МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 8 по дисциплине «Разработка нейросетевых систем»

Тема: «Рекуррентные нейросети»

ИСПОЛНИТЕЛЬ:	Журавлев Н.В.
группа ИУ5-24М	подпись
	"28" <u>04</u> 2024 г.
ПРЕПОДАВАТЕЛЬ:	<u>Канев А.И.</u> ФИО
	подпись
	""202_ г.

Москва - 2024

Задание

- 1. Необходимо сгенерировать синтетические данные и обучить на них модель авторегрессии, модель LSTM.
- 2. Обучить рекуррентную нейронную сеть на реальных данных погоды по варианту. Вариант города соответствует группе: 1 Москва, 2 Санкт-Петербург, 3 Новосибирск, 4 Екатеринбург
- 3. Отчет должен содержать: титульный лист, задание с вариантом, скриншоты и краткие пояснения по каждому этапу лабораторной работы. Результаты моделей авторегрессии, LSTM на систетических данных, а также результаты обучения на реальных данных, итоговую таблицу со результатами для всех вариантов обучения
- 4. Проведите обучение трех моделей по вашему варианту для вашего города.
- 5. Измените гиперпараметры обучения для улучшения модели: количество эпох, размер батча, скорость обучения
- 6. Создайте два варианта синтетических данных: первый вариант только сезонная компонента и шум; второй вариант только меняющийся тренд и шум
- 7. Измените конфигурацию нейросети: оставьте одну однонаправленную ячейку LSTM с выходным полносвязным слоем. Обучите ее на новых синтетических данных и сравните 3 разных варианта размерности состояния ячейки.
- 8. Укажите, какие действия помогли улучшить метрики ваших моделей и объясните почему.
- 9. Укажите в отчете как меняется количество обучаемых в LSTM параметров при изменении ее конфигурации

Часть 1. Проведите обучение трех моделей по вашему варианту для вашего города.

Данные для обучения для города Екатеринбург представлены на рис. 1.

Рисунок 1 – Погода в Екатеринбурге

Произведем обучение модели авторегрессии (AR). Предсказательные способности AR для синтетического BP представлены на рис. 2.

Рисунок 2 - Предсказание AR

Точность AR по MAE, R2 и TSS представлена на рис. 3.

Рисунок 3 - Точность AR по MAE, R2 и TSS

График корреляции и гистограмма невязки предсказаний двух моделей представлены на рис. 4.

Рисунок 4 - График корреляции и гистограмма невязки

Модель авторегрессии показала плохие результаты, т.к. реальные данные очень изменчивы за короткий промежуток.

Для базового варианта R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 5-8. Результаты предсказаний по окну точек представлен в табл. 1.

Рисунок 5 – Точность обучаемой сети

Рисунок 6 - Предсказание LSTM

Рисунок 7 - График корреляции и гистограмма невязки

Рисунок 8 - Рекуррентное предсказание LSTM

Таблица 1 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-1952.80	-346.69
one-step	3	-39.84	-17.32
one-step	5	9.29	30.69
one-step	10	37.92	46.25
one-step	50	45.89	52.46
one-step	-1	49.95	56.17
recursive	2	-1351.18	-191.64
recursive	3	-42.98	6.80
recursive	5	-20.14	20.73
recursive	10	-6.88	10.62
recursive	50	-0.98	11.99
recursive	-1	0.14	12.38

После изменения гиперпараметров R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 9-12. Результаты предсказаний по окну точек представлен в табл. 2.

Рисунок 9 - Точность обучаемой сети

Рисунок 10 - Предсказание LSTM

Рисунок 11 - График корреляции и гистограмма невязки

Рисунок 12 - Рекуррентное предсказание LSTM

Таблица 2 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-1856.05	-325.64
	3	-29.00	-8.22
one-step			
one-step	5	16.64	36.30
one-step	10	40.95	48.87
one-step	50	45.55	52.16
one-step	-1	49.48	55.75
recursive	2	-1224.75	-167.23
recursive	3	-21.29	7.21
recursive	5	-23.09	21.71
recursive	10	-8.87	11.38
recursive	50	-0.48	12.03
recursive	-1	-0.02	12.39

Для модели с одной однонаправленной ячейки LSTM R2 и MSE,

предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 13-16. Результаты предсказаний по окну точек представлен в табл. 3.

