Reference Manual

Generated by Doxygen 1.6.2-20100208

Mon Jul 11 04:48:43 2011

Contents

1	Clas	s Index			1
	1.1	Class I	Hierarchy		 1
2	Clas	s Index			3
	2.1	Class I	List		 3
3	File	Index			5
	3.1	File Li	st		 5
4	Clas	s Docu	mentation		7
	4.1	Cell C	lass Refere	nce	 7
		4.1.1	Detailed	Description	 7
		4.1.2	Construc	or & Destructor Documentation	 8
			4.1.2.1	Cell	 8
			4.1.2.2	~Cell	 8
		4.1.3	Member	Function Documentation	 8
			4.1.3.1	getID	 8
			4.1.3.2	getScore	 8
			4.1.3.3	mutate	 9
			4.1.3.4	outputDataPlot	 9
			4.1.3.5	outputDotImage	 9
			4.1.3.6	rkTest	 9
	4.2	cmp_s	tr Struct Re	ference	 11
		4.2.1	Member	Function Documentation	 11
			4.2.1.1	operator()	 11
	4.3	Compl	lex Class R	eference	 12
		4.3.1	Construc	or & Destructor Documentation	 13
			4.3.1.1	Complex	 13
			4312	~Complex	13

ii CONTENTS

	4.3.2	Member	Function Documentation	13
		4.3.2.1	getComponentId	13
4.4	Degrad	dation Clas	s Reference	14
	4.4.1	Construc	tor & Destructor Documentation	15
		4.4.1.1	Degradation	15
		4.4.1.2	~Degradation	15
	4.4.2	Member	Function Documentation	15
		4.4.2.1	getEffect	15
4.5	DerivO	Graph Clas	s Reference	16
	4.5.1	Construc	tor & Destructor Documentation	16
		4.5.1.1	DerivGraph	16
		4.5.1.2	~DerivGraph	17
	4.5.2	Member	Function Documentation	17
		4.5.2.1	degradationRateChange	17
		4.5.2.2	forwardRateChange	17
		4.5.2.3	getArcMap	18
		4.5.2.4	getBestMolecule	18
		4.5.2.5	getListDigraph	18
		4.5.2.6	getNodeMap	18
		4.5.2.7	histoneMod	18
		4.5.2.8	newBasic	18
		4.5.2.9	newComplex	19
		4.5.2.10	newPromoter	19
		4.5.2.11	newPTM	19
		4.5.2.12	outputDataPlot	20
		4.5.2.13	outputDotImage	20
		4.5.2.14	reverseRateChange	20
		4.5.2.15	rungeKuttaEvaluate	21
		4.5.2.16	setDefaultInitialConc	21
		4.5.2.17	setKineticRateLimits	21
		4.5.2.18	setLimits	21
		4.5.2.19	setRungeKuttaEval	22
		4.5.2.20	test	22
	4.5.3	Member	Data Documentation	22
		4.5.3.1	r	22
4.6	DNA (Class Refer	rence	23

CONTENTS

	4.6.1	Constructor & Destructor Documentation	23
		4.6.1.1 DNA	23
		4.6.1.2 ~DNA	24
	4.6.2	Member Function Documentation	24
		4.6.2.1 getValue	24
		4.6.2.2 rkApprox	24
		4.6.2.3 setHistoneModValue	25
	4.6.3	Member Data Documentation	25
		4.6.3.1 hill	25
		4.6.3.2 promoterId	25
4.7	Experi	ment Class Reference	26
	4.7.1	Constructor & Destructor Documentation	26
		4.7.1.1 Experiment	26
		4.7.1.2 ~Experiment	26
	4.7.2	Member Function Documentation	27
		4.7.2.1 setOutputOptions	27
		4.7.2.2 start	27
4.8	Forwar	rdComplexation Class Reference	28
	4.8.1	Constructor & Destructor Documentation	28
		4.8.1.1 ForwardComplexation	28
		4.8.1.2 ~ForwardComplexation	29
	4.8.2	Member Function Documentation	29
		4.8.2.1 getEffect	29
	4.8.3	Member Data Documentation	29
		4.8.3.1 firstNodeID	29
		4.8.3.2 secondNodeID	29
4.9	Forwar	rdPTM Class Reference	30
	4.9.1	Constructor & Destructor Documentation	30
		4.9.1.1 ForwardPTM	30
		4.9.1.2 ~ForwardPTM	30
4.10	Interac	ction Class Reference	32
		Constructor & Destructor Documentation	33
		4.10.1.1 Interaction	33
		4.10.1.2 ~Interaction	33
	4.10.2	Member Function Documentation	33
	0.2	4.10.2.1 getEffect	33

iv CONTENTS

	4.10.2.2 getName	34
	4.10.2.3 getRate	34
	4.10.2.4 setRate	34
4.10.3	Member Data Documentation	34
	4.10.3.1 arcID	34
	4.10.3.2 name	34
	4.10.3.3 rate	34
4.11 Molecu	ıle Class Reference	35
4.11.1	Constructor & Destructor Documentation	36
	4.11.1.1 Molecule	36
	4.11.1.2 ~Molecule	36
4.11.2	Member Function Documentation	36
	4.11.2.1 getID	36
	4.11.2.2 getLongName	36
	4.11.2.3 getPTMCount	37
	4.11.2.4 getPTMCount	37
	4.11.2.5 getrkVal	37
	4.11.2.6 getRungeKuttaSolution	37
	4.11.2.7 getScore	37
	4.11.2.8 getShortName	37
	4.11.2.9 getValue	37
	4.11.2.10 nextPoint	38
	4.11.2.11 outputRK	38
	4.11.2.12 reset	38
	4.11.2.13 rkApprox	38
	4.11.2.14 setID	39
	4.11.2.15 setValue	39
	4.11.2.16 updateRkVal	39
4.11.3	Member Data Documentation	40
	4.11.3.1 buf	40
	4.11.3.2 currentConcentration	40
	4.11.3.3 currentDir	40
	4.11.3.4 initialConcentration	40
	4.11.3.5 longName	40
	4.11.3.6 moleculeID	40
	4.11.3.7 nodeID	40

CONTENTS

4.11.3.8 numChanges	. 40
4.11.3.9 prevDir	. 40
4.11.3.10 PTMArray	. 40
4.11.3.11 r	. 40
4.11.3.12 rkVal	. 40
4.11.3.13 rungeKuttaSolution	. 40
4.11.3.14 shortName	. 40
4.11.3.15 wasPTM	. 40
4.12 MoleculeType Class Reference	. 41
4.12.1 Detailed Description	. 41
4.12.2 Constructor & Destructor Documentation	. 41
4.12.2.1 MoleculeType	. 41
4.12.2.2 ~MoleculeType	. 41
4.13 mRNA Class Reference	. 42
4.13.1 Constructor & Destructor Documentation	. 42
4.13.1.1 mRNA	. 42
4.13.1.2 ~mRNA	. 42
4.14 NullNode Class Reference	. 44
4.14.1 Constructor & Destructor Documentation	. 44
4.14.1.1 NullNode	. 44
4.14.1.2 ~NullNode	. 45
4.14.2 Member Function Documentation	. 45
4.14.2.1 getValue	. 45
4.15 PromoterBind Class Reference	. 46
4.15.1 Constructor & Destructor Documentation	. 47
4.15.1.1 PromoterBind	. 47
4.15.1.2 ~PromoterBind	. 47
4.15.2 Member Function Documentation	. 47
4.15.2.1 getEffect	. 47
4.15.3 Member Data Documentation	. 47
4.15.3.1 kf	. 47
4.15.3.2 kr	. 47
4.16 Protein Class Reference	. 49
4.16.1 Constructor & Destructor Documentation	. 50
4.16.1.1 Protein	. 50
4.16.1.2 ~Protein	. 50

