ПРОЕКТ

Единый государственный экзамен по ФИЗИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2019 года по физике

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2019 г.

ФИЗИКА, 11 класс 2/31

Единый государственный экзамен по ФИЗИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов 2019 года по ФИЗИКЕ

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов 2019 г. следует иметь в виду, что задания, включённые в демонстрационный вариант, не отражают всех вопросов содержания, которые будут проверяться с помощью вариантов КИМ в 2019 г. Полный перечень вопросов, которые могут контролироваться на едином государственном экзамене 2019 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2019 г. по физике.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве и форме заданий, об уровне их сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения позволят выпускникам выработать стратегию подготовки и сдачи ЕГЭ.

^{© 2019} Федеральная служба по надзору в сфере образования и науки Российской Федерации

число

КИМ

Демонстрационный вариант контрольных измерительных материалов для проведения в 2019 году единого государственного экзамена по ФИЗИКЕ

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 32 задания.

В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответа N = 1. Единицы измерения физических величин писать не нужно.

Ответ: -2.5 $_{\rm M/c}^2$. 3-2.5

Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> без пробелов, запятых и других дополнительных символов в бланк ответов \mathbb{N} 1.

Ответ: A Б 4 1 5 5ланк

Ответом к заданию 13 является слово. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответов N 1.

Ответ: вправо 13 В П Р А В О

Ответом к заданиям 19 и 22 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённым ниже <u>образцам, не разделяя числа пробелом</u>, в бланк ответов № 1.

не разделяя числа пробелом, в бланк ответов № 1.		
		1
Заряд ядра	Массовое	
2 11 P 12 C 12 C P 11	*****	

	ядра А		
38	94	19 3 8 9 4	
Ответ: (1,4	± 0.2) H.	22 1 , 40 , 2 5	ланк

и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

© 2019 Федеральная служба по надзору в сфере образования и науки Российской Федерации

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, что ответ на каждое задание в бланках ответов № 1 и № 2 записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	10 ⁹	санти	с	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	MK	10^{-6}
гекто	Γ	10^{2}	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3.14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
универсальная газовая постоянная	R = 8,31 Дж/(моль·К)
постоянная Больцмана	$k = 1.38 \cdot 10^{-23} \text{Дж/K}$
постоянная Авогадро	$N_{\rm A} = 6 \cdot 10^{23} {\rm моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \pi^2$
модуль заряда электрона	1 6 10-19 16
(элементарный электрический заряд)	$e = 1,6 \cdot 10^{-19} \mathrm{K}$ л
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{с}$

Соотношение между различными единицами		
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$	
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг	
1 атомная единица массы эквивалентна	931,5 МэВ	
1 электронвольт	$1 \ \mathrm{9B} = 1.6 \cdot 10^{-19} \ \mathrm{Дж}$	
1 астрономическая единица	1 a.e. ≈ 150 000 000 км	
1 световой год	1 св. год ≈ $9,46 \cdot 10^{15}$ м	
1 парсек	1 пк ≈3,26 св. года	

Масса частиц		
электрона	$9,1\cdot10^{-31}$ кг $\approx 5,5\cdot10^{-4}$ а.е.м.	
протона	$1,673 \cdot 10^{-27} \text{ кг} \approx 1,007 \text{ a.e.м.}$	
нейтрона	1.675·10 ⁻²⁷ кг ≈ 1.008 а.е.м	

Астрономические величины	
средний радиус Земли	$R_{\oplus} = 6370$ км
радиус Солнца	$R_{\odot} = 6,96 \cdot 10^{8} \text{ M}$
температура поверхности Солнца	T = 6000 K

Плотность		подсолнечного масла	900 кг/м ³	
воды	$1000 \ \kappa \Gamma / M^3$	алюминия	$2700 \ \kappa \Gamma / \text{m}^3$	
древесины (сосна)	$400 \ \kappa \Gamma / \text{м}^3$	железа	$7800 \ \kappa \Gamma / \text{m}^3$	
керосина	$800 \ кг/m^3$	ртути	13 600 кг/м ³	
Удельная теплоём	кость	·	·	
воды 4,2·10 ³ Дх	к/(кг∙К)	алюминия	900 Дж/(кг⋅К)	
льда 2,1·10 ³ Дх		меди	380 Дж/(кг-К)	
	к/(кг∙К)	чугуна	500 Дж/(кг⋅К)	
	к/(кг∙К)		,, ,	
Удельная теплота				
парообразования во	(Лж/кг		
плавления свинца	$2,5 \cdot 10^4$			
плавления льда	$3.3 \cdot 10^5$			

