Decidability of All Minimal Models

Vincent Padovani

Université PARIS VII-C.N.R.S U.R.A. 753 Equipe de Logique Mathématique 2 Place Jussieu - Case 7012 75251 PARIS CEDEX 05 - (FRANCE) padovani@logique.jussieu.fr

Abstract. We consider a simply typed λ -calculus with constants of ground types, and assume that for one ground type o, there are finitely many constants of type o. We call *minimal model* the quotient by observational equivalence of the set of all closed terms whose type is of terminal subformula o. We show that this model is decidable: all classes of any given type are recursively representable, and observational equivalence on closed terms is a decidable relation. In particular, this result solves the question raised by R.Statman on the decidability of this model in the case of a unique ground type and two constants.

Observational equivalence on simply typed λ -terms is defined as the least binary relation \parallel including β -equivalence and such that $t: A \to B \parallel t': A \to B$ iff for all closed u: A, u': A, if $u: A \parallel u': A$ then $(t)u: B \parallel (t')u': B$.

Suppose we are dealing with a simply typed λ -calculus with constants which are all of ground type, and assume for one ground type \circ there are finitely many constants of type \circ . Then, consider the set of all closed terms whose type is either \circ or of the form $A_1 \ldots A_n \to \circ$. We call *minimal model* of simply typed λ -calculus the quotient of this set by observational equivalence.

We prove in this paper that this model is decidable *i.e* if we call type of a class the type of its elements then there are only finitely many classes of any given type, and there exists a computable function which, given an arbitrary type A, returns a set that contains a unique representative of each class of type A. We prove also that observational equivalence on closed terms is a decidable relation. In particular, this result solves the question raised by R.Statman on the decidability of this model in the case of a unique ground type and two constants. This question can be seen as a simplification of the Lambda Definability problem ([9], [10]) which is known to be undecidable ([5]).

The results presented here were found while studying the Higher Order Matching problem ([2], [6], [7], [8]) whose decidability is still open. As a corollary of the decidability of all minimal models, we prove also the decidability of a particular case of the higher order matching problem: the problem of solving finite sets of matching equations whose right-members are all constants of ground types.

1 Terms

We quote in this first part the definition of simply typed terms. The reader is assumed to be familiar with the notions of λ -term, α , β -conversions (see [4], [3] or [1]). We shall admit the well-known results of strong normalization and confluence of the β -reduction on simply typed terms.

1.1 Types

We let \mathcal{F} be the set of all formulas of a language consisting of an arbitrary set of constants \mathcal{O} and a binary connective \rightarrow :

$$\mathcal{O} \subset \mathcal{F}$$
, and if $A, B \in \mathcal{F}$ then $(A \to B) \in \mathcal{F}$.

The formula $A = (A_1 \to (\dots A_n \to \circ) \dots)$ where $\circ \in \mathcal{O}$ will be denoted as $A_1 \dots A_n \to \circ$. The constant \circ is called the *terminal subformula* (t.s.f.) of A. We call *order* of A the integer defined by:

if
$$n = 0$$
 then Ord $(A) = 1$, else $\operatorname{Ord}(A) = \sup_{i=1}^{n} (\operatorname{Ord}(A_i)) + 1$.

1.2 Simply Typed Terms

Assume that there is given:

- an infinite, countable set of variables, x, y, z, \ldots
- an infinite, countable set of constants, $a, b, c \dots$
- an application from the set of all variables and constants to the set \mathcal{F} , mapping each symbol to a formula called its type, such that:
 - for each $A \in \mathcal{F}$, there exists an infinite number of variables of type A,
 - all constants are of ground type i.e. their types belong to \mathcal{O} .

We call typed variables all pairs of the form (x, A), written x : A, where A is the type of x, and typed constants all pairs of the form a : o where o is the ground type of a. The set of simply typed terms is defined as the least set S satisfying:

- 0. all typed variables and all typed constants belong to S,
- 1. if $t: B \in \mathcal{S}$ and if x: A is a typed variable, then $\lambda x \, t: A \to B \in \mathcal{S}$,
- 2. if $t: A \to B$, $u: A \in \mathcal{S}$ then $(t)u: B \in \mathcal{S}$.

The context of a typed term t:A is defined as the set of all free variables and constants of t. We call order of t:A the order of A. A closed term contains no free variable (e.g. a typed constant a:o is a closed term).

We denote as $\overline{\mathcal{S}}$ the quotient of \mathcal{S} by α -equivalence *i.e.* renamings of bound variables by fresh variables of same type. By convention, elements of $\overline{\mathcal{S}}$ and \mathcal{S} will be called *terms* and \mathcal{S} -terms respectively. Greek letters shall be used to denote arbitrary \mathcal{S} -terms. An \mathcal{S} -term τ of the α -class (the term) t will be called a representative of t.

2 Minimal Models

2.1 Observational Equivalence

Let t, t' be closed terms of type $A_1
ldots A_n \to \infty$. Let 0, 1 be distinct constants of type \circ . We say that t and t' are observationally equivalent if and only if for all closed $u_1: A_1, \ldots, u_n: A_n$ whose constants of type \circ belong to $\{1, 0\}$, $\{t\}u_1 \ldots u_n \equiv_{\beta} (t')u_1 \ldots u_n^{-1}$. We write $\|$ the relation thus defined.

Lemma 1. Let t, t' be closed terms of type $A_1 \ldots A_n \to \circ$. Then $t \parallel t'$ if and only if for all closed $u_1 : A_1, \ldots, u_n : A_n$, $(t)u_1 \ldots u_n \equiv_{\beta} (t')u_1 \ldots u_n$.

Proof. Suppose u_1, \ldots, u_n closed and such that $(t)u_1 \ldots u_n \beta a$, $(t')u_1 \ldots u_n \beta a'$ with $a \neq a'$. Let 0, 1 be distinct constants of type \circ . Call v_i the term obtained by the substitution in u_i of 1 for a, 0 for all other constants. Then $(t)v_1 \ldots v_n$ is of normal form a or 1 while $(t')v_1 \ldots v_n$ is of normal form a' or 0.

