Data wrangling/manipulation

Overview

Very quick review of connections in hypothesis tests and confidence intervals

Data wrangling/manipulation with dplyr

Brief history of data visualization

Announcements

A practice midterm exam has been posted

• Midterm will be a written exam taken in class on Thursday 10/13

Homework 5 has been posted

• I strongly recommend you do the first two parts prior to next class

Kickoff event for Yale's Institute for Foundations of Data Science

Event will take place from 1-4pm of Friday, October 14 O. C. in Marsh Lecture Hall

The technical content will consist of two one-hour rounds of rapid-fire talks illuminating the breadth of data science research at Yale, beginning with remarks from Peter Salovey and Scott Strobel.

- It will be fast and fun!
- If you would like to attend the kickoff, you can RSVP using this link

If you are interested in helping run the kickoff, there is funding to be paid to help (\$15 / hour)

Please email Emily Hau (<u>emily.hau@yale.edu</u>) if you're interested.

Plan for the semester

Very quick review

Just need to follow 5 steps!

Null distribution

Very quick review

To select the appropriate parametric test, focus on the parameters being tested in the null hypothesis

• E.g.,
$$H_0$$
: $\pi = 0.5$ H_0 : $\mu = 0.5$ H_0 : $\mu_T = \mu_C$ H_0 : $\mu_1 = \mu_2 = ... = \mu_k$

Parametric tests are derived from particular mathematical assumptions

- E.g., data from the two samples comes from normal populations with the same variance
- Some hypothesis tests are "robust" to violations of these assumptions
 - The robustness can be evaluated this through computer simulations

Very quick review: theories of hypothesis testing

Fisher (1890-1962)

Neyman (1894-1981)

Pearson (1895-1980)

p-value a strength of evidence

p<0.05

Relationship between null and bootstrap distributions

Questions?

The tidyverse and dplyr

The 'tidyverse'

The tidyverse is set of R packages that operate 'tidy data'

• i.e., that operate on data frames (or tibbles)

Tidy data is data where:

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

Messy data...

What would be an example of data that is not tidy?

	formation												
Name	Formula	Slope at Intercept		ED-20	ED-50	ED-80	Correlation	Forced through ori		go			
Standard	Calc 1: C	standard	standard	3792394	27752	0.2	0.5	0.8	1	No			
Plate info	ormation												
Plate	Repeat	Barcode	Measure	Chamber	Chamber	Humidity	Humidity	Ambient	Ambient	Formula	Measurer	nent date	
1	1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	Calc 1: C	standard	standard	10.12.2013 10:23:3
Backgrou	und inform	nation											
Plate	Label	Result	Signal	Flashes/	Meastime	MeasInfo							
1	PicoGree	0	110307	10	0	De=1st E	x=Top En	n=Top Wo	dw=N/A				
Calculate	standard	standards on each plate) where Label: PicoGreenFilterTop(1) channel 1							nnel 1				
	1	2	3	4	5	6	7	8	9	10	11	12	
A	-0.0011	-0.0011	-0.001	-0.001	-0.0011	-0.0012	-0.0011	-0.0011	-0.0012	-0.0012	0.9973	1.0026	
В	0.0012	0.0014	0.0013	0.0012	0.0013	0.0012	0.0014	0.0003	-0.0011	-0.0011	0.0981	0.103	
С	0.0016	0.0013	0.0013	0.0011	0.0012	0.0015	0.0016	-0.0004	-0.0011	-0.0011	0.0104	0.0095	
D	0.0019	0.0024	0.0018	0.0015	-0.001	-0.001	-0.001	-0.001	-0.0011	-0.0011	0.0008	0.0009	
E	-0.001	-0.0011	-0.0011	-0.0011	-0.001	-0.0012	-0.0011	-0.001	-0.0009	-0.0011	-0.0001	-0.0002	
F	-0.001	-0.0011	-0.001	-0.001	-0.0012	-0.0011	-0.0011	-0.0009	-0.001	-0.001	-0.0003	-0.0002	
G	-0.0011	-0.0011	-0.0011	-0.001	-0.001	-0.0012	-0.0011	-0.001	-0.001	-0.0011	-0.0002	0.0012	
	-0.0011	-0.0012	-0.0011	-0.001	-0.0011	-0.0011	-0.0012	-0.0011	-0.0011	-0.001	-0.0003	-0.0003	

The 'tidyverse'

The packages share a common design philosophy

Most written by Hadley Wickham

dplyr: A grammar for data wrangling

Grammar: a set of components that can be combined to achieve a goal

dplyr is a package that has a set of verbs that are useful for transformations data:

- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. group_by()
- 6. summarize()

All these function take a data frame and other arguments and return a data frame

> library(dplyr) # load the dplyr package

Quick overview of the dplyr functions

1. filter()

The filter() function allows you to select a subset of rows in data frame

2. select()

The select() function allows you to select a subset of columns

3. mutate()

The mutate() function allows you to create new columns that are functions of existing columns

4. arrange()

The arrange() function arranges the rows based values in a column

• arrange(desc()) arranges from largest to smallest

5. summarize()

The summarize() function reduces values in many rows into single values

6. The group_by() function

The group_by() function groups variables for future operations

The pipe operator

The pipe operator |> allows us to chain commands together

Let's try it out!

