

Exame - Parte 1 (sem consulta, 10 valores, 35 minutos)

Nome: Correct

Cotação: resposta correta: 1 valor; resposta errada: -0,15 valores; pontuação mínima possível na Parte 1: 0 valores. Apenas uma alternativa é verdadeira. A resposta a uma pergunta será considerada errada se forem selecionadas múltiplas alternativas.

- 1. Considere a pilha de comunicações TCP/IP estudada nas aulas e as seguintes 3 funções de comunicações: F1) escolher o melhor caminho para encaminhar os pacotes entre o emissor e o recetor; F2) detetar erros em pacotes; F3) controlar o nível de congestionamento das filas de espera dos routers. Os níveis de comunicações responsáveis pela implementação destas funções são tipicamente os seguintes:
- a) F1= Transporte; F2=Ligação de dados; F3=Rede.
- b) F1= Transporte; F2= Transporte; F3= Transporte.
- c) F1= Rede; F2=Ligação de dados; F3= Rede.
- d) F1= Rede; F2= Ligação de dados; F3= Transporte.
- Se numa transmissão de dados for usada uma modulação 16QAM (constelação de 16 pontos) e for observado um débito binário de 100 kbit/s então o débito de símbolos desta ligação é de
- a) 25 $\times 10^3$ símbolo/s.
- b) 50×10^3 símbolo/s.
- c) 100 símbolo/s.
- d) 100/16 x 103 símbolo/s.
- 3. Num cenário de transmissão de dados usando técnicas rádio e propagação em espaço livre, a capacidade do canal de transmissão (bit/s) aumenta com
- a) a diminuição da distância entre o emissor e o recetor, e o aumento da frequência da portadora.
- b) a diminuição da distância e a diminuição da frequência da portadora.
- c) o aumento da distância e o aumento da frequência da portadora.
- d) o aumento da distância e a diminuição da frequência da portadora.
- 4. Se o Bit Error Ratio (BER) de um canal de transmissão for <u>b</u> e a trama tiver um comprimento de <u>c</u> bits, o Frame Error Ratio (FER) é dado por
- a)) 1-(1-b)°
- b) 1-(1-c)b
- c) bc
- d) cb
- 5. Considere o mecanismo ARQ Selective-Repeat estudado nas aulas e usando 3 bits de numeração. Considere também que o funcionamento do Recetor é descrito numa notação em que ?I(6).!RR(7) representa a receção (?) da mensagem I(6) seguida (.) do envio (!) da mensagem RR(7). Após a ocorrência dos eventos ?I(5).?I(6).!RR(7).?I(0), o recetor
- a) Armazena a trama I(0) e re-envia RR(7) para o emissor.
- b) Armazena a trama I(0) e envia SREJ(7) para o emissor.
- Descarta a trama I(0) e envia SREJ(7) para o emissor.
- d) Descarta a trama I(0) e re-envia RR(7) para o emissor.

6. No protocolo de acesso ao meio CSMA/CD, quando uma estação emissora deteta uma colisão, esta estação Aborta a transmissão da trama e retransmite a trama após espera de um número aleatório de *timeslots*.

b) Aborta a transmissão da trama e retransmite a trama de forma persistente no timeslot seguinte.

- c) Continua a transmitir a trama até ao fim e retransmite a trama após espera de um número aleatório de timeslots.
- d) Continua a transmitir a trama até ao fim e retransmite a trama de forma persistente no timeslot seguinte.
- 7. Quando uma trama é recebida por um Switch Ethernet e a tabela de encaminhamento do Switch não contém uma entrada para o endereço de destino da trama, o Switch

a) Invoca um procedimento do Address Resolution Protocol (ARP).

b) Envia a trama para todas as portas ativas exceto a porta através da qual a trama foi recebida.

c) Envia a trama para através da porta ligada ao default gateway do Switch.