Рисунок 13 - Точность обучаемой сети

Рисунок 14 - Предсказание LSTM

Рисунок 15 - График корреляции и гистограмма невязки

Рисунок 16 - Рекуррентное предсказание LSTM

Таблица 3 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-2325.64	-427.82
one-step	3	-68.25	-41.15
one-step	5	-8.09	17.40
one-step	10	33.99	42.85
one-step	50	46.50	52.99
one-step	-1	47.55	54.07
recursive	2	-1148.33	-165.54
recursive	3	-24.98	9.37
recursive	5	-16.48	22.91
recursive	10	-6.44	11.61
recursive	50	-0.20	12.06
recursive	-1	-2.57	10.83

Что можно объяснить тем, что было уменьшено количество обучаемый параметров сети из-за чего она стала хуже предсказывать результаты.

Для моделей с двумя однонаправленной ячейками LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 17-20. Результаты предсказаний по окну точек представлен в табл. 4.

Рисунок 17 - Точность обучаемой сети

Рисунок 18 - Предсказание LSTM

Рисунок 19 - График корреляции и гистограмма невязки

Рисунок 20 - Рекуррентное предсказание LSTM

Таблица 4 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	39.74	46.33
one-step	3	42.51	44.67
one-step	5	45.97	51.05
one-step	10	47.74	52.40
one-step	50	55.12	58.70
one-step	-1	46.91	52.26
recursive	2	-21.63	9.87
recursive	3	-18.80	1.26
recursive	5	-16.94	7.56
recursive	10	-10.05	8.09
recursive	50	-3.04	7.64
recursive	-1	-0.52	9.79

Что можно объяснить тем, что было уменьшено количество обучаемый параметров сети из-за чего она стала хуже предсказывать результаты.

Для модели с одной двунаправленной ячейкой LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 21-24. Результаты предсказаний по окну точек представлен в табл. 5.

Рисунок 21 - Точность обучаемой сети

Рисунок 22 - Предсказание LSTM

Рисунок 23 - График корреляции и гистограмма невязки

Рисунок 24 - Рекуррентное предсказание LSTM

Таблица 5 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
	2	2.66	27.04
one-step	2	-2.66	37.04
one-step	3	-20.04	15.87
one-step	5	24.29	34.74
one-step	10	-1.93	17.02
one-step	50	40.98	48.40
one-step	-1	42.84	48.75
recursive	2	21.48	21.59
recursive	3	28.08	13.42
recursive	5	35.83	9.73
recursive	10	29.37	14.53
recursive	50	4.88	11.93
recursive	-1	0.26	10.21

Что можно объяснить тем, что было уменьшено количество обучаемый параметров сети из-за чего она стала хуже предсказывать результаты.

Наилучший результат у модели с двумя двунаправленными ячейками, что можно объяснить тем, что это необходимая сложность модели для более точного предсказания.

Часть 2. Создайте два варианта синтетических данных: первый вариант только сезонная компонента и шум; второй вариант только меняющийся тренд и шум

Пример для варианта данных, где только сезонная компонента и шум представлен на рис. 25.

Рисунок 25 - ВР, где только сезонная компонента и шум

Произведем обучение модели авторегрессии (AR). Предсказательные способности AR для синтетического BP представлены на рис. 26.

Рисунок 26 - Предсказание AR

Точность AR по MAE, R2 и TSS представлена на рис. 27.

Рисунок 27 - Точность AR по MAE, R2 и TSS

График корреляции и гистограмма невязки предсказаний двух моделей представлены на рис. 28.

Рисунок 28 - График корреляции и гистограмма невязки

Модель авторегрессии показала хорошие результаты, т.к. данные имеют ярко выраженную периодичность.

Пример для варианта данных, где только меняющий тренд и шум представлен на рис. 29.

Рисунок 29 - ВР, где только меняющий тренд и шум

Произведем обучение модели авторегрессии (AR). Предсказательные способности AR для синтетического BP представлены на рис. 30.

