Consideriamo il piano xy. Nell'origine c'è una carica $q_A=Q$, nel punto $B=(\ell,0)$ $(\ell>0)$ c'è una carica $q_B=Q/\sqrt{2}$ e nel punto $L=(0,-\ell)$ c'è un filo di lunghezza infinita nella direzione dell'asse z. Calcolare il potenziale elettrico nel punto L sapendo che il potenziale all'infinito è nullo.

Scegli un'alternativa:

a. $+k_e \frac{Q}{2\ell}$ b. $-k_e \frac{Q}{2\ell}$ c. $-k_e \frac{2Q}{\ell}$ d. $+k_e \frac{3Q}{2\ell}$ e. $+k_e \frac{2Q}{\ell}$

$$V = \text{Ke} \frac{9A}{l} + \text{Ke} \frac{9B}{\sqrt{l^2 + l^2}} = \text{Ke} \frac{Q}{l} \left(1 + \frac{1}{\sqrt{2}\sqrt{2}}\right) =$$

$$= \text{Ke} \frac{3Q}{2l}$$

Calcolare il campo elettrico \overrightarrow{F} nel punto L .

Scegli un'alternativa:

$$+k_{e}\frac{Q}{\ell^{2}}[\frac{1}{4}\vec{i}+\frac{5}{4}\vec{j}]$$

$$^{\circ}$$
 ь. $-k_{e}\frac{Q}{\ell^{2}}[\frac{2\sqrt{2}}{4}\vec{i}+\frac{1}{4}\vec{j}]$

$$-k_e \frac{Q}{\ell^2} \left[\frac{1}{4}\vec{i} + \frac{5}{4}\vec{j}\right]$$

• d.
$$+k_{e}\frac{Q}{\sqrt{2}}\left[\frac{2\sqrt{2}}{4}\vec{i}+\frac{1}{4}\vec{j}\right]$$

$$-k_e \frac{Q}{\ell^2} \left[\frac{\sqrt{2}}{4} \vec{i} + \frac{\sqrt{2}}{4} \vec{j} \right]$$

$$= - \operatorname{Ke} \frac{Q}{\ell^2} \left(\frac{1}{4} \vec{\lambda} - \frac{5}{4} \vec{j} \right)$$

Calcolare, nel caso in cui il filo sia percorso da una corrente I nella direzione \vec{k} , il campo magnetico nell'origine.

Scegli un'alternativa:

$$-2k_m \frac{I}{\ell} \vec{j}$$

$$^{\circ}$$
 ь. $2k_{m}rac{I}{\ell}\vec{j}$

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$

$$^{\circ}$$
 d. $-2k_{m}rac{I}{\ell}i$

$$^{\circ}$$
 e. $-2k_{m}rac{I}{\ell}\vec{k}$

$$\beta = 2 k_m \frac{I}{\ell}$$

regola della mano destra:
-pollice entrante nel foglio

directione lungo X $\Rightarrow \overrightarrow{B} = 2km + \overrightarrow{J} \overrightarrow{\lambda}$

Il circuito in figura si trova inizialmente in condizioni stazionarie con l'interruttore T aperto. All'istante t = 0 s l'interruttore T viene chiuso. Determinare la corrente i 0 immediatamente prima di chiudere T:

Scegli un'alternativa:

$$\circ$$
 a. $\frac{V_0}{R}$

$$\circ$$
 b. $rac{V_0}{2R}$

$$^{\circ}$$
 c. $-\frac{V_0}{2R}$

$$^{\circ}$$
 e. $-\frac{V_0}{R}$

L 2 corto circuito

L % corto cirwito

Determinare la differenza di potenziale $V_A\!-\!V_B$ immediatamente prima di chiudere T:

Scegli un'alternativa:

$$\circ$$
 a. $2V_0$

$$\circ$$
 b. $-2V_0$

$$^{\circ}$$
 c. $-rac{V_0}{2}$

$$\circ$$
 d. $rac{V_0}{2}$

Determinare la differenza di potenziale $V_A\!-\!V_B$ che comparirebbe ai capi di L se alla stazionarietà venisse nuovamente aperto T

Scegli un'alternativa:

$$\circ$$
 a. $-2V_0$

$$\circ$$
 b. $rac{2V_0}{3}$

$$\circ$$
 c. $2V_0$

0 d. 0

$$^{\circ}$$
 e. $-\frac{2V_0}{3}$

Alla stariouariete, prime di riaprire T:

L& corto circuito

$$2V_0 - \frac{1}{2}i_0R - i_LR = 0$$
 $\frac{3}{2}i_0 = \frac{2V_0}{R} \Rightarrow i_0 = \frac{4}{3}V_0$

Quando apro T: in e invariata

Kirchaeff maglia:

$$2V_0 - \dot{l}_0 \cdot 2R - (V_A - V_B) = 0$$

 $V_A - V_B = 2V_0 - \frac{8}{3}V_0 = -\frac{2}{3}V_0$