



This a biodiversity analysis from the National Parks Service.

We focus on analyzing data about species at various national parks.

# **Contents**



#### **Conservation Status**

### **Key Indicators**

- Conservation Status
- Number of species

| Conservation status | Number of species |
|---------------------|-------------------|
| In Recovery         | 4                 |
| Threatened          | 10                |
| Endangered          | 15                |
| Species of Concern  | 151               |
| No Intervention     | 5363              |

The initial data include the scientific name, common names, and conservation status of each species. There are 5541 different species, 7 categories, and 4 conservation status.

We add "No Intervention" conservation status, and then get the number of species for each status by counting unique scientific name.

#### **Conservation Status**



Species of Concern: Declining or appear to be in need of conservation

Threatened: Vulnerable to endangerment in the near future

**Endangered**: Seriously at risk of extinction

In Recovery: Formerly Endangered, but currently neither in danger of extinction

throughout all or a significant portion of its range

No Intervention: Have no relevant evaluation

## **Significance Test**

We already know that most of the species in the National Parks have no intervention. Now we are going to test the significant difference between the species from different categories.

First of all, we define the protected state based on the conservation status and calculate the protected percent for each category.

| Category          | Not protected | Protected | Percent of protected |
|-------------------|---------------|-----------|----------------------|
| Amphibian         | 72            | 7         | 0.088608             |
| Bird              | 413           | 75        | 0.153689             |
| Fish              | 115           | 11        | 0.087302             |
| Mammal            | 146           | 30        | 0.170455             |
| Nonvascular Plant | 328           | 5         | 0.015015             |
| Reptile           | 73            | 5         | 0.064103             |
| Vascular Plant    | 4216          | 46        | 0.010793             |

## **Significance Test**

Then, we create contingency table prepared for Chi Square Significant Test

| Category  | Protected | Not protected |
|-----------|-----------|---------------|
| Category1 | num1      | num2          |
| Category2 | num3      | num4          |

If we get P value less than 0.05, it is significant. For example, the P value of test of the difference between *Reptile* and *Mammal* significant is 0.0383556 < 0.05, so it looks like there is a significant difference between *Reptile* and *Mammal*!

#### **Observations Plan**

#### **Background**

Conservationists have been recording sightings of different species at several national parks for the past 7 days. Some scientists are studying the number of sheep sightings at different national parks. There are several different scientific names for different types of sheep.

#### Condition

Scientists know that 15% of sheep at Bryce National Park have foot and mouth disease. Park rangers at Yellowstone National Park have been running a program to reduce the rate of foot and mouth disease.

#### Goal

The scientists want to test whether or not this program is working. They want to be able to detect reductions of at least 5 percentage point. We also want to know how many weeks would you need to observe sheep.

## **Observations Plan**

At first, we need to get all the "Sheep" occur in common names and belongs to Mammal category merge with observations data. After that, we can group observations of sheep per week by different parks.

| Scientific<br>Name | Park Name                                 | Observations | Category | Common<br>Names                 | Conservation<br>Status | Protected |
|--------------------|-------------------------------------------|--------------|----------|---------------------------------|------------------------|-----------|
| Ovis canadensis    | Yellowstone<br>National Park              | 219          | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of Concern     | True      |
| Ovis canadensis    | Bryce National<br>Park                    | 109          | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of Concern     | True      |
| Ovis canadensis    | Yosemite<br>National Park                 | 117          | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of Concern     | True      |
| Ovis<br>canadensis | Great Smoky<br>Mountains<br>National Park | 48           | Mammal   | Bighorn Sheep,<br>Bighorn Sheep | Species of Concern     | True      |

## **Observations Plan**

| Park Name                           | Observations |
|-------------------------------------|--------------|
| Bryce National Park                 | 250          |
| Great Smoky Mountains National Park | 149          |
| Yellowstone National Park           | 507          |
| Yosemite National Park              | 282          |



#### **Observations Plan Conclusion**

Finally, we calculate the sample based on baseline, minimum detectable effect, and level of significance, and we get sample size per variant is 510.

The result means we need 2 weeks to observe sheep at Bryce National Park and 1 week at Yellowstone National Park in order to observe enough sheep.

# Thank You!