Protokoll Kritisches Experiment

Fuchs, Gutmann, Kosbab, Kowal, Steindorf, Fälker, Richter 25. Januar 2023

Inhaltsverzeichnis

1	Kurzbeschreibung des Versuches	1
2	Messwerttabellen	2
3	Berechnung der Anhebung	3
4	Auswertung	4
5	Fehlerbetrachtung	4

1 Kurzbeschreibung des Versuches

- Zu Beginn wird die Funktionsfähigkeit der Sicherheitssysteme getestet, indem manuell eine Totalabschaltung ausgelöst wird.
- Die Anfahrneutronenquelle wird eingefahren und das Signal "Kernhälften zusammen"mit dem Schalter "Simulation Kernhälften zusammen"überbrückt, um auch bei getrennten Kernhälften eine Veränderung der Steuerstäbe zu ermöglichen.
- Es wird die Untergrundaktivität bei ein- und ausgefahrenen Steuerstäben gemessen.
- Anschließend wird die untere Kernhälfte zunächst um 100 Digits angehoben, wonach die Impulsrate mit ein- und ausgefahrenen Steuerstäben gemessen wird.
- Aus den Impulsraten wird berechnet, um wie viele Digits die Kernhälfte erneut angehoben werden darf.
- Die letzten beiden Schritte werden wiederholt, bis durch Extrapolation der Schnittpunkte mit der X-Achse die Ungleichung $X_{\rm krit, \, aus}(i) < X_{\rm max} < X_{\rm krit, \, ein}(i)$ zuverlässig erfüllt ist.

2 Messwerttabellen

Zu Beginn werden die Impulsraten für beide Weitbereichsmesskanäle gemessen, wobei die untere Kernhälfte komplett abgesenkt ist.

	Steuerstabs stellung	Messung 1	Messung 2	Messung 3	$\begin{array}{c} \textbf{Mittelwert} \\ N_0 \end{array}$
WB 1	ein (0)	7.4	7.3	7.6	7.43
	aus (4000)	9.4	9.3	9.6	9.43
WB 2	ein (0)	6.9	6,6	6,7	6,73
	aus (4000)	10,4	10,3	10,1	10,26

Tabelle 1: Bestimmung der Ausgangswerte N_0

Die originalen Messwerttabellen sind im Anhang aufgeführt, da jedoch ein Fehler in der Berechnung des Multiplikationsfaktors bei Weitbereichsmesskanal 1 enthalten ist, sind die Tabellen an dieser Stelle korrigiert gegeben.

Hubhöhe $[x_i/dgts.]$		$egin{array}{c c} Z \ N_{i,1} \end{array}$	$ \frac{\text{\ddot{a}hlraten}}{N_{i,2}} $	$\overline{N_i}$	$N_0/\overline{N_i}$	k_i	M_i	0:
$\frac{[x_i/agts.]}{}$	Steriung	1 1,1	1 1,2	· 1	, ,	<u> </u>		
0	ein			7.43	1.000	0.945	18.18	-0.0582
	aus			9.43	1.000	0.945	18.18	-0.0582
100	ein	8.5	8.6	8.55	0.869	0.952	20.92	-0.0502
100	aus	10.8	10.7	10.75	0.878	0.952	20.70	-0.0508
200	ein	9.8	9.9	9.85	0.755	0.959	24.10	-0.0433
200	aus	13.7	13.9	13.80	0.684	0.962	26.60	-0.0391
300	ein	12.5	12.7	12.60	0.590	0.968	30.86	-0.0335
300	aus	18.5	18.3	18.40	0.513	0.972	35.46	-0.0290
400	ein	19.2	18.8	19.00	0.391	0.979	46.51	-0.0220
400	aus	36.8	36.4	36.60	0.258	0.986	70.42	-0.0144
450	ein	31.1	30.1	30.60	0.243	0.987	75.19	-0.0135
400	aus	87.4	88.6	88.00	0.107	0.994	169.49	-0.0059
500	ein	52.3	52.0	52.15	0.143	0.992	128.21	-0.0079

