Opcje amerykańskie i drzewa losowe

2022-12-15

Wstęp

Projekt jest ćwiczeniem z wyceny opcji metodą Monte Carlo. Przedstawiamy przykłady numeryczne dla algorytmów wyceny opcji amerykańskich, opisanych w [1], w rozdziale 8.3 pt. "Random Tree Methods".

Opcje amerykańskie - optymalne stopowanie

Znajdźmy wartość V_0 opcji w chwili $t_0 = 0$. Niech h_i oznacza zdyskontowaną wypłatę z opcji w chwili t_i , zwaną też wewnętrzną wartością (*intrinsic value*) opcji. Ponieważ opcję amerykańską możemy w każdej chwili zrealizować (otrzymując h_i) lub czekać, jej wartość jest nie mniejsza od wartości wewnętrznej.

Zdyskontowana wartość $V_i(X_i)$ opcji w chwili t_i na rynku znajdującym się w stanie X_i (w ogólności, X_i jest wektorem zawierającym ceny instrumentów, losowe stopy procentowe r, poziom zmienności rynku σ , itd.), jest dana równaniem rekurencyjnym (patrz [1], równania (8.6)-(8.7)):

$$V_m(x) = h_m(x), V_i(x) = \max\{h_i(x), C_i(x)\}, \quad 0 \le i \le m-1, \text{gdzie} \quad C_i(x) = E[V_{i+1}(X_{i+1}) \mid X_i = x].$$

Powyższe wzory definiują obwiednię Snella $V_i(X_i)$ ciągu $h_i(X_i)$, czyli najmniejszy nadmartyngał dominujący funkcję wypłaty. Z teorii optymalnego stopowania (p. [2], dodatek F.2, Twierdzenie 3) wiadomo, że

$$V_0(X_0) = Eh_{\tau^*}(X_{\tau^*}) = \sup_{\tau \in \Theta} Eh_{\tau}(X_{\tau}),$$

gdzie Θ jest zbiorem wszystkich momentów stopu o wartościach w zbiorze $\{0,1,\ldots,m\}$.

Programowanie dynamiczne

Implementacje rozwiązań układu równań (1) zazwyczaj odnoszą się do jego równoważnej postaci, gdzie funkcje \tilde{h}_i oraz \tilde{V}_i nie są zdyskontowane (patrz [1], równania (8.4)-(8.5)):

$$\tilde{V}_m(x) = \tilde{h}_m(x), \quad \tilde{V}_i(x) = \max\{\tilde{h}_i(x), E[D_{i,i+1}(X_{i+1})\tilde{V}_{i+1}(X_{i+1}) \mid X_i = x]\}, \quad 0 \le i \le m - 1.$$
(2)

Szukamy wtedy $\tilde{V}_0(X_0) = V_0(X_0)$. Czynnik $D_{i,i+1}$ jest współczynnikiem dyskonta pomiędzy momentem t_{i+1} a t_i , czyli wartością, w momencie t_i , jednego dolara wypłacanego w przyszłej chwili t_{i+1} . Dla prostego modelu ze stałą stopą procentową r, jest to po prostu $\exp(-r(t_{i+1} - t_i))$.

Równoważność sfomułowań (1) i (2) można zobaczyć, jeśli zauważymy, że

$$V_i = \exp(-rt_i)\tilde{V}_i, \qquad h_i = \exp(-rt_i)\tilde{h}_i.$$

Zaletą sformułowania (2) jest to, że funkcja wypłaty \tilde{h}_i jest zazwyczaj niezależna od indeksu i.

Drzewa losowe

Ustalmy $b \ge 2$. Każdy węzeł drzewa odpowiada pewnemu stanowi w łańcuchu Markowa, co przekłada się na następującą metodę generowania kolejnych węzłów. Każdy węzeł (stan rynku $X_i = x$ w momencie t_i), ma b potomków (wartości X_{i+1}), generowanych niezależnie z jednakowym rozkładem warunkowym:

$$P_x^{(i+1)}(B) = P(X_{i+1} \in B | X_i = x).$$

W rozważanym przez nas prostym modelu, stan rynku to cena instrumentu bazowego:

$$X_i = S(t_i),$$

a zatem, gdy S jest realizacją geometrycznego ruchu Browna (ze stałymi r, σ), $P_x^{(i+1)}$ jest rozkładem zmiennej losowej

$$Y_x = x \exp((r - \frac{\sigma^2}{2})dt + \sigma \sqrt{dt}Z), \qquad dt = t_{i+1} - t_i, \quad Z \sim N(0, 1).$$

Trajektorie cen będą teraz ścieżkami w grafie, który jest nasze drzewo losowe: ścieżka

$$j_1 j_2 \cdots j_i$$

prowadzi przez następujące krawędzie tego grafu. Najpierw od węzła (korzenia drzewa) X_0 , do węzła $X_1^{j_1}$ będącego jego j_1 -ym potomkiem, gdzie $1 \le j_1 \le b$. Następnie od węzła $X_1^{j_1}$ do węzła $X_2^{j_1j_2}$ będącego j_2 -ym potomkiem węzła $X_1^{j_1}$, gdzie $1 \le j_2 \le b$. I tak dalej, aż do węzła $X_i^{j_1j_2\cdots j_i}$.

