Faculdade de Informática e Administração Paulista

GLOBAL SOLUTION – WATERWISE

Projeto: Sistema Inteligente de Prevenção a Enchentes

MASTERING RELATIONAL AND NON-RELATIONAL DATABASE

INTEGRANTES (2TDSPS)

Felipe Amador RM: 553528

Leonardo de Oliveira RM: 554024

Sara Sousa RM: 552656

São Paulo

Junho/2025

SUMÁRIO

Sumário

Descrição do Projeto	3
Link para o vídeo explicativo	3
Arquitetura do Sistema (DB)	4
Modelo de Dados e Modelo Relacional	4
Implementação Package	7
Integração MongoDB	9
Prints de execução	11
Conclusão	12

WaterWise - Sistema Inteligente de Prevenção a Enchentes

Descrição do Projeto

Conceito

O **WaterWise** é um ecossistema tecnológico inovador que previne enchentes urbanas através do monitoramento inteligente de propriedades rurais, transformando cada fazenda em uma "esponja natural" contra desastres hídricos.

Problema Identificado

- Enchentes urbanas causam bilhões em prejuízos anualmente
- Degradação do solo rural reduz capacidade de absorção de água
- Falta de monitoramento em tempo real das condições do solo
- Ausência de sistemas integrados entre zona rural e urbana

Solução Proposta

"A enchente que alaga uma avenida pode começar com uma gota que o solo seco da zona rural não absorveu. Com WaterWise, cada metro de terra volta a ser uma esponja contra desastres."

Objetivos

- Monitorar propriedades rurais em tempo real
- Calcular capacidade de absorção do solo
- Prever riscos de enchentes
- Alertar produtores e autoridades
- Promover práticas sustentáveis

Link para o vídeo explicativo

https://youtu.be/eRGfVlbU2PA

Arquitetura do Sistema (DB)

Componentes Principais

Fluxo de Dados

- 1. Coleta: Sensores IoT capturam dados ambientais
- 2. Processamento: Oracle processa e calcula métricas
- 3. Análise: Algoritmos avaliam riscos e capacidades
- 4. Alertas: Sistema gera alertas automáticos
- 5. Visualização: Interface web apresenta dashboards
- 6. Logs: MongoDB armazena metadados e histórico

Modelo de Dados e Modelo Relacional

Entidades Principais

1. Produtor Rural

- ID_PRODUTOR (PK, Identity)
- NOME_COMPLETO
- CPF_CNPJ (Unique)
- EMAIL (Unique)
- TELEFONE
- SENHA

DATA_CADASTRO

2. Propriedade Rural

- ID_PROPRIEDADE (PK, Identity)
- ID_PRODUTOR (FK)
- ID_NIVEL_DEGRADACAO (FK)
- NOME_PROPRIEDADE
- LATITUDE
- LONGITUDE
- AREA_HECTARES
- DATA CADASTRO

3. Sensor IoT

- ID_SENSOR (PK, Identity)
- ID_PROPRIEDADE (FK)
- ID_TIPO_SENSOR (FK)
- MODELO_DISPOSITIVO
- DATA INSTALAÇÃO

4. Leitura Sensor

- ID_LEITURA (PK, Identity)
- ID_SENSOR (FK)
- TIMESTAMP_LEITURA
- UMIDADE_SOLO (0-100%)
- TEMPERATURA_AR (-20 a 60°C)
- PRECIPITACAO_MM (≥0)

5. Alerta

- ID_ALERTA (PK, Identity)
- ID_PRODUTOR (FK)

- ID_LEITURA (FK)
- ID_NIVEL_SEVERIDADE (FK)
- TIMESTAMP_ALERTA
- DESCRICAO ALERTA

Tabelas de Apoio

- **Tipo Sensor**: Categorização dos sensores
- Nível Severidade: BAIXO, MÉDIO, ALTO, CRÍTICO
- Nível Degradação Solo: EXCELENTE → CRÍTICO (1-5)

Relacionamentos

- GS_WW_PRODUTOR_RURAL → GS_WW_PROPRIEDADE_RURAL (1:N)
- GS_WW_PROPRIEDADE_RURAL → GS_WW_SENSOR_IOT (1:N)
- GS_WW_SENSOR_IOT → GS_WW_LEITURA_SENSOR (1:N)
- GS_WW_LEITURA_SENSOR → GS_WW_ALERTA (1:N)
- GS_WW_NIVEL_DEGRADACAO_SOLO → GS_WW_PROPRIEDADE_RURAL (1:N)
- GS_WW_NIVEL_SEVERIDADE → GS_WW_ALERTA (1:N)
- GS_WW_TIPO_SENSOR → GS_WW_SENSOR_IOT (1:N)

