Introduction to Management CSE 344

Lectures 17: Design Theory

Announcements

No class/office hour on Monday

- Midterm on Wednesday (Feb 19) in class
- HW5 due next Thursday (Feb 20)
- No WQ next week (WQ6 due on Feb 25)
 - But try to finish early! (Lecture 15-17)

Midterm

All material up to and including Lecture 15

 SQL, basic evaluation + indexes, RA, datalog-withnegation, RC, XML/XPath/XQuery, E/R diagram

Open books, open notes, no electronic devices

- Don't waste paper printing stuff. Normally, you shouldn't need any notes during the exam. My suggestion is to print, say, 5-6 selected slides from the lecture notes that you had trouble with, and to print your own homework, just in case you forget some cool solution you used there.
- Make sure you understand all the concepts!

Relational Schema Design

name DONE **Conceptual Model:** Person buys **Product** price name Relational Model: plus FD's Normalization: Today Eliminates anomalies

Relational Schema Design

Name	<u>SSN</u>	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	<u>SSN</u>	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

Can you suggest a solution?

Relation Decomposition

Break the relation into two:

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

Find out its <u>functional dependencies</u> (FDs)

Use FDs to <u>normalize</u> the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

Formally:

$$A_1...A_n$$
 determines $B_1...B_m$

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Functional Dependencies (FDs)

<u>Definition</u> $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if: ∀t, t' ∈ R, (t.A₁ = t'.A₁ ∧ ... ∧ t.A_m = t'.A_m ⇒ t.B₁ = t'.B₁ ∧ ... ∧ t.B_n = t'.B_n)

if t, t' agree here then t, t' agree here

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

EmplD	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position → Phone

EmplD	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

But not Phone → Position

Example₁

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Do all the FDs hold on this instance?

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Do all the FDs hold on this instance?

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

Terminology

FD holds or does not hold on an instance

 If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

 If we say that R satisfies an FD F, we are stating a constraint on R

An Interesting Observation

If all these FDs are true:

name → color
category → department
color, category → price

Then this FD also holds:

name, category → price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies!

There could be more FDs implied by the ones we have.

Closure of a set of Attributes

Given a set of attributes A₁, ..., A_n (under FD set F)

```
The closure, \{A_1, ..., A_n\}^+ = the set of attributes B that
(any reln that satisfies F) satisfies A_1, ..., A_n \rightarrow B
```

- Example: | 1. name → color
 - 2. category → department
 - 3. color, category → price

Closures:

```
name+ = {name, color}
{name, category}+ = {name, category, color, department, price}
color^+ = \{color\}
```

Closure Algorithm

```
Repeat until X doesn't change do:

if B_1, ..., B_n \rightarrow C is a FD and

B_1, ..., B_n are all in X

then add C to X.
```

 $X = \{A1, ..., An\}.$

Example:

- 1. name → color
- 2. category → department
- 3. color, category → price

```
{name, category}+ = {name, category,.....}
```

Closure Algorithm

```
X={A1, ..., An}.
Repeat until X doesn't change do:
if B<sub>1</sub>, ..., B<sub>n</sub> → C is a FD and B<sub>1</sub>, ..., B<sub>n</sub> are all in X
then add C to X.
```

Example:

- 1. name → color
- 2. category → department
- 3. color, category → price

Hence: name, category → color, department, price

In class:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, ...\}$

Compute
$$\{A, F\}^+ X = \{A, F, ...\}$$

In class:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & E \\ B & \rightarrow & D \\ A, F & \rightarrow & B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, \dots\}$

In class:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, B, C, D, E\}$

In class:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, B, C, D, E\}$

Can you see a "key" of R?

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc}
A, B \rightarrow C \\
A, D \rightarrow B \\
B \rightarrow D
\end{array}$$

Step 1: Compute X+, for every X:

Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Step 1: Compute X+, for every X:

```
A+=A, \quad B+=BD, \quad C+=C, \quad D+=D
AB+=ABCD, \quad AC+=AC, \quad AD+=ABCD, \quad BC+=BCD, \quad BD+=BD, \quad CD+=CD
ABC+=ABD+=ACD^+=ABCD \text{ (no need to compute— why ?)}
BCD^+=BCD, \quad ABCD+=ABCD
```

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Step 1: Compute X+, for every X:

```
A+=A, B+=BD, C+=C, D+=D

AB+=ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD

ABC+=ABD+=ACD^+=ABCD (no need to compute—why?)

BCD^+=BCD, ABCD+=ABCD
```

Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$

Keys

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
 - A superkey and for which no subset is a superkey

Computing (Super)Keys

- For all sets X, compute X⁺
- If X⁺ = [all attributes], then X is a superkey
- Try only the minimal X's to get the keys
 - No subset of X is a superkey

Product(name, price, category, color)

name, category → price category → color

What is the key?

Product(name, price, category, color)

name, category → price category → color

```
What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
```

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

Try in class..

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

Ol

Ol

what are the keys here?

Eliminating Anomalies

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

What is the key?

Suggest a rule for decomposing the table to eliminate anomalies

Eliminating Anomalies

Main idea:

- X → A is OK if X is a (super)key
- X → A is not OK otherwise
 - Need to decompose the table, but how?

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a <u>non-trivial dependency</u>, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:

 \forall X, either $X^+ = X$ or $X^+ = [all attributes]$

BCNF Decomposition Algorithm

```
Normalize(R)

find X s.t.: X \neq X^+ \neq [all attributes]

if (not found) then "R is in BCNF"

let Y = X^+ - X; Z = [all attributes] - X^+ decompose R into R1(X \cup Y) and R2(X \cup Z)

Normalize(R1); Normalize(R2);
```


Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

The only key is: {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

In other words:

SSN+ = Name, City and is neither SSN nor All Attributes

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN → Name, City

SSNPhoneNumber123-45-6789206-555-1234123-45-6789206-555-6543987-65-4321908-555-2121987-65-4321908-555-1234

Let's check anomalies:

- Redundancy ?
- Update Fred's city?
- Delete Joe's all ph?

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Person(name, SSN, age, hairColor, phoneNumber, attr)

SSN → name, age

age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber, attr)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

R(A,B,C,D)

$A \rightarrow B$ $B \rightarrow C$

Practice at Home

$$R(A,B,C,D)$$

$$A^{+} = ABC \neq ABCD$$

R(A,B,C,D)

Practice at Home

What happens if in R we first pick B+? Or AB+?