Janvier 2019 /Durée: 1h30SC/Gr :....

Nom et Prénom :......Matricule :.....

Exo11

Epreuve de Rattrapage du 1er semestre

Mécanique Des Fluides

Questions de cours (04 pts)

	estions de cours (04 pts)	Vrai	Faux	Corriger si c'est faux
1	La pression relative peut être nulle.	×		
2	La pression absolue peut être négative.		X	Pab > 0
3	Le viscosimètre mesure la tension superficielle.		×	IL mesure la Viscosi
4	La loi fondamentale de la statique des fluides s'écrit : $\frac{p}{\rho} + g z = -A$, $A > 0$	×		
5	L'équation de Bernoulli pour un écoulement de fluide parfait incompressible s'écrit : $-\frac{P}{\rho} - \frac{1}{2}V^2 - g \ z = A, \qquad A > 0$	×	1	
5	L'équation d'Euler pour un écoulement entre la section d'entrée (1) et la section de sortie (2) s'écrit : $\sum \vec{F}_{ext} = q_v(\vec{V}_1 - \vec{V}_2)$		X	Zfert = 9 m (V2-V1)
7	Les pertes de charge sont proportionnelles à la vitesse de l'écoulement.		×	Pertes de charge ~ V
8	Le nombre de Reynolds représente le rapport entre les forces d'inertie et les forces visqueuses.	×		

Pour tous les exercices, prendre : $P_{atm} = 100 \text{ kPa et g} = 9.81 \text{ m/s}^2$

Fvo	rcice	1	104	ntel
LYG	ICICE		(04	ptsj

Un réservoir A fermé par un piston de masse M = 20 kg et section transversale $S = 100 \text{ cm}^2$ communique avec un deuxième réservoir fermé B, ainsi montré sur la figure (a). La masse volumique de l'huile est $\rho_H = 800 \text{ kg} / \text{m}^3$.

1. Calculer la pression de l'huile au niveau du piston.

2. Calculer la pression de l'air dans le réservoir B.

Pa-D+9, 80.4-119620 L8DD x 9, 81 KO.4 = 182759,2 B

	FGM&GP / USTHB / 2éme année STGM Nom et Prénom :	Janvier 2019 /Durée: 1h30 SC/Gr :
	3. Déterminer la hauteur H indiquée par le manomètre.	
	P+89H=P+849(0.35+0.25) H=8H0.6=0.8x0.6=0.48m	
	S 0,6 = 0,8x0,6 = 0,48 m.	
	2. Si on remplace le manomètre fermé par un manomètre ouvert à l'atmosphère (voir la figure b), calculer la nouvelle hauteur H indiquée par le manomètre.	Piston D,4r
	Patri + 884 = Pa + 848 0.6	Air Hulle 0,35m
	H = Pa - Patru + SH 0.6	
	7,	Dimètre vert
	VE00 X 0/81	
	Exercice 2 (4 pts) Un jet d'eau verticale sort par l'orifice circulaire d'un réservoir et bute contre une plaque horizontale avant de se disperser symétriquement dans toutes les directions horizontales (voir la figure). Le diamètre de l'orifice est d = 12.5 cm et la hauteur d'eau dans le réservoir est h = 9 m.	1 <u>\rightarrow</u> h
	1) Calculer la vitesse du jet à la sortie du réservoir.	2
	Egt de REPNOULLI (1)-12)	Jet Volume de contrôle
(1)) /6 + 1 V, +93, = 12/4 + 1 V + 93, - V3	R 3 V3
	P.=P2=Pakm , V, 20, , 3, -3, = R	Plaque
(0,	$V_1 = \sqrt{29R} = \sqrt{2 \times 9.81 \times 9} = 13,$	29 m/z
	2) Calculer la force nécessaire pour maintenir la plaque en place sous l	offet dy ist
	Eard Euler / VC	
Ć) Z Fext = qu (V2 - V2) => R =	[2] + 9 m (-V.) - 9 V2
Topic Maria	65 9 = 8 V TTd2 = 1000 x 13, 23 x TT 0.125	= 163,09 13/4

A Page

7	FGM&GP / USTHB / 2éme année STGM Nom et Prénom :	Matricule :	Janvier 2019 SC/Gr :	/Durée: 1h30
D.	Projection / 2 / R	= q. (0-		- N
6	2) Defei - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	npe, calculer la vitess x 40 x 10 3 To 22 e l'écoulement dans l 4 x 0,2 = 25	e d'écoulement dans les conduites.	Réservoir supérieur anne de réglage lapet de retenue
0.	4) Déterminer le coefficient de perte de	• • • • • • • • • • • • • • • • • • • •	k turbulent cu	Zucux
0'	5) En déduire la perte de charge linéaire.	· The second sec		
0	6) Calculer les pertes de charge singulièr	res.	B	
E	J. = (3,5,0,15,0,2	+.1.5.+2x0,	2405) 1,270=	5,072 1/28

 Δz

FGM&GP / USTHB / 2éme année STGM Nom et Prénom :Matricule :	Janvier 2019 /Durée: 1h30SC/Gr :
7) La pompe centrifuge de rendement $\eta = 80\%$ est entra puissance de 15 kW. Déterminer la différence de hauteur Δz eréservoir supérieur.	inée par un moteur électrique d'une entre le niveau du puits et le niveau du
Egt de BER Moulli (A) - (B)	
(0) 3 + 3 × 3 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3	Bt Fun TAB
(1) PA = PB = Palm, VA 20, VB 20	
(0, x) JA-8 = JL + Js = 8,928 J/bg	
10,009 = 89, = 40 kg/A	
(of Me= Whet/Wa => Whet= Meh	
13 = (38-34) = - (Whet + JA-8	\ .
(1) 3 A-8	! ' 0
$63 = -(-12 \times 10^{3} + 8,928) / 9.81$	=29,6.7.m
8) Une conduite de vidange de même diamètre D, même longue pour déverser l'eau, par effet de gravité, du réservoir s d'écoulement est supposé turbulent rugueux. En négligeant les pertes de charge singulières, déterminer le de conduite de vidange.	supérieur vers le puits Le régime ébit volumique d'écoulement dans la
Eqt de RERNOULLI (B) - (A)	
conduite de vidange. Eqt de RERNOULLI (B) = (A) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	3 + J8-A
(0, 2 B-A D I	
(0) L) V= 28 83 D = 2 x 9,81 x 29,67 x	70 - 11.069 m/a.
	r = 0.21.76 m/a = 3(17601)
6 4 = V (1) = 11,069 x 4	1
9) Est-ce que l'hypothèse de régime d'écoulement turbulent lisse	
Oni Cast fusti fie Duis que le l le conduite de vidange est Auparie les conduites de l'idange est superie	where a celle dams
) les conduites de filista la tron de	pompage
A	