

Lengoaia eta Sistema Informatikoak Saila

Bilboko Ingeniaritza Eskola (UPV/EHU)

Lengoaiak, Konputazioa eta Sistema Adimendunak

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

2. maila

2019-2020 ikasturtea

2. gaia: Lengoaiak Soluzioak

José Gaintzarain Ibarmia

Azken eguneraketa: 2019 - 08 - 31

GAIEN AURKIBIDEA

<i>2</i> .	Leng	engoaiak			
	2.6	Soluzioak: lengoaien definizio formalen ulermenari buruzko ariketak	1		
	2.7	Soluzioak: Lengoaien definizio formalari buruzko ariketak	2		

2. LENGOAIAK

2.6 Soluzioak: lengoaien definizio formalen ulermenari buruzko ariketak

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako lengoaia hauetakoak diren hitz batzuk eta lengoaia horietakoak ez diren hitz batzuk eman:

1.
$$H_1 = \{ w \mid w \in A^* \land \exists x (x \in AA \land w = xx^R x) \}$$

- Lengoaiakoak diren hitzak:
 - Lengoaia honetan xx^Rx erako hitzak ditugu eta x hitzak AA lengoaiakoa izan behar du, hau da, bi sinboloz osatuta egon behar du. Beraz bi sinboloz osatutako hitzak hartuz H_1 lengoaiako hitzak era ditzakegu.
 - -x = ab hitza hartzen badugu, $w = xx^Rx = abbaab$ hitza H_1 lengoaiakoa izango da.
 - -x=aa hitza hartzen badugu, $w=xx^Rx=aaaaaa$ hitza H_1 lengoaiakoa izango da.
 - x = cb hitza hartzen badugu, $w = xx^Rx = cbbccb$ hitza H_1 lengoaiakoa izango da.
- Lengoaiakoak ez diren hitzak:

6 sinbolo baino gehiago edo gutxiago dituen edozein hitz: ε , ab, abababab, eta abar. Gainera 6 sinbolo eduki arren, goian zehaztutako egitura ez duten hitzak ere ez dira lengoaiakoak. Adibidez: ababab.

2. $H_2 = \{ w \mid w \in A^* \land ww = www \}$

ww=www baldintza betetzen duen w hitz bakarra ε da, izan ere $\varepsilon v=v$ betetzen da edozein v-rentzat eta ondorioz $\varepsilon\varepsilon\varepsilon=\varepsilon\varepsilon=\varepsilon$. Beste edozein hitz hartzen badugu, adibidez, ab, honako hau daukagu: $ababab\neq abab$.

3. $H_3 = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land uvw = wvu) \}$

w hitza H_3 lengoaiakoa izateko, uvw=wvu betearazten duten u eta v hitzak existitu behar dute. u eta v hitzak berdinak edo desberdinak izan daitezke. Adibidez, w hitzaaa baldin bada, u=aa eta v=cb hitzak hartuz uvw=wvu beteko da, izan ere, $\underbrace{aa}_{v}\underbrace{cb}_{v}\underbrace{aa}_{w}$ eta

 $\underbrace{aa}_{w}\underbrace{cb}_{v}\underbrace{aa}_{u}$ berdinak dira. Beraz, A^* -koa den w hitz bakoitzarentzat nahikoa da u bezala w

hartzea (hau da, u=w) eta v bezala edozein hitz hartzea uvw=wvu baldintza betetzeko. Ondorioz A^* -ko hitz denek baldintza betetzen dute eta $H_3=A^*$ daukagu. Hori horrela izanda, H_3 -koa ez den hitzik ez dago.

4. $H_4 = \{ w \mid w \in A^* \land \exists u (u \in A^* \land www = uu) \}$

uu hitzaren luzera beti bikoitia izango denez (edozein zenbaki bider 2 egindakoan beti zenbaki bikoitia lortzen baita), w hitza H_4 lengoaiako izateko bere luzerak bikoitia izan beharko du www hitzak ere luzera bikoitia izateko. Gainera www hitzaren luzera hiruren anizkoitza izango da eta horregatik uu hitzaren luzerak ere hiruren anizkoitza izan beharko du. Hau dena aztertu ondoren, w hitza H_4 lengoaiako izango da bere luzera bikoitia baldin bada eta gainera bere sinbolo denak berdinak badira: ε , aa, bb, cc, aaaa, eta abar. Luzera bakoitia duten hitzak eta luzera bikoitia izanda sinbolo desberdinez osatuta dauden hitzak ez dira H_4 lengoaiakoak izango. Adibidez: a, aba, ab, eta abar.

2.7 Soluzioak: Lengoaien definizio formalari buruzko ariketak

Enuntziatuak 2.5 atalean daude. Lengoaia denetan alfabetoa $A = \{a, b, c\}$ da.

1. $L_1 - aa$, bb eta ac hitzez osatutako lengoaia.

$$L_1 = \{aa, bb, ac\}$$

 L_1 lengoaia finitua da. Lengoaia finitu batean hitz gutxi baldin badaude edo hitzek era errazean adieraz daitekeen propietaterik ez badute betetzen, lengoaia hitz guztiak emanez definitu ohi da.

2. $L_2 - \varepsilon$, bbc eta acc hitzez osatutako lengoaia.

$$L_2 = \{\varepsilon, bbc, acc\}$$

 L_2 lengoaia ere finitua da. Hitz gutxi edukitzeaz gain, hitz horiek ez dute era errazean adieraz daitekeen propietaterik betetzen, eta horregatik definizioa lengoaia osatzen duten hitz denak emanez egin da.

3. L_3 – Lau sinbolo dituzten (4 luzera duten) hitzez osatutako lengoaia. Adibidez, aaaa, bcab eta cbbb L_3 lengoaiakoak dira baina ε , a, bc eta bcbcba ez.

$$L_3 = \{ w \mid w \in A^* \land |w| = 4 \}$$

 L_3 lengoaia ere finitua da, baina kasu honetan lengoaiako hitzek era errazean adieraz daitekeen propietate bat betetzen dute, eta horregatik definizioa propietate horren bidez egin da. Lengoaia finitua denez, hitz denak emanez ere defini daiteke baina horretarako A alfabetoko hiru sinboloekin osa daitezkeen lau luzerako hitz denak eratu beharko lirateke. Guztira 27 hitz izango lirateke. Baina alfabetoak sinbolo gehiago izango balitu, konbinazio gehiago eratu beharko lirateke eta lengoaia horrela definitzea ez da oso erosoa eta egokia.

4. $L_4 - a$ sinboloaren agerpen bakarra eta guztira lau sinbolo dituzten hitzez osatutako lengoaia.

$$L_4 = \{ w \mid w \in A^* \land |w| = 4 \land |w|_a = 1 \}$$

 L_4 lengoaia L_3 lengoaiaren azpilengoaia da eta ondorioz finitua da. Lengoaiako hitzek era errazean adieraz daitekeen propietate bat betetzen dutenez, definizioa propietate horren bidez eman da.

Beste aukera bat:

$$L_4 = L_3 \cap \{w \mid w \in A^* \land |w|_a = 1\}$$

5. L_5 – Errepikatutako sinbolorik ez duten hitzez osatutako lengoaia. Adibidez, ε , a, ac eta acb L_5 lengoaiakoak dira baina aa, bcac eta accaaa ez.

$$L_5 = \{ w \mid w \in A^* \land \forall \alpha (\alpha \in A \rightarrow |w|_{\alpha} < 1) \}$$

 L_5 lengoaia finitua da. Lengoaiako hitzek era errazean adieraz daitekeen propietate bat betetzen dutenez, definizioa propietate hori erabiliz eman da. Lengoaia honetako hitzetan gerta daiteke alfabetoko sinboloren bat ez agertzea, baina agertzekotan behin bakarrik agertuko da. Beste aukera bat honako hau izango litzateke:

$$L_5 = \{ w \mid w \in A^* \land |w|_a \le 1 \land |w|_b \le 1 \land |w|_c \le 1 \}$$

Baina A alfabetoak sinbolo asko izango balitu, denak ipini beharko lirateke. Beraz, aurreko aukera askoz hobea da, edozein A alfabetorentzat balio baitu, eta sinbolo-kopuruarekiko independentea da.

