1 Počítání modulo n

Algebraické struktury - terminologie

1.1 Definice Na množině A je dána binární operace *, tj. zobrazení z $A \times A$ do A.

Dvojice (A, *) se nazývá pologrupa, pokud je operace * asociativní,

tj. jestliže pro každé $x, y, z \in A$ platí x * (y * z) = (x * y) * z.

Dvojice (A, *) se nazývá *monoid*, pokud je operace * asociativní a má neutrální prvek,

tj. jestliže existuje $e \in A$ tak, že pro každé $x \in A$ platí e * x = x = x * e.

Dvojice (A, *) se nazývá grupa, pokud je operace * asociativní, má neutrální prvek a má všechny inverzní prvky, tj. jestliže pro každé $x \in A$ existuje $y \in A$ tak, že x * y = e = y * x.

Poznámka: Inverzní prvek k prvku x je určen jednoznačně, pokud vůbec existuje, a značíme jej x^{-1} .

Pologrupa, monoid či grupa jsou $\mathit{komutativni},$ pokud je operace * komutativni,

tj. jestliže pro každé $x, y \in A$ platí x * y = y * x.

1.2 Definice Mějme množinu A se dvěma binárními operacemi, které označíme jako sčítání a násobení.

Trojice $(A, +, \cdot)$ se nazývá *okruh*, jestliže

- (A, +) je komutativní grupa s neutrálním prvkem 0;
- (A, \cdot) je pologrupa;
- platí oba distributivní zákony, tj. pro všechna $x,y,z\in A$ platí $x\cdot (y+z)=x\cdot y+x\cdot z$ a také $(y+z)\cdot x=y\cdot x+z\cdot x$.

Je-li navíc pologrupa (A, \cdot) komutativní, říkáme, že se jedná o komutativní okruh; má-li pologrupa (A, \cdot) jednot-kový prvek, mluvíme o okruhu s jednotkou.

Trojice $(A, +, \cdot)$ se nazývá těleso, jestliže je to okruh s jednotkou 1, kde každý nenulový prvek má inverzní prvek, tedy $(A - \{0\}, \cdot)$ je grupa, a kde navíc $0 \neq 1$, tedy neutrální prvek 1 pro násobení není současně neutrálním prvkem 0 pro sčítání.

Většinou budeme říkat stručně těleso, ale půjde o komutativní těleso, tj. násobení bude komutativní.

Konstrukce faktorových okruhů modulo n

Vycházíme z množiny celých čísel s operacemi sčítání a násobení. $(\mathbb{Z}, +, \cdot)$ je komutativní okruh s jednotkou, invertibilními prvky jsou v něm pouze 1 a -1. V celých číslech umíme dělit se zbytkem a díky tomu můžeme vystavět celou následující teorii.

1.3 Věta o dělení se zbytkem Pro každé $a,b\in\mathbb{Z}$, kde $b\neq 0$, existují jednoznačně určené $r,z\in\mathbb{Z}$ tak, že

$$a = rb + z$$
 a $0 \le z < b$.

První sada důsledků:

- **1.4** Lze definovat relaci dělitelnosti: a|b iff b=ka pro nějaké $k\in\mathbb{Z}$. Tato relace je uspořádáním (reflexivní, antisymetrickou a tranzitivní relací) na \mathbb{N} . Není však antisymetrická na \mathbb{Z} , tam má smysl mluvit o relaci asociovanosti: a|b iff a|b a b|a; přitom platí, že a|b jen, když $b=\pm a$.
- 1.5 Můžeme zavést pojem prvočíslo a rozkládat celá čísla na součin prvočísel. Celé číslo $p \geq 2$ je prvočíslo, jestliže je dělitelné pouze čísly 1 a p, aneb jestliže se nedá napsat jako součin dvou čísel menších než p. Test prvočíselnosti "hrubou silou": Číslo n je prvočíslo, pokud není dělitelné beze zbytku žádným prvočíslem do \sqrt{n} .
- **1.6 Základní věta aritmetiky** Každé celé číslo $n \geq 2$ lze jednoznačně (až na pořadí) napsat jako součin mocnin různých prvočísel.

