PLSC 503 – Spring 2022 Bootstrapping and Missing Data

March 16, 2022

Bootstrapping...

The population is to the sample as the sample is to the bootstrap sample.

Practical (Nonparametric) Bootstrapping

- Draw one bootstrap sample of size *N* with replacement from the original data,
- Estimate the parameter(s) $\tilde{\theta}_{k \times 1}$,
- Repeat steps 1 and 2 R times, to get $\tilde{\theta}_r$, $r \in \{1, 2, ...R\}$, comprising elements $\tilde{\theta}_{rk}$,
- Examine the empirical characteristics of the resulting distribution(s) of $\tilde{\theta}_{rk}$.

Why Bootstrap?

- It's intuitive.
- It's simple.
- It's robust.

Bootstrapping: "By Hand"

```
N<-10 # small sample!
reps<-1001
set.seed(1337)
X<-rnorm(N)
Y < -2 + 2 \times X + rnorm(N)
data<-data.frame(Y,X)
fitOLS<-lm(Y~X)
CI<-confint(fitOLS)
BO<-numeric(reps)
B1<-numeric(reps)
for (i in 1:reps) {
  temp<-data[sample(1:N,N,replace=TRUE),]
  temp.lm<-lm(Y~X,data=temp)
  B0[i]<-temp.lm$coefficients[1]
  B1[i]<-temp.lm$coefficients[2]
BvHandB0<-median(B0)
ByHandB1<-median(B1)
ByHandCI.BO<-quantile(B0,probs=c(0.025,0.975)) # <-- 95% c.i.s
ByHandCI.B1<-quantile(B1,probs=c(0.025,0.975))
```

Normal Residuals...

Bootstrapping Via boot

Bootstrapping Via simpleboot

```
library(simpleboot)
Simple<-lm.boot(fitOLS,reps)
SimpleB0<-perc(Simple,.50)[1]
SimpleB1<-perc(Simple,.50)[2]
Simple.CIs<-perc(Simple,perc(0.025,0.975))</pre>
```

Bootstrapping Results

Bootstrapping: Skewed Residuals

```
N<-10
reps<-1001
set.seed(1337)
X<-rnorm(N)
ustar<-rgamma(N,shape=0.2,scale=1)*6 # <- skewed u.s
Y<-2+2*X+(ustar-mean(ustar))
data<-data.frame(Y,X)
fitOLS<-lm(Y'X)
CI<-confinit(fitOLS)
```


Skewed Residuals: Results

Bootstrapping Resources

R things:

- A simple introduction at StatMethods
- Bootstrap in R (at DataCamp)
- Packages: boot, bootstrap, simpleboot, car::Boot, broom (tidy), many more

Other Resources:

- Efron's original (1979) paper
- Chernick and Labudde (2011) (a solid R-based bootstrapping book)
- Many other books, etc.

Missing Data

Missing Data, Part I: Why?

Why are data missing?

- The observation itself does not exist
- Data don't exist for that observation
- Data exist, but are impossible to measure
- Data exist, but were not measured

Missing Data, Part II: Flavors

Notation:

$$X_i \in \{W_i, Z_i\}$$

 \mathbf{W}_i have some missing values, \mathbf{Z}_i are "complete"

$$R_{ik} = \begin{cases} 1 & \text{if } W_{ik} \text{ is missing,} \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi_{ik} = \Pr(R_{ik} = 1)$$

Missing Data, Part II: Rubin's Flavors

Missing completely at random ("MCAR"):

$$\textbf{R} \perp \{\textbf{Z}, \textbf{W}\}$$

Missing at random ("MAR"):

 $\mathbf{R} \perp \mathbf{W} | \mathbf{Z}$

Anything else is "informatively" (or "non-ignorably," or sometimes "MNAR") missing.

