AVL Trees and 2-3 Trees

Agenda

- AVL Trees
- <u>2-3 Trees</u>
- Summary
- Exercises

AVL Trees

- A sorted binary tree
- The heights of two subtrees at any given node differ by at most 1

Adding Nodes, Left-Left Case

Right rotation rebalances the tree

Adding Nodes, Right-Right Case

Left rotation rebalances the tree

Left-Right Rotation

 A left rotation followed by a right rotation rebalances the tree if the new node is in the left child's right subtree

Deleting Nodes

• Use the same rotations

2-3 Trees

- Every internal node has either two or three children
- Nodes are called 2-nodes or 3-nodes
- Because every internal node has at least two children, a tree containing N nodes can have a height of at most log₂(N)

Finding Nodes

Search down the appropriate branch

Adding to a Full Node

Adding a value to a full node causes a node split

Adding Several Values

- Adding several values may cause many node splits
- 2-3 trees grow at the root

Deleting Values

- Replace with the rightmost descendant to the left
- Sometimes a node can borrow values from a sibling

Deleting Values (continued)

Sometimes two nodes must merge

Summary

- AVL Trees
- <u>2-3 Trees</u>

Exercises

- Chapter 11 Exercises 1 − 5.
- Read Essential Algorithms, 2e Chapter 11
 pages 359 366. (The rest of Chapter 11.)