Profit Loss Discount And VAT Ex 13.1

Profit. Loss, Discount and Value Added

Tax (VAF):-

1) Given

Student buys a pen bor Rs 90

$$c \cdot P = 90$$

and Sell Its for Rs 100

 $S \cdot P = 100$

Here $S \cdot P > c \cdot P$

So, He gets profit or Gain

Gain = $S \cdot P - c \cdot P$

= $100 \cdot 90 = 10$

and we have $\frac{1}{2}$, $\frac{100}{9}$
 $\frac{100}{9}$ $\frac{1}{9}$ × $\frac{100}{9}$

= $\frac{100}{9}$ $\frac{1}{9}$ × $\frac{1}{9}$ $\frac{1}{9}$ (converting into mixed braction)

3 Given

S-12

A boy buys 9 apples for Rs 9.60 and Sells them at 11 apples for Rs 12. To avoid brackions boy buys and sells 9×11 = 99 apples.

we have

C.P box 9 apples = RS 9.60

C.P box 1 apples = $\frac{9.60}{9}$ C.P box 99 apples = $\frac{9.60}{9}$ = 105.6 |
S.P box 11 apples = RS 12

8.P box 1 apple = $\frac{12}{11}$

box 99 apples = 12 x 99 = 108 |-

7. Gain =
$$\frac{64\sin \times 100}{\text{cp}}$$

= $\frac{2.4}{105.6} \times 100 = \frac{2.5}{11} = 2.\frac{3}{11}$ %.

Let C.P of one articles be 'x'

Problet =
$$8 \cdot P - c \cdot P = \frac{10x}{q} - x$$

= $\frac{x}{q}$

" probit =
$$\frac{probit}{c \cdot p} \times 100$$

/ projet =
$$\frac{x}{q} \times 100$$

= $\frac{1}{q} \times 100$
= $\frac{1}{q} \times 100$

Retailer buys tradio bor Rs. 225

His Overhead expenses Rs 15

.: C.P of radio = 225 + 15

= 240

S.P of radio = 300.

S.P > C.P

Proble = 1.1 - C.P

$$= 300 - 240 = 60$$
% probit = $\frac{\text{probit}}{\text{c.p}} \times 100 = \frac{60}{240} \times 100$

$$= \frac{160}{240} \times 100 = 21$$

@ Retailer buys a cools for By 1200

expenses on it By 40

Total price i.e, C.P = 1240

S.P = 1550

$$\frac{2}{\sqrt{probit}} = \frac{probit}{c \cdot p} \times 100$$

$$= \frac{1570 - 1240}{c \cdot p} \times 100$$

$$= \frac{1240}{c \cdot p} \times 100$$

$$= \frac{1240}{c \cdot p} \times 100$$

(7) c.p of waistwatch = Rs 225 + expenses

= 225 + 15"

= 240.

S.p of watch = 300 Here Sp > C.p

7. profit =
$$\frac{300 - 240}{240} \times 100$$

= 25 1.

(8) Let

Remesh bought birst box box Rs 'x'.

Cost box Second box =
$$1300 - x$$
.

For First box

He gets problet $20 \cdot 1 = \frac{Problet}{c \cdot p} \times 100$
 $\frac{20}{100} = \frac{s \cdot p - c \cdot p}{c \cdot p}$

for Second box

He lossed 12 % =
$$\frac{C \cdot P - S \cdot P}{C \cdot P} \times 100$$

$$\frac{12}{100} = \frac{C \cdot P - S \cdot P}{C \cdot P}$$

$$S \cdot P = C \cdot P - \frac{12}{100} \cdot C \cdot P$$

$$G \cdot P = 1200$$

8. p = (1300-x) - 12 (1300-x)

