实分析第三周作业

涂嘉乐 PB23151786

2025年3月15日

周一

T1.

证明

- (1).totally disconnected: 对 $\forall x, y \in \mathcal{C}$, 若 $x \neq y$, 则 $d(x,y) > 0 \Rightarrow \exists k_0 \in \mathbb{N}^*$, s.t. $d(x,y) > \frac{1}{3^k}$, 因此 $[x,y] \nsubseteq C_k$, 故 $\exists z \in [x,y]$, s.t. $z \notin C_k \Rightarrow z \notin \mathcal{C}$
- (2).has no isolated points: 对 $\forall x \in C, \forall k \in \mathbb{N}^*$,有 $x \in C_k$,因为 C_k 为 2^k 个长度为 3^{-k} 的区间的无交并(不妨记为 $C_{ki}, i=1,2,\cdots,2^k$),所以 $\exists ! C_{ki}, \text{s.t. } x \in C_{ki}$;设 $C_{ki}=[a,b]$,由 C_{antor} 集的构造知,a,b 一定是 C_{ki} 进行三分、挖去中间的开集后得到两个子区间的端点,故 $a,b \in C_{k+1}$,同理 $a,b \in C_{k+2}, C_{k+3}, \cdots$,又因为 $C_1 \supset C_2 \cdots \supset C_k$,所以

$$a, b \in \bigcap_{k=1}^{\infty} C_k = \mathcal{C}$$

若 x=a, 则取 y=b; 若 x 取 b, 则取 y=a, 若 $x\in(a,b)$, 则任取 y=a 或 b, 我们有 $y\in\mathcal{C}$, 且

$$d(x,y) \le b - a = |C_{ki}| = \frac{1}{3^k}$$

由 k 是任意的知, 我们找不到一个 r > 0, s.t. $B(x,r) \cap \mathcal{C} = \emptyset$, 故 $\forall x \in \mathcal{C}$, x 均不是孤立点

T2.

证明

 $(a).(\Rightarrow): \forall x \in \mathcal{C}, \forall k \in \mathbb{N}^*$,设

$$C_k = \bigsqcup_{i=1}^{2^k} C_{ki}$$

其中 C_{ki} 按从左到右排列,则 $\exists! i_x \in \{1,2,\cdots,2^k\}$, s.t. $x \in C_{ki_x} \stackrel{\mathrm{def}}{=} J_k(x)$,且由 Cantor 集的构造,我们知道 $J_k(x) \supset J_{k+1}(x)$,且 $J_{k+1}(x)$ 为 $J_k(x)$ 进行三等分、挖去中间的开集后得到的两个闭区间中的一个,对 $\forall N \in \mathbb{N}$,我们如下定义 a_{N+1}

$$a_{N+1} = egin{cases} 0, & J_{N+1}(x) eta J_N(x)$$
进行三等分、挖去中间的开集后得到的两个闭区间中的左边那个 $2, & J_{N+1}(x) eta J_N(x)$ 进行三等分、挖去中间的开集后得到的两个闭区间中的右边那个

记 $J_N(x)$ 的左端点为 a,则 $J_N(x)$ 进行三等分、挖去中间的开集后得到的两个闭区间的左端点分别是 $a,a+\frac{2}{3^{N+1}}$,所以对 $\forall N\in\mathbb{N}$, $\sum\limits_{k=1}^{N}\frac{a_k}{3^k}$ 表示 $J_N(x)$ 的左端点,故我们有

$$\sum_{k=1}^{N} \frac{a_k}{3^k} \le x \le \sum_{k=1}^{N} \frac{a_k}{3^k} + \frac{1}{3^N}$$

因为 $\sum_{k=1}^{\infty} \frac{a_k}{3^k} \leq \sum_{k=1}^{\infty} \frac{2}{3^k} < \infty$, 故级数绝对收敛, 在上式中令 $N \to \infty$, 则

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$

故对 $\forall x \in \mathcal{C}$, 我们找到了这样的三进制分解

(⇐). 设 $x=\sum\limits_{k=1}^{\infty}\frac{a_k}{3^k},x_n=\sum\limits_{k=1}^{n}\frac{a_k}{3^k}$,则 x_n 为上述定义的 $J_n(x)$ 的左端点,故 $\forall n\in\mathbb{N}^*,x_n\in\mathcal{C}$,且

$$|x_n - x| = \sum_{k=n+1}^{\infty} \frac{a_k}{3^k} \le \sum_{k=n+1}^{\infty} \frac{2}{3^k} \to 0$$

