

Test report No. Page **Issued date** FCC ID

: 12199538H-A-R1 : 1 of 40 : October 17, 2018 : VPYLB1LL

RADIO TEST REPORT

Test Report No.: 12199538H-A-R1

Applicant Murata Manufacturing Co., Ltd.

Type of Equipment Communication Module

Model No. LBAA0ZZ1LL

FCC ID VPYLB1LL

Test regulation FCC Part 15 Subpart C: 2018

Test Result Complied

This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the above regulation.
- The test results in this report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- This report is a revised version of 12199538H-A. 12199538H-A is replaced with this report.

Date of test:

Representative test engineer:

March 6 to 11, 2018

Takafumi Noguchi Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada Leader

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 2 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

REVISION HISTORY

Original Test Report No.: 12199538H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12199538H-A	April 25, 2018	-	-
, ,				
1	12199538H-A-R1	October 17,	P 9, P 10	Correction of Configuration and
		2018		peripherals in Clause 4.2
1	12199538H-A-R1	October 17, 2018	P 23, P 26, P 28	peripherals in Clause 4.2 Addition of explanatory note *1)
1	12199538H-A-R1	October 17, 2018	P 37	Correction of Test Item of MLS-23 and MLS-24 in Appendix 2
				<u> </u>

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date FCC ID : 12199538H-A-R1 : 3 of 40 : October 17, 2018 : VPYLB1LL

<u>CONTENTS</u> PAGE

CONTENTS	Inde
CECTION 1. Contain with farmed to	4
SECTION 1: Customer information	
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Conducted Emission	11
SECTION 6: Radiated Spurious Emission	12
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test data	15
Conducted Emission	15
6 dB Bandwidth and 99 % Occupied Bandwidth	17
99 %Occupied Bandwidth	
Maximum Peak Output Power	
Average Output Power	21
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Conducted Emission	38
Radiated Spurious Emission	
Worst Cose Position	40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 4 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

SECTION 1: Customer information

Company Name : Murata Manufacturing Co., Ltd.

Address : 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number : +81-75-955-6736 Facsimile Number : +81-75-955-6634 Contact Person : Motoo Hayashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Communication Module

Model No. : LBAA0ZZ1LL

Serial No. : Refer to Section 4, Clause 4.2
Rating : Min. 2.0 V / Typ. 3.3 V / Max. 3.8 V

Receipt Date of Sample : March 5, 2018 Country of Mass-production : China, Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: LBAA0ZZ1LL (referred to as the EUT in this report) is a Communication Module.

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 902.5 MHz to 927.5 MHz

Modulation : GFSK

Antenna type : Monopole antenna

Antenna Gain : -2.7 dBi

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 5 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	QP 13.7 dB, 11.34600 MHz, N AV 8.7 dB, 11.34600 MHz, N	Complied	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(a)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(d)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(b)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	1.8 dB 902.00 MHz, PK, Vert.	Complied	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage through the regulator regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision on March 12, 2018, does not affect the test specification applied to the EUT.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v04 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 12199538H-A-R1 Page : 6 of 40

Issued date : October 17, 2018 FCC ID : VPYLB1LL

3.3

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Antenna Terminal test

Test Item	Uncertainty (+/-)			
RF output power	1.3 dB			
Antenna terminal conducted emission / Power dencity /	2.7 dB			
Adjacent channnel power / Channnel power				
Below 3GHz	1.9 dB			
3 GHz ot 6 GHz	2.1 dB			

Conducted emission

using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.8 dB
	0.15 MHz to 30 MHz	3.4 dB

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.9 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	5.0 dB
	6 GHz to 18 GHz	5.3 dB
1 m	10 GHz to 26.5 GHz	5.8 dB
	26.5 GHz to 40 GHz	5.8 dB
10 m	1 GHz to 18 GHz	5.2 dB

Conducted emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 7 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	_
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 8 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

 Mode
 Remarks*

 Transmitting (Tx)

*Power of the EUT was set by the software as follows;

Power setting value: B

Software: Murata SubGHz Tool 1.0.3 *This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested antenna port	Tested frequency
Conducted Emission	Transmitting (Tx)	-	902.5 MHz
6 dB Bandwidth			915.0 MHz
Power Density			927.5 MHz
99 % Occupied Bandwidth			
Spurious Emission (Radiated			
/Conducted)			
Maximum Peak Output Power			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 9 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

