Diagrame de stari (State machine diagrams)

Prof. unív. dr. ing. Florica Moldoveanu

Diagrame de stari - utilizari

- Se folosesc pentru a reda aspecte dinamice ale unui sistem.
- O diagrama UML de stări redă stările unei entităti într-o perioadă de timp şi modul în care entitatea răspunde la diferite evenimente, prin tranziții dintr-o stare în alta.

Tranzitia din starea 1 in starea 2 datorata evenimentului

- ❖ Principala utilizare: documentarea claselor de obiecte cu un comportament reactiv.
- ❖ O diagramă de stări redă comportarea unui obiect dependentă de starea sa curentă. Un obiect răspunde diferit la un eveniment în funcție de starea sa curentă.

Stari si tranzitii (1)

Exemplu: stările unui obiect sale și tranzitiile determinate de apelul operatiilor (clasei) sale.

Nod de intrare (pseudo-starea initiala), din care se trece automat în starea inițială

❖ Nodul de ieşire poate lipsi dintr-o diagramă de stări.

Exemplu: stările unei uși pe parcursul existenței sale.

J

Stari si tranzitii (2)

 Starea curenta a unui obiect este determinata de valorile atributelor sale, inclusiv de legaturile existente intre obiect si alte obiecte.

De exemplu, starea curenta a unei persoane poate fi: în activitate, în somaj sau la pensie. Este determinata de varsta persoanei si de prezența unei legaturi catre o firma:

Evenimente (1)

Un eveniment poate fi:

- Receptionarea unui semnal, cum ar fi o exceptie, o notificare, un eveniment generat de interactiunea cu utilizatorul.
- Receptionarea unui apel, adica invocarea unei operatii a clasei obiectului.
- Recunoasterea unei conditii in mediul extern sau in obiectul insusi:
 - conditie predefinita, care este indeplinita la un moment dat: "change event"
 - when(expresie booleana).
 - trecerea unei perioade de timp desemnate: "elapsed-time event"
 - after(expresie al carei rezultat este o perioada de timp).
- Un eveniment se reprezinta printr-o eticheta amplasata deasupra tranzitiei pe care o declanseaza.

Evenimente (2)

Tranzitii conditionate

☐ Tranzitiile pot fi controlate prin garzi. O garda este o expresie booleana care valideaza declansarea unei tranzitii in cazul aparitiei unui eveniment.

Actiuni si activitati(1)

- Operatiile unei clase apar in diagramele de stari ca actiuni si activitati.
- O <u>actiune</u> este considerata ca instantanee, adica are un timp de executie neglijabil in raport cu dinamica sistemului, şi nu poate fi întrerupta de un eveniment.
- In diagramele de stari, actiunile sunt atasate tranzitiilor:

- O actiune defineste modul in care obiectul care receptioneaza evenimentul trebuie sa raspunda la eveniment. Timpul de executie al unei actiuni este nesemnificativ.
- Exemple de actiuni: apelul unei operatii a clasei, crearea sau distrugerea unui alt obiect, trimiterea unui semnal catre un alt obiect.

Actiuni si activitati(2)

- O <u>activitate</u> este o operatie care necesita un anumit timp de executie. Este asociata unei stari.
- Anumite activitati sunt ciclice, ca afisarea unei imagini pe ecranul unui monitor sau ca soneria telefonului care persista pana cand un eveniment o intrerupe declansand o tranzitie.
- Alte activitati sunt secventiale, cu o durata finita, ca de exemplu executia unui calcul.
- Activitatile sunt indicate prin cuvantul cheie "do":

Starea A do: operatia P()

In starea A se execută operația P

• O activitate poate fi întreruptă oricand, atunci cand are loc un eveniment care determina o tranzitie de iesire din starea respectiva.

Actiuni si activitati(3)

- Mai multe evenimente pot determina tranzitia in aceeasi stare.
- Fiecare eveniment poate declansa o anumita actiune.
- Atunci cand toate evenimentele care conduc in aceeasi stare declanseaza aceeasi actiune,
 actiunea poate fi modelata ca actiune de intrare in starea respectiva.
- lesirea dintr-o stare poate fi determinata de mai multe evenimente.
- Atunci cand toate evenimentele care declanseaza tranzitii din aceeasi stare specifica o aceeasi actiune, actiunea poate fi modelata ca o *actiune de iesire* din starea respectiva.