Рисунок 30 - Предсказание AR

Точность AR по MAE, R2 и TSS представлена на рис. 31.

Рисунок 31 - Точность AR по MAE, R2 и TSS

График корреляции и гистограмма невязки предсказаний двух моделей представлены на рис. 32.

Рисунок 32 - График корреляции и гистограмма невязки

Модель авторегрессии показала плохие результаты, т.к. данные не имеют периодичности, а только тренд на возрастания.

Часть 3. Измените конфигурацию нейросети: оставьте одну однонаправленную ячейку LSTM с выходным полносвязным слоем. Обучите ее на новых синтетических данных и сравните 3 разных варианта размерности состояния ячейки.

Для меняющейся сезонной компоненты и шума базовый вариант R2 и

MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 33-36. Результаты предсказаний по окну точек представлен в табл. 6.

Рисунок 33 - Точность обучаемой сети

Рисунок 34 - Предсказание LSTM

Рисунок 35 - График корреляции и гистограмма невязки

Рисунок 36 - Рекуррентное предсказание LSTM

Таблица 6 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-51.82	72.56
one-step	3	-187.59	-11.71
one-step	5	54.90	63.24
one-step	10	56.36	64.74
one-step	50	42.91	49.49
one-step	-1	44.10	50.13
recursive	2	41.94	67.05
recursive	3	-92.06	24.06
recursive	5	1.76	17.98
recursive	10	1.41	18.82
recursive	50	1.56	11.25
recursive	-1	0.29	10.74

После изменения гиперпараметров R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 37-40. Результаты предсказаний по окну точек представлен в табл. 7.

Рисунок 37 - Точность обучаемой сети

Рисунок 38 - Предсказание LSTM

Рисунок 39 - График корреляции и гистограмма невязки

Рисунок 40 - Рекуррентное предсказание LSTM

Таблица 7 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-140.97	82.40
one-step	3	24.08	38.79
one-step	5	38.98	57.15
one-step	10	11.19	20.83
one-step	50	52.53	56.48
one-step	-1	43.54	49.02
recursive	2	-218.12	36.79
recursive	3	23.95	-66.14
recursive	5	0.41	-19.42
recursive	10	-5.77	-5.22
recursive	50	-0.52	7.15
recursive	-1	-0.01	9.44

Для модели с одной однонаправленной ячейки LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 41-44. Результаты предсказаний по окну точек представлен в табл. 8.

Рисунок 41 - Точность обучаемой сети

Рисунок 42 - Предсказание LSTM

Рисунок 43 - График корреляции и гистограмма невязки

Рисунок 44 - Рекуррентное предсказание LSTM

Таблица 8 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-22.17	77.13
one-step	3	-22.01	58.51
one-step	5	9.47	51.54
one-step	10	-3.78	33.32
one-step	50	45.60	50.76
one-step	-1	44.02	49.48
recursive	2	-151.71	70.09
recursive	3	-71.63	54.69
recursive	5	-31.72	36.79
recursive	10	-16.49	28.30
recursive	50	-0.27	9.28
recursive	-1	-0.55	9.28

Точность возросла, что можно объяснить тем, что модель до этого имела высокую сложность.

Для моделей с двумя однонаправленной ячейками LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 45-48. Результаты предсказаний по окну точек представлен в табл. 9.

Рисунок 45 - Точность обучаемой сети

Рисунок 46 - Предсказание LSTM

Рисунок 47 - График корреляции и гистограмма невязки

Рисунок 48 - Рекуррентное предсказание LSTM

Таблица 9 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-229.80	-96.86
one-step	3	-247.66	-127.77
one-step	5	-133.96	-86.94
one-step	10	36.93	45.09
one-step	50	34.39	40.82
one-step	-1	44.83	50.09
recursive	2	-67.76	-14.79
recursive	3	-24.09	3.29
recursive	5	-40.89	-14.33
recursive	10	0.61	12.91
recursive	50	-0.04	9.57
recursive	-1	-0.30	9.27

Точность возросла, что можно объяснить тем, модель до этого имела высокую сложность.

