1. Nevyhnutná geometria

- 1° Euklidovský priestor: $E^3 = (B(E^3), V(E^3), +, \circ, d)$, kde
 - a/ $B(E^3) \neq \emptyset$ množina bodov A,B,...
 - b/ $V(E^3)$ trojrozmerný vektorový priestor nad R (prvky vektory $\mathbf{a}, \mathbf{b},...$)
 - c/ + operácia sčitovania bodov a vektorov: $+: B(E^3) \times V(E^3) \rightarrow B(E^3)$ t.j. bod + vektor = bod; vektor + bod = bod
 - d/ ° skalárny súčin na $V(E^3)$
 - e/ d funkcia určujúca vzdialenosť dvoch bodov $d(A, B) = \sqrt{(B A).(B A)}$
 - f/ body na rozdiel od vektorov nemožno sčitovať (odčítavať áno), ani násobiť číslami, možno však z nich vytvárať barycentrické (afinné) kombinácie, ktorých výsledkom je bod (ak $\sum c_i = 1$) alebo vektor (ak $\sum c_i = 0$; c_i sú koeficienty kombinácie), špeciálne:
 - (1) 1.A = A a $0.A = \mathbf{0}$ pre každý bod A
- 2° Afinná súradnicová sústava: zobrazenie $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle : E^3 \to R^3$, ktoré bodu X z priestoru E^3 priradí usporiadanú trojicu čísel (x_1, x_2, x_3) , formálne:

$$X = (x_1, x_2, x_3) \Leftrightarrow X = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 + 1.0$$

a súčasne

$$\mathbf{x} = (u_1, u_2, u_3) \Leftrightarrow \mathbf{x} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3 + 0.0$$
,

kde O je pevne zvolený bod a $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ je báza $V(E^3)$ (teda $X \to (x_i)$ je bijekcia) $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ sa nazýva <u>kartezianska súradnicová sústava</u> $\Leftrightarrow \langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ je ortonormálna.

- 3° Predpokladáme, že v E^3 je pevne zvolená jedna karteziánska súradnicová sústava $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ a všetky body a vektory, vrátane určujúcich prvkov ďalších súradnicových sústav, budeme zadávať súradnicami v nej. V súlade so zaužívanou terminológiou v PG ju budeme považovať za <u>svetovú súradnicovú sústavu</u>, resp. za <u>starú</u> v porovnaní s ďalšími súradnicovými sústavami (novými).
- 4° Ak $X = (x_1, x_2, x_3)$ resp. $\mathbf{x} = (u_1, u_2, u_3)$, tak v PG často hovoríme o bode $(x_1, x_2, x_3)^T$ resp. o vektore $(u_1, u_2, u_3)^T$. Teda stĺpcové vektory reprezentujú ako body, tak i vektory priestoru E^3 . Potrebujeme však vedieť rozhodnúť, kedy stĺpcový vektor reprezentuje bod a kedy vektor (dva vektory možno sčítať, dva body nie). Aby sme to dosiahli zavádzame tzv. rozšírené súradnice resp. rozšírené stĺpcové vektory takto:
- $X = (x_1, x_2, x_3, 1)$ pre body a $\mathbf{x} = (u_1, u_2, u_3, 0)$ pre vektory, čo je v súlade s 2°.
- 5° <u>Transformácia súradníc.</u> Nech v E^3 je pevne zvolená afinná (karteziánska) súradnicová sústava $S=\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ tzv. svetová (stará), v ktorej majú určujúce prvky ďalšej (novej) afinnej súradnicovej sústavy $N=\langle P, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$ súradnice:

 $P = (p_1, p_2, p_3)$, $\mathbf{a_1} = (a_{11}, a_{21}, a_{31})$, $\mathbf{a_2} = (a_{12}, a_{22}, a_{32})$, $\mathbf{a_3} = (a_{13}, a_{23}, a_{33})$ - všetky súradnice sú vo svetovej súradnicovej sústave. Potom každý bod X [vektor \mathbf{x}] má dvojaké súradnice:

a)
$$\underline{\text{staré}} - \langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$$
: (x_1, x_2, x_3) resp. $(x_1, x_2, x_3, 1)$ X
 $[(u_1, u_2, u_3)$ resp. $(u_1, u_2, u_3, 0)$ X]

b) nové-v
$$\langle P, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$$
: (x_1', x_2', x_3') resp. $(x_1', x_2', x_3', 1)$ X
: $[(u_1', u_2', u_3')$ resp. $(u_1', u_2', u_3', 0)$ X]

pre ktoré platí:

