Exercice 3 (5 points) Pour les candidats n'ayant pas suivi l'enseignement de spécialité

Partie A

Soit f la fonction définie sur **R** par $f(x) = x - \ln(x^2 + 1)$.

- 1. Résoudre dans **R** l'équation : f(x) = x.
- 2. Justifier tous les éléments du tableau de variations ci-dessous à l'exception de la limite de la fonction f en $+\infty$ que l'on admet.

X	$-\infty$		1		+8
f'(x)		+	0	+	
f	-∞				+∞

- 3. Montrer que, pour tout réel x appartenant à [0;1], f(x) appartient à [0;1].
- 4. On considère l'algorithme suivant :

Variables	N et A des entiers naturels ;	
Entrée	Saisir la valeur de A	
Traitement	N prend la valeur 0 Tant que $N - \ln(N^2 + 1) < A$ N prend la valeur $N+1$ Fin tant que	
Sortie	Afficher N	

- **a.** Que fait cet algorithme?
- **b.** Déterminer la valeur *N* fournie par l'algorithme lorsque la valeur saisie pour *A* est 100.

Partie B

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = u_n - \ln(u_n^2 + 1)$.

- 1. Montrer par récurrence que, pour tout entier naturel n, u_n appartient à [0;1].
- **2.** Étudier les variations de la suite (u_n) .
- 3. Montrer que la suite (u_n) est convergente.
- **4.** On note ℓ sa limite, et on admet que ℓ vérifie l'égalité $f(\ell) = \ell$.

En déduire la valeur de ℓ .