Data Structures and Algorithms CS245-2013S-12 Non-Comparison Sorts

David Galles

Department of Computer Science University of San Francisco

12-0: Comparison Sorting

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: Decision Trees

sertion Sort on list $\{a,b,c\}$ a<b<c b<c<a a<c<b c<a<b b<a<c c<b<a a<b b<a a<b<c b<a<c a<c<b b<c<a c<a<b c<b<a b<c c < ba<c c<a <b<< a<c<b b<a<c b<c<a c<a<b c<b<a a<c b < cc<a c < bb<c<a c<b<a a<c<b c<a<b

12-2: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-3: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-4: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - The height of the tree (depth of the deepest leaf) + 1

12-5: Decision Trees

 What is the largest number of nodes for a tree of depth d?

12-6: Decision Trees

- ullet What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?

12-7: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting n elements?

12-8: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - \bullet 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting n elements?
 - n!
- What is the minimum height, for a decision tree for sorting n elements?

12-9: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - \bullet 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting n elements?
 - n!
- What is the minimum height, for a decision tree for sorting n elements?
 - $\lg n!$

12-10: $\lg(n!) \in \Omega(n \lg n)$

12-11: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with n! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$

12-12: Counting Sort

- Sorting a list of n integers
- We know all integers are in the range $0 \dots m$
- We can potentially sort the integers faster than $n \lg n$
- Keep track of a "Counter Array" C:
 - C[i] = # of times value i appears in the list

kample: 3 1 3 5 2 1 6 7 8 1

12-13: Counting Sort Example

	0									
0	1	2	3	4	5	6	7	8	9	

12-14: Counting Sort Example

0	0	0	1	0	0	0	0	0	0	
0	1	2	3	4	5	6	7	8	9	

12-15: Counting Sort Example

0	1	0	1	0	0	0	0	0	0	
0	1	2	3	4	5	6	7	8	9	

12-16: Counting Sort Example

0	1	0	2	0	0	0	0	0	0	
0	1	2	3	4	5	6	7	8	9	

12-17: Counting Sort Example

0	1	0	2	0	1	0	0	0	0	
0	1	2	3	4	5	6	7	8	9	

12-18: Counting Sort Example

									0	
0	1	2	3	4	5	6	7	8	9	

12-19: Counting Sort Example

0	2	1	2	0	1	0	0	0	0
0	1	2	3	4	5	6	7	8	9

12-20: Counting Sort Example

		781	1						
0	2	1	2	0	1	1	0	0	0
\overline{O}	1	2	3	$oxedsymbol{arDelta}$	5	6	7	<u> </u>	Q

12-21: Counting Sort Example

12-22: Counting Sort Example

		-	L						
0	2	1	2	O	1	1	1	1	0
0	1	2	3	4	5	6	7	8	9

12-23: Counting Sort Example

0	3	1	2	0	1	1	1	1	0	
0	1	2	3	4	5	6	7	8	9	

12-24: Counting Sort Example

0	3	1	2	0	1	1	1	1	0	
0	1	2	3	4	5	6	7	8	9	

12-25: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:

12-26: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?

12-27: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?
 - For Comparison Sorts, which allow for sorting arbitrary data. What happens when m is very large?

12-28: Binsort

- Counting Sort will need some modification to allow us to sort records with integer keys, instead of just integers.
- Binsort is much like Counting Sort, except that in each index i of the counting array C:
 - Instead of storing the *number* of elements with the value *i*, we store a *list* of all elements with the value *i*.

12-29: Binsort Example

3	1	2	6	2	4	5	3	9	7	key
nark	john	mary	sue	julie	rachel	pixel	shadow	alex	james	data

12-30: Binsort Example

12-31: Binsort Example

12-32: Bucket Sort

- Expand the "bins" in Bin Sort to "buckets"
- Each bucket holds a range of key values, instead of a single key value
- Elements in each bucket are sorted.

12-33: Bucket Sort Example

114	26	50	180	44	111	4	95	196	170	key
john	mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data

12-34: Bucket Sort Example

26	50	180	44	111	4	95	196	170	key
mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data

12-35: Bucket Sort Example

50	180	44	111	4	95	196	170	key
julie	mark	shadow	rachel	pixel	sue	james	alex	data

12-36: Bucket Sort Example

	180	44	111	4	95	196	170	key
	mark	shadow	rachel	pixel	sue	james	alex	data

12-37: Bucket Sort Example

		44	111	4	95	196	170	key
		shadow	rachel	pixel	sue	james	alex	data

12-38: Bucket Sort Example

12-39: Bucket Sort Example

12-40: Bucket Sort Example

12-41: Bucket Sort Example

12-42: Bucket Sort Example

12-43: Bucket Sort Example

12-44: Bucket Sort Example

12-45: Counting Sort Revisited

- We're going to look at counting sort again
- For the moment, we will assume that our array is indexed from $1 \dots n$ (where n is the number of elements in the list) instead of being indexed from $0 \dots n-1$, to make the algorithm easier to understand
- Later, we will go back and change the algorithm to allow for an index between $0 \dots n-1$

12-46: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

12-47: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

```
for(i=1; i<C.length; i++)
C[i] = C[i] + C[i-1];</pre>
```

• Example: 3 1 2 4 9 8 7

12-48: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

12-49: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

```
for (i=1; i <= n; i++)
   B[C[A[i].key()]] = A[i];
for (i=1; i <= n; i++)
   A[i] = B[i];</pre>
```

• Example: 3 1 2 4 9 8 7

12-50: Counting Sort & Duplicates

 If a list has duplicate elements, and we create C as before:

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];</pre>
```

What will the value of C[i] represent?

12-51: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];</pre>
```

What will the value of C[i] represent?