4.2 Configuration and peripherals

Except for Conducted Emission test

: Standard Ferrite Core

Conducted Emission test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 10 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
	Communication	LBAA0ZZ1LL	1 *1), *4)	Murata	EUT
A	Module		2 *2)	Manufacturing Co.,	
				Ltd.	
В	Jig Board	-	-	-	*3)
C	Jig Borad (USB)	-	-	-	-
D	Laptop PC	CF-N8HWCDPS	0BKSA08723	Panasonic	-
Е	AC Adapter	CF-AA6372B	6372BM409X18054B	Panasonic	-
F	DC power supply	PMC35-2A	RM000298	KIKUSUI	*4)

^{*1)} Used for Radiated Emission test

List of cables used

No.	Name	Length (m)	Shie	Remarks	
			Cable	Connector	
1	DC Cable	2.0 *1), *2) 0.2 *4)	Unshielded	Unshielded	-
2	Signal Cable	0.3	Unshielded	Unshielded	-
3	DC Cable	1.1	Unshielded	Unshielded	-
4	AC Cable	0.9	Unshielded	Unshielded	-
5	AC Cable	1.8	Unshielded	Unshielded	*4)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for Antenna Terminal Conducted test

^{*3)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

^{*4)} Used for Conducted Emission test

Test report No. : 12199538H-A-R1
Page : 11 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

1) For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

Figure 1: Test Setup

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 12 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "KDB 558074 D01 DTS Meas Guidance v04".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			If duty cycle was less than	
			98%, a duty factor was	
			added to the results.	

^{*1)} Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v04".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 13 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m

Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 3.75 m

Test Volume: 1.5 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 10 GHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 12199538H-A-R1 Test report No. Page : 14 of 40 **Issued date** : October 17, 2018 FCC ID : VPYLB1LL

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6 dB Bandwidth	1 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6 dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150 kHz to 30 MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v04".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Test report No. : 12199538H-A-R1
Page : 15 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

APPENDIX 1: Test data

Conducted Emission

Report No. 12199538H

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Date March 11, 2018
Temperature / Humidity 15 deg. C / 26 % RH
Engineer Yuta Moriya
Mode Tx 927.5MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

Frequency	Reading		Corr.	Resi		Lin			gin		
	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	11.2	4. 2	13. 2	24. 4	17. 4	66. 0	56. 0	41.6	38. 6	N	
0. 65260	13.7	3.5	13. 3	27. 0	16.8	56. 0	46. 0	29. 0	29. 2	N	
8. 19400	26.7	21.8	14.0	40. 7	35. 8	60.0	50.0	19. 3	14. 2	N	
11. 34600	32.0	27.0	14. 3	46. 3	41.3	60.0	50.0	13. 7	8. 7	N	
14. 02520	23.9	18.4	14. 4	38. 3	32. 8	60.0	50.0	21. 7	17. 2	N	
22. 98680	6.0	0. 2	14. 9	20. 9	15. 1	60.0	50.0	39. 1	34. 9	N	
0. 15000	11.2	4.7	13. 2	24. 4	17. 9	66. 0	56. 0	41.6	38. 1	L	
0.62100	11.3	2.7	13. 2	24. 5	15. 9	56.0	46. 0	31.5	30. 1	L	
8. 35000	25.8	20.9	14. 1	39. 9	35.0	60.0	50.0	20. 1	15. 0	L	
11. 42034	29.7	24. 7	14. 3	44. 0	39.0	60.0	50.0	16.0	11.0	L	
13.87620	22.8	17.5	14. 4	37. 2	31.9	60.0	50.0	22. 8	18. 1	L	
23.03160	7.3	1.4	14. 9	22. 2	16.3	60.0	50.0	37. 8	33. 7	L	

CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 16 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Conducted Emission

Report No. 12199538H

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Date March 11, 2018
Temperature / Humidity 15 deg. C / 26 % RH
Engineer Yuta Moriya

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 17 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama

Mode Tx

Frequency	99 % Occupied	6 dB Bandwidth	Limit for
	Bandwidth		6 dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
902.5	479.8622	0.550	> 0.5000
915.0	484.9489	0.550	> 0.5000
927.5	481.2266	0.549	> 0.5000

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 18 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

6 dB Bandwidth

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 19 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

99 %Occupied Bandwidth

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama

Mode Tx

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 20 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Maximum Peak Output Power

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama

Mode Tx

Freq.	Reading	Cable	Atten.	Res	sult	Liı	mit	Margin
		Loss	Loss					
[MHz	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
902.5	1.21	0.20	9.91	11.32	13.55	30.00	1000	18.68
915.0	1.23	0.20	9.91	11.34	13.61	30.00	1000	18.66
927.5	1.24	0.20	9.91	11.35	13.65	30.00	1000	18.65

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor $0\,\mathrm{dB}$ of the data sheets.

