

Wi-FIRE™ BoardReference Manual

Revised April 12, 2017
This manual applies to the Wi-FIRE rev. D

Выпуск продукции

Производственные платы Wi-FIRE производятся с использованием микрочипа PIC32MZ2048EFG100. Ранее в предсерийном выпуске Rev B и более ранних версиях используется микроконтроллер PIC32MZ2048ECG100. Микроконтроллеры с контактами, совместимы для соединения на борде, однако PIC32MZ2048EFG100 существенно улучшил АЦП, и есть сопроцессор FPU. Для большинства часть кода, записанного в подготовительный Wi-FIRE, будет работать без изменений на Rev C или более новых Wi-FIRE, за исключением АЦП. Ядро Digilent будет поддерживать любой МСU, даже в отношении новых АЦП, до тех пор, пока использовался API — интерфейс аппаратной абстракции Arduino - analogRead (); изменение исходного кода эскиза не требуется. Производство печатной платы идентично для Rev B и Rev C, за исключением издания с обозначением Rev C.

Платы Rev D теперь включают новый заголовок для отладки MIPS JTAG и iFlowtrace, а также некоторые изменения в оборудовании для поддержки этого соединителя. Большинство компонентов на плате остались прежними, хотя почти все издаваемые были изменены с Rev C.

Обзор

Wi-FIRE основан на популярной платформе аппаратного прототипирования с открытым исходным кодом Arduino™ и добавляет производительность микроконтроллера Microchip PIC32MZ. Wi-FIRE имеет WiFi MRF24 и SD-карту на плате, оба с выделенными сигналами SPI. Плата Wi-FIRE использует преимущества мощного PIC32MZ2048EFG микроконтроллер. Этот микроконтроллер оснащен 32-разрядным процессором MIPS M5150, работающим на частоте 200 МГц, 2 МБ флэш-память программ и 512 КБ оперативной памяти. Wi-FIRE может быть запрограммирован с помощью Arduino IDE с ядром Digilent. Он содержит все необходимое для начала разработки встроенных приложений. Wi-FIRE имеет интерфейс последовательного порта USB для подключения к Arduino IDE и может питаться через USB или от внешний источник питания. Кроме того, Wi-FIRE полностью совместим с усовершенствованной Microchip MPLAB®X IDE и работает со всеми совместимыми с MPLAB® X внутрисистемными программаторами/отладчиками, такими как Microchip PICkit ™ 3 или Digilent® chipKIT PGM. Wi-FIRE прост в использовании и подходит как для начинающих, так и для опытных пользователей экспериментируя с электроникой и встроенными системами управления.

The Wi-FIRE плата.

- Microchip® PIC32MZ2048EFG100 microcontroller (200 MHz 32-bit MIPS M5150, 2MB Flash, 512K RAM)
- Microchip MRF24WG0MA WiFi module
- Micro SD card connector
- USB 2.0 Hi-Speed OTG controller with A and micro-AB connectors
- 50 MHz SPI
- 43 available I/Opins
- Four user LEDs
- PC connection uses a USBA > micro B cable (not included)
- 12 analog inputs
- 3.3 V operating voltage
- 200MHz operating frequency
- 7 V to 15 V input voltage (recommended)
- 30 V input voltage (maximum)
- 0 V to 3.3 V analog input voltage range
- High efficiency, switching 3.3 V power supply providing low power operation

1 Wi-FIRE Обзор оборудования

Wi-FIRE имеет следующие аппаратные функции:

Вызывать	Описание компонента	Вызывать	Описание компонента
1	IC3 – Microchip MRF24WG0MA WiFi Module	15	JP8 – Host USB Bus Power Enable
2	Пользовательские кнопки	16	JP7 – USB Overcurrent Detect
3	JP1 - Разъем для инструмента отладки микрочипа	17	J8 – Аналоговые и цифровые выходы
4	J6- I ² C Сигналы	18	JP9 – 3.3 V / 5.0 V Выбор напряжения(выход)
5	ВТN3- Сброс	19	J5 – Разъем питания(выход)
6	JP2 - Сброс Отключить	20	J17 – 5.0 V Конфигурация регулятора
7	J7- Разъем цифрового сигнала	21	J16 – Выбор питания
8	PIC32 Microcontroller	22	J13- Micro SD Разъем
9	Потенциометр	23	J15 – Разъем внешнего питания
10	J10 – Разъем цифрового сигнала	24	J14 – Разъем внешнего питания
11	Пользовательские LEDs	25	J4- USB-UART Сигналы установления связи
12	JP6 – USB Host or OTG Select	26	J1 - USB разъем для последовательного USB- конвертера
13	J9 – SPI Соединение	27	Последовательная связь LEDs
14	J12 – USB Соединение		

Таблица 1. Описание оборудования..

2 Arduino IDE и последовательная связь USB

Плата Wi-FIRE предназначена для использования с Arduino IDE с ядром Digilent. Пользователи могут узнать, как загрузить Digilent Core для Arduino IDE из нашего руководства здесь.

В среде Arduino IDE используется порт последовательной связи для связи с загрузчиком, работающим на плате Wi-FIRE. Последовательный порт на плате Wi-FIRE реализован с использованием последовательного USB-конвертера FTDI FT232RQ. Прежде чем пытаться использовать Arduino IDE для связи с Wi-FIRE, необходимо установить соответствующий драйвер USB-устройства; при подключении Wi-FIRE на компьютере с Windows соответствующий драйвер должен быть установлен автоматически.

Ha плате Wi-FIRE используется стандартный разъем mini-USB. Как правило, кабель USB A-micro-B используется для подключения к USB-порту на ПК.

Когда Arduino IDE необходимо установить связь с платой Wi-FIRE, плата сбрасывается и запускается загрузчик. Затем Arduino IDE устанавливает связь с загрузчиком и загружает программу на плату.

чипе FT232RQ становится низким. Этот вывод подключен через конденсатор к выводу MCLR на микроконтроллере PIC32. При низком уровне линии MCLR микроконтроллер перезагружается, что возобновляет выполнение с загрузчиком.

Это действие автоматического сброса (при открытии последовательного соединения) может быть отключено. Чтобы отключить эту операцию, есть перемычка с надписью JP7, которую можно отключить. JP7 обычно закорочен, но если перемычка удалеа, операция автоматического сброса будет отключена.

Два красных светодиода (LD5 и LD6) будут мигать, когда данные отправляются или принимаются между Wi-FIRE и ПК через последовательное соединение.

3 Источник питания

Wi-FIRE предназначен для питания через USB (J1), от внешнего источника питания J15 (J14), или от гнезда USB OTG (J11-J12). Блок перемычек J16 используется для выбора источника питания. Напряжение питания, выбранное J16, подается на нерегулируемую шину питания, VU.

Чтобы использовать Wi-FIRE в качестве устройства USB с питанием от последовательного интерфейса USB (J1), установите перемычку в положение UART блока перемычек J16. Чтобы использовать Wi-FIRE от внешнего источника питания, подключите источник питания к J15 или J14 и установите перемычку в положение EXT на J16. Обязательно соблюдайте правильную полярность при подключении источника питания к J14, так как обратное подключение может повредить плату. Чтобы использовать Wi-FIRE как устройство с питанием от USB от разъема USB OTG (J11-J12), поместите перемычку в положение USB на J16. Обычно это делается только при запуске эскиза на плате, которая программирует его для работы в качестве устройства USB. Блок питания в Wi-FIRE обеспечивает два источника напряжения, 3,3 В и 5 В. Все системы на самой плате Wi-FIRE работают при напряжении 3,3 В и питаются от источника 3,3 В. Источник 5 В используется для подачи питания на внешние цепи, такие как shield, для работы которых требуется 5 В, и для питания USB 5,0 В, когда Wi-FIRE используется в качестве хоста USB. Источник 5 В может быть полностью отключен, если он не нужен для данного применения.

