Flexible, High Performance Convolutional Neural Networks for Image Classification

Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, Jürgen Schmidhuber

IDSIA, USI and SUPSI
Manno-Lugano, Switzerland
{dan,ueli,jonathan,luca,juergen}@idsia.ch

Introduction

- Image recognition: text, objects.
- Convolutional Neural Networks.
- How to train huge nets? GPUs ...
- Evaluation protocol for standard benchmarks.
- Other applications.

Multi Layer Perceptrons

- simple, uniform architecture
- fully connected
- many weights, one weight per connection
- very general
- disregards 2D information (neighboring info)
- not good for classifying complex images
- We trained the first big and deep MLP, breaking the record on MNIST (Neural Computation 2010)

Convolutional Neural Networks (CNNs)

- Hierarchical architecture designed for image recognition, loosely inspired from biology.
- Introduced by Fukushima (80) and refined by LeCun et al.(98),
 Riesenhuber et al.(99), Simard et al.(03), Behnke (03).
- Uses the neighboring information (preserves the 2D information).
- Shared weights.
- Fully supervised, with randomly initialized filters, trained minimizing the misclassification error.
- Flexible architecture.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional layer

- 3x3 kernel (filter) => only 10 weights (3x3+1) shared by all 900 neurons
- each neuron has 9 source neurons
- $900 \times (9+1) = 9000$ connections

Convolutional layer

32x32 9x9 24x24 L0-Input **Filters** L1-Convolutional Layer

Convolutional layer

Max-pooling layer

- Introduces small translation invariance
- Improves generalization

Max-pooling layer

- Introduces small translation invariance
- Improves generalization

Max-pooling layer

Introduces small translation invariance

Fully connected layer

One output neuron per class normalized with soft-max activation function

Fully connected layer

One output neuron per class normalized with soft-max activation function

Training is computational intensive

Graphics processing units (GPUs)

- 8 x GTX 480/580 1.5GB RAM
- >12 TFLOPS (theoretical speed)
- 40-80x speed-up compared with a single threaded CPU version of the CNN program (one day on GPU instead of two months on CPU)
- ~3000\$ for one workstation with 4 GPUs

Back-propagation of errors

Uses pooling of errors (deltas).

Experiments

- Distorting images
- Datasets:
 - Handwritten digits: MNIST
 - Handwritten Latin characters: NIST SD 19
 - Handwritten Chinese characters
 - 3D models: NORB
 - Natural images: CIFAR10
 - Traffic signs

Distortions

- MNIST
 - affine: translation, rotation, scaling
 - elastic

5	0	4	1	9	2	١	3	1	4	3	5	3	6	1	1	2	8	6	9	Original
5	0	4	1	9	2	ì	3	1	4	3	5	3	6	1	7	2	8	6	9	Epoch 0
5	0	4	1	9	2	١	3	١	4	3	5	3	6	١	1	2	8	6	9	Epoch 1
7	0	4	1	9	a	i	3	1	*	3	5	3	6	1	7	2	8	6	9	Epoch 2
5	0	ч	(9	2	١	3	١	4	3	5	3	6	1	7	2	8	6	9	Epoch 3

- Elastic only for characters and digits
- Greatly improves generalization and recognition rate
- CIFAR10/traffic signs have non-uniform backgrounds => border effects

MNIST

- Very competitive dataset
- Handwritten digits
- 28x28 grayscale images
- 60000 for training and 10000 for testing
- Tens of papers: http://yann.lecun.com/exdb/mnist/

v	/	-1	w	0	U	1	0	J	/	ר	1		7	- 1	•	v	ن	
2	0	2	7	1	8	6	4	1	6	3	4	3	9	1	3	3	8	
	12.0		7.								2				17.2			
2	3	5	9	1	フ	6	Z	8	2	2	5	Ò	7	4	9	7	8	•
0	1	1	2	7	3	0	4	6	5	2	6	4	7	1	8	9	9	
8	6	3	7	5	8	0	9	l	0	ε	1	2	2	3	3	6	4	8
1	4	4	5	6	4	1	a	S	3	9	3	9	0	5	9	6	5	
8	7	6	0	9	7	5	7	2	1	1	6	8	9	4	1	5	2	
	777		-			1000			_		3	-	-		-	-		
_	-	121		_	-		,		-			4	34		_			