Lemma 2. $t \parallel t'$ if and only if for all u of ground type such that u[t/x], u[t'/x] are closed and well-typed, $u[t/x] \equiv_{\beta} u[t'/x]$.

Proof. Suppose $t \mid\mid t'$ and u[t/x] closed of ground type. We prove $u[t/x] \equiv_{\beta} u[t'/x]$ by induction on the length of the left-normalization of u[t/x]. The only case where we apply the hypothesis on t, t' is $u[t/x] = (t)u_1[t/x] \dots u_n[t/x]$. If $t \not = t'$ or if $t = \lambda y t_0$ then by induction hypothesis $u[t/x] \equiv_{\beta} (t)u_1[t'/x] \dots u_n[t'/x] = u_0[t'/x]$. By lemma 22 and by hypothesis on t and t', $u_0[t'/x] \equiv_{\beta} u[t/x]$. \square

We denote as [t:A] the class of observational equivalence of t:A, letting $App([u:A \to B], [v:A]) = [(u)v:B]$. It follows from lemma 2 that this notion of application of a class to another is well-defined.

2.2 Minimal Models

Let \mathcal{C} be a finite, non-empty set of constants of same ground type \circ . For all types A of t.s.f. \circ , we write $\mathcal{T}(A,\mathcal{C})$ the set of all closed terms of type A whose constants of type \circ belong to \mathcal{C} . The quotient set $\mathcal{T}(A,\mathcal{C})/\parallel$ is denoted as $\mathcal{M}(A,\mathcal{C})$.

The pair $\mathcal{M}_{\mathcal{C}} = (\{\mathcal{M}(A,\mathcal{C}) \mid t.s.f(A) = \circ\}, App)$ will be called a *minimal model* of simply typed λ -calculus. The present paper intends to show that all *minimal models are decidable i.e.* we shall prove that:

- 1. for all pairs (A, \mathcal{C}) , $\mathcal{M}(A, \mathcal{C})$ is a finite set,
- 2. there exists a computable function which, given a pair (A, \mathcal{C}) , returns a complete set of \parallel -representatives for $\mathcal{M}(A, \mathcal{C})$ i.e. returns a set that contains a unique representative of each element of $\mathcal{M}(A, \mathcal{C})$
- 3. || is a decidable relation.

 $[\]equiv_{\beta}$ denotes β -equivalence *i.e.* the reflexive and transitive closure of β -reduction.

3 Pure Types

Our first aim is to prove that if all minimal models are decidable in the particular case of $\mathcal{O} = \{\circ\}$, then all minimal models are decidable in the case where \mathcal{O} is an arbitrary set.

3.1 Pure Forms

Definition 3. We call pure form of a type $B = B_1 \dots B_p \to 0$ the type A satisfying:

- 1. if all ground types appearing in B are equal to \circ then A = B,
- 2. if $t.s.f.(B_j) \neq 0$ then A is equal to the pure form of $B_1...B_{j-1}B_{j+1}...B_p \to 0$.
- 3. if $t.s.f.(B_1) = \ldots = t.s.f.(B_p) = 0$ then $A = A_1 \ldots A_p \to 0$ where A_j is the pure form of B_j .

Remark. If $B_1
ldots B_p \to 0$ is of pure form $A_1
ldots A_n \to 0$, then there exists a unique sequence $I = (i_1, \dots, i_n)$ such that $1 \le i_1 < \dots < i_n \le n$, B_{i_k} is of pure form A_k and $\forall j \notin I$, $t.s.f.(B_j) \neq 0$. Consequently, every type has a unique pure form.

Definition 4. We define Nil as a set that contains, for each $o \in \mathcal{O}$, a unique constant nil of type o. For any type A, we denote as $\lambda.nil:A$ the unique term of type A of the form $\lambda x_1 \ldots x_n$ nil where $nil \in Nil$.

Definition 5. Let $A = A_1 \dots A_n \to \circ$. Let $B = B_1 \dots B_p \to \circ$ be a type of pure form A. Let $I = (i_1, \dots, i_n)$ such that $1 \le i_1 < \dots < i_n \le n$ with B_{i_k} of pure form A_k and $\forall j \notin I$, $t.s.f.(B_j) \neq \circ$.

- 1. (a) for any typed variable Y: B, let $Y_B^A = \lambda x_1 \dots \lambda x_n(Y)v_1 \dots v_p: A$ with $v_{i_k} = x_{k_{A_k}}^{B_{i_k}} \ (1 \le k \le n)$ and $v_j = \lambda.nil: B_j \ (j \notin I)$
 - (b) for any typed variable X:A, let $X_A^B=\lambda y_1\dots\lambda y_p(X)w_1\dots w_n:B$ with $w_k=y_{i_k}{}^{A_k}_{B_{i_k}}$ $(1\leq k\leq n).$
- 2. (a) for any closed t: B, let $t_B^A: A = Y_B^A[t/Y]$,
 - (b) for any closed u: A, let $u_A^B: B = X_A^B[u/X]$.

Lemma 6. Let B be a type of pure form A.

- 1. For all closed $t: B, t \parallel (t_B^A)_A^B$.
- 2. For all closed u: B, $u \parallel (u_A^B)_B^A$.

Proof. Suppose A, B and I are defined as they are in definition 5. We prove (1) and (2) by induction on B. If p = 0 i.e. if B = 0 then A = 0 and for all closed t : 0, u : 0, $t = t_0^0$, and $u = u_0^0$. Suppose p > 0.

- 1. Let $t: B, v_1: B_1, \ldots, v_p: B_p$ be closed terms. Let $\overline{v}_{i_k} = (v_{i_k} B_{i_k})_{A_k}^{B_{i_k}}$ $(1 \le k \le n)$. Let $\overline{v}_j = \lambda.nil: B_j \ (j \notin I)$.
 - by definition, $(t)\overline{v}_1 \dots \overline{v}_p \equiv_{\beta} ((t_B^A)_A^B)v_1 \dots v_p$,
 - by induction hypothesis, for each $k \in [1 ... n]$, $\overline{v}_{i_k} \parallel v_{i_k}$ therefore, for all M such that $(\lambda z M)v_{i_k} : \circ$ be closed and well typed, $(\lambda z M)v_{i_k} \equiv_{\beta} (\lambda z M)\overline{v}_{i_k}$,
 - if $j \notin I$ then $t.s.f(B_j) \neq 0$ therefore, for all M such that $(\lambda z M)v_j : 0$ be closed and well-typed, z cannot be free in the normal form of M and $(\lambda z M)v_j \equiv_{\beta} (\lambda z M)\overline{v_j}$.

