# Algoritmos y Estructuras de Datos

#### Cursada 2022

Prof. Alejandra Schiavoni (ales@info.unlp.edu.ar)

Prof. Catalina Mostaccio (catty@lifia.info.unlp.edu.ar)

Prof. Laura Fava (Ifava@info.unlp.edu.ar)

Prof. Pablo Iuliano (piuliano@info.unlp.edu.ar)

# Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

# Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

#### Ejemplo 1: Mapa de ciudades

**Ciudades** conectadas por **Rutas** 



#### Ejemplo 2: Prerrequisitos de un curso



#### **Ejemplo 3: Redes sociales**

Personas conectadas en una red social

#### Ejemplo 4: Red de pases de un partido de fútbol



Red de pases para el Barcelona y el AC Milan de un partido de Liga de Campeones. Las flechas más oscuras y gruesas indican más pases entre cada jugador.

# Terminología

- ▶ Grafo→ modelo para representar relaciones entre elementos de un conjunto.
- ightharpoonup Grafo: (V,E), V es un conjunto de vértices o nodos, con una relación entre ellos; E es un conjunto de pares (u,v), u,v € V, llamados aristas o arcos.
- ► **Grafo dirigido**: la relación sobre V no es simétrica. Arista  $\equiv$  par ordenado (u,v). (Ejemplo 3)
- ► **Grafo no dirigido**: la relación sobre V es simétrica. Arista  $\equiv$  par no ordenado  $\{u,v\}$ ,  $u,v \in V$  y  $u \neq v$ . (Ejemplos 1 y 2)

## Terminología (cont. 1)

#### **Ejemplos**



*Grafo dirigido G(V,E)*.

$$V = \{C,D,E,F,H\}$$
  
 $E = \{(C,D),(D,F),(E,C),(E,H),$   
 $(H,E)\}$ 



*Grafo no dirigido G(V,E).* 

$$V = \{2,3,5,7,9\}$$

$$E = \{\{2,3\},\{2,7\},\{2,9\},\{3,9\},\{5,7\},\{5,9\}\}$$

# Terminología (cont. 2)

- $\triangleright$  v es **adyacente** a u si existe una arista (u,v)  $\in$  E.
  - $\blacktriangleright$  en un grafo no dirigido,  $(u,v) \in E$  **incide** en los nodos u,v.
  - $\blacktriangleright$  en un grafo dirigido,  $(u,v) \in E$  **incide** en v, y **parte** de u.
- En grafos no dirigidos:
  - El grado de un nodo: número de arcos que inciden en él.
- En grafos dirigidos:
  - existen el grado de salida (**grado\_out**) y el grado de entrada (**grado\_in**).
    - el grado\_out es el número de arcos que parten de él y
    - > el grado\_in es el número de arcos que inciden en él.
  - El grado del vértice será la suma de los grados de entrada y de salida.
- Grado de un grafo: máximo grado de sus vértices.

# Terminología (cont. 3)

► Camino desde  $u \in V$  a  $v \in V$ : secuencia  $v_1, v_2, ..., v_k$  tal que  $u=v_1, v=v_k, y(v_{i-1},v_i) \in E$ , para i=2,...,k. Ej: camino desde  $\mathbf{a}$  a  $\mathbf{d} \rightarrow \langle a,b,e,c,d \rangle$ .





► Longitud de un camino: número de arcos del camino. Ejs: long. del camino desde  $\mathbf{a}$  a  $\mathbf{d} \rightarrow \langle a,b,e,c,d \rangle$  es 4. (a) long. del camino desde  $\mathbf{a}$  a  $\mathbf{d} \rightarrow \langle a,b,e,f,b,e,c,d \rangle$  es 7. (b)

# Terminología (cont. 4)

Camino simple: camino en el que todos sus vértices, excepto, tal vez, el primero y el último, son distintos. P1 es un camino simple desde U a Z.



Ejemplos anteriores: (a) es camino simple, (b) no lo es.

# Terminología (cont. 5)

 $\triangleright$  Ciclo: camino desde  $v_1, v_2, ..., v_k$  tal que  $v_1 = v_k$ 

Ej:  $\langle 2,5,4,2 \rangle$  es un ciclo de longitud 3.



El ciclo es simple si el camino es simple.

➤ Bucle: ciclo de longitud 1.



> Grafo acíclico: grafo sin ciclos.



# Terminología (cont. 6)

▶ Dado un grafo G=(V, E), se dice que G'=(V', E') es un subgrafo de G, si  $V'\subseteq V$  y  $E'\subseteq E$ .





# Terminología (cont. 7)

► Un subgrafo inducido por  $V' \subseteq V : G' = (V',E')$  tal que  $E' = \{(u,v) \in E \mid u,v \in V'\}$ .