MCAR vs. MAR vs. MNAR, Explained

H: Homework

H*: Homework with missing values

A: Attribute of student

D: Dog (missingness mechanism)

(Source)

Missing Data: Consequences

In general:

MCAR:

- · Missing data are a fully random sample of all the data
- $\cdot \to \mathsf{Missingness}$ does not bias $\hat{\theta}$, but
- · There is some loss of information (and therefore efficiency)

MAR

- · Missing data are a nonrandom sample of all the data
- · Ignoring missingness can lead to bias in $\hat{\theta}$, but
- · Conditioning on the variable(s) that drive the missingness can eliminate the bias

• Informative Missingness / MNAR

- · Missing data are a nonrandom sample of all the data
- · Ignoring missingness can lead to bias in $\hat{ heta}$
- · In general, conditioning cannot eliminate the bias

Example, Simulated

```
> set.seed(7222009)
> Npop <- 1000
> X<-runif(Npop,0,10) # NOTE: X, Z are correlated a bit...
> Z<-(0.3*X)+(0.7*runif(Npop,0,10))
> Y<-0+(2*X)+(2*Z)+rnorm(Npop,mean=0,sd=4)</pre>
> DF<-data.frame(X=X,Z=Z,Y=Y)
> fit.pop<-lm(Y~X+Z,DF)</pre>
> summary(fit.pop)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4051 0.3260 1.24
                                          0.21
Х
             1.9553 0.0466 41.97 <2e-16 ***
7.
             1.9812 0.0617 32.09 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.98 on 997 degrees of freedom
Multiple R-squared: 0.823, Adjusted R-squared: 0.823
F-statistic: 2.32e+03 on 2 and 997 DF, p-value: <2e-16
```

Simulated MCAR

```
> pmis < -0.50
> DF$Ymcar<-rbinom(Npop,1,pmis)</pre>
> DF$Ymcar<-ifelse(DF$Ymcar==1,NA,DF$Y)</pre>
>
> # Regression w/listwise deletion:
>
> fit.s<-lm(Ymcar~X+Z,DF) # <-- looks fine
> summary(fit.s)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4442 0.4653 0.95 0.34
Х
             1.9661 0.0658 29.87 <2e-16 ***
             1.9763 0.0862 22.92 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4 on 507 degrees of freedom
  (490 observations deleted due to missingness)
Multiple R-squared: 0.822, Adjusted R-squared: 0.821
F-statistic: 1.17e+03 on 2 and 507 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

Simulated MAR Y

```
> set.seed(7222009)
> DF$Ymar<-rbinom(Npop,1,(DF$Z/10))</pre>
> DF$Ymar<-ifelse(DF$Ymar==1,NA,DF$Y)</pre>
>
> summary(lm(Ymar~X,DF))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.6600 0.3610 10.1 <2e-16 ***
             2.9923 0.0648 46.2 <2e-16 ***
Х
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.75 on 547 degrees of freedom
  (451 observations deleted due to missingness)
Multiple R-squared: 0.796, Adjusted R-squared: 0.795
F-statistic: 2.13e+03 on 1 and 547 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

More MAR: Add Z...

```
> summary(lm(Ymar~X+Z,DF))
Call:
lm(formula = Ymar ~ X + Z, data = DF)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2529
                       0.4367 0.58 0.56
             2.0200 0.0663 30.49 <2e-16 ***
X
            1.9499 0.0979 19.91 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.02 on 499 degrees of freedom
  (498 observations deleted due to missingness)
Multiple R-squared: 0.801, Adjusted R-squared:
F-statistic: 1e+03 on 2 and 499 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

Informative Missingness / "MNAR"

```
> set.seed(7222009)
> DF$Yim<-rbinom(Npop,1,rescale(DF$Z-(4*DF$Y)))</pre>
> DF$Yim<-ifelse(DF$Yim==1,NA,DF$Y)</pre>
>
> summary(lm(Yim~X+Z,DF))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0518 0.5463 3.76 0.00019 ***
           1.8420 0.0671 27.45 < 2e-16 ***
X
             1.9171 0.0859 22.32 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.85 on 465 degrees of freedom
  (532 observations deleted due to missingness)
Multiple R-squared: 0.797, Adjusted R-squared: 0.796
F-statistic: 911 on 2 and 465 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

A Real-Data Examples: 2020 ANES

Model is:

```
Biden Thermometer; = \beta_0 + \beta_1 R's Conservatism; +
= \beta_2 R Labor Union; + \beta_3 Female_i +
= \beta_4 Latino_i + \beta_5 Age / 10_i +
= \beta_6 Education_i + u_i
```

Data: ANES 2016-2020 Panel data, 2020 pre-election survey (N = 2839).

