

পদার্থবিদ্যা ও ব্ৰহ্মাত্মন

শান্তিময় চট্টোপাধ্যায়

মনোজ দত্ত

অশোক সিংহ

৩

বিজ্ঞান পরিচয়

নবম শ্রেণী

পশ্চিমবঙ্গ মন্ত্রণালয়ের পর্যবেক্ষণ অভিযান
নবম শ্রেণীর জন্য লিখিত।

9702

বিজ্ঞান পরিচয় গ্রন্থালয়

পদাৰ্থবিদ্যা ও ৱস্তায়ন

৩

শান্তিগঞ্জ চট্টগ্রাম্যায়

এম. এস-সি, পি. আর. এস., ডি. ফিল্.

মনোজ দত্ত

বি. এস-সি., এম. এ, বি. টি

অশোক সিংহ

এম. এস-সি

কলকাতা

অক্সফোর্ড ইউনিভার্সিটি প্রেস

দিল্লী বোৰ্ডাই মাজাজ

১৯৭৫

PADARTHAVIDYA O RASAYAN 3 (Bengali)
(Physics and Chemistry)

by

Santimay Chattopadhyay, Manoj Datta and Asok Sinha

© OXFORD UNIVERSITY PRESS 1975

Santimay CHATTOPADHYAY

Manoj DATTA

Asok SINHA

© অক্সফোর্ড ইউনিভার্সিটি প্রেস ১৯৭৫

শান্তিময় চট্টোপাধ্যায়

মনোজ দত্ত

অশোক সিংহ

First published 1974

Second edition 1975

অঙ্গুল : রামকৃষ্ণ দত্ত

ছবি একেচেন : রঞ্জন কুমাৰ

Printed in India by letterpress by P. C. Roy at Sonnet Printing Works,
19, Coabagan Street, Calcutta 6, and Published by C. H. Lewis, Oxford
University Press, Faraday House, P-17 Mission Row
Extension, Calcutta 13.

9702

ভূমিকা

স্কুলের সর্বস্তরের ছাত্রদের জন্য বিজ্ঞান পাঠ ১৯৭৪ সাল থেকে আবশ্যিক বিষয় বলে গণ্য হয়েছে। বিজ্ঞানকে কেবল জীবিকা নির্বাহের উপায় মনে না করে সাধারণ শিক্ষার অঙ্গ হিসেবে গণ্য করা উচিত। এটাই আধুনিক শিক্ষাবিদদের দৃঢ় ধারণা। জাতীয় পর্যায়েও এই নীতি স্বীকৃত। বিজ্ঞান যে জীবনযাত্রার সঙ্গে সম্পর্কবর্তীত ক্লাসে পড়ার বিষয়মাত্র নয় এই ধারণার উপর ভিত্তি করে নতুন বিজ্ঞান পাঠক্রম রচিত হয়েছে। নতুন পাঠক্রম ও নতুন দৃষ্টিভঙ্গি অনুসরণ করে এই বই লেখার চেষ্টা করা হয়েছে।

ছাত্রদের বোঝার স্ববিধের জন্য এই বইয়ের ভাষা কথ্য এবং যত দ্রু সন্তুষ্ট পরোক্ষ উত্কিবর্জিত রাখার চেষ্টা করা হয়েছে। একসপ্রিমেন্টগুলি ও প্রাত্যহিক জীবন থেকে নেওয়া। যত দ্রু সন্তুষ্ট বিজ্ঞানের ক্ষেত্রে সর্বাধুনিক মতামতগুলি উপস্থাপিত করা হয়েছে। এককের ক্ষেত্রে আমরা আন্তর্জাতিক ভাবে স্বীকৃত এস আই ইউনিট ব্যবহার করেছি।

বইটি ক্লাসে পড়ানোর উপযোগী হয়েছে কিনা তার বিচার শিক্ষক মহাশয়রাই করবেন। তাঁদের মতামত সাদৃশে গৃহীত হবে।

কলকাতা

১লা জাহুয়ারী ১৯৭৪

শান্তিময় চট্টোপাধ্যায়

অনোজ দত্ত

অশোক সিংহ

সূচীপত্র

১।	মাপের পদ্ধতি	
২।	পদার্থ ও শক্তি	
৩।	অবস্থার রূপান্তর	২৩
৪।	শিল্প ও গতি	৩১
৫।	কাজ, শক্তি ও ক্ষমতা	৪১
৬।	তাপ	৬১
৭।	আলোক	৫৮
৮।	গদার্থের বিভিন্ন অবস্থা ও তার রূপান্তরের কারণ	৮৫
৯।	ভৌত ও রাসায়নিক পরিবর্তন	৯০
১০।	মোজ ও যোগ	৯৫
১১।	জ্বর, দ্রাব ও দ্রাবক	১০০
১২।	প্রতীক চিহ্ন, সংকেত ও সমীকরণ	১০৮
১৩।	তড়িৎ বিশ্লেষণ	১১২
১৪।	অ্যাসিড, ক্ষারক ও লবণ	১১৭
১৫।	জ্বরণ ও বিজ্ঞারণ	১২১
১৬।	তরল বায়ু, নাইট্রোজেন চক্র ও কার্বন ডাইঅক্সাইড চক্র	১২৩
১৭।	কয়েকটি গ্যাসের প্রস্তুত অণালী ও তাদের ধর্ম	১৩১
প্রশ্নমালা		
পরিশিষ্ট : বৈজ্ঞানিক শব্দকোষ		

୬ ମାପେର ପରିତି

ପ୍ରତିଦିନଇ ବିଭିନ୍ନ କାରଣେ ନାନା ଧରନେର ମାପେର ପ୍ରୟୋଜନ ହୁଏ । ଜାମା ତୈରି କରାତେ ଜାନତେ ହୁଏ କଟଟା କାପଡ଼ ଲାଗିବେ, ଜିନିଦ କିନତେ ଦରକାର ହୁଏ ଓଜନେର, ଇଞ୍ଚିଲେ ବା ଅଫିସେ ଯାଓୟାର ଆଗେ ବାର ବାର ସମୟ ଦେଖିତେ ହୁଏ । ଅନେକ ସମୟ ବଳା ହୁଏ, କାପଡ଼ଟା ଦେଡ଼ ହାତ ଲଦା ବା ଦୋକାନଟା ବିଶ ପା ଦୂରେ । କିନ୍ତୁ ତାତେ ମାପ ଠିକମତ୍ ବୋଲା ଯାଇ ନା । କାର ହାତ ବା କାର ପାଯେର ସମାନ ଲଦା ? ତେବେଳି ଇଟ ବା ପାଥର ଦିଯେ ଓଜନ କରା ବା ଆନ୍ଦାଜେ ସମୟ ମାପା ଚଲେ ନା । ବିଜ୍ଞାନ ସବ ସମୟରେ ଚାଯ ସଠିକ ମାପ ।

ରାଶି କୀ ?

ମାପ ଶ୍ରେ କରାର ଆଗେ ଜାନା ଦରକାର ରାଶି କାକେ ବଲେ । ଯା ମାପା ମନ୍ତ୍ରବ ତାକେଇ ରାଶି ବା ସଠିକଭାବେ ଭୌତ ରାଶି ବା ଫିଜିକାଲ କୋଯାଟିଟି ବଲେ । ଏକଟା ପେସିଲ ନାହିଁ । ଦେଖ ଏଇ ଦୈର୍ଘ୍ୟ କ୍ଷେତ୍ର ଦିଯେ ମାପା ମନ୍ତ୍ରବ । ଦୈର୍ଘ୍ୟ ଏକଟି ଭୌତ ରାଶି । ତେବେଳି ଏଇ ଓଜନ ଦାଢ଼ିପାଇଁ ବା ନିଜି ଦିଯେ ମାପିଲେ ପାରିବେ । ଓଜନଓ ତାହିଲେ ଏକଟି ଭୌତ ରାଶି । ସମୟଓ ଏକଟି ଭୌତ ରାଶି, କାରଣ ସମୟ ସଙ୍କଳି ଦିଯେ ମାପା ଯାଇ । ପରେ ଏ ଧରନେର ଅନେକ ରାଶିର ନାମ ଶୁଣିଲେ ପାବେ ।

ଭୌତ ରାଶିକେ ଦୁ ଭାଗେ ଭାଗ କରା ହୁଏ—କ୍ଷେତ୍ରାର ରାଶି ଓ ଭେଟ୍ରାର ରାଶି । ସେ ସବ ରାଶିର ମାନ ଆଛେ କିନ୍ତୁ ମାନଟି କୋନ ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେର ଉପର ନିର୍ଭର କରେ ନା ତାଦେର ବଳା ହୁଏ କ୍ଷେତ୍ରାର ରାଶି । ସେମନ କୋନ ବଞ୍ଚିର ଦୈର୍ଘ୍ୟ, କ୍ଷେତ୍ରକଳ, ଆୟତନ ବା ଭର ଜାନିଲେ ହଲେ ଦିକେର କୋନ ପ୍ରକାର ଗୁଡ଼ିଲେ । ଯାଦେର ମାନ ଆଛେ ଓ ମାନ ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେର ଉପର ନିର୍ଭରଶିଲ ତାଦେର ବଳେ ଭେଟ୍ରାର ରାଶି । କୋନ ଚଲଖାନ ବଞ୍ଚିର ଗତିବେଗ ବଲିଲେ ବଞ୍ଚିଟି ପ୍ରତି ସେକେଣେ କୋନ ଏକଟି ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେ କତ ଦୂରତ୍ବ ଯାଛେ ବୋଲାଇ । ତାଇ ଗତିବେଗ ଏକଟି ଭେଟ୍ରାର ରାଶି । ବଞ୍ଚିର ଓଜନଓ ଏକଟି ଭେଟ୍ରାର ରାଶି । କେନନା, ଓଜନ ବଲିଲେ ବଞ୍ଚିର ଉପର ପୃଥିବୀର କେନ୍ଦ୍ରେ ଦିକେ ଆକର୍ଷଣେର ପରିମାଣ ବୋଲାଇ । କ୍ଷେତ୍ରାର ଓ ଭେଟ୍ରାର ରାଶିର ପାର୍ଶ୍ଵକ୍ୟ ଆରୋ ଭାଲଭାବେ ଜାନିବାର ନୟୋଗ ପରେ ପାବେ ।

মাপেৱ একক

প্ৰায়ই শুনে থাকবে কোন লোকেৱ উচ্চতা দেড় মিটাৰ বা পেন্সিলটি দশ মেট্ৰিমিটাৰ। তেমনি এক কিলোগ্ৰাম মাছ বা পাঁচ কিলোগ্ৰাম আলু বাড়িতে কিনে আনাৰ কথা শুনেছ। তাহলে মিটাৰ কী? কিলোগ্ৰামই বা কাকে বলে?

যখন পাঁচ কিলোগ্ৰাম আলুৰ কথা শুনছ তখন নিচয় বুৰাতে পাৰছ যে কিলোগ্ৰাম হল ওজনেৰ একটি নিৰ্দিষ্ট মাপ আৱ আলুৰ পৰিমাণ এই কিলোগ্ৰাম ওজনেৰ পাঁচ গুণ। দৈৰ্ঘ্যৰ বেলায় একই কথা থাটে। তাহলে যে কোন ভৌত বাণিজ মান জানতে হলে সেই বাণিজ একটি স্বিধাজনক নিৰ্দিষ্ট মাপেৱ দৰকাৰ এবং সেই স্বিধাজনক নিৰ্দিষ্ট মাপকে সেই বাণিজ একক বা ইউনিট বলে।

প্ৰাথমিক একক ও লক্ষ একক

প্ৰতিটি বাণিজ একক আছে। দৈৰ্ঘ্য একটি বাণি যাৱ এককেৱ নাম মিটাৰ। ভৱেৱ একক কিলোগ্ৰাম। সময়েৱ একক সেকেণ্ড। পদাৰ্থবিদ্যায় এমন কয়েক শত বাণি আছে। দেখা গেছে, সমস্ত বাণিজ একক কয়েকটি বাণিজ এককেৱ উপৰ নিৰ্ভৱ কৰে। কিন্তু এই বাণিগুলিৰ একক একে অন্যেৱ সম্পর্কহীন। এই বাণিগুলিৰ একককে বলা হয় প্ৰাথমিক একক বা ফাঞ্চামেণ্টাল ইউনিট ; দৈৰ্ঘ্য, ভৱ ও সময় হচ্ছে প্ৰাথমিক একক। অন্য অনেক বাণিজ একক এই তিনটি বাণিজ এককেৱ উপৰ নিৰ্ভৱ কৰে। তাই তাদেৱ বলে লক্ষ একক বা ডিবাইভ্ড ইউনিট।

প্ৰাথমিক এককেৱ বিভিন্ন পক্ষতি

গত কয়েক শত বছৰ ধৰে নানান দেশে ভিন্ন ভিন্ন ধৰনেৱ প্ৰাথমিক একক পক্ষতিৰ ব্যবহাৰ প্ৰচলিত আছে। যেমন ইংলণ্ডে ও তাৱ প্ৰভাৱে সমস্ত ব্ৰিটিশ সাম্রাজ্যে ব্যবহাৰ হত ফুট-পাউণ্ড-সেকেণ্ড বা এফ পি এস পক্ষতি। আৰাৰ ফ্ৰান্সে এবং অধিকাংশ ইউৰোপীয় দেশগুলিতে ব্যবহাৰ হত মেট্ৰিমিটাৰ-গ্ৰাম-সেকেণ্ড বা সি জি এস পক্ষতি। আমাদেৱ দেশে ব্ৰিটিশ আমলে ফুট-পাউণ্ড-সেকেণ্ড এবং তাৱ সঙ্গে আমাদেৱ নিজেদেৱ পক্ষতি বিশেষ কৰে হাত, কাঠা, সেৱ প্ৰচৃতি এককগুলি প্ৰচলিত ছিল। দেশ স্বাধীন হৰাৱ পৰ 1961 সাল

ଥେକେ ଆମାଦେର ଦେଶେ ମାପେର ଜନ୍ୟ ମେଟ୍ରିକ ପଦ୍ଧତି ଓ ଟାଙ୍କା ପଯସାର ଜନ୍ୟ ଦଶମିକ ପଦ୍ଧତି ଚାଲୁ ହୁୟେଛେ ।

(1) ମେଟ୍ରିକ ଏକକ ପଦ୍ଧତି : ଫରାସୀ ବିପ୍ରବେର ସମୟ ପାଇଁ ଶହରେ 1791 ଶ୍ରୀଷ୍ଟାବେ ଲାର୍ଗ୍‌ଜ, ଲାପଲାସ ପ୍ରମୁଖ କର୍ଯ୍ୟକର୍ତ୍ତାତ ବିଜ୍ଞାନୀ ମାପ ପଦ୍ଧତିର ସଂକାରେର ଜନ୍ୟ ଫ୍ରେଣ୍ ଆକାଦେମିତେ ଏକ ପ୍ରତ୍ତାବ କରେନ । ସେଇ ପ୍ରତ୍ତାବ ଅର୍ଥାତ୍ ଦେଶେ ମେଟ୍ରିକ ଏକକ ପଦ୍ଧତି ଚାଲୁ ହୁଯ । ମେଟ୍ରିକ ପଦ୍ଧତିତେ ଦୈର୍ଘ୍ୟର ଏକକ ମିଟାର, ଭବେର ଏକକ ଗ୍ରାମ, ଏବଂ ସମୟର ଏକକ ମେକେଓ । ଏହି ପଦ୍ଧତିର ଏକକଣ୍ଠିଲି ଗୁଣିତକ ବା ଭାବାଂଶଙ୍କଳି ପ୍ରାଥମିକ ଏକକେବଳ ଦଶଗୁଣ ବା ଦଶଭାଗ । ହିସାବେର ଅନୁବିଧାର ଜନ୍ୟ ଏହି ପଦ୍ଧତି ବର୍ତ୍ତମାନେ ଆନ୍ତର୍ଜାତିକ କ୍ଷେତ୍ରେ ପ୍ରଚଲିତ । ମେଟ୍ରିକ ପଦ୍ଧତିତେ ତିନଟି ବିଶିଷ୍ଟ ଧାରାର ଚଲନ ଆଛେ ।

(i) ସି ଜି ଏସ ଏକକ ପଦ୍ଧତି—ଏଟି ସବଚେଯେ ପ୍ରଚଲିତ ପଦ୍ଧତି । ସି ଜି ଏସ ପଦ୍ଧତିତେ ଦୈର୍ଘ୍ୟର ଏକକ ମେଟିମିଟାର । ମେଟିମିଟାର ଏକ ମିଟାବେର ଏକଶୋ ଭାଗେର ଏକ ଭାଗ । ଏହି ପଦ୍ଧତିତେ ଭବେର ଏକକ ଗ୍ରାମ ଓ ସମୟର ଏକକ ମେକେଓ । ସି ଜି ଏସ ପଦ୍ଧତିତେ ତଡ଼ିବିଦ୍ୟାଯ ବିଭିନ୍ନ ବାଣିର ପରିମାପେର ଜନ୍ୟ ତିନଟି ଭିନ୍ନ ଏକକ ପ୍ରଚଲିତ ଆଛେ । ଏଣ୍ଣଳି ହଜ୍ଜେ—(କ) ସି ଜି ଏସ ଇଲେକ୍ଟ୍ରୋ-ମ୍ୟାଗନେଟିକ ଏକକ, (ଖ) ସି ଜି ଏସ ଇଲେକ୍ଟ୍ରୋ-ସ୍ଟ୍ୟାଟିକ ଏକକ ଏବଂ (ଗ) ବ୍ୟବହାରିକ ଏକକ ବା ପ୍ରୋକଟିକାଲ ଇଉନିଟ । ଏକଇ ବାଣିର ପରିମାପେର ଜନ୍ୟ ତିନଟି ଆଲାଦା ଏକକ ଚାଲୁ ଥାକାଯ ବେଶ ଅନୁବିଧାର ହଣ୍ଡି ହୁଯ ।

(ii) ଏସ କେ ଏସ ଏ ପଦ୍ଧତି ବା ଜର୍ଜି ପଦ୍ଧତି—ଉପରେ ଲିଖିତ ଅନୁବିଧା ଦୂର କରାର ଜନ୍ୟ ଅଧ୍ୟାପକ ଜର୍ଜି ଏକ ନତୁନ ପଦ୍ଧତିର ପ୍ରଚଲନ କରେନ । ଏହି ପଦ୍ଧତିକେ ଏମ କେ ଏସ ଏ ବା ଜର୍ଜି ପଦ୍ଧତି (M K S A ବା Georgi unit) ବଲେ । 1938 ଶ୍ରୀଷ୍ଟାବେ ଏକ ଆନ୍ତର୍ଜାତିକ ସମ୍ମେଲନେ ଏହି ପଦ୍ଧତି ବିଜ୍ଞାନୀରା ଗ୍ରହଣ କରେନ । ଏହି ପଦ୍ଧତିତେ ଦୈର୍ଘ୍ୟର ଏକକ ମିଟାର, ଭବେର ଏକକ କିଲୋଗ୍ରାମ, ସମୟର ଏକକ ମେକେଓ ଏବଂ ତଡ଼ିବ ପ୍ରବାହେର ଏକକ ଅୟାନ୍ତିରିକ ଅନୁବିଧାର । ସି ଜି ଏସ ବ୍ୟବହାରିକ ପଦ୍ଧତିତେ ଅୟାନ୍ତିରିକ ଯେ ମାନ ପ୍ରଚଲିତ ଛିଲ ଏଥାନେଓ ସେଇ ମାନ ଧରା ହୁଯ ।

(iii) ଏସ ଆଇ ଏକକ—ଏମ କେ ଏସ ଏ ପଦ୍ଧତିତେ ବ୍ୟବହତ ଏକକଣ୍ଠିଲି ଯେମନ ଦୈର୍ଘ୍ୟର ଜନ୍ୟ ମିଟାର, ଭବେର ଜନ୍ୟ କିଲୋଗ୍ରାମ, ସମୟର ଜନ୍ୟ ମେକେଓ ଓ ତଡ଼ିବ ପ୍ରବାହେର ଜନ୍ୟ ଅୟାନ୍ତିରିକ ଛାଡ଼ା ଆବଶ୍ୟକ ତିନଟି ବାଣିର ପ୍ରାଥମିକ ଏକକେବଳ

প্ৰয়োজন হয়—দীপন শক্তিৰ এককেৰ জন্য ক্যাণ্ডেলা, তাপমাত্ৰাৰ জন্য কেলভিন এবং বস্তৱ পৰিমাণ বোঝাতে গ্ৰোল। 1967 সালে বিজ্ঞানীদেৱ এক আন্তৰ্জাতিক সম্মেলনে যে পদ্ধতি সৰ্বসম্ভিক্রমে গৃহীত হয় তাৰ নাম আন্তৰ্জাতিক একক পদ্ধতি বা এস আই একক পদ্ধতি (ফ্ৰান্সীতে *Le Système International d'Unités*)। ভাৰত এই সম্মেলনে অংশগ্ৰহণ কৰেছিল। এখনও ভিন্ন ক্ষেত্ৰে সবগুলি একক পদ্ধতি ব্যবহাৰ হয়। তবে চেষ্টা হচ্ছে সবদেশেই একেবাৰে স্থুল থেকে এস আই একক ব্যবহাৰ কৰাৰ।

(2) ভিত্তি পদ্ধতি বা অক পি এস পদ্ধতি : এই পদ্ধতিতে দৈৰ্ঘ্যেৰ একক ফুট, ভৱেৰ একক পাউণ্ড ও সময়েৰ একক মিনিট। ইংল্যাণ্ড ও অন্য কয়েকটি দেশে এই পদ্ধতি চলে। আমাদেৱ দেশে বেসৱকাৰী ক্ষেত্ৰে আংশিকভাৱে এই পদ্ধতি চালু আছে।

বিভিন্ন পদ্ধতিতে প্ৰাথমিক একক

(1) সেটুক পদ্ধতি : (i) সিটাৰ—মেট্ৰিক পদ্ধতিতে দৈৰ্ঘ্যেৰ একক মিটাৰ। ফ্ৰান্সী ভাষায় মিটাৰেৰ অৰ্থ মাপ। 1791 খ্ৰীষ্টাব্দে ফ্ৰান্সী আকাদেমিৰ প্ৰস্তাৱ অনুযায়ী মিটাৰেৰ প্ৰথম সংজ্ঞাদেওয়া হয়। ফ্ৰান্সেৱ বাজধানী প্যারি শহৰেৰ ভিতৰ দিয়ে যে দ্রাঘিমা বেখা উত্তৰমেৰুৰ দিকে গিৰেছে, পৃথিবীৰ বিশুবৰেখা থেকে মেই দ্রাঘিমা বৰাবৰ উত্তৰমেৰুতে যেতে যে দূৰত্ব অতিক্ৰম কৰতে হবে তাৰ এক কোটি ভাগেৰ এক ভাগকে বলা হয় এক মিটাৰ। দৈৰ্ঘ্যেৰ এই এককেৰ ব্যবহাৰিক স্বীকৃতিৰ জন্য 1799 খ্ৰীষ্টাব্দে প্যাটিনমেৰ একটি প্ৰামাণিক দণ্ড বা স্ট্যাণ্ডাৰ্ড তৈৰি কৰা হয়। পৱে অবশ্য দেখা যায় যে বিশুবৰেখা থেকে উত্তৰমেৰুৰ দূৰত্ব এই মিটাৰেৰ এক কোটি গুণেৰ চেয়েও কিছু বেশি। তখন এই ভুল শোধনান আৰ সন্তুষ্ট ছিল না কাৰণ সিটাৰ ততদিনে আন্তৰ্জাতিক স্বীকৃতি পেয়ে গেছে। 1875 খ্ৰীষ্টাব্দে ইণ্টাৰন্যাশনাল বুৰো অক ওয়েটস্ এ্যাণ্ড মেজাৰস্ প্ৰতিষ্ঠিত হয় প্যারিৰ কাছে সেভৱেতে। প্যাটিনম ও ইণ্ডিয়মেৰ এক সংকৰ ধাতুৰ (প্যাটিনম 90% ও ইণ্ডিয়ম 10%) তৈৰি দণ্ডকে বৰফেৰ গলনাকে প্ৰমাণ বায়ুচাপে বেখে তাৰ দুই প্ৰান্তেৰ দুইটি দাগেৰ মধ্যেৰ ব্যবধানকে প্ৰমাণ সিটাৰ হিসেবে ধৰা হয়েছে। এটিই আন্তৰ্জাতিক প্ৰমাণ মিটাৰ। সদৃশ বাট্টগুলিকে এৰ এক-একটি নকল

ଦେଉଁବା ହେଲେ । ଭାରତେର ପ୍ରମାଣ ମିଟାର ନତୁନ ଦିଲ୍ଲୀର ଶାଶନାଲ ଫିଜିକାଲ ଲ୍ୟାବରେଟରିତେ ଆଛେ ।

ବିଜ୍ଞାନେର କ୍ଷେତ୍ରେ ଅନେକ ସମୟ ହୃଦୟ ମାପେର ପ୍ରୟୋଜନ ପଡ଼େ । ଦୈର୍ଘ୍ୟ କତ୍ତ ହୃଦୟଭାବେ ମାପା ସନ୍ତେଷ ? ହୃଦୟ ମାପେର ଜଣ୍ଠ ମିଟାରେର ଏକ ନତୁନ ଆନ୍ତର୍ଜାତିକ ସଂଜ୍ଞା ଦେଉଁବା ହେଲେ ଆଲୋର ତବନ୍ଦିଦୈର୍ଘ୍ୟର ହିସାବେ । ଏହି ସଂଜ୍ଞା ଅହୁଯାମ୍ବି ‘ଏକ ମିଟାର ବାୟୁଶୂନ୍ୟ ଥାନେ 86 ପାରମାଣବିକ ଭରମଂଥ୍ୟାମ୍ବପ କ୍ରିପଟନ ପରମାଣ୍ୱର ଦ୍ଵାରା ବିଶିଷ୍ଟ ଶକ୍ତିଶ୍ଵରେ ମଧ୍ୟେ ବିକିରିତ କମଳା ବାନ୍ଧିର ତବନ୍ଦି ଦୈର୍ଘ୍ୟର 1 650 763.73 ଗୁଣେର ସମାନ’ ।

(ii) ଆଗ—ମି ଜି ଏମ ପଦ୍ଧତିତେ ଭବେର ଏକକ ଗ୍ରାମ । ଦେଖା ଗେଛେ 4°C ଉପର୍ତ୍ତାଯ ଏକ ସମ ସେଟିମିଟାର ଜଳେର ଘଜନ ଏକ ଗ୍ରାମ । ଏମ କେ ଏମ ଏ ଓ ଏମ ଆଇ ପଦ୍ଧତିତେ ଭବେର ଏକକ କିଲୋଗ୍ରାମ । ଏକ କିଲୋଗ୍ରାମ ଏକ ଗ୍ରାମେର ହାଜାର ଗୁଣ । କିଲୋଗ୍ରାମେର ଆନ୍ତର୍ଜାତିକ ମାନଟି ଇନ୍ଟାରଶାଶନାଲ ବୁରୋ ଅଫ ଓଯେଟ୍ସ ଅଣ୍ଟ ମେଜାରସେର ଦର୍ଶରେ ବାର୍ତ୍ତା ଆଛେ । ପ୍ଲାଟିନମ ଓ ଇରିଡିଆମ୍ରେର ସଂକର ଧାତୁ ବା ସ୍ଟେନଲେସ ସ୍ଟୌଲେର ତୈରି ନକଳ କିଲୋଗ୍ରାମ ଭିନ୍ନ ଭିନ୍ନ ଦେଶେ ବାର୍ତ୍ତା ଆଛେ । ଯୁଲ କିଲୋଗ୍ରାମେର ସଙ୍କେ ନକଳେର ଭବ ଏକେବାରେ ଏକ । ଭୁଲେର ପରିମାଣ ଦଶ କୋଟି ଭାଗେର ଏକ ଭାଗ । ଭାରତେର ନକଳ କିଲୋଗ୍ରାମଟି ବାର୍ତ୍ତା ଆଛେ ଶାଶନାଲ ଫିଜିକାଲ ଲ୍ୟାବରେଟରିତେ । ପ୍ରମାଣ ମିଟାର ଓ କିଲୋଗ୍ରାମେର ଛବି 1.1 ଚିତ୍ରେ ଦେଖାନ ହଲ ।

ଚିତ୍ର 1.1

(iii) ସେକେଣ୍ଡ—ସମୟେର ଏକକ ସେକେଣ୍ଡ । ବ୍ରିଟିଶ ଓ ମେଡ଼ିକ ସବରକମ ପଦ୍ଧତିତେ ସେକେଣ୍ଡ ବ୍ୟବହାର କରା ହେଲା ।

ମାଧ୍ୟାରଗତ ଏକ ଶ୍ରୀଣ୍ଟ ଥେକେ ଆବର ଏକ ଶ୍ରୀଣ୍ଟ ପର୍ଯ୍ୟନ୍ତ ମମ୍ବକେ ବଲା । ହୟ ଏକ

দিন । এই দিনকে 24 ভাগ কৰলে এক ভাগকে বলে ঘণ্টা । এক ঘণ্টার 60 ভাগকে এক মিনিট ও এক মিনিটের 60 ভাগকে এক সেকেণ্ড বলে । এক সেকেণ্ড এক দিনের $\frac{1}{86400}$ অংশ । লক্ষ্য কৰা গেছে যে বছৰেৱ সব দিন সমান হয় না । এই অস্ত্রবিধা দূৰ কৰাৰ জন্য 1960 সালে এক আন্তৰ্জাতিক সম্মেলনে ক্রান্তীয় বছৰেৱ হিসাবে সময় গণনাৰ প্ৰস্তাৱ নেওয়া হয় । মহাবিশ্ব বিন্দু থেকে নিজ কক্ষপথে যাত্রা কৰে সূৰ্যেৰ মহাবিশ্ব বিন্দুত ফিৰে আসতে যে সময় লাগে তাকে এক ক্রান্তীয় বছৰ বলে । এক সেকেণ্ড হচ্ছে এক ক্রান্তীয় বছৰেৱ 1/315 569 259 747 অংশ ।

1956 সালে পারমাণবিক ঘড়ি আবিক্ষাৰ হয় । এই ঘড়িতে অতি সূক্ষ্মভাবে সময় জানা যায় । 133 পারমাণবিক ভৱসংখ্যাবিশিষ্ট সিজিয়ম-পৰমাণু থেকে 9 I92 631 770 তৰঙ্গ বাৰ হতে যে সময় লাগে তা এক সেকেণ্ডৰ সমান । এটাই বৰ্তমানে সেকেণ্ডে স্বীকৃত সংজ্ঞা ।

এই বড় বড় সংখ্যাগুলি মুখ্য কৰাৰ দৱকাৰ নেই ।

তোমাদেৱ মনে হতে পাৰে যে এত সূক্ষ্মভাবে সময় মাপৰ প্ৰয়োজন কি ? সাধাৰণত আমৰা ঘড়িতে এক সেকেণ্ডেৰ কম সময় দেখতে পাৰি না এবং সাধাৰণ ক্ষেত্ৰে মিলিমিটাৰেৰ ছোট মাপেৰ প্ৰয়োজন হয় না । কিন্তু বিজ্ঞানেৰ অনেক ক্ষেত্ৰে অতি সূক্ষ্মভাবে দৈৰ্ঘ্য, ভৱ ও সময়েৰ মাপেৰ দৱকাৰ হয়ে পড়ে । কোন কোন ক্ষেত্ৰে কোটি কোটি ভাগেৰও এক ভাগেৰ সমান সূক্ষ্মতা প্ৰয়োজন হয়ে পড়ে । ভেবে দেখ যে সব নভৰ্ষৰৱা চাঁদে যাতায়াত কৰেন তাঁদেৱ ক্ষেত্ৰে সময় বা দূৰত্বেৰ মাপ নিৰ্খুঁত হওয়া কত প্ৰয়োজন । পৃথিবী থেকে চাঁদেৱ দূৰত্ব 4×10^5 km । সেখানে গিয়ে পূৰ্ব নিৰ্ধাৰিত সময়ে ফিৰে এসে নিৰ্ধাৰিত স্থানে নামতে হলে নিৰ্খুঁত মাপেৰ দৱকাৰ বৈকি ! মাপ নিৰ্খুঁত না হলে তাঁৰা পৃথিবীতে নাও ফিৰতে পাৰেন ।

আমৰা প্ৰত্যোকেই ভিৱ ভিৱ ধৰনেৰ ঘড়ি ব্যবহাৰ কৰি । তাৰ কোনটাই নিভুল সময় দেৱ না । তাই সময় জানবাৰ জন্য সৱকাৰী ব্যবস্থা আছে । দিলীতে গুৰুনাল ফিজিকাল ল্যাবৰেটৱিতে যে পারমাণবিক ঘড়ি আছে তা থেকে প্ৰতিদিন বাত ন'টাৰ সময় ৱেডিশৱ মাধ্যমে সংকেত পাঠানো হয়— পিপ্‌পিপ্‌পিপ্‌ । ভাৰতবৰ্ষেৰ যে কোন স্থান থেকে ৱেডিশ শনে তোমৰা ঘড়ি মিলিয়ে নিতে পাৰ ।

(2) খিটিশ পদ্ধতি : (i) ফুট—খিটিশ বা এফ পি এস পদ্ধতিতে দৈর্ঘ্যের একক ফুট। ফুট এক গজের তিন ভাগের এক ভাগ। লণ্ঠনের স্ট্যাণ্ডার্ড ডিপার্টমেন্ট অফ দি বোর্ড অফ ট্রেডে 62°F তাপমাত্রায় রাখা একটি ব্রোঞ্জের তৈরি দণ্ডের দুই প্রান্তের দুটি দাগের মধ্যের ব্যবধানকে এক গজ বলা হয়। ছোট বা বড় মাপের জন্য গজের ভগ্নাংশ বা গুণত্বক্ষেত্র তোমরা জান এবং সেগুলি মেট্রিক প্রথার মত দশ বা অশ কোন নির্দিষ্ট সংখ্যা দিয়ে ভাগ বা গুণ করে পাওয়া যায় না। মেট্রিক প্রথার সঙ্গে ইঞ্জি বা ফুটের সম্পর্ক : $1 \text{ ইঞ্জি} = 2.54 \text{ সেমিমিটার} ; 1 \text{ ফুট} = 30.48 \text{ সেমিমিটার}.$

(ii) পাউণ্ড—এফ পি এস পদ্ধতিতে ভরের একক পাউণ্ড। প্রমাণ পাউণ্ড প্যাটিনয়ের তৈরি একটি স্তম্ভ, লঙ্ঘনের স্ট্যাণ্ডার্ড ডিপার্টমেন্ট অফ দি বোর্ড অফ ট্রেডে রাখা আছে। পাউণ্ডের ছোট বড় মাপ তোমাদের নিচয়ে জানা আছে। মনে রেখো 1 পাউণ্ড = 453.59 গ্রাম।

(iii) ମେକେଣ୍ଟ—ବ୍ରିଟିଶ ଓ ମେଡ଼ିକ ଉଭୟ ପଦ୍ଧତିଭେଟେ ସମୟେର ଏକ ମେକେଣ୍ଟ। ରାଶି ଓ ପ୍ରାଥମିକ ଏକକେର ଅତୀକ ବିଭିନ୍ନ ପଦ୍ଧତିତେ ବ୍ୟବହାର ରାଶି ଓ ପ୍ରାଥମିକ ଏକକେର ଅତୀକ ଚିହ୍ନ ନିଚେ ଦେଖ୍ୟାଇଲାଗଲା । ତୌତ ରାଶିର ଅତୀକ ଲେଖା ହୟ ଇଟାଲିକମ ହରଫେ (ହେଲାନ) ଏବଂ ଏକ ବୋଯାନ ହରଫେ (ଥାଙ୍ଗା) ।

ବାଣି	ବାଣିର ଅତୀକ ଚିହ୍ନ	ମି ଜି ଏସ		ଏମ କେ ଏସ ଏ		ଏସ ଆଇ	
		ଏକକ	ଏକକେର ଅତୀକ ଚିହ୍ନ	ଏକକ	ଏକକେର ଅତୀକ ଚିହ୍ନ	ଏକକ	ଏକକେର ଅତୀକ ଚିହ୍ନ
ଦୈର୍ଘ୍ୟ	<i>l</i>	ମେଟ୍ରିଟିକାର	cm	ମିଟାର	m	ମିଟାର	m
ଭର	<i>m</i>	ଗ୍ରାମ	g	କିଲୋଗ୍ରାମ	kg	କିଲୋଗ୍ରାମ	kg
ସମୟ	<i>t</i>	ମେନ୍ଦେଣ୍ଡ	s	ମେନ୍ଦେଣ୍ଡ	s	ମେନ୍ଦେଣ୍ଡ	s
ତଡ଼ିଙ୍ଗପ୍ରବାହ I				ଆଞ୍ଚିଯର	A	ଆଞ୍ଚିଯର	A
ତାପମାତ୍ରା	<i>T</i>					କେଲିନି	K
ଦୀପନଶ୍କ୍ରି ୧୦						କ୍ୟାଣ୍ଡେଳା	cd
ବସ୍ତୁର ପରିମାଣ	<i>n</i>					ମୋଲ	mol

তড়িৎ প্ৰবাহ, দীপনশক্তি ও বস্তুৰ পৰিমাণেৰ কথা তোমৰা পৰে জানবে। তাপমাত্ৰাৰ বিষয় জান। লক্ষ্য কৰ—(1) কেলভিনৰ প্ৰতীক K হবে, 'K হবে না। তাপমাত্ৰাৰ একক হিসেবে ঘণ্টিশ বিজ্ঞানীৰা কেলভিন ব্যবহাৰ পছন্দ কৰেন তবু এখনও ডিগ্রি সেলসিয়াস ($^{\circ}\text{C}$) সৰ্বত্ৰ প্ৰচলিত। আবাৰ ডাক্তাৰদেৱ ধাৰ্মিয়েটাৰে ডিগ্রি ফাৰেনহাইট ($^{\circ}\text{F}$) প্ৰচলিত। মনে রেখো ডিগ্রি সেটিগ্ৰেড কথাটি এখন আৰু চলে না। (2) সেটিমিটাৰ, মিলিমিটাৰ প্ৰভৃতিৰ প্ৰতাক cm, mm ইত্যাদি হবে, c. m বা m. m হবে না। (3) কোন এককেৰ বহুবচনে s যোগ হবে না। অৰ্থাৎ cms, mms, kgs হবে না।

মেট্ৰিক পদ্ধতিতে শগাংশ ও গুণিতক

মেট্ৰিক পদ্ধতিতে কোন এককেৰ গুণিতক ও ভগ্নাংশগুলিকে দশেৰ ঘাতে দেখান হয়। নিচে গুণিতক ও ভগ্নাংশগুলি দেখান হল। মূল এককেৰ নামেৰ আগে এগুলি বসিয়ে এককটি প্ৰকাশ কৰা হয়, যথা—সেটিমিটাৰ, সেটিগ্ৰাম বা মিলিমিটাৰ, মিলিগ্ৰাম ইত্যাদি।

গুণিতক বা ভগ্নাংশেৰ নাম	প্ৰতীক	দশেৰ ঘাতে সংখ্যাটি	গুণিতক বা ভগ্নাংশেৰ নাম	প্ৰতীক	দশেৰ ঘাতে সংখ্যাটি
টেৰা (tera)	T	10^{12}	সেন্টি (centi)	c	10^{-2}
গিগা (giga)	G	10^9	মিলি (mili)	m	10^{-3}
মেগা (mega)	M	10^6	মাইক্ৰো (micro)	μ	10^{-6}
কিলো (kilo)	k	10^3	নানো (nano)	n	10^{-9}
হেক্টো (hecto)	h	10^2	পিকো (pico)	p	10^{-12}
ডেকা (deca)	da	10	ফেমটো (femto)	f	10^{-15}
ডেসি (deci)	d	10^{-1}	অটো (atto)	a	10^{-18}

সাধাৰণ স্কেল ও তাৰ ব্যবহাৰ

মিটাৰ স্কেল তোমৰা দেখেছ। এবাৰ স্কেল নিয়ে কেৱল কৱে মাপবে দেখ। যে বস্তু মাপবে তাৰ এক প্ৰান্তি স্কেলটিৰ শুল্ক দাগেৰ সঙ্গে মেলাও ও স্কেলটিকে দোজা ভাবে বস্তুটিৰ গায়ে বসাও। বস্তুৰ অন্য প্ৰান্তি স্কেলেৰ কোন দাগেৰ সঙ্গে মিলেছে দেখ। ধৰ, দশটি বড় দাগ পাৰ হয়ে চাৰটি ছোট দাগেৰ সঙ্গে মিলেছে। বস্তুটিৰ দৈৰ্ঘ্য হল 10 cm ও 4 mm অৰ্থাৎ 10.4 cm।

ସ୍କେଲେର ଚେରେ ବଡ଼ ଦୈର୍ଘ୍ୟ ମାପାର ଜଣ୍ଠ ମେଜାରିଂ ଟେପ, ସାର୍ଭେଯାରେର ଚେନ ଗ୍ରହିତ ବ୍ୟବହାର କରା ହୁଏ । ଦର୍ଜିରା କାପଡ଼ ମାପତେ ଫିତେ ବ୍ୟବହାର କରେନ । ତୋଥରା ନିଶ୍ଚଯିତା ଦର୍ଜିର ମାପବାର ଫିତେ ଦେଖେ ।

ମାପେର ସନ୍ତ୍ଵାବ୍ୟ ଭୁଲ

ସେ କୋଣ ମାପେ ଭୁଲ ଥାକା ପ୍ରାତିବିକ । ସେ ସ୍କେଲଟି ନିଯମ ଭୁଲ ମାପ ନାହିଁ, ଦୀର୍ଘଦିନେର ବ୍ୟବହାରେ ତାର ଛୁଟ ପ୍ରାପ୍ତ କଷ୍ଟେ ଗେଲେ ଶୃଙ୍ଖ ଦାଗଟି ବୋଲା ଯାଇ ନା । କଲେ ମାପେ ଭୁଲ ହବେ । ଆବାର ସ୍କେଲଟିର ଝାକା ଦାଗଗୁଲେ ମହାନ ନାହିଁ ହତେ ପାରେ । ମେକ୍ଷେତ୍ରେ ସେ କୋଣ ମାପେ ଭୁଲ ହବେ । ଏହି ଧରନେର ଭୁଲକେ ଘାସିକ କ୍ରାଟି ବା ଇନ୍ଟ୍ରୁମେନ୍ଟାଲ ଏରର ବଳେ ।

ସ୍କେଲଟି ବସ୍ତୁଟିର ଗାୟେ ଠିକଭାବେ ନା ବମାଲେ ଭୁଲ ମାପ ଆସବେ । ସେ କୋଣ ବସ୍ତୁର ଦୈର୍ଘ୍ୟ ମାପତେ ହଲେ ସ୍କେଲେର ଏକ ପ୍ରାପ୍ତ ବସ୍ତୁଟିର ପ୍ରାପ୍ତେର ମଧ୍ୟେ ମିଳିଯେ ସ୍କେଲଟି

ଚିତ୍ର 1.2

ବସ୍ତୁର ଦୈର୍ଘ୍ୟ ବରାବର ବମାତେ ହୁଏ (ଚିତ୍ର 1.2) । ଏଭାବେ ନା ବଦିଯେ ସ୍କେଲଟି ଇଚ୍ଛାମତ ବମାଲେ ମାପେ ଭୁଲ ହବେ ।

ସ୍କେଲେ ରିଡିଂ ନେବାର ମୟୟ ଚୋଥ ଦାଗେର ଠିକ ଉପରେ ରାଖିବେ । ନା ରାଖିଲେ ଭୁଲ ହତେ ପାରେ (ଚିତ୍ର 1.3) । ଏହି ଭୁଲ ଦୂର କରାର ଜଣ୍ଠ ଅନେକ ସ୍କେଲେର ଏକ ପ୍ରାପ୍ତ କ୍ରମଶ ଢାଲୁ କରା ହୁଏ । ଏତେ ମାପବାର ବସ୍ତୁଟିର ତଳ ଓ ସ୍କେଲେର ଦାଗ ଅନେକଟା କାହେ ଏମେ ପଡ଼େ । ଫଳେ ଭୁଲ ହେଉଥାର ସନ୍ତ୍ବାବନା କମେ ଯାଇ ।

ଚିତ୍ର 1.3

মেজাৰিং সিলিঙ্গোৱ বা মাপবাৰ চোঙে জলেৱ উচ্চতা মাপাৰ সময় ভুল হতে
পাৰে (চিত্ৰ 1.4)। নিশ্চয় লক্ষ্য কৰেছ,
জলেৱ উপৰ তল অবস্থল। কেন অবস্থল
পৰে জানবে। জলেৱ উচ্চতা মাপাৰ সময়
জলেৱ নিম্নভাগেৰ সঙ্গে তোমাৰ চোখ একই
তলে ৰাখবে। পাৰদেৱ বেলায় উটে।

চিত্ৰ 1.4

ব্যারোমিটাৰে পাৰদেৱ উচ্চতা মাপাৰ সময়
পাৰদেৱ উচ্চতাৰ তলেৱ সবচেয়ে উচু অংশেৰ
মাপ নিতে হবে।

শেষেৱ ভুলগুলি হয় অসাবধানতাৱ। এগুলিকে **ব্যক্তিগত তত্ত্ব** বা
পাৰ্সোনাল এৱৰ বলে।

এই ব্যক্তিগত ভুল সকলেৱই হতে পাৰে। এইজন্ত যে কোন মাপ একবাৰ
না নিয়ে বেশ কয়েকবাৰ নিয়ে তাৰেৱ গড় মান অথবা আভাৱেজ বা মীন
ভালু নেওয়া ভাল। যেমন ধৰ, কোন রিডিং পাঁচবাৰ নিয়েছ। সব কয়টি
যোগফলকে পাঁচ দিয়ে ভাগ কৰলে গড় মান পাবে।

ভুল এড়াবাৰ আৰ একটি উপায় মাপ নেওয়াৰ আগে চোখেৰ আন্দাজে
মাপ সম্বন্ধে একটি ধাৰণা কৰে নেওয়া। ধৰ, একটি বই-এৰ দৈৰ্ঘ্য মাপবে।
মাপাৰ আগে কত সেটিমিটাৰ মাপ হতে পাৰে চোখেৰ আন্দাজে ধাৰণা কৰে
নাও। পৰে স্কেল বসিয়ে মেপে নাও। মাপেৰ সুজে তোমাৰ ধাৰণাৰ তফাত
কতটা থে়োল ৰাখবে।

ক্ষেত্ৰফলৰ পৱিমাপ

ক্ষেত্ৰফল মাপাৰ জন্য আলাদা কোন যন্ত্ৰ সাধাৰণত ব্যবহাৰ কৰা হয় না।
ক্ষেত্ৰটিৰ দৈৰ্ঘ্য, প্ৰস্থ বা উচ্চতা, গোলক বা শংকুৰ ক্ষেত্ৰে ব্যাস ইত্যাদি মাপাৰ
হয় এবং জ্যামিতিৰ সূত্ৰ অনুযায়ী ক্ষেত্ৰফল বাৰ কৰা হয়।

কয়েকটি স্বীকৃত ক্ষেত্ৰেৰ ক্ষেত্ৰফল দেওয়া হল—
বৰ্গক্ষেত্ৰ= $(\text{দৈৰ্ঘ্য})^2$;
আয়তক্ষেত্ৰ= $\text{দৈৰ্ঘ্য} \times \text{প্ৰস্থ}$; ত্ৰিভুজ= $\frac{1}{2} \text{ ভূমি} \times \text{উচ্চতা}$; বৰ্ত= $\frac{\pi}{4} (\text{ব্যাস})^2$,
চোঙ= $\pi \text{ ব্যাস} \times \text{উচ্চতা}$, গোলক= $\pi (\text{ব্যাস})^2$ ।

କ୍ଷେତ୍ରଫଳ ଏକଟି ଭୌତିକ ରାଶି । A ଅଥବା S ପ୍ରତୀକ ଚିହ୍ନ ଦିଲେ ପ୍ରକାଶ କରା ହୁଯା । କ୍ଷେତ୍ରଫଳର ଏକକ ହବେ m^2 , cm^2 ଇତ୍ୟାଦି ଦୈର୍ଘ୍ୟର ଏକକରେ ବର୍ଗ । କ୍ଷେତ୍ରଫଳର ଏକକ ଗୁଣିର କ୍ଷେତ୍ରେ ଅନେକ ସମୟ ଏକକ ଚିହ୍ନର ଆଗେ sq ବିନିମୟ ଲେଖା ହୁଯ, ସେମନ m^2 ଏକକକେ $sq m$ ଲେଖା ହୁଯ ।

ଅମ୍ବ କ୍ଷେତ୍ରେ ବେଳାୟ କ୍ଷେତ୍ରଟିକେ କମ୍ଯେକଟି ବର୍ଗକ୍ଷେତ୍ର ବା ଆୟତକ୍ଷେତ୍ର ବା ତ୍ରିଭୁଜ ଇତ୍ୟାଦିତ ଭାଗ କରେ ପ୍ରତ୍ୟେକଟିର କ୍ଷେତ୍ରଫଳ ଯୋଗ କରେ ପେତେ ହୁଯ ।

କୋନ ଛୋଟଖାଟ ଅମ୍ବ ଆକୃତିର କ୍ଷେତ୍ରଫଳ ମାପତେ ହଲେ ଛକ କାଗଜେର
(ସ୍କୋଏର ପେପାର) ସାହାଯ୍ୟେ ମାପା ହୁଯ । ମନେ କର ଏକଟି ଗାଛର ପାତାର
କ୍ଷେତ୍ର ମାପବେ । ଏକଟି ଛକ
କାଗଜେର ଉପର ପାତାଟି ରେଖେ
ତାର ବାହିରେ ସୀମାବେଳୀ ଟେନେ
ନାଓ (ଚିତ୍ର 1.5) । ଛକ କାଗଜେର
ଏକଟି ଛୋଟ ସରେର କ୍ଷେତ୍ରଫଳ ଦେଖେ
ମୋଟ କୟାଟି ପୂର୍ଣ୍ଣ ସର ଆଛେ
ଗୁଣେ ନାଓ । ଏକଟି ଛୋଟ ସରେର
କ୍ଷେତ୍ରଫଳ ସାଧାରଣତ $1mm^2$ ହୁଯ ।
ପରେ ଆଂଶିକ ପୂର୍ଣ୍ଣ କତଣ୍ଣି ସର
ଆଛେ ହିସେବ କର । ଦୁଟି ଅର୍ଧେକ
ପୂର୍ଣ୍ଣ ସରେର ଜୟ ଏକଟି ପୂର୍ଣ୍ଣ ସର
ଏବଂ ଏକ ତୃତୀୟାଂଶ୍ଚଶତିର ବେଳାୟ
ତିନଟି ସରେ ଏକ ସର ନାଓ ଏବଂ
ମୋଟ ପୂର୍ଣ୍ଣ ସର କୟାଟି ହବେ ଦେଖ । ଆରା ଛୋଟ ସର ଆନନ୍ଦାଙ୍ଗେ ଧରତେ ହବେ ।
ଏହିଭାବେ ପାଞ୍ଚାମ୍ବା ମୋଟ ପୂର୍ଣ୍ଣ ସରଶତିର କ୍ଷେତ୍ରଫଳ ହଞ୍ଚେ ପାତାଟିର କ୍ଷେତ୍ରଫଳ ।
ଏହିଭାବେ ମାପଲେ ନିର୍ଭୁଲ ମାପ ପାବେ ନା । ଅମ୍ବ କ୍ଷେତ୍ରେ କ୍ଷେତ୍ରଫଳ ମାପାର ଜୟ
ପ୍ରେନିମିଟାର ନାମକ ସଞ୍ଚ ଗବେଷଣାଗାରେ ବ୍ୟବହାର ହୁଯ ।

ଆୟତନେର ପରିମାପ

ଶୁଦ୍ଧ ସମ୍ପର ଆୟତନ ମାପାର ଜୟ ଦୈର୍ଘ୍ୟ, ପ୍ରସ୍ଥ, ଉଚ୍ଚତା, ବ୍ୟାସ ଇତ୍ୟାଦି ମେପେ
ଜ୍ୟାମିତିକ ଶ୍ରେ ବ୍ୟବହାର କରା ହୁଯ । ସେମନ ସମକେର ଆୟତନ ଯେ କୋନ ସମ୍ପର

ଚିତ୍ର 1.5

(দৈর্ঘ্য)^৩। আয়তাকার ঘরের আয়তন দৈর্ঘ্য × প্রস্থ × উচ্চতা। একটি চোঙের আয়তন $\pi/4$ (ব্যাস)^২ × উচ্চতা এবং একটি গোলকের আয়তন $\pi/6$ × (ব্যাস)^৩।

তরল পদ্ধতির আয়তন মাপের জন্য দাগ কাটা মাপবার চোঙ বা মেজারিং সিলিণ্ডার ব্যবহার করা হয়। এর প্রতিটি ঘরের জন্য নির্দিষ্ট আয়তন cc বা ঘন সেটিমিটারের দাগ থাকে।

আয়তন একটি ভৌত রাশি, V অক্ষর দিয়ে প্রকাশ করা হয়। আয়তনের সরচেয়ে প্রচলিত একক ঘন সেটিমিটার, প্রতীক cc। তরলের আয়তন মাপার জন্য আব একটি প্রচলিত এককের নাম লিটার, প্রতীক 1 অক্ষর।

$$1 \text{ লিটার} = 1000 \text{ cc}$$

আন্তর্জাতিক সংজ্ঞা অঙ্গুয়ারী এক লিটার হচ্ছে প্রমাণ চাপে 4°C উষ্ণতায় 1 kg বিশুদ্ধ জলের আয়তনের সমান। দেখা গিয়েছে এই আয়তন 1000.028 cc ।

এই তারতম্য এতই কম যে সাধারণ ব্যবহারে এক লিটার 1000 cc র সমান ধরা যায়। এক ccকে অনেক সময় এক মিলিলিটার বা ml লেখা হয় তরল মাপের সময়। বড় মাপের জন্য এক ঘন মিটার ব্যবহার করা হয়। $1 \text{ m}^3 = 10^6 \text{ cc}$ । ত্রিটিশ পদ্ধতিতে আয়তনের এককের নাম গ্যালন। $1 \text{ গ্যালন} = 4.546 \text{ লিটার}$ ।

বিতীয় মহাযুক্তের পর থেকে আব একটি একক ব্যবহার হচ্ছে—কিউমেক। প্রতি মেকেগে এক ঘন-ফুট তরল-প্রবাহকে কিউমেক বলে। কিউমেক আয়তনের একক নয়।

ছোটখাট অসম বস্তুর আয়তন মাপবার চোঙের সাহায্যে মাপা যায়। বস্তুটি যদি চোঙের মুখের চেয়ে ছোট হয় তবে কোন চোঙে কিছু জল নিয়ে জলের আয়তন দেখ। পরে বস্তুটি জলে ডুবিয়ে জলের আয়তন দেখ (চিত্র 1.6)। ছাইটি আয়তনের বিশোগকল হচ্ছে বস্তুটির আয়তন।

চিত্র 1.6

যদি বস্তি চোঙের চেয়ে বড় হয় তবে একটি বড় ধালার উপর একটি কানায় কানায় ভর্তি জলপূর্ণ পাত্র নাও। বস্তি জলপূর্ণ পাত্রে ডুবিয়ে রাখ। যে পরিমাণ জল উপচে ধালায় পড়বে তার আয়তন মেজাবিং চোঙ-এর সাহায্যে মাপ। এই আয়তনই বস্তির আয়তন।

তর ও ওজন পরিমাপক যন্ত্র

দাঙিপালা: কোন বস্তির তর মাপতে যে যন্ত্রের প্রয়োজন হয় তাকে বলে দাঙিপালা। হাটে, বাজারে, মুদির দোকানে দাঙিপালা ব্যবহার করা হয়।

দাঙিপালার প্রধান অংশ একটা কাঠের দণ্ড AB (চিত্র 1.7)। দণ্ডটির ঠিক মাঝখানে Oতে একটি এবং A ও B দুই পাণ্ডে আরও দুটি ফুটো থাকে। O বিন্দুতে একটা দড়ি লাগান থাকে যেটা ধরে দাঙিপালা ঝুলিয়ে রাখা হয়। AO এবং BO দৈর্ঘ্যকে যন্ত্রটির বাহ বলা হয়। অন্ত দুটো পাণ্ড A এবং B থেকে টিনের বা বেতের দুটো সমান ভরের পালা খোলান থাকে। প্রথমে O বিন্দুতে লাগান দড়ি ধরে দণ্ডটি অভূমিক থাকে কিনা দেখতে হয়। পরে একটি পালায় বস্তি এবং অন্তিমে বাটখার। চাপিয়ে দণ্ডটিকে অভূমিক করতে হয়। বাটখার দণ্ডটিকে O বিন্দুকে কেন্দ্র করে যেদিক ষেৱাবার চেষ্টা করে, বস্তির O বিন্দুকে কেন্দ্র করে দণ্ডটিকে উল্টো দিকে ষেৱাবার চেষ্টা করে।

চিত্র 1.7

দণ্ডটির অভূমিক অবস্থায়—

$$\text{বাটখার ওজন} \times AO = \text{বস্তির ওজন} \times BO$$

এখন AO এবং BOর দৈর্ঘ্য সমান হলে বস্তুর ওজন বাটখারার ওজনের সমান হবে। নিশ্চয়ই বুঝতে পারছ দাঙ্গিপালায় যখন কোন বস্তুর ওজন নেওয়া হয় তখন প্রমাণ বাটখারার ভরের সঙ্গে বস্তুর ভরের তুলনা করা হয়।

যদি তুলাদণ্ডের বাহর দৈর্ঘ্য সমান না হয় তবে কি হবে? ধৰ AO এবং BO সমান নয়। মনে কর, AO বড়। উপরের সমীকরণ থেকে দেখতে পাবে এক্ষেত্রে ওজনে পাওয়া বস্তু প্রকৃত ওজনের চেয়ে বেশি। যদি AO বাহ BO বাহর চেয়ে ছোট হয় তবে কি হবে বলত?

কিজিকাল ব্যালেন্স : গবেষণাগারে ভর মাপবার জন্য যে তুলাযন্ত্র বা কিজিকাল ব্যালেন্স বাবহার হয় তার ছবি 1.8 চিত্র দেওয়া হল।

একটি তক্তার উপর কাচের বাক্সের মধ্যে যন্ত্রটি ঢাকা থাকে। তক্তাটি তিনটি ক্রুর উপর বসান হয়। তক্তাটির ঠিক মাঝখানে একটি ফাপা স্তুত আছে। তক্তাটির সামনে আটকানো একটি চাকতি ঘূরিয়ে একটি ধাতুদণ্ডকে এই ফাপা স্তুতের ভিতর দিয়ে ওঠানামা করান ঘায়। দণ্ডটির ঠিক মাঝখানে একটি ক্রুধার ত্রিভুজ বা নাইফ এজ এমনভাবে রাখা আছে যেন ত্রিভুজটির শীর্ষবেরখ।

চিত্র 1.8

দণ্ডটির উপর থাকে। এই ত্রিভুজের সঙ্গে একটি দণ্ড AB সমান্তরালভাবে রাখা আছে। এই দণ্ডটিকে বলে তুলাদণ্ড বা ব্যালান্স বীম। ত্রিভুজটি ABর ঠিক মাঝখানে এমনভাবে আটকানো আছে যেন দণ্ডটির আলোচ্চ ত্রিভুজের শীর্ষবেরখের

ଉପର ଥାକେ । ଭାରମାଯ ଅବଶ୍ୟ ଦଣ୍ଡଟି ଅହୁଭୂମିକ ଥାକବେ । ଚାକତି ଘୁରିଯେ ଦଣ୍ଡଟି ଉପରେ ତୁଳଲେ କୁରଧାର ତ୍ରିଭୁଜ ସମେତ ତୁଳାଦଣ୍ଡଟି ଆଲଗା ହୟେ ଦଣ୍ଡେର ଉପର ତର ରେଖେ ଦୋଳ ଥାବେ ଅର୍ଥବା ସମାନ୍ତରାଳ ହୟେ ଥାକବେ । ତୁଳାଦଣ୍ଡଟିର ଦୁଇ ପ୍ରାଣେ ଦୁଟୋ ତୁଳାପାତ୍ର ଲାଗାନ ଥାକେ । ବୀ ଦିକେର ପାତ୍ରେ ଯେ ବଞ୍ଚିଟିର ଭର ମାପତେ ହବେ ସେଟି ଏବଂ ଡାନଦିକେ ଜାନା ଭରଣ୍ଗଳି ରାଖତେ ହୟ । ତୁଳାଦଣ୍ଡେର ଠିକ ମାର୍ବଥାନେ ଶୁଚକ ବା ପଯୋଟ୍ଟାର ଲାଗାନ ଥାକେ । ଶୁଚକେର ନିଚେର ଅଂଶଟି ତୁଳାଦଣ୍ଡେର ଆଲଗା ଅବଶ୍ୟ ଏକଟି କ୍ଷେଳେର ଉପର ଯାଓୟା ଆସା କରତେ ପାରେ । ସହି ଶୁଚକଟି ଏହି ଅବଶ୍ୟ ଠିକ ମାର୍ବେର ଦାଗେର ଉପର ଥାକେ ବା ତାର ଦୁଇପାଶେ ସମାନ ସଂଖ୍ୟକ ସର ବରାବର ଦୋଳ ଥାଯ ତବେ ଜାନବେ ଦୁନିକେ ଭର ସମାନ । ତୁଳାଦଣ୍ଡେର ମାର୍ବଥାନେ ଶୁଚକେର ଏକଟୁ ପାଶେ ଏକଟି ଶେଳନ ଦଢ଼ି ବା ପ୍ରାସ ଲାଇନ ଝୋଲାନ ଥାକେ । ଶେଳନ ଦଢ଼ିର ନିଚେ ଉପର ଦିକେ ମୁଖ କରେ ଆର ଏକଟି କୌଟା କ୍ଷେତ୍ରଟିର ଗାଁୟେ ଶକ୍ତିଭାବେ ଆଟକାନ ଥାକେ । କାଠେର ନିଚେର କ୍ରୁଣ୍ଗଲିର ସାହାଯ୍ୟେ ଏହି କୌଟାର ସଙ୍ଗେ ଶେଳନ ଦଢ଼ିର ମୁଖ ମିଳିଯେ ନିତେ ହୟ । ନତ୍ରୁବା ଶୁଚକ କୌଟାଟି କ୍ଷେଳେର ଉପର ସାଧୀନଭାବେ ଦୋଳ ଥେତେ ପାରେ ନା । ବାଇରେ ବାତାମେ ଯାତେ ଶୁଚକଟି ନଡ଼େ ମାପେ ଭୁଲ ନା ଆସେ ମେଜନ୍ ଯନ୍ତ୍ରଟି କାଚେର ବାଜେ ବମାନ ଥାକେ । ଭର ତୁଳନା କରାର ଜନ୍ମ ଓଜନେର ବାଜ୍ଞା ବା ଓଯେଟ ବଜ୍ଞ ପାଓୟା ଯାଯ (ଚିତ୍ର ୧.୮) । ଏହି ବାଜ୍ଞେ ବିଭିନ୍ନ ମାପେର ଓଜନ ଥାକେ । ସାଧାରଣ ବାଜ୍ଞେ ସର୍ବୋଚ୍ଚ ଓଜନ ହଞ୍ଚେ ୧୦୦ g । ଗ୍ରାମେର ଭଗ୍ନାଂଶ ଓଜନ ଓ ଥାକେ । ଅନେକ ରୁବେଦୀ ତୁଳାଫନ୍ଦେ ରାଇଡାର ବ୍ୟବହାର କରା ହୟ । ଓଜନଗୁଲିର ଗାଁୟେ ଯାତେ ମୟଲା ନା ଲାଗେ ମେଜନ୍ ଏକଟି ଚିମଟାର ସାହାଯ୍ୟେ ଓଜନଗୁଲି ନାଡ଼ା-ଚାଡ଼ା କରତେ ହୟ ।

ତୋମରା ଦେଖେ ସାଧାରଣ ଦ୍ୱାଡିପାଞ୍ଜାଯ ଓଜନ କରାର ସମୟ ବୀଦିକେର ପାଞ୍ଜାଯ ବାଟିଥାରୀ ରେଖେ ଡାନଦିକେ ବଞ୍ଚ କରିଯେ ବା ବାଡ଼ିଯେ ଓଜନ କରା ହୟ । ଫିଜିକାଲ ବ୍ୟାଲେସେ ବୀଦିକେର ତୁଳାପାତ୍ରେ ବଞ୍ଚ ରେଖେ ଡାନଦିକେର ତୁଳାପାତ୍ରେ ବାଟିଥାରୀ ବାଡ଼ିଯେ ବା କରିଯେ ଓଜନ ନିତେ ହୟ । କାରଣ ଏକ୍ଷେତ୍ରେ ବଞ୍ଚିଟିର ଓଜନ ନିର୍ଦ୍ଦିଷ୍ଟ । ବୀ ଦିକେ ବଞ୍ଚ ଓ ଡାନ ଦିକେ ବାଟିଥାରୀ ରେଖେ ଚାକତି ଘୁରିଯେ ଦଣ୍ଡଟିକେ ଉପରେ ତୁଳଲେ ଶୁଚକଟି କ୍ଷେଳେର ଏକହାନେ ଶିର ଥାକେ ଅର୍ଥବା ଦୋଳ ଥେତେ ଥାକେ । ଶୁଚକଟି ଯଦି କ୍ଷେଳେର ଠିକ ମାର୍ବଥାନେ ଥାକେ ଅର୍ଥବା ଦୁଇପାଶେ ସମାନ ସଂଖ୍ୟକ ସର ବରାବର ଦୋଳ ଥାଯ ତବେ ବଞ୍ଚର ଓଜନ ଡାନ ଦିକେର ତୁଳାପାତ୍ରେ ରାଖୀ ବାଟିଥାରୀର ଓଜନେର ସମାନ ।

সময়ের পরিমাপ

কোন ঘটনা নির্দিষ্ট সময়ের ব্যবধানে ঘটলে এই সময়ের অন্তরের সাহায্যে সময় মাপা যাব।

সময় মাপের সবচেয়ে পুরনো ঘড়ি সূর্য। পৃথিবীর আবর্তনের জগত সূর্যের উদয় ও অন্তের মধ্যবর্তী সময়ের ব্যবধান জেনে সময় মাপা অতি প্রাচীনকালে প্রচলিত ছিল। তখনকার দিনে সূর্যের উদয় ও অন্তের মধ্যবর্তী সময়কে দিন এবং অন্ত ও উদয়ের মধ্যবর্তী সময়কে রাত্রি বলা হত। পৰবৰ্তীকালে এক সূর্যাস্ত থেকে পৰবৰ্তী সূর্যাস্তের মধ্যবর্তী সময়কে বলা হত দিন। সময় মাপার যন্ত্রকে বলা হত সূর্য ঘড়ি বা সান ডায়াল। একটা গোলাকার বৃত্তের মাঝখানে কেবল থেকে বৃত্ত রেখা পর্যন্ত দিস্তি একটি ত্রিভুজাকার অস্বচ্ছ পাত রাখা হত। এই পাতের ছায়া দেখে সময় নির্ণয় করা হত। বৃত্ত রেখার উপর সময় অনুযায়ী দাগ কাটা থাকত। আমাদের দেশে প্রাচীন কালে সূর্য ঘড়ি ব্যবহার হত। দিল্লি এবং জয়পুরে যে যন্ত্র মস্তর আছে তাতে সূর্য ঘড়ি দেখতে পাবে। আকাশে নক্ষত্রের অবস্থান দেখেও সময় নির্ণয় করা হত। মিশ্রীরা এবং গ্রীনল্যাণ্ডের এশিয়োরা জোয়ার ও ভাটার মধ্যবর্তী সময়ের ব্যবধান দেখে সময় নির্ণয় করত। তোমরা অল

চিত্র 1. ৯

ঘড়ির কথা ও তনে থাকবে। মূল আমলে আমাদের দেশে অল ঘড়ির চলন ছিল। আজকাল অবশ্য সম্পূর্ণ নতুন ধরনের ঘড়ি ব্যবহার হয়। অনেক দেওয়াল ঘড়িতে একটা দণ্ড সমেত চাকতি দৃলতে দেখে থাকবে। একে বলে দোলক বা পেঙ্গুনাম। দোলকের ব্যবহার চালু করেন গ্যালিলিও। তিনি একদিন গির্জেয় ঘোলান বাড়ি নঠনকে দৃলতে দেখে লক্ষ্য করেন যে এর দোলন

কাল বদলায় না। তিনি নিজের নাড়ীর স্পন্দনের সঙ্গে মিলিষ্টে দেখেন একদিক থেকে আর একদিক পর্যন্ত যাওয়ার সময়ের অন্তর একই থাকে। তোমরা

ପରୀକ୍ଷା କରେ ଦେଖିତେ ପାରୋ ଏକଟି ଶୁତୋର ମୁଖେ ଟିଲ ବୈଧେ । ଯହି ଶୁତୋ ଓ ଚିଲେର ମାରଖାନ ପର୍ଯ୍ୟନ୍ତ ଦୂରତ୍ତ ୨୨'୫ cm ହୟ ତବେ ଚିଲଟିର ଏକ ପ୍ରାଣ୍ତ ଥେକେ ଅନ୍ୟ ପ୍ରାଣ୍ତ ସେତେ ଏକ ମେକେଓ ସମୟ ଲାଗିବେ । ଆମରା ସେ ନବ ସତ୍ତି ବ୍ୟବହାର କରି ସବୁ ପ୍ରିୟ ଦିନେ ଏକଟି ଚାକା ଦୋଳାନ ହୟ । ଗବେଷଣାଗାରେ ସମୟର ଅନ୍ୟର ମାପାର ବିଶେଷ ଧରନେର ସତ୍ତି ବ୍ୟବହାର ହୟ, ତାଦେର ବଳେ ସ୍ଟପ ସତ୍ତି । ଏହି ସତ୍ତି ଇଚ୍ଛାମ୍ଭତ ଚାଲାନ ବା ବନ୍ଦ କରା ଯାଇ । ତୁ ବରକମେର ସ୍ଟପ ସତ୍ତି ଆଛେ—ସ୍ଟପ କ୍ଲକ ଓ ସ୍ଟପ୍‌ଓୟାଚ (ଚିତ୍ର ୧.୨) । ତୁ ବରକମେର ସତ୍ତିତେଇ ହଟି କୌଟା ଥାକେ—ବଡ଼ଟି ମେକେଓ ମାପାର ଜୟ, ଛୋଟଟି ମିନିଟିର ମାପେର ଜୟ । ଇଚ୍ଛାମ୍ଭତ ଚାଲାନ ବା ବନ୍ଦ କରାର ଜୟ ସ୍ଟପ ଓୟାଚେ ଏକଟି ନବ ଓ ସ୍ଟପ କ୍ଲକେ ଏକଟି ଦେଉ ଥାକେ ।

