

A Machine Learning Understanding of Sepsis

Manish Shetty, Soumya Mary Alex, Merlin Moni, Fabia Edathadathil, Preetha Prasanna, Veena Menon, Vidya P. Menon, Prashanth Athri, Gowri Srinivasa

- "A life-threatening organ dysfunction caused by a dysregulated host response to infection" *
- WHO (2017) estimated that there were 48.9 million cases and 11 million sepsis-related deaths worldwide, which accounted for almost 20% of all global deaths.
- Sepsis was initially presumed to be an extreme body-wide inflammatory response, manifesting clinically as multisystem organ dysfunction.
- However, more recent evidence demonstrates that the pathophysiological response is more complex and variable. **

^{*} The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), 2016 [link]

^{**} Severe sepsis and septic shock. N Engl J Med. 2013 [link]

- "A life-threatening organ dysfunction caused by a dysregulated host response to infection" *
- WHO (2017) estimated that there were 48.9 million cases and 11 million sepsis-related deaths worldwide, which accounted for almost 20% of all global deaths.
- Sepsis was initially presumed to be an extreme body-wide inflammatory response, manifesting clinically as multisystem organ dysfunction.
- However, more recent evidence demonstrates that the pathophysiological response is more complex and variable. **

Host Risk Factors

^{*} The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), 2016 [link]

^{**} Severe sepsis and septic shock. N Engl J Med. 2013 [link]

- "A life-threatening organ dysfunction caused by a dysregulated host response to infection" *
- WHO (2017) estimated that there were 48.9 million cases and 11 million sepsis-related deaths worldwide, which accounted for almost 20% of all global deaths.
- Sepsis was initially presumed to be an extreme body-wide inflammatory response, manifesting clinically as multisystem organ dysfunction.
- However, more recent evidence demonstrates that the pathophysiological response is more complex and variable. **

Host Risk Factors Pathogen Features

^{*} The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), 2016 [link]

^{**} Severe sepsis and septic shock. N Engl J Med. 2013 [link]

- "A life-threatening organ dysfunction caused by a dysregulated host response to infection" *
- WHO (2017) estimated that there were 48.9 million cases and 11 million sepsis-related deaths worldwide, which accounted for almost 20% of all global deaths.
- Sepsis was initially presumed to be an extreme body-wide inflammatory response, manifesting clinically as multisystem organ dysfunction.
- However, more recent evidence demonstrates that the pathophysiological response is more complex and variable. **

Host Risk Factors

Pathogen Features

Contextual Features

^{*} The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), 2016 [link]

^{**} Severe sepsis and septic shock. N Engl J Med. 2013 [link]

SIRS Criteria - Two or more of:

- Temperature >38°C or <36°C
- Heart rate >90/min
- Respiratory rate >20/min or Paco₂ <32 mm Hg (4.3 kPa)
- WBC count >12 000/mm³ or <4000/mm³ or >10% immature bands

^{*} The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), 2016 [link]

Problems & Goals

- Effective treatment plans and preventive measures for patients at risk is dependent on early and accurate diagnosis of the condition.
- As a result, in this work, we aim to:
 - 1. <u>Build a prognostic system</u> for sepsis, utilizing recorded clinical parameters of patients, and enabling technologies such as machine learning.
 - 2. **Predict two outcomes** for Sepsis patients to cover factors influencing Sepsis:
 - 1. Sepsis Severity Classification of the severity into Sepsis, Severe Sepsis, or Septic Shock
 - 2. Comorbidity Severity Predicting a bucket of Charlson Comorbidity Index (CCI)
 - 3. <u>Analyze and interpret predictions</u> to harmonize consistencies and/or contradictions between elements of human knowledge and that of a model.

