GEO1001 Homework 01 Report

Noortje van der Horst

21 September 2020

0.1 Lesson A1

For this assignment you will use data collected from 5 heat stress sensors placed somewhere in the Netherlands during this summer. The sensors are Kestrel 5400 and their specs are included within the assignment materials. In order to identify if the dataset is of any value to your employer, it is your job to deeply analyse the dataset and derive hypothesis from it. The work you need to do for this assignment can roughly be subdivided in 4 tasks related to each independent lesson.

0.1.1 Question 1.1

Compute mean statistics (mean, variance and standard deviation for each of the sensors variables), what do you observe from the results?

Table 1: Means all sensors

Sensors	A	В	\mathbf{C}	D	\mathbf{E}
Direction True	209.41	183.41	183.59	198.33	223.96
Wind Speed	1.29	1.24	1.37	1.58	0.6
Crosswind Speed	0.96	0.84	0.96	1.21	0.44
Headwind Speed	0.16	-0.13	-0.26	-0.3	0.19
Temperature	17.97	18.07	17.91	18.0	18.35
Globe Temperature	21.54	21.8	21.59	21.36	21.18
Wind Chill	17.84	17.95	17.77	17.84	18.29
Relative Humidity	78.18	77.88	77.96	77.94	76.79
Heat Stress Index	17.9	18.0	17.83	17.92	18.29
Dew Point	13.55	13.53	13.46	13.51	13.56
Psychro Wet Bulb Temperature	15.27	15.3	15.2	15.26	15.41
Station Pressure	1016.17	1016.66	1016.69	1016.73	1016.17
Barometric Pressure	1016.13	1016.62	1016.65	1016.69	1016.13
Altitude	-25.99	-30.06	-30.34	-30.65	-25.96
Density Altitude	137.32	135.58	129.62	132.41	150.84
NA Wet Bulb Temperature	15.98	16.0	15.93	15.92	15.94
WBGT	17.25	17.32	17.23	17.18	17.19
TWL	301.39	299.45	301.9	305.25	284.12
Direction Mag	208.91	183.22	183.08	197.83	223.9

Table 2: Variances all sensors

Sensors	A	В	\mathbf{C}	D	E
Direction True	10108.94	9977.22	7703.36	8133.89	9308.29
Wind Speed	1.25	1.3	1.43	1.74	0.51
Crosswind Speed	0.93	0.88	1.04	1.45	0.32
Headwind Speed	1.03	1.26	1.27	1.23	0.32
Temperature	15.86	16.63	16.1	16.11	19.04
Globe Temperature	68.19	66.05	67.94	61.2	63.22
Wind Chill	16.26	17.04	16.54	16.56	19.14
Relative Humidity	376.01	408.62	374.62	389.86	406.49
Heat Stress Index	15.0	15.44	15.36	15.12	18.48
Dew Point	9.72	9.64	10.08	10.07	9.42
Psychro Wet Bulb Temperature	6.94	6.77	7.24	7.04	7.0
Station Pressure	38.47	36.84	37.69	34.99	38.94
Barometric Pressure	38.47	36.83	37.68	34.95	38.94
Altitude	2663.64	2545.71	2608.53	2419.72	2692.35
Density Altitude	26510.04	26863.31	26986.6	26516.13	29714.93
NA Wet Bulb Temperature	10.01	9.81	10.48	9.99	9.43
WBGT	16.14	15.84	16.55	15.51	15.49
TWL	814.77	790.07	766.53	616.01	1289.91
Direction Mag	10105.68	9975.45	7704.62	8135.32	9268.01

Table 3: Standard deviations all sensors

Sensor	A	В	\mathbf{C}	D	\mathbf{E}
Direction True	100.54	99.89	87.77	90.19	96.48
Wind Speed	1.12	1.14	1.2	1.32	0.72
Crosswind Speed	0.96	0.94	1.02	1.2	0.56
Headwind Speed	1.02	1.12	1.13	1.11	0.56
Temperature	3.98	4.08	4.01	4.01	4.36
Globe Temperature	8.26	8.13	8.24	7.82	7.95
Wind Chill	4.03	4.13	4.07	4.07	4.37
Relative Humidity	19.39	20.21	19.36	19.74	20.16
Heat Stress Index	3.87	3.93	3.92	3.89	4.3
Dew Point	3.12	3.1	3.18	3.17	3.07
Psychro Wet Bulb Temperature	2.64	2.6	2.69	2.65	2.65
Station Pressure	6.2	6.07	6.14	5.92	6.24
Barometric Pressure	6.2	6.07	6.14	5.91	6.24
Altitude	51.61	50.46	51.07	49.19	51.89
Density Altitude	162.82	163.9	164.28	162.84	172.38
NA Wet Bulb Temperature	3.16	3.13	3.24	3.16	3.07
WBGT	4.02	3.98	4.07	3.94	3.94
TWL	28.54	28.11	27.69	24.82	35.92
Direction Mag	100.53	99.88	87.78	90.2	96.27

All tables above have been made by exporting the generated mean statistics to csv files, importing them in excel, and lastly converting these excel tables to LaTeX tables with a plugin. The excelsheet used has been provided with this report. I had trouble with pandas recognizing the datetimes, so mean statistics for the dates and times have unfortunately not been included.

