Основы ТУС

Т. А. Новикова

 $\Phi_{\rm акультет} \ {\rm BMuK} \\ {\rm Kasaxctahckuй} \ {\rm филиал} \ {\rm M\Gamma V} \ {\rm им.M. \ B.} \ {\rm Ломоносовa} \\$

12 мая 2016 г.

Вершины орграфа, в которые не входит ни одной дуги, называются истоками.

Орграф называется ациклическим, если в нем нет ориентированных циклов.

В ациклическом орграфе глубиной вершины V называется максимальное число дуг в ориентированном пути из какого-нибудь истока в вершину V. Если в ациклическом орграфе есть дуга (V_1, V_2) , то глубина V_2 больше глубины V_1 .

Орграф называется упорядоченным, если для каждой вершины V_i , в которую входит k_i дуг, задан порядок $e_1, e_2, \ldots, e_{k_i}$ этих дуг.

Систему $B = \{g_1, g_2, \dots, g_m\}$, где все g_i — функции алгебры логики, будем называть базисом функциональных элементов.

Схемой из функциональных элементов в базисе Б называется ациклический упорядоченный орграф, в котором:

- каждому истоку приписана некоторая переменная, причем разным истокам приписаны разные переменные (истоки при этом называются входами схемы, а приписанные им переменные входными переменными);
- ② каждой вершине, в которую входят $k \ge 1$ дуг, приписана функция из базиса B, зависящая от k переменных (вершина с приписанной функцией при этом называется функциональным элементом);
- некоторые вершины выделены как выходы (истоки одновременно могут являться выходами).

Как мы уже видели на семинарах, реализуемая в схеме функция определяется индукцией по глубине функционального элемента. Пример.

Будем говорить, что схема реализует систему функций, соответствующих ее выходам.

Будем говорить, что схема реализует систему функций, соответствующих ее выходам.

Definition

Сложностью схемы из функциональных элементов называется число функциональных элементов в схеме.

Будем говорить, что схема реализует систему функций, соответствующих ее выходам.

Definition

Сложностью схемы из функциональных элементов называется число функциональных элементов в схеме.

По умолчанию под базисом будем понимать стандартный базис — систему $\pmb{B} = \{\lor, \&, \neg\}.$

Вспомним, как выглядит ячейка полусумматора.

Вспомним, как выглядит ячейка полусумматора. В дальнейшем будем обозначать ее Σ' :

Ячейка полусумматора Σ'

Попробуем решить следующую задачу: у нас есть два n-разрядных бинарных числа, требуется найти их сумму. Обозначим биты первого и второго числа соответственно через x_i, y_i , а бит переноса — q_i . Из начальной школы известно:

$$q_0$$
 q_1 q_2 ... q_{n-1}
 x_1 x_2 ... x_{n-1} x_n
 $+$ y_1 y_2 ... y_{n-1} y_n
 z_0 z_1 z_2 ... z_{n-1} z_n

Решение этой задачи описывается такого рода системой:

$$\left\{ \begin{array}{rcl} z_i &=& x_i \oplus y_i \oplus q_i, \\ q_{i-1} &=& m(x_i, y_i, q_i). \end{array} \right.$$

Решение этой задачи описывается такого рода системой:

$$\begin{cases}
z_i = x_i \oplus y_i \oplus q_i, \\
q_{i-1} = m(x_i, y_i, q_i).
\end{cases}$$

Возьмем
$$f_{v''}=(x\oplus y)\oplus q, f_{v'}=xy\vee (x\vee y)\cdot q=m(x,y,q).$$

Тогда ячейка сумматора (будем обозначать ее Σ_1) выглядит так:

Ячейку сумматора в дальнейшем будем обозначать Σ_1 и будем рассматривать ее с 3 входами и 2 выходами:

Заметим, что сложность схемы, реализующей эту ячейку, равна $L(\Sigma_1)=9$. При этом $z_n=x_n\oplus y_n, q_{n-1}=x_ny_n, z_0=q_0.$

Введем для набора $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_n)$ обозначение $|\widetilde{\alpha}| = (\alpha_1 \alpha_2 \dots \alpha_n)_2$.

