228173 (A)**Also published as:****Publication date:** 1999-08-24 JP3845852 (B2)**Inventor(s):** YAMANAKA TOSHIRO; SHINDO KAZUYOSHI; HIKATA HAJIME**Applicant(s):** NIPPON ELECTRIC GLASS CO**Classification:****- international:** C03C3/062; C03C3/085; C03C4/00; C03C3/062; C03C3/076;
C03C4/00; (IPC1-7): C03C4/00; C03C3/062; C03C3/085**- European:****Application number:** JP19980054386 19980218**Priority number(s):** JP19980054386 19980218**Abstract of JP 11228173 (A)**

PROBLEM TO BE SOLVED: To provide a ZnO based antimicrobial glass having high antimicrobial activity and being hard to cause devitrification and phase separation and a resin composition containing it. **SOLUTION:** The antimicrobial glass consists of (expressed by mol.%) 25-75% ZnO, 20-60% SiO₂, 2-40% Al₂O₃, 0-40% RO (RO is one kind or more MgO, CaO, SrO, and BaO), 0-20% TiO₂+ZrO₂, 0-4.5% B₂O₃, and 0-4.5% P₂O₅.

Data supplied from the **esp@cenet** database — Worldwide

(51)Int.Cl.⁴
C 0 3 C 4/00
3/062
3/085

識別記号

F I
C 0 3 C 4/00
3/062
3/085

審査請求 未請求 請求項の数10 FD (全 5 頁)

(21)出願番号	特願平10-54386	(71)出願人 000232243 日本電気硝子株式会社 滋賀県大津市晴嵐2丁目7番1号
(22)出願日	平成10年(1998)2月18日	(72)発明者 山中 俊郎 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 (72)発明者 新藤 和義 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 (72)発明者 日方 元 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内

(54)【発明の名称】 抗菌性ガラス及び樹脂組成物

(57)【要約】

【課題】 高い抗菌性を有し、しかも失透や分相が起こり難いZnO系の抗菌性ガラスと、これを含む樹脂組成物を提供する。

【解決手段】 抗菌剤としてm o 1%表示でZnO 2.5~7.5%、SiO₂ 20~60%、Al₂O₃ 2~40%、RO (ROはMgO、CaO、SrO、BaOの1種以上) 0~40%、R₂O (R₂OはLi₂O、Na₂O、K₂Oの1種以上) 0~40%、TiO₂+ZrO₂ 0~20%、B₂O₃ 0~4.5%、P₂O₅ 0~4.5%からなる抗菌性ガラスを使用する。

【特許請求の範囲】

【請求項1】 m o l % 表示で Z n O 25~75%、 S i O 2 20~60%、 A l 2 O 3 2~40%、 R O (R O は M g O、 C a O、 S r O、 B a O の 1 種以上) 0~40%、 R 2 O (R 2 O は L i 2 O、 N a 2 O、 K 2 O の 1 種以上) 0~40%、 T i O 2 + Z r O 2 0~20%、 B 2 O 3 0~4. 5%、 P 2 O 5 0~4. 5% からなることを特徴とする抗菌性ガラス。

【請求項2】 粉末の形態で提供されることを特徴とする請求項1の抗菌性ガラス。

【請求項3】 平均粒径が 1~20 μm であることを特徴とする請求項2の抗菌性ガラス。

【請求項4】 树脂充填用として使用されることを特徴とする請求項1~3の抗菌性ガラス。

【請求項5】 ポリエチル系樹脂、アクリル系樹脂、メラミン系樹脂、ABS樹脂又はシリコーン系樹脂に充填されることを特徴とする請求項4の抗菌性ガラス。

【請求項6】 抗菌性ガラスが含有されてる樹脂組成物において、該抗菌性ガラスが、 m o l % 表示で Z n O 25~75%、 S i O 2 20~60%、 A l 2 O 3 2~40%、 R O (R O は M g O、 C a O、 S r O、 B a O の 1 種以上) 0~40%、 R 2 O (R 2 O は L i 2 O、 N a 2 O、 K 2 O の 1 種以上) 0~40%、 T i O 2 + Z r O 2 0~20%、 B 2 O 3 0~4. 5%、 P 2 O 5 0~4. 5% からなることを特徴とする樹脂組成物。

