9) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a non-negative integrable function. If $\alpha > 0$ and $E_{\alpha} = \{x \in \mathbb{R}^d : f(x) > \alpha\}$, then

$$m(E_{\alpha}) \le \frac{1}{\alpha} \int_{E_{\alpha}} f(x) dx.$$

Proof: We can see that

$$m(E_{\alpha}) = \int_{E_{\alpha}} 1 \, dx.$$

Additionally, if $x \in E_{\alpha}$, then $f(x) > \alpha$, hence $f(x)/\alpha > 1$. Thus, by monotonicity, we have that

$$\int_{E_{\alpha}} 1 \, dx < \int_{E_{\alpha}} \frac{f(x)}{\alpha} \, dx = \frac{1}{\alpha} \int_{E_{\alpha}} f(x) \, dx,$$

which proves the inequality.

17)