Druhá sada důsledků:

- **1.7 Definice** Největší společný dělitel dvou čísel $a, b \in \mathbb{Z}$ je takové číslo $d \in \mathbb{Z}$, že d dělí obě čísla a i b, d je dělitelné všemi společnými děliteli obou čísel a konečně d > 0. Značíme $d = \gcd(a, b)$.
- 1.8 Největšího společného dělitele lze najít pomocí **Eukleidova algoritmu**. Jedná se o rekurzivní algoritmus, který se opírá o dělení se zbytkem. Předpokládejme, že a > b. Podělíme se zbytkem: a = rb + z a $0 \le z < b$. Pokud je zbytek z = 0, tak je $\gcd(a,b) = b$. Pokud je zbytek z > 0, tak se snadno dokáže, že dvojice a,b má stejné společné dělitele jako dvojice b,z, tedy i $\gcd(a,b) = \gcd(b,z)$. Budeme dále hledat $\gcd(b,z)$ stejným postupem. Jelikož zbytky jsou celočíselné, nezáporné a stále menší, bude po konečném počtu kroků zbytek nulový a úlohu pro nalezení gcd vyřešíme přímo.
- **1.9 Věta** (Bezoutova) Největší společný dělitel čísel $a, b \in \mathbb{Z}$ je jejich celočíselnou kombinací, aneb

$$gcd(a,b) = ka + lb \text{ pro } k, l \in \mathbb{Z}.$$

K nalezení celočíselných koeficientů k, l lze použít rozšířený Eukleidův algoritmus. V každém kroku Eukleidova algoritmu přepočítáme aktuální zbytek na kombinaci čísel a a b. Jelikož $\gcd(a, b)$ je posledním nenulovým zbytkem, tak jednou nakombinujeme z čísel a a b i jejich největšího společného dělitele.

1.10 Diofantické rovnice Rovnice ax + by = c, kde $a, b, c \in \mathbb{Z}$, má řešení v \mathbb{Z} právě, když gcd(a, b)|c. Pokud nějaké celočíselné řešení Diofantické rovnice existuje, pak je jich nekonečně mnoho a jsou tvaru

$$(x,y) = (x_p, y_p) + k(x_0, y_0)$$
 pro $k \in \mathbb{Z}$,

kde (x_p, y_p) je partikulární řešení a najdeme ho pomocí rozšířeného Eukleidova algoritmu a kde (x_0, y_0) je nesoudělné řešení homogenní rovnice, tedy $(x_0, y_0) = (\frac{b}{d}, -\frac{a}{d})$, kde $d = \gcd(a, b)$.

Třetí sada důsledků:

- **1.11 Definice** Čísla $a, b \in \mathbb{Z}$ jsou kongruentní modulo n pro $n \in \mathbb{N}$, jestliže n | (b a). To nastává právě, když mají čísla a a b stejný zbytek po dělení číslem n. Značíme $a \equiv b \pmod{n}$.
- **1.12 Tvrzení** Relace kongruence modulo n je relace ekvivalence (reflexivní, symetrická a tranzitivní relace) na množině celých čísel, která je zachována při sčítání a násobení, tj. pokud $a \equiv b \pmod{n}$ a $c \equiv d \pmod{n}$, pak $a + c \equiv b + d \pmod{n}$ i $ac \equiv bd \pmod{n}$.
- **1.13** Relace kongruence modulo n tudíž rozbije množinu celých čísel na třídy navzájem ekvivalentních prvků, tzv. zbytkové třídy modulo n. Množinu zbytkových tříd modulo n značíme \mathbb{Z}_n ,

$$\mathbb{Z}_n = \mathbb{Z}/\equiv (\text{mod } n) = \{[0]_n, [1]_n, \dots, [n-1]_n\},\$$

