Homework 2

$\begin{array}{c} {\rm Team}\ {\rm F} \\ {\rm CSC}\ 565\ \text{-}\ {\rm Graph}\ {\rm Theory} \end{array}$

January 27, 2018

Question 1. Find a graph G with 5 vertices which has neither a clique of size 3 nor an independent set of size 3.

Question 4. Let A be the adjacency matrix of K_n . If i = j, then $A^2[i,j]$ Otherwise, $A^2[i,j] = \ldots$

- If i = j, then $A^2[i, j] = (n-1)$
- Otherwise, $A^2[i, j] = (n-2)$

Question 5. Prove or disprove: if G is a disconnected graph, then \overline{G} , the complement of G, is connected.

- i. Let u, v be disconnected vertices in G. Since there is no uv edge in G, there must be a uv edge in \overline{G} . Thus u v are connected in \overline{G}
- ii. Let u, v be on the same component in G. Let w be a vertex on a separate component in G. There must be a uw edge in \overline{G} . There must also be a vw edge in \overline{G} . Because there is a uw path, and a vw path, by Lemma 1.2.5 there must also be a uv path. Thus u and v are connected in \overline{G}

Because there exists a path between any two vertices in \overline{G} it is a connected graph.

Question 6. Determine whether K_4 contains the following (give an example or a proof of non-existence);

a) A walk that is not a trail.

The walk B, e_1 , A, e_1 , B is a walk that is not a trail.

b) A trail that is not closed and is not a path.

The walk A, e_1 , B, e_2 , C, e_3 , D, e_4 , B, e_5 , E is a trail that is not closed and is not a path, as the vertex B is repeated.

c) A closed trail that is not a cycle.

The closed trail of A alone is a closed trail that is not a cycle.

Question 7. A graph is called chordal if it has no induced subgraph isomorphic to C_n for any $n \leq 4$. Which of the following 10-vertex graphs are chordal?

- K_{10} : No
- $K_{5,5}$: No
- $K_{1,9}$: Yes
- C_{10} : No
- P_{10} : Yes
- Peterson Graph: No

Question 8. a. For each graph G below, find the incidence matrix M(G). (See definition 1.1.17 and Example 1.1.19.)

Far Left

	e_1	e_2
v_1	1	0
v_2	1	1
v_3	0	1
v_4	0	0

Middle

	e_1	e_2	e_3	e_4
v_1	1	0	1	0
v_2	1	1	0	0
v_3	0	1	1	1
v_4	0	0	0	1

Far Right

	e_1	e_2	e_3	e_4	e_5
v_1	1	0	1	0	1
v_2	1	1	0	0	0
V ₃	0	1	1	1	0
v_4	0	0	0	1	1

b. Recall that the transpose of a $p \times q$ matrix M is the $q \times p$ matrix M^T with $M^T[i,j] = M[j,i]$. For each graph G above in (a), find the matrix product $M(G) \cdot (M(G))^T$.

Far		Left	
	1	\cap	

1	1	0	0
1	2	1	0
0	1	1	0
0	0	0	0

${\rm Middle}$

2	1	1	0
1	2	1	0
1	1	3	1
0	0	1	1

Far Right

		_	
3	1	1	1
1	2	1	0
1	1	3	1
1	0	1	2