Test report No. : 12199538H-A-R1
Page : 21 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Average Output Power (Reference data for RF Exposure / SAR testing)

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018

Temperature / Humidity 20 deg. C / 36 % RH Engineer Shuichi Ohyama

Mode Tx

Freq.	Reading	Cable	Atten.	Re	sult
		Loss	Loss	(Time a	verage)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
902.5	-9.72	0.20	9.91	0.39	1.09
915.0	-9.70	0.20	9.91	0.41	1.10
927.5	-9.69	0.20	9.91	0.42	1.10

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 12199538H-A-R1
Page : 22 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Burst rate confirmation

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama

Mode Tx

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 23 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Radiated Spurious Emission

Report No. 12199538H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date March 6, 2018 March 9, 2018
Temperature / Humidity 23 deg. C / 38 % RH 22 deg. C / 32 % RH
Engineer Takafumi Noguchi (Below 1 GHz) (Above 1 GHz)

Mode Tx 902.5 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	84.000	QP	38.0	7.4	8.0	32.2		21.2	40.0	18.8	
Hori	96.001	QP	37.8	9.4	8.1	32.2	-	23.1	43.5	20.4	
Hori	144.000	QP	42.9	14.6	8.7	32.1	-	34.1	43.5	9.4	
Hori	168.001	QP	40.1	15.9	8.9	32.1	-	32.8	43.5	10.7	
Hori	192.002	QP	35.2	16.4	9.1	32.1	-	28.6	43.5	14.9	
Hori	216.006	QP	38.9	11.3	9.3	32.1	-	27.4	46.0	18.6	
Hori	432.001	QP	36.2	16.2	10.9	32.0	-	31.3	46.0	14.7	
Hori	1805.000	PK	50.3	25.9	5.0	34.7	-	46.5	73.9	27.4	
Hori	2707.500	PK	61.3	27.9	5.3	34.4	-	60.1	73.9	13.8	
Hori	3610.000	PK	45.5	28.9	5.7	33.8	-	46.3	73.9	27.6	
Hori	4512.500	PK	47.1	30.6	6.1	33.6	-	50.2	73.9	23.7	
Hori	5415.000	PK	42.0	31.9	6.6	33.4	-	47.1	73.9	26.8	Floor noise
Hori	6317.500	PK	43.1	33.7	7.0	33.6	-	50.2	73.9	23.7	Floor noise
Hori	7220.000	PK	42.1	35.9	7.2	33.6	-	51.6	73.9	22.3	Floor noise
Hori	8122.500	PK	42.4	36.9	7.5	33.7	-	53.1	73.9	20.8	Floor noise
Hori		PK	43.3	37.5	7.7	33.8	-	54.7	73.9		Floor noise
Hori	4512.500	AV	40.5	30.6	6.1	33.6	-	43.6	53.9	10.3	*1)
Hori	5415.000	AV	33.4	31.9	6.6	33.4	-	38.5	53.9		Floor noise
Hori		AV	33.8	33.7	7.0	33.6	-	40.9	53.9	13.0	Floor noise
Hori		AV	34.0	35.9	7.2	33.6	-	43.5	53.9	10.4	Floor noise
Hori	8122.500	AV	34.5	36.9	7.5	33.7	-	45.2	53.9	8.7	Floor noise
Hori	9025.000	AV	35.2	37.5	7.7	33.8	-	46.6	53.9	7.3	Floor noise
Vert	84.000	QP	47.2	7.4	8.0	32.2	-	30.4	40.0	9.6	
Vert	96.001	QP	48.2	9.4	8.1	32.2	-	33.5	43.5	10.0	
Vert	144.000	QP	36.0	14.6	8.7	32.1	-	27.2	43.5	16.3	
Vert	168.001	QP	34.9	15.9	8.9	32.1	-	27.6	43.5	15.9	
Vert	192.002	QP	32.4	16.4	9.1	32.1	-	25.8	43.5	17.7	
Vert		QP	32.6	11.3	9.3	32.1	-	21.1	46.0	24.9	
Vert	432.001	QP	32.0	16.2	10.9	32.0	-	27.1	46.0	18.9	
Vert		PK	54.3	25.9	5.0	34.7	-	50.5	73.9	23.4	
Vert		PK	60.3	27.9	5.3	34.4	-	59.1	73.9	14.8	
Vert		PK	43.8	28.9	5.7	33.8	-	44.6	73.9	29.3	
Vert		PK	47.3	30.6	6.1	33.6	-	50.4	73.9	23.5	
Vert		PK	41.8	31.9	6.6	33.4	-	46.9	73.9	27.0	Floor noise
Vert		PK	41.2	33.7	7.0	33.6	-	48.3	73.9	25.6	Floor noise
Vert	7220.000	PK	42.4	35.9	7.2	33.6	-	51.9	73.9	22.0	Floor noise
Vert	8122.500	PK	42.9	36.9	7.5	33.7	-	53.6	73.9	20.3	Floor noise
Vert	9025.000	PK	43.3	37.5	7.7	33.8	-	54.7	73.9		Floor noise
Vert Vert	4512.500 5415.000	AV AV	40.7 33.5	30.6 31.9	6.1 6.6	33.6 33.4	-	43.8 38.6	53.9 53.9	10.1 15.3	*1) Floor noise
Vert		AV	34.2	33.7	7.0	33.4]	41.3	53.9	12.6	Floor noise
Vert	7220.000	AV	34.2	35.9	7.0	33.6	-	41.3	53.9	10.3	Floor noise
Vert		AV AV	34.1	36.9	7.5	33.7]	45.1	53.9	8.8	Floor noise
Vert	9025.000		35.4	37.5	7.7	33.8	_	46.8	53.9	7.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Transmitting duty was 100 % in this frequency.

