Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization

msที่จะเอา Data นี้ไปประมวลผล ส่วที่จำเป็น

Measuring Data Similarity and Dissimilarity

1519 ะ พ้อวสามารถจักไส่ว่า Data
จุดที่ 1 กับ Data จุดที่ 2 ในมือนนรื้อ
พ่อกันอย่าวโร ช่วกวามเนมอนนร้อ
กาวมห่าวขอว Data กิจะใช้
Distance เมื่อ ระยะน่วงขึ้นกัววัด

Summary

Similarity, Dissimilarity, and Proximity

กาวมเผลื่อน Similarity measure or similarity function ุก สร้าวพิวก์ชันเพื่อให้ทราบว่า สอวจุด เผมือนหรือ ท่าวกันอย่าวไร A real-valued function that quantifies the similarity between two objects / Data หัวสองตัว จะเป็น หัวกับแกดาาม เนมือนว่าจะท่าง นร้องแม้อน กันอย่าวไร Measure how two data objects are alike: The higher value, the more alike ุ Duta ก่ล output ออกมา จะลี่ก่ o-1 Often falls in the range [0,1]: 0: no similarity; 1: completely similar กาวไม่เนว้อน 985242412 **Dissimilarity** (or **distance**) measure Numerical measure of how different two data objects are 🧼 จั๋วไว้เนมื่อเมกิจะ จั๋วเน่าว In some sense, the inverse of similarity: The lower, the more alike Minimum dissimilarity is often 0 (i.e., completely similar) แน่งเหล่า เกา กัน เหล่อนกัน เหล่อนการเรื่องสา ดูขั่วฝาวจัวฉัดวกกไปเรื่อข ๆ

- Range [0, 1] or $[0, \infty)$, depending on the definition
- Proximity usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
 - A data matrix of n data points with / dimensions
- Dissimilarity (distance) matrix
 Data ในมู เท่า ในรู
 - n data points, but registers only the distance d(i, j) (typically metric)
 - Usually symmetric, thus a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

$$\begin{pmatrix} 0 & & & & \\ d(2,1) & 0 & & \\ \vdots & \vdots & \ddots & \\ d(n,1) & d(n,2) & \dots & 0 \end{pmatrix}$$

Standardizing Numeric Data

 \Box Z-score: $z = \frac{x - \mu}{\sigma}$

- \square X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

- 🗅 standardized measure (z-score): $z_{if} = \frac{x_{if} m_f}{S_f}$ การมี รโลกสาส ฟาท่ากิน เพื่อว่าชท่อการคำนาน
- Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

าะระบุแพ่กะจุดผ่าวกันเท่าในร่

Dissimilarity Matrix (by Euclidean Distance)

	x1	<i>x2</i>	<i>x3</i>	<i>x4</i>
x1	0			
<i>x2</i>	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

☐ Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties จํดุผสมมัติ 3 ตัว

 - \Box d(i, j) \leq d(i, k) + d(k, j) (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

เราจะวัดระยะพาวในแนว ตามแกน อย่าวเสียว

- p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + \dots + |x_{il} - x_{jl}|$

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- \square $p \rightarrow \infty$: (L_{max} norm, L_{\infty} norm) "supremum" distance
 - The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$
 สูตรดูหันยาก หต่อวามจริงหันอ่ายกว่าหัวสองสูตเด้าแมน โดยเลือกระยะที่มากทั่สุด

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x3	x4
x 1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x 1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x 4	3	1	5	0

La noom = m maxyosseysmoroomังสองแกน (แกน ในน max เอาแกนนั้น)