При использовании shield, разъем подает питание на shield. Контакт 8 разъема J5 обеспечивает VIN, подаваемый внешним источником питания J15 или J14. Если на J15 или J14 не подается питание, VIN не будет включен. Для большинства shield контакт 5 на разъеме J5 будет обеспечивать 5,0 В для shield; тем не менее, Wi-FIRE не допускает 5 В, и для shield было бы очень легко уничтожить вход, если на PIC32MZ подано 5,0 В. По этой причине был добавлен JP1 для контроля напряжения, подаваемого на источник 5 В экрана. По умолчанию JP9 загружен для подачи только 3,3 В на вывод 5,0 В, так что shield не получает 5 В и, таким образом, не может непреднамеренно подать 5,0 В на любой вход Wi-FiRE. Если для работы shield требуется 5,0 В, shield не будет работать, если подано 3,3 В; JP9 должен быть выбран для обеспечения 5,0 В для работы shield. Однако следует соблюдать крайнюю осторожность при выборе 5,0 В на JP9, чтобы shield наблюдал IOREF и не подавал 5,0 В на какой-либо вход Wi-FIRE; так как это повредит вход на PIC32MZ на Wi-FIRE.

энергии аккумулятора; для источника питания 3,3В используется стабилизатор напряжения с переключением режимов. Этот регулятор режима переключения состоит из микросхемы МСР16301 и связанной схемы. Он может работать при входных напряжениях от 4 до 30В с КПД до 96% и рассчитан на общий выходной ток 600мА. МСР16301 имеет внутреннюю защиту от короткого замыкания и тепловую защиту. Регулятор 3,3В получает свой сигнал от нерегулируемой шины питания, VU, и выдает его на шину питания VCC3V3. Шина VCC3V3 обеспечивает питание для всех встроенных систем и доступна через разъем питания экрана (J9), чтобы подавать питание 3,3В на внешние схемы, такие как экраны.

Секция 5В регулятора обеспечивает линейный регулятор с малым падением напряжения. Регулятор 5.0 предназначен для питания внешних цепей, которым требуется питание 5В, например, для обеспечения USB 5.0B, когда Wi-FIRE используется в качестве USB-хоста, или для подачи 5,0B на экран на J5 с выбранным JP9. 5,0B. Этот регулятор напряжения использует On Semiconductor NCP1117LP. NCP1117LP рассчитан на выходной ток 1А. Максимальное падение напряжения NCP1117LP составляет 1,4 В при выходном токе 1А. Максимальное входное напряжение NCP1117LP составляет 18В. Рекомендуемое максимальное рабочее напряжение составляет 15В. Однако, если регулятор 5,0B полностью отключается путем удаления всех перемычек на J17, внешнее входное напряжение, подаваемое на J15 или J14, может быть таким же высоким. как 30В, ограниченный переключателем режима 3.3В регулятора.

Входное напряжение для регулятора 5В берется с шины VU, а выход подается на шину питания VCC5V0. В цепи внешнего источника питания имеется защитный диод обратной полярности. Учитывая падение напряжения на диоде и прямое падение на регуляторе, минимальное входное напряжение на регуляторе должно составлять 7В для получения надежного выхода 5В.

При входном напряжении выше 9 В регулятор будет сильно нагреваться при подаче больших токов. NCP1117LP имеет защиту от короткого замыкания на выходе, а также внутреннюю тепловую защиту и автоматически отключается для предотвращения повреждения.

Выбор регулятора 5 В на J15 обеспечивает четыре конфигурации питания 5В:

- 1) Регулятор 5В полностью отключен и нет питания 5В;
- Обход 5В регулятора и 5В от внешнего источника 5В, такого как USВ;
- 3) встроенный регулятор 5В для подачи питания 5В;
- Внешний регулятор 5В используется для регулирования VU и подачи питания 5В.

Блок перемычек J17 используется для выбора этих различных опций, и на следующих схемах описывается использование J16. Эта диаграмма показывает расположение сигналов на J17:

Signals	Description
LDO In	Вход на бортовой линейный регулятор.

LDO Out	Выход из бортового регулятора.
VU	Нерегулируемое входное напряжение выбирается блоком перемычек для установки перемычки J16.
5V0	Подключение к шине питания VCC5V0 на плате Wi-FIRE.
EN Ext	Предусмотрен сигнал для включения внешнего регулятора напряжения, если он используется. Это позволило бы программе, работающей на Wi-FIRE, включить/выключить внешний регулятор напряжения. При использовании с внешним стабилизатором напряжения это позволяет плате переходить в режим работы с очень низким энергопотреблением. Этот сигнал подключен к порту D, bit13 (RD13) на микроконтроллере PIC32. это доступно с помощью цифрового контакта 40.
GND	Connection to the digital ground bus on the Wi-FIRE board.

Таблица 2. Описание сигналов Ј17

Чтобы полностью отключить работу встроенного линейного регулятора, удалите все блоки замыкания из J17. Чтобы использовать встроенный регулятор 5B, используйте прилагаемые перемычки для подключения VU к входу LDO и для подключения выхода LDO к 5V0 следующим образом:

Примечание: В этом случае, когда J16 находится в положении EXT, а J17 перемешан для регулирования внешнего входа, не подайте более 18 В. Это может привести к повреждению регулятора 5,0В.

Чтобы обойти встроенный регулятор 5В при питании платы от внешнего источника питания 5В, такого как USB, используйте один из предоставленных перемычку для подключения VU к 5V0, как указано ниже:

Можно использовать внешний регулятор 5В. Это было бы желательно, например, при работе от батарей. Для обеспечения более высокого КПД по сравнению с встроенным линейным стабилизатором можно использовать внешний регулятор режима переключения 5В. В этом случае используйте соответствующие провода для подключения VU к нерегулируемому входу внешнего регулятора. Подключите регулируемый выход 5В к 5V0. Подключите GND к заземлению внешнего регулятора. При желании подключите EN Ext к включенному управлению входом внешнего регулятора, если он доступен. Это позволяет отключить внешний регулятор для работы с низким энергопотреблением. Цифровой

контакт 50 затем используется для включения/выключения внешнего регулятора.

Микроконтроллер PIC32MZ рассчитан на использование тока максимум 60 мА при работе на частоте 200 МГц. Модуль WiFi MRF24WG0MA обычно потребляет максимум 237 мА при передаче. Это позволяет приблизительно 303 мА тока питать оставшиеся 3,3 В схемы на плате Wi-FIRE, а внешние цепи - от шины VCC3V3. Никакая схема на плате Wi-FIRE не запитывается от шины питания VCC5V0, в результате чего весь ток, доступный от регулятора 5 В для питания внешних цепей, и шины питания USB 5,0 В, когда Wi-FIRE используется в качестве хоста USB.

Разъем POWER (J5) используется для питания shields, подключенных к плате Wi-FIRE. Pin 1 не подключен, на этом разъеме предусмотрены следующие контакты:

- **IOREF** (pin 2): Этот вывод связан с шиной VCC3V3.
- **RST** (pin 3): Он подключается к выводу MCLR на микроконтроллере PIC32 и может использоваться для сброса PIC32.
- **3V3** (pin 4): Это направляет шину питания 3,3 В к shields.
- 5V0 (pin 5): Это направляет 3,3 В или 5,0 В на экраны в зависимости от положения JP9.
- **GND** (pin 6, 7): Это обеспечивает общее заземление между Wi-FIRE и shields. Это общее заземление также доступно на разъеме J2 и J3.
- VIN (ріп 8): Это подключается к напряжению, подаваемому на разъемы внешнего источника питания (J14 и J15). Это может быть использовано для подачи нерегулируемой входной мощности на экран. Его также можно использовать для питания платы Wi-FIRE от shield, а не от внешнего разъема питания. Если на J14, J15 или на экран не подается питание, VIN не будет на него подаваться.

4 5 V Совместимость

Микроконтроллер PIC32 работает при напряжении 3,3B. Оригинальные платы Arduino работают при 5B, как и многие шилды Arduino.

При работе с 5В совместимостью для логики 3,3В необходимо учитывать две проблемы. Первый - защита входов 3,3В от повреждений, вызванных сигналами 5В. Во-вторых, достаточно ли высокое выходное напряжение 3,3В для распознавания входным сигналом 5В в качестве логического высокого значения.

Цифровые выводы ввода/вывода на микроконтроллере PIC32 допускают 5В. В то время как аналоговые выводы ввода/вывода не допускают 5В. На PIC32MZ имеется 48 аналоговых выводов ввода/вывода, и это относится к большинству выводов GPIO на процессоре. Исторически зажимные диоды и ограничивающие ток резисторы использовались для защиты аналоговых входов/выходов от повреждений, но из-за большого количества аналоговых входов и выходов и потому, что зажимные диоды и резисторы будут ограничивать максимальную скорость, с которой эти входы/выходы будет работать, было решено, что Wi-FIRE не будет терпимым 5 В. Вместо этого был добавлен JP5, чтобы

обеспечить возможность выбора шины 5V0 для экрана между 3,3 В или 5,0 В. Если выбрано 5,0 В, следует соблюдать особую осторожность, чтобы убедиться, что входной сигнал для PIC32MZ не превышает 3,6 В, поскольку это повредит PIC32MZ.

