AD-A203 757

ETTE FILE COPY

LAIN.
Institute Report No. 319,

Ninety-Day Subchronic Oral Toxicity Study of Nitroguanidine in Mice

Denzil F. Frost, MS, DVM, CPT, VC
Earl W. Morgan, DVM, MAJ, VC
Yvonne Letellier, BS
Michael J. Pearce, MA
Suellen Ferraris, PhD
C. Dahlem Smith, DVM, MAJ, VC
Gary M. Zaucha, DVM, CPT, VC
and
Don W. Korte, Jr., PhD, MAJ, MSC

DISTRIBUTION STATEMENT X

Approved for public releases

Distribution Unlimited

MAMMALIAN TOXICOLOGY BRANCH DIVISION OF TOXICOLOGY

November, 1988

Toxicology Series: 200

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

89 1 23 060

Ninety-Day Subchronic Oral Toxicity Study of Nitroguanidine in Mice (Toxicology Series 200)--Frost et al

This document has been approved for public release and sale; its distribution is unlimited.

Destroy this report when it is no longer needed. Do not return to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

In conducting the research described in this report, the investigation adhered to the "Guide for the Care and Use of Laboratory Animals," as promulgated by the Committee on Revision of the Guide for Laboratory Animal Facilities and Care, Institute of Laboratory Animal Resources, National Research Council.

> This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

COL, MC

Commanding

1-1:c 88

REPORT D	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT					
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LÉ		FOR PUBLIC				
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)		ORGANIZATION REI				
Institute Report No.: 319							
6a. NAME OF PERFORMING ORGANIZATION Mammalian Toxicology	6b. OFFICE SYMBOL (If applicable)		INITORING ORGAN		roh		
Division of Toxicology	SGRD-ULE-T	_	opment Lab				
6c. ADDRESS (City, State, and ZIP Code)			y, State, and ZIP Co	ode)			
Letterman Army Institute of Presidio of San Francisco,		Fort Detr	ick , MD 21701	_5010	•		
riesidio of San Flancisco,	CA 94129-0800	riederick	, MD 21701	-5010	<u></u>		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION US Army Medical		9. PROCUREMENT	INSTRUMENT IDE	NTIFICATI	ON NUMBER		
Research & Development Com	and						
8c. ADDRESS (City, State, and ZIP Code) Fort Detrick		PROGRAM	UNDING NUMBERS	TASK	WORK UNIT		
Frederick, Maryland 21701-	5012	ELEMENT NO.	NO.	NO.	ACCESSION NO.		
TITLE Work at a Country Charles		62720	A835	AB	DA303913		
11. TiTLE (Include Security Classification) (U) Ninety-Day Subchronic Oral Toxicity Study of Nitroguanidine in Mice							
12. PERSONAL AUTHOR(S) DF From CD Smith, GM Zaucha, and DW	ost, EW Morgar N Korte, Jr.	, Y Letell	ier, MJ Pe	arce,	S Ferraris,		
13a. TYPE OF REPORT 13b. TIME CO Institute FROM 18M	OVERED IAR87 _{TO} 2JUL87	14. DATE OF REPOR Novembe		lay) 15.	PAGE COUNT 201		
16. SUPPLEMENTARY NOTATION							
Toxicology Series No. 200							
17. COSATI CODES	18. SUBJECT TERMS (C	ontinue on reverse	if necessary and	identify l	by block number)		
FIELD GROUP SUB-GROUP	Subabrania	Oral Toxi	oity Nitr	001125	idino		
	ICR Mice	Clai loxi	CICY, NICI	oguan	raine		
19. ABSTRACT (Continue on reverse if necessary	and identify by block no	ımber)					
The 90-day subch in male and female ICR mic							
dose levels of 0, 100, 316					e addition of		
nitroguanidine to the diet							
but there was a signific	ant dose-res	onse incre	ease in w	ater	consumption.		
Clinical signs attributable	e to the test	compound w	were not ol	bserv	ed during the		
study. Blood samples take							
no significant abnormalities that could be attributed to nitroguanidine							
dosing. Several serum chemistry parameters did exhibit statistically significant (p < 0.05) alterations from the control values, but these changes							
were isolated occurrences							
With the exception of the							
organ weights and their respective ratios were not significantly affected by							
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS R	DT	21 ABSTRACT SEC	URITY CLASSIFICA	TION			
22a. NAME OF RESPONSIBLE INDIVIDUAL	PT. DTIC USERS	22b. TELEPHONE (A			FICE SYMBOL		
EDWIN S. BEATRICE, COL, MC		(415) 56			SGRD-ULZ		
DD Form 1473, JUN 86	Previous editions are o	obsolete.	SECURITY C	LASSIFICA	ATION OF THIS PAGE		

19. ABSTRACT (cont.)

dosing. Microscopic examination of tissues from the control and 1000 mg/kg/day-dose-group animals revealed no lesions attributable to the administration of nitroguanidine. These findings indicate that nitroguanidine is nontoxic in mice when administered at doses as high as 1000 mg/kg/day for 90 days. The findings of increased water consumption suggest that nitroguanidine, which is excreted unchanged in the mouse's urine, may be acting as an osmotic diuretic.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

ABSTRACT

The 90-day subchronic oral toxicity of nitroguanidine was evaluated in male and female_ICR mice.) Nitroguanidine was administered in the diet at dose levels of 0, 100, 316, and 1000 mg/kg/day for 90 days. The addition of nitroquanidine to the diet had no effect on food consumption or weight gains, but there was a significant dose-response increase in water consumption. Clinical signs attributable to the test compound were not observed during the study. Blood samples taken at necropsy for hematological analysis exhibited no significant abnormalities that could be attributed to nitroguanidine dosing. \Several serum chemistry parameters did exhibit statistically significant (p \leq 0.05) alterations from the control values, but these changes were isolated occurrences with no consistent dose-related trends being noted. With the exception of the brain-to-body weight ratio in the high-dose males, organ weights and their respective ratios were not significantly affected by dosing, Microscopic examination of tissues from the control and 1000 mg/kg/day-dose-group animals revealed no lesions attributable to the administration of nitroguanidine. These findings indicate that nitroguanidine is nontoxic in mice when administered at doses as high as 1000 mg/kg/day for 90 days. The findings of increased water consumption suggest that nitroguanidine, which is excreted unchanged in the mouse's urine, may be acting as an osmotic diuretic.

Key Words: Subchronic Oral Toxicity, Nitroguanidine, ICR Mice, Triple base propellants; (KT)

Acces	ion For	7					
NTIS CRA&I DTIC TAB Unannounced Justification							
By Distrib	By						
A	Availability Codes						
Dist	Dist Avail and for Special						
A-1							

PREFACE

TYPE REPORT: 90-Day Subchronic Oral Toxicity GLF Study Report

TESTING FACILITY:

US Army Medical Research and Development Command Letterman Army Institute of Research Presidio of San Francisco, CA 94129-6800

SPONSOR:

US Army Medical Research and Development Command
US Army Biomedical Research and Development Laboratory
Fort Detrick, Maryland 21701-5012
Project Officer: Gunda Reddy, PhD

WORK UNIT/APC: 180 Environmental Health Effects of Army

Materials/TL09

GLP STUDY NUMBER: 86007

STUDY DIRECTOR: MAJ Don W. Korte Jr., PhD, MSC

Diplomate, American Board of Toxicology

PRINCIPAL INVESTIGATOR:

CPT Denzil F. Frost, MS, DVM, VC Diplomate, American College of Veterinary Preventive Medicine.

CO-PRINCIPAL INVESTIGATOR:

MAJ Earl W. Morgan, VC Diplomate, American College of Veterinary Preventive Medicine and American Board of Toxicology

PATHOLOGIST: MAJ C. Dahlem Smith, DVM, VC

Diplomate, American College of Veterinary

Pathologists.

REPORT AND DATA MANAGEMENT:

A copy of the final report, study protocol, retired SOPs, raw data, analytical, stability, and purity data of the test compound, and an aliquot of the test compound will be retained in the LAIR Archives.

TEST SUBSTANCE: Nitroguanidine

INCLUSIVE STUDY DATES: 18 March - 2 July 1987

OBJECTIVE: The objective of this study was to determine the 90-day subchronic oral toxicity of nitroguanidine

in male and female ICR mice.

ACKNOWLEDGMENTS

SPC Dean Magnuson, BS, SPC Joel Seewald, BS, SGT Charles Freedman, and SGT Tammie Heineman provided research assistance and animal care; SGT John R.G. Ryabik, BS, provided chemical preparation and analysis; MAJ Luanne McKinney, DVM, ACVP, CPT Harry L. Walker, DVM, SGT Thomas W. Johnson, BA, and Nancy Smith provided necropsy and pathology support; SPC Patrick Patterson provided hematology support; Mary E. Lyons provided clinical chemistry support.

SIGNATURES OF PRINCIPAL SCIENTISTS AND MANAGERS INVOLVED IN THE STUDY

We, the undersigned, declare that GLP Study 86007 was performed under our supervision, according to the procedures described herein, and that this report is an accurate record of the results obtained.

MAJ, MSC

Study Director

MAJ, VC

Pathologist

DENZIL F. FROST, MS, DVM/DATE

CPT, VC

Principal Investigator

Co-Principal Investigator

MAJ, VC

Co-Principal Investigator

PEARCE, MA/DATE

DAC

Co-Author

Analytical Chemist

CPT, VC

Co-Author

REPLY TO

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

SGRD-ULZ-QA

5 December 1988

MEMORANDUM FOR RECORD

SUBJECT: GLP Compliance for GLP Study 86007

1. This is to certify that in relation to LAIR GLP Study 86007, the following inspections were made:

09 Febuary 1987 - Protocol Review

02 April 1987 - Feed Mixing

Ø2 April 1987- Weighing of Feeders & Water Bottles11 May 1987- Eye Exam, Interim Sac. Animals13 May 1987- Interim Sacrifice, (Males)Ø1 July 1987- Final Observation & Weights (Males)Ø1 July 1987- Final Sacrifice (Males)

2. The institute report entitled "Ninety-Day Subchronic Oral Toxicity Study of Nitroguanidine in Mice," Toxicology Series 200, was audited on 7 November 1988.

Carolyn M. LEWIS, MS

Diplomate, American Board of Toxicology

Chief, Quality Assurance

TABLE OF CONTENTS

Abstract
Prefaceii:
Acknowledgmentsiv
Signatures of Principal Scientists
Report of Quality Assurance Unitv:
Table of Contentsvi:
BODY OF REPORT
INTRODUCTION
Objective of the Study
MATERIALS
Test Substance. Vehicle. Animals. Husbandry. METHODS. Group Assignment/Acclimation.
Dose Levels
RESULTS
Mortalities
DICCHECION

TABLE OF CONTENTS (cont.)

CONCLUSION	32
REFERENCES	33
APPENDICES	35
Appendix A. Appendix B. Appendix C. Appendix D. Appendix E. Appendix F. Appendix G. Appendix H. Appendix I. Appendix J. Appendix K. Appendix L. Appendix M. Appendix N. Appendix O. Appendix P.	Chemical Data
Appendix Q.	Baseline Control Data187
OFFICIAL DISTRIE	BUTION LIST201

Ninety-Day Subchronic Oral Toxicity Study of Nitroguanidine in Mice -- Frost et al

INTRODUCTION

Nitroguanidine, a primary component of US Army triple-base propellants, is now produced in a Government-owned contractor-operated ammunition plant. The US Army Biomedical Research and Development Laboratory (USABRDL), as part of its mission to evaluate the environmental and health hazards of military-unique propellants generated by US Army munitions-manufacturing facilities, conducted a review of the nitroguanidine data base and identified significant gaps in the toxicity data (1). The Mammalian Toxicology Branch, Letterman Army Institute of Research (LAIR), was tasked by USABRDL to develop a genetic and mammalian toxicity profile for nitroguanidine, related intermediates/by-products of its manufacture, and its environmental degradation products.

Objective of the Study

The objective of this study was to determine the 90-day subchronic toxicity of nitroguanidine in male and female ICR mice.

MATERIALS

Test Substance

Chemical name: Nitroguanidine

Chemical Abstract Service Registry No.: 556-88-7

Structural formula:

$$H_2N$$
 $C = N - NO_2$

Molecular formula: CH4N4O2

Other test substance information is presented in Appendix A.

Vehicle

The test compound was mixed into the feed (see Husbandry).

Animals

Seventy-three male and 73 female ICR mice (Harlan Sprague Dawley, Inc., Indianapolis, IN) were used in this study. Tail tattoos were used to identify each animal individually. Three males and 3 females with the lowest body weights were selected for necropsy quality control. Ten males and 10 females were used as baseline controls. The body weights on receipt (18 March 1987) ranged from 17 g to 23 g. Additional animal data appear in Appendix B.

Husbandry

The animals assigned to this study were housed individually in clear, polycarbonate shoe boxes in drawer rack cages. Alpha-Dri^M, a cellulose fiber, was used as bedding. The shoe boxes and bedding were changed twice weekly. The diet, fed ad libitum, consisted of Certified Purina Rodent Chow[®] 5002 Meal Form (Ralston Purina, St. Louis, MO). Water was provided by 16-ounce water bottles with stoppers and sipper tubes. Both feed and water consumption were measured weekly.

The temperature range maintained throughout this study was $16.0^{\circ}\text{C} - 25.0^{\circ}\text{C}$ with a relative humidity of $24-60^{\circ}$ with occasional periods up to 80% for several hours. The photoperiod was 12 hours of light daily with a 1/2-hour dawn phase-in and a 1/2-hour dusk phase-out.

METHODS

This study was performed in accordance with LAIR Standard Operating Procedure OP-STX-74 "Ninety-Day Subchronic Oral Toxicity Testing in Rodents" (2) and EPA guidelines (3).

Group Assignment/Acclimation

The animals were acclimated for 14 or 15 days (males and females, respectively) from receipt to the onset of dosing. During the acclimation period the animals were observed daily for signs of illness. Food and water consumption were measured during the second week of quarantine.

Fifteen animals of each sex were assigned to each of 4 dose groups. A fifth group of 10 animals of each sex was identified as the baseline data group. Allocation was accomplished using a computer-based, stratified, weight-biased randomization method (LAIR SOP OP-ISG-24).

Dose Levels

Dose levels were selected on the basis of the results of an acute toxicity study (4) and a pilot study. The acute oral median lethal dose exceeded a LIMIT dose of 5000 mg/kg. Thus, the upper dose level used in the pilot study was a LIMIT dose of 1000 mg/kg (3). At this dose level no deaths nor obvious toxicity were observed. Using a logarithmic progression table the following dose levels were selected: 0 mg/kg/day, 100 mg/kg/day, 316 mg/kg/day, and 1000 mg/kg/day.

Compound and Diet Preparation

The nitroguanidine was received as a dry white powder. All diet preparations were done in accordance with LAIR SOP OP-STX-16 (5). A premix consisting of 50 mg nitroguanidine/kg of the Rodent Chow was prepared. Since the compound tends to clump, it was further ground in a jar mill (Norton Inc., Akron, OH) using porcelain grinding pellets for one hour to break up the clumps. The nitroguanidine was then mixed into the meal in a series of 1-, 2-, 4-, and 6-fold dilutions. Each dilution was mixed for 15 minutes in the jar mill. The dilutions were then sieved through a 10-mesh screen to ensure the grinding was complete and to remove the grinding pellets.

On the day of the diet change, after the new diet concentrations had been calculated, the appropriate amounts of premix and meal were blended together using a Twin-Shell Dry Blender (Patterson-Kelley Co., Division of Harsco Corp., East Stroudsburg, PA) for at least 15 minutes. Nitroguanidine was mixed into the feed at a level that, based on the feed consumption of the previous week and the animal's weight, would provide the desired dose (mg/kg) on a daily basis. All diet mixes were within 10.0% of target concentration and were adequately homogeneous. Additional mixing data and analyses are presented in Appendix C.

Test Procedures

Feed consumption and water consumption were measured on a weekly basis. Individual feed jars were used. They were weighed at the beginning and at the end of each week. The feed was sifted using a 10-mesh sieve to remove bedding and feces prior to the final weighing. If there were signs of spillage in the bedding, the bedding was also sifted and the feed obtained was returned to the jar prior to weighing. Records for water bottles with obvious spillage and for feed jars with spillage contaminated with moisture were flagged, and the weights were omitted. Record-keeping was initiated during the final week of quarantine and provided the baseline consumption data to calculate the first week's diet mixture.

Early on the day of diet change, the animals were weighed, observed, and their water bottles and feeders were weighed. These data were collected on a Beckman TOXSYS® data collection terminal. The Beckman Diet Computation Subsystem was used for the calculations. After the new diet was mixed, the feeders and water bottles were filled, weighed, and returned to the cages.

Observations were performed twice daily throughout the 90-day test period. During the morning observations, the animals were observed undisturbed in their cages, outside of their cages, and after return to their cages. All findings were recorded. A second "walk through" observation was performed in the afternoon, and only significant observations were recorded. Body weights were recorded weekly and on the day of sacrifice. Appendix D contains a listing of the historical events.

All animals were subjected to a complete gross necropsy following exanguination under sodium pentobarbital anesthesia. Blood was collected from the right ventricle while under anesthesia for hematology and clinical chemistry measurements. A listing of the measurements and SOPs is provided in Appendix E. Full histopathology was performed on the organs and tissues listed in Appendix P of all mice in the control and high-dose groups. In addition, histopathology was performed on the brain, lungs, liver, kidneys, urinary bladder, and gall bladder of all study animals.

Changes/Deviations

Due to a shortage of ear tags, tail tattooing was used for animal identification.

Six animals were submitted for quality control necropsy instead of 4.

On Day 1 of the study, animal 87C00133 was unable to obtain water due to problems with its water delivery system and b came dehydrated. This animal was replaced by animal

87C00176. Due to the mechanics of programming, it was not possible to implement this change in the computer system. Therefore, animal 87C00176 is listed as 87C00133 in the pathology XYBION printouts.

Clinical observations were performed but inadvertently not recorded due to procedural errors on 2, 9, and 16 April and 15 April 87 for the males and females, respectively.

Serum chemistry analyses were not performed for the following animals due to insufficient sample volume: 87C00-055, 059, 068, 081, 083, 099, 134, 154, 161, 162, 174, and 178. The "n" values for various serum chemistries often differ from the group size because insufficient sample volume was obtained to make all measurements for each animal.

Hematology measurements on the interim sacrifice females and white blood count differentials on the interim sacrifice males were not obtained due to operator error.

These deviations did not significantly affect the interpretation of the study results.

Statistics

The animal weights, food consumption, and water consumption were analyzed statistically with packaged programs available on BMDP software (7). The equality of the variances of the groups was tested using the Levene's Test. If the variances were equal, the vehicle control group and the dose groups were compared by the standard one-way analysis of variance (ANOVA). Otherwise, the Welch one-way ANOVA, which is not based on the assumption that the variances are equal, was performed. If the F-statistic was significant in either case, the Dunnett's test was performed to determine whether or not the vehicle control group was significantly different from any of the dose groups. Their was insufficient bilirubin data to perform statistical analysis. Statistical analysis for organ weights, hematology and serum chemistry were done on the Xybion software program using the standard one-way ANOVA. The homogeneity of the groups was tested by the Bartlett's test. If the groups were found to be non-homogeneous, then a modified t-test was performed instead of the Dunnett's test.

Storage of Raw Data and Final Report

A copy of the final report, study protocols, raw data, retired SOPs, and an aliquot of the test compound will be retained in the LAIR Archives.

RESULTS

Mortalities

No deaths occurred during the study.

Food, Nitroguanidine, and Water Consumption

Mean daily consumption of nitroquanidine is presented in Table 1. Individual consumption of nitroquanidine is presented in Appendix F. Mean weekly food and water consumption data are presented in Tables 2 and 3, respectively. Individual food and water consumption data are presented in Appendices G and H, respectively. No statistically significant (p \leq 0.05) dose or compound-related effects were observed in food consumption. Nitroquanidine consumption in the food ranged from 77 to 1211 mg/kg/day. Water consumption increased significantly (p \leq 0.05) in the female 1000 mg/kg/day group for weeks 1 and 2. Water consumption increased significantly (p \leq 0.05) in the male 1000 mg/kg/day group for weeks 1 through 13 when compared to the controls. The 100 mg/kg/day males showed a significant decrease in water consumption for week 6 when compared to the controls (p \leq 0.05).

Body Weights

The mean body weights for each group are presented in Table 4. No statistically significant dose or compound-related effects were observed in male or female body weights. Individual body weight data are presented in Appendix I.

Clinical Signs

No clinical signs attributable to nitroguanidine administration were observed. The incidence of signs such as irritability, aggressive behavior, ocular changes, alopecia, hyperactivity, chewing, dehydration, twitching, and increased startle reflex appeared to be random, often isolated occurrences, and a function of a subchronic study rather than compound or dose related. A summary of clinical observations is presented in Table 5. Individual clinical signs data are presented in Appendix J.

Table 1: Daily Consumption of Nitroguanidine#

Group	Week	n	Males (mg/kg/day)	n	Females (mg/kg/day)
Controls	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 15 10 10 10 10 10	0 * ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±	15 15 15 15 15 15 10 10 10 10 10	0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0
100 mg/kg/day	1 2 3 4 5 6 7 8 9 10 11 12 13	12 15 14 15 15 10 9 9 10 10	95 ±4 85 ±2 85 ±4 83 ±2 94 ±3 92 ±4 90 ±3 99 ±5 109 ±5 81 ±4 83 ±4 94 ±3 86 ±2	15 15 15 15 15 15 10 9 9	77 ±6 115 ±5 91 ±4 93 ±4 97 ±4 91 ±4 90 ±3 114 ±3 108 ±3 85 ±5 103 ±6 93 ±5 97 ±7

[#] Concentration of nitroguanidine in feed x mean feed consumption per day + body weight in kg.
* Mean ± Standard Error.

Table 1 (con	it.):	Daily Co	onsumpti	on o	e nit	rogua	nidine
Group	Week	n	Males	-		n	
Females			(mg/kg/	day)		(mg/k	g/day)
316 mg/kg/day	1	15	292*	±8	15	214	±7
J, J,	2	15		:10	15	331	±12
	3	14		± 7	15	312	± 15
	4	15		±9	15	300	±10
	5	15		:10	15	283	±16
	6	15		:12	15	300	±11
	7	10		12	10	304	±24
	8	10		:17	9	305	±20
	9	9		:14	10	326	±15
	10	10		±8	9	269	±11
	11	10		±6	10	297	±11
	12	10		:22	9	296	±12
	13	9	286	±8	10	277	±14
1000 mg/kg/day	, 1	15	977 ±	:43	14	714	±28
	2 3 4	15	964 ±	:16	15	1211	±33
	3	14		29	15	965	±26
	4	15		:16	15	959	±40
	5 6	15		:17	15	760	±18
	6	15		:38	15	1050	±35
	7	10		:16	10	981	±49
	8	10		58	10	897	±87
	9	9		:58	10	1169	±86
	10	10		:46	10	899	±69
	11	10		:35	10	980	±58
	12	10		41	10	954	±49
	13	10	919 ±	:26	10	1028	± 52

[#] Concentration of nitroguanidine in feed x mean feed consumption per day + body weight in kg.
* Mean ± Standard Error.

Table 2: Food Consumption

Group	Week	n	Males (g/week) n	Females (g/week)
Controls	1	15	34* ±	1 15	28 ±1
001.01010	1 2 3 4 5	14	36 ±		33 ±1
	3	15	36 ±		35 ±1
	4	15	35 ±		35 ±1
	5	14	36 ±		34 ±1
	6	15	35 ±		36 ±1
	7	10	35 ±		36 ±1
	8	10	34 ±		33 ±2
	9	10	36 ±		39 ±2
	10	10	36 ±		37 ±2
	11	10	37 ±		38 ±1
	12	10	35 ±		37 ±1
	13	10	35 ±	1 10	38 ±1
100	1	12	32 ±		32 ±2
mg/kg/day	2	14	35 ±		36 ±1
	2 3 4 5 6 7	15	36 ±		35 ±1
1	4	14	35 ±		36 ±2
	5	15	36 ±		35 ±1
	6	15	33 ±		35 ±1
	7	10	34 ±		34 ±1
	8 9	9	35 ±		37 ±2
	9	9 9	37 ±		44 ±3
	10		37 ±		36 ±2
	11	10	36 ±	2 9	38 ±1
	12	10	36 ±		39 ±2
	13	9	34 ±	1 9	37 ±2

^{*} Mean ± Standard Error.

Table 2 (cont.): Food Consumption

Group	Week	n	Male (g/wee		n	Fema: (g/we	
316	1	15	34*	±1	15	30	±1
mg/kg/day		15	35	±1	15	34	±1
y , y , y	3	14	35	±1	15	36	±2
	2 3 4	15	35	±1	15	34	±1
	5	15	37	±1	15	33	±1
	6	15	34	±2	15	33	± 1
	7	10	37	±2	10	34	±2
	8 9	10	34	±3	9	34	±2
	9	9	37	±1	10	36	±2
	10	10	37	±2	9	34	±2
	11	10	35	±1	10	36	±2
	12	10	37	±2	9	34	±2
	13	9	34	±1	10	34	±2
1000	1	15	33	±1	14	28	±1
mg/kg/day	2	15	34	±1	15	35	±1
	1 2 3 4	14	35	±1	15	35	±1
	4	15	35	± 1	15	35	±1
	5 6	15	35	±1	15	32	±1
	6	15	34	±2	15	34	±1
	7	10	36	±1	10	34	±1
	8 9	10	33	±2	10	33	±3
		9	39	±2	10	39	±3
	10	10	39	±2	10	37	±2
	11	10	38	±1	10	37	±2
	12	10	36	±1	10	35	±2
	13	10	35	± 1	10	37	±2

^{*} Mean ± Standard Error.

Table 3: Water Consumption

Group	Week	n	Males (ml/week)	n	Females (ml/week)
Controls	1	15	42* ±2	15	37 ±2
	1 2 3	14	45 ±2	15	45 ±2
	3	15	43 ±2	15	45 ±1
	4	15	45 ±2	15	45 ±1
	5	15	39 ±2	15	43 ±1
	6	13	40 ±1	15	45 ±1
	7	10	38 ±2	10	46 ±2
	8 9	10	35 ±3	10	39 ±4
	9	10	40 ±2	10	45 ±2
	10	10	42 ±2	10	48 ±3
	11	10	39 ±2	10	48 ±2
	12	10	40 ±2	9	46 ±2
	13	10	39 ±2	8	44 ±2
100	1	15	43 ±1	15	35 ±3
mg/kg/day	2	14	44 ±2	15	41 ±2
	2 3 4	15	40 ±1	15	39 ±2
		15	39 ±2	15	40 ±2
	5	15	38 ±1	15	39 ±1
	6	14	35 0 ±1	14	39 ±2
	7	10	36 ±1	10	40 ±2
	8 9	10	35 ±2	9	38 ±2
	9	10	36 ±1	10	40 ±2
	10	10	39 ± 2	10	42 ±2
	11	10	35 ±2	10	41 ±2
	12	10	37 ± 1	10	43 ±2
	13	10	34 ± 1	8	42 ±3

^{*} Mean \pm Standard Error.
^e Value significantly different from control at p \leq 0.01.

Table 3 (cont.): Water Consumption

Group	Week	n	Males (ml/week)	n	Females (ml/week
316	1	15	48* ±2	15	40 ±1
mg/kg/day	1 2 3	15	50 ±2	15	44 ±2
	3	14	47 ±3	15	42 ±2
	4 5 6	15	46 ±3	15	41 ±2
	5	15	44 ±2	15	40 ±2
	6	13	40 ±1	15	41 ±2
	7	10 9	41 ±2 40 ±3	10 10	40 ±2 38 ±2
	8 9	10	40 ±3 42 ±2	10	40 ±2
	10	10	43 ±2	9	44 ±4
	11	10	39 ±2	10	43 ±3
	12	10	40 ±2	10	42 ±2
	13	10	36 ±2	10	43 ±3
1000	1	15	55 ⁰ ±2	15	43 ±2
mg/kg/day	2	15	57 [@] ±2	15	55 ^e ±2
	3	15	54 ^e ±2	15	51 ^{\$} ±2
	4	15	52 ±2	15	51 ±2
	5	15	51 ⁰ ±2	15	48 ±2
	6	14	48 ^e ±2	15	50 ±2
	7	10	48 ^e ±2	10	52 ±3
	8	9	46 ^{\$} ±2	10	48 ±2
	9	10	51 ⁶ ±3	9	49 ±2
	10	10	52 ⁰ ±3	10	52 ±3
	11	10	48 ³ ±2	10	53 ±3
	12	10	48 ^e ±2	10	51 ±2
	13	10	46 ^{\$} ±2	10	52 ±3

^{*} Mean ± Standard Error.

^{\$} Value significantly different from control at $p \le 0.05$.

 $^{^{}e}$ Value significantly different from control at p \leq 0.01.

Table 4: Body Weights

Group	Week	n	Males (g)	n	Females (g)
Controls	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 15 10 10 10 10	33* ±1 34 ±1 34 ±1 36 ±1 37 ±1 38 ±1 40 ±1 39 ±1 40 ±1 41 ±1 40 ±1 41 ±1	15 15 15 15 15 10 10 10 10	26 ±<0.5 26 ±<0.5 28 ±<0.5 28 ±<0.5 28 ±<0.5 28 ±1 28 ±1 29 ±1 30 ±1 30 ±1 30 ±1 30 ±1
100 mg/kg/day	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 15 10 10 10 10	31 ±1 32 ±1 33 ±1 34 ±1 35 ±1 36 ±1 38 ±1 37 ±1 37 ±1 38 ±1 38 ±1 38 ±1 38 ±1 39 ±1	15 15 15 15 15 10 10 10 10	26 ±<0.5 26 ±<0.5 26 ±<0.5 27 ±1 28 ±1 29 ±1 29 ±1 29 ±1 29 ±1 30 ±1 30 ±1

^{*} Mean ± Standard Error.

Table 4 (cont.): Body Weights (g)

Group	Week	n	Males (g)	n	Females (g)
316 mg/kg/day	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 15 10 10 10 10	32 * ±1 32 ±1 33 ±1 34 ±1 36 ±1 36 ±1 38 ±1 38 ±1 39 ±1 39 ±1 39 ±1 39 ±1	15 15 15 15 15 10 10 10 10	26 ±<0.5 26 ±<0.5 27 ±<0.5 27 ±1 27 ±<0.5 28 ±<0.5 28 ±<0.5 28 ±<0.5 29 ±<0.5 29 ±<0.5 29 ±<0.5 30 ±<0.5
1000 mg/kg/da	Y 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 15 10 10 10 10	31 ±1 32 ±1 33 ±1 35 ±1 36 ±1 36 ±1 39 ±1 38 ±1 39 ±1 39 ±1 39 ±1 39 ±1 40 ±1	15 15 15 15 15 10 10 10 10	25 ±<0.5 25 ±<0.5 26 ±<0.5 27 ±<0.5 27 ±<0.5 27 ±<0.5 26 ±1 27 ±<0.5 28 ±1 28 ±1 28 ±1 28 ±1 28 ±1 28 ±1

^{*} Mean ± Standard Error.

Table 5: Clinical Observations*

			Dos	e Grou	p (mo	g/kg/d	ay)	
Sign	Con	trol		00		16		000
		Ma	les	1.1.				
Behavioral			_					
Irritable		(49)		(19)		(53)		(15)
Aggressive Skin/Hair	5	(18)	3	(11)	4	(33)	1	(2)
Alopecia	_		1	(2)	1	(1)	_	
Swelling Jaw	_		_	(2)	_	(1)	1	(18)
Necrosis Tail	_		_		1	(21)	_	(-0,
Ocular						, ,		
Corneal erosion,		(1)	-		-		2	(2)
opacity, vasculariz	ation	1						
Dilated pupil	-		1	(1)	_		-	
Dehydration	-		-		1	(1)	1	(1)
Skeletal	-		-		-		1	(1)
		Fem	ales					
Behavioral								
Irritable	12	(38)	6	(63)	13	(94)	11	(110)
Aggressive	1	(1)	1	(1)	1	(1)	3	(26)
Hyperactive	2	(2)	-		-		-	
Chewing	3	(3)	-		1	(1)	-	
Skin/Hair Alopecia			1	(20)	1	(17)	3	(6)
Scab	-		_	(20)	1	(7)	-	(6)
Ocular					_	(/ /		
Corneal opacity,	_		2	(39)	1	(1)	1	(1)
vascularization				, ,				• •
Cataract	-		1	(1)	_		-	
Conjunctivitis	-		1	(3)	-		-	
Neurologic							_	
Twitching		/11	-		-		1	(1)
Increased startle reflex	1	(1)	-		_		-	
Dehydration			1	(2)	1	(1)	_	
-0.17 02 00 2011				(2)	1	(+)		

^{*}Data are presented as the number of animals exhibiting the sign with the total number of animal days the sign was observed, in parenthesis.

Clinical Chemistry

A summary of the serum chemistry data is presented in Table 6. Individual clinical chemistry values, a key to parameter abbreviations, and the units of measurement are presented in Appendix K. The group-4 males had a significantly increased mean aspartate amino-transferase (AST) level compared to that of the controls (p \leq 0.05) at interim sacrifice. The AST value was within normal limits compared to the baseline sacrifice performed at the beginning of the study period (Appendix Q). At terminal sacrifice, the group-3 males had significantly decreased uric acid levels compared to those of the controls (p \leq 0.05). However, the uric acid level was within normal limits. The interim sacrifice groups-3 and -4 females had significantly increased albumin and albumin-globulin ratio values compared to those of the controls (p \leq 0.05), but the values remained within the respective normal ranges established by the baseline sacrifice.

<u>Hematology</u>

A summary of the hematology data is presented in Table 7. No statistically significant variances from the controls were found in either the male or female dose groups. Individual hematology values, a key to parameter abbreviations, and the units of measurement are presented in Appendix L. Baseline control data are presented in Appendix Q.

Organ Weights and Ratios

Organ weights, organ-to-body weight ratios, and organto-brain weight ratios were compared for liver, spleen, kidneys, heart, testes/ovaries, and brain. The interim sacrifice group-4 males had a significantly greater brain-tobody weight ratio than the controls (p \leq 0.05). The group-4 male animals in general had greater absolute brain weights and smaller body weights than the other groups, but these differences were not statistically significant (p \leq 0.05). statistically significant differences from the controls were observed in the organ weights or organ weight ratios in the female dose groups. The group mean organ weights and the comparative ratios are presented in Tables 8 through 10. Individual organ weight, organ-to-body weight ratio, and organ-to-brain weight ratio data are presented in Appendices M, N, and O, respectively. Baseline control data are presented in Appendix Q.

Table 6: Serum Chemistry

Group (mg/kg/day)	AST [@]	BUN	CK	ALB	BILI	CI	GTO	IRON	ALK	LDH	MAG
				Interim	im Sacr	Sacrifice Ma	Males				
Control	76.52° ±18.24 (5)	30.12 3.22 (5)	188.56 88.56 (5)	2.43 0.21 (5)	0.01 0.01 (3)	112.00 1.87 (5)	261.72 41.01 (5)	180.50 21.06 (4)	50.32 3.23 (5)	384.88 214.72 (5)	2.40 0.08 (5)
100	75.95 ±23.88	30.45	215.43	2.37	0.02	110.20	260.00	196.00	59.53 12.48	358.10	2.61
316	(4) 124.87 ±26.16	(4) 35.00 9.46	(4) 150.20 55.54	(4) 2.03 0.23	(2) 0.03 -	(5) 110.25 2.99	(4) 213.40 67.70	(4) 150.00 43.84	(4) 31.03	(4) 495.60	(4) 2.60
1000	(3) 136.70* ±55.18 (5)	(3) 25.94 2.46 (5)	(3) 433.34 251.67 (5)	(3) 2.32 0.17 (5)	(1)	(4) 108.60 1.14 (5)	(3) 243.78 47.23 (5)	(2) 169.00 32.53 (2)	(3) 45.08 7.82 (5)	(3) 559.70 262.21 (5)	(3) 2.79 0.20 (5)

Refer to Appendix K for explanation of abbreviations and units.

• Values are presented as the group mean ± standard deviation with n in parenthesis. * Value is significantly different from the control at p < 0.05 using the Dunnett's test.

Table 6 (cont.): Serum Chemistry

Group (mg/kg/dav)	NA ⁶	CAL	СНОГ	CR	ALT	TP	URIC	×	TRIG	A-G
			Inte	Interim Sacrifice		Males				
Control	153.25° ±2.22 (4)	8.40 0.34 (5)	76.73 30.19 (4)	0.52 0.05 (5)	43.98 9.72 (5)	4.72 0.16 (5)	1.34 0.32 (5)	5.63 0.85 (4)	118.00 41.26 (4)	1.07 0.17 (5)
100	154.60 ±0.55 (5)	8.15 0.96 (4)	79.78 15.33 (4)	0.59 0.14 (4)	40.88 9.66 (4)	4.55 0.06 (4)	1.63 0.43 (4)	6.22 1.02 (5)	133.75 53.99 (4)	1.08 0.15 (4)
316	156.00 ±2.83 (4)	8.27 0.55 (3)	45.85 2.05 (2)	0.58 0.05 (3)	33.23 12.56 (3)	4.67 0.83 (3)	1.87 0.29 (3)	5.98 0.51 (4)	143.00 41.01 (2)	0.86 0.36 (3)
1000	154.80 ±2.68 (5)	8.60 0.32 (5)	114.35 17.75 (2)	0.59 0.09 (5)	51.26 14.29 (5)	4.84	1.88 0.35 (5)	6.56 0.42 (5)	165.50 26.16 (2)	0.92

Refer to Appendix K for explanation of abbreviations and units.
• Values are presented as the group mean t standard deviation with n in parenthesis.

Table 6 (cont.): Serum Chemistry

Group (mg/kg/day)	AST ⁰	BUN	CK	ALB	BILI	IJ	GLU	IRON	ALK	LDH	MAG
				Termin	Terminal Sacrifice		Males				
Control	139.63° ±76.70 (9)	30.21 7.84 (9)	145.80 62.95 (9)	2.87 0.25 (9)	0.03 0.02 (5)	111.11 2.89 (9)	235.37 42.78 (9)	209.00 5.72 (4)	51.27 18.69 (9)	387.11 129.58 (9)	2.50 0.24 (9)
100	125.20 ±78.23 (7)	27.81 8.86 (8)	185.84 179.02 (8)	2.80 0.25 (8)	0.04	110.00 2.06 (9)	269.26 27.80 (7)	245.50 23.06 (4)	43.76 12.94 (8)	345.85 167.88 (8)	2.37 0.18 (9)
316	116.63 ±36.01 (6)	25.58 6.66 (6)	117.85 89.39 (6)	2.75 0.10 (6)	0.05 0.01 (2)	109.67 1.73 (9)	270.15 52.42 (6)	193.00	41.47 10.26 (6)	305.67 31.63 (6)	2.40 0.19 (9)
1000	128.93 ±67.44 (8)	24.76 7.90 (10)	123.25 70.16 (8)	2.82 0.24 (10)	0.04	110.00 1.05 (10)	282.51 45.84 (8)	249.00 120.46 (3)	46.13 16.12 (10)	384.66 106.83 (8)	2.51 0.28 (10)

Refer to Appendix K for explanation of abbreviations and units. \bullet Values are presented as the group mean \pm standard deviation with n in parenthesis.

Table 6 (cont.): Serum Chemistry

Group	NA ⁰	CAL	СНОГ	S,	ALT	T.	URIC	×	TRIG	A-G
			Term	ninal Sa	Terminal Sacrifice N	Males				
Control	158.96° ±2.04 (9)	8.98 0.57 (9)	95.39 20.27 (8)	0.46	53.03 16.14 (9)	4.96 0.35 (9)	2.25 0.98 (6)	6.98 0.82 (9)	133.63 30.55 (8)	1.39 0.18 (9)
100	157.60 ±1.43 (9)	8.70 0.47 (9)	81.00 18.64 (6)	0.43	43.75 9.30 (8)	4.74 0.21 (8)	2.20 0.91 (6)	6.29 0.60 (9)	104.17 34.70 (6)	1.49 0.32 (8)
316	158.70 ±1.53 (9)	8.99 0.42 (9)	108.40 32.49 (6)	0.52 0.10 (6)	50.40 23.33 (6)	4.92 0.17 (6)	1.00* 0.50 (6)	6.73 1.54 (9)	139.33 38.77 (6)	1.30 0.19 (6)
1000	158.35 ±1.91 (10)	9.07 0.42 (10)	96.03 22.68 (6)	0.45 0.08 (10)	40.00	4.95 0.26 (10)	1.48 0.67 (6)	6.76 1.03 (10)	134.50 62.21 (6)	1.37 0.28 (10)

Refer to Appendix K for explanation of abbreviations and units.

[•] Values are presented as the group mean \pm standard deviation with n in parenthesis. * Value is significantly different from the control at p ≤ 0.05 using the Dunnett's test.

Table 6: Serum Chemistry

Group (mg/kg/day)	AST ^e	BUN	CK	ALB	BILI	CI	GLU	IRON	ALK	ндт	MAG
				Interir	n Sacri	Interim Sacrifice Females	ales				
Control	214.37° ±137.82 (3)	26.53 3.76 (3)	384.20 110.86 (3)	2.40 0.21 (3)	0	113.75 0.96 (4)	221.47 37.69 (3)	224.33 29.69 (3)	63.57 17.51 (3)	464.07 125.37 (3)	2.59 0.27 (3)
100	263.33 ±250.67 (3)	30.73 8.06 (4)	659.50 287.97 (3)	2.68 0.26 (4)	0.00	113.00 1.41 (4)	214.13 22.34 (3)	209.00 39.60 (2)	69.48 15.10 (4)	579.80 204.51 (3)	2.44 0.47 (4)
316	323.90 ±298.16 (4)	23.45 7.35 (4)	1253.60 1620.52 (4)	2.88* 0.11 (4)	0.03	112.75 0.96 (4)	219.43 14.67 (4)	182.25 44.21 (4)	91.75 18.12 (4)	668.93 382.19 (4)	2.65 0.17 (4)
1000	156.03 ±41.44 (4)	25.18 4.76 (5)	392.28 149.07 (4)	2.76* 0.15 (5)	0.02	112.20 1.10 (5)	210.45 15.84 (4)	193.67 51.03 (3)	101.90 26.14 (5)	500.43 157.06 (4)	2.74 0.33 (5)

e Refer to Appendix K for explanation of abbreviations and units.

• Values are presented as the group mean ± standard deviation with n in parenthesis. * Value is significantly different from the control at p < 0.05 using the Dunnett's test.

Chemistry Serum (cont.): 9 Table

Group	NA	CAL	СНОГ	CR	ALT	TP	URIC	Ж	TRIG	A-G
7 5 7 5 7 5 mm			Inte	rim Sacı	Interim Sacrifice Females	males				
Control	152.25° ±2.22 (4)	8.43 0.42 (3)	45.57 31.09 (3)	0.62 0.10 (3)	35.67 5.35 (3)	4.60 0.17 (3)	1.00 0.17 (3)	5.68 0.36 (4)	93.67 48.18 (3)	1.09 0.11 (3)
100	154.75 ±4.19 (4)	8.53 0.50 (4)	65.70 9.48 (2)	0.63 0.05 (4)	39.28 7.85 (4)	4.93 0.39 (4)	1.10 0.17 (3)	6.32 0.76 (4)	73.50 9.19 (2)	1.19 0.05 (4)
316	155.25 ±1.26 (4)	8.18 0.22 (4)	65.15 22.98 (4)	0.59	36.45 14.45 (4)	4.85 0.13 (4)	1.60 0.59 (4)	5.43 0.58 (4)	78.50 21.06 (4)	1.47# 0.19 (4)
1000	154.40 ±8.20 (5)	8.32 0.41 (5)	45.07 20.09 (3)	0.71 0.29 (5)	30.60 7.30 (5)	4.82 0.22 (5)	1.63 0.40 (4)	5.28 0.89 (5)	81.33 17.79 (3)	1.35*00.10

Refer to Appendix K for explanation of abbreviations and units.

• Values are presented as the group mean \pm standard deviation with n in parenthesis. \pm Value is significantly different from the control at p \le 0.01 using the Dunnett's test. \pm Value is significantly different from the control at p \le 0.05 using the Dunnett's test.

Table 6 (cont.): Serum Chemistry

Group (mg/kg/day)	AST ^e V)	BUN	ÇK	ALB	BILI	CI	GLU	IRON	ALK	LDH	MAG
			r F	Permina	Terminal Sacrifice	ifice Fer	Females				
Control	96.52° ±19.60 (5)	27.23 5.38 (8)	145.82 52.34 (5)	2.88 0.26 (5)	0.05	114.13 2.42 (8)	269.50 4.59 (4)	255.00	71.97 14.10 (8)	234.26 92.11 (5)	2.48 0.15 (9)
100	130.98 ±27.10 (4)	25.44 5.63 (5)	86.13 19.89 (4)	2.80 0.17 (5)	0.04	113.00 2.07 (8)	246.03 25.59 (4)	281.50 27.58 (2)	60.66 9.06 (5)	246.63 71.71 (4)	2.56 0.14 (9)
316	153.72 ±84.44 (5)	26.40 6.63 (7)	191.22 162.25 (5)	3.00 0.25 (5)	0.03	114.44 2.74 (9)	253.46 36.44 (5)	285.00	64.37 9.62 (7)	374.48 113.25 (5)	2.47 0.17 (10)
1000	0	22.50 ±3.22 (3)	0	3.00	0	114.29 2.50 (7)	254.20	110	73.72 8.49 (6)	110	2.49 0.27 (8)
(D) f) x + 0											ı

Refer to Appendix K for explanation of abbreviations and units. • Values are presented as the group mean ± standard deviation with n in parenthesis.

Table 6 (cont.): Serum Chemistry

Group	NA ⁶	CAL	СНОГ	CR	ALT	TP	URIC	×	TRIG	A-G
(mg/kg/gay)			Termi	Terminal Sacrifice		Females				
Control	159.06° ±2.40 (9)	8.92 0.41 (9)	55.58 15.51 (4)	0.55 0.17 (8)	44.89 20.08 (8)	4.80 0.10 (5)	0.88 0.21 (4)	5.66 0.58 (9)	82.25 10.14 (4)	1.52 0.32 (5)
100	157.09 ±2.78 (9)	9.02 0.44 (9)	54.58 10.36 (4)	0.64 0.34 (5)	41.08 10.86 (5)	4.86 0.18 (5)	2.63 1.68 (4)	5.74 0.69 (9)	121.25 54.71 (4)	1.36 0.17 (5)
316	159.90 ±1.96 (10)	9.22 0.42 (10)	38.45 8.70 (2)	0.69	43.89 21.93 (8)	5.08 0.35 (5)	1.27 0.85 (3)	6.22 1.05 (10)	107.50 37.48 (2)	1.44 0.11 (5)
1000	160.78 ±2.09 (8)	9.15 0.61 (8)	60	0.47	34.50 6.55 (6)	5.00	0)	5.61 0.69 (8)	(0)	1.50

Refer to Appendix K for explanation of abbreviations and units.

 Values are presented as the group mean t standard deviation with n in parenthesis.

Table 7: Hematology

Group n Img/kg/day)	n ay)	WBC ⁶	RBC	нсв	HCT	MCV	МСН	МСНС
				Interim Sad	Interim Sacrifice Males	70		
Control	Ŋ	1.15*	7.898	13.60 2.729	38.02 7.840	47.6	17.20	35.90
100	Ŋ	1.15	8.492	14.72 1.906	40.46	47.4	17.42	36.50
316	S	2.58 ±3.03	6.590	11.72 2.028	32.96 5.172	48.2	17.24	35.50 1.046
1000	S	1.88 ±0.942	7.696 0.502	14.48 1.15	39.64	49.0	17.92	36.62

Refer to Appendix L for explanation of abbreviations and units.

 Values are presented as the group mean ± the standard deviation.

Table 7 (cont.): Hematology

Group (mg/kg/day)	u (7	RBC	нсв	нст	MCV	мсн	мснс
			Terminal	Sacrifice Male	ა ა		
Control	10	8.0.3. ±0.9964	14.21 1.684	38.69 4.681	48.10 1.101	17.77 0.882	36.78 1.974
100	10	8.5.7	16.12 3.110	43.30 7.409	48.20 1.135	17.94 0.775	37.18 1.944
316	10	8.150 ±0.7566	14.00 1.467	38.95 3.557	47.70 0.949	17.25 0.834	35.94 1.389
1000	10	8.528 ±0.9443	15.03 1.880	41.10 4.455	48.20 1.033	17.62 0.555	36.50 1.002
			Terminal S	Sacrifice Female	les		
Control	01	8.608 ±0.9769	15.35 2.071	42.22 5.344	48.80 1.135	17.75 0.546	36.29 0.657
100	10	8.584 ±1.183	15.88 2.549	43.21 6.756	48.70 0.949	17.99 0.412	36.75 0.440
316	10	8.622 ±0.7013	15.59 1.357	42.77 3.775	48.80	17.85 0.711	36.46 0.389
1000	10	9.022 ±0.9709	16.34 2.120	44.76 5.704	48.80 1.229	17.83 0.419	36.48 0.813

· Values are presented as the group mean ± the standard deviation. Refer to Appendix L for explanation of abbreviations and units.

Table 7 (cont.): Hematology

Terminal Sacrifice Males 274.9 1236.2 166.23 594.32 0 696.0 1938.1 0 184.6 1069.64 0 188.6 11693.75 0 872.0 1983.6 0 982.34 760.83 0 Terminal Sacrifice Females 270 1030 0 158.5 1 249.2 0 290.8 1249.2 0 137.4 1 560.65 0 316.8 1193.2 214.04 468.36 0 358.4 1277.04	n WBC^{θ}	SEG ul) (#/ul)	LYM (#/µl)	ATL (#/µl)	MON (#/µ1)	EOS (#/ul)	BAS (#/#)
rol 10 1.51 274.9 1236.2 0 ±0.61 166.23 594.32 0 10 2.64 696.0 1938.1 0 ±1.12 517.56 1069.64 0 10 2.36 184.6 2172.6 0 ±1.69 88.61 1693.75 0 ±1.59 982.34 760.83 0 Terminal Sacrifice Females rol 10 1.35 270 1030 0 ±0.62 158.51 477.83 0 10 1.54 290.8 1249.2 0 ±0.62 137.41 560.65 0 10 1.55 214.04 468.36 0 ±0.55 214.04 1274.9 0		Te					
10 2.64 696.0 1938.1 0 ±1.12 517.56 1069.64 0 10 2.35 184.6 2172.6 0 ±1.69 872.0 1983.6 0 ±1.59 982.34 760.83 0 Terminal Sacrifice Females 10 1.35 270 1030 0 ±0.62 158.51 477.83 0 10 1.54 290.8 1249.2 0 ±0.62 137.41 560.65 0 10 1.51 316.8 1193.2 0 ±0.55 214.04 468.36 0 ±0.55 214.04 9468.36 0			1236.2 594.32	00	00	00	00
10 2.36 184.6 2172.6 0 ±1.69 88.61 1693.75 0 10 2.86 872.0 1983.6 0 ±1.59 982.34 760.83 0 Terminal Sacrifice Females rol 10 1.30 270 1030 0 ±0.62 158.51 477.83 0 10 1.54 290.8 1249.2 0 ±0.62 137.41 560.65 0 10 1.51 316.8 1193.2 0 ±0.55 214.04 468.36 0 ±0.97 177.04 915.64	+ 1	696.0 517.56	1938.1 1069.64	00	00	2.7) oo
10 2.86 872.0 1983.6 0 ±1.59 982.34 760.83 0 Terminal Sacrifice Females rol 10 1.30 270 1030 0 ±0.62 158.51 477.83 0 10 1.54 290.8 1249.2 0 ±0.62 137.41 560.65 0 10 1.51 316.8 1193.2 0 ±0.55 214.04 468.36 0 10 1.63 358.4 1274.9 0		184.	2172.6 1693.75	00	00	00	00
Terminal Sacrifice Females rol 10 1.30 270 1030 0 ±0.62 158.51 477.83 0 10 1.54 290.8 1249.2 0 ±0.62 137.41 560.65 0 10 1.51 316.8 1193.2 0 ±0.55 214.04 468.36 0 ±0.97 177.04 915.64		872 982	1983.6 760.83	0 0	00	00	00
rol 10 1.30 270 1030 0 10.62 158.51 477.83 0 10.62 158.51 477.83 0 10.62 137.41 560.65 0 10.63 1193.2 0 10.55 214.04 468.36 0 10.63 358.4 1274.9 0		Tern					
10 1.54 290.8 1249.2 0 ±0.62 137.41 560.65 0 10 1.51 316.8 1193.2 0 ±0.55 214.04 468.36 0 ±0.97 177.04 915.64			œ,	00	00	0 0	00
10 1.51 316.8 1193.2 0 ±0.55 214.04 468.36 0 10 1.63 358.4 1274.9 0 ±0.97 177.04 915.54		• •		0 0	00	00	00
10 1.63 358.4 1274.9 0 ±0.97 177.04 915.54		316.8 214.04	193.2 468.3	00	00	00	00
0 40.040	10 1.63 ±0.97	358.4 177.04	1274.9 815.64	00	00	00	, 00

*Refer to Appendix L for explanation of abbreviations. •Values are presented as the group mean ± the standard deviation.

		Table	8:	Organ	Weight	S		
Group\$	Con	trol		100		316		000
Day n	45 5	90 10	45 5	90 10	45 5	90 10	45 5	90 10
			M	ales				
Test es (g)	0.30* ±0.03	0.28	0.28 0.02	0.31 0.04	0.26 0.03	0.27 0.04	0.28 0.03	0.49 0.59
Liver (g)	1.96 ±0.13	2.15 0.41	1.74 0.29	2.03 0.18	2.06 0.13	2.07 0.25	1.85 0.14	2.06 0.17
Heart (g)	0.19 ±0.03	0.22 0.04	0.18 0.03	0.21 0.03	0.20 0.02	0.19 0.06	0.20 0.02	0.19 0.02
Brain (g)	0.50 ±0.03	0.51 0.03	0.50 0.02	0.74 0.70	0.48 0.04	0.52 0.04	0.54 0.03	0.54 0.04
Spleen (mg	0.11 ±0.02	0.11 0.02	0.10 0.01	0.11 0.02	0.15 0.14	0.11 0.02	0.10 0.02	0.12 0.05
Kidney (g)	0.55 ±0.08	0.65 0.10	0.54 0.08	0.62 0.09	0.48 0.03	0.63 0.07	0.50 0.06	0.57 0.17
			F€	emales				
Ovaries (mg)	0.11 ±0.16	0.04 0.02	0.03 0.02	0.04	0.05 0.01	0.04 0.02	0.04	0.03 0.02
Liver (g)	1.51 ±0.14	1.54 0.12	1.44	1.62 0.15	1.32 0.31	1.46 0.17	1.41 0.18	1.47 0.21
Heart (g)	0.16 ±0.03	0.15 0.02	0.16 0.02		0.13 0.04	0.15 0.03	0.15 0.02	0.16 0.03
Brain (g)	0.52 ±0.04	0.50 0.04	0.52 0.02		0.49 0.09	0.50 0.08	0.53 0.03	0.53 0.03
Spleen (mg	t0.01	0.12 0.02	J.10 0.02		0.12 0.03	0.10 0.03	0.12 0.02	0.24 0.42
Kidney (g)	0.37 ±0.02	0.42 0.05	0.37		0.37 0.02	0.39 0.05	0.31 0.08	0.38 0.03

^{\$} mg/kg/day.
* Mean ± Standard Deviation.

