

FUCO5A - Análise De Circuitos Elétricos 1 Aula 3A

Prof.: Renan Silva Maciel

(slides adaptados de AC64-2018/1 - Prof. Maurício Zardo)

• Tópicos:

- Elementos de circuito;
- Lei de Ohm;
- Fontes de tensão e corrente

FONTES DE TENSÃO - CC:

- Corrente contínua (DC direct current),
- Há um sentido de cargas unidirecional.
- Símbolos: V ou E

Força eletromotriz é uma força que estabelece o sentido de carga devido à aplicação de uma diferença em potencial.

Baterias

- Primárias (não recarregáveis) e secundárias;
- Secundárias:
 - Pb-ácido
 - Ni-HM (Níquel-hidreto metálico): Prius
 - íon de Lítio: laptops, Tesla

Células solares

Geradores

• RESISTÊNCIA:

- Característica de um corpo com relação à condução de eletricidade;
- Elemento x modelo

Resistência é a oposição ao fluxo de carga através de um circuito elétrico, tem as unidades de ohms (Ω) .

• RESISTÊNCIA: FIOS CIRCULARES

Parâmetros:

- 1. Material.
- − 2. Comprimento.
- 3. Área do corte transversal.
- 4. Temperatura do material.

• Resistência (R) e Resistividade (ρ):

$$R = \rho \frac{l}{A}$$

Resistência (R) e Resistividade (ρ):

$$R = \rho \frac{l}{A}$$

- quanto maior a resistividade, maior a resistência de um condutor
- quanto maior o comprimento de um condutor, maior a resistência
- quanto maior a área de um condutor, menor sua resistência

Resistividade (ρ)

Material	ρ (CM - Ω/pés)@20°C
Prata	9,9
Cobre	10,37
Ouro	14,7
Alumínio	17,0
Tungstênio	33,0
Níquel	47,0
Ferro	74,0
Constantan	295,0
Nicromo	600,0
Calorita	720,0
Carbono	21.000,0

EFEITOS DA TEMPERATURA

- o aumento da temperatura resulta em um aumento no valor de resistência.
- os condutores têm um coeficiente de temperatura positivo.

Efeito da temperatura sobre a resistência do cobre

CONDUTÂNCIA (G)

Inverso da resistência

Unidade: (S, siemens)

$$G = \frac{1}{R}$$
 (siemens, S)

Lei de Ohm:

"Um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante."

• RESISTORES EM SÉRIE:

$$R = \frac{E}{I}$$
 (ohms, Ω)

• RESISTORES EM SÉRIE:

$$R_T = R_1 + R_2 + R_3 + R_4 + \dots + R_N$$

• RESISTOR EQUIVALENTE:

• RESISTORES EM SÉRIE:

- quanto mais resistores em série acrescentarmos,
 maior será a resistência, não importando seu valor.
- o maior resistor em uma combinação em série terá o maior impacto sobre a resistência total.

RESISTORES EM SÉRIE - Exemplo:

$$R_T = R_1 + R_2 + R_3 + R_4$$

 $R_T = 20 \Omega + 220 \Omega + 1.2 k\Omega + 5.6 k\Omega$
 $R_T = 7.040 \Omega = 7.04 k\Omega$

RESISTORES EM SÉRIE - IGUAIS:

 $R_T = NR$

$$R_T = NR$$

= (4) (3,3 k Ω) = 13,2 k Ω

• CORRENTE - RESISTORES EM SÉRIE:

$$I_s = \frac{E}{R_T}$$
 $I_s = \frac{E}{R_T} = \frac{8,4 \text{ V}}{140 \Omega} = 0,06 \text{ A} = 60 \text{ mA}$

• TENSÃO - RESISTORES EM SÉRIE:

$$V_1 = I_1 R_1$$

$$V_2 = I_2 R_2$$

$$V_3 = I_3 R_3$$

$$V_1 = I_1 R_1 = I_s R_1 = (60 \text{ mA}) (10 \Omega) = \mathbf{0,6 V}$$

 $V_2 = I_2 R_2 = I_s R_2 = (60 \text{ mA}) (30 \Omega) = \mathbf{1,8 V}$
 $V_3 = I_3 R_3 = I_s R_3 = (60 \text{ mA}) (100 \Omega) = \mathbf{6,0 V}$

- POTÊNCIA RESISTORES EM SÉRIE:
 - a potência aplicada pela fonte CC deve ser igual àquela dissipada pelos elementos resistivos.

$$P_E = P_{R_1} + P_{R_2} + P_{R_3}$$

RESISTORES EM PARALELO

 dois elementos, ramos ou resistores estão em paralelo se tiverem dois terminais em comum.

