Subjectul D. OPTICA

Nr. item	Soluţie/Rezolvare
II.a.	
	$\beta = \frac{y_2}{y_1}$ $\beta' = \frac{y_2'}{y_1}$
	$\beta' = \frac{y_2'}{v_1}$
	Rezultat final: $\beta = -4$ și $\beta' = -2$
b.	
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f} \operatorname{si} \beta = \frac{x_2}{x_1} \Rightarrow x_1 = \frac{1 - \beta}{\beta} f$
	$\frac{1}{x_2'} - \frac{1}{x_1'} = \frac{1}{f} \operatorname{Si} \beta' = \frac{x_2'}{x_1'} \Rightarrow x_1' = \frac{1 - \beta'}{\beta'} f$
	$-x_1' = -x_1 + a$
	$-x'_1 = -x_1 + a$ Rezultat final: $a = f \frac{\beta' - \beta}{\beta \beta'} = 5cm$
C.	
	$x_2 = (1 - \beta) \cdot f = 100cm$
	$x_2' = (1 - \beta') \cdot f = 60cm$
	Rezultat final: deplasarea către lentilă cu $x_2 - x_2' = 40cm$
d.	
	$\frac{1}{f} = \left(n - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$
	Rezultat final: $n = \frac{1/f}{1/R_1 - 1/R_2} + 1 = 1,5$