

LOCUS IPT

Controle do IoTDoc - documentação geral do projeto

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
<17/10/2022>	<vitor zeferino=""></vitor>	<1.0>	<nome do="" e="" grupo="" parceiro=""></nome>
<20/10/2022>	<vitor zeferino=""></vitor>	<1.1>	<atualizações entregáveis=""></atualizações>
<21/10/2022>	<vitor zeferino=""></vitor>	<1.2>	< Atualização seção 1.1 e 1.2 >
<26/10/2022>	«Vinicios Lugli»	<2.1>	<atualização 3.1="" seção=""></atualização>
<27/10/2022>	<ariel kisilevzky=""></ariel>	<2.2>	<atualização 2.2="" seção=""></atualização>
<03/11/2022>	<henrique marlon=""></henrique>	<2.3>	<revisão></revisão>
<17/11/2022>	<julia togni=""></julia>	<2.4>	< Atualização seção 3.2 e revisão >

Sumário

1. Definiçõe	s Gerais	4			
1.1. Parcei	ro de Negócio	s 4			
1.2. Defini	ção do Problei	ma e Objetivos	4		
1.2.1. F	roblema	4			
1.2.2.0	Objetivos	4			
1.3. Anális	e de Negócio	(sprint 1)	5		
1.3.1. C	Contexto da in	dústria 5			
	1.3.1.1 Compr	eensão do Pro	blema	5	
	1.3.1.2 Conte	xto da indústri	а	5	
1.3.2.	Análise SWOT	9			
1.3.3. F	Planejamento	Geral da Soluç	ão	Erro! l	ndicador não definido.
1.3.4.\	/alue Proposit	ion Canvas	12		
1.3.5. N	Matriz de Risco	os 12			
1.4. Anális	e de Experiên	cia do Usuário	14		
1.4.1. F	ersonas	14			
1.4.2.	lornadas do U	suário e/ou Sto	oryboar	d	17
1.4.3. \	Jser Stories	Erro! Indicado	or não d	efinido.	•
1.4.4. F	Protótipo de ir	nterface com o	usuário)	19
(sprin	t 2) 19				
2. Arquitetu	ıra da soluçâ	io 20			
2.1. Arquit	etura versão 1	20			
2.2. Arqui	tetura versão	2 (sprint 2)	24		
2.3. Arqui	tetura versão	3 (sprint 3)	26		
3. Situaçõe	s de uso	29			
3.1. Entrad	das e Saídas p	or Bloco29			
3.2. Intera	cões 31				

Anexos 32

1. Definições Gerais

1.1. Parceiro de Negócios

Nosso parceiro de negócios é o IPT (Instituto de Pesquisas Tecnológicas). O objetivo deles é realizar uma forma de rastreio para seus equipamentos dentro do campus da empresa para quando um auditor ou funcionário necessitar do mesmo, consiga-se resgatar a informação da sala em que o dispositivo está, reduzindo assim, qualquer trabalho manual de verificação.

1.2. Definição do Problema e Objetivos

1.2.1. Problema

A auditoria é um processo trabalhoso que exige a verificação visual dos equipamentos para validar a veracidade, com isso, o auditor vai ao IPT em busca de algum equipamento específico, então a equipe busca onde esse aparelho deveria estar para fazer a checagem, todavia, a equipe de controladoria muitas vezes não tem conhecimento do local do objeto, ou até o mesmo não se encontra no local de origem, com isso, gerando problemas durante o processo de verificação e causando um retrabalho enorme, potencializado ainda mais por conta de serem trabalhos analógicos (manuais). Além disso, muitos equipamentos são movidos para fora do campus do IPT, causando outros maiores problemas.

1.2.2. Objetivos

A nossa proposta de solução é implementar o sistema de rastreamento para que quando algum funcionário da controladoria for buscar por um ativo ele consiga, em tempo real, rastrear a sala em que o objeto está. Além disso, caso o aparelho saia do campus do IPT, esse funcionário é prontamente notificado para questionar ao responsável sobre a saída do equipamento sem aviso prévio ou qualquer outro tipo de problema que possa ter ocorrido.

