Capítulo I-Introdução

Profa. Eliete Caldeira

- Sinal analógico ou contínuo: pode assumir um de um número infinito de valores possíveis
 - Ex: A temperatura ambiente é um sinal contínuo
- Sinal digital ou discreto: em cada momento pode assumir apenas um de uma série finita de valores possíveis.
 - Ex: O número de dedos que alguém mostra com suas mãos é discreto

Em eletrônica digital usamos sinais que podem assumir apenas dois valores possíveis, como ON ou OFF, 1 ou 0

- Sinal digital elimina problemas com variações nos valores analógicos
- A precisão depende do número de níveis (resolução) e da frequência de amostragem do sinal analógico

Maior ou menor resolução resulta em maior

ou menor número de dígitos na quantização

Sinais analógicos e digitais

Figure 1.1 Converting an analog signal to a digital signal (top), and vice versa (bottom). Notice some quality loss in the reproduced signal.

- Os sinais com apenas dois valores são ditos binários
- Um sistema digital recebe sinais digitais na entrada e gera sinais digitais na saída
- Um circuito digital conecta componentes que juntos formam um sistema digital
- Um único sinal binário é conhecido como dígito binário ou apenas bit (binary digit)

- Circuitos digitais são a base para computadores
 - As entradas digitais neste caso são letras e números recebidos de arquivos ou teclados, e a saída pode ser letras ou números para serem armazenados em arquivos ou mostrados no monitor.
- Circuitos digitais são a base para muito mais:
 - Celulares, controladores de automóveis, câmeras fotográficas e de vídeo, TVs, vídeo games, instrumentos musicais, etc.

- Em muitos destes sistemas, o sistema digital está embarcado ou embutido (embedded system) dentro de outro dispositivo eletrônico
- O mundo é em grande parte analógico, assim os sinais precisam ser convertidos de analógico para digital, processados no sistema digital e convertidos de volta para analógico para atuar no mundo

- Vantagens da digitalização
 - Os sinais digitais são facilmente gerados, manipulados e armazenados
 - Podem ser transmitidos sem perda de informação
 - Os sinais armazenados em forma digital não se deterioram ao longo do tempo como os sinais analógicos
 - Os sinais digitalizados podem ser armazenados de forma comprimida

- Detalhes da transmissão de sinais analógicos e digitais
- Os sinais digitais podem ser restaurados após a recepção, os analógicos não

Especificação de um sistema combinacional

Sistema combinacional pode ser representado por uma função:

```
z = F(x)
```

- Especificação de um sistema combinacional
 - Entradas x;
 - Saídas z;
 - F função que relaciona entradas e saídas.
- É necessário codificar as entradas para que o sistema digital possa processar as informações. E depois decodificar a saída.

Como codificar fenômenos analógicos?

- Sensores ou transdutores geram sinal elétrico análogo ao sinal físico
- Conversor Analógico/Digital (A2D) gera código digital a partir de um sinal elétrico analógico
- Sistema Digital processa o sinal digital gerando uma saída também digital
- Conversor Digital/Analógico (D2A) gera um sinal (pseudo) analógico a partir do código
- Atuadores convertem sinal analógico de saída em fenômeno físico
 - Alguns sensores geram saída digital diretamente

Figure 1.3 A typical digital system.

Como codificar fenômenos digitais?

- Sensor de movimento: gera saída de V_{DD} V se houver movimento e 0 V caso contrário
- Sensor de luz: gera saída 0 V quando está escuro e V_{DD} caso contrário
- Botão: gera uma saída V_{DD} quando o botão é pressionado e 0 V caso contrário
- Usando lógica positiva:
 - V_{DD} V corresponde ao nível lógico 1
 - 0 V corresponde ao nível lógico 0