Tranzitii automate

- La terminarea unei activitati secventiale are loc o tranzitie automata din starea în care s-a executat.
- O tranzitie care nu este marcata printr-un eveniment este numita tranzitie automata.

Tranzitiile automate pot fi controlate prin garzi:

Pseudostări (1)

Alegerea dinamică (Choice)

❖ Pseudostare în care se efectuează o ramificare condiţionată dinamică.

- Se evaluează gărzile asociate tranzițiilor de ieșire din pseudostare și se execută tranziția a cărei gardă este adevărată.
- Cel putin una dintre gărzi trebuie sa fie adevărată.
- Dacă mai mult de o gardă este adevărată, se alege pentru execuție, în mod arbitrar, una dintre tranziții.

Pseudostări (2)

Toate garzile sunt expresii binare cu acelaşi operand în stânga.

Joncțiune (Junction)

 Se poate folosi pentru a combina mai multe tranzitii de intrare într-o singură tranziție de iesire.

Pseudostări (3)

Joncțiune -ramificare conditionată statică

 Pseudostarea se poate folosi pentru a ramifica o tranzitie de intrare în mai multe tranzitii de iesire cu gărzi (constrangeri) asociate diferite.

Garzile asociate tranzitiilor de iesire sunt evaluate inainte de intrarea in pseudostarea
 Jonctiune: pseudostarea mai este numita "ramificare conditionata statica"

Pseudostări (4)

Joncțiune – continuare

Stari compuse (1)

- O stare care conține substări se numește *stare compusă*. O stare care nu conține substări se numește *stare simplă*.
- Substările unei stări compuse pot fi secvențiale (disjuncte) sau concurente (ortogonale).

Stare compusa cu 2 substari secventiale

Stari compuse (2)

Stare compusa cu 2 substari concurente(ortogonale).

- Fiecare regiune contine un set de stari si tranzitii care se excuta secvential.
- Regiunile unei stări compuse ortogonale se execută în paralel.
- Regiunile descriu stari si tranzitii ale unor fire de executie paralele.

Stari compuse (3)

Ramificarea (Fork)

- ❖ Pseudostare care descompune tranziția de intrare în două sau mai multe tranziții de ieșire în stări ortogonale ale unei stări compuse.
- Tranzițiile de ieșire dintr-o pseudostare de tip ramificare nu pot avea asociate gărzi sau evenimente.

Unificarea (Join)

- Pseudostare care unifica tranzitii din stari ortogonale.
- Tranzitiile de intrare intr-o pseudostare Join nu pot avea asociate garzi sau evenimente.

Stari compuse si pseudostari - exemplu

Reprezentare ierarhica

- Mai multe stari pot fi abstractizate intr-o singura stare, care corespunde unei reprezentari de nivel ierarhic mai inalt.
- O stare compusa corespunde unui nivel de abstractizare mai coborat.
- De exemplu, cele 2 reprezentari corespund la 2 niveluri de abstractizare diferite

Alegere nume utilizator

Asteapta introducere nume

Asteapta confirmare disponibilitate

- Pentru fiecare nivel de abstractizare exista o singura stare initiala.
- Este posibil sa existe mai multe stari finale, fiecare corespunzand unei conditii de sfarsit diferite.

Concluzii

- Diagramele de stari se folosesc pentru modelarea comportamentala a entităților reactive → pot fi identificate analizand diagramele de interactiune.
- Permit o documentare mai buna a claselor complexe.
- Pot fi folosite în alegerea cazurilor de test.
- Pot fi folosite si pentru redarea comportamentului in timp al unui sistem sau pentru modelarea comportamentala a interfetei utilizator. Exemplu:

Lecturi suplimentare

- 1. Alin Moldoveanu, Florica Moldoveanu, Maria-Iuliana Dascălu, Anca Ioniță, Oana-Maria Ferche, Victor Asavei, Anca Morar, UML practic, Ed. MatrixRom, 2014
- 2. https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-state-machine-diagram/
- 3. https://warren2lynch.medium.com/state-diagram-comprehensive-guide-with-examples-e08b6d1c70fe
- 4. https://sparxsystems.com/resources/tutorials/uml2/state-diagram.html
- 5. https://www.lucidchart.com/pages/uml-state-machine-diagram