Statistical Science 2008, Vol. 23, No. 4, 502–535 DOI: 10.1214/08-STS268 © Institute of Mathematical Statistics. 2008

The Golden Age of Statistical Graphics

Michael Friendly

Data visualization

Q: What are some reasons we visualize data rather than just reporting statistics?

The age of modern statistical graphs began around the beginning of the 19th century

William Playfair (1759-1823) credited with inventing the line graph, bar chart and pie chart

According to Friendly, statistical graphics researched its golden age between 1850-1900

Joseph Minard (1781-1870)

John Snow (1813-1858)

Clusters of cholera cases in London epidemic of 1854

Florence Nightingale (1820-1910)

Diagram of the causes of mortality in the army in the east

Francis Galton (1822-1911)

WEATHER CHART, MARCH 31, 1875.

The dotted lines indicate the gradations of barometric pressure. The variations of the temperature are marked by figures, the state of the sea and sky by descriptive words, and the direction of the wind by arrows—barbed and feathered according to its force.

Odenotes

First weather map published in a newspaper (1875)

"Graphical dark ages" around 1950

Computer Age Statistical Inference, Efron and Hastie

Currently undergoing a "Graphical re-birth"

Box plot

Fig. 6-24. Various uses of the range bar.

Currently undergoing a "Graphical re-birth"

Currently undergoing a "Graphical re-birth"

Hans Rosling's gapminder

- Simple version
- TV special effects
- Ted Talk

Gapminder tools:

https://www.gapminder.org/tools

> library('gapminder')

A very brief history of data visualization

Currently undergoing a "Graphical re-birth"

Next class: a grammar of graphics and ggplot

A grammar of graphics and ggplot

Review: plots of categorical data

Review: plots of quantitative data

Scatter plots

Min Temperature (F)

Line chart

Review: plots of quantitative data

Histograms

What are some similarities between these graphs?

The grammar of graphics

Leland Wilkinson noticed similarities between many graphs and tried to generate a 'grammar' that could be used to express a graph

• i.e., a list elements that can be combined together to create a graph

First edition

Second edition

Graphs are composed of...

A Frame: Coordinate system on which data is placed

• E.g., Cartesian coordinate system, polar coordinates, etc.

Glyphs: basic graphic unit representing cases or statistics

- Contains visual properties (aesthetics) such as: shape, color, size, etc.
- Need to specify how properties of the data are mapped onto these aesthetics

Scales and guides: shows how to interpret axes and other properties of the glyphs

• i.e., gives information about how the data values were mapped into glyph properties

Plots can also contain...

Facets: allows for multiple side-by-side graphs based on a categorical variable

• Makes it easier to compare different conditions

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display

• E.g., font size, background color, etc.

The variables are:

- Log enzyme concentration
 - -3 to 5
- Target
 - · CcpN, Uptake,...
- Flux
 - Zero or positive
- Gene
 - MaeN, PtsG, ...
- Molecule:
 - Glocose, Fructose, ...

Question: What all the mapping between variables and visual attributes?

• i.e., see if you can list the mappings from all variables to visual attributes.

Also, can sketch out the data frame that underlies this figure on a piece of paper?

	E	otin	COOK	া ফম		wp
	NYT	538	Cook	Roth.	Sabato	WaPo
Competitive States	Aug 31	Aug 4	Aug 22	Aug 29	Aug 27	Aug 29
New Hampshire	84% Dem.	90% Dem.	Leaning	Likely	Likely	>99% Dem.
Michigan	74% Dem.	65% Dem.	Tossup	Leaning	Likely	99% Dem.
Colorado	57% Dem.	60% Dem.	Tossup	Tossup	Leaning	65% Dem.
lowa	53% Dem.	55% Dem.	Tossup	Tossup	Tossup	63% Rep.
Alaska	52% Dem.	Even	Tossup	Tossup	Tossup	66% Dem.
North Carolina	51% Rep.	Even	Tossup	Tossup	Tossup	91% Dem.
Louisiana	60% Rep.	55% Rep.	Tossup	Tossup	Tossup	51% Dem.
Arkansas	66% Rep.	60% Rep.	Tossup	Tossup	Tossup	65% Rep.
Georgia	82% Rep.	75% Rep.	Tossup	Likely	Leaning	83% Rep.
Kentucky	86% Rep.	80% Rep.	Tossup	Leaning	Likely	94% Rep.
* Rothenberg ratings are conv scale to a seven-category scale			Solid Like	,	ossup Leaning	Likely Solid

- 2. What is the glyph and its graphical attributes
- 3. What sets the order for the vertical variable?

