Métodos Numéricos

Aproximação dos Mínimos Quadrados

Teresa Monteiro

Departamento de Produção e Sistemas

Escola de Engenharia

Universidade do Minho

tm@dps.uminho.pt

Objetivo

Dada uma função definida num intervalo $[a,b] \in \Re$ por uma tabela matemática com m pontos (m = tamanho da amostra)

 $a \le x_1 < x_2 < \ldots < x_m \le b$, ou por uma relação funcional f(x), pretende-se calcular uma função aproximação simples, M(x), que reflita, na generalidade, o comportamento dos dados.

Essa função M(x) pode ser um polinómio de grau menor ou igual a n: $p_n(x)$.

O resíduo r(x)=f(x)-M(x) mede a proximidade de f(x) em relação a M(x).

Sumário

- Introdução
- Modelo Linear
 - a) Modelo polinomial
 - b) Modelo não polinomial
- Avaliação de modelos
- Exercícios de aplicação

Modelo linear

No problema linear o objetivo é encontrar um modelo ${\cal M}(x)$ do tipo

$$M(x) = c_0 \Phi_0(x) + c_1 \Phi_1(x) + \ldots + c_n \Phi_n(x).$$

Notar que este modelo é linear nos parâmetros c_0, c_1, \ldots, c_n .

As funções $\Phi_i, i=0,\ldots,n$ são conhecidas.

Objetivo: calcular c_i , i = 0, ..., n (parâmetros do modelo).

Modelo linear

Considere-se o seguinte conjunto de m equações lineares nas n+1 incógnitas (parâmetros do modelo) $c_i, i=0,\ldots,n$:

$$c_0\Phi_0(x_j) + c_1\Phi_1(x_j) + \ldots + c_n\Phi_n(x_j) = f(x_j), \quad j = 1,\ldots, m$$

- Se m = n + 1 tem-se a técnica de interpolação
- Se m>(n+1) o sistema tem mais equações do que incógnitas (é sobredeterminado) e o que se pretende é que as equações sejam verificadas aproximadamente.

Uma das técnicas para a resolução destes sistemas é a técnica dos mínimos quadrados.

Modelo dos Mínimos Quadrados

O objetivo é encontrar o modelo M(x), que pode ser ou não um polinómio, de tal forma que se verifique:

minimizar
$$< f - M(x), f - M(x) > \Leftrightarrow minimizar S$$

S é o somatório do quadrado dos resíduos:

$$S = \sum_{j=1}^{m} [f(x_j) - M(x_j)]^2$$

Nota: Produto interno entre dois vetores

$$\left\langle \left(\begin{array}{c} 2\\1 \end{array}\right), \left(\begin{array}{c} 3\\-4 \end{array}\right) \right\rangle = 2 \times 3 + 1 \times (-4) = 2$$

Modelo Polinomial

Nesta secção vai aproximar-se a função f(x) por um modelo polinomial, recorrendo a **polinómios ortogonais**.

O objetivo é calcular o seguinte polinómio (o modelo é um polinómio!):

$$p_n(x) = c_0 P_0(x) + c_1 P_1(x) + \ldots + c_n P_n(x)$$

Para minimizar
$$S = \sum_{j=1}^{m} [f(x_j) - p_n(x_j)]^2$$

$$\sum_{j=1}^{m} [f(x_j) - p_n(x_j)]^2 = \sum_{j=1}^{m} [f(x_j) - c_0 P_0(x_j) - c_1 P_1(x_j) - \dots - c_n P_n(x_j)]^2$$

vai derivar-se S em ordem aos parâmetros (c_0, c_1, \ldots, c_n)

Modelo Polinomial

$$S = \sum_{j=1}^{m} [f(x_j) - c_0 P_0(x_j) - c_1 P_1(x_j) - \dots - c_n P_n(x_j)]^2$$

$$\min(S) \Leftrightarrow \begin{cases} \frac{\partial S}{\partial c_0} = 0\\ \frac{\partial S}{\partial c_1} = 0\\ \dots\\ \frac{\partial S}{\partial c} = 0 \end{cases}$$

$$\frac{\partial S}{\partial c_0} = -2\sum_{j=1}^m (f_j - c_0 P_0(x_j) - c_1 P_1(x_j) - \dots - c_n P_n(x_j)) P_0(x_j) = 0$$

$$\frac{\partial S}{\partial c_1} = -2\sum_{j=1}^{m} (f_j - c_0 P_0(x_j) - c_1 P_1(x_j) - \dots - c_n P_n(x_j)) P_1(x_j) = 0$$

