Exercices 15.16 et 15.17 du cours

François Coulombeau

coulombeau@gmail.com

Lycée La Fayette, Clermont-Ferrand (63)

2 avril 2020

Soient $r \in \mathbb{R}_+^*$, $f: x \in \mathbb{R}_+^* \mapsto \frac{x + \frac{r}{x}}{2}$ et u la suite définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases}$. **Ex.** 16 (Cor.)

- 1) Montrer que $\lceil \sqrt{r}; +\infty \rceil$ est stable par f et en déduire que la suite u est bien définie et que $\forall n \in \mathbb{N}^*, u_n \geqslant \sqrt{r}.$
- 2) Montrer que $g: x \mapsto f(x) x$ est négative sur $[\sqrt{r}; +\infty]$.
- 3) En déduire que u est décroissante à partir du rang 1 et que u converge.
- 4) Calculer $\lim_{n\to+\infty} u_n$.
- 5) Donner une valeur approchée rationnelle à 10^{-6} près de $\sqrt{2}$.

Cor. 16:

1)
$$f$$
 est continue et dérivable sur $]0; +\infty[$. $\forall x > 0, f'(x) = \frac{1 - \frac{r}{x^2}}{2} = \frac{x^2 - r}{2x^2}$.

Donc
$$f'(x) > 0 \Leftrightarrow x^2 > r \Leftrightarrow (x > \sqrt{r} \text{ ou } x < -\sqrt{r}.$$

Sur $]0; \sqrt{r}], f$ est donc décroissante et f est croissante sur $[\sqrt{r}; +\infty[$.

Or
$$f(\sqrt{r}) = \sqrt{r}$$
, $\lim_{x \to +\infty} f(x) = +\infty$ et f est continue, donc

$$f([\sqrt{r}; +\infty[) = [\sqrt{r}; +\infty[$$

De plus f passe par son minimum (sur \mathbb{R}_+^*) \sqrt{r} en \sqrt{r} . Donc $\forall x > 0, f(x) \geqslant \sqrt{r}$. Donc $u_1 = f(u_0) \geqslant \sqrt{r}$, et $[\sqrt{r}; +\infty[$ est stable par f, donc $\forall n \in \mathbb{N}^*, u_n \geqslant \sqrt{r}$.

- 2) Soit $g: x \mapsto f(x) x$. $\forall x > 0, g(x) = \frac{\frac{r}{x} - x}{2} = \frac{r - x^2}{2x}$ est négatif sur $[\sqrt{r}; +\infty[$.
- 3) $g(u_n) = f(u_n) u_n = u_{n+1} u_n$.

Or pour $n \ge 1$, $u_n \in [\sqrt{r}; +\infty[$ donc $g(u_n) \le 0$.

Donc u est décroissante à partir du rang 1.

De plus $\forall n \geq 1, u_n \geq \sqrt{r}$: u est décroissante et minorée à partir du rang 1, donc elle converge.

- 4) Soit $l = \lim_{n \to +\infty} u_n$. f est continue, donc $\lim_{n \to +\infty} f(u_n) = f(l)$. Or $\lim_{n \to +\infty} f(u_n) = \lim_{n \to +\infty} u_{n+1} = l$. Donc f(l) = l : l est un point fixe de f.
 - Or l'équation $f(x) = x \Leftrightarrow x^2 = r$ possède une unique solution positive, c'est \sqrt{r} . Donc $l = \sqrt{r}$.
- 5) Pour donner une valeur approchée rationnelle à 10^{-6} près de $\sqrt{2}$, on calcule les termes de u - qui sont rationnels - jusqu'à obtenir une approximation suffisante.

 - $u_1=\frac{3}{2}$. $u_2=\frac{17}{12}$. $u_3=\frac{577}{408}$ qui est déjà une approximation rationnelle de $\sqrt{2}$ à 2.10^{-6} près.
 - $u_4 = \frac{665857}{470832}$ est une approximation rationnelle de $\sqrt{2}$ qui convient puisqu'elle est non seulement valable à 10^{-6} près, mais en fait approxime $\sqrt{2}$ à 10^{-11} près.