Data preprocessing: main tasks

- 1. Data cleaning: handling errors and missing values
- 2. Feature extraction: creating new features by combining and transforming existing ones
 - a crucial step! ⇒ what patterns you can find
 - application specific ⇒ understanding the domain
- 3. Data reduction
 - sampling
 - feature selection
 - dimension reduction by transformations

1. Data cleaning

Goal: detect & eliminate errors, missing values, duplicates, noise, sometimes outliers

but outliers may also reveal some interesting event!

Sources:

- automatic measuring devices may stop reading or transmit duplicates (e.g., HW failures or battery exhaustion)
- users may not want to specify (correct) information for privacy reasons
- manually entered data contains very often errors!
- automatically produced text (from scanned documents or speech) prone to errors

Real world example

Task: predict cows' activities (walking, standing, lying, ...)

Data: sequences of accelerometer measurements for time

intervals when an animal performs an activity (class).

- faulty devices
- lack of calibration
- transmission breaks
- noise
- individual fluctuations
- errors in human annotation

Errors and inconsistencies: strategies

- check inconsistencies between different data sources
 - e.g., name spelling
- use domain knowledge
 - known ranges of values (age cannot be 800 yrs)
 - known relationships (if country='USA', city≠'Sanghai')
- check outliers and extreme values (error candidates)
 - not errors, if they have a reasonable explanation
- data smoothing reduces noise and random fluctuations
 - e.g., scaling, discretization, dimension reduction
- use robust methods in the modelling phase

Example: outliers may reveal errors

Missing values: strategies

If possible, replace with correct values. Otherwise,

- if a feature has many missing values, prune the feature
- if a record has many missing value, prune the record
- impute missing values
 - mean or median of the feature (among all or similar records/nearest neighbours)
 - predict the missing value using other features (e.g., random forests imputation)
 - Warning! Imputation may have a strong effect the results!
- use a modelling technique that allows missing values (just replace with special values like "NA")

2. Feature extraction methods

- scaling and normalization: numerical → numerical
- discretization: numerical → categorical
- binarization: categorical → binary (0/1)
- creating similarity graphs: any type → graph
- transformations for dimension reduction: create new less redundant features and keep the best ones
 - both feature extraction + data reduction

Scaling and normalization

Problem: Features with large magnitudes often dominate

- ⇒ transform to the same scale or standardize distributions
 - min-max scaling:

$$y = \frac{x - \min(x)}{\max(x) - \min(x)}$$
 (new range [0, 1])

mean normalization:

$$y = \frac{x - mean(x)}{\max(x) - \min(x)}$$
 (new range [-1, 1], $mean(y) = 0$)

Beware! outliers can affect a lot!

Standardization or z-score normalization

If the distribution is normal:

$$z = \frac{x - mean(x)}{stdev(x)}$$

$$mean(z) = 0$$

$$stdev(z) = 1$$

image source:

https://sphweb.bumc.bu.edu/otlt/MPH-Modules/

PH717-QuantCore/PH717-Module6-RandomError/PH717-

Module6-RandomError5.html

Discretization: numerical → categorical

- divide the numerical range into intervals (bins) + give labels to bins
- temperature could be discretized as $T < 0^{\circ}$ C cold, $0 \le T < 15^{\circ}$ C cool, $T \ge 15^{\circ}$ C warm
- binarization: a special case when the new variable is binary (true/false or 1/0)
- e.g., frost=1, if T < 0 and frost=0 otherwise
- Note! Also categorical variables can be binarized
 - eye-colour={blue, brown, green, grey} ⇒
 blue-eyed=1, if eye-colour=blue, and 0 otherwise

Some discretization methods

- Equi-width discretization
 - equally wide bins
 - good if uniform distribution
- Equi-depth (equal frequency)
 - each bin has an equal number of records
- Many supervised methods if class labels available
- Visual/manual: often best results, but can be worksome

Example: internet users/100 people in countries

Equi-width or equi-depth wouldn't present natural groups

Discretization: benefits and limitations

- + good way to handle mixed data
- + removes noise and individual variation
- ⇒ it is often worth of analyzing a discretized version of purely numerical data
 - + less noise, clearer patterns
 - + more efficient algorithms
 - discrete patterns may help to choose the right modelling method also for numerical data
 - loses some information
 - optimal discretization difficult! (optimal discretization of one variable may depend on other variables)

Useful type transport: any type → similarity graph

- idea: present pairwise similarities among closest neighbours by a neighbourhood/similarity graph
- suitable for any data type if the distance/similarity function can be defined
- for any application based on the notion of similarity/distances
 - e.g., clustering, recommendations based on similarity
- enables use of numerous network algorithms
- Beware: can be time consuming for large data! (brute force $O(n^2)$, n=number of objects)

Constructing nearest neighbour graph (idea)

Given objects O_1, \ldots, O_n , a distance measure d and a user-defined parameter ϵ or K.

- 1. create a node for each O_i
- 2. create an edge between a pair near/similar objects:
 - i) if $d(O_i, O_j) \le \epsilon \Rightarrow$ undirected edge $O_i O_j$ or
 - ii) if O_j is among K nearest neighbours of $O_i \Rightarrow$ directed edge $O_i \rightarrow O_j$ (direction can be ignored)
- 3. give weights to edges reflecting similarity, e.g.,

$$w_{ij} = e^{-d(O_i,O_j)^2/t^2}$$
 (heat kernel, t user-defined)

3. Data reduction: approaches

- 1. sampling (select a subset of records)
- 2. feature selection (select a subset of features)
 - application specific!
 - filtering methods: prune features before modelling
 - wrapper methods: use modelling (e.g., clustering) to evaluate goodness of feature sets
 - hybrid methods: candidates by filtering + evaluation by modelling
- 3. dimension reduction
 - by axis rotation (PCA, SVD)
 - with type transformation

Main messages

- careful with data types
- careful with preprocessing (data often dirty!)
- feature extraction has a strong effect

Reading for lecture 1:

Book Ch 1 and Ch 2 except 2.4.3–2.4.4