Quantitative Methods

Probability Trees and Conditional Expectations

Intro and Exam Focus

- Discrete probability distribution: calculating mean and standard deviation
- Using conditional probabilities in probability trees
- Bayes' formula

© Kaplan, Inc.

Expected Value of Discrete Probability Distribution:

CFA Institute Example

Expected value: $E(X) = \Sigma P(x_i)x_i$

Probability Distribution: BankCorp's EPS				
P(x _i)	EPS (x_i) $P(x_i)x_i$			
0.15	2.60	0.39		
0.45	2.45	1.1025		
0.24	2.20	0.528		
0.16	2.00	0.32		
1	_	E(X) =		

-2

© Copyright CFA Institute

Variance of a Discrete Probability Distribution

Much quicker on the BAII+

Variance: $\sigma_X^2 = \Sigma P(x_i)[x_i - E(X)]^2$

P(x _i)	EPS \$ (x _i)	P(x _i)x _i	$P(x_i)[x_i - E(X)]^2$
0.15	2.60	0.39	
0.45	2.45	1.1025	0.005445
0.24	2.20	0.528	0.004704
0.16	2.00	0.32	0.018496
1	_	E(X) = 2.34	= σ ²

Standard deviation: square root of σ^2 =

1

© Copyright CFA Institute

© Kaplan, Inc.

Dependent/Independent Events

<u>Independent events</u>: occurrence of one event does not change the probability of other event

$$P(A | B) = P(A)$$

Example: flipping a fair coin: P(3 heads) = $0.5 \times 0.5 \times 0.5 = 0.5^3 = 0.125$

<u>Dependent events</u>: knowing the outcome of one event *changes* the probability of another event occurring

$$P(A \mid B) \neq P(A)$$

Example: picking cards from a pack without replacement

$$P(2 \text{ aces}) = (4 / 52) \times (3 / 51) = 0.0045$$

Probability Trees: Example

- P (interest rate increase) = P(I) = 70%
- P (recession | increase) = P(R|I) = 60%
- P (recession | no increase) = P(R|I^c) = 20%

What is the (unconditional) probability of recession?

$$P(R) = [P(R|I) \times P(I)] + [P(R|I^{C}) \times P(I^{C})]$$

= $P(RI) + P(RI^{C})$
= $+$ =

Probability Tree: CFA Institute Example

BankCorp's Earnings Per Share Part 2:

- Probability of declining interest environment = 0.60
- Probability of stable interest environment = 0.40
- In a declining interest environment, there is 25% probability a company's EPS will be \$2.60, and a 75% probability EPS will be \$2.45.
- In a stable interest environment, there is 60% probability a company's EPS will be \$2.20, and a 40% probability EPS will be \$2.00

Calculate:

- The expected EPS of the company, E(EPS)
- The conditional expected EPS given a declining interest environment
- The conditional variance of EPS in a declining interest environment

© Copyright CFA Institute © Kaplan, Inc.

Probability Tree: Solution

Expected EPS = \$2.34

= 0.15(\$2.60) + 0.45(\$2.45) + 0.24(\$2.20) + 0.16(\$2.00)

Conditional expectations of EPS:

E(EPS) | Declining interest rates = + =

E(EPS) | Stable interest rates = + =

Expected EPS = + =

© Copyright CFA Institute

© Kaplan, Inc.

Conditional Variances: Solution

Condition	X _i	P(X _i)	P(X _i)X _i	$(X_i - \overline{X})^2$	$P(X_i)(X_i - \overline{X})^2$
Declining	\$2.60	0.25	0.65		
interest rates	\$2.45	0.75	1.8375	0.001406	0.001055
		X = 2.4875		σ^2	=
Stable	\$2.20	0.60	1.32	0.0064	0.00384
interest rates	\$2.00	0.40	0.80	0.0144	0.00576
		$\overline{\mathbf{X}} = 2.12$		σ^2	=

© Copyright CFA Institute

Bayes' Formula: CFA Institute Example

Given the following probability tree, what is the probability that a randomly selected firm that has returns > 10% was also a tech stock?

© Copyright CFA Institute

© Kaplan, Inc.

Bayes' Formula

"Prior probability"

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A) \times P(A)}{P(B)} = \frac{0.12}{0.32} = 0.375 \text{ or } 37.5\%$$

"Posterior probability"

© Copyright CFA Institute

Expected Value of Discrete Probability Distribution:

CFA Institute Example

Expected value: $E(X) = \Sigma P(x_i)x_i$

Probability Distribution: BankCorp's EPS			
P(x _i)	EPS (x_i) $P(x_i)x_i$		
0.15	2.60	0.39	
0.45	2.45	1.1025	
0.24	2.20	0.528	
0.16	2.00	0.32	
1	-	E(X) = 2.34	

-2

© Copyright CFA Institute

Variance of a Discrete Probability Distribution

Much quicker on the BAII+

Variance: $\sigma_X^2 = \Sigma P(x_i)[x_i - E(X)]^2$

P(x _i)	EPS \$ (x _i)	P(x _i)x _i	$P(x_i)[x_i - E(X)]^2$
0.15	2.60	0.39	0.01014
0.45	2.45	1.1025	0.005445
0.24	2.20	0.528	0.004704
0.16	2.00	0.32	0.018496
1	_	E(X) = 2.34	$0.038785 = \sigma^2$

Standard deviation: square root of $\sigma^2 = \$0.1969$

© Copyright CFA Institute

© Kaplan, Inc.

Probability Trees: Example

- P (interest rate increase) = P(I) = 70%
- P (recession | increase) = P(R|I) = 60%
- P (recession | no increase) = P(R | I^c) = 20%

What is the (unconditional) probability of recession?

$$P(R) = [P(R|I) \times P(I)] + [P(R|I^{C}) \times P(I^{C})]$$

$$= P(RI) + P(RI^{C})$$

$$= [0.60 \times 0.70] + [0.20 \times 0.30] = 48\%$$

-1

Probability Tree: Solution

Expected EPS = \$2.34

= 0.15(\$2.60) + 0.45(\$2.45) + 0.24(\$2.20) + 0.16(\$2.00)

Conditional expectations of EPS:

 $E(EPS) \mid Declining interest rates = 0.25($2.60) + 0.75($2.45) = 2.4875

 $E(EPS) \mid Stable interest rates = 0.60($2.20) + 0.40($2.00) = 2.12

Expected EPS = 0.60(\$2.4875) + 0.40(\$2.12) = \$2.34

-3

© Copyright CFA Institute

Conditional Variances: Solution

Condition	X _i	P(X _i)	P(X _i)X _i	$(X_i - \overline{X})^2$	$P(X_i)(X_i - \overline{X})^2$
Declining	\$2.60	0.25	0.65	0.012656	0.003164
interest rates	\$2.45	0.75	1.8375	0.001406	0.001055
		\overline{X}	= 2.4875	σ^2	= 0.004219
Stable	\$2.20	0.60	1.32	0.0064	0.00384
interest rates	\$2.00	0.40	0.80	0.0144	0.00576
		\overline{X}	= 2.12	σ^2	= 0.0096

5

© Copyright CFA Institute

© Kaplan, Inc.

Bayes' Formula: CFA Institute Example

Given the following probability tree, what is the probability that a randomly selected firm that has returns > 10% was also a tech stock?

© Copyright CFA Institute