

What is claimed is:

1. A compound of formula I

5

(or a pharmaceutically acceptable salt thereof) wherein:

A³, A⁴, A⁵ and A⁶, together with the two carbons to which they are attached, complete a substituted benzene in which A³ is CR³, A⁴ is CR⁴, A⁵ is CR⁵, and A⁶ is CR⁶;

10 wherein

R³ is hydrogen, methyl, methoxy, fluoro, chloro or carboxy;

15 one of R⁴ and R⁵ is hydrogen, (1-4C)alkyl, halo, trifluoromethyl, trifluoromethoxy, R^fO-, R^fO₂CCH₂O-, HO(CH₂)_aO- (in which a is 2, 3 or 4), R^fO₂C-, R^fO₂CCH₂- , R^gNH-, R^hSO₂- , hydroxymethyl, formyl, cyano, acetyl, 1-hydroxyethyl, 1-(hydroxyimino)ethyl, 1-(methoxyimino)-ethyl, methylthio or R^fO₂C(CH₂)₂- ;

20 the other of R⁴ and R⁵ is hydrogen; and

R⁶ is hydrogen, methyl, fluoro, chloro or methoxy;

25 in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is hydrogen or R^hSO₂- ; and R^h is (1-4C)alkyl or dimethylamino; or each of R³, R⁴ and R⁶ is hydrogen; and R⁵ is vinyl,

30 2-cyanovinyl, 2-((1-2C)alkoxy)carbonylvinyl or R^a in which R^a is phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy) or heteroaryl (which heteroaryl is a 5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon

- 383 -

and may bear one or more methyl substituents on carbon or nitrogen);

L¹ is -CO-NH- such that -L¹-Q¹ is -CO-NH-Q¹;

Q¹ is 2-pyridinyl (which bears a methyl, methoxy,

5 methylthio, fluoro or chloro substituent at the 5-position), 3-pyridinyl (which bears a methyl, fluoro or chloro substituent at the 6-position), 2-pyrimidinyl (which may bear a methyl, fluoro or chloro substituent at the 5-position) or 3-pyridazinyl (which may bear a methyl, 10 fluoro or chloro substituent at the 6-position);

R² is -L²-Q² in which -L²- is -NH-CO-, -NH-CO-X-,

-NH-CO-O-X-, -NH-CO-NH-X-, -NH-CH₂-, -NH-C(CH₃)H-,

-N(CH₃)-CH₂- or -O-CH₂-; and Q² is Q^{2A}, Q^{2B}, Q^{2C}, Q^{2D}, Q^{2E} 15 or Q^{2F} wherein X is a single bond or methylene and the values of L² and Q² are together selected from -NH-CO-X-Q^{2A},

-NH-CO-O-X-Q^{2A}, -NH-CO-NH-X-Q^{2A}, -NH-CH₂-Q^{2A},

-NH-C(CH₃)H-Q^{2A}, -N(CH₃)-CH₂-Q^{2A}, -O-CH₂-Q^{2A}, -NH-CO-X-Q^{2B},

-NH-CO-Q^{2C}, -NH-CO-Q^{2D}, -NH-CO-Q^{2E} and -NH-CO-Q^{2F} in which:

Q^{2A} (showing the L² to which it is attached) is

20

in which

each of m and n independently is 0 or 1, or m is 2 and

25 n is 1, and

R^{2A} is hydrogen, t-butyl, methysulfonyl, -CHRYR^Z, -CHR^WR^X, or 4-pyridinyl (which is unsubstituted or bears a substituent R^V at the 2- or 3-position) wherein

R^V is methyl, hydroxymethyl, ((1-2C)alkoxy)carbonyl;

30 cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

- 384 -

each of R^w and R^x independently is hydrogen or (1-3C)normal alkyl; or -CHR^wR^x is 2-indanyl or (showing the nitrogen to which it is attached) is