Dataset

- 1. Data of 800 patients, collected and provided by Amrita Institute of Medical Sciences (AIMS).
- 2. Each patient record consists of around 80 features that can be categorized as
 - 1. On Admission Parameters Age, Gender, etc.
 - 2. Clinical Parameters Heart Rate, Temperature, PH, etc.
 - 3. Organ Failure Parameters ASOFA (on admission), NSOFA (after 72 hr. in ICU)
- 3. Sepsis Severity Distribution:
 - 1) Sepsis (34%)
 - 2) Severe Sepsis (54.3%)
 - 3) Septic Shock (11.7%)
- 4. Comorbidity Severity Distribution:
 - 1) Mild (26.3%), if CCI < 3
 - 2) Moderate (33.6%), if $3 \le CCI \le 4$
 - 3) Severe (40.1%), if CCI ≥ 5

Dataset and Code used for experiments can be found here - https://bitbucket.org/GowriSrinivasa/interpretsepsis

Models & Evaluation

COMPARISON OF 5 FOLD CROSS VALIDATION METRICS FOR Sepsis Severity CLASSIFICATION

Model	Label	Pre.	Rec.	F1	Acc. (± std)
AdaBoost	1	0.77	0.78	0.77	
	2	0.89	0.81	0.85	$0.82 \ (\pm \ 0.037)$
	3	0.48	0.67	0.56	
	Avg	0.80	0.78	0.79	
GradientBoosting	1	0.82	0.80	0.81	
	2	0.93	0.88	0.91	$0.92~(\pm~0.016)$
	3	0.52	0.67	0.58	
	Avg	0.85	0.83	0.84	
Linear SVM	1	0.66	0.54	0.60	
	2	0.93	0.42	0.58	$0.64 (\pm 0.05)$
	3	0.24	0.90	0.38	
	Avg	0.76	0.52	0.56	
Random Forest	1	0.82	0.89	0.85	
	2	0.86	0.94	0.90	$0.93~(\pm~0.02)$
	3	0.89	0.38	0.53	
	Avg	0.85	0.85	0.84	

COMPARISON OF 5 FOLD CROSS VALIDATION METRICS FOR Comorbidity Severity CLASSIFICATION

Model	Label	Pre.	Rec.	F1	Acc. (\pm std)
AdaBoost	1	0.87	0.94	0.91	
	2	0.77	0.49	0.60	$0.81 \ (\pm \ 0.02)$
	3	0.69	0.90	0.78	
	Avg	0.77	0.76	0.75	
GradientBoosting	1	0.88	0.91	0.90	
	2	0.72	0.56	0.63	$0.82~(\pm~0.05)$
	3	0.71	0.85	0.77	
	Avg	0.76	0.76	0.76	
Linear SVM	1	0.72	0.88	0.79	
	2	0.65	0.34	0.45	$0.57 (\pm 0.05)$
	3	0.67	0.87	0.76	
	Avg	0.68	0.68	0.66	
Random Forest	1	0.91	0.88	0.89	
	2	0.74	0.52	0.61	$0.85~(\pm~0.04)$
	3	0.69	0.91	0.78	
	Avg	0.77	0.76	0.74	

Interpretations & Insights

ΓΙΟΝ FEATURE	IMPORTAN
Importance	\pm std
0.145	0.023
0.114	0.025
0.025	0.016
0.025	0.0077
0.02145	0.014
0.021	0.0087
	0.145 0.114 0.025 0.025 0.02145

Feature	Importance	\pm std 0.005	
Temperature	-0.00083		
Heart rate	0.006	0.004	
Respiratory rate	0.009	0.005	

Finding #1

SOFA scores & change in SOFA score are the most important features for the model.

Finding #2

Systolic Blood Pressure, a direct indicator of hypotension for Septic Shock patients, is also important.

Finding #3

SIRS related features less helpful to predict Sepsis.

Consistent with the latest recommendations from the Third International Consensus Definitions for Sepsis and Septic Shock (2016)!!

Interpretations & Insights

Patient Y – Septic Shock

Patient X Model Insights

- ASOFA > 9.0 => Severe Sepsis
- SOFA Diff > 1.00 => Severe Sepsis
- Systolic Blood Pressure range [122, 146] => Not Septic Shock

Patient Y Model Insights

- SBP <= 103 => Hypotension => Septic Shock
- Arterial Pulse Pressure <= 40 => Septic shock

Again, consistent with the latest recommendations and insights from experts and the task force!!

Summary

- Sepsis is amongst the leading causes of death in the world.
- Effective treatment plans for patients at risk is dependent on early and accurate diagnosis of the condition.
- We propose a novel 2 phase prognostic scoring system by predicting two complementary outcomes in sepsis patients - Sepsis Severity and Comorbidity Severity.
- We interpret and explain multiple patient predictions and map machine understanding to published domain knowledge used in the field.
- Lastly, we open-source the code, model, and preprocessed data https://bitbucket.org/GowriSrinivasa/interpretsepsis