CSCA 5642
Introduction
to Deep
Learning Final
Project

LINLI XIANG

GitHub Link

https://github.com/xllcheryl/Introduction-to-Deep-Learning-Final-Project.git

Project Overview

The primary goal of this project is to build, compare, and evaluate multiple classification models for sentiment analysis, including:

1. Baseline Models

Logistic Regression
Support Vector Machine (SVM)

2. Deep Learning Models

Deep Neural Network (DNN)

Recurrent Neural Network

(RNN) with Long Short-Term Memory (LSTM) units

3. Research Paper Implementations

3.1 CNN Architectures

3.2 Transformer-Based Models

2. Data Collection

- Dataset: Large Movie Review Dataset v1.0
- **Source**: Stanford AI Lab/Andrew Maas
- URL: http://ai.stanford.edu/~amaas/data/sentiment/
- Collection Method: Movie reviews collected from IMDB website
- · License: Academic use permitted

Dataset Characteristics

Data Provenance

•The dataset was created by researchers at Stanford University for academic research in sentiment analysis and text classification. The data was collected from IMDB movie reviews posted before 2011, ensuring a diverse range of movies and review styles. The dataset has become a benchmark for sentiment analysis tasks in the NLP community.

50,000 movie reviews (25,000 training, 25,000 testing)

Binary classification (positive/negative sentiment)

Even class distribution (50% positive, 50% negative)

No more than 30 reviews per movie to prevent bias

Raw text data with minimal preprocessing

Target Variable Distribution

Both training and test sets have perfectly balanced class distributions (50% positive, 50% negative)

3. Exploratory Data Analysis (EDA)

01

Text Length Analysis 02

Word Frequency Analysis 03

Text statistics

04

Data Cleaning and Preprocessing

Text Length Analysis

Training- Mean length: 1325.07 characters

Training- Median length: 979.0 characters

Test- Mean length: 1293.79 characters

Test- Median length: 962.0 characters

Text Length by Sentiment

Positive reviews tend to be slightly longer than negative reviews on average, and this difference is statistically significant (p < 0.05). However, the effect size is small, so text length alone is not a strong predictor of sentiment.

Word Frequency Analysis

- •Both positive and negative reviews share many common words related to movies (film, movie, story, character).
- •However, positive reviews contain more positive sentiment words (great, best, good, excellent), while negative reviews contain more negative sentiment words (bad, worst, terrible, awful).
- •This suggests that word choice is a strong indicator of sentiment.

Text statistics

Sentiment distributio

Text statistics

- Text Length Statistics:
 - Min length: 52 characters
 - Max length: 13704 characters
 - Std deviation: 1003.13 characters
- Word Count Statistics:
 - Min words: 10 words
 - Max words: 2470 words
 - Std deviation: 173.73 words
- Positive Sentiment Texts:
 - Average length: 1347.16 characters
 - Average words: 236.71 words
- Negative Sentiment Texts:
 - Average length: 1302.98 characters
 - Average words: 230.87 words

```
Tror_mod = modifier_ob
  mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
mror_mod.use_x = True
mirror mod.use y = False
 _Operation == "MIRROR Y"
 irror_mod.use_x = False
lrror_mod.use_y = True
  _operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror mod.use y = False
   rror mod.use z = True
 melection at the end -add
   ob.select= 1
   er ob.select=1
    text.scene.objects.action
    Selected" + str(modified
    rror ob.select = 0
  bpy.context.selected_obje
   ata.objects[one.name].sel
 int("please select exactle
 -- OPERATOR CLASSES --
 ontext):
ext.active_object is not
```

Data Cleaning and Preprocessing

- Text Cleaning: Remove HTML tags, punctuation, and numbers
- Normalization: Convert to lowercase, lemmatize words
- Stopword Removal: Remove common English stopwords
- Sequence Length: Standardize to 200 tokens for neural networks
- Vocabulary Size: Limit to 10,000 most frequent words

4. Model Building and Training

Baseline Models

- LR
- SVM
- Hyperparameter Tuning

Deep Learning Models

- DNN
- LSTM

Research Paper Implementations

- CNN
- BERT

Class	Precision	Recall	F1-Score	Support
0	0.90	0.87	0.89	2 500
1	0.88	0.91	0.89	2 500
Avg / Total	0.89	0.89	0.89	5 000