Для модели с одной двунаправленной ячейкой LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 49-52. Результаты предсказаний по окну точек представлен в табл. 10.

Рисунок 49 - Точность обучаемой сети

Рисунок 50 - Предсказание LSTM

Рисунок 51 - График корреляции и гистограмма невязки

Рисунок 52- Рекуррентное предсказание LSTM

Таблица 10 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	66.22	83.66
one-step	3	51.38	72.84
one-step	5	15.78	43.49
one-step	10	25.38	33.47
one-step	50	41.63	47.02
one-step	-1	45.40	50.90
recursive	2	78.58	12.17
recursive	3	78.91	-9.52
recursive	5	79.03	-35.21
recursive	10	13.72	-5.63
recursive	50	2.28	6.10
recursive	-1	0.01	9.89

Точность возросла, что можно объяснить тем, что сложность модели оптимальная именно при таком количестве ячеек.

Наилучший результат у модели с одной двунаправленной ячейкой LSTM, что можно объяснить тем, что такое количество параметров в сети необходимо для предсказания.

Для меняющего тренда и шума базовый вариант R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 53-56. Результаты предсказаний по окну точек представлен в табл. 11.

Рисунок 53 - Точность обучаемой сети

Рисунок 54 - Предсказание LSTM

Рисунок 55 - График корреляции и гистограмма невязки

Рисунок 56 - Рекуррентное предсказание LSTM

Таблица 11 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	35.69	46.29
one-step	3	65.43	65.94
one-step	5	40.15	41.44
one-step	10	59.56	62.50
one-step	50	44.21	50.38
one-step	-1	48.32	53.34
recursive	2	-27.42	-4.95
recursive	3	-3.96	1.03
recursive	5	-2.57	0.87
recursive	10	-1.66	7.12
recursive	50	-1.60	10.99
recursive	-1	-0.19	9.68

После изменения гиперпараметров R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 57-60. Результаты предсказаний по окну точек представлен в табл. 12.

Рисунок 57 - Точность обучаемой сети

Рисунок 58 - Предсказание LSTM

Рисунок 59 - График корреляции и гистограмма невязки

Рисунок 60 - Рекуррентное предсказание LSTM

Таблица 12 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-5658.85	84.64
one-step	3	26.85	32.28
one-step	5	25.02	32.92
one-step	10	46.63	51.03
one-step	50	43.83	49.58
one-step	-1	48.46	53.42
recursive	2	-3579.09	88.37
recursive	3	-16.94	-14.82
recursive	5	-2.03	7.60
recursive	10	1.32	7.91
recursive	50	0.46	10.08
recursive	-1	0.06	9.53

Для модели с одной однонаправленной ячейки LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 61-64. Результаты предсказаний по окну точек представлен в табл. 13.

Рисунок 61 - Точность обучаемой сети

Рисунок 62 - Предсказание LSTM

Рисунок 63 - График корреляции и гистограмма невязки

Рисунок 64 - Рекуррентное предсказание LSTM

Таблица 13 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	60.84	61.78
one-step	3	25.48	40.49
one-step	5	-19.38	11.20
one-step	10	9.28	29.81
one-step	50	46.31	53.18
one-step	-1	47.15	52.67
recursive	2	34.17	-23.02
recursive	3	34.23	0.78
recursive	5	27.18	16.08
recursive	10	12.99	16.75
recursive	50	1.25	12.30
recursive	-1	0.04	10.43

Точность стала меньше, что можно объяснить тем, что у модели стало слишком мало параметров для обучения.

Для моделей с двумя однонаправленной ячейками LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 65-68. Результаты предсказаний по окну точек представлен в табл. 14.

Рисунок 65 - Точность обучаемой сети

Рисунок 66 - Предсказание LSTM

Рисунок 67 - График корреляции и гистограмма невязки

Рисунок 68 - Рекуррентное предсказание LSTM

Таблица 14 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-88.88	9.32
one-step	3	0.69	31.90
one-step	5	69.16	70.87
one-step	10	59.73	61.83
one-step	50	56.34	60.02
one-step	-1	50.82	55.65
recursive	2	28.93	-45.28
recursive	3	-57.34	3.51
recursive	5	-0.67	3.49
recursive	10	0.57	4.17
recursive	50	0.12	8.21
recursive	-1	0.01	9.82

Точность возросла, что можно объяснить тем, что данное количество является более оптимальным для таких данных.

