CS 111 Introduction to Computer Science

Fall 2015

Lecture 5: Sep 22, 2015

Are All Input (Fahrenheit) Values Acceptable?

The temperature of -273.15 Celsius is called ABSOLUTE ZERO.

Molecular energy is minimal at absolute zero – this temperature cannot be reached by natural or artificial means

-273.15 Celsius is equivalent to -459.67 Fahrenheit – any F values less than this would be below absolute zero.

Input values less than -459.67 are NOT acceptable to our program

Rejecting Unacceptable Input – Making a Decision (Yes/No)

Does The Modified Program Work Correctly?

TEST by running it for various input (fahrenheit) values, and compare the output (celsius) value against the expected (correct) value.

Input (Fahrenheit)	Output (Celsius)	Expected Result
32	0	0
100	37.38	37.78
-40	-40	-40
-300	-184.44	-184.44
-459.67	-273.15	-273.15
-500	Input not valid	Input not accepted

ABSOLUTE ZERO

The results of testing the program show that it works correctly.

CORRECTLY WORKING means producing correct results for valid inputs, AND rejecting invalid inputs WITHOUT CRASHING.

Equivalent Program: Flipping the Inequality in the Input Check

BOOLEAN LOGIC

The result of every arithmetic comparison is TRUE or FALSE

Result is TRUE or FALSE

The result of a comparison, TRUE or FALSE, can be explicitly stored in a BOOLEAN variable :

```
boolean legitF = fahrenheit >= -459.67;
boolean numZero = number == 0;
System.out.println(legitF); // prints true or false
System.out.println(numZero); // prints true or false
```

Setting Boolean (True/False) Value

If not assigned true, value assumed to be false by default

Think of <u>true</u> and <u>false</u> as boolean "constants", just as 10 and -3 are arithmetic constants – boolean variable value can be checked for true or false (NO quotes around true or false)

Compound Condition: AND

Compound Condition: OR

But note that the compounding of the conditions makes the message less specific!

BOOLEAN LOGIC: TRUTH TABLES

Boolean Expressions

NOT (!) evaluated before AND (&&), && before OR (||) (parens needed to change this natural order of precedence)

For the following expressions, assume a=4, b=2 and c=8

Expression	TRUE/FALSE
a > 3 && b > 3	FALSE
a > 3 b > 3	TRUE
a >= 3 b == 3 c <= 10	TRUE
a >= 3 b < 3 && c > 10	TRUE
(a >= 3 b < 3) && c > 10	FALSE
!(a > 3)	FALSE
(a >= 3 b < 3) && !(c == 10)	TRUE
!(a >= 3 && b < 3) && c != 10	FALSE