Vi

4.17	PTMP ₁	rotein Class Reference	51
		Constructor & Destructor Documentation	51
		4.17.1.1 PTMProtein	51
		4.17.1.2 PTMProtein	52
		4.17.1.3 ~PTMProtein	52
	4.17.2	Member Function Documentation	52
		4.17.2.1 addRandPTM	52
		4.17.2.2 getLongName	52
		4.17.2.3 setPTMCount	52
4.18	Revers	seComplexation Class Reference	53
	4.18.1	Constructor & Destructor Documentation	53
		4.18.1.1 ReverseComplexation	53
		4.18.1.2 ~ReverseComplexation	54
	4.18.2	Member Function Documentation	54
		4.18.2.1 getEffect	54
	4.18.3	Member Data Documentation	54
		4.18.3.1 firstNodeID	54
		4.18.3.2 secondNodeID	54
4.19	Revers	sePTM Class Reference	55
	4.19.1	Constructor & Destructor Documentation	55
		4.19.1.1 ReversePTM	55
		4.19.1.2 ~ReversePTM	55
4.20	TestInt	t Class Reference	57
	4.20.1	Constructor & Destructor Documentation	57
		4.20.1.1 TestInt	57
		4.20.1.2 ~TestInt	58
	4.20.2	Member Function Documentation	58
		4.20.2.1 getEffect	58
4.21	Trace C	Class Reference	59
	4.21.1	Constructor & Destructor Documentation	59
		4.21.1.1 Trace	59
		4.21.1.2 Trace	59
		4.21.1.3 ~Trace	59
	4.21.2	Member Function Documentation	59
		4.21.2.1 addTraceType	59
		4.21.2.2 disableTraceType	60

CONTENTS vii

		4.21.2.3 enableTraceType	60
		4.21.2.4 getTraceFile	60
		4.21.2.5 setTraceFile	60
		4.21.2.6 trace	60
		4.21.3 Member Data Documentation	61
		4.21.3.1 traceFile	61
		4.21.3.2 traceTypes	61
	4.22	Transcription Class Reference	62
		4.22.1 Constructor & Destructor Documentation	62
		4.22.1.1 Transcription	62
		4.22.1.2 ~Transcription	63
		4.22.2 Member Function Documentation	63
		4.22.2.1 getEffect	63
	4.23	Translation Class Reference	64
		4.23.1 Constructor & Destructor Documentation	64
		4.23.1.1 Translation	64
		4.23.1.2 ∼Translation	65
		4.23.2 Member Function Documentation	65
		4.23.2.1 getEffect	65
5	File 1	Documentation	67
	5.1	Cell.cpp File Reference	67
	5.2	Cell.h File Reference	68
	5.3	CustomInteractions.cpp File Reference	69
	5.4	CustomInteractions.h File Reference	70
	5.5	CustomMolecules.cpp File Reference	71
	5.6	CustomMolecules.h File Reference	72
	5.7	DerivGraph.cpp File Reference	73
	5.8	DerivGraph.h File Reference	74
	5.9	Experiment.cpp File Reference	76
	5.10	Experiment.h File Reference	77
	5.11	ExternTrace.h File Reference	78
		5.11.1 Variable Documentation	78
		5.11.1.1 t	78
	5.12		78 79
		5.11.1.1 t	

viii CONTENTS

	5.14.1	Function	Docume	ntation	 							 				82
		5.14.1.1	main .					 				 				82
	5.14.2	Variable 1	Documer	itation	 			 				 				82
		5.14.2.1	t					 				 				82
5.15	Molecu	ıle.cpp Fil	e Referer	ice				 				 				83
5.16	Molecu	ıle.h File I	Reference					 				 				84
5.17	Molecu	ıleType.h l	File Refe	rence.				 				 				85
5.18	Trace.c	pp File Re	eference					 				 				86
5.19	Trace.h	File Refe	rence .		 			 				 				87

Chapter 1

Class Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Cell	7
cmp_str	11
DerivGraph	16
Experiment	26
Interaction	32
Degradation	14
ForwardComplexation	28
ForwardPTM	30
PromoterBind	46
ReverseComplexation	53
ReversePTM	55
TestInt	57
Transcription	62
Translation	64
Molecule	35
DNA	23
mRNA	42
NullNode	44
Protein	49
Complex	12
PTMProtein	51
MoleculeType	41
Trace	

2 Class Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Cell	7
cmp_str	1
Complex	2
Degradation	4
DerivGraph	6
DNA 23	3
Experiment	6
ForwardComplexation	8
ForwardPTM	J
Interaction	2
Molecule	5
MoleculeType	1
mRNA 42	2
NullNode	4
PromoterBind	6
Protein	9
PTMProtein	1
ReverseComplexation	3
ReversePTM	5
TestInt 57	7
Trace	9
Transcription	2
Translation 64	4

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

Cell.cpp
Cell.h
CustomInteractions.cpp
CustomInteractions.h
CustomMolecules.cpp
CustomMolecules.h
DerivGraph.cpp
DerivGraph.h
Experiment.cpp
Experiment.h
ExternTrace.h
Interaction.cpp
Interaction.h
Main.cpp
Molecule.cpp
Molecule.h
MoleculeType.h
Trace.cpp
Trace h

6 File Index

Chapter 4

Class Documentation

4.1 Cell Class Reference

#include <Cell.h>Collaboration diagram for Cell:

Public Member Functions

- Cell (int, int, int, float, float, float, float, float)
- ~Cell ()
- int mutate ()
- void outputDotImage ()
- void outputDataPlot ()
- int getScore ()
- int getID ()
- void rkTest ()

4.1.1 Detailed Description

Cell header file.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 Cell::Cell (int max_basic, int max_ptm, int max_comp, int max_promoter, float min_kinetic_rate, float max_kinetic_rate, float rk_time_step, float rk_time_limit, float initial_conc)

Cell::Cell()

Cell default constructor.

Allocates: 1 derivGraph object

Here is the call graph for this function:

4.1.2.2 Cell::∼Cell ()

Cell::~Cell()

Cell default destructor.

Frees: 1 derivGraph object

Here is the call graph for this function:

4.1.3 Member Function Documentation

4.1.3.1 int Cell::getID() [inline]

4.1.3.2 int Cell::getScore ()

Here is the call graph for this function:

4.1 Cell Class Reference 9

4.1.3.3 int Cell::mutate ()

Here is the call graph for this function:

4.1.3.4 void Cell::outputDataPlot ()

Here is the call graph for this function:

4.1.3.5 void Cell::outputDotImage ()

Here is the call graph for this function:

4.1.3.6 void Cell::rkTest()

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- Cell.h
- Cell.cpp

4.2 cmp_str Struct Reference

#include <Trace.h>

Public Member Functions

• bool operator() (const char *a, const char *b)

4.2.1 Member Function Documentation

4.2.1.1 bool cmp_str::operator() (const char *a, const char *b) [inline]

The documentation for this struct was generated from the following file:

• Trace.h

4.3 Complex Class Reference

#include <CustomMolecules.h>Inheritance diagram for Complex:

Collaboration diagram for Complex:

Public Member Functions

- Complex (int, int)
- ~Complex ()
- int getComponentId (int)

4.3.1 Constructor & Destructor Documentation

4.3.1.1 Complex::Complex (int n1, int n2)

Here is the call graph for this function:

4.3.1.2 Complex::∼Complex ()

4.3.2 Member Function Documentation

4.3.2.1 int Complex::getComponentId (int *i*)

The documentation for this class was generated from the following files:

- CustomMolecules.h
- CustomMolecules.cpp

4.4 Degradation Class Reference

 $\verb§\#include < CustomInteractions.h> Inheritance diagram for Degradation:$

Collaboration diagram for Degradation:

Public Member Functions

- Degradation ()
- ∼Degradation ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

4.4.1 Constructor & Destructor Documentation

- 4.4.1.1 Degradation::Degradation()
- **4.4.1.2 Degradation:**:∼**Degradation**()

