DEVOIR 2. COMPLEX MANIFOLDS AND DIFFERENTIAL CALCULUS

Exercises with \bigstar : hand in only these exercises (Exercises 3, 7, 10, 14, 16).

Exercises with $\star\star$: not for return, but try to do it by yourself.

Exercises without ★: these are standard exercises; if you don't know them, it's important to learn them.

1. REVIEW OF DIFFERENTIAL MANIFOLDS AND DIFFERENTIAL CALCULUS

Exercise 1. Consider the 2-torus \mathbb{T}^2 and the local diffeomorphism $\Phi: \mathbb{R}^2 \to \mathbb{T}^2$ defined by $\Phi(\theta_1, \theta_2) = 0$ $(e^{2\pi i\theta_1}, e^{2\pi i\theta_2}).$

- (a) Exhibit a condition on a vector field $X \in \Gamma(T\mathbb{R}^2)$ for Φ_*X to be a vector field on \mathbb{T}^2 .
- (b) Deduce $T\mathbb{T}^2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$.
- (c) More generally, show that the tangent space of an n-dimensional manifold is trivial if and only if there exist n nowhere vanishing vector fields linearly independent at each point.

Exercise 2. Define the *n*-sphere $\mathbb{S}^n := \{x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^n x_i^2 = 1\}.$

- (a) Use the implicit function theorem to prove that \mathbb{S}^n is a smooth manifold of dimension n. (b) Show that $T\mathbb{S}^n \simeq \{(x,y) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid |x| = 1, \langle x,y \rangle = 0\}$.

- (c) Exhibit an explicit diffeomorphism between $T\mathbb{S}^{n-1}$ and $\{z \in \mathbb{C}^n \mid \sum_{j=1}^n z_j^2 = 1\}$. (d) We denote by $X \wedge Y$ the cross product of \mathbb{R}^3 . Show that for $X_p, Y_p \in T_p\mathbb{S}^2$, $\omega_p(X_p, Y_p) = T_p\mathbb{S}^2$ $\langle p, X_p \wedge Y_p \rangle$ defines a non-degenerate closed 2-form on \mathbb{S}^2 .

Exercise 3 (Fibre bundle construction). \bigstar Let M be a smooth manifold with a given open cover $M = \bigcup_{i \in I} U_i$ and let $\psi_{ij} : U_i \cap U_j \to \mathrm{GL}(k,\mathbb{R})$ be smooth maps satisfying the cocycle condition

$$\psi_{ik}(x) = \psi_{ij}(x) \cdot \psi_{jk}(x) \qquad \forall x \in U_i \cap U_j \cap U_k,$$
(cc)

(in particular, $\psi_{ii}(x) = \text{Id}$ and $\psi_{ji}(x) = \psi_{ij}(x)^{-1}$).

- (a) Use these maps ψ_{ij} to construct a vector bundle E of rank k over M with transition maps. Hint: consider the set $\bigsqcup_i \{(i, x, v) \mid i \in I, x \in U_i, v \in \mathbb{R}^k\}$ and quotient by a suitable relation.
- (b) Show that given another set of transition maps $\widetilde{\psi}_{ij}:U_i\cap U_j\to \mathrm{GL}(k,\mathbb{R})$ satisfying (cc), the vector bundle obtained \widetilde{E} is isomorphic (as bundle) to E if and only if there exists maps $h_i: U_i \to \mathrm{GL}(k, \mathbb{R})$ such that $\widetilde{\psi}_{ij}(x) = h_i(x)^{-1} \cdot \psi_{ij}(x) \cdot h_j(x)$ for all $x \in U_i \cap U_j$.
- (c) Exhibit the trivialization and transition maps of the dual vector bundle E^* in terms of those of

Exercise 4. Let M be a manifold and $X, Y, Z \in \Gamma(TM)$ be three vector fields.

- (a) Show that if [X, W] for any $W \in \Gamma(TM)$ then $X \equiv 0$.
- (b) Show that $\phi_*[X,Y] = [\phi_*X, \phi_*Y]$ for any $\phi \in \text{Diffeo}(M)$.
- (c) Deduce the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.
- (d) Denote by $\phi_t^X, \phi_t^Y \in \text{Diffeo}(M)$ the flow of X and Y respectively. Show that ϕ_t^X and ϕ_s^Y commute for all t, s small enough if and only if [X, Y] = 0.

