Outlier Analysis

Ngô Xuân Bách

Bài giảng của DSLab Viện nghiên cứu cao cấp về Toán (VIASM)

Hanoi, June 2018

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
- Part IV: A Case Study

References

- Charu C. Aggarwal. Data Mining: The Textbook. Springer, 2015.
- Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2011.
- D.M. Hawkins. Identification of Outliers. Monographs on Statistics and Applied Probability, 1980.
- Sanjay Chawla, Varun Chandola. Anomaly Detection: A Tutorial.
- Proceedings of International Conferences
 - ACM International Conference on Knowledge Discovery and Data Mining (KDD).
 - IEEE International Conference on Data Mining (ICDM).

- Part I: Introduction
 - Outliers and Outlier Analysis
 - Some Applications
 - Key Models for Outlier Analysis
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
- Part IV: A Case Study

Outliers

- An outlier is a data point that is very different from most of the remaining data
- Hawkins: "An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." (Howkins, 1980)

Outliers

Outlier Detection

- Outlier detection is the process of detecting and subsequently excluding outliers from a given set of data
- Outlier detection vs. Clustering
 - Clustering: find groups of data points that are similar
 - Outlier detection: detect individual data points that are different from the remaining data

Terminologies

- Outliers = Anomalies = Abnormalities = Deviants
- Outlier Analysis = Outlier Detection =
 Anomaly Detection

Challenges

- Outliers are different and depend on problems
 - Depend on types of data
- Difficult to collect labeled data
 - Most outlier analysis methods are unsupervised
 - Difficult to validate

Some Applications

- Data cleaning
 - Outlier detection methods are useful for removing noise data
- Quality control and fault detection
- Fraud detection
 - Credit card fraud or insurance transactions
- Web log analytics
 - The anomalies in user behaviors may be determined with the use of Web log analytics
- Network intrusion detection
- Earth science applications
 - Detect unusual changes in the climate, or important events, such as the detection of hurricanes

Key Models for Outlier Analysis

- Most outlier detection methods create a model of normal patterns
 - Outliers are data points that do not naturally fit within this normal model
- The "outlierness" of a data point is quantified by a numeric value, known as the outlier score
- Output of outlier detection methods
 - Real-valued outlier score: quantifies the tendency for a data point to be considered an outlier
 - Binary label: whether or not a data point is an outlier

Key Models for Outlier Analysis

- Extreme Value Analysis
- Probabilistic Models
- Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Outlier Detection
- Information-Theoretic Models

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
- Part IV: A Case Study

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

Extreme Value Analysis

- Data point lying at one end of a probability distribution
 - Tails of the probability distribution
- Extreme values are specialized types of outliers
 - All extreme values are outliers, but the reverse may not be true
- Example of univariate extreme values
 - **1**,3,3,3,50,97,97,97,100
 - 1 and 100: extreme values ⇒ outliers
 - □ 50 is the mean of the data set → not an extreme value
 - 50 is the most isolated point outlier from a generative perspective

Extreme Value Analysis

Example of multivariate extreme values

- How is the "tail" of a distribution defined?
 - The upper tail: all extreme values larger than a particular threshold
 - The lower tail: all extreme values lower than a particular threshold
- Consider the density distribution $f_X(x)$
 - □ The tail may be defined as the two extreme regions of the distribution for which $f_X(x) \le \theta$, for some user defined threshold θ

Symmetric distribution

Asymmetric distribution

 The most commonly used model for quantifying the tail probability is the normal distribution

$$f_X(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}$$

- \square μ : mean
- \Box σ : standard deviation
- In some application scenarios, μ and σ may be known through prior domain knowledge
- $lue{}$ When a large number of data samples is available, μ and σ may be estimated very accurately

Compute the Z-value for a random variable

$$z_i = \frac{(x_i - \mu)}{\sigma}$$

- lacksquare Large positive values of z_i correspond to the upper tail
- Large negative values correspond to the lower tail
- We have

$$E[z_i] = \frac{E[x_i - \mu]}{\sigma} = \frac{E[x_i] - \mu}{\delta} = 0$$

$$var(z_i) = E[z_i^2] - E[z_i]^2 = \frac{E[(x_i - \mu)^2]}{\delta^2} = 1$$

Therefore

$$f_X(z_i) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{\frac{-z_i^2}{2}}$$

