

Algebra relazionale

Tratto da:

Atzeni, Ceri, Fraternali, Paraboschi, Torlone Basi di dati *Quinta edizione* McGraw-Hill Education, 2018 Capitolo 3: *Algebra e Calcolo relazionale*

1

Modello Relazionale

- La storia delle banche dati relazionali è la storia di una scienza e rivoluzione tecnologica.
- La rivoluzione scientifica iniziò nel 1970 da Edgar (Ted) F. Codd presso l'IBM San Jose Research Laboratory (ora IBM Almaden Research Center).
- Codd ha introdotto il modello relazionale e due linguaggi di interrogazioni di basi di dati: Algebra relazionale e Calcolo relazionale.

Edgar F. Codd, 1923-2003

Linguaggi di interrogazione per basi di dati relazionali

- Dichiarativi
 - specificano le proprietà del risultato ("che cosa")
- Procedurali
 - specificano le modalità di generazione del risultato ("come")

3

3

Linguaggi di interrogazione

- Algebra relazionale: procedurale
- Calcolo relazionale:

dichiarativo (teorico)

SQL (Structured Query Language): parzialmente dichiarativo (reale)

 QBE (Query by Example): dichiarativo (reale)

4

Che caratteristiche deve avere un linguaggio per basi di dati?

- Deve essere definito ad alto livello per garantire indipendenza fisica dei dati
- Deve essere abbastanza espressivo per permettere ad esprimere varie interrogazioni di una db che potrebbero servire in pratica
- Deve essere implementabile in modo efficiente

5

5

Algebra relazionale (AR)

- 5 operatori di base
 - Proiezione
 - Selezione
 - Unione
 - Differenza
 - Prodotto cartesiano
- Combinando questi semplici operatori possiamo esprimere diverse tipologie di query (anche complesse)

6

Due versioni di AR:

- unnamed (notazione posizionale)
- named (notazione non posizionale)
 - In questa variante si aggiunge ai cinque operatori prima mensionati anche l'operatore di Ridenominazione

7

Operatori derivati

- Intersezione
- Join e le sue varianti
 - Theta-join
 - Join naturale
 - Join esterni
 - Semijoin
- Divisione

8

Operatori specifici, introdotti per gestire le tabelle (relazioni): proiezione e selezione

9

9

Cognome	Nome *	DataN *	Sesso	Provinc	iaR
Cita	Francesco	06/06/2000 n	naschio	CS	
Fedi	Camilla	19/09/1976 f	emmina	CZ	
Gelo	Alfredo	19/10/1968 n	naschio	VV	
Polletti	Carmine	28/06/2002 n	naschio	CS	
Vasto	Claudia	06/06/2013 f	emmina	CZ	
Militare	Enzo	06/10/1945 n	naschio	RC	
	nare i dati so	lo su femm			
	nare i dati so	lo su femm			
	nare i dati so	lo su femm)	
	nare i dati so	lo su femm			

Cognome	Nome *	DataN	Sesso	ProvinciaR
Cita	Francesco	06/06/2000 r	naschio	CS
Fedi	Camilla	19/09/1976 f	emmina	CZ
Gelo	Alfredo	19/10/1968 r	naschio	VV
Polletti	Carmine	28/06/2002 r	maschio	CS
Vasto	Claudia	06/06/2013 f	emmina	CZ
Militare	Enzo	06/10/1945 r	maschio	RC
_	.)	\sim	\	
		Pazie	n le	
6		Pazie	n le	