ସମୟର ମାନ ଅତି ଶୁଭ୍ରଭାବେ ମାପିତେ ହଲେ ଆଜକାଳ ପାରମାଣବିକ ସତ୍ତି ବ୍ୟବହାର ହୟ । ଆମାଦେର ଦେଶେଓ ଏହି ଧରନେର ସତ୍ତି ଆଛେ ।

২ পদার্থ ও শক্তি

পদার্থ

আমাদের চারপাশে কত বকমের জিনিস। তাদের আকৃতি, প্রকৃতি, গঠন ও ধর্মও নানা বকমের। কোনটা শক্তি, কোনটা আবার গ্যাসীয়। তাদের গুরু, বৃঙ্গ, স্বাদও বিভিন্ন। কোনটা জড় আবার কোনটা জীবস্ত। এই পৃথিবীর জড় ও জীব সকল বস্তুকেই আমরা ইন্দ্রিয়ের সাহায্যে অভ্যন্তর করতে পারি। সকল বস্তুই কিছু জায়গা জুড়ে আছে এবং সকলেরই ওজন আছে—যত কম বা যত বেশি হোক না কেন।

বস্তুর জড়তা কাকে বলে তোমরা পড়েছ। হিঁর বস্তু চিরদিনই স্থির থাকে এবং চলমান বস্তু চিরদিনই চলতে থাকবে যদি অযি বা বাতাসের ঘর্ষণ না থাকে। এই অবস্থার পরিবর্তন করতে হলে বলের প্রয়োজন। বস্তুর নিজের অবস্থাতে থাকতে চাওয়ার ধর্মকে জড়তা বলে।

যে সব বস্তুকে আমরা ইন্দ্রিয়ের সাহায্যে অভ্যন্তর করতে পারি, যারা কিছু স্থান অধিকার করে আছে এবং যাদের ওজন ও জড়তা আছে তাদের পদার্থ বলে।

শক্তি

কাজ করা কাকে বলে তোমরা পড়েছ। শুধু জীব নয় জড় বস্তুও কাজ করতে সক্ষম। যে কোন বস্তুর কাজ করার সামর্থ্যকে বলে শাক্তি। শক্তি বস্তুর সঙ্গে যুক্ত থেকে তাদের ক্রিয়াকলাপকে নিয়ন্ত্রিত করে।

বস্তু ও শক্তি এই দুইয়ের অধ্যয়নই হচ্ছে পদার্থ বিজ্ঞান।

ভৱন ও ভাব

কোন বস্তুর ভৱ ও ভাব এক জিনিস নয়। কোন বস্তুতে জড়তার মোট পরিমাণকে বলে তার ভৱ, কিন্তু সেই বস্তুকে পৃথিবী যে বল দিয়ে আকর্ষণ করে তাকে বলে তার ভাব। ভৱ ক্ষেত্রের রাশি, ভাব ভেক্টর রাশি। ভাব পৃথিবীর বিভিন্ন স্থানে ভিন্ন হতে পারে, কিন্তু ভৱ অপরিবর্তিত থাকে। পৃথিবী থেকে

দূরে যেতে থাকলে অভিকর্ষ টান করতে থাকে। তখন নভেশ্চরদের তার বা ওজন করতে থাকে। কিন্তু তাদের ভব অপরিবর্তিত থাকে। ভব যে কোন বস্তুর মৌলিক ধর্ম।

পরে জানতে পারবে বস্তুর ভব অপরিবর্তিত থাকে না। কোন চলমান বস্তুর বেগ আলোর গতিবেগের কাছাকাছি হলে তার ভব হৃদি হয়—একধা আইন-স্টাইন প্রথম উপলব্ধি করেন এবং তার জন্য একটি স্তুতি তৈরি করেন। স্তুতি যে ঠিক সেটা পরে পরীক্ষায় প্রমাণ হয়েছে।

সাধারণ দাঢ়িপালা বা স্প্রিং তুলা দিয়ে বস্তু ওজন করা হয়। দাঢ়ি-পালায় যে বস্তুটির ওজন নেবে তার ভব, বাট্টারা অর্ধাং আৰ একটি বস্তুর নির্দিষ্ট ভৱের সঙ্গে তুলনা কৰা হয়। দাঢ়িপালায় আসলে ভব মাপা হয়। স্প্রিং তুলার নিচের আংটায় বস্তুটিকে ঝুলিয়ে দিলে পৃথিবীর আকর্ষণী বল স্প্রিংটিতে যে প্রসারণ হষ্টি করে তাই বস্তুটির ওজন। স্তুতৰাং স্প্রিং তুলায় তোমরা প্রকৃত ওজন মাপতে পার। স্প্রিং তুলা সমস্কে ভালভাবে পরে পড়বে। বস্তুর ওজন অভিকর্ষজ ভবণের উপর নির্ভর করে। কোন স্থানে অভিকর্ষজ ভবণের মান সেই স্থান থেকে পৃথিবীর কেন্দ্রের দূরত্বের বর্গের ব্যাঙ্গালুপাতিক। কিন্তু তৃপৃষ্ঠ থেকে পৃথিবীর কেন্দ্রের দূরত্ব সব জ্যায়গায় সমান নয়। স্তুতৰাং কোন বস্তুর ভব এক হলেও সর্বত্র তার ওজন সমান হবে না। দূরত্ব বাড়লে ওজন কমে আৰ দূরত্ব কমলে ওজন বাড়ে। পাহাড়ের উপর বস্তুর ওজন তৃপৃষ্ঠের ওজনের চেয়ে কম। আবার যেকুন অঞ্চলে বস্তুর ওজন বিষুব অঞ্চলের ওজনের চেয়ে বেশি। কোন বস্তুর উচ্চতা যেকৃতে ওজন 1 kg হলে মাত্রাজ্ঞে ওজন হবে 0.995 kg অর্ধাং উচ্চতা যেকুন ওজনের চেয়ে কম কাৰণ মাত্রাজ্ঞ বিষুব অঞ্চলে অবস্থিত। টাঁদের ভব পৃথিবীর ভৱের প্রায় এক ষষ্ঠাংশ। তাই যে কোন বস্তুর ওজন টাঁদে মাপলে পৃথিবীতে ঐ বস্তুর ওজনের প্রায় ছয় তাগের এক ভাগ দেখাবে।

শক্তিৰ বিভিন্ন ক্রপ ও তাদেৱ ক্রপান্তৰ

শক্তিৰ কথা তোমরা আগেই পড়েছ। শক্তিৰ কয়েকটি ভিন্ন ক্রপেৱ কথা ও তোমরা জান। সাধারণত নিয়লিথিত ক্রপে শক্তিৰ প্ৰকাশ পেতে পাৰে:

- (ক) ঘাৰিক শক্তি, (খ) তাপ শক্তি, (গ) বিকিৰণ শক্তি, (ঘ) শব্দ শক্তি,
(ঙ) চুম্বক শক্তি, (চ) বিদ্যুৎ শক্তি।

এছাড়াও ৰাসায়নিক শক্তি, পারমাণবিক শক্তি ইত্যাদিৰ কথা পৰে
পড়বে। ঘাৰিক শক্তি হিতিশক্তি বা গতিশক্তি এই দুইভাৱে: প্ৰকাৰ পেতে
পাৰে এবং আলোৰ শক্তি বিকিৰণ শক্তিৰই এক বিশেষ ক্লপ।

শক্তিকে এক ক্লপ থেকে অন্য ক্লপে কৃপান্তৰ কৰা সম্ভব। যেমন ধৰ বিদ্যুৎ।
বিদ্যুৎশক্তি যথন পাখা বোৱায় বা ট্ৰেন চালায় তখন ঘাৰিক শক্তিতে, যথন
আলো জালায় তখন আলোক শক্তিতে এবং ইলেকট্ৰিক হিটাৰে তাপ শক্তিতে
কৃপান্তৰিত হয়। আবাৰ জলেৰ শ্ৰোতোৰ গতিশক্তি টাৰবাইন ছুৰিয়ে বিদ্যুৎ
শক্তিতে কৃপান্তৰিত হয়। শীম এঞ্জিনেৰ তাপশক্তি বেলগাড়ি চালিয়ে ঘাৰিক
শক্তিতে কৃপান্তৰিত হয়। এ ধৰনেৰ অজস্র উদাহৰণ দেওয়া চলে।

ভৱেৱ নিয়ত্যতা

তুলাদণ্ডেৰ সাহায্যে বস্তৱ ভৱ মাপা সম্ভব বা দুটি ভৱেৱ তুলনা সম্ভব। যতক্ষণ
তুলাদণ্ড সমান্তৰাল ধাৰিবে ততক্ষণ বস্তুটিকে কাটা, ছেঢ়া বা গুঁড়ো যাই কৰ
না কেন বস্তৱ ভৱ একই ধাৰিবে। ৰাসায়নিক প্ৰক্ৰিয়াতেও বস্তৱ ভৱ
পৰিবৰ্তন কৰা সম্ভব নহয়। একই কথা সব বস্তৱ ক্ষেত্ৰেই থাটে। অৰ্ধাৎ
পৃথিবীতে মোট ভৱেৱ পৰিমাণ অপৰিবৰ্তিত আছে। বস্তৱ ভৱেৱ বিনাশ নেই
বা সৃষ্টি কৰা যায় না। একে ভৱেৱ নিয়ত্যতা স্ফূৰ্ত বলে।

চিত্ৰ 2.1

ভৱেৱ নিয়ত্যতাৰ প্ৰথম পৰীক্ষা কৰেন ল্যাণ্ডেন্ট
বিংশ শতাব্দীৰ প্ৰথম ভাগে। H-আকৃতিৰ যত
দেখতে দুই বাহ বিশিষ্ট একটি কাচেৰ নলেৰ এক
বাহতে তিনি ফেৰাস সালফেট (FeSO_4) ও অন্য
বাহতে সিলভাৰ সালফেট (Ag_2SO_4) দ্রবণ নেন
(চিত্ৰ 2.1)। তিনি বাহছটিৰ মুখ বন্ধ কৰে দেন
ও লক্ষ্য বাধেন যাতে এক বাহৰ দ্রবণ অন্য বাহৰ
দ্রবণেৰ সঙ্গে মিশে না যায়। এই অবস্থায় তিনি
দ্রবণ সমেত কাচ নলটি অতি স্কুল তুলাদণ্ডে ওঞ্জন
কৰেন। পৱে নলটিকে উলটিয়ে দ্রবণ দুটিকে সম্পূৰ্ণ

ভাবে মেশান। তখন তাদেৱ মধ্যে বাসায়নিক বিক্ৰিয়াৰ ফলে সিলভাৱ সালফেট বিজ্ঞাবিত হয়ে কৃপোয় পৰিণত হয়।

বিক্ৰিয়াৰ শেষে নলটিকে কিছুক্ষণ ঠাণ্ডা হতে দিয়ে তিনি আবাৱ ওজন মেন ও দেখেন আগেৱ ও পৰেৱ ওজন সমান। এ থেকে ভবেৱ নিত্যতা প্ৰমাণিত হয়।

শক্তিৰ নিত্যতা

শক্তি যখন কৃপান্তৰিত হয় তখন তাদেৱ ক্ষয় বা বিনাশ হয় না। শক্তি স্থষ্টি কৰা বা ক্ষয় কৰা সম্ভব নয়। যখন কোন বস্তু শক্তি হাবায় তখন অন্ত কোন বস্তু সমপৰিমাণ শক্তি লাভ কৰে। প্ৰয়াণ কৰা গিয়েছে যে শক্তি কৃপান্তৰেৱ সময় কৃপান্তৰেৱ আগে ও পৰে মোট শক্তিৰ পৰিমাণ সমান। বিজ্ঞানীদেৱ মতে বিশ্ব স্থষ্টিৰ সময় শক্তিৰ মোট পৰিমাণ যা ছিল আজও তা অপৰিবৰ্তিত আছে। এই স্থৰকে বলে শক্তিৰ নিত্যতা স্থূত।

শক্তিৰ অপচয়

শক্তি যখন এক রূপ থেকে অন্ত রূপে পৰিবৰ্তিত হয় তখন প্ৰায়ই দেখা যায় কৃপান্তৰেৱ পৰেৱ শক্তি কৃপান্তৰেৱ আগেৱ শক্তিৰ চেয়ে কম। উদাহৰণস্বৰূপ যে কোন যত্ন নাও। যত্নে যে শক্তি দেওয়া হয় এবং যত্নেৱ কাজ কৰাৰ ক্ষমতা এক নয়। প্ৰদৰ্শ শক্তি সব সময়েই বেশি। এই শক্তিৰ কিছু পৰিমাণ যত্নেৱ বিভিন্ন অংশে ঘৰ্ষণেৱ বাধা অভিক্রম কৰাৰ কাজে লাগে ও ফলে তাপ উৎপন্ন হয়। অনেক উপৰ থেকে একটি চিল নিচে ফেলে দিলে চিলটিৰ স্থিতিশক্তি কৃপান্তৰিত হয় গতিশক্তি, শব্দশক্তি এবং তাপশক্তিতে। কিন্তু এই শক্তিৰ কোনটিকেই উপযোগী কাজে লাগানো যায় না এবং তাদেৱ অপচয় হয়েছে বলে মনে কৰা হয়। কিন্তু এই অহুপযোগী শক্তি ও প্ৰাপ্ত শক্তিৰ ঘোগফল প্ৰদৰ্শ শক্তিৰ সমান।

বস্তু ও শক্তিৰ তুল্যমূল্যতা

বিংশ শতাব্ৰীৰ প্ৰথম ভাগে বৈজ্ঞানিক আলিবাট আইনস্টাইন বলেন যে বস্তু ও শক্তি একে অন্ততে কৃপান্তৰিত হতে পাৰে। তিনি বলেন, পদাৰ্থ হচ্ছে শক্তিৰই

- (ক) ঘাস্তিক শক্তি, (খ) তাপ শক্তি, (গ) বিকিৰণ শক্তি, (ঘ) শব্দ শক্তি, (ঙ) চুম্বক শক্তি, (চ) বিদ্যুৎ শক্তি।

এছাড়াও ৱাসায়নিক শক্তি, পারমাণবিক শক্তি ইত্যাদিৰ কথা পৰে পড়বে। ঘাস্তিক শক্তি হিতিশক্তি বা গতিশক্তি এই দুইভাৱে: অকাংশ পেতে পাৰে এবং আলোৰ শক্তি বিকিৰণ শক্তিৰই এক বিশেষ রূপ।

শক্তিকে এক রূপ ধেকে অন্য কৃপে কৃপাস্তৰ কৰা সম্ভব। যেমন ধৰ বিদ্যুৎ। বিদ্যুৎশক্তি যখন পাখা ঘোৱায় বা ট্ৰেন চালায় তখন ঘাস্তিক শক্তিতে, যখন আলো জালায় তখন আলোক শক্তিতে এবং ইলেকট্ৰিক হিটাৰে তাপ শক্তিতে কৃপাস্তৰিত হয়। আবাৰ জলেৰ শ্ৰোতৰে গতিশক্তি টাৰবাইন ঘূৰিয়ে বিদ্যুৎ শক্তিতে কৃপাস্তৰিত হয়। শীম এঞ্জিনেৰ তাপশক্তি বেলগাড়ি চালিয়ে ঘাস্তিক শক্তিতে কৃপাস্তৰিত হয়। এ ধৰনেৰ অজস্র উদাহৰণ দেওয়া চলে।

ভৱেৱ নিত্যতা

তুলাদণ্ডেৰ সাহায্যে বস্তৱ ভৱ মাপা সম্ভব বা ছাটি ভৱেৱ তুলনা সম্ভব। যতক্ষণ তুলাদণ্ড সমাস্তৰাল ধাকবে ততক্ষণ বস্তুটিকে কাটা, ছেঁড়া বা গুঁড়ে যাই কৰা না কেন বস্তৱ ভৱ একই ধাকবে। ৱাসায়নিক প্ৰক্ৰিয়াত্তে বস্তৱ ভৱ পৰিবৰ্তন কৰা সম্ভব নয়। একই কথা সব বস্তৱ ক্ষেত্ৰেই থাটে। অৰ্ধাৎ পৃথিবীতে মোট ভৱেৱ পৰিমাণ অপৰিবৰ্তিত আছে। বস্তৱ ভৱেৱ বিনাশ নেই বা সৃষ্টিও কৰা যায় না। একে ভৱেৱ নিত্যতা স্মৃত বলে।

ভৱেৱ নিত্যতাৰ প্ৰথম পৰীক্ষা কৰেন ল্যাণ্ডেন্ট বিংশ শতাব্দীৰ প্ৰথম ভাগে। H-আকৃতিৰ মত দেখতে দুই বাহ বিশিষ্ট একটি কাচেৰ নলেৰ এক বাহতে তিনি ফেৰাস সালফেট (FeSO_4) ও অন্ত বাহতে সিলভাৰ সালফেট (Ag_2SO_4) দ্রবণ নেন (চিত্ৰ 2.1)। তিনি বাহহৃষ্টিৰ মুখ বন্ধ কৰে দেন ও লক্ষ্য ৱাখেন যাতে এক বাহৰ দ্রবণ অন্ত বাহৰ দ্রবণেৰ সঙ্গে মিশে না যায়। এই অবস্থায় তিনি দ্রবণ সমেত কাঁচ নলটি অতি সূক্ষ্ম তুলাদণ্ডে ওজন কৰেন। পৰে নলটিকে উলটিয়ে দ্রবণ দুটিকে সম্পূৰ্ণ

চিত্ৰ 2.1

তাবে মেশান। তখন তাদেৱ মধ্যে বাসায়নিক বিক্ৰিয়াৰ ফলে সিলভাৱ মালফেট বিজ্ঞাৰিত হয়ে কৃপোৱ পৰিণত হয়।

বিক্ৰিয়াৰ শেষে নলটিকে কিছুক্ষণ ঠাণ্ডা হতে দিয়ে তিনি আবাৱ শজন নেন ও দেখেন আগেৱ ও পৰেৱ শজন সমান। এ থেকে ভৱেৱ নিত্যতা প্ৰমাণিত হয়।

শক্তিৰ নিত্যতা

শক্তি যখন কৃপান্তৰিত হয় তখন তাদেৱ ক্ষয় বা বিনাশ হয় না। শক্তি শৃঙ্খলাৰ বা ক্ষয় কৰা সম্ভব নহ। যখন কোন বস্তু শক্তি হাৱায় তখন অন্তকোন বস্তু সমপৰিমাণ শক্তি লাভ কৰে। প্ৰমাণ কৰা গিয়েছে যে শক্তি কৃপান্তৰেৱ সময় কৃপান্তৰেৱ আগে ও পৰে মোট শক্তিৰ পৰিমাণ সমান। বিজ্ঞানীদেৱ মতে বিশ্ব স্থৰ্ত্ৰৰ সময় শক্তিৰ মোট পৰিমাণ যা ছিল আজও তা অপৰিবৰ্তিত আছে। এই স্থৰ্ত্ৰকে বলে শক্তিৰ নিত্যতা স্মৃত।

শক্তিৰ অপচয়

শক্তি যখন এক কূপ থেকে অন্ত কূপে পৰিবৰ্তিত হয় তখন প্ৰায়ই দেখা যায় কৃপান্তৰেৱ পৰেৱ শক্তিৰ পৰিমাণৰ আগেৱ শক্তিৰ চেয়ে কম। উদাহৰণস্বৰূপ যে কোন যন্ত্ৰ নাও। যন্ত্ৰে যে শক্তি দেওয়া হয় এবং যন্ত্ৰেৰ কাজ কৰাৰ ক্ষমতা এক নহ। প্ৰদৰ্শন শক্তি সব সময়েই বেশি। এই শক্তিৰ কিছু পৰিমাণ যন্ত্ৰেৰ বিভিন্ন অংশে ঘৰ্যণেৰ বাধা অতিক্ৰম কৰাৰ কাজে লাগে ও ফলে তাপ উৎপন্ন হয়। অনেক উপৰ থেকে একটি চিল নিচে ফেলে দিলে চিলটিৰ হিতিশক্তি কৃপান্তৰিত হয় গতিশক্তি, শব্দশক্তি এবং তাপশক্তিতে। কিন্তু এই শক্তিৰ কোনটিকেই উপযোগী কাজে লাগানো যায় ন। এবং তাদেৱ অপচয় হয়েছে বলে মনে কৰা হয়। কিন্তু এই অনুপযোগী শক্তি ও প্ৰাপ্ত শক্তিৰ যোগফল প্ৰদৰ্শন শক্তিৰ সমান।

বস্তু ও শক্তিৰ তুল্যমূল্যতা

বিংশ শতাৰ্বীৰ প্ৰথম ভাগে বৈজ্ঞানিক অ্যালিবাট আইনস্টাইন বলেন যে বস্তু ও শক্তি একে অন্ততে কৃপান্তৰিত হতে পাৰে। তিনি বলেন, পদাৰ্থ হচ্ছে শক্তিৰই

এক বিশেষ ক্লপ। পদাৰ্থ ও শক্তিৰ সম্পর্ক নিয়ে তিনি এক সূচীকৰণ বাৰ কৰেন। যদি m তৰ, E শক্তিতে কৃপাস্তুৰিত হয় এবং c যদি আলোৰ গতিবেগ হয় তবে $E=mc^2$ । অৰ্থাৎ বস্তুকে বিলোপ কৰে শক্তি এবং শক্তিকে বিলোপ কৰে বস্তুতে কৃপাস্তুৰ কৰা সম্ভব। একেই বলে বস্তু ও শক্তিৰ তুল্যমুল্যতা। এৰ কোন সাধাৰণ উদাহৰণ দেওয়া সম্ভব নহয়, তবে পৰমাণু বিজ্ঞানে এটা অহৰহ ষটছে।

পদাৰ্থ বিলোপ কৰে যে প্ৰচণ্ড শক্তি পাওয়া সম্ভব, সাধাৰণ মাছৰে তাৰ প্ৰথম প্ৰমাণ পায় পৰমাণু বোমাৰ বিফোৰণে। পৰে এই শক্তি নিয়ন্ত্ৰিত কৰে পারমাণবিক রিঅ্যাকটৰ তৈৰি হয়েছে বিদ্যুৎ উৎপাদনেৰ জন্য। তোমৰা নিশ্চয়ই জান বোধাইয়েৰ কাছে তাৰাপুৰে পারমাণবিক রিঅ্যাকটৰ কেন্দ্ৰে উৎপাদিত বিদ্যুৎ মহাৱাট্ট ও গুজৱাটে সৱবৰাহ কৰা হয়। তামিলনাড়ুৰ কলাপক্কমে, বাজস্থানেৰ বাণ্গপ্ৰতাপসাগৰে এবং উত্তৰ প্ৰদেশেৰ নাৰোৱাঙ্গ বিদ্যুৎ উৎপাদনেৰ জন্য পারমাণবিক রিঅ্যাকটৰ তৈৰি চলেছে।

ভৱ ও শক্তিৰ নিয়ন্ত্ৰণ

তোমৰা জানলে ভৱকে শক্তিতে এবং শক্তিকে ভৱে কৃপাস্তুৰিত কৰা যায় এবং পারমাণবিক বিক্ৰিয়াৰ ক্ষেত্ৰে ভৱ শক্তিতে কৃপাস্তুৰিত হয়। তোমৰা জান পৃথিবীতে শক্তিৰ উৎস সূৰ্য। আবাৰ সূৰ্যেৰ শক্তিৰ উৎস হচ্ছে নানা ধৰনেৰ পারমাণবিক বিক্ৰিয়া। বিশেষ বিশেষ ক্ষেত্ৰে শক্তিৰ নিয়ন্তা সূত্ৰ সত্য হলেও পারমাণবিক বিক্ৰিয়া এণ্ণলি থাটে ন।। তাই সাধাৰণভাৱে বলতে গেলে বলতে হয় ভৱ ও শক্তিৰ ঘোট পৱিমাণ নিয়ে। এই সূত্ৰেৰ নাম ভৱ ও শক্তিৰ নিয়ন্তা সূত্ৰ।

৬ অবস্থার রূপান্তর

পদার্থের ভৌত অবস্থা

পৃথিবীর যাবতীয় পদাৰ্থকে কঠিন, তুল এবং গ্যাসীয়—তিনটি পৃথক শ্ৰেণীতে
ভাগ কৰা যায়। প্রতিটি শ্ৰেণীকে বস্তুৰ অবস্থা বলে।

কঠিন : কঠিন পদার্থের নির্দিষ্ট আকার এবং আয়তন আছে। আয়তন থাকার অর্থই হল একটা সুনির্দিষ্ট জায়গা দখল করে থাকা। বাইবে থেকে বল প্রয়োগ ব্যতীত কঠিন পদার্থ মাত্রই আপন আপন আকার বজায় রাখিবার চেষ্টা করে।

তরল : তরল পদার্থের নির্দিষ্ট আয়তন আছে। কিন্তু আকার নেই। তাই তরল পদার্থ বাঁথা জন্ম কোন পাত্র বা আধারের প্রয়োজন হয় এবং যে পাত্রে তরল পদার্থ বাঁথা যাই পদার্থ সেই পাত্রের আকার ধারণ করে। এক বোতল দুধ বা তেল কোন বাটিতে বা ইঁড়িতে যে পাত্রেই বাঁথা হোক না কেন, তার আকার বাটি বা ইঁড়ির মতই হবে। কিন্তু আয়তন একটুও বাড়ল না, সেই এক বোতলই ধাকবে।

গ্যাস : গ্যাসীয় পদার্থের কোন নির্দিষ্ট আকার নেই, আয়তনও নেই।
যখন যে আধাৰে ধাকে সেই আধাৰের আকার ও আয়তন গ্ৰহণ কৰে।
গ্যাসীয় পদার্থের এই ধৰ্ম সহজেই তোমৰা পৰীক্ষা কৰে দেখতে পাৰ।

পদার্থের অবস্থার পরিবর্তন

ପୃଥିବୀର ସେ କୋନ ପଦାର୍ଥ—କଟିନ, ତରଳ ଅଥବା ଗ୍ୟାସ—ମାଧ୍ୟାରଳ ତାପମାତ୍ରାଯେ ଯେ କୋନ ଏକଟି ଅବସ୍ଥା ଥାକେ । ପଦାର୍ଥର ଏହି ଅବସ୍ଥା କି ସ୍ଥାଯୀ ? ଅର୍ଥାଏ କୋନ କଟିନ ପଦାର୍ଥ କି ଯେ କୋନ ଅବସ୍ଥା କଟିନ ଥାକବେ ଅଥବା କୋନ ତରଳ ପଦାର୍ଥକେ କି ମୟ ସମୟେଇ ତରଳ ଅବସ୍ଥା ପାଓଯା ଯାବେ ? ଗ୍ୟାସେର କ୍ଷେତ୍ରେ ଓ ଓହ ଏକହି ପ୍ରଶ୍ନ ହତେ ପାରେ । ଜଳ ନିଯେ ପରୀକ୍ଷା କରେ ଏହି ପ୍ରଶ୍ନର ଆଲୋଚନା କରା ଯେତେ ପାରେ ।

জল স্বাভাবিক অবস্থায় তরল পদার্থ এবং জলের উপাদান অঞ্চিতেন এবং হাইড্রোজেন—এই দুটি গ্যাস। কিন্তু বরফ স্বাভাবিক অবস্থায় কঠিন পদার্থ। বরফের উপাদানও অঞ্চিতেন ও হাইড্রোজেন গ্যাস। আবার অন্তর্গত জলীয় বাষ্প

যা স্বাভাবিক অবস্থায় গ্যাস অথবা জল ফোটালে যে স্থীর পাওয়া যায় তার উপাদানও এই দুটি গ্যাস—অক্সিজেন ও হাইড্রোজেন। আমরা এখন নিশ্চিত ভাবে বলতে পারি—জল, বরফ এবং জলীয় বাষ্প বা স্থীর একই পদার্থের ভিন্নটি পৃথক অবস্থা মাত্র।

গলন ও হিমায়ন : গলনাঙ্ক ও হিমাঙ্ক

যে কোন বস্তুকে গরম করলে দুটি পরিবর্তন লক্ষ্য করা যায়। বস্তুর তাপমাত্রা বাড়ে এবং আরও গরম করলে এক সময় বস্তুর অবস্থার পরিবর্তন হয়। উদাহরণস্বরূপ 0°C তাপমাত্রায় এক টুকরো বরফ নেওয়া হল। এই টুকরোটিকে গরম করলে বরফ গলে জল হতে থাকবে। যতক্ষণ না সমস্ত বরফ গলে জল হয় ততক্ষণ তার তাপমাত্রার কোন পরিবর্তন হয় না। সমস্ত বস্তুর ক্ষেত্রে একই ঘটনা ঘটে। এই প্রণালীকে বলা হয় গলন বা মেল্টিং এবং প্রমাণ চাপে যে নির্দিষ্ট তাপমাত্রায় বস্তু গলে তাকে বলা হয় বস্তুর গলনাঙ্ক বা মেল্টিং পয়েন্ট। বস্তু গলে যাওয়ার পরেও তাকে গরম করা হলে বস্তুটির তরল অবস্থায় তাপমাত্রা বাড়তে থাকবে। ঠিক একই ভাবে যে কোন তরল বস্তুকে ঠাণ্ডা করে কঠিন বস্তুতে পরিণত করা যায়। ঠাণ্ডা করতে থাকলে প্রথমে তরলের তাপমাত্রা কমতে থাকবে। পরে আরও ঠাণ্ডা করতে থাকলে দেখা যাবে একটি তাপমাত্রায় বস্তুটি জমতে শুরু করেছে এবং সমস্ত তরলটুকু জমে না যাওয়া পর্যন্ত এই তাপমাত্রার কোন পরিবর্তন হবে না। এই প্রণালীকে বলে হিমায়ন বা ফ্রিজিং এবং প্রমাণ চাপে যে তাপমাত্রায় বস্তুটি জমতে থাকে তাকে বলে হিমাঙ্ক বা ফ্রিজিং পয়েন্ট। মনে রাখবে গলনাঙ্ক ও হিমাঙ্ক চাপের উপর নির্ভর করে। চাপ পরিবর্তিত হলে এই তাপমাত্রা পরিবর্তিত হয়। বস্তুটিকে আরও ঠাণ্ডা করতে থাকলে কঠিন অবস্থায় তাপমাত্রা কমতে থাকবে।

গলনাঙ্ক নির্ণয় : (1) বেশ কয়েক টুকরো বরফ নাও। পরিষ্কার ভাবে ধূয়ে এক টুকরো ইলিং কাঁগজ দিয়ে তাদের গাঁওকনো করে নাও। পরে বরফ-গুলোকে একটি বিকারে রেখে একটি থার্মোমিটার দিয়ে তাদের তাপমাত্রা দেখে নাও। এবারে বুনসেন বা স্পিগিট দীপের সাহায্যে বিকারটিকে ধীরে ধীরে গরম করতে থাক। দেখবে বরফ গলতে শুরু করেছে। তাপমাত্রার দিকে বিশেষভাবে লক্ষ্য কর। দেখবে বরফ সম্পূর্ণ গলে না যাওয়া পর্যন্ত তাপমাত্রার

কোন পরিবর্তন হচ্ছে না। সমস্ত বরফ গলে ঘাওয়ার পরে তাপ দিতে থাকলে জলের তাপমাত্রা ধীরে ধীরে বাড়তে থাকবে।

(2) একটি বড় বিকারে কিছু গুঁড়ো গ্লাপথালিন নাও এবং বুনসেন দীপের সাহায্যে ধীরে গরম করতে থাক। একটি ধার্মোমিটারের সাহায্যে গুঁড়ো গ্লাপথালিনের তাপমাত্রা এক মিনিট অন্তর লক্ষ্য করতে থাক এবং খাতায় টুকে নাও। তাপমাত্রা যখন প্রায় 80°C তখন লক্ষ্য করলে দেখবে যে গুঁড়োটি গলতে শুরু করেছে। তাপমাত্রা বিশেষভাবে লক্ষ্য করলে দেখতে পাবে যে পদার্থ গলে না ঘাওয়া পর্যন্ত তাপমাত্রার কোন পরিবর্তন হয়নি। তারও পরে গরম করলে দেখতে পাবে যে তরল বস্তুটির তাপমাত্রা আবার বাড়তে শুরু করেছে। যদি X অক্ষ বরাবর সময় ও Y অক্ষ বরাবর তাপমাত্রা ধরে একটি লেখ আক তবে 3.1 চিত্রের মত এক লেখ পাবে। চিত্রটি লক্ষ্য করলে দেখতে পাবে যে BC অংশে তাপমাত্রার কোন পরিবর্তন হয়নি। এই তাপমাত্রাই গ্লাপথালিনের গলনাঙ্ক।

চিত্র 3.1

এইবার বস্তুটিকে ঠাণ্ডা হতে দাও এবং এক মিনিট অন্তর তাপমাত্রা লক্ষ্য করতে থাক যতক্ষণ না বস্তুটি কঠিন হয়। বস্তুর সময়-তাপমাত্রা লেখ আক। লেখটি 3.2 চিত্রের মত হবে। লেখটির যে অংশে তাপমাত্রার পরিবর্তন নেই তাই গ্লাপথালিনের হিমাক নির্দেশ করছে। লক্ষ্য করলে দেখবে গ্লাপথালিনের হিমাক 80°C ।

চিত্র 3.2

এই পৰীক্ষাগ্ৰ বুৰাতে পাৱলে যে কোন কেলাসিত বস্তুৰ হিমাঙ্ক ও গলনাঙ্কেৰ তাপমাত্ৰা এক। নিৰ্দিষ্ট চাপে যে কোনও বস্তুৰ গলনাঙ্ক একটি নিৰ্দিষ্ট তাপমাত্ৰা। এটি কেলাসিত বস্তুৰ একটি ভৌত ধৰ্ম। উদাহৰণস্বৰূপ প্ৰমাণ চাপে বৱফেৰ গলনাঙ্ক 0°C , পাৰদেৱ — 39°C এবং জ্বাপথালিনেৰ 80°C ।

কয়েকটি অকেলাসিত বস্তুৰ বেলায় দেখা গিয়েছে যে তাদেৱ কোন নিৰ্দিষ্ট গলনাঙ্ক নেই। উদাহৰণস্বৰূপ পিচ প্ৰত্তিৰ নাম কৱা চলে। পিচ গৰম কৱলে প্ৰথমে সান্ত্ব বা চটচটে অবস্থায় পৰিণত হয়। এই পৰিবৰ্তনেৰ সময় তাপমাত্ৰাৰও পৰিবৰ্তন হতে থাকে। কয়েকটি তৱল যথা গিমাৰিন, আঞ্চেটিক আঞ্চেড প্ৰত্তিৰ নিৰ্দিষ্ট হিমাঙ্ক নেই। এৰাও অবস্থাৰ পৰিবৰ্তনেৰ মধ্যবতী সময়ে এক চটচটে অবস্থাৰ সংধে দিয়ে যায়।

গলনে বা হিমায়নে আয়তনেৰ পৰিবৰ্তন : বেশিৰ ভাগ পদাৰ্থেৰ কঠিন থেকে তৱলে পৰিবৰ্তনেৰ সঙ্গে আয়তন বাড়ে এবং তৱল থেকে কঠিন অবস্থাৰ পৰিবৰ্তনে আয়তন কমে। কিন্তু কয়েকটি বস্তু এদেৱ বাতিক্ৰম, যেমন —জল, ঢালাই লোহা, বিসমাধ, আটিমনি, পিতল ইত্যাদি। এদেৱ তৱল অবস্থায় আয়তন কম এবং কঠিন অবস্থায় আয়তন বেশি। মেজন্ত এই সব বস্তুৰ কঠিন অবস্থায় ঘনত্ব কম। জল একটি অতি পৰিচিত উদাহৰণ। বৱফেৰ টুকৰোকে জলে ভাসতে তোমৰা দেখেছ। শীতেৰ দেশে খুব বেশি ঠাণ্ডা পড়লে খোসা জলেৰ পাইপ ফেটে যায়। গল্লে হয়ত পড়েছ দীপেৰ ঘত বড় বড় বৱফেৰ টাই সাইবেৰিয়া অঞ্চলে এক জায়গা থেকে অন্য জায়গায় ভেসে যায়। দেখা গিয়েছে যে 0°C -এ 11 cc জল জমে 0°C -এ 12 cc বৱফে পৰিণত হয়। এ থেকে বোৰা যায় যখন বৱফ ভাসে তখন $\frac{1}{12}$ অংশ জলেৰ উপৰ থাকে। লোহা ও পিতলেৰ আয়তন বৃদ্ধিৰ অনেক সময় প্ৰয়োজনে আসে। কঠিন অবস্থায় পিতল ও লোহাৰ আয়তন বৃদ্ধি হাঁচে ঢালাই কাজে সাহায্য কৰে।

গলনাঙ্কেৰ উপৰ চাপেৰ প্ৰভাৱ : পুনঃশিল্পীভৱন

ছটো বৱফেৰ টুকৰো নিয়ে কিছুক্ষণ চেপে ধৰ। পৰে তাদেৱ ছেড়ে দিলেই দেখবে তাৰা ঝোড়া লেগেছে। যখন বৱফেৰ টুকৰো ছটোকে চেপে ধৰা হয় তখন চাপেৰ প্ৰভাৱে গলনাঙ্ক কমে যায় এবং চাপেৰ জায়গাটিতে বৱফ গলে

জল জয়ে। ছেড়ে দেওয়ামাত্র গলনাক বেড়ে যায় এবং গলে যাওয়া জল আবার বয়ফ হয়। ফলে টুকরো দুটি জোড়া লেগে যায়। এই ঘটনাকে বলে
পুনঃশিল্পীভবন।

সব বস্তুর গলনাক্ষের উপর চাপের প্রভাব কিন্তু এক নয়। পরীক্ষা করে দেখা গিয়েছে যে, যে সব বস্তু গলে গেলে আঘতনে কমে তাদের গলনাক্ষ চাপের প্রভাবে কমে। লোহা, জল, বিসমাখ, অ্যাটিমনি এই শ্রেণীর উদাহরণ। ষে সব বস্তুর গলনে আঘতন বাড়ে চাপের প্রভাবে তাদের গলনাক্ষ বাড়ে। প্রাকৃত সব বস্তুর বেলায় এই ঘটনা ঘটে।

ହିମଶିଖଣ : କୋନ ବସ୍ତୁକେ ତରଲେ ଦ୍ୱୀପୁତ୍ର କରଲେ ଦେଖା ଯାବେ ଯେ, ଦ୍ୱବନେର ଛିଙ୍ଗାଳ ଦେଇ ତରଲେର ହିମାକ୍ଷେତ୍ର ଚେଯେ କମ । ଏହି ଶିଖଣକେ ହିମଶିଖଣ ବଲେ ।

একভাগ লবণ তিনভাগ শুঁড়ো বরফে ছড়িয়ে দিলে দেখবে তাপমাত্রা প্রায় -23°C পর্যন্ত কমে। জল ও আয়োনিয়ম নাইট্রেট মিশ্রণের সর্বনিম্ন তাপমাত্রা প্রায় -15°C পর্যন্ত হয়। দুটি মিশ্রণই হিমমিশ্রণের উদাহরণ।

যখন কোন কঠিন পদাৰ্থকে তৰলে দ্রবীভূত কৰা হয় তখন কঠিন বস্তুৰ তৰলে পৰিণত হওয়াৰ জন্ম উভাপেৰ প্ৰয়োজন হয়। কঠিন বস্তু প্ৰয়োজনীয় উভাপ তৰল থেকে সংগ্ৰহ কৰে। ফলে মিশ্রণেৰ তাপমাত্ৰা কমে যায়। বৰক্ষে যখন লবণ ছড়িয়ে দেওয়া হয় তখন লবণ গলে যাওয়াৰ জন্ম বৰফও জল থেকে প্ৰয়োজনীয় উভাপ গ্ৰহণ কৰে। এমনকি লবণ গোলা জলেৰ হিমাক -2°C ।

ବାଜ୍ରପୀତିବନ

ତରଲେର ବାୟଦୀଯ ଅବଶ୍ୱାକେ ବାଞ୍ଚେ ବଲେ । ଅନ୍ତିମ କୋଣ ଅବଶ୍ୱା ଥେକେ କୋଣ ବସ୍ତକେ ବାଞ୍ଚେ ପରିଣତ କରାକେ ବଲେ ବାଞ୍ଚୀତବନ । ବାଞ୍ଚୀତବନ ତିନ ଭାବେ ହତେ ପାରେ, ଯଥା—(1) ବାଞ୍ଚାଯନ, (2) ଫୁଟନ, (3) ଉତ୍ତରପାତନ ।

(1) বাঞ্চায়ন—ধীরে ধীরে তরল থেকে বাস্পে পরিবর্তিত হওয়ার পদ্ধতিকে বলে বাঞ্চায়ন। বাঞ্চায়নের কোন নির্দিষ্ট তাপমাত্রার প্রয়োজন হয় না। যে কোন তাপমাত্রায় হতে পারে। এই পদ্ধতিতে তরলের উপরতলে বাস্প হতে দেখা যায়। গ্রীষ্মকালে নদী, পুরুর থেকে জল শুকিয়ে যাওয়া বা ভিজে কাপড় থেকে জল শুকিয়ে যাওয়া সমস্ত বাঞ্চায়নের লক্ষণ। ইথার, মেথিলেটেড স্পিরিট এই পদ্ধতিতে বাস্প হয়।

বাস্পায়ন পদ্ধতিতে বাস্প হওয়াৰ হাৰ সব তৱলেৰ ক্ষেত্ৰে সমান নহয়। কোন কোন তৱল খুব জুত বাস্পায়িত হয় ; এদেৱ উপায়ী তৱল বলা হয়। অ্যালকোহল, মেথিলেটেড স্পিৰিট, বেনজিন, কাৰ্বন-টেক্ট্ৰাফেৰাইড, ইথাৰ, পেট্ৰল প্ৰভৃতি উপায়ী তৱল।

(2) শূটন—প্ৰমাণ চাপে একটি নিৰ্দিষ্ট তাপমাত্ৰায় খুব জুত তৱল অবশ্য থেকে বাস্পায়ন অবশ্যায় পৰিবৰ্তনকে শূটন বলে। শূটন তৱলেৰ সমষ্টি অংশ

থেকে হয়। যে তাপমাত্ৰায় শূটন শুক্ৰ হয়, তৱলেৰ সমষ্টি অংশ বাস্প না হওয়া পৰ্যন্ত মেই তাপমাত্ৰা থাকে। এই তাপমাত্ৰাকে শূটনাস্থ বলে। শূটনাস্থ পারিপার্শ্বিক চাপেৰ উপৰ নিৰ্ভৰ কৰে। শূটনাস্থ তৱলেৰ ভৌত ধৰ্ম।

একটি ফ্ৰাঙ্কে কিছুটা জল নাও (চিত্ৰ 3.3)। ফ্ৰাঙ্কেৰ মুখে একটি ছিপি আটকাও এবং ছিপিৰ ভিতৰ দিয়ে একটি ধাৰ্মোমিটাৰ ও একটি বাকা নল ঢোকাও। লক্ষ্য বাথবে ধাৰ্মোমিটাৰেৰ বাল্বটি যেন জলেৰ উপৰ থাকে। একটি বুনসেন দীপেৰ সাহায্যে জলটি গৰম কৰ এবং এক মিনিট

অন্তৰ তাপমাত্ৰা নাও। প্ৰথমে জলেৰ উপৰতলে বাস্পেৰ মত ধোঁয়া উঠতে দেখা যাবে। পৰে জলেৰ নিচে ছোট

ছোট বুদবুদ উঠবে এবং কিছুদৰে গিয়েই ভেঙে পড়বে। জল ক্ৰমশ গৰম হতে থাকলে প্ৰায় 98°C বা 99°C এৰ কাছে বড় বড় বুদবুদ জলেৰ উপৰে গিয়ে ভেঙে পড়তে থাকবে এবং 100°C এ সমষ্টি তৱলে একটা আলোড়নেৰ ষষ্ঠি হবে। কাচেৰ নল দিয়ে প্ৰচুৰ স্থীম বাৰ হতে

থাকবে। এই অবশ্যাকে জলেৰ শূটতে থাকা বা শূটন বলে। যদি কোন লেখচিত্ৰে X-অক্ষ বৰাবৰ সময় এবং Y-অক্ষ বৰাবৰ তাপমাত্ৰা আৰু তবে

চিত্ৰ 3.3

চিত্ৰ 3.4

চিত্র 3.4 এর মত লেখচিত্র পাবে। চিত্র দেখে বুঝতে পারবে যে জল একবার ফুটতে শুরু করলে তাপমাত্রার আর পরিবর্তন হবে না যতক্ষণ না সমস্ত জল বাস্পীভূত হয়। এ থেকে বোঝা যায় তরলের ফুটনাক একটি নির্দিষ্ট তাপমাত্রা। ফুটনাক যে কোন তরলের একটি বিশেষ ভৌত ধর্ম।

(3) **উর্ধ্বপাতন**—কোন বস্তুর কঠিন অবস্থা থেকে লে পরিবর্তিত না হয়ে সোজাস্থজি বাস্পে পরিণত হওয়াকে উর্ধ্বপাতন বলে। এই পদ্ধতি ততে বাস্পীভবন ধীরে ধীরে যে কোন তাপমাত্রায় হতে পারে। শাপথালিন প্রভৃতি এই পদ্ধতিতে বাস্পীভূত হয়।

বাস্পায়ন যে কারণে প্রভাবিত হয়—বাস্পায়ন বাইরের অনেকগুলি কারণে প্রভাবিত হতে পারে। ক্রতৃ বাস্পায়ন সবচেয়ে বেশি নির্ভর করে তরলের নিম্নের প্রকৃতির উপর। অঙ্গান্ত যে যে কারণে এই পদ্ধতিতে তরল তাড়াতাড়ি বাস্পীভূত হয় সেগুলি হচ্ছে: (1) তরলের তাপমাত্রা বৃদ্ধির উপর; (2) তরলের উপরতলের ক্ষেত্রফল বৃদ্ধির উপর; (3) তরলের উপর বায়ু চলাচল বৃদ্ধির উপর অর্থাৎ ফুলিলে তাড়াতাড়ি বাস্পীভূত হবে; (4) তরল সংলগ্ন বায়ুর শুক্রতার উপর।

ফুটনাকের উপর চাপের প্রভাব—পরীক্ষায় দেখা গিয়েছে কোন তরলের ফুটনাক চাপ বাড়লে বাড়ে এবং কমলে কমে। অমান্য চাপে জল 100°C এ ফোটে। পরীক্ষায় দেখা গিয়েছে যে, প্রতি $2\cdot68 \text{ cm}$ পারদ চাপের পরিবর্তনের সঙ্গে জলের ফুটনাক 1°C হারে পরিবর্তিত হয়। সম্প্রস্ত থেকে দার্জিলিং এর উচ্চতা প্রায় দুহাজার মিটার এবং সেখানে জলের ফুটনাক $93\cdot6^{\circ}\text{C}$ । খনির নিচে বায়ুমণ্ডলের চাপ বেশি, সেখানে জলের ফুটনাক 100°C থেকে বেশি।

চাপের প্রভাবে ফুটনাক কমে যাওয়ায় উচু পাহাড় অঞ্চলে রান্না করতে বেশ অসুবিধা হয়। সেজন্ত পাত্রের ভিতর কৃত্রিম উপায়ে চাপ বাড়িয়ে ফুটনাক বাড়াবার চেষ্টা করা হয়। প্রেসার-কুকার ব্যবহার করতে অনেকেই দেখেছ। প্রেসার-কুকারের পাত্রের ভিতরে জল ও মিছ করার জিনিসটি রাখতে হয়। উপরের ঢাকনিতে একটি তালত আছে। গরম করার সঙ্গে যখন ভিতরে বাপ্প জমতে থাকে তখন চাপ ও সেই সঙ্গে ফুটনাক বাড়তে থাকে, ফলে জিনিসটি তাড়াতাড়ি মিছ হয়। অতিরিক্ত বাপ্প তালতের ভিতর দিয়ে বেরিয়ে যেতে দেওয়া হয়, যাতে বিক্ষেপণ হতে না পাবে।

জীৱ তাপ

তোমৰা দেখেছ যখন কঠিন বস্তুকে গৱম কৰা হয় একটি নিৰ্দিষ্ট তাপমাত্ৰায় বস্তুটি গলতে শুকু কৰে এবং তাপ দেওয়া সম্ভৱ সমষ্টি বস্তুটি না গলা পৰ্যন্ত তাৰ তাপমাত্ৰার পৰিবৰ্তন হয় না। আবাৰ হিমায়নেৰ সময় ঠাণ্ডা কৰতে ধাকলেও তাপমাত্ৰা সমষ্টি তৱল জয়ে না ঘাঁওয়া পৰ্যন্ত হিঁৰ থাকে। একই ভাৱে শূটনেৰ সময় দেখা গিয়েছে যে সমষ্টি তৱল বাল্পীভূত না হওয়া পৰ্যন্ত তৱলটি গৱম কৰলেও তাপমাত্ৰা হিঁৰ থাকে। আবাৰ বাল্প ঘনীভবনেৰ সময় সমষ্টি বাল্প তৱল না হওয়া পৰ্যন্ত ঠাণ্ডা কৰলেও তাপমাত্ৰা হিঁৰ থাকে। চিৰ 3.1, 3.2 এবং 3.4 লেখতে তোমৰা এটা ভালভাৱে বুৰাতে পেৰেছ। এই তাপ কোথায় ঘৰ ? অবস্থা পৰিবৰ্তনেৰ সময় এই তাপ শোষিত বা বজ্জিত হয়—গলন ও শূটনকালে শোষিত হয় এবং হিমায়ন ও ঘনীভবনেৰ সময় তাপ বজ্জিত হয়। এই তাপকে লীন তাপ বলে।

এক একক ভৱকে প্ৰমাণ চাপে ও নিৰ্দিষ্ট তাপমাত্ৰায় কঠিন অবস্থা থেকে তৱলে পৰিণত কৰতে যে তাপশক্তিৰ প্ৰয়োজন হয় তাকে গলনেৰ লীন তাপ বলে। এস আই পদ্ধতিতে জলেৰ গলনেৰ লীন তাপ হচ্ছে 333.6×10^3 J/kg। সি জি এস পদ্ধতিতে 80 cal/g, এবং এফ পি এস পদ্ধতিতে 144 B. Th. U/lb.

প্ৰমাণ চাপে ও নিৰ্দিষ্ট তাপমাত্ৰায় কোন একক ভৱেৰ বস্তুৰ তৱল অবস্থা থেকে গামে পৰিণত হতে যে তাপ লাগে তাকে শূটনেৰ লীন তাপ বলে। এস আই পদ্ধতিতে শ্ৰীমেৰ লীন তাপ 2258×10^3 J/kg, সি জি এস পদ্ধতিতে 537 cal/g এবং এফ পি এস পদ্ধতিতে 964.5 B. Th. U/lb.।

୩ ହିତି ଓ ଗତି

ପ୍ରତିଦିନ ଅନେକ ବସ୍ତୁକେ ତୋମରୀ ଚଲାଫେରା କରତେ ଦେଖେ । ରାଣ୍ଡାୟ ଗାଡ଼ି ଚଲେ, ମାଝୁସ ହାଟେ, ଗଢ଼ ଛୋଟେ । କେଉବା ଜୋରେ; ଆବାର କେଉ ଖୁବ ଆଣେ । ଏ ଧରନେର ଅନେକ ଉଦ୍‌ଦେଶ୍ୟ ତୋମରା ନିଜେରାଇ ଦିତେ ପାରବେ । ଆବାର ଅନେକ ଜିନିସ ଆଶପାଶେ ପଡ଼େ ଥାକତେଓ ଦେଖେ । ତୋମରାও ତୋ ଦିନେର ଅନେକ ସମୟ ଚାପ କରେ ବସେ ବା ଶୁଯେ ଥାକ । କିନ୍ତୁ ଚଲାଫେରାର ସଙ୍ଗେ ବସେ ଥାକାର ତକାଂ କୋଣାଯ ? ସଥନ ତୁମି ହାଟ ତଥନ ସମୟେର ସଙ୍ଗେ ତୋମାର ଅବହାନେର ପରିବର୍ତ୍ତନ କର । ଯେ କୋନ ଚଲ ବସ୍ତୁ ସମୟେର ସଙ୍ଗେ ତାର ଅବହାନ ପରିବର୍ତ୍ତନ କରେ । ବସ୍ତୁଟି ତଥନ ଗତିତେ ଆଛେ ବଳା ହୟ । ଆର କୋନ ବସ୍ତୁ ସଥନ ସମୟେର ସଙ୍ଗେ ତାର ଅବହାନ ପରିବର୍ତ୍ତନ କରେ ନା ତଥନ ବଳା ହୟ ବସ୍ତୁଟି ହିତିତେ ଆଛେ ।

କୋନ ବସ୍ତୁ ହିତିତେ ଆଛେ, ନା ଗତିତେ ଆଛେ କି କରେ ଜାନବେ ? ଜାନତେ ହଲେ ଏମନ ଏକଟି ବସ୍ତୁର ଦରକାର ଯେ କୋନଦିନଇ ତାର ଅବହାନ ପାଣ୍ଟାୟ ନା । ଏବକମ ବସ୍ତୁର ହିତିକେ ପରମ ହିତି ବଲେ । କିନ୍ତୁ ପୃଥିବୀର ଉପର ଏବକମ କୋନ ବସ୍ତୁର ଦେଖା ପାଓଯା ଯାଏ ନା । କାରଣ, ପୃଥିବୀ ନିଜେଇ ଶୂର୍ଯ୍ୟର ଚାରପାଶେ ଘୁରଛେ, ଆର ତାର ସଙ୍ଗେ ଘୁରଛେ ପୃଥିବୀର ଉପରେର ସବ କିଛି ବସ୍ତୁ । ପୃଥିବୀର ଉପରେ ଯଦି ହିର କୋନ ବସ୍ତୁ ଦେଖି, ତବେ ମେଟା ଆପାତଦୃଷ୍ଟିତେ ହିର । ଶ୍ଵରାଂ ଯେ କୋନ ହିର ବସ୍ତୁଇ ପୃଥିବୀର ଗତିର ମାପେକ୍ଷେ ହିର । ଏକେ ବଲେ ଆପେକ୍ଷିକ ହିତି । ଆର ପୃଥିବୀର ଉପରେ କୋନ ବସ୍ତୁ ଯଦି କୋନ ହିର ବସ୍ତୁର ପରିପ୍ରେକ୍ଷିତେ ତାର ଅବହାନ ପରିବର୍ତ୍ତନ କରେ, ତବେ ତାର ଗତିକେ ବଲେ ଆପେକ୍ଷିକ ଗତି । ଏକଟୁ ମହଞ୍ଜ କରେ ବଲି, କେମନ ? ସଥନ ତୁମି ଟେନେ କୋଣାଂ ଯାଏ, ତଥନ ଚଲନ୍ତ ଟେନେ ତୋମାର ପାଶେ ଯାଏବା ବସେ ଆଛେ ତାଦେର କାହେ ତୁମି ହିର ଅବହାଯ ଅର୍ଥାଂ ଆପେକ୍ଷିକ ହିତିତେ ଆଛ, କିନ୍ତୁ ବାଇବେର ଦୁହାପାଶେର ଗାଛପାଳା ବାଡ଼ିଧରେର ପରିପ୍ରେକ୍ଷିତେ ତୁମି ଛୁଟଇ ଅର୍ଥାଂ ଆପେକ୍ଷିକ ଗତିତେ ଆଛ । ତାହଲେ ଦେଖଇ, ତୁମି ଏକଇ ସଙ୍ଗେ ଆପାତଦୃଷ୍ଟିତେ କାରଣ କାହେ ହିର, ଆର କାରଣ କାହେ ଗତିତେ ଆଛ । ତାହଲେ ପୃଥିବୀର ଉପରେର ଯେ କୋନ ହିତି ଏବଂ ଗତିଇ ଆପେକ୍ଷିକ ।

ଯଦି କୋନ ବସ୍ତୁର ଚାରପାଶେ ଅନ୍ୟ କୋନ ବସ୍ତୁ ପରମ ହିତିତେ ଥାକଣ ଏବଂ ତାର

সাপেক্ষে প্রথম বস্তুটির গতি নির্ধারণ করা যেত তবে সেই গতিকে পরম গতি বলা হত। পরম হিতি যেমন সম্ভব নয়, পরম গতিও তেমনি সম্ভব নয়।

চলন সংক্রান্ত কয়েকটি বাণিজ সংজ্ঞা নিচে দেওয়া হল।

(ক) সরুণ: কোন বস্তু যখন অবস্থানের পরিবর্তন করে তখন তাৰ প্রথম ও শেষ অবস্থাতিৰ মধ্যে সরল-বৈধিক দূৰত্বকে সরুণ বলে।

চিত্র 4.1

ধৰ, কোন বস্তুৰ প্রথম অবস্থান ছিল A বিন্দু এবং কিছু সময় পৰে B বিন্দুতে এসে উপস্থিত হল (চিত্র 4.1)। AB, ACB বা ADB যে কোন পথেই B বিন্দুতে আসা সম্ভব। কিন্তু

A ও B-ৰ মধ্যে সরলবৈধিক দূৰত্ব ABই হচ্ছে বস্তুটিৰ সরুণ। AB সরণেৰ শুধু মান নির্দেশ কৰে না, বস্তুটি যে A থেকে B বিন্দুতে AB পথে এসেছে, এই দিকও নির্দেশ কৰে।

মনে কৰ, একটি পিংপড়ে প্রথমে আকাৰাকা পথে 4 cm পথ দূৰত্ব OA অতিক্ৰম কৰল, পৰে A বিন্দু থেকে একইভাৱে AB পথ অতিক্ৰম কৰল (চিত্র 4.2)। AB পথ 3 cm এৰ সমান। O হচ্ছে পিংপড়েটাৰ প্রথম অবস্থান এবং B হচ্ছে শেষ অবস্থান। O ও B-ৰ মধ্যেকাৰ বৈধিক দূৰত্ব OB হচ্ছে পিংপড়েটাৰ সরুণ OB দিকে। OB রেখাৰ মান হচ্ছে

চিত্র 4.2

$$\begin{aligned}\sqrt{OB^2} &= \sqrt{OA^2 + AB^2} \\ &= \sqrt{4^2 + 3^2} \\ &= 5 \text{ cm}\end{aligned}$$

সরুণ একটি ভেক্টোৰ বাণি। কাৰণ এৰ মান ও দিক দুই-ই আছে। ত কথাটি দিয়ে সৱণ প্ৰকাশ কৰা হয়। সৱণেৰ একক এস আই পদ্ধতিতে মিটাৰ, সি জি এস পদ্ধতিতে মেট্ৰিটাৰ ও ৰিটিশ পদ্ধতিতে ফুট।

(খ) জ্ঞতি: সোজা বা বাঁকা পথে কোন বস্তু একক সময়ে যে দূরত্ব অতিক্রম করে তাকে বস্তুর জ্ঞতি বলে।

ধর, কোন বস্তুর প্রথম ও শেষ অবস্থানের দূরত্ব s এবং এই পরিবর্তন s সেকেণ্ড সময়ে ঘটেছে। একক সময়ে বস্তুটি s/t দূরত্ব ঘেটে পারে; এটিই হচ্ছে বস্তুটির জ্ঞতি। অতএব, বস্তুটির অবস্থানের পরিবর্তনের হারকেও তার জ্ঞতি বলে। জ্ঞতি বোঝাতে কোন দিকের প্রয়োজন হয় না। মনে কর, কোন লোক ঘটায় 50 km বেগে ছুটেছে। যে কোন দিকে সে ইচ্ছামত ছুটতে পারে—সোজা বা বাঁকা পথে। জ্ঞতি দেজত একটি স্কেলার রাশি।

এস আই পদ্ধতিতে জ্ঞতির একক প্রতি সেকেণ্ডে এক মিটার বা m/s , সি জি এস পদ্ধতিতে cm/s এবং এফ পি এস পদ্ধতিতে ft/s ।

(গ) বেগ: বস্তুর একক সময়ের সরণকে বেগ বলে। অর্থাৎ কোন বস্তু নির্দিষ্ট দিকে একক সময়ে যে দূরত্ব অতিক্রম করে তাই বস্তুর বেগ।

মনে কর, একটি বস্তু t সময়ে AB পথে s দূরত্ব অতিক্রম করল। বস্তুর বেগের মান হচ্ছে s/t এবং বেগের দিক হচ্ছে A থেকে B-র দিকে। স্বতরাং একটি বিশেষ দিকে নির্দিষ্ট জ্ঞতিকে বেগ বলে। বেগের মান ও দিক দুইই ধারায় বেগ একটি ভেক্টর রাশি।

কোন বস্তুর বেগ u বা v অক্ষের দিয়ে প্রকাশ করা হয়। এস আই পদ্ধতিতে বেগের একক m/s , সি জি এস পদ্ধতিতে cm/s এবং এফ পি এস পদ্ধতিতে ft/s । অনেক সময় ভেক্টর রাশি বোঝাতে রাশির মানের মাথায় তীর চিহ্ন $\rightarrow \rightarrow$ লেখা হয়। বেগের ক্ষেত্রে u বা v ব্যবহার করা হয়।

মনে কর, ABC একটি পথ (চিত্র 4.3)। ABC পথে একটি ট্যাক্সি যাচ্ছে যার জ্ঞতি স্পিডোমিটারে ধরা পড়ে। AB পথ থেকে BC পথে বাঁক নেবার সময় গাড়িটি দিক পরিবর্তন করল, কিন্তু স্পিডোমিটারের রিজিং এক আছে। স্বতরাং গাড়িটার জ্ঞতির মান অপরিবর্তিত আছে। এক্ষেত্রে গাড়ির বেগ পরিবর্তিত হচ্ছে। যে কোন বস্তুর বেগের দিক পরিবর্তিত হলে বেগও পরিবর্তিত হবে।

চিত্র 4.3

তিনটি কারণে বেগের পরিবর্তন আসতে পারে—(ক) দিক না পাইটিয়ে কেবল মান পাঁটালে, (খ) মান না পাইটিয়ে কেবল দিক পাঁটালে, এবং (গ) দিক ও মান দ্বইই পাঁটালে।

কোন বস্তু নির্দিষ্ট দিকে চলার সময়ে সমান অবকাশে সমান দূরত্ব অতিক্রম করলে তার বেগকে সময়বেগ বলে। না করলে অসময়বেগ বলে। আবার মান সমান থেকে দিক পাঁটালেও সেই বেগকে অসময়বেগ বলে।

অসময়বেগ বিশিষ্ট কোন বস্তু কোন নির্দিষ্ট সময়ে কোন দূরত্ব অতিক্রম করলে একক সময়ে অতিক্রান্ত গড়

A a b c d e f B

দূরত্বকে গড় বেগ বলে।

মনে কর, কোন বস্তু

t সেকেণ্ডে AB পথ যায়

চিত্র 4.4

(চিত্র 4.4)। মনে কর প্রথম সেকেণ্ডে Aa, দ্বিতীয় সেকেণ্ডে ab পথ অতিক্রম করে এবং এইভাবে t সেকেণ্ডের শেষে AB পথ অতিক্রম করে। তাহলে একক সময়ে বস্তুটি গড় দূরত্ব অতিক্রম করে $\frac{AB}{t}$ এবং এটিই তার গড় বেগ।

(ঘ) ভৱণ : একক সময়ে বেগ বৃদ্ধিকে ভৱণ বলে।

ধর, কোন বস্তু ক্রমবর্ধমান বেগ নিয়ে এগিয়ে চলেছে। তার বেগের পরিবর্তন তিনটি কারণে হতে পারে যা তোমরা একটু আগেই পড়েছ। মনে কর, কোন বস্তুর বেগ নির্দিষ্ট দিকে প্রতি 2 সেকেণ্ডে 10 cm বাড়ে। যদি তার আদি বেগ 30 cm/s হয় তবে দ্বিতীয় সেকেণ্ডের শেষে বেগ হবে 40 cm/s , তৃতীয় সেকেণ্ডের শেষে হবে 50 cm/s ইত্যাদি। সংজ্ঞা অনুযায়ী ভৱণ

$$= \frac{\text{বেগ বৃদ্ধি}}{\text{সময়}}.$$

এক্ষেত্রে ভৱণ = $\frac{1}{2}$ অর্থাৎ প্রতি সেকেণ্ডে 5 cm/s বা প্রতি বর্গসেকেণ্ডে $5 \text{ cm} (5 \text{ cm/s/s} \text{ বা } 5 \text{ cm/s}^2)$ ।

দেখতে পাচ্ছ ভৱণের একক হচ্ছে cm/s/s অর্থাৎ সেকেণ্ডের s দ্রবণ আসছে। বর্তমানে cm/s/s লেখার প্রচলন নেই। লেখা হয় cm/s^2 বা cms^{-2} ।

দৈর্ঘ্য, ভৱণ ও সময়ের মত বেগ ও ভৱণও ভৌত রাশি। ভৱণের মান

ধাক্কায় এবং দ্রবণ একটি বিশেষ দিকে নির্দিষ্ট বলে এটি ভেক্টর রাখি। প্রকাশ
করা হয় α অক্ষের দিয়ে। অনেক সময় ভেক্টর বোঝাতে α লেখা হয়।
আবার বেগ ও দ্রবণের একক প্রাথমিক নয়, লক।

এস আই পদ্ধতিতে দ্রবণের একক m/s^2 , সি জি এস পদ্ধতিতে cm/s^3
এবং এক পি এস পদ্ধতিতে ft/s^2 ।

দ্রবণ দ্রবকমের হতে পারে—সমত্বরণ ও অসমত্বরণ। সমান অবকাশে
বেগবৃক্ষি সমান হলে সমত্বরণ, আর না হলে অসমত্বরণ বলে।

(ড) মন্দন : একক সময়ে বেগের হ্রাসকে মন্দন বলে। মনে কর,
কোন একটি বস্তুর বেগ প্রতি সেকেন্ডে 2 cm/s করে কমে। তাহলে বস্তুর
মন্দন হচ্ছে 2 cm/s^2 । হতবাং মন্দন = - দ্রবণ। মন্দন হল ঝণাঝুক
দ্রবণ।

মন্দন ও দ্রবণের প্রতীক ও একক এক।

জড়তা বা জাড়

একটি মার্বেলকে আঙুলের টোকা দিলে সেটি চলতে থাকে। কিন্তু একটা
টেবিলকে নড়াতে হলে বেশ জোরে ধাক্কা দেওয়া দরকার। আবার কোন
বস্তুকে চালিয়ে দিলে কিছুক্ষণ পরেই থেমে যায়। তাকে সমবেগে চালাতে
হলে বাইরে থেকে বল প্রয়োগের প্রয়োজন হয়। আড়াই হাজার বছর আগে
গ্রীক দার্শনিক আরিস্ত্রিল অভিজ্ঞতা থেকে এই কথাই বলেছিলেন।

পরের যুগে গ্যালিলি ও কিন্তু ব্যাখ্যা করেছিলেন একটু অন্ত ভাবে। তিনি
বলেছিলেন, কোন বস্তুকে সমবেগে চলার জন্য বাইরের এই বলের প্রয়োজন
কেবল ঘর্ষণের উপস্থিতির জন্য। তিনি যুক্তি দিয়ে বললেন, ঘর্ষণ না থাকলে
কোন চলমান বস্তু চিরদিন চলতেই থাকবে। তার ব্যাখ্যা সাধারণ অভিজ্ঞতার
বাইরে। তাই অনেকের মনে থটকা লাগল। কোন বস্তু স্থিতিতে থাকলে
অবশ্য চিরদিনই স্থিতিতে থাকবে—এই ব্যাখ্যা কারণ মনে সন্দেহ জাগায়নি,
কারণ এটা সাধারণ অভিজ্ঞতা।

বস্তুর এই শর্কেকে জড়তা বা জাড় বলে। চলমান বস্তুর জড়তাকে
গতিজ্ঞতা ও স্থিত বস্তুর জড়তাকে স্থিতজ্ঞতা বলে। জাড় সূত্রের আদি
ভাগ্যকার স্বয়ং গ্যালিলি ও হলেও পরবর্তী যুগে বস্তুর গতির উপর বলের প্রভাব

নিয়ে শুব আইজাক নিউটন তিনটি সূত্র দিয়েছিলেন। এই তিনটি সূত্র নিউটনের পতিষ্ঠিত নামে বিখ্যাত।

নিউটনেৰ গতিসূত্ৰ

প্ৰথম সূত্ৰ : বাইৱে থেকে বল প্ৰয়োগ না কৱলে অচল বস্তু চিৱদিন অচল থাকবে এবং সচল বস্তু সমবেগে সৱল রেখা পথে চিৱদিন চলতে থাকবে।

দ্বিতীয় সূত্ৰ : বস্তুৰ ভৱবেগেৰ পৱিবৰ্তনেৰ হাৰ প্ৰযুক্তি বলেৰ সমামুপাত্তিক এবং বল যে দিকে ক্ৰিয়া কৱে ভৱবেগেৰ পৱিবৰ্তন সেই দিকে ঘটে।

তৃতীয় সূত্ৰ : প্ৰত্যেক ক্ৰিয়াৰ একটি সমান ও বিপৰীত প্ৰতি-ক্ৰিয়া থাকে।

প্ৰথম সূত্ৰেৰ ব্যাখ্যা—প্ৰথম সূত্ৰেৰ প্ৰথম অংশে দেখা যায়, কোন বস্তু হিৱ থাকলে চিৱদিন হিৱ থাকবে এবং চলতে থাকলে চিৱদিন চলবে। এই অবস্থাৰ পৱিবৰ্তন বস্তু নিজে থেকে কৱতে পাৰে না। বস্তুৰ এই ধৰ্মকে জড়তা বলে। জড়তাৰ বেশি হলৈ বস্তুৰ অবস্থা পৱিবৰ্তন কৱতে বেশি বলেৰ প্ৰয়োজন হয়। যে কোন বস্তুৰ জড়তা একটি মৌলিক ধৰ্ম। কোন বস্তুৰ জড়তাৰ পৱিমাপকে তাৰ ভৱ বলে। যে বস্তুৰ ভৱ বেশি তাৰ জড়তাৰ বেশি। কিছু পৱেই তা জানতে পাৰবে।

