

Introduction

Solving the Schrödinger equation

$$\hat{H}\Psi = E\Psi$$
, with
$$\Psi = \Psi(\{R_{Nuc}\}, \{r_{elec}, \sigma_{elec}\})$$

Several Approximations required

- > Accuracy of Method (Hamilton)
- Flexibility of Wave Function (Basis Set, k-grid)
- Other Numerical Settings (Integrals, etc.)
- Geometry (Approximate System)

Accurate Solutions

Compromise

Computational Demand

Solving the Schrödinger equation accurately

Basis set types

Linear Combination of Atomic Orbtials (LCAO)

Plane Waves

Grid-based (orbital free)

$$\psi_{MO} = \sum_i c_i \phi_i$$
 Linear Combination of Functions

$$\psi_{MO} = \sum_i c_i \phi_i$$
 Linear Combination of Functions

Intuitive Solution: One basis function per electron, e.g.

H: 1s

C: 1s, 2s, 2p_x, 2p_y, 2p_z

K: 1s, 2s, 2p, 3s, 3p, 3d

"Minimal Basis Set"

Why is the Minimal Basis not Enough?

Consider H atom + proton:

Desired Properties:

- Suited for the problem
- > Efficiency (few basis functions / high accuracy)
- Easy to evaluate
- Systematic, encompasses full Hilbert-Space
- > Linear independent
- Well-defined hierarchy (extrapolation)
- Universal across different methods and for different properties

Basis functions versus ease of integration

Wavelets & Plane Wave Basis Sets (PW)

- Pseudopotentials
- Projector Augmented Waves
- Muffin-Tin Potentials

Atom-Centered Basis Functions (LCAO)

- Gaussian Type Orbitals (GTOs)
- Numerically Tabulated Orbitals
- Correlated Basis Sets

Time-Deciding Factors in the SCF

Integral Evaluation:

Scales as $\mathcal{O}(N_{Basis})^2$

Prefactor depends on basis function type

Matrix Diagonalization:

Scales formally, as $\mathcal{O}(N_{Basis})^3$

Formally independent of basis function type

Reduced by sparse matrix algebra, etc.

Number of steps:

Scales as $\mathcal{O}(\sqrt{N_{Basis}})$

Communication