Master Method Cheat Sheet

1 Master Method - Formal Version

The Master method applies to many recurrences of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

with constants $a \ge 1$ and b > 1. We assume that there exists some constant n_0 such that for all $n < n_0$, $T(n) = \Theta(1)$.

Case 1: If $f(n) = O(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2: If $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Case 3: If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and $af(n/b) \le cf(n)$ for some constant c < 1 and sufficiently large n, then $T(n) = \Theta(f(n))$.

2 Master Method - Informal Version

Given T(n) = aT(n/b) + f(n), take the following steps:

- Compute $x = \log_b a$.
- If you can, put f(n) in the form $\Theta(n^y \log^k n)$, for some constant $k \ge 0$. If f(n) = 2n, y = 1, k = 0. If $f(n) = \log n$, we have y = 0, k = 1. If $f(n) = \Theta(1)$, we have y = 0, k = 0. They are all valid values of y and k, and you can apply the below intuition.
- Compare x and y. The bigger one gets to be in the answer.

Case 1: If x > y, then the solution is $T(n) = \Theta(n^x)$.

Case 2: If x = y, then the solution is $T(n) = \Theta(n^x \log^{k+1} n) = \Theta(n^y \log^{k+1} n) = \Theta(f(n) \log n)$.

Case 3: If y > x, then the solution is $T(n) = \Theta(f(n))$. (All functions of the form $n^y \log^k n$ satisfy the regularity condition $af(n/b) \le cf(n)$.)

What if f(n) doesn't fit the form $n^y \log^k n$, for $k \ge 0$? For example if $f(n) = n/\log n$ or $f(n) = n\log\log n$. In essence, the above intuition still works for cases 1 and 3 for any

 $f(n) = n^y$ any small (smaller than polynomial) function,

since they have O and Ω in their definitions and these are "inequality functions". Therefore, if you have such functions, compare x and y and if x > y or y > x, then you can continue to use the above intuition. Check the regularity condition for case 3, though.

If x=y, however, then you *can not* use the above intuition. Case 2 requires a Θ , and therefore requires that $f(n)=n^y\log^k n$. If you happen to fall into case 2 with a different function like f(n) like $n/\log n$ or $n\log\log n$, then Master Theorem doesn't apply definitively. You can still use the Master Theorem to guess your solution, but you have to prove it using induction.