Parte 1. Tema 4: Breve Introducción a las Variables Aleatorias multidimensionales

Estadística

2022-09-13

- Variables aleatorias bidimensionales
- 2 Distribuciones marginales
- 3 Esperanzas de funciones de v.a. discretas bidimensionales. Covarianza y correlación
- 4 Covarianza y correlación
- **5** Distribuciones multidimensionales
- 6 Ejemplo caso discreto
- Tiemplo bivariante continua normal bivariante

Lección 1

Variables aleatorias bidimensionales

Variables aleatorias bidimensionales. Introducción

Definición de variable aleatoria bidimensional.

En este caso tendremos un experimento con dos resultados.

Diremos que (X, Y) es una variable aleatoria bidimensional cuando tanto X como Y toman valores reales para cada elemento del espacio Ω .

Variables aleatorias bidimensionales. Introducción

Por ejemplo

- Lanzamos un dado rojo y una azul veces (X, Y) = ("resultado dado rojo", "resultado dado azul"). Dominio $D_{X,Y} = \{(i,j) | i,j = 1,2,3,4,5,4\}$.
- (X,Y) = ("tamaño en memoria del proceso", "tiempo de CPU usado") de un proceso de un servidor escogido al azar. Dominio $D_{X,Y} = \{(x,y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\}$.

Variables aleatorias bidimensionales. Introducción

Diremos que es **discreta** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un conjunto finito o numerable.

Diremos que es **continua** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un producto de intervalos.

Diremos que es **heterogénea** cuando X e Y no compartan ser continuas o discretas.

Función de distribución acumulada

Definición función de distribución conjunta

La función de distribución acumulada o simplemente distribución conjunta se define como

$$F_{XY}(x,y) = P(X \le x, Y \le y).$$

Esta función existe para variables aleatorias discretas y continuas.

Función de probabilidad conjunta para variables aleatorias discretas.

Definición de función de probabilidad conjunta: Dada una variable aleatoria bidimensional discreta (X,Y)

Definimos la función de probabilidad discreta bidimensional como

$$P_{XY}(x,y) = P(X = x, Y = y)$$
, para cada $(x,y) \in D_{XY}$.

Así el dominio de la variable conjunta es

$$D_{XY} = \{(x, y) \in \mathbb{R}^2 | P_{XY}(x, y) = P(X = x, Y = y) > 0\}.$$

Es decir es el conjunto de valores posibles que toma la v.a. (X, Y).

Función de probabilidad conjunta

Por tanto, de cara a calcular P_{XY} basta calcular $P_{XY}(x_i, y_j)$ para $(x_i, y_j) \in D_{XY}$:

$\overline{X/Y}$	<i>y</i> 1	<i>y</i> ₂		УN
<i>x</i> ₁	$P_{XY}(x_1,y_1)$	$P_{XY}(x_1,y_2)$		$P_{XY}(x_1,y_N)$
<i>X</i> ₂	$P_{XY}(x_2,y_1)$	$P_{XY}(x_2,y_2)$		$P_{XY}(x_2,y_N)$
:	:	:	:	:
x_M	$P_{XY}(x_M,y_1)$	$P_{XY}(x_M,y_2)$		$P_{XY}(x_M,y_N)$

Propiedades de la función de probabilidad conjunta

Sea (X, Y) una variable aleatoria bidimensional discreta con dominio $D_{XY} = \{(x_i, y_j) | i = 1, 2, ..., j = 1, 2, ...\}.$

Su función de probabilidad conjunta verifica las siguientes propiedades:

La suma de todos los valores de la **función de probabilidad conjunta** sobre el conjunto de valores siempre vale 1:

$$\sum_{i}\sum_{j}P_{XY}(x_{i},y_{j})=1.$$

Propiedades de la función de probabilidad conjunta

Sea B un subconjunto cualquiera del dominio D_{XY} . El valor de la probabilidad $P((X,Y) \in B)$ se puede calcular de la forma siguiente:

$$P((X,Y)\in B)=\sum_{(x_i,y_i)\in B}P_{XY}(x_i,y_j).$$

Es decir, la probabilidad de que la variable bidimensional tome valores en B es igual a la suma de todos aquellos valores de la función de probabilidad conjunta que están en B.

