

What is claimed is:

1 1. A method of improving connectivity among topology subnets using a common
2 connection network, comprising steps of:
3 determining, by a border node located at a border of a particular one of the topology
4 subnets, one or more links between the border node and a neighboring border node located at the
5 border of a different one of the topology subnets;
6 creating a list of the determined links;
7 determining, when a first session endpoint resides in the particular one of the topology
8 subnets, whether the first session endpoint has connectivity to a global virtual routing node
9 (“GVRN”), and adding link information to the created list to represent this connectivity if so; and
10 forwarding the created list to the neighboring border node.

1 2. The method according to Claim 1, further comprising the steps of:
2 receiving, at the neighboring border node, the created list;
3 when a second session endpoint resides in the different one of the topology subnets,
4 performing steps of:
5 determining whether the second session endpoint has connectivity to the GVRN
6 or to another GVRN, and adding link information to the created list to represent this connectivity
7 if so; and
8 using the created list to select a data transmission path between the first session
9 endpoint and the second session endpoint; and
10 when the second session endpoint does not reside in the different one of the topology

11 subnets, performing steps of:

12 determining, by the neighboring border node, one or more links between the
13 neighboring border node and a different border node located at the border of another one of the
14 topology subnets; and
15 forwarding the created list to the different border node.

1 3. The method according to Claim 2, wherein the step of using the created list to select a
2 data transmission path further comprises the step of checking to see if both the first session
3 endpoint and the second session endpoint have connectivity to a single GVRN, and if so,
4 determining whether selecting the GVRN as a node in the data transmission path results in an
5 optimal data transmission path.

1 4. A global virtual routing node (“GVRN”) for interconnecting multiple topology subnets
2 using a common connection network which extends beyond each of the topology subnets,
3 comprising:

4 connections which are defined from one or more nodes in the topology subnets to the
5 GVRN;

6 means for representing the connections as links between physical nodes in the topology
7 subnets; and

8 means for selectively analyzing the represented connections along with the links between
9 physical nodes when selecting a data transmission path through the multiple topology subnets,
10 wherein the data transmission path spans the common connection network if the connections to

11 the GVRN are selected.

1 5. A system for improving connectivity among topology subnets using a common
2 connection network, comprising:

3 means for determining, by a border node located at a border of a particular one of the
4 topology subnets, one or more links between the border node and a neighboring border node
5 located at the border of a different one of the topology subnets;

6 means for creating a list of the determined links;

7 means for determining, when a first session endpoint resides in the particular one of the
8 topology subnets, whether the first session endpoint has connectivity to a global virtual routing
9 node (“GVRN”), and adding link information to the created list to represent this connectivity if
10 so; and

11 means for forwarding the created list to the neighboring border node.

1 6. The system according to Claim 5, further comprising:

2 means for receiving, at the neighboring border node, the created list;

3 when a second session endpoint resides in the different one of the topology subnets,

4 means for:

5 determining whether the second session endpoint has connectivity to the GVRN
6 or to another GVRN, and adding link information to the created list to represent this connectivity
7 if so; and

8 using the created list to select a data transmission path between the first session

9 endpoint and the second session endpoint; and
10 when the second session endpoint does not reside in the different one of the topology
11 subnets, means for:
12 determining, by the neighboring border node, one or more links between the
13 neighboring border node and a different border node located at the border of another one of the
14 topology subnets; and
15 forwarding the created list to the different border node.

1 7. The system according to Claim 6, wherein the means for using the created list to select a
2 data transmission path further comprises means for checking to see if both the first session
3 endpoint and the second session endpoint have connectivity to a single GVRN, and if so,
4 determining whether selecting the GVRN as a node in the data transmission path results in an
5 optimal data transmission path.

1 8. A computer program product for improving connectivity among topology subnets using a
2 common connection network, the computer program product embodied on one or more computer
3 readable media and comprising:
4 computer readable program code means for determining, by a border node located at a
5 border of a particular one of the topology subnets, one or more links between the border node
6 and a neighboring border node located at the border of a different one of the topology subnets;
7 computer readable program code means for creating a list of the determined links;
8 computer readable program code means for determining, when a first session endpoint

9 resides in the particular one of the topology subnets, whether the first session endpoint has
10 connectivity to a global virtual routing node (“GVRN”), and adding link information to the
11 created list to represent this connectivity if so; and
12 computer readable program code means for forwarding the created list to the neighboring
13 border node.

1 9. The computer program product according to Claim 8, further comprising:
2 computer readable program code means for receiving, at the neighboring border node, the
3 created list;
4 when a second session endpoint resides in the different one of the topology subnets,
5 computer readable program code means for:
6 determining whether the second session endpoint has connectivity to the GVRN
7 or to another GVRN, and adding link information to the created list to represent this connectivity
8 if so; and
9 using the created list to select a data transmission path between the first session
10 endpoint and the second session endpoint; and
11 when the second session endpoint does not reside in the different one of the topology
12 subnets, computer readable program code means for:
13 determining, by the neighboring border node, one or more links between the
14 neighboring border node and a different border node located at the border of another one of the
15 topology subnets; and
16 forwarding the created list to the different border node.

1 10. The computer program product according to Claim 9, wherein the computer readable
2 program code means for using the created list to select a data transmission path further comprises
3 computer readable program code means for checking to see if both the first session endpoint and
4 the second session endpoint have connectivity to a single GVRN, and if so, determining whether
5 selecting the GVRN as a node in the data transmission path results in an optimal data
6 transmission path.