A Tutorial of Graph Optimization: Theory, Matlab Code and Applications

Teng Zhang and Liyang Liu

Centre for Autonomous Systems University of Technology Sydney

May 16, 2017

Outline

- ► Concept of Factor Graph
- ► Code Framework
- ► Related Applications

Theory: Factor Graph

Figure: A Typical Factor Graph

Definition

A factor graph $G=(\mathcal{F},\mathbf{X},\mathcal{E})$ is a bipartite graph, consisting of factor nodes in $\mathcal{F}=\{f_i\}$, variable nodes $\mathbf{X}=\{\mathbf{x}_i\}$ and the edges in $\mathcal{E}=\{e_i\}$.

- ightharpoonup X = denotes the set of variables to be estimated;
- ▶ $\mathbf{X}_i \subseteq \mathbf{X}$ denotes the set of variables $\mathbf{x}_i \in \mathbf{X}$ adjacent to $f_i \in \mathcal{F}$;
- $ightharpoonup \mathcal{F}$ denotes the set of all functions $f_i(\cdot)$ where $f_i(\cdot)$ is a function of \mathbf{X}_i ;
- lacktriangle the edge e_i connects a factor node f_i and all variable nodes in ${f X}_i$;

Theory: Factor Graph and MAP

The inference in the factor graph G refers to the optimization problem below

$$\mathbf{X}^* = \arg\max_{\mathbf{X}} \prod_i f_i(\mathbf{X}_i) \tag{1}$$

When $f_i(\mathbf{X}_i) = p(Z_i | \mathbf{X}_i)$ represents the probability density function of measurement Z_i given \mathbf{X}_i , \mathbf{X}^* becomes the maximum a posteriori (MAP) estimate:

$$\mathbf{X}^* = \arg\max_{\mathbf{Y}} p(\mathbf{X}|Z),\tag{2}$$

For the Gaussian case.

$$f_i(\mathbf{X}_i) = p(Z_i|\mathbf{X}_i) \propto \exp(-\frac{1}{2} \|h_i(\mathbf{X}_i, Z_i)\|_{\mathbf{\Sigma}_i^{-1}}^2)$$
(3)

i.e.,

$$h_i(\mathbf{X}_i, Z_i) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_i)$$
 (4)

Therefore, the maximum a posteriori (MAP) estimate X^* of the factor graph G corresponds to a nonlinear least squares optimization (5).

$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \sum_{i} \|h_i(\mathbf{X}_i, Z_i)\|_{\mathbf{\Sigma}_i^{-1}}^2.$$
 (5)

Theory: Nonlinear Least Squares

$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \sum_{i} \|h_i(\mathbf{X}_i, Z_i)\|_{\mathbf{\Sigma}_i^{-1}}^2.$$
 (6)

Example: for the factor f_1

- $\,\blacktriangleright\, {\bf X}_1 = ({\bf x}_1,{\bf x}_2,{\bf x}_3)$ are all involving variables
- ▶ $h_1(\cdot, \cdot)$ is called the error function.
- $ightharpoonup \Sigma_1$ is called the covariance matrix and Σ_1^{-1} is called the information matrix.
- $ightharpoonup Z_1$ is the measurement

Theory: Representation

$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \sum_{i} \|h_i(\mathbf{X}_i, Z_i)\|_{\mathbf{\Sigma}_i^{-1}}^2.$$
 (7)

Beyond a column vector

- ▶ The variable node \mathbf{x}_i is regarded as a *structure*, **not required to be** a column vector. Each variable \mathbf{x}_i belongs to a Node type and this Node type has to be associated with a special addition \oplus used in update.
 - Example: \mathbf{x}_1 represents the robot pose at time-step 1, belonging to the Node type $\mathbb{SE}(3)$. The special addition of $\mathbb{SE}(3)$: $\mathbf{X}_1 \oplus \mathbf{e} = \exp(\mathbf{e})\mathbf{X}_1$ where $\mathbf{e} \in \mathbb{R}^6$.
- \blacktriangleright The measurement Z_i is regarded as a structure, not required to be a column vector.
 - ▶ Example: In pose graph, the measurement Z_i is the relative pose, represented by $\mathbb{SE}(3)$, not a column vector.
- ▶ The error function $h_i(\cdot, \cdot)$ must be a column vector.