 $kde [a]_n = \{a + kn | k \in \mathbb{Z}\}.$

Na množině \mathbb{Z}_n můžeme korektně definovat operace sčítání a násobení přes representanty:

$$[a]_n \oplus [b]_n = [a+b]_n, \quad [a]_n \odot [b]_n = [a \cdot b]_n$$

Díky definici přes representanty zdědí operace \oplus a \odot vlastnosti, které měly operace sčítání a násobení na \mathbb{Z} . Trojice $(\mathbb{Z}_n, \oplus, \odot)$ tvoří komutativní okruh s jednotkou, nazývá se faktorový okruh modulo n. V dalším textu zjednodušíme jeho značení na $(\mathbb{Z}_n = \{0, 1, \dots, n-1\}, +, \cdot)$.

1.14 V okruhu \mathbb{Z}_n umíme řešit lineární rovnice ax = b převedením na Diofantickou rovnici ax + ny = b. Víme tedy, že řešení existuje právě, když $\gcd(a,n)|b$, pak $x = x_p + kx_0$, kde $x_0 = \frac{n}{\gcd(a,n)}$. V okruhu \mathbb{Z}_n tak vznikne celkem $\gcd(a,n)$ různých řešení.

Speciálně, pokud řešíme rovnici ax = 1 v \mathbb{Z}_n , bude řešení existovat jen, když $\gcd(a, n) = 1$, a pak bude toto řešení jediné. Prvek a je invertibilní v \mathbb{Z}_n právě, když a je nesoudělné s n.

1.15 Věta Okruh $(\mathbb{Z}_n, +, \cdot)$ je těleso právě, když n = p je prvočíslo.

2 Lineární algebra nad \mathbb{Z}_p

2.1 Soustavy lineárních rovnic budeme řešit pouze nad \mathbb{Z}_p , kde p je prvočíslo. Zde funguje Gaussova eliminační metoda s tím rozdílem, že místo dělení budeme násobit inverzními prvky (ty existují v \mathbb{Z}_p pro všechny nenulové prvky). Nad \mathbb{Z}_n , kde n není prvočíslo, Gaussova eliminační metoda nefunguje.

Všechna řešení homogenní soustavy tvoří podprostor v \mathbb{Z}_p^n . Každé řešení nehomogenní soustavy je součtem partikulárního řešení této soustavy a nějakého řešení přidružené homogenní soustavy.

Soustava m lineárních rovnic o n neznámých může mít nad \mathbb{Z}_p žádné řešení, jedno řešení (jedinou n-tici), nebo p^k řešení, kde k je počet proměnných, které smíme volit libovolně v \mathbb{Z}_p .

- **2.2** Maticový počet lze dělat i nad \mathbb{Z}_n , ale záležitosti související s Gaussovou eliminací se tam budou chovat jinak, než jak to známe u reálných matic (např hodnost matice \mathbb{A}^T se nemusí rovnat hodnosti matice \mathbb{A}). Matice \mathbb{A} je regulární matice nad \mathbb{Z}_n , když det \mathbb{A} je invertibilní v \mathbb{Z}_n . Tehdy a jen tehdy existuje inverzní matice k matici \mathbb{A} a lze spočítat jako $\mathbb{A}^{-1} = (\det \mathbb{A})^{-1}\mathbb{D}^T$, kde \mathbb{D} je matice algebraických doplňků k matici \mathbb{A} , $\mathbb{D} = (d_{ij}) = ((-1)^{i+j} \det \mathbb{A}_{ij})$, a kde podmatice \mathbb{A}_{ij} vznikla z \mathbb{A} vyškrtnutím i-tého řádku a j-tého sloupce.
- **2.3 Definice** Lineární prostor nad tělesem $(T,+,\cdot)$ je množina L spolu s operací sčítání $\oplus: L\times L\to L$ a číselného násobku $\boxdot: T\times L\to L$ (číselný násobek ovšem není binární operace na množině L!), pro které platí:
 - (L, \oplus) je komutativní grupa s neutrálním prvkem \bar{o} ;
 - Pro všechny $\alpha, \beta \in T$ a všechny $\bar{u}, \bar{v} \in L$:
 - $\alpha \boxdot (\bar{u} \oplus \bar{v}) = (\alpha \boxdot \bar{u}) \oplus (\alpha \boxdot \bar{v})$
 - $(\alpha + \beta) \odot \bar{u} = (\alpha \odot \bar{u}) \oplus (\beta \odot \bar{u})$
 - $(\alpha \cdot \beta) \odot \bar{u} = \alpha \odot (\beta \odot \bar{u})$
 - $1 \odot \bar{u} = \bar{u}$

