

Department of Computer Science

EE204 – Computer Architecture

FALL 2018

Instructor Name: Dr. Haroon Mahmood

Email address: haroon.mahmood@nu.edu.pk

Office Location/Number: Liberty lab

Office Hours: Monday to Thursday2:30-3:30 PM

TA Name (section A): Danyal Afzal

Email address: danyalafzaal786@gmail.com TA Name (section B): Muhammad Amar Email: muhammadamarjutt@gmail.com

Course Information

Program: BS **Credit Hours:** 3 **Type:** Core

Pre-requisites (if any): Digital Logic Design (EE227) **Class Meeting Time:** Section A: T, T 12:30 – 1:50 PM

Class Venue: Section A CS-15, Section B CS-3

Section B: T, T 3:30 - 4:50 PM

Course Description/Objectives/Goals:

- The main objective of this course is to provide a profound understanding of the architectural design and internal working of a microprocessor which will allow computer science students to appreciate concepts like optimization and hardware level performance issues.
- This course also introduces advanced concepts like pipelining and superscalar architecture and techniques like microprogramming.
- Multi-Core processors and issues related to multicore processors are introduced.

Course Textbook

- 1. M. Morris Mano, Computer System Architecture 3rd Edition 1993, Prentice Hall
- 2. David A. Patterson, John L. Hennessy, *Computer Organization and Design: The hardware/software interface*, 4th Edition

Additional references and books related to the course:

1. Modern Processor Design: Fundamentals of Superscalar Processors by John Paul Shen and Mikko H. Lipasti

Tentative Weekly Schedule

1 1 11	Tanka ta la caracida	1	A
Lect #	Topics to be covered	Readings	Assignments/
			Projects?
1	Introduction to basic hardware	Text1	
	components and devices	Chapter 1	
	a) Digital Logic Design Review	(Excluding 1.4)	
	i) Boolean Algebra		
	ii) Combinational Circuits		
	iii) Sequential Circuits		
2	Frequently used components in	Text1	
_	computers	Chapter 2	
	a) Adders	Chapter 2	
	b) Decoders	Text2	
	c) Multiplexers	Chapter 2	
	d) Registers (Parallel load with	(Section	
	shifts)	2.4)	
	e) Counters		
	l '	Chapter 3	
	Number Systems and Binary	(Section 3.5)	
	Representations		
	a) Integer Representations b) Floating point representation		
	b) Floating point representation	Torret1	
3	Logic Operations	Text1	
	Shift Operations	Chapter 4	
	Combined Arithmetic, Logic and Shift	(Section $4.5 - 4.7$)	
	Unit.	m	
4	Additional Arithmetic Operations:	Text2	
	a) Integer Multiplication, Division	Chapter 3	
	b) Floating Point Operations (Addition)	(Section $3.4 - 3.6$)	
5	Complete ALU and FPU design	Text2	
	Introduction to Machine Language	Chapter 3	
		(Section 3.6)	
	Central processing unit in detail		
	a) General register organization	Text2	
	b) Addressing modes	Chapter 2	
	c) CISC Vs RISC		
6	Computer Instructions and instruction	Text2	Accianment 1
	codes	Chapter 2	Assignment 1
	Introduction to the MIPS Assembly	(Figure 2.32, 2.38)	
	Language	(1 iguie 2.32, 2.30)	
	Instruction Types		
	1) Arithmetic Instructions		
	2) Memory Reference		
	3) Branch Instructions		
	5, Dianon monucuono		
7	Design of a Single Cycle Machine	Text2	
'	1) Register File	Chapter 4	
	2) ALU	(Section 4.1 – 4.4)	
	· ·	(5660011 4.1 – 4.4)	
	3) Instruction and Data Memory		
	4) Control Unit		
	5) Integration of Units	Tout	
8	Single Cycle Machine Design Continued	Text2	
	Control Unit (As a hardwired	Chapter 4	
	combinational circuit)	(Section $4.1 - 4.4$)	
	Exceptions and Interrupts		
9	Revision for Mid 1		
10	Multi-cycle implementation	Text2	
10	Motivation and Hardware Differences	Chapter 4	
	1.100 varion and Hardware Differences	(Section 4.5)	
		(Section 4.5)	

11	Enhancing Performance with Pipelining a) Introduction to pipelining b) A pipelined data-path c) Pipelined Control d) Shallow and deep pipelining	Text2 Chapter 4 (Section 4.5)	
12	Multi-cycle Continued Control Unit State for each instruction type Pipelined Machine: Hardware and Control Unit	Text2 Chapter 4 (Section 4.6)	
13	Multi-cycle Continued Control Unit State Machine combined Exception Handling in Multi-Cycle machine	Text2 Chapter 4 (4.6, 4.9)	
14	Data Hazards a) RAW (covered in detail) b) WAR c) WAW	Text2 Chapter 4 Section (4.7)	
15	Control Hazards a) Branch Prediction Performance of pipelined systems	Text2 Chapter 4 Section (4.8)	Assignment 2
16	Understanding Performance a) CPU Performance b) Benchmarks c) Evaluating Performance	Text2 Chapter 1 (Section 1.4)	
17	Superscalar Processors. Basic concepts of superscalar processors and instruction independence		
18	Step by step execution of instructions in superscalar processors.		
19	Code Rescheduling Loop Unrolling		
20	Revision for Mid 2		
21	Cache Design: Memory Hierarchy basic concepts Basics and Direct mapped caches	Text 2 Chapter 5 (Section 5.1, 5.2)	
22	Cache Design: Associative Caches and Miss Rates	Text 2 Chapter 5 (Section 5.2)	
23	Cache Design: Processor performance evaluation with cache / Multi-level Caches.	Text 2 Chapter 5 (Section 5.3)	
24	Virtual Memory	Text 2 Chapter 5 (Section 5.4)	

	1	<u></u>	, , , , , , , , , , , , , , , , , , , ,
25	Multicores, Multiprocessors, and	Text 3	Assignment 3
	Clusters	Chapter 7	
	Multi-processor Systems basics.	Text 2	
	Multi-processor system types	Chapter 7	
	Parallel Processing Programs	(Section 7.1 &	
		Section 7.2)	
26	Intro to memory sharing models and	Text 2	
	cache coherence problem	Chapter 7	
	Clusters and Other Message-Passing	(Section 7.3 & 7.4)	
	Multiprocessors	,	
27	Hardware multithreading	Text 2	
	SISD,MIMD,SIMD,SPMD	Chapter 7	
		(Section 7.5 & 7.6)	
28	GPUs	Text 2	
		Chapter 7	
		(Section 7.7)	
29	NVIDIA GPU architecture	Text 2	
		Chapter 7	
		(Section 7.7)	
30	Revision for Final		

(Tentative) Grading Criteria

- 1. 3-4 Assignments (10%)
- 2. 4-5 Quizzes (15%)
- 3. 1-2 Midterm Exam(s)(30%)
- 4. Final Exam (45%)

Course Policies

- 1. No makeup for missed quiz or assignment.
- 2. 80% attendance