equal angles

geometry geometric transformation reflection

Source: Iranian third round 2015 geometry problem 3

andria

Sep 10, 2015, 5:52 pm

@PM #1

Let ABC be a triangle, consider an arbitrary point P on the plain of $\triangle ABC$. Let R,Q be the reflections of P 721 posts wrt AB, AC respectively. Let $RQ \cap BC = T$. Prove that $\angle APB = \angle APC$ if and if only $\angle APT = 90^\circ$.

This post has been edited 1 time. Last edited by andria. Sep 11. 2015. 3:12 pm

Luis Gonz... 3881 pos...

Sep 11, 2015, 3:44 am • 1 •

@PM #2

Let the perpendicular to PA at P cut AC, AB, BC at Y, Z, T^* , resp and let $X \equiv RZ \cap QY$. Since AC, AB are perpendicular bisectors of PQ, PR, then A is the center of $\bigcirc(PQR) \Longrightarrow YZ, QY, RZ$ are tangents at P, Q, R $\Longrightarrow XP$ is the polar of T^* WRT $\odot(PQR)$ $\Longrightarrow X(Z,Y,P,T^*) = -1$ $\Longrightarrow A(B,C,P,T^*) = -1$ or $P(B,C,A,T^*) = -1$. As a result, $\angle APT = 90^\circ \Longleftrightarrow T \equiv T^* \Longleftrightarrow PA$ bisect $\angle BPC \Longleftrightarrow \angle APB = \angle APC$.

Luis Gonz... 3881 pos...

Sep 11, 2015, 9:43 pm

@PM #3

Sorry there is a flaw in the previous resolution. T^* is the pole of XP WRT $\odot(PQR)$ only when $T \equiv T^*$, though this can be easily fixed keeping the same notations.

If $\angle APT = 90^{\circ} \Longrightarrow T$ is the pole of XP WRT $\odot(PQR) \Longrightarrow X(Z,Y,P,T) = -1 \Longrightarrow P(B,C,A,T) = -1 \Longrightarrow P(B,C,A$ AP bisects $\angle BPC$. Conversely if AP bisects $\angle BPC \Longrightarrow P(B,C,A,T^*) = -1$ or $A(B,C,P,T^*) = -1 \Longrightarrow$ perpendiculars from P to AB, AC, AP, AT^* form a harmonic pencil as well. If $D \in \odot(PQR)$ is the reflection of P on AT^* , then $P(Q, R, D, T^*) = -1 \Longrightarrow PQDR$ is harmonic $\Longrightarrow Q, R, T^*$ are collinear $\Longrightarrow T \equiv T^* \Longrightarrow$ $\angle APT = 90^{\circ}$.

TelvCohl 1990 pos... Sep 12, 2015, 12:34 am

@PM #4

After performing the Inversion with center A we get the following equivalent problem:

Given a $\triangle ABC$ and an arbitrary point P. Let Q, R be the reflection of P in CA, AB, respectively. Let T be the second intersection of $\odot(ABC)$ and $\odot(AP)$. Prove that A,Q,R,T are concyclic if and only if $\angle PBA = \angle PCA$.

Proof:

Let Y, Z be the projection of P on CA, AB, respectively. Since A lies on the perpendicular bisector CA, AB of PQ, PR, so A is the circumcenter of $\triangle PQR \Longrightarrow \angle AQR = \angle ARQ = 90^{\circ} - \angle BAC$, hence T lies on $\bigcirc (AQR)$ iff $\angle QTP = \angle RTP = \angle BAC$. On the other hand, since T is the Miguel point of the complete quadrilateral $\{BC,CA,AB,YZ\}$, so $\triangle TYC \sim \triangle TZB \Longrightarrow \angle QTP = \angle RTP = \angle BAC$ iff $\triangle TYC \cup (P,Q) \sim \triangle TZB \cup (P,Q) = ABAC$ (R,P) (notice $PQ \perp CY, RP \perp BZ$ and Y,Z is the midpoint of PQ,RP, respectively.) iff $\angle PBA = \angle PBZ = (R,P)$ $\angle RBZ = \angle QCY = \angle PCY = \angle PCA$.

andria 721 posts Sep 12, 2015, 1:21 am

Different solution by inversion:

@PM #5

Consider an inversion Ψ with center P. After performing Ψ we get the following problem:

Problem:

Let PBC be a triangle. Consider an arbitrary point A. Let R,Q be the circumcenters of $\triangle PAB, \triangle PAC$ respectively. Let T be a point on circumcircle of $\triangle ABC$ such that $PT \perp PA$ then RPTQ is cyclic if and if only $\angle APB = \angle APC$.

Proof:

Let O be the circumcenter of $\triangle PBC$ then RO, OQ are perpendicular bisectors of PB, PC respectively. since RQ is perpendicular bisector of PA so $PT \parallel RQ$. also OP = OT. Now if:

1) RPTQ is cyclic then it is isosceles trapezoid so PR = QT and $\angle OPR = \angle OTQ$ hence $\triangle OTQ = \triangle OPR \Longrightarrow OR = OQ \Longrightarrow \angle APC = \angle APB$.

2) $\angle APC = \angle APB$ then $\angle OQR = \angle ORQ \Longrightarrow OR = OQ$ Also since T is midpoint of arc BPC of $\bigcirc (PBC)$ we get $\angle TOQ = \angle POR = \angle C$ hence $\triangle OTQ = \triangle OPR \Longrightarrow TQ = PR \Longrightarrow RPTQ$ is isosceles trapezoid so it is cyclic. DONE

Quick Reply

© 2016 Art of Problem Solving Privacy Contact Us About Us Terms

Copyright @ 2016 Art of Problem Solving