Connectedness and Compactness

Lecture 18 - 05/03/2021 Connectedness

Def Let X be a topological space. A separation of X is a pair U, V of disjoint non-empty open subsets of X whose Union is X. X is said to be connected if it does not have a separation.

Prop. A space X is connected iff the only subsets of X that are both open (3.1) and closed ("clopen") are \emptyset and X.

If U,V is a separation, U is clapen.

If A+Ø is clopen, A, X\A is a separation.

Prop If X and Y are homeomorphic, X is connected iff Y is connected.
(3.2)

Lemma If y is a subspace of X, a separation of Y is pair of disjoint non-empty (3.3) sets A,B whose union is Y, neither of which contains a limit point of the other The space Y is connected iff there is no separation of Y.

This is easily shown since the sets involved in a separation are clopen (in Y). $\overline{A} \cap Y = A$

$$A \cap B = \phi \rightarrow \overline{A} \cap Y \cap B = \phi$$

$$\rightarrow \overline{A} \cap B = \phi$$
.

The other direction is similarly straightforward.

For example, any topological space with the indiscrete topology is connected.

-> Show that (a) is not connected.

Lemma	14	the	sets	C^{D}	form	a	separation	of	X	and	A	is	a	connecte
(3.4)	Subsp	uce of	y, `	$d \leq C$	Or	Ϋ́	D .							

If not, we can write $Y = (Y \cap C) \cup (Y \cap D)$ Topen in Y

Lemma. A union of connected spaces is connected if their intersection (3.5) is non-empty.

Proof: Let (A_{α}) be a family of connected subspaces of X and $p \in \bigcap A_{\alpha}$. We claim that $Y = \bigcup A_{\alpha}$ is connected. Suppose C,D is a separation of Y and wlog that $p \in C$. Since A_{α} is connected and $p \in C$, $A_{\alpha} \subseteq C$. Therefore, $Y = \bigcup A_{\alpha} \subseteq C$, contradicting the non-emptiness of D.

Thus. Let A be a connected subspace of X IF $A \subseteq B \subseteq \overline{A}$, B is also (3.6) connected.

(We can add any of the limit points without destroying connectedness)

Proof Suppose C,D is a separation of B. Assume whom that $A \subseteq C$. Then $B \subseteq \overline{A} \subseteq \overline{C}$. But $\overline{C} \cap D = \emptyset$, yielding a contradiction and proving the claim.

Theo. The image of a connected space under a continuous map is connected.

(3.1)

and I is surjective

Proof Let $f: X \rightarrow Y$ be continuous where X is connected. Suppose C,D is a separation of Y. Since f is continuous, $f^{-1}(C)$ and $f^{-1}(D)$ are also open and they form a separation of X, resulting in a contradiction.

Theo. A finite Cartesian product of connected spaces is connected.

(3.8) (under either the box or product topo., they are equal)

Proof It suffices to show that if X and Y are connected XxY is connected. (Use the fact that (x1x...xxn...) x Xn is homeomorphic to (X1x...xXn...) x Xn Fix xxy E XxY. Xx {y} is connected (it is homeomorphic to X) and so

Show that Runder the box topology is disconnected.

is {x} x y. The result follows on using Theo 3.5.

Hint: Let A= {(an) · (an) is bounded } and B= { (bn) : (bn) is unbounded }.

Show that R under the product topology is connected.

Hint: Show that \mathbb{R}^{∞} , the set of sequences eventually O, is connected and that $\mathbb{R}^{\omega} = \mathbb{R}^{\infty}$. $\mathbb{R}^{\infty} = \mathbb{U} \mathbb{R}^{n} \longrightarrow \mathbb{O}$ after first n co-ordinates.

Theo. An arbitrary product of connected spaces is connected in the product (3.9) topology.

(the proof is nearly identical to that for RW above)

Def. A simply ordered set L having more than one element is called a linear continuum if

- · L has the least upper bound property.
- · if x<y in L, there exists z in L such that x<z<y.

Clearly. IR is a linear continuom.

