- 1. You are given three sequences of n positive integers: $a_1,\ldots,a_n,\ b_1,\ldots,b_n$, and c_1,\ldots,c_n , together with an integer D. The question is to determine whether there exist three permutations π,ψ,ϕ (i.e., bijections that map an index $\{1,\ldots,n\}$ to another index $\{1,\ldots,n\}$) such that for all $i=1,\ldots,n$ it holds that $a_{\pi(i)}+b_{\psi(i)}+c_{\phi(i)}=D$.
 - For example, you are given a=(20,23,49), b=(22,25,27) and c=(19,40,45) and D=90, then the answer is yes, because with $\pi(i)=i$ (identity), $\psi(1)=2$, $\psi(2)=3$, $\psi(3)=1$, and $\phi(1)=3$, $\phi(2)=2$, and $\phi(3)=1$, it holds that $a_1+b_2+c_3=20+25+45=90$, $a_2+b_3+c_2=23+27+40=90$ and $a_3+b_1+c_1=49+22+19=90$.
 - (a) (3 points) Use the technique of preprocessing the data to get an exact algorithm with time complexity $O^*(n!)$ instead of $O^*(n!^3)$.
 - (b) (1 point) If by preprocessing the runtime for solving a problem is reduced from $O^*(n!)$ to $O^*(n!)$, can we say that this problem is *kernelizable*? Explain why or why not.