- 1. X_1, \ldots, X_n is a random variable having the bernoulli distribution with the parameter θ .
 - (a) (2 marks) Let $S = \sum_{i=1}^{n} X_i$, find the distribution of S.
 - (b) (2 marks) Find the maximum likelihood estimate of $\theta(1-\theta)$.
 - (c) (2 marks) Is it unbiased estimator? No mark will be given if the answer is "Yes" or "No".
 - (d) (2 marks) Find the Cramer-Rao Lower Bound for the variance of an unbiased estimator for $\theta(1-\theta)$.
 - (e) (2 marks) Does the variance of any unbiased estimator for $\theta(1-\theta)$ achieve this bound? Why? Explain in details.
 - (f) (3 marks) Find the limiting distribution of the maximum likelihood estimate for $\theta(1-\theta)$ by Central Limit Theorem and Delta method. What phenomenon do you observe?
- 2. $X_1, X_2, ..., X_n$ are observations of a random sample of size n from the geometric distribution with probability distribution $f(x, \theta) = \theta(1 \theta)^x$ for x = 0, 1, ...
 - (a) (2 marks) Find the distribution of $\sum_{i=1}^{n} X_i$.
 - (b) (2 marks) Find the estimator from the method of moment.
 - (c) (2 marks) Find the estimator from the method of maximum likelihood.
 - (d) (2 marks) Find the maximum likelihood estimator for E(X).
 - (e) (2 marks) Is the maximum likelihood estimator for E(X) unbiased? If yes, find its variance. If no, find its mean squared error.
 - (f) (2 marks) Is the variance of any unbiased estimator for E(X) equal to the Cramer-Rao Lower Bound? No need to find the Cramer-Rao Lower Bound.
- 3. Let X_1, \ldots, X_n are independently uniformly distributed on $(\theta, 2\theta)$.
 - (a) (2 marks) Find the estimators from the method of moment and the method of maximum likelihood.
 - (b) (2 marks) Find the expectation and variance of the estimator from the method of moments.
 - (c) (4 marks) Find the expectation and variance of the estimator from the method of maximum likelihood.

- (d) (2 marks) Hence or otherwise, construct two unbiased estimators of θ based on the two estimators in part (a).
- (e) (2 marks) Compare the variances of the two unbiased estimates in (d) and comment briefly.
- 4. If X_1, X_2, \ldots, X_n are independently and normally distributed with the same mean μ but different **known** variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$.
 - (a) (3 marks) Find the estimator from the method of moment. Prove that it is an unbiased estimator for μ . Find its variance.
 - (b) (3 marks) Find the estimator from the method of maximum likelihood. Prove that it is an unbiased estimator for μ . Find its variance.
 - (c) (2 marks) Which of the estimators from part (a) or part (b) is more efficient? Explain in details
 - (d) (4 marks) Let

$$W = \frac{\sum_{i=1}^{n} \frac{X_i}{\sigma_i^2}}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}}.$$

Find its distribution. Hence or otherwise, construct the $(1 - \alpha)100\%$ confidence interval for μ .

- (e) (2 marks) Find the distribution of $X_i W$.
- (f) (3 marks) Are W and $X_i W$ independent? Explain in details.
- (g) (1 mark) Find the distribution of

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma_i} \right)^2 .$$

(h) (1 mark) Find the distribution of

$$\sum_{i=1}^{n} \frac{1}{\sigma_i^2} (W - \mu)^2 \ .$$

(i) (4 marks) Hence or otherwise, find the distribution of

$$\sum_{i=1}^n \frac{(X_i - W)^2}{\sigma_i^2} \ .$$

5. (Bonus) Consider a random sample $\{X_1, X_2\}$ from density

$$f_X(x|\theta) = \frac{3x^2}{\theta^3} I_{(0 < x < \theta)},$$

where $\theta > 0$.

- (a) (2 marks) Are $\hat{\theta}_1 = \frac{2}{3}(X_1 + X_2)$ and $\hat{\theta}_2 = \frac{7}{6} \max(X_1, X_2)$ unbiased for θ ?
- (b) (4 marks) Find the mean squared errors (MSEs) of $\hat{\theta}_1$ and $\hat{\theta}_2$, and compare those estimators.
- (c) (4 marks) Prove that in the sense of MSE, $T_{8/7}$ is the best estimator of θ among the estimators in form of $T_c = c \max(X_1, X_2)$.