ÉLGEBRA LINEAR NUMÉRICA 24103/25 Solução DE SISTEMAS LINEARES POR MÉTODOS ITERATIVOS

MÉTODO DE JACOBI

· VAMOS CONSIDERAR O SISTEMA INICIAL:

$$7x_1 - x_2 = 5$$

 $3x_1 - 5x_2 = -7$

DRESOLVEMOS ISOLANDO X1 NA PRIMEIRA EQUAÇÃO E XZ NA SEGUNDA

$$x_1 = \frac{5 + x_2}{7} \qquad x_2 = \frac{7 + 3 \times 1}{5}$$

6 AGORA QUEREMOS UMA APROXIMAÇÃO INICIAL, ELA NÃO IMPOR-TA, VAMOS ENTÃO USAR X1=0, X2=0

$$X_{\Delta} = \frac{5}{7} \qquad X_{Z} = \frac{7}{5}$$

6 AGORA USAMOS ESSES VALORES PARA SUBSTITUIR NOVAMENTE:

$$x_1 = \frac{5+1.4}{7} \approx 0,914$$
 $x_2 = \frac{7+3.\frac{9}{7}}{5} \approx 1,829$

O E FAZEMOS ISSO REPETIDAS VEZES

Table 2.12							
n	0	1	2	3	4	5	6
x_1	0	0.714	0.914	0.976	0.993	0.998	0.999
x_2	0	1.400	1.829	1.949	1.985	1.996	1.999

MÉTODO DE GAUSS - SEIDEL

· MUITO PARECIDO COM O DE JACOB, PORÉM, AJSIM QUE CALCULAMOS XI, USAMOS ELE PARA ACHAR XZ, ENTÃO USAMOS ESSE VALOR PARA CALCULAR XIE AJSIM POR DIANTE:

Table 2.14						
n	0	1	2	3	4	5
x_1	0	0.714	0.976	0.998	1.000	1.000
x_2	0	1.829	1.985	1.999	2.000	2.000

O ESSE MÉTODO TEM UMA ÓTIMA VISTA GEOMÉTRICA. SE FIZERMOS O GRÁFICO DE AMBAS EQUAÇÕES NO PLANO XIXZ, ENTÃO A INTERSEÇÃO É A SOLUÇÃO. O MÉTO-DO DESCRITO PEGA UM VALOR EM UMA RETA E VOGA NA OUTRA, FAZENDO COM QUE, DROPRESTIVAMENTE, A SOLUÇÃO CONVERJA PARA A CORRETA.

GENERALIZAÇÃO

O DADO UM SISTEMA COM M VARIÁVEIS E M EQUAÇÕED,
RESOLVEMOS A i-ÉSIMA EQUAÇÃO PARA A i-ÉSIMA VARIÁVEL,
ENTÃO CHUTAMOS UMA APROXIMAÇÃO INICIAL, E UDAMOS OS VALORES PARA IR ATUALIZANDO SEUS VALORES

O JACOBI

PUJA TODAS AS VARIÁVEIS CALCULADAS NA K-ÉSIMA ITE-RAÇÃO PARA CALCULAR A (K+1)-ESIMA ITERAÇÃO

· GAUSS-SEIDEL

DUSA O VALOR MAIS RECENTE PARA COMPUTAR AS PRÓXIMAS SAÍDAS · Porém, esses métodos convergem? Quando convergem? Convergem Para a solução? Na verdade não.

· POR ENQUANTO, SERÁ UMA JUSTIFICATIVA SEM PROVA

SEUA A UMA MATRIZ n×n:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ a_{nn} & \vdots \\ \vdots & \vdots & \vdots \\ a_{nn} & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{nn} & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{nn} & \vdots \\ \vdots & \vdots \\ a_{nn} & \vdots \\ \vdots & \vdots \\$$

DIZEMOS QUE A É ESTRITAMENTE DOMINANTE NA DIAGONAL SE:

$$|a_{11}| > |a_{12}| + |a_{13}| + \dots + |a_{1n}|$$

 $|a_{22}| > |a_{21}| + |a_{23}| + \dots + |a_{2n}|$
 $|a_{nn}| > |a_{n1}| + |a_{n2}| + \dots + |a_{nn-1}|$

