

Pentaho Data Integration (PDI) Fundamentals PDI1000L / PDI1000S

Change log (if you want to use it):

Date	Courseware Version	Microcode Version	Notes
Oct-2020	3.1	8.x	New style, minor corrections
Nov-2020	3.2	9.1.0.1-360	Updates for change to Linux & Pentaho 9.1.01
Dec-2020	3.3	9.1.0.1-360	Corrected screenshot
Jan-2021	3.4	9.1.0.2-393	Corrections made for Windows/Linux and newer version UI differences
Feb-2022	3.5	9.1.0.2-393	Updated cover page to reflect this guide is used by ILT & self-paced

Contents

Guided Demo 1: Launching and Customizing PDI	1
Guided Demo 2: Creating a "Hello World!" Transformation	3
Guided Demo 3: Viewing Errors	11
Exercise 1: Generate Rows, Add Sequence, and Select Values	14
Guided Demo 4: Saving to the Repository and Running Remotely	21
Guided Demo 5: Combining Several Inputs into One Output	26
Guided Demo 6: Creating kettle.properties Variables	34
Exercise 2: CSV Input to Multiple Text Output Using Switch/Case	40
Guided Demo 7: Connections and the Database Explorer	49
Exercise 3: Reading and Writing to Data Tables	53
Guided Demo 8: Filter Rows, Sort Rows, Excel Writer	61
Exercise 4: Insert/Update and Input with Parameters	69
Exercise 5: Parallel Processing	78
Guided Demo 9: Choosing Adequate Sample Size for Get Fields	86
Exercise 6: Lookups and Field Layout Formatting	91
Guided Demo 10: Creating Summary Fields Using Group By	99
Exercise 7: Calculating and Aggregating Order Quantity	104
Guided Demo 11: Onboarding Data with a Job	111
Guided Demo 12: Using the Pentaho Enterprise Repository	126
Guided Demo 13: Scheduling and Monitoring	128
Guided Demo 14: Logging Execution Metrics to a Database	131

Guided Demo 1: Launching and Customizing PDI

In this guided demonstration, we launch Spoon, Pentaho Data Integration (PDI)'s graphical interface and customize some of its options and default behavior.

Objectives and Activities

After completing this guided demonstration, you will be able to:

- Launch Spoon
- Turn the Welcome Screen on and off
- Open Spoon's Options dialog
- Describe the common options and Look & Feel settings
- Change the grid settings

Launch and Customize PDI

To launch and customize PDI:

- 1. From the desktop, click the **Data Integration (Spoon) icon**.
- 2. Scroll through the Welcome Screen to familiarize yourself with its contents.
- 3. To close the Welcome Screen, on the Welcome! tab, click X.
- 4. To view the **Kettle Options**, from the menu, select **Tools** → **Options**.
- 5. Review the options on the **General** tab, and then click the **Look & Feel** tab.
- 6. To modify the grid settings, on the **Look & Feel** tab:
- 7. Change the Canvas Grid Size to 32.
- 8. Click to select the Show Canvas Grid checkbox.
- 9. Click OK.
- 10. To close the Info dialog, click OK.

Not all options require a restart for the changes to take effect.

11. Keep Spoon open for the next demonstration.

End of Guided Demo 1

Guided Demo 2: Creating a "Hello World!" Transformation

In this guided demonstration, we use Spoon to create a new transformation with rows containing "Hello World!" and a constant value. Although this is probably not a task you will be asked to do in the real world, the concepts learned in this guided demonstration help to build the foundation necessary for creating any transformation.

Objectives and Activities

After completing this guided demonstration, you will be able to:

- Create a new transformation
- Add steps using best practice naming standards
- Create and split hops
- Configure and preview the Generate rows step
- Add a note to a transformation
- Use the Add constants step to add a new field to the stream and for every row, set it to a constant value
- Understand how fields get added and propagated to the stream
- Run the transformation and examine each step's fields and data

Steps Used

This guided demonstration uses the following steps:

- Generate rows
- Add constants
- Dummy (do nothing)

Transformation

Guided Demo 2: Creating a "Hello World" Transformation

This tranformation creates 15 identical rows. They have two fields. One containing the string, "Hello World!", and another that contains a constant value.

The purpose of this transformation is to become acquainted with adding and configuring steps and hops. It's also useful for seeing how field propagation works.

Create Transformation and Add a Step

In this section, we create a new transformation and then add and configure the **Generate rows** step.

- To create a new transformation, from the menu, select File → New → Transformation.
 Alternatively, on the toolbar, click the New file button, and then select Transformation.
- 2. To add a **Generate rows** step to the transformation:
 - a. Click to view the **Design** tab.
 - b. Expand the **Input** category.
 - c. Drag the **Generate rows** step from the **Design** tab to the canvas.

3. To configure the **Generate rows** step, on the canvas, double-click the **Generate rows** step.

You might find it helpful to enlarge the step dialog windows.

4. Enter values in the properties of the **Generate rows** dialog as follows:

Property Name	Value
Step name	gr-hello_worlds
Limit	15

5. Complete the **Fields** grid of the **Generate rows** dialog as follows:

Column Name	Value
Name	greeting_message
Туре	String
Value	Hello World!

- 6. To preview this step to verify it generates the data we expect:
 - a. Click the Preview button.
 - b. In the Enter preview size dialog, click OK.
 - c. Verify that 15 rows of data with Hello, World! are displayed.
 - d. In the Examine preview data dialog, click Close.

Previewing data and testing steps along the way can help to minimize errors and troubleshooting time later in the transformation creation process.

7. To close the **Generate rows** configuration dialog, click **OK**.

Adding a Dummy (Do Nothing) Step and Hop

Next, we add a **Dummy (do nothing)** step and create a hop from the **Generate rows** step. Then, add a note to the transformation. Notes help viewers understand how the transformation works.

1. To add a **Dummy (do nothing)** step to the transformation, on the **Design** tab:

- a. Click to expand the **Flow** category.
- b. Drag the **Dummy (do nothing)** step from the **Design** tab to the canvas. Drop it to the right of the **Generate rows** step.
- 2. To create a hop from the **gr-hello_worlds** step to the **Dummy (do nothing)** step, on the canvas:
 - a. Hover the mouse pointer over the **Generate rows** step.
 - b. Click the **output connector** icon.
 - c. Click the **Dummy (do nothing)** step.

Other methods for creating hops include the following:

- Press and hold the shift key, then click and hold the source step, then point to the destination step, and then release.
- Using the middle mouse button, click and hold the first step, then point to the destination step, and then release.
- 3. To name the **Dummy (do nothing)** step, double-click the step, resize the dialog, and set its step name property to: dmmy-hello_worlds. Resizing the **Dummy (do nothing)** step's dialog is only necessary the first time you open this type of step. Subsequent openings of this step type will retain the last dialog size.
- 4. To add a note to the transformation, on the canvas, right-click near the top-right corner, and then select **New Note**.
- 5. In the **Notes** dialog:
 - a. Click in the **Note** section.
 - b. Type in any note that you'd like to add. For example: *This transformation creates 15 rows of Hello World*.
- 6. Click OK.

Adding a Step by Splitting a Hop

In this section, we learn how to split a hop. Splitting a hop is an easy way to insert a step between two other

steps that are already connected with a hop. The step that we'll insert is the **Add constants** step. We'll configure the step to add a new field to the stream and for every row coming into the step, set the new field's value to a constant. Our purpose for adding this step is to become acquainted with how new fields are added to the stream and how they propagate to other downstream steps.

- 1. To split the hop with the **Add constants** step:
 - Use the **Design** tab's search box to find the **Add constants** step, and then drag it to an empty area of the canvas.
 - b. On the canvas, drag the Add constants step up to the hop and touch the mouse pointer to the hop.
 - c. When the hop turns bold, let go of the mouse button.
 - d. At the **Split hop** dialog, click **Yes**.

You must drop a step onto the canvas before you attempt to split a hop. You cannot drag a step from the **Design** tab's list of steps onto the hop.

- 2. To configure the Add constants step, on the canvas, double-click the Add constants step.
- 3. To name the step, in the Step name property, type: ac-const
- 4. Define one row in the **Fields** grid as shown (leave any property names that are not in the table as their default values):

Property Name	Value
Name	const
Туре	Number
Format	0.00
Value	120

5. To close the **Add constants** step dialog, click **OK**.

Saving and Running the Transformation

In this section of the guided demonstration, we save and then run the transformation.

1. To set the transformation properties:

- a. On the canvas, double-click an empty area.
- b. In the Transformation name property, type: create hello worlds
- c. Optionally, provide a description and/or extended description.
- d. Click **OK**.
- 2. To save the transformation:
 - a. From the menu, select **File** → **Save**, or on the toolbar, click the **Save** button.
 - b. Navigate to the /home/pentaho/course files/pdi10001/my work folder.
 - c. In the Name property, type: gd2_hello_world (The filename for the transformation does not have to be the same as the transformation name.)
- 3. Click OK.
- 4. Notice the tab at the top of the canvas now reads create_hello_worlds.
- 5. To run the transformation:
 - a. In the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.

Preview Each Step to Examine Field Layout and Steam

Understanding how fields are added to the stream and how they propagate through a transformation is vital to using PDI successfully. In this section, we'll use the **Preview** data tab in the **Execution Results** panel to examine the field layout and stream content for each step.

- 1. Click the **gr-hello_worlds** step to select it.
- 2. In the bottom **Execution Results** panel, click the **Preview data** tab. The stream field(s) and data will be displayed for the selected step. The **gr-hello_worlds** step's outgoing stream contains a single field, greeting message, and 15 rows of data.

Execution Results

3. To see the outgoing stream for the next step, on the canvas, click the **ac-const** step. The **Preview data** tab's grid will update. This step's outgoing stream contains the field and data from the previous step plus the new field named **const** and its value for each row.

Execution Results

4. To see the outgoing stream for the final step, on the canvas, click the **dmmy-hello_worlds** step. This step's outgoing stream contains the field and data from the previous step. The **Dummy (do nothing)** step has no logic. Therefore, it does not change the fields or data that come into the step, so its outgoing stream is identical to the previous step.

We'll discuss uses for the **Dummy (do nothing)** step later in this course.

5. Keep the transformation open for the next guided demonstration.

Solution Details

The solution to this guided demonstration can be found at:

/home/pentaho/course_files/pdi10001/solutions/guided_demos

File:

gd2_hello_world.ktr

End of Guided Demo 2

Guided Demo 3: Viewing Errors

This guided demonstration introduces finding and viewing errors. We create an error condition, run the transformation, and view the log details. Then we correct the error and re-run the transformation.

Objectives and Activities

After completing this guided demonstration, you will be able to:

- Determine if there are errors
- View the log details
- Display only the error lines

Prerequisites

This guided demonstration uses the gd2_hello_world transformation created in <u>Guided Demo 2</u>. If you did not complete Guided Demo 2, you must have access to the course solution files.

Steps Used

This guided demonstration uses the following steps:

- · Generate rows
- Add constants
- Dummy (do nothing)

Create an Error Condition

In this section, we purposely modify the Hello World transformation to run with an error.

- 1. If it is not already open, open the gd2 hello world transformation.
- 2. Double-click the **gr-hello_worlds** step on the canvas to open it.
- 3. To create an error, in the Fields grid, change the Type to Integer, and then click OK.
- 4. Save the transformation under a different name:
 - a. In the toolbar, click the Save file with a different name (Save As) button.

- b. Type the new filename: gd3 hello world with error
- c. Click OK.
- 5. To run the transformation:
 - a. Click the **Run** button on the subtoolbar.
 - b. In the **Run Options** dialog, click **Run**.
- 6. To view the step metrics, click the Step Metrics tab.

Notice the line highlighted in red on the **Step Metrics** tab. Also, if you click an empty area of the canvas to deselect everything, you will notice the **qr-hello worlds** step is outlined in red.

- 7. To view the **Logging** tab, in the **Execution Results**, click the **Logging** tab.
- 8. To view only the error lines in the log, on the **Logging** tab toolbar, click the **Show error lines** button.
- 9. After reviewing the error lines and noticing the specific error on lines 3 and 4, click **OK**.
- 10. Open the **gr-hello_worlds** step.
- 11. To correct the error, in the **Fields** grid, change the **Type** to **String**, and then click **OK**.
- 12. Save the transformation.
- 13. To run the transformation, on the subtoolbar, click the **Run** button and then click **Run** in **Run Options**.
- 14. Notice there are no errors, and all steps have a green checkmark indicating they ran successfully.

When you troubleshoot a transformation, it can be helpful to know exactly where fields on a step originate from. To do this, right-click the step you want to learn more about and then select **Input** Fields or Output Fields. You will see a grid that shows the step each field originated from.

If the transformation has a field misconfiguration such as inconsistent data type, Spoon cannot properly determine field origin and an error can result.

Solution Details

The solution to this guided demonstration can be found at:

/home/pentaho/course files/pdi1000l/solutions/guided demos

File:

gd2_hello_world_with_error.ktr

End of Guided Demo 3

Exercise 1: Generate Rows, Add Sequence, and Select Values

In this exercise, you create a transformation using the **Generate rows**, **Add sequence**, and **Select values** steps. You add, configure, and preview each step to ensure the data previewed is what is expected before configuring the next step. This best practice technique helps to prevent configuration errors that would otherwise be difficult to troubleshoot if the entire transformation were created and configured prior to preview.

Please concentrate on learning the techniques for creating the transformation and steps, rather than the logic of the steps being used. You will learn the details of these and many other steps throughout the remainder of this course.

Objectives

After completing this exercise, you will be able to:

- Create a new transformation
- Add steps and hops
- Configure and preview the Generate rows step
- Configure and preview the Add sequence step
- Configure and preview the Select values step

Steps Used

This exercise uses the following steps:

- Generate rows
- Add sequence
- Select values

Transformation

Exercise: Generate Rows, Add Sequence, and Select Values

Create the Transformation and Add the Generate Rows Step

In this section of the exercise, you create a new transformation, and then add, configure, and preview the **Generate rows** step to add 10 rows with three fields to the stream.

- To create a new transformation, on the toolbar, click the New file button, and then select Transformation.
- 2. To add a **Generate rows** step to the transformation:
 - a. Click to view the **Design** tab.
 - b. Expand the **Input** category.
 - c. Drag the **Generate rows** step from the **Design** tab to the canvas.
- 3. To configure the Generate rows step, on the canvas, double-click the Generate rows step.
- 4. Enter values in the properties of the **Generate rows** dialog as follows:

Property Name	Value
Step name	gr-demo fields
Limit	10

5. To configure the **Fields** grid, add three rows as shown:

Name	Туре	Format	Value
wantField	String		PDI solves integration challenges.
dontWantField	Integer	#	1
dontWantDateField	Date	MM/dd/yyyy	05/21/1956

You must use the exact case and spelling as shown.

- 6. To preview the data and confirm it is configured properly, click **Preview**, and then in the **Enter preview size** dialog, click **OK**.
- 7. Verify the data generated is correct by comparing your data with the screenshot:

	wantField	dontWantField	dontWantDateField
1	PDI solves integration challenges.	1	05/21/1956
2	PDI solves integration challenges.	1	05/21/1956
3	PDI solves integration challenges.	1	05/21/1956
4	PDI solves integration challenges.	1	05/21/1956
5	PDI solves integration challenges.	1	05/21/1956
6	PDI solves integration challenges.	1	05/21/1956
7	PDI solves integration challenges.	1	05/21/1956
8	PDI solves integration challenges.	1	05/21/1956
9	PDI solves integration challenges.	1	05/21/1956
0	PDI solves integration challenges.	1	05/21/1956

- 8. To close the **Examine preview data** dialog, click **Close**.
- 9. To close the **Generate rows** dialog, click **OK**.
- 10. To save the transformation, on the toolbar, click the **Save** button.
- 11. Navigate to the /home/pentaho/course_files/pdi10001/my_work folder, then in the File name, type ex1_select_values and then click **OK**.

Add and Configure the Add Sequence Step

In this section of the exercise, you add an **Add sequence** step to the transformation, and then add a hop from the **gr-demo_fields** step. The **Add sequence** step will add a field to the stream with a sequence number for each row. You then preview the transformation.

- 1. To add an Add sequence step to the transformation, on the Design tab:
 - a. In the Steps search field, type: add seq
 - b. Drag the Add sequence step from the Design tab to the canvas and drop it to the right of the gr-demo_fields step.
- 2. To create a hop from the **gr-demo fields** step to the **Add sequence** step, on the canvas:
 - a. Press and hold the Shift key.
 - b. Click and hold the **gr-demo_fields** step.
 - c. Point to the **Add sequence** step, and then release.
- 3. To rename the step using best practice naming standards, double-click the **Add sequence** step and change the **Step name** property to: aseq-valuename

This step name was chosen because the step is an **Add sequence** step (aseq) and the step will add a new field named valuename to the stream.

- 4. To preview the **aseq-valuename** step:
 - a. On the canvas, click to select the **aseq-valuename** step.
 - b. From the menu, click **Action** → **Preview**.
 - c. Click the Quick Launch button.

5. Verify the preview data has all the first step's fields as well as the new field named valuename.

- 6. To close the **Examine preview data** dialog, click **Close**.
- 7. To close the **Select the preview step** dialog, click **Close**.
- 8. To close the **Add sequence step's** configuration dialog, click **OK**.
- 9. Save the transformation.

Add and Configure the Select Values Step

In this section of the exercise, you add and configure a **Select values** step to select fields that you want to keep in the stream, copy a field in the stream, including its data, and add it to the stream as a new field. You duplicate the **wantField** twice. You'll then preview the **Select values** step.

