Variantes crédibilistes des modèles des cotes proportionnelles basées sur la vraisemblance

Sébastien Ramel, Frédéric Pichon et François Delmotte

Université d'Artois LGI2A

Séminaire CID (Heudiasyc) Compiègne, 20 avril 2021

Classification

En fonction de la nature de la cible *Y*, différents types de classifieurs sont distingués :

- Binaire, $|\mathcal{Y}| = 2$. Y est une variable de Bernoulli
- Multiclasse, $|\mathcal{Y}| = k > 2$, plus précisément
 - * Nominal, Y est une variable catégorique de support non-ordonné, ex. $\mathcal{Y} = \{y_1, \dots, y_k\}$.
 - * Ordinal, Y est une variable catégorique de support ordonné, ex. $\mathcal{Y} = \{1, \dots, k\}$.

Figure – Données $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^n$ ordinales (monotones)

Régression logistique ordinale

- La régression logistique est un classifieur binaire dont l'incertitude de classification est représentée par une distribution de Bernoulli t.q. $Y \sim \mathcal{B}(\theta)$ où $\theta := P_Y(Y = 1|\mathbf{x})$.
- Le modèle des cotes proportionnelles est une extension ordinale dont l'incertitude est donnée par une distribution catégorique t.q. $Y \sim \mathcal{C}(\theta)$ où $\theta = (\theta_1, \dots, \theta_k)$ et $\theta_j := P_Y(Y = j | \mathbf{x})$.
- Reposent sur une combinaison linéaire de x avec des paramètres $\beta \Rightarrow$ probabilités monotones et interprétables.
- En revanche ils sont incapables de distinguer différentes sources d'incertitude (stochastique vs. épistémique = ignorance).
- ⇒ Proposition d'une variante fiable du modèle des cotes proportionnelles formalisée dans le cadre théorique des fonctions de croyance.

Plan

- Théorie des fonctions de croyance
 - Représentation
 - Inférence
 - Prédiction
 - Décision
- 2 Modèle des Cotes Proportionnelles Partielles (MCPP)
- Extension crédibiliste
 - Prédiction d'une variable ordinale
 - Instanciation pour le MCPP
 - Expériences
- 4 Conclusion

- Théorie des fonctions de croyance
 - Représentation
 - Inférence
 - Prédiction
 - Décision
- 2 Modèle des Cotes Proportionnelles Partielles (MCPP)
- Extension crédibiliste
 - Prédiction d'une variable ordinale
 - Instanciation pour le MCPP
 - Expériences
- 4 Conclusion

Représentation de l'information

 Soit Y une v.a. dont la réalisation y appartient au cadre de discernement fini \(\mathcal{Y} = \{y_i\}_{i=1}^K.\)

Fonction de masse

Fonction
$$m^{\mathcal{Y}}: 2^{\mathcal{Y}} \to [0,1]$$
 t.q. $m^{\mathcal{Y}}(\emptyset) = 0$ et $\sum_{A \subseteq \mathcal{Y}} m^{\mathcal{Y}}(A) = 1$.

- $m^{\mathcal{Y}}(A)$ est la part de croyance affectée exactement à $y \in A$.
- $A \subseteq \mathcal{Y}$, t.q. $m^{\mathcal{Y}}(A) > 0$ sont appelés éléments focaux.
- Si $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_N$, alors $m^{\mathcal{Y}}$ est consonante.

Autres fonctions

• Fonction de croyance (part de croyance soutenant $y \in A$) et de plausibilité (part de croyance ne contredisant pas $y \in A$) :

$$\mathit{Bel}^{\mathcal{Y}}(A) = \sum_{B \subseteq A} \mathit{m}^{\mathcal{Y}}(B), \quad \mathit{Pl}^{\mathcal{Y}}(A) = \sum_{B \cap A \neq \emptyset} \mathit{m}^{\mathcal{Y}}(B), \quad \forall A \subseteq \mathcal{Y}.$$

• Fonction de contour (plausibilité évaluée sur les singletons)

$$pl^{\mathcal{Y}}(y_i) = Pl^{\mathcal{Y}}(\{y_i\}), \quad \forall y_i \in \mathcal{Y}.$$

 \Rightarrow Si $m^{\mathcal{Y}}$ est consonante : $PI^{\mathcal{Y}}(A) = \sup_{y_i \in A} pI^{\mathcal{Y}}(y_i)$.

