Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Теория автоматического управления»

Отчет по лабораторной работе №5 Исследование устойчивости систем автоматического управления методом Михайлова»

Выполнила: студентка группы ИУ5-51Б Бирюкова Е.И. Подпись и дата: Проверил: преподаватель каф. ИУ5 Лукьянов В.В. Подпись и дата:

Цель работы

Цель лабораторной работы — экспериментальное построение областей устойчивости линейных систем автоматического управления и изучение влияния на устойчивость системы ее параметров.

Вариант полученного задания

Вариант	Передаточная функция разомкнутой системы	T_{1},c
3	$W(s) = \frac{K}{(T_0s+1)\cdot(T_1^2s^2+T_2s+1)}$	1,0

Порядок выполнения работы

- 1. Для выбранных значений T_0 и T_1 подобрать T_2 и $K_{\kappa p}$, при которых система находится на границе устойчивости, и построить график $K(T_2)$. График рассчитывается следующим образом:
 - 1.1. Значение T_2 выбрать равным 0.5, K выбрать незначительным (порядка 0.00001). Построить годограф, определить расстояние от начала координат до точки пересечения годографа с осью абсцисс, оно равно $K_{\kappa p}$ (с помощью zoom).

Введем следующий скрипт в Matlab Online

```
К = 0.00001; %(передаточный коэффициент)
T1 = 1; %(по варианту)
T2 = 0.5; \% (по варианту)
W1 = tf(1,[0.5 1]); %(для апериодического звена)
W2=tf(1,[T1*T1 T2 1]); %(Апериодическое звено 2-ого порядка)
W = K*W1*W2; %(для разомкнутой системы)
Wf = feedback(W,1); %(для замкнутой системы)
[num,den]=tfdata(Wf, 'v'); %(числитель и знаменатель ПФ)
omega = 0.1:0.01:10; %(диапазон и шаг частот)
G = freqs(den,1,omega); %(расчет годографа)
u = real (G); %(вещественная часть годографа)
v = imag(G); %(мнимая часть годографа)
figure(1); %(График строится в 1-м окне)
plot(u,v,0,0,'r*'); %(график годографа, в т.(0,0) красная *)
grid on; %(координатная сетка)
figure(2); %(График строится во 2-м окне)
step(Wf); %(переходная функций)
grid on; %(координатная сетка)
figure(3); %(График строится в 3-м окне)
bode(Wf); %(ЛАХ)
grid on; %(координатная сетка)
T2 = [0.5 \ 1 \ 1 \ 1.5 \ 2 \ 2.5 \ 3 \ 3.5 \ 4 \ 4.5 \ 5];
К = [2 4 6 8 10 12 14 16 18 20]; %(десять полученных значений)
plot(T2, K);
```

Получим

 $K_{\text{крит}} = 1,5$

1.2. Перестроить годограф для $K_{\kappa p}$, убедиться, что система находится на границе устойчивости как по критерию Михайлова, так и по виду переходной функции (step) и ЛАХ.

По критерию Михайлова данная система находится на границе устойчивости.

По графику реакции на ступенчатое воздействие видно, что система находится на границе устойчивости и постоянно меняет свое состояние в заданном диапазоне значений.

1.3. Построить годографы, графики переходных функций и ЛАХ для одной из точек при $\llbracket K{<}K \rrbracket_{\ \ \, \mathsf{kp}}, \quad \llbracket K{=}K \rrbracket_{\ \ \, \mathsf{kp}} \text{ и } \quad \llbracket K{>}K \rrbracket_{\ \ \, \mathsf{kp}}.$

 $K{<}K_{\kappa p \iota r}$

$K > K_{\kappa p \mu \tau}$

Step Response ×10²⁴ 8 6 4 Amplitude 0 -2 -4 -6 <u></u>0 100 300 200 400 Time (seconds) **Bode Diagram** Magnitude (dB) 0 0 -1 00 -270 -315 -360 -360

Frequency (rad/s)

10⁻¹

1.4. Перебирая значения T_2 в диапазоне [1 1.5 2 ... 5], определить для них $K_{\rm \kappa p}$. $T_2=1\,K_{\rm \kappa p}=3.5$

10²

 $T_2 = 1.5 K_{\rm Kp} = 6$

 $T_2 = 3 K_{\rm Kp} = 16.5$

 $T_2 = 3.5 K_{\rm Kp} = 21$

 $T_2 = 4 K_{\rm \kappa p} = 26$

 $T_2 = 4.5 K_{\rm kp} = 31.5$

 $T_2 = 5 K_{\rm \kappa p} = 37.5$

1.5. Построить график $K_{\kappa p}$ (T_2) с помощью следующего кода:

T2=[0.5 1 1.5 2 2.5 3 3.5 4 4.5 5]

K=[.....] % (десять полученных значений)

Контрольные вопросы

1. Какие функции реализуют операторы freqs, feedback?

