Amortized Complexity

- ✓ Aggregate method.
- Accounting method.
- Potential function method.

Potential Function

- P(i) = amortizedCost(i) actualCost(i) + P(i-1)
- $\Sigma(P(i) P(i 1)) =$ $\Sigma(amortizedCost(i) - actualCost(i))$
- $P(n) P(0) = \Sigma(amortizedCost(i) actualCost(i))$
- P(n) P(0) >= 0
- When P(0) = 0, P(i) is the amount by which the first i operations have been over charged.

Potential Function Example

Potential = stack size except at end.

Accounting Method

- Guess the amortized cost.
- Show that P(n) P(0) >= 0.

Accounting Method Example

```
create an empty stack;
for (int i = 1; i <= n; i++)
   // n is number of symbols in statement
   processNextSymbol();</pre>
```

- Guess that amortized complexity of processNextSymbol is 2.
- Start with P(0) = 0.
- Can show that $P(i) \ge number of elements$ on stack after ith symbol is processed.

Accounting Method Example

- Potential >= number of symbols on stack.
- Therefore, $P(i) \ge 0$ for all i.
- In particular, $P(n) \ge 0$.

Proof by induction

- Guess a suitable potential function for which $P(n) P(0) \ge 0$ for all n.
- Derive amortized cost of ith operation using $\Delta P = P(i) P(i-1)$
 - = amortized cost actual cost
- amortized cost = actual cost + ΔP

Potential Method Example

```
create an empty stack;
for (int i = 1; i <= n; i++)
   // n is number of symbols in statement
   processNextSymbol();</pre>
```

- Guess that the potential function is P(i) = number of elements on stack after i^{th} symbol is processed (exception is P(n) = 2).
- P(0) = 0 and P(i) P(0) >= 0 for all i.

ith Symbol Is Not) or;

- Actual cost of processNextSymbol is 1.
- Number of elements on stack increases by 1.
- $\Delta P = P(i) P(i-1) = 1$.
- amortized cost = actual cost + ΔP

$$= 1 + 1 = 2$$

ith Symbol Is)

- Actual cost of processNextSymbol is #unstacked + 1.
- Number of elements on stack decreases by #unstacked −1.
- $\Delta P = P(i) P(i-1) = 1 \#unstacked.$
- amortized cost = actual cost + ΔP = #unstacked + 1 + (1 - #unstacked) = 2

ith Symbol Is;

- Actual cost of processNextSymbol is #unstacked = P(n-1).
- Number of elements on stack decreases by P(n-1).
- $\Delta P = P(n) P(n-1) = 2 P(n-1)$.
- amortized cost = actual cost + ΔP = P(n-1) + (2 - P(n-1))= 2

Binary Counter

- n-bit counter
- Cost of incrementing counter is number of bits that change.
- Cost of $001011 \Rightarrow 001100$ is 3.
- Counter starts at 0.
- What is the cost of incrementing the counter m times?

Worst-Case Method

- Worst-case cost of an increment is n.
- Cost of $0111111 \Rightarrow 100000$ is 6.
- So, the cost of m increments is at most mn.

Aggregate Method

00000

counter

- Each increment changes bit 0 (i.e., the right most bit).
- Exactly floor(m/2) increments change bit 1 (i.e., second bit from right).
- Exactly floor(m/4) increments change bit 2.

Aggregate Method

0 0 0 0 0 counter

- Exactly floor(m/8) increments change bit 3.
- So, the cost of m increments is
 m + floor(m/2) + floor(m/4) + < 2m
- Amortized cost of an increment is 2m/m = 2.

Accounting Method

- Guess that the amortized cost of an increment is 2.
- Now show that $P(m) P(0) \ge 0$ for all m.
- 1st increment:
 - one unit of amortized cost is used to pay for the change in bit 0 from 0 to 1.
 - the other unit remains as a credit on bit 0 and is used later to pay for the time when bit 0 changes from 1 to 0.

```
bits 0 0 0 0 1 0 0 0 0 1 0 credits 0 0 0 0 1 0 0 0 1 0
```

- one unit of amortized cost is used to pay for the change in bit 1 from 0 to 1
- the other unit remains as a credit on bit 1 and is used later to pay for the time when bit 1 changes from 1 to
- the change in bit 0 from 1 to 0 is paid for by the credit on bit 0

```
bits 0 0 0 1 0 0 0 0 1 1 credits 0 0 0 1 0 0 0 0 1 1
```

- one unit of amortized cost is used to pay for the change in bit 0 from 0 to 1
- the other unit remains as a credit on bit 0 and is used later to pay for the time when bit 1 changes from 1 to

```
bits 0 0 0 1 1 0 0 0 1 0 0 credits 0 0 0 1 1 0 0
```

- one unit of amortized cost is used to pay for the change in bit 2 from 0 to 1
- the other unit remains as a credit on bit 2 and is used later to pay for the time when bit 2 changes from 1 to
- the change in bits 0 and 1 from 1 to 0 is paid for by the credits on these bits