Prvky lineárního prostory se nazývají vektory, prvky tělesa jsou skaláry. Operace budeme opět značit jen \cdot a +.

Množina všech uspořádaných n-tic ze \mathbb{Z}_p , tj. $\mathbb{Z}_p^n = \{\bar{u} = (u_1, \dots, u_n), \ u_i \in \mathbb{Z}_p\}$, spolu se sčítáním a číselným násobkem definovanými po složkách, $\bar{u} + \bar{v} = (u_1 + v_1, \dots, u_n + v_n), \quad \alpha \cdot \bar{u} = (\alpha u_1, \dots, \alpha u_n)$, tvoří lineární prostor nad tělesem \mathbb{Z}_p . Budeme mu říkat lineární prostor všech slov délky n nad \mathbb{Z}_p .

Na tomto prostoru lze definovat *skalární součin* předpisem $\bar{u} \odot \bar{v} = u_1 v_1 + \dots u_n v_n$ a tudíž zde můžeme mluvit o kolmosti vektorů: $\bar{u} \perp \bar{v}$ právě, když $\bar{u} \odot \bar{v} = 0$.

2.4 Podprostor lineárního prostoru je neprázdná podmnožina, která je uzavřená na sčítání a číselné násobky. Podprostor musí vždy obsahovat nulový vektor daného prostoru. Nás budou zajímat především podprostory v lineárním prostoru všech slov délky n nad \mathbb{Z}_p .

Jsou dvě možnosti, jak jednoznačně popsat podprostor P v lineárním prostoru \mathbb{Z}_p^n . První možnost je zvolit v něm nějakou bázi (tj. generující lineárně nezávislou množinu vektorů v P). Pak v podprostoru P jsou jen ty vektory, které se dají nakombinovat z bázických vektorů:

$$\vec{u} \in P \quad \text{iff} \quad \bar{u} = \sum_{i=1}^k \alpha_i \bar{b}_i,$$

kde $B = \{\bar{b}_1, \dots, \bar{b}_k\}$ je báze podprostoru P a dim P = k.

Druhá možnost je najít takovou homogenní soustavu lineárních rovnic, aby množinou všech jejích řešení byl právě podprostor P. Přitom vektor \bar{u} řeší homogenní soustavu $\mathbb{A}\bar{x}^T = \bar{o}^T$ právě, když $R_i \odot \bar{u} = 0$ pro každý řádek R_i matice \mathbb{A} , aneb když jsou všechny řádky matice \mathbb{A} kolmé na vektor \bar{u} . Hledaná soustava musí mít v řádcích bázi ortogonálního doplňku k podprostoru P:

$$\vec{u} \in P \quad \text{iff} \quad \vec{u} \ \text{ řeší soustavu } \mathbb{A} \bar{x}^T = \bar{o}^T \ \text{ s matici} \ \mathbb{A} = \begin{pmatrix} \bar{c}_1 \\ \vdots \\ \bar{c}_{n-k} \end{pmatrix},$$

kde $\bar{c}_1, \ldots, \bar{c}_{n-k}$ tvoří bázi podprostoru P^{\perp} .

Díky tomu, že $(P^{\perp})^{\perp} = P$, můžeme naopak určit vektory $\bar{c}_1, \ldots, \bar{c}_{n-k}$ jako bázi podprostoru všech řešení soustavy $\mathbb{B}\bar{x}^T = \bar{o}^T$, kde v řádcích matice \mathbb{B} jsou bázické vektory $\bar{b}_1, \ldots, \bar{b}_k$ podprostoru P.