Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-226. Вариант 24

- 1. Пусть $z=1-\sqrt{3}i$. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{1+\sqrt{3}i}$ имеет аргумент $-\frac{\pi}{2}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(7-10i) + y(-13+2i) = 160 + 53i \\ x(9-12i) + y(3-7i) = 86 - 110i \end{cases}$$

- 3. Найти корни многочлена $-4x^6 32x^5 + 16x^4 + 712x^3 52x^2 6520x + 10200$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 i$, $x_2 = -5 + 3i$, $x_3 = 3$.
- 4. Даны 3 комплексных числа: -21+24i, -10-11i, -22-15i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 3$, $z_2 = -\frac{3}{2} + \frac{3\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+5+5i| < 2\\ |arg(z-4-5i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 1, 4), b = (1, -7, -7), c = (-1, 5, -6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(14,8,13) и плоскость P:14x-8y+40z+278=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(10,6,6), $M_1(0,17,8)$, $M_2(-5,-3,8)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -11x - 2y + 8z + 110 = 0 \\ -8x - 6y - 2z + 6 = 0 \end{cases}$$

$$L_2: \begin{cases} -3x + 4y + 10z - 521 = 0 \\ -17x - 15y + z - 38 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.