Exercise 5. Let M be a manifold and $X \in \Gamma(TM)$ be a vector field. We will prove the Cartan formula:

$$\mathcal{L}_X = d \circ \iota_X + \iota_X \circ d.$$

- (a) Show that it is sufficient to prove the Cartan formula on 0-forms (thanks to Leibniz).
- (b) Prove the Cartan formula on 0-forms.
- (c) Let $\alpha \in \Gamma(T^*M)$ be a 1-form and $X, Y \in \Gamma(TM)$. Show that $d\alpha(X, Y) = X.\alpha(Y) Y.\alpha(X) X.\alpha(Y) = X.\alpha(Y) X.\alpha(Y) = X.\alpha(Y) X.\alpha(Y) = X.\alpha(Y) = X.\alpha(Y) X.\alpha(Y) = X.\alpha(Y)$ $\alpha([X,Y]).$

Exercise 6 (Frobenius Theorem). $\bigstar \bigstar$ Let $U \subset \mathbb{R}^n$ be an open set. We will show the following: Let $D \subset TU$ be a subbundle of non-zero rank k < n. For any $p \in U$, there exists a submanifold $N \subset U$ with $p \in N$ and $T_p N = D_p$ if and only if

$$\forall X, Y \in \Gamma(D), \quad [X, Y] \in \Gamma(D). \tag{*}$$

- (a) Show that (*) is necessary.
- (b) Let $X_1, \dots, X_k \subset \Gamma(D)$ be a local frame. Use (*) to produce a local frame $Y_1, \dots, Y_k \in \Gamma(D)$ such that $[Y_i, Y_j] \equiv 0$ for all i, j.

2 DEVOIR 2

(c) Conclude.

2. Complex setting

Exercise 7. \bigstar Let (M, J) be an almost complex manifold.

- (a) Show that the Nijenhuis tensor $N_J(X,Y) = \frac{1}{4}([JX,JY] J[JX,Y] J[X,JY] [X,Y])$ is a tensor (i.e. is $\mathcal{C}^{\infty}(M)$ -linear).
- (b) Show that $T^{1,0}M$ is closed under the Lie bracket if and only if N_J vanishes identically.
- (c) Deduce that any almost complex structure on a manifold M of (real) dimension 2, $T^{1,0}M$ is closed under the Lie bracket.

Exercise 8. Let (M, J) be a complex manifold (i.e. J is integrable) show that $T^{1,0}M$ is (naturally) a holomorphic vector bundle over M.

Exercise 9. Let (M, J) be a complex manifold.

- (a) Show that $\overline{\partial \alpha} = \overline{\partial} \overline{\alpha}$.
- (b) Deduce that a real (p,p)-form $\alpha \in \mathcal{A}^{p,p}(M) \cap \mathcal{A}^{2p}(M)$ is $\bar{\partial}$ -closed (resp. exact) and if and only if it is $\bar{\partial}$ -closed.
- (c) Formulate the ∂ and $\bar{\partial}$ -Poincaré Lemmas

Exercise 10. \bigstar Let $f: M \to N$ be a holomorphic map between complex manifolds. Prove that if α is a (p,q)-form on N then $f^*\alpha$ is a (p,q)-form on M. Given an example where this fails if f is not holomorphic. Using this to show that f induces a homomorphism

$$f^*: H^{p,q}_{\bar\partial}(N) \to H^{p,q}_{\bar\partial}(M)$$

given by $f^*[\alpha] = [f^*\alpha]$ for $\alpha \in \mathcal{A}^{p,q}(N)$ with $\bar{\partial}\alpha = 0$.

Exercise 11. $\bigstar \bigstar$ Consider the natural map $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ defining \mathbb{P}^n . Assume that $\alpha \in \mathcal{A}^{p,0}(\mathbb{P}^n)$ is $\bar{\partial}$ -closed (i.e. α is a holomorphic p-form).