- A rule of thumb
 - \square If $|z_i| > 3$, x_i is considered extreme value
 - □ The cumulative area inside the tail can be shown to be less than 0.01% for the normal distribution

Multivariate Extreme Values

- Tails are defined for univariate distributions
 - Extreme regions with probability density less than a particular threshold
 - An analogous concept can also be defined for multivariate distributions
- A multivariate Gaussian model is used
 - The corresponding parameters are estimated in a data-driven manner

Multivariate Extreme Values

• The probability distribution $f(\bar{X})$ for a d-dimensional data point \bar{X}

$$f(\overline{X}) = \frac{1}{\sqrt{|\Sigma| \cdot (2 \cdot \pi)^{(d/2)}}} \cdot e^{-\frac{1}{2} \cdot (\overline{X} - \overline{\mu}) \Sigma^{-1} (\overline{X} - \overline{\mu})^T}$$

- $\bar{\mu}$: d-dimensional mean vector of the data set
- \square Σ : be its $d \times d$ covariance matrix
- \square $\Sigma[i,j]$: covariance between the dimensions i and j
- \square $|\Sigma|$: determinant of the covariance matrix
- $Maha(\bar{X}, \bar{\mu}, \Sigma)$ represents the Mahalanobis distance

$$f(\overline{X}) = \frac{1}{\sqrt{|\Sigma| \cdot (2 \cdot \pi)^{(d/2)}}} \cdot e^{-\frac{1}{2} \cdot Maha(\overline{X}, \overline{\mu}, \Sigma)^2}$$

VIASI

Mahalanobis Distance

Covariance matrix

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

$$A = (0.5, 0.5)$$

$$B = (0, 1)$$

$$C = (1.5, 1.5)$$

$$Maha(A, B) = ?$$

$$Maha(A, C) = ?$$

Mahalanobis Distance

$$Maha(A, B) = \sqrt{(A - B)\Sigma^{-1}(A - B)^{T}} = \sqrt{5}$$

 $Maha(A, C) = \sqrt{(A - C)\Sigma^{-1}(A - C)^{T}} = \sqrt{4}$

Covariance matrix

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

$$A = (0.5, 0.5)$$

$$B = (0, 1)$$

$$C = (1.5, 1.5)$$

Inverse matrix

$$\Sigma^{-1} = \begin{bmatrix} 6 & -4 \\ -4 & 6 \end{bmatrix}$$

Multivariate Extreme Values

- For $f(\bar{X})$ less than a particular threshold
 - lacktriangle Maha(.) needs to be larger than a threshold
 - \square Maha(.) can be used as an extreme-value score

Convex set

If S is a convex set in n-dimensional space, and u_1, \ldots, u_r are r n-dimensional vectors in S (r > 1), then every convex combination of u_1, \ldots, u_r are also in S

$$\sum_{k=1}^{r} \lambda_k u_k \in S$$

for any nonnegative numbers $\lambda_1,\dots,\lambda_r$ such that $\lambda_1+\dots+\lambda_r=1$

Examples of convex and non-convex sets

- Convex hull
 - Convex hull of a set X of points the is the smallest convex set that contains X
 - Convex hull may be defined as the intersection of all convex sets containing X or as the set of all convex combinations of points in X

Examples of convex hulls


```
Algorithm FindDepthOutliers(Data Set: \mathcal{D}, Score Threshold: r)
begin
  k = 1;
  repeat
    Find set S of corners of convex hull of \mathcal{D};
    Assign depth k to points in S;
    \mathcal{D} = \mathcal{D} - S;
    k = k + 1;
  \mathbf{until}(D \text{ is empty});
  Report points with depth at most r as outliers;
end
```

The index of the iteration k provides an outlier score

Smaller values indicate a greater tendency to be an outlier

Example

- Less effective (quality and computation) compared to the multivariate method
- Qualitative perspective
 - Do not normalize for the characteristics of the statistical data distribution
 - All data points at the corners of a convex hull are treated equally
 - The scores of many data points are indistinguishable
- Computational complexity
 - Increases significantly with dimensionality