Finitua denez bere hitz denak emanez ere defini daiteke:

$$L_5 = \{\varepsilon, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba\}$$

Kasu honetan ere A alfabetoak sinbolo asko izango balitu, konbinazio asko sortuko lirateke. Beraz, lehenengo aukera da onena.

6. L_6 (0,075 puntu) Gutxienez bi sinbolo desberdin dituzten hitzez osatutako L_6 lengoaiaren definizio formala eman. Adibidez, aab, accccabab eta cccbc hitzak L_6 lengoaiakoak dira baina aaa, b eta ε ez.

$$L_6 = \{ w \mid w \in A^* \land ((|w|_a \ge 1 \land |w|_b \ge 1) \lor (|w|_a \ge 1 \land |w|_c \ge 1) \lor (|w|_b \ge 1 \land |w|_c \ge 1)) \}$$

Beste aukera bat:

$$L_6 = \{ w \mid w \in A^* \land \exists \alpha, \beta (\alpha \in A \land \beta \in A \land \alpha \neq \beta \land |w|_{\alpha} \geq 1 \land |w|_{\beta} \geq 1) \}$$

Bigarren aukera hau A alfebotoko sinbolo-kopuruarekiko independentea da eta, ondorioz, hobea da.

Beste aukera bat:

$$L_6 = \{ w \mid w \in A^* \land \forall \alpha (\alpha \in A \rightarrow |w|_{\alpha} < |w|) \}$$

Beste aukera bat:

$$L_6 = \{ w \mid w \in A^* \land \exists \alpha (\alpha \in A \land |w|_{\alpha} \ge 1 \land |w|_{\alpha} < |w|) \}$$

7. L_7 (0,100 puntu) Desberdinak diren bi sinbolo edo gehiago ez dituzten, hau da, sinbolo bakar baten zero edo errepikapen gehiagoz eratutako hitzez osatutako L_7 lengoaiaren definizio formala eman. Adibidez, ε , bbb, aa eta cccc L_7 lengoaiakoak dira baina ac, baaa eta aaccb ez.

$$L_7 = \overline{L_6}$$

Beste aukera bat:

$$L_7 = \{ w \mid w \in A^* \land (|w| = |w|_a \lor |w| = |w|_b \lor |w| = |w|_c) \}$$

Beste aukera bat:

$$L_7 = \{ w \mid w \in A^* \land \exists \alpha (\alpha \in A \land |w| = |w|_{\alpha}) \}$$

$$L_7 = \{ w \mid w \in A^* \land \neg \exists \alpha, \beta (\alpha \in A \land \beta \in A \land \alpha \neq \beta \land |w|_{\alpha} \geq 1 \land |w|_{\beta} \geq 1) \}$$

Beste aukera bat:

$$L_7 = \{ w \mid w \in A^* \land \exists \alpha, k(\alpha \in A \land k \in \mathbb{N} \land w = \alpha^k \}$$

Beste aukera bat:

$$L_7 = \{a\}^* \cup \{b\}^* \cup \{c\}^*$$

8. L_8 (0,025 puntu) Luzera bikoitia duten hitzez osatutako L_8 lengoaiaren definizio formala eman. Adibidez, ε , ab, aaaa eta cabb L_8 lengoaiakoak dira baina a, bab eta accaa ez.

$$L_8 = \{ w \mid w \in A^* \land |w| \bmod 2 = 0 \}$$

Beste aukera bat:

$$L_8 = \{ w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land |u| = |v| \land w = uv) \}$$

Definizio horretan, L_8 lengoaiako hitzak luzera bereko bi azpihitzetan zati daitezkeela adierazten da.

9. L_9 (0,025 puntu) Luzera bakoitia duten hitzez osatutako L_9 lengoaiaren definizio formala eman. Adibidez, a, bab eta accaa L_9 lengoaiakoak dira baina ε , ab, aaaa eta cabb ez.

$$L_9 = \{ w \mid w \in A^* \land |w| \bmod 2 \neq 0 \}$$

Beste aukera bat:

$$L_9 = \overline{L_8}$$

Beste aukera bat:

$$L_9 = \{a, b, c\} L_8$$

Beste aukera bat:

$$L_9 = AL_8$$

Beste aukera bat:

$$L_9 = L_8\{a, b, c\}$$

Beste aukera bat:

$$L_9 = L_8 A$$

$$L_9 = A^* \setminus L_8$$

10. L_{10} (0,100 puntu) Desberdinak diren bi sinbolo edo gehiago ez dituzten eta luzera bikotia duten hitzez osatutako L_{10} lengoaiaren definizio formala eman. Adibidez, ε , bbbb, aa eta ccc L_{10} lengoaiakoak dira baina baaa, aaa eta aaccb ez.

$$L_{10} = L_7 \cap L_8$$

Beste aukera bat:

$$L_{10} = \overline{L_6} \cap L_8$$

Beste aukera bat:

$$L_{10} = L_7 \cap \overline{L_9}$$

Beste aukera bat:

$$L_{10} = (A^* \setminus L_6) \cap L_8$$

Beste aukera bat:

$$L_{10} = (A^* \setminus L_6) \setminus \overline{L_8}$$

Beste aukera bat:

$$L_{10} = \{aa\}^* \cup \{bb\}^* \cup \{cc\}^*$$

11. L_{11} (0,025 puntu) a-z hasten diren hitzez osatutako L_{11} lengoaiaren definizio formala eman. Adibidez, a, aa, abcc, abaa eta acb L_{11} lengoaiakoak dira baina ε , bc eta cbab ez.

$$L_{11} = \{ w \mid w \in A^* \land |w| > 1 \land w(1) = a \}$$

Beste aukera bat:

$$L_{11} = \{ w \mid w \in A^* \land \exists u (u \in A^* \land w = au) \}$$

Beste aukera bat:

$$L_{11} = \{a\}A^*$$

12. L_{12} (0,025 puntu) a-z hasten ez diren hitzez osatutako L_{12} lengoaiaren definizio formala eman. Adibidez, ε , bc eta cbab L_{12} lengoaiakoak dira baina a, aa, abcc, abaa eta acb ez.

$$L_{12} = \{ w \mid w \in A^* \land (|w| = 0 \lor (|w| \ge 1 \land w(1) \ne a)) \}$$

$$L_{12} = \{ w \mid w \in A^* \land (w = \varepsilon \lor (|w| > 1 \land w(1) \neq a)) \}$$

Beste aukera bat:

$$L_{12} = \{ w \mid w \in A^* \land (|w| \ge 1 \to w(1) \ne a)) \}$$

Beste aukera bat:

$$L_{12} = \{ w \mid w \in A^* \land \neg \exists u (u \in A^* \land w = au) \}$$

Beste aukera bat:

$$L_{12} = \overline{L_{11}}$$

Beste aukera bat:

$$L_{12} = A^* \setminus L_{11}$$

Beste aukera bat:

$$L_{12} = \{\varepsilon\} \cup (\{b\}A^*) \cup (\{c\}A^*)$$

Beste aukera bat:

$$L_{12} = \{\varepsilon\} \cup (\{b,c\}A^*)$$

13. L_{13} (0,025 puntu) a-z bukatzen diren hitzez osatutako L_{13} lengoaiaren definizio formala eman. Adibidez, a, ccca, aaa eta abaa L_{13} lengoaiakoak dira baina ε , aab, b eta ccc ez.

