Содержание: 1. Численные методы решения нелинейного уравнения

№ докум.

Подп.

	с одной неизвестной
	1.2.Шаговый метод
	1.3. Метод половинного деления
	1.4.Метод Ньютона
	1.5. Метод простой итерации
2.	Численные методы решения системы линейных уравнений
	2.1.Постановка задачи
	2.2.Метод Гаусса
	2.3. Метод простой итерации
	2.4.Метод Зейделя
3.	Численные методы решения задачи аппроксимации
	3.1.Постановка задачи
	3.2. Решение задачи интерполяции (кусочно-линейной
	и квадратичной интерполяции) методом неопределенных коэффициентов
	3.3.Решение задачи интерполяции (кусочно-линейной
	и квадратичной интерполяции) с помощью
	полинома Лагранжа
	3.4. Решение задачи аппроксимации (нахождение полиномов
	первой и второй степени)
	методом наименьших квадратов
4.	Численные методы решения. Реализация в пакете Excel

1. Lucierose memodos permenue nemerosos ypabnemne c ognore nemplecamore.

1.1 Tocmanobne javarn.

Dano nevenue upoe paluenne $2x^2-11\cdot x+12=0$, immeplan novena nopue [2;5] in mar h=0,3.

TpeSyence:

- отденить первий керень уравнение шеловени методом;

- утогишть значение корие методом $\varepsilon = 0.01$; - утогишть значение корие методом $\varepsilon = 0.01$; - Неютона с тогностью $\varepsilon = 0.001$;

-утогиеть значение пориле методом ростой итерации с точностью ε =0,03. 1.2 Шаювый метод.

Построини табину в состветствии с ангоритични.

a	6	F(a)	P(b)	F(a)+F(b)=V
ર	2,3	-2	-2.72	uem
2.3	2,6	-2,72	-3,08	uem
2,6	2,9	- 3,08	-3,08	uem
2,9	3,2	-3,08	-2,72	nem
3.2	3.5	-2.72	-2	nem
3,5	3.8	-2	-0,92	nem
3,8	4,1	-0,92	0,52	Da.
4,1	4,4	0,52	2.32	um
44	4,7	4,32	li, hel	un
4,7	5,0	4,48	7	<u>un</u>

 $F(2) = 2 \cdot 2^{2} - 11 \cdot 2 + 12 = -2$ $F(2.3) = 2 \cdot (2.5)^{2} - 11 \cdot 2.3 + 12 = -2.72$ $F(2.6) = 2 \cdot (2.6)^{2} - 11 \cdot 2.6 + 12 = -3.08$ $F(2.9) = 2 \cdot (2.9)^{2} - 11 \cdot 2.9 + 12 = -3.08$

Изм. Лист Nº доким. Подп. Дата

$$F(3,2) = 2 \cdot (3,2)^{2} - 11 \cdot 3, 2 + 12 = -2,72$$

$$F(3,5) = 2 \cdot (3,5)^{2} - 11 \cdot 3,5 + 12 = -2$$

$$F(3,8) = 2 \cdot (3,8)^{2} - 11 \cdot 3,8 + 12 = -0.92$$

$$F(4,1) = 2 \cdot (4,1)^{2} - 11 \cdot 4,1 + 12 = 0,52$$

$$F(4,4) = 2 \cdot (4,4)^{2} - 11 \cdot 4,4 + 12 = 2,32$$

Ombem: ropens pacracionen na un replane [3,8;4,1].

1.3 Memod nouobunuoro Devenue.

a	K	b	F(a)	F(n)	F(a)*f(x)=0
3,8	3,95	4.1	-0,92	-D245	Hem
3,95	4.025	4.1	-0,245	0,126	Da
3,95	3,99	4.025	-0,245	-0,05	Hem
3,99	4,008	4,025	-0,05	0,04	Da
3,99	4.0	4.008	-0,05	0	Корень

E = 0,01.

$$\mathcal{X} = \frac{a+b}{2}$$

$$\mathcal{X} = \frac{3.8+4.1}{2} = 3.95$$

$$\chi = \frac{3.95 + 4.1}{2} = 4.025$$

$$F(4.025) = 2.(4,025)^2 - 11.4.025 + 12 = 0.126$$

$$\chi = \frac{3.95 + 4.025}{2} = 3.99$$

$$F(3,99) = 2 \cdot (3,99)^2 - 11 \cdot 3,99 + 12 = -0.05$$

$$\mathcal{H} = \frac{3.99 \cdot 4.025}{2} = 4.008$$

$$\mathcal{K} = \frac{3.99 + 4.008}{2} = 4.0$$

 $F(4,0) = 2 \cdot (4,0)^2 - 11 \cdot 4,0 + 12 = 0$ Ombern: Kopueu na umnepbaue ompeyna [3,8;4,1] Sydem elemente n = 4.0 c norpeumocmon e = 0.01.

1.4 Memod Howmona.

Ĺ	\mathcal{X}_{i}	F(xi)	F'(xi)	F(xi) 40,001
0	4,1	0,52	5,4	Kem
1	4,004	0,34	5,016	uem
d	3, <i>93</i> 6	-0.31	4, 744	Da

€=0,001

$$F'(x) = 4x - 19$$

$$F''(x) = 4.$$

$$F(3,8) = -0.92$$

$$F(4,1) = 0.52$$

$$F'(4,1) = 4.1.4 - 19 = 5.4$$

$$\Re_{iH} = \Re_{i} - \frac{F(x_{i})}{P'(x_{i})}$$

$$R_1 = 4.1 - \frac{0.52}{54} = 4.004$$

$$\mathcal{R}_2 = 4.004 - \frac{0.34}{5.016} = 3.936$$

$$F(3,936) = 2 \cdot (3,936)^2 - 11 \cdot 3,936 + 12 = -0,31$$

$$F'(3,936) = 4 \cdot 3.936 - 11 = 4,744$$

Ombem: Memodoru Horomona norryrum Ropento $\mathcal{R}=3.936$, c morriscontro $\mathcal{E}=0.001$.

1.5 Memod rpamoù umepayun

$$\begin{array}{ll}
\hat{I} & \mathcal{R} = 2\mathcal{R}^2 - 10\mathcal{R} + 12 \\
\hat{I}(\mathcal{R}) = 2\mathcal{R}^2 - 10\mathcal{R} + 12 \\
\hat{I}(\mathcal{R}) = 4\mathcal{R} - 10 \\
\hat{I}(\mathcal{R}) = 4\mathcal{R} - 10
\end{array}$$

$$\hat{I}(3,8) = 5,2$$

$$\mathcal{Z} \quad \mathcal{H} = \sqrt{\frac{11\mathcal{H} - 12}{2}}$$

$$\mathcal{H} = \sqrt{\frac{11}{2}\mathcal{H} - 6}$$

$$\varphi(\kappa) = \sqrt{5, 5 \cdot \kappa - 6}$$

$$\varphi'(\varkappa) = \frac{2}{\sqrt{5.5\varkappa - 6}}$$

$$p'(3,8) = \frac{2}{\sqrt{5,5\cdot3,8-6}} = 0.55$$

$$\psi'(4,1) = \frac{2}{(5.5\cdot41-6)} = 0.49.$$

Yourbue exol. beinouvers.

Ĺ	χ_i	$F(\chi_i)$	1P(xi) =0,03
0	3,&	-0,92	Ken
1	3,86	-0,66	uem
2	3,90	-0,46	uem
3	3,931	-0,538	Kem
ij	3,95	-0,23	uem
5	3.97	-0.15	uem
6	3,98	-0,1	ken

№ докум.

/1000

Appropriate Control	Ĺ	χi	P(xi)	[F(xi)/<0.03
	7	3,99	-0,05	kem
apple on	8	4.0	0	Kopens
_	X 1	=√5,5 ·	3,8-6	= 3,86

$$\chi_1 = \sqrt{5.5 \cdot 3.8 - 6} = 3.86$$

$$F(3,86) = 2 \cdot (3,86)^2 - 11 \cdot 3.86 + 12 = -0.66$$

$$F(3.90) = 2 \cdot (3.90)^2 - 11 \cdot 3.90 + 12 = -0.46$$

$$F(3,931) = 2 \cdot (3,931)^2 - 11 \cdot 3,931 + 12 = -0,338$$

$$F'(3,95) = 2 \cdot (3.95)^2 - 11 \cdot 3.95 + 12 = -0.23$$

$$\chi_5 = \sqrt{5,5 \cdot 3,95 - 6} = 3,97$$

$$F^{2}(3,97) = 2 \cdot (3,97)^{2} - 11 \cdot 3,97 + 12 = -0,15$$

$$\mathcal{R}_6 = \sqrt{5,5 \cdot 3,97 - 6} = 3.98$$

$$\chi_7 = \sqrt{5, 5 \cdot 3, 98 - 6} = 3,99$$

$$28 = \sqrt{5, 5 \cdot 3,99 - 6} = 4.0$$

Ombern: Groenence juaneur kopure x = 4,0.

