

FORMELSAMMLUNG FWL

Wintersemester 22/23 nach Vorlesung von Prof. Stücke

Name: Tony Pham

Letzte Änderung: 27. Januar 2023

Lizenz: GPLv3

Inhaltsverzeichnis

1	Gru	ındlagen	1
	1.1	Einheiten	1
	1.2	Vektorrechnung	1
		1.2.1 Betrag, Richtungswinkel, Normierung	1
		1.2.2 Skalarprodukt	1
		1.2.3 Kreuzprodukt	1
	1.3	Differentialoperatoren	1
	1.0	1.3.1 Rechenregeln	1
		1.3.2 Spezielle Vektorfelder	1
	1 /	Logarithmische Maße/Pegel	2
	1.4		
	4 -	1.4.1 Rechnen mit Pegeln	2
	1.5	Koordinatensysteme	2
		1.5.1 Umrechnungstabelle	2
		1.5.2 Schema KOS Kugel/Zylinder	2
		1.5.3 Kartesische Koordinaten	3
		1.5.4 Zylinderkoordinaten	3
		1.5.5 Kugelkoordinaten	3
2		xwell-Gleichungen	4
	2.1	Integralsätze	4
3	Felc		5
	3.1	Elektrostatik	5
		3.1.1 Potential-/Poisson-Gleichung	5
		3.1.2 Randwertprobleme, -bedingungen (RB)	5
		3.1.3 Green'sche Funktionen	5
		3.1.4 Elektrischer Dipol	5
	3.2	Magnetostatik	5
	٥٠_	3.2.1 Vektorpotential	5
		3.2.2 Vektorpotential in Abhängigkeit von der Stromdichte	5
		3.2.3 Biot-Savart-Gesetz	6
		3.2.4 Magnetischer Dipol	6
	2.2		
	3.3	Quasistätionäre Felder (Wechselstrom)	6
		3.3.1 Komplexe Feldgrößen	6
		3.3.2 Skineffekt	6
		3.3.3 Näherungen für Skineffekt	6
	3.4	E-Felder an Grenzflächen	7
		3.4.1 Dielektrische Grenzfläche	7
		3.4.2 Grenzfläche Dielektrikum-Leiter	7
		3.4.3 Grenzfläche an magn. Feldern	7
4	Wel		8
	4.1	Wellengleichungen allgemein	8
		4.1.1 Zeitbereich	8
		4.1.2 Frequenzbereich	8
		4.1.3 Vereinfachung der Gleichungen	8
	4.2	Ebene Wellen	8
	4.3	Kenngrößen	8
		4.3.1 Wellenzahl	8
		4.3.2 Wellenlänge	8
		4.3.3 Phasengeschwindigkeit	8
		4.3.4 Brechzahl/Brechungsindex	8
		4.3.5 Gruppengeschwindigkeit	8
		4.3.6 Feldwellenwiderstand	8
			8
	1 1	v C	
	4.4	Ausbreitung im Medium	9
		4.4.1 Allgemein (mit Verlusten)	9
		4.4.2 Im leeren Raum (Vakuum)	9
		4.4.3 Im verlustlosen Dielektrikum	9
		4.4.4 Im Dielektrika mit geringem Verlust	9
		4.4.5 Im guten Leiter	9
	4.5	Ebene Wellen an Grenzflächen	9

	4.5.1 Zwischen Dielektrika mit geringem Verlust	9
	4.5.2 Brechungsgesetz allgemein	9
	4.5.3 Leistungsbilianz an Grenzflächen	6
4.6	Senkrechter Einfall	10
	4.6.1 Senkrechter Einfall ideales/verlustl. Dielekt	10
	4.6.2 Medium 1 oder 2: Luft	10
	4.6.3 beide Medien: nicht magnetisch	10
		10
	4.6.5 Stehwellenverhältnis (SWR)	10
4.7	Schräger Einfall (allgemein)	10
	4.7.1 Brechungsgesetz	10
	4.7.2 Totalrefexion/Grenzwinkel	10
	4.7.3 Brewster-/Polarisationswinkel	10
	4.7.4 Senkrechte Polarisation	11
	4.7.5 Parallele Polarisation	11
5 Lei	ungen	12
5.1	Allgemeine Leitung (mit Verlusten)	12
	5.1.1 Gleichungen	12
	5.1.2 Kenngrößen	12
	5.1.3 Kurzschluss und Leerlauf	12
	5.1.4 Lange und Kurze Leitung	12
۲۵		
5.2	Verlustlose Leitung	12
	5.2.1 Kenngrößen	12
	5.2.2 verlustloser Reflexionsfaktor	12
	5.2.3 Beliebiger Abschluss (Last)	13
	5.2.4 Kurzschluss an Leitungsende	13
	5.2.5 Leerlauf an Leitungsende	13
	5.2.6 Leitung als Impedanz-Transformator	13
	5.2.7 Angepasste (reflexionsfreie) Leitung	13
	5.2.8 Ohmscher Abschluss an Leitungsende	13
	5.2.9 Position von Extrema	13
	5.2.10 Stehwellenverhältnis (SWR)	13
	5.2.11 Leistung	13
	5.2.12 Vorgehen Eingangswiderstand	13
	5.2.13 Gleichspannungswert (=Endwert)	14
5.3	Mehrfachreflexionen bei fehlender Anpassung	14
5.4	Leitungsparameter	14
	5.4.1 Allgemein	14
	5.4.2 Streifenleitung / Parallele Platten	14
	5.4.3 Doppelleitung	14
	5.4.4 Koaxialleitung	14
\mathbf{Sm}	th-Diagramm	15
6.1	Allgemein	15
	6.1.1 Normierte Impedanz	15
	6.1.2 Reflexionsfaktor	15
	6.1.3 Anpassungsfaktor	15
6.2	Impedanz/Admetanz umrechnen	15
6.3	Maxima und Minima bei stehender Welle	15
		$\frac{15}{15}$
6.4	Von Last zu Quelle	16
We	lenleiter	16
We 7.1	Koaxial Leiter	16
	7.1.1 Wellenwiderstand	16
	7.1.2 Dämpfung	16
7.0		
7.2	Mikrostreifenleiter	16
	7.2.1 Effektive Permittivitätszahl	16
	7.2.2 Schmale Streifen	16
	7.2.3 Breite Streifen	16
7.3	Hohlleiter	16
7.4	VSWR (Voltage Standing Wave Ratio) und Return Loss	16
7.5	Lichtwellenleiter oder Glasfaser	16

9	Einl	neiten	21
	8.8	Antennentabelle	20
	8.7	1	19
	8.6		19
		0.1.0.7	19
		1 0	19
		0 00 0	19
			19
	8.5	1 0	19
			18
		8.4.5 Richtfunktion/-faktor	18
			18
			18
			18
			18
	8.4		18
			18
			18
			18
	0.5		18
	8.3		17 18
			17
			17
	8.2	0 1	17
		±	17
		0	17
			17
		8.1.3 Fernfeld	17
		8.1.2 Nahfeld	17

8 Antennen

1 Grundlagen

1.1 Einheiten

Größe	Symbol	Einheit
Permiabilitätskonstante	μ	Vs Am
Dilelektrizitätskonstante	ε	$\frac{\mathtt{As}}{\mathtt{Vm}}$
elek. Ladung/Fluss	Q,q	C = As
elek. Feldstärke	$ec{E}$	V m
elek. Flussdichte	$ec{D}$	$rac{\mathtt{As}}{\mathtt{m}^2} = rac{\mathtt{C}}{\mathtt{m}^2}$
Kapazität	C	$F = rac{\mathtt{As}}{\mathtt{V}}$
mag. Fluss	ϕ,Φ	Wb = Vs
mag. Feldstärke	$ec{H}$	$\frac{A}{m}$
mag. Flussdichte	$ec{B}$	$T = \frac{{\tt Vs}}{{\tt m}^2}$
Induktivität	L	$H = rac{ extsf{Vs}}{ extsf{A}}$
Strahlungsdichte	S_{av}, I	$\frac{\mathtt{W}}{\mathtt{m}^2}$

1.2 Vektorrechnung

${\bf 1.2.1}\quad {\bf Betrag,\ Richtungswinkel,\ Normierung}$ ${\bf Betrag}$

$$|\vec{r}| = r = \sqrt{r_x^2 + r_y^2 + r_z^2}$$

Richtungswinkel

$$\cos(\alpha) = \frac{a_x}{|\vec{a}|} \qquad \cos(\beta) = \frac{a_y}{|\vec{a}|} \qquad \cos(\gamma) = \frac{a_z}{|\vec{a}|}$$

Normierung, Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|}, \quad |\vec{e}_a| = 1$$

1.2.2 Skalarprodukt

$$\begin{split} \vec{a} \cdot \vec{b} &= |\vec{a}| \cdot |\vec{b}| \cdot cos(\varphi) \qquad \vec{a} \cdot \vec{b} = 0 \\ cos(\varphi) &= \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{|\vec{a}| \cdot |\vec{b}|} \end{split}$$

1.2.3 Kreuzprodukt

$$A_{Para} = |\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi)$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

Trick: Regel von Sarrus anwenden!

1.3 Differentialoperatoren

Nabla-Operator

$$abla = \vec{\nabla} = \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix}$$

Laplace-Operator

$$\Delta = \vec{\nabla} \cdot \vec{\nabla} = \text{div (grad)} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Divergenz div: Vektorfeld \rightarrow Skalar S.382 Quelldichte, gibt für jeden Punkt im Raum an, ob Feldlinien entstehen oder verschwinden.

Rotation rot: Vektorfeld \rightarrow Vektorfeld S.382 Wirbeldichte, gibt für jeden Punkt im Raum Betrag und Richtung der Rotationsgeschwindigkeit an.

$$\boxed{ \cot \vec{F} = \nabla \times \vec{F} } = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ \vec{F}_x & \vec{F}_y & \vec{F}_z \end{vmatrix}$$

Vektorfeld skalar annotiert: $\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$

Gradient grad: Skalarfeld \rightarrow Vektor/Gradientenfeld zeigt in Richtung steilster Anstieg von ϕ

$$\boxed{\operatorname{grad} \phi = \nabla \cdot \phi} = \begin{pmatrix} \frac{\partial \phi / \partial x}{\partial \phi / \partial y} \\ \frac{\partial \phi / \partial y}{\partial \phi / \partial z} \end{pmatrix} = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

1.3.1 Rechenregeln

 ϕ, ψ : Skalarfelder \vec{A}, \vec{B} : Vektorfelder

$$\nabla \cdot (\vec{A} \times \vec{B}) = (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A}$$

$$\nabla \cdot (\phi \cdot \psi) = \phi(\nabla \psi) + \psi(\nabla \phi)$$

$$\nabla \cdot (\phi \cdot \vec{A}) = \phi(\nabla \vec{A}) + \vec{A}(\nabla \phi)$$

$$\nabla \times (\phi \cdot \vec{A}) = \nabla \phi \times \vec{A} + \phi(\nabla \times \vec{A})$$

1.3.2 Spezielle Vektorfelder

quellenfreies Vektorfeld $\vec{F} \rightarrow$ Vektorpotential \vec{E}

$$\operatorname{div} \vec{F} = \boxed{\operatorname{div}(\operatorname{rot} \vec{E}) = 0} \quad \Leftrightarrow \quad \vec{F} = \operatorname{rot} \vec{E}$$

wirbelfreies Vektorfeld $\vec{F} \rightarrow$ Skalar
potential ϕ

$$\operatorname{rot} \vec{F} = \boxed{\operatorname{rot}(\operatorname{grad} \phi) = 0} \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi$$

quellen- und wirbelfreies Vektorfeld \vec{F} :

$$\begin{split} \operatorname{rot} \vec{F} &= 0 \quad \operatorname{div} \vec{F} = 0 \\ \operatorname{div} (\operatorname{grad} \phi) &= \Delta \phi = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi \\ \operatorname{rot} (\operatorname{rot} \vec{F}) &= \operatorname{grad} (\operatorname{div} \vec{F}) - \Delta \vec{F} \end{split}$$

Tony Pham 1 von 21

1.4 Logarithmische Maße/Pegel

Feldgröße F_n : Spannung, Strom, \vec{E} -, \vec{H} -Feld, Schalldruck Leistungsgröße P_n : Energie, Intensität, Leistung Wichtig: Feldgrößen sind Effektivwerte!