$$L_{13} = \{ w \mid w \in A^* \land |w| \ge 1 \land w(|w|) = a \}$$

Beste aukera bat:

$$L_{13} = \{ w \mid w \in A^* \land \exists u (u \in A^* \land w = ua) \}$$

Beste aukera bat:

$$L_{13} = (L_{11})^R$$

Beste aukera bat:

$$L_{13} = A^*\{a\}$$

14. L_{14} (0,025 puntu) a-z bukatzen ez diren hitzez osatutako L_{14} lengoaiaren definizio formala eman. Adibidez, ε , c, ccb, aac eta abac L_{14} lengoaiakoak dira baina a, aa, baa eta acbaaa ez.

$$L_{14} = \{ w \mid w \in A^* \land (|w| = 0 \lor (|w| \ge 1 \land w(|w|) \ne a)) \}$$

$$L_{14} = \{ w \mid w \in A^* \land (w = \varepsilon \lor (|w| \ge 1 \land w(|w|) \ne a)) \}$$

Beste aukera bat:

$$L_{14} = \{ w \mid w \in A^* \land (|w| \ge 1 \to w(|w|) \ne a)) \}$$

Beste aukera bat:

$$L_{14} = \{ w \mid w \in A^* \land \neg \exists u (u \in A^* \land w = ua) \}$$

Beste aukera bat:

$$L_{14} = \overline{L_{13}}$$

Beste aukera bat:

$$L_{14} = \{\varepsilon\} \cup (A^*\{b\}) \cup (A^*\{c\})$$

Beste aukera bat:

$$L_{14} = \{\varepsilon\} \cup (A^*\{b,c\})$$

15. L_{15} (0,050 puntu) a-z hasi eta a-z bukatzen diren hitzez osatutako L_{15} lengoaiaren definizio formala eman. Adibidez, a, aa, abba eta acaaabba L_{15} lengoaiakoak dira baina ε , c, ab, bbc eta ccaa ez.

$$L_{15} = \{ w \mid w \in A^* \land |w| \ge 1 \land w(1) = a \land w(|w|) = a \}$$

Beste aukera bat:

$$L_{15} = \{ w \mid w \in A^* \land ((w = a) \lor \exists u (u \in A^* \land w = aua)) \}$$

Beste aukera bat:

$$L_{15} = L_{11} \cap L_{13}$$

Beste aukera bat:

$$L_{15} = \{a\} \cup (L_{11}L_{13})$$

 L_{15} lengoaiakoa den a hitza ez da $L_{11}L_{13}$ lengoaiakoa.

Beste aukera bat:

$$L_{15} = \{a\} \cup (\{a\}A^*\{a\})$$

16. L_{16} (0,050 puntu) ε hitz hutsaz gain, a-ren desberdina den sinbolo batez hasi eta a-ren desberdina den sinbolo batez bukatzen diren hitzez osatutako L_{16} lengoaiaren definizio formala eman. Adibidez, ε , b, baac, ccc eta ccaaabac L_{16} lengoaiakoak dira baina a, abb, abba eta caa ez.

$$L_{16} = \{ w \mid w \in A^* \land ((|w| = 0) \lor (|w| \ge 1 \land w(1) \ne a \land w(|w|) \ne a)) \}$$

$$L_{16} = \{ w \mid w \in A^* \land ((w = \varepsilon) \lor (|w| \ge 1 \land w(1) \ne a \land w(|w|) \ne a)) \}$$

Beste aukera bat:

$$L_{16} = \{ w \mid w \in A^* \land \neg \exists u (u \in A^* \land w = au) \land \neg \exists v (v \in A^* \land w = va) \}$$

Beste aukera bat:

$$L_{16} = \{ w \mid w \in A^* \land (|w| \ge 1 \to (w(1) \ne a \land w(|w|) \ne a)) \}$$

Beste aukera bat:

$$L_{16} = L_{12} \cap L_{14}$$

Beste aukera bat:

$$L_{16} = L_{12}L_{14}$$

Beste aukera bat:

$$L_{16} = (A^* \setminus L_{11}) \setminus L_{13}$$

17. L_{17} – Luzera bakoitia edukitzeaz gain, erdiko posizioan a sinboloa duten hitzez osatutako L_{17} lengoaiaren definizio formala eman. Adibidez, a, aaa, ababc eta ccaabba L_{17} lengoaiakoak dira baina ε , b, aa, abc eta abcc ez.

$$L_{17} = \{ w \mid w \in A^* \land |w| \bmod 2 \neq 0 \land w((|w| \operatorname{div} 2) + 1) = a \}$$

Beste aukera bat:

$$L_{17} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land |u| = |v| \land w = uav) \}$$

Definizio honen bidez L_{17} lengoaiako edozein hitz hiru zatitan bana daitekeela adierazten da: ezkerreko ertzeko eta eskuineko ertzeko zatiak A^* -ko hitzak dira eta gainera luzera bera izan behar dute. Erdiko zatia a hitza da. Lengoaiako hitzen luzera bakoitia denik ez esan arren, u eta v hitzek luzera bera dutela esatean badakigu |u|+|v|+1 bakoitia dela, izan ere |u|+|v| bikoitia baita. Kasu berezi bezala, a hitza ere lengoaiakoa da. a hitzaren kasuan u eta v hutsak izango lirateke, hau da, ε , izan ere $\varepsilon a \varepsilon = a$ da.

18. L_{18} – b sinboloaz bukatzen diren hitzez osatutako L_{18} lengoaiaren definizio formala eman. Adibidez, b, aab, bbb eta bacb L_{18} lengoaiakoak dira baina ε , c, ba, ccc eta abbbc ez.

$$L_{18} = \{ w \mid w \in A^* \land |w| \ge 1 \land w(|w|) = b \}$$

Beste aukera bat:

$$L_{18} = \{ w \mid w \in A^* \land \exists u (u \in A^* \land w = ub) \}$$

$$L_{18} = A^* \{b\}$$

Hirugarren aukera honetan L_{18} lengoaia A^* eta $\{b\}$ lengoaien kateadura bezala definitu da.

19. $L_{19} - a$ sinboloaz hasi eta b sinboloaz bukatzen diren hitzez osatutako L_{19} lengoaiaren definizio formala eman. Adibidez, ab, aaacb eta abcab L_{19} lengoaiakoak dira baina ε , a, ca, bca eta bbbcb ez.

$$L_{19} = \{ w \mid w \in A^* \land |w| \ge 2 \land w(1) = a \land w(|w|) = b \}$$

Beste aukera bat:

$$L_{19} = \{ w \mid w \in A^* \land \exists u (u \in A^* \land w = aub) \}$$

Beste aukera bat:

$$L_{19} = L_{11}L_{18}$$

Beste aukera bat:

$$L_{19} = L_{11} \cap L_{18}$$

Beste aukera bat:

$$L_{19} = \{a\}A^*\{b\}$$

20. L_{20} – a sinboloaz hasi edo b sinboloaz bukatzen diren hitzez osatutako L_{20} lengoaiaren definizio formala eman. Adibidez, a, b, ab, ac, cb, aaa, aacb eta ccb L_{20} lengoaiakoak dira baina ε , c, cca eta baac ez.

$$L_{20} = \{ w \mid w \in A^* \land |w| \ge 1 \land (w(1) = a \lor w(|w|) = b) \}$$

Beste aukera bat:

$$L_{20} = \{ w \mid w \in A^* \land \exists u (u \in A^* \land (w = au \lor w = ub)) \}$$