Modelo Polinomial

$$\frac{\partial S}{\partial c_n} = -2\sum_{j=1}^m \left(f_j - c_0 P_0(x_j) - c_1 P_1(x_j) - \dots - c_n P_n(x_j) \right) P_n(x_j) = 0$$

Sistema das equações normais - **linear** nos parâmetros c_0, c_1, \ldots, c_n .

Polinómios Ortogonais

Se os polinómios $P_i(x)$ forem ortogonais,

$$\langle P_i(x), P_k(x) \rangle = 0, i, k = 0, 1, \dots, n, i \neq k$$
:

$$\left(\begin{array}{cccc}
\sum_{j=1}^{m} P_0^2(x_j) & | \sum_{j=1}^{m} f_j P_0(x_j) \\
& \sum_{j=1}^{m} P_1^2(x_j) & | \sum_{j=1}^{m} f_j P_1(x_j) \\
& \ddots & | \vdots \\
& \sum_{j=1}^{m} P_n^2(x_j) & | \sum_{j=1}^{m} f_j P_n(x_j)
\end{array}\right)$$

$$c_i = rac{\displaystyle\sum_{j=1}^m f_j P_i(x_j)}{\displaystyle\sum_{j=1}^m P_i(x_j)^2}$$
 $i = 0, \ldots, n$

Polinómios Ortogonais

Para o cálculo dos P's utiliza-se a seguinte relação de recorrência que gera polinómios ortogonais:

$$P_{i+1}(x) = A_i(x - B_i)P_i(x) - C_iP_{i-1}(x), \quad i = 0, 1, \dots, n-1$$

$$\begin{split} &P_0(x) = 1 \text{ e } P_{-1}(x) = 0 \text{ (por convenção)} \\ &A_i = 1, \forall i \\ &B_i = \frac{\sum_{j=1}^m x_j P_i(x_j) \, P_i(x_j)}{\sum_{j=1}^m P_i(x_j) \, P_i(x_j)} \\ &C_0 = 0 \text{ e } C_i = \frac{\sum_{j=1}^m P_i(x_j) \, P_i(x_j)}{\sum_{i=1}^m P_{i-1}(x_i) \, P_{i-1}(x_j)} \end{split}$$

Modelo não polinomial

No caso do modelo não ser um polinómio ele tem a forma:

$$M(x) = c_1 \Phi_1(x) + c_2 \Phi_2(x) + \ldots + c_n \Phi_n(x).$$

A ideia é a mesma:

$$\min S \Leftrightarrow \min \sum_{j=1}^{m} [f(x_j) - M(x_j)]^2$$

$$\min \sum_{j=1}^m [f(x_j) - c_1 \Phi_1(x_j) - c_2 \Phi_2(x_j) - \ldots - c_n \Phi_n(x_j)]^2$$

$$\begin{cases} \frac{\partial S}{\partial c_j} = 0 \\ \frac{\partial S}{\partial c_2} = 0 \\ \vdots \\ \frac{\partial S}{\partial c_n} = 0 \end{cases}$$

Modelo não polinomial

Obtém-se o seguinte **sistema de equações normais**, linear nas incógnitas c_1, c_2, \ldots, c_n que são os parâmetros do modelo:

$$\frac{\partial S}{\partial c_1} = -2\sum_{i=1}^m (f_j - c_1 \Phi_1(x_j) - c_2 \Phi_2(x_j) - \dots - c_n \Phi_n(x_j)) \Phi_1(x_j) = 0$$

$$\frac{\partial S}{\partial c_2} = -2\sum_{j=1}^{m} (f_j - c_1 \Phi_1(x_j) - c_2 \Phi_2(x_j) - \dots - c_n \Phi_n(x_j)) \Phi_2(x_j) = 0$$

. . .

$$\frac{\partial S}{\partial c_n} = -2\sum_{i=1}^m (f_j - c_1 \Phi_1(x_j) - c_2 \Phi_2(x_j) - \dots - c_n \Phi_n(x_j)) \Phi_n(x_j) = 0$$

Modelo não polinomial

A matriz dos coeficientes é quadrada e simétrica e o sistema linear, cujas incógnitas são os parâmetros c_1, c_2, \ldots, c_n - deve ser resolvido por um método direto e estável (EGPP).