пормильные	условил.	давление – 10	ria, remneparypa – o c	~	
Молярная масса					
азота		кг/моль	гелия		кг/моль
аргона	40.10^{-3}	кг/моль	кислорода	$32 \cdot 10^{-3}$	кг/моль
водорода	$2 \cdot 10^{-3}$	кг/моль	лития	6.10^{-3}	кг/моль
воздуха	29.10^{-3}	кг/моль	неона	$20 \cdot 10^{-3}$	кг/моль
воды	18.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль

Нопмальные условия: парпение $=10^5$ Па температура =0 °C

Часть 1

Ответами к заданиям 1–24 являются слово, число или последовательность цифр или чисел. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

На рисунке показан график υ_x , м/с зависимости от времени для проекции υ_x скорости тела. Какова проекция a_x ускорения этого тела в интервале времени от 5 до 6 с?

Otbet: M/c^2 .

2 По горизонтальному полу по прямой равномерно тянут ящик, приложив к нему горизонтальную силу 35 Н. Коэффициент трения скольжения между полом и ящиком равен 0,25. Чему равна масса ящика?

Ответ: кг

3 Шарик массой 100 г падает с высоты 100 м с начальной скоростью, равной нулю. Чему равна его кинетическая энергия в момент перед падением на землю, если потеря энергии за счёт сопротивления воздуха составила 20 Дж?

Ответ: _____ Дж

4 Период свободных колебаний пружинного маятника равен 0,5 с. Каким станет период свободных колебаний этого маятника, если массу груза маятника увеличить в 2 раза, а жёсткость пружины вдвое уменьшить?

Ответ: ______ с.

Б На рисунке показан график зависимости x координаты x тела, движущегося вдоль оси Ox, от времени t.

Из приведённого ниже списка выберите два правильных утверждения.

- 1) В точке A проекция скорости тела на ось Ox равна нулю.
- 2) Проекция перемещения тела на ось Ox при переходе из точки B в точку D отрицательна.
- 3) На участке BC скорость тела уменьшается.
- 4) В точке A проекция ускорения тела на ось Ox отрицательна.
- 5) В точке D ускорение тела и его скорость направлены в противоположные стороны.

Ответ:

Искусственный спутник Земли перешёл с одной круговой орбиты на другую, на новой орбите скорость его движения меньше, чем на прежней. Как изменились при этом потенциальная энергия спутника в поле тяжести Земли и его период обращения вокруг Земли?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Потенциальная энергия	Период обращения спутника вокруг Земли

Т Шайба массой m, скользящая по гладкой горизонтальной поверхности со скоростью υ , абсолютно неупруго сталкивается с покоящейся шайбой массой M.

Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите <u>в таблицу</u> выбранные цифры.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

А) суммарный импульс шайб после удара

Демонстрационный вариант ЕГЭ 2019 г.

Б) кинетическая энергия налетающей шайбы после удара ФОРМУЛЫ

$$1) \quad \frac{m^2 v}{m + M}$$

2) mυ

$$3) \frac{m^2 M v^2}{2(m+M)^2}$$

$$4) \quad \frac{m^3 v^2}{2(m+M)^2}$$

Ответ:

8	В сосуде неизменного объёма находится разреженный газ в количестве
	3 моль. Во сколько раз изменится давление газа в сосуде, если выпустить из
	него 1 моль газа, а абсолютную температуру газа уменьшить в 2 раза?

Ответ: в ________ раз(-а

9 На рисунке показан циклический процесс изменения *р* состояния постоянной массы одноатомного идеального газа. На каком участке работа внешних сил над газом положительна и равна отданному газом количеству теплоты?

Ответ: на участке ______.

На рисунке показан график изменения t,°C и температуры вещества по мере поглощения им количества теплоты. Вещество находится в сосуде под поршнем. Масса вещества равна 0,5 кг. Первоначально вещество было в жидком состоянии. Какова удельная теплота парообразования вещества?

