

Classification

Classification

Classification is a supervised machine learning technique which categorizes the data into different classes.

It is used when the output/outcome variable is categorical/ordinal/discrete in nature

Classification

In binary classification labels have two unique values
For Ex. Yes / No
0 /1
Spam/Ham

In multi-class classification labels have more than two unique values

For Ex. Setosa/Virginica/Versicolor

Logistic Regression

	Tumour Size (X)	Malignant (Y)
1	0.1	No (0)
2	0.2	0
3	0.3	0
4	0.4	0
5	0.6	Yes (1)
6	0.7	1
7	0.8	1
8	0.9	1
9	2	1

Logistic Regression

K-Nearest Neighbour

Training Algorithm :- Copying of Training data (features and labels) into memory.

Prediction Algorithm:-

- Decide the value of k.
- Compute the distance between unknown point and all the training points.
- Once the distance is calculated, sort the data in ascending order on the basis of distance.
- Choose Top k values .
- Perform election and assign the label as per majority voting.

Confusion Matrix

Positive Negative Positive True Positive False Negative Positive True Positive True Positive True Negative False Positive True Negative

Confusion Matrix: It is a matrix used to evaluate the performance of your classification model.

For Ex.

No of records for ham = 70

No of records for spam = 80

Support(ham) = 70

Support(spam) = 80

Accuracy: It is ratio of correct predictions over the total no of predictions.

Precision: It is ratio of correct predictions over the total no of predictions for positive class

F1-Score: It is a harmonic mean of precision and recall.

$$F1-Score = 2*P*R/(P+R)$$

Recall: It is a ratio of correct predictions over the total no of correct items.

Confusion Matrix

Predicted Values

	fraudulent	non-fraudulent
fraudulent	20	0
non-fraudulent	20	9980

Accuracy =
$$10,000/10,020 = 99.8\%$$

Precision =
$$20/40 = 50\%$$

Recall =
$$20/20 = 100\%$$

In this example, the accuracy of model is 99.8%. But model is not doing great job.

Accuracy is measure which is preferred for a balanced dataset.

We need to minimize the false positives so that precision will be improved.

Actual Values

Predicted Values

In this example, we need to minimize the false negatives so recall is important

Accuracy =
$$50 + 30/50 + 50 + 40 + 30 = 47\%$$

Precision =
$$50/50+40 = 55\%$$

Recall =
$$50/50+50 = 50\%$$

When to use which metric?

Thank You !!!