 $\operatorname{bod} X$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \end{pmatrix} + \begin{pmatrix} p_{1} \\ p_{2} \\ p_{3} \end{pmatrix} \text{resp.} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & p_{1} \\ a_{21} & a_{22} & a_{23} & p_{2} \\ a_{31} & a_{32} & a_{33} & p_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \\ 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ 1 \end{pmatrix} = A \begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \\ 1 \end{pmatrix} \text{resp.} (x_{1} & x_{2} & x_{3} & 1) = (x'_{1} & x'_{2} & x'_{3} & 1) A^{T}$$

$$(1)$$

vektor x

$$\begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} u'_{1} \\ u'_{2} \\ u'_{3} \end{pmatrix} \text{ resp.} \quad \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & p_{1} \\ a_{21} & a_{22} & a_{23} & p_{2} \\ a_{31} & a_{32} & a_{33} & p_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u'_{1} \\ u'_{2} \\ u'_{3} \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ 0 \end{pmatrix} = A \begin{pmatrix} u'_{1} \\ u'_{2} \\ u'_{3} \\ 0 \end{pmatrix} \text{ resp.} \quad (u_{1} \quad u_{2} \quad u_{3} \quad 0) = (u'_{1} \quad u'_{2} \quad u'_{3} \quad 0) A^{T}$$

Teda matica A resp. A^T nám umožňuje vypočítať <u>staré</u> súradnice bodov [vektorov], ak poznáme ich <u>nové</u> súradnice, čo sa však stáva zriedka. Väčšinou potrebujeme vypočítať nové súradnice zo starých súradníc. K tomu potrebujeme poznať inverznú maticu k matici A. To vieme urobiť známym spôsobom z lineárnej algebry, ktorý je však zdĺhavý. Všimnime si, že transformačná matica A medzi súradnicovými sústavami S a N je regulárna a regulárnou je aj jej submatica A_{44} . Obrátene, každú maticu A s týmito dvomi vlastnosťami, ktorej posledný riadok $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$, možno považovať za <u>maticu transformácie</u> medzi dvomi afinnými súrdnicovými sústavami.

V počítačovej grafike veľmi často pracujeme so špeciálnymi afinnými súradnicovými sústavami – <u>kartezianskymi</u> súradnicovými sústavami. V tomto prípade tvoria vektory $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$ ortonormálnu bázu (sú jednotkové a navzájom kolmé), takže submatica A_{44} matice A je ortogonálna. Inverznou maticou k takejto matici je matica k nej transponovaná A_{44}^{T} . Tento fakt môžeme využiť na rýchlejšie nájdenie inverznej matice k matici A, tým, že ju

rozložíme na súčin dvoch matíc, ktorých inverzné matice poznáme (ortogonálnej matice a matice posunutia). Teda:

$$A^{-1} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & p_1 \\ a_{21} & a_{22} & a_{23} & p_2 \\ a_{31} & a_{32} & a_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 & p_1 \\ 0 & 1 & 0 & p_2 \\ 0 & 0 & 1 & p_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & -(a_{11}p_1 + a_{21}p_2 + a_{31}p_3) \\ a_{12} & a_{22} & a_{32} & -(a_{12}p_1 + a_{22}p_2 + a_{32}p_3) \\ a_{13} & a_{23} & a_{33} & -(a_{13}p_1 + a_{23}p_2 + a_{33}p_3) \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a_{11} & a_{21} & a_{21} & a_{22} & a_{22} & a_{23} & 0 \\ a_{21} & a_{22} & a_{23} & a_{23} & a_{23} \\ a_{21} & a_{22} & a_{22} & a_{23} & -(a_{12}p_1 + a_{22}p_2 + a_{32}p_3) \\ a_{13} & a_{23} & a_{33} & -(a_{13}p_1 + a_{23}p_2 + a_{33}p_3) \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{23} & a_{23} & a_{23} & a_{23} & a_{23} \\ a_{13} & a_{23} & a_{33} & -(a_{13}p_1 + a_{23}p_2 + a_{33}p_3) \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

Formálny zápis blokovou maticou: $\begin{pmatrix} A_{44}^T & -A_{44}^T P \\ O^T & 1 \end{pmatrix}$

Keď si takto vypočítame inverznú maticu A⁻¹, môžeme zo vzťahu (1) vypočítať nové súradnice bodu *X* pomocou starých súradníc:

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ 1 \end{pmatrix} = A^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} \iff \begin{pmatrix} x_1' & x_2' & x_3' & 1 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & 1 \end{pmatrix} (A^T)^{-1} = \begin{pmatrix} x_1 & x_2 & x_3 & 1 \end{pmatrix} (A^{-1})^T.$$

6° Afinné transformácie priestoru E^{3} .