1.3. Análise de Negócio (sprint 1)

1.3.1. Contexto da indústria

1.3.1.1 Compreensão do Problema

Com um funcionamento similar a um GPS, o sistema de Localização Indoor tem um alcance para espaços cobertos e restritos, oferecendo um rastreamento preciso e em tempo real. Ele é necessário para locais fechados porque os sinais de microondas emitidos pelo GPS são enfraquecidos por construções, como paredes e teto.

A localização indoor, portanto, é um sistema de navegação que pode ser desenvolvido por meio de diferentes tecnologias sem fio, de forma a ter boa mobilidade, alcance e segurança.

1.3.1.2 Contexto da indústria

Principais players:

Através de pesquisas relacionadas à localizadores indoor, identificamos algumas empresas que oferecem produtos com propostas similares à nossa solução, são elas:

- Globalstar
- Tecnologia GPS
- Athene
- Aliger
- Zapt Tech

Todas disponibilizam no mercado um dispositivo IOT que pode ser acoplado em qualquer objeto, que oferece um rastreador em tempo real , assim como nossa proposta. Porém todos concorrentes se diferenciam da proposta da Locus, visto que não aplicam o sistema de localização indoor, dessa forma não oferecendo uma localização precisa dos equipamentos dentro dos laboratórios.

Modelo de negócio:

Para melhor visualização, elaboramos um quadro para exemplificar o modelo

de negócio do IPT:

C	omo	O que?	Para quer	n?
Parceiros Instituto vinculado à Secretaria de Desenvolviment o Econômico do Estado de São Paulo	Atividades Chave - Atualização das informações dos localizadores - Quando acabar a bateria, substituição da própria - Quando emitir um sinal de perda da localização, ir investigar aonde se encontra o equipamento diretamente com o responsável	em tempo real. Nossa tecnologia funciona muito bem para o ambiente do IPT, tendo em vista que os sinais de microondas	Relacionamento com Cliente - Sendo um dos maiores institutos de pesquisas do Brasil, o IPT conta com laboratórios e equipe de pesquisadores capacitados, atuam em quatro grandes áreas - inovação, pesquisa & desenvolvimento; serviços tecnológicos; desenvolvimento & apoio metrológico, e informação & educação em tecnologia.	Canais - A ferramenta produzida será para utilização interna. Mas, ela sendo capaz de ser escalável, como o IPT é um campus de produção de tecnologia podendo comercializar a solução para setores que tenham interesse.

Recursos Principais

- Baterias
- Placas para a construção dos localizadores com tecnologia indoor

Segmento de Clientes

- Atento às necessidades dos setores público e privado, provê soluções e serviços tecnológicos que visam aumentar a competitividade das empresas e promover a qualidade de vida. Podendo atuar nos setores privados e públicos sendo referência como centros de pesquisa e setor empresarial, estes vendem soluções devido à demanda.

Receitas

- Para o desenvolvimento das pesquisas e para manter suas operações,
- o IPT recebe dotações orçamentárias do Governo do Estado de São

Paulo e subvenções governamentais de agências de fomento.

Estrutura de Custos

- Manutenção dos ativos
- Custos com energia
- Sustento dos laboratórios (manutenção dos equipamentos, monitoramento)

Como?

Tendências

De acordo com as tendências da consultoria Gartner, o loT estará presente em 95% dos eletrônicos nos próximos anos. Diante desse cenário,

o interesse e a demanda por produtos habilitados para a combinação de gerenciamento, controle e monitoramento crescerão rapidamente, surgindo uma oportunidade de negócio. Pois com a tecnologia da Locus, que utiliza a localização indoor, sendo implementada no IPT facilitará o monitoramento dos equipamentos evitando assim a evasão dos ativos por perdas ou eventuais furtos. Além disso, a coordenação do IPT terá um controle maior das notas, melhorando o trabalho da consultoria, quando necessário realizar uma auditoria, e também evitando a movimentação dos ativos sem as permissões necessárias para ir à campo.

