Software Engineering

Database Data Modeling

Dr. Young-Woo Kwon

RELATIONSHIP TYPES, RELATION SETS, ROLES, AND STRUCTURAL CONSTRAINTS

Refining the initial design by introducing relationships

- The initial design is typically not complete
- Some aspects in the requirements will be represented as relationships
- ER model has three main concepts:
 - Entities (and their entity types and entity sets)
 - Attributes (simple, composite, multivalued)
 - Relationships (and their relationship types and relationship sets)
- We introduce relationship concepts next

Relationships and Relationship Types (1)

- A **relationship** (관계) relates two or more distinct entities with a specific meaning.
 - E.g.,) EMPLOYEE John Smith works on the ProductX PROJECT
 - E.g.,) EMPLOYEE Franklin Wong manages the R&D DEPARTMENT
- Relationships of the same type are grouped or typed into a relationship type (관계 유형).
 - A set of associations (or relationship set) among entities from n entity types
 - E.g.,) WORKS_ON relationship type in which EMPLOYEEs and PROJECTs participate,
 - E.g.,) MANAGES relationship type in which EMPLOYEEs and DEPARTMENTs participate.
- The degree of a relationship type is the number of participating entity types.
 - Both MANAGES and WORKS_ON are binary relationships.

Degree of a Relationship Type

N:1 WORKS_FOR relationship between EMPLOYEE and DEPARTMENT

M:N WORKS_ON relationship between EMPLOYEE and PROJECT

Relationship Type vs. Relationship Set (1)

- Relationship Type
 - Schema description of a relationship
 - Identifies the relationship name and the participating entity types
 - Also identifies certain relationship constraints
- Relationship Set
 - The current set of relationship instances represented in the database
 - The current state of a relationship type

Relationship Type vs. Relationship Set (2)

- Each instance in the set relates individual participating entities – one from each participating entity type
- In ER diagrams, the *relationship type* is as follows:
 - Diamond-shaped box is used to display a relationship type
 - Connected to the participating entity types via straight lines

Name	Symbol
Entity	
Weak entity	
Relationship	
Weak relationship	
Attribute	
Multi-valued attribute	
Derived attribute	

Refining COMPANY Using Relationships

- Six relationship types are identified
- All are binary relationships(degree is two)
- Listed below with their participating entity types:
 - WORKS_FOR (between EMPLOYEE, DEPARTMENT)
 - MANAGES (also between EMPLOYEE, DEPARTMENT)
 - CONTROLS (between DEPARTMENT, PROJECT)
 - WORKS_ON (between EMPLOYEE, PROJECT)
 - SUPERVISION (between EMPLOYEE (as subordinate), EMPLOYEE (as supervisor))
 - DEPENDENTS_OF (between EMPLOYEE, DEPENDENT)

ER DIAGRAM – Relationship Types are:

WORKS_FOR, MANAGES, WORKS_ON, CONTROLS, SUPERVISION, DEPENDENTS_OF

Discussion on Relationship Types

- In the refined design, some attributes from the initial entity types are refined into relationships:
 - Manager of DEPARTMENT -> MANAGES
 - Works_on of EMPLOYEE -> WORKS_ON
 - Department of EMPLOYEE -> WORKS_FOR
- In general, more than one relationship type can exist between the same participating entity types
 - MANAGES and WORKS_FOR are distinct relationship types between EMPLOYEE and DEPARTMENT
 - Different meanings and different relationship instances.

Constraints on Relationships

- Constraints on Relationship Types
 - (Also known as ratio constraints)
 - Cardinality Ratio (specifies maximum participation)
 - One-to-one (1:1)
 - One-to-many (1:N) or Many-to-one (N:1)
 - Many-to-many (M:N)
 - Existence Dependency Constraint (specifies minimum participation) (also called participation constraint)
 - zero (optional participation, not existence-dependent)
 - one or more (mandatory participation, existence-dependent)

Many-to-one (N:1) Relationship

Figure 3.9

DEPARTMENT.