- 1. To add a **Select values** step to the transformation, on the **Design** tab:
 - a. In the **Steps search** field, type: select
 - Drag the Select values step from the Design tab to the canvas and drop it to the right of the
 Add sequence step.
- 2. To create a hop from the aseq-valuename step to the Select values step, on the canvas:
 - a. Press and hold the **Shift** key.
 - b. Click and hold the **aseq-valuename** step.
 - c. Point to the **Select values** step, and then release.

- 3. Name the step: sv-sel reorder duplicate
- 4. Complete the Fields grid of the **Select & Alter** tab as follows:

Field Name	Rename to
valuename	<empty></empty>
wantField	<empty></empty>
wantField	copy1
wantField	сору2

5. Compare the step's configuration with the following screenshot and make any necessary changes. Then, click **OK**.

- 6. To preview the duplicate fields from the **sv-sel_reorder_duplicate** step:
 - a. On the canvas, click to select the **sv-sel_reorder_duplicate** step.
 - b. From the menu, click Action Preview.
 - c. Click the Quick Launch button.
- 7. Verify the preview data has the **valuename**, **wantField**, and then two copies of the **wantField**.
- 8. To close the **Examine preview** data dialog, click **Close**.
- 9. To close the **Select the preview step** dialog, click **Close**.

- 10. Save the transformation.
- 11. Close the **ex1_select_values** tab.

Solution Details

The solution to this exercise can be found at:

/home/pentaho/course_files/pdi10001/solutions/exercises

File:

ex1_select_values.ktr

End of Exercise 1

Guided Demo 4: Saving to the Repository and Running Remotely

This guided demonstration briefly introduces you to the repository. You learn how to save an existing transformation to it. You can then use the repository throughout this course to save and organize your transformations and jobs. You'll see how to open a file from the file system while connected to the repository using import. In addition to using the repository, this guided demonstration has you create a run configuration to run a transformation remotely on the Pentaho Server.

Note: Throughout this course, you can choose to save objects to the file system or the repository.

Objectives

After completing this guided demonstration, you will be able to:

- Create a connection to an existing repository
- Save and import a transformation to the repository
- Create a new folder in the repository
- Create a run configuration
- Run a transformation on the Pentaho Server

Prerequisites

This guided demonstration uses the gd2_hello_world transformation created in <u>Guided Demo 2</u>. If you did not complete Guided Demo 2, you must have access to the course solution files.

You must also have access to a student environment where a repository has already been created.

Open a Transformation and Create a Repository Connection

In this section of the guided demonstration, we open the gd2_hello_world transformation and create a connection to an existing repository.

- 1. To open the gd2 hello world transformation:
 - a. From the menu, select File \rightarrow Open.
 - b. Navigate to the /home/pentaho/course files/pdi1000l/my work folder.

- c. Click to select the gd2 hello world.ktr transformation.
- d. Click OK.

If necessary, you can open the transformation from the /home/pentaho/course_files/pdi1000l/solutions/guided_demos_folder.

- 2. To create a connection to the repository, at the far right of the toolbar, click the **Connect** button.
- 3. To get started, in the New Repository Connection dialog, click Get Started.
- 4. To name the connection and set it to launch when Spoon starts:
 - a. In the Display Name, type: Class DI Repository
 - b. Click to select the **Launch connection on startup** checkbox.
 - c. Click Finish.
- 5. To connect to the repository:
 - a. Click Connect Now.
 - b. In the **Username** field, type admin
 - c. In the Password field, type password
 - d. Click Connect.
- 6. To close all open files (tabs) and complete the connection, in the Close Files dialog, click Yes.

If you wanted to keep the files open, you would have clicked **No**. The only reason you previously opened the $gd2_hello_world$ transformation is so you could see and understand this dialog. If no tabs were open when connecting to the repository, the dialog would not have been displayed.

Notice in the far right of the toolbar that you are now connected to the Class DI Repository as the admin user.

Save a Transformation in the Repository

In this section of the guided demonstration, we create a new transformation, and then save the transformation to a new folder in the repository.

1. To create a new transformation, on the toolbar, click the **New file** button, and then select **Transformation**.

- 2. To save the transformation, on the toolbar, click the **Save** button.
- 3. To create a new folder within the public folder, in the **Save** dialog:
 - a. Click the **Public** folder.
 - b. In the upper-right of the dialog, click the **Add folder** icon.
 - c. In the Name field, type PDI Trn Objects and press Tab.
- 4. To select the PDI_Trn_Objects folder and name the transformation, in the Save dialog:
 - a. If necessary, click > to expand the **Public** folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. In the Name, type gd4 blank transformation
 - d. Click OK.
- 5. Close the gd4_blank_transformation tab.
- 6. To open a transformation, from the menu, select **File** → **Open**.
- 7. To open the gd4 blank transformation, in the Open dialog:
 - a. Expand the **Public** folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. Click to select the gd4_blank_transformation.
 - d. Click Open.
- 8. Notice in the top-left corner of Spoon that it identifies the name of the connection in addition to the name of the transformation.
- 9. Close the gd4_blank_transformation tab.

Importing a Transformation

In this section of the guided demonstration, we import the gd2_hello_world transformation to the repository, and then save it to the PDI_Trn_Objects folder.

1. To import (open) the gd2 hello world transformation:

- a. From the menu, select File → Import From an XML file.
- b. Navigate to:/home/pentaho/course files/pdi10001/my work folder
- c. Click to select the gd2 hello world.ktr transformation.
- d. Click OK.

If necessary, you can import the transformation from:

/home/pentaho/course_files/pdi10001/solutions/guided_demos

The file menu's **Import From an XML file** feature does not save the file into the repository. It only opens it.

- 2. To save the transformation to the repository, on the toolbar, click the **Save** button.
- 3. To access the repository's folders, in the **Transformation properties** dialog:
 - a. Expand the Public folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. Click Save.
- 4. Leave the transformation open for the next section.

Create Run Configuration and Run Remotely

Now that we have the $gd2_hello_world$ transformation saved to the repository; we can run it remotely. It's a good idea to do this to make sure it runs correctly on the Pentaho Server; assuming that's where it will normally run. To do this, we will create a new run configuration and then use it when running the transformation.

- 1. To create a new run configuration:
 - a. In the upper left of Spoon's window, click the **View** tab.
 - b. Right-click **Run configurations** and then click **New**.
- 2. Configure the **Run configuration** dialog as shown:

Property Name	Value
Name	Run on Pentaho Server

Property Name	Value	
Description	This run configuration executes jobs and transformations on the Pentaho Server.	
Engine	Pentaho (default)	
Settings	Pentaho server (enable radio button) Note: This radio button is only displayed if you are connected to the repository.	

- 3. To close the **Run configuration** dialog, click **OK**.
- 4. Save the transformation.
- 5. To run the transformation on the Pentaho Server:
 - a. In the subtoolbar, click the **Run** icon.
 - b. In the Run configuration dropdown list, select Run on Pentaho Server.

Note: The run configuration will only be listed in the dropdown list if you are connected to the repository.

- c. Click the **Run** button.
- 6. Scroll to the end of the **Logging** tab and find the line that reads: "PurRepository A request has been sent to the Pentaho Server..."

When running a transformation or job, Spoon defaults to the run configuration used in the last run transformation or job. It's important to verify the run configuration that's selected when you execute a transformation or job to be sure it's the one you intend to use.

7. To close the transformation, click the **X** on the active transformation's tab.

Note: Later in this course, you'll learn how to monitor transformations that have executed on the Pentaho Server.

End of Guided Demo 4

Guided Demo 5: Combining Several Inputs into One Output

In this guided demonstration, we create a transformation that reads multiple text files using a regular expression. We then use the **Get system info** step to add the system date/time and transformation modified date/time to the stream. Finally, we use a **Text file output** step to output the stream to a delimited text file.

Objectives

After completing this guided demonstration, you will be able to:

- Configure a **Text file input** step to read multiple text files based on a regular expression.
- Add system and environment related data to the stream using the **Get system info** step.
- Configure a Text file output step to create a single delimited output file (CSV).

Prerequisites

This guided demonstration requires access to the input files that reside on the course student environment.

Steps Used

This guided demonstration uses the following steps:

- Text file input
- Get system info
- Text file output

Transformation

Guided Demo 5: Combining Several Inputs into One Output

Creating and Saving the Transformation

In this section of the guided demonstration, we create a new transformation and save it to the $PDI_Trn_Objects$ folder on the repository.

 To create a new transformation, on the toolbar, click the New file button, and then select Transformation.

You can also press **Ctrl-N** to create a new transformation.

- 2. To save the transformation, on the toolbar, click the **Save** button.
- 3. To name the transformation and save it to the PDI Trn Objects folder, in the Save dialog:
 - a. Expand the Public folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. In the File name, type: gd5 multi input one output
 - d. Click Save.

Adding and Configuring the Text File Input Step

In this section, we add and configure a **Text file input** step to read several text files. We use a regular expression to define which files to include and which to exclude.

 To add a Text file input step, on the Design tab, expand the Input category, and then drag the Text file input step to the canvas.

- 2. Open the new **Text file input** step.
- 3. To configure the step's properties, enter values in the properties as shown:

Property Name	Value
Step name	tfi-orders
File or directory	/home/pentaho/course_files/pdi10001/data_files/input/gd5_multi_input
Regular Expression	.*\.txt
Exclude Regular Expression	cancelled_orders_summary.txt

- 4. To add the file and expression configuration to the **Selected files** grid, click the **Add** button.
- 5. To verify the directory and regular expressions are correct and the correct files will be read, click the **Show filename(s)** button.
- 6. Verify the correct files are shown, and then click **Close**.
- 7. To configure the fields for this step, click the **Fields** tab.
- 8. To obtain the fields via the hop:
 - a. Click the **Get Fields** button.
 - b. In the Sample data dialog, **check** the Show sample summary checkbox.
 - c. Click **OK**.
 - d. Review the Scan results, and then click Close.

9. Verify the fields using the screenshot:

	Name	Туре	Format	Position	Length
1	ordernumber	Integer	#		15
2	orderdate	Date	yyyy-MM-dd		
3	shippeddate	Date	yyyy-MM-dd		
4	status	String			15
5	customernumber	Integer	#		15
6	orderlinenumber	Integer	#		15
7	productcode	String			15
8	quantityordered	Integer	#		15
9	priceeach	Number	#.#		15

The **Text file input** step must always be configured to read all the fields in the file.

- 10. To preview the data and confirm it is configured properly, click **Preview rows**, and then click **OK**.
- 11. Verify the data generated is correct by comparing your data with the screenshot:

lows	of step: tfi-orde	rs (101 rows)				
₩ .	ordernumber	orderdate	shippeddate	status	customernumber	orde
1	10362	2020-01-05	2020-01-10	Cancelled	161	
2	10362	2020-01-05	2020-01-10	Cancelled	161	
3	10362	2020-01-05	2020-01-10	Cancelled	161	
4	10362	2020-01-05	2020-01-10	Cancelled	161	
5	10366	2020-01-10	2020-01-12	Cancelled	381	
6	10366	2020-01-10	2020-01-12	Disputed	381	
7	10366	2020-01-10	2020-01-12	Disputed	381	
بـــــــــــــــــــــــــــــــــــــ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	202000	~ accorder	San	205	~~~

- 12. To close the **Examine preview data** dialog, click **Close**.
- 13. To close the **Text file input** dialog, click **OK**.
- 14. Save the transformation.

Adding and Configuring the Get System Info Step

Now we add and configure the **Get system info** step to add the system date and the date the transformation

was last modified to the stream.

- 1. To add a **Get system info** step to the transformation, on the **Design** tab:
 - a. In the **Steps** search field, type get sys
 - b. Drag the **Get system info** step from the **Design** tab to the canvas and drop it to the right of the **tfi-orders** step.
- 2. To create a hop from the **tfi-orders** step to the **Get system info** step, on the canvas:
 - a. Press and hold the **Shift** key.
 - b. Click and hold the **tfi-orders** step.
 - c. Point to the **Get system info** step, and then release.
- 3. Open the **Get system info** step.
- 4. To name the step, in the step name property, type:

5. To configure the **Fields** grid, add details for two rows as shown:

Name	Туре
row_output_time	System date (variable)
ktr_modified_time	Date when the transformation was modified last

6. Verify the fields using the screenshot:

- 7. To close the **Get system info** dialog, click **OK**.
- 8. To preview the **Get system info** step:
 - a. On the canvas, click to select the **gsi-row_output_time_ktr_modified_time** step.
 - b. From the menu, click **Action** → **Preview**.

- c. Click the Quick Launch button.
- 9. Verify the preview data has all the first step's fields as well as the two new fields from the gsi-row_output_time_ktr_modified_time step.
- 10. To close the **Examine preview data** dialog, click **Close**.
- 11. To close the **Select the preview** step dialog, click **Close**.
- 12. Save the transformation.

Adding and Configuring the Text File Output Step

In this section of the guided demonstration, we add and configure the **Text file output** step to output the data from the stream to a delimited text file.

- 1. To add a **Text file output** step to the transformation, on the **Design** tab:
 - a. Click to expand the Output category.
 - b. Drag the **Text file output** step from the **Design** tab to the canvas and drop it to the right of the **gsi-row_output_time_ktr_modified_time** step.
- 2. To create a hop from the **gsi-row_output_time_ktr_modified_time** step to the Text file output step, on the canvas:
 - a. Press and hold the Shift key.
 - b. Click and hold the **gsi-row_output_time_ktr_modified_time** step.
 - c. Point to the **Text file output** step, and then release.
- 3. To configure the **Text file output** step, on the canvas, double-click the **Text file output** step.
- 4. To name the step, in the **Step name** property, type tfo-orders all statuses.csv
- 5. To provide a path and filename for the output file, in the **Filename**, type

```
/home/pentaho/course_files/pdi10001/data_files/output/orders_all_statuses
```

- 6. To set the file extension, change the **Extension** to **csv**.
- 7. To have the date included in the filename when the file is created, check the **Include date in filename?** property.

- 8. To verify the filename and path are correct and the correct file will be created, click the **Show filename(s)** button.
- 9. Verify the correct file is shown and then click **Close**.

The data_files folder does not currently contain a folder called output. In addition to creating the file, Spoon will also create the folder because the Create Parent folder property is checked by default.

- 10. Click the **Content** tab.
- 11. Change the **Separator** property to | (a pipe symbol).
- 12. To configure the fields to include in the output file, click the **Fields** tab.
- 13. To obtain the fields from the stream, click the **Get Fields** button.
- 14. You may wish to have the output text file's fields in a different order than they are in the stream. To make the **row_output_time** field the first field in the output file, select that field's row and then press **Ctrl-Up Arrow** until the field is first in the list.
- 15. To configure the text file to have no trailing spaces in each column's data, click the **Minimal width** button.
- 16. To close the **Text file output** dialog, click **OK**.
- 17. Save the transformation.

Execute the Transformation

In the final section of the guided demonstration, we run the transformation and review the output file.

- 1. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the **Run configuration** dropdown, select **Pentaho local**. This step is necessary if the last transformation you ran used the run configuration for executing on the Pentaho Server.
 - c. Click Run.
- 2. To verify the **Table output** step wrote data to a file:
 - a. In the bottom **Execution Results** panel, click the **Step Metrics** tab.

- b. Notice the Output column for the **tfo_orders_all_statuses.csv** step indicates the number of lines output to the file the transformation created.
- 3. To verify the file was created, navigate to

```
/home/pentaho/course_files/pdi10001/data_files/output and verify the orders all statuses.csv file exists.
```

4. Open the file in a text editor and notice how orders from all the input files are included.

- 5. Close the file and return to Spoon.
- 6. Close the gd5_multi_input_one_output tab.

Solution Details

The solution to this guided demonstration can be found at:

```
/home/pentaho/course_files/pdi10001/solutions/guided_demos
```

File:

```
gd5 multi input one output.ktr
```

Output:

```
/home/pentaho/course_files/pdi10001/solutions/output_complete/ orders all statuses [date].csv
```

End of Guided Demo 5

Guided Demo 6: Creating kettle.properties Variables

In this guided demonstration, we add two kettle.properties global variables for the folders containing the input and output files. We are then able to use those variables instead of typing the paths.

Note: When you create transformations more complex than this one, it is best practice to create and test the transformation using hard-coded values before attempting to parameterize it. This practice will save overall development time by reducing troubleshooting.

Objectives

After completing this guided demonstration, you will be able to:

- Edit the kettle.properties file
- Add global variables and values in the kettle.properties file
- Configure a CSV file input step using a variable to define the input file folder
- Configure a Text file output step using a variable to define the output file folder

Prerequisites

This guided demonstration requires access to the input files that reside on the course student environment.

Steps Used

This guided demonstration uses the following steps:

- CSV file input
- Text file output

Transformation

Creating the Transformation and Adding Variables for File Paths

In this section of the guided demonstration, we create a new transformation, and then edit the kettle.properties file to add global variables for the input and output folders.

- To create a new transformation, on the toolbar, click the New file button, and then select Transformation.
- 2. To save the transformation, on the toolbar, click the **Save** button.
- 3. To name the transformation and save it to the PDI Trn Objects folder, in the Save dialog:
 - a. Click > to expand the **Public** folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. In the File name, type gd6 kettle variables
 - d. Click Save.
- 4. From the menu, click Edit → Edit the kettle.properties file.
- 5. Scroll down to the last row.