Beste aukera bat:

$$L_{20} = L_{11} \cup L_{18}$$

Beste aukera bat:

$$L_{20} = (\{a\}A^*) \cup (A^*\{b\})$$

21. L_{21} – a sinboloaz hasi baina b sinboloaz bukatzen ez diren hitzez osatutako L_{21} lengoaiaren definizio formala eman. Adibidez a, ac, aaa, abbc eta abbba L_{21} lengoaiakoak dira baina ε , b, ab, ccb eta cacb ez.

$$L_{21} = \{ w \mid w \in A^* \land |w| > 1 \land w(1) = a \land w(|w|) \neq b \}$$

$$L_{21} = \{ w \mid w \in A^* \land \exists u (u \in A^* \land w = au) \land \neg \exists v (v \in A^* \land w = vb) \}$$

Beste aukera bat:

$$L_{21} = \{a\} \cup (\{a\}A^*\{a,c\})$$

Beste aukera bat:

$$L_{21} = L_{11} \setminus L_{18}$$

Beste aukera bat:

$$L_{21} = L_{11} \cap \overline{L_{18}}$$

22. L_{22} (0,025 puntu) a sinboloa b sinboloa baino gehiagotan duten hitzez osatutako L_{22} lengoaiaren definizio formala eman. Adibidez, a, acc, baac eta aaa L_{22} lengoaiakoak dira baina ε , ab, bbac, bbb eta cccc ez.

$$L_{22} = \{ w \mid w \in A^* \land |w|_a > |w|_b \}$$

23. L_{23} (0,025 puntu) a kopuru bikoitia duten hitzez osatutako L_{23} lengoaiaren definizio formala eman. Adibidez, ε , b, aa, baab, caba, aaaa eta ccc L_{23} lengoaiakoak dira baina a, bac, aaa eta ccab ez.

$$L_{23} = \{ w \mid w \in A^* \land |w|_a \mod 2 = 0 \}$$

24. L_{24} (0,025 puntu) a sinboloa b sinboloa baino gehiagotan ez duten hitzez osatutako L_{24} lengoaiaren definizio formala eman. Adibidez, ε , ab, ccc, bc eta bacc L_{24} lengoaiakoak dira baina a, aba, ca eta aaa ez.

$$L_{24} = \overline{L_{22}}$$

Beste aukera bat:

$$L_{24} = \{ w \mid w \in A^* \land |w|_a \le |w|_b \}$$

25. L_{25} (0,075 puntu) a kopuru bikoitia eta a sinboloa b sinboloa baino gehiagotan duten hitzez osatutako L_{25} lengoaiaren definizio formala eman. Adibidez, aa, caba eta aaaa L_{25} lengoaiakoak dira baina ε , b, aaab, ccb eta acc ez.

$$L_{25} = \{ w \mid w \in A^* \land |w|_a \bmod 2 = 0 \land |w|_a > |w|_b \}$$

Beste aukera bat:

$$L_{25} = L_{22} \cap L_{23}$$

26. L_{26} (0,025 puntu) b-rik eta c-rik ez duten hitzez osatutako L_{26} lengoaiaren definizio formala eman. Adibidez, ε , a, aa eta aaa L_{26} lengoaiakoak dira baina b, abca, ccc eta abb ez.

```
L_{26} = \{ w \mid w \in A^* \land |w|_b = 0 \land |w|_c = 0 \}
L_{26} = \{ w \mid w \in A^* \land \forall k (1 \le k \le |w| \to w(k) = a) \}
L_{26} = \{ w \mid w \in A^* \land \forall \alpha ((\alpha \in A \land \alpha \ne a) \to |w|_\alpha = 0) \}
L_{26} = \{ w \mid w \in A^* \land |w| = |w|_a \}
L_{26} = \{ w \mid w \in A^* \land \neg \exists u, v (u \in A^* \land v \in A^* \land (w = ubv \lor w = ucv)) \}
L_{26} = \{ w \mid w \in A^* \land \neg \exists u, \alpha, v (u \in A^* \land \alpha \in A \land v \in A^* \land \alpha \ne a \land w = u\alpha v) \}
L_{26} = \{ w \mid w \in A^* \land \exists k (k \in I\!\!N \land w = a^k) \}
L_{26} = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land w = a^k) \}
```

27. L_{27} (0,025 puntu) a-rik eta c-rik ez duten hitzez osatutako L_{27} lengoaiaren definizio formala eman. Adibidez, ε , b, bb eta bbbb L_{27} lengoaiakoak dira baina c, aaa, ac, bac eta bcc ez.

```
\begin{split} L_{27} &= \{ w \mid w \in A^* \wedge |w|_a = 0 \wedge |w|_c = 0 \} \\ L_{27} &= \{ w \mid w \in A^* \wedge \forall k (1 \leq k \leq |w| \to w(k) = b) \} \\ L_{27} &= \{ w \mid w \in A^* \wedge \forall \alpha ((\alpha \in A \wedge \alpha \neq b) \to |w|_\alpha = 0) \} \\ L_{27} &= \{ w \mid w \in A^* \wedge |w| = |w|_b \} \\ L_{27} &= \{ w \mid w \in A^* \wedge \neg \exists u, v (u \in A^* \wedge v \in A^* \wedge (w = uav \vee w = ucv)) \} \\ L_{27} &= \{ w \mid w \in A^* \wedge \neg \exists u, \alpha, v (u \in A^* \wedge \alpha \in A \wedge v \in A^* \wedge \alpha \neq b \wedge w = u\alpha v) \} \\ L_{27} &= \{ w \mid w \in A^* \wedge \exists k (k \in I\!\!N \wedge w = b^k) \} \\ L_{27} &= \{ w \mid w \in A^* \wedge \exists k (k \geq 0 \wedge w = b^k) \} \end{split}
```

28. $L_{28}-c$ sinboloaren agerpenik ez edukitzeaz gain a-ren agerpen denak (a-rik baldin badago) ezkerreko aldean eta b-ren agerpen denak (b-rik baldin badago) eskuineko aldean dituzten hitzez osatutako L_{28} lengoaiaren definizio formala eman. Adibidez, ε , aab, aaabbbb, aaa eta bb hitzak L_{28} lengoaiakoak dira baina caa, abcb, bbaaa eta ccc ez dira L_{28} lengoaiakoak. Lengoaia honetan aaabbbbb eta aaaab erako hitzak izango ditugu. Hitz horietan c-rik ez dago, a-ren agerpen denak ezkerreko aldean daude eta b-ren agerpen denak eskuineko aldean daude. Baina bbbb, aa eta ε bezalako hitzak ere lengoaia honetakoak dira, izan ere ez dute c-rik, a-ren agerpenak (a agertzen bada) ezkerreko aldean daude eta b-ren agerpenak (a agertzen bada) eskuineko aldean daude.

Lengoaia hau honela defini daiteke:

$$L_{28} = \{ w \mid w \in A^* \land \exists k (0 \le k \le |w| \land \forall j (1 \le j \le k \to w(j) = a) \land \forall \ell (k+1 \le \ell \le |w| \to w(\ell) = b)) \}$$

k balioa a sinboloaren azkeneko agerpenaren posizioa da eta k+1 posizioa b sinboloaren lehenengo agerpenaren posizioa da. a-rik ez badago, k-ren balioa 0 izango da. b-rik ez badago, k=|w| izango da. j aldagaiaren bidez 1 eta k-ren arteko posizio denetan a daukagula adierazten da. k-ren balioa 0 baldin bada, hau da, a-rik ez badago, $\forall j (1 \leq j \leq k \rightarrow w(j) = a)$ formula unibertsalaren eremua hutsa izango da eta formula bete egingo da, egia izango da. Bestalde, ℓ aldagaiaren bidez k+1 eta |w|-ren arteko posizio denetan b daukagula adierazten da. k-ren balioa |w| baldin bada, hau da, b-rik ez badago, $\forall \ell(k+1 \leq \ell \leq |w| \rightarrow w(\ell) = b)$ formula unibertsalaren eremua hutsa izango da eta ondorioz formula hori bete egingo da, egia izango da.