Fonction de croyance basée sur la vraisemblance Bel_{2}^{Θ}

- Soit z l'observation de $Z \sim P_Z(\cdot; \theta)$, où $\theta \in \Theta$ est inconnu.
- La connaissance de θ , donnée par Bel_z^{Θ} (consonante) est caractérisée par

$$pl_z^{\Theta}(\theta) = L_z(\theta)/L_z(\hat{\theta}), \ \forall \theta \in \Theta$$

avec

- * $L_z(\theta) = P_Z(z; \theta)$, la vraisemblance, * $\hat{\theta} = \arg\max_{\theta \in \Theta} L_z(\theta)$, t.q. $L_z(\hat{\theta}) < \infty$
- Éléments focaux de Bel₂^Θ

$$\Gamma_{\mathbf{z}}(u) = \{\theta \in \Theta | pl_{\mathbf{z}}^{\Theta}(\theta) > u\}$$

Figure - Vraisemblance relative d'une distribution binomiale $\mathcal{B}(\theta, n)$, avec $\hat{\theta} = 1/3 \text{ et } n = 30.$ $\Gamma_z(u) = [\theta(u), \overline{\theta}(u)].$

Fonction de croyance prédictive $Bel_z^{\mathcal{Y}}$

- Construire $Bel_z^{\mathcal{Y}}$ à propos de $Y \sim P_Y(\cdot; \theta)$, sachant Bel_z^{Θ} .
- Si Y ordinale, $F_{\theta}(Y) = V \sim \mathcal{U}([0,1])$ d'où

$$Y = F_{\theta}^{-1}(V) = \varphi(\theta, V)$$

- Repose sur $Y = \varphi(\Gamma_z(U), V) \subseteq \mathcal{Y}$.
- \Rightarrow Si $Y \sim \mathcal{B}(\theta)$ une v.a. de Bernoulli, alors

$$\varphi(\Gamma_z(u), v) = \begin{cases} \{1\} & \text{si } v \leq \underline{\theta}(u) \\ \{0\} & \text{si } v > \overline{\theta}(u) \\ \{0, 1\} & \text{sinon.} \end{cases}$$

Figure
$$-m_z^{\mathcal{Y}}$$
 de $Y \sim \mathcal{B}(\theta)$.
 $m_z^{\mathcal{Y}}(\{1\}), \blacksquare m_z^{\mathcal{Y}}(\{0\}),$
 $m_z^{\mathcal{Y}}(\mathcal{Y})$

Règles de décision

- Soit $c_j(i)$ le coût de la prédiction y = j pour la vérité i. Risque inférieur et supérieur :
 - * $\underline{R}(j) = \sum_{A \subset \mathcal{Y}} m_z^{\mathcal{Y}}(A) \min_{i \in A} c_j(i)$,
 - * $\overline{R}(j) = \sum_{A \subseteq \mathcal{Y}} m_z^{\mathcal{Y}}(A) \max_{i \in A} c_j(i)$.
- \Rightarrow Règle optimiste : $a = \arg\min_{j \in \mathcal{Y}} \underline{R}(j) \in \mathcal{Y}$.
- ⇒ Règle de la dominance d'intervalles (ID) :

$$A = \{ j \in \mathcal{Y} \mid \nexists i : j \succ_{ID} i \} \subseteq \mathcal{Y},$$

d'après les relations d'ordre

$$j \succ_{ID} i \iff \overline{R}(j) < \underline{R}(i), \quad \forall (j,i) \in \mathcal{Y}^2.$$

Figure – Risques menant à $A = \{2,3\}$ via ID .

Plan

- Théorie des fonctions de croyance
 - Représentation
 - Inférence
 - Prédiction
 - Décision
- 2 Modèle des Cotes Proportionnelles Partielles (MCPP)
- Extension crédibiliste
 - Prédiction d'une variable ordinale
 - Instanciation pour le MCPP
 - Expériences
- 4 Conclusion

Modèles des Cotes Proportionnelles

Soit $Y \sim C(\theta)$ de support $\mathcal{Y} = \{1, ..., k\}$ ordonné.