1.3.2. Análise SWOT

	Fatore	es positivos		Fatores	negativos
	Forças		um órgão do através de	Fraquezas	Por ser uma empresa ativa, há
SOLLES	Diferencial da empresa, ela é totalmente	doações	s e s, recebe		um grande fluxo de movimentação de ativos.
ratores internos	Tecnologia de última geração.	É uma er pública reconhe provável sempre	mpresa cida, que tenha	Não há um registro preciso das atividades dos funcionários com os equipamentos	
	Oportunidades	funciona	imento.	Ameaças	Mudança de
•	Criação de uma sociedade com	Governo incentiva a	As	Intenso fluxo de	políticas públicas.
ratores externos	os mesmos ideais dentro do campus do IPT.	tecnologia nos dias atuais.	empresas precisam da	pessoas no campus prejudica a segurança.	Cidade universitária é
rator	Um grande grupo de estudantes capacidados sen formados ao lado	do	tecnologia /serviço de ponta como do IPT		alvo de manifestações políticas que podem prejudicar o

1.3.3. Planejamento Geral da Solução

1.3.3.1 Objetivos da solução

O IPT, sendo um centro de pesquisas, contém muitos materiais e equipamentos, que por sua vez, são auditados constantemente para manter o inventário. Há muitas movimentações desses ativos para utilização e faz-se necessário realizar verificações, mas, atualmente muito deste trabalho é realizado de forma manual e depreciada, onde um funcionário marca em um repositório de dados, onde e quando foi alterado a posição de certo objeto, porém, como pode-se esperar, esta forma de manusear e controlar os ativos é muito vulnerável à falhas, como por exemplo, quando é movido equipamentos sem as devidas requisições, perdido as informações de posições, ou até não é contabilizado alterações por utilização. Por conta disso, o IPT veio a nós, buscando uma solução para facilitar o processo descrito.

1.3.3.2 Dados disponibilizados

Temos como dados fornecidos: O mapa da área de atuação do projeto, onde aplica uma descrição simplificada das salas, junto a especificações de tamanho.

quantidade média de equipamentos a serem monitorados foi citada em cerca de 4000 ativos.

1.3.3.3 Solução proposta (visão de negócios)

Com o objetivo de funcionar como mini-rastreadores, o projeto tem funcionamento principal em ambientes indoor, perfeito para satisfazer a necessidade do parceiro, onde que, será possível, encontrar e verificar o histórico de localização dos objetos que forem anexados com o dispositivo.

Por utilizarmos componentes simples para a elaboração dos localizadores a solução torna-se escalável ao passo que poderia ser replicada em grande escala sem um grande investimento. Ao utilizarmos o sistema de localização através do sinal dos próprios 'ESP's' conseguimos promover segurança e confiabilidade para o produto, ao passo que a conexão não interfere na conexão do próprio IPT evitando assim possíveis problemas de invasão hacker no sistema.

1.3.3.4 Utilização da solução

A solução terá uma interface de fácil utilização, com um sistema de login que reutiliza as credenciais do próprio IPT, sendo assim um ponto de segurança, e contará com um dashboard que disponibilizará todos os equipamentos conectados à rede, dessa forma o usuário consegue ter uma visão clara de todos os equipamentos facilitando na procura de um aparato. O usuário com poucos toques, conseguirá localizar e identificar objetos, dispostos em um mapa que irá guiá-lo a sala que o ativo está. O localizador conectado ao equipamento possui um buzzer que poderá ser acionada para facilitar na localização do mesmo dentro do ambiente.

1.3.3.5 Benefícios da solução

Implementando a nossa solução, o IPT irá facilitar e automatizar a forma de busca dos equipamentos, assim tendo maior precisão da localização do objeto a ser buscado, além de ter informações como: se o objeto saiu do campus do IPT ou qual o histórico de posições do mesmo.

1.3.3.6 Critérios de sucesso e métricas de avaliação

Será utilizado como medida de comparação, a atual situação durante a busca de equipamentos, em relação à previsão de desempenho da solução, sendo ela, a monitoria constante e marcação de históricos de posições do objeto, logo, tendo uma redução drástica na busca do equipamento, principalmente em casos que foi utilizado ou movido de forma não controlado, ou seja, não foi registrado sua alteração de forma correta.