• Dämpfungsmaß a in Dezibel [dB] und Neper [Np]

$$\begin{array}{ll} 1\,\mathrm{dB} = 0, 1151\,\mathrm{Np} & 1\,\mathrm{Np} = 8,686\,\mathrm{dB} \\ a\,[\mathrm{dB}] = 20\cdot\log\frac{F_1}{F_2} & a\,[\mathrm{dB}] = 10\cdot\log\frac{P_1}{P_2} \\ & \frac{F_1}{F_2} = 10^{\frac{a\,[\mathrm{dB}]}{20\mathrm{dB}}} & \frac{P_1}{P_2} = 10^{\frac{a\,[\mathrm{dB}]}{10\mathrm{dB}}} \\ a\,[\mathrm{Np}] = \ln\frac{F_1}{F_2} & a\,[\mathrm{Np}] = \frac{1}{2}\cdot\ln\frac{P_1}{P_2} \\ & \frac{F_1}{F_2} = e^{a\,[\mathrm{Np}]} & \frac{P_1}{P_2} = e^{2a\,[\mathrm{Np}]} \end{array}$$

- absolute Pegel L mit Bezugsgrößen P_0, F_0

$L\left[\mathrm{dB}\right] = 20 \cdot \log \frac{F_1}{F_0}$	$L\left[\mathrm{dB}\right] = 10 \cdot \log \frac{P_1}{P_0}$
$\frac{F_1}{F_0} = 10^{\frac{L[\text{dB}]}{20\text{dB}}}$	$\frac{P_1}{P_0} = 10^{\frac{L[\text{dB}]}{10\text{dB}}}$

Einheit	Bezugswert	Formelzeichen
dBm, dB(mW)	$P_0 = 1mW$	$L_{ t P/mW}$
dBW, dB(W)	$P_0 = 1W$	$L_{ t P/W}$
dBV, dB(V)	$F_0 = 1V$	$L_{ t U/ t V}$
$dB\mu V, dB(\mu V)$	$F_0 = 1\mu V$	$L_{ t U/\mu t V}$
$dB\mu A, dB(\mu A)$	$F_0 = 1\mu A$	$L_{{ t I}/\mu{ t A}}$
$dB(\mu V/m)$	$F_0 = 1 \frac{\mu V}{m}$	$L_{\mathrm{E/(\mu V/m)}}$
$dB(\mu A/m)$	$F_0 = 1 \frac{\mu A}{m}$	$L_{ exttt{H/(}\mu exttt{A/m)}}$

• Umrechnung (Annäherungswerte)

Faktor $\frac{F_1}{F_0}$ bzw. $\frac{P_1}{P_0}$	Energiegröße P_n	Feldgröße F_n
$\frac{P_0}{1}$	0	0
100	20 dB	40 dB
1000	30 dB	60 dB
0,1	-10 dB	-20 dB
0,01	-20 dB	-40 dB
0,001	-30 dB	-60 dB
2	3 dB	6 dB
4	6 dB	12 dB
8	9 dB	18 dB
0,5	-3,01 dB	-6,02 dB
1,25	$0.97~\mathrm{dB}$	1,94 dB
0,8	-0,97 dB	-1,94 dB

• relativer Pegel / Maß

Maß = Differenzzweier (Leistungs)
pegel bei gleichem Bezugswert P_0

$$\Delta L = L_2 - L_1 = 10 \cdot \log \left(\frac{P_2}{P_1}\right) dB$$

1.4.1 Rechnen mit Pegeln

Rechenregeln für Logarithmen (10er-Basis): x, y, a > 0

$$\log(x \cdot y) = \log(x) - \log(y) \qquad \qquad \log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$
$$\log(x^{a}) = a \cdot \log(x) \qquad \qquad \log\sqrt[q]{x} = \frac{1}{a} \cdot \log(x)$$

 ${\tt Pegel} = 10 \cdot \log({\tt Faktor}) \qquad {\tt Faktor} = 10^{\frac{{\tt Pegel}}{10}}$

1.5 Koordinatensysteme

1.5.1 Umrechnungstabelle

Kart.	Zyl.	Kug.
x	$r\cos\varphi$	$r\sin\vartheta\cos\varphi$
\overline{y}	$r\sin\varphi$	$r\sin\vartheta\sin\varphi$
\overline{z}	z	$r\cos\vartheta$
$\sqrt{x^2 + y^2}$	r	
$\arctan \frac{y}{x}$	φ	
\overline{z}	z	
$dx\cos\varphi + dy\sin\varphi$	dr	
$dy\cos\varphi - dx\sin\varphi$	$rd\varphi$	
dz	dz	
$\sqrt{x^2 + y^2 + z^2}$		r
$\arctan \frac{y}{x}$		φ
$\frac{1}{\arctan \frac{\sqrt{x^2 + y^2}}{z}}$		θ
$\frac{dx\sin\vartheta\cos\varphi}{dy\sin\vartheta\sin\varphi+dz\cos\vartheta} +$		dr
$dy\cos\varphi - dx\sin\varphi$		$r\sin\vartheta d\varphi$
$\frac{dx\cos\vartheta\cos\varphi + dy\cos\vartheta\sin\varphi - dz\sin\vartheta}{dy\cos\vartheta\sin\varphi - dz\sin\vartheta}$		$rd\vartheta$

1.5.2 Schema KOS Kugel/Zylinder

1.5.3 Kartesische Koordinaten

Variablen: x, y, z Einheitsvektoren: $\vec{e}_x, \vec{e}_y, \vec{e}_z$ Rechtssystem: $\vec{e}_x \times \vec{e}_y = \vec{e}_z$

Linienelemente: $ds = \sqrt{dx^2 + dy^2 + dz^2}$ Volumenelemente: dV = dx dy dz

Flächenelemente: $dA_{xy}=dx\,dy\,\vec{e}_z$ $dA_{yz}=dy\,dz\,\vec{e}_x$ $dA_{xz}=dx\,dz\,\vec{e}_y$

Skalarfeld: $\phi = \phi(x; y; z)$ Vektorfeld: $\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$

Gradient: grad $\phi \equiv \nabla \phi = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$ Divergenz: div $\vec{D} \equiv \nabla \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$

Rotation: rot $\vec{E} \equiv \nabla \times \vec{E} = \left[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \right] \vec{e}_x + \left[\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \right] \vec{e}_y + \left[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right] \vec{e}_z$

La-Place: $\Delta \equiv \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial z^2}$ $\Delta \vec{E} = \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_x \vec{e}_x + \Delta E_y \vec{e}_y + \Delta E_z \vec{e}_z$

 $\Delta \vec{E} = \left[\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} \right] \vec{e}_x + \left[\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} \right] \vec{e}_y + \left[\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} \right] \vec{e}_z$

1.5.4 Zylinderkoordinaten

Polarkoordinaten siehe S.386, Papula S.387,

Variablen: r, φ, z Einheitsvektoren: $\vec{e}_r, \vec{e}_{\varphi}, \vec{e}_z$ Rechtssystem: $\vec{e}_r \times \vec{e}_{\varphi} = \vec{e}_z$

Linienelemente: $ds = \sqrt{dr^2 + \mathbf{r}d\varphi^2 + dz^2}$ Volumenelemente: $dV = \mathbf{r} dr d\varphi dz$

Flächenelemente: $dA_{r\varphi} = \mathbf{r} \, dr \, d\varphi \, \vec{e}_z$ $dA_{rz} = dr \, dz \, \vec{e}_{\varphi}$ $dA_{\varphi z} = \mathbf{r} \, d\varphi \, dz \, \vec{e}_r$

Skalarfeld: $\phi = \phi(x; \varphi; z)$ Vektorfeld: $\vec{F} = \vec{F}(r; \varphi; z) = F_r \vec{e}_r + F_\varphi \vec{e}_\varphi + F_z \vec{e}_z$

Gradient: grad $\phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \vec{e}_\varphi + \frac{\partial \phi}{\partial z} \vec{e}_z$

Divergenz: div $\vec{D} \equiv \nabla \vec{D} = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \vec{D}_r \right) + \frac{1}{r} \cdot \frac{\partial \vec{D}_{\varphi}}{\partial \varphi} + \frac{\partial \vec{D}_z}{\partial z}$

Rotation: $\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[\frac{1}{r} \cdot \frac{\partial E_z}{\partial \varphi} - \frac{\partial E_{\varphi}}{\partial z} \right] \vec{e_r} + \left[\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right] \vec{e_{\varphi}} + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \cdot E_{\varphi} \right) - \frac{\partial E_r}{\partial \varphi} \right] \vec{e_z}$

 $\mathbf{La-Place}: \Delta \phi = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} + \frac{\partial^2 \phi}{\partial z^2} \qquad \Delta \vec{E} = \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_r \vec{e}_r + \Delta E_\varphi \vec{e}_\varphi + \Delta E_z \vec{e}_z$

 $\Delta \vec{E} = \left[\Delta E_r - \frac{2}{r^2} \frac{\partial E_\varphi}{\partial \varphi} - \frac{E_r}{r^2} \right] \vec{e_r} + \left[\Delta E_\varphi + \frac{2}{r^2} \frac{\partial E_r}{\partial \varphi} - \frac{E_\varphi}{r^2} \right] \vec{e_\varphi} + \left[\Delta E_z \right] \vec{e_z}$

1.5.5 Kugelkoordinaten

 $\mbox{Variablen:} \quad r, \vartheta, \varphi \qquad \qquad \mbox{Einheitsvektoren:} \quad \vec{e_r}, \vec{e_\vartheta}, \vec{e_\varphi} \qquad \qquad \mbox{Rechtssystem:} \quad \vec{e_r} \times \vec{e_\vartheta} = \vec{e_\varphi}$

 $\mbox{Linienelemente:} \quad ds = \sqrt{dr^2 + {\bf r^2} \sin^2 \vartheta \, d\varphi^2 + {\bf r^2} d\vartheta^2} \qquad \qquad \mbox{Volumenelemente:} \quad dV = {\bf r^2} \, \sin \vartheta \, dr \, d\vartheta \, d\varphi$

Flächenelemente: $dA_{r\vartheta} = \mathbf{r} \, dr \, d\vartheta \, \vec{e}_{\varphi} \quad dA_{r\varphi} = \mathbf{r} \, \sin \vartheta \, dr \, d\varphi \, \vec{e}_{\vartheta} \quad dA_{\vartheta\varphi} = \mathbf{r}^2 \, \sin \vartheta \, d\vartheta \, d\varphi \, \vec{e}_{r}$

Skalarfeld: $\phi = \phi(r; \vartheta; \varphi)$ Vektorfeld: $\vec{F} = \vec{F}(r; \vartheta; \varphi) = F_r \vec{e}_r + F_\vartheta \vec{e}_\vartheta + F_\varphi \vec{e}_\varphi$

Gradient: $\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \vartheta} \vec{e}_\vartheta + \frac{1}{r \sin \vartheta} \frac{\partial \phi}{\partial \varphi} \vec{e}_\varphi$

Divergenz: $\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r^2} \frac{\partial \left(r^2 D_r\right)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial \left(\sin \vartheta \cdot D_\vartheta\right)}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial D_\varphi}{\partial \varphi}$

 $\mathbf{La\text{-}Place}: \Delta \phi = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left(r^2 \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{\sin \vartheta} \cdot \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \cdot \frac{\partial \phi}{\partial \vartheta} \right) + \frac{1}{\sin^2 \vartheta} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} \right\}$

Tony Pham

2 Maxwell-Gleichungen

differentielle Form

Integralform

$$\operatorname{div} \mathbf{D} = \nabla \cdot \mathbf{D} = \rho$$

Gauß

$$\iint_{\partial V} \mathbf{D} \cdot d\mathbf{a} = \iiint_{V} \rho \cdot dV = Q(V)$$

Gaußsches Gesetz: Das elektrische Feld ist ein Quellenfeld. Die Ladung Q bzw. die Ladungsdichte ρ ist Quelle des elektrischen Feldes.

Der (elektrische) Fluss durch die geschlossene Oberfläche ∂V eines Volumens V ist gleich der elektrischen Ladung in seinem Inneren.

$$\operatorname{div} \mathbf{B} = \nabla \cdot \mathbf{B} = 0$$

$$\iint_{\partial V} \mathbf{B} \cdot d\mathbf{a} = 0$$

Das magnetische Feld ist quellenfrei. Es gibt keine magnetischen Monopole. Der mag. Fluss durch die geschlossene Oberfläche ∂V eines Volumens V entspricht der magnetischen Ladung in seinem Inneren, nämlich Null, da es keine magnetischen Monopole gibt.

$$\mathsf{rot}\,\mathbf{E} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} = -\iint_{A} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a} = -\frac{d\Phi_{\mathrm{eing.}}}{dt}$$

Induktionsgesetz: Jede zeitlichen Änderung eines Magnetfeldes bewirkt ein elektrisches Wirbelfeld. Die induzierte Umlaufspannung bzgl. der Randkurve ∂A einer Fläche A ist gleich der negativen zeitlichen Änderung des magnetischen Flusses durch diese Fläche.

$$rot H = \nabla \times H = j + \frac{\partial D}{\partial t}$$

$$\oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \iint_{A} \mathbf{j} \cdot d\mathbf{a} + \iint_{A} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{a}$$

Amperesches Gesetz: Jeder Strom und jede zeitlichen Änderung des elektrischen Feldes (Verschiebungsstrom) bewirkt ein magnetisches Wirbelfeld.

Die mag. Umlaufspannung bzgl. der Randkurve ∂A der Fläche A entspricht dem von dieser Fläche eingeschlossenen Strom. (inkl. Verschiebungsstrom)

Amperesches- /Durchflutungsgesetz:

Elek. Strom ist Ursache für ein magn. Wirbelfeld.

$$\oint_{S} \vec{H} \cdot d\vec{s} = \Theta = I = \iint_{A} \vec{J} \cdot d\vec{A} = \frac{d\Phi_{e}}{dt}$$

Induktionsgesetz:

Ein sich zeitlich änderndes Magnetfeld erzeugt ein elek. Wirbelfeld.

$$\oint_s \vec{E} \cdot d\vec{s} = u_{ind} = -\frac{d}{dt} \iint_A \vec{B} \cdot d\vec{A} = -\frac{d\Phi_m}{dt}$$

$$\boxed{rot\vec{E} = -\frac{\partial\vec{B}}{\partial t} = -\mu \cdot \frac{\partial\vec{H}}{\partial t} = -j\omega\mu\vec{H}}$$

Differentielles ohmsches Gesetz:

Bewegte elektrische Ladung erzeugt Magnetfeld Bei isotropen Stoffen sind ε u. μ Skalare:

$$rot\vec{H} = \vec{J} = \kappa \cdot \vec{E}$$

$$\varepsilon = \varepsilon_0 \cdot \varepsilon_r \qquad \mu = \mu_0 \cdot \mu_r$$

Zeitbereich: $\frac{\partial}{\partial t}$

Harmonischer Frequenzbereich (komplexe Berechnung): jw

2.1 Integralsätze

Fundamentalsatz der Analysis

Gauß: Vektorfeld das aus Oberfläche von Volumen strömt muss aus Quelle in Volumen

Stokes: innere Wirbel kompensieren sich \rightarrow nur den Rand betrachten.

$$\int_{a}^{b} \operatorname{grad} F \cdot d\vec{s} = F(b) - F(a)$$

$$\iiint_{V} \operatorname{div} \vec{A} \cdot dV = \oiint_{\partial V} \vec{A} \cdot d\vec{a}$$

$$\iint_{A} \operatorname{rot} \vec{A} \cdot d\vec{a} = \oint_{\partial A} \vec{A} \cdot d\vec{r}$$

3 Felder

Materialgleichungen

$$\boxed{\vec{J} = \kappa \vec{E} = \left[\frac{A}{m^2}\right]} \quad \boxed{\vec{B} = \mu \vec{H} = [T]} \quad \boxed{\vec{D} = \varepsilon \vec{E} = \left[\frac{C}{m^2}\right]}$$

Verkopplung von \vec{E} - und \vec{H} -Felder über $\vec{J} = \kappa \vec{E}$.