Freqs(B, A, w) для построения $A\Phi YX$ системы, где A – вектор коэффициентов числителя передаточной функции, B – вектор коэффициентов знаменателя.

Feedback – обратная связь.

2. Сформулировать корневой критерий устойчивости. Что такое годограф? Как строится корневой годограф (что откладывается по осям графика)? Как коэффициент усиления, который находится в числителе передаточной функции, влияет на поведение корней характеристического уравнения, которое находится в знаменателе передаточной функции? Вручную посчитать две точки корневого годографа.

Корневой критерий устойчивости: Устойчивость системы зависит от знака вещественных частей корней характеристического уравнения замкнутой системы:

Чтобы САУ была устойчивой необходимо, чтобы вещественные части корней были отрицательными. Если хотя бы один корень имеет положительную вещественную часть, то

процесс будет расходящийся, а система — неустойчива. Если корень равен 0, то малейшее появление отрицательной составляющей сделает процесс устойчиво колебательным, а положительной — неустойчиво колебательным.

Часто корни характеристического уравнения при анализе устойчивости систем изображают на комплексной плоскости — плоскости корней характеристического уравнения. Комплексная плоскость мнимой осью разбивается на 2 части. Левую сторону называют областью устойчивости, а правую — областью неустойчивого движения. Если корни лежат на мнимой оси или в 0, то система находится на границе устойчивости.

Корневой годограф — любая траектория, описанная корнями характеристического уравнения при изменении любого числового коэффициента в системе.

Годограф строится на основе значений мнимой и действительной частей корней характеристического уравнения. На оси абсцисс откладывается значение действительной части, на оси ординат – мнимая часть.

Порядок построения корневого годографа:

- Определение и нанесение нулей и полюсов разомкнутой системы для стандартной записи и стандартной схемы системы, определение участков вещественной оси, принадлежащих годографу.
- Полюса корни характеристического полинома знаменателя передаточной функции, нули корни характеристического полинома числителя.
- Определение количества, углов наклона и точки пересечения с вещественной осью асимптот корневого годографа.
- Определение углов выхода корневого годографа из полюсов разомкнутой системы и углов входа в нули разомкнутой системы.

Расчет двух точек корневого годографа.

3. Сформулировать критерии устойчивости Гурвица, Михайлова, логарифмический критерий. Как строится годограф Михайлова (что откладывается по осям графика)? Вручную посчитать одну точку годографа.

Критерий устойчивости Михайлова:

Кривая Михайлова для устойчивых систем всегда имеет плавную спиралевидную форму, причем ее конец уходит в бесконечность в том квадранте координатной плоскости, номер которого равен степени характеристического уравнения.

Критерий устойчивости Гурвица:

Необходимое условие: все коэффициенты характеристического уравнения должны быть одного знака. (Также является достаточным для систем 1-го и 2-го порядка).

Для устойчивости линейной САУ по критерию Гурвица необходимо и достаточно, чтобы были одного знака п главных определителей матрицы коэффициентов характеристического уравнения заданной системы.

$$\Delta_1 = a_1 > 0$$
; $\Delta_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} > 0$; $\Delta_3 = \begin{vmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{vmatrix} > 0$

Логарифмический критерий:

Логарифмический критерий – это частотный критерий, позволяющий судить об устойчивости замкнутой САУ по виду логарифмической характеристики разомкнутой системы. Система устойчива, если запасы устойчивости по фазе и амплитуде больше 0.

4. Как по логарифмическому критерию устойчивости определить $K_{\kappa p}$ и $w_{\kappa p}$? Можно получить $K_{\kappa p}$ так:

- 1. найти частоту $w_{\text{кр}}$, на которой сдвиг по фазе составляет -180 градусов;
- 2. найти значение ЛАХ на этой частоте;

3. $K\kappa p = 20\lg(\Pi AX(w\kappa p))$.

5. Как построить $K_{\kappa p}(T)$, используя критерий устойчивости Гурвица? Постройте, используя любой критерий устойчивости, зависимость $K_{\kappa p}(T)$ для варианта системы, передаточная функция которой имеет вид, указанный в таблице 1.