Propiedades de la función de probabilidad conjunta

Propiedad

La función de distribución conjunta se puede obtener conociendo la función de probabilidad conjunta

$$F_{XY}(x,y) = \sum_{x_i \leq x, y_j \leq y} P_{XY}(x_i,y_j).$$

Función de distribución acumulada, función de densidad

Definición función de densidad conjunta

Sea $f_{XY}: \mathbb{R} \times \mathbb{R} \mapsto [0, +\infty)$ que cumple que:

- $f_{XY}(x,y) > 0$ para todo $(x,y) \in D_{XY}$.
- $\bullet \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(t_x, t_y) dt_x dt_y = 1.$
- $F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(t_x,t_y) dt_x dt_y$.

El dominio (valores posibles) de la variable conjunta es

$$D_{XY} = \{(x,y) \in \mathbb{R}^2 | f_{XY}(x,y) > 0\}.$$

Lección 2

Distribuciones marginales

Variables aleatorias marginales y su distribución

Consideremos una variable aleatoria **bidimensional** (X,Y) llamaremos distribuciones marginales de las variables X e Y a las distribuciones individuales de cada variable obtenidas desde la distribución conjunta.

Dichas variables X e Y se denominan variables marginales y sus correspondientes funciones de probabilidad o de densidad, y se denominan funciones de probabilidad o densidad marginales

Funciones de probabilidad marginales caso discreto

Cálculo de las funciones de probabilidad marginales caso discreto.

Sea (X,Y) una variable aleatoria bidimensional discreta con función de probabilidad conjunta $P_{XY}(x_i,y_j)$, con $(x_i,y_j) \in D_{XY}$.

Las **funciones de probabilidad marginales** $P_X(x_i)$ y $P_Y(y_j)$ se calculan usando las expresiones siguientes:

$$P_X(x_i) = \sum_j P_{XY}(x_i, y_j), i = 1, 2, ...,$$

 $P_Y(y_j) = \sum_j P_{XY}(x_i, y_j), j = 1, 2, ...$

Funciones de probabilidad marginales caso discreto

valores de la variable Y ($y_1, y_2, ...$) y en la primera columna están los valores de la variable X ($x_1, x_2, ...$)

• Podemos representar P_{XY} como una tabla bidimensional en la primera fila están los

- Para obtener la función de probabilidad marginal de la variable X en el valor x_i , $P_X(x_i)$, hay que sumar todos los valores de $P_{XY}(x_i, y_j)$ correspondientes a la fila i-ésima
- De forma análoga para obtener la **función de probabilidad marginal** de la variable Y en el valor y_j , $P_Y(y_j)$, hay que sumar todos los valores de $P_{XY}(x_i, y_j)$ correspondientes a la columna j-ésima.

Variables aleatorias marginales

$X \setminus Y$	<i>y</i> 1	<i>y</i> 2		УN	$P_X(x_i) = \sum_j P_{XY}(x_i, y_j)$
<i>x</i> ₁	$P_{XY}(x_1,y_1)$	$P_{XY}(x_1,y_2)$		$P_{XY}(x_1,y_N)$	$P_X(x_1)$
<i>x</i> ₂	$P_{XY}(x_2,y_1)$	$P_{XY}(x_2,y_2)$		$P_{XY}(x_2,y_N)$	$P_X(x_2)$
:	:	:	:	:	
$\times_{\mathcal{M}}$	$P_{XY}(x_M,y_1)$	$P_{XY}(x_M,y_2)$		$P_{XY}(x_M,y_N)$	$P_X(x_M)$
$P_Y(y_j) =$	$P_Y(y_1)$	$P_Y(y_2)$		$P_Y(y_N)$	1
$\sum_{i} P_{XY}(x_i, y_j)$	_i)				

Funciones de probabilidad marginales continuas

Proposición. Cálculo de las funciones de densidad marginales.

Sea (X,Y) una variable aleatoria bidimensional continua con función de densidad conjunta $f_{XY}(x,y)$, con $(x,y) \in D_{XY}$.

Las funciones de densidad marginales $f_X(x)$ y $f_Y(y)$ se calculan usando las expresiones siguientes:

- $f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$. $f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx$.

Independencia de variables aleatorias discretas

Definición de independencia para variables aleatorias bidimensionales discretas.

Dada (X, Y) una variable aleatoria bidimensional discreta con función de probabilidad P_{XY} y funciones de probabilidad marginales P_X y P_Y .

Diremos que X e Y son independientes si se cumple alguna de estas condiciones:

- $P_{XY}(x_i, y_j) = P_X(x_i) \cdot P_Y(y_j), i = 1, 2, ..., j = 1, 2, ...$
- $P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j), i = 1, 2, ..., j = 1, 2, ...$
- $F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$.

