

Лекції з електрики та магнетизму

Пономаренко С. М.

Зміст лекції

2

- 1. Основні поняття
- 2. Структура діелектриків
- 3. Теорія поля в діелектриках
- 4. Теорія діелектричної проникності
- 5. Типи діелектриків

Основні поняття

Вільні заряди — це заряди, які можуть переміщатися на великі відстані в речовині (набагато більші за міжатомні відстані). У діелектриках вільних зарядів, як правило, мало.

Зв'язані (поляризаційні) заряди — це заряди, які під дією зовнішніх полів або сил мало зміщуються відносно свого положення рівноваги і повертаються назад, у положення рівноваги, після зняття зовнішнього впливу.

Діелектриками називають речовини, в структурі яких є зв'язані заряди, вільних зарядів дуже мало, або зовсім нема.

Мікрополе $ar{E}_{ ext{micro}}$ — це результат додавання полів багатьох зарядів. Це поле швидко змінюється від точки до точки і в часі.

Середне поле $\langle \vec{E} \rangle$ — це результат усереднення мікрополя по фізично нескінченно малому об'єму ΔV . Це поле змінюється істотно повільніше, ніж мікрополе:

$$\left\langle \vec{E} \right\rangle = \frac{1}{\Delta V} \iiint\limits_{\Delta V} \vec{E}_{\rm micro} dV.$$

Дипольні моменти деяких полярних молекул

Дипольний момент виникає внаслідок різної електронегативності атомів, що складають молекулу, та розташуванню їх в просторі.

Дебай (позначається як $\mathcal A$ або $\mathcal D$) — позасистемна одиниця вимірювання електричного дипольного моменту молекул. Одиниця виміру названа на честь фізика Π . Дебая.

1 Дебай =
$$10^{-18} \Phi p \cdot cм$$
.

Більшість полярних молекул має дипольний момент порядку $1\ \mbox{Д}.$ Одиниця застосовується у фізичній хімії, атомній і молекулярній фізиці.

Дипольний момент молекули NH_3 p = 1.46 D

Дипольні моменти деяких полярних молекул

Дипольний момент виникає внаслідок різної електронегативності атомів, що складають молекулу, та розташуванню їх в просторі.

Дебай (позначається як $\mathcal {A}$ або $\mathcal {D})$ — позасистемна одиниця вимірювання електричного дипольного моменту молекул. Одиниця виміру названа на честь фізика $\Pi.$ Дебая.

1 Дебай =
$$10^{-18} \Phi p \cdot cм$$
.

Більшість полярних молекул має дипольний момент порядку $1\ \mbox{Д}.$ Одиниця застосовується у фізичній хімії, атомній і молекулярній фізиці.

Молекула	Дипольний момент (Дебай)
Вода (H ₂ O)	1.84
Аміак (NH ₃)	1.46
Вуглекислий газ (СО2)	. m · ∆t 0.00
Хлороводень (HCI)	1.08
Метанол (CH ₃ OH)	1.70

Виникнення дипольного моменту неполярних молеку

Неполярні молекули — це молекули, в яких електричні заряди розподілені рівномірно, і відсутній постійний дипольний момент. У таких молекулах атоми зазвичай мають однакову або близьку електронегативність, тому електрони діляться рівномірно між атомами.

Дипольний момент без зовнішнього поля p=0.

Дипольний момент виник під дією зовнішнього поля $p \neq 0$.

Прикладом неполярних молекул є кисень (O_2) , азот (N_2) , метан (CH_4) атоми інертних газів.

Полярні діелектрики

Поляризація — це просторовий перерозподіл зв'язаних зарядів, що призводить до виникнення об'ємного дипольного моменту середовища. Поляризація може виникати як під дією електричних полів, так і під впливом інших зовнішніх чинників.

Полярні діелектрики — складаються з полярних молекул, що мають дипольний момент.

Полярні діелектрики

Поляризація — це просторовий перерозподіл зв'язаних зарядів, що призводить до виникнення об'ємного дипольного моменту середовища. Поляризація може виникати як під дією електричних полів, так і під впливом інших зовнішніх чинників.

Полярні діелектрики — складаються з полярних молекул, що мають дипольний момент.

Неполярні діелектрики

Поляризація — це просторовий перерозподіл зв'язаних зарядів, що призводить до виникнення об'ємного дипольного моменту середовища. Поляризація може виникати як під дією електричних полів, так і під впливом інших зовнішніх чинників.