The If L is a linear continuum, then L, intervals in L, and rays in L, (3.10) are connected

Theo. [Intermediate Value Theorem]

(311) Let $f: X \rightarrow Y$ be continuous, where X is a connected space and Y is an ordered set under the ordered topology. If a b EX and r EY such that f(a) < r < f(b), there exists $c \in X$ such that f(c) = r.

Proof Suppose otherwise. Then $f(x) \cap (-\infty, r)$ and $f(x) \cap (r, \infty)$ form a separation of f(x). However, the image under f of x is connected, resulting in a contradiction.

Lecture 19 - 10/03/21 Poth Connectedness

Def. Given points x,y of the space x, a path from x to y is a continuous function $f: [a,b] \rightarrow X$ such that f(a) = x and f(b) = y (for some closed interval $[a, b] \subseteq \mathbb{R}$). A space X is path-connected if there is a path between any two points in X.

Theo. Any path-connected space is connected.

<u>Proof.</u> Suppose otherwise. Let X be path-connected and $f:[a,b] \to X$ be a path in X. Let X_AUB be a separation of X. Since [a,b] is connected and f is continuous, $f([a,b]) \subseteq A$ or $f([a,b]) \subseteq B$, contradicting path-connectedness (across A, B). The converse is not true.

Consider

$$S = \left\{ x \times Sin\left(\frac{1}{x}\right) : 0 < x \le 1 \right\},$$

known as the topologist's sine curve.

Then $S = S \cup (\{0\} \times [-1,1])$. We claim that S is not path-connected. Let continuous $f: La, c1 \rightarrow \overline{5}$ beginning at the origin and ending at some point in S. The set

1 t e [a,c] · f(t) e {03 x [-1,1]}

is closed (due to continuity), so it has a largest element b. Then the restriction $f: [b,c] \rightarrow S$ is a path such that $f(b) \in \{0\} \times [-1,1]$ and $f((a,c)) \subseteq S$.

Wlog, let [b,c] be [0,1] and f(t) = (x(t), y(t)). Then $\chi(0) = 0$ and for t>0, $\chi(t)>0$ and $\chi(t) = \sin(1/x(t))$.

For each n, choose a 0<u< x(1/n) such that $y(u)=(-1)^n$. Using the IVT (Theo 3.11), there is a $0 < t_n < \frac{1}{n}$ such that $x(t_n) = 0$. However, then, $t_n \rightarrow 0$ but $y(t_n) = (-1)^n$ does not converge, contradicting the continuity of y and proving the claim. Show that S (and thus S) is connected, disproving the converse of Theo 3.12

Def Given X, define an equivalence relation as x my if there exists a connected subspace of x containing both x and y. The resulting equivalence classes are called the components or connected components Component

(Check that it is an equivalence relation)

The components of X are connected disjoint subspaces of X whose (3.13) union is X such that any non-empty connected subspace of X intersects exactly one of them.

Proof left as exercise.

To show that a component C is connected, fix x EC and for each yEC, let $C_y \subseteq C$ be a connected subspace containing C_y . by the second part

Then $x \in \mathbb{C}_y \neq \emptyset$, so $\mathbb{C}_y = \mathbb{C}$ is connected.

Similar to connected components, we can define the path components of X.

(x ~y if there is a path from x to y) Path Component

(transitivity can be shown using the pasting lemma)

Theo. The path components of X are path-connected disjoint subspaces of X (3.14) whose union is X such that any non-empty path-connected subspace of X intersects exactly one of them.

Corollay. Any connected component of X is closed.
(315)

(Use the fact that the closure of a connected space is closed)

It follows that if there are finitely many components, each component is also open.

It need not be true that path-connected components are closed, however. Consider the topologist's sine curve S. Then S is open in S (and not closed) and S is closed (and not open).

Def A space X is said to be locally connected at $x \in X$ if for every neighbourhood $V \subseteq U$ of $V \in X$ is locally connected if it is locally connected at any point of $X \in X$. We similarly define local path-connectedness.

