UFCG-CEEI-UASC FMCC2

Lista 8 - Anéis

 A estrutura algébrica formada pelo conjunto dos números racionais e pelas operações de adição (⊕) e multiplicação (⊙) definidas abaixo é um anel?

 $a \oplus b = a.b$ e $a \odot b = a + b$ para todo $a, b \in Q$

2. O conjunto S = {a, b, c, d, e, f, g, h} com adição e multiplicação definidas pelas tabelas abaixo é um anel? Prove. Qual é o elemento zero? Todos os elementos tem inverso?

+	а	b	С	d	е	f	g	h		а	b	С	d	е	f	g	h
а	а	b	С	d	е	f	g	h	а	а	а	а	а	а	а	а	а
b	b	а	d	С	f	е	h	g	b	а	b	а	b	а	b	а	b
С	С	d	а	b	g	h	е	f	С	а	С	а	С	а	С	а	С
d	d	С	b	а	h	g	f	е	d	а	d	а	d	а	d	а	d
е	е	f	g	h	а	b	С	d	е	а	е	а	е	а	е	а	е
f	f	е	h	g	b	а	d	С	f	а	f	а	f	а	f	а	f
g	g	h	е	f	С	d	а	b	g	а	g	а	g	а	g	а	g
h	h	g	f	е	d	С	b	а	h	а	h	а	h	а	h	а	h

3. O anel da questão 2 com adição e multiplicação definidas pelas tabelas abaixo é um anel? Qual é o elemento zero? Determine o inverso aditivo de cada elemento.

+	а	b	С	d	е	f	g	h		а	b	С	d	е	f	g	h
а	а	b	С	d	е	f	g	h	а	а	а	а	а	а	а	а	а
b	b	а	d	С	f	е	h	g	b	а	е	f	b	а	е	f	b
С	С	d	е	f	g	h	а	b	С	а	f	d	g	е	b	h	С
d	d	С	f	е	h	g	b	а	d	а	b	g	h	е	f	С	d

е	е	f	g	h	а	b	С	d	е	а	а	е	е	а	а	е	е
f	f	е	h	g	b	а	d	С	f	а	е	b	f	а	е	b	f
g	g	h	а	b	С	d	е	f	g	а	f	h	С	е	b	d	g
h	h	g	b	а	d	С	f	е	h	а	b	С	d	е	f	g	h

4. Prove que o conjunto $M = \{(a, b, c, d): a, b, c, d \in Q\}$ com adição e multiplicação definidas por

$$(a, b, c, d) + (e, f, g, h) = (a + e, b + f, c + g, d + h)$$

 $(a, b, c, d)(e, f, g, h) = (ae + bg, af + bh, ce + dg, cf +dh)$

Para todos (a, b, c, d), (e, f, g, h) $\in M$ é um anel.

- 5. Prove que se R é um anel com elemento zero z, então para todo $a \in R$, a.z = z.a = z.
- 6. Mostre que P = {(a, b, -b, a) : a, b \in Z} com adição e multiplicação definidas por (a, b, -b, a) + (c, d, -d, c) = (a+c, b+d, -b d, a + c) (a,b, -b,a)(c,d, -d,c) = (ac bd, ad + bc, -ad -bc, ac-bd)

É um subanel comutativo do anel não-comutativo M da questão 4.

- 7. Considere o mapeamento $(a, b, -b, a) \rightarrow a$ de um anel P da questão 6 no anel Z dos inteiros. Os grupos aditivos P e Z são homomórficos? Por que não são isomórficos?
- 8. Prove que $S = \{2x : x \in Z\}$ com adição e multiplicação definidas em Z é um anel.
- 9. Prove que T = $\{2x + 1 : x \in Z\}$ não é um anel.
- 10. Verifique que S da guestão 3 é um anel comutativo com unidade = h.
- 11. Para $a, b \in Z$ defina $a \oplus b = a + b + 1$ e $a \circ b = a + b + ab$. Mostre que Z é um anel comutativo com respeito a essas duas operações. Qual é o zero do anel? O anel tem elemento unidade?

Respostas

- 2. É um anel.
- 7. São homomórficos.