Three models:

- All data (N = 2291)
- 67% MCAR (via simulation) (N = 709)
- (MNAR) Data *only* on individuals who stated that they "strongly approved" of how then-President Trump was doing his job (N=743)

Biden Thermometer Models

	Dependent variable: Biden Thermometer Rating				
	All Data	MCAR	MNAR		
R's Conservatism	-13.841***	-13.817***	-6.354***		
	(0.319)	(0.538)	(0.561)		
R Labor Union	0.325	0.844	-3.714*		
	(1.485)	(2.640)	(1.906)		
Female	2.317**	4.621**	0.783		
	(1.058)	(1.828)	(1.224)		
Latino	8.842***	12.077***	1.550		
	(1.824)	(3.129)	(2.524)		
Age / 10	3.131***	3.142***	0.490		
0.,	(0.328)	(0.563)	(0.394)		
Education	1.204**	0.690	-0.427		
	(0.498)	(0.864)	(0.603)		
Constant	83.222***	83.938***	47.563***		
	(3.039)	(5.198)	(4.165)		
Observations	2,291	709	743		
R^2	0.478	0.512	0.159		
Adjusted R ²	0.477	0.508	0.152		
Residual Std. Error	25.104 (df = 2284)	24.066 (df = 702)	16.616 (df = 736		

Note:

p < 0.1; **p < 0.05; ***p < 0.01

Biden Thermometer Models (II)

How Much Missing Data Is A Problem?

"It is often supposed that there exists something like a critical missing rate up to which missing values are not too dangerous. The belief in such a global missing rate is rather stupid."

- Vach (1994, 113)

What to Do About Missing Data?

- Listwise Deletion...
- Mean Substitution / Imputation
- "Nearest Neighbor" methods
- "Hot Deck" Imputation
- Multiple Imputation
- Model-Based Solutions

MAR Data

For MAR data:

$$R \perp W|Z$$

so W and Z factorize independently.

Sources of variation we need to consider:

- 1. Prediction
- 2. Predictive variation
- 3. Parameter variation / uncertainty

MAR: Multiple Imputation

Multiple Imputation (continued)

Original Data X With Missing Data

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X_{31}	X_{41}		X_{K1}
2	•	X_{22}	X_{32}	•		X_{K2}
3	X ₁₃	X_{23}	•	X_{43}		X_{K3}
4	X ₁₄	•	X_{34}	X_{44}		X_{K4}
5	•	X_{25}	X_{35}	•		•
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•		•	•	•	•	•
Ν	X _{1 N}	X2N	X3N	XAN		XKN

Multiple Imputation (continued)

Iteration One:

Step One: "Fill In" Missing Values of X

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X ₃₁	X_{41}		X_{K1}
2	R_{12}	X_{22}	X_{32}	R_{42}		X_{K2}
3	X_{13}	X_{23}	R_{33}	X_{43}		X_{K3}
4	X_{14}	R_{24}	X_{34}	X_{44}		X_{K4}
5	R_{15}	X_{25}	X_{35}	R_{45}		R_{K5}
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:			:		:	:
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Two: Use $\{X_2, X_3, ... X_K\}$ To Impute X_1^{mis}

i	X_1	X_2	<i>X</i> ₃	X_4		X_K
1	X_{11}	X ₂₁	X ₃₁	X ₄₁		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X_{32}	R_{42}		X_{K2}
3	X_{13}	X_{23}	R_{33}	X_{43}		X_{K3}
4	X ₁₄	R_{24}	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X ₃₅	R_{45}		R_{K5}
6	X ₁₆	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•	•	•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Three: Use The Imputed X_1 , Along With $\{X_3, X_4, ... X_K\}$ To Impute X_2^{mis}

i	X_1	X_2	<i>X</i> ₃	X_4		X_K
1	X ₁₁	X_{21}	X ₃₁	X_{41}		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X_{32}	R_{42}		X_{K2}
3	X_{13}	X_{23}	R_{33}	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(1)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X_{35}	R_{45}		R_{K5}
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:		:	•	:	:
•	•	•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Four: Use The Imputed X_1 and X_2 , Along With $\{X_4,...X_K\}$ To Impute X_3^{mis}

i	X_1	X_2	<i>X</i> ₃	X_4		X_K
1	X ₁₁	X_{21}	X_{31}	X_{41}		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X ₃₂	R_{42}		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X_{14}	$I_{24}^{(1)}$	X ₃₄	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X ₃₅	R_{45}		R_{K5}
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:		:	:	:
•		•	•	•	•	•
Ν	X_{1N}	X_{2N}	X _{3N}	X_{4N}		X_{KN}

(etc.)