2. Uncuennois memodes pensenne системы минетных уравнений.

2.1 Постановка задачи.

Dana cuemena menerinson ypalnemia:

$$R1-5x2+3x_3=1$$

 N^{o} dokum.

Лисп

```
-метод простой итерации (Зитерации);
 -метод Зейдене (3 итерации).
    2.2 Memod Paycca.
  A1-9 23 149
  A2 1 -53 1-
  A3 -4 -2 7 -1
I Tipemou now.
A1 1 -5 3 1
 Az -9 2 3 4 Az +9AL
 A3-4 -2 7 -1 A3+4A1
A1 1-53 11
Az 0-43 30 /13 Az: (-43)
As 0 -22 19 3
At 1 -5 3 11
A2 0 1 -0,7 -0,3
A3 0 -22 19 3 A3+22-A2
 A 1 -5 3 11
   0 1 -0,7 -0,3
As 00 3/-3
II Обратиьт под
  "N1 - 5x2 + 3x3 = L
        \chi_2 - 0.7\chi_3 = -0.3
              3 x3 = -3
```

Копировал

№ докцм.

Гиребуетие решить систему уравнений, испанууе:

-метод Раусса (решеше в обыкаю вешьок дробек);

Фармат А4

/14611

```
Проверка!
  -9(-1)+2(-1)+3(-1)=4
                                         -1-5(-1)+3(-1)=1
  9 - 2 - 3 = 4
                                           -1 +5 -3 =1
         4=4
                                                    1 = 1
  -4(-1)-2(-1)+7(-1)=-1
    4+2-7=-1
           -1 = -1
  Ombern: \chi_1=1, \chi_2=1, \chi_3=1 - penueune
               ситемы уравиемий.
            2.3 Метод простой итерации.
  Рана систеши уравиший третьего порледка:
  "-9R1+2R2+3R3=4
      \mathcal{R}_1 - 5\mathcal{R}_2 + 3\mathcal{R}_3 = \mathcal{L}
  _-4x1-2x2+7x3=1
  1-91 > 121 +131 - 60in.
  1-5/ >11/ +/3/ - 66cm.
 171 >1-41+121-60m
\mathcal{X}_{1}^{(0)} = \mathcal{X}_{2}^{(0)} = \mathcal{X}_{3}^{(0)} = 0
 \mathcal{H}_{1} = \frac{4 - 2\chi_{2}^{(k-1)} - 3\chi_{3}^{(k-1)}}{2}
  \chi_{2}^{(k)} = \chi_{1}^{(k-1)} + 3\chi_{3}^{(k-1)} + \frac{1}{2}
```

Копировал

Лист

Фармат

 $(\chi_1 = 5(-1) - 3(-1) + 1 = -1$

 $\mathcal{R}_2 = -0.3 + 0.7 \cdot (-1) = -1$

 $\mathcal{R}_3 = -1$

№ докцм.

$$\chi_{2}^{(2)} = \frac{\chi_{1}^{(2)} - 3\chi_{3}^{(1)} - 1}{5} = \frac{-0.44 + 0.429 - 1}{5} = -1.011$$

$$\chi_{3}^{(2)} = \frac{4\chi_{1}^{(1)} + 2\chi_{2}^{(2)} - 1}{7} = \frac{-7.04 - 0.49 - 1}{7} = -1.21$$

$$|\chi_{1}^{(1)} - \chi_{1}^{(2)}| = |-0.44 + 0.583| = 0.143 > \varepsilon \text{ herm}$$

$$|\chi_{2}^{(1)} - \chi_{2}^{(2)}| = |-0.2 + 1.011| = 0.811 > \varepsilon \text{ herm}$$

$$|\chi_{3}^{(1)} - \chi_{3}^{(2)}| = |-0.143 + 1.21| = 1.063 > \varepsilon \text{ herm}$$

$$\begin{pmatrix} \chi_{1}^{(3)} & 4 - 2\chi_{2} - 3\chi_{3} \\ -g & -g \end{pmatrix} = \frac{4 + 2 \cdot 2\chi_{2} + 3 \cdot 63}{-g} = -1,07$$