Modèle des Cotes Proportionnelles Partielles (MCPP)

$$\log\left(\frac{P_Y(Y \le j|\mathbf{x})}{1 - P_Y(Y \le j|\mathbf{x})}\right) = \alpha_j + \boldsymbol{\sigma}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\gamma}_j^{\mathsf{T}}\boldsymbol{\tau}_{\mathsf{x}}, \quad j = 1, \dots, k - 1,$$

avec

- * $\sigma \in \mathbb{R}^p$, des coefficients de $\mathbf{x} \in \mathbb{R}^p$, indépendants de j (=Hypothèse de Proportionnalité HP),
- * α_j t.q. $\alpha_1 \leq \cdots \leq \alpha_{k-1}$, des ordonnées à l'origine,
- * $au_{\scriptscriptstyle X} \in \mathbb{R}^q$ les attributs de $extbf{ extit{x}}$ rejetant HP,
- * $\gamma_j \in \mathbb{R}^q$ des coefficients de au_{\times} dépendants de j.
- si $q = 0 \Rightarrow$ Modèle des Cotes Proportionnelles (MCP),
- si $q = p \Rightarrow$ Modèle des Cotes Non-Proportionnelles (MCNP).

Modèle des Cotes Proportionnelles Partielles (MCPP)

Soit
$$\beta_j = (\alpha_j, \sigma^\intercal, \gamma_i^\intercal)$$
, $\phi_{\mathbf{x}} = (1, \mathbf{x}^\intercal, \tau_{\mathbf{x}}^\intercal) \Rightarrow \beta_i^\intercal \phi_{\mathbf{x}} = \alpha_j + \sigma^\intercal \mathbf{x} + \gamma_i^\intercal \tau_{\mathbf{x}}$

$$\Rightarrow P_j := P_Y(Y \le j | \mathbf{x}) = h(\beta_j^\mathsf{T} \phi_{\mathbf{x}}), \text{ où } h(z) = (1 + e^{-z})^{-1} (= \text{logistique})$$

$$\Rightarrow \theta_j := P_Y(Y = j|\mathbf{x})$$

$$= \left\{ \begin{array}{ll} h(\beta_j^\mathsf{T} \phi_{\mathbf{x}}) & \text{si } j = 1, \\ 1 - h(\beta_{j-1}^\mathsf{T} \phi_{\mathbf{x}}) & \text{si } j = k, \\ h(\beta_j^\mathsf{T} \phi_{\mathbf{x}}) - h(\beta_{j-1}^\mathsf{T} \phi_{\mathbf{x}}) & \text{sinon.} \end{array} \right.$$

$$\Rightarrow L_{\mathcal{D}}(\beta) = \prod_{i} \prod_{j} (\theta_{j}^{(i)})^{t_{j}^{(i)}}, \text{ avec}$$
$$t_{i}^{(i)} = \mathbb{1}(y^{(i)} = j).$$

Figure – Décisions de MCP via un coût (0,1).

Plan

- Théorie des fonctions de croyance
 - Représentation
 - Inférence
 - Prédiction
 - Décision
- 2 Modèle des Cotes Proportionnelles Partielles (MCPP)
- Sextension crédibiliste
 - Prédiction d'une variable ordinale
 - Instanciation pour le MCPP
 - Expériences
- 4 Conclusion

Génération d'une v.a. ordinale $Y \sim \mathcal{C}(\theta)$

- Considérons
 - * $\mathbf{P} = (P_0, \dots, P_k)$ avec $P_0 = 0$, $P_j = \sum_{i=1}^j \theta_i$, $\forall j \in \mathcal{Y}$.
 - * $V \sim \mathcal{U}([0,1])$ une v.a pivot de distribution uniforme.
- Y peut être générée à partir de P et V par

$$\varphi\left(\boldsymbol{P},V\right) = j, \quad \text{si} \quad P_{j-1} \leq V < P_{j}, \quad \forall j \in \mathcal{Y}.$$

$$\Rightarrow P_Y(\varphi(\mathbf{P},V)=j)=\theta_j.$$

Figure – Génération d'une variable ordinale $Y = \varphi(P, V)$.

Extension imprécise basée sur la vraisemblance Inférence de *P*

• Ayant observé z succès, P est incertain.

*
$$pl_{\mathbf{z}}^{\Theta}(\boldsymbol{\theta}) = \prod_{j=1}^k \left(\frac{\theta}{\hat{\theta}_j} \right)^{z_j}$$
, où $\hat{\theta}_j = \frac{z_j}{\sum_i z_i}$.

