PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2002-148809

(43)Date of publication of application: 22.05,2002

(51)Int.CL

G03F 7/095 G03F 7/38 H01L 21/027

(21)Application number: 2000-346331 (71)Applicant: VICTOR CO OF JAPAN LTD

(22)Date of filing: 14.11.2000 (72)Inventor: DAIKO TAKASHI

(54) METHOD FOR PRODUCING RESIST SUBSTRATE AND RESIST SUBSTRATE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for producing a resist substrate having enhanced resolution and accurately forming a fine pattern by uniformly imparting a concentration gradient to a photosensitive seent in a resist film.

SOLUTION: The method for producing the resist substrate comprises a first step for applying photosensitive resist 2 to a substrate 1, a second step for laminating a water-soluble polymer 3 on the photosensitive resist 2, a third step for baking the substrate 1 with the photosensitive resist 2 and the water-soluble polymer 3 laminated thereon and a fourth step for removing the water-soluble polymer 3. A concentration gradient is imparted to a photosensitive agent in the photosensitive resist 2 in the thickness direction.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-148809

(P2002-148809A) (43)公開日 平成14年5月22日(2002.5.22)

(51) Int.CL*		識別記号	F l			テーマコート"(参考)
GOSF	7/095	501	G03F	7/095	501	2H025
	7/38	501		7/38	501	2H096
HOIL	21/027		H01L	21/30	565	5 F 0 4 6
					573	

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出職番号	特膜2000-346331(P2000-346331)	(71) 出職人	000004329	
			日本ピクター株式会社	
[22] 出觸日	平成12年11月14日(2000.11.14)	神条川県横浜市神奈川区守屋町3丁目12番 飨		
		(72)発明者 大湖 高志		
		((2)元明祖	(2) 元明者 入別 西恋 神奈川県横浜市神奈川区守島町3丁目1	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			地 日本ピクター株式会社内	
		Fターム(参	考) 2H025 AA02 AA03 AB16 AB20 AC08	
			ADOS BJ10 DAOS DADS DA15	
			DA36 EA10	
			21096 AA25 BA09 BA20 CA20 DA01	
			EA04 GA08	
			5F046 AA28 JA22	

(54) 【発明の名称】 レジスト基板の製造方法及びレジスト基板

(57)【襲約】

【郷鑑】 レジスト級中の感光剤に濃度公配を均一 に形成させることで解像度を高め、微細なパターンを精 度良(形成させるレジスト基版の製造方法を提供する。 【解決手段】 基版 | に感光性レジスト2を強布する 帯一の工程と、輸記感光性レジスト2の上に水溶性ポリ マー3を観響する第二の工程と、軌配感光性レジスト2

と水溶性ポリマー3が積層された熱板1をペーキングする第三の工程と、前記水溶性ポリマー3を積割さペーキングする第三の工程と、前記水溶性ポリマー3を除去する第四の工程とよりなり、前記號光性レジスト2の感光剤に厚み方向の濃度勾配を持たせることを特徴とする。

【特許請求の新畑】

【請求項1】基板に感光性レジストを塗布する第一の工 脚と、前記機寄性レジストの上に水溶性ボリマーを積極 する第二の工程と、前記感光性レジストと水溶性ポリマ 一が積縮された基板をベーキングする第三の工程と、前 記水溶性ボリマーを除去する第四の工程とよりなり、前 記感光性レジストの感光剤に埋み方面の濃度知解を特た せることを特徴とするレジスト基板の製造方法。

【請求項2】前記第三の工程におけるベーキング温度が 80℃以上180℃以下であることを特徴とする請求項 10 1 記載のレジスト基板の製造方法。

【請求項3】請求項1記載のレジスト基板の製造方法に より形成されたことを特徴とするレジスト基板。 【発明の詳細な説料】

[0001]

【発明の属する技術分野】本発明は、半郷休集積回路や 液晶素子あるいは光ディスクのマスタリングプロセス等 において用いられるレジスト基板の製造方法及びレジス ト基板に関するものである。

[00002]