	Table	9:	Organ-t	o-Body	Weight	Rat	io	
Group\$		trol		00	31			000
Day n	45 5	90 10	45 5	90 10	45 5	90 10	4 5 5	90 10
		<u> </u>	Ma	ales				
Liver (%)	5.28* ±0.30	5.18 0.68	4.91 1.05	5.24 0.25		5.24).40	5.58 0.46	5.21 0.50
Heart (%)	0.52 ±0.10	0.55 0.12	0.50 0.04	0.54 0.08).47).14	0.62 0.09	0.47 0.05
Brain (%)	1.36 ±0.13	1.24 0.12	1.40 0.18	1.88 1.68		.33	1.62 ⁰ 0.13	1.36 0.11
Spleen (%)	0.30 ±0.05	0.26 0.03	0.30 0.05	0.29 0.05).27).06	0.31 0.06	0.31 0.13
Kidney (%)	1.49 ±0.24	1.57 0.13	1.50 0.14	1.60 0.14		.60	1.49	1.43 0.41
Testes (%)	0.80 ±0.06	0.69 0.07	0.78 0.10	0.80 0.10).70).10	0.84 0.06	1.23 1.46
			Fen	nales				
Liver (%)	5.30 ±0.36	5.13 0.44	5.14 0.27	5.53 0.72		1.96).57	5.10 0.42	5.21 0.76
Heart (%)	0.56 ±0.11	0.51 0.07	0.58 0.08	0.53 0.13).51).11	0.55 0.05	0.56 0.09
Brain (%)	1.82 ±0.13	1.68 0.25	1.84 0.06	1.84 0.24		.71	1.94 0.11	1.89 0.14
Spleen (%)	0.38 ±0.04	0.39 0.08	0.36 0.06	0.35 0.10).33).10	0.43 0.09	0.89 1.54
Kidney (%)	1.31 ±0.06	1.38 0.18	1.32 0.04	1.37 0.24		.31	1.13 0.32	1.33 0.14
Ovaries (%		0.13				0.14	0.16	0.12 0.05

^{\$} mg/kg/day. * Mean \pm Standard Deviation. • Value significantly different from control at p \leq 0.05.

Ta	able	10: ()rgan-t	o-Brain	Weig	tht Rat	io	
Group\$	Cor	itrol		00		316		000
Day n	45 5	90 10	45 5	90 10	45 5	90 10	45 5	90 10
			Ma	les				
Liver (%)	391* ±34	422 71	347 48	358 103	434 50	403 74	345 41	385 28
Heart (%)	37.9 ±4.4			37.6 12.2	42.4 7.0	37.0 2.2	38.1 6.3	35.0 4.2
Brain (%)	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0
Spleen (%)	22.4 ±3.8			20.1 6.8	32.6 30.5	20.9 5.0	19.2 3.6	22.9 9.7
Kidney (%)	109 ±14	128 17	108 17	109 33	100 10	122 20	93 13	106 30
Testes (%)	59 ±6	56 5	55 5	56 18	54 3	53 7	52 5	92 114
			Fem	ales				
Liver (%)	293 ±36	309 42	279 16	302 36	274 42	297 65	265 33	278 50
Heart (%)	30.3 ±4.2			28.6 6.6	26.2 6.3	30.5 7.5	28.4 2.4	29.7 5.4
Brain (%)	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0	100 ±0
Spleen (%)	21.1 ±3.2			18.8 4.8	24.7 5.1	19.6 5.3	22.1 4.1	45.8 77.7
Kidney (%)	72 ± 8	83 14	72 3	7 4 10	80 25	77 9	59 17	71 6
Ovaries (%)	20.2 £28.9			7.5 2.5	10.2	8.0 4.2	8.1 2.3	6.5 2.8

^{\$} mg/kg/day.
* Mean ± Standard Deviation.

Necropsy

No compound-related gross or microscopic lesions were observed. All gross and microscopic lesions were mild to minimal in severity and considered to be incidental findings commonly observed in aging mice. The 316 mg/kg/day female group had significantly decreased extramedullary hematopoiesis in the liver compared to the controls (p \leq 0.05), but this was considered an incidental finding not related to dosing. The pathology report is presented in Appendix P.

DISCUSSION

No clinical signs of toxicity attributable to nitroguanidine administration were observed during the 90-day study period. In addition, no mortalities or lesions were noted at necropsy or on microscopic examination that could be attributed to nitroguanidine administration. No consistent treatment-related changes were noted in food consumption, body weights, serum chemistry, hematology, or organ weights and weight ratios.

The lack of toxicity observed in this study is consistent with the results of previously reported studies of single-dose oral toxicity in mice (4), subacute toxicity in rats (7), and studies of 90-day subchronic toxicity in rats (8). Metabolism studies in rats (9) have indicated that nitroguanidine is rapidly absorbed following oral administration and is excreted in the urine over a dose range from 20 mg/kg to 200 mg/kg. Absorption and excretion were not measured at doses equivalent to the 1000 mg/kg/day administered in this study. However, the lack of toxicity observed in this study suggests that nitroguanidine might also be rapidly absorbed following oral administration and excreted in the urine at dose levels up to 1000 mg/kg/day.

Nitroguanidine may be acting as an osmotic diuretic in this study. Urea, a chemically related compound, has been used as an osmotic diuretic (10). Since nitroguanidine is considerably less soluble in water than guanidine or urea (11), the excretion of nitroguanidine in the urine would require considerably more urinary volume than would be required to excrete a similar quantity of guanidine or urea. The dose-related increases in water consumption following nitroguanidine administration observed in this study are consistent with an increased urinary volume requirement for excretion of nitroguanidine.

CONCLUSION

Nitroguanidine, fed at dose levels from 100 mg/kg/day to 1000 mg/kg/day in the diet for 90 days, did not cause any appreciable toxicologic effects, other than increased water consumption in the high-dose group, under the conditions of this study.

REFERENCES

- 1. Kenyon KF. A data base assessment of environmental fate aspects of nitroguanidine. Frederick, MD: US Army Medical Bioengineering Research and Development Laboratory, 1982; Technical Report 8214 (ADA125591).
- 2. Ninety-day subchronic oral toxicity testing in rodents. LAIR Standard Operating Procedure OP-STX-74, Presidio of San Francisco, CA: Letterman Army Institute of Research, June 1985.
- 3. Environmental Protection Agency. Office of Pesticides and Toxic Substances, Office of Toxic Substances (TS-792). Subchronic exposure, oral toxicity. In: Health effects test guidelines. Washington, DC: Environmental Protection Agency, August 1982; EPA 560/6-82-001.
- 4. Hiatt GFS, Sano SK, Wheeler CR, Korte DW Jr. Acute oral toxicity of nitroguanidine in mice. Toxicology Series 116. Presidio of San Francisco, CA: Letterman Army Institute of Research, 1988, Institute Report No. 265.
- 5. Diet preparation for feeding studies. LAIR Standard Operating Procedure OP-STX-16, Presidio of San Francisco, CA: Letterman Army Institute of Research, 28 June 1985.
- 6. Dixon WJ, ed. BMDP statistical software. Berkeley: University of California Press, 1981: 555-573.
- 7. Morgan EW, Brown LD, Lewis CM, Dahlgren RR, Korte DW. Fourteen-day subchronic oral toxicity study of nitroguanidine in rats. Toxicology Series 146. Presidio of San Francisco, CA: Letterman Army Institute of Research, 1988, Institute Report No. 272.
- 8. Morgan EW, Brown LD, Pearce MJ, Zaucha GM, Lewis CM, Makovec GT, Korte DW. Ninety-day subchronic oral toxicity study of nitroguanidine in rats. Toxicology Series 170. Presidio of San Francisco, CA: Letterman Army Institute of Research, 1988, Institute Report No. 306.

- 9. Ho B, Tillotson JA, Kincannon LC, Simboli PB, Korte DW, Jr. The fate of nitroguanidine in the rat. Fundam Appl Toxicol 1988; 10: 453-458.
- 10. Weiner IM, Mudge GH. Diuretics and other agents employed in the mobilization of edema fluid. In: Gilman AG, Goodman LS, Rall TW, Murad F, eds. The pharmacological basis of therapeutics. New York: MacMillan Publishing Co, 1985: 887-900.
- 11. Windholz M, ed. Merck Index. 10th ed. Rahway, NJ: Merck and Co, 1983.

Appendices

		Page
Appendix	A.	Chemical Data
Appendix	В.	Animal Data40
Appendix	c.	Analysis of Feed Mixtures41
Appendix	D.	Historical Listing of Study Events52
Appendix	E.	Hematology/Clinical Chemistry Indices55
Appendix	F.	Individual Nitroguanidine Consumption56
Appendix	G.	Individual Food Consumption64
Appendix	н.	Individual Water Consumption72
Appendix	I.	Individual Body Weights80
Appendix	J.	Clinical Signs89
Appendix	K.	Serum Chemistry95
Appendix	L.	Hematology108
Appendix	Μ.	Organ Weights118
Appendix	N.	Organ-to-Body Weight Ratio124
Appendix	0.	Organ-to-Brain Weight Ratio130
Appendix		Pathology Report
Appendix		Baseline Control Data187

Appendix A: CHEMICAL DATA

Chemical Name: Nitroguanidine (NGu)

Other Listed Names: Guanidine, Nitro; alpha-Nitroguanidine;

beta-Nitroguanidine

Chemical Abstracts Service Registry No.: 556-88-7

Lot Number: SOW85F011-028

LAIR Code: TP036B Chemical Structure:

$$H_2N = N - NO_2$$

Molecular Formula: CH4N4O2

Molecular Weight: 104.1

Physical State: White powder

Melting Point: 232°C1

Purity: 99.7% (Data Sheet Attached)

Source: Hercules Aerospace Division

Sunflower Ammunition Plant

DeSoto, Kansas

Analytical Data:

The major peaks in the infrared spectrum of the compound were observed at 3450, 3396, 3342, 3278, 3201, 1666, 1634, 1525, 1404, 1314, 1151, 1045, 732 cm $^{-1}$. The spectrum was identical to the Sadtler standard spectrum for nitroguanidine. ³

Fedoroff BT, Sheffield OE. Encyclopedia of explosives and related items. Vol 6. Dover, NJ: Picatinny Arsenal, 1975: G154.

Wheeler CR. Nitrocellulose-Nitroguanidine Projects. Laboratory Notebook #85-12-022, pp 22-23. Presidio of San Francisco, CA: Letterman Army Institute of Research.

³ Sadtler Research Laboratory, Inc. Sadtler standard spectra. Philadelphia: The Sadtler Research Laboratory, Inc., 1962: Infrared spectrogram #21421.

Appendix A (cont.): CHEMICAL DATA

HPLC analysis showed only one peak (retention time, 4.8 min). The conditions employed were as follows: column, Brownlee RP-18 (4.6 x 250 mn); solvent, 10% methanol -90% water; flow rate, 0.7 ml/min; oven temperature, 50°C; monitoring wavelenght, 265 nm. 1

Stability

The concentrations of NGu in feed mixtures were determined by analyses performed approximately nineteen months after feed preparation. The results of these analyses are presented in the table below. These data indicate that NGu is stable in the feed for at least nineteen months.²

Target Concentrat (mg NGu/g		Date Prepa	_		Date Analy:		Concentration Determined by Analysis (mg NGu/g feed)	% of Target
50	19	August	85	17	March	87	50.27	100.5
10.05	21	August	85	17	March	87	9.92	98.7
3.51	21	August	85	17	March	87	3.515	100.1
1.05	21	August	85	17	March	87	1.022	97.3

¹ Wheeler CR. Nitrocellulose-Nitroguanidine Projects. Laboratory Notebook #85-12-022, pp 24-25. Presidio of San Francisco, CA: Letterman Army Institute of Research.

Wheeler CR. Nitrocellulose-Nitroguanidine Projects. Laboratory Notebook #85-12-022, pp 36-37. Presidio of San Francisco, CA: Letterman Army Institute of Research.

Appendix A (cont.): CHEMICAL DATA

	DESCRIPTI	ON SHEET		XPLOSIVE	S, CHEN	AICALS,	ETC		EXEMP	7-Pere 7 335 - 15	-2 e	58 0F 2
TO:	Commander			FROM:					ATE			
	US Army Armen			Sunflowe DeSoto,	r Army A Kansas 6	immuniti 6018	on Pla		June 2	6, 198	5	
	Actn: DRSMC- Rock [sland.			1				j		vanidi	ne	
	CTURER				K	ONTRACT	NO.					
Hercu	les Aerosp	ace Company				DAAA09-	76-C-4	016	CLIN	0316		
FROM NL	M 5 6 8	THRU NUMBE	756	TOTAL NO.	HCRIT	OTAL NET	LOT					
SOW85	F011-028	i	-	1	····		950 p		* 60			
	ANUFACTURED				5	PECIFICAT	ION AND	AMENOM	ENT/DRA	BING NO		
Sunfl	ower Army	Ammunition	Plant	**************************************		MIL-N-O	0494R	dtd. 1	7 July	1984		
			36611	ON B - DE	SCRIPTIO	N OF A	MILE	AL				
				TES	T REQ	UIREN	IENT	`SF	NFT.	AVER	RAGE	
				MAX		0.30%	7.0	0.06%	0.25%	0.20%	020%	6.0,
				MIN-	99.00%		4.5					3.4
_ LOT	NO.	STAD	SHIFT	DRUMS	PURITY	ASH	ρН	ACIDITY	ΤV	SUL - FATES	W. L.	FSS
SOW85	F011-028	6-18-85	4-12	22-23	99.70	0.02	5.9	0.01	0.01	0.00	0.02	4.0
	-028			48-65				0.02	0.02	0.00	V.U2	4.0
	-028 -028	6-19-85	12-8	68								
	-028	0-19-63	12-0	72 74 – 78	*	*	*	*	*	*	*	*
	-028		1	85-90								
	-028			114-115								
	-028			122-124								
	-028			155-157								
	-028			198-199								
	-028	6-19-85	8-4	216-219	*	*	*	*	*	*	*	*
	-028			234-235								
	-028			303-307								
	-028 -028			309-314								
	-028 -028	6-19-85		317-321						•		
	-028	6-20-85	4-12 12-8	405 411-413	99.71	0.04	5.9	0.00	0.01	0.00	0.02	4.1
an ia				-1111J								*
1) P		Level C -	Fiber 4	rume nor -	noal61	eler Bor	T21060			-		
2) 1	nterfix nu	mber Oll id	enrifie	s lats man	nfacture	d with	12160U	'. 				
3) 1	he average	bulk densi	ty for	Lot SOW85F	014CC016 011~028	1a D 26	2 om/c	wer pr	oauced	guani	aine ni	tra
2	01.3 of MI	L-STD-650.			· ·		- B	c as c	iecermi)	ilea by	netno	a
				TERRAN 2	- 23an	86488						
SAMPLIA	G CONQUETED	47		THE AND	OVE MATERI	AL COMPLI	ES OFTH	ALL SPE	CIFICATI	ON		
Hercu	les Aerosp.	ace Company		REQUIRE	EMENTS AND	IS CERTIF	7757	E 190 CC	RRECT			
TESTING	CONCUCTED				:0-	. 4	11.0	Dr	glis	D	•	
		ace Company		1	<u>ne . 178 .</u>	5 A. W.	Engli		Allty	Assura	nce De	pt.
		LOTS ARE HER		PTED				. 4				
				-		FOR	-	MMANDE	R			
4						() .	_	OD.			
2 <u>7.7</u>	1985 148.2		Chief,	OA Divisio	on		4000	<u> </u>	<u> </u>	نے		

Appendix A (cont.): CHEMICAL DATA

	ON SHEET	FOR EX	PLOSIVES	, CHEM	ICALS,	ETC		EXEMPT	43€ 1744 1-Pere 7-2 35 - 15		F 2
Commander US Army Armame and Chemical C Agent DESNG-C Rock Teland,	CAD		Sunflower DeSoto, K			n Plar) t 	TERIAL	i, 1985 Janidin		
MUPACTURER ercules Astospa	and Company				MT4ACT N		116				
ercules verosh	ice company	380	ON A - U	BOUPH	ON OF	LOIL					
OM NUMBER OW85F011-028	THRU NUMBER		TOTAL NO. L	015	TAL MET	мойнг 950 ро		10	-		
ACE MANUFACTURED	, L		<u> </u>	51	ECIPICATI			ENT/DRA	WING NO.		
unflower Army	Ammunition I		N 8 - DES		IIL-N-00			7 July	1984		
				r REQ				IIFT /	AVER	AGE	
			MAX		0.30%	7.0	0.06%	0.25 %	0.20%	020%	6.0,
			MIN	99.00%		4.5			- <i>-</i>		3.4
LOT NO.	DATE	SHIFT	DRUMS	PURITY	ASH	ρН	ACIDITY	ŤΥ	SUL -	W 1.	FS:
SOW85F011-028 415-534 -028 537-548 -028 6-20-85 8-4 557-566 * * * * * * * * * * * -028 568-572 -028 574-576 TOTAL DRUMS 219											
ampling and tereported is an anti- EMARKS 1) Packaging: 2) Interfix no anti- 3) The average	sting in accaverage of s	cordance shift sa Fiber d lentifie	with MIL- mples on t rums per s s lots man	N-00494E he date specifica sufacture	and MI the lot stion DO d with	L-STD- was T21C6 Sunfle	oacked). Ower p	roduce	d guani	idine n	
3) The average	sting in acc average of s Level C - umber Oll ic e bulk dens	Fiber d dentifie ty for	with MIL- mples on t rums per s s lots man Lot SOW85E	N-00494I he date specifica ufacture O11-028	and MI the lot stion DO ed with is 0.26	L-STD- was p T21C60 Sunflo 2 gm/	oacked). Ower p	roduce	d guani	idine n	
ampling and tereported is an anti- EMARKS 1) Packaging: 2) Interfix no anti-	Level C - umber Oll ic bulk dens IL-STD-650.	Fiber d dentifie ty for	with MIL- mples on t rums per s s lots man Lot SOW858	N-00494I he date specifica sufacture TO11-028	and MI the lot ation DO ed with is 0.26	T21C66 Sunfle 2 gm/	oucked). ower p	roduce determ	d guani ined by	idine n	
ampling and tereported is an ampling and is an ampling and its an ampling and its an ampling and its analysis and ampling and the ampling and the ampling and ampling ampl	Level C - umber Oll in the bulk densities of	Fiber dientifie	with MIL- mples on t rums per s s lots man Lot SOW858	N-00494I he date specifica unfacture 011-028	and MI the lot ation DO ed with is 0.26	T21C66 Sunfle 2 gm/	oucked). ower p	roduce determ	d guani ined by	idine n	
ampling and tereported is an attendard 1) Packaging: 2) Interfix material m	Level C - umber Oll ice bulk dens IL-STD-650.	Fiber didentifie	with MIL- mples on t rums per s s lots man Lot SOW858	N-00494I he date specifica sufacture TO11-028	and MI the lot ation DO ed with is 0.26	T21C66 Sunfle 2 gm/	oacked). ower p cc as ish. 0	roduced determ	d guantined by	idine n y Mecho	od
ampling and tereported is an attendard in an attendard in a secondard in a second	Level C - umber Oll ice bulk dens IL-STD-650.	Fiber dientifie	with MIL- mples on t rums per s s lots man Lot SOW85E	N-00494I he date specifica sufacture TO11-028	and MI the lot ation DO ed with is 0.26	T21C66 Sunfle 2 gm/	oacked). ower p cc as ish. 0	roduced determ	d guantined by	idine n y Mecho	od
ampling and tereported is an atmass 1) Packaging: 2) Interfix many and the average 201.3 of Minimal Conducte Hercules Aerosy	Level C - umber Oll ice bulk dens IL-STD-650.	Fiber dientifie	with MIL- mples on t rums per s s lots man Lot SOW85E	N-00494I he date specifica sufacture TO11-028	and MI the lot ation DO ed with is 0.26	L-STD-was T21C66 Sunf1c2 gm/d	oacked). ower p cc as ish. 0	roduced determ	d guantined by	idine n y Mecho	od

Appendix B: ANIMAL DATA

Species: Mus musculus

Strain: ICR

Source: Harlan Sprague Dawley, Inc.

Indianapolis, Ind.

Sex: Male and female.

Date of birth: Male - 13 Feb 1987

Female - 13 Feb 1987

Method of randomization: Weight bias, stratified animal

allocation (TOXYS® Animal

Allocation Program, SOP OP-ISG-24)

Animals in each group: 15 male and 15 female animals.

10 each for baseline controls

Condition of animals at start of study: Normal

Body weight range at start of dosing: 22 - 36 g

Identification procedures: Tail tattoo procedure (SOP OP-

ARG-1), numbers between (87C00020-

87C00182) inclusive.

Pretest conditioning: Quarantine/acclimation from 18 March

1987 - 1, 2 April 1987 males and

females, respectively.

Justification: The laboratory mouse has proven to be a

sensitive and reliable system for subchronic eral toxicity determination.

INTRODUCTION

Feed mixtures containing nitroguanidine (NGu) were prepared to provide dose levels of nitroguanidine for laboratory rodents. The dose levels ranged from 100 to 1000 mg NGu/kg body weight per day. Differing food consumption rates and body weights required the preparation of separate diets for male and female mice. New diets were prepared each week to account for changes in body weight due to growth. The target concentrations of NGu in the feed mixtures ranged from 0.48 to 7.95 mg NGu per gram of diet. Samples of the feed mixtures were analyzed by HPLC to determine the concentration and homogeneity of NGu in the mixtures¹. Methylnitroguanidine (MNGu) was used as an internal standard.

MATERIALS

Nitroguanidine (Lot Nos. SOW85F011-028) was obtained from the Sunflower Army Ammunition Plant, Desoto, Kansas. Methylnitroguanidine was synthesized following the method of McKay² using 1-methyl-3-nitro-1-nitrosoguanidine (MMNG) 97%, and methylamine (40 wt % in water, Lot No. 0719AL) purchased from Aldrich Chemical Co., St. Louis, MO. The Rodent Chow® was ordered from Ralston Purina Co., St. Louis, MO. HPLC grade methanol was obtained from J. T. Baker Co., Phillipsburg, NJ. All water used in the assay was distilled and treated with UV light using an Organicpure® still (Sybron/Barnstead, Boston, MA).

METHODS

Initially, stock solutions of NGu (1 mg/ml) and MNGu (1 mg/ml) in water were prepared. Standard solutions for the calibration plot were then prepared as dilutions to 25 ml with water of the stock solutions (Table 1). These standards were analyzed at the beginning and end of each run.

Table 1: Preparation of Standard Solutions

Tube #	Target Conc. of NGu mg/ml	Target Conc. of MNGu mg/ml	Mls of NGu	Mls of MNGu
1	0.010	0.040	0.250	1.000
2	0.020	0.040	0.500	1.000
3	0.030	0.040	0.750	1.000
4	0.040	0.040	1.000	1.000
5	0.050	0.040	1.250	1.000
6	0.060	0.040	1.500	1.000
7	0.080	0.040	2.000	1.000

The standards prepared on 7 Dec 1987 were used throughout the analysis period from 8 Dec to 14 Dec. The stability of these solutions was verified by a stability study conducted during a 14-day oral subchronic toxicity study. When not in use, the standard solutions were kept at 4°C in screw-cap volumetrics.

Samples from the feed mixtures and premix were extracted by adding varying amounts of water and the MNGu stock solution (1 ml/mg) as described in Table 2.

Table 2: Preparation of Feed Mixture Samples

	Gm of Diet Analyzed	Mls of MNGu Soln Added	Mls of Water Added	Total Volume (dil. factor)
100	1.00	1	24	25
316	1.00	4	96	100
1000	1.00	10	240	250
Premix (50 mg/g)	0.25	10	240	250

The samples were stirred for one hour. The supernatant from each tube was filtered through a Swinney adaptor with a millipore filter (0.2 µm). This filtrate was subsequently analyzed using a Hewlett-Packard 1090 HPLC system.

To determine the homogeneity of the feed mixtures, samples were taken from the right, left, and bottom ports of the Twin Shell Blender used in preparation of the diet and analyzed. Samples for testing homogeneity were collected during the first and eighth weeks of the study.

HPLC PARAMETERS

Column: Brownlee RP-18, Spheri 5 (250 x 4.6 mm)

Guard Column: Brownlee New Guard RP-18, 7 µm

 $(15 \times 3.2 \text{ mm})$

Mobile Phase: 10% Methanol:90% Water

Flow Rate: 0.7 ml/min
Wavelength: 265 nm, 550 nm (ref. wavelength)

Injection Volume: 10 µl Peak Width: 0.1 min Retention Time: 4.8 min

CALCULATIONS

The ratio of NGu to MNGU peak area was calculated for each of the standards and samples. Least squares linear regression analysis of the standard concentrations vs. the peak area ratios was performed to obtain a standard curve. The curve used was in the form of the best fitting line: y = mx + b, where y is the peak area ratio, m is the slope, x is the concentration of NGu and b is the y-intercept. The concentration of each extract was calculated by substituting for y the peak area ratio obtained from HPLC analysis and solving for x. All calculations were performed on a TI-55 scientific calculator. To calculate the concentration in the diet in terms of mg of NGu per gram of diet, the concentration of the extract was multiplied by the dilution factor and divided by the weight of the diet sample extracted. The experimental concentrations were compared to the target concentrations and reported as a percent of target.

RESULTS

The plots of NGu concentration versus peak area ratio were linear within the range of concentrations analyzed. The results of the regression analysis for each run are shown in Table 3.

Table 3: Regression Analysis Values from Each Run

Date of Run	y-intercept	Slope	Correlation Coefficient
8 Dec 87	0.0120	28.12	0.99995
9 Dec 87	0.0115	27.90	0.99995
10 Dec 87	0.0119	27.90	0.99996
14 Dec 87	0.0126	27.91	0.99995
13 Sep 88	0.0046	28.74	0.99996

Under the conditions of the analysis, NGu eluted with a retention time of approximately 4.8 minutes, and MNGu eluted with a retention time of approximately 6.0 minutes. All samples (96) were analyzed within one week. Only one sample was extracted and analyzed from each batch of feed. The results from the analysis of diet mixtures are shown in Table 4.

Table 4: Analysis of Diet Mixtures

Target Concentration (mg NGu/g feed)	Date Prepared	Date Analyzed	Concentration Determined by Analysis (mg NGu/g feed)	% of Target
50.000	30 Mar 87	8 Dec 87	49.120	98.2
50.000	13 Apr 87	8 Dec 87	51.000	102.0

Appendix C (cont.): ANALYSIS OF FEED MIXTURES

Table 4 (cont.): Analysis of Diet Mixtures

Target Concentration (mg NGu/g feed)	Date Prepared	Date Analyzed	Concentration Determined by Analysis (mg NGu/g feed)	% of Target
6.467 (Right)	1 Apr 87	8 Dec 87	6.500	100.5
6.467 (Bottom)	1 Apr 87	8 Dec 87	6.460	99.9
6.467(Left)	1 Apr 87	8 Dec 87	6.620	102.4
6.467 (Mean)	1 Apr 87	8 Dec 87	6.527	100.9
1.998(Left)	1 Apr 87	8 Dec 87	1.896	94.9
1.998(Right)	1 Apr 87	8 Dec 87	1.926	96.4
1.998 (Bottom)	1 Apr 87	8 Dec 87	1.898	95.0
1.998 (Mean)	1 Apr 87	8 Dec 87	1.907	95.4
0.670(Right)	1 Apr 87	8 Dec 87	0.643	95.9
0.670(Left)	1 Apr 87	8 Dec 87	0.663	98.9
0.670 (Bottom)	1 Apr 87	8 Dec 87	0.643	95.9
0.670 (Mean)	1 Apr 87	8 Dec 87	0.650	96.9
1.398	2 Apr 87	8 Dec 87	1.290	92.3
4.384	2 Apr 87	8 Dec 87	4.480	102.2
0.480	2 Apr 87	8 Dec 87	0.437	91.1
6.715	8 Apr 87	8 Dec 87	6.270	93.4
2.072	8 Apr 87	8 Dec 87	1.970	95.1
0.575	8 Apr 87	8 Dec 87	0.545	94.7
1.909	9 Apr 87	8 Dec 87	1.780	93.2
0.567	9 Apr 87	14 Dec 87	0.580	102.2

Appendix C (cont.): ANALYSIS OF FEED MIXTURES

Target Concentration (mg NGu/g feed)	Dat Prepa		A	Date naly		Concentration Determined by Analysis (mg NGu/g feed)	% of Target
6.242	9 Apr	87	8	Dec	87	6.070	97.2
6.512	15 Apr	87	8	Dec	87	6.341	97.4
1.992	15 Apr	87	8	Dec	87	1.942	97.5
0.598	15 Apr	87	8	Dec	87	0.558	93.3
5.015	16 Apr	87	8	Dec	87	4.979	99.3
1.705	16 Apr	87	8	Dec	87	1.605	94.2
0.508	16 Apr	87	8	Dec	87	0.483	95.1
6.671	22 Apr	87	8	Dec	87	6.622	99.3
1.947	22 Apr	87	8	Dec	87	1.783	91.6
0.626	22 Apr	87	8	Dec	87	0.576	92.0
0.531	23 Apr	87	8	Dec	87	0.493	92.8
1.627	23 Apr	87	9	Dec	87	1.643	101.0
5.170	23 Apr	87	9	Dec	87	5.034	97.4
7.000	29 Apr	87	9	Dec	87	6.751	96.4
2.150	29 Apr	87	14	Dec	87	1.980	92.1
0.695	29 Apr	87	9	Dec	87	0.650	93.6
1.728	30 Apr	87	9	Dec	87	1.597	92.4
5.263	30 Apr	87	9	Dec	87	4.880	92.7
0.534	30 Apr	87	14	Dec	87	0.535	100.2
50.000	4 May	87	9	Dec	87	48.200	96.4

Appendix C (cont.): ANALYSIS OF FEED MIXTURES

Target Concentration (mg NGu/g feed)	Pı	Date repa			Date naly:		Concentration Determined by Analysis (mg NGu/g feed)	% of Target
0.690	6	Мау	87	14	Dec	87	0.713	103.3
2.144	6	May	87	14	Dec	87	2.113	98.6
7.053	6	May	87	9	Dec	87	6.680	94.7
0.556	7	May	87	9	Dec	87	0.513	92.3
1.849	7	May	87	9	Dec	87	1.738	94.0
5.900	7	May	87	9	Dec	87	5.805	98.4
7.213	13	May	87	9	Dec	87	7.292	101.1
2.307	13	May	87	14	Dec	87	2.330	101.0
0.770	13	Мау	87	9	Dec	87	0.693	90.0
0.569	14	May	87	9	Dec	87	0.538	94.5
5.442	14	May	87	9	Dec	87	5.231	96.1
1.893	14	May	87	9	Dec	87	1.760	93.0
50.000	19	May	87	14	Dec	87	51.200	102.4
0.768(Left)	2¢	May	87	9	Dec	87	0.750	97.7
0.768(Right)	20	May	87	9	Dec	87	0.705	91.9
0.768 (Bottom)	20	May	87	9	Dec	87	0.760	99.0
0.768 (Mean)	20	May	87	9	Dec	87	0.738	96.2
2.321 (Left)	20	May	87	14	Dec	87	2.327	100.7
2.321 (Right)	20	May	87	14	Dec	87	2.405	103.6
2.321 (Bottom)	20	May	87	14	Dec	87	2.291	98.7

Appendix C (cont.): ANALYSIS OF FEED MIXTURES

Target Concentration (mg NGu/g feed)	P	Date repa			Date naly		Concentration Determined by Analysis (mg NGu/g feed)	% of Target
2.321 (Mean)	20	May	87	14	Dec	87	2.341	101.0
7.688 (Bottom)	20	May	87	9	Dec	87	7.453	96.9
7.688(Right)	20	May	87	10	Dec	87	7.639	99.4
7.688(Left)	20	May	87	10	Dec	87	7.406	96.3
7.688 (Mean)	20	May	87	10	Dec	87	7.499	97.5
0.601	21	May	87	14	Dec	87	0.613	102.0
1.831	21	May	87	14	Dec	87	1.768	96.5
5.372	21	May	87	10	Dec	87	5.108	95.1
7.952	27	May	87	10	Dec	87	7.811	98.2
2.383	27	May	87	10	Dec	87	2.541	106.6
0.745	27	May	87	13	Sep	88	0.773	103.7
1.839	28	May	87	14	Dec	87	1.808	98.3
0.502	28	May	87	14	Dec	87	0.495	98.6
5.735	28	May	87	10	Dec	87	5.757	100.4
0.648	3	Jun	87	10	Dec	87	0.583	90.0
2.069	3	Jun	87	10	Dec	87	1.915	92.6
6.455	3	Jun	87	10	Jun	87	6.151	95.3
0.462	4	Jun	87	14	Dec	87	0.470	101.6
1.754	4	Jun	87	10	Dec	87	1.620	92.4
4.941	4	Jun	87	10	Dec	87	4.757	96.3

Appendix C (cont.): ANALYSIS OF FEED MIXTURES

Target Concentration (mg NGu/g feed)	Date Prepared	Date Analyzed	Concentration Determined by Analysis (mg NGu/g feed)	% of Target
50.00	9 Jun 87	10 Dec 87	49.000	98.0
0.650	10 Jun 87	10 Dec 87	0.615	94.6
2.289	10 Jun 87	14 Dec 87	2.241	97.9
6.964	10 Jun 87	10 Dec 87	6.962	100.0
5.326	11 Jun 87	10 Dec 87	5.191	97.5
1.754	11 Jun 87	10 Dec 87	1.685	96.1
0.555	11 Jun 87	14 Dec 87	0.535	96.4
7.186	17 Jun 87	10 Dec 87	6.901	96.0
2.473	17 Jun 87	14 Dec 87	2.542	102.8
0.743	17 Jun 87	10 Dec 87	0.700	94.2
5.316	18 Jun 87	10 Dec 87	5.349	100.6
1.791	18 Jun 87	14 Dec 87	1.765	98.6
0.521	18 Jun 87	10 Dec 87	0.490	94.0
7.425	24 Jun 87	10 Dec 87	7.284	98.1
2.344	24 Jun 87	14 Dec 87	2.316	98.8
0.743	24 Jun 87	10 Dec 87	0.693	93.3
5.608	25 Jun 87	10 Dec 87	5.460	97.4
1.752	25 Jun 87	10 Dec 87	1.705	97.3
0.604	25 Jun 87	10 Dec 87	0.545	90.3

Results of the homogeneity study are shown in Table 5.

Table 5: Homogeneity of Mixtures

Target Conc of NGu (mg/g)	Site of Sampling	Conc Detn [®] by Analysis (mg/g)	Mean Conc (mg/g)	Absolute Dev. from Mean (%)
		Week 1		
0.670	Right Left Bottom	0.643 0.663 0.643	0.650	1.0 2.1 1.0
1.999	Right Left Bottom	1.926 1.896 1.898	1.907	1.0 0.6 0.5
6.467	Right Left Bottom	6.500 6.620 6.460	6.527	0.4 1.4 1.0
		Week 8		
0.768	Right Left Bottom	0.705 0.750 0.760	0.738	4.5 1.6 2.9
2.321	Right Left Bottom	2.327 2.405 2.291	2.341	0.6 2.7 2.1
7.688	Right Left Bottom	7.639 7.406 7.453	7.499	1.9 1.2 0.6

[@]Detn = Determination.

DISCUSSION

The concentration of NGu in the diet mixtures was within 10% of the target concentration. Samples collected during the first and eighth weeks of the study showed that the NGu concentration was homogeneous in the feed over the range tested, according to the EPA criteria for homogeneity. Table 6 contains the summary of target values.

Table 6: Range of % of Target Values

WEEK	MALE	FEMALE	
1	95.0-102.4	91.1-102.2	
2	93.4- 95.1	93.2-102.2	
3	93.3- 97.5	94.2- 99.3	
4	91.6- 99.3	92.8-101.0	
5	92.1- 96.4	91.1-100.2	
6	94.7-103.3	92.3- 98.4	
7	90.0-101.1	93.0- 96.1	
8	91.9-103.6	95.1-102.0	
9	98.2-106.6	98.3-100.4	
10	90.0- 95.3	92.4-101.6	
11	94.6-100.0	96.1- 97.5	
12	94.2-102.8	94.0-100.6	
13	93-3- 98.8	90.3- 97.4	

REFERENCES

- 1. Wheeler C, Dahlberg E, Ryabik J, Korte DW. Quantitation of Nitroguanidine in Podent Chow. Toxicology Series 228. Presidio of San Francisco, CA: Letterman Army Institute of Research. January, 1988, Laboratory Note No. 88-72.
- 2. McKay AF, inventor; Honorary Advisory Council for Scientific and Industrial Research, Ottawa, assignee. 1-substituted-3-nitroguanidines. Can. patent 519,488. 1955 Dec 13. In: Chemical Abstracts, 1956; 50: 12107.
- 3. Morgan EW, Brown LD, Lewis CM, Dahlgren RR, Korte DW. Fourteen-Day Subchronic Oral Toxicity Study of Nitroguanidine in Rats. Toxicology Series 146. Presidio of San Francisco, CA: Letterman Army Institute of Research. June, 1988, Institute Report No. 272.
- 4. EPA, GLP Standards, Final Rule (40 CFR part 792) as published in the Federal Register, 29 Nov 1983, Vol. 48, No. 230, pp. 53931-53933.

Appendix D: HISTORICAL LISTING OF STUDY EVENTS

Date	Event
18 March 87	Animals arrived at LAIR. They were sexed, observed for illness, weighed, and caged in the GLP Suite.
19 Mar-1 Apr 87	Animals were checked daily.
23 Mar 87	Animals were tail tattooed.
25,26 Mar 87	Animals were weighed, males and females respectively, and food and water consumption monitored (feeders and water bottles weighed)
30 Mar, 11 May 29 Jun 87	Eyes were examined and initial, interim, and terminal sacrifices were performed.
1 April 87	Animals were removed from quarantine, males were weighed, dietary concentrations were calculated, and diet containing test compound was started. Ten baseline control males were submitted for necropsy, hematology, and serology.
1 April- 2 July 87	Observations were conducted twice daily.
2 April 87	Females were weighed, dietary concentrations were calculated, and diet containing test compound was started. Ten baseline control females were submitted for necropsy, hematology, and serology.
8,15,22,29 Apr, 6,13,20,27 May 3,10,17,24 Jun 1987	Males were observed and weighed, and water bottles and feeders were weighed. Diet requirements were prepared and feeders were changed to new mix.
9,16,23,30 Apr 7,14,21,28 May 4,11,18,25 Jun 1987	Females were observed and weighed, and water bottles and feeders were weighed. Diet requirements were recalculated and new feed mixes were prepared. Feeders were changed to new mix.
13,14 May 87	Five males and 5 females per group were submitted for necropsy, hematology, and serology.

Appendix D (cont.): HISTORICAL LISTING OF STUDY EVENTS

1,2 July 87 Males and females, respectively, were observed, weighed, and submitted for necropsy. Blood and tissue samples were taken for the measurements specified.

Frost et al--54

Appendix E: HEMATOLOGY/CLINICAL CHEMISTRY INDICES

The following are LAIR GLP SOPs for the Hematology measurements performed during the study:

- 1. Complete Blood Count OP-PSG-40 (WBC, RBC, HGB, HCT, MCV, MCH, and MCHC).
- 2. WBC Differential OP-PSG-26 (neutrophils, lymphocytes, eosinophils, and monocytes)

Counts for the neutrophils, lymphocytes, eosinophils, and monocytes are obtained by multiplying the WBC by the appropriate percentage obtained from the differential count.

The following are LAIR GLP SOPs for the Clinical Chemistry measurements performed during the study:

- 1. Calcium OP-ACH-76
- Sodium and Potassium SOP being written; measurements performed in accordance with COBAS FARA™ Operator Manual 44351, software version 8650
- 3. Chloride OP-ACH-79
- 4. Magnesium OP-ACH-77
- 5. Phosphorus OP-ACH-73
- 6. Glucose OP-ACH-66
- 7. Cholesterol OP-ACH-69
- 8. Triglycerides OP-ACH-68
- 9. Creatinine OP-ACH-75
- 10. Blood Urea Nitrogen OP-ACH-64
- 11. Uric Acid OP-ACH-70
- 12. Albumin OP-ACH-74
- 13. Total Protein OP-ACH-72
- 14. Total Bilirubin OP-ACH-78
- 15. Serum Iron OP-ACH-80
- 16. Aspartate Amino-Transferase OP-ACH-61
- 17. Alanine Amino-Transferase OP-ACH-63
- 18. Lactate Dehydrogenase OP-ACH-62
- 19. Creatine Phosphokinase OP-ACH-65
- 20. Alkaline Phosphatase OP-ACH-67

Globulin values were calculated by subtracting the albumin values from the total protein values.

Appendix F: NITROGUANIDINE CONSUMPTION (mg/kg/day)

Group 1 Males

Animal# 87C00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
120	c	c	c	c	c	c	C	c	-	c	C	C	c
900	· c	· C	o C	o C	o C	o c	0 0	o c	> <	0	> <	> <	O
020	> <	> <	o c	> 0	> 0	> 0	> 0	o 0	> 0	> 0	> 0	> 0	> (
032 037*	>	> 0	>	-	- 0	0	0	0	>	0	0	0	0
038	0	0	Ó	0	0	0	0	0	0	0	0	0	0
041*	0	0	0	0	0	0							
045	0	0	0	0	0	0	0	0	0	0	0	0	0
990	0	0	0	0	0	0	0	0	0	0	0	0	0
075	0	0	0	0	0	0	0	0	0	0	0	0	0
×240	0	0	0	0	0	0							
*6 20	0	0	0	0	0	0							
080 *	0	0	0	0	0	0							
082	0	0	0	0	0	0	0	0	0	0	0	0	0
083	0	0	0	0	0	0	0	0	0	0	0	0	0
093	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean	0	0	0	0	0	0	0	0	0	0	0	0	0
Std Dev	0	0	0	0	0	0	0	0	0	0	0	0	0
SEM	0	0	0	0	0	0	0	0	0	0	0	0	0
					1								

* Interim sacrifice animal.

NITROGUANIDINE CONSUMPTION (mg/kg/day) Appendix F (cont.):

Males
8
Group

Animal# 87C00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
020*	66	83	•	88	96	96							
030	125	104	111	82	90	120	93	<u>3</u> 6	110	•	75	83	82
031	•	95	106	102	130	119	113	126	•	106	97	119	•
034	90	83	99	82	108	83	83	117	143	79	104	97	96
036	105	80	82	85	87	90	91	96	107	79	83	94	88
040	87	80	77	78	83	11	81	94	86	89	67	78	78
056	80	80	82	80	90	96	80	91	104	79	75	94	91
063	90	73	73	78	83	74	94	82	66	77	77	93	87
065	109	87	84	88	93	78	87	•	102	9/	78	88	86
071*	96	9/		73	82	80							
081	•	90	101	95	86	96	91	91	104	90	90	95	83
085	•	101	91	82	103	97	95	105	110	79	82	95	82
088*	90	88 8	87	82	93	96							
¥060	87	85	84	92	93	104							
*860	79	72	71	74	81	98							
Mean Std Dev	95 13	8 8 9	85 13	8 8 8	94 12	92 14	06	99 14	109	81 11	83	9 4 10	86 5
SEM	4,	7	4	7	m	ጥ	ന	വ	വ	4	4	m	7

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data.

NITROGUANIDINE CONSUMPTION (mg/kg/day) (cont.): Appendix F

Group 3 Males

Animal# 87C00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
024 033*		318 246	$-$ 00 $^{\circ}$	700	တကၢ	00	284	325	384	266	292	353	311
0339* 042 044 044	3	290 265 585 885	262 238 338 336 336	707	ഗതനമ	0 0 4 0	323 293	344 263	373 292	274 221	311 253	363 233	312 262
050* 051 052	0 2 2	301 313 345	\	040	7007	1 00 00 rd	317 333	359 325	390 382	280	290	347	271
059* 059* 078 084 094	229 282 312 309 264	263 320 322 354 375 291	269 296 296 286 269	232 263 300 224 234	259 266 305 323 315 241	268 275 342 293 267 250	90109	α υ ο ο α	min olim	229 294 252 252	270 290 320 270 278		76 7
Mean Std Dev SEM	292 32 8	313 37 10	299 27 7	262 36 9	292 40 10	285 48 12	317 39 12	307 53 17	364 41 14	264 25 8	287 20 6	343 69 22	286 25 8

^{*} Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data.

NITROGUANIDINE CONSUMPTION (mg/kg/day) Appendix F (cont.):

80
Φ
\vdash
ø
Ξ
4
•
_
<u>D</u> .
Ž
Ō
H
O

Animal# 87C00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
025*	66	~ ~ ~	935	ന വ	904	839		•	•			!	į
027 046*	1414 997	980 927	991 996	831 976	937 1115	901 805	982	1012	1168	854	881	845	954
047	9	0	959	S #	988	851	959	930	1075	811	867	906	934
048	3	4	986	7	939	832	940	552	1403	834	860	830	828
054*	9	4	1139	\sim	1025	1041							
057	4	N	932	7	964	903	938	907	1105	1081	1047	1036	686
058	0	σ	•	\sim	940	907	893	947	•	828	1042	890	991
061	S	4	906	ぜ	964	903	962	686	1076	793	922	914	1041
062	4	N	852	₽.	912	969	806	840	1042	811	1073	806	774
*490	0	4	906	$\boldsymbol{\sigma}$	860	800							
072*	9	9	647	425	932	800							
073	0	9	962	57	1021	1309	901	980	1523	1220	1188	1260	928
092	0	3	1009	\sim	1018	1083	1068	1297	1194	813	895	834	832
095	m	3	1035	\sim	964	904	938	930	1018	791	922	887	888
_		964	947	946	959	905	949	938	1178	887	970	931	919
Std Dev	168	62	110	63	65	147	50	182	173	145	111	130	81
SEE SEE		97	67	97	/1	S S	91	ñ	S C	40	33	41	97

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data.

NITROGUANIDINE CONSUMPTION (mg/kg/day) Appendix F (cont.):

Group 1 Females

000000000000000000000000000000000000000	00							
			0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0						
			0	0	0	0	0	0
		0	0	0	0	0	0	0
000000			0	0	0	0	0	0
00000		0						
0000		0						
000 0		0						
00 0			0	0	0	0	0	0
0 0 0		0	0	0	0	0	0	0
0 0 0			0	0	0	0	0	0
			0	0	0	0	0	0
SEM 0 0 0 0 0 SEM	00	00	00	00	00	00	00	00

* Interim sacrifice animal.

NITROGUANIDINE CONSUMPTION (mg/kg/day) Appendix F (cont.):

Group 2 Females

Animal# 87C00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
*660 *660	65	97	96	73	92	63							
101	101	118 95	127	110 85	105	90 87 87	• 0	• α α	139	84 24	103	87	106
121	108	108	87	87	103	8 8	36	110	95 95	85	9 6 9 6	103	102
124	88	133	66	133	96	93	102	147	104	66	112	109	•
134	114	123	97	104	112	101	82	117	103	114	113	108	8
143	62	124	93	83	94	73	91	118	101	72	112	83	120
144	ည	86	84	75	82	81	83	123	86	69	•	70	75
146*	82	132	101	101	105	102							
155	09	92	74	77	79	9/	84	123	93	73	81	77	83
158	82	139	97	101	66	66 6	102	110	122	91	66	87	83
169*	65	113	80	98	106	98						•	;
171*	28	83	87	88	91	66							
175*	74	110	80	73	82	109							
176	33	148	86	113	136	119	95	95	161	103	135	118	138
Mean	77	115	91	93	97	91	90	114	108	85	103	93	97
Std Dev SEM	21 6	18 5	14 4	17	15	15 4	10	17	50 80 80 80 80 80 80 80 80 80 80 80 80 80	17 5	17	16 5	21
			I	,	•	•)	•))	•	ר	•

* Interim sacrifice animal. • Unable to consumption data.

NITROGUANIDINE CONSUMPTION (mg/kg/day) Appendix F (cont.):

Females ന Group

WK13	251	291	313 211 292	282 369 252 286	277 45 14
WK12	296	313	306 226	325 328 261 336	296 37 12
WK11	357	287	294 249 282	313 337 257 324	297 35 11
WK10	270	262 223	271 231	269 287 273 335	269 32 11
WK9	341	321 249	314 267 330	374 378 297 387	326 47 15
WK8	397	296 253	334 183	287 337 321 334	305 61 20
WK7	224	277 251	484 251 277	321 363 279 314	304 75 24
WK6	∞ \circ \circ	1040F	306 231 319 268	301 301 315 340	300 43 11
WK5	261 266 279	244 219 262 333	212 212 285 278	304 479 246 304	283 63 16
WK4	004	0 0 0 5°	251 251 356 296	149E	300 38 10
WK3	291 290 449	\cdot \cap \circ \circ \circ	284 221 331 289	314 344 368 291	312 56 15
WK2	284 288 387	284 275 320 392	333 320 320	407 362 298 391	331 46 12
WK1	170 211 243	206 184 205 251	198 198 198	250 255 206 251	214 26 7
Animal# 87C00-	105 109*	118 122 125* 132*	150 152 160 162*	163 167 173 181	Mean Std Dev SEM

^{*} Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data.

NITROGUANIDINE CONSUMPTION (mg/kg/day) Appendix F (cont.):

Group 4 Females

WK1	WK2	WK3	WK4	WK5	WK6	WK7	WIK 8	WIK9	WK10	WK11	WK12	WK13
121		875	. ^	735	02							
139		1206		•	S	1365	1216	1771	1490	1394	1302	1271
124	_	910	•	711	98							
121		966	~	837	σ	920	02	975	$^{\circ}$	934	906	953
115		882	. ^	763	11	927	1010	1349	881	961	934	1040
112	_	1016		777	2							
119	۸.	978	^.	794	98	891	ず	10	\vdash	S	4	924
128	~	975	. ^	869	œ	934	S	1061	~	3	4	1170
100	_	930	-	989	95	1040	252	911	745	840	764	802
140	_	985	~	788	4	966	⊣	1194	8	2	\vdash	1006
113		296	. ^	823	04							
5 1413	~	1016	1053	709	972							
121	ひ	817	_	663	4	825	0	∞	\sim	σ	⊣	∞
100	9	821	_	640	∞	854	782	1151	801	879	911	1170
116	7	1094	~~	846	2	1057	9	39	4	α	m	2
	1											
121		9	S	760	S	æ		1169	σ	æ	S	~
2		101	154	71	135	154	276	273	218	184	155	165
		56		18	32	49		98	69	28		

^{*} Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data.