1.3.4. Value Proposition Canvas

1.3.5. Matriz de Riscos

			Ameaças					Oportunidades		
90%					Manuteção dos equipamentos de geolocalização.	Perspectiva de implementação da rede 5g no IPT		Um usuário com uma maior expertise quanto as features possivelmente		
70%						Um sistema analógico de trackeamento já estruturado dentro do IPT.	Diminuicão de perdas e possíveis danos	Facilidade de implementação		
50%				Instabilidade da rede a ser utilizada	Barreiras físicas que impeçam a transmissão do sinal.		Confiabilidade ao declarar as atividades de cada um dos equipamentos			
30%				Falhas de identificação de equipamentos						
10%	Usuários não se adaptarem ao sistema.				Falhas na escalabilidade.					
	Muito Baixo	Baixo	Moderado	Alto	Muito Alto	Muito Alto	Alto	Moderado	Baixo	Muito Baixo

1.4. Análise de Experiência do Usuário

1.4.1. Personas

NOME: Patrick Martins

IDADE: 26

OCUPAÇÃO: Pesquisador IPT

"Agilidade permite que façamos cada vez mais"

Biografia:

Natural de São Paulo Morador de São Paulo

Fez Engenharia Mecânica na Universidade Estadual de Campinas Dedica sua carreira profissional à pesquisas

Características (personalidade, conhecimentos, interesses, habilidades):

Patrick adora jogar futebol Apaixonado por games e conteúdos Geeks Adora estudar e ler

Motivações com o problema:

Patrick, muitas vezes, precisa de equipamentos dos laboratórios do IPT A solicitação e emissão da autorização às vezes é muito demorada Devido demanda, ele por vezes acaba levando o equipamento à campo apenas avisando seu supervisor

Muitas vezes não consegue localizar o equipamento dentro do IPT

Dores com o problema:

Precisa ir atrás das últimas pessoas que utilizaram o equipamento para tentar localizá-lo, quando o mesmo não se encontra no local devido A solicitação para movimentação do equipamento é demorada e burocrática.

NOME: Janaina de Castro

IDADE: 32

OCUPAÇÃO: Supervisora de Laboratório IPT

"Não tenhamos pressa, mas não percamos tempo."

Biografia:

Natural do Rio Grande do Sul Reside atualmente em São Paulo Fez biomedicina na UNICNEC Bento Gonçalves Atua como supervisora têm dois anos

Características (personalidade, conhecimentos, interesses, habilidades):

Janaina adora fazer esportes Prefere passar seu tempo livre em ambientes abertos com bastante contato com a natureza

Apaixonada por ciências desde criança, por isso decidiu seguir por essa carreira

Gosta das coisas bem organizadas Gosta muito de games, filmes de ficção

Motivações com o problema:

É tarefa da Janaina gerenciar as entradas e saídas de equipamentos do laboratório Ela gerencia um dos laboratórios do IPT Todo equipamento ela designa à uma pessoa, e essa torna-se responsável Quando um pesquisador deseja retirar o equipamento do laboratório, ela emite uma solicitação ao superintendente

Dores com o problema:

Muitas vezes ela não consegue localizar um equipamento que o pesquisador pede

Precisa monitorar todos os equipamentos do laboratório Pessoas saem com os equipamentos sem informala Precisa prestar contas aos supervisores sempre que um equipamento se movimenta

NOME: Pedro Paulo dos Santos

IDADE: 35

OCUPAÇÃO: Superintendente de operações IPT

"A rapidez é a essência da guerra."

Biografia:

Natural de Palmas - TO Reside em São Paulo-SP Fez administração na Universidade Estadual do Tocantins Recém promovido para um cargo de coordenação

Características (personalidade, conhecimentos, interesses, habilidades):

Pedro adora passar seu tempo livre na natureza

É apaixonado por carros e adoraria ter uma coleção É muito metódico com organização Gosta muito de games, filmes de ficção e desenhos animados.

Motivações com o problema:

encarregado de realizar as auditorias Responsável por liberar as solicitações dos equipamentos

Ele que responde perante uma auditoria

É responsável pela fiscalização e monitoramento dos ativos do prédio

Dores com o problema:

Muitas vezes não solicitam as autorizações para movimentar os ativos

Gerenciamento manual dos itens Muitas vezes o controle não reflete a realidade dos equipamentos

1.4.2. Jornadas do Usuário e/ou Storyboard

USER JOURNEY MAP

PERSONA: Janaina de Castro CENÁRIO:

Sendo o IPT uma empresa auditada, dependendo de vistorias constantes, seu trabalho procurando informações em repositórios de dados é muito trabalhoso e pouco eficiente, necessitando constantemente atualizar esses dados, passiveis a falhas e complicações.

