

Invasives Rust

Hermann Heinz Erich Krumrey

Lehrstuhl Programmierparadigmen, IPD Snelting

1. Programm 1 beginnt Ausführung auf 8 Recheneinheiten

- 1. Programm 1 beginnt Ausführung auf 8 Recheneinheiten
- 2. Programm 1 sendet Ergebnisse über das Netzwerk

- 1. Programm 1 beginnt Ausführung auf 8 Recheneinheiten
- 2. Programm 1 sendet Ergebnisse über das Netzwerk
- 3. Programm 2 beginnt Ausführung auf 4 Recheneinheiten

- 1. Programm 1 beginnt Ausführung auf 8 Recheneinheiten
- 2. Programm 1 sendet Ergebnisse über das Netzwerk
- 3. Programm 2 beginnt Ausführung auf 4 Recheneinheiten
- Programm 1 führt wieder Berechnungen aus, jetzt auf 4 Recheneinheiten

Invasives Rechnen

- Ressourcenbewusstes Programmieren
- 3 Phasen:
 - 1. Invade Ressourcen reservieren
 - 2. Infect Ressourcen nutzen
 - 3. Retreat Ressourcen freigeben
- OctoPOS und iRTSS bieten Software-Grundlage
- Angepasste Hardware um invasive Grundfunktionen zu unterstützen

SPARC LEON

- SPARC
 - Skalierbare Prozessorarchitektur
- SPARC-V8
 - Basierend auf SPARC
 - 32-bit Architektur
- LEON
 - SPARC-V8 basierte Prozessorfamilie
 - Konfigurierbare, Open-Source VHDL Designs
 - Geeignet f
 ür den Einsatz in angepassten ASICs, SOCS und FPGAs

Rust - Motivation

- Sichere Speicherzugriffe
- Effiziente und sicherere Parallelberechnung
- Konzeptionell an C-artige Sprachen angelehnt
- Höhere Abstraktionen, um den Einstieg zu erleichtern
- Speichersicherheit und Abstraktionen sollen nicht auf Kosten der Leistung erreicht werden

Rust - Ownership

Das zentrale Alleinstellungsmerkmal der Programmiersprache

- Jeder Speicherbereich wird nur einer einzigen Variable zur Verfügung gestellt
- Beim Verlassen des Geltungsbereichs wird der Speicherbereich freigegeben

Rust - Move-Semantik und Referenzen

- Move-Semantik
 - Move
- Referenzen
 - Ref
 - mut Ref

Rust - Ownership - Beispiel

Beispiel aus thesis, Colour-coded, step-by step

Rust - SPARC

nostd JSON libcore Cargo

octorust

- Hilfsprogramm zum Kompilieren von invasiven Rust-Programmen
- Kompilierung von .rs-Dateien und Cargo-Projekten
- Unterstützung von SPARC-V8
- Automatische Verlinkung mit iRTSS/OctoPOS
- ca. 650 Zeilen Code (Python)

octolib

- Direkte C-Rust Bindings
- Rust-spezifische Änderungen
- ca. 750 Zeilen Code (Rust)

octolib - Rust Bindings

Beispiel C Funktion zu Rust Funktion

octolib - Rust Improvements

- AgentClaim
- Closures

Evaluation

- temci
- 50-mal
- Intel i5...
- Benchmarks
 - Kompilierungsdauer
 - Parallele Primzahlenberechnung
 - Allokation von Objekten

Kompilierungsdauer

X10 langsam

Parallele Primzahlenberechnung

Rust langsam

Allokation von Objekten

X10 langsam

Zusammenfassung und Fazit

Fragen?

4 Wichtigste Folien: invasive computing ownership - beispiel structs etc octolib - improvements