Lezione 23

Saverio Salzo*

4 novembre 2022

1 Serie numeriche

Osservazione 1.1. Iniziamo con un osservazione che sarà utile in seguito. Supponiamo che due successioni $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ differiscano per una costante da un certo indice in poi, cioè che esiste $c\in\mathbb{R}$ e $\nu\in\mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu \colon b_n = a_n + c.$$

Allora se $l \in \overline{\mathbb{R}}$ risulta

$$a_n \to l \iff a_n + c \to l + c \stackrel{\text{teorema sul carattere}}{\Longleftrightarrow} b_n \to l + c.$$

Perciò le successioni $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ hanno lo stesso carattere, cioè sono entrambe convergenti o entrambe divergenti positivamente o entrambe divergenti negativamente.

Data una serie $\sum a_n = a_0 + a_1 + a_2 + \cdots + a_n + \cdots$, se nella somma ci si ferma a un indice $m \in \mathbb{N}$ rimane una serie infinita $a_{m+1} + a_{m+2} + \cdots$. Quindi intuitivamente ci si aspetta che valga la decomposizione

$$\sum_{n=0}^{+\infty} a_n = \sum_{k=0}^{m} a_k + \sum_{n=m+1}^{+\infty} a_n.$$
 (1)

La serie

$$\sum_{n=m+1}^{+\infty} a_n$$

si chiama serie resto di ordine m+1 della serie $\sum a_n$ e se è convergente la somma si chiama resto di ordine m+1 della serie $\sum a_n$ e lo indichiamo con R_{m+1} . Il risultato seguente chiarisce la validità di (1).

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

Proposizione 1.2. Sia $m \in \mathbb{N}$. Una serie numerica e la sua serie resto di ordine m+1 hanno lo stesso carattere, cioè sono entrambe convergenti, entrambe divergenti o entrambe irregolari e se regolari allora per le somme vale la (1). Inoltre, se $\sum a_n$ è convergente, ricordando la definizione di resto, la (1) si può scrivere

$$\sum_{n=0}^{+\infty} a_n = \sum_{k=0}^{m} a_k + R_{m+1} \tag{2}$$

e risulta che $R_{m+1} \to 0$ per $m \to +\infty$.

Dimostrazione. Per ogni $n \in \mathbb{N}$, indichiamo con s_n la somma parziale n-esima della serie $\sum a_n$ e con t_n la somma parziale n-esima della serie resto di ordine m+1, $\sum_{n=m+1}^{+\infty} a_n$. Allora

$$\forall n \in \mathbb{N}, n \ge m+1:$$
 $s_n = \sum_{k=0}^n a_k = \sum_{k=0}^m a_k + \sum_{k=m+1}^n a_k = \sum_{k=0}^m a_k + t_n.$

Si vede quindi che le successioni $(s_n)_{n\in\mathbb{N}}$ e $(t_n)_{n\in\mathbb{N}}$ da un certo indice in poi differiscono per una costante. Perciò, ricordando l'Osservazione 1.1, esse hanno lo stesso carattere e, per qualunque $l \in \mathbb{R}$ risulta

$$\lim_{n \to +\infty} t_n = l \iff \lim_{n \to +\infty} s_n = \sum_{k=0}^{m-1} a_k + l.$$

Da questo segue la (1). Poi, se $\sum a_n$ è convergente, allora dalla (1) segue direttamente la (2) e se $s_n \to s$ e $t_n \to R_{m+1}$, allora dalla (2) risulta

$$R_{m+1} = s - s_m$$

e, dato che $s_m \to s$, si ha $R_{m+1} \to 0$ per $m \to +\infty$.

Proposizione 1.3 (Stabilità del carattere). Il carattere di una serie non si altera se si modifica comunque un numero finito di termini della serie.

Dimostrazione. Sia $\sum a_n$ la serie originaria e sia $\sum b_n$ la serie ottenuta dalla $\sum a_n$ modificando un numero finito di termini, supponiamo fino all'indice $\nu \in \mathbb{N}$. Allora

$$\forall n \in \mathbb{N}, n > \nu$$
: $b_n = a_n$.

