

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCISE160503702

FCC REPORT

(BLE)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 17.3 inches Quad Core Media Player Slim Housing

Model No.: DT173-AC4-1080-SL, 502-1739ATATM-01

FCC ID: 2AB6Z-DT173-AC4-SL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jun.,2016

Date of Test: 12 Jun., to 23 Jun., 2016

Date of report issued: 23 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00 23 Jun., 2016		Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMBA-V2) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Tested by: Date: 23 Jun., 2016

Test Engineer

Reviewed by: Date: 23 Jun., 2016

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT ANDMODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED PEAKOUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	15
	6.6	BAND EDGE	
	6.6.1	00.00000 =00.00	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	23
7	TES	T SETUP PHOTO	28
8	EUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMBA-V2.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	17.3 inches Quad Core Media Player Slim Housing	
Model No.:	DT173-AC4-1080-SL, 502-1739ATATM-01	
Operation Frequency:	2402-2480 MHz	
Channel numbers:	40	
Channel separation:	2 MHz	
Modulation technology:	GFSK	
Data speed :	1Mbps	
Antenna Type:	Omni-directional	
Antenna gain:	2 dBi	
AC Adapter:	Model: PS24A120K2000UD	
	Input: 100-240V ac, 50/60Hz, 1A	
	Output: 12V dc, 2A	
Remark:	Model No.: DT173-AC4-1080-SL, 502-1739ATATM-01were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model numberfor customer and for HUNG WAI.	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2442MHz		
The Highest channel	2480MHz		

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE160503702

5.7 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2 dBi.

6.2 Conducted Emission

 - Conducted Enhance				
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4: 2014			
TestFrequencyRange:	150 kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit (dBuV)		
	, , ,	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30 * Decreases with the logarithm	of the frequency	50	
Test procedure			madia massar Abrassah a	
Tool procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Refere	ence Plane		
	AUX Equipment Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	J.T EMI Receiver	ter — AC power	
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Neutral:

Trace: 21 Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 17.3 "Quad Core Media Player Slim Housing : DT173-AC4-1080SL EUT

Model

Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

emark								
	Erra	Read	LISN	Cable		Limit	Over	Powerly
	rreq	rever	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu∜	dBu∜	₫B	
1	0.150	46.50	0.17	10.78	57.45	66.00	-8.55	QP
2	0.155	32.64	0.17	10.78	43.59	55.74	-12.15	Average
3	0.185	41.97	0.16	10.77	52.90	64.24	-11.34	QP
3 4 5 6 7 8 9	0.185	28.59	0.16	10.77	39.52	54.24	-14.72	Average
5	0.200	41.93	0.16	10.76	52.85	63.62	-10.77	QP
6	0.200	26.48	0.16	10.76	37.40	53.62	-16.22	Average
7	0.211	26.42	0.16	10.76	37.34	53.18	-15.84	Average
8	0.215	40.30	0.16	10.76	51.22	63.01	-11.79	QP
9	0.246	36.23	0.16	10.75	47.14	61.91	-14.77	QP
10	0.246	21.90	0.16	10.75	32.81	51.91	-19.10	Average
11	0.484	22.66	0.16	10.75	33.57	46.27	-12.70	Average
12	0.489	33.28	0.16	10.76	44.20	56.19	-11.99	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Report No: CCISE160503702

Trace: 7 Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : 17.3"Quad Core Media Player Slim Housing

