Lecture 5: Secure Channel, TLS/SSL & Miscellaneous Cryptography Topics

Part 2:

- 5.5 Authenticated encryption
- 5.6 Time-memory tradeoff for dictionary attack (Optional)
- 5.7 Birthday attack variant
- 5.8 Other interesting cryptography topics
- 5.9 Summary of cryptography

5.5 Authenticated Encryption

What is Authenticated Encryption

- Authenticated encryption: symmetric encryption that returns both ciphertext and authentication tag
- It combines cipher and MAC: ensures message confidentiality and authenticity
- Authenticated encryption process: AE(K_{AB}, M) = (C, T)
- **Decryption** process: $AD(K_{AB}, C, T) = M$ only if T is valid
- Different variants/approaches:
 - Encrypt-and-MAC (E&M)
 - MAC-then-Encrypt
 - Encrypt-then-MAC
 - Specialized authenticated cipher

Encrypt-and-MAC (E&M)

- The sender computes the ciphertext C and tag T separately
- It performs **encryption**, e.g. using 2 keys $K_{1_{AB}}$ and $K_{2_{AB}}$ as follows:
 - $C = E(K_{1_{AB}}, M)$
 - $T = MAC(K_{2AB}, M)$
- It finally sends (C, T)

Illustration with 1 key (Source: Wikipedia)

- It is used in SSH (with a strong MAC like HMAC-SHA-256)
- Issue: T may not be random looking, and could leak information

MAC-then-Encrypt (MtE)

- The sender first computes the tag $T = MAC(K_{2AB}, M)$
- It then generates the ciphertext $C = E(K_{1_{AB}}, M \mid\mid T)$
- It finally sends C

Illustration with 1 key (Source: Wikipedia)

- It is used in SSL and TLS up to version 1.2:
 the latest TLS v1.3 uses authenticated ciphers, e.g. AES-GCM
- Issue: a decryption is still needed on a corrupted message

Encrypt-then-MAC (EtM)

- The sender first generates the ciphertext $C = E(K_{1_{AB}}, M)$
- It then computes the **tag** $T = MAC(K_{2AB}, C)$
- It finally sends (C, T)

Illustration with 1 key (Source: Wikipedia)

- It is used in IPsec
- Feature: a decryption is not performed on a corrupted message

Authenticated Cipher

- It returns an authentication tag together with the ciphertext
- An example is AES-GCM (AES in the Galois counter mode):
 - One authenticated cipher in TLS version 1.3
 - The most widely used authenticated cipher

Source: Wikipedia

5.6 Time-Memory Tradeoff for Dictionary Attack

Reference:

See the "Precomputed hash chains" Section of: http://en.wikipedia.org/wiki/Rainbow table

The above Wiki page describe "Rainbow table", which is an improved variant of time-memory tradeoff.

The original basic variant is described in the section "Precomputed hash chain".

"Inverting" a Hash Digest in Real-Time

- Suppose a hash H() is collision resistant: it is also one-way
- Thus, given a digest y, it is **difficult** to find a x s.t. H(x)=y
- Suppose we know that x is chosen from a relatively small set of dictionary D
- For illustration, assume x is a randomly & uniformly chosen
 50-bit message
- Now, even if H() is one-way, given the digest y, it is still feasible to find a x in D s.t. H(x)=y
- One method of "inverting": exhaustively search 2⁵⁰ messages in D
- Although feasible, this would take days of computing time
- As the attacker, we want to speed up the inverting process to support a "real-time" attack

Speeding up Using a Large Table

- Supposed we are allowed to perform a pre-processing
- Let's view the 50 bits message as an integer
- One naive method is to build a dataset with 2⁵⁰ elements:

(H(x), x) for $x = 0, 1, 2, ..., 2^{50}-1$ and store these elements in a data structure T that supports a **fast lookup** (e.g., a **hash table** that facilitates a constant-time lookup)

- Now, given a digest y, we can query the data structure and readily find the associated x
- Issue: such table is too large: 2⁵⁰ entries = 2¹⁰ "Tera" entries
- **Solution**: the time-memory tradeoff is a technique that "trades off" time for memory, e.g. a **lower lookup time** for a **higher storage**

Time-Memory Tradeoff (TMT)