Test report No. : 12199538H-A-R1
Page : 24 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Radiated Spurious Emission

Report No. 12199538H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date March 6, 2018 March 9, 2018
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Takafumi Noguchi Ryota Yamanaka

(Below 1 GHz) (Above 1 GHz)

Mode Tx 902.5 MHz

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	902.500	PK	106.4	21.9	13.5	31.0	110.8	-	-	Carrier
Hori	902.000	PK	84.5	21.9	13.5	31.0	88.9	90.8	1.9	
Vert	902.500	PK	103.0	21.9	13.5	31.0	107.4	-	-	Carrier
Vert	902.000	PK	81.2	21.9	13.5	31.0	85.6	87.4	1.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

PK with Duty Factor

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	1805.000	PK	50.3	25.9	5.0	34.7	-14.5	32.0	53.9	21.9	*1)
Hori	2707.500	PK	61.3	27.9	5.3	34.4	-14.5	45.6	53.9	8.3	*1)
Hori	3610.000	PK	45.5	28.9	5.7	33.8	-14.5	31.8	53.9	22.1	*1)
Vert	1805.000	PK	54.3	25.9	5.0	34.7	-14.5	36.0	53.9	17.9	*1)
Vert	2707.500	PK	60.3	27.9	5.3	34.4	-14.5	44.6	53.9	9.3	*1)
Vert	3610.000	PK	43.8	28.9	5.7	33.8	-14.5	30.1	53.9	23.8	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz))

*1) Noise synchronized with duty of carrier frequency. Distance factor: 1 GHz - 10 GHz \sim 20log (3.75 m / 3.0 m) = 1.94 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

⁻ Gain(Amprifier) + Duty factor (Refer to duty factor data sheet)

: 12199538H-A-R1 Test report No. : 25 of 40 Page **Issued date** : October 17, 2018 FCC ID : VPYLB1LL

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12199538H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

March 6, 2018

Temperature / Humidity 23 deg. C / 38 % RH Engineer Takafumi Noguchi (Below 1 GHz)

Tx 902.5 MHz Mode

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 26 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Radiated Spurious Emission

Report No. 12199538H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date March 6, 2018 March 10, 2018
Temperature / Humidity 23 deg. C / 38 % RH 20 deg. C / 27 % RH
Engineer Takafumi Noguchi (Below 1 GHz) (Above 1 GHz)