EXPECTATIVAS

Realizar a leitura da posição do objeto a ser buscado, a partir de qualquer dispositivo conectado a rede.

ANTES

Janaina tem grandes impedimentos ao levar o auditor no local do equipamento, pois. múltiplas vezes, o mesmo movido transportado do campus do IPT, sendo uma tarefa árdua identificar o que ocorreu com o objeto, dependendo de pessoa a realizar ações pontuais manuais е sempre.

DURANTE

O IPT implementa a tecnologia de rastreio nos objetos, conseguindo assim, ter as informações de localização dos equipamentos, assim como também, informações de saída e histórico de posições dos items.

APÓS

Desta forma, com o projeto de rastreio implementado, produz melhorias das quais, reduz consideravelmente o custo da verificação manual pessoal dos е equipamentos, sendo agradável tanto para os funcionários do IPT, que por sua vez, não precisariam manualmente gravar posição destes, e quanto aos auditores que vistoriam os items, sendo mais fácil acompanhar os objetos.

OPORTUNIDADES

- Facilitar e automatizar a forma de busca dos equipamentos.
- Ter maior precisão da localização do objeto a ser buscado.
- Ter informações como: se o objeto saiu do campus do IPT ou qual o histórico de posições do mesmo.

RESPONSABILIDADES INTERNAS

Time de utilização do projeto (quem faz a monitora legal equipamentos):

Ter as instruções / capacitação básica necessária para utilizar do sistema do projeto, para assim, poder realizar as leituras de forma correta.

Sendo elas: entendimento da interface do programa, como identificar e reportar problemas.

1.4.3. User Stories

Épico	User Story
IPT	Eu, como superintendente, quero ter o histórico de movimentação de todos os ativos para poder prestar contas às entidades de auditoria.
Funcionários do ipt	Eu, como pesquisador, quero ter a localização do ativo/equipamento com uma precisão de sala/prédio para poder solicitar a utilização deste equipamento.
	Eu, como superintendente, quero saber o tempo de evasão do ativo em relação ao campus pela falta de conectividade para ter um controle mais preciso e saber a sua média de tempo de evasão.
	Eu, como responsável do ativo/equipamento, quero poder saber a localização do meu ativo dentro do campus do IPT para poder vistoriá-lo.

1.4.4. Protótipo de interface com o usuário

(sprint 2)

Coloque aqui o link para seu protótipo de interface.

Requisitos (como descrito no Adalove):

- 1. O protótipo deve demonstrar telas que representam o fluxo de navegação e interação do usuário para cumprir a tarefa de ler (e alterar) estados dos dispositivos IoT mapeados
- 2. O protótipo deve ser coerente com o mapa de jornada do usuário (ou storyboard) feito anteriormente na seção 1.4.2
- 3. O protótipo deve refletir ao menos uma User Story mapeada anteriormente na seção 1.4.3
- 4. O protótipo deve ter boa usabilidade (fácil de compreender e usar, fácil de se conseguir cumprir a tarefa)

Obs.: Não é necessário caprichar no detalhamento gráfico neste momento. O importante é que o protótipo reflita uma boa estrutura para adequar as informações na tela e que seja coerente com o planejamento das seções anteriores.

2. Arquitetura da solução

2.1. Arquitetura versão 1

Sala

ESP32 - HOST:

Responsável por receber as solicitações por *sockets web* e retornar as informações de posições dos equipamentos de sua área.

O *Host* estará diretamente conectado a uma rede wifi para se comunicar com a *API* e sempre estar a espera de novos comandos / solicitações. Exemplo: Recebe solicitação de posição dos equipamentos mais próximos, assim, o mesmo retorna as informações.

ESP32 - PEER:

Subordinado que estará sempre 'dormindo' durante inatividade, ao menos que seja solicitado a identificação para que o *Host* também tenha informação da sua distância atual do mesmo.

O *Peer* tem como seu único objetivo ser uma *Tag* que armazena um *ID* único, que estará atrelado a um equipamento (pelo sistema de *API*).

ESP32 Host para Esp32 Peer (Ping)

O *ping* que é citado como comunicação entre os microcontroladores, são nada mais que rotas de resposta do protocolo FTM, que faz o calculo de medida de distância entre os microcontroladores com base na conexão *wifi*.

API:

É o serviço a ser consumido pelos microcontroladores e front-end(aplicação web). Com a API será possível ter acesso a conexão por sockets e endpoints de rotas, sendo respectivamente, para a comunicação constante com os microcontroladores, pois os dados de posições / atualizações devem ser enviados em tempo real, assim o sockets teria um ótimo desempenho, reduzindo a necessidade de chamada repetitivas de rota em "heath beat", já para as rotas de endpoints web, seria para consumo da aplicação que o usuário final utilizará, ou seja, rotas que requisita informações de posições de algum equipamento, histórico do mesmo...

Serviços:

São os auxiliáreis da *API*, onde pode ser encontrado o banco de dados de longo prazo (como por exemplo *SQLITE*), o banco de dados de curto prazo (Redis) junto ao seu "sistema" de *workers*. O banco de dados de longo prazo é utilizado para armazenar dados como: O *ID* de tal dispositivo representa o equipamento X, gerenciamento de usuários e acessos...

Agora sobre os *workers*, são essencialmente tarefas realizadas em segundo plano, não atrapalhando os processos principais, como o serviço de rotas. (O *Redis* nessa situação é um armazém de dados temporários sobre as tarefas realizadas). Em prol do projeto, seria utilizado para monitoria / salvamento das posições dos equipamentos, assim gerando o histórico de posições do mesmo.

Ferramentas:

As ferramentas são as tecnologias a serem utilizadas na *API*, sendo citado, NodeJS, que por sua vez, tem como pilares do projeto, as bibliotecas, *Sequelize*(faz o gerenciamento do banco de dados por ORM), *Express*(Framework para criar os endpoints e sockets) e *JsBull*(Que gerencia de forma fácil as tarefas de segundo plano, os *workers*).

Aplicação Web

Front-End:

Para a criação do *Front-end* e consumo dos *endpoints* da *API*, utilizaremos em base o *React Native*(uma *framework* de desenvolvimento *web*, que facilita processos, sendo gerado a maioria do código de *front*, em próprio *JavaScript*). Com essa tecnologia, será possível entregar de maneira mais eficaz a solução, principalmente que é facilmente portável para dispositivos móveis, abrindo portas para múltiplas plataformas de utilização do projeto.

Componente / Conexão	Descrição da função	Tipo: entrada / saída
ESP32 Host para Esp32 Peer (ping)	O ping que é citado como comunicação entre os microcontroladores, são nada mais que as rotas de resposta do protocolo FTM, que faz o cálculo da média de distância entre os microcontroladores com base na conexão wifi	Saída
ESP32 - PEER	Subordinado que estará sempre 'dormindo' durante inatividade, ao menos que seja solicitado a identificação para que o host também tenha informação da sua distância	Saída
ESP32 - HOST	Responsável por receber as solicitações por <i>sockets</i> web e retornar as informações de posições dos equipamentos	Entrada
API	É o serviço a ser consumido pelos microcontroladores e front-end(aplicação web). Com a API será possível ter acesso a conexão por sockets e end-points de rotas, sendo respectivamente, para a comunicação constante com os microcontroladores	
Serviços	São os auxiliares da API, onde pode ser encontrado o banco de dados de longo prazo (como por exemplo SQLITE), o banco de dados de curto prazo (Redis) junto ao seu "sistema" de workers.	
Ferramentas	São as tecnologias a serem utilizadas na API, sendo citado, NodeJS, que por sua vez, tem como pilares do projeto, as bibliotecas, Sequelize) faz o gerenciamento do banco de dados por ORM), Express(Framework para criar os endpoints e sockets) e JsBull(que gerencia de forma fácil as tarefas de segundo plano, os workers)	
Front-End	Para a criação do Front-end e consumo dos endpoints da API, utilizaremos em base o React Native (uma framework de desenvolvimento web, que facilita processos, sendo gerado a maioria do código de front, em próprio Javascript)	

