QUEST FOR THE BEST CAT PHOTO

FINAL PRESENTATION

Kyra Ballard Andrew Fu Shravan Nageswaran Emily Xie

Harvard University
IACS Capstone, Spring 2020

PROBLEM

- About 6.5M dogs and cats each year enter animal shelters, according to the ASPCA
- But approximately 1.5M of these are put down

That's 1 in 4 pets.

THE QUALITY OF THE PHOTO OF A PET IS **CORRELATED TO ITS** LIKELIHOOD OF **BEING ADOPTED**

GOALS

increase adoption rates

decrease euthanasia for shelter cats

SPONSOR: AUSTIN PETS ALIVE!

- Animal shelter based in Texas
- No-kill shelter
- Saved over70,000 animallives since 2008

Austin Pets Alive! is not your average animal shelter. We pioneer innovative lifesaving programs designed to save the animals most at risk of euthanasia.

Adopt

Looking for a furry friend to add to the family? We have thousands of animals that would love to be part of your home.

Foster

Open your heart and home to a pet in need, and be the bridge to a dog or cat's forever home.

Volunteer

Our volunteers make lifesaving possible – become a volunteer today!

SPONSOR: ADOPTIMIZE

- Software company
- Primary goals
 - Increase adoption
 - Decrease euthanasia
 - Increase shelter engagement
- Algorithm that optimizes image taking
 - For the best chance of adoption

SPONSOR: ADOPTIMIZE

Dog model process

- Takes in video of animal
- Selects optimal shot
- Automatically edits image
- Outputs enhanced optimal image

IMPACT

124% increase in adoption 41% reduction in euthanasia

27% increase in adoption 56% reduction in euthanasia

SCOPE OF WORK

In scope

- Model taking cat videos and outputting best frame
 - c Length: <60s</pre>
 - Unobstructed view of a single cat
- Functional web app for mobile devices

Out of scope

- Stylized front-end
- Measuring adoption rates

CHALLENGES

Behavior

- Fur covering face
- Not facing camera

Video Quality

- Unstable camera
- comera quality
 (phone vs. laptop)

Dataset

- Small number of cat videos
- No labeled data

Limitations

- Environment
- Equipment

The data poses some **challenges...**

THE DATA

The Good

- Full body visible
- Looking directly at camera
- Clear, high quality image
- Good lighting

The Bad

- Full body not visible
- Can't distinguish facial features
- Looking away from camera
- Blurry image
- Darker area

HEURISTICS

Detection of Cat Features

• Image Sharpness

 Relative Size of Cat Features

EDA: GENERAL DATA SENSE

- Initial data cleaning yielded 79 videos
- Duration: Avg: 23 seconds. Min 2 seconds. Max 55 seconds

LITERATURE REVIEW: VIOLA-JONES

- Rapid Object Detection using a Boosted Cascade of Simple Features
- Haar-like Features
 - Pre-Compute Integral Image
- AdaBoost on Decision Stumps
- Cascade
- Sliding Windows

High-level view of cascade approach

EDA: CAT FACE DETECTION

- Ran cat face detection using Haar Cascade
 - Low Recall Rate
- Subsample of 10 videos
- Every 10th frame per video

EDA: MEASURES OF SHARPNESS

EDA: HEAD SIZE RATIOS

BASELINE VS. INITIAL MODEL

baseline

random image selected from set of frames with cat head detected

initial

image selected from set of frames
with cat head detected, with
highest combined scores of
sharpness and best cat head size

TESTING THE MODELS

Implementation

Blind A/B testing: baseline vs. developed output

Results

64% of the time developed model produced "better" image

Testing interface

LITERATURE REVIEW: YOLO

- You Only Look Once: Unified, Real-Time Object Detection
- Simultaneous Box and Class Proposal
- Simplicity: CNN
- Optimized for Speed

Each grid cell is responsible for producing exactly *B*=2 bounding boxes representing existence of any object with center in the cell

LITERATURE REVIEW: YOLO

- You Only Look Once: Unified, Real-Time Object Detection
- Simultaneous Box and Class Proposal
- Simplicity: CNN
- Optimized for Speed

YOLO architecture; note only convolutional and fully connected layers

TRAINING YOLO

- YOLO vs Haar Cascade
- 4 Features
 - o Eyes, Nose, Ears, Head
- 100 Training Examples
- AWS EC2 g3s.xlarge
 - o NVIDIA Tesla M60 GPU

LITERATURE REVIEW: CPBD

- A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD)
- Probabilistic model for sharpness
- Percentage of detected edges
 where blur is not detected
- 0 <= cpbd <= 1

REGRESSION: LABELING

- Data-driven approach to weighting features
- Likert scale
 - o 5 classes

REGRESSION: EDA ON PREDICTORS

REGRESSION: EDA ON PREDICTORS

REGRESSION RESULTS: INITIAL

methodology

- Logistic Regression using sklearn
- L1 Regularization
- most salient features: confidence of object detection
- trained on dataset with any features detected
- Select for highest probability of either class 4 or 5

results

User selected	Percent of time
Frame from model	77.2%
Frame from baseline	8.9%
neither	13.9%
Selected either frame from model or neither	91.1%

REGRESSION RESULTS: ITERATION 2

methodology

- Only examine frames in which
 all features detected
 - Inspired by Decision Trees
- Select for highest probability of either class 4 or 5

results

User selected	Percent of time
Frame from model	74.6%
Frame from baseline	3.8%
neither	21.5%
Selected either frame from model or neither	96.2%

MODEL COMPARISONS

baseline

random image selected

from set of frames

with cat head

detected

initial

image selected from set of
frames with cat head
detected, with highest
combined scores of sharpness
and best cat head ratio

final (iter #2)

maximum probability of
class 4 or 5 produced
from logistic regression
trained on selected
features

MODEL COMPARISONS

baseline

initial

final (iter #2)

random image selected

from set of frames

with cat head

detected

Performance against

baseline:

image selected from set of

frames with cat head

detected, with highest

combined scores of sharpness

and best cat head ratio

64%

maximum probability of

class 4 or 5 produced

from logistic regression

trained on selected

features

96%

OTHER MODELS EXPLORED

Linear Regression

unexplainable results; didn't fit
our data well enough

Convolutional Neural Nets

30 - 40% classification accuracy depending on parameter tuning

Transfer Learning

Trained on InceptionV3 Neural Network pretrained on ImageNet (60% binary accuracy, 24% 5-class accuracy)

WEB INTERFACE

- Simple web application connected to our model
 - Takes in cat video
 - Executes model
 - Returns optimal frame produced by model

WEB INTERFACE: DEMO

We turned this...

... into this!

EXTENSIONS: BG SUBTRACTION

EXTENSIONS

- Parallelize web app
- Make app front-end prettier
- Measure downstream impact: adoption rates
- Even more model refinements

THANK YOU

Questions?