- d) Elimina a trama.
- 8. Considere a fila de espera (de saída) da interface de rede eth0 de um computador que se encontra ligado a um switch por uma ligação de capacidade C bit/s. Considerando que a fila de espera do device driver é estável, poderemos afirmar que o tempo médio que um pacote espera nessa fila até ser transmitido depende
- Apenas da capacidade máxima de armazenamento de pacotes do device driver.

b) Apenas da capacidade C da ligação entre a interface de rede e o switch.

- Apenas do débito a que as camadas superiores enviam pacotes para a fila de espera (pacote/s).
- d) Da capacidade C da ligação e do número de pacotes em espera na fila.
- 9. O algoritmo Spanning Tree usado nas redes Ethernet permite obter
- a) Múltiplos caminhos mais curtos entre nós Ethernet.
- b) Múltiplos caminhos entre nós Ethernet.
- c) O caminho único mais curto entre nós Ethernet.
- Um caminho único entre nós Ethernet.
 - 10. Admita que no seu computador pretende transferir dois ficheiros do mesmo site de forma sequencial através do protocolo FTP; isto é, o computador liga-se ao site, obtém o ficheiro1 e depois obtém o ficheiro2. Durante este processo serão abertas
 - a) 1 ligação TCP.
 - b) 2 ligações TCP.
 - 3 ligações TCP.
 - 4 ligações TCP.

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

Correca

Duas estações separadas por uma distância de 2000 km comunicam usando um protocolo de ligação de dados do tipo ARQ. O atraso de propagação da informação é de 5 μs/km e a capacidade do canal é 1024 kbit/s (em cada sentido). Admita que as tramas de Informação usam 3 bits para numeração, têm um tamanho típico de 2048 bits e são imediatamente confirmadas por tramas de Supervisão em sentido oposto. Despreze o tamanho das tramas de

(1,5 valor) Para as variantes Go-Back-N e Selective Repeat, calcule a janela de transmissão, a eficiência máxima do

protocolo e os débitos máximos.

*0	Go-Back-N	Selective Repeat
Janela de transmissão, W	于	4
Eficiência máxima, S (%)	63,6	36,1
Débito Máximo (kbit/s)	651	370

$$\alpha = \frac{7}{16} / \frac{1}{14} = \frac{10}{2} = 5$$
; $1 + 21\alpha = 11$; $N = 21^{4} = 2^{3} = 8$
 $66N$: $W = N - 1 = 8 - 1 = 7$
 $W \le 1 + 21\alpha = 0$ $86BN = \frac{1}{1 + 21\alpha} = \frac{7}{11} = 63,67$. $83n = \frac{1}{1 + 21\alpha} = \frac{4}{11} = 36,17$.
 $86N = \frac{1}{1 + 21\alpha} = \frac{1}{11} = 36,17$.
 $86N = \frac{1}{1 + 21\alpha} = \frac{1}{11} = 36,17$.
 $86N = \frac{1}{1 + 21\alpha} = \frac{1}{11} = 36,17$.

(1 valor) Pretende-se analisar o efeito dos erros de transmissão e do tamanho das tramas de Informação. Considere tramas com tamanhos 1024 e 2048 bits e uma situação de ruído caracterizada por BER=10-3. Calcule a eficiência máxima dos dois mecanismos para estes 2 casos e discuta o comportamento destes mecanismos em relação ao tamanho das tramas

	L=2048	1,3	4,7	(0 ~	
-	L=1024	2,5	6,9	\2 3	/
LI = 2048 : FER - 1	-(1-BER)4=1-(1	-103 2048 0 92	1 - FER = 0,	B	/
2017111	W(1- FER)	- 7x0,13	3	0,91 =	1,34.
, , , , , , , , , , , , , , , , , , , ,	(1+21a) (1-FER+WA	$\exists R) \times (0, 1)$	13++x0,0+)	68,42	4
200	11 2-07	10			

$$L_2 = 1024$$
; $T_f = \frac{L}{C} = \frac{1024}{1024 \times 10^3} = 1 \text{ m/s}$; $Q = \frac{T_b}{T_f} = \frac{10}{1} = 10$; $1 + 21Q = 21$

