Module 26

- Pumping Lemma
 - A technique for proving a language L is NOT regular
 - What does the Pumping Lemma mean?
 - Proof of Pumping Lemma

Pumping Lemma

How do we use it?

2

Pumping Condition

- A language L satisfies the pumping condition if:
 - there exists an integer n > 0 such that
 - for all strings x in L of length at least n
 - there exist strings u, v, w such that
 - x = uvw and
 - |uv| <= n and
 - |v| >= 1 and
 - For all $k \ge 0$, $uv^k w$ is in L

Pumping Lemma

• All regular languages satisfy the pumping condition

4

Implications *

- We can use the pumping lemma to prove a language L is not regular
 - How?
- We cannot use the pumping lemma to prove a language is regular
 - How might we try to use the pumping lemma to prove that a language L is regular and why does it fail?

What does it mean?

Pumping Lemma

Pumping Condition

- A language L satisfies the pumping condition if:
 - there exists an integer n > 0 such that
 - for all strings x in L of length at least n
 - there exist strings u, v, w such that
 - x = uvw and
 - $|uv| \le n$ and
 - |v| >= 1 and
 - For all $k \ge 0$, $uv^k w$ is in L

7

v can be pumped

1) x in L 2) x = uvw

3) For all $k \ge 0$, $uv^k w$ is in L

- Let x = abcdefg be in L
- Then there exists a substring v in x such that v can be repeated (pumped) in place any number of times and the resulting string is still in L
 - $-uv^kw$ is in L for all $k \ge 0$
- · For example
 - v = cde
 - $uv^0w = uw = abfg$ is in L
 - $uv^1w = uvw = abcdefg$ is in L
 - uv²w = uvvw = abcdecdefg is in L
 - $uv^3w = uvvvw = ab$ cdecdecdefg is in L
 - ...

What the other parts mean

- A language L satisfies the pumping condition if:
 - there exists an integer n > 0 such that
 - defer what n is till later
 - for all strings x in L of length at least n
 - x must be in L and have sufficient length
 - there exist strings u, v, w such that
 - x = uvw and
 - |uv| <= n and
 - v occurs in the first n characters of x
 - |v| >= 1 and
 - v is not i
 - For all $k \ge 0$, $uv^k w$ is in L

9

Examples *

- Example 1
 - Let L be the set of even length strings over {a,b}
 - Let x = abaa
 - Let n = 2
 - What are the possibilities for v?
 - <u>a</u>baa, a<u>b</u>aa
 - <u>ab</u>aa
 - Which one satisfies the pumping lemma?

10

Examples *

- Example 2
 - Let L be the set of strings over $\{a,b\}$ where the number of a's mod 3 is 1
 - Let x = abbaaa
 - Let n = 3
 - What are the possibilities for v?
 - <u>a</u>bbaaa, a<u>b</u>baaa, ab<u>b</u>aaa
 - <u>ab</u>baaa, a<u>bb</u>aaa
 - <u>abb</u>aaa
 - Which ones satisfy the pumping lemma?

11

Pumping Lemma

Proof

High Level Outline

- Let L be an arbitrary regular language
- Let M be an FSA such that L(M) = L
 - M exists by definition of LFSA and the fact that regular languages and LFSA are identical
- Show that L satisfies the pumping condition
 - Use M in this part
- Pumping Lemma follows

13

First step: n+1 prefixes of x

- Let n be the number of states in M
- Let x be an arbitrary string in L of length at least n
 - Let x_i denote the ith character of string x
- There are at least n+1 distinct prefixes of x
 - length $0:\lambda$
 - length 1: x₁
 - $\ \ length \ 2 : x_1 x_2$

 - length i: $x_1x_2 \dots x_i$

 - $\ \ length \ n; x_1x_2 \ ... \ x_i \ ... \ x_n$

14

Example

- Let n = 8
- · Let x = abcdefgh
- There are 9 distinct prefixes of x
 - length 0: λ
 - length 1: a
 - length 2: ab

 - length 8: abcdefgh

Second step: Pigeon-hole Principle

- As M processes string x, it processes each prefix of x
 - In particular, each prefix of x must end up in some state of M
- Situation
 - There are n+1 distinct prefixes of x
 - There are only n states in M
- Conclusion
 - At least two prefixes of x must end up in the same state of M
 - · Pigeon-hole principle
 - Name these two prefixes p1 and p2

Third step: Forming u, v, w

- · Setting:
 - Prefix p₁ has length i
 - Prefix p₂ has length j > i
 - prefix p_1 of length i: $x_1x_2 \dots x_i$
- prefix p_2 of length j: $x_1x_2 \dots x_i \ x_{i+1} \dots x_j$
- Forming u, v, w
 - Set $u = p_1 = x_1 x_2 \dots x_n$
 - Set $v = x_{i+1} \dots x_j$
 - $\text{ Set } w = x_{j+1} \, \ldots \, x_{|x|}$
 - $x_1 x_2 \dots x_i x_{i+1} \dots x_j x_{j+1} \dots x_{|x|}$

17

- Let M be a 5-state FSA that accepts all strings over $\{a,b,c,...,z\}$ whose length mod 5 = 3
- Consider x = abcdefghijklmnopqr, a string in L
- What are the two prefixes p₁ and p₂?
- What are u, v, w?

Example 2 *

- Let M be a 3-state FSA that accepts all strings over $\{0,1\}$ whose binary value mod 3 = 1
- Consider x = 10011, a string in L
- What are the two prefixes p₁ and p₂?
- What are u, v, w?

19

Fourth step: Showing u, v, w satisfy all the conditions

- p2 is one of the first n+1 prefixes of string x
- |v| >= 1
 - v consists of the characters in p2 after p1
 - Since p_2 and p_1 are distinct prefixes of x, v is not λ
- For all $k \ge 0$, $uv^k w$ in L
 - $u=p_1$ and $uv=p_2$ end up in the same state q of M
 - This is how we defined p₁ and p₂
 - Thus for all $k \ge 0$, uv^k ends up in state q
 - The string w causes M to go from state q to an accepting state

- · Let M be a 5-state FSA that accepts all strings over $\{a,b,c,...,z\}$ whose length mod 5=3
- Consider x = abcdefghijklmnopqr, a string in L
- What are u, v, w?
 - $-\ u=\lambda$
 - v = abcde
 - w = fghijklmnopqr
- |uv| = 5 <= 5
- |v| = 5 >= 1
- For all t>=0, (abcde)tfghijklmnopqr is in L

- Let M be a 3-state FSA that accepts all strings over {0,1} whose binary interpretation mod 3 = 1
- Consider x = 10011, a string in L
- What are u, v, w?
 - u = 1
 - v = 00
 - w = 11
- |uv| = 3 <= 3
- |v| = 2 >= 1
- For all k>=0, 1(00)k11 is in L

22

Pumping Lemma

- A language L satisfies the pumping condition if:
 - there exists an integer n > 0 such that
 - for all strings x in L of length at least n
 - there exist strings u, v, w such that
 - x = uvw and
 - |uv| <= n and
 - |v| >= 1 and
 - For all $k \ge 0$, $uv^k w$ is in L
- · Pumping Lemma: All regular languages satisfy the pumping condition