Step K + 1: Use The Imputed $X_1, X_2, ... X_{K-1}$ To Impute X_K^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X ₃₁	X_{41}		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X_{32}	$I_{42}^{(1)}$		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X_{14}	$I_{24}^{(1)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X_{35}	$I_{45}^{(1)}$		$I_{K5}^{(1)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•		•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Iteration Two:

Step One: Use The Imputed $X_2, X_3, ... X_K$ To Impute X_1^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X_{11}	X_{21}	X_{31}	X_{41}		X_{K1}
2	$I_{12}^{(2)}$	X_{22}	X_{32}	$I_{42}^{(1)}$		X_{K2}
3	<i>X</i> ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(1)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(2)}$	X_{25}	X_{35}	$I_{45}^{(1)}$		$I_{K5}^{(1)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	•	•	:	:
•	•	•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Two: Use The Imputed $X_1, X_3, ... X_K$ To Impute X_2^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X_{11}	X_{21}	X ₃₁	X_{41}		X_{K1}
2	$I_{12}^{(2)}$	X ₂₂	X_{32}	$I_{42}^{(1)}$		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(2)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(2)}$	X_{25}	X_{35}	$I_{45}^{(1)}$		$I_{K5}^{(1)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:		:	:	:	:
•		•	•	-	•	•
Ν	X _{1 N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

(etc.)

Step K: Use The Imputed $X_1, X_2, ... X_{K-1}$ To Impute X_K^{mis}

i	X ₁	X_2	X_3	X_4		X_K
1	X ₁₁	X ₂₁	X ₃₁	X ₄₁		X_{K1}
2	$I_{12}^{(2)}$	X_{22}	X_{32}	$I_{42}^{(2)}$		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(2)}$	X ₄₃		X_{K3}
4	X ₁₄	$I_{24}^{(2)}$	X ₃₄	X_{44}		X_{K4}
5	$I_{15}^{(2)}$	X_{25}	X ₃₅	$I_{45}^{(2)}$		$I_{K5}^{(2)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•		-	•	•	•	
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Multiple Imputation: Summary

- Repeat this process for $J \approx 10$ iterations until convergence of the $I_{\rm Li}^{(j)}$ s.
- Output the resulting imputed data $\mathbf{X}^{(1)}$.
- Repeat this entire process M times to create M imputed datasets $\{\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, ... \mathbf{X}^{(M)}\}.$
- Rule of thumb: M ≥ the percentage of cases in your data with missingness.
- Estimate models and conduct inference using multiple analysis and model averaging (see e.g. Schafer 1997, Ch. 4).

MNAR Data

For MNAR data:

$$Pr(\mathbf{R}) = f(\mathbf{W}, \mathbf{Z})$$

i.e., missingness is nonignorable.

Common causes / situations:

- Omitted variables (→ can't condition on all elements of Z)
- Differential response due to unmeasured factors
- Truncation / censoring

MNAR and Model-Based Solutions

For MNAR data, we must model the joint distribution Pr(X, R)...

Approaches:

- Selection model: Pr(X, R) = Pr(X) Pr(R|X)
 - · E.g., Heckman (1976, 1979, etc.)
 - · Specifies a (usually, regression) model for $Pr(\mathbf{R} \mid X)$

• Pattern-Mixture model:
$$Pr(\mathbf{X}, \mathbf{R}) = Pr(\mathbf{X}|\mathbf{R}) Pr(\mathbf{X})$$

= $Pr(\mathbf{X}|\mathbf{R} = 0) Pr(\mathbf{R} = 0) + Pr(\mathbf{X}|\mathbf{R} = 1) Pr(\mathbf{R} = 1)$

- · E.g., Glynn, Laird, and Rubin (1986)
- · Mixture-type model across "responders" and "non-responders"
- Others... [see, e.g., Little and Rubin (2002)]

Missing Data Resources, R and Otherwise

- The Missing Data CRAN Task View
- Packages:
 - · Amelia
 - · mi, mice, and miceFast
 - miceMNAR (MNAR imputation using a Heckman-style selection model)
 - naniar (tidy-cult, but enables cool visualizations)
 - VIM (joint visualization and imputation of missing data; also used to have a GUI)
 - · Many others...
- van Buuren's Flexible Imputation of Missing Data e-book