Theo. A space X is locally connected iff for any open $U \subseteq X$, each (3.16) component of U is open in X.

Proof Let X be locally connected, U be open in X, and C be a component of U Let $x \in C$. There is then a neighbourhood $V \subseteq U$ of x that is connected. It follows that $V \subseteq C$ and therefore, C is open. On the other hand suppose that the components of open sets in X are open. Let $x \in X$ and U a neighbourhood of x. We can take the component of U containing x, completing the proof

Theo. A space X is locally path-connected iff for any open USX, each (3.17) path component of U is open.

The proof is nearly identical to the previous one.

Lecture 20 - 10/03/21 Introduction to Compactness

Theo. If X is a topological space, each path component of X lies in a (3.18) component of X. Moreover, if X is locally path-connected, the components and path components are the same.

Proof The first part is direct since any path component is connected Let C be a component, xEC, and P3x be a path component. let X be locally path-connected. Suppose P&C. Let Q be the union of all path components other than P that intersect c. Then C=PuQ.

Because X is locally path connected, each path component of X is open in X. In particular, P and Q are open. This controlicts the connectedness of C, proving the claim.

they form a separation of C

Def A collection A of subsets of X is said to be a covering if X: UAEA A An open covering is a covering where every subset is Compact .

X is said to be compact if any open cover contains a finite subcover.

If Y is a subspace of X and A is a collection of subsets of X, A is said to cover Y if $Y \subseteq \bigcup_{A \in A} A$.

Theo. Let Y be a subspace of X. Then Y is compact iff every covering of Y by (3.19) sets open in X contains a finite subcollection covering y.

Theo. Any closed subspace of a compact space is compact. (3.20)

Hint Consider the open cover AU {XXY}

Theo Every compact subspace of a Howsdorff space is closed.

Proof. Let X be Howsdorff and Y a compact subspace. Let $x_0 \in X \setminus Y$.

For each $y \in Y$, choose neighbourhoods U_y of x_0 and V_y of y such that $U_y \cap V_y = \emptyset$ Since Y is compact, there exist y_1, \dots, y_n such that $Y \subseteq \bigcup_{1 \le i \le n} V_{y_i} = V$.

But $Y \cap U \subseteq V \cap U = \emptyset$, where $U = \bigcap_{1 \le i \le n} U_{y_i}$ is a neighbourhood of x_0 . Therefore, $Y \in Closed$.

The above need not be true for non-Housdorff spaces.

(Consider R under finite complement topology)

<u>Lemma</u>. If Y is a compact subspace of the Hausdorff space X, and $x_0 \in X \setminus Y$, there (3.22) are disjoint open sets U and V of X such that $x_0 \in U$ and $Y \subseteq V$.

Lecture 21 - 12/03/21 More on Compact Spaces

Theo. The image of a compact space under a continuous map is compact.

Theo Let $f: X \rightarrow Y$ be bijective and continuous. If X is compact and Y is (3.24) Howsdorff, f is a homeomorphism.

(Show that f is a closed map)

Lemma [Tube Lemma] Let X and Y be spaces with Y compact. Suppose $x_0 \in X$ (3.25) and $N \supseteq \{x_0\}_{x \in Y}$ is an open subset of $X_x \in Y$. Then, there is a neighbourhood W of x_0 in X such that $W_x : Y \subseteq N$.

Tube Lemma

To tube about x.x y.

Proof. Let us cover $x_{o,x}Y$ with the basis elements $U\times V$ (for the topology of $X\times Y$) lying in N.

Since $\{x_0\} \times Y$ is compact, there is a finite subcover

 $U_1 \times V_1$, ..., $U_n \times V_n$ We may assume that $x_0 \in U_1$ for each i (Why?). Let

 W_{-} $\prod_{1 \leq i \leq n} U_{i}$. Then W is open in X and contains χ_{ω} .

It is easily shown that $W_{\times}Y$ is covered by the $(U_{1}\times V_{i})$. Since each $U_{i}\times V_{i}\subseteq N$, $W_{\times}Y\subseteq N$.