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

- Based on a generalization of the multivariate extreme values analysis
 - By generalizing this model to multiple mixture components
- Assume that data were generated from a mixture of k distributions with the probability distributions $\mathcal{G}_1, \dots, \mathcal{G}_k$
 - Select a mixture component with prior probability $\alpha_i, i \in \{1 \dots k\}$
 - 2. Assume that the r^{th} one is selected
 - 3. Generate a data point from G_r
- lacktriangle This generative model is denoted by ${\mathcal M}$
 - lacksquare $\mathcal M$ generates data set $\mathcal D$ (used to estimate the parameters)
 - $\hfill \square$ Outliers are data points in $\mathcal D$ that are highly unlikely to be generated by $\mathcal M$

- Based on a generalization of the multivariate extreme values analysis
 - By generalizing this model to multiple mixture components
- Assume that data were generated from a mixture of k distributions with the probability distributions $\mathcal{G}_1, \dots, \mathcal{G}_k$
 - Select a mixture component with prior probability $\alpha_i, i \in \{1 \dots k\}$
 - 2. Assume that the r^{th} one is selected
 - 3. Generate a data point from \mathcal{G}_r
- lacktriangle This generative model is denoted by ${\mathcal M}$
 - \square \mathcal{M} generates data set \mathcal{D} (used to estimate the parameters)
 - Outliers are data points in $\mathcal D$ that are highly unlikely to be generated by $\mathcal M$

Reflects Hawkins's definition of outliers

- Parameter estimation
 - $lue{\alpha}_i$ and the parameters of distributions \mathcal{G}_r
 - Maximum likelihood estimation
- The probability (density function) of the data point $\overline{X_j}$ being generated by $\mathcal M$

$$f^{point}(\overline{X_j}|\mathcal{M}) = \sum_{i=1}^k \alpha_i \cdot f^i(\overline{X_j})$$

- \Box $f^{i}(\cdot)$: density function of G_{i} is given by
- Density value $f^{point}(\overline{X_j}|\mathcal{M})$ provides an estimate of the outlier score of the data point $\overline{X_j}$

- A and B have very low fit to the mixture model → outliers
 C has high fit to the
- C has high fit to the mixture model not outlier

Maximum Likelihood estimation

- Data set \mathcal{D} containing n data points $\overline{X_1}$, ..., $\overline{X_n}$
 - \square Probability density of the data set generated by M

$$f^{data}(\mathcal{D}|\mathcal{M}) = \prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M})$$

The log-likelihood fit

$$\mathcal{L}(\mathcal{D}|\mathcal{M}) = \log(\prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M})) = \sum_{j=1}^{n} \log(\sum_{i=1}^{k} \alpha_i \cdot f^i(\overline{X_j}))$$

Log-likelihood fit can be optimized using EM algorithm

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV:A Case Study

- Outlier detection vs. Clustering
 - Clustering: find groups of data points that are similar
 - Outlier detection: detect individual data points that are different from the remaining data
 - A simplistic view: every data point is either a member of a cluster or an outlier
- In general clustering is not an appropriate approach because it is not optimized for outlier detection
- Clustering models have some advantages
 - Outliers often tend to occur in small clusters
 - anomaly in the generating process may be repeated a few times
 - A small group of related outliers may be created

- Defining the outlier score of a data point
 - □ The distance of the data point to its closest cluster centroid
- The Mahalanobis distance

$$Maha(\overline{X}, \overline{\mu_r}, \Sigma_r) = \sqrt{(\overline{X} - \overline{\mu_r})\Sigma_r^{-1}(\overline{X} - \overline{\mu_r})^T}.$$

- $\Box \bar{X}$: a data point
- \square $\overline{\mu_r}$: d-dimensional mean vector of the r^{th} cluster
- \square Σ_r : $d \times d$ covariance matrix

- The major problem with clustering algorithms
 - Sometimes not able to properly distinguish between ambient noise and truly isolated anomaly
 - The distance to the closest cluster centroid does not accurately reflect the instance-specific isolation of the underlying data point

