EE1101 Signals and Systems JAN—MAY 2019 Tutorial 8

1. (a) If $x(t) \longleftrightarrow X(j\omega)$, then show that

$$X(0) = \int_{-\infty}^{\infty} x(t)dt$$

- (b) Given $\operatorname{sinc} t = \frac{\sin \pi t}{\pi t}$, show that $\int_{-\infty}^{\infty} \operatorname{sinc} t \ dt = \int_{-\infty}^{\infty} \operatorname{sinc}^2 t \ dt = 1$
- 2. Given two signals $f_1(t) = 2 \operatorname{rect}(t/4)$ and $f_2(t) = \operatorname{rect}(t/2)$
 - (a) Sketch $g(t) = f_1(t) \star f_2(t)$
 - (b) Evaluate $G(j\omega)$, the fourier transform of g(t).
 - (c) Sketch the magnitude and phase of $G(j\omega)$

$$Note: \operatorname{rect}\left(\frac{t}{\tau}\right) = \begin{cases} 1 &, |t| \leq \frac{\tau}{2} \\ 0 &, |t| > \frac{\tau}{2} \end{cases}$$

3. Using properties, find the Fourier transform $X(j\omega)$ of the signal x(t) shown below.

4. Determine the signal x(t) corresponding to the following Fourier transforms:

(a)
$$X(j\omega) = \frac{2\sin[3(\omega - 2\pi)]}{(\omega - 2\pi)}$$

(b)
$$X(j\omega) = \cos\left(4\omega + \frac{\pi}{3}\right)$$

5. Let $X(j\omega)$ be the Fourier transform of the signal x(t) shown below. Do the following computations without explicitly evaluating $X(j\omega)$.

(a) Find X(0)

(b) Evaluate
$$\int_{-\infty}^{\infty} X(j\omega)d\omega$$

- (c) Evaluate $\int_{-\infty}^{\infty} X(j\omega)e^{j\omega}d\omega$
- (d) Evaluate $\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$

(e) Sketch the inverse Fourier transform of $Re\{X(j\omega)\}$.

6. Let p(t) be periodic triangular pulse train shown below.

- (a) Calculate P_n , the exponential Fourier series coefficients of p(t) and sketch P_n vs. n. Calculate $P(j\omega)$, the Fourier transform of p(t). Sketch $P(j\omega)$ vs. ω .
- (b) Let x(t) be an aperiodic signal having Fourier transform $X(j\omega)$. Define $y(t) = p(t) \cdot x(t)$. Find an expression for $Y(j\omega)$, the Fourier transform of y(t).
- (c) Let $x(t) = \operatorname{sinc}(t)$. Sketch $Y(j\omega)$.

7. x(t) and y(t) have Fourier transforms as shown below. Sketch the Fourier transform of the various signals $z_i(t)$ for i=1, 2, 3, 4 in the system shown below given that $z_1(t) = x(t)\cos(\omega_1 t) + y(t)\cos(\omega_2 t)$. Determine $z_4(t)$ in terms of x(t) and y(t)? Assume that $\omega_1 = \omega_2 - 2W = 5W$.

8. In the sampling process, x(t), the signal to be sampled is multiplied by the impulse train, yielding the sampled signal $x_s(t)$. In order to perform reconstruction, we pass $x_s(t)$ through the ideal low pass filter, yielding the reconstructed signal $x_{sr}(t)$.

- (a) Write $X_s(j\omega)$, the Fourier transform of $x_s(t)$ in terms of $X(j\omega)$, the Fourier transform of x(t). Your answer should be an explicit, closed form expression, not one involving a convolution integral.
- (b) Let x(t) have the Fourier transform shown.

Sketch $X_s(j\omega)$ for the cases (i) $T=\frac{1}{4B}$ (ii) $T=\frac{1}{2B}$ (iii) $T=\frac{1}{B}$.

- (c) For the three cases considered in part (b), sketch $X_{sr}(j\omega)$, the Fourier transform of $x_{sr}(t)$.
- (d) For an arbitrary signal x(t) that occupies a bandwidth of $2\pi B$ rad/s, what is the largest T such that $X_{sr}(j\omega) = X(j\omega)$, i.e. $x_{sr}(t) = x(t)$
- (a) Determine the Nyquist rate corresponding to each of the following sig-

(i)
$$x_1(t) = \frac{\sin(4000\pi t)}{\pi t}$$

(i)
$$x_1(t) = \frac{\sin(4000\pi t)}{\pi t}$$

(ii) $x_2(t) = \left(\frac{\sin(4000\pi t)}{\pi t}\right)^2$

(b) The signal y(t) is generated by convolving a band-limited signal $x_1(t)$ with another band-limited signal $x_2(t)$, that is,

$$y(t) = x_1(t) * x_2(t)$$

where

$$X_1(j\omega) = 0$$
 for $|\omega| > 1000\pi$

$$X_2(j\omega) = 0$$
 for $|\omega| > 2000\pi$

Suppose impulse train sampling is performed on y(t), specify the range of values for the sampling period Twhich ensures that y(t) is recoverable from the samples.