

# Zásady návrhu elektronických systémů

#### Milan Kolář Ústav mechatroniky a technické informatiky









Projekt ESF CZ.1.07/2.2.00/28.0050

Modernizace didaktických metod
a inovace výuky technických předmětů.







#### Zápis v HDL jazycích

Nejčastěji používáme úroveň RTL (Register Transfer Level).

Datová část - v podstatě se jedná o střídání kombinační logiky (výpočetní jednotky) a registrů pro uchovávání dat.

*Řídicí část* – stavové automaty - opět se střídá kombinační logika (přechodové a výstupní funkce) s registry (pro vnitřní stav).

- => vzniká "sendvičová" struktura registrů a kombinační logiky (přelévání dat mezi registry)
  - podpora v hardwaru FPGA (LE = LUT + klopný obvod).









### Technika zřetězení (pipelining)

Umožňuje zvyšování pracovního kmitočtu v systému





Největší zpoždění 7 ns => F<sub>MAX</sub> = 143 MHz







### Synchronizace registrů (retiming)









### Příklad synchronizace registrů

Vyrovnání kombinačních logických cest mezi registry









#### Metoda replikace registrů

Replikace a rozmístění registrů do míst, kde jsou cílové obvody









### Hodinový signál s budiči











### Sdílení prostředků

Sdílení prostředků snižuje množství potřebné logiky, ale snižuje se také maximální pracovní frekvence

**Příklad realizace popisu**: if (B > C) then Y = A + B;else Y = A + C;end if;



Se sdílením prostředků



Bez sdílení prostředků







#### Synchronní návrh

*Casová doména* – část obvodu, jehož registry jsou buzeny stejným hodinovým signálem.

Vše navrhovat synchronně (nejlépe 1 časová doména, příp. důsledně oddělit jednotlivé časové domény)

- podpora v návrhových systémech,
- snadno testovatelné,
- odolnější vůči šumům (přeslechy, odrazy, hazardy, ...),
- funkčnost nezávisí na konkrétním rozmístění a propojení,
- funkční simulace souhlasí se simulací časovou.







#### Pravidla synchronního návrhu

- na hodinové vstupy všech prvků jsou přivedeny pouze hodinové signály (bez přídavné logiky), případné "zastavení" hodin řešíme klopnými obvody se vstupy "clock enable";
- všechny klopné obvody jsou hranové řízené (ne hladinově řízené obvody - latche);
- zpětné vazby v kombinačních obvodech se v návrhu nevyskytují (ZV vedou na asynchronní sekvenční logiku);
- asynchronní signály jsou synchronizovány (viz dále).









#### Jednotné hodinové signály

Výstupy z logiky (přenosy čítačů, výstupy dekodérů a apod.) nejsou použity jako hodinové signály











#### Přenos signálů mezi čas. doménami

Data se na vstupu KO mohou měnit i v době příchodu aktivní hrany hodinového signálu

- => vznikají kritická časová okna, kdy není dodržena doba předstihu  $t_s$   $(t_{set-up})$ , doba přesahu  $t_h$   $(t_{hold})$ , příp. doba zotavení po resetu  $t_{rr}$
- => na výstupu KO může vzniknout nedefinovaný stav, který mohou následné vstupy vyhodnotit rozdílně.









#### Metastability

Metastabilitou nazýváme neschopnost výstupu registru ustálit se na definované logické úrovni v přesně definovaném čase, obvykle za jednu hodinovou periodu.

Důsledkem metastabilit mohou vznikat:

- proudové špičky na napájení,
- nekorektní přechody mezi stavy stavových automatů,
- nekorektní hodnoty na sběrnicích.













MTBF (Mean-time-between-failures) - střední doba bezporuchového provozu (mezi chybami v synchronizaci):

$$MTBF = rac{e^{T.\Delta t}}{f_{in}.f_{clk}.T_0}$$
 DATA IN SCLK SCLK +  $\Delta t$ 



T, T<sub>0</sub> ... pravděpodobnosti výskytu chyby charakteristické pro daný typ logického obvodu (souvisí s technologií a architekturou daného obvodu)

f<sub>in</sub> ... kmitočet vstupního signálu

f<sub>c/k</sub> ... kmitočet synchronizačního signálu

 $\Delta t$  ... doba zpožděného vzorkování výstupu KO (doba pro stabilizaci)







#### Poruchovost návrhu

Poruchovost celého návrhu Q<sub>C</sub> je dána:

$$Q_C = \frac{1}{MTBF_C} = \sum_{i=1}^{n} \frac{1}{MTBF_i}$$

⇒ časových domén by mělo být co nejméně a *MTBF*; by v návrhu měly být všechny srovnatelné.

#### Příklad:

U obvodu Altera Flex10K ( $T_0 = 1,01.10^{-13}$  s,  $T = 1,27.10^{10}$  s<sup>-1</sup>) chceme, aby k chybě došlo jednou za 100 let ( $MTBF = 3,2.10^9$  s) při  $f_{in} = 100$  kHz a  $f_{clk}$  = 10 MHz. Testování signálu musí být prováděno se zpožděním:

$$\Delta t = \frac{\ln(MTBF.f_{in}.f_{clk}.T_0)}{T} = 2 \text{ ns}$$







### **Synchronizátory**

Pro snížení pravděpodobnosti vzniku metastability se používají dvojnásobné (výjimečně i trojnásobné) synchronizátory (synchronizační buňky) – pro jednotlivé signály.









