

Natural Language Processing: An Introductory Tutorial, Part I

Instructors

Fatma Tarlaci & Pamela Wadhwa

Data Science Fellow

Data Science Fellow

Prerequisites

- O Python
- Jupyter

We will also use

Natural Language Toolkit (NLTK)

Open Source Library for NLP in Python

Nice-to-know

pandas | | | $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

Outline

- Brief overview of NLP concepts: Sentiment Analysis
- The steps for preprocessing the data, using NLTK
- Using scikit-learn to implement a sentiment classifier

Evaluating the model results

Natural Language Processing (NLP)

Applications

- Machine translation
- Question answering
- Language modeling
- Sentiment Analysis
- ...

Sentiment Analysis

Extracting affective states and subjective information from text.

Examples: Customer reviews, tweets, etc.

Sentiment Analysis

Sentiment Analysis is the process of identifying and extracting **opinions** from text (or voice) data.

Polarity analysis is the most common version of sentiment analysis.

This is a fairly difficult task.

What about opinions that are not simply positive or negative?

"Like most things in life, wearing #facemask properly ensures best outcomes."

"If Disney requires masks, I won't go. Period. They will lose a lot of money"

"my ears are currently carrying sunglasses, headphones, and a face mask. ears are a purse"

"'I'm not working out with a mask on' is my new favorite excuse for not working out."

More advanced types of sentiment analysis include **Emotion Detection**

Polarity

Positive?

Negative?

Is this a classification question?

Classification

Sentiment analysis is modeled as a **classification problem**, where a predefined class label is predicted for a given example of input data.

Classify a given textual input as:

- Positive
- Negative

Part I Getting Started

01_Project_Twitter.ipynb

Natural Language Processing Tutorial Part II

- Basic text pre-processing steps
 - Tokenization
 - Stemming
 - Word embedding
- Sentiment analysis modeling
 - Picking a classifier from scikit-learn
 - Training a classifier from training data
 - Observing results/ evaluation metrics

Why do multiple NLP libraries exist?

- NLTK falls short if used in production and/or industry level NLP applications.
- With increasing level of data we need to process, we need more robust tools.
- Spark NLP is one of the industry level NLP libraries that streamlines many of the procedures of creating and deploying NLP applications.

- Built upon Apache Spark and Spark ML (robust and efficient), takes advantage of TensorFlow behind the scenes
- Widely used in various industries that use NLP applications
- More advanced and most recent NLP research is continuously incorporated in this library

Deep Learning?

Deep Learning

- inspired by our understanding of the biology of our brains,
- artificial neural networks have discrete layers, connections, and directions of data propagation.

Pretrained (Language) Models

 Large models that have been trained in large datasets and have acquired significant amount of *learning* and understanding of the language

Transfer Learning

 Enables us to use pretrained models' learning without having to train (learn) the language from scratch.

- "...a means to extract knowledge from a source setting and apply it to a different target setting."
 - The general practice is to pretrain representations on a large unlabelled text corpus using your method of choice and then to adapt these representations to a supervised target task using labelled data
 - Pretraining reduces the need for large amounts of labeled data

- BERT
- O GPT-2
- XLNET
- RoBERTa

How to use them?

- PyTorch
- Tensorflow (Keras)
- Spark NLP

22

Spark NLP

Spark NLP takes advantage of pretrained models and transfer learning by integrating them into its system and making them readily available to its users

Pipeline

a sequence of algorithms to process and learn from data

Estimators

 have a method called fit() which secures and trains a piece of data

Transformer

 the result of a fitting process, applies changes to the the target dataset

Annotator

An annotator (or annotation) is the basic form of the result of a Spark NLP operation

High Performance Natural Language Understanding at Scale

John Snow LABS

Part of Speech Tagger
Named Entity Recognition
Sentiment Analysis
Spell Checker
Tokenizer
Stemmer
Lemmatizer
Entity Extraction

MLlib

Topic Modeling
Word2Vec
TF-IDF
String distance calculation
N-grams calculation
Stop word removal
Train/Test & Cross-Validate
Ensembles

Spark ML API (Pipeline, Transformer, Estimator)

Spark SQL API (DataFrame, Catalyst Optimizer)

Spark Core API (RDD's, Project Tungsten)

Data Sources API

DataFrame

NLP Pipeline Example

```
pipeline = Pipeline(stages=[
  document_assembler,
  sentenceDetector,
  tokenizer,
  normalizer,
  word_embeddings,
])
```


Let's practice with Spark NLP!

Thank you!