Технология синтеза полиметаллических порошков

Студент группы МЦМск-19 Бондарь А.Ю. Научный руководитель Корицкий Г.Г., к.т.н., доцент Донецкий национальный технический университет ДНР, г. Донецк

В 1956 году Курчатовым И.В. была выдвинута идея о возможности синтеза химических элементов в электрическом разряде, а в 1957 г. физиком Филимоненко И.С. было обнаружено явление холодного ядерного синтеза (ХЯС) в результате экспериментов.

Для начала процесса, на два поперечных электрода, вставленных с обеих сторон реактора, осуществляется подача импульсного электроразряда. В результате инициации импульса между двумя электродами зарождается плазмоид. Реакция холодного ядерного синтеза осуществляется внутри соленоида.

Материал корпуса реактора — диэлектрик (н/р ПВХ), толщина стенок $5 \div 8$ мм. Электроды изготовлены из меди благодаря устойчивости к разрушению при разряде. Для качественного пуска установки используются электроды с углом заточки $< 40^\circ$.

Параметры установки коррелируются $D_{\text{внутр}}$ полых электродов. Зазор между полыми электродами $-1\div1,5D$ (при D<50мм). При уменьшении $t_{\text{ст}}$ стенок полых электродов, плазмоид образуется быстрее и проще. В экспериментах использовались электроды с $t_{\text{ст}}=1\div2$ мм. Ток на полых электродах $I_{\text{стаб}}=0,1\div100A$ ($\sim20\div40A$). Пусковой $I_{\text{стаб}}-18\div40A$, во время работы ток меняться в пределах $-20\div120A$. Стержни для импульсной нагрузки от конденсаторов имеют $D_{\text{ст}}=3\div8$ мм без наконечников и с наконечниками из W, $D=0,6\div1$ мм и длиною $5\div10$ мм. Тупоголовые электроды без наконечников заостряются под угол в $30\div45^\circ$. При подаче тока плотность импульсного тока составляет $2\kappa A/\text{мм}^2$, время разряда 10мс. В опытах применялись батареи из конденсаторов ёмкостью $-200,\ 500,\ 700,\ 2400$ мФ, 5Φ . Катушка - соленоид, со средним диаметром -1,5D. Сила тока определяется параметрами рабочей среды и величиной D. Во время проведения экспериментов $I_{\text{солен}}$ менялась в рамках $10\div150A,\ [1]$.

Во время опытов, на вход в первый реактор установки подавались такие рабочие среды как: вода (дистиллят, питьевая, речная воды), водно-минеральные смеси, стоки (промышленные и бытовые), водно-углеродные.

В таблице 1 приведён химический состав вод, использованных в опытах.

Табл. 1 - Химический состав использовання	AIX ROII	

Показатели	Питьевая	Дистиллированная	Речная
Хлориды, мг/л	70	0	25
Сульфаты, мг/л	330	0	18
Железо, мг/л	3,5	0,001	1,4
Марганец, мг/л	1,2	_	1,6
Аммоний, мг/л	1,5	_	0,7
Нитриты, мг/л	ОД	_	0,2
Нитраты, мг/л	1	_	3
Свободный СО2 ,мг/л 13,5		0,1	4
Растворенный О2, мг/л	7,5	4	9,5

Оптимальное соотношение - твердое/жидкое 1:10. На рисунке 1 приведена схема технологии получения полиметаллических порошков.

На графике рисунка 2 показана зависимость выхода твердых продуктов из реакционной зоны агрегата от скорости движения рабочей среды.

Рис.1 - Схема технологии получения полиметаллических порошков

Рис.2 - Зависимость выхода твердых продуктов из реакционной зоны агрегата от скорости движения рабочей среды

При использовании стабилизирующих электродов диаметром $6 \div 50$ мм, выход продуктов синтеза из зоны реакции агрегата зависит от скорости движения рабочей среды.

Опытно установлено, что при увеличении диаметра реактора увеличивается выход твердых материалов. В таблице 2 приведена зависимость, которая получена при выходе твёрдых продуктов при изменении диаметра реактора.

Табл.2 – Выход твёрдых продуктов в установке «ЭнергоНИВА-2»

D, мм	10	15	20	25	32	40	52
G, г/мин	90	180	270	450	720	1080	1800

После проведения экспериментов было обнаружено наличие таких химических элементов: Li, Be, B, C, Mg, Si, P, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Sn, Se, Pb, Bi, которые выпадают из раствора в виде тонкодисперсных частиц.

При работе аппаратов могут быть использованы два характерных режима: с приоритетом получения новых элементов или получения электрической энергии. Режим получения новых элементов: СВЧ (30-60ГГц с длиной волны 1-0,5см) - производство и переработка новых химических элементов, дезактивация химически токсичных и жидких радиоактивных отходов.

Установлено, что максимум выхода твердых продуктов порядка 300кг/м³ происходит при скорости воды 0.55м/с и зависит от диаметра реактора. Исследования показали, что для получения каждого целевого элемента существует оптимальный ток стабилизации: для Zn = 30A/мм², Al = 18.5A/мм², El = 22.2A/мм², El = 25A/мм².

Экспериментально доказано, что из 1 m^3 H₂O при скорости течения в 0,55м/с можно получить \rightarrow 214 кг Fe + 20 кг Mn + ... + 3,2 MBт·ч энергии, [1], [2], [3].

Состав порошков, полученных при работе установки «ЭнергоНИВА» представлено на рисунке 3.

Рис.3 – Состав порошков, полученных при работе установки «ЭнергоНИВА»

Заключение

- данный процесс можно использовать для утилизации радиоактивных отходов атомной промышленности с целью получения стабильных изотопом металлов с дальнейшей их переработкой для нужд промышленности;
- дейтонная горно-металлургическая технология позволяет получать сырьё из естественных источников (вода, отходы промышленности), расширяя базу сырья металлургии, превращая её из энерго- и ресурсопотребляющей в энерго- и ресурсопроизводящую отрасль;
 - отсутствие выбросов отходов в окружающую среду.

Литература

- 1. «Взаимопревращения химических элементов». В.Ф. Балакирев, В.В. Крымский, Б.В. Болотов и др. Под ред.В.Ф. Балакирева. Екатеринбург: УРО РАН, 2003, с.64;
 - 2. https://ss69100.livejournal.com/4810367.html;
- 3. Шадрин А.А. «Переработка радиоактивных отходов с помощью реактора А.В. Вачаева на базе LENR», Экспертно-исследовательская лаборатория внедрения инновационных проектов АИСТ.