Theo. The product of finitely many compact spaces is compact. (3.26)

(It is in fact true for arbitrary products, which we shall see later in Tychonoff's Theorem)

Proof It suffices to show the result for two spaces. Let X,Y be compact and A an open subcover of $X\times Y$

For each $x_0 \in X$, $\{x_0\} \times Y$ can be covered by finitely many $A_1, ..., A_m \in A$. Then $\{x_0\} \times Y \subseteq A_1 \cup ... \cup A_m = N$, so N contains a tube $W \times Y$ containing $\{x_0\} \times Y$. $W \times Y$ is covered by the $A_i \in (1 \le i \le m)$.

That is, for each xEX, there is a neighbourhood W_x of x such that $W_{X,X}Y$ can be covered by finitely many elements.

The collection of all W_x forms an open cover of X, so it has a finite subcover $W_1, W_2, ..., W_k$.

Then, $X \times Y \subseteq (W_1 \times Y) \cup (W_2 \times Y) \cup \cdots \cup (W_k \times Y)$.

Each is covered by finitely many elements from A, so XxY can as well.

Def. A collection C of subsets of X is said to have the finite intersection property if for any finite $\{C_1, C_2, ..., C_k\} \subseteq C$, $C_1 \cap C_2 \cap \cdots \cap C_k \neq \emptyset$.

Finite Intersection Property

Theo. Let X be a topological space X is compact iff for every collection (3.27) C of closed subsets of X with the finite intersection property, the intersection $\bigcap_{c\in C} C$ is non-empty.

Proof. Forward direction

Suppose otherwise. Then $A = \{X \setminus C \cdot C \in P\}$ is an open cover so has a finite subcover $A_1, ..., A_m$. But then, $(X \setminus A_1) \cap \cap (X \setminus A_m) = \emptyset$, contradicting the finite intersection property and proving the result.

Backward direction.

Let A be an open cover and $C = \{ X \setminus A : A \in A \}$. Suppose A does not have a finite subcover. Then C has the finite intersection property so $\bigcap_{C \in C} C \neq \emptyset$. This contradicts A being a cover, proving the result.

Let us look at what the compact subspaces of the real line.

Theo Let X be a simply ordered set having the least upper bound property. (3.28) In the order topology, each closed and bounded interval of X is compact.

Proof Let a < b and A be an open cover of [a,b] in the subspace topology (which is the same on the order topology since [a,b] is compact). Claim 1. If x ∈ [a,b), there exists y>x in [a,b] such that [x,y] can be covered by atmost two elements of A.

- \rightarrow If x has an immediate successor, let y be this element. Then $[x,y] = \{x,y\}$, so the claim is obvious.
- \rightarrow Otherwise, choose AEA containing x. Since A is open, it contains an interval of the form [x,c). We can then let y be any element of (x,c).

Now, let C be the set of all points y > a such that [a, y] can be covered by finitely many elements of A. (We want to show that bec.) By the claim, $C \neq \emptyset$. Let c be the least upper bound of C. Claim 2. CEC.

Chasse AEA containing c. A contains an interval of the form (d, c]. If a does not have an immediate predecessor(even otherwise, it is similarly shown) Let zeC such that $z\in(d,c)$ (Why does such a z exist?). Then [a,z) can be covered by finitely many elements A, ... Ak of A, so it follows that {A, ..., Ak} U{A} is a finite subset of A covering [a,c], proving the result.

Finally, let us prove that b=c. Suppose otherwise Then there exists y ∈ (c, b] such that [c, y] can be covered by atmost two elements. This implies that [a,y] can be covered by finitely many elements, contradicting the fact that c is an upper bound of C, proving the result.

Corollary Any closed and bounded intervel in R is compact. Lo wirit Euclidean metric (3.29)

Lecture 21 - 17/03/21 Local Compactness

A subspace A of R" iff it is closed and bounded in the Euclidean Theo. (3.30) metric or square metric p. Proof

It suffices to consider the metric p (Why?).

Suppose A⊆R is compact.