 L_{28} lengoaia definitzeko beste era bat:

$$L_{28} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land |u| = |u|_a \land |v| = |v|_b \land w = uv) \}$$

Kasu honetan L_{28} lengoaiakoa den w edozein hitz hartuz, hitz hori u eta v bi zatitan bana daitekeela adierazten da: u azpihitzean sinbolo denak a eta v azpihitzean sinbolo denak b izango dira. w hitzak a sinbolorik ez badu, u azpihitza hutsa izango da, ε . Era berean, w hitzak b sinbolorik ez badu, v azpihitza hutsa izango da, ε .

 L_{28} lengoaia definitzeko hirugarren era L_{26} eta L_{27} lengoaiak kateatuz da:

$$L_{28} = L_{26}L_{27}$$

Beraz, L_{28} lengoaiako hitzak a sinboloaz bakarrik osatuta dauden hitzak (behar bada hitz hutsa) eta b sinboloaz bakarrik osatuta dauden hitzak (behar bada hitz hutsa) kateatuz eratzen diren hitzez osatuta daude. Horrela, adibidez aaa hitza L_{28} lengoaiakoa da eta L_{26} lengoaiakoa den aaa hitza eta L_{27} lengoaiako den ε hitza elkartuz osatuta dago. bbb hitza ere lengoaiakoa da, L_{26} lengoaiakoa den hitz hutsa, ε , eta L_{27} lengoaiakoa den bbb hitza elkartuz osatuta baitago.

Beste aukera bat:

$$L_{28} = \{a\}^* \{b\}^*$$

29. L_{29} (0,200 puntu) c-rik ez duten eta, a-rik baldin badago, a-ren agerpen denak alde batean (ezkerreko aldean edo eskuineko aldean) jarraian eta, b-rik baldin badago, b-ren agerpen denak beste aldean jarraian dituzten hitzez osatutako L_{29} lengoaiaren definizio formala eman. Adibidez, ε , aabbb, baaa, bbb eta aaaa hitzak L_{29} lengoaiakoak dira baina aabaa, aaaccbb eta abaaa ez dira L_{29} lengoaiakoak.

$$L_{29} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land |u| = |u|_a \land |v| = |v|_b \land (w = uv \lor w = vu)) \}$$

Beste aukera bat:

$$L_{29} = (L_{26}L_{27}) \cup (L_{27}L_{26})$$

 L_{29} definitzeko beste aukera bat honako hau da:

$$L_{29} = \{ w \mid w \in A^* \land \exists j, k(j \in \mathbb{N} \land k \in \mathbb{N} \land (w = a^j b^k \lor w = b^k a^j)) \}$$

Beste aukera bat:

$$L_{29} = (\{a\}^*\{b\}^*) \cup (\{b\}^*\{a\}^*)$$

30. L_{30} (0,100 puntu) c-rik ez, a eta b sinboloak kopuru berean eta a denak (a-rik baldin badago) ezkerreko aldean elkarren jarraian eta b denak (b-rik baldin badago) eskuineko aldean elkarren jarraian dituzten hitzez osatutako L_{30} lengoaiaren definizio formala eman. Adibidez, ε , ab, aabb eta aaabbb hitzak L_{30} lengoaiakoak dira baina aabbb, aaacbb, aaa eta bbaa ez dira L_{30} lengoaiakoak.

$$L_{30} = \{ w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land |u| = |u|_a \land |v| = |v|_b \land |u| = |v| \land w = uv) \}$$

Beste aukera bat:

$$L_{30} = (L_{26}L_{27}) \cap \{w \mid w \in A^* \land |w|_a = |w|_b\}$$

Beste aukera bat:

$$L_{30} = \{ w \mid w \in A^* \quad \land |w| \bmod 2 = 0 \\ \land \forall k (1 \le k \le |w| \operatorname{div} 2 \to w(k) = a) \\ \land \forall j ((|w| \operatorname{div} 2) + 1 \le j \le |w| \to w(j) = b) \}$$

31. L_{31} (0,125 puntu) b kopurua a kopurua baino handiagoa eta c kopurua b kopurua baino handiagoa izateaz gain, a-rik baldin badago, a-ren agerpen denak ezkerreko aldean elkarren jarraian, b-ren agerpen denak erdiko aldean elkarren jarraian eta c-ren agerpen denak eskuineko aldean elkarren jarraian dituzten hitzez osatutako L_{31} lengoaiaren definizio formala eman. Adibidez, bccc, abbccc, aabbbccccc eta bbcccc hitzak L_{31} lengoaiakoak dira baina ε , aabbb, aaacbb, aaa, ccc eta bbaa ez dira L_{31} lengoaiakoak.

$$L_{31} = \{ w \mid w \in A^* \land \exists u, v, x (u \in A^* \land v \in A^* \land x \in A^* \land |u| = |u|_a \land |v| = |v|_b \land |x| = |x|_c \land |u| < |v| \land |v| < |x| \land w = uvx) \}$$

Beste aukera bat:

$$L_{31} = \{ w \mid w \in A^* \land \exists j, k, \ell (0 \le j < k < \ell \land w = a^j b^k c^\ell) \}$$

Beste aukera bat:

$$L_{31} = \{ w \mid w \in A^* \land |w|_a < |w|_b < |w|_c \land \\ \forall k (1 \le k \le |w|_a \to w(k) = a) \land \\ \forall k ((|w|_a + 1) \le k \le (|w|_a + |w|_b) \to w(k) = b) \land \\ \forall k ((|w|_a + |w|_b + 1) \le k \le |w| \to w(k) = c) \}$$

32. L_{32} (0,025 puntu) b eta c kopuruen baturaren berdina den a kopurua duten hitzez osatutako L_{32} lengoaiaren definizio formala eman. Adibidez, ε , aabc, acccaa eta cabaca hitzak L_{32} lengoaiakoak dira baina aaa, b eta accb ez.

$$L_{32} = \{w \mid w \in A^* \land |w|_a = |w|_b + |w|_c\}$$

33. L_{33} (0,100 puntu) a-ren agerpen bakoitzaren jarraian gutxienez bi b dituzten hitzez osatutako L_{33} lengoaiaren definizio formala eman. Adibidez, ε , bcbbcabb, abbbabbabba eta ccc L_{33} lengoaiakoak dira baina baaa, ab eta aaccb ez.

$$L_{33} = \{ w \mid w \in A^* \land \forall k ((1 \le k \le |w| \land w(k) = a) \to (k \le |w| - 2 \land w(k+1) = b)) \}$$

34. L_{34} (0,025 puntu) b-rik eta c-rik ez duten eta a kopuru bikoitia duten hitzez osatutako L_{34} lengoaiaren definizio formala eman. Adibidez, ε , aaaa eta aa L_{34} lengoaiakoak dira baina baaa, bb, cbbb, c, aaa eta aaccb ez.

$$L_{34} = L_{23} \cap L_{26}$$

Beste aukera bat:

$$L_{34} = \{ w \mid w \in A^* \land |w|_b = 0 \land |w|_c = 0 \land |w|_a \bmod 2 = 0 \}$$

Beste aukera bat:

$$L_{34} = \{ w \mid w \in A^* \land |w| \bmod 2 = 0 \land \exists k (k \ge 0 \land w = a^k) \}$$

Beste aukera bat:

$$L_{34} = \{ w \mid w \in A^* \land |w| \bmod 2 = 0 \land \forall k (1 \le k \le |w| \to w(k) = a) \}$$

Beste aukera bat:

$$L_{34} = \{aa\}^*$$

- 35. L_{35} Jarraian aipatzen diren baldintzetakoren bat (gutxienez bat) betetzen duten hitzez osatutako lengoaia:
 - b eta c sinbolorik ez edukitzea
 - a sinboloaren agerpen-kopurua bikoitia izatea.

