CSE 250 - Data Structures: Function Analysis

Andrew Hughes

SUNY at Buffalo Computer Science and Engineering

Fall 2019

Outline

- Function Growth
 - Rate of Growth
 - Asymptotics
 - Examples

How do we measure the "cost" of code?

Code cost can be modeled by:

- the number of steps executed, or
- the number bytes allocated.

Cost modeled as a function of input size.

Asymptotics used to compare cost functions.

- How long does my function take to run?
- How much memory is used by my function?
- Is there a better solution?

Growth Function Basics

Compare the following functions:

$$f(n) = 2^{\frac{n}{2}}, g(n) = \frac{1}{2}\log(n^2), h(n) = \log(n), S(n) = 5n,$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) \text{ if } n > 1 \\ 1 \text{ if } n = 1 \end{cases} \text{, } U(n) = \begin{cases} 2U(n-1) \text{ if } n > 1 \\ 1 \text{ if } n = 1 \end{cases}$$

Ranked by growth:

Fastest growth

$$U(n) = \begin{cases} 2U(n-1) \text{ if } n > 1\\ 1 \text{ if } n = 1 \end{cases}, \text{ or } U(n) = 2^n$$

$$\frac{f(n) = 2^{\frac{n}{2}}}{S(n) = 5n}$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) \text{ if } n > 1\\ 1 \text{ if } n = 1 \end{cases}, \text{ or } T(n) \approx n$$

$$g(n) = \frac{1}{2} \log(n^2) = \log(n) = h(n)$$

Slowest growth

Growth Function Basics

Growth functions must be of the form:

$$f: \mathbb{Z}^+ \to \mathbb{R}^+$$

- Inputs to programs are all discrete values.
 - $ightharpoonup \mathbb{Z}^+ = \{1, 2, \ldots\}$ (positive integers).
- Measurements can be fractional.
 - $ightharpoonup \mathbb{R}^+ = \{x \mid x > 0\}$ (positive real numbers).

Log Refresher

 \log is usually base 2 in this course: $\log(n) = \log_2(n)$.

 Different base may appear in recursive analysis. (based on number of subproblem divisions)

Revisit log properties if you have forgotten.

- Let a, b, c, n > 0.
- Exponent rule: $\log(n^a) = a \log(n)$
- Product rule: $\log(an) = \log(a) + \log(n)$
- Division rule: $\log(\frac{n}{a}) = \log(n) \log(a)$
- Change of base from b to c: $\log_b(n) = \frac{\log_c(n)}{\log_c(b)}$
 - Different base is only off by a constant factor.
- Logs/exponentiation are inverses: $b^{\log_b(n)} = \log_b(b^n) = n$

Architecture Independent

Compare two algorithms Algorithm 1 and Algorithm 2:

- Algorithm 1 performs $f_1(n)$ ops given an input of size n where:
 - $f_1(n) = 10000n^2$
- Algorithm 2 performs $f_2(n)$ ops given an input of size n where:
 - $f_2(n) = 10n^2$.

Which algorithm is better?

Algorithm 2 runs 1000 times faster.

- This might matter in practice.
- This is less relevant theoretically.
 - ▶ Both are "the same" for large enough *n*.

Algorithm 1 may have other practical benefits.

Behaviors When n Gets Large

Two functions grow "the same" if they behave the same when n is large.

$$\frac{1}{100}n^3 + 10n + 1000000 \log n$$
 behaves the same as n^3 .

As seen by applying limits:

$$\lim_{n \to \infty} \frac{\frac{1}{100}n^3 + 10n + 1000000 \log n}{n^3} = \frac{1}{100}$$

- $\frac{1}{100}n^3$ dominates the other terms on top.
- Discarding constant factors gives us n^3 .

$$5 \cdot 2^n + n^{1000} + 2^{\log n}$$
 behaves the same as $5 \cdot 2^n$ (and 2^n).

Dominating term is the fastest growing term.

Order to remember: exponential >> polynomial >> log

Practical View of Dominating Terms

Consider a 2 GHz processor (executes $2 * 10^9$ instructions per second).

