DATA SOURCE

https://www.kaggle.com/datasets/madroscla/taylor-swift-released-song-discography-genius

LOAD AND VIEW DATA

Load data

Select variables of interest

See the variables in and variable type of dataframe

Rows: 359 Columns: 4

\$ song release date < date > 2006-06-19, 2006-10-24, 2006-10-24, 2006-10-24, 2006-10-24...

Rename columns

Select year from date

Max year: 2024 # Min year: 2006

Variable	Class	Description
text	character	The text variable containing the lyrics to corresponding Taylor Swift song
category	character	The album each song is from
title	character	The title of the song
date	date	The date on which each song was released including year, month, and day
year	character	The year in which the song was released

#What are the different categories/albums in the dataset?

[1] "Taylor Swift" "Fearless"
[3] "Fearless (TV)" "Speak Now"
[5] "Speak Now (TV)" "Red"
[7] "Red (TV)" "1989"
[9] "1989 (TV)" "reputation"
[11] "Lover" "folklore"

[13] "Non-Album Songs" "evermore"

[15] "Midnights" "The Tortured Poets Department"

[17] "Other Artist Songs"

#Other Artist Songs will not be included in clean dataframe. Analysis is on Taylor Swift, however, collaborations are kept.

DATA CLEANING

#Select songs from each original album release #Select songs that are Taylor's Version #Select only new songs/songs that do not appear in previous release #Keep songs with that are Taylor's Version and From Vault

#Bind the rows that contain unique songs into dataframe

EXPLORATORY DATA ANALYSIS

```
# Load and glimpse at clean data
```

Rows: 266 Columns: 6

\$ X < int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2...

\$ category <chr> "Taylor Swift", "Taylor Swift

\$ title <chr> "Tim McGraw", "Picture to Burn", "Teardrops On My Guitar", "A Place ...

\$ text < chr> "['He said the way my blue eyes shined', 'Put those Georgia stars to...

\$ date <*chr*> "2006-06-19", "2006-10-24", "2006-10-24", "2006-10-24", "2006-10-24"...

\$ year <int> 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006.

What albums are in new dataframe

[1] "Taylor Swift" "Fearless"
[3] "Fearless (TV)" "Speak Now"
[5] "Speak Now (TV)" "Red"
[7] "Red (TV)" "1989"
[9] "1989 (TV)" "reputation"
[11] "Lover" "folklore"
[13] "evermore" "Midnights"

[15] "The Tortured Poets Department" "Non-Album Songs"

- # Function to keep only visible text
- # Convert data into vector and transform into corpus. Make words in text suitable for analysis
- # Keep only visible text in corpus
- # Convert all text to lowercase

```
# Remove punctuation
# Remove numbers from text
# Remove english stop words like "is", "the", "a" etc
# Convert corpus into a document term matrix
<< DocumentTermMatrix (documents: 266, terms: 5106)>>
Non-/sparse entries: 23050/1335146
Sparsity
              : 98%
Maximal term length: 25
               : term frequency (tf)
Weighting
# High sparsity means many words that are not high in frequency
# Reduce sparsity to 0.965
# View reduced sparsity document term matrix. Sparsity at 0.89
<< DocumentTermMatrix (documents: 266, terms: 496)>>
Non-/sparse entries: 13703/118233
              : 90%
Sparsity
Maximal term length: 10
Weighting
               : term frequency (tf)
# Convert document term matrix into matrix then into dataframe
# Create frequency and sort/Create frequency of tokens/words in document term matrix
# Make a dataframe of the sorted tokens and their frequencies with columns "word" and "frequency"
# View data
# Most common words are like, know, just, don't and never.
# What are the common words associated with? What words are likely to come before or after frequent
words?
# like associated with feels and snow
$like
 feels snow dream comin stars scene falling
 0.49  0.44  0.40  0.35  0.34  0.33  0.31
# know associated with changed and better
$know
 changed
            better
                              held everything
                     since
   0.58
           0.55
                    0.48
                            0.36
                                    0.33
# never associated with street and walk
$never
street walk
 0.35 0.33
```

love associated with free and came \$love free came ohoh 0.52 0.40 0.34

Visualization #Wordcloud of frequent words

#What are the top 20 words in the lyrics? #Select 20 rows from the frequency dataframe

	word	freq	
like	like		730
know	know		627

just	just	573
dont	dont	530
never	never	478
now	now	474
love	love	450
youre	youre	447
time	time	408
back	back	404
one	one	381
cause	cause	371
say	say	339
can	can	336
baby	baby	295

got	got	292
see	see	284
come	come	283
think	think	252
ill	ill	242

Showing 1 to 20 of 20 entries, 2 total columns

Year Distribution in dataframe

Song Distribution by Album

SENTIMENT ANALYSIS

• Only relative variables in table

Variable	Class	Description
Text	character	The text variable containing the lyrics to corresponding Taylor Swift song
Album	character	The album each song is from
Title	character	The title of the song
Date	date	The date on which each song was released including year, month, and day
Year	character	The year in which the song was released
Sentiment HE/LM/QDAP	numeric	The sum of positive and negative sentiment for each song in each library in the Sentiment Analysis package (score between -1 and 1)
Positivity HE/LM/QDAP	numeric	The positive sentiment score for each song in each library in the Sentiment Analysis package (score between 0 and 1)
Negative HE/LM/QDAP	numeric	The positive sentiment score for each song in each library in the Sentiment Analysis package (score between -1 and 0)