Definition

Сумматором S_n порядка n называется схема с 2n входами $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ и n+1 выходом $z_0, z_1, z_2, \ldots, z_n$ такая, что $|\widetilde{z}| = |S_n(\widetilde{x}, \widetilde{y})| = |\widetilde{x}| + |\widetilde{y}|$.

Theorem

Существует схемный сумматор порядка n в базисе $\{\lor, \&, \neg\}$ с числом элементов 9n - 5.

Theorem

Существует схемный сумматор порядка n в базисе $\{\lor, \&, \neg\}$ с числом элементов 9n - 5.

Доказательство. Для этого возьмём одну ячейку полусумматора, содержащую четыре элемента и n-1 ячейку сумматора, каждая из которых содержит девять элементов. Построим из этих частей сумматор S_n .

Сумматор S_n

Theorem

Существует схемный сумматор порядка n в базисе $\{\lor, \&, \neg\}$ с числом элементов 9n - 5.

Доказательство. Для этого возьмём одну ячейку полусумматора, содержащую четыре элемента и n-1 ячейку сумматора, каждая из которых содержит девять элементов. Построим из этих частей сумматор S_n .

Сумматор S_n

Сложность построенной схемы:

$$L(S_n) = 9L(\Sigma_1) + L(\Sigma') = 9(n-1) + 4 = 9n - 5.$$

Вычитателем W_n порядка n называется схема с 2n входами $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ и n выходами z_1, z_2, \ldots, z_n такая, что при $|\widetilde{x}| \geq |\widetilde{y}|$

$$|\widetilde{z}| = |W(\widetilde{x}, \widetilde{y})| = |\widetilde{x}| - |\widetilde{y}|.$$

Вычитателем W_n порядка n называется схема с 2n входами $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ и n выходами z_1, z_2, \ldots, z_n такая, что при $|\widetilde{x}| \geq |\widetilde{y}|$

$$|\widetilde{z}| = |W(\widetilde{x}, \widetilde{y})| = |\widetilde{x}| - |\widetilde{y}|.$$

Theorem

существует схемный вычитатель порядка n в базисе $\{\lor, \&, \neg\}$ с числом элементов 11n-5.

Доказательство. Заметим, что

$$|\overline{\widetilde{\alpha}}| = (\overline{\alpha_1 \alpha_2} \dots \overline{\alpha_n}) = 2^n - 1 - |\widetilde{\alpha}|.$$

Доказательство. Заметим, что

$$|\overline{\widetilde{\alpha}}| = (\overline{\alpha_1 \alpha_2} \dots \overline{\alpha_n}) = 2^n - 1 - |\widetilde{\alpha}|.$$

Тогда вычитатель реализуется схемой

$$W_n(\widetilde{x},\widetilde{y}) = |\widetilde{x}| - |\widetilde{y}| = 2^n - 1 - ((2^n - 1 - |\widetilde{x}|) + \widetilde{y})$$

и эту схему можно построить, используя 2n отрицаний и 1 сумматор порядка n.

$$W_n(\widetilde{x},\widetilde{y}) = |\widetilde{x}| - |\widetilde{y}| = 2^n - 1 - ((2^n - 1 - |\widetilde{x}|) + \widetilde{y})$$

и эту схему можно построить, используя 2n отрицаний и 1 сумматор порядка n.

При этом

$$L(W_n) = 2n + L(S_n) = 2n + (9n - 5) = 11n - 5.$$

Умножителем (мультиплексором) M_n порядка n называется схема с 2n входами $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ и 2n выходами z_1, \ldots, z_{2n} такая, что $|\widetilde{z}| = |M_n(\widetilde{x}, \widetilde{y})| = |\widetilde{x}| \cdot |\widetilde{y}|$. При этом

$$\left\{ \begin{array}{lcl} 0 & \leq & \widetilde{x} \leq 2^n - 1 < 2^n, \\ 0 & \leq & \widetilde{y} \leq 2^n - 1 < 2^n. \end{array} \right.$$