【請求項7】 抗菌性ガラスが粉末の形態で含有されることを特徴とする請求項6の樹脂組成物。

【請求項8】 抗菌性ガラスの平均粒径が 1~20 μm であることを特徴とする請求項7の樹脂組成物。

【請求項9】 抗菌性ガラスの含有量が 0. 1~70 容量% であることを特徴とする請求項6~8の樹脂組成物。

【請求項10】 樹脂がポリエチル系樹脂、アクリル系樹脂、メラミン系樹脂、ABS樹脂又はシリコーン系樹脂であることを特徴とする請求項6~9の樹脂組成物。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は抗菌性ガラスと、これを含む樹脂組成物に関するものである。

【0002】

【従来の技術】洗面台、流し台、浴槽、たらい、石鹼入れ、歯ブラシ等、水周りで使用される樹脂製品は、長い時間高温の条件下におかれるので、細菌や黴が増殖しやすい。細菌や黴の増殖をおさえるために、従来より樹脂に抗菌剤を混合することが行なわれている。無機系の抗菌剤には、酸化銀を利用したものが多く用いられており、例えば酸化銀を担持させたゼオライト粉末や、組成中に

A g O を含む溶解性のガラス粉末等が知られている。ところが、酸化銀は価格が高く使用量が制限される場合がある。また A g O 含有ガラス粉末は、長期間使用すると紫外線や熱等の作用で変色する傾向があり好ましくない。この傾向は樹脂製品が白色の場合には特に問題になりやすい。

【0003】一方、Z n O も水に溶出すると抗菌作用を有することが知られており、Z n O を主成分とするガラスが抗菌剤として提案されている。Z n O 系ガラスは原料費が安価であり、また樹脂製品に充填しても紫外線や熱等による変色を起こさないという特徴がある。この種の抗菌性ガラスとして、例えば Z n O - B 2 O 3 - N a 2 O 系ガラスや Z n O - P 2 O 5 系ガラスが知られている。

【0004】

【発明が解決しようとする課題】Z n O 系ガラスの抗菌作用は、ガラスから溶出した Z n +2 イオンによるものであり、ガラス中に Z n O が多く含まれるほど強い抗菌力をを持つことが期待される。しかしながら Z n O 含有量が多いとガラスが不安定になり易く、成形時に失透や分相を起こし易くなる。このため Z n O を極力多量含有し、且つ安定性の高いガラス組成を見いだすことが、抗菌能力の高い Z n O 系ガラスを得るために課題となる。

【0005】本発明の目的は、高い抗菌性を有し、しかも失透や分相が起こり難い新規な Z n O 系の抗菌性ガラスと、これを含む樹脂組成物を提供することである。

【0006】

【課題を解決するための手段】本発明の抗菌性ガラスは、m o l % 表示で Z n O 25~75%、 S i O 2 20~60%、 A l 2 O 3 2~40%、 R O (R O は M g O、 C a O、 S r O、 B a O の 1 種以上) 0~40%、 R 2 O (R 2 O は L i 2 O、 N a 2 O、 K 2 O の 1 種以上) 0~40%、 T i O 2 + Z r O 2 0~20%、 B 2 O 3 0~4. 5%、 P 2 O 5 0~4. 5% からなることを特徴とする。

【0007】また本発明の樹脂組成物は、抗菌性ガラスが含有されてる樹脂組成物において、該抗菌性ガラスが、m o l % 表示で Z n O 25~75%、 S i O 2 20~60%、 A l 2 O 3 2~40%、 R O (R O は M g O、 C a O、 S r O、 B a O の 1 種以上) 0~40%、 R 2 O (R 2 O は L i 2 O、 N a 2 O、 K 2 O の 1 種以上) 0~40%、 T i O 2 + Z r O 2 0~20%、 B 2 O 3 0~4. 5%、 P 2 O 5 0~4. 5% からなることを特徴とする。

【0008】

【作用】本発明の抗菌性ガラスは、適度な溶解性を有する Z n O - S i O 2 - A l 2 O 3 系ガラスからなる。ガラス組成を上記した範囲に限定する理由を以下に述べる。

【0009】Z n O は抗菌性を与える主要因子であり、

Zn^{++} イオンとして溶出して樹脂に抗菌性を付与する。 ZnO の含有量は25~75%、好ましくは35~65%である。 ZnO が25%よりも少なくなると抗菌作用が弱くなり、75%を越えるとガラス化が困難になる。

【0010】 SiO_2 はガラス形成成分であり、その含有量は20~60%、好ましくは30~60%である。 SiO_2 が20%より少ないとガラス化が困難になり、またガラスの安定性が低下する。一方、60%を超えるとガラスの溶融温度が高くなりすぎる。

【0011】 Al_2O_3 もガラス形成成分であり、その含有量は2~40%、好ましくは5~30%である。 Al_2O_3 が2%より少ないとガラス化が困難になり、またガラスの安定性が低下する。一方、40%を超えるとガラスの溶融温度が高くなりすぎる。