[#]Perform sentiment analysis on text column

TOPIC MODELING

- # Topic modeling using topic model
- # Measures probability of text belonging to topic
- ## Higher beta reflects higher probability of text belonging to specific network
- # Group tokens into highest probability topics
- # Visualize topics tokens belong

[#] bind columns from sentiment dataframe to current dataframe

Write out grouped topics to use for next step

GEMINI API AND PYTHON

- # Import all libraries and dependencies
- # Load in dataframe from topic modeling
- # Connect to gemini api using key
- # Choose model of gemini to work with
- # Convert values in topics to string
- # Prompt gemini
- # Print response for prompt

Response:

Here's a breakdown of the themes and emotions associated with each topic in your dataframe:

```
# **Topic 1: Everyday Conversations**
#
```

- # * **Theme: ** General, casual conversations.
- #**Emotions/Subjects:** Friendship, connection, simple exchanges, everyday experiences, lightheartedness. Words like "can", "like", "got", "don't", "look", "stay", "way" all point to casual interactions.

```
# **Topic 2: Romantic Yearning/Regret**
# * **Theme: ** Longing, love, loss, reflection on past relationships.
# * **Emotions/Subjects: ** Hope, sadness, nostalgia, yearning for something lost. Words like "back",
"baby", "come", "ever", "wish", "never", "like", "said", "right", "cause", "want" all hint at romantic
themes.
#
# **Topic 3: Love and Loss**
# * **Theme: ** Heartbreak, reflection on love, the passage of time.
#***Emotions/Subjects:** Sadness, melancholy, introspection, time passing, remembering. Words like
"never", "love", "time", "still", "think", "like", "now", "didn't", "just", "know", "heart", "said", "good" are
associated with feelings of loss and reflection.
#**Topic 4: Optimism and Confidence**
# * **Theme: ** Positive outlook, self-assurance, determination.
# * **Emotions/Subjects: ** Hope, excitement, resilience, belief in oneself, making progress. Words like
"know", "just", "like", "see", "gonna", "youre", "one", "keep", "cause", "never", "eyes", "better", "man",
"now", "yeah" all convey a sense of confidence and forward momentum.
# **Topic 5: Pop Culture/Fan Culture**
# * **Theme: ** References to a specific artist or genre (possibly Taylor Swift).
# * **Emotions/Subjects: ** Enthusiasm, admiration, belonging to a fandom. Words like "don't", "like",
"taylor", "ooh", "swift", "wanna", "just", "ill", "say", "call", "want", "time", "know", "one", "youre"
suggest a connection to a particular artist or genre.
# **Important Note: ** The context of the data is crucial for a more accurate interpretation. For example,
the "Taylor Swift" topic might be linked to a specific song or era of her music.
# **Tips for Deeper Analysis:**
# * **Sentiment Analysis: ** Use tools to analyze the emotional tone of text associated with each topic.
# * **Network Analysis: ** Visualize how words within each topic connect to create semantic networks.
#***Additional Context:** Look for any other available information about the data source, like genre,
audience, or timeframe.
```

ZERO SHOT CLASSIFICATION

Variable	Class	Description
Text	character	The text variable containing the lyrics to corresponding Taylor Swift song
Album	character	The album each song is from
Title	character	The title of the song
Date	date	The date on which each song was released including year, month, and day
Year	character	The year in which the song was released
Sentiment HE/LM/QDAP	numeric	The sum of positive and negative sentiment for each song in each library in the Sentiment Analysis package (score between -1 and 1)
Positivity HE/LM/QDAP	numeric	The positive sentiment score for each song in each library in the Sentiment Analysis package (score between 0 and 1)
Negative HE/LM/QDAP	numeric	The positive sentiment score for each song in each library in the Sentiment Analysis package (score between -1 and 0)
Love	numeric	The numeric score of love in text
Sorrow	numeric	The numeric score of sorrow in text
Confidence	numeric	The numeric score of confidence in text
Resilience	numeric	The numeric score of resilience in text
Норе	numeric	The numeric score of hope in text
Loss	numeric	The numeric score of loss in text
Desire	numeric	The numeric score of desire in test
Reflection	numeric	The numeric score of reflection in text

Nostalgia	numeric	The numeric score of nostalgia in text

Using the themes and topics generated from gemini and topic modeling, use zero shot classification to generate scores for each theme.

MEAN COMPARISON, SIGNIFICANCE TESTING AND VISUALIZATION

- # None of the results compared by year is significant for LM
- ## Some significance in QDAP
- ## General trend in significance: More significance in sentiments in earlier years when compared to later years
- ## What years show significant differences when compared with each other?
- # Select only years where there were significant results for each sentiment and emotional theme
- ## Clean data for significance visualization
- ## Save all variables of interest into one dataframe for visualization
- ## Make dataframe for sentiment and topics selecting years where topic was significant
- ## Make list of matched years in for sentiment and topic to use for visualization
- ## Visualize sentiment and topic significance by matched years

