Programmable Logic Devices (PLDs)

Definition

PLD is an integrated circuit with programmable gates divided into an AND array and an OR array to provide an AND-OR sum of product implementation.

<u>B</u> + Fuse blown , AC Standard Multiple AND Array AND Gate Symbol вс Symbol 3 $\overline{A}\overline{B}\overline{C}$ **OR Array** Standard Multiple Symbol OR Gate Symbol

x Fuse intact

Convention

Major types of PLDs include PROM, PAL, and PLA

Classification

Md. Istiac Ahmed, Lecturer, EEE, GUB

PROM is essentially consisted of a **Decoder** and a **Programmable OR plane.** The decoder is made of **Fixed AND plane.**

PROM

PROM
Gate Plane

Address Lines, k=5Address number= $2^k=2^5=32$ Decoder dimension= $k-to-2^k=5$ -to-32 Decoder Length of each word, n=8 bits Each OR gate input line = $2^k=2^5=32$ Total Programmable Internal Connections = $2^k \times n = 2^5 \times 8 = 256$

PROM Gate Plane Example

Address Lines =?
Address number =?
Decoder dimension =?
Length of each word =?
Each OR gate input line =?
Total Programmable Internal Connections =?

Implement the following Boolean functions with PROM

$$F_1(A_0, A_1) = \sum (1, 2, 3)$$

$$F_2(A_0, A_1) = \sum (0, 2)$$

Designing with PROM

A_0	A_1	F ₁	$\boldsymbol{F_2}$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	1	0

 $\boldsymbol{F_1}$

 $\boldsymbol{F_2}$

Design a combinational circuit using PROM that accepts a 3-bit number and generates an output binary number equal to the square of the input number with necessary tabulations and illustrations.

Class Task

Programmable Logic Array (PLA) has a **programmable AND** array and a **programmable OR** array.

No. of **AND** gates = No. of **Product terms**No. of **OR** gates = No. of **Output functions**No. of **NOT** gates = No. of **Inputs**

PLA

Implement the following functions using PLA.

$$F_1 = \underline{A}\overline{B} + \underline{A}\underline{C} + \overline{A}\underline{B}\overline{C}$$

$$F_2 = \overline{A}\underline{C} + \underline{B}\underline{C}$$

Step 01: Simplification:

Step 02: Calculations:

No. of **AND** gates = No. of **Product terms = 4**

No. of **OR** gates = No. of **Output functions = 2**

No. of **NOT** gates = No. of **Inputs = 3**

PLA Example

Step 03: Diagram:

PLA Example

Programmable Array Logic (PAL) has a **programmable AND** array and a fixed OR array.

No. of **AND** gates = No. of **Product terms** No. of **OR** gates = No. of **Output functions** No. of **NOT** gates = No. of **Inputs** AND plane

PAL

Md. Istiac Ahmed, Lecturer, EEE, GUB

Design a 4-bit Adder-Subtractor using PLA & PAL