【従来の技術】半導体集積回路や液晶素子等のパターン 形成には、被加工基板上に塗布された感光性樹脂(レジ スト)を主、電子線あるいはX線で鑑光し、現像により レジストパターンを形成した後、そのレジストパターン に従って被加工基板をエッチングするいわゆるリソグラ フィー技術が用いられている。

【0003】ところで、1C、LS1、ULS1等の半 導体集積回路は、微化、CVD、スパッタリング等の薄 膜形成工程と、シリコンウェハー等の被加工基板上にフ ステッパ等により所望のパターンを露光した後、現像、 エッチングを行うリソグラフィー工程やイオン注入等の **拡**密工程を繰り返すことにより製造されている。

【0004】 このようなフォトリソグラフィー工程によ り形成されるフォトレジストパターンの膨小関係サイズ は、半導体集種回路の高速化、高密度集積化に伴い、ま すます微細にしてかつ高精度なパターン形成技術が要求 されており、そのレジストパターン形成技術においても あらゆる可能な改良が追求されている。

セスを、図5に示す。図5に示されるように、従来法で は、まず被処理基板上にレジストをスピン塗布し、溶媒 除去、基板との密着性商上を目的として、レジストの種 類に応じてプリベークを行う。冷却後、レジストの種類 に応じた所定の照射量で所定波長域の電磁波、例えば、 紫外線、所定エネルギーの粒子線あるいは電子線を選択 的に照射して露光する。その後、場合によっては水によ るプリウェット行程を経て、レジストの種類に応じた現 像処理を行い、所望のレジストパターンが形成される。

に用いられる現像液によるレジスト表面のウェット処理 を登録する。

【0006】一方、光ディスクのマスタリングプロセス においては、レンズで集光させたレーザーヒームをレジ ストに直接鑑光、現像することによって、ピットと呼ば れる信号パターンやゲループと呼ばれる案内灘を形成し ている。

【0007】網3は、論者のパターン形成方法であるう イン&スペースのパターンを形成する際の選択の状態を

示す説明閃であり、1は基板、6はレジスト、7はフォ トマスク、8はレーザー光であり、併せて光の強度分布 も承している。

【0008】この図3に示されるように、ライン&スペ -- スのパターンの形成においては、フォトマスク7を通 して鐵光を行う際に、光の回折や散乱によって遮光され ている部分にまで光が回り込んでしまい、このため、微 細なパターンを解像するのが困難であるという難点があ 3.

【0009】また図4は、後者のパターン形成方法であ 20 る光ディスクのマスタリングプロセスにおいて、ビット (あるいはグループ) パターンを形成する際のレーザー ビーム業者の状態を示すが難談であり、11はレーザー ビーム、9は対物レンズであり、併せてレーザービーム スポット内の光の強度分布をも示している。なお図3と 共通する部分には同一の番号を付している。同図(A) は大きなピットの形成を、開図(B)は小さなピットの 形成をそれぞれ示している。この図4に示されるよう に、小さなピットを形成するためにはパワーを下げなけ ればならないが、パワーを下げた場合には、光の強度が ォトレジストを塗布し、フォトマスクを用いた縮小投影 30 不十分となってピットが形成できず、解像不良となって しまう。

【0010】 このような従来の問題点に対して、例え UL 特顯平5-144693号公親、特膜平4-3478 62号公報等により解決する方法が提案されている。そ の1つの解決方法である特勝平5-144693周公卿 によれば、レジストの解像度を上げるべくレジストの感 光剤に膜摩方向の濃度勾配を排たせる、つまり、感光剤 適度がレジスト表面付近が弱も高く、鉱板界面付近が弱 も低いという状態を作り出す手法が開示されている。こ 【0005】従来技術によるレジストパターン形成プロ 40 のような源度勾配を形成することによって、レジストの 表面側に大きな吸収をもたせることができ、これによっ てCEL(Contrast Enhancement Laver)プロセスと同様 に、燃光による燃光剤の分解に基づく適明化が光のコン トラストを増強して解像度を高めることができるのであ

