Demostration of annual sinusoid curve of the Weather model

Andreas Angourakis 27 January 2020

Preparation

Declare generic function for generating sinusoid curves depending on minValue, maxValue, and length of year in days.

Plot parameter exploration

Set up five variations of parameter settings (e.g. c(minValue, maxValue)), assuming lengthOfYearInDays = 365:

```
yearLengthInDays = 365

parValues <- rbind(
    c(0, 1),
    c(0, 2),
    c(1, 4),
    c(0, 5),
    c(2, 5)
)

maxMaxValue = max(parValues[, 2])</pre>
```

Plot curves:

```
grScale = 2
plotName = "annualSinusoidCurve.png"
png(plotName, width = grScale * 800, height = grScale * 480)
par(cex = grScale * 1.2)
```

```
plot(c(0, yearLengthInDays * 1.4), # leave some space on the right side to display legend
     c(0, maxMaxValue * 1.5), # leave some space on top to display equation
     type = "n",
     main = "Annual sinusoid curve",
     xlab = "day of year",
     ylab = "output",
     cex.main = grScale
)
for (i in 1:nrow(parValues))
  curve <- generateSinusoidCurve(minValue = parValues[i, 1], maxValue = parValues[i, 2])</pre>
  lines((1:length(curve)) - 1, curve,
        col = i, lwd = grScale * 3)
  legend(x = yearLengthInDays,
         y = \max Max Value * (1 - 0.1 * (i - 1)),
         legend = substitute(paste("minValue = ", minValue,
                                 ", maxValue = ", maxValue),
                           list(minValue = parValues[i, 1], maxValue = parValues[i, 2])),
         col = i,
         lwd = grScale * 3, cex = 0.8,
         title = NULL, bty = "n")
}
text(x = yearLengthInDays * 0.7, y = maxMaxValue * 1.3,
     expression(paste(
       "output = minValue + ", bgroup("(",frac((maxValue - minValue), 2),")") *
         bgroup("(", 1 - "sin" *
                  bgroup("(", 270 + 360 * frac(dayOfYear, yearLengthInDays), ")"),
     ))
     , cex = grScale * 0.6)
dev.off()
## pdf
##
knitr::include_graphics(plotName)
```

Annual sinusoid curve

