۱ جلسهی هجدهم

 $a\in I$ یا مشتق پذیر باشد و I در بازه و I در بازه و آوری I در بازه و آوری I در بازه و آوری I در بازه و I داریم:

$$\exists c \in (a, x) \quad f(x) = f(a) + f'(c)(x - a)$$

$$\exists c \in (a, x) \quad f(x) = f(a) + f'(a)(x - a) + \frac{f''(c)}{\mathbf{Y}}(x - a)^{\mathbf{Y}}$$

$$\exists c \in (a, x) \quad f(x) = f(a) + f'(a)(x - a) + \frac{f''(c)}{\mathbf{Y}!}(x - a)^{n} + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + \frac{f^{(n+1)}(a)}{(n+1)!}(x - a)^{n+1}$$

گفتیم که به چندجملهای T_n از درجه n در زیر، چندجمله تیلور از درجه n حول نقطه n برای تابع n گفته می شود:

$$T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{Y!}(x - a)^n + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

يس مي توان نوشت:

$$f(x) = T_n(x) + R_n(x) \quad (*)$$

اگر برای تمام $x \in I$ حدهای دنبالههای سمت راست موجود باشند، داریم:

$$\forall x \in I \quad \lim_{n \to \infty} f(x) = \lim_{n \to \infty} T_n(x) + \lim_{n \to \infty} R_n(x) \quad (**)$$

فرض کنید برای تمام $x \in I$ داشته باشیم:

$$\lim_{n\to\infty} R_n(x) = \cdot$$

آنگاه بنا به ** داریم:

$$\forall x \in I \quad f(x) = \lim_{n \to \infty} T_n(x)$$

مىدانيم كه:

$$\forall x \in I \quad \lim_{n \to \infty} T_n(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

یعنی در این صورت

$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

به بیان دیگر، تابع f با یک سری توان برابر می شود. به توابعی که در یک بازه ی خاص با سری تیلور خود برابرند، توابع تحلیلی 1 گفته می شود.

توجه ۲. برای هر تابعی که بینهایت بار مشتق پذیر باشد، می توان سری تیلور نوشت ولی لزوماً سری تیلور با خود تابع برابر نیست. مثال نقض را در جلسه ی قبل دیده ایم.

مثال ۳. سری تیلور تابع $a=\cdot$ را حول $f(x)=e^x$ بنویسید.

پاسخ.

$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

میدانیم که e^x بینهایت بار مشتق پذیر است. پس داریم:

$$f(x) = e^x \Rightarrow f(\cdot) = \mathbf{1}$$

$$f'(x) = e^x \Rightarrow f'(\cdot) = \mathbf{1}$$

$$f''(x) = e^x \Rightarrow f''(\cdot) = \mathbf{1}$$
:

 $f^{(n)}(x) = e^x \Rightarrow f^{(n)}(\cdot) = 1$

س دارىم:

$$e^x = \sum_{n=1}^{\infty} \frac{1}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

مثال ۴. سری تیلور تابع $f(x) = \sin x$ حول نقطهی $a = \cdot$ را بنویسید.

همان گونه که مثال بالا نشان می دهد، اگر تابع f دارای نمایشی به صورت یک سری توان باشد، آن سری توان همان سری تیلور تابع مورد نظر خواهد بود.

[\]analytic

$$\sum_{n=\cdot}^{\infty} \frac{f^{(n)}(\cdot)}{n!} x^n$$

$$f(x) = \sin x \Rightarrow f(\cdot) = \cdot$$

$$f'(x) = \cos x \Rightarrow f'(\cdot) = \cdot$$

$$f''(x) = -\sin x \Rightarrow f''(\cdot) = \cdot$$

$$f'''(x) = -\cos x \Rightarrow f'''(\cdot) = -\cdot$$

$$f^{(\dagger)}(x) = \sin x \Rightarrow f(\cdot) = \cdot$$

یس دنباله ی $\{f^{(n)}(\cdot)\}$ برابر است با:

$$\{f^{(n)}\} = \overset{a.}{\cdot} + \overset{a_1}{\cdot} + \overset{a_7}{\cdot} + \overset{a_7}{\cdot} + \overset{a_7}{\cdot} + \overset{a_7}{\cdot} + \overset{a_5}{\cdot} + \overset{a_5}{\cdot} + \overset{a_7}{\cdot} + \dots$$