Для модели с одной двунаправленной ячейкой LSTM R2 и MSE, предсказание, график корреляции и гистограмма невязки, рекуррентное предсказание представлены на рис. 69-72. Результаты предсказаний по окну точек представлен в табл. 15.

Рисунок 69 - Точность обучаемой сети

Рисунок 70 - Предсказание LSTM

Рисунок 71 - График корреляции и гистограмма невязки

Рисунок 72 - Рекуррентное предсказание LSTM

Таблица 15 - Результаты предсказаний по окну точек

Тип	Кол-во точек	R2, %	TSS, %
one-step	2	-514.84	-152.87
one-step	3	42.38	64.31
one-step	5	41.01	53.37
one-step	10	60.56	63.85
one-step	50	48.67	55.29
one-step	-1	49.44	54.54
recursive	2	-212.09	-75.14
recursive	3	-1.30	35.78
recursive	5	0.59	19.72
recursive	10	0.28	8.11
recursive	50	0.33	12.85
recursive	-1	0.08	10.09

Что можно объяснить тем, что модель у модели стало меньше параметров для обучения и она стала слишком простой.

Наилучший результат у модели с двумя однонаправленными ячейками, что можно объяснить тем, что данное количество является более оптимальным для таких данных.

Часть 4. Укажите, какие действия помогли улучшить метрики ваших моделей и объясните почему.

Повысить точность помогли следующие действия:

- Изменение гиперпараметров;
- Изменение количества ячеек LSTM
- Изменение ячейки на двунаправленную

Часть 5. Укажите в отчете как меняется количество обучаемых в LSTM параметров при изменении ее конфигурации

Количество параметров при изменении конфигурации представлено в табл. 16.

Таблица 16 – Зависимость количества параметров от конфигурации сети

Конфигурация	Количество параметров		
Базовый вариант	lstm.weight_ih_l0 torch.Size([64, 1])		
(две	lstm.weight_hh_l0 torch.Size([64, 16])		
двунаправленные	lstm.bias_ih_l0 torch.Size([64])		
ячейки LSTM)	lstm.bias_hh_10 torch.Size([64])		
	lstm.weight_ih_l0_reverse torch.Size([64, 1])		
	lstm.weight_hh_l0_reverse torch.Size([64, 16])		
	lstm.bias_ih_l0_reverse torch.Size([64])		
	lstm.bias_hh_l0_reverse torch.Size([64])		
	lstm.weight_ih_11 torch.Size([64, 32])		
	lstm.weight_hh_l1 torch.Size([64, 16])		
	lstm.bias_ih_11 torch.Size([64])		
	lstm.bias_hh_11 torch.Size([64])		
	lstm.weight_ih_l1_reverse torch.Size([64, 32])		
	lstm.weight_hh_l1_reverse torch.Size([64, 16])		
	lstm.bias_ih_11_reverse torch.Size([64])		
	lstm.bias_hh_l1_reverse torch.Size([64])		
	fc.weight torch.Size([1, 32])		
	fc.bias torch.Size([1])		
	Sum of trained paramters: 8865		
Одна	lstm.weight_ih_l0 torch.Size([64, 1])		
однонаправленная	lstm.weight_hh_l0 torch.Size([64, 16])		
ячейка LSTM	lstm.bias_ih_l0 torch.Size([64])		
	lstm.bias_hh_10 torch.Size([64])		
	fc.weight torch.Size([1, 16])		
	fc.bias torch.Size([1])		
	Sum of trained paramters: 1233		

