UNIT 2

Lecture 1

RELATIONAL MODEL CONCEPTS

INTRODUCTION

- Relational model represents database as a collection of data values
- A relation looks like a table of values.
 Contains a set of rows.
- The data elements in each row represent certain facts that correspond to a real-world entity or relationship
- In the formal model, rows are called tuples
- Each column has a column header that gives an indication of the meaning of the data items in that column

INTRODUCTION

 In the formal model, the column header is called an attribute name (or just attribute)

Key of a Relation

- Each row has a value of a data item (or set of items) that uniquely identifies that row in the table
- In the STUDENT relation, SSN is the key

EXAMPLE OF RELATION

STUDENT	Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
	Dick Davidson	422-11-2320	null	3452 Elgin Road	749-1253	25	3.53
	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25
	Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
	Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	null	19	3.21

DOMAIN

- A domain is the set of all possible values that an attribute can take.
- These values are atomic i.e. each value in the domain is indivisible
- A domain also has a data-type or a format defined for it.
- The attribute name designates the role played by a domain in a relation.

TUPLE

- A tuple is an ordered set of values enclosed in angled brackets '< ... >'
- Each value is derived from an appropriate domain.
- A row in the CUSTOMER relation is a 4-tuple and would consist of four values

```
<632895, "John Smith", "101 Main St. Atlanta, GA 30332","(404) 894-2000">
```

This is called a 4-tuple as it has 4 values

A relation is a set of such tuples (rows)

SCHEMA

• The Schema (or description) of a Relation

R(A1, A2,An)
R is the name of the relation
The attributes of the relation are A1,..., An

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

 Each attribute has a domain or a set of valid values.

STATE - 1/2

 The relation state is a subset of the Cartesian product of the domains of its attributes

Attribute Cust-name is defined over the domain of character strings of maximum length 25

Hence, dom(Cust-name) is varchar(25)

STATE - 2/2

 $R(A1, A2,, An) \rightarrow Schema, R is relation$ name and A1, A2, ..., An are the attributes of the relation

$$r(R) \subset dom(A1) \times dom(A2) \times \times dom(An)$$

 $r(R) \rightarrow$ a specific **state of relation** R (set of tuples)

 $r(R) = \{t1, t2, ..., tn\}$ where each t is an n-tuple

 $t = \langle v1, v2, ..., vn \rangle$ where each v element-of dom(A)

COMPARISON OF TERMS

Informal Terms	Formal Terms
Table	Relation
Column Header	Attribute
All possible column values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populated Table	State of the Relation

CHARACTERISTICS OF RELATIONS - 1/2

- Ordering of tuples in a relation
 - The tuples are not considered to be ordered, even though they appear to be in the tabular form.
- Ordering of attributes in a relation schema R (and of values within each tuple)
 - Consider the attributes in R(A1, A2, ...,An) and the values in t=<v1, v2, ..., vn> to be ordered
 - Tuple can be considered as a set of (<attribute, value>) pairs, where each pair gives the value of the mapping from attribute Ai to value vi from dom(Ai)

CHARACTERISTICS OF RELATIONS - 2/2

Values in a tuple:

- All values are considered atomic (indivisible)
- Each value in a tuple must be from the **domain** of the attribute for that column
- If tuple $t = \langle v1, v2, ..., vn \rangle$ is a tuple (row) in the relation state r of R(A1, A2, ..., An), then each vi must be a value from dom(Ai)
- A special null value is used to represent values that are unknown or inapplicable to certain tuples.

RELATIONAL CONSTRAINTS

 Constraints are conditions that must hold on all valid relation states.