توجه کنید اگر n زوج باشد آنگاه

$$f^{(n)}(\,\boldsymbol{\cdot}\,) = \boldsymbol{\cdot}\,$$

پس سری تابع ما به صورت زیر است:

$$\sum_{n=1}^{\infty} \Box \frac{x^{\mathsf{Y}n+1}}{(\mathsf{Y}n+1)!} = \Box x + \Box x^{\mathsf{Y}} + \Box x^{\mathsf{A}}$$

پس داریم:

$$\sin(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\forall x \in \mathbb{R} \quad \sin x = x - \frac{x^{\mathsf{r}}}{\mathsf{r}!} + \frac{x^{\mathsf{d}}}{\mathsf{d}!} - \frac{x^{\mathsf{v}}}{\mathsf{v}!} + \dots$$

بنا به بسط بالا بود که در دبیرستان گاهی هنگام محاسبهی حدها، از همارزی زیر استفاده میکردید:

$$\sin x \simeq x - \frac{x^{r}}{r!} + \frac{x^{\delta}}{\delta!}$$

در زیر نمودارهای توابع $\sin(x)$ و $\sin(x)$ کشیده شدهاند:

مثال ۵. نشان دهید که

 $\forall a,b \in \mathbb{R} \quad |\tanh a - \tanh b| \leqslant |a-b| \leqslant |\sinh a - \cosh b|$

پاسخ. بنا به قضیهی مقدار میانگین داریم:

$$\forall a < b \in \mathbb{R} \quad \exists c \in (a, b) \quad \left| \frac{\tanh a - \tanh b}{a - b} \right| = \left| (\tanh)'(c) \right|$$

توجه ۶. اگر f در بازهی I مشتقیذیر باشد و $a,b \in I$ آنگاه

$$\exists c \in I \quad \frac{f(b) - f(a)}{b - a} = f'(c)$$

مىدانيم كه

$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh x}{\cosh x} = \tanh x$$

در سرتاسر $\mathbb R$ مشتق پذیر است. بنابراین قضیه ی مقدار میانگین قابل اعمال است.

$$|\tanh a - \tanh b| = |a - b| |(\tanh)'(c)|$$

واضح است که اگر ۱
$$|(anh)'(c)| < 1$$
 آنگاه

$$|\tanh a - \tanh b| \le |a - b|$$

داريم

$$(\tanh)'(x) = (\frac{\sinh}{\cosh})'(x) = \frac{\cosh x \cosh x - \sinh x \sinh x}{\cosh^{\mathsf{Y}}(x)} = \frac{\mathsf{Y}}{\cosh^{\mathsf{Y}}(x)}$$

اثبات اینکه $x\geqslant au$ نوجه کنید که $\frac{e^x+e^{-x}}{ au}$ کنید که $\cosh(x)=\frac{e^x+e^{-x}}{ au}$ ناجه از طرفی $\cosh^{\mathsf{Y}}(x)=1+\sinh^{\mathsf{Y}}(x)\geqslant 1$

$$\begin{cases} \cosh x \geqslant \cdot \\ \cosh^{\mathsf{Y}}(x) \geqslant 1 \end{cases}$$

که از آن نتیجه می شود که: ۱ $x \geqslant 1$. پس

$$\frac{1}{\cosh^{\mathsf{Y}}(c)} \leqslant 1$$

در نتحه

$$|\tanh'(c)| \leqslant 1$$

پس داریم:

$$|\tanh a - \tanh b| \le |a - b|$$

قسمت دوم سوال. باید نشان دهیم که

$$\left|\frac{\sinh a - \sinh b}{a - b}\right| \geqslant 1$$

از آنجا که sinh تابعی مشتق پذیر است بنا به قضیهی مقدار میانگین داریم:

$$\exists c \in (a,b) \quad \left| \frac{\sinh a - \sinh b}{a - b} \right| = \left| \cosh(c) \right| \geqslant V$$

در نتیجه داریم:

$$\left|\frac{\sinh a - \sinh b}{a - b}\right| \geqslant 1$$

$$\forall x > 1 \quad 1 - \frac{1}{x} \leqslant f(x) \leqslant x - 1$$

(توجه: پس به ویژه عبارت بالا برای $f(x) = \ln x$ برقرار است. یعنی

$$\forall x > 1 \quad 1 - \frac{1}{x} \leqslant \ln(x) \leqslant x - 1$$

(

y از آنجا که f مشتق پذیر است بنا به قضیه ی مقدار میانگین داریم:

$$\exists c \in (1, x) \quad \frac{f(x) - f(1)}{x - 1} = f'(c) = \frac{1}{c}$$

$$c > 1 \Rightarrow \frac{1}{c} < 1 \Rightarrow f(x) - f(1) \leqslant x - 1 \Rightarrow f(x) \leqslant x - 1$$

