

FS-MCore-E600SX_快速使用指南

文档版本: V1.1

目 录

引	吉	3
1	快速入门	4
	1.1 正确使用方式	4
	1.2 PC 端测试方法	4
2	产品概述	8
	2.1 产品简介	8
	2.2 基本参数	8
	2.3 引脚说明	9
3	通信接口	10
	3.1 TTL 串口	10
	3.2 USB 接口	10
4	AT 命令教程	13
	4.1 AT 命令格式	13
	4.2 响应内容格式	13
5	联系方式	15
6	免责声明	15
7	再新历 中	15

引言

本文主要介绍 FS-MCore-E600SX 核心板的快速使用方法。下表为核心板配套资料的说明:

文档名称	描述
FS-MCore-E600SX_规格书	产品软硬件简介,客户选型用。
FS-MCore-E600SX _快速使用指南	介绍产品基本参数、硬件接线方法、基本功能的测试和驱动 安装。
FS-MCore-E600SX_软件设计手册	介绍 TCP、MQTT、HTTP、NTP 等协议的 AT 命令流程,持续更新中。

1 快速入门

本章介绍 FS-MCore-E600SX 核心板在 Windows PC 端的使用方法,让用户能快速上手,建议初次使用核心板的用户仔细阅读本章并按照指示操作一遍。

如果用户在阅读所有章节后仍有疑问,可以将问题提交到我司邮箱: support@freestrong.com

1.1 正确使用方式

第一步: 在 PC 端测试,根据项目需求测试相关 AT 命令,熟悉整个通信流程。

第二步:按照测试好的命令流程编写 MCU 程序。

1.2 PC 端测试方法

1.2.1 硬件电路连接方法

1. 焊接上排针(核心板出厂默认不焊排针)并插入相应的 SIM 卡,如图 1.2.1.1 所示。

图 1.2.1.1 插卡示例图

建议:排针焊接方向朝向正面(批量应用时,方便插卡、接天线以及查看指示灯的状态)。

注意:卡的缺角朝外,金属面朝向核心板。禁止带电插拔 SIM 卡。

2. 将天线接到核心板的天线接口上,对准后稍微用力才能扣上,如图 1.2.1.2 所示。

图 1.2.1.2 接天线示例图

3. 将核心板连接到 USB 转 TTL 模块上,只需接 VIN、GND、TX、RX 即可,另外一端接入电脑,如图 1.2.1.3 所示。

图 1.2.1.3 串口通信接线图

注意事项:

串口线需要交叉连接,即核心板的 TX 接 USB 转 TTL 的 RX,核心板的 RX 接 USB 转 TTL 的 TX。

核心模块的峰值电流可达 2A 以上, 部分电脑的 USB 供电能力无法达到此要求, 核心板可能因为供电不足频繁重启 (表现为串口一直输出上电信息), 此时建议采用独立电源给核心板供电, 核心板支持 5V~16V 电源输入, 调试时需要"共地", 即核心板、电源、USB 转 TTL 三者的 GND 接在一起。

4. 通电后,核心板电源指示灯(红灯)常亮,约 10s 后,网络指示灯(蓝灯)开始闪烁,此时说明核心板已开机,可以调试 AT 命令。

	网络灯状态	模块工作状态	
电源指示灯(红灯)	常亮	上电	
电你怕小月(红月)	熄灭	掉电,关机	
	闪烁(200 ms 亮/1800 ms 灭)	正在查找网络	
	闪烁(1800 ms 亮/200 ms 灭)	网络已注册或数据连接已建立	
网络指示灯 (蓝灯)	快闪(125 ms 亮/125 ms 灭)	建立 TCP 连接	
	常亮	通电话	
	熄灭	关机	

