In The Claims:

Please replace the original claim set with the following replacement claim set:

- 1. (Currently Amended) An ink jet-printable ink comprising an aqueous vehicle, a colorant, and dispersed particles of a silyl-terminated sulfopoly(ester-urethane), wherein said ink is an ink jet ink.
- 2. (Currently Amended) The ink of claim 1, wherein the silyl-terminated sulfopoly(esterurethane) is described by the formula:

$$\begin{array}{l}
R \longrightarrow \left\{ \begin{matrix} O \\ II \\ C - O - R^D - (X^1 - R^2)_m - (X^1 - R^H)_n - (X^1 - R^3)_s - X^2 - R^3 - Y \\ SO_3M \end{matrix} \right\}_{2}$$

wherein

R represents a <u>trivalent</u> C_6 - C_{12} aryl <u>triyl</u> group or <u>a trivalent</u> C_1 - C_{20} aliphatic <u>triyl</u> group (trivalent aryl or aliphatic group) wherein M is H⁺, an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents s = 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each $R^{\mbox{\scriptsize D}}$ independently represents:

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\left(\begin{array}{c} -o - \stackrel{\circ}{c} - \\ 0 \end{array}\right)$$

2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a

- 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or
- 3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_{p^-}\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R¹ independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X1 independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X² independently represents

wherein each R^A independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R¹-Y, wherein R¹-and Y are as previously described;

each RH independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

$$-R^{\frac{3}{2}} \xrightarrow{\stackrel{R}{\text{SiO}}}_{\stackrel{}{\overline{g}}} R^{\frac{3}{2}} ,$$

divalent organic groups having the structure

$$-R^{3}-N-R^{3} X^{3}$$
 A^{6}

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $R^{7}-R^{7}-$, $R^{7}-R^{7}-$, $R^{7}-R^{7}-$, $R^{7}-R^{7}-$, $R^{7}-$, $R^$

or quaternary salts thereof, wherein

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\operatorname{Si}(\operatorname{OR}^8)_{\operatorname{z}}(\operatorname{R}^4)_{\operatorname{w}}$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon

atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\operatorname{Si}(\operatorname{OR}^8)_z(\operatorname{R}^4)_{w}.$$

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300;

each X³ independently represents a covalent bond, a carbonyl group,

$$\begin{pmatrix} C \\ C \\ \end{pmatrix}$$

or a divalent amido group

$$\left(\begin{array}{c} O \\ II \\ C-NH \end{array}\right)$$
;

each R^6 independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

each R_f independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.

- 3. (Currently Amended) The ink of claim 1, wherein the ink is substantially free of organic solvents.
- 4. (Currently Amended) The ink of claim 1, <u>further comprising a colorant</u>, wherein the colorant is a pigment.

- 5. (Currently Amended) The ink of claim 1, <u>further comprising a colorant</u>, wherein the colorant is a dye.
 - 6. The ink of claim 1, further comprising an additional dispersed polymer.
- 7. The ink of claim 6, wherein the additional dispersed polymer is present in an amount of from about 0.1 to about 3 times the weight of the silyl-terminated sulfopoly(esterurethane) polymer.
- 8. The ink of claim 7, wherein the additional dispersed polymer is an acrylic polymer.
 - 9. The ink of claim 1, further comprising a humectant.
- 10. (Currently Amended) The ink of claim 1, wherein the solids content is at least 20 weight percent of the total ink composition, and wherein the ink is ink jet printable.
- 11. (Currently Amended) The ink of claim 1, wherein the solids content is at least 30 weight percent of the total ink composition, and wherein the ink is ink jet printable.
- 12. (Currently Amended) The ink of claim 1, wherein the solids content is at least 50 weight percent of the total ink composition, and wherein the ink is ink jet printable.
- 13. The ink of claim 1, wherein the ink has a viscosity of less than about 20 mPa s at 20 °C and at a shear rate of 1000 s⁻¹.
- 14. The ink of claim 1, wherein the ink has a viscosity of less than about 5 mPa·s at 20 °C and at a shear rate of 1000 s⁻¹.

15. The ink of claim 2, wherein

is:

$$- \bigcup_{SO_{3M}}^{O} \bigcup_{C}^{O} - \bigcup_{C}^{O} - \bigcap_{C}^{O} \bigcup_{C}^{O} - \bigcap_{C}^{O} \bigcup_{C}^{O} \bigcup_{C}^{O} - \bigcap_{C}^{O} \bigcup_{C}^{O} \bigcup_{C}^{$$

and wherein each R^9 independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, an arylene group having 6 to 10 carbon atoms, or may also comprise an oligomeric segment.

- 16. (Currently Amended) The ink jet ink of claim 15, wherein the ink is contained within an ink jet printer cartridge.
 - 17. A blendable ink set comprising at least three blendable inks of claim 1.