Modelo Relacional

Implementação Package

Package Centralizada (PKG WATERWISE)

A lógica do sistema está organizada em uma package Oracle com 29 procedimentos:

Procedures CRUD (8)

- CRUD_TIPO_SENSOR
- CRUD_NIVEL_SEVERIDADE
- CRUD_NIVEL_DEGRADACAO_SOLO
- CRUD PRODUTOR RURAL
- CRUD_PROPRIEDADE_RURAL
- CRUD_SENSOR_IOT
- CRUD_LEITURA_SENSOR
- CRUD_ALERTA

Funções de Cálculo (3)

- CALCULAR RISCO ALAGAMENTO
- CALCULAR_TAXA_DEGRADACAO_SOLO

CALCULAR CAPACIDADE ABSORCAO

Procedures de Análise (7)

- ANALISAR_ALERTAS_DIARIOS
- VERIFICAR RISCO ENCHENTE
- STATUS SENSORES
- RESUMO_DIARIO_SISTEMA
- LISTAR_ALERTAS_RECENTES
- ESTADO_GERAL_SOLO
- PROPRIEDADES_RISCO_ENCHENTE

Relatórios Executivos (7)

- DASHBOARD_METRICAS
- MELHORES_PRODUTORES
- RISCO_POR_REGIAO
- SEVERIDADE_ALERTAS
- MONITORAMENTO_TEMPO_REAL
- PRODUTIVIDADE_POR_REGIAO
- TENDENCIAS CLIMATICAS

Utilitários (4)

- INICIALIZAR_SISTEMA
- VALIDAR_INTEGRIDADE_DADOS
- RELATORIO PROPRIEDADE
- BACKUP DADOS CRITICOS

Triggers Automáticos

- 1. TRG_ALERTA_AUTOMATICO_LEITURA: Gera alertas baseados em condições críticas
- 2. TRG_VALIDAR_DADOS_SENSOR: Valida dados antes da inserção
- 3. TRG_AUDITORIA_DEGRADACAO_SOLO: Registra mudanças no estado do solo

Cursores com Controle de Fluxo

Implementação de cursores explícitos com estruturas condicionais:

CURSOR C ALERTAS RECENTES IS

```
SELECT a.timestamp_alerta, ns.codigo_severidade, prod.nome_completo
FROM GS_WW_ALERTA a

JOIN GS_WW_NIVEL_SEVERIDADE ns ON a.id_nivel_severidade = ns.id_nivel_severidade
WHERE a.timestamp_alerta >= SYSDATE - 2

ORDER BY a.timestamp_alerta DESC;
```

Integração MongoDB

Estrutura de Documentos:

```
Logs de Atividade
```

```
{
  "_id": ObjectId("..."),
  "timestamp": ISODate("2025-06-02T10:30:00Z"),
  "type": "oracle_crud",
  "user": "system",
  "details": {
    "entity": "PropriedadeRural",
    "operation": "INSERT",
    "name": "Fazenda São João"
  },
  "source": "streamlit_interface"
}
```

Relatórios Gerados

```
{
    "_id": ObjectId("..."),
    "timestamp": ISODate("2025-06-02T10:30:00Z"),
    "type": "dashboard_metrics",
    "content": { /* dados do relatório */ },
```

```
"metadata": {
  "generated_by": "waterwise_system",
  "format": "json",
  "region": "centro-sul"
 },
 "status": "generated"
}
Imagens e Metadados
{
 "_id": ObjectId("..."),
 "timestamp": ISODate("2025-06-02T10:30:00Z"),
 "filename": "propriedade_aereo_001.jpg",
 "metadata": {
  "propriedade_id": 1,
  "tipo": "imagem_aerea",
  "coordenadas": [-23.5505, -46.6333]
 },
 "image_data": "base64_encoded_string",
 "size_bytes": 2048576
}
```

Prints de execução

Conclusão

O WaterWise representa uma solução inovadora para um dos maiores desafios ambientais do século XXI. Através da integração de tecnologias modernas de banco de dados, loT e análise de dados, o sistema transforma propriedades rurais em sentinelas inteligentes contra enchentes.

A implementação acadêmica demonstra a viabilidade técnica da solução, com arquitetura robusta, modelagem de dados consistente e funcionalidades abrangentes. O projeto estabelece as bases para um sistema que pode ser escalado para implementação real, contribuindo efetivamente para a prevenção de desastres naturais e sustentabilidade ambiental.

"Cada gota monitorada hoje é uma enchente prevenida amanhã."