Francesco Fedi Camilla 19/09/1976 femmina CZ Gelo Alfredo 19/10/1968 maschio VV Polletti Carmine 28/06/2002 maschio CS Vasto Claudia 06/06/2013 femmina CZ Militare Enzo Cognome e nome dei pazienti che non sono residenti in provincia di Catanzaro.	Cognome	Nome *	DataN *	Sesso	ProvinciaR
Gelo Alfredo 19/10/1968 maschio VV Polletti Carmine 28/06/2002 maschio CS Vasto Claudia 06/06/2013 femmina CZ Militare Enzo 06/10/1945 maschio RC Restituire cognome e nome dei pazienti che non sono residenti in provincia di Catanzaro.	Cita	Francesco	06/06/2000 mas	chio	CS
Polletti Carmine 28/06/2002 maschio CS Vasto Claudia 06/06/2013 femmina CZ Militare Enzo 06/10/1945 maschio RC Restituire cognome e nome dei pazienti che non sono residenti in provincia di Catanzaro.	Fedi	Camilla	19/09/1976 fem	mina	CZ
Vasto Claudia 06/06/2013 femmina CZ Militare Enzo 06/10/1945 maschio RC Restituire cognome e nome dei pazienti che non sono residenti in provincia di Catanzaro.	Gelo	Alfredo	19/10/1968 mas	schio	VV
Vasto Claudia 06/06/2013 femmina CZ Militare Enzo 06/10/1945 maschio RC Restituire cognome e nome dei pazienti che non sono residenti in provincia di Catanzaro.	Polletti	Carmine	28/06/2002 mas	schio	CS
Restituire <mark>cognome e nome</mark> dei pazienti che non sono residenti in provincia di Catanzaro.	Vasto	Claudia			CZ
Restituire <mark>cognome e nome</mark> dei pazienti che non sono residenti in provincia di Catanzaro.		_	06/10/10/15		
5152 (Paziente)) \$152 (Paziente)	Restituii	re <mark>cognome (</mark>	<mark>e nome</mark> dei p	azient	ti che
	Restituii	re <mark>cognome (</mark> o residenti ir	<mark>e nome</mark> dei p n provincia d	azient li Cata	ti che nzaro.

Proiezione, sintassi e semantica

sintassi

 $\pi_{ListaAttributi}$ (Operando)

- semantica
 - il risultato contiene le ennuple ottenute da tutte le ennuple dell'operando ristrette agli attributi nella lista

18

Proiezione

- operatore monadico
- produce un risultato che
 - ha parte degli attributi dell'operando
 - contiene ennuple cui contribuiscono tutte le ennuple dell'operando

19

19

Cardinalità delle proiezioni

- una proiezione
 - $^{\circ}$ contiene al più tante ennuple quante l'operando
 - o può contenerne di meno
- se X è una superchiave di R, allora $\pi_X(R)$ contiene esattamente tante ennuple quante R

Selezione, sintassi e semantica

sintassi

σ _{Condizione} (Operando)

- Condizione: espressione booleana (come quelle dei vincoli di ennupla)
- semantica
 - il risultato contiene le ennuple dell'operando che soddisfano la condizione

21

21

Selezione

- operatore monadico
- produce un risultato che
 - ha lo stesso schema dell'operando
 - contiene un sottoinsieme delle ennuple dell'operando,
 - $^{\circ}$ quelle che soddisfano una condizione

- combinando selezione e proiezione, possiamo estrarre informazioni da una relazione
- non possiamo però correlare informazioni presenti in relazioni diverse, né informazioni in ennuple diverse di una stessa relazione

23

Classici Operatori insiemistici: unione e differenza (anche intersezione, che in AR è un operatore derivato)

24

Operatori insiemistici

- le relazioni sono insiemi
 - (nelle relazioni non devono essere ennuple duplicate)
- i risultati debbono essere relazioni
- è possibile applicare unione, intersezione, differenza solo a relazioni che hanno la stessa struttura, cioè che sono definite sugli stessi attributi

25

25

Esempio

Laureati

MatricolaNomeEtà7274Rossi427432Neri549824Verdi45

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

- 1. Visualizzare laureati e specialisti.
- 2. Visualizzare laureati che sono specialisti.
- 3. Visualizzare laureati che non sono specialisti.

