CHAPTER 21: OPTICAL PROPERTIES

- > Electromagnetic Radiation
- > Light Interaction with Solids
- > Optical Properties of Metals
- > Optical Properties of Nonmetals
 - Refraction, Reflection, Absorption,
 - Transmission, Color, Opacity
- > Application
 - Luminescence, Photoconductivity
 - Laser, Optical Fiber

INTRODUCTION

- Optical Property a material's response to exposure to visible light
- Visible Light- electromagnetic radiation

INTRODUCTION

- Light is energy, or radiation, in the form of waves or particles called photons that can be emitted from a material.
- The important characteristics of the photons—their energy E, wavelength λ , and frequency ν —are related by the equation

THE ELECTROMAGNETIC SPECTRUM

LIGHT INTERACTION WITH SOLIDS

• Incident light is either reflected, absorbed, or transmitted: $I_0 = I_T + I_A + I_R$

Optical classification of materials:

LIGHT INTERACTION WITH SOLIDS

LIGHT INTERACTION WITH SOLIDS

> electronic polarization

- some of the radiation energy may be absorbed

- light waves are retarded in velocity as they pass

through the medium

> electron transition

- discrete, specific energy

$$\Delta E = h\nu$$

- short stay in an excited state- decay back into its ground state

INTERACTION OF EM WAVE WITH SOLIDS

- refraction, reflection, absorption
- described by
 - index of refraction: ratio of the velocity of light in vacuum to the velocity of light in the material
 - absorption constant: the reciprocal of the absorption coefficient is a measure of how far the light will travel before being reduced by a factor of e
 - penetration depth: the distance with 1/e reduction in intensity
 - dielectric constant: related with the polarization of a material
 - permeability: related with the magnetization of a material

OPTICAL PROPERTIES OF METALS

- total absorption-less than $0.1 \mu m$
- all frequencies of visible light absorbed
- reemit in the form of visible light of same wavelength
- reflectivity- 0.90~0.95

OPTICAL PROPERTIES OF METALS

REFLECTANCE SPECTRA of gold (black curve) and silver (gray curve) are compared. Gold reflects red and yellow light strongly at the surface but allows some penetration by green rays, which are then completely absorbed within a small thickness of the bulk of the metal. Silver, on the other hand, strongly reflects incident light over most of the visible region of the spectrum (color) but allows considerable transmission in the ultraviolet.

- Al, Ag: bright silvery the composition of reemitted photons is approximately same as for the incident beam
- Cu, Au- red orange & yellow some of the energy associated with light photons having short wavelength is not reemitted as visible light

OPTICAL PROPERTIES OF NONMETALS

- refractive index

$$n = \frac{v_{vac}}{v_{mat}} = \frac{\lambda_{vac}}{\lambda_{mat}} = \frac{\sin i}{\sin r}$$
(snell's law)

- light travels from material 1 to material 2

$$\frac{v_1}{v_2} = \frac{n_2}{n_1} = \frac{\sin i}{\sin r}$$

$$-n = \frac{v_{vac}}{v_{mat}} = \frac{\sqrt{\varepsilon\mu}}{\sqrt{\varepsilon_o\mu_o}} = \sqrt{\varepsilon_r\mu_r} \quad n \cong \sqrt{\varepsilon_r} \text{ for nonmagnetic}$$

REFRACTION

Polymer

Average refractive index

- refractive index

4			
		Thermoplastic polymers Polyethylene	
Material	Average refractive index		1.545
Quartz (SiO ₂) Mullite ($3Al_2O_3 \cdot 2SiO_2$) Orthoclase ($KAlSi_3O_8$) Albite (NaAlSi ₃ O ₈) Corundum (Al_2O_3) Periclase (MgO) Spinel (MgO · Al_2O_3) Silica glass (SiO ₂) Borosilicate glass	1.55 1.64 1.525 1.529 1.76 1.74 1.72 1.458 1.47 1.51–1.52	Low-density Polyvinyl chloride Polypropylene Polystyrene Cellulosics Polyamides (nylon 66) Polytetrafluoroethylene (Teflon) Thermosetting polymers Phenolics (phenol-formaldehyde) Urethanes Epoxies	1.51 1.54-1.55 1.47 1.59 1.46-1.50 1.53 1.35-1.38 1.47-1.50 1.5-1.6 1.55-1.60
Soda-lime-silica glass Glass from orthoclase Glass from albite	1.51-1.52 1.51 1.49	Elastomers Polybutadiene/polystyrene copolymer Polyisoprene (natural rubber) Polychloroprene	1.53 1.52 1.55–1.56

$$n^* = n - ik$$
 (k: index of absorption)

$$n^{*2} = \varepsilon_r^* = \varepsilon_r^* - i\varepsilon_r^*$$
 $\varepsilon_r^* = n^2 - k^2$ $\varepsilon_r^* = 2nk$

Figure 10.4. Modulated light wave. The amplitude decreases exponentially in an optically dense material. The decrease is particularly strong in metals, but less intense in dielectric materials, such as glass.