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

Distance-Based Outlier Detection

- Outliers: Data points far away from the "crowded regions" (or clusters)
- Principle of distance-based methods
 - $lue{}$ Outlier score: distance to the k^{th} nearest neighbor
 - $lue{}$ Other variation: the average distance to the k-nearest neighbors
- Distance-based methods can distinguish between ambient noise and truly isolated anomalies
 - $lue{}$ Ambient noise will typically have a lower k-nearest neighbor distance than a truly isolated anomaly

Example

- Clustering based
 - p_1 and p_3 are outliers (far from cluster centroid)
- Distance based
 - p_1 is an outlier (distances to k^{th} NN of p_2 and p_3 are the same)
- Correct
 - \square p_1 and p_2 are outliers

Example

- Clustering based
 - p_1 and p_3 are outliers (far from cluster centroid)
- Distance based
 - p_1 is an outlier (distances to k^{th} NN of p_2 and p_3 are the same)
- Correct
 - \square p_1 and p_2 are outliers

Need to differentiate dense and spare clusters

Local Outlier Factor (LOF)

- For data point \bar{X}

 - $lacksquare L_k(ar{X})$ be the set of points within the k-nearest neighbor distance of $ar{X}$
 - $lue{}$ Reachability distance of $ar{X}$ with respect $ar{Y}$

$$R_k(\overline{X}, \overline{Y}) = \max\{Dist(\overline{X}, \overline{Y}), V^k(\overline{Y})\}$$

- \Box \overline{Y} in dense region \Rightarrow $Dist(\overline{X}, \overline{Y})$
- \Box \overline{Y} in spare region and $Dist(\overline{X}, \overline{Y})$ small $\Rightarrow V^k(\overline{Y})$

Local Outlier Factor (LOF)

• Average reachability distance \bar{X} with respect to its neighborhood $L_k(\bar{X})$

$$AR_k(\overline{X}) = \text{MEAN}_{\overline{Y} \in L_k(\overline{X})} R_k(\overline{X}, \overline{Y})$$

- \square \bar{X} in dense region: $AR_k(\bar{X})$ is small
- Local Outlier Factor of \bar{X}

$$LOF_k(\overline{X}) = \text{MEAN}_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}$$

 \Box \overline{Y} in dense region: $AR_k(\overline{Y})$ is small, increase $LOF_k(\overline{X})$

Example

- Clustering based
 - p_1 and p_3 are outliers (far from cluster centroid)
- Distance based
 - p_1 is an outlier (distances to k^{th} NN of p_2 and p_3 are the same)
- LOF
 - \square p_1 and p_2 are outliers

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

Density-Based Outlier Detection

- Based on similar principles as density-based clustering
 - Determine sparse regions in the underlying data in order to report outliers
- Main methods
 - Histogram and Grid-based techniques

- Univariate data
 - Histograms are simple and easy, therefore used quite frequently in many application domains
 - The data is discretized into bins
 - Data points in bins with very low frequency are outliers
 - □ The number of other data points in the bin for data point \bar{X} is the outlier score for \bar{X}

Univariate data

- Multivariate data
 - A grid-structure is used
 - $lue{}$ Each dimension is partitioned into p equi-width ranges
 - Number of points in a grid region is outlier score
 - $lue{}$ Data points that have density less than au in any particular grid region are reported as outliers

Major challenges

- Hard to determine the optimal histogram width
 - Too wide, or too narrow, will not model the frequency distribution well
 - Grid-structures have similar issues
- Too local in nature
 - Do not take the global characteristics of the data into account
- Do not work very well in high dimensionality
 - The sparsity of the grid structure with increasing dimensionality
 - $lue{}$ A d-dimensional space will contain at least 2^d grid-cells
 - Number of data points expected to populate each cell reduces exponentially with increasing dimensionality

Vietnam Institute for

Advanced Study in Mathematics

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

- Outliers are data points that do not naturally fit the remaining data distribution
 - If we can somehow compress the data, the outliers will increase the minimum code length required to describe it
- Example

- □ The first string: "AB I7 times"
- The second string can no longer be described as concisely
- Symbol C increases the minimum description length
- C is considered as an outlier