Avaliação de modelos

Quando se constroem dois modelos $M_1(x)$ e $M_2(x)$ no sentido dos mínimos quadrados para aproximar um função f(x), como decidir qual o melhor dos dois?

Avaliação de modelos

Calcula-se:

$$S_1 = \sum_{j=1}^{m} [f(x_j) - M_1(x_j)]^2$$

$$S_2 = \sum_{j=1}^{m} [f(x_j) - M_2(x_j)]^2$$

O melhor modelo é aquele que apresentar o menor somatório do quadrado do resíduo (menor S).

Na tabela seguinte apresentam-se as vendas trimestrais de um produto que foi lançado no trimestre 1:

Trimestre
$$(x)$$
 1
 2
 3
 4

 Volume de vendas (V)
 1.5
 11
 15.5
 12.5

Usando a técnica dos mínimos quadrados construa um modelo quadrático para aproximar o volume de vendas.

Resolução:

O modelo quadrático é do tipo

$$p_2(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x)$$

Têm que ser calculados todos os valores:

$$P_0(x), P_1(x), P_2(x), c_0, c_1, c_2.$$

Tamanho da amostra m = 4.

A construção de uma tabela para calcular os somatórios envolvidos é bastante útil.

Os P's são calculados através de

$$P_{i+1}(x) = A_i(x - B_i)P_i(x) - C_iP_{i-1}(x), \quad i = 0, 1, \dots, n-1$$

$$P_1(x) = (x - B_0) = (x - 2.5)$$

$$B_0 = \frac{\sum_{j=1}^{4} x_j}{\sum_{j=1}^{4} 1} = \frac{10}{4} = 2.5$$

 $P_0(x) = 1$

x_j	$ f_j $	$P_1(x_j)$	$P_1^2(x_j)$	$x_j P_1^2(x_j)$	$f_j P_1(x_j)$	$P_2(x_j)$	$P_2^2(x_j)$
1	1.5	-1.5	2.25	2.25	-2.25	1	1
2	11	-0.5	0.25	0.5	-5.5	-1	1
3	15.5	0.5	0.25	0.75	7.75	-1	1
4	12.5	1.5	2,25	9	18.75	1	1
<u>∑</u> 10	40.5		5	12.5	18.75		4

$$P_2(x) = (x - B_1)P_1(x) - C_1$$

$$B_1 = \frac{\sum_{j=1}^{4} x_j P_1^2(x_j)}{\sum_{j=1}^{4} P_1^2(x_j)} = \frac{12.5}{5} = 2.5$$

$$C_1 = \frac{\sum_{j=1}^{4} P_1^2(x_j)}{\sum_{j=1}^{4} P_0^2(x_j)} = \frac{5}{4} = 1.25$$

$$P_2(x) = (x - 2.5)^2 - 1.25$$

$$c_0 = \frac{\sum_{j=1}^4 f_j P_0(x_j)}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{40.5}{4} = 10.125$$

$$c_1 = \frac{\sum_{j=1}^4 f_j P_1(x_j)}{\sum_{j=1}^4 P_1^2(x_j)} = \frac{18.75}{5} = 3.75$$

$$c_2 = \frac{\sum_{j=1}^4 f_j P_2(x_j)}{\sum_{j=1}^4 P_2^2(x_j)} = \frac{-12.5}{4} = -3.125$$

$$p_2(x) = 10.125 + 3.75(x - 2.5) - 3.125[(x - 2.5)^2 - 1.25]$$

Foram efetuadas várias medições do nível de água no Mar do Norte, N(t), para diferentes valores de t conforme a seguinte tabela:

Aproxime a função N(t), no sentido dos mínimos quadrados, por um modelo do tipo

$$M(t; c_1, c_2, c_3) = c_1 + c_2 sen(\frac{2\pi t}{p}) + c_3 \cos(\frac{2\pi t}{p})$$

(Nota: p = 12 horas representa uma aproximação da periodicidade do nível de água).