Independencia de variables aleatorias continuas

Condiciones para independencia de variables aleatorias bidimensionales continuas

Dada (X, Y) una variable aleatoria bidimensional continua con función de densidad f_{XY} y funciones de probabilidad marginales f_X y f_Y .

Diremos que X e Y son independientes si se cumple al menos una de las siguientes condiciones:

- $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$ para todo $(x,y) \in D_{XY}$
- $F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$ para todo $(x,y) \in D_{XY}$

Esperanza y varianza de las distribuciones marginales dicretas.

•
$$E(X) = \sum_{x \in D_X} x \cdot P_X(x) = \sum_{x \in D_X} x \cdot P(X = x).$$

•
$$E(Y) = \sum_{y \in D_Y} y \cdot P_Y(y) = \sum_{y \in D_Y} y \cdot P(Y = y).$$

•
$$\sigma_X^2 = Var(X) = E(X - E(X)) = E(X) - E(X)^2$$
.
• $\sigma_Y^2 = Var(Y) = E(Y - E(Y)) = E(Y) - E(Y)^2$.

•
$$\sigma_Y^2 = Var(Y) = E(Y - E(Y)) = E(Y) - E(Y)^2$$
.

Esperanza y varianza de las distribuciones marginales continuas.

- $E(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$.
- $E(Y) = \int_{-\infty}^{+\infty} y \cdot f_Y(y) dy$.
- $\sigma_X^2 = Var(X) = E((X E(X))^2) = E(X^2) E(X)^2$.
- $\sigma_Y^2 = Var(Y) = E((Y E(Y))^2) = E(Y^2) E(Y)^2$.

Distibuciones condicionales dicretas

• Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. X condicionada a que Y = y como

$$P(X = x | Y = y) = \frac{P_{XY}(x, y)}{P_{Y}(y)} = \frac{P(X = x, Y = y)}{P(Y = y)}, \text{ para todo } x \in D_X.$$

• Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. Y condicionada a que X = x como

$$P(Y = y | X = x) = \frac{P_{XY}(x, y)}{P_{X}(x)} = \frac{P(X = x, Y = y)}{P(X = x)}$$
, para todo $y \in D_{Y}$.

Distibuciones condicionales continuas

• Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. X condicionada a que Y = y como

$$f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$
, para todo $x \in D_X$.

• Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. Y condicionada a que X = x como

$$f_{Y|X=x}(y) = \frac{f_{XY}(x,y)}{f_X(x)}$$
, para todo $Y \in D_Y$.

Distibuciones condicionales e independencia

Propiedad

Las variables discretas X e Y son independientes si y solo sí se cumple que

$$P(X = x | Y = y) = P(X = x)$$

②
$$P(Y = y | X = x) = P(Y = y)$$
.

Si las variables X e Y son independientes si y solo sí se cumple que

Esperanzas condicionales

- Caso discreto $E(X|Y = y) = \sum_{x \in D_X} x \cdot P(X = x|Y = y)$
- Caso continuo $E(X|Y=y) = \int_{-\infty}^{+\infty} x \cdot f_{X|Y=y}(x) dx$.

Las definiciones para E(Y|X=x) son similares.

Propiedad

Si las variables X e Y son independientes se cumple que

- E(Y|X=x) = E(Y)

Lección 3

Esperanzas de funciones de v.a. discretas bidimensionales. Covarianza y correlación

Esperanzas de funciones de v.a. discretas bidimensionales

Definición:

• Sea (X,Y) una variable aleatoria bidimensional discreta y g(X,Y) una función de esa variable bidimensional entonces

$$E(g(X,Y)) = \sum_{i} \sum_{j} g(x_i,y_j) \cdot P(X=x_i,Y=y_j).$$

• Sea (X,Y) una variable aleatoria bidimensional continua y $g(X,Y):\mathbb{R}^2\mapsto\mathbb{R}$ una función de esa variable bidimensional entonces

$$E(g(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) \cdot f_{XY}(x,y) \quad dxdy.$$

Esperanzas de funciones de v.a. bidimensionales

Caso discreto:

$$E(X + Y) = \sum_{i} \sum_{j} (x_{i} + y_{j}) \cdot P(X = x_{i}, Y = y_{j}) = \mu_{X} + \mu_{Y}.$$

$$Var(X + Y) = E((X + Y - E(X + Y))^{2}) = \sum_{i} \sum_{j} (x_{i} + y_{j} - (\mu_{X} + \mu_{Y}))^{2} \cdot P(X = x_{i}, Y = y_{j}).$$