Ответ: кДж/кг.

3ависимость температуры 1 моль одноатомного идеального газа от давления показана на рисунке. Выберите из предложенных утверждений два, которые верно отражают результаты этого эксперимента.

- 1) В процессе 1–2 объём газа увеличился в 3 раза.
- 2) В процессе 2–3 газ совершал положительную работу.
- 3) В процессе 2–3 внутренняя энергия газа уменьшалась.
- 4) В процессе 1–2 газ отдал положительное количество теплоты.
- 5) В процессе 1–2 концентрация молекул газа не менялась.

Ответ:

12	В цилиндрическом сосуде под поршнем находится газ. Поршень
	не закреплён и может перемещаться в сосуде без трения
	(см. рисунок). Газ медленно охлаждают. Как изменятся в
	результате этого давление газа и концентрация его молекул?
	Для каждой величины определите соответствующий характер
	изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Давление газа	Концентрация
	молекул газа

На рисунке показаны сечения двух параллельных длинных прямых проводников и направления токов в них. Сила тока I_1 в первом проводнике больше силы тока I_2 во втором. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции магнитного поля этих проводников в точке A, расположенной точно посередине между проводниками? Ответ запишите словом (словами).

Ответ:	

Расстояние между двумя точечными электрическими зарядами уменьшили в 3 раза, каждый из зарядов увеличили в 3 раза. Во сколько раз увеличился модуль сил электростатического взаимодействия между ними?

Ответ: в ______ раз(а).

3а время $\Delta t = 4$ с магнитный поток через площадку, ограниченную проволочной рамкой, равномерно уменьшается от некоторого значения Φ до нуля. При этом в рамке генерируется ЭДС, равная 6 мВ. Определите начальный магнитный поток Φ через рамку.

Ответ: мВ6

16

Две параллельные металлические пластины больших размеров расположены на расстоянии d друг от друга и подключены к источнику постоянного напряжения (рис. 1). Пластины закрепили на изолирующих подставках и спустя длительное время отключили от источника (рис. 2).

Из приведённого ниже списка выберите два правильных утверждения.

- 1) Напряжённость электрического поля в точке A больше, чем в точке B.
- 2) Потенциал электрического поля в точке A больше, чем в точке C.
- 3) Если увеличить расстояние между пластинами d, то напряжённость электрического поля в точке C не изменится.
- 4) Если уменьшить расстояние между пластинами d, то заряд правой пластины не изменится.
- 5) Если пластины полностью погрузить в керосин, то энергия электрического поля конденсатора останется неизменной.

Ответ:

17

Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиусом R со скоростью v. Как изменятся радиус орбиты и сила Лоренца, действующая на частицу, если её скорость уменьшится?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Радиус орбиты	Сила Лоренца,
частицы	действующая на частицу

Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите <u>в таблицу</u> выбранные цифры.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- A) мощность тока на внутреннем сопротивлении источника тока
- Б) мощность тока на одном из резисторов R

ФОРМУЛЫ

- $\frac{\mathcal{E}^2 R}{(2r+R)^2}$
- $\frac{2}{2\left(r+\frac{R}{2}\right)^2}$
- $3) \quad \frac{4\mathcal{E}^2 r}{\left(2r+R\right)^2}$
- 4) $\frac{2\mathcal{E}^2}{2r+R}$

Ответ: А Б

9 Ядро бора может захватить альфа-частицу, в результате чего происходит ядерная реакция ${}^4_2\text{He+}{}^{11}_5\text{B} \to {}^A_Z\text{X} + {}^1_0\text{n}$ с образованием ядра химического элемента ${}^A_Z\text{X}$. Каковы заряд образовавшегося ядра Z (в единицах элементарного заряда) и его массовое число A?

Заряд ядра Z	Массовое число ядра А

Из ядер платины $^{197}_{78}$ Pt при β -распаде N, 10^{20} с периодом полураспада 20 часов образуются стабильные ядра золота. В момент начала наблюдения в образце содержится 8·10²⁰ ядер платины. Через какую из точек, кроме начала координат, пройдёт график зависимости числа ядер золота от времени (см. рисунок)?

Ответ: через точку . .

