CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

ROUTING - CONTINUED

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

So far...

Routing – Distance Vector

Link State - Dijkstra's algorithm

Step	N'	D(v) p(v)	D (w) p(w)	D(x) p(x)	D(y) p(y)	D(z) p(z)
0	u	7,u	3,u	5 ,u	∞	∞
1	uw	6,w		5,u	11,W	∞
2	uwx	6,W			11,W	14,X
3	uwxv				10,V	14,X
4	uwxvy					12,y
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Distance Vector

- Each node has an one dimensional array (a vector) containing the "distances" (costs) to all other nodes
- Each node knows the cost to neighbors
- Each node distributes that vector to its immediate neighbors

Distance vector algorithm

	from A	via A	via B	via C	via D
	to A				
=4	to B		3	25	
	to C		5	23	
	to D		10	28	

from B	via A	via B	via C	via D
to A	3		7	
to B				
to C	8		2	
to D	13		7	

from C	via A	via B	via C	via D
to A	23	5		15
to B	26	2		12
to C				
to D	33	9		5

from D	via A	via B	via C	via D
to A			10	
to B			7	
to C			5	
to D				

Wikipedia

Initial distances stored at each node (global view)

Distance vector: link cost changes

$d_x(y)$ - Distance from x to y

		cost to		
		x y z		
	Χ	0 4 5		
from	У	46 0 1	——	Y's table at convergence
fl	Z	5 1 0		

Distance to x = Max (Direct path, Path via Z) = Max(60, 5+1) = 6 Y's path changed, advertise

$$Y \rightarrow Z = Cost to x is 6$$

$$Z \rightarrow Y = Cost to x is 7$$

. . . .

Z finally realizes cost to x via y is 51, chooses direct path.

Routing – Summarized

Apps (HTTP) Video from 1.3.2.1 Transport (TCP/UDP) Network (IP) LAN 3 5.5.0.0/16 Network (IP) Interface 2 Link (Ethernet) 1.3.0.0/8 |IF 2 5.5.0.0/16|IF 1 LAN 2 LAN 1 1.3.0.0/8 8.8.4.0/24

Routing will get you to the door (to another network)

A routing table tells you the most efficient way to get there

Once inside the building, use Layer 3 to Layer 2 mapping get to the actual hosts

IP: 1.3.2.1 → MAC:52:54:00:86:38:14

How do we scale this thing?

https:// www.submarinecablemap.com/

How do we scale this thing?

http://www.opte.org/

https://time.com/3952373/internet-opte-proje

Local Routing - Gets you to the door.

What gets you to the campus?

Next Steps

How do we scale routing to the Internet?