26

Esempio di tabelle con struttura simile, ma che hanno attributi nominati diversamente

Padre Figlio Adamo Abele Adamo Caino

Isacco

Paternità

Abramo

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Creare una sola relazione che riporta i genitori e i loro figli:

- AR posizionale (*unnamed*): **Paternità** ∪ **Maternità** non considera nomi delle colonne
- AR non posizionale (named): \cup non è applicabile

30

Ridenominazione

- operatore monadico (con un argomento)
- "modifica lo schema" lasciando inalterata
 l'istanza dell'operando

31

31

Come correlare le informazioni presenti in relazioni diverse?

Operatore base: di prodotto cartesiano

Α	В
a1	b1
a2	b2

	A	В	С	D
=	a1	b1	b1	d1
	a1	b1	b2	d2
	a2	b2	b1	d1
	a2	b2	b2	d2

37

Come correlare le informazioni presenti in relazioni diverse?

Operatore derivato: join (⋈) e le sue varianti

A	В
a1	b1
a2	b2

⋈_{B=C}

С	D	
b1	d1	
b2	d2	

Α	В	С	D
a1	b1	b1	d1
a2	b2	b2	d2

Come correlare le informazioni presenti in relazioni diverse?

Operatore base: di **prodotto cartesiano** Operatori derivati: **join** e le sue varianti

39

39

Join naturale (intuizione):

- Utilizza attributi comuni per correlare le relazioni
- Nel risultato non vengono duplicati le colonne con lo stesso nome

		_	4_
ĸ		G.	ГЭ
_	ч	•	LC

Compito

Numero	Candidato	Numero	Voto
1	Mario Rossi	1	25
2	Nicola Russo	2	13
3	Mario Bianchi	3	27

Busta ⋈ Compito

Numero	Candidato	Voto
1	Mario Rossi	25
2	Nicola Russo	13
3	Mario Bianchi	27

40

Join naturale

- operatore binario (generalizzabile)
- produce un risultato
 - sull'unione degli attributi degli operandi
 - con ennuple costruite ciascuna a partire da una ennupla di ognuno degli operandi
- $R_1(X_1), R_2(X_2)$
- R₁ ⋈ R₂ è una relazione su X₁ U X₂

41

41

Impiegato	Reparto	Reparto	Capo	
Rossi	Α	Α	Mori	
Neri	В	В	Bruni	
Bianchi	В			

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

- ogni ennupla contribuisce al risultato:
 - join completo

42

Un join completo, con n x m ennuple

Impiegato	Reparto	Reparto	Capo
Rossi	В	В	Mori
Neri	В	В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

45

45

Cardinalità del join

- R₁(A,B), R₂(B,C)
- in generale

$$0 \le |R_1 \bowtie R_2| \le |R_1| \times |R_2|$$

 se esiste vincolo di integrità referenziale fra B (in R₁) e R₂ (in tal caso B è chiave in R₂):

$$|R_1 \bowtie R_2| = |R_1|$$

• se B è chiave in R_2 (e non sappiamo se esiste vincolo di integrità referenziale fra B (in R_1) e R_2):

$$0 \leq |R_1 \bowtie R_2| \leq |R_1|$$

46

Join, possibile perdita dei dati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

 alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

47

47

Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- Esiste in tre versioni:

 - Destro (right join) ⋈ :... del secondo operando ...
 - Completo (full join)

 :... di entrambi gli operandi ...

48

Semijoin (⋉)(⋊)

- Operatore su due relazioni $R_1(X_1)$, $R_2(X_2)$
- Left semijoin: ⋉
 - $^{\circ}$ Restituisce una relazione su X_1 , con le ennuple di R_1 che contribuiscono al join con R_2
 - ∘ $R_1 \ltimes R_2$ è una relazione su X_1 { t | t ∈ R_1 ed esiste t_2 ∈ R_2 con t[X_1 ∩ X_2] = t_2 [X_1 ∩ X_2 }
 - $\circ R_1 \ltimes R_2 = \pi_{X_1}(R_1 \bowtie R_2)$
- Right semijoin: ⋈