2.2. Arquitetura versão 2 (sprint 2)

Componente / Conexão	Descrição da função	Tipo: entrada / saída / atuador
ESP-peer	Microcontrolador. Nos equipamentos a serem localizados, funcionam como ponto de wifi que comunica com o host a distância.	Entrada: aguarda ping do host Saída: manda distância e ID
ESP-Host	Microcontrolador. Sala; substituto dos roteadores para monitoria, constantemente faz leitura dos equipamentos próximos.	Entrada: recebe informação do peer Saída: manda informação por sockets
API	Ligação. Constantemente em contato com o banco de dados para	Entrada: recebe informações do host

	receber informações (não depende do Host), essas informações podem ser vistas no Front-End	Saída: manda informações para os bancos de dados
Serviços	Ligação. Não essenciais, vão ser utilizados para armazenar dados e salvar workers	Entrada: recebe informações da API Saída: Manda informações para o Front-End
Ferramentas	Ligação. Tecnologias que auxiliam a API (Bibliotecas, ORM, criação e gerenciamento de endpoint e workers)	Entrada: recebe informações da API Saida: Ferramentas para gerenciamento
Front-End	Interface do servidor. Vai se comunicar com API por endpoints(sistema de login por um URL, sistema de captura de dados com base em rotas	Entrada: mostra informações
Ping(host para peer)	Ligação. Conexão feita por protocolo padrão, irá comunicar informação de distância	Saída
Host -> API	Ligação (ping) envia dados de localização/conexão para serem processados pela API	Saída
Serviços -> API	Ligação (sockets) armazena o banco de dados de longo e curto prazo, e os workers que fazem tarefas para ajudar a API a não causar interferência.	Saída
Ferramentas -> API	Envia informação para criar e gerenciar a API	Saída
API ->Front-End	Envia informações compilada para uma interface URL	Saída
Led interno	Mostra a funcionalidade do microcontrolador	Saída

2.3. Arquitetura versão 3 (sprint 3)

Posicione aqui a evolução dos seus diagramas, aprimorando a versão inicial dos blocos e incluindo as soluções de interação com módulos externos (por exemplo, sistema de posicionamento). O diagrama e a tabela devem:

1. Além do já incluído nas versões anteriores, mostrar a interação indireta (wifi) entre os elementos externos e o seu funcionamento

Componente / Conexão	Descrição da função	Tipo: entrada / saída / atuador / conexão
ESP peer	pontos(tag) vão se identificar, não vão conectar na rede, vão ser pontos de wifi que o host vai fazer uma medição de distância (vai saber a sala que estiver mas não vai saber a localização precisa)	Entrada: aguarda ping do host Saída: manda distância e ID

ESP Host	vão estar nas salas(substituto de roteador para identificação), vai estar conectado na rede	Entrada: recebe informação do peer Saída: manda informação por sockets
API Sockets	conexão direta constante, o host constantemente vai fazer leitura de onde estão os equipamentos próximos deles e vai mandar constantemente para a API que vai armazenar as informações para que no futuro o usuário tenha acesso a esta	Entrada: recebe informações do host Saída: manda informações para os bancos de dados
API Serviços	não essenciais, serão utilizados para armazenar dados e salvar workers (processos em segundo plano para armazenar informações (posição e histórico) dos ESP, fizemos isso para que este processo não rode na infraestrutura principal da API e cause interferência nos processos de rotas	Entrada: recebe informações da API Saída: Manda informações para o Front-End
Front-end	vai se comunicar com API em base de endpoints (diferente do ESP com API) vai funcionar como um site comum, sistema de login, captura de dados com base em rotas (irá solicitar saber o histórico de posição de X, api irá se conectar com o banco de dados para recuperar esse informação.	Entrada: mostra informações
Ferramentas	Tecnologias que auxiliam a API (Bibliotecas, ORM, criação e gerenciamento de endpoint e workers)	Entrada: recebe informações da API Saida: Ferramentas para gerenciamento
Ping(host para peer)	Ligação. Conexão feita por protocolo padrão, irá comunicar informação de distância	Saída
Host -> API	Ligação (ping) envia dados de localização/conexão para serem processados pela API	Saída
Serviços -> API	Ligação (sockets) armazena o banco de dados de longo e curto prazo, e os workers que fazem tarefas para ajudar a API a não causar interferência.	Saída
Ferramentas -> API	Envia informação para criar e gerenciar a API	Saída
API ->Front-End	Envia informações compilada para uma interface URL	Saída
Led interno	Mostra a funcionalidade do microcontrolador	Saída

