

# Exercice 1

Poser et effectuer les opérations suivantes :

- $(100101101101)_2 + (10101011101)_2$ . Convertir le résultat en base 8.
- $-(10101111)_2 \times (11011)_2.$
- $-(AF8FE)_{16} + (56A8)_{16}.$

### Exercice 2

Poser et effectuer les additions shadok  $\triangle \_ \bot + \triangle \_ \bigcirc \triangle + \bot \bot \_ \triangle$  et maya  $\stackrel{=}{=}$   $\stackrel{=}{=}$ 

#### Exercice 3

Donner les tables d'addition et de multiplication de la base 7. Poser et effectuer  $(356)_7 \times (122)_7$ .

#### Exercice 4

On considère l'équation suivante :  $(121401)_b + (20403)_b = (142004)_b$ . Trouver une base b possible. Et pour  $(125601)_b + (23303)_b = (151004)_b$ ? Et pour  $(123)_b + (155)_b = (311)_b$ . Et pour  $(11)_b \times (10)_b = (110)_b$ .

#### Exercice 5

Résoudre le puzzle dans la base ix.

Résoudre le puzzle dans la base sept.

## Exercice 6

Un nombre entier x est congru à un nombre entier y modulo un nombre entier z ( $x \equiv y \pmod{z}$ ) si x = qz + y. En particulier, x est divisible par z, si x est congru à 0 modulo z.

- 1. Sachant que  $10^i \equiv 1 \pmod{3}$ , prouver le critère suivant de divisibilité par 3 pour les entiers écrits en base  $10 : (a_n \cdots a_1 a_0)_{10}$  est divisible par 3 si et seulement si  $(a_n + \cdots + a_1 + a_0)_{10}$  l'est. Utiliser ce critère pour décider si  $(5316123)_{10}$  est divisible par 3? Et  $(4205112)_{10}$ ?
- 2. Sachant que  $50 \equiv 1 \pmod{7}$ , prouver le critère suivant de divisibilité par 7 pour les entiers écrits en base  $10 : (a_n \cdots a_1 a_0)_{10}$  est divisible par 7 si et seulement si  $(a_n \cdots a_1)_{10} + 5 a_0$  l'est. Utiliser ce critère pour décider si  $(223765675767)_{10}$  est divisible par 7? Et  $(170275)_{10}$ ?
- 3. Sachant que  $100 \times 10 = 1000 = 1 \pmod{111}$ , proposer un critère de divisibilité par 111 pour les entiers écrits en base 10. L'appliquer à 5316123.

# Exercice 7

- 1. Écrire les nombres  $(5,5)_{10}$ ,  $(3,75)_{10}$ ,  $(7,875)_{10}$ ,  $(0,1875)_{10}$ ,  $(0,3)_{10}$ , et  $(123,45)_{10}$  en base 2.
- 2. Écrire les nombres  $(11,1010101)_2$ ,  $(1,111001)_2$ , et  $(11,01)_2$  en base 10.
- 3. Donner un nombre qui dispose d'une représentation finie en base 3 mais pas en base 10.