- There are four different types of constraints in the relational model
 - Domain constraints
 - Key constraints
 - Entity integrity constraints
 - Referential integrity constraints

DOMAIN CONSTRAINTS

- Specify value of each value A must be atomic value from domain dom(A)
- Data types associated with domains
 - Short integer, integer, long integer, float, double precision float
 - Characters, fixed length strings, variable length strings
 - Date, time, currency data types
 - Subrange of values from data type or as enumerated data type

KEY CONSTRAINTS -1/7

 All elements of a set are distinct hence all tuples in relation must also be distinct

 No two tuples have the same combination of values for all their attributes

• There are other subset of attributes of relation schema R with the property that no two tuples in any relation state r of R should have the same combination of values for these attributes

KEY CONSTRAINTS -2/7

Denote one such subset as SK, then for any two distinct tuples t1 and t2 in relation state r of R, we have

- Any such set of attributes is called superkey of R
- SK specifies a uniqueness constraint that no two distinct tuples in state r of R can have same values for SK

KEY CONSTRAINTS -3/7

 Every relation has one default superkey – set of all its attributes

• Key K of R is superkey of R with additional property that removing any attribute A from K leaves a set of attributes K' that is not superkey of R

 Key is a minimal superkey – superkey from which we cannot remove any attributes and still have uniqueness constraint hold

KEY CONSTRAINTS -4/7

For STUDENT relation

```
{SSN} is a key of student
{SSN, Name} is a superkey
```

However, {SSN, Name} is not key of student, since removing Name from set still leaves us with superkey

Relation schema may have more than one key

Each key here is called candidate key

KEY CONSTRAINTS -5/7

- In general:
 - Any key is a superkey (but not vice versa)
 - Any set of attributes that includes a key is a superkey
 - A minimal superkey is also a key

KEY CONSTRAINTS -6/7

Eg. CAR relation
 LicenseNumber and EngineSerialNumber are two candidate keys

- If a relation has several candidate keys, one is chosen arbitrarily to be the primary key.
- The primary key attributes are underlined.

The primary key value is used to uniquely identify each tuple in a relation

KEY CONSTRAINTS -7/7

CAR	LicenseNumber	EngineSerialNumber	Make	Model	Year
	Texas ABC-739	A69352	Ford	Mustang	96
	Florida TVP-347	B43696	Oldsmobile	Cutlass	99
	New York MPO-22	X83554	Oldsmobile	Delta	95
	California 432-TFY	C43742	Mercedes	190-D	93
	California RSK-629	Y82935	Toyota	Camry	98
	Texas RSK-629	U028365	Jaguar	XJS	98

The CAR relation has two candidate keys:

LicenseNumber and EngineSerialNumber

RELATIONAL DATABASE SCHEMA

 A set S of relation schemas that belong to the same database.

S is the name of the whole database schema

$$S = \{R1, R2, ..., Rn\}$$

 R1, R2, ..., Rn are the names of the individual relation schemas within the database S

ENTITY INTEGRITY

- The primary key attributes PK of each relation schema R in S cannot have null values in any tuple of r(R).
 - This is because primary key values are used to identify the individual tuples.
 - t[PK] ≠ null for any tuple t in r(R)
 - If PK has several attributes, null is not allowed in any of these attributes.

REFERENTIAL INTEGRITY - 1/3

- A constraint involving two relations
- Used to specify a relationship among tuples in two relations:
 - The referencing relation and the referenced relation.

• Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference the primary key attributes PK of the referenced relation R2.

REFERENTIAL INTEGRITY - 2/3

• A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].

• A referential integrity constraint can be displayed in a relational database schema as a directed arc from R1.FK to R2.

REFERENTIAL INTEGRITY - 3/3

- Statement of the constraint
 - The value in the foreign key column (or columns) FK of the referencing relation R1 can be either:
 - A value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or
 - o A null
- In case (2), the FK in R1 should not be a part of its own primary key.

RELATIONAL SCHEMA REPRESENTATION

- Each relation schema can be displayed as a row of attribute names.
- The name of the relation is written above the attribute names
- The primary key attribute (or attributes) will be underlined.
- A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table (or Can also point the primary key of the referenced relation for clarity)

Figure 7.7 Referential integrity constraints displayed on the COMPANY relational database schema diagram.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

POSSIBLE DATABASE STATE FOR COMPANY SCHEMA

EMPLÓYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
LW-LOTEL	T TOPOME.	Mana	CHAMIC	2009	DUMIL	ADDRESS	- C-A	OMERNI	SULFISSIA	DIAC
	John		Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
	Franklin		Wong	333445655	1955-12408	638 Voss, Houston, TX	M	40000	868005555	5
	Alcia		Zokya	599667777	1968-01-19	3321 Castle, Spring, TX	E	25000	987654321	4
	Jerniler		Walace	987654321	1941-06-20	291 Berry, Dellaire, TX	F	43000	888005555	4
	Ramesh		Narayan	666894444	1962-09-15	975 Fire Oak, Humble, TX	M	36000	333445005	5
	Joyce		English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad		Jabbar	987967967	1969-03-29	960 Dallas, Houston, TX	M	25000	987654321	4
	James		Borg	868005555	1937-11-10	450 Stone, Houston, TX	M	55000	nul	1

					DEPT_LOCATI	ONS	DNUMBER	DLOCATION	l
								Houston	Į
						.		Staffort	l
DEPARTMENT	DNAME	<u>DNUMBER</u>	MGRSSN	MGR	STARTDATE			Dolain	l
	Research	5	333445555	1	988-05-22			Suparland	l
	Administration	4	987654321	1	995-01-01				l
	Hoadovadors	1	80800555	- 1	961-06-19				ï

WORKS_ON	ESSN	PNO	HOURS
	123456769	1	32.5
	123456789	2	7.5
	066004444	- 3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999667777	10	10.0
	967987987	10	35.0
	967967967	30	5.0
	987654321	30	20.0
	967654321	20	15.0
	888065555	20	nul

PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
	ProductX	1	Belaire .	5
	ProductY	2	Sugarland	5
	ProductZ	3	Houston	5
	Computerization	10	Saford	4
	Reorganization	20	Houston	1
	Newbonefits	30	Stafford	4

DEPENDENT	ESSN	DEPENDENT_NAME	SEX	BOATE	RELATIONSHIP
	333445655	Aice	F	1986-04-05	DAUGHTER
	333445655	Theodore	M	1983-10-25	SON
	333445605	Joy	F	1958-05-03	SPOUSE
	987654321	Abrer	M	1942-02-28	SPOUSE
	123456789	Michael	M	1988-01-04	SON
	123456789	Aice	F	1988-12-30	DAUGHTER
	123456789	Bissbeth	F	1987-05-05	SPOUSE

UPDATE OPERATIONS ON A RELATION

- INSERT a new tuple in a relation
- DELETE an existing tuple from a relation
- MODIFY an attribute of an existing tuple

VIOLATIONS FOR INSERT OPERATION -1/2

- INSERT may violate any of the constraints:
 - Domain constraint:
 - If one of the attribute values provided for the new tuple is not of the specified attribute domain
 - Key constraint:
 - if the value of a key attribute in the new tuple already exists in another tuple in the relation

VIOLATIONS FOR INSERT OPERATION -2/2

- Referential integrity:
 - if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
- Entity integrity:
 - if the primary key value is null in the new tuple

VIOLATIONS FOR DELETE OPERATION -1/2

- DELETE may violate only referential integrity:
 - If the primary key value of the tuple being deleted is referenced from other tuples in the database
 - Can be remedied by several actions:
 RESTRICT, CASCADE, SET NULL
 - RESTRICT option: reject the deletion

VIOLATIONS FOR DELETE OPERATION -2/2

- CASCADE option: propagate the new primary key value into the foreign keys of the referencing tuples
- SET NULL option: set the foreign keys of the referencing tuples to NULL
- One of the above options must be specified during database design for each foreign key constraint

VIOLATIONS FOR UPDATE OPERATION -1/2

- UPDATE may violate domain constraint and NOT NULL constraint on an attribute being modified
- Any of the other constraints may also be violated, depending on the attribute being updated:
 - Updating the primary key (PK):
 - Similar to a DELETE followed by an INSERT
 - Need to specify similar options to DELETE

VIOLATIONS FOR UPDATE OPERATION -2/2

- Updating a foreign key (FK):
 - May violate referential integrity
- Updating an ordinary attribute (neither PK nor FK):
 - Can only violate domain constraints