- 6. To add a new row, right-click on the last row, and then select Insert after this row.
- 7. Repeat the step to add a second row.
- 8. In the new lines, enter the following variables:

Variable name	Value
DIR_INPUT	/home/pentaho/course_files/pdi1000l/data_files/input
DIR_OUTPUT	/home/pentaho/course_files/pdi1000l/data_files/output

9. To close the kettle.properties file, click **OK**.

Adding a CSV File Input Step with a Variable

In this section of the guided demonstration, we add and configure a **CSV** file input step and use the DIR INPUT variable to define the input folder.

- To add a CSV file input step, on the Design tab, expand the Input category, and then drag the CSV file input step to the canvas.
- 2. Open the CSV file input step.

You might find it helpful to enlarge the step dialog window.

- 3. Name the step csvi-orders
- 4. To use the DIR INPUT variable:
 - a. Click in the Filename field.
 - b. On the keyboard, press Ctrl-Space.
 - c. From the list of variables, double-click DIR INPUT.

Note: Variables and parameters can be used in any field in Spoon that has a blue diamond dollar sign next to it. Pressing **Ctrl-Space** in the field opens a list of the variable and parameters loaded into memory.

- 5. To append the filename to the variable, in the **Filename** field, after the variable, type /order file.csv
- 6. To change the separator, in the **Delimiter**, type a semicolon;
- 7. To populate the **Fields** grid:

- a. Click the Get Fields button.
- b. In the **Sample data** dialog, change the value to 0.
- c. Click OK.
- 8. To preview the data and confirm it is configured properly, click **Preview**, and then click **OK**.
- 9. Verify the data generated is correct by comparing your data with the screenshot:

- 10. To close the Examine preview data dialog, click Close.
- 11. To close the **csvi-orders** dialog, click **OK**.
- 12. Save the transformation.

Adding a Text File Output Step with a Variable

In this section of the guided demonstration, we add and configure a **Text file output** step and use the DIR_OUTPUT variable to define the output folder.

- 1. To add a **Text file output** step to the transformation, on the **Design** tab:
 - a. Click to expand the Output category.
 - b. Drag the **Text file output** step from the **Design** tab to the canvas and drop it to the right of the **csvi-orders** step.
- 2. To create a hop from the **csvi-orders** step to the **Text file output** step, on the canvas:
 - a. Press and hold the Shift key.
 - b. Click and hold the csvi-orders step.
 - c. Point to the **Text file output** step, and then release.
 - d. From the context menu, select Main output of step.
- 3. Open the Text file output step.

- 4. Name the step tfo-output_test.txt
- 5. To use the DIR OUTPUT variable:
 - a. Click in the Filename field.
 - b. Delete the word "file".
 - c. On the keyboard, press Ctrl-Space.
 - d. From the list of variables, double-click DIR OUTPUT.
- 6. To append the filename to the variable, in the **Filename** field, after the variable, type /output test
- 7. To configure the fields to include in the output file, click the **Fields** tab.
- 8. To obtain the fields from the stream, click the **Get Fields** button.
- 9. To close the Text file output dialog, click **OK**.
- 10. Save the transformation.

Run the Transformation

In this section of the guided demonstration, we run the transformation, and then review the output file.

- 1. To run the transformation, on the subtoolbar, click the **Run** button.
- 2. To view the variables, in the **Run Options** dialog, click the **Variables** tab.
- 3. To run the transformation, in the Run Options dialog, click Run.

Notice the Output field indicates the number of lines output to the file the transformation created.

4. To verify the file was created, in Windows Explorer, navigate to

```
/home/pentaho/course_files/pdi10001/data_files/output and verify the output test.txt file exists.
```

- 5. Open the file and notice how orders from all the input files are included.
- 6. Close the file and return to Spoon.
- 7. Close the gd6_kettle_variables tab.

Solution Details

The solution to this guided demonstration can be found at:

/home/pentaho/course files/pdi1000l/solutions/guided demos

File:

gd6 kettle variables.ktr

Output:

/home/pentaho/course_files/pdi10001/solutions/output_complete/
output_test.txt

End of Guided Demo 6

Exercise 2: CSV Input to Multiple Text Output Using Switch/Case

In this exercise, you create a transformation that reads a CSV file containing order data (including the country of origin). Then, it will route the orders from specific country's to text files using the Switch/case and Text file output steps. In the previous guided demonstration, you used kettle.properties variables, but in this exercise you use transformation parameters to specify the file input and output folder locations.

Objectives

After completing this exercise, you will be able to:

- Create and use transformation parameters to define locations for input and output folder locations
- Configure a CSV file input step using a variable to define the input file location
- Configure a Switch/case step that sends data to specific steps depending on the data in the incoming stream
- Create hops from a Switch/case step based on specific case values
- Configure a **Text file output** step using a variable to define the output file location
- Configure a **Dummy (do nothing)** step to collect metrics for all data that doesn't match a specific case value.

Prerequisites

This exercise requires access to the input files that reside on the course student environment.

Steps Used

This exercise uses the following steps:

- CSV file input
- Switch/case
- Text file output
- Dummy (do nothing)

Transformation

Creating the Transformation and Adding Transformation Parameters

In this section of the exercise, you create a new transformation, and add transformation parameters to define the input and output folders.

- To create a new transformation, on the toolbar, click the New file button, and then select Transformation.
- 2. To name the transformation and save it to the PDI Trn Objects folder, in the Save dialog:
 - a. Click > to expand the **Public** folder.

- b. Click to select the PDI_Trn_Objects folder.
- c. In the File name, type ex2 csv input text output
- d. Click Save.
- 3. To open the **Transformation properties** dialog, on the canvas, double-click an empty area.
- 4. To create the transformation parameters, in the **Transformation properties** dialog:
 - a. Click the Parameters tab.
 - b. Create two new parameters according to the table below:

Parameter	Default Value
KTR_DIR_INPUT	/home/pentaho/course_files/pdi10001/data_files/input
	/home/pentaho/course_files/pdi10001/data_files/output2
KTR_DIR_OUTPUT	Note: This folder does not exist, but it will be created for you when the transformation executes. This parameter will override the variable with the same name.

- c. Click OK.
- 5. Save the transformation.

Configure the CSV File Input Step with a Parameter

In this section of the exercise, you add and configure the CSV file input step with a parameter identifying the input file folder.

- To add a CSV file input step, on the Design tab, expand the Input category, and drag the CSV file input step to the canvas.
- 2. To configure the **CSV file input** step, on the canvas, double-click the **CSV file input** step.
- 3. To name the step, in the Step name, type csvi-order_file
- 4. To use the KTR_DIR_INPUT parameter:
 - a. Click in the Filename field.
 - b. On the keyboard, press Ctrl-Space.
 - c. From the list of variables, double-click KTR DIR INPUT.

- To append the filename to the variable, in the Filename field, after the variable, type /order_file.csv
- 6. To change the separator, in the **Delimiter**, type a semicolon;
- 7. To turn off lazy conversion, click to deselect the Lazy conversion? checkbox.
- 8. To populate the **Fields** grid:
 - a. Click the Get Fields button.
 - b. In the **Sample data** dialog, change the value to 0.
 - c. Click OK.
- 9. To preview the data and confirm it is configured properly, click **Preview**, and then click **OK**.
- 10. Verify the data generated is correct by comparing your data with the screenshot:

- 11. To close the **Examine preview data** dialog, click **Close**.
- 12. To close the **csvi-order_file** dialog, click **OK**.
- 13. Save the transformation.

Configure the Switch/Case Step

In this section of the exercise, you add and configure the **Switch/case** step to define a condition where the Country equals Germany, France, Australia, or USA.

- 1. To add a **Switch/case** step to the transformation, on the **Design** tab:
 - a. Click to expand the **Flow** category.
 - b. Drag the Switch/case step from the Design tab to the canvas and drop it to the right of the csvi-order_file step.
- 2. To create a hop from the **csvi-order_file** step to the **Text file output** step, on the canvas:
 - a. Press and hold the Shift key.

- b. Click and hold the csvi-order_file step.
- c. Point to the **Switch/case** step, and then release.
- d. From the context menu, select Main output of step.
- 3. To configure the Switch/case step, on the canvas, double-click the Switch/case step.
- 4. To name the step, in the Step name, type swcs-country
- 5. To specify the field name to switch, from the **Field name to switch** dropdown list, and then select **country**.
- 6. To set the value comparison to contain the specified value (instead of exactly match), check the Use string contains comparison checkbox.
- 7. To set the data type of the case value, from the **Case value data type** dropdown list, select **String**.
- 8. To set the case values, in the Case values grid, add four values for Germany, France, Australia, and USA.

The remaining properties of this step will automatically get set as you configure the rest of the transformation.

- 9. To close the **Switch/case** dialog, click **OK**.
- 10. Save the transformation.

Configure the Germany Text File Output Step with a Conditional Hop

In this section of the exercise, you add and configure a **Text file output** step using a parameter to define the output file location. Since the output file will only contain results for Germany, you add a conditional hop from the **Switch/case** step.

- 1. To add a **Text file output** step to the transformation, on the **Design** tab:
 - a. Click to expand the Output category.
 - b. Drag the **Text file output** step from the **Design** tab to the canvas and drop it to the right of the **swcs-country** step.
- 2. To create a hop from the swcs-country step to the Text file output step, on the canvas:

- a. Press and hold the Shift key.
- b. Click and hold the swcs-country step.
- c. Point to the **Text file output** step, and then release.
- d. From the context menu, select the case target for value **Germany**.
- 3. To configure the **Text file output** step, on the canvas, double-click the **Text file output** step.
- 4. To name the step, in the Step name, type tfo-orders_germany.txt
- 5. To use the KTR DIR OUTPUT parameter:
 - a. Click in the Filename field.
 - b. Delete the word "file".
 - c. On the keyboard, press Ctrl-Space.
 - d. From the list of variables, double-click KTR DIR OUTPUT.
- 6. To append the filename to the variable, in the **Filename** field, after the variable, type /orders germany
- 7. To configure the fields to include in the output file, click the **Fields** tab.
- 8. To obtain the fields via the hop, click the **Get Fields** button.
- 9. To close the **Text file output** dialog, click **OK**.
- 10. Save the transformation.

Configure the Remaining Text File Output Steps with Conditional Hops

In this section of the exercise, you duplicate the Text file output step three times and then configure the outputs for France, Australia, and USA, and add conditional hops from the **Switch/case** step. Using this duplicate step technique saves you valuable time since the steps are configured nearly identically. Only the step names and the filenames they create are different.

- 11. To duplicate the tfo-orders_germany.txt step, right-click the step, and then use the **Duplicate** option from the context menu.
- 12. Duplicate it **two** more times.

- 13. Edit each of the duplicate steps and update the **step name** and the **Filename** properties. Use the screenshot below for guidance.
- 14. Create hops between the swcs-country and each of the remaining Text File output steps, making sure to choose the case target values from the pop-up menu. For example, the case target France goes to the tfo-orders_france.txt step.

15. Save the transformation.

Configure the Dummy (do nothing) Step with a Conditional Hop

In this section of the exercise, you add and configure a **Dummy (do nothing)** step for all the countries that do not match the **Switch/case** condition using a conditional hop from the **swcs-country** step.

- 1. To add a **Dummy (do nothing)** step to the transformation, on the **Design** tab:
 - a. Click to expand the **Flow** category.
 - b. Drag the **Dummy (do nothing)** step from the **Design** tab to the canvas and drop it below the **swcs-country** step.
- 2. To create a hop from the swcs-country step to the Dummy (do nothing) step, on the canvas:
 - a. Press and hold the Shift key.
 - b. Click and hold the **swcs-country** step.
 - c. Point to the **Dummy (do nothing)** step, and then release.
 - d. From the context menu, select the default target step.

- 3. To configure the **Dummy (do nothing)** step, on the canvas, double-click the **Dummy (do nothing)** step.
- 4. To name the step, in the **Step name** property, type dmmy-other_countries, and then click **OK**.

 To show the **OK** button, enlarge the **Dummy (do nothing)** dialog.
- 5. To see how the **swcs-country** step properties have been updated automatically when you created the hops and choose a target case, open the **swcs-country** step and notice the **Target step** column is filled out for you.
- 6. Save the transformation.

Run the Transformation

In this section of the exercise, you run the transformation, and then review the output files.

1. To run the transformation, on the active transformation's tab toolbar, click the **Run** button.

You can press F9 to run a transformation.

2. In the **Run Options** dialog, click **Run**.

In the bottom **Execution Results** pane, click the **Step Metrics** tab and notice the **Output** column indicates the number of rows output to the files the transformation created.

3. To verify the files were created, in Windows Explorer, navigate to

/home/pentaho/course_files/pdi10001/data_files/output2 and verify the following files exist:

- a. orders australia.txt
- b. orders france.txt
- c. orders germany.txt
- d. orders usa.txt
- 4. Open each of the files and notice how the data for each country is written to the appropriate country text file.
- 5. Close the file and return to Spoon.
- 6. Close the ex2_csv_input_text_output tab.

Solution Details

The solution to this exercise can be found at:

```
/home/pentaho/course_files/pdi10001/solutions/exercises
File:
ex2_csv_input_text_output.ktr
Output:
/home/pentaho/course_files/pdi10001/solutions/output_complete/
orders_australia.txt
```

orders_france.txt
orders_germany.txt
orders usa.txt

End of Exercise 2

Guided Demo 7: Connections and the Database Explorer

In this guided demonstration, we create a database connection and use the Database Explorer to view the database.

Objectives

After completing this guided demonstration, you will be able to:

- Create a database connection to connect to a PostgreSQL database
- Share database connections
- Use Database Explorer to view the tables in a database connection

Prerequisites

This guided demonstration requires access to the input files that reside on the course student environment.

You must also have access to a student environment where a repository has already been created.

Creating Database Connections

In this section of the guided demonstration, we create database connections to the pentaho_oltp and pentaho olap PostgreSQL databases. Then, they will be shared.

 To create a new transformation, on the toolbar, click the New file button, and then select Transformation.

This transformation will be used in Exercise 3.

- 2. To save the transformation, on the toolbar, click the **Save** button.
- 3. To name the transformation and save it to the PDI Trn Objects folder, in the Save dialog:
 - a. Click > to expand the Public folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. In the File name, type ex3_table_input_output

- d. Click Save.
- 4. To add a new database connection, in the left panel:
 - a. Click the **View** tab.
 - b. Right-click **Database connections**.
 - c. Select **New**.
- 5. In the **Database Connection** dialog, type or choose:

Field	Value
Connection Name	pentaho_oltp
Connection Type	PostgreSQL
Access	Native (JDBC)
Host Name	localhost
Database Name	pentaho_oltp
Port Number	5432
User Name	pentaho
Password	password123

- 6. To verify the connection, in the **Database Connection** dialog, click **Test**.
- 7. To dismiss the **Database Connection Test** dialog, click **OK**, and then to close the **Database Connection** dialog, click **OK**.
- 8. To create a new database connection for the pentaho_olap database, repeat the previous steps using the following values:

Field	Value
Connection Name	pentaho_olap
Connection Type	PostgreSQL
Access	Native (JDBC)
Host Name	localhost

Field	Value
Database Name	pentaho_olap
Port Number	5432
User Name	pentaho
Password	password123

- 9. Alternately, you can duplicate an existing database connection by right-clicking the connection name on the View tab.
- 10. To share the database connections, in the **View** tab, right-click each database connection that you created, and then click **Share**.
- 11. Save the transformation.

Sharing the database connection is not required. It is included in this guided demonstration so that that if you did disconnect from the repository, the database connection would still be available for use without having to recreate it.

Using Database Explorer

In this section of the guided demonstration, we use Database Explorer to examine the pentaho_oltp database.

- 1. To view the database connections, on the **View** tab, click to expand **Database connections**.
- 2. Right-click **pentaho_oltp**, and then from the context menu, click **Explore**.
- 3. To preview the **customers** table, in the **Database Explorer** window:
 - a. Click to expand pentaho_oltp.
 - b. Click to expand **Tables**.
 - c. Right-click customers.
 - d. Select Preview first 100.
- 4. Examine the first 100 rows in the customers table, and then in the **Examine preview data** dialog, click **Close**.
- 5. To execute SQL to show the table ordered by the city column, in the **Database Explorer** window, right-click customers, and then select **View SQL**.

6. In the Simple SQL editor dialog, append the SQL with ORDER BY city, and then click Execute.

You might find it helpful to enlarge the Simple SQL editor dialog.

- 7. Examine the results, and then in the **Examine preview data** dialog, click **Close**.
- 8. To close the **Results of the SQL statements** dialog, click **OK**.
- 9. To close **Simple SQL editor** dialog, click **Close**.
- 10. To close **Database Explorer**, click **OK**.
- 11. Save the transformation.
- 12. Keep the transformation open for the next exercise.

End of Guided Demo 7

Exercise 3: Reading and Writing to Data Tables

In the first part of this exercise, you complete the transformation started in <u>Guided Demo 7</u> to read data from the orderdetails table in the pentaho_oltp database using a **Table input** step. You then configure a **Table output** step to write some of the data to a new table in the pentaho_olap database.

In the second part of the exercise, you modify the transformation to use a **Text file output** step instead of the **Table output** step to create a text file with the data.

Objectives

After completing this exercise, you will be able to:

- Configure a **Table input** step to obtain data from a database table
- Configure a **Table output** step to write data to a database table
- Use the SQL helper button to generate SQL to create a database table
- Configure a **Text file output** to write data to a text file

Prerequisites

Prior to completing this exercise, you must complete <u>Guided Demo 7: Connections and the Database</u> Explorer.

Steps Used

This exercise uses the following steps:

- Table input
- Table output
- Text file output

Transformations

Exercise 3 - Part I: Reading & Writing Database Tables

Part I

In Part I of this exercise, you create a transformation that gets data from a table in the pentaho_oltp database and then outputs the data into a table in the pentaho_olap database. Transferring data between databases is a common practice in data warehousing.

