Understanding SVMs (1 point)

1. (0.5 points) Explain why a support vector machine using a kernel, once trained, does not directly use the decision boundary to classify points.

The "kernel trick." Adding new features/variables that are functions of your other input variables can change linearly inseparable problems into linearly separable problems.

The important property is that kernels look like inner products in a transformed space.

If I know what the inner product of two transformed items is, then I can directly calculate the inner product without doing the transformation first.

Briefly speaking, a kernel is a shortcut that helps us do certain calculation faster which otherwise would involve computations in higher dimensional space.

In general, the larger the margin, the lower the generalization error of the classifier. Therefore, svm doesn't directly use the decision boundary because it can reduce the error.

A large-margin classifier tends to be more "robust" (resistant to noise in the data, able to generalize)

2. (0.5 points) If the support vector machine does not directly use the decision boundary to classify points, how does it, in fact, classify points. *Hint, what are the support vectors?*

Hard margin

If the training data is <u>linearly separable</u>, we can select two parallel hyperplanes that separate the two classes of data, so that the distance between them is as large as possible. The region bounded by these two hyperplanes is called the "margin", and the maximum-margin hyperplane is the hyperplane that lies halfway between them. With a normalized or standardized dataset, these hyperplanes can be described by the equations

w • x -b =1 (anything on or above this boundary is of one class, with label 1) and w • x -b = -1 (anything on or below this boundary is of the other class, with label -1).

Soft margin

Allow some instances to fall within the margin, but penalize them

Non-linear classification

Non-linear separation • Map the original feature space to a higher-dimensional feature space where the training set is separable. Call this mapping function (kernel function.)

the MNIST data (1 point)

3. (0.5 points) How many images are there in the MNIST data? How many images are there of each digit? How many different people's handwriting? Are the digit images all the same size and orientation? What is the color palette of MNIST (grayscale, black & white, RGB)?

training set of 60,000 examples, and a test set of 10,000 examples.

Training + testing

- 0: 5923+6903
- 1: 6742+7877
- 2: 5958+6990
- 3: 6131+7141
- 4: 5842+6824
- 5: 5421+6313
- 6: 5918+6876
- 7: 6265+7293
- 8: 5851+6825
- 9: 5949+6958

approximately 250 writers

The digits have been size-normalized and centered in a fixed-size image. NIST were size normalized to fit in a 20x20 pixel box while preserving their aspect ratio

black and white

4. (0.5 points) Select one of the digits from the MNIST data. Look through the variants of this digit that different people produced. Show us 3 examples of that digit you think might be challenging for a classifier to correctly classify. Explain why you think they might be challenging.

Target to label with 0.

this can be 0 or 6

this can be 0 or 6

this can be 0 or 1

Estimating training time (1.5 points)

5. (1 point) Before running any serious experiments, first figure out how long your computer takes to train support vector machines on the MNIST data. Use the default **C** value. Use the linear kernel and train an SVM on three different sizes of data set: 500 examples, 1000 examples, 2000 examples. Record how long it takes to train on each data set. Repeat this timing experiment with a polynomial kernel. Use the default value of 3 for the degree of the polynomial. Repeat the experiment with a radial basis function (RBF) kernel. Report the time it took to train each of your SVMs in a table with 3 rows (1 kernel per row) and 3 columns (for the size of the training set). Rows and columns should be clearly labeled. (HINT: Use python's built-in time module to time your experiments!)

	2	500	1000	2000
Line	0.0009984970092	0.149914503097	0.39879131317	1.14536619186
ar	773438s	53418s	13867s	40137s
Poly	0.0019741058349	0.377808570861	1.47815394401	6.18548297882
	609375s	8164s	5503s	0801s
Rbf	0.0010004043579	0.303851127624	0.92646980285	2.86036181449
	101562s	5117s	64453s	89014s

6. (0.5 points) In general, SVMs take \$O(n^3)\$ to train, where \$n\$ is the size of the training set. But how does that translate to predicting training time in the real world? Given your data from the previous question, write a formula to estimate in clock time how long it would take to train an SVM on your machine, as a function of the number of training examples, given each of the 3 kernels.

