Caso de Estudio 4 - Sistema de generación eléctrica con sistema de transmisión

Operación Económica de Sistemas Eléctricos de Potencia Maestría en Análisis de Sistemas de Potencia

Paulo M. De Oliveira-De Jesus*

Departamento de Ingeniería Eléctrica & Electrónica

Facultad de Ingeniería

En este documento se define el Caso de Estudio 4 para los estudios de operación económica de sistemas de potencia. El caso consiste en un modelo multinodal (con un sistema de transmisión) de tres generadores térmicos que deben atender dos demandas. En este caso el sistema se encuentra en una condición de emergencia por cuanto la capacidad de una de sus líneas se encuentra excedida. El caso esta tomado del texto Electric Energy Systems Analysis and Operation¹ de Gómez-Expósito, Conejo y Cañizares (Second Edition, 2018) [1].

El sistema comprende 5 nodos y seis líneas tal como se observa en la Fig.

Las características de la demanda se muestran en la Tabla

Nodo	C_{ls}	P_D	Q_D	
	\$/MWh	MW	Mvar	
1	10000	2500	750	
2	10000	300	1000	

Tabla 1: Demanda

donde C_{ls} es el costo de la energía no servida.

^{*}pm.deoliveiradejes@uniandes.edu.co, versión 1.0-2021

¹Capítulo 6, pag. 258. Ver documento aquí

Figura 1: Diagrama Unifilar- Caso de Estudio 4

Unidad	C_u	C_d	P_G	P_G^{min}	P_G^{max}	Q_G^{min}	Q_G^{max}	\overline{V}
	\$/MWh	\$/MWh	MW	MW	MW	MW	MW	pu
3	1000	1000	1300	250	1500	-750	750	1.05
4	1000	1000	1250	250	1500	-750	750	1.03
5	2000	2000	-	250	1000	-500	500	1.03

Tabla 2: Capacidad de generación y costos de desvios

donde C_u y C_d son los costos asociados al redespacho de unidades (aumento o reducción de potencia respecto al despacho original). P_G es el despacho de potencia activa original y P_G^{min} , P_G^{max} , Q_G^{min} y Q_G^{max} los límites de capacidad de las máquinas.

Red de Transmisión

Los parámetros del sistema de transmisión se muestran en la Tabla 3. La base del sistema es 100 MVA. La capacidad de transporte de la linea entre el nodo i y el nodo j es S_{ij}^{max} .

i	j	R (pu)	X (pu)	B Shunt (pu)	$S_{max}(MVA)$
1	2	0.002	0.01	0.002	10
1	3	0.004	0.02	0.004	10
1	4	0.002	0.01	0.002	10
2	5	0.004	0.02	0.004	10
3	4	0.004	0.02	0.004	10
4	5	0.004	0.02	0.004	10

Tabla 3: Parámetros del sistema de transmisión

0.1. Modelo DC

Matriz de incidencia:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 1 \end{bmatrix} \tag{1}$$

Matriz de susceptancia nodal (pu):

$$\boldsymbol{B} = \begin{bmatrix} 250 & -100 & -50 & -100 \\ -100 & 150 & 0 & 0 \\ -50 & 0 & 100 & -50 \\ -100 & 0 & -50 & 200 \end{bmatrix}$$
 (2)

Matriz de reactancias (pu)

$$X = diag([,01,,02,,01,,02,,02])$$
(3)

Matriz de coeficientes de distribución:

$$\mathbf{S}_{f} = \mathbf{X}^{-1} \mathbf{A}^{\top} \mathbf{B}^{-1} = \begin{bmatrix} 0.483 & -0.345 & 0.414 & 0.345 \\ 0.103 & 0.069 & -0.483 & -0.069 \\ 0.414 & 0.276 & 0.069 & -0.276 \\ 0.483 & 0.655 & 0.414 & 0.345 \\ 0.103 & 0.069 & 0.517 & -0.069 \\ 0.517 & 0.345 & 0.586 & 0.655 \end{bmatrix}$$
(4)

finalmete la matriz de sensibilidad:

$$\mathbf{S} = \mathbf{X}^{-1} \mathbf{A}^{\top} = \begin{bmatrix} 100 & -100 & 0 & 0 \\ 50 & 0 & -50 & 0 \\ 100 & 0 & 0 & -100 \\ 0 & 50 & 0 & 0 \\ 0 & 0 & 50 & -50 \\ 0 & 0 & 0 & 50 \end{bmatrix}$$
 (5)

Recordemos que en el modelo DC se cumplen las siguientes ecuaciones:

$$\left. \begin{array}{l} \boldsymbol{A}^{\top}\boldsymbol{\theta} = \boldsymbol{X}\boldsymbol{P}_{\mathrm{f}} \\ \boldsymbol{P}_{\mathrm{f}} = \boldsymbol{S}\boldsymbol{\theta} = \left[\boldsymbol{X}^{-1}\boldsymbol{A}^{\top}\right]\boldsymbol{\theta} \\ \boldsymbol{P} = \boldsymbol{A}\boldsymbol{P}_{\mathrm{f}} \end{array} \right\} \Rightarrow \boldsymbol{P}_{\mathrm{f}} = \left[\boldsymbol{X}^{-1}\boldsymbol{A}^{\top}\boldsymbol{B}^{-1}\right]\boldsymbol{P} = \boldsymbol{S}_{\mathrm{f}}\boldsymbol{P} \tag{6}$$

Nótese que la solución del flujo de potencia DC evidencia que la línea entre los nodos 1 y 4 excede su capacidad de transporte (13.72 pu \geq 10 pu):

$$\mathbf{P}_{f} = \begin{bmatrix}
0.4828 & -0.3448 & 0.4138 & 0.3448 \\
0.1034 & 0.0689 & -0.4828 & -0.0689 \\
0.4138 & 0.2759 & 0.0689 & -0.2759 \\
0.4828 & 0.6552 & 0.4138 & 0.3448 \\
0.1034 & 0.0689 & 0.5172 & -0.0689 \\
0.5172 & 0.3448 & 0.5862 & 0.6552
\end{bmatrix}
\begin{bmatrix}
-25.0 \\
-3.0 \\
13.0 \\
12.5
\end{bmatrix} = \begin{bmatrix}
-1,35 \\
-9.93 \\
-13.72 \\
-4.35 \\
3.07 \\
1.85
\end{bmatrix}$$
(7)

Referencias

[1] Antonio Gómez-Expósito, Antonio J Conejo, and Claudio Cañizares, *Electric energy systems: analysis and operation*, CRC press, 2018.