【0011】また。他の解決方法である特勝平4-34 7862号公報によれば、レジストに添加した溶解促進 割の濃度勾配を形成する手法が開示されている。これ は、レジスト表面に向かって溶解促進額の濃度が直続的 ここで、プリウェットとは、純水またはその直後の現像 50 に減少するような勾配を形成することによって、表面に 近づくほど母娘海に対する溶解速度が低下し、高コント ラストのパターンを得るという方法である。

[0012]

【発明が解決しようとする課題】ところで、上述した特 開平5-144693号公報および特開平4-34786 2号公報では、濰度勾配を形成させる方法がいくつか具 体的に開示されている。

【0013】まず、特欄平5-144693号公樹で は、核光剤の濃度勾配を形成する方法として、基板に繊 光剤濃度の低いレジストを塗布した上に、減光和濃度の 10 高いレジストを塗布する方法が示されている。ところ が、この方法では感光润湿度の高いレジスト液を適下す ると、その適下した位置から先に途布してある癌光制器 度の低いレジスト膜の溶解が始まってしまうため、滴下 開始位置と終了位置とで溶解時間に差が生じることにな る。その結果、基板面内で濃度勾配を均一にすることが できないという問題が生じる。

【0014】さらに、マスタリングプロセスの場合は、 レジスト膨脹が100nm前後と非常に薄いので、レジ スト液もかなり薄めて塗布することになる。このように した場合、レジスト膜の溶解力も高くなるので、重ね塗 りをした場合は先に塗布したレジスト聯はほとんど溶解 してしまい、適度勾配が形成されないという問題もあ ã.,

【0015】また特勝平5-144693号公報では、 レジストを塗布した後その表面をアルカリ環腺液で頻準 する、いわゆる難溶化処理も濃度勾配を形成する方法と して示しているが、輸溶化処理の場合、表面付近の感光 制濃度が高くなるだけであり、濃度勾配が形成されると は置い難い。

【0016】一方、特開平4-347862号公報で は、レジストを塗布した後高温ベークを行いレジスト表 前から溶解促進剤を落発させることで濃度匀剤を形成す るという方法を示しているが、羞発という現象を利用す るため、ベーク温度・時期、窓内の温度・温度等の条件 を厳密に管理する必要がある。職態が強い場合は、さら に厳密にする必要がある。さらに、溶解促進剤という特 殊な添加物を添加しなければならず、その選択も難し

ば、レジストに含まれている成分に濃度勾配を形成させ る方法には、幼部が不均一、あらゆる聯厚に対応できな い等の開願が存在していた。

【0018】そこで、本発明になるレジスト基板の製造 方法は、上記問題点について鑑みてなされたものであ り、レジスト脳中の感光剤に濃度勾配を均一に形成させ ることにより解像度を高め、微細なパターンを精度良く 形成させること及び精度良く形成された微糊なパターン を有するレジスト基礎を提供することを目的としてい 8.

[0019]

【課題を解決するための手段】本発明に係る端求項1記 蓋の登明は、基板1に核光性レジスト?を塗布する第一 の工程と、前記感光性レジスト2の上に水溶性ポリマー 3を積層する第二の工程と、前記感光性レジスト2と水 湾性ボリマー3が粘筋された基板1をベーキングする第 三の工程と、前記水溶性ポリマー3を除去する第四の工 程とよりなり、前記感光性レジスト2の感光剤に厚み方 命の機能勾配を特たせることを特徴とする。

【0020】本発明に係る請求項2影義の発明は、請求 項」記載のレジスト基板の製造方法において、前記第三 の工程におけるペーキング温度が80℃以上180℃以 下であることを特徴とする。

【0021】本発明に係る請求項3配載の発明は、請求 項1記載のレジスト基板の製造方法で形成されたレジス ト基板10であることを特徴とする。

[0022]

【発明の実施の形態】以下、本発明の好適な実施例を添 付側面に基づいて淵明する。なお、以下に述べる零胎例 20 は本発明の好適な具体例であるから、技術的に好ましい 種々の観定が付されているが、本発明の範囲は、以下の 源明において特に本発明を限定する毎の記載がない別 り、これらの機様に関られるものではない。

【0023】以下、本発明の好ましい実施の形態につき 図面を参照して説明する。図1は、本ி明のレジスト基 板の製造方法において、主要部となる橋光剤の徹底勾配 形成方法を示す説明図、図2は、図1(C)のプロセス におけるレジスト膜内の様子を示す模式関である。

【0024】まず、従来と間様にシリコン、ガラスある 30 いは石英等の基板1に、所定の膜壁となるように、溶剤 で希釈されたナフトキノンジアジド/ノボラック系のボ ジ型レジストを塗布し、レジスト機2を形成する

(A) .