Adibidez, ε , aaa, aaaa, abca, bb eta aa L_{35} lengoaiakoak dira baina baaa, bab, cbbbaaa, ca, aaca eta aaccba ez.

$$L_{35} = L_{23} \cup L_{26}$$

Beste aukera bat:

$$L_{35} = \{ w \mid w \in A^* \land ((|w|_b = 0 \land |w|_c = 0) \lor (|w|_a \mod 2 = 0)) \}$$

Beste aukera bat:

$$L_{35} = \{ w \mid w \in A^* \land ((|w|_a \mod 2 = 0) \lor (|w| = |w|_a)) \}$$

Beste aukera bat:

$$L_{35} = \{ w \mid w \in A^* \land ((|w| \bmod 2 = 0) \lor \exists k (k \ge 0 \land w = a^k)) \}$$

36. L_{36} (0,025 puntu) Gutxienez a bat eta gutxienez c bat duten hitzez osatutako L_{36} lengoaiaren definizio formala eman. Adibidez, ca, aabbbbaabc eta cccaa L_{36} lengoaiakoak dira baina ε , baaa, bb, cbbb, c eta aaa ez.

$$L_{36} = \{ w \mid w \in A^* \land |w|_a \ge 1 \land |w|_c \ge 1 \}$$

Beste aukera bat:

$$L_{36} = \{ w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land w = uav) \land \exists x, z(x \in A^* \land z \in A^* \land w = xcz) \}$$

Beste aukera bat:

$$L_{36} = \{ w \mid w \in A^* \land |w| \ge 2 \land \exists k (1 \le k \le |w| \land w(k) = a) \land \exists \ell (1 \le \ell \le |w| \land w(\ell) = c) \}$$

Beste aukera bat:

$$L_{36} = (A^*\{a\}A^*) \cap (A^*\{c\}A^*)$$

37. L_{37} (0,050 puntu) ac katea edo ca katea (gutxienez bietako bat) gutxienez behin duten hitzez osatutako L_{37} lengoaiaren definizio formala eman. Adibidez, ca, acabbbbccaac eta acaccbaac L_{37} lengoaiakoak dira baina ε , cbaaa, bba, cbbab, bbb, c eta aaa ez.

$$L_{37} = \{ w \mid w \in A^* \land (\exists u, v(u \in A^* \land v \in A^* \land w = uacv) \lor \exists x, z(x \in A^* \land z \in A^* \land w = xcaz) \} \}$$

Beste aukera bat:

$$L_{37} = \{ w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land (w = uacv \lor w = ucav)) \}$$

Beste aukera bat:

$$L_{37} = \{ w \mid w \in A^* \land \exists k (1 \le k \le |w| - 1 \land ((w(k) = a \land w(k+1) = c) \lor (w(k) = c \land w(k+1) = a))) \}$$

Beste aukera bat:

$$L_{37} = (A^*\{ac\}A^*) \cup (A^*\{ca\}A^*)$$

Beste aukera bat:

$$L_{37} = (A^*\{a\}\{c\}A^*) \cup (A^*\{c\}\{a\}A^*)$$

38. L_{38} (0,100 puntu) a eta c elkarren jarraian (ez ac bezala eta ez ca bezala) ez dituzten hitzez osatutako L_{38} lengoaiaren definizio formala eman. Adibidez, ε , cbaaa, bcba, cbbb, c eta aaa L_{38} lengoaiakoak dira baina ca, aabbbbaac eta cccaa ez.

$$L_{38} = \overline{L_{37}}$$

$$L_{38} = \{ w \mid w \in A^* \land \forall k((1 \le k \le |w| - 1 \land w(k) = a) \to w(k+1) \ne c) \land \forall \ell((1 \le \ell \le |w| - 1 \land w(\ell) = c) \to w(\ell+1) \ne a) \}$$

39. L_{39} (0,025 puntu) a eta b sinboloak kopuru berean dituzten hitzez osatutako L_{39} lengoaiaren definizio formala eman. Adibidez, aabacbcb, ccc, ε , aaabbb, abab eta bccaccc hitzak L_{39} lengoaiakoak dira baina b, ca, aabbbbca eta cccaa ez.

$$L_{39} = \{ w \mid w \in A^* \land |w|_a = |w|_b \}$$

40. L_{40} (0,025 puntu) a-z hasi, b-z bukatu eta a eta b sinboloak kopuru berean dituzten hitzez osatutako L_{40} lengoaiaren definizio formala eman. Adibidez, aabacbcb, acb, aababb eta accbbcaab L_{40} lengoaiakoak dira baina abba ez da L_{40} lengoaiakoa, a eta b kopuru berean agertu arren, hitza ez delako b-z bukatzen.

$$L_{40} = \{ w \mid w \in A^* \land |w| \ge 2 \land w(1) = a \land w(|w|) = b \land |w|_a = |w|_b \}$$

Beste aukera bat:

$$L_{40} = \{ w \mid w \in A^* \land \exists v (v \in A^* \land |v|_a = |v|_b \land w = avb) \}$$

Beste aukera bat:

$$L_{40} = L_{11} \cap L_{18} \cap L_{39}$$

41. L_{41} (0,025 puntu) aa azpikatea duten hitzez osatutako L_{41} lengoaiaren definizio formala eman. Adibidez, aaaaa, aabacbcb, acaaab, cbaabaab eta accbaaaab L_{41} lengoaiakoak dira baina ε , b, ca, abbbca eta acce ez.

$$L_{41} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land w = uaav) \}$$

Beste aukera bat:

$$L_{41} = \{ w \mid w \in A^* \land \exists k (1 \le k \le |w| - 1 \land w(k) = a \land w(k+1) = a) \}$$

Beste aukera bat:

$$L_{41} = (A^*\{aa\}A^*)$$

Beste aukera bat:

$$L_{41} = (A^*\{a\}\{a\}A^*)$$

42. L_{42} (0,075 puntu) aa eta cc azpikate biak dituzten hitzez osatutako L_{42} lengoaiaren definizio formala eman. cc azpikatea aa baino lehenago ager daiteke edo ez. Lengoaia honetako hitz bakoitzak azpikate biak izan behar ditu gutxienez behin. Adibidez, ccaaaaa, aabacbcccb, accaaab, ccbaabaab eta accbaaaabcc L_{42} lengoaiakoak dira baina bacbcc ez da L_{42} lengoaiakoa aa azpikatea ez duelako.

$$L_{42} = \{ w \mid w \in A^* \land$$

$$\exists u, v (u \in A^* \land v \in A^* \land w = uaav) \land$$

$$\exists x, z (x \in A^* \land z \in A^* \land w = xccz) \}$$

Beste aukera bat:

$$L_{42} = L_{41} \cap \{ w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land w = uccv) \}$$

Beste aukera bat:

$$L_{42} = \{ w \mid w \in A^* \land \exists k (1 \le k \le |w| - 1 \land w(k) = a \land w(k+1) = a) \land \exists j (1 \le j \le |w| - 1 \land w(j) = c \land w(j+1) = c) \}$$