প্ৰথম সূত্ৰেৰ দ্বিতীয় অংশ থেকে জানতে পাৰবে, বল কাকে বলে। কোন বস্তুৰ অবস্থাৰ পৱিবৰ্তন কৱতে হলৈ বাইৱে থেকে কিছু প্ৰয়োগ কৱতে হয়। স্থিৰ বস্তুকে সচল কৱতে বা সচল বস্তুকে অচল কৱতে বা বস্তুৰ গতি বাড়াতে বা কমাতে বা দিক পৱিবৰ্তন কৱতে বাইৱে থেকে যা প্ৰয়োগ কৱা হয় তাকে বলা হয় বল। প্ৰতীক *P*।

জাড়েৰ উদাহৰণ

ক্যার্য থেলাৰ ময় তোমৰা দেখেছ যে একটা ঘুটি আৰ একটা ঘুটিৰ উপৰ থাকাৰ ময় ষ্টাইকৰি দিয়ে নিচেৰ ঘুটিতে আঘাত কৱলে অনেক ময় উপৰেৰ ঘুটি মৰে যায় না। এটা স্থিতিজ্ঞাড়োৰ উদাহৰণ। একটা ফাসেৰ উপৰ এক

টুকরো পিজবোর্ড রেখে তার উপর একটা দশ পয়সা রাখ (চিত্র ৪.৫)। এখন জোরে পিজবোর্ডটাকে আঘাত করলে দেখবে মূল্যাটি পিজবোর্ডের সঙ্গে ছুটে

চিত্র ৪.৫

না গিয়ে প্লাসের ভিতরে পড়বে। ট্রায়ে বাসে চলার সময়ও তোমাদের জাড়োর অভিজ্ঞতা হয়। যখন বাস হঠাৎ চলতে শুরু করে, তখন যাত্রীরা পিছন দিকে হেলে পড়ে, আবার চলন্ত বাস ধারলে সামনের দিকে ঝুঁকে পড়ে। প্রথমটি স্থিতি ও দ্বিতীয়টি গতিজ্ঞাড়ের উদাহরণ। লং জান্সের আগে খেলোয়াড় প্রথমে কিছু দূর দৌড়ে এসে তবে লাফ দেয়। তার গতিজ্ঞাড় তাকে বেশি লাফাতে সাহায্য করে।

দ্বিতীয় স্থূলের ব্যাখ্যা—দ্বিতীয় স্থূল থেকে আমরা বলের পরিমাপ এবং বল ও ভরণের সম্পর্ক জানতে পারি। দ্বিতীয় স্থূলের আলোচনার আগে ভর-বেগের সংজ্ঞা জানতে হবে।

ভরবেগ : কোন গতিশীল বস্তুতে ভর ও বেগের সমষ্টিকে যে ধর্মের স্থষ্টি হয় তাকে ভরবেগ বা মোমেন্টাম বলে। ভরবেগের মান বস্তুর ভর ও বেগের গুণফলের সমান। ভরবেগ একটি ভেক্টর রাশি। বেগের দিক অনুযায়ী ভরবেগের দিক স্থির করা হয়। ভরবেগের একক সি জি এস পদ্ধতিতে g.cm/s , এস আই পদ্ধতিতে kg. m/s এবং এফ পি এস পদ্ধতিতে lb. ft/s । প্রতীক p ।

মনে কর, সরলরেখায় চলমান কোন বস্তুর ভর m , প্রাথমিক বেগ v এবং একটি বল F বস্তুর উপর কাজ করছে। t সেকেণ্ড পরে প্রযুক্ত বলের প্রভাবে বস্তুর বেগ হল v ।

$$\text{অতএব ভৱেগের পৰিবৰ্তন হবে } \frac{m(v-u)}{t} = ma$$

অৰ্থাৎ প্ৰযুক্তি বলেৰ প্ৰয়োগে বস্তুটিতে a দৰণেৰ স্থিতি হয়েছে। সূত্ৰ অনুধাবী

$$F \propto ma,$$

$$= k ma$$

k একটি সমাহুপাতিক ধ্রুবক। যে বল একক ভৱেৰ একটি বস্তুৰ উপৰ প্ৰযুক্তি হয়ে একক দৰণেৰ স্থিতি কৰে সেই বলকে একক বল বলা হয়। অৰ্থাৎ $m=1$, $a=1$ এবং $F=1$ হলে $k=1$ হবে। অতএব $F=ma$ ।

বল একটি ভেষ্টিৰ বাণি, লেখা হয় F অক্ষৰ দিয়ে। উপৰেৰ সমীকৰণ থেকে তোমৰা বলেৰ একক বাই কৰতে পাৰবে। নিচয়ই লক্ষ্য কৰেছ বলেৰ একটি নিৰ্দিষ্ট দিক ও একটি প্ৰয়োগ বিন্দু আছে।

সি জি এস পদ্ধতিতে বলেৰ একক ডাইন, এস আই পদ্ধতিতে নিউটন এবং এফ পি এস পদ্ধতিতে পাউণ্ড।

ডাইন—যে বল 1 g ভৱেৰ উপৰ প্ৰযুক্তি হয়ে 1 cm/s^2 দৰণ স্থিতি কৰে তাকে এক ডাইন বলে। ডাইন প্ৰকাশ কৰা হয় dyn লিখে। সূত্ৰঃ $1\text{ dyn} = 1\text{ g. cm/s}^2$ ।

নিউটন—যে বল 1 kg ভৱেৰ উপৰ প্ৰযুক্তি হয়ে 1 m/s^2 দৰণ স্থিতি কৰে তাকে এক নিউটন বলে। নিউটনেৰ প্ৰতীক চিহ্ন N। অতএব

$$1\text{ N} = 1\text{ kg.m/s}^2$$

পাউণ্ড—যে বল 1 lb ভৱেৰ উপৰ প্ৰযুক্তি হয়ে 1 ft/s^2 দৰণেৰ স্থিতি কৰে তাকে এক পাউণ্ড বলে। $1\text{ পাউণ্ড} = 1\text{ lb ft/s}^2$ ।

নিউটন ও ডাইনেৰ সম্পর্কঃ $1\text{ N} = 10^3\text{ g} \times 10^2\text{ cm/s}^2 = 10^5\text{ dyn}$ ।

তৃতীয় সূত্ৰেৰ ব্যাখ্যা—যদি কোন বস্তু অন্য একটি বস্তুৰ উপৰ বল প্ৰয়োগ কৰে তবে দ্বিতীয় বস্তুটিৰ প্ৰথম বস্তুৰ উপৰ একটি সমান ও বিপৰীত বল প্ৰয়োগ কৰবে। প্ৰথম বলটিকে ক্ৰিয়া বলা হলে, দ্বিতীয়টিকে বলা হবে প্ৰতিক্ৰিয়া। এইটিই নিউটনেৰ তৃতীয় সূত্ৰ।

(ক) টেবিলেৰ উপৰ একটা বই ৰেখেছ। বইটা ওজনেৰ জন্ম সোজা পৃথিবীৰ কেন্দ্ৰে যাওয়াৰ কথা। কিন্তু টেবিলেৰ উপৰ হিৰ ভাবে পড়ে থাকাৰ একমাত্ৰ কাৰণ হতে পাৰে টেবিল নিশ্চয়ই উপৰ দিকে সমান বল প্ৰয়োগ কৰছে।

টেবিলের প্রয়ুক্তি বল বেশি হলে বইটা আপনা আপনি উপর দিকে উঠত আবকম হলে টেবিল ভেদ করে নিচের দিকে নামত। টেবিলে না বেথে হাতে রাখলে অহুভব করতে পারবে শাংসপেশীর সাহায্যে তোমরা উপর দিকে বল প্রয়োগ করছ।

(খ) যখন তোমরা ইঁট তখন পা দিয়ে মাটিতে বল প্রয়োগ কর। মাটিও তোমার উপর বল প্রয়োগ করে। এই বলের সামনের অংশ তোমাকে ইঁটিতে সাহায্য করে।

(গ) নৌকো থেকে নাক দিয়ে যদি তীব্রে নেমে পড় দেখবে নৌকোটা পিছনে সরে যাচ্ছে। তুমি যেই নৌকোতে বল প্রয়োগ করলে, নৌকোর প্রতিক্রিয়া তোমাকে সামনের দিকে ঠেলে তীব্রে নামতে সাহায্য করল।

(ঘ) একটি বেলুনকে ফুলিয়ে যদি ছেড়ে দাও, দেখবে, বেলুনের মুখ দিয়ে যে দিকে হাওয়া বেরিচ্ছে, বেলুনটা তার উলটো দিকে সরে যাচ্ছে। বেলুনের মুখ দিয়ে বাতাস যখন বেরিয়ে যাচ্ছিল তখন তার প্রতিক্রিয়া বেলুনকে পিছন দিকে ঠেলে দিচ্ছিল।

(ঙ) তোমরা রকেটের কথা নিশ্চয় শনেছ। হাউই বাজী আকাশে উঠতে নিশ্চয় দেখেছ। হাউই-এর এক প্রাণ মোটা। তার ভিতর বিস্ফোরক পদার্থ থাকে। হাউইকে মাটির উপর বসিয়ে মাটির দিকে মুখ করে যে পলতে থাকে তাতে আগুন লাগিয়ে দিতে হয়। পলতেটা ধরলে ভিতরের বিস্ফোরক পদার্থে আগুন লাগে ও ভিতরে প্রচুর গ্যাস স্থষ্টি হয়। এই গ্যাস নিচের দিকের মুখ দিয়ে বেরিয়ে এলে গ্যাসের প্রতিক্রিয়া হাউইকে উপর দিকে ঠেলে দেয়।

রকেটও একই ভাবে আকাশে উঠে। রকেটে পর্যাপ্ত বল স্থষ্টি হলে সেটি হাউই-এর মত পৃথিবীতে ফিরে না। এসে পৃথিবীর অভিকর্ত্ত্ব বল এড়িয়ে মহাশূণ্যে চলে যায়। রকেটের মধ্যে কঠিন বা তরল জ্বালানি থাকে। এই জ্বালানি যখন অঙ্গিজনের সংস্পর্শে এসে পৃড়তে থাকে তখন প্রচণ্ড গ্যাস নিচের দিকে নামতে থাকলে রকেটটি প্রতিক্রিয়ার জন্য জ্বালে উপর দিকে উঠতে থাকে। অনেক রকেটে পারমাণবিক জ্বালানি ব্যবহার করা হয়। অভিকর্ত্ত্ব বলের প্রভাব মুক্ত হওয়ার জন্য প্রচণ্ড বল প্রয়োজন হওয়ায় রকেট সাধারণত অনেকগুলি থাক বা স্তরে বিভক্ত। একটি স্তর পৃড়ে উপরে উঠে যাওয়ার পর অ্যাটিতে আগুন লাগে এবং সেটি কাজ করতে থাকে।

জাড় ভৱ

তোমৰা পড়েছ জাড় পদাৰ্থেৰ একটি ধৰ্ম। ধৰ, দুটো মাদ্বেল নিয়েছ, একটি অন্তিৰ চেয়ে তাৰী। দুটো বস্তুতে যদি একই টোকা দাও অৰ্থাৎ একই বল প্ৰয়োগ কৰ তবে হালকা মাৰ্বেলটি বেশি দূৰ যাব এবং তাৰীটি কম দূৰ যাব। একই বল প্ৰয়োগে হালকাটিতে বেশি দূৰণ ও তাৰীটিতে কম দূৰণ স্থষ্টি হয়েছে।

কোন বস্তুতে F বল প্ৰয়োগ কৰলে যদি a দূৰণেৰ স্থষ্টি হয়, তবে F বল a দূৰণেৰ সমানুপাতিক। F ও a ৰ অনুপাতকে বস্তুৰ ভৱ বলে। বস্তুৰ এই ভৱকে জাড় ভৱ বলা হয়। দুইটি বস্তুৰ ভৱ যদি m_1 ও m_2 হয় এবং একই বলেৰ প্ৰয়োগে তাৰেৰ মধ্যে a_1 ও a_2 দূৰণেৰ স্থষ্টি হয় তবে তাৰেৰ মধ্যেৰ সম্পৰ্ক হবে

$$\frac{m_1}{m_2} = \frac{a_2}{a_1}$$

হতৰাং দেখতে পাচ্ছ, একই নিৰ্দিষ্ট বল প্ৰয়োগ কৰলে যে বস্তুতে বেশি দূৰণেৰ স্থষ্টি হয়, তাৰ জড়তা কম ও যে বস্তুতে কম দূৰণেৰ স্থষ্টি হয় তাৰ জড়তা বেশি।

କାଜ, ଶକ୍ତି ଓ କ୍ରମତା

କାଜ

କାଜ ବା କାର୍ଯ୍ୟ ବା ଇଂରେଜୀତେ Work କଥାଟି ତୋମାଦେର ଅଜାନା ନୟ । ନିଜେରୁଙ୍ଗେ ଯେ ପ୍ରତିଦିନ କତ କାଜ କର ତାର ଠିକ ନେଇ । ଖେଳାଧୂଳା, ଦୌଡ଼ାନ, ହାଟୀ, ମୋଟ ବଓୟା, ବାସନ ମାଜା, ସବହି କାଜ । ଏହନ କି ବହି ପଡ଼ାକେ ଓ ତୋମରୀ କାଜ କରା ବଲ । ବହି ପଡ଼ା କିନ୍ତୁ କାଜ ନୟ । ବିଜ୍ଞାନେର ଭାଷାଯ କାଜ କାକେ ବଲେ ଜାନ ?

ବଲ କାକେ ବଲେ ପଡ଼େଛ । କୋନ ବଞ୍ଚିର ଉପର ବଲ ପ୍ରୟୋଗ କରଲେ ବଞ୍ଚି ସ୍ଥାନାନ୍ତରିତ ହୟ । ବଞ୍ଚିଟିର ଉପର ବଲେର ପ୍ରୟୋଗବିନ୍ଦୁ ଯେ ଦୂରତ୍ବେ ସ୍ଥାନାନ୍ତରିତ ହୟ ମେହି ସରଣ ଓ ବଲେର ଶୁଣଫଳକେ ବିଜ୍ଞାନେର ଭାଷାଯ କାଜ ବଲେ । ବହି ପଡ଼ିବେ କୋନ ବଲେର ପ୍ରୟୋଜନ ହୟ ନା । ସ୍ଵତରାଂ ଏଟା କାଜ ନୟ । ଆବାର କୋନ ବଞ୍ଚିର ଉପର ବଲ ପ୍ରୟୋଗ କରଲେ ବଞ୍ଚି ଯଦି କୋନ ଦୂରତ୍ବେ ମରେ ନା ଯାଯ ତବେ ମେଟାକେ ଓ କାଜ ବଲା ହବେ ନା । ସେମନ ଧର ସରେର ଦେଖ୍ୟାଲକେ ଯତ ଜୋରେଇ ଠେଲ ନା କେନ, ନଡ଼ାତେ ପାରବେ ନା, ସ୍ଵତରାଂ ଏଟାଓ କାଜ କରା ହବେ ନା ।

ଧର କୋନ ବଞ୍ଚିର ଉପର ବଲ F ପ୍ରୟୋଗ କରେ ବଞ୍ଚିଟିକେ s

ଦୂରତ୍ବେ ମରିଯେଛ (ଚିତ୍ର 5.1a) ।

ଏକେତେ ବଲେର ଅଭିମୁଖ ଓ
ବଞ୍ଚିଟିର ସ୍ଥାନଚୂତି ଏକଇ ଦିକେ ।

ମଂଞ୍ଜା ଅନ୍ୟାନ୍ୟ କାଜ $W=F.s$ ।

ଚିତ୍ର 1.5

$F=0$ ଅର୍ଥାଂ କୋନ ହିଂଦୁ ବଞ୍ଚିକେ ଚୁପଚାପ ଧରେ ବସେ ଥାକଲେ କାଜେର ପରିମାଣ ହବେ ଶୂନ୍ୟ । ଆବାର $s=0$ ହଲେ ଅର୍ଥାଂ ଯତ ଜୋରେଇ ଠେଲୀ ଦାଓ ନା କେନ, ବଞ୍ଚିଟିକେ ନା ସରାତେ ପାରିଲେ, କାଜେର ପରିମାଣ ହବେ ଶୂନ୍ୟ ।

ବଞ୍ଚିର ସ୍ଥାନଚୂତି ଯେ ସବ ସମୟ ବଲେର ଦିକେ ହବେ ତାର କୋନ ଅର୍ଥ ନେଇ । ଚିତ୍ର 5.1b ଦେଖିଲେ ବୁଝାତେ ପାରବେ । ଯନେ କର, ଏକଟି ଚଲମାନ ବଞ୍ଚିକେ ଥାମାବାର ଜଣ୍ଯ F ବଲ ତୀର ଚିହ୍ନିତ ଦିକେ ବଞ୍ଚିଟିର ଚଲାର ବିପରୀତ ଦିକେ ପ୍ରୟୋଗ କରା ହଲ । ବଞ୍ଚିଟିର ପ୍ରାଥମିକ ଅବହାନ A ଏବଂ ଶେଷ ଅବହାନ B ହଲେ ବଲେର ପ୍ରୟୋଗବିନ୍ଦୁ AB ଦୂରତ୍ବେ ସ୍ଥାନାନ୍ତରିତ ହେବେ ବଲେର ଉଲଟୋ ଦିକେ । ସ୍ଵତରାଂ କାଜେର ମାନ ହଛେ $F \times AB$ । ଏକେତେ ବଲେର ବିରକ୍ତ କାଜ ହେବେ ।

কাজেৰ মান বুঝতে কোন দিকেৰ প্ৰয়োজন হয় না। বল যে দিকেই হোক না কেন বস্তু যে দূৰত্বে স্থানান্তৰিত হয় সেই দূৰত্ব ও বল এই দুইয়েৰ গুণফলকে কাজ বলে। স্বতৰাং কাজ একটি স্কেলাৰ বাণি। প্ৰতীক চিহ্ন W ।

একক বল এবং বলেৰ প্ৰয়োগবিন্দুৰ একক দূৰত্বে স্থানচূড়াতিৰ গুণফলকে বলে একক কাজ। সি জি এম পদ্ধতিতে কাজেৰ একক হচ্ছে আৰ্গ। কোন বস্তুৰ উপৰ এক ডাইন বল প্ৰয়োগ কৰলে যদি বস্তুটি এক সেটিমিটাৰ দূৰত্ব সৱে যায়, তবে মেট কাজেৰ পৰিমাণ হবে এক আৰ্গ। আৰ্গ এককটি erg অক্ষৰ দিয়ে প্ৰকাশ কৰা হয়। স্বতৰাং $1 \text{ erg} = 1 \text{ g. cm}^2/\text{s}^2$ ।

এম আই পদ্ধতিতে কাজেৰ একক জুল। যদি এক নিউটন বল কোন বস্তুকে প্ৰয়োগ কৰলে বস্তুটি এক মিটাৰ সৱে যায় তবে সেই কাজকে এক জুল বলা হয়। জুল এককটিকে J অক্ষৰ দিয়ে লেখা হয়। স্বতৰাং $1 \text{ J} = 1 \text{ kg. m}^2/\text{s}^2$ ।

এফ পি এম পদ্ধতিতে কাজেৰ একককে বলে ফুট পাউণ্ডাল। এক পাউণ্ডাল বল কোন বস্তুৰ উপৰ কাজ কৰে যদি বস্তুটিকে এক ফুট দূৰত্ব সৱায় তবে কাজেৰ পৰিমাণ হবে এক ফুট-পাউণ্ডাল। এককটিকে ft-poundal লেখা হয়।

শক্তি

কাজ যে সব সময় মাঝুষ কৰে তাই নহ। জড় বস্তুতেও কাজ কৰতে পাৰে। যেমন মালগাড়ি মাল বয়, পাখা ঘোৱে, স্প্রিং দম দেওয়া অবস্থায় বড়িৰ কাটা ঘোৱায়, জল টাৰবাইনেৰ চাকা ঘূৰিয়ে বিহাং উৎপাদন কৰে ইত্যাদি। যে কোন বস্তুৰ কাজ কৰাৰ সামৰ্থ্যকে বলে শক্তি বা ইংৰেজীতে এনার্জি।

কোন বস্তুৰ উপৰ কাজ কৰলে বস্তুটিৰ শক্তি বৃদ্ধি পায়। যেমন কোন বস্তুকে মাটি থেকে তুললে তাৰ শক্তি বৃদ্ধি পায়, বড়িৰ স্প্রিংকে দম দিলে স্প্রিংটিৰ শক্তি বৃদ্ধি পায়। আবাৰ বস্তুটি যথন কাজ কৰে তখন তাৰ শক্তি হ্ৰাস পায়। উপৰ থেকে মাটিতে পড়লে বস্তুৰ শক্তি হ্ৰাস পায়।

কাজেৰ যত শক্তিৰ একটি বাণি। শক্তিৰ একক ও কাজেৰ একক হ'বহ এক। E অথবা W অক্ষৰ দুটি হচ্ছে শক্তিৰ প্ৰতীক চিহ্ন।

সি জি এস পদ্ধতিতে শক্তির একক আর্গ, এস আই পদ্ধতিতে ভুল ও এফ পি এস পদ্ধতিতে ফুট-পাউণ্ড।

ক্ষমতা

এতক্ষণ কাজ করার কথা বলা হয়েছে। কিন্তু সময়ের কথা বলা হয়নি। কোন কাজ এক সেকেণ্টে করা যায়, আবার এক বছরেও করা যায়। কিন্তু কাজ করার হার দ্রুটি ক্ষেত্রে এক নথ। মনে কর কোন কাজ W , t সময়ে করা হল। তাহলে প্রতি একক সময়ে কাজ করার হার W/t । কাজ করার হারকে ক্ষমতা বা পাওয়ার বলে। ক্ষমতা একটি স্থলাব রাশি। প্রকাশ করা হবে P অক্ষর দিয়ে।

এস আই পদ্ধতিতে কাজ করার একককে বলে ওয়াট। এক সেকেণ্টে এক ভুল কাজ করার ক্ষমতাকে বলে এক ওয়াট। এই একক W অক্ষর দিয়ে প্রকাশ করা হয়। পরে জানতে পারবে যে বিদ্যুতের ক্ষেত্রে ওয়াট একটি ব্যবহার হয়। এক তোট বিত্তৰ প্রতিদের মধ্যে দিয়ে এক অ্যাম্পিয়ার বিদ্যুৎ-প্রবাহ চলাচল করলে তার ক্ষমতা হয় এক ওয়াট। এক ওয়াট ব্যবহারিক একক হিসেবে ছোট হওয়ায় কিলোওয়াটের সংজ্ঞা থেকে আব একটি একক বর্তমানে খুব বেশি ব্যবহার করা হয়। একে বলে কিলোওয়াট-ষষ্ঠ। এককটি লেখা হয় kWh অক্ষর দিয়ে। আমরা বাড়তে যে বিদ্যুৎশক্তি ব্যবহার করি তার দাম দেওয়া হয় কিলোওয়াট-ষষ্ঠ। এককে।

এফ পি এস পদ্ধতিতে ক্ষমতার একককে বলে হর্স-পাওয়ার। প্রতি সেকেণ্টে 550 ফুট পাউণ্ড কাজ করার ক্ষমতাকে বলে এক হর্স-পাওয়ার। লেখা হয় hp অক্ষর দিয়ে। $1\text{ hp} = 745.7\text{ W}$ ।

স্থিতিশক্তি

স্থিতিশক্তি বা পোটেনশিয়াল এনার্জি হচ্ছে যান্ত্রিক শক্তির একটি বিশেষ রূপ। অবস্থা বা অবস্থানের জগ্ন কোন বস্তুর শক্তিকে বলে স্থিতিশক্তি।

মনে কর, একটি বস্তুর ওজন হচ্ছে mg । তুমি বস্তুকে h উচ্চতায় উঠিয়ে রাখলে। ওজন পৃথিবীর কেন্দ্রের অভিযুক্তি বল। ভূপৃষ্ঠ থেকে h উচ্চতায় বস্তুকে তুলে ধরতে তুমি এই বলের বিরুদ্ধে কাজ করেছ। সংজ্ঞা অনুযায়ী এই

কাজের পরিমাণ, বল ও যে উচ্চতায় বস্তুটিকে সরিয়ে রাখলে তাদের গুণফল। এক্ষেত্রে এই কাজের পরিমাণ mgh (চিৰ 5.2)। তুমি যে কাজ কৰলে সেই কাজ বস্তুতে শক্তি হয়ে জমা ধাকল। শুধু যে উচুতে কোন বস্তুকে রাখলে স্থিতিশক্তি হয় তা নয়। বস্তু অবস্থার জন্যও হতে পাবে। কোন স্থিংকে দম দিলে স্থিংএ স্থিতিশক্তিৰ সংঘাৰ হয়। এই স্থিতিশক্তি ধীৰে ধীৰে ষড়িৰ কাটা ঘোৱায় অর্থাৎ কাজ কৰে। তীৰ ছোড়াৰ সময় ধমুকেৰ স্থিতিশক্তি তীৰ ছোড়াৰ কাজ কৰে। সংকুচিত গ্যাস স্থীৰ এঞ্জিনে যথন পিস্টনকে

চিৰ 5.2

সামনেৰ দিকে ছুড়ে দেয় সেটাও স্থিতিশক্তিৰ উদাহৰণ। স্থিতিশক্তিৰ আৱ একটা সুন্দৰ উদাহৰণ দেখ। মনে কৰ বেশ বড় ভাবী একটা পাথৰ মাটিৰ উপৰ পড়ে আছে। তোমৰা নিৰ্ভয়ে তাৰ পাশে ঢাঢ়াতে বা তাৰ উপৰ উঠে বসতে পাৰ। কিন্তু সেই পাথৰটি যদি একটা দড়ি দিয়ে বেঁধে তোমাৰ মাথাৰ একটু উপৰে ঝুলিয়ে রাখা হয়, তুমি ভয়ে কাপবে। একটু ভাবলেই বুৰতে পাৰিবে তয় তোমাৰ পাথৰটিকে নয়, অবস্থানেৰ অন্ত পাথৰেৰ স্থিতিশক্তিকে।

দৈনন্দিন জীবনে স্থিতিশক্তিৰ অনেক উদাহৰণ তোমৰা পাৰে।

গতিশক্তি

গতিশক্তি বা কাইনেটিক এনার্জি যান্ত্ৰিক শক্তিৰ আৱ একটি বিশেষ ক্রপ। গতিৰ অন্ত কোন গতিশীল বস্তুৰ যে শক্তি তাকে বলে গতিশক্তি।

মনে কৰ, কেউ হাতুড়ি দিয়ে দেৱালে একটা পেৰেক ঠুকছে, হাতুড়িটাকে অতগতিতে টেনে এনে পেৰেকেৰ গায়ে মাৰছে, অর্থাৎ হাতুড়িৰ গতিশক্তি এখানে কাজ কৰছে।

বস্তুৰ ভৱ m এবং বেগ v হলে গতিশক্তি = $\frac{1}{2} m v^2$ । এৱ প্ৰমাণ তোমৰা পৰে পড়বে।

গতিশক্তিৰ অনেক উদাহৰণ লক্ষ্য কৰলেই দেখতে পাৰে। এই শক্তিকে কাজে লাগিয়ে অন্ত শক্তি উৎপাদন কৰা যায়। জলপ্ৰপাতেৰ পড়স্তু জলেৰ শোভে যথন কোন টাৰবাইন ঘোৱান হয়, তথন তাৰ গতিশক্তিকে কাজে

লাগিয়ে বিদ্যুৎশক্তি উৎপাদন করা হয়। বহু প্রাচীন কাল থেকে বায়ুশক্তিকে কাজে লাগান হয়ে থাকে। এই যন্ত্রকে উইগমিল বা বাতচক্র বলে। ইলাণ্ডে সব সময় প্রচণ্ড হাওয়া বয়, সেখানে উইগমিলের খুব চলন আছে। যাদবগুর বিশ্ববিদ্যালয়ে একটি উইগমিল আছে। জোয়ার-ভাটার জন্য জলে যে শ্রেত হয়, তাও কাজে লাগিয়ে কোন কোন দেশে বিদ্যুৎশক্তি উৎপাদন করা হয়ে থাকে।

গতিশক্তি ও স্থিতিশক্তির ক্রপান্তর

তোমরা পড়েছ, গতিশক্তিকে স্থিতিশক্তিতে এবং স্থিতিশক্তিকে গতিশক্তিতে ক্রপান্তরিত করা যায়। সবল দোলক একটি উদাহরণ। দোলকটি যখন তার পথের সবচেয়ে নিচে আসে তখন তার বেগ সবচেয়ে বেশি হওয়ায় গতিশক্তি ও সবচেয়ে বেশি। আবার দোলকটি যখন তার পথের শেষ প্রান্ত দুটির যে কোন একটিতে আসে, তখন তার বেগ শূন্য কিন্তু অবস্থানের উচ্চতা সবচেয়ে বেশি। তখন তার স্থিতিশক্তি ও সবচেয়ে বেশি। দোলনের সময় দোলকটির স্থিতিশক্তি

চিত্র 5.3

গতিশক্তিতে এবং গতিশক্তি স্থিতিশক্তিতে ক্রপান্তরিত হয়ে থাকে। পথের অন্য যে কোন স্থানে দোলকটির স্থিতিশক্তি ও গতিশক্তি দুই থাকে এবং এই দুই শক্তির মোট পরিমাণ সর্বত্র সমান।

পরীক্ষা করে দেখ। একটা ছোট দোলক A নাও (চিত্র 5.3)। দোলকটির দোলন পথের একপাশে একটি স্প্রিং রাখা আছে। এর একটি মাথায় একটি ছোট প্রেট আটকান আছে এবং অন্য প্রোটটি একটা বড় প্রেটে শক্ত ভাবে আটকান। A দোলকটি যখন B প্রেটে এসে সঙ্গেরে আঘাত দেয়, তখন স্প্রিংটি সংকুচিত হয়। দোলকটির গতিশক্তি স্প্রিং-এর স্থিতিশক্তিতে ক্রপান্তরিত

হয়। এখন দোলকটি স্থিৰ অবস্থায় এলে সংকুচিত শ্রিংটি দোলকটিকে সজোৱে ঠেলে দেয়। কলে শ্রিং-এৰ স্থিতিশক্তি আবাৰ দোলকেৰ গতিশক্তিতে ক্ৰপাস্তৱিত হয়। এই অবস্থায় গতিশক্তি ও স্থিতিশক্তি একে অন্ততে ক্ৰপাস্তৱিত হতে পাৰে।

সাধাৰণ ঘন্টা

যুগ যুগস্থ ধৰে মানুষ তাৰ পৱিত্ৰ কমাৰৰ জন্য বিভিন্ন ঘন্টৰ উন্নাবন কৰেছে। আজকেৰ দিনে কত বড় কলকাৰখানা তোমৰা দেখতে পাৰে চাৰ পাশে। কিন্তু সে যুগে যথন মানুষেৰ জ্ঞান ছিল সীমাবদ্ধ, তখনও বিভিন্ন ছোটখাট ঘন্টৰ সাহায্যে সে তাৰ পৱিত্ৰমেৰ লাভৰ কৰত। লিভাৰ এবং চাকা ও অক্ষদণ্ড বহুদিনকাৰ ব্যবহৃত ছুটি ঘন্ট।

(ক) লিভাৰ—ধৰ, একটা বড় পাথৰকে তুঁমি সৱাবে। কাজটা বেশ শক্ত। কিন্তু একটা শক্ত বাঁশ বা লোহাৰ বড় ও ছোট পাথৰেৰ সাহায্যে এটাকে নড়াতে পাৰবে। চিত্ৰ 5.4-এ ঘেমনটি আছে, সেভাবে ছোট পাথৰ ও লোহাৰ বড়টিকে বসাও। বড় পাথৰটিকে বড়েৰ এক প্রাণ্টে বেথে ছোট পাথৰটিকে মাৰে বেথে তাৰ গায়ে বড়টি বাঁথ। বড়েৰ অন্ত প্রাণ্টে তোমাকে চাপ দিতে

হবে। লক্ষ্য কৰ ছোট পাথৰ ও বড় পাথৰেৰ মাৰেৰ বড়েৰ অংশ, ছোট পাথৰ ও তোমাৰ হাতেৰ মাৰেৰ বড়েৰ অংশেৰ চেয়ে অনেক ছোট। এইবাৰ চাপ দিলেই দেখবে বড় পাথৰটি নড়ে উঠবে।

চিত্ৰ 5.4

তোমাৰ দিকেৰ বড়েৰ

অংশেৰ চেয়ে অন্ত প্রাণ্টকে যতই ছোট কৰবে কাঞ্চ কণাৰ সুবিধা ততই বেশি হবে।

বড় বোৰা সৱাৰৰ জন্য এই ধৰনেৰ ঘন্টকে বলা হয় লিভাৰ। যে বিন্দুৰ

ଉପର ଲିଭାର ଯାଥା ହୁଏ, ତାକେ ବଲୀ ହୁଏ ଆଲଦ୍ଧ ବା ଫାଲକ୍ରାମ । ବୋବା ଓ ଆଲଦ୍ଧର ମଧ୍ୟେ ଲିଭାର ଅଂଶକେ ବଲେ ଭାର ବାହୁ ଏବଂ ପ୍ରୟାସ ଓ ଆଲଦ୍ଧର ମଧ୍ୟେ ଲିଭାରେ ଅଂଶକେ ବଲେ ପ୍ରୟାସ ବାହୁ ।

ଲିଭାରେ କାଂଜ ବୁଝିବାର ଆଗେ ବଲେର ଭାରକ କାକେ ବଲେ ଦେଖ । ଦରଜା ଲାଗାବାର ସମୟ ଦରଜାର ଏକ ପ୍ରାଣ୍ତ ହାତ ଦିଯେ ଠେଲ । ଦରଜାଟା କଜାକେ କେନ୍ଦ୍ର କରେ ଘୋରେ । କିନ୍ତୁ କଜାର ବେଶ କାହେ ହାତ ଏମେ ଯଦି ଦରଜାଟାକେ ଠେଲ, ଦେଖିବେ ଏକଇ ଦରଜାକେ ଠେଲତେ ବେଶ ଜୋର ଲାଗଛେ । ଶୁଦ୍ଧ ଦରଜା କେନ, ଯେ କୋନ ଜିନିସେର ବେଳାଯ ତୋମାଦେର ଏକଇ ଅଭିଜ୍ଞତା ହବେ । କଜାକେ ଆମରା ଯଦି ଅକ୍ଷ ବଲି ତବେ ବଲେର ପ୍ରୟୋଗବିନ୍ଦୁ ଯତଇ ଅକ୍ଷେର କାହେ ଆସିବେ ବଲେର ପରିମାଣ ତତତ୍ତ୍ଵ ବେଶି ହବେ ଏବଂ ପ୍ରୟୋଗବିନ୍ଦୁ ଯତଇ ଅକ୍ଷ ଥେକେ ଦୂରେ ହବେ ବଲେର ପରିମାଣ ତତତ୍ତ୍ଵ କମ ହବେ । ଚିତ୍ର 5.5 ଏର ଛବିଟି ଲଙ୍ଘ୍ୟ କର । A ବିନ୍ଦୁଟି ଅକ୍ଷ ଏବଂ B ବିନ୍ଦୁଟେ F ବଲ ପ୍ରୟୋଗ କରା ହୁଯେଛେ । ବଲ ଏବଂ ବଲେର ପ୍ରୟୋଗବିନ୍ଦୁ ଓ ଅକ୍ଷେର ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତ୍ତେର ଗୁଣଫଳକେ ବଲେର ଭାରକ ବଲ । ଏକଷେତ୍ରେ $F \times AB$ ହଜେ ବଲେର ଭାରକ । ଯଦି AB ଦୂର୍ତ୍ତ ହୋଟ ହୁଏ ତବେ ବଲେର ପରିମାଣ ବେଶି ହବେ । ଏକଇ ଭାବେ AB ବେଶି ହଲେ ପ୍ରୟୋଜନୀୟ ବଲ F କମ ଲାଗବେ ।

ଚିତ୍ର 5.5

ଏହିବାର ଲିଭାରେ କଥାଯ କିରେ ଆମା ଯାକ । ଚିତ୍ର 5.6 ଦେଖ । AB ଏକଟି ଲିଭାର ଏବଂ C ବିନ୍ଦୁଟି AB ଲିଭାରେ ଆଲଦ୍ଧ । A ବିନ୍ଦୁଟେ ଭାର W ଏବଂ B ବିନ୍ଦୁଟେ ପ୍ରୟାସ P ପ୍ରୟୋଗ କରା ହୁଯେଛେ । AB ଅନୁଭୂତିକ ଧାକଳେ ବଲେର ଭାରକ ଅର୍ଥାତ୍

ଚିତ୍ର 5.6

ଭାରକ ଅର୍ଥାତ୍

$$W \times AC = P \times BC$$

$$\text{ଅର୍ଥାତ୍} \frac{W}{P} = \frac{BC}{AC}$$

ଉପରେର ମୟୀକରଣେ ଦେଖଇ BC/AC ର ଅନୁପାତ ବଲ ଦୁଟିର ଅନୁପାତର ସମାନ । ବଲ ଦୁଟିର ଏହି ଅନୁପାତକେ ଯତ୍ରେ ଯାନ୍ତିକ ଶୁବ୍ରିଧା ବଲେ । ଅନୁପାତଟି ଯତ ବଡ଼ ହବେ ଯାନ୍ତିକ ଶୁବ୍ରିଧା ତତତ୍ତ୍ଵ ବେଶି ହବେ ।

ଗଲା ଆହେ, ଆର୍କିମିଡିସ ଏକବାର ବଲେଛିଲେନ, ଯଦି ବିରାଟ ଲଞ୍ଚା ଏକଟି ରୁଡ ଆମାକେ ଦେଓୟା ହୁଏ, ଆର ଦେଓୟା ହୁଏ ପୃଥିବୀର ବାଇରେ ଦାଡ଼ାବାର ଅତ

একটু জায়গা, তবে আমি একাই সমস্ত পৃথিবীটাকে নড়তে পাৰিব। কথাটি কি ঠিক?

লিভাৱ তিন শ্ৰেণীৰ। উপৰে বৰ্ণিত লিভাৱকে প্ৰথম শ্ৰেণীৰ লিভাৱ বলে। এই লিভাৱে আলম্ব বিন্দুটি ভাৱ এবং প্ৰয়ামেৰ মধ্যে অবস্থিত।

তোমৰা স্বপ্নারি কাটা জাঁতি দেখেছ। লক্ষ্য কৰলে দেখবে এখানে আলম্ব বিন্দুটি এক প্ৰান্তে অবস্থিত এবং ভাৱ (এক্ষেত্ৰে স্বপ্নারি) আলম্ব ও প্ৰয়ামেৰ মাঝখানে। এই শ্ৰেণীৰ লিভাৱকে দ্বিতীয় শ্ৰেণীৰ লিভাৱ বলে। আগেৰ হত্যাক্ৰিক সুবিধা অক কৈ বাৰ কৰলে দেখবে যান্ত্ৰিক সুবিধা একেৰ বেশি এবং প্ৰযুক্ত বলেৰ মান ভাৱেৰ চেয়ে কম।

চিমটেও এক শ্ৰেণীৰ লিভাৱ। একে মাঝখানটা টিপে ধৰে খোলা প্ৰান্তে কঢ়লাৰ বা অন্য কোন জিনিসেৰ টুকৰো চেপে তুলতে হয়। এখানেও আলম্ব বিন্দুটি এক প্ৰান্তে অবস্থিত এবং প্ৰয়াম, আলম্ব ও ভাৱেৰ মধ্যে অবস্থিত। এই শ্ৰেণীৰ লিভাৱকে তৃতীয় শ্ৰেণীৰ লিভাৱ বলে। এখানে যান্ত্ৰিক সুবিধা একেৰ কম এবং প্ৰযুক্ত বলেৰ মান ভাৱেৰ চেয়ে বেশি।

তিন শ্ৰেণীৰ লিভাৱেৰ আৱণ কয়েকটি উদাহৰণ ৫.৭ চিত্ৰে দেখান হল।

প্ৰথম শ্ৰেণী

দ্বিতীয় শ্ৰেণী

তৃতীয় শ্ৰেণী

চি. ৫.৭

(খ) চাকা ও অক্ষদণ্ড—চাকাৰ সাহায্যে কুঠো ধেকে জল তুলতে তোমৰা দেখেছ। গ্ৰাম অঞ্চলে বিশেষ কৰে বিহাৰ, উন্নৰ প্ৰদেশেৰ গ্ৰামাঞ্চলে এৰ প্ৰচলন খুব বেশি। এই ধৰনেৰ একটি যন্ত্ৰ (চি. ৫.৮) পৰেৱ পৃষ্ঠায় দেখান হল। বড় চাকাৰ দড়িটি ধৰে যথন টানা হয় তখন চোঙেৰ গায়ে জড়ান দড়িটি জড়িয়ে ছোট হতে থাকে এবং বালতিটা কুঠো ধেকে উঠতে থাকে।

একটা বড় চাকা, একটি সমাক্ষ চোঙে লাগান থাকে। সমাক্ষ চোঙটিৰ দুই প্ৰান্ত দুটি খুঁটিৰ উপৰ বাধা আছে। চোঙেৰ গায়ে আটকান দড়িটাৰ

ଏକ ପ୍ରାଣ୍ତ ସମାକ୍ଷ ଦଣ୍ଡେ ଲାଗାନ ଥାକେ, ଅନ୍ତ ପ୍ରାଣ୍ତେ ବାଲତିଟୀ ବୋଲାନ ଥାକେ । ବଡ଼ ଚାକାର ଗାୟେର ଦଢ଼ିର ଏକ ପ୍ରାଣ୍ତ ଚାକାର ଗାୟେ ଲାଗାନ ଥାକେ, ଅନ୍ତ ପ୍ରାଣ୍ତେ ବଳ ପ୍ରୟୋଗ କରନ୍ତେ ହୁଁ । ଯଥିନ ଦଢ଼ିଟୀ ଧରେ ଟାନା ହୁଁ, ତଥିନ ବଡ଼ ଚାକା ସୁରତେ ଥାକେ ଏବଂ ମେହି ମଙ୍ଗେ ଛୋଟ ଚାକାଓ ଘୋରେ । ଏବାର ଦେଖା ଯାକ ଏହି ସନ୍ଦେର ଯାନ୍ତିକ ଶୁବ୍ଦିଧା କତ । ମନେ କର, ବଡ଼ ଚାକାର ବ୍ୟାସାର୍ଧ a ଏବଂ ଚୋଡର ବ୍ୟାସାର୍ଧ b । ବଡ଼ ଚାକାର ଦଢ଼ିତେ ଟାନ P ଏବଂ ବାଲତିର ଉଜନ ଧର Q । ବଲେର ଆମକ ଅର୍ଥାତ୍ ଯାନ୍ତିକ ଶୁବ୍ଦିଧା

ଚିତ୍ର 5.8

$\frac{Q}{P} = \frac{a}{b}$ । a ଏବଂ bର ଅର୍ଥପାତ ଯତିଇ ବାଡାନ ଥାବେ, ଯାନ୍ତିକ ଶୁବ୍ଦିଧାରେ ତତ୍ତ୍ଵାତ୍ମକ ବାଡିବେ । ବଡ଼ ଚାକାର ବଦଳେ ଅନେକ ସମୟ ଚୋଡର ଗାୟେ ଏକଟା ହାତନ ଲାଗାନ ଥାକେ । ଏକ୍ଷେତ୍ରେ ଚୋଡର ଅକ୍ଷ ଥେକେ ହାତନେର ଦୂରତ୍ତ ଚୋଡର ବ୍ୟାସାର୍ଧର ଚେଯେ ବଡ଼ ହେଉଥାଇବା ଦୂରକାର ।

ଅନ୍ତ ତତ୍ତ୍ଵ

ତୋମରା ହୃଦୟ ଦେଖେ ଥାକବେ ଟାନୁ କାଠେର ତତ୍ତ୍ଵ ପେତେ ତାର ଉପର ଭାବୀ ବୋରା ଗଡ଼ିଯେ ଉପରେ ତୋଳା ହୁଁ ଥାକେ । ବିଶେଷ କରେ ଟ୍ରାକେ ଭାବୀ ବୋରା ବା ତେଲେଙ୍ଗାନିପିପେ ତୋଲାର ସମୟ କାଠେର ପାଟାତନେର ସାହାଯ୍ୟ ନେଇଗ୍ରା ହୁଁ । ଏ ଭାବେ ବୋରା

ଚିତ୍ର 5.9

ତୁଳତେ ବୋରାର ଉଜନେର ତୁଳନାଯ କମ ବଳ ପ୍ରୟୋଗ କରନ୍ତେ ହୁଁ । କୋନ ସମତଳ ଅନୁଭୂମିକ ଭାବେ ନା ଥେକେ ତୁଳଟି ଯଦି ଭୂମିତଳେର ମଙ୍ଗେ ଏକଟି କୋଣ କରେ ଥାକେ ତାକେ ବଲେ ଅତ ତତ୍ତ୍ଵ ବା ଆନ୍ତରିକ ତତ୍ତ୍ଵ ଏବଂ ଇଂରେଜୀତେ ଇନକ୍ଲାଇନଡ ପ୍ରେନ ।

মনে কৰ AB ভূমিতলৰ সঙ্গে কোণ কৰে একটি পাটাতন AC রাখা আছে (চিত্ৰ 5.10)। স্বতুৱাঃ AC একটি নত তল, বোৰাটি নত তলৰে

চিত্ৰ 5.10

নিচ A থেকে উপৰে C পৰ্যন্ত নেওয়া হল এবং তাৰ জন্য P বল প্ৰয়োগ কৰতে হল। এৱ জন্য কাজ হল $P \times AC$ । নত তল দিয়ে তোলা হলেও আসলে বোৰাটি তোলা হয়েছে ভূমিতল B থেকে C পৰ্যন্ত। বোৰার ওজন যদি W হয় তবে

সোজাহুজি BC পথে তুললে কাজেৰ পৰিমাণ হয় $W \times BC$ । তিনি পথে তোলা হলেও কাজেৰ পৰিমাণ দুক্ষেত্ৰেই সমান।

$$\text{অর্থাৎ } W \times BC = P \times AC$$

$$\therefore \text{ যান্ত্ৰিক সুবিধা } \frac{W}{P} = \frac{AC}{BC}$$

কোণটি যত ছোট হবে তত BC অপেক্ষা AC বড় হবে এবং যান্ত্ৰিক সুবিধা বাড়বে।

ତାପ

ତାପ କୀ

କୋନ୍ ବସ୍ତ ଗରମ ବା କୋନ୍ ବସ୍ତ ଠାଣ୍ଡା ତା ତୋମରା ମହଞ୍ଜେଇ ବୁଝିଲେ ପାର । ଧୂମାୟିତ ଏକ କାପ ଚା ଯେ ଗରମ ସେଟା କାଉକେ ବଲେ ଦିଲେ ହୟ ନା । ସେଇ ଗରମ ଚା-ଇ ଆବାର ଖାନିକଙ୍କ ବେଥେ ଦିଲେ ଠାଣ୍ଡା ହୟେ ଯାଏ । ତାପେ ବସ୍ତ ଗରମ ହୟ, ମବାଇ ଜାନେ । କିନ୍ତୁ ତାପ କୀ ଏବଂ ତା କି ତାବେ ପାଓରା ଯାଏ ?

ଆୟ ଦ୍ରହାଜାର ବହର ଆଗେ ଶୈଳ ଦାର୍ଶନିକ ପ୍ରେଟୋ ବଲେଛିଲେନ, ‘ତାପ ପାଓରା ଯାଏ ଧାକା, ସର୍ବ ଏବଂ ଗତି ଥେକେ ।’ ସମ୍ପଦଶ ଶତାବ୍ଦୀତେ ଫ୍ରାନ୍ସିମ ବେକନ ବଲେନ, ‘ତାପ ଗତି ଛାଡ଼ା ଅଛୁ କିଛୁ ନୟ ।’ ତିନି ସରମେକେ ବଲିଲେନ ‘ଗରମ’ ଏବଂ ଠାଦେର ଆଲୋକେ ବଲେଛିଲେନ ‘ଠାଣ୍ଡା’ । ଓହ ଏକଇ ଶତାବ୍ଦୀତେ ହ୍ୟଗେନ୍ସ ବଲିଲେନ ଯେ, ଆଣ୍ଡନ ଓ ଆଣ୍ଡନେର ଶିଥାଯ ଦ୍ରତଗତିମ୍ପନ୍ତ ଏକ ଧରନେର କଣୀ ଥାକେ ଯା କର୍ତ୍ତିନ ବସ୍ତକେ ଗଲାତେ ପାରେ । କର୍ଯ୍ୟକ ବହର ପରେ ଜନ ଲକ ନାମେ ଏକଭନ ବୈଜ୍ଞାନିକ ବଲେନ, ତାପ ହଛେ ବସ୍ତର ଅଚେତନ ଅଂଶେର ଦ୍ରତ ଆଲୋଡ଼ନ । ଅଷ୍ଟାଦଶ ଶତାବ୍ଦୀତେ ବ୍ରାଟ୍ ହକ ବଲେନ, କୋନ୍ ବସ୍ତର ଗରମ ହ୍ୟାଜାର କାରଣ ବସ୍ତର ଦେହେ କଣାଣୁଲିର କ୍ରତ ଆଲୋଡ଼ନ । ବ୍ରାଟ୍ ବସେଲ ଏହି ମତବାଦ ମର୍ଯ୍ୟାନ କରେନ । ଅଷ୍ଟାଦଶ ଶତାବ୍ଦୀର ଶେଷେ ଲାଭ୍ୟମିଯେ ଏବଂ ଲାପ୍ରାସ ଏହି ମତବାଦ ମର୍ଯ୍ୟାନ କରେନ । ଏହି ମତବାଦକେ ମେ ଯୁଗେ ଯାନ୍ତିକ ମତବାଦ ବା ଯେକ୍ୟାନିକାଲ ଧିଶ୍ଵରି ବଲା ହତ । ଅଷ୍ଟାଦଶ ଶତାବ୍ଦୀର ଶେଷେର ଦିକେ ଆର ଏକଟି ମତବାଦ ପ୍ରଚଲିତ ହ୍ୟ—ନାମ କ୍ୟାଲରିକ ମତବାଦ । ଏହି ମତବାଦ ଅହ୍ୟାୟୌ ତାପ ହଛେ ଏକ ଧରନେର ଅନୁଷ୍ଠାନ ବସ୍ତ, ଯା ଗରମ ବସ୍ତ ଥେକେ ଠାଣ୍ଡା ବସ୍ତକେ ଯେତେ ପାରେ । ଏହି ଅନୁଷ୍ଠାନ ବସ୍ତକେ ବଲା ହତ କ୍ୟାଲରିକ ।

ତାପେର ମାଟିକ ବ୍ୟାଖ୍ୟା ଦେବାର ପ୍ରଥମ ଚେଷ୍ଟା କରେନ କାଉଟ୍ ରାମଫୋର୍ଡ (1798) । ଗଲା ଆଛେ, ଅଷ୍ଟାଦଶ ଶତାବ୍ଦୀର ଶେଷେର ଦିକେ ତିନି ତୁରପୂନ ଦିଯେ କାମାନେର ମାରେ ଗର୍ତ୍ତ କରାର କାଜେର ତଦାରକି କରିଲେନ । ଏକଦିନ ଲକ୍ଷ୍ୟ କରେନ ଯେ, ଏହି କାଜେ ପ୍ରଚାର ତାପ ଉତ୍ପନ୍ନ ହଛେ । ତାପେର ପରିମାଣ ଏତ ବେଶି ଯେ ଆଣ୍ଡନ ଛାଡ଼ାଇ ବେଶ କିଛୁଟା ଜଳ ଫୋଟାତେ ତିନି ମର୍ଯ୍ୟାନ କରେନ ଯେ, ଏହି ତାପେର ପରିମାଣ ସୀମାହିନ ଅର୍ଧାଂଶ ସତକମ ଗର୍ତ୍ତ କରାର କାଜ ଚଲେ

ততক্ষণ তাপ উৎপন্ন হবে। ঠিক একই সময়ে (1778—1829) ইংৰেজ বৈজ্ঞানিক হামফ্ৰে ডেভি বায়ুশূলু স্থানে শৃঙ্খলাৰ নিচে দু টুকৰো বৰফ কেবলমাত্ৰ ঘষে গলান। তাপ যে বস্তুকণাৰ গতিশক্তিৰ বাহি প্ৰকাশ এই মতবাদ ক্ৰমশ দানা বাঁধতে লাগল। এই মতবাদকে চূড়ান্ত রূপ দেন ইংৰেজ বৈজ্ঞানিক জেমস প্ৰেস্ট জুল তাৰ দীৰ্ঘ ছ বছৰেৰ (1843—1849) পৰীক্ষাৰ সাহায্যে। তিনি পৰীক্ষা কৰে দেখান, এক একক তাপ উৎপাদন কৰতে নিৰ্দিষ্ট পৰিমাণ ঘাৰ্জিক শক্তিৰ প্ৰয়োজন। সেই থেকে জানা গিয়েছে—তাপ হচ্ছে এক ধৰনৰ শক্তি—অগুণলিৰ মোট গতিশক্তিৰ সমান। কোন বস্তুৰ ‘উৎকৃষ্টতা’ বাঢ়লে অগুণলিৰ গতিশক্তিও সঙ্গে সঙ্গে বাঢ়ে।

তাপ ও শক্তি

যে কোন ছুটো বস্তু নিয়ে ঘষতে থাক, দেখবে ছুটো বস্তুই গৰম হয়ে উঠেছে। একটা লোহাৰ মাথায় যদি হাতুড়ি দিয়ে ঠুকতে থাক, দেখবে লোহাৰ টুকৰোটা গৰম হয়ে উঠেছে। শীতেৰ দিনে হাত ছুটো ঘষে গৰম কৰাৰ অভিজ্ঞতা তোমাদেৱ অনেকেৰই আছে। এক টুকৰো পাথৰ মেঝেতে ঘষলে দেখবে, পাথৰটা গৰম হয়ে উঠেছে। যখন দেশলাই তৈৰি হয়নি, চকমকি পাথৰ ঠুকে আগুন ধৰান হত। আজকাল নাইটাৰেও পাথৰ ঘষে আগুন জালান হয়। ছুৱি কাচি শান দেওয়াৰ সময় আগুনেৰ ফুলকি ছোটে দেখেছে। উপৰেৰ প্ৰত্যেকটি ক্ষেত্ৰেই তাপ উৎপন্ন হয়—বস্তুগুলিৰ গতিশক্তি তাপে রূপান্তৰিত হওয়াৰ অন্ত। এক টুকৰো শিৱীয় কাগজ নিয়ে মাটিতে ঘষে হাত দিয়ে দেখবে কাগজেৰ টুকৰোটা গৰম হয়ে উঠেছে। একেকে গতিশক্তি তাপে রূপান্তৰিত হয়েছে। আৱ একটা পৰীক্ষা কৰে দেখ। একটা ছোট টেস্ট টিউবে ধাতুৰ কিছু টুকৰো নাও। একটা ধাৰ্মোমিটাৰটা বাৱ কৰে নিয়ে টেস্ট টিউবেৰ মুখে একটা ছিপি আটকে দাও। পৱে বেশ কিছুক্ষণ ধৰে ছিপি সমেত টেস্ট টিউবেৰ মুখটা উপৰে ও নিচে নামিয়ে উলটো ও সোজা কৰতে থাক। ধাৰ্মোমিটাৰ দিয়ে আৱ একবাৱ ধাতুৰ টুকৰোগুলোৰ তাপমাত্ৰা নাও। দেখবে, তাপমাত্ৰা বেড়েছে। এইক্ষেত্ৰে টুকৰোগুলোৰ গতিশক্তি তাপমাত্ৰায় পৱিষ্ঠ হয়েছে।

উপরের উদাহরণ থেকে বুঝতে পারছ যে, যান্ত্রিক শক্তি তাপে ক্লপান্তরিত হতে পারে। যখন কয়লা পোড়াও তখন কয়লার রামায়নিক শক্তি তাপে ক্লপান্তরিত হয়। সেই ভাবে বিছাং বা তড়িৎ প্রবাহ যখন রোধে বাধা প্রাপ্ত হয়, তখন বিছাংশক্তি তাপে ক্লপান্তরিত হয়। সুতরাং তাপও শক্তির একটা বিশেষ রূপ।

তাপ ও তাপমাত্রা

কোনটা গরম কোনটা ঠাণ্ডা সহজেই তোমরা বলতে পার। চায়ের কাপে আঙুল ডুবিয়ে বলতে পার চা গরম, আবার আইসক্রিম হাতে নিয়ে সহজেই বলতে পার এটা ঠাণ্ডা। কোন বস্তু কি পরিমাণ গরম বা কি পরিমাণ ঠাণ্ডা জানা যায় তাপমাত্রা দিয়ে। কিন্তু হাত দিয়ে বা আঙুল ডুবিয়ে তাপমাত্রা অনুভব করা সম্ভব নয়। কেন নয়, তোমরা আগেই পড়েছ।

অনেক সময় তাপ ও তাপমাত্রা আমরা একই অর্থে ব্যবহার করি। তাপ হল শক্তি, আর সেই তাপ প্রয়োগে বস্তুর উষ্ণতা কতটা বাড়ল, তার মান হল তাপমাত্রা। একই তাপশক্তির প্রয়োগে বিভিন্ন বস্তুর উষ্ণতা বা তাপমাত্রা ভিন্ন ভিন্ন হয়। সেটা বস্তুটির ধর্ম। ধর, এক কেটলি ফুটস্ট জল, একটি ছেট ও একটি বড় পাত্রে রাখা হল। এই অবস্থায় দেখা যাবে, দুটির তাপমাত্রা এক। কিন্তু বড়টিতে তাপের পরিমাণ ছেটটির চেয়ে অনেক বেশি।

যখন কোন বস্তুতে তাপ প্রয়োগ কর, অর্থাৎ বস্তুকে গরম কর, তখন বস্তু তাপ শোষণ করে। তাপশোষণের জন্য বস্তুর অণু বা পরমাণুর গতি বাড়ে, ফলে গতিশক্তি বাড়ে। সব অণু পরমাণুগুলির গতিশক্তি কিন্তু এক নয়। তবে নির্দিষ্ট তাপমাত্রায় তাদের গতিশক্তির গড় মান নির্দিষ্ট থাকে। যে কোন তাপমাত্রায় গতিশক্তির গড় মান সেই তাপমাত্রার সমানুপাতিক। তাপমাত্রা বাড়লে গতিশক্তির গড় মান বাড়ে, কমলে এই মান কমে।

একটা গরম বস্তুকে একটা ঠাণ্ডা বস্তুর সংশ্লর্পে নিয়ে এলে গরম বস্তুটি তাপ হারায় ও ঠাণ্ডা বস্তুটি তাপ গ্রহণ করে। গরম বস্তু থেকে ঠাণ্ডা বস্তুতে তাপপ্রবাহ ততক্ষণ চলবে, যতক্ষণ না বস্তু দুটির তাপমাত্রা সমান হয়। সুতরাং দুটি অসম তাপবিশিষ্ট বস্তুকে একত্রে আনলে তাপ কোন দিকে প্রবাহিত হবে নির্ভর করে বস্তু দুটির তাপমাত্রার পার্থক্যের উপর।

তাপের প্রয়োগে বস্তুর কোন ভৌত ধর্মের পরিবর্তন হলে সেই পরিবর্তিত ধর্মের সাহায্যে তাপমাত্রা মাপা হয়। যেমন পারদের এবং গ্যাসের আয়তনের পরিবর্তনের সাহায্যে বা তড়িৎ-পরিবাহীর বোধ পরিবর্তনের সাহায্যে তাপমাত্রা মাপা হয়।

পারদ থার্মোমিটারে কি ভাবে তাপমাত্রা মাপা হয়, আগে পড়েছ। বরফের হিমাক ও প্রয়াণ চাপে জলের স্কটনাককে থার্মোমিটারের নিম্ন ও উচ্চ স্থিরাক্ষ ধরা হয়। তাপমাত্রার এই অস্তরফলকে বিভিন্ন থার্মোমিটারে বিভিন্ন ভাবে ভাগ করা হয়ে থাকে।

তাপ পরিমাপের একক

বিভিন্ন পদ্ধতিতে তাপের একক বিভিন্ন। তাপ একটি শক্তি। সেইজন্য এস আই পদ্ধতিতে তাপ জুল (J) এককে প্রকাশ করা হয়। সি জি এস পদ্ধতিতে তাপের এককের নাম ক্যালরি। 4°C উষ্ণতায় বিশুদ্ধ এক গ্রাম জলের 1°C তাপমাত্রা বাড়াতে যে তাপশক্তির প্রয়োজন হয়, তাকে এক ক্যালরি বলে। তাপকে Q চিহ্ন দিয়ে ক্যালরিকে cal কথা দিয়ে প্রকাশ করা হয়। ক্যালরি একটা ছোট একক। সেজন্য আর একটা বড় একক ব্যবহার করা হয়—নাম কিলোক্যালরি। 1 kg জলের তাপমাত্রা 1°C বাড়াতে যে তাপের প্রয়োজন হয় তাকে এক কিলোক্যালরি বলে। কিলোক্যালরি প্রকাশ করা হয় kcal কথা দিয়ে। অনেক সময় Cal কথাটি লিখেও প্রকাশ করা হয়। ব্রিটিশ পদ্ধতিতে তাপ পরিমাপের জন্য যে একক ব্যবহার করা হয় তাকে ব্রিটিশ থার্মিল একক বলে। এই একক এক পাউণ্ড জলের এক ডিগ্রি ফারেনহাইট তাপমাত্রা বাড়াতে প্রয়োজনীয় তাপশক্তির সমান। ব্রিটিশ থার্মিল একককে B Th U লেখা হয়। থার্ম নামে আর একটি বড় একক এই পদ্ধতিতে ব্যবহার করা হয়ে থাকে। $1 \text{ থার্ম} = 10^5 \text{ B Th U}$ । এক ব্রিটিশ থার্মিল একক = 252 ক্যালরি।

আপেক্ষিক তাপ

তোমরা যদি লোহা, তামা, পিতল, দস্তা প্রভৃতি বিভিন্ন বস্তুকে গরম করতে থাক, তবে দেখবে সকলে একই হাবে গরম হচ্ছে না। লোহা, তামা, পিতল

প্রভৃতি ধাতুর কয়েকটি গোলক নাও। ধৰ, গোলকগুলির ভৱ সমান। যদি গোলকগুলিকে গৱম করতে থাক তবে দেখা যাবে, সকলে একই হাঁয়ে গৱম হচ্ছে না। অর্থাৎ তাদের তাপগ্রহণের মাত্রা সমান নয়। সেই বকম যদি গোলকগুলিকে ঠাণ্ডা করতে থাক তবে তাদের তাপ বর্জনের পরিমাণও দেখা যাবে এক নয়। তাপগ্রহণ ও বর্জনের হার বস্তুটির ধর্মের উপর নির্ভর করে। একটি পরীক্ষা করে দেখ। উপরের বিভিন্ন পদার্থের সম ভবের গোলকগুলিকে নির্দিষ্ট তাপ দেওয়ার পর ট্রেতে জ্বানো মোমের স্তরের উপর রাখ। দেখবে নির্দিষ্ট সময়ে মোম গলার পরিমাণ সকল ক্ষেত্রে সমান নয়। তামা বেশি মোম গলিয়েছে, কিন্তু লোহা অনেক কম। বস্তুর তাপ গ্রহণ ও বর্জনের ধর্মকে তার আপেক্ষিক তাপ বলে।

আপেক্ষিক তাপের সংজ্ঞা হল—একক ভবের বস্তুর একক তাপমাত্রা বৃদ্ধির জন্য যে পরিমাণ তাপশক্তির প্রয়োজন তাকে বস্তুটির আপেক্ষিক তাপ বলে।

সি জি এস পদ্ধতিতে কোন বস্তুর আপেক্ষিক তাপ হল বস্তুর 1 g ভবের 14.5°C থেকে 15.5°C পর্যন্ত 1°C তাপমাত্রা বৃদ্ধির জন্য ক্যালরি এককে যে পরিমাণ তাপশক্তির প্রয়োজন। আপেক্ষিক তাপের একক সি জি এস পদ্ধতিতে হল $\text{cal/g}^{\circ}\text{C}$ । 4°C উষ্ণতার জলের আপেক্ষিক তাপকে এক ধরা হয়। এস আই পদ্ধতিতে বস্তুর এক কিলোগ্রাম ভবের এক কেলভিন তাপমাত্রা বৃদ্ধির জন্য জুল এককে যে পরিমাণ তাপশক্তির প্রয়োজন তাকে বস্তুটির আপেক্ষিক তাপ বলে। এস আই পদ্ধতিতে আপেক্ষিক তাপের একক হল J/kgK । তোমরা আগেই পড়েছ $0^{\circ}\text{C} = 273.16\text{K}$ । কিন্তু এক ডিগ্রি তাপমাত্রার অন্তর কেলভিন ও সেলসিয়াস এককে এক। স্বতরাং আপেক্ষিক তাপের ক্ষেত্রে J/kgK কে অনেক সহজ $\text{J/kg}^{\circ}\text{C}$ লেখা হয়।

ত্রিটিশ পদ্ধতিতে কোন বস্তুর এক পাউণ্ড ভবের এক ফারেনহাইট তাপমাত্রা বৃদ্ধির জন্য ত্রিটিশ থার্মাল এককে যে তাপশক্তির প্রয়োজন তাকে বস্তুটির আপেক্ষিক তাপ বলে। এফ পি এস পদ্ধতিতে আপেক্ষিক তাপের একক $B\text{ Th U/lb}^{\circ}\text{F}$ লেখা হয়।

বস্তুর তাপগ্রাহিতা

কোন বস্তুর একক তাপমাত্রা পরিবর্তন করতে যে পরিমাণ তাপের প্রয়োজন হবে তাকে বস্তুর তাপগ্রাহিতা বা থার্মাল ক্যাপ্যাসিটি বলে। যদি বস্তুর

ভৱ m এবং আপেক্ষিক তাপ c হয় তবে একক তাপমাত্রা পরিবর্তন কৰতে মোট তাপের প্রয়োজন হবে mc , এবং এটিই হচ্ছে বস্তুৰ তাপগ্রাহিতা। যদি বস্তুটিৰ ভৱ এক হয়, তবে বস্তুৰ তাপগ্রাহিতা বস্তুৰ আপেক্ষিক তাপেৰ সমান হবে। অতএব, একক ভৱ বিশিষ্ট বস্তুৰ তাপগ্রাহিতা বস্তুৰ আপেক্ষিক তাপেৰ সমান। দি জি এস পদ্ধতিতে তাপগ্রাহিতা ক্যালৱি এককে, ব্ৰিটিশ পদ্ধতিতে ব্ৰিটিশ থাৰ্মাল এককে এবং এস আই পদ্ধতিতে জুল এককে প্ৰকাশ কৰা হয়।

বস্তুৰ জল-তুল্যাক্ষ

কোন বস্তুৰ 1°C তাপমাত্রা বৃদ্ধিৰ জন্য যে পৰিমাণ তাপ লাগে, সেই তাপ যে পৰিমাণ জলেৰ 1°C তাপমাত্রা বাড়াতে পারে সেই পৰিমাণ জলকে বস্তুৰ জল-তুল্যাক্ষ বা ওয়াটাৰ ইক্উইভালেন্ট বলে। কোন বস্তুৰ ভৱ m ও আপেক্ষিক তাপ c । বস্তুটিৰ তাপগ্রাহিতা তাহলে mc ক্যালৱি। কিন্তু সংজ্ঞা অহুয়ায়ী এক ক্যালৱি তাপশক্তি 1 g জলেৰ 1°C তাপমাত্রা বৃদ্ধি কৰতে পারে। অতএব, mc ক্যালৱি তাপশক্তি mc গ্ৰাম জলকে 1°C উষ্ণ কৰতে পারে। অতএব, ঐ বস্তুৰ জলতুল্যাক্ষ হচ্ছে mc গ্ৰাম।

তাপগ্রাহিতা ও জল-তুল্যাক্ষ প্ৰত্যেকটিই ভৱ ও আপেক্ষিক তাপেৰ গুণফল। প্ৰথমটিৰ একক ক্যালৱি এবং দ্বিতীয়টিৰ একক গ্ৰাম।

তাপ ও কাজ

ইংৰেজ বৈজ্ঞানিক জ্ঞেন্স প্ৰেস্ট জুলেৰ কথা তোমৰা আগেই শুনেছ। তিনিই প্ৰথম পৰীক্ষা কৰে দেখান যে, যখন কোন ঘাৰ্স্কি শক্তি তাপশক্তিতে কৃপাস্তুৰিত হয়, তখন নিৰ্দিষ্ট পৰিমাণ ঘাৰ্স্কি শক্তি থেকে নিৰ্দিষ্ট পৰিমাণ তাপশক্তি পাওয়া যায় এবং একটি অন্যটিৰ সমাহুপাতিক। ঘাৰ্স্কি শক্তিকে W এবং তাপশক্তিকে H অক্ষৰ দিয়ে যদি প্ৰকাশ কৰা হয় তবে $W=H$ অথবা $W=JH$, J একটি ধ্ৰুবক। যদি H এক ক্যালৱি হয় তবে $W=J$ ।

হৃতব্যাং ধ্ৰুবক J হচ্ছে এক ক্যালৱি তাপ উৎপন্ন কৰতে প্ৰয়োজনীয় ঘাৰ্স্কি শক্তি। এই ধ্ৰুবককে বলা হয় তাপেৰ ঘাৰ্স্কি তুল্যাক্ষ বা মেক্যানিকাল ইক্উইভালেন্ট অফ হীট। জুলেৰ নাম অহুসারে ধ্ৰুবকটি J অক্ষৰ দিয়ে প্ৰকাশ