Mode Tx 915.0 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	,	OP	38.2	7.4	8.0	32.2	[]	21.4	40.0	18.6	
Hori	96.001	QP OP	37.8	9.4	8.1	32.2	_	23.1	43.5	20.4	
Hori		QP	42.9	14.6	8.7	32.1		34.1	43.5	9.4	
Hori		QI QP	40.0	15.9	8.9	32.1	_	32.7	43.5	10.8	
		`					-				
Hori		QP	34.9	16.4	9.1	32.1	-	28.3	43.5	15.2	
Hori		QP	38.5	11.3	9.3	32.1	-	27.0	46.0	19.0	
Hori		QP	36.0	16.2	10.9	32.0	-	31.1	46.0	14.9	
Hori		PK	46.8	25.9	5.1	34.7	-	43.1	73.9	30.8	
Hori		PK	61.5	28.0	5.3	34.4	-	60.4	73.9	13.5	
Hori	3660.000	PK	44.3	29.1	5.7	33.8	-	45.3	73.9	28.6	
Hori	4575.000	PK	44.6	30.7	6.1	33.6	-	47.8	73.9	26.1	
Hori	5490.000	PK	40.9	31.9	6.6	33.4	-	46.0	73.9	27.9	Floor noise
Hori	6405.000	PK	41.5	34.0	7.0	33.6	-	48.9	73.9	25.0	Floor noise
Hori	7320.000	PK	42.8	36.1	7.3	33.6	_	52.6	73.9	21.3	Floor noise
Hori		PK	42.6	36.7	7.4	33.7	-	53.0	73.9	20.9	Floor noise
Hori	9150.000	PK	43.1	37.7	7.8	33.8	-	54.8	73.9	19.1	Floor noise
Hori		AV	38.2	30.7	6.1	33.6	-	41.4	53.9	12.5	*1)
Hori		AV	33.9	31.9	6.6	33.4	-	39.0	53.9	14.9	Floor noise
Hori		AV	33.3	34.0	7.0	33.6	-	40.7	53.9	13.2	Floor noise
Hori		AV	34.2	36.1	7.3	33.6	-	44.0	53.9	9.9	Floor noise
Hori		AV	34.6	36.7	7.4	33.7	-	45.0	53.9	8.9	Floor noise
Hori Vert		AV OP	34.7 47.0	37.7 7.4	7.8 8.0	33.8 32.2	-	46.4 30.2	53.9 40.0	7.5 9.8	Floor noise
Vert		QP QP	48.1	9.4	8.1	32.2	_	33.4	43.5	10.1	
Vert		QP QP	36.0	14.6	8.7	32.1	_	27.2	43.5	16.3	
Vert		QP QP	35.0	15.9	8.9	32.1	_	27.7	43.5	15.8	
Vert		QΡ	32.5	16.4	9.1	32.1	-	25.9	43.5	17.6	
Vert	216.006	QP	32.5	11.3	9.3	32.1	-	21.0	46.0	25.0	
Vert	432.001	QP	31.7	16.2	10.9	32.0	-	26.8	46.0	19.2	
Vert		PK	59.2	25.9	5.1	34.7	-	55.5	73.9	18.4	
Vert		PK	60.1	28.0	5.3	34.4	-	59.0	73.9	14.9	
Vert		PK	43.0	29.1	5.7	33.8	-	44.0	73.9	29.9	
Vert		PK	45.1	30.7	6.1	33.6	-	48.3	73.9	25.6	
Vert Vert	5490.000 6405.000	PK DV	40.3 42.1	31.9 34.0	6.6 7.0	33.4 33.6	-	45.4 49.5	73.9 73.9	28.5 24.4	Floor noise Floor noise
Vert		PK	43.0	36.1	7.0	33.6	_	52.8	73.9	21.1	Floor noise
Vert		PK	42.2	36.7	7.3	33.7	_	52.6	73.9	21.3	Floor noise
Vert		PK	43.2	37.7	7.8	33.8	_	54.9	73.9	19.0	Floor noise
Vert		AV	40.0	30.7	6.1	33.6	-	43.2	53.9	10.7	*1)
Vert		AV	33.5	31.9	6.6	33.4	-	38.6	53.9		Floor noise
Vert		AV	33.0	34.0	7.0	33.6	-	40.4	53.9	13.5	Floor noise
Vert		AV	33.9	36.1	7.3	33.6	_	43.7	53.9	10.2	Floor noise
Vert		AV	34.3	36.7	7.4	33.7	-	44.7	53.9	9.2	Floor noise
Vert	9150.000		34.0	37.7	7.8	33.8	-	45.7	53.9	8.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*1) Transmitting duty was 100 % in this frequency.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