Table 10.1. Characteristic Penetration Depth, W, and Damping Constant, k, for Some Materials ($\lambda = 589.3$ nm).

Material	Water	Flint glass	Graphite	Gold
W(cm)	32	29	6×10^{-6}	1.5×10^{-6}
k	1.4×10^{-7}	1.5×10^{-7}	0.8	3.2

REFRACTION

- total internal reflection critical angle

$$\sin r = \sin i_{cr} \left(\frac{n_{mat}}{n_{vau}} \right) = \sin 90$$

$$i_{cr} = \sin^{-1}(\frac{n_{vac}}{n_{mat}})$$
$$= \sin^{-1}(\frac{1}{n_{mat}})$$

DISPERSION

DISPERSION

REFECTION

- reflection

Fresnel's formula for normal incidence

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

$$R = \left(\frac{n-1}{n+1}\right)^2$$

 $n: 1.5 \to 1.9$

 $R: 4 \rightarrow 10\%$

Table 10.2. Optical constants for some materials ($\lambda = 600 \text{ nm}$)

	n	\boldsymbol{k}	$R \%^b$
Metals			
Copper	0.14	3.35	95.6
Silver	0.05	4.09	98.9
Gold	0.21	3.24	92.9
Aluminum	0.97	6.0	90.3
Ceramics			
Silica glass (Vycor)	1.46	a	3.50
Soda-lime glass	1.51	a	4.13
Dense flint glass	1.75	а	7.44
Quartz	1.55	а	4.65
Al_2O_3	1.76	а	7.58
Polymers			
Polyethylene	1.51	а	4.13
Polystyrene	1.60	а	5.32
Polytetrafluoroethylene	1.35	a	2.22
Semiconductors			
Silicon	3.94	0.025	35.42
GaAs	3.91	0.228	35.26

[&]quot;The damping constant for dielectrics is about 10^{-7} ; see Table 10.1.

^bThe reflection is considered to have occurred on one reflecting surface only.

reflectionspeculardiffuse

polar diagram

REFECTION

REFECTION

- antireflective coating-microscope, telescope

$$\frac{dI}{I_o} = -\beta dx \qquad I = I_o \exp(-\beta x)$$

$$\beta$$
: absorption coefficient (= $\frac{4\pi k}{\lambda}$)

blue silicate glasses impurities, additives → chromophore

Optical Properties of Nonmetals

- transparency, translucency, opacity

COLOR

- Ruby: 0.5 to 2 wt% Cr₂O₃-doped Al₂O₃ impurity levels within the wide energy gap

strong absorption blue-violet yellow-green \rightarrow deep red color

COLOR

1% cobalt oxide (Co²⁺)containing silicate glass
Blue color ← absorption of red end

COLOR

Various metal ions in silicate glasses

	In glass	network	In modifier position		
Ion	Coordination number	Color	Coordinatio number	n Color	
Cr ²⁺				Blue	
Cr ³⁺			6	Green	
Cr ⁶⁺	4	Yellow			
Cu ²⁺	4		6	Blue-green	
Cu+			8	Colorless	
Co ²⁺	4	Blue-purple	6-8	Pink	
Ni^{2+}		Purple	6-8	Yellow-green	
Mn ²⁺		Colorless	8	Weak orange	
Mn^{3+}		Purple	6		
Fe ²⁺		•	6-8	Blue-green	
Fe ³⁺		Deep brown	6	Weak yellow	
U^{6+}		Orange	6-10	Weak yellow	
V^{3+}			6	Green	
V^{4+}			6	Blue	
V^{5+}	4	Colorless			

APPLICATION: LUMINESCENCE

Luminescence- light emission in the visible spectrum accompanying the absorption of other forms of energy (thermal, mechanical, chemical or particles (high energy electrons) (photoluminescence, electroluminescence)