Caso continuo:

$$E(X+Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x+y) \cdot f_{XY}(x,y) dxdy = \mu_X + \mu_Y.$$

$$Var(X+Y) = E((X+Y-E(X+Y))^2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x+y-(\mu_X+\mu_Y))^2 \cdot f_{XY}(x,y) dxdy.$$

Esperanzas de funciones de v.a. discretas bidimensionales

Propiedad: Sea (X, Y) una variable aleatoria bidimensional entonces se cumple que:

- $E(X + Y) = E(X) + E(Y) = \mu_X + \mu_Y$
- Si X e Y son independientes entonces $E(X \cdot Y) = E(X) \cdot E(Y) = \mu_X \cdot \mu_Y$
- Si X e Y son independientes entonces $Var(X+Y)=Var(X)+Var(Y)=\sigma_X^2+\sigma_y^2$

Lección 4

Covarianza y correlación

Medida de la variación conjunta: covarianza

El momento conjunto centrado en las medias para k = 1 y l = 1 se denomina covarianza entre las variables X e Y:

$$\sigma_{XY} = Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$

La covarianza puede calcularse también con:

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y) = E(X \cdot Y) - \mu_X \cdot \mu_Y$$

Propiedad. Si las variables X e Y son **independientes**, entonces Cov(X,Y) = 0.

Es una consecuencia de que si X e Y son independientes entonces que vimos que $E(X \cdot Y) = E(X) \cdot E(Y) = \mu_X \cdot \mu_Y$.

Covarianza entre las variables

La **covarianza** es una medida de lo relacionadas están las variables X e Y:

- Si cuando $X \ge \mu_X$, también ocurre que $Y \ge \mu_Y$ o viceversa, cuando $X \le \mu_X$, también ocurre que $Y \le \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será positivo y la **covarianza** será positiva.
- Si por el contrario, cuando $X \ge \mu_X$, también ocurre que $Y \le \mu_Y$ o viceversa, cuando $X \le \mu_X$, también ocurre que $Y \ge \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será negativo y la **covarianza** será negativa.
- En cambio, si a veces ocurre una cosa y a veces ocurre otra, la **covarianza** va cambiando de signo y puede tener un valor cercano a 0.

Propiedades de la covarianza

• Sea (X, Y) una variable aleatoria bidimensional. Entonces la **varianza de la suma/resta** se calcula usando la expresión siguiente:

$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y).$$

• Sea (X, Y) una variable aleatoria bidimensional donde las variables X e Y son **independientes**. Entonces:

$$Var(X + Y) = Var(X) + Var(Y).$$

Coeficiente de correlación

La **covarianza** depende de las unidades en las que se midan las variables X e Y ya que si a > 0 y b > 0, entonces:

$$Cov(a \cdot X, b \cdot Y) = a \cdot b \cdot Cov(X, Y).$$

Por tanto, si queremos "medir" la relación que existe entre las variables X e Y tendremos que "normalizar" la **covarianza** definiendo el **coeficiente de correlación** entre las variables X e Y:

Coeficiente de correlación entre las variables

Definición del coeficiente de correlación. Sea (X, Y) una variable aleatoria bidimensional. Se define el **coeficiente de correlación** entre las variables X e Y como:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}} = \frac{E(X \cdot Y) - \mu_X \cdot \mu_Y}{\sqrt{E(X^2) - \mu_X^2} \cdot \sqrt{E(Y^2) - \mu_Y^2}}.$$

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y son **independientes**, su **coeficiente de correlación** $\rho_{XY} = 0$ es nulo ya que su **covarianza** lo es.

Notemos también que la correlación no tiene unidades y es invariante a cambios de escala.

Además, la covarianza de las variables tipificadas $\frac{X-\mu_X}{\sigma_X}$ y $\frac{Y-\mu_Y}{\sigma_Y}$ coincide con la correlación de X e Y.

El **coeficiente de correlación** es un valor normalizado ya que siempre está entre -1 y 1: $-1 \le \rho_{XY} \le 1$.

