LEGURE 2 KINEMATICS PEVIEW

DH PARAMS

q; :	SKEM ;	à "	0F	rink	TIMIST "	
	FLOM	2;-	To	, z;	ABout	χ
d; : '	" LUNK OFF	se di	TANC	Ĕ		
	FROM	Yil	10	γį	AUNG	٤;
q;	LINK	Lengti	4 :	DISTAN	ICE	
	ROM	Zi-1			NG Xi	
Ø; :	″ 7010T	· ኝ"				
	FRAM	Xi.	10	χi	A BOUT	Z:

LOINT	K;	di	a,	Øi	
2					
3					
ч					
Š					

HOMOGENEOUS TRANSFORM

$$T_{i} = \begin{bmatrix} i^{i} \mathcal{R}_{i} & d_{is_{i}i} \\ 0 & 1 \end{bmatrix}$$

FROM FRAME TO I

$$i^{-1}P_{i} = P_{2}(\theta_{i})P_{x}(\alpha_{i})$$

$$= \begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 \\ S\theta_{i} & C\theta_{i} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta_{i} & -S\theta_{i} \\ 0 & Sa_{i} & C\alpha_{i} \end{bmatrix}$$

$$= \begin{bmatrix} C\theta_{i} & -S\theta_{i} & C\alpha_{i} & S\theta_{i} & S\alpha_{i} \\ S\theta_{i} & C\theta_{i} & C\alpha_{i} & -C\theta_{i} & S\alpha_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} \end{bmatrix}$$

$$^{\circ}$$
 R_{n} = rotation between end-effector frame

And base frame (3×3)

FORWARD KINEMATICS GIVEN JOINT 4's, COMPUTE END-EFFECTOR POSITION/ORIENTATION INVERSE KINEMATICS GIVEN END EFFECTOR POSTORIENTATION -> COMPUTE JOINT &S NO GENERAL SOLUTION VEWCITY KINEMATICS $\frac{\partial}{\partial u} = \frac{d}{dt} \left(\frac{\partial}{\partial u} du \right) = \frac{\partial}{\partial u} \frac{\partial u}{\partial u} + \frac{\partial}{\partial u} \frac{\partial u}{\partial u} + \frac{\partial}{\partial u} \frac{\partial u}{\partial u} + \dots$ MANIPULATOR JACOBIAN J & ONLY POSITION OF GAD EFFECTION ALTERNATIVELY-EASY NUMERICAL SOLUTION INVERSE VELOCITIES · WE CAN ONLY WOORS IF WE HAVE PULL VELOCITY JACOBIAN . NON-SQUARE MATRICIES · SINGULARINES 1 10 det (Jv) = 0 => SINGULAR HAPPENS WHEN ZOBOT IS AT THE EDGE OF ITS PEACH, OR OUTSIDE OF ITS CAPABILITIES

ON THE HUMAN BODY, EXAMPLE SINGULARTHS ARE:

CAN'T HAVE VELOCITY OUT OF PLANE

NO HORIZONIAL VELOCITY

· WRIST DIRECTLY OVER SHOULDER

. ELDOW LOCKED

Peoor	PRINCIPLE OF VIRTUAL WORK/POWER
reput	Litringian of Allegan and Langue Andrew Louisian
	<u> </u>
(VIRTA	T) POWCE OUT OF MOTORS = POWER OUT OF END EFFECTIVE
	r . 1
ፖ.	+ + + + + + + + + + + + + + + + + + +
	TT A = Wnr, San = Wnr, JA
	uh.
	(new)
	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	/ VO [= VVNF J
	~0 Y = J T W N+1
	JOINT TORDUCS = JALOBIAN WRENCH