Минимальное высоковольтное выходное напряжение микроконтроллера PIC32 рассчитано на 2,4В при подаче тока 12мА. При управлении входом с высоким импедансом (типичным для логики CMOS) выходное высокое напряжение будет близко к 3,3В. Некоторые устройства на 5В будут распознавать это напряжение как вход с высоким логическим входом, а некоторые не будут. Многие логические устройства 5В будут надежно работать с входами 3,3В.

5 Вход / Выход конфигурации

Плата Wi-FIRE обеспечивает 43 контакта ввода-вывода микроконтроллера PIC32 на контактах разъемов ввода / вывода Ј6, J7, J8, J9 и J10.

Микроконтроллер PIC32 может выдавать или поглощать максимум 15 мА на всех выводах цифрового ввода/вывода; тем не менее, некоторые контакты могут иметь выдать или поглотить 25мА или даже 33мА, обратитесь к таблице PIC32MZ для получения дополнительной информации. Чтобы поддерживать выходное напряжение в указанном диапазоне выходного напряжения (VOL 0,4B, VOH 2,4B), ток на контактах должен быть ограничен до +/-10мА на контактах 15мА, или для контактов с более высоким током проверьте таблицу данных PIC32MZ для максимальных токов. Максимальный ток, который можно получить или пропустить через все контакты ввода/вывода, составляет +/-150мА. Максимальное напряжение, которое может быть приложено к любому выводу ввода/вывода, составляет 3,6B. Более подробные технические характеристики см. в техническом описании PIC32MZ, доступном по адресу http://www.microchip.com.

Система Arduino использует логические номера контактов для идентификации цифровых выводов ввода/вывода на разъемах. Номера логических выводов для входов/выходов на Wi-FIRE – 0-42. Эти номера выводов обозначены на плате. Дополнительные контакты 43-70 обеспечивают доступ к встроенным компонентам, таким как USB, радио MRF24, пользовательские светодиоды и т.д.

Контакты 0-7 и 26-33 доступны в заголовке J10 на наружном и внутреннем ряду контактов соответственно. Контакты 8-13 и 34-41 доступны в заголовке J7 на наружном и внутреннем ряду контактов соответственно. Контакт 42 также доступен на внешнем контакте, обозначенном «А» на плате в заголовке J7; это, как правило, для опорного напряжения для АЦП микроконтроллеров, но он также может быть использован в качестве цифрового штифта ввода/вывода.

Выводы аналогового входа от A0 до A12 доступны в заголовке J8 с A0-A5 на внешнем ряду выводов и A6-A12 на внутреннем ряду выводов. Контакты на разъеме J8 могут также использоваться как цифровые контакты, а не просто как аналоговые контакты 14-25 с 14-19 на внешнем ряду контактов и 20-25 на внутреннем ряду контактов.

В дополнение к контакту разъема на заголовке J7, контакт 13 также подключается к пользовательскому светодиоду LD1. Контакты 43, 44 и 45 подключаются к пользовательским индикаторам LD2, LD3 и LD4, но не подключаются к каким-либо разъемам. Контакты 46 и 47 подключаются к кнопкам BTN1 и BTN2 и не подключаются к каким-либо разъемам.

6 **802.11b/g Интерфейс**

Wi-Fi-интерфейс, совместимый с 802.11b / g, предоставляется модулем WiFi Microchip MRF24WG0MA. Этот модуль предоставляет радиопередатчик, антенну и совместимое с 802.11 сетевое программное обеспечение.

Микроконтроллер MRF24WG0MA обеспечивает поддержку программного обеспечения сетевого протокола 802.11. Библиотеки DEIPcK и DEWFcK обеспечивают поддержку сетевого протокола TCP / IP, которая работает с поддержкой протокола 802.11, предоставляемой модулем WiFi.

Основным интерфейсом связи с WiFi-модулем MRF24WG0MA является 4-проводная шина SPI. Эта шина SPI использует SPI4 в микроконтроллере PIC32, и этот контроллер SPI предназначен для связи с модулем WiFi.

Модуль WiFi поддерживает тактовые частоты SPI до 25 МГц. В дополнение к интерфейсу SPI, интерфейс к модулю WiFi также включает в себя сигнал сброса, сигнал прерывания и сигнал гибернации. Активный сигнал низкого CБРОСА используется для сброса модуля WiFi. Внешний сигнал прерывания, INT, используется модулем, чтобы сообщить хост-микроконтроллеру о необходимости его обслуживания программным обеспечением микроконтроллера. Сигнал INT на модуле WiFi подключается к внешнему прерыванию INT4 на микроконтроллере PIC32 и не направляется на какой-либо разъем. Активный сигнал низкого уровня HIBERNATE используется для отключения модуля WiFi и перевода его в состояние низкого энергопотребления.

Интерфейсные сигналы к модулю WiFi контролируются сетевыми библиотеками и, как правило, не доступны по эскизу пользователя. Обратитесь к схеме для платы Wi-FIRE для получения подробной информации об этих соединениях.

Более подробную информацию о работе MRF24WG0MA можно получить из паспорта производителя, доступного по адресу http://www.microchip.com.

7 Сетевое программное обеспечение для библиотек

Модуль Wi-Fi на Wi-FIRE предназначен для использования с сетевыми библиотеками Digilent Embedded, DEIPcK и DEWFcK. Библиотека DEIPcK обеспечивает поддержку протокола TCP / UDP / IP для всех совместимых сетевых интерфейсов, поддерживаемых продуктами Digilent, включая Wi-FIRE. Библиотека DEWFcK обеспечивает дополнительную поддержку библиотеки, необходимую для подключения и

работы с модулями беспроводной сети Microchip MRF24WG0MA. Следует соблюдать осторожность при понимании того, что библиотека DEIPcK отличается от сетевых библиотек DNETcK. DEIPcK – это IP-стек Digilent Embedded с открытым исходным кодом, который поддерживает процессорные линии MX и MZ, а IP-стек DNETcK построен поверх проприетарного стека Microchip MLA и поддерживает только линейку процессоров MX и не будет работать с Wi-FiRE.

Библиотека DEWFcK поддерживает модуль WiFi MRF24WG0MA, загруженный по Wi-FIRE. Правильный файл заголовка должен использоваться для указания сетевого оборудования, используемого эскизом. При написании сетевого эскиза на Wi-FIRE используйте следующую аппаратную библиотеку:

#include <MRF24G.h>

Сетевые библиотеки Digilent Embedded доступны как часть загрузки ядра Digilent (Arduino IDE) в нашем руководстве по установке Digilent Core. Если вы ранее установили Digilent Network Stack как стороннюю библиотеку, вам нужно будет удалить сетевые библиотеки из вашего подкаталога sketchbook\library стороннего производителя и использовать библиотеку, установленную с Digilent Core (Arduino IDE). Наличие обеих библиотек приведет к ошибкам времени компиляции.

Существуют справочные примеры, демонстрирующие использование этих библиотек как часть кода примеров, загруженного с ядром Digilent (Arduino IDE).

8 USB Интерфейс

Микроконтроллер PIC32MZ на Wi-FIRE содержит USB 2.0-совместимый, Hi/Full-Speed прибор и контроллер On-The-Go (OTG). Этот контроллер предоставляет следующие функции:

- USB Hi или Full speed host и поддержка устройств.
- Низкая скорость поддержки хоста.
- Поддержка USB OTG.
- Буферизация конечной точки в любом месте системной памяти.
- Интегрированный DMA для доступа к системной памяти и флэш-памяти

С Разъем J12 представляет собой стандартную розетку USB типа A. Этот разъем будет использоваться, когда Wi-FIRE запрограммирован для работы в качестве встроенного хоста USB. Устройство USB подключается либо напрямую к Wi-FIRE, либо через кабель к этому разъему.

Разъем J11, расположенный внизу платы, является разъемом Device/OTG. Это стандартный USB-разъем micro-AB. Подключите кабель с разъемом micro-A (опционально доступен от Digilent) к этому разъему к доступному USB-порту на ПК или USB-концентраторе для работы устройства.

