Diagonalisation of matrices

Created by Mr. Francis Hung on 20081031

Last updated: 07 August 2021

Example 1 Let $A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$.

- (a) Solve for λ in the equation: $det(A \lambda I) = 0$.
- (b) Let λ_1 and λ_2 be the roots of in (a), where $\lambda_1 < \lambda_2$. Find $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ such that $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \lambda_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \lambda_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, where $x_1^2 + y_1^2 \neq 0$ and $x_2^2 + y_2^2 \neq 0$.
- (c) Let $P = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$. Show that P is non-singular. Hence find P^{-1} .
- (d) Find $P^{-1}AP$. Hence find A^{100} .
- (a) $\det(A \lambda I) = 0.$ $\det\begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$ $\begin{vmatrix} 4 \lambda & -2 \\ 1 & 1 \lambda \end{vmatrix} = 0$ $(4 \lambda)(1 \lambda) + 2 = 0$ $\lambda^2 5\lambda + 6 = 0$ $(\lambda 2)(\lambda 3) = 0$ $\lambda = 2 \text{ or } \lambda = 3$
- (b) $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 2 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \Rightarrow x_1 = y_1$ Let $x_1 = y_1 = 1$ $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = 3 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \Rightarrow x_2 = 2y_2$ Let $x_1 = 2$, $x_2 = 1$
- (c) $P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$. det $P = -1 \neq 0 \Rightarrow P$ is non-singular.

$$P^{-1} = -\begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

 $(d) P^{-1}AP = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$ $(P^{-1}AP)^{100} = \underbrace{\left(P^{-1}AP\right)\left(P^{-1}AP\right)\cdots\left(P^{-1}AP\right)}_{100 \text{ times}} = P^{-1}\left(APP^{-1}AP\cdots P^{-1}A\right)P = P^{-1}\underbrace{\left(AA\cdots A\right)P}_{100 \text{ times}} = P^{-1}\underbrace{\left($

$$P^{-1}A^{100}P = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}^{100} = \begin{pmatrix} 2^{100} & 0 \\ 0 & 3^{100} \end{pmatrix}$$

$$A^{100} = P \begin{pmatrix} 2^{100} & 0 \\ 0 & 3^{100} \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^{100} & 0 \\ 0 & 3^{100} \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2^{100} & 2 \cdot 3^{100} \\ 2^{100} & 3^{100} \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -2^{100} + 2 \cdot 3^{100} & 2^{101} - 2 \cdot 3^{100} \\ 3^{100} - 2^{100} & 2^{101} - 3^{100} \end{pmatrix}$$

Example 2 Let
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- (a) Solve for λ in the equation: $\det(A \lambda I) = 0$.
- (b) Let λ_1 , λ_2 and λ_3 be the roots of in (a), where $\lambda_1 \le \lambda_2 < \lambda_3$.

Find
$$\begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}$$
 such that $\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} = \lambda_i \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}$ where $x_i^2 + y_i^2 + z_i^2 \neq 0$ for $i = 1, 2, 3$.

- (c) Let $P = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$. Show that P is non-singular. Hence find P^{-1} .
- (d) Find $P^{-1}AP$. Hence find A^{10} .

(a)
$$\begin{vmatrix} -1 - \lambda & 1 & 1 \\ 1 & -1 - \lambda & 1 \\ 1 & 1 & -1 - \lambda \end{vmatrix} = 0$$

$$-(\lambda + 1)^3 + 2 + 3(1 + \lambda) = 0$$

$$\lambda^3 + 3\lambda^2 + 3\lambda + 1 - 3\lambda - 5 = 0$$

$$\lambda^3 + 3\lambda^2 - 4 = 0$$

$$(\lambda + 2)^2(\lambda - 1) = 0$$

$$\lambda_1 = -2 = \lambda_2$$
 and $\lambda_3 = 1$

$$(b) \quad \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -2 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$x + y + z = 0$$

$$x = t, y = s, z = -t - s, t, s \in \mathbf{R}.$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} s$$

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 & -1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -R_1 \\ R_1 + 2R_2 \\ 0 & 0 & 0 \end{pmatrix}$$

From (2), $y_3 = k$, $z_3 = k$, where $k \in \mathbb{R}$ Sub. $z_3 = k$ into (1), we have $x_3 = k$

$$\begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{aligned} &(c) \quad P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \\ &\det P = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{vmatrix} = 3 \neq 0 \Rightarrow P \text{ is non-singular.} \\ &A_{11} = 2, A_{12} = -1, A_{13} = 1 \\ &A_{21} = -1, A_{22} = 2, A_{23} = 1 \\ &A_{31} = -1, A_{32} = -1, A_{33} = 1 \end{aligned}$$

$$P^{-1} = \frac{1}{\det P} \cdot adj(P) = \frac{1}{3} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$&(P^{-1}AP)^{10} = \underbrace{\begin{pmatrix} P^{-1}AP / P^{-1}AP - P^$$