ResumIDI

Joan Bellavista

Realisme

Eliminació de Parts Amagades (EPA)

• Back Culling

Sense culling

Amb culling

glEnable (GL_CULL_FACE);

Figure 1: Back Culling

Il·luminació

- Models d'Iluminació Empírics o locals: Nomes consideren per el càlcul del color.
- Models de traçat de raig: Consideren també objectes existents a l'escena (però només transmissions especulars)
- Models de radiositat: Poden fer ombres i penombres però no miralls ni transparències. Són els més costosos.

Models Empírics (Locals)

• Model Empíric Ambient

 $I_{a\lambda}$: color de la llum ambient

 $K_{a\lambda}$: coeficient de reflexió ambient

$$I_{\lambda}(P) = I_{f\lambda} K_{d\lambda}$$

• Model Empíric difús (Lambert)

 $I_{f\lambda}$: color de la llum de focus puntual

 $K_{d\lambda}$: coeficient de reflexió difusa del material

 $\cos(\phi)$: cosinus de l'angle entre la llum incident i la normal a la superfície del punt P

$$I_{\lambda}(P) = I_{f\lambda} K_{d\lambda} \cos(\phi)$$
$$si \ \phi < 90$$

• Model empíric especular (Phong)

 $I_{f\lambda}$: color de la llum de focus puntual

 $K_{s\lambda}$: coeficient de reflexió especular

n: exponent de reflexió especular

$$I_{\lambda}(P) = I_{f\lambda} K_{s\lambda} cos^{n}(\alpha)$$
$$si \ \alpha < 90$$

La fórmula del color final és el sumatori dels tres models

Shading de polígons

- Colorat Constant (Flat Shading): Color uniforme per tot el polígon (es calcula el color a un vèrtex). cada cara pot tenir diferent color. $C_f = C_{vertex}$
- Colorat de Gouraud (Gouraud shading o Smooth shading): Es fa una interpolació entre els càlculs del color dels tres vèrtexs de cada triangle per cada fragment.

Suavitzat d'arestes

Normal per cara vs normal per vèrtex. (normal per vèrtex és més smooth)

Realitat virtual i Realitat aumentada

Realitat virtual

Hi han tres aspectes que tenim en compte amb la relitat virtual: > - La immersió (pot ser tàctil, visual...)

- La Visualització
- La interacció (normalment amb Haptic Devices)
- Característiques de Immersió visual
 - Retinal disparity (La imatge d'un ull és diferent de la d'altre)
 - Fusion and stereopsis (El cervell és capaç de combinar les dos imatges i aconssegueix una única imatge amb profunditat)
 - Haptic Devices (Aparells que els usuaris de realitat virtual utilitzen per interectuar)
- Tipus de Sistemes de Realitat Virtual
 - Immersive (ulleres de realitat virtual)
 - Semi-Immersive (els dos ulls poden veure la pantalla (una única). Una de les tècniques utilitzades és ulleres polaritzades.)
- Synthesis of stereo images

Figure 2: Synthesis Stereo Images

- Càlcul de la camera stereo:
 - Posicio i orientació:

lookAt (eye.x, eye.y, eye.z, target.x, target.y, target.z, up.x, up.y, up.z);

• Parametres intrínsics

frustum (left, right, bottom, top, near ,far);

• Configuracions de sistemes VR

- Pantalla estàtica(projecció) + "head-tracking" (a partir de la posició del cap amb sensors a l'habitació)
 - Els paràmatres a tenir en compte són: La posició dels ulls i la geometria de la pantalla
- Pantall dinàmica (ulleres) + "head-tracking"
 - Els paràmatres a tenir en compte són: (Orientació del cap i HMD frustum (paràmatres intrínsics de les ulleres)
 - Distorsió (Hi ha una distorsió que s'ha de contrarrestar)
- Interacció
 - Selecció 3d
 - Hand extension techniques or 3D point cursors (mapeig de la mà del usuari)
 - Ray-Based technique (Senyalar amb un làser ray cursors)
 - Navegació (Pot ser búsqueda o exploració)

Realitat Augmentada

Realitat Augmentada	Realitat Virtual
L'usuari sap que està al món real	Els sentits estan sota el control del sistema
El sistema augmenta el món real	Totalment immersiu

Necessitem un mecanisme per combinar el mon virtual i el real

Hi han tres maneres de presentar visualment RA:

- Video see-through (Ensenyem el món real i a sobre li posem el món virtual. Exemple: Smartphone).
- Optical see-through: (Es veu el món real partir de transparències i es projecta la realitat virtual (a les ulleres)).
- Projecció AR a objectes reals.