*
$$\hat{P}_{I} = \sum_{i=1}^{I} \hat{\theta}_{i}, I \in [1, k] \text{ et } \hat{P}_{0} = 0.$$

 \Rightarrow Incertitude $Bel_z^{\mathcal{P}_l}$ caractérisée par

$$pl_{\mathbf{z}}^{\mathcal{P}_{I}}(P) = \begin{cases} \begin{cases} 1 & \text{si } P = \hat{P}_{I} \\ 0 & \text{sinon} \end{cases} & \text{si } I \in \{0, k\} \\ \sup_{\theta \in A_{I}} pl_{\mathbf{z}}^{\Theta}(\theta) & \text{sinon} \end{cases}$$

où
$$A_I = \{ \boldsymbol{\theta} \in \Theta \mid \sum_{i=1}^I \theta_i = P \}.$$

$$\Rightarrow \Gamma_z^I(u) = [\underline{P}_I(u), \overline{P}_I(u)].$$

Figure – Contours
$$pl_{\mathbf{z}}^{P_I}$$

pour $I = 0, ..., 3$.
 $\Gamma_{\mathbf{z}}^2(u) = [\underline{P}_2(u), \overline{P}_2(u)]$

Extension imprécise basée sur la vraisemblance

Prédiction crédibiliste d'une variables ordinale Y

Prédiction d'une variable ordinale Y

Ayant observé $z \in \mathbb{N}^k$ succès, la fonction de masse prédictive de Y est définie par $m_z^{\mathcal{Y}}([i,j]) = A_{ij} - B_{ij}$ avec

$$A_{ij} = \begin{cases} \hat{P}_{j} - \hat{P}_{j-1} & \text{if } i = j \\ P_{i,j-1}^{*} & \int_{P_{i-1,j-1}}^{P_{i,j}^{*}} p l_{z}^{\mathcal{P}_{j-1}}(P) dP + \int_{P_{i,j-1}}^{*} p l_{z}^{\mathcal{P}_{i}}(P) dP & \text{else} \end{cases}$$

$$B_{ij} = \int\limits_{P_{i-1,j-1}^*}^{P_{i-1,j}^*} p l_z^{\mathcal{P}_{i-1}}(P) dP + \int\limits_{P_{i-1,j}^*}^{P_{i,j}^*} p l_z^{\mathcal{P}_{j}}(P) dP,$$

et $P_{i,i}^*$, l'unique valeur de l'intervalle unité telle que

$$pl_{\mathbf{z_1}}^{\mathcal{P}_i(J)}(P_{i,j}^*) = pl_{\mathbf{z_1}}^{\mathcal{P}_j}(P_{i,j}^*)$$
 pour $0 \le i < j \le k$, $P_{i,j}^* = \hat{P}_i$ pour $j = i$, et $P_{0,k}^*$ est quelconque.

MCPP Crédibiliste (MCPPC)

- Soit \mathcal{D} et (\mathbf{x}, y) où $y \in \mathcal{Y}$ inconnue, est représentée par la v.a. (ordinale) $Y \sim \mathcal{C}(\boldsymbol{\theta})$, définie par $\mathbf{P} = (0, h(\beta_1^{\mathsf{T}} \phi_{\mathbf{x}}), \dots, h(\beta_{k-1}^{\mathsf{T}} \phi_{\mathbf{x}}), 1)$
 - * $pl_{\mathcal{D}}^{B}(\boldsymbol{\beta}) = L_{\mathcal{D}}(\boldsymbol{\beta})/L_{\mathcal{D}}(\hat{\boldsymbol{\beta}}),$
 - * $\hat{P}_{I} = h(\hat{\beta}_{I}^{\mathsf{T}} \phi_{\mathbf{x}}), I = 1, \dots, k-1.$
- \Rightarrow Incertitude $Bel_{\mathcal{D},\mathbf{x}}^{\mathcal{P}_l}$, caractérisée par

$$pl_{\mathbf{z}}^{\mathcal{P}_{l}}(P) = \sup_{\boldsymbol{\beta}^{*} \in B_{l}^{\mathbf{x}}} pl_{\mathcal{D}, \mathbf{x}}^{\mathcal{B}}(\boldsymbol{\beta}^{*}), \ l \in [1, k-1]$$

où
$$B_I^{\mathbf{x}} = \{ \boldsymbol{\beta} \in B \mid h(\beta_I^{\mathsf{T}} \phi_{\mathbf{x}}) = P \}.$$

 \Rightarrow Prediction $m_{\mathcal{D},\mathbf{x}}^{\mathcal{Y}}$, donnée par les surfaces induites par $pl_{\mathcal{D}}^{\mathcal{P}_l}$.

Figure – Décisions fiables de MCPC via ID et un coût (0,1).