Lógica positiva e negativa

POSITIVE LOGIC $V_{H} \longleftrightarrow 1$ $V_{L} \longleftrightarrow 0$

 $NEGATIVE\ LOGIC$ $V_H \longleftrightarrow 0$ $V_L \longleftrightarrow 1$

Input voltages		Output voltage	Positive logic		Negative logic	
x	y	z	x y	z	\boldsymbol{x}	$y \mid z$
V_L	V_L	V_L	0 0	0	1	1 1
V_L	V_H	V_L	0 1	0	1	0 1
V_H	V_L	V_L	1 0	0	0	1 1
V_H	V_H	V_H	1 1	1	0	0 0
			f =	AND	f	= OR

- Codificação do botão
 - Pressionado => 1
 - Não-pressionado => 0
- Código do teclado
 - Nenhuma tecla => 000
 - Red => 001
 - Blue => 010
 - Green => 011
 - ∘ Black => 100
 - Este código supõe que os botões não podem ser pressionados simultaneamente

Figure 1.4 Keypad encodings.

- Codificação de letras e caracteres:
 - ASCII American Standard Coding for Information Interchange
 - EBCDIC, Unicode e outros

Symbol	Encoding	Symbol	Encoding
R	1010010	r	1110010
S	1010011	S	1110011
Т	1010100	t	1110100
L	1001100	1	1101100
N	1001110	n	1101110
Е	1000101	е	1100101
0	0110000	9	0111001
(a)	0101110	1	0100001
<tab></tab>	0001001	<space></space>	0100000

Figure 1.5 Sample ASCII encodings.

Como codificar números inteiros positivos?

Figure 1.6 Base ten number system.

$$5x10^2+2x10^1+3x10^0=523_{10}$$

$$1x2^2+0x2^1+1x2^0=5_{10}$$

$$\frac{1}{2^4} \quad \frac{1}{2^3} \quad \frac{0}{2^2} \quad \frac{1}{2^1} \quad \frac{1}{2^0}$$

Figure 1.7 Base two number system.

Figure 1.8 Base two number system.

Conversão de decimal para binário método de subtração:

	Decimal	Binary	
Put 1 in highest place Try place 16, too big (16>12) Next place, 8, is highest (8<12) Update decimal number Decimal not zero, return to Step	12 - <u>8</u>	$\frac{1}{16} \frac{1}{8} \frac{0}{4} \frac{0}{2} \frac{0}{1}$	(current value is 8)
 Put 1 highest place Next place, 4, is highest (4=4) Update decimal number Decimal number is zero, done. 	<u>-4</u> 0	$\frac{1}{16} \frac{1}{8} \frac{1}{4} \frac{0}{2} \frac{0}{1}$	(current value is 12)

Figure 1.9 Converting the decimal number 12 to binary using the subtraction method.

	Decimal	Binary	
1. Put 1 in highest place	23	$\frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{0}{2} \frac{0}{1}$ (current value)	lue
Place 32 too big, but 16 works. 2. Update decimal number Decimal not zero, return to Step 1	<u>-16</u> 7	16 8 4 2 1 <i>IS 10)</i>	
1. Put 1 in highest place Next place is 8, too big (8>7) 4 works (4<7)		$\frac{1}{16} \frac{0}{8} \frac{1}{4} \frac{0}{2} \frac{0}{1}$ (current value is 20)	lue
Update decimal number Decimal number not zero, return to Step 1	3		
Put 1 in highest place Next place is 2, works (2<3) Update decimal number	-	$\frac{1}{16} \frac{0}{8} \frac{1}{4} \frac{1}{2} \frac{0}{1}$ (current value is 22)	lue
Decimal not zero, return to Step 1			
Next place is 1, works (1=1) Update decimal number	<u>-1</u>	1 0 1 1 1 (current value is 23)	lue
Decimal number is zero, done	5.50		

Figure 1.10 Converting the decimal number 23 to binary using the subtraction method.

Conversão de decimal para binário método de divisões sucessivas por 2:

Figure 1.11 Converting the decimal number 12 to binary using the divide-by-2 method.