করা হয়। এই ধ্রবকের মান 4.18 J/cal । ধ্রবক J এবং শক্তির একক J দ্রষ্টি আলাদা মনে রেখো।

তাপের সাহায্যে কিভাবে কাজ করা হতে পারে একটি পরীক্ষার সাহায্যে দেখ। একটি ফ্লাস্কে কিছু জল নাও। ফ্লাস্টির মুখ ছিপি আটকে তিতবে একটি ছোট নল প্রবেশ করাও (চিত্র 6.1)। একটি কাচের নল আলগাভাবে ছিপির নলটির উপর বসাও। উপরের নলটির দুই স্তুলো প্রান্ত বিপরীত দিকে লম্বভাবে মুখ করে আছে একই অঙ্গভূমিক তলে। ফ্লাস্কের জল কিছুক্ষণ গরম কর। দেখবে বাম্প নলের দুই প্রান্ত দিয়ে যথন বেরিয়ে আসছে তখন নলটি ঘূরতে থাকবে। এটি তাপশক্তির যান্ত্রিক শক্তিতে ক্রপান্তরিত হওয়ার উদাহরণ।

চিত্র 6.1

স্থীর এঞ্জিনের সাহায্যে ট্রেন চলতে তোমরা দেখে থাকবে। পেট্রোল এঞ্জিনে মোটর গাড়ি বা বাস চলে। ডিজেল এঞ্জিনে বড় বড় ট্রাক চলে। আসলে কিন্তু সব এঞ্জিন চলার মূলে রয়েছে—তাপ। তাপ হষ্টি হয় বলেই এঞ্জিনগুলি চলে।

୭ ଆଲୋକ

ଆଲୋର ଉତ୍ସ

ଆଲୋ କୋଥା ଥେକେ ଆମେ ? ଆମାଦେର ପୃଥିବୀତେ ଆଲୋର ସର୍ବପ୍ରଧାନ ଉତ୍ସ ହଲ ଶୂର୍ଦ୍ଧ । ଟାଙ୍କ ଥେକେଓ ସାମାଜିକ ଆଲୋ ଆମରା ପାଇ, ସଦିଓ ଟାଙ୍କ ନିଜେ ଠିକ ଆଲୋର ଉତ୍ସ ନୟ । ଶୂର୍ଦ୍ଧ ଥେକେ ଆଲୋ ଏମେ ଟାଙ୍କେ ପଡ଼େ, ମେଥାନ ଥେକେ ଆବାର ଆମାଦେର କାଛେ ଏମେ ପୌଛୟ । ଏହାଡା ବାତେର ଆକାଶେ ଆରାଓ ଅସଂଖ୍ୟ ନକ୍ଷତ୍ର ଜଳଜଳ କରେ, ତବେ ଆମାଦେର ବ୍ୟବହାରିକ କାଜେ ଏହିମର ଆଲୋର ଉତ୍ସଗୁଲି ବଡ଼ ଏକଟା ଲାଗେ ନା । ଏହିଗୁଲି ସବଇ ଆଲୋର ସ୍ଵାଭାବିକ ଉତ୍ସ । ଜୋନାକି, ଗଭୀର ମୁଦ୍ରେର ଅନେକ ଯାଚ, ରେଡିଓ, ଇଉବେନିୟମେର ଲବଣ ଇତ୍ୟାଦିଓ ସ୍ଵାଭାବିକ ଆଲୋର ଉତ୍ସ । କୃତିମ ଉତ୍ସ ହଲ ପ୍ରଦୀପ, ଘୋମବାତି, ଲଈନ, ଇଲେକ୍ଟ୍ରିକ ଆଲୋ, ଗ୍ୟାସବାତି, ଟର୍ଚ ଇତ୍ୟାଦି । ଶୋହା ଓ ପାଥର ସବଲେ ଆଲୋର ଫୁଲକି ପାଓଯା ଯାଏ ।

ଆଲୋର ଉତ୍ସକେ ଆଲୋର ଅଭିବ ବଲା ହେଁ ଥାକେ । ଏକଟୁ ଲକ୍ଷ୍ୟ କରଲେଇ ବୁଝବେ ଯେ ଆଗୋର ଉତ୍ସ ହୁ ବକମେର । ଯେ ଉତ୍ସ ନିଜେଇ ଆଲୋ ଦିତେ ପାରେ ତାକେ ଅପ୍ରତ ବସ୍ତ ବଲେ । ଯେମନ—ଶୂର୍ଦ୍ଧ, ନକ୍ଷତ୍ର, ଘୋମବାତି ଇତ୍ୟାଦି । ଆର ଏକ ବକମେର ଉତ୍ସ ଆଛେ ଯାରା ପରେର ଆଲୋଯ ଆଲୋକିତ । ଏଦେର ବଲେ ଅପ୍ରତ ବସ୍ତ । ଟାଙ୍କ ଏବଂ ବୃହିନ୍ତି, ଶୁକ୍ର ପ୍ରତି ଗ୍ରହଗୁଲି ଅପ୍ରତ ବସ୍ତ । ଆମାଦେର ଚାରପାଶେର ବେଶିର ଭାଗ ବସ୍ତିଇ, ଯେମନ ଚେହାର, ଟେବିଲ, ପେନ ଇତ୍ୟାଦି ସବଇ ଅପ୍ରତ ବସ୍ତ ।

ସ୍ଵଚ୍ଛ ଓ ଅନ୍ତର୍ବିନ୍ଦୁ ବସ୍ତ

ଯେ ବସ୍ତର ଭିତର ଦିଯେ ଆଲୋ ଯେତେ ପାରେ ତାକେ ଆମରା ସ୍ଵଚ୍ଛ ବସ୍ତ ବଲି, ଯେମନ କାଚ । କାଚ ଭେଦ କରେ ଆମରା ଦେଖିବା ପାଇ । ଯେ ବସ୍ତର ଭିତର ଦିଯେ ଆଲୋ ଯାଏ ନା ଏବଂ ଆମରା ଦେଖିବା ପାଇ ନା ତାକେ ଅନ୍ତର୍ବିନ୍ଦୁ ବସ୍ତ ବଲେ । ସ୍ଵଚ୍ଛ ଓ ଅନ୍ତର୍ବିନ୍ଦୁ ବସ୍ତର ମାର୍ବାମାର୍ବି ଆର ଏକ ଧରନେର ବସ୍ତ ଆଛେ ଯାଦେର ମଧ୍ୟେ ଦିଯେ ଆଲୋ ଆଂଶିକ ଭାବେ ଯେତେ ପାରେ । ଏଦେର ବଲେ ଉତ୍ସଦର୍ଶକ ବସ୍ତ । ସ୍ଵା କାଚ ତୋମରା ନିଶ୍ଚଯିତା ଦେଖେଇ । ତେଲେ ତେଜ୍ଜ କାଗଜର ଏହି ଜାତୀୟ ଉଦ୍ଦାହରଣ । ପରିକାର

ଜଳେର ପାତଳା ସ୍ତର ସ୍ଵଚ୍ଛ, କିନ୍ତୁ ଜଳେର ସ୍ତର ଫୁଲ ହଲେ ଝିଯଦଙ୍ଗ ହୟ । ଅନେକଗୁଲି ସ୍ଵଚ୍ଛ କାଚ ଉପରେ ରାଖିଲେ ଝିଯଦଙ୍ଗ ଦେଖାଯାଇ ।

ଆଲୋ-ବଶି

ଉଦ୍‌ସକେ କେନ୍ଦ୍ର କରେ ଆଲୋ ଚତୁର୍ଦ୍ଦିକେ ଛଡ଼ିଯେ ପଡ଼େ । ଆଲୋର ଯେ କୋନ ଏକଟି ପଥକେ ଆଲୋ-ବଶି ବଲେ । ସେଇ ଆଲୋ-ବଶିର ଗୁଚ୍ଛକେ ଆଲୋ-ବଶିଗୁଚ୍ଛ ବଲେ । ଆଲୋ-ବଶିଗୁଚ୍ଛ ଥେକେ ଏକଟି ଆଲୋ-ବଶି ଆଲାଦା କରା ମୁଣ୍ଡବ ନାହିଁ । ଆଲୋ-

ଚିତ୍ର 7.1

ବଶି ବା ବଶିଗୁଚ୍ଛର ପଥ ତୀର ଚିହ୍ନିତ ମରବାରେଥା ଦିଯେ ପ୍ରକାଶ କରା ହୟ । ତୀରର ମୁଖ୍ୟ ଆଲୋର ଗତିପଥ ନିର୍ଦ୍ଦେଶ କରେ ।

ବଶିଗୁଚ୍ଛ ତିନି କରମେର : (କ) ସମାନ୍ତରାଳ, (ଖ) ଅପସାରୀ ଓ (ଗ) ଅଭିସାରୀ । ସମାନ୍ତରାଳ ବଶିଗୁଚ୍ଛ ବଶିଗୁଲୋ ଏକେ ଅନ୍ୟର ସମାନ୍ତରାଳ (ଚିତ୍ର 7.1a) । ବହ ଦୂର ଥେକେ ଆମୀ ଆଲୋର ବଶିଗୁଚ୍ଛକେ ସମାନ୍ତରାଳ ବଲା ଯେତେ ପାରେ । ଅପସାରୀ ବଶିଗୁଲି ଏକଟି ବିଶ୍ଵ ଥେକେ ବାର ହୟ ବିଭିନ୍ନ ଦିକେ ଛଡ଼ିଯେ ପଡ଼େଛେ ମନେ ହୟ (ଚିତ୍ର 7.1b) । କୋନ ମାଧ୍ୟମେ ବଶିଗୁଚ୍ଛର ବଶିଗୁଲି ସଦି ଏକଟି ବିନ୍ଦୁତେ ଏଦେ ମିଲିତ ହୟ ତବେ ତାଦେର ଅଭିସାରୀ ଆଲୋ-ବଶିଗୁଚ୍ଛ ବଲେ (ଚିତ୍ର 7.1c) ।

ଆଲୋର ପ୍ରତିଫଳନ

ଘରେର ବାଇରେ ଶୁର୍ଦ୍ଦିର ଆଲୋ ଝଲମଳ କରାଇ, ଅର୍ଥଚ ଘରେ ଢୋକେ ନା । ଏକଟା ଆୟନାର ଉପର ସେଇ ଆଲୋ ଫେଲେ ଆୟନାଟା ଘୁରିଯେ ଘୁରିଯେ ସହଜେଇ ଘରେର ମଧ୍ୟେ ଆଲୋ ଢୋକାନୋ ଯାଏ । ଡୋମରା ଅନେକେଇ ନିଶ୍ଚଯ ଏ ବକମ କରେ ଦେଖେ । ଆୟନା ଥେକେ ଘରେ ଯେ ଆଲୋ ଏଲ ତା ପ୍ରତିଫଳନର ସାହାଯ୍ୟେ । ଏକଟି ଟେନିମ

୭ ଆଲୋକ

ଆଲୋର ଉତ୍ସ

ଆଲୋ କୋଥା ଥେକେ ଆସେ ? ଆମାଦେର ପୃଥିବୀତେ ଆଲୋର ସର୍ବପ୍ରଧାନ ଉତ୍ସ ହଳ ଶୂର୍ଧ୍ଵ । ଚାନ୍ଦ ଥେକେଓ ନାମାଣ୍ୟ ଆଲୋ ଆମରା ପାଇ, ସଦିଓ ଚାନ୍ଦ ନିଜେ ଠିକ ଆଲୋର ଉତ୍ସ ନୟ । ଶୂର୍ଧ୍ଵ ଥେକେ ଆଲୋ ଏସେ ଚାନ୍ଦେ ପଡ଼େ, ମେଥାନ ଥେକେ ଆବାର ଆମାଦେର କାହେ ଏସେ ପୌଛୟ । ଏହାଡ଼ା ବାତେର ଆକାଶେ ଆରା ଅମଂଖ୍ୟ ନକ୍ଷତ୍ର ଜଗଞ୍ଜଳ କରେ, ତବେ ଆମାଦେର ବ୍ୟବହାରିକ କାହେ ଏହିମର ଆଲୋର ଉତ୍ସଗୁଲି ବଡ଼ ଏକଟା ଲାଗେ ନା । ଏହିଗୁଲି ମବହି ଆଲୋର ସ୍ଥାଭାବିକ ଉତ୍ସ । ଜୋନାକି, ଗଭୀର ସମୁଦ୍ରର ଅନେକ ମାଛ, ରେଡ଼ିଯମ, ଇଉରେନିୟମେର ଲବଣ ଇତ୍ୟାଦିଓ ସ୍ଥାଭାବିକ ଆଲୋର ଉତ୍ସ । କୃତିମ ଉତ୍ସ ହଳ ପ୍ରଦୀପ, ମୋମବାତି, ଲଈନ, ଇଲେକ୍ଟ୍ରିକ ଆଲୋ, ଗ୍ୟାସବାତି, ଟର୍ଚ ଇତ୍ୟାଦି । ଲୋହ ଓ ପାଥର ସବୁଲେ ଆଲୋର ଫୁଲକି ପାଓଯା ଯାଏ ।

ଆଲୋର ଉତ୍ସକେ ଆଲୋର ପ୍ରତିବ ବଳା ହରେ ଥାକେ । ଏକଟୁ ଲକ୍ଷ୍ୟ କରଲେଇ ବୁଝବେ ଯେ ଆଲୋର ଉତ୍ସ ତୁ ବକମେବ । ଯେ ଉତ୍ସ ନିଜେଇ ଆଲୋ ଦିତେ ପାରେ ତାକେ ଅପ୍ରତ ବସ୍ତ ବଲେ । ସେମନ—ଶୂର୍ଧ୍ଵ, ନକ୍ଷତ୍ର, ମୋମବାତି ଇତ୍ୟାଦି । ଆର ଏକ ବକମେବ ଉତ୍ସ ଆହେ ଯାରା ପରେର ଆଲୋଯ ଆଲୋକିତ । ଏଦେର ବଳେ ଅପ୍ରତ ବସ୍ତ । ଚାନ୍ଦ ଏବଂ ବୃହିତି, ଶୁକ୍ର ପ୍ରଭୃତି ଗ୍ରହଗୁଲି ଅପ୍ରତ ବସ୍ତ । ଆମାଦେର ଚାରପାଶେର ବେଶିର ଭାଗ ବସ୍ତି, ସେମନ ଚେହାର, ଟେବିଲ, ପେନ ଇତ୍ୟାଦି ମବହି ଅପ୍ରତ ବସ୍ତ ।

ସ୍ଵଚ୍ଛ ଓ ଅନ୍ସଚ୍ଛ ବସ୍ତ

ଯେ ବସ୍ତର ଭିତର ଦିଯେ ଆଲୋ ଯେତେ ପାରେ ତାକେ ଆମରା ସ୍ଵଚ୍ଛ ବସ୍ତ ବଲି, ସେମନ କାଚ । କାଚ ତେବେ ଆମରା ଦେଖିତେ ପାଇ । ଯେ ବସ୍ତର ଭିତର ଦିଯେ ଆଲୋ ଯାଏ ନା ଏବଂ ଆମରା ଦେଖିତେ ପାଇ ନା ତାକେ ଅନ୍ସଚ୍ଛ ବସ୍ତ ବଲେ । ସ୍ଵଚ୍ଛ ଓ ଅନ୍ସଚ୍ଛ ବସ୍ତର ଯାବାଗାବି ଆର ଏକ ଧରନେର ବସ୍ତ ଆହେ ଯାଦେର ମଧ୍ୟେ ଦିଯେ ଆଲୋ ଆଂଶିକ ଭାବେ ଯେତେ ପାରେ । ଏଦେର ବଳେ ଈଶଦଙ୍ଘ ବସ୍ତ । ସବା କାଚ ତୋମରା ନିଶ୍ଚଯିତ ଦେଖେଇ । ତେବେ ଭେଜା କାଗଜ ଓ ଏହି ଜାତୀୟ ଉଦ୍ଧାରଣ । ପରିକାର

ଆଲେର ପାତଳା ସ୍ତର ସ୍ଵର୍ଗ, କିନ୍ତୁ ଆଲେର ସ୍ତର ପୁରୁ ହୁଲେ ଈସଦଙ୍ଗ ହୁଏ । ଅନେକଣ୍ଡଲି ସ୍ଵର୍ଗ କାଚ ଉପରେ ବାଖଲେ ଈସଦଙ୍ଗ ଦେଖାଯାଇ ।

ଆଲୋ-ବଶି

ଉଦ୍‌ଦେଶ୍ୟକେ କେଜୁ କରେ ଆଲୋ ଚତୁର୍ଦ୍ଦିକେ ଛାଡ଼ିଯେ ପଡ଼େ । ଆଲୋର ସେ କୋନ ଏକଟି ପଥକେ ଆଲୋ-ବଶି ବଲେ । ମେଇ ଆଲୋ-ବଶିର ଗୁଚ୍ଛକେ ଆଲୋ-ବଶିଗୁଚ୍ଛ ବଲେ । ଆଲୋ-ବଶିଗୁଚ୍ଛ ଥେବେ ଏକଟି ଆଲୋ-ବଶି ଆଲାଦା କରା ସମ୍ଭବ ନାହିଁ । ଆଲୋ-

ଚିତ୍ର 7.1

ବଶି ବା ବଶିଗୁଚ୍ଛର ପଥ ତୌର ଚିହ୍ନିତ ସରଳରେଖା ଦିଯେ ପ୍ରକାଶ କରାଯାଇ । ତୌରେ ମୁଖ୍ୟ ଆଲୋର ଗତିପଥ ନିର୍ଦ୍ଦେଶ କରେ ।

ବଶିଗୁଚ୍ଛ ତିନ ରକମେର : (କ) ସମାନ୍ତରାଳ, (ଘ) ଅପସାରୀ ଓ (ଗ) ଅଭିସାରୀ । ସମାନ୍ତରାଳ ବଶିଗୁଚ୍ଛ ବଶିଗୁଲୋ ଏକେ ଅନ୍ୟେର ସମାନ୍ତରାଳ (ଚିତ୍ର 7.1a) । ବଚ ଦୂର ଥେବେ ଆସି ଆଲୋର ବଶିଗୁଚ୍ଛକେ ସମାନ୍ତରାଳ ବଲା ଘେତେ ପାରେ । ଅପସାରୀ ବଶିଗୁଲି ଏକଟି ବିନ୍ଦୁ ଥେବେ ବାର ହେଁ ବିଭିନ୍ନ ଦିକେ ଛାଡ଼ିଯେ ପଡ଼େଇ ମନେ ହୁଏ (ଚିତ୍ର 7.1b) । କୋନ ମାଧ୍ୟମେ ବଶିଗୁଚ୍ଛର ବଶିଗୁଲି ଯଦି ଏକଟି ବିନ୍ଦୁ ତେ ଏମେ ମିଳିତ ହୁଏ ତବେ ତାଦେର ଅଭିସାରୀ ଆଲୋ-ବଶିଗୁଚ୍ଛ ବଲେ (ଚିତ୍ର 7.1c) ।

ଆଲୋର ପ୍ରତିଫଳନ

ସରେର ବାଇରେ ଶୂର୍ଦ୍ଧେର ଆଲୋ ଝଲମଳ କରିଛେ, ଅଥବା ସରେ ଢୋକେ ନା । ଏକଟା ଆୟନାର ଉପର ମେଇ ଆଲୋ ଫେଲେ ଆୟନାଟା ସୁରିଯେ ସୁରିଯେ ମହଞ୍ଜେଇ ସରେର ମଧ୍ୟେ ଆଲୋ ଢୋକାନୋ ଯାଏ । ତୋମରା ଅନେକେଇ ନିଶ୍ଚଯ ଏ ରକମ କରେ ଦେଖେ । ଆୟନା ଥେବେ ସରେ ସେ ଆଲୋ ଏହି ତା ପ୍ରତିଫଳନେର ସାହାଯ୍ୟେ । ଏକଟି ଟେନିସ

ବଲ ଦେଖୁଳେ ଛୁଟେ ଦିଲେ ଯେମନ ଧାକା ଥେଯେ କିବେ ଆସେ, ଆଲୋର ପ୍ରତିଫଳନ ଅନେକଟୀ ମେହି ଧରନେର । ଆୟନାର ସାମନେ ଦାଡ଼ିୟେ ସଥନ ନିଜେକେ ଦେଖିତେ ପାଏ ତଥନ ତୋମାର ଦେହର ବିଭିନ୍ନ ଅଂଶ ଥେକେ ଆଲୋ-ବର୍ଣ୍ଣ ଆୟନାଯ୍ୟ ପ୍ରତିଫଳିତ ହୁଁ ତୋମାର ଚୋଥେ ଏସେ ପଡ଼େ । ଆଲୋ-ବର୍ଣ୍ଣର କୋନ ଏକଟି ତଳେ ପ୍ରତିହତ ହୁଁ ଦିକ ପରିବର୍ତ୍ତନ କରେ କିବେ ଆସାକେ ଆଲୋର ପ୍ରତିଫଳନ ବଲେ । ଯେ ବସ୍ତ ଥେକେ ଆଲୋ ପ୍ରତିଫଳିତ ହୁଁ ତାକେ ବଲେ ପ୍ରତିଫଳକ ।

ସେ କୋନ ତଳ ଥେକେଇ ଆଲୋ-ବର୍ଣ୍ଣ ପ୍ରତିଫଳିତ ହୁଁ ହେବେ ପାରେ । କିନ୍ତୁ ଏକଟି ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେ ପ୍ରତିଫଳନେର ଜଣ୍ଠ ପ୍ରତିଫଳକେର ତଳ ମୟ୍ୟନ ହେୟ । ଲକ୍ଷ୍ୟ କରିଲେ ଦେଖିବେ ଆୟନାର ଉପରତଳ ଖୁବି ମୟ୍ୟନ । ଧାତୁର ଫଳକେର ଉପରତଳ ମୟ୍ୟନ ହଲେ ତାତେଓ ଆୟନାର ମତ ମୁଖ ଦେଖା ଯାଏ । ଅମ୍ୟନ ତଳ ଥେକେ ପ୍ରତିଫଳିତ ଆଲୋ କୋନ ଏକଟି ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେ ଯାଏ ନା ।

ଇତରାଙ୍ଗ ଏକଟି ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେ ଆସା ସମାନରାଳ ବର୍ଣ୍ଣଗୁଚ୍ଛ ସଥନ କୋନ ଆୟନାଯ୍ୟ ବା ପ୍ରତିଫଳକେ ପ୍ରତିଫଳିତ ହୁଁ ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେ ସମାନରାଳ ତାବେ ଯାଏ ତଥନ ତାକେ ନିଯନ୍ତ୍ରିତ ପ୍ରତିଫଳନ ବଲେ । ପ୍ରତିଫଳନେର ପର ସମାନରାଳ ବର୍ଣ୍ଣଗୁଚ୍ଛ

ଚିତ୍ର 7.2

ଯଦି ନିର୍ଦ୍ଦିଷ୍ଟ ଦିକେ ସମାନରାଳଭାବେ ନା ଗିଯେ କୋନ ବର୍ଣ୍ଣ ଏହିକେ କୋନ ବର୍ଣ୍ଣ ଶଦିକେ ଯାଏ ତାହଲେ ତାକେ ଅନିଯନ୍ତ୍ରିତ ବା ବିକ୍ଷିପ୍ତ ପ୍ରତିଫଳନ ବଲେ । ଯେ କୋନ ଅମ୍ୟନ ତଳେ ବିକ୍ଷିପ୍ତ ପ୍ରତିଫଳନ ହୁଁ (ଚିତ୍ର 7.2) ।

XY ଏକଟି ଦର୍ପଣ ଏବଂ AO ରେଖା ବରାବର ଆଲୋର ବର୍ଣ୍ଣ ଦର୍ପଣେର O ବିନ୍ଦୁତେ ଆପତିତ ହୁଁଥେବେ (ଚିତ୍ର 7.3) । AO ରେଖା O ବିନ୍ଦୁତେ OB ପଥେ ପ୍ରତିଫଳିତ ହୁଁଥେବେ । ପାତଳା କାଚେର ପ୍ରେଟ ବା ଚାମରେର ଉପର ନିଚ ଦୁଇ ତଳାଇ ମୟ୍ୟନ ତବେ କାଚ ଶଙ୍କ ହେୟାଯ୍ୟ ତାତେ ସଥେଷ୍ଟ ପରିମାଣେ ଆଲୋ ପ୍ରତିଫଳିତ ହୁଁଥାଏ । କାଚେର ନିଚେର ତଳେ ପାରଦ ମିଶ୍ରିତ ଧାତୁର ପ୍ରଲେପ ଦିଲେ ପ୍ରତିଫଳନ ଅନେକ ଗୁଣ ବୃଦ୍ଧି ପାର । ଏହି ଭାବେଇ ଆୟନା ବା ଦର୍ପଣ ତୈରି କରା ହୁଁ । ସମତଳ କାଚେର ତୈରି

দৰ্পণকে সমতল দৰ্পণ বলে। ছবিটি দেখ। XY রেখাটি দৰ্পণের একটি ছেদ। রেখাটির তলায় ডাক্ষ রেখা দিয়ে দৰ্পণ বোঝান যায়। AO রেখা বৰাবৰ আলো-ৱশি দৰ্পণের O বিন্দুতে পড়েছে এবং OB রেখাপথে প্রতিফলিত হচ্ছে। O বিন্দুতে XY রেখার উপর OC লম্ব টান।

AO কে আপত্তি রশি,
OB কে প্রতিফলিত রশি
এবং OC কে অভিলম্ব বলে।

O বিন্দুকে আপত্তন বিন্দু বলা হয়।

অভিলম্ব ও আপত্তি রশির মধ্যের কোণকে আপত্তন কোণ এবং অভিলম্ব ও প্রতিফলিত রশির মধ্যের কোণকে প্রতিফলন কোণ বলা হয়। আপত্তন কোণ। অক্ষর দিয়ে ও প্রতিফলন কোণ। অক্ষর দিয়ে প্রকাশ করা হয়। উপরের ছবিতে AOC আপত্তন কোণ এবং BOC প্রতিফলন কোণ।

দৰ্পণ না থাকলে AO রশি OD পথে যেত কিন্তু দৰ্পণের জন্য AOD রশি AOB পথে যাচ্ছে। উপরের ছবি দেখে নিশ্চয় বুঝতে পারছ। দৰ্পণের জন্য আলোর রশির স্বাভাবিক পথ থেকে বিচ্যুতি হল BOD কোণ।

প্রতিফলন সূত্র

আলোর প্রতিফলন দৃষ্টি সূত্র মেনে চলে : (ক) আপত্তি রশি, প্রতিফলিত রশি ও প্রতিফলকের উপর আপত্তন বিন্দুতে অঙ্কিত অভিলম্ব একই সমতলে অবস্থিত। (খ) আপত্তন কোণ এবং প্রতিফলন কোণ পরস্পর সমান।

প্রতিফলন সূত্রের প্রমাণ

পিন পদ্ধতি : একটি সমতল বোর্ডের উপর একটা সাদা কাগজ পাত এবং চারটি বোর্ডপিন দিয়ে কাগজের চারকোণ বোর্ডে লাগাও যাতে কাগজ না সরে যায়। কাগজের মাঝখানে একটি সরলরেখা XY টান (চিত্র 7.4) এবং সেই রেখা বৰাবৰ খাড়াভাবে একটি সমতল দৰ্পণ বসাও। দৃষ্টি আলপিন নাও

চিত্র 7.3

এবং দৰ্পণেৰ সামনে ভানদিকে সেই ছাটিকে P এবং Q বিন্দুতে কাগজে বসাও। PQ বেখা যে বিন্দুতে দৰ্পণেৰ XY বেখায় মিশবে তাকে O চিহ্নিত কৰ। বাদিক থেকে দৰ্পণেৰ দিকে দেখলে P এবং Q এৰ প্ৰতিবিষ্ট দেখতে পাৰে। এইভাৱে বাদিক থেকে তাকিয়ে এই প্ৰতিবিষ্ট এক সৱলবেখায় বেথে আৱণ ছাটি আলপিন বসাও R ও S বিন্দুতে। ভালো কৰে দেখ, যে চাৰটি পিন R,S এবং P ও Q এৰ প্ৰতিবিষ্ট এবং O বিন্দু এক সৱলবেখায় আছে। এবাৰ

চিত্ৰ 7.4

পিন ও দৰ্পণ সৱিয়ে দিয়ে P Q O এবং S R O বেখা টান এবং O বিন্দুতে XY বেখায় উপৰ ON লম্ব টান। এখানে PQ আপত্তি বৃশি, RS প্ৰতিফলিত বৃশি, ON লম্ব। PON আপত্তন কোণ, SON প্ৰতিফলন কোণ। ঠান্ডাৰ সাহায্যে মেপে দেখ কোণ ছাটি সমান কিনা। PQ, RS এবং ON তিনটিই কাগজেৰ সমতলে অবস্থিত, স্থৰাঙ্গ ঘৰা এক সমতলেই আছে। সাধাৱণত এই ধৰনেৰ পৰীক্ষায় কোণ মাপতে আধি ডিগ্ৰিৰ মত পাৰ্থক্য হতে পাৰে। ছাটিৰ জায়গায় তিনটি পিন দিয়ে পৰীক্ষাটি কৰলে এবং বড় আকাৰেৰ ঠান্ডা ব্যবহাৰ কৰলে মাপেৰ ভুল কম হবে।

প্ৰতিবিষ্ট

যখন কোন বস্তুকে সৱাসৱি দেখ তখন বস্তু থেকে আলো সোজা তোমাৰ চোখে এমে পড়ে। কিন্তু দৰ্পণ বা আয়নায় যখন কোন বস্তু দেখ তখন বস্তু থেকে আলো দৰ্পণে প্ৰতিফলিত হয়ে তোমাৰ চোখে এমে পড়ে। তখন মনে হয়

যেଣ ବସ୍ତୁଟି ଅନ୍ତରେ କୋନ ଥାନେ ଆଛେ ଏବଂ ଦେଖାନ ଥେକେ ଆଲୋ ତୋମାର ଚୋଥେ ଏମେ ପଡ଼ିଛେ । ବସ୍ତୁର ଏହି ଆପାତ ଅବଶ୍ୟାନକେ ବସ୍ତୁର ବିଷ ବା ପ୍ରତିବିଷ ବଲେ ।

ପ୍ରତିବିଷେର ସଂଜ୍ଞା : କୋନ ବିନ୍ଦୁ-ପ୍ରତିବିଷ ଥେକେ ଅପର୍ଯ୍ୟନ୍ତ ଆଲୋର ରଶ୍ମି ପ୍ରତିଫଳିତ ହୁୟ ସନ୍ତି ଅନ୍ତରେ କୋନ ବିନ୍ଦୁରେ ମିଳିତ ହୁଏ ବା ଅନ୍ତରେ କୋନ ବିନ୍ଦୁ ଥେକେ ଅପର୍ଯ୍ୟନ୍ତ ହାଜି ମନେ ହୁଏ ତଥନ ଦ୍ଵିତୀୟ ବିନ୍ଦୁଟିକେ ପ୍ରଥମ ବିନ୍ଦୁର ପ୍ରତିବିଷ ବଲା ହୁଏ । ପ୍ରତିବିଷ ଦୁଇ ଧରନେର—ସମବିଷ ଏବଂ ଅସମବିଷ । ସଥନ କୋନ ପ୍ରତିବିଷ ଥେକେ ଅପର୍ଯ୍ୟନ୍ତ ଆଲୋର ରଶ୍ମି ଦ୍ଵିତୀୟ କୋନ ବିନ୍ଦୁରେ ମିଳିତ ହୁଏ ତଥନ ତାକେ ସମବିଷ ବଲେ । ଏକଟା ଧାଳାଯ କିଛୁ ଜଳ ଭର୍ତ୍ତି କରେ ସନ୍ତି ଠିକମତ ଘରେର ବାହିରେ

ଚିତ୍ର 7.5

ବାର୍ତ୍ତ ତାବେ ନୂରେ ପ୍ରତିବିଷ ଦେଖିଲେ ପାବେ (ଚିତ୍ର 7.5) । ଅବଶ୍ୟ ଧାଳାର ଜଳ ହିଲେ ହାତେ ହବେ । ଏଟି ସମବିଷେର ଉଦ୍‌ଦ୍ଦାରଣ । ମନେ ବେଳେ, ଏହି ଭାବେ ନିରାପଦେ ଓ ଖୁବ ଭାଲଭାବେ ଶ୍ରେଣୀଗତ ଦେଖା ଯାଏ । ସମବିଷେରଇ ଆରା ଉଦ୍‌ଦ୍ଦାରଣ ମିନେମାର ପର୍ଦାଯ ଛବି ବା କ୍ୟାମେରାଯ ତୋଳା ଛବି । ସଥନ କୋନ ଆଲୋର ଉତ୍ସ ଥେକେ ଅପର୍ଯ୍ୟନ୍ତ ଆଲୋର ରଶ୍ମି ପ୍ରତିଫଳନେର ପର ଅନ୍ତରେ କୋନ ବିନ୍ଦୁ ଥେକେ ଆସିଛେ ବଲେ ମନେ ହୁଏ ତଥନ ମେହି ପ୍ରତିବିଷକେ ଅସମବିଷ ବଲେ । ଆୟନାଯ ବା ପ୍ରକୁରେର ଜଳେ ଯେ ବିଷ ଦେଖା ଯାଏ ମେଣ୍ଟଲି ଅସମବିଷ । ସମବିଷ ଚୋଥେ ଦେଖା ଯାଏ ଓ ପର୍ଦାଯ ଧରା ଯାଏ । ଅସମବିଷ ଚୋଥେ ଦେଖା ଯାଏ କିନ୍ତୁ ପର୍ଦାଯ ଧରା ଯାଏ ନା ।

ସମତଳ ଦର୍ପଣେ ପ୍ରତିବିଷ

ସମତଳ ଦର୍ପଣେ ପ୍ରତିବିଷ କିଭାବେ ହୁଏ ଏବଂ ପ୍ରତିବିଷଟିର ଅବଶ୍ୟାନ କୋଣାଯ ପର୍ବୀଙ୍କା କରେ ଦେଖ । ଏକଟି ବୋର୍ଡେର ଉପର ଏକଟା ସାମାନ୍ୟ କାଗଜ ପିନ ଦିଯେ ଆଟକାଣ । କାଗଜେର ମାଝଥାନେ ଏକଟି ସରଳ ବେଳେ ଟାନ ଏବଂ ସରଳ ବେଳେ ବରାବର ଏକଟି ଦର୍ପଣ

বাখ (চিত্ৰ 7.6)। দৰ্পণেৰ সামনে দুটো পিন বসাও। এক নম্বৰ পিন P বিন্দুতে
এবং দু নম্বৰ পিন Q বিন্দুতে। আৱেজ দুটো পিন নাও এবং P Q আপত্তি

চিত্ৰ 7.6

ৰশিৰ প্রতিফলিত ৰশিৰ উপৰ তিন নম্বৰ পিন R বিন্দুতে ও চাৰ নম্বৰ পিন S
বিন্দুতে বসাও। পিনগুলি তুলে P, Q, R, S বিন্দুগুলি পেন্সিল দিয়ে চিহ্নিত
কৰ। P Q O এবং S R O বেখা টান। গ্ৰথম পিনটি আৰাবি P বিন্দুতে বসাও।
আৱ একটি বেখা ধৰে দু নম্বৰ পিনটি A বিন্দুতে বসাও এবং আগেৰ মত তিন
নম্বৰ ও চাৰ নম্বৰ পিন দুটিৰ মাহায়ে PA আপত্তি ৰশিৰ প্রতিফলিত ৰশি
নিৰ্ণয় কৰ, তিন নম্বৰ পিন B বিন্দুতে ও চাৰ নম্বৰ পিন C বিন্দুতে বসিয়ে।
এবাৰ পিনগুলি তুলে A, B, C বিন্দুগুলি চিহ্নিত কৰ। PAD এবং CBD
বেখা টান। এখন CBD ও SRO বেখা দুটো বাড়াও। এবা P' বিন্দুতে
ছেদ কৰবে। P' বিন্দুটি P বিন্দুৰ প্রতিবিষ্ট।

P, P' বিন্দু দুটো যোগ কৰ। PP' বেখা দৰ্পণটিকে E বিন্দুতে ছেদ
কৰবে। PE ও P'E ক্ষেত্ৰ দিয়ে মাপ। দেখবে $PE = P'E$ । PE যে
P'E এৰ সমান তা তোমৰা জ্যামিতিৰ মাহায়ে প্ৰমাণ কৰতে পাৰবে।
একটা ঠান্ডা নিয়ে PED ও P'ED কোণ দুটো মাপ। দেখবে দুটিই
সমকোণ।

এই পৰীক্ষা থেকে তোমৰা তিনটি সিদ্ধান্তে আসতে পাৰ: (ক) দৰ্পণ
থেকে বস্তুৰ দূৰত্ব এবং প্ৰতিবিষ্টেৰ দূৰত্ব পৰম্পৰ সমান। (খ) বস্তু ও
প্ৰতিবিষ্টেৰ দূৰত্ব বেখা দৰ্পণকে লম্বভাৱে ছেদ কৰে। (গ) প্ৰতিবিষ্টটি
অস্তি।

ପାର୍ଶ୍ଵୀଯ ବିପର୍ଯ୍ୟ

ଆୟନାର ସାଥନେ ଦାଙ୍ଗିଯେ ନିଜେର ଦିକେ ଚାଇଲେ ଡାନ ହାତକେ ବୀଂ ହାତ ଓ ବୀଂ ହାତକେ ଡାନ ହାତ ମନେ ହୁଏ । ତୋମାର ବୀଂ ଗାଲେ ଯଦି କୋନ ତିଲ ଥାକେ ଦେଖିବେ

ଚିତ୍ର ୭.୭

ପ୍ରତିବିଷେ ଡାନ ଗାଲେ ଆଛେ ମନେ ହୁଏ । ମନେ କର ଏକଟା କାଗଜେ b ଅକ୍ଷର ଲିଖେ ସବଳ ଦର୍ପଣେର କାହେ ଧରେଇ । ପ୍ରତିବିଷେ ଅକ୍ଷରଟା d ମନେ ହୁଏ । ୭.୭ ଚିତ୍ର ଦେଖ । ଏକେ ପାର୍ଶ୍ଵୀଯ ବିପର୍ଯ୍ୟ ବଲେ । ପ୍ରତିଦିନ ବସ୍ତୁଗୁଲୋର ବେଳାୟ ପାର୍ଶ୍ଵୀଯ ବିପର୍ଯ୍ୟ କେମନ ହୁଏ ? AIXOUAMY ଅକ୍ଷରଗୁଲୋର ବିପର୍ଯ୍ୟ କେମନ ହୁଏ ଛବି ଏଇକେ ଦେଖ ।

ପ୍ରତିସରଣ

ଆଲୋ ବାତାମେର ଭିତର ଦିଇସି ଚଲେ, ଜଳେର ମଧ୍ୟ ଦିଇସି ଏବଂ କାଚେର ମଧ୍ୟେ ଯାଇ । ତାଇ ବାତାମ୍. ଜଳ ବା କାଚ, ଏଇ ଆଲୋର ମାଧ୍ୟମ । ସ୍ଵଚ୍ଛ ଓ ସମସ୍ତ ବସ୍ତୁ ଯାଇର ଭିତର ଦିଇସି ଆଲୋ ସେତେ ପାରେ ଦେଇ ବସ୍ତୁକେଇ ଆଲୋର ମାଧ୍ୟମ ବଲେ । ଆଲୋ ସଥନ ଏକ ମାଧ୍ୟମ ଥେକେ ଅନ୍ତର ମାଧ୍ୟମେ ଯାଇ ତଥନ ଦୁଇ ମାଧ୍ୟମେର ବିଭେଦତଳେ ଆଲୋର ବନ୍ଧୁ ଦ୍ଵିତୀୟ ପରିବର୍ତ୍ତନ କରେ । ଦୁଇ ମାଧ୍ୟମେର ବିଭେଦତଳେ ଆଲୋ-ବନ୍ଧୁଙ୍କ ଦ୍ଵିତୀୟ ପରିବର୍ତ୍ତନକେ ପ୍ରତିସରଣ ବଲେ ।

ଏକଟା ଗୋଟିଏ ବା ବୀକାରେ ଜଳ ନାହିଁ । ଏକଟି ପେନ୍‌ସିଲ ଢୁବିଯେ ଉପର ଥେକେ ଦେଖ । ମନେ ହୁଏ ଜଳେର ଉପର ତଳ ଥେକେ ପେନ୍‌ସିଲଟା ହଠାତ୍ ବୈକେ ଗେଛେ । ଏହି କାହିଁଗି କି ? ଜଳେର ମଧ୍ୟେ ପେନ୍‌ସିଲେର ସେ ଅଂଶ ଆଛେ ମେଥାନ ଥେକେ ଆଲୋ-ବନ୍ଧୁ ଜଳେ ଯେ ସେଥାବୁ ସାଜିଲ ବାତାମେ ଏମେ ତାର ଦ୍ଵିତୀୟ ପରିବର୍ତ୍ତନ ହୁଏହୁଁ ।

প্রতিসরণের সংজ্ঞা

মনে কর PQ ছাঁটি মাধ্যমের বিভেদতল এবং AO আপত্তি রশ্মি O বিন্দুতে PQ তলের উপর এসে পড়েছে (চিত্র 7.8 a)। দ্বিতীয় মাধ্যমে আলোর রশ্মি বেঁকে OB পথে যায়। O বিন্দুকে আপত্তন বিন্দু বলে। O বিন্দুতে PQ এর উপর NON' লম্ব টান। AO কে আপত্তি রশ্মি, OB -কে প্রতিস্থত রশ্মি, NON' কে আপত্তন বিন্দুতে বিভেদতলের উপরে অভিস্থ বলে। আপত্তি রশ্মি অভিস্থের সঙ্গে যে কোণ করে তাকে আপত্তন কোণ এবং প্রতিস্থত রশ্মি অভিস্থের সঙ্গে যে কোণ করে তাকে প্রতিসরণ কোণ বলে। AON আপত্তন কোণ এবং BON' প্রতিসরণ কোণ। আপত্তন কোণকে i ও প্রতিসরণ কোণকে r দিয়ে প্রকাশ করা হয়। পরীক্ষা করে দেখা গিয়েছে যে আলোর রশ্মি যথন লম্ব মাধ্যম থেকে ঘন মাধ্যমে

(a) ও (b) চিত্র 7.8

আসে তখন প্রতিস্থত রেখা অভিস্থের দিকে বেঁকে যায়। ছবিতে AOB রশ্মি লম্ব মাধ্যম থেকে ঘন মাধ্যমে এসে পড়েছে। এক্ষেত্রে আপত্তন কোণের চেয়ে প্রতিসরণ কোণ ছেঁট। আলোর রশ্মি যথন ঘন মাধ্যম থেকে লম্ব মাধ্যমে যায় তখন প্রতিস্থত রেখা অভিস্থ থেকে দূরে সরে যায় (চিত্র 7.8 b)। এক্ষেত্রে আপত্তন কোণের চেয়ে প্রতিসরণ কোণ বড়।

প্রতিসরণে আলোর রশ্মির চুক্তি

উপরের ছবি দ্রুটিতে দেখ AO আলোক রেখা লম্ব মাধ্যম থেকে ঘন মাধ্যমে অথবা ঘন মাধ্যম থেকে লম্ব মাধ্যমে এসে OB পথে গিয়েছে। মাধ্যমের

পরিবর্তন না হলে AO রশি OD পথে যেত। স্বতরাং আলো-রশির চৃতি হচ্ছে BOD কোণ।

প্রতিসরণের সূত্র

এক মাধ্যম থেকে অন্য মাধ্যমে যাবার সময় আলো-রশির প্রতিসরণ দুটো নিয়ম মেনে চলে: (ক) আপত্তি রশি, প্রতিস্থত রশি এবং আপত্তি বিন্দুতে বিভেদতলের উপর অভিলম্ব একই তলে থাকে। (খ) দুটো নির্দিষ্ট মাধ্যমের ভিত্তির দিয়ে একটা নির্দিষ্ট রঙের আলো-রশির প্রতিসরণ হলে আপত্তি কোণের $\sin i$ ও প্রতিসরণ কোণের $\sin r$ অনুপাত জ্ঞবক হয়। কোন কোণের \sin কাকে বলে তোমরা অঙ্কের ক্লাসে পড়েছ। যদি আপত্তি কোনকে i ও প্রতিসরণ কোণকে r বলা হয় তবে $\sin i / \sin r$ জ্ঞবক। এই জ্ঞবককে মাধ্যম দুটির প্রতিসরাঙ্ক বলা হয় ও n অক্ষর দিয়ে প্রকাশ করা হয়।

হটি নির্দিষ্ট মাধ্যম ও নির্দিষ্ট বর্ণের আলো-রশির জন্য প্রতিসরাঙ্কের মান সর্বদা সমান থাকে। মনে রেখ মাধ্যমের ক্ষেত্রে তাপমাত্রা সমান থাকা দরকার। বিভিন্ন স্তরটি বিজ্ঞানী স্নেল আবিক্ষাব করেন, সেজন্ত এই স্তরকে অনেক সহজ স্নেলের স্তর বলা হয়।

প্রতিসরণের প্রমাণ

একটা বোর্ডের উপর চারটে পিন দিয়ে একটা কাগজ আটকাও। একটা কাচের আয়তাকার ফলক কাগজের উপর রেখে বাইরের সীমারেখ। ABCD টেনে নাও (চিত্র 7.9a)। ফলকটির AB পাশে দুটো পিন P ও Q খাড়া ভাবে বসাও। ফলকের CD পাশে আরও দুটো পিন R এবং S এমন ভাবে বসাও যেন P এবং Q পিন, R ও S এর প্রতিবিম্বের সঙ্গে একই রেখায় থাকে। P, Q ও R, S পিনগুলোর অবস্থার চিহ্নিত কর এবং ফলকটি সরাও। P, Q এবং R, S যোগ কর ও বাড়াও যাতে PQ এবং RS রশি দুটো AB, CD রেখা দুটোকে O এবং O' বিন্দুতে ছেদ করে।

O এবং O' বিন্দুতে AB ও CD এর উপর লম্ব টান। NON'তে O বিন্দু রেখা AB-এর উপর লম্ব। PON আপত্তি কোণ এবং O'ON' প্রতিসরণ কোণ।

PON এবং $O'ON'$ কোণ দুইটি \sin এর মান ত্রিকোণমিতির তালিকা থেকে বার করে। দেখবে $\sin PON$ এবং $\sin O'ON'$ দুটির অঙ্গুপাত একটি ঝুঁক।

(a)

চিত্র 7.9

(b)

ঝুঁকটি η অক্ষর দিয়ে প্রকাশ করা হয়। PON কোণ এবং $O'ON'$ কোণের মান বিভিন্ন নিয়ে দেখ η এর মান প্রতিবারেই এক হবে। অগ্রভাবেও প্রতিসরণের মান বার করতে পার। O বিন্দুকে কেন্দ্র করে যে কোণ ব্যাসার্ধের একটা বৃত্ত আক (চিত্র নং 7.9b)। এই বৃত্ত PQ ও OO' রেখা দুটোকে যথাক্রমে X ও X' বিন্দুতে ছেদ করল। X ও X' থেকে NON' এবং উপর XY ও $X'Y'$ লম্ব টান।

$$\text{অতএব } \sin PON = \frac{XY}{OX} \text{ এবং } \sin O'ON' = \frac{X'Y'}{OX}. \text{ কিন্তু } OX = OX'$$

কারণ একই বৃত্তের ব্যাসার্ধ। অতএব $\frac{\sin PON}{\sin O'ON'} = \frac{XY}{X'Y'}$ । XY ও $X'Y'$ এর অঙ্গুপাত বার করলেই কোণ দুটির সাইনের অঙ্গুপাত পাবে। যদি আপতন কোণ ও প্রতিসরণ কোণের মান পরিবর্তন করে অঙ্গুপাত একই পাও তবে প্রতিসরণের বিভৌগ স্তুত প্রমাণিত হল। প্রতিস্থত বেধা, আপত্তি বেধা এবং আপতন বিন্দুতে বিভেদভলের উপর অঙ্গুল একই তলে আছে। একেব্রে কাগজের তলে আছে। এটীই প্রতিসরণের প্রথম স্তুত।

প্রতিসরণের কয়েকটি সূষ্ঠান্ত

(ক) অলে তোবানো চিনিস ঘনের বাইরে থেকে দেখলে কেমন হথাবে?

জলভর্তি একটা পাত্র নাও। পাত্রের ঠিক নিচে একটা দশ পয়সা বাঁথ। পয়সার ঠিক উপরে খাড়াখাড়ি থাবে যদি দেখ মনে হবে পয়সাটা উপর দিকে উঠে এসেছে। জলের চৌবাচ্চা বা জলভর্তি বালতির নিচের দিকে চাইলে জলের গভীরতা কমে গিয়েছে মনে হয়।

(খ) জলের ভিতর চোখ রেখে

উপরে বাতাসে বাঁথা জিনিস কেমন দেখাবে? মনে কর বাতাসে A বিন্দুতে একটা বস্তু রেখেছ এবং জলে চোখ রেখে বস্তুটা দেখছ (চিত্র 7.10)। AO রশি জলের তলে পড়ার পর OB পথে জলের ভিতর দিয়ে যাবে অভিসরণের দিকে সরে গিয়ে। সেই রকম আর একটি রশি AO' পথে লম্বভাবে পড়ে মোজা AO'N পথে যাবে। BO এবং NO'

চিত্র 7.10

বাড়ালে A' বিন্দুতে হৃদ করবে। A' হচ্ছে A বিন্দুর প্রতিবিম্ব। প্রতিবিম্ব জলের তল থেকে দূরে সরে গিয়েছে।

প্রতিসরণের প্রাকৃতিক দৃষ্টান্ত

বায়ুগুলে প্রতিসরণ : ভূপৃষ্ঠে বাতাসের চাপ বেশি এবং উপর দিকে ঘূর্ণ ওঠা যাবে বাতাসের চাপ ততই কমবে। টান, শৰ্ষ বা কোন নক্ষত্র থেকে

চিত্র 7.11

যখন আলো আসে তখন লঘু মাধ্যম থেকে বন মাধ্যমে আসার জন্য প্রতিস্তত রশি বিভিন্ন স্তরে প্রতিসরণের পর অভিসরণের দিকে সরে আসে। প্রতিস্তত

বৃশি যথন দৰ্শকেৱ চোখে এসে পড়ে তথন সেই বৃশিকে সৱলৰেখাৱ টানলে মূল উৎসটি সেখানে আছে মনে হয়। এই আপাতত অবস্থান প্ৰকৃত অবস্থান থেকে কিছুটা উপৰে (চিত্ৰ 7.11)। ছবিতে ভাঙা সৱল বেখাৰ সাহায্যে সূৰ্যৰ আপাতত অবস্থান ও গোটা বেখাৰ সাহায্যে প্ৰকৃত অবস্থান দেখান হয়েছে। এই অন্ত সূৰ্য উঠাৰ কিছু আগে এবং অন্ত যাওয়াৰ কিছু পৰেও আমৰা সূৰ্যকে দেখতে পাই।

আভ্যন্তৰীণ পূৰ্ণ প্ৰতিফলন

আলোকবৃশি যথন ঘন মাধ্যম থেকে লঘু মাধ্যমে আসে তথন প্ৰতিশ্রুত বেখা অভিলম্ব থেকে দূৰে সৱে যায়। তথন প্ৰতিসৰণ কোণ আপতন কোণ অপেক্ষা বড় হয়। মনে কৰ XY একটি লঘু ও ঘন মাধ্যমেৰ বিভেদতল। PO বৃশি বিভেদতল O বিন্দুতে আপতিত হয়ে OQ দিকে প্ৰতিশ্রুত হল

চিত্ৰ 7.12

(চিত্ৰ 7.12)। NON' বিভেদতলেৰ উপৰে O বিন্দুতে লম্ব। ছবিতে দেখ $\angle QON > \angle PON'$ ।

$\angle RON'$ আপতন কোণেৰ অন্ত প্ৰতিশ্রুত বৃশি বিভেদতল বৰাবৰ যায়, অৰ্থাৎ প্ৰতিসৰণ কোণ তথন 90° । আপতন কোণ যদি আৱণ বাড়ানো যায় তবে বৃশি লঘু মাধ্যমে প্ৰতিশ্রুত না হয়ে সাধাৰণ প্ৰতিফলনেৰ নিয়ম অনুযায়ী ঘন মাধ্যমে প্ৰতিফলিত হবে। ছবিতে $\angle SON'$ কোণ $\angle RON'$ কোণেৰ চেয়ে বড় হওয়ায় SO বৃশি OS' পথে ঘন মাধ্যমে প্ৰতিফলিত হয়েছে। এই প্ৰতিফলনকে আভ্যন্তৰীণ পূৰ্ণ প্ৰতিফলন বলে।

যে ଆପତନ କୋଣେର ଜୟ ପ୍ରତିସରଣ କୋଣ 90° ହୁଏ ତାକେ ମାଧ୍ୟମ ଛାଟିର ସଂକଟ କୋଣ ବଲେ । ଏଥାନେ $\angle RON'$ ସଂକଟ କୋଣ । ଶ୍ଵତ୍ରାଂ ଆଭ୍ୟନ୍ତରୀଣ ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନେର ଜୟ (କ) ଆଲୋର ବଶିକେ ସନ ମାଧ୍ୟମ ଥେକେ ଲୟ ମାଧ୍ୟମେ ଯେତେ ହେବେ ଏବଂ (ଖ) ଆପତନ କୋଣ ସଂକଟ କୋଣେର ଚେଯେ ବଡ଼ ହୋଇ ଦରକାର । ଆଭ୍ୟନ୍ତରୀଣ ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନ ପ୍ରତିସରଣେର ଏକଟି ବିଶେଷ ଅବସ୍ଥା ମାତ୍ର ।

ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନେର ଦୃଷ୍ଟିଷ୍ଠାନ

(କ) ଏକଟା ଜଳଭର୍ତ୍ତି କାଚେର ଗୋଲାମକେ ଧୀରେ ଧୀରେ ଚୋଥେ ଉପର ତୁଳଲେ ଦେଖିତେ ପାବେ ଏକଟା ବିଶେଷ ଉଚ୍ଚତାଯି ଜଳେର ଉପରତଳ ଚକଚକେ ଦେଖାଇଁ । ଗୋଲାମଟାକେ ଉପର ଦିକେ ତୋଳାର ସମୟ ଏକଟା ବିଶେଷ ଉଚ୍ଚତାଯି ଆଲୋକବଶିର ଆପତନ କୋଣ ସଂକଟ କୋଣେର ଚେଯେ ବେଶ ହୁଏ (ଚିତ୍ର 7.13) । ମେଇ ସମୟ ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନେର ଜୟ ଜଳେର ଉପରତଳ ଚକଚକେ ଦେଖାଯାଇ ।

(ଖ) ଏକଟା ବୀକାରେ ଜଳ ନାହିଁ । ଏକଟା ଟିଉବକେ ଆଂଶିକ ଆଲ୍ବର୍ତ୍ତି କରି ବୀକାରେର ଜଳେ ଡୋବଚା ଭାବେ ବୈଶେଷ ଜଳେର ଭେତର ଦିଯେ ଦେଖିଲେ ଦେଖିବେ ଟିଉବେର ଯେ ଅଂଶେ ଜଳ ନେଇ ମେଇ ଅଂଶ ଚକଚକ କରାଇଛି (ଚିତ୍ର 7.14) । ବାହିରେ ଥେକେ ଆଲୋ ଏମେ ଟିଉବେର ଗାରେ ପଡ଼େ ଯଥିନ ଆପତନ କୋଣ ସଂକଟ କୋଣେର ଚେଯେ ବଡ଼ ହୁଏ ତଥିନ ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନ ହୁଏ । ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନ ବଶି ଚୋଥେ ପଡ଼ାଯାଇ ଟିଉବେର ଶରୀର ଚକଚକେ ଦେଖାଯାଇ ।

ଚିତ୍ର 7.14

ଚିତ୍ର 7.13

ଏହାଙ୍କ ପେପାର୍ଓରେଟେର ଭିତରେର ବୁଦ୍ଧିକେ ଚୋଥେ ବିଶେଷ ଅବସ୍ଥା ଚକଚକେ ଦେଖାଯାଇ । ଏକଟା କାଲୋ ଭୂମୋର ମାଥା ବଲକେ ଜଳେ ଡୋବାଲେ ଦେଖିବେ ବଲେର ଶରୀର ଚକଚକ କରାଇଛି ।

মাঝে মাঝে যে বাতাসের কণা আছে জল থেকে আলোৰ বশি কণাগুলিতে এসে পড়লে পূর্ণ প্রতিফলন হয়। পূর্ণ প্রতিফলিত বশি চোখে এসে পড়লে বল চকচক কৰে। হীরা চকচক কৰাব কাৰণ পূর্ণ প্রতিফলন। বাতাসেৰ সাপেক্ষে হীরাব সংকট কোণ 24.5° । যদি আলো-বশি বাতাস থেকে হীরায় প্ৰবেশ কৰে তবে আপতন কোণ সংকট কোণেৰ চেয়ে বড় হলে পূর্ণ প্রতিফলিত হয়ে বাব হয়ে আসে।

পূর্ণ প্রতিফলনেৰ প্ৰাকৃতিক দৃষ্টান্ত

মৰু অঞ্চলে অনেক দুৰেৰ গাছপালা অনেক সময় জলাশয়ে প্রতিফলিত হচ্ছে মনে হয়। শীতেৰ দেশে কোন বস্তৱ প্রতিবিশ্বকে উলটো হয়ে ঝুলতে দেখা যায়। এই দৃষ্টিভূমকে মৱীচিকা বলে। আলোৰ পূর্ণ প্রতিফলনেৰ জন্য মৱীচিকা দেখা যায়।

(ক) মৰু অঞ্চলেৰ মৱীচিকা : সূৰ্যেৰ তাপে মৰুভূমিৰ বালি গৰম হয়ে উঠলে ঠিক উপৰেৰ স্তৰেৰ বাতাস গৰম হয়ে আয়তনে বাড়ে এবং ঘনত্ব কৰে। বায়ুস্তৰেৰ তাপমাত্ৰা উপৰেৰ দিকে ক্ৰমশ কমতে থাকে। মনে কৰ

চিত্ৰ 7.15

T একটি গাছ। বালিৰ উপৰেৰ বাতাসকে যদি ঘনত্ব অন্যান্যী কয়েকটি স্তৰে ভাগ কৰা যায় তবে গাছেৰ মাধ্যা থেকে কোন আলোকবশি যথন নিচেৰ দিকে

ନାମବେ ତଥନ ସନ ମାଧ୍ୟମ ଥେକେ ଲୟ ମାଧ୍ୟମେ ପ୍ରବେଶ କରିବେ (ଚିତ୍ର 7.15) । ସନ ଥେକେ ଲୟ ମାଧ୍ୟମେ ପ୍ରବେଶ କରାର ଜୟ ପ୍ରତିସରଣ କୋଣ ଆପତନ କୋଣେର ଚେଯେ ବଡ଼ ହବେ । ଆଲୋ-ବର୍ଣ୍ଣ ସତଃ ନିଚେର ଦିକେ ନାମବେ, ପ୍ରତିସରଣ କୋଣ ତତଃ ବାଡ଼ିତେ ଥାକବେ । ଆଲୋ-ବର୍ଣ୍ଣ ସଥନ ଏମନ କୋନଙ୍କ କୁରେ ଏମେ ପୌଛିବେ ସେଥାନେ ଆପତନ କୋଣ ସଂକଟ କୋଣେର ଚେଯେ ବଡ଼ ଦେଖାନେ ବର୍ଣ୍ଣଟି ପ୍ରତିଷ୍ଠତ ନା ହେଁ ଦେଇ କୁରେଇ ପୂର୍ବ ପ୍ରତିଫଳିତ ହବେ । ଏହିବାର ଆଲୋ-ବର୍ଣ୍ଣ କ୍ରମଶ ଉପର ଦିକେ ଉଠିତେ ଥାକବେ ଅର୍ଥାଏ ଲୟ ଥେକେ ସନ ମାଧ୍ୟମେ ଯାବେ ଓ ପ୍ରତିଷ୍ଠତ ବର୍ଣ୍ଣ ଅଭିଲଷେର ଦିକେ ଯାବେ । ଏହି ଭାବେ ଉପର ଦିକେ ଉଠିତେ ଉଠିତେ ଶେବେ ମାହସେର ଚୋଥେ ଏମେ ପଡ଼ିବେ । ମନେ ହବେ ଯେନ ବର୍ଣ୍ଣଟି T' ବିନ୍ଦୁ ଥେକେ ଆସଛେ । T' ବିନ୍ଦୁଟି T ବିନ୍ଦୁର ପ୍ରତିବିଷ୍ଟ ।

ତାପମାତ୍ରାର କ୍ରତ ପରିବର୍ତ୍ତନେର ଜୟ ବିଭିନ୍ନ କୁରେର ସନସ ଓ ପ୍ରତିସରାକ କ୍ରତ ପରିବର୍ତ୍ତିତ ହୁଏ । ଏହି ପରିବର୍ତ୍ତନେର ଜୟ ଜଳେ ବିଷ ଯେମନ କୌପେ ଦେଇଭାବେ ପ୍ରତିବିଷ୍ଟଟି କୌପଛେ ମନେ ହୁଏ । ଫଳେ ଗାଛର ପାଶେ ଜଳ ଆଛେ ଭମ ହୁଏ ।

ଚିତ୍ର 7.16

ତଥନ ସନ ମାଧ୍ୟମ ଥେକେ ଲୟ ମାଧ୍ୟମେ ଯାଓଯାଇ ପ୍ରତିଷ୍ଠତ ବର୍ଣ୍ଣ ଅଭିଲଷ ଥେକେ ଦୂରେ ଯାଇ ଏବଂ ପ୍ରତିସରଣ କୋଣ ଆପତନ କୋଣେର ଚେଯେ ବଡ଼ ହୁଏ । ଏହିଭାବେ

କ୍ରମଶ ଉପର ଦିକେ ଖଣ୍ଡାର ପର କୋନ କୁରେ ଆପତନ କୋଣ ସଂକଟ କୋଣେର ଚେଯେ ବଡ଼ ହଲେ ପୂର୍ଣ୍ଣ ପ୍ରତିଫଳନ ହୁଏ । ଏହି କୁରେର ପର ଆଲୋ-ବର୍ଣ୍ଣ ନିଚେର ଦିକେ ନାମତେ ଥାକେ ଏବଂ ପ୍ରତିଷ୍ଠତ ବର୍ଣ୍ଣ ଅଭିନ୍ଦେର ଦିକେ ସବୁତେ ଥାକେ । ଶେବେ ସଥନ କୋନ ଲୋକେର ଚୋଥେ ଏସେ ପଡ଼େ ତଥନ ମନେ ହୁଏ ବର୍ଣ୍ଣଟି S' ବିନ୍ଦୁ ଥେକେ ଆସଛେ । S' ବିନ୍ଦୁ S ବିନ୍ଦୁର ପ୍ରତିବିଷ୍ଵ (ଚିତ୍ର 7.16) । ବଞ୍ଚି ଉଲଟେ ହୁଏ ଆକାଶେ ଝୁଲଛେ ମନେ ହୁଏ ।

ଲେନ୍ସ

ଲେନ୍ସେର ବ୍ୟବହାର ବହୁ ଯୁଗ ଆଗେ ଥେକେ ପ୍ରଚଲିତ ଆଛେ । ଏକ ଧରନେର ଲେନ୍ସେର ପ୍ରଚଲିତ ନାମ ଆତମୀ କାଚ । ଲିଉୟେନ ହୋକ ନାମେ ଏକଜନ ବୈଜ୍ଞାନିକଙ୍କେ ଲେନ୍ସେର ବ୍ୟବହାର କରନ୍ତେ ଦେଖେ ଗ୍ୟାଲିଲିଓ ଲେନ୍ସେର ବ୍ୟବହାର ଶିଖେ ନେନ । ତିନି 1618 ଆଇଟାନ୍ଦେ ଏହି ଲେନ୍ସ ଦିଯେ ଦୂର୍ବୀନ ତୈରି କରେନ ଓ ପରେ ବୃଦ୍ଧପତିର ଉପଗ୍ରହ, ଟାଦେର ପିଠ, ଶନିର ବଲୟ ପ୍ରଭୃତି ଗ୍ରହ-ଉପଗ୍ରହଣିଲି ପର୍ଯ୍ୟବେକ୍ଷଣ କରେନ । ଶୋନା ଯାଏ ଆତମୀ କାଚେର ମାହାଯେ କାଗଜ ପୁଣିରେ ମୟ୍ୟ ଦେଖାର ବ୍ୟବହାରରେ ମେଘୁଗେ ପ୍ରଚଲିତ ଛିଲ । ବର୍ତ୍ତମାନ କାଲେ ଚମା, କ୍ୟାମେରା, ଅଗ୍ରବୀକ୍ଷଣ, ଦୂର୍ବୀକ୍ଷଣ ପ୍ରଭୃତି ନାନାରକମ ଯତ୍ରେ ଲେନ୍ସ ବ୍ୟବହାର କରା ହୁଏ ଥାକେ ।

ବିଭିନ୍ନ ପ୍ରକାରେର ଲେନ୍ସ

କୋନ ସର୍ବ ପ୍ରତିଦାରକ ମାଧ୍ୟମକେ ଯହି ଛୁଟୋ ଗୋଲାକାର ତଳ ଅଥବା ଏକଟା ଗୋଲାକାର ଓ ଅର୍ଥ ଏକଟା ମୟ୍ୟତଳ ଦିଯେ ସୌମାବନ୍ଧ କରା ଯାଏ ତବେ ଦେଇ

ଚିତ୍ର 7.17

ମାଧ୍ୟମକେ ଲେନ୍ସ ବଲେ । ଲେନ୍ସକେ ମାଧ୍ୟମରଣ୍ତ ଦୁ ଶ୍ରେଣୀତେ ଭାଗ କରା ଯାଏ—(କ) ଉତ୍କଳ ବା କନତେଜ୍ଜ ଲେନ୍ସ ଓ (ଖ) ଅବତଳ ବା କନକେତ ଲେନ୍ସ । ଉତ୍କଳ ଲେନ୍ସେର ମାଧ୍ୟମାନ ମୋଟା ଓ ଦେଇ ପ୍ରାପ୍ତ ସର୍ବ ଏବଂ ଅବତଳ ଲେନ୍ସେର ମାଧ୍ୟମାନ ସର୍ବ ଓ ଦେଇ ପ୍ରାପ୍ତ ମୋଟା (ଚିତ୍ର 7.17) । ଲେନ୍ସ କାଚ, ପ୍ଲାଷ୍ଟିକ, କୋଯାଟଙ୍ଗ ଇତ୍ୟାଦି ଦିଯେ ତୈରି ହତେ ପାରେ । କାଚେର ଲେନ୍ସଇ ବେଶ ବ୍ୟବହାର କରା ହୁଏ ଥାକେ ।

ମ୍ୟାନ୍‌ଟରାଲ ଆଲୋ-ବର୍ଣ୍ଣ ଉତ୍କଳ ଲେନ୍ସେ ଏସେ ପଡ଼ିଲେ ପ୍ରଥମେ ଏକଟି ବିନ୍ଦୁତେ ଏସେ କେନ୍ଦ୍ରୀୟ ହୁଏ ଓ ତାରପର ଅପରାଦୀ ଆଲୋ ବର୍ଣ୍ଣର ମତ ଛଡିଯେ ପଡ଼େ । ଉତ୍କଳ

ଲେନ୍ସ ଶୂର୍ଯ୍ୟର ଆଲୋଯ় ଧରେ କାଗଜ ପୋଡ଼ାତେ ତୋମରୀଓ ଦେଖେ ଧାକବେ । ଉଚ୍ଚଲ ଲେନ୍ସକେ ଅଭିସାରୀ ଲେନ୍ସ ଓ ବଳା ହୁଏ । ଅବତଳ ଲେନ୍ସେ ଆଲୋର ମୟାନ୍ତରାଳ ବଶିଗୁଛ ପ୍ରତିଷ୍ଠତ ହବାର ପର ମନେ ହୁଏ ଏକଟି ବିନ୍ଦୁ ଥେକେ ସେବ ଅପରୁତ ହଛେ । ଏଇଜଣ୍ଠ ଅବତଳ ଲେନ୍ସକେ ଅପସାରୀ ଲେନ୍ସ ବଲେ ।

ଲେନ୍ସେର ସଂତ୍ରତ୍ତା

ବକ୍ରତା କେନ୍ଦ୍ର ଓ ବକ୍ରତା ବ୍ୟାସାର୍ଧ : ଲେନ୍ସେର ଦୁଇକ ସଦି ଗୋଲାକାର ହୁଏ ତବେ ପ୍ରତ୍ୟେକ ଦିକିଟ ଏକଟି ନିର୍ଦ୍ଦିଷ୍ଟ ଗୋଲକେର ଅଙ୍ଗ (୭.୧୮ ଚିତ୍ର) । ଗୋଲକ ଦୁଇ ଫୁଟକି ଦିଯେ ଦେଖାନ ହୁଏଛେ ।

ମନେ କର MQS ଗୋଲକେର କେନ୍ଦ୍ର

C_1 ଏବଂ PRS ଗୋଲକେର କେନ୍ଦ୍ର

C_2 । C_1 ଓ C_2 ବିନ୍ଦୁକେ ବକ୍ରତା

କେନ୍ଦ୍ର ବଲେ । ସଦି କୋନ ତଳ

ମୟତଳ ହୁଏ ତାହଲେ ତାର ବକ୍ରତା

କେନ୍ଦ୍ର ଦେଖା ଯାବେ ନା । ବଳା ସେତେ

ପାରେ ଯେ ମେହି ତଳେର ବକ୍ରତା କେନ୍ଦ୍ର

ଅସୀମେ ଅପରୁତ ।

ଚିତ୍ର ୭.୧୮

ଲେନ୍ସେର କୋନ ତଳ ଯେ ଗୋଲକେର ଅଂଶ ମେହି ଗୋଲକେର ବ୍ୟାସାର୍ଧକେ ଲେନ୍ସେର ବକ୍ରତା ବ୍ୟାସାର୍ଧ ବଲେ । C_1Q ଓ C_2R ବେଳେ ଦୁଇ ଯଥାକ୍ରମେ ଦୁଇ ତଳେର ବକ୍ରତା-ବ୍ୟାସାର୍ଧ । ମୟତଳେର ବକ୍ରତା-ବ୍ୟାସାର୍ଧ ଅସୀମ ।