Thus $(t)v_1 \dots v_p \equiv_{\beta} (t)\overline{v}_1 \dots \overline{v}_p \equiv_{\beta} ((t_B^A)_A^B)v_1 \dots v_p$. Since v_1, \dots, v_p are arbitrary, $t \parallel (t_B^A)_A^B$.

- 2. Let $u:A,\ w_1:A_1,\ldots,w_n:A_n$ be closed terms. Let $\overline{w}_k=(w_k{}^{B_{i_k}})_{B_{i_k}}^{A_k}$ $(1\leq k\leq n).$
 - by definition, $(u)\overline{w}_1 \dots \overline{w}_n \equiv_{\beta} ((u_A^B)_B^A)w_1 \dots w_n$,
 - by induction hypothesis, for each $k \in [1 ... n]$, $\overline{w}_k \parallel w_k$ therefore, for all M such that $(\lambda z M)v_{i_k} : \circ$ be closed and well typed, $(\lambda z M)w_k \equiv_{\beta} (\lambda z M)\overline{w}_k$.

Thus $(u)w_1 \ldots w_n \equiv_{\beta} (u)\overline{w}_1 \ldots \overline{w}_n \equiv_{\beta} ((u_A^B)_B^A)w_1 \ldots w_n$. Since w_1, \ldots, w_p are arbitrary, $u \parallel (u_A^B)_B^A$.

Lemma 7. Call \parallel -compatible every function F satisfying $F(t) \parallel F(t') \Leftrightarrow t \parallel t'$. Let B be an arbitrary type. Let A be the pure form of B. Then, for every finite, non-empty set of constants C of type t.s.f.(A):

- 1. $(u:A\mapsto u_A^B:B)$ is a \parallel -compatible function from $\mathcal{T}(A,\mathcal{C})$ to $\mathcal{T}(B,\mathcal{C})$.
- 2. $(t: B \mapsto t_B^A: A)$ is a \parallel -compatible function from $\mathcal{T}(B, \mathcal{C})$ to $\mathcal{T}(A, \mathcal{C})$.

Proof. For all typed variables X:A,Y:B, the constants of Y_B^A , X_A^B belong to $Nil-\{nil:o\}$ hence, if $t\in \mathcal{T}(B,\mathcal{C})$ then $t_B^A\in \mathcal{T}(A,\mathcal{C})$ and if $u\in \mathcal{T}(A,\mathcal{C})$ then $u_A^B\in \mathcal{T}(B,\mathcal{C})$. It follows from definition 5 that if $u:A\parallel u':A$ then $u_A^B\parallel u'_A^B$. By lemma 6(2), if $u_A^B\parallel u'_A^B$ then $u\parallel u'$. Similarly, if $t:B\parallel t':B$ then $t_B^A\parallel t'_B^A$. By lemma 6(1), if $t_B^A\parallel t'_B^A$ then $t\parallel t'$.

3.2 Reduction to the Case of a Unique Ground Type

Lemma 8. If all minimal models are decidable in the particular case of $\mathcal{O} = \{0\}$, then all minimal models are decidable in the case where \mathcal{O} is an arbitrary set.

Proof. Let \mathcal{R} be any function such that for all pairs (A, \mathcal{C}) where A contains a unique ground type, $\mathcal{R}(A, \mathcal{C})$ is a complete set of \parallel -representatives for $\mathcal{M}(A, \mathcal{C})$. Call \mathcal{R}^* the function defined as follows:

Let B be any type of t.s.f. \circ , let C be any non-empty, finite set of constants of type \circ , let A be the pure form of B. Let $\mathcal{R}^*(B, \mathcal{C}) = \{u_A^B : B \mid u \in \mathcal{R}(A, \mathcal{C})\}$.

Note that if \mathcal{R} is computable the \mathcal{R}^* is also computable. For all pairs (B, \mathcal{C}) with B of pure form A and for all $t \in \mathcal{T}(B, \mathcal{C})$, $(t_B^A)_A^B \parallel t$ and there exists $u \in \mathcal{R}(A, \mathcal{C})$ such that $(t_B^A)_A^B \parallel u_A^B$, hence, $\mathcal{R}^*(B, \mathcal{C})$ is a complete set of \parallel -representatives for $\mathcal{M}(B, \mathcal{C})$. Furthermore, for all t, $t' \in \mathcal{T}(B, \mathcal{C})$, $t \parallel t'$ if and only if $t_B^A \parallel t_B^A$. Hence, if the relation \parallel is decidable on the set $\mathcal{T}(A, \mathcal{C})$, then this relation is also decidable on the set $\mathcal{T}(B, \mathcal{C})$.

4 Atomic Interpolation

Through sections 4, 5, 6 and 7, the set \mathcal{O} is assumed to be equal to $\{\circ\}$. We shall give now the definition of an *(atomic) interpolation problem* and prove that for every closed term t, there exists an interpolation problem Φ of which t is a solution, and such that every solution of Φ is observationally equivalent to t.

Definition 9. An interpolation equation E is defined as an equation of the form $[(x)u_1...u_n = a]$ where $u_1,...,u_n$ are closed terms and a is a constant. A solution of E is a closed term t such that $(t)u_1...u_n, \beta a$. Two interpolation equations are equivalent if and only if they have the same set of solutions.

Remark. $[(x)u_1 \ldots u_n = a]$ and $[(x)u'_1 \ldots u'_n = a]$ are equivalent \Leftrightarrow for each i, $[(x_i)u_i = a]$ and $[(x_i)u'_i] = a$ are equivalent \Leftrightarrow for each i, $u_i \parallel u'_i$.