【0025】次に、被覆材料として水に溶解させたPV A (ボリビニルアルコール) 等の水溶性ボリマー3を、 レジスト勝つのトにスピンコート法等の方法により徐布 する (B) ... そして、この状態でプリベークを行うこと で、レジスト勝2中の後述する感光顔5が上方へと拡散 し、濃度勾配が形される(C)。その後水洗で水溶性ポ 【0017】このように従来のパターン形成方法によれ 40 リマー3を能去し、再度プリペークを行うことでレジス ト膜2中の残留溶媒を除去する(D)。

> 【0026】以上のようなプロセスによって、レジスト 攤2中の箱記した後述する核光剤5の濃度が、レジスト 廃2の表面側で高く、基板1側で低いという濃度勾配が 形成されたレジスト基板10を作製することができる。 【0027】ここで、本実施例による感光制5の濃度勾 配形成のメカニズムについて説明する。図2は、前記し た如く図1(C)のプロセスにおけるレジスト膜2内の 総子を示す機才図である。なお、説明の報合上、ベース

50 樹脂であるノボラック機能は関汞していない。

【0028】本事編纂の縁大の特徴は、基板1十に衝定 量のレジストを塗布してレジスト膜2を形成した後、直 ちにペーク処理を行わず、残存溶媒4が多量に残ってい る状態で水溶性ポリマー3を積層する(a) ことにあ る。このような状態でペークを行うと、溶媒4の蒸発が 水溶性ポリマー3によって妨げられるので、溶媒4が残 ったままレジスト膜2中の温度が上がることになる。そ うすると、レジスト贈2中の銭光剤5は、その揮発性に より上方に拡散しやすくなる(b)。これは、溶媒4の 存在によってノボラック樹脂が膨潤した状態にあるの で、感光剤 5 の自由度が増し、動きやすい状態にあるた めである。

【0029】従って、ベーク終了後には、レジスト膜2 表面付近の感光剤濃度が高く、基板1側が低いという濃 度勾配が形成されることになる(c)。このような濃度 勾配を形成することによって、CEL (Contrast Enhan rement Laver) プロセス、すなわち、感光による感光剤 5の分解に結づく透過率の増加が、光量の増加に対して 非線形に増加する特性を有する核脊性膜をレジスト擬2 上に塗布するプロセスと同様に、光のコントラストを増 20 ℃の範囲に設定すれば良い。 強して解像度を上げることが可能となり、微細パターン の形成において解線度を高めることができるのである。 [0030]なお、図1(C)のプロセスにおけるべー クの温度は、80℃から180℃の範囲で行うのが好ま しい。80℃以下だと、輸記したレジスト膜2中の燃光 割5の拡散が十分に起こらないので濾度勾配が形成され ず、また180℃以上だと燃光網5が分解してしまうか らである。

【0031】また、水浴性ポリマー3の適度は、1%か は、塗布した際にレジスト機2上ではじかれてしまい均 一に塗布できないケースが多発する他、塗布できたとし ても溶像の蒸発を妨げる効果が乏しくなり、 咳光細5の 透度勾配の形成が不十分であるという問題点が発生する からである。また、70%以上の總度だと逆に水溶液の **約性が高すぎて、徐布する際に下のレジスト瞭2の際線** を変化させてしまうという棚額点が発生する。

【0032】水溶性ポリマー3としては、ポリピニルア ルコールの他、ゼラチン、カゼイン、フィッシュゲルー 等を用いることができるが、レジスト聯2の上に塗布し た弊に、このレジスト騰2を溶かさないものであればこ の罷りではない。また、レジスト離2からの溶媒の蒸発 を妨げることができ、自つ水洗あるいは現像によって除 去できるものであれば、水溶性ポリマー3でなくとも良