Feldunterscheidung

$$\begin{array}{lll} \vec{E}(x,y,z) & \widehat{=} & \text{statisches Feld} \\ \vec{E}(x,y,z,t) & \widehat{=} & \text{station\"ares Feld} \\ \vec{E}(x,y,z,t) \cdot \cos(\omega t - \beta z) & \widehat{=} & \text{Welle} \end{array}$$

3.1 Elektrostatik

Wirbelfreie Felder \rightarrow Gradientenfeld \rightarrow elek. Ladungen sind Quellen des \vec{E} -Feldes (Skalare Potenzialfkt. φ)

$$\operatorname{rot} \vec{E} = 0 = \operatorname{rot} \operatorname{grad} E \qquad \vec{E} = -\operatorname{grad} \varphi$$

$$\operatorname{div} \vec{D} = \rho \qquad \vec{D} = \varepsilon \vec{E}$$

$$\vec{E} = -\operatorname{grad} \varphi = -\left(\frac{\partial \varphi}{\partial x}\right) \vec{e}_x - \left(\frac{\partial \varphi}{\partial y}\right) \vec{e}_y - \left(\frac{\partial \varphi}{\partial z}\right) \vec{e}_z$$

3.1.1 Potential-/Poisson-Gleichung

La-Place-Gleichung, wenn $\rho = 0$

$$\begin{aligned} \operatorname{div}\operatorname{grad}\varphi &= \Delta\varphi = -\frac{\rho}{\varepsilon} \\ \Delta\varphi + \underbrace{\frac{\operatorname{grad}\varepsilon\cdot\operatorname{grad}\varphi}{\varepsilon}}_{=0,\ \text{wenn homogen}} &= -\frac{\rho(x,y,z)}{\varepsilon} \\ \underbrace{\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{dy^2} + \frac{d^2\varphi}{dz^2}}_{=} &= -\frac{\rho(x,y,z)}{\varepsilon} \end{aligned}$$

Vereinfachung zu 1-dimensionalem System:

z.B. mit
$$\frac{\partial^2 \dots}{\partial u^2} = \frac{\partial^2 \dots}{\partial z^2} = 0 \implies \frac{\partial^2 \varphi}{\partial x^2} = -\frac{\rho}{\varepsilon}$$

3.1.2 Randwertprobleme, -bedingungen (RB)

Dirichlet-RB: Gesuchte Potenzialfunktion φ nimmt an den Rändern einen bestimmten Wert an (Bsp.: $\rho_r = 5V$)

Neumann-RB: Die Normalenableitung $\frac{\partial \varphi}{\partial n}$ der Fkt. φ nimmt an den Rändern einen bestimmten Wert an. (Bsp.: Grenzfläche unterschiedlicher Dielektrika)

3.1.3 Green'sche Funktionen

• Skalarpotential einer Punktladung

$$\varphi(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r} \qquad [V]$$

 \bullet **E-Feld** einer Punktladung

$$\vec{E}(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \cdot \vec{e_r} \qquad \left[\frac{V}{m}\right]$$

• **D-Feld** einer Punktladung

$$\vec{D}(r) = \frac{Q}{4\pi \cdot r^2} \cdot \vec{e}_r \qquad \left[\frac{As}{m^2} = \frac{C}{m^2} \right]$$

• Potential feld einer Ladungsdichteverteilung mit $\varphi(\infty) = 0$

$$\varphi(x, y, z) = \frac{1}{4\pi\varepsilon} \iiint_{V'} \frac{\rho(x', y', z')}{|\vec{r} - \vec{r}'|} dV'$$

mit der Green'schen Funktion $G(\vec{r}, \vec{r}') = \frac{1}{4\pi\varepsilon|\vec{r}-\vec{r}'|}$

$$\varphi(x, y, z) = \iiint_{V'} G(\vec{r}' \vec{r}') \rho(\vec{r}') dV'$$

3.1.4 Elektrischer Dipol

Dipolmoment $\vec{p} = Q \cdot \vec{d}$

$$\begin{split} \varphi &= \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ &= \frac{Q}{4\pi\varepsilon_0} \cdot \frac{r_2 - r_1}{r^2} \\ \vec{E} &= -\nabla \varphi \\ &= \frac{1}{4\pi\varepsilon_0} \cdot \left(\frac{3(\vec{p} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}}{r^3}\right) \end{split} \qquad \varphi \approx \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2} \\ &= \frac{1}{4\pi\varepsilon_0} \cdot \frac{\vec{p} \cdot \vec{r}}{r^3} \end{split}$$

3.2 Magnetostatik

Quellenfreie Wirbelfelder mit geschlossenen Feldlinien. Keine magnetischen Monopole: div $\vec{B}=0$. Skalarpotential φ_m existiert, wenn \vec{H} wirbelfrei ist: rot $\vec{H}=0$, wenn $\vec{J}=0$.

$$\operatorname{div} \vec{B} = 0 = \operatorname{div} \operatorname{rot} B \qquad \vec{H} = -\operatorname{grad} \varphi_m$$

$$\operatorname{rot} \vec{H} = \vec{J} \qquad \vec{B} = \mu \vec{H}$$

3.2.1 Vektorpotential

Reine Hilfsgröße, in Analogie zum elek. Skalarpotential φ . Coulomb-Eichung, wenn div $\vec{A}=0$, gilt nur für zeitunabhängige Felder.

$$\Delta \vec{A} = -\mu \vec{J}$$
 $\vec{B} = \cot \vec{A}$

3.2.2 Vektorpotential in Abhängigkeit von der Stromdichte

$$\vec{A}(x,y,z) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\vec{J}\left(x',y',z'\right)}{|\vec{r}-\vec{r}'|} dV'$$

3.2.3 Biot-Savart-Gesetz

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \operatorname{grad} \frac{1}{|\vec{r} - \vec{r}'|} \times d\vec{s}'$$

mit grad $\frac{1}{|\vec{r}-\vec{r}^{\,\prime}|}=-\frac{\vec{r}-\vec{r}^{\,\prime}}{|\vec{r}-\vec{r}^{\,\prime}|^3}$

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \frac{\mathrm{d}\vec{s}' \times (\vec{r} - \vec{r}')}{\left|\vec{r} - \vec{r}'\right|^3}$$

 \vec{r} : Aufpunkt \vec{r}' : Quellpunkt

3.2.4 Magnetischer Dipol

I entlang eines Leiters:

$$\begin{split} A(r) &= \frac{\mu_0 \cdot I}{4\pi} \int \frac{d\vec{s}}{|\vec{r} - \vec{s}|} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \\ \vec{B} &= \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{m} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right) \end{split}$$

3.3 Quasistätionäre Felder (Wechselstrom)

Homogenes, Isotropes Medium: $\varepsilon, \mu, \kappa = \texttt{kost}$. Leiter ist quasineutral: $\rho = 0$.

$$\begin{split} \operatorname{rot} \vec{E} &= -\frac{\partial \vec{B}}{\partial t} = -\mu \frac{\partial \vec{H}}{\partial t} & \operatorname{div} \vec{E} = 0 & \vec{D} = \varepsilon \vec{E} \\ \operatorname{rot} \vec{H} &= \vec{J} = \kappa \vec{E} & \operatorname{div} \vec{B} = 0 & \vec{B} = \mu \vec{H} \\ \operatorname{div} \vec{J} &= -\frac{\partial \rho}{\partial t} & \operatorname{div} \vec{H} = 0 & \vec{J} = \kappa \vec{E} \end{split}$$

3.3.1 Komplexe Feldgrößen

• komplexe Amplitude / Phasor:

$$\underline{J} = J \cdot e^{j\varphi}$$

• komplexer Amplituden-Drehzeiger:

$$J(t) = J \cdot e^{jwt} = J \cdot e^{j(wt + \varphi)}$$

• Darstellung in karthesischen Koordinaten:

$$\underline{J} = \underline{J}_x \cdot \vec{e}_x + \underline{J}_y \cdot \vec{e}_y + \underline{J}_z \cdot \vec{e}_z$$

3.3.2 Skineffekt

Eindringtiefe/Äquivalente Leiterschichtdicke (Abfall der Amplitude: $A_0 \cdot \frac{1}{e}$):

$$\delta = \frac{1}{\alpha} = \frac{1}{\sqrt{\pi \mu \kappa f}} = \sqrt{\frac{2}{\omega \mu \kappa}} \qquad [m]$$

(Oberflächen)widerstand:

$$R_{AC} = \frac{l}{\kappa \cdot A_{\tt eff}} \qquad R_{DC} = \frac{l}{\kappa \pi R^2} \qquad R_F = \frac{1}{\kappa \delta}$$

Feldstärke verglichen mit der Oberfläche:

$$H\left(x,t\right) = H_0 \cdot e^{-x/\delta} \cdot \cos\left(\omega t - \frac{x}{\delta}\right) = H_0 \cdot e^{\alpha x} \cdot \cos(wt - \beta x)$$
analog für E-Feld

Amplitude und Phase bezogen auf δ :

Amplitude: $x = \delta \cdot \ln(D"ampfungsfaktor)$

$$\mbox{D\"{a}mpfung}: \alpha = \frac{1}{\delta} \qquad \mbox{Phase}: \varphi = -\frac{x}{\delta}$$

Leistung verglichen mit der Oberfläche:

$$P\left(x,t\right) = \frac{1}{2} \cdot E_0 \cdot e^{-x/\delta} \cdot H_0 \cdot e^{-x/\delta}$$

Rundleiter - Effektive Fläche:

$$A_{\rm eff} = A_{\rm ges} - A_{\sigma} = R^2 \pi - (R - \delta)^2 \pi$$
$$= 2 \cdot \pi \delta \left(R - \frac{\delta}{2} \right)$$

Wenn die Länge nicht gegeben ist oder nach Wieviel % der Widerstand bei einer bestimmten Frequenz abnimmt, kann dies mit der folgenden Formel berechnet werden:

3.3.3 Näherungen für Skineffekt

Rundleiter: $R_{DC} = \frac{l}{\kappa \pi r_0^2}$

Geometrische Beschreibung (Fehler < 6%)

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 & \text{für } r_0 < \delta \\ 1 + \left(\frac{r_0^2}{2 \cdot \delta \cdot r_0 - \delta^2}\right)^4 & \text{für } r_0 \ge \delta \end{cases}$$

Bessel-Funktion (Fehler < 6%):

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 + \frac{1}{3}x^4 & \text{für} & x < 1\\ x + \frac{1}{4} + \frac{3}{64x} & \text{für} & x > 1 \end{cases}$$

$$\frac{X_{AC}}{R_{DC}} = \begin{cases} x^2 \left(1 - \frac{x^4}{6}\right) & \text{für} & x < 1\\ x - \frac{3}{64x} + \frac{3}{128x^2} & \text{für} & x > 1 \end{cases}$$

$$x = \frac{r_0}{2\delta}$$
 $r_0 = Außenradius$ $X_{AC} = wL_i$

Empirische Beschreibung (Fehler < 10%)

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 & \text{für } r_0 < \delta \\ 1 + \left(\frac{r_0}{2,65 \cdot \delta}\right)^4 & \text{für } \delta < r_0 < 2\delta \\ \\ \frac{r_0}{2 \cdot \delta} + \frac{1}{4} & \text{für } 2\delta < r_0 < 5\delta \\ \\ \frac{r_0}{2 \cdot \delta} & \text{für } 5\delta < r_0 \end{cases}$$
(1)

Anmerkung: (1) $\stackrel{\frown}{=}$ Kreisring mit Näherung (2) $\stackrel{\frown}{=}$ Ring mittig

3.4 E-Felder an Grenzflächen

3.4.1 Dielektrische Grenzfläche

Querschichtung:

$$D_{1n} = D_{2n} \qquad \qquad \varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$$

Schwächeres E-Feld bei höherem ε .

Längsschichtung:

$$E_{1t} = E_{2t} \qquad \qquad \frac{D_{1t}}{\varepsilon_1} = \frac{D_{2t}}{\varepsilon_2}$$

Höheres D-Feld (mehr Ladungen) bei höherem ε .

Schrägschichtung:

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{E_{1t}/E_{1n}}{E_{2t}/E_{2n}} = \frac{D_{2n}/\varepsilon_2}{D_{1n}/\varepsilon_1} = \frac{\varepsilon_1}{\varepsilon_2}$$

3.4.2 Grenzfläche Dielektrikum-Leiter

Ladungen verschieben sich so lange, bis im Leiter kein Feld mehr herrscht. $\rightarrow E_{2t}, E_{2n}, D_{2t}, D_{2n} = 0$

Längsschichtung:

$$E_{1t} = E_{2t} = 0 D_{1t} = \varepsilon_1 E_{1t} = 0$$

Felder stehen stets senkrecht auf elek. Leitern.

Querschichtung:

$$D_{1n} - D_{2n} = \frac{Q}{A} \qquad D_{1n} = \frac{Q}{A} \qquad E_{1n} = \frac{Q}{\varepsilon_1 A}$$

D-Feld entspricht der Flächenladungsdichte des Leiters.

3.4.3 Grenzfläche an magn. Feldern

Querschichtung:

$$B_{1n} = B_{2n} \mu_1 H_{1n} = \mu_2 H_{2n}$$

Schwächeres H-Feld bei höherem μ .

Längsschichtung:

$$H_{1t} = H_{2t} \qquad \qquad \frac{B_{1t}}{mu_1} = \frac{B_{2t}}{\mu_2}$$

Höheres B-Feld (mehr Fluss) bei höherem μ .