	Input Size (n)				
f(n)	10	20	50	100	1000
$\log \log n$	0.87 ns	1.06 ns	1.25 ns	1.37 ns	1.66 ns
$\log n$	1.66 ns	2.16 ns	2.82 ns	3.32 ns	4.98 ns
n	5 ns	10 ns	25 ns	50 ns	500 ns
$n \log n$	16.61 ns	43.22 ns	141.10 ns	332.19 ns	4.98 μ s
n^2	50 ns	200 ns	1.25 μ s	5 μ s	500 μ s
n^5	$50~\mu s$	1.6 ms	156.25 ms	5 s	138.9 h
2^n	512 ns	524.29 μ s	6.5 d	$2*10^{13} \text{ y}$	$1.7*10^{284}$ y
n!	1.81 ms	38.57 y	$4.8 * 10^{47} \text{ y}$	1.48 * 10 ¹⁴¹ y	:(

Time to execute f(n) instructions using 2GHz processor

Asymptotic Analysis

Idea: Classify functions based on growth

Consider
$$T(n) = n^2 + 2n$$
.

What function f generalizes T(n)?

• $f(n) = n^2$ suffices:

$$f(n) \leq T(n) \leq 3f(n)$$
.

Big-O: Formal Definition

Big-O is an upper bound.

Big-O (big oh)

For any two functions $f,g:\mathbb{Z}^+ \to \mathbb{R}^+$,

$$f(n) = O(g(n))$$
 iff $\exists c, n_0 > 0$ s.t. $\forall n \ge n_0, f(n) \le cg(n)$.

- O(g(n)): the set of all functions satisfying the condition above.
- f(n) = O(g(n)) meaning
 - ▶ $f(n) \in O(g(n))$.
 - ▶ f(n) is **bounded above** by a constant scaling of g(n) for large n.
 - f(n) grows no faster than g(n).
- Examples:
 - $2n^2 + 4n = O(n^2).$
 - $2n^2 + 4n = O(n^4 + 8n^3).$
 - ► $n \log(n) + 5n = O(n^2 + 5n)$.

Big- Ω : Formal Definition

Big- Ω is a lower bound.

Big- Ω (big omega)

For any two functions $f, g: \mathbb{Z}^+ \to \mathbb{R}^+$,

$$f(n) = \Omega(g(n))$$
 iff $\exists c, n_0 > 0$ s.t. $\forall n \ge n_0, f(n) \ge cg(n)$

- $\Omega(g(n))$: the set of all functions satisfying the condition above.
- $f(n) = \Omega(g(n))$ meaning
 - ▶ $f(n) \in \Omega(g(n))$.
 - ▶ f(n) is **bounded below** by a constant scaling of g(n) for large n.
 - f(n) grows no slower than g(n).
- Examples:
 - $2n^2 + 4n = \Omega(n^2 + 5).$
 - $2n^2 + 4n = \Omega(\log(n)).$
 - $n \log(n) + 5n = \Omega(n \log(n)).$

Big-⊖: Formal Definition

 $Big-\Theta$ is an upper and lower bound.

Big-⊖ (big theta)

For any two functions $f, g: \mathbb{Z}^+ \to \mathbb{R}^+$,

$$f(n) = \Theta(g(n))$$
 iff $[f(n) = O(g(n))] \wedge [f(n) = \Omega(g(n))].$

- \bullet $\Theta(g(n))$: the set of all functions satisfying the condition above.
- $f(n) = \Theta(g(n))$ meaning
 - ▶ $f(n) \in \Theta(g(n))$.
 - ► f(n) is bounded above and below by constant scalings of g(n) for large n.
 - ▶ Asymptotically speaking, f(n) runs the same as g(n).
- Examples:
 - $2n^2 + 4n = \Theta(n^2).$
 - $\triangleright 2n^2 + 4n \neq \Theta(n)$.
 - $n \log(n) + 5n = \Theta(n \log(n)).$

Common Runtimes

- \bullet $\Theta(1)$ is constant time.
 - ▶ T(n) = c, some constant c > 0. $T(n) = \Theta(1)$.
- $\Theta(\log(n))$ is logarithmic time.
 - ▶ $T(n) = c \log(n)$, some constant c > 0. $T(n) = \Theta(\log(n))$.
- \bullet $\Theta(n)$ is linear time.
 - ▶ T(n) = an + b, some constants a, b, where a > 0. $T(n) = \Theta(n)$.
- $\Theta(n^2)$ is quadratic time.
 - ► $T(n) = an^2 + bn + c$, some constants a, b, c, where a > 0. $T(n) = \Theta(n^2)$.
- $\Theta(n^k)$ is polynomial time (for $k \in \mathbb{Z}^+$).
 - ► $T(n) = a_k n^k + \ldots + a_1 n + a_0$, for constants a_0, \ldots, a_k , where $a_k > 0$. $T(n) = \Theta(n^k)$.
- $\Theta(c^n)$ is exponential time.
 - ▶ $T(n) = c^n$, some constant c > 1. Then $T(n) = \Theta(c^n)$.