4.4.2 Member Function Documentation

4.4.2.1 float Degradation::getEffect (ListDigraph * g, ListDigraph::NodeMap< Molecule * > * m, ListDigraph::ArcMap< Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- *m* The NodeMap object containing Node-Molecule mappings.
- *i* The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- **rkIter** The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- CustomInteractions.h
- CustomInteractions.cpp

4.5 DerivGraph Class Reference

#include <DerivGraph.h>

Public Member Functions

- DerivGraph ()
- ~DerivGraph ()
- void test ()
- void rungeKuttaEvaluate (float, float)
- void outputDotImage (int, int)
- void outputDataPlot (int, int, float)
- Molecule * getBestMolecule (int)
- void setLimits (int, int, int, int)
- void setKineticRateLimits (float, float)
- void setRungeKuttaEval (float, float)
- void setDefaultInitialConc (float)
- ListDigraph * getListDigraph ()
- ListDigraph::NodeMap < Molecule * > * getNodeMap ()
- ListDigraph::ArcMap < Interaction * > * getArcMap ()
- void newBasic ()
- void forwardRateChange ()
- void reverseRateChange ()
- void degradationRateChange ()
- DNA * histoneMod ()
- void newComplex ()
- void newPromoter ()
- void newPTM ()

Public Attributes

MTRand r

4.5.1 Constructor & Destructor Documentation

4.5.1.1 DerivGraph::DerivGraph()

DerivGraph()

DerivGraph constructor.

The DerivGraph holds LEMON objects such as ListDigraph, NodeMap, and ArcMap. It also holds the data produced by Runge-Kutta and facilitates plotting using Gnuplot.

The derivatives describing the concentration of molecules in the cell can be represented as a directed graph.

Each Node represents a type of molecule in the cell, and each Arc represents an interaction which has an effect on the Nodes which it connects.

Allocates: 1 ListDigraph() object 1 ListDigraph::NodeMap objects 1 ListDigraph::ArcMap object

Here is the call graph for this function:

4.5.1.2 DerivGraph::~DerivGraph()

DerivGraph::~DerivGraph()

DerivGraph Destructor.

Frees: 1 NodeMap object n contained Molecule objects 1 ArcMap object m contained Interaction objects 1 ListDigraph object

Here is the call graph for this function:

4.5.2 Member Function Documentation

4.5.2.1 void DerivGraph::degradationRateChange ()

void DerivGraph::degradationRateChange()

Randomly select a degradation interaction and modify its rate.

Degradation interactions are of type Degradation

Here is the call graph for this function:

4.5.2.2 void DerivGraph::forwardRateChange ()

void DerivGraph::forwardRateChange()

Randomly select a forward interaction and modify its rate.

Forward interactions are of type Translation, ForwardComplex

TODO: add ForwardPTMs

Here is the call graph for this function:

4.5.2.3 ListDigraph::ArcMap<Interaction*>* DerivGraph::getArcMap()

4.5.2.4 Molecule * DerivGraph::getBestMolecule (int CellID)

Here is the call graph for this function:

4.5.2.5 ListDigraph* DerivGraph::getListDigraph()

4.5.2.6 ListDigraph::NodeMap<Molecule*>* DerivGraph::getNodeMap ()

4.5.2.7 DNA * DerivGraph::histoneMod ()

void DerivGraph::histoneMod()

Randomly select a DNA molecule, and set the Histone factor to a random value [0,2].

The histone value is a constant multiplied factor applied to the rate of mRNA production by a DNA molecule. It is initialized at 1.0, and is randomly assigned a value between [0,2].

A value [0,1) results in repression of mRNA production. A value (1,2] results in activation of mRNA production.

Here is the call graph for this function:

4.5.2.8 void DerivGraph::newBasic ()

DerivGraph::newBasic()

Create a new DNA, mRNA, and protein in the cell.

DNA ---> mRNA ----> Protein | | v v Deg Deg

Here is the call graph for this function:

4.5.2.9 void DerivGraph::newComplex ()

void DerivGraph::newComplex()

Randomly select two Protein molecules to be complexed together.

If the two selected proteins already exist in a complex reaction together, the mutation will fail.

Molecules which can complex together are Protein, and ComplexProteins

TODO: add PTM's to the possible complex

Here is the call graph for this function:

4.5.2.10 void DerivGraph::newPromoter ()

void DerivGraph::newPromoter()

Select a random protein and DNA to add a Protein-Promoter interaction to.

The Protein-Promoter interaction is used in conjunction with the Hill model of cooperativity, and affects the Goodwin term used by DNA to calculate the rate of production.

Here is the call graph for this function:

4.5.2.11 void DerivGraph::newPTM ()

void DerivGraph::newPTM()

Randomly select a Protein molecule to which a PTM should be applied. The new PTM Protein has the same counts of modifications, with a random index incremented by one to reflect the new value. A PTM can be applied to a basic protein or a previously existing PTM.

TODO: check if a PTM already exists on a protein and prevent duplicate PTM's

Here is the call graph for this function:

4.5.2.12 void DerivGraph::outputDataPlot (int cellNum, int gen, float step)

void DerivGraph::outputDataPlot(int, int, float)

Output a png image of the concentration data of molecules plotted by Gnuplot.

For each molecule in the MoleculeList, a process running gnuplot is forked to which data from Runge-Kutta is fed to produce a plot.

Parameters:

cellNum the cell number to put in the filename

gen the generation number to put in the filename

step the stepSize used between the rungeKuttaSolution data points

4.5.2.13 void DerivGraph::outputDotImage (int cellNum, int gen)

void DerivGraph::outputDotImage(int, int)

Output a png image of the current graph structure using GraphViz.

A process running GraphViz is forked and a pipe opened to its standard in. The general layout of the output file can be changed below. The Node and Arc names are defined within the Molecule and Interaction classes.

Parameters:

cellNum the cell number to put in the filename

gen the generation number to put in the filename

4.5.2.14 void DerivGraph::reverseRateChange ()

void DerivGraph::reverseRateChange()

Randomly select a reverse interaction and modify its rate.

Reverse interactions are of type ReverseComplexation, ReversePTM

Here is the call graph for this function:

4.5.2.15 void DerivGraph::rungeKuttaEvaluate (float rkStep, float rkLimit)

Uses the Runge-Kutta fourth order method to approximate the solutions to the system of differential equations

The result of this algorithm is the vector rungeKuttaSolution within each Molecule object containing the approximation of the concentration at each timestep.

Parameters:

rkStep the timestep (precision) between calculated points

4.5.2.16 void DerivGraph::setDefaultInitialConc (float *initial_conc*)

DerivGraph::setDefaultInitialConcentration(float)

Set the default initial concentration for molecules

Parameters:

initial conc The initial concentration for new molecules

4.5.2.17 void DerivGraph::setKineticRateLimits (float min_kinetic_rate, float max_kinetic_rate)

DerivGraph::setKineticRateLimits(float, float)

Assign lower and upper bounds to the randomly generated kinetic rates

Parameters:

min_kinetic_rateThe lower bound on random kinetic ratesmax_kinetic_rateThe upper bound on random kinetic rates

4.5.2.18 void DerivGraph::setLimits (int max_basic, int max_ptm, int max_comp, int max_promoter)

DerivGraph::setLimits(int, int, int, int)

Set the occurrence limits for mutation types

Parameters:

max_basic Maximum basic proteins allowed
 max_ptm Maximum number of post translationally modified proteins allowed
 max_comp Maximum number of complexed proteins allowed
 max_promoter Maximum number of protein-promoter interactions allowed

Here is the call graph for this function:

4.5.2.19 void DerivGraph::setRungeKuttaEval (float rk_time_step, float rk_time_limit)

DerivGraph::setRungeKuttaEval(float, float)

Set the parameters for runge-kutta evalutation

Parameters:

rk_time_step The timestep between points (t, conc) calculated by Runge-Kuttark_time_limit The upper time limit for Runge-Kutta calculation (time = x axis)

4.5.2.20 void DerivGraph::test ()

Here is the call graph for this function:

4.5.3 Member Data Documentation

4.5.3.1 MTRand DerivGraph::r

The documentation for this class was generated from the following files:

- DerivGraph.h
- DerivGraph.cpp

4.6 DNA Class Reference 23

4.6 DNA Class Reference

#include <CustomMolecules.h>Inheritance diagram for DNA:

Collaboration diagram for DNA:

Public Member Functions

- DNA ()
- ~DNA ()
- float getValue ()
- float rkApprox (int, float)
- void setHistoneModValue (float)

Public Attributes

- int promoterId
- int hill

4.6.1 Constructor & Destructor Documentation

4.6.1.1 DNA::DNA()

CustomMolecules implementation file.

