Math 55a, Assignment #4, October 10, 2003

Problem 1. (Generalization of Cauchy's theorem on convergence of series based on the analogue of change of variables in integrals) Let $a_k \in \mathbb{R}$ $(k \in \mathbb{N})$ be non-increasing and nonnegative, i.e., $0 \le a_{k+1} \le a_k$ for $k \in \mathbb{N}$. Let $m_k \in \mathbb{N}$ for $k \in \mathbb{N}$ such that $(m_k)^2 \ge m_{k+1} m_{k-1}$ for $k \in \mathbb{N}$ with $k \ge 2$. Let $N_n = \sum_{k=1}^n m_k$. Show that $\sum_{k=1}^\infty a_k$ converges if and only if $\sum_{k=1}^\infty m_k a_{N_k}$ does. (Hint: Compare with Cauchy's theorem that a series of non-increasing nonnegative terms $\sum_{k=1}^\infty a_k$ converges if and only if $\sum_{k=1}^\infty 2^k a_{2^k}$ does. Compare the convergence behaviors of $\sum_{k=1}^\infty m_k a_{N_k}$ and $\sum_{k=1}^\infty m_{k+1} a_{N_k}$.)

Definition. A real number α is said to be algebraic if there exist $a_0, \dots, a_n \in \mathbb{Z}$ with $a_n \neq 0$ such that $\sum_{j=1}^n a_j \alpha^j = 0$. A real number is said to be transcendental if it is not algebraic.

Problem 2. (Proof of transcendence by rate of approximation by rational numbers)

- (a) Let $n \geq 2$ be an integer and $\alpha \in \mathbb{R}$ and $a_0, \dots, a_n \in \mathbb{Z}$ with $a_n \neq 0$. Assume that $\sum_{j=1}^n a_j \alpha^j = 0$. If the polynomial $\sum_{j=1}^n a_j x^j$ is in x irreducible (i.e, it is not the product of two polynomials of degree < n), show that there exists some C > 0 such that $\left|\alpha \frac{p}{q}\right| > \frac{C}{q^n}$ for any $p, q \in \mathbb{Z}$ with $q \neq 0$. (Hint: consider the absolute value of both sides of $f(x) f(\alpha) = (x \alpha)g(x)$, where $f(x) = \sum_{j=1}^n a_j x^j$ and g(x) is a polynomial which is nonzero at α .)
- (b) Show that the real number

$$\alpha = \sum_{k=1}^{\infty} \frac{1}{2^{k!}}$$

is transcendental. (Hint: compare

$$\alpha - \sum_{k=1}^{\ell-1} \frac{1}{2^{k!}}$$

with

$$\frac{1}{(2^{\ell!})^n}$$

with $n \in \mathbb{N}$ and ℓ sufficiently large.)

Problem 3. (Problem 14 on Page 80 of Rudin's book) (Comparison of convergence of a sequence and that of its arithmetic mean) If $\{s_n\}$ is a complex sequence, define its arithmetic mean by

$$\sigma_n = \frac{s_0 + s_1 + \dots + s_n}{n+1}$$
 $(n = 0, 1, 2, \dots).$

- (a) If $\lim_{n\to\infty} s_n = s$, prove that $\lim_{n\to\infty} \sigma_n = s$.
- (b) Construct a sequence $\{s_n\}$ which does not converge, although $\lim_{n\to\infty} \sigma_n = 0$.
- (c) Can it happen that $s_n > 0$ for all n and that $\limsup_{n \to \infty} s_n = \infty$, although $\lim_{n \to \infty} \sigma_n = 0$?
- (d) Put $a_n = s_n s_{n-1}$ for $n \ge 1$. Show that

$$s_n - \sigma_n = \frac{1}{n+1} \sum_{k=1}^n k \, a_k \; .$$

Assume that $\lim_{n\to\infty} (na_n) = 0$ and that $\{\sigma_n\}$ converges. Prove that $\{s_n\}$ converges. [This gives a conveser of (a), but under additional assumption that $na_n \to 0$.