Configure the Table Input Step

In this section of the exercise, you configure a **Table input** step to obtain data from the orderdetails table in the pentaho oltp database. You add a **Table output** step to the transformation and hop to the

transformation now, but you will configure the **Table output** step in the next section.

- 1. In the ex3 table input output transformation, click the Design tab.
- 2. From the **Input** category, drag a **Table input** step to the canvas.
- 3. From the **Output** category, drag a **Table output** step to the canvas, and drop it to the right of the **Table input** step
- 4. Create a hop from the **Table input** step to the **Table output** step.
- 5. To configure the **Table input** step, on the canvas, double-click the **Table input** step.
- 6. To name the step, in the Step name, type ti-orderdetails
- 7. To select the database connection, from the **Connection** dropdown list, select **pentaho_oltp**.
- 8. To generate the SQL that obtains the data, in the **Table input** dialog, click the **Get SQL select** statement button.
- 9. To select the orderdetails table from the pentaho_oltp database connection, in the Database Explorer dialog:
 - a. Click to expand **pentaho_oltp**.
 - b. Click to expand **Tables**.
 - c. Click to select the orderdetails table.
 - d. Click OK.
- 10. To include the field names in the SQL statement, in the **Question?** dialog, click **Yes**.
- 11. To preview the query:
 - a. In the **Table input** dialog, click **Preview**.
 - b. In the **Enter preview size** dialog, click **OK**.
 - c. Review the results.
 - d. In the Examine preview data dialog, click Close.
- 12. To close the **Table input** dialog, click **OK**.

Configure the Table Output Step and Run the Transformation

In this section of the exercise, you configure the **Table output** step to write the data to a new table in the pentaho_olap database. Since the table doesn't exist in the penatho_olap database, you use the **SQL** helper button to generate SQL to create the table. You then run the transformation.

- 1. To configure the **Table output** step, on the canvas, double-click the **Table output** step.
- 2. To name the step, in the Step name, type to-test orderdetails
- 3. To configure the **Table output** step, in the **Table output** dialog, type or select the following:

Field	Value
Connection	pentaho_olap
Target schema	[leave blank]
Target table	test_orderdetails
Commit size	1000
Truncate table	[checked]

- 4. To generate the SQL statement to create the table, in the **Table output** dialog, click the **SQL** button.
- 5. Verify the syntax of the SQL statement, and then to execute the SQL statement, in the **Simple SQL** editor dialog, click **Execute**.
- 6. Verify the SQL statement executed, and then in the Results of the SQL statements dialog, click OK.
- 7. To close the **Simple SQL editor** dialog, click **Close**.
- 8. To close the **Table output** dialog, in the **Table output** dialog, click **OK**.
- 9. Save the transformation.
- 10. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.

Modify the Table Input and Table Output Steps

In this section of the exercise, you modify the **Table input** step to add a calculated value. You then modify the **Table output** step to generate a SQL statement that adds the new column to the output table.

- 1. To add a calculated column, double-click the ti-orderdetails (Table input) step.
- 2. To calculate the total, add the following line below the , priceeach line:

```
, quantityordered * priceeach as total
```

- 3. To preview the query:
 - a. In the Table input dialog, click Preview.
 - b. In the Enter preview size dialog, click OK.
 - c. Review the results.
 - d. In the **Examine preview data** dialog, click **Close**.
- 4. To close the **Table input** dialog, click **OK**.
- 5. To update the to-test_orderdetails (Table output) step, double-click the to-test_orderdetails step.
- 6. In the **Table output** dialog, click the **SQL** button.
- 7. Verify the syntax of the SQL statement, and then to execute the SQL statement, in the **Simple SQL** editor dialog, click **Execute**.

The SQL button generates any SQL that needs to be executed against the target table to make its layout match what you are trying to load into it, so in this case it only needs to alter the table to add the total column.

- 8. Verify the SQL statement executed, and then in the Results of the SQL statements dialog, click OK.
- 9. Close the Simple SQL editor dialog.
- 10. To close the **Table output** dialog, in the **Table output** dialog, click **OK**.
- 11. Save the transformation.

Run the Transformation

In this section of the exercise, you run the transformation and review the results in the pentaho_olap database.

- 1. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.

b. In the **Run Options** dialog, click **Run**.

- 2. To view the database connections, on the **View** tab, click to expand **Database connections**.
- 3. Right-click pentaho_olap, and then from the context menu, click Explore.
- 4. To preview the test orderdetails table, in the Database Explorer window:
 - a. Click to expand **pentaho_olap**.
 - b. Click to expand **Tables**.
 - c. Right-click test_orderdetails.
 - d. Select Preview first 100.
- 5. Examine the first 100 rows in the customers table, and then in the Examine preview data dialog, click Close.
- 6. To close Database Explorer, click OK.

Part II

In Part II of this exercise, you modify the transformation to write data to a text file instead of a database table.

Configure the Text File Output Step

In this section of the exercise, you save the transformation with a new name, and then replace the **to-test_orderdetails (Table output)** step with a **Text file output** step.

- 1. To save the transformation with a new name, from the menu, select **File** \rightarrow **Save as**.
- 2. Change the File name to ex3 text file output, and then click OK.
- To delete the to-test_orderdetails (Table output) step, right-click to-test_orderdetails, and then select Delete.

- 4. To add a **Text file output** step to the transformation, on the **Design** tab:
 - a. Click to expand the Output category.
 - b. Drag the **Text file output** step from the **Design** tab to the canvas and drop it to the right of the **ti-orderdetails (Table input)** step.
- 5. Create a hop from the **ti-orderdetails** step to the **Text file output** step.
- 6. To configure the **Text file output** step, on the canvas, double-click the **Text file output** step.
- 7. To name the step, in the Step name, type: Write order details to text file
- 8. To use the DIR OUTPUT variable:
 - a. Click in the Filename field.
 - b. Delete the word "file".
 - c. On the keyboard, press Ctrl-Space.
 - d. From the list of variables, double-click DIR OUTPUT.
- 9. To append the filename to the variable, in the **Filename** field, after the variable, type /ex3_orders_w_total
- 10. To close the **Text file output** dialog, click **OK**.

In this example, you do not need to configure the **Fields** tab. Leaving the **Fields** tab empty writes

- 11. Save the transformation.
- 12. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the **Run Options** dialog, click **Run**.
- 13. To verify the file was created, in Windows Explorer, navigate to

/home/pentaho/course_files/pdi10001/data_files/output and see that ${\tt ex3_orders_w_total.txt} \ {\tt exists}.$

14. Open the file and review the results.

```
        Open▼
        Ex3_orders_w_total.txt
        Save

        ordernumber; productcode; quantityordered; priceeach; total; orderlinenumber
        10208; S12_1108; 46; 176.63; 8124.98; 13

        10208; S12_3148; 26; 128.42; 3338.92; 14
        10208; S12_3891; 20; 152.26; 3045.2; 12

        10208; S18_3140; 24; 117.47; 2819.28; 9
        10208; S18_3259; 48; 96.81; 4646.88; 11

        10208; S18_4522; 45; 72.85; 3278.25; 8
        4522; 45; 72.85; 3278.25; 8
```

- 15. Close the file and return to Spoon.
- 16. Close the ex3_orders_w_total.txt tab.

Solution Details

The solution to this exercise can be found at:

/home/pentaho/course files/pdi1000l/solutions/exercises

Files:

```
ex3_table_input_output.ktr
ex3_text_file_output.ktr
```

Output (Part II):

```
/home/pentaho/course_files/pdi10001/solutions/output_complete/ex3 orders w total.txt
```

End of Exercise 3

Guided Demo 8: Filter Rows, Sort Rows, Excel Writer

In this guided demonstration, we create a transformation that reads customer-related information from a database table. Most of the customers are assigned a sales rep, but several customer records do not have a rep assigned. The transformation will find the customers that are missing an assigned sales rep and sort them by country and customer name. Then the customers are output to an Excel file.

Objectives

After completing this guided demonstration, you will be able to:

- Configure the Filter rows step with a condition that evaluates to true or false
- Configure the **Sort rows** step to sort the data in the stream
- Configure the Microsoft Excel writer step to output the data to an Excel file
- Recognize the usefulness of the Dummy (do nothing) step to capture data row metrics and clearly show the intention of the transformation's logic

Prerequisites

Prior to completing this exercise, you must complete <u>Guided Demo 7: Connections and the Database</u> Explorer. You must also have a kettle.properties variable defining the DIR OUTPUT folder.

Steps Used

This guided demonstration uses the following steps:

- Table input
- Filter rows
- Sort rows
- Microsoft Excel writer
- Dummy (do nothing)

Transformation

Objective: Create an Excel file that contains all customers who do not have sales representatives assigned, ordered by customer name.

Note: The purpose of this guided demonstration is to learn the Filter Rows, Sort Rows, and Microsoft Excel Writer steps. Can you think of a better way to design this transformation?

Create a Transformation

In this section of the guided demonstration, we create a new transformation.

- To create a new transformation, from the toolbar, click the New file button, and then select Transformation.
- 2. To save the transformation, on the toolbar, click the **Save** button.
- 3. To name the transformation and save it to the PDI Trn Objects folder, in the Save dialog:
 - Expand the Public folder.
 - b. Click to select the PDI_Trn_Objects folder.
 - c. In the File name, type gd8 filter rows sort rows excel writer
 - d. Click Save.

Configuring the Table Input Step

In this section of the guided demonstration, we configure a **Table input** step to read in data from the customers table in the pentaho oltp database.

- 1. From the **Input** category, drag a **Table input** step to the canvas.
- 2. Open the Table input step.
- 3. To name the step, in the Step name, type ti-customers
- 4. To select the database connection, from the **Connection** dropdown list, select **pentaho_oltp**.
- 5. To generate the SQL that obtains the data, in the **Table input** dialog, click the **Get SQL select** statement button.
- 6. To select the customers table from the pentaho_oltp database connection, in the Database Explorer dialog:
 - a. Click to expand pentaho_oltp.
 - b. Click to expand **Tables**.
 - c. Click to select the **customers** table and click **OK**.
- 7. To include the field names in the SQL statement, in the **Question** dialog, click **Yes**.
- 8. To delete the columns not needed in this demonstration, in the SQL statement, remove all the columns except:
 - a. customernumber
 - b. customername
 - c. country
 - d. salesrepemployeenumber
- 9. To preview the data and confirm the SQL statement is correct, click **Preview**, and then click **OK**.

10. Verify the data generated is correct by comparing your data with the screenshot:

Notice that some of the customers do not have a sales repemployee number assigned.

- 11. To close the **Examine preview data** dialog, click **Close**.
- 12. To close the Table input dialog, click OK.
- 13. Save the transformation.

Configuring the Filter Rows Step

In this section of the guided demonstration, we add and configure a **Filter rows** step to identify which customers do not have a sales rep assigned. Those that do not will continue through the stream.

- 1. To add a **Filter rows** step to the transformation, on the **Design** tab:
 - a. Click to expand the **Flow** category.
 - b. Drag the Filter rows step to the canvas and drop it to the right of the ti-customers step.
- 2. Create a hop from the **ti-customers** step to the **Filter rows** step.
- 3. Open the **Filter rows** step.
- 4. Set its step name property to fr-cust wo reps
- 5. To identify the field to be filtered on, in the **Filter rows** dialog:
 - a. Click the first **<field>** box.
 - b. In the **Fields** dialog, click **salesrepemployeenumber**.

- c. Click OK.
- 6. To specify the function (condition), in the **Filter rows** dialog:
 - a. Click the **Function** box.
 - b. In the **Functions** dialog, click **IS NULL**.
 - c. Click OK.

The Send true data to step and Send false data to step values will automatically populate when we add hops from this step.

- 7. To close the **Filter rows** dialog, click **OK**.
- 8. Save the transformation.

Configuring the Sort Rows Step

In this section of the guided demonstration, we add and configure a **Sort rows** step to sort the stream by country and customer name. We configure the hop from the **Filter rows** step to only send rows where the filter evaluates to TRUE to the **Sort rows** step.

- 1. To add a **Sort rows** step to the transformation, on the **Design** tab:
 - a. Click to expand the **Transform** category.
 - b. Drag the **Sort rows** step to the canvas and drop it to the right of the **Filter rows** step.
- 2. To create a hop that only sends data with a TRUE result, add a hop from the **Filter rows** step to the **Sort rows** step, and then from the context menu select **Result is TRUE**.
- 3. Open the **Sort rows** step.
- 4. Name the step sr-country customername
- 5. To specify the first sort order, create a row in the **Fields** grid:
 - a. From the **Fieldname** dropdown list, select **country**.
 - b. From the Ascending dropdown list, select Y.
- 6. Create a second row in the **Fields** grid and configure it:
 - a. From the **Fieldname** dropdown list select **customername**.

b. From the **Ascending** dropdown list, select **Y**.

For this guided demonstration, we use the default values for the other properties.

- 7. To close the **Sort rows** dialog, click **OK**.
- 8. Save the transformation.

Configuring the Microsoft Excel Writer Step

In this section of the guided demonstration, we configure the **Microsoft Excel writer** step to create an Excel (.xls) file that contains the customers without sales reps, ordered by customer name.

- 1. To add a Microsoft Excel writer step to the transformation, on the Design tab:
 - a. Click to expand the **Output** category.
 - Drag the Microsoft Excel writer step to the canvas and drop it to the right of the Sort rows step.
- 2. Create a hop from the **Sort rows** step to the **Microsoft Excel writer** step.
- 3. Open the Microsoft Excel writer step.
- 4. Name the step msxlsw-customers wo reps.xls
- 5. To specify the filename using the DIR OUTPUT variable:
 - a. Click in the Filename field.
 - b. Delete the word "file".
 - c. On the keyboard, press Ctrl-Space.
 - d. From the list of variables, double-click DIR_OUTPUT.
- To append the filename to the variable, in the Filename field, after the variable, type
 /customers_wo_reps
- 7. To configure the content to place into the Excel file, click the **Content** tab.
- 8. To automatically size the width of the Excel files columns to fit their contents, check the **Auto size** columns property.

9. To obtain the fields from the stream, click the **Get Fields** button.

Scroll down to see the **Get Fields** button.

- 10. To close the Excel Writer Step dialog, click OK.
- 11. Save the transformation.

Configuring the Dummy (do nothing) Step

In this section of the guided demonstration, we complete the transformation with a **Dummy (do nothing)** step with a hop from the **Filter rows** step, sending the data in the stream for which the filter evaluates to FALSE. Having the **Dummy (do nothing)** step allows us to easily capture how many customers do have sales reps assigned, by viewing its step metrics.

- 1. To add a **Dummy (do nothing)** step to the transformation, on the Design tab:
 - a. Click to expand the Flow category.
 - b. Drag the **Dummy (do nothing)** step to the canvas and drop it below the **Filter rows** step.
- 2. Name the step dmmy-customers w reps
- 3. To create a hop that only sends data with a FALSE result, add a hop from the **Filter rows** step to the **Dummy (do nothing)** step, and then from the context menu select **Result is FALSE**.

Notice the True and False indicators on the hops.

4. Save the transformation.

Run the Transformation

In this section of the guided demonstration, we run the transformation, and then review the output file.

- 1. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.
- 2. On the **Step Metrics** tab, notice the **Output** field for the **Microsoft Excel writer** step indicates 22 lines were output to the Excel file.

3. To verify the file was created, in Windows Explorer, navigate to

/home/pentaho/course_files/pdi10001/data_files/output and see that the customers wo reps.xls file exists.

4. Open the file and review the data.

- 5. Close the file and return to Spoon.
- 6. Close the gd8_filter_rows_sort_rows_excel_writer tab.

Solution Details

The solution to this guided demo can be found at:

/home/pentaho/course_files/pdi10001/solutions/guided_demos

File:

gd8 filter rows sort rows excel writer.ktr

Output:

/home/pentaho/course_files/pdi10001/solutions/output_complete/
customers_wo_reps.xls

End of Guided Demo 8

Exercise 4: Insert/Update and Input with Parameters

In the first part of this exercise, you create a transformation that gets data from the $ex3_orders_w_total.txt$ file created in Exercise 3. Then you use the Insert/update step to load the data into a new table in the pentaho_olap database. Next, you modify the $ex3_orders_w_total.txt$ file and re-run the transformation to update the database table with the new data.

In the second part of this exercise, you create a transformation that uses two parameters in a **Table** input step.

Objectives

After completing this exercise, you will be able to:

- Configure the Insert/update step to either insert rows or update rows in a database table
- Configure the Table input step to load data based on parameter values

Prerequisites

Prior to completing this exercise, you must complete <u>Guided Demo 7: Connections and the Database</u> Explorer. This exercise uses the text file created in Exercise 3.

Steps Used

This exercise uses the following steps:

- CSV file input
- Insert/update
- Generate rows
- Table input
- Table output

Transformations

Part I

In Part I of this exercise, you create a transformation that uses the **CSV file input** and **Insert/update** steps to capture updated data in the source file.

Create and Save the Transformation

In this section of the exercise, you create and save a new transformation.

- To create a new transformation, on the toolbar, click the New file button, and then select Transformation.
- 2. To save the transformation, on the toolbar, click **Save**.
- 3. To name the transformation and save it to the PDI Trn Objects folder, in the Save dialog:
 - a. Click > to expand the Public folder.

- b. Click to select the PDI_Trn_Objects folder.
- c. In the File name, type ${\tt ex4_csv_input_insert_update}$
- d. Click Save.

Configure the CSV File Input Step

In this section of the exercise, you add and configure the **CSV file input** step to bring in the data from the ex3_text_file_output.txt file.

