Data Files

- exploratory/kenya_oct_15_data_processed.csv
 - Batch_id: ID number for this batch
 - **time:** timestamp of this datapoint
 - Longitude: longitude of the location
 - **Latitude:** latitude of the location
 - x: vertical jolt (up and down, measured in meters per second squared)
 Vertical jolt is calculated as the incremental difference of vertical acceleration between timestamp t and t-1.
 - y: horizontal jolt (left and right, measured in meters per second squared)
 Horizontal jolt is calculated as the incremental difference of horizontal acceleration between timestamp t and t-1.
 - z: forward jolt (forward and back, measured in meters per second squared)
 - Forward jolt is calculated as the incremental difference of forward acceleration between timestamp t and t-1.
 - velocity: traveling speed of the vehicle
 - x_raw: vertical acceleration without natural gravity (up and down, measured in meters per second squared)
 - y_raw: horizontal acceleration (left and right, measured in meters per second squared)
 - z_raw: forward acceleration (forward and backward, measured in meters per second squared)
 - label: label of road hazards (0: no road hazard; 1: speed bumps; 2: potholes)
 - x_ratio_speed: ratio of vertical acceleration divided by traveling speed
 - x_ratio_z: ratio of vertical acceleration divided by forward acceleration

R Scripts:

- exploratory/kenya oct 15 data processed.Rmd
 - Calculate x_ratio_speed (ratio of vertical acceleration divided by traveling speed)
 - Calculate x_ratio_z (ratio of vertical acceleration divided by forward acceleration)
 - Write a new data file exploratory/kenya_oct_15_data_processed.csv
- data/find_speedbump.R
 - Designed to label the following data files:
 - data/los angeles 1.csv

- data/los_angeles_2.csv
- data/los_angeles_3.csv
- data/los_angeles_4.csv
- data/los_angeles_5.csv
- Write the following new data files:
 - sklearn_Models/speedbumps_1.csv
 - sklearn_Models/speedbumps_2.csv
 - sklearn_Models/speedbumps_3.csv
 - sklearn Models/speedbumps 4.csv
 - sklearn Models/speedbumps 5.csv
- Calculate the mean of vertical acceleration
- Calculate the standard deviation of vertical acceleration
- Given the exploratory analysis on the unlabeled data files, this R script labels any data points with 5 standard deviations or more away from the mean of vertical acceleration.

Python Scripts:

- sklearn_Models/sklearn_CVGrid.py
 - Parameter estimation using grid search with cross validation
 - sklearn.model_selection.GridSearchCV Model 1
 - Features: speed, X-accel, Y-accel, Z-accel, Z-jolt
 - Labels: speedbump (1 = yes, 0 = no)
 - Average F1 score: 0.868
 - StdDev F1 score: 0.108
 - Learning rate = 0.01
 - Minimum sample leafs = 1
 - N estimators = 150
 - Minimum sample split = 6
 - Max features = 4
- sklearn_Models/sklearn_CVRandomized.py
 - Randomized search on hyper parameters
 - Model with Rank 1:
 - Mean validation score: 0.868 (std: 0.108)
 - Hyper-parameters: {'learning_rate': 0.01, 'min_samples_leaf': 1, 'n_estimators': 150, 'max_features': 4, 'min_samples_split': 6, 'max_depth': None}
 - Model with Rank 2:
 - Mean validation score: 0.852 (std: 0.099)

- Hyper-parameters: {'learning_rate': 0.1, 'min_samples_leaf': 1, 'n_estimators': 150, 'max_features': None, 'min_samples_split': 2, 'max_depth': None}
- Model with rank: 2
 - Mean validation score: 0.852 (std: 0.099)
 - Hyper-parameters: {'learning_rate': 0.1, 'min_samples_leaf': 1, 'n_estimators': 150, 'max_features': 3, 'min_samples_split': 2, 'max_depth': None}
- Model with rank: 2
 - Mean validation score: 0.852 (std: 0.099)
 - Hyper-parameters: {'learning_rate': 0.1, 'min_samples_leaf': 1, 'n_estimators': 150, 'max_features': 3, 'min_samples_split': 6, 'max_depth': 10}
- Model with rank: 2
 - Mean validation score: 0.852 (std: 0.099)
 - Hyper-parameters: {'learning_rate': 1, 'min_samples_leaf': 1, 'n_estimators': 100, 'max_features': None, 'min_samples_split': 2, 'max_depth': None}
- Model with rank: 2
 - Mean validation score: 0.852 (std: 0.099)
 - Hyper-parameters: {'learning_rate': 0.1, 'min_samples_leaf': 1, 'n_estimators': 150, 'max_features': 3, 'min_samples_split': 2, 'max_depth': 5}

• sklearn Models/sklearn MLPClassifier.py

- Multi-Layer Perceptron (neural network) Classifier model
- Data: Los Angeles
- sklearn.neural network.MLPClassifier Model 1
 - Features: speed, X-accel, Y-accel, Z-accel, Z-jolt
 - Labels: speedbump (1 = yes, 0 = no)
 - Average F1 score: 0.760686122
 - StdDev F1 score: 0.1537659455829
 - Median F1 score: 0.77350427350
 - IQR F1 score: 0.1333334
 - Skewness F1 score: -0.17764724445877225
- sklearn.neural network.MLPClassifier Model 4
 - Features: speed, X-accel, Y-accel, Z-accel, Z-jolt
 - Labels: speedbump (1 = yes, 0 = no)
 - Average F1 score: 0.7709969
 - StdDev F1 score: 0.1402254