Join e proiezioni

•
$$R_1(X_1)$$
, $R_2(X_2)$
$$\pi_{X_1}(R_1 \bowtie R_2) \subseteq R_1$$

• R(X),
$$X = X_1 \cup X_2$$

 $(\pi_{X_1}(R)) \bowtie (\pi_{X_2}(R)) \supseteq R$

54

P	roiezio	oni e join			
		Impiegato	Repa	rto Capo)
		Neri	В	Mori	
		Bianchi	В	Brun	i
		Verdi	Α	Bini	
	Impiega	to Reparto	Rep	arto Car	00
	Neri	В	E	•	
	Bianch	i B	E	3 Bru	ni
	Verdi	Α	P		ni
	_	$(\pi_{X_{I}}(R))$) ⋈ (π _{×2} (F	R)) ⊇ R	_
		Impiegato	Reparto	Capo	
		Neri	В	Mori	
		Neri	В	Bruni	
		Bianchi	В	Mori	
		Bianchi	В	Bruni	
		Verdi	Α	Bini	

Prodotto cartesiano

- un join naturale su relazioni senza attributi in comune coincide con il prodotto cartesiano
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

57

57

Impiegati		Reparti	
Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В		
Impiegati ⋉	Reparti		
Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

Theta-join, equi-join

 Il prodotto cartesiano, in pratica, ha senso (quasi) solo se seguito da selezione:

$$\sigma_{\text{Condizione}} (R_1 \times R_2)$$

• L'operazione viene chiamata theta-join e indicata con

$$R_1 \bowtie_{Condizione} R_2$$

- La condizione C è spesso una congiunzione (AND) di atomi di confronto A₁♀ A₂ dove ♀ è uno degli operatori di confronto (=, >, <, ...)
- Se l'operatore di confronto nel theta-join è sempre l'uguaglianza (=) allora si parla di equi-join

59

59

Impiegati		Reparti	
Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В		
Impiegati ⋈	Reparto=Codice	Reparti	
Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

63

63

Un'equivalenza importante

• Push selections (se A è attributo di R_2)

$$\sigma_{A=10}(R_1 \bowtie R_2) = R_1 \bowtie \sigma_{A=10}(R_2)$$

 Riduce in modo significativo la dimensione del risultato intermedio (e quindi il costo dell'operazione)

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

 $\sigma_{Eta > 40}$ (Impiegati)

 la condizione atomica è vera solo per valori non nulli

65

65

Un risultato non desiderabile

 $\sigma_{\text{Età}>30}$ (Persone) $\cup \sigma_{\text{Età}\leq30}$ (Persone) \neq Persone

- Perché? Perché le selezioni vengono valutate separatamente!
- Ma anche

 $\sigma_{\text{Et\grave{a}}>30\,\vee\,\,\text{Et\grave{a}}\leq30}$ (Persone) \neq Persone

 Perché? Perché anche le condizioni atomiche vengono valutate separatamente!

66

Selezione con valori nulli: soluzione

$\sigma_{\text{Età} > 40}$ (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL IS NOT NULL

 si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso, sconosciuto)

67

67

• Quindi:

```
\sigma_{\text{Et\grave{a}}>30} (Persone) \cup \sigma_{\text{Et\grave{a}}\leq30} (Persone) \cup \sigma_{\text{Et\grave{a}}} IS NULL (Persone) = \sigma_{\text{Et\grave{a}}>30\,\vee\,\,\text{Et\grave{a}}\leq30\,\vee\,\,\text{Et\grave{a}}} IS NULL (Persone) = Persone
```

68

Viste (relazioni derivate)

- Rappresentazioni diverse per gli stessi dati (schema esterno)
- Relazioni derivate:
 - relazioni il cui contenuto è funzione del contenuto di altre relazioni (definito per mezzo di interrogazioni)
- Relazioni di base: contenuto autonomo
- Le relazioni derivate possono essere definite su altre derivate, ma ...