Smax (%)

(3232)

Nome:

Correcer

c) (1,5 valor) Admita que, para esta situação de erro, tinha a liberdade de escolher o número de bits de numeração (k), um dos dois tamanhos de trama indicados (L=1024 ou L=2048 bits) e um dos dois mecanismos ARQ (Go-back-N ou Selective Repeat). Que solução escolheria? Qual o valor da eficiência máxima nessa situação. Justifique.

	k bits	L	Mecanismo ARQ
CSP	6	1024	SR
7 1+21 a FER IS	1	I-FER	PRIZ
			580
11-21A W	. 11	1210	W 1-f
[6BN]	IS	R	(2) 1 2

Parz W>1+21a San 7,5 880 porje 1+29 FER71 logs 1-FER > 1-FER - ARG = SRy

Smax (%)

1264 =0 PER2 < FER, =0 1-FER271-FER Lopo L2 & mellor -0 L= L2 = 1024 Lity

Snex=15sn=1-FER2=0,36 (1)

Para pe 18 20 mexino W> 1+21a > W>2 K=4; 24=16; W=8 <21 4=5; 25= 32; W=16 <21 k=6;26=64; W=32721 -> 4=6

Considere duas redes, cada uma constituída por um switch ao qual se ligam vários computadores. Os 2 switches comunicam entre si através de uma ligação com capacidade de 100 Mbit/s em cada sentido. Admita que o tráfego nesta ligação pode ser modelizado como um processo de chegada de Poisson, tendo as tramas um comprimento médio de 1250 bytes.

(1 valor) Calcule o tempo médio de atraso das tramas e o número médio de tramas na fila de espera de acesso à intensidades de tráfego de 80% e 95% (admita um número de buffers ilimitado).

	Int. tráf. = 80%	Int. tráf	c. = 95%	/
Tempo médio de atraso das tramas, Τ, (μs)	500	2000	(2 ms)	32
Número médio de tramas na fila de espera	3,2	18		32

C=100 MSit/s, L=1250 x 8=10 x103 bit/pre M/N/1, 1= = 100 ×106 = 1000 pre/s; Is = 1 = 100 ms P= 1 -> h= PM

=0,8: h=fu=0,8x104=8000 pacls 7- 1- 10000-9000 = 2000 = 500 ptg Tw=T-Ts=500 ps-100 ps=400 ps NW=TW. A=400, WX 8x103 = 3, 24

P=0,95: 1=pu=0,95×104 = 9500 paels $T = \frac{1}{\mu - \lambda} = \frac{1}{10000 - 9500} = \frac{1}{500} = 2000$ Tw=T-Ts=2000 ps-100 ps=1900 ps NW=TW N = 1900 x 10 6x 9500 = 184

EIC0032, Redes de Computadores 15/jan/2016

Nome:

(1 valor) Dimensione o número de buffers associados à fila de espera, para cada um dos seguintes objetivos:

Probabilidade de rejeição de tramas de 0,1% e intensidade de tráfego de 0,8; ii) Probabilidade de rejeição de tramas de 1% e intensidade de tráfego 1.

Compare estes dois casos com os equivalentes discutidos na alínea anterior.

Probabilidade de rejeição	de tramas de 0,1% e intensidade de tráfego de 0,8
Probabilidade de rejeição	de tramas de 1% e intensidade de tráfego 1.
PB=0,1%=10-3	B P=1, PB=10-2 PB= BH; 0,01= BH
PB = (1-P) PB , 10= (1-0,8)	D-O.B: Abeser de NW=3,2, para PB < 10-3 for
$0.8 = \frac{10^{-3}}{10^{-3} \times 98 + 0.2}$; B= 23	P=1: P=2 PD=10-2->B=99; PB=10-3->B=999 P=1: P=2 PD=10-2->B=99; PB=10-3->B=999
	Q W a Novembre of the second s