Спецификация USB допускает два типа устройств в зависимости от их питания: устройства с автономным питанием и устройства с питанием от шины. Устройство с автономным питанием — это устройство, которое питается от отдельного источника питания и не получает питание от шины USB. Устройство с питанием от шины — это устройство, которое получает питание от шины USB и не имеет

отдельного источника питания. Wi-FIRE может работать как устройство с автономным питанием или как устройство с питанием от шины либо через последовательный USB-разъем (J1), либо через USB-разъем ОТС / устройства (J11).

Для работы в качестве устройства с автономным питанием поместите перемычку в положение EXT на J16 и подключите подходящий внешний источник питания к J14 или J15.

Чтобы использовать Wi-FIRE как устройство с питанием от шины, питаемое от последовательного USBразъема (J1), установите перемычку в положение UART на J16. Чтобы работать как устройство с питанием от шины, питаемое от разъема OTG / устройства (J12), установите перемычку в положение USB на J16.

Обратите внимание, что на плате Wi-FIRE есть два совершенно независимых интерфейса USB, и Wi-FIRE может отображаться как два разных устройства USB одновременно. Эти два устройства могут быть подключены к двум разным USB-портам на одном хосте или к USB-портам на двух разных хостах. Если плата Wi-FIRE подключена к двум различным USB-хостам одновременно, между этими двумя хостами будет общее заземление через плату Wi-FIRE. В этом случае ток заземления может протекать через плату Wi-FIRE, что может повредить один или другой хост USB, если они не имеют общего заземления.

Когда Wi-FIRE работает как устройство с питанием от шины, используя разъем USB J1, он будет отображаться как устройство с автономным питанием с точки зрения хоста USB, подключенного к J11. Аналогично, при работе в качестве устройства с питанием от шины от разъема J11 оно будет выглядеть как устройство с автономным питанием с точки зрения разъема J1.

Ожидается, что USB-хост сможет обеспечивать питание шины для подключенных к нему USB-устройств. Поэтому при работе в качестве USB-хоста Wi-FIRE обычно должен получать питание от внешнего источника. Подключите источник питания к разъему внешнего источника питания, J17. Wi-FIRE можно использовать в качестве USB-хоста с питанием от USB-разъема J1; однако в этом случае USB-порт хоста будет обеспечивать питание для Wi-FIRE, а также для устройства USB, подключенного к Wi-FIRE. В этом случае убедитесь, что общая нагрузка не превышает максимальную нагрузку 500мА, которую USB-устройство может представить хосту.

USB-хост обеспечивает регулируемое напряжение 5 В для подключенного USB-устройства. Внутренний регулятор LDO 5В может использоваться для обеспечения питания USB при работе от внешнего источника питания. Поместите перемычку на блок перемычек J17, как описано выше в разделе источника питания.

Если используемый внешний источник питания является регулируемым источником питания 5B, поместите перемычку между контактами VU и 5V0 на разъеме J17, как описано выше в разделе источника питания, чтобы обойти встроенный регулятор 5,0B.

Используемый источник питания должен обеспечивать достаточный ток для питания как Wi-FIRE, так и подключенного USB-устройства, поскольку Wi-FIRE обеспечивает питание подключенного USB-

устройства при работе в качестве хоста. Спецификация USB 2.0 требует, чтобы хост предоставил устройству не менее 100 мА.

Перемычка JP6 используется для обеспечения требуемой емкости хоста USB для используемого разъема хоста. Установите перемычку в положение «А» при использовании стандартного USB-разъема типа A (хост) (J12). Установите перемычку в положение «АВ» для использования с разъемом USB micro-AB (OTG) (J11).

При коротком замыкании JP8 вывод Digilent 25 управляет входом включения переключателя распределения питания с ограничением тока TPS2051B для подачи питания 5B USB на хост-разъем. Этот переключатель имеет функцию обнаружения перегрузки по току и обеспечивает индикацию перегрузки по току, потянув сигнал USBOC низкий. Выходной контакт перегрузки по току может контролироваться через контакт 8 Digilent (RA14 / INT3), когда короткое замыкание JP7. Подробную информацию о работе TPS2051B можно получить из техпаспорта, доступного на www.ti.com.

При использовании Wi-FIRE вне среды Arduino IDE библиотека Microchip Harmony предоставляет код стека USB, который можно использовать с платой. На веб-сайте Microchip доступны эталонные схемы, демонстрирующие работу микроконтроллеров PIC32 как на устройстве, так и на хосте. Эти эталонные конструкции могут быть изменены для разработки прошивки USB для Wi-FIRE.

9 SD Card Интерфейс

Разъем карты памяти micro-SD обеспечивает возможность доступа к данным, хранящимся на картах флэш-памяти размера micro-SD, с использованием библиотеки карт памяти SD, входящей в состав программной системы Arduino IDE.

Доступ к SD-карте осуществляется через интерфейс SPI на выводах микроконтроллера PIC32, предназначенных для этой цели. В библиотеке Arduino IDE SD для реализации обмена данными с SD-картой используется программная реализация SPI с «побитовой передачей». Тем не менее, программное обеспечение может быть написано для доступа к SD-карте с помощью SPI3.

На плате Wi-FIRE контакты SPI3 и I/O, используемые для связи с SD-картой, предназначены для этой функции и не используются совместно с другими пользователями.

10 Переферийные функции ввода/вывода

Микроконтроллер PIC32 на плате Wi-FIRE обеспечивает ряд периферийных функций. Предоставленные периферийные устройства описаны в следующих разделах.

10.1 UART Ports

UART 4: асинхронный последовательный порт. Pin 0 (RX), Pin 1 (TX). Доступ к нему осуществляется с помощью объекта времени выполнения: Serial. Эти контакты подключены к разъему ввода/вывода J10, а также к последовательному преобразователю FT232RQ USB. Эти контакты можно использовать для подключения к внешнему последовательному устройству, если не используется последовательный

интерфейс FT232RQ USB. При этом используется UART4 (U4RX, U4TX) на микроконтроллере PIC32.

UART 1: асинхронный последовательный порт. Pin 39 (RX), Pin 40 (TX). Доступ к нему осуществляется с помощью объекта времени выполнения: Serial1. При этом используется UART1 (U1RX, U1TX) на микроконтроллере PIC32.

10.2 SPI

Синхронный последовательный порт. Pin 10 (SS), Pin 11 (MOSI), Pin 12 (MISO), Pin 13 (SCK). Доступ к нему можно получить с помощью стандартной библиотеки SPI. Доступ к нему также можно получить с помощью объекта DSPI0 из стандартной библиотеки DSPI. Для этого используется SPI2 (SS2, SDI2, SDO2, SCK2) на микроконтроллере PIC32. Эти сигналы также появляются на разъеме J7. Имейте в виду, что контакт 13 (SCK) используется совместно с USER LED1, и что одновременно не могут использоваться и LED1, и порт SPI.

SPI1: синхронный последовательный порт. Это дополнительный интерфейс SPI на микроконтроллере PIC32, который можно оценить с помощью объекта DSPI1 из стандартной библиотеки DSPI. Доступ к SS1 осуществляется через цифровой вывод 7. Доступ к SDO1 осуществляется через цифровой вывод 35. Доступ к SDI1 осуществляется через цифровой вывод 36. SCK1 подключается к цифровому выводу 5.

10.3 I²C

Синхронный последовательный интерфейс. Микроконтроллер PIC32 совместно использует аналоговые контакты A4 и A5 с двумя сигналами I^2 C, SDA и SCL. Это использует I2C4 (SDA4, SCL4) на микроконтроллере PIC32. Оба SDA4 и SCL4 доступны через разъем J6.

Примечание: шина I²C использует драйверы с открытым коллектором, чтобы позволить нескольким устройствам управлять сигналами шины. Это означает, что должны быть предусмотрены внешние подтягивающие резисторы для обеспечения высокого логического состояния для сигналов.

10.4 PWM

Выход с широтно-импульсной модуляцией; Pin 3 (OC1), 5 (OC2), 6 (OC3), 9 (OC4), 10 (OC9) и 11 (OC7). Доступ к ним можно получить с помощью функции времени выполнения analogWrite ().

