Phylogenetics II: Building trees from organismal data

Introduction to Evolution and Scientific Inquiry Dr. Stephanie J. Spielman; spielman@rowan.edu

What are all possible trees for three taxa A, B, C?

Two broad approaches to determine the "best" tree

- Either way, we use homologous characters (traits)
 - Since early 1990s, almost always DNA sequences!!!

Using distance among all sequences (shortest distance = most closely related)

Using an optimality criterion

What are all possible trees for N taxa?

Number of Species	Number of Possible Trees
3	3
4	15
5	105
6	954
7	10,395
8	135,135
9	2,027,025
10	34,459,425
11	654,729,075
12	13,749,310,575 ← about 14 billion
13	316,234,143,225 ← over 300 billion

We create trees by tracing change in <u>homologous</u> characters

- Homology: traits shared due to common ancestry
 - o "homologous traits"
 - The trait evolved in the common ancestor, and evolution has "tweaked" the trait as it diverged
 in descendents

- Homoplasy: traits shared due to "acquired" similarity, i.e. convergent evolution
 - o "analogous traits"
 - The same trait evolves several times independently

Homology of tetrapod limbs

Examples of convergent evolution

Convergent evolution, phylogenetically

Why homologous characters are key

Building trees with homologous characters: organizing data into a character matrix

Rows are species/groups of organisms

Columns are trait values for HOMOLOGOUS characters.

*amniotic egg: an egg in which the embryo is surrounded by the moisture-retaining amnion membrane

*post-orbital fenestrae: holes in the skull behind the eye

Sharks and relatives
Ray-finned fishes
Amphibians
Primates
Rodents and rabbits
Crocodiles and relatives
Dinosaurs and birds

Vellep	Bound Hope Continu		Arthiding Half		I'MO tobe	
70.	Bo. 3/6	40	br	Ho.	14, 10,	
YES	no	no	no	no	no	
YES	YES	no	no	no	no	
YES	YES	YES	no	no	no	
YES	YES	YES	YES	YES	no	
YES	YES	YES	YES	YES	no	
YES	YES	YES	YES	no	YES	
YES	YES	YES	YES	no	YES	

Making trees from DNA sequences

If the character matrix is DNA sequences, it is called a sequence alignment

From DNA sequence to phylogeny

From DNA sequence to phylogeny

Optimality criterion = a measurement of being optimal (the best)

Find the tree with the best value (optimality) of some measurement (criterion)
 that tells us if the tree is a good fit to the data

Good fit to the data = the tree and data match really well

(Note, there are other ways also, but this is the modern-day standard)

Types of optimality criterion

- Parsimony
 - The tree with the fewest steps/evolutionary changes is the best tree
 - We will learn this one
 - For all possible trees, the one with the fewest number of changes is the "best"

- Some kind of complicated statistic
 - "Maximum Likelihood"
 - "Bayesian Posterior Probability"
 - o By FAR the most commonly-used approaches in modern-day phylogenetic research
 - For all possible trees, the one with the highest PROBABILITY is the "best"

Major question: Is evolution parsimonious??

PROBABLY NOT.

https://twitter.com/RebeccaRHelm/status/1245810190601072653?s=20

Let's find the best tree under <u>parsimony</u>

Fish: GCGT

Bear: CCTG

Lizard: CCAG

ancestor: GCGT

Position 2 is constant,

1, 3, 4 are <u>variable</u>

The tree with the **lowest tree length** is the best tree. Tree Length = total number of changes along the tree, <u>summed across characters (columns in alignment)</u>. **TREE LENGTH IS OUR OPTIMALITY CRITERION.**

Once we have a tree, we can study evolution of traits

	Four limbs	Lives on land	Eats insects
Bear	Yes	Yes	No
Lizard	Yes	Yes	Yes
Fish	No	No	Yes

Tree-thinking about traits/groups of species

Which is a true evolutionary group?

- Animals with a four-chambered heart
 - Birds and mammals
- Birds ("Aves")
- Reptiles
 - lizards, turtles, snakes, crocodiles

Tree-thinking about traits/groups of species

Which is a true evolutionary group?

- Animals with a four-chambered heart
 - Birds and mammals
- Birds ("Aves")
- Reptiles
 - lizards, turtles, snakes, crocodiles

Describing groups in a phylogenetic context

Letters at nodes represent *labeled ancestors*

@1999 Addison Wesley Longman, Inc.

Homologous trait with all descendants inheriting same trait

CONVERGENT trait

Homologous trait with some descendants inheriting trait, rest inheriting *modification*

"No limbs" is **polyphyletic** (ancestor NOT in group - it has limbs!)

Marine mammals show convergence. They are polyphyletic

Birds are MONOphyletic. So are crocodilians. Dinosaurs are PARAphyletic

Dogs and their close relatives

"The phylogenetic tree is based on ~15 kb of exon and intron sequence (see text). Branch colours identify the red-fox-like clade (red), the South American clade (green), the wolf-like clade (blue) and the grey and island fox clade (orange). The tree shown was constructed using maximum parsimony as the optimality criterion and is the single most parsimonious tree.

"Bootstrap values and bayesian posterior probability values are listed above and below the internodes, respectively; dashes indicate bootstrap values below 50% or bayesian posterior probability values below 95%.

"Underlined species names are represented with corresponding illustrations."

https://www.nature.com/articles/nature04338

Evolution of bee behavior

Are of of these groups monophyletic?

- Social?
- Solitary?
- Polymorphic?
- Parasitic?

How many **evolutionary changes** have occurred for this trait?

Flavivirus hosts?

(This is a **cladogram**: branch lengths are meaningless.)