(1 valor) Pretende-se comparar o caso em análise na alínea a) com outro em que o comprimento médio das tramas se reduz a metade, considerando a intensidade de tráfego de 80% nos dois casos. Calcule para estes dois casos o tempo médio de atraso das tramas. Compare também os dois casos sob o ponto de vista de requisitos de memória, capacidade de processamento dos switches e "overheads" de transmissão (peso relativo dos

cabeçalhos da trama).	//	L
-	Comprimento da trama = 10 000 bits	Comprimento da trama = 5 000 bits
Tempo médio de atraso das tramas, T, (μs)	500 ps	250 ps
Requisitos de memória	CNW=NW=32). Mas como C	runero de fizales em espera 121 enter Men 2 Men.
Capacidade de processamento dos <i>switches</i>	entr L' regu mis capies	TL'é bir
Overheads de transmissão	Se casecallo liver compre for Solicas, enter o verted e	how I ber as dues how I
1 = 5000 ht/p	= 1 p'= = 100×106 = 5×103	20×103 pecls; Ts'= 1 = 50 pc
11-0,8x20x103	= 16×103 becle -1	= 250WS/

Menoita

Menoita

T'= 7'-7' = 250µ1-50µ1= 200µ1

N'W= 1'7' = 16000 × 200×106=3,2

Timoc/pic Constante entre

N=N'W=3,2; (Juo 2'22 entre 2 2' reper mais cap from 1/2'. Overh=o-sit × 16×103 [3]

N=N'W=3,2; (Juo 2'22 entre 2 2' reper mais cap from 1/2'. Overh=o-sit × 16×103 [3]

Nome:

Correção

3. Considere que a uma empresa foi atribuído o bloco de endereços IP 44.44.44.0/26. A empresa tem um rede de comunicações com a arquitetura descrita na figura, composta por 4 routers (R1, R2, R3, R4) e 2 switches Ethernet. Um dos switches serve 27 computadores e outro serve 10 computadores. Os routers estão interligados por uma ligações ponto-a-ponto e a algumas destas ligações estão já atribuídos os endereços indicados na figura.

a) (1 valor) Calcule os endereços associados às redes indicadas.

	Endereço da subrede (endereço/máscara)		Endereço de broadcass da subrede	t	N° de ende de interfa	
Rede dos 27 computadores	44.44.44.01217	1	44.44.44.31	0	30	0
Rede dos 10 computadores	44.44.44.48/2/8	0	44.44.44.63	0	14	0
Rede da ligação R3-R4	44.44.44 / 30	(2)	14.44.44.47	0	2/	C

Correcas

Nome:

b) (1 valor) Atribua endereços IP às interfaces indicadas na tabela. Use os endereços mais baixos de cada sub-rede. Numa sub-rede atribua os endereços mais baixos aos routers de índice Ri mais baixo. Por exemplo, o endereço de R1.eth0 deverá ser inferior ao endereço R2.eth0.

Router.interface	Endereço(s) IP	
R1.eth1	44.44.44.41	(2)
R4.eth1	44. 44. 44. 42	(2)
R4.eth2	44. 44. 44. 1	(2)
R4.eth0	44. 44. 44. 46	(2)
R3.eth0	44.44.44.45	(2

c) (1 valor). Escreva a tabela de encaminhamento do **router R4.** Este router deverá ser capaz de pingar todas as interfaces de rede indicadas na figura e os pacotes deverão ser encaminhados pelos caminhos mais curtos. Use o menor número possível de entradas na tabela.

Destino (endereço/máscara)	Gateway	Interface
44.44.0/27	33.13 (155)	eth2
44. 44. 44. 44/30	7	etup (
44.44.44.40/30	108\36 ° W	eth 1
44. 44.44.36/30	44.44.44.45	etho
44.44.44.48/28	44.44.44.45	etho (
0/0	44. 44. 44. 41	eth 1
E. III		
	+	***

* | Subtri | Se meter rote pera 53.55....