因此 $x_n \to x$, 由 Cantor 集是有界闭集知, $x_n \to x \in \mathcal{C}$

(b). 良定性: 我们只需证明题目 Cantor 集中的元素按题目规定的三进制分解 $(\forall k \in \mathbb{N}^*, a_k \in \{0,2\})$ 唯一,假设

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} = \sum_{k=1}^{\infty} \frac{b_k}{3^k}, \quad a_k, b_k \in \{0, 2\}$$

我们考虑 \mathbb{N} 的子集 $S = \{k : a_k \neq b_k\}$,由假设表示不唯一知, $\exists k \in \mathbb{N}^*$, s.t. $a_k \neq b_k$,则 S 非空,故 S 存在最小元,记 $k_0 = \min\{k : k \in S\}$,不是一般性,设 $b_{k_0} = 2$, $a_{k_0} = 0$,则

$$0 = x - x = \sum_{k=1}^{\infty} \frac{b_k - a_k}{3^k} = \frac{2}{3^{k_0}} + \sum_{k=k_0+1}^{\infty} \frac{b_k - a_k}{3^k} \ge \frac{2}{3^{k_0}} - \sum_{k=k_0+1}^{\infty} \frac{2}{3^k} = \frac{1}{3^{k_0}}$$

矛盾! 因此假设是唯一的, 故 F 在 Cantor 集上是良定的

连续性: Claim: $\forall x,y\in\mathcal{C}$,若 $|x-y|<\frac{1}{3^{k_0}}$,则 x,y 的三进制分解中,前 k_0 项系数都相同

 $pf\ of\ claim$: 否则,设 $x=\sum\limits_{k=1}^{\infty}rac{a_k}{3^k},y=\sum\limits_{k=1}^{\infty}rac{b_k}{3^k}$,记 $s=\min\{k:k\leq k_0,a_k
eq b_k\}$,且不是一般性设 $b_s=2,a_s=0$ 则

$$y - x = \frac{2}{3^s} + \sum_{k=s+1}^{\infty} \frac{b_k - a_k}{3^k} \ge \frac{2}{3^s} - \sum_{k=s+1}^{\infty} \frac{2}{3^k} = \frac{2}{3^s} \ge \frac{1}{3^{k_0}}$$

这与 $|x-y| < \frac{1}{3^{k_0}}$ 矛盾! 故断言得证

对 $\forall \varepsilon > 0$, 对 $\forall \varepsilon > 0$, 我们选取 k_0 , s.t. $\frac{1}{2^{k_0}} < \varepsilon$, 取 $\delta = \frac{1}{3^{k_0}}$, 则由断言知, $\forall x,y \in \mathcal{C}$, 若 $|x-y| < \delta$, 则它们的前 k_0 项系数相同,故

$$|F(y) - F(x)| = \sum_{k=k_0+1}^{\infty} \frac{|b_k - a_k|}{2^k} \le \sum_{k=k_0+1}^{\infty} \frac{2}{2^k} = 2^{-k_0} < \varepsilon$$

因此 f 在 Cantor 集上是连续的

(c). 对于 $\forall y \in [0,1]$, 均存在二进制分解

$$y = \sum_{k=1}^{\infty} \frac{b_k}{2^k}, \quad b \in \{0, 1\}$$

记 $a_k=2b_k\in\{0,2\}$,注意到 $x=\sum_{k=1}^\infty\frac{a_k}{3^k}\in\mathcal{C}, F(x)=y$,因此 F 是满射,特别地

$$0 = \sum_{k=1}^{\infty} \frac{0}{2^k}, \quad 1 = \sum_{k=1}^{\infty} \frac{1}{2^k}, \Rightarrow \sum_{k=1}^{\infty} \frac{0}{3^k} = 0, \quad \sum_{k=1}^{\infty} \frac{2}{3^k} = 1$$

因此 F(0) = 0, F(1) = 1

(d). 对于 $[0,1]\setminus\mathcal{C}$,它是一列开区间的不交并,对于 $[0,1]\setminus\mathcal{C}$ 中的任意一个开区间,它的左端点与右端点的取值一