Неполярні діелектрики — складаються з неполярних молекул, у яких центри позитивного і негативного зарядів збігаються.

Неполярні діелектрики

Поляризація — це просторовий перерозподіл зв'язаних зарядів, що призводить до виникнення об'ємного дипольного моменту середовища. Поляризація може виникати як під дією електричних полів, так і під впливом інших зовнішніх чинників.

Неполярні діелектрики — складаються з неполярних молекул, у яких центри позитивного і негативного зарядів збігаються.

Вектор поляризації

Поляризація — це просторовий перерозподіл зв'язаних зарядів, що призводить до виникнення об'ємного дипольного моменту середовища. Поляризація може виникати як під дією електричних полів, так і під впливом інших зовнішніх чинників.

Вектор поляризації (поляризованість) — це дипольний момент одиниці об'єму речовини (густина дипольного моменту): $\vec{P} = \frac{1}{V} \sum \vec{p}_i$

Вектор поляризації

Поляризація — це просторовий перерозподіл зв'язаних зарядів, що призводить до виникнення об'ємного дипольного моменту середовища. Поляризація може виникати як під дією електричних полів, так і під впливом інших зовнішніх чинників.

В дієлектрику сумарне поле, яке є суперпозицією зовнішнього поля $\vec{E}_{\rm ex}$ і поля \vec{E}' зв'язаних зарядів $\vec{E}=\vec{E}_{\rm ex}+\vec{E}'$, ослаблюється.

Електрострикція

Вміщення діелектрика в електричне поле також призводить до зміни розмірів тіл. Цей ефект називається електрострикцією. У всіх діелектриках спостерігається електрострикція.

Особливості електрострикції:

- 1. Електрострикція не розрізняє напрямку поля якщо змінити напрям електричного поля, деформація залишиться в тому самому напрямку. Це пов'язано з тим, що ефект залежить від квадрата поля E^2 ;
- 2. деформація пропорційна квадрату напруженості поля $\Delta \mathscr{C} \sim E^2$. Це призводить до того, що при збільшенні напруженості поля деформація зростатиме швидше;
- 3. У більшості матеріалів електрострикційний ефект виражений слабо порівняно з п'єзоефектом. Для створення помітних деформацій потрібне високе електричне поле.

Таким чином, деформація під час електрострикції — це нелінійна, квадратична і малопомітна деформація, яка не залежить від напрямку електричного поля.

Вектор поляризації (поляризованість)

Вектор поляризації (поляризованість) — це дипольний момент одиниці об'єму речовини (густина дипольного моменту):

$$\vec{P} = \frac{1}{V} \sum \vec{p}_i.$$

Для великого класу діелектриків поляризованість залежить лінійно від напруженості поля в діелектрику:

$$\vec{P}=\chi\vec{E},$$

де $\chi>0$ — безрозмірна величина називається діелектричною сприйнятливістю речовини і не залежить від \vec{E} , характеризує властивості самого діелектрика.

 \in діелектрики, для яких $ec{P}
eq \chi ec{E}$. Це деякі іонні кристали й електрети, а також сегнетоелектрики.

Поляризація називається однорідною, якщо вектор поляризації \vec{P} є постійним за об'ємом речовини: $\vec{P}=\mathrm{const}$, і неоднорідною, якщо \vec{P} змінюється від точки до точки.

Нехай поляризація однорідна. Розглянемо косокутний паралелепіпед, вирізаний із поляризованої речовини. Якщо S — площа бічної грані, а ℓ — довжина паралелепіпеда, то його об'єм V: $V = S\ell \cos \theta$.

На гранях паралелепіпеда розташовані поверхневі заряди з густиною σ , його дипольний момент $\vec{p} = \sigma S \vec{\ell}$.

Вектор поляризації дорівнює:

$$\vec{P} = \frac{\vec{p}}{V} = \frac{\sigma S \vec{\ell}}{S \ell \cos \theta}, \quad \vec{P} \cdot \vec{n} = 0$$

$$\vec{P} \cdot \vec{n} = P_n = \sigma'$$

Поляризація називається однорідною, якщо вектор поляризації \vec{P} є постійним за об'ємом речовини: $\vec{P}=\mathrm{const}$, і неоднорідною, якщо \vec{P} змінюється від точки до точки.