Bijektívne zobrazenie $f: E^3 \to E^3$ zachovávajúce kolineárnosť troch bodov a ich deliaci pomer (resp. ratio) t.j. $\forall A, B, C$ - kolineárne a $B \neq C$ platí: $(ABC) = \lambda \Leftrightarrow B - A = \lambda(B - C)$ (resp. B - A = r(C - B)). Teda afinná transformácia zobrazuje priamky do priamok.

Ku každej afinnej transformácii f prislúcha tzv. homogénna zložka $f^*: V(E^3) \to V(E^3)$ definovaná vzťahom $f^*(B-A) = f(B) - f(A)$. f^* je lineárna transformácia priestoru $V(E^3)$ t.j. automorfizmus priestoru $V(E^3)$. Často sa f^* chápe ako rozšírenie afinnej transformácie f na vektorovú zložku $V(E^3)$ priestoru E^3 , čiže ako zobrazenie $F: B(E^3) \cup V(E^3) \to B(E^3) \cup V(E^3)$, také, že $F/B(E^3) = f$ a $F/V(E^3) = f^*$.

Podľa základnej vety o afinných transformáciách ku každej usporiadanej dvojici repérov $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$, $\langle P, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$ existuje práve jedna afinná transformácia F priestoru E^3 , ktorá zobrazuje prvý z nich do druhého t.j. platí, že $f(O) = P \wedge f^*(\mathbf{e}_i) = \mathbf{a}_i$ pre i = 1,2,3. Ak $P = (p_1, p_2, p_3)$, $\mathbf{a}_1 = (a_{11}, a_{21}, a_{31})$, $\mathbf{a}_2 = (a_{12}, a_{22}, a_{32})$, $\mathbf{a}_3 = (a_{13}, a_{23}, a_{33})$ sú súradnice určujúcich

prvkov druhého repéru v súradnicovej sústave určenej prvým repérom, tak afinná transformácia F má analytické vyjadrenie v súradnicovej sústave $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ nasledovné:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1/0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & p_1 \\ a_{21} & a_{22} & a_{23} & p_2 \\ a_{31} & a_{32} & a_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1/0 \end{pmatrix}$$
(2)

resp.

$$(y_1 \quad y_2 \quad y_3 \quad 1) = (x_1 \quad x_2 \quad x_3 \quad 1) \begin{pmatrix} a_{11} & a_{21} & a_{31} & 0 \\ a_{12} & a_{22} & a_{32} & 0 \\ a_{13} & a_{23} & a_{33} & 0 \\ p_1 & p_2 & p_3 & 1 \end{pmatrix},$$

kde $(x_1, x_2, x_3, 1)$ sú súradnice l'ubovol'ného bodu X priestoru E^3 v súradnicovej sústave $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ a $(y_1, y_2, y_3, 1)$ sú súradnice jeho obrazu Y = f(X) v tej istej súradnicovej sústave $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$.

Teda rovnosti (1) a (2) sú z formálneho hľadiska totožné – sú určené tou istou maticou, ktorou môže byť každá regulárna matica A typu 4x4, ktorá má posledný riadok jednotkový t.j. $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ (\Rightarrow že jej submatica A_{44} je tiež regulárna).

Z geometrického hľadiska je však medzi týmito rovnosťami podstatný rozdiel. Prvá t.j.(1) vyjadruje vzťah medzi súradnicami toho istého bodu v dvoch rôznych súradnicových sústavách, presnejšie vyjadruje jeho staré súradnice (v $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$) ako funkcie nových (v $\langle P, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$).

Druhá t.j. (2) $\langle P, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$ vyjadruje súradnice obrazu Y = f(X) ako funkcie Y = f(X) súradníc jeho vzoru X v tej istej súradnicovej sústave $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$.

