Задание 1. Возьмите матрицы A и B из таблицы 1 лабораторной работы №2 в соответствии с вашим вариантом и рассмотрите систему

$$\dot{x} = Ax + Bu$$
.

Выполните следующие шаги и приведите в отчёте написанный вами программный код, результаты всех вычислений, схемы моделирования, графики и выводы:

- Постройте схему моделирования системы $\dot{x} = Ax + Bu$ с регулятором u = Kx.
- Задайтесь несколькими различными значениями желаемой степени устойчивости α замкнутой системы.
- Для каждой из заданных степеней устойчивости α найдите какой-нибудь регулятор, её гарантирующий. Для поиска регулятора воспользуйтесь математическим аппаратом линейных матричных неравенств, не выбирайте собственные числа самостоятельно.
- Найдите собственные числа матрицы A + BK для каждой из найденных K.
- Выберите какие-нибудь начальные условия и выполните моделирование работы найденных вами регуляторов.
- Постройте сравнительные графики x(t) при различных выбранных значениях α , а также сравнительные графики u(t).
- Сделайте выводы.

Задание 2. Частично повторите то, что вы сделали в предыдущем задании, добавив в этот раз ограничение на управление:

- Зафиксируйте параметр α на каком-нибудь одном из выбранных ранее значений. Добавьте в процесс синтеза регулятора ограничение на величину управляющего воздействия. Проведите исследование зависимости влияния величины этого ограничения на собственные числа матрицы A+BK, а также на графики переходных процессов x(t) и u(t).
- Для каждого из выбранных в задании 1 значений параметра α решите задачу минимизации величины управляющего воздействия. Найдите соответствующие собственные числа матрицы A+BK и приведите графики переходных процессов.
- Сделайте выводы.

Задание 3. Возьмите матрицы A и C из таблицы 2 лабораторной работы №2 в соответствии с вашим вариантом и рассмотрите систему

$$\dot{x} = Ax, \quad y = Cx.$$

Выполните следующие шаги и приведите в отчёте написанный вами программный код, результаты всех вычислений, схемы моделирования, графики и выводы:

- Постройте схему моделирования системы $\dot{x} = Ax$, y = Cx с наблюдателем состояния $\dot{\hat{x}} = A\hat{x} + L(C\hat{x} y)$.
- Задайтесь несколькими различными значениями желаемой степени устойчивости α динамики ошибки наблюдателя.
- Для каждой из заданных степеней устойчивости α найдите какой-нибудь наблюдатель, её гарантирующий. Для поиска наблюдателя воспользуйтесь математическим аппаратом линейных матричных неравенств, не выбирайте собственные числа самостоятельно.
- Найдите собственные числа матрицы A + LC для каждой из найденных L.
- Выберите какие-нибудь начальные условия и выполните моделирование работы найденных вами наблюдателей.
- Постройте сравнительные графики x(t) и $\hat{x}(t)$, а также сравнительные графики ошибки наблюдателя при различных выбранных значениях α .
- Сделайте выводы.

Задание 4. Возьмите матрицы A, B, C из таблицы 3 лабораторной работы №2 в соответствии с вашим вариантом и рассмотрите систему

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx. \end{cases}$$

С помощью линейных матричных неравенств синтезируйте для этой системы наблюдатель и основанный на нём регулятор, которые будут гарантировать выбранную вами степень устойчивости системы. Исследуйте совместную работу регулятора и наблюдателя в зависимости от выбранных степеней устойчивости.

Задание 5 (дополнительное, необязательное). Найдите такие матричные неравенства, которые можно добавить в процесс синтеза наблюдателя, чтобы ограничить жёсткость его работы (по аналогии с тем, как вы добавляли ограничение на управление при синтезе регулятора). Постарайтесь обосновать смысл этих неравенств. Проведите соответствующее исследование с помощью компьютерного моделирования.