- The main idea: use a precomputed hash-chain
- (Note: the term "hash-chain" appears in different context and refer to different techniques)
- Define a reduce function R() that maps a digest y to a word w in the dictionary D
- For illustration, if D consists of all 50-bit messages, and each digest is 320 bits, then a possible reduce function simply keeps the first 50 bits of input:

$$R(b_0b_1...b_{320}) = b_0b_1...b_{49}$$

- Note that R() is clearly not an inverse of H()
- Here is a **pre-computed hash chain**, which starts from a randomly-chosen word w_0 in **D**

```
w_0 	 \to y_0 = H(w_0) 	 \to w_1 = R(y_0) 	 \to y_1 = H(w_1) 	 \to w_2 = R(y_1) 	 \to y_2 = H(w_2)

E.g.:

"hello" 	 \to   A0C0...20 	 \to  "qwert1" 	 \to   03F0...50 	 \to  "Pikachu" 	 \to   77FF...3A
```

Hash H() and Reduce R(): Illustration

Source: http://kestas.kuliukas.com/RainbowTables/

Building Pre-Computed Hash Chain Dataset

$$w_0 \rightarrow y_0 = H(w_0) \rightarrow w_1 = R(y_0) \rightarrow y_1 = H(w_1) \rightarrow w_2 = R(y_1) \rightarrow y_2 = H(w_2)$$

 $w_0 \rightarrow H \rightarrow y_0 \rightarrow R \rightarrow w_1 \rightarrow H \rightarrow y_1 \rightarrow R \rightarrow w_2 \rightarrow H \rightarrow y_2$

- The dataset-building steps are as follows:
 - 1. Select a randomly-chosen word w_0 in D
 - 2. Create the **hash chain** for w_0 as shown above
 - 3. Call w_0 the starting-point, and y_2 the ending-point
 - 4. Store the pair (w_0, y_2) in the data-structure T
 - 5. Repeat the process with other randomly-chosen starting points

Querying Pre-Computed Hash Chain Dataset (1/2)

$$w_0 \rightarrow y_0 = H(w_0) \rightarrow w_1 = R(y_0) \rightarrow y_1 = H(w_1) \rightarrow w_2 = R(y_1) \rightarrow y_2 = H(w_2)$$

 $w_0 \rightarrow H \rightarrow y_0 \rightarrow R \rightarrow w_1 \rightarrow H \rightarrow y_1 \rightarrow R \rightarrow w_2 \rightarrow H \rightarrow y_2$

- Given a digest y, first search for y in the data-structure T
- Suppose y is in T:
 - That is, y is one of the ending-points stored
 - Let's assume that w_0 is the corresponding **starting point**: hence $y = y_2$ in the above chain
 - A pre-image of y is $\mathbf{w_2}$, but we don't know $\mathbf{w_2}$ at this point
 - Nevertheless, the fact that y_2 is the ending-point implies that w_2 is **within** the chain starting from w_0
 - We can construct the chain w_0 , y_0 , w_1 , y_1 , w_2 , y_2
 - When the process hits y_2 , we have found the required w_2

Querying Pre-Computed Hash Chain Dataset (2/2)

$$w_0 \rightarrow y_0 = H(w_0) \rightarrow w_1 = R(y_0) \rightarrow y_1 = H(w_1) \rightarrow w_2 = R(y_1) \rightarrow y_2 = H(w_2)$$

 $w_0 \rightarrow H \rightarrow y_0 \rightarrow R \rightarrow w_1 \rightarrow H \rightarrow y_1 \rightarrow R \rightarrow w_2 \rightarrow H \rightarrow y_2$

Suppose y is not in T:

- Compute y' = H(R(y))
- Search the data-structure for y'
- Suppose y' is in T:
 - Let's assume that the starting-point is w_0 (hence $y' = y_2$)
 - With high chances (it's not certain due to possible collisions), $y = y_1$
 - So, a pre-image of y is w_1 , i.e. $H(w_1)=y$
 - At this point, we don't know w₁
 - Constructing the chain from w_0 , and see if w_1 can be found, otherwise skip (due to a collision issue described next)
- If y' is not in T, compute y'' = H(R(y')) and repeat this query process

Without Hash Chains (As in Tutorial 1)

Given an input y, find w such that H(w) = y by building a **full** lookup table

With Hash Chains (for Tutorial 1)

Given an input y, find w such that H(w) = y by storing **hash-chains**

Analysis of Time and Space Required

- Let's compare the required space & time of querying stored hash chains with the naive full table method:
 - Space: A reduction of space by a factor of 3 (why?)
 - **Time per query**: the number of hash operations increases by a factor of 3, but also require 2 reduce operations (why?)
 - Accuracy: The chains can contain repetitions (why?)
- A general rule (where k is a parameter):
 we can choose the length of the chain so that the reduction of space is a factor of k, with the increase of search time penalty by a factor of k
- In our 50-bit example:
 - The total number of entries in the full "virtual table" is 2⁵⁰
 - Suppose we choose k=2¹⁵
 - The hash-chain storage is reduced to 2³⁵ entries; whereas the query time increases to 2¹⁵ hash operations, which can still be computed in real-time

