Контрольная работа № 4 по ТВ и МС [2016–2017]

Ф.И.О.:

Группа:

I. Теоретический минимум

В пунктах 4, 6 и 11 предполагается, что $X=(X_1,\ldots,X_n)$ и $Y=(Y_1,\ldots,Y_m)$ — две независимые случайные выборки из нормальных распределений $N(\mu_X,\sigma_X^2)$ и $N(\mu_Y,\sigma_Y^2)$ соответственно.

- 1. Пусть $\mathbb{E}(X_1) = g(\theta)$, где g некоторая заданная функция, имеющая обратную функцию g^{-1} . Используя первый начальный момент, получите формулу оценки для параметра θ .
- 2. Приведите формулу выборочного центрального момента порядка k.
- 3. Приведите формулу плотности нормального распределения $N(\mu, \sigma^2)$.
- 4. Укажите распределение статистики $\frac{\hat{\sigma}_X^2}{\sigma_X^2}(n-1)$.
- 5. Дайте определение распределения Стьюдента. Схематически изобразите график плотности распределения Стьюдента.
- 6. Приведите формулу статистики, при помощи которой можно проверить гипотезу H_0 : $\mu_X = \mu_0$, где μ_0 известное число, при условии, что дисперсия σ_X^2 неизвестна.
- 7. Дайте определение оценки $\widehat{\theta}$ неизвестного параметра $\theta \in \Theta$ методом максимального правдоподобия.
- 8. Приведите формулу статистики, при помощи которой можно протестировать гипотезу H_0 : $\mu_X = \mu_0$, где μ_0 заданное известное число, при условии, что дисперсия σ_X^2 известна. Укажите распределение данной статистики.
- 9. Сформулируйте неравенство Рао-Крамера для несмещенных оценок.
- 10. Дайте определение χ^2 -распределения. Схематически изобразите график плотности χ^2 -распределения.
- 11. Укажите распределения выборочного среднего \overline{X} .
- 12. Приведите формулу несмещенной оценки дисперсии.

II. Задачи

Задача 1. Вес выпускаемого заводом кирпича имеет нормальное распределение. По выборке из 16 кирпичей получено, что средний вес кирпича равен 2.9 кг, а выборочное стандартное отклонение равно 0.3 кг.

- (a) На уровне значимости $10\,\%$ проверьте гипотезу о том, что математическое ожидание веса кирпича составляет 3 кг.
- (b) На уровне значимости 5% проверьте гипотезу о том, что стандартное отклонение веса кирпича составляет 0.25 кг.

Задача 2. В городе N за год родилось 520 мальчиков и 500 девочек.

- (a) На уровне значимости 5% проверьте гипотезу о том, что мальчики и девочки рождаются одинаково часто против альтернативной гипотезы о том, что вероятность рождения мальчика выше, чем вероятность рождения девочки.
- (b) Найдите точное *P*-значение для наблюдаемой статистики из пункта (a).
- (c) Сформулируйте предпосылки, которые были использованы вами для выполнения пункта (a).

Задача 3. По независимым опросам о годовых доходах выпускников двух ведущих экономических ВУЗов «А» и «В», содержащим по 50 наблюдений каждый, получена следующая информация: $\overline{X}_A = 650$, $\widehat{\sigma}_A = 50$, $\overline{X}_B = 690$, $\widehat{\sigma}_B = 70$.

- (a) На уровне значимости $10\,\%$ проверьте гипотезу о равенстве математических ожиданий $\mu_A=\mu_B.$
- (b) Сформулируйте предпосылки, которые были использованы вами для выполнения пункта (a).
- (c) На уровне значимости 5 % проверьте гипотезу о равенстве дисперсий $\sigma_A^2 = \sigma_B^2$.

Задача 4. Учебная часть утверждает, что все три факультатива «Вязание крючком для экономистов», «Экономика вышивания крестиком» и «Статистические методы в макраме» одинаково популярны. В этом году на данные факультативы записались 35, 31 и 40 студентов соответственно. На уровне значимости 5% проверьте справедливость утверждения учебной части.

Задача 5. Пусть $X=(X_1,\ldots,X_{100})$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией ν . Оба параметра μ и ν неизвестны. Используя следующие данные $\sum_{i=1}^{100} x_i = 30$, $\sum_{i=1}^{100} x_i^2 = 146$ и $\sum_{i=1}^{100} x_i^3 = 122$ с помощью теста отношения правдоподобия проверьте гипотезу H_0 : $\nu=1$ на уровне значимости 5%.