Definition 10. An interpolation problem Φ is defined as a finite set of interpolation equations containing the same variable. A solution of Φ is a closed term which is a solution of each $E \in \Phi$.

Proposition 11. Let $E = [(x)u_1 ... u_n = a]$ be an interpolation equation. Let 0, 1 be two distinct constants. Let $E^* = [(x)u_1^* ... u_n^* = a^*] = E[1/0, 0/1]$. Then, for all closed t:

1. If t is a solution of $\{E, E^*\}$ then for any constant b, t[b/0, b/1] is a solution of $\{E, E^*\}$.

2. If 0, 1 are not free in t then t is a solution of $E \Leftrightarrow t$ is a solution of E^* .

Proof. 1. Suppose t is a solution of $\{E, E^*\}$. Let $t^* = t[2/0, 3/1]$ where 2,3 are two new constants. If, for instance, $(t^*)u_1 \ldots u_n \beta 2$ then $(t^*)u^* \ldots u^* \beta 2$ hence $(t)u_1 \ldots u_n \beta 0$, a = 0, $(t)u^* \ldots u^* \beta 0$ and $a^* = 0$, a contradiction. Similarly, the normal form of $(t^*)u_1 \ldots u_n$ cannot be 3, and the normal form of $(t^*)u_1^* \ldots u_n^*$ cannot be 2 nor 3. Consequently, for any constant b, $t[b/0, b/1] = t^*[b/2, b/3]$ is a solution of $\{E, E^*\}$.

2. Suppose 0, 1 are not free in t. Let $\sigma = [1/0, 0/1]$. Then $(t)u_1 \ldots u_n \beta a$ iff $\sigma((t)u_1 \ldots u_n) \beta \sigma(a)$ iff $(t)\sigma(u_1) \ldots \sigma(u_n) \beta \sigma(a)$ iff $(t)u_1^* \ldots u_n^* \beta a^*$.

Lemma 12. For any (A, \mathcal{C}) , there exists a finite set P of interpolation problems satisfying:

Let Φ be any element of P. If Φ is solvable, then there exists a solution of Φ that belongs to $\mathcal{T}(A,\mathcal{C})$.

Let $\mathcal{R} \subset \mathcal{T}(A, \mathcal{C})$ be any set which contains a unique solution of each solvable problem in P. Then \mathcal{R} is a complete set of $\|$ -representatives for $\mathcal{M}(A, \mathcal{C})$.

Proof. By induction of the order of A. If $A = \circ$ and $C = \{a_1, \ldots, a_m\}$ then $P = \{\{[x = a_1]\}, \ldots, \{[x = a_m]\}\}$. Suppose $A = A_1 \ldots A_n \to \circ$. Let 0, 1 be two new constants. By induction hypothesis $\mathcal{M}_i(A_i, \{0, 1\})$ is finite. Let U_i be a complete set of $\|$ -representatives for this latter set. Let F be the set of all functions from $U_1 \times \ldots \times U_n$ to $C \cup \{0, 1\}$. Let P_0 be the set of all problems $\{[(x)u_1 \ldots u_n = f(u_1, \ldots, u_n)] \mid \forall i u_i \in U_i\}$ with $f \in F$. For all equations E, write E^* the equation E[1/0, 0/1]. We let P be the set of all problems $\Psi^* = \{E \mid E \in \Phi\} \cup \{E^* \mid E \in \Phi\}$ with $\Psi \in P_0$.

Let $\Psi^* \in P$. If Ψ^* is solved by a closed term t then: obviously, if $b \notin \mathcal{C} \cup \{0, 1\}$ then for any $a \in \mathcal{C}$, the term t[a/b] is a solution of Ψ^* ; by proposition 11 (1) and by definition of Ψ^* , for any $a \in \mathcal{C}$, the term t[a/1, a/0] is a solution of Ψ^* . Therefore, there exists a solution of Φ^* that belongs to $\mathcal{T}(A, \mathcal{C})$.

Furthermore, if $Q \in \mathcal{M}(A, \mathcal{C})$ then by definition of ||, there exists a unique problem $\Psi \in P_0$ of which all elements of Q are solutions; by proposition 11 (2), Ψ^* is also the unique element of P of which all elements of Q are solutions. \square

Remark. The preceding lemma proves also that for each pair (A, \mathcal{C}) , the quotient set $\mathcal{M}(A, \mathcal{C}) = \mathcal{T}(A, \mathcal{C})/\parallel$ is a finite set.

5 Accessibility

The notion of accessibility of an address, in a simply typed term on η -long form, will be used extensively in section 6.

5.1 η -long Forms

Let $t = \lambda x_1 \dots x_m(u)v_1 \dots v_p : A_1 \dots A_n \to 0$ where $m \leq n$ and u is either a variable, a constant or a term of the form $\lambda y w$. We call η -long form of t the unique term of same type of the form:

$$\lambda x_1 \dots x_m x_{m+1} \dots x_n . (u^*) v_1^* \dots v_p^* x_{m+1}^* \dots x_n^*$$
, where:

- v_i^* is the η -long form of v_i ,
- $-x_i^*$ is the η -long form of x_i ,
- if u is a variable or a constant then $u^* = u$, else u^* is the η -long form of u.

In the remaining, all terms will be supposed to be on η -long form *i.e.* all terms will be assumed to belong to the least set $\overline{\mathcal{L}}$ satisfying:

- 0. all typed constants and all typed variables of ground type belong to $\overline{\mathcal{L}}$,
- 1. if $t : o \in \overline{\mathcal{L}}$ is of ground type and if $y_1 : A_1, \ldots, y_n : A_n$ are typed variables then $\lambda y_1 \ldots y_n \cdot t : A_1 \ldots A_n \to o \in \overline{\mathcal{L}}$,
- 2. if $t_1: A_1, \ldots, t_n: A_n \in \overline{\mathcal{L}}$ and if $x: A_1 \ldots A_n \to \circ$ is a typed variable where \circ is a ground type, then $(x) t_1 \ldots t_n : \circ \in \overline{\mathcal{L}}$,
- 3. if $t: A_1 \ldots A_n \to 0$, $u_1: A_1, \ldots, u_n: A_n \in \overline{\mathcal{L}}$ where \circ is a ground type then $(t) u_1 \ldots u_n: \circ \in \overline{\mathcal{L}}$.