表 1.2.1.1 指示灯状态说明

1.2.2 软件测试方法

为了让用户快速熟悉 AT 命令,避免在 AT 命令的输入和通信流程上花费太多时间,飞思创设计了一款串口调试助手 "FreeAT"(工具路径: <u>FS-MCore-E600SX 参考资料\调试工具及驱动\FreeAT 及</u>示例\FreeAT.exe),并整理了常用协议的 AT 命令流程,测试时可以直接在 FreeAT 中导入相关协议流程文件(文件路径: <u>FS-MCore-E600SX 参考资料\调试工具及驱动\FreeAT 及示例\xxx.ini</u>)。FreeAT 工具的使用方法如下:

1. 核心板硬件连接好后,通过 USB 转 TTL 模块接入电脑 USB 口,然后打开 FreeAT 工具,选择对应的串口号,并设置串口参数(默认串口参数为 115200 波特率/8 位数据长度/无校验/1 位停止位),然后点击"打开串口"。

注意事项: 以 Win10 系统为例, 串口号可在"右键单击此电脑→属性→设备管理器"中查询。如未识别到端口,需安装 USB 转 TTL 模块的驱动。

2. 打开 FreeAT 串口工具,导入配置文件"EC600S_初始化检测.ini",然后打开串口,点击右侧按钮即可发送对应的 AT 命令,注意模块的返回值,只有返回正确参数才可以继续点击下一条命令,否则后面指令可能执行不成功,测试结果如图 1.2.2.1 所示:

图 1.2.2.1 EC600S 初始化检测示例图

初始化检测相关 AT 命令说明,如表 1.2.2.1 所示。

表 1 2 2 1 初始化流程 AT 命今说明

步骤	状态	AT 命令及返回值	I 初始化流程 AI 命令说明 说明
少殊	"		
1	发送	AT	握手测试。
1	返回	OK	返回 "OK"表示串口通信正常。
	发送	AT+CPIN?	检测 SIM 卡状态。
2	返回	+CPIN: READY OK	返回 READY,说明读卡成功,若返回 ERROR,则读卡失败。
	发送	AT+CSQ	查询射频信号质量。
3	返回	+CSQ: 23,99 OK	参数 1: 信号质量(0~31),确保信号质量大于 15 否则数据通信可能不稳定。 0 -113dBm 或者以下 1 -111dBm 230 -109dBm53dBm 31 -51dBm 或者更高 99 未知或不可检测 100 -116dBm 或者以下 101 -115dBm 102190 -114dBm26dBm 191 -25dBm 或者更高 199 未知或无法检测 100~199 扩展用于 TD-SCDMA 指示接收信号码。

	参数 2: 通道误码率(百分比)				
			0 7 作为 3GPP TS 45.008 条款 8.2.4 中表格中的		
			RXQUAL 值		
			99 未知或不可检测		
	发送	AT+CEREG?	查询网络注册状态。		
4	ie la	+CEREG: 0,1	参数 1: 控制未经请求的结果代码, 0 为禁用。		
	返回	OK	参数 2: 注册状态, 1 表示注册成功。		
	发送	AT+CGATT?	查询网络附着状态。		
5	1년 [6]	+CGATT: 1	参数 1: 附着状态, 1 表示成功, 0 表示失败。		
	返回	OK	参数 1: 門有小心,1 衣小风切,0 衣小大风。		

2 产品概述

2.1 产品简介

FS-MCore-E600SX 是一款超小封装、功能丰富的核心板,以"数据传输"作为核心功能,具有高度易用性,采用 7PIN 插针式的封装形式,用户可方便快速的集成在自己的系统中。该核心板功能完善,覆盖绝大多数应用场景,用户只需通过简单的 AT 命令配置,即可实现产品联网。支持 TCP、UDP、HTTP、FTP、MQTT等通信协议,并支持短信等功能。

