Applications of Fermi Golden Rule

Wang Dongying

September 16, 2015

1 Transition Probabilities and Fermi Golden Rule

The famous Fermi Golden Rule describe the transition rate which depends on the strength of the coupling between the initial and fibal state of a system and upon the number of ways the transition can happen.

$$\mathcal{W}(t) = \frac{d\mathcal{P}(t)}{dt}$$

$$= \frac{2\pi}{\hbar} W_{fi}^2 \rho(E_{fi})$$
(1)

where the W_{fi} is matrix element for the interaction, $\rho(E_{fi})$ is density of the final state.

Lifetime: $\tau = 1/\mathcal{W}$.

2 Scattering and Decays from Fermi Golden Rule

Fermi's Theory of nuclear β -decay $n \to p + e^- + \bar{\nu}$ $(Z, N) \to (Z + 1, Z - 1) + e^- + \bar{\nu}$ The simplest form for thr matrix element describing nuclear β -decay is given by Fermi's ansatz:

$$W_{km} = \frac{G_z M}{V} \tag{2}$$

where G_z is Fermi constant, M is overlap of the initial/final nuclear wave function and V is the normalization volume. The density of possible states $dn/dE_0 = \rho(E_0)$. Typical value of E_0 is in the MeV range. Main equations:

$$E_0 = E + cq \qquad \qquad 0 = P + q + p$$

where E is electron energy, q is neutrino momentum, P is nuclear momentum and p is electron momentum. The density of states is found from the product of the electron and neutrino phase space volumes.

$$dn = \frac{Vd^3\mathbf{p}}{(2\pi\hbar)^3} \cdot \frac{Vd^3\mathbf{q}}{(2\pi\hbar)^3} = \frac{1}{4\pi^4\hbar^6c^3}p^2(E - E_0)^2dpdE$$
 (3)

Back to the expression of transition rate,

$$d\mathcal{W} = \frac{G_f^2}{2\pi^3 \hbar^7 c^3} |M|^2 p^2 (E - E_0)^2 dp \tag{4}$$

when the electron can be treated as being relastitic (E = cp).

$$\int p^2 (E - E_0)^2 dp = \frac{Q_0^5}{30c^3} \tag{5}$$

where $Q_0 = E_0 - m_e c^2$. Then the transition rate can be calculated.

$$\mathscr{W} = \frac{G_f^2}{60\pi^3 \hbar^7 c^6} |M|^2 Q_0^5 \tag{6}$$

${\bf cross\ section}$

$$\mathcal{W} = d\sigma j_i \tag{7}$$

where σ is cross section and j_i is the flux of initial particals.