Exemplo 3 [4.5]: Considere as transformações lineares $R: \mathbb{R}^3 \to \mathbb{R}^2$, $S: \mathbb{R}^2 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$, que possuem as representações matriciais

$$\mathbf{R} = m(R) = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix}, \quad \mathbf{S} = m(S) = \begin{bmatrix} -1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{e} \quad \mathbf{T} = m(T) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

em relação às bases canónicas $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$ e $E_2 = \{\vec{i}_1, \vec{j}_1\} = \{(1,0), (0,1)\}$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Seja ainda a base ordenada para \mathbb{R}^3

$$V = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \{(1,0,1), (1,1,0), (1,0,2)\}$$

Determine as seguintes representações matriciais:

- a) $\mathbf{R}_{V,E_2} = m(R)_{V,E_2}$, que representa R em relação às bases ordenadas V e E_2 .
- b) $\mathbf{S}_{\mathsf{E}_2,\mathsf{V}} = m(S)_{\mathsf{E}_2,\mathsf{V}}$, que representa S em relação às bases ordenadas E_2 e V
- c) $T_{V,E_3} = m(T)_{V,E_3}$, que representa T em relação às bases ordenadas V e E_3 .
- d) $T_{E_3,V} = m(T)_{E_3,V}$, que representa T em relação às bases ordenadas E_3 e V.
- e) $m(SR + T^2)_V$, que representa $SR + T^2$ em relação à *base ordenada* V e recorrendo às matrizes obtidas nas alíneas anteriores.
- f) $m(SR + T^2)_V$ a partir, neste caso, da sua representação matricial em relação à base canónica E_3 .

J.A.T.B. NAL-4.13

Solução:

a) A matriz $\mathbf{R}_{V,E_2} = m(R)_{V,E_2}$ é

$$\mathbf{R}_{V,E_2} = \mathbf{R} \ \mathbf{M}_{V \to E_3} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}_{V,E_2}$$

onde $M_{V \to E_3}$ é a matriz *mudança de base de* V *para* E_3 , definida por

$$\mathbf{M}_{V \to E_3} = \mathbf{E}_3^{-1} \ \mathbf{V} = \mathbf{I}_3 \ \mathbf{V} = \mathbf{V} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

b) A matriz $S_{E_2,V} = m(S)_{E_2,V}$ é

$$\mathbf{S}_{E_2,V} = (\mathbf{M}_{V \to E_3})^{-1} \mathbf{S} = \begin{bmatrix} -6 & -3 \\ 1 & 2 \\ 4 & 2 \end{bmatrix}_{E_2,V}$$

em que

$$(\mathbf{M}_{V \to E_3})^{-1} = \mathbf{V}^{-1} = \frac{1}{|\mathbf{V}|} [\mathbf{Cof} \ \mathbf{V}]^{\mathsf{T}} = \begin{bmatrix} 2 & -2 & -1 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

c) A matriz $T_{V,E_3} = m(T)_{V,E_3}$ é

$$T_{V,E_3} = T M_{V \to E_3} = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}_{V,E_3}$$

d) A matriz $T_{E_3,V} = m(T)_{E_3,V}$ é

$$T_{E_3,V} = (M_{V \to E_3})^{-1} T = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}_{E_3,V}$$

e) A matriz $m(SR + T^2)_V$ é

$$m(SR + T^{2})_{V} = m(SR)_{V} + m(T^{2})_{V} = \begin{bmatrix} 0 & -7 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 0 \end{bmatrix}_{V}$$

em que

$$m(SR)_{V} = \mathbf{S}_{E_{2},V} \ \mathbf{R}_{V,E_{2}} = \begin{bmatrix} 0 & -6 & 3 \\ 0 & 1 & 1 \\ 0 & 4 & -2 \end{bmatrix}_{V}$$

$$m(T^2)_{V} = T_{E_3,V} T_{V,E_3} = \begin{bmatrix} 0 & -1 & -1 \\ 2 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}_{V}$$

f) A representação matricial de $SR + T^2$ em relação à base canónica E_3 é

$$m(SR + T^2) = m(SR) + m(T^2) = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 3 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$

em que

$$m(SR) = \mathbf{S} \ \mathbf{R} = \begin{bmatrix} -2 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$m(T^2) = T T = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Assim, a matriz $m(SR+T^2)_V$ é obtida, neste caso, a partir da relação matricial

$$m(SR+T^2)_{V} = (\mathbf{M}_{V\to E_3})^{-1} m(SR+T^2) \mathbf{M}_{V\to E_3} = \begin{bmatrix} 0 & -7 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 0 \end{bmatrix}_{V}$$

J.A.T.B. NAL-4.16