- Outliers are data points that do not naturally fit the remaining data distribution
 - If we can somehow compress the data, the outliers will increase the minimum code length required to describe it
- Example

- □ The first string: "AB I7 times"
- The second string can no longer be described as concisely
- Symbol C increases the minimum description length
- C is considered as an outlier

Outliers increase the model complexity

- Every conventional model can be converted into an information-theoretic version
- Probabilistic models
 - Model complexity: number of mixture components
 - Information-theoretic version examine the size of the model required
- Clustering-based models
 - Model complexity: number of clusters
 - Information-theoretic version reports required model size as the outlier score
- Density-based models
 - Model complexity: number bins

- When do we use conventional models?
 - Cases where the summary models can be explicitly constructed
 - Because: outlier scores are directly optimized
- When do we use information-theoretic models?
 - Cases where an accurate summary model of the data is hard to explicitly construct
 - Solution: Kolmogorov complexity can be used to estimate the compressed space requirements of the data set indirectly

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
 - Extreme Value Analysis
 - Probabilistic Models
 - Clustering for Outlier Detection
 - Distance-Based Outlier Detection
 - Density-Based Outlier Detection
 - Information-Theoretic Models
 - Outlier Validity
- Part III: Advanced Topics
- Part IV: A Case Study

Methodological Challenges

- Outlier analysis is an unsupervised problem
 - Hard to validate because of the lack of external criteria
- Whether internal criteria can be defined for outlier validation?
 - Almost never because of the small sample solution space
 - A model only needs to be correct on a few outlier data points to be considered a good model

Vietnam Institute for

Advanced Study in Mathematics

ROC Curve

- Outlier detection algorithms are typically evaluated with external measures
 - Known outlier labels are used as ground-truth
- False-positives and False-negatives
 - A threshold is used to generate a binary label

 Receiver Operating Characteristic (ROC) curve is used for trade-off problem

Vietnam Institute for

Advanced Study in Mathematics

ROC Curve

True positive rate (TPR or recall)

$$TPR(t) = Recall(t) = 100 * \frac{|\mathcal{S}(t) \cap \mathcal{G}|}{|\mathcal{G}|}$$

- □ t:a given threshold
- $\supset S(t)$: the declared outlier set
- \Box *G*: the true set (ground-truth set)
- False positive rate (FPR)

$$FPR(t) = 100 * \frac{|\mathcal{S}(t) - \mathcal{G}|}{|\mathcal{D} - \mathcal{G}|}$$

 \square \mathcal{D} : the whole dataset

ROC Curve

■ The ROC curve is defined by plotting the FPR(t) on the X-axis, and TPR(t) on the Y-axis for varying

values of t

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
- Part IV: A Case Study

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
 - Outlier Detection with Categorical Data
 - High-Dimensional Outlier Detection
 - Outlier Ensembles
- Part IV: A Case Study

Outlier Detection with Categorical Data

- Categorical variables
 - Take on one of a limited, and usually fixed, number of possible values
 - Represent types of data which may be divided into groups
 - Examples: sex, age group, and educational level
- We can modify presented algorithms for outlier analysis to work with categorical data
 - Probabilistic Models
 - Clustering and Distance-Based Methods

Probabilistic Models

- We use a generative mixture model (\mathcal{M}) of categorical data (instead of numerical data)
- k components of the mixture model are denoted by $\mathcal{G}_1, \dots, \mathcal{G}_k$
- The generative process to generate each point in the d-dimensional data set \mathcal{D}
 - Select a mixture component with prior probability $\alpha_i, i \in \{1 ... k\}$
 - 2. Assume that the r^{th} one is selected
 - 3. Generate a data point from \mathcal{G}_r

