2011 级高等数学(A、B)(上)期中试卷

一、 填空题(本题共8小题,每小题4分,共32分)

- 1. 设当 $x \to 0$ 时, $\sin(2x) 2\sin x$ 与 x^n 是同阶无穷小,则 $n = _____;$
- 2. 函数 $f(x) = \lim_{n \to \infty} \frac{x+1}{x^{2n}+1} \ (n \in N_+)$ 的间断点的坐标是 x =______,是第 类间断点;

3.

设
$$f(x) = \begin{cases} ae^x, & x < 0 \\ b + \ln(1+x), & x \ge 0 \end{cases}$$
,若 $f(x)$ 在 $x = 0$ 处可导,则常数 $a =$ _____,

常数 $b = ___;$

- 4. 设函数 f 满足 $\lim_{x\to 0} \frac{f(1) f(1-x)}{2\sin x} = -1$, 则 f'(1) =_____;

- 7. 设 $y = f(\ln x)e^{f(x)}, (x > 0)$,其中 f 可微,则微分 dy =______;
- 8. 极限 $\lim_{x\to 0} (1-5\tan^2 x)^{\frac{1}{\sin^2 x}} =$ ______

二、 计算下列各题(本题共5小题,每小题8分,满分40分)

- 1. 求极限 $\lim_{n\to\infty} \sqrt{n}(\sqrt[n]{n}-1)$.
- 2. 求极限 $\lim_{x\to 0} \frac{\ln(1+x) + \ln(1-x)}{1 \cos x + \sin^2 x}$.
- 3. 求函数 $y = \ln(e^x + \sqrt{1 + e^{2x}})$ 的导数 $\frac{dy}{dx}$.
- 4. 设 y = y(x) 是由方程 $2^x \csc y + y^3 = 0$ 所确定的隐函数,求 $\frac{dy}{dx}$.

Students' union of Southeast University

三、(本题满分7分) 证明多项式 $f(x) = x^3 - 3x + a$ 在区间 [0,1] 上不可能有两个零点,为使 f(x) 在区间 [0,1] 上存在零点,a 应当满足怎样的条件?

四、(本题满分7分) 设 $x_1 = \frac{1}{2}$, $x_{n+1} = \frac{1+x_n^2}{2}$, $(n = 1, 2, \cdots)$, 利用单调有 界收敛准则证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$.

五、 (本题满分7分) 试证: 当 $x \ge 0$ 时, $\ln(1+x) \le \frac{x}{\sqrt{1+x}}$.

六、(本题满分7分) 设函数 f 在 [a,b] 上存在三阶导数,且满足 f(a) = f(b) = f'(a) = f'(b) = f''(a) = f''(b) = 0,证明存在 $\xi \in (a,b)$,使 得 $f(\xi) = f'''(\xi)$.