Resolução:

Mudança de variável: $t \rightarrow x$; cálculos em radianos.

O modelo é não polinomial do tipo:

$$M(x) = c_1 \Phi_1(x) + c_2 \Phi_2(x) + c_3 \Phi_3(x)$$

em que
$$\Phi_1(x) = 1$$
, $\Phi_2(x) = sen \frac{2\pi x}{12}$ e $\Phi_3(x) = cos \frac{2\pi x}{12}$

Tamanho da amostra m=4

O sistema das equações normais:

$$\left(\begin{array}{ccccc} \sum_{j=1}^{4} \phi_{1}^{2}(x_{j}) & \sum_{j=1}^{4} \phi_{1}(x_{j})\phi_{2}(x_{j}) & \sum_{j=1}^{4} \phi_{1}(x_{j})\phi_{3}(x_{j}) & |\sum_{j=1}^{4} f_{j}\phi_{1}(x_{j}) \\ \sum_{j=1}^{4} \phi_{2}(x_{j})\phi_{1}(x_{j}) & \sum_{j=1}^{4} \phi_{2}^{2}(x_{j}) & \sum_{j=1}^{4} \phi_{2}(x_{j})\phi_{3}(x_{j}) & |\sum_{j=1}^{4} f_{j}\phi_{2}(x_{j}) \\ \sum_{j=1}^{4} \phi_{3}(x_{j})\phi_{1}(x_{j}) & \sum_{j=1}^{4} \phi_{3}(x_{j})\phi_{2}(x_{j}) & \sum_{j=1}^{4} \phi_{3}^{2}(x_{j}) & |\sum_{j=1}^{4} f_{j}\phi_{3}(x_{j}) \\ \end{array} \right)$$

-0.1

0.4

0.4

-0.173206

-0.692816

1.732106

x_j	f_j	$sen(rac{2\pi x_j}{12})$	$\left[sen(\frac{2\pi x_j}{12})\right]^2$	$\cos(\frac{2\pi x_j}{12})$	$\left[\cos(\frac{2\pi x_j}{12})\right]^2$	$sen(\frac{2\pi x_j}{12})\cos(\frac{2\pi x_j}{12})$
2	1.6	0.86603	0.750	0.5	0.25	0.433015
4	1.4	0.86602	0.750	-0.5	0.25	-0.433015
8	0.2	-0.86603	0.750	-0.5	0.25	0.433015
10	0.8	-0.86602	0.750	0.5	0.25	-0.433015
	4	0	3	0	1	0
$f_{j}s$	$en(\frac{2\pi x}{12})$	$\frac{j}{j}$) $f_j \cos(\frac{2\pi}{j})$	$\frac{(x_j)}{12}$			
	.385648	0.8				
	1.21248	-0.7				

$$\left[\begin{array}{ccccc}
4 & 0 & 0 & |4\\
0 & 3 & 0 & |1.732106\\
0 & 0 & 1 & |0.4
\end{array}\right]$$

Por EGPP:

$$c_1 = 1, c_2 = 0.57737, c_3 = 0.4$$

O modelo pretendido é então

$$M(x) = 1 + 0.57737 sen \frac{2\pi x}{12} + 0.4 \cos \frac{2\pi x}{12}$$

Exercício 1

A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os seguintes valores:

Xi	1.5	2.0	0.0	4.0
$f(x_i)$	4.9	3.3	2.0	1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados:

- uma reta
- uma parábola
- (a) Calcule a reta.
- (b) Calcule a parábola.
- (c) Estime o valor da resistência de um fio que tem de diâmetro 2.5, através da parábola calculada em b).

 (a) Pretende determinar-se uma reta, que é um polinómio de grau 1 (modelo linear polinomial)

$$p_1(x) = c_0 P_0(x) + c_1 P_1(x)$$

Passo 1: Construir os polinómios ortogonais da sequência de polinómios ortogonais $P_0(x)$ e $P_1(x)$, sabendo que

$$P_0(x) = 1 \text{ e } P_{-1}(x) = 0$$

$$P_1(x) = (x - B_0)P_0(x) - C_0P_{-1}(x) = x - B_0$$

$$B_0 = \frac{\sum_{j=1}^4 x_j P_0^2(x_j)}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{\sum_{j=1}^4 x_j}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{10.5}{4} = 2.625$$

$$P_1(x) = x - 2.625$$

Passo 2: Cálculo dos coeficientes do polinómio co e c1

$$c_0 = \frac{\sum_{j=1}^4 f_j P_0(x_j)}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{\sum_{j=1}^4 f_j}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{11.7}{4} = 2.925$$

$$c_1 = \frac{\sum_{j=1}^4 f_j P_1(x_j)}{\sum_{j=1}^4 P_1^2(x_j)}$$

Podemos construir uma tabela para auxiliar os cálculos:

$$c_1 = \frac{-4.7625}{3.6875} = -1.291525$$

Passo 3: Construção do polinómio

$$p_1(x) = 2.925 - 1.291525(x - 2.625)$$

(b) Pretende determinar-se uma parábola, polinómio de grau 2 (modelo linear polinomial)

$$p_2(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x)$$

$$p_2(x) = \underbrace{c_0 P_0(x) + c_1 P_1(x)}_{p_1(x)} + c_2 P_2(x)$$

$$p_2(x) = p_1(x) + c_2 P_2(x)$$

Passo 1: Construir o polinómio ortogonal $P_2(x)$

$$P_2(x) = (x - B_1)P_1(x) - C_1P_0(x) = (x - B_1)P_1(x) - C_1$$

$$B_1 = \frac{\sum_{j=1}^4 x_j P_1^2(x_j)}{\sum_{j=1}^4 P_1^2(x_j)}$$

$$C_1 = \frac{\sum_{j=1}^4 P_1^2(x_j)}{\sum_{j=1}^4 P_0^2(x_j)}$$

Podemos construir uma tabela auxiliar:

		x_j	f_j	$P_1(x_j)$	$P_1^2(x_j)$	$x_j P_1^2(x_j)$
		1.5	4.9	-1.125	1.265625	1.898438
		2.0	3.3	-0.625	0.390625	0.78125
		3.0	2.0	0.375	0.140625	0.421875
		4.0	1.5	1.375	1.890625	7.5625
$\sum_{i=1}^{n}$	\sum_{i}	10.5	11.7		3.6875	10.664063

$$B_1 = \frac{10.6640625}{3.6875} = 2.891949$$
$$C_1 = \frac{3.6875}{4} = 0.921875$$

$$P_2(x) = (x - 2.891949)(x - 2.625) - 0.921875$$

Passo 2: Cálculo do coeficiente do polinómio c2

$$c_2 = \frac{\sum_{j=1}^4 f_j P_2(x_j)}{\sum_{j=1}^4 P_2^2(x_j)}$$

Continuar a tabela auxiliar:

	x_j	f_j	$P_1(x_j)$	$P_1^2(x_j)$	$x_j P_1^2(x_j)$	$f_j P_1(x_j)$	$P_2(x_j)$	$P_2^2(x_j)$
	1.5	4.9	-1.125	1.265625	1.898438	-5.5125	0.644068	0.414824
	2.0	3.3	-0.625	0.390625	0.78125	-2.0625	-0.364407	0.132792
	3.0	2.0	0.375	0.140625	0.421875	0.75	-0.881356	0.776788
	4.0	1.5	1.375	1.890625	7.5625	2.0625	0.601695	0.362037
7	10 5	11 7		3 6875	10 664063	-4 7625		1 686441

$$c_2 = \frac{1.093221}{1.686441} = 0.648241$$

Passo 3: Construção do polinómio

(c) Pretende-se estimar o valor da resistência quando o diâmetro é 2.5, através da parábola calculada em (b).

Então, é só substituir x = 2.5 no polinómio $p_2(x)$:

$$p_2(2.5) = 2.5206$$

Exercício 1 (cont.)