Custom Molecules allow modification of the default behavior of molecules.

Each molecule must be defined in the CustomMolecules.h header file. DNA::DNA()

Default Constructor

Derived from Molecule.

Here is the call graph for this function:

4.6.1.2 DNA::~DNA()

DNA::~DNA()

Default Destructor

4.6.2 Member Function Documentation

4.6.2.1 float DNA::getValue() [virtual]

Overload of virtual method Molecule::getValue

Returns:

Goodwin term describing the probability that the DNA is available for transcription.

Reimplemented from Molecule.

4.6.2.2 float DNA::rkApprox (int rkIteration, float rkStepSize) [virtual]

float Molecule::rkApprox(int, float) (Virtual Function)

Returns the next approximate value of this molecule for the next timestep for the specified stage of Runge-Kutta. Runge-Kutta uses successive iterations to make more accurate approximations of a solution.

rkApprox should be used in Interaction::getEffect, to provide the Runge-Kutta corrected concentrations of molecules during runge-kutta calculation instead of the base value for all iterations.

Parameters:

rkIteration the current iteration of Runge-KuttarkStepSize the timestep being used by Runge-Kutta

Reimplemented from Molecule.

Here is the call graph for this function:

4.6 DNA Class Reference 25

- 4.6.2.3 void DNA::setHistoneModValue (float newVal)
- 4.6.3 Member Data Documentation
- 4.6.3.1 int DNA::hill
- 4.6.3.2 int DNA::promoterId

The documentation for this class was generated from the following files:

- CustomMolecules.h
- CustomMolecules.cpp

4.7 Experiment Class Reference

#include <Experiment.h>

Public Member Functions

- Experiment (int ncells, int generations, int max_basic, int max_ptm, int max_comp, int max_prom, float min_kinetic_rate, float max_kinetic_rate, float rk_time_limit, float rk_time_step, float initial_conc)
- ∼Experiment ()
- void start ()
- void setOutputOptions (int, int, int, int)

4.7.1 Constructor & Destructor Documentation

4.7.1.1 Experiment::Experiment (int ncells, int generations, int max_basic, int max_ptm, int max_comp, int max_prom, float min_kinetic_rate, float max_kinetic_rate, float rk_time_limit, float rk_time_step, float initial_conc)

Experiment::Experiment(int, int)

Experiment constructor.

Parameters:

ncells number of Cell objects to be created.
generations number of Generations the Experiment will run for.
max_basic maximum number of basic proteins allowed in each Cell
max_ptm maximum number of PTM proteins allowed in each Cell
max_comp maximum number of complexed proteins allowed in each Cell
max_prom maximum number of protein-promoter interactions allowed in each cell
min_kinetic_rate the lower bound on randomly generated kinetic rates
max_kinetic_rate the upper bound on randomly generated kinetic rates
rk_time_limit the stopping condition for runge-kutta iteration
rk_time_step how much time to advance each iteration
initial_conc the initial concentration for molecules

Here is the call graph for this function:

4.7.1.2 Experiment::~Experiment ()

Experiment::~Experiment(int, int)

Experiment destructor.

Deletes the Cell objects from the cells vector, then deletes the vector itself.

Here is the call graph for this function:

4.7.2 Member Function Documentation

4.7.2.1 void Experiment::setOutputOptions (int gv_flag, int gp_flag, int eachgen_flag, int scoring_interval)

4.7.2.2 void Experiment::start ()

Here is the call graph for this function:

- Experiment.h
- Experiment.cpp

4.8 ForwardComplexation Class Reference

#include <CustomInteractions.h>Inheritance diagram for ForwardComplexation:

Collaboration diagram for ForwardComplexation:

Public Member Functions

- ForwardComplexation (int, int)
- ~ForwardComplexation ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

Public Attributes

- int firstNodeID
- int secondNodeID

4.8.1 Constructor & Destructor Documentation

4.8.1.1 ForwardComplexation::ForwardComplexation (int *n1*, int *n2*)

Here is the call graph for this function:

4.8.1.2 ForwardComplexation::~ForwardComplexation()

4.8.2 Member Function Documentation

4.8.2.1 float ForwardComplexation::getEffect (ListDigraph * g, ListDigraph::NodeMap < Molecule * > * m, ListDigraph::ArcMap < Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $\label{local:model} float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- *m* The NodeMap object containing Node-Molecule mappings.
- i The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- rkIter The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

4.8.3 Member Data Documentation

4.8.3.1 int ForwardComplexation::firstNodeID

4.8.3.2 int ForwardComplexation::secondNodeID

- CustomInteractions.h
- CustomInteractions.cpp

4.9 ForwardPTM Class Reference

#include <CustomInteractions.h>Inheritance diagram for ForwardPTM:

Collaboration diagram for ForwardPTM:

Public Member Functions

- ForwardPTM ()
- ~ForwardPTM ()

4.9.1 Constructor & Destructor Documentation

4.9.1.1 ForwardPTM::ForwardPTM()

Here is the call graph for this function:

4.9.1.2 ForwardPTM::~ForwardPTM()

- CustomInteractions.h
- CustomInteractions.cpp

4.10 Interaction Class Reference

#include <Interaction.h>Inheritance diagram for Interaction:

Public Member Functions

- Interaction ()
- ~Interaction ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)
- const char * getName ()
- float setRate (float)
- virtual float getRate ()

Public Attributes

• const char * name

• int arcID

Protected Attributes

float rate

4.10.1 Constructor & Destructor Documentation

4.10.1.1 Interaction::Interaction ()

Interaction base class implementation Interaction::Interaction()

Interaction default constructor.

Here is the call graph for this function:

4.10.1.2 Interaction::∼Interaction ()

Interaction::~Interaction()

Interaction default destructor.

Here is the call graph for this function:

4.10.2 Member Function Documentation

4.10.2.1 float Interaction::getEffect (ListDigraph * g, ListDigraph::NodeMap< Molecule * > * m, ListDigraph::ArcMap< Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $\label{local:model} float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

g The graph object containing Node-Node relationships.

m The NodeMap object containing Node-Molecule mappings.

i The ArcMap object containing Arc-Interaction mappings.

a The Node to calculate the effect for

rkIter The current iteration of Runge-Kutta [0,3]

rkStep The stepsize of Runge-Kutta

Reimplemented in TestInt, Transcription, Degradation, Translation, ForwardComplexation, ReverseComplexation, and PromoterBind.