Нехай тепер поляризація неоднорідна. Розглянемо в речовині деякий об'єм довільної форми.

Якщо в результаті поляризації на зовнішню поверхню виходить заряд q= $\begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}}$

$$\iint\limits_{S} \sigma' dS = - \iiint\limits_{V} \rho' dV.$$

Поляризація називається однорідною, якщо вектор поляризації \vec{P} є постійним за об'ємом речовини: $\vec{P}=\mathrm{const}$, і неоднорідною, якщо \vec{P} змінюється від точки до точки.

Нехай тепер поляризація неоднорідна. Розглянемо в речовині деякий об'єм довільної форми.

Оскільки
$$\oiint_S \sigma' dS = \oiint_S P_n dS$$
, то

$$\iint\limits_{S} P_n dS = - \iiint\limits_{V} \rho' dV.$$

Цей вираз складає теорему Гаусса для вектора поляризації.

Поляризація називається однорідною, якщо вектор поляризації \vec{P} є постійним за об'ємом речовини: $\vec{P}=\mathrm{const}$, і неоднорідною, якщо \vec{P} змінюється від точки до точки.

Нехай тепер поляризація неоднорідна. Розглянемо в речовині деякий об'єм довільної форми.

Теорема Гаусса в диференціальній форму

$$\vec{\nabla} \cdot \vec{P} = -\rho'.$$

У окремому випадку однорідної поляризації, коли $\vec{P}={
m const.}$ маємо ho'=0.

Вектор електричної індукції \vec{D}

Електричне поле в створюють не лише вільні, а і поляризаційні заряди. У загальному випадку в теоремі Гаусса для вектора \vec{E} слід врахувати наявність не тільки вільних, а й зв'язаних (поляризаційних) зарядів:

$$\vec{\nabla} \cdot \vec{E} = 4\pi(\rho + \rho').$$

Оскільки $\vec{\nabla}\cdot\vec{P}=ho'$, отримуємо $\vec{\nabla}\cdot\vec{E}=4\pi(
ho-\vec{\nabla}\cdot\vec{P})$:

$$\vec{D} = \vec{E} + 4\pi \vec{P}.$$

Теорема Гаусса для електричного поля в речовині набуде вигляду:

$$\vec{\nabla} \cdot \vec{D} = 4\pi \rho.$$

Введений у вектор \vec{D} називається вектором електричної індукції.

Вектор електричної індукції \vec{D}

Введений у вектор \vec{D} називається вектором електричної індукції.

$$\vec{D} = \vec{E} + 4\pi \vec{P}.$$

Теорема Гаусса для електричного поля в речовині:

в диференціальній формі

$$\vec{\nabla} \cdot \vec{D} = 4\pi \rho.$$

в інтегральній формі

$$\iint\limits_{S} \vec{D} = 4\pi \iiint\limits_{V} \rho dV.$$

У формулювання теореми Гаусса для поля в речовині входять тільки вільні заряди. Поляризаційні ж заряди враховані у визначенні вектора індукції \vec{D} .

Діелектрична проникність

Для діелектриків для яких справедливо співвідношення $\vec{P}=\chi\vec{E}$:

$$\vec{D} = \vec{E} + 4\pi \vec{P} = (1 + 4\pi \chi)\vec{E} = \varepsilon \vec{E}, \qquad \vec{D} = \varepsilon \vec{E}.$$

де $\varepsilon = 1 + 4\pi \chi$. називається діелектричною проникністю

середовища. Для випадку постійних електричних полів виявляється $\chi > 0$, а тому і $\varepsilon > 0$.

Розглянемо точковий заряд Q вміщений в нескінченний діелектрик з проникністю ε . Скориставшись теоремою Гаусса для вектора \vec{D} знайдемо поле в діелектрику:

$$\vec{E} = \frac{Q}{cr^3}\vec{r}.$$

Оскільки $\varepsilon > 1$, то поле слабкіше ніж у вакуумі. Тобто, поляризаційні заряди призводять до ослаблення поля.

