

### Goals Of The Project

#### Telescope Handling

Basic Telescope Handling Exploring the night sky

#### Softwares Of OAAR

Arduino
MATLAB
Python Libraries (Numpy, Astropy)
DDW
FocusMax, ASCOM

### Astrophotography

Mastering Astrophotography

#### Simulation

Universe Sandbox Stellarium

# **WEEK1**

- ☐ Coordinate System
- ☐ Types of Telescopes
- ☐ Parts of Telescope
  - ☐ Types of Mounts

#### Equatorial coordinate system:



We assume a big celestial sphere in which earth is present

RA is similar to longitude and Dec is like latitude

#### Azimuthal coordinate system:



This coordinate system uses observer local horizon as the plane fixed to location of Earth, not stars unlike equatorial system

#### Other coordinate

Ecliptic coordinate system Galactic coordinate system Supergalactic coordinate system.

# PARTS OF A



Reflective

**Uses Mirrors** 



**TYPES OF TELESCOPES** 

## TYPES OF MOUNTS



Alt-Az



Equatorial

# WEEK 2

- ☐ Observatory Tour
  - □ Python
  - ☐ Arduino

AH YES

A GOAT



## Observatory Tour









## Why use Python?!

- 1. Data analysis and visualization
- 2. Interfacing with astronomical software
- 3. Machine learning and simulations





## **Takeaways**

- Basics including functions
- Numpy Library: NumPy is a powerful Python library for scientific computing that provides support for large, multidimensional arrays and a wide range of mathematical functions.

We did an assignment based on python and numpy





## Arduino

Arduino is a free and opensource electronics platform that includes both hardware and software. The Arduino board, a development board with a microcontroller at its core, is what makes Arduino tick.



### What is a Microcontroller?

- To operate electrical equipment, a microcontroller (a tiny computer on a single integrated circuit) is employed.
- It is equipped with a CPU, memory, and input/output devices.

# WEEK 3

- Astrophotography
- □ Telescope Handling
  - ☐ Intro to MATLAB



### Astrophotography

We learnt how to capture stunning photographs of the night sky with a normal smartphone, this can be done by going to pro mode and changing a few settings like:

ISO

SHUTTER SPEED

**FOCUS** 

BASIC EDITING

Now all that's left, are your skills!

## TRANSFORMATION

BEFORE









## Astrophotography Showcase





ARYA ARPITA NILAY

## Astrophotography Showcase







VISHAKHA AYAN SIRI

Astrophotography Showcase







### Telescope Handling

- We learnt how to handle and work with the Telescope
- We worked with telescopes with equatorial mounts. It has 2 parameters, Right ascension and declination.

#### STEPS:

- We first point the telescope at the celestial pole i.e. the Pole star.
- Then we change the RA and Dec according to the celestial object that we are going to observe.



### Intro to MATLAB

MATLAB, short for matrix laboratory, is a programming language and numerical computing environment used for data analysis, visualization, and algorithm development. It is widely used in engineering, science, and finance.



### Uses of MATLAB in Astronomy

Data can be visualized in MATLAB with plots, graphs, and charts. Some tasks which can be performed using MATLAB are:

- Data Analysis
- Simulation
- Image Processing etc.



## What's Next?

- Digital Dome Works
- ☐ Advanced MATLAB Projects
- Astrophotography using Observatory
  - ☐ Simulation of star systems
  - ☐ Comparative Case Studies

# Thank You

"Cosmos is within us"