Here is the call graph for this function:

- 4.10.2.2 const char * Interaction::getName ()
- 4.10.2.3 float Interaction::getRate() [virtual]
- **4.10.2.4** float Interaction::setRate (float *f*)

void Interaction::setRate(float)

Change the kinetic rate of the Interaction

Parameters:

f the new rate for the interaction

Returns:

the old rate for the interaction

4.10.3 Member Data Documentation

- 4.10.3.1 int Interaction::arcID
- 4.10.3.2 const char* Interaction::name
- 4.10.3.3 float Interaction::rate [protected]

- Interaction.h
- Interaction.cpp

4.11 Molecule Class Reference

#include <Molecule.h>Inheritance diagram for Molecule:

Public Member Functions

- Molecule ()
- virtual ~Molecule ()
- virtual float getValue ()
- void updateRkVal (int, float)
- void nextPoint (float)
- void setValue (float)
- void outputRK ()
- float getrkVal (int)
- vector< float > * getRungeKuttaSolution ()
- virtual float rkApprox (int, float)
- virtual char * getShortName ()
- virtual char * getLongName ()
- void setID (int)
- int getID ()
- void reset ()
- int getScore ()
- int getPTMCount (int, int)
- virtual int getPTMCount (int)

Public Attributes

- int nodeID
- int wasPTM
- int PTMArray [4]
- MTRand r

Protected Attributes

- float initialConcentration
- float currentConcentration
- float rkVal [4]
- int numChanges
- int prevDir
- int currentDir
- char buf [200]
- const char * longName
- const char * shortName
- int moleculeID
- vector< float > rungeKuttaSolution

4.11.1 Constructor & Destructor Documentation

4.11.1.1 Molecule::Molecule ()

Molecule::Molecule()

Default Constructor

Here is the call graph for this function:

4.11.1.2 Molecule::~Molecule() [virtual]

Molecule::~Molecule()

Default Destructor

4.11.2 Member Function Documentation

4.11.2.1 int Molecule::getID ()

int Molecule::getID()

Get the ID of the current molecule.

Returns:

the current Molecule's ID

4.11.2.2 char * Molecule::getLongName () [virtual]

char* Molecule::getLongName() (Virtual function)

Return the "long" name of a molecule.

The long name consists of the long prefix set in the constructor appended to the moleculeID with a space in between. Ex. DNA 1, Protein 3, Complex 8

Returns:

the long name of the current molecule

Reimplemented in PTMProtein.

```
4.11.2.3 int Molecule::getPTMCount (int index) [virtual]
```

4.11.2.4 int Molecule::getPTMCount (int, int)

4.11.2.5 float Molecule::getrkVal (int k)

float Molecule::getrkVal(int)

Get the value of the intermediate Runge-Kutta value for a particular iteration.

Parameters:

k Which iterations rkVal to return

Returns:

The value of this molecules rkVal[k]

```
4.11.2.6 vector < float > * Molecule::getRungeKuttaSolution ()
```

4.11.2.7 int Molecule::getScore ()

```
4.11.2.8 char * Molecule::getShortName() [virtual]
```

char* Molecule::getShortName() (Virtual function)

Return the "short" name of a molecule.

The short name consists of the short prefix set in the constructor appended to the moleculeID with no space in between. Ex. g1, p4, ptm2

Returns:

the short name of the current molecule

4.11.2.9 float Molecule::getValue() [virtual]

float Molecule::getValue() (Virtual Function)

Get the current value of this molecule.

Returns:

the current value of the concentration

Reimplemented in DNA, and NullNode.

4.11.2.10 void Molecule::nextPoint (float *step*)

void Molecule::nextPoint(float)

Adds a data point to the rungeKuttaSolution based on the rkVals calculated by Runge-Kutta

Parameters:

step The stepsize used to calculate the rkVals

Here is the call graph for this function:

4.11.2.11 void Molecule::outputRK ()

void Molecule::outputRK()

TEST METHOD

Here is the call graph for this function:

4.11.2.12 void Molecule::reset ()

void Molecule::reset()

Reset the molecule between Runge-Kutta runs. The vector containing runge-kutta data points is erased, the initial concentration is added as the first element, and the rkVals are all reset to 0.

4.11.2.13 float Molecule::rkApprox (int rkIteration, float rkStepSize) [virtual]

float Molecule::rkApprox(int, float) (Virtual Function)

Returns the next approximate value of this molecule for the next timestep for the specified stage of Runge-Kutta. Runge-Kutta uses successive iterations to make more accurate approximations of a solution.

rkApprox should be used in Interaction::getEffect, to provide the Runge-Kutta corrected concentrations of molecules during runge-kutta calculation instead of the base value for all iterations.

Parameters:

rkIteration the current iteration of Runge-KuttarkStepSize the timestep being used by Runge-Kutta

Reimplemented in DNA.

Here is the call graph for this function:

4.11.2.14 void Molecule::setID (int i)

void Molecule::setID(int)

Set the ID of a molecule, used when displaying molecule names. The ID is a number which is not necessarily unique, but should only be shared between strongly related molecules.

4.11.2.15 void Molecule::setValue (float v)

void Molecule::setValue(float)

Parameters:

v the new value to set as the concentration

4.11.2.16 void Molecule::updateRkVal (int index, float amount)

void Molecule::updateRkVal(int, float)

Adds some amount to the specified intermediate values used by Runge-Kutta.

Parameters:

index The index of the rkValue array to update

amount The amount to add to the rkValue array

Here is the call graph for this function:

4.11.3 Member Data Documentation

- 4.11.3.1 char Molecule::buf[200] [protected]
- 4.11.3.2 float Molecule::currentConcentration [protected]
- 4.11.3.3 int Molecule::currentDir [protected]
- 4.11.3.4 float Molecule::initialConcentration [protected]
- 4.11.3.5 const char* Molecule::longName [protected]
- 4.11.3.6 int Molecule::moleculeID [protected]
- 4.11.3.7 int Molecule::nodeID
- 4.11.3.8 int Molecule::numChanges [protected]
- 4.11.3.9 int Molecule::prevDir [protected]
- 4.11.3.10 int Molecule::PTMArray[4]
- 4.11.3.11 MTRand Molecule::r
- 4.11.3.12 float Molecule::rkVal[4] [protected]
- 4.11.3.13 vector<float> Molecule::rungeKuttaSolution [protected]
- 4.11.3.14 const char* Molecule::shortName [protected]
- 4.11.3.15 int Molecule::wasPTM

- Molecule.h
- Molecule.cpp

4.12 MoleculeType Class Reference

#include <MoleculeType.h>

Public Member Functions

- MoleculeType ()
- ~MoleculeType ()

4.12.1 Detailed Description

MoleculeType.h

MoleculeType holds default information about a type of molecule.

4.12.2 Constructor & Destructor Documentation

4.12.2.1 MoleculeType::MoleculeType ()

4.12.2.2 MoleculeType::~MoleculeType ()

The documentation for this class was generated from the following file:

• MoleculeType.h

4.13 mRNA Class Reference

#include <CustomMolecules.h>Inheritance diagram for mRNA:

Collaboration diagram for mRNA:

Public Member Functions

- mRNA ()
- ~mRNA ()

4.13.1 Constructor & Destructor Documentation

4.13.1.1 mRNA::mRNA()

Here is the call graph for this function:

4.13.1.2 mRNA::~mRNA()

- CustomMolecules.h
- CustomMolecules.cpp

4.14 NullNode Class Reference

 $\verb§\#include < CustomMolecules.h> Inheritance diagram for NullNode:$

Collaboration diagram for NullNode:

Public Member Functions

- NullNode ()
- ~NullNode ()
- virtual float getValue ()

4.14.1 Constructor & Destructor Documentation

4.14.1.1 NullNode::NullNode()

Here is the call graph for this function:

4.14.1.2 NullNode::~NullNode()

4.14.2 Member Function Documentation

4.14.2.1 float NullNode::getValue() [virtual]

float Molecule::getValue() (Virtual Function)

Get the current value of this molecule.

Returns:

the current value of the concentration

Reimplemented from Molecule.