■ Median F1 score: 0.80000000

■ IQR F1 score: 0.13333334

■ Skewness F1 score: -0.17764724445877225

sklearn_Models/sklearn_DTClassifier.py

Decision Tree Classifier model

Data: Los Angeles

sklearn.tree.DecisionTreeClassifier Model 1

■ Features: speed, X-accel, Y-accel, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.89899393769

■ StdDev F1 score: 0.118201302569

Median F1 score: 0.9230769231

■ IQR F1 score: 0.0921034

■ Skewness F1 score: -0.9312941130701623

sklearn.tree.DecisionTreeClassifier Model 5

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.84655181

■ StdDev F1 score: 0.10527561

Median F1 score: 0.866071428

■ IQR F1 score: 0.138907

Skewness F1 score: -0.489563

sklearn_Models/sklearn_RFClassifier.py

Random Forest Classifier model

Data: Los Angeles

sklearn.ensemble.RandomForestClassifier Model 1

■ Features: speed, X-accel, Y-accel, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.744434045

■ StdDev F1 score: 0.160948970

■ Median F1 score: 0.75

■ IQR F1 score: 0.231867

Skewness F1 score: -0.391874

sklearn.ensemble.RandomForestClassifier Model 5

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

■ Average F1 score: 0.74717207

■ StdDev F1 score: 0.172979588

■ Median F1 score: 0.769230769

IQR F1 score: 0.22222222222Skewness F1 score: -0.98346783

sklearn_Models/sklearn_GBClassifier.py

Gradient Boosting Classifier model

Data: Los Angeles

sklearn.ensemble.GradientBoostingClassifier Model 1

■ Features: speed, X-accel, Y-accel, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.8221567168

■ StdDev F1 score: 0.0.120072183

Median F1 score: 0.0.857142856

■ IQR F1 score: 0.16923077234

Skewness F1 score: -0.621688196

sklearn.ensemble.GradientBoostingClassifier Model 2

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

■ Average F1 score: 0.3518205293

■ StdDev F1 score: 0.13588175

■ Median F1 score: 0.33333333

■ IQR F1 score: 0.1246923817

■ Skewness F1 score: 0.76200239

sklearn.ensemble.GradientBoostingClassifier Model 3

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

■ Average F1 score: 0.8399761

■ StdDev F1 score: 0.11177313

Median F1 score: 0.857142857

■ IQR F1 score: 0.20003817

■ Skewness F1 score: -0.66963835

sklearn.ensemble.GradientBoostingClassifier Model 4

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.8191443628

■ StdDev F1 score: 0.104556871

■ Median F1 score: 0.80000000

■ IQR F1 score: 0.16734588

Skewness F1 score: -0.8265433

o sklearn.ensemble.GradientBoostingClassifier Model 5

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.84139751
 StdDev F1 score: 0.10140479
 Median F1 score: 0.84210526

■ IQR F1 score: 0.237768

■ Skewness F1 score: -0.1524893

sklearn_Models/sklearn_Logistic.py

o sklearn.linear_model.LogisticRegression Model 1

Data: Los Angeles

■ Features: speed, X-accel, Y-accel, Z-accel, Z-jol

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.32698412
StdDev F1 score: 0.07853534
Median F1 score: 0.333333333
IQR F1 score: 0.1222243222
Skewness F1 score: -0.5984130

o sklearn.linear model.LogisticRegression Model 2

■ Features: speed, Z-accel, Z-jolt

■ Labels: speedbump (1 = yes, 0 = no)

Average F1 score: 0.480952380StdDev F1 score: 0.131621666

■ Median F1 score: 0.5

IQR F1 score: 0.0888888888888Skewness F1 score: 0.063076006

sklearn_Kenya/sklearn_DTClassifier.py

Decision Tree Classifier model

o Data: Kenya

sklearn.tree.DecisionTreeClassifier Model

■ Features: x, y, z

Labels: speedbump (1 = yes, 0 = no)
 Average F1 score: 0.0353807517853
 StdDev F1 score: 0.0152980191865

■ Median F1 score: 0.0266666666667

■ QR F1 score: 0.0261269020959

■ Skewness F1 score: 1.0654257915650123

■ Zero F1 score: 0

sklearn_Models/sklearn_GBClassifier.py

o Gradient Boosting Classifier model

o Data: Kenya

o sklearn.ensemble.GradientBoostingClassifier Model

■ Features: x, y, z

Labels: speedbump (1 = yes, 0 = no)
 Average F1 score: 0.0273425270958
 StdDev F1 score: 0.00373470331891
 Median F1 score: 0.0274024024024

■ IQR F1 score: 0.00262891734411

■ Skewness F1 score: 0.5085889688574291

• tensorflow_Kenya/Kenya_RNN.py

o Data: Kenya

o Keras Sequential LSTM Model

■ Features: x, y, z■ Layers: 12

■ - 2s - loss: 0.0277 - mean_squared_error: 0.0337 - val_loss: 0.0185

- val_mean_squared_error: 0.0185

[0.018500001268249109]MAE: 0.0185000012682RMSE: 0.136014705087