

Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

**AIAA-2004-0381
NASA TM-2004-212043**

Jake Vachon, NASA DFRC
Ronald Ray, NASA DFRC
Carl Calianno, NAVAIR

Dryden Flight Research Center

GALCIT Seminar

Presentation Overview

•Overview

- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute Drag
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

- National Objectives
- Dryden Project Objectives
- Airplane Description
 - Tanker airplane, in-depth
- Flight Test Technique
- Sample Results
- Parachute Drag
- Drag Relief
- Comparison to Wind Tunnel Predictions
- Drag Polars
- Constant Drag Coefficient?
- Concluding Remarks

National AAR Program Interest

• Automated Aerial Refueling (AAR)

• Objectives

• Unmanned Aerial Vehicles

- Airplanes
 - Extends range
 - Shortens response for time critical targets
 - Maintains in-theater presence using fewer assets

• Overview

- Evolution
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
 - Parachute
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant CD
- Conclusions

Dryden Flight Research Center

National AAR Program Interest

- Overview

• Objectives

- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results

• Automated Aerial Refueling (AAR)

• Manned Aircraft

- Facilitates adverse weather operations
- Improves fueling efficiency
- Enables multi-point simultaneous refueling

Dryden AAR Project Objectives

•Overview

•Objectives

• Quantify Assumptions

- Drogue is assumed stable in the proximity of a stable receiver aircraft
- The drogue movement is repeatable and predictable

•Evolution

•Airplanes

•ARS

•Engine

•FTT

•Sample Data
•Drag Results

•Paradropes

•Relief

•Wind Tunnel

•Drag Polars

•Constant CD

•Conclusions

• Assess the Approach

- Can adequate flight test data be captured through optical instrumentation?
- Can individual model effects be superimposed to predict final drogue position?
- Are the flight test techniques sufficient to collect the desired data?
- Are the independent model parameters that affect drogue position observable through flight test?
- Sufficient signal to noise ratio, measurement error, parameter coupling, etc.

• Reduce risk for UCAV AAR program through early flight test

- Deliver flight validated drogue model to the AAR community for future automatic control system development
- Correlate the drogue model to generic forebody influences
- Develop organic UAV instrumented tanker capability
- Develop expertise in electro-optic sensor technologies
- Applicability of the model to alternate refueling scenarios

Dryden Optical Tracking

- Overview

•Objectives

- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

Dryden Flight Research Center

Dryden AAR Approach

• Overview

• Objectives

• Evolution

• Airplanes

• ARS

• Engine

• FTT

• Sample Data

• Drag Results

• Parachute

• Relief

• Wind Tunnel

• Drag Polars

• Constant CD

• Conclusions

• Phase 0

– Envelope expansion

• ARS on F/A-18A

• ARS operational envelope

• Flight test envelope

• 1st refueling from a
“K” F/A-18A

– Drogue position vs. airspeed

– Pilot proficiency

• Phase 1

– Isolate drogue influences

• Flight conditions

• Hose effects

• Tanker effects

• Receiver forebody effects

• Turbulence

– Two additional external tanks

• Opportunity for piggy-back experiment

– Existing instrumentation available onboard from the AFF project

– Drag estimation for paratrogue and hose assembly

Dryden Flight Research Center

Evolution of Aerial Refueling

1921: Wingwalking Transfer Method

- Overview

- Objectives

- Evolution

- Airplanes

- ARS

- Engine

- FTT

- Sample Data

- Drag Results

- Parachute

- Relief

- Wind Tunnel

- Drag Polars

- Constant CD

- Conclusions

Wesley May

Dryden Flight Research Center

Evolution of Aerial Refueling

1923: Hanging Hose Transfer Method

- Overview

- Objectives

- Evolution

- Airplanes

- ARS

- Engine

- FTT

- Sample Data

- Drag Results

- Parachute

- Relief

- Wind Tunnel

- Drag Polars

- Constant CD

- Conclusions

Evolution of Aerial Refueling

2003

- Overview
- Objectives
- **Evolution**
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

Surrogate Tanker

Surrogate UAV

Dryden Flight Research Center

Evolution of Aerial Refueling

- Overview

- Objectives

- Evolution

- Airplanes

- ARS

- Engine

- FTT

- Sample Data

- Drag Results

- Parachute

- Relief

- Wind Tunnel

- Drag Polars

- Constant CD

- Conclusions

2003: Precision Engagements

AAR Project Aircraft

- Overview
- Objectives
- Evolution
- Airplanes
 - NASA 845
 - Two-seater
 - Systems Research Testbed
 - Two forward-facing cameras
 - NASA 847
 - Single-seater
 - Tanker configuration w/ ARS
 - Thrust Instrumentation
 - Two aft-facing cameras
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions
- Dual instrumentation
 - GPS receivers
 - Wireless modems
 - Multiple telemetry streams
- Additional NASA F/A-18s
 - Phase 0 chase support