MNIST

- Simard et al. (2003) 0.40%, Ciresan et al. (2010) 0.35% (big deep MLP)
- Big deep CNN 0.35% (2011), far less weights than the MLP
- 30 out of 35 digits have a correct second prediction

#M, #N in Hidden Layers	Test error [%]	
20M-60M	1.02	
20M-60M-150N	0.55	
20M-60M-100M-150N	0.38	
20M-40M-60M-80M-100M-120M-150N	0.35 Label	
	Y 9 6 5 9 4 4 9 First prediction	n
4 9 8 2 2 1 9 4 0 6 8 4 2 7 7 1 3	3 5 3 6 9 6 9 Second	
2 7 3 5 7 7 6 1 L 1 4 4 2 7 8 8 1	prediction of the prediction o)T1

NIST SD 19

- More than 800000 handwritten digits and letters
- our CNN have state of the art results on all tasks

q	ĝ	9	9	٩	9	3	٩	9	9	9	a	9	H	2	9	5	Q	8	9
ð	3	9	9	Q _	4	9	9	9	9	9	9-	9	9	C^{\prime}	9	9	4	ዔ	9
è	9	7	a	S	q	3	9	A	5	4	8	9	9	9	Я	4	g	9	٩
A	Ĵ	B	9	3	9	A	q	9	9	O	3	Q	9	3	9	3	8	9	9
q	9	9	9	8	9	9	9	9	9	9	5	9	9	9	Ç	Û	O ₁	9	9
а	٢	a.	g	4	а	Ω	G	11	G	٩	O ₃	Ω	٨	ય	٩	q	a	9	CI

Task	Test error [%]
Small letters	7.71
Big letters	1.91
Case insensitive	7.58
Merged letters (37 classes)	8.21

Small NORB

- 48600 96x96 stereo images
- 5 classes with 10 instances
- 5 instances for training and 5 for testing
- bad/challenging dataset, only 5
 instances/class, some instances from test
 set are completely different than the one
 from training set
- IP maps (Mexican hat) are needed only for this data set
- previous state of the art: Behnke et al.2.87%
- 40% of the errors are cars erroneously classified as trucks

translation [%]	IP maps	test [%]
0	no	7.86 ± 0.55
5	no	4.71 ± 0.57
0	yes	3.94 ± 0.48
5	yes	2.53 ± 0.40

left IP maps right IP maps

CIFAR10

- small, 32x32 pixels color images
- complex backgrounds
- 10 classes
- 50000 training images
- 10000 test images

trans. [%]	IP maps	TfbV [%]
0; 100M	no	28.87 ± 0.37
0; 100M	edge	29.11 ± 0.36
5; 100M	no	20.26 ± 0.21
5; 100M	edge	21.87 ± 0.57
5; 100M	hat	21.44 ± 0.44
5; 200M	no	19.90 ± 0.16
5; 300M	no	19.51 ± 0.18
5; 400M	no	19.54 ± 0.16

first layer filters

Committees

- Extremely simple idea
- Easy to compute
- Averaging the corresponding outputs of many nets
- Decrease the error with 20-80%
- Work better with preprocessing in case of handwritten characters

Chinese Handwriting Recognition Competition ICDAR 2011

- Offline Chinese Character Recognition (Task 1)
- 3GB of data
- 3755 classes
- >1M characters
- 48x48 pixels grayscale images
- 270 samples / class
- 9 teams
- No knowledge of Chinese
- First place at ICDAR 2011 competition
 - 92.18% first prediction is correct
 - 99.29% CR10

German Traffic Sign Recognition Competition

- Initial phase:
 - More than 10 teams
 - We won 1st place with 98.98%
- 40000 color images 15x15 to 250x250
- 43 different signs: 26640 training images,12569 testing images Input: Extract Region of Interest (ROI)
- Enhance contrast with four different methods
- Resize up/down to 48x48 pixels
- Great variation in details, contrast and illumination
- http://benchmark.ini.rub.de/
- Final phase: last Wednesday at IJCNN 2011

