

Design a PID controller s.f.
$T_{0} = 0.35$ $G(s) = 1$ $T_{5} = 2s$ $S(s+2)(s+5)$
1) Evaluate OL system performance
TF-Zpk (C] [-5,-2,0]; 1)
rlorus (TF)
3) Find desired poles - 0 ± wdj
Tp= TT => 0.3 = TT Wd = 10.47
$\overline{1}_{S} = 4 = 3 = 4$ $\overline{0} = -2$
$S_{1,2} = -2 \pm 10.47 \Rightarrow cannot be achived on current RL$
3 Determine where to out a zero s.t. These poles are on RL
A10.47 0,=90°+ fan' (2)
= 100.81
-5 -2 10 Op = 40
$\theta_3 = ton^{-1} \left(\frac{10.41}{5-2} \right) = 74.01$
5A, -O, = (ak-1)180

The state of the s	Dp = (2/c+1) (180)
. 67	-84.82
7	$\tan^{-1}\left(\frac{10.47}{2-2}\right) = 84.82$
2 -2	10.47 = 11.03
	2-2=0949
	7 = 2,95
RL-peaktu	ne_settingtime.m

Let's revisit our PID controllers with this in mind. Kp+Kds+Ki $\rightarrow G(S) = \frac{N(S)}{D(S)}$ We can rewrite our controller as $G(S) = \frac{KdS^2 + KpS + Ki}{S}$ In other words, it adds a pole at the origin and 2 zeros to the transfer function If you have a P only = scales G(s), reduces rise time & SSE If you have a PD only > Kp + Kos > it adds a zero to the OLTF =) adds damping to CLTF

If you have a PD only > Kp + Kos > it adds a zero to the OLTF

| adds damping to CLTF

| adds damping to CLTF

| you have a PI only => Kps + Ki > adds a zero and pole at origin
| improves stabity and reduces or eliminates SSE, but translent response degraded

| PID removes SSE and decreases setting time while maintaining a reasonable transient response

Let's use our new root locus skills to help us understand this. We'll use our familiar simple harmonic oscillator as the plant, since we are already well versed in its behavior

SMD_PID_RL.m

The poles are at -7.23 and -2.76, indicating an overdamped response to a step.

(Part 1 in Matlab file)

Let's use m=1, b=10, k=20,

Now let's simply close the loop OLTF = GP $F(S) \longrightarrow GP$ CLTF = GP I+GPThe poles of the CLTF are at -7,-3 and the step response is slightly improved.

This is like adding Kp=1

Who consider both the transient response and the SSE when

*We consider both the transient response and the SSE when we think about performance

So locus	let's	loo k	at se a	adding	Kp, and	d use	the noot	•
	— (\)				, OLT	F *	1 5²+ bs + k	(Kp)
In the	2. OLT			ieep the		Wes	Kp +bs + k+ K	P
Kp 5	eperat	e, sin		is wr	nact (Rat 3)		
and see the p	e how points	Matlak the s in t pond	step res	choose ponse t locus	a few changes. and se	values We co e wha	of Kp in click (t values	3 / 1
	ļ	ζ ₀ = 5,	6, 10	, 50	, 500			

So let's look at adding Kp and Kd G_{c} G_{p} Gc = Kp + KdS = Kd (KP/Kd + S) = Kd (2+S) let's call this 2, since it represents the new zero CLTF = KdS + Kp 52 + 15 + Kd)s + (K+ Kp) OLTF = (2+5)Gp part 4 Caution: The Os% values shown in rlocus tool are not predictive of sys benavior - it tells what the system would do in the abscence of other poles to zeros * Note that SSE is still an issue here? * look at changing both Kd and Z \Rightarrow we set Kd w/RL, and Kp is then known from the ratio => RL only varies one constant parameter

Now let's do PI only + Gc Gp Gc - Kp + KI = Kps + KI = Kp (S + KI/Kp) CLTF = Kp5 + Kz S3 + 1052 + 120 + Kp)5 + Kz OLTF= (s + KI/KD) Gc Part 5 look at 2= .5, 5, 10 across a range of Kp * Observe transient response degredation * Elimination of SSE The are varying Kp and letting KI be calculated from Z

And finally, let's look at all 3 Gc Gp Gc = Kp + 5Kd + Ki = Kd82 + Kps + Ki = Kd (52 + KP/KdS + Ki/Kd)

= Kd (52 + KP/KdS + Ki/Kd)

= Kd Kd Kd Adding 2 zeros and a pole at 0 to the start a= 10, b= 8 a = 1 , b = 20 for varying K >response has 055£ on the transient response => PIDs require tuning to get desired response => RL is a tool that can help with this >> The integrator is key to eliminating SSE

A summary of what we observed in our root locus PID design example: Nour intuitive estimates of the response were more accurate in cases where the system behaved as second-order (ish!) =) our rules about the s-plane apply to second order systems only =) but, we oould still see general performance 2) We could target areas to to move our locus) to get behavior we wanted. at Ts Constraint b) adding poles or zeros by designing our controller changed our shape Constraent **** Compling (05) 3) Poles closer to the real axis often dominated the behavior a dominant poles for ex we had to change our arch here blc Ts was always high

4) Since we could only vary one K in the RL, we used the zero locations, lwhich are located from the ratios kp/kp, kt/kp, etc) to get our locus into the area of the design space we wanted, then we could select a K value on that locus to get desired behavior 5) The addition of an integrator was necessary to

5) The addition of an integrator was necessary to eliminate SSE in response to a step input

Putting all of this together suggets a general process for using RL for controller design

1) Determine the desired region of the s-space to meet performance criteria

- 2) Sketch the root locus for the system and determine how it needs to change to go through the target area
- 3) Design a controller that adds poles/zeros as needed to move locus to target orea
- 4) Find the gain K on that locus to achive desired behavior

5) Iterate as needed

Now, let's consider how different types of inputs might impact our design choices