

Физика микромира: элементарные частицы и их свойства

Автор: Фалько Е.В.

Факультет ИКТ

Группа: К3143

Преподаватель: Колесникова Т.Д.

Самое главное в физике микромира — это то, что мы не знаем правил.

Шелдон Ли Глэшоу

Лептоны

Это частицы, участвующие в электромагнитных и слабых взаимодействиях. К ним относятся:

- электроны и электронные нейтрино;
- мюоны и мюонные нейтрино;
- таоны и тау-нейтрино.

Все лептоны имеют спины, равные ½ и являются фермионами (квазичастицами).

Адроны

Это частицы, участвующие в электромагнитных, сильных и слабых взаимодействиях. Делятся на:

- барионы (состоят из трех кварков, имеют барионное число, равное 1);
- мезоны (состоят из кварка и антикварка, имеют барионное число, равное 0).

Известные представители: протон и нейтрон.

Калибровочные бозоны

Осуществляют взаимодействие между фундаментальными фермионами (кварками и лептонами). Сюда можно отнести:

- фотон;
- частицу W⁺;
- частицу W⁻;
- частицу Z⁰.

	Элементарные частицы										
Лептоны	Калибровочные бозоны	Адроны									
		Барионы (qqq)B=1	Мезоны $(q\overline{q})B = 0$								
$e^-\mu^- au^ oldsymbol{ u}_e^{oldsymbol{ u}_\mu^{}}oldsymbol{ u}_{ au}^{}$	γ , W^+ , W^- , Z , $8g$	n, p, гипероны (Λ, Σ, Ξ, Ω) и др. Барионные резонансы	π, К, J / Ψ и др. Мезонные резонансы								

Свойства лептонов

Группа		Символ						100	12.0		
	Название час- тицы	частицы	античастицы	Заряд, единиц е	Масса покоя, ед. <i>т</i> е	Спин, ед. ц	Изоспин Т _с	Лептонный заряд L	Барионный заряд В	Странность S	Приблизи- тельное время жизни, с
Фотоны	Фотон		7		0	1	-	0	0	0	Стабилен
Лептоны	Электрон	e-	e*	1	1	1/2		+1	0	0	Стабилен
	Электронное нейтрино	ν_e	\widetilde{V}_{ϵ}	0	0	1/2	20	+1	0	0	Стабильно
	Мюон	μ-	μ*	1	206,8	1/2	20	+1	0	0	≈10-6
	Мюонное нейтрино	ν_{μ}	$\widetilde{\nu}_{\mu}$	0	0	1/2	-	+1	0	0	Стабильно
	Таон	τ-	τ*	1	3487	1/2	-	+1	0	0	≈10-12
	Таонное	ν_{r}	$\widetilde{\nu}_{r}$	0	0	1/2	-	+1	0	0	?

Свойства адронов

		Название	Символ	Электрич. заряд	Группировка в изотопиче- ское семей- ство	Барионный заряд	Странность	Очарование	Прелесть	Macca (MoB/c²)	Время жизни (c)	Античастицы	Кварковый соста адронов
Очаро-	Мезоны	Д-плюс Д-нуль Ф-плюс	D+ D0 F+	+1 0 +1	} D-мезоны D+, D ⁰ } F-мезон	0 0		+! +! +!		1869 1865 1970	9.10-13 4.10-13 2.10-13	D- D0 F-	$D^{+} = [c\tilde{d}]$ $D^{0} = [c\tilde{u}]$ $F^{+} = [c\tilde{s}]$
ванные частицы	Барионы (очарованные гипероны)	Лямбда-це-плюс А-плюс	Λ _c ⁺ A+	+1+!) ponta	1	0 —1	+1 +1		2282 2460	2·10 ⁻¹³ 2·10 ⁻¹³	$(\tilde{\Lambda}_c)^-$ $(\tilde{A})^-$	$\Lambda_c^+ = [udc]$ $A^+ = [usc]$
Прелест- ные ча- стицы	Мезоны	Б-нлюс Б-нуль	B+ Bº	+1	The Control of the Co	0	0		+!		}~10-12	B- B0	$B^{+} = [u\tilde{b}]$ $B^{0} = [d\tilde{b}]$

Кварки

Это элементарные частицы, которые не имеют своей внутренней структуры.

Лёгкие «u» и странные «s» кварки

- Лёгкие кварки. Самые распространенные в природе. Именно из них состоят протоны (uud), нейтроны (udd), переносчики ядерных сил, пимезоны.
- 2. Странные кварки. Содержащие частицы (странные адроны) только-только стали появляться в экспериментальных данных и вели себя «как-то не так» по сравнению с известными адронами.

Очарованные «с» и прелестные «b» кварки

- 1. Очарованные кварки «с». Содержащие этот кварк частицы (очарованные адроны) тяжелее своих легких собратьев (к их массе добавляется примерно 1,5 ГэВ на каждый с-кварк) и живут недолго.
- 2. Прелестные кварки «b». Еще тяжелее, масса составляет около 5 ГэВ, однако время жизни его даже больше, чем у с-кварка.

Свойства кварков

Типы кварков и их характеристики

Символ	Название	В	1	13	S	C	b	t	Q
uα	Верхний (<i>u</i> , от англ. up)	1/3	1/2	+1/2	0	0	0	0	2/3
ďα	Нижний (<i>d</i> , от англ. down)	1/3	1/2	-1/2	0	0	0	0	-1/3
Sα	Странный (s, от англ. strange)	1/3	0	0	0130 (01.350)	0	0	0	-1/3
C^{α}	Очарованный (<i>c</i> , от англ. charm)	1/3	0	0	0	BOINTON	0	0	2/3
bα	Красивый (<i>b</i> , от англ. beauty)	1/3	0	0	0	0	1	0	-1/3
ťα	Истинный (<i>t</i> , от англ. truth)	1/3	0	0	0	0	0	Mueling	+2/3

Диаграммы

Свойства кварков позволяют удобно распределять семейства адронов в узлах тетраэдральной решетки.

Спасибо за внимание