

North South University Department of Electrical & Computer Engineering

LAB REPORT

Course Name: CSE231L

Experiment Number: 08

Experiment Name: Synchronous Sequential Circuits

Experiment Date: 03/01/2021

Report Submission Date: 09/01/2021

Section:

Student Name: Zahid Hasan	Score
Student ID: 1911509642	
Remarks:	

LAB-08: Synchronous Sequential Circuits

Objectives:

- Gain a practical understanding of State Diagrams and State Tables.
- Understand the concept of designing Sequential Circuits using Flip-Flops.
- Design and implement a Synchronous Sequential Circuit given a State Diagram.

Apparatus:

- IC 7474 (Dual D Flip-Flops)
- IC 74107 (Dual JK Flip-Flops)
- IC 7408 2-input AND gates
- IC 7404 Hex inverters (NOT gates)
- IC 7432 2-input OR gates

Theory:

Synchronous Sequential Circuits:

Sequential Circuit is made of combinational circuits and memory storage where circuits conduct the operation of present output based on present inputs and past outputs stored in memory storage. In a sequential circuit, the values of the outputs depend on the past behavior of the circuit, as well as the present values of its inputs. A sequential circuit has states, which in conjunction with the present values of inputs determine its behavior. Sequential circuits can be Synchronous where flip-flops are used to implement the states, and a clock signal is used to control the operation.

Figure: The general form of a synchronous sequential circuit.

State Table:

The state table representation of a sequential circuit consists of three sections labeled present state, next state and output. The present state designates the state of flip-flops before the occurrence of a clock pulse. The next state shows the states of flip-flops after the clock pulse, and the output section lists the value of the output variables during the present state.

State Diagram:

In addition to graphical symbols, tables or equations, flip-flops can also be represented graphically by a state diagram. In this diagram, a state is represented by a circle, and the transition between states is indicated by directed lines (or arcs) connecting the circles.

Circuit Diagram:

Experiment-1:

Figure F1: Constructing a Sequential Circuit using JK Flip-Flop.

Experiment-2:

Figure F2: Constructing a Sequential Circuit using T Flip-Flop.

Experiment-3:

Figure F3: Constructing a Sequential Circuit using D Flip-Flop.

Data Table:

Experiment-1: Table 01: State table for circuit using JK Flip-Flop.

Presen	t state	Input	Nex	t state	Output	Fli	p-flop inp	ut functio	ns
Α	В	х	Α	В	Υ	J_A	K _A	J _B	K _B
0	0	0	0	1	0	0	Х	1	Χ
0	0	1	1	0	1	1	Х	0	Х
0	1	0	0	1	0	0	Х	Х	0
0	1	1	1	0	1	1	Х	Х	1
1	0	0	1	0	0	Х	0	0	Х
1	0	1	0	0	0	Х	1	0	Χ
1	1	0	Х	Х	Х	Х	Х	Х	Х
1	1	1	Х	Х	Х	Х	Х	Х	Х

Experiment-2: Table 02: State table for circuit using T Flip-Flop.

Preser	nt state	Input	Nex	t state	Output	Flip-flop in	put functions
Α	В	Х	Α	В	Υ	T _A	T _B
0	0	0	0	1	0	0	1
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	1	0
1	1	0	Х	Х	Х	Х	Х
1	1	1	Х	Х	Х	Х	Х

0	0	0	Χ
1	1	1	Х

_		.,
•	_	v
	Λ	^

1	0	0	Х
0	1	0	Χ

$$T_B = XA'B+X'B'$$

0	0	0	Χ
1	1	0	Χ

Y = XA'

Experiment-3: Table 03: State table for circuit using D Flip-Flop.

Presen	t state	Input	Nex	t state	Output	Flip-flop in	put functions
Α	В	Х	Α	В	Y	D _A	D_B
0	0	0	0	1	0	0	1
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	1
0	1	1	1	0	1	1	0
1	0	0	1	0	0	1	0
1	0	1	0	0	0	0	0
1	1	0	Х	Х	Х	Х	Х
1	1	1	Х	Х	Х	Х	Х

0	0	1	Χ
1	1	0	Χ

 $D_A = XA' + X'A$

$$D_B = X'A'$$

Y = XA'

Question and Answer:

Experiment-2:

Ques-01: Reason behind the output y equation of JK and T be the same

ANS: from given state diagram, the obtained output values of y depend on the flip-flop output and external input for both JK flip-flop and T flip-flop. As the values of external output y is same for JK flip-flop and T flip-flop, the output equation obtained from k-map will also be same.

Experiment-3: IC Diagram for the logic circuit in T Flip-Flop

Discussion:

The overall lab experiment was about the implementation of synchronous sequential circuit using different types of flip-flops.

At the beginning of the experiment, I implemented the synchronous sequential circuit using JK flip-flop. At first, from given state diagram, I had to complete the state table with next state values and external output values. Then using Karnaugh map built from state table, I got required state equations. Using these state equations, I constructed the sequential circuit.

Then I constructed synchronous sequential circuit using D flip-flop and T flip-flop as same as did for JK flip-flop.

Additionally, I did the implementation with basic logic gate ICs and T flip-flop.

During experiment, Logisim worked properly.

Above all, from the experiment, I learned how to implement the synchronous sequential circuit using JK, D, T flip-flops.