Quantum Convolutional Neural Networks: HSE investigation

Аннотация. Сверточная нейронная сеть (CNN) - это популярная модель компьютерного зрения, преимущество которой заключается в эффективном использовании информации о корреляции данных, что оказывается необходимым при работе с изображениями. Однако CNN сложно эффективно обучать, т.к. это может требовать много времени и ресурсов. Квантовая сверточная нейронная сеть (QCNN) предоставляет возможность повышения производительности существующей модели обучения за счет встраивания среды квантовых вычислений. В данной работе будет рассмотрена схем в возможность применения квантовых задаче изображений сверточными нейронными сетями и приведено сравнение с обычными сверточными сетями на основе таких фреймворков как Keras и Pennylane.

Введение.

Сверточная нейронная сеть (CNN) - это стандартная модель классического машинного обучения, которая хорошо подходит для обработки изображений. Модель основана на идее сверточного слоя, где вместо обработки полных входных данных с помощью глобальной функции применяется локальная свертка. Если на входе изображение, небольшие локальные области последовательно обрабатываются одним и тем же ядром. Результаты, полученные для каждой области, обычно связаны с разными каналами одного выходного пикселя. Объединение всех выходных пикселей создает новый объект, похожий на изображение, который может быть дополнительно обработан дополнительными слоями.

Ту же идею можно распространить и на контекст квантовых вариационных схем (рис. 1):

- Область входного изображения, в данном случае квадрат размера 2х2 встраивается в квантовую схему. Таким образом получается 4 кубита. Для кодирования значений входных пикселей в кубиты применяются параметризованные повороты Ry(θ).
- 2. К системе применяются какие-либо квантовые вычисления U.
- 3. Квантовая система измеряется, и получается список классических ожидаемых значений.

- 4. Каждое ожидаемое значение соответсвует новому пикселю и отображается на новый канал. Таким образом, измерение 4 кубитов дают 4 выходных канала.
- 5. Применение данной свертки поочередно ко всем областям изображения дает на выходе новое многоканальное изображение.

Рисунок 1. Схема квантовой свертки

Основное отличие от классической свертки состоит в том, что квантовая схема может генерировать очень сложные ядра, вычисления которых могут быть, по крайней мере, неразрешимыми классическими вычислениями.

Связанные исследования.

За основу был взят туториал по построению квантовых сверточных нейронных сетей с использованием библиотеки Pennylane — кросс-платформеннной библиотекой для квантовых вычислений и программирования квантовых компьютеров.

В данном туториале рассматривается классификации изображений из датасета MNIST.

Идея заключается в том, чтобы не обучать квантовый сверточный слой, а использовать его только для препроцессинга изображений. Позже классическая модель будет обучена и протестирована на предварительно обработанном наборе данных, избегая ненужных повторений квантовых вычислений.

Также будет приведено сравнение с такой же моделью, но обученной на оригинальных данных.

Для датасета MNIST результаты предобработки выглядят следующим образом:

Рисунок 2. Обработка изображений из MNIST квантовой сверткой

Под каждым изображением находятся получившиеся выходные каналы. Квантовая свертка 2x2 соответствует обычной свертке 2x2 с шагом 2, поэтому размер выходного канала получился вдвое меньше оригинала. Также можно заметить, что и разрешение упало и появились некоторые искажения, но глобальные черты каждого объекта сохранились.

Для классификации была построена обычная полносвязная нейронная сеть с 10 выходными узлами.

По результатам (рис. 3) был сделан вывод, что модели с квантовой сверткой не уступают по эффективности классическим моделям глубокого обучения.

Рисунок 3. Сравнение полносвязной нейронной сети с квантовым сверточным слоем и без

Эксперименты.

В данной работе попробуем применить тот же подход к датасету CIFAR-10 и реализовать квантовую свертку уже для трехканальных изображений.

Для этого можно применить подход иерархической квантовой сверточной схемы (HQconv), который сначала извлекает информации внутри каждого отдельного канала, а потом между каналами (рис. 4), используя гейты СZ и CNOT.

Рисунок 4. Квантовая схема Насопу

В данном случае получается схема с 12 кубитами, и на выходе получается уже 12-канальное изображение.

Визуализируем первые 4 канала (рис. 5). Хотя качество получившихся изображений заметно хуже, можно заметить, что на разных каналах свертка выявила разные характерные признаки каждого объекта, которые в сумме могут давать более полную информацию, полезную для определения класса объекта.

Рисунок 5. Обработка изображений из CIFAR-10 квантовой сверткой

Результаты.

Сначала построим сверточную нейронную сеть, которая повсеместно применяется для решения задачи классификации на CIFAR-10.

Обучим ее на данных, сгенерированных квантовой сверткой, и на оригинальных данных и визуализируем прогресс обучения (рис. 6).

В данном случае модель, обученная на 12-канальных изображениях, не показала никаких существенных улучшений, а даже наоборот, сработала хуже, чем модель, натренированная на оригинальных данных. Возможно, это связано с излишней сложностью как модели, так и данных, к тому же для обучения бралась слишком маленькая выборка. Такое решение было принято из-за того, что предобработка данных с применением квантовой свертки на симуляторе занимает достаточно много времени.

Pucyнoк 6. QConv + Conv

Однако, вспомним, с какой целью было задумана возможность внедрения квантовых вычислений в алгоритмы глубокого обучения — повысить эффективность, а также сократить объем памяти и времени вычислений (в предположении, что все вычисления будут перенесены на квантовый компьютер), т.к. современные машины могут уже не справляться с постоянно увеличивающимся объемом данных. То есть в теории это может являться альтернативой классическим сверткам или другим подходам.

Попробуем убрать из модели сверточные слои, оставив только один внутренний полносвязный слой, и посмотреть на результаты обучения.

Рисунок 7. Qconv + dense

Результаты получились очень показательными — только благодаря использованию препроцессинга входных данных, удалось добить более высокой точности и более быстрому снижению ошибки обычной полносвязной сети.

Данный пример является довольно «игрушечным», однако если проводить вычисления на реальных квантовых компьютерах, то на больших наборах изображений с помощью квантовых сверток вполне можно добиться улучшения существующих алгоритмов машинного и глубокого обучения.

Ссылки:

https://pennylane.ai/qml/whatisqml.html

https://pennylane.ai/qml/demos/tutorial_quanvolution.html

https://arxiv.org/abs/2107.11099

https://arxiv.org/abs/1904.04767