

F19. 1

FIG. 2

F19.4

FIG. 5

F19.6

FIG. 7

i Si seg

Fig. 8

8/12

FIG. 9

F19. 10

VIRTUAL SCHEDULING ALGORITHM

TAT Theoretical Arrival Time

ta(k) Time of arrival of a cell

CONTINUOUS-STATE LEAKY BUCKET ALGORITHM

X Value of the Leaky Bucket counter

X' auxiliary variable

LCT Last Compliance Time

l Increment L Limit

At the time of arrivalt_a of the first cell of the connection, TAT = t_a (1)

At the time of arrivalt_a of the first cell of the connection, X = 0 and LCT = $\xi_a(K)$

FIG. 11 (PRIOR ART)

PCR congestion regions

Number of Cells received in Tm	Cmax	CRp3 Above PCR	
		CRp2 = Very Near PCR	R
	CTph CTpl	CRp1 = Approaching PCR	
	СТрі		
		CRp0 = Well Below PCR	
	<u></u>		

F1G. 12

Value of CTsh
CS

Well Above SCR
Check the state of Above SCR
CE Below SCR
CTsl

Well Below SCR

F19.13

Value of Cdiff = Critical — Cdiff = Near Cl

CTdh

Cdiff = Near Cl

Cdiff = Well below Cl

Cdiff = 0

F19.14