TEOREMA

SE UM SISTEMA DE M EQUAÇÕES LINEARES COM M VARIÁVEIS TEM DIAGONAL ESTRITAMENTE DOMINANTE, ENTÃO TEM SOLUÇÃO ÚNI-CA E OS ALGORITMOS DE GAUSS E JACOBI CONVERGEM

DEM
Vamos pegar o exemplo: (Não vale a volta)

$$7x_1 = x_2 + 5$$

 $-5x_2 = -3x_1 - 7$

Reescrevemos então em forma matricial

$$\begin{bmatrix} 7 & 0 \\ 0-5 \end{bmatrix} \begin{bmatrix} \times 1 \\ \times 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \times 1 \\ \times 2 \end{bmatrix} + \begin{bmatrix} 5 \\ -7 \end{bmatrix}$$

Decompondo A:

$$A = \begin{bmatrix} 7 - 1 \\ 3 - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & -5 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$

$$L \qquad D \qquad U$$

Logo escrevemos o sistema

Equivalente

Vanuos definir M=-D^1(L+U) e c=D^1b, então

Lembrando o algoritmo, escolhemos xo para gerar

$$x_1 = Mx_0 + c$$
, no geral: $x_{k+1} = Mx_k + c$

Queremos mostrar que XXXI converge para próximo de X, então mostramos que XXXII - X vai para O.

$$X_{k+1}-X = MX_k+c-(MX+c)$$

 $X_{k+1}-X = M(X_k-X)$

Tiramos a norma em ambos os lados

$$\| \times^{K+1} - \times \| = \| W(\times^{K-\times}) \| \in \| W \| \cdot \| \times^{K} - \times \|$$

Se conseguirmos mostrar que IMII < 1, então teríamos

 $11 \times_{k+1} - \times 11 < 11 \times_{k} - \times 11$ $\forall k > 0$, entao segue que $11 \times_{k} - \times 11 \rightarrow 0$ $\log_0 \times_{k} - \times 0$

Se A=[aij] então

$$M = \begin{bmatrix} 0 - \frac{a_{12}}{a_{11}} & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{2n}}{a_{22}} \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & 0 \end{bmatrix}$$

moior valor absoluto de uma soma de linhas. Suponha que isso ocorre na linha R.

$$\|M\|_{\infty} = \left|\frac{-a_{K1}}{a_{KK}}\right| + \left|\frac{-a_{K2}}{a_{KK}}\right| + \dots + \left|\frac{-a_{K}n}{a_{KK}}\right|$$

= \frac{\times |aki|}{|aki|} so como M é estritamente dominante na diagonal, então

$$\boxed{\|M\|_{\infty} < 1} \qquad \Rightarrow \qquad \|\times_{K} - \times \| \rightarrow 0$$

Agora, poira o método de Gauss-Seidel

$$x_{j}^{(i+1)} = b_{j} - \sum_{k < j} \alpha_{jk} \times_{k}^{(i+1)} - \sum_{k > j} \alpha_{jk} \times_{k}^{(i)}$$

 $a_{\dot{\mathcal{U}}}$

$$= Dx^{(i+1)} = b - Lx^{(i+1)} - 0x^{(i)}$$

$$x^{(i+1)} = (D+L)^{-1}b - (D+L)^{-1}Ux^{(i)}$$

$$x^{(i+1)} = Mx^{(i)} + d$$

A demonstração se segue de forma parecida

TEOREMA)

JE OS ALGORITMOS DE GAUSS E JACOBI CONVERGEM PARA UM SISTEMA DE Y EQUAÇÕES E Y VARIÁVEIS, ENTÃO CONVERGEM PARA A SOLUÇÃO DO SISTEMA

DEM

Mostrado outeriormente quando 11×k-×11-0

TEOREMA

MÉTODOS DE GAUSS-SEIDEL E JACOB CONVERGEM \Leftrightarrow $|\lambda(M)|<1$ ONDE $\lambda(A)$ REPRESENTA TODOS OS AUTO VALORES DE A E A MATRIZ $M = D^{-1}(L+U)$.