C-P = 1200 - X

$$S \cdot P = 1300 - 24 - 156 + \frac{12}{100}$$

$$= 1144 - \frac{22}{25}x - \bigcirc$$

Given Selling price of both boxes are same

$$x + \frac{20 x}{100} = 1144 - \frac{22}{25} x$$

$$x\left(1+\frac{20}{100}+\frac{22}{25}\right)=1144$$

$$x \times \frac{52}{25} = 1144$$

9 Given Let c.b of one ten = x
$$S.p of 10 pen = C.p of 14 pen$$

$$S.p of 1 pen = 14 x$$

7. Gain =
$$\frac{S \cdot P - C \cdot P}{C \cdot P} \times 100$$

= $\frac{14x}{10} - x \times 100 = x \left(\frac{14}{10} - 1\right) \times 100$
= 40 y

Given

Cop box 18 chain = 8.9 box 16 chairs

Sop box 1 chair =
$$\frac{18 \times 16}{16}$$

clearly Sop > cop $\frac{18 \times 100}{16}$

we get probit

probit y. = $\frac{5p - c \cdot p}{c \cdot p} \times 100$

= $\frac{18 \times 16}{16} \times 100$

propiet à = 15.2 /

clearly c.p >s.p

$$\frac{x}{1 - \frac{16}{16}} = \frac{x}{1 - \frac{16}{16}} = \frac{x}{100} = \frac{11 \frac{1}{4}}{1}$$

12) Let
$$c \cdot p$$
 of motor cycle for Ravish = x .

Pavish sells it for $x \cdot 2g \cdot 1 \cdot loss$

$$\frac{2g}{100} = \frac{loss}{c \cdot p} = \frac{c \cdot p - s \cdot p}{c \cdot p}$$

Sp = $x - \frac{2g \cdot x}{100} = x \left(\frac{1g}{2s}\right)$

The condition of the end of the profit = $\frac{12 \cdot 5}{100} = \frac{12 \cdot 5$

:. C.p Gor Ravish = Ps 42000/_

Solve =
$$50 \cdot 1 = \frac{100}{50} = \frac{c \cdot b}{2 \cdot b - c \cdot b}$$

To get 30%, let sip he x

$$\frac{100}{30} = \frac{512}{x - 512}$$

$$x = 312 \left(\frac{100}{30} + 1 \right)$$

$$x = 512 \times \frac{100}{130} = 544.20$$

" So, to get 30./ profit, He should sell

C.p. of briefcare = 900

Given it is further reduced by 5%.
$$5.P = \frac{957}{100} \times 736$$
 $= 699.20$

S.p. ber
$$q_0$$
 bally $t = 160$
 $toss = \frac{20}{100} = \frac{8 \cdot p - s \cdot p}{c \cdot p}$
 $\frac{20}{100} \times c \cdot p = c \cdot p - s \cdot p$
 $c \cdot p = \frac{s \cdot p}{(1 - \frac{20}{100})}$
 $c \cdot p = \frac{160}{80} \times 100$
 $c \cdot p = 200$

c. c.p box 90 ball pens = 200

c.p ob 1 ball pen =
$$\frac{200}{90}$$

Given to get 20 /.

S.p box x pens = 96

S.p box 1 pen = $\frac{96}{2}$

$$\frac{20}{100} = \frac{96}{x} - \frac{200}{40}$$

$$\frac{20}{100} = \frac{96}{x} - \frac{200}{40}$$

$$\frac{200}{90} + \frac{200}{90} + \frac{96}{x}$$

$$x = 36 \quad \therefore \text{ no. of ball pens} = 36$$

Given that

16 the c.p of article 20.1. less than x $(c.p)_{2} = \frac{80}{100}x$

and (S.P), = $\frac{100}{100}x - 36.75$, He get 301.

bropit

$$\frac{100}{50} = \frac{(c \cdot b)^{5}}{(c \cdot b)^{5}} - (c \cdot b)^{5}$$

$$\left(\frac{100}{30}\right) \times \frac{100}{80} \times = \frac{100}{1520} - 36.12 - \frac{100}{80} \times$$

$$\frac{100}{54} x = \frac{100}{42x} - 36.42$$

Cost price of article = 175/-

c. p box 1000 gm pulses =
$$x$$

but
5.p box 950 gm pulses = x
. 8.p box 1000 gross = $1000 \times x$

$$= \frac{1d}{1000 \times 100} = \frac{1d}{100 \times 20}$$

$$= \frac{1000 \times 100}{1000 \times 100} = \frac{100 \times 20}{100 \times 20}$$