5

- in which T is a single bond or methylene and U is methylene, ethylene, oxy, -S(O)_q- (wherein q is 0, 1 or 2) or imino (which may bear a methyl substituent), or T is
 10 ethan-1,1-diyl and U is a single bond or methylene;
 RY is hydrogen or methyl; and
 R^z is isopropyl, t-butyl, (3-6C)cycloalkyl, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and
 15 hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a 5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon
 20 and may bear one or more methyl substituents on carbon or nitrogen);
 or R^{2A} is -L^b-CH₂-R^b in which -L^b- is a direct bond, -CH₂-, -C(CH₃)H- or -CH₂-CH₂-; and R^b is carboxy, ((1-2C)alkoxy)carbonyl, cyano, carbamoyl or trifluoromethyl;
 25 or R^{2A} is -CO-R^c in which R^c is hydrogen, (1-3C)alkyl, ((1-2C)alkoxy)carbonyl-(CH₂)_c- (in which c is 1 or 2), phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), heteroaryl (which heteroaryl is a 5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is
 30

- 385 -

a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen) or -NR^dR^e in which each of R^d and R^e is

5 independently hydrogen, methyl or ethyl, or -NR^dR^e is pyrrolidino, piperidino, morpholino or thiomorpholino;

Q^{2B} is 1-piperazinyl which bears at the 4-position the group R^{2A} (defined as above);

10 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

Q^{2D} is cyclohexyl which bears at the 4-position the group -NR^sR^t in which each of R^s and R^t independently is hydrogen or methyl or R^s and R^t together are trimethylene or tetramethylene;

15 Q^{2E} is 1-piperidinyl which bears at the 4-position the group -NR^sR^t (defined as above); and

Q^{2F} (showing the L² to which it is attached) is

20 in which R^o is hydrogen, halo, (1-6C)alkyl, hydroxy, (1-4C)alkoxy, benzyloxy or (1-4C)alkylthio; and R^p is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl, dimethylaminosulfonyl or -J-R^q in which J is a single bond, 25 methylene, carbonyl, oxy, -S(O)_q- (wherein q is 0, 1 or 2), or -NR^r- (wherein R^r is hydrogen or methyl); and R^q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl; or -NR^qR^r is pyrrolidino.

- 386 -

2. The compound of formula I as claimed in Claim 1

- 5 (or a pharmaceutically acceptable salt thereof) wherein:
A³, A⁴, A⁵ and A⁶, together with the two carbons to
which they are attached, complete a substituted benzene in
which A³ is CR³, A⁴ is CR⁴, A⁵ is CR⁵, and A⁶ is CR⁶;
wherein

10 R³ is hydrogen, methyl, fluoro, chloro or carboxy;
one of R⁴ and R⁵ is hydrogen, (1-4C)alkyl, halo,
trifluoromethyl, trifluoromethoxy, R^fO-, R^fO₂CCH₂O-,
HO(CH₂)_aO- (in which a is 2, 3 or 4), R^fO₂C-, R^fO₂CCH₂-,
R^gNH- or R^hSO₂-;

15 the other of R⁴ and R⁵ is hydrogen; and
R⁶ is hydrogen, methyl, fluoro, chloro or methoxy;
in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is
hydrogen or R^hSO₂-; and R^h is (1-4C)alkyl or dimethylamino;
L¹ is -CO-NH- such that -L¹-Q¹ is -CO-NH-Q¹;

20 Q¹ is 2-pyridinyl (which bears a methyl, methoxy,
methylthio, fluoro or chloro substituent at the 5-position),
3-pyridinyl (which bears a methyl, fluoro or chloro
substituent at the 6-position), 2-pyrimidinyl (which may
bear a methyl, fluoro or chloro substituent at the
25 5-position) or 3-pyridazinyl (which may bear a methyl,
fluoro or chloro substituent at the 6-position);
R² is -L²-Q² in which -L²- is -NH-CO-, -NH-CO-X-,
-NH-CO-O-X-, -NH-CO-NH-X-, -NH-CH₂- or -O-CH₂-; and Q² is
Q^{2A}, Q^{2B}, Q^{2C}, Q^{2D}, Q^{2E} or Q^{2F} wherein X is a single bond or
30 methylene and the values of L² and Q² are together selected
from -NH-CO-X-Q^{2A}, -NH-CO-O-X-Q^{2A}, -NH-CO-NH-X-Q^{2A},

