Simulación	Nombre:	
		Código de honor:
Primavera 2019		No he dado ni recibido
Examen Recuperativo		ayuda durante este certamen
19/3/20		
Tiempo límite: 90 Minutos	\mathbf{Firma}	

Este certamen contiene 8 páginas (incluyendo esta cubierta) y 5 preguntas. Cerciorece que su copia contiene todas las páginas. Ponga su iniciales arriba de cada página en el caso de que separe las hojas y estas se puedan perder.

Usted **PUEDE** utilizar una hoja A4 escrita en una de sus carillas para el certamen.

Se requiere que muestre su trabajo para cada problema en este certamen. Las siguientes reglas aplican:

- Organize su trabajo, de forma razonablemente ordenada, en el espacio entregado. Trabajo desorganizado difícil de evaluar recibirá poco o nada de puntaje (independiente de su exactitud).
- Respuestas misteriosas o sin fundamentos no recibirán puntaje. Una respuesta correcta, sin soporte de calculos, explicación, o trabajo algebraico NO recibirá puntaje; una respuesta incorrecta que sea el resultado de calculos intermedios correctos podría recibir puntaje parcial.
- Si necesita mas espacio, use el reverso de la página; indique claramente cuando haga esto.

No escriba en la tabla a la derecha.

Problem	Points	Score
1	10	
2	15	
3	16	
4	17	
5	12	
Total:	70	

Probability theory

1. Una variable aleatoria Y tiene la siguiente función de densidad:

$$f_Y(x) = \begin{cases} 0 & \text{for } x < 0\\ \frac{3}{16}x^2 + \frac{1}{4} & \text{for } 0 \le x < 2\\ 0 & \text{for } 2 < x \end{cases}$$

(a) (4 points) ¿Cuál es el valor esperado de Y? (b) (6 points) ¿Cuál es la función de densidad acumulada de Y? ¿Es más probable obtener un valor cercano a 1/2 o a 3/2?

Cálculo de métricas en simulación

2. Usted decide testear si su entendimiento sobre como opera internamente una simulación es el adecuado. Para ello va a un restaurant y comienza a observar su operación y va registrando lo que ve en una hoja, tal como se observa en la Figura 1.

Evento	Hora	Descripción
Alore tienda	8:00:00	De store la tienda y el Servidor queda desocupado
		Servidor greda desocupado
lleg > Cliente 1	8:12:26	Cliente 1 llegz y Contenza
llegs Cliente 2	8:21:36	cliente 2 lleg 2 y espera en cola
salida Clientel	8:25:30	en cola cliente 1 sbondone 12 tiende y cliente 2 posse stencion
llego Cliente 3	0.27:00	Cliente 3 (legs genfera)
Fin Observacion	8:30:00	Fin periodo observación

Figure 1: Formulario de asignación de estudio de tiempos

, '	(3 points) ¿Cuál es el tiempo promedio en cola?
-	
_	
-	
_	
-	
-	
-	
_	
_	
_	
_	
-	
-	(8 points) ¿Cuál es número promedio en cola?
-	(8 points) ¿Cuál es número promedio en cola?
-	(8 points) ¿Cuál es número promedio en cola?
- 1	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?
	(8 points) ¿Cuál es número promedio en cola?

(4 points)	¿Cuál es el	l porcentaje	de inactivid	lad del serv	idor?	

Validación de distribución

3. Usted quiere modelar el número diario de clientes que van a un restaurant. El dueño del local entrega una aproximación teórica de como los clientes se distribuyen durante la semana:

Día	L	Μ	Μ	J	V	S
Porcentaje (%)	15	10	15	20	25	15

Antes de utilizar esta distribución teórica usted decide validarla, por lo cual va a recolectar datos y obtiene la siguiente tabla:

Día	L	Μ	M	J	V	S	Total
Número de Clientes	26	18	34	45	50	27	200

a)	(16 points)	Comprobar si la distribución teórica sirve para modelar el flujo de clientes
	-	

Likelihood y moment matching

4. Suponga que X es una variable aleatoria discreta con función de probabilidad de masa.

X	0	1	2	3
P(X=x)	$2\theta/3$	$\theta/3$	$2(1-\theta)/3$	$(1-\theta)/3$

			s de la dist	ribución (3	0,2,1,3,2,1,0	,2,1), y se
pide dete	erminar el p	arámetro θ .				

Ajuste de distribuciones cuando no hay datos	
. En esta sección se evalúa su entendimiento del que hacer cuando no se dispone de datos.	
(a) (3 points) En una distribución Beta, si se cumple que α_1 y α_2 son iguales a 1, ¿qué for toma la distribución?	
	ma
	ma —
	ma
	ma
	ma
	ma
	ma
	ma

(3 points) En una distribución Beta, si los parámetros α_1 y α_2 son iguales a 4, ¿qué forma toma la distribución?
demora. Un operario le dice que como mínimo el proceso demora 5 minutos, que el valor
mas observado por él es de 9 minutos, y que el valor más atípico que ha visto es 15 minutos. Ajuste una distribución Beta para este proceso.
mas observado por él es de 9 minutos, y que el valor más atípico que ha visto es 15 minutos. Ajuste una distribución Beta para este proceso.