10.5 Внешние Прерывания

Pin 3 (INT0), Pin 2 (INT1), Pin 7 (INT2), Pin 8 (INT3), Pin 59 (INT4). Обратите внимание, что номера контактов для INT0 и INT4 отличаются от номеров на некоторых других платах chipKIT. INT4 предназначен для использования с модулем WiFi MRF24WG0MA и является не выведен на контактный pin.

10.6 Пользовательские LED

Pin 13 (LD1), Pin 43 (LD2), Pin 44 (LD3), Pin 45 (LD4). Pin 13 является общим для контакта разъема и светодиода. Pin 43, 44 и 45 идут только на светодиод и не выводятся ни на один из разъемов. Нажатие кнопки HIGH включает светодиод, а движение LOW - выключает его.

10.7 Пользовательские кнопки

Есть два кнопочных переключателя, которые обозначены BTN1 (Pin 46) и BTN2 (Pin 47). Функция digitalRead () вернется LOW, если кнопка нажата, и HIGH, когда кнопка нажата.

10.8 A/D Converter Reference

Помечен буквой А, крайний левый внешний контакт на разъеме J7. Это используется для обеспечения внешнего опорного напряжения, чтобы определить диапазон входного напряжения аналоговых выводов. Максимальное напряжение, которое может быть приложено к этому выводу, составляет 3,3 В. Этот вывод также можно использовать как цифровой вывод 42.

10.9 Potentiometer

На плате предусмотрен потенциометр для использования в качестве источника аналогового сигнала или аналогового управляющего входа. Он представляет собой триммерный порт 10 кОм, подключенный между источником питания VCC3V3 и землей. Выход подключен к аналоговому входу A12 или к контакту chipKIT 48. Индикатор считывается с помощью функции analogRead ().

10.10 VU Voltage Monitor

Напряжение питания, обеспечиваемое J16, может контролироваться на аналоговом входе A13 или цифровом выводе 49. Напряжение, подаваемое на аналоговый вход, составляет 1/11 от фактического напряжения VU. Это позволяет контролировать напряжение питания от 2,2 В до 30 В и все еще находиться в диапазоне от 0 до 3,3 В на аналоговом входе. Выполняя аналог READ (49), можно контролировать напряжение питания.

10.11 RTCC

Календарь часов реального времени. Микроконтроллер PIC32 содержит схему RTCC, которую можно использовать для хранения информации о времени и дате. Для работы RTCC требуется источник частоты 32,768 кГц. Crystal X2 (не загружен), чуть выше и справа от микроконтроллера PIC32, предназначен для пайки часового кристалла 32 кГц. Здесь можно использовать кристалл Citizen CFS206-32,768KDZF-UB.

ОБНОВЛЕНИЕ: В настоящее время процессор PIC32MZ не поддерживает кристаллы в качестве источника вторичных тактовых импульсов, поэтому необходимо использовать генератор. Ненагруженная схема, как предусмотрено, не может быть использована для источника RTCC.

10.12 RESET

Микроконтроллер PIC32 сбрасывается, устанавливая низкий уровень на выводе MCLR. Вывод MCLR подключен к выводу RST, как показано на J5.

Как описано выше, сброс микроконтроллера PIC32 может быть инициирован последовательным преобразователем USB. Последовательный USB-преобразователь устанавливает низкий уровень на выводе DTR для сброса микроконтроллера. Перемычка JP2 может использоваться для включения / выключения возможности последовательного преобразователя USB инициировать сброс.

RST подключен к контакту 3 разъема J5. Это позволяет схемам на экране выполнить сброс микроконтроллера или обеспечить сброс схем на экране одновременно с микроконтроллером.

Разъем J9 обеспечивает доступ к шине SPI. Контакт 5 обеспечивает доступ к сигналу выбора ведомого SPI (SS).

На платах Arduino соответствующий разъем также используется в качестве разъема для системного программирования, а также обеспечивает доступ к некоторым сигналам SPI. На платах Arduino контакт 5 этого разъема подключен к сети сброса.

Некоторые shields Arduino, в первую очередь shields Ethernet, соединяют контакт 5 с сетью сброса на контакте 3 разъема J5. Это приводит к сбросу процессора каждый раз при попытке доступа к порту SPI. Перемычка JP5 может использоваться для разрыва соединения между контактом 5 J9 и сброса при использовании shields Arduino, которые делают это соединение. JP5 имеет режущий след на верхней части платы, который можно разрезать, чтобы разорвать связь между SPI SS и сбросом. JP5 не загружается на заводе. Чтобы восстановить соединение, припаяйте двухконтактный разъем в положении JP5 и установите закорачивающий блок.

Кнопка сброса находится справа от модуля MRF24WG0MA WiFi. Нажатие на эту кнопку сбрасывает микроконтроллер PIC32.

11 Microchip Development Tool Compatibility

В дополнение к использованию с MPIDE, плата Wi-FIRE может использоваться как более традиционная плата разработки микроконтроллеров с использованием инструментов разработки микрочипов.

Разгруженный разъем JP1 на правой стороне WiFi-модуля MRF24WG0MA используется для подключения к инструменту разработки микрочипа, например PICkit ™ 3. Отверстия для JP1 расположены в шахматном порядке, так что стандартный 100-миллиметровый 6-контактный разъем с разъемом может подходить к плате без необходимости пайки на месте. Можно использовать любой инструмент для разработки микрочипов, который поддерживает семейство микроконтроллеров PIC32MZ и может быть подключен через тот же 6-контактный интерфейс ICSP, что и PICkit ™ 3.

Как правило, стандартный JP-разъем и 6-контактный кабель используются с JP1, так что PICkit ™ 3 может быть подключен к плате Wi-FIRE.

Digilent chipKIT PGM также можно использовать вместо PICkit3 для программирования Wi-FIRE с помощью инструментов разработки микрочипов. ChipKIT PGM имеет меньший форм-фактор и не требует 6-контактного кабеля для подключения к JP1.

Microchip MPLAB X IDE может использоваться для программирования и отладки кода, работающего на плате Wi-FIRE. MPLAB X IDE можно загрузить с веб-сайта Microchip. Обратите внимание, что MPLAB®V8 и более ранние IDE от Microchip нельзя использовать с Wi-FIRE, так как эти версии MPLAB IDE не

Использование инструментов разработки микрочипов для программирования платы Wi-FIRE приведет к удалению загрузчика. Чтобы снова использовать плату с MPIDE, необходимо запрограммировать загрузчик обратно на плату. НЕХ-файл загрузчика можно найти на сайте www.digilentinc.com. Чтобы перепрограммировать загрузчик, используйте Microchip IPE, который поставляется с набором инструментов MPLAB X. Загрузчик не может быть легко перепрограммирован напрямую с помощью MPLAB X IDE.

12 Таблицы распиновки

В следующих таблицах показана взаимосвязь между цифровыми номерами выводов chipKIT, номерами выводов разъема и номерами выводов микроконтроллера.

В следующих таблицах столбцы, помеченные как номер контакта chipKIT, относятся к номеру цифрового контакта. Это значение, которое передается pinMode (), digitalRead (), digitalWrite () и другим функциям, которые ссылаются на вывод.

12.1 Таблица распиновок по цифровому номеру

ChipKIT Pin #	MCU Pin	Port Bit	PIC32 Signal Name	Function
0	57	RF02	EBIRDY3/RPF2/SDA3/RF2	GPIO, U4RX
1	58	RF08	EBIRDY2/RPF8/SCL3/RF8	GPIO, U4TX
2	18	RE08	AN25/AERXD0/RPE8/RE8	GPIO, IC1, INT1
3	71	RD00	EMDIO/AEMDIO/RPD0/RTCC/INT0/RD0	PWM 1, INT0, OC1
4	60	RA03	EBIRDY1/SDA2/RA3	GPIO
5	76	RD01	RPD1/SCK1/RD1	PWM 2, OC2
6	77	RD02	EBID14/ETXEN/RPD2/PMD14/RD2	PWM 3, OC3
7	19	RE09	AN26/AERXD1/RPE9/RE9	GPIO, IC2, INT2
8	66	RA14	AETXCLK/RPA14/SCL1/RA14	GPIO, IC3, INT3
9	78	RD03	EBID15/ETXCLK/RPD3/PMD15/RD3	PWM 4, OC4
10	16	RG09	EBIA2/AN11/C2INC/ERXCLK/EREFCLK/AERXCLK/AEREFCLK/RPG9/PMA2/RG9	SPI_SS2, PWM 5, OC9, IC6
11	70	RD11	EMDC/AEMDC/RPD11/RD11	SPI_SDO2/SDI2 PWM 6, OC7
12	85	RF00	EBID11/ETXD1/RPF0/PMD11/RF0	SPI_SDI2/SDO2, T5CK(+)
13	10	RG06	AN14/C1IND/ECOL/RPG6/SCK2/RG6	SPI_SCK2, USER LED1
14	20	RB05	AN45/C1INA/RPB5/RB5	AINO, GPIO
15	33	RB09	EBIA7/AN49/RPB9/PMA7/RB9	AIN1, GPIO

