

Prepare your laptop for the hands-on coding session

No prior AI experience required - step by step guided tutorial

- You're encouraged to bring and use your own laptop for this hands-on coding session—it's the best way to fully experience and learn from the exercise!
- Before the session starts, please make sure your laptop has enough battery (about 1 hour) and follow the three steps below to set up your Google Colab environment.

THands-on AI-Based Modulation Design: Background

Design Task: Determine modulation parameters **D**₁, **D**₂

Objective: Minimize current stress (i_{nn}) and achieve all-switch zero voltage switching (ZVS)

Topology of the Dual Active Bridge (DAB) Converter

 v_{in} = 200 V $v_{out} \in [160 \text{ V}, 240 \text{ V}]$ $P_0 \in [100 \text{ W}, 1 \text{ kW}]$ $f_s = 50 \text{ kHz}$

Triple phase shift modulation for the DAB converter

Hands-on AI-Based Modulation Design: Implementation Steps

Design Task: Determine modulation parameters **D**₁, **D**₂

Objective: Minimize current stress (i_{pp}) and achieve all-switch zero voltage switching (ZVS)

