Game theory

a course for the

MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia @gmail.com

Signaling Games

What the interaction can tell

Screening or signaling?

- We saw a 2-player entry game (1=entrant,
 2=incumbent) made Bayesian in 2 ways
- This can be generalized to:
 - the typed player is 2: 1 has no type, 1 can only guess 2's reaction based on the prior; this is a screening game (think of quiz shows with a secret prize behind a screen), SPE is enough
 - the typed player is 1: we call it a signaling game since the action taken by 1 can be interpreted as a signal by 2 to guess 1's type

Signaling game: definition

- A Bayesian dynamic game with 2 players,
 - 1 (first to move) and 2 (observing 1's move):

 - 2 does not know l's type but cares about it (i.e., the game is common values)
 - l has at least as many actions as types
 - 2 updates beliefs after 1's move
- This kind of games requires to use PBE

Graphical representation

Binary case is often shown as a "butterfly"

■ This structure is actually subject to some changes in certain case (esp. regarding the dashed line)

Equilibria of signaling games

- Separating equilibria: all types of 1 choose
 a different action, thus revealing the type to 2
- Pooling equilibria all types of 1 choose the same action, thus no clue for 2 about 1's type
- Intermediate cases: called "hybrid" or "semi-separating" or "partially-pooling"
 - only in those information sets that are reached with probability >0 (so, what is easy to solve?)

Signaling games

Step-by-step analysis on a case study

Example: a coffee for Brian

- □ Brian is invited by colleague Zöe to a coffee
- Ann is a typed player: her types are
 - Jealous with probability 0.8
 - Easygoing with probability 0.2
 (all of this is common knowledge)
- Ann can send a signal to either stay (S)ilent about this business or to (T)rash Zöe
- Brian observes the signal and can accept the (C)offee or kindly (D)ecline this offer

Extensive form of this game

- Payoffs explained
 - Jealous Ann is deeply hurt if Brian accepts
 - Easygoing Ann is just not-so-angry
 - Ann prefers to stay silent rather to trash Zöe
 - Brian likes to go if Ann is okay with it

How to solve this game?

- Both players have 4 strategies but for different reasons
 - Ann because she has a type: so her strategy is (what to do if jealous, what to do if easygoing)
 - Brian has no type but he observes Ann's move so (reaction to Ann's S, reaction to Ann's T)
 - e.g.: (TS, CD) means that Ann is vocal about her jealousy but is silent if easygoing (separating);
 Brian just "follows the signal" and declines if
 Ann is mad, if she is silent he accepts the offer

First part: find the NE

Matrix form			Brian		
Ann		CC	CD	DC	DD
	SS	-5, -2	-5, -2	3,0	3,0
	ST	-5, -2			
	TS	-5, -2		swap!	
	TT	-5, -2	1,0	-5, -2	1,0

- □ Caveat: A's pair is left/right but B's is **reaction to A**! So in the last row only the 2nd element counts
- Also check what happens in the swap! cell

How to properly fill the matrix

How to properly fill the matrix

■ But for (TS,CD) and (TS,DC) we need to swap!

First part: find the NE

			Brian		
		CC	CD	DC	DD
Ann	SS	-5, -2	-5, -2	3,0	3,0
	ST	-5, -2	-4.6, -2.4	2.2, 0.4	2.6,0
	TS	-5, -2	0.6, 1.6	-4.2, -2.4	1.4,0
	TT	-5, -2	1,0	-5, -2	1,0

■ We find 5 NEs: 3 pure-strategy and 2 mixed-strategy in addition to what visible: **NE4:** (TT, ½ CD+½ DD)

NE5: (1/6 SS + 5/6 TS, 2/9 CD + 7/9 DD)

- You are not done until you classify these NEs as perfect Bayesian equilibrium (if possible) and to do so, you have to check the beliefs
- In this game, the <u>system of beliefs</u> is a probability µ for Brian that Ann is **jealous** after seeing the signal (her move, S or T)
 - \blacksquare μ_S if she is silent, μ_T if she talks
- This is to mimic the probability of reaching a node in a dynamic game

System of beliefs

- The system of beliefs is easy to compute for a separating PBE
- E.g. if A plays ST,B's belief is automatic:
 - $\mu_{S} = 1, \ \mu_{T} = 0$

System of beliefs

 μ_s ?

- Unfortunately, we do not have any PBE where
 A plays a separating strategy
- Pooling equilibria are more complex
- E.g., take a situation where Ann plays SS.
 What can Brian think of her jealousy?
 - If B sees S, no further info \rightarrow A always plays S! Thus, B can only use the prior as the belief
 - And if B sees T? Never happens → arbitrary beliefs! But wait, they must imply rationality

- NE1: (SS, DD). Brian is playing rationally (no clue, so uses the prior). Ann does not want to deviate: Brian is playing DD, no need to tell him that Zöe is a skunk
- What about B's response to T?

