Matrix Transformations

Matrix Transformations (1)

What is a function?

A **function** is a rule that associates with each element of a set A a unique element in a set B, - a unique output for each input. If f assigns the element y to the element x, we write

$$y = f(x)$$

- $\succ x$ is the independent variable
- > y is the dependent variable
- \triangleright y is the image of x under f, or y is the value of f at x
- \triangleright The set of all possible inputs is called the **domain** of f (the set A)
- \triangleright The set *B* is called the **codomain** of *f*
- ➤ The subset of the codomain that consists of all images of all of the elements in the domain is called the **range** of *f*

Matrix Transformations (2)

Single variable functions:

$$f: A \subseteq \mathbb{R} \to \mathbb{R}$$

" subset of

Example: $f(x) = \sin x$

Domain: R

Codomain: /

Range: [-1,17

Vector-valued functions of several variables:

$$f(x,y) = (2x - y, \mathbf{x}^2, \mathbf{x}^2, \mathbf{y}^2)$$

Or we can write

$$f \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x - y \\ x^2 \\ \sqrt{y} \end{bmatrix}$$

Input is a <u>vector</u> in \mathbb{R}^2 and output is a <u>vector</u> in \mathbb{R}^3 $f: A \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}^3$

Evaluate
$$f \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

Let $b = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$. Find a vector w in \mathbb{R}^2 such that $\mathcal{K}(w) = b$. Is there more than one? $\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Find a vector v in \mathbb{R}^3 which is not in the range of \mathbb{Z}_{f} $\begin{bmatrix} 3 \\ -1 \end{bmatrix} \text{ is not in the range.}$ Domain: $\{(x,y) \mid y \geq 0\}$ Codomain: \mathbb{R}^{3} Range: Very hand

Matrix Transformations (3)

Transformation T from \mathbb{R}^n to \mathbb{R}^m

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$\times \longrightarrow \tau(\times)$$

Domain: \mathbb{R}^n

Codomain: \mathbb{R}^m

Given a vector x in \mathbb{R}^n , the vector T(x) in \mathbb{R}^m is the image of x under T

Range: the set of images $\{T(x)|x \in \mathbb{R}^n\}$

Identity transformation $Id_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$

$$\mathrm{Id}_{\mathbb{R}^n}(x) = x \text{ for all } x \text{ in } \mathbb{R}^n$$

Matrix Transformations (4)

Matrix transformations are defined by matrix-vector products.

Let A be an $m \times n$ matrix. The **matrix transformation** associated with A is the transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(x) = Ax$

It takes a vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

Another common notation:

$$T_A: \mathbb{R}^n \to \mathbb{R}^m$$
 defined by $T_A(x) = Ax$

$$X \longrightarrow T_A(X) = AX$$

Example 1

Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \end{bmatrix}$$
.
Domain of T_A : \mathbb{R}^3

Codomain of
$$T_A$$
: \mathbb{R}^2

Evaluate
$$T_A\begin{bmatrix}1\\2\\-1\end{bmatrix} = \begin{bmatrix}1&0&-1\\2&3&4\end{bmatrix}\begin{bmatrix}1\\2\\-1\end{bmatrix} = I\begin{bmatrix}1\\2\end{bmatrix} + 2\begin{bmatrix}0\\3\end{bmatrix} - I\begin{bmatrix}-1\\4\end{bmatrix} = I\begin{bmatrix}1\\2\end{bmatrix} + 2\begin{bmatrix}0\\3\end{bmatrix} - I\begin{bmatrix}-1\\4\end{bmatrix} = I\begin{bmatrix}1\\2\end{bmatrix} + I\begin{bmatrix}0\\4\end{bmatrix} = I\begin{bmatrix}1\\4\end{bmatrix}$$

Matrix Transformations (5)

What does the range of a matrix transformation look like?

If A has n columns $v_1, v_2, ..., v_n$ and we multiply A by a general vector x, we get

and this is just a linear combination of the vectors $v_1, v_2, ..., v_n$. So, the range is the set of all possible linear combinations of the column vectors of A which is the column space of A.

Let A be an $m \times n$ matrix and let $T_A(x)$ be the associated matrix transformation, then

- \triangleright The <u>domain</u> of T_A is \mathbb{R}^n where n is the number of columns of A
- \triangleright The <u>codomain</u> of T_A is \mathbb{R}^m where m is the number of rows of A
- \triangleright The <u>range</u> of T_A is the column space of A

Matrix Transformations (6)

What does the range of a matrix transformation look like?

Example 2

Let
$$A = \begin{bmatrix} 2 & -2 & 4 \\ 3 & -3 & 6 \end{bmatrix}$$
. Domain of T_A : \mathbb{R}^3 Codomain of T_A : \mathbb{R}^3

Describe the range of T_A geometrically.

Pange =
$$coe(A) = Span \{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ -3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \end{bmatrix} \} = Span \{ \begin{bmatrix} 2 \\ 3 \end{bmatrix} \}$$
 dim $coe(A) = 1$

A line in \mathbb{R}^2 spanned by $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Matrix Transformations (7)

What does the range of a matrix transformation look like?

Example 3

Let
$$B = \begin{bmatrix} 1 & 3 \\ -2 & 2 \\ -2 & 1 \end{bmatrix}$$
. Domain of T_B : \mathbb{A}^2 Codomain of T_B : \mathbb{A}^3

Describe the range of T_B geometrically.

Pange =
$$Col(B)$$
 = spon $\{\begin{bmatrix} -L \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \}$ dim $Col(B)$ = 2
Nearly independent
 \Rightarrow a bosis
this is a plane in R^3 .

Matrix Transformations (8)

A matrix transformation T from \mathbb{R}^n to \mathbb{R}^n , when the corresponding matrix is a square $n \times n$ matrix, is called a **matrix operator**, and we say that T <u>operates</u> on \mathbb{R}^n

Some examples of matrix operators on \mathbb{R}^2 . Consider the transformations defined by the following matrices:

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$$

 $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$ \mathcal{T}_A = Reflection over the y-axis

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = 2 \begin{bmatrix} x \\ y \end{bmatrix}$$

Dilation by a factor of 2

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -14 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -y \\ x \end{bmatrix}^{x}$$

Rotation (90 degrees counterclockwise)

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + y \\ y \end{bmatrix}$$

Shear

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Identity Id_{R²}

Matrix Transformations (9)

span $\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \} = \mathbb{R} \times \mathbb{R}^3$

Questions about a matrix transformation

Example 4

Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
. Domain of T_A : \mathbb{R}^2 Codomain of T_A : \mathbb{R}^3

Codomain of
$$T_A$$
: \mathbb{R}^2

Describe the range of
$$T_A$$
 geometrically. $Span \{ [o], [i] \}$ $dim Coe(A) = 2$

$$A plane in A^3$$

$$Evaluate $T_A(u)$ for $u = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$T_A[-2] = [o]$$

$$T_A[-2] = [o]$$$$

Evaluate
$$T_A(u)$$
 for $u = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$T_A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Let
$$b = \begin{bmatrix} 7 \\ 5 \\ 7 \end{bmatrix}$$
. Find a vector \mathbf{v} in \mathbb{R}^2 such that $T_A(\mathbf{v}) = b$. Is there more than one? \mathbf{v} $\mathbf{v$

 \triangleright Does there exist a vector w in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with $T_A(v) = w$?

Find a vector w in \mathbb{R}^3 which is not in the range of T_A . $w = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ become $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ become $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ has no solution