- 387 -

$-\text{NH}-\text{CH}_2-\text{Q}^{2A}$, $-\text{O}-\text{CH}_2-\text{Q}^{2A}$, $-\text{NH}-\text{CO}-\text{X}-\text{Q}^{2B}$, $-\text{NH}-\text{CO}-\text{Q}^{2C}$,
 $-\text{NH}-\text{CO}-\text{Q}^{2D}$, $-\text{NH}-\text{CO}-\text{Q}^{2E}$ and $-\text{NH}-\text{CO}-\text{Q}^{2F}$ in which:

Q^{2A} (showing the L^2 to which it is attached) is

5

in which

each of m and n independently is 0 or 1, and

R^{2A} is hydrogen, t-butyl, methylsulfonyl, $-\text{CHRYR}^Z$,

10 $-\text{CHR}^W\text{R}^X$, or 4-pyridinyl (which is unsubstituted or bears a substituent R^V at the 2- or 3-position) wherein

R^V is methyl, hydroxymethyl, $\{(1-2\text{C})\text{alkoxy}\}\text{carbonyl}$, cyano, carbamoyl, thiocarbamoyl, or N -hydroxyamidino;

each of R^W and R^X independently is hydrogen or

15 $(1-3\text{C})\text{normal alkyl}$; or $-\text{CHR}^W\text{R}^X$ is 2-indanyl or (showing the nitrogen to which it is attached) is

20 in which T is a single bond or methylene and U is methylene, ethylene, oxy, $-\text{S}(\text{O})_q-$ (wherein q is 0, 1 or 2) or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

R^Y is hydrogen or methyl; and

25 R^Z is isopropyl, t-butyl, $(3-6\text{C})\text{cycloalkyl}$, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a

- 388 -

5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon 5 and may bear one or more methyl substituents on carbon or nitrogen);

Q^{2B} is 1-piperazinyl which bears at the 4-position the group R^{2A} (defined as above);

10 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

Q^{2D} is cyclohexyl which bears at the 4-position the group -NR^sR^t in which each of R^s and R^t independently is hydrogen or methyl or R^s and R^t together are trimethylene or tetramethylene;

15 Q^{2E} is 1-piperidinyl which bears at the 4-position the group -NR^sR^t (defined as above); and

Q^{2F} (showing the L² to which it is attached) is

20 in which R^O is hydrogen, halo, (1-6C)alkyl, hydroxy, (1-4C)alkoxy, benzyloxy or (1-4C)alkylthio; and R^P is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl, dimethylaminosulfonyl or -J-R^Q in which J is a single bond, 25 methylene, carbonyl, oxy, -S(O)_q- (wherein q is 0, 1 or 2), or -NRR^r- (wherein R^r is hydrogen or methyl); and R^Q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl.

- 389 -

3. A compound of formula I (or a pharmaceutically acceptable salt thereof) as claimed in Claim 2 wherein:

A^3 , A^4 , A^5 and A^6 , together with the two carbons to which they are attached, complete a substituted benzene in which A^3 is CR^3 , A^4 is CR^4 , A^5 is CR^5 , and A^6 is CR^6 ;

5 wherein

R^3 is hydrogen;

one of R^4 and R^5 is hydrogen, methyl, fluoro, chloro, trifluoromethyl, trifluoromethoxy, R^fO_2C- or R^gNH- ;

10 the other of R^4 and R^5 is hydrogen; and

R^6 is hydrogen;

in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is hydrogen or R^hSO_2- ; and R^h is (1-4C)alkyl or dimethylamino; L^1 is $-CO-NH-$ such that $-L^1-Q^1$ is $-CO-NH-Q^1$;