- CustomMolecules.h
- CustomMolecules.cpp

4.15 PromoterBind Class Reference

#include <CustomInteractions.h>Inheritance diagram for PromoterBind:

Collaboration diagram for PromoterBind:

Public Member Functions

- PromoterBind (float, float)
- ~PromoterBind ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

Public Attributes

- float kf
- float kr

4.15.1 Constructor & Destructor Documentation

- 4.15.1.1 PromoterBind::PromoterBind (float fwdRate, float revRate)
- 4.15.1.2 PromoterBind::~PromoterBind()

4.15.2 Member Function Documentation

4.15.2.1 float PromoterBind::getEffect (ListDigraph * g, ListDigraph::NodeMap< Molecule * > * m, ListDigraph::ArcMap< Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $\label{loss_equation} float \ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- *m* The NodeMap object containing Node-Molecule mappings.
- *i* The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- rkIter The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

4.15.3 Member Data Documentation

4.15.3.1 float PromoterBind::kf

4.15.3.2 float PromoterBind::kr

- CustomInteractions.h
- CustomInteractions.cpp

4.16 Protein Class Reference

#include <CustomMolecules.h>Inheritance diagram for Protein:

Collaboration diagram for Protein:

Public Member Functions

- Protein ()
- ∼Protein ()

4.16.1 Constructor & Destructor Documentation

4.16.1.1 Protein::Protein()

Here is the call graph for this function:

4.16.1.2 Protein::∼Protein ()

- CustomMolecules.h
- CustomMolecules.cpp

4.17 PTMProtein Class Reference

 $\verb|#include| < CustomMolecules.h> Inheritance diagram for PTMP rotein:$

Collaboration diagram for PTMProtein:

Public Member Functions

- PTMProtein ()
- PTMProtein (PTMProtein *)
- ~PTMProtein ()
- char * getLongName ()
- void addRandPTM (int)
- void setPTMCount (int, int)

4.17.1 Constructor & Destructor Documentation

4.17.1.1 PTMProtein::PTMProtein ()

Here is the call graph for this function:

- **4.17.1.2 PTMProtein::PTMProtein (PTMProtein** * *c*)
- 4.17.1.3 PTMProtein::~PTMProtein ()
- **4.17.2** Member Function Documentation
- 4.17.2.1 void PTMProtein::addRandPTM (int i)
- 4.17.2.2 char * PTMProtein::getLongName() [virtual]

char* Molecule::getLongName() (Virtual function)

Return the "long" name of a molecule.

The long name consists of the long prefix set in the constructor appended to the moleculeID with a space in between. Ex. DNA 1, Protein 3, Complex 8

Returns:

the long name of the current molecule

Reimplemented from Molecule.

4.17.2.3 void PTMProtein::setPTMCount (int index, int count)

- CustomMolecules.h
- CustomMolecules.cpp

4.18 ReverseComplexation Class Reference

#include <CustomInteractions.h>Inheritance diagram for ReverseComplexation:

Collaboration diagram for ReverseComplexation:

Public Member Functions

- ReverseComplexation (int, int)
- ~ReverseComplexation ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

Public Attributes

- int firstNodeID
- int secondNodeID

4.18.1 Constructor & Destructor Documentation

4.18.1.1 ReverseComplexation::ReverseComplexation (int *n1*, int *n2*)

Here is the call graph for this function:

4.18.1.2 ReverseComplexation::~ReverseComplexation ()

4.18.2 Member Function Documentation

4.18.2.1 float ReverseComplexation::getEffect (ListDigraph * g, ListDigraph::NodeMap < Molecule * > * m, ListDigraph::ArcMap < Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $\label{local-problem} float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- m The NodeMap object containing Node-Molecule mappings.
- i The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- rkIter The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

4.18.3 Member Data Documentation

4.18.3.1 int ReverseComplexation::firstNodeID

4.18.3.2 int ReverseComplexation::secondNodeID

- CustomInteractions.h
- CustomInteractions.cpp

4.19 ReversePTM Class Reference

#include <CustomInteractions.h>Inheritance diagram for ReversePTM:

Collaboration diagram for ReversePTM:

Public Member Functions

- ReversePTM ()
- ~ReversePTM ()

4.19.1 Constructor & Destructor Documentation

4.19.1.1 ReversePTM::ReversePTM()

Here is the call graph for this function:

4.19.1.2 ReversePTM::~ReversePTM()

- CustomInteractions.h
- CustomInteractions.cpp

4.20 TestInt Class Reference

#include <CustomInteractions.h>Inheritance diagram for TestInt:

Collaboration diagram for TestInt:

Public Member Functions

- TestInt ()
- ∼TestInt ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

4.20.1 Constructor & Destructor Documentation

4.20.1.1 TestInt::TestInt()

Here is the call graph for this function:

4.20.1.2 TestInt::∼TestInt()

4.20.2 Member Function Documentation

4.20.2.1 float TestInt::getEffect (ListDigraph * g, ListDigraph::NodeMap< Molecule * > * m, ListDigraph::ArcMap< Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $\label{local:model} float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- m The NodeMap object containing Node-Molecule mappings.
- i The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- rkIter The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

- · CustomInteractions.h
- CustomInteractions.cpp

4.21 Trace Class Reference

```
#include <Trace.h>
```

Public Member Functions

- Trace ()
- Trace (const char *)
- ~Trace ()
- void addTraceType (const char *, int)
- void trace (const char *, const char *,...)
- FILE * getTraceFile ()
- FILE * setTraceFile (FILE *)
- void enableTraceType (const char *)
- void disableTraceType (const char *)

Public Attributes

- FILE * traceFile
- map< const char *, int, cmp_str > traceTypes

4.21.1 Constructor & Destructor Documentation

4.21.1.1 Trace::Trace()

Trace.cpp

Trace implementation.

Trace messages are called with a tag that can be optionally turned on or off with a simple call.

This allows trace messages to be given context and turned on or off very flexibly. Trace::Trace()

Default Constructor.

4.21.1.2 Trace::Trace (const char *c)

4.21.1.3 Trace::∼Trace ()

Trace::∼Trace()

Default Destructor.

4.21.2 Member Function Documentation

4.21.2.1 void Trace::addTraceType (const char * tag, int enabled)

```
void Trace::addTraceType(const char*, int)
```

Adds a new trace tag and enables it.

e.g. Trace::addTraceType("output") //output related t.trace("output", "Output complete");

Parameters:

tag The tag to be used for tracingenabled Initial state of the trace type. Nonzero is enabled.

Here is the call graph for this function:

4.21.2.2 void Trace::disableTraceType (const char * tag)

Trace::disableTraceType(const char*)

Disable the trace type, causing future trace messages tagged with this type to be surpressed.

Parameters:

tag the trace tag to disable.

Here is the call graph for this function:

4.21.2.3 void Trace::enableTraceType (const char * tag)

Trace::enableTraceType(const char*)

Enable the trace type, causing future trace messages tagged with this type to be output.

Parameters:

tag the trace tag to enable.

Here is the call graph for this function:

4.21.2.4 FILE * Trace::getTraceFile ()

4.21.2.5 FILE * Trace::setTraceFile (FILE * tf)

4.21.2.6 void Trace::trace (const char * tag, const char * format, ...)

void Trace::trace(const char*, const char*, ...)

Outputs a trace message with the given format if the trace tag is enabled. Output is not automatically terminated with a newline character.

Parameters:

```
tag Trace typeformat string... variable arguments corresponding to format string
```

4.21.3 Member Data Documentation

4.21.3.1 FILE* Trace::traceFile

4.21.3.2 map<const char*, int, cmp_str> Trace::traceTypes

- Trace.h
- Trace.cpp

4.22 Transcription Class Reference

 $\verb§\#include < CustomInteractions.h> Inheritance diagram for Transcription:$

Collaboration diagram for Transcription:

Public Member Functions

- Transcription ()
- ∼Transcription ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

4.22.1 Constructor & Destructor Documentation

4.22.1.1 Transcription::Transcription ()

Implementation file for Custom Interactions.