Продолжение таблицы 16			
lstm.weight_ih_l0 torch.Size([64, 1])			
lstm.weight_hh_l0 torch.Size([64, 16])			
lstm.bias_ih_l0 torch.Size([64])			
lstm.bias_hh_10 torch.Size([64])			
lstm.weight_ih_l1 torch.Size([64, 16])			
lstm.weight_hh_l1 torch.Size([64, 16])			
lstm.bias_ih_11 torch.Size([64])			
lstm.bias_hh_l1 torch.Size([64])			
fc.weight torch.Size([1, 16])			
fc.bias torch.Size([1])			
Sum of trained paramters: 3409			
lstm.weight_ih_l0 torch.Size([64, 1])			
lstm.weight_hh_l0 torch.Size([64, 16])			
lstm.bias_ih_10 torch.Size([64])			
lstm.bias_hh_l0 torch.Size([64])			
lstm.weight_ih_l0_reverse torch.Size([64, 1])			
lstm.weight_hh_l0_reverse torch.Size([64, 16])			
lstm.bias_ih_10_reverse torch.Size([64])			
lstm.bias_hh_l0_reverse torch.Size([64])			
fc.weight torch.Size([1, 32])			
fc.bias torch.Size([1])			
Sum of trained paramters: 2465			

Итоговая таблица с результатами для всех вариантов обучения

На табл. 17 представлены результаты обучения.

Таблица 17 - Итоговая таблица с результатами для всех вариантов обучения

Конфигурация	Гиперпараметры	Точность	Комментарий
нейросети			
AR	-	R2 one-step = 50.956%	Реальные данные
		R2 recursive = -1.298%	
AR	-	R2 one-step = 39.744%	Данные, где только
		R2 recursive = -11.687%	меняющийся тренд и
			шум
AR	-	R2 one-step = 40.518%	Данные, где только
		R2 recursive = -10%	сезонная компонента
			и шум
LSTM	learning_rate = 0.01	one-step R2 = 49.95%	Реальные данные
	epochs = 40	recursive R2 = 0.14%	
	batch_size = 512		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.01	one-step R2 = 45%	Увеличить размер
	epochs = 40	recursive R2 = -0.2%	батча
	batch_size = 1024		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.01	one-step R2 = 50.91%	Уменьшить размер
	epochs = 10	recursive R2 = 0.06%	батча
	batch_size = 256		
	num_layers = 2		
	bidirectional = True		

ИЦЫ 1 /	one stan D2 40 490/	Vacarra revenue
learning_rate = 0.005	•	Уменьшить скорость
epochs = 20	recursive R2 = 0.14%	обучения
batch_size = 256		
num_layers = 2		
bidirectional = True		
learning_rate = 0.005	one-step R2 = 47.55%	Одна
epochs = 20	recursive R2 = -2.57%	однонаправленная
batch_size = 256		ячейка LSTM
num_layers = 2		
bidirectional = False		
learning_rate = 0.005	one-step R2 = 46.91 %	Две
epochs = 40	recursive R2 = -0.52 %	однонаправленный
batch_size = 256		ячейки LSTM
num_layers = 2		
bidirectional = False		
learning_rate = 0.005	one-step R2 = 42.84%	Одна
epochs = 40	recursive R2 = 0.26%	двунаправленная
batch_size = 256		ячейка LSTM
num_layers = 1		
bidirectional = True		
learning_rate = 0.01	one-step R2 = 44.10%	Данные, где только
epochs = 40	recursive R2 = 0.29%	сезонная компонента
batch_size = 512		и шум
num_layers = 2		
bidirectional = True		
	batch_size = 256 num_layers = 2 bidirectional = True learning_rate = 0.005 epochs = 20 batch_size = 256 num_layers = 2 bidirectional = False learning_rate = 0.005 epochs = 40 batch_size = 256 num_layers = 2 bidirectional = False learning_rate = 0.005 epochs = 40 batch_size = 256 num_layers = 1 bidirectional = True learning_rate = 0.01 epochs = 40 batch_size = 512 num_layers = 2	epochs = 20 batch_size = 256 num_layers = 2 bidirectional = True learning_rate = 0.005 epochs = 20 batch_size = 256 num_layers = 2 bidirectional = False learning_rate = 0.005 epochs = 40 batch_size = 256 num_layers = 2 bidirectional = False learning_rate = 0.005 epochs = 40 batch_size = 256 num_layers = 2 bidirectional = False learning_rate = 0.005 epochs = 40 batch_size = 256 num_layers = 1 bidirectional = True learning_rate = 0.01 epochs = 40 batch_size = 512 num_layers = 2