15 Q^1 is 2-pyridinyl (which bears a methyl, fluoro or chloro substituent at the 5-position), 3-pyridinyl (which bears a methyl, fluoro or chloro substituent at the 6-position), 2-pyrimidinyl (which may bear a methyl, fluoro or chloro substituent at the 5-position) or 3-pyridazinyl

20 (which may bear a methyl, fluoro or chloro substituent at the 6-position);

R^2 is $-L^2-Q^2$ in which $-L^2-$ is $-NH-CO-$, $-NH-CO-X-$, $-NH-CO-O-X-$, $-NH-CO-NH-X-$, $-NH-CH_2-$ or $-O-CH_2-$; and Q^2 is Q^{2A} , Q^{2B} , Q^{2C} , Q^{2D} , Q^{2E} or Q^{2F} wherein X is a single bond or methylene and the values of L^2 and Q^2 are together selected from $-NH-CO-X-Q^{2A}$, $-NH-CO-O-X-Q^{2A}$, $-NH-CO-NH-X-Q^{2A}$, $-NH-CH_2-Q^{2A}$, $-O-CH_2-Q^{2A}$, $-NH-CO-X-Q^{2B}$, $-NH-CO-Q^{2C}$, $-NH-CO-Q^{2D}$, $-NH-CO-Q^{2E}$ and $-NH-CO-Q^{2F}$ in which:

Q^{2A} (showing the L^2 to which it is attached) is

30

- 390 -

in which

each of m and n independently is 0 or 1, and

R^{2A} is hydrogen, -CHRYR^Z, -CHR^WR^X, or 4-pyridinyl

5 (which is unsubstituted or bears a substituent R^V at the 2- or 3-position) wherein

R^V is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

each of R^W and R^X independently is hydrogen or

10 (1-3C)normal alkyl; or -CHR^WR^X is 2-indanyl or (showing the nitrogen to which it is attached) is

15 in which T is a single bond or methylene and U is methylene, oxy, thioxy or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

R^Z is isopropyl, t-butyl, (3-6C)cyclopropyl, phenyl

20 (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a

5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is

25 a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

Q^{2B} is 1-piperazinyl which bears at the 4-position the

30 group R^{2A} (defined as above);

- 391 -

Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

Q^{2D} is cyclohexyl which bears at the 4-position the group -NR^SR^T in which each of R^S and R^T independently is 5 hydrogen or methyl or R^S and R^T together are trimethylene or tetramethylene;

Q^{2E} is 1-piperidinyl which bears at the 4-position the group -NR^SR^T (defined as above); and

Q^{2F} (showing the L² to which it is attached) is

10

in which R^o is hydrogen and R^p is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl,

15 dimethylaminosulfonyl or -J-R^q in which J is a single bond, methylene, carbonyl, oxy, -S(O)_q- (wherein q is 0, 1 or 2), or -NRR^r- (wherein R^r is hydrogen or methyl); and R^q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl.

20 4. The compound of Claim 1, 2 or 3 wherein halo is fluoro, chloro, bromo or iodo; (1-2C)alkyl is methyl or ethyl; (1-3C)normal alkyl is methyl, ethyl or propyl; (1-4C)alkyl is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, or t-butyl; (1-6C)alkyl is methyl, ethyl, propyl, butyl, pentyl or hexyl; (3-6C)cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

25 5. The compound of any of Claims 1-4 wherein Q¹ is 5-chloropyridin-2-yl, 5-fluoropyridin-2-yl, or 30 6-chloropyridazin-3-yl.