Remark. If $t:A\in\overline{\mathcal{S}}$ then $t\ \beta\ u$ if and only if $t^*\ \beta\ u^*$, where t^* , u^* are the η -long forms of t, u respectively. Furthermore, if $v:A\in\overline{\mathcal{L}}$ and if $v\ \beta\ w$ then $w:A\in\overline{\mathcal{L}}$. Therefore, we may assume whitout loss of generality that the set of simply typed terms is restricted to $\overline{\mathcal{L}}$.

5.2 Addresses

Definition 13. Let L be the set of all lists of integers. We let $(\tau, \Delta) \mapsto \tau/\Delta$ be the least application from $\mathcal{L} \times L$ to the set of all \mathcal{L} -terms of type \circ , which satisfies:

- $-\lambda.\mathcal{Y}.\varepsilon/\langle\rangle=\varepsilon,$
- if $\tau = \lambda \mathcal{Y}.(\varepsilon_0)\varepsilon_1...\varepsilon_n$ where n > 0 and ε_0 is a variable, a constant or an element of \mathcal{L} then $\forall \Delta \in L$,

$$\tau/\langle i \rangle \Delta = \varepsilon_i/\Delta$$
 and if $\varepsilon_0 \in \mathcal{L}$ then $\tau/\langle 0 \rangle \Delta = \varepsilon_0/\Delta$.

We call set of addresses in τ the set of all Δ such that τ/Δ is defined. We denote by $Sub(\tau, \Delta)$ the α -class of τ/Δ .

For any term t, we call set of addresses in t the set of addresses in any of its representatives and depth of t the maximal length of an address in t. We say

that Δ is a free occurrence of the variable or constant z in t if and only if for every τ representative of t, τ/Δ is of the form $(z)\varepsilon_1...\varepsilon_n$. For any context Γ , we call Γ -occurrences in t all free occurrences of elements of Γ in t.

Definition 14. Let a be a constant. Let $\tau = \lambda \mathcal{Y}.(\varepsilon_0)\varepsilon_1...\varepsilon_n$. Let Δ be any address in τ . We call pruning of τ by a at Δ the \mathcal{L} -term $\tau(a/\Delta)$ defined by:

$$\begin{split} &-\tau(a/\langle\rangle)=\lambda\mathcal{Y}.a,\\ &-\tau(a/\langle i\rangle\Delta))=\lambda\mathcal{Y}.(\varepsilon_0')\varepsilon_1'\ldots\varepsilon_n' \text{ where}\\ &\varepsilon_i'=\varepsilon_i(a/\Delta) \text{ and } \varepsilon_i'=\varepsilon_j \ \ (j\neq i). \end{split}$$

Since $\tau \equiv_{\alpha} \tau'$ implies $\tau(a, \Delta) \equiv_{\alpha} \tau'(a, \Delta)$, we may define the pruning of t by a at Δ as $\tau(a/\Delta)$ where τ is an arbitrary representative of t.

For any set of constants C, we call C-prunings of t all terms obtained by successive prunings of t by elements of C. A C-pruning \bar{t} is said to be *strict* if and only if at least one C-occurrence in \bar{t} is not a C-occurrence in t.

5.3 Accessibility

Definition 15. An address Δ is said to be β -accessible in a term w iff:

let \overline{w} be the pruning of w at Δ by a constant a which does not appear in w. Then a appears in the normal form of \overline{w} .

Remark. If w is closed and if Δ is β -accessible in w, then for any a, the pruning of w by a at Δ is of normal form a.

6 Transferring Terms

We define now a class of closed terms of a simple structure, called *transferring* terms. The key-result presented in this section is the following: for every closed term t, there exists a transferring term observationally equivalent to t. As a corollary of this result, we will prove in section 7 the existence of an algorithm which takes as an input a pair (A, \mathcal{C}) and returns a set that contains a unique transferring representative of each element of $\mathcal{M}(A, \mathcal{C})$.

We give at first the definition of a transferring term. Next, we give the definition of an *approximation* of a solution of an interpolation problem. The links between these two definitions will be explained in section 6.2.

Definition 16. We say that a term t: A is *transferring* if and only if t is closed, on normal form, and of the form:

- 1. $t = \lambda y_1 \dots y_n a$ where a is a constant, or,
- 2. $t = \lambda y_1 \dots y_n \cdot (y_i) v_1 \dots v_p [w'/0, w''/1]$ where:
 - (a) 0, 1 are constants,
 - (b) $v_1 ldots v_p$ are closed and their constants belong to $\{0,1\}$
 - (c) $\lambda y_1 \dots y_n . w'$ et $\lambda y_1 \dots y_n . w''$ are transferring.

Remark. If $t = \lambda \mathcal{Y}.w$ is transferring and if Δ is a \mathcal{Y} -occurrence in w then for every representative ε of w, all free variables of ε/Δ belong to \mathcal{Y} . Therefore, if t is a solution of $E = [(x) u_1 \dots u_n = a]$ and if $\langle 0 \rangle \Delta$ is β -accessible in $(t) u_1 \dots u_n$ then $(\lambda \mathcal{Y}.\varepsilon/\Delta)(u_1 \dots u_n \beta a)$.

6.1 Approximations

Definition 17. A vector is by definition a sequence (t_1, \ldots, t_m) of closed terms of same type, denoted by $\langle t_1, \ldots, t_m \rangle$. We call type of a vector the type of its elements. If $\overline{V} = (V_1, \ldots, V_n) = (\langle u_i^1, \ldots, u_i^m \rangle)_{i=1}^n$, then:

- for $W=\langle a_1,\ldots,a_m\rangle$, $[(x)\overline{V}=W]$ denotes the interpolation problem $\{[(x)u_1^j\ldots u_n^j=a_j]\,|\,j\in[1\ldots m]\},$
- for any closed $t: A_1 ... A_n \to \circ$ where A_i is the type of V_i , $[(x)\overline{V}][x \leftarrow t]$ denotes the normal form of $(t)u_1^1...u_n^1,...,(t)u_1^m...u_n^m>$.