How to creat a Graph

Creating a Factor Graph needs to ...

- ▶ add all factors f_i to the Graph with the measurement Z_i and the information matrix Σ_i^{-1} ;
- ightharpoonup for the factors f_i , point out the node ID of all involving variables \mathbf{x}_j and their order
- provide a reasonable initial guess for X

How to define new Node and Factor

Defining a new Node type needs to ...

define the special addition \oplus and give the related dimension

For example, defining the Node type $\mathbb{SE}(3)$, we need to provide the expression of \oplus : $\mathbf{x}_1 \oplus \mathbf{e} = \exp(\mathbf{e})\mathbf{x}_1$ and point out the dimension is 6 due to $\mathbf{e} \in \mathbb{R}^6$.

Defining a new factor $f_i(\cdot)$ needs to ...

- point out all involving Node types and the order
- ightharpoonup point out the type of measurement Z_i
- \blacktriangleright provide the expression of the error function $h_i(\mathbf{X}_i,Z_i)$ and the dimension of $h_i(\cdot,\cdot)$
- ▶ provide all small Jacobian matrices of $h_i(\mathbf{X}_i, Z_i)$ w.r.t., the involving variable node \mathbf{x}_i .
 - For example: $\mathbf{X}_i = (\mathbf{x}_1, \mathbf{x}_2)$. We need to provide two Jacobians,

$$\begin{aligned} \mathbf{H}_{i,1} &= \frac{\partial h_i(\mathbf{x}_1 \oplus \mathbf{e}_1, \mathbf{x}_2, Z_i)}{\partial \mathbf{e}_1} |_{\mathbf{e}_1 = \mathbf{0}} \\ \mathbf{H}_{i,2} &= \frac{\partial h_i(\mathbf{x}_1, \mathbf{x}_2 \oplus \mathbf{e}_2, Z_i)}{\partial \mathbf{e}_2} |_{\mathbf{e}_2 = \mathbf{0}} \end{aligned} \tag{8}$$

Matlab Code: Framework

Introduction

- ▶ Data: store the data to be processed
- ▶ Factor: the implementations of all factors and nodes
- ▶ g2o_files: core, provide the main framework of the nonlinear least squares
- ▶ Math: provide the mathematical forumulations like $\exp(\cdot),...$
- ▶ **Geometry**: some operations on geometry such as triangulation
- Examples: provide some commonly used state estimation problems such as Bundle Adjustment

Matlab Code: Content and Features

Content

- ▶ Node type: \mathbb{R}^3 , $\mathbb{SO}(2)$, $\mathbb{SE}(2)$, $\mathbb{SO}(3)$, $\mathbb{SE}(3)$ and some others.
- ▶ Math: including some commonly used mathematical operations such as $\exp(\cdot)$ and $\log(\cdot)$ on Lie Group.
- ▶ Factor: several vision factors, RGB-D factor, Parallax vision factor, IMU factor.

Features:

- **Fixed variable**: any variable x_i can be set as fixed.
- Optimization algorithms: Gauss-Newton, Levenberg-Marquart and Powell's Dogleg (recommend!)
- Schur decomposition
- ► Incremental inference friendly
- ► Novel Factors: IMU factor, Parallax Vision Factor (may be the best in the East hemisphere)
- ▶ Novel Node type: IMU state on real manifold, Parallax feature on manifold
- High readability and easy to extend
- Necessary warnings

Why we need this?

Applications

- ▶ 2D SLAM
- ► 3D SLAM
- Visual-Inertial Odometry
- ► Kinematics: Mirror Tracking
- Planning

Significance

- ▶ The first Matlab version of Graph-Optimization on manifold.
- Quickly validate a Graph-Optimization based algorithm.
- ▶ It is a good tutorial code for SLAM beginners.

Bundle Adjustment with Super Vision Factor

End

Download

https://github.com/UTS-CAS/Matlab-Graph-Optimization

Thanks!