From these tables, it seems that all sensors measured values that are (roughtly) comparable. The sensor's locations will probably not have differed radically from each other. Sensor E measured noticably less wind and higher temperatures than the other sensors. The variance for sensor E is also larger for several variables, which could explain some of the difference in means from the other sensors. The standard deviations show less of a difference. Larger differences in means do seem to coincide with larger differences in spread and standard deviation.

0.1.2 Question 1.2

Create 1 plot that contains histograms for the 5 sensors Temperature values. Compare histograms with 5 and 50 bins, why is the number of bins important?

Figure 1: Temperature historgam, different nr. of bins

Figure 1 shows the importance of choosing the right number of bins when making a histogram. Both histograms show the distribution of measured temperatures per sensor, but figre b contains a lot more information about the distribution than figure a. A clear peak is indicated, as well as some information about the tails of the distribution and its skewdness. However, figure a does show the differences in distribution between the 5 sensors more clearly. Figure b could be imporved to be less "busy" (e.g. displaying 1 histogram per sensor next to eachother), but as it is right now it is hard to see clear distinctions bewteen sensors.

0.1.3 Question 1.3

Create 1 plot where frequency poligons for the 5 sensors Temperature values overlap in different colors with a legend.

Figure 2: Frequency polygons per sensor, Temperature

From Firgue 2 it is again visible that the Temperature meansurements for the 5 sensors follow roughtly the same distribution. Sensor E measured higher temperatures, visible in a shorter "left tail" and longer "right tail". All sensors peaks lie around 17 degrees Celsius, this is also where their means will roughly be located.

0.1.4 Question 1.4

Generate 3 plots that include the 5 sensors boxplot for: Wind Speed, Wind Direction and Temperature.

(a) Boxplots 5 sensors, Wind Speed

(b) Boxplots 5 sensors, Wind Direction

(c) Boxplots 5 sensors, Temperature

0.2 Lesson A2

0.2.1 Question 2.1

Plot PMF, PDF and CDF for the 5 sensors Temperature values. Describe the behaviour of the distributions, are they all similar? what about their tails?

(b) Probability density function, Temperature, all sensors

(c) Cumulative density function, Temperature, all sensors

0.2.2 Question 2.2

For the Wind Speed values, plot the pdf and the kernel density estimation. Comment the differences.

Figure 5: PDF and kde for all sensors, Temperature

Figure 6: PDF and kde for all sensors, Temperature, unequal scale

0.3 Lesson A3

0.3.1 Question 3.1

Compute the correlations between all the sensors for the variables: Temperature, Wet Bulb Globe, Crosswind Speed. Use Pearsons and Spearmanns rank coefficients. Make a scatter plot with both coefficients with the 3 variables.

Figure 7: correlations between all sensors, Spearman & Pearson

0.3.2 Question 3.2

What can you say about the sensors correlations?

Figure 7 shows sensor E is significantly less correlated with the other sensors: it's Pearson's r and Spearman's ρ are lower for all sensor combinations with sensor E. All Pearson correlation coefficients for Temperature and Wet Bulb Globe Temperature are close to 1, which means there's a very strong positive (linear) correlation between the sensors. The Spearman's rank correlation coefficients are also very close to 1 for these variables. The Pearson's r for Crosswind Speed is significantly lower, lying around 0.5, meaning there's a less strong, but still measurable, correlation between the sensors for this variable. The Spearman's ρ is a bit higher, around 0.6, meaning the colleraltion for Crosswind Speed is not (completely) linear.

0.3.3 Question 3.3

If we told you that that the sensors are located as follows, hypothesize which location would you assign to each sensor and reason your hypothesis using the correlations.

From Figure 7, it is immediately clear that sensor E correlates significantly less with the other sensors. It is therefor likely this sensor is located in the most different spot: the secluded spot at the top. The rest of the locations are less easy to decipher. Differences bewteen correlations are very small. Possible differences could include direction of open spaces around the sensor, terrain type below the sensor, and cover provided by nearby structures. These characteristics are listed in Table 4. Locations 1 to 4 are numbered according to Figure 8, excluding the location likely to be sensor E. Directions were determined using the top of the image as an (arbitary) north.

