Data Mining

UNIT- V Cluster Analysis

Scalable Data Clustering

 Many clustering algorithms work well on small data sets containing fewer than several hundred data objects;

 A large database may contain millions of objects.
 Clustering on a sample of a given large data set may lead to biased results.

Highly scalable clustering algorithms are needed.

General strategies for scalability

Reducing the number of proximity calculations

Sampling the data

Partitioning the data

Clustering a summarized representation of the data

Algorithm: k-means

- The k-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.
- Input:
 - k: the number of clusters,
 - D: a data set containing n objects.
- Output:
 - A set of k clusters
- It is relatively scalable and efficient in processing large data sets because the computational complexity O(nkt).

Algorithm: k-means

"How can we make the *k*-means algorithm more scalable?"

- A recent approach to scaling the k-means algorithm is based on the idea of identifying three kinds of regions in data:
 - Regions that are discardable.
 - Regions that are compressible,
 - Regions that must be maintained in main memory,
- Scaling the k-means algorithm by exploring the micro-clustering idea

Scalable clustering algorithms

 BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

CURE (Clustering Using Representatives).

Questions

UNIT- VI Anomaly Detection

Anomaly/Outlier Detection

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data

- Natural implication is that anomalies are relatively rare
 - One in a thousand occurs often if you have lots of data
 - Context is important, e.g., freezing temps in July
- Can be important or a nuisance
 - Unusually high blood pressure
 - 200 pound, 2 year old

Anomaly Detection Applications

Fraud Detection

purchasing behaviour of someone who steals a credit card information

Intrusion Detection

attacks on computer systems to steal information

Ecosystem Disturbance

floods, droughts, heat waves, and fires

Medicine

 For a particular patient, unusual symptoms or test results may indicate potential health problems

Causes of Anomalies

- Data from different classes
 - Measuring the weights of oranges, but a few grapefruit are mixed in

- Natural variation
 - Unusually tall people
- Data errors
 - 200 pound 2 year old

Distinction Between Noise and Anomalies

 Noise doesn't necessarily produce unusual values or objects

Noise is not interesting

Noise and anomalies are related but distinct concepts

Model-based vs Model-free

Model-based Approaches

- Model can be parametric or non-parametric
- Anomalies are those points that don't fit well
- Anomalies are those points that distort the model

Model-free Approaches

- Anomalies are identified directly from the data without building a model
- Often the underlying assumption is that the most of the points in the data are normal

General Issues: Label vs Score

- Some anomaly detection techniques provide only a binary categorization
- Other approaches measure the degree to which an object is an anomaly
 - This allows objects to be ranked
 - Scores can also have associated meaning (e.g., statistical significance)

Anomaly Detection Techniques

Statistical Approaches

- Proximity-based
 - Anomalies are points far away from other points
- Clustering-based
 - Points far away from cluster centers are outliers
 - Small clusters are outliers

Density-Based

Statistical Approaches

Probabilistic definition of an outlier: An outlier is an object that has a low probability with respect to a probability distribution model of the data.

- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameters of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)
- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?

Normal Distributions

One-dimensional Gaussian

Two-dimensional Gaussian

Outlier for a Single N(0,1) Gaussian Attribute

$$(c, \alpha), \alpha = prob(|x| \ge c)$$

c	α for $N(0,1)$
1.00	0.3173
1.50	0.1336
2.00	0.0455
2.50	0.0124
3.00	0.0027
3.50	0.0005
4.00	0.0001

$$|x| \geq c$$

Outliers in a Multivariate Normal Distribution

$$mahalanobis(\mathbf{x}, \overline{\mathbf{x}}) = (\mathbf{x} - \overline{\mathbf{x}})\mathbf{S}^{-1}(\mathbf{x} - \overline{\mathbf{x}})^T,$$

Statistically-based — Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - Let L_t(D) be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - ◆ Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$
 - If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Statistically-based — Likelihood Approach

- Data distribution, $D = (1 \lambda) M + \lambda A$
- M is a probability distribution estimated from data
 - Can be based on any modeling method (naïve Bayes, maximum entropy, etc.)
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$

$$LL_{t}(D) = \left| M_{t} \middle| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \left| A_{t} \middle| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i}) \right|$$

Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

Clustering-Based Approaches

- An object is a cluster-based outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - Outliers can impact the clustering produced
 - For density-based clusters, an object is an outlier if its density is too low
 - Can't distinguish between noise and outliers
 - For graph-based clusters, an object is an outlier if it is not well connected

Distance of Points from Closest Centroids

Relative Distance of Points from Closest Centroid

Strengths/Weaknesses of Clustering-Based Approaches

Simple

- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters

Outliers can distort the clusters

Evaluation of Anomaly Detection

- If class labels are present, then use standard evaluation approaches for rare class such as precision, recall, or false positive rate
 - FPR is also know as false alarm rate
- For unsupervised anomaly detection use measures provided by the anomaly method
 - E.g. reconstruction error or gain
- Can also look at histograms of anomaly scores.

Questions