- To add a CSV file input step, on the Design tab, expand the Input category, and then drag the CSV file input step to the canvas.
- 2. To configure the CSV file input step, on the canvas, double-click the CSV file input step.
- 3. To use the DIR OUTPUT variable:
 - a. Click in the Filename field.
 - b. On the keyboard, press Ctrl-Space.
 - c. From the list of variables, double-click DIR_OUTPUT.
- 4. To append the filename to the variable, in the **Filename** field, after the variable, type /ex3_orders_w_total.txt
- 5. To change the separator, in the **Delimiter**, type a semicolon;
- 6. To populate the **Fields** grid:
 - a. Click the Get Fields button.
 - b. In the Sample data dialog, click OK.
- 7. To close the CSV Input dialog, click OK.

Configure the Insert/Update Step and Run the Transformation

In this section of the exercise, you configure an Insert/update step to insert the data from the stream into a new table in the pentaho_olap database. Since the table does not exist in the pentaho_olap database, you use the SQL helper button to generate SQL to create the table. You then run the transformation.

- 1. To add an Insert/update step to the transformation, on the Design tab:
 - a. Click to expand the Output category.

- b. Drag the Insert/update step to the canvas and drop it to the right of the CSV file input step.
- 2. Create a hop from the CSV file input step to the Insert/update step and select Main output of step.
- 3. To configure the **Insert/update** step, on the canvas, double-click the **Insert/update** step.
- 4. In the Insert/update dialog, type or choose:

Field	Value	
Step name	iu-test_insertupdate	
Connection	pentaho_olap	
Target schema	[leave blank]	
Target table	test_insertupdate	
Commit size	100	

- 5. To get the list of fields, click the **Get fields** button.
- 6. To include only the key fields needed, delete all but the following key fields:
 - a. ordernumber
 - b. orderlinenumber

You can use multi-select to select multiple lines.

- 7. To get the list of update fields, click the **Get update fields** button. Keep all the default values for this exercise.
- 8. To generate the SQL statement to create the table, in the **Insert/update** dialog, click the **SQL** button.
- 9. Verify the syntax of the SQL statement, and then to execute the SQL statement, in the **Simple SQL** editor dialog, click **Execute**.
- 10. Verify the SQL statement executed, and then in the Results of the SQL statements dialog, click OK.
- 11. To close **Simple SQL editor** dialog, click **Close**.
- 12. To close the Insert/update dialog, in the Insert/update dialog, click OK.
- 13. Save the transformation.

- 14. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.
- 15. On the **Step Metrics** tab, notice that 23,640 rows were written to the table.
- 16. Run the transformation again and notice that no rows were output because there were no updates.

Edit the Text File and Run the Transformation

In this section of the exercise, you modify the $ex3_orders_w_total.txt$ file, and then re-run the transformation to see that the changed rows get updated.

- 1. To edit the ex3 orders w total.txt file:
 - a. In Windows Explorer, navigate to /home/pentaho/course_files/pdi10001/data_files/output
 - b. Double-click the ex3 orders w total.txt file.
- 2. To add a new row:
 - a. Click at the end of the header row.
 - b. Press Enter.
 - c. Type 10208; s12 1108; 48; 176.6; 8125; 99

The data you type is identical to the first row except for the last two digits, so you can copy and paste the first row.

- 3. To edit the third entry, change the quantityordered from 26 to 36.
- 4. Save the changes, close the ex3 orders w total.txt file, and then return to Spoon.
- 5. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the **Run Options** dialog, click **Run**.
- 6. On the **Step Metrics** tab, notice that one new row was output to the table for the row you added to the text file, and one row was updated for the row you changed in the text file.

- 7. Run the transformation again and notice that no rows were output or updated.
- 8. Close the ex4_csv_input_insert_update.ktr tab.

Part II

In Part II of this exercise, you create a transformation that uses the **Table input** step to load data based on a parameter value. This procedure is commonly used to load only changed (or delta) data into a data warehouse.

Create the Transformation and Configure the Generate Rows Step

In this section of the exercise, you create a new transformation and configure a **Generate rows** step with dates that will be used as parameter values.

- Create a new transformation named ex4_table_input_parameter and save it to the PDI Trn Objects folder on the repository.
- 2. From the **Input** category, drag a **Generate rows** step to the canvas.
- To configure the Generate rows step, on the canvas, double-click the Generate rows step and name it gr-orderdates
- 4. To only add one row, in the **Limit** field, type 1
- 5. To configure the **Fields** grid, add two rows as shown:

Name	Туре	Format	Value
OrderDateFrom	Date	уууу-MM-dd	2007-01-01
OrderDateTo	Date	уууу-MM-dd	2007-12-31

- 6. To close the **Generate rows** dialog, click OK.
- 7. Save the transformation.

Configure the Table Input Step

In this section of the exercise, you configure the **Table input** step to read data from the orders table in the pentaho_oltp database using parameters to specify a date range.

- From the Input category, drag a Table input step to the canvas, and drop it to the right of the Generate rows step.
- 2. Create a hop from the **Generate rows** step to the **Table input** step.

- 3. To configure the **Table input** step, on the canvas, double-click the **Table input** step and name it ti-orders
- 4. To select the database connection, from the **Connection** dropdown list, select **pentaho_oltp**.
- 5. To generate the SQL that obtains the data, in the **Table input** dialog, click the **Get SQL select** statement button.
- 6. To select the customers table from the pentaho_oltp database connection, in the Database Explorer dialog:
 - a. Click to expand pentaho_oltp.
 - b. Click to expand **Tables**.
 - c. Click to select the **orders** table.
 - d. Click OK.
- 7. To include the field names in the SQL statement, in the Question? dialog, click Yes.
- 8. To add a where clause with parameters, at the end of the SQL statement, add:

```
WHERE orderdate>=? AND orderdate<=?</pre>
```

- 9. To specify the step containing the parameter values, from the **Insert data from step** dropdown list, select **gr-orderdates**.
- 10. To close the **Table input** dialog, click **OK**.
- 11. Save the transformation.

Configure the Table Output Step and Run the Transformation

In this section of the exercise, you configure the **Table output** step to write the data to a new table in the pentaho_olap database. Since the table does not exist in the pentaho_olap database, you use the SQL helper button to generate SQL to create the table. You then run the transformation and view the results in Database Explorer.

- 1. From the **Output** category, drag a **Table output** step to the canvas, and drop it to the right of the **Table input** step.
- 2. Create a hop from the **Table input** step to the **Table output** step.
- 3. To configure the **Table output** step, on the canvas, double-click the **Table output** step.

4. In the **Table output** dialog, type or select the following:

Field	Value
Step name	to-test_orders_2007
Connection	pentaho_olap
Target schema	[leave blank]
Target table	test_orders_2007
Commit size	1000
Truncate table	[checked]

- 5. To generate the SQL statement to create the table, in the **Table output** dialog, click the SQL button.
- 6. Verify the syntax of the SQL statement, and then to execute the SQL statement, in the **Simple SQL** editor dialog, click **Execute**.
- 7. Verify the SQL statement executed, and then in the **Results of the SQL statements** dialog, click **OK**.
- 8. To close **Simple SQL editor** dialog, click **Close**.
- 9. To close the **Table output** dialog, click **OK**.
- 10. Save the transformation.
- 11. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the **Run Options** dialog, click **Run**.
- 12. To view the results, on the **View** tab, click to expand **Database connections**.
- 13. Right-click **pentaho_olap**, and then from the context menu, click **Explore**.
- 14. To preview the customers table, in the **Database Explorer** window:
 - a. Click to expand **pentaho_olap**.
 - b. Click to expand **Tables**.
 - c. Right-click test_orders_2007.
 - d. Select Preview first 100.

- 15. Examine the first 100 rows in the table (specifically the orderdate), and then in the **Examine** preview data dialog, click **Close**.
- 16. To close **Database Explorer**, click **OK**.
- 17. Close the **ex4_table_input_parameter** tab.

Solution Details

The solution to this exercise can be found at:

```
/home/pentaho/course_files/pdi10001/solutions/exercises
```

File:

```
ex4_csv_file_input_insert_update.ktr
ex4 table input parameter.ktr
```

End of Exercise 4

Exercise 5: Parallel Processing

In the first part of this exercise, you modify the Hello World transformation (from <u>Guided Demo 2</u>) to generate 1,000,000 rows. You then create a version of the transformation with five copies of the **Generate rows** step to evaluate the impact on performance. Finally, you create a version of the transformation that distributes the rows to evaluate the impact on performance.

In the second part of this exercise, you create and run a transformation that uses parallel processing.

This exercise is used to help you understand concepts by creating demonstration transformations. Therefore, best practice naming conventions are not used.

Objectives

After completing this exercise, you will be able to:

- Copy and distribute data
- Start multiple copies of a step
- Send data to multiple output steps

Prerequisites

This guided demonstration uses the gd2_hello_world transformation created in <u>Guided Demo 2</u>. If you did not complete Guided Demo 2, you must have access to the course solution files.

Steps Used

This exercise uses the following steps:

- Generate rows
- Dummy (do nothing)
- Add sequence

Transformations

Exercise 5 - Part I: Parallel Processing (Step Copies)

Exercise 5 - Part I: Parallel Processing (Distributing Rows)

Exercise 5 - Part II: Parallel Processing (Counter Different)

Exercise 5 - Part II: Parallel Processing (Counter Same)

Part I

In Part I of this exercise, you modify the Hello World transformation (from <u>Guided Demo 2</u>) to generate 1,000,000 rows. You then create a version of the transformation with five copies of the **Generate rows** step to evaluate the impact on performance. Finally, you create a version of the transformation that distributes the rows to evaluate the impact on performance.

Modify the Hello World Transformation

In this section of the exercise, you modify the $gd2_hello_world$ transformation to generate 1,000,000 rows, and then run it.

- 1. To open the gd2 hello world transformation:
 - From the menu, select File → Open.
 - b. Navigate to the **Public** → **PDI_Trn_Objects** folder.
 - c. Click to select the **gd2_hello_world** transformation.
 - d. Click Open.

If necessary, you can import the transformation from the /home/pentaho/course_files/pdi1000l/solutions/guided_demos_folder.

- 2. Delete the Add constants step.
- 3. Create a hop between the Generate rows and Dummy (do-nothing) steps.
- 4. Save the transformation as ex5_helloworld_parallel_processing in the PDI Trn Objects folder.

- 5. To modify the **gr-hello_worlds** step:
 - a. Double-click the **gr-hello_worlds** step.
 - b. Change the Step name to Create 1 million rows.
 - c. Change the Limit to 1000000.
 - d. Click OK.
- 6. Save the transformation.
- 7. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.

Create Five Copies of the Generate Rows Step

In this section of the exercise, we create five copies of the **Create 1 million rows** step.

- Save the transformation as ex5_helloworld_parallel_processing_5copies in the PDI Trn Objects folder.
- 2. To change the number of copies of the **Create 1 million rows** step, right-click the **Create 1 million rows** step, and then from the context menu, select **Change Number of Copies to Start**.
- 3. To set the number of copies to 5, in the **Nr of copies of step** dialog, change the **Number of Copies** to 5, and then click **OK**.

Enlarge the **Nr of copies of step** dialog to see the **OK** button.

- 4. Notice the x5 indicator at the top left of the **Create 1 million rows** step.
- 5. Save the transformation.
- 6. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.

7. Click the **Step Metrics** tab and notice that 5,000,000 rows were written to the stream: 1,000,000 rows for each step copy.

Distribute the Rows in the Stream

In this section of the exercise, you distribute the rows from the **Create 1 million rows** step to five copies of the **Dummy (do nothing)** step.

- 1. Save the transformation as ex5_helloworld_parallel_processing_distribute in the PDI Trn Objects folder.
- 2. To create four additional **Dummy (do nothing)** steps:
 - a. Right-click the **Dummy (do nothing)** step.
 - b. From the context menu, select Copy.
 - c. Right-click the canvas.
 - d. From the context menu, select Paste.
 - e. Repeat the previous two steps to create a total of five **Dummy (do nothing)** steps.
- 3. Create a hop from the Create 1 million rows step to one of the new Dummy (do nothing) steps.
- 4. To distribute the rows among the five **Dummy (do nothing)** steps, in the **Warning** dialog, click the **Distribute** button.
- 5. Create hops from the Create 1 million rows step to the remaining Dummy (do nothing) steps.
- Save the transformation.
- 7. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the **Run Options** dialog, click **Run**.

Notice that each of the **Dummy (do nothing)** steps reads **1,000,000 rows**.

8. Close the ex5_helloworld_parallel_processing_distribute tab.

Part II

In Part II of this exercise, you create and run a transformation that demonstrates how parallel processing

behaves when using a named counter in the Add sequence step under different scenarios.

Create the Transformation and Add the Steps and Hops

In this section of the exercise, you create a new transformation, add two **Generate rows** steps, two **Add sequence** steps, and a **Dummy (do nothing)** step, and create all the hops.

1. Create a new transformation named

```
ex5_parallel_processing_aseq_counter_different and save it to the PDI_Trn_Objects folder on the repository.
```

- 2. From the **Input** category, drag two **Generate rows** steps to the canvas.
- 3. From the **Transform** category, drag two **Add sequence** steps to the canvas.
- 4. From the **Flow** category, drag a **Dummy (do nothing)** step to the canvas.
- 5. Add hops as follows:
 - a. From the **Generate rows** step to the **Add sequence** step.
 - b. From the **Generate rows 2** step to the **Add sequence 2** step.
 - c. From the Add sequence step to the Dummy (do nothing) step.
 - d. From the Add sequence 2 step to the Dummy (do nothing) step.
 - e. Then, name the steps as shown:

6. Save the transformation.

Configure the Steps and Preview the Results

In this section of the exercise, you configure each **Generate rows** step to add 1000 rows, and then configure each **Add sequence** step to add a unique counter. You then preview the stream to see that there are duplicate values for the counter. Finally, you change each **Add sequence** step to assign a common counter name and

verify the data in the stream.

- 1. Configure the **gr-path1** and **gr-path2** steps and set the **Limit** to 1000. For this exercise, it is not necessary to add fields.
- 2. To configure the **Add sequence** step, on the canvas, double-click the **aseq-path1** step.
- 3. To set the Countername, in the Countername (optional), type: counter1 and then click OK.

The Name of value property adds a new field to the stream named valuename

- 4. Repeat the process to set the Counter name (optional) in the aseq-path2 step to counter2.
- 5. Save the transformation.
- 6. To preview the **dmmy-combined_data** step to see the stream:
 - a. Right-click the **dmmy-combined_data** step.
 - b. From the context menu, select Preview.
 - c. Change the **Number of rows to retrieve** to 2000.
 - d. In the Transformation debug dialog, click Quick Launch.
- 7. To sort the results, click the valuename column header.

Notice the duplicate values in the **valuename** column. This is caused by assigning different counter names in the **Add sequence** steps. Using different counter names within a transformation's **Add sequence** steps provides the capability to keep your sequences separate (and automatically tracked by name) from one another.

- 8. To close the **Examine preview data** dialog, click **Close**.
- 9. To close the **Select the preview step** dialog, click **Close**.
- 10. To save the transformation with another name, click File → Save as... and then type ex5_parallel_processing_aseq_counter_same and click Save.
- 11. To update the aseq-path1 step, on the canvas, double-click the first aseq-path1 step.
- 12. To set the Counter name, in the Counter name (optional), type counter same and then click OK.
- 13. Repeat the steps to set the Counter name (optional) in the aseq-path2 step to counter same.

- 14. Save the transformation.
- 15. To preview the **dmmy-combined_data** step to see the stream:
 - a. Right-click the dmmy-combined_data step.
 - b. From the context menu, select Preview.
 - c. Change the **Number of rows to retrieve** to 2000.
 - d. In the Transformation debug dialog, click Quick Launch.
- 16. To sort the results, click the **valuename** column header.

Notice the **valuename** column is now consecutive from 1 to 2000. This is because there is now only one sequence counter for the entire transformation. This feature provides the capability to assign a single sequence across a transformation regardless of the stream it is in.

- 17. To close the **Examine preview data** dialog, click **Close**.
- 18. To close the **Select the preview step** dialog, click **Close**.
- 19. Close the **ex5_parallel_processing_aseq_counter_same** tab.

Solution Details

The solution to this exercise can be found at:

/home/pentaho/course files/pdi1000l/solutions/exercises

Files:

```
ex5_helloworld_parallel_processing_5copies.ktr
ex5_helloworld_parallel_processing_distribute.ktr
ex5_paralell_processing_aseq_counter_different.ktr
ex5_paralell_processing_aseq_counter_same.ktr
```

End of Exercise 5

Guided Demo 9: Choosing Adequate Sample Size for Get Fields

In this guided demonstration, we create a transformation that loads data from a file and outputs it to a database table. However, when we configure the **CSV file input** step, we use an inadequate sample size to demonstrate the impact incorrect metadata has when using Spoon to create database table DDL.

Note: Transformation step naming standards are not used in this guided demonstration because the objective is to quickly demonstrate development technique instead of creating a transformation for actual use.

Objectives

After completing this guided demonstration, you will be able to:

- Describe the importance of properly selecting the sample size for CSV file input and Text file input steps
- Identify transformation errors caused by an improper sample size

Prerequisites

Prior to completing this exercise, complete <u>Guided Demo 7: Connections and the Database Explorer</u>. You must also have access to the sample files within the Pentaho program files.

Steps Used

This guided demonstration uses the following steps:

- CSV file input
- Table output

Transformation

Guided Demo 9: Choosing Adequate Sample Size for 'Get Fields'

Creating the Transformation

In this section of the guided demonstration, we create a new transformation and save it to the repository.