Wyznaczymy dwa estymatory, "górny" \hat{V} i "dolny" \hat{v} :

$$E\hat{V}_0 > V_0(S_0) > E\hat{v}_0.$$

Estymator górny

Niech $\hat{V}_i^{j_1\cdots j_i}$ będzie wartością estymatora górnego w węźle $X_i^{j_1\cdots j_i}$. W węzłach końcowych, czyli dla $t=t_m$, definiujemy:

$$\hat{V}_m^{j_1\cdots j_m} = \tilde{h}_m(X_m^{j_1\cdots j_m}).$$

Przez indukcję wsteczną, obliczamy następnie:

$$\hat{V}_{i}^{j_{1}\cdots j_{i}} = \max \left\{ \tilde{h}_{i}(X_{i}^{j_{1}\cdots j_{i}}), \ \frac{1}{b} \sum_{j=1}^{b} D_{i,i+1} \hat{V}_{i+1}^{j_{1}\cdots j_{i}j} \right\}.$$

Pomocny, w zrozumieniu definicji $\hat{V}_i^{j_1\cdots j_i}$, będzie przykład na poniższym rysunku (zaczerpniętym z [1]), gdzie przyjęto dla uproszczenia r=0 (a zatem $D_{i,i+1}=1$), b=3, oraz funkcję wypłaty $\tilde{h}_i(x)=(x-100)_+$ (opcja kupna):

Fig. 8.3. Illustration of random tree and high estimator for a call option with a single underlying asset and a strike price of 100. Labels at each node show the level of the underlying asset and (in brackets) the value of the high estimator.

```
m = 5
b = 10
r = 0.05
sigma = 0.3
dt = 0.05
K = 50
S 0 = 50
# Wypłata dla opcji 'put', nie zdyskontowana
h = function(x) {
  return (max(0,K-x))
sample_next = function(x) {
  a = (r-sigma^2/2)*dt
  b = sigma*sqrt(dt)
  Z = rnorm(1)
  return (x*exp(a+b*Z))
V_high_estimator = function(i,x) {
  payoff = h(x)
  if (i == m) {
    return (payoff)
    C = replicate(b, V_high_estimator(i+1,sample_next(x)))
    return (max(payoff, exp(-r*dt) * mean(C)))
  }
}
```

print(V_high_estimator(0,S_0))

[1] 3.114602

Gdy mamy już metodę otrzymywania $\hat{V}_0(S_0)$, replikujemy tę funkcję n razy, otrzymując pewien wektor prób $\hat{V}_0(S_0)$. Pozwala to następnie oszacować przedział ufności dla $E\hat{V}_0(S_0)$.

```
q = replicate(100, V_high_estimator(0,S_0))
print(mean(q))
```

[1] 2.812908

print(sd(q))

[1] 0.4701038

Estymator dolny

Estymator dolny będzie nieco bardziej skomplikowany. Po szczegółową motywację tej komplikacji odsyłamy do [1].

Niech $\hat{v}_i^{j_1\cdots j_i}$ będzie wartością estymatora dolnego w węźle $X_i^{j_1\cdots j_i}$. W węzłach końcowych, czyli dla $t=t_m$, definiujemy:

$$\hat{v}_m^{j_1\cdots j_m} = \tilde{h}_m(X_m^{j_1\cdots j_m}).$$

Przez indukcję wsteczną, obliczamy następnie, dla każdego ustalonego $k=1,\ldots,b$:

$$\hat{v}_{ik}^{j_1 \cdots j_i} = \begin{cases} \tilde{h}_i(X_i^{j_1 \cdots j_i}), & \text{gdy } \frac{1}{1-b} \sum_{j=1, j \neq k}^b D_{i,i+1} \hat{v}_{i+1}^{j_1 \cdots j_i j} \leq \tilde{h}_i(X_i^{j_1 \cdots j_i}), \\ D_{i,i+1} \hat{v}_{i+1}^{j_1 \cdots j_i k} & \text{w przeciwnym przypadku;} \end{cases}$$

następnie definiujemy

$$\hat{v}_i^{j_1 \dots j_i} = \frac{1}{b} \sum_{k=1}^b \hat{v}_{ik}^{j_1 \dots j_i}$$