На рисунке изображена упрощённая диаграмма нижних энергетических уровней атома. Нумерованными стрелками отмечены некоторые возможные переходы Е атома между этими уровнями. Какой из этих четырёх переходов связан с поглощением света наименьшей частоты, а какой – с излучением света наибольшей частоты?

Установите соответствие между процессами поглощения и испускания света и стрелками, указывающими энергетические переходы атома.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ПРОЦЕССЫ

ЭНЕРГЕТИЧЕСКИЕ ПЕРЕХОДЫ

А) поглощение света наименьшей частоты

- 1) 1
- Б) излучение света наибольшей частоты
- 2) 2 3) 3

Ответ:

A	Б

Чему равна сила тока в лампочке (см. рисунок), если погрешность прямого измерения силы тока амперметром на пределе измерения 3А равна $\Delta I_1 = 0.15$ A, а на пределе измерения 0,6 A равна $\Delta I_2 = 0.03$ A?

Ответ: (

В бланк ответов N 1 перенесите только числа, не разделяя их пробелом или другим знаком.

Необходимо экспериментально изучить зависимость силы Архимеда, действующей на тело, погружённое в жидкость, от плотности жидкости. Какие две установки следует использовать для проведения такого исследования?

Ответ:

24 Рассмотрите таблицу, содержащую сведения о ярких звёздах.

Наименование	Температура	Macca	Радиус	Средняя
звезды	поверхности,	(в массах	(в радиусах	плотность по
	К	Солнца)	Солнца)	отношению к
				плотности
				воды
Альдебаран	3600	5,0	45,0	$7,7 \cdot 10^{-5}$
ε Возничего В	11 000	10,2	3,5	0,33
Ригель	11 200	40,0	138,0	$2 \cdot 10^{-5}$
Сириус А	9250	2,1	2,0	0,36
Сириус В	8200	1,0	0,01	$1,75 \cdot 10^6$
Солнце	6000	1,0	1,0	1,4
а Центавра А	5730	1,02	1,2	0,80

Выберите два утверждения, которые соответствуют характеристикам звёзд.

- 1) Температура звезды α Центавра A соответствует температуре звёзд спектрального класса O.
- 2) Звезда Ригель является сверхгигантом.
- 3) Наше Солнце относится к гигантам спектрального класса В.
- 4) Средняя плотность звезды Сириус В больше, чем у Солнца.
- 5) Звезда Альдебаран относится к звёздам главной последовательности на диаграмме Герцшпрунга Рессела.

Ответ:			
--------	--	--	--

Часть 2

Ответом к заданиям 25–27 является число. Это число запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

25 Груз массой 1 кг, находящийся на столе, связан лёгкой нерастяжимой нитью, переброшенной через идеальный блок, с другим грузом. На первый груз действует горизонтальная постоянная сила \vec{F} , равная по модулю 10 H (см. рисунок). Второй груз движется из состояния покоя с ускорением 2 м/с², направленным вверх. Коэффициент трения скольжен

направленным вверх. Коэффициент трения скольжения первого груза по поверхности стола равен 0,2. Чему равна масса второго груза?

Ответ:	•	КГ.

26 Тепловая машина с максимально возможным КПД имеет в качестве нагревателя резервуар с водой, а в качестве холодильника — сосуд со льдом при 0 °C. При совершении машиной работы 1 МДж растаяло 12,1 кг льда. Определите температуру воды в резервуаре. Ответ округлите до целых.

Ответ:	К

Лазер излучает в импульсе 10^{19} световых квантов. Средняя мощность импульса лазера 1100 Вт при длительности вспышки $3 \cdot 10^{-3}$ с. Определите длину волны излучения лазера. Ответ выразите в микрометрах.

^	
Ответ:	MKM

He забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, что каждый ответ записан в строке с номером соответствующего задания.

Для записи ответов на задания 28–32 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (28, 29 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

На железный стержень намотаны две катушки изолированного медного провода: А и Б. Катушка А подключена к источнику с ЭДС $\mathcal E$ и внутренним сопротивлением r, как показано на рисунке. Катушка Б замкнута на амперметр малого сопротивления. Ползунок реостата передвигают влево. В каком направлении протекает при этом ток через

амперметр, подключённый к катушке Б? Ответ обоснуйте, указав, какие явления и закономерности Вы использовали для объяснения.