$$= \frac{100}{1000 \times 100} = \frac{100 \times 20}{100 \times 20}$$

C.P. of one table be
$$x$$

C.P. ob Second table = $3120 - x$

For birst table

$$\frac{15}{100} = \frac{c \cdot b}{c \cdot b} - \frac{c \cdot b}{c \cdot b}$$

$$\frac{100}{56}$$
 [3150-x] = 8.6 - (3150-x)

$$1153.50 - \frac{100}{36\pi} = 8.6 - 3150 + x$$

Given

$$\frac{2217}{100} = 4243 \cdot 20$$

$$b_{x0}p_{1p} = _{1z}.V = \frac{100}{12} = _{2}.b - x$$

$$8.b = \frac{100}{112x} - 0$$

$$\frac{9}{100} = \frac{(3605 - x) - s \cdot p}{(3605 - x)}$$

$$e \cdot b = 360z - x - \frac{100}{6} (360z - x)$$

$$s \cdot p = \frac{65611}{20} - x + \frac{9x}{100} - 2$$

Given

$$\frac{100}{112 \times} = \frac{20}{62611} - \times + \frac{93}{63}$$

$$\frac{100}{100} = \frac{65611}{20} - x + \frac{9x}{100}$$

$$\frac{115x}{100} + x - \frac{9x}{100} = \frac{65611}{20}$$

$$x = 1592.50$$

$$= 2012.50$$

(20) Giren

A man buys a set of 11 tobees box Ps 10 and another set of 9 tobees box Ps 10

to avoid bractions, let us assume he buys total 11×9 = 99 tobees.

So, he buys 9 sets of 11 tokes for 9×10 = 901-

Total c.p = 110+90 = 200

Total tobees = 198

c.p ob each tobee = $\left(\frac{200}{198}\right)$ 4 s.p = 1

cp > 8.p $\sqrt{\frac{(8.00)/148}{19.000}} = 7.$

(21) Let 'x' be c.p ob tricycle sold for gain ob 16:1.
$$\frac{16}{100} = \frac{8 \cdot p - x}{x}$$

$$8 \cdot p = \frac{16x}{100} + x$$

The sop is 100 more, then gain = 20%.
$$\frac{20}{100} = \frac{\text{s.p.-c.p}}{\text{c.p}}$$

$$\frac{20}{100}x = \frac{116x}{100} + 100 - x$$

$$\frac{120x}{100} - \frac{116x}{100} = 100$$

She bought 16 dozen ball pens

Loss for 16 dozen pens

= s.p. of 8 ball pens.

Let 'x' be c.p ob each pen c.p ob 16 dozens =
$$16 \times 12 \times 2$$
Loss = $(6.p)$ 8

$$s \cdot p = \frac{192}{200} \times .$$

$$= \left(\frac{x - \frac{192 \times x}{200}}{x}\right) \times 100$$

$$= \frac{g}{2} = 4 \cdot 1$$

$$x = \frac{576}{16 \times 12}$$

Let c.p of Shirt = x

He Sold one Shirt = x

$$\frac{4}{100} = \frac{\text{S.p-c.p}}{\text{c.p}}$$

$$\text{S.p} = \frac{104}{100} \cdot \text{c.p} = 0$$

He Sold other Shirt for profit 5.1.
$$\frac{5}{100} = \frac{s \cdot p - c \cdot p}{c \cdot p}$$

$$\frac{5}{100} = \frac{105}{100} c \cdot p$$

Given dibberence between & shirts = 6

$$\frac{105 \cdot \text{c-p}}{100} = 6$$

$$\frac{\text{c-p}}{100} = 6$$

$$\frac{\text{c-p}}{100} = 6$$

$$\frac{100}{2} = \frac{c \cdot b}{c \cdot b - c \cdot b}$$

On whole gain =
$$\frac{20}{100} = \frac{(s \cdot p)_{total}}{(c \cdot p)_{total}}$$

