Logica per l'informatica Dimostrazioni inerenti alla teoria assiomatica

Andrea Malvezzi

08 ottobre 2024

Contents

1	Intr	roduzione	3	
2	Per	ogni	3	
	2.1	Regola di introduzione	3	
		2.1.1 In Lean	3	
	2.2	Regola di eliminazione	3	
		2.2.1 In Lean	3	
3	Imr	olicazione	4	
•	3.1	Regola di introduzione	4	
	0.1	3.1.1 In Lean	4	
	3.2	Regola di eliminazione	4	
	5.4	3.2.1 In Lean	4	
	3.3	Regola di eliminazione (variante)	4	
	5.5	3.3.1 In Lean	4	
		5.5.1 III Lean	4	
4	Coimplicazione SSE 5			
	4.1	Regola di introduzione	5	
		4.1.1 In Lean	5	
	4.2	Regola di eliminazione	5	
5	Ass	urdo	5	
	5.1	Regola di eliminazione	5	
		5.1.1 In Lean	5	
6	Noo	gazione	5	
U	1108	gazione	J	
7	Cor	ngiunzione	6	
	7.1	Regola di introduzione	6	
		7.1.1 In Lean	6	
	7.2	Regola di eliminazione	6	
		7.2.1 In Lean	6	
8	Abl	oreviazioni e formule in Lean	6	
9	Enu	inciati e prove	7	

1 Introduzione

Inizialmente, per studiare la logica useremo dimostrazioni informali, ovvero prove meno verbose di quelle rigorose e spesso con dettagli mancanti o perfino errate.

A questo fine useremo svariati operatori logici, che ora vedremo nel dettaglio e dal punto di vista dell'utilizzo nel linguaggio Lean.

2 Per ogni

Simbolo: \forall .

2.1 Regola di introduzione

Scopo: dimostrare che $\forall x. P(X)$. Per farlo, lo dimostro su un X generico. La conclusione diventa P.

2.1.1 In Lean

assume x: set. [dimostrazione di P(x)]

2.2 Regola di eliminazione

Scopo: da un'ipotesi o un risultato intermedio $\forall x. P(x)$ concludo che la mia ipotesi vale per un x a mia scelta.

2.2.1 In Lean

by NOME_IPOTESI we proved CONCLUSIONE (NOME_RISULTATO_INTERMEDIO)

Ad esempio, da $\forall A,\emptyset\subseteq A$ si può ricavare $\emptyset\subseteq\emptyset$ sostituendo ad A l'insieme vuoto.

3 Implicazione

Simbolo: \Rightarrow .

3.1 Regola di introduzione

Scopo: per dimostrare $P\Rightarrow Q,$ lo dimostro su un x generico. La conclusione diventa Q.

3.1.1 In Lean

suppose P as [NOME_IPOTESI] [dimostrazione di Q]

3.2 Regola di eliminazione

Scopo: da un'ipotesi o un risultato intermedio $P\Rightarrow Q$, posso concludere che Q valga.

3.2.1 In Lean

by [NOME_IPOTESI_PQ], [NOME_IPOTESI_P] we proved [Q] as [NOME_RISULTATO_INTERMEDIO]

3.3 Regola di eliminazione (variante)

Scopo: da un'ipotesi o un risultato intermedio $P\Rightarrow Q,$ per dimostrare Q mi posso ridurre a dimostrare P.

3.3.1 In Lean

by [NOME_IPOTESI] it suffices to prove [NOME_IPOTESI_P]

4 Coimplicazione SSE

Simbolo: \Leftrightarrow .

4.1 Regola di introduzione

Scopo: dimostrare $P \Leftrightarrow Q$, dimostro sia $P \Rightarrow Q$ che $Q \Rightarrow P$.

4.1.1 In Lean

we split the proof.

- proof 1
- proof 2

4.2 Regola di eliminazione

Scopo: l'ipotesi $P\Leftrightarrow Q$ può essere usata sia come un'ipotesi $P\Rightarrow Q$ che come un'ipotesi $Q\Rightarrow P.$

5 Assurdo

5.1 Regola di eliminazione

Scopo: se ho dimostrato l'assurdo posso concludere qualsiasi cosa.

5.1.1 In Lean

by [NOME_ASSURDO] done oppure posso anche scrivere by [NOME_ASSURDO] we proved false

6 Negazione

Simbolo: \neg .

Scopo: \overline{P} è un'abbreviazione per $P\Rightarrow$ assurdo. Quindi per dimostrare \overline{P} si assume che P valga e si dimostra l'assurdo.

Attenzione: questo non serve a dimostrare l'assurdo!

7 Congiunzione

Simbolo: \wedge .

7.1 Regola di introduzione

Scopo: per dimostrare $P \wedge Q$ (P e Q) si dimostrano sia P che Q. Da un'ipotesi P e da un'ipotesi Q si ricava $P \wedge Q$.

7.1.1 In Lean

by conj, NOMEp, NOMEq we proved $P \wedge Q$ as H

7.2 Regola di eliminazione

Scopo: un'ipotesi o un risultato intermedio $P \wedge Q$ può essere usato sia come P che come Q. In alternativa, invece di concludere o assumere $P \wedge Q$ (H), si può direttamente concludere P (H_1) e Q (H_2) .

7.2.1 In Lean

by NOME we proved P as H_1 and Q as H_2

8 Abbreviazioni e formule in Lean

- $\forall x \in A.P(x)$ viene usato per indicare $\forall x \in A, P(x) \forall x. (x \in A \Rightarrow P(x))$
- $\exists x \in A.P(x)$ viene usato per indicare $\exists x.(x \in A \land P(x))$
- $byH_1, H_2 \dots H_n$ we proved P(H) anziché elencare tutte le ipotesi
- "thus" per fare riferimento all'ultima ipotesi/risultato intermedio
- "we need to prove" per esplicitare la conclusione corrente
- "done" per indicare che il lettore è in grado di ricostruire la prova per conto suo

9 Enunciati e prove

- L'enunciato è ciò che vogliamo dimostrare, ovvero un insieme di ipotesi e di una conclusione;
- una **prova** è una sequenza di passi che ci convince che la conclusione "valga" quando "valgono" le ipotesi;
- per convenzione, tutte le variabili non introdotte da un \forall o da un \exists si considerano introdotte da dei \forall all'inizio dell'enunciato;
- tutti gli **assiomi** sono sempre utilizzabili come ipotesi in qualunque momento.