Hæve-/sænkeoperatorer og hydrogenlampe

Louis Clément

Hillerød Tekniske Skole

U/NORD

SOP fag
Matematik A, Fysik A
SOP vejledere
Mikkel Oglesby
Jacob Skytte Salgaard Bendtsen

6. december 2020

Indhold

1	Gennemgang af matematiske metoder		1
	1.1	Hilbertrum	1
	1.2	Linære operatorer	2
2 Kvantemekanisk harmonisk svingning		ntemekanisk harmonisk svingning	3
	2.1	Schrödinger-ligningen	3

1 Gennemgang af matematiske metoder

1.1 Hilbertrum

Definition 1.1. Et Hilbertrum \mathcal{H} er et komplet vektorrum over et felt \mathbb{F} med associeret indre produkt. Vi beskæftiger os med rum, hvori det gælder at

$$\langle \psi | \psi \rangle = \int \psi^*(x) \psi(x) \ dx < \infty$$

for $|\psi\rangle \in \mathcal{H}$. Vi kan konstruere et ∞ -dimensionelt Hilbertrum ved at overveje et kontinuert basis med elementerne $|a\rangle$ navngivet med en kontinuer variabel a, normaliseret således at

$$\langle a|\tilde{a}\rangle = \delta(a-\tilde{a}) \tag{1.1}$$

hvilket betyder vi kan skrive

$$|\psi\rangle = \int \psi(a) |a\rangle \ da \tag{1.2}$$

Definition 1.2. En ket vektor $|V\rangle$ betegner en vektor af et abstrakt vektorrum. I et endeligdimensionelt vektorrum kan en ket vektor repræsenteres som

$$|V\rangle \leftrightarrow \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \tag{1.3}$$

Definition 1.3. En bra vektor $\langle V|$ betegner en et element af dual vektorrum (dualrum). Den kan repræsenteres som det transponerede konjugat af den ket vektor den er dual på

$$|V\rangle \leftrightarrow \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \leftrightarrow \begin{bmatrix} v_1^* & v_2^* & \cdots & v_n^* \end{bmatrix} \leftrightarrow \langle V|$$
 (1.4)

Dualrum \mathcal{H}^* består af linære afbildninger $\mathcal{H}^* \to \mathcal{H}$, defineret med det indre produkt for $\langle \phi, \cdot \rangle \in \mathcal{H}$ som $\langle \phi, \cdot \rangle : \psi \mapsto \langle \phi | \psi \rangle$.

1.2 Linære operatorer

Definition 1.4. En linær operator eller linær transformation T er en funktion $T: \mathbb{V}_1 \to \mathbb{V}_2$ således at

$$T(cv_1 + v_2) = c(Tv_1) + Tv_2 (1.5)$$

Igennem denne tekst vil de kun repræsenteres som matricer M, således at T(x) = Mx. En linær operator kan i øvrigt repræsenteres som $|\psi\rangle\langle\phi|\in\mathcal{H}\otimes\mathcal{H}^*$.

Definition 1.5. En kommutator er defineret som

$$[\Omega, \Lambda] = \Omega \Lambda - \Lambda \Omega \tag{1.6}$$

hvor $\Omega, \Lambda \in \mathcal{H} \otimes \mathcal{H}^*$. Hviss. $[\Omega, \Lambda] = 0$ kommuterer operatorerne.

Definition 1.6. Enhver operator i $\mathbb{V}^n(C)$ har n eigenværdier. Eigenværdiligningen (en omskrevet version) er

$$(\Omega - \omega \hat{I}) |V\rangle = |0\rangle \tag{1.7}$$

Betingelsen for eigenvektoren er

$$\det\left(\Omega - \omega\hat{I}\right) = 0\tag{1.8}$$

hvor \hat{I} er identitetsoperatoren. Vi kan omskrive eigenværdiligningen (ved at projicere den på en basis $\langle i| \rangle$ til

$$\langle i | \Omega - \omega \hat{I} | V \rangle = 0$$

$$\sum_{j} (\Omega_{ij} - \omega \delta_{ij}) v_{j} = 0$$
(1.9)

Sættes determinanten til 0 får vi karakterligningen

$$\sum_{m=0}^{n} c_w \omega^m = 0 \tag{1.10}$$

og karakterpolynomiet

$$P^{n}(\omega) = \sum_{m=0}^{n} c_{w} \omega^{m} \tag{1.11}$$

2 Kvantemekanisk harmonisk svingning

Tilstanden af et partikel er beskrevet med en tilstandsvektor $|\psi\rangle \in \mathcal{H}$.

2.1 Schrödinger-ligningen

Vi kan skrive den tidsuafhængige Schrödinger-ligning (TISE) som

$$\hat{H} |\psi\rangle = E |\psi\rangle \tag{2.1}$$

Hvor \hat{H} er Hamiltonoperatoren. Fra den klassiske formidling af energi, får vi at \hat{H} kan repræsenteres som

$$\hat{H} = \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

Hvilket giver vi kan skrive SE som

$$\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\psi(x) = i\hbar\frac{\partial}{\partial t}\psi(x)$$