Schrägschichtung:

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\mu_1}{\mu_2}$$

4 Wellen

4.1 Wellengleichungen allgemein

4.1.1 Zeitbereich

auch d'Alembertsche Gleichungen genannt:

$$\begin{split} \Delta \vec{E} - \kappa \mu \cdot \frac{\partial \vec{E}}{\partial t} - \varepsilon \mu \cdot \frac{\partial^2 \vec{E}}{\partial^2 t} &= \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} - \kappa \mu \cdot \frac{\partial \vec{H}}{\partial t} - \varepsilon \mu \cdot \frac{\partial^2 \vec{H}}{\partial^2 t} &= 0 \end{split}$$

4.1.2 Frequenzbereich

auch Helmholtz-Gleichungen genannt: mit harmonischer Zeitabhängigkeit: $\frac{\partial}{\partial t} \to j\omega$

$$\Delta \underline{\vec{E}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{E}} = \operatorname{grad} \frac{\rho}{\varepsilon}$$
$$\Delta \underline{\vec{H}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{H}} = 0$$

4.1.3 Vereinfachung der Gleichungen

Bei quellfreiem, idealem Dielektrikum: $\rho = \kappa = \vec{J} = 0$

$$\begin{split} \Delta \vec{E} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} &= 0 \qquad \Delta \vec{H} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} &= 0 \\ \Delta \underline{\vec{E}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{E}} &= 0 \qquad \Delta \underline{\vec{H}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{H}} &= 0 \end{split}$$

Im elektrisch guten Leiter $\rho = 0$, $\kappa \gg \omega \epsilon$

$$\Delta \vec{E} - \kappa \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \qquad \Delta \vec{H} - \kappa \mu \frac{\partial^2 \vec{H}}{\partial t^2} = 0$$
$$\Delta \vec{E} - \kappa \mu \omega^2 \cdot \vec{E} = 0 \qquad \Delta \vec{H} - \kappa \mu \omega^2 \cdot \vec{H} = 0$$

4.2 Ebene Wellen

Vereinfachung: harmonische Zeitabhängigkeit, keine Raumladungen $\rho=0$, keine Feldstärkekomponenten in Ausbreitungsrichtung $\frac{\partial^2}{\partial^2 x}=\frac{\partial^2}{\partial^2 y}=0$

$$\Delta \vec{E} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\kappa + j\omega\varepsilon)\vec{E}$$
$$\Delta \vec{H} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\kappa + j\omega\varepsilon)\vec{H}$$

TEM-Welle: \vec{E} und \vec{H} besitzen nur transversale (= senk-recht zur Ausbreitungsrichtung stehende) Komponenten.

ebene Wellengleichung

Tatsächlicher Zeitverlauf (Realteil von $\underline{\vec{E}}(z,t)$)

$$\vec{E}(z,t) = \underbrace{E_0 \cdot e^{-\alpha z}}_{\text{Amplitude}} \cdot \underbrace{cos(\omega t - \beta z)}_{\text{Zeit- und Raumabhängigkeit}} \cdot \vec{e}_z$$

komplexer Amplitudenvektor

$$\boxed{\underline{\vec{E}}(z,t) = E_0 \cdot e^{-\alpha z} \cdot e^{j(\omega t - \beta z)} \cdot \vec{e}_z = E_0 \cdot e^{-\underline{\gamma} z} \cdot e^{j\omega t} \cdot \vec{e}_z}$$

Fortpflanzungskonstante

$$\underline{\gamma} = \alpha + j\beta$$

4.3 Kenngrößen

4.3.1 Wellenzahl

Im Vakuum: $k_0 = \frac{\omega}{c_0}$

$$\begin{split} \beta \, \widehat{=} \, k &= \frac{\omega}{v_p} = \frac{2\pi}{\lambda} = \frac{2\pi f}{v_p} = |\vec{k}| \quad \left[\frac{\mathtt{rad}}{\mathtt{m}}\right] \\ &= \frac{\omega \cdot n}{c_0} = n \cdot k_0 = \sqrt{\mu_r \cdot \varepsilon_r} \cdot k_0 = k_r \cdot k_0 \end{split}$$

4.3.2 Wellenlänge

Periodenlänge entlang der Ausbreitungsrichtung. Freiraumwellenlänge: im materiefreien Raum λ_0

$$\begin{split} \lambda_0 &= \frac{c_0}{f} = \frac{2\pi}{k_0} \quad [\mathtt{m}] \\ \lambda &= \frac{\lambda_0}{\sqrt{\mu_r \cdot \varepsilon_r}} = \frac{2\pi}{k} = \frac{v_p}{f} = \frac{\lambda_0}{n} = \frac{2\pi}{n \cdot k_0} \end{split}$$

4.3.3 Phasengeschwindigkeit

$$v_p = \frac{dz}{dt} = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_r \mu_0 \varepsilon_r \varepsilon_0}} = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \qquad v_{p, \texttt{Medium} \leq c_0}$$

4.3.4 Brechzahl/Brechungsindex

$$n = \frac{c_0}{v_p} = \sqrt{\mu_r \varepsilon_r} \approx \sqrt{\varepsilon_r} \ge 1$$

4.3.5 Gruppengeschwindigkeit

$$v_g = \frac{d\omega}{dk} = \frac{\text{Wegstück der Wellengruppe}}{\text{Laufzeit der Wellengruppe}}$$

4.3.6 Feldwellenwiderstand

$$\underline{Z}_{F} = \frac{\underline{E}}{\underline{H}} = \frac{\underline{E}_{h}}{\underline{H}_{h}} = -\frac{\underline{E}_{r}}{\underline{H}_{r}} = \frac{\omega\mu}{\underline{k}} = \sqrt{\frac{j\omega\mu}{\kappa + j\omega\varepsilon}}$$

$$Z_{F0} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} = 120\pi\Omega \qquad Z_{F} = Z_{F0} \cdot \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}$$

4.3.7 Poynting-Vektor

gibt Leistungsfluss einer EM-Welle und Richtung der Energieströmung an.

Zeitbereich	Frequenzbereich		
$ec{S} = ec{E} imes ec{H}$	$egin{aligned} ec{S} = rac{1}{2} (ec{E} imes ec{H}^*) \end{aligned}$		
$\vec{S}_{av} = \overline{\vec{S}(t)} = \frac{1}{T} \int_0^T \vec{S}(t) dt$	$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left\{ \underline{\vec{E}} \times \underline{\vec{H}}^* \right\}$		
Leistungsflussdichte Intensität $S = \vec{S} $			

$$\begin{split} S_{av} &= \frac{1}{2} \cdot E \cdot H = \frac{1}{2} \cdot \frac{E^2}{Z_{F0}} = \frac{1}{2} \cdot H^2 \cdot Z_{F0} = \frac{P}{A_{\texttt{Fläche}}} \\ P &= \iint \vec{S}_{\text{av}} \, d\vec{a} = Re \, \{ \underline{U} \cdot \underline{I}^* \} \\ P_1 &= P_0 \cdot e^{-2\alpha z} \qquad P_{\texttt{Leitung}} = \frac{\hat{U}^2}{2 \cdot Z_I} \end{split}$$

4.4 Ausbreitung im Medium

4.4.1 Allgemein (mit Verlusten)

$$\lambda = \frac{2\pi}{\beta} \qquad E_2 = E_1 e^{-\alpha z} \qquad v_p = \lambda \cdot f = \frac{\omega}{\beta}$$

$$\alpha = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} - 1\right)}$$

$$\beta = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} + 1\right)}$$

$$\underline{Z}_F = \underline{\frac{E}{H}} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

4.4.2 Im leeren Raum (Vakuum)

materiefreier Raum: $\mu_r = \varepsilon_r = 1$

$$\alpha = 0$$
 $\beta = \frac{\omega}{c_0}$ $\lambda_0 = \frac{c_0}{f}$ $v_p = c_0$ $Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega \approx 377\Omega$

4.4.3 Im verlustlosen Dielektrikum

verlustlos: $\kappa=0$, maximale Wirkleistung Z_F rein reell \rightarrow ebene Welle

$$\alpha = 0 \qquad \beta = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{c_0}{f} \frac{1}{\sqrt{\mu_r \varepsilon_r}} \quad v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \qquad Z_F = \sqrt{\frac{\mu}{\varepsilon}} = Z_{F0} \sqrt{\frac{\mu_r}{\varepsilon_r}}$$

4.4.4 Im Dielektrika mit geringem Verlust

geringer Verlust: $0 < \kappa \ll \omega \varepsilon$

$$\alpha \approx \frac{\sigma}{2} \cdot \sqrt{\frac{\mu}{\varepsilon}} = \frac{\sigma}{2} \cdot Z_{F0} \sqrt{\frac{\mu_r}{\varepsilon_r}} \quad \beta \approx \omega \sqrt{\mu\varepsilon} \left(1 + \frac{1}{8} \cdot \frac{\sigma^2}{\omega^2 \varepsilon^2} \right)$$

$$\lambda = \frac{c_0}{f} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}} \left(1 - \frac{j\sigma}{\omega \varepsilon} \right)^{-1/2} \approx Z_{F0} \left(1 + \frac{j\sigma}{2\omega \varepsilon} \right)$$

4.4.5 Im guten Leiter

geringer Verlust: $\sigma \gg \omega \varepsilon$

$$\alpha \approx \beta \approx \sqrt{\frac{\omega\mu\sigma}{2}} = \frac{1}{\delta} \sim \sqrt{f} \qquad \lambda = 2\pi\sqrt{\frac{2}{\omega\mu\sigma}} = 2\pi\delta$$

$$v_p = \frac{2\pi}{\beta} = \omega\delta \qquad \boxed{\underline{Z}_F = \sqrt{\frac{j\omega\mu}{\sigma}} \approx \frac{1+j}{\sigma \cdot \delta} = \sqrt{\frac{\omega\mu}{\kappa}}e^{j\frac{\pi}{4}}}$$

4.5 Ebene Wellen an Grenzflächen

4.5.1 Zwischen Dielektrika mit geringem Verlust

$$\lambda_{1} = \frac{\lambda_{0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad \lambda_{2} = \frac{\lambda_{0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$= \frac{\lambda_{1} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$\beta_{1} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}} \qquad \beta_{2} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r2}\varepsilon_{r2}}$$

$$Z_{F1} = \frac{Z_{F0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad Z_{F2} = \frac{Z_{F0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

4.5.2 Brechungsgesetz allgemein

$$\frac{\sin \vartheta_2}{\sin \vartheta_1} = \frac{k_h}{k_q} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

4.5.3 Leistungsbilianz an Grenzflächen

Index n: Normalkomponente.

$$S_{tn} = S_{hn} - S_{rn}$$
$$S_{t0} = S_{h0} \cdot \frac{\cos \vartheta_1}{\cos \vartheta_2} (1 - r^2)$$

4.6 Senkrechter Einfall

Gilt bei Einfallswinkel $\theta_h = 0$.

$$r_{m} = \frac{Z_{F1} - Z_{F2}}{Z_{F2} + Z_{F1}} \qquad t_{m} = \frac{2 \cdot Z_{F1}}{Z_{F1} + Z_{F2}}$$

$$= -r_{e} \qquad = t_{e} \cdot \frac{Z_{F1}}{Z_{F2}}$$

$$t_{e} = 1 + r_{e} \qquad t_{m} = 1 + r_{m}$$

$$E_{t1} = E_{t2} \qquad H_{t1} = H_{t2}$$

$$E_{t} = t_{e} \cdot E_{h} \qquad H_{t} = t_{e} \cdot \frac{Z_{F1}}{Z_{F2}} \cdot H_{h}$$

$$E_{r} = r_{e} \cdot E_{h} \qquad -H_{r} = r_{e} \cdot H_{h}$$

$$E_{t} = E_{h} + E_{r} \qquad H_{t} = H_{h} + H_{r}$$

$$t_{e} \cdot E_{h} = E_{h} + r_{e} \cdot E_{h} \qquad t_{m} \cdot H_{h} = H_{h} + r_{m} \cdot H_{h}$$

$$\begin{aligned} H_t &= H_h + H_r \\ \frac{t \cdot E_h}{Z_{F2}} &= \frac{E_h}{Z_{F1}} - \frac{r \cdot E_h}{Z_{F1}} \\ \frac{t}{Z_{F2}} &= \frac{1}{Z_{F1}} - \frac{r}{Z_{F1}} \end{aligned}$$

4.6.1 Verlustloses Dielektikum allgemein

gilt für $\kappa = 0$, keine Dämpfung.

rein reell:
$$Z_F = \sqrt{\frac{\mu}{\varepsilon}}$$
 rein imaginär: $\gamma = j\omega\sqrt{\mu\varepsilon}$

$$r = r_e = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}} = \frac{\sqrt{\varepsilon_{r1}\mu_{r2}} - \sqrt{\varepsilon_{r2}\mu_{r1}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}$$

$$t = t_e = \frac{2Z_{F2}}{Z_{F1} + Z_{F2}} = \frac{2\sqrt{\varepsilon_{r1}\mu_{r2}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}$$

4.6.2 Medium 1 oder 2: Luft

$$\begin{bmatrix} \mu_{r1} = \varepsilon_{r1} = 1 \end{bmatrix} \qquad \begin{bmatrix} \mu_{r2} = \varepsilon_{r2} = 1 \end{bmatrix}$$

$$r = \frac{\sqrt{\mu_{r2}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}} \qquad r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\mu_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\mu_{r1}}}$$

$$t = \frac{2\sqrt{\mu_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}} \qquad t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\mu_{r1}} + \sqrt{\varepsilon_{r1}}}$$

4.6.3 beide Medien: nicht magnetisch

Gilt für $\mu_{r1} = \mu_{r2} = 1$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}} \qquad t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

4.6.4 Medium 2: idealer Leiter

 $\vec{E} = 0$ im idealen Leiter \rightarrow **Stehende** Welle!

$$Z_{F2} = 0 \qquad r = -1 \qquad t = 0 \qquad \vec{S}_{av} = 0$$

$$\underline{E}_{1x} = -2j \cdot E_{h1} \cdot \sin(\beta_1 z) \qquad \underline{H}_{1y} = 2 \cdot \frac{E_{h1}}{Z_{F1}} \cdot \cos(\beta_1 z)$$

$$E_{1x}(z,t) = 2E_{h1} \cdot \sin(\beta_1 z) \cdot \sin(\omega t)$$

$$H_{1y}(z,t) = 2\frac{E_{h1}}{Z_{F1}} \cdot \cos(\beta_1 z) \cdot \cos(\omega t)$$

$$H_{\max}$$
 und E_{\min} bei $n \cdot \lambda/2$ H_{\min} und H_{\max} bei $(2n-1) \cdot \lambda/4$

4.6.5 Stehwellenverhältnis (SWR)

SWR =
$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{H_{\text{max}}}{H_{\text{min}}} = \frac{E_h + E_r}{E_h - E_r} = \frac{1 + |r|}{1 - |r|}$$
 $1 < s < \infty$

4.7 Schräger Einfall (allgemein)

$$Z_F = \sqrt{\frac{\mu}{\varepsilon}} = Z_{F0} \sqrt{\frac{\mu_r}{\varepsilon_r}}$$

4.7.1 Brechungsgesetz

$$\frac{\sin\vartheta_2}{\sin\vartheta_1} = \frac{k_h}{k_g} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

4.7.2 Totalrefexion/Grenzwinkel

Grenzwinkel θ_g gibt an, bis zu welchem Winkel eine Welle von höherem in kleineres Dielektrikum $\varepsilon_1 > \varepsilon_2$ eindringen kann. \to Brechungsgesetz beachten!

$$\boxed{ (1) \, \theta_g = \arcsin \sqrt{\frac{\mu_{r2} \varepsilon_{r2}}{\mu_{r1} \varepsilon_{r1}}} \quad \boxed{ (2) \, \theta_g = \arcsin \sqrt{\frac{\mu_{r1} \varepsilon_{r1}}{\mu_{r2} \varepsilon_{r2}}} }$$

- (1): bei senkrechter transmittierter Welle $\theta_t = \sin 90^\circ$
- (2): bei senkrechter einfallender Welle $\theta_h = \sin 90^\circ$

4.7.3 Brewster-/Polarisationswinkel

Bei Brewster-Winkel θ_b wird Reflexionsfaktor r=0.

