Designing Low-Power Spiking Neural Network

S1290033

Rui Shiota

Content

- Background / Related works
- Design of neural network
- Clock gating
- Master's research

Background / Related works

• Spiking Neural Network: brain-inspired model of neural communication and computation

Clock gating: technique for reducing consumption

Design of neural network (1)

Design of neural network (2)

Upper network.v neuron.v memory.v Lower

Clock gating (1)

Conventional system

Clock-gated system

- Can save dynamic power by turning off clock enable signal.
- No computation is done while clock enable signal is off.

Clock gating (2)

The result of power consumption of neuron

	Dynamic Power	Static Power	Total Power
Conventional neuron	5.30e-05 W	1.04e-05 W	6.34e-05 W
Clock-gated neuron	3.91e-05 W	1.04e-05 W	4.96-05 W

Dynamic Power: 26%

• Static power: Unchanged

Total power: 22 %

Clock gating (3)

The result of power consumption of network

	Dynamic Power	Static Power	Total Power
Conventional network	2.08e-04 W	4.28e-05 W	2.51e-04 W
Clock-gated network	1.46e-04 W	4.29e-05 W	1.89e-04 W

• Dynamic Power: 30% 🕹

• Static Power: Almost unchanged

Total Power:25%

Master's research (1)

- Focus on rate coding to apply clock gating
- Rate coding: method to represent information by the frequency of spikes

Master's research (2)

Goal: to find a way to reduce the power consumption further

Year	M1			M2		
Month	4~7	8~11	12~3	4~7	8~11	12~3
Coding in Verilog HDL	-		\rightarrow			
	+					
Simulation			\rightarrow			
Synthesis		->				
Post-synthesis simulation		\rightarrow		\rightarrow		
Power estimation		\rightarrow				
Consideration			→			
Writing a thesis						

Thank you for your attention!