定相等,这是因为这个开区间是在某次构造中挖去的开区间,不妨记它为 C_k 的某个闭子区间 C_{ki} 在第 k+1 次构造时挖去的开区间,则它的左端点与右端点在三进制分解的前 k 项均相同,但左端点第 k+1 项全为 0,之后的项全为 2,右端点第 k+1 项为 2,之后的项全为 0,若记左端点为 a,右端点为 b,则

$$F(b) - F(a) = \frac{1}{2^{k+1}} - \sum_{n=k+2}^{\infty} \frac{1}{2^n} = 0$$

因此根据题意,我们可以将 F(x) 写为 $F=F(\sup\{y|y\leq x,y\in\mathcal{C}\})$,进而对 $\forall \varepsilon>0$,我们选取 $k_0,\mathrm{s.t.}$ $\frac{1}{2^{k_0}}<\varepsilon$,取 $\delta=\frac{1}{2^{k_0}}$

若 $x,y \in \mathcal{C}$, 且 $|x-y| < \delta$, 由第三问知, $|F(x) - F(y)| < \varepsilon$;

若 $x,y \in [0,1]$, 不失一般性,设 y > x, 记 $x_1 = \inf\{z : z \in \mathcal{C}, z > x\}, y_1 = \sup\{z : z \in \mathcal{C}, z < y\};$ 若 x_1,y_1 均不存在,则 $(x,y) \subset [0,1] \setminus \mathcal{C}$, f(x) = f(y); 否则, $|x_1 - y_1| \leq |x - y| < \delta$,故

$$|F(x) - F(y)| = |F(x_1) - F(y_1)| \le \varepsilon$$

故 F 在 [0,1] 上连续 □

T3.

证明

(1). 由 A, B 可测知, $B \setminus A$ 可测, 因为 $(B \setminus A) \cap A = \emptyset, B = (B \setminus A) \cup A$, 由测度的可数可加性知

$$m(B) = m(B \backslash A) + m(A) \Rightarrow m(B \backslash A) = 0$$

因为 $E \setminus A = E \cap A^c \subseteq B \cap A^c = B \setminus A$,故 $m_*(E \setminus A) \le m_*(B \setminus A) = 0$,则 $m_*(E \setminus A) = 0$,故 $E \setminus A$ 可测,则 $E = (E \setminus A) \sqcup A$ 也可测,且 $m(E) = m(E \setminus A) + m(A) = m(A)$

(2). 首先证明一个引理: 对 $\forall B \in \mathbb{R}^d$,均 $\exists G_\delta$ 集 G 满足 $B \subset G$,且 $m_*(G) = m_*(B)$ pf of lemma: 对 $\forall B \in \mathbb{R}^d$,由外正则性知

$$m_*(B) = \inf\{m_*(O:O$$
是开集, $E \subseteq O\}$

所以,对 $\forall n \in \mathbb{N}^*, \exists O_n \supset B, \text{s.t. } m^*(O_n) < m_*(B) + \frac{1}{n},$ 设

$$O = \bigcap_{n=1}^{\infty} O_n$$

则 $O \not\in G_{\delta}$ 集, 且一方面, $B \subseteq O \Rightarrow m_*(B) \le m_*(O)$; 另一方面, 因为 $m_*(O) \le m_*(O_n) < m_*(B) + \frac{1}{n}, \forall n \in \mathbb{N}^*$, 令 $n \to \infty$ 即得 $m_*(O) \le m_*(B)$, 因此 $m_*(O) = m_*(B)$

回到本题

①假设 $E \subseteq \mathbb{R}^n$ Lebesgue 可测,对 $\forall A \subset \mathbb{R}^d$,由引理知, $\exists G_\delta \notin G \supset A$,且 $m_*(G) = m_*(A)$,由 $G_\delta \notin G$ 第可测知

$$m_*(E \cap A) + m_*(E^c \cap A) \le m_*(E \cap G) + m_*(E^c \cap G) = m(E \cap G) + m(E^c \cap G) = m(G) = m_*(A)$$

由于 A 是任意选取的, 所以 E 满足 $Carath\'{e}odory$ 条件

②假设 E 满足 $Carath\'{e}odory$ 条件,对 E 使用引理,即 $\exists G_{\delta}$ 集 $G \supset E$,且 $m_*(G) = m_*(E)$,取 A = G,则

$$m_*(E) = m_*(E \cap G) + m_*(E^c \cap G) = m_*(E) + m_*(G \setminus E) \Rightarrow m_*(G \setminus E) = 0$$

故 $G \setminus E$ 可测, 且 G_δ 集 G 可测, 所以 $E = G \setminus (G \setminus E)$ 为可测集的差集, 故 $E \not \in Lebesgue$ 可测的

T4.

