

INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR

B.Tech. 1st Semester Examination, 2017 Subject: Mathematics-I (MA-101)

Full Marks: 70

Time: 3 hrs.

Use separate answer scripts for each half
Answer SIX questions, taking THREE from each half
Two marks are reserved for general proficiency in each half.
Symbols have their usual meanings.

First Half

- 1. a) Find the value of y_n for x = 0 where $y = e^{a \sin^{-1} x}$.
 - b) Using Lagrange's Mean Value theorem prove that

$$\frac{x}{1+x^2} < \tan^{-1} x < x$$
 , $0 < x < \frac{\pi}{2}$.

c) Verify Cauchy's Mean Value theorem for $f(x) = \sqrt{x}$, $g(x) = \frac{1}{\sqrt{x}}$ in (a,b) where a > 0.

5+3+3

2. a) Prove that the asymptotes of the cubic equation

$$(x^2 - y^2)y - 2ay^2 + 5x - 7 = 0$$
 form a triangle of area a^2 .

b) If
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 when $(x,y) \neq (0,0)$,

$$= 0$$
 when $(x, y) = (0,0)$,

show that the partial derivatives exist at (0,0) but f(x,y) is not continuous thereat.

c) Find the Taylor series expansion of the function $f(x, y) = e^x \cos y$ about the origin up to second degree term.

- 3. a) State Euler's theorem for homogeneous functions. If $u = tan^{-1} \frac{x^3 + y^3}{x y}$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 4 \sin^2 u) \sin^2 u$.
 - b) Find the radius of curvature at the point (r, θ) on the curve $r = a(1 \cos \theta)$ and show that it varies as \sqrt{r} .

(1+6)+4

- 4. a) Find the maxima of the following function given by $f(x,y) = x^2 + y^2 + (x+y+1)^2$.
 - b) Show that the series $\sum \frac{1}{n}$ does not converge.
 - c) Test for convergence:

i)
$$\sum \frac{n^2-1}{n^2+1} x^n$$
, where $x > 0$

4+1+(3+3)

5. a) Using the technique of Lagrange's multipliers, find the minimum value of

$$x^2 + y^2 + z^2$$
 subject to the condition $2x + 3y + 5z = 30$.

b) Show that the functions u(x, y, z), v(x, y, z), w(x, y, z) given by

$$u = x + y - z$$

$$v = x - y + z$$

$$w = x^2 + y^2 + z^2 - 2vz$$

are not independent and find the relation among them .

6+5

Second Half

- 6. a) Evaluate $\int_{0}^{\pi/2} \int_{0}^{\pi} \cos(x+y) dx dy$.
 - b) Change the order of integration and hence evaluate the integral

$$\int_{0}^{a} \int_{y}^{a} \frac{x dx dy}{x^2 + y^2} \cdot$$

c) Compute the value of $\iint y dx dy$, where R is the region in the first quadrant

bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

3+4+4

- 7. a) Examine the convergence of the improper integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$; if possible,
 - b) Find the value of $\int_{-\infty}^{\infty} e^{-x^2} dx$.

evaluate the integral.

c) Evaluate $\int_{0}^{1} x^{3} (1 - x^{2})^{\frac{5}{2}} dx$.

4+3+4

- 8. a) Show that $\int_{-\infty}^{1} \frac{1}{x^3} dx$ does not exist but it exists in Cauchy's principal value sense.
- b) Solve the following differential equations:

(i)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{3x}$$

(i)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{3x}$$
 (ii) $(D^2 + 1)y = \cos x$, $D = \frac{d}{dx}$

5+3+3

9. a) Solve
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + \frac{1}{x})$$
.

b) Using the method of variation of parameters, solve

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x . ag{6+5}$$

10. a) Find the series solution of the differential equation

$$\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 3y = 0$$
 near the ordinary point $x = 0$.

- b) Write down the standard form of
 - i) Legendre's differential equation
 - ii) Bessel's differential equation
 - iii) Legendre's polynomial of degree n
 - iv) Bessel's function of first kind of order n.

7+4