$$\chi_{2}^{(3)} & \chi_{3}^{(2)} - 3\chi_{3}^{(2)} - 1 \\ \chi_{3}^{(2)} & \frac{\chi_{3}^{(2)} - 3\chi_{3}^{(2)} - 1}{5} = \frac{-0.583 + 3.63 - 1}{5} = -1.024$$

$$\chi_{3}^{(3)} & \frac{4\chi_{1}^{(2)} + 2\chi_{2}^{(2)} - 1}{7} = \frac{-2.332 - 2.022 - 1}{7} = -0.76$$

$$|\chi_{1}^{(2)} - \chi_{1}^{(3)}| = |-0.583 + 1.07| = 0.487 > \varepsilon \text{ nem}$$

$$|\chi_{2}^{(2)} - \chi_{2}^{(3)}| = |-1.011 + 1.024| = 0.013 > \varepsilon \text{ nem}$$

$$|\chi_{3}^{(2)} - \chi_{3}^{(3)}| = |-1.21 + 0.76| = 0.45 > \varepsilon \text{ nem}$$

Ombem: $\chi_1 = 1.07$, $\chi_2 = -1.024$, $\chi_3 = -0.76$ peuseuse euemeus suneinom aurespeuseenun ypabaeuni, nongreunom e mormocropo ε -0.5.

Изм. Лист. № докум. Подп. Дата

24 Stemod Beideue.

Dana erecmena ypabienti mpembero nopedna:

$$\begin{cases}
-921 + 22 + 323 = 4 \\
81 - 52 + 323 = 1 \\
-421 - 222 + 723 = 1
\end{cases}$$

$$\chi_1^{(0)} = \chi_2^{(0)} = \chi_3^{(0)} = 0$$

$$\chi_{1}^{(k)} = \frac{4 - 2x_{2}}{-3x_{3}} - 3x_{3}^{(k-1)}$$

$$\chi_{2}^{(k)} = \frac{\chi_{1} + 3\chi_{3} - 1}{5}$$

$$\chi_2 = \frac{\chi_1 + 3\chi_3 - 1}{E}$$

$$\chi_{3}^{(k)} = \frac{4\chi_{1}^{(k)} + 2\chi_{2}^{(k)} - 1}{7}$$

$$\mathcal{H}_{1} = \frac{4 - 2\mathcal{H}_{2}^{(0)} - 3\mathcal{H}_{3}^{(0)}}{-g} = \frac{4 - 20 - 3 \cdot 0}{-g} = -\frac{4}{9} = -0.44$$

$$\mathcal{X}_{2} = \frac{\mathcal{X}_{1} + 3\mathcal{X}_{3} - 1}{\mathcal{X}_{2} + 3\mathcal{X}_{3} - 1} = \frac{-0.44 + 3 \cdot 0 - 1}{5} = -0.288$$

$$\mathcal{X}_{3} = \frac{4\chi_{1} + 2\chi_{2} - 1}{7} = \frac{4(-0.44) + 2(-0.288) - 1}{7} = -0.696$$

$$|\mathcal{X}_1 - \mathcal{X}_1| = |0 + 0,44| = 0,44 = E$$
 net

$$|\mathcal{R}_{2}^{(0)} - \mathcal{R}_{2}^{(1)}| = |0 + 0,288| = 0,288 > \varepsilon$$
 net

$$\chi_{1}^{(2)} = \frac{4 - 2\chi_{2}^{(1)} - 3\chi_{3}^{(1)}}{-9} = \frac{4 - 2(-0,283) - 3 - (-0,696)}{-9} = -0.74$$

$$\mathcal{R}_{2} = \frac{\chi_{1}^{(2)} - 3\chi_{3}^{(1)} - 1}{\chi_{1}^{(2)} - 3\chi_{3}^{(2)} - 1} = \frac{-0.74 + 3(-0.696) - 1}{5} = -0.92$$

$$\mathcal{H}_{3}^{(2)} = \frac{4\mathcal{H}_{1}^{(2)} + 2\mathcal{H}_{2}^{(2)} - 1}{7} = \frac{4(-0.74) + 2(-9.92) - 1}{7} = -0.829$$