Test report No. : 12199538H-A-R1
Page : 27 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Radiated Spurious Emission

Report No. 12199538H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date March 6, 2018 March 10, 2018
Temperature / Humidity Engineer Takafumi Noguchi (Below 1 GHz) March 10, 2018
23 deg. C / 38 % RH 20 deg. C / 27 % RH
Takafumi Noguchi (Takumi Shimada (Above 1 GHz)

Mode Tx 915.0 MHz

PK with Duty Factor

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	1830.000	PK	46.8	25.9	5.1	34.7	-14.5	28.6	53.9	25.3	*1)
Hori	2745.000	PK	61.5	28.0	5.3	34.4	-14.5	45.9	53.9	8.0	*1)
Hori	3660.000	PK	44.3	29.1	5.7	33.8	-14.5	30.8	53.9	23.1	*1)
Vert	1830.000	PK	59.2	25.9	5.1	34.7	-14.5	41.0	53.9	12.9	*1)
Vert	2745.000	PK	60.1	28.0	5.3	34.4	-14.5	44.5	53.9	9.4	*1)
Vert	3660.000	PK	43.0	29.1	5.7	33.8	-14.5	29.5	53.9	24.4	*1)

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz))$

Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

⁻ Gain(Amprifier) + Duty factor (Refer to duty factor data sheet)

^{*1)} Noise synchronized with duty of carrier frequency.

Test report No. : 12199538H-A-R1
Page : 28 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Radiated Spurious Emission

Report No. 12199538H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date March 6, 2018 March 10, 2018
Temperature / Humidity 23 deg. C / 38 % RH 20 deg. C / 27 % RH
Engineer Takafumi Noguchi (Below 1 GHz) (Above 1 GHz)

Mode Tx 927.5 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	84.000	QP	37.6	7.4	8.0	32.2	-	20.8	40.0	19.2	
Hori	96.001	QP	37.8	9.4	8.1	32.2	_	23.1	43.5	20.4	
Hori		OP	43.0	14.6	8.7	32.1	_	34.2	43.5	9.3	
Hori		QP OP	40.1	15.9	8.9	32.1	_	32.8	43.5	10.7	
Hori		QP	35.3	16.4	9.1	32.1	1	28.7	43.5	14.8	
Hori		QI QP	38.9	11.3	9.3	32.1	1	27.4	46.0	18.6	
		`			10.9		1		46.0		
Hori		QP	36.1	16.2		32.0	-	31.2		14.8	
Hori		PK	50.3	25.9	5.1	34.7	-	46.6	73.9	27.3	
Hori		PK	58.8	28.1	5.2	34.4	-	57.7	73.9	16.2	
Hori	3710.000	PK	43.5	29.2	5.7	33.7	-	44.7	73.9	29.2	
Hori	4637.500	PK	44.6	30.9	6.1	33.7	-	47.9	73.9	26.0	
Hori	5565.000	PK	40.6	32.0	6.7	33.4	-	45.9	73.9	28.0	Floor noise
Hori	6492.500	PK	41.8	34.4	7.0	33.6	-	49.6	73.9	24.3	Floor noise
Hori	7420.000	PK	42.7	36.3	7.3	33.6	_	52.7	73.9	21.2	Floor noise
Hori	8347.500	PK	44.1	36.6	7.5	33.7	-	54.5	73.9	19.4	Floor noise
Hori	9275.000	PK	43.9	38.0	7.8	33.8	-	55.9	73.9	18.0	Floor noise
Hori		AV	34.9	30.9	6.1	33.7	-	38.2	53.9	15.7	*1)
Hori		AV	33.2	32.0	6.7	33.4	-	38.5	53.9	15.4	Floor noise
Hori		AV	33.3	34.4	7.0	33.6	-	41.1	53.9	12.8	Floor noise
Hori		AV	34.2	36.3	7.3	33.6	-	44.2	53.9	9.7	Floor noise
Hori		AV	35.4	36.6	7.5	33.7	-	45.8	53.9	8.1	Floor noise
Hori		AV	34.6 47.1	38.0	7.8 8.0	33.8	-	46.6 30.3	53.9 40.0	7.3 9.7	Floor noise
Vert Vert		QP QP	48.2	7.4 9.4	8.0 8.1	32.2	_	30.3	40.0	10.0	
Vert		QP QP	36.1	14.6	8.7	32.2	1	27.3	43.5	16.2	
Vert		QP QP	35.0	15.9	8.9	32.1]	27.7	43.5	15.8	
Vert		QP QP	32.3	16.4	9.1	32.1]	25.7	43.5	17.8	
Vert		QP QP	32.4	11.3	9.3	32.1	_	20.9	46.0	25.1	
Vert		QP	32.0	16.2	10.9	32.0	_	27.1	46.0	18.9	
Vert		PK	59.6	25.9	5.1	34.7	-	55.9	73.9	18.0	
Vert	2782.500	PK	61.1	28.1	5.2	34.4	-	60.0	73.9	13.9	
Vert	3710.000	PK	44.4	29.2	5.7	33.7	-	45.6	73.9	28.3	
Vert		PK	45.1	30.9	6.1	33.7	-	48.4	73.9	25.5	
Vert		PK	42.5	32.0	6.7	33.4	-	47.8	73.9	26.1	Floor noise
Vert		PK	41.6	34.4	7.0	33.6	-	49.4	73.9	24.5	Floor noise
Vert		PK	43.4	36.3	7.3	33.6	-	53.4	73.9	20.5	Floor noise
Vert		PK	43.4	36.6	7.5	33.7	-	53.8	73.9	20.1	Floor noise
Vert		PK	43.1	38.0 30.9	7.8	33.8	-	55.1 43.6	73.9 53.9	18.8	Floor noise
Vert Vert		AV	40.3 33.1		6.1 6.7	33.7]			10.3 15.5	*1) Floor noise
		AV		32.0]	38.4	53.9		
Vert		AV	33.2	34.4	7.0	33.6	-	41.0	53.9	12.9	Floor noise
Vert		AV	34.1	36.3	7.3	33.6	-	44.1	53.9	9.8	Floor noise
Vert		AV	35.1	36.6	7.5	33.7	-	45.5	53.9	8.4	Floor noise
Vert	9275.000	AV	34.6	38.0	7.8	33.8	-	46.6	53.9	7.3	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than $20\ dB$).

