Fourier Analysis

Half Range Fourier Series

Fourier Cosine and Sine Series

Conducted By

Partho Sutra Dhor

Faculty, Mathematics and Natural Sciences BRAC University, Dhaka, Bangladesh

Half Range Series

What is Half Range Series and How to Identify

(-L,L)

Even -> cosine

f(-n) = f(n)

odd -> sine

f(-N) = - f(w)

(0,2)

Half Range Cases of General Fourier Series

General Fourier Series

Let f(x) be defined on the interval (-L, L) with period 2L. The Fourier series expansion of f(x) is defined to be

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

where the Fourier coefficients a_n and b_n are

$$\begin{cases} a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, & n = 0,1,2,3, ... \\ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, & n = 1,2,3, \end{cases}$$

Half Range Fourier Cosine Series

Let f(x) be a function defined on the half interval (0, L). The Fourier Cosine series expansion of f(x) is defined to be

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} \right)$$

where the Fourier coefficients a_n are

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0,1,2,3,...$

Half Range Fourier Sine Series

Let f(x) be a function defined on the half interval (0, L). The Fourier Sine series expansion of f(x) is defined to be

$$f(x) = \sum_{n=1}^{\infty} \left(b_n \sin \frac{n\pi x}{L} \right)$$

where the Fourier coefficients b_n are

$$b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx$$
, $n = 1,2,3,...$

2L = interval length

halt Raye/cosine serm/ sine seria

L = gira halt Range

Problems

Expand $f(x) = \cos x$, $0 < x < \pi$ in a Fourier sine series.

Fourier sine series
$$f(x) = \sum_{n=1}^{\infty} \left(b_n \sin(nx) \right)$$

$$... b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx)$$

$$\therefore b_n = \frac{2}{\pi} \int_0^{\pi} \cos x \cdot \sin(nx) dx \qquad \int_0^{\pi} n \neq 1.$$

$$=\frac{1}{\pi}\int_{0}^{\pi}2\sin(nx)\cos(x)dx$$

$$= \frac{1}{77} \int_{0}^{77} \left[\sin(nx+x) + \sin(nx-x) \right] dx$$

$$=\frac{1}{\pi}\left[-\frac{co(nx+x)}{n+1}+\frac{-co(nx-x)}{n-1}\right]_{0}^{n}$$

$$=\frac{1}{\pi}\left[\frac{e\sigma(nx+x)}{n+1}+\frac{c\sigma(nx+x)}{n-1}\right]_{\pi}^{0}$$

$$=\frac{1}{\pi}\left[\left(\frac{1}{n+1}+\frac{1}{n-1}\right)-\left(\frac{c_{9}\left(n+1\right)\pi}{n+1}+\frac{c_{9}\left(n-1\right)\pi}{n-1}\right)\right]$$

$$= \frac{1}{n} \left[\frac{1}{n+1} + \frac{1}{n-1} - \frac{(-1)^{n-1}}{n+1} - \frac{(-1)^{n-1}}{n-1} \right]$$

$$= \frac{1}{71} \left[\frac{2n}{n^2-1} - \frac{(-1)\cdot(-1)^n}{n+1} - \frac{(-1)^n\cdot(-1)^n}{n-1} \right]$$

$$= \frac{1}{n} \left[\frac{n^{2}-1}{n^{2}-1} + \frac{n+1}{n+1} + \frac{n-1}{n-1} \right]$$

$$=\frac{1}{7}\left[\frac{7}{7^{2}-1}+\frac{7}{7^{2}-1}\right]$$

$$=\frac{n\left(1+\left(-1\right)^{n}\right)}{\pi\left(n^{2}-1\right)}.$$

$$=\frac{1}{\pi}\int_{0}^{\pi}(\sin 2x)dx = \frac{1}{\pi}\left[\frac{1}{2}-\frac{1}{2}\right]$$

$$=\frac{1}{\pi}\left[-\frac{co2x}{2}\right]_{0}^{\pi}$$

$$=\frac{1}{\pi}\left[\frac{co2x}{2}\right]_{\pi}$$

$$=\frac{1}{\pi}\left[\frac{1}{2}-\frac{1}{2}\right]$$

$$b_1 = 0$$

$$\frac{1}{\pi \left(n^{2}-1\right) }=\frac{\pi \left(n^{2}-1\right) }{\pi \left(n^{2}-1\right) }$$

PROBLEM Expand f(x) = x, 0 < x < 2 in a half range series of cosine.