Remark: Collisions due to Hash Function (Rare/Unlikely)

• The following **collision** is due to *H*():

- It is extremely unlikely, since we assume that H() is "secure",
 i.e. a strong hash function
- This type of collision can thus be omitted in our design consideration

Remark: Collisions due to Reduce Function (Frequent/Likely)

Collisions due to the reduce function may happen frequently,
 i.e. two different digests being mapped to the same word

When given y_0' , the algorithm is unable to find w'_1 in the first chain since: The querying algorithm initially performs these steps: (1) lookup y_0' , (2) lookup y_2 (3) lookup y_3 (4) search the chain starting from w_0

This causes two issues:

- Inefficiency in **storage**: part of the chain is **duplicated**, e.g. w_2 and w_3 are stored twice
- Inefficiency in **search**: it leads to searches in the **wrong chains**, before hitting the right chain, e.g. for querying y_0 , the lookup process would transverse **both chains**

Collisions and Hash-Chain Merges: Illustrated

Source: http://kestas.kuliukas.com/RainbowTables/

Improved Variant: Rainbow Table

- Rainbow table gives a simple but effective method to address the collision issue in time-memory trade-off (the method is simple, but its analysis is quite complex)
- Rainbow table utilizes multiple "reduce" functions
- Details are not included in this module
- To find out more, see:
 - http://en.wikipedia.org/wiki/Rainbow_table
 - http://kestas.kuliukas.com/RainbowTables/
- The original research paper:
 P. Oechslin, Making a Faster Cryptanalytical Time-Memory Trade-Off, CRYPTO 2003 http://lasec.epfl.ch/~oechslin/publications/crypto03.pdf

Improved Variant: Rainbow Table

Source: https://cyberhoot.com/cybrary/rainbow-tables/

Improved Variant: Rainbow Table

Source: Wikipedia

5.7 Birthday Attack Variant

Birthday Attack on Hash

- Suppose the digest of a hash is 80 bits: T= 2⁸⁰
- Now, an attacker wants to find a collision
- If the attacker randomly generates 2^{41} messages ($M=2^{41}$), then $M > 1.17 \, T^{0.5}$
- Hence, with probability more than 0.5, among the 2⁴¹ messages, two of them give the same digest!

In general, the probability that a collision occurs $\approx 1 - \exp(-M^2/(2T))$

A Variant of Birthday Attack

- A variant of birthday attack is shown below
- Let S be a set of k distinct elements,
 where each element is a n-bit binary string
- Now, let us independently and randomly select m
 n-bit binary strings
- It can be shown that, the probability that at least one of the randomly chosen strings is in *S* is (larger than):

$$1 - 2.7^{-km2^{-n}}$$

- Notice that the set S and the set of the generated m strings are different
- How can we visualize this setting and formula?

5.8 Other Interesting Cryptography Topics

Interesting Types of Encryption

Format-preserving encryption:

- A basic cipher does not care if, for instance, a plaintext is an image
- The ciphertext is **not** a viewable image
- A format-preserving encryption solves this issue:
 ciphertexts have the same format as the plaintexts
- Other possible target plaintext types:
 IP address, ZIP code, credit card numbers

Fully-homomorphic encryption:

- It enables its user to replace a ciphertext C = E(K, M) with another ciphertext C' = E(K, F(M)), where F() is as a function of M, without ever decrypting the initial ciphertext C
- Example: M is a text document, F() is a modification of part of the text
- It's very useful for a cloud provider:
 it doesn't know the plaintext/data, but can change the data as requested by the data owner (on the owner's behalf)
- It is still very slow: a basic operation needs an unacceptably long time!

5.9 Summary of Cryptography

Cryptography: Summary

- We have covered various cryptography topics in this module
- The main objectives:
 - Learn how cryptographic schemes and primitives work
 - Learn how to use them correctly
 - Learn how to reason about their security
- What cryptography provides?
 - It provides many useful primitives
 - It serves as the basis for many security mechanisms
- However, cryptography:
 - Is not the solution to all security problems: software vulnerabilities, social engineering attacks, etc.
 - Needs to be implemented and deployed securely/properly
 - Is not something you should invent/design yourself

Importance of Crypto?

Source: Wikipedia