Definition 18. Let $W = \langle a_1, \ldots, a_m \rangle$ be any vector of constants that contains at least two distincts elements. Let 0, 1 be two new constants. The set of (0, 1)-approximations of W is defined as the set of all elements of $\prod_{j=1}^m \{a_j, 0, 1\}$ that contain at least two distinct constants.

We say that $\langle u_1, \ldots, u_m \rangle$ of type $A_1 \ldots A_n \to \circ$ is *W-splitting* if and only if there exists in $\prod_{j=1}^m \mathcal{T}(A_i, \{0,1\})$ at least one $(v_1, \ldots v_n)$ such that the normal form of $\langle (u_1)v_1...v_p, \ldots, (u_m)v_1...v_p \rangle$ is an approximation of W.

Definition 19. Let $\overline{V} = (\langle u_i^1, ..., u_i^m \rangle)_{i=1}^n$. Let t be any closed term such that $[(x)\overline{V}][x \leftarrow t]$ is defined. Let $w_j = (t)u_1^j ... u_n^j$. An address Δ is said to be:

- totally \overline{V} -accessible in t iff for each j, $\langle 0 \rangle \Delta$ is β -accessible in w_j ,
- partially \overline{V} -accessible in t iff Δ is not totally \overline{V} -accessible in t and there exists j such that $\langle 0 \rangle \Delta$ is β -accessible in w_j ,
- $-\overline{V}$ -inaccessible otherwise.

Lemma 20. If $[(x)\overline{V}][x \leftarrow \lambda \mathcal{Y}.w]$ is a (0,1)-approximation of W and if no strict $\{0,1\}$ -pruning of $\lambda \mathcal{Y}.w$ is a (0,1)-approximation of W then: all partially \overline{V} -accessible addresses in $\lambda \mathcal{Y}.w$ are $\{0,1\}$ -occurrences; all constants of w belong to $\{0,1\}$

Proof. Suppose $\overline{V}=(< u_i^1,...,u_i^m>)_{i=1}^n,\ [(x)\overline{V}][x\leftarrow\lambda\mathcal{Y}.w]=< b_1,...,b_m>,$ $W=< a_1,...,a_m>$. Let Δ be any partially \overline{V} -accessible address in $\lambda\mathcal{Y}.w$. Let j,k be such that $\langle 0\rangle\Delta$ be β -accessible in $(\lambda\mathcal{Y}.w)u_1^j...u_n^j$ and be not β -accessible in $(\lambda\mathcal{Y}.w)u_1^k...u_n^k$. Let c=1 if $b_k\in\{0,a_k\},0$ otherwise. Let $\lambda\mathcal{Y}.\overline{w}$ be the c-pruning of $\lambda\mathcal{Y}.w$ at δ . Then $[(x)\overline{V}][x\leftarrow\lambda\mathcal{Y}.\overline{w}]=< c_1,...c_m>$ where $\forall l\ c_l=\{b_l,0,1\},\ c_k=b_k\ \text{and}\ c_j=c\ \text{with}\ c\neq c_k$. Hence, $< c_1,...c_m>$ is still an approximation of W. By hypothesis. \overline{w} is not a strict pruning of w, therefore Δ is a $\{0,1\}$ -occurrence in w.

Since there exists at least one approximation of W, this vector contains at least two distinct constants. Therefore, all occurrences of a constant in $\lambda \mathcal{Y}.w$ are partially \overline{V} -accessible, and all constants of $\lambda \mathcal{Y}.w$ belong to $\{0,1\}$.

6.2 Existence of Transferring Representatives

We prove now that for every closed term t, there exists a transferring term observationally equivalent to t. If we assume that this property holds for all terms of depth at most h-1, and consider a term t of depth h, then the next lemma proves that given an arbitrary interpolation problem Φ of which t is a solution, the problem Φ contains a splitting row; this latter property allows us to split Φ into two smaller interpolation problems Φ_0 and Φ_1 , so that if we also assume the induction hypothesis that there exists transferring solutions of Φ_0 and Φ_1 , then from these solutions and from this splitting row, one can build a transferring solution of Φ . The conclusion follows from the fact that for every t, there exists an interpolation problem such that every solution of this problem is observationally equivalent to t.

Lemma 21. Let $t = \lambda y_1 \dots y_n . (y_i) \lambda \mathcal{X}_1 . v_1 \dots \lambda \mathcal{X}_p . v_p = \lambda \mathcal{Y}.w$ where all $\lambda \mathcal{Y} \mathcal{X}_k . v_k$ are transferring. If t is a solution of $[(x)\overline{V} = W]$ where W contains at least two distinct constants, then at least one element of \overline{V} is W-splitting.

Proof. Let 0, 1 be two new constants. Let $\overline{t} = \lambda \mathcal{Y}.\overline{w}$ be the maximal (0,1)-pruning of t such that $[(x)\overline{V}][x \leftarrow \overline{t}]$ is an approximation of W. By lemma 20, all constants of \overline{t} belong to $\{0,1\}$, and every \mathcal{Y} -occurrence in \overline{w} is totally \overline{V} -accessible.

We shall prove by induction on the number P of \mathcal{Y} -occurrences in \overline{w} that at least one element of $(V_1, \ldots, V_n) = \overline{V}$ is W-splitting. If P = 1 then V_i is splitting. Suppose P > 1. Let $\Delta = \langle k \rangle \Delta'$ be any \mathcal{Y} -occurrence in w of non-null length. As $\lambda \mathcal{Y} \mathcal{X}_k.v_k$ is transferring, $Sub(\tau, \Delta)$ is of the form $(y_j)w_1 \ldots w_q[w'/0, w''/1]$ where w_1, \ldots, w_m are closed and $\lambda \mathcal{Y} \mathcal{X}_k.w'$, $\lambda \mathcal{Y} \mathcal{X}_k.w''$ are transferring.