Accounting Method

- $P(m) P(0) = \Sigma(amortizedCost(i) actualCost(i))$
 - = amount by which the first m increments have been over charged
 - = number of credits
 - = number of 1s
 - >=0

- Guess a suitable potential function for which $P(n) P(0) \ge 0$ for all n.
- Derive amortized cost of ith operation using $\Delta P = P(i) P(i-1)$
 - = amortized cost actual cost
- amortized cost = actual cost + ΔP

- Guess P(i) = number of 1s in counter after ith increment.
- P(i) >= 0 and P(0) = 0.
- Let q = # of 1s at right end of counter just before ith increment (01001111 => q = 4).
- Actual cost of ith increment is 1+q.
- $\Delta P = P(i) P(i-1) = 1 q (0100111 => 0101000)$
- amortized cost = actual cost + ΔP = 1+q + (1 - q) = 2

Amortized analyses: dynamic table

- A nice use of amortized analysis
- Operation
 - Table-insertion
 - Table-deletion.
- Scenario:
 - A table maybe a hash table
 - Do not know how large in advance
 - May expand with insertion
 - May contract with deletion
 - Detailed implementation is not important

Amortized analyses: dynamic table

- Goal:
 - O(1) amortized cost.

• Unused space always ≤ constant fraction of allocated space.

Dynamic table

- Load factor
 - α = num/size
 - where num = # items stored, size = allocated size.
- If size = 0, then num = 0. Call α = 1.
- Never allow $\alpha > 1$.
- Keep α > a constant fraction \rightarrow goal (2).

Dynamic table: expansion with insertion

- Table expansion
- Consider only insertion.
- When the table becomes full, double its size and reinsert all existing items.
- Guarantees that $\alpha \ge 1/2$.
- Each time we actually insert an item into the table, it's an elementary insertion.

```
TABLE-INSERT (T, x)
     if size[T] = 0
        then allocate table[T] with 1 slot
               size[T] \leftarrow 1
     if num[T] = size[T]
        then allocate new-table with 2 \cdot size[T] slots
               insert all items in table[T] into new-table
              free table[T]
               table[T] \leftarrow new-table
              size[T] \leftarrow 2 \cdot size[T]
10
     insert x into table[T]
11
     num[T] \leftarrow num[T] + 1
```

Aggregate analysis

- Running time:
 - Charge 1 per elementary insertion.
- Count only elementary insertions,
 - all other costs together are constant per call.
- c_i = actual cost of *i*th operation
 - If not full, $c_i = 1$.
 - If full, have i 1 items in the table at the start of the ith operation. Have to copy all i 1 existing items, then insert ith item

•
$$\Rightarrow$$
 $c_i = i$

Aggregate analysis

- Cursory analysis:
 - n operations ⇒
 - $c_i = O(n) \Rightarrow$
 - $O(n^2)$ time for n operations.
- Of course, we don't always expand:
 - $\mathbf{c}_i = \mathbf{c}_i$
 - if i − 1 is exact power of 2 ,
 - 1 otherwise.

Aggregate analysis

- So total cost =
 - $\sum_{i=1}^n c_i$
 - ≤n+

$$\sum_{i=0}^{\log(n)} 2^{i}$$

≤n+2n=3n

- Therefore, aggregate analysis says
 - amortized cost per operation = 3.

Accounting analysis

- Charge \$3 per insertion of x.
 - \$1 pays for x's insertion.
 - \$1 pays for x to be moved in the future.
 - \$1 pays for some other item to be moved.
- Suppose we've just expanded
 - size = m before next expansion
 - size = 2m after next expansion.
- Assume that the expansion used up all the credit, so that there's no credit stored after the expansion

Accounting analysis

- Will expand again after another m insertions.
- Each insertion will
 - put \$1 on one of the m items that were in the table just after expansion
 - put \$1 on the item inserted.
- Have \$2m of credit by next expansion
- when there are 2m items to move.
- Just enough to pay for the expansion, with no credit left over!

- $\Phi(T) = 2 \times num[T] size[T]$
- Initially,
 - num = size = 0
 - $\blacksquare \Rightarrow \Phi \equiv 0.$
- Just after expansion,
 - size = 2 ⋅ num
 - $\blacksquare \Rightarrow \Phi \equiv 0.$
- Just before expansion,
 - size = num
 - $\blacksquare \Rightarrow \Phi \equiv num$
 - enough to pay for moving all items.

- Need
 - $\Phi \ge 0$, always.
- Always have
 - size ≥ num ≥ $\frac{1}{2}$ size ⇒
 - **2** · num ≥ size ⇒
 - $\Phi \geq 0$.