Interactions may overload the virtual method getEffect() to create a custom effect between Molecules

4.22.1.2 Transcription::~Transcription()

4.22.2 Member Function Documentation

4.22.2.1 float Transcription::getEffect (ListDigraph * g, ListDigraph::NodeMap< Molecule * > * m, ListDigraph::ArcMap< Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- *m* The NodeMap object containing Node-Molecule mappings.
- i The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- rkIter The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- CustomInteractions.h
- CustomInteractions.cpp

Class Documentation

4.23 Translation Class Reference

#include <CustomInteractions.h>Inheritance diagram for Translation:

Collaboration diagram for Translation:

Public Member Functions

- Translation ()
- ∼Translation ()
- virtual float getEffect (ListDigraph *, ListDigraph::NodeMap< Molecule * > *, ListDigraph::ArcMap< Interaction * > *, ListDigraph::Node, int, float)

4.23.1 Constructor & Destructor Documentation

4.23.1.1 Translation::Translation()

Here is the call graph for this function:

4.23.1.2 Translation::∼Translation ()

4.23.2 Member Function Documentation

4.23.2.1 float Translation::getEffect (ListDigraph * g, ListDigraph::NodeMap< Molecule * > * m, ListDigraph::ArcMap< Interaction * > * i, ListDigraph::Node a, int rkIter, float rkStep) [virtual]

 $float\ Interaction::getEffect(ListDigraph*\ ,\ NodeMap<Molecule*>*\ ,\ ArcMap<Interaction*>*\ ,\ Node\ ,\ int,\ float)$

Get the effect this interaction has on a particular node.

This method defines the behavior of an interaction which connects two molecules. The effect on Node a can be dependent on any other molecule, which can be accessed using the ListDigraph, NodeMap, and ArcMap parameters.

Runge-Kutta iteratively approximates the change in concentration during a given timestep. The first iteration is based soley on the current concentration, and each further iteration takes the result of the previous iteration into account. The Runge-Kutta data are stored in each molecule, and it is necessary to call Molecule::rkApprox(stepsize, iteration) rather than Molecule::getValue() to get the current Iteration's approximated concentration.

Parameters:

- g The graph object containing Node-Node relationships.
- m The NodeMap object containing Node-Molecule mappings.
- *i* The ArcMap object containing Arc-Interaction mappings.
- a The Node to calculate the effect for
- rkIter The current iteration of Runge-Kutta [0,3]
- rkStep The stepsize of Runge-Kutta

Reimplemented from Interaction.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- CustomInteractions.h
- CustomInteractions.cpp

66 Class Documentation

Chapter 5

File Documentation

5.1 Cell.cpp File Reference

```
#include <iostream>
#include "Cell.h"
#include "ExternTrace.h"
```

Include dependency graph for Cell.cpp:

5.2 Cell.h File Reference

#include "MersenneTwister.h"

#include "DerivGraph.h"

Include dependency graph for Cell.h:

This graph shows which files directly or indirectly include this file:

Classes

• class Cell

5.3 CustomInteractions.cpp File Reference

#include "CustomInteractions.h"

#include "ExternTrace.h"

Include dependency graph for CustomInteractions.cpp:

5.4 CustomInteractions.h File Reference

```
#include <cmath>
#include "Interaction.h"
#include <cstdio>
#include "lemon/list_graph.h"
```

Include dependency graph for CustomInteractions.h:

This graph shows which files directly or indirectly include this file:

Classes

- class TestInt
- class Transcription
- class Degradation
- class Translation
- class ForwardComplexation
- class ReverseComplexation
- class ForwardPTM
- class ReversePTM
- class PromoterBind

5.5 CustomMolecules.cpp File Reference

#include "CustomMolecules.h"

#include "ExternTrace.h"

Include dependency graph for CustomMolecules.cpp:

5.6 CustomMolecules.h File Reference

#include <cmath>
#include <map>
#include "Molecule.h"

Include dependency graph for CustomMolecules.h:

This graph shows which files directly or indirectly include this file:

Classes

- class PTMProtein
- class DNA
- class NullNode
- class mRNA
- class Protein
- class Complex

5.7 DerivGraph.cpp File Reference

#include <iostream>
#include "DerivGraph.h"
#include "ExternTrace.h"

Include dependency graph for DerivGraph.cpp:

5.8 DerivGraph.h File Reference

```
#include "lemon/list_graph.h"
#include "lemon/concepts/maps.h"
#include <cstdio>
#include <vector>
#include <fstream>
#include <sys/stat.h>
#include <sys/types.h>
#include <typeinfo>
#include "MersenneTwister.h"
#include "Molecule.h"
#include "Interaction.h"
#include "CustomInteractions.h"
#include "CustomMolecules.h"
```

Include dependency graph for DerivGraph.h:

This graph shows which files directly or indirectly include this file:

Classes

• class DerivGraph

5.9 Experiment.cpp File Reference

```
#include <fstream>
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include "Experiment.h"
#include "ExternTrace.h"
```

Include dependency graph for Experiment.cpp:

5.10 Experiment.h File Reference

```
#include <sys/stat.h>
#include <sys/types.h>
#include <cstdio>
#include <stdlib.h>
#include <vector>
#include <fstream>
#include "Cell.h"
```

Include dependency graph for Experiment.h:

This graph shows which files directly or indirectly include this file:

Classes

• class Experiment

5.11 ExternTrace.h File Reference

#include "Trace.h"

Include dependency graph for ExternTrace.h:

This graph shows which files directly or indirectly include this file:

Variables

• Trace t

5.11.1 Variable Documentation

5.11.1.1 Trace t

5.12 Interaction.cpp File Reference

```
#include "Interaction.h"
#include <cstdio>
#include "lemon/list_graph.h"
#include "ExternTrace.h"
```

Include dependency graph for Interaction.cpp:

5.13 Interaction.h File Reference

```
#include "Molecule.h"
#include "CustomMolecules.h"
#include "lemon/list_graph.h"
```

Include dependency graph for Interaction.h:

This graph shows which files directly or indirectly include this file:

Classes

• class Interaction

5.14 Main.cpp File Reference

```
#include <stdlib.h>
#include <stdio.h>
#include <getopt.h>
#include <iostream>
#include "Experiment.h"
#include "Trace.h"
```

Include dependency graph for Main.cpp:

Functions

• int main (int argc, char **argv)

Variables

• Trace t

5.14.1 Function Documentation

5.14.1.1 int main (int argc, char ** argv)

Here is the call graph for this function:

5.14.2 Variable Documentation

5.14.2.1 Trace t

5.15 Molecule.cpp File Reference

#include "Molecule.h"

#include "ExternTrace.h"

Include dependency graph for Molecule.cpp:

5.16 Molecule.h File Reference

```
#include <cstdio>
#include <vector>
#include <typeinfo>
#include <cstring>
#include "MersenneTwister.h"
```

Include dependency graph for Molecule.h:

This graph shows which files directly or indirectly include this file:

Classes

• class Molecule

5.17 MoleculeType.h File Reference

Classes

• class MoleculeType

5.18 Trace.cpp File Reference

#include <cstdio>
#include "Trace.h"
#include <ostream>

Include dependency graph for Trace.cpp:

5.19 Trace.h File Reference

```
#include <cstdarg>
#include <cstring>
#include <map>
#include <iostream>
#include <fstream>
```

Include dependency graph for Trace.h:

This graph shows which files directly or indirectly include this file:

Classes

- struct cmp_str
- class Trace

Index

~Cell	addRandPTM
Cell, 8	PTMProtein, 52
~Complex	addTraceType
Complex, 13	Trace, 59
~DNA	arcID
DNA, 24	Interaction, 34
\sim Degradation	
Degradation, 15	buf
~DerivGraph	Molecule, 40
DerivGraph, 17	
~Experiment	Cell, 7
Experiment, 26	\sim Cell, 8
~ForwardComplexation	Cell, 8
ForwardComplexation, 28	getID, 8
~ForwardPTM	getScore, 8
ForwardPTM, 30	mutate, 8
~Interaction	outputDataPlot, 9
Interaction, 33	outputDotImage, 9
~Molecule	rkTest, 9
Molecule, 36	Cell.cpp, 67
~MoleculeType	Cell.h, 68
MoleculeType, 41	cmp_str, 11
~NullNode	operator(), 11
NullNode, 44	Complex, 12
~PTMProtein	~Complex, 13
PTMProtein, 52	Complex, 13
~PromoterBind	getComponentId, 13
PromoterBind, 47	currentConcentration
~Protein	Molecule, 40
Protein, 50	currentDir
~ReverseComplexation	Molecule, 40
ReverseComplexation, 53	CustomInteractions.cpp, 69
~ReversePTM	CustomInteractions.h, 70
ReversePTM, 55	CustomMolecules.cpp, 71
~TestInt	CustomMolecules.h, 72
TestInt, 57	Danielatian 14
~Trace	Degradation, 14
Trace, 59	~Degradation, 15
~Transcription	Degradation, 15
<u>*</u>	getEffect, 15
Transcription, 62 ∼Translation	degradationRateChange
	DerivGraph, 17
Translation, 64	DerivGraph, 16
~mRNA	~DerivGraph, 17
mRNA, 42	degradationRateChange, 17

DerivGraph, 16	secondNodeID, 29
forwardRateChange, 17	ForwardPTM, 30
getArcMap, 18	\sim ForwardPTM, 30
getBestMolecule, 18	ForwardPTM, 30
getListDigraph, 18	forwardRateChange
getNodeMap, 18	DerivGraph, 17
histoneMod, 18	
newBasic, 18	getArcMap
newComplex, 19	DerivGraph, 18
newPromoter, 19	getBestMolecule
newPTM, 19	DerivGraph, 18
outputDataPlot, 20	getComponentId
outputDotImage, 20	Complex, 13
r, 22	getEffect
reverseRateChange, 20	Degradation, 15
rungeKuttaEvaluate, 21	ForwardComplexation, 29
setDefaultInitialConc, 21	Interaction, 33
setKineticRateLimits, 21	PromoterBind, 47
setLimits, 21	ReverseComplexation, 54
setRungeKuttaEval, 22	TestInt, 58
test, 22	Transcription, 63
DerivGraph.cpp, 73	Translation, 65
DerivGraph.h, 74	getID
disableTraceType	Cell, 8
Trace, 60	Molecule, 36
DNA, 23	getListDigraph
\sim DNA, 24	DerivGraph, 18
DNA, 23	getLongName
getValue, 24	Molecule, 36
hill, 25	PTMProtein, 52
promoterId, 25	getName
rkApprox, 24	Interaction, 34
setHistoneModValue, 24	getNodeMap
11 7 7	DerivGraph, 18
enableTraceType	getPTMCount
Trace, 60	Molecule, 37
Experiment, 26	getRate
~Experiment, 26	Interaction, 34
Experiment, 26	getrkVal
setOutputOptions, 27	Molecule, 37
start, 27	getRungeKuttaSolution
Experiment.cpp, 76	Molecule, 37
Experiment.h, 77	getScore
ExternTrace.h, 78	Cell, 8
t, 78	Molecule, 37
firstNodeID	getShortName
ForwardComplexation, 29	Molecule, 37
ReverseComplexation, 54	getTraceFile
ForwardComplexation, 28	Trace, 60
~ForwardComplexation, 28	getValue
firstNodeID, 29	DNA, 24
ForwardComplexation, 28	Molecule, 37
getEffect, 29	NullNode, 45
gottineet, 27	rum roue, 45

	7. 10
hill DNA 25	prevDir, 40
DNA, 25	PTMArray, 40
histoneMod	r, 40
DerivGraph, 18	reset, 38
:-:4:-1C	rkApprox, 38
initialConcentration	rkVal, 40
Molecule, 40	rungeKuttaSolution, 40
Interaction, 32	setID, 39
~Interaction, 33	setValue, 39
arcID, 34	shortName, 40
getEffect, 33	updateRkVal, 39
getName, 34	wasPTM, 40
getRate, 34	Molecule.cpp, 83
Interaction, 33	Molecule.h, 84
name, 34	moleculeID
rate, 34	Molecule, 40
setRate, 34	MoleculeType, 41
Interaction.cpp, 79	~MoleculeType, 41
Interaction.h, 80	MoleculeType, 41
1.6	MoleculeType.h, 85
kf	mRNA, 42
PromoterBind, 47	\sim mRNA, 42
kr	mRNA, 42
PromoterBind, 47	mutate
lon a Nome	Cell, 8
longName Melagula 40	
Molecule, 40	name
main	Interaction, 34
	newBasic
Main.cpp, 82	DerivGraph, 18
Main.cpp, 81	newComplex
main, 82	DerivGraph, 19
t, 82	newPromoter
Molecule, 35 ∼Molecule, 36	DerivGraph, 19
	newPTM
buf, 40	DerivGraph, 19
currentConcentration, 40	nextPoint
currentDir, 40	Molecule, 37
getID, 36	nodeID
getLongName, 36	Molecule, 40
getPTMCount, 37 getrkVal, 37	NullNode, 44
E ,	~NullNode, 44
getRungeKuttaSolution, 37 getScore, 37	getValue, 45
	NullNode, 44
getShortName, 37 getValue, 37	numChanges
initialConcentration, 40	Molecule, 40
,	
longName, 40	operator()
Molecule, 36	cmp_str, 11
moleculeID, 40	outputDataPlot
nextPoint, 37	Cell, 9
nodeID, 40	DerivGraph, 20
numChanges, 40	outputDotImage
outputRK, 38	Cell, 9

D : C 1 20	N. 1. 1. 10
DerivGraph, 20 outputRK	Molecule, 40
Molecule, 38	secondNodeID
,	ForwardComplexation, 29
prevDir	ReverseComplexation, 54
Molecule, 40	setDefaultInitialConc
PromoterBind, 46	DerivGraph, 21
~PromoterBind, 47	setHistoneModValue
getEffect, 47	DNA, 24
kf, 47	setID
kr, 47	Molecule, 39
PromoterBind, 47	setKineticRateLimits
promoterId	DerivGraph, 21
DNA, 25	setLimits
Protein, 49	DerivGraph, 21
\sim Protein, 50	setOutputOptions
Protein, 50	Experiment, 27
PTMArray	setPTMCount
Molecule, 40	PTMProtein, 52
PTMProtein, 51	setRate
~PTMProtein, 52	Interaction, 34
addRandPTM, 52	setRungeKuttaEval
getLongName, 52	DerivGraph, 22
PTMProtein, 51	setTraceFile
setPTMCount, 52	Trace, 60
	setValue
r	Molecule, 39
DerivGraph, 22	shortName
Molecule, 40	Molecule, 40
rate	start
Interaction, 34	Experiment, 27
reset	
Molecule, 38	t
ReverseComplexation, 53	ExternTrace.h, 78
~ReverseComplexation, 53	Main.cpp, 82
firstNodeID, 54	test
getEffect, 54	DerivGraph, 22
ReverseComplexation, 53	TestInt, 57
secondNodeID, 54	\sim TestInt, 57
ReversePTM, 55	getEffect, 58
~ReversePTM, 55	TestInt, 57
ReversePTM, 55	Trace, 59
reverseRateChange	∼Trace, 59
DerivGraph, 20	addTraceType, 59
rkApprox	disableTraceType, 60
DNA, 24	enableTraceType, 60
Molecule, 38	getTraceFile, 60
rkTest	setTraceFile, 60
Cell, 9	Trace, 59
rkVal	trace, 60
Molecule, 40	traceFile, 61
rungeKuttaEvaluate	traceTypes, 61
DerivGraph, 21	trace
rungeKuttaSolution	Trace, 60

```
Trace.cpp, 86
Trace.h, 87
traceFile
     Trace, 61
traceTypes
     Trace, 61
Transcription, 62
     ~Transcription, 62
    getEffect, 63
     Transcription, 62
Translation, 64
     \simTranslation, 64
    getEffect, 65
     Translation, 64
updateRkVal
     Molecule, 39
wasPTM
     Molecule, 40
```