Умножителем (мультиплексором) M_n порядка n называется схема с 2n входами $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ и 2n выходами z_1, \ldots, z_{2n} такая, что $|\widetilde{z}| = |M_n(\widetilde{x}, \widetilde{y})| = |\widetilde{x}| \cdot |\widetilde{y}|$. При этом

$$\left\{ \begin{array}{lcl} 0 & \leq & \widetilde{x} \leq 2^n-1 < 2^n, \\ 0 & \leq & \widetilde{y} \leq 2^n-1 < 2^n. \end{array} \right.$$

Через M(n) обозначим наименьшую сложность умножителя порядка n в стандартном базисе.

Умножителем (мультиплексором) M_n порядка n называется схема с 2n входами $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ и 2n выходами z_1, \ldots, z_{2n} такая, что $|\widetilde{z}| = |M_n(\widetilde{x}, \widetilde{y})| = |\widetilde{x}| \cdot |\widetilde{y}|$. При этом

$$\left\{ \begin{array}{lcl} 0 & \leq & \widetilde{x} \leq 2^n-1 < 2^n, \\ 0 & \leq & \widetilde{y} \leq 2^n-1 < 2^n. \end{array} \right.$$

Через M(n) обозначим наименьшую сложность умножителя порядка n в стандартном базисе.

Lemma

Существует схема из функциональных элементов для умножения n-разрядного числа X на 1-разрядное число y с числом элементов n.

Доказательство. Если
$$X = |(x_1, \ldots, x_n)|$$
, $Xy = Z = |(z_1, \ldots, z_n)|$, то $z_i = x_i y$ для всех $i = 1, 2, \ldots, n$. Значит, для реализации такой схемы необходимо ровно n конъюнкций.

Сколько необходимо элементов для реализации перемножения двух n-разрядных чисел?

Сколько необходимо элементов для реализации перемножения двух n-разрядных чисел? Правильный ответ на указанный вопрос: $n^2 + (n-1) \cdot (18n-5) = 19n^2 - 23n + 5$. Следующая теорема покажет, что этот алгоритм не оптимален по порядку.

Lemma

Существует такая константа $C_1 > 0$, что $M(n+1) \le M(n) + C_1$ для всех n.

Lemma

Существует такая константа $C_1 > 0$, что $M(n+1) \leq M(n) + C_1$ для всех n.

Доказательство. Пусть требуется перемножить два (n+1)-разрядных числа $\widetilde{x}=(x_0x_1\dots x_n)$ и $\widetilde{y}=(y_0y_1\dots y_n)$. Тогда

$$\widetilde{x}\widetilde{y} = \left(x_0 \cdot 2^n + |\overbrace{x_1 \dots x_n}^X|\right) \left(y_0 \cdot 2^n + |\overbrace{y_1 \dots y_n}^Y|\right) =$$

$$= x_0 y_0 \cdot 2^n + (x_0 \cdot Y + y_0 \cdot X) \cdot 2^n + X \cdot Y$$

Значит, нам нужен мультиплексор со сложностью M(n) для вычисления XY, 2n элементов конъюнкции для x_0Y , y_0X , 1 элемент конъюнкции для x_0y_0 и 3 сумматора порядка не более 2n+2.

Но все числа $x_0 Y, y_0 X, x_0 y_0$ надо подавать на сумматоры со сдвигом, заполнив все младшие разряды нулями.

Но все числа $x_0 Y$, $y_0 X$, $x_0 y_0$ надо подавать на сумматоры со сдвигом, заполнив все младшие разряды нулями. Ноль можно построить подсхемой с 2 элементами. Если теперь посчитать сложность необходимых сумматоров и мультиплексоров, то лемма доказана. Сделайте это самостоятельно.

Lemma (Карацуба A.A.)

Существует константа C_2 такая, что

$$M(2n) \leq 3M(n) + C_2n$$

для всех *п*.