: DT173-AC4-1080SL Model

Test Mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u>	dB	dBu∀	dBu∇	<u>dB</u>	
0.150	49.76	0.26	10.78	60.80	66.00	-5.20	QP
0.150	37.48	0.26	10.78	48.52	56.00	-7.48	Average
0.165	44.74	0.26	10.77	55.77	65.21	-9.44	QP
0.195	40.82	0.26	10.76	51.84	63.80	-11.96	QP
0.205	26.92	0.26	10.76	37.94	53.40	-15.46	Average
0.230	37.14	0.26	10.75	48.15	62.44	-14.29	QP
0.255	19.75	0.26	10.75	30.76	51.60	-20.84	Average
0.396	20.22	0.26	10.72	31.20	47.95	-16.75	Average
0.494	32.28	0.27	10.76	43.31	56.10	-12.79	QP
0.499	21.33	0.27	10.76	32.36	46.01	-13.65	Average
7.252	29.59	0.54	10.81	40.94	60.00	-19.06	QP
8.683	19.28	0.67	10.88	30.83	50.00	-19.17	Average
	MHz 0.150 0.150 0.165 0.195 0.205 0.230 0.255 0.396 0.494 0.499 7.252	Freq Level MHz dBuV 0.150 49.76 0.150 37.48 0.165 44.74 0.195 40.82 0.205 26.92 0.230 37.14 0.255 19.75 0.396 20.22 0.494 32.28 0.499 21.33 7.252 29.59	MHz dBuV dB 0.150 49.76 0.26 0.150 37.48 0.26 0.165 44.74 0.26 0.195 40.82 0.26 0.205 26.92 0.26 0.230 37.14 0.26 0.255 19.75 0.26 0.396 20.22 0.26 0.494 32.28 0.27 0.499 21.33 0.27 7.252 29.59 0.54	MHz dBuV dB dB 0.150 49.76 0.26 10.78 0.150 37.48 0.26 10.78 0.165 44.74 0.26 10.77 0.195 40.82 0.26 10.76 0.205 26.92 0.26 10.76 0.230 37.14 0.26 10.75 0.396 20.22 0.26 10.75 0.396 20.22 0.26 10.72 0.494 32.28 0.27 10.76 0.499 21.33 0.27 10.76 7.252 29.59 0.54 10.81	MHz dBuV dB dB dBuV 0.150 49.76 0.26 10.78 60.80 0.150 37.48 0.26 10.78 48.52 0.165 44.74 0.26 10.77 55.77 0.195 40.82 0.26 10.76 51.84 0.205 26.92 0.26 10.76 37.94 0.230 37.14 0.26 10.75 48.15 0.255 19.75 0.26 10.75 30.76 0.396 20.22 0.26 10.72 31.20 0.494 32.28 0.27 10.76 43.31 0.499 21.33 0.27 10.76 32.36 7.252 29.59 0.54 10.81 40.94	MHz dBuV dB dB dBuV dBuV 0.150 49.76 0.26 10.78 60.80 66.00 0.150 37.48 0.26 10.78 48.52 56.00 0.165 44.74 0.26 10.77 55.77 65.21 0.195 40.82 0.26 10.76 51.84 63.80 0.205 26.92 0.26 10.76 37.94 53.40 0.230 37.14 0.26 10.75 48.15 62.44 0.255 19.75 0.26 10.75 30.76 51.60 0.396 20.22 0.26 10.75 30.76 51.60 0.494 32.28 0.27 10.76 43.31 56.10 0.499 21.33 0.27 10.76 32.36 46.01 7.252 29.59 0.54 10.81 40.94 60.00	MHz dBuV dB dB dBuV dBuV dB 0.150 49.76 0.26 10.78 60.80 66.00 -5.20 0.150 37.48 0.26 10.78 48.52 56.00 -7.48 0.165 44.74 0.26 10.77 55.77 65.21 -9.44 0.195 40.82 0.26 10.76 51.84 63.80 -11.96 0.205 26.92 0.26 10.76 37.94 53.40 -15.46 0.230 37.14 0.26 10.75 48.15 62.44 -14.29 0.255 19.75 0.26 10.75 30.76 51.60 -20.84 0.396 20.22 0.26 10.72 31.20 47.95 -16.75 0.494 32.28 0.27 10.76 43.31 56.10 -12.79 0.499 21.33 0.27 10.76 32.36 46.01 -13.65 7.252 29.59 0.54

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted PeakOutput Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10: 2013 and KDB558074v03r05 section 9.1.1
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10: 2013 and KDB558074v03r05 section 8.1
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10: 2013 and KDB558074v03r05 section 10.2
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10: 2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2					

6.6.2 Radiated Emission Method

Toot Doguiroment	CCC Dort15 C	Coation 1F 20	10 and 15 205			
Test Requirement:	FCC Part15 C				0.4	
Test Method:	ANSI C63.10: 2		3 558074V03r0	5 section 1	2.1	
TestFrequencyRange:	2.3GHz to 2.5G					
Test site:	Measurement Distance: 3m					
Receiver setup:		Datastas	DDW	\/D\//	Damadi	
	Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
Limit:		1 out	111112	10112	71101ago valao	
	Freque	ency	Limit (dBuV/	m @3m)	Remark	
	Above	1GHz	54.0		Average Value	
Test Procedure:			74.0		Peak Value	
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet. 					
Test setup:	AE H	EUT Ground Reference Test Receiver	Horn Antenna Antenna Controller	a Tower		
Test Instruments:	Refer to section	n 5.7 for detai	ls			
Test mode:	Refer to section	n 5.3 for detai	ls			
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition : 17.3 "Quad Core Media Player Slim Housing : DT173-AC4-1080-SL EUT

Model

Test mode : BLE-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT REMARK

EMAR	v :			 <u></u>			
	Freq		Antenna Factor				Remark
	MHz				dBu√/m		
1	2390.000	CE BIRD	1800		52.16		Peak
2	2390 000		T017557.0577				25.E. (2.5) 10.E. (2.1)

Vertical:

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : 17.3 "Quad Core Media Player Slim Housing
Model : DT173-AC4-1080-SL
Test mode : BLE-L Mode
Power Rating : AC120V/60Hz
Environment : Temp 25 5 C Hamile 55"