Table 4: Possible causes of differences between sensors

Location	Dir. open spaces	Dir. cover	Terrain type	Likely sensor
1	N	E, S, W	field	C
2	N, NE	E, S, W	tiles	D
3	N, E	S, W	field	A
4	N, S	E, W	grassy field	В

Looking closely at the correlations, it would seem sensor D correlates the least with the other sensors (excluding E). This could be the sensor located on the pavement, which would account for higher measured Temperature and Wet Bulb Globe values. For Crosswind Speed, there seem to be two pairs of sensors which relatively correlate more: A & B and C & D. These pairs could be combined with the pairs 1 & 2 and 3 & 4 of the sensor locations, which would have the most emoparable wind speed value pairs. Since C is paired with D, location 1 could correspond to it. The choice of where to place A and B was based on the fact that A correlates a slight bit more with C then B does with C. Location 1 and 3 have the same type of grass, while location 4 has a more lush terrain. This could be a factor in the difference in correlation of sensor A and B with the other sensors. These locations are based on hypotheses, they are not decided with absolute certainty.

The result of the analysis is displayed in Figure 8.

Figure 8: Hypothesized locations of sensors

0.4 Lesson A4

0.4.1 Question 4.1

Plot the CDF for all the sensors and all the variables, then compute the 95% confidence intervals for all the variables and sensors and save them in a table (txt or csv form).

Table 5 shows the confidence intervals calculated from the plotted CDFs (Figure 9). The temperature values were determined by finding the x-value for y-values 0.025 and 0.975 on the CDF, since these would correspond to the lower and upper 2,5% of the symmetrical CDF, leaving 95% of the values. The means for each sensor are also added to Table 5. The confidence intervals do not lie perfectly symmetrical around these means, as one might expect. This is because the interval was extrapolated from a real-life sample, instead of a theoretical distribution function (like a normal distribution). Looking at the shape of the CDF of the Wind Speeds, it would seem likely this variable follows an exponential distribution (as opposed to the (expected) normal distribution of the Temperature).

Figure 9: Visualisation CDF of all sensors, Temperature & Wind Speed

Table 5: Confidence Interval with mean, Temperature & Wind Speed

Sensor	CI min Temperature	mean Temperature	CI max Temperature	CI min Wind Speed	mean Wind Speed	CI max Wind Speed
A	9.6	18.0	28.1	0.0	1.3	4.1
В	9.8	18.1	28.4	0.0	1.2	3.9
C	9.3	17.9	28.2	0.0	1.4	4.2
D	9.6	18.0	27.9	0.0	1.6	4.7
E	10.6	18.4	30.5	0.0	0.6	2.4

0.4.2 Question 4.2

Test the hypothesis: the time series for Temperature and Wind Speed are the same for sensors:

- 1) E, D;
- 2) D, C;
- 3) C, B;
- 4) B, A.

Table 6: t and p values for tested hypotheses

sensors	Temperature t	Temperature p	Wind Speed t	Wind Speed p
ED	2.9985	0.0027	-32.6596	0.0
DC	0.7294	0.4658	5.8712	0.0
$^{\mathrm{CB}}$	-1.3238	0.1856	3.9088	0.0001
BA	0.8408	0.4005	-1.5006	0.1335

0.4.3 Question 4.3

What could you conclude from the p-values?

The hypothesis testing was done with the following parameters:

- H0: $\mu 1 \mu 2 = 0$
- H1: $\mu 1 \mu 2 > 0$
- $\alpha = 0.05$

If the null hypothesis holds, the time series from both sensors would likely be equal. The p-value resulting from the t-tests done for the previous question describes the probability that the observed difference between the means of the 2 samples is due to chance. If this probability is not significant, i.e. smaller than α , it is not likely the difference was caused by chance. This means it is likely the samples are actually different, with 1 or more factors other than chance causing a difference in means. The difference in means for Temperature between sensor D and C for example, is 47% likely to have been due to chance. Here, the H0 was accepted, since this is significantly larger than the predefined 5%. The conclusions drawn from the p-values are summarized in table 7.

Table 7: conclusions summarized

sensors	Temperature	conclusion	Wind Speed	conclusion
ED	0.0027 < 0.05	reject H0	0.0000 < 0.05	reject H0
DC	0.4658 > 0.05	accept H0	0.0000 < 0.05	reject H0
CB	0.1856 > 0.05	reject H0	0.0001 < 0.05	reject H0
BA	0.4005 > 0.05	accept H0	0.1335 > 0.05	accept H0