12

Граничні умови в присутності діелектриків

Застосуємо теорему Гауса до нескінченно малого циліндра, що охоплює частину межі розділу двох середовищ. Вважаючи $d\vec{S}_1=-d\vec{S}_2, q=\sigma dS, d\vec{S}_1=\vec{n}\ dS,$ маємо

$$\iint_{S} \vec{D} \cdot d\vec{S} = 4\pi\sigma \ \Rightarrow \vec{D} \cdot d\vec{S}_{1} + \vec{D} \cdot d\vec{S}_{2} = 4\pi\sigma dS$$

Звідси випливає перша гранична умова:

$$D_{1n}-D_{2n}=4\pi\sigma.$$

Нормальна складова вектора \vec{D} зазнає стрибка при переході через границю розділу дієлектриків, якщо на ній є вільні заряди. Якщо вільних зарядів на границі розділу нема, то $D_{1n}=D_{2n}$ і стрибка не буде.

12

Граничні умови в присутності діелектриків

Застосуємо теорему про циркуляцію до нескінченно малого прямокутного контуру L, що проходить на нескінченно малій відстані над і під поверхнею розділу середовищ. Вважаючи, що $d\vec{r}_1 = -d\vec{r}_2$, маємо

$$\oint\limits_{I}\vec{E}\cdot d\vec{r}=0 \Rightarrow \vec{E}_{1}d\vec{r}_{1}+\vec{E}_{2}d\vec{r}_{2}=0$$

Звідси випливає друга гранична умова:

$$E_{1\tau} = E_{2\tau}.$$

Тангенціальна складова \vec{E} виявляється однаковою по обидва боки границі розділу (не зазнає стрибка).

Заломлення силових ліній на границі діелектрика

Лінії векторів \vec{E} і \vec{D} на границі розділу двох діелектриків заломлюються.

Граничні умови для вектора $ec{E}$

$$\begin{cases} E_{1\tau} = E_{2\tau}, \Rightarrow E_1 \sin \alpha_1 = E_2 \sin \alpha_2, \\ D_{1\tau} = D_{2\tau}, \Rightarrow \varepsilon_1 E_1 \cos \alpha_1 = \varepsilon_2 E_2 \cos \alpha_2 \end{cases}$$

Граничні умови для вектора $ec{D}$

$$\begin{cases} E_{1\tau} = E_{2\tau}, \Rightarrow D_1/\varepsilon_1 \sin \alpha_1 = D_2/\varepsilon_2 \sin \alpha_2, \\ D_{1\tau} = D_{2\tau}, \Rightarrow D_1 \cos \alpha_1 = D_2 \cos \alpha_2 \end{cases}$$

Закон заломлення ліній \vec{E} та \vec{D} однаковий:

$$\operatorname{tg} \alpha_2/\operatorname{tg} \alpha_1 = \varepsilon_2/\varepsilon_1.$$

В діелектрику з більшим значенням ε лінії \vec{E} і \vec{D} становитимуть більший кут із нормаллю до границі розділу.

Теорія діелектричної проникності полярних

За розподілом Больцмана, число молекул в одиничному тілесному куті, які напрямлені під кутом θ до поля \vec{E} :

$$\frac{dN}{d\Omega} = n(\theta) = n_0 e^{-\frac{U}{kT}} = n_0 e^{+\frac{p_0 E \cos \theta}{kT}} \approx n_0 \left(1 + \frac{p_0 E \cos \theta}{kT}\right).$$

Теорія діелектричної проникності полярних

Поляризація (напрямлена вздовж поля):

$$P = np_0 \overline{\cos \theta} = np_0 \left(\frac{1}{N} \int \cos \theta dN\right) = \frac{np_0^2}{3kT} E$$

Теорія діелектричної проникності полярних діелектриків

Поляризація (напрямлена вздовж поля):

$$P = np_0 \overline{\cos \theta} = np_0 \left(\frac{1}{N} \int \cos \theta dN\right) = \frac{np_0^2}{3kT} E$$

Оскільки поляризація $P=\chi E$ пропорційна полю E, тому поляризовність:

$$\chi = \frac{np_0^2}{3kT}. \quad \varepsilon = 1 + \frac{4\pi np_0^2}{3kT}.$$

обернено пропорційна температурі $\chi \sim \frac{1}{T}$. Ця залежність виду називається законом Кюрі. Якщо діелектрична проникність діелектрика залежить від температури, це означає, що діелектрик складається із полярних молекул.

15

Типи діелектриків

Електрети

Електрети — це діелектрики, які тривалий час зберігають поляризацію після зняття зовнішнього поля. Електрет ϵ «електричним аналогом постійного магніту».