^{1.} What variables define the frame?

ggplot

ggplot2 is an R package that implements the grammar of graphics

• It builds up graphics by starting with a frame, adding glyphs, etc.

load the ggplot2 library

> library('ggplot2')

Get the book on GitHub

Example data: mtcars

PERFORMANCE	CADILLAC	CADILLAC LINCOLN IM	
Acceleration 0-30 mph	4.30	3.97	4.2
0-50 mph	8.49	- 8.00	9.15
0-60 mph	12.00	9.50	12.1
Standing Start 1/4-mile	12.00	9.50	12.1
Mph	77.05	77.65	80.28
Elapsed time	17.98	17.82	17.42
Passing speeds			
40-60 mph	6.58	5.9	7.1
50-70 mph	7.00	6.8	6.8
Stopping distance			
From 30 mph	32'1"	31'4"	27'5"
From 60 mph	182'7"	153'10"	129'3"
Gas mileage range	10.43	10.42	14.7
Width – in.	79.8	80.0	79.7
Front Track-in.	63.5	64.3	64
Rear Track – in.	63.3	64.3	63.7
Wheelbase - in	133.0	127.0	124.0
Overall length – in.	233.7	232.6	231.1
Height – in.	55.6	55.4	54.7
Curb Weight - lbs.	5,250	5,425	5.345 25
Fuel Capacity – gals.			
Oil Capacity – qts.	4(1)	4 (1)	4(1)
Storage Capacity – cu. ft.	19.27	20.9	20+
Base Price Price as tested	\$9,312	\$7,637	\$7,062
CANADA AND AND AND AND AND AND AND AND AN	\$11,435 OHV V-8	\$9,452 OHV V-8	\$8,737
Engine: Bore & Stroke – ins.	4.3x4.06	4.36x3.85	OHV V-8 4.32x3.75
Displacement – cu. in.	4.3x4.06 472	4.30x3.63	4.32x3.75
HP @ RPM	205 @ 3600	215 @ 4000	230 @ 4000
Torque: lbsft. @ rpm	365 @ 2000	350 @ 2600	350 @ 3200
Compression Ratio	8.25:1	NA 2600	8.2:1
Carburetion	4V	4V	4V
Transmission	Auto.	Auto	Auto.
MANAGE 1	Turbo Hydra-Matic	Select Shift	Torqueflite
Final Drive Ratio	2.93	3.00	3.23 (?)
Steering Type	Recirculating Ball & Nut Power	Recirculating Ball & Nut With Integral Power Unit	Recirculating Ba Power
Steering Ratio	17.8-9.0	21.6 To 1	18.9:1
Turning Diameter (curb-to-curb-ft.)	(Wall To Wall) 24.54'	46.7'	44.69'
Wheel Turns	202	200	9.5
(lock-to-lock) Tire Size	2.83 LB78X15	3.99 LB78X15	3.5 LR78X15
110 3120	Steel Belted Radials	Steel Belted Radials	Steel Belted Radial Ply
Brakes	Power Disc/Drum	Power Disc/Drum	Power Disc/Disc
Front Suspension	Coils/Shocks Front Diagonal Tie Struts Stabilizer	Coils/Shocks Axial Strut Stabilizer	Torsion Bar Shocks Stabilizer
Rear Suspension	4 Link, Coils/ Shocks	Three Link, Rubber Cushioned Pivots Coils/Shocks	Leaf Springs Shocks
Body/Frame Construction	Perimeter Frame	Body On Perimeter Frame	Unitized Construction

mtcars data frame

How can you determine what variables are in a data frame?

```
> View(mtcars) # only works in Rstudio, not in Markdown
```

- > glimpse(mtcars)
- > ? mtcars # this data frame as a code book

```
[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 4] hp Gross horsepower
[, 6] wt Weight (1000 lbs)
[, 9] am Transmission (0 = automatic, 1 = manual)
```

Do cars that weigh more use more fuel?

Question: do cars that weigh more use more fuel?

What variables in the mtcars data frame are of interest?

- mpg
- wt

We can create a scatter plot using base graphics...

> plot(mtcars\$wt, mtcars\$mpg)

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) +

geom_point()

Adds a layer with glyphs

_	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

Adds a layer with glyphs

^	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

A lot more that ggplot can do!

- More aesthetic mapping
- Multiple glyphs/layers
- Axis labels
- Facets
- Visual themes
- Different coordinate systems
- Etc.

The R Graph Gallery

Next class: trying out ggplot!