Indichiamo con s_n e t_n le somme parziali di ordine n rispettivamente delle serie $\sum a_n$ e $\sum b_n$. Allora per ogni $n \in \mathbb{N}$ con $n > \nu$, si ha

$$t_n = \sum_{k=0}^{\nu} b_k + \sum_{k=\nu+1}^{n} b_k = \sum_{k=0}^{\nu} b_k + \sum_{k=\nu+1}^{n} a_k = \sum_{k=0}^{\nu} b_k + \sum_{k=0}^{n} a_k - \sum_{k=0}^{\nu} a_k = C + s_n,$$

dove $C = \sum_{k=0}^{\nu} b_k - \sum_{k=0}^{\nu} a_k$. Si riconosce allora che le successioni $(t_n)_{n \in \mathbb{N}}$ e $(s_n)_{n \in \mathbb{N}}$ differiscono per una ostante da un certo indice in poi e quindi, per l'Osservazione 1.1, esse hanno lo stesso carattere.

E' noto che per una somma finita di termini vale la proprietà associativa. Per esempio

$$\sum_{k=0}^{10} a_k = (a_0 + a_1) + (a_2 + a_3 + a_4) + (a_5 + a_6) + (a_7 + a_8 + a_9 + a_{10})$$

$$= b_0 + b_1 + b_2 + b_3,$$

dove b_0, b_1, b_2 e b_3 rappresentano le somme dei termini tra parentesi. Ci si può chiedere se una proprietà analoga valga anche per le somme infinite. La risposta in generale è negativa, come mostra il seguente esempio. Consideriamo la serie

$$\sum_{n=0}^{+\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + \cdots$$

si ha

$$(1-1) + (1-1) + (1-1) + \dots = 0$$

 $1 + (-1+1) + (-1+1) + (-1+1) + \dots = 1.$

Si vede così che la somma cambia con due associazioni diverse dei termini della serie. Il motivo di questo comportamento è dovuto al fatto che la serie $\sum (-1)^n$ non è regolare. Infatti per le serie regolari vale la proprietà associativa, come mostra il seguente risultato.

Teorema 1.4 (Proprietà associativa). Sia $\sum a_n$ una serie numerica e consideriamo la serie

$$\sum_{k=0}^{+\infty} b_k \quad con \quad b_k = \sum_{i=n_k}^{n_{k+1}-1} a_i = a_{n_k} + a_{n_k+1} + \dots + a_{n_{k+1}-1}.$$
 (3)

dove $(n_k)_{k\in\mathbb{N}}$ è una successione di numeri naturali strettamente crescente con $n_0=0$. Se la serie $\sum a_n$ è regolare allora

$$\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} b_n,$$

cioè le due serie hanno la stessa somma.

Dimostrazione. Siano $(s_n)_{n\in\mathbb{N}}$ e $(t_k)_{k\in\mathbb{N}}$ le successioni delle somme parziali rispettivamente di $\sum a_n$ e $\sum b_k$. Allora, dalla definizione (3), segue che per ogni $k\in\mathbb{N}$

$$t_k = b_0 + b_1 + b_2 + \dots + b_k$$

$$= \sum_{i=n_0}^{n_1-1} a_i + \sum_{i=n_1}^{n_2-1} a_i + \dots + \sum_{i=n_k}^{n_{k+1}-1} a_i = s_{n_{k+1}-1}.$$

Si noti che $n_{k+1}-1 \ge k+1-1=k$ perché la successione $(n_{k+1})_{k\in\mathbb{N}}$ è strettamente crescente. Quindi per ogni $k \in \mathbb{N}$ $n_{k+1}-1 \in \mathbb{N}$ e perciò ha senso considerare la successione di numeri naturali $(n_{k+1}-1)_{k\in\mathbb{N}}$ che è strettamente crescente. Allora la successione $(t_k)_{k\in\mathbb{N}}$ è estratta dalla successione $(s_n)_{n\in\mathbb{N}}$ e quindi se $s_n \to s \in \overline{\mathbb{R}}$ per $n \to +\infty$, allora $t_k \to s$ per $k \to +\infty$.

Osservazione 1.5. I numeri interi $0 = n_0 < n_1 < n_2 < n_3 < \cdots < n_k < \cdots$ nell'enunciato del Teorema 1.4 indicano le posizioni di partenza delle parentesi tonde. Per esempio

$$\sum_{n=0}^{\infty} a_n = (a_0 + a_1) + (a_2 + a_3 + a_4) + (a_5 + a_6) + (a_7 + a_8 + a_9 + a_{10}) + (a_{11} + a_{12}) + \cdots,$$

$$\downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$n_0 \qquad n_1 \qquad n_2 \qquad n_3 \qquad n_4$$

2 Serie a termini positivi

Definizione 2.1. Una serie numerica

$$\sum_{n=0}^{+\infty} a_n$$

si dice a termini positivi se per ogni $n \in \mathbb{N}$ $a_n \geq 0$.