Appendix G: FOOD CONSUMPTION (g/week)

Group 1 Males

Animal# 87COO-	Ваѕе	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
,														
221	28	56	5 6	5 8	28	53	27	25	28	30	53	31	29	59
326	35	35	36	37	36	SP	32	34	35	36	33	35	33	33
032	38	40	39	40	39	39	39	36	40	37	36	41	40	0 60 60 60 60 60 60 60 60 60 60 60 60 60 6
037*	28	56	53	30	38	37	31				•)
038	33	44	33	39	31	43	32	35	35	34	36	37	33	34
641*	29	34	38	37	32	37	36						,)
045	36	31	41	32	53	31	30	31	28	34	32	33	32	30
990	34	32	38	38	38	32	36	37	33	37	38	38	34	35
075	37	38	43	43	41	40	44	40	29	42	41	41	42	36
*440	32	31	SP	35	34	29	33					!	ľ	•
*670	34	31	33	32	32	34	34							
*080	53	27	34	38	35	34	30							
082	32	37	40	39	36	34	36	36	41	42	37	36	35	35
083	34	30	36	38	36	36	36	35	36	35	60	96	38	37
093	36	40	39	38	40	39	37	36	34	36	39	40	38	36
Mean	35	34	36	36	35	36	35	35	34	36	36	37	35	35
Std Dev SEM	9 7	1 2	ა പ	ሞ ⊣	4 4	4 ⊣	ጥ ⊢	ሞ ⊢	ب ا	44	₩	m m	4 -	4-
											ı)	•

* Interim sacrifice animal. SP = spill

Appendix G (cont.): FOOD CONSUMPTION (g/week)

Group 2 Males

WK13	22 33 34 36 37 37 37 37 37	34
WK12	344 344 38 38 38 38	36
WK11	0.4460 0.000 0.440 0.400 0.400 0.400	36
WK10	SP 46 33 33 34 40 40	37 2 2
WK9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	37
WK8	28 33 33 33 33 34 30 40 40	35.25
WK7	32 32 33 34 34 34	34 1
WK6	31 30 30 30 30 30 31 31 31 31 31	33
WK5	33 33 33 33 33 33 33 33 33 33 33 33 33	36 1
WK4	33 33 33 33 33 33 33 33 33 33 33 33 33	35 1
WK3	2 4 4 3 3 3 3 3 4 4 4 5 7 3 3 4 4 4 3 3 4 4 5 7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	36 1
WK2	31 32 33 33 33 33 34 34 35 37	35 1
WK1	330 330 330 330 330 330 330 330 330 330	32 5
Base	23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	32
Animal# 87C00-	020* 030 031 034 036 040 065 071* 088* 090*	Mean Std Dev SEM

* Interim sacrifice animal. SP = spill

Appendix G (cont.): FOOD CONSUMPTION (g/week)

Group 3 Males

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
024 033*	3 8 8 8	35	35 28	35	35	35 50	33	29	33	36	34	31	34	32
0399 042 0442 444 *	ი ი ი ი ი 2 4 ნ	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	32 32 42 42	339 405 405	3 3 3 3 3 4 0 8 3 0 4 2	33 39 32 33 33 33 33 33 33	30 32 48 48	34	33	33	36 34	35 34	35	3.4 4.4
050* 051 052 055	36 4 4 4 8 2 8 8 6	2 3 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	31 38 38 38 38 38	34 32 32 32	32 44 44 44 44 44 44 44 44 44 44 44 44 44	35 37 32 32	31 32 32	41 38 37	44 36 15	4 4 4 4 0 2	44 43 31	38 32 32	38 32	36 32
000 000 000 000 000 000	20 4 50 35 20 20 35 20	33 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 39 32 32	32 32 31 31	33 38 29 31	41 40 39 29	34 34 31 29	40 47 33 29	44 30 35	SP 38 33	34 35 34	38 32 33	45 33 33	35 30 32
Mean Std Dev SEM	35 6 2	34 4 1	35 4 1	35 4	35 5	37 5 1	34	37 6 2	8 8 E	37	37 2	35 1	37	34

* Interim sacrifice animal. SP = spill

Appendix G (cont.): FOOD CONSUMPTION (g/week)

Group 4 Males

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
025*	30	30	31	32	29	30	29					!		
027	33	47	32	35	53 23	3.6) E	33	34	35	34	4	30	33
046*	31	31	8	33	33	37	27)	>	}	,	1	2	3
047	34	34	37	36	36	34	33	35	33	36	36	34	34	35
048	42	34	36	37	38	37	34	37	17	47	37	35	32	33
054*	35	30	32	39	38	34	36					,	•	•
057	39	30	34	36	38	37	35	36	33	38	48	40	41	38
058	34	31	32	SP	37	39	38	36	38	SP	41	44	37	40
061	33	31	36	36	37	39	35	36	36	37	37	38	38	42
062	32	29	33	32	36	35	27	34	29	34	36	41	35	29
× 290	31	31	35	34	33	33	31						i i	•
072*	30	28	29	50	29	29	5 6							
073	28	42	37	34	33	36	48	32	32	47	20	43	46	33
092	37	31	38	39	32	38	42	41	46	40	37	36	33	32
095	43	33	38	40	33	38	36	36	33	35	36	38	36	32
Mean	34	33	34	35	35	35	34	36	33	39	39	38	36	35
Std Dev	4	S	٣	ഗ	က	ന	9	7	7	Ŋ	Ŋ	4	ß	4
SEM	-	~	н	н	7	~	7	-	7	7	7	٦	Н	-
4														

^{*} Interim sacrifice animal. SP = spill

FOOD CONSUMPTION (g/week) Appendix G (cont.):

Group 1 Females

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
777	48 SP 40 32	34 28 25	33 33 33 33 33 33 33 33 33 34 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	46 37 35	37 35 34	33 33 45 25	37 36 32	36 37 35	37 36 31	41 36 39	36 35 39	38 4 8 8 0	37 37 34	36 37 34
129 130* 140 145	30 30 30 52 33	25 2 2 2 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	33 31 30 30 30 30	3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 6 2 6 6 6 6 7 9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9	28 31 31 35 39	33 37 35 37	33 35 34 44 5	43 25 31 20	47 40 33 37	SP SP 34	34 37 37	41 34 39	44 33 34 34
70005	27 28 28 28 28	26 26 30 30 30	336 238	29 37 33 33	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	33 33 31 31 31 31 31 31 31 31 31 31 31 3	29 27 36 36 35	37 40 41	3 3 3 3	34 39 45	33 46	31 42 38	33 42 37	34 41 42
Mean Std Dev SEM	36	28 4 1	33	35	35	34	36	36	33	39	37	38	37	38

* Interim sacrifice animal. SP = spill

Appendix G (cont.): FOOD CONSUMPTION (g/week)

Group 2 Females

2 WK13	36 38 41 38 45 31 32 43 32 43 31 32 41 34 44 46	9 37 5 5 2 2
1 WK12		e e
WK11	33 33 33 33 33 44 44 44 45 44	38
WK10	35 32 32 32 40 40 40 40 40 40 40 40 40 40 40 40 40	36
WK9	55 33 33 34 43 57 57	44 9
WK8	00 4 4 8 8 6 7 6 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8	37 7 2
WK7	32 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	34 1
WK6	25 33 33 33 33 33 33 33 33 33 33 33 33 33	35 5
WK5	77 83 83 83 83 83 83 83 83 83 83	35 4 1
WK4	04664664666666666666666666666666666666	36 6 2
WK3	64666666666666666666666666666666666666	35 5
WK2	22 23 23 23 23 24 24 25 27 27 27 27 27 27 27 27 27 27 27 27 27	36 5
WK1	24444423 22444423 1322 1322 1322 1322 13	32
Base	22 33 33 34 40 55 54 55 56 56 56 56 56 56 56 56 56 56 56 56	33
Animal# 87C00-	1000 1101 1101 1100 1100 1100 1100 110	Mean Std Dev SEM

* Interim sacrifice animal. SP = spill

Appendix G (cont.): FOOD CONSUMPTION (g/week)

Group 3 Females

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
105 109*	25 32	32	0 8 6 0 4 6	883	989	32 35	32	25	44	37	35	43	34	32
112, 112 125*	333 303 303 303 303 303 303 303 303 303	22 2 30 22 0 30 22 0	22 2 2 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 2 3 4 2 2 3 2 4 3 2 3 3 4	37 25 30	31 31 31	20 8 30 9 30 9	32 26	34	36 26	34	37	36 30	37
132* 150 152 160	20 36 36 56	3222 222 236 244	37 34 34 34 37	<u> </u>	30 30 40 41 41	38 27 35	32 36 36 7	52 29 32	37 21 SP	34 31 37	34 29 SP	33 34 34	34 26 SP	36 36 36
163 167 173 181	29 SP 31 SP	31 36 34 34	37 37 40 40	344 345 83	38 4 86 32 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	36 27 36 36	33344	37 30 35	33 33 37	42 41 42	36 33 42	39 42 31 39	39 30 40 40	37 30 34
Mean Std Dev SEM	32 8 2	30 4 1	34 4	36	34 5	33 5	33 5	34 8 2	34	36 2	34 25	36	34 2 2	34 2

* Interim sacrifice animal. SP = spill

FOOD CONSUMPTION (g/week) Appendix G (cont.):

Group 4 Femiles

WK13		44		33	36	,	32	42	33	40	•		29	36	43		37		0 0	
WK12		46		32	33)	31	36	30	36))		31	3.1	46		3.5	y y	0 0	
WK11		4.7		34	35	1	31	42	34	36	,		31	32	48		37	. (2 0	
WK10		57		33	35	•	31	36	34	36)		31	33	39		37	, α	2 0	
WK9		56		32	41		32	40	31	45	ı		30	35	49		39	6	m	
WK8		45		35	36		29	38	10	39			27	30	43		33	10	က	
WK7		42		32	31		31	35	32	36			32	32	41		34	4	н	
WK6	32	43	32	30	32	36	31	38	31	34	34	34	33	30	41		34	4	⊣	
WK5	31	SP	30	34	31	34	31	38	30	35	36	31	53	28	37		32	က	-	
WK4	32	42	33	36	31	37	32	41	33	41	32	41	59	<u>2</u> 8	44		35	ß	Н	
WK3	32	39	35	32	31	40	33	37	34	36	34	40	31	30	40	<u> </u>	35	¢ή	7	
WK2	35	37	36	32	32	32	33	37	30	42	34	44	32	53	35		35	4	-	
WK1	28	32	33	33	22	28	24	30	25	32	24	27	24	23	SP		28	4	-	
Base	32	SP	34	51	29	37	27	40	34	43	54	52	28	30	SP		38	10	m	
Animal# 87C00-	107*	120	127*	128		148*	143	154	156	157	164*	166*	174	180	182		Mean	Std Dev	SEM	

* Interim sacrifice animal. SP = spill

WATER CONSUMPTION (ml/week) Appendix H:

Group 1 Males

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
021	13	30	32	33	32	31	SP	27	27	33	33	31	32	32
026	45	46	45	43	41	37	42	37	38	35	37	38	33	34
032	53	55	52	48	49	45	43	38	44	36	42	40	42	39
037*	35	37	44	39	62	38	40							
038	51	49	47	42	49	40	38	36	39	36	37	36	40	32
041*	36	42	37	33	32	30	SP							
045	46	44	43	41	40	51	41	37	25	37	38	34	36	34
990	39	38	47	45	44	39	38	39	40	40	43	42	39	40
075	49	44	20	47	42	39	43	37	25	39	44	41	37	37
*110	46	41	48	44	42	36	41							
*640	35	22	34	36	36	34	34							
×080	20	44	46	46	41	36	32							,
082	44	43	SP	47	51	42	45	46	21	29	53	31	21	48
083	55	52	22	25	52	47	45	42	49	43	25	20	47	48
093	20	49	46	51	20	45	41	42	38	33	44	42	40	41
	43	42	45	43	45 a	33	40	ლ ო	35	40	42	39 9	40	9 9
SEM DEV	3	9 0	7	7	o (4	0)	0 0	n (f)	- 7	0 0	7	. 64	5

* Interim sacrifice animal. SP = spill

Appendix H (cont.): WATER CONSUMPTION (ml/week)

Group 2 Males

			i I											
Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
020*	36	37	41	38	3 8	38	36							
030	46	46	53	46	46	42	SP	42	43	40	44	33	37	33
031	31	37		42	38	36	36	38	34	34	36	33	37	3 6
034	35	34	35	29	31	30	30	31	53	32	32	31	33	29
036	36	42		39	28	36	31	34	36	33	32	32	34	32
040	44	38		39	36	32	36	37	33	32	37	32	37	35
056	37	39		34	33	32	33	30	30	32	33	32	36	30
063	42	48	42	38	39	38	30	39	36	36	38	37	40	37
065	49	48		46	47	42	32	37	38	39	44	41	41	41
071*	43	45		44	42	42	37			, !		!	1	!
081	37	42		44	41	36	33	33	20	34	40	30	31	28
085	38	46		40	48	46	40	40	46	44	49	45	43	00 00 00 00 00 00 00 00 00 00 00 00 00
88 *	40	46		47	41	41	35) 		?	2)
* 060	48	22		38	51	48	45							
*860	30	37		34	33	33	30							
Mean	39	43	44	40	39	38	35	36	35	36	39	35	37	34
Std Dev	9	9	9	Ŋ	7	ß	4	4	7	4		, .c.	4	7
SEM	-	-	7	H	7	Н	~	-	8	' ~ 4	7	7	٠, ٦	٠, ٠

* Interim sacrifice animal. SP = spill

Appendix H (cont.): WATER CONSUMPTION (ml/week)

Group 3 Males

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
024	60 4.2	68 7.7	9 r	SP 76	64	61	SP 41	20	58	55	55	52	55	20
\$ 030 \$ 030	4 60 6	47	4. n	789	r 6 0	4.1	38	7	Ç	;	7	ζ.	ζ.	Ċ
044	44.4	0 4 2	7 6 7 7 6 7	0.4.7	36.	2 4 8 2 5 4	SP C	36	40	35 35	37	36	35 35	338
* 020	707	. 4. p	4 4 1 5	4.5	. 4. r	2 & C	4 4 0	9	•	Ţ	ű	Ç	•	ŗ
051 052	52 45	8°5 74	51	20 8	55 46	50 46	38 38	48 41	38 38	47	51 43	42 39	37	38
055 059*	31 43	37 45	43 53	39 49	37	36 40	66 80 80 80 80 80 80 80 80 80 80 80 80 80	38	SP	4 8	37	32	33	31
078 084	41 38	47	45 43	39	40 40	39	39 37	37	40 26	37	37 43	37	36 40	31 33
094 096	45 46	44	4 4 8 8	4.	37	8 8 8	35	38 35	36 44	38 39	42	36	34	38
Mean Std Dev SEM	4. 0.00	84 8 6 2	50	47 11 3	46 11 3	44 8 2	40 4 4	41 5	40 8 3	42 6	43	39	40	36

* Interim sacrifice animal. SP = spill

Appendix H (cont.): WATER CONSUMPTION (ml/week)

Group 4 Males

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
005*	4 7	ŗ.		ני	αν	ر د	73							
027	4.0	28	26	57	52	52	52	47	47	47	47	43	41	42
046*	54	46		41	43	40	SP	ı		I		•		
047	44	61		57	54	40	46	46	47	47	48	45		46
048	65	78		74	70	71	64	99	SP	9/	74	61	26	59
054*	27	51		53	20	47	43							
057	48	54		26	22	54	20	48	49	51	20	48	20	45
058	46	54		28	46	26	52	45	47	53	57	57	52	57
190	33	09		28	29	09	54	26	54	26	55	53	52	37
062	46	48		51	25	20	43	42	40	46	47	44	46	41
× L90	46	51		25	20	49	44							
072*	38	47		47	44	43	39							
073	38	43		48	45	43	44	40	40	40		42		45
092	47	52		51	51	51	45	45	47	42	45	40	43	36
095	26	89		63	61	27	49	48	39	51		49		48
1 2 3	18			1	5		,							
Std Dev	ဂ္ တ	ე თ) C	U 4. α	2C 7	T O	2. D L	4. D a	<u>4</u> Ծ ռ	3 T	70	φ. γ	44. Σοπ	4. O o
	2 0	7 7	2 M	7	- 2	7	- 2	2 0	2 0	2 M	n m	~ ~	0 0	0 0
* Interim	sacrifice	se animal	na].											
\vdash														

Appendix H (cont.): WATER CONSUMPTION (ml/week)

Group 1 Females

Animal# 87C00-	Base	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
۲. د د	7	98		C	77	Q V	72	ά	27	90	•	~	œ c	30
4	7	2		> r	r	>	7	2	5	r	> r	r	2	0
↤	42	37		44	45	43	45	44	43	44	47	SP	42	43
$\boldsymbol{\vdash}$	39	34		46	46	44	47	41	39	41	SP	47	41	41
N	36	28		41	41	38	41							
129	67	28	64	99	26	52	57	57	57	09	62	61	59	59
ᠬ	40	40		47	46	47	49							
\sim	41	34		40	39	40	39	41	11	51	25	SP	52	44
4	33	30		41	43	41	43	47	38	37	40	44	41	41
4	46	32		44	47	44	46	46	40	44	44	20	49	43
2	44	41		51	54	20	51							
S	37	46		39	41	36	38							
9	40	36		44	40	41	37							
9	28	32		47	44	43	43	43	37	39	43	43	45	34
9	36	34		48	45	41	43	44	38	40	46	42	44	43
~	45	40		47	46	44	20	55	54	49	28	51	53	49
Mean Std Dev	4 0 0 0	37	45	<u>գ</u> Շ.	4 75 -	44 60 c	45	46 6	39	45	44 80 80 4	48 9 ° c	46	44
SEE!	7	7	7	4	⊣	7	7	7	r	7	n	7	7	7

* Interim sacrifice animal. SP = spill

Appendix E (cont.): WATER CONSUMPTION (ml/week)

Group 2 Females

2 WK13	2 31 2 31 7 SP 9 55 1 36 3 33 9 46	3 42 7 9
WK12	466464666666	4
WK11	46 32 37 37 38 38 35 47	41 7 2
WK10	348 342 334 34 50 34 48 50	42 6 2
WIK9	47 31 43 42 35 35 35 46	40 7 2
WK8	448 334 337 443 336 44	38
WK7	48884448 84 08664 084 83	40 2
WK6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	39
WK5	8 4 8 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	39
WK4	0000440466666 0000440466666666666666666	4 0 2
WK3	33 4 3 4 4 5 3 4 4 6 2 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	39
WK2	30 30 30 30 30 30 30 30 30 30 30 30 30 3	41 8 2
WK1	26 34 34 34 34 30 33 33	35 11 3
Base	28 33 33 33 35 35 35 35 35 35 35	36
Animal# 87C00-	099* 101 121 121 124 144 143 155 158 171*	Mean Std Dev SEM

* Interim sacrifice an imal. SP = spill

Appendix H (cont.): WATER CONSUMPTION (ml/week)

Group 3 Females

Animal# 87C00-	Base	WK1	WK2	WK3	WK 4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
L C	ć	ć	ţ	ţ		(Č	((,			
105	32	34	3,	7		36	36	29	32	32	38	32	34	62
109*	35	38	46	42		37	42							
112*	40	40	44	43		40	40							
118	35	36	40	45		39	40	41	38	40	40	43	42	43
122	28	30	34	31		28	32	31	30	29	34	32	37	28
125*	41	40	45	33		34	43							
132*	51	20	51	20		54	49							
150	40	41	49	42		42	45	51	46	38	46	48	48	56
152	34	34	32	31	32	30	30	32	34	35	35	32	35	32
160	27	34	41	43		41	33	36	40	42	SP	44	40	40
162*	30	42	47	41		38	39							
163	38	40	49	48		42	42	43	38	42	48	49	49	47
167	41	44	45	44		45	40	40	36	42	41	43	39	37
173	42	44	47	42		43	46	44	42	43	45	42	40	40
181	40	48	26	51		52	55	20	41	53	69	9	57	44
Mean	37	40	44	42	41	40	41	40	38	40	44	43	42	43
Std Dev	9	Q	9	9	∞	7	9	œ	3	9	11	Q	7	10
SEM	7	-	7	7	7	7	7	7	7	7	4	က	7	m
				į	:		1							

* Interim sacrifice animal. SP = spill

Appendix H (cont.): WATER CONSUMPTION (ml/week)

Group 4 Females

Anima1# 87C00-	Base	WK1	WK2	WK3	WK4	WIKS	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
107*	40	37	57	47	4 8	42	45							
20	4 6 9 9	53 34	69 51	62 4 9	65 53	62 52	68 55	65	39	SP	65	69	61	65
128	43	49	56	51	54	48	46	45	45	43	44	46	46	45
W 41	36 40	37 41	4 8 52	44 45	4 3	4 3	4 4 6 7	53	47	47	46	20		46
4, n	49	90	61	63	21	56	54	53	54	53	58	52	52	53
S C	50 50	50 46	21	4 9 9	20	54 46	ა გ ა	20 21	20 20 20	53 53	54 60	62 56	54 51	93 22 23
157 164*	SP 33	50 39	62 50	57 49	54 46	51	57 46	53	22	57	09	57	58	59
9	46	45	57	28	55	49	51							
7	31	30	41	40	39	39	42	39	39	37	37	36	39	35
œ	42	33	20	47	51	44	49	63		54	26	57		52
ω	45	42	52	48	51	41	45	44		44	43	46		
Mean Std Dev SEM	42 6	43 2	55 7 2	51 7 2	51 6 2	48	50	52 8 3	48	49	52 9	 	51	52

* Interim sacrifice animal. SP = spill

Appendix I: BODY WEIGHTS (g)

Group 1 Males

imal#Rc COO-	Animal#Rcpt" Day 87C00-	。	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
		c.	27	27	28	30	31	31	31	32	32	31	32	32	33
•	20 30	0	31	32	32	34	36	37	37	38	38	38	40	40	40
		m	36	37	38	40	41	44	42	44	42	43	45	46	46
Í		ന	28	59	31	32	33	34							
,		~	33	34	32	33	37	38	41	40	39	40	41	41	42
,		رم الم	34	34	34	36	37	38							
•		_	33	34	34	36	37	38	40	38	37	38	38	37	39
,		_	31	33	34	34	32	35	36	36	35	36	36	35	35
,		S	36	37	38	36	40	41	44	42	43	45	46	45	47
,		CH.	33	32	32	36	36	37							
,			32	33	33	32	36	39							
•		m	35	32	32	37	37	38							
•		e	33	32	34	37	38	38	40	38	39	41	39	39	40
Ī		탟	33	34	34	37	37	39	41	40	41	43	43	45	44
		٥.	33	36	37	39	40	42	43	42	42	43	45	44	47
	21 32	~	33	34	34	36	37	38	40	39	39	40	41	40	41
Dev	1 2	~	က	m	m	m	m	က	4	m	ന	4	4	S	ις,
-	<0.5	_	~	-	-	H	, , ,	~	, —1	1	-	1	-	-	7

@ Receipt.
* Interim sacrifice animal.

BODY WEIGHTS (g) Appendix I (cont.):

Group 2 Males

Animal#Rcpt ^e Day	Rcpt	Day 0	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
4															
\sim	19	29	28	29	31	31	32	33							
030	19	28	29	30	31	33	33	33	34	34	34	35	2,5	٠ ۲	25
031	21	29	30	32	33	34	35	35	36		. v	3 %	8 6		נייי
\sim	19	32	33	33	34	35	36	37	32	32	37	3.5	<u>ج</u> ج	à č) o
\sim	23	25	30	30	32	33	33	34	35	3 (3 (, c	9 %) Y	36
4	21	31	32	33	34	35	36	37	38	3 6	37	% %	8 8	32	2 œ
S	22	31	29	30	31	32	34	35	37	36	3.5	3.5	در	, v	9 %
9	22	33	34	34	35	36	37	36	40	40	3 6	40	8 8	400	4
9	23	34	34	35	36	37	38	38	41	41	4	43	43	43	7 7
071*	22	34	33	34	35	36	37	38	1	!	!	?	?	?) r
∞	20	31	32	33	34	35	35	36	37	36	36	37	36	37	3
∞	22	32	34	34	35	37	38	40	40	40	41	42	4 (42	8 8
$\boldsymbol{\omega}$	19	31	31	31	33	33	35	35)	•	!	j •	?	1	ř
g	20	33	34	32	36	40	40	41							
*860	21	28	28	28	29	30	31	32							
Mean	21	31	31	32	33	34	35	36	8	37	37	ď	ď	č	000
Std Dev	٠٠ ر	٥.	2 -	\ \ \	7 7	· m •	8 ~ .	, m ,	2 0	50	2	g m	ဗို က	ဗို က	ე ტ დ
OE41	-	4	4	4	⊣	-	٦	-	⊣	 1	П	-	-	~	-

[@] Receipt.
* Interim sacrifice animal.

BODY WEIGHTS (g) Appendix I (cont.):

Group 3 Males

WK10 WK11 WK12 WK13	35 34 35 34	36 36 35 36 42 43 42 43	43 42 44 44 41 41 42 42 37 38 37 38	41 42 42 42 37 36 38 38 38 37 38 37 38 39
WK9 W	34	35 41	41 38 37	41 35 37 36
WK8	34	35	41 37 27	34 35 35
WK7	34	35	4 38 40	41 38 36 36
WK6	34	3 4 8 8 9 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9 9	W 4 W W 4 W 0 0 0 0 4	, w w w w w w w w w w w w w w w w w w w
WK5	34	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 35 34 35 36
WK4	33	37 37 35	33.33 35.44 35.44	34 33 33 33
WK3	32 34	32 33 33 33	32 2 8 6 3 3 3 8 6	36 30 31 32
WK2	32	3 3 4 8 5 3 4 8 8	331 31 31 31	35 30 31 31
WK1	330	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 30 31 31
Day 0	32	350 27	31 31 31 31	30 30 31
Rcpt	19	21 21 21 21	23 20 20 20	20 20 20 22
Animal#Rcpt ^e Day 87C00-	024	2040	050 051 052 055	000 000 000 000 000

[@] Receipt.
* Interim sacrifice animal.

Appendix I (cont.): BODY WEIGHTS (g)

Group 4 Males

WK12 WK13	35 36	T-00 0	n H &	36 37 39 40 40 41	38 40 2 2 1 1
WK11	35	33	38 38 38	36 40 41	39
WK10	35	98 8 98 8	39442	36 40 40	39
WK9	34	88 6	339	388	38
WK8	36	388	14.00 10.00	38 8	38
WK7	35	38 41 40	3342	40	39
WK6	33 36 32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 37 37 37 37 37 37 37 37 37 37 37 37 3	37	36 1
WK5	32 35 32	37 32 37	04000 000000	38 88	38
WK4	31 33 32	36 32 32	33933	38 8	33
WK3	31 32 30	34 31 35	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	35 35	33
WK2	33 33 33 36	8 8 8 8 8 4 0 8	32 32 32 32 32 32 32 32 32 32 32 32 32 3	33 33	32 1
WK1	28 31 29	32 32 33 33 34 35	36 32 32 32 32 32	33 20	31 2 1
Day 0	28 31 29	8 8 8 8 8 4 8 8	8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	33 33 3	32
Rcpt	19 20 20	23 19 21	23 25 16 16 17	22 22	21 , 1 <0.5
Animal#Rcpt [©] Day 87C00-	025* 027 046*	4400	058 061 062 072*	- o o l	Mean Std Dev SEM

@ Receipt.
* Interim sacrifice animal.

Appendix I (cont.): BODY WEIGHTS (g)

Group 1 Females

	Animal#Rcpt Day 0 87C00-	WK1	WK2	WK3 V	WK4	WK5	WK6	WK7	WK8	WK9	WKIO	WK11	WK12	
7	2.5	27	27	27	27	29	29	29		30	29	29		3.1
יע	ر بر	24	24	بر	٠ د	27	2,5	27		200	20	3		2,0
7	2 4	25	24	26	25	27	27	27	56	27	56	30	. 60	28
26* 20	24	25	25	5 6	27	27	28	I			ì	3)
0	25	27	27	26	28	28	29	29	30	31	31	32	33	32
30* 2	25	26	25	25	27	27	29						•	
35 2	24	25		56	28	28	27	27	25	28	29	27		29
0 2	24	22		24	27	56	26	56	27	27	27	27	27	29
5 2	27	28	29	30	32	31	33	34	34	32	35	34	36	35
1* 2	24	25		24	28	28	29							
3* 2	56	28		27	29	29	53							
1* 2	25	5 6		27	29	28	27							
5 2	25	25		27	28	28	29	30	30	28	30	30	31	31
8 2	24	22		28	27	27	28	5 8	28	28	29	30	31	30
8 2	24	56		56	27	27	27	23	28	29	30	29	29	30
Mean 21	25	26	26	26	28	28	28	28	28	29	30	30	30	30
Std Dev 2	1	, -	7	7	7	, - 1	7	ო	ო	က	7	7	n	7
SEM <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	~	-	⊣	-	-	٦	-

@ Receipt.
* Interim sacrifice animal.

Appendix I (cont.): BODY WEIGHTS (g)

Group 2 Females

Animal#Rcpt [®] Day 87C00-	Rcpt e I	Day 0	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
*660	19	22	22	23	73	7.	27	00							
101	19	25	5 2	26	<u>2</u> 6	27	27	27	28	28	28	28	29	20	28
111	20	26	58	27	29	30	30	31	31	30	3 2	31	300	3 6	3 5
2	19	56	5 6	56	27	25	29	30	27	27	50	27	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 8 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	29
124	19	24	24	25	25	27	27	5 6	27	28	28	27	5 8	29	27
3	21	24	24	25	25	27	5 6	56	28	27	26	27	27	28	28
4	20	23	24	24	.26	27	56	5 6	28	5 6	26	27	28	27	28
4	23	5 6	27	28	78	31	8	30	31	30	31	31	31	31	33
4	22	25	5 6	27	56	30	29	28				1	ļ ,	1	}
155	22	56	28	28	59	30	30	30	32	32	32	32	31	32	33
2	20	5 6	28	28	27	28	30	53	30	31	32	31	31	33	32
9	21	24	25	25	25	27	28	28						•	† •
7	22	56	27	5 6	27	28	27	28							
7	21	56	56	27	5 6	27	27	27							
176	18	23	24	23	24	23	23	24	56	25	25	26	25	26	56
	20	25	26	26	56	27	28	28	29	28	29	29	29	30	30
Std Dev SEM	1 <0.5	1 <0.5	2 <0.5	2 <0.5	2 <0.5	7 7	7 -1	7 7	7 7	7 7	е н	7 -	7 7	7 -	ო 🗗
											j	l	1	•	•

[@] Receipt.
* Interim sacrifice animal.

BODY WEIGHTS (g) Appendix I (cont.):

Group 3 Females

WK10 WK11 WK12 WK13	30 29 29 31	30 31 29 31 27 26 28 27	29 27 28 28 29 29 29 30 29 29 30 30	31 30 31 32 29 30 30 31 28 29 29 29 29 29 30 29
WK9	28	29	28 30 29	29 28 27 28
WK8	28	29	28 30	29 27 26 28
WK7	28	28 26	27 29 29	29 27 28
WK6	28 32	228 24 24 24	7 7 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	28 26 27
WK5	30	222	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	27 20 25 25
WK4	28 30	225	22 22 23 23 23	27 22 28 27
WK3	26 30 5	25 25 26 27 26	25 27 23 23	27 28 28 26
WK2			25 27 27 24	
WK1			25 25 26 23	
0			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Rcpt D			22 23 23 23 23	
Animal#Rcpt ^e Day 87C00-	00-	よるのので	150 150 160 162*	99799

@ Receipt.
* Interim sacrifice animal.

BODY WEIGHTS (g) Appendix I (cont.):

Group 4 Females

WK13	27	27 27	27 28 31 31	29 26 29	28 2 1
WK12	27	27 27	3008	29 26 31	28 2 1
WK11	25	27	23 30 29	29 27 30	28 2 1
WK10	26	27 27	28 30 30	29 28 28	28 2 1
WK9	26	27 25	26 31 31 31	28 25 29	28 2 1
WK8	27	25 26	25 20 20 8	28 28 27	27 2 <0.5
WK7	23	26 25	28 23 27	29 28 29	26 2 1
WK6	26 25	722 722 720 720	25 26 27 27 27	29 28 27	27 1 <0.5
WK5	25	79 70 70 70 70 70 70 70 70 70 70 70 70 70	8 6 8 8 5 8 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	78 78 78 78	27 1 <0.5
WK4	23	70 70 70 70 70 70 70 70 70 70 70 70 70 7	228 228 24 27 27	7 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27 1 <0.5
WK3	23	52 52 52 72 72 72	22 2 2 2 4 4 5 6 4 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6	28 26 26	26 1 <0.5
WK2	23	25 24 24	22222 2222 2665 267 267	27 25 26	25 1 <0.5
WK1	25	25 24 25	2255 255 255 255 255 255 255 255	26 25 26	25 1 <0.5
ay 0			22 5 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		25 1 <0.5
Rept 6	18	7000 7000	2222222	22 20 20 20	21 2 <0.5
Animal#Rcpt [©] Day 87C00-	000	1 N M <	149 154 156 157 164*	9000	Mean Std Dev SEM

[@] Receipt.
* Interim sacrifice animal.

Appendix J: CLINICAL SIGNS

List of Clinical Signs Abbreviations

List of Clinical Signs Abbreviations	Meaning	alopecia	aggressive	chewing	dehydrated	hyperactive	irritable	normal	necrosis of the tail	ocular	scap	skeletal deformity of carpus and tarsus	increased startle reflex	swelling right side of jaw	twitching
	Symbol	ø	ag	ပ	ซ	hy	·~	c	ıt	0	၁၄	sk	st	SW	τw

	Appendix	ט	(cont.):	••	CTINICAL		OBSERVATIONS	FIONS	N	MICE	ADMINISTERED	STERED		nitroguanidin e	N N
Animel# 87C00-	2	9	13	50	7.2	34	41	Dey 48	83	62	69	76	83	06	Total Signs
							Contr	Control Males	8 0						
021															G
026								•••				·H	٠,-	j.ag	1.80
030			۰-					ı				ı	}	P	,
037			٠.												1 %
7.50			+								.,				4
*140											4				4 6
7 50															= (
990						Š				٠,-	٠.	••			: ·
9 0		•	•			ð			٠,	4	4 "	4 ·	50 1	*,	٠, مع
0/0		H	H						-		4	1, a g	1, ag	ส	1, ag
															5
*640															G
*080															c
082											i, ag	i, ag	ğ		1, ag
083										-ન	· ન		1,49		i, ag
093		·H	·H	·H					·4			· - 4		1,0e	1,0
							100 mg/k	g/day M	ales					•	•
*020							1	•							c
030															c
031											·rt		i,ag		1, ag
034														క్తం	•
036													1,89		1,80
040													ı.		, G
056															c
063											i, ag	i, ag	1,89		1,80
900) . ज		a, ı	·H	ी हैं
071*															
081															c
085											·H		·~		·H
*880															c
* 060															c
*86 0					ન										ખ
* interim	t interim sacrifice animal														

* interim sacrifice animal

d corneal vascularization

\$ right pupil dilated, slow constriction

	Appendix	ט	(cont.):	::	CLINICAL OBSERVATIONS	н	BSERV.	ATIONS	H	MICE	A DMINISTERED	Stered		nitroguanidin e	INE
Animel# 87C00-	-5	س ا	13	8	72	34	41	Day 48	18	8	69	9/	83	8	Total Signs
							316 mg/	316 mg/kg/dav Males	les						
M2.4									3	.,			••		
033*			i							•			1		4 6
*000															. (
1850			•												c : ·
2.50			-						ન						·ri
3															=
0 4 8#															c
050*	- ;-1				.ન										·H
051		Ħ	남	늄	nt, i					·~ 1	i, ag	ğ	i,ag,a		nt, i, ag, a
052		·~i	·H							i,ag	i,ag	i,ag	ğ		i, ag
055									T						τ
059*															c
078			· ન								· ન	·H	·H		;ri
984						.ન									Ħ
96 0			·H							i, ag	i,ag	·H	8		i, ag
960		·H	.ન		···	·~	· ન			Ş	ag, i	ag, i	ag, i	5	i, ag
							1000 mg	1000 mg/kg/day Males	Ales						
025*															G
027							·ਜ	·ret							٠. ٦
046*															c
740												1, ag	ģ		i, ag
048									ซ		3 6	SW, 1	36	76	d, sw, i
054*						쓝									쓩
057											· ન				· ન
058										·н			· ન		· ન
190											·ri	·r-1	·H	9 0	1,0
062														.	0
*L90							%								0
072*															G
073															G
092															c
960															G

* interim sacrifice animal scataract and corneal erosion, right eye.

Animal # -3 6 13 20 27 34 41 Day 87000000000000000000000000000000000000	Control Females i i i i i i i i i i i i i i i i i i i																
स्ता की स्ता का	Control Females i	ime1. C00-	-3	۰	13	8	27	34	}	Day 48	જ	23	69	92	83	8	Total Signs
स्त की स्ता स्ता स्ता स्ता स्ता स्ता स्ता स्ता	i i i i i i i i i i i i i i i i i i i								Contro	l Female	8 7						
स ज स स स ज ज ज ज ज ज ज ज ज ज ज ज ज	i i i i i i i i i i i i i i i i i i i	4															G
स न म न न न न न न न न न न न न न न न न न	i i i i i i i i i i i i i i i i i i i	9									·H				hy, c		i, hy, c
साल हैं जल ल नाल जल ल जल ल जल ल जल ल जल ल ज	i i i i i i i i i i i i i i i i i i i	7				·~	·ন								by, c		i, hy, c
सन में जन न निन ने न निन न जिल्ला जिल्ला जिल्ला निन्निन	i i i i i i i i i i i i i i i i i i i	*9	·ল	·H											•		ਜ
स न म निम न न निम न न निम न निम न निम न	i i i i i i i i i i i i i i i i i i i	<u>0</u>													·A		न
त म स्व स स्व स स्व स स्व स स्व स	i i i i i i i i i i i i i i i i i i i	*0						·~									ત
त किंद्र ज़ म च म च न म च न म च म च म च म	i i i i i i i i i i i i i i i i i i i	ស៊					· ન					· ન	st		•ल		i, st
Be'i	i i i i i i i i i i i i i i i i i i i	0					·-1	· ન							٠Ŧ		∘ન
Be'i	i i i i i i i i i i i i i i i i i i i	Ñ												·rd	·H		п
De' , ज़	i i i, ag i i i i i i i i i i i i i i i i i i	11*			· ન												ন
be';	i i i i i i i i i i i i i i i i i i i	13*				·#	·H										न
Be'; ज ज ज ज ज ज ज ज ज ज ज ज ज ज ज ज ज ज ज	i i i i i i i i i i i i i i i i i i i	*1															c
ज़ ज़ ज़ ज़ ज़ ज़ ज़ ज़ ज़ ज़	100 mg/kg/day Females 100 mg/kg/day Females i i i i i i i i i i i i i i i i i,of o i i i,of o i i i i i i i i i i i i i i i i i i i i i i i i i i	λ				·r4	·#	i,ag			·H	4	·H	· ન	·H		i, ag
ત ત ન ન ન ત જ ત ઇત ન	100 mg/kg/day Females 100 mg/kg/day Females 2 i i i i i i 2 i i i i i i 3 a a 1 i i i i i 1 i i i i 1 i i i i i 1 i i i i	9 2									U						່ບ
ત ત ન ન ન ન ત સ સ સ સ	100 mg/kg/day Females 2 i i i i i i i 2 i i i i i i 3 i i i i i 4 i i i i i 1 i i i 1 i i i i 1 i i i i	စ္တာ								ન					· ન		· H
ज ज ज ज ज ज ज ज ग ज ज								2	0 mrg/kg,	/day Fer	nales						
ज ज ज ज ज ज ज ज ज		*6															G
ज ज ज ज ज ज ज ज		4									4						G
ज ज ज ज ज ज ज ज		Ţ									e 0		0	0	(6)	0	0
ਜ ਜ ਜ ਜ ਜ ਹ	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	r.		· - 1				· ન	-14					·H	·н		· н
ਜ ਜ ਜ ਜ ਦ	т т т т т т т т т т т т т т т т т т т	₹.															G
म ज म ज	i i i i i i i i i i i i i i i i i i i	7		ъ			· ન	· ન			ૃત	.ન	· ન	· ન	1,0°		d, i, o
म : : :	8 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	13		·H								·ન	i, of	0	·H	i, ag	i,o,aq
न ज ज	8 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	=														ı	٠ د
1	s i i i i	16*				·H											ન
T	i i i i i	સ્											Æ	43	43	et	ત
		92		· - 1	+		-+1			· ન	·H	. - 1	· ન	·H	·r4	·ri	ज
171* 175*		*65						- न									·ri
175*		1,*															G
		15*															G
176		9															c

* interim sacrifice animal

decorneal opacity; \$ cataract; \$ corneal vascularization; \$ conjunctivitis

316 mg/kg/day Females 2		Appendix	الا ر	(cont.):	:: ~	CLINICAL		OBSERVATIONS	TIONS	X H	MICE	ADMINI	ADMINISTELED		NITROGUANIDINE	DINE
316 mg/kg/day Females is 1 1 1 0.08 mg/kg/day Females is 2 1 1 1 0.08 mg/kg/day Females is 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Anime1# 87C00-	6	9	13	50	27	34	41	Day 48	55	29	69	9/	83	8	Total Signs
2 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0							,	116 mg/kg	g/day Fe	males						
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	105							•	•			·H				н
1	109*															េធ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 771					ન										ત
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118								·rt	਼ਜ	. न			ન	ම	0,1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	125*					τ								.ન		ન '
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	132*		-	.,-		3	٠,									.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150		1	1 -4			4		-#4		٠,-			٠,		red n
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152				ૃત			न	•		1	4 · e		nt		rd ir
i i i i i i i i i i i i i i i i i i i	091						ag, sc,		Ø	4,1		·- - 1	-1	ı		80.80.8
i i i i i i i i i i i i i i i i i i i	291		· ન	· ન	· ન	•	·H									i d
i i i i i i i i i i i i i i i i i i i	<u> </u>		٠,	-	•	· - ·			•						·H	न
i i i i i i i c c i i i i i i i i i i i	73		-	H	-	- 1	-1		-п	·rl		·H			ज	_ં ત
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	81				٠,	.,	٠,			٠,	-1		-H	н		·H
i i i i ag i, ag i, ag i, ag i i ag i ag	!		ŧ	•	•	4	. Ã	000 mg/k	q/dav Fe	ı emales	- 1				Ų	o rì
i i i i i i i i i i i i i i i i i i i	.07*					٠,			•							,
i i i i i i i i i i i i i i i i i i i	.20			·H		I	٠.							٠,		(1)
i i i i i i i i i i i i i i i i i i i	.27*						•			4				•		તા
i i i i i i i i i i i i i i i i i i i	.28		न	∘न											q	= <u>;</u>
i i i i i i i i i i i i i i i i i i i	39											**	*,	•	đ <u>.</u>	d i
i i i tw, i i, a tw, i i, a tw, i i, a	48*										٦.	н	-	1,00	٦, ۵	d 0 : 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	49												·H	H		c -
i ag ag i, a	4. 7	ન	· rd						·~		·ন	·H		tw, i	۵, ن	1, tw, 8
ag 1, ag	5 7	٠,-	٠,	.,		••				•						ĸ
56 · · · · · · · · · · · · · · · · · · ·	· **9	4	4	-1		н	S		ğ	1, ag	1,89	i,ag	1,89	·Ħ	i,ag	pe't
50	*99						·#									G -
The second of th	.74 80										•	·A			5	£, ag
	83	∘न	· ન	·rl	·H	·ri	•			d ·-	el ve	Ş	·H ·•	·ન •	••	

* interim sacrifice animal
e corneal opacity

Frost et al--94

Appendix K: SERUM CHEMISTRY

List of Serum Chemistry Abbreviations/Units

Aspartate Amino-Transferase (U/L) Alanine Amino-Transferase (U/L) Cholesterol (mg/dl) Creatine Phosphokinase (U/L) Albumin (g/dl) Alkaline Phosphokinase (U/L) Blood Urea Nitrogen (mg/dl) Lactic Dehydrogenase (U/L) Total Bilirubin (mg/dl) Albumin/Globulin ratio Total Protein (g/dl) Triglyceride (mg/dl) Creatinine (mg/dl) Chloride (mMol/L) Potassium (Meq/L) Magnesium (mg/dl) Jric Acid (mg/dl) Calcium (mg/dl) Glucose (mg/dl) Sodium (Meq/L) Not tabulated Iron (µg/dī)

LETTERMAN ARMY IN	AR	LETTERMAN ARMY INSTITUTE	O Fi	RESEARCH	Appe	Appendix K:	K: SERUM	CHEMISTRY 86007	STRY		STUDY S	START DATE:		01-APR-87 MOUSE/ICE
PRESIDIO OF		SAN FRANCISCO,	sco, ca	94129							SUBCI	SUBCHRONIC/90	DAY	FEEDING
ANIMAI. NUMBER	SEX	GROUP / SUBGROUP	DAY OF STUDY	AST	BUN	C,K	ALB	ВІГІ	ij	GLU	IRON	ALK	ТНСП	MAG
87C0037	Σ	1/1	44	104.9		5.	2.72	TN	112.		LN	45.1	716.1	4.
87C0041	Σ	1/1	44	ത		ä	4	0.01	112.	268.8	156.	N	σ.	•
87C0077	Σ	1/1	44	65.0		Š.	$\overline{}$	0.00	114.		196.	m	δ.	4.
87C0079	Σ	1/1	44	σ		.;	4	0.02	109.		200.	6	4.	.2
8700080	Σ	1/1	44	83.8	27.9	3	2.46	LN	113.	248.3	170.	51.1	488.2	2.41
PARAMETER MEANS:	TER	MEANS:		9		æ	4	0.01		261.72	ö	0	4.	4.
STANDARD DEVIATIONS:	DEV	IATIONS:		18.24	3.22		0.21	0.01	1.87	41.01	21.06	3.23	214.72	60.0
87C0020	Σ	2/1	44	9	32.4		0.	TN	107.	256.1	196.	66.2	6.0	.2
87C0071	Σ	2/1	4	58.3	4		7	0.03	110.	50	232.	40.9	32.1	•
87C0088	Σ	2/1	44	83.7	28.7	288.3	2.40	Z	111.	247.2	163.	64.0	7.0	2.44
87C0090	Σ	2/1	44	55.5	26.3		4.	0.00	111.	86	193.	67.0	82.4	ω.
870008	Σ	2/1	ታ	NT	NT	IN	NT	LN	112.	T'A	FX	K		NT
PARAMETER MEANS:	TER	MEANS:		σ.	30.45	Š.		0.02		260.00	196.00		358.10	9.
STANDARD DEVIATIONS	DEV	IATIONS:		23.88	3.64	61.71	0.19	0.02	1.92	17.78		4.	2.63	•
8700033	Σ	3/1	44	125.7	٠.	180.5	1.77	0.03	114.	135.7	119.	11.6	567.7	ب ا
87C0039	Σ	3/1	44	æ	44.7	86.1	2.16	Ę	111.	259.7	181.	45.8	86.8	2.36
87C0049	Σ	3/1	44	N	IN	IN	TN	IN	109.	Ϋ́	NT	LN	IN	T.
87C0050	Σ	3/1	44	150.6	25.8	84.	2.17	NT		244.8	HN	35.7	2.3	2.80
PARAMETER MEANS:	TER	MEANS:		4.8	5.0		•	0.03	110.25	•			. 60	2.60
STANDARD DEVIATIONS	DEV	TATIONS:		26.16	9.46	55.54	0.23	,		67.70	43.84	17.57	68.13	0.22
87C0025	Σ	4/1	44	199.6	28.			TN	107.	202.9	NT	47.7	: :	0
87C0046	Σ	4/1	44	72.8	25.		•	N	109.	209.7	192.	53.9	682.9	9
87C0054	Σ	4/1	44	85.7	21.9	149.2	2.28	TN	108.	233.5	Ϋ́	37.8	4.	2.55
87C0067	Σ	4/1	44	172.4	27.		•	IN	109.	320.7	146.	36.0	520.1	φ.
87C0072	Σ	4/1	44	153.0	26.		•	Ţ		-	TN	٥.	418.1	æ
PARAMETER MEANS:	TER	MEANS:		136.70	25.9		•	ı	108.60		169.00	45.08		. 7
STANDARD DEVIATIONS:	DEV	IATIONS:		55.18		251.67	•	1		47.23		ω.	262.21	0.20

LETTERMAN ARMY IN DIV OF TOXICOLOGY PRESIDIO OF SAN F	A AF	LETTERMAN ARMY INSTITUTE O DIV OF TOXICOLOGY PRESIDIO OF SAN FRANCISCO,	TE OF RES	ESE 94	ARCH Appendix STUD: 129SUBCHRONIC/90	Lix K: UDY N 90 DA	SERUM CHEMISTRY UMBER: 86007 Y FEEDING	EMISTRY		STUDY	Y START	DATE: 01	01-APR-87 MOUSE/ICR
ANIMAL	SEX	GROUP/ SUBGROUP	DAY OF STUDY	NA	CAL	СНОГ	CR	ALT	TP	URIC	×	TRIG	A-G
870037	Σ	1/1	44	E-Z	ر م	E Z	0.44	20.00	4 7	i	F 2		1 34
87C0041	Σ	1/1	44	154	. m	76.5	0.54	34.3	4.6	1.6	6.3	155	1.10
87C0077	Σ	1/1	44	150	0.	35.2	0.54	38.2	4.6		6.1	66	0.88
87C0079	Σ	1/1	44	155	8.7	89.3	•	52.0	4.7	•		73	1.07
87C0080	Σ	1/1	44	154	80.80	105.9	•	56.6	5.0	•		151	96.0
PARAMETER MEANS:	TER	MEANS:		•	8.40	76.73	•	43.98	4.72	•			1.07
STANDARD DEVIATIONS	DEV	IATIONS:		2.22	0.34	30.19	•		0.16	0.32		41.26	0.17
87C0020	Σ	2/1	44	154	9.3	68.6		47.5		1.7	٠.	205	0.86
87C0071	Σ	2/1	44	155	7.9	83.1	0.49	26.7	4.6	1.4	4.8	146	1.16
870088	Σ	2/1	44	155	7.0	67.3		42.8				96	1.15
87C0090	Σ	2/1	44	155	4.8	100.1		46.5	•	2.2		88	1.15
87C0098	Σ	2/1	44	154	LN	LN	HN	NT	NT			TN	TN
PARAME	TER	PARAMETER MEANS:		154.60	8.15	79.78	0.59	40.88	4.55	1.63		133.75	1.08
STANDARD		DEVIATIONS:		•	96.0	15.33		99.6	0.06	0.43	1.02		0.15
87C0033	Σ	3/1	44	156				22.0	5.6	1.7	٠.	114	0.46
87C0039	Σ:	3/1	44	154	7.9	44.4	0.64	30.9	4.0	1.7	6.5	172	1.17
87C0049	Σ	3/1	44	160	H.	LY	LN	TN	NT	LN	•	TN	Ņ
87C0050	Σ	3/1	44	154	•	L			4.4	2.2	•	Z-	
PARAME	TER	PARAMETER MEANS:		156.00	8.27	45.85	0.58	33.23	4.67		٠	143.00	0.86
STANDARD		DEVIATIONS:		2.	•	•	•	•	•		•	41.01	•
87C0025	Σ	4/1	44	2		TN	. 7					FN	1.01
87C0046	Σ	4/1	44	2	•	101.8	.5	•	•	•	•	184	0.87
87C0054	Σ	4/1	44	153	œ.	TN	0.53	63.2	4.6	2.2	7.2	TN	0.97
87C0067	Σ	4/1	44	'n	•	126.9	.5	•	•	•	•	147	0.85
87C0072	Σ	4/1	44	. 59	•	IN	. 5	•	•	•	•	TN	0.89
PARAMETER MEANS:	TER	MEANS:		4	•	114.35	.5	7	•	ω.		165.50	0.92
STANDARD DEVIATIONS) DEV	IATIONS:		2.68	•		٥.		0.38	•		26.16	0.07
	1		1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1	1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1	1 1 1 1

LETTERMAN ARMY IN	I ARK	LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY	TE OF RESI	ESEARCH	Appe	Appendix K:	SERUM NUMBER:	CHEMISTRY 86007	STRY		STUDY S	START DATE		01-APR-87 MOUSE/ICR
PRESIDIO	OF S	PRESIDIO OF SAN FRANCISCO, CA 9	sco, ca	94129							SUBCI	SUBCHRONIC/90	DA	FEEDING
ANIMAL			DAY OF			į	;		,					
NUMBER	SEX	SUBGROUP	STUDY	AST	BUN	S	ALB	BILI		GLU	IRON	ALK	LDHL	MAG
8700021	Σ	1/1	93	126.9	29.6	95.4	3.1	LN	112.	243.6	IN	93.1	323.1	2.88
87C0026	Σ	1/1	93	150.8	46.0	106.9	2.5	.03	109.	276.0	207.	45.4	428.7	4
87C0032	Σ	1/1	93	143.1	34.9	171.9	3.0	. 02	111.	280.6	LN	37.7	366.1	2.32
87C0038	Σ	1/1	93	122.9	30.4	270.7	•	.07	109.	252.3	212.	38.6	Ŋ	7
87C0045	Σ	1/1	93	96.5	29.5	171.8	3.0	.04	113.	•	TN	32.4	400.5	9
87C0066	Σ	1/1	93	324.0	30.1	133.9	•	H	116.	-	IN	52.7	5.	S
87C0075	Σ	1/1	<u>د</u> 6	71.6	31.8	57.2	•	.01	113.		LN	42.3	216.6	۲.
87C0082	Σ	1/1	നു ന	156.8	21.7	188.4	3.0	NT	111.	250.0	202.	52.9	0	2.76
8700093	Σ	1/1	93	64.1	18.2	116.0	3.1	L'N	106.	229.7	215.	66.3	238.2	4
PARAMETER MEANS:	TER !	MEANS:		139.63	30.21	145.80	2.87	0.03	111.11	235.37	209.00	51.27	387.11	2.50
STANDARD DEVIATIONS:	DEV	IATIONS:		76.70	7.84	62.95	0.25	0.02	2.89	42.78	5.72	18.69	129.58	0.24
87C0030	X	2/1	93	59.9	30.7	115.4	2.5	TN	111.	273.5	LN	34.3	223.2	2.44
87C0031	E	2/1	93	261.4	40.9	519.3	2.8	.08	110.	317.5	247.	36.4	616.1	4
87C0034	Σ	2/1	93	HN	TA	L	H	L	109.	TN	H Z	LN	ŢŊ	٥.
87C0036	Σ	2/1	93	171.6	41.3	127.4	3.0	00.	112.	286.7	HN	•	437.1	2.44
87C0040	Σ	2/1	93	71.0	20.8	140.2	٠.	.03	107.	253.6	275.	52.0	273.4	7
87C0056	Σ	2/1	93	64.4	22.1	39.2		L	107.		TN	•	٠	4.
8700063	Σ	2/1	93	174.6				90.	113.	250.5	241.	•	•	.
87C0065	Σ	2/1	93	IN		51.5		Ä	111.	Ļ	L'A	•		4.
87C0085	Σ	2/1	93	73.5	24.6	80.0	3.3	Z	110.	232.0	219.	53.0	209.3	9.
PARAMETER		MEANS:		125.20	•	185.84		0.04	110.00	269.26	245.50	•	345.85	2.37
STANDARD		DEVIATIONS:		78.23	8.86	179.02	0.25	0.04	•	27.80	23.06	12.94	167.88	0.18
	1	111111111	1 1 1 1 1 1 1	161111		1 1 1 1 1 1 1		11111		1116611				1 1 1 1 1

LETTERMAN ARMY IN	N ARE	LETTERMAN ARMY INSTITUTE OF RES	TE OF RE	SEARCH	Appe	Appendix K:	(: SERUM	4 CHEMISTRY 86007	STRY		STUDY	START DATE:	E: 01-253	193-87
PRESIDIO	OF .	PRESIDIO OF SAN FRANCISCO, CA	SCO, CA	94129		10010					SUB	SUBCHRONIC/90	DAY	
ANIMAL	\$ 0	GROUP/	DAY OF	E	200	ą	9	110	5	į	200	2		5
NOMBER	4 i		idore	FOI	E E E	4	ALB	B1111	3	970	LKON	ALK	דאחיי	58.
87C0024	Σ	3/1	66	101.3	30.2	273.6	2.8	HN	111.	277.6	Z F	46.6	329.7	2.48
87C0042	Σ	3/1	66	N	Ņ	IN	NT	N	110.	Ę	LN	TN	N	2.44
87C0044	Σ	3/1	66	137.4	23.9	175.6	2.7	.05	109.	362.9	LN	35.7	346.7	2.18
87C0051	Σ	3/1	6	84.0	24.4	87.5	5.8	.04	109.	287.4	NT	23.2	264.5	2.09
87C0052	Σ	3/1	66	176.8	36.4	61.9	5.6	LN	111.	230.1	IN	49.5	319.3	2.29
87C0078	Σ	3/1	93	L'A	IN	L'A	IN	Z	110.	H	Z	TN	NŢ	큐근
87C0084	Σ	3/1	66	Ţ	IN	H	IN	LN	112.	TN	Z E	TN	N	2.63
87C0094	Σ	3/1	93	117.3	19.0	64.6	2.7	N	109.	221.9	IN	49.1	295.7	2.68
87C0096	Σ	3/1	93	83.0	19.6	43.9	5.9	IN	106.	241.0	193.	44.7	278.1	2.38
PARAMETER MEANS:	TER	MEANS:		116.63	25.58	117.85	2.75	0.05	109.67	270.15	193.00	41.47	305.67	2.40
STANDARD	DEV	DEVIATIONS:		36.01	99.9	89.39	0.10	0.01	1.73	52.42	i	10.26	31.63	2.19
87C0027	Σ	4/1	93	88.8	44.1	197.1	2.7	.01	110.	215.6	388.	47.3	378.2	2.49
87C0047	Σ	4/1	93	203.9	27.0	168.6	5.9	.02	109.	256.8	NT	26.8	441.2	2.51
87C0048	Σ	4/1	93	73.3	22.8	21.5	•	.01	109.	265.3	N	25.0	261.2	2.25
87C0057	Σ	4/1	6 6	LN	17.3	TN	5.9	IN	111.	Z T	Z,		N	1.52
870058	Σ	4/1	6 6	81.8		49.6	•	Z	112.	269.0	Ţ		362.3	2.41
8700061	Σ	4/1	69	112.0	31.3	50.4	•	.11	110.	295.4	175.	69.3	278.8	2.26
87C0062	Σ	4/1	6 6	L'A	22.6	IN	3.1	LN	109.	TN	N	о О	LN	17.1
87C0073	Σ	4/1	93	259.9	19.2	178.5	5.6	Į	110.	327.4	Z L		547.9	2.47
87C0092	Σ	4/1	93	125.7	21.5	153.6	•	Z	111.	266.5	184.	30.2	509.5	2.27
87C0095	Σ	4/1	93	86.0	22.3	166.7	2.9	LN	109.	364.1	Z L	•	: ۵0	2. 1.8 2. 1.8
PARAME	TER	PARAMETER MEANS:		128.93	•	123.25	•	0.04	110.00	282.51	249.00	46.13	384.6€	2.51
STANDARD		DEVIATIONS:		67.44	7.90	70.16	0.24	0.05	1.05	45.84	120.46	Ħ.	106.83	28
	1										1 1 1 1 1			

LETTERMAN	I ARM	LETTERMAN ARMY INSTITUTE OF RESE	TE OF R	ESEARCH	Appen	Appendix K: SERU	Σ	CHEMISTRY 86007		STUDY	START DATE:		01-APR-87 MOUSE/ICR
PRESIDIO	OF S	PRESIDIO OF SAN FRANCISCO, CA	sco, ca	94129			1			ns	SUBCHRONIC/90	Y I	FEEDING
ANIMAL	SEX	GROUP/ SUBGROUP	DAY OF STUDY	NA	CAL	CHOL	S.	ALT	TP	URIC	×	TRIG	A-G
					1 1 1 1 1 1						1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
87C0021	Σ	1/1	66	158.3	9.1	93.0	0.50	50.7		NT	7.4	136	1.50
87C0026	Σ	1/1	93	156.3	8.4	117.0	0.50	57.4	က	2.1	6.8	151	1.40
87C0032	Σ	1/1	93	S	6.0	9.91	0.50	61.2	ഗ	2.4	6.9	170	1.20
87C0038	Σ	1/1	93	157	8.0	88.1	0.50	39.6	4.6	1.9	6.4	154	1.10
87C0045	Σ	1/1	93	ဖ	9.1	91.4	0.50		_	4.0	7.1	141	1.40
87C0066	Σ	1/1	93	Q	0.6	TN	0.30	54.3	7	NT	8.5	LN	1.30
8700075	Σ	1/1	£6	Φ	8.8	93.9	0.40	51.8	σ	1.0	5.9	114	1.40
87C0082	Σ	1/1	93	n)	8.6	7.07	0.50	84.5	&	TN	7.7	7.0	1.70
87C0093	Σ	1/1	93	S)	7.6	132.4	0.40	24.4	,	2.1	6.1	133	1.50
PARAMETER MEANS	TER	MEANS:		ഗ	8.98	95.39	0.46	53.03	4.96	2.25	6.98	•	1.39
STANDARD DEVIATIONS	DEV	IATIONS:		2.04	0.57	20.27	0.07	16.14	35	0.98	0.82	30.55	0.18
87C0030	Σ	2/1	93	158.5	8.8	94.9	0.50	38.0	4.7	2.3	9.9	101	1.20
87C0031	Σ	2/1	93	154.5	8.3	54.0	0.40	37.6	4.6	3.8	7.1	57	1.60
87C0034	Σ	2/1	93	S	8.2	NT	NT	IN	IN	IN	5.5	TN	NT
87C0036	Σ	2/1	93	157.1	8. 3	65.1	0.40	54.1	4.4	1.4	6.7	110	2.00
87C0040	Σ	2/1	93	S	ຜ	7.96	0.40	41.1	4.6	2.5	5.5	162	1.40
87C0056	Σ	2/1	93	S	8.7	LN	0.40	39.3	4.8	TN	6.0	HZ	1.40
87C0063	Σ	2/1	93	S	9.8	77.0	0.40	58.2	4.8	1.4	5.9	105	1.20
87C0065	X	2/1	93	٠,	9,3	NT	0.40	50.2	5.0	L	7.0	HN	
87C0085	Σ	2/1		159.9	9.6	98.3	0.50	31.5	5.0	1.8	6.3	84	1.90
PARAMETER MEANS:	TER	MEANS:		157.60	8.70	81.00	0.43	43.75	4.74	2.20	6.29	104.17	1.49
STANDARD		DEVIATIONS:		1.43	0.47	18.64	0.05	9.30	0.21	0.91	09.0	34.70	0.32
111111	1					11111111	j 	1 1 1 1 1 1 1 1	1		1 1 1 1 1 1 1 1 1		

LETTERMAN ARMY IN DIV OF TOXICOLOGY	I AR	LETTERMAN ARMY INSTITUTE OF RESE DIV OF TOXICOLOGY	TE OF R	ESEARCH	Appendix STUDY	K: NUM	Σ	CHEMISTRY 86007		STUDY	START	DATE: 0	01-APR-87
PRESIDIO	OF S	PRESIDIO OF SAN FRANCISCO, CA 94	sco, ca	94129			i			SU	SUBCHRONIC/90	ď	FEEDING
ANIMAL	ğ	GROUP/	DAY OF	á	160	r Cur	f		(:		
NUMBER	43	SUBGROUP	TOUTE	NA 	3	CHOL	X .	ALT	41	į	×	TRIG	A-6
87C0024	Σ	3/1	93	159.6	8.7	67.5	09.0	38.6	4.7	1.2	5.4	145	1.50
87C0042	Σ	3/1	93	159.9	8.8	NT	L	Ä	NT		7.3	HN	LN
87C0044	Y	3/1	93	156	8.5	136.7	09.0	44.6	5.0		5.5	148	1.20
87C0051	Σ	3/1	93	157.8	8.8	96.0	09.0	41.2	4.9		5.7	141	1.30
87C0052	E	3/1	93	160.4	8.5	154.0	0.40	97.2	5.5		7.2	195	1.00
8700078	Σ	3/1	93	u,	9.4	NT	LN	N	NT		7.5	H	Ę
87C0084	X	3/1	93	w	9.6	LN	NT	TN	NT		10.0	TN	Ę
87C0094	X	3/1	93	158.1	9.5	111.5	0.40	46.5	4.9		6.9	74	1.30
87C0096	Σ	3/1	93	u)	9.4	84.7	0.50	34.3	8.		5.1	133	1.50
PARAMETER MEANS:	TER	MEANS:		158.70	8.99	108.40	0.52	50.40	4.92		6.73	139.33	1.30
STANDARD DEVIATIONS	DEV	IATIONS:		1.53	0.42	32.49	0.10	23.33	0.17		1.54	38.77	0.19
87C0027	Σ	4/1	93	160.3	8.7	80.8	0.50	41.9	4.8	0.4	6.5	202	1.30
87C0047	Σ	4/1	93	156.8	8.8	123.0	0.40	40.5	4.8	1.1	6.2	97	1.50
87C0048	Σ	4/1	93	160.5	0.6	67.0	0.50	23.6	5.6	2.1	5.5	75	0.70
87C0057	X	4/1	93	156.3	8.5	TN	0.30	50.5	5.0	LY	7.2	LZ	1.40
87C0058	X	4/1		159.3	9.3	82.1	0.50	46.6	4.9	1.5	7.0	73	1.40
87C0061	Σ	4/1	93	160.3	9.1	105.0	09.0	31.4	4.9	2.2	7.5	211	80
87C0062	Σ	4/1		159	9.5	LN	0.40	47.8	5.0	NT	7.5	L	1.60
87C0073	Σ	4/1	93	155.9	9.5	LN	0.40	55.0	4.6	LY	6.5	LN	1.30
87C0092	Σ	4/1		159.2	8.7	118.3	0.40	26.2	4.9	1.6	5.1	149	1.30
87 C0095	Σ	4/1	93	•		IN	0.50	36.8	2.0	L'A	9.8	TN	1.40
PARAMETER MEANS:	TER	MEANS:		158.35	9.07	96.03	0.45	40.00	4.95	1.48	92.9	134.50	1.37
STANDARD DEVIATIONS	DEV	IATIONS:		1.91	0.42	22.68	0.08	10.44	0.26	0.67	1.03	62.21	0.28

LETTERMAN ARMY INSTITUTE OF RESE DIV OF TOXICOLOGY PRESIDIO OF SAN FRANCISCO, CA 94	ARM XICO OF S	Y INSTITU LOGY AN FRANCI	TE OF RE	5S EAR СН 94129	Appe	Appendix K: SERU STUDY NUMBER:	SERUM MBER:	CHEMISTRY 86007	STRY		STUDY START SUBCHRONI	DY START DATE SUBCHRONIC/90	: DA	01-APR-87 MOUSE/ICR Y FEEDING
ANIMAL NUMBER	SEX	GROUP / SUBGROUP	DAY OF STUDY	AST	BUN	CK	ALB	BILI	บี	GEU	IRON	ALK	LDHL	MAG
87C0126 F 1/2 87C0130 F 1/2 87C0151 F 1/2 87C0153 F 1/2 PARAMETER MEANS: STANDARD DEVIATIONS:	F F F DEVI	1/2 1/2 1/2 1/2 1/2 IEANS: (ATIONS:	ი დ დ დ დ დ დ დ	90.1 NT 362.6 190.4 214.37 137.82	29.0 NT 22.2 28.4 26.53 3.76	272.6 NT 494.3 385.7 384.20 110.86	2.32 2.24 2.24 2.63 2.40	TN TN TN TN	115. 113. 114. 113.75 0.96	264.9 NT 202.1 197.4 221.47 37.69	257. NT 199. 217. 224.33	83.0 NT 58.7 49.0 63.57 17.51	358.9 NT 0602.8 430.5 464.07	2.89 2.35 2.53 2.59 0.27
87C0146 F 2/2 87C0169 F 2/2 87C0171 F 2/2 87C0175 F 2/2 PARAMETER MEANS: STANDARD DEVIATION		F 2/2 F 2/2 F 2/2 F 2/2 ER MEANS: DEVIATIONS:	ય 4. 4. 4. ઇ છે છે	NT 87.7 151.9 550.4 263.33 250.67	34.0 20.3 39.3 29.3 30.73 8.06	NT 579.9 419.7 978.9 659.50 287.97	2.54 2.91 2.89 2.39 0.26	HN HN 00.00 TN 10.00	115. 112. 112. 113. 113.00	NT 234.6 217.5 190.3 214.13 22.34	NT 237. 181. NT 209.00 39.60	92.0 60.9 60.8 64.2 69.48 15.10	NT 408.2 525.1 806.1 579.80	2.41 2.45 1.87 2.44 0.44
87C0109 F 3/2 87C0112 F 3/2 87C0125 F 3/2 87C0132 F 3/2 PARAMETER MEANS: STANDARD DEVIATION		F 3/2 F 3/2 F 3/2 F 3/2 F MEANS: DEVIATIONS:	<u>ቁ</u> ቁቁቁ ඔඔፎፎ	309.0 154.6 83.7 748.3 323.90 298.16	33.6 19.6 16.8 23.8 23.45 7.35	739.9 361.5 249.1 3663.9 1253.60	2.74 2.85 2.96 2.96 2.88 0.11	NT NT 0.03 NT 0.03	113. 112. 112. 114. 112.75	206.9 217.8 240.4 212.6 219.43 14.67	179. 239. 131. 180. 182.25	66.6 98.6 92.6 109.2 91.75	609.2 564.9 297.8 1203.8 668.93	2.42 2.73 2.82 2.64 2.65 0.17
87C0107 F 4/2 87C0127 F 4/2 87C0148 F 4/2 87C0164 F 4/2 87C0166 F 4/2 PARAMETER MEANS: STANDARD DEVIATIONS	F F F TER N DEV	4/2 4/2 4/2 4/2 4/2 4/2 4EANS:	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	134.7 126.4 NT 217.0 146.0 156.03	20.0 32.9 23.3 25.3 24.4 25.18	216.6 343.0 NT 441.2 568.3 392.28 149.07	2.70 2.83 2.90 2.53 2.83 2.76 0.15	NT NT NT NT 0.02	114. 112. 112. 112. 111. 112.20	214.7 230.7 NT 194.7 201.7 210.45	NT 212. NT 233. 136. 193.67	69.2 100.8 142.4 98.3 98.8 101.90 26.14	316.1 697.8 NT 516.1 471.7 500.43	2.76 2.68 2.31 2.31 2.74 0.33

	ŀ			CT 7115.		1 1	; ; ; ;		; ; ;	OC /OTHERDRON			
ANIMAL NUMBER	SEX	GROUP / SUBGROUP	DAY OF STUDY	NA	CAL	СНОГ	೪	ALT	ŢP	URIC	×	TRIG	A-G
87C0126 87C0130	[24 [24	1/2	43 43	154	6.8 FX	57.9 NT	0.73	29.5 NT	4.5 7.7	1.1 TN	5.9	149 NT	1.05
87C0151	. 64	1/2	4.3	153	8.1	68.6	0.57	39.1		1.1	2.0	71	1.00
87C0153	Œ	1/2	43	153	8.3	10.2	•	38.4	4.8	0.8	5.2	61	1.21
PARAME1 STANDARD		PARAMETER MEANS: ANDARD DEVIATIONS:		152.25 2.22	8.43	45.57	0.62	35.67 5.35	4.60	1.00	5.68	93.67	1.09
87C0146	Ĺ	2/2	43	161	8.8	NT		48.9	4.7	IN	7.2	N.	1.17
87C0169	(e,	2/2	43	152	ø.	59.0	•	35.4	5.3	6.0	6.1	80	1.20
87C0171	Œ	2/2	43	153		72.4	•	30.9	5.5	1.2	9.9	29	1.25
87C0175	لد	2/2	43	153		TN	0.68		4.5	1.2	5.4	IN	•
PARAME	STER	PARAMETER MEANS:		154.75	•	65.70	•	39.28	4.93	1.10	6.32	73.50	1.19
STANDARD		DEVIATIONS:		4.19	0.50	9.48	0.05	7.85	0.39	0.17	0.76	9.19	0.05
87C0109	(24	3/2	43	154	7.9	89.8	0.62	44.7	4.9	2.4	4.8	108	1.25
87C0112	ţ.	3/2	43	155	•	58.1	•	4.	4.8	1.1	5.3	74	1.45
87C0125	Ĺų	3/2	43	155	8.3	76.0	•	24.2	5.0	•	5.4	58	1.46
87C0132	[a.	3/2	43	157	8.4	36.7	0.61	•	4.7	1.7	6.2	74	1.72
PARAM	STER	PARAMETER MEANS:		155.25	•	65.15	.5	ů.	4.85	•	5.43	78.50	1.47
STANDARD		DEVIATIONS:		1.26	0.22	22.98	0.05	14.45	0.13	0.59	0.58	21.06	0.19
87C0107	(24	4/2	43	154	8.2	IN			4.9	1.3	9.9	TN	
87C0127	(La	4/2	43	155	8.4	22.1	•	31.0	4.8	2.5	5.8	68	•
87C0148	(a ₁	4/2	43	162	8.8	TN	•		5.1	NT		LN	•
87C0164	ધ્ય	4/2	43	141	7.7	53.7	•		4.5	1.4	4.7	61	•
8700166	Į1	4/2	43	160	8.5	59.4	0.64	36.0	4.8	1.6	4.6	94	1.44
PARAMI	ETER	PARAMETER MEANS:		154.40	8.32	45.07	•		4.82	1.63	5.28	81.33	•
STANDARD DEVIATIONS.	750	TABLONG.		٥	-	000	000	7	2	•	•		

LETTERMAN ARMY IN	N AR	LETTERMAN ARMY INSTITUTE OF RESIDITY OF TOXICOLOGY	TE OF RE	SEARCH	Appe	Appendix K: SERU STIDY NIMBER:	SERUM	CHEMISTRY 86007	STRY		STUDY S	START DATE:		01-APR-87
PRESIDIO OF	OF	SAN FRANCISCO, CA 9	sco, ca	94129							SUBC	SUBCHRONIC/90	DAY	FEEDING
ANIMAL	SEX	GROUP/ SUBGROUP	DAY OF STUDY	AST	BUN	CK CK	ALB	BILI	ij	GLU	IRON	ALK	LDHL	MAG
8700114	<u></u>	1/2	92		35 3	FZ	 	E P.Z	111	E Z	ΕN	66 A	E Z	2 5.4
8750116	, [1,	1/2	92	L	30.5	Ë	HN	E	113.	Ž	Ž		i Z	2.42
87C0117	<u> </u>	1/2	95	90.6	28.8	74.4	2.5	.05	112.	272.2	I N	81.1	278.2	2.26
87C0129	Œ	1/2	92	86.0	28.6	148.3	3.2	ΝŢ	117.	263.7	255.	59.6	212.4	S
87C0135	Œ	1/2	92	130.1	27.2	193.6	5.8	N	117.	NT	NT	58.3	319.9	2.42
87C0140	Œ	1/2	92	92.6	21.5	115.5	5.9	N	115.	274.0	L'A	89.2	84.5	
87C0145	ſω	1/2	92	TN	17.8	HN	LN	TN		LN	IN	67.5	H	
87C0165	Œ,	1/2	φ, (;	٣.	28.1	197.3	3.0	Z		268.1	FN	93.7	276.3	2.67
87C0168	[z,	1/2	92		NT	HN	IN	Z		LN	HN	LN	HN	
PARAME	TER	PARAMETER MEANS:		96.52	27.23	145.82	2.88	0.05	114.13	269.50	255.00	71.97	234.26	2.48
STANDARD DEVIATIONS	DEV	IATIONS:		19.60	5.38	52.34	0.26	,	2.42	4.59	1	14.10	92.11	0.15
87C0101	(E4	2/2	92		NT		NT	IN	112.	TN	IN	IN	IN	2.69
87C0111	(z _i	2/2	95	98.3	35.1	76.5	2.5	.01	114.	284.0	262.	62.2	236.4	2.66
87C0121	Ē	2/2	92	57	21.3		2.8	.07	114.	231.6	301.	67.8	262.6	2.38
87C0124	Œ	2/2	92		LN		H	NT	L	NT	NT	FN	N	2.73
87C0176	Œ	2/2	92	S	25.5		5.9	.03	114.	229.9	TN	68.1	157.0	2.36
87C0143	Œ,	2/2	95		LY		NŢ	LN	109.	L	H	L	I.N	5.66
87C0144	Ŀ	2/2	92		r T		LN	L	116.	L	TN	L	Ĭ	2.43
87C0155	Ŀı	2/2	92	149.7	22.0	67.3	5.9	.03	112.	238.6	TZ	45.9	330.5	2.53
87C0158	(E4	2/2	92		23.3		5.9	K	113.	NT	IN	59.3	NT	2.62
PARAME	TER	PARAMETER MEANS:		130.98	25.44	86.13	2.80	0.04	113.00	246.03	281.50	99.09	246.63	2.56
STANDARD) DEV	DEVIATIONS:		27.10	5.63	19.89	0.17	0.03	2.07	25.59	27.58	9.06	71.71	0.14
		, , , , , , , , , ,			111111						1			

LETTERMAN ARMY IN	N ARM	LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY		RESEARCH	Appe	Appendix K: SERU STIDY NIMBER:	SERUM	CHEMISTRY 86007	STRY		STUDY S	START DATE:		01-APR-87
PRESIDIO	OF :	PRESIDIO OF SAN FRANCISCO, CA 94	sco, ca	94129							SUBC	SUBCHRONIC/90		DAY FEEDING
ANIMAL		GROUP/	DAY OF								 	! ! ! ! !	{ { { { { { { { { { { { { { { { { { {	
NUMBER	SEX	SUBGROUP	STUDY	AST	BUN	ÇK	ALB	BILI	CL	GLU	IRON	ALK	THOT	MAG
87C0105	Œ	3/2	92	77.7	28.5	118.5	2.6	.03	113.	217.0	285.	58.3	369.3	2.49
87C0118	Ĺų	3/2	92	TN	37.5		IN	N	116.	TN	TN	68.2	HN	2.34
87C0122	Œı	3/2	92	94.4	23.9		3.1	IN	116.	233.4	N	74.6	241.1	2.39
87C0150	(L)	3/2	92	TN	N		IN	IN	115.	TN	H	NT	H	2.59
87C0152	Œ	3/2	92	LN	LN		IN	H	109.	H	TN	IN	r's	2.41
87C0160	Ĺ	3/2	92	LN	NT		IN	TN	K	IN	TN	LN	HN	2.81
87C0163	Œ,	3/2	92	167.0	18.6		3.0	IN	113.	268.3	TN	52.2	391.0	2.38
87C0167	Œ	3/2	92	290.9	31.9		3.0	IN	115.	309.6	NT	53.1	549.0	2.25
87C0173	Ŀı	3/2	92	LN	23.5		TN	TN	119.	TN	H	9.07	HZ	2.64
87C0181	ĹĿ	3/2	92	138.6	20.9		3.3	H	114.	239.0	NT	73.6	322.0	2.40
PARAMETER		MEANS:		153.72	26.40		3.00	0.03	114.44	253.46	285.00	64.37	374.48	2.47
STANDARD DEVIATIONS:	DEV	IATIONS:		84.44	6.63	162.25	0.25	•	2.74	36.44	ŧ	9.62	113.25	0.17
87C0120	i 124, 	4/2	92	! !	LN	i I	NT	Ę	NT	NT	TN	NT	HZ.	2.50
87C0128	Ĺ	4/2	92	H	26.1	TN	TN	HN	114.	TN	LN	70.8	Z L	2.16
87C0139	Œ	4/2	92		NT		NT	IN	118.	254.2	Ę	84.8	Ę	2.19
87C0149	(E4	4/2	35		19.9		3.0	TN	114.	TN	TN	67.3	Ľ	
87C0156	Œ	4/2	92		21.5		IN	Ŗ	113.	L	TN	79.3	N H	2.93
87C0157	Œ	4/2	95		NT		NŢ	L	115.	LN	H	62.0	N T	
87C0180	ĹĿ	4/2	95		TN		NT	Z	116.	IN	T.	Z.	HZ.	2.44
87C0182	Œı	4/2	92		IN		IN	Ę	110.	T'A	TN	78.1	IN	2.81
PARAMETER MEANS:	TER	MEANS:			22.50		3.00	1	114.29	254.20	ı	73.72	1	2.49
STANDARD DEVIATIONS:	DEV	IATIONS:		ı	3.22	ı			2.50	•	•	8.49	1	9.27
							1	1 1 1						

LETTERMAN ARMY IN	A ARM	LETTERMAN ARMY INSTITUTE OF RESE DIV OF TOXICOLOGY	te of ri	ESEARCH	Appendix Sruby	K: NUM	Σ	CHEMISTRY 86007		STUDY	START DATE:		01-APR-87 MOUSE/ICR
PRESIDIO OF	OF S	SAN FRANCISCO, CA 94	sco, ca	94129			!			SU	SUBCHRONIC/90	DA	FEEDING
ANIMAL	2	GROUP/	DAY OF	4	į	, c	8	E	É		:		
NUMBER	SEX	SUBGROUP	STUDI	AN .	CAL	CHOL	<u>x</u>	ALT	TP	URIC	×	TRIG	A-6
87C0114	Ĺει	1/2	92	154.7	8.5	TN	0.50			NT	6.0	TN	HN
87C0116	(Fr	1/2	92	158.2	დ დ.	TN	0.50			TN	4.4	TN	LN
87C0117	Ĺų	1/2	36	158.3	8.5	78.6	0.40			6.0	5.7	92	1.1
87C0129	ĹIJ	1/2	92	161.3	6.8	45.3	0.70	42.7	4.9	6.0	5.8	84	1.9
87C0135	Œ	1/2		159.5	8.8	TN	0.50			TN	6.1	LN	1.3
87C0140	Ĺų	1/2	92	159.3	0.6	47.7	06.0			9.0	5.3	85	1.6
87C0145	Ĺų	1/2	36	156.7	0.6	H	0.40			TN	6.2	TN	LN
87C0165	Ē	1/2	76	161.2	0.6	50.7	0.50			1.1	6.1	89	1.7
87C0168	Œı	1/2	95	162.3	9.7	TN	L'A			LN	5.3	LN	TN
PARAMETER MEANS:	TER !	MEANS:		159.06	8.92	55.58	0.55	$\mathbf{\sigma}$		0.88	99.9	82.25	1.52
STANDARD	DEV.	DEVIATIONS:		2.40	0.41	15.51	0.17	80		0.21	0.58	10.14	0.32
87C0101	Œ	2/2	92	9	0.6	IN	NT	1	NT	NT	5.8	HN	NT
87C0111	Ŀı	2/2	95	157.2	9.8	39.5	1.20	36.9	4.7	1.3	6.3	174	1.1
87C0121	Ē	2/2	92	œ	8.6	59.8	0.40		4.7	3.1	4.9	62	1.5
87C0124	[t4	2/2	92		9.5	IN	HN		IN	TN	6.4	Į	Ľ
87C0176	Ēų	2/2	92	60.2	9.5	57.8	0.10		4.8	1.3	4.6	88	1.5
87C0143	ſω	2/2	95	σ	ø. 8	TN	'n		NT	NT	6.3	L'A	TN
87C0144	Œ	2/2	92	S	9.1	LN	L'A		H	NT	6.5	H	HZ.
87C0155	Ĺ	2/2	95		9.8	61.5	0.40		5.0	4.8	5.4	161	1.4
87C0158	Ĺ	2/2	92	9	10.0	HN			5.1	TN	5.5	TN	1.3
PARAMETER MEANS:	TER 1	MEANS:		60	9.05	54.58			4.86	2.63	5.74	121.25	1.36
STANDARD DEVIATIONS	DEV	IATIONS:		78	0.44	10.36			0.18	1.68	0.69	54.71	0.17
11111111						1111111						111111111	

LETTERMAN ARMY IN DIV OF TOXICOLOGY	N AR	LETTERMAN ARMY INSTITUTE OF RESI DIV OF TOXICOLOGY	TE OF RU	ESEARCH	Appen	Appendix K: SERU STUDY NUMBER:	Σ	CHEMISTRY 86007		STUD	STUDY START DATE:	DATE:	01-APR-87
PRESIDIO	OF	PRESIDIO OF SAN FRANCISCO, CA 94	SCO, CA	94129						S	SUBCHRONIC/90		DAY FEEDING
ANIMAL	;		DAY OF				 	; ; ; ; ; ; ; ;	! ! !	 	1		1
NUMBER	SEX	SUBGROUP	STUDY	NA	CAL	СНОГ	S.	ALT	TP	URIC	×	TRIG	A -G
87C0105	(Eu	3/2	92	156.3	8.6	32.3	1.00	22.9	4.6	1.9	5.1	134	1 3
87C0118	(L)	3/2	92	156.9	8.5	IN	1.40	50.7	H	IN	6.7	Ę) • EZ
87C0122	Ĺ	3/2	95	160.3	9.1	LN	0.30	61.7	5.3	LN	5.3	Į	7
87C0150	Ŀı	3/2	95	161.1	4.6	TN	NT	TN	NT	L	6.9	Į	L
87C0152	Ĺ	3/2	92	160.6	9.1	TN	LN	13.8	L	L	6.1	Z	ž
87C0160	(a.	3/2	95	u,	9.7	NT	LN	LN	LN	NT	6.9	EX	EZ
87C0163	Ĺų	3/2	92	w	6.3	HZ	0.50	57.6	5.1	L	5.0	L	1.4
8 7C0167	Ĺų	3/2	95	160.3	9.5	44.6	0.80	77.6	9.4	1.6	6.2	8	
87C0173	Ĺ	3/2	95	v	9.5	LN	0.40	40.9	Z	LN	4	Z	FZ
87C0181	(L)	3/2	92	Ψ	8.6	TN	0.40	25.9	5.5	0.3	5.6	Ę	
PARAMETER MEANS:	TER	MEANS:		159.90	9.22	38.45	0.69	43.89	5.08	1.27	6.22	107.5	
STANDARD DEVIATIONS	DEV	IATIONS:		1.96	0.42	8.70	0.40	21.93	0.35	0.85	1.05	37.48	8 0.11
87C0120	Ĺ	4/2	92	158.9	8.4	NT	LN	LN	EZ.	T.N.	5.2	FZ	
87C0128	Ē	4/2	92	158.9	8.7	L	0.50	30.4	Ę	Ę	, r.	Į Į	T E
87C0139	Ŀı	4/2	92	159.5	8.7	TN	TN	29.9	Ę	TN	0.0	įĘ	: Z
87C0149	Ŀı	4/2	95	u,	8.7	TN	0.50	38.9	5.0	LN	9.4	LN	
87C0156	Œ	4/2	92	161.2	9.7	LN	0.40	31.9	L	TN		Ę) 1 E
87C0157	Ē	4/2	92	161.8	9.5	LN	IN	45.9	Ä	LN		Ę	Ž
87C0180	Œ	4/2	92	165.1	8.6	NT	TN	TN	TN	LN		ž	Į.V
87C0182	ш	4/2	95	161.3	10.0	NT	IN	30.0	NT	L	6.4	Ž	Ę
PARAMETER	TER 1	MEANS:		160.78	9.15	ı	0.47	34.50	5.00	ı	5.61		1.5
STANDARD DEVIATIONS	DEV	IATIONS:		5.09	0.61	ı	90.0	6.55	1	ı	0.69	t	
						1 6 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11111111		1 1 1				

HEMATOLOGY Appendix L:

Abbreviations/Units List of Hematology

Atypical lymphocytes (%)

Basophils (%) BAS

Blast (%)

BLA EOS HCT HGB

Eosinophils (%)

Hemoglobin (a/dl) Hematocrit (%)

Lymphocytes (%) LYM Mean Corpuscular Hemoglobin (picograms)

MCHC MCH

¥Ç

Mean Corpuscular Hemoglobin Concentration (g/dl)

Mean Corpuscular Volume (femtoliters)

Monocytes (%)

MOM RBC SEG

Erythrocytes $(x10^6/\mu 1)$

Polymorphonuclear Granulocytes (%)

Total Leukocyte Count $(x10^3/\mu 1)$

ANIMAL	SEX	GROUP / SUBGROUP	DATE DATA TAKEN	WBC	RBC	ндв	HCT	MCV	WCH	MCHC
87C0037	Σ	1/1	13-May-87	TN	9	17.8	0		~	5.
87C0041	Σ	1/1	- 1	1.7	0	4.	· &		7.	9
87C0077	Σ	1/1	- 1	1.1	9.	2	9		9	5.
87C0079	Σ	1/1	13-May-87	1.1	7.56	13.0	35.7	47	17.3	36.6
87C0080	Σ	1/1	•	0.7	7	0	6		9	
PARAMETER MEANS:	TER M	IEANS:		1.15	ن	13.6	8	47.6	7	5.
STANDARD		DEVIATIONS:		0.412	. 3.	2.729	7.84	•	•	
87C0020	Σ	2/1		IN		11.8	2	47	17.5	7.
87C0071	Σ	2/1	13-May-87	LN	Ġ.	14.6	39.7	4 6	7.	9
87C0088	Σ	2/1	8	1.2	7	4	。		7.	9
87C0090	Σ	2/1		FZ		17.0	ġ.	43	17.8	•
87C0098	Σ	2/1	ŧ	1.1	Ġ		43.7	47	7.	5.
PARAMETER MEANS:	TER M	EANS:		1.15	8.492	4.	40.46	47.4		36.5
STANDARD		DEVIATIONS:		0.071		1.906	5.377	1.14	0.4025	
87C0033	Σ	3/1	ထ	7.1	۲.	8.8	25.4		9	4.
87C0039	Σ	3/1	- 1	1.4	Ψ.	Ξ.	33.2		7.	4
87C0049	Σ	3/1	8	1.0	6.59	ä	33.4	53	17.8	35.1
87C0050	Σ	3/1	1	TN	•••		0		7.	9
87C0059	Σ	3/1	-	0.8	c4	12.1	32.8		9	9
PARAMETER MEANS:	TER M	EANS:		.2	"	1.7	2.9	48.2		5.
STANDARD		DEVIATIONS:		3.027	• !	2.028	5.172	•	0.7056	
87C0025	Σ	4/1	13-May-87	3.3	د.				٠.	7.
87C0046	Σ	4/1	13-May-87	•	Ġ	4	<u>ه</u>		7.	9
87C0054	Σ	4/1	- 1	•	۲.		6		80	9
87C0067	Σ	4/1	13-May-87	8.0	7.54	12.8	34.9	95	17.1	36.9
87C0072	Σ	4/1	- 1	•	ω,		щ		7	9
PARAMETER	TER M	MEANS:	ı	•	w.				7.	٠
STANDARD		DEVIATIONS:		0.9418	8	1.15	3.179	2.121	ق	٣,

LETTERMAN ARMY IN DIV OF TOXICOLOGY	ARMY	LETTERMAN ARMY INSTITUTE DIV OF TOXICOLOGY	CF RESEARCH	Appendix L:	E L	HEMATOLOGY	STUDY	START DATE:	01-APR-87
PRESIDIO	OF SA!	PRESIDIO OF SAN FRANCISCO,	CA 94129				SU	SUBCHRONIC/90 D	DAY FEEDING
	SEX S	GROUP/ SUBGROUP	CATE DATA TAKEN	RBC	HGB	HCT	MCV	МСН	MCHC
87C0021	Σ	1/1	03-JUL-87	8.00	14.0	39.5	48	17.3	35.5
87C0026	Σ	:/1	١,		14.2		47.	17.5	
87CC032	Σ	1/1	33-JUL-87	8.30	14.3	38.8	47.	17.3	36.9
87C0038	Σ	1/1	03-JUL-87	7.44	14.6	35.0	47.	•	41.6
87C0045	Σ	1/1	33-JUL-87	9.57	76.2	45.5	48.	17.1	
87C0066	Σ	1/1	03-JUL-87	•	15.9	45.0	49.	17.5	35.4
87C0075	Σ	1/1	-10L-	7.21	13.1	35.2	49.	18.2	
87C0082	Σ	1/1	C3-777-87	8.11		40.6	50.	19.0	37.7
8700083	Σ	1/1	33-JUL-87	6.01	13.2	29.7	49.	17.0	34.3
870003	Σ	1/1	33-JUL-87	8.35	14.3	38.9	47.	17.2	40.0
PARAMETER	ETER N	MEANS:		8.033	14.21	38.69	48.1	17.77	
STANDARD DEVIATIONS	D DEVI	(ATIONS:		0.9964	1.684	4.681	1.101	0.882	1.974
700030	l	2/1	03-JUL-87	4	8 · **	40.9	49.	17.7	36.3
87C0031	Σ	2/1	03-JUL-87	8.25	15.1	38.2	46.	18.3	39.5
87C0034	Σ	2/1	- 1	•	15.3	42.1	48.	17.4	
87C0036	Σ	2/1	3-JUL-	7.88	14.1	39.2	50.	18.0	35.9
87C0040	ĸ	2/1	3-JUL-		13.4	37.3	49.	17.8	36.0
87C0056	Σ	2/1	3-JUL-	66.6	1.8.7	50.4	48.	17.9	37.1
87C0063	Σ	2/1	3-JUL-	•		45.0	47.	17.4	36.6
87C0065	Σ	2/1	3-JUL-	•	ा ∙०३		49.	16.8	34.4
87C0081	Σ	2/1	3-JUL-	•		61.2	48.	18.4	38.7
87C0085	Σ	2/1	33-0UL-87	•	15.6	40.6	48.	19.7	40.9
PARAM	PARAMETER MEANS:	ÆANS:		8.562	16.12	43.3	48.2	17.94	37.18
STANDARD		DEVIATIONS:		1.067	3.110	7.409	1.135	0.7749	1.944

LETTERMAN ARMY IN DIV OF TOXICOLOGY	A ARMY	LETTERMAN ARMY INSTITUTE DIV OF TOXICOLOGY	OF RE	Appendix L: STUDY NUME	HEM	atology 86007	STUDY	START DATE:	급당
PRESIDIO OF		SAN FRANCISCO,	CO, CA 94129				SUS	SUBCHRONIC/90 D	DAY FEEDING
ANIMAL	SEX	GROUP / SEX SUBGROUP	DATE DATA TAKEN	RBC	ндв	HCT	MCV	МСН	MCHC
1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
87C0024	Σ	3/1	1	7.70	13.0	36.5	47.	16.9	35.6
87C0042	Σ	3/1	03-JUL-87	9.35	16.3	44.2	47.	17.6	37.0
87C0044	Σ	3/1	03-JUL-87	8.54	15.4	41.4	48.	18.1	37.2
87C0051	Σ	3/1	03-JUL-87	6.93	12.2	33.1	48.	17.6	00 11 10 10
87C0052	Σ	3/1	03-JUL-87	8.23	14.3	39.2	47.	17.4	35.6
87C0055	Σ	3/1	03-JUL-87	7.27	12.6	34.7	48.	17.4	55.3
87C0078	Σ	3/1	03-JUL-87	8.18	12.4	38.2	47.	15.3	32.5
87C0084	Σ	3/1	03-JUL-87	7.86	13.4	38.1	48.	17.1	36.
87C0094	Σ	3/1	03-JUL-87	9.14	15.3	42.9	47.	16.8	35.6
87C0096	Σ	3/1	03-JUL-87	8.30	15.1	41.2	50.	18.3	36.7
PARAN	ETER 1	PARAMETER MEANS:		8.15	14.0	38.95	47.7	17.25	35.94
STANDARD		DEVIATIONS:		0.7566	1.467	3.557	0.9487	0.8343	.389
	Σ	4/1	03-JUL-87	7.81	13.8	38.0	49.	17.7	35.3
87C0047	Σ	4/1	03-JUL-87	8.33	14.7	40.3	4.0.	1.1.1	35.6
87C0048	Σ	4/1	03-JUL-87	8.39	14.4	40.0	. કે.કે.	17.2	98.9
87C0057	Σ	4/1	03-JUL-87	•	11.1	32.0	48.		
87C0058	Σ	4/1	- 1	8.97	16.4	43.1	4.6.	ന ഓ പ	0.30
87C0061	Σ	4/1	- 1	9.32	16.7	46.7	50.	၁. မ ၁.	8.33
87C0062	Σ	4/1	03-JUL-87	•	17.7	46.4	48.		
87C0073	Σ	4/1	03-JUL-87	٠.	13.9	37.9	49.	٠	
87C0092	Σ	4/1	03-JUL-87	9.23	15.6	42.6	46.	5.9 5.0	36.6
87C0095	Σ	4/1	03-JUL-87	•	•	44.0	48.	•	ι,:
PARAN	PARAMETER 1	MEANS:		8.528	15.03	41.10	48.2	17.52	05.50
STANDARD	W DEV.	DEVIATIONS:		0.9443	1.880	4.455	1.033	0.5554	7.005
			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1					

LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY PRESIDIO OF SAN FRANCISCO,	ARMIXICOI	Y INSTITU LOGY AN FRANCI	TE OF RESEARCH SCO, CA 94129	Appendix L: STUDY NUME	35.	нематогосу k: 86007		STUD	STUDY START DATE: SUBCHRONIC/90	01 MO Day	01-APR-87 MOUSE/ICR Y FEEDING
ANIMAL	SEX	GROUP/ SUBGROUP	DATE DATA TAKEN	WBC	SEG	LYM	ATL	MON	EOS	BAS	BLA
87C0021	Σ	1/1	3-Jul-87	2.3	12	88	0	0	0		
8700026	Σ	1/1	3-Jul-87	5.4		88	0	0	0	0	. 0
87C0032	×:	1/1	3-Ju1-87	64		70	0	0	0	ပ	0
87C0038	Σ	1/1	3-Ju1-87	rel rel	18	82	0	0	0	0	0
87C0045	Σ	1/1	3-Ju1-87	2.7		06	0	0	0	0	0
8700066	Σ	1/1	3-Jul-87	1.7		62	0	0	0	0	0
87C0075	∑;	1,1	3-Ju - 37	0.1		99	0	0	0	တ	0
8700082	Σ	1/1	3-Jui-87	7.4		06	0	0	0	0	0
87C00E3	Z	1/1	3-Jul-87	1.0	10	06	0	0	0	c	0
87C0093	Σ	1/1	3-Jul-87	is a		80	0	0	O	O	0
PARAMETER	TER 1	MEANS:		1.51	19.40	80.60	0	0	0	0	0
SI		DEVIATIONS:		0.609	10.79	10.79	0	0	C	()	0
87C0030	Σ	2/1	3-Jul-87	1.6	30	7.0	0	0	0	O	0
87C0031	Ľ	2/1	3-Ju1-87	12	12	88	0	0	0	U	0
8700034	Σ	2/1	3-Ju1-87	l~ mi	14	98	0	0	0	O	0
87C0036	23	2/1	3-Ju1-87	£.	10	06	0	0	0	0	0
87C0040	Σ	2/1	3-Jul-87	•		33	0	0	1	0	0
87C0056	Σ	2/1	3-Ju1-87	1.6	12	හ හ	0	0	0	()	0
87C0063	Σ	2/1	3-Ju1-87	•	32	68	0	0	0	O	0
8700065	Σ	2/1	3-Ju1-87	•	30	70	0	0	0	0	0
87C0091	Σ:	2/1	3-Jul-87		14		0	0	0	0	0
87C0085	×	2/1	3-Ju1-87	2.7			0	0	ပ	0	0
PARAMETER		MEAUS:		2.64	23.40	76.5	0	0	0.1	0	0
STANDARD		DEVIATIONS:		1.119	7	•	0	0	0.3162	0	0
	1										1

LETTERMAN ARMY IN DIV OF TOXICOLOGY		LETTERMAN ARMY INSTITUTE DIV OF TOXICOLOGY	OF RESEA	Appendix L: STUDY NUME	띭	н емат огосх к: 86007		STUDY	START	: 301	01-AFR-87 MOUSE/ICR
PRESIDIO OF		SAN FRANCISCO,	SCC, CA 94129	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SUBCHRONIC/90	DAY	FEEDING
ANIMAL		GROUP/	DATE DATA								
NUMBER	SEX	SUBGROUP	TAKEN	WBC	SEG	LYM	ATL	MOM	EOS	BAS	BLA
87C0024	Σ	3/1	3-Jul-87	2.4	10	06	0	0	0	0	0
87C0042	Σ	3/1	3-Ju1-87	FN	14	86	0	0	0	0	0
87C0044	Σ	3/1	3-Jul-87	1.9	တ	92	0	0	0	0	0
87C0051	Σ	3/1	3-Jul-87	TN	26	74	0	0	0	0	0
87C0052	Σ	3/1	3-Ju1-87	3.0	10	06	0	0	0	0	0
87C0055	Σ	3/1	3-Ju1-87	6.0	9	94	0	0	0	0	0
87C0078	Σ	3/1	3-Jul-87	1.5		82	0	0	0	0	0
87C0084	Σ	3/1	3-Ju1-87	1.0	16	94	0	0	0	0	0
87C0094	Σ	3/1	3-Jul-87	TN	14	86	0	0	0	0	0
87C0096	Σ	3/1	3-Jul-87	5.8	~	86	0	0	0	0	0
PARAME	TER	PARAMETER MEANS:		2.36	12.40	۲.	0	0	0	0	ပ
STANDARD	1	DEVIATIONS:		1.692		6.786	0	0	0	0	O
87C0027	Σ	4/1	3-Jul-87	1.5	18	82	0	0	0	0)
87C0047	Σ	4/1	3-Jul-87	2.3	42	က်	0	0	0	0	O
87C0048	Σ	4/1	3-Jul-87	6.5	52	48	0	0	0	0	,,
87C0057	Σ	4/1	3-Jul-87	6.0		82	0	0	0	0	()
87C0058	Σ	4/1	3-Ju1-67	2.5		7.8	0	0	0	Çì	0
8700061	Σ	4/1	3-Ju1-87	2.5		60	0	0	0	0	0
87C0062	Σ	4/1	3-Ju1-67	3.6		72	0	0	0	ပ	0
87C0073	Σ	4/1	3-Ju1-87	2.8	14	86	0	0	0	0	0
87C0092	Σ	4/1	3-Ju1-87	TN			0	0	0	0	0
8700095	Σ	4/1	3-Ju1-87	3.1			0	0	0	O	0
PARAMETER MEANS	STER	MEAIIS:		2.86			0	0	0	0	0
STANDARD		DEVIATIONS:		1.586	7	•	0	0	0	0	0
1 1 1 1 1 1 1	1										1

RANCISCO, CA 94129 CARECHEONIC/90 SUBCHRONIC/90 CAPE DATE DATA RBC HGB HCT MCV MCH 1/2 03-JUL-87 9.96 17.8 48.3 49. 17.8 1/2 03-JUL-87 9.96 17.8 48.3 49. 17.0 1/2 03-JUL-87 9.96 17.1 48.3 49. 17.0 1/2 03-JUL-87 9.64 13.7 38.1 48. 17.2 1/2 03-JUL-87 9.99 18.1 49.7 49. 17.7 1/2 03-JUL-87 8.63 18.1 49.7 49. 17.7 1/2 03-JUL-87 8.99 18.1 49.7 49. 17.7 1/2 03-JUL-87 8.99 15.0 42.2 49.8 17.75 1/2 03-JUL-87 8.59 15.3 42.2 48.8 17.75 1/2 03-JUL-87 8.59 17.0 46.3 48.8 17.8 <th>LETTERMAN ARMY IN</th> <th>A ARMY</th> <th>LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY</th> <th>S OF RESEARCH</th> <th>Appendix L: STUDY NUME</th> <th>HEM.</th> <th>ATOLOGY 86007</th> <th>STUDY</th> <th>START DATE:</th> <th>01-APR-87</th>	LETTERMAN ARMY IN	A ARMY	LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY	S OF RESEARCH	Appendix L: STUDY NUME	HEM.	ATOLOGY 86007	STUDY	START DATE:	01-APR-87
CROUGY/LINE DATE DATA RBC HGB HCT MCH	PRESIDIO	OF SA	N FRANCISC	94		1		SUE		DAY FEEDING
F 1/2 03-JUL-87 9.96 17.8 48.3 49. 17.8 35.1 F 1/2 03-JUL-87 7.08 12.1 33.7 47. 17.0 35.	ANIMAE	SEX	GROUP / SUBGROUP	DATE	RBC	нсв	нст	MCV	МСН	МСНС
F 1/2 03-JUL-87 7.08 12.1 33.7 47. 17.0 35.1 F 1/2 03-JUL-87 7.34 12.4 35.1 48. 17.0 35.1 F 1/2 03-JUL-87 9.64 12.4 35.1 48. 17.0 35. F 1/2 03-JUL-87 8.64 15.6 41.8 48. 17.2 35. F 1/2 03-JUL-87 8.63 16.4 45.9 49. 17.9 36. F 1/2 03-JUL-87 8.93 16.6 45.9 51. 49. 17.9 36. NMETER MEANS: 8.03 16.6 45.9 51. 49. 17.7 36. NATIONS: 8.03 16.6 45.9 50. 18.0 36. 36. F 2/2 03-JUL-87 8.63 17.0 46.3 48. 17.7 36. F 2/2 03-JUL-87 8.63 1	87C0114	Ŀı	1/2	8		17.8		49.		
F 1/2 03-JUL-87 7.34 12.4 35.1 48. 17.0 35.3 F 1/2 03-JUL-87 7.96 13.7 38.1 48. 17.2 35.3 F 1/2 03-JUL-87 9.64 13.6 41.8 48. 17.2 35. F 1/2 03-JUL-87 9.99 18.1 45.2 49. 18.2 37. F 1/2 03-JUL-87 8.93 18.1 49.7 49. 18.2 37. NABLER MEANS: 8.03 18.1 49.7 49. 17.7 36. NABLER MEANS: 8.608 15.0 42.0 50. 18.0 37. NABLER MEANS: 8.608 15.35 42.22 48.8 17.75 36. NABLER MEANS: 8.608 15.35 42.22 48.8 17.75 36. NABLER MEANS: 9.20 17.0 46.3 48. 17.8 36. F 2/2	8700116	ĹŁĄ	1/2	03-JUL-87	7.08	12.1	33.7	47.	•	
F 1/2 C3-JUL-87 7.96 13.7 38.1 48. 17.2 35. F 1/2 C3-JUL-87 9.64 15.6 41.8 48. 17.2 37. F 1/2 C3-JUL-87 9.99 18.1 49.7 49. 17.7 36. F 1/2 C3-JUL-87 8.63 18.1 49.7 49. 17.7 36. F 1/2 C3-JUL-87 8.93 16.6 45.9 51. 18.7 36. F 1/2 C3-JUL-87 8.63 15.35 42.2 48.8 17.7 36. AND DEVIATIONS: 0.9769 2.071 5.34 1.135 0.5462 0. AND DEVIATIONS: 0.9769 2.071 5.34 1.135 0.5462 0. F 2/2 0.370L-87 8.59 15.9 46.3 48.8 17.7 36.2 F 2/2 0.370L-87 8.59 15.9 47.6 <	87C3117	Ŀı	1/2	03-JUL-87	7.34	12.4	35.1	48.	•	35.4
F 1/2 03-JUL-87 8.64 15.6 41.8 48. 48. 18.0 37. F 1/2 03-JUL-87 9.18 16.4 45.4 49. 17.9 36. F 1/2 03-JUL-87 9.99 18.1 49.7 49. 17.9 36. F 1/2 03-JUL-87 8.93 16.6 45.9 51. 18.2 37. F 1/2 03-JUL-87 8.93 16.6 45.9 51. 18.7 36. AND DEVIATIONS: 8.60 15.35 42.22 48.8 17.75 36. AND DEVIATIONS: 8.60 15.9 46.3 48.8 17.75 36. P 2/2 03-JUL-87 8.99 15.9 46.3 49. 18.0 36. F 2/2 03-JUL-87 8.62 15.9 43.6 49. 17.7 40.8 40. 17.7 40.8 40. 40. 40. 40.	87C0129	Ŀı	1/2	C3-JUL-87	7.96	13.7	38.1	48.	•	35.9
F 1/2 02-JUL-87 9.18 16.4 45.4 49. 17.9 36. F 1/2 02-JUL-87 9.99 18.1 49.7 49. 17.7 36. F 1/2 05-JUL-87 8.93 16.6 45.9 50. 18.7 36. F 1/2 03-JUL-87 8.93 16.6 45.0 50. 18.0 37. ARD DEVIATIONS: 8.608 15.35 42.22 48.8 17.75 36. ARD DEVIATIONS: 0.9769 2.071 5.344 1.135 0.5462 0. F 2/2 03-JUL-87 8.59 17.0 46.3 48.8 17.75 36. F 2/2 03-JUL-87 8.59 15.9 43.6 49. 17.9 36. F 2/2 03-JUL-87 8.62 15.7 42.6 49. 17.9 36. F 2/2 03-JUL-87 8.62 15.7 42.6 <th< td=""><td>8700135</td><td>Ĺ</td><td>1/2</td><td>03-JUL-87</td><td>•</td><td>15.6</td><td>41.8</td><td>48.</td><td>18.0</td><td>37.3</td></th<>	8700135	Ĺ	1/2	03-JUL-87	•	15.6	41.8	48.	18.0	37.3
F 1/2 0°-"UL-87 8.63 15.8 42.2 49. 18.2 37. F 1/2 0°-JUL-87 9.99 18.1 49.7 49. 17.7 36. F 1/2 0°-JUL-87 8.93 16.6 45.9 51. 17.7 36. F 1/2 0°-JUL-87 8.608 15.35 42.02 48.8 17.75 36. RD DEVIATIONS: 0.9769 2.071 5.344 1.135 0.5462 0. F 2/2 0.9769 2.071 46.3 48. 17.75 36. F 2/2 0.3-JUL-87 8.59 17.0 46.3 48. 17.7 36. F 2/2 0.3-JUL-87 8.62 15.9 43.6 49. 17.8 36. F 2/2 0.3-JUL-87 8.61 15.7 42.6 49. 17.8 36. F 2/2 0.3-JUL-87 8.61 15.7 42.6	87C0140	Ĺ	1/2	03-JUL-87	•	16.4	45.4		-	36.1
F 1/2 0.5-JUL-87 9.99 18.1 49.7 49. 17.7 36. F 1/2 0.3-JUL-87 8.93 16.6 45.9 51. 18.7 36. AMETER MEANS: AMETER MEANS: AS JUL-87 8.69 15.0 42.0 50. 48.0 35. AND DEVIATIONS: 0.9-JUL-87 8.69 2.071 5.344 1.135 0.5462 0.55 F 2/2 0.3-JUL-87 8.59 17.0 46.3 48. 17.75 36. F 2/2 0.3-JUL-87 8.59 15.9 43.6 49. 17.0 48. 17.7 36. F 2/2 0.3-JUL-87 8.62 15.9 43.6 49. 17.9 36. F 2/2 0.3-JUL-87 8.61 15.7 42.5 49. 17.3 36. F 2/2 0.3-JUL-87 9.82 15.7 40.8 43.0 17.3	87C0145	Ŀı	1/2	-10r - C	•	15.8	42.2		ω.	37.3
F 1/2 03-JUL-87 8.93 16.6 45.9 51. 18.7 36. AMETER MEANS: 8.7 15.0 42.0 50. 18.0 35. AND DEVIATIONS: ARD DEVIATIONS: 8.608 15.35 42.2 48.8 17.75 36. F J/2 0.9769 2.071 5.344 1.135 0.5462 0. F J/2 03-JUL-87 8.69 17.0 46.3 48. 17.7 36. F Z/2 03-JUL-87 8.69 15.9 43.6 49. 17.9 36. F Z/2 03-JUL-87 8.62 15.7 42.6 49. 17.9 36. F Z/2 03-JUL-87 8.61 15.7 42.6 49. 13.2 36. F Z/2 03-JUL-87 9.27 16.3 49. 17.7 37. F Z/2 03-JUL-87 9.27 142.6 49. 17.3	8700165	មែ	1/2	8	•		49.7	49.	•	36.4
F 1/2 03-JUL-87 8.37 15.0 42.0 50. 18.0 35.3 AMETER MEANS: 8.608 15.35 42.22 48.8 17.75 36.9 ARD DEVIATIONS: 0.9769 2.071 5.344 1.135 0.5462 0. F 2/2 03-JUL-87 9.59 17.0 46.3 48. 17.7 36. F 2/2 03-JUL-87 8.99 15.9 43.6 49. 17.9 36. F 2/2 03-JUL-87 8.62 15.9 43.6 49. 17.9 36. F 2/2 03-JUL-87 8.61 15.7 42.5 49. 17.3 36. F 2/2 03-JUL-87 8.61 15.7 42.6 49. 17.3 36. F 2/2 03-JUL-87 9.27 16.3 43.6 49. 17.3 36. F 2/2 03-JUL-87 9.82 17.8 49.0 50	87C0168	[±4	1/2	8	•	•	S.	51.	18.7	
AMETER MEANS: ARD DEVIATIONS: O.9769 2.071 F 2/2 O.3-JUL-87 O.3-	8700178	ĹĿij	1/2	- 1	•		ς.			.5
F 2/2 03-JUL-87 9.59 17.0 46.3 48. 17.7 36. F 2/2 03-JUL-87 8.59 17.0 46.3 48. 17.7 36. F 2/2 03-JUL-87 8.59 15.9 43.6 49. 18.0 36. F 2/2 03-JUL-87 8.92 15.9 43.6 49. 17.8 36. F 2/2 03-JUL-87 8.62 15.7 42.5 49. 17.9 36. F 2/2 03-JUL-87 8.61 15.7 42.6 49. 18.3 36. F 2/2 03-JUL-87 9.27 16.3 40.8 48. 17.7 37. F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36. F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.8 37. AMPD DEJANS: 11.83 2.549 6.7	PARAN	ETER	MEANS:		9.	٣.	ζ.	ω,	. 7	6.2
F 2/2 03-JUL-87 9.59 17.0 46.3 48 17.7 36.6 F 2/2 03-JUL-87 6.58 9.9 27.0 48 17.7 36.5 F 2/2 03-JUL-87 8.92 15.9 43.6 49 17.9 36.9 F 2/2 03-JUL-87 8.61 15.7 42.5 49 17.9 36.9 F 2/2 03-JUL-87 8.61 15.7 42.6 49 18.3 36.9 F 2/2 03-JUL-87 9.27 16.3 43.6 47 17.7 37.4 F 2/2 03-JUL-87 9.82 17.7 40.8 48. 17.3 36.3 AMETER MEANS: 50.3-JUL-87 7.99 19.9 53.1 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4			'IATIONS:		• ;	• 1	.34	.13	•	0.6571
F 2/2 03-JUL-87 8.59 15.9 43.6 49. 18.0 36.5 F 2/2 03-JUL-87 8.92 15.9 43.6 49. 17.8 36.9 F 2/2 03-JUL-87 8.62 15.7 42.6 49. 17.9 36.5 F 2/2 03-JUL-87 8.61 15.7 42.6 49. 13.2 37.9 F 2/2 03-JUL-87 9.27 16.3 43.6 47. 17.7 37.4 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 AMETER MEANS: 17.9 19.9 53.1 50. 18.8 37.5 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	97C0101	(Eu	2/2	1	9.59	17.0		48.	17.7	
F 2/2 03-JUL-87 5.58 9.9 27.0 48. 17.8 36.6 F 2/2 03-JUL-87 8.92 15.9 43.6 49. 17.9 36.5 F 2/2 03-JUL-87 8.62 15.7 42.5 49. 17.9 37.0 F 2/2 03-JUL-87 9.27 16.3 43.6 47. 17.7 37.4 F 2/2 03-JUL-87 8.55 14.7 40.8 48. 17.3 36.2 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.44	8700111	Ēų	2/2	03-JUL-87	და. ფ	15.9	43.6	49.	18.0	36.5
F 2/2 03-JUL-87 8.92 15.9 43.6 49. 17.9 36.5 F 2/2 03-JUL-87 8.62 15.7 42.6 49. 13.2 37.0 F 2/2 03-JUL-87 9.27 16.3 43.6 47. 17.7 37.4 F 2/2 03-JUL-87 9.27 16.3 40.8 48. 17.7 37.4 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	8700121	Ĺij	2/2	03-JUL-87	•	•	27.0	48.	•	36.6
F 2/2 03-JUL-87 8.62 15.7 42.5 49. 13.2 37.0 8.61 15.7 42.6 49. 13.2 37.0 8.61 15.7 42.6 49. 13.3 36.9 36.9 F 2/2 03-JUL-87 9.27 16.3 43.6 47. 17.7 37.4 F 2/2 03-JUL-87 9.82 14.7 40.8 48. 17.3 36.2 36.3 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 36.3 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	87C0124	ĹĿį	2/2	03-JUL-87	•	15.9	43.6		•	36.5
F 2/2 03-JUL-87 8.61 15.7 42.6 49. :8.3 36.9 F 2/2 03-JUL-87 9.27 16.3 43.6 47. 17.7 37.4 F 2/2 03-JUL-87 8.55 14.7 40.8 48. 17.3 36.2 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	87CC176	Ĺų	2/2	03-JUL-87	•	15.7	42.5		•	37.0
F 2/2 03-JUL-87 9.27 16.3 43.6 47. 17.7 37.4 F 2/2 03-JUL-87 8.55 14.7 40.8 48. 17.3 36.2 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	87C0134	Ŀı	2/2	3-JUL-	•	15.7	42.6		•	36.9
F 2/2 03-JUL-87 8.55 14.7 40.8 48. 17.3 36.2 F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 F 2/2 03-JUL-87 7.99 19.9 53.1 50. 18.8 37.5 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	87CC143	ŢŦI	2/2	- 1	•	16.3	43.6		17.7	37.4
F 2/2 03-JUL-87 9.82 17.8 49.0 50. 18.2 36.3 F 2/2 03-JUL-87 7.99 19.9 53.1 50. 18.8 37.5 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	8700144	Ŀ	2/2	- 1	•		40.8	48.	•	36.2
F 2/2 03-JUL-87 7.99 19.9 53.1 50. 18.8 37.5 AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DEJIATIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	8700155	Ĺų	2/2	8-	•	•	6	50.		36.3
AMETER MEANS: 8.584 15.88 43.21 48.7 17.99 36.7 ARD DE/INTIONS: 1.183 2.549 6.756 0.9486 0.4121 0.4	87C0158	ĹĿı	2/2	-JUL-	•	•	53.1	50.	•	•
1.183 2.549 6.756 0.9486 0.4121 0.4	PARA	IETER	MEANS:		•	₩.	43.21	48.7	6.	7.
	STANDA	W DE 1	TATIONS:		1.183	. 54	6.756	.948	•	4.

LETTERMAN ARMY IN DIV OF TOXICOLOGY PRESIDIO OF SAN F	XICOLC OF SAN	LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY PRESIDIO OF SAN FRANCISCO,	OF RESEARCH	Appendix L: STUDY NUME	HEM!	ATOLOGY 86007	STUDY	START DATE:	01-APR-87 MOUSE/ICR DAY FEEDING
ANIMAL	SEX 8	GROUP/ SUBGROUP	DATE DATA TAKEN	RBC	нсв	нст	MCV	МСН	МСНС
87C0105	Ēų	3/2	03-JUL-87	8.45	14.4	39.9	47.	17.1	36.0
87C0118	Ŀı	3/2		8.41	14.3	39.4	47.	17.0	36.2
87C0122	بعا	3/2	03-JUL-87	9.52	15.8	43.2	45.	16.7	36.6
87C0150	Ĺ	3/2		8.08	14.9	41.0	51.	18.5	36.4
87C0152	Ĺų	3/2	03-JUL-87	7.57	14.9	40.6	47.	17.4	36.7
87C0160	Ē	3/2	03-JUL-87	66.6	19.0	52.3	51.	18.3	36.3
87C0163	Ŀ	3/2	03-JUL-87	8.55	15.7	43.1	50.	18.4	36.4
87C0167	៤រ	3/2	1	8.52	15.6	43.3	51.	18.4	36.0
87C0173	بعا	3/2	03-JUL-87	8.21	15.0	40.3	49.	18.4	37.3
87C0181	Ĺ	3/2	03-JUL-87	8.92	16.3	44.6	50.	18.3	36.7
PARAM	PARAMETER MEANS:	JEANS:		8.622	15.59	42.77	48.8	17.85	36.46
STANDARD	D DEVI	DEVIATIONS:		0.7013	1.357	3.775	2.15	0.7106	0.3894
7	Ŀ	4/2	03-JUL-87	8.77	15.4	41.2	47.	17.6	37.4
87C0128	Ŀ	4/2	03-JUL-87	66.6	18.6	51.4	49.	18.0	36.3
87C0139	ĹL,	4/2	03-JUL-87	9.00	15.7	44.8	50.	17.5	34.9
87C0149	Ŀı	4/2	03-JUL-87	•	15.0	41.5	50.	17.9	36.1
87C0154	[e,	4/2	03-JUL-87	8.53	14.6	40.7	48.	17.2	35.9
87C0156	ĮŦ1	4/2		8.50	•	41.9	49.	18.6	37.6
87C0157	Ŀ	4/2	1	7.09	12.8	35.3	50.	18.1	36.1
87C0174	Ĺτι	4/2	03-JUL-87	66.6	18.5	49.7	48.	17.8	37.3
87C0180	Ĺ'n	4/2	03-JUL-87	•	19.6	53.7	50.	18.2	36.6
87C0182	ĹĿ	4/2	03-JUL-87	•	17.4	47.4	47.	17.4	36.6
PARAM	PARAMETER MEANS:	JEANS:		9.022	16.34	44.76	48.8	17.83	36.48
STANDARD		DEVIATIONS:		0.9709	2.120	5.704	1.229	0.4193	0.8133
					1-	11111111111			1467666111

LETTERMAN ARMY IN DIV OF TOXICOLOGY PRESIDIO OF SAN F	XICO	LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY PRESIDIO OF SAN FRANCISCO, (re of Research SCO, CA 94129	Appendix L: STUDY NUME	35.	HEMATOLOGY R: 86007		STUDY	START	: D A	01-APR-87 MOUSE/ICR DAY FEEDING
ANIMAL	SEX	GROUP/ SUBGROUP	DATE DATA TAKEN	WBC	SEG	MAT	ATL	MON	EOS	BAS	BLA
87C0114	ĹĿı	1/2	3-Jul-87	2.8	24	76	0	0	0	0	0
8700116	į,	1/2	3-Jul-87	1.1	14	9 g	0	0	0	0	0
87C0117	ĹĿı	1/2	3-Jul-87	0.5	14	98	0	0	0	0	0
87C0129	(L)	1/2	3-Jul-87	6.0	24		0	0	0	0	0
87C0135	Ĺ	1/2	3-Jul-87	1.0		7.8	0	0	0	0	0
87C0140	Ĺų	1/2	3-Ju1-87	1.3		80	0	0	0	0	0
87C0145	Ĺų	1/2	3-3:1-87	1.6	20	ဝ	0	0	0	0	0
87C0165	Ĺų	1/2	3-001-97	1.2		78	0	0	0	0	0
87C0168	Ĺ	1/2	3-Jul-87	1.6	14	98	0	0	0	ပ	0
87C0178	ĹĿı	1/2	3-Jul-87	1.0		7.0	0	0	0	0	0
PARAME	TER !	PARAMETER MEANS:		1.3		79.6	0	0	0	0	0
STANDARD		DEVIATIONS:	;	0.62	5.232	5.232	0	0	0	0	0
87C0101	Ĺŧą	2/2	3-Jul-87	2.3	20	80	0	0	0	0	0
87C0111	Ĺ	2/2	3-Jul-87	1.8	12	88	0	0	0	0	0
87C0121	Şe4	2/2	3-Jul-87	0.7	14	86	0	0	0	0	0
87C0124	Ŀı	2/2	3-Jul-87	0.7	24	97	0	0	ပ	0	0
87C0176	ĹĿij	2/2	3-Ju1-87	2.3	0	06	0	0	0	0	0
87C0134	Ĺ,	2/2	3-Ju1-87	1.2	36	64	0	0	0	0	0
87C0143	Ĺŧ	2/2	3-Jul-87	1.1		99	0	0	0	0	0
87C0144	ĹĿı	2/2	3-Jul-87	1.3	10	06	0	0	0	0	0
87C0155	Ŀı	2/2	3-Jul-87	2.0	18	82	0	0	0	0	0
87C0158	ĹĿı	2/2	3-Ju1-87	2.0	22	78	0	0	0	0	0
PARAMETER MEANS:	TER	MEANS:		1.54	20.00	80	0	0	0	0	0
STANDARD DEVIATIONS	DEV	TATIONS:		0.6168	9.286	9.286	0	0	0	0	0
1	1	 				; ; ; ;	1 1 1 1 1				

LETTERMAN ARMY IN DIV OF TOXICOLOGY PRESIDIO OF SAN F	XICO OF S	LETTERMAN ARMY INSTITUTE OF DIV OF TOXICOLOGY PRESIDIO OF SAN FRANCISCO,	TE OF RESEARCH SCO, CA 94129	Appendix L: STUDY NUME	<u> </u>	HEMATOLOGY R: 86007		STUDY	START	: 01 MO DAY	01-APR-87 MOUSE/ICR Y FEEDING
ANIMAL	SEX	GROUP / SUBGROUP	DATE DATA TAKEN	WBC	SEG	гхм	ATL	MON	EOS	BAS	BLA
87C0105	ഥ	3/2	3-Jul-87	2.0	42	58	0	0	0	0	0
87C0118	Ŀ	3/2	3-Ju1-87	0.8	16	84	0	0	0	0	0
17C0122	Ŀ	3/2	3-Ju1-87	2.6	18	82	0	0	0	0	0
8700150	ĹĿ	3/2	3-Jul-87	1.1	36	64	0	0	0	0	0
87C 1152	Ĺų	3/2	3-Ju1-87	1.2	10	06	0	0	0	0	0
87C0160	Ĺų	3/2	3-Ju1-87	2.1	10	06	0	0	0	0	0
87C0163	ĹĿij	3/2	3-Jul-87	1.4	20	80	0	0	0	0	0
87C0167	Ĺ	3/2	3-Ju1-87	1.3	14	98	0	0	0	0	0
87C0173	Ĺij	3/2	3-Ju1-87	1.4	20	80	0	0	0	0	0
87C0181	Ŀı	3/2	3-Jul-87	1.2	22	78	0	0	0	0	0
PARAMETER MEANS:	TER	MEANS:		1.51	•	79.2	0	0	0	0	0
STANDARD		DEVIATIONS:		0.5486	10.51	10.51	0	0	0	0	0
87C0120	Ĺ	4/2	3-Jul-87	1.4	18	82	0	0	0	0	0
97C0128	ĹĻ	4/2	3-Ju1-87	1.3	34	99	0	0	0	0	0
87C0139	ĹĿı	4/2	3-Ju1-87	1.2	22	78	0	0	0	0	0
87C0149	Ĺų	4/2	3-Ju1-87	6.0		78	0	0	0	0	0
87C0154	ш	4/2	3-Ju1-87	1.0	32	68	0	0	0	0	0
87C0156	Ĺų	4/2	3-Jul-87	1.8		72	0	0	0	0	0
87C0157	Ĺ	4/2	3-Ju1-87			98	0	0	0	0	0
87C0174	Ĺų	4/2	3-Ju1-87			82	0	0	0	0	0
87C0180	Ĺ	4/2	3-Jul-87	3.8		82	0	0	0	0	0
87C0182	Ĺų	4/2	3-Ju1-87	TZ	12	88	0	0	0	0	0
PAPAME	TER	PARAMETER MEANS:		1.63	21.80	78.2	0	0	0	0	c
STANDARD DEVIATIONS	DEV	IATIONS:		996.0	7.391	7.391	0	0	0	0	0
1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1					: : : : : : : : : : : : : : : : : : : :

Appendix M: ORGAN WEIGHTS

ES1010 (AN F E/IC	CA 941	58	REPORT	FOR	START	CRIFICE NUMBER DATE: 01-APR-87	R (ALL SUBGROUPS -87	ouPs)	STUDY TYPE:
INA /SE	GROUP/ SUBGROUP	TERMINAL BODY WT. GMS	BRA	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL OVARIES	TESTES	
37/H	1/1	34.00	0.522	1.795	0.569	0.225	0.096		0.263	
77/H		37.00	0.518	2.150	0.618	0.211	0.139		0.308	
M/62		39.00	0.470	1.999	0.424	0.149	0.112		0.279	
80/M	1,1	38.0	0.526	1.934	0.543	0.187	0.096		0.319	
•	STANDARD	DEVIATION:	0.026	0.128	0.077	0.029	0.018		0.026	
20/H		33.00	0.528	2.004	0.489	0.157	0.110		0.282	
71/H		38.00	0.483	1.912	0.608	0.176	0.096		0.249	
88/M		35.00	0.516	1.882	0.585	0.185	0.114		0.260	
M/06	2/1	41.00	0.474	1.321	0.575	0.226	0.094		0.294	
98/M	2/1	32.00	0.488	1.558	0.427	0.147	0.112		0.290	
			0.498	1.735	0.537	0.178	0.105		0.275	
	STANDARD	DEVIATION:	0.023	0.285	3.070	0.051	600.0		0.020	
33/H	3/1	35.00	0.465	2.196	0.454		0.405		0.254	
39/#	3/1	40.00	0.452	2.088	0.505	•	0.104		0.243	
H/67		37.00	0.469	2.166	0.481	0.193	0.088		0.225	
50/H		33.00	0.452	1.914	0.478	•	0.080		0.249	
29/H			0.552	1.943	0.493	•	0.092		0.311	
		M E A M:	0.478	2.061	0.476	•	0.154		0.256	
	STANDARD	DEVIATION:	0.042	0.128	0.031	• •	0.141		0.032	
25/M	4/1	33.00	0.503	1.930	0.489	0.198	0.115		0.248	
M/97		32.00	0.548	1.613	0.468	0.179	0.073		0.296	
54/H	4/1	33.00	0.506	1.974	0.544	0.244	0.095		0.285	
M//9		37.00	0.568	1.895	0.560	0.190	0.114		0.307	
72/M		٠	0.562	1.828	0.416	0.206	0.117		0.252	
	2040147		0.037	040.	0.440	0.202	0.102		0.278	

Appendix M (cont.): ORGAN WEIGHTS

		* * * * * * * * * * * * * * * * * * * *									
PRESIDIO OF SAN FRANCISCO, CA	OF SAN FRA	TRESIDIO OF SAN FRANCISCO, CA 94129 Species: Mouse 1158	29	REPORT	FOR INTE	OR INTERIM SACRIFICE N	FICE NUMBER	(ALL	SUBGROUPS		
	MOUSE/168				STUDY	START DI	TE: 01-APR-87	n.87			STUDY TYPE
ANIMAL NO/SEX	GROUP / SUBGROUP	TERMINAL BODY WT. GMS	BRAII	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL	OVARIES	TESTES	
126/F	172	00 80									
130/F	1/2	20.00	2,50	.497	0.358	0.153	0.099		0.047		
151/6	2/2	20.00	0.00	1.665	0.396	0.160	•		0.385		
152/6	7/1	29.00	1.50	1.452	0.355	0.214	0.094		0.048		
1/00	7/-	29.00	0.467	1.606	0.398	0.126			0.018		
1/10	1/2	,	0.502	1.320	0.356	0.138			0.038		
		Z 4 U Z	0.518	1.508	0.373	0.158	0.108		0.107		
	STANDARD	DEVIATION:	0.039	0.135	0.022	0.034	0.011		0.156		
	•					•	• • • • • •	•			
7/6/	2/2	29.00	0.527	1.612	0.380	0.141	0.135		0.016		
1/06	2/2	28.00	0.516	1.432	0.390	0.167	0,102		0.051		
1/60	2/2	28.00	0.545	1.455	0.360	0,179	0,102		070 0		
1/1/5	2/5	28.00	0.512	1.354	0.368	0.144	0.082		120		
1/5/1	2/2	27.00	0.482	1.353	0.347	0.181	0.000		0.028		
		X W W	5	1.441	0.369	0.162	0.102		0.033		
	STANDARD	DEVIATION:	0.023	0.106	0.017	0.019	0.020		0.016		
	•	·				•		•			
1/601	3/5	32.00	0.555	1.828	0.344	0.137	0.170		050		
112/F	3/5	26.00	0.506	1.285	0.366	0.152	0.100		750.0		
125/F	3/2	27.00	0.526	1.306	0.367	0.149	0.113		F 50 0		
132/5	3/5	26.00	0.329	1,010	907.0	0.053	0.098		970		
162/F	3/5	25.00	0.512	1,185	0.371	0.164	0.113		0.00		
		M E A N:	0.486	1.323	0.371	0.131	0.110		870.0		
	STANDARD	DEVIATION:	0.090	0.306	0.022	0.045	0.029		0.012		
107/F	7/5	24.00	6 537	•	;						•
127/5	7/2	22.20	77.0		0.557	0.135	0.148		0.058		
148/5	2/4	20.05	184.0	1.42/	0.357	0.137	0.103		0.039		
144.16	,	27.00	0.700	1.624	0.167	0.179	0.130		0.045		
166/6	2/4	00.72	0.549	1.299	0.348	0.138	0.091		0.049		
	7/4	, ,	0.545	1.528	0.341	0.148	0.117	_	0.025		
		Y	0.534	1.411	0.310	0.151	0.118	_	270 0		
	COVERD										

Appendix M (cont.): ORGAN WEIGHTS

TERMIAL BOOY WI. GAS BRAIN TERMIAL TE	SPECIES: EL	OUSE/ICR	5	,		EPUKI PU	Z .	7777	ונר אם	7727		
MANTHAL GROUP/ TERMINAL LIVER KIDNEY HEART SPLEEN ADRENAL GROUP/ TERMINAL GROUP/ TITL 40.00 0.506 2.038 0.613 0.135	ANIMA NO/SE					2	STAR	F: 01.A	R-8			STUDY TYP
1/1 33.00 0.485 1.875 0.647 0.184 0.094 0.174 1/1 46.00 0.496 2.038 0.613 0.219 0.106 0.120 1/1 46.00 0.522 2.399 0.787 0.121 0.123 0.121 0.		GROUP/ SUBGROUP	TERMINAL BODY WT. GM	. ~	. >	IDNE	. A	PLEE	OREN	VARIE	STE	
1/1	21/14	1/1	33.00	. 4		. 46	: ".		•		: ~:	
1/1 46.00 0.506 2.898 0.775 0.253 0.133 0.150 0.251 1/1 1/2 1/2 0.0 0.537 2.269 0.587 0.262 0.088 0.170 0.079 0.0261 1/1 1/1 1/2 0.0 0.537 0.582 0.170 0.079 0.0261 0.014 0.027 0.0262 0.014 0.027 0.0262 0.014 0.027	26/H	-	00.04	4.	•	.61	~	•			٧.	
1/1 39.00 0.522 2.309 0.767 0.120 0.079 0.25 1/1 39.00 0.447 1.472 0.582 0.262 0.089 0.144 1.472 0.582 0.262 0.089 0.144 1.472 0.582 0.262 0.089 0.144 1.472 0.582 0.262 0.089 0.144 1.472 0.581 0.174 0.075 0.174 0.075 0.174 0.075 0.174 0.075 0.174 0.075 0.175 0	32/1	7	00.97	s.	•	.71	7				7	
11 39,00 0.537 2.269 0.170 0.079 0.02 1/1 35,00 0.537 2.269 0.262 0.088 0.16 1/1 4(.00 0.512 2.341 0.744 0.218 0.114 1/1 4(.00 0.512 2.341 0.744 0.218 0.115 1/1 4(.00 0.517 2.356 0.651 0.126 0.055 1/1 4(.00 0.527 2.356 0.228 0.108 0.025 1/1 M E A M	38/#	7	45.00	.5	•	.76	~				۲.	
17 47.00	45/H		39.00	'n	•	.55	٣,	•			۲.	
1/1 47.00 6.508 2.341 0.744 0.218 0.114 0.055 0.156 0.156 0.156 0.156 0.157 0.156 0.157 0.156 0.157 0.156 0.157 0.157 0.158 0.152 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.108 0.125 0.125 0.125 0.108 0.125 0.125 0.125 0.108 0.125	H/99	7	35.00	4.		.58	~	•			۲,	
171	75/H	17	47.00	ς.		.74	~				٣.	
171	82/#		70.00	'n		.68	M				~	
	#/x	: -	00.44	ď	•	65		•				
STAMDARD DEVIATION: 0.507 2.148 0.650 0.225 0.108 0.018 2/1 35.00 0.507 2.148 0.650 0.229 0.078 0.00 2/1 35.00 0.501 2.025 0.492 0.229 0.078 0.02 2/1 35.00 0.501 2.025 0.492 0.206 0.106 2/1 36.00 0.501 2.025 0.669 0.106 0.102 2/1 36.00 0.502 1.902 0.571 0.178 0.102 2/1 36.00 0.502 1.806 0.601 0.243 0.093 2/1 36.00 0.502 1.800 0.605 0.197 0.130 2/1 45.00 0.502 0.201 0.605 0.197 0.102 2/1 45.00 0.502 0.202 0.210 0.142 3/1 45.00 0.502 0.202 0.210 0.142 3/1 36.00 0.502 0.177 0.092 0.240 0.142 3/1 36.00 0.502 0.177 0.092 0.203 0.024 3/1 36.00 0.502 0.177 0.092 0.012 3/1 36.00 0.502 0.611 0.040 0.102 3/1 44.00 0.519 2.440 0.732 0.201 3/1 38.00 0.465 2.354 0.611 0.009 3/1 38.00 0.506 2.355 0.611 0.009 3/1 38.00 0.508 2.006 0.613 0.016 3/1 38.00 0.508 1.718 0.009 3/1 38.00 0.508 1.718 0.009 3/1 38.00 0.508 0.613 0.613 0.008 3/1 38.00 0.508 1.718 0.009 3/1 38.00 0.508 0.613 0.613 0.008 3/1 38.00 0.508 0.613 0.613 0.008 3/1 38.00 0.508 0.508 0.613 0.008 3/1 38.00 0.508 0.508 0.609 3/1 38.00 0.508 0.508 0.009 3/1 38.00 0.508 0.508 0.009	* */ */ */ */	:	72.00	, 6	•	2	٠,	•			٠,	
STANDARD DEVIATION: 0.027 0.408 0.095 0.004 0.018 0.018 0.027 0.408 0.095 0.004 0.018 0.018 0.027 0.408 0.095 0.004 0.018 0.028 0.229 0.078 0.038 0.243 0.095 0.106 0.106 0.138 0.038 0.241 0.09 0.054 0.105 0.1		:	u	ľ	•	. 5	٠,	•			٠.	
STANDARD DEVIATION: 0.027 0.029 0.078 0.078 0.028 0.078 0.028 0.078 0.029 0.078 0.029 0.078 0.029 0.078 0.029 0.029 0.078 0.03 0.03 0.040 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.052 0.050 0.052 0.051 0.052 0.093 0.094 0.052 0.052 0.095 0.095 0.052 0.052 0.095 0.095 0.052 0.051 0.052 0.095 0.052 0.05			E 2	•		3 6	i c	•			i c	
2/1 35.00 0.501 2.025 0.492 0.029 0.078 0.03 2/1 37.00 0.539 1.902 0.569 0.206 0.138 2/1 39.00 0.521 2.155 0.669 0.206 0.105 2/1 38.00 0.524 2.011 0.645 0.179 0.093 2/1 41.00 2.729 2.121 0.655 0.197 0.093 2/1 45.00 0.544 2.390 0.708 0.266 0.153 2/1 43.00 0.544 2.390 0.708 0.266 0.153 2/1 43.00 0.537 1.900 0.792 0.207 0.112 2/1 43.00 0.537 2.150 0.792 0.240 0.142 3/1 34.00 0.537 0.177 0.092 0.207 0.102 3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 42.00 0.584 1.925 0.613 0.207 0.102 3/1 42.00 0.550 1.931 0.214 0.099 3/1 42.00 0.546 2.346 0.777 0.102 3/1 38.00 0.466 2.346 0.777 0.102 3/1 38.00 0.466 2.256 0.613 0.207 0.132 3/1 38.00 0.548 1.718 0.638 0.242 0.113 3/1 38.00 0.548 1.718 0.638 0.242 0.113 3/1 38.00 0.548 1.718 0.638 0.102 3/1 38.00 0.546 0.613 0.108 3/1 38.00 0.546 0.613 0.108 3/1 38.00 0.546 0.613 0.108 3/1 38.00 0.546 0.613 0.108 3/1 38.00 0.548 1.718 0.638 0.102 3/1 38.00 0.548 1.718 0.638 0.102 3/1 38.00 0.540 0.550 0.132 0.188 0.108		SIANUAKU	2	• :		:	? :		•		• :	
2/1 35.00 0.501 2.025 0.492 0.229 0.078 0.02 2/1 37.00 0.539 1.902 0.550 0.166 0.138 0.03 2/1 36.00 0.468 1.853 0.677 0.178 0.102 2/1 36.00 0.468 1.853 0.577 0.178 0.102 2/1 36.00 0.524 2.011 0.645 0.179 0.093 2/1 41.00 2.729 2.121 0.665 0.153 0.096 2/1 45.00 0.544 2.390 0.708 0.266 0.153 2/1 43.00 0.542 2.150 0.792 0.240 0.153 2/1 43.00 0.532 2.150 0.792 0.211 0.112 2/1 43.00 0.532 2.150 0.079 0.0142 2/1 43.00 0.532 0.177 0.092 0.033 0.024 3/1 36.00 0.584 1.925 0.611 0.040 0.079 3/1 36.00 0.559 0.177 0.024 0.079 3/1 44.00 0.559 0.177 0.024 0.099 3/1 42.00 0.559 0.177 0.024 0.099 3/1 38.00 0.466 2.335 0.207 0.112 3/1 42.00 0.568 1.874 0.677 0.182 3/1 38.00 0.558 1.871 0.673 0.207 3/1 38.00 0.558 1.871 0.673 0.208 3/1 38.00 0.558 1.874 0.675 0.213 3/1 38.00 0.558 1.874 0.675 0.213 3/1 38.00 0.558 1.874 0.675 0.108 3/1 38.00 0.558 1.871 0.638 0.242 0.118 3/1 38.00 0.558 1.871 0.638 0.046												
2/1 37.00 0.539 1.902 0.166 0.138 0.33 2/1 38.00 0.521 2.155 0.669 0.206 0.106 0.38 2/1 38.00 0.546 2.011 0.645 0.178 0.093 2/1 38.00 0.546 2.011 0.645 0.179 0.093 2/1 41.00 2.729 2.121 0.665 0.197 0.130 2/1 45.00 0.547 0.708 0.243 0.096 0.163 2/1 45.00 0.547 0.708 0.246 0.153 2/1 45.00 0.632 2.150 0.792 0.246 0.142 2/1 38.00 0.632 2.150 0.792 0.246 0.142 3/1 34.00 0.584 1.925 0.622 0.211 0.115 3/1 44.00 0.584 1.925 0.611 0.040 0.079 3/1 44.00 0.584 1.925 0.611 0.040 0.079 3/1 44.00 0.595 2.321 0.637 0.213 0.086 3/1 44.00 0.596 2.321 0.637 0.213 0.086 3/1 42.00 0.568 1.874 0.675 0.213 0.086 3/1 42.00 0.568 1.874 0.675 0.213 0.086 3/1 42.00 0.568 1.874 0.675 0.213 0.086 3/1 38.00 0.568 1.874 0.675 0.188 0.188 3/1 38.00 0.568 1.874 0.675 0.188 3/1 38.00 0.568 1.874 0.675 0.188 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.024 3/1 38.00 0.548 1.718 0.638 0.024 3/1 38.00 0.548 1.718 0.638 0.024 3/1 38.00 0.548 1.718 0.638 0.024	30/#	2/1	35.00	.50	.02	٦.	.22	.07			~	
2/1 39.00 0.521 2.155 0.669 0.206 0.106 0.3 2/1 36.00 0.568 1.858 0.571 0.178 0.102 0.3 2/1 36.00 0.524 2.011 0.645 0.197 0.190 0.03 2/1 36.00 0.524 1.806 0.645 0.197 0.093 0.023 2/1 45.00 0.544 2.390 0.708 0.266 0.153 0.03 2/1 45.00 0.532 2.150 0.702 0.240 0.142 0.3 2/1 38.00 0.532 2.150 0.792 0.240 0.142 0.3 3/1 36.00 0.584 1.925 0.611 0.040 0.024 0.02 3/1 44.00 0.584 1.925 0.611 0.040 0.079 0.2 3/1 36.00 0.586 1.925 0.611 0.040 0.079 0.2 3/1 38.00 0.586 1.931 0.520 0.161 0.089 0.2 3/1 38.00 0.505 2.312 0.637 0.207 0.161 0.2 3/1 38.00 0.505 2.312 0.637 0.207 0.161 0.2 3/1 38.00 0.568 1.874 0.675 0.213 0.086 0.2 3/1 38.00 0.568 1.874 0.675 0.213 0.089 0.2 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.23 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.23 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.23 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.23 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.28 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.28 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.28 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.28 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.28	31/H	2/1	37.00	.53	.90	'n	.16	. 13			ĸ.	
2/1 36.00 0.468 1.858 0.571 0.178 0.102 0.03 2/1 38.00 0.544 2.011 0.645 0.179 0.093 0.093 2/1 41.00 2.729 2.121 0.665 0.197 0.130 2/1 45.00 0.544 2.390 0.708 0.246 0.153 2/1 43.00 0.497 1.900 0.522 0.207 0.112 2/1 43.00 0.497 1.900 0.522 0.207 0.112 2/1 43.00 0.497 1.900 0.522 0.207 0.115 2/1 43.00 0.599 0.177 0.092 0.033 0.024 3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 42.00 0.465 2.315 0.214 0.102 3/1 42.00 0.465 2.321 0.637 0.214 0.099 3/1 38.00 0.465 2.236 0.673 0.112 3/1 38.00 0.465 2.236 0.673 0.113 3/1 38.00 0.568 1.874 0.670 0.186 0.132 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.075 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 0.550 0.650 0.132 0.089	34/#	2/1	39.00	.52	.15	٠,	.20	100			٣.	
2/1 38.00 0.544 2.011 0.645 0.179 0.093 0.03 2/1 45.00 0.526 1.806 0.661 0.243 0.096 2/1 45.00 0.526 1.806 0.665 0.130 2/1 45.00 0.497 1.900 0.522 0.206 0.112 2/1 43.00 0.532 2.150 0.708 0.240 0.142 2/1 43.00 0.532 2.150 0.702 0.214 0.115 STANDARD DEVIATION: 0.699 0.177 0.092 0.033 0.024 3/1 36.00 0.584 1.925 0.611 0.040 0.079 3/1 36.00 0.584 1.925 0.611 0.040 0.079 3/1 42.00 0.599 0.701 0.214 0.099 3/1 42.00 0.505 2.315 0.637 0.207 0.161 3/1 38.00 0.568 1.874 0.675 0.247 0.086 3/1 38.00 0.548 1.874 0.675 0.188 0.182 3/1 38.00 0.548 1.874 0.675 0.182 3/1 38.00 0.548 1.874 0.675 0.188 0.182 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.630 0.132 3/1 38.00 0.548 1.718 0.630 0.132 3/1 38.00 0.548 1.718 0.630 0.108 3/1 38.00 0.548 1.718 0.630 0.108 3/1 38.00 0.548 1.718 0.630 0.108	36/#	2/1	36.00	46	.85	'n	17	10			M	
2/1 36.00 0.526 1.806 0.601 0.243 0.096 2/1 41.00 2.729 2.121 0.665 0.197 0.130 2/1 45.00 0.544 2.390 0.708 0.266 0.153 2/1 38.00 0.497 1.900 0.792 0.240 0.142 2/1 34.00 0.532 2.150 0.792 0.240 0.142 3/1 34.00 0.532 2.150 0.622 0.211 0.115 STANDARD DEVIATION: 0.699 0.177 0.092 0.033 0.024 3/1 36.00 0.530 1.931 0.520 0.163 0.102 3/1 42.00 0.590 0.177 0.092 0.163 0.102 3/1 42.00 0.568 1.874 0.675 0.207 0.115 3/1 38.00 0.568 1.874 0.675 0.213 0.086 3/1 38.00 0.568 1.874 0.670 0.186 0.132 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.549 0.550 0.501 0.100 3/1 38.00 0.548 0.570 0.186 0.132 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.718 0.638 0.024 3/1 38.00 0.548 1.718 0.638 0.024 3/1 38.00 0.548 1.718 0.638 0.024 3/1 38.00 0.550 0.500 0.188 0.018 3/1 38.00 0.550 0.500 0.188 0.018 3/1 38.00 0.550 0.500 0.188 0.018	#/0 7	273	38.00	54	0	٠.	17	60			M	
2/1 41.00 2.729 2.121 0.665 0.197 0.130 0.3 2/1 45.00 0.544 2.390 0.708 0.266 0.153 2/1 45.00 0.544 2.390 0.708 0.266 0.153 2/1 43.00 0.532 2.150 0.792 0.240 0.142 0.3 STANDARD DEVIATION: 0.699 0.177 0.092 0.033 0.024 3/1 36.00 0.584 1.925 0.611 0.040 0.079 3/1 42.00 0.530 1.931 0.512 0.012 3/1 42.00 0.595 2.345 0.241 0.099 3/1 42.00 0.505 2.345 0.241 0.099 3/1 38.00 0.465 2.345 0.247 0.099 3/1 38.00 0.465 2.256 0.613 0.241 0.099 3/1 38.00 0.568 1.874 0.675 0.207 0.112 3/1 38.00 0.548 1.718 0.638 0.242 0.118 3/1 38.00 0.548 1.874 0.675 0.207 0.118 3/1 38.00 0.548 1.874 0.679 0.118 3/1 38.00 0.548 1.874 0.679 0.118 3/1 38.00 0.548 1.718 0.638 0.042 3/1 38.00 0.548 0.638 0.067 3/1 38.00 0.548 0.638 0.089 3/1 38.00 0.548 0.638 0.089 3/1 38.00 0.542 0.108	#/9S	2/1	36.00	52	80	9	24	0			?	
2/1 45.00 0.544 2.390 0.708 0.266 0.153 0.3 2/1 38.00 0.497 1.900 0.522 6.207 0.112 38.00 0.497 1.900 0.522 6.207 0.142 STANDARD DEVIATION: 0.699 0.177 0.092 0.033 0.024 3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 44.00 0.519 2.440 0.214 0.099 3/1 42.00 0.465 2.315 0.677 0.161 3/1 38.00 0.465 2.236 0.675 0.217 0.161 3/1 38.00 0.465 2.236 0.675 0.213 3/1 38.00 0.568 1.874 0.675 0.213 0.089 3/1 38.00 0.548 0.675 0.207 0.112 3/1 38.00 0.548 0.675 0.207 0.113 3/1 38.00 0.548 0.675 0.207 0.113 3/1 38.00 0.548 0.675 0.207 0.113 3/1 38.00 0.548 0.675 0.207 0.118 3/1 38.00 0.548 0.675 0.207 0.118 3/1 38.00 0.548 0.675 0.207 0.118 3/1 38.00 0.548 0.675 0.0089 3/1 38.00 0.558 0.675 0.0089 3/1 38.00 0.558 0.675 0.0089 3/1 38.00 0.558 0.675 0.0089 3/1 38.00 0.558 0.675 0.0089 3/1 38.00 0.558 0.675 0.0089 3/1 38.00 0.558 0.675 0.0089	2/25		41.00	2	12	, 9	9				. ^	
STANDARD DEVIATION: 0.699 0.177 0.092 0.240 0.142 0.33 0.024 0.142 0.33 0.054 0.142 0.33 0.054 0.142 0.33 0.054 0.142 0.33 0.054 0.142 0.33 0.054 0.015 0.054 0.055 0.34 0.055 0.051 0.054 0.079 0.024 0.005 0.0584 1.925 0.611 0.040 0.079 0.024 0.024 0.102 0.34 0.055 0.541 0.050 0.102 0.244 0.009 0.519 2.440 0.732 0.244 0.009 0.519 2.440 0.732 0.244 0.009 0.519 2.440 0.732 0.244 0.009 0.519 2.440 0.732 0.244 0.009 0.519 2.440 0.732 0.244 0.009 0.253 0.243 0.005 0.243 0.244 0.254 0.254 0.255 0.244 0.058 0.054 0.054 0.054 0.054 0.054 0.055 0.054 0.055 0.054 0.055 0.054 0.055 0.054 0.055	1/1/1/	,,	00.57								. ~	
\$\frac{2}{1} \frac{4}{3} \frac{1}{3} \frac{2}{1} \frac{4}{3} \frac{1}{3}	E / CO		9 0		9	. "	֓֞֜֜֜֜֜֜֝֜֜֜֝֓֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֡֓֜֜֜֜֜֜֡֓֓֡֓֡֜֜֜֡֓֡֡֡֓֡֓֡֡֡֡				, י	
STANDARD DEVIATION: 0.752 2.132 0.774 0.244 0.115 0.024 0.035 0.024 0.037 0.024 0.037 0.024 0.037 0.024 0.037 0.024 0.037 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.027 0.163 0.024 0.027 0.102 0.247 0.027 0.102 0.247 0.027 0.102 0.224 0.027 0.102 0.224 0.027 0.102 0.224 0.027 0.102 0.224 0.027 0.102 0.224 0.027 0.102 0.224 0.027 0.102 0.224 0.027 0.102 0.2324 0.272 0.214 0.032 0.232 0.241 0.032 0.242 0.112 0.032 0.232 0.242 0.112 0.032 0.232 0.242 0.113 0.032 0.232 0.242 0.113 0.032 0.232 0.242 0.113 0.032 0.232 0.242 0.113 0.032 0.242 0.132 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.0250 0.073 0.024 0.024 0.024	K :	77	00.60	•		יי	3 6	- :			ŗ	
M E A N : 0.740	4/02	7/2	.	ij	-:	•	3	- :			?'	
3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 34.00 0.530 1.925 0.611 0.040 0.079 3/1 34.00 0.530 1.931 0.520 0.163 0.102 3/1 42.00 0.466 2.315 0.701 0.214 0.102 3/1 42.00 0.505 2.321 0.637 0.207 0.161 3/1 38.00 0.480 2.096 0.613 0.213 0.086 3/1 38.00 0.465 2.236 0.675 0.112 0.03 3/1 38.00 0.548 1.874 0.670 0.186 0.132 3/1 38.00 0.548 1.874 0.638 0.242 0.118 3/1 38.00 0.542 1.801 0.538 0.242 0.118 3/1 38.00 0.552 1.801 0.530 0.188 0.108 3/1 39.00 0.532 1.801 0.510 0.089 3/1 39.00 0.532 0.0630 0.089 0.024			z <	2	3	•	7	Ξ			٠.	
3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 36.00 0.530 1.931 0.520 0.163 0.102 3/1 43.00 0.460 2.315 0.701 0.214 0.102 3/1 44.00 0.519 2.440 0.732 0.241 0.099 3/1 42.00 0.505 2.321 0.637 0.207 0.161 3/1 42.00 0.480 2.096 0.613 0.213 0.086 3/1 42.00 0.465 2.236 0.675 0.207 0.112 3/1 38.00 0.568 1.874 0.670 0.186 0.132 3/1 38.00 0.548 1.874 0.638 0.242 0.118 3/1 38.00 0.542 1.801 0.531 0.1089 3/1 39.00 0.532 1.801 0.531 0.108 3/1 39.00 0.532 0.053 0.058 0.024 3/1 0.610 0.630 0.188 0.108		ANDARD	DEVIATION	69:	-14	ዓ :	.03	.02		•	၀ :	
3/1 34.00 0.584 1.925 0.611 0.040 0.079 3/1 36.00 0.530 1.931 0.520 0.163 0.102 3/1 43.00 0.460 2.315 0.701 0.214 0.102 3/1 44.00 0.519 2.440 0.732 0.241 0.099 3/1 42.00 0.505 2.321 0.637 0.207 0.161 3/1 38.00 0.465 2.236 0.675 0.207 0.112 3/1 38.00 0.568 1.874 0.676 0.132 0.13 3/1 38.00 0.548 1.778 0.638 0.132 0.13 3/1 38.00 0.545 0.578 0.207 0.118 0.03 3/1 38.00 0.548 0.548 0.679 0.108 3/1 38.00 0.548 0.638 0.242 0.118 0.638 3/1 39.00 0.542 0.207 0.108												
3/1 36.00 0.530 1.931 0.520 0.163 0.102 0.23 3/1 43.00 0.460 2.315 0.701 0.214 0.102 3/1 44.00 0.519 2.440 0.732 0.241 0.099 3/1 42.00 0.505 2.321 0.637 0.207 0.161 3/1 42.00 0.465 2.356 0.673 0.207 0.112 3/1 38.00 0.568 1.874 0.675 0.132 0.132 3/1 38.00 0.548 1.778 0.638 0.132 0.13 3/1 38.00 0.542 1.778 0.638 0.18 3/1 38.00 0.542 0.207 0.118 0.22 3/1 38.00 0.542 0.207 0.118 0.22 3/1 38.00 0.542 0.250 0.073 0.089	24/H	3/1	~3	2	•	.61	٥.	•			~	
3/1 43.00 0.460 2.315 0.701 0.214 0.102 3/1 44.00 0.519 2.440 0.732 0.241 0.099 3/1 42.00 0.505 2.321 0.637 0.207 0.161 3/1 38.00 0.465 2.236 0.675 0.207 0.112 3/1 38.00 0.568 1.874 0.670 0.186 0.132 3/1 38.00 0.548 1.874 0.670 0.186 0.132 3/1 38.00 0.542 1.718 0.638 0.242 0.118 3/1 39.00 0.532 1.801 0.501 0.171 0.089 5.71 M.E.A.N. 0.519 2.066 0.630 0.108 5.71 0.090 0.052	42/H	3/1	·vo	5	•	. 52	٠.				~	
3/1 44.00 0.519 2.440 0.732 0.241 0.099 0.2 3/1 42.00 0.505 2.321 0.637 0.207 0.161 0.02 3/1 38.00 0.480 2.096 0.613 0.213 0.086 0.3 3/1 38.00 0.568 1.874 0.670 0.186 0.132 0.3 3/1 38.00 0.548 1.874 0.670 0.186 0.132 0.3 3/1 39.00 0.542 1.301 0.501 0.171 0.089 0.2 8.1	H/77	1/2		4		7.0	^				,	
3/1 42.00 0.505 2.321 0.637 0.207 0.161 0.2 3/1 38.00 0.480 2.096 0.613 0.213 0.086 0.3 3/1 42.00 0.465 2.236 0.675 0.207 0.112 0.3 3/1 38.00 0.568 1.874 0.670 0.186 0.132 0.3 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.2 3/1 39.00 0.542 1.301 0.171 0.089 0.02 STANDARD DEVIATION: 0.042 0.250 0.073 0.058 0.024 0.0	51/H	;			, ,	73	١,				. ~	
3/1 38.00 0.480 2.096 0.613 0.213 0.086 0.33 3/1 42.00 0.465 2.236 0.675 0.207 0.112 0.03 0.3 3/1 38.00 0.568 1.874 0.670 0.186 0.132 0.03 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.2 0.3 3/1 39.00 0.532 1.801 0.631 0.171 0.089 0.08 0.2 0.18 0.650 0.630 0.188 0.108 0.024 0.250 0.073 0.058 0.024 0.00	\$2/M	; ;	. ~			63	٠,					
3/1 42.00 0.465 2.236 0.675 0.207 0.112 0.33 3/1 38.00 0.568 1.874 0.670 0.186 0.132 0.33 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.23 3/1 39.00 0.532 1.801 0.501 0.171 0.089 M E A N: 0.519 2.066 0.630 0.188 0.108 STANDARD DEVLATION: 0.042 0.250 0.073 0.058 0.024	M/ 25	, <u>, , , , , , , , , , , , , , , , , , </u>	łα	. 4	•	19	٠,	•				
3/1 38.00 0.568 1.874 0.670 0.186 0.132 0.33 3/1 38.00 0.548 1.718 0.638 0.242 0.118 0.2 3/1 39.00 0.532 1.801 0.501 0.171 0.089 0.2 5/1 M E A N: 0.519 2.066 0.630 0.188 0.108 0.024 0.00	2/0/		, ,	. ~	•	, ,	٠.	•				
3/1 38.00 0.548 1.778 0.638 0.242 0.118 0.02 3/1 39.00 0.552 1.801 0.538 0.242 0.118 0.02 3/1 39.00 0.532 1.801 0.638 0.108 M E A N: 0.519 2.066 0.630 0.108 0.108 STANDARD DEVLATION: 0.042 0.250 0.073 0.058 0.024 0.00	r 3	- *	40		•		ij				יי נ	
5/1 58.00 0.540 1.710 0.550 0.242 0.115 0.5 3/1 39.00 0.532 1.801 0.501 0.171 0.089 0.0 M E A M C 519 2.066 0.650 0.188 0.108 0.5 STANDARD DEVIATION: 0.042 0.250 0.073 0.058 0.024 0.0	E / \$0	7,	9	•	•	5 7						
3/i 39.00 0.532 1.801 0.501 0.089 0.2 M E A N: 0.519 2.066 0.630 0.188 0.108 0.2 STANDARD DEVIATION: 0.042 0.250 0.073 0.058 0.024 0.0	1/50	2	01	٠	•	3	٧.				4	
MEAM: 0.519 2.066 0.630 0.108 0.108 0.2 DEVIATION: 0.042 0.250 0.073 0.058 0.024 0.0	W /96	3/1	3	5	•	.50	٦.				~	
DEVIATION: 0.042 0.250 0.073 0.058 0.024 0.0			* * *	ŝ	•	.63	Ξ.	•			~	
		STANDARD	DEVIATION	۰.	•	.02	٥.				٥.	

Appendix M (cont.): ORGAN WEIGHTS

PRINTED: 13-SEP-88 PAGE: 2 Study type:													
	TESTES	0.264	0.376	2.156	0.309	0.348	0.302	0.284	0.283	0.263	0.299	0.488	0.587
SUMMARY STATISTICS FOR ABSOLUTE ORGAN WEIGHTS (GMS) STUDY NUMBER: GLP86007 REPORT FOR FINAL SACRIFIC (ALL SUBGROUPS) STUDY START DATE: 01-APR-87	ADRENAL OVARIES												
BSOLUTE ORGAN BER: GLP86007 CRIFIC (ALL S	ADR	0.089	0.161	0.243	960.9	0.125	0.078	0.079	0.136	0.123	960.0	0.122	0.050
ICS FOR A STUDY NUM FINAL SA START DA	HEART	0.176	0.185	0.195	0.149	0.222	0.177	0.215	0.183	0.172	0.194	0.187	0.021
Y STATIST EPORT FOR STUDY	KIDNEY	0.112	0.673	0.648	0.659	0.685	0.584	0.573	0.567	0.644	0.550	0.570	0.168
SUMMAR	LIVER	2.029	2.017	2.261	2.165	2.140	2.015	2.211	1.990	2.102	1.652	2.058	0.169
RCH 29	BRAIN	0.508	0.576	0.516	0.583	0.558	0.500	0.580	0.518	0.528	0.489	0.536	0.035
LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	36.00	39.00	40.00	00.07	42.00	42.00	39.00	37.00	40.00	41.00	X E A K:	STANDARD DEVIATION:
ARMY INSTI SUPP, PAT F SAN FRAN		4/1	4/1	۲/4	4/1	4/1	1/5	1/7	1/7	4/1	4/1		STANDARD
LETTERMAN ARMY INSTITUTE OF R DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA SPECIES: MOUSE/ICR	ANIMAL NO/SEX	A/75	H/27	₩/87	87/H	58/M	#/19	62/H	73/H	92/H	H/56		

Appendix M (cont.): ORGAN WEIGHTS

PRINTED: 13.SEP.88 PAGE: 1	STUDY TYPE:																																							
	•	TESTES																																						
HTS (GMS)	urs)	OVARIES	0.048	9	3	ဆ	2	2 5	25	38	3 6	5 8	30	9:		.05	6	9	8	2	ç,	3 8	.02	36	0.020	2 5	5 :		0.073	•	•	•	•	٠	•	•	•	•	•	•
	ALL SUBGROUPS	ADRENAL																																						
BSOLUTE BER: GLP	CRIFIC (SPLEEN	0.139	•		•	•	•	•	•	•	0.151	•	•		•	•	٠	•	•	•	•	•	•	0.101	•			•	0.105	•	•		•	•	•		•	•	•
STUDY NUM	FINAL SA START DA	HEART	. 2	Ξ.	5.	€.	€.	<u>.</u>	-	£		0.15/	_ :	70.		~	٠	Ψ,	Γ.	٥.	Ξ.	-	-	Ξ.	0.142	٠. ٥	? :		۲.	0.170	٠. ١	-	۰.	٠.	-	٠.		Ξ.	•	٥.
STATIST	EPORT FOR STUDY	KIDNEY	. 7.	٧.	٣.	4.	٦.	4.	'n	m.	7.	0.365	3.0	9	•		•	•	•	•	•	•	•	•	0.385	•			.37	0.451	٠.	77.	.39	.32	.41	.40	.33	7.0	.38	70.
SUMMARY	~	LIVER	1.696	1.478	1.506	1.648	1.432	1.541	1.664	1.453	1.662		1.542	•	•	1.551	1.543	1.639	•	•	1.677	•	1.628	1.722	1.702	1.617	0.149		۰.	1.751	ĸ.	4.	ĸ.	4,	ĸ.	٣.	٦.	'n	4.	0.171
RCH	29	BRAIN	7.7	.56	50	.56	. 54	-	. 1	.45	67.	0.501	. 20	.04		.51	.52	.66	.52	. 53	.50	.54	.47	. 55	0.550	.53	. 05		7.	0.537	٠,	'n	4	m.	ĸ.	ĸ.	ĸ.	٦.	r:	٦
OF RE	, co	TER	1.0	7.0	0.8	33.00	0.6	7.0	6.0	1.0	0.0	M	X W X	EVIATION		0.8	32.00	8.0	9.0	6.0	8.0	7.0	1:0	2.0	m	* Y U T	EVIATION	:	29.00	31.00	28.00	28.00	29.00	30.00	31.00	30.00	29.00	30.00	M E A Z:	DEVIATION:
SUPP.	SAN F JSE/IC	GROUP/ SUBGROUP B	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2		NDARD D		212	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2		TANDAR	:	3/2	3/2	3/5	3/2	3/2	3/2	3/2	3/2	3/5	3/2		STANDARD D
ETTERMAN A IV OF RES	\$1010 C1ES:	ANIMAL NO/SEX	114/F	116/5	117/5	129/6	m	-3	145/F	165/F	168/F	178/F				101/F	111/F	121/F	124/F	133/F	134/F	143/F	144/6	155/F	158/F				105/6	118/F	122/F	150/F	152/F	160/F	163/F	167/8	173/F	181/F		

Appendix M (cont.): ORGAN WEIGHTS

DIV OF REPRESION	S SUPP, PA	DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129	AKCH 120	SUMMA	RY STATIST PEDODT FOD	STUDY NU	ABSOLUTE MBER: GLP?	SUMMARY STATISTICS FOR ABSOLUTE ORGAN WEIGHTS (GMS) STUDY WUNBER: CIPAGOT PEDDET FOR STARS CASSISTS	(S)	PRINTED: 13.SEP.88 PAGE: 2
SPECIES: MO	SPECIES: MOUSE/ICR				STUDY	START DI	ATE: 01-A	PR-87		STUDY TYPE:
ANIMAL NO/SEX	GROUP/ SUBGROUP	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	_	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL OVARIES	TESTES	
120/F	4/2	27.00	0.508	1.868	0.403	0.161	0.005	070 0		
128/F	4/5	27.00	0.534	1.414	0.408	0.160	1.424	0.0		
139/F	4/2	27.00	0.553	1.258	0.404	0.180	0.134	0.00		
149/6	4/5	56.0 0	0.515	1.472	0.336	0.145	0.141	10:0 70:0		
154/F	7/5	29.00	0.556	1.416	0.389	0.174	0.143	740.0		
156/F	4/2	30.00	0.520	1.711	0.366	0.199	0.121	440		
157/F	4/5	30.00	0.493	1.623	0.382	0.173	0.109	870		
174/6	7/5	29.00	0.504	1,383	0.316	0.117	090	760		
180/F	4/2	26.00	0.530	1.167	0.350	0.107	0.082	130.0		
182/F	4/2	31.00	0.603	1.366	0.399	0.160	0.123	210.0		
		M M M H	0.532	1.468	0.375	0.158	0.244	250 U		
	STANDARD	STANDARD DEVIATION:	0.032	0.211	0.032	0.028	0.415	0.015		
								1		

Appendix N: ORGAN-TO-BODY WEIGHT RATIO

	MOUSE/1CR				STUDY START DATE:	START DA	AUMBEK 01-APR-87			STUDY TYPE
NIN S/O	GROUP/ SUBGROUP	MAL G	BRAIN	LIVER	KIDNEY	HEART	ADRENA	ENAL OVARIES	TESTES	
37/H	1/1	34.00	1.535	5.279	1.674					
41/H	171	38.00	1.261	5.108	1.582	•				
77/H	7.	37.00	70.	5.811	1.670	•	•			
19/H	1/1	39.00	. 20	5.126	1.087	•	•			
80/H	1/1		1.384	5.089	1.429	•	0.253			
		*	357	5.283	1.488	0.518	0.301		0.801	
	STANDARD	DEVIATION:	9.129	0.305	0.245	• •	0.046			
20/M	1/2	33.00	1.600	6.073	1.482				0.855	
71/H	2/1	38.00	1.271	5.032	1.600		•		0.655	
88/M	1/2	35.00	1.474	5.377	1.671	0.529	0.326		0.743	
M/06	2/1	41.00	1.156	3.225	1.402				0.717	
98/M	2/1	32.00	1.525	698.7	1.334				906.0	
		M E A N.	1.405	4.914	1.498				0.775	
	STANDARD	DEVIATION:	0.185	1.053	0.138			1	0.103	
47.22	1/1	92	062 1	726 7	, *				ì	
39/K	3/1	00.05	1.130	5.220	1.263		260		0.720	
H/67	3/1	37.00	1.268	5.854	1.300	0.522	0.238		0.608	
80/M	3/1	33.00	1.370	5.800	1.448		0.242		0.755	
89/H	3/1	34	1.624	5.715	1.450		0.271		0.915	
		M M M	1.344	5.773	1.334		0.434		0.722	
	STANDARD	DEVIATION:	0.181	0.377	0.109		0.405		0.127	
25/H	4/1	33.00	1.524	5.848	1.482	0.600			0.752	
H/97	1/7	32.00	1,712	5.041	1.462	0.550			0 0 55	
54/N	4/1	33.00	1.533	5.982	1.648				864	
M/29	4/1	37.00	1.535	5.122	1.514				20.0	
72/H	4/1	31.00	1.813	5.897	1.342	0.665	0.377		0.813	
		X	1.624	5.578	1.490				4.40	
				,		•			/20.0	

Appendix N (cont.): ORGAN-TO-BODY WEIGHT RATIO

PAGE: 1 STUDY IYPE:					
	TESTES				
SUBGROUPS	OVARIES	0.168 1.328 0.166 0.062 0.141 0.373 0.535	0.055 0.182 0.175 0.075 0.118 0.058	0.184 0.208 0.196 0.177 0.177 0.175	0.223 0.144 0.155 0.181 0.086
86007 BER (ALL PR-87	ADRENAL				
NUMBER: GLP86007 ACRIFICE NUMBER (T DATE: 01-APR-87	a s	0.354 0.414 0.324 0.400 0.415 0.415	0.466 0.364 0.364 0.293 0.333 0.364 0.064	0.531 0.385 0.419 0.377 0.452 0.633	0.569 0.381 0.448 0.337 0.403
TUDY NU IM SACR	HEART	0.546 0.552 0.738 0.434 0.511 0.556	0.586 0.596 0.639 0.514 0.670 0.581	0.585 0.585 0.552 0.204 0.656 0.485	0.596 0.507 0.617 0.511 0.518
FOR	KIDNEY	1,279 1,286 1,366 1,372 1,319 1,312 0,062	1,310 1,393 1,286 1,314 1,318 0,044	1.075 1.408 1.359 1.562 1.484 1.377 0.186	1.296 1.322 0.576 1.289 1.176
REPORT	LIVER	5.346 5.741 5.007 5.538 4.889 5.386	5.559 5.114 5.1196 5.011 5.011	5.712 4.942 4.837 3.885 4.740 6.823	4.535 5.285 5.600 4.811 5.269
129	BRAIR	1.848 1.848 1.969 1.859 1.824 0.131	1.817 1.843 1.946 1.829 1.785 1.844 0.061	1.734 1.946 1.948 1.265 2.048 1.788 0.314	2.027 1.781 1.952 2.033 1.879
H SERV GP CISCO, CA 94129	TERM DY W	28.00 29.00 29.00 29.00 29.00 27.00 M E A N:	29.00 28.00 28.00 28.00 28.00 27.00 H E A N:	32.00 26.00 27.00 26.00 25.00 M E A N: DEVIATION:	26.00 27.00 29.00 27.00 29.00
DIV OF RES SUPP, PATH SERV PRESIDIO OF SAN FRANCISCO, SPECIES: MOUSE/ICD	: 🕳	1/2 1/2 1/2 1/2 1/2 STANDARD	2/2 2/2 2/2 2/2 2/2 2/2 3/1 AND ARD	3/2 3/2 3/2 3/2 3/2 3/2 STANDARD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
DIV OF RES SUPP, PATH SERV PRESIDIO OF SAN FRANCISCO, SPECIES, MOUSE/ICD	ANIMAL NO/SEX	126/F 130/F 151/F 153/F 161/F	99/F 146/F 169/F 171/F 175/F	109/F 112/F 125/F 132/F 162/F	107/F 127/F 148/F 164/F 166/F

Appendix N (cont.): ORGAN-TO-BODY WEIGHT RATIO

SIDIO CIES:	CF SAN FRANCISCO MOUSE/ICR	ŏ ¥J	67 -	-	STUDY	STAR	E: 01-A	LL SUBG R-87	Ĉ.		STUDY TYPE
		TERMINAL DY WT. GM	BRAIN	• >	KIDNEY		: 3	ADRENAL 0		TESTES	
21/N	1/1	33.00	1.470		1.415	. 55	: ~			: ^:	-
26/M	1,1	00.07	٠	•	1.533	.54	?			٠.	
32/M	1/1	46.00	1.100	•	1.554	.55	~			۰.	
38/M	1/1	42.00	•	•	1.826	.51	۲			ø	
45/M	1.7	39.00	•		1.431	.43	~			۰.	
M/99	1/1	35.00	•		1.663	.74	ņ			ω.	
75/H	17.	47.00		•	1.583	.46	7			9	
82/H		00.07	٠		1.705	.76	~			9	
83/E		00.77			1.480	3	,			9	
4/16		00 27		•	1 538	8				· <	
		u	•	•	•		i,			•	
	STANDARD	130	0.122	0.678	0.128	0.117	0.028			0.066	
		* · · · · · · · · · · · · · · · · · · ·				•	•	•			· · · · · · · · · · · · · · · · · · ·
30/M	2/1	5.0	•	•	- 3	9				•	
31/H	2/1	0	1.457	•	1.486	4					
34 / H	2/1	9.0		•	~	S	•			•	
36/H	2/1	6.0		•	S	4.				•	
40/H	2/1	8.0	•	•	vo	4.				•	
56/H	2/1	6.0	•	•	•	જ				•	
63/H	2/1	.0		•	9	4				•	
65/H	2/1	5.0		•	'n.	٠.	•			•	
81/X	2/1	0		•	r.	Š				•	
85/H	2/1	43.00	1.237	2.000	1.842	0.558	0.330			0.856	
		×	•	•	٠.	S	•			•	
	STANDARD	DEVIATION:	1.680	• •	∵ :	<u>°</u> :					
84/H	3/1	34.00		5.662	1.797	•	•			0.718	
42/H	3/1		٠	•	1.444	٧.	۲.			•	
H/77	3/1	•	٠	•	1.630	۷.	٠.			•	
51/H	3/1		•	•	1.664	ņ	~			•	
52/H	3/1		•	•	1.517	٠.	ĸ.			•	
55/H	3/1		•	•	1.613	ĸ.	~			•	
78/M	3/1	45.00	1.107	•	1.607	0.493	0.267			0.719	
84/M	3/1		٠	•	٠	4.	ĸ.			•	
W/56	3/1		•	•	1.679	ø	٣.			•	
M/96	3/1		•	•	•	٦.	'n			•	
		N F A N.	1 221			•					
		E		•	1.600	•	~				

Appendix N (cont.): ORGAN-TO-BODY WEIGHT RATIO

DIV OF RES	S SUPP, PA	LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	IRCH	SUMMA	RY STATISI	STUDY NUI	ICS FOR % ORGAN TO BOD STUDY NUMBER: GLP86007	SUMMARY STATISTICS FOR % ORGAN TO BODY WEIGHT RATIO	0	PRINTED: 13-SEP-88 PAGE: 2
SPECIES:	SPECIES: MOUSE/ICR	MCISCO, CA 941	<u> </u>	_	REPORT FOR Study	FINAL S/	CRIFIC (A	REPORT FOR FINAL SACRIFIC (ALL SUBGROUPS) Study Start Date: 01-apr-87		STUDY TYPE:
ANIMAL NO/SEX	:	GROUP/ TERMINAL	BRAIN	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL GVARIES	TESTES	
,		36.00	1.411	5.636	0.311	087.0	776.0		0.733	
H/25	1/7	39.00	1.477	5.172	1.726	0.474	0.413		790.0	
H/87		00.07	1.290	5.652	1.620	0.488	0.607		5,300	
57/H		70.00	1.457	5.412	1.648	0.373	0.235		0.772	
58/H		45.00	1.329	5.095	1.631	0.529	0.298		0.829	
M/19		45.00	1.190	4.798	1.390	0.421	0.186		0.719	
4/29		39.00	1.487	5.669	1.469	0.551	0.203		0.728	
73/H		37.00	1.400	5.378	1.532	0.495	0.368		0.765	
92/H	4/1	70.00	1.320	5.255	1.610	0.430	0.308		0.458	
H/S6		41.00	1.193	4.029	1.341	0.473	0.234		0.729	
		R A R.	1.355	5.210	1.428	0.472	0.310		1 220	
	STANDARD	STANDARD DEVIATION:	0.109	667.0	0.411	0.052	0.127		1.464	

Appendix N (cont.): ORGAN-TO-BODY WEIGHT RATIO

PRINTED: 13-SEP-88 PAGE: 1 STUDY TYPE:				
	TESTES			
IGHT RATIO	OVARIES	0.155 0.219 0.245 0.014 0.111 0.119 0.067 0.053	0.193 0.128 0.143 0.155 0.173 0.087 0.081 0.061 0.061	0.252 0.194 0.183 0.282 0.040 0.040 0.048 0.088 0.088
8007 WE 5007 LL SUBGR R-87	ADRENAL			
DRGAN TO	SPLEEN	0.448 0.378 0.379 0.438 0.489 0.239 0.457 0.457 0.437	0.450 0.259 0.357 0.450 0.450 0.329 0.155 0.441 0.347	0.379 0.358 0.368 0.536 0.263 0.287 0.287 0.333
S FOR S UDY NUI INAL SI TART DI	. A.	0.550 0.5515 0.550 0.550 0.621 0.621 0.621 0.621 0.621 0.621 0.621 0.621	0.721 0.406 0.521 0.338 0.536 0.796 0.703 0.431 0.630	0.717 0.548 0.548 0.625 0.438 0.490 0.468 0.547 0.547 0.534
STATIST PORT FOR STUDY	3NG	1.432 1.233 1.233 1.496 1.419 1.373 1.373 1.382	1.56 1.682 1.682 1.682 1.281 1.281 1.266 1.167	1,283 1,455 1,132 1,367 1,368 1,357 1,358 1,353 1,353
Σ 4 α α	LIVER	5 . 471 5 . 471 5 . 474 6 . 994 6 . 938 6 . 622 6 . 687 6 . 477 6 . 477 6 . 477	5.539 4.822 5.854 7.281 7.281 5.158 5.158 5.158 5.158	5.800 5.648 5.648 5.093 5.093 7.77 4.235 4.235 4.777 4.124 5.063
RCH 29	. «	1.526 2.078 1.804 1.709 1.866 1.866 1.461 1.670 1.670	1.821 1.647 2.371 1.793 2.058 1.818 2.011 1.737 1.667 1.737	1 2757373737373737373737373737373737373737
8 6 2	AL GM	27.0 27.0 27.0 28.0 28.0 29.0 36.0 30.0 30.0 30.0		
SAPK	. 6.5	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	3/2 29 3/2 31 3/2 28 3/2 28 3/2 30 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
TTERMAY V OF RE ESIDIO ECIES:	NIMAL O/SEX	114/F 116/F 116/F 129/F 135/F 145/F 168/F 178/F	101/F 111/F 121/F 134/F 134/F 144/F 155/F 155/F	105/F 118/F 122/F 150/F 163/F 167/F 181/F

Appendix N (cont.): ORGAN-TO-BODY WEIGHT RATIO

LETTERMAN DIV OF RE PRESIDIO	ARMY INST S SUPP, PA OF SAN FRA	LETYERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129	ARCH 129	SUHMA	ARY STATIST	STUDY NU	X ORGAN TO MBER: GLP!	SUMMARY STATISTICS FOR % ORGAN TO BODY WEIGHT RATIO STUDY NUMBER: GLP86007 REPORT FOR FINAL SACRIFIC (ALL SINGEOUDES)	0	PRINTED: 13.SEP.88 PAGE: 2
SPECIES: K	MOUSE/ICR				STUDY	START D	ATE: 01-AI	PR-87		STUDY TYPE:
ANIMAL NO/SEX	:	GROUP/ TERMINAL SUBGROUP BODY WIT. GMS	BRAIN	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL OVARIES	TESTES	
120/F	4/2	27.00	1.881	6.919	1.493	0.596	0.352	871 0		
128/F	7/5	27.00	1.978	5.237	1.511	0.593	5.274	0.148		
139/F	4/2	27.00	2.048	4.659	1.496	0.667	967.0	222.0		
149/F	4/2	26.00	1.981	5.662	1,292	0.558	0.542	600		
154/F	7/5	29.00	1.917	4.883	1.341	009	207	10.0		
156/F	7/5	30.00	1.733	5.703	1.220	0.663	0.403	17.0		
157/F	7/5	30.00	1.643	5.410	1.273	0.577	0.363	16.0		
174/F	7/5	29.00	1.738	692.7	1.090	207 0	0.238			
180/F	7/5	26.00	2.038	4.488	1.346	0.412	0.315			
182/F	4/5	31.00	1.945	4.406	1.287	0.516	0.397	×11.0		
		MEAN:	1.890	5.214	1.335	0.558	0.887	1010		
	STANDARD	STANDARD DEVIATION:	0.140	0.759	0.135	0.091	1.544	0.051		

Appendix 0: ORGAN-TO-BRAIN WEIGHT RATIO

				STUDY START DATE: 01-APR-87		1		1
GROUP/ TERMINA 5.08GROUP BODY WI. 1/1 34.0 1/1 35.0 1/1 35.0 1/1 37.0 1/1 37.0 2/1 33.0 2/1 33.0 2/1 33.0 2/1 33.0 2/1 33.0 2/1 33.0 2/1 33.0 2/1 33.0 2/1 33.0 3/1 32.0 3/1 33.0 3/1 33.0 3/1 33.0 3/1 33.0 3/1 33.0 3/1 33.0 3/1 33.0					. I	K-8/		STUDY TYPE:
1/1 1/1 1/1 1/1 1/1 1/1 1/1 2/1 2/1 2/1	S BRAIN	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL OV	TESTES OVARIES	TES
1/1 1/1 1/1 1/1 1/1 2/1 2/1 2/1 2/1 2/1	100.000	343.870	109.004 125.470	43.103	18.391		50.	50,383 67,015
STANDARD DEVIA 2/1 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1	100.000	415.058	90.213	31.702	25.834		\$ 29.	459 362
STANDARD DEVIN 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1	100.000	391.429	109.445		18.251		60. 59.	646 373
2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1 3/1	0.000	34.362	13.808	4.447	3.843		5.	634
2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1 3/1	100.000	379.545	92.614	29.735	20.833		53.	607
2/1 2/1 2/1 8/1 3/1 3/1 3/1 3/1 3/1	100.000	395.859	125.880	36.439	19.876			553
2/1 M E STANDARD DEVIA 3/1 3/1 3/1 3/1 3/1 3/1	100.000	278.692	121.308	47,679	19.831		50°.	568 025
STANDARD DEVLI 3/1 3/1 3/1 3/1 3/1 3/1	100.000	319.262	87.500	30.123	22.951		59.	426
3/1 3/1 3/1 3/1	100.000	347.618	108.135 17.194	35.966 7.253	21.117		55.	55.360 5.099
2								
3/1 3/1	100.000	472.258	91.183	47.312	87.097		54.	624
3/1 3/1	100.000	461.834	102.559	40.230	18.763		. 77	720
3/1	100.000	423.451	105.752	44.243	17.699		55.	088
	100.000	351.993	89.312	30.978	16.667		56.	341
M E A N: STANDARD DEVIATION:	0.000	434.297	100, 106 9, 605	42.384 6.956	32.647 30.534	, , , , , , , , , , , , , , , , , , ,		53.558 3.257
	100.000	383.698	97.217	39.364	22.863		. 67	70.304
	100.000	294.343	85.401	32.664	13.321		54.	015
4/1	100.000	390.119	107.510	48.221	18.775		56.	324
67/M 4/1 37.00	100.000	333.627	98.592	33.451	20.070		54.	049
4/1 31.00	100.000	325.267	74.021	36.655	20.819		. 77	840
THE PROPERTY OF THE PROPERTY O	100.000	345.411	92.548	38.071	19.170		51.	51.706
SIANDAKO UEVIALION:	200.0	; ;	15.005	0.273	3.267		•	119

Appendix O (cont.): ORGAN-TO-BRAIN WEIGHT RATIO

PAGE: 1	STUDY TYPE:					
	a	TESTES	:			
	SUBGROUPS	OVARIES	71.828 8.406 3.854 7.570 20.164	5.809 5.809 6.364 7.991	10.631 10.672 10.076 13.982 5.469 10.166	11.006 8.108 7.951 8.925 4.587
20	(ALL	ADRENAL				
	RIM SACRIFICE NUMBER Start Date: 01-Apr-87	SPLEEN	19.298 22.388 16.462 24.839 22.311 21.000	25.617 19.767 18.716 16.016 19.758 3.557	30.631 19.763 21.483 29.787 22.070 24.747	28.083 21.414 22.968 16.576
STUDY NUMBER:	FOR INTERIM SACRIFICE STUDY START DATE: C	HEART	29.825 29.851 37.478 26.981 27.490 30.325	26.755 32.364 32.364 28.125 37.552 31.528 4.274	24.685 30.040 28.327 16.109 25.238 6.273	29.412 28.482 31.625 25.137 27.156
		KIDNEY	69.786 73.881 62.172 85.225 70.916 72.396	72.106 75.581 66.055 71.875 71.992 71.522 3.430	61.982 72.332 69.772 123.404 72.461 79.990 24.642	63.947 74.220 29.505 63.388 62.569
	REPORT	LIVER	291.813 310.634 254.291 343.897 262.948 292.717	305.882 277.519 266.972 264.453 280.705 279.107 16.462	329.369 253.953 248.289 316.991 231.445 274.009 41.917	223.719 296.674 286.926 236.612 280.367
97120	4 169	BRAI	100.000 100.000 100.000 100.000 100.000	100.000 100.000 100.000 100.000 100.000 0.000	100.000 100.000 100.000 100.000 100.000	100.000 100.000 100.000 100.000
	,	TERMINAL BODY WT. GM	28.0 29.0 29.0 29.0 27.0 M E A N	29.00 28.00 28.00 28.00 27.00 M E A N: DEVIATION:	32.00 26.00 27.00 26.00 26.00 25.00 # E A N: DEVIATION:	26.00 27.00 29.00 27.00 29.00
PRESIDIO OF SAN FRANCISCO CA	IOUSE/ICR	GROUP/ SUBGROUP	1/2 1/2 1/2 1/2 1/2 STANDARD	2/2 29.0 2/2 28.0 2/2 28.0 2/2 28.0 2/2 28.0 2/2 27.0 M E A N STANDARD DEVIATION	3/2 3/2 3/2 3/2 3/2 3/2 STANDARD D	6/2 6/2 6/3 6/3
RESIDIO O	SPECIES: MOUSE/ICR	ANIMAL NO/SEX	126/F 130/F 151/F 153/F 161/F	99/F 146/F 169/F 171/F 175/F	109/F 112/F 125/F 132/F 162/F	107/F 127/F 148/F 164/F

Appendix O (cont.): ORGAN-TO-BRAIN WEIGHT RATIO

PRESIDIO	O OF SAN FRANCISCO,	RANCISCO, CA 94129	29	_	Ξ;	OR FINAL SACRIFI OY START DATE: 0	ပ	(ALL SUBGROUPS)		2
	OUSE/ICR				5					
AN IMAL NO/SEX	GROUP/ SUBGROUP	TERMI BODY WT		LIVER	KIDNEY	HEART		ADRENAL OVARIE	TEST S	ω
21/M	171	33.00	. ~		96.289	37.938	19.381		53.6(80
M/90	: 5	00.07	100.000		M	44.153			۲.	99
32/X	::	00.54	_		-	50.000			٥.	
38/8		42.00	100,000	442.337	146.935	41.188			4.	89 4
W/S7	::	10.00			M	31,657			4.	38
#/ YY	::	35.00	100.000		0	58.613			~	90
75,4	::		_		9	42.913			Š	98
2,00	::				, ~	59.961			Š	91
H/70	-;				· •	37 070			8	90
E/C0	-;	00.44			٠,	792. 27			-3	65
H/CA	-	2	•		. «	229 77			8	. ~
			•		1				•	1 0
	STANDARD	DEVIATION:	~		٠ ;	701.4		•	٠:	0
•										
40 / M	27.1	15.00			3.20	5.7	15.569		10	01
31/E	,,	37.00	100,000		7.0	0.7	25.603		$\overline{}$	71
W/ 72			100.000		3.40	9.5	20.345		$\overline{}$	2.2
#/ YE	,,		100.000		00	8.0	21.795		~	12
707		38.00	100.000		3.56	٥.	17.096		•	38
#/95	; <u>;</u>	36.00	100,000		. 25	·.	18.251		~	80
M/2/	2/1	41.00	_		.36	7.2	4.764		•	10
H/S9		00.57	100 000		14	8.8	28,125		•	56
2 4	- / -	20.00			0	2.0	22.535		N	39
E / 0	2,7	20.5	200.00		8		26.692		_	73
E / CO	- /3	, a	•		9	7 6	20.077			12
	STANDARD	DEVIATION	0000	102.749	33.408		6.792		17.9	65
					•		•	: : : : : :		
R/70	1/1	34.00	100,000	329.623		ဆ				81
W/C7		36.00	8	364.340		~				36
8/77		00 27	100,000	503.261		'n				70
51/H		00.44	100.000	470,135		4	•			28
\$2/x		75.00	100,000	709 657		٥.				
55/K	\ \ \ \ \	38.00	100.000	436.667	127.708	44.375	17.917		49.3	75
3/0/		00 67	6	780 860		'n				95
7/78		38.00		329.930		^				35
7 70		00.8		313 504		7	•			80
E / * C		20.02	(>	725 822	•					29
E /0.		20.40		402.000	•	. 0	, ,			96
				7/ 0/4	•	. ~				73
	SIANDAKD	DEVIALUM	5	7	•					

Appendix O (cont.): ORGAN-TO-BRAIN WEIGHT RATIO

TESTES OVARIES	51.969	65.278	417,829	53.002	62.366	60,400	48.966	54.633	49.811	61,145	92.540	114.434
ADRENAL	7.520	7.951	7.093	6.123	2.401	5.600	3.621	5.255	3.295	9.632	2.949	9.703
HEART	34.646	32.118	37.791	25.557	39.785	35.400	37.069	35.328	32.576	39.673	34.994	4.223
LIVER	1							•		•	•	•
4S BRAIN	100.000	100.000	100.000	100.000	100.000	100.000						:
TERMINAL	36.00	39.00	00.04	00.07	42.00	45.00	39.00	37.00	00.07	41.00	HEAN:	STANDARD DEVIATION:
												STANDAR
	LIVER HEART ADRENAL OVARIES	GROUP/ TERMINAL LIVER HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SA.646 17.520	GROUP/ TERMINAL LIVER HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 4/1 40.00 100.000 438.178 125.581 37.791 47.093	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 4/1 40.00 100.000 438.178 125.581 37.791 47.093 4/1 40.00 100.000 371.355 113.036 25.557 16.123	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SA.646 17.520 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 4/1 40.00 100.000 350.178 125.581 37.791 47.093 4/1 40.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 39.785 22.401	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SA.646 17.520 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 4/1 40.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 35.400 15.600	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 47.093 4/1 40.00 100.000 438.178 125.581 37.791 47.093 4/1 42.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 35.400 15.600 403.000 116.800 35.400 15.600 403.000 116.800 35.400 15.600 403.000 116.800 35.400 13.621	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 47.093 4/1 40.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 35.401 42.00 100.000 383.513 122.760 35.401 42.00 100.000 381.207 98.793 37.069 13.621 4/1 39.00 100.000 384.170 109.459 35.328 26.255	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 399.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 47.093 4/1 40.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 39.785 22.401 4/1 42.00 100.000 383.513 123.00 15.600 15.600 4/1 39.00 100.000 384.170 109.459 35.328 26.255 4/1 40.00 100.000 384.170 109.459 35.328 26.255 4/1 40.00 100.000 384.106 121.970 32.576 23.295	GROUP/ TERMINAL LIVER KIDNEY HEART ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN OVARIES 4/1 36.00 100.000 399.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 116.840 32.118 27.951 4/1 40.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 39.785 22.401 4/1 42.00 100.000 383.513 122.760 35.400 15.600 4/1 39.00 100.000 384.170 109.459 35.328 26.255 4/1 40.00 100.000 384.170 109.459 35.328 26.255 4/1 40.00 100.000 337.832 112.474 39.673 19.632	GROUP/ TERMINAL LIVER KIDNEY BEANAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN BOARNES 4/1 36.00 100.000 359.409 22.047 34.646 17.520 4/1 39.00 100.000 350.174 115.581 37.791 47.093 4/1 40.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 371.355 113.036 25.557 16.123 4/1 42.00 100.000 383.513 122.760 39.785 22.401 4/1 42.00 100.000 381.207 98.793 37.069 13.621 4/1 37.00 100.000 384.170 109.459 35.328 26.255 4/1 41.00 100.000 384.170 109.459 35.326 23.295 4/1 41.00 100.000 337.832 112.474 39.673 19.632 M E A N: 100.000 384.694 105.976 34.994 22.949

Appendix O (cont.): ORGAN-TO-BRAIN WEIGHT RATIO

	USE/				2 001	מואאוני	AIE: OI-APR-	8		STUDY TYPE
	GROUP/ SUBGROUP	TERMINAL BODY WT. GM	X X	LIVER	IDNE	HEART	PLEEN	DRENAL OVAL	: =	
114/F	1/2	31.00	100.000	358.562			29.387	10	7.	
116/F	1/2	27.00		263.458			17.825	101	5	
117/F	1/2	28.00	100-000	298.218			20.792	-	87	
129/F	1/2	33.00	100.000	292.199			22, 163	71	36	
135/6	1/2	20 00	100 000	509 792			52.4.85		7	
140/F	1/2	22.00	100.000	300.977			25.781) ur	2	
14575	1/2	26.00	157 990	388 785			24.766	. =	3	
16575	1/2	31.00	100.000	320.751			16.336	. «	3 4	
16875	1/1		000.001	716 627			27 773) ~	2 6	
178/1	2/1		000.000	268.066		•	26.1.3	7 14	5 0	
-	•		•	200 215		•	22 7.4	10	- 6	
	STANDARD	DEVIATION:		42.016	14.246	3.530	4.203	0 4	.386	
:										
101/F	2/2	28.00	100.000	304.118	85.686	39.608	•	10	.588	
111/F	2/2	32.00	100.000	292.789	54.839	24.668	15.750	^	. 780	
121/F	2/2	28.00	100.000	246.837	70.934	Ÿ.	'n.	•	.024	
124/F	2/2	29.00	100.000	274.808	80.962	'n.	ä	80	.654	
133/F	2/2	26.00	100.000	353.832	81,582	Ŷ.	÷.	€0	.411	
134/F	2/2	28.00	100.000	329.470	79.175	ų.	œ.	11	.591	
143/F	2/2	27.00	100.000	254.328	61.694	4.	'n.	7	.735	
144/F	2/2	31.00	100.000	344.186	83.932	'n.	ö	5	. 708	
155/F	2/2	32.00	100.000	309.712	72.302	4	'n	4	.676	
158/F	2/2	33.00	100.000	309.455	79.000	'n	œ.	M	.636	
		M E A Z:	100.000	301.953	74.121	œ.	•	7	.480	
	STANDARD	DEVIATION:	0.000	35.715	10.090	. ,		2	.513	
105/F	3/2	29.00	100.000	341.176	75.456	42.191	22.312	14	.807	
118/F	3/2	31.00	100.000	326.071	•	31.657	•	11	.173	
122/F	3/2	28.00	100.000	290.188	•	22.129		00	.351	
150/F	3/2	28.00	100.000	241.695		29.661		13	.390	
152/F	3/2	29.00	100.000	344.956		21.491	•	٥	.868	
160/F	3/2	30.00	100.000	427.246	•	44.012	•	M	. 593	
163/F	3/2	31.00	100.000	229.947	•	25.394		9	.305	
167/F	3/2	30.00	100.001	226.858		27.703	•	4	.561	
173/F	3/2	29.00	100.000	238.247		30.876		2	. 789	
181/F	3/2	30.00	100.000	305.634		29.577		7	.829	
	1	X X X	100,000	297,202		30.469		7	2967	
	COACUATO	1 4 7 10		45 070		202		- •		

Appendix O (cont.): ORGAN-TO-BRAIN WEIGHT RATIO

LETTERMAN DIV OF RE	S SUPP, PA	LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	SEARCH	SUMMA	RY STATIST	ICS FOR Study Nu	% ORGAN TO Mber: Glp8) BRAIN WEIGHT RATIO 16007	PRINTED: 13.5EP.88 PAGE: 2
PRESIDIO SPECIES:	PRESIDIO OF SAN FRA Species: Mouse/ICR	PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	74129	-	REPORT FOR	FINAL S. START D	ACRIFIC (A	REPORT FOR FINAL SACRIFIC (ALL SUBGROUPS) STUDY START DATE: 01-APR-87	STUDY TYPE:
AN I MAL NO/SEX	:	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	IS BRAIN	LIVER	KIDNEY	HEART	SPLEEN	ADREMAL OVARIES	TES
120/F	•	27.00	:	•	79.331	31.693	18.701	7.874	
128/F		27.00			76.404	29.963	266.667	11.236	
139/F		27.00			73.056	32.550	24.231	3.436	
149/6		26.00			65.243	28.155	27.379	4.660	
154/F		29.00			99.69	31.295	25.719	6.295	
156/F		30.00			70.385	38.269	23.269	8.846	
157/5	4/2	30.00	100.000		77.485	35.091	22.110	9.736	
174/F		29.00			62.698	23.214	13.690	4.762	
180/F		26.00			66.038	20.189	15.472	2.453	
182/F		31.00			66.169	26.534	20.398	5.804	
		E A K:	100.000		70.677	29.692	45.764	6.510	
	STANDARD	STANDARD DEVIATION:	0.000	50.124	5.728	5.397	77.738	2.848	

Appendix P: PATHOLOGY REPORT

GLP Study 86007

Principal Investigator : Cpt Frost APC # TLBO

I. Introduction:

Study: 90-Day Subchronic Oral Toxicity Study in Mice/Nitroguanidine

Test Substance: Nitroquanidine (CAS No. 556-88-7; LAIR CODE TP036)

Species: Mus musculus Strain: ICR Sex: 70 males and 70 females

Body Weight Range: 18-25 grams Age: approximately 5 weeks

Dosage group: Number of animals/group

Group 1 - Control	0	mg/kg	30
Group 2 - Low Dose	100	mg/kg	30
Group 3 - Middle Dose	316	mg/kg	30
Group 4 - High Dose	1000	mg/kg	30
Group 5 - Baseline	sacrificed day 1	of study	20

II. Summary of Procedures:

Euthanasia: Sodium Pentobarbital, IP

Tissue Fixative: 10% buffered formalin

Histopathology: Routine

Clinical Lab: Hematology/serology

Other procedures: Organ weights

III. Gross Findings: The incidence summary reports for gross necropsy observations for the final sacrifice and interim sacrifices 1 and 2 are listed in tables 1, 2, and 3 respectively.

IV. Microscopic Findings: Tissues taken for formalin preservation from all groups were: brain, trachea, thyroid glands, parathyroid, esophagus, parotid gland, mandibular gland, sub-lingual gland, exorbital lacrimal gland, heart, aorta, lungs, thymus, spleen, mesenteric lymph nodes, gall bladder, kidney, urinary bladder, uterus, accessory sex organ, testes, ovaries, duodenum, jejunum, ileum, pancreas, cecum, rectum, colon, stomach, skeletal muscle, sciatic nerve, tongue, skin, mammary gland, bone (sternum), adrenal glands, pituitary gland, eyes and optic nerve, liver, Harderian gland.

All tissues were examined in control, high dose and baseline (groups 1,4 and 5). Target tissues (brain, liver, kidney, lung and urinary bladder) were examined in all groups, and were the only tissues examined routinely in Groups 2 and 3.

Tables 4, 5, and 6 list the incidence summary (with %) of microscopic observations of tissues with recorded findings from the final, interim sacrifice 1 and interim sacrifice 2 respectively. Statistically compared microscopic lesions between final and intermediate sacrifice

groups at the .95 level of significance using the Kolmogorov-Smirnov two tailed test are listed in table 7.

V. Summary Comments: Compound related/induced gross or microscopic lesions were not present. All gross and microscopic lesions were minimal to mild in severity and considered to be incidental findings, commonly observed in mice. The only significant difference between controls and treated animals occurred in Group 3, females, where the amount of extramedullary hematopoiesis in the liver was lower (Table 7). This is an incidental finding and is not a dose response phenomena.

C. DAHLEM SMITH

MAJ, VC

Diplomate, ACVP

Division of Pathology

18 July, 1988

Glossary of Microscopic Findings GLP 86007

Accessory Sex Organ:

- Adenitis: There are mixed inflammatory cell infiltrates of mononuclear cells within the parenchyma.
- Dilated ducts: Occasionally, there are ducts lined by and partially distended with keratinous debris.

Adrenal gland:

- Cortical cell vacuolation: Cortical cells near the corticomedullary junction undergo prominent vacuolization with subsequent disposition of intracellular ceroid or lipogenic pigment. This change eventually encircles the medulla.
- Fortical necrosis: The transient zone X surrounds the medulla in young mice and disappears rapidly in young male mice at sexual maturity (approximately 5 weeks of age). In females this zone disappears at pregnancy or alternately may be visible for 6 months. Subsequently, lipid accumulates in this area. (see cortical cell vacuolation). Microscopically there is loss, necrosis and vacuolation of cortical cells with adjacent prominent sinusoids and occasional cellular debris.
- Medullary cell vacuolation: The presence of cytoplasmic vacuolation occurs within medullary cells.
- Subcapsular cell hyperplasia: In numerous strains of mice there is a proliferation of spindle cells beneath the capsule of the adrenal gland. This change involves the zona glomerulosa and extends downward into the cortex. Cells are fusiform with elliptical nuclei, scant basophilic cytoplasm and are benign in appearance.

Brain:

Fat in the choroid plexus: Several fat cells are present within the choroid plexus with no attendant disruption or compromise of adjacent nervous tissue.

Hippocampal vacuolation: Numerous 5 to 10 micron diameter empty vacuoles are present within the hippocampal section of the brain.

Hydrocephalus: Hydrocephalus is a bilateral or unilateral enlargement or dilation of the ventricles of the brain at the expense of adjacent parenchyma which undergoes pressure atrophy or liquifaction necrosis.

Esophagus:

Mononuclear cellular infiltration: There are small multifocal populations of lymphocytes with lesser numbers of macrophages and plasma cells present in the submucosal tissues.

Eyes and optic nerves:

Bilateral retinal degeneration and/or atrophy: This is inherited in some strains of mice and can also occur as a light associated lesion, especially in nonpigmented animals. This lesion is characterized by absence of the entire outer nuclear layer of both retinas due to the degeneration of the photoreceptor outer segments or associated (non)pigmented epithelium.

Exorbital lacrimal gland:

Subacute adenitis: Subacute to chronic inflammation of the gland is characterized by the presence of focal or diffuse infiltrations of lymphocytes, macrophages and plasma cells, possibly accompanied by minimal to moderate loss of glandular tissue through either necrosis or atrophy. Fibrosis may or may not be present. In most cases there is intraductal accumulation of inspissated secretory material.

Harderian gland:

Porphyrin pigment: Within the glandular parenchyma there is porphyrin pigment which is a normal excretory product of this orbital gland and consists of acellular masses of dark brownish material.

Kidney:

Cortical cysts: There are single to multiple variably sized dilated cystic structures within the renal cortex which are distended with light to dark

- acellular eosinophilic material and a few degenerating cells. These cysts are lined by flattened epithelium and displace and compress adjacent tissue.
- Hydronephrosis: There is a uniform diffuse expansion of the urinary space with a concomitant loss of medullary and cortical parenchyma. This change may range from minimal with negligible tissue loss to severe with extensive loss of the medulla and cortex. This lesion may be bilateral or unilateral.
- Lymphocytes, interstitial: There are multifocal interstitial aggregates of lymphocytes and histiocytes randomly distributed through the renal cortex. Loss or disruption of normal tissue is minimal.
- Mineralization: There are multifocal small interstitial and/or intratubular accumulations of basophilic acellular material with concomitant disruption of adjacent cells.
- Progressive renal disease: Glomerulonephritis is one of the most common renal diseases of mice and is often associated with either persistent viral diseases or with immune disorders. Glomeruri have proteinaceous deposits followed later by tubular atrophy and proteinaceous tubular casts.

In addition, a chronic nephropathy also occurs in mice as an incidental aging lesion and resembles that seen in rats. There are multiple foci of interstitial lymphocytes and histiocytes, interstitial fibrosis, tubular casts of proteinaceous material and thickened basement membranes of the glomeruli and tubules.

Pyelonephritis: Wit. in the medulla, there are mixed infiltrates of neutrophilic and mononuclear inflammatory cells, fibrosis, necrosis, tubules dilated with proteinaceous casts, and loss of tubular structures. These changes may extend in a radial fashion into the cortex. There may be cellular debris present in the urinary space.

Liver:

Extramedullary hematopoiesis: Hematopoiesis is normally

- present in the spleen throughout the life of the mouse, and is present in the young and juvenile mouse liver. There are multifocal populations of large, basophilic nucleated cells or blood islands randomly distributed within sinusoids between hepatocellular cords.
- Granuloma: There is an occasional small focus of macrophages with a few lymphocytes present within the hepatic parenchyma. Hepatocytes may be displaced and degenerated.
- Idiopathic foci of basophilic, eosinophilic, vacuolated and/or pleomorphic hepatocytes: There are foci and areas of hepatocellular alteration which are uniform in size, have a diameter less than a hepatic lobule, and have architectural alteration. There is minimal to no compression of surrounding parenchyma although the appearance and staining reactions of the cells sharply demarcate the altered area from normal hepatocytes. Usually each focus is either basophilic, eosinophilic or vacuolated. Occasionally, within a focus there is a mixture of a few cells from one of the other two types.
- Microabscess: There is an occasional random small focus of hepatocellular necrosis, debris and an inflammatory infiltrate of neutrophils and mononuclear cells. This may progress to a granuloma.
- Periportal mononuclear cellular infiltration: Within randomly distributed portal areas are populations of lymphocytes with lesser numbers of macrophages and occasional plasma cells. There is no attendant tissue disruption.

Lungs

Adenomatous hyperplasia of the alveolar epithelium (adenomatosis):

Adenomatosis of the lung is a focal hyperplastic nonneoplastic proliferation of Type 2 alveolar epithelial cells with or without inflammatory cell infiltration. This lesion frequently occurs in centriacinar regions of the lung at the junction of conducting airways and exchange tissue. Type 2 cell proliferation is frequently accompanied by infiltration

of alveolar macrophages both within affected alveolar lumens and within the interstitium.

- B alveolar cell acchema: Bronchiolar/alveolar cell adencma is a well-demarcated, usually focal, area of cuboidal cells forming solid, glandular or papillary patterns with concomitant compression and obliteration of adjacent pulmonary tissue. Cells are uniform with variable nuclear features and moderate amounts of amphophilic cytoplasm.
- Ferivascular lymphoid aggregations (cuffing): There are multifocal minimal to moderate lymphoid nodules present adjacent and around both medium to large airways and vascular structures.
- Vascular congestion: There are multifocal areas of alveolar capillary distension by red blood cells.

Nummary gland:

Physiologically active: Glandular lumena distended with ecsinophilic proteinic material and lined by large, basephilic but benign epithelium are present in subcutaneous tissue.

Mesenteric Lymph Node:

- Composite lymphoma: Synonym: reticulum-cell sarcoma, type B. This is a neoplastic lesion of lymphatic organs. The cell of origin is ill-defined. Early involvement occurs in the mesenteric lymph nodes, then extends to other nodes and the liver, spleen, kidney, thymus and lungs. Preneoplastic changes consist of follicular hyperplasia with prominent germinal centers, sinus histiocytosis, presence of pyroninophilic cells, medullary plasmacytosis and epithelioid sarroid-like nodules.
- Erythrophagocytosis: Within the sinusoids are numerous macrophages laden with intracellular erythrocytes.
- Sinus histiocytosis: There is an increase in the numbers of histiocytes (macrophages), both fixed and circulating, within the medullary sinuses of the node between the medullary cords. This hyperplasia of the mononuclear phagocytic system may be extensive enough to fill the sinuses.

Ovaries:

- Cysts, paraovarian: The paraovarian cyst is a loosely used term to refer to a variety of cystic structures located adjacent to the ovary. The cysts may have one or all of the following: a thin wall of connective tissue and muscle fibers, lining of low columnar epithelium with clear cytoplasm, presence of a basement membrane.
- Cysts, follicular: The follicular cyst develops from a follicle which has arrested development at some stage of the ovulatory cycle. Depending on the stage, follicular distension may be due to cellular debris or proteinic fluid. This appears as a round cyst within the ovary lined by compressed luteal tissue.

Pancreas:

Subacute pancreatitis: There are mixed inflammatory infiltrates composed of mononuclear cells with lesser numbers of neutrophils. Glandular tissue destruction, necrosis and loss are followed by fibrosis.

Parathyroids:

C cell hyperplasia: There are increased numbers of chief cells subdivided into small groups by fine connective tissue strands and capillaries. These cells are cuboidal with eosinophilic cytoplasm. There is no compression of surrounding tissue.

Rectum:

- Dilated sebaceous ducts: There are a few submucosal sebaceous glands with ducts lined by and partially distended by keratinous debris. This change may or may not be concomitant with suppurative adenitis of the sebaceous gland.
- Suppurative adenitis of sebaceous gland: An inflammatory infiltrate of neutrophils with lesser numbers of lymphocytes and macrophages, admixed with celluar necrotic debris, is present and obliterates random small areas of glandular tissue.

Salivary Gland (Parotid, Mandibular or Sub-Lingual):

- Adenitis: There are multifocal mixed inflammatory foci characterized by interstitial infiltrates of lymphocytes with lesser numbers of macrophages and occasional plasma cells. There is minimal loss or disruption of normal parenchyma.
- Ductal fibrosis: There are occasional, multifocal, minimal to mild, increased fibrous connective tissue fcci with trapped ductular structures and lymphocytes.

Skeletal muscle:

representation: Multitocal areas of degeneration of myocyten, with hypertrophy of satellite cells, a mild monnuclear cell infiltrate, and small amounts of cellular debris and mineralization are present in skeletal murcle. Concomitant regenerative basophilic nuclei are lined up in rows in the middle of adjacent myocytes.

Spleen:

- Extramedullary hematopoiesis: Hematopoiesis is normally present in the spleen throughout the life of the mouse, and is also present in the young and juvenile mouse liver. There are multifocal populations of large, basephilic nucleated cells or blood islands randomly distributed within sinusoids.
- Myeloid hyperplasia: There is an increase of the myeloid compenent of the normal hematopoiesis that occurs within the reducal of the spleen.

Stomach:

Glandular cysts: Within the glandular mucosa, occasional crypts are diluted, distended with cellular debris and are lined by flattened crypt cells.

Thymus:

Cysts: Cysts are occasional, variably sized, round follicles which are distended with amphophilic acellular material and cellular debris.

Thyroid

Colloid cyst: Colloid cyst is the presence of greatly enlarged (over twice the size of an average follicle) colloid-filled cystic space within the thyroid gland. Epithelial cells lining such cysts are usually flattened. One or more colloid cysts may occur within a single thyroid gland.

Urinary bladder:

Mononuclear cellular infiltration: There are random multifocal accumulations of lymphocytes with lesser numbers of histiocytes and plasma cells in the submucosal tissues. These accumulations are often just below the urothelium.

TABLE 1 Page of 1

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	INCIDENCE SUMMARY REPORT FOR	SUMM	ARY R	UDY N	8	OPSY OBSERVATIONS	IONS		۵.	PRINTED: PAGE:	- -	2-JUL-88
PRESIDIO OF SAN FRANCISCO, CA 94129 Species: Mouse/ICR		ST	REPORT UDY STA	RT FOR	REPORT FUR FINAL SACKIFI STUDY START DATE: 01-APR-87	u C					STUDY TYPE	TYPE:
NOTE: CTLS = CONTROLS ANIMAL SEX: FROM GROUP(S): NO IN CROUP:	CTLS	2 01	. MALES 3	ES	v c		CTLS 10		FEMALES 3	S 8 4 10	ın c	
ACCESSORY SEX OR	- :		- :	? ;		-			2 :	2 :	,	
ENLARGED.2.PREPUTIAL GLAND	· · · ·		- C	- -	o c							
ABNOCHAL COLOR CENTRAL PALOR	:::	- 0	, —		0 0							
TOTAL:	0	7	~	2	0		0	0	0	Ū	0	
ADRENAL ECTOPIC	0	0	0	0	0		0	_	0	0	0	
TOTAL:	0 :::	0	0	0	0		0	-	0	0	ပ	
HARDERIAN GLAND MULTIFOCAL BLACK SPECKLINGTOTAL:	::	00	*- *-	4 4	00			*** **			ဝ ဂ	
SPLEEN NODULAR SURFACE	•	0	0.	0	0 (_	0 1	0		0	ا ق	
TOTAL:		0	0	5	5		つ	>	_	>	50	
TESTES ATROPHIC / SMALL, UNILATERALLY	0	-	6	0	0				,	,	,	
TOTAL:	· · · ·	•	0	0	0		0	O	0	0	Ö	

Appendix P

TABLE 2 Page 1 of 1

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	INCIDENC	E SUMM REPOR ST	ARY RE STU T FOR UDY ST	PORT IDY NU INTER	FOR GROWBER: GIM SACR	INCIDENCE SUMMARY REPORT FOR GROSS NECROPSY OBSERVATIONS STUDY NUMBER: GLP86007 REPORT FOR INTERIM SACRIFICE NUMBER 1 STUDY START DATE: 01-APR-87	TIONS		g.	PAGE:	PRINTED: 12.JUL.88 PAGE: 1 STIINY TYPE.
NOTE: CTLS = CONTROLS ANIMAL SEX: FROM GROUP(S): 1 GROUP: NO. IN GROUP:	S T D		- MALES 2 3 4 0 0	s	5 10	S 2 3 4 5 CTLS 2 3 4 5 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CTLS		FEMALES 2 3 4	40	5
WHOLE BODY NO GROSS LESIONS RECOGNIZED.	00	00	0		100		0 0 0 10	00			10

	INCIDENCE	S SU	MMAR	r REPC STUDY	RT FO	REPORT FOR GROSS NECR. STUDY NUMBER: GLP86007	SUMMARY REPORT FOR GROSS NECROPSY OBSERVATIONS STUDY NUMBER: GLP86007	SNOI		ā	PRINTED: PAGE:	5: 21-NOV-88
DIV OF RES SOFF, FRANCISCO, CA 94129 PRESIDIO OF SAM FRANCISCO, CA 94129 ENERGIECA MOUNTAITEM		9. G.H.	STUD	FOR IN	TERIN	REPORT FOR INTERIM SACRIFICE NUMBER STUDY START DATE: 01-APR-87	NUMBER 2					STUDY TYPE
MOTE: CILS = CONTROLS ANIMAL SEX: FRUM GROUP(S): 1 GROUP: NO. IN GROUP:	CTLS	25	. ~ ~	MALES 3	42	0		CTLS		FEMALES 3	~ to	ıςο
WHOLE BODY NO GROSS LESIONS RECOGNIZED.	:	200	50 50	44	10 N	00	-	'n'n	8 2	44	44	00
ACCESSORY SEX OR ENLARGED SEMINAL VESTCLE	; ;	00	00		00	00		0	6	0	0	0
KIDNEY PYELONEPHRITIS	::	00	0 0		00	00		00	00	00	00	00
DVARIES PARA-OVARIAN CYST(S)TOTAL:	::	0	0	0	0	0	_	00	00	·		00
SPLEEN ENLARGED (SPLENOMEGALY)	::	00	00		00	00		00	00	00	00	o o

	E OF RESEARCH INCIDENCE ERV GP CO, CA 94129	SUMMARY (WITH K) STUD PATHOLOGIST STUDY STATA	Y (WITH X) OF STUDY N PATHOLOGIST(S) STUDY START	MICROSCOPIC NUMBER: GLP86): SMITH, CA1 DATE: 01-APF		PIC OBSERVA P86007 CATHERINE	VATIO	OBSERVATIONS(ALL 1007 HERINE D. 1-87	FIND ING)	NG)		PRINTED: PAGE: STI	ED: 23	: 22-NOV-88 : 1 STUDY TYPE:	6 0
	< ∞ v ·	ANIMAL DOSAGE NO. IN	S E X: GROUP:	CTLS 10	M.	MALES 10	1 4 4 0 0 C	A L S	<	F F E CTLS	C T E D FEMALES 2 3 10 10	MALES 3 10		ino	
	BRAIN	NUMBER EXA	EXAMINED:	- 0 <u>-</u> 080	508	0,0%	508		:		800	% O %	00 0	000	:
	·FAT, CHOROID PLEXUS			0 0 0 0	60	80	60	- 5		 	8 6	60	808		
	-HIPPOCAMPAL VACUOLATION			o 0	, X	0 % 0 0	0 X	0 X		° ° °	. ۲	% 00	10x	×	
	TRACHEATHYROID GLANDS	NUMBER EXAI	EXAMINED: EXAMINED:	01 01 0	0 00	0 00	0° • 0	0 00		င့် ဆ ဝ	0 00	0 00	01 01-	0 00	
	PARATHYROID	NUMBER EXAP	EXAMINED:	0 400 % %	× 000	x 000	0 % 1 4 0 %	% 0 % 0 0 0 1		0 400 X X	× 000	% % 600	50 % 00 %	x 000	
	ESOPHAGUS	NUMBER EXAP	EXAMINED:	00 0 %	000	000	50%	000		0 0 %	000	000	0 0 ×		
	PAROTID GLAND	NUMBER EXAM	EXAMINED:	~ 00	000	000	9 0 0 0 0 0	000		600 600	000	000	800	000	٠-
App	-ADENITIS, SUBACUTE			000	%	. ×	X oc	×		- -	×	8 08	, x	, , , , , , , , , , , , , , , , , , ,	-
endix	MANDIBULAR GLND	NUMBER EXAM	EXAMINED:	01 201 X01	+ o o →	000	30 x 30	0 0 0		0 - 0	000	, M	6 0 6	000	
P	-OUCTULAR FIBROSIS			0 °	بر		ი ჯ	۵۵	-	* 00	, x	, a	808		

F RESEARCH INCIDENCE SUMMAR GP	NICROSCOPI NUMBER: GLP	Ow v	C 08SER	/AT10N	ERVATIONS(ALL	FINDING)	NG)	•	PRINTED: PAGE:	.0: 22 iE: 2	22 - NOV - 88 2	~
0 :: S	DATE: 0	APR	R-87			:				STUDY	Y TYPE:	:
FOLDS AREAN R FIRST SACRIFICE			₹	X	ALS	⋖	FFE	2 T C	::			
CTLS = CONTROLS FROM GROUP(S): 1 ANIMAL	i		LES 7	: `	u		217	₽	IALES	: 4		
SUBGROUPS = 12 DOSAGE GROUP:	21.5 10	٦ <u>.</u>	, ē	, ō	0		2 2 2	<u>۔</u> و	5	0	. 0	:
			:	:	:	: : -	ç	ح	_	•	c	:
SUB-LINGUAL GLMD	0.	-	>	2	5	_	2	>	>	•	,	
EXORBITAL LACRIM	0 4 7 8 8	000	000	7 2 28%	000		000 000	000	000	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	, X 000	
KEART NED:	10		0	10	0		10	0	0	. 0	0	
	7	0	O	æ	o		∞	0	0	7	0	
	0 0 40	10 2 20%	10 2 20%	10 30%	000		0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	10 10 10 2	0t - 0t %	10 10 20 20	000	
-VASCULAR CONGESTION	۶ 00	4 0 4	10%	000	پر 00		00	20%	000	% 000	۲ 0 0	
-ADENOMATOUS HYPERPLASIA OF THE ALVEOLAR EPITHELIAL CELLS	0	0	C)	0	0	_	0	0	0	0	0	
(ADENOMATOSIS)	70	0%	8	% 0	0%	_	80	%	80	80	% 0	
-8- ALVEOLAR CELL ADENOMA	0 0 0	0 %	10 x	8 0 0	, X		00	00	00	o o	, 서 이 이	
THYMUS NUMBER EXAMINED: -CYST(S)	0 0 0 %	000	000	800 X	000		0- 1	000	000	٥٥٥	0 0 0	
SPLEEN NUMBER EXAMINED:	10 90%	-08	00 0	10 10 100%	C 0 0		10 100 100 x	000	-08	0 0 0 %	000	
-WYELDID HYPERPLASIA	00	۵°	0 0 0	0 X	0 °C		8 0	80	100%	00	<u>پ</u> 00	
MESENTERIC LYM N	10 80%	000	000	8 v 8	200		9 8 8 8 8	೧೦೮	000	۲ × ۲ ×	, x	

Table 4 (continued)

Appendix P

	LETTERNAN ARMY INSTITUTE OF RESEARCH INCIDENCE S DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOULSFILD	SUMMARY (WITH %) OF STUDY N PATHOLOGIST(S)	¥ 5 6	OPIC GLP86 CAT	PECOBSERVA PROSOT CATHERINE APR-87	VATIOI E D.	CROSCOPIC OBSERVATIONS(ALL BER: GLP86007 SMITH, CATHERINE D.	F INDING)	_	<u>.</u>	PRINTED: PAGE: ST	3: 22 E: 3 STUD	: 22-NOV-88 : 3 STUDY TYPE:
	NOTES: ANITALS = FIXAL SACRIFICE			:	*	- E	A L S	- -			: :		
	CTLS JBGROUPS S U E S	ANIMAL S E X: DOSAGE GROUP: NO. IN GROUP:	CTLS 10	: 20	MALES 3	; 4 t			LS .	- FEM 10	ALES 3	: 40	w 0
	MESENTERIC LYM N	NUMBER EXAMINED:	10,10%	000	000	800	000	· · · · · · · · · · · · · · · · · · ·	000	%0 0 0 0	000	ر 0 م	, , , , , , , , , , , , , , , , , , ,
	-ERYTHROPHAGOCYTOSIS		00		00	0 0	0 0		- 4	0 % 0 0	, X	0 ×	× 00
	GALL BLADDER	NUMBER EXAMINED:	7	∞	∞	٥	0	_	∞	Φ.		0	0
	KIDNEY	NUMBER EXAMINED:	10 4 4 4 6%	10 30%	10 40 40 80	10 4 40%	000		0 4 0 4 X 0 4 X	20%		01 701 X01	000 000
	-CORTICAL CYSTS		30%	0%	000	00	0 0 0 0		پر 0 0	0 ×		10%	, x
	- HYDRONEPHROSIS		. % 0	0 %	000	10%	% 00		0 0 0 0	8	0 0	0 %	ه د د
	-PROGRESSIVE RENAL DISEASE		1 10%	00	0 %	۶ 00	00		0 % 0 0	%	0 0	۶ 00	بر 00
	-MINERALIZATION		10x	10%	0 X	° ° °	° %		10%	. X	- X	0 × 0	بر 00
	- PYELONEPHRITIS		0 O	0 X	0 X	000	م م		, X	0 00	0 ×	0 ×	پر
	ONLY ONE KIDNEY EXAMINED		0 O	0 0 0 0	о х 0 о	%	0 X		0 0 0 0	۵ ×	o %	پر 00	0 X
Appe	URINARY BLADDER	NUMBER EXAMINED:	0 %	8 000	800 600	0 0 X	000		5 ° %	000 8	 	0 - 8	8 000
ndi	UTERUS	MUMBER EXAMINED:						_	٥	0		5	0
ж Р	ACCESSORY SEX OR	NUMBER EXAMINED:	5 ° ° °	000 000	- 0 X	ō ° 8	000						

Table 4 (continued)

PATH SERV G Rancisco, C R	STUDY N PATHOLOGIST(S) STUDY START	UMBER: : SMIT DATE:	GLP86007 H, CATHERINE 01-APR-87	007 Herin -87	£ 0.					Δ.	PAGE:	: 4 STUOY TYPE:	
NOTES: ANIMALS = F CTLS = C SUBGROUPS = T I S S U E S	ANIMAL S E X: DOSAGE GROUP: NO. IN GROUP:	C71.S 10		MALES 7		; ⋖	: " ———	A F F E CTLS	10 11 1	E D	s \$	v 0	:
ACCESSORY SEX OR	NUMBER EXAMINED:	00 00 00 00	2 1 50%	1002	10 2 20%	000	:				:		:
TESTES	RUMBER EXAMINED:	10	8	0	10	0							
OVARIES	NUMBER EXAMINED:							10	000	000	٥ و ه و	% 000	
-PARA-OVARIAN CYST(S)								2 0	00	ස ප	10%	. % 0 0	
-FOLLICULAR CYST(S)								မ ဝ ဂ	0 0	0 %	10%	상 0 0	
DUGDENUM	NUMBER EXAMINED:	٥	0	0	10	0		10	0	0	0	0	
RECUNDE	NUMBER EXAMINED:	10	0	0	20	0		10	0	0	10	0	
ILEUM	HUMBER EXAMINED:	10	0	•	2	0		10	0	0	10	0	
PANCREAS N. SUBACUTE PANCREATITIS	NUMBER EXAMINED:	000	200 000	% 0 0 0	6 0 0 %	000	****	10 10%	, , , , , , , , , , , , , , , , , , ,	000	10,	% 000	
CECUM	NUMBER EXAMINED:	10	0	0	0.	0	_	10	c	6)	10	0	
RECTUM H -DILATED DUCTS, SEBACEOUS GLANDS	NUMBER EXAMINED:	000 000	-00	000	s + ½	000		0 C C	000	000	01 201 201	00 0	
-SUPPURATIVE ADENITIS, SEBACEOUS GLARD		0 0 0	0 %	300	8 0 0	۵°		2 O	a #	ంసి	10%	00	
R NOTOD	NUMBER EXABINED:	10	-	0	10	0	_	10	0	ပ	10	0	

Table 4 (continued)

_
Ð
a
3
=
₹
Ē
၁
4
9
◪
0

= FINAL SACRIFICE = CONTROLS FROM GROUP(S) = 1 2 W I T H F I N D I T(S) T(S) T "ACTIVE" T "ACTIVE" T "ACTIVE" T "ACTIVE" T "ACTIVE" T "ACTIVE"	DEFICERTY AND INSTITUTE OF RESEARCH INCLUDENCE SUMMART (WITH &) OF MILKOSCOPIC OBSERV) DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR STUDY START DATE: 01-APR-87	X) OF MICKOSCOPIC STUDY NUMBER: GLP8C GIST(S): SMITH, CAI	CATHE APR-	RINE			GLP86UU/ I, CATHERINE D. 11-APR-87		•	PAGE:	: 5 Study TYPE:
AL MUSCIE TO NUMBER EXAMINED: 10 10 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0	= FINAL SACRIFICE = CONTROLS FROM GROUP(S): 1 ANIMAL = 1 2 DOSAGE U I T H F I N D I N G S NO. IN	-	. Z		H 40	:	F F CTLS	. T	E D .	•	. o
NUMBER EXAMINED: 1		5 0 %	- 00 0X	000	008	000	0 - 0) -	•	
C NERVE NUMBER EXAMINED: S 1 0 10 0 1 7 0 0 10 1	E NUMBER EXAMINED		, o o -	000	008	00°	500			ō º º	000
THE CELL VACUOLATION WUNBER EXAMINED: 9 1 0 9 0 1 10 0 0 10 10 10 0 9 0 1 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	NUMBER	æ	-		<u> </u>	0	7	0	0	٥	0
Y GLAND 10 10 10 10 10 10 10 1	NUMBER	٥	-	0	۰	0	10	0	0	10	0
THE CALL WACTIVE STERNUM STERNUM	NUMBER	0	_	0	•	-	10	٥	0	10	0
STERNUM	ALLY "ACTIVE"		, ×	000	m 00	٥٥٥	0 10 10 10			000	, , , ,
SIS, CORTICAL 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STERNUM NUMBER		0		•	-	10	0	0	5	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SIS, CORTICAL				ر 0 م	X	9 % OL		000	0 1 2 2 3 3 3	000
1A 1LABLE FOR EXAMINATION 2 0 0 0 1 0 0 0 0 0 0 0 0 0	CORTICAL CELL VACUOLIZATION				ر 0 م	٥,	 X		0 0	40X	<u>.</u> ۲
1LABLE FOR EXAMINATION 3 0 0 3 0 1 1 0 0 1 3 0 1 3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0	SUBCAPSULAR CELL HYPERPLASIA				. × ×		9 9 8 9 8 9		. ×	90% 80%	0 K
2 0 0 0 0 1 1 0 0 0 0 2 0 2 0 1 1 0 0 0 0	EXA			-	% %	٠,	11 %		0 K	- 1 0	٥ ٢
	MEDULLARY CELL VACUOLATION					۰	ב אר	0 X	0 X	۰×	. ×

LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE SUMMARY (WITH X) OF MI OLIV OF RES SUPP. PATH SERV GP STUDY NUM STUDY NUM STUDY OF SAN FRANCISCO, CA 94129 PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR STUDY START DA	<u> </u>	CROSCOPIC OBSERVI BER: GLP86007 SMITH, CATHERINE TE: 01-APR-87	08 SER 007 HERIN -87	VATIOI E D.	178CALL	Z 	O I NG)		PRINTED: PAGE: ST		: 22.NOV.88 : 6 STUDY TYPE:
X NOTES: ANIMALS # FINAL SACRIFICE CTLS = CONTROLS FROM GROUP(S): 1 ANIMAL S E X: SUBGROUPS = 1 2 TISSUES WITH FINDINGS NO. IN GROUP:	CTLS 10	. 2 ₀	MALES 3	- 4C	A L S		A F F E CTLS	2 - E	T E D FEMALES 2 3 0 10	. 40	~ 0
PITUITARY GLAND NUMBER EXAMINED	۰.	-	5	0	0	_	٥	0	0	~	0
EYES & OPTIC N	: 8 4 72 72	- 00 X	000	10 10 20 10	000		% 000	000	000	10 30%	000
-ONLY ONE EYE EXAMINED	000	00	0 O	0 %	00		22%	00	0 0	00	٥ ٢
LIVER NUMBER EXAMINED - EXTRAMEDULLARY HEMATOPOIESIS	: 10 30%	9 22 22 24	10 2 20%	a m m m	000		10 8 8 0%	10 40 40%	10 20%	0 60 80 80	000
-PERIPORTAL MONONUCLEAR CELLULAR INFILTRATION	10x	% 0 0	0 %	2 22%	° %		۵ 0 0	0 0	30%	2 20%	0 0 %
- CRANULOMA	00	- L	۰ ۵	0 o	0 %		0 0 0 0	0 X	10%	00	%
-MICROABSCESS(ES)	0 0 0	0 °	0 o	° ×	0 ×		0 0 0	- 10 X	0 X	0 °C	, X
-IDIOPATHIC FOCI OF BASOPHILIC, EOSINOPHILIC, VACUOLATED, AND/OR PLEOMORPHIC HEPATOCYTES	0 0 %	0 0	0 %	- E	0 %		o 8	o 8	0 0	0 %	o %
HARDERIAN GLAND	. 9 9 100 x	000	000	07 8 8 X X	000		8 × × × ×	1 1 100%	1001	8 75%	0 0 0

Table 4 (continued)

	RESEARCH INCIDENCE	SUMMARY (WITH X) OF	Z	OP1C GLP86	OBSER 007	/AT10N	S(ALL	MICROSCOPIC OBSERVATIONS(ALL FINDING) UMBER: GLP86007	•	•	PRINTED: PAGE:): 22 E: 1	22-NOV-88	6 0
	PRESIDIO OF SAN FRANCISCO, CA 94129 Species: Mouse/ICR	PATHOLOGIST(S) STUDY START	(S): SMITH RT DATE: 0	1-APR	CATHERINE Apr-87							STUDY	Y TYPE	••
	ANIMALS = INTERIM SACRIFICE 1		, , , , ,	:	_ _ _	= 	8 1 8	A F	. u	1 E	CTED··	:		:
		ANIMAL S E X:		≆ ;'	ALES	:					ALES	: •		
	SUBGROUPS = 1 Z	NO IN CROUP:	CTLS	N C	m c	4 C	v t	5 	CTLS	N C	~ ~	4 C	νt	
		•		•	•	•	2	-	•	•	•		:	:
	Z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NUMBER EXAMINED:	0	0	0	0	0	_	0	0	0	0	9	
	- HYDROCEPHALUS		0 0 0	0 0	٥ ٥	۰×	۰×	·—	۵۵	۰×	% 00	0 % 0 0	<u>م</u> م	
	-FAT, CHOROID PLEXUS		° °	٠×	0 %	0 %	, X		۰×	۰×	۰×	0 X	10X	
	-HIPPOCAMPAL VACUOLATION		0 0	° ×	° ×	۶ 0	30%		° ×	۰×	0 ×	0 X	20 X	
	TRACHEA	NUMBER EXAMINED:	0	0	0	0	•	_	0	0	0	0	۰	
	THYROID GLANDS	NUMBER EXAMINED:	000	000	000	000	400 X		000	000	000	00×	% o &	
	PARATHYROID	NUMBER EXAMINED:	000	000	000	000	⊷ o ×		000	, ×	000	000	M 0 0	
	ESOPHAGUS	NUMBER EXAMINED:	000	000	000	000	7 - 12 x 21 x 21 x 21 x 31 x 31 x 31 x 31 x		000	00 0	000	X	% 000	
	PAROTID GLAND	NUMBER EXAMINED:	000	000	000	000	m 0 0		000	00×	0 0 X	×	6 0 0	
Apı	-ADENITIS, SUBACUTE		0 0 0	0 0 0	0 ×	0 %	0 ×		, ×	, ×	. ×	, x	۰×	
pendix	MANDIBULAR GLNDADENITIS, SUBACUTE	NUMBER EXAMINED:	000	0 0 0	000	0 0 0 0 0 0	800 800		% 000	0 0 0	0 0 0	- ×	6 0 0 X	
P	-DUCTULAR FIBROSIS		0 0 0	o 8	0 ×	۰×	پ		0 ×	۵ 0	۰×	0 % 0 0	۰×	

Table 5

LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE SUMMARY (WITH %) OF DIV OF RES SUPP, PATH SERV GP STUDY N STUDY N PRESIDIO OF SAN FRANCISCO, CA 94129 PATHOLOGIST(S) SPECIES: MOUSE/ICR STUDY START	MICROSCO IUMBER: G : SMITH, DATE: 01	PIC C LP86C CATH	OBSERVAT 6007 THERINE D R-87	AT10	NSCALL	CROSCOPIC OBSERVATIONS(ALL FINDING) BER: GLP86007 SMITH, CATHERINE D.	G	۵.	RINTE	5: 22 E: 2 STUD	PRINTED: 22-NOV-88 PAGE: 2 STUDY TYPE:
		:	:	:	:	٠	:	: : :	:	:	
NOTES: ANIMALS # INTERIM SACRIFICE 1		•	₹ (X	N L S	u. ≪ _	iii	1 E	: 0	:	
CTLS * CONTROLS FROM GROUP(S): 1	2110	; ^ E	21 ~	٠ ،				. ~	2 2	. 4	•
CITH FINDINGS NO. IN	50	. 0	0	0	, C		0	0	0	0	0
CALC MARKET CONTRACTOR OF THE	0		0		٥	_	0		0		٥
	. (,	•	•	,		•	•	ć		•
EXORBITAL LACRIM	o o o	%	- - 8	008	. .		 	,	%	š	800 000
REART RUMBER EXAMINED:	0	0	0	0	٥		0	0	0		<u> </u>
AORTA NUMBER EXAMINED:	0	0	0	0	7	_	0	0	0		7
LUNGS NUMBER EXAMINED: -PERIVASCULAR LYMPHOID AGGREGATIONS (CUFFING)	00 0	% 000	000	008	ō 0 %		000	000	000		8 0 0 0 0
-VASCULAR CONGESTION	. X	%	۰×	0 %	, ×		, X	0 0 0	0 X		<u>م</u> ر 00
-ADEMOMATOUS HYPERPLASIA OF THE ALVEOLAR EPITHELIAL CELLS	0	0	0	0	0		0	0	0		0
	X 0	7 0	% 0	8	X 0	_	80	20	8		70
-B. ALVEOLAR CELL ADEMOMA	0 X	0 X	0 0	0 X	% 000		000	0 %	° 6		, X
THYMUS	000	, x	000	000	800 800		000	000	000	000	5 0 0 %
SPLEEN NUMBER EXAMINED: - Extramedullary Hematopolesis	000	000	000	000	10 10 100%		000 8		000	000 1	000 00x
-MYELOID HYPERPLASIA	o 8	% 00	o 8	% 00	۰×		0 K	0 X	۰×		o X
SESENTERIC LYM M	000	000	000	000	50 34 6 50 34 6		000	000	000	000	6 6 8 80 8

Table 5 (continued)

	STITUTE OF RESEARCH INCIDENCE Path Serv GP Rancisco, Ca 94129 R	SUMMARY (WITH X) OF MI STUDY NUM PATHOLOGIST(S): STUDY START DA	MICROSCOPIC OBSERVATIONS(ALL NUMBER: GLP86007): SMITH, CATHERINE D. DATE: 01-APR-87	OPIC GLP86 CAT 1-APR	08SER 007 HERIN	VATIO E D.	NSCALL	FIND	F I ND I NG)		PRINTED: PAGE: ST	ED: 2 GE: 3	: 22-NOV-88 : 3 STIINY TYPE-
	₹8. * * *	ANIMAL S E X:		=	ALES	X			123 12. 12.		E D	• •	
		DOSAGE GROUP:	CTLS 0	00	mo	40	v 6		CTLS 0	N 0	M 0		2 O
	MESENTERIC LYM M	NUMBER EXAMINED:	000	000	00×	000 000	908		000	00 X	00 %	008	800
	-ERYTHROPHAGOCYTOS1S		° ×	ж 00	000	% 00	° ×		0 0 0	00	0 0 0 0		0 % 0 0
	GALL BLADDER	NUMBER EXAMINED:	0	0	0	0	m	_	0	0	0	0	0
	KIDNEYLYMPHOCYTES, INTERSTITIAL	NUMBER EXAMINED:	000	000	000	000	0 - 0 %		000	000	00 ×	000	5 - 5 X
	-CORTICAL CYSTS		°,	00	0 0	0 X	۶ 0		۵ ۵	° %	٥ ٥	ж 0 0	0 °
	- HYDROME PHROSIS		00	۰ <u>۲</u>	۰×	۰×	٥,		0 X	۶ ٥٥	o 8	o 8	۰×
	PROGRESSIVE REMAL DISEASE		00	80	0 X	٥%	10x		0 0	0 ×	o 8	۶ ٥ ٥	00
	-MIMERALIZATION		o %	, X	o %	0 %	20X		0 0 0	0 X	0 X	o %	0 X
	· PYELOWEPHRITIS		0 X	o 0	0 K	0 %	۲ 00		o 8	0 0	٥ ٥	° ×	0 O
	-ONLY ONE KIDNEY EXAMINED		000	0 X	, X	, X	10X		0 O	° 6	0 X	0 % 0 0	0 X
Apper	URIWARY BLADDER	NUMBER EXANINED:	000	0 0 0	000	X 000	& 0 0 %		000	% 000	000	000	800 800
ndix	UTERUS	NUMBER EXAMINED:						_	0	0	0	0	0
k P	ACCESSORY SEK ORADENITIS, SUBACUTE	NUMBER EXAMINED:	000	000	000	00 ×	٥ ° %						

ox Table 5 (continued)

LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE SUMMARY (WITH SDIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAM FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	UMMARY (WI Patho Stu	X) OF TUDY N	MICROSCOPIC OBSERVATIONS(ALL FINDING) NUMBER: GLP86007); SMITH, CATHERINE D. DATE: 01-APR-87	COP1C 08S GLP86007 H, CATHER 01-APR-87	1C OBSERVI P86007 CATHERINE APR-87	T10NS	נשרו	FINDING		E	PRINTED: PAGE:	: 22-N : 4 STUDY	22-NOV-88
NOTES: ANIMALS # INTERIM SACRIFICE 1 CILS # CONTROLS FROM GROUP(S): 1 SUBGROUPS # 1 2 T I S S U E S W I T H F I N D I N G S	ANIMAL DOSAGE NO. 1N	S E X: GROUP: GROUP:	CTLS 0	MALES 2 3 0 0	A S M O	= 40	ر ه ه	A F F CTLS	آ و ر 0	T E D FEMALES 2 3	3	. 40	5 10
R	NUMBER EXAMINED:	MINED:	000	000	000 000	000	00 % %						
OVARIES	NUMBER EX/ NUMBER EX/	EXAMINED: EXAMINED:	6	0	0	0	۰		, , , ,	, X	000	000	x 55 75
-PARA-OVARIAN CYST(S) -FOLLICULAR CYST(S)									% % 00 00	% % 00 00	% % 00 00	, X , X	% % 00 00
	NUMBER EXAMINED: NUMBER EXAMINED:	EXAMINED: EXAMINED:	0 0 0	0 0 0			eo eo ~				0 0 0	000	5 5 5
PANCREASsubacute PANCREATITIS	MUMBER EX	EXAMINED:	000	000	, 000 000	000	80 0 X		000	× 000	% 000	000	5 ° ° °
RECTUM SEBACEOUS GLANDS	NUMBER EX	EXAMINED: EXAMINED:	0000	0 000	0000	0 000	8 NO 8		0 000	0 000	0 000	0 000	6 7 0 %
-SUPPURATIVE ADENITIS, SEBACEOUS GLAND			0 0 0	0 0 0 0	0 X	0 X	۵ ×		0 ×	0 %	0 × 0	80	<u>بر</u>
NOTOD	NUMBER EXAMINED:	AMINED:	0	0	c	0	œ0	_	0	0	0	0	۰

Table 5 (continued)

P
_
9
3
5
•
_
Ç
0
ပ
_
S
ð
_
Ω
•
\vdash

	H INCIDENCE	SUMMARY CUITH	STUDY	E 3	0P1C (6LP86)	BSERV 007	ATION	SCALL	FIND ING)	^	۵	PRINTED: PAGE:	22 :: 5	22-NOV-88 5
	FRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	Σ .	STUDY START	DATE: 01-7	1-APR	CATHERINE .	<u>.</u>						STUD	STUDY TYPE:
	ANIMALS = INTERIM SACRIFICE 1	* **	, , , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • •		*	Ξ	S 7 Y	X	FEC	<u>'</u>		:	
	SUBGROUPS # 1 2	SOO	DOSAGE GROUP:	CTLS	£ 2	MALES -	. •	s	CT	' S	- FEM.	EMALES .	. 4	٠,
		오 :	IN GROUP:	0		•	•	10	-	•		•	.:	2
	STOMACH	NUMBER	EXAMINED:	0	0	0	•	۰		c	-	c	•	9
				00	, X	, X	٥ ٥ ٥	. o 8		, ×	, o %	, , <u>,</u>	×	
		2		•	•	•	•		_		,	•		•
	PEGENERATION		EXAMINEUT	6	.	- 0 8	8	_ o 5		%	 			2 - 5 2 - 5
							}	;	_		}	}	}	
	SCIATIC MERVE	NUMBER	NUMBER EXAMINED:	0	0	0		10	_					9
	TONGUE	NUMBER	NUMBER EXAMINED:	0	0	0		٥						•
	SK12	NUMBER	EXAMINED:	0	0	0		10	_					<u> </u>
	HAMMARY GLAND	NUMBER	EXAMINED:	00 0	000	×	000	4 0 X		0 0 0	00°	00×	۶ د د د	× 00
			2	•	•	•								
	GCAE, 3.ERACH	NON SER	EXAMINED:	5	5	D		0		0	0			•
	ADREMAL	NUMBER	EXAMINED:	000	000	00×	 800	30%		, ×	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o o o	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 2 28%
	-CORTICAL CELL VACUOLIZATION			0 0 X	٥٥	پ		0,0		, ×	۵ 0			- X
	SUBCAPSULAR CELL HYPERPLASIA			00	۶ 00	<u>بر</u> 00		20%		, X	0 X			0 %
Appe	ONLY ONE ADRENAL GLAND AVAILABLE FOR EXAMINATION	NO		0 X	° ×	. ×	. ×	20%		<u>.</u> ۲	, X		-	, X
endix	MEDULLARY CELL VACUOLATION			0 X	0 ×	0 X		0 0 X		0 X	0 X	, ×		, X

Appendix P

LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE SUMMARY (WITH %) OF MICROSCOPIC OBSERVATIONS(ALL FINDING) DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 PATHOLOGIST(S): SMITH, CATHERINE D. SPECIES: MOUSE/ICR	ICROSCO MBER: G SMITH, ATE: Of	COP1C 08S GLP86007 H, CATHER 31.APR-87	OPIC OBSERV. GLP86007 CATHERINE	AT 10 W	KALL F	1ND 1NG)		PRINTED: PAGE:	STU STU	: 22-NOV-88 : 6 STUDY TYPE:
NOTES: ANIMALS = INTERIM SACRIFICE 1 CTLS = CONTROLS FROM GROUP(S): 1 SUBGROUPS = 1 2 T I S S U E S W I T H F I N D I N G S NO. IN GROUP:	CTLS 0		MALES -	H 40	A L S 5	A F F F CTLS	د 100	EMALES O	. 40	5 10
PITUITARY GLAND	0	0	0	0	9	0	0	0	0	0
EYES & OPTIC N	000	000	00°	000	0 0 0	000	% 000 x	000	°°°°	800
-ONLY ONE EYE EXAMINED	o 8	0 0 0	ه ۲	6	- *	0 0 	0 % 0 %	° %	° %	0 X
LIVER NUMBER EXAMINED:	000	000	000	000	10 3 0%	000	000 8	000	000	10 5 50%
-PERIPORTAL MONONUCLEAR CELLULAR INFILTRATION	o 8	0 ×	0 %	0 % 0 0	0 X	0 0 0	% 00 x	0 o	% 00	0 X
- GRANULOMA	۵°	٥°	۶ 0	۵ 0 0	پر 00	. ×	% 00 x	00	000	۵ 0 0
-MICROABSCESS(ES)	o 8	° ×	پر 0 0	٠ ٪	<u>.</u> ۲		00 00 x	٥ ٥	00	* 00
-IDIOPATHIC FOCI OF BASOPHILIC, EOSINOPHILIC, VACUOLATED, AND/OR PLEONORPHIC HEPATOCYTES	o 8	o %	o %	o %	0 X	0 80	0 % 0 ×	0 0	0 %	ь ж 0 0
HARDERIAN GLAND	000	000	000	000	۵۰ هم هم ۲۲	000	% 000 x	000	000	4 4 100x

PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	PATHOLOGIST(S)	SMITH DATE: 0	CATH	CATHERINE .APR-87	Ġ	1, CATHERINE D.				ST	STUDY	TYPE
ANIMALS = IN CTLS = CO SUBGROUPS = 1 S S U E S W	E GROUP:	CTLS	; 25°	MALES .	- 4w	S 1 & 0	A 7	F F E C CTLS	T E D		410	v 0
BRAIN NUMBER EXAMINED NUMBER EXAMINED	XAMINED:	N 0 0 X	400 X	400 X	N O O	, X			5 0 N	× 00 ×	× 00 ×	X
-FAT, CHOROID PLEXUS		. š	۵ 0	۰×	٥ %	. X				•••	- %	0 X
-HIPPOCAMPAL VACUOLATION		1 20%	٥٥	1 25%	1 20%	0 ×		20%	•	•	25 10%	° ×
TRACKEA NUMBER E	NUMBER EXAMINED:	'n	•	•	6	0	_				v	•
THYROID GLANDS	NUMBER EXAMINED:	N 0 0	000	000	× 00 ×	0 0 0				000 000	200 200 200 200 200 200 200 200 200 200	000
PARATHYROID MUMBER E	NUMBER EXAMINED:	- 00 X	000	% 000	% 000	0 0 0		+ o° ×	0 0 0	0 0 0	400 8	× 000
ESOPHAGUS	XAMINED:	, 60 ov	000	, K	00 N	, ×					5 0 X	0 0 0
PAROTID GLAND NUMBER E - DUCTAL FIBROSIS	EXAMINED:	7 0 0 7 0 0	000	000	25 %	000			000	X	400 %	0 0 X
-ADEMITIS, SUBACUTE		0 0 0	, X	° × °	, X	٠×		, X			0 X	, X
MANDIBULAR GLND NUMBER E	EXAMINED:	00 N	, ×	000	× 000	o o 8		× 00 ×	0 0 X	7 0 0 0 0	4 1 25%	0 0 X
-DUCTULAR FIBROSIS		% 00	۰×	0 X	۰×	٠×				_	~ %	0 X

LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE SUMMARY (WITH %) OF DIV OF RES SUPP, PATH SERV GP STUDY PAPELIDID OF SAM FRANCISCO CA 04.120	MICROSC NUMBER:	288	BSER 107 ERINI	/AT10I	OBSERVATIONS(ALL 007 HERINE D.	FINDING	I NG)	_	PRINTED: PAGE:	ED: 27	22-NOV-88 2	
	T DATE: 01	APR	APR-87					:		STUDY	Y TYPE:	
ANIMALS = INTERIM SACRIFICE 2			4	= =	S 7 V	⋖.	F	C T E				
= CONTROLS FROM GROUP(S): 1	į	≩ :'	LES	. `				 	8914E			
SUBGROUPS # 1 2 DOSAGE GROUP:	5 2) IN .	n Ko	* W	0		2 S	1 K	۰.	'n	. 0	
NOTE TO THE OF THE PROPERTY OF				4			'n	0	0	4		•
		•		,	c		•	•	c	-	c	
EXORBITAL LACRIM	4 0 0 X	%	%	% 0 0 0	<u>.</u>		25%	000	200	- 00	, , <u>,</u>	
HEART NUMBER EXAMINED:	'n	0	0	•	0	_	4	0	0	8	0	
AORTA NUMBER EXAMINED:	4	0	0	5	0	_	\$	0	0	8	0	
LUNGS NUMBER EXAMINED: NUMBER EXAMINED: .PERIVASCULAR LYMPHOID AGGREGATIONS (CUFFING)	5 1 20%	5 1 20%	, o ö	5 N N	000		00 ×	v 0 0 %	5 1 20%	5 4 80%	000	
-VASCULAR CONGESTION	800	% 000	0 K	0 0 0 0	0 X	*****	o 0	1 20%	00	0 %	, X	
-ADENOMATOUS HYPERPLASIA OF THE ALVEOLAR EPITHELIAL CELLS	0	0	0	0	0	_	0	0	0	0	0	
	% 0	X 0	X ₀	X 0	70		X 0	X 0	0%	80	×o	
-B- ALVEOLAR CELL ADENOMA	0 o	0 0 0 0	0 %	0 ×	. ×		0 O	0 0	0 X	0 X	پر	
THYMUS RUMBER EXAMINED: -CYST(S)	5 1 20%	000	, x	× 000	000		400 K	000	000	% 00 2	9 0 0 0 0 0	
SPLEEN MUMBER EXAMIMED: -EXTRAMEDULLARY HEMATOPOIESIS	n 4 0 80 %	000 7		5 5 100%	8 0 0 0		5 100%	000	000	5 100%	% 000	
-MYELOID HYPERPLASIA	00	•	100%	, X	80		0 o	۰ ۵	80	80	<u>بر</u> 00	
MESENTERIC LYM N	3 3 100%	000	000	20% X	000		4 100x	0 0 0 0 0	000	4 4 7001	000	

Table 6 (continued)

	LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE S DIV OF BES SUPP DATH SERV OF	UMMARY (SUMMARY (WITH X) OF MICROSCOPIC OBS. SIUDY NUMBER: GLP86007	MICROSCOPIC OBSERVATIONS(ALL	P1C 0	BSERV 07	ATION	S(ALL	FINDING)		<u>a</u>	PAGE	32.	PRINTED: 22-NOV-88 PAGE: 3
	94129	PAT	PATHOLOGIST(S) STUDY START	SMITH DATE: 0	H, CATHERINE 01-APR-87	ERINE 87						•	STUDY TYPE	TYPE:
	: #						. I	S 7 V	AFFE		1 E 0			
	MCO =	ANIMAL	L S E X:	9 1 2	≨ ∶ ^	LES .	. 7	ď	6113	:	Z ENA			.=
	SOUES WITH FIND	NO. IN	N GROUP:	5	'n	n ro	· w	. 0			150	_		_
	AESERIERIC VARIANCE V	NUMBER E	NUMBER EXAMINED:	mc	00	00	40	00		**	00			
				X	80	8	8	X	_	×	× 0			×
	-ERYTHROPHAGOCYTOSIS			. %	۰×	° ×	٥ ٥	پ 00		<u>.</u> ۲	_ Z			_ *
	GALL BLADDER	NUMBER E	EXAMINED:	m	m	m	M	0	_	•	4			
	KIDNEYINTERSTITIAL	NUMBER E	EXAMINED:	5 1 20%	5 5 4 1 80% 20%	5 1 20%	, o o x	000		5 1 20% 4	5 5 2 1 40% 20%		5 20%	- ×
	-CORTICAL CYSTS			. X	0 %	° %	080	۵ 8		, X	0 ×			_ *
	- HYDRONEPHROSIS			1 20%	0 ×	, X	٠×	, x		, X	0 X			_ ×
	-PROGRESSIVE REMAL DISEASE			0 X	0 0	o 8	, ×	0 X		<u>بر</u>	~ × 0			_×
	-MINERALIZATION			o %	٥ ٥	° 0	۵ ۵	0 0 0 0		<u>بر</u> ۵٥	٠. ٥٥			, K
	· PYELONEPHRITIS			۰ ۲	0 0	1 20%	° ×	ه ه		<u>بر</u>	٠ ×			_ ×
	-ONLY ONE KIDNEY EXAMINED			0 0 0	00	, X	0 X	0%		, %	٠- ٥٥			_ X
Appe	URINARY BLADDER	NUMBER E	EXAMINED:	7 0 0 X	m 0 %	0 0 X	400 X	000		, oo	4 0 0 X	4 0 0 X	v 00	, ×
ndi	UTERUS	NUMBER EXAMINED	XAMINED:						_	ı,	•		<u>د</u>	0
х Р	ACCESSORY SEX ORADENITIS, SUBACUTE	NUMBER E	EXAMINED:	W 00 W	000	000	5 1 20%	000						

Table 6 (continued)

DIV OF RES SUPP, PAIN SERV GF PRESIDIO OF SAN FRANCISCO, CA 94129 PRESIDEN: MOUSE/ICR	PATHOLOGIST(S STUDY START): SMITH DATE: 0	CATHER	CATHERINE I-APR-87	0						STUI	STUDY TYPE
NOTES: ANIMALS = INTERIM SACRIFICE 2 CTLS = CONTROLS FROM GROUP(S): 1 SUBGROUPS = 1 2 T T S S U F S L T T H F I N D I N G S	ANIMAL S E X: DOSAGE GROUP: NO. IN GROUP:	CTLS	; ; N N	MALES S	Z 40	A L S		F F E CTLS	C T E	E D	; 4 W	v o
ESSORY SEX OR	NUMBER EXAMINED:	N 0 0	000	000	500	000		: : : :			1 5 1	• • •
TESTES	NUMBER EXAMINED:	2	0	0	'n	0	_					
S	NUMBER EXAMINED:							20%	000	- 0°	400 X	000
-PARA-OVARIAN CYST(S)								٥ ٥	0 %	100%	0 °C	00
-FOLLICULAR CYST(S)								ж 00	0 N	0 0 0 0	000	0 K
Dudo Brum	NUMBER EXAMINED:	'n	0	0	v	0	****	•	0	0	v	0
	NUMBER EXAMINED:	'n	0	0	Ŋ	0		~	0	0	~	0
	HUMBER EXAMINED:	s	0	0	r.	0	_	'n	0	0	S	0
AS	NUMBER EXAMINED:	N 0 0	000 8	000 8	N 0 0	000		00 N	, x	000	N 0 0	000 000
	NUMBER EXAMINED:	'n	0	0	'n	0		5	0	0	'n	0
ATED DUCTS,	NUMBER EXAMINED:	v 0 0 %	000	000	v 0 0	000		400 X	000	000 000	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000 000
-SUPPURATIVE ADENITIS, SEBACEOUS GLAND		0 0 0	00	8 0 0	0 0 K	0 %		00	٥ ٥	8 0 0	00	0 X
COLON	NUMBER EXAMINED:	ĸ	0	0	۲n	0		'n	0	0	'n	0

Table 6 (continued)

ı	•		•
•	١		
	•	3	ľ
	ì		
	3		
	ŧ		
:	:		
	ž		
1	Ē		
	ŧ	i	7
	(3
١		•	
•	۱	į	ì
1	ć		į
	•		
1	ć		1
		ì	
	į	C	
۱			•

	LETTERMAN ARMY INSTITUTE OF RESEARCH INCIDENCE S DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAM FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	UMMARY PA	SUMMARY (WITH %) OF STUDY N PATHOLOGIST(S) STUDY START	X) OF MICROSCITUDY NUMBER: (START DATE: 0	COPIC OBSERV. GLP86007 H, CATHERINE 01-APR-87	BSERV 07 erine 87	AT 1085	SCALL	X) OF MICROSCOPIC OBSERVATIONS(ALL FINDING) STUDY NUMBER: GLP86007 GIST(S): SMITH, CATHERINE D. START DATE: 01-APR-87		PR	PRINTED: PAGE: ST	: 22-NOV-88 : 5 STUDY TYPE:	85 ñ
	NOTES: ANIMALS = INTERIM SACRIFICE 2 CTLS = CONTROLS FROM GROUP(S): 1 SUBGROUPS = 1 2 T I S S U E S W I T H F I W D I N G S	ANIMAL DOSAGE NO. IN	IAL S E X: GE GROUP: IM GROUP:	CTLS 5	. 5 N	MALES -	- 4n	2 20	A F F CTLS	:	C T E D FEMALES 3	. 40		•
	STOMACH	LUMBER	NUMBER EXAMINED:	400 X	000	× 00	N 0 0	~ ×		5 0 0 0 0 0 0	000	800	000	:
	SKELETAL MUSCLE	NUMBER	EXAMINED:	v 00 %	000	000	% 000	000		2 0 0 0 0 0 0 0 0	000	00 N	000	
	SCIATIC WERVE	NUMBER	EXAMINED:	4	0	0		-	4	0	0	v	0	
	TONGUE	UMBER	NUMBER EXAMINED:	v	0	0		•	- ·			~	0	
	SKIN	NUMBER	EXAMINED:	~		0	2	-	.			10	0	
	MAMMARY GLAND	NUMBER	EXAMINED:	~ o o x	000	0 0 0	M 0 M	000	. 00 %			10	000	
	BONE, STERNUM	NUMBER	EXAMINED:	N				-	1 0				0	
	ADRENAL	NUMBER	EXAMINED:	20 % 20 %	000	, X	w 0 0	008	80 4 50 KK	% 000 x	000	5 4 80%	000	
	-CORTICAL CELL VACUOLIZATION			o 8				~~	00				<u>ہ</u> ۔	
	·SUBCAPSULAR CELL MYPERPLASIA			0 % 0 0					203				o 8	
Appe	-ONLY ONE ADRENAL GLAND AVAILABLE FOR EXAMINATION	*		0 X					603 603				0 X	
ndix	-MEDULLARY CELL VACUOLATION			o %					201	0 X	0 X	0 o	° °	

NCIDENCE SUMMAR	SUNMARY (WITH %) OF MICROS STUDY NUMBER: PATHOLOGIST(S): SMIT STUDY START DATE:	MICROSC UMBER: : SMITH DATE: 0	PIC 08S LP86007 CATHER	OPIC OBSERVI GLP86007 CATHERINE 1.APR-87	/AT10		F IND ING)	NG)		PRINTED: 3 PAGE: (ED: 22 GE: 6 STUC	: 22-NOV-88 : 6 STUDY TYPE:	88 ::
NOTES: ANIMALS # INTERIM SACRIFICE 2 CTLS # CONTROLS FROM GROUP(S): 1 SUBGROUPS # 1 2 1 S S U E S W I T H F I N D I N G S	ANIMAL S E X: DOSAGE GROUP: NO. IN GROUP:	CTLS	. ~ w	MALES 3	T 75	A L S		F F E CTLS		E D	140	50	:
PITUITARY GLAND MUMBER	R EXAMINED:	7	0	0	~	0		-	0	0	0	0	
EYES & OPTIC M NUMBER - BILATERAL RETINAL DEGENERATION AND/OR ATROPHY	EXAMINED:	v 0 %	000	000	5 1 20%	000		5 1 20%	000	000	5 1 20%	000	
-OMLY ONE EYE EXAMINED		ه د د	٥٥	0 % 0 0	, X	o 0		0 0 0	o 8	o 8	0 X	0 % 0 0	
LIVER NUMBER-EXTRAMEDULLARY HEMATOPOIESIS	R EXAMINED:	5 20%	20 % 70 %	40% 80%	2 m 20	000	·	6 w s	5 7 7 7 7 7 7	2 7 7 7 8 7 8	2 4 80 % %	000	
PERIPORTAL MONONUCLEAR CELLULAR INFILTRATION		00	000	1 20%	0 X	0 X		۵ م د د	° %	° 6	0 %	, X	
- GRAWULOMA		٥,	۵°	00	00	0 X		00	° %	1 20%	00	00	
-MICROABSCESS(ES)		٥ ٥	% 00	۶ 0	0 %	0 X		0 X	0 %	1 20%	0 0	0 °	
-IDIOPATHIC FOCI OF BASOPHILIC, EOSINOPHILIC, VACUOLATED, PLEOMORPHIC HEPATOCYTES	ITED, AND/OR	0	0	0	0	0	_	0	0	0	0	0	
		70	80	%	70	X 0		80	X 0	80	X	X 0	
HARDERIAN GLAND NUMBER - PORPHYRIN PIGMENT	NUMBER EXAMINED:	4 4 100x	- 0 X	000	2 5 2 00 2 4	, ×		100¢	000	000	3 100%	000	

SPECIES: MOUSE/ICR	STUDY START DATE:				:				:	:	
NOTES: ANIMALS = ALL DEAD CTLS = CONTROLS FROM GROUP(S): 1 SUBGROUPS = 1 2 T I S S U E S WITH FINDINGS	ANIMAL S E X: DOSAGE GROUP: NO. IN GROUP:	CTLS 15	15 = 1	HALES -	H 7	s 1 s 0	A F F I	E C T E	E D FEMALES 3	: 45	20
EPHALUS HOROID PLEXUS AMPAL VACUOLATION	NUMBER EXAMINED:	ž 0 0 t	4000	4.0 0	~ ~ ~		21 0 0	Tooo	400-	20 - E	5 <u>0 - r</u>
TRACHEA NU	NUMBER EXAMINED:	15	0	0	15	9	15	0	0	5	٥
THYROID GLANDS	NUMBER EXAMINED:	5 0	00	00	<u>7</u> 0		£1.0	00	00	5-	٥0
PARATHYROID MUN-C CELL HYPERPLASIA	NUMBER EXAMINED:	v 0	o o	00	v -		.n O	00	00	v 0	m o
ESOPHAGUS	NUMBER EXAMINED:	15	00	00	21 0		ž 0	00	00	₹ o	٥.٥
PAROTID GLAMD	NUMBER EXAMINED:	±00	000	000	ō~0	m00	£1 0	000	000	5 00	٥٥٥
MANDIBULAR GLND	NUMBER EXAMINED:	د 0	-00	000	v. no		21 0	000	000	<u> </u>	600
	NUMBER EXAMINED:	15	-	0	14	-	15	0	0	13	٥
EXORBITAL LACRIM	NUMBER EXAMINED:	13	00	• •	12 2		13	00	00	v 0	80 ©
HEART NUP	NUMBER EXAMINED:	15	-	0	15	-	14	0	0	75	10
AORTA NUP	NUMBER EXAMINED:	:	0	0	13	- 2	13	0	0	٥	~
MPHOID AGGREGATIONS (CUFFING) 110N ERPLASIA OF THE ALVEOLAR EPITHE	NUMBER EXAMINED: LIAL CELLS	£-00	~ ~ 0	22-0	~ ~		ည်းကဝဘ	\$- x0	2,000	2200	
(ADEMOMATOSIS) B- Alveolar cell ademoma		0	0	-	0	•	0	•	0	0	0

ESEARCH 94129	INCIDENCE SUMMARY PATHOL	O >	DE MICROSCOPIC OBSERVATION STUDY NUMBER: GLP86007 SIST(S): SMITH, CATHERINE START DATE: 01-APR-87	OBSERV LP8600 CATHE	ATTON	OF MICROSCOPIC OBSERVATIONS(ALL FINDING) STUDY NUMBER: GLP86007 GIST(S): SMITH, CATHERINE D. START DATE: 01-APR-87	ING)		PRINTED: PAGE:	IED: 2	: 22-NOV-88 : 2 STUDY TYPE:	e .::
NOTES: ANIMALS = ALL DEAD CTLS = CONTROLS FROM GROUP(S): 1 SUBGROUPS = 1 2 T S S U E S W I T H F I N D I N G S	AN IN	S E X: E GROUP: N GROUP:	CTLS 15	MALES 2 3 15 15	2	I M A L S 4 5 5 10	A F F CTES	E C T	E D	. 4 2	5 10	:
THYMUS	. NUMBER E	EXAMINED:	15	00	00	80 0		0.0	00	7 ⁰	00	
SPLEEN	. NUMBER E.	EXAMINED:	21 0	-00	1 15	5 10 0 0	151	000	-0-	21.0	550	
MESENTERIC LYM M	N CM BER	EXAMINED:	1130	0000	0000	00 40		₩20+	0000	5 000	0000	
GALL BLADDER	. NUMBER E	EXAMINED:	5	-	1 12	m	_	2 13	Ξ	14	٥	
LYMPHOCYTES, INTERSTITIAL CORTICAL CYSTS HYDROMEPHROSIS PROGRESSIVE RENAL DISEASE MIMERALIZATION PYELONEPHRITIS ONLY ONE KIDNEY EXAMINED		EXAMINED:	2000	* r 0 0 0 t 0 0	Wwagoo-0	201001000000000000000000000000000000000		24000000	40-00-00	22-0000	5-00000	
URINARY BLADDER	. NUMBER E	EXAMINED:	7 0	12 1	71 71	80		5 13	20	2 -	89 O	
UTERUS	. NUMBER E	EXAMINED:					71	•	0	15	0.	
ACCESSORY SEX OR	. NUMBER E	EXAMINED:	000	NO-	-0-	2 10 0						
TESTES	NUMBER E	EXAMINED:	5	~	0 15	6	_					
OVARIESONE OVARY MISSING AND/OR NOT EXAMINEDPARA-OVARIAM CYST(S)	NUMBER	EXAMINED:						v v o o	-0-0	40	6200	

NOTE: ENTRIES FLAGGED WITH A - (MINUS) ARE SIGNIFICANTLY DIFFERENT FROM CONTROL AT THE 0.05 LEVEL USING KOLMOGOROV-SMIRNOV TWO-TAILED TEST.

4 Z ~	S	STIC	MICROSCOPIC JDY NUMBER: G ST(S): SMITH, TART DATE: 01	OBSERVATIONS(ALL GLP86007, CATHERINE D.	VAT 10 07 ER INE 87	NS(AL D.		FINDING)		g.	PRINTED: PAGE:	: 22-NOV-88 : 3 STUDY TYPE:	88 . PE:
NOTES: ANIMALS # ALL DEAD				: '	. z	=	8 I S	AFF	E C T	щ. П			
CTLS = CONTROLS FROM GROUP(S): 1	ANIMAL	SEX:	;		LES .	, `	•	_	: "	FEMALES	: 4 S	ď	
SUBGROUPS = 1.2 TISSUES EITH TISSUES		GROUP:	51.5	, T	. 25	, T	, <u>e</u>	15	. 2	, T	<u>.</u>	٥,	:
	NUMBER EXA	EXAMINED:	71	•	0	15	€0	- - - -	0	0	51	5	
	NUMBER EXA	EXAMINED:	15	0	٥	52	40	_	15 0	0	5	9	
	NUMBER EXA	EXAMINED:	15	0	0	5	7	-	2 0	0	15	5	
	NUMBER EXA	EXAMINED:	ñ.o	00	00	7 0	80 C		200	00	2 -	50	
	NUMBER EXA	EXAMINED:	15	0	0	5	€0	_	2 0	0	15	9	
NDS GLAND	NUMBER EXA	EXAMINED:	7 00	-00	000	T -0	NO0		m00	000	5 m -	~ 00	
DOLOM	NUMBER EXA	EXAMINED:	\$	-	0	15	80	_	2	0	15	٥	
	NUMBER EXA	EXAMINED:	70	-0	00	តិ o	0-0		00	00	ž o	50	
SKELETAL MUSCLE	NUMBER EXA	EXAMINED:	<u>4</u> 0	-0	00	ž o	50		00	00	₹0	5-	
SCIATIC MERVE MI	NUMBER EXA	EXAMINED:	12	-	0	ŧ	5	-	0	0	7	•	
TONGUE NI	NUMBER EXA	EXAMINED:	1,5	-	o	75	٥.	_	15 0	0	5	٥	
N NIXS	NUMBER EXA	EXAMINED:	15	_	0	2	0	-	15 0	0	5	5	
MAMMARY GLAND	NUMBER EXA	EXAMINED:	40	00	00	•0	40		200	00	7-	٥.0	
BONE, STERNUM NI	NUMBER EXA	EXAMINED:	15	0	0	=	5	_	5 0	0	71	0-	
ADREMAL	#8ER	EXAMINED:	พิพผพพผ	-00000	00000	50032-	5 w o v v o		24744	00000	27.0000	rúmome	
NOTE: ENTRIES FLAGGED WITH A - (MINUS) ARE SIGNIF	SIGNIFICANTLY	DIFFEREN	FROM	CONTROL	¥	7	8	LEVEL USIN	USING KOLHOGOROV-SHIRNOV	OGORO)	- SMII	NO.	:

=	INCIDENCE SUMMARY OF MICROSCOPIC OBSERVATIONS(ALL FINDING) STUDY NUMBER: GLP86667	SCOPIC IMBER: G	CBSER7A	TIONS	ינארר ב	NDIA	æ		PRINT	ED: 2 GE: 4	PRINTED: 22-NOV-88 PAGE: 4	ec ec
PRESIDIO OF SAN FRANCISCO, CA 94129 Species: Mouse/ICR	PATHOLOGISI(S): SMITH, CATHERINE STUDY START DATE: 01-APR-87	. SM11H,	-APR-87	N .	•					STU	STUDY TYPE:	:
ROTES: ANIMALS # ALL DEAD				2	8 7 K E T Z K	S	AFFE	C	۵			
CTLS = CONTROLS FROM GROUP(S):	ANIMAL S E X: DOSAGE GROUP:	CTLS	MALES	: *	5		CTLS	. 2	FEMALES	; 4	~	
- 1	S	15	15 15	= :	2	-	15	2	: 2	15	- - - -	:
PITUITARY GLAND	NUMBER EXAMINED:	=			•	_	01	0	0	~	0	
EYES & OPTIC NBLEATION AND/OR ATROPHY - BLATERAL RETINAL DEGENERATION AND/OR ATROPHY - ONLY ONE EYE EXAMINED	NUMBER EXAMINED: DPHY	£1 0	-00	<u> </u>	00-		14 2	000	000	2,40	ယဝ ပ	
LLARY HEMATOPOIESIS L MONONUCLEAR CELLULAR I	NUMBER EXAMINED: NFILTRATION	27	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 010	ō w o o		£100	د و ه	£4m	512	ာ <u>်</u> က ဝ ဇ	
 GRANULOMA MICROABSCESS(ES) IDIOPATHIC FOCI OF BASOPHILIC, EDSINOPHILIC, VACUOLATED, AND/OR PLEOMORPHIC HEPATOCYTES 	IC, VACUOLATED, AND/OR	000	-00	300	000		000	0-0	v-0	000	000	
HARDERIAN GLANDPORPHYRIN PIGMENT	NUMBER EXAMINED:	1 3	- o	# # #	0- 80		11			= 0	44	
MOTE: ENTRIES FLAGGED WITH A - (MINUS) ARE TWO-TAILED TEST.	- (MINUS) ARE SIGNIFICANTLY DIFFERENT FROM CONTROL AT THE 0.05 LEVEL USING KOLMOGOROV-SMIRNOV	FROM C	ONTROL	¥ i	IE 0.05	LEVEL	USTNG	KOLMOC	0R0V-	SMIRN	2	: :

LETTERARY ARRI INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	NSTITUTE OF RE PATH SERV GP FRANCISCO, CA GR	esearch 94129	CORRELATI PATH ST	CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	PRINTED: 09-AUG-88 PAGE: 6 STUDY TYPE:
ANIMAL NUMBER: 87C0083 DATE OF DEATH: 01-JUL-87 STUDY DAY OF	87C0083 1-JUL-87 ST	STUDY DAY OF DEAT	SEX: MALE DEATH: 92	DOSE GROUP: 1 SACRIFICE STATUS: FINAL SACRIFICE STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 44.00 (GMS)	CE 44.00 (GMS)
ORGAN NAME	KEYWORDS / D	C P A T H O L O G Y KEYWORDS / DISTRIBUTION (SEVERITY)	O L O G Y	THOLOGY OBSERVATIONS >> N (SEVERITY) GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	FINDINGS
HARDERIAN GLAND		: .5	ECKLING	c speckling	
				10000000000000000000000000000000000000	

LETTERMAN ARMY INSTITUTE OF RESEARCH	STITUTE OF		CORRELATION OF GROSS AND MICROSCOPIC FINDINGS PRINTED: 09-AUG-88 STUDY NUMBER: GLP86007	7 · AUG · 88
PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	RANCISCO, R		PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	STUDY TYPE:
ANIMAL NUMBER: 8700040 DATE OF CEATH: 01-JUL-87	87c0040 -JUL-87		SEX: MALE DOSE GROUP: 2 SACRIFICE STATUS: FINAL SACRIFICE SEX.00 (GMS)	· · · · · · · · · · · · · · · · · · ·
ORGAN NAME	KEYWORDS	ORGAN WAME KEYWORDS / DISTRIBUTION (SEVERITY)	OBSERVATIONS >> GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	; ; ;
ACCESSORY SEX OR	(MILD) EI	(MILD) ENLARGED. 2. PREPUTIAL GLAND	TIAL GLAND PREPUTIAL GLAND	
	(TRACE)	(TRACE) ABRORMAL COLOR	DILATED DUCTS, PREPUTIAL GLANDS	

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	NSTITUTE OF PATH SERV FRANCISCO,	CORREL	CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87 STUDY START DATE: 01-APR-87
ANIMAL NUMBER: 87C0063 DATE OF DEATH: 01-JUL-87 STUDY DAY OF	87c0063 1-JUL-87	SEX: MALE Death: 92	DOSE GROUP: 2 SACRIFICE STATUS: FINAL SACRIFICE STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 41.00 (GMS)
ORGAN NAME	KEYWORDS	<pre><< P A T W O L O G Y KEYWORDS / DISTRIBUTION (SEVERITY)</pre>	•
TESTES *GROSS:	(MILD) AT	*GROSS: (MILD) ATROPHIC / SMALL, UNILATERALLY	(MILD) ATROPHIC / SMALL, UNILATERALLY THE LEFT TE IS ONE THIRD THE SIZE OF THE RIGHT.

JG-88			•	•	•
PRINTED: 09-AUG-88 PAGE: 14 STUDY TYPE:	OMS)				•
NTED: 09- PAGE: 14 STUD)	1CE 2 35.00 (GMS)	NGS		x 1/3	•
98.		FINDI	•	E 1/3	· ·
	SACRI	1061c		CE PAL	•
	TERIM	PATHO	•	EARAN	•
	SACRIFICE STATUS: INTERIM SACRIFICE 2	HISTO	•	3.	
DINGS	STATE	NTS /	•	AL SIZ	POIES
C FIN	FICE	COMME		NO.	EMATO
36007 36007 37HERI	SACR	N S TEXT	•	HALF TIS	3X NORMAL SIZE EXTRAMEDULLARY HEMATOPOIESIS MYELOID HYPERPLASIA
MICRO : GLP TH, C/ 01-AI	DEAT	T 1 C		LEFT KIDNEY HAL PYELONEPHRITIS	RMAL S MEDULI ID HYP
LATION OF GROSS AND MICROSCOPIC FIN STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	DOSE GROUP: 3 SACRIFICE STATUS: INTERIM SACRI	O B S E R V A T I O N S >> GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	•	LEFT KIDNEY HALF NORMAL SIZE-APPEARANCE PALE 1/3x 1/3 CM.	3x NORMAL SIZE EXTRAMEDULLARY MYELOID HYPERPL
F GROS TUDY A IST(S)	SE GROUDY WE	S .	•	:	· ·
10N 0 H0L0G	00 ST	0	•		· ·
CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	4.E	ک ت	. <u></u>	•	•
00	STUDY DAY OF DEATH: 43	A T H O L O G Y ON (SEVERITY)	ESSICI		•
	S DEAT	1 T T S	NAL V	•	· · · · ·
* •	AY OF	< P A	SENI		FGALY ACE)
ESEAR(94129	TUBY	< P < P /	. X . X	TIS	PLE COR ED CTRU ED CMAR
OF ROOF		/ S0	. 1×1.	EPHRI E(MOD	ED (S ECIFI ECIFI
TITUTE NTH SE INCISC	7C0033 MAY-87 STUDY DAY 0	KETWORDS / DISTRIBUTION (SEVERITY)	(MILD) 1X1CM VENT SEMINAL VESSICLE NONE	PYELONEPHRITIS DIFFUSE(MODERATE)	ENLARGED (SPLEY DMEGALY) NOT SPECIFIED (TRACE) NOT SPECIFIED (MARKED)
Y INST		<u> </u>			
A SIGNA SI SIGNA SI SIGNA SI SIGNA SI	0.00	<u> </u>	* SEX OR * GROSS:	80000 80000 80000 80000 80000 80000	# G3088:
LETTERMA, ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	ANIMAL NUMBER: 87C0033	ORGAN NAME	ACCESSORY SEX OR #GROSS:	K I ONE	S P L E E E
3 0 0 N	A A	. š:	¥C	<u>.</u>	Э

LETTERAM ARMT INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129	LETTERMAN ARMY INSTITUTE OF RESEARCY DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129		CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH. CATHERINE D.	PRINTED: 09-AUG-88 PAGE: 16
SPECIES: MOUSE/ICR	SPECIES: MOUSE/ICR		STUDY START DATE: 01-APR-87	STUDY TYPE:
ANIMAL NUMBER: 8700044 DATE OF DEATH: 01-JUL-87	ANIMAL NUMBER: 87C0044 SATE OF DEATH: 01-JUL-87 STUDY DAY OF	SEX: MALE DAY OF DEATH: 92	DOSE GROUP: 3 SACRIFICE STATUS: FINAL SACRIFICE STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 43.00 (GMS)	43.00 (GMS)
ORGAN NAME	KEYWORDS / DISTRIBUTIO		OBSERVATIONS >> GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	HDINGS
ACCESSORY SEX OR				
*GROSS:	(MILD) ENLARGED.	(MILD) ENLARGED. 2. PREPUTIAL GLAND	PREPUTIAL GLAND	
. *MICRO:	(TRACE) ABNURMAL COL NOT SPECIFIED (MILD)	(TRACE) ABNORMAL COLOR CENTRAL PALOR Not Specified(Mild)	DILATED DUCTS, PREPUTIAL GLANDS	

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	STITUTE OI PATH SERV RANCISCO,	F RESEARCH GP CA 94129	CORRELATI	CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	PRINTED: 09-AUG-88 PAGE: 20 STUDY TYPE:
ANIMAL NUMBER: 87C0078 SEX: MALE DATE OF DEATH: 01-JUL 87 STUDY DAY OF DEATH: 92	87C0078 -JUL 87	STUDY DAY OF DEATH: 92	SEX: MALE DEATH: 92	ANIMAL NUMBER: 87C0078 SEX: MALE DOSE GROUP: 3 SACRIFICE STATUS: FINAL SACRIFICE DOSE GROUP: 3 SACRIFICE STATUS: FINAL BODY WEIGHT: 42.00 (GMS)	42.00 (GMS)
ORGAN NAME	KEYWORDS	<pre>KEYWORDS / DISTRIBUTION (SEVERITY)</pre>	<pre><< P A T H O L O G Y STRIBUTION (SEVERITY)</pre>	O 8 S E R V A T I O N S >> GROSS FREE TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	898
HARDERIAN GLAND		GCANO CTORES MILITIRATE PLACE SPECK ING	A TOP TO THE TERM OF THE TERM	•	

PRINTED: 09-AUG-88 Page: 24 Study Type:			
PRINTED: 09- Page: 24 Study	39.00 (GHS)	INDINGS	•
CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	: MALE DOSE GROUP: 4 SACRIFICE STATUS: FINAL SACRIFICE 92 STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 39.00 (GMS)	<pre><< ** ** ** ** ** ** ** ** ** ** ** ** *</pre>	ACK SPECKLING BILATERAL BIGMENT
SEARCH 94129	SEX STUDY DAY OF DEATH:	KEYWORDS / DISTRIBUTION (SEVERITY)	(TRACE) MULTIFOCAL BLACK SPECKLING NOT SPECIFIED (MODERATE)
LETTERMAN ARMY INSTITUTE OF REDIV OF RES SUPP, PATH SERV GPPRESIDIO OF SAN FRANCISCO, CASPECIES: MOUSE/ICR	ANIMAL NUMBER: 87C0062 DATE OF DEATH: 01.JUL-87		MAKUEKIAN GLAND *GROSS: *MICRO:

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	PATH SERV		DINGS	PRINTED: 09-AUG-88 PAGE: 27
PRESIDIO OF SAN FRI SPECIES: MOUSE/ICR	RANCISCO,		PATHOLOGIST(S): SMITH, CATHERINE D. Study Start Date: 01-APR-87	STUDY TYPE:
A ANIMAL NUMBER: 87C0073	87C0073	ш :	SEX: MALE DOSE GROUP: 4 SACRIFICE STATUS: FINAL SACRIFICE STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 37.00 (GMS)	37.00 (GMS)
ORGAN KAME	KEYWORDS	ORGAN NAME KEYWORDS / DISTRIBUTION (SEVERITY)	O S S E R V A T I O N S ->> GROSS FREE-TEXT COMMENTS / MISTOPATHOLOGIC FINDINGS	SOZI
ACCESSORY SEX OR			•	
*MICRO:		ABNORMAL COLOR CENTRAL PALOR NOT SPECIFIED(TRACE)	DILATED DUCTS, PREPUTIAL GLANDS	

PRINTED: 09-AUG-88 PAGE: 38 STUOY TYPE:	GMS)		
PRINTED: PAGE:	CE 27.00 (GMS)	FINDINGS	
	SACRIFICE STATUS: FINAL SACRIFICE: 14 TERMINAL BODY WEIGHT:	R V A T I O N S >> GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	
IC FINDINGS	DOSE GROUP: 1 SACRIFICE STATUS: FINAL SACRIFICE STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT:	COMMENTS / HI	
OF GROSS AND MICROSCOP STUDY NUMBER: GLP86007 GIST(S): SMITH, CATHER START DATE: 01-APR-87	1 SAC	A T I O N S	PORPHYRIN PIGMENT
CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	SEX: FEMALE DOSE GROUP: 1 SACRIFICE STATUS: FINAL SACRIFICE ATH: 93 STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 27.00 (GMS)	OBSERVATIONS >>	
,	96	CEYWORDS / DISTRIBUTION (SEVERITY)	(MILD) MULTIFOCAL BLACK SPECKLING
J'RESEARCH / GP , CA 94129	STUDY DAY OF	CEYWORDS / DISTRIBUTION (SEVERITY)	(MILD) MULTIFOCAL BLAC
PATH SERVERANCISCO	87c0116 2-JUL-87	KEYWORDS	(MILD) WOT SPEC
LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	ANIMAL NUMBER: 87C0116 DATE OF DEATH: 02-JUL-87 STUDY DAY OF	ORGAN NAME	HARDERIAN GLAND #GROSS: #MICRO:

LETTERMAY ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	STITUTE OF PATH SERV RANCISCO, R		AOSCOPIC FINDINGS P86007 CATHERINE D.	PAGE: 45 STUDY TYPE:
ANIMAL NUMBER: 87C0144 DATE OF DEATH: 02-JUL-87 STUDY DAY OF D	•	SEX: FEMALE STUDY DAY OF DEATH: 93	DOSE GROUP: 2 STUDY WEEK OF DEA	00 (GMS)
ORGAN NAME KEYWORD	KEYWORDS	A T H O L O G Y O B S E KEYWORDS / DISTRIBUTION (SEVERITY)	O B S E R V A T I O N S >> GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	
HARDERIAN GLAND *GROSS: *MICRO:		(TRACE) MULTIFOCAL BLACK SPECKLING NOT SPECIFIED (TRACE)	SPECKLING PORPHYRIN PIGMENT	

PRINTED: C9-AUG-88 PAGE: 47 STUDY TYPE:	33.00 (GMS)	INDINGS	NODE
CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01.APR-87	ANIMAL NUMBER: 87C0158 SEX: FEMALE DOSE GROUP: 2 SACRIFICE STATUS: FINAL SACRIFICE DATE OF DEATH: 02-JUL-87 STUDY DAY OF DEATH: 93 STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 33.00 (GMS)	<pre><< P A T H O L O G Y O B S E R V A T I O N S >> KEYWORDS / DISTRIBUTION (SEVERITY) GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS</pre>	1MM FOCUS NEXT TO LEFT ADREMAL. MAY BE LYMPH NODE
RESEARCH CORRELATIO GP CA 94129 PATHO STU	STUDY DAY OF DEATH: 93	KEYWORDS / DISTRIBUTION (SEVERITY)	CCTOPIC
LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	ANIMAL NUMBER: 87C0158 Date of Death: 02.JUL.87	ORGAN NAME KEYWORDS	*GROSS: ECTOPIC *MICRO: NOWE

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	NSTITUTE OF	RESEARCH	CORRELATIO	CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007	PRINTED: 09-AUG-88 PAGE: 53
PRESIDIO OF SAN FRANCISCO, CA 94129 Species: Mouse/ICR	FRANCISCO, C	CA 94129	PATHU	PATHOLOGIST(S): SMITH, CATHERINE D. Study Start Date: 01-Apr-87	STUDY TYPE:
ANIMAL NUMBER: 87C0118 DATE OF DEATH: 02-JUL-87 STUDY DAY OF	87c0118 2-JUL-87	STUDY DAY OF	SEX: FEMALE DEATH: 93	SEX: FEMALE DOSE GROUP: 3 SACRIFICE STATUS: FINAL SACRIFICE DEATH: 93 STUDY WEEK OF DEATH: 14 TERMINAL BODY WEIGHT: 31.00 (GMS)	31.00 (GMS)
ORGAN NAME	KEYWORDS ,	KEYWORDS / DISTRIBUTION (SEVERITY)	<pre><< P A T H O L O G Y STRIBUTION (SEVERITY)</pre>		INDINGS
ROSS:		(TRACE) NODULAR SURFACE	(TRACE) NODULAR SURFACE	A VERTOR AVERDA AVERA A VERTOR AVERA A VERTOR AVERA A VERTOR A VERTOR AVERA A VERTOR AVERA A VERTOR A	

LETTERMAN ARMY INSTITUTE OF RESEARCH	STITUTE OF	F RESEARCH GP	CORRELATION	CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007	IC FINDINGS	PRINTED: 09-AUG-88 PAGE: 54
PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	RANCISCO, R		PATHOL STUD	PATHOLOGIST(S): SMITH, CATHERINE D. Study Start Date: 01-APR-87	PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	STUDY TYPE:
ANIMAL NUMBER: 87C0122 DATE OF DEATH: 02-JUL-87 STUDY DAY OF D	87c0122 -JUL-87	SEX: FE	SEX: FEMALE	DOSE GROUP: 3 SAC STUDY WEEK OF DEATH: 14	ANIMAL NUMBER: 87C0122 SEX: FEMALE DOSE GROUP: 3 SACRIFICE STATUS: FINAL SACRIFICE DOSE GROUP: 3 DATE OF DEATH: 02-JUL-87 STUDY DATE OF DEATH: 02-JUL-87 STUDY DATE OF DEATH: 14 TERMINAL BODY WEIGHT: 28.00 (GMS)	28.00 (GMS)
ORGAN NAME	KEYWORDS	CC PATHO KEYWORDS / DISTRIBUTION (SEVE	HOLOGY (SEVERITY)	O B S E R V A T I O N S Y GROSS FREE-TEXT COMME	HOLOGY OBSERVATIONS >> (SEVERITY) GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS	INDINGS
HARDERIAN GLAND *GROSS:	(TRACE)	(TRACE) MULTIFOCAL BLACK SPEC NOT SPECIFIED(TRACE)	SPECKLING	PORPHYRIN PICMENT	K SPECKLING PORPHYRIN PIGMENT	

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	PATH SERV PATH SERV FRANCISCO,		CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87
ANIMAL NUMBER: 87C0107 DATE OF DEATH: 14-MAY-87 STUDY DAY OF	87C0107	DEA	SEX: FEMALE DOSE GROUP: 4 SACRIFICE STATUS: INTERIM SACRIFICE 2 TH: 44 STUDY WEEK OF DEATH: 7 TERMINAL BODY WEIGHT: 26.00 (GMS)
ORGAN NAME	KEYWORDS	KEYWORDS / DISTRIBUTION (SEVERITY)	THOLOGY OBSERVATIONS >> (SEVERITY) GROSS FREE-TEXT COMMENTS / HISTOPATHOLOGIC FINDINGS
*GROSS:		PARA.OVARIAN CYST(S)	

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PESSION OF SAN FRANCISCO, CA 94129	CORRELATION OF GROSS AND MICROSCOPIC FINDINGS STUDY NUMBER: GLP86007 PATHOLOGIST(S): SMITH, CATHERINE D. STUDY START DATE: 01-APR-87	PRINTED: 09-AUG-88 PAGE: 63 STUDY TYPE:
ANIMAL NUMBER: 8700180 DATE OF DEATH: 02-JUL-87 STUDY DAY OF D		26.00 (GHS)
:	KEYWORDS / DISTRIBUTION (SEVERITY)	SUNIOR
HARDERIAN GLAND GROSS: (TRACE) MULTIFOCAL BLACK SPECKLING ************************************	TRACE) MULTIFOCAL BLACK SPECKLING	

Appendix Q: BASELINE CONTROL DATA

LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129	ES SUI OF SV	PP, PATH	LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO. CA 94120	ESEARCH 94120		EXPANDED S	EXPANDED STATISTICAL STUDY NUMBER:	AL TABLE FOR IER: 86007CHM	FOR COBAS	18 1		8	PRINTED: 31-AUG-88 Page: 1	-AUG-88
MOUSE/ICR	~					STUD	STUDY START DATE: 01-APR-87	ATE: 01-1	1PR-87			SUBCHRON	SUBCHRONIC/90 DAY FEEDING	FEEDING
ANIMAL	SEX	ANIMAL GROUP/ D NUMBER SEX SUBGROUP	GROUP/ DAY OF UBGROUP STUDY	AST	BUN	: : : :	ALB	B1L1		=======================================				
									;		E 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALK	LDHL	HAG
8750022	E :	5/1	7	117.6	32.4	253.3	2.66	H	109.	7 222	347	105 7		
6700770	Œ	2	~	235.2	23.0	260.9	2.52	2	100	200			0.00	7
870053	æ	5/1	^	172 5	700	4 777		: :		0.672	.774	9.66	6.669	2.37
8700060	×	2	۰,		1.7		24.3	~ (113.	186.5	311.	118.6	729.5	2.39
870074	: 2		J (= °	= (X	Z	Z	113.	F	=	79.7	7	2.56
8750074	: 2	- :	u r	42.9	29.0	574.4	2.67	×	115.	271.4	340.	7 0 V	574 R	20.0
	E 2	- :	7	75.8	31.5	278.0	5.44	×	111.	250.0	287	0 V	2 7 7 7 5	, r. c
010000	E	5/1	~	74.0	21.4	160.1	2.41	7	111	2000			***	76.3
8/00091	I	5/1	7	125.5	27.8	1001	2 22	2 2		277.5	•	, 00 00 00 00 00 00 00 00 00 00 00 00 00	۲.027	2.22
87c0097	Œ	5/1	~	117 8	2 2	000	17	2 7	7	6.562	296.	136.5	607.8	2.41
	DAD	DADAMETED MEANS.	TEAMS.	***		176.0	70.7	=	111.	258.4	237.	94.2	286.7	2.07
10				14.021	97.77	397.24	29.2	•	111.44	255.69	334.25	96. 61	517 77	27.6
-	AAUAA	SIAMDAKU DEVIALIONS	CAS	54.17	4.17	321.05	0.17	•	21 6	45 40				***
									•	20.00	\n.00	× 3 · / /	\ \ \ \ \ \ \ \	71.0

2 200000000 WWN04VN	Appendix Q (cont.): BASELINE CONTROL DATA
158. 9.2 116 156. 9.2 116 156. 9.1 23 156. 9.1 23 158. 9.5 105 158. 9.6 105 158. 9.5 111 158. 9.5 111	EXPANDED STATISTICAL TABLE FOR COBAS I PRINTED: 31-AUG-88 STUDY NUMBER: 86007CHM
SEX SUBGROUP / DAY OF H 5/1 2 158. 9.2 116.3 .59 H 5/1 2 156. 9.1 23.3 .36 H 5/1 2 156. 9.1 23.3 .36 H 5/1 2 158. 9.1 81.9 .51 H 5/1 2 158. 9.6 105.8 .50 H 5/1 2 158. 9.6 105.8 .50 H 5/1 2 158. 9.5 92.6 .55	STUDY START DATE: 01-APR-87 SUBCHRONIC/90 DAY FEEDING
M 5/1 2 154. 9.3 65.9 1.94 M 5/1 2 156. 9.1 23.3 .36 M 5/1 2 156. 9.1 23.3 .36 M 5/1 2 158. 9.1 NT .51 M 5/1 2 158. 9.6 105.8 .50 M 5/1 2 158. 9.6 105.8 .50 M 5/1 2 158. 9.6 105.8 .50 M 5/1 2 158. 9.6 105.8 .50	CHOLCR
S/1 2 154. 9.2 116.3 .59 156. 9.1 23.3 .36 156. 9.1 23.3 .36 156. 9.1 23.3 .36 156. 9.1 23.3 .36 158. 9.1 158. 9.4 88.0 .57 11.2 158. 9.5 92.6 .54 11.2 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 9.5 92.6 .54 158. 92.6 .54 .54 158. 92.6 .54	65.9 1.94
S/1 2 156. 9.1 23.3 36 35 35 35 35 35 35 3	116.3
5/1 2 150. 9.1 NT 51 51 51 51 51 51 51 5	23.3 .36
S/1 2 158. 8.5 81.9 .51	NT .51
M 5/1 2 158. 9.6 105.8 .50 M 5/1 2 160. 9.4 88.0 .57 M 5/1 2 158. 8.7 111.2 .52 M 5/1 2 158. 9.5 92.6 .54	81.9
M 5/1 2 160. 9.4 88.0 .57 M 5/1 2 158. 8.7 111.2 .52 M 5/1 2 158. 9.5 92.6 .54	105.8 .50
M 5/1 2 158. 8.7 111.2 .52 M 5/1 2 158. 9.5 92.6 .54	88.0
H 5/1 2 158, 9.5 92.6 .54	111.2
	92.6 .54
9.16 85.65 0.07	85.63 0.67
3.00 0.36 30.10 0.48	30.10 0.48

DATA
CONTROL
BASELINE
(cont.):
Appendix Q

				4.7						
LETTERMA DIV OF RI	ES S	LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAM EDANTISCO CA 02430	SERV (RESEARCH GP		ũ	XPANDED ST	FATISTICAL FUDY NUMBE	EXPANDED STATISTICAL TABLE FOR COBAS II STUDY NUMBER: 86007CHM	PRINTED: 31-AUG-88 PAGE: 1
MOUSE/ICR	~			(3) (4			STUDY	T START DA	STUDY START DATE: 01-APR-87	SUBCHRONIC/90 DAY FEEDING
ANIMAL	SEX	ANIMAL GROUP/ DAY OF NUMBER SEX SUBGROUP STUDY	DAY O STUDY	٠ ۲	TP	URIC	~	TRIG		
8700022	=	5/1	2		4.7	7.0				
8700029	*	5/1	~		4.5		9.6	-	1.29	
8700053	=	5/1	7		4.6	۲.	2.6	-	1.77	
87c0060	E	5/1	~		2.0	=	7.9	=		
87C0074	*	5/1	~		5.1	6	7.4	1	1, 12	
87C0076	×	5/1	~		8.4	7.5	7.0	=	1.04	
8700089	=	5/1	7		9.9	0,	2.6	7	1,10	
87c0091	*	5/1	~		5.1		3.5	*	1,16	
8700097	*	5/1	~		40.4	1.5	5.2	=	1.23	
	•	PARAMETER MEANS	TEANS:		4.80	0.98	5,70		1.25	
Š	TAND	STANDARD DEVIATIONS:	TIONS:		0.22	0.27	0.67		0.23	
	:									

				Appendix	lix Q		(cont.):	BASI	BASELINE	CONTROL	DATA				
LETTERMAN	A A A	LETTERNAN ARMY INSTITUTE OF RESEARCH	UTE OF RE	SE		•	EXPANDED STATISTICAL TABLE FOR STUDY NUMBER: 86007CHM	TATISTICA UDY NUMBE	L TABLE R: 86007	FOR COBAS I			P.R.1	PRINTED: 31-A PAGE: 1	31-AUG-88 1
PRESIDIO (, o ~	PRESIDIO OF SAN FRANCISCO, CA 94129 MOUSE/ICR	18CO, CA	94129			STUDY	STUDY START DATE: 01-APR-87	TE: 01-A	PR-87			SUBCHRONIC/90 DAY	2/90 DAY F	FEEDING
ANIMAL	SEX	ANIMAL GROUP/ DAY O'NUMBER SEX SUBGROUP STUDY	GROUP/ DAY OF UBGROUP STUDY	AST	. NOS		נצ	ALB	811.1	כר	פרח	IRON	ALK	רסאר	MAG
			• • • • • • • • • • • • • • • • • • • •		:			2 74			84.5	276.	95.7	0.402	2.61
87C0110	u.	5/5		741.5		٠.	47.0	20.7			62.2	395.	99.5	484.3	2.56
87C0113	4	5/5	-	85.7		0 !	2.64.7	20.6			73.0	130	130.8	812.6	2.76
87c0119	u.	5/5	,- -	151.4		٠.	1.555	6.75	2 2) <u>-</u>	1	1	2	T Z
87C0131	u .	5/5	-	- 2		·	<u>-</u> (z ,	2 1	- F		2 72	261	111.6	432.8	2.48
87C0136	L	5/5	- -	127.6		- I	366.2	6.30 Fi	2 2) h	. 1	×	12	2.37
87C0137	u	2/5	-	2		- ·	t	- F E 3	- H		: -	=	×	-	I
8700138	u.	2/5	,	Z (<u> </u>	- C	- K	2 2		10.3	314.	8.09	431.5	2.27
87C0147	4	2/5	-	72.4		- ·	2.0.7	0,.7	2 2		8	286.	124.6	518.8	2.61
8700170	u.	2/5	-	79.1		ا د	249.9	20.7 47.0			13.6	240.	107.5	359.9	2.53
8700172	4.	5/5	_	1.0.3) . (0.202	2.40	<u>.</u>		04	301.57	106.31	534.84	2.52
		PARAMETER MEANS:	MEANS:	111.14	25.81	÷ .	207.54	×	•	1.41	27.94	52.63	22.99	163.44	0.15
S	TAND	STANDARD DEVIATIONS:	TIONS:	31.81		ς.	00.4			:					
						: : :									

Appendix Q (cont.): BASELINE CONTROL DATA

### STUDY START DATE: 01-APR-87 SUBCHRONIC/90 DAY FLEDIN NUMBER SEX SUBGROUP DAY OF NA CAL CHOL CR ALT ALT BATCHIOL STUDY NA CAL CHOL CR ALT ST.	LETTERMAI DIV OF RE	A A B	LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PAIN SERV GP DESTREAM CAN FRANCISCO CA 02130	SERV 6	RESEARCH			EXPANDED S	STATISTIC	EXPANDED STATISTICAL TABLE FOR COBAS I Study Number: 86007CHM	PRINTED: : ' AUG-88 PAGE: 2
SEX SUBGROUP STUDY NA CAL CHOL CR ALT F 5/2 1 158. 9.0 64.0 .51 41.3 F 5/2 1 162. 9.4 72.1 .65 26.8 F 5/2 1 162. 9.7 56.7 1.17 32.8 F 5/2 1 158. 9.2 48.4 .45 31.4 F 5/2 1 158. 9.6 84.4 .59 40.4 F 5/2 1 158. 9.6 84.4 .59 26.1 F 5/2 1 156. 9.7 74.8 .55 26.1 F 5/2 1 160. 9.6 59.3 .44 48.9 ANDARD DEVIATIONS: 158.40 9.38 65.67 0.62 35.39	NOUSE/ICH	ا _		,	¥ 4.			STUDY	START DI	ATE: 01-APR-87	SUBCHRONIC/90 DAY FEEDING
F 5/2 1 158. 9.0 64.0 .51 F 5/2 1 160. 9.4 72.1 .65 F 5/2 1 162. 9.7 56.7 1.17 F 5/2 1 158. NT NT NT F 5/2 1 158. 8.8 NT NT F 5/2 1 158. 9.6 84.4 .59 ANDARD DEVIATIONS: 158.40 9.38 65.67 0.62	ANIMAL	SEX	GROUP/ SUBGROUP	DAY C STUDY			CAL	CHOL		ALT	
F 5/2 1 160. 9.4 72.1 .65 F 5/2 1 162. 9.7 56.7 1.17 F 5/2 1 158. NT NT NT F 5/2 1 158. 8.8 NT NT F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 158. 9.7 74.8 .55 F 5/2 1 158. 9.6 59.3 .44 ANDARD DEVIATIONS: 158.40 9.38 65.67 0.62	87c0110		5/2	-		.58.	0.0	0.49		41.3	
F 5/2 1 162. 9.7 56.7 1.17 F 5/2 1 158. MT MT MT MT F 5/2 1 158. 8.8 MT MT MT F 5/2 1 158. 8.8 MT MT MT F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 158. 9.7 74.8 .55 F 5/2 1 158. 9.7 74.8 .55 ANDARD DEVIATIONS: 158.40 9.38 65.67 0.62	87c0113	u.	5/2	-		160.	7.0	72.1	.65	26.8	
F 5/2 1 158. NT NT NT NT F 5/2 1 156. 9.2 48.4 .45 F 5/2 1 158. 8.8 NT NT NT F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 156. 9.7 74.8 .55 F 5/2 1 160. 9.6 59.3 .44 ANDARD DEVIATIONS: 158.40 9.38 65.67 0.62	8700119	•	5/5	-		162.	7.6	56.7	1.17	32.8	
F 5/2 1 156. 9.2 48.4 .45 F 5/2 1 158. 8.8 NT NT NT F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 156. 9.6 84.4 .59 F 5/2 1 156. 9.6 84.4 .59 F 5/2 1 156. 9.7 74.8 .55 F 5/2 1 158.40 9.38 65.67 0.62 ANDARD DEVIATIONS: 1.84 0.34 12.23 0.25	87C0131	۴,	2/5	-		158.	7	×	*) t- 3	
F 5/2 1 158. 8.8 NT NT NT F 5/2 1 158. NT	87C0136	•	5/5	-		156.	9.2	7 87	57	7 12	
F 5/2 1 158. NT NT NT NT F 59.5 5/2 1 158. 9.6 84.4 .59 F 5/2 1 156. 9.7 74.8 .55 F 5/2 1 160. 9.6 59.3 .44 PARAMETER MEANS: 158.40 9.38 65.67 0.62 ANDARD DEVIATIONS: 1.84 0.34 12.23 0.25	87C0137	•	5/5	-		158.	8	7	=) in the control of t	
F 5/2 1 158. 9.6 84.4 .59 F 5/2 1 156. 9.7 74.8 .55 F 5/2 1 160. 9.6 59.3 .44 PARAMETER MEANS: 158.40 9.38 65.67 0.62 ANDARD DEVIATIONS: 1.84 0.34 12.23 0.25	87C0138	•	5/2	-		158.	L	=	=		
F 5/2 1 156. 9.7 74.8 .55 F 5/2 1 160. 9.6 59.3 .44 PARAMETER MEANS: 158.40 9.38 65.67 0.62 TANDARD DEVIATIONS: 1.84 0.34 12.23 0.25	87C0147	u.	5/5	-		158.	9.6	9. 48	65	7.07	
F 5/2 1 160. 9.6 59.3 .44 PARAMETER MEANS: 158.40 9.38 65.67 0.62 TANDARD DEVIATIONS: 1.84 0.34 12.23 0.25	87c0170	•	2/5	-		156.	7.6	74.8	.55	26.1	
: 158.40 9.38 65.67 0.62 : 1.84 0.34 12.23 0.25	87c0172	•	2/5	-		160.	9.6	59.3	77.	6.87	
: 1.84 0.34 12.23 0.25		Z	ARANETER A	VEAUS:	1		9.38	65.67	0.62	35.39	
	ST	AND.	IRD DEVIAL	TIONS:		1.84	0.34	12.23	0.25	8.42	

				Ä	ppendix	ø	Appendix Q (cont.):		ELINE	BASELINE CONTROL DATA	DATA	PRINTED: 31-AUG-88
ERMAN OF RE	ARH S SU	LETTERMAN ARMY INSTITUTE OF RESEARCH Div of Res Supp, path Serv GP	SERV	JF RESEAR(/ GP	=		EXPANDED S	STUDY NUMBER: 86007CHM	ER: 860070	EXPANDED STATISTICAL TABLE TON CODES II STUDY NUMBER: 86007CHM		PAGE: 1
PRESIDIO (0F S	PRESIDIO OF SAN FRANCISCO, CA 94129 Mouse/ICR	1800,	CA 9412	0		STUD	STUDY START DATE: 01-APR-87	ATE: 01-A	PR-87		SUBCHRONIC/90 DAY FEEDING
ANIMAL	SEX	GROUP/ DAY OF SEX SUBGROUP STUDY	DAY	of JDY	16	URIC	¥	TRIG	9-₹			
9700110		5/2			6.4	•	6.4	N	1.29			
8750113	- 44	2/2		-	5.0	1.2		L R	1.44			
8750110		5/2			5.0	•	5.5	T N	1.4			
870141		5/2		_	F	*	6.4	*	x			
8700136		5/2		-	4.5	•	5 6.4	T	1.33			
8700137		5/2		_	- 2	z	6.4	Z	(
8700138	. •	5/5		-	H	Z	5.9	Z	Z (
A7C0147	u	5/2			8.4	-	1 5.1	**	1.34			
8750170		5/5		_	5.0	۹.		=	1.29			
87C0172	. u	5/2		. ,	4.7	_		H	1.48			
7		SAPAMETED MEANS	MEAN	. ,	78.7	0.8	1 5.55	•	1.37			
Z	YONY.	STANDARD DEVIATIONS:	TION		0.19	0.41		٠	0.07			
•												

Appendix Q (cont.): BASELINE CONTROL DATA

LETTERMAN	ARMY INSTI	TUTE OF RESEARCH		XPANDED	EXPANDED STATISTICAL TABLE FOR COULTER COUNTER	BLE FOR COUL	TER COUNTER		PRINTED: 22-AUG-88
DIV OF RES PRESIDIO (SPECIES: R	S SUPP, PAT OF SAN FRAN TOUSE/ICR	DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAW FRANCISCO, CA 94129 1st SPECIES: MOUSE/ICR	SCHEDUL	D DATE:	STUDY NUMBER: GLP86007 SCHEDULED DATE: 01-APR-87 (DAY OF DOSAGE STUDY STAPT DATE: 01-APB-87	R: GLP86007 OF DOSAGE	1) FOR SUB	1) FOR SUBGROUPS 1 2	PAGE: 1
ANIMAL GROUP NO/SEX SUBGRO	GROUP/ SUBGROUP	DATE DATA TAKEN	KBC			KCT	MCV	MCH	SEC.
87C0022/M	5/1	01-APR-87	3.200	8.410	14.60	41.00	00 07	17 KN	15 70
87C0029/M	5/1	01-APR-87	2.400	7.230	13.00	36.10	20.02	20.00	01.45
87C0053/M	5/1	01-APR-87	1.900	8.620	17.80	06.87	51.00	18.60	34.40
87C0060/M	5/1	01-APR-87	1.800	8.630	15.00	41,10	00.87	17.40	34.66
87C0068/M	5/1	01-APR-87	3.000	7.010	13.10	35.60	21.00	28.81	32:22
87C0074/M	5/1	01-APR-87	1.800	7.320	12.70	36.90	20.00	17.50	36.50
87C0076/H	5/1	01-APR-87	1.300	7.410	13.30	37.60	51.00	00.81	35.50
87C0089/M	5/1	01-APR-87	2.300	8.450	14.80	41.30	00 67	17.60	35.90
87C0091/H	5/1	01-APR-87	2.000	8.960	17.80	46.10	51,00	10.01	38.80
87C0097/#	5/1	01-APR-87	2.100	5.260	12.80	38.70	53.00	17.70	33.10
	PARAM	PARAMETER MEANS:	2.180	7.730	14.49	40.33	50.30	18.11	35.06
	STANDARD (STANDARD DEVIATIONS:	0.573	1.117	1.941	4.357	1 418	782 0	1 504

Appendix Q (cont.): BASELINE CONTROL DATA

LETTERMAN	ARMY INSTIT	TUTE OF RESEARCH	w	XPANDED	STATISTICAL TAB	LE FOR COUL	TER COUNTER		PRINTED: 14-NCV-88 PAGE: 1
DIV OF RES SUPP, PA Presidio of San Fra Species: Mouse/ICR	SUPP, PATE F SAN FRANCIOUSE/ICR	DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 1st SCHEDULED DATE: 01.APR-87 (DAY OF DOSAGE 1) FOR SUB STUDY START DATE: 01.APR-87 SPECIES: MOUSE/ICR	1st SCHEDULE	O DATE: STUDY S'	01-APR-87 (DAY TART DATE: 01-A	OF DOSAGE PR-87	1) FOR SUBGROUPS 1 2	Roups 1 2	STUDY TYPE:
ANIMAL GROUP, NO/SEX SUBGROI	GROUP / SUBGROUP	DATE DATA	VBC	RBC	85 H	HOT.	AC K	E C E	MCHC
			1 400	067.2	13.90	37.90	51.00	18.60	36.60
8/01/10/8	2/6	0 - APR - 00	200	7 910	14.70	40.30	51.00	18.60	36.50
87C0113/F	7/5	01.APK.0	001.	7.040	12, 70	34.90	00.67	18.10	36.40
87C0119/F	2/5	U1-APR-8/	00.	0.0	15.10	U2 27	00.07	17.20	35.10
87C0131/F	2/5	01-APR-8/	1.100	0.00	7.7	44.		17 70	35.60
87C0136/F	2/5	01-APR-87	1.300	7.670	15.50	00.76	90.0		36.30
87C0137/F	5/2	01-APR-87	1.600	7.810	15.90	45.90	20.00	20.50	00.00
975013875	2/2	01-APR-87	2.400	8.460	14.80	41.70	79.00	10.00	22.00
1/00/00/00	, ,	01-400-87	0000	6.110	10.90	30.30	65.00	17.80	35.90
8/C014//	2/0	- X-X-10		28.0	17.70	02.67	20.00	17.90	35.90
87C0170/F	7/5	10 - XAK - 10	004.1			00 67	00 13	18.00	35.40
87C0172/F	2/5	01-APR-87	2.000	064.7	01.61	16.70	00.0		7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	DADAM	DADAMETER MEANS:	1.640	7.864	14.41	40.20	08.64	66.71	22,72
	CTANDARD	CTANDARD DEVIATIONS:	0.5967	1.029	1.855	5.316	0.9189	0.4596	0.5079
	1::2							1	

Appendix Q (cont.): BASELINE CONTROL DATA

PRINTED: 13-SEP-88	PAGE: 1													
		TESTES	0 220	0.248	0.221	0.260	201	214	212	717	225	246	0.227	0.019
HTS (GMS)	REPORT FOR INTERIM SACRIFICE NUMBER (ALL SUBGROUPS) STUDY START DATE: 01-APR-A7	OVARIES												
SUMMARY STATISTICS FOR ABSOLUTE ORGAN WEIGHTS (GMS)	SER (ALL	ADRENAL												
ABSOLUTE C	SIONI NUMBER: GLFGGUUN RIM SACRIFICE NUMBER START DATE: 01-APR-R7	SPLEEN	0.098	0.062	0.550	0.114	0.088	0,111	0.100	960.0	260.0	0.155	0.147	0.143
TICS FOR	ERIM SACRI	HEART	0.124	0.126	0.154	0.153	0.177	0.146	0.167	0.185	0.139	0.155	0,153	0.020
Y STATIS	FOR INT	KIDNEY	0.426	0.291	0.512	0.545	0.530	0.581	0.508	0.466	0.530	0.512	0.490	0.082
SUMMAR	REPORT	LIVER	2.002	2.029	1.817	2.019	2.053	2.025	1.691	1.931	2.109	1.940	1.962	0.124
IRCH	53	BRAIN	0.503	0.480	0.478	0.477	0.468	0.470	0.478	0.489	0.518	0.556	0.492	0.027
LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP DATH SERV OP	PRESIDIO OF SAM FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	30.00	33.00	29.00	32.00	32.00	33.00	31.00	31.00	32.00	33.00	TEAN:	STANDARD DEVIATION:
ARMY INST	F SAN FRAI OUSE/ICR	GROUP/ SUBGROUP	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1		STANDARD
DIV OF RES	PRESIDIO OF SAN FRA SPECIES: MOUSE/ICR	ANIMAL NO/SEX	22/M	29/M	53/H	H/09	₩/89	H/Y	16/H	#/68	91/K	H/16		

Appendix Q (cont.): BASELINE CONTROL DATA

PRINTED: 13-SEP-88 PAGE: 1 STUDY TYPE:													
	TESTES	0.763	0.752	0.762	0.841	0.628	0.655	0.690	0.700	0.703	0.709	0.720	0.061
SUMMARY STATISTICS FOR % ORGAN TO BODY WEIGHT RATIO STUDY NUMBER: GLP86007 REPORT FOR INTERIM SACRIFICE NUMBER (ALL SUBGROUPS) STUDY START DATE: 01-APR-87	OVARIES												
8007 WEI 16007 ER (ALL 18-87	ADRENAL												
ATISTICS FOR % ORGAN TO BOD STUDY NUMBER: GLP86007 INTERIM SACRIFICE NUMBER STUDY START DATE: 01-APR-87	SPLEEN	0.327	0.189	1.897	0.356	0.275	0.336	0.323	0.310	0.303	0.470	0.478	0.503
STUDY NUM	HEART	0.413	0.382	0.531	0.478	0.553	0.442	0.539	0.597	0.434	0.470	0.484	0.069
Y STATIST FOR INTE	KIDNEY	1.420	0.882	1.766	1.703	1.656	1.761	1.639	1.503	1.656	1.552	1.554	0.260
SUMMAR	LIVER	6.673	6.148	6.266	6.309	6.416	6.136	5.455	6.229	6.591	5.879	6.210	0.350
18CH	BRAIN	1.677	1.455	1.648	1.491	1.462	1.424	1.542	1.577	1.619	1.685	1.558	0.097
LETTERMAM ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	30.00	33.00	29.00	32.00	32.00	33.00	31.00	31.00	32.00	33.00	M F A N:	STANDARD DEVIATION:
ARMY INSTI SUPP, PAT S SAN FRAN JUSE/ICR	GROUP/ SUBGROUP	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1		STANDARD
LETTERMAN ARMY INSTITUTE OF R DIV OF RES SUPP, PATH SERV GP PRESIDIO OF SAN FRANCISCO, CA SPECIES: MOUSE/ICR	ANIMAL NC/SEX	22/H	29/M	53/H	M/09	M/89	H/7L	H/92	89/H	91/H	M/26		

Appendix Q (cont.): BASELINE CONTROL DATA

PRINTED: 13-SEP-88	PAGE: 1 STUDY TYPE:													
RATIO	OUPS)	TESTES 1ES	265 57	51 667	720 97	702 95	070 27	250 57	024.77	2/1.27	917 27	42.086	071 47	4.405
SUMMARY STATISTICS FOR % ORGAN TO BRAIN WEIGHT RATIO	REPORT FOR INTERIM SACRIFICE NUMBER (ALL SUBGROUPS) STUDY START DATE: 01-APR-87	ADRENAL OVARIES												
ICS FOR % ORGAN TO BRA	INTERIM SACRIFICE NUMBER STUDY START DATE: 01-APR-87	SPLEEN	19,483	12.917	115.063	23.899	18,803	23.617	20.921	19,632	18, 726	27.878	30.08	30.116
STICS FOR	FRIM SACR	HEART	24.652	26.250	32.218	32.075	37.821	31.064	34, 937	37.832	26.834	27.878	31,156	4.727
IRY STATIS	T FOR INT	KIDNEY	84.692	60.625	107,113	114.256	113.248	123.617	106.276	95.297	102.317	92.086	99.953	17.955
SUMMA	REPOR	LIVER	398.012	422.708	380.126	423.270	438.675	430.851	353.766	394.888	407.143	348.921	399.836	31.140
ARCH	129	# K & & &	100.000	100.000	100.000	100,000	100.000	100.000	100,000	100,000	100,000	100.000	100.000	0.000
LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP. DATH SERV GD	PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	30.00	33.00	29.00	32.00	32.00	33.00	31.00	31.00	32.00	33.00	X E A X.	STANDARD DEVIATION:
ARMY INST	F SAN FRAI		5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1		STANDARD
LETTERMAN DIV OF RES	PRESIDIO OF SAN FRA SPECIES: MOUSE/ICR	ANIMAL NO/SEX	22/H	29/H	53/H	H/09	¥/89	14/H	76/H	89/H	91/H	H/16		

Appendix Q (cont.): BASELINE CONTROL DATA

PRINTED: 13-SEP-88 PAGE: 1	STUDY TYPE:													
		TESTES												:
HTS (GMS)	REPORT FOR INTERIM SACRIFICE NUMBER (ALL SUBGROUPS) STUDY START DATE: 01-APR-87	OVARIES	0.019	0.025	0.036	0.046	0.039	0.031	0.036	0.011	0.028	0.048	0.032	0.012
SUMMARY STATISTICS FOR ABSOLUTE ORGAN WEIGHTS (GMS) STUDY NUMBER: GLP86007	IER (ALL 18-87	ADRENAL												
ABSOLUTE (FICE NUME TE: 01-AF	SPLEEN	0.088	0.085	0.050	0.068	0.099	0.101	0.104	0.129	0.124	0.102	0.095	0.024
TICS FOR / STUDY NU!	ERIM SACRI	HEART	0.164	0.141	0.115	0.123	0.167	0.137	0.172	0.139	0.160	0.177	0.150	0.021
RY STATIS'	FOR INT	KIDNEY	0.302	0.328	0.299	0.287	0.357	0.364	0.307	0.277	0.314	0.353	0.319	0.030
SUMMA	REPORT	LIVER	1.640	1.538	1.119	1.378	1.550	1.425	1.369	1.568	1.476	1.665	1.473	0,160
LRCH	621	BRAIN	0.511	0.537	0.439	0.507	0.518	0.497	0.525	0.544	0.470	0.545	0.509	0.034
LETTERMAN ARMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	PRESIDIO OF SAN FRANCISCO, CA 94129 Species: Mouse/ICR	GROUP/ TERMINAL SUBGROUP BODY WT. GMS	26.00	27.00	23.00	24.00	26.00	25.00	25.00	26.00	27.00	26.00	X E A X.	STANDARD DEVIATION:
ARMY INSTI	F SAN FRAN DUSE/ICR	GROUP/ SUBGROUP	5/5	2/5	5/2	5/2	2/5	5/2	2/5	5/5	2/5	2/5		STANDARD
LETTERMAN ARMY INSTITUTE OF REDIV OF RES SUPP. PATH SERV GP	PRESIDIO OF SAN FRI SPECIES: MOUSE/ICR	ANIMAL NO/SEX	110/F	113/F	119/F	131/F	136/F	137/F	138/F	147/F	170/F	172/F		

Appendix Q (cont.): BASELINE CONTROL DATA

CA 94129 REPORT FOR INTERIN SACRIFICE NUMBER (ALL SUBGROUPS) NAL LIVER HEART ADRENAL ADR	DIV OF RE	LEITERMAN ARMT INSTITUTE OF DIV OF RES SUPP, PATH SERV	LELLEKMAN AKMY INSTITUTE OF RESEARCH DIV OF RES SUPP, PATH SERV GP	'RCH	SUMMA	RY STATIS	TICS FOR	K ORGAN TO	SUMMARY STATISTICS FOR % ORGAN TO BODY WEIGHT RATIO	AT10	PRINTED: 13.SEP.88
GROUP/ TERMINAL LIVER KIDNEY SPLEEN ADRENAL SUBGROUP BODY WT. GMS BRAIN KIDNEY SPLEEN ADRENAL OVARIES 5/2 26.00 1.989 5.696 1.215 0.532 0.315 0.093 5/2 27.00 1.989 5.696 1.215 0.522 0.315 0.093 5/2 25.00 1.992 5.962 1.373 0.642 0.283 0.192 5/2 26.00 2.113 5.742 1.196 0.512 0.283 0.192 5/2 26.00 1.988 5.700 1.456 0.548 0.404 0.124 5/2 25.00 2.100 5.476 1.228 0.688 0.416 0.124 5/2 25.00 2.100 5.476 1.228 0.688 0.416 0.144 5/2 27.00 1.741 5.467 1.163 0.593 0.459 0.104 5/2 26.00 2.096 6.404 1.358 0.681 0.392 0.185 NEAN: 1.998 5.765 1.252 0.585 0.370 0.126	SPECIES	OF SAN FR	ANCISCO, CA 941	621	REPOR	T FOR INTE	ERIM SACR	IFICE NUMB IFICE NUMB ITE: 01-AP	iouur Er (all subgr R-87	OUPS)	PAGE: 1 STUDY TYPE:
5/2 26.00 1.965 6.308 1.162 0.631 0.338 5/2 27.00 1.985 6.308 1.162 0.631 0.338 5/2 27.00 1.989 5.696 1.215 0.522 0.315 5/2 23.00 1.999 5.696 1.215 0.522 0.315 5/2 24.00 2.113 5.742 1.300 0.500 0.217 5/2 26.00 1.992 5.962 1.373 0.642 0.283 5/2 25.00 1.988 5.700 1.456 0.548 0.406 5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 6.041 1.358 0.681 0.392 8.740 A.8 1.998 5.765 1.252 0.585 0.370	AN IMAL NO/SEX	:	TERMINAL BODY WT. GMS		LIVER	KIDNEY	HEART	SPLEEN	ADRENAL OVAR	TESTES 1ES	
5/2 27.00 1.989 5.696 1.215 0.522 0.315 5/2 23.00 1.909 4.865 1.300 0.500 0.217 5/2 24.00 2.113 5.742 1.196 0.512 0.283 5/2 26.00 1.992 5.962 1.373 0.642 0.381 5/2 25.00 1.988 5.700 1.456 0.548 0.404 5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.092 6.031 1.065 0.535 0.459 5/2 26.00 2.092 6.031 1.065 0.535 0.459 5/2 26.00 2.092 6.031 1.065 0.593 0.459 5/2 26.00 2.096 5.765 1.252 0.581 0.392 STANDARD DEVIATION: 0.114 0.448 0.118 0.071	110/F		26.00	1.965	6.308	1.162	0.631	822 0		7.	
5/2 23.00 1.909 4.865 1.300 0.500 0.217 5/2 24.00 2.113 5.742 1.196 0.512 0.283 5/2 26.00 1.992 5.962 1.373 0.642 0.381 5/2 25.00 1.988 5.700 1.456 0.548 0.404 5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 5.765 1.252 0.585 5/2 1.998 5.765 1.252 0.585 5.700 1.741 0.448 0.118 0.771 0.083	113/8		27.00	1.989	5.696	1.215	0.522	0.315	200	1 M	
5/2 24.00 2.113 5.742 1.196 0.512 0.283 5/2 26.00 1.992 5.962 1.373 0.642 0.381 5/2 25.00 1.988 5.700 1.456 0.548 0.404 5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 5.765 1.252 0.581 0.392 STANDARD DEVIATION: 0.114 0.448 0.118 0.071 0.083	1/6/1		23.00	1.909	4.865	1.300	0.500	0.217	-	2.2	
5/2 26.00 1.992 5.962 1.373 0.642 0.381 5/2 25.00 1.988 5.700 1.456 0.548 0.404 5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 6.404 1.358 0.681 0.392 STANDARD DEVIATION: 0.114 0.448 0.118 0.071 0.083	7/151		24.00	2.113	5.742	1,196	0.512	0.283	7	: 3	
5/2 25.00 1.988 5.700 1.456 0.548 0.406 5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 6.404 1.358 0.681 0.392 STANDARD DEVIATION: 0.114 0.448 0.118 0.071 0.083	1,00		26.00	1.992	5.962	1.373	0.642	0.381	6	1 5	
5/2 25.00 2.100 5.476 1.228 0.688 0.416 5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 6.404 1.358 0.681 0.392 STANDARD DEVIATION: 0.414 0.448 0.118 0.071 0.083	13//8		25.00	1.988	5.700	1.456	0.548	707.0		2 4	
5/2 26.00 2.092 6.031 1.065 0.535 0.496 5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 6.404 1.358 0.681 0.392 8TANDARD DEVIATION: 0.114 0.448 0.118 0.071 0.083	138/F		25.00	2.100	5.476	1.228	0.688	0.416	7.	* *	
5/2 27.00 1.741 5.467 1.163 0.593 0.459 5/2 26.00 2.096 6.404 1.358 0.681 0.392 M E A N: 1.998 5.765 1.252 0.585 0.370 STANDARD DEVIATION: 0.114 0.448 0.118 0.071 0.083	147/8		26.00	2.002	6.031	1.065	0.535	707	. 6		
5/2 26.00 2.096 6.404 1.358 0.681 0.392 M E A N: 1.998 5.765 1.252 0.585 0.370 STANDARD DEVIATION: 0.114 0.448 0.118 0.071 0.083	170/F		27.00	1.741	5.467	1.163	10 Y O	0.4.0		4 >	
1.998 5.765 1.252 0.585 0.370 0.114 0.448 0.118 0.071 0.083	172/F		26.00	2.096	905.9	1.358	0.681	000		* u	
0.114 0.448 0.118 0.071 0.083			M E A W:	1.998	5.765	1.252	585	470		2 %	
		STANDARD	DEVIATION:	0.114	0.448	0.118	0.071	0.083	70.0	0 eg	

Appendix Q (cont.): BASELINE CONTROL DATA

LETTERHAN	ARMY INST	LETTERMAN ARMY INSTITUTE OF RESEARCH	ARCH	SUMMAR	Y STATISI	TCS FOR 3	ICS FOR X ORGAN TO BRA STUDY NUMBER: GLP86007	SUMMARY STATISTICS FOR % ORGAN TO BRAIN WEIGHT RATIO	RA710	PRINTED: 13.SEP-88 PAGE: 1
PRESIDIO OF SAN FRA SPECIES: MOUSE/ICR	F SAN FRAIDUSE/ICR	DIV UT KES SUPP, FAIR SERV UT PRESIDIO OF SAN FRANCISCO, CA 94129 SPECIES: MOUSE/ICR	129	REPORT	FOR INTE	RIM SACR	INTERIM SACRIFICE NUMBER STUDY START DATE: 01-APR-87	REPORT FOR INTERIM SACRIFICE NUMBER (ALL SUBGROUPS) Study Start Date: 01.APR-87	OUPS)	STUDY TYPE:
ANIMAL NO/SEX	GROUP / SUBGROUP	GROUP/ TERMINAL SUBGROUP BODY WT. GMS B	BRAIN	LIVER	KIDNEY	HEART	SPLEEN	ADRENAL OVAR	TESTES	
	673	26.00	100.000	320.939	59,100	32.094	17.221	3.7	3.718	
3/2/6	2/5	22.00	100,000	286.406	61.080	26.257	15.829	4.0	555	
1/01	7 / 2	24 00	100 000	254.897	68,109	26.196	11.390	.χ. &	00	
1/4/1	2/5	26.00	100,000	271.795	56.607	24.260	13.412	9.6	173	
13171	2/5	26.00	100 000	299.228	68.919	32.239	19.112	7.	7.529	
7/051	2/2	25.00	100,000	286.720	73.239	27.565	20.322	9.9	:37	
7/101	2/2	25.00	100,000	260.762	58.476	32.762	19.810	9.9	157	
7/071	2/2	26.00	100,000	288.235	50.919	25.551	23.713	5.(22	
1//*	2/2	27.00	100,000	314.043	66.809	34.043	26.383		757	
170/1	2/2	26.00	100,000	305,505	64.771	32.477	18.716	₩. ₩	307	
1/7/1	316	. N V W	100 000	288.853	62.803	29.344	18.591	9	206	
	CTAUDADD	TAUDADO DEVIATION	0.00	21.840	6.745	3.687	4.471	2.7	063	

Distribution List

Commander
US Army Biomedical Research and
Development Laboratory (27)
ATTN: SGRD-UBZ-C
Fort Detrick, Frederick, MD 21701-5010

Defense Technical Information Center (DTIC) (2)
ATTN: DTIC-DLA
Cameron Station
Alexandria, VA 22304-6145

US Army Medical Research and
Development Command (2)
ATTN: SGRD-RMI-S
Fort Detrick, Frederick, MD 21701-5012

Commandant
Academy of Health Sciences, US Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234

Chief USAEHA Regional Division, West Fitzsimmons AMC Aurora, CO 80045

Chief USAEHA Regional Division, North Fort George G. Meade, MD 20755

Chief USAEHA Regional Division, South Bldg. 180 Fort McPherson, GA 30330

Commander
USA Health Services Command
ATTN: HSPA-P
Fort Sam Houston, TX 78234

Commander US Army Materiel Command ATTN: AMSCG 5001 Eisenhower Avenue Alexandria, VA 22333 Commander
US Army Environmental Hygiene
Agency
ATTN: Librarian, HSDH-AD-L
Aberdeen Proving Ground, MD 21010

Dean
School of Medicine
Uniformed Services University of the
Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

Commander
US Army Materiel Command
ATTN: AMCEN-A
5001 Eisenhower Avenue
Alexandria, VA 22333

HQDA ATTN: DASG-PSP-E Falls Church, VA 22041-3258

HQDA ATTN: DAEN-RDM 20 Massachusetts, NW Washington, D.C. 20314

CDR, US Army Toxic and Hazardous
Material Agency
ATTN: DRXTH/ES
Aberdeen Proving Ground, MD 21010

Commandant
Academy of Health Sciences
United States Army
ATTN: Chief, Environmental
Quality Branch
Preventive Medicine Division
(HSHA-IPM)
Fort Sam Houston, TX 78234