1. Since Δ is totally \overline{V} -accessible, if $w', w'' \in \{0, 1\}$ then $[(x)\overline{V}][x \leftarrow \lambda \mathcal{Y}.(y_j)w_1...w_q[w'/0, w''/1] = [(x)\overline{V}][x \leftarrow \overline{t}]$ and thereby V_j is W-splitting.

2. Otherwise, for instance, $w' \notin \{0, 1\}$. By hypothesis on \overline{t} , there exists at least one 0-occurrence Δ_0 in $(y_j)w_1 \dots w_q$ such that $\Delta \Delta_0$ is totally \overline{V} -accessible in \overline{t} . Thereby $\forall u \in V_j$, $(u)w_1 \dots w_q \beta 0$ hence $(u)w_1 \dots w_q [w'/0, w''/1] \beta w'$.

Let $\overline{t}' = \lambda \mathcal{Y}.\overline{w}'$ be the normal term obtained by the substitution at δ in \overline{w} of any element of V_j for the free occurrence of y_j . Then $[(x)\overline{V}][x \leftarrow \overline{t}] = [(x)V][x \leftarrow \overline{t}']$, \overline{w}' contains (P-1) \mathcal{Y} -occurrences and by induction hypothesis at least one element of \overline{V} is W-splitting.

Theorem 22. For any closed t, there exists a transferring term $t' \parallel t$.

Proof. We assume that t is on normal form and of type $A = A_1 \dots A_n \to \infty$. Let C be the set of all constants of t if this set is not empty, $\{nil\}$ where nil is an arbitrary constant otherwise. Let P be a problem satisfying for the pair (A, C) the conditions of lemma 12. Let car(t) be the element of P of which t is a solution.

We shall prove by induction on (H, m) where H is the depth of t, that for every $\Phi \subset car(t)$ of cardinal at most m, there exists a transferring solution of Φ . This result is clear if all right-members of Φ are equal to a unique constant (in particular, if $|\Phi| \leq 1$). Suppose $\Phi = [(x)V_1 \dots V_n = W] = \{E_1, \dots, E_m\}$ where W contains at least two distinct elements, with t of the form $\lambda \mathcal{Y}.(y_i)w_1 \dots w_p$.

By induction hypothesis on H, there exist transferring terms $\lambda \mathcal{Y} t_1, \ldots, \lambda \mathcal{Y} t_p$ such that $\lambda \mathcal{Y} t_k \parallel \lambda \mathcal{Y} w_k$. By proposition 2, $\lambda \mathcal{Y} \cdot (y_j) t_1 \ldots t_p \parallel t$. By lemma 21, at least one element of $\overline{V} = \{V_1 \ldots V_n\}$ is W-splitting.

Let $V_j = \langle u^1, \ldots, u^m \rangle$ be any W-splitting element of \overline{V} . Let 0, 1 be two new constants. Let $v_1 \ldots v_p$ be closed terms whose constants belong to $\{0,1\}$ such that the normal form $\langle b_1, \ldots, b_m \rangle$ of $\langle (u^1)v_1...v_p, \ldots, (u^m)v_1...v_p \rangle$ is an approximation of W. Let Φ_0 be the problem which contains each E_j such that $D_j = 0$, let Φ_1 be the problem which contains each E_j such that $D_j = 1$. Since Φ_0 and Φ_1 contain at most m-1 equations, by induction hypothesis there exist $\lambda \mathcal{Y}.w'$ and $\lambda \mathcal{Y}.w''$ which are transferring solutions of Φ_0 and Φ_1 respectively. The term $\lambda \mathcal{Y}.(y_j)v_1\ldots v_p[w'/0,w''/1]$ is then a transferring solution of Φ .

Remark. Theorem 22 is equivalent to the following property: every non-trivial, solvable interpolation problem contains at least one splitting row.

7 Computation of Transferring Representatives

It remains to prove, for every order N, the existence of a computable function which, given an arbitrary pair (A, \mathcal{C}) where A is of order at most N, returns a complete set of representatives for $\mathcal{M}(A, \mathcal{C})$. We prove the existence of such a function by giving constructive proofs of lemma 12 and theorem 22.

Lemma 23. Let N be any integer. Let C be any finite, non-empty set of constants. Suppose that there exists a computable function \mathcal{R}_{N-1} such that for all pairs (B, C) where B is a type of order at most N-1, $\mathcal{R}_{N-1}(B, C)$ is a complete set of $\|$ -representatives for $\mathcal{M}(B, C)$. Then,

1. There exists a computable function Car_N such that for all pairs (A, \mathcal{C}) where A is a type of order at most N, $Car_N(A, \mathcal{C})$ is a finite set of of interpolation problems satisfying:

each solvable problem in $Car_N(A, C)$ is solved by some element of $\mathcal{T}(A, C)$. Any set which contains, for each solvable problem $\Phi \in Car_N(A, C)$, a unique solution of Φ that belongs to $\mathcal{T}(A, C)$, is a complete set of $\|$ -representatives for $\mathcal{M}(A, C)$.

2. There exists a computable function which, given two terms $t, t' \in \mathcal{T}(A, \mathcal{C})$ where A is of order at most N, determines whether $t \parallel t'$ or not.

Proof. For $A = A_1
ldots A_n \to 0$, the proof of (1) is similar to the proof of lemma 12 where $\mathcal{R}_{N-1}(B_i, \{0,1\})$ replaces U_i $(i \in [1 \dots n])$. The set $Car_N(A, \mathcal{C})$ is then defined as the resulting set P. The second part of the lemma follows from the fact that for all $t, t' \in \mathcal{T}(A, \mathcal{C})$, then $t \mid t'$ if and only if there exists $Car_N(A, \mathcal{C})$ such that t and t' are solutions of Φ .