- Since IRn is Hausdorff, A is closed.
- Consider the collection of open sets {Bp(O, m): mEIN}, which forms a covering of A. Since it has a finite subcover, it follows that A = Bp(0,n) for some nEN and A is bounded Suppose ACR" is closed and bounded. Suppose P(x,y) < M for x,y EA. Fix some $x_0 \in A$. Then A is a subset of $\prod_{i=1}^{n} [(x_0)_i - M, (x_0)_i + M]$, which is compact (finite product of compact sets) Since A is closed in this subspace, it is compact.

Def. If X is a space, $x \in X$ is said to be an isolated point of X if $\{x\}$ is looted open in X.

Point

Theo. Let X be a non-empty compact Hausdorff space. If X has no isolated (3-31) points, it is uncountable non-empty

Proof. \rightarrow We show that given any open $U \subseteq X$ and $x \in X$, there is a non-empty open $V \subseteq U$ such that $x \notin \overline{V}$.

Choose a yEV different from x (Why does such a y exist?). Let W_1 and W_2 be disjoint neighbourhoods of x and $y \cdot V = W_2 \cap U$ is the required set $-x \notin V$ because $x \in W_1$ and $W_1 \cap V = \emptyset$.

We show that given any $f\colon IN\to X$, f is not surjective. Let $x_n=f(n)$. Let $V_i\subseteq X$ be an open set such that $x\in \overline{V_i}$ (choosing U=X). In general, given non-empty open V_{n-i} , let $V_n\subseteq V_{n-i}$ be a non-empty open set such that $x_n\notin \overline{V_n}$. Then $\overline{V_i}\supseteq \overline{V_2}\supseteq\cdots\supseteq \overline{V_n}\supseteq\cdots$.

Let $V = \bigcap_{n=1}^{\infty} V_n$. Observe that the above collection of subsets has the finite intersection property. Therefore V is non-empty and closed Let $x \in V$. Then $x \neq x_n$ for any n, completing the proof.

Def: A space X is said to be locally compact at x if there is some compact Locally Subspace C of X that contains a neighbourhood of x.

Compact If X is locally compact at each $x \in X$, X is said to be locally compact.

Observe that any compact space is locally compact (taking C=X).

A slightly more non-trivial example is that IR is locally compact-

If X is Hewsdorff and B forms a basis, then X is locally compact iff for all $x \in X$, there is BEB such that $x \in B$ and \overline{B} is compact.

- Show that B is not locally compact.

Theo. Let X be a space. X is locally compact and Hausdorff iff there is (3.32) a space Y such that

1. X is a subspace of Y.

One-Point Compactification

- 2. YIX is a singleton.
- 3. Y is compact and Housdorff.

Further, if Y and Y' are two spaces satisfying the above, they are homeomorphism whose restriction to X is the identity map.

Proof \rightarrow We first check uniquness up to homeomorphism. Let h: $Y \rightarrow Y'$ such that h(x)=x for $x \in X$ and the single point $p \in Y'$ is mapped to the single point $p' \in Y'$. h is clearly bijective.

Let U be open in y.

- If $p\notin U$, h(u)=U is clearly open. (X is open in Y or Y' since $\{p\}$ and $\{p'\}$ are closed)
- Suppose $p \in U$. Since $C = Y \setminus U$ is closed in Y, it is compact in Y. Further, it is a compact subspace of X. Since X is a subspace of Y', C is a compact subspace of Y'. Because Y' is Hausdorff, C is closed in Y' so $h(U) = Y' \setminus C$ is open in Y'.

Therefore, h is open. Similarly, h is also continuous so it is a homeomorphism.

- -Suppose X is locally compact and Hausdorff Take some point so $\notin X$. Let $Y = X \cup \{\infty\}$. Give Y a topology as:
 - i) all sets U open in X are open in Y.
 - ii) all sets of the form $Y \setminus C$ are open in Y, where C is a compact subspace of X.

Why is this a topology?