Probabilistic Models

• The value of the generative probability $g^{m,\Theta}(\bar{X})$ of a data point from cluster m

$$g^{m,\Theta}(\overline{X}) = \prod_{r=1}^{d} p_{rj_rm}$$

- lacksquare $ar{X}$ contains the attribute value indices j_1,\dots,j_d
- p_{ijm} : probability in which the j^{th} value of the i^{th} attribute is generated by cluster m
- Sum of the probabilities over all components

$$P(\bar{X}|\mathcal{M}) = \sum_{r=1}^{\infty} \alpha_r \cdot g^{r,\Theta}(\bar{X})$$

is used as the outlier score

Clustering and Distance-Based Methods

- Centroid of a categorical data set
 - Convert categorical data to numerical or binary data
 - Calculations are conducted on numerical/binary data
 - Use probability histogram of values on each attribute

Data	(Color, Shape)
1	(Blue, Square)
2	(Red, Circle)
3	(Green, Cube)
4	(Blue, Cube)
5	(Green, Square)
6	(Red, Circle)
7	(Blue, Square)
8	(Green, Cube)
9	(Blue, Circle)
10	(Green, Cube)

Attribute	Histogram	Mode
Color	Blue= 0.4	Blue or
	Green = 0.4	Green
	Red = 0.2	
Shape	Cube = 0.4	Cube
	Square $= 0.3$	
	Circle = 0.3	

Clustering and Distance-Based Methods

- Calculating similarity
 - Convert categorical data to numerical data or to binary data
 - Calculations are conducted on numerical/binary data
 - Match-based similarity using probability histogram

Clustering and Distance-Based Methods

Calculating similarity

Data	(Color, Shape)
1	(Blue, Square)
2	(Red, Circle)
3	(Green, Cube)
4	(Blue, Cube)
5	(Green, Square)
6	(Red, Circle)
7	(Blue, Square)
8	(Green, Cube)
9	(Blue, Circle)
10	(Green, Cube)

Attribute	Histogram	Mode
Color	Blue= 0.4	Blue or
	Green = 0.4	Green
	Red = 0.2	
Shape	Cube = 0.4	Cube
	Square $= 0.3$	
	Circle = 0.3	

(Blue, Square) vs (Blue, Cube): 0.4 + 0

(Blue, Square) vs (Blue, Square): 0.4 + 0.3

(Blue, Square) vs (Red, Cube): 0 + 0

Outliers in Transaction Data

- Frequent patterns are much less likely to occur in outlier transactions
 - Compute sum of all the supports of frequent patterns occurring in a particular transaction
 - Normalize by dividing with the number of frequent patterns
 - This provides an outlier score for the pattern

Outliers in Transaction Data

Frequent Pattern Outlier Factor

$$FPOF(T_i) = \frac{\sum_{X \in FPS(\mathcal{D}, s_m), X \subseteq T_i} s(X, \mathcal{D})}{|FPS(\mathcal{D}, s_m)|}$$

- \square \mathcal{D} : transaction database containing transactions T_1, \dots, T_N
- \square $s(X,\mathcal{D})$: support of itemset X in \mathcal{D}
- □ $FPS(\mathcal{D}, s_m)$: set of frequent patterns in the database \mathcal{D} at minimum support level s_m
- □ $FPOF(T_i)$: frequent pattern outlier factor of transaction T_i

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
 - Outlier Detection with Categorical Data
 - High-Dimensional Outlier Detection
 - Outlier Ensembles
- Part IV: A Case Study

- Challenging
 - Varying importance of the different attributes
 - Complexity
- The idea: causality of an anomaly can be typically perceived in only a small subset of the dimensions
 - The remaining dimensions are irrelevant and only add noise
 - Different subsets of dimensions may be relevant to different anomalies
 - Full-dimensional analysis often does not properly expose the outliers in high-dimensional data

- Challenging
 - Varying importance of the different attributes
 - Complexity
- The idea: causality of an anomaly can be typically perceived in only a small subset of the dimensions
 - The remaining dimensions are irrelevant and only add noise
 - Different subsets of dimensions may be relevant to different anomalies
 - Full-dimensional analysis often does not properly expose the outliers in high-dimensional data

An outlier is defined by associating it with subspaces specific to that outlier

- Methods: search the data points and dimensions in an integrated way to reveal the most relevant outliers
- Grid-based rare subspace exploration
 - Rare subspaces of the data are explored after discretizing the data into a grid-like structure
- Random subspace sampling
 - Subspaces of the data are sampled to discover the most relevant outliers