	500	1000	2000	4000
Lin	0.14991450309	0.39879131317138	1.14536619186401	3.395144701
ear	753418s	67s	37s	0040283
		Compare to 500	Compare to 500	
		2.660124	7.640129	
		97078	32837	
Pol	0.37780857086	1.47815394401550	6.18548297882080	30.86206769
у	18164s	3s	1s	9432373
		Compare to 500	Compare to 500	

45117s 53s Compa	are to 500 49091	2.86036181449890 14s Compare to 500 9.413694 91323	8.837805271 148682s

Time = $a x^3 + b x^2 + cx + d$

Linear: time = $-1.13645849e-11*n^3+2.05656886e-07*n^2+2.09156315e-04*n-4.65730258e-03$

Polynomial: time = $2.49303500e-10*n^3+7.98529943e-07*n^2+5.66614707e-04*n-1.36294206e-01$

Rbf: time = $-3.07123434e-11*n^3+5.66596309e-07*n^2+4.49089487e-04*n-5.85036505e-02$

Selecting training and testing data (1 point)

7. (0.5 points) Given your formula from the previous question, what size of training set would guarantee a single trial for your SVM takes about 2 minutes? Assume this will determine the size of your training set. Now that you have this, tell us how big your testing set will be.

Training 6800 examples in svm with kernel polynomial takes 119seconds, with linear takes 7.4 seconds, and with rbf takes 19.5 seconds.

Training 6500 examples in svm with kernel polynomial takes 105.8seconds, with linear takes 6.9 seconds, and with rbf takes 18.36 seconds.

Training 6000 examples in svm with kernel polynomial takes 85.87seconds, with linear takes 6.2 seconds, and with rbf takes 16.4 seconds.

6500 training data should guarantee a single trial to finish about 2 minutes.

My testing data size will be 6500/4 = 1625 -> 1630

So training: testing = 4:1 = 8:2

8. (0.5 points) Now you have to decide how to make a draw from the data that has good coverage. Think about the goals of training and testing sets - we pick good training sets so our classifier generalizes to unseen data and we pick good testing sets to see whether our classifier generalizes. Explain how you should select training and testing sets. (Entirely randomly? Train on digits 0-4, test on 5-9? Train on one group of hand-writers, test on another?). Justify your method for selecting the training and testing sets in terms of these goals.

Randomly select the same number of examples of each digit for training and testing data. That is, feed the same amount of examples of 0-9 for training and using the same amount of 0-9 to verify the classifier.

Finding the best hyperparameters (4.5 points)

We want to find the best kernel and slack cost, **C**, for handwritten digit recognition on MNIST using a support vector machine. To do this, we're going to try different kernels from the set {Linear, Polynomial, Radial Basis Function}. Use the default value of 3 for the degree of the polynomial. We will combine each kernel with a variety of **C** values drawn from the set { 0.1, 1, 10 }. This results in 9 variants of the SVM. For each variant (a.k.a. condition) run 20 trials.

What's a trial? In one trial you...

- Select testing and traing data using your approach from an earlier question.
- Select the condition: your kernel and value for C
- Train the SVM on the training data until it converges.
- Test the trained SVM on the testing data.

To run mutiple trials for the same condition, you select a new testing and traing set for each trial.

For this assignment, we'll be using classfication error on the testing data as the outcome of a trial. Save this data. We'll ask you to show it to us in different ways.

Note: You will have to do 180 trials (9 conditions, 20 trials per condition). If each trial takes 2 minutes, you will need to dedicate 6 hours to these experiments.

Note: There is a tutorial about running python code in parallel included in this repo. Though it is not required, it will make running your experiments much quicker! Look for it here: code/parallel_tutorial.py.