• Parallele Polarisation: rechts: $\mu_{r1} = \mu_{r2}$

$$\sin \theta_b = \sqrt{\frac{\varepsilon_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\mu_1(\varepsilon_1^2 - \varepsilon_2^2)}} \quad \boxed{\tan \theta_b = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}}$$

Brewster-Winkel existiert nur bei $\varepsilon_{r1} \neq \varepsilon_{r2}$.

• Senkrechte Polarisation: rechts: $\varepsilon_{r1} = \varepsilon_{r2}$

$$\sin \theta_b = \sqrt{\frac{\mu_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\varepsilon_1(\mu_2^2 - \mu_1^2)}} \quad \tan \theta_b = \sqrt{\frac{\mu_2}{\mu_1 + \mu_2}}$$

Brewster-Winkel existiert nur bei $\mu_{r1} \neq \mu_{r2}$. Bei $\mu_{r1} = \mu_{r2} \rightarrow r \neq 0$ keine Reflexionsfreiheit!

4.7.4 Senkrechte Polarisation

 \vec{E} -Feld senkrecht, \vec{H} -Feld parallel. $\mu_{r1} = \mu$

$$Z_{F0} = 120\pi\,\Omega \qquad Z_{F(n)} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{r(n)}}} \qquad \frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

Brechungsgesetz: mit $\theta_h = \theta_r$

$$\boxed{\frac{\sin\theta_t}{\sin\theta_h} = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}}} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2} \qquad \sin\theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin\theta_h$$

Fresnelsche Formeln:

$$r_{s} = r_{es} = r_{ms} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{h} - Z_{F1} \cdot \cos \theta_{t}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_{h} - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_{t}}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_{t} + \sqrt{\varepsilon_{r1}} \cos \theta_{h}}$$

$$t_{es} = \frac{2Z_{F2} \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_{t}}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_{t} + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_{t}}$$

$$= 1 + r_{s}$$

$$t_{ms} = \frac{2Z_{F1} \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= (1 - r_{s}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F1}}{Z_{F2}} \cdot t_{es} = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} \cdot t_{es}$$

Beziehungen Polarisation

$$E_r = r_s \cdot E_h$$

$$E_t = t_{es} \cdot E_h$$

$$E_t = t_{ep} \cdot E_h$$

$$H_r = r_s \cdot H_h$$

$$H_t = t_{ms} \cdot H_h$$

$$H_t = t_{mp} \cdot H_h$$

$$E_t = H_t \cdot Z_{F2}$$

$$E_h = H_h \cdot Z_{F1}$$

$$E_h = H_h \cdot Z_{F1}$$

$$E_h = H_h \cdot Z_{F1}$$

Richtungssinn Felder (Hand-Regel)

Linke HandRechte HandDaumen: \vec{E} Daumen: \vec{E} Zeigef.: \vec{S}_{av} Zeigef.: \vec{H} Mittelf.: \vec{H} Mittelf.: \vec{S}_{av}

4.7.5 Parallele Polarisation

 \vec{E} -Feld parallel, \vec{H} -Feld senkrecht. $\mu_{r1} = \mu_{r2} = 1$

Stücke: \vec{H}_h und \vec{H}_r zeigen in die selbe Richtung! Sattler: \vec{H}_h und \vec{H}_r zeigen in **entgegengesetzter** Richtung!

Fresnelsche Formeln (Stücke):

$$r_{p} = r_{ep} = r_{mp}$$

$$= \frac{Z_{F1} \cdot \cos \theta_{h} - Z_{F2} \cdot \cos \theta_{t}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= \frac{\varepsilon_{r2} \cos \theta_{h} - \sqrt{\varepsilon_{r2} \varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}{\varepsilon_{r2} \cos \theta_{h} + \sqrt{\varepsilon_{r2} \varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}$$

$$t_{ep} = \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= (1 - r_{p}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F2}}{Z_{F1}} \cdot t_{mp} = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot t_{mp}$$

$$t_{mp} = \frac{2Z_{F1} \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= 1 + r_{p}$$

Fresnelsche Formeln (Sattler):

$$\begin{split} r_p &= r_{ep} = r_{mp} &= -r_{p,[\texttt{Stücke}]} \\ &= \frac{Z_{F2} \cdot \cos \theta_t - Z_{F1} \cdot \cos \theta_h}{Z_{F2} \cdot \cos \theta_t + Z_{F1} \cdot \cos \theta_h} \\ &= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_t - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_t}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cos \theta_t} \\ t_{ep} &= \frac{2Z_{F2} \cdot \cos \theta_h}{Z_{F1} \cdot \cos \theta_h + Z_{F2} \cdot \cos \theta_t} \\ &= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_t}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_t} \\ &= (1 + r_p) \cdot \frac{\cos \theta_h}{\cos \theta_t} \\ t_{mp} &= 1 - r_p = \frac{Z_{F1}}{Z_{F2}} \cdot t_{ep} \end{split}$$

5 Leitungen

5.1 Allgemeine Leitung (mit Verlusten)

Eingang: \underline{Z}_e Anfang: $\underline{Z}(l) = \underline{Z}_1$ Abschluss: $\underline{Z}_2 = \underline{Z}_{(l=0)}$ Referenzpunkt **Last** (l=0):

$$\underline{U}(l) = \underline{U}_h \cdot e^{\underline{\gamma}l} + \underline{U}_r \cdot e^{-\underline{\gamma}l}$$

$$\underline{I}(l) = \underline{I}_h \cdot e^{\underline{\gamma}l} + \underline{I}_r \cdot e^{-\underline{\gamma}l}$$

5.1.1 Gleichungen

$$\underline{U}(l) = \underline{U}_2 \cdot \cosh(\underline{\gamma}l) + Z_L \underline{I}_2 \cdot \sinh(\underline{\gamma}l)
= \underline{U}_2 \cdot \left[\cosh(\underline{\gamma}l) + \frac{\underline{Z}_L}{\underline{Z}_2} \sinh(\underline{\gamma}l) \right]
\underline{I}(l) = \underline{I}_2 \cdot \cosh(\underline{\gamma}l) + \frac{\underline{U}_2}{Z_L} \cdot \sinh(\underline{\gamma}l)
= \underline{I}_2 \cdot \left[\cosh(\underline{\gamma}l) + \frac{\underline{Z}_2}{\underline{Z}_L} \sinh(\underline{\gamma}l) \right]
\underline{Z}(l) = \frac{\underline{Z}_2 + \underline{Z}_L \tanh(\underline{\gamma}l)}{1 + \frac{\underline{Z}_2}{Z_L} \tanh(\underline{\gamma}l)} = \underline{Z}_L \frac{\underline{Z}_2 + \underline{Z}_L \tanh(\underline{\gamma}l)}{\underline{Z}_L + \underline{Z}_2 \tanh(\underline{\gamma}l)}$$

komplexer γ nicht im TR berechenbar:

Lösung: $\alpha l \left[\frac{\text{Np}}{\text{m}} \right]$ und $\beta l \left[\frac{\text{rad}}{\text{m}} \right]$ einzeln berechnen, dann:

$$\cosh(\underline{\gamma}l) = \frac{1}{2} \left[e^{\alpha l} \cdot e^{j\beta l} + e^{-\alpha l} \cdot e^{-j\beta l} \right]$$
$$\sinh(\underline{\gamma}l) = \frac{1}{2} \left[e^{\alpha l} \cdot e^{j\beta l} - e^{-\alpha l} \cdot e^{-j\beta l} \right]$$
$$\tanh(\underline{\gamma}l) = 1 + \frac{2}{e^{\alpha l} \cdot e^{j\beta l} - 1}$$

 $e^{\pm \alpha l}$: Dämpfung $e^{\pm j\beta l}$: Phase (\angle im TR) Für Winkel αl bzw. βl auf **RAD** in TR!

5.1.2 Kenngrößen

• Leitungswellenwiderstand:

$$\underline{Z}_L = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \frac{\underline{U}_h}{\underline{I}_h} = -\frac{\underline{U}_r}{\underline{I}_r}$$

komplexer \underline{Z}_L nicht in TR berechenbar: **Betrag**: erst \underline{Z}_L^2 , dann $\sqrt{|Z_L^2|}$ ermitteln. **Phase**: $0.5 \cdot \arg(\underline{Z}_L^2) \rightarrow \underline{\gamma}$ analog vorgehen.

• Fortpflanzungskonstante:

$$\underline{\gamma} = \sqrt{(R + j\omega L) \cdot (G + j\omega C)} = \alpha + j\beta \left[\frac{1}{m}\right]$$
$$= j\omega\sqrt{LC} \cdot \sqrt{\frac{RG}{j^2\omega^2LC} + \frac{G}{j\omega C} + \frac{R}{j\omega L} + 1}$$

• Reflexionsfaktor: $r(l) = r_1$: Leitungs an fang $\underline{r}(l) = \underline{r}_2 \cdot e^{-2\underline{\gamma}l} = \underline{r}_2 \cdot e^{-2\alpha l} \cdot e^{-2j\beta l}$ $= \underline{\underline{U}_r(l)}_{\underline{U}_h(l)} = -\underline{\underline{I}_r(l)}_{\underline{I}_h(l)} = \underline{\underline{Z}(l) - \underline{Z}_L}_{\underline{Z}(l) + \underline{Z}_L} = \underline{\underline{Z}(l) - 1}_{\underline{Z}(l) + 1}$

• weitere Parameter: meistens $\mu_r = 1$

$$\begin{split} \lambda_0 &= \frac{c_0}{f} \qquad \lambda = \frac{2\pi}{\beta} = \frac{c_0}{f\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}} \\ l_{\text{elek.}} &= \beta \cdot l \qquad v_p = \frac{\omega}{\beta} = \frac{c_0}{\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}} \end{split}$$

5.1.3 Kurzschluss und Leerlauf

Eingangswiderstand \underline{Z}_e am Leitungsende:

mit Kurzschluss
$$\underline{Z}_{e, \text{kurz}} = \underline{Z}_L \cdot \tanh \left(\underline{\gamma} l \right)$$
 im Leerlauf
$$\underline{Z}_{e, \text{leer}} = \frac{\underline{Z}_L}{\tanh \left(\underline{\gamma} l \right)}$$
 beliebige Länge
$$\underline{Z}_L = \sqrt{\underline{Z}_{e, \text{kurz}}(l) \cdot \underline{Z}_{e, \text{leer}}(l)}$$

5.1.4 Lange und Kurze Leitung

• kurze Leitung $\rightarrow l \ll \frac{\lambda}{4} \quad |\underline{\gamma}l| \ll 1$ $\underline{U}(l) \approx \underline{U}_2 + \underline{I}_2 \cdot l(R' + jwL')$ $\underline{I}(l) \approx \underline{I}_2 + \underline{U}_2 \cdot l(G' + jwC')$

Leitung wird durch konzentrierte Elemente ersetzt.

• lange Leitung $\to l \gg \frac{\lambda}{4} \quad |\underline{\gamma} l| \gg 1$ Abschluss egal, es wird nur $\underline{Z}_L = \underline{Z}(l)$ gemessen wird.

5.2 Verlustlose Leitung

5.2.1 Kenngrößen

$$R', G' = 0 \to \alpha = 0 \qquad Z_L, v_p \nsim f$$

$$Z_L = \sqrt{\frac{L}{C}} \to \text{rein reell!}$$

$$\underline{\gamma} = j\beta = j\omega\sqrt{LC} \qquad \beta = \omega \cdot \sqrt{LC}$$

$$v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c_0}{\sqrt{\mu_r\varepsilon_r}} = \frac{1}{\sqrt{LC}}$$

$$\lambda = \frac{2\pi}{\beta} = \frac{v_p}{f} = \frac{c_0}{f\sqrt{\mu_r\varepsilon_r}} = \frac{1}{f\sqrt{LC}}$$

5.2.2 verlustloser Reflexionsfaktor

$$\begin{split} \underline{r}_{(l=0)} &= \underline{r}_2 \qquad 0 < r < 1 \qquad 0 < \Psi < 2\pi \; \Psi \; \text{in } \mathbf{RAD!} \\ \underline{r}_{(l)} &= \underline{r}_2 \cdot e^{-j2\beta l} = r \cdot e^{-j(\Psi_0 + 2\beta l)} = r \cdot e^{j\Psi} \\ &= \frac{\underline{Z}(l) - Z_L}{\underline{Z}(l) + Z_L} \\ \underline{r}_2 &= \frac{\underline{Z}_2 - Z_L}{\underline{Z}_2 + Z_L} = \frac{\underline{U}_2 - \underline{I}_2 Z_L}{\underline{U}_2 + \underline{I}_2 Z_L} \\ \underline{\underline{Z}(l)} &= \frac{1 + \underline{r}(l)}{1 - \underline{r}(l)} \end{split}$$

$$egin{aligned} U_{ exttt{max}} &= |U_h| \cdot (1 + |r(l)|) & U_{ exttt{min}} &= |U_h| \cdot (1 - |r(l)|) \ I_{ exttt{max}} &= \left| rac{U_h}{Z_L}
ight| \cdot (1 + |r(l)|) & I_{ exttt{min}} &= \left| rac{U_h}{Z_L}
ight| \cdot (1 - |r(l)|) \end{aligned}$$

5.2.3 Beliebiger Abschluss (Last)

$$\begin{split} \underline{U}_2 &= \underline{U}_{(l=0)} = \underline{U}_h + \underline{U}_r & \underline{I}_2 = \underline{I}_{(l=0)} = \underline{I}_h + \underline{I}_r \\ \\ \underline{Z}(l) &= \frac{\underline{Z}_2 + jZ_L \tan(\beta l)}{1 + j\frac{\underline{Z}_2}{Z_L} \tan(\beta l)} = Z_L \frac{\underline{Z}_2 + jZ_L \tan(\beta l)}{Z_L + j\underline{Z}_2 \tan(\beta l)} \\ \\ \underline{U}(l) &= \underline{U}_2 \cdot \left[\cos(\beta l) + j\frac{\underline{Z}_L}{\underline{Z}_2} \sin(\beta l) \right] \\ \\ \underline{I}(l) &= \underline{I}_2 \cdot \left[\cos(\beta l) + j\frac{\underline{Z}_2}{Z_L} \sin(\beta l) \right] \end{split}$$

Für Beträge/Amplitudenwerte: $\left|\frac{\underline{U}}{\underline{U}_2}\right| = \sqrt{\mathrm{Re}^2 + \mathrm{Im}^2}$. Bildung von **stehenden** Wellen für alle Fälle außer bei Anpassung!

