Let A be a nonempty set, and let

$$S_A = \{f : A \longrightarrow A : f \text{ is both 1 to 1 and onto}\}\$$

Show that S_A is a group under composition. Is S_A an Abelian group?

a. Closure: Want to show that, \forall f, g \in S_A, f o g \in S_A

Let f, $g \in S_A$, and let $a \in A$.

Since both f and g are well defined, f(a) and g(a) exist.

Since both f and g map to A, $f(a) \in A$ and $g(a) \in A$. (1)

Since both f and g are one to one, f(a) and g(a) are unique. (2)

By (1) and (2), f(g(a)) and g(f(a)) both exist and are unique.

Therefore, both f o g and g o f are one-to-one.

Now, we want to show that they're onto.

Suppose $\exists a_0 \in A$ such that $f(g(a)) \neq a_0$ (or that $g(f(a)) \neq a_0$), $\forall a \in A$.

However, if $a_0 \in A$, then it gets mapped onto by both f and g.

So that means there exists some a_f and a_g in A such that $f(a_g) = a_0$ (or $g(a_f) = a_0$).

And since a_f and a_g are in A, they get mapped to by f and g, respectively.

Thus, a contradiction.

b. Associativity: Want to show that, \forall f, g, h \in S_A, (f o g) o h = f o (g o h).

Let f, g, $h \in S_A$, and let $a \in A$.

Let $h(a) = a_h$, $g(h(a)) = a_{gh}$, $f(a) = a_f$, $f(g(a)) = a_{fg}$, which are all defined since f, g, and h are all well defined and onto.

Notice that $((f \circ g) \circ h)(a) = f(g(a_h))$ and $(f \circ (g \circ h))(a) = f(a_{ah})$.

Want to show: $g(a_h) = a_{qh}$.

Well, $g(a_h) = g(a(h))$ by definition, and $a_{gh} = g(a(h))$ by definition.

Hence, result.

c. **Identity:** Want to show that $\exists I \in S_A$ such that I o f = f o I = f, $\forall f \in S_A$.

Define $I : A \longrightarrow A$ to be $I(a) = a, \forall a \in A$.

Want to show: I is well defined.

Let $a \in A$.

Then I(a) = a. Since all elements of A are unique, all I(a)'s are unique.

Hence, I is well defined.

Want to show: I is one-to-one.

Let $I(a_1) = I(a_2)$.

Since $I(a) = a, a_1 = a_2$.

Want to show: I is onto.

Let $a \in A$, the set that I maps into.

Since I(a) = a, a is the element that maps to a.

Want to show: $I \in S_A$

Since I is one-to-one and onto, $I \in S_A$.

Want to show: I o f = f o I = f.

Let $f \in S_A$ and $a \in A$.

Notice that f(I(a)) = f(a) and I(f(a)) = f(a).

Hence, result.

d. **Inverse:** Want to show that, $\forall f \in S_A$, $\exists f^{-1}$ such that $f(f^{-1}(a)) = f^{-1}(f(a)) = a$, $\forall a \in A$.

Want to show: f^{-1} is well defined.

Let $f \in S_A$ and suppose we have a relation f^{-1} such that $f^{-1}(f(a)) = a$.

We know that f is one-to-one. Thus, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Therefore there is no f(a) such that $f^{-1}(f(a))$ has two outputs.

Hence, f^{-1} is a well-defined function.

Want to show: f^{-1} is one-to-one.

Suppose $\exists a \in A$ such that $f^{-1}(f(a_1)) = a$ and $f^{-1}(f(a_2)) = a$ for some $a_1, a_2 \in A$ $(a_1 \neq a_2)$

We know that, since f is one-to-one, $f(a_1) \neq f(a_2)$.

So, by definition of f^{-1} , f^{-1} has to map $f(a_1)$ and $f(a_2)$ back to a_1 and a_2 , respectively.

A contradiction.

Want to show: f^{-1} is onto.

Suppose $\exists a_0 \in A$ such that $f^{-1}(f(a)) \neq a_0, \forall a \in A$.

Since f is one-to-one and onto, $f(a_0)$ maps to some unique $a_f \in A$ (i.e. $f(a_0) = a_f$).

 $f^{-1}(a_f)$ can only map to one solution since f^{-1} is one-to-one, which is guaranteed to exist.

Since $f^{-1}(f(a_0)) = f^{-1}(a_f)$, $f^{-1}(a_f)$ is, by definition, a_0 .

A contradiction.

Want to show: $f^{-1} \in S_A$

Since f^{-1} is one-to-one and onto, $f^{-1} \in S_A$.

 S_A is **NOT** an Abelian group (since function composition is not commutative).