

曲线拟合

插值

曲线拟合

已知平面上若干个点(x_i,y_i) i=1,...n, 求一个较简单的函数(曲线) y=f(x), 使 f(x) 尽可能的靠近数据点,在某种意义下达到最优。 f(x) 称为拟合函数。

 $\sum_{i=1}^{n} \delta_{i}^{2}$ 最小

------ 最小二乘法

多项式的拟合

p=polyfit (x, y, n) 多项式数据拟合

○功能:

- 将给定向量 x , y 对应的 (x[i] , y[i]) 作为数据点,拟合成 n 次多项式;
- 向量 x , y 具有相同的维数;
- p 为多项式的系数向量。

$$y=a_1x^n+a_2x^{n-1}+\dots+a_nx+a_{n+1}$$

$$p=[a_1,a_2,...,a_n,a_{n+1}]$$

- ▶ poly2str(p, 'x')
 將多项式表示成习惯的
 形式
 p是多项式系数,字符'x'为自变量
- ▶ polyval (p, X) 按数组规则计算 X 处多项式的值
 - ○功能:
 - 计算多项式 p 的变量在点阵 x 处的值 ;
 - \circ X 可以为向量或矩阵,计算结果是与 X 同维的向量或矩阵。

```
x=1:.1:2;
y=[2.1,3.2,2.1,2.5,3.2,3.5,3.4,4.1,4.7,5.0,4.8];
p2=polyfit(x,y,2) % 多项式拟合, 次数是 2 ,p2 为拟合多项式的系数
p3=polyfit(x,y,3);
p7=polyfit(x,y,7);
disp('二次拟合函数 '),f2=poly2str(p2,'x')
disp('三次拟合函数 '),f3=poly2str(p3,'x');
disp('七次拟合函数 '),f7=poly2str(p7,'x');
p2=
   1.3869 -1.2608 2.141
二次拟合函数
f2 =
    1.3869 \times ^2 - 1.2608 \times + 2.141
```

```
x1=1:.01:2;
y2=polyval(p2,x1); % 多项式 p2 在 x1 处的值
y3=polyval(p3,x1);
y7=polyval(p7,x1);
plot(x,y,'rp',x1,y2,'--',x1,y3,'k-.',x1,y7);
```


练习:用多项式拟合余弦函数 y=cosx。

插值

对函数 f(x), 其函数形式可能很复杂,假如可以获得 f(x) 在区间 [a,b] 上的一组 n+1 个不同的点

$$a \le x_0 < x_1 < x_2 < \dots < x_n \le b$$

上的函数值 $y_i = f(x_i), i = 0,1,2,\dots,n$

求一个简单函数 p(x) ,使得

:

并且用 p(x) 近似代替 f(x), 这就是插值问题。函数 p(x) 为函数 f(x) 的插值函数。 (1) 式称为插值条件。 x_i 为插值结点,点 x 称为插值点。点 x 在插值区间内叫内插,否则叫外插。

对于被插函数 f(x) 和插值函数 p(x)

在节点 xi 处得函数值必然相等

但在节点外 p(x) 的值可能就会偏离 f(x)

因此 p(x) 近似代替 f(x) 必然存在着误差

整体误差的大小反映了插值函数的好坏

为了使插值函数方便在计算机上运算,一般插值函数都使用多项式和有理函数。

一维多项式插值

- yi=interp1 (x , y , xi , method)
 - ○功能:
 - x,y 是已知数据点;
 - yi 是插值点 xi 处的值;
 - 当输入的 x 是等间距时,可在插值方法 method 前加 * ,以提高处理 速度。
 - method 表示不同的插值方法的字符串,有下面四种插值方法可选:

'nearest': 最近点插值,插值点处的值取与该插值点距离 最近的数据点函数值;

'linear':分段线性插值,用直线连接数据点,插值点的值 取对应直线上的值;

'spline':三次样条函数插值,该方法用三次样条曲线通过数据点,插值点处的值取对应曲线上的值;