$$\frac{800}{50} = \left(80x + 1860\right) - 8000.$$

Probit 7. =
$$\frac{99-80}{80} \times 100$$

= $\frac{19}{80} \times 100 = 23.75$

Profit Loss Discount And VAT Ex 13.2

1) Given M.P = 1300

Discount = 10
$$\rlap/s$$
. = $\frac{Discount}{M \cdot P} \times 100$

$$\frac{10}{100} = \frac{M \cdot P - S \cdot P}{M \cdot P}$$

$$\frac{10}{100} M \cdot P = M \cdot P - S \cdot P$$

$$S \cdot P = M \cdot P - \frac{10}{100} M \cdot P$$

$$S \cdot P = \frac{90}{100} \times 1300 = 1170 | -$$

discount = 15./.

$$\frac{M \cdot P - s \cdot p}{M \cdot p} \times 100 = 15$$
 $8 \cdot p = -\frac{15}{100} M \cdot p + M \cdot p$
 $8 \cdot p = M \cdot p \left(1 - \frac{15}{100}\right)$
 $= 8500 \times 85$
 $= 8500 \times 85$

(2) Given
$$S \cdot p = pc \ 1222$$

$$discount = 6 \cdot 7.$$

$$\frac{6}{100} = \frac{M \cdot p - S \cdot p}{M \cdot p}$$

$$\frac{6}{100} M \cdot p = M \cdot p - S \cdot p$$

$$S \cdot p = M \cdot p - \frac{6}{100} M \cdot p$$

$$\frac{100 \times 1222}{(100 - 6)} = M \cdot p$$

$$M \cdot p = 1300$$

discount = 1 ·/.

$$\frac{1}{100} = \frac{M \cdot P - s \cdot P}{M \cdot P}$$

$$\frac{M \cdot P}{100} = M \cdot P - s \cdot P$$

$$\frac{M \cdot P}{100} = M \cdot P - \frac{M \cdot P}{100}$$

$$\frac{49s \times 100}{99} = M \cdot P$$

$$M \cdot P = 500$$

(3) I) Given
$$M \cdot p = fs \cdot 900$$

$$S \cdot p = fs \cdot 900$$

$$S \cdot p = fs \cdot 900$$

$$= 900 - 873$$

$$= 27$$

$$= 27$$

$$discount = direcount \times 100$$

$$= \frac{27}{900} \times 100 = 3 \%$$

ii) Given
$$M \cdot p = R_1 = 500$$

$$8 \cdot p = R_1 = 425$$

$$9! discount = M \cdot P - S \cdot P \times 100$$

$$= \frac{15}{500} \times 100$$

$$= \frac{15}{500} \times 100 = 15 \%$$

Given

Marked price = Rs 650 |-

discount =
$$\frac{3}{100}$$
 |-

 $\frac{3}{100}$ M·P - S·P

 $\frac{3}{100}$ M·P - S·P

S·P = $\frac{97}{100}$ x 650 = 630. 5

Customer has to pay = 620.50 |-

Given Marked price = 720

Selling price = 684

discount = M.p. - 5.9

= 720 - 684 = 36

y. discount = discount x 100

$$= \frac{36}{726} \times 109 = 5.1$$

discount = 5.1.

Savee in Sold for Ps 720 = 5.p
discount = 20.1.

$$\frac{20}{100} = \frac{M \cdot p - 5 \cdot p}{M \cdot p}$$

$$\frac{20}{100} M \cdot p = M \cdot p - 720$$

$$720 = \frac{80}{100} M \cdot p$$

$$M \cdot p = \frac{720 \times 100}{80}$$

$$M \cdot p = 900$$

Given discount =
$$7\frac{1}{2}$$
 /.