Полное правильное решение каждой из задач 29–32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

- В маленький шар массой $M=250\,\mathrm{r}$, висящий на нити длиной $l=50\,\mathrm{cm}$, попадает и застревает в нём горизонтально летящая пуля массой $m=10\,\mathrm{r}$. При какой минимальной скорости пули шар после этого совершит полный оборот в вертикальной плоскости? Сопротивлением воздуха пренебречь.
- Воздушный шар, оболочка которого имеет массу $M=145~{\rm kr}$ и объём $V=230~{\rm m}^3$, наполняется при нормальном атмосферном давлении горячим воздухом, нагретым до температуры $t=265~{\rm ^{\circ}C}$. Определите максимальную температуру t_0 окружающего воздуха, при которой шар начнёт подниматься. Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие (см. рисунок).

Батарея из четырёх конденсаторов электроёмкостью $C_1 = 2C$, $C_2 = C$, $C_3 = 4C$ и $C_4 = 2C$ подключена к источнику постоянного тока с ЭДС $\mathcal E$ и внутренним сопротивлением r (см. рисунок). Определите энергию конденсатора C_1 .

- В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью $v=5\,$ м/с движется точечный источник света. Расстояние между плоскостями $d=15\,$ см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы $F=10\,$ см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертёж, указав ход лучей в линзе.
- (1)

Проверьте, что каждый ответ записан рядом с номером соответствующего задания.

Система оценивания экзаменационной работы по физике

Задания 1-27

За правильный ответ на каждое из заданий 1–4, 8–10, 13–15, 19, 20, 22, 23, 25–27 ставится по 1 баллу. Эти задания считаются выполненными верно, если правильно указаны требуемое число, два числа или слово.

Каждое из заданий 5–7, 11, 12, 16–18 и 21, 24 оценивается в 2 балла, если верно указаны оба элемента ответа, в 1 балл, если допущена одна ошибка, в 0 баллов, если оба элемента указаны неверно. Если указано более двух элементов (в том числе, возможно, и правильные) или ответ отсутствует, -0 баллов.

№ задания	Ответ	№ задания	Ответ
1	-8	15	24
2	14	16	34
3	80	17	22
4	1	18	31
5	13	19	714
6	11	20	3
7	24	21	32
8	3	22	0,280,03
9	4	23	15
10	30	24	24
11	25	25	0,5
12	31	26	341
13	вверх	27	0,6
14	81		

КРИТЕРИИ ОЦЕНИВАНИЯ ВЫПОЛНЕНИЯ ЗАДАНИЙ С РАЗВЁРНУТЫМ ОТВЕТОМ

Решения заданий 28–32 части 2 (с развёрнутым ответом) оцениваются экспертной комиссией. На основе критериев, представленных в приведённых ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного выпускником ответа выставляется от 0 до 3 баллов.

28

На железном стержне намотаны две катушки изолированного медного провода A и B. Катушка A подключена к источнику с ЭДС $\mathcal E$ и внутренним сопротивлением r, как показано на рисунке. Катушка B замкнута на амперметр малого сопротивления. Ползунок реостата передвигают влево. B каком направлении протекает при этом ток через

амперметр, подключённый к катушке Б? Ответ обоснуйте, указав, какие явления и закономерности Вы использовали для объяснения.

Возможное решение

1. При протекании электрического тока по катушке A в пространстве возникает магнитное поле, которое пронизывает сердечник из железа, создавая в нём магнитный поток Φ_1 . Сердечник с намотанной на него катушкой A образует электромагнит. При этом, исходя из обозначений полюсов источника и правила

буравчика, у левого торца катушки А находится северный полюс этого магнита (см. рисунок).