<u>Poznámka 1</u> Analogické definície a tvrdenia platia aj pre transformácie súradníc bodov (vektorov) a afinné transformácie v E^2 .

Poznámka 2 Z hľadiska PG sú dôležité posunutia, súmernosti podľa priamky v E^2 (roviny v E^3), rotácie okolo bodu v E^2 (osi, špec. súradnicovej osi v E^3) a skladanie jednoduchých transformácií.

Zovšeobecnením afinných transformácií v E^3 a E^2 (odbúraním požiadavky bijektívnosti) dostávame <u>afinné zobrazenia priestoru</u> E^n do priestoru E^m , kde $m \le n$. Sú to zobrazenia $f: E^n \to E^m$, ktoré zachovávajú deliaci pomer (ratio) trojíc kolineárnych bodov. V PG nás zaujímajú predovšetkým afinné zobrazenia priestoru $E^2 \to E^1$ a $E^3 \to E^2$ príp. $E^3 \to E^1$.

Princíp tohto zovšeobecnenia budeme demonštrovať na príkladoch afinných zobrazení $f: E^3 \to E^2$. Aby sme našli analytické vyjadrenie zobrazenia f predpokladajme, že v E^3 je daná afinná súradnicová sústava $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ a v E^2 súradnicová sústava $\langle R, \mathbf{u}_1, \mathbf{u}_2 \rangle$ (ak E^2 je rovina v E^3 predpokladáme, že $R = (r_1, r_2, r_3)$, $\mathbf{u}_1 = (u_{11}, u_{21}, u_{31})$, $\mathbf{u}_2 = (u_{12}, u_{22}, u_{32})$ v $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$).

Afinné zobrazenie je <u>úplne určené</u> obrazmi určujúcich prvkov súradnicovej sústavy $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ v E^2 t.j. bodom f(O) a vektormi $f^*(\mathbf{e}_1), f^*(\mathbf{e}_2), f^*(\mathbf{e}_3)$. Ak predpokladáme, že v súradnicovej

sústave $\langle R, \mathbf{u}_1, \mathbf{u}_2 \rangle$ platí: $f(O) = (p_1, p_2), f^*(\mathbf{e}_1) = (a_{11}, a_{21}), f^*(\mathbf{e}_2) = (a_{12}, a_{22}), f^*(\mathbf{e}_3) = (a_{13}, a_{23}),$ tak analytické vyjadrenie (<u>zobrazovacie rovnice</u>) zobrazenia f sú:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & p_1 \\ a_{21} & a_{22} & a_{23} & p_2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} \text{ resp. } (y_1 \quad y_2 \quad 1) = (x_1 \quad x_2 \quad x_3 \quad 1) \begin{pmatrix} a_{11} & a_{21} & 0 \\ a_{12} & a_{22} & 0 \\ a_{13} & a_{23} & 0 \\ p_1 & p_2 & 1 \end{pmatrix}$$
(3)

Špeciálne, ak E^2 je rovina v priestore E^3 , tak vyberáme z geometrického zadania zobrazenia f typu: bod O sa zobrazí do pevného bodu roviny E^2 , pre ilustráciu napríklad do ťažiska T trojuholníka RSU, kde $S = R + \mathbf{u}_1$, $U = R + \mathbf{u}_2$, čiže

$$f(O) = T = \frac{1}{3}(R + (R + \mathbf{u}_1) + (R + \mathbf{u}_2)) = R + \frac{1}{3}(\mathbf{u}_1 + \mathbf{u}_2) = [r_1 + \frac{1}{3}(u_{11} + u_{12}), \dots]$$

a vektor \mathbf{e}_1 sa zobrazí do vektora $\mathbf{u}_1 - \mathbf{u}_2 = [u_{11} - u_{12}, \dots] = f^*(\mathbf{e}_1)$ a podobne. Najskôr musíme vypočítať súradnice bodu f(O) a vektorov $f^*(\mathbf{e}_1), f^*(\mathbf{e}_2), f^*(\mathbf{e}_3)$.

Poznámka: Obrazy vektorov sa určujú podľa vzťahu: $f^*(\mathbf{a}) = f(B) - f(A)$, ak $\mathbf{a} = B - A$.

7° Zobrazovacie rovnice rovnobežného premietania.

