有到大學

网络技术与应用课程实验报告 实验 7: 防火墙和 SSL 实验

学院: 网络空间安全学院

专业: _ 信息安全-法学_

学号: ____2111954____

目录

→,	ACL 概	经	1
_,	防火墙乡	长验	1
()标准	ACL 实验	1
	1.	网络配置	1
	2.	配置标准访问控制列表	3
(<u> </u>)扩展	ACL 实验	4
	1.	网络配置	4
	2.	配置拓展 ACL	4
$(\equiv$) TCP	设置	5
	1.	网络配置	5
	2.	配置路由	5

一、 ACL 概述

ACL(AccessControlList,访问控制列表)是用来实现数据包识别功能的,在本次实验中使用 ACL 用于包过滤防火墙功能。

- 标准访问控制列表——标准 ACL
 - 利用 IP 数据报中的源 IP 地址对过往的数据包进行控制
 - 列表号范围: 1-99
- 扩展访问控制列表——扩展 ACL
 - 按照协议类型、源 IP 地址、目的 IP 地址、源端口号、目的端口号对过往的数据包进行控制,列表号范围: 101-199

ACL 的包过滤技术具体可分为一下过程:

- 1. 对进出的数据包逐个过滤, 丢弃或允许通过;
- 2. ACL 应用于接口上,每个接口的出入双向分别过滤;
- 3. 仅当数据包经过一个接口时,才能被此接口的此方向的 ACL 过滤;

二、防火墙实验

(一) 标准 ACL 实验

1. 网络配置

主机 IP 如下图所示

主机号	IP 地址	掩码	默认路由	所在网络
PC0	202.113.25.3	255.255.255.0	202.113.25.1	A
PC1	202.113.25.4	255.255.255.0	202.113.25.1	A
PC2	202.113.25.2	255.255.255.0	202.113.25.1	A
PC3	202.113.26.2	255.255.255.0	202.113.26.1	В
PC4	202.113.26.3	255.255.255.0	202.113.26.1	В
PC5	202.113.27.3	255.255.255.0	202.113.27.1	С
PC6	202.113.27.2	255.255.255.0	202.113.27.1	С

路由器配置如下图所示

路由器号	端口	IP 地址	掩码	所在网络
Router4	0/0	202.113.25.1	255.255.255.0	A
Router4	0/1	202.113.28.1	255.255.255.0	A
Router1	0/0	202.113.28.2	255.255.255.0	В
Router1	0/1	202.113.26.1	255.255.255.0	В
Router2	0/0	202.113.28.3	255.255.255.0	С
Router2	0/1	202.113.27.1	255.255.255.0	С

路由器动态路由表具体配置命令如下:

此时三个网络是联通的,分别由 B、C 网络的主机 pingA 网络的主机,可以 ping 通,结果如下 图

```
Ping statistics for 202.113.25.3:
       Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
  C:\>ping 202.113.25.3
  Pinging 202.113.25.3 with 32 bytes of data:
 Reply from 202.113.25.3: bytes=32 time=1ms TTL=126
 Reply from 202.113.25.3: bytes=32 time<1ms TTL=126
Reply from 202.113.25.3: bytes=32 time=6ms TTL=126
 Reply from 202.113.25.3: bytes=32 time<1ms TTL=126
 Ping statistics for 202.113.25.3:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
      Minimum = Oms, Maximum = 6ms, Average = 1ms
 C:\>
Packet Tracer PC Command Line 1.0
C:\>ping 202.113.25.3
Pinging 202.113.25.3 with 32 bytes of data:
Reply from 202.113.25.3: bytes=32 time<1ms TTL=126
Reply from 202.113.25.3: bytes=32 time<lms TTL=126
Reply from 202.113.25.3: bytes=32 time<lms TTL=126
Reply from 202.113.25.3: bytes=32 time<1ms TTL=126
Ping statistics for 202.113.25.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>
```

2. 配置标准访问控制列表

具体指令如下, 允许 B 网络的进入, 其他网络都不允许

```
Router(config) #access-list 6 permit 202.113.26.0 0.0.0.255
Router(config) #access-list 6 deny any
Router(config) #interface fa0/1
Router(config-if) #ip access-group 6 in
Router(config-if) #exit
```

此时只有 B 网络能 ping 通 A 网络的主机, 其他网络会显示无法到达

```
C:\>ping 202.113.25.3 with 32 bytes of data:

Reply from 202.113.25.3: bytes=32 time<lms TTL=126
Reply from 202.113.25.3: bytes=32 time<lms TTL=126
Reply from 202.113.25.3: bytes=32 time<lms TTL=126
Reply from 202.113.25.3: bytes=32 time=lms TTL=126
Reply from 202.113.25.3: bytes=32 time=lms TTL=126

Ping statistics for 202.113.25.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms

C:\>
```

```
Packet Tracer PC Command Line 1.0
C:\>ping 202.113.25.3

Pinging 202.113.25.3 with 32 bytes of data:

Reply from 202.113.28.1: Destination host unreachable.

Ping statistics for 202.113.25.3:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>
```

(二) 扩展 ACL 实验

本次实验的主要目的在于,不允许网络 B 中的某个主机访问网络 A 中的 Web 服务,而让其他主机都可以访问。

1. 网络配置

Web 服务器的 IP 与该位置原来的 PC 设置一致

2. 配置拓展 ACL

```
Router(config)#access-list 106 deny tcp host 202.113.26.2 host 202.113.25.3 eq 80 //阻止PC3对Web服务器的访问
Router(config)#access-list 106 permit ip any any
Router(config)#interface fa0/1
Router(config-if)#ip access-group 106 in
Router(config-if)#exit
```

最终 PC3 访问 Web 服务器超时, 而 PC4 仍然可以访问

(三) TCP 设置

1. 网络配置

2. 配置路由

! 创建用于允许外网回应内网连接的 ACL access-list 101 permit tcp any 202.113.25.0 0.0.0.255 established access-list 101 permit udp any 202.113.25.0 0.0.0.255 eq domain

```
! 防止外网用户主动向内网发起TCP连接
access-list 102 deny tcp any 202.113.25.0 0.0.0.255
access-list 102 permit ip any any

! 在外网接口应用 ACL
interface <外网接口>
   ip access-group 101 in
   ip access-group 102 out
```