## Résolution d'équations et d'inéquations

Q1

Méthode : Pour déterminer les antécédents d'un nombre a par une fonction f, il suffit de résoudre l'équation f(x)=a. Par exemple pour déterminer les antécédents de 3 par la fonction f(x)=2x-1, on résout l'équation 2x-1=3.

On considère la fonction f définie par f(x)=3x-5 .

- **a.** Déterminez l'antécédent de 4 par f.
- **b.** Déterminez l'antécédent de -2 par f.
- ${f c.}$  Déterminez l'antécédent de 3 par f.

**Q2** On considère les fonctions suivantes définies par leur expression explicite.

$$f_1(x) = 5(x+3)$$

$$f_2(x) = x^2 - 3x + 7$$

$$f_3(x) = 4x^2 - 12x - 5$$

$$f_4(x) = \frac{4}{3x}$$

Deux affirmations sont vraies et deux affirmations sont fausses, lesquelles ? Justifiez.

- **a.** 0 est la solution de l'équation  $f_2(x)=7$ .
- **b.**  $f_1(x) = -45$  possède une unique solution.
- **c.**  $f_3(x) = -14$  possède exactement deux solutions.
- **d.**  $f_4(x) = 0$  ne possède aucune solution.

**Q3** Associez chaque fonction de l'exercice précédent à sa courbe représentative.

а.



b.



c.



d.



Q4

**a.** Tracez les courbes représentatives des fonctions  $f_2$  et  $f_3$ .

b.



- **c.** Résoudre graphiquement l'équation  $f_2(x)=f_3(x)$  puis contrôlez par le calcul.
- **d.** Résoudre graphiquement l'inéquation  $f_2(x) < f_3(x)$ .
- **e.** Résoudre graphiquement l'inéquation  $f_2(x)\geqslant f_3(x)$  .
- **f.** Montrez que  $4-2\sqrt{6}$  est une solution de l'équation  $f_1(x)=f_2(x)$ .
- **g.** Donnez par lecture graphique une valeur approchée de  $4-2\sqrt{6}$  .
- **h.** On admet que l'équation  $f_1(x)=f_2(x)$  admet deux solutions et que la seconde est  $4+2\sqrt{6}$ . Donnez les solutions de l'inéquation  $f_1(x)\geqslant f_2(x)$ .