Lecture 9: Hypothesis Testing 2

Jacob M. Montgomery

Quantitative Political Methodology

Lecture 9: Hypothesis Testing 2

Roadmap

Last class:

- What is a hypothesis test?
- ▶ The five steps of hypothesis testing.

Roadmap

Last class:

- What is a hypothesis test?
- ▶ The five steps of hypothesis testing.

This class:

- Hypothesis tests with small samples
- Types of errors
- Discussion of one-sided/two-sided tests
- Relationship between CI and NHPT

Small sample significance testing for quantitative variables

Step 1: Assumptions

- Random sampling
- Quantitative data

Small sample significance testing for quantitative variables

Step 1: Assumptions

- Random sampling
- Quantitative data
- Population is distributed normally

Step 2: State hypotheses

- $H_0: \mu = \mu_0$ (e.g., $\mu = 12$)
- \vdash $H_a: \mu \neq \mu_0$
- ▶ This is a "two-sided test," but it may be a "one-sided."

- ightharpoonup Just as before, this comes from the sampling distribution of \bar{Y}

$$t^* = \frac{\bar{Y} - \mu_0}{\sigma_{\bar{Y}}}, df = (n-1)$$

lacktriangle Just as before, this comes from the sampling distribution of $ar{Y}$

Step 4: P-Value

- $t^* = \frac{\bar{Y} \mu_0}{\sigma_{\bar{V}}}, df = (n-1)$
- lacktriangle Just as before, this comes from the sampling distribution of $ar{Y}$

Step 4: P-Value

- Make sure you are using the right degrees of freedom.

$$t^* = \frac{\bar{Y} - \mu_0}{\sigma_{\bar{v}}}, df = (n-1)$$

ullet Just as before, this comes from the sampling distribution of $ar{Y}$

Step 4: P-Value

- ▶ Make sure you are using the right degrees of freedom.
- ▶ We use both tails, because we want to find the probability of error in both directions.
- ▶ $2*pt(abs(t^*), df = n-1, lower.tail=F)$

Step 5: Draw a conclusion

- ▶ If $p \le \alpha$ we conclude that the evidence supports H_a
- ▶ But always report the p-value

Example: State spending on education

Assume that the theory is that states are spending less than 5% of their income on education. The data indicate that:

- ▶ $\overline{Y} = 4.7$, S = 0.0922▶ $t^* = \frac{4.7 - 5}{0.09 / \sqrt{50}} = -2.279$, df = 49
- ► P-value=2*pt(2.279, df=49, lower.tail = F) = 0.027

Type 1 and Type II Error

		Jury decision	
		Guilty	Innocent
Truth	Guilty	Correct	Type II
	Innocent	Type 1	Correct

		Researcher Conclusion	
		Reject Null	Don't reject
Truth	Null is False	Correct	Type II
	Null is True	Type 1	Correct

		Researcher Conclusion	
		Reject Null	Don't reject
Truth	Null is False	Correct	Type II
	Null is True	Type 1	Correct

► Type I error is when we reject a null hypothesis when the null it is actually true.

		Researcher Conclusion	
		Reject Null	Don't reject
Truth	Null is False	Correct	Type II
	Null is True	Type 1	Correct

- ► Type I error is when we reject a null hypothesis when the null it is actually true.
- ► Type II error is when we fail to reject a null hypothesis when the null is actually false.

		Researcher Conclusion	
		Reject Null	Don't reject
Truth	Null is False	Correct	Type II
	Null is True	Type 1	Correct

- ► Type I error is when we reject a null hypothesis when the null it is actually true.
- ► Type II error is when we fail to reject a null hypothesis when the null is actually false.
- We tend to prioritize reducing Type I error, although there are tradeoffs.

- ► Type I:
 - ► Pr(Reject H₀|H₀True)

- ► Type I:
 - $Pr(Reject\ H_0|H_0True) = \alpha$
 - ► This is our primary focus

- ► Type I:
 - $Pr(Reject\ H_0|H_0True) = \alpha$
 - ► This is our primary focus
- Type II (hard):
 - ► Pr(Fail to reject | H₀ False)
 - $ightharpoonup H_0$ can be false for false for many values

- ► Type I:
 - $Pr(Reject\ H_0|H_0True) = \alpha$
 - ► This is our primary focus
- ► Type II (hard):
 - ► Pr(Fail to reject | H₀ False)
 - $ightharpoonup H_0$ can be false for false for many values
 - ▶ "Power" of a test is $1 Pr(Type\ II\ error)$

- ► Type I:
 - $ightharpoonup Pr(Reject H_0|H_0True) = \alpha$
 - ► This is our primary focus
- ► Type II (hard):
 - ► Pr(Fail to reject|H₀ False)
 - $ightharpoonup H_0$ can be false for false for many values
 - "Power" of a test is $1 Pr(Type\ II\ error)$
 - ▶ Leave this for a more advance classes
 - There is a trade-off between Type I and Type II error