5.2.4 Kurzschluss an Leitungsende

$$\begin{split} \underline{Z}_2 &= 0 \qquad \underline{U}_2 = \underline{U}_{(l=0)} = 0 \to \underline{U}_h = -\underline{U}_r \qquad \underline{I}_h = \underline{I}_r \\ \underline{Z}(l) &= \frac{\underline{U}(l)}{\underline{I}(l)} = Z_L \cdot j \tan(\beta l) \qquad \to \text{rein imaginär!} \\ \underline{U}(l) &= \underline{U}_h \cdot 2j \sin(\beta l) = \underline{I}_2 Z_L \cdot j \sin(\beta l) \\ \underline{I}(l) &= \underline{I}_h \cdot 2 \cos(\beta l) = \underline{I}_2 \cdot \cos(\beta l) \qquad \underline{I}_2 = \frac{2\underline{U}_h}{Z_L} \end{split}$$

5.2.5 Leerlauf an Leitungsende

$$\begin{split} \underline{Z}_2 &= \infty \qquad \underline{I}_2 = \underline{I}_{(l=0)} = 0 \to \underline{I}_h = -\underline{I}_r \qquad \underline{U}_h = \underline{U}_r \\ \\ \underline{Z}(l) &= \frac{\underline{U}(l)}{\underline{I}(l)} = -j \, \frac{Z_L}{\tan(\beta l)} \qquad \to \text{rein imaginär!} \\ \\ \underline{U}(l) &= \underline{U}_h \cdot 2\cos(\beta l) = \underline{U}_2 \cdot \cos(\beta l) \qquad \underline{U}_2 = 2\underline{U}_h \\ \\ \underline{I}(l) &= \underline{I}_h \cdot 2j\sin(\beta l) = \frac{\underline{U}_2}{Z_L} \cdot j\sin(\beta l) \end{split}$$

5.2.6 Leitung als Impedanz-Transformator

 $\lambda/4$ -Leitung mit Eingangswiderstand $\underline{Z}_e=\underline{Z}(l)$ aus 5.2.3:

$$\frac{\underline{Z}_e}{Z_L} = \frac{Z_L}{\underline{Z}_2} = \frac{\underline{Y}_2}{Y_L} \to Z_e = \frac{Z_L^2}{\underline{Z}_2}$$

Eine $\lambda/4$ -Leitung transformiert: L \leftrightarrow C, Kurzschluss \leftrightarrow Leerlauf, **großes** R \leftrightarrow **kleines** R

5.2.7 Angepasste (reflexionsfreie) Leitung

Eingangswiderstand $Z_1 \sim$ Leitungslänge, rein reell! Nur hinlaufende Welle, **reflexionsfrei**!

$$Z_L = Z_1 = Z_2 = Z(l)$$
 $r_A = 0$ SWR = 1
 $U(z) = U_h \cdot e^{j\beta z}$ $I(z) = I_h \cdot e^{j\beta z} = \frac{U_h}{Z_L} \cdot e^{j\beta z}$

5.2.8 Ohmscher Abschluss an Leitungsende

Abstand **Spannung**smax. von der Last z_{max} : $r_A \rightarrow \text{rein reell!}$ $z_{\text{max}} = \frac{\lambda}{4\pi} (\theta_{\text{rad}} + 2n\pi)$

$$\begin{split} R_A > Z_L \to \theta_{\rm rad} = 0 & r_A > 0 & \to z_{\rm max} = \frac{\lambda}{2} \cdot n \\ R_A < Z_L \to \theta_{\rm rad} = \pi & r_A < 0 & \to z_{\rm max} = \frac{\lambda}{4} \cdot n \end{split}$$

5.2.9 Position von Extrema

bei beliebigen Abschlüssen/Lasten! \rightarrow stehende Welle!

$$\boxed{r_l=|r_A|\cdot e^{-j\Psi_r}}\to \Psi_r \text{ in rad}$$
 $f_{\tt min}\to {\rm Minimum}({\rm Knoten})$ der Spannungen

 $f_{\text{max}} \rightarrow \text{Maximum}(\text{Bäuche})$ der Spannungen

$$\begin{split} \lambda_{\min/\max} &= \frac{c_0}{f_{\min/\max}\sqrt{\mu_{r1}\varepsilon_{r1}}} \\ z_{\min} &= \frac{-n\cdot\lambda_{\min}}{2} \longrightarrow n = -\frac{2z}{\lambda_{\min}} \\ z_{\max} &= \frac{-(2n+1)\lambda_{\max}}{4} \longrightarrow n = -\frac{4z+\lambda_{\max}}{2\cdot\lambda_{\max}} \\ z &= \frac{\lambda_{\min}\cdot\lambda_{\max}}{4(\lambda_{\min}-\lambda_{\max})} \end{split}$$

5.2.10 Stehwellenverhältnis (SWR)

Smith-Chart: Kap. 6.1 VSWR: Kap. 7.4

$$\begin{split} s &= \text{SWR} = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(l)|}{1 - |r(l)|} = \frac{|U_h| + |U_r|}{|U_h| - |U_r|} = \frac{R_{\text{max}}}{Z_L} \\ m &= \text{SWR}^{-1} = \frac{R_{\text{min}}}{Z_L} \qquad |r_2| = \frac{\text{SWR} - 1}{\text{SWR} + 1} = \frac{1 - m}{1 + m} \end{split}$$

5.2.11 Leistung

$$\begin{split} P_A &= P_H - P_R &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} - \frac{1}{2} \cdot \frac{\hat{U}_r^2}{Re\{Z_L\}} \\ &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} \cdot \left(1 - r^2\right) \\ &= P_{\text{max}} \cdot \left(1 - r^2\right) \\ &= \underline{U}_A \cdot \underline{I}_A^* \\ P_V &= P_q - P_A \\ \underline{I}(z) &= \hat{I} \cdot e^{-\alpha z} \angle \beta z \end{split}$$

5.2.12 Vorgehen Eingangswiderstand

Wenn mit Smithdiagramm gearbeitet wird liefert dieses Schritte 3 und 4

1. Lastimpedanz

$$\underline{Z}_A = \frac{1}{\frac{1}{R_A} + j\omega C_A}$$

2. Reflexion am Leitungsende

$$\underline{r}_A = \underline{r}(z=0) = \frac{Z_A - \underline{Z}_L}{Z_A + \underline{Z}_L}$$

3. Reflexion am Leitungsanfang

$$\underline{r}_E = \underline{r}(z = d) = \underline{r}_A \cdot e^{-j2\beta d}$$

4. Bestimmung der Impedanz

$$\underline{Z}_E = \underline{Z}_L \cdot \frac{1 + \underline{r}_E}{1 - r_E}$$

5. Eingangswiderstand

$$\underline{Z}_E = \frac{1}{\underline{Z}_E + j\omega C_E}$$

Tony Pham

5.2.13 Gleichspannungswert (=Endwert)

$$U_A = U_q \cdot \frac{R_A}{R_i + R_A}$$

5.3 Mehrfachreflexionen bei fehlender Anpassung

$$u_{1r} = r_A \cdot u_{1h}$$

$$u_{2h} = r_I \cdot u_{1r} = r_I \cdot r_A \cdot u_{1h}$$

$$u_{2r} = r_A \cdot u_{2h} = r_I \cdot r_A^2 \cdot u_{1h}$$

$$u_{3h} = r_I \cdot u_{2r} = r_I^2 \cdot r_A^2 \cdot u_{1h}$$

Reflexionsfaktor Leitungsanfang: $\underline{r}_I = \frac{R_I - Z_L}{R_I + Z_L}$ Reflexionsfaktor Leitungsende: $\underline{r}_A = \frac{R_A - Z_L}{R_A + Z_L}$ Hinlaufende Welle $u_{1h} = \hat{u}_G \cdot \frac{Z_L}{Z_L + Z_L}$

Hinlaufende Welle $u_{1h}=u_G\cdot \overline{Z_L+R_I}$ Signallaufzeit: $t_d=\frac{l}{c_0}\cdot \sqrt{\mu_r\varepsilon_r}$

5.4 Leitungsparameter

5.4.1 Allgemein

Für beliebige Leitergeometrie gelten folgende Zusammenhänge:

 $LC = \mu \varepsilon$ und $G = \frac{\sigma}{\varepsilon}$

Innere Induktivität:

$$L_i = \frac{R}{w}$$

Leitungen gehen HIN und ZURÜCK!!! Länge verdoppeln!!!

5.4.2 Streifenleitung / Parallele Platten

Für Sinus-Anregung:

$$I(l) = \frac{U}{Z_L} = \underbrace{\frac{U_0}{Z_L}}_{I_0} \cdot e^{-j\beta l \cdot e^{j\omega t}}$$

$$U(l) = \int \vec{E} d\vec{s} \stackrel{b \ge d}{=} E \cdot d \qquad \to E = \frac{U_0}{d} \cdot \stackrel{-j\beta l}{\cdot} \cdot \vec{e}_x$$

$$I(l) = \oint \vec{H} d\vec{s} = H \cdot b \qquad \to H = \frac{I_0}{b} \cdot \stackrel{-j\beta l}{\cdot} \cdot \vec{e}_y$$

b: Plattenbreite d: Abstand zwischen den Platten

5.4.3 Doppelleitung

 κ : Leitwert des Dielektrikums κ_L Leitwert des Leiters **r**: Leiterradius **d**: Abstand zw. Leitermitten

5.4.4 Koaxialleitung

Mit Hin- und Rückleiter. r_i : Innenradius r_a : Außenradius

$$T_{I} = \frac{R_{I} - Z_{L}}{R_{I} + Z_{L}}$$

$$T_{I} = \frac{R_{I} - Z_{L}}{R_{I} + Z_{L}}$$

$$T_{I} = \frac{R_{A} - Z_{L}}{R_{A} + Z_{L}}$$

$$T_{I} = \frac{1}{2\pi r} \cdot Z_{F0} \cdot e^{-j\beta z} \cdot \vec{e}_{r} = \frac{\hat{U}}{r \cdot \ln(r_{a}/r_{i})} \cdot e^{-j\beta z} \cdot \vec{e}_{r}$$

$$T_{I} = \frac{1}{2\pi r} \cdot Z_{F0} \cdot \frac{\hat{I}}{2\pi r} \cdot Z_{F0}$$

$$T_{I} = \frac{1}{2\pi r} \cdot Z_{F0} \cdot \frac{\hat{I}}{2\pi r} \cdot Z_{F0}$$

$$T_{I} = \frac{1}{2\pi r} \cdot Z_{F0} \cdot \frac{\hat{I}}{r_{A}} \cdot Z_{F0}$$

$$T_{I} = \frac{1}{2\pi r} \cdot Z_{F0} \cdot Z_{F0}$$

Dielektrische Dämpfungsverluste: für sehr hohe f $G \ll \omega C$, $\tan \delta = (G/\omega C) < 0, 1$

$$\alpha_d = \frac{\sqrt{\varepsilon_r} \pi f}{c_0} \cdot \tan \delta \sim f$$

6 Smith-Diagramm

6.1 Allgemein

6.1.1 Normierte Impedanz

$$\underline{z}_n = \frac{Z(l)}{Z_L} = \frac{Z_2 + jZ_L \cdot \tan(\beta l)}{Z_L + jZ_2 \cdot \tan(\beta l)}$$

6.1.2 Reflexionsfaktor

 $\underline{r}(l)=\underline{r}$ $\underline{r}_{(l=0)}=\underline{r}_2$ 0 < r<1 0 < $\Psi<2\pi$ Immer gültig, auch ohne Quelle!

$$\begin{split} \underline{r} &= \underline{r}_2 \cdot e^{-j2\beta l} = r \cdot e^{-j(\Psi_0 + 2\beta l)} = r \cdot e^{j\Psi} \\ &= \frac{\underline{z}_n - 1}{\underline{z}_n + 1} \\ \underline{r}_2 &= \frac{\underline{Z}_2 - Z_L}{\underline{Z}_2 + Z_L} = \frac{\underline{U}_2 - \underline{I}_2 Z_L}{\underline{U}_2 + \underline{I}_2 Z_L} \\ \underline{z}_n &= \frac{1 + \underline{r}}{1 - \underline{r}} \end{split}$$

6.1.3 Anpassungsfaktor

Werte von $m \to \text{Werte von } \text{Re}\{\underline{z}_n\} : 0 \le m \le 1$

$$m = \frac{U_{min}}{U_{max}} = \frac{I_{min}}{I_{max}} = \frac{1-|\underline{r}|}{1+|\underline{r}|} \qquad |\underline{r}| = \frac{1-m}{1+m} \qquad s = \frac{1}{m}$$

$$\underline{z}_{n} = \frac{\underline{Z}_{n}}{Z_{L}}$$

$$\underline{r}_{n} = \frac{\underline{Z}_{n} - Z_{L}}{\underline{Z}_{n} + Z_{L}} = \frac{\underline{z}_{n} - 1}{\underline{z}_{n} + 1} = \frac{1 - \underline{y}_{n}}{1 + \underline{y}_{n}}$$

$$m = \frac{1 - |\underline{r}|}{1 + |\underline{r}|}$$

$$s = \frac{1}{m} = \text{SWR} = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(l)|}{1 - |r(l)|} = \frac{|U_{h}| + |U_{r}|}{|U_{h}| - |U_{r}|} = \frac{R_{\text{max}}}{Z_{L}}$$

6.2 Impedanz/Admetanz umrechnen

Spiegelung von \underline{z}_n um Mittelpunkt ergibt \underline{y}_n . (Phase $\pm 180^{\circ}/\pm \pi$)

6.3 Maxima und Minima bei stehender Welle

Bei verlustloser Leitung:

$$\begin{split} U_{\text{max}} &= |U_h| \cdot (1 + |r(l)|) \qquad U_{\text{min}} = |U_h| \cdot (1 - |r(l)|) \\ I_{\text{max}} &= \left| \frac{U_h}{Z_L} \right| \cdot (1 + |r(l)|) \qquad I_{\text{min}} = \left| \frac{U_h}{Z_L} \right| \cdot (1 - |r(l)|) \end{split}$$