Nech rovnobežné premietanie je určené smerom $s = [\mathbf{d}]$ a priemetňou $\pi = [R, \mathbf{u}, \mathbf{v}]$; kde $\{\mathbf{u}, \mathbf{v}\}$ je LN, \mathbf{d} je rôznobežné s priemetňou π a všetky body a vektory sú určené príslušnými svetovými súradnicami.

Rovnobežným priemetom bodu $X = (x_1, x_2, x_3)$ do roviny $\pi \equiv R + x_1' \mathbf{u} + x_2' \mathbf{v}$ je bod $X' = p \cap \pi$, kde $X \in p \parallel \mathbf{d}$. Teda $X' = X + t\mathbf{d} \wedge X' = R + x_1' \mathbf{u} + x_2' \mathbf{v} \Rightarrow$

(*)
$$X - R = x_1'\mathbf{u} + x_2'\mathbf{v} - t\mathbf{d}$$

Ak túto rovnosť postupne skalárne vynásobime vektormi $\mathbf{v} \times \mathbf{d}$ a $\mathbf{u} \times \mathbf{d}$ dostaneme hľadané zobrazovacie rovnice v tvare:

(*)
$$x'_1 = \frac{(X - R, \mathbf{v}, \mathbf{d})}{(\mathbf{u}, \mathbf{v}, \mathbf{d})}$$
 a $x'_2 = -\frac{(X - R, \mathbf{u}, \mathbf{d})}{(\mathbf{u}, \mathbf{v}, \mathbf{d})}$

kde symbolom $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ rozumieme tzv. zmiešaný súčin vektorov $\mathbf{a}, \mathbf{b}, \mathbf{c}$, čiže determinant utvorený z ich súradníc. Ak označíme $D = (\mathbf{u}, \mathbf{v}, \mathbf{d})$ a determinanty v čitateľoch vzťahov (*) rozvinieme podľa prvého riadku, môžeme vyjadrenia (*) prepísať do tvaru:

$$(*) \quad x_{1}' = \frac{1}{D} \begin{bmatrix} \begin{vmatrix} v_{2} & v_{3} \\ d_{2} & d_{3} \end{vmatrix} (x_{1} - r_{1}) - \begin{vmatrix} v_{1} & v_{3} \\ d_{1} & d_{3} \end{vmatrix} (x_{2} - r_{2}) + \begin{vmatrix} v_{1} & v_{2} \\ d_{1} & d_{2} \end{vmatrix} (x_{3} - r_{3}) \end{bmatrix}$$
$$x_{2}' = \frac{1}{D} \begin{bmatrix} -\begin{vmatrix} u_{2} & u_{3} \\ d_{2} & d_{3} \end{vmatrix} (x_{1} - r_{1}) + \begin{vmatrix} u_{1} & u_{3} \\ d_{1} & d_{3} \end{vmatrix} (x_{2} - r_{2}) - \begin{vmatrix} u_{1} & u_{2} \\ d_{1} & d_{2} \end{vmatrix} (x_{3} - r_{3}) \end{bmatrix}.$$

Po úprave – výpočte determinantov vo vyjadreniach (*) – nadobudnú rovnice rovnobežného premietania tvar:

$$x'_{1} = \frac{1}{D}(ax_{1} + bx_{2} + cx_{3} + d) \qquad x'_{2} = \frac{1}{D}(ex_{1} + fx_{2} + gx_{3} + h)$$
resp.
$$x'_{1} = Ax_{1} + Bx_{2} + Cx_{3} + K \qquad x'_{2} = Ex_{1} + Fx_{2} + Gx_{3} + H.$$

V prípade <u>ortoprojekcie</u> – kolmého premietania (R = O, $\mathbf{u} = \mathbf{e}_1$, $\mathbf{v} = \mathbf{e}_2$, $\mathbf{d} = \mathbf{e}_3$) máme $x_1' = x_1$, $x_2' = x_2$, $x_3' = 0$ (v súradnicovej sústave $\langle R, \mathbf{u} = \mathbf{e}_1, \mathbf{v} = \mathbf{e}_2, \mathbf{e}_3 \rangle$), čo možno zapísať v maticovom tvare:

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} \text{ kde } \mathbf{M}_{OP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ je matica ortoprojekcie.}$$

Podobným spôsobom sa dajú zo vzťahov (*) získať aj maticové reprezentácie ďalších typov rovnobežných premietaní, vrátane axonometrií.