2.2 基本参数

	产品名称	FS-MCore-E600SX	
-	支持运营商	移动 2G/4G,联通 4G,电信 4G	
	封装形式	插针式 7 PIN	
	电源	5V~16V	
	LED 灯	电源指示灯、网络指示灯	
石田 / 4 十立 二	SIM 接口	翻盖式 Nano 卡座	
硬件接口	USB 接口(预留)	兼容 USB 2.0 (只支持从模式)	
	天线	IPEX 座(1代)	
	LIADT	TTL (默认 3.3V,可支持 5V)	
	UART	波特率(bps): 9600, 19200, 38400, 57600, 115200, 230400等	
外形尺寸	尺寸(长*宽*高)	28.00*26.00*12.54MM(含插针高度)	
グドルシノへり	重量	约 6g	
温度范围	工作温度	-35°C ~ +75°C	
<u> </u>	存储温度	-40°C ~ +85°C	
技术规范	LTE-TDD	最大 7.5Mbps(DL)/最大 1Mbps(UL)	
1又小戏犯	LTE-FDD	最大 10Mbps (DL)/最大 5Mbps (UL)	
	LTE-TDD	B34/B38/B39/B40/B41	
支持频段	LTE-FDD	B1/B3/B5/B8	
	GSM	900/1800MHZ	
	LTE-TDD	23dBm±2dB	
	LTE-FDD	23dBm±2dB	
松山叶壶	EGSM900	33dBm±2dB	
输出功率	DCS1800	30dBm±2dB	
	EGSM900 (8-PSK)	27dBm±3dB	
	DCS1800 (8-PSK)	26dBm±3dB	
	网络协议	TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/HTTPS/	
软件功能		FTPS/SSL/FILE/MQTT 等	
1八日 少比	短信	TEXT 和 PDU 模式	
	操作系统	支持 Windows/Linux/Android	

2.3 引脚说明

图 2.3.1 核心板引脚分布图

表 2.3.1 核心板引脚说明

引脚号	名称	引脚类型	说明
1	VIN	P	电源输入正极,支持 5~16V 输入。
2	GND	P	电源输入负极。
3	TX	I	主串口发送引脚,已上拉至 3.3V。
4	RX	О	主串口接收引脚,已上拉至 3.3V。
5	PEN	I	默认为 PEN (核心板电源使能脚),内部上拉至 VIN,拉低时核心板电源无输出,不用则悬空。
6	NET	О	网络状态指示,可悬空。
7	DTR	I	数据终端就绪,可悬空。

注意事项:

- P 表示电源类引脚。
- I表示输入引脚。
- O 表示输出引脚。

3 通信接口

FS-MCore-E600SX 支持两种通信接口,分别是 TTL 串口和 USB 接口,本章分别对两种接口进行说明。

3.1 TTL 串口

- 1. 用 PC 测试串口通信时,只需用到 VIN、GND、TX、RX 引脚,其余引脚可悬空处理。
- 2. 项目应用中,如果使用 MCU 去控制模块,强烈建议加上 PEN 控制功能。当核心板通信异常时, MCU 可控制该引脚让核心板重启;当数据通信间隔较长时,可通过该引脚实现核心板开关机,以降低功耗。电路设计时请参考"<u>硬件设计</u>"文件夹内资料。

3.2 USB接口

核心板预留 USB 2.0 焊盘,如需使用,需自行焊上 Mirco USB 接口。安装好 USB 驱动后,可实现拨号上网或通过 AT 端口进行串口通信。

图 3.2.1 预留的 MircoUSB 焊接口

核心板通过 USB 接入电脑后,如果驱动未安装成功,打开电脑设备管理器,在"其他设备"会看到三个带黄色叹号的设备(已经使用红色矩形框选)。如图 3.2.2 所示。

图 3.2.2 未安装驱动

这时需要手动安装模块 USB 驱动,以 Win7 系统为例:

1. 找到核心板资料里面的"FS-MCore-E600SX 参考资料\调试工具及驱动\模块 USB 驱动"然后双击 setup.exe,如图 3.2.3 所示:

图 3.2.3 安装 USB 驱动-步骤 1

2. 选择 Repair 后点击 Next。如图 3.2.4 所示:

图 3.2.4 安装 USB 驱动-步骤 2

3. 点击信任软件和安装之后电脑就会自动开始安装驱动。如图 3.2.5 所示:

图 3.2.5 安装 USB 驱动-步骤 3

4. 驱动安装成功,如图 3.2.6 所示。

图 3.2.6 安装 USB 驱动-步骤 4

5. 安装成功后,可以看到三个端口(已经使用红色矩形框选),如图 3.2.7 所示。

图 3.2.7 安装 USB 驱动-步骤 5

4 AT 命令教程

4.1 AT 命令格式

所有命令都是以"AT"或"at"开头(不区分大小写),以回车(〈CR〉)作为结尾。AT 命令从语法上可分为基础类、S 参数类、扩展类。如表 4.1.1 所示。

类别	命令类型	语法	说明	示例
基础类		AT <x><n></n></x>	〈x〉是命令; 〈n〉可以是一个或者多个参数	ATE1
S参数类		ATS <n>=<m></m></n>	<n>是 S 寄存器的索引; <m>是赋予的值, <m>是选配参数,若没有赋值,模块将使用默认值</m></m></n>	ATS0=1
	测试命令	AT+ <x>=?</x>	该命令用于查询设置命令或内部程序设置的参数以 及其取值范围	AT+CREG=?
扩展类	查询命令	AT+ <x>?</x>	该命令用于返回参数的当前值	AT+CREG?
1 放矢	设置命令	AT+ <x>=<></x>	该命令用于设置用户自定义的参数值	AT+CREG=1
	执行命令	AT+ <x></x>	该命令用于读取受 4G 模块内部程序控制的不可变 参数	AT+CSQ

表 4.1.1 AT 命令的分类

1. 在 PC 端的输入方法: 以"AT"为例,在 FreeAT 工具的输入框输入 AT 后,勾选发送新行或点击键盘中的"回车",最后点击发送,如图 4.1.1 所示。

图 4.1.1 AT 指令输入示例图

2. MCU 编程方法:以"AT"为例,在写入"AT"后,紧跟"\r\n"才是一条完整的命令,如图 4.1.2 所示。

fat_send_wait_cmdres_blocking("AT\r\n", 5000)

图 4.1.2 编程中 AT 写入方法

4.2 响应内容格式

在发送 AT 命令之后,核心板会响应对应的内容。响应内容的格式是"〈回车〉〈新行〉〈响应内容〉〈回车〉〈新行〉"(〈CR〉〈LF〉〈响应内容〉〈CR〉〈LF〉)。

响应内容大致可分为两类,一类是只响应 OK/ERROR。另一类是有响应其它值。如表 4.2.1 所示。

 命令
 定义
 响应内容
 对响应内容进行判断

 ATE1
 打开回显
 OK
 通过 "OK" 可判断此时回显已经打开。

表 4.2.1 响应内容对比

 AT+CREG?
 查询网络注册状态
 +CREG: 0,1 OK
 通过 "OK" 并不能判断网络已注册,还需要对 0,1 进行判 断,"1"表示已注册上网络。

注意:有的用户怕麻烦,在编程中对 AT 命令响应内容不予处理或只判断是否返回 "OK"。这种方法是不可取的。如果 SIM 卡欠费或者信号质量差导致核心板无法通信,用户将无法精准地找到问题所在并采取应对措施。所以在编程中一定要对 AT 命令的响应内容进行判断。

5 联系方式

公司: 深圳市飞思创电子科技有限公司

网址: www.freestrong.com

邮箱: support@freestrong.com

电话: 0755-86528386

6 免责声明

本文档提供有关 FS-MCore-E600SX 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

7 更新历史

版本	更新内容	更新时间
V1.0	初版	2021.01.09
V1.1		2021.01.21