ثابت کردیم که

$$f(x) = \underbrace{f(1)}_{=\cdot} + f'(c)(x - 1) \Rightarrow f(x) = \frac{1}{c}(x - 1), c \geqslant 1$$

پس داریم

$$1 - \frac{1}{x} = \frac{x - 1}{x} \leqslant \frac{x - 1}{c} \quad c \in (1, x)$$

در نتیجه داریم:

$$f(x) = \frac{x - 1}{c} \geqslant \frac{x - 1}{x} = 1 - \frac{1}{x} \Rightarrow f(x) \geqslant 1 - \frac{1}{x}$$

مثال ۸. برای هر $x \geqslant \cdot$ نشان دهید که

$$\ln(1+x) \geqslant \frac{x}{x+1}$$

پاسخ.

$$\ln(\mathbf{1} + x) = \ln(\mathbf{1}) + (\ln)'(c)(x)$$

برای یک $c \in (1, 1+x)$. پس

$$\ln(1+x) = \frac{1}{c}x$$

از آن جا که $c \in (1, 1+x)$ ، داریم

$$\frac{1}{c}x \geqslant \frac{x}{1+x} \Rightarrow \ln(1+x) \geqslant \frac{x}{x+1}$$

مثال ۹. اکسترممهای مطلق تابع زیر را بیابید.

$$f(x) = \tanh(x^{\mathsf{r}} - \mathsf{r}x^{\mathsf{r}}) \quad x \in [-\mathsf{r}, \mathsf{r}]$$

پاسخ.

توجه ۱۰. اگر تابع f در بازه ی بسته ی [a,b] پیوسته باشد، آنگاه f در این بازه هم مینیمم مطلق دارد و هم ماکزیمم مطلق.

توجه ۱۱. اگر f در (a,b) مشتق پذیر باشد و $c\in(a,b)$ یک اکسترمم نسبی باشد آنگاه

$$f'(c) = \cdot$$

برای تعیین اکسترممهای مطلق نقاطی را که در آن مشتق وجود ندارد و یا صفر می شود و نقاط x انتهایی بازه را با هم مقایسه می کنیم. تابع $x^{r}-\mathbf{1}$ در سرتاسر x مشتق پذیر است. تابع $x^{r}-\mathbf{1}$ در سرتاسر x مشتق پذیر است. پس $x^{r}-\mathbf{1}$ نیز در سرتاسر x مشتق پذیر است. پس $x^{r}-\mathbf{1}$ نیز در سرتاسر x مشتق پذیر است.

$$f'(x) = (\mathbf{r}x^{\mathbf{r}} - \mathbf{x}x) \frac{\mathbf{r}}{\cosh(x^{\mathbf{r}} - \mathbf{r}x^{\mathbf{r}})}$$

از آنجا که ۱ $x \geqslant 1$ مشتق تنها در نقاط صادق در معادله ی زیر صفر است:

$$\mathbf{T}x^{\mathbf{T}} + \mathbf{P}x = \mathbf{T}x(x - \mathbf{T}) = \mathbf{T}x$$
ي يا $\mathbf{T}x$

$$f(-\mathbf{Y}) = \tanh(-\mathbf{Y})$$
 $f(\mathbf{Y}) = \tanh(-\mathbf{Y})$
 $f(\mathbf{Y}) = \mathbf{Y}$

در بازه نیست $x=\mathbf{Y}$

نقطه ی (۰,۰) نقطه ی ماکزیم مطلق و نقطه ی (۲۰) مینیم مطلق است. $\sin \frac{\pi}{\lambda}$ مینیم مطلق است. مثال ۱۲. یک مقدار تقریبی برای $\sin \frac{\pi}{\lambda}$ به همراه خطای این تقریب به صورت زیر به دست می آید:

$$\forall x > \cdot \quad \exists c \in (\cdot, x) \quad \sin x = x - \frac{x^{r}}{r!} + \underbrace{\frac{x^{o}}{o!} \cos c}_{\text{def}}$$

پاسخ.

$$\sin \frac{\pi}{\Lambda} \simeq \frac{\pi}{\Lambda} - \frac{1}{9} (\frac{\pi}{\Lambda})^{\text{r}}$$

خطای این تقریب نیز به صورت زیر است:

$$\frac{\left(\frac{\pi}{\Lambda}\right)^{\delta}\cos c}{\delta!} \leqslant \frac{1}{\delta!} \times \left(\frac{\mathbf{f}}{\Lambda}\right)^{\delta} = \frac{1}{\mathbf{f}\Lambda\mathbf{f}}.$$