UVOD V GEOMETRIJSKO TOPOLOGIJO: 2. TEST 18. 4. 2014

1. NALOGA (5 točk)

a. Na podprostoru ravnine $[-1,1] \times [-1,1]$ je podana ekvivalenčna relacija

$$(x,y) \sim (x',y') \iff (x,y) = (x',y') \text{ ali } x = x' = -1 \text{ ali } x = x' = 1.$$

Eksplicitno dokaži, da je kvocientni prostor $[-1,1] \times [-1,1]/\sim$ homeomorfen ravninskemu disku $\mathbb{B}^2 = \{(x,y) \mid x^2 + y^2 \leq 1\}.$

b. Na kartezičnem produktu $\mathbb{S}^1 \times [-1,1] \subset \mathbb{R}^3$ je podana ekvivalenčna relacija

$$(\zeta, y) \sim (\zeta', y') \iff (\zeta, y) = (\zeta', y') \text{ ali } y = y' = -1 \text{ ali } y = y' = 1.$$

Naj bo $q: \mathbb{S}^1 \times [-1,1] \to X$ kvocientna projekcija.

Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru $X/q(\{1\}\times[-1,1])$.

Rešitve oziroma odgovore utemelji.

2. NALOGA (5 točk)

Naj topološka grupa G deluje na topološki prostor X in naj X/G označuje prostor orbit.

- a. Naj bo G končna in naj X zadošča aksiomu T_4 . Dokaži, da tedaj tudi X/G zadošča aksiomu T_4 in sicer s konstrukcijo Urisonovih funkcij.
 - Namig: Pri dani primerni funkciji $\varphi \colon X \to [0,1]$ si pomagaj s funkcijami $\varphi_g \colon X \to [0,1], \ \varphi_g(x) = \varphi(g \cdot x)$, za različne $g \in G$.
- **b**. Naj bo G kompaktna in naj bo orbita $G \cdot x_0$ neke točke x_0 vsebovana v odprti množici W. Dokaži, da obstaja taka okolica U točke x_0 , da je orbita $G \cdot x$ vsebovana v W za vsak $x \in U$.
- c. (*) Naj bo G kompaktna in naj X zadošča aksiomu T_4 . Dokaži, da tudi X/G zadošča aksiomu T_4 . Opomba: Možni so različni dokazi (z uporabo točke **b**.).

Teoretična naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (\mathbf{P}) oziroma napačna (\mathbf{N}). Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Naj bosta X in Y topološka prostora in naj bo $f: A \to Y$ zvezna preslikava, kjer je $A \subset X$. Če je A zaprta množica v X , je kvocientna projekcija $X \coprod Y \to X \cup_f Y$ zaprta preslikava.
Suspenzija vsakega topološkega prostora je kompakten prostor.
Stožec nad povezanim topološkim prostorom je povezan prostor.
Vsako zvezno preslikavo $f\colon [-1,1]\to \mathbb{R}^3$ je mogoče razširiti do zvezne preslikave $\mathbb{R}^3\to \mathbb{R}^3$.
Naj bo X kompakten Hausdorffov prostor in naj bosta A in B neprazni kompaktni podmnožici v $X.$ Tedaj obstaja taka zvezna funkcija $f\colon X\to [0,1],$ da velja $f(A)=\{0\}$ ter $f(B)=\{1\}.$
Interval $[0,1)$ je retrakt intervala $(-\infty,1)$.
Obstaja retrakcija ravnine \mathbb{R}^2 na podprostor $\{(-1,0),(1,0)\}.$
Naj bo $A\subset B\subset X.$ Če je A retrakt prostora B in je B retrakt prostora $X,$ je A retrakt prostora $X.$
Krožnica \mathbb{S}^1 je kontraktibilen prostor.
Vsak homeomorfizem $\mathbb{B}^2 \to \mathbb{B}^2$ ima vsaj eno negibno točko.