ପ୍ରଧାନ ଅକ୍ଷ : କୋନ ଲେନ୍ସେର ଗୋଲାକାର ତଳ ଦୁଟୀର ବକ୍ରତା-କେନ୍ଦ୍ର ଯୋଗ କରିଲେ ଯେ ମରଲାରେଥା ପାଞ୍ଚାଯା ଯାଇ ତାକେ ଲେନ୍ସଟିର ପ୍ରଧାନ ଅକ୍ଷ ବଲେ । C_1C_2 ମରଲାରେଥା ପ୍ରଧାନ ଅକ୍ଷ । ଲେନ୍ସେର ଏକଟି ତଳ ମୟତଳ ହଲେ ବକ୍ରତଳେର ବକ୍ରତା-କେନ୍ଦ୍ର ସେବେ ମୟତଳେର ଉପର ଲାହ ଟାନିଲେ ଯେ ବେଳେ ପାଞ୍ଚାଯା ଯାଇ ମେଟିଇ ଏହି ଲେନ୍ସେର ପ୍ରଧାନ ଅକ୍ଷ ।

ଆଲୋକ କେନ୍ଦ୍ର : ଲେନ୍ସେ ଆଲୋକରଶି ପଡ଼ିଲେ ସଦି ଆପତିତ ବଶି ଓ ନିର୍ଗତ ବଶି ପରିଷ୍କାରେର ମୟାନ୍ତରାଳ ହୁଏ ତବେ ଲେନ୍ସେର ଭିତରେର ପ୍ରତିଷ୍ଠତ ବଶି ପ୍ରଧାନ ଅକ୍ଷକେ ଯେ ବିନ୍ଦୁତେ ଛେଦ କରେ ତାକେ ଆଲୋକ କେନ୍ଦ୍ର ବଲେ । ମନେ କର AB ବଶି ଲେନ୍ସେର B ବିନ୍ଦୁତେ ଆପତିତ ହେଁବାର ପର BC ପଥେ ପ୍ରତିଷ୍ଠତ ହୁଏ CD ପଥେ

লেন্স থেকে বাইরে এসেছে (চিত্র 7.18)। এক্ষেত্রে আপত্তি বশি AB ও নির্গত বশি CD পৰম্পৰ সমান্তৰাল। প্রতিস্থত বশি BC প্রধান অৰ্থে C₁C₂কে O বিন্দুতে ছেদ কৰেছে। O হল এই লেন্সের আলোক-কেন্দ্ৰ। যদি লেন্সের উভয় তলৰ গোলাকৃতি সমান হয় তবে আলোক-কেন্দ্ৰ লেন্সের কেন্দ্ৰে থাকবে। চিত্রে AB ও CD সমান্তৰাল হলেও নির্গত বশি, আপত্তি বশি থেকে থানিকটা সৱে গিয়েছে। কিন্তু সকল লেন্সের বেলায় এই বিচ্যুতি খুব কম হওয়ায় আপত্তি বশি আলোক-কেন্দ্ৰের ভিতৰ দিয়ে মোজামুজি বেৱিয়ে যায়।

ফোকাস ও ফোকাস-দূৰত্ব : কোন সমান্তৰাল বশিৰ গুচ্ছ উভয় লেন্সে প্রতিসরণেৰ পৰ লেন্সের অন্ত পাশে প্রধান অক্ষেৰ উপৰ কোন বিন্দুতে

চিত্র 7.19

চিত্র 7.20

কেন্দ্ৰীভূত হয়। এই বিন্দুটিকে ঐ লেন্সের ফোকাস বলে। উভয় লেন্সের ফোকাস 7.19 চিত্রে F বিন্দুতে অবস্থিত দেখানো হয়েছে।

উভয় লেন্সের প্রধান অক্ষেৰ উপৰ কোন বিন্দু থেকে আগোৱা বশিৰ গুচ্ছ অপহৃত হয়ে লেন্সে প্রতিসরণেৰ পৰ যদি প্রধান অক্ষেৰ সমান্তৰাল হয়ে অন্য পাশ দিয়ে বেৱিয়ে যায় তবে এই বিন্দুটিকেও উভয় লেন্সের ফোকাস বলে। 7.20 চিত্রে দেখানো F বিন্দু উভয় লেন্সের ফোকাস।

কোন লেন্সের ফোকাস থেকে আলোকবিন্দুৰ দূৰত্বকে ফোকাস দূৰত্ব বলে। 7.19 চিত্রে OF দূৰত্ব ফোকাস দূৰত্ব। কোন লেন্সের ফোকাস দূৰত্ব f অক্ষৰ দিয়ে প্ৰকাশ কৰা হয়।

লেন্সেৰ প্ৰতিবিম্ব

আলোক বশি কোন মাধ্যমে প্ৰতিস্থত হলে প্ৰতিবিম্ব সৃষ্টি কৰে। লেন্স প্ৰতিসাৱক বস্তু, স্বতন্ত্ৰ লেন্স ও প্ৰতিবিম্ব সৃষ্টি কৰতে পাৰে। কোন লেন্সেৰ

ফোকাস-দ্রব্য এবং বস্তুর আকৃতি ও অবস্থান জানা থাকলে কিভাবে প্রতিবিহ্বের আকৃতি ও অবস্থান জানা যেতে পারে দেখ ।

উক্তল লেন্স : মনে কর PQ বস্তু একটা উক্তল লেন্সের সামনে আছে । OF লেন্সের ফোকাস দ্রব্য (চিত্র 7.21) । P বিন্দু থেকে কোন রশি প্রধান অক্ষের সমান্তরাল হয়ে লেন্সে প্রতিসরণের পর অন্ত পাশের ফোকাসের মধ্যে দিয়ে গেল । PO রশি আলোক-কেন্দ্রের ভিতর দিয়ে সোজা যায় । এই ছুটো রশি p বিন্দুতে ছেদ করে । p বিন্দু P বিন্দুর প্রতিবিষ্ট । Q

চিত্র 7.21

বিন্দু থেকে কোন রশি লেন্সের মধ্য দিয়ে সোজা অন্ত দিক দিয়ে বেরিয়ে যায় । এখন pq , PQ -এর প্রতিবিষ্ট । এই প্রতিবিহ্বের অবস্থান আছে বলে একে পর্দায় ধরা যাবে । এই জাতীয় প্রতিবিষ্টটি সং, উলটো এবং আকারে ছোট হয় । লেন্সের অন্য বস্তুর যে প্রতিবিষ্ট হয় তার আকৃতি নির্ভর করে বস্তুর অবস্থানের

চিত্র 7.22

উপর । প্রতিবিহ্বের দৈর্ঘ্য ও বস্তুর দৈর্ঘ্যের অনুপাতকে বৈধিক বিবরণ বলে ।

বৈধিক বিবরণ m হলে $m = \frac{pq}{PQ}$ ।

বস্তু যথন উত্তল লেন্সেৰ ফোকাস দূৰত্বেৰ মধ্যে থাকে অ্যামিটিৰ সাহায্যে

প্ৰতিবিম্ব আকলে দেখা যাবে মেটি অসৎ, সোজা এবং আকাৰে বড় (চিত্ৰ 7.22)।

যে কোন উত্তল লেন্সেৰ এক পাশে যে কোন একটি বস্তুৰেখে অস্ত পাশেৰ কাছে চোখ নিয়ে দেখলে আকাৰে বড় অমিটিম দেখা যায় (চিত্ৰ 7.23)। এই জন্য উত্তল লেন্সকে বিবৰ্ধক কাচ বা অনেক সময় সহজ অণুবীক্ষণ যন্ত্ৰ বলা হয়। উত্তল লেন্স দিয়ে ক্যামেৰা, অণুবীক্ষণ, দূৰবীক্ষণ ও নানা ধৰনেৰ যন্ত্ৰপাতি তৈৰি হয়।

চিত্ৰ 7.23

লেন্সেৰ পাণ্ডাৰ : চশমাৰ জন্য যে লেন্স বাবহাৰ হয় তাৰ নানাৰকম পাণ্ডাৰেৰ কথা শোনা যায়। কোনটি আবাৰ প্লাস, কোনটি মাইনাস। উত্তল লেন্সেৰ ক্ষেত্ৰে প্লাস এবং অবতল লেন্সেৰ জন্য মাইনাস বলাই প্ৰচলিত হীতি। এবং

$$\text{লেন্সেৰ পাণ্ডাৰ} = \frac{1}{\text{মিটাৰে ফোকাস দূৰত্ব}} \text{।}$$

$$\text{অধিবা} = \frac{100}{\text{মিটিৰিটাৰে ফোকাস দূৰত্ব}}$$

চশমাৰ পাণ্ডাৰ + 4 এৰ অৰ্থ লেন্সটি উত্তল এবং তাৰ ফোকাস দূৰত্ব 25 cm।।

আলো ও শক্তি

আলো এক ধৰনেৰ শক্তি। অন্যান্য শক্তিৰ ঘত আলোও অন্য শক্তিতে ক্লপাস্তৱিত হতে পাৰে। দুটো প্ৰাথমিক ঘণ্টলে বা একটা পাথৰে লোহা দিয়ে আনুষৃত কুৰলে আঞ্চন দেখা যায়। ছুঁৰি, কাঁচি শান দেওয়াৰ সময় ঘূৰন্ত পাথৰ থেকে আলোৰ ফুলকি বেৱিয়ে আসতে তোমৰ অনেকেই দেখে থাকবে। একটা মোমবাতি জালালে বা আসিটিলিন গ্যাস পোড়ালে বাদায়নিক শক্তি থেকে

ଆଲୋକ ଶକ୍ତି ପାଇଁବା ଯାଏ । ଆଲୋକଚିତ୍ରେ ଫଳକେ ଆଲୋ ପଡ଼େ ରାସାୟନିକ ଶକ୍ତିତେ ପରିଣତ ହୁଏ । ଇଲେକ୍ଟ୍ରିକ ଆଲୋର ବାଲ୍ବେ ବିଦ୍ୟୁତ୍ଶକ୍ତି ଆଲୋକ ଶକ୍ତିତେ କୂପାନ୍ତରିତ ହୁଏ । କଥେକ ଶ୍ରେଣୀର ଧାତୁ ଆହେ ଯେହି ପଟ୍ଟ୍ୟାମିଯମ, ସିଙ୍ଗିଯମ ଇତ୍ୟାଦି ସାଦେହ ଉପରେ ଆଲୋ ପଡ଼ିଲେ ଇଲେକ୍ଟ୍ରିନ ବେରିଯେ ଆମେ । ଆଲୋର ଅର୍ପଣେ ଏହି ସବ ଧାତୁର ବ୍ୟବହାର କାଜେ ଲାଗିଯେ ଫୋଟୋଇଲେକ୍ଟ୍ରିକ ସେଲ ବା ଆଲୋକ-ତଡ଼ିଏ-କୋଷେ ବିଦ୍ୟୁତ୍ପ୍ରବାହେର ହୃଦୀ ହୁଏ । ଆଧୁନିକ ବିଭିନ୍ନ ସ୍ତରପାତ୍ରରେ ଆଲୋକ-ତଡ଼ିଏକୋଷେର ବ୍ୟବହାର ହସ୍ତେ ଥାକେ । ଖୁବ ସାମାଜିକ ହଲେଓ ଆଲୋ ଚାପ ହୃଦୀ କରନ୍ତେ ପାଇଁବେ । 1900 ଶ୍ରୀନ୍ଟାରେ ଲେବେଡ଼ିଟ୍ ଏହି ତଥ୍ୟ ପ୍ରୟାଣ କରେନ । 1918 ଶ୍ରୀନ୍ଟାରେ ଯେଘନାନ୍ଦ ସାହା ଆଲୋର ଚାପ ଯେପେ ଦେଖାନ । ଏହି ଚାପ ପ୍ରାୟ 4×10^{-4} dyne-ଏର ମହାନ ।

ଆଲୋର ସଂକରଣ ଓ ବେଗ

ଶୂର୍ଯ୍ୟର କାଛ ଥିଲେ ଆମରା ଆଲୋ ପାଇ । ଶୂର୍ଯ୍ୟର କାଛ ଥିଲେ ଏହି ଶକ୍ତି କି ତାବେ ଆମାଦେହ କାହେ ଆମେ ? ଏହି ପ୍ରଶ୍ନର ପ୍ରଥମ ଉତ୍ତର ଦେବାର ଚେଷ୍ଟା କରେନ ଏକଙ୍କନ ଉଲନ୍ଦାଙ୍ଗ ବୈଜ୍ଞାନିକ ଶ୍ରୀଟିଯାନ ହୃଗେନେମ (1629-95) । ତିନି ବଲେନ ଏହି ଶକ୍ତି ଆମେ ତରଙ୍ଗ ମାଧ୍ୟମେ ।

ଏହି ଧାରଣା ତୀର ପ୍ରଥମ ହୁଏ

ଆଲୋର ତରଙ୍ଗ ଲଙ୍ଘ କରେ । ଜଳେ ଯଥନ କୋଣ ତିଲ ଫେଲା ହୁଏ ତଥନ ତିଲେର ଶକ୍ତି ତରଙ୍ଗେର ହୃଦୀ କରେ ଏବଂ ମେହି ଶକ୍ତି ତରଙ୍ଗ ମାଧ୍ୟମେ ଚାରିଦିକେ ଛଡିଯେ ପଡ଼େ । ଶୁଦ୍ଧ ଆଲୋ ନାହିଁ, ଶୂର୍ଯ୍ୟ ଥିଲେ ଅଣ୍ଟାଗୁ ବିକିରଣ ଶକ୍ତି ଓ ତରଙ୍ଗ ମାଧ୍ୟମେ ପୃଥିବୀରେ ଆମେ । ଏହି ସବ ବିକିରଣ ଶକ୍ତି ହଞ୍ଚେ ରେଡ଼ିଓ ତରଙ୍ଗ; ଅବଲୋହିତ ଆଲୋ, ଦୃଶ୍ୟ ଆଲୋ, ଅତି ବେଶ୍ଵର ଆଲୋ, ଏକମ୍ ରଶ୍ମି, ଗାମା ରଶ୍ମି ପ୍ରଭୃତି । ଏହି ସବ ବିକିରଣ ଶକ୍ତିର ସାଧାରଣ ନାମ ତଡ଼ିଚୁର୍କୀମ ତରଙ୍ଗ । ଏଦେର ଘର୍ଦ୍ଦେହ ପାର୍ଶ୍ଵକ୍ୟ ଏଦେର ତରଙ୍ଗେର ଦୈର୍ଘ୍ୟ । ତୁମଙ୍କଦୈର୍ଘ୍ୟ କାକେ ବଲେ ? ଏକଟି ପୂର୍ଣ୍ଣ ତରଙ୍ଗେର ଦୈର୍ଘ୍ୟକେ ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ ବଲେ । 7.24 ଚିତ୍ରେ OA ଦୈର୍ଘ୍ୟ ହଞ୍ଚେ ତରଙ୍ଗଦୈର୍ଘ୍ୟ । ଛବି ଦେଖେ ନିଶ୍ଚଯ ବୁଝାନ୍ତେ ପାଇଛନ୍ତି ତରଙ୍ଗ OX ପଥେ ମଧ୍ୟାବିତ ହଞ୍ଚେ । ଅର୍ଥାତ୍ ତରଙ୍ଗ ଶୁଳ୍କ କ୍ରମାଗତ ପୁନର୍ବାବୁନ୍ତିର ପଥ OX ପଥେ ଏଗିଯେ ଥାଇଛା । ଅତି ସେକେଣେ ଯତନ୍ତି ଯୋଟ ତରଙ୍ଗ ହତେ ପାଇଁ

ଚିତ୍ର 7.24

বস্ত যথম উক্তল লেন্সেৱ ফোকাস দূৰত্বেৱ মধ্যে থাকে জ্যামিতিৱ সাহায্যে

প্ৰতিবিষ্ট আকলে দেখা যাবে সেটি অসৎ, সোজা এবং আকাৰে বড় (চিত্ৰ 7.22)।

যে কোন উক্তল লেন্সেৱ এক পাশে যে কোন একটি বস্ত রেখে অন্ত পাশেৱ কাছে চোখ নিয়ে দেখলে আকাৰে বড় অসমিষ্ট দেখা যায় (চিত্ৰ 7.23)। এই জন্য উক্তল লেন্সকে বিবৰ্ধক কাচ বা অনেক সহজ সহজ অণুবীক্ষণ যন্ত্ৰ বলা হয়। উক্তল লেন্স দিয়ে ক্যামেৰা, অণুবীক্ষণ, দূৰবীক্ষণ ও নানা ধৰনেৱ যন্ত্ৰপাতি তৈৰি হয়।

চিত্ৰ 7.23

লেন্সেৱ পাওয়াৰ : চশমাৰ জন্য
যে লেন্স বাবহাৰ হয় তাৰ নানা বকম

পাওয়াৰেৱ কথা শোনা যায়। কোনটি আবাৰ প্লাস, কোনটি মাইনাস।
উক্তল লেন্সেৱ কেত্ৰে প্লাস এবং অবতল লেন্সেৱ জন্য মাইনাস বলাই প্ৰচলিত
বীতি। এবং

$$\text{লেন্সেৱ পাওয়াৰ} = \frac{I}{\text{মিটাৰে ফোকাস দূৰত্ব}} \mid$$

$$\text{অথবা} = \frac{100}{\text{সেটিয়িটাৰে ফোকাস দূৰত্ব}}$$

চশমাৰ পাওয়াৰ + 4 এৰ অৰ্থ লেন্সটি উক্তল এবং তাৰ ফোকাস দূৰত্ব
25 cm।

আলো ও শক্তি

আলো এক ধৰনেৱ শক্তি। অন্তন্তু শক্তিৰ মত আলোও অন্ত শক্তিতে
ক্ৰমস্থিত হতে পাৰে। ছটো প্ৰাথমিকভাৱে বা একটা পাথৰে লোহা দিয়ে
আয়ুক্ত কুবলে আৰুণ্য দেখা যায়। ছুৱি, কাচি শান্ত দেওয়াৰ সুয়ে ঘূৰন্ত পাথৰ
থেকে আলোৰ ফুলকি বেৱিয়ে আসতে তোমৰ অনেকেই দেখে থাকিবে। একটা
মোমবাতি জালালে বা অ্যাসিটিলিন গ্যাস পোড়ালে ৰাসায়নিক শক্তি থেকে

ଆଲୋକ ଶକ୍ତି ପାଇଁଯା ସାଥ । ଆଲୋକଚିତ୍ରେ ଫଳକେ ଆଲୋ ପଡ଼େ ରାସାୟନିକ ଶକ୍ତିତେ ପରିଣତ ହୁଏ । ଇଲେକ୍ଟ୍ରିକ ଆଲୋର ବାଲ୍ବେ ବିଦ୍ୟୁତଶକ୍ତି ଆଲୋକ ଶକ୍ତିତେ ରାପାନ୍ତରିତ ହୁଏ । କେବେଳ ଶ୍ରେଣୀର ଧାତୁ ଆଛେ ଯେମନ ପଟ୍ୟାମିଯମ, ସିଜିଯମ ଇତ୍ୟାଦି ସାଦେର ଉପରେ ଆଲୋ ପଡ଼ିଲେ ଇଲେକ୍ଟ୍ରିନ ବେରିୟେ ଆସେ । ଆଲୋର କ୍ଷର୍ଷେ ଏହି ସବ ଧାତୁର ବ୍ୟବହାର କାଜେ ଲାଗିଯେ ଫୋଟୋଇଲେକ୍ଟ୍ରିକ ସେଲ ବା ଆଲୋକ-ତଡ଼ିକ୍-କୋଷେ ବିଦ୍ୟୁତ୍ପ୍ରାବାହେର ସ୍ଥଟି ହୁଏ । ଆଧୁନିକ ବିଭିନ୍ନ ସନ୍ତ୍ରପାତିତେ ଆଲୋକ-ତଡ଼ିକ୍-କୋଷେର ବ୍ୟବହାର ହୁଏ ଥାକେ । ଖୁବ ସାମାନ୍ୟ ହଲେଓ ଆଲୋ ଚାପ ସ୍ଥଟି କରନ୍ତେ ପାରେ । 1900 ଶ୍ରୀଷ୍ଟାଙ୍କେ ଲେବେଡ଼ିଉ ଏହି ତଥା ପ୍ରମାଣ କରେନ । 1918 ଶ୍ରୀଷ୍ଟାଙ୍କେ ମେଘନାଦ ସାହା ଆଲୋର ଚାପ ଯେପେ ଦେଖାନ । ଏହି ଚାପ ପ୍ରାୟ 4×10^{-4} dyne-ଏର ସମାନ ।

ଆଲୋର ସଂକରଣ ଓ ବେଗ

ଶ୍ରେବ କାହିଁ ଥିଲେ ଆମରା ଆଲୋ ପାଇ । ଶ୍ରେବ କାହିଁ ଥିଲେ ଏହି ଶକ୍ତି କି ତାବେ ଆମାଦେର କାହିଁ ଆସେ ? ଏହି ପ୍ରଶ୍ନର ପ୍ରଥମ ଉତ୍ତର ଦେବାର ଚେଷ୍ଟା କରେନ ଏକଜନ ଗୁଣ୍ଡାଜ
ବୈଜ୍ଞାନିକ ଶ୍ରୀଟିଯାନ ହସଗେନ୍ସ
(1629-95) । ତିନି ବଲେନ
ଏହି ଶକ୍ତି ଆସେ ତରଙ୍ଗ ମାଧ୍ୟମେ ।

ଏହି ଧାରଣା ତୀର ପ୍ରଥମ ହୁଏ

ଆଲୋର ତରଙ୍ଗ ଲଙ୍ଘ୍ୟ କରେ । ଜଳେ ଯଥନ କୋନ ଟିଲ ଫେଲା ହୁଏ ତଥନ ଟିଲେର ଶକ୍ତି ତରଙ୍ଗେର ସ୍ଥଟି କରେ ଏବଂ ସେଇ ଶକ୍ତି ତରଙ୍ଗ ମାଧ୍ୟମେ ଚାରିଦିକେ ଛଡ଼ିଯେ ପଡ଼େ । ଶୁଦ୍ଧ ଆଲୋନ୍ୟ, ଶ୍ରୀ ଥିଲେ ଅଣ୍ଟାନ ବିକିରଣ ଶକ୍ତି ଓ ତରଙ୍ଗ ମାଧ୍ୟମେ ପୃଥିବୀରେ ଆସେ । ଏହି ସବ ବିକିରଣ ଶକ୍ତି ହଞ୍ଚେ ବେଡିବ ତରଙ୍ଗ, ଅଧିକୌହିତ ଆଲୋ, ଦୃଶ୍ୟ ଆଲୋ, ଅତି ବେଣୁନି ଆଲୋ, ଏକମ୍ ରଖି, ଗାମା ରଖି ପ୍ରତ୍ଯେତି । ଏହି ସବ ବିକିରଣ ଶକ୍ତିର ସାଧାରଣ ନାମ ତଡ଼ିଚୁଷକୀୟ ତରଙ୍ଗ । ଏଦେର ଶଧ୍ୟେର ପ୍ରାର୍ଥକ୍ୟ ଏଦେର ତରଙ୍ଗେର ଦୈର୍ଘ୍ୟ । ତରଙ୍ଗଦୈର୍ଘ୍ୟ କାକେ ବଲେନ୍ ଏକଟି ପୂର୍ଣ୍ଣ ତରଙ୍ଗେର ଦୈର୍ଘ୍ୟକେ ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ ବଲେ । 7.24 ଚିତ୍ରେ OA ଦୈର୍ଘ୍ୟ ହଞ୍ଚେ ତରଙ୍ଗଦୈର୍ଘ୍ୟ । ଛବି ଦେଖେ ନିଶ୍ଚଯ ବୁଝିଲେ ପାଇଛନ୍ତି ତରଙ୍ଗ OA ପଥେ ମଧ୍ୟାବିତ ହଞ୍ଚେ । ଅର୍ଥାତ୍ ତରଙ୍ଗ ଗୁଣ କମାଗତ ପୁନରାବୃତ୍ତି ପରି ତରଙ୍ଗ ପଥେ ଏଗିଯେ ଯାଚେ । ଅତି ଦେବାଙ୍ଗେ ଯତନ୍ତି ଗୋଟି ତରଙ୍ଗ ହଞ୍ଚେ ପାରେ

ଚିତ୍ର 7.24

সেই সংখ্যাকে কল্পাঙ্গ বা ফ্রিকোয়েন্সি বলে। ধর c যদি আলোর বেগ, γ যদি কল্পাঙ্গ ও λ যদি তরঙ্গদৈর্ঘ্য হয় তবে সংজ্ঞা অনুযায়ী $c = \lambda \gamma$ ।

স্ফটবাইং আলোর বেগ যখন নির্দিষ্ট তথন কল্পাঙ্গ বাড়লে তরঙ্গদৈর্ঘ্য কমবে এবং কল্পাঙ্গ কমলে তরঙ্গদৈর্ঘ্য বাড়বে। তড়িচ্ছুল্পকীয় তরঙ্গের কল্পাঙ্গ বা তরঙ্গদৈর্ঘ্য অনুযায়ী বিকিরণ শক্তির শ্রেণীবিন্দুস হয়ে থাকে। দৃশ্য আলোর তরঙ্গদৈর্ঘ্য 4000 \AA থেকে 7500 \AA র মধ্যে। সাধারণত তরঙ্গদৈর্ঘ্য আলোস্ট্রেল এককে প্রকাশ করা হয়। এই এককের প্রতীক \AA । $1\text{\AA} = 10^{-10}\text{ m}$ ।

আলোর বেগ মাপার প্রথম চেষ্টা করেন গ্যালিলিও। কিন্তু তখন সময়ের শুরু ব্যবধান মাপার কোন পদ্ধতি না থাকায় তাঁকে চেষ্টা ছেড়ে দিতে হয়। 1775 খ্রীস্টাব্দে শুলাফ রোমার নামে একজন বিজ্ঞানী প্রথম আলোর গতিবেগ মাপেন। তিনি বৃহস্পতির একটি উপগ্রহের গ্রহণ লক্ষ্য করতে থাকেন। পৃথিবী যখন বৃহস্পতির সব থেকে কাছে এবং সব থেকে দূরে, এই দুই অবস্থার উপগ্রহটির গ্রহণ লাগার সময়ের ব্যবধান মাপেন। পৃথিবীর কক্ষপথের গড় ব্যাস জানা আছে। এই দূরত্বকে ঐ সময় দিয়ে ভাগ করে রোমার আলোর গতিবেগ বার করেন প্রতি সেকেণ্ডে $1,86,000$ মাইল অর্থাৎ $2.98 \times 10^8\text{ m}$ ।

1926 খ্রীস্টাব্দে মাইকেলসন নামে আব একজন বিজ্ঞানী প্রায় 35 km দূরে ছটে ঘূর্ণমান আয়নার সাহায্যে আলোর বেগ মাপেন। শুল্কে অলোর বেগ প্রায় $30 \times 10^8\text{ m/s}$ । বন মাধ্যমে আলোর বেগ করে। জলে আলোর বেগ $2.75 \times 10^8\text{ m/s}$ ।

স্ফটবাইং দেখতে পাই আলোক শক্তি তরঙ্গের আকারে এক স্থান থেকে অন্ত স্থানে নির্দিষ্ট বেগে যেতে পারে। সূর্য থেকে পৃথিবীতে আলো আসতে মাঝে আট মিনিট সময় লাগে। বায়ুশূলু স্থানেও আলো তরঙ্গ আকারে থার। আইনস্টাইনের তথ্য অনুসারে কোন কিছুই শুল্কে আলোর বেগের চেয়ে বেশি বেগে যেতে পারে না।

আলোর বিচ্ছুরণ

আকাশে রায়েধর নিশ্চয়ই দেখেছ। বর্ধাকালে আকাশের গাঁথে সূর্যের বিপরীত দিকে চাইলে অনেক সময় ধরেকের মত বাঁকা সাতটি বৎ দেখতে পাবে। সূর্যের আলো ভেঙে সাতটি বৎের স্থানে হয়েছে। আলোর উপর তেলের পাতলা জল যখন তাসে তখন সেমিকে চাইলেও সাতটি বৎ দেখতে পাওয়া যাব। সাবানের

ଫେନୋଯ, ମୌମାଛି ବା ଫଙ୍ଗି-ଏର ପାଥୟ, ମୁକ୍ତୋର ଉପରେର ସ୍ତରେ, ମାଛେର ଆଶେର ଶ୍ରେଷ୍ଠ ଆଲୋ ପଡ଼ିଲେ ଏକାଧିକ ରଙ୍ଗ ଦେଖା ଯାଏ । ଗ୍ରାମ ଅଞ୍ଚଳେ ପ୍ରାଚୀନ ଜମିଦାର ବାଡିର ଘାଡ଼ ଲଈନେ ଏକ ଧରନେର ତ୍ରିକୋଣାକୃତି କାଚ ଦେଖିତେ ପାଓଯା ଯାଏ । ଏହି କାଚକେ ପ୍ରିଜମ ବଲେ । ପରୀକ୍ଷାଗାରେ ଯେ ପ୍ରିଜମ ବାବହାର କରା ହେଉ ମେଟୋ ଅନେକଟା ଏହି ବକମ ଦେଖିତେ । ଯଦି କୋନ ସାଦା ଆଲୋ ପ୍ରିଜମେର କୋନ ଏକ ତଳେ ଏସେ ପଡ଼େ ତବେ ଅନ୍ତର ତଳେ ଥିଲେ ନିର୍ଗତ ହେଁ ସାତଟି ରଙ୍ଗେ ହଣ୍ଡି କରେ ।

ପ୍ରିଜମେ ପ୍ରତିସରଣେର ଫଳେ ସାଦା ରଙ୍ଗ ଭେଦେ ସାତଟି ମୂଳ ରଙ୍ଗ ପାଓଯାର ପ୍ରଣାଳୀକେ ବଲେ ବିଚ୍ଛୁରଣ ବା ଡିସପାରଶନ । ସାତଟି ରଙ୍ଗେ ଆଲୋକ ପଟିକେ ବଲା ହେଁ ବର୍ଣ୍ଣାଳୀ ବା ସ୍ପେକ୍ଟ୍ରାମ ।

ପରୀକ୍ଷାଗାରେ ବର୍ଣ୍ଣାଳୀ ହଣ୍ଡି

କୋନ ଉତ୍ସ ଥିଲେ ସାଦା ଆଲୋର ସମାନରାତ୍ରି ରଖି ଛବିତେ ଚିହ୍ନିତ ପଥେ ପ୍ରିଜମେ ପଡ଼ିଲେ ପ୍ରତିସରିତ ରଖି ପ୍ରିଜମେର ଭିତର ଦିରେ ଅପର ତଳେ ଦିତୀୟବାର ପ୍ରତିସରିତ ହେଁ ଯଥିନ P ପର୍ଦାର ଉପର ପୌଛାଯାଇଲେ ତଥିନ ସାଦା ଆଲୋ ପର ପର ସାତଟି ରଙ୍ଗେ ପାଶାପାଶି ଛାଡ଼ିଯେ ପଡ଼େ । ଶୁଦ୍ଧ ବର୍ଣ୍ଣାଳୀ ପେତେ ହଲେ ଆଲୋର ଉତ୍ସ S-ର ପର ଏକଟି ଉତ୍ତଳ ଲେସ L₁ ବେଳେ ରଖି ସମାନରାତ୍ରି କରାଯାଇ ହେଁ ଏବଂ ପ୍ରିଜମେର ଅନ୍ତର ପାଶେ ଆବା ଏକଟି ଉତ୍ତଳ ଲେସ L₂ ବେଳେ ଲେସେର ଫୋକାମ୍ ଦୂରସ୍ଥେ ପର୍ଦା ବାଖଲେ ଭିନ୍ନ

ଚିତ୍ର 7.25

ଭିନ୍ନ ରଙ୍ଗଗୁଣି ଟିକମ୍ବତ ଆଲାଦା ଓ ଶ୍ପଷ୍ଟ ହେଁ (ଚିତ୍ର 7.25) । ବର୍ଣ୍ଣାଳୀ ଲଙ୍ଘ୍ୟ କରିଲେ ଦେଖିବେ ପ୍ରତିଟି ଆଲୋ-ରଖି ପ୍ରିଜମେର ଭୂମିର ଦିକେ ବେଳେଇବେ । ବେଣୁନି ଆଲୋ-

সবচেয়ে বেশি বেঁকেছে এবং লাল আলো সবচেয়ে কম। মাঝের রঙগুলো লাল ও নীলের মধ্যে বেঁকেছে। রঙগুলি কি পরিমাণে বাঁকবে অর্থাৎ তাদের চুতি কত হবে তা নির্ভর করে প্রিজমের প্রতিসরণ ও আলোর রঙের উপর। প্রতিসরণের দ্বিতীয় স্তুত্র পড়ার সময় তোমরা এ তথ্য জেনেছ। বেগুনি রঙের চুতি সবচেয়ে বেশি এবং তার প্রতিসরণ সবচেয়ে কম। লালের চুতি সবচেয়ে কম, প্রতিসরণ সবচেয়ে বেশি। পরীক্ষাগারে বর্ণালী লক্ষ্য কৰলে দেখবে বর্ণালীর পটিতে লাল রঙ উপরে থাকে কাবণ তাৰ চুতি কম এবং বেগুনি রঙ সবচেয়ে নিচে থাকে কাবণ তাৰ চুতি সবচেয়ে বেশি।

1666 খ্রীস্টাব্দে নিউটন প্রথম সাদা আলো ভেঙে সাতটি রঙ হতে দেখেন। কেন্দ্ৰীজ সহয়ে তাঁৰ বাড়িৰ জানালার খড়খড়ি দিয়ে অক্ষকাৰ ঘৰে আলো এসে পড়লে তিনি একটি প্রিজমের তিতৰ দিয়ে আলো-ৱশি পাঠিয়ে সাতটি রঙ কৰেন। তিনি এই মিছাস্তে আসেন যে সাদা রঙ কোন রঙ নয়, সাতটি মূল রঙের সমষ্টি। এই মূল রঙের আলোকে বলে মৌলিক একবৰ্ণ রঞ্জি বা মনোক্রোমেটিক বৈ।

এই সাতটি রঙ হল—বেগুনি (ভায়োলেট), সমুদ্র নীল (ইণ্ডিগো), আকাশী নীল (ব্লু), সবুজ (গ্রীন), হলুদ (ইঘেলো), কমলা (অৰেঞ্জ) ও লাল (রেড)। মনে রাখাৰ জন্য প্রতিটি রঙের ইংৰেজী প্রতিশব্দেৰ আন্ত অক্ষর নিলে কথাটি দাঁড়ায় VIBGYOR। বাংলায় প্রথম অক্ষরগুলো পৰ পৰ সাজালে শোনায় ‘বেগুনীআসহকলা’।

ৰামধনু

মেঘলা দিনে আকাশেৰ জল-কণাৰ উপৰ বোদ পড়লে আলোৰ বিচ্ছুবণে বর্ণালীৰ স্থষ্টি হয়। এই বর্ণালীই ৰামধনু। ৰামধনু অৰ্ধবৃক্ষেৰ আকাৰে দেখা যায়। বৃষ্টি হওয়াৰ পৰে অথবা আকাশে গুঁড়িগুঁড়ি বৃষ্টি হচ্ছে এবং সূৰ্যও আছে এই বুকম অবস্থায় স্বৰ্দেৰ দিকে পিছন ফিৰে আকাশেৰ দিকে চাইলে অনেক সময় ৰামধনু দেখা যায়।

জলপ্রপাত থেকে উপৰে ছিটকে আসা জলেৰ কণায় আলোৰ বিচ্ছুবণে ৰামধনু দেখা যায়। এক মুখ জল নিয়ে বোদেৰ দিকে ফুঁ দিয়ে কৃত ছড়িয়ে দিলে জলকণাগুলোৰ মধ্যে ৰামধনুৰ মত দেখা যায়। তোমরা নিজেৰাও

ପରୀକ୍ଷା କରେ ଦେଖିତେ ପାର ସତି ସତି ଦେଖା ଯାଉ କିନା । ବାମଧଶ୍ର କେନ ଦେଖା ଯାଉ ବଡ଼ ହୟେ ତୋମରା ପରେ ପଡ଼ିବେ ।

ବିଚ୍ଛୁରଗେର କାରଣ

ଆଲୋର ପ୍ରତିଟି ରଙ୍ଗେ ଏକଟି ନିର୍ଦ୍ଦିଷ୍ଟ ତରଙ୍ଗ-ଦୈର୍ଘ୍ୟ ଆଛେ । ବର୍ଣାଲୀତେ ସେ ସାତଟି ରଙ୍ଗ ତୋମରା ଦେଖେ ଅୟାଂପ୍ରମ ଏକକେ ତାଦେର ତରଙ୍ଗ-ଦୈର୍ଘ୍ୟ ହଳ : ବେଣୁନି (4000—4500), ସମ୍ମ୍ବନ୍ଧ ନୀଳ (4500—4600), ଆକାଶୀ ନୀଳ (4600—5000), ସବୁଜ (5000—5820), ହଲ୍ଦ (5820—5900), କମଳା (5900—6200), ଲାଲ (6200—7500) ।

ସାଦା ଆଲୋ ହଳ ଭିନ୍ନ ତରଙ୍ଗ-ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଏହି ସାତଟି ରଙ୍ଗେ ମିଶ୍ରିତ ହିଂମାଣ । ସଥନ କୋନ ପ୍ରିଜମେର ଭିତର ଦିଯେ ଆଲୋ-ରଞ୍ଜି ଯାଉ ତଥନ ଏହି ସାତଟି ତରଙ୍ଗ ପୃଥକ ହୟେ ପଡ଼େ । ସାଦା ଆଲୋର ମିଶ୍ରିତ ଥେକେ ବିଭିନ୍ନ ମୂଳ ରଙ୍ଗଶଳିର ତରଙ୍ଗେର ପୃଥକୀକରଣକେ ଆଲୋର ବିଚ୍ଛୁରଣ ବଲେ ।

ଆଲୋର ପ୍ରତିସରଣ ନିର୍ଭବ କରେ ସଂଗ୍ରିଷ୍ଟ ମାଧ୍ୟମ ଦୁଟିର ଉପର ଏବଂ ଆଲୋର ରଙ୍ଗେ ଉପର । ମେଇଜ୍‌ଯ ପ୍ରିଜମେର ଭିତର ବିଭିନ୍ନ ତରଙ୍ଗ-ଦୈର୍ଘ୍ୟର ଆଲୋ ଯଥନ ଏମେ ପଡ଼େ ତଥନ ପ୍ରତିସରଣରେ ଜନ୍ମ ତାଦେର ଚାତି ଏକ ନା ହେଉାଯାଇ ତାରା ଏକେ ଅନ୍ତେର କାହିଁ ଥେକେ ପୃଥକ ହୟେ ପଡ଼େ ଓ ବିଚ୍ଛୁରିତ ହୟ ।

ଆଲୋକ-ତରଙ୍ଗେର ବିଚ୍ଛୁରଣର କାରଣ ତୋମରା ପଡ଼ିଲେ । ବାତାଦେ ଅସଂଖ୍ୟ ଧୂଲିକଣା ଆଛେ । ଶ୍ରେଷ୍ଠ ଆଲୋ ଯଥନ ଏହି କଣାଶଳିର ଉପର ଏମେ ପଡ଼େ ତଥନ ଚାରଦିକେ ଛଡ଼ିଯେ ପଡ଼େ । ସର୍ବ ବନ୍ଧର ଅଧିକା ତରଲେର ଭିତର ଦିଯେ ଆଲୋ ଗେଲେ ଓ ଚାରଦିକେ ଛଡ଼ିଯେ ପଡ଼େ । ଏହି ଘଟନାକେ ବଲେ ଆଲୋର ବିକ୍ଷେପଣ । ବିକ୍ଷେପଣେର ଫଳେ ଆଲୋର ତରଙ୍ଗଦୈର୍ଘ୍ୟ ପରିବର୍ତ୍ତିତ ହୟ । ଭାରତୀୟ ବୈଜ୍ଞାନିକ ସି. ଡି. ବାମନ ବିକ୍ଷେପଣରେ ଉପର ଗବେଷଣା କରେ 1930 ମାର୍ଚ୍ଚ ନୋଭେଲ ପୁରସ୍କାର ପାନ । ବାମନ ଓ ତା'ର ଆବିକ୍ଷାରେର କଥା ବଡ଼ ହୟେ ତୋମରା ପଡ଼ିବେ ।

ବନ୍ଧର ରଙ୍ଗ

କୋନ ବନ୍ଧର ରଙ୍ଗ ନିର୍ଭବ କରେ ବନ୍ଧ ନିଜେ ବଣିନ ହଲେ ଅଧିକା ତାର ଉପର ରଣିନ ଆଲୋ ପଡ଼ିଲେ । କୋନ ଅନନ୍ତ ବନ୍ଧର ଉପର ସାଦା ଆଲୋ ଆପତିତ ହଲେ ବନ୍ଧ ସାଦା ଆଲୋର ଏକ ବା ଏକାଧିକ ରଙ୍ଗ ଶୋଷଣ କରେ ଏବଂ ବାକି ରଙ୍ଗଶଳିକେ ପ୍ରତିକଳିତ କରେ । ଯେମନ ଧର, ଗାଛେର ପାତା ଦେଖିତେ ସବୁଜ । ପାତାର ଉପରେ

যখন সাদা আলো এসে পড়ে তখন পাতাটি সাদা আলোৰ সবুজ বঙ ছাড়া অন্য সব বঙকে শোষণ কৰে এবং সবুজ বঙ পাতার গায়ে প্রতিফলিত হয়ে আমাদেৱ চোখে এসে পড়লে সবুজ মনে হয়। সেই বকম একই কাৰণে লাল বস্তকে লাল, হলুদ বস্তকে হলুদ দেখাবে। কোন বস্ত সব কয়টি বঙকে প্রতিফলিত কৰলে সাদা এবং সব কয়টি বঙকে শোষণ কৰলে কালো দেখায়। সাদা বা কালো কোন বঙ নয়।

আবাৰ স্বচ্ছ বস্তৰ ভিতৰ দিয়ে সাদা আলো গেলে বস্তটি কোন একটি বঙ ছাড়া অন্য সব কয়টি বঙ শোষণ কৰলে বস্তটিৰ বঙ নিৰ্গত বশিৰ বঙেৰ মত দেখাবে। যেমন ধৰ, একটি লাল, কাচ। এৱ ভিতৰ দিয়ে সাদা আলো যাবাৰ সময় লাল বঙ ছাড়া অন্তগুলি শোষিত হয়। লাল বঙ কাচেৰ ভিতৰ দিয়ে শোষিত না হয়ে বেৰিয়ে যায়। সেজন্য কাচটাকে লাল দেখায়।

একটা সবুজ কাচেৰ ভিতৰ দিয়ে যদি লাল জবা ফুল দেখ তবে কেমন দেখাবে? ফুলটা কালো দেখাবে। কাৰণ জবা ফুল লাল বঙ প্রতিফলিত কৰে আৱ সবুজ কাচ সবুজ বঙ ছাড়া সব বঙকে শোষণ কৰে এবং এই লাল বঙকে শোষণ কৰবে। সেই কাৰণে ফুলটি কালো দেখাবে।

৮ পদার্থের বিভিন্ন অবস্থা ও তার রূপান্তরের কারণ

পদার্থের কঠিন অবস্থা

তৃতীয় অধ্যায়ে তোমরা পড়েছ, পদার্থ তিনটি অবস্থায় থাকে—কঠিন, তরল ও গ্যাস। যে সব বাসায়নিক মৌল বা যৌগ সাধারণ চাপে ও তাপমাত্রায় কঠিন, তাদেরও ঘোটাযুটি দুই শ্রেণীতে ভাগ করা যায়। খাচলবণ, তুঁতে, ফটকিরি, মিছরি প্রভৃতি অধিকাংশ যৌগে নির্দিষ্ট আকার থাকে। এই আকারে ছোট বা বড় অবস্থায় একই থাকে। একটি বড় টুকরো ভাঙলে একই আকারে ছোট টুকরো পাওয়া যাবে। এদের বলে কেলাস বা কুষ্টাল। NaCl বা CuSO_4 কুষ্টাল আকারে পাওয়া যায়। জলের দ্রবণ থেকে জল শুকিয়ে ফেললে, যখন NaCl বা CuSO_4 তলানি পড়ে লক্ষ্য করে দেখবে সেগুলিও কুষ্টাল হয়ে পড়ে। কাচ, আলকাতরা, ছাই প্রভৃতি আরও এক ধরনের কঠিন বস্তু আছে যাদের কোন নির্দিষ্ট আকার নেই। অনিয়তাকার এই বস্তুগুলিকে অকেলাসিত, অনকুষ্টালাইন বা অ্যাম্রফাস বলা হয়।

কুষ্টালে যৌগদের অণু ও পরমাণুগুলি একটি জ্যামিতিক আকারে সাজানো থাকে। প্রাকৃতিক অবস্থায় অনেক সময় বড় বড় কুষ্টাল পাওয়া যায়। তামার খনিতে অনেক সময় যে তামার কুষ্টাল পাওয়া যায় তার এক একটি তলের দৈর্ঘ্য এক মেট্রিমিটার পর্যন্ত হয়। যে কোন ধাতুপাতকে পালিশ করে মাইক্রোস্কোপের সাহায্যে তলগুলি দেখলে কুষ্টাল আকার পরিষ্কার দেখা যায়। যে কোন অ্যাম্রফাস পাউডার মাইক্রোস্কোপে দেখলে কোন বিশেষ আকার দেখা যায় না। নানা আকারে কুষ্টালে অণুপরমাণুগুলি যে ভাবে সাজানো থাকে তাকে ছয় বরক ভিন্ন ধরনের জ্যামিতিক আকারে ভাগ করা যায়। ৮.১ চিত্রে জ্যামিতিক আকারগুলি দেখানো হল।

যে কোন একটি কুষ্টালের ক্ষেত্রে তার সব থেকে ছোট আকারটি তার ইউনিট এবং সেই ইউনিট জুড়ে জুড়ে বড় আকারের কুষ্টাল হয়। এইভাবে জোট বাধার কারণ অণুর মধ্যের পরমাণুগুলির নিজেদের মধ্যে আকর্ষণ বল। প্রত্যেকটি পরমাণু তাদের আশেপাশের পরমাণুগুলির সঙ্গে যুক্ত থাকে। তাদের বিচ্ছিন্ন করতে যে শক্তি লাগে তাকে বক্সন- শক্তি বলে। প্রত্যেক কুষ্টালের

এই বস্তু-শক্তি তাৰ বৈশিষ্ট্য এবং সেটা ঐ কুণ্টালেৱ ধৰ্ম বলেই ধৰা হয়। বাইৰে থেকে শক্তি প্ৰয়োগ না কৰলে ঐ কুণ্টালেৱ বিশিষ্ট আকাৰ বদলানো যাব না।

চিত্ৰ 8.1

অণুগুলি কেমন ভাৱে সাজান আছে তাৰ উপৰ বস্তুটিৰ আকাৰ এবং অগ্রাঞ্চ ভৌত গুণ নিৰ্ভৰ কৰে। এৱ সব থেকে ভাল উদাহৰণ গ্রাফাইট এবং হীৱা। দুটি বস্তুই কাৰ্বন অণু দিয়ে তৈৰি। গ্রাফাইট দিয়ে পেনসিলেৱ সীম তৈৰি হয়। গ্রাফাইটেৱ বং কালো। ঘমলেই উঠে আসে ও দাখে সন্তা। আৱ হীৱা স্বচ্ছ, অধাৰু হওয়া সত্ৰেও সব থেকে শক্ত বস্তু এবং দুর্মূল বস্তু। ৪.২ চিত্ৰে হীৱা আৱ গ্রাফাইটেৱ আণবিক গঠন দেখ, তাহলে এই ভিত্তিৰ ধৰ্মেৱ

হীৱা

চিত্ৰ 8.2

গ্রাফাইট

কারণ বুঝতে পারবে। ভূগঠের অনেক নিচে চাপ ও তাপের কোন একটি বিশেষ অবস্থায় কয়লার মধ্যেই হীরা তৈরি হয়। আক্রিকার অনেক নাম করা হীরার খনির কথা তোমরা পড়ে থাকবে। আবার প্রাকৃতিক অবস্থায় নীলা বলে এক ধরনের দামী পাথর পাওয়া যায় যার মূল উপাদান আলুমিনিয়ম অক্সাইড বা আলুমিন। আলুমিন এক ধরনের সাদা গুঁড়ো পাউডার কিন্তু প্রায় 2000°C তাপমাত্রায় গলিয়ে কৃত্রিম নীলা করা যায়। কৃত্রিম উপায়ে হীরা তৈরি ব্যবসায়িক ভিত্তিতে এখনও সম্ভব হচ্ছে।

কুস্টাল, তরল ও গ্যাস

অগুঠন দিয়ে বিচার করলে কুস্টাল, তরল ও গ্যাস এ তিনটির মধ্যে পার্থক্য বেশ ভাল করে বোঝা যাবে। কুস্টালের ক্ষেত্রে অগু পরমাণুদের মধ্যে পারস্পরিক বন্ধন-শক্তি তাদের বিশিষ্ট আকার দেয়। তরলে এই বন্ধন-শক্তি অস্ত্রিত কর এবং এত কম যে অগু গুলিকে বিশেষ আকার দিতে পারে না, তাই তরলের কোন নিজস্ব আকার নেই। কোন অভ্যন্তরিক তলে ফেললে ছড়িয়ে পড়ে। যে কোন পাত্রে রাখলে পাত্রের আকার নেয়। তরলের অণুদের মধ্যে কিছুটা বন্ধন আছে বলে তারা নিজে নিজে আলাদা হয় না। তরলের সব থেকে উপরের তলের অগুগুলি তাদের দ্রুতাংশের নিচের তলের অণুদের সঙ্গে বৈধ। এই বন্ধন কম হলেই অগুগুলি ছিপ হয়ে বাতাসে উঠে যায় এবং বাঞ্চায়ন হয়। অকেলাসিত বস্তুগুলিকে কুস্টাল ও তরলের অস্তর্ভূতি অবস্থা বলা চলে। এদের অণুদের মধ্যের বন্ধন-শক্তি কুস্টাল তৈরির মত যথেষ্ট নয় আবার তরলের থেকে বেশি। গ্যাসের অণুরা মূল্য, যে যেমন খুস্তি দিকে বিচরণ

করতে পারে, তাই গ্যাসের কোন আকার বা আয়তন নেই। অণুর গঠন দিয়ে বিচার করলে কুস্টাল, তরল ও গ্যাস 8.3 চিন্মের মত দেখা যাবে।

কুস্টালে পরমাণুগুলি চলাফের। করতে পারে না, নিজের চারপাশে ভাল

কৰে ঘূৰতে পাৰে না, কেবল একটি শধ্যবৰ্তী কেন্দ্ৰবিন্দুৰ চাৰপাশে স্পন্দিত হতে পাৰে। গ্যাসে পৱমাণগুলি একদম ছাড়া। যে কোন দিকে ছুটে বেড়াবাৰ, ঘূৰবাৰ বা স্পন্দিত হবাৰ পূৰ্ণ স্বাধীনতা তাৰেৰ।

গৱণ কৰলৈ কি হয় ?

কেলাসিত বস্তু গৱণ কৰতে থাকলৈ বস্তুৰ পৱমাণগুলি তাপ শোষণ কৰে আৰু তাৰেৰ গতিশক্তি তাপমাত্ৰাৰ অহৃপাতে বাড়তে থাকে। গতিশক্তি বাড়লৈ পৱমাণগুলি চাৰপাশেৰ অন্য পৱমাণৰ সঙ্গে বাঁধা থাকাৰ জন্য কেবল মাঝি নিজেৰ একটি গড় অবস্থানেৰ দুপাশে স্পন্দিত হতে থাকে। তাপ বাড়তে থাকলৈ এমন একটা সময় আসে যখন গতিশক্তি পৱমাণটিৰ বক্ষন-শক্তিৰ সমান বা কাছাকাছি হয় ফলে বন্ধন আলগা হয়ে পড়ে। কুস্টালেৰ আকাৰ ভেঙে পড়তে শুক কৰে এবং গলন শুক হয়। নিৰ্দিষ্ট কুস্টালে পৱমাণদেৰ বন্ধন-শক্তি নিৰ্দিষ্ট, স্থৰবাং যে তাপমাত্ৰায় গলন শুক হয় তাৰ নিৰ্দিষ্ট তাপমাত্ৰা। গলতে সময় লাগে, হঠাৎ সমস্ত কুস্টাল গলে যায় না। একবাৰ গলন শুক হলে বাকি অংশ তাপ শোষণ কৰে কুস্টাল থেকে তৱলৈ পৱিবৰ্তিত হতে থাকে, তখন আৱ পৱমাণগুলিৰ গতিশক্তি বাড়ে না, ফলে তাপমাত্ৰা বাড়ে না। গলন শুক হওয়া থেকে শেষ হওয়া পৰ্যন্ত যতটা তাপ লাগে তাই গলনেৰ লীন তাপ।

পিচ, ব্ৰহ্ম প্ৰভৃতি অনিয়তাকাৰ বাসায়নিকগুলিৰ ক্ষেত্ৰে পৱমাণগুলিৰ বন্ধন-শক্তি অপেক্ষাকৃত কম এবং নিৰ্দিষ্ট নয়। তাই এদেৱ গলনাঙ্গ নিৰ্দিষ্ট নয় এবং গলন শুক হলেও তাপমাত্ৰা বাড়তে থাকে।

বস্তুটি তৱল হয়ে যাবাৰ পৱণ তাপ প্ৰয়োগ কৰতে থাকলৈ পৱমাণদেৰ গতিশক্তি আৱণ্ডি বাড়বে। এই অবস্থায় অগুণলো চলাচল কৰতে পাৰে, অল্প মাত্ৰায় নিজেৰ চাৰপাশে ঘূৰতে পাৰে এবং গড় অবস্থানেৰ দুপাশে স্পন্দিত হতে পাৰে। অগুণ গতিশক্তি বাড়াৰ সঙ্গে সঙ্গে তৱলেৰ তাপমাত্ৰাও বাড়তে থাকবে। গতিশক্তি বাড়তে বাড়তে এমন একটা সময় আসবে যখন অগুণগুলি আশেপাশেৰ অগুণদেৰ থেকে সম্পূৰ্ণ বিচ্ছিন্ন হয়ে পড়ে তৱল থেকে গ্যাস হবে, শুটন শুক হবে। শুটনও সময়সাপেক্ষ। একবাৰ শুটন শুক হলে শোষিত তাপ অগুণগুলিকে বিচ্ছিন্ন কৰাৰ কাজে ব্যবহৃত হবে, শুটনেৰ লীন তাপ শোষণ কৰে শুটন শেষ না হওয়া পৰ্যন্ত তাপমাত্ৰা বাড়বে না। শুটনাঙ্গ একটি

ନିର୍ଦ୍ଦିଷ୍ଟ ତାପମାତ୍ରା । ଗ୍ୟାସକେ ଗରମ କରିଲେ ଥାକଲେ କି ହେବ ? ଗ୍ୟାସେର ଅଗୁଣ୍ଡଳିର ଗତିଶକ୍ତି ଏବଂ ମେଇ ମଙ୍ଗେ ତାପମାତ୍ରା ବାଡ଼ିବେ । ନିର୍ଦ୍ଦିଷ୍ଟ ଆୟତନେ ଗ୍ୟାସେ ତାପମାତ୍ରା ବାଡ଼ିଲେ ସମାଧାତିକ ହାରେ ଚାପ ବାଡ଼ିବେ । ଏହି ବିଷୟେ ବସେଲେର ସ୍ଵତ୍ତ ତୋମରୀ ପରେ ବହର ପଡ଼ିବେ ।

ଆରା ଗରମ କରିଲେ କି ହେବ—ଆୟନର ଜାନା ଅଧିକାଂଶ ବସ୍ତି କରେକ ହାଜାର ଡିଗ୍ରି ସେଲସିଯାସ ତାପମାତ୍ରାର ମଧ୍ୟେ ଗଲେ, ଫୁଟ୍ଟେ, ଗ୍ୟାସ ହୟେ ଥାଏ । ତାପମାତ୍ରା ଆରା ବାଡ଼ିତେ ଥାକଲେ ବସ୍ତର ଆର କି କି ପରିବର୍ତ୍ତନ ହତେ ପାରେ ଏ ପ୍ରକାର ମନେ ଆସା ସାଂଭାବିକ । ଏକ ସମୟ ଅଗୁଣ୍ଡଳି ଭେଦେ ଉପାଦାନ ମୌଲେର ପରମାଣୁ ହୟେ ପଡ଼ିବେ । ଆରା ବେଶି ଗରମ କରିଲେ ପରମାଣ୍ଡଳି ଥେକେ ଇଲେକ୍ଟ୍ରିନ ବିଛିନ୍ନ ହୟେ ପରମାଣୁର ଆୟନ ଓ ଇଲେକ୍ଟ୍ରିନ ଆଲାଦା ହୟେ ପଡ଼ିବେ । ତାପ-ଆୟନନ ତୃତୀୟ ଆବିକାର କରେ ବିଜ୍ଞାନୀ ମେଘନାଦ ସାହା ବିଶ୍ୱବିଦ୍ୟାତ ହନ । କଥେକ ହାଜାର ଡିଗ୍ରି ସେଲସିଯାସ ତାପମାତ୍ରାଯ ଅଧିକାଂଶ ମୌଲେର ପରମାଣୁତେ ତାପ-ଆୟନ ହୟ । ଏହି ଅବହ୍ଵାଯ ବସ୍ତର ସାଧାରଣ ଧର୍ମ ବଦଳାତେ ଥାକେ । ଗ୍ୟାସ ତଥନ ପରିଚିତ ତଡ଼ିତାହିତ ଆୟନ ଓ ନେଗେଟିଭ ତଡ଼ିତାହିତ ଇଲେକ୍ଟ୍ରିନେର ଶ୍ରୋତେ ପରିଣତ ହୟ ଏବଂ ବସ୍ତର ଭୌତିକ ଧର୍ମ ମଞ୍ଜୁଣ ପରିବର୍ତ୍ତିତ ହୟ । ବସ୍ତର ଏହି ଅବହ୍ଵାକେ ପ୍ଲାଜମା ବଲେ । ପ୍ଲାଜମା ବସ୍ତର ଚତୁର୍ଥ ଅବହ୍ଵା ।

ଏଥନ ଗବେଷଣାଗାରେ ଉଚ୍ଚ ତାପମାତ୍ରା ଶଢ଼ି କରା ମୁକ୍ତବ ହୟେଛେ ଏବଂ ପ୍ଲାଜମା ପ୍ରବାହ ବାବହାର କରେ ବ୍ୟବସାୟିକ ଭିତ୍ତିତେ ତଡ଼ିଂ ଉପାଦାନେର ଚେଷ୍ଟା ଚଲେଛେ । ଏଇ ନାମ ଯାଗନେଟୋ-ହାଇଡ୍ରୋ-ଡାଇନାମିକ-ପାଓର୍ଯ୍ୟାର-ଜେନାରେଶନ ବା ସଂକ୍ଷେପେ ଏମ ଏହିଚ ଡି ।

ଆରା ତାପ ବାଡ଼ାଲେ କି ହେବ ? ତାପ ଆୟନନ-ତୃତୀୟ ପ୍ରଯୋଗ କରେ ଦେଖା ଗେଛେ ଯେ ଶୂର୍ଧ୍ଵ ବା ଅନ୍ତାନ୍ତ ନକ୍ଷତ୍ରେ ଦେହେର ତାପମାତ୍ରା ଦଶ ଲକ୍ଷ ବା କୋଟି ଡିଗ୍ରି ସେଲସିଯାସ । ଏହି ଉତ୍ତାପେ ହାଇଡ୍ରୋଜେନ, ହିଲିୟମ, ଲିଥିୟମ ଥେକେ ଶୁରୁ କରେ କାର୍ବନ, ନାଇଟ୍ରୋଜେନ ଇତ୍ୟାଦି ପରମାଣୁର ସମସ୍ତ ଇଲେକ୍ଟ୍ରିନ ବିଛିନ୍ନ ହୟେ ଥାଲି ନିଉକ୍ଲିସଣ୍ଡଳି ଘୁରେ ବେଢାଯ ଏବଂ ଏଦେର ଗତିଶକ୍ତି ଏତ ବେଶି ମେଣ୍ଡଳି ପରମ୍ପରାରେ ମଙ୍ଗେ ଆୟାତ କରେ ନିଉକ୍ଲିସାର ବିଆକଶନ ବା କେନ୍ଦ୍ରୀୟ ବିକ୍ରିୟା କରିଲେ ମର୍ମ । କେନ୍ଦ୍ରୀୟ ବିକ୍ରିୟା ଫଳେ ବସ୍ତ ଲୁଣ୍ଠ ହୟେ ଶକ୍ତି ବେରୋଯ । ଏଣ୍ଡଳି ଶୁଦ୍ଧମାତ୍ର କଲନା ବା ଥାତାଯ କଥା ଅକ୍ଷେର କଥା ନୟ—ପୃଥିବୀତେ ପରମାଣୁ ବୋମା ଓ ହାଇଡ୍ରୋଜେନ ବୋମାର ବିଶ୍ଫୋରଣେ ତା ପ୍ରମାଣ ହୟେଛେ । ପରେ ଏମବ ବିଶ୍ଵାରିତ ଭାବେ ପଡ଼ିବେ ।

ଭୋତ ଓ ରାସାୟନିକ ପରିବର୍ତ୍ତନ

ପଦାର୍ଥ କିଭାବେ ସନାତ୍ନ କରା ଯାଏ : ଭୋତ ଓ ରାସାୟନିକ ଧର୍ମ

ଜଳ ଏବଂ ତେଲ ଉଭୟରେ ତୁଳନା ପଦାର୍ଥ । ଏଦେର ରଙ୍ଗ କିନ୍ତୁ ଏକ ନୟ । ଶର୍ଷେ ଓ ଯେ ପୃଥିକ, ହାତେ ନିଲେଇ ବେଶ ବୋବା ଯାଏ । ଆବାର ବାଦାମ ତେଲ ଏବଂ ନାରକୋଳ ତେଲ ଉଭୟରେ ଦେଖିବା ଅନେକଟା ଏକ ହଲେଷ ଗନ୍ଧ କିନ୍ତୁ ଆଳାଦା । କମଳା ଦେଖିବା କାଳୋ, ତୁଁତେ ଦେଖିବା ନୀଳ, ଲୋହା ଦେଖିବା ବାଦାମୀ, ଲବଣ ଅନେକଟା ସାଦା, ମିଛରି ଦାନା ଓ ସାଦା । ତାମାର ରଙ୍ଗ ଲାଲାଭ, ଅୟାଲୁମିନିୟମ ଉଚ୍ଚଜ୍ଵଳ ସାଦା, ମୋନାର ରଙ୍ଗ ଉଚ୍ଚଜ୍ଵଳ ହଲୁଦ । ମୋନା, ଲୋହା ବା ଅୟାଲୁମିନିୟମର କୋନ ସାଦ ନେଇ । କିନ୍ତୁ ଲବଣ ସାଦେ ଲବଣୀକୁ ବା ଲୋଣା, ମିଛରି ମିଷ୍ଟି ମିଷ୍ଟି, ତୁଁତେ କସ କସ । କିନ୍ତୁ ସାବଧାନ, ନା ଜାନା କୋନ ଜିନିମ ଥେବେ ଦେଖୋ ନା, ତୁଁତେ ବିଷ ।

ଆବାର ମୋନା, ରମ୍ପୋ, ଲୋହା ବା ଅୟାଲୁମିନିୟମ କୋନଟାଇ ଜଳେ ଶୁଳେ ଯାଏ ନା । ଅର୍ଥଚ ତୁଁତେ, ଲବଣ, ମିଛରି, ଫଟକିରି ସହଜେ ଜଳେ ଶୁଳେ ଯାଏ । କାର୍ବନ ଡାଇଅକ୍ଷାଇଡ ଗ୍ୟାସ ଏବଂ କିଛି ପରିମାଣେ ଅଞ୍ଚିଜେନ ଜଳେ ଶୁଳେ ଯେତେ ପାରେ ।

ଅଞ୍ଚିଜେନ, ହାଇଡ୍ରୋଜେନ, ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସଗୁଲିର କୋନଟିର କୋନ ଗନ୍ଧ ନେଇ । କ୍ଲୋରିନ, ଅୟାମୋନିୟମ ଗ୍ୟାସେ ଝାଁଖାଲୋ ଗନ୍ଧ । ନାନା ରକମ ପଦାର୍ଥର ମଧ୍ୟେ ଶୁଦ୍ଧମାତ୍ର ଲୋହା, ନିକେଲ, କୋବାଲ୍ଟ ପ୍ରତ୍ତି କଥେକଟି ପଦାର୍ଥ ଚୁପ୍ତ ଥାଏ ଆକୃଷିତ ହୁଏ ।

ଜଳ, ତେଲ, ପେଟ୍ରିଲ ପ୍ରତ୍ତିର ଆପେକ୍ଷିକ ସନାତ୍ନ କମ । ଅର୍ଥଚ ପାରଦେର ଆପେକ୍ଷିକ ସନାତ୍ନ ବେଶ ବେଶ ।

ବେସମ, ମୟଦା, ଏବାକୁଟ ଗୁଡ଼ୋ ଗୁଡ଼ୋ ପାଉଡାରେର ମତ । ଏଦେର କୋନ ବିଶିଷ୍ଟ ଆକାର ନେଇ । କିନ୍ତୁ ଚିନି, ମିଛରି, ଲବଣ, ଫଟକିରି ପ୍ରତ୍ତି ଦାନା-ଦାନା । ବଡ ଦାନା ଭାଙ୍ଗିଲେ ଛୋଟ ଦାନା ପାଓୟା ଯାଏ, ଏବଂ ଯତ ଛୋଟଇ ହୋକ ଏଦେର ପ୍ରତ୍ୟେକେର ନିଜ୍ୟ ଆକାର ବଜାଏ ବାରେ ।

ଏଥନ ଦେଖା ଯାଚେ—ସାଦେ, ଗଢ଼େ, ବର୍ଣେ, ଶର୍ଷେ, ଆକାରେ, ସନାତ୍ନେ, ଦ୍ରୁବନୀୟତାଯ ଭିନ୍ନ ଭିନ୍ନ ସବ ପଦାର୍ଥର ଧର୍ମ ଓ ଭିନ୍ନ । ପଦାର୍ଥର ଏଇ ଧର୍ମଗୁଲିଇ ତାଦେର ଭୋତ ଧର୍ମ । କୋନ ବସ୍ତର ଉପାଦାନ ପରିବର୍ତ୍ତି ହେଁ ଅନ୍ତ କୋନ ବସ୍ତର କ୍ରପାନ୍ତରିତ ନା ହେୟା

পর্যন্ত মে সব শুণের দ্বারা আমরা বস্তুটিকে সনাক্ত করতে পারি সেই সব শুণকে বস্তুর ভৌত ধর্ম বলে ।

ভৌত শুণের দ্বারা পদার্থের শুধু বাহ্যিক অবস্থা বা বাইরের শুণের পরিচয় পাওয়া যায় । পদার্থের ভৌত ধর্ম নির্ণয়ের জন্য সাধারণত জ্ঞানতে হয় : (ক) তার অবস্থা—কঠিন, তরল, না গ্যাস, (খ) বর্ষ, (গ) গন্ধ, (ঘ) স্বাদ, (ঙ) স্পর্শ, (চ) জলে বা অন্য তরলে জ্বরণযোগ্যতা, (ছ) জল বা বায়ুর তুলনায় ঘনাঙ্ক, (জ) গলনাঙ্ক ও স্ফুটনাঙ্ক, (ঝ) চুম্বকের সঙ্গে সম্পর্ক, (ঝঝ) আপ ও বিদ্যুৎ পরিবহনের ক্ষমতা, (ট) স্থিতিস্থাপকতা ইত্যাদি ।

পদার্থের ভৌত ধর্ম ছাড়াও আরো একরকম স্বত্ত্বাবের পরিচয় পাওয়া যায় । যেমন সাধারণ অ্যাসিডের স্পর্শে সোনার কোন পরিবর্তন হয় না । অথচ তামার উপর কয়েক ফোঁটা নাইট্রিক অ্যাসিড ফেললেই একরকম বাদামী রংয়ের গ্যাস তৈরি হয় । দ্রষ্টার উপর লঘু সালফিটেরিক অ্যাসিড ফেলামাত্রই ভুরভুর করে গ্যাস বেকতে থাকে । চিনির উপর সালফিটেরিক অ্যাসিড ঢাললে চিনি কালো হয়ে যায় । খোলা হাওয়ার সংস্পর্শে এলে মোড়িয়ম ধাতু জলে ঘটে । সব ক্ষেত্রেই মূল পদার্থ কিন্তু পরিবর্তিত হচ্ছে ।

পদার্থের এই জাতীয় স্বত্ত্বাবকে তার রাসায়নিক শুণ বা ধর্ম বলে । বস্তুর রাসায়নিক উপাদান বা রাসায়নিক বিক্রিয়া সংক্রান্ত ধর্মকে বস্তুর রাসায়নিক ধর্ম বলে । যে কোন পদার্থকে টিকভাবে সনাক্ত করতে রাসায়নিক ধর্ম জানাও বিশেষ প্রয়োজন । এবং তা জানতে হলে (ক) জল, (খ) বায়ু, (গ) অ্যাসিড, ক্ষারক ইত্যাদির সংস্পর্শে এলে পদার্থটির কি পরিবর্তন ঘটে দেখতে হবে । তা ছাড়া পদার্থটি উচ্চ তাপে বা অগ্নাত্মক পদার্থের সংস্পর্শে এলে কোন পরিবর্তন হয় কিনা তাও জানা প্রয়োজন । এছাড়া পদার্থ কী উপাদান দিয়ে তৈরি সেটাও তার রাসায়নিক ধর্ম থেকে জানা যায় ।

স্তুতরাং অজানা একটি পদার্থকে সনাক্ত করতে হলে তার ভৌত ও রাসায়নিক ধর্ম বিশ্লেষণ করতে হবে ।