= $\frac{15}{2}$ /.

and $5.p = 14.555$

$$\frac{15}{2} = \frac{\text{discount } \cdot \text{/.}}{\left(\frac{15}{200}\right)} = \frac{\text{M·P} - \text{s.p}}{\text{M·P}} = \frac{15}{200} \text{M·P} = \frac{15}{200} \text{M·P} = \frac{185}{200} \text{M·P}$$

$$\frac{15}{200} = \frac{185}{200} \text{M·P} = \frac{555}{200} \times \frac{125}{200} \text{M·P} = \frac{555}{200} \times \frac{125}{200} \text{M·P} = \frac{555}{200} \times \frac{125}{200} \text{M·P} = \frac{500}{200} \text{J} = \frac{125}{200} \text{M·P} = \frac{125}{200} \times \frac{125}{200} \times \frac{125}{200} \text{M·P} = \frac{125}{200} \times \frac{125}$$

Customer gives 10 % of on marked price discount = 10%

$$\frac{10}{100} = \frac{M \cdot p - s \cdot p}{M \cdot p}$$

and he gets 25 %. probit

$$\frac{5c}{100} = \frac{c \cdot b}{c \cdot b}$$

$$\frac{125}{100} c \cdot p = 8 \cdot p - c \cdot p$$

$$\frac{125}{100} c \cdot p = 8 \cdot p$$

$$c \cdot p = 225 \times 100$$

$$125$$

$$c \cdot p = 180 | -$$

discount =
$$\frac{20}{100}$$
 = $\frac{M \cdot p - s \cdot p}{M \cdot p}$
 $s \cdot p = \frac{80}{100} \cdot M \cdot p$

He gets profit of
$$25\%$$
.
$$\frac{25}{100} = \frac{5 \cdot p - c \cdot p}{c \cdot p}$$

So, he gets the article for Ps 320 |-

$$\frac{125}{100} c \cdot p = 8 \cdot p - c \cdot p$$

$$\frac{125}{100} c \cdot p = 8 \cdot p$$

$$c \cdot p = 225 \times 100$$

$$125$$

$$c \cdot p = 180 | -$$

discount =
$$\frac{20}{100}$$
 = $\frac{M \cdot p - s \cdot p}{M \cdot p}$
 $s \cdot p = \frac{80}{100} \cdot M \cdot p$

He gets profit of
$$25\%$$
.
$$\frac{25}{100} = \frac{5 \cdot p - c \cdot p}{c \cdot p}$$

So, he gets the article for Ps 320 |-

Given c.p. of article = 170

$$\begin{array}{rcl}
\hline
10) & Given & c.p. & d.
 & 20 & = 5.p - c.p.
 & 20 & = 120 \times c.p.
 & 5.p. = 120 \times 170
 & 5.p. = 204 & and
 & discount = 15 y.

$$\hline
15 & M.p. = M.p. - 5.p.
 & 15 & M.p. = 100 \times 204
 & 100

M.p. = 240$$$$

Given
$$\frac{M \cdot p - s \cdot p}{M \cdot p} = \frac{25}{100}$$

$$\frac{M \cdot p - s \cdot p}{M \cdot p} = \frac{25}{100} M \cdot p$$

$$5 \cdot p = \frac{35}{100} M \cdot p$$

and given
$$proble = 50$$
.
$$\frac{50}{100} = \frac{5 \cdot p - c \cdot p}{c \cdot p}$$

$$6 \cdot p = \frac{50}{100} c \cdot p + c \cdot p$$

$$6 \cdot p = \frac{150}{100} c \cdot p - \frac{60}{100}$$

$$\frac{W \cdot b}{c \cdot b} = \frac{120}{120} c \cdot b$$

$$\frac{100}{c \cdot b} = \frac{100}{120} c \cdot b$$

$$\frac{100}{c \cdot b} = \frac{1}{c}$$

ratio of c.p : M.p = 1:2

and
$$c.b = 000$$
 (actual cost)
 $c.b = \frac{100}{156} c.b \Rightarrow c.b = \frac{156}{100 \times 426}$
 $c.b = \frac{100}{156} c.b \Rightarrow c.b = \frac{156}{150 \times 426}$

(13) Let advertised price be
$$x$$

commission is 23 / on advertised price

Selling price = $\frac{77}{100}$, x — (1)

and given probit = 56

probit $\sqrt[9]{}$ = 10

 $\frac{10}{100} = \frac{probit}{c \cdot p}$
 $\Rightarrow c \cdot p = 560$
 $probit = s \cdot p - c \cdot p = 56$
 $s \cdot p = 560 + 56$
 $s \cdot p = 616$ — $\frac{77}{100} \times p = 61600$

2 = 800 | -. advertised cost = 800.

