

1.5V/1.8V/2.5V, 180MHz, 1:4 Networking Clock Buffer

Features

- High-speed, low-noise, non-inverting 1:4 buffer
- Maximum Frequency up to 180 MHz
- Low output skew < 70ps (1.8V, 2.5V), <100ps (1.5V)
- Low propagation delay < 3.0ns (1.8V, 2.5V), <3.5ns (1.5V)
- · Optimized duty cycle
- 1.5V 2.5V supply voltage
- 3.3V Tolerant input clock
- Packages (Pb-free & Green available):
 -8-pin SOIC (W)

Description

The PI6C10804 is a 1.5V to 2.5V high-speed, low-noise 1:4 non-inverting clock buffer. The key goal in designing the PI6C10804 is to target networking applications that require low-skew, low-jitter, and high-frequency clock distribution.

Providing output-to-output skew as low as 70ps, the PI6C10804 is an ideal clock distribution device for synchronous systems. Designing synchronous networking systems requires a tight level of skew from a large number of outputs.

Block Diagram

Pin Configuration

Pin Description

Pin Name	Description
BUF_IN	Input
CLK [0:3]	Outputs
GND	Ground
V_{DD}	Power
OE	Output Enable

09-0056 1 PS8822G 10/07/09

2.5V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature—65°C to +1	50°C
V _{DD} Voltage0.5V to +	·3.6V
Output Voltage ————————————————————————————————————	·0.5V
Input Voltage	

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2.5V DC Characteristics (Over Operating Range: V_{DD} = 2.5V \pm 0.2V, T_A = -40° to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
V_{DD}	Supply Voltage			2.3	2.5	2.7	V
V_{IH}	Input HIGH Voltage	Logic HIGH level		1.7		3.6	$ _{V}$
V_{IL}	Input LOW Voltage	Logic LOW level		-0.3		0.7]
II	Input Current	$V_{DD} = Max$, $V_{IN} = V_{DD}$ or GND	I pin			15	μА
	Output High Voltage	V_{DD} = Min., V_{IN} = V_{IH} or V_{IL}	$I_{OH} = -1 \text{mA}$	2.0			
V_{OH}			$I_{OH} = -2mA$	1.7			
			$I_{OH} = -8mA$	1.5] v
			$I_{OL} = 1 \text{mA}$			0.4	
V_{OL}	Output LOW Voltage	$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.7	
			$I_{OL} = 8mA$			0.7	V

Notes:

- For Max. or Min. conditions, use appropriate operating range values.
- 2. Typical values are at $V_{DD} = 2.5V$, $+25^{\circ}C$ ambient and maximum loading.

2.5V AC Characteristics (Over Operating Range: $V_{DD} = 2.5V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency		0		250	MHz
$t_{\rm R}/t_{\rm F}$	CLKn Rise/Fall Time	20% to 80%			1	ns
t _{PLH} , t _{PHL} ⁽²⁾	Propagation Delay BUF_IN to CLKn		1.0	1.5	2.0	ns
$t_{SK(O)}^{(3)}$	Output to Output Skew between any two outputs of the same device @ same transition	C _L = 5pF, 125 MHz Outputs are measured			70	
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output			100	200	ps
t _{SK(T)} ⁽³⁾	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾	\bigcirc			300	
t _{dc} in	Duty Cycle In @ 1ns edge rate		45		55	0/
tdc_out	Duty Cycle Out		40		60	%

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worse cast temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

1.8V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature65°C to +150°C
V_{DD} Voltage –0.5V to +2.5V
Output Voltage $-0.5V$ to $V_{DD} \!\!+\!\! 0.5V$
Input Voltage

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.8V DC Characteristics (Over Operating Range: $V_{DD} = 1.8V \pm 0.15V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	'	Min.	Typ. (2)	Max.	Units
V_{DD}	Supply Voltage			1.65	1.8	1.95	
V_{IH}	Input HIGH Voltage	Logic HIGH level	Logic HIGH level			3.6	V
V_{IL}	Input LOW Voltage	Logic LOW level	Logic LOW level			0.35*V _{DD}	
II	Input Current ⁽³⁾	$V_{DD} = Max,$ $V_{IN} = V_{DD}$ or GND	I pin			15	μА
17	Outrout High Walters	V - Min V - V on V	$I_{OH} = -2mA$	1.3			
V_{OH}	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -8mA$	1.2			$\mid V \mid$
V	Output LOW Voltage	V M V V	$I_{OL} = 2mA$			0.45	'
V_{OL}		VDD - MIII., VIN - VIH OI VIL	$I_{OL} = -8mA$			0.45	

Notes:

- For Max. or Min. conditions, use appropriate operating V_{DD} and T_A values.
- Typical values are at $V_{DD} = 1.8V$, $+25^{\circ}C$ ambient and maximum loading.
- This parameter is determined by device characterization but is not production tested.