Tabelle 2: Messwerte für Weitbereichsmesskanal 1

Hubhöhe	Stab-		Zählraten					
$[x_i/dgts.]$	stellung	$N_{i,1}$	$N_{i,2}$	$\overline{N_i}$	$N_0/\overline{N_i}$	k_i	M_i	$ ho_i$
0	ein aus			6.73 10.27	1.000 1.000	$0.945 \\ 0.945$	18.18 18.18	-0.0582 -0.0582
			1		<u> </u>			
100	ein	8.2	7.8	8.00	0.842	0.954	21.60	-0.0486
	aus	11.9	11.5	11.70	0.877	0.952	20.70	-0.0508
200	ein	9.1	9.2	9.15	0.736	0.960	24.69	-0.0422
200	aus	14.8	15.2	15.00	0.684	0.962	26.53	-0.0392
300	ein	11.9	11.6	11.75	0.573	0.969	31.75	-0.0325
300	aus	21.5	20.8	21.15	0.485	0.973	37.45	-0.0274
400	ein	17.8	18.4	18.10	0.372	0.980	49.02	-0.0208
400	aus	40.8	41.3	41.05	0.250	0.986	72.46	-0.0140
450	ein	28.5	29.1	28.80	0.234	0.987	78.12	-0.0130
400	aus	96.7	99.3	98.00	0.105	0.994	172.41	-0.0058
500	ein	49.6	49.2	49.40	0.136	0.993	133.33	-0.0076

Tabelle 3: Messwerte für Weitbereichsmesskanal 2

3 Berechnung der Anhebung

Da die Neutronendichte in einem kritischen Reaktor bei eingefahrener Anfahrneutronenquelle gegen Unendlich strebt, geht gleichermaßen der reziproke Wert der Neutronendichte gegen Null. Da die Impulsrate eines Neutronenmesskanals direkt proportional zur Neutronendichte ist, kann diese als Messgröße verwendet werden. Ebenfalls kann die Größe normiert werden, indem statt dem reziproken Wert der Impulsrate der Wert N_0/N_i verwendet wird. Dabei ist N_0 die Impulsrate im Ausgangszustand, wodurch die Größe den Wert 1 annimmt.

Es können nun wiederholte Messungen durchgeführt werden, bei denen ein Parameter verändert wird. Der Schnittpunkt des so gebildeten Graphs mit der X-Achse bestimmt den Wert des Parameters, bei dem der Reaktor kritisch wird.

In diesem Experiment ist dieser Parameter die Hubhöhe der unteren Spaltzonenhälfte. Nach jeder Veränderung der Position wird eine Messung durchgeführt und die kritische Hubhöhe approximiert. Die Distanz, mit der im nächsten Schritt angehoben wird, wird mit folgender Formel berechnet:

$$\Delta x_{\text{max}} = \frac{x_{krit, \text{ min}} - x}{2} \le 100 \,\text{digit}$$

Die untere Kernhälfte wird also um die Hälfte der Distanz zur kritischen Position angehoben, jedoch nie mehr als 100 digit.

Im Verlauf des Experiments ergibt sich folgender Verlauf der Messpunkte:

Abbildung 1: Verlauf von N_0/N_i

Wie in Abbildung 1 zu sehen ist, lässt sich aus den letzten zwei Messpunkten die ungefähren kritischen Positionen der unteren Kernhälfte extrapolieren. Bei eingefahrenen Steuerstäben ergibt sich eine kritische Hubhöhe von 571,5 digit (WB1) und 569,4 digit (WB2), bei ausgefahrenen Steuerstäben liegen die kritischen Positionen bei 485,4 digit (WB1) und 486,2 digit (WB2).

4 Auswertung

5 Fehlerbetrachtung