Grid-based Rare Subspace Exploration

- Data discretization
 - $lue{}$ Select k attributes, each attribute is divided into p ranges to creates a grid cell of dimensionality k
 - \square Expected fraction of data points in a grid cell: $f^k = (1/p)^k$
- Sparsity coefficient of a k-dimensional cube $\mathcal R$
 - lacktriangle The presence of any point in $\mathcal R$ is a Bernoulli random variable with probability f^k
 - The expected number and standard deviation of the (n) points in \mathcal{R} are $\mathbf{n} \cdot f^k$ and $\sqrt{\mathbf{n} \cdot f^k (1 f^k)}$ (Multinomial)

$$S(\mathcal{R}) = \frac{n_{\mathcal{R}} - n \cdot f^k}{\sqrt{n \cdot f^k \cdot (1 - f^k)}}$$

 $lue{}$ $n_{\mathcal{R}}$: number of data points in \mathcal{R}

Random Subspace Sampling

- Idea of random subspace sampling
 - Explore many possible subspaces and examine if at least one of them contains outliers
- Feature bagging (for the t^{th} iteration)
 - Randomly chose the size of the feature subset N_t from a uniform distribution between $\lfloor d/2 \rfloor$ and (d-1)
 - 2. Randomly pick, without replacement, N_t features to create a data set D_t
 - 3. Apply an outlier detection algorithm \mathcal{O}_t on the data set \mathcal{D}_t to create score vectors \mathcal{S}_t
 - \square Combine outlier scores S_t from different iterations

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
 - Outlier Detection with Categorical Data
 - □ High-Dimensional Outlier Detection
 - Outlier Ensembles
- Part IV: A Case Study

Outlier Ensembles

Ensemble methods

- Combine outputs of multiple models to create the final one
- Take advantages of different algorithms in different situations
- Used popular in classification, clustering, outlier detection

Outlier Ensembles

- Combine outlier scores of multiple outlier analysis models
- How to create multiple models?
- How to combine outputs?

Ensemble Methods

Multiple Models

- Use different version of the dataset
 - Random subspace sampling
- Use different algorithms
 - Probabilistic, Clustering-based, distance-based, and so on
- Use different parameters
- Use all of the above

Output Combination

- Use a maximum function
 - The score is the maximum of the outlier scores from the different components
- Use a average function
 - The score is the average of the outlier scores from the different components
- Use majority voting
 - Do not use with outlier scores
 - A data point is considered as an outlier if more than a half of models say that

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
- Part IV: A Case Study

Content

- Part I: Introduction
- Part II: Models for Outlier Analysis
- Part III: Advanced Topics
- Part IV: A Case Study
 - Fraud Detection

Fraud Detection

- Question: Identify fraudulent activities or users from observed transaction data
- Data
 - Transactions of different users
 - Meta information about users
- Applications
 - Insurance (auto, health)
 - Claimant, Provider, Payer
 - Credit Cards
 - Customer, Supplier, Bank
 - Telecommunications
 - Customer, Provider

Fraud Detection

- Challenges:
 - Track and model human behavior
 - Anomalies caused by human intentionally
 - Massive data sizes
 - Difficult to distinguish between frauds and noises
 - Need domain knowledge

Generic Fraud Detection Methods

- Activity monitoring
 - Build profiles for individuals (customers, users, etc.) based on historic data
 - Compare current behavior with historical profile for significant deviations
- Clustering based
 - Cluster historical profiles of customers
 - Identify small clusters or outlying profiles as anomalies

Generic Fraud Detection Methods

Strengths

- Anomaly detection is fast (good for real time)
- Results are easy to explain

Weaknesses

- Need to create and maintain a large number of profiles
- Adequate historical data might not be available
- Too many false positives

Other Methods

- Classification based
 - Advantages: there are many effective supervised methods which can build a good model
 - Disadvantages: difficult to collect enough positive samples
- Density based
 - Use histogram and grid-based techniques
 - Advantages: simple and easy to implement; can be effective in some situations
 - Disadvantages: cannot detect frauds in difficult situations

Outlier Analysis Q&A

Ngô Xuân Bách

