1 Úkol

- 1. S použitím spektra rtuti zkalibrujte hranolový spektrometr. Pro vyloučení hrubých chyb vyneste kalibrační křivku ikhend do grafu.
- 2. Ověřte vlnové délky sodíkových dubletů (alespoň tří)
- 3. Na základě pozorování sodíkových dubletů diskutujte rozlišovací schopnost spektrometru. Diskutujte přesnost takto určené rozlišovací schopnosti.
- 4. Prohlédněte sis pektra výbojek čar H_{α} , H_{β} , H_{γ} Balmerovy serie vodíkového spektra. Vypočítejte Rydbergovu konstantu.

2 Teorie

Spektrometr je zařízení pro určení vlnové délky světla. Běžně se používá mřížkový nebo hranolový. Přístroj využívá různého lomu (odrazu) na hranolu (mřížce) pro různé vlnové délky světla.

Vlnové délky spektrálních čar vodíku se řídí dle [1] vztahem

$$\lambda = \frac{n^2}{R\left(\left(\frac{n}{2}\right)^2 - 1\right)},\tag{1}$$

kde R je Rydbergova konstanta $(1.0973 \cdot 10^7 \text{m}^{-1})$ a n je přirozené číslo. Ve viditelném sektru můžeme pozorovat spektrální čáry pro n=3,4,5,6.

3 Měření

3.1 Kalibrace

Nejprve jsem za pomoci rtuťové výbojky provedl kalibraci spektrometru. Odečtené hodnoty ze stupnice jsem poronal se známými hodnotami vlnových délek těchto čar. Výslednou závislost jsem proložil polynemom pátého stupně, který má předpis

$$\lambda(x) = ((((3.90 \cdot 10^{-15}x - 2.46 \cdot 10^{-11})x + 6.73 \cdot 10^{-8})x - 7.49 \cdot 10^{-5})x + 0.0840)x + 366 (2)$$

. Tento polynom je použit pro výpočet vlnových délek spektrálních čar ve zbytku protokolu. Naměřené hodnoty jsou shrnuty s hodnotami tabelovými a dopočtenými za pomoci polynomu 2 v tabulce 1. Vynesená závislost je na obrázku (1).

λ_t/nm	x	λ/nm
404.7	678	404.6
407.8	744	407.9
433.9	1200	433.8
434.8	1216	434.8
491.6	1890	491.7
546.1	2308	545.8
577.0	2488	577.2
579.1	2500	579.5
607.3	2630	607.1
612.3	2652	612.2
623.4	2698	623.4
671.6	2870	671.7
690.7	2928	690.7

Tabulka 1: Naměřené honodty pro Hg výbojku.

Obrázek 1: Kalibrační křivka spektrometru.

3.2 Na

Proměřil jsem tři sodíkové dublety. Naměřené hodnoty jsou spolu s tabelovýmo shrnuty v tabulce refTNa. Jak je vidět na hodnotách, poloha dubletu se od tabelových hodnot liší až v řádu setim desetin nanemetru. Všechny dublety byly dobře rozpoznatelné, takže

x	λ/nm	λ_t/nm
2550	589.6	589.592
2548	589.2	588.995
2669	616.3	616.076
2667	615.8	615.423
2443	568.7	568.861
2438	567.8	568.822

Tabulka 2: Hodnoty sodíkových dupletů

x	λ/nm	λ_t/nm
2539	587.3	587.562
2860	668.6	667.815
2972	706.1	706.519
2290	543.0	541.115
2008	505.0	504.774
1978	708.2	501.568
1892	492.0	492.193
1680	471.0	471.315
1390	447.0	447.168

Tabulka 3: Spektrální čáry He výbojky

rozlišovací schopnost spektrometru se pohybuje v okolí rozdílu nejbližších čar, který je 0.04 nm. Měřitelnost jejich rozdílu je však minimálně o řád nižší.

3.3 Další plyny

Dále jsem ptoměřil 5 dalších plynů. Naměřené hodnoty jsou v tabulkách 3, 4, 5, 6. U vzácných plynů jsou pro srovnání uvedeny i tabelové hodnoty. U sloučenin se již projevil vliv vazeb na spektrum a tak vzniklo částečně spojité spektrum s jasnými hranami, jejiž hodnoty jsou uvedeny v tabulkách.