Dryden Flight Research Center

Tanker Description

- Overview

- Objectives

- Evolution

- Airplanes

- ARS

- Engine

- FTT

- Sample Data

- Drag Results

- Parachute

- Relief

- Wind Tunnel

- Drag Polars

- Constant CD

- Conclusions

Extensive Engine Instrumentation

- Thrust

Aerial Refueling Store

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute
Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

Engine Thrust Instrumentation

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
 - FTT
 - Sample Data
 - Drag Results
 - Parachute
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant CD
 - Conclusions
- Engine
 - LPT discharge measuring plane
 - Combustor discharge
 - HPC discharge
 - HPC inlet
 - Engine inlet face
 - Free stream
 - Afterburner inlet
 - LPT rotor discharge
 - Exhaust nozzle inlet
 - Exhaust nozzle throat
 - Exhaust nozzle discharge

- F404 Engines – Instrumented for Thrust Determination
 - Flight-test, volumetric fuel-flow meter installed ($P_{T_{558}}$)
 - Turbine exit plane pressure rakes ($P_{T_{558}}$)
- Manufacturer's In-Flight Thrust Model used to calculate thrust

Lift and Drag Analysis

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
 - FTT
 - Sample Data
- Air Data Calcs
 - GW, V_{inf}, P_o, α
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

Dryden Flight Research Center

Flight Test Technique

- Overview
- Objectives
- Evolution
- Airplanes
 - ARS
 - Engine
 - FTT
- Sample Data
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

• Test Point Description

- All-subsonic test points
- Stabilized paratrogue deployments and retractions
- Evolution

• Data Uncertainty

- Drag calculation ~ 3 to 5%
- Trim angle of attack $< 1\%$
 - Airplane weight
 - Drogue deployment

• Data Quality

- Bias error is virtually eliminated by acquiring test data at back-to-back points during each flight, eliminating the effects of
 - Weight changes
 - Atmospheric effects
 - Calculation bias errors
- Auto-throttle control
- Variations in extended hose length < 2 feet
 - Extensions and retractions
 - Receiver engagements
- Control room displays for evaluating data and maneuver quality

Sample Drag Change

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
 - Drag Results
 - Parachute
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant CD
 - Conclusions

Dryden Flight Research Center

Sample Real-Time Data

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Result
- Parabogu
- Relief
- Wind Tunnel
- Drag Polar
- Constant
- Conclusions

Parachute Drag Summary

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
 - Parachute
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant CD
- Conclusions

- Parabolic trend evident
- Results appear to be independent of altitude

Receiver Engagements

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

- Magnitude of drag relief is significant
- Data Scatter

Wind Tunnel Tests

- Overview
- Objectives
 - Baseline aerodynamic performance of the Navy '18' canopy for comparison purposes
 - Test various canopy designs for next-generation ARS canopy
 - Material type
 - Size, shape, cross-sectional area
 - Test various paratrogue mechanical designs
 - Struts
 - Linkages
 - Thread types
 - Used for attaching canopy to struts and maintaining shape while inflated
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Paratrogue
- Relief
- Drag Results
 - Wind Tunnel
 - Drag Polars
 - Constant CD
 - Conclusions
 - Tunnel Characteristics
 - 3 Foot diameter test section
 - Maximum Airspeed = 200 kts
 - Blockage = Approximately 10%

Dryden Flight Research Center

Wind Tunnel Setup

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- **Drag Results**
 - Paratrogue
 - Relief
 - **Wind Tunnel**
 - Drag Polars
 - Constant CD
 - Conclusions

Dryden Flight Research Center

Canopy Aerodynamics

- The canopy is an inflatable airfoil which generates lift and drag

Flight vs. Wind Tunnel

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
 - Paratrogue
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant CD
 - Conclusions

Drag Polars

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
 - Parachute
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant CD
 - Conclusions

Dryden Flight Research Center

Drag Polars

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
 - Paratrogue
 - Relief
 - Wind Tunnel
- Drag Polars
 - Constant CD
 - Conclusions

Dryden Flight Research Center

Constant Drag Coefficient?

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
 - Parachute
 - Relief
 - Wind Tunnel
 - Drag Polars
 - Constant C_D
- Conclusions

Conclusions

- Overview
- Objectives
- Evolution
- Airplanes
- ARS
- Engine
- FTT
- Sample Data
- Drag Results
- Parachute
- Relief
- Wind Tunnel
- Drag Polars
- Constant CD
- Conclusions

- First known measurement and publication of in-flight drag of an aerial refueling system
- Parachute drag
 - 200 lbf at 170 kias
 - 450 lbf at 250 kias
 - Good correlation with wind tunnel results
- Tanker drag relief during engagements
 - 35 lbf at 170 kias
 - 270 lbf at 250 kias
- “Constant” paratrogue $C_D = 0.0056$
 - Based upon F/A-18 wing area
- All results compare favorably with clean F/A-18 data from the AFF project

Dryden Flight Research Center