Wyliczenie wartości tego estymatora zilustrowane jest poniżej (z [1], Fig. 8.4); jak poprzednio, przyjęto dla uproszczenia $r=0,\,b=3,\,$ oraz $\tilde{h}_i(x)=(x-100)+.\,$ Rozważmy trzeci węzeł, w pierwszej chwili, w której możliwa jest realizacja opcji, czyli X_1^3 (ten z etykietą 105). Gdy weźmiemy k=1 i pominiemy pierwszego potomka tego węzła w oszacowaniu wartości funkcji kontynuacji, otrzymamy (4+0)/2, a więc mniej niż wartość funkcji wypłaty $(105-100)_+=5,\,$ decydujemy się na sprzedaż opcji i otrzymujemy 5. Gdy pominiemy drugiego potomka, będziemy kontynuować trzymanie opcji (bo 7>5), i otrzymamy wartość estymatora dla tego drugiego potomka, czyli 4. Gdy pominiemy trzeciego, kontynuujemy i otrzymujemy 0. Uśredniając powyższe trzy wypłaty: 5, 4 i 0, uzyskujemy wartość estymatora dolnego, $\hat{v}_1^3=3.$

Fig. 8.4. Labels at each node show the level of the underlying asset and the value of the low estimator in brackets.

```
v_low_estimator = function(i,x) {
}
print(v_low_estimator(0,S_0))
```

NULL

Gdy mamy już metodę otrzymywania $\hat{v}_0(S_0)$, replikujemy tę funkcję n razy, otrzymując pewien wektor prób $\hat{v}_0(S_0)$. Pozwala to następnie oszacować przedział ufności dla $E\hat{v}_0(S_0)$.

Wartość ceny amerykańskiej opcji sprzedaży, znaleziona w kalkulatorze online [3], dla powyższych wartości parametrów: S_0 (price), K (strike), σ (volatility), r (interest rate), T (expiration), to:

. . .

Przedziały ufności dla estymatora ceny opcji

Korzystając z centralnego twierdzenia granicznego, otrzymujemy oszacowanie przedziału ufności dla $V_0(X_0)$:

$$I_{\delta}(n,b) = \left(\bar{v}_{0}(n,b) - z_{\delta/2} \frac{s_{v}(n,b)}{\sqrt{n}}, \quad \bar{V}_{0}(n,b) + z_{\delta/2} \frac{s_{V}(n,b)}{\sqrt{n}}\right),$$

gdzie n jest ilością replikacji każdego z estymatorów, b jest parametrem symulacji, o którym mówiliśmy wyżej, natomiast \bar{v}_0 , \bar{V}_0 , są średnimi z prób estymatora, odpowiednio, dolnego i górnego. Symbole s_v , s_V oznaczają odpowiednie odchylenie standardowe z prób estymatora. Wielkość z_q to kwantyl standardowego rozkładu normalnego, czyli $\Phi^{-1}(q)$, gdzie Φ jest dystrybuantą N(0,1).

Przypomnijmy, że $E\hat{v}_0 \leq V_0(X_0) \leq E\hat{V}_0$; jeśli więc $V_0(X_0)$ nie należy do wyżej zdefiniowanego przedziału $I_\delta(n,b)$, to zachodzi albo

$$E\hat{v}_0 \le \bar{v}_0(n,b) - z_{\delta/2} \frac{s_v(n,b)}{\sqrt{n}},$$

albo

$$E\hat{V}_0 \ge \bar{V}_0(n,b) - z_{\delta/2} \frac{s_V(n,b)}{\sqrt{n}},$$

a każde z tych zdarzeń ma prawdopodobieństwo nie przekraczające $\delta/2$ (dla dużych n); ich alternatywa ma prawdopodobieństwo nie większe, niż δ . Stąd $V_0(X_0)$ zawiera się w przedziale $I_{\delta}(n,b)$ z prawdopodobieństwem (dla dużych n) przynajmniej $1-\delta$.

Przyspieszanie obliczeń

Możemy polepszyć czas działania tej metody, generując 1 zamiast b potomków w tych stanach rynku, gdy nie opłaca się realizować opcji, i wyliczając górny bądź dolny estymator jako zdyskontowaną wartość z jedynego węzła potomnego.

```
V_high_estimator_faster = function(i,x) {
}
v_low_estimator_faster = function(i,x) {
}
```

Czas obliczeń można zmierzyć w języku R przy użyciu funkcji system.time

Redukcja wariancji

Zauważmy, że w obu powyższych estymatorach Y możemy prawdopodobnie zredukować wariancję przy pomocy kontrolnej zmiennej X, będącej ceną opcji europejskiej dla tych samych prób, tj. dla cen S_T (związanych z węzłami X_m) - estymator X będzie po prostu średnią wartością $\tilde{h}_m(X_m)$, gdzie X_m przebiega wszystkie węzły będące liśćmi naszego drzewa.

```
X_high_estimator_faster_European = function(i,x) {
}
X_low_estimator_faster_European = function(i,x) {
}
```

Literatura:

- [1] Paul Glasserman, Monte Carlo Methods in Financial Engineering, Springer 2003
- [2] J. Jakubowski, R. Sztencel, Wstep do teorii prawdopodobieństwa, Wyd. 4. SCRIPT, Warszawa, 2010
- [3] Kalkulator online dla wyznaczania cen opcji: ...