MATH240 LATEX: Continuous functions.

hongsheng lin37527355

November 2019

Abstract

This document introduces continuous functions. We give the definition of continuity and state some results concerning continuous functions. Further, we list some well-known functions along with their derivatives and plot $\exp(x)$, $\sin(x)$ and $\cos(x)$.

Contents

1	introduction	3
2	mathematics	3
3	tables and figures	4
4	book	8

1 introduction

In Section 2 we define a continuous function and give examples of such functions. In Section 3 we give a table of derivatives and plot some basic functions.

$$example: y = x, y = x^2 \tag{1}$$

2 mathematics

Definition 1 the $\epsilon - \delta$ definition of a continuous function is defined as the limit of f(x) at x=c is L if for any $\epsilon > 0$ there's a $\delta \delta 0$ such that if the distance of $x \delta 0$ from $x \delta 0$ is less than $x \delta 0$.

the symbol for this definition is
$$(\forall x_0 \in \mathbf{R}) \ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbf{R})(0 < |x - x_0| < \delta) \longrightarrow |f(x) - f(x_0)| < \epsilon)$$

2:use example to show the expoential function is an example of continuous function

Example 1
$$exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
.
 $asx \to x_0$ $f(x) = L$ if and only if $\forall \epsilon > 0$) $(\exists \delta > 0)$ $(\forall x \in \mathbf{R})$ $(0 < |x - x_0| < \delta) \longrightarrow |f(x) - f(x_0)| < \epsilon$
 $proves \ e^x$ is continuous

Proof 1 3.prove:let f,g be continuous function then f+g is still continuous known f and g are continuous at a gives for any ϵ values δ_1, δ_2 such that for $||x-a|| < \delta_2$ it is true that $||f_1(x) - f_1(a)|| < \epsilon$ and for $||x-a|| < \delta_2$ its true that $||f_2(x) - f_2(a)|| < \epsilon$ it follows that for $\delta = \min(\delta_1, \delta_2)$ $2\epsilon > ||f_1(x) - f_1(a)|| + ||f_2(x) - f_2(a)|| \ge ||f_1(x) - f_1(a) + f_2(x) - f_2(a)||$ (traingleinequality) $= ||(f_1 + f_2)(x) - (f_1 + f_2)(a)|$ if $||x-a|| < \delta$

so we can find any δ satisify the criterion for any value 2ϵ and those for any ϵ so f_1 and f_2 is continuous at a

Definition 2 the hdeavisde function, $H: \mathbf{Z} \to \{0,1\}$ is defined to be

$$H[n] = \begin{cases} 0 & for \ n < 0, \\ 1 & for \ n \ge 0. \end{cases}$$

	function	derivative
1.	X	1
2.	\mathbf{x}^n	nx^{n-1}
3.	$\exp(x)$	exp(x)
4.	$\sin \theta$	$\cos \theta$
5.	$\cos \theta$	$-\sin \theta$
6.	$\tan \theta$	$\sec^2 \theta$
7.	$\cosh x$	$\sinh x$
8.	$\sinh x$	$\cosh x$
9.	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
10.	$\frac{1}{x-1}$	$\frac{1}{x^2-1}$

Table 1: this tables contains a list of functions and their derivatives

the heaviside function is discontinuous because according to the graph of the function there should be a gap between 1+ and 1- so its discontinuous

Theorm 1 the intermediate value theorm is: consider the interval $\mathbf{I} = [a,b]$ in the real numbers \mathbf{R} and a continuous function $\mathbf{F} : I \to \mathbf{R}$ the image set $f(\mathbf{I})$ is also an interval and it contains $[\min(f(a), f(b)), \max(f(a), f(b))]$

Proof 2 let S be the set of all $x \in [a,b]$ such that $f(x) \le u$. Then S is non-empty since a is an element of S, and S is bounded above by b, hence by completeness, the supremum $c = \sup S$ exists. that is, c is the smallest number that is greater than or equal to every member of S. we claim that f(c) = u fix some $\epsilon > 0$, since f is continuous, there is a δ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$ this means that f(x) - f(c) < f(

3 tables and figures

Table 3 lists some basic functions along with their derivatives."

From Figure 3 we see that both \sin and \cos are continuous.

angry cat

we see that the exponential function is continuous.

4 book

this is a book about the Watershed continuous function [2] and there si a note about the interrelation of subsets of independent variables of a continuous function with continuous first derivatives[1] and math is very fun.

References

- [1] Wassily Leontief. A note on the interrelation of subsets of independent variables of a continuous function with continuous first derivatives. *Bulletin of the American mathematical Society*, 53(4):343–350, 1947.
- [2] Laurent Najman and Michel Schmitt. Watershed of a continuous function. Signal Processing, 38(1):99–112, 1994.