Brian plays D, which is a best response only if

$$0 \ge -3 \mu_{\rm T} + 2(1-\mu_{\rm T})$$

Thus, the system of beliefs

must be
$$\mu_S = 0.8, \mu_T \ge 0.4$$

- NE2: (SS, DC). It might seem strange, but
 Brian is still playing rationally, since he is still declining Zöe's invitation in reality
- But now, Brian plans to accept if A trashes her
 - Why? This must be supported by a different system of beliefs, namely $\mu_S = 0.8$, $\mu_T \le 0.4$
- □ You see that PBE1 or PBE2 (full described) are NE1 or NE2 + the values of the beliefs!

- **NE3:** (**TT, CD**). Analogous to before but now $\mu_S \le 0.4$, $\mu_T = 0.8$ (same numbers for B)
 - Still means that Brian declines, but if Ann becomes silent and if Brian believes that Ann is not likely to be jealous, he will accept
- **NE4:** (**TT,** ½ **CD+**½**DD**). Also pooling for A, but weirder: B indifferent between CD DD

CD Brian DD

Ann TT

0.6, 1.6	1.4,0
1,0	1,0

Follows from mixing these strategies

- □ **NE4:** (**TT**, ½ **CD**+½ **DD**): B's belief when signal is T is still $\mu_T = 0.8$ (the prior)
 - While μ_s is off the equilibrium path, but we can manipulate the beliefs so that ½**C**+½**D** is sustainable: indifference theorem!

- Payoff of D is O A reglie S
- □ Payoff of C is $-3 \mu_S + 2(1-\mu_S)$
- □ Hence $\mu_S = 0.4$
- □ So, $\mu_S = 0.4$, $\mu_T = 0.8$

- There is actually more to say for PBE4
 - one may get the wrong impression that a belief $\mu_s = 0.4$ sustains any mixture CD / DD
 - WRONG! See for example that (TT,DD) is not a BNE: incentive for A to deviate and be silent
- □ In reality, <u>PBE4 = infinitely many PBEs</u> where:
 - A chooses T
 - \blacksquare B uses the prior $\mu_T = 0.8$ and replies with **D**
 - off the equilibrium path, B believes $\mu_s = 0.4$ and plays a mixture $q \mathbf{C} + (1-q) \mathbf{D}$ where $q \ge 0.5$

$$q(-3.0.4+2.0.6) = (1-q).0 \Rightarrow \sim 0$$

$$q(-6\mu_s - 1(1-\mu_s)) + (1-q).3 = -3q+3-3q=3-6q>0 \Rightarrow q<0.5$$
Leonardo Badia – leonardo.badia@gmail.com

- □ Finally, **NE5:** (1/6SS + 5/6 TS, 2/9CD + 7/9DD)
- This can be a nice semi-separating PBE
 - A is always silent when easygoing but can become talkative when she is jealous
 - This is because she believes that B can sometimes choose C if she is silent too often
 - The description is very sensible but...what about the system of belief? It is actually more complex and requires Bayes' rule to be used non-trivially

System of beliefs for PBE5

- □ Easy part: $\mu_{\text{T}} = 1$
 - since only jealous Ann plays T, to which Brian responds by playing D (highlighted in red)
 - note that Brian plays D even when easygoing
 Ann plays T (which she never does)

(1/6\$\frac{1}{2} + 5/6 \text{ TS}, 2/9\text{1D} + 7/9\text{1D})

quondo franquila Leonardo Badia – leonardo.badia@gmail.com

System of beliefs for PBE5

- What about µ_s? Depending on it, Brian may prefer C or D. And to play a mixed strategy, he must be **indifferent** between them!
- □ We know this needs $\mu_s = 0.4$ (not the prior!)
 - i.e. easygoing-A playsS more often than jealous-A
 - we <u>actually know</u> that easygoing-A always plays S
 - we check for the probability that jealous-A plays S: Bayes!

Applying Bayes' rule to PBE5

□ Denote with q (or 1-q) the probability that jealous-A plays S (or T, respectively)

Remember:

$$\mu_{S} = P[\text{jealous}|S] = \frac{P[S,\text{jealous}]}{P[S] = P[S,\text{jealous}]} = \frac{p q}{p q + (1-p)}$$

- □ Solving for p=0.8, $\mu_s=0.4$ gives: q=1/6 which is the series of the series of
 - consistent with what we found earlier

Checking consistency for PBE5

- This justifies why A plays 1/6 SS + 5/6 TS
- But why does B play 2/9 CD + 7/9 DD ?
 - it means that <u>B always chooses D after T.</u>
 but takes a <u>mixed stance after observing S</u>
 - this is because it allows him to make jealous-A (who also plays a mixed strategy) to be indifferent between her options of S and T
 - with T. jealous-A gets 1 (since B responds with D)
 - with S, jealous-A gets -6 or 3 (for C or D, resp.)
 - □ hence $-6 P[C] + 3 (1-P[C]) = 1 \rightarrow P[C] = 2/9$