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y tiene dependencia lineal, por ejemplo si $Y = a \cdot X + b$ para algunas constantes $a, b \in \mathbb{R}$, entonces su **coeficiente de correlación** $\rho_{XY} = \pm 1$, es decir toma el valor 1 si la pendiente a > 0 y -1 si a < 0.

De forma similar:

- si Cor(X, Y) = +1 X e Y tienen relación lineal con pendiente positiva.
- si Cor(X, Y) = -1 X e Y tienen relación lineal con pendiente negativa.

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X, Y) una variable bidimensional Notemos que

- $Cov(X, X) = \sigma_{XX} = \sigma_X^2$. $Cov(Y, Y) = \sigma_{YY} = \sigma_Y^2$.
- $\sigma_{XY} = Cov(X, Y) = Cov(Y, X) = \sigma_{YX}$

Se denomina matriz de varianzas-covarianzas y se suele denotar como Σ a

$$\Sigma = \begin{pmatrix} Cov(X,X) & Cov(X,Y) \\ Cov(Y,X) & Cov(Y,Y) \end{pmatrix} = \begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix} = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_Y^2 \end{pmatrix}.$$

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X, Y) una variable bidimensional Notemos que

- $Cor(X,X) = \rho_{XX} = 1.$
- $Cor(Y, Y) = \rho_{YY} = 1$.
- $\rho_{XY} = Cor(X, Y) = Cor(Y, X) = \rho_{YX}$.

Se denomina matriz de correlaciones a

$$R = \begin{pmatrix} Cor(X,X) & Cor(X,Y) \\ Cor(Y,X) & Cor(Y,Y) \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{XY} & 1 \end{pmatrix}.$$

Lección 5

Distribuciones multidimensionales

Conceptos básicos. Función de probabilidad y de distribución.

Consideremos un vector compuesto de n variables aleatorias discretas $(X_1, X_2, ..., X_n)$ Su función de probabilidad es

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P((X_1,X_2,...,X_n) = (x_1,x_2,...,x_n))$$

$$= P(X_1 = x_1,X_2 = x_2,...,X_n = x_n).$$

Su función de distribución de probabilidad es

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 \le x_1,X_2 \le x_2,...,X_n \le x_n).$$

Independencia

Definición independencia

Diremos que la variables X_1, X_2, \dots, X_n son **INDEPENDIENTES** cuando

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1) \cdot P_{X_2}(x_2) \cdot ... \cdot P_{X_n}(x_n).$$

Propiedad

Las variables X_1, X_2, \dots, X_n son **INDEPENDIENTES** si y solo si

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot ... \cdot F_{X_n}(x_n).$$

Conceptos básicos

Vector de medias

Si denotamos $E(X_i) = \mu_i$ para i = 1, 2, ..., n el **vector de medias** es

$$E(X_1, X_2, ..., X_n) = (E(X_1), E(X_2), ..., E(X_n)) = (\mu_1, \mu_2, ..., \mu_n).$$

Covarianza y varianzas

Si denotamos $\sigma_{ij} = Cov(X_i, X_j)$ para todo i, j en $1, 2, \dots n$ entonces tenemos que

- $\sigma_{ii} = Cov(X_i, X_i) = \sigma_{ii} = \sigma_i^2$.
- $\sigma_{ij} = Cov(X_i, X_j) = Cov(X_j, X_i) = \sigma_{ji}$.

Conceptos básicos

Si denotamos $\rho_{ij} = Cor(X_i, X_j)$ para todo i, j en $1, 2, \dots n$ entonces tenemos que

- $\rho_{ii} = Cor(X_i, X_i) = 1.$
- $\rho_{ij} = Cor(X_i, X_j) = Cor(X_j, X_i) = \rho_{ji}$.

Matrices de varianzas-covarianzas y de correlaciones

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix}.$$

Lección 6

Ejemplo caso discreto

Lanzamiento de dos dados

Lanzamos dos dados numerados de 1 a 4 caras dos veces de forma independiente (X, Y) resultado del lanzamiento de la primera y la segunda vez respectivamente

$$P_{XY}(x,y) = \begin{cases} \frac{1}{16} & \text{si } x,y = 1,2,3,4\\ 0 & \text{en otro caso.} \end{cases}$$