【0012】 RO (RO は MgO 、 CaO 、 SrO 、 BaO の1種以上)はガラスの溶融を助ける成分であり、その含有量は合量で0~40%、好ましくは0~25%である。 RO が40%を超えるとガラスが不安定になる。なお MgO の含有量は0~15%、特に0~10%が好ましく、 CaO の含有量は0~25%、特に0~15%が好ましく、 SrO の含有量は0~15%、特に0~10%が好ましく、 BaO の含有量は0~15%、特に0~10%であることが好ましい。

【0013】 R_2O (R_2O は Li_2O 、 Na_2O 、 K_2O の1種以上)はガラスの溶融を助ける成分であり、その含有量は合量で0~40%、好ましくは0~35%である。 R_2O が40%を超えるとガラスが不安定になる。なお Li_2O 、 Na_2O 及び K_2O の含有量は各々0~35%、特に各々0~15%であることが好ましい。

【0014】 TiO_2 と ZrO_2 はガラスの耐酸性や耐アルカリ性を調整する成分であり、その含有量は合量で0~20%、好ましくは0~10%である。これら成分の含有量が20%を超えるとガラス溶融が困難になる。なお各成分の含有量は各々0~10%、特に0~5%が好ましい。

【0015】 B_2O_3 及び P_2O_5 はガラスの溶融性を改善する成分であり、その含有量は各々0~4.5%、好ましくは0~3%である。 B_2O_3 及び P_2O_5 が4.5%を超えるとガラスの化学耐久性が悪くなる。

【0016】また上記成分以外にも、例えば溶融性を改善するために SnO_2 、 Nb_2O_5 、 La_2O_3 等を各々5%まで添加することが可能である。

【0017】本発明の抗菌性ガラスは、例えば粉末状、繊維状、フレーク状等種々の形態で提供することができる。中でも粉末の形態で提供すると比表面積が大きくなるため、高い抗菌効果が得られる。粉末の場合、平均粒径が1~20μm、好ましくは2~20μmの粒度を有するようにすることが好ましい。つまり粉末の平均粒径が1μmより小さいとガラス粉末が製造し難くなり、2

0μmより大きくなると単位重量当たりの Zn^{++} イオンの溶出量が小さくなつて好ましくないためである。

【0018】本発明の抗菌性ガラスは、熱硬化性樹脂や熱硬化性樹脂樹脂の充填用として使用可能である。例えばフェノール系樹脂、ポリエステル系樹脂、メラミン系樹脂、ユリア系樹脂、ジアリルフタレート系樹脂、エボキシ系樹脂、シリコーン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、SAN樹脂、ABS樹脂、ポリカーボネート系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリフェニルサルファイト系樹脂等や、これらの複合体を使用できる。これら樹脂のなかでも、特に衛生容器等の用途に用いられるアクリル系樹脂、ポリエステル系樹脂、メラミン系樹脂、ABS樹脂や、シーリング材等の用途に用いられるシリコーン系樹脂の充填用として使用することが好ましい。

【0019】なお本発明の抗菌性ガラスは樹脂充填用に限られるものではなく、例えばガラスやセラミックの抗菌性釉薬、金属の抗菌性塗料等、種々の抗菌用途に使用可能である。

【0020】本発明の樹脂組成物は、上記した ZnO - SiO_2 - Al_2O_3 系の抗菌性ガラスを含有するものであり、その含有量は0.1~70容質量%、特に0.1~10容質量%であることが望ましい。含有量をこのように限定した理由は、0.1容質量%より少ないと樹脂に十分な抗菌性を付与し難くなる。一方、抗菌性ガラスの含有量が多いほど抗菌力が大きくなるが、10容質量%を越えると抗菌力は殆ど変わらなくなり、70容質量%より多くなると樹脂の成形が困難になる。

【0021】また樹脂としては、例えばフェノール系樹脂、ポリエステル系樹脂、メラミン系樹脂、ユリア系樹脂、ジアリルフタレート系樹脂、エボキシ系樹脂、シリコーン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、SAN樹脂、ABS樹脂、ポリカーボネート系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリフェニルサルファイト系樹脂等や、これらの複合体が使用できる。これら樹脂のなかでも、特に衛生容器等の用途に用いられるアクリル系樹脂、ポリエステル系樹脂、メラミン系樹脂、ABS樹脂や、シーリング材等の用途に用いられるシリコーン系樹脂を使用することが好ましい。