№ доким. Подп Λυσπ

 $|\chi_{1}^{(1)} - \chi_{1}^{(2)}| = |-0.44 + 0.74| = |-0.31| = 0.3 > E$ $|\chi_{2}^{(1)} - \chi_{2}^{(2)}| = |-0.238 + 0.92| = |0.632| = 0.632 > E$ $|\chi_{3}^{(1)} - \chi_{3}^{(2)}| = |-0.696 + 0.829| = |0.733| = 0.733 > E$ $|\chi_{3}^{(2)} - \chi_{3}^{(2)}| = |-0.696 + 0.829| = |0.733| = 0.733 > E$ $|\chi_{1}^{(2)} - \chi_{3}^{(2)}| = |-0.696 + 0.829| = |0.733| = |0.733| = |0.733| = |0.733| = |0.793| = |0.93| = |$

Ombem: $\chi_1 = -0.93$, $\chi_2 = -0.884$, $\chi_3 = -0.528$ permenue cumenos unerinon aurespaneenen ypabuenni, nouremon e momormon $\chi_1 = 0.6$.

3. Viimenuore memodos pemenue zadam annponamayum.

3.1 Постановка задаче.

Dana masurucue pyunyeue.

Parameter Street	N	-5	-3	-1	2	4
-	y	0	-1	2	-2	2

Jipeδyemue:

- решить задолу шитерпошеции (кусогио-- минейние и пусогио-парибочинешихе) методом неопределённых коэрромушентов;

- решить задону аппрокашации (найти пошношь первой и второй степени) методом нашиеньших квадратов.

3.2 Решение задане имперпоменние методом неопределением козардициентов.

Интерпениция (пусотно-миней наме)

A)
$$(a_0 + a_1(-5) = 0)$$
 $(a_0 = 5a_1)$ => $5a_1 - 3a_1 = -1 = >$

$$\begin{array}{lll}
\Rightarrow 2a1 = -1 \\
fa1 = -0.5 & => y = -2.5 - 0.5\pi \\
a_0 = -2.5
\end{array}$$

B)
$$\int a_0 + a_1(-3) = -1$$
 $\int a_0 - 3a_1 = -1$ $= > -2a_1 = -3 = >$

$$= \begin{cases} a_1 = 1.5 \\ a_0 = -1 + 3 \cdot 1.5 = 3.5 \end{cases} = y = 3.5 + 1.5\pi$$

c)
$$\int a_0 + a_1(-1) = 2$$
 $\int a_0 - a_1 = 2$ => $-3a_1 = 4$ = $-2a_0 + a_1(2) = -2$

$$= \begin{cases} a_1 = -1.33 \\ a_0 = 2 - 1.33 = 0.67 \end{cases} = y = 0.67 - 1.33 \mathcal{X}$$

D)
$$\begin{cases} a_0 + a_1(a) = -2 \\ a_0 + a_1(4) = 2 \end{cases} = \begin{cases} a_0 + 2a_1 = -2 \\ a_0 + 4a_1 = 2 \end{cases} = -2a_1 = -4 = -2$$

$$\begin{cases} a_1 = 2 \\ a_0 = -2 - 4 = -6 \end{cases} = y = -6 + 2\pi$$

Unneprocueixue (mycomo-napadonmeckare).

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 = y_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 = y_2 \\ a_0 + a_1 x_3 + a_2 x_3^2 = y_3 \end{cases}$$

A)
$$\begin{cases} a_0 + a_1(-5) + a_2(-5)^2 = 0 & \{a_0 - 5a_1 + 25a_2 = 0 \\ a_0 + a_2(-3) + a_2(-3)^2 = -1 \\ a_0 + a_3(-1) + a_3(-1)^2 = 2 & \{a_0 - 1a_1 + 1a_2 = 2 \} \end{cases}$$

$$\begin{cases} a_0 - 5a_1 + 25a_2 = 0 \\ a_0 - 3a_1 + 9a_2 = -1 \\ a_0 = 2 + a_1 - a_2 \end{cases} = \begin{cases} 2 + a_1 - a_2 - 5a_1 + 25a_2 = 0 \\ 2 + a_1 - a_2 - 3a_1 + 9a_2 = -1 \end{cases}$$

$$- \begin{bmatrix} -4a_1 + 23a_2 = -2 \\ -2a_1 + 8a_2 = -3 \end{bmatrix} \times 2 = \begin{bmatrix} -4a_1 + 23a_2 = -2 \\ -4a_1 + 16a_2 = -6 \end{bmatrix}$$

$$7az=4$$
 $-2az+8.05=-3$ $ao=2+3.5-0.5=5$

$$100=5$$

$$\begin{cases} a_0 - 3 \\ a_1 = 3,5 \\ a_2 = 0,5 \end{cases} = y = 5 + 3,5 x + 0,5 x^2$$