ভৌত ও রাসায়নিক পরিবর্তন

বস্তুর ভৌত ধর্মের পরিবর্তনকে ভৌত পরিবর্তন এবং রাসায়নিক ধর্মের পরিবর্তনকে রাসায়নিক পরিবর্তন বলে । ভৌত পরিবর্তন অস্থায়ী এবং

এই পৰিবৰ্তনে নতুন কোন বস্তু তৈৰি হয় না। ভৌত পৰিবৰ্তনে পদাৰ্থেৰ শোজনেৰ পৰিবৰ্তন হয় না এবং আণবিক গঠন একই থাকে। বস্তুৰ ৱাসায়নিক পৰিবৰ্তনে সম্পূৰ্ণ নতুন বস্তুৰ উৎস হয় এবং মূল বস্তুৰ আণবিক গঠনেৰ পৰিবৰ্তন হয়। ৱাসায়নিক পৰিবৰ্তনে শোজন ও তাপেৰও পৰিবৰ্তন হতে পাৰে।

একটা সহজ পৱীক্ষা কৰ। ছটো কাচেৰ পাত্ৰ নাও। একটা পাত্ৰে কিছু আ্যালুমিনিয়মেৰ টুকৰো ও অন্ত পাত্ৰে কিছু চিনিৰ টুকৰো নাও। ছটো পাত্ৰকেই বেশ কিছুক্ষণ গৰম কৰ। দেখবে আ্যালুমিনিয়মেৰ বাহ্যিক চেহাৰাৰ কোন পৰিবৰ্তন হয় নি, কেবল গৰম হয়েছে। এটি ধাতুটিৰ ভৌত পৰিবৰ্তন। কিন্তু চিনিৰ পাত্ৰ গৰম হওয়াৰ সঙ্গে সঙ্গে তা থেকে জল বাব হবে। পৰে জল বাল্প হওয়াৰ পৰ কালো কাৰ্বন পাত্ৰে পড়ে থাকবে। এটি চিনিৰ ৱাসায়নিক পৰিবৰ্তন। আ্যালুমিনিয়ম টুকৰোগুলোকে ঘনি $660\cdot2^{\circ}\text{C}$ পৰ্যন্ত গৰম কৰা সম্ভব হয় তাহলে দেখবে ধাতুটি গলে যাবে। এটি আ্যালুমিনিয়মেৰ অবস্থাৰ পৰিবৰ্তন, স্ফৃতৰাং এটিও আ্যালুমিনিয়মেৰ ভৌত পৰিবৰ্তন, কাৰণ এতে ধাতুটিৰ ৱাসায়নিক গঠন অৰ্থাৎ আণবিক গঠন একই আছে। জল কঠিন, তৱল ও গ্যাসীয় অবস্থায় থাকতে পাৰে। কিন্তু জলেৰ আণবিক গঠন তিনটি অবস্থাতে একই থাকে। সামাজি অ্যাসিড যেশানো জলে তড়িৎ প্ৰিবাহিত কৰলে জল ভেঙে হইড্ৰোজেন ও অক্সিজেন গ্যাস বেৰোয়। এটি জলেৰ ৱাসায়নিক পৰিবৰ্তন, কাৰণ এতে জলেৰ আণবিক গঠনেৰ পৰিবৰ্তন হয়েছে। মৰচে এক ধৰনেৰ লোহাৰ অক্সাইড। অক্সিজেনেৰ সঙ্গে লোহাৰ ৱাসায়নিক বিক্ৰিয়ায় মৰচে পড়ে। তামাৰ পাত্ৰ বেশ কিছুদিন ব্যবহাৰ না কৰলে উপৰে একটা সবুজ স্তৱ পড়ে। এটি তামাৰ অক্সাইড—ৱাসায়নিক পৰিবৰ্তনেৰ ফল। আমাদেৱ শৰীৰে ৱাসায়নিক পৰিবৰ্তন কৰ হয় না। আমৰা যে খাবাৰ থাই পাকস্থলীতে তাৰ ৱাসায়নিক পৰিবৰ্তন ঘটে। নিঃশ্বাসেৰ সঙ্গে যে অক্সিজেন আমৰা নিই তাৰ হিমোপ্লোবিনেৰ সঙ্গে যুক্ত হয়ে শৰীৰে বহু ৱকম ৱাসায়নিক বিক্ৰিয়া ঘটায়।

যে কাৱণে বস্তুৰ পৰিবৰ্তন ঘটে

অনেকগুলি কাৱণে বস্তুৰ ভৌত পৰিবৰ্তন ঘটতে পাৰে। তাপ প্ৰয়োগে বস্তুৰ প্ৰমাণণ ঘটে আৰাৰ ঘণ্টে তাপ শোষণে বস্তুৰ অবস্থাৰ পৰিবৰ্তন ঘটতে

পারে। বিদ্যুৎ প্রবাহিত করলে পরিবাহী গরম হয়। বায়ুশৃঙ্খলা পরিবেশে ঘথেষ্ট গরম হলে পরিবাহী প্রথমে লাল ও পরে সাদা আলো দেয়। এই পদ্ধতিতেই ইলেকট্রিক বাল্ব আলো দেয়। কয়েকটি বিশেষ ধাতুকে চুম্বক দিয়ে ঘষলে ধাতুটি চুম্বকের মত ব্যবহার করে। কোন কোন বস্তু জলে শ্রব্যভূত হয়। এগুলি বস্তুর ভৌত পরিবর্তন। এতে বস্তুর উপাদানের কোন পরিবর্তন হয় না।

আলো, উত্তাপ, বিদ্যুৎ ও চাপের প্রয়োগে এমন কি ভিন্ন ভিন্ন বস্তুর সংশৰ্ষে বস্তুর রাসায়নিক পরিবর্তন ঘটতে পারে। জল, বায়ু, অ্যাসিড, ক্ষার প্রভৃতির সংশৰ্ষে এলে অনেক বস্তুর রাসায়নিক পরিবর্তন ঘটে। ক্যামেরার ফিল্মে আলো এসে পড়লে রাসায়নিক পরিবর্তন ঘটে—এই পদ্ধতিতে ফোটোগ্রাফ তৈরি হয়। আলোর প্রভাবে হাইড্রোজেন ও ক্লোরিন গ্যাস ঘৃত হয়ে হাইড্রোক্লোরিক অ্যাসিড হয় এবং নাইট্রোজেন অক্সাইড ভেঙে নাইট্রাস অক্সাইড এবং অক্সিজেন হয়। আলোর প্রভাবে রাসায়নিক পরিবর্তনকে ফোটো-কেমিস্ট্রি বলে। মারকিউরিক অক্সাইডকে গরম করলে পারদ ও অক্সিজেন পাওয়া যায়। তড়িৎ প্রবাহ দিয়ে জল থেকে হাইড্রোজেন ও অক্সিজেন পাওয়া যায় একটু আগেই বলা হয়েছে। ভুঁই পটকা যখন মাটিতে সজোরে ছুড়ে ফেলা হয় তখন চাপের প্রভাবে পটকার তিতরের পট্টাসিয়ম ক্লোরেট ও গন্ধকের মধ্যে রাসায়নিক বিক্রিয়া ঘটে ও বিস্ফোরণ হয়। আয়োডিন ও ফসফরাস যতক্ষণ আলাদা থাকে কোন বিক্রিয়া হয় না, কিন্তু এদের স্পর্শ করলেই ফসফরাস জলে ওঠে।

তাপগ্রাহী ও তাপমোচী রাসায়নিক বিক্রিয়া

ছুটি বস্তুর রাসায়নিক বিক্রিয়ার নতুন যৌগিক বস্তু গঠনের সময় যদি তাপ শোষিত হয় তবে সেই রাসায়নিক বিক্রিয়াকে তাপগ্রাহী বিক্রিয়া বলে। এইভাবে তৈরি যৌগিক বস্তুকে তাপগ্রাহী যৌগ বলে। নাইট্রোজেন ও অক্সিজেনের বিক্রিয়ার সময় তাপ শোষিত হয় এবং নাইট্রিক অক্সাইড তৈরি হয়। এই বিক্রিয়া তাপগ্রাহী এবং নাইট্রিক অক্সাইড তাপগ্রাহী বস্তু। কার্বন ডাইসালফাইড, ক্লোরিন মোনোক্সাইড ও তাপগ্রাহী।

অনেক রাসায়নিক বিক্রিয়ায় তাপ উৎপন্ন হয়। এই বিক্রিয়াকে তাপমোচী বিক্রিয়া বলে। উন্নত বস্তুকে তাপমোচী বস্তু বলে। হাইড্রোজেন ও অক্সিজেনের

বিক্রিয়ায় যথন জল উৎপন্ন হয় তখন তাপ উৎপন্ন হয়। কার্বন ডাইঅক্সাইড তাপমোচী বস্তু। কয়লা যথন পোড়ান হৰ তখন কার্বনের সঙ্গে অক্সিজেনের বিক্রিয়ায় তাপ উৎপন্ন হয়। পাথুরে চুন জলে দিলে এত তাপ উৎপন্ন হয় যে জল ফুটতে থাকে। বাড়িতে চুনকাম হওয়ার সময় লক্ষ্য রেখ ।

অমুষ্টক ও তার কাজ

এতক্ষণ রাসায়নিক পরিবর্তনের কথা পড়লে। দুটি বস্তুর বিক্রিয়ার পর তাদের মিলনে নতুন বস্তু তৈরি হয়। কিন্তু কয়েকটি বস্তু আছে যারা রাসায়নিক বিক্রিয়ায় অংশ গ্রহণ করে না, কিন্তু তাদের উপস্থিতিতে রাসায়নিক বিক্রিয়া ঘটে। এদের অমুষ্টক বলে। প্যাটিনমের পাতের উপস্থিতিতে অ্যামোনিয়া গ্যাস থেকে নাইট্রিক অক্সাইড তৈরি হয়। এখানে প্যাটিনম অমুষ্টক।

ভৌত ও রাসায়নিক পরিবর্তনের তুলনা

ভৌত পরিবর্তন

(1) ভৌত পরিবর্তনের ফলে পদার্থের মূল গঠনে কোন পরিবর্তন হয় না। পদার্থের অবস্থার ক্রমান্তর অর্থাৎ তার ভৌত ধর্মের পরিবর্তন ঘটে না, কোন নতুন পদার্থ গঠিত হয় না।

(2) ভৌত পরিবর্তন অস্থায়ী এবং পরিবর্তিত পদার্থকে সহজেই আবার আগের পদার্থে ফিরিয়ে আনা যায়।

(3) ভৌত পরিবর্তনে পদার্থের শৃঙ্খনের কোন পরিবর্তন অর্থাৎ হাস বা বৃদ্ধি হয় না।

(4) ভৌত পরিবর্তনের সময় সাধারণত তাপের উন্নত বা অভাব হয় না। (অবশ্য ব্যতিক্রম আছে।)

রাসায়নিক পরিবর্তন

(1) রাসায়নিক পরিবর্তনের ফলে পদার্থের মূল গঠনে পরিবর্তন হয়। মূল পদার্থ পরিবর্তিত হয়ে নতুন পদার্থ গঠিত হয় এবং তার ধর্মেরও পরিবর্তন হয়।

(2) রাসায়নিক পরিবর্তন স্থায়ী এবং পরিবর্তিত পদার্থকে আবার রাসায়নিক পরিবর্তন ছাড়া আগের পদার্থে ফিরিয়ে আনা যায় না।

(3) রাসায়নিক পরিবর্তনের ফলে গঠিত নতুন পদার্থের শৃঙ্খনের অবশ্যই পরিবর্তন অর্থাৎ হাস বা বৃদ্ধি হয়।

(4) রাসায়নিক পরিবর্তনে পদার্থের মধ্যে তাপের উন্নত হয় অথবা শোষণ ঘটে।

୬୦ ମୌଳ ଓ ଯୋଗ

ପଦାର୍ଥର ଶୌଲିକ ଉପାଦାନ କି କି ? ଆମରା ଚାରପାଶେ ସବ ଜିନିମ ଦେଖିତେ ପାଇଁ ଯେମନ ଇଟ, କାଠ, ପାଥର, ଲୋହା, କାପଡ଼-ଜାମା, ଜୀବଜ୍ଞତ୍ତ, ମାନବଦେହ—ଏମର କି କି ମୂଳ ଉପାଦାନେର ମାହାତ୍ୟେ ଗଡ଼େ ଉଠେଛେ ? ଏକଟି ଏକଟି ଇଟ ବସିଯେ ଯେମନ ବାଡ଼ି ତୈରି ହୁଏ—ତେବେଳି ଅନ୍ତର ସବ ବସ୍ତୁ କି କ୍ଷେତ୍ରକଟି ମୂଳ ବସ୍ତୁର ସମସ୍ତରେ ମଧ୍ୟରେ ତୈରି—ଯେଣୁଳି ବରାବରଇ ଛିଲ, ଆଛେ ଏବଂ ଧାକବେ—ଯେଣୁଳି ଅନ୍ତର କିଛୁ ଦିଯେ ତୈରି ନାହିଁ ? ଆଡ଼ାଇ ହାଜାର ବହର ଆଗେ ଥେକେ ପ୍ରାଚୀନ ଭାବତୀଯ ଓ ଗ୍ରୀକ ପଣ୍ଡିତଙ୍କା ଅନେକ ମାଧ୍ୟା ସାମିଯେଛେନ ଏ ବିସ୍ତରେ । ଏକ ସମୟେ ପ୍ରାଚୀନ ଭାବତୀଯଙ୍କ ମନେ କରନ୍ତେ—କିତି (ମାଟି), ଅପ୍ (ଜଳ), ତେଜ (ଆଣୁନ), ମର୍କ୍ (ହାତ୍ୟା), ବୋାମ (ଆକାଶ)—ଏହି ପଞ୍ଚଭୂତ ଦିଯେ ମରକ ବସ୍ତୁ ହଣ୍ଡି ହେବେ । ଏମର ବିଜ୍ଞାନେର ଇତିହାସ ପଡ଼ିଲେ ଜାନନ୍ତେ ପାରିବେ ।

ସେ ସବ ମୂଳ ଉପାଦାନ ଦିଯେ ଅନ୍ତର ସବ ବସ୍ତୁ ତୈରି, ଯାକେ ବିଶେଷଣ କରେ ନତୁନ କୋନ ଉପାଦାନ ପାଓଯା ଯାଉ ନା, ତାଦେର ଶୌଲିକ ପଦାର୍ଥ ସା ଶୌଲ ବଲା ହୁଏ । ପୃଥିବୀତେ ପ୍ରାକୃତିକ ଅବହାୟ 92ଟି ମୌଳ ଆଛେ । ଏଦେର ପ୍ରତ୍ୟେକେର ରାମାୟନିକ ନାମକରଣ କରା ହେବେ । ହାଇଡ୍ରୋଜେନ, ହିଲିସମ, ଲିଥିସମ, ବେରି-ଲିସମ, ବୋରନ, କାର୍ବନ, ନାଇଟ୍ରୋଜେନ, ଅଞ୍ଜିଜେନ, ଲୋହା, ତାମା, ମୋନୀ, ପ୍ରାଟିନମ, ଇଉରେନିସମ ଏମର ଶୌଲଦେର ନାମ । ତାଲିକାଯ ପ୍ରଥମ ସବ ଥେକେ ହାଲକା ହାଇଡ୍ରୋଜେନ ଗ୍ୟାସ, ଆବାର ସବ ଥେକେ ଭାବୀ ବିରାନରିତମ ମୌଳ ଇଉରେନିସମ । ଆଗେଇ ବଲା ହେବେ ଯେ, ପୃଥିବୀତେ ପ୍ରାକୃତିକ ଅବହାୟ ପାଓଯା ଯାଉ 92ଟି ମୌଳ । ବିଜ୍ଞାନୀଙ୍କା ଅବଶ୍ୟ ଗବେଷଣାଗାରେ ଇଉରେନିସମେର ପରେତ ଅନେକ ମୌଳ ତୈରି କରେଛେ ଏବଂ ଆରାର ଚେଟୀ କରେ ଚଲେଛେ । ଏଣୁଳି ସବଇ ଅନ୍ତରୀ ଏବଂ ପ୍ରାକୃତିକ ପରିବେଶେ ପାଓଯା ଯାଉ ନା । ମୋଟ 103ଟି ଶୌଲେର ନାମ ମର୍ଜନନ୍ତିରୁ 104 ଓ 105 ନଥର ମୌଳର ସଂପ୍ରତି ଆବିକ୍ଷାର ହେବେ । ଏଦେର ନାମ ଦେଖୁଯା ହେବେ ରାଦାରକୋର୍ଡିଯମ ଆବା ହାନିସମ । ଶୌଲଦେର ନାମେର ତାଲିକା ପରେର ଅଧ୍ୟାୟେର ଶେଷେ ଦେଖୁଯା ଆଛେ ।

ଶୌଲଣ୍ଡିଲି ସାଧାରଣ ତାପମାତ୍ରାଯ କଟିନ, ତରଳ ଓ ଗ୍ୟାସ ତିନ ଅବହାୟେ ପାଓଯା ଯାଉ । ମୋନୀ, କପୋ, ଲୋହା, ତାମା, ଦସ୍ତା, ମୌଳି, ଟିନ, କାର୍ବନ, ଗର୍ଜକ, କ୍ରୀଲସିସମ, ଆୟୋଡିନ, ନିକେଲ, ମ୍ୟାଙ୍ଗାନିଙ୍ଗ, ସିଲିକନ, ଫମଫରାସ, ପଟ୍ଟାମିସମ, ମୋଡ଼ିସମ, ଅୟାଲୁମିନିସମ, ମ୍ୟାଗନେସିସମ, ପ୍ରାଟିନମ, ରେଡ଼ିସମ, ଇଉରେନିସମ ପ୍ରଭୃତି

এৰা সবই কঠিন। পাৰদ, ৰোমিন প্ৰভৃতি তৰল। অঞ্জিজেন, নাইট্ৰোজেন, হাইড্ৰোজেন, হিলিয়ম, ক্লোৱিন, নিয়ন, জিনন প্ৰভৃতি মৌল গ্যাস।

এক বা একাধিক মৌল মিলে যে পদাৰ্থ তৈৰি হয় তাকে ঘৰ্ণিক পদাৰ্থ বা ঘোগ বলে। ঘোগকে বিশ্লেষণ কৰলে তাৰ উপাদান মৌলগুলি সবসময়ই পাওয়া যাবে। ঘোগ জৈব এবং অজৈব দুইই হতে পাৰে। সাধাৰণত অধিকাংশ পদাৰ্থ ঘোগ অবস্থায় থাকে। প্ৰাকৃতিক অবস্থায় প্ৰায় কুড়িটি মৌল পাওয়া যায়। পৃথিবীতে যত বৰকমেৰ বিভিন্ন ঘোগ আছে—তাৰ মধ্যে নিৱানবই শতাংশ কম-বেশি কুড়িটি মৌল দিয়ে তৈৰি। সমস্ত মৌলদেৱ মধ্যে প্ৰায় 50 শতাংশ শুধু অঞ্জিজেন।

জল, লবণ, চিনি, লোহার মৰচে, তুঁতে এগুলি সবই ঘোগেৰ উদাহৰণ। হাইড্ৰোজেন ও অঞ্জিজেন মৌল দিয়ে জল তৈৰি। সোডিয়ম ও ক্লোৱিন দিয়ে তৈৰি খাত লবণ। কাৰ্বন, হাইড্ৰোজেন ও অঞ্জিজেন দিয়ে চিনি, লোহা ও অঞ্জিজেন দিয়ে মৰচে এবং তামা, গুৰুক ও অঞ্জিজেন দিয়ে তুঁতে তৈৰি। তোমৰা নিজেৱা চেষ্টা কৰলে অজস্র উদাহৰণ বাৰ কৰতে পাৰবে।

ঘোগ ও মিশ্রণ এক অৱস্থা : দুই বা তাৰ বেশি মৌল যে কোন অহুপাতে মেশালে সেটা হবে মিশ্রণ, সেটা ঘোগ নাও হতে পাৰে। যে সব মৌল দিয়ে ঘোগ তৈৰি, তাৰেৰ নিজেদেৱ গুণ ঘোগে থাকে না, ঘোগেৰ নিজস্ব গুণ থাকে। যেমন, হাইড্ৰোজেন বা অঞ্জিজেন দুই গ্যাস, কিন্তু মিলে তৈৰি হয় জল, যা সাধাৰণ তাপমাত্ৰায় তৰল। জলেৰ নিজস্ব অনেক ধৰ্ম আছে—যাৰ সঙ্গে হাইড্ৰোজেন বা অঞ্জিজেনেৰ ধৰ্মেৰ কোন সম্পৰ্ক নেই।

তাছাড়া জলে হাইড্ৰোজেন ও অঞ্জিজেনেৰ অহুপাত সবসময় নিৰ্দিষ্ট থাকে। ৰাসায়নিক বিক্ৰিয়া না ঘটিয়ে জলেৰ উপাদান মৌলদেৱ আলাদা কৰা যায় না। আবাৰ বাতাস নাইট্ৰোজেন, অঞ্জিজেন, জলীয় বাষ্প ও আৱাঞ্চ নানা গ্যাসেৰ মিশ্রণ। এই মিশ্রণে নাইট্ৰোজেন বা অঞ্জিজেনেৰ নিজ নিজ ধৰ্মগুলি বৰ্তমান। এই মিশ্রণে নাইট্ৰোজেন বা অঞ্জিজেনেৰ অহুপাত নিৰ্দিষ্ট নহ, পৰিবৰ্তিত হতে পাৰে। ৰাসায়নিক বিক্ৰিয়া না কৰেও বাতাস থেকে নাইট্ৰোজেন ও অঞ্জিজেন আলাদা কৰা সম্ভব তোমৰা পৰে পড়বে।

আৱাঞ্চ একটি সহজ উদাহৰণ নিজেৱা পৰীক্ষা কৰে দেখতে পাৰ। লোহার গুঁড়ো আৱাঞ্চকেৰ গুঁড়ো খুব ভাল কৰে মেশাও। এটা হবে মিশ্রণ। এৱে থেকে

ଚୁପ୍ତକେର ସାହାଯ୍ୟ ସମଜ୍ଞ ଲୋହା ଆଲାଦା କରେ ନିତେ ପାରବେ । କିନ୍ତୁ ମିଶ୍ରଣଟି ବୁନ୍ଦେନ ଦୀପେର ତାପେ ଗଲିଯେ ସଥଳ ଏକଟି ନତୁନ ଯୋଗ ତୈରି ହୁଏ—ତାର ବଞ୍ଚି କାଲୋ । ଗଲା ପିଣ୍ଡଟି ଗୁଡ଼ିଯେ ଦେଖ ଏବଂ ସଙ୍ଗେ ଲୋହା ଓ ଗଢକେର କୋନ ଶୁଣେର ମିଳ ନେଇ । ଚୁପ୍ତକ ଦିଯେ ପରୀକ୍ଷା କର, ଦେଖବେ ଚୁପ୍ତକେ କିଛୁଇ ଧରଛେ ନା । ସୋରା (ପଟ୍ଟାମିଯମ ନାଇଟ୍ରୋଟ), ଗଢକ ଓ କରଲା ମିଶିଯେ ବାରଦ ତୈରି । ବାରଦ ଅବହ୍ୟାୟ ଏଟି ମିଶ୍ରଣ । ବିଭିନ୍ନ ତରଳେ ଗଲିଯେ ଏବଂ ଛେକେ ଉପାଦାନଗୁଲି ଆଲାଦା କରା ଯାଏ । କିନ୍ତୁ ଆଶ୍ରମ ଦିଲେ ଦପ କରେ ବାରଦ ଜଳେ ଉଠିବେ, ତାପ ଓ ଗ୍ୟାସ ହଟି ହୁବେ, କିଛୁଇ ପଡ଼େ ଥାକବେ ନା—ତଥନ ଯୋଗେ ପରିଣିତ ହୁଯେଛେ । ମିଶ୍ରଣର ଏକଟି ବିଶେଷ ରୂପ ଦ୍ରବ୍ୟ—ଲବଣ ବା ଚିନି ଜଳେ ଦିଲେ ଏକଦମ ଶୁଲେ ଗିଯେ ଲବନେର ବା ଚିନିର ଦ୍ରବ୍ୟ ହୁଏ । ମନେ ବେଳେ ଦ୍ରବ୍ୟର ଏକ ଧରନେର ମିଶ୍ରଣ, ଯୋଗ୍ୟ ।

ଧାତୁ ଓ ଅଧାତୁ

ମୌଳଗୁଲି କଥେକଟି ସାଧାରଣ ଧର୍ମ ଅଭ୍ୟାସୀ ଦୁଇ ଶ୍ରେଣୀତେ ଭାଗ କରା ହୁଏ—ଧାତୁ ବା ମେଟୋଲ ଏବଂ ଅଧାତୁ ବା ନନ୍ମେଟୋଲ । ପୃଥିବୀତେ ସେ 92ଟି ମୌଳ ପାଓଯା ଯାଏ ତାର ଅଧିକାଂଶରେ ଧାତୁ । ମବ ଥେକେ ବେଶ ବ୍ୟବହାର ହୁଏ ଲୋହା, ତାମା, ଦୱତ୍ତା, ଦୀପା, ଟିନ, ଆଲୁମିନିୟମ, ମାଗନେସିଯମ, ସୋନା, କୁପୋ, ନିକେଲ, ପାରଦ—ଏଦେର ଅନେକ ଶୁଳିହି ତୋମରା ଦେଖେ ଥାକବେ । ଆବାର ଅଧାତୁର ମଧ୍ୟେ କାର୍ବିନ, ଗଢକ ଆମ୍ରାଡିନ ପ୍ରତ୍ତି ମୌଳଗୁଲି କଟିନ, ହାଇଡ୍ରୋଜେନ, ଅସ୍ଟରେନ, ନାଇଟ୍ରୋଜେନ, ହିଲିୟମ, ନିଯନ, ଜିନନ ଇତ୍ୟାଦି ଗ୍ୟାସ ଏବଂ ବ୍ରୋଫିନ ତରଳ—ଏଦେର ନାମରେ ତୋମରା ଖଲେ ଥାକବେ । ଧାତୁ ଓ ଅଧାତୁର ସାଧାରଣ ଧର୍ମ ଅଭ୍ୟାସୀ ପାର୍ଥକ୍ୟ ନିଚେ ଦେଖ୍ୟା ହଲ :

ଧାତୁ ଓ ଅଧାତୁର ପାର୍ଥକ୍ୟ

ଧାତୁ	ଅଧାତୁ
(1) ସାଧାରଣ ତାପମାତ୍ରାଯ ପାରଦ ଛାଡା ମବ ଧାତୁରେ କଟିନ ଅବହ୍ୟାୟ ଥାକେ । ପାରଦ ତରଳ ।	(1) ଅଧାତୁ କଟିନ, ତରଳ ଏବଂ ଗ୍ୟାସ ତିନ ଅବହ୍ୟାତେହି ପାଓଯା ଯାଏ ।
(2) ଧାତୁ ନିର୍ମିତ ତଳ ପାଲିଶ କରା ହଲେ ଚକଚକେ ଦେଖ୍ୟା ଏବଂ ଆଲୋ ପ୍ରତିଫଳନ କରେ । ତରଳ ହଲେଓ ପାରଦ ତଳରେ ଚକଚକେ ।	(2) ଅଧାତୁ କୋନ ଅବହ୍ୟାତେହି ଚକଚକେ ନୟ ଏବଂ ଆଲୋ ପ୍ରତିଫଳନ କରେ ନା ।

ধাতু

(3) ধাতু ভাৰী, শক্ত, নমনীয় ও প্ৰসাৱণক্ষম। ধাতু পিটিয়ে পাত কৰা যায়।

ব্যতিক্রম : পট্টাসিয়ম ও সোডিয়ম অলেৱ থেকে হালকা, আটিমনি ও বিস্মাখ ভঙ্গুৰ।

(4) ধাতু তাপ ও বিদ্যুৎ পৰিবাহী।

(5) লঘু খনিজ অ্যাসিডে ধাতুৰ সঙ্গে ৱাসায়নিক বিক্ৰিয়া ঘটে।

(6) ধাতু সাধাৰণত বিজ্ঞানৰ বস্ত।

(7) ধাতু ইলেকট্ৰোপজিটিভ।

অধাতু

(3) অধাতুৰ মধ্যে কঠিন মৌল-গুলি হালকা ও ভঙ্গুৰ, নমনীয় বা প্ৰসাৱণক্ষম নহ ; এগুলি পিটিয়ে পাত তৈৰি কৰা যায় না।

ব্যতিক্রম : হীৰা যদিও অধাতু তবু বস্তুদেৱ মধ্যে সব থেকে শক্ত।

(4) অধাতু তাপ ও বিদ্যুৎ পৰিবহণেৰ উপযোগী নহ।

(5) লঘু খনিজ অ্যাসিডেৰ সঙ্গে অধাতুৰ কোন বিক্ৰিয়া ঘটে না।

(6) হাইড্ৰোজেন ছাড়া সকল অধাতু জাৰক বস্ত।

(7) অধাতু ইলেকট্ৰোনেগেটিভ।
ব্যতিক্রম—হাইড্ৰোজেন ইলেকট্ৰো-পজিটিভ।

উপৰে লিখিত ধাতু ও অধাতুৰ গুণগুলি সাধাৰণভাৱে থাটে ; তবে ব্যতিক্রম আছে একধা মনে বাধতে হবে। অ্যাসিডে বিক্ৰিয়া, জাৰক, বিজ্ঞানৰ বস্ত এবং ইলেকট্ৰো-পজিটিভ ও ইলেকট্ৰো-নেগেটিভ কাকে বলে তোমৰা এই বইতেই কিছু পৰে পড়বে। তালিকাটি মোটামুটি সম্পূৰ্ণ কৰাৰ জন্য এখনই বলে বাধা হল। তালিকায় বলা হয়েছে যে ধাতু বিদ্যুৎপৰিবাহী এবং অধাতু বিদ্যুৎ অপৰিবাহী। কিন্তু এৰ মাৰামাবি কিছু মৌল আছে যেগুলি স্বল্প-পৰিবাহী যেমন জাৰমেনিয়ম ও সিলিকন। জেনে বাথ যে এই স্বল্প-পৰিবাহী বস্ত দিয়েই টান-জিস্টুৰ তৈৰি হয়।

সংকৰ ধাতু

অনেক সময় একাধিক ধাতু মিলিয়ে মিশ্ৰণ বা সংকৰ ধাতু তৈৰি কৰা হয়।
অনেক কাজে বিশুল্ক ধাতুৰ চেয়ে সংকৰ ধাতু কাজেৰ উপযোগী। ইল্পাত তৈৰি হয় লোহাতে নিৰ্দিষ্ট পৰিমাণ কাৰ্বন মিশিয়ে। পিতল তৈৰি হয় প্ৰধানত তামাৰ 30 শতাংশ দৃষ্টা মিশিয়ে। কোমায় ধাকে তামা ও 20 শতাংশ টিন। ইল্পাত,

ପିତଳ, କୋସା, ଏଣ୍ଣଳି ମଂକର ଧାତୁ । ନରମ ଧାତୁତେ ସାମାଜିକ ପରିମାଣ ଅନ୍ତ ଧାତୁ ଯେଶାଲେ ମେଟି ବେଶ ଶକ୍ତ ହୟ । ଅନ୍ତ ପରିମାଣ ଅନ୍ତ ଧାତୁ ଯେଶାନୋକେ ‘ପାନ’ ଦେଉଥା ବଲେ । ମୋନା ଖୁବି ନରମ । ଗୟନା ତୈରିର ଜଣ୍ଠ ମୋନାକେ ଶକ୍ତ କରା ହୟ ତାର ସଙ୍ଗେ ତାମାର ପାନ ଦିଯେ । ସେନଲେସ ଶ୍ରୀଲ, ଯାତେ ଯରଚେ ପଡ଼େ ନା, ତାତେ ଲୋହାର ସଙ୍ଗେ ପ୍ରାୟ 12—15 ଶତାଂଶ କ୍ଲୋରିସମ ଏବଂ 0.1—0.7 ଶତାଂଶ କାର୍ବିନ ଯେଶାନ ଥାକେ ।

ଅଣୁ ଓ ପରମାଣୁ

କୋନ ଏକ ଟୁକରୋ ମୌଳ ନିୟେ ତାକେ ଅର୍ଧେକ କରା ହୋଲ । ଅର୍ଧେକ ଅଂଶଟି ଆବାର ଅର୍ଧେକ କରା ହୋଲ । ମେଇ ଅର୍ଧେକକେ ଆବାର ଅର୍ଧେକ । କତ ଦୂର ପର୍ଯ୍ୟନ୍ତ ଅର୍ଧେକ କରା ସନ୍ତବ ? ମୌଲେର ସବ ଥେକେ ଛୋଟ ଅବସ୍ଥା—ସଥନ ପର୍ଯ୍ୟନ୍ତ ମୌଲଟିର ଭୌତ ଓ ବାସାୟନିକ ଶ୍ରେଣୀ ଦିଯେ ତାକେ ସନ୍ତବ କରା ଯାବେ—ତାକେ ବଲା ହୟ ମୌଲଟିର ପରମାଣୁ । ପରମାଣୁ କଥାଟି ଇଂରେଜୀତେ ଅୟାଟମ—ଏମେହେ ଗ୍ରୀକ ଶ୍ବର ଅୟାଟମସ ଥେକେ । ଗ୍ରୀକ ଭାଷାଯି କଥାଟିର ମାନେ ଯାକେ ଭାଙ୍ଗ ଯାଇ ନା । ଅବଶ୍ୟ ଏଥନ ପରମାଣୁକେଓ ଭାଙ୍ଗ ହେଁବେ, ସହିଓ ଭାଙ୍ଗବାର ପର ମେଟି ଆର ଏଇ ବିଶେଷ ମୌଲେର ପରମାଣୁ ଥାକବେ ନା ।

ଏକ ବା ଏକାଧିକ ମୌଲେର ପରମାଣୁ ଦିଯେ ତୈରି ହୟ—ଯୋଗେର ଅଣୁ ବା ଅଲିକିଡ଼ିଲ । ଅଣୁ ଯେ କୋନ ଯୋଗେର କ୍ଷୁଦ୍ରତମ ଅବସ୍ଥା । ଜଳ ଏକଟି ଯୋଗ । ଜଳର ଅଣୁତେ ଥାକେ ଦୁଟି ହାଇଡ୍ରୋଜେନ ଏବଂ ଏକଟି ଅଞ୍ଜିଜେନ ପରମାଣୁ । ଥାଣ୍ଡ ଲବଣ ମୋଡ଼ିୟମ କ୍ଲୋରାଇଡେର ଅଣୁତେ ଥାକେ ଏକଟି ମୋଡ଼ିୟମ ଓ ଏକଟି କ୍ଲୋରିନ ପରମାଣୁ । ଆବାର ଦୁଟି ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ଦିଯେ ହୟ ହାଇଡ୍ରୋଜେନ ଅଣୁ । ଯେ କୋନ ଯୋଗେର ଅଣୁତେ ଯୋଗଟିର ଭୌତ ଓ ବାସାୟନିକ ଧର୍ମ ବିଶ୍ଵାମାନ ଥାକେ । କୋନ ଭୌତ ବା ବାସାୟନିକ ପ୍ରକିଯାଯ ଅଣୁଟିକେ ଭେତେ ଫେଲଲେ ମେଟି ତାର ଉପାଦାନ ମୌଲଣ୍ଟିଲିର ପରମାଣୁ ହୟେ ବିଚିତ୍ର ହୟେ ପଡ଼ିବେ, ତଥନ ଆର ଯୋଗେର ଶ୍ରେଣୀ ଥାକବେ ନା । ଏକଟି ଦୁଟି ବା ଏକଥୋ ଦୁଶ୍ମା ନୟ, କମ୍ଯେକ ହାଜାର ପରମାଣୁ ଦିଯେ ଅଭିକାର ଅଣୁ ଓ ସନ୍ତବ—ପରେ ଜାନବେ । ବର୍ତ୍ତେ ଯେ ହିମୋପୋବିନ ଥାକେ ତାର ଅଣୁତେଇ କମ୍ଯେକ ହାଜାର ପରମାଣୁ ଥାକେ ।

ମୌଲେର ପରମାଣୁ ବସ୍ତ ଗଠନେର ମୌଲିକ ଉପାଦାନ ନୟ । ସକଳ ମୌଲଇ ତୈରି ହୟ ତିନଟି ମୌଲିକ କଣା—ପ୍ରୋଟିନ, ମିଡ଼ଟିନ ଓ ଇଲେକ୍ଟରିନ—ଦିଯେ । ଏ ବିଷୟେ ତୋରିଯା ସାମନେର ବଚର ଭାଲୋ କରେ ପଡ଼ିବେ ।

୧୬ ଜ୍ଵରଣ, ଜ୍ବାବ, ଜ୍ବାବକ

ଜ୍ବବଣ

ଏକାଧିକ ବସ୍ତର ସମସ୍ତ ମିଶ୍ରଣକେ ଜ୍ବବଣ ବା ସଲିଉଶନ ବଲେ । ଜ୍ବବଣ କଥାଟି ସାଧାରଣତ ଜଳ ବା ଅନ୍ତ ତରଳେ ନାନା ବସ୍ତର ମିଶ୍ରଣେର ଜୟ ବ୍ୟବହାର ହୁଏ । ଧର, ଏକ ଚାମଚ ଖାତ୍ତ ଲବଣ ଆଧ ବୀକାର ଜଳେ ଦେଖୋଯା ହଲ । ଲବଣ ପୁଲେ ଜଳେର ମଧ୍ୟେ ମିଲିଯେ ଯାବେ । ଏଥିର ଜଳେ ଲବଣେର ଜ୍ବବଣ ତୈରି ହଲ । ଲବଣକେ ଆର ଚୋଥେ ଦେଖା ଯାବେ ନା । ଅଧିବା ଅନେକଙ୍କଷ ରେଖେ ଦିଲେଖ ଲବଣ ତଳାର ଥିତିଯେ ପଡ଼ିବେ ନା । ଏହିଭାବେ ମିଲିଯେ ଯାଓଯାକେ ଜ୍ବବୀଭୂତ ହେଯା ବଲେ । ଜ୍ବବଣ ଜଳେ ଜ୍ବବୀଭୂତ ହୁଏ । ଏହି ଜ୍ବବଣେର ଯେ କୋନ ଅଂଶ ସମାନ ନୋନତା । ଏହି ଜ୍ବବଣଟି ଅନେକ ଭାଗେ ସମାନ ସମାନ ଭାଗ କରେ ସହି ଜଳ ଶୁକିଯେ ଫେଲା ହୁଏ ତବେ ଅତ୍ୟୋକ ଭାଗେ ସମାନ ପରିମାଣ ଲବଣ ପାଓଯା ଯାବେ । ସମାନଭାବେ ଯିଶେ ଯାଓଯାଇ ସମସ୍ତ ମିଶ୍ରଣ ।

ଜ୍ବବଣେର ଉପାଦାନ ନିର୍ଦ୍ଦିଷ୍ଟ ନଗ୍ଯ । ଲବଣେର ଜ୍ବବଣେର ଉପାଦାନ କତ ପରିମାଣ ଲବଣ ଦେଖୋଯା ହଲ ତାର ଉପର ନିର୍ଭର କରେ । ଜ୍ବବଣ କୋନ ମଂକେତେର ସାହାଯ୍ୟେ ଅକାଶ କରୁ ଯାଏ ନା ।

ଜ୍ବବଣ କତ ରକମ ହତେ ପାରେ—(1) ତରଳେ କଠିନେର ଜ୍ବବଣ, ଯେମନ ଜଳେ ଲବଣ ବା ଜଳେ ଚିନି ; (2) ତରଳେ ତରଳେର ଜ୍ବବଣ, ଯେମନ ଜଳେର ମଧ୍ୟେ ପିସାରିନ, ଅୟାଲକୋହଲ, ସାଲଫିଡ଼ିରିକ ଅୟାସିଡ ; (3) ତରଳେ ଗ୍ୟାସେର ଜ୍ବବଣ, ଯେମନ ଜଳେର ମଧ୍ୟେ ଅୟାମୋନିଆ, କାରିନ ଡାଇଅକ୍ଲାଇଡ, ଅକ୍ଲିଜେନ, ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସ ଇତ୍ୟାଦି ; (4) ଗ୍ୟାସେ ଗ୍ୟାସେର ଜ୍ବବଣ,—ଯାଦେର ମଧ୍ୟେ ବିକ୍ରିଆ ଘଟେ ନୀ ଏମନ ଯେ କୋନ ଦୁଇ ବା ତାର ବେଶ ଗ୍ୟାସ ଯେ କୋନ ଅନୁପାତେ ଯିଶେ ସେତେ ପାରେ ଏବଂ ମିଶ୍ରିତ ଅବସ୍ଥା ରୁଷ୍ଟିତ ହଲେ ତାକେ ଗ୍ୟାସେର ଜ୍ବବଣ ବଲେ ; (5) କଠିନେ କଠିନେର ଜ୍ବବଣ, ଯେମନ କାସା (ତାମା ଓ ଟିନ), ପିତଳ (ତାମା ଓ ଦୃଷ୍ଟା) ଇତ୍ୟାଦି ; (6) କଠିନେ ଗ୍ୟାସେର ଜ୍ବବଣ, ଯେମନ ପ୍ଯାଲେଡ଼ିୟମ ଧାତୁତେ ହାଇଡ୍ରୋଜେନ ଗ୍ୟାସ ।

ଜ୍ବାବ ଓ ଜ୍ବାବକ

ଜ୍ବବଣେର ଦୁଟି ଅଂଶ ଜ୍ବାବ ଓ ଜ୍ବାବକ । ଯେ ଦୁଟି ବସ୍ତ ଦିଯେ ଜ୍ବବଣ ତୈରି ତାଦେର ମଧ୍ୟେ ଯେତି ପରିମାଣେ ବେଶ ତାକେ ଜ୍ବାବକ ବା ସଲଭେଣ୍ଟ ବଲେ, ଯେତିର ପରିମାଣ କମ

তাকে বলা হয় জ্বর বা সলিউট। চিনি জলে দিয়ে যে জ্বরণ তাতে জ্বন প্রাবক এবং চিনি প্রাব। কাসায় তামা প্রাবক ও চিনি প্রাব। মনে রাখতে হবে জ্বরণে প্রাবকের পরিমাণ প্রাবর তুলনায় বেশি।

জ্বন পৃথিবীর সর্বশ্রেষ্ঠ প্রাবক। সম্ভেদের জলে যত ব্রকমের বস্তু প্রবীভূত আছে তার রাসায়নিক বিশ্লেষণ করে প্রায় পঁয়বট্টি মৌল পাওয়া গেছে।

সম্পৃক্ত ও অসম্পৃক্ত জ্বরণ

যে জ্বরণে আরও প্রাব যোগ করলে সেটি প্রবীভূত হয়, তাকে অসম্পৃক্ত জ্বরণ বা আনন্দাচুরেটেড সলিউশন বলে। আধ বীকার জলে এক চামচ খাত্ত লবণ দিলে সেটি প্রবীভূত হয়। এটি অসম্পৃক্ত জ্বরণ কারণ আর এক চামচ লবণ দিলেও তা প্রবীভূত হবে। ঐ জ্বরণে আরও কয়েক চামচ লবণ দিলে তাও প্রবীভূত হবে। তখনও জ্বরণটি অসম্পৃক্ত জ্বরণ থাকবে। জ্বরণটিতে ক্রমাগত লবণ যোগ করতে থাকলে দেখবে এক সমস্ত লবণ আর প্রবীভূত না হয়ে জ্বরণের নিচে জমা হতে থাকবে। নির্দিষ্ট তাপমাত্রায় যে কোন প্রাবকের প্রাব গ্রাহণ করবার একটি সীমা থাকে যার বেশি প্রাব যোগ করলে সেটি প্রবীভূত হয় না। যে জ্বরণে আরও প্রাব যোগ করলে সেটি প্রবীভূত হয় না তাকে সম্পৃক্ত জ্বরণ বা আচুরেটেড সলিউশন বলে।

যে জ্বরণে অল্প পরিমাণ প্রাব আছে তাকে লঘু জ্বরণ বা ডাইলিউট সলিউশন বলা হয়। যে জ্বরণে প্রাবর পরিমাণ খুব বেশি, প্রায় সম্পৃক্ত করার কাছাকাছি তাকে গাঢ় জ্বরণ বা কনসেন্ট্রেটেড সলিউশন বলে।

জ্বরণীয়তা

একটি নির্দিষ্ট তাপমাত্রায় যত গ্রাম প্রাব কোন প্রাবকের একশে গ্রাম ভরের সঙ্গে রিশে সম্পৃক্ত জ্বরণ তৈরি করে সেই সংখ্যাকে ঐ প্রাবের জ্বরণীয়তা বা সলিউবিলিটি বলে। যদি বলা হয় 30°C তাপমাত্রায় খাত্ত লবণের জ্বরণীয়তা 36.3 তবে বুঝতে হবে 30°C তাপমাত্রায় 100 g জলে 36.3 g খাত্ত লবণ প্রবীভূত হয়ে সম্পৃক্ত জ্বরণ তৈরি করবে। স্ফুতরাঙ খাত্ত লবণের (NaCl) জ্বরণীয়তা 30°C তাপমাত্রায় 36.3 । ঐ একই তাপমাত্রায় তুঁতের (CuSO_4) জলে জ্বরণীয়তা 25 ।

জ্বরণীয়তা একটি ৱাসায়নিক ধৰ্ম এবং বস্তুৰ সমাকৃকৰণে কাজে লাগে। জ্বরণীয়তাৰ উপৰ তাপেৰ প্ৰভাৱ : একটি নিৰ্দিষ্ট তাপমাত্ৰায় সম্পূৰ্ণ জ্বৰণকে আৱশ্য গৱম কৰলে দেখা যায় যে জ্বৰণটি অসম্পূৰ্ণ হয়ে পড়ে অৰ্থাৎ তখন আৱশ্য জ্বাৰ শৰণ কৰতে পাৰে। গৱম অবস্থায় জলে লবণ দিয়ে জ্বৰণটি আৱশ্য গাঢ় কৰা সম্ভব। কিন্তু জ্বৰণটি ঠাণ্ডা হতে দিলে দেখা যাবে যে জ্বৰণেৰ নিচে জ্বাৰ জমা হতে শুৰু কৰেছে। তাৰ অৰ্থ জ্বৰণটি আৰাব সম্পূৰ্ণ হয়ে পড়েছে। শুতৰাঙ জ্বাৰেৰ জ্বরণীয়তা তাপমাত্ৰাব উপৰ নিৰ্ভৰশীল। উদাহৰণস্বৰূপ থাক্ষ

জ্বৰণেৰ জ্বরণীয়তা 10°C -এ $35\cdot7$, 30°C -এ $36\cdot3$, 50°C -এ 37 , 70°C -এ $37\cdot8$ । আৰাব তু তেৰ জ্বরণীয়তা 10°C -এ $14\cdot3$, 30°C -এ $25, 50^{\circ}\text{C}$ -এ

33.3, 80°C-এ 55। জ্বরণীয়তার উপর তাপমাত্রার প্রভাব লেখের সাহায্যে
প্রকাশ করা হয়। লেখের X-অক্ষ বরাবর তাপমাত্রা এবং Y-অক্ষ বরাবর
জ্বরণীয়তা আকা হয়। 11.1 চিত্রে জ্বরণীয়তা-লেখ বা জ্বরণীয়তা-বেখা দেখ।
ইংরেজীতে একে সলিউবিলিটি কার্ড বলে। তিনটি ভিন্ন জ্বাবের জন্মে জ্বরণীয়তা
তাপমাত্রা বৃক্ষের সঙ্গে কি ভাবে পরিবর্তিত হয় দেখান হয়েছে। খাদ্য লবণের
(NaCl) জ্বরণীয়তা 0°C থেকে 100°C তাপমাত্রা পর্যন্ত বিশেষ কিছু বাড়ে না।
পটাসিয়ম নাইট্রেটের (KNO_3) জ্বরণীয়তা তাপমাত্রা বাড়ার সঙ্গে খুব
বেশি বাড়ে। আবার সোডিয়ম সালফেটের (Na_2SO_4) জ্বরণীয়তা 0°C
থেকে 35°C তাপমাত্রা পর্যন্ত বাড়ে বটে কিন্তু তাপমাত্রা 35°C থেকে বেশি
বাড়ালে জ্বরণীয়তা কমতে থাকে। তবলে গ্যাসের জ্বরণের ক্ষেত্রে কিন্তু ফল
বিপরীত হয়। তাপমাত্রা বাড়ানোর সঙ্গে গ্যাসের জ্বরণীয়তা কমে যায়।
অল গরম করলে জ্বরীভূত গ্যাস জল থেকে বেরিয়ে যায়। চাপের প্রভাবে
গ্যাসের জ্বরণীয়তা বাড়ে। সোডা-ওয়াটার তৈরির সময় চাপ বাড়িয়ে বেশি
পরিমাণ কার্বন ডাইঅক্সাইড জ্বরীভূত করে বোতলে ভর্তি করা হয়। বোতলের
ছিপি খুললেই চাপ কমে যাওয়ায় কিছু গ্যাস বেরিয়ে যায়।

୬୨ ପ୍ରତୀକ ଚିହ୍ନ, ସଂକେତ ଓ ସମୀକରଣ

ପ୍ରତୀକ-ଚିହ୍ନ

ତୋମରା ଦେଖେ ମୌଳଗୁଲିର ବା ଯୋଗଗୁଲିର ନାମ ବାର ବାର ଉଲ୍ଲଙ୍ଘ କରାର ବା ଲେଖାର ପକ୍ଷେ ବେଶ ବଡ଼ । ବହକାଳ ଧରେଇ ଲୋକେ ଏହି ଅସୁବିଧା ଭୋଗ କରେ ଅନେକେ ଅନେକ ବ୍ୟକ୍ତମ ସଂକେତ ବ୍ୟବହାର କରେ ଥାକିଲେ । ଆଧୁନିକ ବିଜ୍ଞାନେର ପତ୍ରନେର ପ୍ରଥମ ସୁଗେ ଜନ ଡାଲଟନ ପ୍ରତୋକଟି ମୌଲେର ଜନ୍ମ ଏକବକ୍ତମ ପ୍ରତୀକ ଚିହ୍ନ ବ୍ୟବହାର ଆବଶ୍ୟକ କରେନ । କାର୍ବନେର ଜନ୍ମ କାଳୋ ବୃକ୍ଷ, କ୍ରପୋର ଜନ୍ମ ଅର୍ଦ୍ଧଚଙ୍କ୍ର ପ୍ରଭୃତି । କିନ୍ତୁ ଏତେ ବିଶେଷ ହୁବିଧେ ହୟ ନି । ଏଥନ ସେ ପ୍ରତୀକ-ଚିହ୍ନ ବ୍ୟବହାର ହ୍ୟ ତା ସମ୍ଭବ ଆନ୍ତର୍ଜାତିକ ବୈଜ୍ଞାନିକ ସତାଯ ସ୍ବୀକୃତ । ମୌଲେର ରାସାୟନିକ ପ୍ରତୀକ-ଚିହ୍ନ ହିସାବେ ସାଧାରଣତ ମୌଲଟିର ଇଂରେଜୀ ବା ଲ୍ୟାଟିନ ନାମେର ଆଶ୍ଚର ଅକ୍ଷର ରୋମାନ ହୁଫେ ଲେଖା ହ୍ୟ । ଏକାଧିକ ମୌଲେର ଆଶ୍ଚର ଏକ ହଲେ ଛଟି ଅକ୍ଷରରେ ନେବ୍ୟା ହ୍ୟ । ସେମନ ହାଇଡ୍ରୋଜେନ (Hydrogen) H, ହିଲିୟମ (Helium) He, ଲିଥିୟମ (Lithium) Li, ବେରିଲିୟମ (Beryllium) Be, ବୋରନ (Boron) B, କାର୍ବନ (Carbon) C, ନାଇଟ୍ରୋଜେନ (Nitrogen) N, ଅସ୍ପିଜେନ (Oxygen) O, ଫ୍ଲୋରିନ (Fluorine) F, ସୋଡ଼ିୟମ (Sodium—ଲ୍ୟାଟିନେ Natrum) Na, ପଟ୍ୟାସିୟମ (Potassium ଲ୍ୟାଟିନେ Kalium) K, ତାମା (Copper ବା Cuprum) Cu, ଟିନ (Tin ବା Stannum) Sn, ଲେଡ (Lead ବା Plumbum) Pb, ପାରଦ (Mercury ବା Hydragyrum) Hg, ଲୋହା (Iron ବା Ferrum) Fe, ଜିଙ୍କ (Zinc) Zn ପ୍ରଭୃତି । ଏହି ଅଧ୍ୟାୟେର ଶେଷେ ମୌଲଦେର ତାଲିକା ଓ ପ୍ରତୀକ-ଚିହ୍ନ ଦେଓଯା ଆଛେ ।

ପ୍ରତୀକ-ଚିହ୍ନେର ମାହାୟେ କୋନ ମୌଲ ଓ କତଗୁଲି ପରମାଣୁ ବୋରାନ ସମ୍ଭବ । ଏକଟି ହାଇଡ୍ରୋଜେନ ପରମାଣୁ—H, ଛଟି ଅସ୍ପିଜେନ ପରମାଣୁ 2O, ତିନଟି ଇଉରେନିୟମ ପରମାଣୁ 3U । ମନେ ବେଥ ରାସାୟନିକ ପ୍ରତୀକ ରୋମାନ ହୁଫେ (ଖାଡ଼ୀ) ଲେଖା ହ୍ୟ । ପ୍ରତୀକ-ଚିହ୍ନେର ପର କୋନ ସ୍ଟପ ଚିହ୍ନ (.) ଥାକବେ ନା ।

ସଂକେତ

ତୋମରା ଆଗେଇ ଜେନେଇ ହାଇଡ୍ରୋଜେନ ଅଗୁଡ଼େ ଛଟି ପରମାଣୁ ଥାକେ । ପ୍ରତୀକ ଚିହ୍ନ 2H ବଲ୍ଲେ ଛଟି H ପରମାଣୁ ବୋରାବେ । ହାଇଡ୍ରୋଜେନ ଅଗୁ ବୋରାତେ ବ୍ୟବହାର

করতে হবে সংকেত বা ফরমুলা। হাইড্রোজেন অণুর সংকেত H_2 । লক্ষ্য করবে H_2 নয়। H এর ডানদিকে একটু নিচে ছোট হরফে 2 লিখতে হবে। একই নিয়মে O_2 , N_2 যথাক্রমে অক্সিজেন ও নাইট্রোজেন মৌলের অণুর সংকেত। তামা, লোহা, নিকেল প্রভৃতি ধাতুর অণুতে একটিই পরমাণু থাকে, তাই সংকেতগুলি যথাক্রমে Cu , Fe , Ni । আবার একাধিক অণু বোঝাতে সংখ্যাবাচক রাশিটি সংকেতের বাঁ দিকে বসবে। যেমন $3Cu$, $4H_2$ । যৌগগুলির অণু বোঝাতে সংকেত বিশেষ কাজে লাগে। যেমন জল H_2O , কার্বন ডাই অক্সাইড CO_2 , সালফার ডাইঅক্সাইড SO_2 , হাইড্রোজেন সালফাইড H_2S , হাইড্রোক্লোরিক আসিড HCl , সালফিউরিক আসিড H_2SO_4 , নাইট্রিক আসিড HNO_3 , ভূঁতে বা কপার সালফেট $CuSO_4$, থান্ত-লবণ $NaCl$, কঠিক সোডা $NaOH$, ক্যালসিয়ম কার্বনেট (মার্বেল পাঁধর) $CaCO_3$ প্রভৃতি।

যৌগের সংকেতের সাহায্যে জানা যায় কि কি মৌল দিয়ে যৌগটি গঠিত এবং মৌলগুলি কি অঙ্গপাতে কেমনভাবে আছে। এ ছাড়া জানা যায় আণবিক ভাব যার কথা তোমরা পরের বছর পড়বে।

যোজ্যতা

যৌগপরমাণুর সংকেত লিখতে হলে মৌলগুলির পরস্পরের সঙ্গে যুক্ত হবার ক্ষমতা জানলে সুবিধা হয়। যে কোন মৌল যে কষটি হাইড্রোজেন বা সেই বুকম অণু মৌলের সঙ্গে যুক্ত হতে পারে সেই সংখ্যাকে মৌলটির যোজ্যতা বা ভ্যালেন্সি বলে। হাইড্রোজেনের যোজ্যতা এক ধরণ। উচ্চাহরণস্বরূপ একটি Cl পরমাণু একটি H পরমাণুর সঙ্গে যুক্ত হয়, স্বতরাং Cl এর যোজ্যতা এক। একটি O পরমাণুর সঙ্গে দুটি H পরমাণু যুক্ত হয়, তাই O এর যোজ্যতা দুই। যোজ্যতা পরমাণুর একটি রাসায়নিক ধর্ম।

যোজ্যতা এক থেকে সাত হতে পারে। কোন কোন পরমাণুর যোজ্যতা একের বেশি হয়, যেমন নাইট্রোজেন দিয়ে N_2O , NO , N_2O_3 , N_2O_4 , N_2O_5 যৌগগুলি হয়। মনে রাখার সুবিধার জন্য যোজ্যতার একটি তালিকা দেওয়া হল।

যোজ্যতা

1 H , F , Cl , Br , I , Na , K , Ag , N

2 N , O , Mg , Fe , Ca , Zn , S , Pb ...

মৌলের নাম

যোজ্যতা	মৌলের নাম
3	N, Al, Fe, Cr, Au, P, B..
4	N, C, Si, Sn, Pb.....
5	N, P, As, Sb.....
6	S, Br
7	Mn
8	Os

যে সব মৌল নিক্ষিয় তাদের যোজ্যতা শূন্য ধৰা হয়—যেমন, হিলিয়ম, নিয়ন, আৱগন, ক্রিপটন, জিনন প্রভৃতি—এইগুলি সবই সাধাৰণ তাপ ও চাপে গ্যাস অবস্থায় থাকে।

মূলক : যোগের সংকেত টিক অত লিখতে ও তাদের নাম জানতে আৱও একটি বিষয় জানলে সুবিধে হয়। কয়েকটি মৌলের পৰমাণু নিষেদের মধ্যে জোট বেঁধে থাকে। এগুলি টিক যোগ নয়, কিন্তু যোগ তৈরিৰ সময় অংশ নেয়। যোগটিকে বিশ্লেষণ কৰাৰ সময় এৰা একসঙ্গেই আলাদা হয়। বাসায়নিক বিক্ৰিয়াতেও এৰা জোট হিসাবে কাজ কৰে। এদেৰ বসা হয়—মূলক বা র্যাভিকাল। সব থেকে সাধাৰণ উদাহৰণ : OH (হাইড্ৰআইড), NO_3 (নাইট্ৰেট), NH_4 (অ্যামোনিয়ম), CO_3 (কাৰ্বনেট), PO_4 (ফসফেট) ইত্যাদি। যোগ তৈরিৰ সময় OH মূলক K-ৰ সঙ্গে ঘূৰ্ণ হয়ে তৈরি কৰে KOH (পট্যাসিয়ম হাইড্ৰআইড বা বাজাৰেৰ কঢ়িক পটাশ) এবং Na -ৰ সঙ্গে ঘূৰ্ণ হয়ে হ্য NaOH (সোডিয়ম হাইড্ৰআইড বা বাজাৰেৰ নাম কঢ়িক সোডা)। OH এৰ যোজ্যতা এক। সিলভাৰ নাইট্ৰেট AgNO_3 , অ্যামোনিয়ম নাইট্ৰেট NH_4NO_3 , ক্যালসিয়ম কাৰ্বনেট CaCO_3 , সোডিয়ম ফসফেট Na_3PO_4 । সূতৰং NO_3 , NH_4 মূলকগুলিৰ যোজ্যতা ছই এবং PO_4 মূলকেৰ যোজ্যতা তিনি।

পৰমাণুৰ গঠন সংকেত যথন বিজ্ঞানিতভাৱে পড়বে তখন জানতে পাৱবে যে যোজ্যতা, মূলক গঠন ইত্যাদি বিষয়ে ইলেক্ট্ৰনেৰ ভূমিকা অত্যন্ত গুৰুত্বপূৰ্ণ এবং যোগেৰ সংকেত লেখাৰ তখন তোমাদেৱ কাছে সহজ অভ্যাসে দাঙি যাবে।

রাসায়নিক সমীকরণ

বীজগণিতে সমীকরণ তোমরা পড়েছ এবং অনেক সমীকরণের সমাধানও করেছ। রসায়নে সমীকরণ বলতে কি বোঝায়? তোমরা রাসায়নিক পরিবর্তনের কথা পড়েছ। ধরা যাক দুটি রাসায়নিক বস্তু A এবং B মিলিত হবার পর রাসায়নিক পরিবর্তনে C এবং D বস্তুতে পরিণত হল। তাহলে রাসায়নিক সমীকরণে লেখা যাবে

যে প্রক্রিয়াতে পরিবর্তনটি হল তাকে বলে রাসায়নিক বিক্রিয়া। এখন নিশ্চয় বুঝতে পারছ যে একমাত্র বিক্রিয়া দিয়েই রাসায়নিক পরিবর্তন সম্ভব। যে সমীকরণ, সংকেতের সাহায্যে রাসায়নিক বিক্রিয়ায় অংশগ্রহণকারী বস্তুদের ও বিক্রিয়ালক বস্তুদের বর্ণনা করে, তাকেই রাসায়নিক সমীকরণ বলে। H এবং Cl মিলে HCl হয় তাহলে সেই বিক্রিয়ার রাসায়নিক সমীকরণ হবে

আরও কয়েকটি রাসায়নিক সমীকরণের উদাহরণ

সমীকরণে সমতা রূপ্তা—রাসায়নিক সমীকরণ শুল্ক করে লিখতে হলে মনে রাখতে হবে—(1) যে বিক্রিয়াটি বর্ণনা করা হচ্ছে, সেটি বাস্তব হতে হবে, (2) বিক্রিয়ায় অণুরূপ অংশ গ্রহণ করে, স্থূলবাঃ মৌলদের ক্ষেত্রে আধিক্য সংকেত ব্যবহার করতে হবে, (3) সমান চিহ্নের দুই দিকে মৌলদের পরমাণুর সংখ্যা সমান থাকবে। একটি উদাহরণ নেওয়া যাক। জানা আছে যে ধাত্ত-লবণ সোডিয়ম ক্লোরাইড সোডিয়ম ধাতু ও ক্লোরিন গ্যাস দিয়ে গঠিত। অতএব সমীকরণ হবে—

এতে এক নম্বর ও দু নম্বর সর্ত ঠিক আছে, তবু সমীকরণে সমতা নেই।

কাৰণ সমান চিহ্নেৰ বাঁদিকে ক্লোৰিন অণু দুটি এবং ডান দিকে একটি। তাই সমতা বক্ষাৰ জন্য লিখতে হবে

অৰ্ধাৎ প্ৰতিটি খাত্ত-লবণ অণু তৈৱি কৰতে একটি ক্লোৰিন অণু ও দুটি সোডিয়ম অণু প্ৰয়োজন। এব আগে যে সব সমীকৰণেৰ উদাহৰণ আছে, সেগুলি মিলিয়ে দেখ একইভাৱে সমতা বক্ষা কৰা হয়েছে। সমীকৰণ লেখাৰ সময় ঘোজ্যতাৰ কত সেটা মনে রাখলে নিভুল সমীকৰণ লিখতে পাৰবে। আবাৰ লক্ষ্য কৰলে দেখবে মূলকগুলি জোট বেঁধেই বিক্ৰিয়াৰ অংশ নেৱ। এছাড়াও সমান চিহ্নেৰ দুই দিকেৰ বস্তুৰ ভাৰ-সাম্য বজায় রাখতে হবে।

বাসায়নিক সমীকৰণে কি কি খবৰ জানতে পাৰা যায়—(1) কোন কোন বস্তু পৰম্পৰ বিক্ৰিয়া কৰে, (2) কোন কোন বস্তু দ্বাৰা কোন কোন বস্তু তৈৱি হয়, (3) বিক্ৰিয়াৰ অংশ নিচে যে সব বস্তু তাদেৱ কতগুলি কৰে অণু দৰকাৰ এবং বিক্ৰিয়াৰ পৰ যে সব বস্তু তৈৱি হচ্ছে, তাদেৱ কতগুলি কৰে অণু পাৰিয়া যায়। পৰমাণু ভাৱ ও আণবিক ভাৱ সম্বন্ধে পড়া হলে জানবে (4) সমীকৰণেৰ সাহায্যে সমান চিহ্নেৰ দুই দিকেৰ বস্তুদেৱ ভাৱ এবং গ্ৰামেৰ ক্ষেত্ৰে আয়তন ও জানা সম্ভব।

সমীকৰণে কি কি খবৰ জানা যায় না—(1) বিক্ৰিয়াটি তাপগ্ৰাহী বা তাপমোচী কি না, (2) যে যে বস্তু দিয়ে যা যা তৈৱি হচ্ছে তাদেৱ ভৌত অবস্থা—কঠিন, তুলনা না গ্যাস, (3) চাপ, তাপ ইত্যাদিৰ কোন বিশেষ অবস্থাৰ বিক্ৰিয়াটি ঘটে, (4) কি হাৰে বিক্ৰিয়াটি ঘটে।

চাৰ নম্বৰ খবৱটি বিশেষ গুৰুত্বপূৰ্ণ। কঘলা পুড়ে তাপ হঢ়ি হয়। আবাৰ বাকদ পুড়েও তাপ হঢ়ি হয়। কঘলা পোড়ে আন্তে আন্তে তাই কঘলা জালানি। আবাৰ বাকদ পোড়ে এক নিমেষে তাই বাকদ বিস্ফোৰক।

মৌলদেৱ নাম ও প্ৰতীক চিহ্ন

1 হাইড্ৰোজেন	Hydrogen	H
2 হিলিয়ম	Helium	He
3 লিথিয়ম	Lithium	Li
4 বেৰিলিয়ম	Beryllium	Be
5 বোৰন	Boron	B

6	কার্বন	Carbon	C
7	নাইট্রোজেন	Nitrogen	N
8	অক্সিজেন	Oxygen	O
9	ফ্লোরিন	Fluorine	F
10	নিয়ন	Neon	Ne
11	সোডিয়ম	Sodium	Na
12	ম্যাগনেসিয়ম	Magnesium	Mg
13	অ্যালুমিনিয়ম	Aluminium	Al
14	সিলিকন	Silicon	Si
15	ফসফরাস	Phosphorus	P
16	সালফোর, গক্ক	Sulphur	S
17	ক্লোরিন	Chlorine	Cl
18	অর্গন	Argon	[Ar]
19	পট্যাসিয়ম	Potassium	K
20	ক্যালসিয়ম	Calcium	Ca
21	শ্যাণিয়ম	Scandium	Sc
22	টাইটানিয়ম	Titanium	Ti
23	ভ্যানাডিয়ম	Vanadium	V
24	ক্রোমিয়ম	Chromium	Cr
25	ম্যাঞ্চেলিনিজ	Manganese	Mn
26	আয়রন, লোহা	Iron	Fe
27	কোবাল্ট	Cobalt	Co
28	নিকেল	Nickel	Ni
29	কপার, তামা	Copper	Cu
30	জিংক, মস্তা	Zinc	Zn
31	গ্যালিয়ম	Gallium	Ga
32	জার্মেনিয়ম	Germanium	Ge
33	আর্সেনিক	Arsenic	As
34	সেলেনিয়ম	Selenium	Se
35	ব্ৰোমিন	Bromine	Br
36	ক্রিপ্টন	Krypton	Kr
37	রুবিডিয়ম	Rubidium	Rb
38	ষ্ট্ৰন্টিয়ম	Strontium	Sr
39	ইট্রিয়ম	Yttrium	Y

୪୦	ଜୀର୍କୋନିଆମ	Zirconium	Zr
୪୧	ନୋବିଆମ	Niobium	Nb
୪୨	ମଲିବଡେନମ	Molybdenum	Mo
୪୩	ଟେକନିସିଆମ	Technetium	Tc
୪୪	ରୁଥେନିଆମ	Ruthenium	Ru
୪୫	ରୋଡ଼ିଆମ	Rhodium	Rh
୪୬	ପଳାଡ଼ିଆମ	Palladium	Pd
୪୭	ଶିଲଭାର, ଝପୋ	Silver	Ag
୪୮	କ୍ୟାଡ଼ିଆମ	Cadmium	Cd
୪୯	ଇଣ୍ଡିଆମ	Indium	In
୫୦	ଟିନ	Tin	Sn
୫୧	ଆଟିମନି	Antimony	Sb
୫୨	ଟେଲ୍ୱରିଆମ	Tellurium	Te
୫୩	ଆଯୋଡିନ	Iodine	I
୫୪	ଖିନନ	Xenon	Xe
୫୫	ସିଜିଆମ	Caesium	Cs
୫୬	ବେରିଆମ	Barium	Ba
୫୭	ଲ୍ୟାନଥାନମ	Lanthanum	La
୫୮	ସିରିଆମ	Cerium	Ce
୫୯	ପ୍ରେସେଡ୍ୟମିଆମ	Praseodymium	Pr
୬୦	ନିଓଡ଼ିମିଆମ	Neodymium	Nd
୬୧	ପ୍ରମେଥିଆମ	Promethium	Pm
୬୨	ସାମାରିଆମ	Samarium	Sm
୬୩	ଇଉରୋପିଆମ	Europium	Eu
୬୪	ଗ୍ୟାଡୋଲିନିଆମ	Gadolinium	Gd
୬୫	ଟାରିଆମ	Terbium	Tb
୬୬	ଡିସପ୍ରୋସିଆମ	Dysprosium	Dy
୬୭	ହୋଲ୍‌ମିଆମ	Holmium	Ho
୬୮	ଆରିଆମ	Erbium	Er
୬୯	ଥୁଲିଆମ	Thulium	Tm
୭୦	ଇଟାରିଆମ	Ytterbium	Yb
୭୧	ଲୁଟେସିଆମ	Lutetium	Lu
୭୨	ହାଫନିଆମ	Hafnium	Hf
୭୩	ଟ୍ୟାଟାମ	Tantalum	Ta

