

UNISONIC TECHNOLOGIES CO., LTD

UM603A

LINEAR INTEGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIER AND CURRENT CONTROLLER

DESCRIPTION

The UTC UM603A is a monolithic IC that includes one independent op-amp and another op-amp for witch the non inverting input is wired to a 2.5V fixed voltage reference. This device is offering space and cost saving in many applications like power supply management or data acquisition systems.

FEATURES

OPERATIONAL AMPLIFIER

*Low input offset voltage: 0.5mV typ. for UTC UM603A

*Low supply current: 350uA/op.(@ V_{CC}= 5 V)

*Medium bandwidth(unity gain): 0.9MHz

*Large output voltage swing: 0 V ~ (V_{CC}-1.5 V)

*Input common mode voltage range includes ground

*Wide power supply range: 3V ~ 32V ±1.5 ~ ±16V

VOLTAGE REFERENCE

*Fixed output voltage reference 2.5V

* Reference voltage tolerance

UM603A-1: ±0.4% UM603A-2: ±1%

*Sink current capability: 1 ~ 100mA *Typical output impedance: 0.2Ω

ORDERING INFORMATION

Ordering Number	Package	Packing
UM603AG-S08-R	SOP-8	Tape Reel
UM603AG-P08-R	TSSOP-8	Tape Reel

MARKING

SOP-8 TSSOP-8

www.unisonic.com.tw 1 of 6

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	I/O	PIN DESCRIPTION
1	Output 1	0	OP1 output
2	Inverting Input1	I	OP1 inverting input
3	Non-Inverting Input1	0	A 2.5V fixed voltage reference output, wired to OP1 non-inverting input
4	V _{CC} -		
5	Non-Inverting Input2	I	OP2 non-inverting input
6	Inverting Input2	I	OP2 inverting input
7	Output 2	0	OP2 output
8	V _{CC} +		

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	36	V
Differential Input Voltage	$V_{I(DIFF)}$	36	V
Input Voltage	V_{IN}	-0.3 ~ +36	V
Junction Temperature	ΤJ	+125	°C
Operating Temperature	T _{OPR}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
lunction to Ambient	SOP-8	0	175	۰۵۸۸
Junction to Ambient	TSSOP-8	ӨЈА	120	°C/W

■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Total Supply Current, excluding		V _{CC} ⁺ =5V, no load, T _{MIN} ≤T _A ≤T _{MAX}	0.7		1.2	A
Current in the Voltage Reference	ICC	V _{CC} ⁺ =30V, no load, T _{MIN} ≤T _A ≤T _{MAX}			2	mA

V_{CC}+=+5V, V_{CC}=Ground, T_A=25°C (unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
OPERATOR1 (op-amp with non-inverting input connected to the internal V _{REF})								
Input Offset Voltage	UM603A-1		V _{I(CM)} =0V	T _A =25°C		0.5	2	2 mV
	OIVIOUSA-1	$V_{I(OFF)}$	VI(CM)-UV	$T_{MIN} \le T_A \le T_{MAX}$			3	IIIV
Input Onset Voltage	UM603A-2	VI(OFF)	V _{I(CM)} =0V	T _A =25°C		1	4	mV
	OWOOJA-2		VI(CM)—OV	$T_{MIN} \le T_A \le T_{MAX}$			5	111 V
Input Offset Voltage Drift		$DV_{I(OFF)}$				7		μV/°C
Input Bias Current		I _{I(BIAS)}	negative input			20		nA
Large Signal Voltage Gain		A_{VD}	$V_{I(CM)}$ =0V, V_{CC} =15	5V, R _L =2k		100		V/mV
Supply Voltage Rejection	Ratio	SVR	$V_{I(CM)}=0V, V_{CC}=5V$	/~30V	65	100		dB
Output Current Source		I _{SOURCE}	V _{OUT} =2V, V _{CC} =+15V, V _{ID} =+1V		20	40		mA
Short Circuit to Ground		I _{SC}	V _{CC} =+15V			40	60	mA
Output Current Sink		I _{SINK}	V _{ID} =-1V, V _{CC} =+15V, V _{OUT} =2V		10	20		mA
High Level Output Voltage		V _{OH}	V _{CC} ⁺ =30V	T _A =25°C, R _L =10k	27			V
				$T_{MIN} \le T_A \le T_{MAX}$	27	28		
Low Level Output Voltage		V_{OL}	R _L =10k			5	20	mV
Low Level Output Voltage			$T_{MIN} \le T_A \le T_{MAX}$			5	20	1117
Slew Rate at Unity Gain		SR	V_{IN} =0.5 ~ 3V, V_{CC} =15V		0.2	0.4		V/µs
Siew Rate at Unity Gain		511	R _L =2k, C _L =100pF, unity gain		0.2	0.4		ν/μδ
Gain Bandwidth Product		G_{BP}	V_{CC} =30V, R_L =2K, C_L =100pF		0.5	0.9		MHz
		GBP	f=100kHz, V _{IN} =10mV		0.0	0.0		1711 12
Total Harmonic Distortion		THD	f=1kHz, C _L =100pF, V _{OUT} =2V _{PP}			0.02		%
		טווו	Av=20dB, R _L =2k, V _{CC} =30V			0.02		70

■ ELECTRICAL CHARACTERISTICS (Cont.)