3.4 H

Nakonec jsem proměřil čárové spektrum vodíku. Dobře viditelné byli pouze dvě čáry. Třetí ve fialové části spektra byla pouze znatelná a určení její polohy je spíše intuitivní. Naměřené hodnoty jsem vynesl do grafu a proložil je křivkou odpovídající vztahu 1. Z fitu jsem odečet výslednou hodnotu Rydbergovy konstanty

$$Ry = 1.0973 \cdot 10^{-7} \text{m}^{-1} \tag{3}$$

Závislost s proloženou křivkou je na obrázku 2

x	λ/nm	λ_t/nm
1678	470.8	470.883
1994	503.3	503.133
2220	532.5	533.078
2229	533.8	534.109
2266	539.3	540.036
2483	576.2	576.442
2528	585.1	583.249
2572	594.2	594.483
2642	609.9	609.616
2660	614.1	614.306
2712	626.9	626.649
2762	640.1	640.223
2860	668.6	667.828

Tabulka 4: Spektrální čáry Ne výbojky

x	λ/nm	λ_t/nm
968	419.7	419.832
1193	433.3	433.356
1435	450.5	451.073
1662	469.3	470.232
2114	518.0	518.774
2328	549.0	549.587
2396	560.3	560.673
2556	590.8	591.208
2612	603.0	603.212
2768	614.7	614.544
2945	696.4	696.543

Tabulka 5: Spektrální čáry Ar výbojky

x	λ/nm
1436	450.5
1810	483.4
2126	519.6
2398	560.7
2631	607.3
2839	662.2

Tabulka 6: Spektrální čáry CO2 výbojky

x	λ/nm	λ_t/nm
2820	656.5	656.285
1834	485.8	486.133
1199	433.7	434.047

Tabulka 7: Spektrální čáry vodíku

Obrázek 2: Závislost vlnové délky čar H na n

4 Diskuze

4.1 Kalibrace

Kalibrace byla provedena v delší oblasti, než byla dále použita pro měření, což vedlo k nižší chybě při samotném měření. Program Gnuplot sice udává chybu fitu v řádu procent až desítek procet, ale výsledná křivka dobře leží na kalibračních hodnotách.

4.2 Rozlišoací schopnost

Jak již bylo uvedeno výše, na spektrometru byli rozpoznatelné čáry o rozdílu až 0.04 nm. Rozlišovací schopnost může být i nižší, ale bližší čáry nebyli k dispozici. Určení rozdílu spektrálních čar se včak pohybovalo minimálně o řád níže, jak je dobře vidět na sodíkových dubletech. Na stupnici spektrometru odpovídají řádově podobným hodnotám, avšak jejich reálné rozdíly jsou značně odlišné.

4.3 Rydbergova konstanta

Rysbergova konstanta vyšla až překvapivě přesně. Chyba fitu byla dokonce pouhých 0.03 %.

5 Závěr

Za pomoci rtuťové výbojky jsem provedl kalibraci hranolového spektrometru. Výsledná kalibrační křivka je

$$\lambda(x) = ((((3.90 \cdot 10^{-15}x - 2.46 \cdot 10^{-11})x + 6.73 \cdot 10^{-8})x - 7.49 \cdot 10^{-5})x + 0.0840)x + 366 (4)$$

Naměřené hodnoty jsou v tabulce 1. Kalibrační křivka je vynesena na obrázku 1.

Proměřil jsem tři dublety sodíkové výbojky a diskutoval rozlišovací schopnost spektrometru.

Proměřil jsem výbojky naplněné He, Ne, Ar, N₂ a CO₂. Naměřené hodnoty jsou v tabulkách 3 až 6.

Změřil jsem vlnové délky čar vodíku z Balmerovy série a z nich určil hodnotu Rydbergovy konstanty

$$Ry = 1.0973 \cdot 10^{-7} \text{m}^{-1} \tag{5}$$

Reference

[1] Studijní text na praktikum IV

http://physics.mff.cuni.cz/vyuka/zfp/txt_415.pdf (13. 12. 2012)