- 2. При движении ползунка влево количество витков реостата, включённых в цепь, уменьшается, следовательно, сопротивление внешнего участка цепи источника R уменьшается $\left(R_0 = \rho \frac{l}{S}\right)$, а сила тока по закону Ома $\left(I = \frac{\mathcal{E}}{r+R}\right)$ возрастает.
- 3. Возрастание силы тока в катушке А приводит к возрастанию создаваемого им магнитного потока, который также пронизывает и катушку Б.
- 4. Возрастание магнитного потока сквозь катушку Б, замкнутую на амперметр, приводит по закону электромагнитной индукции $\left(\mathcal{E}_{_{\mathrm{ИНД}}}=-\frac{\Delta\Phi}{\Delta t}\right)$ к возбуждению в ней индукционного тока, который, по правилу Ленца, возникает такого направления (через амперметр слева направо), чтобы своим магнитным потоком компенсировать увеличение магнитного потока

сквозь катушку Б. Ответ: при переме

Ответ: при перемещении ползунка реостата влево через амперметр протекает ток, направленный вправо

ток, направленный вправо	
Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее правильный	3
ответ (в данном случае: возникновение индукционного тока в	
катушке Б и его направление) и исчерпывающие верные	
рассуждения с прямым указанием наблюдаемых явлений и законов	
(в данном случае: возникновение магнитного поля вокруг проводника	
с током; зависимость сопротивления проводника от его длины;	
закон Ома для цепи, содержащей ЭДС; закон электромагнитной	
индукции; правило Ленца; правильно применяется правило	
буравчика для определения направления линий магнитной индукции	
магнитного поля в стержне)	
Дан правильный ответ, и приведено объяснение, но в решении	2
имеются один или несколько из следующих недостатков.	
В объяснении не указано или не используется одно из физических	
явлений, свойств, определений или один из законов (формул),	
необходимых для полного верного объяснения. (Утверждение,	
лежащее в основе объяснения, не подкреплено соответствующим	
законом, свойством, явлением, определением и т.п.)	
И (ИЛИ)	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но в них содержится один логический недочёт.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения (не	
зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ)	
В решении имеется неточность в указании на одно из физических	
явлений, свойств, определений, законов (формул), необходимых для	
полного верного объяснения	
полото верпого объясиения	

критериям выставления оценок в 1, 2, 3 балла

3

Максимальный балл

Представлено решение, соответствующее одному из следующих	1
случаев.	
Дан правильный ответ на вопрос задания, и приведено объяснение,	
но в нём не указаны два явления или физических закона,	
необходимых для полного верного объяснения.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, направленные на	
получение ответа на вопрос задания, не доведены до конца.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, приводящие	
к ответу, содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы,	
закономерности, но имеются верные рассуждения, направленные на	
решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0

В маленький шар массой $M=250\,\mathrm{r}$, висящий на нити длиной $l=50\,\mathrm{cm}$, попадает и застревает в нём горизонтально летящая пуля массой $m=10\,\mathrm{r}$. При какой минимальной скорости пули шар после этого совершит полный оборот в вертикальной плоскости? Сопротивлением воздуха пренебречь.

Возможное решение

Закон сохранения импульса связывает скорость пули $v_{\scriptscriptstyle 0}$ перед ударом со скоростью $v_{\scriptscriptstyle 1}$ составного тела массой m+M сразу после удара:

$$mv_0 = (m+M)v_1$$

а закон сохранения механической энергии — скорость составного тела сразу после удара с его скоростью v_2 в верхней точке:

$$\frac{(m+M)v_1^2}{2} = \frac{(m+M)v_2^2}{2} + (m+M)g \cdot 2l.$$

Условие минимальности v_0 означает, что шар совершает полный оборот в вертикальной плоскости, но при этом натяжение нити в верхней точке (и только в ней!) обращается в нуль. Второй закон Ньютона в проекции на радиальное направление x в этот момент принимает вид:

$$(m+M)a_{II} = (m+M)g = \frac{(m+M)v_2^2}{I}.$$

Выразив отсюда v_2^2 и подставив этот результат в закон сохранения энергии, получим:

$$v_1 = \sqrt{5gl}$$
.