证明 我们有三个观察:

- 1. 设 $E, F \subset \mathbb{R}^d, A \in \operatorname{GL}_d(\mathbb{R})$, 则 $A(E \cap F) = A(E) \cap A(F)$ $pf: 若 <math>x \in A(E \cap F)$, 则 $\exists y \in E \cap F, \text{s.t. } x = Ay$, 则 $x = Ay \in A(E), A(F)$, 即 $x \in A(E) \cap A(F) \Rightarrow A(E \cap F) \subseteq A(E) \cap A(F)$; 若 $x \in A(E) \cap A(F)$, 则 $\exists y_1 \in E. y_2 \in F, \text{s.t. } x = Ay_1 = Ay_2$, 两边同时乘以 A^{-1} 得 $y_1 = y_2 \stackrel{\text{def}}{=} y$, 故 $y \in E \cap F \Rightarrow x = Ay \in A(E \cap F) \Rightarrow A(E) \cap A(F) \subseteq A(E \cap F)$, 故二者相等
- 3. 设 $E \subset \mathbb{R}^d$,则 $A^{-1}(E^c) = (A^{-1}(E))^c$ pf: 因为

$$x \in A^{-1}(E^c) \iff Ax \in E^c \iff Ax \notin E$$

 $\iff x = A^{-1}(Ax) \notin A^{-1}(E) \iff x \in (A^{-1}(E))^c$

回到本题,由 T3 知,我们只需证明若 $E \subseteq \mathcal{L}_{\mathbb{R}^d}$,则 A(E) 满足 $Carath\'{e}odory$ 条件:设 $\forall S \subset \mathbb{R}^d$,由 E 可测知,对 $A^{-1}(S)$ 应用 $Carath\'{e}odory$ 条件,则

$$\begin{split} m_*(E) &= m_*(E \cap A^{-1}(S)) + m_*(E \cap (A^{-1}(S))^c) \\ &= m_*(A^{-1}(A(E)) \cap A^{-1}(S)) + m_*(A^{-1}(A(E)) \cap A^{-1}(S^c)) \\ &= m_*(A^{-1}(A(E) \cap S)) + m_*(A^{-1}(A(E) \cap S^c)) \\ &= |\det A^{-1}| m_*(A(E) \cap S) + |\det A^{-1}| m_*(A(E) \cap S^c) \end{split}$$

移项即得

$$m_*(A(E)) = |\det A| m_*(E) = m_*(A(E) \cap S) + m_*(A(E) \cap S^c)$$

由 S 的任意性知, A(E) 满足 $Carath\'{e}odory$ 条件, 故 $A(E) \in \mathscr{L}_{\mathbb{R}^d}$

周三

T1.

证明 首先证明一个引理: 设 $F \subset \mathbb{R}^d$ 是紧集, $m(F) < \infty$, 则对 $\forall 0 < c < m(F)$, 均存在紧集 $G \subset F$, s.t. m(G) = m(F) pf of lemma: 由 F 是紧集知, F 有界, 故 $\exists r_0 > 0$, s.t. $F \subseteq \overline{B_{r_0}(0)}$, 因为闭集的交仍是闭集, 则对 $\forall r \leq r_0, F \cap \overline{B_r(0)}$ 是闭集, 且为紧集, 注意到 $m(F \cap \overline{B_0(0)}) = 0$, $m(F \cap \overline{B_{r_0}(0)}) = m(F)$, 且 $\forall r, F \cap \overline{B_r(0)} \subset F$, 考虑函数

$$f: [0, r_0] \longrightarrow [0, m(F)]$$

 $r \longmapsto m(F \cap \overline{B_r(0)})$

接下来证明 f(r) 是连续的, 首先 $m(\overline{B_r(0)}) = \alpha(d)r^d$ (其中 $\alpha(d)$ 是 d 维单位球的体积) 在 $[0,r_0]$ 上一致连续,则 $\forall \varepsilon > 0, \exists \delta > 0, \mathrm{s.t.} \ \forall |r'-r| < \delta$ (不失一般性,设 r' > r),就有

$$m(\overline{B_{r'}(0)}\backslash \overline{B_{r}(0)}) = \left| m(\overline{B_{r'}(0)}) - m(\overline{B_{r}(0)}) \right| < \varepsilon$$

且当 r' > r 时, $F \cap \overline{B_r(0)} \subseteq F \cap \overline{B_{r'(0)}}$,则

$$|f(r') - f(r)| = \left| m(F \cap \overline{B_{r'}(0)}) - m(F \cap \overline{B_{r}(0)}) \right|$$

$$= m \left(\left(F \cap \overline{B_{r'}(0)} \right) \setminus \left(F \cap \overline{B_{r}(0)} \right) \right)$$

$$= m \left(F \cap \left(\overline{B_{r'}(0)} \setminus \overline{B_{r}(0)} \right) \right)$$

$$\leq m \left(\overline{B_{r'}(0)} \setminus \overline{B_{r}(0)} \right) < \varepsilon$$

这就说明 f 是连续的,则由连续函数的介值定理,对 $\forall c \in (0, m(F)), \exists r_c > 0, \text{s.t. } m(F \cap \overline{B_{r_c}(0)}) = c$ 回到本题:由可测集的定义,对 b-c>0, $\exists \text{开集} E_0 \supset E_1, \text{s.t. } m(E_0 \setminus E_1) < b-c$,则

$$m(E_0) \le m(E_0 \backslash E_1) + m(E_1) < b - c + a$$

此时 $E_2 \setminus E_0 = E_2 \cap E_0^c \subset E_2$ 为紧集,且 $m(E_2 \setminus E_0) \ge m(E_2) - m(E_0) > c - a$,则由引理可知, $\exists G \subset E_2 \setminus E_0$,且 G 为紧集,使得 m(G) = c - a,取 $E = E_1 \sqcup G$,则 $m(E) = m(E_1) + m(G) = c - a + a = c$

T2.

证明

$$(a)$$
. 因为 $\sum\limits_{k=1}^{\infty}m(E_k)<\infty$,所以对 $orall arepsilon>0,\exists N, \mathrm{s.t.}$ $\sum\limits_{k=N}^{\infty}m(E_k),令$

$$\tilde{E}_k = \bigcap_{j=1}^N \bigcup_{i \ge j} E_i = \bigcup_{i \ge N} E_i, \forall k \in \mathbb{N}^*$$

则我们有 $\tilde{E}_1 \supset \tilde{E}_2 \supset \cdots$, 且 $\tilde{E}_k \setminus E$, 因为 $\forall N \in \mathbb{N}^*, E \subset \tilde{E}_N$, 假设 $m(E) = s \neq 0$, 则

$$s = m(E) \le m(\tilde{E}_N) = m\left(\bigcup_{k=N}^{\infty} E_k\right) \le \sum_{k=N}^{\infty} m(E_k), \quad \forall N \in \mathbb{N}^*$$

这与无穷级数 $\sum\limits_{k=1}^{\infty}m(E_k)$ 收敛矛盾! 因此 m(E)=0

(b). 对任意正整数
$$q$$
,设 $A_q = \bigcup_{\substack{(p,q)=1\\1 \leq p < q}} \left(\frac{p}{q} - \frac{1}{q^{\gamma}}, \frac{p}{q} + \frac{1}{q^{\gamma}}\right) \cap [0,1]$,则我们得到了一族集合 $\{A_q\}_{q=1}^{\infty}$

Claim: $E(\gamma) = \limsup_{q \to \infty} A_q$

pf of Claim:

$$x \in E(\gamma) \iff \exists$$
 无穷多个最简有理数 $\frac{p}{q} \in \mathbb{Q}$ 满足 $\left| x - \frac{p}{q} \right| < \frac{1}{q^{\gamma}}$ \iff \exists 无穷多个 A_q , s.t. $x \in A_q$ \iff $x \in \limsup_{q \to \infty} A_q$

