Topic: Graphing log functions

Question: Will the graph of the function have a vertical asymptote or a horizontal asymptote?

$$y = \log_2(x+2)$$

Answer choices:

- A It will have a vertical asymptote at x = -2
- B It will have a vertical asymptote at x = 2
- C It will have a horizontal asymptote at y = -2
- D It will have a horizontal asymptote at y = 2

Solution: A

Because $y = \log_2(x+2)$ is a logarithmic equation, its graph will have a vertical asymptote. To find it, we'll first use the general log rule to convert the logarithmic equation $\log_2(x+2)$ to its exponential form,

$$2^y = x + 2$$

$$x = 2^y - 2$$

We'll then plug both y=100 and y=-100 into the equation $x=2^y-2$, to see what happens to the value of x as $y\to\infty$ and as $y\to-\infty$.

For y = 100:

$$x = 2^{100} - 2$$

x = a very large positive number -2

x = a very large positive number

$$x = \infty$$

For y = -100:

$$x = 2^{-100} - 2$$

$$x = \frac{1}{2^{100}} - 2$$

$$x = \frac{1}{\text{a very large positive number}} - 2$$

x = a very small positive number -2

$$x = 0 - 2$$

$$x = -2$$

Plugging in y = 100 and y = -100 gives us a picture of the end behavior of the graph of the function. The results tell us that the function has a vertical asymptote at x = -2, and that the graph will tend toward ∞ as $x \to \infty$.

If we sketch the graph of the function, we can see this.

Topic: Graphing log functions

Question: Sketch the graph of the logarithmic function.

$$y = -\frac{1}{3}\log_3(x+1)$$

Answer choices:

В

Α

C

D

Solution: C

Use algebra to isolate the expression $log_3(x + 1)$.

$$y = -\frac{1}{3}\log_3(x+1)$$

$$-3y = \log_3(x+1)$$

Use the general log rule to convert this logarithmic equation to its exponential form.

$$3^{-3y} = x + 1$$

$$x = 3^{-3y} - 1$$

Plug in y = 100 and y = -100 to determine what happens to the value of x as $y \to \infty$ and as $y \to -\infty$.

For y = 100:

$$x = 3^{-3(100)} - 1$$

$$x = 3^{-300} - 1$$

$$x = \frac{1}{3300} - 1$$

$$x = \frac{1}{\text{a very large positive number}} - 1$$

x = a very small positive number -1

$$x = 0 - 1$$

$$x = -1$$

For y = -100:

$$x = 3^{-3(-100)} - 1$$

$$x = 3^{300} - 1$$

x = a very large positive number -1

x = a very large positive number

$$x = \infty$$

Therefore, x = -1 will be a vertical asymptote, and as x tends toward ∞ , the function will curl down toward $-\infty$.

We'll plug in a few easy-to-calculate points, like y = -1/3, 0, 1/3 in order to get some points of the graph of the equation $x = 3^{-3y} - 1$ that we can plot.

For y = 0:

$$x = 3^{-3(0)} - 1$$

$$x = 3^0 - 1$$

$$x = 1 - 1$$

$$x = 0$$

For
$$y = -1/3$$
:

$$x = 3^{-3(-1/3)} - 1$$

$$x = 3^1 - 1$$

$$x = 3 - 1$$

$$x = 2$$

For
$$y = 1/3$$
:

$$x = 3^{-3(1/3)} - 1$$

$$x = 3^{-1} - 1$$

$$x = \frac{1}{3} - 1$$

$$x = -\frac{2}{3}$$

Now we have three points on the graph of the equation $x = 3^{-3y} - 1$: (0,0), (2, -1/3), and (-2/3,1/3). If we plot these three points and draw the vertical asymptote, x = -1, we get

We can see, as we expected, that the exponential function will skim along the vertical asymptote x = -1, and then as $x \to \infty$, the function's value heads toward $-\infty$. Connecting the points on the function gives

Topic: Graphing log functions

Question: Sketch the graph of the logarithmic equation.

$$x = 2\log_2(y - 2)$$

Answer choices:

В

. . .

C

Α

D

Solution: D

Use algebra to isolate the expression $log_2(y-2)$.

$$x = 2\log_2(y - 2)$$

$$\frac{x}{2} = \log_2(y - 2)$$

Use the general log rule to convert this logarithmic equation to its exponential form.

$$2^{\frac{x}{2}} = y - 2$$

$$y = 2^{\frac{x}{2}} + 2$$

Plug in x=100 and x=-100 to see what the function is doing as x starts getting close to $-\infty$ or $+\infty$.

For x = 100:

$$y = 2^{\frac{100}{2}} + 2$$

$$y = 2^{50} + 2$$

y = a very large positive number + 2

y = a very large positive number

$$y = \infty$$

For x = -100:

$$y = 2^{\frac{-100}{2}} + 2$$

$$y = 2^{-50} + 2$$

$$y = \frac{1}{2^{50}} + 2$$

$$y = \frac{1}{\text{a very large positive number}} + 2$$

y = a very small positive number +2

$$y = 0 + 2$$

$$y = 2$$

Therefore, y=2 will be a horizontal asymptote, and as x tends toward ∞ , the function will curl up toward ∞ .

We'll plug in a few easy-to-calculate points, like x = -1, 0, 1 in order to get some points of the graph of the function $y = 2^{\frac{x}{2}} + 2$ that we can plot.

For x = 0:

$$y = 2^{\frac{0}{2}} + 2$$

$$y = 2^0 + 2$$

$$y = 1 + 2$$

$$y = 3$$

For x = -1:

$$y = 2^{\frac{-1}{2}} + 2$$

$$y = \frac{1}{2^{\frac{1}{2}}} + 2$$

$$y = \frac{1}{\sqrt{2}} + 2$$

$$y = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} \right) + 2$$

$$y = \frac{\sqrt{2}}{2} + 2\left(\frac{2}{2}\right)$$

$$y = \frac{\sqrt{2} + 4}{2}$$

$$y \approx 2.7071$$

For x = 1:

$$y = 2^{\frac{1}{2}} + 2$$

$$y = \sqrt{2} + 2$$

$$y \approx 3.4142$$

Now we have three points on the graph of the function $y = 2^{\frac{x}{2}} + 2$: (0,3), (-1,2.7071), and (1,3.4142). Since the graph of the function $y = 2^{\frac{x}{2}} + 2$ is identical to the graph of the equation $x = 2\log_2(y-2)$, they are also points of the graph of the equation $x = 2\log_2(y-2)$. If we plot these three points and draw the horizontal asymptote, y = 2, we get

We can see, as we expected, that the logarithmic function will skim along the horizontal asymptote y = 2, and then as $x \to \infty$, the function's value heads toward ∞ . Connecting the points on the function gives

