Secure File Sharing System Report – Task 3

Intern Name: Lokesh Indala
Internship Track: Cyber Security

Task Title: Secure File Sharing System

Date: July 2025

Tools Used: Python, Flask, PyCryptodome

Objective:

The goal of this task was to build a secure file sharing system that supports;

File upload by users

- Encryption of uploaded files
- Secure download of decrypted files

This simulates secure file transfer practices used in cybersecurity and enterprise systems.

Tools and Technologies:

Tool/Library	Purpose	
Python	Programming language	
Flask	Web framework for building upload/download APIs	
PyCryptodome	Encryption library for AES implementation	
HTML (templates) Frontend for file upload form		
VS Code	Code editor	
GitHub	Version control and code publishing	

Encryption Method Used:

• Algorithm : AES (Advanced Encryption Standard)

• Mode: CBC (Cipher Block Chaining)

• Key Size: 128-bit (16 bytes)

• Padding: (PKCS7)

Encryption is handled using a randomly generated AES key IV, with secure storage and retrieval of data. The decrypted file restores the original content accurately.

Features Implemented:

Feature	Status
File upload via web form	✓ Done
File encryption using AES	✓ Done
Encrypted file storage	✓ Done
Download + decryption route	Done
Auto-creation of folder paths	✓ Done

Folder Structure:

Testing Performed:

- 1. Created a file **sample.txt** with test content
- 2. Uploaded via the form at http://127.0.0.1:5000/
- 3. Confirmed encryption and saved output to /encrypted/
- 4. Downloaded and decrypted file via /download/sample.txt.enc
- 5. Verified content matched original input

Security Considerations:

- Used AES in CBC mode to ensure block-level encryption
- Randomly generated IV per file for added security
- No plaintext file exposed outside secure folders
- Decryption only happens on-demand during download

Outcome:

Successfully built a secure file upload and download system using Python and Flask, with end-to-end AES encryption. The project simulates real-world secure data transfer used in government, finance, and cloud environments.