Für Spannungen: Abstand von der Last z

$$z_{\min} = \frac{\lambda}{4\pi} (\theta_{rad} + (2n+1)\pi) \quad z_{\max} = \frac{\lambda}{4\pi} \cdot (\theta_{rad} + 2n\pi)$$
 Minima alle $\frac{\lambda}{2}$ Maxima alle $\frac{\lambda}{4}$

6.4 Lastseite \rightarrow Quelle

- 1. $Z_L = Z_B$ ins Diagramm einzeichnen
- 2. Lastimpedanz bestimmen, wenn z.B. Parallelschaltung etc.
- 3. Normieren $\underline{z}_n = \frac{\underline{Z}(l)}{Z_L}$
- 4. Im Chart eintragen
- 5. Linie vom Mittelpunkt durch $\underline{z}_n s$ nach außen Ablesen und Notieren:
 - \rightarrow Relative Länge $\left\lceil \frac{l}{\lambda} \right\rceil$
 - \rightarrow Relativer Winkel in \mathbf{Degree}
- 6. Kreis einzeichen

Ablesen und Notieren:

- \rightarrow Maxima: rechter Schnittpunkt mit Re-Achse
- → Minima: linker Schnittpunkt mit Re-Achse
- $\rightarrow r$ abmessen und aus oberer Skala auslesen
- 7. Um Leitungslänge im UZS laufen \rightarrow Linie vom Mittelpunkt durch neuen Punkt nach außen

Ablesen und Notieren:

- \rightarrow Relativer Winkel
- 8. Wenn $\alpha \neq 0$
 - \rightarrow Dämpung ausrechen \rightarrow Um Faktor nach innen Spiralieren
- 9. Dieser Punkt ist \underline{z}_e
- 10. Eingangsimpedanz ablesen

$$\underline{Z}_E = \underline{z}_e \cdot Z_L$$

7 Wellenleiter

7.1 Koaxial Leiter

7.1.1 Wellenwiderstand

$$Z_L = \frac{Z_{F0}}{2\pi} \sqrt{\frac{\mu_r}{\varepsilon_r}} \ln\left(\frac{r_a}{r_i}\right) = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln\frac{r_a}{r_i}$$

7.1.2 Dämpfung

Hin- und Rückleiter!

Ohmsche Verluste $R \ll \omega L$

$$\alpha_L = \frac{\sqrt{\frac{f \cdot \mu}{\pi \cdot \sigma}}}{120\Omega} \cdot \frac{\sqrt{\varepsilon_r}}{D} \cdot \frac{1 + \frac{D}{d}}{\ln \frac{D}{d}}$$

Dämpfungsminimum für $\frac{1+\frac{D}{d}}{\ln\frac{D}{d}}=1$

bei vorgegebenen Außendurchmesser: $\frac{D}{d} = 3,59$

<u>Dielektrische Verluste</u> $G \ll \omega C, \tan \delta = (^G/_{\omega C})$

$$\alpha_d = \frac{\sqrt{\varepsilon_r} \pi f}{c_0} \cdot \tan \delta \sim f$$

7.2 Mikrostreifenleiter

w := Leiterbahnbreite

 $\mathbf{h} := \mathbf{Substratbreite}$

7.2.1 Effektive Permittivitätszahl

Unterschiedliche Phasengeschwindigkeit \rightarrow Dispersion

$$\varepsilon_{r, \texttt{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2\sqrt{1 + 10 \cdot \frac{\mathbf{h}}{\mathbf{w}}}}$$

Je größer $\frac{\mathbf{w}}{\mathbf{h}}$ desto mehr nähert sich $\varepsilon_{r,\mathtt{eff}}$ an ε_r und

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_{r, \text{eff}} \cdot \mu_{r, \text{eff}}}}$$

7.2.2 Schmale Streifen (ca 20-200 Ω)

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_{r,eff}}} \cdot \ln\left(\frac{8h}{w} + \frac{w}{4h}\right)$$

7.2.3 Breite Streifen (ca $20-200\Omega$)

$$Z_L = \frac{120\pi\Omega}{\sqrt{\varepsilon_{r, \text{eff}}}} \cdot \frac{1}{\frac{\text{W}}{\text{h}} + 2,42 - 0,44 \cdot \frac{\text{h}}{\text{w}} + \left(1 - \frac{\text{h}}{\text{w}}\right)^6}$$

7.3 Hohlleiter

$$f_c = \frac{c_0}{2a}$$

7.4 VSWR (Voltage Standing Wave Ratio) und Return Loss

Reflexionsfaktor

$$\underline{r}_2 = \underline{r}(z=0) = \frac{Z_2 - \underline{Z}_L}{Z_2 + \underline{Z}_L}$$

VSWR

$$s = VSWR = \frac{1 + |r|}{1 - |r|} \ge 1$$
 $|r| = \frac{s - 1}{s + 1}$

Return Loss

$$\alpha_r = -20\log(r)dB$$

Missmatch Loss

$$ML = -10\log(1 - r^2)dB$$

7.5 Lichtwellenleiter oder Glasfaser

APF := All Plastic Fiber

POF := Polymerfaser

LWL := Lichtwellenleiter

 $B \cdot l :=$ Bandbreitenlängenprodukt

Dispersion:

Die von der Frequenz des Lichts abhängende Ausbreitungsgeschwindigkeit des Lichts in Medien. Dies hat zur Folge, dass Licht an Übergangsflächen unterschiedlich stark gebrochen wird. Somit verflacht sich beispielsweise ein (Dirac-)Impuls zu einer Gauß'schen Glocke.

Stufenprofil:

Multimode: leichtes Einkoppeln, geringes $B \cdot l$ wegen Modendispersion

Single/Monomode: schwieriges Einkoppeln, großes $B \cdot l,$ keine Modendispersion

Gradientenprofil:

Multimode: Kompromiss beim Einkoppeln und Reichweite mit $B \cdot l$

Bandbreitenlängenprodukt:

$$B' = B \cdot l[\frac{MHz}{km}] = \text{konstant}$$

$$B \sim \frac{1}{l}$$
 und $l \sim \frac{1}{B}$

Bandbreite ist gegen Übertragungslänge austauschbar, solange Dämpfung keine Rolle spielt.

8 Antennen

8.1 Herz'scher Dipol (HDp)

$$\vec{p} = Q \cdot \vec{d}$$

8.1.1 Allgemein

$$\begin{split} \vec{H} &= -\frac{I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \vartheta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2} \right) \vec{e}_{\varphi} \\ \vec{E} &= -\frac{Z_F I_0 \Delta l' \beta^2}{2\pi} e^{-j\beta R} \cdot \cos \vartheta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{r} \\ &= -\frac{Z_F I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \vartheta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{\vartheta} \end{split}$$

Im Zeitbereich

$$\begin{split} E_r(t) &= \frac{Z_F I_0 l}{2\pi r^3 \beta} \cos \vartheta \left[\sin(\omega t - \beta r) + \beta r \cos(\omega t - \beta r) \right] \\ E_{\vartheta}(t) &= \frac{Z_F I_0 l}{4\pi r^3 \beta} \sin \vartheta \left[\sin(\omega t - \beta r) + \beta r \cos(\omega t - \beta r) - (\beta r)^2 \sin(\omega t - \beta r) \right] \\ H_{\varphi}(t) &= \frac{I_0 l}{4\pi r^2} \sin \vartheta \left[\cos(\omega t - \beta r) + \beta r \sin(\omega t - \beta r) \right] \end{split}$$

8.1.2 Nahfeld (Fresnel-Zone): $\frac{\lambda}{2\pi R} \gg 1$ oder $\beta R \ll 1$ oder $r \ll \lambda$

Überwiegend **Blindleistungsfeld**, da E zu H 90° phasenverschoben. Lösung entspricht dem quasistatischem Dipolfeld. \rightarrow **keine** Wellenausbreitung!

$$\boxed{ \begin{split} & \underline{\vec{H}} \approx \frac{I_0 \Delta l'}{4\pi r^2} \cdot \sin\vartheta \cdot \vec{e}_{\varphi} \\ & \underline{\vec{E}} \approx \frac{I_0 \Delta l'}{2\pi j \omega \varepsilon r^3} \cos\vartheta \cdot \vec{e}_r + \frac{I_0 \Delta l'}{4\pi j \omega \varepsilon r^3} \sin\vartheta \cdot \vec{e}_{\vartheta} \end{split}}$$

8.1.3 Fernfeld (Fraunhofer-Zone): $\frac{\lambda}{2\pi R} \ll 1$ oder $\beta R \gg 1$

Überwiegend **Wirkleistungsfeld**, \vec{S} in Richtung $\vec{e_r}$ \rightarrow Kugelwelle, \vec{E} und \vec{H} in Phase, fallen mit $\frac{1}{r}$ ab. mit $\eta = Z_{F0}$

$$\vec{H} \approx j \frac{\beta I_0 \Delta l'}{4\pi r} \cdot e^{-j\beta r} \cdot \sin \vartheta \cdot \vec{e}_{\varphi}$$

$$\vec{E} \approx j \frac{\beta Z_F I_0 \Delta l'}{4\pi r} \cdot e^{-j\beta r} \cdot \sin \vartheta \cdot \vec{e}_{\vartheta}$$

8.1.4 Abgestrahlte Leistung im Fernfeld HDp

$$\begin{split} P_{\rm rad} &= P_s = \frac{Z_{F0} I_0^2 \beta^2 (\Delta l')^2}{12\pi} = \frac{I_0^2 Z_F \pi}{3} \cdot \frac{\Delta l'^2}{\lambda^2} \\ &= 40 \pi^2 \Omega \cdot \left(\frac{I_0 \Delta l'}{\lambda}\right)^2 \\ \vec{S}_{av} &= \frac{Z_F I_0^2 \beta^2 (\Delta l')^2}{32 \pi^2 r^2} \cdot \sin^2 \vartheta \cdot \vec{e}_r \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

8.1.5 Strahlungswiderstand HDp

$$R_s = \frac{2}{3}\pi Z_F \left(\frac{\Delta l'}{\lambda}\right)^2 = 80\pi^2 \Omega \left(\frac{\Delta l'}{\lambda}\right)^2$$

8.1.6 Verlustwiderstand HDp

$$R_v = \frac{l}{\sigma \cdot A_\delta}$$

8.2 Magnetischer Dipol

$$\vec{m} = \vec{I}\pi \vec{a}^2 \vec{e}_z$$

$$\vec{A} = \frac{\mu m}{4\pi R^2} (1 + j\beta R) e^{-j\beta R} \sin \theta \cdot \vec{e_{\phi}}$$
$$\Delta l \to \beta \pi \ a^2$$

$$\begin{split} \vec{H} &= -\frac{j\omega\mu\beta^2 m}{2\pi Z_{F0}} e^{-j\beta R} \cdot \cos\theta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_R \\ &= -\frac{j\omega\mu\beta^2 m}{4\pi Z_{F0}} e^{-j\beta R} \cdot \sin\theta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_\theta \\ \vec{E} &= \frac{j\omega\mu\beta^2 m}{4\pi} e^{-j\beta R} \sin\theta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2} \right) \vec{e}_\phi \end{split}$$

8.2.1 Fernfeld

$$E \approx -\frac{\beta m \omega \mu}{4\pi R} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\phi}$$
$$H \approx -\frac{\beta m \omega \mu}{4\pi R Z_{F0}} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\theta}$$

8.2.2 Abgestrahlte Leistung im Fernfeld

$$P_{\text{rad}} = P_s = \frac{Z_F \beta^4 m^2}{12\pi} = \frac{m^2 \mu \omega^4}{12\pi v_p^3}$$
$$S_{av} = \frac{Z_F \beta^4 m^2}{32\pi^2 R^2} \cdot \sin^2 \theta \cdot \vec{e}_R$$
$$= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\}$$

8.2.3 Nahfeld

$$E \approx -\frac{jm\omega\mu}{4\pi R^2} \sin\vartheta \cdot \vec{e}\varphi$$

$$H \approx \frac{m}{4\pi R^3} (2\cos\theta \cdot \vec{e}_R + \sin\vartheta \cdot \vec{e}_\vartheta)$$

8.3 Lineare Antenne

Stromverteilung auf linearen Antennen nicht konstant:

$$I(z') = I_0 \cdot \sin \left[\beta \left(\frac{L}{2} - |z'|\right)\right]$$

8.3.1 Dipolantenne allgemein

$$\begin{split} & \underline{\vec{H}} = j \frac{I_0}{2\pi R} \cdot e^{-j\beta r} \cdot \frac{\cos\left[\left(\frac{\beta L}{2}\right)\cos\theta\right] - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \cdot \vec{e}_{\varphi} \\ & \underline{\vec{E}} = H \cdot Z_{F0} \cdot \vec{e}_{\vartheta} \\ & I_0 = \sqrt{\frac{2 \cdot P_s}{R_s}} \qquad R_s \rightarrow \text{siehe Antennentabelle Kap. 8.8} \end{split}$$

Halbwellendipol:
$$l = \frac{\lambda}{2}$$
 $\underline{Z}_s = (73, 13 + j42, 54)\Omega$
Ganzwellendipol: $l = \lambda$ $\underline{Z}_s = (199, 09 + j125, 41)\Omega$

8.3.2 Eingangs-/Fußpunktimpedanz

Bei leerlaufender Leitung entstehen in Längsrichtung stehende Wellen. Um max. Wirkleistung zu übertragen, muss die Eingangs-/Fußpunktimpedanz Z_A reell bzw. die Leitung in Resonanz sein.

$$P_{max} \to n \cdot \frac{\lambda}{4}$$

$$\underline{Z}_A = \underline{Z}_s \frac{|I_0|^2}{|I_0(z'=0)|^2} = \frac{\underline{Z}_s}{\sin^2[\beta \frac{l}{2}]}$$

Strom am Fußpunkt:

$$I(z'=0) = I_0 \cdot \sin \left[\beta \left(\frac{L}{2}\right)\right]$$

komplexe Strahlungsleistung:

$$P_s + jQ_s = \underline{Z}_s \cdot \frac{|I_0|^2}{2} = \underline{Z}_A \cdot \frac{|I_0(z'=0)|^2}{2}$$