- (a) Show that $\pi^*\alpha$ extends as a $\bar{\partial}$ -closed $\beta \in \mathcal{A}^{p,0}(\mathbb{C}^{n+1})$.
- (b) Show that β is homogeneous (i.e. for $\lambda \in \mathbb{C}^*$, denote the dilation of \mathbb{C}^{n+1} by $\gamma_{\lambda}(z) = \lambda z$, then $\gamma_{\lambda}^* \beta = \beta$).
- (c) Writing $\beta = \sum_{I} f_{I}(z) dz_{I}$, show that it implies that $f \equiv 0$ on \mathbb{C}^{n+1} .
- (d) Conclude that $H^{p,0}_{\bar{\partial}}(\mathbb{P}^n) = 0$ if p > 0.

Exercise 12. Let M be a simply connected compact complex manifold. Prove that $H^{1,0}(M) = 0$. Hint: given a holomorphic 1-form α , integrate it along paths with a fixed starting point to define a holomorphic map $f: X \to \mathbb{C}$ with $df = \alpha$.

Exercise 13. Let (M, J) be a complex manifold. For any J-invariant real 2-form $\psi \in \mathcal{A}^{1,1}(M) \cap \mathcal{A}^2(M)$, check that $b_{\psi} \in \Gamma((T^*M)^{\otimes 2})$, defined as $b_{\psi}(X, Y) = \psi(X, JY)$ is bilinear, J-invariant and symmetric. We say that ψ is positive if b_{ψ} is positive definite at each point.

- (a) On \mathbb{C}^n , show that $\omega := \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j$ is positive; in particular that b_{ω} is the standard metric on $\mathbb{C}^n \simeq \mathbb{R}^{2n}$.
- (b) Show that $\omega = \frac{1}{2}i\partial \bar{\partial}r^2$ for $r^2 = \sum_{j=1}^n |z_j|^2$
- (c) More generally, for an open set $U \subset \mathbb{C}^n$, check that if $f \in \mathcal{C}^2(U,\mathbb{R})$ is a strictly convex function, $i\partial \bar{\partial} f$ is positive on U.

Exercise 14. \bigstar Let $E \to M$ be a rank k complex vector bundle over M whose transition functions with respect to some open cover $(U_{\alpha})_{\alpha}$ of M are $(g_{\alpha\beta})_{\alpha,\beta}$. Show that a section $\sigma: M \to E$ of E can be identified with a collection $(\sigma_{\alpha})_{\alpha}$ of smooth map $\sigma_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ satisfying $\sigma_{\alpha} = g_{\alpha\beta}\sigma_{\beta}$ on $U_{\alpha} \cap U_{\beta}$.

Exercise 15 (The tautological bundle and the hyperplane bundle). $\bigstar \bigstar$ Let L be the complex line bundle $\pi: L \to \mathbb{P}^n$ whose fibre L_x over some point $x \in \mathbb{P}^n$ is the complex line x in \mathbb{C}^{n+1} . Let L^* be the dual line bundle to L.

- (i) Prove that L is a holomorphic line bundle (hint: use the local transitions) and show that L has no non-trivial holomorphic section.
- (ii) For any given $\alpha \in \mathbb{C}^{n+1} \setminus \{0\}$, show that by the restriction to L_x that α defines a section s_α to L^* . Conclude that the space of global holomorphic sections of L^* has at least dimension n+1. What is the zero locus of s_α in \mathbb{P}^n ? Given $k \geq 0$, interpret any homogeneous polynomial of order k on \mathbb{C}^{k+1} as a section of $(L^*)^{\otimes k}$.

DEVOIR 2 3

Exercise 16. \bigstar Let $\pi: E \to M$ be a rank r holomorphic vector bundle. For a local frame of holomorphic sections s_1, \dots, s_k on $U \subset M$, we define $\bar{\partial}_E : \Gamma(\Lambda^{p,q}U \otimes E) \to \Gamma(\Lambda^{p,q+1}U \otimes E)$

$$\bar{\partial}_E \left(\sum_{j=1}^k \alpha_j \otimes s_j \right) = \sum_{j=1}^k \bar{\partial} \alpha_j \otimes s_j$$

- (a) Show that $\bar{\partial}_E$ does not depend on the chosen frame and extends as a well-defined operator $\bar{\partial}_E: \Gamma(\Lambda^{p,q}M\otimes E) \to \Gamma(\Lambda^{p,q+1}M\otimes E)$ (b) Show that $\bar{\partial}_E^2=0$.
- (c) Which group of cohomology is associated with that complex coincides with the space of globally defined holomorphic sections?