Disseny d'interaccions

Fonaments bàsics d'interacció en UI

Background (Teoria de la informació)

• Teoria de la informació

Figure 3: Teoria de la Informació

• Mesures d'informació: La incertesa (uncertainty) es mesurada per $\log_2(M)$. Reescrivint la fórmula tenint en compte que la probabilitat P=1/M: $\log_2(M)=\log_2((\frac{1}{M})^{-1})=\log_2(P^{-1})=-\log_2(P)$

La informació és la reducció de l'incertesa. Shannon Entropy mesura la quantitat d'informació:

$$H = \sum_{i=1}^{N} p_i \log_2 \left(\frac{1}{p_i}\right) = -\sum_{i=1}^{N} p_i \log_2 p_i$$

N és el nombre d'alternatives

 p_i és la probabilitat de la i^{th}

H és la quantitat d'informació esperada a rebre. (no soroll)

Tot i la fórmula, no tota la informació arribarà al receptor. Mitjana d'informació transmesa (R):

$$R = H_x - H_y(x)$$

 $H_y(x)$ és l'equivocació.

Hick-Hyman Law: Mesurant el Choice-Reaction time

• Temps per prendre una decisió (Reaction Time)

$$RT = a + bH_T$$

a, b constants

 H_T és la informació transmesa.

• Llei de Hick-Hyman

$$H_T = \log_2(n+1)$$

n és el nombre de alternatives (equiprobables o no)

La llei original no tenia el +1. El +1 és la incertesa de si respondre o no.

Per tant:

$$RT = a + b \log_2(n+1)$$

- Evidencies de Hick-Hyman
 - La seva llei prediu acuradament en seleccions de menú a pantalla completa.
 - El temps de selecció decau logaritmicament amb la llargada del menú (però només si l'usuari ha apres la posició del ítem, en cas contrari, la relació és linial)

La llei de Fitt: Measuring Pointing Time

Fitt diu que hi ha una relació linial entre el temps de moviment ($movement\ time\ MT$) i la dificultat de la tasca.

$$MT = a + bID$$

a nombre de vegades que comença/s'atua en segons b velocitat inherent del dispositiu

• Dificultat de la tasca

$$ID = \log_2\left(\frac{2A}{W}\right)$$

ID: Index de dificultat

A: Amplitut del moviment

W: Amplada del objectiu (W = Width)

Figure 4: Amplitut i Amplada del objectiu

De la llei de Fitts s'han tret moltes variants:

• Welford:

$$MT = a + b \log_2 \left(\frac{D + 0.5W}{W}\right)$$

• MacKenzie

$$MT = a + b \log_2 \left(\frac{D}{W} + 1\right)$$

També s'han trobat extensions amb moviments 2D (no només 1D). Dos de les més acceptades són la de Crossman i la d'Accot.

Aspectes com el cas que els objectius siguin molt petits o que el aparell sigui una pantalla tàctil, no estàn bén modelats per la llei de Fitts. Per això tenim **FFitts** (*Finger Fitts*), també anomenat PPMT (*Precision Pointing Movement Time*):

$$FFitts = a + bID + dID_2$$

$$FFitts = a + b \left\lceil \log_2 \left(\frac{cD}{W} \right) \right\rceil + d \left\lceil \log_2 \left(\frac{e}{W} \right) \right\rceil$$

El primer factor logarítmic mesura el temps per moure el dit a la pantalla.

El segon factor mesura el temps per posicionar el cursor.

D és la distància (mesurada en 3D), des de la posició inicial de la mà fins al primer contacte.

Si la tasca consisteix en iterativament anar fent click a objectius: D és la distància de un objectiu a un altre.

 ${\cal W}$ és la mida del objectiu

a, b, c, d, and e són diferents per diferents casos.

Crossing and Steering Laws: Continuos Gestures

Figure 5: Crossing vs Pointing

• Configuracions de crossing

Figure 6: Continuu vs Discret

Figure 7: Ortogonal vs Collinear

- Llei de crossing

$$T = a + b \log_2 \left(\frac{D}{W} + 1\right)$$

T és el temps mitjà de moure's passant per dos objectius.

 ${\cal D}$ és la distància entre dos objectius

 \boldsymbol{W} és la amplada de cada objectiu

 \boldsymbol{a} i \boldsymbol{b} són constants a determinar

Fitt's Law in UI Design

ANEM PER AQUI JA

Aplicacions en disseny de UI

Accelerant Target Acquisition