Доказательство. Пусть нужно перемножить два 2 n-разрядных числа $\widetilde{x},\widetilde{y}$. Разобьём их на части, содержащие по n разрядов: $\widetilde{x}=X_1\cdot 2^n+X_2,\widetilde{y}=Y_1\cdot 2^n+Y_2$ и

$$\widetilde{x}\widetilde{y} = X_1 Y_1 \cdot 2^n + (X_1 Y_2 + X_2 Y_1) \cdot 2^n + X_2 Y_2 =$$

$$= X_1 Y_1 \cdot 2^n + [(X_1 + X_2)(Y_1 + Y_2) - X_1 Y_1 - X_2 Y_2] \cdot 2^n + X_2 Y_2.$$

Lemma (Карацуба А.А.)

Существует константа \mathcal{C}_2 такая, что

$$M(2n) \leq 3M(n) + C_2n$$

для всех *п*.

Доказательство. Пусть нужно перемножить два 2 n-разрядных числа $\widetilde{x},\widetilde{y}$. Разобьём их на части, содержащие по n разрядов: $\widetilde{x}=X_1\cdot 2^n+X_2,\widetilde{y}=Y_1\cdot 2^n+Y_2$ и

$$\widetilde{x}\widetilde{y} = X_1 Y_1 \cdot 2^n + (X_1 Y_2 + X_2 Y_1) \cdot 2^n + X_2 Y_2 =$$

$$= X_1 Y_1 \cdot 2^n + [(X_1 + X_2)(Y_1 + Y_2) - X_1 Y_1 - X_2 Y_2] \cdot 2^n + X_2 Y_2.$$

Итого нам необходимо два умножителя с числом элементов M(n) для $X_1 Y_1$ и $X_2 Y_2$, мультиплексор M_{n+1} с числом элементов M(n+1) для вычисления $(X_1 + X_2)(Y_1 + Y_2)$, 4 сумматора порядка не более 4n и два вычитателя порядка 2n+2.

Нам также снова понадобится ноль для сдвига переменных. Значит, с учетом леммы 1 мы получим для некоторых констант C, C_2

$$M(2n) \leq 2M(n) + M(n+1) + C_n \leq 3M(n) + C_1 n + Cn = 3M(n) + C_2 n.$$

Lemma

Существует такая константа $C_3>0,$ что для любого натурального k верно

$$M(2^k) \leq C_3 3^k.$$

Lemma

Существует такая константа $C_3 > 0$, что для любого натурального k верно

$$M(2^k) \leq C_3 3^k.$$

Доказательство. Положим $f(k) = \frac{M(2^k)}{3^k}$ и по лемме 2:

$$\frac{M(2^k)}{3^k} \leq \frac{M(2^{k-1})}{3^{k-1}} + \frac{C_2}{3} (\frac{2}{3})^{k-1}$$

И

$$f(k) \le f(k-1) + \frac{C_2}{3} (\frac{2}{3})^{k-1} \le \dots \le f(1) + \frac{C_2}{3} [\frac{2}{3} + (\frac{2}{3})^2 + \dots + (\frac{2}{3})^{k-1}] \le C_3$$

для некоторой константы C_3 (сумма в квадратных скобках не превзойдет сумму убывающей геом. прогрессии с первым членом и знаменателем $\frac{2}{3}$).

Таким образом, $\frac{M(2^k)}{3^k} \leq C_3$. Лемма доказана.

Существует умножитель в стандартном базисе с числом элементов $O(n^{log_23})$.

Существует умножитель в стандартном базисе с числом элементов $O(n^{log_23})$.

Доказательство. Если n натуральное число, большее 1, то существует натуральное k такое, что $2^{k-1} < n \le 2^k$. Для умножения n-разрядных чисел будем использовать схему M_{2^k} с числом элементов $M(2^k)$, подавая на старшие $2^k - n$ разрядов обоих сомножителей 0, предварительно реализованный подсхемой из 2 элементов. Тогда имеем, исходя из леммы 3

$$M(n) \le M(2^k) + 2 \le C_3 3^k + 2 = 3C_3 3^{k-1} + 2 = 3C_3 2^{(k-1)\log_2 3} + 2 < 3C_3 n^{\log_2 3} + 2 \le C n^{\log_2 3}$$

для некоторой константы C.