B)
$$\begin{cases} a_0 + a_1(-1) + a_2(-1)^2 = 2 \\ a_0 + a_1(2) + a_2(2)^2 = -2 \end{cases}$$
 $\begin{cases} a_0 - a_1 + a_2 = 2 \\ a_0 + a_1(4) + a_2(4)^2 = -2 \end{cases}$ $\begin{cases} a_0 + a_1 + a_2 = 2 \\ a_0 + a_1 + a_2 = -2 \end{cases}$ $\begin{cases} a_0 + a_1 + a_2 = 2 \\ a_0 + a_1 + a_2 = 2 \end{cases}$

$$= \begin{cases} a_0 = 2 + \alpha_1 - \alpha_2 \\ a_0 + 2\alpha_1 + 4\alpha_2 = -2 \end{cases} = \begin{cases} 2 + \alpha_1 - \alpha_2 + 2\alpha_1 + 4\alpha_2 = -2 \\ 2 + \alpha_1 - \alpha_2 + 4\alpha_1 + 16\alpha_2 = 2 \end{cases}$$

SU NOM NUCM NO DOKYM. NODO.

 $\begin{cases} 3a_1 + 3a_2 = -4 \\ 5a_1 + 15a_2 = 0 \end{cases} ; 5 \begin{cases} 3a_1 + 3a_2 = -4 \\ a_1 + 3a_2 = 0 \end{cases} , 3 \begin{cases} 3a_1 + 3a_2 = -4 \\ 3a_1 + 3a_2 = 0 \end{cases}$ 0-6az = -4 az = 0,67 $a_1 = -3 \cdot (0.67)$ $a_0 = 2 + (-2) - 0.67$ Q1=-2 Q 0 = -0,67 ao = -0,67 Q1=-2 => y = 0,67 x2-2x-0,67 az=0,67 3.3 Perueure jadance unmepromezun с помощью поминочи Лагранний. Unmeprosegue (nycorno-succeinace). Lis(x) = \frac{\pi - \pi_2}{\pi_1 - \pi_2} \cdot \frac{\pi_1}{\pi_2 - \pi_1} \cdot \frac{\pi_2}{\pi_2 - \pi_1} \cdot \frac{\pi_2}{\pi_2 - \pi_1} A) $L_1(x) = \frac{\mathcal{X}+3}{-5+3} \cdot 0 + \frac{\mathcal{X}+5}{-3+5} \cdot (-1) = -\frac{\mathcal{X}}{2} - 2.5 = > y = -0.5 \mathcal{X} - 2.5$ B) $L_{2}(x) = \frac{\Re + 1}{-3+1} \cdot (-1) + \frac{\Re + 3}{-1+3} \cdot 2 = \frac{\Re}{2} + 0.5 + \Re + 3 = y = 1.5 \Re + 3.5$ C) $L_{13}(x) = \frac{x-2}{-1-2} \cdot 2 + \frac{x+1}{2+1} \cdot (-2) = -\frac{2x}{3} + \frac{4}{3} - \frac{2x}{3} - \frac{2}{3} = \frac{4x}{3} + \frac{2}{3} = >$ => y = -1,33 x+0,67 D) $L_{4}(x) = \frac{\chi-4}{2-4} \cdot (-2) + \frac{\chi-2}{4-2} \cdot 2 = \chi-4+\chi z = \gamma y = 2\chi-6$ Ombem: cobradaem. Интерпомения (пусото-парабоннеский)

: Nº подл. Подп. и дата — Взам. инв. Nº I

 N^{o} đokum.

Подп.

 $= \frac{\chi^{2}+6\chi+5}{4} + \frac{\chi^{2}+8\chi+15}{4} = \frac{2\chi^{2}}{4} + \frac{14\chi}{4} + \frac{20}{4} = \Rightarrow y = 0.5\pi^{2}+3.5\chi+5$

A) $L_{1}(x) = \frac{(\chi_{+3})(\chi_{+1})}{(-5+3)(-5+1)} \cdot O_{+} \frac{(\chi_{+5})(\chi_{+1})}{(-3+5)(-3+1)} \cdot (-1)_{+} \frac{(\chi_{+5})(\chi_{+3})}{(-1+5)(-1+3)} \cdot 2 =$