【0033】また、水溶性ポリマー3の中にCEL材料 を分散させた材料を用いて、水溶性ポリマー3を除去せ ずに露光を行えば、CFL材料によるCEL効果と、感 光部5の濃度気能によるCFL効果が粗重され、さらに 物郷なパターンの形成が可能となる。

【0.034】なお、図1(D)のプロセスにおけるペー クの温度であるが、80℃から120℃の範囲に設定し た場合に、解像度としては殆ど変化がないことが実験的 に確かめられている。

【0035】次に、パターン形成方法につき図1を参照 して説明する。前記した如く、従来と硝様にシリコン、 ガラスあるいは石英等の基板1に、所定の膜障となるよ うに、溶剤で希釈されたナフトキノンジアジド/ノボラ ック系のボジ型レジストを塗布し、レジスト際2を形成 10 する(A)。

【0036】次に、被缴材料として水に溶解させたPV A (ポリビニルアルコール) 等の水溶性ポリマー3を、 レジスト膜2の上にスピンコート法等の方法により塗布 する(B)。そして、この状態でプリベークを行うこと て、レジスト膜2中の後述する燃光剤5が上方へと拡散 し、濃度勾配が形成される(C)。その後水溶性ポリマ ー3を除去し、再度プリベークを行うことでレジスト膜 2中の残留溶媒を除去する(D)。なお、この場合のプ リベークの温度は、前記したと環様の80°から120

【0037】次に、前記レジストに応じた所定の服射量 でレーザ光8(レーザビーム11)を照射して総光を行 ない(E)、その後、前記レジストに応じた現像処理を 行なう(F)。これにより、所定のパターンが形成され 3.

[0038]

【発明の効果】以上のように請求項1記載の発明は、基 板に鑑光性レジストを塗布する第一の工程と、前記膨光 性レジストの上に水溶性ポリマーを積層する第二の工程 ら70%の範囲であるのが好ましい。1%以下の譲渡で 30 と、前記感光性レジストと水溶性ポリマーが綺層された 基板をベーキングする第三の工程と、前記水溶性ポリマ 一を除去する第四の工程とよりなり、前記懲光性レジス トの総岩錦に駆み方命の濃度幻影を持たせる。 すなわ ち、感光網の拡散性を利用して微度勾配を形成している ので、塗布条件やベーキング温度等の影楽な条件管理が 必要なくして地一な濃度知能を容易に形成することがで き、微細なパターンを精度良く形成することが可能とな

> 【0039】また、同様に感光剤の拡散を利用するた め、数十nm程度の薄膜にも対応することができ、光デ ィスクのマスタリングプロセス等にも応用が可能であ Z.,

【0040】本発明に係る請求項2部報の発明は、前記 第三の工程におけるベーキング温度を80℃以上180 で以下に設定したことにより、感光期に厚み方向の濃度 勾配を容易に持たせることができ、微線パターンの形成 において解像度を高めることができる。

【0041】本発明に係る請求項3記載の発明は、前紀 したレジスト基板の製造方法で形成されたレジスト基板 50 としたことにより、高家商の客ディスクを得ることがで 幸る。 【図面の簡単な製剤】

【図1】本発明に係るレジスト基板の製造方法における 感光剤の濃度勾配形成方法を示す説明図である。

【図2】図1 (C) のプロセスにおけるレジスト膜内の 様子を示す模式図である。

【図3】ライン&スペースのパターンを形成する際の露 光の状態を示す説明図である。

【図4】 光ディスクのマスタリングプロセスにおいて、

ピット (あるいはゲループ) パターンを形成する際のレ*10

*一ザービーム露光の状態を示す説明器である。

【図5】従来技術によるレジストパターン形成プロセス の流れを示す説明図である。

【符号の説明】

- 基板
- 感光性レジスト
- 被视材料 线光網
- レジスト基板
- 10

[81] [|%| 2] (6)

[83]

[8]5]

.