Digilent Pin #	MCU Pin	Port Bit	PIC32 Signal Name	Function
16	7	RC02	EBIA12/AN21/RPC2/PMA12/RC2	AIN2, GPIO
17	44	RB15	EBIA0/AN10/ERXD3/AETXD2/RPB15/OCFB/PMA0/RB 15	AIN3, GPIO
18	11	RG07	EBIA4/AN13/C1INC/ECRS/RPG7/SDA4/PMA4/RG7	AIN4, SDA
19	12	RG08	EBIA3/AN12/C2IND/ERXDV/ECRSDV/AERXDV/AECRSDV/RPG8/SCL4/PMA3/RG8	AIN5, SCL
20	22	RB03	AN3/C2INA/RPB3/RB3	AIN6, GPIO
21	23	RB02	AN2/C2INB/RPB2/RB2	AIN7, GPIO
22	21	RB04	AN4/C1INB/RB4	AIN8, GPIO
23	24	RB01	PGEC1/AN1/RPB1/RB1	AIN9, GPIO
24	32	RB08	EBIA10/AN48/RPB8/PMA10/RB8	AIN10, GPIO
25	25	RB00	PGED1/AN0/RPB0/RB0	AIN11, GPIO, P32_VBUSON
26	91	RE00	EBID0/PMD0/RE0	GPIO
27	94	RE01	EBID1/PMD1/RE1	GPIO
28	98	RE02	EBID2/PMD2/RE2	GPIO
29	99	RE03	EBID3/RPE3/PMD3/RE3	GPIO
30	100	RE04	EBID4/AN18/PMD4/RE4	GPIO
31	3	RE05	EBID5/AN17/RPE5/PMD5/RE5	GPIO
32	4	RE06	EBID6/AN16/PMD6/RE6	GPIO
33	5	RE07	EBID7/AN15/PMD7/RE7	GPIO
34	82	RD05	SQICS1/RPD5/RD5	GPIO, T4CK
35	6	RC01	EBIA6/AN22/RPC1/PMA6/RC1	GPIO, T2CK, IC7
36	86	RF01	EBID10/ETXD0/RPF1/PMD10/RF1	GPIO, T6CK
37	59	RA02	EBICS0/SCL2/RA2	GPIO
38	79	RD12	EBID12/ETXD2/RPD12/PMD12/RD12	GPIO, T3Ck
39	47	RD14	AN32/AETXD0/RPD14/RD14	GPIO, U1RX
40	48	RD15	AN33/AETXD1/RPD15/SCK6/RD15	GPIO, U1TX
41	28	RA09	VREF-/CVREF-/AN27/AERXD2/RA9	GPIO, VREF-
42	29	RA10	VREF+/CVREF+/AN28/AERXD3/RA10	VREF+
43	81	RD04	SQICS0/RPD4/RD4	USER_LED2
44	35	RB11	AN6/ERXERR/AETXERR/RB11	USER_LED3
45	1	RG15	AN23/AERXERR/RG15	USER_LED4
46	2	RA05	EBIA5/AN34/PMA5/RA5	BTN1
47	61	RA04	EBIA14/PMCS1/PMA14/RA4	BTN2
48	42	RB13	AN8/ERXD1/AECOL/RB13	AIN12/POT

Digilent Pin#	MCU Pin	Port Bit	PIC32 Signal Name	Function
49	41	RB12	EBIA11/AN7/ERXD0/AECRS/PMA11/RB12	AIN13/POWER SUPPLY MONITOR
50	80	RD13	EBID13/ETXD3/PMD13/RD13	5V POWER ENABLE
51	43	RB14	EBIA1/AN9/ERXD2/AETXD3/RPB14/SCK3/PMA1/RB14	SD_SCK3
52	8	RC03	EBIWE/AN20/RPC3/PMWR/RC3	SD_SS3
53	34	RB10	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	SD_SDI3
54	9	RC04	EBIOE/AN19/RPC4/PMRD/RC4	SD_SDO3
55	69	RD10	RPD10/SCK4/RD10	MRF24_SCK4
56	68	RD09	EBIA15/RPD9/PMCS2/PMA15/RD9	MRF24_SS4
57	65	RF05	EBIA8/RPF5/SCL5/PMA8/RF5	MRF24_SDI4
58	88	RG00	EBID8/RPG0/PMD8/RG0	MRF24 SDO4
59	67	RA15	AETXEN/RPA15/SDA1/RA15	MRF24_INT4
60	87	RG01	EBID9/ETXERR/RPG1/PMD9/RG1	MRF24_HIBERNATE
61	64	RF04	EBIA9/RPF4/SDA5/PMA9/RF4	MRF24_RESET
62	38	RA01	TCK/EBIA19/AN29/RA1	TCK
63	17	RA00	TMS/EBIA16/AN24/RA0	TMS
64	40	RF12	TDO/EBIA17/AN31/RPF12/RF12	TDO
65	39	RF13	TDI/EBIA18/AN30/RPF13/SCK5/RF13	TDI
66	89	RA06	TRCLK/SQICLK/RA6	TRCLK
67	97	RG13	TRD0/SQID0/RG13	TRD0
68	96	RG12	TRD1/SQID1/RG12	TRD1
69	95	RG14	TRD2/SQID2/RG14	TRD2
70	90	RA07	TRD3/SQID3/RA7	TRD3
N/A	13		VSS	POWER
N/A	14		VDD	POWER
N/A	15		MCLR	MCLR, ICSP
N/A	26	RB06	PGEC2/AN46/RPB6/RB6	ICSP
N/A	27	RB07	PGED2/AN47/RPB7/RB7	ICSP
N/A	30		AVDD	POWER
N/A	31		AVSS	POWER
N/A	36		VSS	POWER
N/A	37		VDD	POWER
N/A	45		VSS	POWER
N/A	46		VDD	POWER
N/A	49	RC12	OSCI/CLKI/RC12	XTAL

Digilent Pin #	MCU Pin	Port Bit	PIC32 Signal Name	Function
N/A	50	RC15	OSCO/CLKO/RC15	XTAL
N/A	51		VBUS	POWER
N/A	52		VUSB3V3	POWER
N/A	53		VSS	POWER
N/A	54		D-	PIC32_USBD-
N/A	55		D+	PIC32_USBD+
N/A	56	RF03	USBID/RPF3/RF3	PIC32_USBID
N/A	62		VDD	POWER
N/A	63		VSS	POWER
N/A	72	RC13	SOSCI/RPC13/RC13	SOSC XTAL
N/A	73	RC14	SOSCO/RPC14/T1CK/RC14	SOSC XTAL
N/A	74		VDD	POWER
N/A	75		VSS	POWER
N/A	83		VDD	POWER
N/A	84		VSS	POWER
N/A	92		VSS	POWER
N/A	93	RF02	VDD	POWER

12.2 Таблица контактов по номерам контактов и номерам портов MCU

Howepaw Hope Woo						
Port Bit	Digilent Pin #	MCU Pin	PIC32 Signal Name	Function		
RA00	63	17	TMS/EBIA16/AN24/RA0	TMS		
RA01	62	38	TCK/EBIA19/AN29/RA1	TCK		
RA02	37	59	EBICS0/SCL2/RA2	GPIO		
RA03	4	60	EBIRDY1/SDA2/RA3	GPIO		
RA04	47	61	EBIA14/PMCS1/PMA14/RA4	BTN2		
RA05	46	2	EBIA5/AN34/PMA5/RA5	BTN1		
RA06	66	89	TRCLK/SQICLK/RA6	TRCLK		
RA07	70	90	TRD3/SQID3/RA7	TRD3		
RA09	41	28	VREF-/CVREF-/AN27/AERXD2/RA9	GPIO, VREF-		
RA10	42	29	VREF+/CVREF+/AN28/AERXD3/RA10	VREF+		
RA14	8	66	AETXCLK/RPA14/SCL1/RA14	GPIO, IC3, INT3		
RA15	59	67	AETXEN/RPA15/SDA1/RA15	MRF24_INT4		
RB00	25	25	PGED1/AN0/RPB0/RB0	AIN11, GPIO, P32_VBUSON		

