Brain Tumors Segmentation(BraTS) with Deep Learning

Data Analyses

04.09.2020

Wai Po Kevin Teng, Xiongjun Wang

Dataset

- BraTS2015 Challenge dataset
- Multimodal MRI images (Flair, T1, T1c, T2)
- Associate with multi-labeled brain tumor (OT)

Fig. 1: Output slice of brain medical images from various mode

Criterion	Descriptions			
File	A File has Multi-Modal MRI Data of one patient			
File Format	.mha			
Image Dimension	240(width) x 240(height) x 155(slices)			
Image Mode	4 Multi-mode per patient			

Software for Quick Analyses:

ITK-SNAP for visualizing .mha medical images

Multimodal MRI

Four MRI contrasts:

- > **T1:** T1-weighted, native image, sagittal or axial 2D acquisition, with 1-6mm slice thickness
- ➤ **T1c:** T1-weighted, contrast-enhanced image, with 3D acquisition and 1mm isotropic voxel size for most patients
- > **T2:** T2-weighted image, axial 2D acquisition, with 2-6mm slice thickness
- > FLAIR: T2-weighted FLAIR image, axial, coronal, or sagittal 2D acquisition, 2-6mm slice thickness

Multi-labelled Brain Tumor

Four tumor tissue classes:

(left) Fig. 2: Schematic illustrations on the labelled tissue classes with color, where: green – edema, blue – necrosis, orange – non enhancing tumor, dark red – enhancing tumor (S.Pereira 2017) ¹

¹ S. Pereira, A. Oliveira, V. Alves and C. A. Silva, "On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: A preliminary study," 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, 2017, pp. 1-4.

BraTS Dataset Tree Structure:

```
BRATS2015 Testing
 -> HGG LGG
  --> brats 2013 pat0103 1
   ---> VSD.Brain.XX.O.MR Flair.54193
   ---> VSD.Brain.XX.O.MR T1.54194
   ---> VSD.Brain.XX.O.MR T1c.54195
   ---> VSD.Brain.XX.O.MR T2.54196
*Number of patients: 110
BRATS2015 Training
 -> HGG
  --> brats 2013 pat0001 1
  ---> VSD.Brain.XX.O.MR Flair.54512
   ---> VSD.Brain.XX.O.MR T1.54513
   ---> VSD.Brain.XX.O.MR T1c.54514
   ---> VSD.Brain.XX.O.MR T2.54515
   ---> VSD.Brain 3more.XX.0.0T.54517
*Number of patients: 220
 -> LGG
  --> brats 2013 pat0001 1
  ---> VSD.Brain.XX.O.MR Flair.54632
   ---> VSD.Brain.XX.O.MR T1.54633
   ---> VSD.Brain.XX.O.MR T1c.54634
   ---> VSD.Brain.XX.O.MR T2.54635
   ---> VSD.Brain 3more.XX.O.OT.54637
*Number of patients: 54
[Summary]
Total number of patients: 384
Total number of 2D images: 59520
   Training: 42470
   Testing: 17050
```

HGG: High Grade Gliomas

LGG: Low Grade Gliomas

Histogram Plots

*Medical image referred to Fig.1.

Image size: 240x240 Image slices: 155

Image max value: 1524 Image min value: 0

Mean value of image:146.48196180555556

Standard deviation of

image:261.0431828653199

Image size: 240x240 Image slices: 155

Image max value: 4090

Image min value: 0

Mean value of image:709.5326388888889

2500

3000

Standard deviation of

image:1204.3953687131807

Image size: 240x240

Image slices: 155

Image max value: 8925

Image min value: 0

Mean value of

image:973.6755555555555

Standard deviation of

image:1677.0295555186333

Image size: 240x240

Image slices: 155

Image max value: 2992

Image min value: 0

Mean value of

image:362.8049826388889

Standard deviation of

image:622.8808614343079

Ground Truth Distribution

Label Description:

- 1 Necrosis
- 2 Edema
- 3 Non-enhancing Tumor
- 4 Enhancing Tumor
- 0 Everything else

(Menze et al. 2015)

Image size: 240x240 Image slices: 155 Image max value: 4

Image min value: 0

Image Pre-processing

1. Min Max Normalization:

Squash pixel intensity values to [0, 1]

$$x_{norm} = \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)}$$

2. Channel-Wise Standardization:

$$x_{std} = \frac{x_i - \mu_{channel}}{\sigma_{channel}}$$

Plot Comparison

Histograms (Min Max Norm.)

Histograms (Channel-wise Standardization)

Baseline Model

Image Segmentation with U-Net (2D)

Fig. 3: Schematic U-Net Architecture for BraTS2015 Dataset (H.Dong 2017) 1

¹H.Dong, G.Yang, F.Liu, Y.Mo and Y.Guo, "Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks", Medical Image Understanding and Analysis, 2017.

Evaluation Metrics

 Dice Coefficient – Measurement for Union of Intersection (UOI) between the labelled tumor region and the segmented results from the model

$$DSC = \frac{2TP}{FP + 2TP + FN}$$

Sensitivity – Evaluate the number of TP and FN

$$Sensitivity = \frac{TP}{TP + FN}$$

Where TP, FP and FN denote True Positive, False Positive and False Negative measurements, respectively

Results

• By H.Dong et. al. 2017

				DSC	
Method	Data	Grade	Complete	Core	Enhancing
	5 fold Cross Validation on	HGG	0.88	0.87	0.81
2D U-net	BraTS 2015	LGG	0.84	0.85	0.00
	Training Datasets	Combined	0.86	0.86	0.65

References

- Menze et al., The Multimodal Brain TumorImage Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 2015.
- Kistler et. al, The virtual skeleton database: an open access repository for biomedical research and collaboration. JMIR, 2013
- H.Dong, G.Yang, F.Liu, Y.Mo and Y.Guo, "Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks", Medical Image Understanding and Analysis (MIUA), 2017.
- Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho, James C. Gee, and Guido Gerig. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. *Neuroimage* 2006 Jul 1;31(3):1116-28
- S. Pereira, A. Oliveira, V. Alves and C. A. Silva, "On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: A preliminary study," 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, 2017, pp. 1-4.

Thank You for Your Kind Attention!