Dados Marginales

$$P_X(x) = \sum_{y=1}^4 P_{XY}(x,y) = P(x,1) + \dots + P(x,4) = 4 \cdot \frac{1}{6} = \frac{1}{4} \text{ si } x = 1,2,\dots,4$$

$$P_Y(y) = \sum_{x=1}^4 P_{XY}(x,y) = P(1,y) + \dots + P(4,y) = 4 \cdot \frac{1}{6} = \frac{1}{4} \text{ si } y = 1,2,\dots,4$$

$$E(X) = \sum_{x=1}^4 x \cdot P_X(x) = \sum_{x=1}^4 x \cdot \frac{1}{4} = \frac{10}{4} = 2.5.$$

$$E(X^2) = \sum_{x=1}^4 x^2 \cdot P_X(x) = \sum_{x=1}^4 x^2 \cdot \frac{1}{4} = 7.5.$$

$$Var(X) = E(X^2) - E(X)^2 = 1.25$$

Los mismo resultados se obtienen para E(Y) y Var(Y).

Dados Marginales

[1] 7.5

```
media_X=sum(1:4)/4
media_X

## [1] 2.5

media_X_cuadrados=sum((1:4)^2)/4
media_X_cuadrados
```

Dados Marginales

[1] 1.118034

```
var_X=media_X_cuadrados-media_X^2
var_X

## [1] 1.25

sd_X=sqrt(var_X)
sd_X
```

Dados

$$E(X \cdot Y) = \sum_{x=1}^{4} \sum_{y=1}^{4} x \cdot y \frac{1}{16} = \frac{1}{16} \sum_{x=1}^{4} x \cdot \left(\sum_{y=1}^{4} y\right)$$
$$= \frac{1}{16} \sum_{x=1}^{4} x \cdot \left(\frac{4 \cdot 5}{2}\right) \frac{1}{16} 10 \sum_{x=1}^{4} x$$
$$= \frac{1}{16} 10 \cdot 10 = \frac{1}{16} (10)^{2} = \frac{10^{2}}{4^{2}}.$$

$$Cov(X, Y) = E(X, Y) - E(X) \cdot E(Y)$$

= $\frac{10^2}{4^2} - \left(\frac{10}{4}\right)^2 = 0.$

$$Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}} = 0.$$

Dados

$$\Sigma = \begin{pmatrix} Cov(X,X) & Cov(X,Y) \\ Cov(Y,X) & Cov(Y,Y) \end{pmatrix} = \begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_{X}^{2} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{Y}^{2} \end{pmatrix} = \begin{pmatrix} 1.25 & 0 \\ 0 & 1.25 \end{pmatrix}$$
$$R = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{XY} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Dados

Marginales Si x, y = 1, 2, 3, 4

$$P_{X|Y=y}(X=x) = \frac{P_{XY}(x,y)}{P_{X}(x)} = \frac{\frac{1}{16}}{\frac{1}{4}} = \frac{1}{4}$$

Notemos que entonces $P_{x|Y=y}(X=x) = P_X(x)$ y por lo tanto son independientes

Efectivamente, son independientes

$$P_{XY}(x,y) = \frac{1}{16} = P_X(x) \cdot P_Y(y) = \frac{1}{4} \cdot \frac{1}{4}.$$

Ahora tiramos dos veces un dado con valores de 1 a 4 de forma que (X, Y) son las variables X máximo de las dos tiradas e Y suma de las dos tiradas

```
dados=data.frame(d1=rep(1:4,times=4),d2=rep(1:4,each=4))
dados$X=pmax(dados$d1,dados$d2)
dados$Y=dados$d1+dados$d2
dados[1:6,]
```

```
## 1 1 1 1 2
## 2 2 1 2 3
## 3 3 1 3 4
## 4 4 1 4 5
## 5 1 2 2 3
## 6 2 2 2 4
```

d1 d2 X Y

##

```
dados[1:16,]
##
      d1 d2 X Y
## 1
          1 1 2
## 2
          1 2 3
## 3
       3
          1 3 4
## 4
          1 4 5
## 5
          2 2 3
## 6
          2 2 4
## 7
          2 3 5
## 8
          2 4 6
## 9
          3 3 4
## 10
          3 3 5
## 11
          3 3 6
```

```
P XY=prop.table(table(dados$X,dados$Y))
P XY
##
##
                                5
##
     1 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000
##
     2 0.0000 0.1250 0.0625 0.0000 0.0000 0.0000 0.0000
##
     3 0.0000 0.0000 0.1250 0.1250 0.0625 0.0000 0.0000
##
     4 0.0000 0.0000 0.0000 0.1250 0.1250 0.1250 0.0625
str(P XY)
```

```
## 'table' num [1:4, 1:7] 0.0625 0 0 0 0 0.125 0 0 0 0.0625 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:4] "1" "2" "3" "4"
## $ : chr [1:7] "3" "4" "5"
```

```
P X=margin.table(P XY,1)
P_X
##
##
   0.0625 0.1875 0.3125 0.4375
P Y=margin.table(P XY,2)
PΥ
```

```
##
## 2 3 4 5 6 7 8
## 0.0625 0.1250 0.1875 0.2500 0.1875 0.1250 0.0625
```