^{*1)} Transmitting duty was 100 % in this frequency.

Test report No. : 12199538H-A-R1 Page : 29 of 40 **Issued date** : October 17, 2018 FCC ID : VPYLB1LL

Radiated Spurious Emission

12199538H Report No. Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

March 6, 2018 March 10, 2018 20 deg. C / 27 % RH Temperature / Humidity 23 deg. C / 38 % RH Takumi Shimada Engineer Takafumi Noguchi (Below 1 GHz) (Above 1 GHz)

Tx 927.5 MHz Mode

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	927.500	PK	106.0	22.0	13.6	30.8	110.8	-	-	Carrier
Hori	928.000	PK	79.3	22.0	13.6	30.8	84.1	90.8	6.7	
Vert	927.500	PK	102.8	22.0	13.6	30.8	107.6	-	-	Carrier
Vert	928.000	PK	76.1	22.0	13.6	30.8	80.9	87.6	6.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

PK with Duty Factor

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	1855.000	PK	50.3	25.9	5.1	34.7	-14.5	32.1	53.9	21.8	*1)
Hori	2782.500	PK	58.8	28.1	5.2	34.4	-14.5	43.2	53.9	10.7	*1)
Hori	3710.000	PK	43.5	29.2	5.7	33.7	-14.5	30.2	53.9	23.7	*1)
Vert	1855.000	PK	59.6	25.9	5.1	34.7	-14.5	41.4	53.9	12.5	*1)
Vert	2782.500	PK	61.1	28.1	5.2	34.4	-14.5	45.5	53.9	8.4	*1)
Vert	3710.000	PK	44.4	29.2	5.7	33.7	-14.5	31.1	53.9	22.8	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz))

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

⁻ Gain(Amprifier) + Duty factor (Refer to duty factor data sheet)

^{*1)} Noise synchronized with duty of carrier frequency.

