

TD - Les variables Débuter en Python - Partie 1

Table des matières

I	Variables et affectations	1
1	Éditeur et console sous Python	1
2	Les types: type(), les variables et les affectations	3
3	Variables et affectations simultanées	5
4	Les fonctions mathématiques de bases	6

Première partie

Variables et affectations

I.1. Éditeur et console sous Python

I.1.1 Lancer l'éditeur Python

On ouvre un éditeur Python:

- 1. avec un éditeur en ligne : www.repl.it
- 2. avec un éditeur comme Spyder: https://pypi.org/project/spyder/
- 3. avec un éditeur comme Edupython: https://edupython.tuxfamily.org/

I.1.2 Dans la console

La console se reconnaît facilement. C'est elle qui contient le chevron > (ou le triple >>>) qui est l'invite de Python (prompt en anglais) et qui signifie que Python attend une commande.

L'esprit d'utilisation de la console est un peu le même que celui d'une calculatrice.

```
# Dans la console PYTHON
>>> 2+3
5
>>> a=5
>>> a-9
-4
```


Le symbole # (se lit « croisillon », « hash » en anglais) permet de faire figurer dans le corps du programme un commentaire qui ne sera pas pris en compte lors de son exécution.

Le symbole = n'est pas celui de l'égalité mathématique, il n'est d'ailleurs pas symétrique. Il s'agit d'affecter une valeur à une variable : on stocke une valeur numérique ou du texte dans une mémoire.

Lancer les instructions suivantes dans la console en appuyant sur **Enter** à chaque fin de ligne et regarder le résultat

```
# Dans la console PYTHON
>>> print ( "Hello world !")
>>> x=3
>>> x
>>> 4+5
>>> 5/2 # Division décimale
>>> 7//3 # Quotient de la division entière
>>> print("la valeur de x est", x)
```

Les types: type(), les variables et les affectations **I.2.**

I.2.1 Les différents types de variables

Voici les différents types de variables que vous devez connaître :

Туре	Notation Python	Exemples
Nombres entiers relatifs	int()	> int(-5.5) -5 > type(2) <class 'int'<="" th=""></class>
Nombres flottants (décimaux)	float()	> type(2.0) <class 'float'=""></class>
Les chaînes de caractères (string)	str()	> type('a') <class 'str'=""></class>
Les booléens (True ou False)	bool()	<pre>> type(False) <class 'bool'=""> > 10 < 2 False > type(2<3) <class 'bool'=""></class></class></pre>
Les listes	list()	> type([1,2]) <class 'list'=""></class>

Donner le type des expressions suivantes

a	type(a)
a=2	
a = 2.0	
a = 2 + 3	
a = 2 + 3.0	
a='Bonjour'	
a = False	
a = 2 < 3	
<i>a</i> = "2 < 3"	
a = [2,3]	
a = '2.1'	

On peut afficher ces variables avec la fonction print() par exemple print(a) ou taper seulement adans la console puis Enter

I.2.2 Tester et comparer des variables

Une variable booléenne est le résultat True ou False d'une phrase ou d'un test logique. Exemple :

Le test logique (ou la comparaison) a < b peut être **True** ou **False**, tout comme le test a == b Python est capable d'effectuer toute une série de comparaisons entre le contenu de deux variables, telles que :

==	égal à	
! =	différent de	
>	supérieur à	
>=	supérieur ou égal à	
<	inférieur à	
<=	inférieur ou égal à	

Prévoir puis testez les résultats suivants :

```
# Dans la console PYTHON
a = 2
b = 3
c = 5
print( a == b)
print( a+b == c)
print( a < b )
print( a <= c)
print( a == b and a == 2)
print(a == b or a == 2)
print( type( a == c) )</pre>
```

I.2.3 Pour enregistrer vos travaux dans votre éditeur Python

- Sur repl.it: cliquez simplement sur: + **new repl** et donner un nom à votre fichier. Il sera automatiquement enregistré après chaque **Run**.
- Sinon sur un éditeur hors ligne : Cliquer sur Fichier puis Nouveau puis sélectionner Nouveau Module Python. Enregistrer IMMEDIATEMENT votre programme dans votre répertoire de travail avec le nom Mon1erProgramme.py.