- 1. Create a new transformation named gd9 preview sample size.
- 2. Save it to the PDI Trn Objects folder on the repository.

Configuring the CSV File Input Step

In this section of the guided demonstration, configure the CSV file input step to read the sales_data.csv sample file, and configure the fields using the proper sample size.

- 1. To add a CSV file input step, from the Input category, drag the CSV file input step to the canvas.
- 2. To configure the CSV file input step, on the canvas, double-click the CSV file input step.
- 3. To use the sample sales data file:
 - a. To the right of the Filename field, click Browse.
 - b. Navigate to the folder

```
/home/pentaho/Pentaho/design-tools/data-
integration/samples/transformations/files
```

- c. Double-click to select the sales data.csv file.
- 4. To populate the **Fields** grid:
 - a. Click the Get Fields button.
 - b. In the **Sample size** dialog, change the value to 0.
 - c. Check the Show sample summary checkbox.
 - d. In the Sample size dialog, click OK.

If you are reading a very large file, it may take a long time to read all its contents. In that case, it would be better to determine the proper field lengths beforehand or determine a sample size that is smaller than the entire file, but large enough to encapsulate the largest field values.

- 5. In the Scan results dialog, notice that PDI scanned 2823 lines, and then click Close.
- 6. In the Fields grid, notice the length for the PRODUCTLINE field is correctly set to 16.

Using an Improper Sample Size

In this section of the guided demonstration, we configure the fields for the **CSV file input** step again, but this time using an inadequate sample size.

- 1. To populate the Fields grid:
 - a. Click the Get Fields button.
 - b. Click **OK** to close the No new fields were found dialog.
 - c. In the **Sample size** dialog, keep the default value of 100.
 - d. Check the **Show sample summary** checkbox.
 - e. In the Sample data dialog, click OK.
- 2. In the **Scan results** dialog, notice that PDI scanned 100 lines, and then click **Close**.
- 3. In the **Fields** grid, notice the length for the **PRODUCTLINE** field is now set to 12, which is incorrect.
 - In addition to **productline** being incorrect, several other fields are incorrect. We will keep these incorrect values and continue creating the transformation to see the impact of these errors.
- 4. To close the CSV Input dialog, click OK.

Configure the Table Output Step

In this section of the guided demonstration, we configure the **Table output** step using the metadata from the stream (which is incorrect for **productline** and several other fields).

- From the Output category, drag a Table output step to the canvas, and drop it to the right of the CSV file input step.
- 2. Create a hop from the CSV file input step to the Table output step and select Main output of step.
- 3. To configure the **Table output** step, on the canvas, double-click the **Table output** step.
- 4. To configure the **Table output** step, in the **Table output** dialog, type or select the following:

Field	Value
Connection	pentaho_olap
Target table	SampleSizeTest

- 5. To generate the SQL statement to create the table, in the **Table Output** dialog, click the **SQL** button.
- Notice the field lengths used to create the new table are based on the metadata coming from the CSV file input step.
- 7. To execute the SQL statement, in the **Simple SQL editor** dialog, click **Execute**.
- 8. Verify the SQL statement executed, and then in the Results of the SQL statements dialog, click OK.
- 9. To close the **Simple SQL editor** dialog, click **Close**.
- 10. To close the **Table Output** dialog, click **OK**.
- 11. Save the transformation.

Running the Transformation

In this section of the guided demonstration, we run the transformation and view the errors that occur when the transformation attempts to load data into the database table.

- 1. To run the transformation:
 - a. On the subtoolbar, click the Run button.
 - b. In the **Run Options** dialog, click **Run**, and then click the **Step Metrics** tab.

Notice the **Table Output** step is red, indicating there are errors.

- 2. To view only the error lines in the log, on the **Logging** tab toolbar, click the **Show error lines** button.
- 3. Review the error lines and notice the error stating ERROR: value too long for type character varying (30). This means data for one of the fields is longer than the table column is wide.
- 4. To close the **Error lines** dialog, click **OK**.
- 5. Close the **qd9 preview sample size** tab.

Solution Details

The solution to this guided demonstration can be found at:

```
/home/pentaho/course files/pdi1000l/solutions/guided demos
```

File:

```
gd9 preview sample size.ktr
```

End of Guided Demo 9

Exercise 6: Lookups and Field Layout Formatting

In this exercise, you create a transformation that identifies customers that are missing postal codes, obtains the missing postal codes from a file, and then loads the complete customer data into a database table that can be used to generate mailing labels. You use a Stream Lookup step to obtain the missing postal codes from another data stream, and a Select Values step to align the updated customer fields with the ones that already had a postal code.

Objectives

After completing this exercise, you will be able to:

- Configure the **Stream lookup** step to obtain data from a file
- Merge data from different streams
- Configure the **Select values** step to change the name and order of a field

Prerequisites

Prior to completing this exercise, you must complete <u>Guided Demo 7: Connections and the Database</u> Explorer. You must also have access to the samples in the Pentaho Data Integration client program files.

Steps Used

This exercise uses the following steps:

- CSV file input
- Filter rows
- Table output
- Stream lookup
- Select values

Transformation

Create a New Transformation and Configure the CSV File Input Step

In this section of the exercise, you create a new transformation and configure the **CSV input** step to obtain data from the sales data.csv sample file.

- Create a new transformation named ex6_update_zip and save it to the PDI_Trn_Objects
 folder on the repository.
- To add a CSV file input step, from the Input category, drag the CSV file input step to the canvas.
- 3. To configure the CSV file input step, on the canvas, double-click the CSV file input step.
- 4. To name the step, in the Step name, type csvi-sales data.csv
- 5. To use the sample sales data.csv file:
 - a. To the right of the Filename field, click Browse.

b. Navigate to:

/home/pentaho/Pentaho/design-tools/dataintegration/samples/transformations/files

- c. Double-click to select the sales data.csv file.
- 6. To populate the Fields grid:
 - a. Click the Get Fields button.
 - b. In the **Sample data** dialog, change the value to 0.
 - c. Click OK.
- 7. To preview the data and confirm it is configured properly, click **Preview**, and then click **OK**.
- 8. Verify the file is being read and notice that many customers do not have a **POSTALCODE**. Then, click **Close**.
- 9. To close the CSV file input dialog, click OK.
- 10. Save the transformation.

Configure the Filter Rows Step

In this section of the exercise, you configure the **Filter rows** step to identify the customers who have a postal code.

- 1. To add a **Filter rows** step to the transformation, from the **Flow** category, drag the **Filter rows** step to the canvas, and drop it to the right of the **csvi-sales_data.csv** step.
- Create a hop from the csvi-sales_data.csv step to the Filter rows step and select Main output of step.
- 3. To configure the **Filter rows** step, on the canvas, double-click the **Filter rows** step.
- 4. To name the step, in the Step name, type fr-w postalcode
- 5. To identify the field to be filtered on, in the **Filter rows** dialog:
 - a. Click the first <field> box.
 - b. In the **Fields** dialog, click **POSTALCODE**.

- c. Click OK.
- 6. To specify the **function** (condition), in the **Filter rows** dialog:
 - a. Click the function box.
 - b. In the **Functions** dialog, click **IS NOT NULL**.
 - c. Click OK.
- 7. To close the **Filter rows** dialog, click **OK**.
- 8. Save the transformation.

Configure the Table Output Step

In this section of the exercise, you configure the **Table output** step to add a new table to the pentaho_olap database containing the sales data for customers who have a postal code (the **Filter rows** step evaluated to TRUE).

- 1. To add a **Table output** step to the transformation, from the **Output** category, drag the **Table output** step to the canvas, and drop it to the right of the **fr-w_postalcode** step.
- 2. To create a hop that only sends data with a TRUE result, add a hop from the **fr-w_postalcode** step to the **Table output** step, and then from the context menu select **Result is TRUE**.
- 3. To configure the **Table output** step, on the canvas, double-click the **Table output** step.
- 4. To name the step, in the Step name, type to-sales data ex6
- 5. To configure the **Table output** step, in the **Table output** dialog, type or select the following:

Field	Value
Connection	pentaho_olap
Target table	sales_data_ex6
Truncate table	[checked]

- 6. To generate the SQL statement to create the table, in the **Table output** dialog, click the **SQL** button.
- 7. To execute the SQL statement, in the **Simple SQL editor** dialog, click **Execute**.
- 8. Verify the SQL statement executed, and then in the Results of the SQL statements dialog, click OK.

- 9. To close the Simple SQL editor dialog, click Close.
- 10. To close the **Table output** dialog, click **OK**.
- 11. Save the transformation.

Configure the Second CSV File Input Step

In this section of the exercise, you configure a second **CSV file input** step to read in a file containing all postal codes.

- 1. To add a **CSV file input** step, from the **Input** category, drag the **CSV file input** step to the canvas, and drop it below the **csvi-sales_data.csv** step.
- 2. To configure the CSV file input step, on the canvas, double-click the CSV file input step.
- 3. To name the step, in the **Step name**, type csvi-zipsortedbycitystate.csv
- 4. To use configure the file to read:
 - a. To the right of the Filename field, click Browse.
 - b. Navigate to:

```
/home/pentaho/Pentaho/design-tools/data-
integration/samples/transformations/files
```

- c. Double-click to select the Zipssortedbycitystate.csv file.
- 5. To populate the **Fields** grid:
 - a. Click the Get Fields button.
 - b. In the **Sample size** dialog, change the value to 0.
 - c. Click OK.
- In the Fields grid, rename the POSTALCODE field to ZIP_RESOLVED, and change the Type to String.
- 7. To preview the data and confirm it is configured properly, click **Preview**, and then click **OK**.
- 8. Verify the file is being read, and then to close the **Examine preview data** dialog, click **Close**.
- 9. To close the CSV file input dialog, click OK.

10. Save the transformation.

Configure the Stream Lookup Step

In this section of the exercise, you configure the **Stream lookup** step to obtain/look up the missing postal codes from the **csvi-zipsortedbycitystate.csv** step and add them to the stream.

- To add a Stream lookup step to the transformation, from the Lookup category, drag the Stream lookup step to the canvas, and drop it to the right of the csvi-zipsortedbycitystate.csv step.
- 2. Create a hop from the **csvi-zipsortedbycitystate.csv** step to the **Stream lookup** step and select **Main output of step**.
- 3. To create a hop that only sends data with a FALSE result, add a hop from the **fr-w_postalcode** step to the **Stream lookup** step, and then from the context menu select **Result is FALSE**.
- 4. To configure the **Stream lookup** step, on the canvas, double-click the **Stream lookup** step.
- 5. To name the step, in the Step name, type slkp-get postalcodes
- 6. From the **Lookup** step dropdown list, select **csvi-zipsortedbycitystate.csv**.
- 7. To define the key fields to lookup, in the **Field** and **Lookup Field** fields, select the following from the dropdown lists:

Field	LookupField
CITY	CITY
STATE	STATE

- 8. To obtain the lookup fields from the stream, click the **Get lookup fields** button.
- 9. To delete CITY and STATE, right-click on each line number and then select Delete selected lines.
- 10. To close the Stream Lookup dialog, click OK.
- 11. To preview the **slkp-get_postalcodes** step:
 - a. On the canvas, right-click the slkp-get postalcodes step.
 - b. From the context menu, select Preview.
 - c. Click the Quick Launch button.

- 12. Scroll to the right to see the new field, ZIP_RESOLVED, has been added to the stream.
- 13. To close the **Examine preview data** dialog, click **Close**.
- 14. To close the **Select the preview step** dialog, click **Close**.
- 15. Save the transformation.

Configure the Select Values Step and Run the Transformation

In this section of the exercise, you configure the **Select values** step to ensure that the data in the stream coming out of the **slkp-get_postalcodes** step matches the structure of the data in the stream coming out of the **fr-w_postalcode** step. The two streams must match in order to write the data to a database table. You then run the transformation.

- To add a Select values step to the transformation, from the Transform category, drag the Select values step to the canvas, and drop it to the right of the slkp-get_postalcodes step.
- 2. Create a hop from the slkp-get_postalcodes step to the Select values step.
- 3. To configure the **Select values** step, on the canvas, double-click the **Select values** step.
- 4. To name the step, in the Step name, type sv-prepare field layout
- 5. To obtain the fields from the stream, at the right side of the **Fields** grid, click the **Get fields to select** button.
- 6. To delete the **POSTALCODE** field, scroll to the **POSTALCODE** (line 20), and then select and delete the line.
- 7. To move the ZIP_RESOLVED field, scroll to the ZIP_RESOLVED field, select the line, and then press Ctrl-Up Arrow repeatedly until ZIP_RESOLVED is in line 20.
- 8. To configure the metadata of the **ZIP_RESOLVED** field to match the original **POSTALCODE** field, click the **Meta-data** tab.
- To select the ZIP_RESOLVED field, from the first row's Fieldname dropdown list, select ZIP_RESOLVED.
- 10. Configure the remainder of this row as follows:
 - a. In the Rename to column, type POSTALCODE
 - b. In the **Length** column, type 9

- 11. To close the **Select/Rename values** dialog, click **OK**.
- 12. Create a hop from the sv-prepare_field_layout step to the to-sales_data_ex6 step, and then select Main output of step.
- 13. To preview the **to-sales_data_ex6** step:
 - a. On the canvas, right-click the **to-sales_data_ex6** step.
 - b. From the context menu, select **Preview**.
 - c. Change the **Number of rows to retrieve** to 3000.
 - d. Click the Quick Launch button.
- 14. Review the results and notice all rows have a **POSTALCODE**.
- 15. To close the **Examine preview data** dialog, click **Close**.
- 16. To close the **Select the preview step** dialog, click **Close**.
- 17. Save the transformation.
- 18. To run the transformation:
 - a. On the subtoolbar, click the **Run** button.
 - b. In the Run Options dialog, click Run.
- 19. Close the **ex6_update_zip** tab.

Solution Details

The solution to this exercise can be found at:

/home/pentaho/course files/pdi1000l/solutions/exercises

File:

ex6_update_zip.ktr

End of Exercise 6

Guided Demo 10: Creating Summary Fields Using Group By

In this guided demonstration, we create a transformation that reads in product data from the pentaho_oltp database, sorts the data by product line, and then sums the quantity in stock for each product line.

Objectives

After completing this guided demonstration, you will be able to:

• Configure the **Group by** step to summarize data based on a field in the stream

Prerequisites

Prior to completing this guided demonstration, you must complete <u>Guided Demo 7: Connections and the Database Explorer.</u>

Steps Used

This guided demonstration uses the following steps:

- Table input
- Sort rows
- Group by

Transformation

Guided Demo 5: Creating Summary Fields Using Group By

Creating the Transformation and Configuring the Table Input Step

In this section of the guided demo, we create a new transformation and configure the **Table input** step to read the products table from the pentaho oltp database.

- Create a new transformation named gd10_sort_group_by and save it to the PDI Trn Objects folder on the repository.
- 2. From the **Input** category, drag a **Table input** step to the canvas.
- 3. To configure the **Table input** step, on the canvas, double-click the **Table input** step.
- 4. To name the step, in the **Step name**, type ti-products
- 5. To select the database connection, from the **Connection** dropdown list, select **pentaho_oltp**.
- 6. To generate the SQL that obtains the data, in the **Table input** dialog, click the **Get SQL select** statement button.
- 7. To select the products table from the pentaho_oltp database connection, in the Database Explorer dialog:
 - a. Click to expand pentaho_oltp.
 - b. Click to expand Tables.

- c. Click to select the products table.
- d. Click OK.
- 8. To include the field names in the SQL statement, in the Question? dialog, click Yes.
- 9. In the SQL statement, delete the **productdescription** line (including the leading comma).
- 10. To preview the data and confirm the SQL statement is correct, click **Preview**, and then click **OK**.
 Notice the **productline** and the **quantityinstock**. In this demonstration we sort the results by **productline** and then sum the **quantityinstock** for each **productline**.
- 11. To close the **Examine preview data** dialog, click **Close**.
- 12. To close the **Table input** dialog, click **OK**.
- 13. Save the transformation.

Configure the Sort Rows Step

In this section of the guided demonstration, we configure the **Sort rows** step to sort the stream by productline.

- To add a Sort rows step to the transformation, from the Transform category, drag the Sort rows step to the canvas, and drop it to the right of the ti-products step.
- 2. Add a hop from the **ti-products** step to the **Sort rows** step.
- 3. To configure the **Sort rows** step, on the canvas, double-click the **Sort rows** step.
- 4. To name the step, in the Step name, type sr-productline
- 5. To specify the sort order, in **the** Fields grid:
 - a. From the **Fieldname** dropdown list, select **productline**.
 - b. From the **Ascending** dropdown list, select **Y**.
- 6. To close the **Sort rows** dialog, click **OK**.
- 7. Save the transformation.

Configure the Group by Step and Preview the Results

In this section of the guided demonstration, we configure the **Group by** step to sum the quantityinstock for each productline.