8° Stredové premietanie

Daná je priemetňa $\pi = \{R = (r_1, r_2, r_3); \mathbf{a} = (a_1, a_2, a_3), \mathbf{b} = (b_1, b_2, b_3); \{\mathbf{a}, \mathbf{b}\} \text{ je LN}\}$ a bod $S = (s_1, s_2, s_3) \notin \pi$.

Stredovým premietaním rozumieme zobrazenie $\sigma: E^3 \setminus S \to \pi$; $X \to X' = \sigma(X)$ takto: $X' = SX \cap \pi$; $\forall X \neq S$.

Bod X' sa nazýva stredový priemet bodu X zo stredu S do priemetne π .

Odvodenie rovníc stredového premietania:

Nech X = [x, y, z] v $\langle O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ a X' = [x', y'] v $\langle R, \mathbf{a}, \mathbf{b} \rangle$ - afinná súradnicová sústava v $E^2 = \pi$. Je zrejmé, že :

$$X' = S + (X - S)z'$$
 a $X' = R + x'\mathbf{a} + y'\mathbf{b} \Rightarrow S + (X - S)z' = R + x'\mathbf{a} + y'\mathbf{b} \Rightarrow$

$$(1) S - R = x'\mathbf{a} + y'\mathbf{b} - (X - S)z'.$$

Po postupnom skalárnom vynásobení (1) vektormi $\mathbf{a} \times \mathbf{b}$, $\mathbf{b} \times (S - R)$, $\mathbf{a} \times (S - R)$ dostaneme

a)
$$(\mathbf{a}, \mathbf{b}, S - R) = -(X - S, \mathbf{a}, \mathbf{b})z' \Rightarrow z' = -\frac{(\mathbf{a}, \mathbf{b}, S - R)}{(X - S, \mathbf{a}, \mathbf{b})}$$

b)
$$0 = x'(\mathbf{a}, \mathbf{b}, S - R) - (X - S, \mathbf{b}, S - R)z' \Rightarrow x' = -\frac{(X - S, \mathbf{b}, S - R)}{(\mathbf{a}, \mathbf{b}, S - R)} \cdot \frac{(\mathbf{a}, \mathbf{b}, S - R)}{(X - S, \mathbf{a}, \mathbf{b})} \Rightarrow$$

$$x' = -\frac{(X - S, \mathbf{b}, S - R)}{(X - S, \mathbf{a}, \mathbf{b})} = -\frac{\begin{vmatrix} x - s_1 & y - s_2 & z - s_3 \\ b_1 & b_2 & b_3 \\ s_1 - r_1 & s_2 - r_2 & s_3 - r_3 \\ \hline x - s_1 & y - s_2 & z - s_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
(2)

c)
$$0 = y'(\mathbf{b}, \mathbf{a}, S - R) - (X - S, \mathbf{a}, S - R) - \frac{(\mathbf{a}, \mathbf{b}, S - R)}{(X - S, \mathbf{a}, \mathbf{b})} \Rightarrow \begin{vmatrix} x - s_1 & y - s_2 \end{vmatrix}$$

$$y' = \frac{(X - S, \mathbf{a}, S - R)}{-(\mathbf{b}, \mathbf{a}, S - R)} \cdot \frac{(\mathbf{a}, \mathbf{b}, S - R)}{(X - S, \mathbf{a}, \mathbf{b})} = \frac{\begin{vmatrix} x - s_1 & y - s_2 & z - s_3 \\ a_1 & a_2 & a_3 \\ s_1 - r_1 & s_2 - r_2 & s_3 - r_3 \end{vmatrix}}{\begin{vmatrix} x - s_1 & y - s_2 & z - s_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}}$$

Zobrazovacie rovnice stredového premietania zapísané vo vzťahoch (2), v tvare podielu dvoch determinantov, upravíme do tvaru:

$$x' = \frac{ax + by + cz + d}{px + qy + rz + q}; \qquad y' = \frac{ex + fy + gz + h}{px + qy + rz + q}.$$
 (2*)

Rovnice (2*) sú <u>všeobecnými</u> rovnicami stredového premietania v afinných súradniciach. Všimnime si, že toto nie sú lineárne rovnice (majú premennú aj v menovateli) a preto sa v afinných súradniciach nedajú zapísať v maticovom tvare. Dá sa to však spraviť v <u>homogénnych</u> súradniciach.