Дешифратором Q_n порядка n называется схема из функциональных элементов с n входами x_1, x_2, \ldots, x_n и 2n выходами $z_0, z_1, \ldots, z_{2^n-1}$ такая, что если $|x_1x_2\ldots x_n|=i$, то $z_i=1$ и $z_j=0$ при $i\neq j$:

$$z_i(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} 1, |x_1\ldots x_n| & = & i, \\ 0, |x_1\ldots x_n| & \neq & i. \end{array} \right.$$

Дешифратором Q_n порядка n называется схема из функциональных элементов с n входами x_1, x_2, \ldots, x_n и 2n выходами $z_0, z_1, \ldots, z_{2^n-1}$ такая, что если $|x_1x_2\ldots x_n|=i$, то $z_i=1$ и $z_j=0$ при $i\neq j$: $z_i(x_1,\ldots,x_n)=\left\{\begin{array}{ll} 1,|x_1\ldots x_n|&=&i,\\ 0,|x_1\ldots x_n|&\neq&i.\end{array}\right.$

Замечание. Если
$$i=(i_1,i_2,\ldots,i_n)_2$$
, то $z_i(x_1,\ldots,x_n)=x_1^{i_1}x_2^{i_2}\ldots x_n^{i_n}$.

Lemma

Существует дешифратор Q_n с числом элементов, не превосходящим $n2^{n+1}$.

Доказательство. Для реализации каждой z_i достаточно взять ровно n-1 конъюнкций и не более n отрицаний, то есть всего менее, чем 2n функциональных элементов. Всего различных конъюнкций ровно 2^n , и сложность дешифратора не превосходит $n2^{n+1}$.

Сложность минимального схемного дешифратора порядка n не меньше, чем 2^n и асимптотически не больше, чем $2^n + O(n \cdot 2^{\frac{n}{2}})$.

Сложность минимального схемного дешифратора порядка n не меньше, чем 2^n и асимптотически не больше, чем $2^n+O(n\cdot 2^{\frac{n}{2}})$.

Доказательство. І. Поскольку у дешифратора Q_n ровно 2^n выходов, на которых реализуются различные функции, не равные входным переменным, сложность минимального дешифратора не меньше, чем 2^n

Покажем теперь, что существует дешифратор со сложностью $2^n + O(n \cdot 2^{\frac{n}{2}})$. Разобьём набор входных переменных $x = (x_1, \dots, x_n)$ на поднаборы $x' = (x_1, \dots, x_k), x'' = (x_{k+1}, \dots, x_n)$, где $1 \le k \le n-1$. Пусть теперь Q', Q'' — функциональные дешифраторы порядка k и n-k от базовых переменных x', x'', а Σ', Σ'' — соответствующие им схемные дешифраторы, построенные по лемме.

Покажем теперь, что существует дешифратор со сложностью $2^n + O(n \cdot 2^{\frac{n}{2}})$. Разобьём набор входных переменных $x = (x_1, \ldots, x_n)$ на поднаборы $x' = (x_1, \ldots, x_k), x'' = (x_{k+1}, \ldots, x_n)$, где $1 \le k \le n-1$. Пусть теперь Q', Q'' — функциональные дешифраторы порядка k и n-k от базовых переменных x', x'', а Σ', Σ'' — соответствующие им схемные дешифраторы, построенные по лемме.

Любую конъюнкцию $Q_n[i]$, $1 \le i \le 2^n$ можно представить в виде $Q_n[i] = Q'[j] \cdot Q''[l]$, где $i = 2^{n-k}(j-1) + l$, $1 \le j \le 2^k, 1 \le l \le 2^{n-k}$.