Lemma 24. Let N be any integer. Let C be any finite, non-empty set of constants. If:

there exists a computable function \mathcal{R}_{N-1} such that for all pairs (B, \mathcal{C}) where B is a type of order at most N-1, $\mathcal{R}_{N-1}(B, \mathcal{C})$ is a complete set of $\|-\text{representatives for } \mathcal{M}(B, \mathcal{C}),$

then

there exists a computable function \mathcal{R}_N such that for all pairs (A, \mathcal{C}) where A is a type of order at most N-1, $\mathcal{R}_N(A, \mathcal{C})$ is a complete set of \parallel -representatives for $\mathcal{M}(A, \mathcal{C})$,

Proof. For $A = A_1 ... A_n \to \circ$, let M be the maximal cardinal of all problems in $Car_N(A, \mathcal{C})$. For each $m \in [1...M]$, let \mathcal{T}_m be the set defined as follows:

- 1. \mathcal{T}_1 is the set of all terms of the form $\lambda y_1 \dots y_n . a : A$ where $a \in \mathcal{C}$.
- 2. for m > 1, \mathcal{T}_m is equal to the union of \mathcal{T}_{m-1} and the set of all terms of the form $\lambda y_1 \dots y_n . (y_j) v_1 \dots v_p [w'/0, w''/1]$ where:
 - (a) 0, 1 are two new constants,
 - (b) for $B_j = D_1 \dots D_p \to 0$, $v_k \in \mathcal{R}_{N-2}(D_k, \{0, 1\})$,
 - (c) $\lambda y_1 \dots y_n . w', \lambda y_1 \dots y_n . w'' \in \mathcal{T}_{m-1}$

It follows from the proof of theorem 22 where we take $P = Car_N(A, \mathcal{C})$ and where for V_j of type $B_j = D_1 \dots D_p \to 0$, v_k is assumed to belong to $\mathcal{R}_{N-2}(D_k, \{0, 1\})$, that every solvable element of $Car_N(B, \Gamma)$ has a solution in \mathcal{T}_M . Therefore, $\mathcal{R}_N(B, \Gamma)$ can be defined as a set that contains, for each $\Phi \in Car_N(B, \Gamma)$ solved by some element of \mathcal{T}_M , a unique element of \mathcal{T}_M which is a solution of Φ .

8 Decidability of all Minimal Models

Theorem 25. All minimal models are decidable.

Proof. By lemma 8, it is sufficient to prove this result in the particular case of $\mathcal{O} = \{\circ\}$. If we let $\mathcal{R}_1(\circ, \mathcal{C}) = \mathcal{C}$ then from lemma 24 we infer the existence of a computable function which, given an arbitrary pair (A, \mathcal{C}) where A is a type and \mathcal{C} is a finite, non-empty set of constants, returns a complete set of $\|$ -representatives for $\mathcal{M}(A, \mathcal{C})$. By lemma 23 (2), there exists also a computable function which determines, given two closed terms, whether these terms are observationally equivalent or not.

9 Decidability of Atomic Matching

Definition 26. An atomic matching problem Φ is defined as a finite set of equations of the form [u=a] where a is a constant of ground type. Let $x_1 \ldots x_n$ be the set of all free variables of Φ . We call solution of Φ every sequence of closed terms $(t_1 \ldots t_n)$ such that t_i and x_i be of same type, and such that for every $[u=a] \in \Phi$, $u[t_1/x_1 \ldots t_n/x_n]$ be of normal form a.

Remark. If a is of type \circ and x is of type A with $t.s.f.(A) = \diamond \neq \circ$ then for any constant $b: \diamond, [u=a]$ and $[u[\lambda x_1 \dots x_n.b:A/x]=a]$ have same set of solutions. Thus, we may assume w.l.o.g that for every $[u=a] \in \Phi$, every free variable in u is of t.s.f. equal to the type of a. Consequently, we may also assume that all right-members of Φ are of same ground type, since Φ is solvable iff for each ground type \circ , $\Phi_{\circ} = \{[u=a] \in \Phi \mid a \text{ is of type } \circ\}$ is solvable.

Theorem 27. Atomic Matching is decidable

Proof. Let \mathcal{C} be any finite, non-empty set of constants of type \circ . Let $x_1:A_1,\ldots,x_n:A_n$ be such that $t.s.f.(A_i)=\circ$. By theorem 25, there exists a computable function that, given the pair (A_i,\mathcal{C}) returns a set \mathcal{R}_i which is a complete set of \parallel -representatives for $\mathcal{M}(A_i,\mathcal{C})$ $(1 \leq n \leq n)$.

Let Φ be any atomic matching problem of free variables $x_1
ldots x_n$, such that all right-members of Φ belong to \mathcal{C} . Suppose $(w_1
ldots w_n)$ is a solution of Φ . We may assume that for each i, every constant of type \circ appearing in w_i belongs to

 \mathcal{C} . Then for each i, there exists $t_i \in \mathcal{R}_i$ such that $w_i \parallel t_i$, and $(t_1 \dots t_n)$ is still a solution of Φ . Thus, if Φ is solvable then $\mathcal{R}_1 \times \dots \times \mathcal{R}_n$ contains at least one solution of Φ .

References

- 1. Barendregt, H.: The Lambda Calculus, its Syntax and Semantics. North Holland (1981), (1984).
- Dowek, G.: Third Order Matching is Decidable. Proceedings of Logic in Computer Science, Annals of Pure and Applied Logic (1993).
- 3. Hindley J.R., Seldin, J.P.: Introduction to Combinators and λ -Calculus. Cambridge University Press, Oxford (1986).
- Krivine J.L.: Lambda Calculus, Types and Models. Ellis Horwood series in computer and their applications (1993) 1-66.
- 5. Loader, R.: The undecidability of λ -definability. Manuscript (1993).
- Padovani, V.: On Equivalence Classes of Interpolation Equations. Proceedings of the second international conference on typed lambda-calculi and applications, Lecture Notes in Computer Science 902 (1995) 335-349.
- Padovani, V.: Filtrage d'Ordre Supérieur. Thèse de doctorat, Université Paris VII (1996).
- 8. Padovani, V.: Decidability of Fourth Order Matching. Manuscript (1996).
- Statman, R.: Completeness, invariance and λ-definability. Journal of Symbolic Logic, 47, 1 (1982).
- Statman, R., Dowek, G.: On Statman's completeness theorem. Technical Report, CMU-CS-92-152, University of Carnegie Mellon (1992).