MLOps

DevOps + ML

Bibliography

Data Products

Product Oriented IT Organization

Product Oriented IT Organization

To:

Data Products

A **data product** is an application or tool that uses data to help businesses improve their decisions and processes.

We can organise these data products into **5 broad groups**: raw data, derived data, algorithms, decision support and automated decision-making.

...of data products, please

Data products: we need to understand how to consume them ...

Building Data Products

Data Science Project Lifecycle

Remember: Data Science, the way to create Data Products

Exercice: try to map it ...

... to a sales dashboard in Tableau. I.e.: try to explain the actions that you should do in every phase if you have to create a sales dashboard as a data product

Intro to ML?

A primer in a ML Product development

The most complex data product: a Machine Learning one.

From: To:

Zooming in...

ML Model Development Life Cycle

	NoSQL Databases, HBase, HDFS, Kafka			SparkSQL, Hive, Tableau		Regularization, Grid Search, Randomized Search						
Finalizing metrics and acceptance criteria	Gathering Data	\rangle	Cleaning Data (ETL)	\rangle	Data Analysis and Data Visualization	\rangle	Training ML model	\rangle	Fine Tuning ML Model	\rangle	Deploying Model in Production	
		Spark RDD, MapReduce, Informatica				Spark MLLib, Scikit-learn, TensorFlow, Keras, GraphX, R		, R		Exposing REST APIs, Building Mobile App, Devops		

What is missing?

MLOps: realistic picture

MLOps how: Step 1 - Build the ML Model

MLOps how: Step 2 - Prepare for production

MLOps how: Step 3 - Deploy to production

CI/CD Pipeline?

changes in:

- code
- data
- performance

will trigger it

- 1. Build the model
 - a. Build the model artifacts
 - b. Send the artifacts to long-term storage
 - c. Run basic checks (smoke tests/sanity checks)
 - d. Generate fairness and explainability reports
- 2. Deploy to a test environment
 - a. Run tests to validate ML performance, computational performance
 - b. Validate manually
- 3. Deploy to production environment
 - a. Deploy the model as canary
 - b. Fully deploy the model

MLOps how: Step 4 - Monitor and feedback loop

Summary

Exercise

Explain the **steps** and **roles** needed to create a data product based in a ML classifier.

Problem: You want to classify customers as "good" or "bad"

Input Data: Customers and Sales tables from the Master Data Database

Performance measure: Precision

Output: The result will be a table with the id of the customer and a label

Sustain: The product has to run every night since we customer data is very dynamic.

Variability: We want to iterate on the algorithms until we find the best one, but the business wants to have something running as soon as possible. We expect data variability.

From data acquisition to performance model monitoring, explain the steps and who will be the responsible of each one.