실습 3. Area process

세종대학교 ITRI 연구실 정보통신공학과 하재민

목차

1. 과제 공지

2. 역상 Padding & Convolution

3. 영상 필터링

4. 영상 윤곽선 검출

1. 과제 공지

- 질의응답 관련 사항
- 쪼교: 하재민
 - 이메일: <u>hajama0123@sju.ac.kr</u>
 - 번호: 010 2819 8029 (카톡!!)

1. 과제 공지

- 과제 날짜
- 화요일 분반
 - 과제 공지일: 11월 03일 화요일
 - 과제 제출일: 11월 09일 월요일 밤 11시 30분까지
- 목요일 분반
 - 과제 공지일: 11월 05일 목요일
 - 과제 제출일: 11월 11일 수요일 밤 11시 30분까지

1. 과제 공지!!!!!!!!!!

- 과제 제출 방법
- 블랙보드 제출
 - 코드가 포함된 프로젝트 폴더와 보고서 압축!!!

압축 파일명: 학번_이름,

Ex: 18150074_ 하재민.zip

18150074_ **하재 민_r1.zip**

1. 과제 공지

- 영상 확인 방법
- yuvplayer ° | +
 - File → Open → 원하는 명상 실행
 - 2. Size → Custom → 영상의 가로 세로 크기 입력
 - 3. Color → Y 선택

2. 역상 Padding & Convolution

- 영상 Padding 종류
 - Zero padding (과제)
 - Copy padding (과제)

2. 역상 Padding & Convolution

- 멸상 Convolution
- 현재 화소를 중심으로 이웃한 화소들이 포함한 영역을 회선 마스크와의 곱한 후 합한 결과
- · 행렬의 크기는 현재 화소를 중심으로 처리하기 위하여 홀수 크기를 사용

- 엠보싱(과제)
 - 구리판을 양각한 것과 비슷한 효과

-1	0	0	
0	0	0	
0	0	1	

엠보싱 마스크

• 중앙에 위치한 계수에 대하여 다른 계수들을 상쇄시키는 효과

- · Output pixel = convolution 결과값 + 128
 - 단, 클리핑을 2번 해약함

■ 엠보싱 결과 <mark>출</mark>력 (<mark>과제</mark>)

원본(Lena, 본인영상)

결과

- 샤프닝
 - 영상 강화 효과

• 영상에서 상세한 부분들을 더욱 강조하는 효과

-1	-1	-1
-1	9	-1
-1	-1	1

샤프닝 마스크

• 고주파 통과 필터에 기반

■ 샤프닝 결과 출력

원본(Lena, 본인영상)

결과

- 블러링(과제)
 - 영상의 세세한 부분들은 제거

•	흐리게 :	하거나 배	경을	약화시키	고자 힐	ॱ때 사용
---	-------	-------	----	------	------	-------

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

블러링 마스크

• 현재 화소를 이웃 화소들과 평균한 결과

패딩 주의!!(계속해약함)

■ 블러링 결과 <mark>출</mark>력 (<mark>과제</mark>)

원본(Scratch_Lena)

^{Page}원²본(Gaussian)

결과(블러링 10회)

결과(블러링 3회)

- 미디언 필터링(과제)
- 임펄스 잡음을 제거하기 위한 효과적인 방법

• 강한 에지를 보존하고 기존의 에지들을 좀 더 상세하게 보존

- 유사 연산자 (과제)
 - 현재 화소를 이웃한 8개의 화소들에서 각각 감산하고 절대값을 취한 후, 가장 큰 값을 결과로 출력

• Output pixel = Convolution 결과값 + 60

■ 유사 연산자 결과 <mark>출</mark>력 (과제)

원본(Lena, 본인영상)

결과

- 차 연산자
 - 유사 연산자에 비해서 감산 연산이 1/2로 줄어듬

• 지정된 방향으로 감산하고 절대값을 취한 후, 가장 큰 값을 결과로 출력

Output pixel = Convolution 결과값 + 60

- 1차 미분 연산자 (<u>과제</u>)
 - 수평, 수직 방향의 기울기를 검출

• Sobel 연산자는 수평과 수직 윤곽선보다 대각선 방향의 윤곽선에 더욱 민감

- Output pixel = (Row 마스크 x 원본 블록) + (Col 마스크 x 원본 블록)
 - 클리핑 주의!

1	0	-1
2	0	-2
1	0	-1

Sobel Row 마스크

-1	-2	-1
0	0	0
1	2	1

Sobel Col 마스크

■ 1차 미분 연산자 결과 <mark>출력 (과제)</mark>

원본(Lena, 본인영상)

결과

- 2차 미분 연산자 (과제)
 - DoG(Difference of Gaussians) 연산자

0	0	-1	-1	-1	0	0
0	-2	-3	-3	-3	-2	0
-1	-3	5	5	5	-3	-1
-1	-3	5	16	5	-3	-1
-1	-3	5	5	5	-3	-1
0	-2	-3	-3	-3	-2	0
0	0	-1	-1	-1	0	0

DoG 마스크

마무리 and 질문