RESISTORES EM PARALELO

RESISTORES EM PARALELO –EQUIVALENTE:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

RESISTORES EM PARALELO –EQUIVALENTE:

- a resistência total de resistores em paralelo é sempre menor que o valor do menor resistor.
- se a menor resistência é <u>muito menor</u> que as demais, a resistência total será próxima do menor valor de resistência.

RESISTORES EM PARALELO

RESISTORES EM PARALELO - Exemplo

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{1}{\frac{1}{3\Omega} + \frac{1}{6\Omega}}$$
$$= \frac{1}{0,333 \,\mathrm{S} + 0,167 \,\mathrm{S}} = \frac{1}{0,5 \,\mathrm{S}} = 2 \,\Omega$$

RESISTORES EM PARALELO - Exemplo

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}} = \frac{1}{\frac{1}{1\Omega} + \frac{1}{4\Omega} + \frac{1}{5\Omega}}$$
$$= \frac{1}{1S + 0,25S + 0,2S} = \frac{1}{1,45S} \cong \mathbf{0,69} \Omega$$

RESISTORES EM PARALELO – IGUAIS:

$$R_T = \frac{R}{N} = \frac{2\Omega}{4} = 0.5\Omega$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

$$R_{T} = \frac{1}{\frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \dots + \frac{1}{R_{N}}}$$

$$= \frac{1}{N\left(\frac{1}{R}\right)} = \frac{1}{\frac{N}{R}}$$

$$R_T = \frac{R}{N}$$

• Resistência total de dois resistores:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_T = \frac{R_1 R_2}{R_1 + R_2}$$

• TENSÃO - RESISTORES EM PARALELO

 a tensão é sempre a mesma em elementos em paralelo.

CORRENTE - RESISTORES EM PARALELO

$$I_S = \frac{E}{R_T}$$

$$I_1 = \frac{V_1}{R_1} = \frac{E}{R_1}$$
 e $I_2 = \frac{V_2}{R_2} = \frac{E}{R_2}$

CORRENTE - RESISTORES EM PARALELO

 A corrente fornecida pela fonte (Is) é sempre igual à soma das correntes de ramos individuais.

• Dualidade – Série e Paralelo:

POTÊNCIA - RESISTORES EM PARALELO:

 um circuito resistivo em paralelo, quanto maior o resistor, menor a potência absorvida. • Exercício 1: Supondo E=10V, R_1 =1k Ω , R_2 =2,2 k Ω , R_3 = R_4 =5k Ω , determine R_T e I_s .

$$R_T = R_1 + R_2 + R_3 + R_4 + ... + R_N$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

• Exercício 2: Supondo E=10V, R_1 =1k Ω , R_2 =2,2 k Ω , R_3 =5k Ω , encontre R_T e I_s .

$$R_T = R_1 + R_2 + R_3 + R_4 + \dots + R_N$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

• Exercício 3: Supondo E=10V, R_1 =1k Ω , R_2 =2,2 k Ω , R_3 = R_4 =5k Ω , encontre R_T e I_s .

$$R_T = R_1 + R_2 + R_3 + R_4 + \dots + R_N$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

• Exercício 4: Supondo E=10V, R_1 =1k Ω , R_2 =2,2 k Ω , R_3 = R_4 =5k Ω , R_5 = R_6 = R_7 =1,5 k Ω , encontre R_T e I_s :

$$R_T = R_1 + R_2 + R_3 + R_4 + \dots + R_N$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

• Exercício 5:

Para o circuito determine a resistência equivalente e I_s:

