Hints and solutions to Problems 3

1) Let m = |G| and n = |H|. Then $|G \times H| = m \cdot n$.

We show first that if G and H satisfy (a) and (b) then $G \times H$ is cyclic. Denote g and h generators of G and H, respectively. We claim that (g,h) generates $G \times H$. In fact, let l be the order of (g,h). Then $(e_G,e_H)=(g,h)^l=(g^l,h^l)$, and so $g^l=e_G$ and $h^l=e_H$. By part (ii) of the corollary after Definition 2.13 in the Lecture Notes we have then that m and n divide l. Since $\gcd(m,n)=1$ we know that the lowest common multiple of m and n is their product $m\cdot n$. We conclude that $m\cdot n$ divides l. However the order of (g,h) can be at most $m\cdot n=|G\times H|$ and so we have $\operatorname{ord}(g,h)=mn$, i.e. (g,h) is a generator of $G\times H$ and the product group is cyclic.

For the other direction. Let (g,h) be a generator of $G \times H$. We have homomorphisms of groups $\pi_G : G \longrightarrow G \times H$, $x \mapsto (x,e_H)$ and $\pi_H : H \longrightarrow G \times H$, $y \mapsto (e_G,y)$, which are one-to-one and so G and H are isomorphic to subgroups of the cyclic group $G \times H$. Since subgroups of cyclic groups are cyclic by Lemma 2.4 (iv) of the Lecture Notes we get (a), *i.e.* both G and H are cyclic groups.

We show that also (b) holds by contradiction. Assume that m and n are not coprime. Then the lowest common multiplier l of m and n is strictly smaller that $m \cdot n$. Since m and n divide l we have by part (i) of the corollary after Definition 2.13 of the Lecture Notes that as $g^m = e_G$ and $h^n = e_H$ also $g^l = e_G$ and $h^l = e_H$. Therefore $(g, h)^l = (e_G, e_H)$ and so the order of (g, h) is $l < m \cdot n = |G \times H|$, contradicting that (g, h) generates the product group $G \times H$.

2) Since H is abelian we have

$$\alpha(ghg^{-1}h^{-1}) = \alpha(g) \cdot \alpha(h) \cdot \alpha(g)^{-1} \cdot \alpha(h)^{-1}$$
$$= \alpha(g) \cdot \alpha(g)^{-1} \cdot \alpha(h) \cdot \alpha(h)^{-1}$$
$$= e_H,$$

and so $[G,G] \subseteq \operatorname{Ker} \alpha$. Hence the claim follows from part (i) of the first isomorphism theorem.

3) Let g be a cycle of length 2 and h one of length 3 in S_3 . By Lagrange's theorem the subgroup generated by g, h has at least 6 elements and so is equal S_3 . Hence if $\alpha \in \operatorname{Aut}(S_3)$ then α is determined by the images $\alpha(g)$ and $\alpha(h)$. Since α is an automorphism these images have to be again of order 2 and 3, respectively. Hence there are 3 possibilities for $\alpha(g)$ and 2 possibilities for $\alpha(h)$, which means there can be at most h automorphisms of h automorphisms

On the other hand the center of S_3 is trivial, see Example 2.16 of the Lecture Notes and so by Example 3.12 of the Lecture Notes we have $Inn(S_3) \simeq S_3$, i.e. the subgroup $Inn(S_3)$ of $Aut(S_3)$ has 6 elements. Hence we get the claim $Aut(S_3) = Inn(S_3)$.

4) To verify this, let H, K be groups and $\alpha : K \longrightarrow \operatorname{Aut}(H)$ be a homomorphism of groups with associated semidirect product $H \rtimes_{\alpha} K$. Set

$$H_1 := \{ (h, e_K) | h \in H \} \text{ and } K_1 := \{ (e_H, k) | k \in K \}.$$

Then it is straightforward to check that

$$H \longrightarrow H \rtimes_{\alpha} K, h \longmapsto (h, e_K)$$

and

$$K \longrightarrow H \rtimes_{\alpha} K, k \longmapsto (e_H, k)$$

are injective homomorphism of groups whose images are H_1 and K_1 , respectively. Hence we have $H \simeq H_1$ and $K \simeq K_1$. We claim now that $G := H \rtimes_{\alpha} K$ is the internal semidirect product of H_1 and K_1 .

Clearly the intersection $H_1 \cap K_1$ contains only (e_H, e_K) , the neutral element of G, and since

$$(h,k) = (h,e_K) \cdot (e_H,k)$$

we have $H_1K_1 = G$ as well. Finally we have to show that H_1 is a normal subgroup. This follows from the following computation:

$$(h,k) \cdot (x,e_K) \cdot (h,k)^{-1} = (h,k) \cdot (x,e_K) \cdot (\alpha(k^{-1})(h^{-1}),k^{-1})$$
$$= (h,k) \cdot \left(x \cdot [\alpha(k^{-1})(h^{-1})], k^{-1} \right)$$
$$= \left(h \cdot \alpha(k) \left(x \cdot [\alpha(k^{-1})(h^{-1})] \right), e_K \right) \in K_1$$

for all $x, h \in H$ and $k \in K$.

5) If G is abelian then $(x \cdot y)^2 = x^2 \cdot y^2$, and so in this case $G \longrightarrow G$, $g \mapsto g^2$, is a homomorphism of groups. For the other direction, if this is a homomorphism of groups then

$$x \cdot (y \cdot x) \cdot y = (x \cdot y)^2 = x^2 \cdot y^2$$

for all $x, y \in G$. Multiplying this equation by x^{-1} on the left, and by y^{-1} on the right gives $y \cdot x = x \cdot y$, i.e. G is abelian.

To show that in case G is abelian of odd order this map is an isomorphism it is enough to show that it is injective (an injective map of a finite set into itself is automatically surjective). Assume that $x^2=e$ for some $x\in G$. Let |G|=2m+1 for some integer $m\geq 0$. Then we have by the corollary after Definition 2.13 in the Lecture notes $x^{2m+1}=e$, and so

$$e = x^{2m+1} = (x^2)^m \cdot x = e^m \cdot x = x$$
.

Hence the kernel of $G \longrightarrow G$, $g \mapsto g^2$, contains only the neutral element, and so this map is one-to-one.

6) Let $h \in H$. We have to show that then $x \cdot h \cdot x^{-1} \in H$ for all $x \in G$. Since H contains the commutator subgroup we have $x \cdot h \cdot x^{-1} \cdot h^{-1} \in H$ for all $x \in G$, and so also

$$x \cdot h \cdot x^{-1} = (x \cdot h \cdot x^{-1} \cdot h^{-1}) \cdot h \in H$$

for all $x \in G$.

That the quotient group G/H is then normal follows since $x \cdot y \cdot x^{-1} \cdot y^{-1} \in [G,G] \subseteq H$ implies $(x \cdot y) \cdot (y \cdot x)^{-1} \in H$, and so (xy)H = (yx)H, which in turn gives

$$xH \cdot yH = yH \cdot xH$$

for all $x, y \in G$. Hence G/H is commutative.

7) Let $\alpha: G_1 \xrightarrow{\simeq} G_2$ be an isomorphism of groups. Then

$$\operatorname{Aut}(G_2) \longrightarrow \operatorname{Aut}(G_1), \ \rho \longmapsto \alpha^{-1} \circ \rho \circ \alpha$$

is an isomorphism of groups as is straightforward to check.

The cyclic groups $\mathbb{Z}/8$ and $\mathbb{Z}/12$ are not isomorphic, but there automorphism groups are both isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$. In fact, by Example 3.14 in the Lecture Notes we know that $\operatorname{Aut}(\mathbb{Z}/8) \simeq (\mathbb{Z}/8)^{\times}$ and $\operatorname{Aut}(\mathbb{Z}/12) \simeq (\mathbb{Z}/12)^{\times}$. We have $|(\mathbb{Z}/8)^{\times}| = |(\mathbb{Z}/12)^{\times}| = 4$ and in both groups all elements have order 2, which implies that

$$(\mathbb{Z}/8)^{\times} \simeq (\mathbb{Z}/12)^{\times} \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$$

by Problems 2, 4).