Rozšírená euklidovská rovina ako model projektívnej roviny.

 \star - zväzok priamok 1.druhu v E^2 \mathscr{M} - zväzok priamok 2.druhu v E^2 - smer v E^2 u_{∞} - množina všetkých zväzkov 2.druhu, čiže smerov v E^2 $\overline{E}^2 = E^2 \cup u_{\infty}$ - rozšírená euklidovská rovina u_{∞} - nevlastná priamka \overline{E}^2 $\underline{vlastn\'e}$ body \overline{E}^2 - body E^2 $\underline{nevlastn\'e}$ body \overline{E}^2 - body u_{∞}

Teda E^2 sme rozšírili na \overline{E}^2 , tak, že sme jej pridali nekonečne veľa nevlastných bodov – smerov určených jej priamkami (každá priamka určuje práve jeden smer – ten, do ktorého patrí). Množinu priamok E^2 sme však rozšírili len o jednu – nevlastnú priamku u_{∞} .

Dá sa dokázať, že po tomto doplnení budú mať množina bodov a množina priamok \overline{E}^2 tú istú mohutnosť (rovnaký počet prvkov). Každej priamke roviny E^2 sme pridali jeden nevlastný bod zväzok rovnobežiek, do ktorého patrí. Potom však <u>dve rôzne rovnobežky budú mať spoločný jediný nevlastný bod</u> – priesečník s nevlastnou priamkou u_∞ . Nevlastný bod priamky <u>je rozumné</u> si predstaviť ako <u>spojovací bod</u> medzi dvoma koncami nerozšírenej afinnej priamky, ktorý jej dáva charakter uzavretej krivky a na ktorej potom dva rôzne body vytvárajú nie jednu, ale dve úsečky.

 $V \ \overline{E}^2$ teda každé <u>dve rôzne priamky majú spoločný práve jeden bod</u> a <u>dvomi rôznymi bodmi prechádza práve jedna priamka</u> (vlastnými – vlastná, nevlastnými – nevlastná, vlastným a nevlastným – vlastná). Keďže v \overline{E}^2 <u>existuje aspoň jedna štvorica bodov, z ktorých žiadne tri neležia na jednej priamke, je \overline{E}^2 modelom projektívnej roviny, ktorá je definovaná axiomaticky práve týmito tromi požiadavkami.</u>

<u>Analytický opis</u>: Predpokladajme, že v E^2 je určená nejaká afinná súradnicová sústava $\langle O; \mathbf{e}_i \rangle$. Potom

- a) Každý <u>nevlastný bod</u> P_{∞} možno chápať ako 1-rozmerný podpriestor priestoru $V(E^2)$ vektorov rovnobežných s priamkami zväzku a ten je určený ľubovoľnou svojou bázou t.j. ľubovoľným nenulovým smerovým vektorom $\mathbf{s} = (x, y, 0)$ priamok zväzku, čiže ľubovoľným stĺpcovým vektorom $(\rho x, \rho y, 0)^T$, alebo každým stĺpcovým vektorom $(x_1, x_2, x_3)^T$, kde $x_3 = 0 \land (x_1, x_2) \neq (0, 0)$ sú súradnice smerového vektora priamok príslušného zväzku rovnobežiek. Prvky x_1, x_2, x_3 nazývame potom <u>homogénnymi súradnicami bodu</u> P_{∞} a píšeme $P_{\infty} = (x_1, x_2, x_3)^T$.
- b) Homogénnymi súradnicami <u>vlastného bodu</u> P nazývame prvky x_1, x_2, x_3 každého stĺpcového vektora $(x_1, x_2, x_3)^T$, kde $x_3 \neq 0$ a $(x_1/x_3, x_2/x_3)$ sú afinné súradnice bodu P. Teda každý bod (vlastný i nevlastný) má nielen jednu, ale nekonečne mnoho trojíc homogénnych súradníc nenulových násobkov jednej z nich.

Ak teda stotožníme body s ich súradnicami, tak ako sa to často robí v analytickej geometrii, môžeme \overline{E}^2 stotožniť s množinou $R^3 / \sim \setminus (0,0,0)$ – nenulových tried rozkladu množiny R^3 podľa binárnej relácie ~ násobenia usporiadaných trojíc nenulovými reálnymi číslami.

