BILGI UNIVERSITY

Faculty of Engineering and Natural Sciences Department of Electrical and Electronics Department

Course: EEEN 352 System Dynamics and Control

Instructors: Prof. Dr. Mehmet Nur Alpaslan Parlakçı & Prof. Dr. Şeref Naci Engin Exam/Date: Quiz-1/17.04.2020, 09:00 – 10:00, Duration: 45 min. Signature:

Student Name: Student Number:

Problem. For each of the transfer function (i, ii, iii), a response plot (iv) and given specs (v), all representing second order systems, do the following so that you can fill in the table with your results.

- (a) Find the natural frequency and damping ratio values, then determine the locations of the poles
- (b) Determine the kind of the unit step time responses (overdamped, undamped, etc.) and write their general forms,
- (c) Find the steady-state, c_{ss} , and peak values, c_{max} , of the responses. Necessary formulas are at the bottom.
- (d) Find the settling and peak times, T_s and T_p (if appropriate), respectively.
- (e) Propose new transfer functions that produce unit step responses two times (2x) slower in terms of settling time while maintaining the same form (the same ζ) and steady-state values.

(i)
$$G_1(s) = \frac{18}{(s+2)(s+5)}$$
, (ii) $G_2(s) = \frac{12}{s^2+4s+16}$, (iii) $G_3(s) = \frac{12.5}{s^2+5s+6.25}$

(iv) $G_4(s)$: The plot, (v) $G_5(s)$: 10% OS, $T_s = 4 \sec$, $c_{final} = 3.5$

				() 5 () final	
Transfer Functions Questions	$G_1(s)$	$G_2(s)$	$G_3(s)$	Step Response 2.5 (iv) polytiday G_4(s) 1.5 0.5 1 0.5 Time (seconds)	$G_5(s)$
1. ω _n	1, <i>i</i>	1, <i>ii</i>	1, iii	1, <i>iv</i>	1, v
2. ζ, %OS	2, <i>i</i>	2, <i>ii</i>	2, iii	2, <i>iv</i>	2, v
3. Poles	3, <i>i</i>	3, <i>ii</i>	3, iii	3, iv	3, v
4. Kind	4, <i>i</i>	4, <i>ii</i>	4, <i>iii</i>	4, <i>iv</i>	4, v
5. General Form	5, <i>i</i>	5, <i>ii</i>	5, iii	5, iv	5, v
6. T _s	6, <i>i</i>	6, <i>ii</i>	6, iii	6, <i>iv</i>	6, v
7. T _p	7, i	7, <i>ii</i>	7, iii	7, iv	7, v
8. c _{ss}	8, <i>i</i>	8, <i>ii</i>	8, <i>iii</i>	8, <i>iv</i>	8, v
9. <i>c</i> _{max}	9, <i>i</i>	9, <i>ii</i>	9, iii	9, iv	9, v
10. New (10, <i>i-iii</i>) and Proposed (10, <i>iv-v</i>) Tr. Fn.	10, i	10, <i>ii</i>	10, <i>iii</i>	10, <i>iv</i>	10, v

$$T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, T_S \cong \frac{4}{\zeta \omega_n}, \%OS = 100. \, e^{-\zeta \pi/\sqrt{1-\zeta^2}}, \zeta = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}}, \ \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s), \quad \textit{Good luck!}$$