9. (1 point) Create a table with 3 rows (1 kernel per row) and 3 columns (the 3 slack settings). Rows and columns should be clearly labeled. For each condition (combination of slack and kernel), show the following 3 values: the testing error measure **e**, the standard deviation of the error **std** and the number of trials **n**, written in the format: **e(std),n**.

e = mean mse

	0.1	1	10
Lin ea r	1.2409509202453988(0 .1514733839389112)20	1.4339570552147238(0.1582440669365465) 20	1.4698466257668712(0 .128996664983984)20
Po ly	17.973098159509203(0 .37099971874120485)2 0	17.87668711656442(0. 4139239944361266)20	7.728282208588957(0. 37424582731728356)2 0
rbf	2.8021165644171777(0 .1911331194562696)20	1.455674846625767(0. 18112365335855818)2 0	1.1054294478527606(0 .12819177590460729)2 0

E = wrong/ total

	0.1	1	10
Li ne ar	0.07306748466257669(0.00488329279382616 2)20	0.08957055214723926(0.00679672765625123 8)20	0.08819018404907976(0.00694912586228624 4)20
Po ly	0.7948159509202454(0 .012872629507248079) 20	0.7864110429447853(0 .014185722383040441) 20	0.3611349693251534(0 .012584402683054266) 20

ı	rb	0.15125766871165644(0.08429447852760737(0.06236196319018405(
1	f	0.00758063727899646	0.00802226646667744	0.00546295181628143
		5)20	5)20	6)20

10. (0.5 points) Make a boxplot graph that plots testing error (vertical) as a function of the slack **C** (horizontal). Use average results across all kernels. Indicate **n** on your plot, where **n** is the number trials per boxplot. Don't forget to label your dimensions.

11. (0.5 points) What statistical test should you use to do comparisons between the values of **C** plotted in the previous question? Explain the reason for your choice. Consider how you selected testing and training sets and the skew of the data in the boxplots in your answer. *Note: Your boxplots will show you whether a distribution is skewed (and thus, not normal), but will not show you what the shape of each distribution. There are distributions that are not skewed, but are still not bell curves (normal distributions). It would be a good idea to look at the histograms of your distributions to decide which statistical test you should use.*

If you have independent samples and data that doesn't follow a normal distribution use this: Mann–Whitney U test.

Since my testing data is not normal distribution, it is discrete uniform distribution. I choose the same amount of example for each digit. Therefore, I should use Mann-Whitney U test.

12. (0.5 points) Give the p value reported by your test. Say what that p value means.

MSE

0.1 vs 1

MannwhitneyuResult(statistic=1595.5, pvalue=0.14214631632792601)

Only 0.14 chance that null hypothesis is true. That is, only 0.14 chance that the result of svm with c = 0.1 and c = 1 are no statistical different.

1 vs 10

MannwhitneyuResult(statistic=1291.0, pvalue=0.003804580749788896)

Only 0.0038 chance that null hypothesis is true. That is, only 0.0038 chance that the result of sym with c = 1 and c = 10 are no statistical different.

0.1 vs 10

MannwhitneyuResult(statistic=1250.5, pvalue=0.0019788877579050494)

Only 0.0019 chance that null hypothesis is true. That is, only 0.0019 chance that the result of sym with c = 0.1 and c = 10 are no statistical different.

E = wrong/size

0.1 vs 1

MannwhitneyuResult(statistic=1684.5, pvalue=0.2730374637771026)

Only 0.27 chance that null hypothesis is true. That is, only 0.27 chance that the result of svm with c = 0.1 and c = 1 are no statistical different.

1 vs 10

MannwhitneyuResult(statistic=1225.0, pvalue=0.0012814730309348512)

Only 0.00128 chance that null hypothesis is true. That is, only 0.00128 chance that the result of svm with c = 1 and c = 10 are no statistical different.