- 1. To add a **Group by** step to the transformation, from the **Statistics** category, drag the **Group by** step to the canvas, and drop it to the right of the **sr-productline** step.
- 2. Add a hop from the **sr-productline** step to the **Group by** step.
- 3. To configure the **Group by** step, on the canvas, double-click the **Group by** step.
- 4. To name the step, in the **Step name**, type grp-total qty pl
- 5. To group by productline, from the **Group field** dropdown list, select **productline**.
- 6. To name the Group by field, in the Name field, type total gty pl
- 7. To select which field to summarize, from the **Subject** dropdown list, select **quantityinstock**.
- 8. To select the aggregation type, from the **Type** dropdown list, select **Sum**.
- 9. To close the **Group by** dialog, click **OK**.
- 10. To close the **Notice** message, click **Close**.
- 11. To preview the **grp-total_qty_pl** step:
 - a. On the canvas, right-click the **grp-total_qty_pl** step.
 - b. From the context menu, select Preview.
 - c. Click the Quick Launch button.
- 12. Review the results and notice the grouped data.
- 13. To close the **Examine preview data** dialog, click **Close**.
- 14. To close the **Select the preview step** dialog, click **Close**.
- 15. To modify the grp-total_qty_pl step, on the canvas, double-click the grp-total_qty_pl step.
- 16. To show the summed quantityinstock with each row of data, in the **Group By** dialog, click to enable the **Include all rows?** checkbox.
- 17. To close the **Group By** dialog, click **OK**.

- 18. To close the **Notice** message, click **Close**.
- 19. To preview the **grp-total_qty_pl** step:
 - a. On the canvas, right-click the **grp-total_qty_pl** step.
 - b. From the context menu, select Preview.
 - c. Click the Quick Launch button.
- 20. Review the results and notice the grouped data appears for each row.
- 21. To close the **Examine preview data** dialog, click **Close**.
- 22. To close the **Select the preview step** dialog, click **Close**.
- 23. Save the transformation.
- 24. Close the gd10_sort_group_by tab.

Solution Details

The solution to this guided demonstration can be found at:

 $/ \verb|home/pentaho/course_files/pdi1000l/solutions/guided_demos|\\$

File:

gd10 sort group by.ktr

End of Guided Demo 10

Exercise 7: Calculating and Aggregating Order Quantity

In this exercise, you create a transformation that reads in order data from a file. You keep only some of the fields in the stream and sort the data by country. You then aggregate the quantity ordered for each country and include the aggregated value for each row. Finally, you calculate the percentage of the total quantity for the country that was ordered in each row.

Objectives

After completing this exercise, you will be able to:

- Configure the Calculator step to create a calculated value
- Use the Group by step to create an aggregation

Prerequisites

Prior to completing this exercise, you must complete <u>Guided Demo 7: Connections and the Database</u> Explorer. This exercise requires access to the input files that reside on the course student environment.

Steps Used

This exercise uses the following steps:

- CSV file input
- Select values
- Sort rows
- Group by
- Calculator

Transformation

Exercise 7: Calculating and Aggregating Order Quantity

Create the Transformation and Configure the CSV File Input Step

In this section of the exercise, you create and save the new transformation and configure the **CSV file input** step to read in order data.

- 1. Create a new transformation named ex7_sorting_data_grouping and save it to the PDI Trn Objects folder on the repository.
- 2. To add a CSV file input step, on the Design tab, expand the Input category, and then drag the CSV file input step to the canvas.
- 3. To configure the CSV file input step, on the canvas, double-click the CSV file input step.
- 4. To name the step, in the Step name, type csvi-orders
- 5. To use the DIR INPUT variable:
 - a. Click in the Filename field.
 - b. On the keyboard, press Ctrl-Space.
 - c. From the list of variables, double-click **DIR_INPUT**.

- 6. To append the filename to the variable, in the **Filename** field, after the variable, type /order file.csv
- 7. To change the separator, in the **Delimiter**, type a semicolon;
- 8. To turn off lazy conversion, click to deselect the Lazy conversion? checkbox.
- 9. To populate the **Fields** grid:
 - a. Click the Get Fields button.
 - b. In the **Sample size** dialog, change the value to 0.
 - c. Click OK.
- 10. To preview the data and confirm it is configured properly, click **Preview**, and then click **OK**.
- 11. Review the preview data, and then, to close the **Examine preview data** dialog, click **Close**.
- 12. To close the **csvi-orders** dialog, click **OK**.
- 13. Save the transformation.

Configure the Select Values Step

In this section of the exercise, you configure the **Select values** step to only include some of the fields in the stream because this transformation does not need everything from the Order_Data file.

- 1. To add a **Select values** step, from the **Transform** category, drag the **Select values** step to the canvas, and drop it to the right of the **csvi-orders** step.
- 2. Create a hop from the csvi-orders step to the Select values step and select Main output of step.
- 3. To configure the **Select values** step, on the canvas, double-click the **Select values** step.
- 4. To name the step, in the **Step name**, type sv-select fields
- 5. Complete the **Fields** grid of the **Select & Alter** tab as follows:

Fieldname	Rename to
ordernumber	<empty></empty>
quantityordered	<empty></empty>
priceeach	<empty></empty>

Fieldname	Rename to
customernumber	<empty></empty>
country	<empty></empty>

- 6. To close the **Select values** dialog, click **OK**.
- 7. Save the transformation.

Configure the Sort Rows Step

In this section of the exercise, you configure the **Sort rows** step to sort the data in the stream by country.

- To add a Sort rows step, from the Transform category, drag the Sort rows step to the canvas, and drop it to the right of the sv-select_fields step.
- 2. Create a hop from the sv-select_fields step to the Sort rows step and select Main output of step.
- 3. To configure the **Sort rows** step, on the canvas, double-click the **Sort rows** step.
- 4. To name the step, in the **Step name**, type sr-country
- 5. To specify the sort order, in the **Fields** grid:
 - a. From the Fieldname dropdown list, select country.
 - b. From the **Ascending** dropdown list, select **Y**.
- 6. To close the **Sort rows** dialog, click **OK**.
- 7. Save the transformation.

Configure the Group by Step

In this section of the exercise, you configure the **Group by** step to group the data by country and calculate the total quantity ordered for each country. The values will be added to each row in a new field called total qtyordered.

- 1. To add a **Group by** step to the transformation, from the **Statistics** category, drag the **Group by** step to the canvas, and drop it to the right of the **sr-country** step.
- 2. Add a hop from the **sr-country step** to the **Group by** step.
- 3. To configure the **Group by** step, on the canvas, double-click the **Group by** step.

- 4. To name the step, in the Step name, type grp-total qtyordered
- 5. To show the summed quantityordered with each row of data, in the **Group by** dialog, click to select the **Include all rows?** checkbox.
- 6. To group by country, from the **Group field** dropdown list, select **country**.
- 7. To name the group by field, in the Name field, type total qtyordered
- 8. To select which field to summarize, from the Subject dropdown list, select quantityordered.
- 9. To select the aggregation type, from the **Type** dropdown list, select **Sum**.
- 10. To close the **Group by** dialog, click **OK**.
- 11. To close the **Notice** message, click **Close**.
- 12. Save the Transformation.

Configure the Calculator Step

In this section of the exercise, you configure the Calculator step to calculate the percentage of the total quantity for the country that was ordered in each row.

- To add a Calculator step to the transformation, from the Transform category, drag the Calculator step to the canvas, and drop it to the right of the grp-total_qtyordered step.
- 2. Add a hop from the **grp-total_qtyordered** step to the **Calculator** step.
- 3. To configure the **Calculator** step, on the canvas, double-click the **Calculator** step.
- 4. To name the step, in the Step name, type cal-percent orderedforcountry
- 5. To configure the **Fields** grid:
 - a. In the New field property, type percent ordered for country
 - b. From the Calculation dropdown list, select 100 * A / B
 - c. From the Field A dropdown list, select quantityordered
 - d. From the Field B dropdown list, select total_qtyordered

When configuring the **Calculator** step's field grid, each new field you define is added to the list of available fields for subsequent rows. This allows you to use the field you just defined in other

calculations in the same step.

- 6. To close the Calculator dialog, click OK.
- 7. Save the Transformation.

Preview the Results of Each Step

In this section of the exercise, you preview the results of each step to see how the data in the stream changes throughout the transformation.

In the real world, it's best to preview each step as you build the transformation to make sure your configuration is correct before moving on.

- 1. To preview the **csvi-orders** step:
 - a. On the canvas, right-click the **csvi-orders** step.
 - b. From the context menu, select **Preview**.
 - c. Click the Quick Launch button.
- 2. Review the results and notice the step read in all the fields in the file.
- 3. To close the **Examine preview data** dialog, click **Close**.
- 4. To close the **Select the preview step** dialog, click **Close**.
- 5. To preview the **sv-select_fields** step:
 - a. On the canvas, right-click the **sv-select_fields** step.
 - b. From the context menu, select **Preview**.
 - c. Click the Quick Launch button.
- 6. Notice the results only included the selected values.
- 7. To close the **Examine preview data** dialog, click **Close**.
- 8. To close the **sv-select_fields** dialog, click **Close**.
- 9. To preview the **sr-country** step:
 - a. On the canvas, right-click the sv-select_fields step.

- b. From the context menu, select **Preview**.
- c. Click the Quick Launch button.
- 10. Notice the results are sorted by country.
- 11. To close the **Examine preview data** dialog, click **Close**.
- 12. To close the **Select the preview step** dialog, click **Close**.
- 13. To preview the **grp_total_qtyordered** step:
 - a. On the canvas, right-click the **grp_total_qtyordered** step.
 - b. From the context menu, select Preview.
 - c. Click the Quick Launch button.
- 14. Notice each row includes the aggregated value called **total_qtyordered**.
- 15. Close the ex7_sorting_data_grouping tab.

Solution Details

The solution to this exercise can be found at:

/home/pentaho/course files/pdi1000l/solutions/exercises

File:

ex7 sorting data grouping.ktr

End of Exercise 7

Guided Demo 11: Onboarding Data with a Job

Your organization's ETL processes are critical to its success. Orchestrating those processes using jobs ensures they run successfully. If something does go wrong, errors are logged, and perhaps other people are notified. In this guided demonstration, we create a transformation that loads item data into a table from a delimited file. Then, we create a job that runs the transformation, making certain everything that is needed is present. We will design the job to create the database table and log the progress at important areas of execution. Both the transformation and job will be parameterized and documented.

Objectives

After completing this guided demonstration, you will be able to:

- Determine the conditions for running a transformation successfully
- Create a new job that runs the transformation only if those conditions exist
- Log the results when conditions are met or not met
- Demonstrate failure by running job when the requirements are not met
- Demonstrate success by running job when requirements are met

Prerequisites

Prior to completing this guided demonstration, you must complete <u>Guided Demo 7: Connections and the Database Explorer</u>.

You must also have access to the DI1000 course files that reside on the course student environment.

Job Entries Used

This guided demonstration uses the following job entries:

- Start
- File exists
- Write to log
- SQL
- Transformation

- Success
- Abort

Transformation

Job

Create and Verify Transformation

In this section, we create a parameterized transformation that reads item data from a delimited file and loads it into a database table. We will start with hardcoded configuration values so we can verify it works correctly. Later, we will transition them to parameters. As you create the transformation, think about all the things that

must be set up for it to run successfully. For example, the input data must exist, database table must exist, and so on. This knowledge will help us design the job later in the guided demonstration.

- 1. Create a new transformation.
- 2. Open the transformation properties dialog using **CTRL-T** or double-clicking an empty area of the canvas.
- 3. Click on the Parameters tab.
- 4. Add three parameters and their descriptions as shown. Leave the **Default Value** column blank.

Parameter name	Default value	Description
delimiter	(blank)	The input file delimiter.
input_file	(blank)	The input file path and filename.
table_name	(blank)	The target table name.

Note: The values for these parameters will be passed to the transformation by the job.

- 5. To close the transformation properties dialog, click **OK**.
- 6. Add the **CSV file input** step to the canvas.
- 7. Open the step and configure its properties as shown:

Property name	Value
Step name	csvi-items
Filename	/home/pentaho/course_files/pdi10001/data_files/input/ items.csv
Delimiter	(pipe symbol)

- 8. To configure the Fields to insert grid:
 - a. Click the **Get Fields** button.
 - b. Accept the default sample size (we know this is adequate for our data) by clicking **OK**.
- 9. To check the configuration of this step:
 - a. Click Preview.
 - b. Click **OK**.

- c. Verify the data from the file is displayed correctly, then click **Close**.
- 10. Close the CSV file input step dialog by clicking OK.
- 11. Add a **Table output** step to the canvas.
- 12. Create a hop from the **CSV file input** step to the **Table output** step.
- 13. Open the **Table output** step and configure its properties as shown:

Property name	Value
Step name	to-items
Connection	pentaho_oltp
Target table	ITEMS
Specify database fields	(checked)

- 14. Click the **Database fields** tab.
- 15. To define the table column to stream field mapping, configure the **Fields to insert grid** as shown:

Table field	Stream field
item_id	item_id
status_id	status_id
serial_number	serial_number
warehouse_location_id	warehouse_location_id
expiration_date	exp_dt
total_value	value

Note: Alternatively, you could have clicked the **Get fields** button and then updated the last two rows.

- 16. To create the target table:
 - a. Click the SQL button.
 - b. Click Execute.
 - c. To close the **Results of the SQL statements** dialog, click **OK**.

- d. To close the **Simple SQL editor** dialog, click **Close**.
- 17. Close the **Table output** step by clicking **OK**.
- 18. Save the transformation in the repository's Public/PDI_Trn_Objects folder and name it: gd11_tr_load_items_table
- 19. Run the transformation to make sure it runs correctly with the hardcoded configuration values by verifying there are no errors and the data is loaded into the table. If there are errors, double-check the configuration, make any corrections, and run it again.

Parameterize the Transformation

Now that the transformation has been created and verified, it is ready to be parameterized. In this section, we replace the hardcoded file path and name, delimiter, and target table with the parameters we created earlier. The values for these parameters will be provided by the job in which this transformation runs.

- 1. Double-click the **CSV file input** step to open it.
- 2. Replace the current property values with those shown:

Property name	Value
Filename	\${input_file}
Delimiter	\${delimiter}

- 3. Close the step by clicking **OK**.
- 4. Open the **Table output** step.
- 5. Replace the current **Target table property value** with the one shown:

Property name	Value
Target table	\${table_name}

6. Close the step by clicking **OK**.

Document the Transformation

Documenting transformations helps you and others easily understand how it works. In this section, we add notes to the canvas explaining what the transformation does and what is required for it to run successfully.

 Add a note to the canvas under the CSV file input step by right-clicking the canvas and clicking New Note. The note's text is:

Read CSV file

containing items

2. Add a second note to the canvas under the **Table output** step. The note text is:

Insert items

into table

3. Add a third note to the canvas that explains the high-level criteria needed for the transformation to run successfully. This helps us know how to design the job. The note text is:

To run successfully:

- File path and file must exist
- Target table must exist
- Parameters must be correctly set before running
- 4. Save the transformation.

Create the Job and Parameters

The transformation has been created and verified. It is time to create the job that will run it. The job will be designed to run the transformation only when the requirements for it to execute successfully are in place. These requirements can be determined easily from the last note that was added to the transformation. In this section, we will begin creating the job, its parameters, and add the **Start job** entry.

- 1. To create a new job, on the toolbar, click the **New file** button, and then select **Job**.
- 2. Open the job properties dialog by double-clicking an empty area of the canvas.
- 3. Click on the **Parameters** tab.
- 4. Add four parameters, default values, and descriptions as shown:

Parameter name	Default value	Description
delimiter	(pipe symbol)	The input file delimiter.

Parameter name	Default value	Description
input_file	/home/pentaho/course_files/pdi10001/data_files/input/items_not_here.csv Note: We are deliberately configuring for a file that does not exist.	The input file path and file name.
sql_file	/home/pentaho/course_files/pdi10001/data_files/input/gd11_drop_create_table.sql	The SQL script that drops and creates the target table.
table_name	ITEMS	The target table name.

The values will be passed to the transformation by the job.

- 5. To close the job properties dialog, click **OK**.
- 6. In the **Design** tab, expand the **General** category, and drag the **Start job** entry to the canvas.
- 7. Save the job in the repository's Public/PDI_Trn_Objects folder and name it: gd11_jb_load_items_table

Add and Configure File Exists Job Entry

After the job starts, it will use the **File exists** job entry to check for the existence of the input file that the transformation will read. In this section, we will add and configure the **File exists** job entry.

- Using the **Design** tab search box, find the **File exists** job entry, and drag it to the right of the **Start** job entry.
- 2. Create a hop between the **Start** and **File exists** job entries.
- 3. Open the **File exists** job entry and configure it as shown:

Property name	Value
Job entry name	fe-items
File name	\${input_file}

4. Click **OK** to close the **File exists** job entry.

Add and Configure File Exists Destination Job Entries

In this section, we define success and failure paths for the **File exists** job entry. Both paths will lead to **Write to log** job entries that will write messages to the log indicating if the source file was found or not. In the event

the file is not found, the job will be aborted with the **Abort job** entry after writing to the log.

- Using the **Design** tab search box, find the **Write to log** job entry, and drag it to the right of the **fe-items** job entry.
- 2. Create a hop between the **fe-items** and **Write to log** job entries. The hop should be green and have a green checkmark icon on it to indicate this is the success path.
- 3. Open the **Write to log** job entry and configure it as shown:

Property name	Value
Job entry name	wtl-source_file_found
Log level	Basic
Log subject	***SOURCE FILE FOUND***
Log message	The "\${input_file}" file will be loaded to the "\${table_name}" table.

- 4. Close the **Write to log** job entry by clicking **OK**.
- 5. Add a second **Write to log** job entry directly below the **fe-items** job entry.
- 6. Create a hop between the **fe-items** and the second **Write to log** job entries. The hop should be red and have a red X icon on it to indicate this is the failure path.
- 7. Open the second **Write to log** job entry and configure it as shown:

Property name	Value	
Job entry name	wtl-source_file_missing	
Log level	Error	
Log subject	***SOURCE FILE MISSING***	
Log message	***WARNING: THE SOURCE FILE "\${input_file}" IS NOT PRESENT.***	

- 8. Close the **wtl-source_file_missing** job entry.
- 9. Add an **Abort job** entry directly below the **wtl-source_file_missing** job entry.
- 10. Create a hop between the wtl-source_file_missing and Abort job entries.
- 11. Open the **Abort job** entry and configure it as shown:

Property name	Value
Abort job	abrt-source_file_missing
Message	source file is missing.