Teorema 2.2. Una serie a termini positivi $\sum a_n$ è sempre regolare e risulta

$$\sum_{n=0}^{+\infty} a_n = \sup_{n \in \mathbb{N}} s_n \in [0, +\infty].$$

Dimostrazione. E' sufficiente notare che, essendo $a_n \geq 0$ si ha

$$s_{n+1} = s_n + a_{n+1} > s_n$$

cioè la successione delle somme parziali $(s_n)_{n\in\mathbb{N}}$ è monotona crescente e con termini positivi. Allora la tesi segue dal teorema sui limiti delle successioni monotone.

Esempio 2.3. La seguente serie si chiama serie armonica

$$\sum_{n=1}^{+\infty} \frac{1}{n}.$$
 (4)

Proviamo che questa serie non converge. Si può minorare la somma parziale 2^n -esima come segue

$$s_{2^{n}} = \sum_{i=1}^{2^{n}} \frac{1}{i}$$

$$= 1 + \underbrace{\frac{1}{2}}_{2^{0}} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{2^{1}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{2^{2}} + \dots + \underbrace{\left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)}_{2^{n-1}}$$

$$\geq 1 + \underbrace{\frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \dots + \frac{2^{n-1}}{2^{n}}}_{n \text{ tarrini}}$$

$$=1+\frac{n}{2}\to+\infty.$$

Da questo consegue che, per confronto,

$$\lim_{n\to+\infty} s_{2^n} = +\infty.$$

Ma $(s_{2^n})_{n\in\mathbb{N}}$ è una successione estratta da $(s_n)_{n\in\mathbb{N}}$ e $(s_n)_{n\in\mathbb{N}}$ è una successione regolare. Perciò

$$+\infty = \lim_{n \to +\infty} s_{2^n} = \lim_{n \to +\infty} s_n.$$

3 Criteri di convergenza per serie a termini positivi

In questa sezione diamo alcuni importanti criteri per stabilire il carattere di una serie a termini positivi.

Teorema 3.1 (di confronto). Siano $\sum a_n \ e \sum b_n \ due \ serie \ a \ termini \ positivi \ e \ supponiamo \ che$

$$\forall n \in \mathbb{N}: \quad a_n \leq b_n.$$

Allora per le somme delle serie si ha

$$\sum_{n=0}^{+\infty} a_n \le \sum_{n=0}^{+\infty} b_n.$$

In particolare, valgono le sequenti implicazioni

- (i) $\sum a_n$ è divergente $\Rightarrow \sum b_n$ è divergente
- (ii) $\sum b_n$ è convergente $\Rightarrow \sum a_n$ è convergente.

Dimostrazione. Indichiamo con s_n e t_n le somme parziali n-esime rispettivamente di $\sum a_n$ e $\sum b_n$. Dalla disuguaglianza $a_n \leq b_n$ segue che

$$\forall n \in \mathbb{N}:$$
 $s_n = \sum_{k=0}^n a_k \le \sum_{k=0}^n b_k = t_n.$

Allora dato che $s_n \to \sum_{n=0}^{+\infty} a_n$ e $t_n \to \sum_{n=0}^{+\infty} b_n$ per $n \to +\infty$, la tesi segue dal teorema di prolungamento delle disuguaglianze.

Osservazione 3.2. Le conclusioni nei punti (i) e (ii) del Teorema 3.1 sono ancora vere se si suppone che la disuguaglianza $a_n \leq b_n$ valga solo per $n \geq \nu$ per un certo $\nu \in \mathbb{N}$. Infatti in tal caso, per la Proposizione 1.3, si possono modificare i primi ν termini della serie $\sum a_n$ in modo che la disuguaglianza $a_n \leq b_n$ valga per ogni $n \in \mathbb{N}$ senza che questo comporti un cambiamento nel carattere della serie. Allora la tesi consegue dal Teorema 3.1.

Esempio 3.3.

