

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 10-126212
 (43)Date of publication of application : 15.05.1998

(51)Int.CI. H03H 9/64
 H03H 9/145

(21)Application number : 09-179937 (71)Applicant : FUJITSU LTD
 (22)Date of filing : 04.07.1997 (72)Inventor : SATO YOSHIO
 IGATA OSAMU
 MIYASHITA TSUTOMU
 MATSUDA TAKASHI
 TAKAMATSU MITSUO

(30)Priority
 Priority number : 03281694 Priority date : 28.10.1991 Priority country : JP

(54) SURFACE ACOUSTIC WAVE FILTER

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the suppression of out of pass-band and to expand the pass band width.
SOLUTION: The ladder-type surface acoustic wave filter is formed by providing 1st one-terminal-pair surface acoustic wave resonators, each having a prescribed resonance frequency (frp) and an anti-resonance frequency (fap) higher than the frequency (frp) on parallel arms and providing 2nd one-terminal-pair surface acoustic wave resonators, each having a prescribed resonance frequency (frs) and an anti-resonance frequency (fas) higher than the frequency (frs) on series arms on a piezoelectric substrate. In this case, the 1st resonators Rp1-Rp3 and the 2nd resonators Rs1, Rs2 are configured so that the resonance frequency (frs) of the 2nd resonators is higher than the anti-resonance frequency (fap) of the 1st resonators and $\Delta \equiv \{ \text{resonance frequency (frs)} - \text{anti-resonance frequency (fap)} \}$ is selected to allow a ripple and an insertion loss.

LEGAL STATUS

[Date of request for examination] 04.07.1997
 [Date of sending the examiner's decision of rejection] 30.11.1999
 [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3152419

[Date of registration] 26.01.2001

[Number of appeal against examiner's decision
of rejection] 11-20768

[Date of requesting appeal against examiner's
decision of rejection] 28.12.1999

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平10-126212

(43) 公開日 平成10年(1998)5月15日

(51) Int. C1.⁶

H 03 H 9/64
9/145

識別記号

F I

H 03 H 9/64
9/145

Z
Z

審査請求 有 請求項の数 24 O L

(全 38 頁)

(21) 出願番号 特願平9-179937
(62) 分割の表示 特願平4-32270の分割
(22) 出願日 平成4年(1992)2月19日

(31) 優先権主張番号 特願平3-281694
(32) 優先日 平3(1991)10月28日
(33) 優先権主張国 日本 (JP)

(71) 出願人 000005223
富士通株式会社
神奈川県川崎市中原区上小田中4丁目1番1号

(72) 発明者 佐藤 良夫
神奈川県川崎市中原区上小田中1015番地
富士通株式会社内

(72) 発明者 伊形 理
神奈川県川崎市中原区上小田中1015番地
富士通株式会社内

(74) 代理人 弁理士 伊東 忠彦

最終頁に続く

(54) 【発明の名称】 弾性表面波フィルタ

(57) 【要約】 (修正有)

【課題】 通過帯域幅の拡大と通過帯域外の抑圧度の向上を達成する。

【解決手段】 所定の共振周波数 (frp) とより高い反共振周波数 (fap) を有する第1の一端子対弾性表面共振器を並列腕に配し、所定の共振周波数 (frs) とより高い反共振周波数 (fas) を有する第2の一端子対弾性表面波共振器を直列腕に配して圧電基板上に設けてなる梯子型の弾性表面波フィルタにおいて、第1の共振器 (Rp₁ ~ Rp₃) 及び第2の共振器 (Rs₁, Rs₂) を、第2の共振器の共振周波数 (frs) が、第1の共振器の反共振周波数 (fap) よりも高く、且つ {共振周波数 (frs) - 反共振周波数 (fap)} ≡ Δ f が、リップル及び挿入損失を許容できる程度であるように構成した。

本発明の弾性表面波フィルタの第11実施例の回路図

【特許請求の範囲】

【請求項1】 所定の共振周波数(frp)と、この共振周波数(frp)と容量比(γ)とで定まり、前記共振周波数より高い反共振周波数(fap)とを有する第1の一端子対弾性表面共振器を並列腕に配し、所定の共振周波数(frs)と、この共振周波数(frs)と容量比(γ)とで定まり、前記共振周波数より高い反共振周波数(fas)を有する第2の一端子対弾性表面波共振器を直列腕に配して圧電基板上に設けてなる梯子型の弾性表面波フィルタにおいて、

前記第1の一端子弾性表面波共振器(R_{p1}～R_{p3})及び前記第2の一端子弾性表面波共振器(R_{s1}，R_{s2})を、該第2の一端子弾性表面波共振器の共振周波数(frs)が、該第1の一端子弾性表面波共振器の反共振周波数(fap)よりも高く、且つ{該第1の一端子弾性表面波フィルタの共振周波数(frs)-該第2の一端子弾性表面波フィルタの反共振周波数(fap)}≡Δfが、リップル及び挿入損失を許容できる程度であるように構成したことを特徴とする弾性表面波フィルタ。

【請求項2】 請求項1の該圧電基板上の該第2の一端子弾性表面波共振器を、その櫛形電極が所定の周期を有する構成とし、

該所定の周期が、前記第2の一端子対弾性表面波共振器を形成する櫛形電極の開口長と対数で決定される静電容量をC_s、前記第1の一端子対弾性表面波共振器の同様な静電容量をC_pとし、これらのC_p/C_sをPとするとき、前記Δfを該frsで規格化した値Δf/frsが、0より大きく、かつ次式で決まる値α、

【数1】

$$\alpha = 1 / (\sqrt{P} (\gamma^2 + \gamma) / 0.06 - \gamma)$$

より小さくなることを特徴とする弾性表面波フィルタ。

【請求項3】 請求項2の該圧電基板が、36°YカットX伝搬のLiTaO₃結晶(241)であり、且つ該第2の一端子弾性表面波共振器櫛形電極の周期を、前記の値Δf/frsが、0より大きく且つ次式で決まる値α、

【数2】

$$\alpha = 6.67 \times 10^{-2} / (4.22 \sqrt{P} - 1)$$

より小さくなるように定めた構成としたことを特徴とする弾性表面波フィルタ。

【請求項4】 請求項2の該圧電基板が、64°YカットX伝搬のLiNbO₃結晶であり、且つ該第2の一端子弾性表面波共振器櫛形電極の周期を、前記の値Δf/frsが、0より大きく且つ次式で決まる値α、

【数3】

$$\alpha = 1.47 \times 10^{-2} / (4.37 \sqrt{P} - 1)$$

より小さくなるように定めた構成としたことを特徴とする弾性表面波フィルタ。

【請求項5】 請求項2の該圧電基板が、41°Yカット

トX伝搬のLiNbO₃結晶であり、

且つ該第2の一端子弾性表面波共振器櫛形電極の周期を、前記の値Δf/frsが、0より大きく且つ次式で決まる値α、

【数4】

$$\alpha = 2.273 \times 10^{-1} / (4.52 \sqrt{P} - 1)$$

より小さくなるように定めた構成としたことを特徴とする弾性表面波フィルタ。

【請求項6】 所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、

入力側若しくは出力側のいずれかに最も近い最外腕が直列腕で、他方側に最も近い最外腕が並列腕で構成され、該最外側の直列共振器のインピーダンスがそれより奥の直列腕共振器のインピーダンスより小さい(図52)構成としたことを特徴とする弾性表面波フィルタ。

【請求項7】 所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、

入力側若しくは出力側のいずれかに最も近い最外腕が直列腕で、他方側に最も近い最外腕が並列腕で構成され、

上記の最外側の並列腕共振器のアドミタンスがそれより奥の並列腕共振器のアドミタンスより小さい(図52)構成としたことを特徴とする弾性表面波フィルタ。

【請求項8】 所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、

入力側若しくは出力側のいずれかに最も近い最外腕が直列腕で、他方側に最も近い最外腕が並列腕で構成され、該最外側の直列共振器のインピーダンスがそれより奥の直列腕共振器のインピーダンスより小さく、かつ、上記最外側の並列共振器のアドミタンスがそれより奥の並列共振器のアドミタンスより小さい(図52)構成としたことを特徴とする弾性表面波フィルタ。

【請求項9】 請求項6又は8の該最外側の直列腕共振器及びこれより奥の直列腕共振器は、夫々、前者のインピーダンスが後者のインピーダンスの1/2である関係

3
を満たすインピーダンスを有する(図52)構成としたことを特徴とする弾性表面波フィルタ。

【請求項10】 請求項7又は8の該最外側の並列腕共振器及びこれより奥の並列腕共振器は、夫々、前者のアドミタンスが後者のアドミタンスの1/2である関係を満たすアドミタンスを有する(図52)構成としたことを特徴とする弾性表面波フィルタ。

【請求項11】 所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、

入力側からみて最も近い最外側腕及び、出力側からみて最も近い最外側腕の両方が共に並列腕で構成され、両最外側の並列腕共振器のうちの少なくとも一方の並列腕共振器のアドミタンスがそれより内側の並列腕共振器のアドミタンスより小さい(図63)構成としたことを特徴とする弾性表面波フィルタ。

【請求項12】 請求項11の両最外側の並列腕共振器の少なくとも一方の並列腕共振器のアドミタンスがそれより内側の並列腕共振器のアドミタンスの半分である(図63)構成としたことを特徴とする弾性表面波フィルタ。

【請求項13】 所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはより大きな共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型弾性表面波フィルタにおいて、
入力側からみて最も近い最外側腕及び、出力側からみて最も近い最外側の両方が共に直列腕で構成され、両最外側の直列腕共振器のうち少なくとも一方の直列腕共振器のインピーダンスがそれより内側の直列腕共振器のインピーダンスより小さい(図64)構成としたことを特徴とする弾性表面波フィルタ。

【請求項14】 請求項13の両最外側の直列腕共振器のうち少なくとも一方の直列腕共振器のインピーダンスがそれより内側の直列腕共振器のインピーダンスの半分である(図64)構成としたことを特徴とする弾性表面波フィルタ。

【請求項15】 請求項6, 8, 9, 13又は14の弾性表面波フィルタにおいて、
最外側の直列腕共振器のインピーダンスを、それより内側の直列腕共振器のインピーダンスより、小さくするために、
最外側の直列腕共振器の開口長と対数と基板材料の誘電率との積でほぼ決まる静電容量を、それより内側の直列

腕共振器の同様に決まる静電容量よりも大きく定めた(図53)構成としたことを特徴とする弾性表面波フィルタ。

【請求項16】 請求項6, 8, 9, 13又は14の弾性表面波フィルタにおいて、
最外側の直列腕共振器のインピーダンスを、それより内側の直列腕共振器のインピーダンスより、小さくするために、
最外側の直列腕共振器と同じ静電容量をもつ共振器を複数個直列に接続したものを、それより内側の直列腕に配置した構成としたことを特徴とする弾性表面波フィルタ。

【請求項17】 請求項7, 8, 10, 11又は12の弾性表面波フィルタにおいて、
最外側の並列共振器のアドミタンスを、それより内側の並列腕共振器のアドミタンスより、小さくするために、最外側の並列腕共振器の開口長と対数と基板材料の誘電率との積でほぼ決まる静電容量を、それより内側の並列腕共振器の同様に決まる静電容量よりも小さくした(図53)構成としたことを特徴とする弾性表面波フィルタ。

【請求項18】 請求項7, 8, 10, 11又は12の弾性表面波フィルタにおいて、
最外側の並列共振器のアドミタンスを、それより内側の並列腕共振器のアドミタンスより、小さくするために、最外側の並列腕共振器と同じ静電容量をもつ共振器を複数個並列に接続したものを、それより内側の並列腕に配置した(図63)構成としたことを特徴とする梯子型弾性表面波フィルタ。

【請求項19】 所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはより大きな共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続した梯子型の弾性表面波フィルタにおいて、
該第2の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(rs)が、該第1の一端子対弾性表面波共振器を形成する樹型電極の電気抵抗分(rp)よりも小さい構成としたことを特徴とする弾性表面波フィルタ。

【請求項20】 請求項19の該第2の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(rs)を、該第1の一端子対弾性表面波共振器を構成する樹型電極の電気抵抗分(rp)よりも小さくする手段は、該第2の一端子弾性表面波共振器を構成する樹形電極の開口長(ls)が、該第1の一端子対弾性表面波共振器を構成する樹形電極の開口長(lp)よりも短くし、かつ、該第2の一端子対弾性表面波共振器を構成する樹形電極の対数(Ns)が、該第1の一端子対弾性表面波共振器を構成する樹形電極の対数(Np)よりも多くした(図66)構成であることを特徴とする表面波フィルタ。

【請求項21】 請求項19の該第2の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(r_s)を、該第1の一端子対弾性表面波共振器を構成する樹形電極の電気抵抗分の(r_p)よりも小さくする手段は、該第1の一端子対弾性表面波共振器を構成する金属薄膜製の樹形電極の膜厚を、該第2の一端子対弾性表面波共振器同じ金属の膜厚よりも薄くした構成であることを特徴とする弾性表面波フィルタ。

【請求項22】 圧電基板と、

該圧電基板を収容するパッケージと、該圧電基板上に設けられ、所定のバンドパス特性を有するように複数の並列腕と直列腕とが梯子型に接続された弾性表面波共振器と、該複数の並列腕の各々と該パッケージの所定電気の電極端子との間に設けられたインダクタンス素子とを有することを特徴とする弾性表面波フィルタ。

【請求項23】 前記所定電位がアース電位であることを特徴とする請求項22記載の弾性表面波フィルタ。

【請求項24】 前記インダクタンス素子がボンディングワイヤにより構成されていることを特徴とする請求項22記載の弾性表面波フィルタ。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は弾性表面波フィルタに係り、特に自動車電話及び携帯電話などの小型移動体無線機器のRF(高周波部)のフィルタに適用しうる梯子型の弾性表面波フィルタに関する。現在の国内の自動車・携帯電話の仕様の1例は、933.5MHzを中心として、±8.5MHzの範囲が送信帯域である。比帶域幅にすると、約2%である。

【0002】 弹性表面波フィルタは上記の仕様を満たすような特性であることが必要であり、具体的には、①通過帯域幅が比帶域幅にして2%以上と広いこと、②損失が1.5~2dB以下と低いこと、③抑圧度が20dB~30dB以上と高いことが必要とされる。この要求を満たすため、弾性表面波フィルタは、従来のトランスポーチャル型に代わって、弾性表面波素子を共振器として用い、これを梯子型に構成した共振器型が希望視されている。

【0003】

【従来の技術】 図70は、特開昭52-19044号に記載されている弾性表面波フィルタ1の等価回路を示す。このフィルタ1は、直列腕2に弾性表面波共振器3を配置し、並列腕4に弾性表面波共振器5を配置し、且つ並列腕4の共振器5の等価並列容量 C_{ob} を直列腕2の共振器3の等価並列容量 C_{oa} より大とした構成である。

【0004】 このフィルタ1は、図71に線6で示す特性を有する。

【0005】

【発明が解決しようとする課題】 上記のフィルタ1にお

いて、後述するように等価並列容量 C_{ob} を大とすると、矢印7で示すように抑圧度を高めることができる。しかし、この容量 C_{ob} を増やすと、矢印8で示すように通過帯域幅が狭くなり、且つ矢印9で示すように損失が増え、特性は線10で示す如くなってしまう。

【0006】 抑圧度を20dB以上としようとすると、通過帯域幅は比帶域幅にして1%以下となってしまい、上記の自動車携帯電話の仕様を満たすことができなくなってしまう。そこで、本発明は、通過帯域幅の拡大と通過帯域外の抑圧度の向上とを同時に達成することができる弾性表面波フィルタを提供することを目的とする。

【0007】

【課題を解決するための手段】 請求項1に記載の発明は、所定の共振周波数(frp)と、この共振周波数(frp)と容量比(γ)とで定まり、前記共振周波数より高い反共振周波数(fap)とを有する第1の一端子対弾性表面波共振器を並列腕に配し、所定の共振周波数(frs)と、この共振周波数(frs)と容量比(γ)とで定まり、前記共振周波数より高い反共振周波数(fas)とを有する第2の一端子対弾性表面波共振器を直列腕に配して圧電基板上に設けてなる梯子型の弾性表面波フィルタにおいて、前記第1の一端子弾性表面波共振器($R_{p1} \sim R_{p3}$)及び前記第2の一端子弾性表面波共振器(R_{s1}, R_{s2})を、該第2の一端子弾性表面波共振器の共振周波数(frs)が、該第1の一端子弾性表面波共振器の反共振周波数(fap)よりも高く、且つ{該第1の一端子弾性表面波共振器の共振周波数(frs)-該第2の一端子弾性表面波共振器の反共振周波数(fap)} $\equiv \Delta f$ が、リップル及び挿入損失を許容できる程度であるように構成したこととを特徴とする弾性表面波フィルタである。

【0008】 請求項2に記載の発明は、請求項1の該圧電基板上の該第2の一端子弾性表面波共振器を、その樹形電極が所定の周期を有する構成とし、該所定の周期が、前記第2の一端子対弾性表面波共振器を形成する樹形電極の開口長と対数で決定される静電容量を C_s 、前記第1の一端子対弾性表面波共振器の同様な静電容量を C_p とし、これらの C_p/C_s をPとするとき、前記 Δf を該frsで規格化した値 $\Delta f/frs$ が、0より大きく、かつ後述する式(17)で決まる値 α より小さいことを特徴とする弾性表面波フィルタである。

【0009】 請求項3に記載の発明は、請求項2の該圧電基板が、36°YカットX伝搬のLiTaO₃結晶(241)であり、且つ該第2の一端子弾性表面波共振器樹形電極の周期を、前記の値 $\Delta f/frs$ が、0より大きく且つ後述する式(18)で決まる値 α より小さくなるように定めた構成としたことを特徴とする弾性表面波フィルタである。

【0010】 請求項4に記載の発明は、請求項2の該圧電基板が、64°YカットX伝搬のLiNbO₃結晶であり、且つ該第2の一端子弾性表面波共振器樹形電極の

周期を、前記の値 $\Delta f / frs$ が、0より大きく且つ後述する式(19)で定まる値 α より小さくなるように定めた構成としたことを特徴とする弾性表面波フィルタである。

【0011】請求項5に記載の発明は、請求項2の該圧電基板が、41°YカットX伝搬のLiNbO₃結晶であり、且つ該第2の一端子弾性表面波共振器樹形電極の周期を、前記の値 $\Delta f / frs$ が、0より大きく且つ後述する式(20)で定まる値 α より小さくなるように定めた構成としたことを特徴とする弾性表面波フィルタである。

【0012】請求項1ないし5に記載の発明によれば、通過帯域外抑圧度及び通過帯域の損失を共に損なうことなく、従来のものに比べて通過帯域幅を拡大することができる。すなわち、 $f_{ap} < frs$ とし、しかも $frs - f_{ap}$ の値を大きくとることで、広帯域化と高抑圧化を図り、その時に通過域の挿入損失を劣化させない範囲を α 値と規定している。

【0013】請求項6に記載の発明によれば、所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、入力側若しくは出力側のいずれかに最も近い最外腕が直列腕で、他方側に最も近い最外腕が並列腕で構成され、該最外側の直列共振器のインピーダンスがそれより奥の直列腕共振器のインピーダンスより小さい(図5-2)構成としたことを特徴とする弾性表面波フィルタである。

【0014】請求項7に記載の発明は、所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、入力側若しくは出力側のいずれかに最も近い最外腕が直列腕で、他方側に最も近い最外腕が並列腕で構成され、上記の最外側の並列腕共振器のアドミタンスがそれより奥の並列腕共振器のアドミタンスより小さい(図5-2)構成としたことを特徴とする弾性表面波フィルタである。

【0015】請求項8に記載の発明は、所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、入力側

若しくは出力側のいずれかに最も近い最外腕が直列腕で、他方側に最も近い最外腕が並列腕で構成され、該最外側の直列共振器のインピーダンスがそれより奥の直列腕共振器のインピーダンスより小さく、かつ、上記最外側の並列共振器のアドミタンスがそれより奥の並列共振器のアドミタンスより小さい(図5-2)構成としたことを特徴とする弾性表面波フィルタである。

【0016】請求項9に記載の発明は、請求項6又は8の該最外側の直列腕共振器及びこれより奥の直列腕共振器は、夫々、前者のインピーダンスが後者のインピーダンスの1/2である関係を満たすインピーダンスを有する(図5-2)構成としたことを特徴とする弾性表面波フィルタである。請求項10に記載の発明は、請求項7又は8の該最外側の並列腕共振器及びこれより奥の並列腕共振器は、夫々、前者のアドミタンスが後者のアドミタンスの1/2である関係を満たすアドミタンスを有する(図5-2)構成としたことを特徴とする弾性表面波フィルタである。

【0017】請求項11に記載の発明は、所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはこれより高い共振周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型の弾性表面波フィルタにおいて、入力側からみて最も近い最外側腕及び、出力側からみて最も近い最外側腕の両方が共に並列腕で構成され、両最外側の並列腕共振器のうちの少なくとも一方の並列腕共振器のアドミタンスがそれより内側の並列腕共振器のアドミタンスより小さい(図6-3)構成としたことを特徴とする弾性表面波フィルタである。

【0018】請求項12に記載の発明は、請求項11の両最外側の並列腕共振器の少なくとも一方の並列腕共振器のアドミタンスがそれより内側の並列腕共振器のアドミタンスの半分である(図6-3)構成としたことを特徴とする弾性表面波フィルタである。請求項13に記載の発明は、所定の共振周波数(frp)を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(fap)に略一致するか若しくはより大きな共振

40 周波数(frs)をもつ第2の一端子対弾性表面波共振器を直列腕に接続し、これら並列腕の共振器と直列腕の共振器を複数個縦続に接続してなる梯子型弾性表面波フィルタにおいて、入力側からみて最も近い最外側腕及び、出力側からみて最も近い最外側の両方が共に直列腕で構成され、両最外側の直列腕共振器のうち少なくとも一方の直列腕共振器のインピーダンスがそれより内側の直列腕共振器のインピーダンスより小さい(図6-4)構成としたことを特徴とする弾性表面波フィルタである。

【0019】請求項14に記載の発明は、請求項13の両最外側の直列腕共振器のうち少なくとも一方の直列腕

共振器のインピーダンスがそれより内側の直列腕共振器のインピーダンスの半分である(図64)構成としたことを特徴とする弾性表面波フィルタである。請求項15に記載の発明は、請求項6, 8, 9, 13又は14の弾性表面波フィルタにおいて、最外側の直列腕共振器のインピーダンスを、それより内側の直列腕共振器のインピーダンスより、小さくするために、最外側の直列腕共振器の開口長と対数と基板材料の誘電率との積でほぼ決まる静電容量を、それより内側の直列腕共振器の同様に決まる静電容量よりも大きく定めた(図53)構成としたことを特徴とする弾性表面波フィルタである。

【0020】請求項16に記載の発明は、請求項6, 8, 9, 13又は14の弾性表面波フィルタにおいて、最外側の直列腕共振器のインピーダンスを、それより内側の直列腕共振器のインピーダンスより、小さくするために、最外側の直列腕共振器と同じ静電容量をもつ共振器を複数個直列に接続したものを、それより内側の直列腕に配置した構成としたことを特徴とする弾性表面波フィルタである。

【0021】請求項17に記載の発明は、請求項7, 8, 10, 11又は12の弾性表面波フィルタにおいて、最外側の並列共振器のアドミタンスを、それより内側の並列腕共振器のアドミタンスより、小さくするために、最外側の並列腕共振器の開口長と対数と基板材料の誘電率との積でほぼ決まる静電容量を、それより内側の並列腕共振器の同様に決まる静電容量よりも小さくした(図53)構成としたことを特徴とする弾性表面波フィルタである。

【0022】請求項18に記載の発明は、請求項7, 8, 10, 11又は12の弾性表面波フィルタにおいて、最外側の並列共振器のアドミタンスを、それより内側の並列腕共振器のアドミタンスより、小さくするために、最外側の並列腕共振器と同じ静電容量をもつ共振器を複数個並列に接続したものを、それより内側の並列腕に配置した(図63)構成としたことを特徴とする梯子型弾性表面波フィルタである。

【0023】請求項19に記載の発明は、所定の共振周波数(f_{rp})を有する第1の一端子対弾性表面波共振器を並列腕に、該第1の共振器の反共振周波数(f_{ap})に略一致するか若しくはより大きな共振周波数(f_{rs})をもつ第2の一端子対弾性表面波共振器を直列腕に接続した梯子型の弾性表面波フィルタにおいて、該第2の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(rs)が、該第1の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(rp)よりも小さい構成としたことを特徴とする弾性表面波フィルタである。

【0024】請求項20に記載の発明は、請求項19の該第2の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(rs)を、該第1の一端子対弾性表面波共振器を構成する樹形電極の電気抵抗分(rp)よりも小さくする手段は、該第2の一端子弾性表面波共振器を構成する樹形電極の開口長(1s)が、該第1の一端子対弾性表面波共振器を構成する樹形電極の開口長(1p)よりも短くし、かつ、該第2の一端子対弾性表面波共振器を構成する樹形電極の対数(Ns)が、該第1の一端子対弾性表面波共振器を構成する樹形電極の対数(Np)よりも多くした(図66)構成であることを特徴とする表面波フィルタである。

【0025】請求項21に記載の発明は、請求項19の該第2の一端子対弾性表面波共振器を形成する樹形電極の電気抵抗分(rs)を、該第1の一端子対弾性表面波共振器を構成する樹形電極の電気抵抗分(rp)よりも小さくする手段は、該第1の一端子対弾性表面波共振器を構成する金属薄膜製の樹形電極の膜厚を、該第2の一端子対弾性表面波共振器同じ金属の膜厚よりも薄くした構成であることを特徴とする弾性表面波フィルタである。

【0026】請求項22に記載の発明は、圧電基板と、該圧電基板を収容するパッケージと、該圧電基板上に設けられ、所定のバンドパス特性を有するように複数の並列腕と直列腕とが梯子型に接続された弾性表面波共振器と、該複数の並列腕の各々と該パッケージの所定電気の電極端子との間に設けられたインダクタンス素子とを有することを特徴とする弾性表面波フィルタである。

【0027】この構成によれば、通過帯域幅が広く、通過帯域外の抑圧度が高く、損失の小さい弾性表面波フィルタを単一のパッケージに収容して提供することができる。請求項23に記載の発明は、前記所定電位がアース電位であることを特徴とする請求項22記載の弾性表面波フィルタである。請求項24に記載の発明は、前記インダクタンス素子がボンディングワイヤにより構成されていることを特徴とする請求項22記載の弾性表面波フィルタである。

【0028】【発明の実施の形態】まず、本発明の基本原理について説明する。図1は本発明の弾性表面波フィルタ20の原理構成を示す。21は第1の一端子対弾性表面波共振器であり、所定の共振周波数 f_{rp} を有し、並列腕22に配してある。23は第2の一端子対弾性表面波共振器であり、第1の共振器21の反共振周波数 f_{ap} に略一致する共振周波数 f_{rs} を有し、直列腕24に配してある。25はインダクタンスであり、第1の共振器21に直列に付加してあり、並列腕22に配してある。

【0029】一端子対弾性表面波共振器を直列腕と並列腕とにもつ回路がフィルタ特性を有する原理は次の通りである。この原理については、本特許の原理説明にも必要であるため、ここで詳しく述べる。共振回路がフィルタ特性を示すか否かを評価するには、イメージパラメータによる方法が理解し易い。この方法は柳沢等による「フィルタの理論と設計」(産報出版:エレクトロニクス選書, 1974年発行)に詳しく述べられている。

【0030】以下これを基にして原理を述べる。フィルタ特性を示す基本的な梯子型回路を図2に示す。同図において斜線のブラックボックスが弾性表面波共振器30, 31である。今、説明の簡略化のため、弾性表面波共振器を抵抗分のないリアクタンス回路であると仮定し、直列腕の共振器30のインピーダンスを $Z = jx$ 、並列腕の共振器31のアドミタンスを $Y = jb$ とする。

【0031】イメージパラメータ法によれば、入力側電圧・電流をそれぞれ V_1, I_1 、出力側を V_2, I_2 と

$$\tanh(\gamma) = \tanh(a + jb) \\ = \sqrt{(B \times C) \times (A \times D)} \quad \dots (2)$$

【0035】の式において、この式で表される値が虚数であれば図2の二端子対回路全体は通過特性を示し、実数であれば減衰特性を示す。ここに、A, B, C, Dの記号は図2の回路全体をF行列で表した時の四端子定数であり、それぞれを前述のx, bで表すと以下のようになる。

$A = 1$

*

$$\tanh(\gamma) = \sqrt{bx / (bx - 1)} \quad \dots (4)$$

【0037】(4)式より、 $0 < bx < 1$ 、即ちbとxが同符号で小さな値の時、図2の回路全体は通過特性を示し、 $bx < 0$ または $bx > 1$ の時、即ちbとxが異符号またはbx積が大きな値の時、減衰特性を示すことが分かる。ここでさらにbとxの周波数特性を定性的に知るために、弾性表面波共振器のインピーダンス及びアドミタンスの周波数特性を調べる。

【0038】一端子対弾性表面波共振器は図3(A)に示されるような櫛形電極40で構成される(日経エレクトロニクス誌1976年11月29日号のP. 76~P. 98に記載)。41は電極対で、42は開口長(交差幅)、43は櫛形電極周期である。この櫛形電極は抵抗分を無視すると一般に図3(B)に示されるような等価回路45で表される。ここに C_0 は櫛形電極の静電容量、 C_1, L_1 は等価定数である。

【0039】この等価回路45を、以下、図3(C)に示す記号46で表わす。図4(A) (B)は夫々櫛形電極を図3(B)のような等価回路で表した時のインピーダンス及びアドミタンスの周波数依存性を定性的に示す。同図の特性は水晶による共振器と同様に2つの共振周波数 f_r, f_a をもつ2重共振特性となる。ここで f_r を共振周波数、 f_a を反共振周波数と呼ぶ。このような2重共振特性をもつ共振器をそれぞれ直列腕及び並列

すると(図2参照)、

【0032】

【数5】

$$\exp(\gamma) = \sqrt{V_1 \cdot I_1 / V_2 \cdot I_2} \quad \dots (1)$$

【0033】で定義されるイメージ伝送量 γ (複素数)が、重要な意味を持つ。即ち、

【0034】

【数6】

* $B = jx$

$C = jb$

$$D = 1 - bx \quad \dots (3)$$

従って、(2)式は、次式になる。

【0036】

【数7】

※腕に配置し、さらに並列腕の反共振周波数 f_{ap} を直列腕の共振周波数 f_{rs} に略一致させると、それを中心周波数とするバンドパス型のフィルタ特性を示す回路を構成できる。その理由は、図5(A)のインミタンスの周波数特性の図にも示したように、 $f_{ap} \approx f_{rs}$ である中心周波数近傍では、 $0 < bx < 1$ が満たされ前述の条件から通過域となり、中心周波数から少し離れた周波数領域では $bx > 1$ 、大きく離れた領域では $bx < 0$ となり共に減衰域となるからである。

30 【0040】従って、図1に示す構成の弾性表面波フィルタ1は、図5(B)中線47で示すフィルタ特性を定性的に有する。

【通過帯域幅決定要因】次に、このような共振器型弾性表面波フィルタにおけるバンド幅決定要因を考察する。

【0041】図5からも分かるようにバンド幅は主にそれぞれの共振器における共振周波数 f_r と反共振周波数 f_a との差で決定されている。この差が大きくとれればバンド幅は広く広帯域となり、小さければ狭帯域となる。ここで f_r, f_a は図3(B)の等価回路定数を使って次式から決定できる。

【0042】

【数8】

$$f_r = 1 / (2 \cdot \pi \sqrt{(C_1 \times L_1)}) \quad \dots (5)$$

$$f_a = f_r \cdot \sqrt{(1 + 1/\gamma)} \quad \dots (6)$$

$$\gamma = C_0 / C_1 : 容量比 \quad \dots (7)$$

【0043】比帯域幅($\Delta f / f_0$)は主に f_r, f_a の差から決まってしまうため、(6), (7)式を使★

★い次式のように表される。

$$\Delta f / f_0 = 2(f_a - f_r) / (f_a + f_r)$$

$$\approx 2 / (4 \gamma + 1)$$

上式から明らかなように γ (容量比) が比帯域幅を決める重要な因子となる。しかし、この値は特開昭52-19044号公報にも記載されているように、樹形電極を形成する基板材料の種類によりほぼ決まってしまう。例えば材料の電気機械結合係数が小さなSTカット水晶では、 γ は1300以上となるのに対し、電気機械結合係数が大きな36°Ycut-x伝搬LiTaO₃では、 γ は15位の値になる。比帯域幅は(8)式より、STカット水晶では0.04%、36°Ycut-X伝搬LiTaO₃では3.3%となる。従って、基板材料が決まれば帯域幅はほぼ決定してしまう。

【0044】そして、帯域外抑圧度を高めるため、特開昭52-19044号に記載されているように、等価並列容量C_{ob}を大とすると、帯域幅はどんどん狭くなってしまう。これを図6を使って詳しく説明する。前述の原理説明からも明らかなように並列共振器のf_rとf_aを固定したまま、アドミタンス値を大きくしていくと(アドミタンス値を増加するには γ を一定にしたまま樹形電極の開口長または対数を増やして静電容量C_oを大きくしていく)、図6(A)に示すように帯域外ではb_x積が負で増加するため減衰量は増え特性は良くなるが、中心周波数の近傍ではb_x積が正で増加するためb_x>1の領域が拡がり、結果として0<b_x<1なる通過域が狭まって帯域が十分取れなくなる。この様子を図6(B)中の矢印で表す。

【0045】【通過帯域幅の改善】以上の点を解決する一つの手段として、①直列腕の共振器か若しくは並列腕の共振器かどちらかすくとも一方の共振器のf_rとf_aとの差を広げ、かつ②そのインピーダンス値若しくはアドミタンス値を大きくするという2つの条件を満たすことが必要である。インピーダンス値やアドミタンス値を大きくする理由は、帯域外減衰量を大きくするためである。これが実現できれば、通過帯域を広げつつ若しくは狭くすることなく、帯域外減衰量を改善できることになる。

【0046】まず、①の条件である共振器のf_r、f_aの差を広げる方法としては、一端子対弾性表面波共振器に直列にインダクタンスLを付加する方法が有効である。図7(A)、(B)に一端子対弾性表面波共振器に直列にLとして8nHを接続した時のインピーダンス及びアドミタンスの周波数変化を示す。計算に用いた弾性表面波共振器の等価回路の各定数は同図に示す。

【0047】図7(A)中、線50は、Lを付加する前のインピーダンス特性を示す。線51は、Lを付加した後のインピーダンス特性を示す。図7(B)、線52はLを付加する前のアドミタンス特性を示す。線53は、Lを付加した後のアドミタンス特性を示す。図7(A)より、Lを付加することによってf_rとf_aの間隔は広がっていることが分かる。この場合では約30MHz拡

$$\cdots (8)$$

大した。この理由は、同図(A)のインピーダンスの周波数特性から明らかなように、直列にLが加わることにより元の共振器だけのインピーダンスが+側へ、ωL分だけ引上げられる結果、f_rがf_{r'}へと変化したためである。この時f_aはほとんど動かない。インピーダンスの逆数であるアドミタンスも同じ理由から同図(A)に示すように変化する。この場合も、f_rがf_{r'}へと変化していることが明確にわかる。

【0048】次に②の条件であるが、アドミタンス値は図7(B)からも明らかのようにLを付加することで大きくなっている。しかし、インピーダンス値は図7(A)に示すように帯域外では逆に小さくなっている。従って、直列腕の共振回路にこの方法を適用する場合にはインピーダンス値を大きくする方法が更に必要とする。それには直列に複数個の同じ弾性表面波共振器を接続することにより解決できる。

【0049】図8中、線55は、一つの共振器のインピーダンス特性を示す。線56は、n個の共振器を直列に接続した場合の共振部分のインピーダンス特性を示す。図8に示すように、n個の共振器を接続することにより共振器部のインピーダンス値はn倍になる。一方f_aとf_rの差については、Lを繋いだ時の共振周波数の拡がりはf_{r''}と、1個の共振器の場合のf_{r'}よりやや狭くなるものの、Lを繋がない時よりもf_aとf_rの差は大きくとれる。もし必要であればLの値を増やすことによりf_aとf_rの差はさらに大きくなる。

【0050】通過帯域幅を拡大する2つ目の手段として、図44に示すように並列腕共振器の反共振周波数f_{ap}と直列腕共振周波数f_{rs}を略一致させるのではなく、f_{rs}>f_{ap}とする方法が考えられる。但し、f_{rs}>f_{ap}とした場合、図44にも示すように中心周波数近傍でb_x<0となって、前述の通過域条件を満たさなくなり、損失とリップルが増加する危険がある。

【0051】しかし、f_{rs}-f_{ap}=ΔfとしてΔfの大きさを制御することで、実質上、損失増加、並びにリップル増加を防いで通過帯域の拡大を実現することが可能である。また、Δfの拡大により、帯域外抑圧度の改善も同時に実現することができる。詳細は実施例11で後述する。

【0052】以下、本発明の内容を具体的な実施例により説明する。実施例はほとんどシミュレーションにより行った。そこで、まず本発明に用いたシミュレーションについて簡単に述べるとともに、シミュレーションの正当性を証明するために、実験との比較を示す。図3

(B)に示した等価回路は一端子対弾性表面波共振器の特性を簡略にシミュレーションできるが、共振器を構成する樹形電極の対数、開口長、電極膜厚などの変化並びに反射器の効果等を正確にシミュレーションすることが難しい。そこで発明者等が既に開発したところのスミス

の等価回路を基本にこれを転送行列で表す方法を用い、共振器へ応用した (O. Ikata et al.: 1990 ULTRASONIC SYMPOSIUM Proceedings, vol. 1, pp83-86, (1990). を参考、これを文献 (1) とする。)。

【0053】図9 (A) は並列腕に一端子対弾性表面波共振器を配した場合の、シミュレーションの結果を示す。図9 (B) は、並列腕に、材料がA1-2%Cu、膜厚が1600Åの櫛形電極よりなる一端子対弾性表面波共振器を配し、更にこの共振器に長さ3mmのボンディングワイヤ ($L = 1.5\text{ nH}$) を接続した場合の、実験の結果を示す。

【0054】図9 (A), (B) を比較するに、開口長変化による共振点(図中 f_{r1} , f_{r2} , f_{r3} で示した)の動きや共振点近傍での減衰量について、実験値と計算値が良く一致していることが分かる。図10 (A) は、直列腕に共振器を配した場合の、シミュレーションの結果を示す。後述する実験で用いたボンディングパッドがやや大きかったため、シミュレーションでは、その浮遊容量として、0.5pFのコンデンサを考慮している。

【0055】図10 (B) は、直列腕に共振器を接続した場合の実験の結果を示す。図10 (A), (B) を比較するに、反共振周波数 f_{a1} , f_{a2} , f_{a3} が開口長に依存しない点や、反共振周波数近傍での減衰量の変化などが実験と良く一致していることがわかる。従つて、これらを組み合わせた時のフィルタ特性も実験と良く一致することは明らかであり、以降の実施例はシミュレーションで行った。

【0056】【実施例1】図11は、本発明の第1実施例になる弾性表面波フィルタ60を示す。現在、国内の自動車・携帯電話の仕様のなかで1つの例をあげると、933.5MHzを中心周波数として、±8.5MHzの範囲が移動機器の送信帯域で、そこから-55MHz離れた878.5MHzを中心周波数として、±8.5MHzの範囲が受信帯域という仕様がある。

【0057】本実施例は、上記の移動機器の送信側フィルタに適するように設計してある。後述する他の実施例も同様である。直列腕61に一端子対弾性表面波共振器R₂及びR₄が配してある。並列腕62, 63, 64に夫々一端子対弾性表面波共振器R₁, R₃, R₅が配してある。

【0058】L₁, L₂, L₃はインダクタンスであり、夫々共振器R₁, R₃, R₅と接続して並列腕62, 63, 64に配してある。共振器R₁～R₅は、図3 (A) に示す櫛形電極構造を有する。対数は100、開口長は80μmである。材料は、A1-2%Cuであり、膜厚は3,000Åである。

【0059】また、櫛形電極の周期が適宜定めてあり、並列腕62, 63, 64中の各共振器R₁, R₃, R₅の共振周波数は、912MHz、反共振周波数は934

MHzとしてある。直列腕61中の各共振器R₂, R₄の共振周波数は934MHz、反共振周波数は962MHzとしてある。

【0060】インダクタンスL₁, L₂, L₃は共に4nHである。上記構成の弾性表面波フィルタ60は、図12中、線65で示す通過特性を有する。インダクタンスLが2nH, 6nHの場合、図11のフィルタ60の通過特性は、夫々図12中、線66, 67で示す如くになる。

【0061】図12に基づいて、通過帯域幅に対するL依存性を表わすと、図13 (A) の線70で示す如くなる。ここで、最小挿入損失から-3dB下がった減衰量のレベルにおける周波数幅を、通過帯域幅とした。同様に、図12に基づいて、通常帯域外抑圧度に対するL依存性を表わすと、図13 (B) の線71で示す如くなる。

【0062】図12より分かるように、Lをあまり大きくすると、中心周波数から55MHz低周波数側の抑圧領域が充分とれなくなってしまう。そこで、Lは上記のように4nHとしてある。なお、Lの値は、フィルタの仕様に応じて適当に選択されるものである。図70に示す従来構成のフィルタ1の通過特性は、図12中線68で示す如くなる。

【0063】図12中、本実施例のフィルタ60の通過特性(線65)を従来のフィルタの通過特性(線68)と比較するに、本実施例のフィルタ60は、従来のフィルタに比べて、矢印75で示すように通過帯域幅が広く、矢印76で示すように通過帯域外の抑圧度が高く、しかも矢印77で示すように損失が低いことが分かる。図14及び図15は、図11の弾性表面波フィルタ60を実現した弾性表面波フィルタ装置80を示す。

【0064】81はセラミックパッケージ、82はフィルタチップ、83はアースとして機能する蓋である。セラミックパッケージ81はアルミニナセラミック製であり、サイズは5.5×4mm²の高さが1.5mmと小さい。このセラミックパッケージ81にはAu製の電極端子84-1～84-6が形成してある。

【0065】フィルタチップ82は、LiTaO₃製であり、サイズは2×1.5mm²の厚さが0.5mmである。このフィルタチップ82の表面に、対数が100、開口長が80μm、材料がA1-2%Cu、膜厚が3,000Åの櫛形電極構造を有する共振器R₁～R₅が、互いに弾性表面波の伝播路を共有しないように、ずらして配置してある。

【0066】またフィルタチップ82の表面には、ボンディング用端子としての、二つの信号線用端子85-1, 85-2及び三つのアース用端子85-3, 85-4, 85-5が形成してある。86-1～86-6はボンディングワイヤであり、Au又はAu製であり、径が25μmφであり、夫々端子84-1～84-6と端子85-1～85-6とに

ポンディングされて接続してある。

【0067】このうち、ワイヤ86-1, 86-2は夫々図11中の直列腕61の一部61a及び61bを構成する。ワイヤ86-3はアース用電極端子84-3と85-3との間に接続しており、ワイヤ86-4は別のアース用電極端子84-4と85-4との間に接続しており、ワイヤ86-5は別のアース用電極端子84-5と85-5との間に接続している。

【0068】このワイヤ86-3～86-5は長さが共に2.0mmと長い。このように、細くて長いワイヤは高周波の理論によれば、インダクタンス分を持つ。空中リボンインダクタの理論式（倉石：理工学講座、「例題円周マイクロ波回路」東京電機大学出版局のP199に記載）によれば、上記のワイヤ86-3, 86-4, 86-5のインダクタンスは約1nHとなる。

【0069】4nHのインダクタンスを得るためににはこれでは不充分であり、後述する図40及び図41に図示するようなセラミックパッケージとフィルタチップ上のLを利用して。このようにして、図11中のインダクタンスL₁, L₂, L₃を構成する。

【実施例2】図16は本発明の第2実施例による弾性表面波フィルタ90を示す。

【0070】図中、図11に示す構成部分と対応する部分に同一符号を付す。直列腕61内の共振器R₂の開口長A_sは、80μmである。並列腕62には、共振器R_{1A}とインダクタンスL₁とが直列に接続されて配してある。共振器R_{1A}は開口長A_Pが120μmである。

【0071】開口長A_Pは、開口長A_sより長く、開口長A_sの1.5倍である。なお、共振器R₂及びR_{1A}の対数N_P, N_sは共に100であり、等しい。このフィルタ90は、図17中、線91で示す通過特性を有する。この通過特性を線65で示す図11のフィルタ60の通過特性と比較すると、通過帯域幅を変えずに、矢印92で示すように、通過帯域外抑圧度が改善されていることが分かる。

【0072】図18は、図16の構成のフィルタの通過特性の開口長依存性を示す。同図(A)は、図16に示すようにしが付加されている場合、図42に示すようにしが付加されていない場合において、夫々の直列腕共振器の開口長(A_s)に対する並列腕共振器の開口長(A_P)の比A_P/A_sと、帯域外抑圧度の関係を示す。

【0073】帯域外抑圧度は、4nHのインダクタンスしが付加されている場合には、線92で示す如くになり、インダクタンスしが付加されていない場合には、線93で示す如くなる。また、図18(B)は、A_P/A_sと通過帯域幅との関係を示す。通過帯域幅は、4nHのインダクタンスしが付加されている場合には、線95で示す如くなり、インダクタンスしが付加されていない場合には、線96で示す如くなる。

【0074】図18(A), (B)より、以下のことが

分かる。

①並列腕62内の共振器R_{1A}の開口長A_Pを直列腕61内の共振器R₂の開口長A_sより長くすることにより、帯域外抑圧度が増える。

②並列腕62にインダクタンスL₁を付加することにより、インダクタンスを有しない場合に比べて、共振器R_{1A}の開口長A_Pの増大の効果が大きくなり、しかも帯域幅の劣化も殆ど無い。

【0075】以上のことからも、上記実施例のフィルタ90は、図11のフィルタ60に比べて、通過帯域幅は何ら狭くせずに、通過帯域外抑圧度が増えた通過特性を有することが分かる。

【実施例3】図19は本発明の第3実施例による弾性表面波フィルタ100を示す。

【0076】図中、図11及び図16に示す構成部分と対応する部分には同一符号を付す。直列腕61の共振器R₂の対数N_sは100である。並列腕62には、共振器R_{1B}とインダクタンスL₁とが直列に接続されて配してある。共振器R_{1B}は、対数N_Pが150であり、上記の共振器R₂の対数N_sよりも多く、その1.5倍である。

【0077】なお、共振器R₂及びR_{1A}の開口長A_s, A_Pは共に80μmであり、等しい。このフィルタ100は、図20中、線101で示す通過特性を有する。この通過特性を、線65で示す図11のフィルタ60の通過特性と比較すると、通過帯域幅を狭めることなく、矢印102で示すように、通過帯域外抑圧度が改善されていることが分かる。

【0078】また、図17中線91で示す図16のフィルタ90の通過特性と比較すると、損失劣化が少ないことが分かる。従って、本実施例のフィルタ100は、図11のフィルタ11に比べて、通過帯域幅を狭くせずに、通過帯域外抑圧度が増し、且つ図16のフィルタ90に比べて、損失劣化が少ない通過特性を有する。

【0079】【実施例4】図21は本発明の第4実施例による弾性表面波フィルタ110を示す。本実施例は、直列腕の共振回路の反共振周波数f_oと共振周波数f_rとの差を拡大することによって通過特性を改善したものである。図中、図11に示す構成部分と対応する部分には同一符号を付す。

【0080】直列腕61のうち、並列腕62, 63の間の部分に同じ共振器R₂が二つ直列に接続され、更にこれに直列に3nHのインダクタンスL_sが付加してある。同じく、直列腕61のうち、並列腕63, 64の間の部分に、同じ共振器R₄が二つ直列に接続され、更に、これに直列に3nHのインダクタンスL_sが付加してある。

【0081】並列腕62には、一つの共振器R位置だけが配してある。同じく、並列腕63には、一の共振器R₃だけが配してある。同様に、並列腕64には、一の共

振器 R_4 だけが配してある。このフィルタ110は、図22中、線111で示す通過特性を有する。ここで、インダクタンス L_s 及び一の共振器 R_2 、 R_4 の付加の効果について説明する。

【0082】図21のフィルタ110より、インダクタンス L_s と一の共振器 R_2 、 R_4 とを削除すると、図42に示す従来のフィルタ1と同じくなる。この状態の通過特性は、線68(図12参照)で示す如くである。上記インダクタンス L_s を追加すると、矢印112で示すように通過帯域幅が拡大すると共に、矢印113で示すように帯域外抑圧度が増えた。特に通過帯域幅についてみると、特に高周波数側への拡大が大きく、高周波数側に約15MHz帯域幅が拡大した。通過特性は、線114で示すごとくになった。

【0083】この状態では、帯域外抑圧度は十分でない。そこで一の共振器 R_2 、 R_4 を追加した。この一の共振器 R_2 、 R_4 を追加すると、通過帯域幅を狭めることなく、矢印115で示すように、帯域外抑圧度が約5dB改善され、線111で示す通過特性となつた。

【0084】線111を線68と比較するに、矢印116で示すように損失も従来に比べて改善されている。なお、直列腕61の共振器 R_2 、 R_4 は夫々三個以上でもよい。また、図21中二点鎖線で示すように、並列腕62～64に、インダクタンスを挿入してもよい。

【0085】【実施例5】図21は本発明の第5実施例になる弾性表面波フィルタ120を示す。図中、図11に示す構成部分と同一部分には同一符号を付し、その説明は省略する。並列腕62のインダクタンス L_1 のインダクタンス値は4nHである。

【0086】別の並列腕63のインダクタンス L_2 のインダクタンス値は5.5nHである。更に別の並列腕64のインダクタンス L_3 のインダクタンス値は7nHである。このように、各並列腕62～64のインダクタンス L_1 ～ L_3 のインダクタンス値を異ならしめることによって、フィルタ120は、図24中、線121で示す通過特性となる。

【0087】ここで、インダクタンス L_1 ～ L_3 のインダクタンス値が全て4nHと等しい図11のフィルタ60の通過特性と比較してみる。このフィルタ60は、図24中、線65で示す通過特性(図12参照)を有する。本実施例のフィルタ120の通過特性は、上記フィルタ60の通過特性に比べて、通過帯域幅を何ら狭めることなく、矢印122で示すように通過帯域外抑圧度が高められる。

【0088】通過帯域より低周波数側についてみると、フィルタ60にあっては902MHz付近に一の減衰極123しかなかったものに対して、875MHzと892MHzの二個所に減衰極124、125が発生している。これにより、二つの減衰極124、125との間の周波数帯域126が阻止域127となる。

【0089】【実施例6】図25は本発明の第6実施例になる弾性表面波フィルタ130を示す。本実施例は、損失の低下を図ったものである。図中、図11に示す構成部分と対応する部分には同一符号を付し、その説明は省略する。

【0090】並列腕62の第1の弾性表面波共振器 R_{1B} は、図26に示すように励振電極131と、この両側に反射器132、133を配した構成である。反射器132、133は励振電極131と反射器132、133との中心間距離dを次式

$$d = (n + \beta) \cdot \lambda \quad \dots \quad ①$$

(ここで、nは適当な整数、βは1以下の実数、λは共振周波数に対応した樹形電極の周期である)で表わすとき、β=0.4としたときの位置に配してある。

【0091】上記反射器132、133の対数は、50である。反射器を備えた共振器 R_{1B} は、図25に示すように「*」を追加した記号で表わす。他の並列腕63、64の共振器 R_{3B} 、 R_{5B} も、上記の共振器 R_{1B} と同様に、反射器を備えた構成である。

【0092】上記構成のフィルタ130は、図27中線134で示す通過特性を有する。この通過特性は、図11のフィルタ60の通過特性(線65で示す)に比べて、矢印135で示すように、通常帯域の挿入損失が低減されている。ここで、リップル r_P は、図26に示すように並列腕の励振電極131の両側に反射器132、133を配置したことによって発生したものである。

【0093】ここで、反射器132、133の配設位置を上記のように定めた理由について説明する。上記①式において、βを0から0.5まで変化させてリップル r_P の幅への影響は、図28中線140で示す如くになる。同図中、点141がリップル幅が最小の点であり、このときのβが0.4である。

【0094】このことから、βを0.4に定めてある。図29は、図25のフィルタ130を実現した弾性表面波フィルタ装置150を示す。図中、図14に示す構成部分と対応する部分には同一符号を付し、その説明は省略する。

【0095】132、133、151、152、153、154は夫々反射器である。次に、第1の一端子に対する弹性表面波共振器の変形例について説明する。図30は一の変形例を示す。この共振器 R_{1B} は、励振電極131の両側に、反射器として、電気的負荷が短絡型の樹形電極160、161を配した構成である。

【0096】図31は、別の変形例を示す。この共振器 R_{1B} は、励振電極131の両側に反射器として、ストリップアレイ型電極165、166を配した構成である。

【実施例7】図32は本発明の第7実施例になる弾性表面波フィルタ170を示す。本実施例は、実施例6と同様に損失の低下を図ったもので、図中、図21に示す構

成部分と対応する部分には同一符号を付し、その説明は省略する。

【0097】フィルタ170は、図21のフィタル110のうち、各並列腕62、63、64の第1の弾性表面波共振器R_{1B}、R_{3B}、R_{5B}を夫々図26に示すように励振電極131の両側のβが0.4で定まる位置に反射器132、133を配した構成である。このフィルタ170によれば、図22中線111で示す特性よりも、通過帯域の損失が少なく、且つリップルも抑えられた通過特性が得られる。

【0098】【実施例8】本実施例は、図27中のリップルr_Pを取り除くことを目的としたものである。ま*

$$Q = Z_o / Z_m = V_o / V_m = 1 + k^2 / 2 + \alpha(t) \quad \dots (9)$$

(V_o、V_m:自由表面及び電極下での音速、k²:電気機械結合係数)とし、α(t)を膜厚tに比例するパラメータとしてこれを変化させた。

【0100】こう置くとフィルタの中心周波数f_oは、
 $f_o = 2 f_{o'} / (1 + Q) \quad \dots (10)$

となり、膜厚を増加するにつれ、音響インピーダンスの不連続がない時の中心周波数f_{o'}から低周波数側へ移動していくという良く知られた実験事実とも一致する。シミュレーションの結果、α(t)を大きくすると、即ち電極膜厚を厚くしていくと、リップルr_Pの現れる周波数位置が図33中、矢印180で示すように、通過帯域の高周波側へ移動してゆき、ついには高周波側の減衰極の中に落ちてしまうことが分かった。これを模式的に図33に示す。

【0101】なお、図33中、別のリップルr_sは、直列腕共振器の反射器が原因で発生するものである。図34はα(t)=0.08の時で、並列腕の共振器の反射器から生じるリップルが、丁度高周波側の減衰極の中に落ちている場合の通過特性を示す。従って、同図では通過帯域からリップルが消え、しかも挿入損失がかなり低減している。なお、この図では、通過帯域の中心が(10)式に従って低周波側へ移動したため、これを補正すべく、中心周波数を932MHzになるように、直列腕及び並列腕の共振器の共振周波数を15MHzだけ高周波側へシフトしている。

【0102】これを実際の膜厚との対応でみるため、チップを試作し、その通過特性を調べた。図35(A), (B), (C)の線185, 186, 187は、夫々膜厚が2000Å, 3000Å, 4000Åの時の通過特性を対応させて示す。尚、膜厚を変えることにより中心周波数が変わるが、同図のデータはこれを補正すべく、樹形電極の周期を変え、中心周波数があまり変動しないように調整している。

【0103】図35から明らかなように、2000Åの時に帯域内に現れていた並列腕の共振器のリップルr_P、及び帯域外の直列腕のリップルr_sが、3000Åの時には高周波側へ移動してr_{P'}, r_{s'}となり、

*す、前記反射器付加時に現れるリップルを効果的に取り除く手段について述べる。

【0099】発明者等は、リップルの現れ周波数位置と電極膜厚との関係をシミュレーションにより調べた。シミュレーションでは膜厚増加の効果を電極下の音響インピーダンス(Zm)と自由表面の音響インピーダンス(Zo)との比を大きくしていくことで置き換えた。それは文献(1)でも述べているように、電極膜厚の増加は質量が増加することであり、これはそのまま音響インピーダンスの不連続量の増加に比例すると考えられるためである従って、

10

r_{P'}は高周波側の減衰極に埋もれてしまった結果、帯域内にリップルのない良好な特性となった。この結果はシミュレーションの結果と定性的に良く一致している。

20

【0104】しかし、膜厚を増加させた時にはシミュレーションでは計算できないバルク波による損失劣化(江畑他:「LiTaO₃基板上の弾性表面波共振子とそのVTR用発振器への応用」, 電子通信学会論文誌, vol. J66-C, No. 1, pp23-30, 1988)と抵抗損による損失改善があり、その兼ね合いも重要な因子となる。そこで図36(A)に膜厚を変えた時の最小挿入損の変化をプロットした。

20

【0105】同図中、線190はバルク波による損失、線191は抵抗損による損失を示す。線192が実験値である。同図より分かるように、挿入損は2500Å位で両者の効果が均衡し、約3500Åくらいからバルク波による損失増加が支配的になり劣化し始める。図36

30

(B)の線193は、図26中の励振電極131と反射器132, 133の膜厚を変えた場合の、リップルr_Pの周波数位置の、通過帯域中心周波数f_oに対する変化を示す。

30

【0106】図36(A), (B)を総合的に判断すると、膜厚としては、2600Å~4000Åが帯域内にもリップルを作らず、かつ損失劣化も少ないとから適当である。これを、フィルタの中心周波数からほぼ決まる並列腕共振器の電極周期λ_p(932MHzで4.4μmであり、図26参照)で規格化すると、0.06~0.09となる。

40

【0107】本実施例は、上記の検討結果に基づくものである。図37は本発明の弾性表面波フィルタの第1の一端子対弾性表面波共振器200を示す。同図中、201励振電極202, 203は反射器であり、夫々A1製又は重量比で数%異種金属を混ぜたA1混合製であり、膜厚t₁は、電極周期λ_pの0.06~0.09倍の厚さである。

50

【0108】この共振器200を図25及び図32中の共振器R_{1B}, R_{3B}, R_{5B}に適用した弾性表面波フィルタの通過特性は、図38中、線205で示す如くになり、

通過帯域内にリップルは現われていない。なお、上記のA1合金製とした場合には、A1製とした場合に比べて耐電力特性が向上する。混合させる異種金属はCu, Tiなどである。

【0109】図39は、上記共振器の変形例である共振器210を示す。211は励振電極、212, 213は反射器である。これらは、Au製である。質量付加効果の影響でこの現象が生じていることから、最適な膜厚範囲A1の密度との比だけ上記値より小さくなる。

【0110】A1の密度/Auの密度=2.7/18.9=0.143であるため、最適膜厚 t_2 は、0.143倍して、電極周期 λ_p の0.0086~0.013倍の厚さとしてある。この共振器210を図25及び図32中の共振器R_{1B}, R_{3B}, R_{5B}に適用した弹性表面波フィルタの通過特性も、図38に示す如くになり、通過帯域にリップルは現われない。

【0111】【実施例9】本実施例は、図11中のインダクタンスL₁, L₂, L₃を実現する別の例である。図40中、図14に示す構成部分と対応する部分には同一符号を付し、その説明は省略する。

【0112】220, 221はジグザグ状のマイクロストリップラインであり、夫々端子84-3及び84-5より延出してセラミックパッケージ81上に形成してある。各マイクロストリップライン220, 221の先端がアースと接続してある。各マイクロストリップライン220, 221のパターン幅は100μm、マイクロストリップラインとアース間の長さは0.5mmである。

【0113】セラミックパッケージ81の比誘電率を9とすると、リボンインダクタの理論式から、上記のマイクロストリップライン220, 221のインダクタンス値は2nHとなる。

【実施例10】本実施例は、図11中のインダクタンスL₁, L₂, L₃を実現する更に別の例である。

【0114】図41中、図14に示す構成部分と対応する部分には同一符号を付し、その説明は省略する。230, 231はジグザグ状のマイクロストリップラインであり、夫々共振器R₁, R₂より延出して、フィルタチップ82上に形成してある。各マイクロストリップライン230, 231の先端に、端子85-3, 85-5が形成してある。各マイクロストリップライン230, 231は、厚さが3000Å、幅が60μm、全長が約2mmである。

【0115】フィルタチップ(LiT_aO₃)82の比誘電率を4.4とすると、マイクロストリップライン230, 231のインダクタンス値は、理論式より、2.2nHとなる。なお、インダクタンスを、ボンディングワイヤ86-3、セラミックパッケージ81上のマイクロストリップライン220、フィルタチップ82上のマイクロストリップライン230を適宜組合せることによって形成することもできる。

【0116】【実施例11】図42は本発明の第11実施例による弹性表面波フィルタ240を示す。図43はこれを具体化した構成を示す。説明の便宜上、まず本実施例の概要及び本実施例の基本構成についての説明する。

【0117】①本実施例の概要

本実施例は、直列腕の共振器の共振周波数frsを並列腕の共振器の反共振周波数fapより適宜高く定めて、通過帯域幅を拡大するものであり、また、 $\Delta f \equiv frs - fap$ を、通過帯域内の損失を著しく劣化させない範囲に定めた構成である。

②本実施例の基本構成

前記各実施例においては、 $fap = frs$ はフィルタの通過帯域を形成するためには必要な条件とされている。しかし、この条件を守る限り、通過帯域には上限が生じてしまう。そこで通過帯域幅を拡大するために、図44に示すように $fap < frs$ とすることを考えた。

【0118】こうすると、同図から明らかなように、 $fap < f < frs$ の範囲では $b_x < 0$ となり、前述の理論から減衰域となる恐れがある。しかし、現実には以下に述べるように Δf (= $frs - fap$)の大きさを制限すれば、 b_x 積の値は非常に小さい値に留まるため、減衰は起こらず、実質上通過帯域として何ら問題がないことがわかった。

【0119】図45は、 $\Delta f = frs - fap$ を零から増加していく時の梯子型フィルタの通過特性を示す。実験条件としては、圧電基板は電気機械結合係数が0.05のLiTaO₃を、樹形電極用のA1電極は膜厚3000Åの条件を用いた。電極構成は、図42に示すような並列共振器と直列共振器を梯子型に接続したものを基本構成としてこれを2段に継続接続し、それに入力側及び出力側を対称とするための並列共振器を最後段に接続したものである。梯子型回路を多段化するのは、帯域外抑圧度を実用的な値にまで高めるためである。

【0120】しかし、多段化により通過帯域内の損失も増加するため、多段化の段数は具体的なフィルタの仕様により調整する。本例は損失2dB以下、帯域外抑圧度20dB以上を実現する1つの構成例として挙げたものである。樹形電極の設計条件としては、直並列腕の共振器共に開口長が180μmで対数が50対である。直並列共振器の対数、開口長条件が等しいのでそれぞれの静電容量の比 $P = C_p / C_s$ は1である。

【0121】図45において、(A)は $\Delta f = 0$ の場合、即ち前記の実施例の場合である。同図(B)は $\Delta f = 10MHz$ の場合である。同図(A)と比べると、通過帯域の最小挿入損はほとんど劣化せずに、通過帯域幅(損失2.5dB以下を保証する帯域幅とする)が22MHzから40MHzへ改善されている。 Δf の増加以上に帯域幅が改善されているのは、通過帯域の低周波側の損失回復が見られるためである。

【0122】また、帯域外抑圧度も改善される。図45(A), (B)において高周波側の帯域外抑圧度(図中に示した)が19dBから20dBに改善されている。このように、 Δf の拡大は、単に帯域幅拡大に効果があるのみでなく、同時に帯域外抑圧の改善も図れる技術である。このように Δf を増加させると特性の改善がみられるがその増加量には制限がある。

【0123】図45(C)は $\Delta f = 19\text{MHz}$ とした時の通過特性図である。通過帯域内のやや高周波側に損失劣化が見られ始める。この場合で約2.5dBである。これは帯域内リップルを増加させる原因ともなり、この例ではリップル仕様限度の約1.0dBとなった。これ以上の Δf の増加は損失劣化と帯域内リップルの増加となつた。従って、 $\Delta f = 19\text{MHz}$ が、 Δf を増加させる場合の限度となる。また、この時の帯域外抑圧度は図45(C)で示すように約21dBとなり、従来の図45(A)に比べ2dBの改善が得られる。

【0124】この時に前述の $b \times$ 積はどのような値になつてゐるのかを図45(C)の $\Delta f = 19\text{MHz}$ の場合を例に調べた。まず、図42の並列腕を構成する弹性表面波共振器と直列腕を構成する弹性表面波共振器を個別に作製し、図46(A), (B)で示すような回路構成で、並列腕の共振器はアドミタンスを、直列腕の共振器はインピーダンスをそれぞれ測定した。測定はネットワークアナライザを使用して行ない、各々の S_{21} を測定した。そして、その値を図46(A), (B)に示す式に代入し、インピーダンス Z_p 及びアドミタンス Y_p を求めた。

$$Z_s = jx = \frac{-j(\omega_{rs}^2 - \omega^2)}{\omega C_{os} (\omega_{as}^2 - \omega^2)} \quad \dots (11)$$

$$Y_p = jb = \frac{j\omega C_{op} (\omega_{ap}^2 - \omega^2)}{(\omega_{rp}^2 - \omega^2)} \quad \dots (12)$$

【0132】となる。ここで、

【0133】

* 【数11】

*

$$\omega_{rs} = 2\pi f_{rs} = 1/\sqrt{C_{os} L_{rs}} : \text{直列腕共振器の共振周波数}$$

$$\omega_{as} = 2\pi f_{as} = \omega_{rs} \sqrt{1 + 1/\gamma} : \text{直列腕共振器の反共振周波数}$$

$$\omega_{rp} = 2\pi f_{rp} = 1/\sqrt{C_{op} L_{rp}} : \text{並列腕共振器の共振周波数}$$

$$\omega_{ap} = 2\pi f_{ap} = \omega_{rp} \sqrt{1 + 1/\gamma} : \text{並列腕共振器の反共振周波数}$$

$$\gamma = C_{os}/C_{rs} = C_{op}/C_{rp} : \text{容量比(基板に固有の値をとる)}$$

【0134】である。(11), (12)式より $b \times$ 積を求める

【0135】

【数12】

【0125】その結果、図47に示すような周波数特性を得た。この特性はアドミタンス、インピーダンスの虚数部のみの値、即ち b または x の値である。これらより $b \times$ 積の値を計算するとその周波数特性は図48のようになる。同図から $f_{ap} < f < f_{rs}$ の範囲では $b \times$ 積が負で小さな値をとっていることがわかる。

【0126】 $b \times$ 積の絶対値の最大値 $|b \times_{max}|$ は後述するように

【0127】

【数9】

$$f = \sqrt{f_{ap} \times f_{rs}}$$

【0128】の時に与えられ、本実施例では0.06であった。即ち $|b \times_{max}|$ 値がこの値以下であれば、前述した挿入損の劣化及び帯域内リップルが共に1dB以下と小さく抑ええられることがわかる。 $\Delta f > 19\text{MHz}$ とすると、 $|b \times_{max}|$ 値も増加し、損失劣化、帯域内リップルが共に1dB以上となり実用的ではない。

【0129】従つて、 $|b \times_{max}|$ 値が特性劣化の上限の指標となり、 Δf の許容値を定める。以下に更に一般化して詳述する。図49に図3と同じように弹性表面波共振器をLCの2重共振回路で近似して図2のように梯子型フィルタに組んだ時の等価回路図を示す。

【0130】直列腕の弹性表面波共振器のインピーダンスを Z_s 、並列腕の弹性表面波共振器のアドミタンスを Y_p とすると、

【0131】

【数10】

27

28

$$b_x = - \frac{C_{op} \cdot (\omega_{op}^2 - \omega^2) \cdot (\omega_{rs}^2 - \omega^2)}{C_{os} \cdot (\omega_{op}^2 - \omega^2) \cdot (\omega_{as}^2 - \omega^2)} \dots (13)$$

【0136】となる。(13)式の **b_x** に極値を与える *【0137】角周波数 ω は $\partial(b_x)/\partial\omega=0$ から求まり、それは、

*

$$\omega = \sqrt{\omega_{op} \cdot \omega_{rs}} \dots (14)$$

【0138】となる。これを(13)式に代入した値が通過帯域内の **b_x** 積の絶対値の最大値となる。これを求める

※10

$$b_{x_{max}} = - \frac{C_{op} \cdot (1 + 1/\gamma)}{C_{os} \cdot (1 + 1/(\gamma \cdot \Delta\omega/\omega_{rs}))^2} \dots (15)$$

【0140】となる。ここで、

$$\Delta\omega = \omega_{rs} - \omega_{op} = 2\pi \cdot \Delta f \dots (16)$$

である。(15)式を **$b_{x_{max}}$** と $\Delta f/f_{rs}$ の関係として $P = C_{op}/C_{os}$ をパラメータとしてプロットすると図50のようになる。【0141】同図において、先に実験的に求めた **b_x** の積の許容値0.06以下という条件を図示すると斜線の★20 【数15】

$$\alpha = 1/(\sqrt{P(\gamma^2 + \gamma)} / 0.06) - \gamma \dots (17)$$

【0143】容量比 γ は基板材料できまり、実験によれば、36°Yカット伝搬L iTaO₃で約1.5であつた。このため、(17)式は、

$$\alpha = 6.67 \times 10^{-3} / (4.22 \sqrt{P} - 1) \dots (18)$$

【0145】となる。 $P=1$ の時、 $\alpha=0.02$ となり、 $f_{rs}=948\text{MHz}$ の図45の実施例の場合で $\Delta f=19\text{MHz}$ となり、(18)式が成り立っていることが確認できる。 Δf を増大させる効果は、容量比 γ が小さい圧電基板材料、即ち電気機械結合係数の大きな基板材料に有効であり、そのような圧電基板材料に対して(17)式を求めた。【0146】 γ 値は電気機械結合係数 k^2 の逆数に比例するため、36°YカットX伝搬のL iTaO₃の γ 値と、 $k^2=0.05$ の値とを用いて、他の高い電気機械結合係数をもつ材料64°YカットX伝搬L iTNbO₃($k^2=0.11$)と、41°YカットX伝搬L iTNbO₃($k^2=0.17$)の γ 値を求めるとき、前者が6.8、後者が4.4である。尚これらの k^2 の値は文献

(“Applications for Piezoelectric Leaky Surface Wave”:K. Yamanouchi and M. Takeuchi, 1990 ULTRASONICS SYMPOSIUM Proceedings, pp11-18, 1990)を参照した。

【0147】なお、図51は容量比 γ と電気機械結合係数 k^2 との関係を示す。同図の関係は36°Yカット伝搬L iTaO₃の k^2 と γ 値との値を使い、

【0148】

【数17】

$$k^2 \propto \frac{1}{\gamma}$$

★のような領域になる。従って、 $P=C_{op}/C_{os}$ によって異なる $\Delta f/f_{rs}$ の許容値 α が決定でき、それは(15)式の $|b_{x_{max}}|=0.06$ として、次式となる。

【0142】

【数15】

【数16】

☆【0144】

【数16】

【0149】として求めたものである。図51の関係から、64°Yカットと41°YカットのX伝搬L iTaO₃の γ 値を求める事ができ、前記と同じくそれぞれ $\gamma=6.8$ と4.4となる。

30 ③実施例1の構成

ここで、図42及び図43に示す実施例の構成について説明する。

【0150】241は36°Y-L iTaO₃の圧電基板であり、1.5×2×0.5mmの大きさである。入力側から順番に並列腕共振器(R_{p1})、直列腕共振器(R_{s1})、並列腕共振器(R_{p2})、直列腕共振器(R_{s2})、並列腕共振器(R_{p3})の順で並んでいる。【0151】個々の共振器は両サイドに反射器242(短絡型)をもった構造である。個々の共振器はいづれも開口長が180μm、電極指の対数が50対、反射器も50対である。櫛形電極指の周期のみ並列腕共振器と直列腕共振器とで変えてある。並列腕共振器の周期は $\lambda_p=4.39\mu\text{m}$ (パターン幅とギャップは1:1であるため、パターン幅は $\lambda_p/4=1.1\mu\text{m}$)、直列共振器の周期は $\lambda_s=4.16\mu\text{m}$ (同様にパターン幅は $\lambda_s/4=1.04\mu\text{m}$)である。【0152】それぞれの周期はそれぞれの共振器の共振周波数(f_{rp}, f_{rs})が所定の値(f_{rp}=893MHz, f_{rs}=942MHz)となるように50 f_{rs}=942MHzとなるように

$$\lambda_s = V_m / fr_s \text{ , 及び}$$

$$\lambda_p = V_m / fr_p$$

より決定したものである。ここで、 V_m は電極膜厚 300 Å の時の 36° Yカット X伝搬 LiTaO₃ 結晶の表面波の音速であり、実験的に $V_m = 3920 \text{ m/s}$ と求められた。

【0153】上記構成の弾性表面波フィルタ 240 は、図 45 (C) に示す広帯域で且つ低損失の通過特性を有する。なお、 $\Delta f = 19 \text{ MHz}$ である。図 43 中、 λ_p だけを変えて 4.35 μm とすると、 Δf が 10 MHz * 10

$$\alpha = 1.47 \times 10^{-1} / (4.37 \sqrt{F-1}) \quad \dots (19)$$

【0156】となる。41° Yカット X伝搬 LiNbO₃ の場合には、 $\gamma = 4.4$ であり、

$$\alpha = 2.273 \times 10^{-1} / (4.52 \sqrt{F-1}) \quad \dots (20)$$

【0158】となる。 γ 値が小さくなる程、即ち電気機械結合係数が大きな基板になる程、 α は大きくなり、 Δf を大きく広げても特性劣化は起りにくい。

【実施例 12】図 52 は本発明の第 12 実施例による表面波フィルタ 250 の回路構成図を示す。

【0159】図 53 は、図 52 の回路構成の弾性表面波フィルタを具体化した構造を示す。図 54 及び図 55 は、図 52, 53 の弾性表面波フィルタの特性を示す。

①実施例の概要

説明の便宜上、まず本実施例の概要について説明する。本実施例の弾性表面波フィルタは、直並列に弾性表面波共振器を接続し、これを複数個多段化した梯子型の弾性表面波フィルタにおいて、直並列共振器 1 つずつからなる単位区間の間のイメージインピーダンスの整合を図り、各接続点での損失を減らす構成としたものである。

【0160】これにより、通過帯域における挿入損失を低減することが可能となる。

②発明の完成までの思考過程

次に、本発明の完成までの思考過程について説明する。図 56 (A), (B) に示すように少なくとも 1 個づつの直列腕共振器と並列腕共振器の梯子型接続により、バンドパス特性を得ることができる。なお、この一つづつの直列腕共振器と並列腕共振器の梯子型接続が、フィルタの単位区間となる。

【0161】この際、直列腕共振器の共振周波数と並列共振器の反共振周波数は一致若しくは、通過帯域幅拡大の上から前者が後者より高い周波数を持つことが望ましい。図 56 (A), (B) の単位区間は互いに入出力端が直列腕であるかで、二つのタイプがあり、これらを多段に接続したものは、図 57 (A), (B), (C) に示すように 3 つのタイプに分類される。★

$$Z_{11} = \sqrt{D_1 B_1 / C_1 A_1}$$

【0167】同様に回路 2 側をみたイメージインピーダンス Z_{12} は、次式のように表される。★

$$Z_{12} = \sqrt{A_2 B_2 / C_2 D_2}$$

* となり、図 45 (B) の特性が得られる。

【0154】尚、電極材料は Al-Cu 合金であり、膜厚は 3000 Å で、表面波が圧電基板 241 の X 軸方向に伝搬するように配置してある。次に、他の圧電基板を用いた場合の例について説明する。64° Yカット X 伝搬 LiNbO₃ の場合には、 $\gamma = 6.8$ であり (17) 式は、

【0155】

【数 18】

$$\alpha = 1.47 \times 10^{-1} / (4.37 \sqrt{F-1}) \quad \dots (19)$$

【0157】

【数 19】

$$\alpha = 2.273 \times 10^{-1} / (4.52 \sqrt{F-1}) \quad \dots (20)$$

★【0162】図 57 (A) は入出力側の一方が直列腕で他方が並列腕である場合、(非対称型)、(B) は入出力端共に並列腕である場合(対称型)、同図 (C) は入出力端共に直列腕である場合(対称型)である。このように多段化した場合、挿入損失、帯域外抑圧度ともに単位区間の n 倍となり、一般に挿入損失は悪くなるものの、帯域外抑圧度は改善する。とくに単位区間の損失が 0 に近い場合はこの多段化は有効である。

【0163】しかしながら、単位区間同士の通過帯域におけるインピーダンス整合が適切でないと、挿入損失が理論的な n 倍よりもさらに悪化する。インピーダンス整合が適切でないと、単位区間の境界(図 57 中の線 1-1' から n-n' までの各境界)で電力の反射が起こり、損失増加となるからである。

【0164】単位区間同士の電力反射を Γ とすると損失も $n \log(\Gamma)$ となる。従って単位区間同士のインピーダンス整合をはかり、境界での電力反射を押さえることにより、挿入損失の増加を極力押さえることが重要である。次に、単位区間同士のインピーダンス整合を図る方法について説明する。図 58 に示すように、一般に 2 つの異なる 4 端子定数(F 行列の 4 つの定数 A, B, C, D) をもつ回路同士を、インピーダンス整合を図って接続する場合、境界 b-b' からそれぞれの回路側を見たイメージインピーダンスが互いに等しいと置けば良い。

【0165】図 58 に示すように回路 1 側をみたイメージインピーダンス Z_{11} は、回路 1 の 4 端子定数 A_1, B_1, C_1, D_1 を使って次式のように表される。

【0166】

【数 20】

$$\dots (21)$$

★【0168】

【数 21】

$$\dots (22)$$

【0169】これらのイメージインピーダンスは負荷抵抗（純抵抗） R_o とは無関係に決まる。（21）式と

$$D_1 B_1 / C_1 A_1 = A_2 B_2 / C_2 D_2 \dots (23)$$

図59は、前述のインピーダンス整合条件を梯子型回路の単位区間に適用した場合を示す。

【0170】図59（A）は、インピーダンス整合が悪い接続方法で、（23）式の条件を満たさない。境界 b ※

$$\Gamma = \frac{Z_s Y_o}{2 + Z_s Y_o} \dots (24)$$

【0172】となる。 $Z_s Y_o$ は実際の素子では通過帯域でも完全に0とはならないため Γ も0にはならない。これに比べ、図59（B）、または図59（C）は境界 $b - b'$ で（23）式の条件を満たすため反射は0となり、損失は生じない。例えば、図59（B）の場合、境★

$$Z_{11} = \sqrt{Z_s Y_o (1 + Z_s Y_o)} \dots (25)$$

【0174】となる。境界 $b - b'$ から右側をみたイメージインピーダンス Z_{12} も（22）式から求めると、 Z_{11} と等しくなることが分かる。従ってインピーダンス整合がとれ、境界での反射係数は0となる。図59（C）も同様にインピーダンス整合がとれていることが証明される。次に図59（B）、（C）のような接続法を利用して単位区間を多段接続する方法を考察する。

【0175】図60（A）は、図59（B）、（C）の接続法を交互に繰り返して単位区間をn（>2）段接続した回路を示す。このような接続方法をつかえば、前述の理由から何段接続しても各単位区間の電力反射は起らない。図60（A）の構成で、互いに隣接しあう並列腕の共振器同士、または直列腕の共振器同士を加えてひとまとめにすると図60（B）と等価になる。

【0176】この結果、最も入出力端に近い腕のみがそれより内側の腕に対して半分の大きさのインピーダンスあるいはアドミタンス値をもつようになることがわかる。図57で示した3種類の多段化の仕方に対してこの原理を適用すると、インピーダンス整合を図った接続法として、それぞれ図61（A）、（B）、（C）の方法が得られる。

【0177】図61（A）は図57（A）に対応する整合化接続法で、入出力端のどちらか一方が直列腕で、他方が並列腕の場合である。この場合は、端部の直列腕共振器のインピーダンス値は、内側直列腕共振器のインピーダンス値の半分であり、また、他方の端部の並列腕共振器のアドミタンス値も、内側の並列腕共振器のアドミタンス値の半分である。

【0178】同様に図61（B）は図57（B）の、また図61（C）は図57（C）の整合化接続法である。図61（B）の場合は両端部が並列腕の場合で、両端部の並列腕共振器のアドミタンス値は、それより内側の並列腕共振器のアドミタンス値の半分となっている。

*（22）式を等しいと置くと、次式のようなインピーダンス整合条件が求まる。

$$D_1 B_1 / C_1 A_1 = A_2 B_2 / C_2 D_2 \dots (23)$$

※-b'から右側をみた反射係数 Γ は、

【0171】

【数22】

★界 $b - b'$ から左側みたイメージインピーダンスは、（21）式から、

【0173】

【数23】

【0179】図61（C）の場合は両端部が直列腕の場合で、両端部の直列腕共振器のインピーダンス値は、それより内側の直列腕共振器のインピーダンス値の半分となっている。

③実施例12の構成

次に、上記の考え方に基づく、本発明の第12実施例について説明する。

【0180】図52は本発明の第12実施例になる弾性表面波フィルタ250の基本的構成を示す。この弾性表面波フィルタを具体化すると、図53に示す如くになる。3つの直列腕共振器（ R_{s1}, R_{s2}, R_{s3} ）と3つの並列腕共振器（ R_{p1}, R_{p2}, R_{p3} ）とから成り、それぞれ図52に示す等価回路のように接続されている。

【0181】これらの6つの共振器は共に開口長（90 μm）が同じであり、且つ電極指対数（100対）も同じである。また、各共振器は同図に示すような短絡型の反射器を両側に有し、Qを高めている。反射器の対数は100対程度である。

【0182】直列腕共振器（ $R_{s1} \sim R_{s3}$ ）はすべて同じ長さの電極指周期（ λ_s ）であり、 $\lambda_s = 4.19 \mu m$ である。又、並列腕共振器（ $R_{p1} \sim R_{p3}$ ）の周期は、これと異なる周期 $\lambda_p = 4.38 \mu m$ としてある。比較の対象として、この構成に対する従来構成を図62に示す。

【0183】図52及び図62の両方について、インピーダンス Z_s で示される直列腕の一端子弾性表面波共振器の設計条件は、開口長90 μm、対数100対である。アドミタンス Y_p で示される並列腕の一端子対弾性表面波共振器も同じ条件である。圧電基板結晶は、36°YカットX伝搬LiTaO₃を用い、その上に弾性表面波共振器として3000 ÅのAl合金膜の樹形パターンが形成している。

【0184】図54中、実線251は図53のフィルタ250の特性を示す。破線252は図62の従来のフィルタの特性を示す。両者より本実施例のフィルタ250の方が、低損失化されていることがわかる。特に通過帯域の両端での改善が大きい。次に図62の従来のフィルタにおいて、単位区間(3)のアドミタンス Y_p で表される並列共振器のみ、対数を100対から80対に減らしてアドミタンス Y_p の値を小さくした時の通過特性を図55中、線253で示す。同様に挿入損失が改善されていることが分かる。従って、端部のアドミタンス値は1/2としなくとも、内側のアドミタンス値より減らすだけでも、十分ではないが効果があると言える。インピーダンス値に対しても同様である。

【0185】以上、図61(A)の基本形に対する実施例を示したが、これは中央部に多数の単位区間が増えても同様な効果を有する。

【実施例13】図63は、本発明の第13実施例になる弾性表面波フィルタ260である。この弾性表面波フィルタは、図61(B)に示す構成方法に基づいたものである。

【0186】この弾性表面波フィルタ260は、図54の線251で示したものと同様な損失低減効果をもたらす。

【実施例14】図64は、本発明の第14実施例になる*

$$Y_p = g + j \cdot b$$

g : コンダクタンス分

b : サセプタンス分

$$Z_s = r + j \cdot x$$

r : 抵抗分

x : リアクタンス分

とする。

【0191】このように仮定すると、g, b, r, xの周波数特性は図69のようになる。並列腕共振器のアドミタンス Y_p のサセプタンス分b(図69中の点線)は、共振周波数frpで最大値をとり、そこで符号を+から-へ変え、反共振周波数fapで0(零)となり、fap以上で符号が再び+になり、少しづつ増大してゆく。一方、 Y_p のコンダクタンス分g(図69中の一点鎖線)は、同様にfapで最大値をとり、fapを越えると急激に減少し、除々に0に近づいていく。

【0192】尚コンダクタンス分gは+の値しかとらない。直列腕共振器のインピーダンス分 Z_s のリアクタンス分x(図69中の実線)は、アドミタンスとは逆で共振周波数frsで0となり、反共振周波数fasで最大値をとり、さらに+から-へ符号を変え、fas以上では一側★

100

$$S_{z1} = \frac{100}{100 + r + 50r \cdot g + 2500g}$$

*弾性表面波フィルタ270である。この弾性表面波フィルタは、図61(C)に示す構成方法に基づいたものである。

【0187】この弾性表面波フィルタ270も、図54の線251で示したものと同様な損失低減効果をもたらす。

【実施例15】次に本発明の第15実施例になる弾性表面波フィルタについて図65及び図66等を参照して説明する。

10 【0188】①実施例の概要

説明の便宜上、まず本実施例の概要について説明する。本実施例は、通過帯域における挿入損失を決定している原因として、樹形電極の抵抗分とコンダクタンス分に着目し、直列配列の共振器に対しては抵抗分を減少させ、並列腕の共振器に対しては、コンダクタンス分を減少させることによりこれらを梯子型に組んだ時のフィルタ特性の挿入損失を低減させるものである。

【0189】次に、本発明の背景等について説明する。

②本発明の背景

20 図65に直列腕と並列腕にそれぞれ共振周波数(frs, frp)の異なる2つの弾性表面波共振器を配置した梯子型フィルタ回路の基本構成を示す。ここで、並列腕共振器のアドミタンスを、

… (26)

※とする。

※ 【0190】また直列腕共振器のインピーダンスを、

… (27)

★から0へ近づいていく。

30 【0193】また、抵抗分rは0から徐々に増加してゆき、反共振周波数fasで最大値をとり、それ以上で徐々に減少していく。rもgと同様に+の値しかとらない。ここで、フィルタ特性を作るためには、前記並列共振器の反共振周波数fapと直列共振器の共振周波数frsとは略一致もしくは後者がやや大きいことが条件である。

【0194】図69の下部に上のインピーダンス、アドミタンスの周波数特性に合わせて、フィルタ回路としての通過特性を示す。fap ≈ frs 近傍で通過帯域をとり、それ以外では減衰領域となる。同図からも明らかなように、通過帯域の特に中心周波数近傍ではb及びxは0になる。

40 【0195】従って、フィルタとしての通過特性は S_{z1} は、rとgのみで決まり、

【0196】

【数24】

… (28)

【0197】となる。ここで、r > 0, g > 0であるので、(28)式はr, g共に増加するほど S_{z1} は1より

小さくなり、20log| S_{z1} |で表される挿入損失も増大していく。従って、r, gは共に0に近い程、挿入

損失は小さいことになる。

【0198】次に、 r 、 g は弾性表面波共振器を形成する樹形電極のどの部分から生じているのかを説明する。こゝでは、図3(B)中、 r_1 をも考慮に入れて考える。 r_1 は樹形電極の電気抵抗分及び樹形電極指の各端部から基板内部へバルク波となつて漏れていくエネルギー損失分を音響抵抗分として表したものと合計したものである。

【0199】今、バルク波放射による抵抗分は樹形電極*

$$r = l_s \cdot \rho_o / (N_s \cdot W \cdot t) \quad \dots (29)$$

となる。また、並列腕共振器の開口長を l_p 、対数を N_p とすると、同一基板、同一金属膜を使う場合は ρ_o 、※

$$g = N_p \cdot W \cdot t / (l_p \cdot \rho_o) \quad \dots (30)$$

となる。

【0201】従つて、(28)式における挿入損失にお★

$$\begin{aligned} r + 50r \cdot g + 2500g \\ = l_s \cdot \rho_o / (N_s \cdot W \cdot t) + 50 \cdot (l_s / l_p) \cdot (N_p / N_s) \\ + 2500 \cdot N_p \cdot W \cdot t / (l_p \cdot \rho_o) \dots (31) \end{aligned}$$

となる。

【0202】(31)式より、直列腕共振器は開口長 l_s が短く、対数 N_s が多い程、また、並列共振器は開口長 l_p が長く、対数 N_p が少ない程、損失低減に効果があることが分かる。特に、 $l_s / l_p < 1$ 、 $N_p / N_s < 1$ である程、言い換えれば開口長は、直列腕共振器の方が並列腕共振器より短い方が、対数は、直列腕共振器の方が並列腕共振器より多い方が一層効果がある。

【0203】ここで、この理由について述べる。上記(31)式において、 $r = r_s$ (r_s : 直列腕共振器の電気抵抗) 及び $g = 1 / r_p$ (r_p : 並列腕の電気抵抗) であるから

$$\begin{aligned} r + 50r \cdot g + 2500g \\ = l_s \cdot \rho_o / (N_s \cdot W \cdot t) + 50 \cdot (l_s / l_p) \cdot (N_p / N_s) \\ (t_p / t_s) + 2500 \cdot N_p \cdot W \cdot t_p / (l_p \cdot \rho_o) \dots (32) \end{aligned}$$

従つて、 t_p / t_s とすることで同様に損失を低減できる。この他にも抵抗率の異なる(ρ_{os} 、 ρ_{op})2種類の金属膜からなる共振器を、直列腕と並列腕に配置してフィルタを作り、 $\rho_{os} / \rho_{op} < 1$ とすることも可能であるが、実際に素子をつくる場合、量産性等を考慮すると実際的ではない。

【0206】③実施例15の構成

次に、上記考え方を採用した実施例について説明する。

図65は本発明の第15実施例の弾性表面波フィルタ280の回路構成を示す。図66は図65の回路構成を具現化した構造を示す。

【0207】用いた圧電基板241は36°YカットXLiTaO₃であり、電極材料は3000ÅのAl膜である。従来は、直列腕、並列腕共に、樹形電極の開口長 $l_s = l_p = 90\mu m$ 、対数 $N_p = N_s = 100$ 対であるのに対し、本実施例では、直列腕を、 $l_s = 45\mu m$ 、 $N_s = 200$ 対、並列腕を $l_p = 180\mu m$ 、 N_p

*の形状に殆ど依存しないため、樹形電極の電気抵抗 r_1 に比例する。特に $x = 0$ の中心周波数近傍では $r = r_1$ となる。また、並列腕共振器のアドミタンスのコンダクタンス分 g は、樹形電極の電気抵抗のコンダクタンス $1 / r_1$ に比例する。

【0200】今、樹形電極の電極指の抵抗率を ρ_o 、電極指の幅を W 、膜厚を t とし、直列腕共振器の開口長を l_s 、対数を N_s とすると、

$$r = l_s \cdot \rho_o / (N_s \cdot W \cdot t) \quad \dots (29)$$

※ W 、 t はほぼ等しいから、

$$g = N_p \cdot W \cdot t / (l_p \cdot \rho_o) \quad \dots (30)$$

★ける増加分は、

$$\star r + 50r \cdot g + 2500g = r_s + 50(r_s / r_p) + 2500(1/r_p) \quad \dots (31)$$

となる。従つて、 $(r_s / r_p) < 1$ 、即ち $r_s < r_p$ であれば挿入損失の増大は抑制できる。

【0204】なお、この場合 l_s をあまり狭め過ぎると表面波の回折による損失が現れ、逆に l_p を長くしすぎると抵抗増大による並列共振器のQ低下を招き、低周波側の帯域外抑圧度が悪くなるため、その大きさには限度がある。さらに樹形電極を形成している金属膜の膜厚を直列腕の方を t_s 、並列腕の方を t_p とすると(31)式は次のようになる。

☆30 【0205】

従つて、 t_p / t_s とすることで同様に損失を低減できる。この他にも抵抗率の異なる(ρ_{os} 、 ρ_{op})2種類の金属膜からなる共振器を、直列腕と並列腕に配置してフィルタを作り、 $\rho_{os} / \rho_{op} < 1$ とすることも可能であるが、実際に素子をつくる場合、量産性等を考慮すると実際的ではない。

【0208】この時、対数と開口長の積で形状的に決まる樹形電極の静電容量 C_0 は変わらないようにした。図66の実線281が本実施例の特性、破線282が従来例の特性である。従来では損失が2.5dBであったものが本実施例により2.0dBとなり、本実施例により0.5dB以上改善した。即ち、フィルタの挿入損失がdB換算で25%も改善された。

【0209】また、本実施例の場合、直列腕共振器の対数を増加したことにより、耐電力性も向上し、印加可能な最大電力が20%向上した。以上の実施例の場合、 $l_s = 30\mu m$ 以下で回折損が現れ始め、 $l_p = 300\mu m$ 以上で低周波側の帯域外劣化が起こり始めたことから、これらの値が限度であった。

【0210】以上、直列腕の電気抵抗を下げ、並列腕の

電気抵抗を上げる（コンダクタンスを下げる）ことにより、通過帯域の挿入損が改善されることは明らかである。また、並列腕共振器の膜厚を直列腕共振器の膜厚より薄くした構成とすることもできる。この構成によっても、上記実施例の場合と同様に、通過帯域の損失を少なくてできる。

【0211】

【発明の効果】以上説明したように、請求項1ないし5の発明によれば、通過帯域外抑圧度及び通過帯域の損失と共に損なうことなく、従来のものに比べて通過帯域幅を拡大することができる。請求項6ないし18の発明によれば、従来のものに比べて、通過帯域幅を拡げることが出来、且つ通過帯域の損失を小さくすることができます。

【0212】請求項19ないし21の発明によれば、従来のものに比べて、通過帯域外抑圧度及び通過帯域幅を何ら損なうことなく、通過帯域の損失を少なくすることが出来る。請求項22ないし24の発明によれば、通過帯域幅が広く、通過帯域外の抑圧度が高く、損失の小さい弹性表面波フィルタを単一のパッケージに収容して提供することができる。

【図面の簡単な説明】

【図1】本発明の弹性表面波フィルタの原理図である。

【図2】共振器を用いたフィルタ回路の基本構成を示す図である。

【図3】一端子対弹性表面波共振器の構造とその等価回路及びその記号を示す図である。

【図4】一端子対弹性表面波共振器のインピーダンス及びアドミタンスの周波数特性を示す図である。

【図5】共振周波数近傍における弹性表面波共振器のインミタンス特性及びそれらを接続してなる図1のフィルタのフィルタ特性を示す図である。

【図6】図42の従来の弹性表面波フィルタを説明する図である。

【図7】共振器にインダクタンスを直列に付加した場合の効果を示す図である。

【図8】一端子対弹性表面波共振器を直列にn個接続した場合の効果を示す図である。

【図9】並列腕共振器の通過特性の開口長依存性を示す図である。

【図10】直列腕共振器の通過特性の開口長依存性を示す図である。

【図11】本発明の弹性表面波フィルタの第1実施例の回路図である。

【図12】図11のフィルタの通過特性を示す図である。

【図13】並列腕共振器へのインダクタンス付加の効果を示す図である。

【図14】図11の弹性表面波フィルタの構造をその蓋を取り外した状態で示す平面図である。

【図15】図41中、XV-XV線に沿う断面図である。

【図16】本発明の弹性表面波フィルタの第2実施例を示す図である。

【図17】図16のフィルタの通過特性を示す図である。

【図18】並列腕共振器の開口長（ A_p ）と直列腕共振器の開口長（ A_s ）の比（ A_p / A_s ）の増大効果を示す図である。

【図19】本発明の弹性表面波フィルタの第3実施例を示す図である。

【図20】図19のフィルタの通過特性を示す図である。

【図21】本発明の弹性表面波フィルタの第4実施例を示す図である。

【図22】図21のフィルタの通過特性を示す図である。

【図23】本発明の弹性表面波フィルタの第5実施例を示す図である。

【図24】図23のフィルタの通過特性を示す図である。

【図25】本発明の弹性表面波フィルタの第6実施例の回路図である。

【図26】図25中、第1の一端子対弹性表面共振器を示す図である。

【図27】図25のフィルタの通過特性を示す図である。

【図28】反射器設置位置 $d = (n + \beta) \cdot \lambda$ の β によるリップル幅への影響を示す図である。

【図29】図25の弹性表面波フィルタの構造をその蓋を取り外した状態で示す平面図である。

【図30】図25中の第1の一端子対弹性表面波共振器の一の変形例を示す図である。

【図31】図25中の第1の一端子対弹性表面波共振器の別の変形例を示す図である。

【図32】本発明の弹性表面波フィルタの第7実施例を示す図である。

【図33】電極膜厚（t）のリップル発生位置への効果を示す図である。

【図34】並列腕共振器の反射器によるリップル（ r_p ）が高周波減衰極へ落ちたときの状態を示す図である。

【図35】共振器型フィルタの通過特性の膜厚依存性を示す図である。

【図36】挿入損失及びリップル発生位置の膜厚依存性の実験の結果を示す図である。

【図37】本発明の弹性表面波フィルタの第8実施例の第1の一端子対弹性表面波共振器を示す図である。

【図38】図37の共振器を適用した弹性表面波フィルタの通過特性を示す図である。

【図39】本発明の弹性表面波フィルタの第8実施例の

第1の一端子対弾性表面波共振器の変形例を示す図である。

【図40】図11の弾性表面波フィルタのインダクタンスを実現する別の例を示す図である。

【図41】図11の弾性表面波フィルタのインダクタンスを実現する更に別の例を示す図である。

【図42】本発明の弾性表面波フィルタの第11実施例の回路図である。

【図43】図42の回路を具体化した構成を示す図である。

【図44】 $f_{ap} < f_{rp}$ としたときの弾性表面波共振器のインミタンス特性を示す図である。

【図45】 $\Delta f \equiv f_{rs} - f_{ap}$ を零から増加させたときの梯子型フィルタの通過特性の変化を説明する図である。

【図46】弾性表面波共振器の特性測定法を説明する図である。

【図47】並列腕及び直列腕の各弾性表面波共振器のアドミタンス及びインピーダンスの特性を示す図である。

【図48】 $b \times x$ 積の周波数依存性を示す図である。

【図49】図42の回路の一部をLとCの等価回路で表した図である。

【図50】 $|b x_{max}|$ と $\Delta f / f_{rs}$ との関係を示す図である。

【図51】 k^2 と γ との関係を示す図である。

【図52】本発明の弾性表面波フィルタの第12実施例の回路図である。

【図53】図52の回路を具体化した構成を示す図である。

【図54】図53の弾性表面波フィルタの特性を示す図である。

【図55】図63のフィルタ中、出力側 Y_p を減少させた場合の特性を示す図である。

【図56】1個づつの弾性表面波共振器を梯子型にした単位区間の回路図である。

【図57】図56の単位区間を多段(n段)に接続してなる回路の回路図である。

【図58】二つの4端子回路の接続とその境界を示す図である。

【図59】単位区間同士の接合を示す図である。

【図60】n (> 2) 段に単位区間を接続する方法を説明する図である。

【図61】本実施例の梯子型回路の構成方法を説明する図である。

【図62】従来の弾性表面波フィルタの回路図である。

【図63】本発明の弾性表面波フィルタの第13実施例の回路図である。

【図64】本発明の弾性表面波フィルタの第14実施例の回路図である。

【図65】本発明の弾性表面波フィルタの第15実施例の回路図である。

【図66】図65の回路を具体化した構成を示す図である。

10 【図67】図66のフィルタの特性を示す図である。

【図68】並列腕と直列腕に共振周波数の異なる弾性表面波共振器を配置した梯子型フィルタ回路を示す図である。

【図69】並列腕共振器のアドミタンス (Y_p) の周波数特性及び直列腕共振器のインピーダンス (Z_s) の周波数特性を対応させて示す図である。

【図70】従来の弾性表面波フィルタの1例を示す図である。

【図71】図70のフィルタの通過特性を示す図である。

【符号の説明】

60, 90, 100, 110, 120, 130, 24
0, 250, 260, 270, 280 弾性表面波フィルタ

80, 150 弹性表面波フィルタ装置

81 セラミックパッケージ

82 フィルタチップ

83 蓋

84-1~85-6 電極端子

30 85-1~85-6 端子

86-1~86-5 ボンディングワイヤ

124, 125 減衰極

127 阻止域

131, 201, 211 励振電極

132, 133, 160, 161, 166, 167, 202, 203, 212

, 213, 242 反射器

220, 221, 230, 231 マイクロストリップライン

241 36° YカットX伝搬LiTaO₃基板(チップ)

R_{s1}, R_{s2} 直列腕共振器

R_{p1}~R_{p3} 並列腕共振器

【図1】

本発明の弾性表面波フィルタの原理図

【図2】

共振器を用いたフィルタ回路の基本構成を示す図

行列表示

$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} V_2 \\ I_2 \end{pmatrix}$$

【図3】

1端子対弾性表面波共振器の構造とその等価回路及びその記号を示す図

(A)構造(樹形電極)

(B)等価回路

(C)

【図4】

1端子対弾性表面波共振器のインピーダンス及びアドミタンスの周波数特性(定性的な変化)を示す図

(A)インピーダンス

(B)アドミタンス

【図5】

共振周波数近傍における弾性表面波共振器のインピーダンス特性及びそれらを接続してなる図1のフィルタのフィルタ特性を示す図

【図8】

1端子対弾性表面波共振器を直列にn個接続した場合の効果を示す図

【図6】

図42の従来の弾性表面波フィルタを説明する図

【図9】

並列腕共振器の通過特性の開口長依存性を示す図

〔图7〕

共振器にインダクタンスを直列に付加した場合の効果を示す図

【图 1-1】

本発明の弹性表面波フィルタの 第1実施例の回路図

【図12】

図11のフィルタの通過特性を示す図

【図10】

【図13】

【図16】

本発明の弾性表面波フィルタの第2実施例を示す図

【図19】

本発明の弾性表面波フィルタの第3実施例を示す図

【図14】

図11の弾性表面波フィルタの構造を
その蓋を取り外した状態で示す平面図

【図15】

図14中、X-X'線に沿う断面図

【図17】

図16のフィルタの通過特性を示す図

【図21】

本発明の弾性表面波フィルタの第4実施例を示す図

【図18】

並列腕共振器の開口長(A_p)と直列腕共振器の開口長(A_s)の比(A_p/A_s)の増大効果を示す図

【図20】

図19のフィルタの通過特性を示す図

【図23】

本発明の弾性表面波フィルタの第5実施例を示す図

【図24】

図23のフィルタの通過特性を示す図

【図22】

図21のフィルタの通過特性を示す図

【図26】

図25中、第1の一端子対弾性表面波共振器を示す図

【図25】

本発明の弾性表面波フィルタの第6実施例の回路図

【図27】

図25のフィルタの通過特性を示す図

【図31】

図25中の第1の一端子対弾性表面波共振器の別の変形例を示す図

【図28】

反射器設置位置 $d = (\eta + \beta) \cdot \lambda$ の β による、
リップル幅への影響を示す図

【図29】

図25の弾性表面波フィルタの構成をその蓋を取り外した状態で示す平面図

【図30】

図25中の第1の一端子対弾性表面波共振器の一の変形例を示す図

【図32】

本発明の弾性表面波フィルタの第7実施例を示す図

【図33】

電極膜厚(t)のリップル発生位置への効果を示す図

【図34】

並列腕共振器の反射器によるリップル(r_p)が高周波側減衰極へ落ちたときの状態($\alpha(t)=0.08$ の時)を示す図

【図37】

本発明の弾性表面波フィルタの第8実施例の第1の一端子対弾性表面波共振器を示す図

【図39】

本発明の弾性表面波フィルタの第8実施例の第1の一端子対弾性表面波共振器の変形例を示す図

【図35】

共振器型フィルタの通過特性の膜厚依存性を示す図

【図36】

挿入損及びリップル発生位置の膜厚依存性の実験の結果を示す図

【図38】

図37の共振器を適用した弾性表面波フィルタの通過特性を示す図

【図41】

図11の弾性表面波フィルタのインダクタンスを実現する更に別の例を示す図

【図40】

図11の弾性表面波フィルタのインダクタンスを実現する別の例を示す図

【図44】

$f_{ap} < f_{rs}$ としたときの弾性表面波共振器のインミタンス特性を示す図

【図42】

本発明の弾性表面波フィルタの第11実施例の回路図

【図43】

図42の回路を具体化した構成を示す図

【図45】

【図47】

並列腕及び直列腕の各弾性表面波共振器のアドミタンス及びインピーダンスの特性を示す図

【図46】

弾性表面波共振器の特性測定法を説明する図

【図48】

bX積の周波数依存性を示す図

【図49】

図42の回路の一部をLとCの等価回路表示した図

【図50】

【図52】

本発明の弾性表面波フィルタの第12実施例の回路図

【図54】

図53の弾性表面波フィルタの特性を示す図

【図51】

【図53】

図52の回路を具体化した構成を示す図

【図55】

図62のフィルタ中、出力側 Y_P を減少させた場合の特性を示す図

【図57】

図56の単位区間を多段(n 段)に接続してなる回路の回路図

(A) 入出力のどちらか1方が直列腕で他方が並列腕の場合

(B) 入出力の両方共に並列腕の場合

(C) 入出力の両方共に直列腕の場合

【図56】

1個づつの弾性表面波共振器を梯子型にした単位区間の回路図

(A) 入力側に直列腕がくるタイプ

(B) 入力側に並列腕がくるタイプ

【図58】

二つの4端子回路の接続とその境界を示す図

【図59】

単位区間同士の接合を示す図

(A) インピーダンス整合が良くないつなぎ方

(B) インピーダンス整合のとれたつなぎ方(1)

(C) インピーダンス整合のとれたつなぎ方(2)

【図60】

n(>2)段に単位区間を接続する方法を説明する図

【図61】

本実施例の梯子型回路の構成方法を説明する図

【図62】

従来の弾性表面波フィルタの回路図

【図63】

本発明の弾性表面波フィルタの第13実施例の回路図

【図68】

並列腕と直列腕に共振周波数の異なる弾性表面波共振器を配置した梯子型フィルタ回路を示す図

【図64】

本発明の弾性表面波フィルタの第14実施例の回路図

【図66】

図65の回路を具体化した構成を示す図

【図65】

本発明の弾性表面波フィルタの第15実施例の回路図

【図67】

図66のフィルタの特性を示す図

【図69】

並列腕共振器のアドミタンス(Y_p)の周波数特性及び直列腕共振器のインピーダンス(X)の周波数特性を対応させて示す図

【図70】

従来の弾性表面波フィルタの例を示す図

【図71】

図70のフィルタの通過特性を示す図

フロントページの続き

(72) 発明者 宮下 勉

神奈川県川崎市中原区上小田中1015番地
富士通株式会社内

(72) 発明者 松田 隆志

神奈川県川崎市中原区上小田中1015番地
富士通株式会社内

(72) 発明者 高松 光夫

神奈川県川崎市中原区上小田中1015番地
富士通株式会社内