

Grundlagen der Bioinformatik

Exercises – Assignment 4

Ulf Leser

Overview

- Download a PPI network and represent as graph
- Compute graph properties
- Perform a gene set enrichment analysis

Task 1.1

- In moodle, you find a file from STRING
 - Source: https://string-db.org
 - File: 9606.protein.physical.links.v11.5.txt.gz
 - Contains ~2 Million edges between human proteins
 - Remove first line
- Write a program with one parameter
 - Name of a file with edges of a PPI
 - Format: ID_PROT1 ID_PROT2 value
 - Reads the file and represent internally as graph (ignore value)
- Output the degree distribution of the graph
 - How many nodes with degree 1, 2, 3, ... n, in reverse order
- Submission: program called "graph_degree"

Comments

- Interpret edges as undirected
- No need to store the IDs of the proteins
 - You may use internal (more compact) IDs
- Ignore the value (third column) of the edges
- Graph libraries (jGragh, iGraph, NetworKit ...) are forbidden
- Store the graph as adjacency lists
 - Graph is sparse
 - Adjacency matrix would be VERY big
 - Good idea: Keep adjacency lists sorted
- Important: Fast access to all neighbors of an arbitrary node

Task 1.2

- Plot the distribution in a PDF
 - Here, you may use a library, e.g., JFreeChart, charts4J
- Answer: Is this a (a) random graph or a (b) scale free graph?
 - If your answer is (a): Compute edge probability p
 - If your answer is (b): Estimate parameter γ
 - Recall: $P(k) = k^{-\gamma}$
 - Try & error is OK, no programmatic optimal fitting required
- Submission: As PDF

Task 1.3

- Write a program with one parameter
 - Name of a file with edges of a PPI
- Program must compute the maximal clique(s) in this graph
 - Test with *small* graphs first 1000, 2000, ... lines of the PPI network from Task 1.1
- Output
 - Size of the maximal clique(s)
 - For every maximal clique: All proteins involved
- Submission: program called "graph_clique"

Comment

- First time in your life you implement an algorithm for an NP-complete problem?
 - See why this algorithm is NP?
- No worries: In sparse graphs, the size of S_k decreases very fast with k
- If adjacency lists are sorted, the overlap computation is linear
- When computing the overlap, also remember the "extra" nodes and test their neighbors only when testing for clique

```
build set S2 of all cliques of size 2
i := 2;
repeat
  i := i+1;
  S_i := \emptyset;
  for j := 1 to |S_{i-1}|
     for k := j+1 to |S_{i-1}|
       T := S_{i-1}[j] \cap S_{i-1}[k];
       if |T|=i-2 then
         N := S_{i-1}[j] \cup S_{i-1}[k];
          if N is a clique then
            S_i := S_i \cup N;
         end if;
       end if:
     end for:
  end for:
until |S_i| = 0:
```

Competition

- Compute the size of the maximal clique as fast as possible
 - Use whatever tricks you find
 - Implementation may be different from solution to Task 1.3
 - Submission (voluntarily): program called
 "graph_clique_competition" with two parameters
- Only Java and Python are allowed
- We will measure wall clock time (unix time) for a small fraction of the PPI network

Things you may consider for speeding-up alignment

- Immediately remove all nodes with degree 1
- When you found a clique of size k remove all nodes with degree smaller than k+1
 - Creates increasingly small filtered copies of the graph
 - Adjacency lists are reduced a lot
 - Filtering very effective especially for smaller k
- Many more tricks in the literature feel free to explore

Task 2.1: Compute a pathway enrichment

- Very often, biomedical research identifies sets of "interesting" genes (signatures)
 - Overexpressed in a disease
 - Overexpressed in a cell type or developmental stage
 - Regulated by the same transcription factor
 - Sharing a motif/domain in their protein
 - **–** ...
- But: What functions do these genes have?
 - Biological "function" is always carried out by groups of proteins
 - Pathways
 - Most gene participate in several pathways
 - Whatever gene set we have some pathways will be affected
 - Which pathways are affected more than expected by chance?

Gene Set Enrichtment Analysis (GSEA): Examples

https://www.biotrend.com

Zhang et al. "Prediction and analysis of weighted genes in hepatocellular carcinoma using bioinformatics analysis", Molecular Medicine Reports , 2019

Task 2.1. Obtain gene signatures

- Go to MSig-DB
 - One of several databases of interesting gene sets / signatures
 - Sorry: Will require a registration
 - Note URL of database in PDF (1)
- Find the signature "KRAS.LUNG.BREAST_UP.V1_DN"
 - Note URL of gene set and size of gene set
 - Download gene set and note in PDF (2)
- Go to DAVID Functional Annotation Tool
 - Note the URL in PDF (3)
 - Compute a gene set enrichment
 - Paste and submit gene list (official symbols, human, "gene list")
 - Compute a "functional annotation chart"
 - Note screenshot of top-~40 pathways in PDF (4)

General requirements

- Remember to name all programs as requested
- All programs must run without further installations on GRUENAU2
 - ssh username@gruenau2.informatik.hu-berlin.de
- For all programs, source code must be submitted as well
 - Document your code
 - For Java/C etc.: Submit the source code and the compiled binary
- All responses must be submitted as PDF, where the task /assignment of every answer is clearly recognizable
- Zip everything into one file per task and upload via Moodle
 - AssignmentX_groupY_taskZ.zip
- Deadline for submissions: 7.7.2022, 0 o'clock

Questions?