

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Supervised Learning

Training: back-propagate errors

Classification Loss Functions

Cross entropy loss

$$H(p,q) = -\operatorname{E}_p[\log q]$$

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \, \log q(x)$$

$$L_{CE} = -\sum_{i=0}^{m-1} t_i \log \sigma(\mathbf{y})_i$$

$$= 0$$
Binary Logit ground truth label

Regression Loss Functions

Mean Absolute Loss or L1 loss

$$L_1(x) = |x|$$

$$f(y,\hat{y}) = \sum_{i=1}^N |y_i - \hat{y}_i|$$

Mean Square Loss or L2 loss

$$L_2(x) = x^2$$

$$f(y,\hat{y})=\sum_{i=1}^N(y_i-\hat{y_i})^2$$

Regression Loss Functions

Smooth L1 loss

$$ext{smooth L}_1(x) = \left\{ egin{array}{ll} 0.5x^2 & if|x| < 1 \ |x| - 0.5 & otherwise \end{array}
ight.$$

$$f(y,\hat{y}) = egin{cases} 0.5(y-\hat{y})^2 & ext{if } |y-\hat{y}| < 1 \ |y-\hat{y}| - 0.5 & otherwise \end{cases}$$

Regression Loss Functions

- Huber loss
 - Generalization of smooth L1 loss ($\delta=1$)

$$L_{\delta}(a) = \left\{ egin{array}{ll} rac{1}{2}a^2 & ext{for } |a| \leq \delta, \ \delta(|a| - rac{1}{2}\delta), & ext{otherwise.} \end{array}
ight.$$

$$L_{\delta}(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for}|y-f(x)| \leq \delta, \ \delta\left(|y-f(x)|-rac{1}{2}\delta
ight), & ext{otherwise}. \end{cases}$$

Optimization

- Gradient descent
 - Gradient direction: steepest direction to increase the objective
 - Can only find local minimum
 - Widely used for neural network training (works in practice)
 - Compute gradient with a mini-batch (Stochastic Gradient Descent, SGD)

Optimization

Gradient descent with momentum

- Add a fraction of the update vector from previous time step (momentum)
- Accelerated SGD, reduced oscillation

https://ruder.io/optimizing-gradient-descent/

Optimization

- Adam: Adaptive Moment Estimation
 - 1. Exponentially decaying average of gradients and squared gradients

$$g_t = egin{array}{ll} g_t = egin{array}{ll} g_t & eta_t = eta_1 m_{t-1} + (1-eta_1) g_t & eta_1 = 0.9, \, eta_2 = 0.999 \ v_t = eta_2 v_{t-1} + (1-eta_2) g_t^2 & ext{Start m and v from 0s} \end{array}$$

2. Bias-corrected 1st and 2nd moment estimates

$$\hat{m}_t = rac{m_t}{1-eta_1^t} \qquad \hat{v}_t = rac{v_t}{1-eta_2^t}$$

3. Updating rule

Learning rate

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$
 $\epsilon = 10^{-8}$

Adaptive learning rate

https://arxiv.org/pdf/1412.6980.pdf

PyTorch Example

```
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) optimizer = optim.Adam([var1, var2], lr=0.0001)
```

```
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
```

https://pytorch.org/docs/stable/optim.html

Case Study: Training AlexNet

- Data augmentation
 - Extracting random 224x224 patches from 256x256 images
 - Change RGB intensities

$$[I_{xy}^R, I_{xy}^G, I_{xy}^B]^T$$

on training set

+
$$[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3][\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T$$

Eigen values

covariance matrix

$$S = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X}) (X_i - ar{X})'$$

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Case Study: Training AlexNet

- Dropout
 - Set to zero the output of each hidden neuron with probability 0.5
 - Apply to the first two FC layers
 - Prevent overfitting

13

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Case Study: Training AlexNet

• Batch size: 128

Updating rule

Momentum

Weight Decay

Five to six days on two NVIDIA GTX 580 3GB GPUs, 2012

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Learning rate

Gradient

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

...

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

VGGNet

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

```
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64=36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256=294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256=589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256=589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                     (not counting biases)
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

Case Study: GoogLeNet

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1			9				2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								10
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0		2						7
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								/A.
linear		1×1×1000	1			0	6			1000K	1M
softmax		1×1×1000	0			0					(C

Fun features:

- Only 5 million params!

Compared to AlexNet:

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

Case Study: ResNet

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He)

Further Reading

- Stanford CS231n, lecture 3 and lecture 4, http://cs231n.stanford.edu/schedule.html
- Deep learning with PyTorch
 https://pytorch.org/tutorials/beginner/deep learning 60min blitz.ht
 ml
- Dropout: A Simple Way to Prevent Neural Networks from Overfitting https://jmlr.org/papers/v15/srivastava14a.html
- Matrix Calculus: https://explained.ai/matrix-calculus/