'cubic':分段三次 Hermite 插值,确定三次函数,根据该函

数确定插值点的函数值。

缺省时表示分段线性插值。

例 6-19 : 用以上 4 种方法对 y=cosx 在 [0,6] 上的一维插值效果进行比较。

```
x=0:6;
y=cos(x);
xi=0:.25:6;
yi1=interp1(x,y,xi,'*nearest');
yi2=interp1(x,y,xi,'*linear');
yi3=interp1(x,y,xi,'*spline');
yi4=interp1(x,y,xi,'*cubic');
plot(x,y,'ro',xi,yi1,'--',xi,yi2,'-',xi,yi3,'k.-',xi,yi4,'m:')
legend('原始数据','最近点插值','线性插值','样条插值','
立方插值')
```


二维多项式插值

zi=interp2 (x , y , z , xi , yi , metho
d)

○功能:

○ 已知数据点(x,y,z), 运用 method 指定的方法, 计算插值点 (xi,yi)处得函数值 zi。 method 指定的方法同一维多项式插值。 例 6-21 : 用以上 4 种方法对 = xe^{-(x²+y²)} 在 [-2,2] 上的 二维多项式插值效果进行比较。 [x,y]=meshgrid(-2:.5:2); z=x.*exp(-x.^2-y.^2); [x1,y1]=meshgrid(-2:.1:2); z1=x1.*exp(-x1.^2-y1.^2);

figure(1) subplot(1,2,1),mesh(x,y,z),title('数据点') subplot(1,2,2),mesh(x1,y1,z1),title('函数图象')


```
[xi,yi]=meshgrid(-2:.125:2);
zi1=interp2(x,y,z,xi,yi,'*nearest');
zi2=interp2(x,y,z,xi,yi,'*linear');
zi3=interp2(x,y,z,xi,yi,'*spline');
zi4=interp2(x,y,z,xi,yi,'*cubic');
figure(2)
subplot(221),mesh(xi,yi,zi1),title(' 最近点插值')
subplot(222),mesh(xi,yi,zi2),title('线性插值')
subplot(223),mesh(xi,yi,zi3),title(' 样条插值')
subplot(224),mesh(xi,yi,zi4),title('立方插值')
```


定义:对于结点 $a \le x_0 < x_1 < x_2 < \dots < x_n \le b$, 若函数 s(x) 满足

- 1) S(x), S'(x), S''(x) 都在区间 [a,b] 上连续
- 2) s(x) 在每个小区间 $[x_i, x_{i+1}]$ 上是三次多项式
- 3) $S(x_i) = y_i$, i=0,1,2,...n

则称 s(x) 为三次样条插值函数。

定义:若不仅已知函数 f(x) 在结点 $a \le x_0 < x_1 < x_2 < \cdots < x_n \le b$ 上的函数值,还已知一阶导数值 y_i '. 若函数 $I_h(x)$ 满足

- 1) $I_h(x), I_h'(x)$ 都在区间 [a,b] 上连续
- 2) $I_h(x)$ 在每个小区间 $[x_i, x_{i+1}]$ 上是次数不大于 3 的多项式

3)
$$I_h(x_i) = y_i, I_h'(x_i) = y_i'$$
 (i=0,1,2,...n)

则称 I_n(x) 为分段三次 Hermite 插值多项式。

下表是 1971 年到 1990 年我国总人口的统计数字,试根据 1971 年到 1985 年这 15 年人口的统计数字用多种方法预测未来 20 年的人口数字,并比较 1986 年到 1990 年间预测人口数字与实际统计数字的差异,在你所使用的几种预测方法中找出一种较为合理的预测方法。

年份	人口统计数字	年份	人口统计数字
1971	8.5229	1981	10.0072
1972	8.7177	1982	10.1654
1973	8.9211	1983	10.3008
1974	9.0859	1984	10.4357
1975	9.2420	1985	10.5851
1976	9.3717	1986	10.7507
1977	9.4974	1987	10.9300
1978	9.6259	1988	11.1026
1979	9.7542	1989	11.2704
1980	9.8705	1990	11.4333

作业

P130

8, 10, 12