Q1. Let (L, \preceq) be a complete lattice and let $f: L \longrightarrow L$ be an order-preserving function.

(i) Let $a, b \in L$ with $a \leq b$. Define

$$[a,b] = \{x \in L \mid a \le x \le b\}$$

Show that $([a, b], \preceq)$ is a complete lattice.

(ii) Consider $X = \{x \in L \mid f(x) = x\}$. The Tarski-Knaster Theorem shows that there exists $a \in X$ such that for all $x \in X$, $a \leq x$. Let $S \subseteq X$. Since (L, \preceq) is a complete lattice, S has a g.l.b.

$$s = \bigwedge S$$

in L. Show that $a \leq s$.

- (iii) By considering f restricted to [a, s], for s and a defined in (ii), show that S has a g.l.b. in X. Note that it is not necessarily the case that the g.l.b. of S in X is the same as the g.l.b. of S in L.
- (iv) Show that (X, \preceq) is a complete lattice.
- (v) Define an order-preserving function $f:[0,1] \longrightarrow [0,1]$ such that the set of fixed points of f endowed with the usual order (\leq) on $\mathbb R$ is a linear order with exactly 4 elements.

(8 marks)

Q2. Define $G: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ by: for all $(n, m) \in \mathbb{N} \times \mathbb{N}$,

$$G((n,m)) = (n+1,2^m)$$

Let $X=\{R\in \mathcal{P}(\mathbb{N}\times\mathbb{N})\mid (0,0)\in R\}$. Define $F:X\longrightarrow X$ by: for all $R\in X$, $F(R)=R\cup G"R$.

- (i) Show that (X, \subseteq) is a complete lattice.
- (ii) Prove that F is an order preserving function on (X,\subseteq) .

By the Tarski-Knaster Theorem, we know that F must have a least fixed point in (X, \subseteq) . Let f be the least fixed point of F.

- (iii) Prove that f is a function with $dom(f) = \mathbb{N}$.
- (iv) Prove that for all $n \in \mathbb{N}$ with $n \geq 2$, f(n) is even.
- (v) Prove that f is injective.

(7 marks)

Q3. Prove that

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

(2 marks)

Q4. Prove that for all $n \geq 1$,

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

(1 mark)

Q5. Prove that for all $m \ge 0$ and for all $n \ge 1$,

$$\sum_{k=0}^{n} \binom{m+k}{m} = \binom{m+n+1}{m+1}$$

(2 marks)

Q6. What is coefficient of $x^{31}y^4$ in the expansion of $((x+y)^8+y)^7$? (2 mark)

Q7. Find the greatest term in the expansion of $(1+4x)^9$ when $x=\frac{1}{3}$. (2 marks)

Q8. Find the number solutions to the equation $x_1+x_2+x_3+x_4 \leq 6$ with $x_1, x_2, x_3, x_4 \in \mathbb{N}$. (2 mark)

 $\mathbf{Q9}^*$. Use the binomial theorem to evaluate $(1.2)^5$. (1 marks)

Q10. This question refers to \mathbb{N}_{def} discussed in lectures.

(i) Prove that if $n \in \mathbb{N}_{def}$ with $n \neq \emptyset$, then there exists $m \in \mathbb{N}_{def}$ such that

$$n = S(m)$$

For (ii) you may assume the definition of + on \mathbb{N}_{def} given in lectures ensures that \leq (defined in the first lecture) is a linear ordering of \mathbb{N}_{def} .

(ii) Prove that the usual \leq order on \mathbb{N}_{def} is a well order.

(6 marks)