Fourier cosine series
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cdot c_0\left(\frac{n\pi k}{2}\right)\right)$$

$$\therefore \quad \alpha_n = \frac{2}{2} \int_0^2 f(n) \, c_0\left(\frac{n\pi u}{2}\right) \, dn$$

$$\therefore a_0 = \int_0^2 f(x) dx$$

$$=\int_{0}^{2} \chi dx = \left[\frac{x^{2}}{2} \right]_{0}^{2} = 2.$$

$$\therefore \quad \alpha_{k} = \int_{0}^{2} \chi \cdot c_{0} \left(\frac{\gamma_{\pi k}}{2} \right) d\chi$$

$$= \left[\gamma \cdot \frac{\sin\left(\frac{n\pi v}{2}\right)}{\frac{n\pi}{4}} - 1 \cdot \frac{-e\sigma\left(\frac{n\pi v}{2}\right)}{\frac{n\pi}{4}} \right]_{0}$$

$$= \left[\frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \frac{4}{n^2\pi^2} e^{ig}\left(\frac{n\pi x}{2}\right) \right]_0^2$$

$$= \left[\left(\frac{4}{n\pi} \sin \left(n\pi \right) + \frac{4}{n^{2}\pi^{2}} \cos \left(n\pi \right) \right) - \left(0 + \frac{4}{n^{2}\pi^{2}} \frac{1}{1} \right) \right]$$

$$= \frac{4}{n^2 \pi^2} \left(-1 \right)^n - \frac{4}{n^2 \pi^2}$$

$$=\frac{4(-1)^{n}-4}{n^{2}\pi^{2}}$$

PROBLEM Find the Fourier cosine series expansion of the function

$$f(x) = 3\sin x \qquad 0 < x < \pi$$

Fourier cosine series
$$J(x) = \frac{a_0}{2} + \frac{\infty}{n=1}$$
 and $a_0 = \frac{\alpha_0}{n} + \frac{\infty}{n}$

$$\therefore \alpha_n = \frac{2}{\pi} \int_0^{\pi} J(x) (y) (nx) dx$$

$$\therefore \alpha_{0} = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} 3 \sin x dx$$

$$= \frac{2}{\pi} \left[-3 \cos x \right]_{0}^{\pi}$$

$$=\frac{2}{\pi}\left[-3\cos^2\theta\right]_0^{\infty}$$

$$=\frac{2}{71}\left[3\cos\lambda\right]_{71}$$

$$=\frac{2}{21}\left(3.1-3.(-1)\right)$$

$$=\frac{2}{7}6=\frac{12}{7}$$

$$\therefore \quad \alpha_n = \frac{2}{\pi} \int_0^{\pi} J(x) (9) (nx) dx$$

$$=\frac{2}{\pi}\int_{0}^{\pi}3\sin y \cos (ny) dy$$

for $n \neq 1$

$$=\frac{3}{\pi}\int_{0}^{\pi}2\sin \theta \cos(nx) dx$$

$$=\frac{3}{7}\int_0^7 \left[\sin\left(\chi+n\chi\right)+\sin\left(\chi-n\chi\right)\right]d\chi$$

$$=\frac{3}{77}\left[\frac{-eg(x+nx)}{1+n}+\frac{-eg(x-nx)}{1-n}\right]^{77}$$

$$=\frac{3}{\pi}\left[\frac{e_{9}(x+nx)}{1+n}+\frac{c_{9}(x-nw)}{1-n}\right]_{\pi}^{\pi}$$

$$= \frac{3}{7} \left[\left(\frac{1}{1+n} + \frac{1}{1-n} \right) - \left(\frac{(9)(1+n)7}{1+n} + \frac{(9)(1-n)7}{1-n} \right) \right]$$

$$= \frac{3}{\pi} \left[\frac{2}{1-n^{2}} - \frac{(-1)^{1-n}}{1+n} - \frac{(-1)^{1-n}}{1-n} \right]$$

$$= \frac{3}{7} \left[\frac{2}{1-n^2} - \frac{(-1)\cdot(-1)^n}{1+n} - \frac{(-1)\cdot(-1)^n}{1-n} \right]$$

$$= \frac{3}{\pi} \left[\frac{2}{1-n^2} + \frac{(-1)^n}{1+n} + \frac{(-1)^n}{1-n} \right]$$

$$= \frac{3}{7!} \left[\frac{2}{1-N^{2}} + \frac{2 \cdot (-1)^{3}}{1-N^{2}} \right].$$

$$= (-i)^{n}$$

$$= (-i)^{n}$$

$$\therefore a_1 = \frac{2}{\pi} \int_0^{\pi} 3 \sin \theta \cdot \cos \theta d\theta$$