(e) Derive the last conclusion from a weaker hypothesis: Assume $M < \infty$, $|na_n| \leq M$ for all n, and $\lim_{n \to \infty} \sigma_n = \sigma$. Prove that $\lim_{n \to \infty} s_n = \sigma$, by completing the following outline:

If m < n, then

$$s_n - \sigma_n = \frac{m+1}{n-m} (\sigma_n - \sigma_m) + \frac{1}{n-m} \sum_{i=m+1}^n (s_n - s_i).$$

For these i,

$$|s_n - s_i| \le \frac{(n-i)M}{i+1} \le \frac{(n-m-1)M}{m+2}$$
.

Fix $\varepsilon > 0$ and associate with each n the integer m that satisfies

$$m \le \frac{n-\varepsilon}{1+\varepsilon} < m+1.$$

Then $(m+1)(n-m) \leq \frac{1}{\varepsilon}$ and $|s_n - s_i| < M \varepsilon$. Hence

$$\limsup_{s\to\infty} |s_n - \sigma| \le M\varepsilon.$$

Since ε was arbitrary, $\lim_{n\to\infty} s_n = \sigma$.

Definition. Let Λ be an index set and $\sum_{n=1}^{\infty} c_n^{(\lambda)}$ be a collection of series indexed by $\lambda \in \Lambda$. The collection of series $\sum_{n=1}^{\infty} c_n^{(\lambda)}$ ($\lambda \in \Lambda$) is said to be uniformly Cauchy with respect to $\lambda \in \Lambda$ if given any $\varepsilon > 0$ there exists some $N \in \mathbb{N}$ independent of $\lambda \in \Lambda$ such that $\left|\sum_{n=p}^{q} c_n^{(\lambda)}\right| < \varepsilon$ for $q \geq p \geq N$.

Problem 4.

(a) Let $\sum_{n=1}^{\infty} a_n^{(\lambda)}$ ($\lambda \in \mathbb{N}$) be a collection of series which is uniformly Cauchy with respect to $\lambda \in \mathbb{N}$. Suppose that for every fixed $n \in \mathbb{N}$ the limit $\lim_{\lambda \to \infty} a_n^{(\lambda)} = a_n$ exists. Prove that $\sum_{n=1}^{\infty} a_n$ is Cauchy and

$$\lim_{\lambda \to \infty} \sum_{n=1}^{\infty} a_n^{(\lambda)} = \sum_{n=1}^{\infty} a_n .$$

- (b) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with $a_n \in \mathbb{C}$ for $n \in \mathbb{N}$. Let M be a positive number and let Λ be any index set. For each $\lambda \in \Lambda$ let $b_n^{(\lambda)}$ $(n \in \mathbb{N})$ be a monotone sequence of real numbers bounded in absolute value by M. Prove that the collection of series $\sum_{n=1}^{\infty} b_n^{(\lambda)} a_n$ is uniformly Cauchy with respect to $\lambda \in \Lambda$. (*Hint:* use the discrete analogue of integration by parts.)
- (c) (Abel's theorem) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with $a_n \in \mathbb{C}$ for $n \in \mathbb{N}$. Let $0 \le x_{\lambda} < 1$ ($\lambda \in \mathbb{N}$) be a sequence whose limit is 1 as $\lambda \to \infty$. Show that

$$\lim_{\lambda \to \infty} \sum_{n=1}^{\infty} a_n (x_{\lambda})^n = \sum_{n=1}^{\infty} a_n .$$

(*Hint:* apply (b) to the case $b_n^{(\lambda)} = (x_\lambda)^n$ and use (a).)

(d) (Cauchy product) Let $\sum_{n=0}^{\infty} a_n = A$, $\sum_{n=0}^{\infty} b_n = B$, and $\sum_{n=0}^{\infty} c_n = C$ be three convergent series whose terms are complex numbers. Assume that $c_n = \sum_{k=0}^{n} a_k b_{n-k}$. Show that AB = C. (*Hint*: let $x_{\lambda} = 1 - \frac{1}{\lambda}$ for $\lambda \in \mathbb{N}$ and apply (c) to

$$\sum_{n=0}^{\infty} c_n (x_{\lambda})^n = \left(\sum_{n=0}^{\infty} a_n (x_{\lambda})^n\right) \left(\sum_{n=0}^{\infty} b_n (x_{\lambda})^n\right)$$

and let $\lambda \to \infty$.)

