New problems for teday are on Canucs. Theme. Asymptohics

Big O votation

= F(x) = O(g(x)) +ells You that f grows no fester than a 3C, & Cz 5.f. UX71CZ, $|f(x)| \leq C_1 |J(x)|$ Feventually smaller then some multiple 0 5

Thm, if lim | f(x) | < co $\Rightarrow f(x) = O(g(x))$ Applications! Computer Science esquirentalking about algorithms.

Say You have two Sorting algorithms. · Alg.) sorts a list os leusth n in C)(NZ) SKPS =># SLeps grows no fester
than a multiple
of X · /19 2 +9(0) G(N log N) 54eps. 10, fer n kige, takes < multiple of nlogn S Jeps. Expect algorithm 2 to be better Since Megn grows more slowly than he

 $\rightarrow N \log N = O \left(N^2\right)$ Stuce f(x) = 0 (g(x)) 15t 1/m (f(x))

Show that if 1/200 f(x)=00 then f(x)+sinx= O(p(x)). Pf: (f(x)) means $O(t(x)) \notin \mathcal{I}(t(x))$ grows slower grows faster => ie, grows just cs quickly as flx).

Show
$$f(x) + S(n(y)) = O(f(x))$$

by Thm, Show

$$|f(x) + S(n(x))| < co$$

$$|f(x) + S(n(x))| = |f(x)| + |f(x)|$$

$$|f(x)| + |f(x)| = |f(x)|$$

$$|f(x)| + |f(x)|$$

$$|f(x)| + |f(x)| = |f(x)|$$

$$|f(x)| + |f(x)|$$

$$|$$

+Show f(x) +sinx = I(f(x)) f(x)= J(g(x)) if g(x)= (xfx) 1e show f(x) = O(f(x) isinx) F(x) F(x)+sinx 1- 5-10K 1- 5-1 Since | SInx | SI, F(x) -> co E(X) >0 $\Rightarrow f(x) is O(f(x) + sin x)$

HW: X->co X

DUE but (x+z) cos²x

= O(x)

Thm: Hunt exists

 $\frac{1 \text{ Inv.} 11 \text{ exists}}{\text{ }} = O(3(x))$

X+2 / Cos 7x -> DNE X OSCIllates between O of 1

4. You don't know P but you can ask to b(1) b(s) * can only ask for P(a), GED

Exercise 1. (a) Let f(x) = ax + b and g(x) = cx + d where $a, c \neq 0$. Show that f(x) = O(g(x)).

Show that f(x) = O(g(x)).

50 there exists some

$$\begin{array}{c|c} C_2 & \text{St.} & \times 7/C_2 \\ \hline = 7 & G_{X+5} & \times 2 & G_2 \\ \hline c_{X+d} & \times 2 & G_2 \\ \hline \text{Set} & C_1 & \times 2 & G_2 \\ \hline \end{array}$$

(b) Let
$$f(x) = ax^2 + bx + c$$
, $a > 0$. Show that $f(x) = \Omega(x^2)$.

This inequality holds it $|ax^2+bx+c| > c_1x^2$ $|ax^2+bx+c| > c_1$

The LHS tends to a as x-xo, so 3Cz s.t. UXTICZ, GXZ+bX+C >, = a| Tet C, = 2 (a). (c) Show that $\sin x = \Theta(1)$. Show SINX = O(1) & SINX = IL(1), ()(1): Jhow JC, ICz S.L. Ux7,Cz, since |sinx| < | Ux,

can Set Cz=0 & C1=1

$$\mathcal{L}(1): SINX > -1,50$$

$$SIN(+) = \mathcal{L}(1)$$

$$= \sum_{i=1}^{n} SIN(+) = \mathcal{L}(1).$$

Exercise 2. Prove the following.

(a)
$$x^2 + \sqrt{x} = O(x^2)$$
.

$$\frac{(a) x + \sqrt{x} = O(x)}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

(c)
$$k^{2}2^{k} = O(e^{2k})$$
.

Where $Z = (e^{\log z})^{k}$
 $| Z| = (e^{\log z})^{k}$

(d) $N^{10}2^{N} = O(e^{N})$.

 $| Z| = (e^{\log z})^{N}$
 $| Z| = (e^{\log z})^{N}$
 $| Z| = (e^{\log z})^{N}$

Exercise	3.	Prove	the	foll	lowing.

(a) We often say that a sequence of events E_n happens "with high probability" if $\Pr[E_n] = 1 - o(1)$. Why does this make sense?

a function is o(1)
if it tends to O.
P[En] = 1-0(1)
⇔ IP(En] ->
Since the probability of th
occurring Lenas to 1, 11 makes
Since the probability of En occurring Lends to 1, it makes zense to say it happens "with high probability.
probability.

(b) If f(x) = o(g(x)) then f(x) = O(g(x)). If $f(x) = \omega(g(x))$ then $f(x) = \Omega(g(x))$. Give examples to show that the converses to these statements are false.

If
$$f(x) = a(g(x))$$
, then

$$\lim_{x \to \infty} |f(x)| = 0, \text{ which if }
finite, so$$

$$\lim_{x \to \infty} |f(x)| < \infty \Rightarrow f(x) = O(g(x))$$

of
$$f(x) = \omega(5(x))$$
, then
$$\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \infty > 0, so$$

$$f(x) = \Lambda(o(x))$$
.

but
$$\chi^2 \neq o(\chi^2)$$
 since $\chi^2 \not\rightarrow 0$