_	

3. Situações de uso

3.1. Entradas e Saídas por Bloco

Aqui você deve registrar diversas situações de teste de seus blocos, indicando exemplos de leitura (entrada) e escrita (saída) apresentadas pelo seu sistema físico. Estes registros serão utilizados para testar seus componentes, portanto, descreve várias situações, incluindo não apenas casos de sucesso, mas também de possíveis falhas nas leituras de entradas e saídas. Siga as nomenclaturas e convenções já utilizadas na seção 2, e não se esqueça dos alinhamentos de negócios e experiência do usuário para pensar em situações representativas. Preencha a tabela abaixo e transforme-a ao longo das sprints.

#	bloco	component e de entrada	leitura da entrada	componente de saída	leitura da saída	Descrição
1	Led sinalizador de serviço ativo	-	-	Led interno do dispositivo	Ativo a todo momento	A unidade de serviço está ativa e em funcionamento.
2	Led sinalizador de serviço ativo	-	-	Led interno do dispositivo	Desligado a todo momento	A unidade está inativa por conta de falhas ou problemas de conexão.
3	Led sinalizador de serviço ativo	-	-	Led interno do dispositivo	Piscando em intervalo contínuo.	O equipamento está sendo iniciado para entrar em modo de funcionamento.
4	Buzzer localizador	Pressionad o o botão dentro do dashboard	se clicou, tocar durante 15 segundos	Buzzer conectado ao ESP	Desligado assim que dado o	O dispositivo vai tocar para orientar a localização do dispositivo dentro de uma sala, para a pessoa conseguir encontrar

3.2. Interações

Aqui você deve registrar diversas situações de uso de seu sistema como um todo, indicando exemplos de ação do usuário e resposta do sistema, apontando como o ambiente deverá estar configurado para receber a ação e produzir a resposta. Estes registros serão utilizados para testar seu sistema, portanto, descreve várias situações, incluindo não apenas casos de sucesso, mas também de falha nos comportamentos do sistema.

Siga as nomenclaturas e convenções já utilizadas na seção 2, e não se esqueça dos alinhamentos de negócios e experiência do usuário para pensar em situações representativas. Preencha a tabela abaixo e transforme-a ao longo das sprints.

#	configuração do ambiente	ação do usuário	resposta esperada do sistema
1	computador conectado na interface do dashboard, os dispositivos 'pier' conectado aos dispositivos 'host' para a simulação do posicionamento de um item X no espaço físico	usuário logado busca a localização do item X, para que possa ir retirá-lo	interface do sistema acessa os dados da última localização registrada do item X e apresenta, constando local e horário de ultima atualização, para que o usuário consiga localizá-lo dentro do campus do IPT
2	precisa de um computador conectado à rede de wifi, e os dispositivos 'pier' com conexão aos dispositivos 'host' para conseguir a localização	acesso ao dashboard para fiscalização das baterias dos dispositivos conectados, para uma possível manutenção	interface do sistema acessa os dados da bateria que está sendo medida em Kwh e apresenta para o usuário a porcentagem correspondente da bateria do dispositivo
3	precisa de um computador conectado à rede de wifi, e os dispositivos 'pier' com conexão aos dispositivos 'host' para conseguir a localização	acessar o dashboard e visualizar todos os dispositivos conectados à rede, para uma possível auditoria	interface do sistema disponibiliza os cards com as informações dos dispositivos, os classificando de acordo com o tipo, localização e nível de bateria
4			
5			

Anexos

Utilize esta seção para anexar materiais extras que julgar necessário.

ANEXO 1:

- Link do repositório: https://github.com/2022M4T1-Inteli/Projeto5/tree/main/src/microcontroller