Rozšírený euklidovský priestor \overline{E}^3

Majme daný 3D-priestor E^3 s afinnou súradnicovou sústavou $\langle O; \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$. \overline{E}^3 vznikne z E^3 doplnením jeho bodovej zložky o <u>nevlastné</u> (ideálne) body – smery v E^3 (= množina všetkých navzájom rovnobežných priamok \Leftrightarrow 1-rozmerný podpriestor priestoru $V(E^3)$ smerových vektorov týchto priamok). Množinu všetkých nevlastných bodov \overline{E}^3 nazývame <u>nevlastnou rovinou</u> ω_{∞} . Každej priamke p priestoru E^3 priradíme (pridáme) jediný nevlastný bod – smer, ktorý určuje. Každej rovine α priestoru E^3 zasa pridáme jedinú nevlastnú priamku (podmnožinu ω_{∞}) skladajúcu sa z nevlastných bodov všetkých priamok, ktoré v nej ležia (\Leftrightarrow sú s ňou rovnobežné). Existuje v tomto priestore rovnobežnosť? Prečo?

Body v tomto priestore opisujeme pomocou usporiadaných <u>štvoríc</u>homogénnych súradníc – presnejšie - homogénnymi stĺpcovými vektormi takto:

- a) Nevlastné body: $P_{\infty} = (x_1, x_2, x_3, x_4)^T \Leftrightarrow x_4 = 0 \land \mathbf{p} = (x_1, x_2, x_3) \neq (0, 0, 0)$ sú afinné súradnice nejakého smerového vektora priamok, ktoré ho určujú (ním prechádzajú). Prirodzene, že $(\rho x_1, \rho x_2, \rho x_3, \rho x_4)$ kde $\rho \neq 0$ sú tiež homogénne súradnice bodu P_{∞} .
- b) <u>Vlastné body</u> (body E^3): $P = (x_1, x_2, x_3, x_4)^T \Leftrightarrow x_4 \neq 0$ a $(x_1/x_4, x_2/x_4, x_3/x_4)$ sú afinné súradnice bodu P. Prirodzene, že ak (x_1, x_2, x_3, x_4) sú homogénne súradnice bodu P, tak sú nimi aj $(\rho x_1, \rho x_2, \rho x_3, \rho x_4)$ kde $\rho \neq 0$.

Teda body priestoru \overline{E}^3 možno jednoznačne priradiť nenulovým triedam rozkladu množiny R^4 podľa relácie násobenia štvoríc ~ reálnymi číslami a preto sa rozšírený euklidovský priestor \overline{E}^3 často chápe ako množina týchto tried, čiže bod \overline{E}^3 je jedna z týchto tried. Na jeho (jej) určenie nám úplne stačí ak poznáme jeden jej prvok, jedného jej reprezentanta (ostatné štvorice sú jej násobkami).

V PG sa najčastejšie stretávame so stredovým premietaním, ktorého stredom je bod S = O = [0,0,0]a priemetňou je rovina $\pi \equiv z = -d$, d > 0 so súradnicovou sústavou: $\langle R = [0,0,-d], \mathbf{a} = [1,0,0], \mathbf{b} = [0,1,0] \rangle$

$$x' = -\frac{\begin{vmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & d \end{vmatrix}}{\begin{vmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}} = -\frac{x.d}{z} = \frac{x}{z/(-d)}; \ y' = \frac{\begin{vmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 0 & d \end{vmatrix}}{\begin{vmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}} = -\frac{y.d}{z} = \frac{y}{z/(-d)}; \ z' = -d \text{ (info o hĺbke)}.$$

Toto sú rovnice nášho stredového premietania v afinných súradniciach. Pretože v menovateli majú premennú z, nie sú lineárne a preto ich nemožno zapísať v maticovom tvare (v afinných ani v rozšírených súradniciach). Pretože však platí:

$$(-\frac{z}{d}) \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = -\frac{z}{d} \begin{pmatrix} \frac{x}{-z/d} \\ \frac{y}{-z/d} \\ -d \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ -z/d \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \mathbf{M}_{S} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

určujú $(x', y', z', 1)^T$ a $M_S(x, y, z, 1)^T$ ten istý bod rozšíreného euklidovského priestoru, takže $M_S(x, y, z, 1)^T$ možno chápať ako maticovú reprezentáciu nášho stredového premietania (prvého štandardu).