- 12. Close the **Abort job** entry by clicking **OK**.
- 13. Save the job.

Add and Configure SQL Job Entry

The target table must exist before the transformation tries to load data into it. In this section, we add a SQL job entry that will execute SQL script that drops the target table if it already exists and then creates a new one. This technique ensures a new, empty table exists and the data that is contained in the table after it is loaded is the result of a single run of the job and transformation. The SQL script is in a file that we will point to.

- Using the **Design** tab search box, find the SQL job entry, and drag it to the right of the wtl-souce_file_found job entry.
- 2. Create a hop between the **wtl-souce_file_found** and SQL job entries. The hop should be green and have a green checkmark icon on it to indicate this is the success path.
- 3. Open the SQL job entry and configure it as shown:

Property name	Value
Job entry name	sql-drop_recreate_table
Connection	pentaho_oltp
SQL from file	(checked)
SQL filename	\${sql_file}
Send SQL as a single statement?	(unchecked)
Use variable substitution?	(checked)

You may want to locate and open the SQL script file in a text editor to become acquainted with it.

- 4. Close the **sql drop_recreate_table** job entry by clicking **OK**.
- 5. Save the job.

Add and Configure Transformation Job Entry

We're finished creating the portions of the job that ensure the file and target table exist. Now, the transformation can be executed. In this section, we add the **Transformation** job entry and configure it to run the transformation we created earlier. Part of this configuration includes passing the job parameter values down to the transformation.

- Using the **Design** tab search box, find the **Transformation** job entry, and drag it to the right of the sql drop_recreate_table job entry.
- 2. Create a hop between the **sql drop_recreate_table** and **Transformation** job entries. The hop should be green and have a green checkmark icon on it to indicate this is the success path.
- 3. Open the **Transformation** job entry.
- 4. Name the job entry gd11_tr_load_items_table
- 5. To configure the transformation to run:
 - a. Click the Browse button.
 - b. Navigate to the **Public/PDI_Trn_Objects** folder.
 - c. Select the **gd11_tr_load_items_table** and click **Open**.
- 6. Click the Parameters tab.
- 7. Verify the **Pass parameter values to sub transformation** checkbox is checked.
- 8. To automatically populate the grid with the configured transformation's parameters, click the **Get**Parameters button. This configuration will cause the job's parameter values to be passed to the transformation's parameters with the same name.
- 9. Map the parameters as shown:

- 10. Close the **gd11_tr_load_items_table** job entry by clicking **OK**.
- 11. Save the job.

Add and Configure Transformation Destination Job Entries

In this section, we define the success and failure paths from the **gd11_tr_load_items_table** job entry. If the transformation completes successfully, we mark the job successful using the **Success** job entry. If the transformation fails, we write to the log and abort the job.

- 1. Add a Success job entry directly to the right of the gd11_tr_load_items_table job entry.
- Create a hop between the gd11_tr_load_items_table and Success job entries. The hop should be
 green and have a green checkmark icon on it to indicate this is the success path. The Success job
 entry doesn't require any configuration.
- 3. Add a **Write to log** job entry directly below the **gd11_tr_load_items_table** job entry.
- 4. Create a hop between the **gd11_tr_load_items_table** and new **Write to log** job entries. The hop should be red and have a red X icon on it to indicate this is the failure path.
- 5. Open the new **Write to log** job entry and configure it as shown:

Property name	Value
Job entry name	wtl-transformation_failed
Log level	Error
Log subject	***TRANSFORMATION FAILED***
Log message	***WARNING: THE TRANSFORMATION FAILED TO RUN SUCCESSFULLY.***

- 6. Close the wtl_transformation_failed job entry by clicking OK.
- 7. Add an **Abort job** entry directly below the **wtl_transformation_failed** job entry.
- 8. Create a hop between the wtl_transformation_failed and new Abort job entries.
- 9. Open the new **Abort job** entry and configure it as shown:

Property name	Value
Abort job	abrt-transformation_failed

Property name	Value
Message	Transformation failed to execute successfully

- 10. Close the abrt-transformation_failed job entry by clicking **OK**.
- 11. Save the job.

Document the Job

It is as important to document jobs as it is transformations. In this section, we add notes to the canvas explaining what each branch of the job does.

1. Add a note that describes what happens along the path that leads to the **Success** job entry. Place it all on one line and centered above the main success branch of the job. The note's text is:

Check if file exists -> Write to log file exists -> Drop / create table -> Run transformation -> Job was successful

Add a note that describes what happens along the branch that leads to the abrt-source_file_missing job entry. Place it near the abrt-source_file_missing job entry. The note's text is:

If file does not exist:

Write to log

Abort job

3. Add a note that describes what happens along the branch that leads to the abrttransformation_failed job entry. Place it near the abrt-source_file_missing job entry. The note's text is:

Transformation

execution failed

4. Save the job.

Test Job Failure Path

In this section, we verify the failure path works properly by causing the job to fail. In fact, it should fail already because it is currently configured to look for a file that does not exist. The job will not find the file, log the

failure, and abort. Then, we examine the log and metrics.

- 1. To run the job:
 - a. On the subtoolbar, click **Run**.
 - b. In the **Run Options** dialog, click **Run**.
- 2. Examine the **Logging** tab and find the entry that indicates the source file was not found. It begins with *** SOURCE FILE MISSING ***.
- 3. Review the **Job Metrics** tab and confirm the job finished with a failure result.

Test Job Success Path

In this section, we "fix" the issue by changing the input_file parameter to point to a file that exists. Then, rerun the job when all the requirements for its success are met.

- 1. Click on the Parameters tab.
- 2. Change the input_file parameter's, default values, as shown:

Parameter name	Default value	Description
input_file	/home/pentaho/course_files/pdi10001/data_files/input/items.csv	The input file path and file name.
sql_file	/home/pentaho/course_files/pdi10001/data_files/input/gd11_drop_create_table.sql	The SQL script that drops and creates the target table.

Parameter name	Default value	Description
table_name	ITEMS	The target table name.

- 3. To close the job properties dialog, click **OK**.
- 4. Run the job.
- 5. Examine the **Logging** tab and find the entry that indicates the source file was found. It begins with *** SOURCE FILE FOUND ***.
- 6. Review the **Job Metrics** tab and confirm the job ran successfully with a success result.

Verify Data is Loaded

We finish this guided demonstration by using the Database Explorer to verify the table has been loaded with the item data.

- 1. To explore the database connection:
 - a. On the **View** tab, expand **Database Connections**.
 - b. Right-click **pentaho_oltp** and click **Explore**.
- 2. To verify the item data has been loaded into the table:
 - a. In the Database Explorer, expand pentaho_oltp.
 - b. Click to expand **Tables**.
 - c. Right-click the items table and click Preview first 100.

- 3. Examine the data in the table.
- 4. Close the preview dialog.
- 5. To close Database Explorer, click **OK**.
- 6. Close the job and transformation tabs.

Solution Details

The solution to this guided demonstration can be found at:

```
/home/pentaho/course_files/pdi10001/solutions/guided_demos
```

Files:

```
gd11_tr_load_items_table.ktr
gd11 jb load items table.kjb
```

End of Guided Demo 11

Guided Demo 12: Using the Pentaho Enterprise Repository

In this guided demonstration, we explore the repository, add folders and move a file between folders.

Objectives

After completing this guided demonstration, you will be able to:

- Access the Repository Explorer
- Add folders to the repository
- Import a file to the repository
- Move a file between folders on the repository

Prerequisites

Prior to completing this guided demonstration, you must complete <u>Guided Demo 7: Connections and the Database Explorer.</u>

You must also have access to the sample files that reside on the course student environment.

Exploring the Repository Structure

In this section of the guided demonstration, we explore the repository, add folders, and move a file between folders.

- To explore the repository, from the menu, select Tools → Repository → Explore. Alternatively, you can click the Explore Repository button on the toolbar.
- 2. To view the contents of the PDI_Trn_Objects folder, in the left-side tree, expand the **public** folder and then click to select the **PDI_Trn_Objects** folder.
- 3. To add a new folder, right-click PDI_Trn_Objects, and then select New Folder.
- 4. To name the folder, in the Enter name for New Folder field, type development
- 5. Repeat the previous steps to add two more folders under the PDI_Trn_Objects folder: testing and production.

- 6. To close the **Repository** explorer, click **Close**.
- 7. To import a transformation to the development folder:
 - a. From the menu, select File \rightarrow Import from an XML file.
 - b. Navigate to: /home/pentaho/course files/pdi10001/demo
 - c. Click to select the fact sales basic.ktr transformation.
 - d. Click OK.
- 8. To save the transformation, on the toolbar, click **Save**.
- 9. To save the transformation to the development folder, in the **Transformation properties** dialog:
 - a. Navigate to the Public/PDI_Trn_Objects/development repository folder
 - b. Click Save.
- 10. To explore the repository, on the toolbar, click the **Explore Repository** button.
- 11. To access the development folder:
 - a. Click to expand the **Public** folder.
 - b. Click to expand the PDI_Trn_Objects folder.
 - c. Click to select the **development** folder.

Notice the File Name, Type, and Date Modified.

- 12. To move the transformation to the /home/admin repository folder, click to select the fact sales basic.ktr file, and drag it to the /home/admin repository folder.
- 13. To verify the file was moved, click to expand the **home** folder, and then click to select the **admin** folder.
- 14. Close the Repository Explorer.

End of Guided Demo 12

Guided Demo 13: Scheduling and Monitoring

In this guided demonstration, we configure scheduling and monitoring using PDI.

Objectives

After completing this guided demonstration, you will be able to:

- Schedule the execution of a transformation/job using Spoon
- Monitor job and transformation execution on the Pentaho server

Prerequisites

Prior to completing this guided demonstration, you must complete <u>Guided Demo 7: Connections and the Database Explorer</u>, and Guided Demo 12: Using the Pentaho Repository.

Scheduling a Transformation and Viewing the Scheduler Perspective

In this section of the guided demonstration, we schedule the fact_sales_basic transformation to run every two minutes. We then look at the scheduled transformation on the Scheduler Perspective.

- 1. To open the fact sales basic transformation:
 - a. From the menu, select File \rightarrow Open.
 - b. Navigate to the /home/admin repository folder.
 - c. Click to select the fact sales basic transformation.
 - d. Click Open.

Feel free to use a different job or transformation instead of fact_sales_basic if you like. Whichever one you choose, it must be saved in the Pentaho Repository in order to schedule it.

- 2. To schedule the transformation, from the menu, select **Action** \rightarrow **Schedule**.
- 3. To schedule the transformation to run every two minutes, in the **Schedule** dialog, set the following options, and then click **OK**.

Option	Setting
Start	Now
Repeat	Minutes
Every minute(s)	2

- 4. To view the Scheduler Perspective, from the menu, select View → Perspectives → Scheduler.
- 5. Review the scheduling options. Notice the **Next Run** and **Last Run (duration)** options.
- To return to the Data Integration perspective, from the menu, select View → Perspectives → Data
 Integration.

Do not click the X in the top right corner to close the Scheduler. That closes Spoon.

Monitoring a Slave Server (Carte)

In this section of the guided demonstration, we create a connection to a slave server (Pentaho Server in this case) and monitor transformation activity.

- 1. To create a connection to a slave server:
 - a. Click the View tab.
 - b. Right-click Slave server.
 - c. Select **New**.
- 2. To configure the slave server connection, in the **Slave Server** dialog, type the following values, and then click **OK**.

Field	Value
Server name	Class PS Server
Hostname or IP address	localhost
Port (empty is port 80)	8080
Web App Name (optional)	pentaho
Username	admin
Password	password

Field	Value
Is the master	[unchecked]

- 3. To view the slave server, on the **View** tab:
 - a. Click to expand **Slave server**.
 - b. Right-click Class PS Server.
 - c. Select **Monitor**.
- 4. To view the transformation, click to expand **Transformations**, and then click to expand one of the **fact_sales_basic** transformations.
- 5. Close the **Slave server: Class PS Server** tab.
- 6. Close the **fact_sales_basic** tab.

End of Guided Demo 13

Guided Demo 14: Logging Execution Metrics to a Database

In this guided demonstration, we configure logging for a job and its job entries, so their execution metrics are stored in database tables.

Objectives

After completing this guided demonstration, you will be able to:

- Create database tables to store job and job entry execution metrics
- Configure logging for jobs and job entries
- View logging information in database tables

PDI comes with a database connection, live_logging_info, used to automatically log transformation and job metrics with Kettle logging variables in kettle.properties. This guided demo overrides those variables by hardcoding values, showing how to use different values than those defined in the variables. If you wish, explore live_logging_info to see how metrics logging has been automatically performed throughout this course.

Prerequisites

Prior to completing this guided demonstration, you must complete <u>Guided Demo 7: Connections and the Database Explorer</u>, and Guided Demo 11: Onboarding Data with a Job.

Configuring Job Metrics Logging

In this section of the guided demonstration, we configure job logging for the **gd11_jb_load_items_table** job and then use Database Explorer to view the log table.

- 1. To open the **gd11_jb_load_items_table** job:
 - a. From the menu, select File \rightarrow Open.
 - b. Navigate to the **PDI_Trn_Objects** folder.
 - c. Click to select the **gd11_jb_load_items_table** job.
 - d. Click OK.
- 2. To access the job properties, on the canvas, double-click an empty area.

- 3. Click the **Log** tab.
- 4. To set the job logging properties, in the left panel, click **Job log table**.
- 5. To specify the database connection, from the Log Connection dropdown list, select pentaho_oltp.
- 6. To specify the log table name, in the Log table property, type pdi log job
- 7. Set the Log schema property to public
- 8. In the **Log table fields** grid, review the default selections, and verify the **LOG_FIELD** checkbox is enabled.

Monitoring the **LOG_FIELD** field can negatively impact server performance, especially when logging transformations. However, if you do not select all fields, including **LOG_FIELD**, when configuring job logging, you will not see log details logged.

- 9. To generate the SQL statement to create the log table, click the **SQL** button. Two Simple SQL Editor dialogs open. One over top of the other.
- 10. **Close** the **top** Simple SQL Editor dialog. This is the dialog with the create index statements. The underlying Simple SQL Editor dialog is displayed with a create table statement.
- 11. Verify the syntax of the create table SQL statement, and then to execute in the **Simple SQL editor** dialog, click **Execute**.
- 12. Verify the SQL statement executed, and then in the **Results of the SQL statements** dialog, click **OK**.

 Notice the SQL created indexes.
- 13. To close the **Simple SQL editor** dialog, click **Close**.
- 14. To close the job properties dialog, click **OK**.
- 15. Save the job.
- 16. Run the job.
- 17. To view the database connections, on the **View** tab, click to expand **Database connections**.
- 18. Right-click **pentaho_oltp**, and then from the context menu, click **Explore**.
- 19. To preview the **pdi_log_job** table, in the **Database Explorer** window:
 - a. Click to expand pentaho_oltp.

- b. Click to expand **Tables**.
- c. Right-click pdi_log_job.
- d. Select Preview first 100.
- 20. Examine the log data, and then in the **Examine preview data** dialog, click **Close**.
- 21. To close Database Explorer, click **OK**.
- 22. Run the job again.
- 23. Repeat the steps to view the pdi log job table, and then close Database Explorer.

Configuring Job Entry Logging

In this section of the guided demonstration, we configure job entry logging for the gdll jb load items table job, and then use Database Explorer to view the log table.

- 1. To access the job properties, on the canvas, double-click an empty area.
- 2. To view the **Log** tab, click the **Log** tab.
- 3. To specify the database connection, from the Log Connection dropdown list, select pentaho_oltp.
- 4. To set the job entry logging properties, in the left panel, click **Job entry log table**.
- 5. To specify the log table name, in the Log table name, type pdi log entry
- 6. In the **Log table fields** grid, review the default selections, and then to include the **LOG_FIELD**, click to select the **LOG_FIELD** checkbox.
- 7. To generate the SQL statement to create the log table, click the **SQL** button. Two Simple SQL Editor dialogs open. One over top of the other.
- 8. **Close** the **top** Simple SQL Editor dialog. This is the dialog with the create index statements. The underlying Simple SQL Editor dialog is displayed with a create table statement.
- 9. Verify the syntax of the create table SQL statement, and then to execute in the **Simple SQL editor** dialog, click **Execute**.
- 10. Verify the syntax of the SQL statement, and then to execute the SQL statement, in the **Simple SQL** editor dialog, click **Execute**.

- 11. Verify the SQL statement executed, and then in the Results of the SQL statements dialog, click OK.
- 12. To close the **Simple SQL editor** dialog, click **Close**.
- 13. To close the **job properties** dialog, click **OK**.
- 14. Save the job.
- 15. Run the job.
- 16. To view the database connections, on the **View** tab, click to expand **Database connections**.
- 17. Right-click **pentaho_olap**, and then from the context menu, click **Explore**.
- 18. To preview the **pdi_log_entry** table, in the Database Explorer window:
 - a. Click to expand **pentaho_olap**.
 - b. Click to expand **Tables**.
 - c. Right-click pdi_log_entry.
 - d. Select Preview first 100.
- 19. Examine the log data, and then in the **Examine preview data** dialog, click **Close**.
- 20. To close Database Explorer, click **OK**.
- 21. Close the job.

End of Guided Demo 14