Algorithms and Problem Solving

Syllabus

Classes

- (1반) Tue. 10:30 & Thu. 13:00 (IT/BT 813, 202)
 - (2반) Tue. 16:00 & Thu. 9:00 (IT/BT 508)

Professor: 백은옥

eunokpaek@hanyang.ac.kr

Office Hour

- Tue. 15:00-16:00
- Thu 14:30-15:30

Prerequisite

Data structure

Teaching Assistants

추유진

chooyu98@hanyang.ac.kr

박지선

sgs04023@hanyang.ac.kr

(02) 2220-4704

Evaluation

Exam 90% (Midterm I, II & Final)

Attendance 10%

4

Introduction to Algorithms, 3rd Ed.

MIT Press

T. Cormen, C. Leiserson, R. Rivest, and C. Stein

Hanyang Univ.

Topics

Data structure

- List, stack, queue, skip list
- Trees: binary heap, BST, AVL, red-black tree, B-tree
- Hashing / Bloom filter
- Graph: Dijkstra algorithm

Algorithm

- Sorting: insertion, merge, quick, counting, radix
- Complexity analysis: Big-oh, recursion tree, amortized analysis, NP completeness
- Dynamic programming
- Graph: DFS, topological sort, minimum spanning tree, disjoint set, Bellman-Ford

6

What is an algorithm?

- What is a problem?
 - A well-specified input and output.
- What is an algorithm?
 - A well-defined procedure to solve a problem.

A problem example

- Cooking instant noodles
 - Input
 - chinese noodles,
 - Powder soup,
 - an egg,
 - green onions,...
 - Output
 - Cooked instant noodles

An algorithm example

Algorithm

- Boil 500cc of water.
- Put Chinese noodles and powder soup.
- Boil for 5 minutes.
- Put an egg and green onion.
- Boil for 1 minute.

A computer algorithm

A computer algorithm

A well-defined computational procedure to solve a computational problem

• A computational problem example

- Computing the sum of integers from 1 to n
 - $S = 1 + 2 \dots + n$

Computer algorithm examples

Elementary school algorithm

Compute each addition one by one from the left.

$$- S = (...(((1+2)+3)+4)...)+n$$

High school algorithm

$$- S = n(n+1)/2$$

Are the algorithms above correct?

Correctness of algorithms

- Elementary school algorithm
 - Obvious
- High school algorithm

$$- S = n(n+1)/2$$

•
$$2S = 2(1 + 2 + ... + n)$$

•
$$2S = (1 + 2 + \dots n-1 + n) + (n + n-1 + \dots 2 + 1)$$

•
$$2S = n(n+1)$$

•
$$S = n(n+1)/2$$

Comparison of algorithms

Which one is better?

- Elementary school algorithm
- High school algorithm

Performance of algorithms

Performance of algorithms

- Running time
- Space consumption

Performance of algorithms

Performance of algorithms

- Running time
 - Elementary school algorithm?
 - High school algorithm?
- Space consumption
 - Elementary school algorithm?
 - High school algorithm?

Problem instance

Problem

- Computing the sum of integers from 1 to n
 - $S = 1 + 2 \dots + n$

A problem instance

- Computing the sum of integers from 1 to 100
 - 1 + 2 ... + 100

Class outline

Problem

- Why the problem?
- Problem definition.

Algorithm

- Description
- Correctness
- Performance

7 Hanyang Univ.