V_{CC}+=+5V, V_{CC}=Ground, V_{OUT}=1.4V, T_A=25°C (unless otherwise specified)

V_{CC} +=+5 V , V_{CC} =Ground, V_{OUT} =1.4 V , I		1 _A =25°C (U	<u>iniess otnerwise sp</u>	ресіпеа)					
PARAMETER		SYMBOL	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
OPERATOR2 (independe	nt op-amp)(Note 1)							
	UM603A-1		T _A =25°C	T _A =25°C		0.5	2	mV	
Input Offset Voltage	OIVIOUSA-1	\/	$T_{MIN} \le T_A \le T_{MAX}$				3	1117	
Input Onset voltage	UM603A-2	$V_{I(OFF)}$	T _A =25°C			1	4	mV	
	UNIOUSA-2		$T_{MIN} \le T_A \le T_{MAX}$				5	1117	
Input Offset Voltage Drift		DV _{I(OFF)}				7		μV/°C	
Input Offset Current		l	T _A =25°C			2	30	nA	
input Onset Current		I _{I(OFF)}	$T_{MIN} \le T_A \le T_{MAX}$				50	ША	
Input Bias Current		1	T _A =25°C			20	150	nA	
Input bias Current		I _{I(BIAS)}	$T_{MIN} \le T_A \le T_{MAX}$				200	nA	
Large Signal Voltage Cain		۸	V _{CC} =15V, R _L =2k,	V _{OUT} =1.4V~11.4V	50	100		V/mV	
Large Signal Voltage Gain		A_{VD}	$T_{MIN} \le T_A \le T_{MAX}$		25			V/IIIV	
Supply Voltage Rejection Ratio		SVRR	V _{CC} =5V ~30V			100		dB	
Input Common Mode Voltage Range		V _{I(CM)}	V _{CC} =+30V (Note 1)		0		(V _{CC} ⁺)-1.5	V	
			$T_{MIN} \le T_A \le T_{MAX}$		0		(V _{CC} ⁺)-2		
Common Made Dejection	Datio	CMRR			70	85		dB	
Common Mode Rejection	Ralio		$T_{MIN} \le T_A \le T_{MAX}$		60			uB	
Output Current Source		I _{O(SOURCE)}	V _{CC} =+15V, V _{OUT} =2V, V _{JD} =+1V		20	40		mA	
Short Circuit to Ground		I _{SC}	V _{CC} =+15V			40	60	mA	
Output Current Sink		I _{O(SINK)}	V _{ID} =-1V, V _{CC} =+15	V, V _{OUT} =2V	10	20		mA	
High Level Output Voltage		\/	V _{CC} ⁺ =30V	T _A =25°C, R _L =10k	27	28		V	
High Level Output voltage		V _{OH}	V _{CC} -30V	$T_{MIN} \le T_A \le T_{MAX}$	27			\ \ \ \ \	
Low Lovel Output Voltage		\/	R _L =10k			5	20	mV	
Low Level Output Voltage		V _{OL}	$T_{MIN} \le T_A \le T_{MAX}$			5	20	IIIV	
Slew Rate at Unity Gain		SR	V _{IN} =0.5 ~ 3V, V _{CC} =15V		0.2	0.4		V/µs	
		SK	R _L =2k, C _L =100pF, unity gain		0.2	0.4		v/µS	
Gain Bandwidth Product		GBP	V _{CC} =30V, R _L =2K,	C _L =100pF	0.5	0.9		MHz	
Gain Bandwidth Product		GBF	f=100kHz, V _{IN} =10	mV	0.5	0.9		1011 12	
Total Harmonic Distortion		THD	f=1kHz , C _L =100pF, V _{OUT} =2V _{PP}			0.02		%	
Total Harmonic Distortion		טווו	Av=20dB, R _L =2k, V _{CC} =30V,			0.02		/0	

■ VOLTAGE REFERENCE

PARAMETER	SYMBOL	Value	UNIT
Cathode Current	I _K	1 ~ 100	mΑ

PARAMETER SY		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	LIMC02A 4	V _{REF}	±0.4%, T _A =25°C	2.49	2.5	2.51	V	
Deference Innut Voltage	UM603A-1		T _{MIN} ≤T _A ≤T _{MAX} , V _{KA} =V _{REF} , I _{KA} =10mA	2.48		2.52	V	
Reference Input Voltage	UM603A-2		±1%, T _A =25°C	2.475	2.5	2.525		
			T _{MIN} ≤T _A ≤T _{MAX} , V _{KA} =V _{REF} , I _{KA} =10mA	2.45		2.55		
Reference Input Voltage Deviation		$\triangle V_{REF}$	V _{KA} =V _{REF} , I _K =10mA, T _{MIN} ≤T _A ≤T _{MAX}		7	30	mV	
Over Temperature Range			VA VREF, IK TOTTIN, TMIN-TA-TMAX		,	30	IIIV	
Minimum Cathode Current for		l	V _{KA} =V _{REF}		0.5	1	mA	
Regulation		I _{MIN}	V KA – V REF		0.5	'	ША	
Dynamic Impedance(Note	2)	Z _{KA}	V _{KA} =V _{REF} , △I _K =1~100mA, f<1kHz		0.2	0.5	Ω	

Notes: 1. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC} + -1.5V. But either of both inputs can go to +36V without damage.

2. The dynamic impedance is defined as $\lceil ZKA \rfloor = \frac{|V_{KA}|}{|I_{K}|}$

■ TYPICAL CHARACTERISTICS

100

1000

Frequency (Hz)

10

Total Harmonic Distorsion THD=F(freq)

10000

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.