Self Project
Title: Anomaly Detection on Diabetes dataset.

Introduction:

AutoEncoders are used to learn the compressed representation of raw data. Auto-encoders can be used in computer vision, data-compression, image processing, and time-series forecasting.

AutoEncoders is comprised of three main parts

- 1. Encoder It compresses the input into a latent space representation.
- 2. Bottleneck Layer An encoder is mapping from input space into lower dimension latent space.
- 3. Decoder decodes the encoded image back to the original image of the same dimension.

I have used AutoEncoders for anomaly detection in a diabetes dataset in this project. In a dataset of 253680 samples, Diabetes cases will be treated as anomalies.

Dataset used:

Dataset is available on kaggle(<u>link</u>).

No. of samples - 253680

No. of features - 22

Diabetes_012 feature is the target feature.

Diabetes 012 had three classes.

0 - No Diabetes, 1 - PreDiabetes, 2 - Diabetes

```
df.Diabetes_012.value_counts()

0.0 213703
2.0 35346
1.0 4631
Name: Diabetes 012, dtype: int64
```

Since the project is about anomaly detection, I made the data suitable for binary classification. Therefore we are converting all the values labeled as 2 in the Diabetes 012 feature to 1.

Exploratory Data Analysis:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 253680 entries, 0 to 253679
Data columns (total 22 columns):
    Column
                          Non-Null Count
                                           Dtype
                          -----
                                           ----
    Diabetes 012
                          253680 non-null
                                           float64
    HighBP
                          253680 non-null
                                          float64
    HighChol
                          253680 non-null float64
                          253680 non-null float64
    CholCheck
    BMI
                          253680 non-null float64
                          253680 non-null float64
     Smoker
    Stroke
                          253680 non-null float64
    HeartDiseaseorAttack 253680 non-null float64
    PhysActivity
                          253680 non-null float64
    Fruits
                          253680 non-null float64
    Veggies
                          253680 non-null float64
    HvyAlcoholConsump
                          253680 non-null float64
    AnyHealthcare
                          253680 non-null float64
    NoDochcCost
                          253680 non-null float64
    GenHlth
 14
                          253680 non-null float64
                          253680 non-null float64
    MentHlth
                          253680 non-null float64
    PhysHlth
    DiffWalk
                          253680 non-null float64
 18
     Sex
                          253680 non-null float64
    Age
                          253680 non-null float64
    Education
                          253680 non-null float64
    Income
                          253680 non-null float64
dtypes: float64(22)
memory usage: 42.6 MB
```

```
df.isnull().sum().sum()
```

0

Dataset Visualization:

Class imbalance is suitable for outlier detection using autoencoders.

Diabetes Attributes Correlation Heatmap

Diabetes Attributes Correlation Heatmap

- 0.6

- 0.4

- 0.2

- -0.2

Diabetes Attributes Pairwise Plots Included attributes - HighBP, HighChol, BMI, MentHlth, PhysHlth, Income

Diabetes Attributes Pairwise Plots

Plot of count of no. of samples against age(both classes)

Plot of count of no. of samples against gender(both classes)

Final data preparation -

1. Normalizing data

```
from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler()

df['BMI'] = sc.fit_transform(df['BMI'].values.reshape(-1, 1))

df['MentHlth'] = sc.fit_transform(df['MentHlth'].values.reshape(-1, 1))

df['PhysHlth'] = sc.fit_transform(df['PhysHlth'].values.reshape(-1, 1))

df['DiffWalk'] = sc.fit_transform(df['DiffWalk'].values.reshape(-1, 1))

df['Sex'] = sc.fit_transform(df['Sex'].values.reshape(-1, 1))

df['Age'] = sc.fit_transform(df['Age'].values.reshape(-1, 1))

df['Education'] = sc.fit_transform(df['Education'].values.reshape(-1, 1))

df['Income'] = sc.fit_transform(df['Income'].values.reshape(-1, 1))
```

2. Splitting data in 80:20 for training and testing.

Final data

```
labels train = labels train.astype(bool)
labels test = labels test.astype(bool)
#creating NoDiabetes and Diabetes datasets
NoDiabetes data train = data train[~labels train]
NoDiabetes data test = data test[~labels test]
Diabetes data train = data train[labels train]
Diabetes data test = data test[labels test]
print(" No. of records in Diabetes Train Data = ",len(Diabetes data train))
print(" No. of records in No Diabetes Train data =",len(NoDiabetes data train))
print(" No. of records in Diabetes Test Data =",len(Diabetes data test))
print(" No. of records in No Diabetes Test data =",len(NoDiabetes data test))
```

```
No. of records in Diabetes Train Data = 32100
No. of records in No Diabetes Train data = 170844
No. of records in Diabetes Test Data = 7877
No. of records in No Diabetes Test data = 42859
```

Building Model -

1. Setting parameters

Setting training parameter.

```
nb_epoch = 100
batch_size = 64
input_dim = NoDiabetes_data_train.shape[1]
encoding_dim = 18
hidden_dim_1 = int(encoding_dim / 2)
hidden_dim_2 = 4
learning_rate = 1e-7
```


2. Model Architecture

Non-trainable params: 0

Model: "model_6"

Layer (type)	Output Shape	Param #
input_7 (InputLayer)	[(None, 21)]	0
dense_38 (Dense)	(None, 18)	396
dropout_12 (Dropout)	(None, 18)	0
dense_39 (Dense)	(None, 9)	171
dense_40 (Dense)	(None, 4)	40
dense_41 (Dense)	(None, 9)	45
dropout_13 (Dropout)	(None, 9)	0
dense_42 (Dense)	(None, 18)	180
dense_43 (Dense)	(None, 21)	399

3. Optimizer, Loss, etc.

verbose=1,

).history

validation data=(data test, data test),

callbacks=[cp, early stop]

```
cp = tf.keras.callbacks.ModelCheckpoint(filepath="autoencoder_diabetes.h5", mode='min', monitor='val_loss', verbose=2, save_best_only=True
# define our early stopping
early stop = tf.keras.callbacks.EarlyStopping(
   monitor='val loss',
   min delta=0.0001,
   patience=10,
   verbose=1,
   mode='min',
   restore best weights-True)
autoencoder.compile(metrics=['accuracy'], loss='mean squared error', optimizer='adam')
history = autoencoder.fit(Diabetes data train, Diabetes data train,
                    epochs=nb epoch,
                    batch size=batch size,
                    shuffle=True,
```

Results -

1. Results of training after 100 epochs.

2. Loss in training and testing of model

3. Plot of reconstruction error against data point index for both classes.

4. Plot of confusion matrix and results of accuracy, precision and recall.