(i4) Given

Shop keeper masks his goods at 40% greater

than cost price

Let cost price be "x"

masked price is 140 x (": 40 more
than 100
16 cp is 100

discount on marked price is
$$5^{-1}$$
,
$$\frac{5}{100} = \frac{M \cdot p - s \cdot p}{M \cdot p}$$

$$5 \cdot p = \frac{95}{100} M \cdot p$$

$$e^{-100} \times \frac{140}{100} \times$$

$$x = \frac{95}{100} \times \frac{140}{100} \times x$$

Given

Ear rings are brought at
$$25\%$$
 discount

probit of seller = 16% .

$$\frac{16}{100} = \frac{\text{probit}}{\text{cp}}$$

$$c.p = \frac{40}{16} \times 100$$

and probit = 48

$$s \cdot p - c \cdot p = 48$$

 $s \cdot p = c \cdot p + 48$
 $s \cdot p = 348$
and given discount = 25%.

.: marked price = 464 1-

we have

$$\frac{32}{100}$$
 × 275 = 275 - 57

and trader lose is 10%

we have to bind

1. of marked price above cost price

$$\frac{c \cdot b}{\sqrt{b \cdot b} - c \cdot b} \times 100 = \frac{(\frac{80}{00}) \cdot c \cdot b}{(\frac{80}{00}) \cdot c \cdot b}$$

$$= \frac{\left(\frac{60}{60}\right) - \left(\frac{60}{40}\right)}{\left(\frac{60}{40}\right)} \times 100$$

$$=\frac{1000}{80} = 12.5 \text{ } \text{/}.$$

:. o/o ob marked price above cost price = 12.5%

Retailer buys It at discount 25 -/. price bor the Retailer 10 $\left(\frac{45}{100}\right)$ x 480 . Cost

Retailer Sells it to gain 15.1.

Retailer Should sell it for Rs 414 to get 15.1.

of item by Robit = 660 to get

Robit brought that item for Ps 600 |at 25% discount.

This is the Selling price for shop keeper ... He oblives' 25: 1. discount
$$\frac{25}{100} = \frac{\text{Mip} - \text{Sip}}{\text{Mip}}$$

$$\frac{25}{100} = \frac{(\text{Mip} - \text{600})}{\text{6000}}$$

$$(\frac{25}{100})\text{Mip} = (\text{Mip} - \text{600})$$

$$600 = \frac{75}{100} \text{ Mip}$$

$$Mip = 600 \text{ yield } 4$$

$$Mip = 800 \text{ Ji}$$

(20) Given

Cycle merchant object 20.1. discount on M.P.

$$\frac{20}{100} = \frac{\text{M.P.-S.P}}{\text{M.P}}$$

$$\text{S.P} = \frac{80}{100} \text{ M.P.} - 1$$

and he get a probit ob 20.1.

$$\frac{20}{100} = \frac{Probit}{c \cdot p}$$
 $c \cdot p = \frac{360}{26} \times 100$ (: fain = 360)

21) Given

Cost price of garment = 1470 | -

profit = 10 %.

$$\frac{5 \cdot p - c \cdot p}{c \cdot p} = \frac{10}{100}$$

S · p = $\frac{110}{100} \times 1470 = 1617$ | -

at a discount of 12.5 %.

$$\frac{M \cdot P - 8 \cdot P}{M \cdot P} \times 100, = 12 \cdot 5$$

$$\frac{M \cdot P - 8 \cdot P}{M \cdot P} = \frac{12 \cdot 5}{100}$$

$$5 \cdot P = \left(1 - \frac{12 \cdot 5}{100}\right) M \cdot P$$

$$\frac{M \cdot P}{87 \cdot 5} = \frac{1617 \times 100}{87 \cdot 5}$$

$$M \cdot P = \frac{1848}{100} = \frac{1848}{1$$

$$\frac{c \cdot b}{c \cdot b} = \frac{100}{100} \times c \cdot b = \frac{115}{100} \times 1500$$