1.8V AC Characteristics (Over Operating Range: $V_{DD} = 1.8V \pm 0.15V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency		0		180	MHz
t_R/t_F	CLKn Rise/Fall Time	20% to 80%			1	
t _{PLH} , t _{PHL} ⁽²⁾	Propagation Delay BUF_IN to CLKn		1.0	2.0	3.0	ns
t _{SK(O)} (3)	Output to Output Skew between any two outputs of the same device @ same transition				70	
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output	$C_L = 5 pF$, 125 MHz Outputs are measured		200	275	ps
$t_{SK(T)}^{(3)}$	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾	@ V _{DD} /2			300	
tdc_in	Duty Cycle In @ 1ns edge rate		45		55	
t _{dc out}	Duty Cycle Out		40		60	%

- See test circuit and waveforms. 1.
- Minimum limits are guaranteed but not tested on Propagation Delays.
- Skew measured at worse cast temperature (max. temp).
- Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

Switching Characteristics ($V_{DD} = 2.5V \pm 0.2V$ or $1.8V \pm 0.15V$, $T_A = 105$ °C)

Parameters	Description	Test Conditions		Тур.	Max.	Units
t_{R},t_{F}	CLKn Rise/Fall Time	20% to 80% , $C_L = 15$ pF, 125 MHz		0.8	1.4	ns

Note: 1. All other AC and DC characteristics are identical to the 1.8V and 2.5V sections.

1.5V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature	
V _{DD} Voltage	-0.5V to +2.6V
Output Voltage	
Input Voltage	3.6V

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.5V DC Characteristics (Over Operating Range: $V_{DD} = 1.5V \pm 0.075V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
V_{DD}	Supply Voltage			1.4	1.5	1.6	
V _{IH}	Input HIGH Voltage	Logic HIGH level	,	1.17		3.6	V
V _{IL}	Input LOW Voltage	Logic LOW level	Logic LOW level			0.63	
II	Input Current	$V_{DD} = Max, V_{IN} = V_{DD}$ or GND	I pins			15	μΑ
**	O to tHist Wiles	utput High Voltage $V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2mA$	1.05			
V_{OH}	Output High voltage		$I_{OH} = -8mA$	0.75			
			$I_{OL} = 1 \text{mA}$			0.4	V
V _{OL}	Output LOW Voltage	$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.35	
			$I_{OL} = 8mA$			0.35	

Notes:

- 1. For Max. or Min. conditions, use appropriate operating range values.
- 2. Typical values are at $V_{DD} = 1.5V$, $+25^{\circ}C$ ambient and maximum loading.

1.5V AC Characteristics (Over Operating Range: $V_{DD} = 1.5V \pm 0.075V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency		0		200	MHz
$t_{\rm R}/t_{\rm F}$	CLKn Rise/Fall Time	20% to 80%			1.5	
t _{PLH} , t _{PHL} ⁽²⁾	Propagation Delay BUF_IN to CLKn	⊣ ⊢	1.0	1.5	3.0	ns
$t_{SK(O)}^{(3)}$	Output to Output Skew between any two outputs of the same device @ same transition				100	
$t_{SK(T)}^{(3)}$	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾				300	ps
t _{dc_in}	Duty Cycle In @ 1ns edge rate		45		55	%
t _{dc_out}	Duty Cycle Out		40		60	70

- 1. See test circuit and waveforms.
- Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worse cast temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
I _{DDQ} Quiescent Power Supply Current	Quiescent Power	$V_{DD} = 2.7V$	W CND W			10	
	$V_{\rm DD} = 1.95 V$	$V_{IN} = GND \text{ or } V_{DD}$			10	μΑ	
,	Total Power Supply Current	$V_{DD} = 2.7V$	All Outputs Toggling, $C_L = 5pF$, $F_{IN} = 125MHz$			20	mA
I _{DD_TOT}		$V_{DD} = 1.95V$				15	
ΔI_{CC} per in	Static Supply Current	$V_{DD} = 2.7V$	$V_{INx} = V_{DD} - 0.6V^{(3)}$			200	
	per inputs @ High Level	$V_{\rm DD} = 1.95 V$	$V_{INx} = V_{DD} - 0.6V^{(3)}$			200	μА

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics.
- 2. Typical values are at $V_{DD} = 1.8V$ or 2.5V, and $\pm 25^{\circ}$ C ambient.
- 3. Per TTL driven input ($V_{IN} = V_{DD} 0.6V$); all other inputs at V_{DD} or GND.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
I_{DDQ}	Quiescent Power Supply Current	$V_{DD} = 1.5V$	$V_{IN} = GND \text{ or } V_{DD}$			10	μΑ
I _{DD_TOT}	Total Power Supply Current	$V_{DD} = 1.5V$	All Outputs Toggling, $C_L = 5pF$, $F_{IN} = 125MHz$			15	mA

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics.
- 2. Typical values are at $V_{DD} = 1.2V$ or 1.5V, and ± 25 °C ambient.

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C_{IN}	Input Capacitance	$V_{IN} = 0V$	2.0	4	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	1.7	6	pr

Note:

1. This parameter is determined by device characterization but is not production tested.

Test Circuits for All Outputs

Definitions:

C_L = Load capacitance: includes jig and probe capacitance.

Switching Waveforms

Propagation Delay

Pulse Skew $-t_{SK(P)}$

tsk(p) = |tPLH - tPHL|

Output Skew – $t_{SK(O)}$

Package Skew – $t_{SK(T)}$

tsk(T) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

Packaging Mechanical: 8-Pin SOIC (W)

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information $^{(1,2,3)}$

Ordering Code	Package Code	Package Type
PI6C10804WE	W	Pb-free & Green, 8-pin 153-mil wide SOIC

- 1. Thermal Characteristics can be found on the web at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. X suffix = Tape/Reel