Подставив выражение для v_1 в закон сохранения импульса, получим:

$$v_0 = \left(1 + \frac{M}{m}\right)\sqrt{5gl} = \left(1 + \frac{0.25}{0.01}\right)\sqrt{5 \cdot 10 \cdot 0.5} = 130 \text{ m/c}.$$

Ответ: $v_0 = 130 \text{ м/c}$

Other. $U_0 = 150 \text{ m/c}$	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	İ
закономерности, применение которых необходимо для решения	ı
задачи выбранным способом (в данном случае: закон сохранения	ı
импульса, закон сохранения механической энергии, второй закон	i
Ньютона для движения тела по окружности; учтено, что в	ı
верхней точке сила натяжения нити обращается в нуль);	i
II) описаны все вновь вводимые в решении буквенные обозначения	i
физических величин (за исключением обозначений констант,	i
указанных в варианте КИМ, и обозначений, используемых в условии	İ
задачи);	İ
III) проведены необходимые математические преобразования и	ı
расчёты, приводящие к правильному числовому ответу	ı
(допускается решение «по частям» с промежуточными	ı
вычислениями);	ı
IV) представлен правильный ответ с указанием единиц измерения	ı
искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	ı
преобразования. Но имеются следующие недостатки.	ı
Записи, соответствующие пункту II, представлены не в полном	İ
объёме или отсутствуют.	İ
ИЛИ	ı
В решении лишние записи, не входящие в решение (возможно,	İ
неверные), не отделены от решения (не зачёркнуты; не заключены в	ı
скобки, рамку и т.п.).	ı
ИЛИ	İ
В необходимых математических преобразованиях или вычислениях	İ
допущены ошибки, и (или) преобразования/вычисления не	İ
доведены до конца.	İ
ИЛИ	İ
Отсутствует пункт IV, или в нём допущена ошибка	

Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для решения	
задачи, без каких-либо преобразований с их использованием,	
направленных на решение задачи, и ответа.	
KITTKI	

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ипк

В ОДНОЙ из исходных формул, необходимых для решения задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла

Максимальный балл 3

30

Воздушный шар, оболочка которого имеет массу $M=145~\rm kr$ и объём $V=230~\rm m^3$, наполняется при нормальном атмосферном давлении горячим воздухом, нагретым до температуры $t=265~\rm ^{\circ}C$. Определите максимальную температуру t_0 окружающего воздуха, при которой шар начнёт подниматься. Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие.

Возможное решение

Условие, соответствующее подъёму шара: $F_{\mathrm{Apx}} \geq Mg + mg$,

где M – масса оболочки, m – масса воздуха внутри оболочки, или $\rho_0 gV \ge Mg + \rho gV \Rightarrow \rho_0 V \ge M + \rho V \ ,$

где ρ_0 — плотность окружающего воздуха, ρ — плотность воздуха внутри оболочки, V — объём шара.

Для воздуха внутри шара $\frac{pV}{T} = \frac{m}{\mu} R$, или $\frac{m}{V} = \frac{p \cdot \mu}{R \cdot T} = \rho$, где p – атмосферное

давление, T — температура воздуха внутри шара. Соответственно, плотность воздуха снаружи $\rho_0 = \frac{\mu p}{RT_0}$, где T_0 — температура окружающего воздуха.

$\frac{p \cdot \mu \cdot V}{R \cdot T_0} \ge M + \frac{p \cdot \mu \cdot V}{R \cdot T} \Rightarrow \frac{p \cdot \mu \cdot V}{R \cdot T} = \frac{p \cdot \mu \cdot V}{R \cdot T_{0\text{max}}} - M \Rightarrow \frac{1}{T_{0\text{max}}} = \frac{1}{T} + \frac{M \cdot R}{p \cdot \mu \cdot V}$
$T_{0 \text{ max}} = \frac{\mu p V T}{\mu V p + MRT} = \frac{29 \cdot 10^{-3} \cdot 10^{5} \cdot 230 \cdot 538}{29 \cdot 10^{-3} \cdot 230 \cdot 10^{5} + 145 \cdot 8,31 \cdot 538} \approx 273 \text{ K} = 0 \text{ °C}.$
Otbet: $T_{0 \text{ max}} \approx 273 \text{ K} = 0 ^{\circ}\text{C}$

Other. $I_{0 \text{ max}} \approx 2/3 \text{ K} = 0 \text{ C}$	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: выражение для силы	
Архимеда, связь массы и плотности, уравнение Менделеева –	
Клапейрона, условие подъёма шара);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования. Но имеются один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения (не	
зачёркнуты; не заключены в скобки, рамку и т.п.).	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	

Баллы

Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и достаточно	
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

Батарея из четырёх конденсаторов электроёмкостью $C_1 = 2C$, $C_2 = \overline{C}$, $C_3 = 4C$ и $\overline{C_4} = 2C$ подключена к источнику постоянного тока с ЭДС \mathcal{E} и внутренним сопротивлением r (см. рисунок). Определите энергию конденсатора C_1 .