7

8

3 2 0.0000

4 2 0.0000

```
df=as.data.frame(P XY)
names(df)=c("X","Y","P XY")
df$X=as.integer(df$X)
df$Y=as.integer(df$Y)
df[1:11,]
##
            P XY
      ΧΥ
## 1
      1 1 0.0625
## 2
      2 1 0.0000
## 3
      3 1 0.0000
## 4
      4 1 0.0000
## 5
      1 2 0.0000
      2 2 0.1250
## 6
```

```
##
     XΥ
            P XY
## 12 4 3 0.0000
## 13 1 4 0.0000
## 14 2 4 0.0000
## 15 3 4 0.1250
## 16 4 4 0.1250
## 17 1 5 0.0000
## 18 2 5 0.0000
## 19 3 5 0.0625
## 20 4 5 0.1250
## 21 1 6 0.0000
## 22 2 6 0.0000
## 23 3 6 0.0000
```

df[12:28,]

```
df$xP_X=df$X*df$P_XY
df$x2P_X=(df$X)^2*df$P_XY
df$yP_Y=df$Y*df$P_XY
df$y2P_Y=(df$Y)^2*df$P_XY
df$xyP_XY=df$X*df$Y*df$P_XY
colSums(df[,-c(1:3)])
```

```
## xP_X x2P_X yP_Y y2P_Y xyP_XY
## 3.125 10.625 4.000 18.500 13.750
```

[1] 4

```
Esp_X=sum(df$xP_X)
Esp_X

## [1] 3.125

Esp_Y=sum(df$yP_Y)
Esp_Y
```

Esp_X2=sum(df\$x2P_X)

Var X

[1] 0.859375

```
Esp_X2
## [1] 10.625
Esp_Y2=sum(df$y2P_Y)
Esp Y2
## [1] 18.5
Var_X=Esp_X2-Esp_X^2
```

Var Y=Esp Y2-Esp Y^2

[1] 1.25

```
Var Y
## [1] 2.5
Esp_XY=sum(df$xyP_XY)
Esp XY
## [1] 13.75
Cov_XY=Esp_XY-Esp_X*Esp_Y
Cov XY
```

[1] 0.8528029

Vector de medias

$$\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} = \begin{pmatrix} 3.125 \\ 4 \end{pmatrix}.$$

Matriz de covarianzas

$$\Sigma = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix} = \begin{pmatrix} 0.859375 & 1.25 \\ 1.25 & 2.5 \end{pmatrix}.$$

Matriz de correlaciones

$$R = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{XY} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.8528029 \\ 0.8528029 & 1 \end{pmatrix}.$$

Dados ejercicio manual

Ejercicio

- Repetir los cálculos anteriores manualmente,
- Calcular manualmente las distribuciones condicionales
- TIEMPO

Lección 7

Ejemplo bivariante continua normal bivariante

Definición de distribción normal bivariante

Sea (X, Y) una variable continua bidimensional con $E(X) = \mu_X$, $E(Y) = \mu_X$

$$\sigma_X^2 = Var(X), \ \sigma_Y^2 = Var(Y), \ \sigma_{XY} = Cov(X, Y).$$

Y si denotamos por

$$\mu = \left(\begin{array}{c} \mu_X \\ \mu_Y \end{array}\right)$$

y por

$$\Sigma = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix}.$$

Definición de distribución normal bivariante

Diremos que el vector $\begin{pmatrix} X \\ Y \end{pmatrix}$ sigue una ley **normal o gaussiana bidimensional**

$$N\left(\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix}\right)$$

si su densidad es

$$f_{XY}(x,y) = \frac{1}{\sqrt{(2\pi)^2 \cdot \det(\Sigma)}} \cdot e^{-\frac{1}{2}((x,y)-\mu)^t \cdot \Sigma^{-1} \cdot ((x,y)-\mu)}.$$

Gráfica de la distribución gaussiana (X, Y).