8.3.3 Strahlungsdichte

$$\vec{S}_{av} = \frac{Z_F I_0^2}{8\pi^2 r^2} \left(\frac{\cos\left(\frac{\beta L}{2}\cos\vartheta\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin\vartheta} \right)^2 \cdot \vec{e}_r$$

$$S_{av} = S_{iso} \cdot D_{max} = S_{iso} \cdot D_{max} \cdot C^2(\vartheta, \varphi)$$

8.3.4 abgestrahlte Wirkleistung

$$\begin{split} P_s &= \int_A S_{av} \cdot d\vec{a} \\ &= \int_{\varphi=0}^{2\pi} \int_{\vartheta=0}^{\pi} S_{av} \cdot r^2 \sin \vartheta \, d\vartheta \, d\varphi \\ P_s &= \frac{Z_F I_0^2}{4\pi} \cdot \int_{\vartheta=0}^{\pi} \frac{\left(\cos\left(\frac{\beta L}{2}\cos\vartheta\right) - \cos\left(\frac{\beta L}{2}\right)\right)^2}{\sin\vartheta} d\vartheta \\ &= \frac{Z_F I_0^2}{4\pi} \cdot x \end{split}$$

Numerische Lösung des Integrals ergibt Faktor x:

bei **Halbwellen**dipol: x = 1,2188 bei **Ganzwellen**dipol: x = 3,3181

8.4 Antennenkenngrößen

8.4.1 Abgestrahlte Leistung

$$P_s = P_{rad} = \frac{1}{2} \cdot I_A^2 \cdot R_s$$

8.4.2 Verlustleistung

$$P_V = \frac{1}{2} \cdot I_A^2 \cdot R_V$$

8.4.3 Wirkungsgrad

$$\eta = \frac{P_s}{P_s + P_V} = \frac{R_s}{R_s + R_V}$$

8.4.4 Richtcharakteristik

 $C_i \stackrel{\wedge}{=}$ isotroper Kugelstrahler als Bezugsgröße in Hauptabstrahlrichtung

$$\begin{split} C_i(\vartheta,\varphi) &= \frac{E(\vartheta,\varphi)}{E_i} = \frac{H(\vartheta,\varphi)}{H_i} & C_i > 1 \\ C(\vartheta,\varphi) &= \frac{E(\vartheta,\varphi)}{E_{\max}} = \frac{H(\vartheta,\varphi)}{H_{\max}} = \frac{U(\vartheta,\varphi)}{U_{\max}} & 0 \le C(\vartheta,\varphi) \le 1 \\ C(\vartheta,\varphi) &= \left| \frac{\cos\left(\frac{\beta L}{2}\cos\vartheta\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin\vartheta} \right| \end{split}$$

8.4.5 Richtfunktion/-faktor

$$\begin{split} D(\vartheta,\varphi) &= \frac{S(\vartheta,\varphi)}{S_i} = C_i^{\mathbf{2}}(\vartheta,\varphi) = D \cdot C^{\mathbf{2}}(\vartheta,\varphi) \\ D_{max} &= \max\{D(\vartheta,\varphi)\} = \frac{S_{\max}}{S_i} \end{split}$$

$$\begin{aligned} \mathbf{Halbwellen} \mathrm{dipol} \quad l &= \frac{\lambda}{2} \quad D(\vartheta, \varphi) = 1,64 \cdot \left(\frac{\cos \left(\frac{\pi}{2} \cos \vartheta \right)}{\sin \vartheta} \right)^{\mathbf{2}} \\ \mathbf{Ganzwellen} \mathrm{dipol} \quad l &= \lambda \quad D(\vartheta, \varphi) = 2,41 \cdot \left(\frac{\cos \left(\pi \cos \vartheta \right) + 1}{2 \sin \vartheta} \right)^{\mathbf{2}} \end{aligned}$$

8.4.6 Gewinn/Gain

Verlustlose Antenne, wenn $\eta = 1$

$$G = \eta \cdot D$$
 bei $\eta = 1 \rightarrow G = D$

8.5 Senden und Empfangen

Bei Anpassung: $R_e = R_s \rightarrow \max$. Wirkleistung wird übertragen!

 R_s : Strahlungswiderstand s: Sender e: Empfänger r: **Abstand** von der Antenne

$$\begin{split} P_e &= \frac{1}{2} \cdot R_s \cdot I^2 = \frac{U_0^2}{8R_s} \qquad S_s = \frac{1}{2} H_0^2 \, Z_{F0} = \frac{1}{2} \, \frac{E_0^2}{Z_{F0}} \\ &= \frac{E_0^2 \cdot l_{\tt eff}^2}{8R_s} \end{split}$$

8.5.1 Wirksame/Effektive Antennenfläche

$$A_{\rm eff} = \frac{P_e}{S_s} = \frac{U_0^2}{8R_s} \frac{2Z_{F0}}{E_0^2} \quad A_{\rm eff} = \frac{\lambda^2}{4\pi} \cdot G = \frac{Z_{F0}}{4R_S} \cdot l_{\rm eff}^2$$

Beim Hertzschen Dipol:

$$A_{\tt eff} = \frac{\lambda^2}{4\pi} \cdot \frac{3}{2} \sin^2 \vartheta$$

8.5.2 Friis-Übertragungsgleichung

$$\begin{split} S_{iso} &= \frac{P_s}{4\pi r^2} & S_s = S_{iso} \cdot D_s \\ A_{\text{eff,n}} &= \frac{\lambda^2}{4\pi} \cdot D_n(\vartheta, \varphi) \cdot \eta_n & A_{\text{eff,n}} \Big|_{\text{max}} = \frac{\lambda^2}{4\pi} \cdot G_n \\ P_e &= S_s \cdot A_{\text{eff,e}} \\ &= S_s \cdot \frac{\lambda^2}{4\pi} \cdot D_e(\vartheta, \varphi) \cdot \eta_e \\ \frac{P_e}{P_s} &= A_{\text{eff,e}} \cdot A_{\text{eff,s}} \cdot \frac{1}{\lambda^2 r^2} \\ &= D_e(\vartheta, \varphi) \cdot \eta_e \cdot D_s(\vartheta, \varphi) \cdot \eta_s \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \\ \frac{P_e}{P_s} \Big|_{\text{max}} &= G_s \cdot G_e \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \end{split}$$

Reziprozität: Sende- und Empfangscharakteristik sind identisch!

8.5.3 Freiraumdämpfung

d: Abstand zur Antenne

$$F = \frac{P_s}{P_e} \cdot \left(\frac{4\pi d}{\lambda}\right)^2 \qquad [1]$$

$$a_0 = 20 \log \left(\frac{4\pi d}{\lambda}\right) = 20 \log \left(\frac{4\pi df}{c_0}\right) \qquad [dB]$$

Freiraumdämpfung wird durch räumliche Verteilung der Strahlung verursacht, **nicht** durch Wirkverluste des Ausbreitungsmediums.

8.5.4 Leistungspegel/Freiraumpegel

$$L = 10 \lg \left(\frac{P}{1 \text{mW}}\right) \quad [\text{dBm}]$$

$$L_e = L_s + g_s + g_s - a_0 \quad [\text{dB}]$$

8.6 Bezugsantennen

$$g = 10 \cdot log(G) dB$$

mit P_0 : Eingangsleistung der Antenne

$G \rightarrow Bezugsantenne$:

Elementardipol zu Kugelstrahler

$$D = 1,50 \rightarrow g = 1,76 \text{dBi}$$

Halbwellendipol zu Kugelstrahler

$$D = 1,64 \rightarrow q = 2,15 \text{dBi}$$

EIRP: Eqivalent Isoropic Radiated Power

$$EIRP = P_0 \cdot G_i[dBi]$$

<u>ERP</u>: Eqivalent Radiated Power (verlustloser Halbwellendipol)

$$ERP = P_0 \cdot G_d[dBd]$$

8.7 Monopolantenne

Verhält sich wie ein Dipol, der nur in die obere Hälfte abstrahlt. Strahlungswiderstand halbiert sich und Richtfaktor verdoppelt sich gegenüber der Dipolantenne.

8.8 Antennentabelle

Antennenart	Darstellung, Belegung	Richtfaktor, Gewinn Linear (in dB)	wirksame Antennen- fläche	ettektive Höhe	Strahlungs- Widerstand	vertikales Richtdiagramm (3-dB-Bereich)	horizontales Richtdiagramm
isotrope Antenne	fiktiv	1:(0dB)	$\frac{\lambda^2}{4\pi} = 0.08\lambda^2$	_	_	+	+
Hertzscher Dipol, Dipol mit End- kapazität	φ	1,5; (1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12 \lambda^2$	l	$80\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° &	9 = 90° Hp
kurze Antenne mit Dachkapazität auf lei- tender Ebene $h << \lambda$	200	3;(4,8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	h	$160\left(\frac{\pi h}{\lambda}\right)^2\Omega$	Ev. Hg	$\begin{array}{c} \vartheta = 90^{\circ} \\ \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
kurze Antenne auf leitender Ebene h << 2	1000000	3;(4,8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	<u>h</u> 2	$40\left(\frac{\pi\hbar}{\lambda}\right)^2\Omega$	45° H _{\$\rho}	+
2 /4 - Antenne auf leitender Ebene	1/4	3,28;(5,1dB)	0,065 2 ²	$\frac{\lambda}{2\pi} = 0.16 \lambda$	40Ω	19° ⊗	ϑ=90° ⊗ Ευ
kurzer Dipol / << %	, J.,	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	1/2	$20\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° ⊗ H ₉	+ H _g = 90°
2/2 - Dipol	1/2 P	1,64;(2,1dB)	0,13 λ ²	$\frac{\mathbf{\lambda}}{\mathbf{\pi}} = 0.32\mathbf{\lambda}$	73Ω	78° 8 8	Hg
λ -Dipol		2,41;(3,8dB)	0,19 2 ²	>> λ	200Ω	€ # Hg	$+ \int_{H_{\varphi}}^{\vartheta = 90^{\circ}} \otimes E_{\vartheta}$
2/2 -Schleifendipol	1/2 p	1,64;(2,1dB)	0.13 2 ²	$\frac{2\lambda}{\pi} = 0.64\lambda$	290Ω	178° ⊗	$+ \int_{\mathbb{H}_{\varphi}}^{\vartheta = 90^{\circ}} \mathbb{E}_{\vartheta}$
Schlitzantenne in Halbraum strahlend	λ/2 φ = 0° φ	3,28;(5,1dB)	0,26 2 2	_	≈ 500Ω	$\begin{array}{c} H_{\nu} \\ \hline 78^{\circ} \\ \hline -90^{\circ} \le \varphi \le 90^{\circ} \end{array}$	ϑ=90° ⊗ H _ϑ
kleiner Rahmen, n-Windungen, beliebige Form	Fläche A $\varphi = 0^{\circ} \bigcirc \bullet \varphi$	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	<u>2πηΑ</u> λ	$\frac{31000 n^2 (\text{A/m})^2}{(\lambda/m)^4}$	φ = 90° Eυ	\$ 90°
Spulenantenne auf langem Ferritstab l >> D	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	$\frac{\pi^2 n \mu_r D^2}{2 \lambda}$	19100 $n^2 \mu_r^2 \left(\frac{D}{\lambda}\right)^4$	φ=90°	$\varphi = 0^{\circ}$ 90°
Linie aus Hertzschen Dipolen $l >> \lambda$	$\bigvee_{\varphi}^{\varphi}$	$\approx \frac{4}{3} \frac{l}{\lambda}$	$\frac{/\lambda}{8} \approx 0.12/\lambda$	_	_	E.J. ⊙ H _g p 50°2//	+ € _v ⊗ Hφ
Zeile aus Hertzschen Dipolen />>2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\approx \frac{8}{3} \frac{l}{\lambda}$	$\frac{l \lambda}{4} = 0.25 \lambda$	_	-	Hv\⊙ E _φ 51°2//	Ø = 90° Ø = 90° ⊗ H.
einseitig strahlende Fläche $a >> \lambda$, $b >> \lambda$	$ \begin{array}{c c} & & & & & & & & & \\ & & & & & & & & \\ & & & &$	$\approx \frac{6.5 \cdot 10^6 ab}{\lambda^2}$	ab	-	-	51° λ /b φ=0°	\$=90°
Yagi - Uda-Antenne mit 4 Direktoren		≈5+10// 1	-	-	-	$ \begin{array}{c} $	$H_{\varphi} \wedge \otimes E_{\vartheta}$

9 Einheiten

Symbol	Größe	Einheit				
A, W	Arbeit, Energie	J = VAs = Ws				
$ec{A}$	mag. Vektorpotenzial	$\frac{Vs}{m} = \frac{T}{m} \ (\vec{B} = \nabla \times \vec{A})$				
$ec{B}$	mag. Flussdichte	$T = \frac{Vs}{m^2}$				
С	Kapazität	$F = \frac{As}{V}$				
$ec{D}$	dielek. Verschiebung/Erregung	$\frac{As}{m^2}$				
e, q, Q	(Elementar-)ladung	C = As				
$ec{E}$	elek. Feldstärke	$\frac{V}{m}$				
$ec{H}$	mag. Feldstärke/Erregung	$\frac{A}{m}$				
$ec{J}$	Stromdichte	$\frac{A}{m^2}$				
$ec{J}_F$	Flächenstromdichte	$\frac{A}{m}$				
$ec{M}$	Drehmoment	J = Nm = VAs				
F	Kraft	$\frac{kgm}{s} = N$				
R_{mag}	mag. Widerstand	$\frac{S}{s} = \frac{A}{Vs}$				
$ec{S}$	Poynting-Vektor	$\frac{W}{m^2}$				
\mathbf{Z}	Wellenwiderstand	Ω				
δ_s	Eindringtiefe	m				
ε	Dielektrizitätskonstante	$\frac{As}{Vm}$				
arphi	elek. Skalarpotenzial	V				
$arphi_m$	mag. Skalarpotenzial	A				
ho	Raumladungsdichte	$\frac{As}{m^3}$				
ho	spez. Widerstand	$\frac{\Omega}{m} = \frac{VA}{m}$				
κ,σ	elek. Leitfähigkeit	$\frac{S}{m} = \frac{A}{Vm}$				
λ	Wellenlänge	m				
μ	Permiabilitätskonstante	$\frac{Vs}{Am}$				
Φ_e	elek. Fluss	C = As				
Φ_m	mag. Fluss	$Wb = \frac{T}{m^2}$				

Tony Pham