Why do constants matter?

Reducing lines of code can shave **constant-factor** off runtime.

Consider the body of a for loop

for
$$(i \leftarrow 0 \text{ until } n) \{...\}$$

- Original body: 10 statements (all with equal cost).
- You reduce the statements by 3.
- New runtime?
 - ★ 7/10 of old runtime (30% faster).

Simplifying non-repeated code saves additive constant.

Why do constants matter?

Why do we care about the constant c or n_0 ?

- Consider $T_1(n) = 100n \text{ vs } T_2(n) = n^2$.
 - $c = 1, n_0 = 100$: $\forall n \ge 100, T_1(n) \le T_2$.
 - ▶ Until inputs of size 100 or more, n^2 is small (i.e., faster) than 100n.

Asymptotically slower runtime can be better.

- Algorithm with runtime $T_2(n)$ is best if input size < 100.
- Algorithm with runtime $T_2(n)$ might be easier to implement.
- No solution with runtime $T_1(n)$ might exist.

Runtime to sort a sequence?

BubbleSort Algorithm

```
bubbleSort(seq: a sequence of items)

1. n \leftarrow \text{seq length}.

2. for i \leftarrow n-2 to 0.

3. for j \leftarrow 0 to i.

4. if \text{seq}(j+1) < \text{seq}(j):

5. swap \text{seq}(j) and \text{seq}(j+1).
```

- Runtime *T*(*n*):
 - -- *n* is the length of the sequence.
 - -- at each step of j, pass through (4-5) i + 1 times.
 - -- at each *i*, there are *n* values of *j*.

$$\sum_{i=0}^{n-2} (i+1) = O(n^2)?$$

• What are the requirements of the input seq?

Runtime to sort a sequence?

BubbleSort for mutable sequence.

```
def sort(seq: mutable.Seq[Int]): Unit = {
   val n = seq.length
   for (i <- n-2 to 0 by -1; j <- 0 to i) {
      if (seq(j+1) < seq(j)) {
       val temp = seq(j+1)
        seq(j+1) = seq(j)
        seq(j) = temp
   }
}</pre>
```

- Is the runtime $T(n) = O(n^2)$?
 - -- What is the cost of seq(j+1) < seq(j)?
 - -- What is the cost of each seq(k)?

Runtime to sort a sequence?

BubbleSort for immutable sequence.

```
def sort(seq: Seq[Int]): Seq[Int] = {
       val newSeq = seq.toArray
       val n = seq.length
       for (i < -n-2 \text{ to } 0 \text{ by } -1; j < -0 \text{ to } i)  {
         if (newSeq(j+1) < newSeq(j)) {</pre>
           val temp = newSeq(i);
           newSeq(i) = newSeq(j);
           newSeq(j) = temp
       newSeq.toList
12
```

- Is the runtime $T(n) = O(n^2)$?
 - -- What is the cost of toArray?
 - -- What is the cost of toList?

Searching Sequences

What is the cost of finding a value in a sequence?

```
def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
  for (i <- from until seq.length) {
    if (seq(i) == value) return i
    }
    -1
  }
}</pre>
```

• Expected runtime is T(n) = O(n).

What about counting all occurrences of a value in a sequence?

```
def count[T](seq: Seq[T], value: T): Int = {
   var count = 0; var i = indexOf(seq, value, 0)
   while (i != -1) {
      count += 1; i = indexOf(seq, value, i+1)
   }
   count
}
```

• Runtime is $T(n) = \Theta(n)$.

Searching Sequences

Problem

How can we search a sorted sequence?

- If random access is available: Binary Search To search the range [begin,end) for value:
 - Ompare value to middle element.
 - If value is found, return index.
 - If value is smaller than middle, search [begin, middle)
 - If value is larger than middle, search (middle,end)
 - Ontinue until range is empty or value found.
- If no random access?