(a) Поле вектора електричної індукції \vec{D}

(б) Поле вектора напруженості електричного поля \vec{E}

Типи діелектриків _{Електрети}

Електрети можна виготовити, нагріваючи діелектрик і піддаючи його впливу сильного поля \vec{E} , так що полярні молекули вистоюються за полем.

Якщо потім діелектрик охолодити, то поляризація речовини тривалий час зберігається, оскільки поворот молекул у затверділій речовині ускладнений. У результаті отримують «заморожену» поляризацію.

Кварц та інші форми діоксиду кремнію є природними електретами. Сьогодні більшість електретів виготовляють із синтетичних полімерів, наприклад, фторопластів, поліпропілену, поліетилентерефталату (ПЕТ) тощо.

16

Типи діелектриків

Сегнетоелектрики

Сегнетоелектрик — це кристалічний діелектрик, який має спонтанну поляризацію всередині окремих доменів, яка виникає без зовнішнього електричного поля. Під впливом поля домени переорієнтуються, змінюючи загальну поляризацію матеріалу.

Домен — це локальна область усередині сегнетоелектрика, де дипольні моменти орієнтовані в одному й тому самому напрямку. У кожному домені поляризація постійна і спрямована в один бік. Розміри від кількох до сотень мікрометрів.

Відомі сегнетоелектрики.

- Титанат барію (ВаТіО₃).
- ullet Сегнетова сіль (KNaC₄H₄O₆ · 4 H₂O)

Застосування сегнетоелектриків пов'язані з аномально великими значеннями ε (конденсатори, вариконди). Використовуються у створенні електромеханічних і механоелектричних перетворювачів у широкому діапазоні частот, датчики мікропереміщень, гідрофони, акселерометри, стабілізатори частоти тощо.

17

Гістерезис в сегнетоелектриках

Гістерезис — неоднозначна петлеподібна залежність поляризації сегнетоелектриків від зовнішнього електричні поля Е за його циклічної зміни.

Рис.: Доменна структура сегнетоелектрика

- 1. За високого електричного поля E, поляризація досягає насичення і поводить себе як діелектрик у якого $P \propto E$.
- 2. Поле зменшується до нуля E=0, але поляризація P_r залишається.
- 3. Для того щоб звести поляризацію до нуля, потрібно прикласти негативне поле $-E_c$, яке називається коерцитивною силою.
- 4. При подальшому збільшенні негативного поля поляризація $P \propto E$.
- 5. При зменшенні негативного поля до нуля поляризація залишається на рівні $-P_r$.

Типи діелектриків

П'єзоелектрики та піроелектрики

П'єзоелектрики — діелектрики, що можуть або під дією деформації індукувати електричний заряд на своїй поверхні (прямий п'єзоефект), або під впливом зовнішнього електричного поля деформуватися (зворотний п'єзоефект).

Піроелектрики — кристалічні діелектрики, що мають спонтанну поляризацію, тобто поляризацією за відсутності зовнішніх впливів. міна спонтанної поляризації та поява електричного поля в піроелектриках відбувається при зміні температури, а також при деформуванні. Таким чином, усі піроелектрики є п'єзоелектриками, але не всі п'єзоелектрики мають піроелектричний ефект.

Підсумки

Вектор поляризації

Для лінійних діелектриків

Теорема Гаусса для вектора $ec{P}$

в диференціальній формі

Вектор електричної індукції

Для лінійних діелектриків

Зв'язок проникності і поляризовності

(для лінійних діелектриків)

Поляризовність полярних діелектриків (закон Кюрі)

Теорема Гаусса в діелектриках

в диференціальній формі

$$\vec{P} = \frac{1}{V} \sum \vec{p}_i$$

$$\vec{P} = \chi \vec{E}$$

$$\iint\limits_{S} \vec{P} d\vec{S} = - \iiint\limits_{V}$$

$$\vec{\nabla} \cdot \vec{P} = -\rho'$$

$$\vec{D} = \vec{E} + 4\pi \vec{P}$$

$$\vec{D} = \varepsilon \vec{E}$$

$$\varepsilon = 1 + 4\pi \chi$$

$$\chi \propto T^{-1}$$

$$\iint\limits_{S} \vec{D}d\vec{S} = 4\pi \iiint\limits_{V} \rho dV$$