- 18. The ink set of claim 17, wherein the blendable inks consist of yellow, magenta, and cyan inks.
 - 19. The ink set of claim 17, further comprising a fourth blendable ink.
 - 20. The ink set of claim 19, wherein the fourth blendable ink is a black ink.
 - 21. The ink set of claim 19, further comprising a fifth blendable ink.
 - 22. The ink set of claim 21, wherein the fifth blendable ink is a white ink.
 - 23. The ink of claim 1, wherein the ink is contained within an ink jet printer cartridge.
- 24. (Currently Amended) A method of imaging a substrate comprising ink jet printing an aqueous composition onto a substrate wherein the aqueous composition comprises an aqueous vehicle and a silyl-terminated sulfopoly(ester-urethane) having the formula:

$$\begin{array}{l}
R \longrightarrow \left\{ \begin{matrix}
O \\
II \\
C - O - R^{D} - (X^{1} - R^{2})_{m} - (X^{1} - R^{H})_{n} - (X^{1} - R^{3})_{s} - X^{2} - R^{3} - Y \\
SO_{3}M \end{matrix} \right\}_{2}$$

wherein

R represents a <u>trivalent</u> C_6 - C_{12} aryl <u>triyl group</u> or <u>a trivalent</u> C_1 - C_{20} aliphatic <u>triyl</u> group (<u>trivalent aryl or aliphatic group</u>) wherein M is H⁺, an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents s = 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each RD independently represents:

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\begin{pmatrix} -0-C \\ 0 \end{pmatrix}$$

- 2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or
- 3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_{p^-}\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R^1 independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X¹ independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being

Amendment And Response Serial No. 10/000,284

substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X² independently represents

wherein each R^A independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R¹-Y, wherein R¹-and Y are as previously described;

each $R^{\mbox{\scriptsize H}}$ independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

$$-R^{3} - (SiO)_{\overline{g}}R^{3} - R^{3}$$

divalent organic groups having the structure

$$-R^{3}-N-R^{3} X^{3}$$
 K^{1}
 K^{1}

or divalent organic groups having one of the structures

or quaternary salts thereof, wherein

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\operatorname{Si}(\operatorname{OR}^8)_{\operatorname{z}}(\operatorname{R}^4)_{\operatorname{w}}$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\mathrm{Si}(\mathrm{OR}^8)_{\mathrm{z}}(\mathrm{R}^4)_{\mathrm{w}}$$

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300;

each X³ independently represents a covalent bond, a carbonyl group,

$$\begin{pmatrix} c \\ c \\ d \end{pmatrix}$$

or a divalent amido group

$$\begin{pmatrix} O \\ II \\ C-NH \end{pmatrix}$$
:

each R⁶ independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

each R_f independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.

- 25. The method of claim 24, wherein the composition further comprises a colorant.
- 26. The method of claim 24, wherein the composition further comprises an additional dispersed polymer.
 - 27. The method of claim 24, wherein the composition further comprises a humectant.
 - 28. The method of claim 24, wherein ink jet printing comprises piezo ink jet printing.
 - 29. The method of claim 24, wherein the substrate is a fabric.
 - 30. The method of claim 29, wherein the fabric is a textile.
 - 31. The method of claim 24, wherein the substrate is glass.
 - 32. The method of claim 24, wherein the substrate is a polymer film.
 - 33. The method of claim 32, wherein the polymer film is a laminate.
 - 34. The method of claim 24, wherein the substrate is paper.
 - 35. An article comprising a substrate imaged according to the method of claim 24.
- 36. (Currently Amended) An ink jet printable ink comprising an aqueous vehicle, colorant, and at least 20 weight percent dispersed shear deformable polymer particles wherein the polymer is self-crosslinking, and wherein the ink is an ink jet ink.

- 37. The ink of claim 36, wherein the polymer particles comprise silyl-terminated polymers.
- 38. The ink of claim 36, wherein the polymer particles comprise greater than 25 weight percent of the composition.
- 39. The ink of claim 36, wherein the polymer particles comprise greater than 30 weight percent of the composition.
- 40. The ink of claim 36, further comprising a dispersed polymer that is not shear deformable.
 - 41. The ink of claim 36, wherein the composition further comprises a humectant.
- 42. A method of imaging a substrate comprising ink jet printing an aqueous composition on a substrate wherein the aqueous composition comprising an aqueous vehicle, and at least 20 weight percent dispersed shear deformable particles, wherein the polymer is self-crosslinking.

43. (Canceled)

- 44. (Currently Amended) The method of claim 43 <u>42</u>, wherein the polymer particles comprise silyl-terminated polymers.
- 45. (Currently Amended) The method of claim 43 42, wherein aqueous composition further comprises a colorant.
 - 46. The method of claim 45, wherein the colorant comprises pigment.