Возможное решение

В батарее конденсаторы C_1 и C_3 , C_2 и C_4 соединены в а образовавшиеся пары - последовательно. Значит, общ

$$C_0 = \frac{C_{13} \cdot C_{24}}{C_{13} + C_{24}} = \frac{\left(C_1 + C_3\right) \cdot \left(C_2 + C_4\right)}{C_1 + C_3 + C_2 + C_4} = \frac{\left(2C + 4C\right) \cdot \left(C + 2C\right)}{2C + 4C + C + 2C} = 2C$$

Общий заряд батареи, а также заряд на парах C_1 $q_0 = q_{13} = q_{24} = C_0 \mathcal{E} = 2C\mathcal{E}$, так как пары соединены последовательно.

Следовательно, напряжение на паре
$$C_1$$
 и C_3 $U_{13} = \frac{q_0}{C_{13}} = \frac{2C\mathcal{E}}{6C} = \frac{\mathcal{E}}{3}$.

Таким образом, энергия конденсатора C_1 $W_1 = \frac{C_1 U_{13}^2}{2} = \frac{2C\mathcal{E}^2}{2.9} = \frac{C\mathcal{E}^2}{9}$.

OTBET:
$$W_1 = \frac{C\mathcal{E}^2}{9}$$

\mathcal{E}, r	
пары параллельно, дая электроёмкость	
$\left(\frac{C}{C}\right) = 2C$.	
и C_3 , C_2 и C_4	

I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: формулы расчёта электроёмкости, заряда и напряжения для последовательно и параллельно соединённых конденсаторов. определение электроёмкости, формула для энергии заряженного конденсатора); II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт IV, или в нём допущена ошибка Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ

Критерии оценивания выполнения задания Приведено полное решение, включающее следующие элементы:

В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью $\upsilon=5$ м/с движется точечный источник света. Расстояние между плоскостями d=15 см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы F=10 см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертёж, указав ход лучей в линзе.

Возможн 1. Построим изображение источника света в линзе. Изображением светящейся точки A в некоторый момент времени будет точка A_1 . Введём обозначения: радиус, по которому движется источник света, r = AB; радиус, по которому движется изображение источника света, $R = A_1B_1$; расстояние OB = d; расстояние $OB_1 = f$, фокусное расстояние линзы OF = F.

2. Из формулы тонкой линзы

$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f}$$

при $d = \frac{3F}{2}$ получим: f = 3F.

3. Из подобия треугольников AOB и A_1OB_1 следует, что:

$$\frac{d}{f} = \frac{r}{R} = \frac{1}{2}.$$

4. Угловая скорость источника света равна угловой скорости его изображения:

$$\omega = \frac{v}{r}$$

так как в любой момент времени источник света и его изображение лежат в одной плоскости с главной оптической осью линзы.

© 2019 Федеральная служба по надзору в сфере образования и науки Российской Федерации

5. Тогда скорость движения изображения точечного источника света:

$$v' = \omega R = \frac{vR}{r} = 2v = 2 \cdot 5 = 10$$
 m/c.

Ответ: v'=10 м/с Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	5
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула тонкой	
линзы, условие равенства угловых скоростей источника и его	
изображения, формула линейной скорости);	
II) сделан правильный рисунок, с указанием хода лучей в линзе;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
IV) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования. Но имеются один или несколько из следующих	
недостатков.	
Записи, соответствующие пунктам II и III, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не	
зачёркнуты; не заключены в скобки, рамку и т.п.).	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт V, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и достаточно	
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	

ФИЗИКА, 11 класс 31	/3
---------------------	----

В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минобрнауки России от 26.12.2013 № 1400, зарегистрирован Минюстом России 03.02.2014 № 31205)

- «61. По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы ЕГЭ с развёрнутым ответом...
- 62. В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенным считается расхождение в 2 или более балла за выполнение любого из заданий 28–32. В этом случае третий эксперт проверяет ответы только на те задания, которые вызвали столь существенное расхождение.

^{© 2019} Федеральная служба по надзору в сфере образования и науки Российской Федерации