Many-to-many (M:N) Relationship

Recursive Relationship Type

- A relationship type between the same participating entity type in distinct roles
- Also called a self-referencing relationship type.
 - E.g., SUPERVISION relationship
 - EMPLOYEE participates twice in two distinct roles:
 - supervisor (or boss) role
 - supervisee (or subordinate) role
- Each relationship instance relates two distinct EMPLOYEE
 - One employee in supervisor role
 - One employee in supervisee role

A Recursive Relationship Supervision

Figure 3.11

A recursive relationship SUPERVISION between EMPLOYEE in the *supervisor* role (1) and EMPLOYEE in the *subordinate* role (2).

Recursive Relationship Type is: SUPERVISION (participation role names are shown)

Weak Entity Types

- An entity that does not have a key attribute and that is identificationdependent on another entity type.
- A weak entity must participate in an identifying relationship type with an owner or identifying entity type
- Entities are identified by the combination of:
 - A partial key of the weak entity type
 - The particular entity they are related to in the identifying relationship type

Example:

- A DEPENDENT entity is identified by the dependent's first name, and the specific EMPLOYEE
- DEPENDENT is a weak entity type
- EMPLOYEE is its identifying entity type via the identifying relationship type
 DEPENDENT_OF

Attributes of Relationship types

- A relationship type can have attributes:
 - E.g., HoursPerWeek of WORKS_ON
 - Hours/Week that an EMPLOYEE works on a PROJECT.
 - A value of HoursPerWeek depends on a particular (employee, project) combination
 - Most relationship attributes are used with M:N relationships
 - In 1:N relationships, they can be transferred to the entity type on the N-side of the relationship
 - E.g., DEPARTMENT : EMPLOYEE (1:N)'s EmpStartDate

Example Attribute of a Relationship Type: Hours of WORKS_ON

Notation for Constraints on Relationships

- Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1, or M:N
 - Shown by placing appropriate numbers on the relationship edges.
- Participation constraint (on each participating entity type): total (called existence dependency) or partial.
 - Total shown by double line, partial by single line.

Alternative (min, max) notation for relationship structural constraints:

- Specified on each participation of an entity type E in a relationship type R
- Specifies that each entity e in E participates in at least min and at most max relationship instances in R
- Default(no constraint): min=0, max=n (signifying no limit)
- Must have min≤max, min≥0, max ≥1
- Examples:
 - A department has exactly one manager and an employee can manage at most one department.
 - Specify (0,1) for participation of EMPLOYEE in MANAGES
 - Specify (1,1) for participation of DEPARTMENT in MANAGES
 - An employee can work for exactly one department but a department can have any number of employees.
 - Specify (1,1) for participation of EMPLOYEE in WORKS_FOR
 - Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

The (min,max) notation for relationship constraints

Read the min, max numbers next to the entity type and looking away from the entity type

COMPANY ER Schema Diagram using (min, max) notation

Alternative diagrammatic notation

- ER diagrams is one popular example for displaying database schemas
- Many other notations exist in the literature and in various database design and modeling tools
- Appendix A illustrates some of the alternative notations that have been used
- UML class diagrams is representative of another way of displaying ER concepts that is used in several commercial design tools

Summary of notation for ER diagrams

UML class diagrams

- Represent classes (similar to entity types) as large rounded boxes with three sections:
 - Top section includes entity type (class) name
 - Second section includes attributes
 - Third section includes class operations (operations are not in basic ER model)
- Relationships (called associations) represented as lines connecting the classes
 - Other UML terminology also differs from ER terminology
- Used in database design and object-oriented software design
- UML has many other types of diagrams for software design

UML class diagram for COMPANY schema

Figure 3.16The COMPANY conceptual schema in UML class diagram notation.

Relationships of Higher Degree

- Relationship types of degree 2 are called binary
- Relationship types of degree 3 are called ternary and of degree n are called n-ary
- In general, an n-ary relationship is not equivalent to n binary relationships
- Constraints are harder to specify for higherdegree relationships (n > 2) than for binary relationships

Example of a ternary relationship

Figure 3.17

Chapter Summary

- ER Model Concepts: Entities, attributes, relationships
- Constraints in the ER model
- Using ER in step-by-step mode conceptual schema design for the COMPANY database
- ER Diagrams Notation
- Alternative Notations UML class diagrams, others
- Binary Relationship types and those of higher degree.