Beste aukera bat:

$$L_{42} = (A^*\{aa\}A^*) \cap (A^*\{cc\}A^*)$$

Beste aukera bat:

$$L_{42} = (A^*\{a\}\{a\}A^*) \cap (A^*\{c\}\{c\}A^*)$$

43. L_{43} (0,050 puntu) aa azpikatea ez duten hitzez osatutako L_{43} lengoaiaren definizio formala eman. Adibidez, cabbccaba, cccabbbb, cccc, ε eta accbbbabab hitzak L_{43} lengoaiakoak dira.

$$L_{43} = \overline{L_{41}}$$

Beste aukera bat:

$$L_{43} = \{ w \mid w \in A^* \land \neg \exists u, v (u \in A^* \land v \in A^* \land w = uaav) \}$$

Beste aukera bat:

$$L_{43} = \{ w \mid w \in A^* \land \forall k ((1 \le k \le |w| - 1 \land w(k) = a) \to w(k+1) \ne a) \}$$

44. L_{44} (0,100 puntu) b-rik agertzen bada, b guztiak batera (jarraian) dituzten hitzez osatutako L_{44} lengoaiaren definizio formala eman. Adibidez, ccaaaaa, aabbbccca, ccc, bbaccaaa, ε , bbbb eta ccbbb hitzak L_{44} lengoaiakoak dira. Bestalde, bacbcc hitza ez da L_{44} lengoaiakoa b denak ez daudelako jarraian.

$$L_{44} = \{ w \mid w \in A^* \land \exists u, v, x (u \in A^* \land v \in A^* \land x \in A^* \land |v| = |v|_b = |w|_b \land w = uvx) \}$$

$$L_{44} = \{a, c\}^* \{b\}^* \{a, c\}^*$$

Lengoaiak

45. L_{45} (0,050 puntu) Luzera gutxienez 2 eta hasieran eta bukaeran sinbolo bera duten hitzez osatutako L_{45} lengoaiaren definizio formala eman. Adibidez, aabacbca, bcb, babb eta cccc hitzak L_{45} lengoaiakoak dira baina cbbb ez da L_{45} lengoaiakoa hasieran eta bukaeran ez duelako sinbolo bera. Beste aldetik, c hitza ere ez da L_{45} lengoaiakoa bere luzera 2 baino txikiagoa baita.

$$L_{45} = \{ w \mid w \in A^* \land \exists v, \alpha (v \in A^* \land \alpha \in A \land w = \alpha v \alpha) \}$$

Beste aukera bat:

$$L_{45} = \{ w \mid w \in A^* \land \exists v (v \in A^* \land (w = ava \lor w = bvb \lor w = cvc)) \}$$

Beste aukera bat:

$$L_{45} = \{ w \mid w \in A^* \land |w| \ge 2 \land w(1) = w(|w|) \}$$

Beste aukera bat:

$$L_{45} = (\{a\}A^*\{a\}) \cup (\{b\}A^*\{b\}) \cup (\{c\}A^*\{c\})$$

46. L_{46} (0,050 puntu) ab hitza nahi adina aldiz errepikatuz eratutako hitzez osatutako L_{46} lengoaiaren definizio formala eman. Adibidez, ababab, ab eta ε hitzak L_{46} lengoaiakoak dira baina aba, bababa eta cabc hitzak ez dira L_{46} lengoaiakoak.

$$L_{46} = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land w = (ab)^k) \}$$

Beste aukera bat:

$$L_{46} = \{ w \mid w \in A^* \land |w| \bmod 2 = 0 \land \forall k((1 \le k \le |w| \land k \bmod 2 \ne 0) \rightarrow (w(k) = a \land w(k+1) = b)) \}$$

Beste aukera bat:

$$\begin{array}{ll} L_{46} = \{ w \mid & w \in A^* \wedge |w| \ \mathrm{mod} \ 2 = 0 \wedge \\ & \forall k ((1 \leq k \leq |w| \wedge k \ \mathrm{mod} \ 2 \neq 0) \rightarrow w(k) = a) \wedge \\ & \forall \ell ((1 \leq \ell \leq |w| \wedge \ell \ \mathrm{mod} \ 2 = 0) \rightarrow w(\ell) = b) \} \end{array}$$

47. L_{47} (0,050 puntu) aa azpikatea edo cc azpikatea duten hitzez osatutako L_{47} lengoaiaren definizio formala eman. Hitz bakoitzak gutxienez azpikate horietako bat gutxienez behin eduki behar du. Adibidez, ccaaaaa, bacbcccb, acaaab, cccc, ccba eta aabccccb hitzak L_{47} lengoaiakoak dira baina bacbca hitza ez da L_{47} lengoaiakoa aa eta cc azpikateak ez baitira agertzen hitz horretan.

$$L_{47} = \{ w \mid w \in A^* \land (\exists u, v(u \in A^* \land v \in A^* \land w = uaav) \lor \exists x, z(x \in A^* \land z \in A^* \land w = xccz)) \}$$

$$L_{47} = \{ w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land (w = uaav \lor w = uccv)) \}$$

Beste aukera bat:

$$L_{47} = L_{41} \cup \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land w = uccv) \}$$

Beste aukera bat:

$$L_{47} = \{ w \mid w \in A^* \land \exists k (1 \le k \le |w| - 1 \land ((w(k) = a \land w(k+1) = a) \lor (w(k) = c \land w(k+1) = c))) \}$$

Beste aukera bat:

$$L_{47} = (A^*\{aa\}A^*) \cup (A^*\{cc\}A^*)$$

48. L_{48} (0,050 puntu) a sinboloaz hasi, b sinboloaz bukatu eta gutxienez c bat duten hitzez osatutako L_{48} lengoaiaren definizio formala eman. Adibidez, accaaaab, aabbcbccbb, acb eta aaccbaccb hitzak L_{48} lengoaiakoak dira baina ε , bacbcc eta bbbb hitzak ez dira L_{48} lengoaiakoak.

$$L_{48} = \{ w \mid w \in A^* \land |w| \ge 3 \land w(1) = a \land w(|w|) = b \land |w|_c \ge 1 \}$$

Beste aukera bat:

$$L_{48} = \{ w \mid w \in A^* \land \exists v (v \in A^* \land |v|_c \ge 1 \land w = avb) \}$$

Beste aukera bat:

$$L_{48} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land w = aucvb) \}$$

Beste aukera bat:

$$L_{48} = L_{11} \cap L_{18} \cap \{w \mid w \in A^* \land |w|_c > 1\}$$

Beste aukera bat:

$$L_{48} = L_{11} \cap L_{18} \cap \{w \mid w \in A^* \land \exists u, v(u \in A^* \land v \in A^* \land w = ucv)\}\$$

Beste aukera bat:

$$L_{48} = \{a\}A^*\{c\}A^*\{b\}$$

49. L_{49} (0,025 puntu) Hiru baino handiagoa den luzera eta gainera hirugarren posizioan a sinboloa duten hitzez osatutako L_{49} lengoaiaren definizio formala eman. Adibidez, aaaa, ccab, cbabbbaac, ccabcbaaaa eta bcaccc hitzak L_{49} lengoaiakoak dira. Baina ε , aa, aaa, aabbca, ba eta bba ez dira L_{49} lengoaiakoak.

$$L_{49} = \{ w \mid w \in A^* \land |w| > 3 \land w(3) = a \}$$

Beste aukera bat:

$$L_{49} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land |u| = 2 \land w = uav) \}$$

Beste aukera bat:

$$L_{49} = \{ w \mid w \in A^* \land \exists u, v (u \in AA \land v \in A^* \land w = uav) \}$$

A multzoa alfabetoa izateaz gain lengoaia ere badenez, kasu honetan lengoaia bezala erabili da eta AA lengoaia definitu da lengoaien kateaketa erabiliz. AA lengoaian A alfabetoaren gainean definitutako bi elementuko hitzak daude. AA adierazteko beste era bat A^2 da.