A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os seguintes valores:

Xi	1.5	2.0	3.0	4.0
$f(x_i)$	4.9	3.3	2.0	1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados:

- uma reta
- uma parábola
- o modelo linear: $M\left(x,c_{1},c_{2}\right)=rac{c_{1}}{x}+c_{2}x$
- (a) Calcule a reta.
- (b) Calcule a parábola.
- (c) Calcule o modelo M.
- (d) Qual dos modelos escolheria? Justifique a sua escolha.

(c) Pretende determinar-se um modelo (modelo linear e não polinomial), no sentido dos mínimos quadrados, do tipo

$$M(x; c_1, c_2) = \frac{c_1}{x} + c_2 x$$

Passo 1: n = 2. Identificação das funções Φ_i :

$$\Phi_1(x) = \frac{1}{x}$$

$$\Phi_2(x) = x$$

Passo 2: Construir o sistema de equações normais

$$\left(\begin{array}{ccc} \sum_{i=1}^{4} \Phi_{1}^{2}(x_{j}) & \sum_{i=1}^{4} \Phi_{2}(x_{j}) \Phi_{1}(x_{j}) \\ \sum_{j=1}^{4} \Phi_{1}(x_{j}) \Phi_{2}(x_{j}) & \sum_{j=1}^{4} \Phi_{2}^{2}(x_{j}) \\ \end{array}\right)$$

Construir uma tabela auxiliar

	Xj	fj	$\Phi_1(x_j)$	$\Phi_2(x_j)$	$\Phi_1^2(x_j)$	$\Phi_2^2(x_j)$	$\Phi_1(x_j)\Phi_2(x_j)$	$f_j\Phi_1(x_j)$	$f_j\Phi_2(x_j)$
	1.5	4.9	0.6667	1.5	0.4444	2.25	1.000001	3.2667	7.35
	2.0	3.3	0.5	2.0	0.25	4	1	1.65	6.6
	3.0	2.0	0.3333	3.0	0.1111	9	0.9999	0.6666	6
	4.0	1.5	0.25	4.0	0.0625	16	1	0.375	6
\sum					0.8681	31.25	4	5.9583	25.95

Passo 3: Resolver o sistema resultante por EGPP

$$\left(\begin{array}{cc|c} 0.868055 & 4 & 5.958334 \\ 4 & 31.25 & 25.95 \end{array}\right) \Longrightarrow \left\{\begin{array}{c} c_1 = 7.405391 \\ c_2 = -0.117490 \end{array}\right.$$

Passo 4: Construir o modelo

$$M(x) = \frac{7.405391}{x} - 0.117490x$$

(d) Para saber qual dos modelos calculado anteriormente aproxima melhor os dados no sentido dos mínimos quadrados, deve ser calculada a soma do quadrado dos resíduos, para cada modelo (linear polinomial ou linear não polinomial), e selecionar o que tiver menor valor, ou seja,

$$minimizar \sum_{j=1}^{m} (f_j - MODELO_j)^2$$

Em que MODELO é qualquer um dos calculados anteriormente:

$$p_1(x) = 2.925 - 1.291525(x - 2.625)$$

$$p_2(x) = 2.925 - 1.291525(x - 2.625) + 0.648241[(x - 2.891949)(x - 2.625) - 0.648241[(x - 2.891949)(x - 2.625)]$$

$$M(x) = \frac{7.405391}{x} - 0.117490x$$

Construir uma tabela auxiliar

	Χj	fj	$p_1(x_j)$	$p_2(x_j)$	$M(x_j)$	$(f_j-p_1(x_j))^2$	$ (f_j-p_2(x_j))^2 $	$(f_j - M(x_j))$
1	.5	4.9	4.377966	4.795477	4.760683	0.272519391	0.010924977	0.01940913
	2	3.3	3.732203	3.49598	3.4677	0.18679977	0.038408121	0.0281232
	3	2	2.440678	1.869347	2.115967	0.19419707	0.017070276	0.01344826
	4	1.5	1.149153	1.539196	1.38135	0.123093939	0.001536325	0.01407782
$\sum_{i=1}^{n}$	\sum_{i}					0.77661017	0.0679397	0.0750585

O modelo que aproxima melhor os dados no sentido dos mínimos quadrados é $p_2(x)$, uma vez que é o que apresenta menor soma do quadrado dos resíduos.