Sistemas de base r

$$\underline{x} = (x_{n-1}, x_{n-2}, ..., x_1, x_0)$$
 $x = \sum x_i.r^i$
 $x_i \in (0, 1, ..., r-1)$ onde r é a base

- Sistema decimal: r = 10
 - Dígitos (0,1,2,..,8,9)
 - \circ 845₁₀ = 8 x 10² + 4 x 10¹ + 5 x 10⁰
- Sistema binário: r = 2
 - - Dígitos (0,1)
 - $-100110_2 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (38)_{10}$
- Sistema hexadecimal: r = 16
 - Dígitos (0, 1, 2, ..., 9, A, B, C, D, E, F)
 - \circ 9CE5₁₆ = 9 x 16³ + 12 x 16² + 14 x 16¹ + 5 x 16⁰ = (40165)₁₀
- Podem haver outras bases: r = 4 (radix4) ou r = 8 (octal).

- Números octais (base 8) e hexadecimais (base 16):
- Um dígito na base 8 corresponde a 3 dígitos binários e um dígito na base 16 corresponde a 4 dígitos na base 2
- $100 111 101_2 = 475_8$
- \bullet 0001 0011 1101₂ = 13D₁₆

 Conversão de hexa para decimal e para binário

hex	binary	hex	binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Figure 1.12 Base sixteen number system.

Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10		8	1000
1001	9	11	_	9	1001
1010	10	12	_	A	1010
1011	11	13		В	1011
1100	12	14	L I	C	1100
1101	13	15	_	D	1101
1110	14	16	_	E	1110
1111	15	17		F	1111

Decimal digit	BCD (8421)	2421	Excess-3	Biquinary	1-out-of-10
0	0000	0000	0011	0100001	1000000000
1	0001	0001	0100	0100010	0100000000
2	0010	0010	0101	0100100	0010000000
3	0011	0011	0110	0101000	0001000000
4	0100	0100	0111	0110000	0000100000
5	0101	1011	1000	1000001	0000010000
6	0110	1100	1001	1000010	0000001000
7	0111	1101	1010	1000100	000000100
8	1000	1110	1011	1001000	000000010
9	1001	1111	1100	1010000	000000001
		Unused	d code words		
	1010	0101	0000	0000000	0000000000
	1011	0110	0001	0000001	000000011
	1100	0111	0010	0000010	0000000101
	1101	1000	1101	0000011	0000000110
	1110	1001	1110	0000101	0000000111
	1111	1010	1111		

BCD = binary coded decimal

- Código Gray
- Usado em encoders

Decimal number	Binary code	Gray code
0	000	000
1	001	001
2	010	011
3	011	d 10
4	100	110
5	101	1 <mark>11</mark>
6	110	1 <mark>01</mark>
7	111	100

Gray de 1 bit

- 0
- 1

Gray de 2 bits

• 0 0

• 0 1 Gray de 1 bit

1 1

Gray de 1 bit invertido

Qual a melhor opção?

Figure 1.13 Motion-in-the-dark-detector system: (a) system block diagram, (b) implementation using a microprocessor, (c) implementation using a custom digital circuit.

- Microprocessadores:
 - Fáceis de programar
 - Baratos
 - Disponíveis imediatamente
 - Lentos (poucas instruções de cada vez)
 - Alto consumo
 - "Amplos" demais
- Circuitos Digitais:
 - Necessidade de projeto
 - Muito mais rápidos (milhares de instruções de cada vez)
 - Totalmente personalizável e adaptado à aplicação

Um microprocessor é um dispositivo programável que executa uma sequência de instruções especificada pelo usuário, conhecida como programa ou como software

Figure 1.14 Basic microprocessor's input and output pins.

Figure 1.15 Physical motion-in-the-dark detector implementation using a microprocessor.

- Circuitos Digitais
 - Combinacionais: saídas dependem apenas das entradas no instante atual
 - Sequenciais: saídas dependem de entradas atuais
 - e anteriores memória
- Circuitos Digitais Sequenciais podem ser:
 - Síncronos: tempo é discretizado e mudanças só ocorrem em instantes discretos – clock
 - Assíncronos: mudanças ocorrem a qualquer instante