- 47. (Currently Amended) The method of claim 43 42, wherein the aqueous composition is water vehicle comprising from 75 to 100 percent by weight water based on a total weight of the aqueous vehicle.
- 48. The method of claim 47, wherein the aqueous composition further comprises pigment.
- 49. (New) The ink of claim 37, wherein the silyl-terminated polymers are represented by a formula:

$$\begin{array}{l}
R \longrightarrow \begin{cases}
O \\
II \\
C - O - R^{D} - (X^{1} - R^{2})_{m} - (X^{1} - R^{H})_{n} - (X^{1} - R^{3})_{s} - X^{2} - R^{3} - Y
\end{array}$$

$$\left. \begin{array}{l}
SO_{3}M \left(\begin{array}{c}
O \\
C - O - R^{D} - (X^{1} - R^{2})_{m} - (X^{1} - R^{H})_{n} - (X^{1} - R^{3})_{s} - X^{2} - R^{3} - Y
\end{array} \right) \right\}_{2}$$

wherein

R represents a trivalent C_6 - C_{12} aryl group or a trivalent C_1 - C_{20} aliphatic group wherein M is H⁺, an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each RD independently represents:

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\begin{pmatrix} -O-C- \\ 0 \\ \parallel \end{pmatrix}$$

2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a

phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or

3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_{p^-}\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R^1 independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X¹ independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X² independently represents

wherein each R^A independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R^1 -Y;

each $R^{\mathbf{H}}$ independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

$$-R^{3} - (SiO)_{\overline{g}} R^{3} - R^{5}$$

divalent organic groups having the structure

$$-R^{3}-N-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3}-R^{3} -R^{3} -R$$

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $R_{f}^{3}-N-R^{3}-$, $R_{f}^{3}-$,

or quaternary salts thereof, wherein

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\operatorname{Si}(\operatorname{OR}^8)_{\operatorname{z}}(\operatorname{R}^4)_{\operatorname{w}}$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon

Amendment And Response Serial No. 10/000,284

atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\mathrm{Si}(\mathrm{OR}^8)_{\mathrm{z}}(\mathrm{R}^4)_{\mathrm{w}}$$

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300;

each X³ independently represents a covalent bond, a carbonyl group,

$$\begin{pmatrix} C \\ H \\ O \end{pmatrix}$$

or a divalent amido group

$$\begin{pmatrix} O \\ II \\ C-NH \end{pmatrix}$$
:

each R⁶ independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

each $R_{\rm f}$ independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.

- 50. (New) The ink of claim 36, wherein the ink has a viscosity of less than about 20 mPa·s at 20 °C and at a shear rate of 1000 s⁻¹.
 - 51. (New) The ink of claim 36, further comprising a humectant.

52. (New) The method of claim 44, wherein the silyl-terminated polymers are represented by a formula:

$$\begin{array}{l}
R \longrightarrow \begin{cases}
O \\
II \\
C - O - R^{D} - (X^{I} - R^{2})_{m} - (X^{I} - R^{H})_{n} - (X^{I} - R^{3})_{s} - X^{2} - R^{3} - Y
\end{array}$$

$$\begin{cases}
SO_{3}M \longrightarrow (X^{I} - R^{2})_{m} - (X^{I} - R^{2})_{m} - (X^{I} - R^{3})_{s} - X^{2} - R^{3} - Y
\end{array}$$

wherein

R represents a trivalent C_6 - C_{12} aryl group or a trivalent C_1 - C_{20} aliphatic group wherein M is H⁺, an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each RD independently represents:

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\left(\begin{array}{c} -O-C \\ \end{array}\right)$$

2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or

3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_{p^-}\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R^1 independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X1 independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X² independently represents

wherein each R^A independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R^1 -Y;

each $R^{\mathbf{H}}$ independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

Amendment And Response Serial No. 10/000,284

$$-R^{\frac{3}{2}} - (SiO)_{\overline{g}} R^{\frac{3}{2}} ,$$

divalent organic groups having the structure

$$-R^{3}-N-R^{3} X^{3}$$
 X^{1}
 X^{6}

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $-R^{3}-$

or quaternary salts thereof, wherein

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\operatorname{Si}(\operatorname{OR}^8)_z(\operatorname{R}^4)_w$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\mathrm{Si}(\mathrm{OR}^8)_{\mathrm{z}}(\mathrm{R}^4)_{\mathrm{w}}$$

Amendment And Response Serial No. 10/000,284

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300;

each X³ independently represents a covalent bond, a carbonyl group,

$$\begin{pmatrix} c \\ c \\ d \end{pmatrix}$$

or a divalent amido group

$$\left(\begin{array}{c} O \\ II \\ C-NH \end{array}\right)$$
;

each R^6 independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each ${\bf R}^7$ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

each $R_{\rm f}$ independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.