浙江大学实验报告

专业: 电子信息工程

姓名: 邢毅诚

学号: <u>3190105197</u>

日期: 2022-05-25

地点: 教二-125

课程名称: 电力电子器件及其集成电路 指导老师: 盛况,郭清 成绩:

实验名称: 功率场效应晶体管特性与驱动电路研究 实验类型: 验证实验 同组学生姓名: 王斌浩

一、 实验目的

(1) 熟悉功率 MOSFET 主要参数的测量方法;

- (2) 掌握功率 MOSEET 对驱动电路的要求;
- (3) 掌握一个实用驱动电路的工作原理与调试方法;
- (4) 对功率 MOSFET 主要参数、开关特性、使用方法进行分析。

二、实验内容

- 1. 功率 MOSFET 静态特性及主要参数测试
 - (1) 开启阈值电压 $V_{GS(th)}$ 测试
 - (2) 跨导 g_m 测试
 - (3) 导通电阻 R_{DS} 测试
 - (4) 转移特性 $I_D = f(V_{GS})$ 测试
- 2. 功率 MOSFET 动态特性测试
 - (1) 电阻负载时,功率 MOSFET 开关特性测试;
 - (2) 栅源极电容充放电电流测试。

三、 实验设备及仪器

- (1) MPE-I 电力电子探究性实验平台;
- (2) NMCL-07D 功率器件特性与驱动电路;
- (3) NMCL-50 数字直流表;
- (4) 示波器;
- (5) 数字式万用表。

四、 实验操作与实验数据

1. 功率 MOSFET 静态特性及主要参数测试

1. 开启阈值电压 $V_{GS(th)}$ 测试

按照实验要求连接电路,将主回路电位器 RP 左旋到底,合上主回路的开关 S,逐步将电位器 RP 向右旋转,边旋转边监视毫安表的读数,记录对应的 V_{GS} 和电流 I_D ,具体数据如下:

Vgs/V	Id/mA	Vgs/V	Id/mA
2.8	0.22	3.23	9.02
2.89	0.55	3.32	16.08
2.92	0.7	3.57	62.8
2.96	1	3.9	229
2.98	1.31	4.02	339
3.03	1.93	4.31	567
3.1	3.37	5.37	580
3.15	4.78	6.8	580

表 1: 静态特性实验数据

完成数据记录后,断开主回路开关S,并将主回路电位器RP 左旋到底。

2. 跨导 g_m 测试

功率 MOSFET 器件以跨导 gm 表示其增益,跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即 $g_M = \frac{\Delta I_D}{\Delta V_{GS}}$,具体数据如下表所示:

Vgs/V	Id/mA	$\Delta Vgs/V$	$\Delta \mathrm{id}/\mathrm{mA}$	gm
2.8	0.22	0.33	0.09	3.67
2.89	0.55	0.15	0.03	5.00
2.92	0.7	0.3	0.04	7.50
2.96	1	0.31	0.02	15.50
2.98	1.31	0.62	0.05	12.40
3.03	1.93	1.44	0.07	20.57
3.1	3.37	1.41	0.05	28.20
3.15	4.78	4.24	0.08	53.00
3.23	9.02	7.06	0.09	78.44
3.32	16.08	46.72	0.25	186.88
3.57	62.8	166.2	0.33	503.64
3.9	229	110	0.12	916.67
4.02	339	228	0.29	786.21
4.31	567	13	1.06	12.26
5.37	580	-580	-5.37	108.01

表 2: 跨导计算数据

图 1: gm-Vgs 关系曲线

3. 转移特性 $I_D = f(V_{GS})$ 测试

栅源电压 VGS 与漏极电流 ID 的关系曲线称为转移特性,根据测量数值,绘出转移特性,该曲线表示功率 MOSFET 的放大能力特性,如下图所示:

图 2: 转移特性曲线

4. 导通电阻 R_{DS} 测试

导通电阻定义为 $R_{Ds}=V_{DS}/I_{D}$,更改接线,在线性区改变 V_{GS} ,测量多组数值,数据如下表所示:

Vgs/V	4.52	5.47	6.59	7.51	8.57	9.54	10.52	11.51
Vds/V	0.605	0.498	0.481	0.476	0.469	0.467	0.464	0.463
Id/A	0.564	0.559	0.559	0.558	0.556	0.555	0.555	0.554
Rd/Ω	1.072695	0.890877	0.860465	0.853047	0.843525	0.841441	0.836036	0.83574

表 3: 导通电阻测试数据

计算得到导通电阻的平均值为 0.87923Ω。

图 3: 开通时间

图 4: 关断时间

2. 功率 MOSFET 动态特性测试

1. 电阻负载时,功率 MOSFET 开关特性测试

在完成接线后,闭合 PMW 波形发生器单元的开关 S1(该单元上的 S2 处于断),闭合 MOSFET 单元的开关 S1,S2,闭合主回路开关 S,用示波器观察 V_{GS},V_{DS} 的波形,如下图所示:

记录得到开通时间 $t_{on}=380ns$,关断时间 $t_{off}=54.48\mu s$,其中,开通时间和关断时间的具体示意图如下图所示:

图 5: 开通与关断时间测量

2. 栅极电容充放电电流测试

连接线路, 采用 $R_6(200\Omega)$ 作为栅极电阻, 用示波器观察并记录 R_6 两端波形, 如下图所示:

图 6: R₆ 两端波形

记录得到波形最大值为 7.80V,最小值为-12.2V,由栅极电阻为 200 Ω ,我们可以知道,充电电流峰值为 $\frac{7.8V}{200\Omega}=39mA$,放电电流峰值为 $\frac{12.2V}{200\Omega}=61mA$ 。 绘制其波形图如下图所示:

图 7: 充放电示意图

五、 心得与体会

在本次实验中,我们进行了功率场效应晶体管特性与其驱动电路研究的相关实验。通过这次实验, 我了解到了一些对器件测试的基本方法以及基本原理,总体而言,收获颇多。