### **Synchronizátory**

Cesta mezi synchronizačními registry může obsahovat kombinační logiku, pokud jsou všechny registry řetězce ve stejné časové doméně (nevětvit ale signál mezi synchronizátory).











#### Synchronizace sběrnic

Problém se synchronizací n-bit. sběrnic

- vlivem nestejných zpoždění jednotl.
   bitů by mohlo dojít k zápisu nesprávné hodnoty;
- je-li  $f_{c/k1} \le f_{c/k2}$ , lze signálem *EN* potvrzovat platnost dat;
- je-li f<sub>clk1</sub> ≥ f<sub>clk2</sub>, nutno zavést zpětnou vazbu (handshake) data se nesmí ztratit ani zdublikovat (*req* a *ack* je třeba přesynchronizovat) => pomalejší.













#### Přenos dat mezi čas. doménami

Pro přenos dat mezi časovými doménami lze použít fronty s využitím paměti FIFO s asynchronními hodinami (dual clock FIFO)

 využíváme zejména v případě, kdy je zpoždění spojené s resynchronizací nepřípustné









### Krátké pulsy v signálu

Velmi krátký puls (glitch) v datovém signálu (v době  $t_{set-up}$  nebo  $t_{hold}$ ) vznikající např. vlivem hazardů, příp. krátký rušivý puls v hodinovém signálu mohou způsobit také metastabilní chování. Proto případnou výstupní kombinační logiku z časové domény doplňujeme KO.









#### Nekoherence

Nekoherence vzniká pokud přivádíme asynchronní signál do vstupů několika synchronních prvků (klopných obvodů) současně. Zejména v FPGA obvodech může být zpoždění jednotlivých signálů (především datových) dosti rozdílné – to může způsobit rozdílné hodnoty na výstupech (nemusí teoreticky dojít k metastabilitě).

Řešením je opět synchronizace asynchronních signálů.











## Inicializace obvodů (globální reset)

Důležité pro počáteční nastavení zejména stavových automatů.

Asynchronní nulování a přednastavení může být použito pouze k nastavení počátečního stavu klopných obvodů (ne v průběhu jejich běžné funkce).









#### Synchronizace asynchronního resetu

Problém s uvolněním resetu s aktivní hranou hodin (nutno dodržet dobu zotavení po resetu – reset recovery time t<sub>rr</sub>) – může vést na metastabilní chování;

⇒ reset synchronizer



Zastavení hodinového signálu vkládáním logiky není vhodné, lze použít bloky DCM (Digital Clock Manager) či PLL.







#### Resynchronizace asynchr. vstupů

- synchronizace jednotným hodinovým signálem
- detekce úzkých pulsů





Asynchronní vstupní události nesmí být častější než 4 T<sub>clk</sub>









#### Dvouhranové klopné obvody

V architekturách FPGA jsou většinou jen KO reagující na náběžnou (po negaci *clk* na sestupnou) hranu.

Ani HDL jazyky většinou nepodporují dvouhranové KO.

U některých zařízení je třeba reagovat na obě hrany (např. paměti









#### Náhrada sběrnic multiplexorem

Náhrada jednosměrné třístavové sběrnice multiplexorem

- třístavové výstupy jsou pomalejší, někdy uvnitř FPGA nedostupné
- vhodné zejména pro menší počet větvení



Náhrada obousměrné třístavové sběrnice multiplexorem:











#### Makrobloky, jádra (cores)

Makro je definováno jako část navrhovaného systému, která je použitelná jako samostatný stavební blok.

Používání maker výrazně zkracuje a zlevňuje návrh.

#### Dva typy makrobloků:

- soft core forma syntetizovatelného RTL kódu;
- hard core výstupem je hotový layout (závislé na technologii),
  - úspora místa na čipu (ve srovnání s realizací v log. buňkách),
  - vyšší pracovní kmitočet,
  - snížení spotřeby bloku (malá plocha, optimalizace),
  - možnost implementovat i nestandardní (např. analogové) bloky,
  - funkce pevně dána, nelze upravovat.







### Makrobloky (pokračování)

#### Základní vlastnosti makrobloků:

- souhlasí s příslušnými normami (standard compliant),
- vesměs verifikované pomocí FPGA obvodů, bloky pro testování,
- parametrické (např. v tabulkách uvedená různá velikost makrobloku pro proměnnou šířku sběrnice),
- integrované, spolehlivé a snadno použitelné,
- dobře zdokumentovatelné pomocí kompletní technické specifikace,
- podpora použití (od výrobce), aj.

IP bloky – navržené makrobloky, často nutné zakoupit licenci (Intellectual Property – intelektuální vlastnictví).







#### Metodika návrhu s IP bloky