(i) Proviamo che la serie seguente è convergente

$$\sum_{n=0}^{+\infty} \frac{1}{n!}.$$

Abbiamo già ottenuto questo risultato nella dimostrazione del teorema sulla definizione del numero di Nepero. Ripetiamo qui l'argomento più esplicitamente utilizzando i risultati sulle serie esposti finora. Si usa il criterio di confronto del Teorema 3.1. Evidentemente dato che la serie è a termini positivi la somma si può scrivere nel modo seguente (utilizzando la serie resto di ordine 1)

$$\sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} = 1 + \sum_{n=0}^{+\infty} \frac{1}{(n+1)!}.$$

Adesso

$$(n+1)! = (n+1) \cdot n \cdot \cdot \cdot 2 \cdot 1 \ge \underbrace{2 \cdot 2 \cdot \cdot \cdot 2}_{n \text{ volte}} \cdot 1 = 2^n$$

Allora

$$\forall n \in \mathbb{N}: \quad \frac{1}{(n+1)!} \le \frac{1}{2^n}.$$

Perciò per il Teorema 3.1 e per i risultati sulla serie geometrica risulta

$$\sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} \le 1 + \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{1 - 1/2} = 3.$$

(ii) La serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$

è convergente. Infatti

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = 1 + \sum_{n=2}^{+\infty} \frac{1}{n^2} = 1 + \sum_{n=1}^{+\infty} \frac{1}{(n+1)^2} \le 1 + \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} \le 1 + 1 = 2.$$

dove si è applicato il criterio del confronto e il risultato sulla serie di Mengoli.

(iii) Consideriamo la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}, \quad \alpha > 0. \tag{5}$$

Se $\alpha \geq 2$, allora $1/n^{\alpha} \leq 1/n^2$ e quindi per il teorema di confronto e per quanto provato al punto (ii) si ha che la serie (5) è convergente. Se $\alpha \leq 1$, allora $1/n^{\alpha} \geq 1/n$ e quindi la serie (5) è minorata dalla serie armonica, e per il teorema di confronto si conclude che la serie (5) è divergente. Il caso $1 \leq \alpha \leq 2$ lo vedremo più avanti.

Teorema 3.4 (di confronto asintotico). Siano $\sum a_n \ e \sum b_n \ due \ serie \ a \ termini \ strettamente positivi \ e \ supponiamo \ che$

$$\lim_{n\to +\infty} \frac{a_n}{b_n} = \ell \in [0,+\infty].$$

Valgono le seguenti proposizioni

- (i) Se $\ell \in \mathbb{R}_{+}^{*}$, allora le due serie hanno lo stesso carattere.
- (ii) Se $\ell = 0$, allora $\sum b_n$ convergente $\Rightarrow \sum a_n$ convergente.
- (iii) Se $\ell = +\infty$, allora $\sum a_n$ convergente $\Rightarrow \sum b_n$ convergente.

Dimostrazione. Supponiamo che $\ell \in \mathbb{R}_+^*$. Prendiamo $\varepsilon > 0$ tale che $\ell - \varepsilon > 0$. Allora in corrispondenza di ε esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu \colon 0 < \ell - \varepsilon < \frac{a_n}{b_n} < \ell + \varepsilon \text{ e quindi } 0 < (\ell - \varepsilon)b_n < a_n < (\ell + \varepsilon)b_n.$$
 (6)

Allora, dato che chiaramente le serie (a termini positivi)

$$\sum b_n$$
, $\sum (\ell - \varepsilon)b_n$ e $\sum (\ell + \varepsilon)b_n$

hanno lo stesso carattere¹, dall'Osservazione 3.2 segue che $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere. Supponiamo che $\ell = 0$. Allora esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu$$
: $\frac{a_n}{b_n} \le 1$ e quindi $a_n \le b_n$.

Di nuovo, la tesi segue dall'Osservazione 3.2. Infine se $\ell = +\infty$, allora $b_n/a_n \to 0$ e la tesi segue dal caso precedente scambiando $\sum a_n$ e $\sum b_n$.

Esempio 3.5. Consideriamo la serie

$$\sum_{n=1}^{+\infty} \frac{2n-3}{n^2+1}.$$
 (7)

Evidentemente per il termine generale della serie risulta

$$a_n = \frac{2n-3}{n^2+1} = \frac{n}{n^2} \frac{2-3/n}{1+1/n^2} = \frac{1}{n} \frac{2-3/n}{1+1/n^2}$$

e quindi

$$\frac{a_n}{1/n} = \frac{2 - 3/n}{1 + 1/n^2} \to 2 \text{ per } n \to +\infty.$$

Perciò, per il criterio del confronto asintotico, la serie (7) ha lo stesso carattere della serie armonica $\sum 1/n$ e quindi è divergente positivamente.

