Modul 5 Photodiode, LDR dan Relay

Mata Kuliah : Interface, Peripheral, dan Komunikasi

Kode Dosen : AJR

Kelas : D3TK-43-02

Anggota Kelompok:

1. Muhammad Yogi (6702194045)

2. M Rifki Arya Syahputra (6702190010)

PROGRAM STUDI D3 TEKNOLOGI KOMPUTER FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM BANDUNG 2021

A. Tujuan

Maksud dan tujuan dari praktikum ini adalah :

- Mahasiswa mampu menggunakan pin-pin pada mikrokontroler dalam mengendalikan Photodiode, Relay dan LDR
- 2. Mahasiswa mampu menyelesaikan kasus tertentu dengan Photodiode, Relay dan LDR dalam mikrokontroler.

B. Alat dan Bahan

Peralatan yang dibutuhkan dalam praktikum ini adalah:

- 1. 1 buah Arduino Uno R3 + Kabel USB
- 2. Jumper + header Secukupnya
- 3. 7 buah Resistor 330 Ohm (optional)
- 4. 3 buah LED (optional)
- 5. 1 buah potensio
- 6. 1 buah Protoboard
- 7. 1 buah LCD 16x2
- 8. 1 buah pin header 16x1
- 9. 1 buah IC Shift register 4094
- 10. 1 keypad 3x4
- 11. 1 seven segmen katoda
- 12. 1 buzzer
- 13. 1 push button
- 14. 1 dot matrix
- 15. 1 Photodioda
- 16. 1 LDR
- 17. 1 Relay
- 18. 2 Resistor 33 K

C. Teori dasar

Photodiode merupakan sesnsor cahaya. Dimana resistansi yang dimiliki sensor ini akan berubah-ubah sesuai intensitas cahaya yang mengenai sensor ini.

A. Power supply : 5 - 12 Volt

B. Input: Intensitas Cahaya (Analog)

C. Output : Tegangan (Analog)

D. Batasan : Dapat bekerja sampai tegangan 12 Volt. Dengan menggunakan resistor yang besar akan membuat sensor ini lebih efisien.

LDR

LDR (Light Dependent Resistor) dapat juga digunakan sebagai sensor cahaya.

LDR merupakan resistor yang nilai resistansinya akan berubah-ubah sesuai intensitas cahaya yang mengenai sensor ini.

A. Power supply: 5-320 volt

B. Input: Intensitas Cahaya (Analog)

C. Output: Tegangan (Analog)

D. Batasan: Tegangan maksimal 320 Volt

RELAY

A. Power Supply: 5-12 Volt

B. Input: Tegangan

C. Output : Arus (Sebagai sakelar)

D. Batasan : Tegangan minimum untuk trigger = 5Volt

D. Hasil Percobaan

A. Buat rangkaian sesuai dengan skematik berikut :

Catatan : ditambahkan hambatan 330 Ohm pada input LED + pada kaki 15 LCD, dan kaki 16 diground.

- B. Percobaan dalam praktikum
- 1. LDR Serial
 - a. Tuliskan program dibawah ini pada software Arduino dan upload keboard Arduino Uno R3 :

b. Lakukan modifikasi pada rangkaian diatas dan berikan komentar pada setiap line program diatas.

```
int lightPin = A0; int ledPin = 13;
void setup()
VKI2D4| Interface, Peripheral, dan Komunikasi 1
{
    Serial.begin(9600); //memulai sistem
    pinMode( ledPin, OUTPUT ); //led sebagai output
}
void loop()
{
    Serial.println(analogRead(lightPin)); //membaca nilai di LDR
    analogWrite(ledPin, analogRead(lightPin)/4); //membaca nilai di LDR dan
    dikeluarkan di LED
    delay(10);
}
```

2. Photodiode - Buzzer

a. Tuliskan program dibawah ini pada software Arduino dan upload keboard

Arduino Uno R3:

b. Lakukan modifikasi pada rangkaian diatas dan berikan komentar pada setiap line program diatas.

```
int buzz = 11;
int senRead = 0;
int pd=A1;
int limit = 850;
void setup() {
  pinMode(pd,OUTPUT); //photodioda sebagai output
  pinMode(buzz,OUTPUT); //buzzer atau speaker sebagai output
  digitalWrite(buzz,LOW); //apabila buzzer low
  Serial.begin(9600);
}
```

```
void loop() {
  int val=analogRead(senRead); //nilai=nilai di LDR
  Serial.println(val); //menampilkan nilai
  if(val <= limit) //apabila nilai <= limit
  {
    digitalWrite(buzz,HIGH); //buzzer atau speaker menyala
    delay(20);
  }
  else if(val > limit) //apabila nilai > limit
  {
    digitalWrite(buzz,LOW); //buzzer atau speaker mati
    delay(20);
  }
}
```

3. Relay

a. Tuliskan program dibawah ini pada software Arduino dan upload keboard Arduino Uno R3 :

b. Lakukan modifikasi pada rangkaian diatas dan berikan komentar pada setiap line program diatas.

```
int relay = 13; // pin relay
void setup() {
pinMode(relay, OUTPUT); //output untuk relay
}
void loop() {
digitalWrite(relay, HIGH); //relay nyala
delay(1000);
digitalWrite(relay, LOW); //relay mati
delay(1000);
```

C. Kasus Percobaan

- a) Buat sebuah aplikasi dengan menggunakan sensor photodiode, LDR, push button, LCD, Relay, dan LED
- b) Terdapat kendali on/off, PWM dan delay dan shift register,
- c) Terdapat interface analog dan digital
- d) Catat skematik beserta pin/port yang digunakan, dan program yang dibuat pada kasus diatas dan perlihatkan pada assisten
- e) Kasusnya:
 - I. Fungsi push button 1 untuk menunjukkan nilai LDR dan ditunjukkan dalam LED (PWM, rangkaian ditambah LED 1 + 330 Ohm)
 - II. Fungsi push button 2 untuk menunjukkan nilai Photodiode dan ditunjukkan dalam LED (PWM, rangkaian ditambah LED 1 + 330 Ohm)
 - III. Fungsi push button 3 untuk menunjukkan jika photodiode memiliki batas nilai tertentu agar dapat membunyikan buzzer
 - IV. Fungsi push button 4 untuk menunjukkan jika LDR memiliki batas nilai tertentu agar dapat membunyikan buzzer

E. Kesimpulan

Kesimpulan pada praktikum kali ini yaitu mampu menyelesaikan kasus-kasus yang ada yaitu mampu menggunakan ldr, photodiode, relay serta button untuk menunjjukkan nilai ldr dan photodiode.

F. Link Video Kegiatan praktikum

Link Video Kasus Percobaan: https://youtu.be/VxvdXNjsEWE

Link GitHub: https://github.com/rifkiaryas/Kelompok M-Yogi-

M-Rifki-Arya