0.1 vs 10

MannwhitneyuResult(statistic=1224.5, pvalue=0.0012716558616631523)

Only 0.00127 chance that null hypothesis is true. That is, only 0.00127 chance that the result of svm with c = 0.1 and c = 10 are no statistical different.

13. (0.5 points) Make a boxplot graph that plots error (vertical) as a function of kernel choice. Average results across all values for C. Don't forget to indicate **n** on your plot, where **n** is the number trials per boxplot. Don't forget to label your dimensions.

14. (0.5 points) What statistical test should you use to determine whether the difference between the best and second best kernel is statistically significant? Explain the reason for your choice. Consider how you selected testing and training sets and the skew of the data in the boxplots in your answer.

If you have independent samples and data that doesn't follow a normal distribution use this: Mann–Whitney U test.

Since my testing data is not normal distribution, it is discrete uniform distribution. I choose the same amount of example for each digit. Therefore, I should use Mann-Whitney U test.

15. (0.5 points) What is the result of your statistical test? Is the difference between the best and second best value of **kernel** statistically significant?

MSE

linear vs poly

MannwhitneyuResult(statistic=0.0, pvalue=1.7782854874923613e-21)

linear vs rbf

MannwhitneyuResult(statistic=1566.5, pvalue=0.11067632821778534)

poly vs rbf

MannwhitneyuResult(statistic=0.0, pvalue=1.7782854874923613e-21)

The best two are linear and rbf.

Yes, the p value is only 0.11. Therefore, the result is statistically significant.

E= wrong/size

linear vs poly

MannwhitneyuResult(statistic=0.0, pvalue=1.7644150243261798e-21)

linear vs rbf

MannwhitneyuResult(statistic=1751.5, pvalue=0.4005276895797677)

poly vs rbf

MannwhitneyuResult(statistic=0.0, pvalue=1.7682882943213812e-21)

The best two are linear and rbf.

No, the p value is only 0.40. Therefore, the result might not be statistically significant. Only about half chance will reject null hypothesis.

16. (0.5 points) Is the combination of kernel and **C** that shows the best error in the table from the previous question the same combination that resulted from considering **C** and kernel independently? Which one do you believe?

The combination of kernel and C is different from the combination that resulted from considering C and kernel independently. I believe the result from considering C and kernel independently because different C or kernel might have a significant difference of MSE.

The combination of kernel and C is different from the combination that resulted from considering C and kernel independently. I believe the result from considering C and kernel independently because different C or kernel might have a significant difference of error(wrong/size).

Putting these results in context (0.5 point)

17. (0.5 points) Compare your results with the previous results for SVMs found on MNIST. What is the best kernel reported there? How does your best kernel do compared to that one? Aside: A Gaussian Kernel is a Radial Basis Function kernel

The best result on MNIST is Virtual SVM, deg-9 poly, 2-pixel jittered with error 0.56.

My best result is rbf with error(MSE) 1.1054294478527606.

My best result is rbf with error(wrong/size) 0.06236196319018405

Showing us your data.

18. (0.5 points) Put the error from every individual trial into a single table, where the columns are labeled: error, **C**, kernel. Each row will list the error rate (on a scale of 0 to 1) for one trial, the value of **C** for that trial and the kernel for that trial.

MSE

	Linear	Linear	Linear	Poly	Poly 1	Poly	Rbf 0.1	Rbf 1	Rbf 10
	0.1	1	10	0.1		10			
Col	[1.125	[1.323	[1.5	[18.61	[17.95	[7.753	[2.883	[1.688	[1.254
um	15337	92638		28834	58282	98773	43558	34355	60122
n1.	42331	03680		35582	20858	00613	28220	82822	69938
1	288	98		823	894	5	857	086	651
Col	1.0791	1.3042	1.3092	17.424	18.443	7.1588	2.9546	1.3760	1.0269
um	41	94	02	54	56	96	01	74	94
n1.									
2									
Col	1.3889	1.3184	1.3300	17.730	17.783	7.9760	2.7858	1.3404	0.8920
um	57	05	61	67	44	74	9	91	25
n1.									
3									
Col	1.4220	1.2447	1.5607	18.526	18.019	7.0018	2.4312	1.4312	0.9834
um	86	85	36	38	02	4	88	88	36

