Chapter 10

Jeffrey Wubbenhorst

April 9, 2016

- To describe rotation of a rigid body about a fixed axis (rotation axis), we assume a reference line is fixed in the body, perpendicular to the axis and rotating with the body. The angular position θ of the line is measured relative to fixed direction, and is given as $\theta = \frac{s}{R}$, where s is the arc length, and R is the radius.
- Angular displacement is given as $\Delta \theta = \theta_2 \theta_1$, where θ is positive for counterclockwise rotation and negative for counterclockwise. Note: NOT to be treated as a vector
- Angular velocity is given as $\omega_{avg} = \frac{\Delta \theta}{\Delta t}$, $\omega = \frac{d\theta}{dt}$, which are both vectors, wit direction given by the right-hand rule.
- Angular acceleration is given as $\frac{\Delta\omega}{dt}$
- Constant angular acceleration (α = constant has properties that adhere to the following kinematic equations:

$$\omega = \omega_0 + \alpha t$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2}\alpha(\theta - \theta_0)$$

$$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)$$

$$\theta - \theta_0 = \omega t - \frac{1}{2}at^2$$

- A point in a rigid rotating body at a perpendicular distance r from the rotation axis, moves in a circle with radius r. If the body rotates through an angle θ , the point moves along an arc with length s given by $s = \theta r$.
- Linear velocity is tangent to circle; point's linear speed is given by $v = \omega R$, where ω is the angular speed of the body.
- The linear acceleration \vec{a} of the point has both tangential and radial components. The tangential component is $a_r = \frac{v^2}{r} = \omega^2 r$. Note that this quantity is given in radians.
- If a point moves in uniform circular motion, the period T is given as $T = \frac{2\pi r}{v} = \frac{2\pi}{v}$
- Kinetic energy of a rigid body rotating about a fixed axis is given by $k = \frac{1}{2}I\omega^2$, where I is the rotational inertia of the body, defined as $I = \sigma m_i r^2$ for a system of particles
- I is the rotational inertia (also known as the moment of inertia with respect to the axis of rotation. The SI unit for I is the kg m^2
- I is the rotational inertia of a body defined as $I = \sum m_i r^2$ for a system of discrete particles and defined as $I = \int r^2 dm$ for a body with r_i represent the perpendicular distance from the axis of rotation to each mass element in the body.
- The parallel-axis theorem states that the rotational inertia I of a body about any axis to that of the same body about a parallel axis through the center of mass is given as $I = I_{com} + Mh^2$, where h is the perpendicular distance between the two axes, and I_{com} is the rotational inertia of the body about the axis through the com. h can also be described as the distance the actual rotation axis has been shifted from the rotational axis through the com.
- Torque (τ) is defined as $\tau = (r)(F\sin\theta)$ where θ is the angle between \vec{F} and \vec{r} (the position vector relative to the rotation axis). The units of torque are Newtons-meter $(N\dot{m})$.
- The rotational analog of Newton's second law is $\tau_{net} = I\alpha$
- Work is defined rotationally as $W = \int_{\theta i}^{\theta} \tau d\theta$
- Power is given as $P = \frac{dW}{dt} = \tau \omega$
- When τ is constant, the integral reduces to $W = \tau(\theta(\theta_r \theta_i))$

Pure translation		Fixed Direction	
Position	x	Angular position	θ
Velocity	v = dx/dt	Angular velocity $\omega = d\theta/dt$	
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$
Mass	\mathbf{m}	Rotational Inertia	I
Newton's second law	$F_n et = ma$	Newton's second law	$\tau_{net} = I\alpha$
Work	$W = \int F dx$	work $W = \int \tau d\theta$	
Kinetic energy	$K = \frac{12}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$
Work-kinetic energy theorem	$W = \Delta K$	work-kinetic energy theorem	$W = \Delta K$

Table 1: Corresponding relations

- The work-energy theorem for rotating bodies is given as $\delta k = k_f k_i = \frac{1}{2}I\omega_i^2 = W$ where ω_i and ω_f are the angular speeds of the body before and after the work is done.
- Below are corresponding relations for translational and rotational motion: