Dos Construcciones Geométricas Iterativas

Aidan Lorenzo

Noviembre 2024

1. Introducción

En este trabajo se desarrolla una doble generalización de la Espiral de Teodoro (véase la Figura 9). Por una parte generalizamos el ángulo de formación de nuevos triángulos: en la mencionada Espiral, el ángulo empleado es $\frac{\pi}{2}$, a fin de que, por el Teorema de Pitágoras, la distancia del centro a cada nuevo punto de la espiral sea la función \sqrt{n} .

Por otra parte, ampliaremos esta construcción a bloques no triangulares, y demostraremos algunos teoremas que describen la relación entre los comportamientos de ambas construcciones geométricas iterativas. Conectaremos, además, nociones de Teoría de Números, al introducir la función totiente de Euler y demostrar algunas simetrías que rijen y sirven de Lema.

2. Primera Construcción

2.1. Definición de la Construcción

Definición 1.1. Sea $x \in (0,\pi) = X$ un ángulo de formación en su dominio de generación.

Definición 1.2. Llamaremos bloque fundamental al triángulo de lados a_i, b_i y c_i , tales que

$$\forall i \in \mathbb{Z}^+, a_i = 1 \text{ y } b_1 = 1$$

y O el centro de la figura, que es la intersección de b_i y c_i . x es el ángulo que separa a_i y b_i .

Figura 1: Triángulo Primero.

Definición 1.3. Sea T_x la figura generada por el ángulo x yuxtaponiendo bloques fundamentales triangulares mediante la siguiente regla:

Figura 2: Dos primeros bloques de T_{36}° .

Definición 1.4. Sea $c_i(x)$ la longitud del segmento c_i de T_x .

2.2. Estudio de convergencia

Proposición 1.1.

$$c_i(x) = \begin{cases} 1 & \text{si } i = 0\\ \sqrt{1 + c_{i-1}^2 - 2c_{i-1}\cos x} & \text{si } i > 0 \end{cases}$$

Demostración. Por el Teorema del Coseno y las Definiciones anteriores tenemos:

$$c_i^2(x) = a_i^2 + b_i^2 - 2a_ib_i\cos x \iff c_i(x) = \sqrt{1 + c_{i-1}^2 - 2c_{i-1}\cos x}$$

La función está definida de forma recurrente, por lo que necesitamos un valor inicial de definición:

$$b_i = c_{i-1} \wedge b_1 = 1 \implies c_0 = 1$$

Proposición 1.2.

$$i) \lim_{i \to \infty} c_i(x) = \infty \iff \cos(x) \le 0 \iff x \in \left[\frac{\pi}{2}, \pi\right)$$

$$ii)$$
 $\lim_{i \to \infty} (c_i(x) - c_{i-1}(x)) = |\cos(x)| \iff \cos(x) < 0 \iff x \in (\frac{\pi}{2}, \pi)$

$$iii)$$
 $\lim_{i \to \infty} c_i(x) = \frac{1}{2\cos(x)} \iff \cos(x) > 0 \iff x \in (0, \frac{\pi}{2})$

Figura 3: $c_i(\frac{\pi}{2})$

Figura 4: $c_i(\frac{2}{3}\pi)$

Demostración. Notemos primero que, por construcción, $c_i(x) > 0$, pues refiere a la longitud de un segmento.

 $Probemos\ i).\ Veamos\ que\ las\ funciones\ asociadas\ a\ ángulos\ x\ con\ coseno\ negativo\ o\ nulo\ son\ monótonamente\ crecientes.$

$$\forall i \in \mathbb{Z}^+ \forall x \in X, c_i(x) > 0 \land \cos(x) < 0 \implies c_i(x) > c_{i-1}(x)$$

ya que

$$\sqrt{1 + c_{i-1}^2 + 2c_{i-1}|\cos(x)|} > c_{i-1} \iff 2c_{i-1}|\cos(x)| > -1$$

lo cual se cumple siempre. Además, la sucesión no está acotada superiormente; entonces, diverge. Además, $c_i(\frac{\pi}{2}) = \sqrt{i}$. Falta demostrar la convergencia de la serie para $\cos(x) > 0$. Estudiemos cómo se comporta la función para distintos intervalos de X_1 a través de la visualización de los correspondientes gráficos. Notemos que $c_i(\frac{\pi}{3}) = 1, \forall i \in \mathbb{Z}^+$, por lo que sólo tenemos la demostración analítica correspondiente al caso trivial donde la sucesión es constante, porque

$$c_1(\frac{\pi}{3}) = \sqrt{2 - 2\cos(\frac{\pi}{3})} = \sqrt{2 - 1} = \sqrt{1} = 1$$

y así vemos que cada vez que sea evaluada dará 1. Esto es equivalente a decir que los bloques serán triángulos equiláteros.

Figura 5: $c_i(x)$ para $x \in (0, \frac{\pi}{4})$

16

Figura 6: $c_i(x)$ para $x \in \left[\frac{\pi}{4}, \frac{\pi}{3}\right)$

Figura 7: $c_i(x)$ para $x \in (\frac{\pi}{3}, \frac{\pi}{2})$

Definición 2.1. Llamaremos dominio de convergencia triangular al intervalo $X_1=(0,\frac{\pi}{2}),$ para el cual

$$x \in (0, \frac{\pi}{2}) \iff cos(x) > 0 \iff c_i(x) \text{ converge}$$

Definición 2.2. Análogamente, llamaremos dominio de no convergencia triangular X_2 al intervalo $[\frac{\pi}{2},\pi)$, para el cual

$$x \in \left[\frac{\pi}{2}, \pi\right) \iff \cos(x) \le 0 \iff \lim_{i \to \infty} c_i(x) = \infty$$

Definición 2.3 Sea $r(x) = \frac{1}{2\cos(x)}$ la función $radio,\,\forall x \in X_1$

Figura 8: T_{36} °

Figura 9: $T_{90^{\circ}}$ (Espiral de Teodoro)

2.3. Estudio de una función: p(x)

Definición 3.1.

Sea $\varphi_n = |\{\frac{m}{n}\pi : m \in \mathbb{Z}^+_{\leq n} \wedge \operatorname{mcd}(m, n) = 1\}| \text{ y } \varphi_n' = |\{m \in \mathbb{Z}^+_{\leq n} : \operatorname{mcd}(m, n) = 1\}|$

Definición 3.2.

Sea $\gamma_n = \left|\left\{\frac{m}{n}\pi : 2m < n \land m \in \mathbb{Z}^+ \land \operatorname{mcd}(m,n) = 1\right\}\right| \text{ y } \gamma_n' = \left|\left\{m \in \mathbb{Z}^+ : 2m < n \land \operatorname{mcd}(m,n) = 1\right\}\right|$

Definición 3.3.

$$\chi_n = |\{ \tfrac{m}{n} \pi : m \in \mathbb{Z}^+_{< n} \wedge \operatorname{mcd}(m, n) = 1 \wedge 2 \mid m \}|, \ \chi_n' = |\{ m \in \mathbb{Z}^+_{< n} : \operatorname{mcd}(m, n) = 1 \wedge 2 \mid m \}|$$

Observación 1. Trivialmente, $|\varphi_n| = |\varphi'_n|, |\gamma_n| = |\gamma'_n|$ y $|\chi_n| = |\chi'_n|$.

Definición 4.1. Sea $p: X_1 \to \mathbb{Z}^+ \cup \{\infty\}$ la función $p(x) = |\{P \in F_x : |\overline{OP}| = r(x)\}|$.

Teorema 1.1. Valor de la función p(x)

$$\forall n \in \mathbb{Z}^+ : x \in \gamma_n \iff \begin{cases} 2 \nmid n \iff p(x) = 2n \\ 4 \mid n \iff p(x) = n \\ 2 \mid n \land 4 \nmid n \implies p(x) = \frac{1}{2}n \end{cases}$$

Demostración. Notemos primero que, si $c_i(x)$ converge, lo hace también $c_{i-1}(x)$, que por la Definición 1.3, es igual a b_i , lo que implica que los bloques serán triángulos isósceles. Siendo O el vértice que une estos dos segmentos, y α_i el ángulo central, vemos que α_i también converge. Por la relación de ángulos de un triángulo, $\alpha = \pi - 2x$.

Ahora establecemos la condición de cierre: evaluemos si existe un número finito de bloques la suma de cuyos ángulos centrales α constantes sea $v \cdot 2\pi$ para algún $v \in \mathbb{Z}^+$:

$$\exists n \in \mathbb{Z}^+ : x \in \gamma_n \iff x = \frac{m}{n}\pi \iff \frac{2\pi}{\alpha} = \frac{2n}{n-2m} \iff \exists k, v \in \mathbb{Z}^+ : \operatorname{mcd}(k,v) = 1 \land k \cdot \alpha = v \cdot 2\pi$$

Esto significa que, tras k triángulos isósceles constantes, los nuevos triángulos se dibujarán sobre otros ya existentes, al ser α constante. Ahora, para conocer el valor de k en función de x, haremos lo siguiente:

$$k \cdot \alpha = v \cdot 2\pi \iff \frac{k}{v} = \frac{2n}{n - 2m}$$

Para igualar k al numerador de la expresión hay que estudiar qué valores de m y n generan una fracción irreductible.

- $2 \nmid n \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(n, n 2m) = \operatorname{mcd}(2n, n 2m) = 1$
- $4 \mid n \wedge 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(n, n 2m) = \operatorname{mcd}(2n, n 2m) = 2$
- $2 \mid n \land 4 \nmid n \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(n, n 2m) = 2 \implies \operatorname{mcd}(2n, n 2m) = 4$

En consecuencia tenemos que

- $2 \nmid n \implies \operatorname{mcd}(2n, n 2m) = 1 \implies k(x) = 2n$
- $\blacksquare 4 \mid n \implies \operatorname{mcd}(2n, n 2m) = 2 \implies \operatorname{mcd}(n, \frac{n 2m}{2}) = 1 \implies k(x) = n$
- \bullet 2 | $n \land 4 \nmid n \implies \operatorname{mcd}(2n, n-2m) = 4 \implies \operatorname{mcd}\left(\frac{n}{2}, \frac{n-2m}{4}\right) = 1 \implies k(x) = \frac{n}{2}$

Falta ver que el valor k(x), cuya expresión acabamos de encontrar, coincide con p(x), objeto de este Teorema.

i	1	2	3	4	5	6	 k-1	k
$\sum_{j=1}^{i} p_j$	2	3	4	5	6	7	 k	k

Habiendo notado que los bloques son triángulos isósceles, donde $c_i = b_i = r(x)$, vemos que el primer bloque aportará 2 nuevas puntas a la figura; a partir de éste, cada nuevo triángulo aportará 1 punta nueva, pues compartirá una con el bloque anterior; finalmente, el último bloque no añade ninguna punta más a la figura, pues une dos ya existentes: las del primer y penúltimo bloque.

Corolario 1.1.

$$\nexists n \in \mathbb{Z}^+ : x \in \gamma_n \iff \frac{m}{n} \notin \mathbb{Q} \iff p(\frac{m}{n}\pi) = \infty$$

Demostración. Si x no es una fracción racional de π , $\nexists k, v \in \mathbb{Z}^+$: $k \cdot \alpha = v \cdot 2\pi$, lo que se traduce en que nunca se llega a cerrar la figura tras un número finito de bloques.

Corolario 1.2.

$$\forall n \in \mathbb{Z}^+ : x \in \gamma_n \iff \begin{cases} 2 \nmid n \iff v(x) = n - 2m \\ 4 \mid n \iff v(x) = \frac{n - 2m}{2} \\ 2 \mid n \land 4 \nmid n \implies v(x) = \frac{n - 2m}{4} \end{cases}$$

Definición 4.2. Sea $p^{-1}(p) = \{x \in X_1 : p(x) = p\}, \forall p \in \mathbb{Z}_{\geq 3}$ el conjunto antiimagen de la aplicación explicada en la Definición 4.1, y $f(p) := |p^{-1}(p)|$ la cantidad de ángulos de formación para los cuales su número de puntas es p.

Definición 5.1. Sea $\varphi(n) = |\varphi_n|$ la función totiente de Euler.

Lema Único. Simetrías de φ_n

$$i) \ \forall n \in \mathbb{Z}_{>2}, \ |\varphi_n| = 2|\chi_n|$$

$$ii) \ \forall n \in \mathbb{Z}_{>2} : 2 \nmid n \iff |\varphi_n| = 2|\gamma_n|$$

$$iii) \ \forall n \in \mathbb{Z}_{>2} : 2 \nmid n \iff \varphi(2n) = \varphi(n)$$

La demostración de este Lema puede hallarse en el Apéndice.

Teorema 1.2. Inversa de p(x) y Función Totiente

$$\forall p \in \mathbb{Z}_{\geq 3}, \ f(p) = \frac{\varphi(p)}{2}$$

Demostración. Veamos primero qué denominador n causará que la figura tenga p puntas, siguiendo el Teorema 1.1:

$$\begin{cases} 2 \nmid p \iff n = 2p \\ 4 \mid n \iff n = p \\ 2 \mid p \land 4 \nmid p \iff n = \frac{1}{2}p \end{cases} \implies p^{-1}(p) = \gamma_n = \begin{cases} \gamma_{2p} \iff 2 \nmid p \\ \gamma_n \iff 4 \mid p \\ \gamma_{\frac{p}{2}} \iff 2 \mid p \land 4 \nmid p \end{cases}$$

Es decir, el conjunto de las x para las cuales p(x) = p son los ángulos $x \in X_1$ con denominador entero positivo n, dependiente de la paridad de p, y numerador también entero positivo y coprimo respecto a n. Esto es lo que representa, por construcción, el conjunto γ_n introducido en la Definición 4.2.

Siguiendo el Lema de Simetrías y la Definición 5.1:

$$p^{-1}(p) = \gamma_n \iff |p^{-1}(p)| = f(p) = |\gamma_n| = \frac{\varphi(n)}{2} = \begin{cases} \frac{1}{2}\varphi(2p) \iff 2 \nmid p \\ \frac{1}{2}\varphi(p) \iff 4 \mid p \\ \frac{1}{2}\varphi(\frac{p}{2}) \iff 2 \mid p \land 4 \nmid p \end{cases} = \frac{\varphi(p)}{2}$$

2.4. Extensión de p(x)

Definición 6.1. Sea $k: X \times \mathbb{R}^+ \to \mathbb{R}^+$ la función

$$k(x,y) = k \iff \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor + 1}(x) = y$$

Proposición 2.1.

$$\exists n \in \mathbb{Z}^+ : x \in \gamma_n \iff p(x) = k(x, 2\pi v(x))$$

Demostración. Por el Teorema 1.1. y la Definición 6.1. vemos lo siguiente:

$$p(x) = k \iff \exists k, v \in \mathbb{Z}^+ : k \cdot \alpha = v \cdot 2\pi \wedge \operatorname{mcd}(k, v) = 1$$

$$k(x,y) = k \iff \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor + 1}(x) = y$$

En el dominio de convergencia, para $k \in \mathbb{Z}^+$:

$$k(x, 2\pi v(x)) = k \iff \sum_{i=1}^{k} \alpha(x) = y \iff k \cdot \alpha = 2\pi v(x)$$

Teorema 2.1. Espirales Únicas

$$\forall k \in \mathbb{Z}_{\geq 3}, \exists ! x \in X : k(x, 2\pi) = k$$

Demostración. Veamos que la función $k(x, 2\pi)$ es inyectiva:

1.
$$\forall x_1, x_2 \in X : x_1 < x_2 \implies c_i(x_1) < c_i(x_2)$$

En i = 0, $c_0(x_1) = c_0(x_2) = 1$. Luego:

$$x_1 < x_2 \implies c_1(x_1) = \sqrt{2(1 - \cos(x_1))} < \sqrt{2(1 - \cos(x_2))} = c_1(x_2) \iff \cos(x_1) > \cos(x_2)$$

Lo cual es cierto cuando $x_1, x_2 \in (0, \pi) = X$. Para el resto de valores de i hacemos lo siguiente:

$$\forall a, b \in \mathbb{R}^+ : a < b \implies \sqrt{1 + a^2 - 2a\cos x_1} < \sqrt{1 + b^2 - 2b\cos(x_2)} \iff a(a - 2\cos(x_1)) < b(b - 2\cos(x_2))$$

Por hipótesis tenemos que a < b, así que veamos que $a - 2\cos(x_1) < b - 2\cos(x_2)$. Con la misma lógica, a < b, así que basta ver que $2\cos(x_1) > 2\cos(x_2)$, lo cual acabamos de ver en el caso i = 0:

2.
$$\forall x_1, x_2 \in X : c_i(x_1) < c_i(x_2) \implies \alpha_i(x_1) > \alpha_i(x_2)$$

Comprobémoslo para la primera iteración de dos construcciones cualesquiera:

$$\alpha_{1}(x_{1}) > \alpha_{1}(x_{2}) \iff \arccos(\frac{1^{2} + c_{1}^{2}(x_{1}) - 1}{2 \cdot 1 \cdot c_{1}(x_{1})}) > \arccos(\frac{1^{2} + c_{1}^{2}(x_{2}) - 1}{2 \cdot 1 \cdot c_{1}(x_{2})}) \iff \frac{c_{1}(x_{1})}{2} < \frac{c_{1}(x_{2})}{2}$$

$$\arccos(\frac{c_{i}(x_{1})^{2} + c_{i-1}(x_{1})^{2} - 1}{2c_{i}(x_{1})c_{i-1}(x_{1})}) > \arccos(\frac{c_{i}(x_{2})^{2} + c_{i-1}(x_{2})^{2} - 1}{2c_{i}(x_{2})c_{i-1}(x_{2})}) \iff \frac{c_{i}(x_{1})^{2} + c_{i-1}(x_{1})^{2} - 1}{c_{i}(x_{1})c_{i-1}(x_{1})} < \frac{c_{i}(x_{2})^{2} + c_{i-1}(x_{2})^{2} - 1}{c_{i}(x_{2})c_{i-1}(x_{2})} \iff \frac{(\sqrt{1 + c_{i-1}^{2} - 2c_{i-1}\cos(x_{1})})^{2} + c_{i-1}^{2} - 1}{c_{i}(x_{1})c_{i-1}(x_{1})} < \frac{(\sqrt{1 + c_{i-1}^{2} - 2c_{i-1}\cos(x_{2})})^{2} + c_{i-1}^{2} - 1}{c_{i}(x_{2})c_{i-1}(x_{2})} \iff \frac{c_{i-1}(x_{1}) - \cos(x_{1})}{c_{i}(x_{1})} < \frac{c_{i-1}(x_{2}) - \cos(x_{2})}{c_{i}(x_{2})}$$

$$3. \ \forall k \in \mathbb{R}^+ \forall x_1, x_2 \in X: x_1 < x_2 \implies \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x_1) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor}(x_1) > \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x_2) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor}(x_2)$$

4.
$$\forall x_1, x_2 \in X \ \forall y \in \mathbb{R}^+ : x_1 < x_2 \implies k(x_1, y) < k(x_2, y)$$

Consideremos $k(x_2, y) = k_2 \iff \sum_{i=1}^{\lfloor k_2 \rfloor} \alpha_i(x_2) + (k_2 - \lfloor k_2 \rfloor) \alpha_{\lfloor k_2 \rfloor}(x_2) = y$. Entonces:

$$\sum_{i=1}^{\lfloor k_2 \rfloor} \alpha_i(x_1) + (k_2 - \lfloor k \rfloor) \alpha_{\lfloor k_2 \rfloor}(x_1) > y$$

Por lo que, necesariamente, $k(x_1, y) = k_1 < k_2 = k(x_2, y)$. Basándonos en este principio:

5.
$$\forall x_1, x_2 \in X \ \forall y \in \mathbb{R}^+, \exists k \in \mathbb{Z}^+ : k(x_1, y) < k < k(x_2, y) \implies \exists ! x_m \in X : x_1 < x_m < x_2 \land k(x_m, y) = k$$

Así, si conocemos k(x,y), podemos usar su crecimiento monótono para encontrar aquellos ángulos únicos x_m tales que $k(x_m,y) \in \mathbb{Z}^+$.

En la Figura 9 se aprecian 17 bloques de la figura infinita $T_{90^{\circ}}$. Se ve que la suma de sus ángulos internos $\alpha_i(90^{\circ})$ es mayor a 2π , y que la suma de los 16 primeros es menor a 2π . En consecuencia, sabemos que la parte entera de $k(90^{\circ}, 360^{\circ}) = k \in \mathbb{R}^+$ es 16. En general:

$$\lfloor k(x,y) \rfloor = n \in \mathbb{Z}^+ \iff \sum_{i=1}^n \alpha_i(x) < y < \sum_{i=1}^{n+1} \alpha_i(x)$$

$$k(x,y) = k \iff \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor + 1}(x) = y \iff k = \lfloor k \rfloor + \frac{y - \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x)}{\alpha_{\lfloor k \rfloor + 1}(x)}$$

Ya podemos computar con facilidad la función k(x,y) para todas $(x,y) \in X \times \mathbb{R}^+$. En particular, $k(90^\circ, 360^\circ) \approx 16,649128$, $y \ k(91^\circ, 360^\circ) \approx 17,445935$. Apliquemos el punto 5:

$$k(90^{\circ}, 360^{\circ}) < 17 < k(91^{\circ}, 360^{\circ}) \implies \exists ! x_m \in (90^{\circ}, 91^{\circ}) : k(x_m, 360^{\circ}) = 17$$

Figura 10: 17 bloques de $T_{x=90,45332215}$ °

$k \in \mathbb{Z}^+$	x°
3	19.019079333
6	60
9	74.15292718
12	82.2524055
16	89.13404388
17	90.45332215
18	91.65964018
19	92.76863062
20	93.79304858
21	94.74341811
60	110.8178438
450	128.8014110

Figura 11: $\{(k, x) : k(x, 2\pi) = k\}$

Corolario 2.

$$i) |\{x_1 \in X_1 : k(x_1, 2\pi) \in \mathbb{Z}^+\}| = 14$$

$$ii) |\{x_2 \in X_2 : k(x_2, 2\pi) \in \mathbb{Z}^+\}| = \infty$$

Es decir, que hay número finito de $x_1 \in X_1$ que exhiben este comportamiento inyectivo respecto a la aplicación $k(x,2\pi)$, mientras que existen infinitos ángulos $x_2 \in X_2$ para los cuales $k(x_2,2\pi) \in \mathbb{Z}^+$

Conjetura 1.

$$\forall x \in X \setminus \{\frac{\pi}{3}\} : k(x, 2\pi) \in \mathbb{Z}^+ \implies \nexists n \in \mathbb{Z}^+ : x \in \gamma_n$$

Figura 12: Gráfico de $k(x, 2\pi)$.

Concluímos así que ésta es una función de crecimiento exponencial.

3. Segunda Construcción

3.1. Definición de la Construcción

Definición 7.1. En este caso, el bloque fundamental será el paralelogramo equilátero de lados a_i, b_i, c_i y d_i tales que

$$\forall i \in \mathbb{Z}^+ : a_i = b_i = c_i = d_i = \lambda \in \mathbb{R}^+$$

y x el ángulo que se forma entre a_i y b_i (también entre c_i y $d_i)$

Definición 7.2. Sea P_x la figura generada yuxtaponiendo bloques mediante la misma regla que T_x , y O el centro de la figura:

Figura 13: Dos primeros bloques de $P_{50^{\circ}}.$

Definición 7.3. Sea $r'(x) := \max(\lambda, t(x)), \forall x \in X$, donde t(x) es la distancia entre los vértices opuestos cuyos ángulos son α .

3.2. Función homóloga a p(x):q(x)

Proposición 3.1.

$$r'(x) = \begin{cases} \lambda & \text{si } 0 < x \le \frac{\pi}{3} \\ \lambda \sqrt{2(1 - \cos x)} & \text{si } \frac{\pi}{3} < x < \pi \end{cases}$$

Demostración. Por el Teorema del Coseno, tenemos que:

$$t^2(x) = a^2 + b^2 - 2ab\cos x \iff t(x) = \sqrt{2\lambda^2 - 2\lambda^2\cos(x)} = \sqrt{2\lambda^2(1 - \cos(x))} = \lambda\sqrt{2(1 - \cos(x))}$$

Luego:

$$\begin{cases} r'(x) = \lambda \iff \max(\lambda, \lambda\sqrt{2(1-\cos x)}) = \lambda \iff \lambda \ge \lambda\sqrt{2(1-\cos(x)} \iff \cos x \ge \frac{1}{2} \iff x \in (0, \frac{\pi}{3}] \\ r'(x) = \lambda\sqrt{2(1-\cos x)} \iff \lambda < \lambda\sqrt{2(1-\cos(x)} \iff \cos x < \frac{1}{2} \iff x \in (\frac{\pi}{3}, \pi) \end{cases}$$

Por lo que vemos que todas las figuras generadas por esta segunda construcción tendrán un radio real.

Definición 8.1. Sea $q: X \to \mathbb{Z}^+ \cup \{\infty\}$ la función $q(x) = |\{S \in P_x : |\overline{OS}| = r'(x)\}|$

Teorema 3.1. Función q(x)

$$i) \ \forall n \in \mathbb{Z}^+ \setminus \{3\}, x \in \varphi_n \iff \begin{cases} q(x) = 2n \iff 2 \mid n \lor 2 \mid m \\ \\ q(x) = n \iff 2 \nmid n \land 2 \nmid m \end{cases} \qquad ii) \ q(\frac{1}{3}\pi) = 2n = 6$$

Demostración. Por la relación de ángulos de un cuadrilátero, $2\alpha + 2x = 2\pi \iff \alpha = \pi - x$. Procedamos ahora de la misma manera que en el Teorema 1.1:

$$\exists n \in \mathbb{Z}^+ : x \in \varphi_n \iff x = \frac{m}{n}\pi \land m < n \iff \frac{2\pi}{\alpha} = \frac{2n}{n-m} \iff \exists k, v \in \mathbb{Z}^+ : \operatorname{mcd}(k, v) = 1 \land k \cdot \alpha = v \cdot 2\pi \iff \frac{k}{v} = \frac{2n}{n-m}$$

- $\bullet \ (2 \mid n \lor 2 \mid m) \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(2n, n m) = 1 \implies k(x) = 2n$
- $\bullet \ 2 \nmid n \land 2 \nmid m \land 1 = \operatorname{mcd}(n,m) = \operatorname{mcd}(n,n-m) \implies \operatorname{mcd}(2n,n-m) = 2 \implies k(x) = n$

Veamos ahora la relación entre q(x) y k(x):

$$\begin{cases} r'(x) = \lambda \iff x \in (0, \frac{\pi}{3}) & \iff \begin{vmatrix} i & 1 & 2 & 3 & 4 & 5 & 6 & \dots & k-1 & k \\ \frac{\sum_{j=1}^{i} q_{j}}{2} & 2 & 3 & 4 & 5 & 6 & 7 & \dots & k & k \\ r'(x) = \lambda \sqrt{2(1 - \cos(x))} & \iff \begin{vmatrix} i & 1 & 2 & 3 & 4 & 5 & 6 & \dots & k-1 & k \\ \frac{\sum_{j=1}^{i} q_{j}}{1} & 1 & 2 & 3 & 4 & 5 & 6 & \dots & k-1 & k \\ \frac{\sum_{j=1}^{i} q_{j}}{1} & 1 & 2 & 3 & 4 & 5 & 6 & \dots & k-1 & k \\ \end{vmatrix}$$

$$\Rightarrow \begin{cases} x = \frac{\pi}{3} & \iff \frac{\sum_{j=1}^{i} q_{j}}{1} & 3 & 5 & 6 \\ \frac{\sum_{j=1}^{i} q_{j}}{1} & 3 & 5 & 6 \\ \frac{\sum_{j=1}^{i} q_{j}}{1} & 3 & 5 & 6 \\ \end{vmatrix}$$

Cuando $r'(x) = \lambda$, el primer bloque aporta dos puntas, porque tiene dos segmentos con esa longitud: $b_1 = \lambda = c_1$. En cambio, para r'(x) = t(x), el primer bloque contiene únicamente un segmento desde O con longitud $t(x) = \lambda \sqrt{2(1-\cos(x))}$. En el caso singular $x = 60^{\circ}$ se da que los bloques son triángulos equiláteros.

Corolario 3.1.

$$\forall n \in \mathbb{Z}^+, x \in \varphi_n \iff \begin{cases} (2 \mid n \lor 2 \mid m) \iff v'(x) = n - m \\ 2 \nmid n \land 2 \nmid m \iff v'(x) = \frac{n - m}{2} \end{cases}$$

En la Sección de Relaciones entre Construcciones estudiaremos esta función.

Corolario 3.2.

$$\nexists n \in \mathbb{Z}^+ : x \in \varphi_n \iff \frac{m}{n} \notin \mathbb{Q} \iff q(\frac{m}{n}\pi) = \infty$$

Definición 8.2. Sea $q^{-1}(q) = \{x \in X : q(x) = q\}$ el conjunto antiimagen de la función q(x), y $g(q) \coloneqq |q^{-1}(q)|$

4. Relaciones entre las Construcciones

4.1. Teoremas de Equivalencias

Teorema 4.1. Primer Teorema de Equivalencias

i)
$$\forall p, q \in \mathbb{Z}_{>3} \setminus \{6\}, \ p = q \implies f(p) = g(q)$$

ii) $\forall p \in \mathbb{Z}_{>3} \setminus \{6\}, \ f(p) + g(p) = \varphi(p)$
iii) $g(3) = 0 = \frac{\varphi(3)}{2} - 1 \wedge g(6) = 2 = \frac{\varphi(6)}{2} + 1$

Demostración. Por el Teorema 1.2. tenemos que $f(p) = \frac{\varphi(p)}{2}$, así que veremos

$$f(p) + g(p) = \varphi(p) \iff g(p) = \frac{\varphi(p)}{2} \iff f(p) = g(p)$$

viendo que $g(p) = \frac{\varphi(p)}{2}$. Estudiemos las condiciones de q para conocer los denominadores y numeradores m y n para los cuales $q(\frac{m}{n}\pi) = q$:

$$\begin{cases} 2 \nmid n \wedge 2 \mid m \iff n = \frac{q}{2} \wedge 2 \mid m \iff 2 \mid q \wedge 4 \nmid q \\ 2 \mid n \wedge 2 \nmid m \iff n = \frac{q}{2} \wedge 2 \nmid m \iff 4 \mid q \\ 2 \nmid n \wedge 2 \nmid m \iff n = q \wedge 2 \nmid m \iff 2 \nmid q \end{cases} \implies q^{-1}(q) = \begin{cases} \chi_{\frac{q}{2}} \iff 2 \mid q \wedge 4 \nmid q \\ \varphi_{\frac{q}{2}} \iff 4 \mid q \\ \varphi_{q} \setminus \chi_{q} \iff 2 \nmid q \end{cases}$$

Luego, siguiendo el Lema de Simetrías:

$$|q^{-1}(q)| = g(q) = \begin{cases} \varphi(q) - |\chi_q| = \frac{1}{2}\varphi(q) \iff 2 \nmid q \\ \varphi(\frac{q}{2}) \iff 4 \mid q \\ |\chi_{\frac{q}{2}}| = \frac{1}{2}\varphi(\frac{q}{2}) \iff 2 \mid q \land 4 \nmid q \end{cases} = \frac{\varphi(q)}{2}$$

iii) Cuando consideramos el número de puntas p en lugar del número de bloques k, siguiendo lo visto en el Teorema 3.1, estamos interpretando a $P_{\frac{\pi}{3}}$ como una figura del conjunto $q^{-1}(6)$. Por tanto, el conjunto $q^{-1}(3)$ se queda vacío, al haber movido la única figura que contenía al otro conjunto.

Figura 14: $T_{60^{\circ}}$

Figura 15: $P_{60^{\circ}}$

Figura 16: $P_{120^{\circ}}$

Definición 9.1.

- $T_x \sim_n P_x \iff p(x) = q(x) \land v(x) = v'(x)$
- $T_{x_1} \sim_p T_{x_2} \iff p(x_1) = p(x_2) \land v(x_1) = v(x_2)$
- $P_{x_1} \sim_p P_{x_2} \iff q(x_1) = q(x_2) \wedge v'(x_1) = v'(x_2)$

Definición 9.2.

$$T_x \sim_k P_x \iff k(x) = k'(x) \land v(x) = v'(x)$$

$$T_{x_1} \sim_k T_{x_2} \iff k(x_1) = k(x_2) \land v(x_1) = v(x_2)$$

$$P_{x_1} \sim_k P_{x_2} \iff k'(x_1) = k'(x_2) \land v'(x_1) = v'(x_2)$$

Teorema 4.2. Segundo Teorema de Equivalencias

$$i) \ \forall x \in X, \ T_x \sim_p P_x \iff x = \frac{\pi}{3}$$

$$ii) \ \forall x_t, x_p \in X, \ T_{x_t} \sim_k P_{x_p} \iff 2x_t = x_p$$

$$iii) \ \forall x_1, x_2 \in X_1, \ T_{x_1} \sim_p T_{x_2} \iff T_{x_1} \sim_k T_{x_2} \iff x_1 = x_2$$

$$iv) \ \forall x_1, x_2 \in X, \ P_{x_1} \sim_k P_{x_2} \iff x_1 = x_2$$

$$v) \ \forall x_1, x_2 \in X, P_{x_1} \sim_p P_{x_2} \iff x_1 = \frac{\pi}{3} \land x_2 = \frac{2}{3}\pi$$

Demostración. i) Veamos por separado qué valores de $x \in X$ permiten que p(x) = q(x) y v(x) = v'(x).

$$\bullet \ 1. \ p(x) = q(x) = 2n \iff 2 \nmid n \land (2 \mid n \lor 2 \mid m) \iff 2 \mid m \land 2 \nmid n \iff x \in \chi_n$$

• 2.
$$p(x) = q(x) = n \iff 4 \mid n \land (2 \nmid n \land 2 \nmid m)$$
 es una contradicción

• 3.
$$p(\frac{\pi}{3}) = q(\frac{\pi}{3}) = 6$$

Por tanto, $p(x) = q(x) \iff 2 \mid m \land 2 \nmid n$. Luego:

$$\bullet \ 4. \ v(x) = v'(x) \land 2 \nmid n \land 2 \nmid m \iff \frac{n-m}{2} = n - 2m \iff 3m = n \iff \frac{m}{n} = \frac{1}{3}$$

■ 5.
$$v(x) = v'(x) \land 2 \nmid n \land 2 \mid m \iff n - 2m = n - m \iff m = 0 \iff x = 0 \notin X$$

■ 6.
$$v(x) = v'(x) \land 4 \mid n \land 2 \nmid m \iff \frac{n-2m}{2} = n - m \iff n - 2m = 2n - 2m \iff n = 0 \notin \mathbb{Z}_{\geq 2}$$

■ 7.
$$v(x) = v'(x) \land 2 \mid n \land 4 \nmid n \land 2 \nmid m \iff \frac{n-2m}{4} = n-m \iff 3n = 2m \iff \frac{m}{n} = \frac{3}{2} \iff x \notin X$$

Así vemos que $v(x)=v'(x)\iff x=\frac{\pi}{3}.$ Además, y es un caso especial, $p(\frac{\pi}{3})=q(\frac{\pi}{3})=6.$

$$ii) \ T_{x_t} \sim_k P_{x_p} \iff \frac{k}{v} = \frac{k'}{v'} \iff \frac{2n_t}{n_t - 2m_t} = \frac{2n_p}{n_p - m_p} \iff \frac{2m_t}{n_t} = \frac{m_p}{n_p} \iff 2x_t = x_p$$

 $Ya \ que \ \frac{k}{v} = \frac{k'}{v'} \land \operatorname{mcd}(k, v) = \operatorname{mcd}(k', v') = 1 \iff k = k' \land v = v'.$

$$iii) \ T_{x_1} \sim_p T_{x_2} \iff T_{x_1} \sim_k T_{x_2} \iff \frac{k_1}{v_1} = \frac{k_2}{v_2} \iff \frac{2n_1}{n_1 - 2m_1} = \frac{2n_2}{n_2 - 2m_2} \iff \frac{m_1}{n_1} = \frac{m_2}{n_2} \iff x_1 = x_2$$

$$iv) P_{x_1} \sim_k P_{x_2} \iff \frac{k'_1}{v'_1} = \frac{k'_2}{v'_2} \iff \frac{2n_1}{n_1 - m_1} = \frac{2n_2}{n_2 - m_2} \iff \frac{m_1}{n_1} = \frac{m_2}{n_2} \iff x_1 = x_2$$

Definición 10. Sean $x_t: \mathbb{Z}_{\geq 3} \times \gamma_p' \to X_1$ y $x_p: \mathbb{Z}_{\geq 3} \times \gamma_q' \to X$ las funciones

$$x_t(p, v) = x_t \iff p(x_t) = p \land v(x_t) = v$$

$$x_n(q,v') = x_n \iff q(x_n) = q \wedge v'(x_n) = v'$$

Proposición 4.

$$i) \ \forall (p,v) \in \mathbb{Z}_{\geq 3} \times \gamma_p', \ x_t(p,v) = \frac{p-2v}{2p} \pi \in X_1$$

$$(ii) \ \forall (q, v') \in \mathbb{Z}_{>3} \times \gamma'_q, \ x_p(q, v') = \frac{q - 2v'}{q} \pi \in X$$

Demostración. Veamos primero i)

$$\frac{p}{v} = \frac{2n}{n-2m} \iff p(n-2m) = 2nv \iff pn-2pm = 2nv \iff n(p-2v) = 2pm \iff \frac{m}{n} = \frac{p-2v}{2p}$$

$$1. \ 2m < n \iff p - 2v < p \iff v > 0$$

$$2. \ p - 2v > 0 \iff 2v < p$$

3.
$$p, v \in \mathbb{Z}^+ \wedge \operatorname{mcd}(p, v) = 1$$

por lo que, en suma, $v \in \gamma_p'$. Esto reafirma el Teorema 1.2, porque

$$\forall p \in \mathbb{Z}_{\geq 3} : v \in \gamma_p' \land |\gamma_p'| = \frac{\varphi(p)}{2}$$

$$ii) \frac{q}{v'} = \frac{2n}{n-m} \iff q(n-m) = 2nv' \iff qn - qm = 2nv' \iff n(q-2v') = qm \iff \frac{m}{n} = \frac{q-2v'}{q}$$

1.
$$m < n \iff q - 2v' < q \iff v' > 0$$

2. $q - 2v' > 0 \iff 2v' < p$

3.
$$q, v' \in \mathbb{Z}^+ \wedge \operatorname{mcd}(q, v') = 1$$

En conclusión, análogamente, $v' \in \gamma'_q$, por lo que hemos hallado una vía de demostración del Primer Teorema de Equivalencias que no demanda ninguna información sobre χ_n .

Corolario 4.

$$\forall (p,v) \in \mathbb{Z}_{>3} \times \gamma_p : 2x_t(p,v) = x_p(p,v)$$

No es más que una reexpresión del apartado ii) del Segundo Teorema de Equivalencias, y se sigue inmediatamente de la Proposición 4. Y es que $2x_t=x_p$ implica que los ángulos internos que se formarán serán iguales, por lo tanto será el mismo número de puntas y de vueltas el que satisfaga la condición de cierre.

Figura 17: $x_t = 50^{\circ}$

Figura 18: $x_p = 2x_t = 100^{\circ}$

Observación 2.

$$\forall p \in \mathbb{Z}_{\geq 3} : x_t(p,1) = x_t \iff T_{x_t} \text{ p-gono regular}$$

Definición 11. Sean $\varphi_{\infty} = \bigcup_{n \in \mathbb{Z}_{\geq 2}} \varphi_n$ y $\gamma_{\infty} = \bigcup_{n \in \mathbb{Z}_{\geq 2}} \gamma_n$

Definición 12. Sean $T := \{T_x : x \in \gamma_\infty\}$ y $P := \{P_x : x \in \varphi_\infty\}$

Teorema 4.3. Tercer Teorema de Equivalencias

$$|T| = |P|$$

Demostración. Por definición de equipotencia, hallemos una función biyectiva que relacione ambos conjuntos. Consideremos la función ángulo homólogo h:

$$h(x_t) = x_p \iff T_{x_t} \sim_k P_{x_p}$$

Por el Segundo Teorema de Equivalencias, $T_{x_t} \sim_k P_{x_p} \iff 2x_t = x_p$, por lo que h es biyectiva.

1.
$$h(x_t) = 2x_t$$
, $h^{-1}(x_p) = \frac{x_p}{2}$

2.
$$\forall x_t \in \gamma_\infty, \exists x_p \in \varphi_\infty : h(x_t) = x_p = 2x_t$$

3.
$$\forall x_p \in \varphi_\infty, \exists x_t \in \gamma_\infty : h^{-1}(x_p) = x_t = \frac{x_p}{2}$$

4.2. Radio Mínimo Relativo de una Figura

Definición 13.1. Sea $r_t: X_1 \times \mathbb{Z}^+ \to (0, r(x))$ la función radio generalizada para figuras T_x .

Definición 13.2. Sea $r_p: X \times \mathbb{Q}^+ \to (0, r'(x))$ la función radio generalizada para figuras P_x .

Proposición 5.1. Definición completa de r_t

$$r_t(x,n) = r(x) \frac{\sin(x)}{\sin(\frac{p(x)-n}{p(x)}\pi - x)}$$

Figura 19: Disección de una construcción

Figura 20: Triángulo auxiliar

Definimos el ángulo central θ como n medias partes de sección $(\frac{2\pi}{p(x)})$:

1.
$$\theta(x,n) := \frac{n}{2} \cdot \frac{2\pi}{p(x)} = \frac{n\pi}{p(x)}$$

Por la relación fundamental de ángulos de un triángulo:

$$2. x + \gamma + \theta = \pi$$

Siguiendo el Teorema del Seno:

3.
$$\frac{r_t(x,n)}{\sin x} = \frac{r(x)}{\sin \gamma} \iff r(x,n) = r(x) \frac{\sin x}{\sin \gamma}$$

Juntándolo todo:

4.
$$r_t(x,n) = r(x) \frac{\sin x}{\sin (\pi - \theta - x)} = r(x) \frac{\sin x}{\sin (\frac{p(x) - n}{p(x)} \pi - x)}$$

Proposición 5.2.

$$r(x, v(x)) = \min_{n \in (0, p(x)) \cap \mathbb{Z}^+} r_t(x, n)$$

Demostración. La variable n sólo se halla presente en el denominador, por lo que hemos de hallar el valor de n para el cual éste denominador se maximiza; esto es, para el cual

$$\frac{p(x) - n}{p(x)}\pi - x = \frac{\pi}{2} \iff \sin(\frac{p(x) - n}{p(x)}\pi - x) = 1$$

Por la Proposición 4:

$$\frac{p(x) - n}{p(x)}\pi - x = \frac{p(x) - n}{p(x)}\pi - \frac{p(x) - 2v(x)}{2p(x)}\pi = \frac{2(p(x) - n) - (p(x) - 2v(x))}{2p(x)}\pi = \frac{2v(x) - 2n + p(x)}{2p(x)}\pi$$

$$\frac{2v(x) - 2n + p(x)}{2p(x)}\pi = \frac{\pi}{2} \iff n = v(x)$$

Corolario 5.1. Radio Mínimo Relativo para Primera Construcción

$$r_0(x) \coloneqq \frac{r_t(x, v(x))}{r(x)} = \sin(x)$$

Figura 21: Zoom en $T_{5^{\circ}}$.

Esto significa que la función $\sin(x)$ representa el radio mínimo relativo de la figura generada por el ángulo x. En la Figura sería un 8,715% del radio total, ya que $\sin(5^\circ) = 0,08715$.

Observación 3.

$$x_t = x_t(p, 1) \iff r(x_t, v(x_t)) = a(p, r(x_t))$$

donde a(p, r) es la apotema de un p-gono de radio r.

Proposición 6.1. Definición completa de r_p

$$r_p(x,n) = \begin{cases} r'(x) \frac{\sin(x)}{\sin(\frac{q(x)-n}{q(x)}\pi - x)} & \text{si } x \in (0, \frac{\pi}{3}), \\ r'(x) \frac{\cos(\frac{x}{2})}{\sin(\frac{q(x)-2n}{2q(x)}\pi + \frac{x}{2})} & \text{si } x \in (\frac{\pi}{3}, \pi). \end{cases}$$

Para el intervalo de $x \in (0, \frac{\pi}{3})$ se sigue exactamente el mismo procedimiento que en la Proposición 5.1, ya que el ángulo que se encuentra en cada punta es 2x, y en la disección se estudia la mitad de ése, y en este intervalo pasa lo mismo en la segunda construcción.

No se da así para el dominio complementario. Siguiendo las Definiciones 7.3. y 8.1, vemos que el ángulo que se formará en las puntas será α :

$$1. \ \theta(x,n) := \frac{n}{2} \cdot \frac{2\pi}{q(x)} = \frac{n\pi}{q(x)}$$

$$2. \ \frac{\alpha}{2} + \gamma + \theta = \pi \iff \gamma = \pi - \frac{n\pi}{q(x)} - \frac{\pi - x}{2} = \frac{q(x) - 2n}{2q(x)}\pi + \frac{x}{2}$$

$$3. \ \frac{r_p(x,n)}{\sin(\frac{\alpha}{2})} = \frac{r'(x)}{\sin(\gamma)} \iff r_p(x,n) = r'(x)\frac{\sin(\frac{\alpha}{2})}{\sin(\gamma)}$$

$$4. \ \sin(\frac{\alpha}{2}) = \sin(\frac{\pi - x}{2}) = \sin(\frac{\pi}{2} - \frac{x}{2}) = \cos(\frac{x}{2})$$

$$5. \ r_p(x,n) = r'(x)\frac{\cos(\frac{x}{2})}{\sin(\frac{q(x) - 2n}{2q(x)}\pi + \frac{x}{2})}$$

Proposición 6.2.

$$r_p(x,\frac{q(x)-2v'(x)}{2}) = \min_{n\in(0,q(x))\cap\mathbb{Q}^+} r_p(x,n)$$

Por analogía a la Proposición 5.2, encontremos aquella n que hace que $\gamma = \frac{\pi}{2}$

$$\frac{q-2n}{2q}\pi + \frac{q-2v}{2q}\pi = \frac{\pi}{2} \iff n = \frac{q-2v}{2}$$

Cuando el número de puntas q sea par, n será un entero, pero si q es impar, entonces n será racional y 2n entero

Corolario 5.2. Radio Mínimo Relativo para Segunda Construcción

$$r_0'(x) := \frac{r_p(x, \frac{q(x) - 2v'(x)}{2})}{r'(x)} = \begin{cases} \sin(x) & \text{si } x \in (0, \frac{\pi}{3}], \\ \cos\left(\frac{x}{2}\right) & \text{si } x \in \left(\frac{\pi}{3}, \pi\right). \end{cases}$$

Notemos que la función es contínua en el punto de transición:

$$\sin(\frac{\pi}{3}) = \cos(\frac{\pi}{6}) = \lim_{x \to \frac{\pi}{2}^{-}} \sin(x) = \lim_{x \to \frac{\pi}{2}^{+}} \cos(\frac{x}{2}) = \frac{\sqrt{3}}{2}$$

Definición 14. Sean $X_{1_1} = (0, \frac{\pi}{4})$ y $X_{1_2} = (\frac{\pi}{4}, \frac{\pi}{2})$

Teorema 4.4. Cuarto Teorema de Equivalencias

$$\forall x_t, x_p \in X : T_{x_t} \sim_k P_{x_p} \implies \begin{cases} r_0(x_t) < r_0'(x_p) \iff x_t \in X_{1_1} \land x_p \in X_1 \\ r_0(x_t) = r_0'(x_p) \iff x_t = \frac{\pi}{4} \land x_p = \frac{\pi}{2} \\ r_0(x_t) > r_0'(x_p) \iff x_t \in X_{1_2} \land x_p \in X_2 \setminus \{\frac{\pi}{2}\}. \end{cases}$$

Demostración. Siguiendo el apartado ii) del Segundo Teorema de Equivalencias y los Corolarios 5.1. y 5.2. planteamos la desigualdad entre ambas funciones en los diversos tramos:

$$1. \ x_p \in (0, \frac{\pi}{3}) \land 2x_t = x_p \iff x_t \in (0, \frac{\pi}{6})$$
$$2. \ r_0(x_t) < r_0'(x_p) \iff r_0(x_t) < r_0'(2x_t) \iff \sin(x_t) < \sin(2x_t)$$

Lo cual se cumple para toda $x_t \in (0, \frac{\pi}{6}].$

3.
$$r_0(x_t) < r'_0(x_p) \iff \sin(x_t) < \cos(\frac{x_p}{2}) \iff \sin(x_t) < \cos(x_t)$$

Esta desigualdad se verifica positivamente para $x_t \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

4.
$$r_0(\frac{\pi}{4}) = r_0'(\frac{\pi}{2}) \iff \sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

5.
$$r_0(x_t) > r'_0(x_p) \iff \sin(x_t) > \cos(\frac{x_p}{2}) \iff \sin(x_t) > \cos(x_t)$$

Lo cual es cierto para $x_t \in (\frac{\pi}{4}, \frac{\pi}{2})$. Para el caso $T_{x_t} \sim P_{x_p} \wedge x_t = x_p = \frac{\pi}{3}$, se da $r_0(\frac{\pi}{3}) = r_0'(\frac{\pi}{3})$.

4.3. Diagrama Clasificatorio de Figuras

- Las figuras de $\{T_x : x \in X_2\}$ son espirales infinitas cuya distancia al centro O crece linealmente si $x \neq \frac{\pi}{2}$.
- En $\{T_x : x \in X_{1_2} \cap \gamma_\infty\}$ y $\{P_x : x \in X_2 \cap \varphi_\infty\}$ son figuras finitas y cerradas Aquí, $r_0(x_t) > r'_0(x_p)$.
- En $\{T_x : x \in X_{1_1} \cap \gamma_\infty\}$ y $\{P_x : x \in X_1 \cap \varphi_\infty\}$ son también finitas y cerradas. Aquí, en cambio, $r_0(x_t) < r_0'(x_p)$.
- Finalmente, en $\{T_x : x \in X_1 \setminus \gamma_\infty\}$ y $\{P_x : x \in X \setminus \varphi_\infty\}$ se da una singularidad finita, pues el radio converge y no se cumple la condición de cierre

Figura 22: Diagrama Clasificatorio

5. Apéndice

5.1. Demostración del Lema de Simetrías

$$i) \ \forall n \in \mathbb{Z}_{>2}, \ 2 \nmid n \iff |\varphi_n| = 2|\chi_n|$$

Demostración.

1.
$$\forall n \in \mathbb{Z}^+ : \exists f_n : [1, \frac{n-1}{2}] \cap \mathbb{Z}^+ \to [\frac{n+1}{2}, n-1] \cap \mathbb{Z}^+$$
 biyectiva

Es trivial ver que el dominio y el codominio de esta función son conjuntos finitos y numerables con cardinal $\frac{n-1}{2} \in \mathbb{Z}^+ \iff 2 \nmid n$:

$$\forall a, b \in \mathbb{Z}^+ : a \le b \implies |[a, b] \cap \mathbb{Z}^+| = b - a + 1$$

$$n-1-\frac{n+1}{2}+1=\frac{2(n-1)-(n+1)+2}{2}=\frac{n-1}{2}$$

Además:

$$2 \nmid n \iff [1, \frac{n-1}{2}] \cap \mathbb{Z}^+ \ \cup \ [\frac{n+1}{2}, n-1] \cap \mathbb{Z}^+ = [1, n-1] \cap \mathbb{Z}^+ = \{m \in \mathbb{Z}^+ : m < n\}$$

En concreto vamos a considerar la regla de asignación

$$f_n(m) = n - m \iff f_n(m) + m = n$$

m	1	2	3	4	5	6	7
$f_{15}(m)$	14	13	12	11	10	9	8

$$2. \ \forall n \in \mathbb{Z}^+ : 2 \nmid n \iff \forall m \in [1, \frac{n-1}{2}] \cap \mathbb{Z}^+, \begin{cases} 2 \mid m \iff 2 \nmid f_n(m) \\ 2 \nmid m \iff 2 \mid f_n(m) \end{cases}$$

Esto se da porque, por la regla de asignación de la aplicación, vemos que la suma del argumento m y su imagen $f_n(m)$ debe ser igual a n, que es un número impar; y sólo la suma de un par y un impar resultan en un número impar.

$$3. \ \forall m,n \in \mathbb{Z}^+: \operatorname{mcd}(m,n) = 1 \iff \operatorname{mcd}(n,n-m) = 1 \iff (m \in \gamma_n' \iff f_n(m) \in \varphi_n' \setminus \gamma_n')$$

			3										
$f_{27}(m)$	26	25	24	23	22	21	20	19	18	17	16	15	14

Con esta información podemos ver que existirá una biyección entre los elementos pares e impares de φ'_n :

$$\forall a \in \chi'_n, \exists! b \in \varphi'_n \setminus \chi'_n : a+b=n$$

$$\forall b \in \varphi'_n \setminus \chi'_n, \exists ! a \in \varphi'_n : a + b = n$$

Por lo que ya habríamos demostrado la simetría ii) para 2 † n. Veámosla en general:

$$ii) \ \forall n \in \mathbb{Z}_{>2}, |\varphi_n| = 2|\gamma_n|$$

m														14
$f_{30}(m)$	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Donde estamos considerando la misma regla de asignación para $f_n(m)$. Notemos que, aquí, la unión del dominio y el codominio no es igual a todos los enteros menores que n, sino que se excluye $\frac{n}{2}$ cuando $2 \mid n$, lo cual no afectará al cómputo ni a la relación entre φ_n y γ_n , porque

$$2\mid n\wedge n>2 \implies \operatorname{mcd}(n,\frac{n}{2})>1 \implies \frac{n}{2}\notin\varphi'_n$$

$$\forall m\in[1,\frac{n}{2})\cap\mathbb{Z}^+, (2m< n\wedge\frac{n}{2}< f_n(m)< n)\wedge(m\in\gamma'_n\iff f_n(m)\in\varphi'_n\setminus\gamma'_n)$$

$$|\gamma'_n|+|\varphi'_n\setminus\gamma'_n|=|\gamma'_n|+(|\varphi'_n|-|\gamma'_n|)=|\varphi'_n|\wedge|\gamma'_n|=|\varphi'_n\setminus\gamma'_n|\implies |\varphi'_n|=2|\gamma'_n|$$

5.2. Software

https://aidanLorenzo.github.io

https://github.com/aidanLorenzo/aidanLorenzo.github.io

5.3. Figuras