Дешифратор Σ порядка n от базовых переменных x содержит дешифраторы Σ', Σ'' в соответствии с формулой $Q_n[i] = Q'[j] \cdot Q''[j]$. Из построения Σ следует, что $L(\Sigma) = 2^n + L(\Sigma') + L(\Sigma'') \leq 2^n + k \cdot 2^{k+1} + (n-k)2^{n-k+1}$, но тогда при $k = \left \lfloor \frac{n}{2} \right \rfloor$ получаем:

$$L(\Sigma) \leq 2^n + O(n \cdot 2^{\frac{n}{2}})$$

Для любой функции алгебры логики $f(x_1,\ldots,x_n)$ существует реализация её схемой из функциональных элементов в базисе $\{\vee,\&,\neg\}$ со сложностью, не превосходящей $2\cdot 2^n+O(n\cdot 2^{\frac{n}{2}})$.

Доказательство. Если $f \equiv 0$, то $f = x \cdot \bar{x}$. Иначе

$$f(x_1,\ldots,x_n) = \vee_{(\sigma_1,\ldots,\sigma_n):f(\widetilde{\sigma})} X_1^{\sigma_1}\ldots X_n^{\sigma_n}$$

И

$$L \leq L(Q_n) + 2^n - 1 \leq 2 \cdot 2^n + O(n \cdot 2^{\frac{n}{2}}).$$

Мультиплексором μ_n порядка n называется схема из функциональных элементов с $n+2^n$ входами x_1,\ldots,x_n (адресные входы), y_0,\ldots,y_{2^n-1} (информационные входы) и единственным выходом z такая, что если на входы x_1,\ldots,x_n поступает набор $(\alpha_1,\ldots,\alpha_n)$, то $z=y_{(\alpha_1,\ldots,\alpha_n)_2}$.

Мультиплексором μ_n порядка n называется схема из функциональных элементов с $n+2^n$ входами x_1,\ldots,x_n (адресные входы), y_0,\ldots,y_{2^n-1} (информационные входы) и единственным выходом z такая, что если на входы x_1,\ldots,x_n поступает набор $(\alpha_1,\ldots,\alpha_n)$, то $z=y_{(\alpha_1,\ldots,\alpha_n)_2}$.

Theorem

Существует мультиплексор μ_n порядка n с числом элементов

$$L(\mu_n) \leq 3 \cdot 2^n + O(n \cdot 2^{\frac{n}{2}}).$$

Рассмотрим для решения указанной задачи функцию

$$z = \vee_{(\alpha_1,\ldots,\alpha_n)} x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n} \cdot y_{(\alpha_1\ldots\alpha_n)_2}.$$

Для её вычисления достаточно использовать один дешифратор, $\mathbf{2}^n$ конъюнкций, $\mathbf{2}^n-\mathbf{1}$ дизъюнкций и тогда:

$$L(\mu_n) \leq L(Q_n) + 2^n + 2^n - 1 \leq 3 \cdot 2^n + O(n2^{\frac{n}{2}}).$$

Шифратором D_n порядка n называется схема из функциональных элементов с 2^n входами $x_0, x_1, \ldots, x_{2^n-1}$ и n выходами y_1, y_2, \ldots, y_n такая, что если на вход поступает набор с одной единицей по переменной x_i , то на выходе образуется набор $(\beta_1, \ldots, \beta_n)_2 = i$.

Шифратором D_n порядка n называется схема из функциональных элементов с 2^n входами $x_0, x_1, \ldots, x_{2^n-1}$ и n выходами y_1, y_2, \ldots, y_n такая, что если на вход поступает набор с одной единицей по переменной x_i , то на выходе образуется набор $(\beta_1, \ldots, \beta_n)_2 = i$.

Theorem

Существует шифратор D_n порядка n со сложностью, не превосходящей $n \cdot 2^{n-1}$.

Задачу решает система функций:

$$y_j = \vee_{(\sigma_1,\ldots,\sigma_{j-1},1,\sigma_{j+1},\ldots,\sigma_n)} x_{(\sigma_1,\ldots,\sigma_{j-1},1,\sigma_{j+1},\ldots,\sigma_n)_2}.$$

Всего в каждой дизъюнкции 2^{n-1} слагаемых, значит, необходимо $2^{n-1} - 1$ дизъюнкторов, всего таких дизъюнкций нужно реализовать n штук, и тогда:

$$L(D_n) \le (2^{n-1} - 1) \cdot n < n \cdot 2^{n-1}.$$