: 12199538H-A-R1 Test report No. : 30 of 40 Page **Issued date** : October 17, 2018 FCC ID : VPYLB1LL

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12199538H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

March 6, 2018

23 deg. C / 38 % RH Temperature / Humidity Engineer Takafumi Noguchi (Below 1 GHz)

Tx 927.5 MHz Mode

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 31 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Radiated Spurious Emission (Plot data, Worst case)

Report No. 12199538H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date March 6, 2018 March 10, 2018
Temperature / Humidity 23 deg. C / 38 % RH 20 deg. C / 27 % RH
Engineer Takafumi Noguchi (Below 1 GHz) (Above 1 GHz)

Mode Tx 927.5 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 32 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Conducted Spurious Emission

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama
Mode 902.5 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	E	Limit	M argin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
66.58	-84.3	0.27	9.9	2.0	1	-72.2	300	6.0	-11.0	31.1	42.1	
225.00	-79.4	0.33	9.9	2.0	1	-67.2	300	6.0	-5.9	20.5	26.4	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $EIRP = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenator\ Loss + Antenna\ Gain + 10\ * log\ (N)$

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12199538H-A-R1
Page : 33 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Conducted Spurious Emission

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama
Mode 915.0 MHz

F	requency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain *	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	66.58	-84.8	0.27	9.9	2.0	1	-72.7	300	6.0	-11.4	31.1	42.5	
	274.00	-79.6	0.35	9.9	2.0	1	-67.4	300	6.0	-6.1	18.8	24.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP = Reading + Cable Loss (including the cable(s) customer supplied) + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12199538H-A-R1
Page : 34 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Conducted Spurious Emission

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama
Mode 927.5MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	E	Limit	M argin	Remark
		Loss	Loss	Gain *	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
66.46	-83.6	0.27	9.9	2.0	1	-71.5	300	6.0	-10.2	31.1	41.3	
175.00	-77.8	0.32	9.9	2.0	1	-65.7	300	6.0	-4.4	22.7	27.1	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenator\ Loss + Antenna\ Gain + 10\ * log\ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12199538H-A-R1
Page : 35 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Power Density

Report No. 12199538H

Test place Ise EMC Lab. No.7 Measurement Room

Date March 7, 2018
Temperature / Humidity 20 deg. C / 36 % RH
Engineer Shuichi Ohyama

Mode Tx

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
902.50	-2.58	0.50	9.91	7.83	8.00	0.17
915.00	-2.50	0.50	9.91	7.91	8.00	0.09
927.50	-2.60	0.50	9.91	7.81	8.00	0.19

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 36 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12199538H-A-R1
Page : 37 of 40
Issued date : October 17, 2018
FCC ID : VPYLB1LL

APPENDIX 2: Test instruments

Test Instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2017/10/31 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2018/01/24 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2017/11/07 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2017/08/22 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2017/10/02 * 12
MLA-22	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	RE	2018/01/30 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2017/07/12 * 12
MAT-98	Attenuator	KEYSIGHT	8491A	MY52462349	RE	2017/12/14 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2017/03/27 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2018/01/09 * 12
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	AT	2017/09/20 * 12
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2017/11/14 * 12
MCC-38	Coaxial Cable	UL Japan	-	-	AT	2017/12/15 * 12
MPM-09	Power Meter	Anritsu	ML2495A	6K00003348	AT	2017/10/13 * 12
MPSE-12	Power sensor	Anritsu	MA2411B	011598	AT	2017/10/13 * 12
MOS-34	Thermo-Hygrometer	Custom	CTH-201	3401	AT	2018/01/24 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE/CE	2017/08/31 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE/CE	2017/12/21 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE/CE	-
MRENT-130	Spectrum Analyzer	Agilent	E4440A	MY46187750	RE	2017/11/17 * 12
MHA-06	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	RE	2018/02/26 * 12
MCC-216	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 1608S087(5 m)	RE	2017/08/04 * 12
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2018/01/23 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	RE/CE	2017/08/07 * 12
MHF-27	High Pass Filter(1.1-10GHz)	TOKYO KEIKI	TF219CD1	1001	RE	2018/01/18 * 12
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	CE	2017/11/14 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	CE	2017/08/21 * 12
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE(EUT)	2017/07/24 * 12
MLS-24	LISN(AMN)	Schwarzbeck	NSLK8127	8127-730	CE(AE)	2017/07/20 * 12
MTA-31	Terminator	TME	CT-01	-	CE	2017/12/11 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D-2 W(5m)/5D-2W(0.8 m)/5D-2W(1m)	-	CE	2018/02/23 * 12
MAT-65	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2017/12/19 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN