Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 2

Abgabe auf Moodle bis zum 8. Mai

Jede Aufgabe ist vier Punkte wert. Wir schreiben $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ mit einem Symbol ∞ .

6. Aufgabe: Den projektiven Raum $\mathbb{P}^1(\mathbb{C})$ kann man definieren als Menge der eindimensionalen Unterräume von \mathbb{C}^2 , also

$$\mathbb{P}^1(\mathbb{C}) = \{ \mathbb{C} \cdot v \mid 0 \neq v \in \mathbb{C}^2 \} .$$

Die Gruppe $G=\mathrm{GL}(2,\mathbb{C})$ operiert auf $\mathbb{P}^1(\mathbb{C})$ durch $M(\mathbb{C}\cdot v):=\mathbb{C}\cdot Mv$ für $M\in G$. Zeigen Sie:

- (a) Es gibt eine eindeutige Bijektion $\varphi:\widehat{\mathbb{C}}\to\mathbb{P}^1(\mathbb{C})$ sodass $\varphi(z)=\mathbb{C}\cdot (\frac{z}{1})$ für $z\in\mathbb{C}.$
- (b) Es gilt $M\varphi(z) = \varphi(M\langle z\rangle)$ für alle $z \in \widehat{\mathbb{C}}$ und alle $M \in G$.
- 7. Aufgabe: Eine Matrix $H \in GL(2,\mathbb{C})$ heißt hermitesch falls $\overline{H} = H'$.
 - (a) Zeigen Sie, dass jede hermitesche Matrix H eine reelle Determinante hat.
 - (b) Jede hermitesche Matrix H mit det(H) < 0 definiert einen verallgemeinerten Kreis

$$\{\mathbb{C} \cdot v \in \mathbb{P}^1(\mathbb{C}) \mid \overline{v}'Hv = 0\}$$
.

Zeigen Sie, dass zwei hermitesche Matrizen H_1 und H_2 mit negativer Determinante genau dann denselben Kreis definieren, wenn $H_1 = \mu H_2$ mit $\mu \in \mathbb{R}^{\times}$.

8. Aufgabe: Sei $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ der Einheitskreis und seien $z_0, w_0 \in \widehat{\mathbb{C}}$ feste Punkte mit $z_0, w_0 \notin S^1$. Zeigen Sie: Es gibt $M \in GL(2, \mathbb{C})$ mit $M \langle S^1 \rangle = S^1$ und $M \langle w_0 \rangle = z_0$.

Hinweis: Lösen Sie die entsprechende Aufgabe für den Kreis $\mathbb{R} \cup \{\infty\}$ anstelle von S^1 . Benutzen Sie dann die Cayley-Transformation.

9. Aufgabe: Seien $z_n \to z$ und $w_n \to w$ konvergente Folgen komplexer Zahlen. Zeigen Sie: Die Folge $z_n w_n$ konvergiert für $n \to \infty$ gegen zw.

Hinweis: Zerlegen Sie in Real- und Imaginärteil und verwenden Sie die entsprechende Aussage aus der reellen Analysis.