- 392 -

6. The compound of any of Claims 1-5 wherein R² is
(1-isopropylpiperidin-4-ylcarbonyl)amino,
(1-cyclohexylpiperidin-4-ylcarbonyl)amino,
(4-isopropylpiperazin-1-ylcarbonyl)amino, [1-(tetrahydro-
5 pyran-4-yl)piperidin-4-ylcarbonyl]amino, [4-(1-pyrroli-
danyl)piperidin-1-ylcarbonyl]amino, [1-(4-pyridinyl)piper-
idin-4-ylmethyl]amino, [1-(2-carboxypyridin-4-yl)piperidin-
4-ylmethyl]amino, or [1-(2-methoxycarbonylpyridin-4-yl)-
piperidin-4-ylmethyl]amino.

10

7. The compound as claimed in any of Claims 1-6
wherein each of R³-R⁶ is hydrogen.

8. The compound as claimed in any of Claims 1-6
15 wherein each of R³, R⁴ and R⁶ is hydrogen and R⁵ is chloro
or fluoro.

9. The compound as claimed in any of Claims 1, 4, 5
and 6 wherein each of R³, R⁴ and R⁶ is hydrogen and R⁵ is R^a
20 wherein R^a is phenyl, furanyl, thienyl, 2-isothiazolyl or
pyridyl.

10. The pharmaceutically acceptable salt of a compound
of formula I as claimed in any of Claims 1-9 which is an
acid-addition salt made from a basic compound of formula I
25 and an acid which provides a pharmaceutically acceptable
anion or a salt which is made from an acidic compound of
formula I and a base which provides a pharmaceutically
acceptable cation.

30

11. A pharmaceutical formulation comprising in
association with a pharmaceutically acceptable carrier,
diluent or excipient, a novel compound of formula I (or a

- 393 -

pharmaceutically acceptable salt thereof) as provided in any of Claims 1-10.

12. A process for preparing a compound of formula I
5 (or a pharmaceutically acceptable salt thereof) as provided in Claim 1 or 2 which is selected from

(A) for a compound of formula I in which $-L^2-Q^2$, is $-NH-CO-Q^2$, $-NH-CO-X-Q^2$, $-NH-CO-O-X-Q^2$ or $-NH-CO-NH-X-Q^2$, acylating an amine of formula II,

10

using a corresponding acid of formula $HO-CO-Q^2$, $HO-CO-X-Q^2$, $HO-CO-O-X-Q^2$, or $HO-CO-NH-X-Q^2$, or an activated derivative 15 thereof;

(B) for a compound of formula I in which $-L^2-Q^2$ is $-O-CH_2-Q^2A$, alkylating a phenol of formula III

20

using a reagent of formula $Y-CH_2-Q^2A$ in which Y is a conventional leaving group;

(C) acylating an amine of formula H_2N-Q^1 , or a deprotonated derivative thereof, using an acid of formula 25 IV, or an activated derivative thereof;

- 394 -

- (D) for a compound of formula I in which R² is -NH-CH₂-Q^{2A}, alkylating an amine of formula II directly,
 5 using a compound of formula Y-CH₂-Q^{2A}, or indirectly by reductive alkylation using an aldehyde of formula Q^{2A}-CHO;
- (E) for a compound of formula I in which R² is -NH-CO-O-X-Q^{2A}, or -NH-CO-NH-X-Q^{2A}, acylating an alcohol of formula HO-X-Q^{2A} or an amine of formula NH₂-X-Q^{2A}, using an
 10 activated derivative of an acid of formula VI;

- (F) for a compound of formula I in which R² is -NH-CO-X-Q^{2B} in which X is a single bond, acylating at the 15 1-position a piperazine of formula H-Q^{2B}, using an activated derivative of an acid of formula VI;

- (G) for a compound of formula I in which R² is -NH-CO-X-Q^{2B} in which X is methylene, alkylating at the 20 1-position a piperazine of formula H-Q^{2B}, using an alkylating agent of formula VII

in which Y is a leaving group;

- (H) for a compound of formula I in which R^{2A} is 25 methylsulfonyl, substituting the amino nitrogen of a

- 395 -

corresponding compound of formula I in which R^{2A} is hydrogen using an activated derivative of methanesulfonic acid;