Environment : Temp: 25.5°C Test Engineer: MT REMARK : Huni:55%

1 2

αr	n .									
			Ant enna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
,	MHz	—dBuV	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	d <u>B</u>		-
	2390,000 2390,000				0.00 0.00				Peak Average	

Test channel: Highest

Horizontal:

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL
EUT : 17.3 Quad Core Media Player Slim Housing
Model : DT173-AC4-1080-SL
Test mode : BLE-H Mode
Power Rating : AC120V/60Hz
Environment : AC120V/60Hz
Test Environment : MT

Test Engineer: MT REMARK :

mmn									
	Freq		Antenna Factor						
-	MHz	—dBu₹	—_dB/m		<u>d</u> B	dBuV/m	dBuV/m		
	2483.500								OCCUPATION OF THE PARTY OF THE
2	2483.500	12.11	23.70	6.85	0.00	42.66	54.00	-11.34	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 17.3 Quad Core Media Player Slim Housing Condition EUT

Model : DT173-AC4-1080-SL
Test mode : BLE-H Mode
Power Rating : AC120V/60Hz
Environment

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

ILWIN.										
	Fred		Antenna Factor							
	4									
	MHz	dBu∜	dB/m	dB	₫₿	dBuV/m	dBuV/m	₫B		
Ĺ	2483.500	21.37	23.70	6.85	0.00	51.92	74.00	-22.08	Peak	
)	2483 500	11 75	23 70	6 85	0.00	42 30	54 00	-11 70	Average	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
	Ground Reference Flane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013									
TestFrequencyRange:	9KHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:										
·	Frequency	Remark								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	710070 10112	Peak	1MHz	10Hz	Average Value					
Limit:					1 _					
	Frequency		Limit (dBuV/m	@3m)	Remark					
	30MHz-88MHz		40.0		Quasi-peak Value					
	88MHz-216MHz 216MHz-960MH		43.5 46.0		Quasi-peak Value					
			Quasi-peak Value							
	Above 1GHz		74.0		Peak Value					
Test Procedure:	Above 1GHz									

Below 1GHz

Horizontal:

Site 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

17.3"Quad Core Media Player Slim Housing EUT

: DT173-AC4-1080-SL Model

Test mode : BLE Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq		intenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu₹			<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	35.128	43.06	14.79	1.04	29.95	28.94	40.00	-11.06	QP
2	104.170	52.46	10.54	1.99	29.50	35.49	43.50	-8.01	QP
3	137.420	53.69	11.88	2.37	29.29	38.65	43.50	-4.85	QP
4	163.755	50.62	9.86	2.62	29.10	34.00	43.50	-9.50	QP
5	214.514	46.92	11.02	2.85	28.74	32.05	43.50	-11.45	QP
6	494.199	46.04	16.72	3.57	28.94	37.39	46.00	-8.61	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 17.3"Quad Core Media Player Slim Housing : DT173-AC4-1080-SL Condition

EUT

Model

Test mode : BLE Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

TURKE									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu₹	-dB/m		<u>d</u> B	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>ab</u>	
1	35.005	49.13	14.79	1.04	29.95	35.01	40.00	-4.99	QP
2 3 4	51.662	43.83	13.62	1.27	29.81	28.91	40.00	-11.09	QP
3	78.689	55.05	6.44	1.65	29.65	33.49	40.00	-6.51	QP
4	140.835	51.99	11.63	2.41	29.27	36.76	43.50	-6.74	QP
5	166.651	47.97	9.84	2.64	29.08	31.37	43.50	-12.13	QP
6	416, 179	43, 09	16, 00	3, 12	28, 81	33, 40	46,00	-12.60	ΩP

Above 1GHz

Test channel:		Lowest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.03	35.99	10.57	40.24	51.35	74.00	-22.65	Vertical
4804.00	46.24	35.99	10.57	40.24	52.56	74.00	-21.44	Horizontal
Т	Test channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	34.11	35.99	10.57	40.24	40.43	54.00	-13.57	Vertical
4804.00	37.06	35.99	10.57	40.24	43.38	54.00	-10.62	Horizontal

Test channel:			Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.12	36.38	10.66	40.15	52.01	74.00	-21.99	Vertical
4884.00	43.31	36.38	10.66	40.15	50.20	74.00	-23.80	Horizontal
Т	Test channel:		Middle		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.61	36.38	10.66	40.15	43.50	54.00	-10.50	Vertical
4884.00	34.02	36.38	10.66	40.15	40.91	54.00	-13.09	Horizontal

Test channel:			Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	44.76	36.71	10.73	40.03	52.17	74.00	-21.83	Vertical	
4960.00	45.35	36.71	10.73	40.03	52.76	74.00	-21.24	Horizontal	
Т	Test channel:		Highest		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	36.15	36.71	10.73	40.03	43.56	54.00	-10.44	Vertical	
4960.00	34.48	36.71	10.73	40.03	41.89	54.00	-12.11	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.