- · Ø, y are open by i, i respectively.
- $U_1 \cap U_2$ is open by i $(Y \setminus C_1) \cap (Y \setminus C_2) = Y \setminus (C_1 \cup C_2)$ is open by ii $U_1 \cap (Y \setminus C_1) = U_1 \cap (X \setminus C_1)$ is open by i

Similarly, an arbitrary union of open sets is open

Ux Ux is open by i

Ux (Y\Cx) = Y\ (\Omega_xCx) = Y\C is open by ii

Ux Ux U UB (Y\CB) = U u (Y\C) = Y\ (C\U) is open

closed

Co(X\U)

Next, let us show that X is a subspace of Y. Let U be open in Y.

• If U is of type i, $U \cap X$ is open in X.

• If $U = Y \setminus C$ is of type ii, $(Y \setminus C) \cap X = X \setminus C$ is open in X because C is closed in X.

(it is obvious that for any open V in X, there is an open $U\subseteq Y$ set $V=U\cap X$)

Let A be an open covering of Y. A must contain some open set $(Y \setminus C)$ of type ii (∞ is not in any set of type i).

Consider all the elements of A other than Y\C and intersect them with X. This forms an open cover of C.

Because C is compact, finitely many of them cover C. The corresponding elements of A together with YLC form a finite subcover of Y. Therefore, Y is compact.

Let $x,y \in Y$ with $x \neq y$. If $x,y \in X$, then there are clearly disjoint open sets containing them. Otherwise, suppose $x \in X$ and $y = \infty$ Let C be a compact subspace of X containing a neighbourhood U of x. Then U and $Y \setminus C$ are disjoint neighbourhoods of X and Y.

Let $\chi \in X$. Let U, V be disjoint neighbourhoods of χ and ∞ . Then $(Y \setminus V)$ is closed in Y, and thus compact. The required follows since $U \subseteq (Y \setminus V)$.

as a subspace of X since YV = X.

Let us now prove the converse. We claim that X is locally compact and Hausdorff. Denote by ∞ the element of $Y \setminus X$. X is Hausdorff by Theo. 1.20 (c).

Def. If y is a compact Hausdorff space and X is a proper subspace of Y whose closure equals y, then Y is said to be a compactification of X. If yxx is a singleton, y is called a one-point compactification.

Compactification

In Theo 3.32, if X is not compact, Y is its one-point compactification.

Show that the one-point compactification of R^2 is homeomorphic to S^2 . $C \cup \{\infty\}$ is called the Riemann sphere or extended complex plane. If N is the north pole of S^2 , $S^2 \setminus \{N\} \simeq C$.

(by the stereographic projection)

Theo. Let X be a Hausdorff space. Then X is locally compact iff given (3.33) $x \in X$ and a neighbourhood U of x, there exists a neighbourhood V of x such that ∇ is compact and $\nabla \subseteq U$

Proof The backward direction is obvious since $x \in V \subseteq V$ To prove the converse, let U open and $x \in U$. Let Y be the one-point compactification of X and $C = Y \setminus U$.

Then C is compact in Y. Therefore, there exist open sets $V \ni x$ and $W \supseteq C$ with $\nabla \cap W = \emptyset$.

But \overline{V} is compact in Y (and thus X), and $\overline{V} \cap C = \emptyset \Rightarrow \overline{V} \subseteq U$ as required.

Def A space X is said to have a countable basis at $x \in X$ if there is a countable collection B of neighbourhoods of x such that any neighbourhood of x contains an element of B.

A space that has a countable basis at each of its points is said to be first countable.

First countable

For example, any metrizable space is first countable — consider $\{B_d(x, 1/n) : n \in \mathbb{N}\}$

Theo. Let X be a topological space.

- (3.34) a) Let $A \subseteq X$. If there is a sequence of points in A that converges to $x \in X$, then $x \in \overline{A}$. The converse holds if X is first countable.
 - b) Let $f X \rightarrow Y$ be continuous. If (x_n) be a sequence of points in X that converges to x, then $f(x_n) \rightarrow f(x)$. The converse holds if X is first countable.