Fluorescence- emission of electromagnetic radiation that occurs within ~10⁻⁸ s of an excitation event

Phosphorescence- emission of electromagnetic radiation over an extended period of time after the excitation event is over

APPLICATION: LUMINESCENCE

APPLICATION: LUMINESCENCE

A fluorescent lamp is a type of lamp that uses electricity to excite mercury vapor in argon or neon gas, resulting in a plasma that produces short-wave ultraviolet light. This light then causes a phosphor to fluoresce, producing visible light.

two rare-earth-doped phosphors, $\underline{\mathsf{Tb}}^{3+}$, $\underline{\mathsf{Ce}}^{3+}$: $\underline{\mathsf{La}}\mathsf{PO}_4$ for green and blue emission and $\underline{\mathsf{Eu}}$: $\underline{\mathsf{Y}}_2\mathsf{O}_3$ for red.

APPLICATION: X-RAY FLUORESCENCE

TABLE 11.7–1 Characteristic emission lines.

	Wavelength of emission (nm)		
Element	K_{α}	$\mathbf{K}_{\boldsymbol{\beta}}$	
С	4.47		
N	3.16		
O	2.36	—	
F	1.83		
Na	1.19	_	
Mg	0.99	-	
Al	0.834	0.796	
Si	0.713	0.675	
Cr	0.229	0.209	
Fe	0.194	0.176	
Co	0.179	0.162	
Ni	0.166	0.150	
Cu	0.154	0.139	

Source: Courtesy of American Physical Society.

APPLICATION: PHOTOCONDUCTIVITY

Description:

A. No incident radiation: little current flow

B. Incident radiation: increased current flow

Ex: Photodetector (Cadmium sulfide)

LASER

- > light amplification by stimulated emission of radiation
 - coherent beam, monochromatic
 - collimation, pumping and population inversion

Table 13.1. Properties of Some Common Laser Materials.

Type of laser	Wave- length(s) (nm)	Beam diver- gence (mrad)	Peak power output (W)	Comments
Ruby (Cr ³⁺ -doped Al ₂ O ₃)	694.3	10 5 0.5	CW: $^{\circ} \sim 5$ pulsed (1-3 ms): $10^{6}-10^{8}$ Q-switched (10 ns): 10^{9}	Optically pumped three-level laser. Lasing occurs between Cr ³⁺ levels. Low efficiency (0.1%). Historic device (1960).
Neodymium (Nd ³⁺ -doped glass or YAG ^b)	1,064	3–8	CW: 10^3 pulsed $(0.1-1 \ \mu s)$: $\sim 10^4$	Optically pumped four- level laser. High efficiency 2%.
HeNe	632.8 (1150; 3390)	1	$10^{-3} - 10^{-2}$	See Fig. 13.36 and text. Most widely used.
HeCd (gas/metal vapor)	441.6 325 353.6		150 mW CW 100 mW 20 mW	Similarly pumped as HeNe laser. Used for high-speed laser printers, and writing data on photoresists for CD-ROMs. Efficiency: up to 0.02%.
Argon ion CO ₂	488 10,600; 9,600	2	~25 CW CW: 10-1.5×10 ⁴ pulsed (10 ² -10 ³ ns): 10 ⁵	0.1% Efficiency High efficiency (20%). Lasing occurs between vibrational levels (Fig. 13.37).
Semiconductor GaAs	~870	250	Homojunction, pulsed: (10 ² ns) 10-30	Small size, direct conversion of
GaAlAs ^c	~850	500	Heterojunction, CW: 1-4 × 10 ⁻¹	electrical energy into optical energy. 10– 55% efficiency. See Figs. 13.38 and 13.43.
Oye (organic dyes in solvents)	350–1000	3 10	CW: $\sim 10^{-1}$ pulsed (6 ns) $\sim 10^{5}$	Lasing occurs between vibrational sublevels of molecules. Tunable by Littrow prism (Fig. 13.36(a)).

^aCW: Continuous wave. ^bYttrium aluminum garnet (Y₃Al₂O₁₅). ^cSee Fig. 13.40.

LASER

Spectral output of several types of lasers

Solid State Luby Laser

- Al₂O₃ single crystal (sapphire) with 0.05 wt% Cr

Solid State Luby Laser

Cr atom in ground state

Semiconductor Laser

Semiconductor Laser

Because the surrounding p- and
Heat sne-type GaAlAs layers have a higher
energy and a lower index of refraction
than GaAs, the photons are trapped
in the active GaAs layer