74	টাংস্টেন	Tungsten	W
75	রিনিয়ম	Rhenium	Re
76	অসমিয়ম	Osmium	Os
77	ইরিডিয়ম	Iridium	Ir
78	প্ল্যাটিনম	Platinum	Pt
79	গোল্ড, সোনা	Gold	Au
80	মার্কারি, পাইরন	Mercury	Hg
81	থ্যালিয়ম	Thallium	Tl
82	লেড, সৌদা	Lead	Pb
83	বিসমাথ	Bismuth	Bi
84	পোলোনিয়ম	Polonium	Po
85	অ্যাসটেটাইন	Astatine	At
86	রেডন	Radon	Rn
87	ফ্রান্সিয়ম	Francium	Fr
88	রেডিয়ম	Radium	Ra
89	আক্টিনিয়ম	Actinium	Ac
90	থোরিয়ম	Thorium	Th
91	প্রোটোআক্টিনিয়ম	Protoactinium	Pa
92	ইউরেনিয়ম	Uranium	U
93	নেপচুনিয়ম	Neptunium	Np
94	প্লুটোনিয়ম	Plutonium	Pu
95	আমেরিসিয়ম	Americium	Am
96	কুরিয়ম	Curium	Cm
97	বার্কেলিয়ম	Berkelium	Bk
98	ক্যালিফোর্নিয়ম	Californium	Cf
99	আইনষ্টাইনিয়ম	Einsteinium	Es
100	ফার্মিয়ম	Fermium	Fm
101	মেডেলেভিয়ম	Mendelevium	Md
102	নোবেলিয়ম	Nobelium	No
103	লরেন্সিয়ম	Lawrencium	Lw
104	রুথেরফোর্ডিয়ম	Rutherfordium	R
105	হানিয়ম	Hahnium	Ha

୬୦ ତଡ଼ିଂ ବିଶ୍ଲେଷଣ

ବିଦ୍ୟାର ବିଜ୍ଞାନ କାହେ ଅଜାନା ନୟ । କୋନ କୋନ ବସ୍ତୁ ତଡ଼ିଂ ଚଳାଚଳର ପକ୍ଷେ ଉପଯୋଗୀ ଆବାର କୋନ କୋନ ବସ୍ତୁ ଉପଯୋଗୀ ନୟ । ସାଧାରଣତ ଧାତର ବସ୍ତୁ ତଡ଼ିଂ ପ୍ରବାହେର ଉପଯୋଗୀ । ତଡ଼ିଂ ପରିବାହୀ ହିସେବେ ସର୍ବଶ୍ରେଷ୍ଠ କ୍ରମୋ, ତାର ପର ତାମା । କ୍ରମୋ ମୂଲ୍ୟବାନ ଧାତୁ । ଆମାଦେର ଦେଶେ ତାମା ଓ କ୍ରମୋ ମୂଲ୍ୟ ନୟ ତାଇ ଏଦେର ପରିବର୍ତ୍ତେ ଅୟାଲ୍ୟମିନିୟମେର ତାର ବ୍ୟବହାର ହୟ । ଅଧାତୁଗୁଲି ତଡ଼ିଂ ଅପରିବାହୀ । ଉପଯୋଗୀ ନା ହଲେଓ ମକଳ ବସ୍ତୁତେହେ ତଡ଼ିଂ ପ୍ରବାହିତ ହୟ । ମାତ୍ରା ଥୁବଇ ସାମାନ୍ୟ ହଲେଓ । ତରଳେର ଭିତର ଦିଯେଓ ତଡ଼ିଂ ପ୍ରବାହିତ ହୟ । ନାନା ଜାତୀୟ ଅୟାମିଡ, କ୍ଷାର ବା ଜ୍ଵରଗେର ଭିତର ଦିଯେ ତଡ଼ିଂ ପ୍ରବାହିତ କରା ଯାଯା । ଆବାର ବ୍ୟବହାର, ତାରପିନ ତେଲ, ପେଟ୍ରିଲ ପ୍ରଭୃତି ଖନିଜ ତେଲ, ଅନେକ ଧରନେର ଜୈବ ତେଲେର ମଧ୍ୟେ ତଡ଼ିଂ ଚଳାଚଳ କରେ ନା ବଲନେହେ ଚଲେ । ଯେ ମର ବସ୍ତୁର ଭେତର ଦିଯେ ତଡ଼ିଂ ଚଳାଚଳ କରେ ନା, ତାଦେର ଅନ୍ତରକ ବା ଇଲ୍‌ଲୋଟର ବଲେ ।

ଦେଖା ଗେଛେ ଯେ, କଥେକ ବ୍ୟକ୍ତମେର ତରଳେ ତଡ଼ିଂ ପ୍ରବାହିତ କରଲେ ତଡ଼ିତେର ପ୍ରଭାବେ ତରଳଟିତେ ରାସାୟନିକ ପରିବର୍ତ୍ତନ ହତେ ଧାକେ ଏବଂ ତରଳଟି ଉପାଦାନ ମୌଳ ଏବଂ ମୂଳକେ ବିଶିଷ୍ଟ ହୟ । ଅନେକ ଜ୍ଵରମେ ଏହି ପ୍ରଭାବ ଦେଖା ଯାଯା । ଖାତ୍ର ଲବନ ଜଲେ ଦ୍ରବୀଭୃତ କରେ, ମେହି ଦ୍ରବମେ ତଡ଼ିଂ ପ୍ରବାହ ପାଠାଲେ ଥାନ୍ତି ଲବନ Na ଏବଂ Cl ଉପାଦାନ ମୌଳେ ବିଶିଷ୍ଟ ହୟ । ଆବାର ଏଓ ଦେଖା ଗେଛେ ଯେ NaCl ଗରମ କରେ ଗଲିଯେ ଫେଲିଲେ ତରଳ NaCl ଏ ତଡ଼ିଂ ପ୍ରବାହିତ କରଲେଓ ମେହି Na ଓ Cl ଏ ବିଶିଷ୍ଟ ହୟ । ଯେ ମକଳ ଯୌଗ ଦ୍ରବମେ ବା ତରଳ ଅବଶ୍ୟ ତଡ଼ିଂ ପ୍ରବାହେ ବିଶିଷ୍ଟ ହୟ, ତାଦେର ତଡ଼ିନ-ବିଶ୍ଲେଷ୍ୟ ବା ନନ-ଇଲେକ୍ଟ୍ରୋଲାଇଟ ବଲେ । ଇଲେକ୍ଟ୍ରୋଲାଇଟେର ଉଦ୍ଦାହରଣ NaCl, AgNO₃, CuSO₄, HCl, HNO₃, H₂SO₄, NaOH, KOH, ଇତ୍ୟାଦି ।

ଯେ ମକଳ ଯୌଗ ଦ୍ରବମେ ବା ତରଳ ଅବଶ୍ୟ ତଡ଼ିଂ ପ୍ରବାହେ ବିଶିଷ୍ଟ ହୟ ନା ତାଦେର ତଡ଼ିନ-ଅବିଶ୍ଲେଷ୍ୟ ବା ନନ-ଇଲେକ୍ଟ୍ରୋଲାଇଟ ବଲେ । ଚିନି, ଶୁକୋଜ, ଅୟାଲକୋହଳ, ଇଉରିଆ ଇତ୍ୟାଦି ନନ-ଇଲେକ୍ଟ୍ରୋଲାଇଟ ।

ତଡ଼ିଂ ପ୍ରବାହେର ସାହାଯ୍ୟ ଦ୍ରବମେ ବା ତରଳ ଅବଶ୍ୟ ଯୌଗେର ରାମାୟନିକ ବିଶ୍ଲେଷଣକେ ତଡ଼ିନ-ବିଶ୍ଲେଷ୍ୟ ବା ଇଲେକ୍ଟ୍ରୋଲିସିସ ବଲେ ।

আয়ন ও আয়নমন

তড়িৎ-বিশ্লেষণ যে হয় এই সত্য পরীক্ষা করে জানা গেছে। কিন্তু কেন হয় এবং কি করে হয় এর ব্যাখ্যা প্রথম করেন স্লাইডিং বিজ্ঞানী আরহেনিয়স 1884 খ্রীস্টাব্দে। আরহেনিয়সের বয়স তখন মাত্র পঁচিশ বছর। আরহেনিয়স বলেন যে সকল বস্তু তড়িৎ-বিশ্লেষ্য বা ইলেক্ট্রোলাইট তাদের মধ্যে তড়িৎ ধর্ম বর্তমান। স্ববন্ধে বা তরলে এবং পজিটিভ ও নেগেটিভ—এই দুটি বিপরীত তড়িৎ-ধর্মী উপাদানে বিশ্লেষিত হয় (চিত্র 13.1)। বিশ্লেষিত হলেও একেবারে আলাদা হয় না এবং তখনও তড়িৎ ধর্ম দেখা দেয় না। কিন্তু তরলে তড়িৎ-ধারের সাহায্যে তড়িৎ ক্ষেত্র প্রয়োগ করলে পজিটিভ অংশটি নেগেটিভ তড়িৎ-ধারের দিকে এবং নেগেটিভ অংশটি পজিটিভ তড়িৎ-ধারের দিকে আকৃষ্ণ হয়। তড়িৎ-বিভব ঘটে হলে পজিটিভ ও নেগেটিভ অংশগুলি সম্পূর্ণ বিযুক্ত হয়ে বিপরীতধর্মী তড়িৎ-ধারের দিকে চলে যায়।

আয়নগুলি প্রবাহিত হয়ে বিদ্যুৎ প্রবাহ সৃষ্টি করে। যতক্ষণ পর্যন্ত সমস্ত পজিটিভ অংশ নেগেটিভ তড়িৎ-ধারে এবং নেগেটিভ অংশ পজিটিভ ধারে না যাবে ততক্ষণ তড়িৎ প্রবাহ চলবে। স্ববন্ধে বা তরলে বিশ্লেষণ হলে বিশ্লেষিত তড়িৎ-ধর্মবিশিষ্ট অংশগুলির আরহেনিয়স নাম দেন আয়ন। যে আয়নগুলি নেগেটিভ তড়িৎ-ধার বা ক্যাথোডের দিকে যায় তাদের বলা হয় আয়ন এবং এগুলি + চিহ্ন দিয়ে দেখান হয়। আর যেগুলি পজিটিভ তড়িৎ-ধার বা আনোডের দিকে যায় তাদের বলা হয় অ্যানায়ন এবং এগুলি - চিহ্ন দিয়ে দেখান হয়।

স্ববন্ধে বা তরলে যৌগের বিপরীতধর্মী আয়নে বিশ্লেষণকে বলা হয় আয়নন।

আয়ন বা আয়নন কথাগুলি প্রথম ব্যবহৃত হয় তড়িৎ-বিশ্লেষণ ব্যাখ্যা করার জন্য। পরে অবশ্য এর ব্যবহার অনেক ব্যাপক হয়েছে, তোমরা করে করে জানতে পারবে।

চিত্র 13.1

নানা ব্রকমেৰ দ্রবণে ও তৰলে তড়িৎ প্ৰয়োগ কৰে কোনটি ক্যাটায়ন বা অ্যানায়ন জানা গেছে। আয়নগুলি মৌল ও মূলক। তোমাদেৱ পৰিচিত যোগ, যাৰা তড়িৎ-বিশ্লেষ্য, তাদেৱ আয়ন পৰিচিতি দেওয়া হল।

NaCl	\rightarrow	Na^+	Cl^-
CuSO_4	\rightarrow	Cu^{++}	$(\text{SO}_4)^-$
AgNO_3	\rightarrow	Ag^+	$(\text{NO}_3)^-$
NH_4Cl	\rightarrow	$(\text{NH}_4)^+$	Cl^-
HCl	\rightarrow	H^+	Cl^-
HNO_3	\rightarrow	H^+	$(\text{NO}_3)^-$
H_2SO_4	\rightarrow	2H^+	$(\text{SO}_4)^-$
H_2O	\rightarrow	H^+	$(\text{OH})^-$
NaOH	\rightarrow	Na^+	$(\text{OH})^-$
KOH	\rightarrow	K^+	$(\text{OH})^-$

আয়ন, আয়নন ইত্যাদি আৱশ্য পৰিকাৰভাৱে বুৰাতে পাৰবে পৰমাণুৰ গঠনে ইলেক্ট্ৰনেৰ ভূমিকা জানাৰ পৰ। কিন্তু মনে বেথ আৱহেনিয়ম যখন আয়ন ও আয়নন প্ৰচলন কৰেন তখনও ইলেক্ট্ৰনেৰ আবিক্ষাৰ হয়নি। ইলেক্ট্ৰন আবিক্ষাৰ কৰেন জে. জে. টেমসন, 1897 বীন্টাবে।

জলে তড়িৎ-প্ৰবাহেৰ প্ৰভাৱ : বিশুদ্ধ জল তড়িৎ প্ৰবাহেৰ খ্ৰ

উপযোগী নহ। কিন্তু অল্প পৰিমাণ লবণ বা অ্যাসিড দিলে তড়িৎ প্ৰবাহেৰ উপযোগী হয়। একটি বীকাৰে জল নিয়ে তাতে কয়েক ফোটা সালকিউলিক অ্যাসিড দাও। তাৰপৰ দুটি লম্বা জলভৰ্তি টেস্ট টিউব উলটো কৰে বীকাৰেৰ মধ্যে দাঢ় কৰাও (চিত্ৰ 13.2)। দুটি ধাতব দণ্ড বা সুক প্ৰেট টিউব দুটিৰ মধ্যে পুৰে সে দুটি অন্তৱক তাৰেৰ সাহায্যে জলেৰ বাইৱে এনে তড়িৎ বৰ্তনীতে যোগ কৰ। এখন বৰ্তনীতে

চিত্ৰ 13.2

তড়িৎ প্ৰবাহিত হবে। ফলে নেগেটিভ তড়িৎ-দাবে হাইড্ৰোজেন গ্যাস এবং

পজিটিভ তড়িন্দ্ৰ-ধাৰে অস্প্রিজেন গ্যাস জমা হতে থাকবে। টেস্ট টিউবগুলি যদি অংশাক্ষিত হয় তবে দেখা যাবে প্রতি দুই ভাগ হাইড্ৰোজেন গ্যাস যে সময়ে জমা হয় সেই সময়ে এক ভাগ অস্প্রিজেন গ্যাস জমা হবে।

আয়ননেৰ সাহায্যে জলেৰ বিশ্লেষণ খুব সহজ নহ'। প্ৰথমে $H_2O = H^+$ এবং OH^- হয়। H^+ -টি নেগেটিভ তড়িন্দ্ৰ-ধাৰে গিয়ে H_2 গ্যাস হিসেবে আহৰিত হয়। $(OH)^-$ মূলকটি পজিটিভ তড়িন্দ্ৰ-ধাৰে এমে প্ৰশংসিত হয়। পৰে চাৰটি (OH) মূলক নিজেদেৱ মধ্যে বিক্ৰিয়াম জন ও অস্প্রিজেন তৈৰি কৰে এবং O_2 গ্যাস পজিটিভ তড়িন্দ্ৰ-ধাৰে জমা হয়।

তড়িৎ প্ৰয়োগে জল বিশ্লেষিত হয়, কিন্তু জল কি ইলেক্ট্ৰোলাইট? জল অতি মৃদু ইলেক্ট্ৰোলাইট। বিশুদ্ধ জলে প্রতি এক কোটি অণুতে একটি H^+ আয়ন হয়। সাধাৰণ তড়িৎ পৰিবাহীৰ সঙ্গে ইলেক্ট্ৰোলাইটেৰ পাৰ্থক্য এই যে, পৰিবাহীতে ইলেক্ট্ৰনেৰ প্ৰবাহ তড়িৎ প্ৰবাহ সৃষ্টি কৰে আৰ ইলেক্ট্ৰোলাইটে আয়ন প্ৰবাহ তড়িৎ প্ৰবাহ সৃষ্টি কৰে। পৰিমাণে অভ্যন্তৰ কম হলেও জলে তড়িৎ আয়ন দ্বাৰা প্ৰবাহিত হয়। সেই হিসেবে জল ইলেক্ট্ৰোলাইট।

তড়িৎ প্ৰবাহেৰ ব্যবহাৰিক সংজ্ঞা: তড়িন্দ্ৰ-বিশ্লেষণেৰ সাহায্যে তড়িৎ প্ৰবাহেৰ আন্তৰ্জাতিক ব্যবহাৰিক সংজ্ঞা দেওয়া হয়। $AgNO_3$ -ৰ দ্রবণ তড়িন্দ্ৰ বিশ্লেষণে নেগেটিভ তড়িন্দ্ৰ-ধাৰে Ag গচ্ছিত কৰে। সিলভাৰ নাইট্ৰেটেৰ দ্রবণে যে প্ৰবাহ প্ৰতি মেকেণ্ডে 0.001118 g সিলভাৰ নেগেটিভ তড়িন্দ্ৰ-ধাৰে গচ্ছিত কৰে তাকে এক অ্যাস্পিগৰ বলে। সংজ্ঞাটি লক্ষ্য কৰে দেখ কেবলমাত্ৰ ভৱ ও সময় মেপে তড়িৎ প্ৰবাহেৰ মান নিৰ্ণয় কৰা হয়।

তড়িৎ লেপন

তড়িন্দ্ৰ-বিশ্লেষণেৰ নানাবিধি ব্যবহাৰিক প্ৰয়োগেৰ একটি হল তড়িৎ লেপন বা ইলেক্ট্ৰোপ্ৰেটিং কৰা। যে সমস্ত ধাতুৰ উপৰিতল হাওয়াৰ বা জলেৰ সংস্পৰ্শে এলে অক্সাইড তৈৰি হয়ে অমলিন হয়ে পড়ে এবং ক্ষয়ে যেতে থাকে, মেণ্টেলিৰ উপৰে হাওয়া বা জলে মলিন হয় না এমন ধাতু লেপন কৰা হয়। তড়িন্দ্ৰ-বিশ্লেষণেৰ সাহায্যে ধাতুলেপনকে তড়িৎ লেপন বলে। যে কোন শহৰে ঝোঁজ কৰলেই কোধাৰ ইলেক্ট্ৰোপ্ৰেটিং হয় জানতে পাৰবে এবং পাৰলৈ

গিয়ে দেখে এসো। সাধাৰণত লোহা, তামা, পিতল প্ৰভৃতি দিয়ে তৈৰি বস্তুকে ক্ষয় থেকে বীচাবাৰ জন্য এবং দেখতে সুন্দৰ কৰাৰ জন্য অনেক সময় নিকেল, ক্রোমিয়ম, কুপো বা সোনা দিয়ে লেপন কৰা হয়। স্টেনলেস স্টীলে ঘৰচে পড়ে না বা দাগ ধৰে না। কিন্তু অন্য যে কোন ধাতু বা সংকৰ ধাতু দিয়ে তৈৰি কীটা, চামচে নিকেল প্ৰেট কৰা হয়। অনেক গাড়িৰ বাস্পাৰ ক্রোমিয়ম প্ৰেট কৰা থাকে। অনেক দিন ব্যবহাৰেৰ পৰ নিকেল উঠে গেলে আৰাৰ নিকেল প্ৰেটিং কৰান হয়।

লেপনেৰ জন্য নিকেল, ক্রোমিয়ম, কুপো এবং কোন কোন জিনিসে সোনাও ব্যবহাৰ হয়। সোনা লেপন কৰাকে গিন্টি কৰাৰ বলা হয়। যে ধাতু লেপন কৰা হবে সেই ধাতুৰ লবণ ও সুবিধায়ত আসিদ দিয়ে লবণ তৈৰি কৰা হয়। তড়িদ-বিশ্বেষণেৰ জন্য ঐ ধাতুৱই আনোড ব্যবহাৰ কৰা হয় এবং যে বস্তুটিতে ধাতুলেপন কৰা হবে তাকে ক্যাথোড হিমাবে ব্যবহাৰ কৰা হয়। প্ৰথমে বস্তুটি কষ্টিক দিয়ে ধূঘে তেল, গ্ৰীষ্ম ইত্যাদি তুলে ফেলা হয়। তাৰপৰ লঘু হাইড্ৰোক্লোৰিক আসিদ বা সালফিউৰিক আসিদে চুবিয়ে অস্বাইডেৰ স্তৰ উঠিয়ে ফেলে ভাল কৰে জল দিয়ে ধূঘে মুছে পালিশ কৰে তাৰপৰ ইলেকট্ৰো-প্ৰেটিং-এৰ সলিউশনে চোবান হয়। তাৰপৰ পূৰ্ব অভিজ্ঞতা অনুযায়ী নিৰ্ণিত সময় ধৰে প্ৰয়োজনীয় প্ৰবাহ পাঠালে বস্তুটিতে ধাতুলেপন সম্পন্ন হবে। তামা লেপন কৰতে ব্যবহাৰ কৰা হয় তামাৰ তৈৰি আনোড ও কপাৰ সালফেট সলিউশন। কুপোৰ জন্য চাই কুপোৰ তৈৰি আনোড ও সিলভাৰ নাইট্ৰেট অৰোপ পট্যাসিয়ম আৰ্জেন্টা সায়ানাইড সলিউশন। নিকেলেৰ জন্য নিকেল আনোড ও বৰিক আসিদ মিশ্রিত নিকেল সালফেট লবণ। ক্রোমিয়মেৰ জন্য ক্রোমিয়ম আনোড ও ক্রোমিক আসিদ এবং সোনাৰ জন্য সোনাৰ আনোড এবং পট্যাসিয়ম অৱোসায়ানাইড সলিউশন।

অবশ্য হাতে কলমে বড় বড় ইলেকট্ৰোপ্ৰেটিং-এৰ কাজ কৰতে হলে আৰও অনেক খবৰ জানা দৰকাৰ। তাৰ জন্য ইলেকট্ৰোপ্ৰেটিং সমষ্কে ভাল ভাল বই আছে, সেগুলি পড়ে নেওয়াই ভাল।

১৪ অ্যাসিড, ক্ষারক ও লবণ

পৃথিবীতে সকল ঘোগ ৯২টি ঘোল দিয়ে তৈরি। ঘোগদের মোটামুটি দুভাগ করা যায়—অজ্জেব ও জৈব। আমরা অজ্জেব ঘোগের কথা এখানে আলোচনা করছি। প্রায় চলিশ হাজার অজ্জেব ঘোগ জানা আছে। এদের তিন ভাগে তাগ করা যায় : (1) অ্যাসিড, (2) ক্ষারক বা বেস, (3) লবণ বা সন্ট।

অ্যাসিড—অ্যাসিড শব্দের অর্থ অম। প্রাচীন কিম্বিদ্বা লক্ষ্য করেন যে বেশ কয়েক ধরনের পদার্থকে জলে গুলে দ্রবণ অয় বাদ দেয় এবং কোন ধাতুর সঙ্গে বিক্রিয়া হাইড্রোজেন গ্যাস উৎপন্ন করে। তারা এদের নাম দেন অ্যাসিড। এখন জানা গিয়েছে যে, কোন দ্রবণে হাইড্রোজেন আয়নের উপস্থিতিই হচ্ছে সেই বস্তুর অপ্রয়োগ কারণ। মেইজন্ট হাইড্রোজেন আছে এমন কোন ঘোগিক পদার্থের জনীয় দ্রবণ বিয়োজিত হয়ে হাইড্রোজেন আয়ন উৎপন্ন করলে সেই ঘোগিক পদার্থকে অ্যাসিড বলে। উদাহরণ স্বরূপ—

স্তরাঃ HCl এবং H_2SO_4 ঘোগিক পদার্থ দুটি অ্যাসিড। যে অ্যাসিড জলীয় দ্রবণে যত বেশি H^+ আয়ন উৎপন্ন করে সেই অ্যাসিড তত বেশি তীব্র। কয়েক ধরনের অ্যাসিড ও তাদের রাসায়নিক সংকেত দেওয়া হল : হাইড্রোক্লোরিক অ্যাসিড HCl, সালফিউরিক অ্যাসিড H_2SO_4 , নাইট্রিক অ্যাসিড HNO_3 , সালফিউরাম অ্যাসিড H_2SO_3 । এগুলি সবই অজ্জেব বা খনিজ অ্যাসিড।

খেতে টক এমন যে কোন বস্তুতে অ্যাসিড আছে। লেবু, দই, টেঁতুল সবেতেই অ্যাসিড আছে। লেবুতে আছে সাইট্রিক অ্যাসিড, দই-এ আছে ল্যাকটিক অ্যাসিড, টেঁতুলে আছে টারটারিক অ্যাসিড। ভিনিগারও এক ধরনের অ্যাসিড। এগুলি কিন্তু জৈব অ্যাসিডের উদাহরণ।

হাইড্রোক্লোরিক অ্যাসিড, নাইট্রিক অ্যাসিড ও সালফিউরিক অ্যাসিডের ধাতু গলাতে, গ্যাস উৎপাদনে এবং বিভিন্ন কাজে ব্যবহার হয়ে�াকে। অ্যাসিডের

ধৰ্ম ধাতুৰ সঙ্গে বিক্ৰিয়াৰ হাইড্ৰোজেন গ্যাস উৎপন্ন কৰা। একটা বীকাৰে এক টুকৰো দণ্ডা নাও এবং কিছুটা লঘু হাইড্ৰোজেনিক আসিড ঢাল। দেখবে হাইড্ৰোজেন গ্যাস বুদবুদ আকাৰে বাৰ হচ্ছে।

↑ চিহ্ন দিয়ে গ্যাস বোৱান হয়।

ক্ষাৰক—যে বস্তু আসিডেৰ সঙ্গে ৱাসায়নিক বিক্ৰিয়াৰ পৰ লবণ ও জল তৈৰি কৰে তাকে ক্ষাৰক বলে। যদি সোডিয়ম হাইড্ৰোজেন হাইড্ৰোজেনিক আসিড ঢাল দেখবে সোডিয়ম ক্লোৰাইড অৰ্থাৎ খাৰাৰ লবণ ও জল পাবে।

সোডিয়ম হাইড্ৰোজেনেৰ মত ক্যালসিয়ম হাইড্ৰোজেন জিংক হাইড্ৰোজেন, পট্যাসিয়ম হাইড্ৰোজেন ও ক্ষাৰক। দেখা গিয়েছে বস্তুৰ ক্ষাৰত্বেৰ কাৰণ হচ্ছে OH^- মূলকেৰ আয়নেৰ উপনিষিত। OH^- আয়নকে হাইড্ৰোক্সিল বা হাইড্ৰোজেন আয়ন বলে। সুতৰাং যে সব ঘোণিক পদাৰ্থেৰ জলীয় দ্রবণ বিয়োজিত হয়ে হাইড্ৰোজেন আয়ন উৎপন্ন কৰে সেই ঘোণিক পদাৰ্থকে ক্ষাৰক বলে। প্ৰায় সকল ধাতুৰ হাইড্ৰোজেন হচ্ছে ক্ষাৰক। LiOH , NaOH , KOH প্ৰত্তিকে ক্ষাৰ বা অ্যালকালি বলা হয়। এৱা জলে গলে যায়। সুতৰাং সব ক্ষাৰক কিন্তু ক্ষাৰ নাও হতে পাৰে। $\text{Ba}(\text{OH})_2$, $\text{Mg}(\text{OH})_2$ প্ৰত্তিকে ক্ষাৰ হৃষ্টিকা বলে। যে কোন ক্ষাৰেৰ দ্রবণকে ক্ষাৰীয় দ্রবণ বলা হয়।

স্থুচক—আসিড বা ক্ষাৰকেৰ ধৰ্ম হচ্ছে—কোন কোন জৈব ঘোণিক পদাৰ্থেৰ ৱঙ পান্টানোৰ ক্ষমতা। এক কাঁপ চায়েৰ গাঢ় ৱঙে যদি লেবুৰ বস ঢাল দেখবে ৱঙ হালকা হয়ে গিয়েছে। আবাৰ চায়েৰ সেই হালকা ৱঙে যদি ক্ষাৰীয় দ্রবণ যোগ কৰ দেখবে ৱঙ আবাৰ গাঢ় হয়ে উঠেছে। আসিড বা ক্ষাৰেৰ অযোগে যে সব বস্তু ৱঙ পান্টায় তাদেৰ বলা হয় স্থুচক বা ইণ্ডিকেটৰ।

পৰীক্ষাগারে লিটমাস দ্রবণ বা লিটমাস কাগজ হচ্ছে অতি পৰিচিত স্থুচক। আসিড দ্রবণে নৌল লিটমাস কাগজ লাল ৱঙ হয়। ক্ষাৰীয় দ্রবণে লাল লিটমাস কাগজ নৌল ৱঙে পৰিবৰ্তিত হয়। ফেনফথ্যালিন ও মিথাইল অৱেশ নামে আৱে দুটো তৱল স্থুচক পৰীক্ষাগারে ব্যবহাৰ কৰা হয়ে থাকে। এই দুটোই জৈব ঘোণিক পদাৰ্থ। আসিড দ্রবণে ফেনফথ্যালিন বৰ্ণহীন এবং ক্ষাৰীয় দ্রবণে

গোলাপী দেখায়। মিথাইল অরেঞ্জের নিজের রঙ কমলা, এক ফোটা মেশালে অ্যাসিডকে লাল ও ক্ষারককে হলুদ রঙে পরিবর্তিত করে।

লবণ—লবণ বলতে তোমরা খাবার লবণকেই বোঝ। কিন্তু খাবার লবণই একমাত্র লবণ নয়। অনেক রকম লবণ আছে। লবণ অর্থে কি বোঝায় দেখ। অ্যাসিডের সঙ্গে কোন ধাতুর রাসায়নিক বিক্রিয়ার ফলে অ্যাসিডের প্রতিস্থাপন-যোগ্য হাইড্রোজেন সম্পূর্ণভাবে বা আংশিকভাবে ধাতুর ধারা প্রতিস্থাপিত হলে যে যৌগ তৈরি হয় তাকে লবণ বা সট বলে। যেমন—

ZnSO_4 একটি লবণ।

অ্যাসিড ও ক্ষারকের সংযোগেও লবণ তৈরি হয়।

NaCl , NH_4Cl এবং NaHSO_4 লবণ।

লবণের তিনভাগে ভাগ করা হয়—(1) অ্যাসিড লবণ, (2) ক্ষারকীয় লবণ এবং (3) শর্কিত লবণ।

অ্যাসিড লবণ : অ্যাসিডের হাইড্রোজেন আংশিকভাবে ধাতু বা ধাতুমূলক দিয়ে প্রতিস্থাপিত হয়ে যে লবণ তৈরি হয় তাকে অ্যাসিড লবণ বলে। $\text{NaCl} + \text{H}_2\text{SO}_4 = \text{NaHSO}_4 + \text{HCl}$ । এখানে NaHSO_4 অ্যাসিড লবণ।

ক্ষারকীয় লবণ : অ্যাসিড ও ক্ষারকের বিক্রিয়ায় প্রয়োজনের অতিরিক্ত ক্ষারক ব্যবহৃত হয়ে যে লবণ তৈরি হয় তাকে ক্ষারকীয় লবণ বলে। $\text{Pb(OH)}_2 + \text{HCl} = \text{Pb(OH)Cl} + \text{H}_2\text{O}$ । Pb(OH)Cl ক্ষারকীয় লবণ।

শর্কিত লবণ : ধাতু বা ধাতুমূলক দিয়ে অ্যাসিডের হাইড্রোজেন সম্পূর্ণভাবে প্রতিস্থাপিত হয়ে যে লবণ তৈরি হয় তাকে শর্কিত লবণ বলে। $\text{H}_2\text{SO}_4 + 2\text{NaOH} = \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$ । Na_2SO_4 শর্কিত লবণ।

প্রশংসন—অ্যাসিড ও ক্ষারের রাসায়নিক বিক্রিয়ার ফলে লবণ ও জল তৈরি হয়। এই রাসায়নিক বিক্রিয়ার পর যদি কোন অ্যাসিড বা ক্ষার অবশিষ্ট না থাকে অর্থাৎ ক্ষারের ও অ্যাসিডের সবটুকুই রাসায়নিক বিক্রিয়ায় অংশ গ্রহণ

কৰে তবে সেক্ষেত্ৰে অ্যাসিড ও ক্ষারক একে অগ্রকে প্ৰশংসিত বা নিউট্ৰোলাইজ কৰেছে বলা হয়। এই পদ্ধতিকে প্ৰশংসন বা নিউট্ৰোলাইজেশন বলে। প্ৰশংসনেৰ পৰ দ্রবণেৰ অস্তৰা বা ক্ষারত্ব থাকে না এবং সূচকেৰ বৰঙ পাটাতে পাৰে না।

অ্যাসিড ও ক্ষারকেৰ পাৰ্থক্য

অ্যাসিড

- (1) জলে গলে এবং জলীয় দ্রবণে বিয়োজনেৰ পৰ H^+ উৎপন্ন হয়।
- (2) স্বাদ অম্ল।
- (3) ধাতু ও ক্ষারকেৰ সঙ্গে ৱাসায়নিক বিক্ৰিয়ায় লবণ তৈৰি কৰে।
- (4) নীল লিটমাস কাগজ লাল হয়।
- (5) ফেনফথ্যালিন বৰ্ণহীন থাকে।
- (6) মিথাইল অৰেঞ্জ লাল হয়।

ক্ষারক

- (1) জলে গলে এবং জলীয় দ্রবণে বিয়োজনেৰ পৰ OH^- উৎপন্ন হয়।
- (2) স্বাদ কধা।
- (3) অ্যাসিডেৰ সঙ্গে ৱাসায়নিক বিক্ৰিয়ায় লবণ তৈৰি কৰে।
- (4) লাল লিটমাস কাগজ নীল হয়।
- (5) ফেনফথ্যালিন গোলাপী হয়।
- (6) মিথাইল অৰেঞ্জ হলুদ রঙেৰ হয়।

୬୮ ଜାରଣ ଓ ବିଜାରଣ

ଜାରଣ

ଜାରଣ କଥାଟିତେ ବୋରାୟ ଅଞ୍ଚିଜେନେର ସଙ୍ଗେ ପ୍ରତ୍ୟକ୍ଷ ସଂଯୋଗ । କୋନ ପଦାର୍ଥେର ସଙ୍ଗେ ଅଞ୍ଚିଜେନେର ସଥନ ବିକିଯା ହୁଏ ତଥନ ତାକେ ଜାରଣ ବା ଅଞ୍ଚିଦେଶନ ବଲେ । ହାଇଡ୍ରୋଜେନ ଅଞ୍ଚିଜେନେର ସଙ୍ଗେ ମିଳିତ ହେଁ ଜଳ ତୈରି କରେ । ଏକେତେ ହାଇଡ୍ରୋଜେନ ଜାରିତ ହେଁଛେ । ଯେ ପଦାର୍ଥ ଜାରଣ କରେ ତାକେ ଜାରକ ଜ୍ଵାବ୍ ବଲେ । ଆବା ଛ-ଏକଟି ଉଦାହରଣ ନାହିଁ । ସଥନ କୟଲା ପୋଡ଼େ ତଥନ CO_2 ତୈରି ହୁଏ । ମ୍ୟାଗନେସିଯମେର ଏକଟି ତାର ବାତାସେ ପୋଡ଼ାଲେ ମ୍ୟାଗନେସିଯମ ଅଞ୍ଚାଇଡ MgO ତୈରି ହୁଏ । ପ୍ରସମାନ କାର୍ବନ ଓ ଡିଟୀଆଟିତେ ମ୍ୟାଗନେସିଯମ ଜାରିତ ହେଁଛେ । ସମ୍ମିକରଣ ଦୃଢ଼ ନିଚେ ଦେଖ୍ୟା ହଲ :

ଲୋହ, ଗନ୍ଧକ, ଫୁଫରାନ୍ ସଥନ ଅଞ୍ଚିଜେନେର ସଙ୍ଗେ ବିକିଯାର ପର ନିଜେଦେର ଅଞ୍ଚାଇଡ ତୈରି କରେ ତଥନ ତାଦେର ଜାରିତ ହେଁଛେ ବଲା ହୁଏ ।

ଜାରଣ ଅର୍ଥେ ହାଇଡ୍ରୋଜେନେର ଅପ୍ସାରଣା ବୋରାୟ । ଯେମନ କ୍ଲୋରିନ ଗ୍ୟାସ ତୈରିର ସମୟ MnO_2 ତେ ଗାଢ଼ HCl ଅୟାସିତ ଯୋଗ କରା ହୁଏ ।

ଏଥାନେ MnO_2 ଜାରକ ଜ୍ଵାବ୍, ଆରଣ କରେଛେ ଗାଢ଼ HCl ଅୟାସିତକେ ।

ଅଞ୍ଚିଜେନ ଏକଟି ଅଧାତୁ ମୌଳ । ତଡ଼ିଦ୍ଵିପ୍ଲେଟେର ସମୟ ଦେଖା ଗିଯେଛେ ଅଞ୍ଚିଜେନ ତଡ଼ିଦ୍ଵିପ୍ଲେଟେର ଭିତର ଦିଯେ ପରିଚିତ ତଡ଼ିଦ୍ୱାରେର ଦିକେ ଯାଏ । ଏହି ଜାତୀୟ ପଦାର୍ଥଗୁଲିକେ ବଲା ହୁଏ ଇଲେକ୍ଟ୍ରୋନେଗେଟିଭ ମୌଳ । କ୍ଲୋରିନ, ବ୍ରୋମିନ, ଆୟୋଡିନ ପ୍ରତ୍ୱତି ଏହି ଜାତୀୟ ମୌଳ । କୋନ ରାମାୟନିକ ପ୍ରକିଯାଯା ଅଞ୍ଚିଜେନେର ସଂଯୋଜନ ଛାଡ଼ାଏ ଅଣ୍ଟ କୋନ ଇଲେକ୍ଟ୍ରୋନେଗେଟିଭ ପଦାର୍ଥେର ସଂଯୋଜନ ଘଟିଲେଣ ମେହି ପ୍ରକିଯାକେ ଜାରଣ ବଲେ । ଉଦାହରଣକୁଠିପ ଫେରାସକ୍ଲୋରାଇଡ କ୍ଲୋରିନ ଗ୍ୟାସ ଦିଯେ ଜାରଣ କରଲେ ଫେରିକ କ୍ଲୋରାଇଡ ଉତ୍ପନ୍ନ ହୁଏ ।

বেশির ভাগ ধাতুই ইলেকট্রোপজিটিভ মৌলিক পদার্থ। হাইড্রোজেনের মত ইলেকট্রোপজিটিভ পদার্থের অপসারণকেও জারণ বলে। যেমন পট্যাসিয়ম আয়োডাইডের সঙ্গে হাইড্রোজেন পেরস্কাইডের সংযোগ ঘটলে ইলেক্ট্রোপজিটিভ পট্যাসিয়ম ধাতু অপসারিত হয়। $2\text{KI} + \text{H}_2\text{O}_2 = \text{I}_2 + 2\text{KOH}$

স্তুতিৱাঃ জারণ বলতে বোৰায়—(ক) অক্সিজেনের সংযোজন, (খ) হাইড্রোজেনের অপসারণ, (গ) ইলেক্ট্রোনেগেটিভ মৌলের বা মূলকের সংযোজন ও ইলেকট্রোপজিটিভ মৌলের বা মূলকের অপসারণ।

বিজ্ঞারণ

বিজ্ঞারণ বিক্রিয়া জারণ বিক্রিয়ার ঠিক বিপরীত। বিজ্ঞারণ বা রিডাকসন বলতে বোৰায় অক্সিজেনের অপসারণ বা হাইড্রোজেনের সংযোজন। হাইড্রোজেন গ্যাসের পরিবেশে যখন কপার অক্সাইডকে গরম করা হয় তখন কপার অক্সাইড বিজ্ঞারিত হয়ে তামা পাওয়া যায়। এখানে হাইড্রোজেন গ্যাস বিজ্ঞারক দ্রব্য বা রিডিউসিং এজেন্ট। ক্লোরিন দ্রবণের ভিতর দিয়ে সালফিউরেটেড হাইড্রোজেন পার্শ্বালে, ক্লোরিন গ্যাসে বিজ্ঞারিত হয়ে হাইড্রোক্লোরিক আসিড তৈরি হয়। নিচের সমীকরণ দুটি দেখলে বুঝতে পারবে।

অক্সিজেনের মত যে কোন ইলেকট্রোনেগেটিভ মৌলের অপসারণ বা হাইড্রোজেনের মত যে কোন ইলেকট্রোপজিটিভ মৌলের সংযোজনকেও বিজ্ঞারণ বলে। AlCl_3 -র সঙ্গে সোডিয়মের বিক্রিয়ায় ঘোণিক বস্তু বিজ্ঞারিত হয়ে Al ধাতু পাওয়া যায়। এক্ষেত্রে ইলেকট্রোনেগেটিভ মৌল ক্লোরিন অপসারিত হয়।

সেইরকম মারকিউরাস ক্লোরাইডের সঙ্গে ইলেকট্রোপজিটিভ পারদের সংযোজনে মারকিউরাস ক্লোরাইড বিজ্ঞারিত হয়ে মারকিউরিক ক্লোরাইড উৎপন্ন হয়। $\text{HgCl}_2 + \text{Hg} = \text{Hg}_2\text{Cl}_2$

স্তুতিৱাঃ বিজ্ঞারণ বলতে বোৰায়—(ক) হাইড্রোজেনের সংযোজন, (খ) অক্সিজেনের অপসারণ, (গ) ইলেকট্রোনেগেটিভ মৌলের অপসারণ ও ইলেকট্রোপজিটিভ মৌলের সংযোজন।

জারণ বা বিজ্ঞারণ বস্তুর বাসায়নিক ধর্ম। এটা মনে রেখো জারণ হলেই তার সঙ্গে বিজ্ঞারণ হবে। কারণ জারক বস্তুটি বিজ্ঞারিত হয়।

৬৮ তরল বায়ু, নাইট্রোজেন চক্র ও কার্বন ডাইঅক্সাইড চক্র

তরল বায়ু

বায়ুমণ্ডলে বাতাস বিভিন্ন গ্যাসের একটি মিশ্রণ। এর একটা বড় অংশ নাইট্রোজেন ও অক্সিজেন, অল্প মাত্রায় আরগন ও কার্বন ডাইঅক্সাইড এবং অতি অল্প মাত্রায় নিয়ন, হিলিয়ম, ক্রিপ্টন, হাইড্রোজেন, মিথেন ও নাইট্রাস অক্সাইড। অবশ্য জলীয় বাষ্প ত আছেই আবহাওয়ার অবস্থা অঙ্গুষ্ঠা। তরল বায়ু বলতে তরল নাইট্রোজেন ও তরল অক্সিজেনই বোঝায়। বায়ুমণ্ডলে নাইট্রোজেন ও অক্সিজেন যথাক্রমে আয়তনের 78.048 এবং 20.946 শতাংশ। নানাবিধ শিল্পে নাইট্রোজেন গ্যাস, অক্সিজেন গ্যাস, তরল নাইট্রোজেন এবং তরল অক্সিজেনের চাহিদা প্রচুর। বায়ু তরল করে এই গ্যাস দৃটির উৎপাদন অপেক্ষাকৃত কম খরচে করা যায়। ভারতের অনেক বড় শহরে তরল বায়ু তৈরির জন্য ফ্যাক্টরি আছে। কলকাতাতেই একটির বেশি কারখানা তরল বায়ু বিক্রী করেন। দাম প্রতি লিটার প্রায় চার টাকা। অনেক গবেষণাগারে নিজস্ব তরল বায়ু তৈরির প্লাট আছে।

বায়ু তরল করার জন্য যন্ত্র উন্নাবন করেন দুজন বিজ্ঞানী একই সময়ে— 1895 সালে—লিঙ্গে জার্মানিতে এবং হাস্পসন ইংল্যান্ডে। যে পদ্ধতিতে যন্ত্রটি কাজ করে, নিচে বলা হল। খুব উচ্চচাপে ধাকা অবস্থায় গ্যাসকে যদি হঠাৎ সরু মুখ নলের মধ্যে দিয়ে প্রসারিত করা হয়, তবে গ্যাসটি ঠাণ্ডা হয়ে পড়ে। একে জুল-টমসন প্রভাব বলে। লিঙ্গে যন্ত্রে এই প্রভাবের সাহায্যেই বায়ু তরল করা হয়। প্রথমে বায়ু থেকে ধূলো, জলীয় বাষ্প এবং কার্বন ডাই-অক্সাইড দূর করা হয়। কার্বন ডাইঅক্সাইড অতি অল্প তাপমাত্রায় জমে যাব অক্সাইড দূর করা হয়। কার্বন ডাইঅক্সাইড অতি অল্প তাপমাত্রায় জমে যাব অক্সাইড দূর করা হয়। C_1 কল্পনারের সাহায্যে বাতাস প্রথমে বায়ুমণ্ডলের অপেক্ষা 20 গুণ চাপে সংক্ষিপ্ত করা হয় (চিত্রে 16.1)। চাপে বায়ুর তাপমাত্রা বেড়ে যাব এবং ঠাণ্ডা জলে ডোবানো T_1 নলের মধ্যে দিয়ে পাঠিয়ে বাতাসের তাপমাত্রা এবং ঠাণ্ডা জলে ডোবানো

কমিয়ে আনা হয়। এবাবে কঠিক সোডাপূর্ণ কক্ষ P'র মধ্যে দিয়ে পাঠিয়ে CO_2 দ্র করা হয়। জলীয় বাষ্প দ্র করারও প্রয়োজন মত ব্যবস্থা থাকে।

চিত্র 16.1

এরপর বাতাসকে দ্বিতীয় কঠেসর C_2 র সাহায্যে বায়ুমণ্ডল অপেক্ষা 200 গ্রেণ বেশি চাপে সংরক্ষিত করা হয়। উচ্চচাপে বাতাসের তাপমাত্রা বাড়ে এবং হিমিশ্রেণ রাখা T_2 নলের মধ্যে দিয়ে এই বাতাস পাঠিয়ে তাপমাত্রা কমান হয়। উচ্চচাপের এই বাতাসকে পরে A প্রসারণ কক্ষে সরুমুখ নল V'র মুখে হটাং প্রসারিত করা হয়। ফলে তাপমাত্রা কমে। এই ঠাণ্ডা বাতাসকে C_2 কঠেসর কক্ষে পুনরায় নিয়ে এনে সংরক্ষিত করা হয় ও T_2 নলের সাহায্যে ঠাণ্ডা করে আবার V সরুমুখ নলে প্রসারিত করা হয়। এই ভাবে তাপমাত্রা ধাপে ধাপে কমতে থাকে। ঐ ঠাণ্ডা বায়ু আবার সংরক্ষিত ও প্রসারিত করা হয়। তাপমাত্রা নামতে এক সময়ে বায়ু তরল হয় এবং নিচে রাখা পাত্রে জমা হতে থাকে। তাপমাত্রা আর -200°C হয়।

তরল বায়ু সাধারণ পাত্রে রাখা চলে না। ধার্মেফ্লাস্ক জাতীয় পাত্রে রাখতে হয়। সাধারণ ধার্মেফ্লাস্ক কাচের তৈরি ও সাধারণত মাপে ছোট বলে উপযোগী নয়। জার্মান সিলভার জাতীয় ধাতুর পাত (যাতে তাপ বিশেষ পরিবাহিত হয় না) দিয়ে তৈরি ছটো দেওয়ালের ফাস্কে তরল বায়ু (চিত্র 16.2) রাখা হয়। ছটি দেওয়ালের মধ্যে ভ্যাকুয়াম করে বক্ষ করা থাকে। ভ্যাকুয়াম নষ্ট হয়ে হাওয়া ঢুকে গেলে পাত্র আব কাজ করবে না। তরল হাওয়া থেকে

চিত্র 16.2

ক্রমাগত বাঞ্চায়ন হতে থাকে। তরল নাইট্রোজেনের ঘূর্ণনাক - 195.7°C এবং অক্সিজেনের - 182.9°C । স্থৰাং প্রথমেই নাইট্রোজেন উপে যেতে থাকে। এই গ্যাস ধরে উচ্চচাপে গ্যাস সিলিঙ্গারে ভর্তি করে রাখা যায়। নাইট্রোজেন উপে যাবার পর পড়ে থাকে তরল অক্সিজেন। সেটি থেকেও বাঞ্চায়ন চলতে থাকে। অক্সিজেন উচ্চচাপে গ্যাস সিলিঙ্গারে ভর্তি করে বিক্রী করা হয়। এইভাবে প্রস্তুত অক্সিজেন প্রায় 96 শতাংশ শুক্র। নিম্ন তাপমাত্রা স্থিতির জন্য শিল্পের বহু কাজে, বিজ্ঞানের গবেষণায় তরল নাইট্রোজেন ও তরল অক্সিজেন ব্যবহার হয়। কলকাতায় সাহা ইন্সিটিউটের গবেষণাগারে একটি ছোট বায়ু তরল করার যন্ত্র আছে।

নিম্ন তাপমাত্রায় বস্তুর ধর্ম বিশেষভাবে পরিবর্তিত হয়। এই তাপমাত্রায় সীমায় স্থিতিস্থাপকতা ধর্ম দেখা দেয়, রবার শক্ত এবং ভঙ্গ হয়ে পড়ে। একটি আঙুর তরল বায়ুতে ডুবিয়ে রাখলে এত শক্ত হয়ে পড়ে যে তাকে গুঁড়ো করতে হাতুড়ি দিয়ে পেটোবার প্রয়োজন হয়। তাপমাত্রা কমার সঙ্গে পরিবাহী বস্তুর রোধ করতে থাকে।

নাইট্রোজেন চক্র

উক্তি ও প্রাণীদের বেঁচে থাকার মূলে যেমন অক্সিজেন যা আমরা প্রতি নিঃখাসে গ্রহণ করি, তেমনি আবার উক্তি ও প্রাণিদেহ গঠনে নাইট্রোজেন একটি মূল উপাদান। উক্তি প্রোটিন এবং জীব প্রোটিনে নাইট্রোজেনের ভূমিকা অত্যন্ত প্রয়োজনীয়। ফসল ফলানোর জন্য যে সার দুরকার, নাইট্রোজেন তারও একটি মূল উপাদান। প্রতিদিন লক্ষ লক্ষ টন সার তৈরি হচ্ছে এবং ব্যবহার হচ্ছে। এই নাইট্রোজেনের অনেকটাই আসে বায়ুমণ্ডলের নাইট্রোজেন থেকে। বায়ুমণ্ডলে অনেক নাইট্রোজেন আছে বটে, তবে এই হারে থরচ করতে ধাঁকলে ফুরিয়ে যাবার সম্ভাবনা বাড়িল করা যায় না। তবে প্রকৃতি সব সময় সমতা বজায় রাখার ব্যবস্থা করে, নাইট্রোজেন যেমন থরচ হচ্ছে, তেমনি আবার তৈরিও হচ্ছে।

নাইট্রোজেন সাধারণত খ্ব সক্রিয় গ্যাস নয়। বায়ুমণ্ডলে অক্সিজেনের পাঁচাশাশি থেকেও তার সঙ্গে কোন বিক্রিয়া করে না। কিন্তু বজ্র ও বিদ্যুৎ সংশ্লিষ্ট এলে বা কিছু কিছু ব্যাক্তিবিদ্যার সংশ্লিষ্ট এলে নাইট্রোজেন সক্রিয়হয়।

আকাশে ষথন বিহুৎ ক্ষৰণ হয়, তখন নাইট্রোজেন অক্সিজেনের সঙ্গে মিলে হয় নাইট্রিক অক্সাইড $N_2 + O_2 = 2NO$ । তারপৰ সেটি অক্সিজেনের সঙ্গে মিলে হয় $2NO + O_2 = 2NO_2$ নাইট্রোজেন ডাইঅক্সাইড। জলের সঙ্গে মিলে $3NO_2 + H_2O = 2HNO_3 + NO$ । নাইট্রিক আসিড বৃষ্টির জলের সঙ্গে পড়ে

চিত্র 16.3.

মাটিতে ক্ষার জাতীয় বস্তুর সংসর্ণে আসে এবং নাইট্রেটে পরিণত হয়। অহুমান। কখন হয় যে প্রত্যাহ এইভাবে আড়াই লক্ষ টন নাইট্রিক আসিড বৃষ্টির জলের সঙ্গে মাটিতে পড়ে। এটাই সার, এছাড়া সার আসে চিলির লবণ থেকে ও কৃত্রিম

উপায়ে তৈরি করে। উক্তি মাটি থেকে এই নাইট্রেট প্রাপ্ত করে, উক্তি দেহে প্রোটিন তৈরি করে। শিশু জাতীয় কোন কোন উক্তি সোজাসুজি বায়ুমণ্ডল থেকে নাইট্রোজেন আহরণ করে নিতে পারে। উক্তি থেরে বাঁচে যে সব প্রাণী নাইট্রোজেন তাদের দেহের জীবপ্রোটিনের অংশ হয়ে পড়ে। প্রাণিদেহ থেকে মলযুক্ত ও প্রাণিদেহের পচনে তৈরি হয় আয়োনিয়া, যা মাটিতে মিশে আবার নাইট্রেটে পরিণত হয়। এর কিছুটা আবার উক্তি দেহে ফিরে যায়, বাকিটা ডিনাইট্রাইং ব্যাকটেরিয়ার সাহায্যে নাইট্রোজেন গ্যাসে পরিণত হয়ে বায়ুমণ্ডলে ফিরে যায়। আবার যে সব উক্তিপ্রোটিন প্রচণ্ড চাপে ও তাপে ফসিল হয়ে গিয়েছিল সেগুলি কয়লা হিসেবে থনি থেকে তোলা হচ্ছে। কয়লার অস্থূর্ম পাতনেও আয়োনিয়া তৈরি হয় যাব কিছুটা ব্যাকটেরিয়ার সাহায্যে নাইট্রোজেনে রূপান্তরিত হয়। 16.3 চিত্রে নাইট্রোজেন চক্র দেখানো হয়েছে। এইভাবেই বায়ুমণ্ডলের নাইট্রোজেনের সমতা রক্ষা চলেছে।

কার্বন ডাইঅক্সাইড চক্র

বায়ুমণ্ডলে কার্বন ডাইঅক্সাইড আছে অন্ন পরিমাণে, আয়তনের মাত্র 0.033% শতাংশ। কমআছে বলে এর প্রয়োজনীয়তা কিছু কমনয়। কার্বন ডাইঅক্সাইডের একটি বিশেষ ভৌত ধর্ম সূর্যকিরণ থেকে তাপ ধরে রাখা। এর বর্তমান মাত্রা জীবজগতের ঠিক উপযোগী। মাত্রা কমে গেলে সাধারণ তাপমাত্রা এখনকার থেকে কমে যাবে এবং মাত্রা বেড়ে গেলে তাপমাত্রা বাঢ়বে। ইতরাং খুব বেশি বাঢ়লে জীবজগতের উপযোগী নাও হতে পারে। গত পঞ্চাশ বছরে পৃথিবীতে কলকারখানা বেড়ে যাওয়ার ফলে প্রতিদিন পরিমাণে অনেক বেশি কয়লা, পেট্রল ও কেরোসিন পোড়ানো হচ্ছে, ফলে বায়ুমণ্ডলে CO_2 -র মাত্রা কিছুটা বেড়েছে। অনেকে মনে করেন এজন্য গড় তাপমাত্রাও বেড়েছে।

আবার উক্তি জগতে খাতু প্রস্তুতের প্রধান উপকরণ CO_2 । উক্তি ক্লোরোফিলের সামিধ্যে স্থানান্তরে CO_2 ও H_2O থেকে কার্বোহাইড্রেট খাতু তৈরি করে—একে বলে সামোক-সংস্ক্রিপ্শন বা ফোটোসিনথেসিস। হিসেব করলে দেখা যাবে পৃথিবীতে যত উক্তি আছে তাদের বায়ুমণ্ডলের সমস্ত CO_2 থেরে ফেলতে লাগবে মাত্র চলিশ বছর। কিন্তু তা হয়নি কারণ তার সমতা বজায় রাখার ব্যবস্থা প্রকৃতি করেই গেথেছে। যে হারে CO_2 খুচ হচ্ছে

प्रायः सेहि हावेहि CO_2 जमा हच्छ। खरच ओ जमा कि भावे हय्य कार्बन डाइऑक्साइड चक्रे देखानो हव्वेहे (चित्र 16.4)।

উক্তিদ্বাৰা বায়ুমণ্ডল থেকে CO_2 প্রাহ্ল কৰে, যাগ প্ৰস্তুত কৰে। দিনেৰ বেলাৱ
সূৰ্যালোকে আবাৰ বাতে নিঃশ্বাসেৰ সঙ্গে ছাড়ে, ফলে CO_2 বায়ুমণ্ডলে ফিৰে
যায়। তাছাড়া উক্তিদ্বাৰা দেহ দহনে বা পচনেও CO_2 পৰিণত হয়ে বায়ুমণ্ডলে
ফিৰে যায়। বহু ধূগ ধৰে উক্তিদ্বাৰা দেহে যে কাৰ্বন জঘা হয়েছে, চাপে ও তাপে
কমিল কয়লায় পৰিণত হয়েছে এবং মেই কয়লা যখন আমৰা পোড়াই আবাৰ
. CO_2 বায়ুমণ্ডলে ফিৰে যায়। এছাড়া বায়ুমণ্ডলৰ থেকে বেশি পৰিমাণে CO_2
মজুস আছে সম্মেৰে জলে দ্রবণে, তাৰ থেকেও CO_2 বেৱিয়ে বায়ুমণ্ডলে সমতা
বজায় রাখে। অনেক খনিজ যেমন ক্যালসিয়াম কাৰ্বনেট—এগুলি থেকেও
কলকাৰখানায় রাসায়নিক বিক্ৰিয়াৰ সময় CO_2 বাব হয়ে বায়ুমণ্ডলে যেশে।

তাছাড়া সমস্ত প্রাণী শাস নেয় অক্সিজেন এবং নিঃশ্বাসের সঙ্গে বার করে কার্বন ডাইঅক্সাইড যা বাতাসে ফিরে যায়। এইভাবে বায়ুমণ্ডলে কার্বন ডাইঅক্সাইডের জমাখরচের সমতা রক্ষা চলে।

বাতাসে বিরল গ্যাস, নিয়ন্ত্রণ আলো

বাতাসে আরও কয়েকটি গ্যাসের উপস্থিতির কথা বলা হচ্ছে। তাদের মধ্যে আরগন (Ar) বাতাসের আয়তনের 0.934 শতাংশ। এছাড়া আরও কতক-গুলি গ্যাস মৌল অবস্থায় পাওয়া যায়, তাদের শতাংশে প্রকাশ করা হয় না, বলা হয় প্রতি 10 লক্ষ ভাগের হিসাবে অর্ধাংশ পাট্স পার মিলিলিট্র বা পি পি এম-এ। এই হিসাবে নিয়ন (Ne) 18.18 , হিলিয়ম (He) 5.24 , ক্রিপটন (Kr) 1.14 , জিনন (Xe) 0.087 । এত অল্প মাত্রায় পাওয়া যায় বলে এদের বিরল বা বেয়ার গ্যাস বলা হয়। তাছাড়া এগুলি নিক্রিয় অর্ধাংশ রাসায়নিক বিক্রিয়ায় অংশ গ্রহণ করে না। এই গ্যাসগুলির মধ্যে আরগন খুব দুর্লভ নয়; এটি ইলেকট্রিক বাল্বে ব্যবহার করা হয়। একেবারে বায়ুমণ্ডলে বাল্বটি ভেঙে যাবার সম্ভাবনা বলে তার মধ্যে অল্প পরিমাণ আরগন গ্যাস দেওয়া হয়। নিক্রিয় গ্যাস বলে যখন বাল্বের ফিলারেট গরম হয়ে সাদা হয়ে যায় তখনও আরগনের সঙ্গে কোন বিক্রিয়া করে না। নিম্ন চাপে নিয়ন গ্যাসে বিহুৎ ক্ষরণে মূন্দুর লালচে আলো হয়। নানান আকারের টিউব তৈরি করে তাতে নিয়নচাপে নিয়ন গ্যাস ভরে বিজ্ঞাপনের কাজে ও সহবের সাজসজ্জায় ব্যবহার হয়। নিয়ন আলো ও ফুরোসেন্ট আলো কিন্তু এক নয়।

হিলিয়ম সব থেকে নিক্রিয় গ্যাস। মেইজন্ট টাইম ক্যাপসিউল নামে যে সমস্ত পাত্রে ঐতিহাসিক নির্দর্শন ভরে মাটির তলায় পোতা হয়, মেই পাত্রে হাওয়া সরিয়ে হিলিয়ম গ্যাস ভর্তি করা হয়। হিলিয়ম গ্যাস বাতাসের তুলনায় খুব হালকা। তাই বড় বড় বেলুন আকাশে ওড়ানোর জন্যে ব্যবহৃত হয়। অবশ্য থেলনার বেলুনের জন্য নয়। প্রাঙ্গাগতিক রশ্মির গবেষণার জন্য যন্ত্রপাতি ও ফোটোগ্রাফিক প্লেট উর্ধ্বাকাশে তোলার জন্য এবং আবহাওয়া সংক্রান্ত নানা গবেষণায় এই ধরনের বেলুন ব্যবহৃত হয়। এখন অবশ্য এর অনেক কাজ ব্যক্তিতের সাহায্যে করা সম্ভব হচ্ছে। হিলিয়ম গ্যাসের শূটনাক -269°C এবং হিমাক -272.2°C । এর থেকে কম তাপমাত্রায় পৌঁছানো মাঝেরে পক্ষে

সম্ভব হয়নি। তৱল হিলিয়ম যদিও তৱল বায়ুৰ মত ব্যবহাৰ হয় না, তবু দিন দিন এৰ চাহিদা বাড়ছে। বৰ্তমানে অনেক গবেষণায় অতি নিম্ন তাপমাত্ৰাৰ প্ৰয়োজন হয়। দেখা গেছে তৱল হিলিয়মেৰ তাপমাত্ৰায় পৰিবাহীৰ তড়িৎ ৰোধ অসম্ভব কমে যায় এবং পৰিবাহীতা হাজাৰ হাজাৰ গুণ বাড়ে। এই অবস্থায় তাদেৰ বলে অভি-পৰিবাহী বা সুপাৰ-কণ্ট্ৰোল। ব্যবহাৰিক ক্ষেত্ৰে এদেৰ প্ৰযোজনীয়তা ক্ৰমেই বাড়ছে তাই তৱল হিলিয়মেৰ চাহিদাও বাড়ছে। কলকাতাৰ সাহা ইনষ্টিউটে গবেষণাৰ উপযোগী হিলিয়ম তৱল কৱাৰ যদ্ব আছে। বায়ুমণ্ডল ছাড়াও আমেৰিকায় প্ৰাকৃতিক গ্যাসেৰ সঙ্গে হিলিয়ম পাওয়া যায়। তাৰাড়া পাওয়া যায় ভেজক্সিয় আৰুৰিকে। কলকাতাৰ ইণ্ডিয়ান অ্যামেৰিয়েশন ফৱ দি কালচিতেমন অফ.সায়েন্সেৰ বিজ্ঞানী ড. শামাদাস চট্টোপাধ্যায় বক্ৰেশ্বৰ উষ্ণ প্ৰস্তুতিৰ মধ্যে হিলিয়ম গ্যাস পেষেছেন এবং তাৰ থেকে হিলিয়ম আলাদা কৱাৰ ব্যবস্থা কৰেছেন।

১৭ কয়েকটি গ্যাসের প্রস্তুত প্রণালী ও তাদের ধর্ম

অক্সিজেন

অক্সিজেন একটি মৌল, সাধাৰণ তাপমাত্রায় গ্যাস, মুক্ত অবস্থায় বায়ুমণ্ডলে পাওয়া যায়। এছাড়া অগ্নাত্য মৌলের সঙ্গে রাসায়নিক বিক্রিয়ায় যোগ কূপে থাকে। গ্রীক ভাষায় এৰ অৰ্থ আসিড প্ৰস্তুতকাৰক। প্ৰিস্টলি এবং শীলি হৃজনেই পৃথকভাৱে 1774 গ্ৰীষ্মাবে প্ৰথম অক্সিজেন আবিষ্কাৰ কৰেন। অক্সিজেনেৰ প্ৰতীকচিহ্ন O, অপূৰ সংকেত O₂।

গৰোবণাগারে কিভাৱে তৈৱি হয়—অক্সিজেন তৈৱিৰ জন্য যে দুটি যৌগিক পদাৰ্থেৰ প্ৰয়োজন তাদেৰ নাম পট্যাসিয়ম ক্লোৱেট ও ম্যাঞ্চানিজ ডাই-অক্সাইড। বন্ধ দুটিৰ সংকেত যথাক্রমে KClO₃ এবং MnO₂। এক ভাগ MnO₂ ও পাঁচ ভাগ KClO₃ ভালভাৱে মিশিয়ে নিয়ে একটি শক্ত কাচৰ টেস্ট টিউবে বাখ। লক্ষ্য বাখবে কাচেৰ নলটি মিশ্ৰণে সম্পূৰ্ণ ভৰ্তি হয়ে না

চিত্ৰ 17.1

যায়। টেস্ট টিউবেৰ মুখ ছিপি দিয়ে আটকিয়ে তাৰ ভিতৰে একটা নিৰ্গম নল প্ৰবেশ কৰাব। নিৰ্গম নলেৰ একটা মুখ জল ভৰ্তি কাচেৰ পাহে বাখ এবং জল ভৰ্তি একটা গ্যাস জাৰি উচ্চিয়ে নলেৰ মুখেৰ উপৰ 17.1 চিত্ৰে যেভাৱে দেখান আছে মে ভাৱে বাখ। একটা স্ট্যাঙে টেস্ট টিউব আটকিয়ে বাখ, দেখবে টেস্ট টিউবটা পিছনেৰ দিকে যেন একটু নিচে হেলে থাকে। একটি

বুনসেন দীপের সাহায্যে টিউবের মুখের দিকটা প্রথমে ও পরে আস্তে আস্তে টিউবের সর্বত্র গরম করতে থাক। দেখবে, তাপমাত্রা যখন $200^{\circ}\text{C} - 340^{\circ}\text{C}$ -এর মাঝে তখন বৃদ্ধুদের আকারে নির্গম নলের মুখ দিয়ে গ্যাস বেরিয়ে জারের জল সরিয়ে সেখানে জমা হচ্ছে। গ্যাস যখন জারের জল সম্পূর্ণ সরিয়ে ফেলেছে তখন কাচের একটা ঢাকনির সাহায্যে জারের মুখ বন্ধ করে জারটিকে জল থেকে বাঁর করে এনে সোজা করে বসাও। জারটি এখন অক্সিজেন গ্যাসে ভর্তি।

অক্সিজেন উৎপন্ন হওয়ার সময় KClO_3 পরিবর্তনের রাসায়নিক সমীকরণ নিচে দেওয়া হল :

MnO_2 অহুষটকের কাজ করে অর্থাৎ নিজে পরিবর্তিত হয় না, কিন্তু রাসায়নিক বিক্রিয়াকে স্বাক্ষর করে। KClO_3 কে $370^{\circ} - 380^{\circ}\text{C}$ পর্যন্ত উত্তপ্ত করলেও অক্সিজেন পাওয়া যায়, কিন্তু MnO_2 র উপস্থিতিতে এই তাপমাত্রা $200^{\circ}\text{C} - 340^{\circ}\text{C}$ এর মাঝামাঝি কোন এক তাপমাত্রায় নেমে আসে।

গ্যাস তৈরি করার সময় নিম্নলিখিত বিষয়ে সতর্ক থাকবে—
(ক) টিউবের মুখের দিকটা প্রথমে ও পরে পিছনের দিকটা গরম করা উচিত নতুবা পিছনের দিক আগে গরম করলে সেদিকে O_2 উৎপন্ন হয়ে গ্যাসের চাপে নির্গমনন্তরে মুখ বন্ধ হতে পারে। (খ) টিউবটির মুখ খানিকটা পিছনের দিকে ঢালু অবস্থায় রাখা ভাল যাতে নির্গমনন্তরে মুখ বন্ধ না হয়। (গ) MnO_2 বিশুদ্ধ নেওয়া প্রয়োজন। কার্বনের কণা থাকলে উচ্চ তাপে জলে উঠে বিস্ফোরণ ঘটাতে পারে।

ধর্ম—অক্সিজেন বর্ণহীন, স্বাদহীন, গন্ধহীন গ্যাস। বাতাসের চেয়ে অল্প ভারী। প্রাণিজগৎ নিঃখাদের সঙ্গে অক্সিজেন নিয়ে বেঁচে আছে। অক্সিজেন জলে অল্প অবৈভুত হয়। এই অবৈভুত অক্সিজেন মাছেরা বা অন্য জলজ প্রাণীরা জল থেকে নিয়ে বেঁচে থাকে। সোনা, কপো প্রভৃতি কয়েক ধরনের ধাতু অতি উচ্চ তাপমাত্রায় অক্সিজেন শোষণ করতে ও নিয়ে তাপমাত্রায় এই গ্যাস আবার বর্জন করতে পারে। হাইড্রোজেন গ্যাসের সঙ্গে ঘূর্ণ হয়ে জল তৈরি করে।
 $2\text{H}_2 + \text{O}_2 = 2\text{H}_2\text{O}$ । অক্সিজেন নিজে দাহ বন্ধ নয় কিন্তু দহন কাজে সাহায্য করে। -183°C তাপমাত্রায় অক্সিজেন গ্যাস নৌলাভ তরলে পরিণত হয়।

এবং -218.4°C তাপমাত্রায় নীলাত কেলাসিত কঠিন বস্তুতে পরিণত হয়। আমরা যে খাবার খাই নিঃখাসের নেওয়া অক্সিজেনের সঙ্গে তার রাসায়নিক বিক্রিয়ায় দেহের প্রয়োজনীয় তাপ উৎপন্ন হয়। অক্সিজেন রাসায়নিক বিক্রিয়ায় অত্যন্ত সক্রিয়। অধিকাংশ বস্তুর সঙ্গে অক্সিজেনের বিক্রিয়া হয়। অক্সিজেন জ্বালক বস্তু। $\text{C} + \text{O}_2 = \text{CO}_2$