Beste aukera bat:

$$L_{49} = \{ w \mid w \in A^* \land \exists \alpha, \beta, v (\alpha \in A \land \beta \in A \land v \in A^* \land w = \alpha \beta av) \}$$

Beste aukera bat:

$$L_{49} = AA\{a\}A^*$$

Beste aukera bat:

$$L_{49} = A^2 \{a\} A^*$$

50. L_{50} (0,075 puntu) a-z hasi, b-z bukatu, c bakarra, hasierako a eta c bakarraren artean nahi adina b (zero edo gehiago) baina a-rik ez eta c bakarraren eta bukaerako b-aren artean nahi adina a (zero edo gehiago) baina b-rik ez duten hitzez osatutako L_{50} lengoaiaren definizio formala eman. Adibidez, abbbcaab, acb, acaaab eta abbbcb L_{50} lengoaiakoak dira baina abba, ε , abbcaba, abbcac, acbbb, aaa eta ab ez dira L_{50} lengoaiakoak.

$$L_{50} = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land |u| = |u|_b \land |v| = |v|_a \land w = aucvb) \}$$

Beste aukera bat:

$$L_{50} = \{a\}\{b\}^*\{c\}\{a\}^*\{b\}$$

51. L_{51} (0,050 puntu) Hasieran a sinboloaren agerpen batzuk (zero edo gehiago) gero b sinboloaren agerpen batzuk (bat edo gehiago) eta bukatzeko, c sinboloaren agerpen batzuk, (justu a sinboloaren agerpen-kopuru bera) dituzten hitzez osatutako L_{51} lengoaiaren definizio formala eman. Adibidez, aabcc, bbbb, b, abbc eta aabbbcc L_{51} lengoaiakoak dira. Baina bc, ac, ε , aaccbbb eta aaabbb ez dira L_{51} lengoaiakoak.

$$L_{51} = \{ w \mid w \in A^* \land \exists u, v, x (u \in A^* \land v \in A^* \land x \in A^* \land |u| = |u|_a \land |v| = |v|_b \land |x| = |x|_c \land |v| \ge 1 \land |u| = |x| \land w = uvx) \}$$

52. L_{52} (0,075 puntu) abc azpikatea hasieran edo bukaeran (edo bietan) duten hitzez osatutako L_{52} lengoaiaren definizio formala eman. abc azpikatea leku gehiagotan ere ager daiteke hitzaren erdian. Adibidez, abcaaaa, abc, accaaabc, abcbbbabc eta abccabcaaa L_{52} lengoaiakoak dira baina ε , a eta bacbcc ez dira L_{52} lengoaiakoak.

$$L_{52} = \{ w \mid w \in A^* \land \exists v (v \in A^* \land (w = abcv \lor w = vabc)) \}$$

Beste aukera bat:

$$L_{52} = (\{a\}\{b\}\{c\}A^*) \cup (A^*\{a\}\{b\}\{c\})$$

Beste aukera bat:

$$L_{52} = (\{abc\}A^*) \cup (A^*\{abc\})$$

53. L_{53} (0,025 puntu) L_{52} lengoaiakoak ez diren hitzez osatutako L_{53} lengoaiaren definizio formala eman.

$$L_{53} = \{w \mid w \in A^* \land \neg \exists v (v \in A^* \land (w = abcv \lor w = vabc))\}$$

Beste aukera bat:

$$L_{53} = \overline{L_{52}}$$

54. L_{54} (0,075 puntu) b-rik agertzen bada, c-rik ez duten hitzez osatutako L_{54} lengoaiaren definizio formala eman. Adibidez, ccaaaaa, aabbba, ccc, aaaa, ε , bbbb eta acaac hitzak L_{54} lengoaiakoak dira. Bestalde, bacbcc hitza ez da L_{54} lengoaiakoa.

$$L_{54} = \{ w \mid w \in A^* \land (|w|_b \ge 1 \rightarrow |w|_c = 0) \}$$

Beste aukera bat:

$$L_{54} = \{ w \mid w \in A^* \land (|w|_b = 0 \lor |w|_c = 0) \}$$

55. L_{55} (0,075 puntu) a-z hasi eta gero c-rik ez baina gutxienez bi b edo a-z hasi eta gero dena c duten hitzez osatutako L_{55} lengoaiaren definizio formala eman. Adibidez, abb, aababa, aababab eta acccc hitzak L_{55} lengoaiakoak dira baina ε , aabbcb, caacbb, cccc eta bbc ez dira L_{55} lengoaiakoak.

$$L_{55} = \{ w \mid w \in A^* \land \exists v (v \in A^* \land ((|v|_c = 0 \land |v|_b \ge 2) \lor |v| = |v|_c) \land w = av) \}$$

Beste aukera bat:

$$L_{55} = (L_{11}\{w \mid w \in A^* \land |w|_c = 0 \land |w|_b \ge 2\}) \cup (L_{11}\{w \mid w \in A^* \land |w|_c = |v|\})$$

 $L_{11}\{w\mid w\in A^*\wedge |w|_c=0 \wedge |w|_b\geq 2\}$ lengoaia L_{11} eta $\{w\mid w\in A^*\wedge |w|_c=0 \wedge |w|_b\geq 2\}$ lengoaiak kateatuz lortzen den lengoaia da. Era berean, $L_{11}\{w\mid w\in A^*\wedge |w|_c=|v|\}$ lengoaia L_{11} eta $\{w\mid w\in A^*\wedge |w|_c=|v|\}$ lengoaiak kateatuz lortzen den lengoaia da.

56. L_{56} – Gutxienez sinbolo bat edukitzeaz gain posizio bikoitietan a sinboloa eta posizio bakoitietan b sinboloa duten hitzez osatutako lengoaia. Adibidez, babab, b eta bababa hitzak L_{56} lengoaiakoak dira baina ε , aabbcb, caacbb, cccc eta bbc ez dira L_{56} lengoaiakoak.

$$\begin{array}{ll} L_{56} &=& \{w \mid w \in A^* \wedge |w| \geq 1 \wedge \forall k ((1 \leq k \leq |w| \wedge k \bmod 2 = 0) \rightarrow w(k) = a) \wedge \\ &\forall \ell ((1 \leq \ell \leq |w| \wedge \ell \bmod 2 \neq 0) \rightarrow w(\ell) = b)\} \end{array}$$

Beste aukera bat:

$$L_{56} = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land (w = (ba)^k b \lor w = (ba)^k)) \}$$

57. L_{57} – Luzera bikoitia edukitzeaz gain posizio bikoitietan a sinboloa eta posizio bakoitietan b sinboloa duten hitzez osatutako lengoaia. Adibidez, ε , baba, ba eta bababa hitzak L_{57} lengoaiakoak dira baina aabbcb, caacbb, cccc, babab eta bbc ez dira L_{57} lengoaiakoak.

$$\begin{array}{ll} L_{57} &=& \{w \mid w \in A^* \wedge |w| \bmod 2 = 0 \wedge \forall k ((1 \leq k \leq |w| \wedge k \bmod 2 = 0) \rightarrow w(k) = a) \wedge \\ &\forall \ell ((1 \leq \ell \leq |w| \wedge \ell \bmod 2 \neq 0) \rightarrow w(\ell) = b)\} \end{array}$$

Beste aukera bat:

$$L_{57} = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land w = (ba)^k) \}$$

Beste aukera bat:

$$L_{57} = \{\varepsilon\} \cup (L_8 \cap L_{56})$$

 L_{57} lengoaiakoa bai baina $L_8 \cap L_{56}$ lengoaiakoa ez den hitz bakarra ε da.