 $L_{1}(x) = \frac{(\mathcal{X}-\mathcal{X}_{2})(\mathcal{X}-\mathcal{X}_{3})}{(\mathcal{X}_{1}-\mathcal{X}_{2})(\mathcal{X}_{1}-\mathcal{X}_{3})} \cdot y_{1} + \frac{(\mathcal{X}-\mathcal{X}_{1})(\mathcal{X}-\mathcal{X}_{3})}{(\mathcal{X}_{2}-\mathcal{X}_{1})(\mathcal{X}_{2}-\mathcal{X}_{3})} \cdot y_{2} + \frac{(\mathcal{X}-\mathcal{X}_{1})(\mathcal{X}-\mathcal{X}_{2})}{(\mathcal{X}_{3}-\mathcal{X}_{1})(\mathcal{X}_{3}-\mathcal{X}_{2})} \cdot y_{3}$

/IUCM

B)
$$L_{2}(x) = \frac{(x-2)(x-4)}{(-1-2)(-1-4)} \cdot 2 + \frac{(x+1)(x-4)}{(2+1)(2-4)} \cdot (-2) + \frac{(x+1)(x-2)}{(4+1)(4-2)} \cdot 2 =$$

$$= \frac{2x^{2} - 12x + 16}{15} + \frac{x^{2} - 3x - 4}{3} + \frac{x^{2} - x - 2}{5} = \frac{2x^{2} + 5x^{2} + 3x^{2} - 12x - 15x - 3x + 16 + 10 - 6}{15} =$$

$$= \frac{10x^{2}}{15} - \frac{30x}{15} - \frac{10}{15} = \Rightarrow \qquad y = 0,67x^{2} - 2x - 0,67$$
Ombern: Cobnadaem

3.4 Решеше заболи аппроксимации (накондение починочнов первой и второй степени) методом нашиеньших квадриюв. Почином 1 втепени.

$$\begin{aligned}
& z = \begin{pmatrix} m & \leq x_{1} \\ \leq x_{1} & \leq x_{1}^{2} \end{pmatrix} = \begin{pmatrix} 5 & -3 \\ -3 & 55 \end{pmatrix} \qquad & \leq x_{1}^{2} = 55
\end{aligned}$$

$$\begin{aligned}
& A = \begin{pmatrix} a_{0} \\ a_{1} \end{pmatrix} \qquad & B = \begin{pmatrix} \epsilon y_{1} \\ \epsilon x_{1} - y_{1} \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \\
& \begin{pmatrix} 5 & -3 \\ -3 & 55 \end{pmatrix} = \begin{pmatrix} a_{0} \\ a_{1} \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} = & \begin{pmatrix} 5a_{0} - 3a_{1} = 1 \\ -3a_{0} + 55a_{1} = 5 \end{pmatrix} = & \\
& \Rightarrow + \begin{pmatrix} 15a_{0} - 9a_{1} = 3 \\ -15a_{0} + 275a_{1} = 25 \\ 0 + 266a_{1} = 28 \\ a_{1} = 0.05
\end{aligned}$$

$$\begin{aligned}
& a_{1} = 0.05 \\
& 5a_{0} = 3 \cdot 0.315 \\
& a_{0} = 0.26 \end{aligned}$$

$$\begin{aligned}
& a_{0} = 0.26 + 0.05 \\
& \Rightarrow y = 0.26 + 0.05 \end{aligned}$$

MAR NO MAIN

 N^{ρ} доким.

Подп.

Лисп

Mouremen 2 Coneneur.

$$Z \cdot A = B$$

$$Z = \begin{cases} m & \text{ξ_{xi}} & \text{ξ_{xi}}^2 \\ \text{ξ_{xi}} & \text{ξ_{xi}}^2 & \text{ξ_{xi}}^3 \\ \text{ξ_{xi}}^2 & \text{ξ_{xi}}^3 & \text{ξ_{xi}}^4 \end{cases} = \begin{cases} 5 & -3 & 55 \\ -3 & 55 & -81 \\ 55 & -81 & 979 \end{cases}$$

$$\xi_{xi} = -3 \; ; \; \xi_{xi}^2 = 55 \; ; \; \xi_{xi}^3 = -81 \; ; \; \xi_{xi}^4 = 979$$

$$A = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \quad B = \begin{pmatrix} \xi_{yi} \\ \xi_{xi} \cdot yi \\ \xi_{xi}^2 \cdot yi \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 17 \end{pmatrix}$$

$$\begin{cases}
5a_0 - 3a_1 + 55a_2 = 1 \\
-3a_0 + 55a_1 - 81a_2 = 5 \\
55a_0 + 81a_1 - 979a_2 = 17
\end{cases}$$