n1.									
Col um n1.	1.2190 18	1.3006 13	1.3650 31	18.010 43	17.680 37	7.9840 49	2.4263	1.3049 08	1.2147 24
Col um n1.	1.4490 8	1.5803 68	1.4834 36	18.212 88	17.379 14	8.0300 61	2.9110 43	1.4343 56	0.8269 94
Col um n1. 7	1	1.4785 28	1.7607 36	18.150 92	17.823 31	7.8938 65	2.9914 11	1.2171 78	1.0877
Col um n1. 8	1.0386 5	1.4828 22	1.2539 88	18.060 74	17.580 98	8.0423 31	2.9521 47	1.2441 72	1.1650 31
Col um n1.	1.5171 78	1.3177 91	1.3116 56	18.106 13	18.020 86	8.5122 7	2.7417 18	1.5932 52	0.9773 01
Col um n1. 10	1.0852 76	1.2595 09	1.3435 58	17.647 24	18.479 75	7.6214 72	2.8981 6	1.3196 32	1.0834 36
Col um n1.	1.3687 12	1.3963 19	1.4613 5	17.914 72	17.971 17	7.6730 06	3.0110 43	1.1766 87	1.1184 05
Col um n1. 12	1.2625 77	1.3773 01	1.4877	18.085 28	17.679 14	7.4822 09	3.0644 17	1.4460 12	1.1484 66
Col um n1. 13	1.3546 01	1.1791 41	1.4171 78	17.827 61	17.550 92	7.4785 28	2.6423 31	1.4711 66	1.0122 7
Col um	1.2361 96	1.4049 08	1.7073 62	17.714 72	17.459 51	8.2337 42	2.7766 87	1.5171 78	1.2257 67

n1. 14									
Col um n1. 15	1.1742 33	1.7337 42	1.5042 94	18.022 7	17.753 37	7.8404 91	2.6509	1.4828 22	1.1
Col um n1. 16	1.3680 98	1.6631 9	1.5257 67	17.007 36	18.496 93	7.4085 89	2.8030 67	1.3631 9	1.0693 25
Col um n1. 17	1.2165 64	1.4987 73	1.4705 52	17.726 99	17.372 39	7.7079 75	2.7907 98	1.7184 05	1.2337 42
Col um n1. 18	1.3073 62	1.6282 21	1.5269 94	18.107 36	18.039 26	7.3607 36	2.4834 36	1.4128 83	1.3546 01
Col um n1. 19	1.0533 74	1.5447 85	1.5098 16	18.332 52	17.285 28	8.0233 13	2.8496 93	1.7423 31	1.1503 07
Col	1 1527	1 6 / 1 7	1 5674	10 220	10 750	7 2022	2 0020	1 0221	1 102/
um n1. 20	1.1527 60736 19631 9]	1.6417 17791 41104 3]	1.5674 84662 57668 72]	18.239 87730 06134 97]	18.759 50920 24539 87]	7.3822 08588 95705 5]	2.9938 65030 67484 67]	1.8331 28834 35582 83]	1.1834 35582 82208 6]