# Terminología (cont. 8)

➤ Un grafo ponderado, pesado o con costos: cada arco o arista tiene asociado un valor o etiqueta. (Ejemplos 2 y 4)



## Conectividad en grafos no dirigidos

Un grafo no dirigido es conexo si hay un camino entre cada par de vértices.





No Conexo

# Conectividad: bosque y árbol

- Un bosque es un grafo sin ciclos.
- Un árbol libre es un bosque conexo.
- Un árbol es un árbol libre en el que un nodo se ha designado como raíz.



### **Propiedades**

Sea G un grafo no dirigido con **n** vértices y **m** arcos, entonces

$$\sum_{v \in G} deg(v) = 2*m$$

$$m \leq (n*(n-1))/2$$

$$m \ge n-1$$

$$m=n-1$$

## Conectividad en grafos dirigidos

- v es alcanzable desde u, si existe un camino de u a v.
- > Un grafo dirigido se denomina **fuertemente conexo** si existe un camino desde cualquier vértice a cualquier otro vértice



**Fuertemente Conexo** 

No Fuertemente Conexo Débilmente Conexo

Si un grafo dirigido no es fuertemente conexo, pero el grafo subyacente (sin sentido en los arcos) es conexo, el grafo es **débilmente conexo**.

### **Componentes conexas**

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.





### **Componentes conexas**

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.



### **Componentes conexas**

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.



### Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.



**No Fuertemente Conexo** 



**Fuertemente Conexo** 

### Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.



**No Fuertemente Conexo** 



**Fuertemente Conexo** 

### Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.



**No Fuertemente Conexo** 

# Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

# Agenda - Grafos

- Representaciones
  - Matriz de Adyacencias
  - Lista de Adyacencias

### Representaciones: Matriz de Adyacencias

- ightharpoonup G = (V, E): matriz A de dimensión  $|V| \times |V|$ .
- ➤ Valor a<sub>ii</sub> de la matriz:

$$a_{ij} = \left\{ \begin{array}{ll} 1 & \text{si } (i,j) \in E \\ 0 & \text{en cualquier otro caso} \end{array} \right.$$





|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 | 1 |
| 2 | 1 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 0 | 1 | 0 |

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 1 |

### Representaciones: Matriz de Adyacencias

- ➤ Costo espacial: O (/V/²)
- > Representación es útil para grafos con número de vértices pequeño, o grafos densos  $(|E|\approx |V|\times |V|)$
- > Comprobar si una arista (u,v) pertenece a  $E \rightarrow$  consultar posición A(u,v)
  - Costo de tiempo T(|V|,|E|) = O(1)

### Representaciones: Matriz de Adyacencias

- > Representación aplicada a Grafos pesados
- ► El peso de (i,j) se almacena en A (i, j)

$$a_{ij} = \begin{cases} w(i,j) & \text{si } (i,j) \in E \\ 0 & o \infty \end{cases} \text{ en cualquier otro caso}$$



|   | 1 | 2  | 3 | 4 | 5  | 6  |
|---|---|----|---|---|----|----|
| 1 | 0 | 10 | 0 | 8 | 0  | 0  |
| 2 | 0 | 0  | 0 | 0 | 7  | 0  |
| 3 | 0 | 0  | 0 | 0 | -1 | 15 |
| 4 | 0 | 12 | 0 | 0 | 0  | 0  |
| 5 | 0 | 0  | 0 | 9 | 0  | 0  |
| 6 | 0 | 0  | 0 | 0 | 0  | 9  |

#### Representaciones: Lista de Adyacencias

- ightharpoonup G = (V, E): vector de tamaño |V|.
- ightharpoonup Posición i 
  ightharpoonup puntero a una lista enlazada de elementos (lista de adyacencia).

Los elementos de la lista son los vértices adyacentes a i



#### Representaciones: Lista de Adyacencias

- ➤ Si G es dirigido, la suma de las longitudes de las listas de adyacencia será |E|.
- ➤ Si G es no dirigido, la suma de las longitudes de las listas de adyacencia será 2/E/.
- ightharpoonup Costo espacial, sea dirigido o no: O(|V|+|E|).
- > Representación apropiada para grafos con |E| menor que |V|<sup>2</sup>.
- ▶ **Desventaja**: si se quiere comprobar si una arista (u,v) pertenece a  $E \Rightarrow$  buscar v en la lista de adyacencia de u.
  - ► Costo temporal T(|V|,|E|) será  $O(Grado G) \subseteq O(|V|)$ .

#### Representaciones: Lista de Adyacencias

- > Representación aplicada a Grafos pesados
- ightharpoonup El **peso de (u,v)** se almacena en el nodo de **v** de la lista de adyacencia de **u**.