Port Bit	Digilent Pin #	MCU Pin	PIC32 Signal Name	Function
RB01	23	24	PGEC1/AN1/RPB1/RB1	AIN9, GPIO
RB02	21	23	AN2/C2INB/RPB2/RB2	AIN7, GPIO
RB03	20	22	AN3/C2INA/RPB3/RB3	AIN6, GPIO
RB04	22	21	AN4/C1INB/RB4	AIN8, GPIO
RB05	14	20	AN45/C1INA/RPB5/RB5	AIN0, GPIO
RB06	N/A	26	PGEC2/AN46/RPB6/RB6	ICSP
RB07	N/A	27	PGED2/AN47/RPB7/RB7	ICSP
RB08	24	32	EBIA10/AN48/RPB8/PMA10/RB8	AIN10, GPIO
RB09	15	33	EBIA7/AN49/RPB9/PMA7/RB9	AIN1, GPIO
RB10	53	34	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	SD_SDI3
RB11	44	35	AN6/ERXERR/AETXERR/RB11	USER_LED3
RB12	49	41	EBIA11/AN7/ERXD0/AECRS/PMA11/RB12	AIN13/POWER SUPPLY MONITOR
RB13	48	42	AN8/ERXD1/AECOL/RB13	AIN12/POT
RB14	51	43	EBIA1/AN9/ERXD2/AETXD3/RPB14/SCK3/PMA1/RB1	SD_SCK3
RB15	17	44	EBIA0/AN10/ERXD3/AETXD2/RPB15/OCFB/PMA0/RB 15	AIN3, GPIO
RC01	35	6	EBIA6/AN22/RPC1/PMA6/RC1	GPIO, T2CK, IC7
RC02	16	7	EBIA12/AN21/RPC2/PMA12/RC2	AIN2, GPIO
RC03	52	8	EBIWE/AN20/RPC3/PMWR/RC3	SD_SS3
RC04	54	9	EBIOE/AN19/RPC4/PMRD/RC4	SD_SDO3
RC12	N/A	49	OSCI/CLKI/RC12	XTAL
RC13	N/A	72	SOSCI/RPC13/RC13	SOSC XTAL
RC14	N/A	73	SOSCO/RPC14/T1CK/RC14	SOSC XTAL
RC15	N/A	50	OSCO/CLKO/RC15	XTAL
RD00	3	71	EMDIO/AEMDIO/RPD0/RTCC/INT0/RD0	PWM 1, INT0, OC1
RD01	5	76	RPD1/SCK1/RD1	PWM 2, OC2
RD02	6	77	EBID14/ETXEN/RPD2/PMD14/RD2	PWM 3, OC3
RD03	9	78	EBID15/ETXCLK/RPD3/PMD15/RD3	PWM 4, OC4
RD04	43	81	SQICS0/RPD4/RD4	USER_LED2
RD05	34	82	SQICS1/RPD5/RD5	GPIO, T4CK
RD09	56	68	EBIA15/RPD9/PMCS2/PMA15/RD9	MRF24_SS4
RD10	55	69	RPD10/SCK4/RD10	MRF24_SCK4
RD11	11	70	EMDC/AEMDC/RPD11/RD11	SPI_SDO2/SDI2 PWM 6, OC7
RD12	38	79	EBID12/ETXD2/RPD12/PMD12/RD12	GPIO, T3Ck

Port Bit	Digilent Pin #	MCU Pin	PIC32 Signal Name	Function
RD13	50	80	EBID13/ETXD3/PMD13/RD13	5V POWER ENABLE
RD14	39	47	AN32/AETXD0/RPD14/RD14	GPIO, U1RX
RD15	40	48	AN33/AETXD1/RPD15/SCK6/RD15	GPIO, U1TX
RE00	26	91	EBID0/PMD0/RE0	GPIO
RE01	27	94	EBID1/PMD1/RE1	GPIO
RE02	28	98	EBID2/PMD2/RE2	GPIO
RE03	29	99	EBID3/RPE3/PMD3/RE3	GPIO
RE04	30	100	EBID4/AN18/PMD4/RE4	GPIO
RE05	31	3	EBID5/AN17/RPE5/PMD5/RE5	GPIO
RE06	32	4	EBID6/AN16/PMD6/RE6	GPIO
RE07	33	5	EBID7/AN15/PMD7/RE7	GPIO
RE08	2	18	AN25/AERXD0/RPE8/RE8	GPIO, IC1, INT1
RE09	7	19	AN26/AERXD1/RPE9/RE9	GPIO, IC2, INT2
RF00	12	85	EBID11/ETXD1/RPF0/PMD11/RF0	SPI_SDI2/SDO2, T5CK(+)
RF01	36	86	EBID10/ETXD0/RPF1/PMD10/RF1	GPIO, T6CK
RF02	0	57	EBIRDY3/RPF2/SDA3/RF2	GPIO, U4RX
RF03	N/A	56	USBID/RPF3/RF3	PIC32_USBID
RF04	61	64	EBIA9/RPF4/SDA5/PMA9/RF4	MRF24_RESET
RF05	57	65	EBIA8/RPF5/SCL5/PMA8/RF5	MRF24_SDI4
RF08	1	58	EBIRDY2/RPF8/SCL3/RF8	GPIO, U4TX
RF12	64	40	TDO/EBIA17/AN31/RPF12/RF12	TDO
RF13	65	39	TDI/EBIA18/AN30/RPF13/SCK5/RF13	TDI
RG00	58	88	EBID8/RPG0/PMD8/RG0	MRF24 SDO4
RG01	60	87	EBID9/ETXERR/RPG1/PMD9/RG1	MRF24_HIBERNATE
RG06	13	10	AN14/C1IND/ECOL/RPG6/SCK2/RG6	SPI_SCK2, USER LED1
RG07	18	11	EBIA4/AN13/C1INC/ECRS/RPG7/SDA4/PMA4/RG7	AIN4, SDA
RG08	19	12	EBIA3/AN12/C2IND/ERXDV/ECRSDV/AERXDV/AECRS DV/RPG8/SCL4/PMA3/RG8	AIN5, SCL
RG09	10	16	EBIA2/AN11/C2INC/ERXCLK/EREFCLK/AERXCLK/AERE FCLK/RPG9/PMA2/RG9	SPI_SS2, PWM 5, OC9, IC6
RG12	68	96	TRD1/SQID1/RG12	TRD1
RG13	67	97	TRD0/SQID0/RG13	TRD0
RG14	69	95	TRD2/SQID2/RG14	TRD2
RG15	45	1	AN23/AERXERR/RG15	USER_LED4
	N/A	13	VSS	POWER
	N/A	14	VDD	POWER

Port Bit	Digilent Pin #	MCU Pin	PIC32 Signal Name	Function
	N/A	15	MCLR	MCLR, ICSP
	N/A	30	AVDD	POWER
	N/A	31	AVSS	POWER
	N/A	36	VSS	POWER
	N/A	37	VDD	POWER
	N/A	45	VSS	POWER
	N/A	46	VDD	POWER
	N/A	51	VBUS	POWER
	N/A	52	VUSB3V3	POWER
	N/A	53	VSS	POWER
	N/A	54	D-	PIC32_USBD-
	N/A	55	D+	PIC32_USBD+
	N/A	62	VDD	POWER
	N/A	63	VSS	POWER
	N/A	74	VDD	POWER
	N/A	75	VSS	POWER
	N/A	83	VDD	POWER
	N/A	84	VSS	POWER
	N/A	92	VSS	POWER
	N/A	93	VDD	POWER