Error = wrong/size

Linear	Linear	Linear	Poly	Poly 1	Poly	Rbf 0.1	Rbf 1	Rbf 10
0.1	1	10	0.1		10			

Col	[0.068	[0.086	[0.107	[0.789	[0.770	[0.361	[0.148	[0.068	[0.067
um	71165	50306	36196	57055	55214	96319	46625	71165	48466
n1.	64417	74846	31901	21472	72392	01840	76687	64417	25766
1	178	6258	8405	393	638	491	1166	178	8712
Col	0.0711	0.0889	0.0828	0.7901	0.7907	0.3552	0.1588	0.0754	0.0662
um	66	57	22	84	98	15	96	6	58
n1.									
Col	0.0736	0.0828	0.0877	0.7920	0.8116	0.3644	0.1460	0.0779	0.0558
um	2	22	3	25	56	17	12	14	28
n1.									
3									
Col	0.0779	0.0840	0.0852	0.8024	0.7693	0.3588	0.1386	0.1012	0.0601
um	14	49	76	54	25	96	5	27	23
n1.									
4 Col	0.0736	0.1012	0.0944	0.7858	0.7797	0.3368	0.1325	0.0957	0.0607
um	2	27	79	9	55	1	15	0.0337	36
n1.	_		'		33		13		
5									
Col	0.0711	0.0920	0.0846	0.7754	0.7877	0.3797	0.1521	0.0858	0.0650
um	66	25	63	6	3	55	47	9	31
n1.									
6	0.0720	0.0020	0.0001	0.0122	0.7644	0.2722	0.1546	0.0020	0.0527
Col	0.0730 06	0.0920 25	0.0901 84	0.8122 7	0.7644 17	0.3723 93	0.1546 01	0.0828	0.0527 61
n1.	00	23	04	'	17	93	01	22	01
7									
Col	0.0748	0.0865	0.0883	0.7975	0.7895	0.3766	0.1527	0.0803	0.0644
um	47	03	44	46	71	87	61	68	17
n1.									
8									
Col	0.0828	0.0957	0.0840	0.7717	0.8110	0.3576	0.1644	0.0852	0.0558
um n1	22	06	49	79	43	69	17	76	28
n1.									
Col	0.0656	0.0907	0.0895	0.7834	0.7987	0.3730	0.1527	0.0791	0.0546
um	44	98	71	36	73	06	61	41	01
n1.									
10									

Col um n1.	0.0785 28	0.0852 76	0.0969	0.7901 84	0.7613 5	0.3527 61	0.1546 01	0.0895 71	0.0607 36
Col um n1.	0.0631 9	0.0920 25	0.0815 95	0.7938 65	0.7711 66	0.3638 04	0.1496 93	0.0975 46	0.0668 71
Col um n1.	0.0760 74	0.0858 9	0.0822 09	0.8153 37	0.7865 03	0.3631 9	0.1595 09	0.0803 68	0.0625 77
Col um n1. 14	0.0705 52	0.0797 55	0.0815 95	0.8134 97	0.7926 38	0.3730 06	0.1527 61	0.0883 44	0.0607 36
Col um n1. 15	0.0773 01	0.0920 25	0.0858 9	0.7907 98	0.7926 38	0.3521 47	0.1570 55	0.0815 95	0.0644 17
Col um n1. 16	0.0662 58	0.0760 74	0.0803 68	0.8030 67	0.7895 71	0.3588 96	0.1478 53	0.0858 9	0.0607 36
Col um n1. 17	0.0785 28	0.0969 33	0.0920 25	0.7871 17	0.8012 27	0.3815 95	0.1435 58	0.0865 03	0.0644 17
Col um n1. 18	0.0705 52	0.0883 44	0.0797 55	0.8012 27	0.7791 41	0.3417 18	0.1447 85	0.0865 03	0.0754 6
Col um n1. 19	0.0723 93	0.0901 84	0.0963 19	0.7834 36	0.7840 49	0.3570 55	0.1576 69	0.0846 63	0.0693 25
Col um n1. 20	0.0754 60122	0.1042 94478	0.0926 38036	0.8171 77914	0.7963 19018	0.3417 17791	0.1564 41717	0.0723 92638	0.0588 95705

Ī	69938	52760	80981	11042	40490	41104	79141	03680	52147
	65]	736]	596]	94]	79]	297]	106]	981]	239]