 $[\]overline{{}^{1}\text{Se }t_{n} = \sum_{k=0}^{n} b_{k} \text{ è chiaro che se } t_{n} \to l} \in [0, +\infty] \text{ allora } (\ell - \varepsilon)t_{n} \to (\ell - \varepsilon)l \text{ e } (\ell + \varepsilon)t_{n} \to (\ell + \varepsilon)l.$

Teorema 3.6 (criterio della radice). Sia $\sum a_n$ una serie numerica a termini positivi e supponiamo che $\lim_{n\to+\infty} \sqrt[n]{a_n} = \ell \in [0,+\infty]$. Valgono le seguenti proposizioni.

- (i) Se $\ell < 1$, allora la serie $\sum a_n$ è convergente.
- (ii) Se $\ell > 1$, allora la serie $\sum a_n$ è divergente.
- (iii) Se $\ell = 1$, allora la serie $\sum a_n$ può essere sia convergente che divergente.

Dimostrazione. Supponiamo che $\ell < 1$. Allora considerato q tale che $\ell < q < 1$, esiste $\nu \in \mathbb{N}$ tale che $\forall n \in \mathbb{N}, n > \nu$: $\sqrt[n]{a_n} < q$ e quindi

$$\forall n \in \mathbb{N}, n > \nu : \quad a_n \leq q^n.$$

Quindi la serie converge, essendo definitivamente maggiorata dalla serie geometrica di ragione q < 1. Supponiamo adesso che $1 < \ell$. Allora esiste $\nu \in \mathbb{N}$ tale che per ogni intero $n > \nu$ risulta $1 < \sqrt[n]{a_n}$, cioè $1 < a_n$. Si riconosce allora che, essendo $a_n > 1$ per $n > \nu$, a_n non può convergere a zero. Quindi la serie $\sum a_n$ non può convergere perché a_n non è infinitesima. Infine si nota che per le serie

$$\sum_{n=1}^{+\infty} \frac{1}{n} \quad e \quad \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

si ha $\ell = 1,^2$ ma la prima diverge e la seconda converge.

Teorema 3.7 (criterio della rapporto). Sia $\sum_{n=0}^{+\infty} a_n$ una serie numerica a termini positivi e supponiamo che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\ell\in [0,+\infty].$$

Allora se $\ell < 1$, la serie $\sum_{n=0}^{+\infty} a_n$ è convergente, mentre se $\ell > 1$, la serie $\sum_{n=0}^{+\infty} a_n$ è divergente.

Dimostrazione. Supponiamo che $\ell < 1$. Allora preso q > 0 tale che $\ell < q < 1$, esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu$$
: $\frac{a_{n+1}}{a_n} \le q$ e quindi $a_{n+1} \le qa_n$.

Allora per ricorsione si ha

$$\forall n \in \mathbb{N}, n > \nu \colon a_n \le q a_{n-1} \le q^2 a_{n-2} \le \dots \le q^{n-\nu-1} a_{\nu+1} = q^n \frac{a_{\nu+1}}{q^{\nu+1}}.$$

Quindi per confronto la serie $\sum a_n$ è convergente, essendo definitivamente maggiorata da una serie geometrica di ragione q < 1 (moltiplicata per una costante). Supponiamo ora che

Infatti $(1/n)^{1/n} = \exp(-\log n/n)$ e $(1/n^2)^{1/n} = \exp(-\log n^2/n)$. E risulta $\log n/n \to 0$ e $\log n^2/n \to 0$ per $n \to +\infty$.

 $\ell > 1$. Allora questa volta si sceglie q tale che $1 < q < \ell$ e come prima si prova che esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu \colon \ a_n > q^n \frac{a_{\nu+1}}{q^{\nu+1}}.$$

Perciò, essendo q>1, per confronto risulta $a_n\to +\infty$ e quindi la serie $\sum a_n$ non può convergere.

Esempio 3.8.

(i) La convergenza della serie

$$\sum_{n=0}^{+\infty} \frac{1}{n!} \tag{8}$$

si può provare facilmente con il criterio del rapporto. Infatti.

$$\frac{1/(n+1)!}{1/n!} = \frac{n!}{(n+1)!} = \frac{1}{n+1} \to 0.$$

Perciò, si può concludere che la serie (9) è convergente.

(ii) La serie

$$\sum_{n=0}^{+\infty} \frac{n!}{n^n} \tag{9}$$

è convergente. Infatti usando il criterio del rapporto si ha

$$\frac{(n+1)!/(n+1)^{n+1}}{n!/n^n} = \frac{(n+1)!n^n}{n!(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n = \left(1 - \frac{1}{n+1}\right)^n$$
$$= \left(1 - \frac{1}{n+1}\right)^{n+1} \left(1 - \frac{1}{n+1}\right)^{-1} \to e^{-1} < 1.$$