A1 5 -3 55 1
$$B_1 = A_1/5$$
 1 -0,6 19 0,2
A2 -3 55 -81 5 $B_2 = A_2 + B_1 \cdot 3$ 0 53,2 -48 5,6
A3 55 -81 979 17 $B_3 = A_3 - B_1 \cdot 55$ 0 -48 374 5

$$C_1 = 131$$
 1 -0,6 11 0,2
 $C_2 = B_2/53,2$ 8 1 -0,9 0,1
 $C_3 = B_3 + C_2 + 48$ 0 0 330,8 9,8

Изм. Лист № докум. Подп. Дато

$$D_1 = C_1$$
 1 -0,6 11 0,2
 $D_2 = C_2$ 0 1 -0,9 0,1
 $D_3 = C_3/330,8$ 0 0 1 0,03

$$\begin{cases}
a_0 - 0.6 \cdot a_1 + 11a_2 = 0.2 & a_0 = 0.2 + 0.6(0.127) - 11 \cdot (0.03) = -0.05 \\
a_1 - 0.9a_2 = 0.1 = a_1 = 0.1 + 0.9 \cdot 0.03 = 0.127 \\
a_2 = 0.03 & a_2 = 0.03
\end{cases}$$

$$\begin{cases} a_0 = -0.05 \\ a_1 = 0.127 = 7 \quad y = 0.03 \text{ m}^2 + 0.127 \text{ m} - 0.05 \\ a_2 = 0.03 \end{cases}$$

в подл. Подл. и дата Взам. инв. № Инв. № дцбл. Подл. и дата

№ доким.

Подп.

Численные методы решения нелинейного уравнения

Шаговый метод

х		F(x)	
	2		-2
	2,3		-2,72
	2,6		-3,08
7	2,9		-3,08
3	3,2		-2,72
	3,5		-2
	3,8		-0,92
4	1,1		0,52
4	1,4		2,32
	1,7		4,48
	5		7

Методы уточнения корня

Метод половинного деления

e= 0,001

0,03

	3 7					
а	Х	b	F(a)	F(x)	F(a)*F(x)	F(x) <e< th=""></e<>
3,8	3,95	4,1	-0,92	-0,245	0,2254	
3,95	4,025	4,1	-0,245	0,12625	-0,030931	
3,95	3,9875	4,025	-0,245	-0,062188	0,015236	
3,9875	4,00625	4,025	-0,062188	0,031328	-0,001948	
3,9875	3,996875	4,00625	-0,062188	-0,015605	0,00097	корень

Метод Ньютона

Метод простой итерации

		-	0,00001	
	Х	F(x)	F'(x)	F(x) <e< td=""></e<>
	4,1	0,52	5,4	
	4,003704	0,018546	5,014815	
ĺ	4,000005	2,74E-05	5,000022	
	4	5,99E-11	5	корень

Х	F(x)	S(x)	F(x) <e< th=""></e<>
3,8	-0,92	3,860052	
3,860052	-0,66057	3,9026	
3,9026	-0,468028	3,932467	
3,932467	-0,328542	3,953299	
3,953299	-0,229145	3,967763	
3,967763	-0,159107	3,977775	
3,977775	-0,110136	3,984691	
3,984691	-0,076075	3,989461	
3,989461	-0,052471	3,992748	
3,992748	-0,036154	3,995011	
3,995011	-0,024894	3,996569	корень

Изм. Лист № докум. Подп. Дата

BECIM. UHB. Nº MHB. Nº JUÓN.

	H H H H H H H H H H	
	6 G G G G G G G G G G G G G G G G G G G	
	F F A A A A A A A A	
и дата		
Инв. № дубл Подп.	10 D D H 10 0 0 0 0 0 0 0 0 0	
Вэст инв. Nº Инв. Nº तेपुरुत	Wacaehhble Metogla pellering Hejinhedin	
Подп. и дата		
Инв. № подл.	2 3 4 4 4 4 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4	/lucm
MHC	Изм Лист № докум. Подп. Дата Копировал Форми	7077 A4

Х	-5	-3	-1	2	4
Υ	0	-1	2	-2	2

Кусочно-линейная интерполяция

Квадратичная интерполяция

Изм Лист № докум. Подп. Дата

Nucm

Копировал

Формат А4