$$=\frac{3}{7}\int_{0}^{7}\sin 2x \, dx$$

$$=\frac{3}{7}\left[-\frac{c924}{2}\right]^{7}$$

$$=\frac{3}{\pi}\left[\frac{(92)}{2}\right]_{7}$$

$$a_{1} = \frac{\pi}{\pi} \int_{0}^{3} \sin 2x \, dx$$

$$= \frac{3}{\pi} \left[\frac{\cos 2x}{2} \right]_{\pi}^{3}$$

$$= \frac{3}{\pi} \left[-\frac{\cos 2x}{2} \right]_{\pi}^{3}$$

$$= \frac{3}{\pi} \left[-\frac{\cos 2x}{2} \right]_{\pi}^{3}$$

$$= -\frac{3}{\pi} \left[-\frac{\cos 2x}{2} \right]_{\pi}^{3}$$

$$= 0$$

$$\therefore \quad Q_0 = \frac{12}{2}$$

$$\dot{} = 0$$

Expand $f(x) = A - \frac{Ax}{P}$, 0 < x < P in a half range series of Sine.

$$\therefore L = P$$

$$\therefore f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{p}\right)$$

$$\therefore bn = \frac{2}{P} \int_{0}^{P} f(n) \sin\left(\frac{n\pi N}{P}\right) dn$$

$$\therefore b_n = \frac{2}{P} \int_{0}^{P} \left(A - \frac{AM}{P} \right) \sin \left(\frac{n\pi M}{P} \right) dn$$

$$=\frac{2}{\rho}\left[\left(A-\frac{AX}{\rho}\right)\frac{-c_{3}\left(\frac{n\pi N}{\rho}\right)}{\frac{n\pi}{\rho}}-\left(\frac{-A}{\rho}\right)-\frac{\sin\left(\frac{n\pi N}{\rho}\right)}{\frac{n^{2}\pi^{2}}{\rho^{2}}}\right]_{0}^{\rho}$$

$$=\frac{2}{\rho}\left[\left(A-\frac{AX}{\rho}\right)\frac{-c_{3}\left(\frac{n\pi N}{\rho}\right)}{\frac{n\pi}{\rho}}-\left(\frac{-A}{\rho}\right)-\frac{\sin\left(\frac{n\pi N}{\rho}\right)}{\frac{n^{2}\pi^{2}}{\rho^{2}}}\right]_{0}^{\rho}$$

$$=\frac{2}{\rho}\left[\left(A-\frac{AX}{\rho}\right)\frac{-c_{3}\left(\frac{n\pi N}{\rho}\right)}{\frac{n\pi}{\rho}}-\left(\frac{-A}{\rho}\right)-\frac{\sin\left(\frac{n\pi N}{\rho}\right)}{\frac{n^{2}\pi^{2}}{\rho^{2}}}\right]_{0}^{\rho}$$

$$=\frac{2}{\rho}\left[\left(A-\frac{AX}{\rho}\right)\frac{-c_{3}\left(\frac{n\pi N}{\rho}\right)}{\frac{n\pi}{\rho}}-\left(\frac{-A}{\rho}\right)-\frac{\sin\left(\frac{n\pi N}{\rho}\right)}{\frac{n^{2}\pi^{2}}{\rho^{2}}}\right]_{0}^{\rho}$$

$$= \left[\frac{2}{P}\left(A - \frac{AN}{P}\right) \frac{-P}{NT} C_{0}^{*}\left(\frac{NNN}{P}\right) - \frac{2}{P} \cdot \frac{A}{P} \cdot \frac{P^{2}}{N^{2}T^{2}} S_{1}^{*}\left(\frac{NNN}{P}\right)\right]_{0}^{P}$$

$$A - \frac{AN}{P} \left| \sin\left(\frac{n\pi N}{P}\right) - e_0\left(\frac{n\pi N}{P}\right) - \frac{A}{n\pi} \right|$$

$$= \left[\frac{-2}{n\pi} \left(A - \frac{A N}{P} \right) e_{0} \left(\frac{n\pi N}{P} \right) - \frac{2A}{n^{2}\pi^{2}} \sin \left(\frac{n\pi N}{P} \right) \right]_{0}^{P}$$

$$= \left[\frac{2}{n\pi}\left(A - \frac{AN}{P}\right)c_{9}\left(\frac{n\pi N}{P}\right) + \frac{2A}{n^{2}\pi^{2}}\sin\left(\frac{NN}{P}\right)\right]_{P}^{O}$$

$$=\left(\frac{2}{n\pi}(A-0)\cdot 1+\frac{2A}{n^2\pi^2}\cdot 0\right)-\left(\frac{2}{n\pi}\cdot (0)+\frac{2A}{n^2\pi^2}\cdot \sin(n\pi)\right)$$

$$=\frac{\sqrt{A}}{h\pi}$$

$$b_{n} = \frac{2A}{n\pi}.$$

$$f(n) = \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi U}{p}\right).$$