- Amortized cost of ith operation:
 - num_i = num after ith operation ,
 - size_i = size after ith operation ,
 - $\Phi_i = \Phi$ after i^{th} operation.
- If no expansion:
 - size_i =
 - $size_{i-1}$,
 - num; =
 - \bullet num_{i-1} +1,
 - $c_i = 1$.
- $C_i' = c_i + \Phi_i \Phi_{i-1}$
 - $= 1 + (2num_i size_i) (2num_{i-1} size_{i-1})$
 - **=** =3.

- If expansion:
 - size_i =
 - 2*size*_{i-1},
 - size_{i−1} =

 - $c_i = num_{i-1} + 1 = num_i$
- $C_i' = c_i + \Phi_i \Phi_{i-1}$
 - $= num_i + (2num_i size_i) (2num_{i-1} size_{i-1})$
 - $= num_i + (2num_i 2(num_i 1)) (2(num_i 1)) (num_i 1))$
 - $= num_i + 2 (num_i 1) = 3$

Expansion and contraction

- When a drops too low, contract the table.
 - Allocate a new, smaller one.
 - Copy all items.
- Still want
 - α bounded from below by a constant,
 - amortized cost per operation = O(1).
- Measure cost in terms of elementary insertions and deletions.

Obvious strategy

- Double size when inserting into a full table (when $\alpha = 1$, so that after insertion α would become <1).
- Halve size when deletion would make table less than half full (when $\alpha = 1/2$, so that after deletion α would become >= 1/2).
- Then always have $1/2 \le \alpha \le 1$.
- Something BAD happened...

Obvious strategy

- Suppose we fill table.
 - insert ⇒
 - double
 - 2 deletes ⇒
 - halve
 - 2 inserts ⇒
 - double
 - 2 deletes ⇒
 - halve
 - • •
 - Cost of each expansion or contraction is $\Theta(n)$, so total n operation will be $\Theta(n^2)$.

Obvious strategy

- Problem is that:
 - Not performing enough operations after expansion or contraction to pay for the next one.
- Want to make sure that we perform enough operations between consecutive expansions/contractions to pay for the change in table size.

Simple solution

- Double as before: when inserting with $\alpha = 1$
 - ⇒ after doubling, α = 1/2.
- Halve size
 - when deleting with $\alpha = 1/4$
 - \Rightarrow after halving, $\alpha = 1/2$.
- Thus, immediately after either expansion or contraction
 - $\alpha = 1/2$.
- Always have $1/4 \le \alpha \le 1$.

Simple solution

- Suppose we've just expanded/contracted
- Need to delete half the items before contraction.
- Need to double number of items before expansion.
- Either way, number of operations between expansions/contractions is at least a constant fraction of number of items copied.

Potential function

- $\Phi(T) = 2num[T] size[T]$ if $\alpha \ge \frac{1}{2}$ size[T]/2 - num[T] if $\alpha < \frac{1}{2}$.
- $T \text{ empty} \Rightarrow \Phi = 0$.
- $\alpha \ge 1/2 \Rightarrow$
 - num ≥ 1/2size ⇒
 - 2num ≥ size ⇒
 - $\Phi \geq 0.$
- $\alpha < 1/2 \Rightarrow$
 - num < 1/2size ⇒</p>
 - $\Phi \geq 0$.

• measures how far from $\alpha = 1/2$ we are.

- $\alpha = 1/2 \Rightarrow$
 - $\Phi = 2num 2num = 0$.
- $\alpha = 1 \Rightarrow$
 - Φ = 2num-num
 - = num.
- $\alpha = 1/4 \Rightarrow$
 - Φ = size/2 num =
 - = 4num/2 num = num.

- Therefore, when we double or halve, have enough potential to pay for moving all *num* items.
- Potential increases linearly between $\alpha = 1/2$ and $\alpha = 1$, and it also increases linearly between $\alpha = 1/2$ and $\alpha = 1/4$.
- Since α has different distances to go to get to 1 or 1/4, starting from 1/2, rate of increase differs.

- $\Phi(T) = 2num[T] size[T]$ if $\alpha \ge \frac{1}{2}$
- For α to go from 1/2 to 1,
 - num increases from size/2 to size, for a total increase of size/2.
 - Φ increases from 0 to size.
- That's why there's a coefficient of 2 on the num[T] term in the formula for when $\alpha \ge 1/2$.

- $\Phi(T) = size[T]/2 num[T]$ if $\alpha < \frac{1}{2}$.
- For α to go from 1/2 to $\frac{1}{4}$
 - num decreases from size/2 to size /4, for a total decrease of size/4.
 - \$\Phi\$ increases from 0 to \$\size/4\$.
- That's why there's a coefficient of -1 on the num[T] term in the formula for when $\alpha < 1/2$.

Amortized cost for each operation

- Amortized costs: more cases
 - insert, delete
 - α ≥ 1/2, α < 1/2 (use α_i, since α can vary a lot)
 - size does/doesn't change
- Exercise