

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST)

PROGRAM (S) TO BE BS(CS), BS(CY), BS(AI)

EVALUATED

A. Course Description

Course Code	CS1005
Course Title	Discrete Structures
Credit Hours	3+0
Prerequisites by Course(s) and Topics	None
Assessment Instruments with Weights (homework, quizzes, midterms, final, assignments etc.)	Midterm examination I: 15% Midterm examination II: 15% Assignments(Home tasks / Class activities/.Quizzes): 20%End-term examination: 50%
Course Coordinator	Ms.Safia
URL (if any)	Google Classroom – Link has been provided
Current Catalog Description	Logic, relations, functions, basic set theory, counting, proof techniques, mathematical induction, graph theory, recursion, recurrence relations, number theory and sequence & series. All the topics will be taught in perspective of their applications in computing.
Textbook	Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGraw Hill, 8th Edition, 2019.
Reference Material	Sussana S. Epp, Discrete Mathematics with Applications, Brooks Cole, Cengage Learning, 5th Edition, 2020.
Course Goals	A discrete mathematics course has more than one purpose. Students should learn a particular set of mathematical facts and how to apply them; more importantly, such a course should teach students how to think logically and mathematically. To achieve these goals, the focus of this course is on basic mathematical concepts in discrete mathematics and on applications of discrete mathematics in algorithms and data structures. The focus is also on teaching the problem-solving strategies, techniques, and tools and to show students how discrete mathematics can be used in modern computer science. In particular, this course is meant to introduce logic, proofs, sets, relations, functions, counting, and probability, with an emphasis on applications in Computer Science. Further, this course aims to develop understanding and appreciation of the finite nature inherent in most Computer Science problems and structures through study of combinatorial reasoning, abstract algebra, iterative procedures, predicate calculus, tree and graph structures.

NCEAC.FORM.001-D

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools
01	Explain the key concepts of Discrete Structures such as Mathematical Logic, Sets, Permutations, Relations, Graphs and Trees etc.	Cognitive	C2 (Understanding)	1,6	A1, A2, A5, M1, F
02	Construct formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such as predicting the behavior of software or solving problems such as puzzles.	Cognitive	C3 (Applying)	2,3,4,6	A6, M2, F
03	Use discrete structures in solving other computing problems such as formal specification, verification, databases, artificial intelligence, and cryptography.	Cognitive	C3 (Applying)	1,2,3,4,5,6	A3, A4 M2, F
04	Distinguish various discrete structures and their relevance within the context of computer science, in the areas of data structures and algorithms, in particular.	Cognitive	C4 (Analyzing)	1,2,3,4,5,6	A5, A6, F

B. Program Learning Outcomes

For each attribute below, indicate whether this attribute is covered in this course or not. Leave the cell blank if the enablement is little or non-existent.

1. Academic	To prepare graduates as computing professionals
Education:	

2. Knowledge for Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge Solving Computing Problems: appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.

NCEAC.FORM.001-D

3. Problem Analysis:	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
4. Design/ Development of Solutions:	Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
5. Modern Tool Usage:	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
6. Individual and Team Work:	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.
7. Communication:	Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.
8. Computing Professionalism and Society:	Understand and assess societal, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.
9. Ethics:	Understand and commit to professional ethics, responsibilities, and norms of professional computing practice.
10. Life-long Learning:	Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.

NCEAC.FORM.001-D

C. Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)											
			PLOs								
		1	2	3	4	5	6	7	8	9	10
	1										
CLOs	2										
, j	3										
	4										

1. Topics to be covered:						
List of Topics	No. of Weeks	Contact Hours	CLO			
Chapter 1: The Foundations: Logic and Proofs Introduction Propositional Logic, Applications of Propositional Logic, Propositional Equivalences, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference						
Chapter 2: Sets, Functions, Sequences and Sums Sets, Set Operations, Functions, Sequences and Series	5	15	1,2,3			
Chapter 9: Relations Relations and their Properties, Applications of Relations, Representing Relations, Equivalence Relations, and Partial Orderings						
======= MID 1 ======						
Chapter 2: Sequences and Sums ,Sequences and Series Chapter 10 Graphs Graphs and Graph Models, Terminologies, Types of Graphs, Representing Graphs and Isomorphism, Connectivity, Euler and Hamiltonian Paths, Planar Graphs, and Graph Coloring	4	12	1,2, 3			

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and onehour lectures)

NCEAC.FORM.001-D

	П			1			
	Chapter 11 Tr	rees oplications, Tree					
	Traversal, Spai	nning Trees and					
	Minimum Spanning Trees						
	======= MID 2 ======						
	Cryptography Divisibility and Integer Repres Algorithms, Pri Common Division	Modular Arithmetic,					
	Chapter 1 Introduction to Methods	Proofs and Proof					
	Chapter 5: Ind Recursion Mathematical II Recursive Algo	5	15	1,2, 3			
	Chapter 6 and Counting Tecl Basics, Pigeon Permutations a Binomial Coeffi Relations						
	==:	======	FINAL) EX	:===			
	Review		0.5	1	1,2,3,4		
	Total	15	45				
Laboratory Projects/Experiments	No Labs and Pro	ojects in this course.					
Programming	None						
Class Time Spent on	Theory Problem Analysis		Solution Design		Social and Ethical Issues		
(in contact hours)	10	15		0	0		
Oral and Written Communications	Students need to	o participate in class disc	cussion and	class assig	gnments.		

Instructor Name <u>Muhammad Jamil</u>
Instructor Signature _____
Date: <u>22-01-24</u>