ব্যবহার—(ক) খাস প্রখাসের কষ্ট হচ্ছে এমন বোগীর জন্য অক্সিজেন ব্যবহার করা হয়। (খ) হাইড্রোজেনের সঙ্গে মিশিয়ে জালালে 2800°C তাপমাত্রা উৎপন্ন হয়। এই শিথাকে অক্সি-হাইড্রোজেন শিথা বলে। এই তাপমাত্রায় প্র্যাটিনম ধাতুও গলে। অক্সি-হাইড্রোজেন শিথা খুব সাবধানে ব্যবহার করতে হয় কারণ বিক্ষেপণের সম্ভাবনা থাকে। (গ) অ্যাসিটিলিন গ্যাসের সঙ্গে মিশিয়ে জালালে প্রায় 3300°C তাপমাত্রা উৎপন্ন হয়। অক্সিঅ্যাসিটিলিন শিথা কারখানার ধাতুর ঘোটা পাত গলিয়ে কাটার কাজে বা ওয়েল্ডিং করতে ব্যবহৃত হয়। (ঘ) বিভিন্ন যৌগ বস্তু তৈরির জন্য অক্সিজেন ব্যবহার করা হয়।

হাইড্রোজেন

হাইড্রোজেন একটি মৌল, সাধাৰণ তাপমাত্রায় গাসীয় পদার্থ। পদার্থের মধ্যে সবচেয়ে হালকা। খোড়শ শতাব্দীৰ প্রথম ভাগেই বিজ্ঞানীরা এৰ খোজ পান। 1781 খ্রীস্টাব্দে ত্রিচিশ বিজ্ঞানী ক্যাটেগুশ দেখান যে অক্সিজেনের সঙ্গে হাইড্রোজেন যুক্ত হয়ে জল তৈরি হয়। তিনি নাম দেন জলন গ্যাস বা ইনফ্ল্যামেবল গ্যাস। 1788 খ্রীস্টাব্দে লাভয়সিয়ে প্রথম হাইড্রোজেন নাম দেন। গ্রীক ভাষায় এৰ অর্থ জল উৎপাদক। হাইড্রোজেন বায়ুমণ্ডলে মূল অবস্থায় কম পাওয়া যায়। আগ্নেয়গিরি থেকে বেরিয়ে আসা গ্যাসে, থনি অঞ্জলের গ্যাসে পাওয়া যায়। জানা গেছে সূর্য ও অগ্নাত্ম নক্ষত্রদেহে মূল অবস্থায় হাইড্রোজেন থাকে। হাইড্রোজেন জল, আসিড, ক্ষারক ও অন্তর্ভুক্ত অনেক যৌগিক পদার্থের অন্তর্ম উপাদান। হাইড্রোজেনের প্রতীক চিহ্ন H, অণুর সংকেত H₂।

গবেষণাগারে কি ভাবে তৈরি হয়—গবেষণাগারে H₂ তৈরির সব থেকে সাধাৰণ উপাদান অনুক্ত অর্থাৎ বাজারে কেনা দস্তা এবং লঘু মালফিউরিক

অ্যাসিড। ছবিতে (চিত্র 17.2) দু মুখের যে বোতল দেখতে পাইছ তাৰ নাম উল্ফ বোতল। এই বকম একটা বোতল নাও। এক মুখে একটা দীৰ্ঘ নল ফানেল অগ্রমুখে একটা নিৰ্গম-নল ছিপিৰ সাহায্যে আটকাও। ছিপি বক্ষ কৰাৰ আগেই বোতলোৱ ভিতৰ কয়েক টুকৰো বাজাৰ থেকে কেনা দণ্ডাৰ টুকৰো রাখ। দীৰ্ঘ-নল ফানেলোৱ ভিতৰ দিয়ে বোতলোৱ মধ্যে জল ঢাল ষেন ফানেলোৱ নিচেৰ প্রাণ্ত জলে ডুবে থাকে কিন্তু নিৰ্গম-নলোৱ নিচেৰ প্রাণ্ত জলেৰ উপৰে থাকে। হাইড্ৰোজেন, অক্সিজেনৰ সংস্পৰ্শে এলৈ বিক্ষেপণ ঘটতে পাৰে সেজন্ত বোতলোৱ মুখ দিয়ে যাতে বাতাস যেতে না পাৰে তাৰ জন্য

চিত্র 17.2

সব বকম ব্যবহৃত নিতে হবে। বোতলটি বায়ু-নীৰক কিনা হাইড্ৰোজেন উৎপন্ন হওয়াৰ আগে পৰীক্ষা কৰে দেখে নেওয়া ভাল। নিৰ্গম-নলোৱ মুক্ত প্রাণ্তে মুখ দিয়ে ঝুঁ দিলে দেখতে পাৰে দীৰ্ঘ-নল ফানেলোৱ নল দিয়ে জল কিছুটা উপৰে উঠেছে। এই বাব হাত দিয়ে মুখপ্রাণ্ত চেপে ধৰে দেখ নলে জলেৰ উচ্চতা নেমে আসছে কিনা। যদি না নামে তবে বোতলটি বায়ু-নীৰক। এইবাব ফানেলে লঘু সালফিউৰিক অ্যাসিড ঢাললেই বুদ্বুদেৰ আকাৰে হাইড্ৰোজেন উৎপন্ন হতে দেখা যাবে। ৰাসায়নিক বিক্ৰিয়া।

এইবাব নিৰ্গম-নলোৱ মুক্ত প্রাণ্ত একটা জলপূৰ্ণ পাত্ৰে রেখে তাৰ উপৰ একটা জলভৰা জাৰি উলটিয়ে ব্যাখলে হাইড্ৰোজেন গ্যাস জাৰেৰ জল সরিয়ে ভিতৰে এলৈ জষা হবে। সম্পূৰ্ণ জল সৱে গেলে কাচেৰ একটা ঢাকনি দিয়ে জাৰেৰ মুখ বক্ষ কৰে সোজা কৰে বসাও। জাৰটি এখন হাইড্ৰোজেন ভৰ্তি।

কি বিষয়েসত্ত্ব হবে—উল্ফ বোতলের ভিতৱ্ব বায়ুশূন্ত আছে কিনা দেখা দরকার। কারণ হাইড্রোজেন ও অক্সিজেন মিশ্রণ অত্যন্ত বিস্ফোরক।

ধর্ম—হাইড্রোজেন গ্যাস বর্ণহীন, স্থানহীন এবং গক্ষহীন। সমস্ত মৌলিক পদার্থের মধ্যে সবচেয়ে হালকা। বাতাস হাইড্রোজেনের চেয়ে প্রায় চৌদ্দগুণ তাওয়ী। — 252.7°C এর নিচে তরল ও — 259°C এর নিচে কঠিন বস্তুতে পরিণত হয়। তরল হাইড্রোজেন সমস্ত তরলের মধ্যে সবচেয়ে হালকা। কেলাসিত কঠিন হাইড্রোজেনের ঘনাক 0.008 g/cc । H_2 জলে প্রবীভৃত হয় না বললেই চলে। হাইড্রোজেন দাহ বস্তু এবং শিখার রঙ অতি হালকা নীল। যখন জলে তখন অক্সিজেনের সঙ্গে রাসায়নিক বিক্রিয়ায় জল উৎপাদন করে। হাইড্রোজেন অতি উত্তম বিজ্ঞারক। $\text{CuO} + \text{H}_2 = \text{Cu} + \text{H}_2\text{O}$ । নিকেল, কোবাল্ট, সোনা, কৃপো বিশেষ করে প্যালেডিয়ম ধাতু হাইড্রোজেন শোষণ করতে পারে এবং অল্প উত্তাপ দিলে আবার বার করে দিতে পারে। একে অন্তর্ভুক্তি বা অক্সুসান বলে।

ব্যবহার—(ক) অক্সি-হাইড্রোজেন শিথা তৈরিতে ব্যবহার হয়, (খ) জৈব ও অঞ্জব তেলের সঙ্গে ব্যবহার করে বনস্পতি তৈরি করা হয় যা আমরা রান্নায় ব্যবহার করি, (ং) হালকা বলে বেলুনে ব্যবহার করা হয়, (৪) বিভিন্ন র্যাগিক বস্তু তৈরির কাজে লাগে।

নাইট্রোজেন

নাইট্রোজেন একটি মৌল, সাধাৰণ তাপমাত্রায় গ্যাস। এই গ্যাসের প্রথম সন্দান পান ড্যানিয়েল বান্ডারফোর্ড নামে একজন বিজ্ঞানী 1772 আঁস্টারে। নাইট্রোজেন দাহ বস্তু নয় এবং নিঃখাস প্রক্ষাসের কাজে না লাগায় তিনি এর নাম দেন বিষাক্ত বায়ু। একটি ইচ্ছ নিয়ে পরীক্ষা করে দেখান এতে প্রাণী বাঁচতে পারে না। লাভয়সিয়ে নাম দেন ‘নিপ্রাণ বায়ু’। শীলি 1772 আঁস্টারে বান্ডারফোর্ডের সমসাময়িক কালে এর নাম দেন ‘অপবায়ু’। সোৱা বা নাইট্রোজেন থেকে এই গ্যাস তৈরি করে প্রথম নাইট্রোজেন নাম দেন চ্যাপটাল নামে একজন বিজ্ঞানী। বাতাসে মুক্ত অবস্থায় নাইট্রোজেন পাওয়া যায়। বায়ুমণ্ডলের প্রায় শতকরা 78 ভাগ নাইট্রোজেন। অনুমান 4×10^{15} টন নাইট্রোজেন বাতাসে মজুত আছে। আগ্নেয়গিরি থেকে বেরিয়ে আসা গ্যাসে ও খনির

ଭିତରେ ମୁକ୍ତ ନାଇଟ୍ରୋଜେନ ପାଇଁଯା ଯାଉ । ଏହାଡ଼ା ଅମ୍ବଖ୍ୟ ଜୈବ ଓ ଅର୍ଜେବ ପଦାର୍ଥରେ ମଙ୍ଗେ ଯୌଗିକ ଅବସ୍ଥାଯି ନାଇଟ୍ରୋଜେନ ଥାକେ । ପ୍ରୋଟିନେର ମୂଳ ଉପାଦାନ ନାଇଟ୍ରୋଜେନ । ନାଇଟ୍ରୋଜେନେର ପ୍ରତୀକ N ଏବଂ ଅଗୁର ମଙ୍ଗକେତ N₂ ।

ଗବେଷଣାଗାରେ କି ତାବେ ତୈରି ହୁଏ—ଗବେଷଣାଗାରେ ନାଇଟ୍ରୋଜେନ ଯେ ଦୁଇ ଯୌଗିକ ପଦାର୍ଥ ଥିଲେ ତୈରି ହୁଏ ତାଦେର ନାମ ନିଶାଦଲ ବା ଅୟାମୋନିସିମ କ୍ଲୋରାଇଡ ଓ ସୋଡ଼ିୟମ ନାଇଟ୍ରୋଇଟ । ଏକଟା ଛୋଟ ଫ୍ଲାକ୍ସେ ଏହି ଦୁଇଟି ଯୌଗିକ ପଦାର୍ଥରେ ଯିବ୍ରାଣେର ଏକଟି ଗାଢ଼ ଜ୍ଵବନ ନାହିଁ । ଫ୍ଲାକ୍ସେର ମୁଖ ଛିପି ଦିଲେ ଆଟକିଯେ ତାର ଭିତର ଦିଲେ ଏକଟା ଦୀର୍ଘ-ନଳ ଫାନେଲ ଓ ଏକଟା ନିର୍ଗମ ନଳ ପ୍ରବେଶ କରାଯାଇଛି (ଚିତ୍ର 17.3) । ଲକ୍ଷ୍ୟ ବାଖବେ ଦୀର୍ଘ-ନଳ ଫାନେଲେର ନିଚେରେ ପ୍ରାକ୍ତ ଜ୍ଵବନେ ଭାଲଭାବେ ଡୁବେ ଥାକେ । ନିର୍ଗମନଲେର ପ୍ରାକ୍ତ ଏକଟା ଜଲଭରା ପାତ୍ରେ ଡୁବିଯେ ବାଖ ଏବଂ ଫ୍ଲାକ୍ସେର ଭିତରେ ପ୍ରାକ୍ତ ତରଳେର ବେଶ ଉପରେ ବାଖ । ଏବାରେ ବୁନ୍ମେନ ଦୀପେର ଦ୍ଵାରା ଯାହାଯେ ଫ୍ଲାକ୍ସ୍‌ଟିକ୍ ଥିବାରେ ଧୀରେ ଧୀରେ ଗରମ କରନ୍ତେ ଥାକ । ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସ ବେରିଯେ

ଚିତ୍ର 17.3

ଆସା ମାତ୍ର ବୁନ୍ମେନ ଦୀପ ସରିଯେ ନାହିଁ । ଜଲଭରା ଗ୍ୟାସ ଜାରେ ନିର୍ଗମ ନଳେର ମୁଖେ ଉଲଟିଯେ ଧରଲେ ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସ ଜାରେର ଜଲ ସରିଯେ ଭିତରେ ଏମେ ଜମା ହତେ ଥାକିବେ । ଯଥନ ଜଲ ସମ୍ପୂର୍ଣ୍ଣ ନାହିଁ ଯାବେ ଏକଟି ଚାକନିର ଦ୍ଵାରା ଯାବେ ମୁଖ ବଜ୍ଜ କରେ ଜାରଟିକେ ମୋଜା କରେ ବସାଓ । ଜାରେ ଏଥନ ଯେ ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସ ସଂଗ୍ରହ କରା ହଲ ତତ୍ତେ କିଛୁ ପରିମାଣ ଜଳୀୟ ବାପ୍ ଓ ଅନ୍ନ ପରିମାଣ ନାଇଟ୍ରୋକ୍-ଅକ୍ୟାଇଡ

গ্যাস (NO) থাকবে। গাঢ় সালফিউরিক অ্যাসিডের সাহায্যে জলীয় বাষ্প এবং উভয় তামাৰ চোকলার সাহায্যে নাইট্রিক-অক্সাইড গ্যাস দূৰ কৰা হয়। নাইট্রোজেন বেরিয়ে আসাৰ সময়েৰ রাসায়নিক বিক্ৰিয়া নিচে দেওয়া হল—

অ্যামোনিয়ম নাইট্রাইট সৱাসি গৱম কৱলোও নাইট্রোজেন পাওয়া যায় কিন্তু রাসায়নিক বিক্ৰিয়া এত ক্রত হয় যে বিশ্ফোৱণ হতে পাৰে।

কি কি বিষয়ে সতৰ্ক হবে—(ক) বুনসেন দীপ প্ৰয়োজন মত ঝাঙ্কেৰ নিচে এনে বা সৱিয়ে নিয়ে তাপ নিয়ন্ত্ৰণ কৰা প্ৰয়োজন। (খ) দীৰ্ঘ-নল ফানেলেৰ নিচেৰ প্ৰান্ত তৱলে ডুবে থাকা দৰকাৰ। গ্যাসেৰ চাপ বেড়ে গিয়ে নলেৰ ভিতৱ দিয়ে তৱল উপৰে উঠলে তাপ-নিয়ন্ত্ৰণ কৰে চাপ কথানো প্ৰয়োজন। নতুনা বিশ্ফোৱণ হতে পাৰে।

ধৰ্ম—নাইট্রোজেন বৰ্ণহীন, গুৰুত্বশূন্য, স্থানহীন গ্যাস। বাতাসেৰ চেয়ে অল্প হালকা এবং জলে থুব কৰ মাত্রায় জৰীভূত হয়। নাইট্রোজেন গ্যাস নিখাস প্ৰথাসে সাহায্য কৰে না তবে নিজে বিশাঙ্ক নয়। সাধাৰণ তাপমাত্রায় পদাৰ্থেৰ সঙ্গে ঘোগ গঠনেৰ প্ৰবণতা কৰ। তবে উচ্চ তাপমাত্রায় অঞ্জিজেন ক্যালসিয়ম, ম্যাগনেসিয়ম-প্ৰত্তিৰ সঙ্গে রাসায়নিক ভাবে যুক্ত হয়। 1000°C তাপমাত্রায় নাইট্রোজেন অঞ্জিজেনেৰ সঙ্গে যুক্ত হয়।

Ca, Mg, Al প্ৰত্তি ধাতু লাল উভয় অবস্থায় নাইট্রোজেন শোষণ কৰে।

নাইট্রোজেন দাহ নয় এবং দহন কাজে সাহায্য কৰে না। -195.8°C তাপমাত্রায় তৱলে এবং -207.8°C তাপমাত্রায় কঠিনে পৰিণত হয়।

ব্যবহাৰ—অ্যামোনিয়া, নাইট্রিক অ্যাসিড, অমিৰ সাৰ প্ৰত্তি তৈৰিৰ কাজে লাগে। কিছু কিছু বিশ্ফোৱক তৈৰিৰ কাজে নাইট্রোজেন ব্যবহাৰ হয়।

অ্যামোনিয়া

মধ্য এশিয়াৰ আঞ্চেলগিৰিশুলি থেকে নিশাদল (NH_4Cl) এবং অ্যামোনিয়ম

সালফেট (NH_4SO_4) পাওয়া যেত। প্রাচীনকালে এইগুলি ক্ষারকের সঙ্গে মিশিয়ে গৰম কৰে অ্যামোনিয়া সংগ্ৰহ কৰা হত। প্রাচীন মিশ্র দেশে উচ্চের মলমৃত্ত পুড়িয়ে অ্যামোনিয়া সংগ্ৰহ কৰাৰ বীতি ছিল। 1774 খ্রীষ্টাব্দে প্রিস্টলি এই গ্যাস প্ৰস্তুত কৰেন ও নাম দেন ‘ক্ষাৰীয় বাতাস’। অ্যামোনিয়া নাম দেন অষ্টিন 1788 খ্রীষ্টাব্দে। বাতাসে মৃত্ত অবস্থায় অল্প অ্যামোনিয়া পাওয়া যায়। অগ্নুপাতের সঙ্গে অ্যামোনিয়ম লবণ পাওয়া যায়। উক্তিদে, প্ৰাণিদেহে, বজ্রে, মলমৃত্তে খুব অল্প পৰিমাণ অ্যামোনিয়া লবণ পাওয়া যাব। জৈব বস্তু ধৰ্ম হাড়, শিং প্ৰতি গৰম কৰলে বা জীবজৰ্জ বা গাছপালা পচলে অ্যামোনিয়া হয়। পচা বস্তু থেকে যে কোনোলো গুৰু আসে সেটা অ্যামোনিয়া গ্যাসেৰ। অ্যামোনিয়া লেখা হয় NH_3 সংকেত দিয়ে।

গবেষণাগারে কিভাৰে তৈৱি হয়—পৱীক্ষাগারে যে কোন অ্যামোনিয়া লবণকে যে কোন তীব্ৰ ক্ষারকের সঙ্গে মিশিয়ে গৰম কৰলেই অ্যামোনিয়া গ্যাস পাবে। এক ভাগ নিশাদল অৰ্ধাং অ্যামোনিয়ম ক্লোৰাইডেৰ সঙ্গে তিন ভাগ গুঁড়ো কলিচুন বা ক্যালসিয়ম হাইড্ৰকাইড $\text{Ca}(\text{OH})_2$ মেশাও এবং একটা ফাক্সেৰ মুখ ছিপি দিয়ে আটকাও ও ভিতৰে একটা নিৰ্গম নল প্ৰবেশ কৰাও।

চিত্ৰ 17.4

ফাস্টি একটা স্টোঁগে আটকানো। তাৰেৰ জালেৰ উপৰ রাখ যাতে নিচে থেকে বুনসেন দীপ দিয়ে গৰম কৰা যায়। নিৰ্গম নলেৰ এক প্ৰান্ত কৰ্কেৰ একটু নিচে

প্রবেশ করা অবস্থায় আছে এবং অগ্নিপ্রাপ্ত ক্যালসিয়ম অক্সাইডপূর্ণ (CaO) একটি কাচের লম্বা দৃমুখো নলে লাগান আছে (চিত্র 17.4)। এই লম্বা নলের অপর মুখে ছিপিব ভিতর দিয়ে নির্গমনল বেরিয়ে এসেছে। CaO বা চুনা পাথর NH_3 গ্যাসকে শুক করে। এইবাবে ফ্লাক্ষটি বুনসেন দীপ দিয়ে গুরুত করতে থাক।

গ্যাস উৎপন্ন হয়ে লম্বা পাত্রের ভিতরের ক্যালসিয়ম অক্সাইডের ভিতর দিয়ে বেরিয়ে আসবে। একটি উলটিয়ে রাখা জারে নির্গম নল ধরলে NH_3 গ্যাস বাতাস সরিয়ে সেখানে জমা হতে থাকবে। কিছুক্ষণ পর একটি লাল লিটগ্রাস কাগজ জারের মুখে ধরলে যদি নীল হয় তবে বোঝা যাবে জারটি অ্যামোনিয়া গ্যাস ভর্তি হয়েছে। এইবাবে একটা ঢাকনি দিয়ে জারের মুখ দেকে উলটিয়ে রাখলেই এক জার NH_3 গ্যাস পাওয়া যাবে। NH_3 উৎপন্ন হওয়ার সময়ে বাসায়নিক বিক্রিয়া নিচে দেওয়া হল।

ধর্ম—অ্যামোনিয়ার কোন রঙ নেই, তীব্র ঝাঁঝালো গন্ধ আছে। চোখে লাগলে প্রায় জল আসে। সহজেই জলে দ্রবীভূত হয় এবং দ্রবণ অ্যামোনিয়ম হাইড্রোক্সাইডে পরিণত হয়। $\text{NH}_3 + \text{H}_2\text{O} = \text{NH}_3\text{OH}$ । সেইজন্ত জল সরিয়ে সংগ্রহ করা সম্ভব নয়। তবলে দ্রবীভূত অবস্থায় স্থান ক্ষার সাবানের মত। সহজেই গ্যাস থেকে তবলে পরিণত করা যায়। গলনাক -77.7°C ফুটনাক -33.4°C । অ্যামোনিয়া দাহ বন্ধ নয় বা দহনে সহায়তা করে না। অক্সিজেনের সঙ্গে মিশিয়ে জ্বালালে হলুদ রঙের শিখা নিয়ে জলে। $4\text{NH}_3 + 3\text{O}_2 = 6\text{H}_2\text{O} + 2\text{N}_2$ । অক্সিজেন ও অ্যামোনিয়ার মিশ্রণ বিক্ষেপক। অ্যামোনিয়া একটি ক্ষারক, লাল লিটগ্রাস কাগজ নীল করে এবং আসিডের সঙ্গে যৌগিক লবণ তৈরি করে।

ব্যবহার—তবল অ্যামোনিয়া বরফ তৈরির কাজে লাগে। জলে দ্রবীভূত অ্যামোনিয়া তৈলাক্ত ময়লা পরিষ্কারের কাজে লাগে। এছাড়া সার, নাইলন, ব্রেকার, স্মেলিং স্লট এবং বহু প্রকার লবণ তৈরির কাজে লাগে।

কার্বন ডাইঅক্সাইড

কার্বন ডাইঅক্সাইড গ্যাস প্রথম প্রস্তুত করেন ভ্যান হেলমোন্ট I630 খ্রীষ্টাব্দে, কিন্তু গ্যাসটির সঠিক পরিচয় তিনি জানতেন না। 1783 খ্রীষ্টাব্দে লাভস্যসিমে

এটি যে কার্বনের অক্সাইড তা বুঝতে পারেন। কার্বন ডাইঅক্সাইড গ্যাস মূল্য অবস্থায় বাতাসে পাওয়া যায়। উহুন, বা বড় বড় চুলিয়ে দেওয়া থেকে প্রাণীদের নিঃশ্বাস প্রশ্বাসের সঙ্গে অনবরত বাতাসে এসে মিশছে। চুনাপাথর কোন বকমে আসিতের সংস্পর্শে এলে এই গ্যাস তৈরি হয়। জলে কার্বন ডাইঅক্সাইড দ্রব্যীভূত অবস্থায় থাকে। পৃথিবীর ভিতর থেকেও কোন কোন জায়গায় কার্বন ডাইঅক্সাইড বেরিয়ে আসে। যবদ্বীপের ‘বিষাক্ত উপত্যকায়’ এবং নেপলসের একস্থানে এই গ্যাস জমা হয় এবং কোন জীবজন্তু সেখানে গেলে মারা যায়। চিনি ও মদ তৈরিয়ে সহজে কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন হয়। কার্বন ডাইঅক্সাইডের সংকেত CO_2 ।

গবেষণাগারে কি ভাবে তৈরি হয়—কয়েক টুকরো চুনা পাথর ও কিছু জল একটা উল্ফ বোতলে নাও। বোতলের এক মুখে ছিপিয়ে সাহায্যে একটা দীর্ঘ-নল ফানেল আটকাও। লক্ষ্য রাখবে ফানেলের নিচের প্রান্ত জলে ডুবে থাকে। বোতলের অন্য মুখে একটা নির্গম নল ছিপিয়ে সাহায্যে আটকাও (চিত্র 17.5)। এইবার ফানেলে স্থু হাইড্রোক্লোরিক আসিড ঢাল। দেখবে বুদ্বুদের আকারে গ্যাস উৎপন্ন হচ্ছে। নির্গম নলের নিচে একটি গ্যাস জারের মুখ ধরলেই জারে কার্বন ডাইঅক্সাইড জমা হতে থাকবে। কার্বন

চিত্র 17.5

ডাইঅক্সাইড বাতাসের চেয়ে ভারী হাওয়ায় বাতাস সরিয়ে সেখানে জমা হবে। রাসায়নিক বিজ্ঞিয়া দেওয়া হল :

এই গ্যাসে কিছু পরিমাণ HCl বাষ্প থাকে। উৎপন্ন গ্যাসকে সোডিয়ম বাইকার্বনেটের জ্বরণের ভিত্তির প্রবেশ করিয়ে পরে গাঢ় সালফিউরিক আসিডের ভিত্তির দিয়ে প্রবেশ করালে HCl বাষ্প ও অলকণা দ্রু করা সম্ভব হবে।

ধর্ম—কার্বন ডাইঅক্সাইড একটি বর্ণহীন গ্যাস। অন্ন খাবালো গুঁজ আছে এবং স্বাদ ঝুঁঝ অয়। বাতাসের চেয়ে 1.53 শুণ তারী। এই গ্যাস বিষাক্ত নয় কিন্তু এতে খাস গ্রহণ করা সম্ভব নয়। এই গ্যাস নিজে দহনশীল নয় এবং দহনে সাহায্য করে না। এই জন্য আগুন নেভানোর কাজে এই গ্যাস বাপক ভাবে ব্যবহার করা হয়। বড় বড় অফিসে বা কারখানায় লাল রঙের শঁকুর মত যে সব আগুন নেভানো যন্ত্র তোমরা দেখতে পাও তার ভিত্তির প্রয়োজনের সময় কার্বন ডাইঅক্সাইড প্রস্তুত করা হয়। কার্বন ডাইঅক্সাইড গ্যাস বেশ পরিমাণে জলে দ্রবীভূত হয় এবং কিছুটা কার্বনিক আসিডে পরিণত হয়। $\text{CO}_2 + \text{H}_2\text{O} = \text{H}_2\text{CO}_3$ । এই জ্বরণ নৌল লিটমাস কাগজকে লাল করে। তাপ ও চাপের সঙ্গে জ্বরণের পরিমাণ বাড়ে। সোডা ওয়াটারে কার্বন ডাই-অক্সাইড দ্রবীভূত অবস্থায় থাকে, সোডা নয়। এই গ্যাস তরল ও কঠিন বস্তুতে পরিণত করা যায়। কঠিন কার্বন ডাইঅক্সাইডের নাম ‘ড্রাই আইস’ বা শুকনো বরফ। মাছ বা পচনশীল বস্তুর পচন বন্ধ করতে ব্যবহার করা হয়। ‘ড্রাই আইসের’ স্লিধিং উন্ধর্পাতনে একেবারে গ্যাসে পরিণত হয়।

ব্যবহার—(ক) কাপড় কাচা সোডা (সোডিয়ম কার্বনেট), সোডা ওয়াটার প্রস্তুতি তৈরিতে লাগে। (খ) আগুন নেভানোর কাজে লাগে। (গ) পচনশীল বস্তুকে পচনের হাত থেকে বন্ধ করার জন্য ড্রাই আইস কাজে লাগে।

সালফার ডাইঅক্সাইড

গুঁকের ইংরেজী নাম সালফার এবং সালফারের একটি অক্সাইডের নাম সালফার ডাইঅক্সাইড। যুত মাঝের মেহে পচন বন্ধ করার জন্য এই গ্যাসের ব্যবহারের উপরে হোমারের কাব্যে আছে। প্রাচীনকালে নতুন কাপড়কে বিশুল বা বিশুলন করার জন্য সালফার ডাইঅক্সাইড গ্যাস ব্যবহার করা হত। মেকালে এব নাম ছিল হীরাকষ তেল। 1774 খ্রিস্টাব্দে প্রিস্টলি পারদের সঙ্গে গাঢ় সালফিউরিক আসিড গরম করে এই গ্যাস পান কিন্তু কোন উপাদানে গ্যাসটি

তৈরি তিনি জানতেন না। 1777 খ্রিস্টাব্দে লাভয়দিয়ে এর উপাদানগুলি জানতে পারেন এবং এর রাসায়নিক সংকেত দেন SO_3 । বাতাসে গুরুতর পোড়ালেই সালফার ডাইঅক্সাইড গ্যাস পাওয়া যায়।

গবেষণাগারে কিভাবে তৈরি হয়—একটি ফ্লাস্টে কিছু তামার চোকলা ও গাঢ় সালফিউরিক অ্যাসিড নাপ (চিত্র 17.6)। ফ্লাস্টির মুখের ছিপির

চিত্র 17.6

ভিতর দিয়ে একটি দীর্ঘ-নল ফানেল ও একটি নির্গমননল প্রবেশ করাও। ধীরে ধীরে তাপ দিলে গ্যাস উৎপন্ন হতে শুরু করবে। গ্যাস উৎপন্ন হওয়া মাত্র বুনসেন দীপশিখা সরিয়ে নেওয়া দরকার। নির্গমননলের মুখে একটা গ্যাস জার নোজাভাবে ধূলেই SO_3 সেখানে জমা হতে থাকবে। বাতাসের চেয়ে প্রায়

বিশেষ ভাবী হওয়ায় বাতাস সরিয়ে SO_3 গ্যাস সেখানে জমা হবে। এই সঞ্চিত গ্যাসে কিছু পরিমাণ সালফার ডাইঅক্সাইড থাকায় প্রথমে জল ও পরে গাঢ় সালফিউরিক অ্যাসিডের ভিতর দিয়ে প্রবাহিত করতে হয়। ফলে উৎপন্ন গ্যাস বিশুद্ধ ও শুরু হয়।

ধর্ম—সালফার ডাইঅক্সাইড বর্ণহীন, পোড়া গুঁককের মত ঝাঁঝালো গুঁক্যুক্ত এবং বিষাক্ত গ্যাস। জলে সহজেই দ্রবণীয় এবং দ্রবণ সালফিউরাস অ্যাসিডে পরিণত হয়। $\text{SO}_3 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{SO}_3$ বাতাসের চেয়ে প্রায় 2·3 গুণ ভাবী। নিজে দহনশীল নয় এবং সাধারণত দহনে সাহায্য করে না। তবে উক্তপ্রত্যামিয়ম, উক্তপ্রত্যামিয়ম টিন বা লোহার গুঁড়ো এতে জলতে পারে। বরফ ও লবণের হিম মিশ্রণের সাহায্যে -10°C এর নিচে এনে অতি সহজেই তরলে পরিণত করা যায়। -72.7°C এর নিচে কঠিন বস্তুতে পরিণত হয়। তাপের অয়োগে SO_3 ভেঙে গিয়ে অক্সিজেন উৎপন্ন হয়। ক্ষারের সঙ্গে বিক্রিয়ায়

যৌগিক নথি তৈরি করে।

এই গ্যাস একটি বিজ্ঞানিক বস্তু।

ব্যবহার—কৌটনাশক হিসেবে ব্যবহার হয়ে থাকে। বস্তু বা কলেরা রোগীর ঘরে গৃহকের ধূমে দিতে নিশ্চয়ই দেখেছ। গৃহকে পুড়ে সালফার ডাইঅক্সাইড তৈরি হয়। SO_2 কৌটনাশক। জৈব বস্তুর রঙ পালটায় অর্থাৎ বিবরঞ্চক বা লিচিং এজেন্ট হিসাবে কাজ করে। একটা জবা ফুলকে গৃহকের ধূমে কিছুক্ষণ ধূলেই দেখাবে লাল রঙ ক্রমশ মিলিয়ে যাচ্ছে। কাপড় জামা বা কাগজ তৈরিতে বিবরঞ্চক হিসেবে ব্যবহৃত হয়।

সালফিউরেটেড হাইড্রোজেন বা হাইড্রোজেন সালফাইড

ডিমের সাদা অংশ বা গৃহক আছে এমন কোন শাকসবজি কোন জায়গায় পচলে একটা তীব্র গৃহ নাকে আসে। এটই হাইড্রোজেন সালফাইড বা সালফিউরেটেড হাইড্রোজেন গ্যাস। আগ্নেয়গিরি থেকে বেরিয়ে আসা গ্যাস ও অনেক ঝরনার জলে সামাজ্য পরিমাণে জৰীভূত অবস্থায় এই গ্যাস পাওয়া যায়। ফুটস্ট গৃহকের ভিতর হাইড্রোজেন গ্যাস প্রবাহিত করলে এই গ্যাস পাওয়া যায়। লেখা হয় H_2S সংকেত দিয়ে।

গবেষণাগারে কিভাবে তৈরি হয়—একটি উল্ফ বোতলে কিছু ফেরাস সালফাইড নাও। বোতলের এক মুখে একটি দীর্ঘনল ফানেল ও অন্য মুখে একটি নির্গম নল লাগাও। এইবার ফানেলের মুখ দিয়ে ফেরাস সালফাইডের প্রায় তিনগুণ লবু হাইড্রোক্লোরিক বা লবু সালফিউরিক অ্যাসিড ঢাল। দেখবে H_2S গ্যাস উৎপন্ন হচ্ছে। রাসায়নিক বিক্রিয়া হল :

বাতাসের চেয়ে অল্প ভাবী হওয়ায় গ্যাস জারে নির্গমনলের ভিতর দিয়ে এসে অসা হতে থাকবে।

পরীক্ষাগারে রাসায়নিক বিশেষণের জন্য H_2S গ্যাস অত্যন্ত প্রয়োজন হয়।

ଅଧିକ ପରିମାଣେ ଶ୍ରୋଜନ ମତ H_2S ଗ୍ୟାସ ପାବାର ଜଣ୍ଡ ଯେ ସ୍ଵରୂପ ବ୍ୟବହାର କରାଯାଇଲୁ

ହୁଏ ତାର ନାମ କିପ୍‌ସ ଆପ୍ଯାରେଟୋମ୍
(ଚିତ୍ର ୧୬.୭)

ଚିତ୍ର ୧୬.୭

ଧର୍ମ—ସାଲଫିଡ଼ିରେଟେଡ ହାଇଡ୍ରୋଜେନ ବର୍ଣ୍ଣିନ ଗ୍ୟାସ, ଗନ୍ଧ ପଚା ଡିମେର ମତ,
ଏବଂ ବିଧାକ୍ତ । ଡିମେର ସାମା ଅଂଶ
ପଚଳେ H_2S ଗ୍ୟାସ ଉତ୍ପନ୍ନ ହୁଏ ।
ବାତାମେର ଚେଯେ ୧୨ ଶ୍ରୀ ଭାରୀ । ଠାଙ୍ଗା
ଅଳେ ସହଜେଇ ପ୍ରସ୍ତୁତ ହୁଏ କିନ୍ତୁ
ତାପମାତ୍ରା ବୃଦ୍ଧିର ମଧ୍ୟେ ପ୍ରସାରିତ କରେ ।
ଅଲୀୟ ଦ୍ରବ୍ୟରେ ଦ୍ୱିତୀୟ ଆସିଦ ଧର୍ମ ଆଛେ ।
ବାତାମେ ୩୬୪°C ତାପମାତ୍ରାମ ଉତ୍ତର
କରଲେ ନୀଳ ଶିଖାୟ ଜଳେ ଏବଂ ଶିଖାର

ମଧ୍ୟେ ହାଇଡ୍ରୋଜେନ ଓ ସାଲଫାଇଟ ବିଶିଷ୍ଟ ହୁୟେ ଥାଏ ।

ବ୍ୟବହାର—ପରୀକ୍ଷାଗାରେ ରାସାୟନିକ ବିଶ୍ୱେଷଣେର ଜଣ୍ଡ H_2S ଗ୍ୟାସ ବ୍ୟବହାର
କରାଯାଇଲୁ ।

প্রশ্নাবলী

প্রথম অধ্যায়

1. ক্ষেত্র রাশি বলতে কি বোঝায়? স্টেট ও ক্ষেত্রাব রাশির পার্থক্য উন্নয়ন নিয়ে বোঝাও।
2. প্রাথমিক একক ও নক একক বলতে কি বোঝায়? এস আই পদ্ধতিতে রাশির প্রতীক ও তাদের এককগুলি সেখ।
3. ক্ষেত্র সাহায্যে বস্তুর দৈর্ঘ্য মাপার সময় কি ভাবে ভূল আসতে পারে? ভূল দূর করতে কি করবে?
4. একটি দাঁড়িগালার দুই বাহ অন্মান। একটি বাহ 10 cm অন্তি 12 cm। একটি 10 g ওজনের সাহায্যে গালার উভয় প্রান্ত থেকে যদি অন্ত একটি বস্তুর ওপর নাও তবে দ্রুটি মাপের পার্থক্য কত হবে?
5. নিচের সেখানগুলিতে কোনটি মাপ ও কোনটি একক বল:
10 cm, 5 ft, 100 km, 30 yd, 10^{-5} m.
6. একটি ক্ষেত্র নিয়ে তোমার হাতের মাপ নাও পরে তোমার বক্তুর হাতের মাপ নাও। মাপগুলি কি এক? ঠিক সেইভাবে তোমার পা ও বিঘতের মাপ নাও ও বক্তুরের পা এবং বিঘতের মাপের সঙ্গে মিলিয়ে দেখ।
7. তোমার ক্লাসবরের পিছনের দেয়াল কত মিটার মধ্য? চোখের আন্দাজে বল। এবার একটি ক্ষেত্র নিয়ে মেপে দেখ তোমার আন্দাজ ঠিক কি না।
8. কৃতব মিনারের উচ্চতা 72 m হলে কত কিলোমিটার হবে?
9. করেকট পোষ্টকার্ড নিয়ে প্রত্যেকটির দৈর্ঘ্য ও প্রহ মাপ। তাদের মাপ কি সমান?
10. নিচের দূরত্বগুলি 10-এর সাতে দেওয়া আছে। এগুলি 1 এর পরে শুল্প বসিয়ে একাশ কর।
 $\text{পৃথিবীর সবচেয়ে কাছের তারার দূরত্ব} = 10^1 \text{ km}$
 $\text{পৃথিবী থেকে সূর্যের দূরত্ব} = 1.5 \times 10^8 \text{ km}$
 $\text{পৃথিবী থেকে টার্মিনেল দূরত্ব} = 4 \times 10^6 \text{ km}$
 $\text{পৃথিবীর ব্যাস} = 1.3 \times 10^4 \text{ km}$

11. তোমাকে একটি ক্ষেত্র দেওয়া হল। যে কোন বই-এর প্রতিটি পাতা কতখানি পুর কি করে বলবে? (মলাট বাদ দাও।)

দ্বিতীয় অধ্যায়

- পদাৰ্থ ও শক্তি কাকে বলে ? শক্তি কি কি জলে প্ৰকাশ পেতে পাৰে ? শক্তি এক জল থেকে অন্য জলে জলাস্থৱৰিত হতে পাৰে উদাহৰণেৰ মাহাযো বল।
- ভৱ ও ভাৱ কাকে বলে ? এদেৱ মধ্যে পাৰ্থক্য কোথায় ? ভৱেৱ নিত্যতা সৃজ্জ বলতে কি বোৰ ?
- গ্ৰাম এককে ভৱ, আৰ্গ এককে শক্তি এবং প্ৰতি সেকেতে সেচিমিটাৱে আলোৱ গতিবেগ ধৰে এক গ্ৰাম বস্তু বিলুপ্ত হলৈ কত শক্তি পাওয়া যাবে বাৰ কৰ।

তৃতীয় অধ্যায়

- পদাৰ্থেৰ তিন অবস্থা কি কি ! এদেৱ মধ্যে : পাৰ্থক্য কোথায় ? ‘জল, বৰফ এবং জলীয় বাষ্প—একই পদাৰ্থেৰ তিনটি পৃথক অবস্থা মাত্ৰ’—এই উক্তি আলোচনা কৰ।
- বস্তুৰ গলন ও গলনাক এবং হিমায়ন ও হিমাক বলতে কি বোৰায় ? বৰফেৰ গলনাক এবং শাপথালিনেৰ হিমাক কি ভাবে নিৰ্ণয় কৰবে ? নিৰ্দিষ্ট গলনাক নেই এমন কয়েকটি বস্তুৰ নাম কৰ।
- বাষ্পীভবন বলতে কি বোৰায় ? কি কি ভাবে বাষ্পীভবন হতে পাৰে উদাহৰণসহ আলোচনা কৰ। যে যে কাৰণে বাষ্পায়ন প্ৰক্ৰিয়াত হতে পাৰে তাৰ উল্লেখ কৰ।
- লীন তাপ কী, গলনেৰ এবং শূন্টনেৰ লীন তাপ বলতে কি বোৰায় ?
- কি কি কাৰণে পদাৰ্থেৰ অবস্থাৰ পৰিবৰ্তন হতে পাৰে উদাহৰণসহ বল।
- যুক্তি দিয়ে ব্যাখ্যা কৰ :
 - কোন বস্তুৰ হিমাক এবং গলনাক—এই দ্বয়েৰ তাৰ্পমাত্ৰা এক।
 - শীতেৰ দেশে খুৰ বেশি ঠাণ্ডা পড়লে জলেৰ পাইপ ফেটে যায়।
 - গলনাক, হিমাক ও লীন তাপেৰ উপৰ চাপেৰ প্ৰভাৱ সমৰকে যা জান লেখ।
- সংক্ষেপে আলোচনা কৰ :
 - বাতাস কৰলে বা ঝুঁ দিলে গৱম বস্তু তাড়াতাড়ি ঠাণ্ডা হৰ। (b) হিমিশ্রণ,
 - (c) বাষ্পায়ন, (d) উৰ্বৰ্পাতন, (e) উদাহৰণসহ, (f) লীন তাপ

চতুর্থ অধ্যায়

- দূৰত ও সৱনে তফাং কী ? জড়ি ও বেগে তফাং কী ? একটি ট্ৰেনেৰ গতিকে জড়ি বলবে বা বেগ বলবে ? কেন ?
- তুমি ও তোমাৰ বস্তু একই দিকে একই বেগে ছুটিছ। অত্যেকেৰ মাধ্যাৰ একটি মৌমাছি বসে আছে। তোমাদেৰ ছুটন্ত অবস্থায় মৌমাছি ছুটো একে অন্যকে কিভাৱে দেখতে পাৰে ? যদি তোমোৰ একই বেগে উলটো দিকে ছুটতে ধাৰ তবে তোদেৱ মধ্যে গতিৰ সম্পৰ্ক কেমন হৰে ?

- 3 পিছল মাটিতে চলা কষ্টকর কেন ?
- 4 ঘোড়ার গাড়ির ঘোড়া গাড়িকে টানে, গাড়িও ঘোড়াকে টানে। তবে ঘোড়া ইটতে ধাকলে গাড়ি চলতে থাকে কেন ?
- 5 লোক ভঙ্গি বাস খুব জোরে চলতে চলতে হঠাত থেমে গেলে কী হতে পারে ?
- 6 এক নিউটন কত ডাইনের সমান ? এক পাউণ্ডাল কত ডাইনের সমান ?
- 7 সরণ, বেগ, শ্রদ্ধা ও অবরুণ কাকে বলে ? প্রত্যেকটির একক লেখ ?
- 8 নিউটনের গতিশূল কী ? উদাহরণ দিয়ে বাখ্যা কর।
- 9 নিউটন কিমের একক ? নিউটনের সঙ্গে কিলোগ্রামের সম্পর্ক কী ?

পঞ্চম অধ্যায়

- 1 কাঞ্চ, ক্ষমতা ও শক্তির সংজ্ঞা লেখ। কাঞ্জের সঙ্গে শক্তির পার্শ্বক্য কী ? জুল কাকে বলে ?
- 2 হিতিশক্তি ও গতিশক্তি বলতে কী বোঝায় উদাহরণ দিয়ে বোঝাও।
- 3 সমান ভরের দুটি বস্তুর একটি h এবং অপরটি $2h$ উচ্চতায় রাখা আছে। তাদের হিতি শক্তির অনুপাত কত ?
- 4 সমান ভরের দুটি বস্তু সহবেগে চলছে। একটির বেগ অপরটির দ্বিগুণ হলে তাদের গতিশক্তির অনুপাত কত ?
- 5 যন্ত্র কাকে বলে উদাহরণ দিয়ে বোঝাও। যে কোন প্রোগ্রাম লিঙ্গার বর্ণনা কর এবং কিভাবে যাত্রিক স্থানিক হয় দেখাও।
- 6 চাকা ও অক্ষদণ্ড এবং নত তলের কার্যপ্রণালী ছবির সাহায্যে বোঝাও।
- 7 এক জুল কত আর্গের সমান ?
- 8 এক ফুট-পাউণ্ডাল কত আর্গের সমান ?
- 9 মনে কর তুমি যেখানে আছ সেখান থেকে পৃথিবীর ব্যাস বরাবর একটি দু'ফুট বাসের গতি করা হল, অপর আন্ত পর্যন্ত। একটি 5 kg ওজনের লোহার গোলক যদি ঐ গতি দিয়ে ফেলে দেওয়া হয় তবে গোলকটি কোথায় থাবে ?

ষষ্ঠ অধ্যায়

- 1 তাপমাত্রা কাকে বলে ? তাপ ও তাপমাত্রায় প্রভেদ কী উদাহরণ দিয়ে বোঝাও।
- 2 ডিপ্রি সেলসিয়াস মানে কী ? তাপমাত্রার অস্থায় এককগুলি ও তাদের সম্পর্ক লেখ।
- 3 বস্তুর তাপঘাস্তা, জলতুল্যাক এবং আপেক্ষিক তাপের মধ্যে সম্পর্ক আলোচনা কর।
- 4 তাপ যে শক্তির একটি ক্রপ উদাহরণ দিয়ে বোঝাও। তাপশক্তি থেকে যাত্রিক শক্তি কিভাবে পেতে পার ?

সপ্তম অধ্যায়

- 1 আলো কী ? অপসারী ও অভিসারী রশ্মি কাকে বলে ? ছবি এঁকে বোঝাও ।
- 2 আলোর প্রভ কী ? স্প্রিন্ট ও অপ্রভ বন্ধু কাকে বলে ? নিচের বন্ধুগুলির কোনটি অপ্রভ এবং কোনটি স্প্রভ ?
(ক) শুকতারা (খ) নক্ষত্র (গ) চাম (ঘ) হীরার টুকরো (ঙ) জোনাকি ।
- 3 প্রতিফলন কাকে বলে ? প্রতিফলনের সূত্র বল ।
- 4 প্রতিফলনের সূত্র দ্রুটি প্রমাণ করতে তোমাকে একটি সমতল দর্পণ ও দ্রুটি দেশজাইএর কাঠি দেওয়া হল । কি ভাবে প্রমাণ করবে ?
- 5 প্রতিফলন ও প্রতিসরণ কাকে বলে ? প্রতিফলন ও প্রতিসরণের মধ্যে প্রভেদ কী ?
- 6 নিয়মিত ও বিচ্ছিন্ন প্রতিফলন কাকে বলে ? কোন ধরনের তলে আলোর প্রতিফলন দেখি ?
- 7 কোন বন্ধু যদি আলো প্রতিফলিত না করে তবে কি বন্ধুটিকে দেখা যাবে ?
- 8 (a) যদি দর্পণকে ছির রেখে তুমি দর্পণের দিকে এগিয়ে যাও তবে প্রতিবিষ্ঠ কোন দিকে ও কি বেগে এগিয়ে যাবে ? ছবি এঁকে উন্নত দাও ।
(b) যদি ছির হয়ে দাঢ়িয়ে দর্পণকে তোমার দিকে নিয়ে আস তবে প্রতিবিষ্ঠ কোন দিকে ও কত বেগে এগিয়ে যাবে ? ছবি এঁকে উন্নত দাও ।
- 9 লেস কাকে বলে ? লেসের সঙ্গে সম্পর্ক কাঁচের তফাত কোথায় ? উত্তল ও অবত্তল লেস কাকে বলে ? তোমাকে একটি উত্তল ও একটি অবত্তল লেস দেওয়া হল । লেসের গায়ে হাত না বুলিয়ে কি ভাবে বলবে কোনটি কি লেস ?
- 10 বক্রতা-কেলু, আলোক-কেলু, প্রধান অক, ফোকস, ফোকস-দূরত্ব কাকে বলে ? ছবি এঁকে বোঝাও ।
- 11 একটি উত্তল লেসের ফোকস দূরত্ব ছবি এঁকে দেখাও ।
তোমাকে একটি উত্তল লেস ও একটি কেল দেওয়া হল । কি ভাবে ফোকস-দূরত্ব বার করবে ?
- 12 শক্তি কাকে বলে ? আলো এক ধরনের শক্তি, উদাহরণ দিয়ে বল ।
- 13 তরঙ্গ-দৈর্ঘ্য কাকে বলে ? তরঙ্গ-দৈর্ঘ্যের এককের নাম কী ও এককটির মিটার এককে মান কত ? কম্পাক্ষ কাকে বলে ? আলোর গতিবেগ কত ?
- 14 বর্ণালী কাকে বলে ? বিচ্ছুরণ কি কারণে ঘটে ? পর্যোক্ষাগারে কি ভাবে বর্ণালী তৈরি করতে পারবে ?
- 15 স্বচ্ছ ও অনস্বচ্ছ বন্ধু কি কারণে ইউন দেখায় ? লাল আলোয় একটি লাল ও একটি হলুদ ফুলীকে কেমন দেখাবে ?

অষ্টম অধ্যায়

- কেলাসিত ও অকেলাসিত বস্তু কাদের বলে ? বক্ষনশক্তি বলতে কি বোঝা ?
- 'কোন কেলাসিত বস্তুর গলনাক ও হিমাক একটি নির্বিষ্ট তাপমাত্রা'—আলোচনা কর।
অকেলাসিত বস্তুর নির্বিষ্ট গলনাক বা হিমাক নেই কেন ?

নবম অধ্যায়

- অজ্ঞান কোন পদার্থকে কিভাবে সনাক্ত করা যেতে পারে ? পদার্থের ভৌত এবং রাসায়নিক ধর্ম বলতে কি বোঝায় ?
- পদার্থের ভৌত এবং রাসায়নিক পরিবর্তন সম্পর্কে উদাহরণসহ আলোচনা কর।
- ভৌত এবং রাসায়নিক পরিবর্তনের তুলনা কর।
- উদাহরণসহ আলোচনা কর :
 - (a) অনুষ্ঠটক ও তার কাঙ্গ, (b) তাপগ্রাহী ও তাপমোচী রাসায়নিক বিক্রিয়া।

দশম অধ্যায়

- মৌল বা মৌলিক পদার্থ কাকে বলে ? চোখের সামনে আমরা 'যেসব পদার্থ দেখি, তারা নবই কি মৌলিক ?' আজ পর্যন্ত পাওয়া গিয়েছে এমন মৌলের সংখ্যা কয়টি ?
- যৌগ বা যৌগিক পদার্থ কাকে বলে ? যৌগের সঙ্গে মিশ্রণের পার্থক্য কী ? মিশ্রণ এবং জ্বরণ কি এক ? বাস্তু মিশ্রণ মৌল না যৌগ ?
- ধাতু এবং অধাতু বলতে কি বোঝ ? এদের পার্থক্যগুলি বল। সংকের ধাতু কী ? 'পান' দেওয়া কাকে বলে ?
- উদাহরণ সহ আলোচনা কর :
 - (ক) ঘোজাতা, (খ) মূলক, (গ) অণু ও পরমাণু।

একাদশ অধ্যায়

- জ্বরণ বলতে কি বোঝায় ? জ্বরণ কত রকম হতে পারে ? জ্বরণের সঙ্গে দ্রাব ও দ্রাবকের সম্পর্ক কী ? জলকে পৃথিবীর সর্বশেষ দ্রাবক বলা হয় কেন ?
- সম্প্রস্তু ও অসম্প্রস্তু জ্বরণ কাকে বলে ? সম্প্রস্তুতার সঙ্গে জ্বরণীয়তার কোন সম্পর্ক আছে ? জ্বরণের জ্বরণীয়তা 36.3° বলতে কি বোঝায় ? জ্বরণীয়তার উপর তাপের অভাব সম্পর্কে কী জান ?

দ্বাদশ অধ্যায়

- প্রতৌক-চিহ্ন ও সংকেত বলতে কি বোঝায় ? কয়েকটি রাসায়নিক সমীকরণের উদাহরণ দাও। এই সমীকরণে কিভাবে প্রতৌক-চিহ্ন এবং সংকেতের ব্যবহার হয়েছে তার আলোচনা কর।
- রাসায়নিক সমীকরণে কিভাবে সমতা রক্ষা করা হয় উদাহরণ সহ আলোচনা কর।
- রাসায়নিক সমীকরণের সাহায্যে কি কি বিষয় জানান যায় এবং কি কি প্রকাশ করা যায় ?
- উদাহরণ সহ আলোচনা কর :
 - (ক) ঘোজাতা (খ) মূলক

ত্রুদ্ধশ অধ্যায়

- তড়িৎ পরিবাহী হিসাবে তামা সর্বশ্রেষ্ঠ—এই কথা বলতে কি বোঝায়? তড়িৎ বিশেষণ কাকে বলে? আয়ন ও আয়নন বলতে কী বোঝ? ক্যাটাইন এবং আনায়ন—এদের পার্থক্য কোথার?
- জলে তড়িৎ প্রথাহের প্রভাব বলতে কি বোঝায়? জলকে ইলেকট্রোলাইট বলা সম্পর্কে তোমার মতামত কি?
- তড়িৎ লেপন কি ভাবে হয়? গিন্ট করা কাকে বলে?

চতুর্দশ অধ্যায়

- অ্যাসিডের ধর্ম কী? অ্যাসিডের সঙ্গে ক্ষারকের কি সম্পর্ক আছে? কোনটা অ্যাসিড এবং কোনটা ক্ষারক কিভাবে জানা যায়? আসিড ও ক্ষারকের পার্থক্য কি কি?
- লবণ বলতে সাধারণত আমরা কি বুঝি? কিভাবে লবণ তৈরি হয়? কয়েকটি খুব পরিচিত লবণের নাম কর। এশেন কাকে বলে?
- দোলের সময় তোমরা অনেকেই ‘ভ্যানিশিং কালার’ ব্যবহার কর। এটি রঙ তৈরি হয় আমোনিয়ন হাইড্রোক্সাইডের সঙ্গে ফেনফথ্যালিনের বিক্রিয়ায়। রঙ উবে যায় কেন—বল দেখি?

পঞ্চদশ অধ্যায়

- জারণ ও বিজ্ঞারণ বলতে কি বোঝায়? এদের মধ্যে পার্থক্য কি কি তুলনামূলকভাবে দেখাও।

ষেড্ডশ অধ্যায়

- তরল বায়ু বলতে কি বোঝায়? তরল বায়ু তৈরির যন্ত্র প্রথম কে আবিষ্কার করেন? কি ভাবে বায়ুকে তরল করা হয়?
- বায়ুমণ্ডলে নাইট্রোজেনের সমতা রক্ষা সার্থকতা কি? কি ভাবে সমতা রক্ষা হয়?
- কি ভাবে বায়ুমণ্ডলে কার্বন ডাইঅক্সাইডের সমতা রক্ষা চলে? সমতা রক্ষা না হলে কি হত?
- বিরল গ্যাস কি? বায়ুমণ্ডলের কি কি বিরল গ্যাস আমাদের কোন্ কোন্ প্রয়োজনে লাগে?

সপ্তদশ অধ্যায়

- কি উপায়ে নিচের লেখা গ্যাসগুলি প্রস্তুত করা হয়? তাদের ধর্ম এবং ব্যবহার শেখ।
(ক) অঞ্জিজেন, (খ) নাইট্রোজেন, (গ) আমোনিয়া, (ঘ) কার্বন ডাইঅক্সাইড,
(ঙ) সালফার ডাইঅক্সাইড (চ) সালফিটরেটেড হাইড্রোজেন।
- উদ্বাহরণ সহ সঙ্গে নির্দেশ কর:
(ক) অমুষ্টক, (খ) অঞ্জ-হাইড্রোজেন শিখ, (গ) অস্ত্রুতি, (ঘ) নিম্নাণ বায়ু
বা তাপবায়ু, (ঙ) স্লেলিং স্ট্রট (চ) বিষাক্ত উপত্যকা, (ছ) সোডা ওয়াটার, (জ) বিরলক পদার্থ।

ପ୍ରିଣ୍ଟ

বৈজ্ঞানিক শব্দকোষ

অক্সিলাইটি noncrystalline	আলো, আলোক light. —রশ্মি ray of light. —গুচ্ছ beam of light.
অক্স অক্সিস অক্সিস অক্সিস axis axle সমাক্ষ cc-axial	—সঞ্চয়ণ propagation of light
অজৈব inorganic	আয়তন volume
অণু molecule	আয়ন ion
অধাতু nonmetal	আয়নিশন ionisation. তাপ—thermal—
অনচ্ছ opaque	অ্যানিয়ন anion
অনুষ্টক catalyst	অ্যামোরফাস amorphous
অনুপাত ratio	অ্যাম্পের Ampere
অনুভূমিক horizontal	অ্যাসিড acid. ধনিজ—mineral—.
অন্ত্র অন্ত্রত্ব occlusion	গাঢ়—concentrated—. লবু—dilute—
অপচয় dissipation	ইন্টারন্টার্ন্যাশনাল বুরো অক্ষ ওয়েটস অ্যাণ্ড মেজারস International Bureau of weights & measures
অগসারী divergent	ইন্সলেচন translucent
অপ্রভ nonluminous	উদ্বাগী volatile
অবস্থা state	উপগ্রহ satellite
অবস্থার রূপান্তর change of state	উল্ফ বোতল Woulf's bottle
অভিস্থ অভিস্থ normal	উৎপাদন sublimation
অভিসারী convergent	একক unit. আধিক্য—fundamental—, ব্রিটিশ থার্মাল— British Thermal—. লক — derived—. সি জি এস ইলেক্ট্রোম্যাগ্ন- মেটিক— C. G. S. electromagnetic—. সি জি এস ইলেক্ট্রোস্ট্যাটিক— C. G. S. electrostatic—.
আর্কিমিডিস Archimedes	একক পদ্ধতি System of units. এফ পি এস— F. P. S.—. এম কে এস এ— M. K. S. A.—. এস আই—S.I.—. জর্জি— Georgi—. মেট্রিক— Metric—. সি. জি এস— C. G. S.—
(287-212 B. C.)	
আর্গ erg	
আপতন incidence.—বিন্দু point of incidence	
আরহেনিয়াস Arrhenius, Svante August (1859—1927)	
আলবার্ট আইনস্টাইন Einstein, Albert (1879—1955)	
আলম্ব fulcrum	
আলোক কেন্দ্র optical centre	
আলোক চক্র optical disc	

ওজন, ভার weight	ক্ষারীয় জ্বরণ alkaline solution
ওজনের বাল্ব—weight box	ক্ষুরধার তিতুজ knife edge
ৱেলাউ রোমার Roemer, Olau (1644—1710)	ক্ষেত্রফল area
ওলব দড়ি plumb line	গতি motion. আপেক্ষিক—relative—.
ওয়াট watt	পরম—absolute—. —শক্তি kinetic energy
ওয়েল্ডিং welding	গলন melting
কম্পাস্ট frequency	গলনাঙ্ক melting point
কাউন্ট রামফোর্ড Rumford, Count Benjamin Thompson (1753-1814)	গোলক sphere
কিউসেক cusec	গ্যালন gallon
কিপস আপ্যারেটস Kipps apparatus	গ্রাফাইট graphite
কিলো-ওয়াট-ঘণ্টা kilo-watt-hour	চক্র cycle. কার্বন—carbon—.
কেন্দ্রীয় বিক্রিয়া nuclear reaction	নাইট্রোজেন—nitrogen—.
কেলভিন kelvin	চোঙ বল cylinder
কেলাস crystal	ছক কাগজ graph paper
কেণ্ট angle. আগতন—incident—	জন ডাল্টন Dalton, John (1766-1844)
চূড়ি—angle of deviation. অভিক্ষমন—	জন লক Locke, John (1632-1704)
—of reflection. অভিসরণ—of refraction.	জল-তুল্যাঙ্ক water equivalent
সংকট—critical—	অড়তা inertia
কোষ cell তড়িৎ—electric—. আলোক-	জারণ oxidation
তড়িৎ—photo-electric—	জার্জ ইন্টা inertia
ক্যান্ডেলা candela	জার্জ ভর inertial mass
ক্যালরিক মতবাদ caloric theory	জুল Joule
ক্যাটায়ন cation	জেমস প্ৰেস্কট জুল Joule, James Prescott (1818-1889)
ক্যালিপার' callipers. অস্থৰ্থী—inside —. বহিৰ্থী—outside—	জৈব organic
ক্লোরোফিল chlorophyll	ডিভাইডার divider
জান্তীয় বছৰ tropical year	তরঙ্গবৈৰ্য wave length. ডিক্লুকীয়—
ক্রিস্টিয়ান হ্যাগেনস Huygens, Christian (1625-95)	—electromagnetic—. ৱেডিও—radio—
ক্রিয়া action. অতি—reaction	তল plane. অনুভূমিক—horizontal—.
ক্ষমতা power. অশ—horse—	উল্লম্ব—vertical—. নত—inclined—
ক্ষার alkali. —যুক্তিকা alkaline earth	তড়িৎ লেপন electroplating.
ক্ষারক base	তড়িৎ-অবিশেষ non-electrolyte
	তড়িৎ-বার electrode
	তড়িৎ-প্ৰবাহ electric current

তড়িদ্বিশেষ electrolysis	নল tube. নির্গম— delivery—.
তড়িদ্বিশেষ electrolyte	নিয়তা সূত্র law of conservation.
তাপ heat. আপেক্ষিক— specific—.	ভরের— of mass. শক্তির— of energy
তাপগ্রাহিতা thermal capacity	ভর ও শক্তির— of mass and energy.
তাপমাত্রা temperature	নিঃক্ষিয় গ্যাস inert gas
তামার চোকলা copper turnings	পদার্থ, বস্তু matter
তুলায়ন balance সাধারণ— common—.	পরমাণু atom
শিখ়— spring—. অবেদী— sensitive—.	পরিবাহী conductor. অতি— super—
ফিজিক্যাল— physical—	পাতন distillation. অচ্ছুর্ম— destruc- tive—. আংশিক— fractional—
তুলামূল্যতা equivalence	পুনঃশিল্পীভবন regelation
ত্বরণ acceleration. অসম— non-uniform—. গড়— average—. সম— uniform—.	অতিফলন reflection. অনিয়মিত— ir- regular—. আভ্যন্তরীণ পূর্ণ— total-internal —. নিয়মিত— regular—. বিক্ষিপ্ত— ir- regular—.
ত্রুটি error. ব্যক্তিগত— personal—.	প্রতিসরণ refraction
থার্মিক— instrumental—	প্রতিসরণীয় refractive index
থার্ম �therm	প্রতিসম symmetrical
থার্মোকাপল thermocouple	প্রতীকচিহ্ন symbol
থার্মোপাইল thermopile	প্রধান অক্ষ principal axis
থার্মোমিটার thermometer. ডাক্তারী— clinical—.	প্রয়োগ standard.— চাপ—pressure.— তাপ— মাত্রা—temperature.— মিটার—metre
দীপ lamp, burner. বুনসেন— Bunsen—.	প্রেশুন্য neutralisation
স্পিরিট— spirit—.	প্রেশুন্য neutralised
দীপন শক্তি luminous intensity	প্রসারণ expansion
দ্রবণ solution. অসম্পূর্ণ— unsatura- ted—. সম্পূর্ণ— saturated—	প্রয়োগ বিন্দু point of application
দ্রবণীয়তা solubility	প্রিজম prism
জড়িত speed. অসম— nonuniform—.	প্লাজমা plasma
গড়— average—. সম— uniform—.	প্লেটো Plato (? 427-347 B. C.)
জ্ঞাব solute	প্রিস্টলি Priestley, Joseph (1733-1804)
জ্ঞাবক solvent	ফানেল funnel. দীর্ঘনল— thistle—.
ধর্ম property. ফোড়— physical—.	ফারেনহাইট fahrenheit
কামায়নিক— chemical—.	ফুট পাউণ্ড foot poundal
ধাতু metal. অ— non—. সংকর— alloy—.	ফ্রান্সিস বেকন Bacon, Francis (1561-1626)
নৰ knob	
নভচর astronaut	

ফ্রেঁ আকাদেমি French Academy	ভরবেগ momentum
ফেনোফ্যালিন Phenolphthalein	ভার weight, load. —বাহ load arm
ফোকস focus	ভেক্টর রাশি vector quantity
ফোকস দূরত্ব focal length	তোত physical. —ধর্ম —property —গতিবর্তন— change
বক্রতা curvature.—কেন্দ্র centre of— —ব্যাসার্ধ radius of—,	রাশি—quantity
বর্তনী circuit তড়িৎ-বর্তনী electric—	ভারক moment. বলের— — of a force
বর্ণনী spectrum	মনন retardation, deceleration
বাতচক wind mill	মহাবিষ্঵ বিন্দু vernal equinoctical point
বাহ arm, ভার— load— প্রয়াস— effort—.	মরীচিকা mirage
বাপ্পাইন evaporation	মাইকেলসন Michelson, Albert
বাপ্পীভবন vaporisation	Abraham (1852-1931)
বিকিরণ radiation. —শক্তি—energy	মান magnitude, value. গড়— mean—
বিক্রিয়া reaction. তাপগ্রাহী—endo- thermic—. তাপমোটী— exothermic—.	ম্যাগনেটো হাইড্রোডাইনামিক পাওয়ার বা এম এচ ডি magneto-hydrodynamic power or M H D
গারমাণবিক— nuclear—. রাসায়নিক— chemical—.	মিথাইল অরেজ Methyl orange
বিক্ষেপণ scattering	মিশ্রণ mixture
বিচ্ছুরণ dispersion	মূল radical
বিচ্ছৃতি deviation	মোল mole
বিজ্ঞারণ reduction	মৌল element
বিপর্যয় inversion. পার্থীয়— lateral—	যান্ত্রিক তুল্যাঙ্ক mechanical equivalent
বিপর্যক কাচ magnifying lens	যান্ত্রিক মতবাদ mechanical theory
বিবরণ magnification. রৈখিক— linear—	যান্ত্রিক সুবিধা mechanical advantage
বিষ image. সদ্ব—real—. অসদ্ব—virtual—	যৌজ্ঞতা valency
বিশ্বল গ্যাস rare gas	যৌগ compound
বিশ্বালক দ্রব্য bleaching agent	রবার্ট হক Hooke, Robert (1635-1703)
বেগ velocity. অসম—non-uniform—. গড়— average— সম— uniform—.	রশি ray. অতিবেগনি— ultraviolet—. অপসারী—diverging—. অবলোহিত— in- frared—. অভিসারী— converging—.
বেঙ্গল স্কেল bevelled scale	আগতিত— incident—. একবৰ্ণ—mono- chromatic—.
বৃহস্পতি Jupiter	একস-রে—X-ray. গামা— gamma—. অতিফলিত— reflected—
ভর mass. জ্বাল— inertial—. মহাকর্ষজ— gravitational—.	

প্রতিপ্রতি— refracted—.	মহাজগতিক— cosmic—.	সংকমিত compressed
একবর্ণ— monochromatic—,		সৌজ viscous
সমান্তরাল— parallel—.		সার্ভেয়ার চেন surveyor's chain
রাথারফোর্ড Rutherford, Ernest (1875-1937)		সি ভি রামন: Raman, C. V. (1888-1970)
রাশি quantity.	ভেক্টর— vector—.	হৃচক (প) pointer
ভৌত— physical—.	স্কেলার— scalar—.	— (র) indicator
রাসায়নিক chemical—.	ব্যব— property—	সূত্র law
পরিবর্তন— change		নিউটনের গতিসূত্র— Newton's laws of motion
রিঅ্যাক্টর reactor		সেলসিয়াস celcius
লবণ Salt		সোরা nitre
লাপ্লাস Laplace, Pierre Simon (1749-1827)		স্কেলার রাশি scalar quantity
লাভয়নিয়ে Lavoisier, Antoine Laurent (1743-94)		ষষ্ঠ ওয়াচ stop watch. —ক্লক— clock
লিভার lever		ষ্ট্যান্ডার্ড ডিপার্টমেন্ট অফ বোর্ড অফ ট্রেড Standard Department of Board of Trade
লীন তাপ latent heat		স্পন্দন vibration
লেখ graph.		শুটন boiling
লেন্স lens.	অবতল— concave—.	ফুটনাঙ্ক boiling point
— diverging—.	অবতল— convex—.	প্রাচু transparent
অভিসারী—converging—.	—পাওয়ার power of the lens.	প্রপ্ত luminous
লিটার litre		হিতি rest.
শক্তি energy.	গতি— kinetic—.	আপেক্ষিক— relative—.
—potential—.	বৰ্জন— binding—	পৰম— absolute—.
শঙ্কু cone		শক্তি potential energy
শিখা flame,	অক্সি-অ্যাসিটিলিন— oxy-	হিতিহাপক elastic
অক্সি-হাইড্রোজেন— oxy-	acetylene—.	হিতিহাপকতা elasticity
হায়ড্রোজেন—.	hydrogen—.	হিস্টারিক fixed point.
শৈলি Scheele, Karl Wilhelm (1742-1786)		উচ্চ— upper— নিম্ন—lower—
সমীকরণ equation		হামফ্রেডেডি Davy, Humphrey (1778-1829)
সরণ displacement		হিম মিশ্রণ freezing mixture
সংকুচিত compressed		হিমায়ন freezing
সংকেত formula		হিমাঙ্ক freezing point
		হিমোগ্লোবিন haemoglobin

অস্কোর্ড ইউনিভার্সিটি প্রেস

Padarthavidya O Rasayan 3

Rs 4.80