- title: "S2"author: "Análisis númerico"date: "r Sys.Date()"output:pdf_document: defaulthtml_document: default
- Evaluacion de un polinomio
 - Método de Horner, regla de Riffini o división sintética
 - Ejemplo
 - Teorema
 - R Markdown

title: "S2" author: "Análisis númerico" date: "r Sys.Date()" output: pdf_document: default html_document: default

Evaluacion de un polinomio

Sea $p_n(x)$ un polinomio de grado n, escribimos este de la forma:

 $\label{eq:alpha} $$ \left(-1 \right) - \left(-1 \right) + \left(-1 \right) +$

Método de Horner, regla de Riffini o división sintética

Es una técnica para evaluar polinomios que puede ser visto como una colección de multiplicaciones anidadas.

Ejemplo

Un polinomio de quinto grado $p_5(x) := a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ puede escribirse como una multiplicación de 5 multiplicaciones anidadas:

```
\begin{equation}  p_n(x) := ((( a_5 x + a_4x)x + a_3)x + a_2)x + a_1)x + a_0 \\ equation \}
```

Teorema

sea $p_n(x) := a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ un polinomio de grado n y sea c un número para el que deseamos evaluar p(c). Si definimos \begin{align*} b_n &:= a_n\ b_{k} &:= a_k + cb_{k+1}, \text{ } ext{ para } k=n-1,n-2, \text{ } ext{ }

entonces $b_0 = f(c)$. Mas aún, si definimos el siguiente polinomio \begin{equation} Q_o(x):= b_n x^n + b_{n-1}x^{n-1} +\cdots + b_2x^2 + b_{1}x + b_0 \cdot participation} y \begin{equation} R_0 = b_0 \cdot participation} se verifica que:

```
\begin{equation} p(x) = (x-c)Q_o(x) + R_o \\ \end{equation}
```

Es decir, $Q_0(x)$ es el polinomio cociente de grado n-1 y $R_o=b_0=p(c)$ es el resto de la división de p(x) entre x-c

```
knitr::opts_chunk$set(echo = TRUE)
```

R Markdown

f(x)

summary(cars)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.