New normalizations

Normalized images

original

- imadjust
- histeq
- clahe

contrast

Distortions

- At the beginning of every epoch, each image in the training set is distorted
- The original training set is used only for validation
- Type:
 - Translation (random for both axes, maximum 10%)
 - Rotation (random, maximum 10 degrees)
 - Scaling (random for both axes, maximum 10%)
- Improves generalization and recognition rate on test set
- Non-uniform backgrounds => border effects

CNN trained on preprocessed color images

- Original + 4 preprocessed datasets
- Train 5 nets for each
- Build a 25-net committee
- First place with 99.43% recognition rate
- The only team with better than human (98.84%) results

first layer filters

Summary

Dataset	Best result by others (error [%])	Our result (error [%])	Decrease [%]
MNIST	0.39	0.23	41%
NIST SD 19	all tasks	all tasks	20-80%
Chinese	10.01	6.5	35%
NORB	2.87	2.01	30%
CIFAR10	18.81	11.75	37%
Traffic signs	1.69	0.54	72%

Image segmentation

Red – cubes

Green – cylinders

White - background

Searching for objects – adding a negative class with partial cubes and cylinders

Detecting cell contours

Detecting cells

Conclusions

- Big deep nets combining CNN and other ideas are now state of the art for many image classification tasks.
- No need to extract handcrafted features.
- Supervised training with simple gradient descent training is best. No need for unsupervised pre-training (e.g. autoencoders) in case of sufficient training samples.
- Distorting the training set improves recognition rate on unseen data.
- CPUs are not enough anymore, use GPUs which are 2 orders of magnitude faster.
- Robust (smallest error rates) and fast enough (10³-10⁴ images/s) for immediate industrial application.

What is next?

- Test the CNNs on different datasets:
 - CALTECH 101 & 256, ImageNet, cluttered NORB
 - medical images
- Use CNNs for general scene understanding (segmentation).
- Robot vision applications (detect type, position and orientation of objects in a scene).
- Computer vision applications (de-blurring, segmentation, similarity check etc.).
- Try to reach human image classification performance on more datasets.
- Add unsupervised pre-training.
- More at www.idsia.ch/~ciresan

Publications

Conference papers:

- Flexible, High Performance Convolutional Neural Networks for Image Classification (D. Ciresan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber, IJCAI 2011)
- A Committee of Neural Networks for Traffic Sign Classification (D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, IJCNN 2011)
- Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction (J. Masci, U. Meier, D. Ciresan, J. Schmidhuber, ICANN 2011)
- On Fast Deep Nets for AGI Vision (J. Schmidhuber, D. Ciresan, U. Meier, J. Masci, Alex Graves, AGI 2011)
- Convolutional Neural Network Committees For Handwritten Character Classification (D. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber, ICDAR 2011)
- Better digit recognition with a committee of simple Neural Nets (U. Meier, D. Ciresan, L. M. Gambardella, J. Schmidhuber, ICDAR 2011)

Journal papers:

Deep, Big, Simple Neural Nets for Handwritten Digit Recognition (D. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber, Neural Computation, December 2010)

Under review:

- Narrowing the Gap to Human Image Classification Performance, (D. Ciresan, U. Meier, J. Schmidhuber, NIPS 2011)
- Democratic Committee of Fast Deep MLPs Improves MNIST Recognition Rate (D. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber, Neural Computation)

$$\max\left(\left\lceil\frac{i-K_x+1}{S_x+1}\right\rceil,0\right) \le x \le \min\left(\left\lfloor\frac{i}{S_x+1}\right\rfloor,M_x-1\right)$$

$$\max\left(\left\lceil\frac{i-K_y+1}{S_y+1}\right\rceil,0\right) \le y \le \min\left(\left\lfloor\frac{i}{S_y+1}\right\rfloor,M_y-1\right)$$

	mammal	human	plane	truck	car	all
mammal	0	22	13	2	3	40
human	35	0	0	0	0	35
plane	88	0	0	60	37	185
truck	19	0	0	0	7	26
car	79	0	0	246	0	325