(I) for a compound of formula I in which R^{2A} is -CHRYR^Z or -CHRWR^X, alkylating the amino nitrogen of a corresponding compound of formula I in which R^{2A} is hydrogen using an alkylating agent of formula Y-CHRYR^Z or Y-CHRWR^X or reductively alkylating the amine using a compound of formula RY-CO-R^Z or RW-CO-R^X;

(J) for a compound of formula I in which R^{2A} is 10 4-pyridinyl (which is unsubstituted or bears a substituent R^V at the 2- or 3-position), substituting the amino nitrogen of a corresponding compound of formula I in which R^{2A} is hydrogen using a corresponding pyridine reagent bearing a leaving group Y at the 4-position;

(K) for a compound of formula I in which R^{2A} is 15 4-pyridinyl in which R^V is alkoxy carbonyl, esterifying a corresponding compound of formula I in which R^V is carboxy;

(L) for a compound of formula I in which R^{2A} is 20 4-pyridinyl in which R^V is hydroxymethyl, reducing the ester of a corresponding compound of formula I in which R^V is alkoxy carbonyl;

(M) for a compound of formula I in which R^{2A} is 25 4-pyridinyl in which R^V is carbamoyl, amidating the ester of a corresponding compound of formula I in which R^V is alkoxy carbonyl;

(N) for a compound of formula I in which R^{2A} is 30 4-pyridinyl in which R^V is thiocarbamoyl, adding H₂S to the nitrile of a corresponding compound of formula I in which R^V is cyano;

(O) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^V is N-hydroxy amidino, adding H₂NOH to the nitrile of a corresponding compound of formula I in which R^V is cyano;

- 396 -

(P) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^V is carboxy, decomposing the ester of a corresponding compound of formula I in which R^V is alkoxy carbonyl;

5 (Q) for a compound of formula I in which -NRS^t is other than amino, alkylating a corresponding compound of formula I in which -NRS^t is amino using a conventional method;

10 (R) for a compound of formula I which bears -NRS^t, reductively alkylating H-NRS^t using a corresponding compound but in which the carbon to bear the -NRS^t group bears an oxo group;

15 (S) for a compound of formula I in which RP is 1-hydroxy-1-methylethyl, adding a methyl group to the carbonyl group of a corresponding compound of formula I in which RP is acetyl using an organometallic reagent;

20 (T) for a compound of formula I in which RP is 1-methoxy-1-methylethyl, treating a corresponding compound of formula I in which RP is 1-hydroxy-1-methylethyl with methanol and an acid catalyst;

(U) for a compound of formula I in which R⁴ or R⁵ is amino, reducing the nitro group of a compound corresponding to a compound of formula I but in which R⁴ or R⁵ is nitro;

25 (V) for a compound of formula I in which R⁴ or R⁵ is R⁹NH- and R⁹ is R^hSO₂-, substituting the amino group of a corresponding compound of formula I in which R⁴ or R⁵ is amino using an activated derivative of the sulfonic acid R^hSO₂-OH;

30 whereafter, for any of the above procedures, when a functional group is protected using a protecting group, removing the protecting group;

whereafter, for any of the above procedures, when a pharmaceutically acceptable salt of a compound of formula I is required, it is obtained by reacting the basic form of a

- 397 -

basic compound of formula I with an acid affording a physiologically acceptable counterion or the acidic form of an acidic compound of formula I with a base affording a physiologically acceptable counterion or by any other
5 conventional procedure;

and wherein, unless otherwise specified, A³-A⁶, L¹, Q¹ and R² have any of the values defined in Claim 1 or 2.

13. A method of inhibiting factor Xa comprising
10 administering to a mammal in need of treatment, a compound of formula I as provided in any of Claims 1-10.

14. The use of a factor Xa inhibiting compound of formula I substantially as hereinbefore described with
15 reference to any of the examples.

15. A novel compound of formula I substantially as hereinbefore described with reference to any of the examples.

20 16. A process for preparing a novel compound of formula I substantially as hereinbefore described with reference to any of the examples.