Fonction de masse prédictive

Configuration

- 9 jeux de données monotones partitionnés en
 - * un ensemble d'apprentissage \mathcal{D} ,
 - * un ensemble de test \mathcal{T} .
- Modèles: MCP, MCNP, MCPP et leurs variantes crédibilistes MCPC, MCNPC, MCPPC entraînés sur D.
- ullet Performances évaluées sur ${\mathcal T}$ et moyennées sur 100 permutations
 - * taux de décision $a \in \mathcal{Y}$ correcte Acc $= |\mathcal{T}|^{-1} \sum_{i} \mathbb{1}_{a^{(i)}}(y^{(i)})$,
 - * taux de décision $A \subseteq \mathcal{Y}$ correcte réduit par utilité $Acc_{U_{65}} = |\mathcal{T}|^{-1} \sum_{i} \mathbb{1}_{A^{(i)}}(y^{(i)}) \cdot u_{65} (|A^{(i)}|^{-1})$.
- HP vérifiée pour MCPP et MCPPC via le test de Brant-Wald.

Prédiction d'une variable ordinale Instanciation pour le MCPP Expériences

Résultats

Taux de décision (précise) correcte (Acc)

Jeux	MCP	MCPP	MCNP	MCPC	MCPPC	MCNPC
BAL	.8821(5)	.8822(4)	.8819(6)	.9019(2)	.9022(1)	.8983(3)
ERA	.5671(4)	.5665(5)	.5642(6)	.5687(1.5)	.5685(3)	.5687(1.5)
ESL	.8732(1)	.8729(2)	.8719(6)	.8724(5)	.8726(3)	.8725(4)
HAM	.3303(5)	.3281(6)	.3431(2)	.3372(4)	.3394(3)	.3464(1)
HOU	.7416(3.5)	.7417(2)	.7425(1)	.7414(5)	.7412(6)	.7416(3.5)
LEV	.6120(1)	.6109(4)	.6094(6)	.6117(2)	.6111(3)	.6104(5)
MPG	.8268(1)	.8265(2)	.8245(5)	.8262(3)	.8260(4)	.8234(6)
SWD	.5715(3)	.5712(4)	.5752(1)	.5709(5)	.5703(6)	.5745(2)
WIN	.6962(3.5)	.6962(3.5)	.6914(6)	.6968(1)	.6963(2)	.6932(5)
Rang	3.00	3.61	4.33	3.17	3.44	3.44

Résultats

Taux de décision (imprécise) correcte réduit par utilité ($Acc_{U_{65}}$)

	MCD	MCDD	MCNID	MCDC	MCDDC	MACNIDO
Jeux	MCP	MCPP	MCNP	MCPC	MCPPC	MCNPC
BAL	.8821(5)	.8822(4)	.8819(6)	.9065(2)	.9065(2)	.9065(2)
ERA	.5671(4)	.5665(5)	.5642(6)	.6102(1)	.6098(2)	.6096(3)
ESL	.8732(4)	.8729(5)	.8719(6)	.8802(1)	.8784(2)	.8771(3)
HAM	.3303(5)	.3281(6)	.3431(4)	.4617(1)	.4616(2)	.4615(3)
HOU	.7416(6)	.7417(5)	.7425(4)	.7587(3)	.7588(2)	.7612(1)
LEV	.6120(4)	.6109(5)	.6094(6)	.6382(1)	.6379(2)	.6368(3)
MPG	.8268(4)	.8265(5)	.8245(6)	.8412(1.5)	.8412(1.5)	.8405(3)
SWD	.5715(5)	.5712(6)	.5752(4)	.6043(3)	.6049(2)	.6069(1)
WIN	.6962(4.5)	.6962(4.5)	.6914(6)	.7139(1)	.7136(2)	.7085(3)
Rang	4.61	5.06	5.33	1.61	1.94	2.44

Conclusion et perspectives

- Conclusion : proposition d'une variante crédibiliste (fiable) de MCPP basée sur la vraisemblance.
- Perspectives : généralisation de l'approche crédibiliste
 - * au cas où Y ~ C(θ) est une variable nominale (sans ordre),
 ⇒ modèle d'échantillonnage de Dempster étendu à des variables nominales (échantillonnage dans un simplex)
 - * aux modèles des réseaux de neurones artificiels,
 - ⇒ approximation uni-modale de la vraisemblance régularisée, ex. approximation de Laplace.

Théorie des fonctions de croyance Modèle des Cotes Proportionnelles Partielles (MCPP) Extension crédibliste Conclusion

Merci pour votre attention.

Prédiction d'une variable nominale

Application à la régression logistique multinomiale

(b) Échantillonnage dans le simplex

(d) Décisions fiables

Extension au réseau de neurones

(a) Réseau de neurones utilisé