Proof Recall that we have proved the above for metrizable X by considering $B_d(x, y_n)$.

Here, just consider

Bn = U1 n ... n Un instead,

where $\{U_n\}$ forms a countable basis at x.

The proof is relatively straightforward — let $x_n \in B_n \cap A$ for each n. For (b), show that $f(\overline{A}) \subseteq \overline{f(A)}$.

Def A topological space X is said to be second countable if it has a countable basis (for the topology).

Second countable

Prop. Any second countable space is first countable.

The proof is direct.

For example, R is second countable — consider $\{(a,b): a,b \in \mathbb{Q}\}$. Similarly, \mathbb{R}^n is second countable as well.

 \mathbb{R}^{ω} under the product topology is second countable as well.

{ TT Un: Un= (a,b) for a,b EB for finitely many n and R otherwise}

Why is this set countable?

 \rightarrow Show that \mathbb{R}^{ω} under the uniform topology is not second countable.

Hint- Show that the subspace containing sequences of Os and Is has the discrete topology so does not have a countable basis. Use this to prove the required.

Theo. A subspace of a first (resp. second) countable space is first (second) (3.36) countable and a countable product of first (resp second) countable spaces is first (second) countable.

Proof We prove the above for the second countable case. If X has a countable basis B, then $\{B \cap A : B \in B\}$ is a countable basis for $A \subseteq X$ as a subspace. If X; has countable basis B_i , then $\{T \cup i : \cup i \in B_i \text{ for finitely many } i \text{ and } \cup i = X_i \text{ otherwise} \}$ forms a countable basis of T_i , Xi.

Recall that a subset A of a space X is dense in X iff $\overline{A} = X$.

- Theo Let X be a second countable space.
- (337) (a) Every open covering of X contains a countable subcover.
 - (b) X has a countable dense subset.
 - <u>Proof</u> (a) Let \mathcal{A} be an open covering of X. Let $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ be a countable basis of X. For each n, if possible, choose an $A_n \supseteq B_n$. Let \mathcal{A}' be the collection of these A_n . It is clearly countable. Further, it covers X. Given $x \in X$, let $A \in \mathcal{A}$ such that $x \in A$ and $B_n \supseteq A$ be a basis element. Then $x \in A_n$, proving the claim.
 - (b) For each B_n , let $x_n \in B_n$. Let $D = \{x_n : n \in \mathbb{N}\}$. Then D is a countable dense subset since any basis element of X (and so any open set) intersects D.

Def A space for which every open cover contains a countable subcover Lindelöf is called a Lindelöf space.

Space A space having a countable dense subset is said to be separable.

Lecture 23 - 24/03/21 Separation Axioms

Separable space

Obviously, any compact set is Lindelöf.

→ Show that Rz satisfies all countability axioms except the second.

The product of two Lindelöf spaces need not be Lindelöf.

 \rightarrow Show that Re is Lindelöf but Re×Re is not.

Hint: Consider Ro \ \ \((x, -x) \). xERB.

A subspace of a Lindelöf space need not be Lindelöf either

 \rightarrow Consider the ordered square $I_0^2 = [0, i]^2$ (under the dictionary order). Show that I_0^2 is compact (and Lindelöf) but the subspace $A = I_0 \times (0, 1)$ is not Lindelöf.

<u>Def.</u> Suppose that one point sets are closed in X. Then X is said to be regular if for each $x \in X$ and closed B disjoint from x, there exist disjoint open sets containing Regular x and B.

Normal The space is said to be normal if for disjoint closed A,B. there exist disjoint open sets containing A and B.

Observe that any normal space is regular and any regular space is Hausdorff.

Lemma. Let one-point sets be closed in X.

- (3.38) a) \times is regular iff given $\times \in X$ and a Nbd. U of \times , there exists a neighbourhood V of \times such that $\overline{V} \subseteq U$.
 - b) X is normal iff given a closed $A \subseteq X$ and open $U \supseteq A$, there is an open set $V \supseteq A$ with $V \subseteq U$.
- Proof a) (Forward) Let B=XV be closed. There exist disjoint open V and W containing x and B. Then $\overline{V} \cap B = \emptyset$. Therefore, $\overline{V} \subseteq U$.