S.p Should be 1344 |at discount 16.1.

$$\frac{M \cdot P - s \cdot P}{M \cdot P} \times 100 = 16$$

$$M \cdot p - \epsilon \cdot p = \frac{16}{100} M \cdot p$$

$$\frac{84}{100} M \cdot p = 5 \cdot p$$

$$M \cdot p = \frac{1344 \times 100}{24}$$

marked price should to 1600 |-

Given

Marked price, on Shirt = 850 |

and Selli at discount 4 /.

$$\frac{4}{100} = \frac{M \cdot p - s \cdot p}{M \cdot p}$$

$$\frac{4}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p - s \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p$$

$$\frac{9}{100} M \cdot p = M \cdot p$$

$$\frac{9}{100} M \cdot p$$

He should get probit of 26./.

$$\frac{26}{100} = \frac{8 \cdot p - c \cdot p}{c \cdot p}$$

$$\frac{5 \cdot p}{100} = \frac{126}{100} c \cdot p$$

$$\frac{5 \cdot p}{100} = \frac{100 \times 1008}{126}$$

$$\frac{5 \cdot p}{100} = \frac{100 \times 1008}{126}$$

$$\frac{5 \cdot p}{100} = \frac{100 \times 1008}{126}$$
Cost price for pain of shoes = $\frac{800}{1}$ from Marked price = $\frac{100}{100} \times 100$ from Marked price = $\frac{90}{100} \times 100$ from $\frac{90}{100} \times 100$ fr

Profit Loss Discount And VAT Ex 13.3

Let 'x' be list price of watch given so VAT = 10.1.

VAT = 10.1. ob
$$x = \frac{10}{100}x$$

Vitram bought watch for Rs 825
$$x + \frac{x}{10} = 825$$

$$x \left(\frac{11}{10}\right) = 825$$

Let
$$x'$$
 be list price of Shirt

 $VAT = \frac{1}{7} \circ \frac{1}{6} \cdot \frac{1}{$

4 Given Sale price of shoes is Rs 175

VAT = 7 1/ of 175

$$= \frac{7}{100} \times 175 = 12.25$$

VAT = 12.25

Given list price of shoes = 250

Let
$$x$$
./ be VAT

$$VAT = \frac{x}{100} \times .250 = 20$$

$$x = \frac{20 \times 100}{250} = \frac{200}{25}$$

$$x = 8.7$$

$$VAT = 8.7$$

Total Amount Carita has to pay is

= S.P + VAT

= S225 + 261.25

= 5486.25

Total cost inclusive
$$VAT = X + \frac{10}{100}X$$

otal cost inclusive
$$\sqrt{110}$$

Oxiginal cost of burniture = 6500

(8) Let Original cost of furniture =
$$x$$

$$VAT = \frac{10}{100}x$$
Takel Cost = $x + \frac{10}{100}x = 13350$

Total Cost =
$$x + \frac{10}{100}x = 13750$$

 $x \left(\frac{110}{100}\right) = 13750$

Original cost of burniture = 12500 |-

$$\frac{\pi}{12000} + \frac{1}{2} = \frac{12000}{12000} = \frac{13440}{12000}$$

$$x = \frac{1448}{128} = 12$$

cost ob radio = R1 2568

Let 'x' be sale price ob radio

VAT = 4 1/1. ob x

Total cost she had to pay =
$$(x + \frac{7}{100}x)$$
 $x + \frac{1}{100}x = 2568$
 $x(\frac{10+}{100}) = 2568$
 $x = \frac{256800}{10+}$
 $x = 2400$

Reduction in price of radio = 2568 - 2400

 $= 168 = 168$

cost of sewing machine = 1500

VAT = 6% of 1500 = $\frac{6}{100} \times 1500 = 90$ Amount paid by Sewing machine = (1500 +9%)
= 1590

