H*(ko) = A // A(1) = A & A(1) F2 Known: A(1) = submodule of Steenmod alg gen. by Sq'. Sq2 $\mathcal{A}(1)_{*} = \mathcal{A}_{*}/(3_{1}^{4}, \overline{3}_{2}^{2}, \overline{3}_{3}, \overline{3}_{4}, \dots)$ = F2 { h1.0. h1.1. h2.0 }. where $h_{i.j} = \xi_i^{2^{j}} \in E_i^{1,(2^{i}-1)2^{j}}$. 2i-1Tools : 1. Adams SS: E2 = Ext (H*ko. Th) => TTt-s ko & Z/2 dr: Er - Er ter-1 2. Getensor: M. N right/left 7-comodules. T flat over A. (A. Γ) Hopf algebroid / field k. Yn: M → Γ ⊗A M left A-linear, counital. coassoc., similarly 4N comodule str on N. Then cotensor is given by and $M \square \Gamma N = N \square \Gamma M$ (if defined). 3. Reformulate Adams E2 - page: FACT 1 M. N left Γ - comods, M proj. A then $Hom_A(M.A)$ is a right \(\tau - comodule \). and Homp (M.N) = Homa (M.A) Or N => Homp (A.N) = A □p N FACT 2 M left Γ - comod. Ext $(M.-) = i^{+h}$ right derived functor of Homp (M. -)

```
N \text{ right } \Gamma - convol. Cotor (N.-) = i^{th} \text{ right derived}
          functor of Nar-
    FACT 3 (Change - of - rings) f: (k.\Gamma) \rightarrow (k.\Sigma) surj
          map of Hopf algs. then V left I - comodule
              Ext_{\Gamma}(k, \Gamma o_{\Sigma} N) = Ext_{\Sigma}(k, N)
   ▶ Reformulate :
          E_{\lambda}^{s.t} = \operatorname{Ext}_{A}^{s.t} (H^{*} ko . F_{\lambda})
               ≅ Ext. (Fz. Hxko) duality between comod/mod.
          Since H^*k_0 = A //A(1) = A \otimes_{A(1)} F_2.
              H*ko = A* 1 A(1) = F2 dualing ..
         So \overline{E}_{2}^{s,t} = \overline{E}_{xt} + (\overline{F}_{2} + \overline{F}_{2} + \overline{F}_{3})
                     = Ext<sub>A*</sub> (F. A* (A(1)* F.)
                     = Ext. A(1) + ( Fz , Fz) Change - of - rings.
                      = Cotor_{A(1)*} (F_2 . F_2)
                      \Rightarrow \pi_{t-s} \text{ ko } \otimes \mathbb{Z}_{2}
4. May SS: E, = 1 = 1 E L hi.j: i≥1. j≥0] ⇒ Cotor A. (F. F.)
                   w/dr: E_r \longrightarrow E_r^{s+1.t.u-r}
             For submodule of A*, one has . - for A(1)*.
                         E_i^{*,*,*} = F_2 [h_i.j: 1 \le i+j \le 2] included by
                                                                   Ax - Acox
5. Cobar complex: (Probably not used)
```

(A. P) Hopf algebroid. M. N (oft/right Γ -comodules

N proj. /A, then the cobar cpx $C_{\Gamma}^{S}(N,M) = N \otimes_{A} \overline{\Gamma}^{S} \otimes_{A} M$ for $\overline{\Gamma} = \operatorname{coker}(\eta_L : A \to \Gamma)$, s.t. $d_s: C^s_{\Gamma}(N.M) \longrightarrow C^{s+1}_{\Gamma}(N.M)$ $x \otimes a_1 \otimes ... \otimes a_5 \otimes m \mapsto \psi_N(x) \otimes a_1 \otimes ... \otimes a_5 \otimes m$ + $\sum_{i=1}^{s} (-1)^{i} \times \otimes a_{i} \otimes ... \otimes \triangle(a_{i}) \otimes ...$ ⊗ as ⊗ m + (-1) S+1 x ⊗ a1 ⊗ ... ⊗ a5 ⊗ ym(m). $\overline{FACT} \qquad H^{s}(C_{\Gamma}^{*}(N.M)) = Cocor_{\Gamma}^{s}(N.M).$ 6. FACT: $A(n)_{*} = \mathbb{F}_{2} \left[\vec{\beta}_{i} : i = 1, 2, ..., n+1 \right] / (\vec{\beta}_{i}^{2^{n+2-i}})$ $A_{k} = F_{2}[\lambda_{i} : i \geq 1] . \quad \triangle(\lambda_{k}) = \sum_{i=1}^{K} \lambda_{k-i}^{2^{i}} \otimes \lambda_{i}.$ Computation: Note $E_1^{*,*,*} = \mathbb{F}_{\Sigma} L h_{1,0} \cdot h_{1,1} \cdot h_{2,0} I$. di-cycles are hiso. his has (by derivation) While d. (h2.0) = h1.0 h1.1 . b/c · Pro d. (hi.j) = Locker hi-k, k+j hk.j pf. hig = $\xi_i^{2^3} \in E_{2i-1}^{\circ} C_{ACID_{4}}(F_2, F_2)$, where EsA = FsA / Fs-1A graded piece, and in cobar cpx $S(3_{i}^{2^{j}}) = \sum_{k=1}^{i-1} 3_{i-k}^{2^{k+j}} \otimes 3_{k}^{2^{j}}$ => di(hij) = Lockei hik.k+j hk.j.

Thus . by Pup . one has di(h2.0) = h... o h....

On the other hand nsing Morssey product. $\langle h_{1.0}, h_{1.1}, h_{1.0}, h_{1.1} \rangle = h_{2.0}^2$ $h_{2.0}$ $h_{2.0}$ $h_{2.0}$ 0

On E_2 - page, it's gen. by $h_{1.0}$, $h_{2.0}^2$, $h_{1.1}$, subject to relations $h_{1.0}$ $h_{1.1}$. Now d_2 : $E_2^{S,t,u} \longrightarrow E_2^{S+1,t,u-2}$. $h_{1.0} \in E_2^{1,1,1}$. $h_{1.1} \in E_2^{1,2,1}$. $h_{2.0} \in E_1^{1,3,3}$. $h_{2.0}^2 \in E_2^{2,b,6}$. By degree reason, no non-trivial d_2 . So $E_3 = E_2$. In fact, even pages don't have non-trivial differentials. $E_{2n} = E_{2n+1}$ (first grading & 3rd grading have same adevity).

On E_3 - page . it's gen. by $h_{1.0}$. $h_{1.1}$. $h_{2.0}$. To compute the differentials . Note $d_3(h_{1.0}) = d_3(h_{1.1}) = 0$.

• Pup $dr(h_{i,j}) = 0$. $\forall r.j$.

pf. $h_{i,j} = 3^{2^{j}} \in E_{i}^{o} C_{A(i)_{j}} (F_{2}, F_{2})$ $S(3^{2^{j}}) = \sum_{k=1}^{j-1} \cdots = 0$

Suffice to compute $d_3(h_{2.0}^2) = d_3(\langle h_{1.0}, h_{1.1}, h_{1.0}, h_{1.1} \rangle)$.
To use higher Leibniz rule.

• Thm (Higher Leibniz rule. May 1969)

Let C be a dga w/ increasing filtrottion w/ inducing SS indexed s.t. $dr: E_r^{s,t} \longrightarrow E_r^{s+1,t-r}$. If $\langle x_1, \ldots, x_n \rangle$ defined in E_{r+1} w/ each x_i matrix w/ entries being permanent cycles . $x_i \rightarrow \beta_i$ in MH*C. Let k be $w/1 \le k \le n-2 \le t \beta_{i+k} > 1$ strictly defined in H*C. and that each entry of ai.j w/ 1 < j-i ≤ k in the defining system for < x1,..., xn> has bidegree (p,q) . then each elet of $E_{r+m+1}^{p,q+m}$ w/ $m \ge 0$ is a permanent cycle. Lot s>r be s.t. each (p.q) as above w/ k < j·i < n and for each t w/rctcs. $\overline{E}_t^{p+1\cdot q-t}=0$ and if j-i>k+1, then $E_{r+s-t}^{p+1,q-t}=0$. Then for each $\alpha \in \langle x_1,...,x_n \rangle$ $d_{t}(x) = 0$. $\forall r < t < s$.

Besides. there are permanent cycles $S_i \in ME_{r+1}$ for $1 \le i \le n-k$ converging to elets in $< \beta_i$, ..., $\beta_{i+k} > s.t. < \gamma_i$..., $\gamma_{n-k} > is$ defined in E_{r+1} , and contains an elet γ surviving to $d_s(x)$, where

$$\mathcal{T}_{i} = \begin{pmatrix} \chi_{i+k} & 0 \\ S_{i} & \chi_{i} \end{pmatrix}$$

$$| \leq i < n-k$$

$$\Upsilon_{n-k} = \begin{pmatrix} \chi_n \\ S_{n-k} \end{pmatrix}$$

Assume further that each S_i is unique that each $\langle x_1, ..., x_{i-1}, S_i, x_{i+k+1}, ..., x_n \rangle$ is strictly defined, and all Massey products in sight, except for possibly $\langle \beta_i, ..., \beta_{i+k} \rangle$ have 0

indeterminacy, then we have
$$d_{S}(\langle x_{1}, \ldots, x_{n} \rangle) = \sum_{i=1}^{n-k} \langle x_{i}, \ldots, x_{i-1}, \delta_{i}, x_{i+k+1}, \ldots \rangle$$

In our case,
$$s=3$$
, $r=1$ (< $h_{1.0}$, $h_{1.1}$, $h_{1.0}$ > $h_{1.1}$ > = $h_{2.0}^2$ is defined in E₂-page), $n=4$, $k=2$ (since < $h_{1.0}$, $h_{1.1}$, $h_{1.0}$ > and < $h_{1.1}$, $h_{1.0}$, $h_{1.1}$ > strictly defined). Thus
$$d_3$$
 (< $h_{1.0}$, $h_{1.1}$, $h_{1.0}$, $h_{1.1}$ > h

$$= S_1 \cdot h_{1,1} + h_{1,0} \cdot S_2$$

where
$$S_1 \in \langle h_1, 0, h_{1,1}, h_{1,0} \rangle = h_{1,1}^2$$

$$S_2 \in \langle h_{1.1}, h_{1.0}, h_{1.1} \rangle = h_{1.0}h_{1.2}$$

Thus $d_3 h_{2.0}^2 = h_{1.1}^3 + h_{1.0}^2 h_{1.2}$

Now, we get our E_3 . Move to E_4 . The generators of E_4 are $h_{1.0}$. $h_{1.1}$. $h_{2.0}$. Can check

$$\langle h_{1.0}, h_{1.1}, h_{1.1}^2 \rangle = h_{1.0}h_{2.0}^2$$

$$\langle h_{1.1}, h_{1.1}^2, h_{1.1}, h_{1.1}^2 \rangle = h_{2.0}^{\Psi}$$

 $h_{2.0}^{4} \in E_{4}^{4.12.12}$. By degree reason. $E_{4} = E_{\infty}$. No non-trivial diffs on E_{4} - page.

To get the correct ring structure and know to what elet each elet is mapped to . we need the following theorem:

· Thm (May convergence theorem)

With notions given in higher Leibniz rule. Let $\langle x_1, \ldots, x_n \rangle$ be defined in E_{n+1} . x_i matrix w' entries being permanent cycles and $x_i \longrightarrow \beta_i \in MH^*C$. If $\langle \beta_1, \ldots, \beta_n \rangle$ strictly defined and there are no chossing diffs (i.e. if an entry of airj w' $| z_i - i < n$ in the defining system for $\langle x_1, \ldots, x_n \rangle$ has bideg (p,q), then each elet of $E_{r+m+1}^{p,q+m}$ w' $m \ge 0$ is a permanent cycle). Then each elet in $\langle x_1, \ldots, x_n \rangle$ is a permanent cycle converging to an elet in $\langle \beta_1, \ldots, \beta_n \rangle$.

• Thm (Moss convergence theorem)

Suppose x_1 , x_2 , x_3 be permanent cycles s.t. x_1 , $x_2 = x_2$, $x_3 = 0$. Let x_1 , x_2 , x_3 be realized in EoD by httpy classes α_1 , α_2 , α_3 , s.t. $\alpha_1\alpha_2 = \alpha_2\alpha_3 = 0$. Also there is no crossing diffs for $x_1 x_2$, $x_2 x_3$. Then there is a permanent cycle $e \in \langle x_1, x_2, x_3 \rangle$ that is realized in EoD by an elet of Toda bracket $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$.

Now denote $b_{2.0} := h_{2.0}^2$. Adams SS E_2 -page $= E_{\infty}$ for degree reasons (no non-trivial diffs). Thus, one has

```
T_* k_0 = \mathbb{Z}_2 \left[ \alpha \cdot \beta \cdot \eta \right] / \text{Relations}
where h., 0 - 2 (multiplication by 2)
            hii -> y
            h_{1,0} b_{2,0} \longrightarrow \alpha \longleftrightarrow \langle h_{1,0}, h_{1,1}, h_{1,1}^2 \rangle
            b_{2.0}^2 \longrightarrow \beta \longleftrightarrow \langle h_{1.1}, h_{1.1}^2, h_{1.1}, h_{1.1}^2 \rangle
So \alpha = \langle 2, \eta, \eta^2 \rangle, \beta = \langle \eta, \eta^2, \eta, \eta^2 \rangle as Toda
 brackets, and Relations are given by
                 di h2.0 = h1.0 h1.1 -> 2y = 0
                d_3 h_{2.0}^2 = h_{1.1}^3 + h_{1.0}^2 h_{1.2} \longrightarrow \eta^3 + 4h_{1.2} = 0
                                                            but h_{1,2} = 0 \implies y^3 = 0
   Since h_{1,0} h_{1,1} not survive, we have to ask dy = 0.
   By construction. We also want \alpha^2 - 4\beta = 0 since h_{1.0}^2 \longrightarrow 4
   Thus we obtain
                       \pi_{\star} ko = \mathbb{Z}_{2}^{\wedge} [\alpha, \beta, \eta] / (\eta^{3}, 2\eta, \alpha^{2} - 4\beta, \alpha\eta)
```