Problem 5. (Tauber's theorem – partial converse of Abel's theorem)

(a) Let $a_n \in \mathbb{C}$ for $n \in \mathbb{N}$. Assume that $\lim_{n \to \infty} (na_n) = 0$. Let $x_k \in \mathbb{C}$ with $|x_k| < 1$ for $k \in \mathbb{N}$ and $\lim_{k \to \infty} x_k = 1$. Suppose $f_k = \sum_{n=1}^{\infty} a_n (x_k)^n$ exists for $k \in \mathbb{N}$. Further suppose that $\lim_{k \to \infty} f_k = L$. Show that $\sum_{n=1}^{\infty} a_n = L$. (*Hint*: let N_k be the largest integer not exceeding $\frac{1}{1-|x_k|}$ and show

$$f_k - \sum_{n=1}^{N_k} a_n = \sum_{n=N_k+1}^{\infty} a_n (x_k)^n - \sum_{n=1}^{N_k} a_n (1 - (x_k)^n)$$

approaches 0 as $k \to \infty$ by using Problem 3(a).)

(b) Use the example $a_n = (-1)^n$ to show that the condition $\lim_{n\to\infty} (na_n) = 0$ cannot be removed for the conclusion in (a) to hold.

Problem 6. (Double summation)

- (a) Let $a_{m,n}$ be nonnegative real numbers for $m, n \in \mathbb{N}$. Show that if one of the following three series converges:
 - (i) $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}),$
 - (ii) $\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{m,n} \right),$
 - (iii) $\sum_{N=2}^{\infty} \left(\sum_{m+n \leq N} a_{m,n} \right)$,

then the other two converges and all three have the same limit.

(b) Show that for |z| < 1, one has

(1)
$$\frac{z}{1-z^2} + \frac{z^2}{1-z^4} + \dots + \frac{z^{2^n}}{1-z^{2^{n+1}}} + \dots = \frac{z}{1-z}.$$

(2)
$$\frac{z}{1+z} + \frac{2z^2}{1+z^2} + \dots + \frac{2^n z^{2^n}}{1-z^{2^n}} + \dots = \frac{z}{1-z}.$$

(Hint: use (a) and the geometric series.)

Problem 7. A subset of \mathbb{N} is said to be in arithmetic progression if it is of the form

$$\{a, a+d, a+2d, a+3d, \cdots\},\$$

where $a, d \in \mathbb{N}$ and d is called the *step*. Show that \mathbb{N} cannot be the disjoint union of a finite number of subsets that are in arithmetic progression with distinct steps except for the trivial case a = d = 1). (*Hint:* write $\sum_{n \in \mathbb{N}} z^n$ as a sum of terms of the type $\frac{z^a}{1-z^d}$.)

Stirling's Formula. In the following problem we assume as given the following formula of Stirling.

$$n! = \sqrt{2\pi} \, n^{n + \frac{1}{2}} e^{-n} \left(1 + E_n \right),$$

where $\lim_{n\to\infty} \frac{E_n}{n} = 0$.

Problem 8. Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_n z^n$ when:

(a) $a_n = \frac{\sqrt[5]{n^2 + 3n + 2} - \sqrt[5]{n^2 + n + 1}}{\sqrt[6]{n^6}}.$

- (b) $a_n = (\log n)^2$ (where log is the inverse function of the exponential function $x \mapsto e^x$).
- (c) $a_n = n!$.
- (d) $a_n = \frac{n^2}{4^n + 3n}$
- (e) $a_n = \frac{(n!)^3}{(3n)!}$.
- (f) Find the radius of convergence of the hypergeometric series of Gauss

$$F(\alpha, \beta, \gamma; z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{n! \gamma(\gamma+1)\cdots(\gamma+n-1)} z^{n},$$

where $\alpha, \beta, \gamma \in \mathbb{C}$ and $-\gamma + 1 \notin \mathbb{N}$.

(g) Find the radius of the Bessel function of order r:

$$J_r(z) = \left(\frac{z}{2}\right)^r \sum_{n=0}^{\infty} \frac{(-1)^n}{n! (n+r)!} \left(\frac{z}{2}\right)^{2n} ,$$

where r is a positive integer.