LSTM	learning_rate = 0.01	one-step R2 = 44.65%	Увеличить размер
LSTVI	_	1	
	epochs = 44	recursive $R2 = -0.02\%$	батча
	batch_size = 1024		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.01	one-step R2 = 46.7%	Уменьшить размер
	epochs = 11	recursive R2 = 0.1%	батча
	batch_size = 256		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.005	one-step $R2 = 43.54\%$	Уменьшить скорость
	epochs = 22	recursive R2 = -0.01%	обучения
	batch_size = 256		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.005	one-step R2 = 44.02%	Одна
	epochs = 22	recursive $R2 = -0.55\%$	однонаправленная
	batch_size = 256		ячейка LSTM
	num_layers = 1		
	bidirectional = True		
LSTM	learning_rate = 0.005	one-step R2 = 44.83%	Две
	epochs = 22	recursive R2 = -0.30%	однонаправленные
	batch_size = 256		ячейки LSTM
	num_layers = 2		
	bidirectional = False		

продолжение таол	1	4 D2 45 400/	
LSTM	learning_rate = 0.005	one-step $R2 = 45.40\%$	Одна
	epochs = 22	recursive R2 = 0.01%	двунаправленная
	batch_size = 256		ячейка LSTM
	num_layers = 1		
	bidirectional = True		
LSTM	learning_rate = 0.01	one-step R2 = 48.32%	Данные, где только
	epochs = 40	recursive R2 = 0.19%	меняющийся тренд и
	batch_size = 512		шум
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.01	one-step $R2 = 47.26\%$	Увеличить размер
	epochs = 44	recursive R2 = 0%	батча
	batch_size = 1024		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.01	one-step R2 = 48.73%	Уменьшить размер
	epochs = 11	recursive R2 = -0.15%	батча
	batch_size = 256		
	num_layers = 2		
	bidirectional = True		
LSTM	learning_rate = 0.005	one-step R2 = 48.46%	Уменьшить скорость
	epochs = 22	recursive R2 = 0.06%	обучения
	batch_size = 256		
	num_layers = 2		
	bidirectional = True		

LSTM	learning_rate = 0.005	one-step $R2 = 47.15\%$	Одна
	epochs = 22	recursive R2 = 0.04%	однонаправленная
	batch_size = 256		ячейка LSTM
	num_layers = 2		
	bidirectional = False		
LSTM	learning_rate = 0.005	one-step R2 = 50.82%	Две
	epochs = 22	recursive R2 = 0.01%	однонаправленные
	batch_size = 256		ячейки LSTM
	num_layers = 2		
	bidirectional = False		
LSTM	learning_rate = 0.005	one-step R2 = 49.44%	Одна
	epochs = 22	recursive R2 = 0.08%	двунаправленная
	batch_size = 256		ячейка LSTM
	num_layers = 1		
	bidirectional = True		

Вывод

В теории увеличение количества ячеек LSTM может повысить точность за счёт приемлемым образом усложнения модели, а может уменьшить за счёт увеличения сложности модели. В текущий лабораторной работе подтверждается второй вариант для меняющегося тренда и первый для реальных данных и сезонной компоненты.

В теории двунаправленная ячейка может повысить точность за счёт количества обучаемый параметров модели. В текущий лабораторной работе это подтверждается.

В теории LSTM должна лучше работать на данных с меняющимся трендом компонентной, хуже на на сезонной компоненте и ещё хуже на реальных данных, т.к. LSTM плохо опредлеяет переодические зависимости. В текущий лабораторной работе это подтверждается.

В теории AR должна лучше работать на данных с сезонной компонентой, хуже на реальных и ещё хуже на изменяющем тренде, т.к. считает значение по предыдущем. В текущий лабораторной работе это не подтверждается за счёт того, что реальные данные определяется лучше всего, что может быть связано с тем, что реальные данные имеют динамическую дисперсию в отличии от статической в синтетических данных.

В теории LSTM должна лучше работать лучше AR на всех видах данных. В текущий лабораторной работе это не подтверждается на реальных данных, но разница очень незначительна.