# NLP for SE and Al Techniques

## Agenda

- Advanced Evaluation Techniques (cont.)
- Supervised learning
  - KNNs
  - Linear Regression (OLS)
  - Ridge Regression
  - Lasso Regression

# A roadmap for building machine learning systems



# ADV. Evaluation Techniques (when we don't have enough or quality dataset)

- Cross Validation
- Stratified Cross Validation
- Leave-One-Out Cross validation
- Bootstrapping

### K-folds Cross-validation Method

- AKA. Rotation estimation
- Use to estimate a performance of the mode (i.e. mean of accuracy rate)



### Stratified Cross-validation Method

 Same as Cross-validation but here we ensure that each fold is representative of all strata of the class.



### Leave-one-out Cross-validation Method

- Cross-validation for small sample size.
- The number of folds is the same as the number of training instances.
- Advantages:
  - Makes the best use of the data
  - Involve no random sampling
- Disadvantages:
  - Took long time to run, computationally expensive



# K-fold cross validation (cont.)



## Three-way sampling method



Validation set is use for tuning parameters of your Model.



# Recall: Road map to Data Mining/ Machine learning



### Intro to ML

- Previous, Intelligent" applications, many systems used hand coded rules of "if" and "else" decisions to process data or adjust to user input.
  - Changing the task even slightly might require a rewrite of the whole system.
  - Designing rules requires a deep understanding of how a decision should be made by a human expert.

### Al vs. machine learning vs. deep learning

|                         | Al                                                                       | Machine learning                                                                                                         | Deep learning                                                                                                              |
|-------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Optimal data<br>volumes | Varying data volumes                                                     | Thousands of data points                                                                                                 | Big data:<br>millions of data points                                                                                       |
| Outputs                 | Anything from predictions<br>to recommendations to<br>decision-making    | Numerical value, like a classification or score                                                                          | Anything from numerical values to free-form elements, like free text and sound                                             |
| How it works            | Machines are programmed to mimic human activity with human-like accuracy | Uses various types of auto-<br>mated algorithms that learn to<br>model functions and predict<br>future actions from data | Uses neural networks that<br>pass data through many pro-<br>cessing layers to interpret data<br>features and relationships |
| How it's<br>managed     | Algorithms require human oversight in order to function properly         | Algorithms are directed by data analysts to examine specific variables in data sets                                      | Algorithms are largely self-<br>directed on data analysis once<br>they're put into production                              |

| Machine learning algorithm                                  | Data processing tasks                                     | Section     | Representative references        |
|-------------------------------------------------------------|-----------------------------------------------------------|-------------|----------------------------------|
| K-Nearest Neighbors                                         | Classification                                            | 5.1.1       | [58] [59]                        |
| Naive Bayes                                                 | Classification                                            | 5.1.2       | [60] [61]                        |
| Support Vector Machine                                      | Classification                                            | 5.1.3       | [62] [63] [64]<br>[65]           |
| Linear Regression                                           | Regression                                                | 5.2.1       | [66] [66] [67]<br>[68]           |
| Support Vector<br>Regression                                | Regression                                                | 5.2.2       | [69]<br>[70]                     |
| Classification and<br>Regression Trees                      | Classification/Regression                                 | 5.3.1       | [71] [72]<br>[73]                |
| Random Forests                                              | Classification/Regression                                 | 5.3.2       | [74]                             |
| Bagging                                                     | Classification/Regression                                 | 5.3.3       | [75]                             |
| K-Means                                                     | Clustering                                                | 5.4.1       | [76] [77] [78]                   |
| Density-Based Spatial Clustering of Applications with Noise | Clustering                                                | 5.4.2       | [79]<br>[80]<br>[81]             |
| Principal Component Analysis                                | Feature extraction                                        | 5.5.1       | [82] [83] [84] [85]<br>[86]      |
| Canonical Correlation Analysis                              | Feature extraction                                        | 5.5.2       | [87]<br>[88]                     |
| Feed Forward Neural<br>Network                              | Regression/Classification/<br>Clustering/Feature extracti | 5.6.1<br>on | [89] [90] [91] [92] [93]<br>[57] |
| One-class Support<br>Vector Machines                        | Anomaly detection                                         | 5.8.1       | [94]<br>[95]                     |

(Mahdavinejad et al., 2018)

The real challenge in using ML is to find the algorithm whose learning bias is the best match for a particular data set.

### Predictive Model (in short)

- Construct a model from historical data to make a prediction on unseen data (e.g. we don't know the answer)
- The job of machine learning functions is to find the optimal mapping function.
- There are two ways
  - Classification
  - Regression

# Classification vs. Regression

Classification is the task of predicting a discrete class label.

Regression is the task of predicting a continuous quantity.

### Classification vs. Regression

#### However,

- A classification algorithm may/can predict a continuous value, but the continuous value is in the form of a probability for a class label.
- A regression algorithm may/can predict a discrete value, but the discrete value in the form of an integer quantity.

### K-Nearest Neighbors

- One of the most simplest classification algorithm
- Its belonged to **supervised learning** algorithm.
- One of the most used and produce good performance
- Use similarity measurements
- Can be use in regression and classification problems
- Non-parametric (don't need to follow specific distribution of data)

# K-Nearest Neighbors (cont.)

The object is assigned a class of its nearest neighbor



## K-Nearest Neighbors (cont.)

- 1. Compute a distance value between the item to be classified and every item in the training data-set
- 2. Pick the k closest data points (the items with the k lowest distances)
- 3. Conduct a "majority vote" among those data points the dominating classification in that pool is decided as the final classification

#### **kNN Algorithm**

#### 0. Look at the data



Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

#### 1. Calculate distances



Start by calculating the distances between the grey point and all other points.

#### 2. Find neighbours

#### Point Distance



Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

#### 3. Vote on labels



Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

Image source from Kdnugget websites

## How to get the k value?

Euclidean distance

$$E(x,y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$

Cosine similarity

Measurement between two non-zero vectors

similarity = 
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$



### K-Nearest Neighbors Algorithm ImpL.(cont.)

- 1. Load the data
- 2. Initialize the value of **k**
- 3. To get the predicted class, iterate from 1 to total number of training data points
  - 1. Calculate the distance to all training data. Here, we will use Euclidean distance as our distance metric since it's the most popular method.
  - 2. Sort the calculated distances in ascending order based on distance values
  - 3. Get **top** *k* **rows** from the sorted array
  - 4. Get the most frequent class (Majority vote) of these rows
  - 5. Return the predicted class

## Scikit-learn library for python

- Install Scikit-learn from (http://scikit-learn.org/)
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.metrics import accuracy\_sc
- from sklearn.cross\_validation import train\_test\_split

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

### KNN from scratch

```
# a Counter is a collection where elements are stored as dictionary keys,
# and the key's counts are stored as dictionary values. The example below illustrates this.
from collections import Counter
 import numpy as np
def euclidean distance(x1, x2):
    return np.sqrt(np.sum((x1 - x2) ** 2))
 class KNN:
    def __init__(self, k=3):
    def fit(self, X, y):
        self.X_train = X
        self.y_train = y
    def predict(self, X):
        y pred = [self. predict(x) for x in X]
        return np.array(y pred)
    def predict(self, x):
        # Compute distances between x and all examples in the training set
        distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
        # Sort by distance and return indices of the first k neighbors
        k idx = np.argsort(distances)[: self.k]
        # Extract the labels of the k nearest neighbor training samples
        k_neighbor_labels = [self.y_train[i] for i in k_idx]
        # return the most common class label
        most_common = Counter(k_neighbor_labels).most_common(1)
        return most_common[0][0]
```

```
if __name__ == "__main__":
    from sklearn import datasets
    from sklearn.model selection import train test split
    def accuracy(y true, y pred):
        accuracy = np.sum(y true == y pred) / len(y true)
       return accuracy
    iris = datasets.load iris()
    X, y = iris.data, iris.target
    X train, X test, y train, y test = train test split(
        X, y, test_size=0.2, random_state=1234
    k = 3
    clf = KNN(k=k)
    clf.fit(X_train, y_train)
    predictions = clf.predict(X test)
    print("KNN classification accuracy", accuracy(y test, predictions)
```

### KNN Demo with sklearn

 https://github.com/preenet/961701 65/blob/main/Classification de mo with KNN.ipynb

# Workshop (Term project Proposal(mini))

- Maximum number of 3 people
- Maxmum number 3-5 pages
  - NLP related problem
  - (dataset should contain at least one feature that is textual)
- Proposal content
  - Introduction to your problem
  - Activities, output(s), outcome, identify
  - Stakeholders
  - Data sources
  - DS tasks
  - Solution as software
- For master students (Replicate conference paper that is related to NLP to get 100%)

# Agenda

- Term project due a week before final exam.
- One more workshop (ML topic)

### Pros and Cons

#### Pros

- Simple
- Can apply to both regression and classification
- No data assumption needs

#### Cons

- Sensitive to scale of data
- Curse of demission
- Outlier sensitive
- Missing value treatment

### More KNN

- How to handle categorical variables?
  - Use dummy variables
- Optimal k value?
  - Perform model selection

### KNN for regression

- KneighborsRegressor
- Use the same distance function like the classifier version

Mean absolute error :

Overview

Formula

Formula

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

 $\mathbf{MAE}$  = mean absolute error

 $y_i$  = prediction

 $x_i$  = true value

n = total number of data points

### KNN regressor example

```
# Import the necessary libraries
    import numpy as np
    from sklearn.model selection import train test split
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.metrics import mean squared error, r2 score
    # Generate some sample data
8 X = np.random.rand(100, 1) # Feature
    y = 2 * X + np.random.randn(100, 1) # Target
    # Split the data into training and testing sets
    X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
    # Create a KNN regressor with a specified number of neighbors (e.g., 5)
    knn regressor = KNeighborsRegressor(n neighbors=k)
    # Fit the model to the training data
    knn regressor.fit(X train, y train)
    # Make predictions on the test data
    y_pred = knn_regressor.predict(X_test)
    # Evaluate the model
    mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    print(f"Mean Squared Error: {mse}")
29  print(f"R-squared: {r2}")
```

# KNN regressor



### Linear regression

- When we need model interpretability
- When the relationship tends to be linear



### Regression introduction

Regression – a task of approximating a mapping function (f) from input variables
 (X) to a continuous output variable (y).

- A continuous output variable real number(R), (e.g. int or float values.)
  - These are often quantities (e.g. amounts and sizes.)

• A problem with multiple input variables aka. multivariate regression problem.

### Regression introduction

- Classification predictions can be evaluated using accuracy, whereas regression predictions cannot.
- Accuracy = correct\_pred / total\_pred x 100

- Regression predictions can be evaluated using root mean squared error, whereas classification predictions cannot.
- RMSE = sqrt(avg(error^2))

#### Linear Regression for Iris dataset

 We can use linear regression as machine learning algorithm to predict petal\_width given petal\_length.



#### Least Squares - Linear Regression

- Linear regression function
  - $\hat{y} = b_0 + b_1 x$  or you may know from basic math such as (y = mx+b)
- Slope or Gradient (how steep the line is)

• 
$$b_1 = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

- Y-intercept (where the line cut the Y-axis)
  - $b_0 = \bar{y} b_1 \bar{x}$





- We try to find the line that can fit the observation points the line is called regression line
- We try to draw the line that minimize the errors





- $\hat{y}$  is the estimated value (dependent variable or output)
- x is the independent value (input, we can control)
- $b_0$  is the y-intercept
- $b_1$  is the slop of the regression line





#### Regression using Least Square method



- Find  $\overline{x}$  and  $\overline{y}$ , then plot and draw the line pass through the point
- All the possible regression line has to go through the point

#### Regression using Least Square method (cont.)



• Find the distance of observation points of x and y from the mean

## Regression using Least Square method (cont.)



- Now, we want to find the slope of the line by compute the square of  $(x \overline{x})$  and  $(x \overline{x})(x \overline{x})$ ,
- Hence, we get  $b_1 = 0.6$

## Regression using Least Square method (cont.)



- We know that the regression line will always cross the p(3,4), so finding y-intercept is simple.
- Hence, we have  $b_0 = 2.2$  and  $b_1 = 0.6$
- $\bar{y}$ = 2.2+0.6x

#### Evaluate regression model with R square



- $R^2 = (R \text{ square})$
- R<sup>2</sup> tells us how well our regression line can estimate predict value.

#### Evaluate regression model with R square



#### Steps

- Find x<sup>2</sup>and xy
- Find slope

$$\bullet \ \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

- Get the y-intercept
- Create the equation

## Multicollinearity

- two or more independent variables in a multiple regression model are highly correlated with each other.
- Lead to overfitting

## Multicollinearity

- How to check for Multicollinearity
  - Use Variance Inflation Factor (VIF)

```
from statsmodels.stats.outliers_influence import
variance_inflation_factor
vif = pd.DataFrame()
vif["features"] = house_selected.columns
vif["vif_Factor"] =
[variance_inflation_factor(house_selected.values, i)
for i in range(house_selected.shape[1])]
vif
```

|   | features    | vif_value   |
|---|-------------|-------------|
| 0 | OverallQual | 50.558204   |
| 7 | YearBuilt   | 7015.226148 |
| 2 | TotalBsmtSF | 23.974354   |
| თ | 1stFlrSF    | 700.064200  |
| 4 | 2ndFlrSF    | 141.592671  |
| 5 | GrLivArea   | 1141.861313 |
| 6 | PoolArea    | 1.046374    |
| 7 | MoSold      | 6.529697    |
| 8 | YrSold      | 6542.476374 |

## Multicollinearity

- How to remedy?
  - Collect more data (Very expensive, but most effective)
  - Feature selection, transformation, PCA
  - Try ridge regression

## Ridge regression

- Aka (L2 regularization), an alpha value to be tuned.
- Present regularization term which is not included in the linear regression
- Use when you have large number of feature and multicollinearity is happened
- Try with OLS first as based line and move to more complex like ridge

#### Ridge regression

Loss function = OLS + alpha \* summation (squared coefficient values)

Ridge = 
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - (mx_i + z))^2 + \lambda \sum_{i=1}^{p} (mx_i + z)^2$$

#### Lasso regression

- Least Absolute Shrinkage Selector operator
- Aka. L1 regularization
- For the penalty term, take abs instead of square
- Can be used a feature selection

#### Discussion and Class activities

#### Sklearn for linear regresssion

```
import numpy as np
    from sklearn import datasets
    from sklearn.model selection import train test split
    from sklearn.linear_model import LinearRegression
    import matplotlib.pyplot as plt
    # Load the diabetes dataset
    diabetes = datasets.load diabetes()
    # Use only one feature for simplicity
    X = diabetes.data[:, np.newaxis, 2]
11
12
    # Split the data into training/testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, diabetes.target, test_size=0.2, random_state=42)
    # Create linear regression object
    regr = LinearRegression()
    # Train the model using the training set
    regr.fit(X train, y train)
    # Make predictions using the testing set
    y_pred = regr.predict(X_test)
```

#### Sklearn for Ridge and how to tune

```
ridge regr = Ridge(alpha=1.0)
# Train the model using the training set
ridge regr.fit(X train, y train)
# Split the data into training/testing sets
X train, X test, y train, y test = train test split(X, diabetes.target, test size=0.2, random state=42)
# Define a range of alpha values
alphas = np.logspace(-4, 4, 100)
# Create a RidgeCV regressor object
ridge regr = RidgeCV(alphas=alphas, store cv values=True)
# Train the model using the training set
ridge regr.fit(X train, y train)
# Get the best alpha value
best alpha = ridge regr.alpha
print(f"Best alpha value: {best alpha}")
# Make predictions using the testing set
y_pred_ridge = ridge_regr.predict(X_test)
# Print the coefficients
print('Coefficients: \n', ridge regr.coef )
# The mean squared error
print('Mean squared error: %.2f' % mean squared error(y test, y pred ridge))
# The coefficient of determination: 1 is perfect prediction
```

# Linear regression (by hand)

|   | Number of Chimpanzees | Percent Successful Hunts |
|---|-----------------------|--------------------------|
| 0 | 1                     | 30                       |
| 1 | 2                     | 45                       |
| 2 | 3                     | 51                       |
| 3 | 4                     | 57                       |
| 4 | 5                     | 60                       |
| 5 | 6                     | 65                       |
| 6 | 7                     | 70                       |
| 7 | 8                     | 71                       |







## KNN: Now's it your turn

- Let k = 3
- normalize the data in range.
- Plot a figure to support your result

| Height (cms) | Weight (kgs) | Size |
|--------------|--------------|------|
| 158          | 58           | M    |
| 158          | 59           | M    |
| 158          | 63           | M    |
| 160          | 59           | M    |
| 160          | 60           | M    |
| 163          | 60           | M    |
| 163          | 61           | M    |
| 160          | 64           | L    |
| 163          | 64           | L    |
| 165          | 61           | L    |
| 165          | 62           | L    |
| 165          | 65           | L    |
| 168          | 62           | L    |
| 168          | 63           | L    |
| 168          | 66           | L    |
| 170          | 63           | L    |
| 170          | 64           | L    |
| 170          | 68           | ?    |

#### Term project

- Workshop:
- Please fill out the term project roaster under MSTeam

#### References

- Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P. (2018). Machine learning for internet of things data analysis: A survey. *Digital Communications and Networks*, 4(3), 161–175. https://doi.org/10.1016/j.dcan.2017.10.002
- (Data Science (The MIT Press Essential Knowledge Series): Kelleher, John D., Tierney, Brendan: 0000262535432: Amazon.Com: Books, n.d.)
- Andreas C.Muller and Sarah Guido. 2017. Introduction to machine learning with pyhton
- Busse, C. D. (1978). Do Chimpanzees Hunt Cooperatively? *The American Naturalist*, 112(986), 767–770. <a href="https://doi.org/10.1086/283318">https://doi.org/10.1086/283318</a>