I.3. Variables et affectations simultanées

On considère l'algorithme ci-dessous écrit sous Python (ne On considère l'algorithme ci-dessus écrit sous Python. pas le taper).

a=2b = -5a, b=a+b, a-bprint("Maintenant a= ",a," et b = ",b)

1. Compléter le tableau.

Ligne	a	b
L1		
L2		
L3		

pour vérifier vos résultats.

```
a=2
b = -5
a=a+b
b=a-b
print("Maintenant a= ",a," et b = ",b)
```

1. Compléter le tableau.

Ligne	a	b
L1		
L2		
L3		
L4		

2. Vous pourrez ensuite taper le programme sous Python | 2. Vous pourrez ensuite taper le programme sous Python pour vérifier vos résultats.

-Remarque

Notez la différence entre les résultats.

- Dans l'exemple de gauche ci-dessus, les valeurs de a et b sont affectées simultanément en utilisant les valeurs des lignes précédentes.
- En revanche dans celui de droite, les affectations sont successives, ce qui explique les résultats différents.

Ainsi a, b = b, a échange les valeurs des deux variables a et b (sans utilisation d'une variable tampon).

On considère l'algorithme suivant écrit en pseudo code :

L1	Traitement:	<i>U</i> ← 500
L2		$N \leftarrow 0$
L3		$U \leftarrow 0.7 \times U + 300$
L4		$N \leftarrow N + 1$
L5		Afficher U , N

1. Compléter le tableau suivant afin de déterminer les valeurs affichées en sortie.

Ligne	U	N
L1		
L2		
L3		
L4		

2. Écrire sous Python ce programme en utilisant le moins de lignes possible.

I.4. Les fonctions mathématiques de bases

Opérations	Interprétation	Exemples de syntaxe	Remarque
+,-,*,/	addition, soustraction, multi- plication et division		
a//b	Partie entière de la division de a par b	> 12//11 1	$12 \div 11 \approx 1,0909$
a % b	Reste de la division eucli- dienne de a par b	> 17 % 3 2	$17 = 3 \times 5 + 2$
int(a)	partie entière	> int(12.123) 12	
divmod(a,b)	Quotient et Reste de la division euclidienne de a par b	> divmod(20,3) (6,2)	$20 = 3 \times 6 + 2$
a**b ou pow(a,b)	a Puissance b	> 2**3 ou pow(2,3)	$2^3 = 8$
$a^{**}(1/2)$ Racine carrée \sqrt{a}		> 9**(1/2) 3	$\sqrt{9} = 3$
a**(1/n)	Racine $n^{ ext{ième}}$ de $a:\sqrt[n]{a}$	> 27**(1/3) 3	$\sqrt[3]{27} = 3$
abs(x)	Valeur absolue de x : $ x $	> abs(-5.2) 5.2	-5.2 = 5.2
round(a,n)	Arrondie de a à 10^{-n} près	> round(2.2563,2) 2.26	
+ pour les str	concatène deux chaînes de ca- ractères	> "bon"+"jour" bonjour	Pas vraiment mathématique mais je ne savait pas où le mettre

Compléter le tableau suivant en anticipant le résultat, sans utiliser votre éditeur Python!

Exemples de syntaxe	Résultat obtenu	Exemples de syntaxe	Résultat obtenu
> 25/10		> 5*2	
> 25//10		> 5**2	
> 25%10		> abs(-5.7)	
> int(25/10)		> 'mama'+'mia'	
> round(3.1416,2)		> '2'+'3'+'4'	

round(b, n) va renvoyer l'arrondie de b à 10^{-n} près. Par exemple : round(2.2563, 2) => 2.26