Cost for one Tea-set =
$$R_1$$
 650

Cost for two tea sets = $650 \times 2 = 1300$

VAT = $4 \cdot 1 \cdot 1 \cdot 1300$

= $\frac{4}{100} \times 1300 = 52$

Amount paid for tea sets = 1352

Total Amount = $16480 + 1590 + 1352$

= 4622

Let Sale price of motorcycle =
$$\times$$

VAT = 10 9. of \times

= $\frac{10}{100} \times$

Total cost = $\times + \frac{10}{100} \times = \frac{110}{100} \times$
 $\frac{110}{100} \times = 17600$
 $\times = 17600 \times 100$
 $\times = 16,000$

Sale price of motorcycle = 16000 |-

(B) Cost price of leather = 900

Rut Manoj pays 990 including VAF

... VAT = 990 - 900

= 90

Let 2.1, be VAT

\[\frac{\chi}{100} \cdot \frac{\chi}{100} = 96 \text{ to } \frac{\chi}{100} \frac{\chi}{100} = 96 \text{ to } \frac{\chi}{100} \frac{\chi}{100} = 96 \text{ to } \frac{\chi}{100} \frac{\chi}{100} = 10 \frac{\chi}{100}

Biscuits and Bakery products coating Ps 50

VAT = 5%. % 50

= $\frac{5}{100} \times 80^{11} = 2.50$

Amount paid for Bricuit and bakery product = 50 + 2.50 = 52.50 /-

Medicines Costing B 90

VAT = 101. of 90 $= \frac{10}{100} \times 90 = 9$

Amount paid for Medicines = 90+9 = 99/-

Clothes coiting Rs 400 $VAT = 1.7. \text{ ob } 400 = \frac{1}{100} \times 400 = 4$ Amount paid for clothes = 404 |-

Cosmetics costing Ps 150

VAT = 10 % of 150

=
$$\frac{10}{199}$$
 × 150 = 15

Amount paid for cosmetics = 165

Total Amount to be paid = 52.50 + 99 + 404 + 165

= 720.50

(15) Let 'x' be Sale price of set
$$VAT = 10 \text{ } \text{!} \text{!} \text{ of } \text{!} \text{!}$$

$$= \frac{10}{100} \text{ } \text{!}$$

Total cost =
$$x + \frac{10x}{100} = 165$$

$$x \left(\frac{110}{100}\right) = 165$$

$$x = \frac{165 \times 100}{110}$$

$$x = \frac{150}{110}$$

List price of bicycle = 'x'

VAT = 10 % of x =
$$\frac{10}{100}$$
x

Purchases a bicycle for By 660

 $\frac{x+10}{100}x = 660$

x = 600

List price ob bicycle = 6001-

Let x' be list price of television

VAT = $\frac{8}{100}x$

Total price = $x + \frac{8}{100}x$ $\frac{108}{100}x = 13500$

x = 12500 |-... list price of television = 12500

(18) Gren Marked price By 210,000 discount = 5 1.

$$\frac{M \cdot p - s \cdot p}{M \cdot p} = \frac{5}{100}$$

$$5 \cdot p = M \cdot p \left(1 - \frac{5}{100}\right)$$

$$5 \cdot p = \frac{95}{100} \times 2,10,000$$

$$VAT = 10 \% on s.p$$

$$= \frac{10}{100} \times 199500 = 19950$$

Let
$$y$$
 be price of pure

$$VAT = \frac{10}{100}.y$$

$$\left(y + \frac{y}{10}\right) = 110$$

$$y = H_0^2 \times \frac{10}{y} = 100$$

x = 300

Total Cost excluding vat = 200+100 = 400

Let
$$\frac{3}{4}$$
 be VAT perantage
 $400 + \left(\frac{3}{100} \times 400\right) = \left(345 + 110\right)$
 $3 = \frac{55}{4} = 13.75$
VAT on whole transaction = 13.75.7.

Let
$$x'$$
 be buying price of Cooler = 2563

Discount in price = 2563 - 2330

= 233.

List price of washing machine =
$$9000$$

and discount = 5.1 .

Silling price = $\frac{95}{100} \times 9000$

= 8550

VAT = 10.1 . ob 8550

= $\frac{10}{100} \times 8550$ = 855