记 $\varphi(q)$ 为欧拉函数,若 q 有素因数分解 $q = p_1^{e_1} \cdots p_s^{e_s}$,则 $\varphi(q) = p_1^{e_1-1}(p_1-1) \cdots p_s^{e_s-1}(p_s-1) < p$,所以我们有

$$\sum_{q=1}^{\infty} m(A_q) = \sum_{q=1}^{\infty} \frac{2\varphi(q)}{q^{\gamma}}$$

$$\leq 2\sum_{q=1}^{\infty} \frac{1}{q^{\gamma-1}} < \infty$$

因为
$$\gamma > 2$$
 时, $\gamma - 1 > 1$, 故上述级数是收敛的, 由 $Borel\text{-}Cantelli$ 引理知 $m(E(\gamma)) = m\left(\limsup_{q \to \infty} A_q\right) = 0$

T3.

证明

(a). 记第 k 次挖去的 2^{k-1} 个区间之并为 I_k ,则 $m(I_k) = \sum_{i=1}^k 2^{i-1} l_i, [0,1] = C_k \sqcup I_k$,且我们有 $I_1 \subset I_2 \subset \cdots$,令 $I = \bigcup_{k=1}^\infty I_k$,因为开集的任意并为开集,所以 I 为开集,故可测,且

$$[0,1]\backslash I=[0,1]\cap I^c=[0,1]\cap \left(\bigcup_{k=1}^\infty I_k\right)^c=[0,1]\cap \left(\bigcap_{k=1}^\infty C_k\right)=[0,1]\cap \hat{\mathcal{C}}=\hat{\mathcal{C}}$$

所以 \hat{C} 为可测集的差集,故可测,且

$$m(\hat{\mathcal{C}}) = m([0,1]\backslash I) = m([0,1]) - m(I) = 1 - \lim_{N \to \infty} m(I_N) = 1 - \lim_{N \to \infty} \sum_{k=1}^{N} 2^{k-1} l_k = 1 - \sum_{k=1}^{\infty} 2^{k-1} l_k$$

特别地, 若 $\sum_{k=1}^{\infty} 2^{k-1} l_k < 1$, 则 $m(\hat{\mathcal{C}}) > 0$

(b). \hat{C} 不包含内点: 任取 $x \in \hat{C}$, 对 $\forall k \in \mathbb{N}^*$, $x \in C_k$, 记 $J_k(x)$ 为构成 C_k 的 2^k 个区间中,包含 x 的那一个,取 x_k 为 $J_k(x)$ 的中点,因为第 k+1 次二分时, $J_k(x)$ 的居中的、长度为 l_{k+1} 的区间被挖去,故 $x_k \notin \hat{C}$,因为

$$J_k(x) = \frac{1 - \sum_{i=1}^k 2^{k-1} l_k}{2^k} \to 0$$

所以 $|x_n - x| \le |J_k(x)| \to 0$,所以对 $\forall \varepsilon > 0$,在 $B_x(\varepsilon)$ 中,总能找到 $\{x_n\}$ 中的点 $x_{n_\varepsilon} \in B_x(\varepsilon)$,且 $x_{n_\varepsilon} \notin \hat{C}$,则 x 不是内点,由 x 的任意性知, \hat{C} 不包含内点

 \hat{C} 不包含孤立点: 任取 $y \in \hat{C}$,我们按以下规则选取 $\{y_k\}$: 若 y 为 $J_k(y)$ 的端点,则选取 y_k 为 $J_k(y)$ 的另一个端点;若 y 不是 $J_k(y)$ 的端点,则选取 y_k 为 $J_y(x)$ 的左端点(或右端点)由于 $J_k(y)$ 在第 k+1 步删去中间长度为 l_{k+1} 的开区间后,它的端点仍然位于 $J_{k+1}(y)$ 中,同理可知 $J_k(y)$ 的端点在 \hat{C} 中,即 $\{y_k\}\subseteq \hat{C}$,且我们有

$$|y_k - y| \le |J_k(y)| \to 0$$

所以对 $\forall \varepsilon > 0$, 在 $B_y(\varepsilon)$ 中,总能找到 $\{y_k\}$ 中的点 $y_{k_\varepsilon} \in B_y(\varepsilon)$, 且 $y_{k_\varepsilon} \in \hat{\mathcal{C}}$, 则 y 不是孤立点,由 y 的任意性知, $\hat{\mathcal{C}}$ 不含孤立点