12.3 Таблица контактов с микроконтроллером PIC32

MCU Pin	Port Bit	Digilent Pin #	PIC32 Signal Name	Function
1	RG15	45	AN23/AERXERR/RG15	USER_LED4
2	RA05	46	EBIA5/AN34/PMA5/RA5	BTN1
3	RE05	31	EBID5/AN17/RPE5/PMD5/RE5	GPIO
4	RE06	32	EBID6/AN16/PMD6/RE6	GPIO
5	RE07	33	EBID7/AN15/PMD7/RE7	GPIO
6	RC01	35	EBIA6/AN22/RPC1/PMA6/RC1	GPIO, T2CK, IC7
7	RC02	16	EBIA12/AN21/RPC2/PMA12/RC2	AIN2, GPIO
8	RC03	52	EBIWE/AN20/RPC3/PMWR/RC3	SD_SS3
9	RC04	54	EBIOE/AN19/RPC4/PMRD/RC4	SD_SDO3
10	RG06	13	AN14/C1IND/ECOL/RPG6/SCK2/RG6	SPI_SCK2, USER LED1

MCU Pin	Port Bit	Digilent Pin #	PIC32 Signal Name	Function
11	RG07	18	EBIA4/AN13/C1INC/ECRS/RPG7/SDA4/PMA4/RG7	AIN4, SDA
12	RG08	19	EBIA3/AN12/C2IND/ERXDV/ECRSDV/AERXDV/AECRS DV/RPG8/SCL4/PMA3/RG8	AIN5, SCL
13		N/A	VSS	POWER
14		N/A	VDD	POWER
15		N/A	MCLR	MCLR, ICSP
16	RG09	10	EBIA2/AN11/C2INC/ERXCLK/EREFCLK/AERXCLK/AERE FCLK/RPG9/PMA2/RG9	SPI_SS2, PWM 5, OC9, IC6
17	RA00	63	TMS/EBIA16/AN24/RA0	TMS
18	RE08	2	AN25/AERXD0/RPE8/RE8	GPIO, IC1, INT1
19	RE09	7	AN26/AERXD1/RPE9/RE9	GPIO, IC2, INT2
20	RB05	14	AN45/C1INA/RPB5/RB5	AIN0, GPIO
21	RB04	22	AN4/C1INB/RB4	AIN8, GPIO
22	RB03	20	AN3/C2INA/RPB3/RB3	AIN6, GPIO
23	RB02	21	AN2/C2INB/RPB2/RB2	AIN7, GPIO
24	RB01	23	PGEC1/AN1/RPB1/RB1	AIN9, GPIO
25	RB00	25	PGED1/AN0/RPB0/RB0	AIN11, GPIO, P32_VBUSON
26	RB06	N/A	PGEC2/AN46/RPB6/RB6	ICSP
27	RB07	N/A	PGED2/AN47/RPB7/RB7	ICSP
28	RA09	41	VREF-/CVREF-/AN27/AERXD2/RA9	GPIO, VREF-
29	RA10	42	VREF+/CVREF+/AN28/AERXD3/RA10	VREF+
30		N/A	AVDD	POWER
31		N/A	AVSS	POWER
32	RB08	24	EBIA10/AN48/RPB8/PMA10/RB8	AIN10, GPIO
33	RB09	15	EBIA7/AN49/RPB9/PMA7/RB9	AIN1, GPIO
34	RB10	53	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	SD_SDI3
35	RB11	44	AN6/ERXERR/AETXERR/RB11	USER_LED3
36		N/A	VSS	POWER
37		N/A	VDD	POWER
38	RA01	62	TCK/EBIA19/AN29/RA1	TCK
39	RF13	65	TDI/EBIA18/AN30/RPF13/SCK5/RF13	TDI
40	RF12	64	TDO/EBIA17/AN31/RPF12/RF12	TDO
41	RB12	49	EBIA11/AN7/ERXD0/AECRS/PMA11/RB12	AIN13/POWER SUPPLY MONITOR
42	RB13	48	AN8/ERXD1/AECOL/RB13	AIN12/POT
43	RB14	51	EBIA1/AN9/ERXD2/AETXD3/RPB14/SCK3/PMA1/RB1	SD_SCK3

MCU Pin	Port Bit	Digilent Pin #	PIC32 Signal Name	Function
44	RB15	17	EBIA0/AN10/ERXD3/AETXD2/RPB15/OCFB/PMA0/RB	AIN3, GPIO
45		N/A	VSS	POWER
46		N/A	VDD	POWER
47	RD14	39	AN32/AETXD0/RPD14/RD14	GPIO, U1RX
48	RD15	40	AN33/AETXD1/RPD15/SCK6/RD15	GPIO, U1TX
49	RC12	N/A	OSCI/CLKI/RC12	XTAL
50		N/A	OSCO/CLKO/RC15	XTAL
51		N/A	VBUS	POWER
52		N/A	VUSB3V3	POWER
53		N/A	VSS	POWER
54		N/A	D-	PIC32_USBD-
55		N/A	D+	PIC32_USBD+
56	RF03	N/A	USBID/RPF3/RF3	PIC32_USBID
57	RF02	0	EBIRDY3/RPF2/SDA3/RF2	GPIO, U4RX
58	RF08	1	EBIRDY2/RPF8/SCL3/RF8	GPIO, U4TX
59	RA02	37	EBICS0/SCL2/RA2	GPIO
60	RA03	4	EBIRDY1/SDA2/RA3	GPIO
61	RA04	47	EBIA14/PMCS1/PMA14/RA4	BTN2
62		N/A	VDD	POWER
63		N/A	VSS	POWER
64	RF04	61	EBIA9/RPF4/SDA5/PMA9/RF4	MRF24_RESET
65	RF05	57	EBIA8/RPF5/SCL5/PMA8/RF5	MRF24_SDI4
66	RA14	8	AETXCLK/RPA14/SCL1/RA14	GPIO, IC3, INT3
67	RA15	59	AETXEN/RPA15/SDA1/RA15	MRF24_INT4
68	RD09	56	EBIA15/RPD9/PMCS2/PMA15/RD9	MRF24_SS4
69	RD10	55	RPD10/SCK4/RD10	MRF24_SCK4
70	RD11	11	EMDC/AEMDC/RPD11/RD11	SPI_SDO2/SDI2 PWM 6, OC7
71	RD00	3	EMDIO/AEMDIO/RPD0/RTCC/INT0/RD0	PWM 1, INT0, OC1
72	RC13	N/A	SOSCI/RPC13/RC13	SOSC XTAL
73	RC14	N/A	SOSCO/RPC14/T1CK/RC14	SOSC XTAL
74		N/A	VDD	POWER
75		N/A	VSS	POWER
76	RD01	5	RPD1/SCK1/RD1	PWM 2, OC2
77	RD02	6	EBID14/ETXEN/RPD2/PMD14/RD2	PWM 3, OC3

MCU Pin	Port Bit	Digilent Pin #	PIC32 Signal Name	Function
78	RD03	9	EBID15/ETXCLK/RPD3/PMD15/RD3	PWM 4, OC4
79	RD12	38	EBID12/ETXD2/RPD12/PMD12/RD12	GPIO, T3Ck
80	RD13	50	EBID13/ETXD3/PMD13/RD13	5V POWER ENABLE
81	RD04	43	SQICS0/RPD4/RD4	USER_LED2
82	RD05	34	SQICS1/RPD5/RD5	GPIO, T4CK
83		N/A	VDD	POWER
84		N/A	VSS	POWER
85	RF00	12	EBID11/ETXD1/RPF0/PMD11/RF0	SPI_SDI2/SDO2, T5CK(+)
86	RF01	36	EBID10/ETXD0/RPF1/PMD10/RF1	GPIO, T6CK
87	RG01	60	EBID9/ETXERR/RPG1/PMD9/RG1	MRF24_HIBERNATE
88	RG00	58	EBID8/RPG0/PMD8/RG0	MRF24 SDO4
89	RA06	66	TRCLK/SQICLK/RA6	TRCLK
90	RA07	70	TRD3/SQID3/RA7	TRD3
91	RE00	26	EBID0/PMD0/RE0	GPIO
92		N/A	VSS	POWER
93		N/A	VDD	POWER
94	RE01	27	EBID1/PMD1/RE1	GPIO
95	RG14	69	TRD2/SQID2/RG14	TRD2
96	RG12	68	TRD1/SQID1/RG12	TRD1
97	RG13	67	TRD0/SQID0/RG13	TRD0
98	RE02	28	EBID2/PMD2/RE2	GPIO
99	RE03	29	EBID3/RPE3/PMD3/RE3	GPIO
100	RE04	30	EBID4/AN18/PMD4/RE4	GPIO