Logistic Regression

ACCURACY: 88.8 %

Class	Precision	Recall	F1-Score	Support
0	0.89	0.87	0.88	2 500
1	0.87	0.89	0.88	2 500
Avg / Total	0.88	0.88	0.88	5 000

SVM

ACCURACY: 87.8 %

Hyperparameter Tuning by GridSearchCV

Class	Р	R	F1	Support
0	.90	.87	.89	2 500
1	.88	.91	.89	2 500
Avg	.89	.89	.89	5 000

Logistic Regression

Best params: C = 1, penalty = I2, solver = liblinear

Accuracy: 88.8 %Grid fits: $5 \times 10 = 50$

Class	Р	R	F1	Support
0	.91	.87	.89	2 500
1	.88	.91	.89	2 500
Avg	.89	.89	.89	5 000

Linear SVM

Best params: C = 0.1, penalty = I2, loss = squared_hinge, dual = False
Accuracy: 89.0 %

Grid fits: $5 \times 10 = 50$

Epoch	Train Acc.	Val Acc.	Val Loss
1	72.7 %	89.1 %	0.270
2	89.9 %	88.4 %	0.295
3	93.6 %	87.4 %	0.366
4	97.0 %	87.0 %	0.464

Simple DNN Model

BEST VALIDATION ACCURACY (EPOCH 1): 90.9 %

Epoch	Train Acc.	Val Acc.	Val Loss
1	50.5 %	52.7 %	0.690
2	52.2 %	50.8 %	0.694
3	50.4 %	52.1 %	0.683
4	52.4 %	54.3 %	0.682
5	55.4 %	54.2 %	0.712
	56.1 %	55.2 %	0.754
	62.4 %	82.7 %	0.464
	83.4 %	84.5 %	0.408
9	88.5 %	86.2 %	0.372
10	92.4 %	85.0 %	0.410

RNN Model (LSTM)

BEST VALIDATION ACCURACY (EPOCH 9): 86.2 %

CNN Models (Implementing the Paper Architectures)

ADAM, BATCH 32, 10 EPOCHS MAX

Epoch	CNN- rand	CNN- static	CNN-non- static	CNN- multichannel
1	86.4 %	84.3 %	86.6 %	86.2 %
2	87.4 %	84.9 %	88.3 %	87.5 %
3	82.9 %	85.9 %	85.5 %	83.9 %
4	85.5 %	79.5 %	87.2 %	82.9 %
5	87.0 %	73.4 %	79.9 %	88.6 %

Transformerbased Models (BERT)

Class	Precision	Recall	F1-Score	Support
0	0.94	0.93	0.94	12 500
1	0.93	0.94	0.94	12 500
Avg	0.94	0.94	0.94	25 000

5. Results and Analysis

Model Comparison

Training history for CNN models

Model Summary

Model Performance Comparison

Rank	Model	Accuracy
1	BERT Fine-tuned	0.9369
2	DNN	0.8908
3	Logistic Regression	0.8884
4	CNN-non-static	0.8834
5	SVM	0.8776
6	CNN-multichannel	0.8754
7	CNN-rand	0.8736
8	LSTM	0.8620
9	CNN-static	0.8494

Training history for CNN models

Performance Analysis – Accuracy & Behaviour

Model family	Key finding	Best accuracy
Transformer (BERT)	Transfer learning wins	90 %
CNN-multichannel	Top CNN; beats single-channel	88.6 %
CNN-static	Pre-trained » random init	84.9 %
CNN-non-static	Fine-tune gives small lift	88.3 %
CNN-rand	Worst CNN	87.0 %
LSTM	Good but slow	86.2 %
DNN (TF-IDF)	Simple, solid	87.4 %
LogReg / SVM	Strong baselines	88.8 / 89.0 %

Performance Analysis – Cost & Use-Case Fit

Model	Train-time	Inference	GPU-RAM	Best use-case
BERT	3 h	20 ms	1.2 GB	Max accuracy, cloud
CNN- multichannel	15 min	3 ms	0.4 GB	Prod-grade balance
CNN-static	10 min	2 ms	0.3 GB	Low-cost, high- F1
LSTM	45 min	8 ms	0.5 GB	Sequential data
LogReg / SVM	30 s	1 ms	CPU	Edge / mobile

Findings

BERT: pay once, gain 2-3 pp accuracy.

CNN-static: 95 % of BERT quality at 1 % resources.

Traditional models: still competitive when GPUs are off-limits.