69

Viste virtuali e materializzate

- Due tipi di relazioni derivate:
 - viste materializzate
 - relazioni virtuali (o viste)

72

Viste materializzate

- relazioni derivate memorizzate nella base di dati
 - vantaggi:
 - immediatamente disponibili per le interrogazioni
 - 🕨 svantaggi:
 - ridondanti
 - · appesantiscono gli aggiornamenti
 - sono raramente supportate dai DBMS

73

73

Viste virtuali

- relazioni virtuali (o viste):
 - sono supportate dai DBMS (tutti)
 - o una interrogazione su una vista viene eseguita "ricalcolando" la vista (o quasi)

74

Interrogazioni sulle viste

 Sono eseguite sostituendo alla vista la sua definizione:

```
σ<sub>Capo='Leoni'</sub> (Supervisione) viene eseguita come
```

 $\sigma_{\text{Capo}='\text{Leoni}'}(\pi_{\text{Impiegato, Capo}})$ (Afferenza \bowtie Direzione))

75

75

Viste, motivazioni

- Schema esterno: ogni utente vede solo
 - ciò che gli interessa e nel modo in cui gli interessa, senza essere distratto dal resto
 - ciò che e' autorizzato a vedere (autorizzazioni)
- Strumento di programmazione:
 - si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- Utilizzo di programmi esistenti su schemi ristrutturati Invece:
- L'utilizzo di viste non influisce sull'efficienza delle interrogazioni

Viste e aggiornamenti, attenzione Direzione Afferenza Reparto Impiegato Reparto Capo Mori Rossi Α Α Neri В В Bruni Verdi С Bruni Supervisione Impiegato Capo Mori Rossi

Neri

Verdi

 Vogliamo inserire, nella vista, il fatto che Lupi ha come capo Bruni; oppure che Belli ha come capo Falchi; come facciamo?

Bruni

Mori

77

77

Viste e aggiornamenti

- "Aggiornare una vista":
 - modificare le relazioni di base in modo che la vista, "ricalcolata" rispecchi l'aggiornamento
- L'aggiornamento sulle relazioni di base corrispondente a quello specificato sulla vista deve essere univoco
- In generale però non è univoco!
- Ben pochi aggiornamenti sono ammissibili sulle viste

Operatore di divisione

- Studenti che hanno sostenuto tutti gli esami sostenuti dallo studente Mario Rossi.
- Studenti iscritti a tutti i corsi tenuti dal Prof. Neri Mario.
- Clienti che hanno comprato tutti i tipi di pesto di Giovanni Rana (cioè avente marca 'Rana').
- Utenti che hanno visionato ogni film con attore Alberto Sordi su Netflix.

Definition: Date la relazione R di arita r e la relazione S di arita s, con r > s.

Il **quoziente (o divisione)** $\mathbf{R} \div \mathbf{S}$ è la relazione di arità $\mathbf{r} - \mathbf{s}$ che consiste di tutte le tuple $(a_1,...,a_{r-s})$ tali che per ogni tupla $(b_1,...,b_s)$ in S, abbiamo $(a_1,...,a_{r-s},b_1,...,b_s)$ in R.

79

79

Operatore di divisione

- Studenti che hanno sostenuto tutti gli esami sostenuti dallo studente Mario Rossi.
 - Supponiamo di aver definito le viste:
 - R(Matricola, CodC) che riporta per ciascun studente CodC (codice corso) per il quale ha sostenuto esame
 - S(CodC) che riporta CodS di tutti gli esami sostenuti dallo studente Mario Rossi
 - Allora il risultato desiderato si ottiene facendo R ÷ S che restituisce solo quei valori del primo campo di R (campo Matricola) per i quali ci sono riportati tutti valori di CodC che troviamo nella relazione S.

80

Operatore di divisione

R

Matricola	CodC
123	1
123	2
123	3
124	1
124	3

S

3		
CodC		
1		
2		

 $R \div S$

$$R \div S = \pi_{Matricola}(R)$$
 – "tuples in $\pi_{Matricola}(R)$ per i quali manca qualche valore di CodC che troviamo nella relazione S"

=
$$\pi_{Matricola}(R) - \pi_{Matricola}[\pi_{Matricola}(R) \times S - R]$$

81