• The *last* index in A where element i could appear.

12-52: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)</pre>
  C[i] = C[i] + C[i-1];
for (i=1; i <= n; i++) {
   B[C[A[i].key()]] = A[i];
   C[A[i].key()]--;
for (i=1; i \le n; i++)
   A[i] = B[i];
```

• Example: 3 1 2 4 2 2 9 1 6

12-53: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
   C[A[i].key()]++;
for(i=1; i<C.length; i++)</pre>
  C[i] = C[i] + C[i-1];
for (i=1; i <= n; i++) {
   B[C[A[i].key()]] = A[i];
   C[A[i].key()]--;
for (i=1; i \le n; i++)
   A[i] = B[i];
```

- Example: 3 1 2 4 2 2 9 1 6
- Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)</pre>
  C[i] = C[i] + C[i-1];
for (i = n; i \ge 1; i++) {
   B[C[A[i].key()]] = A[i];
   C[A[i].key()]--;
for (i=1; i < n; i++)
   A[i] = B[i];
```

• How would we change this algorithm if our arrays were indexed from $0 \dots n-1$ instead of $1 \dots n$?

12-55: Final (!) Counting Sort

```
for(i=0; i < A.length; i++)</pre>
  C[A[i].key()]++;
for(i=1; i < C.length; i++)</pre>
  C[i] = C[i] + C[i-1];
for (i=A.length - 1; i>=0; i++) {
   C[A[i].key()]--;
   B[C[A[i].key()]] = A[i];
for (i=0; i < A.length; i++)
   A[i] = B[i];
```

12-56: Radix Sort

- Sort a list of numbers one digit at a time
 - Sort by 1st digit, then 2nd digit, etc
- Each sort can be done in linear time, using counting sort

- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists

12-57: Radix Sort

Second Try:

- Sort by least significant digit first
- Then sort by next-least significant digit, using a Stable sort

. . .

Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?

12-58: Radix Sort

If (most significant digit of x) <
 (most significant digit of y),
 then x will appear in A before y.

12-59: Radix Sort

If (most significant digit of x) <
 (most significant digit of y),

then x will appear in A before y.

Last sort was by the most significant digit

12-60: Radix Sort

• If (most significant digit of x) < (most significant digit of y),

then x will appear in A before y.

- Last sort was by the most significant digit
- If (most significant digit of x) = (most significant digit of y) and

(second most significant digit of x) < (second most significant digit of y),

then x will appear in A before y.

12-61: Radix Sort

• If (most significant digit of x) < (most significant digit of y),

then x will appear in A before y.

- Last sort was by the most significant digit
- If (most significant digit of x) = (most significant digit of y) and

(second most significant digit of x) < (second most significant digit of y),

then x will appear in A before y.

• After next-to-last sort, x is before y. Last sort does not change relative order of x and y

12-62: Radix Sort

Original List 982 ig| 414 ig| 357 ig| 495 ig| 500 ig| 904 ig| 645 ig| 777 ig| 716 ig| 637 ig| 149 ig| 913 ig| 817 ig| 493 ig| 730 ig| 331 ig| 201 ig|orted by Least Significant Digit 00|730|331|201|982|493|913|414|904|645|495|716|357|777|637|817|149|orted by Second Least Significant Digit 20|201|904|913|414|716|817|730|331|637|645|149|357|777|982|493|495|orted by Most Significant Digit 49|201|331|357|414|493|495|500|637|645|716|730|777|817|904|913|982|

12-63: Radix Sort

- We do not need to use a single digit of the key for each of our counting sorts
 - We could use 2-digit chunks of the key instead
 - Our C array for each counting sort would have
 100 elements instead of 10

12-64: Radix Sort

riginal List

323	4376	2493	1055	8502	4333	1673	8442	8035	6061	7004	3312	4409	2338	
-----	------	------	------	------	------	------	------	------	------	------	------	------	------	--

orted by Least Significant Base-100 Digit (last 2 base-10 digits)

$$502 | 7004 | 4409 | 3312 | 9823 | 4333 | 8035 | 2338 | 8442 | 1055 | 6061 | 1673 | 4376 | 2493 |$$

orted by Most Significant Base-100 Digit (first 2 base-10 digits)

)55	<u>16</u> 73	<u>23</u> 38	24 93	<u>33</u> 12	<u>43</u> 33	<u>43</u> 76	<u>44</u> 09	<u>60</u> 61	<u>70</u> 04	<u>80</u> 35	8442	<u>85</u> 02	<u>98</u> 23	
-----	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	------	--------------	--------------	--

12-65: Radix Sort

- "Digit" does not need to be base ten
- For any value r:
 - Sort the list based on (key % r)
 - Sort the list based on ((key / r) % r))
 - Sort the list based on ((key / r^2) % r))
 - Sort the list based on ((key / r^3) % r))

. . .

- Sort the list based on $((\text{key} / r^{\log_k(\text{largest value in array})}) \% r))$
- Code on other screen