

Countermeasures against EM Analysis for a Secured FPGA-based AES Implementation

Paolo Maistri¹, Sebastien Tiran², Philippe Maurine², Israel Koren³, Régis Leveugle¹

Background

 Side channel analysis is a major threat against cryptographic implementations

Outline

- The Advanced Encryption Standard
 - The algorithm
 - Base implementation
- Proposed Countermeasures
 - Mapping based
 - Relocation based
- Overheads
- Results
- Conclusions

AES algorithm

- Symmetric block cipher
 - Plain Text 128b,
 - Secret Key 128/192/256b
- SPN cipher
 - 10/12/14 rounds
- Round operations
 - SubBytes: <u>nonlinear</u> byte substitution
 - ShiftRows: <u>row-wise</u> word rotation
 - MixColumns: <u>column-wise</u> linear multiplication
 - Key Addition: XOR with round subkey

Starting from a given AES design...

A Word on S-Box Implementation

- SubBytes is a nonlinear byte substitution
 - Computed as inverse in GF + affine transformation
- Implemented as
 - S-BOX Look-Up Table
 - Inverse Look-Up Table + [inverse] affine transformation
 - Inversion in composite fields GF(2⁴)²

1st scheme: Dynamic Mapping (*DynMap*)

- For each S-Box, implement several parallel composite field mappings
 - From 1 to 8 possible dynamic mappings for any composite field
 - Choose randomly at runtime (several granularities)
 - At output, choose the correct inverse mapping to get back the result
- <u>Limited</u> to S-Box data path
- Independence of mappings?
- Vulnerable to Zero- and One-value attacks (as multiplicative masking)

2nd: Dynamic Column Relocation (*DCR*)

- Dynamic resource allocation done intra-round
 - Column relocation
- Columns are shuffled at each round
 - Several external constraints(MixColumns, ShiftRows, ...)
 - Only 4 different configurations
 - ShiftRows is NOT preserved
 - Column relative ordering IS preserved
- Correct order is restored before output

3rd: Dynamic Block Relocation (*DBR*)

- Dynamic resource allocation done inter-round
 - Several round components instantiated
 - Higher throughput modes
- At each round, blocks are shuffled
 - Temporary cipher text can go to <u>any</u> round instance
 - Auxiliary data is transferred with cipher text
- Variable number of configurations
 - 4 to 24 in the example
 - Depending on number of PTXs

How does relocation work?

- Input text is sent to <u>any</u> round instance
- At each round, columns are scrambled
- At each round, intermediate cipher can be sent to <u>any</u> instance
- Column order is restored before sending cipher to output

4th: Linear Masking (*LinMask*)

- DynMap masks only SubBytes data path
 - Rest of design is <u>unprotected</u> and <u>leaking</u>
- Linear masking is a common low-cost masking scheme for linear data path (P network)
 - Masking at S-Box output
 - Unmasking at S-Box input
 - Bus transfers are masked
 - Mask must be transferred with data (due to DBR)

Full Implementation