【0022】なお本発明の樹脂組成物においては、抗菌性ガラス以外にも、通常樹脂に含有される各種の添加物を適宜含有させることができるとある。

【0023】

【実施例】以下、本発明を実施例に基づいて説明する。

【0024】表1及び表2は、本発明の実施例(試料No.1~10)を示している。

【0025】

【表1】

(mol%)

試料No.		1	2	3	4	5
ガ	ZnO	39.9	50.8	42.7	31.5	32.5
	SiO ₂	48.8	37.2	41.3	55.3	54.0
	Al ₂ O ₃	10.0	8.0	14.0	10.2	10.5
	MgO	-	-	-	-	-
ラ	CaO	1.3	-	-	-	-
	SrO	-	-	-	-	-
	BaO	-	-	-	-	-
ス	Li ₂ O	-	-	2.0	-	-
	Na ₂ O	-	-	-	-	-
	K ₂ O	-	-	-	-	-
	TiO ₂	-	-	-	-	-
成	ZrO ₂	-	-	-	-	-
	B ₂ O ₃	-	4.0	-	3.0	-
	P ₂ O ₅	-	-	-	-	3.0
	溶融温度(℃)	1500	1550	1500	1500	1500
抗菌性		良	良	良	良	良
樹脂の外観		良	良	良	良	良

【0026】

【表2】

		(mol%)				
試料No.		6	7	8	9	10
ガ	ZnO	44.6	35.0	36.0	42.7	47.8
	SiO ₂	46.3	42.0	40.0	40.3	35.2
	Al ₂ O ₃	7.1	18.0	5.0	14.0	8.0
ラ	MgO	-	3.0	-	-	-
	CaO	-	-	14.0	-	-
	SrO	-	-	5.0	-	-
ス	BaO	-	7.0	-	-	-
	Li ₂ O	-	-	-	-	-
	Na ₂ O	2.0	-	-	-	-
組成	K ₂ O	-	-	-	3.0	-
	TiO ₂	-	-	-	-	3.0
	ZrO ₂	-	-	-	-	2.0
	B ₂ O ₃	-	-	-	-	4.0
	P ₂ O ₅	-	-	-	-	-
	溶融温度(℃)	1550	1450	1450	1500	1500
抗菌性		良	良	良	良	良
樹脂の外観		良	良	良	良	良

【0027】各試料は次のようにして作製した。

【0028】まず酸化亜鉛、純珪粉、アルミナ、マグネシア、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリ、チタニア、ジルコニア、硼酸、リン酸亜鉛を所定に混合量になるようによく混合した後、白金坩堝に入れ、1450～1550℃で4時間溶融した。溶融後、水冷ローラーにより、肉厚が約1mmのフィルム状カレットに成形した。これをポールミルによって粉碎し、目開き105ミクロンの篩を通して、ガラス粉末の平均粒径が空気透過式比表面積測定装置((株)島津製作所製)で7～8μmになるように調整し、試料を得た。

【0029】さらにポリエスチル系樹脂粉末と上記ガラスを容積比で95：5の割合で混合し、約50×50×5mmの板状に成形し、抗菌性及び樹脂の外観について評価した。結果を各表に示す。

【0030】表から明らかなように、本発明の実施例であるNo. 1～10の試料を使用した樹脂板は、良好な抗菌性を示し、また加速試験後も外観の劣化が認められなかった。

【0031】なお抗菌性については次のようにして評価

した。まず大腸菌が $2 \times 10^3 / \text{cm}^2$ の割合で存在するよう調整された菌入りのゼラチンをシート状に加工し、これを樹脂板上に貼り付けた。次に35℃で100時間培養した後、菌数を測定し、生菌が10個未満であったものを良、10個以上検出されたものを不良とした。樹脂の外観については、加速試験(樹脂板を水中に浸漬して500時間煮沸)を行った。その後、樹脂の表面を試験前と比較し、初期の光沢を維持しているものを良、白く濁って光沢を失っているものを不良とした。

【0032】

【発明の効果】以上説明したように、本発明の抗菌性ガラスは、ガラスとして安定しており、また樹脂に充填して使用すると樹脂に十分な抗菌性を付与することができる。しかも樹脂製品の外観に影響を及ぼすことがない。それゆえ樹脂充填用抗菌剤として好ましいものである。

【0033】本発明の樹脂組成物は、抗菌性を有しており、また外観が劣化することがない。それゆえ清潔さが要求される洗面台、流し台、浴槽、たらい、石鹼入れ、歯ブラシ等の樹脂製品や、水周りのシーリング材等の用途に好適に使用できる。