(Backward) Let $x \in X$ and B disjoint from $\{x\}$ be closed. Let $U = X \setminus B$. Let V be a ribd. of x such that $\overline{V} \subseteq U$. Then V and $X \setminus \overline{V}$ are disjoint open sets containing x and B respectively. Therefore, X is regular.

The argument for (b) is nearly identical, taking A instead of {x}.

Theo. A subspace of a regular space is regular. A product of regular spaces is (3.39) regular.

Proof. Let X be regular and $Y \subseteq X$. One-point sets are closed in Y. Let $x \in Y$ and B a closed subset of Y disjoint from $\{x\}$. Then $B \cap Y = B$.

Therefore, $x \notin B$. Using regularity, let U, V be disjoint open sets containing x and B. Then $(U \cap Y)$ and $(V \cap Y)$ are disjoint open sets of Y containing x and B.

Let $(X_{\mathcal{A}})$ be a family of regular spaces and $X=T_{\mathcal{A}}X_{\mathcal{A}}$. X is Hawsdorff, so singletons are closed in X. Let $\chi \in X$ and U be a neighbourhood of χ . Let $T_{\mathcal{A}}U_{\mathcal{A}}$ be a basis element containing χ and contained in U. For each \mathcal{A} , let $V_{\mathcal{A}}$ be a node of $\chi_{\mathcal{A}}$ such that $V_{\mathcal{A}} \subseteq U_{\mathcal{A}}$. If $U_{\mathcal{A}} = X_{\mathcal{A}}$, choose $V_{\mathcal{A}} = X_{\mathcal{A}}$. Then $V=T_{\mathcal{A}}V_{\mathcal{A}}$ is a neighbourhood of χ in X. Since $V=T_{\mathcal{A}}V_{\mathcal{A}}$, $\chi \in V \subseteq U$, so χ is regular. \square

 \rightarrow Show that IR_{κ} is Housdorff but not regular Hint: Consider O and K.

(3.40) \rightarrow Show that R_{\parallel} is normal.

Theo. Any second countable regular space is normal

Let X be regular with countable basis B. Let A and B be disjoint closed subsets of X. Each $x \in A$ has a nbd. U disjoint from B. Choose a nbd. V of x such that $\nabla \subseteq U$. Then, choose an element of B containing x and contained in V.

This gives a countable covering (U_n) of A by open sets whose closures do not intersect B. Similarly, choose a countable covering (V_n) of B. Uun and Uvn are open sets containing A and B, but need not be disjoint. For each n, let

 $U_n' = U_n \setminus \bigcup_{i=1}^n \overline{V_i}$ and $V_n' = V_n \setminus \bigcup_{i=1}^n \overline{U_i}$.

The open sets

$$U' = \bigcup U'_n$$
 and $V' = \bigcup V'_n$

are disjoint. It is easy to show that U' and V' are disjoint.

(3.41) Thon:

Theo. Any metrizable space is normal.

Proof. Let X be metrizable with metric d. Let A, B be disjoint closed subsets of X. For each a \in A, chance \in a such that $\operatorname{Bd}(a_1 \in a_2) \cap B = \emptyset$.

Chaose Es similarly. Then, let

$$U = \bigcup_{a \in A} B_a(a, \varepsilon_{a/2})$$
 and $V = \bigcup_{b \in B} B_a(b, \varepsilon_{b/2})$.

It is easy to show that these are disjoint (they are clearly open and contain A,B), completing the proof.

Theo- Any compact Hausdorff space is normal. (3.42)

Left as exercise.

Theo. [Urysohn Lemma]

(3.43) Let A,B be disjoint closed subsets of X. X is normal iff for a closed interval [a,b] in the real line, there exists a continuous map $f: X \to [a,b]$ such that f(x) = a for every aEA and f(x) = b for every bEB.