

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 December 2001 (27.12.2001)

PCT

(10) International Publication Number
WO 01/97850 A2

(51) International Patent Classification⁷: **A61K 45/06**

(21) International Application Number: **PCT/EP01/06976**

(22) International Filing Date: 20 June 2001 (20.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

00250194.8 23 June 2000 (23.06.2000) EP
00250214.4 28 June 2000 (28.06.2000) EP

(71) Applicant: **SCHERING AKTIENGESELLSCHAFT**
[DE/DE]; Müllerstrasse 178, 13353 Berlin (DE).

(71) Applicants and

(72) Inventors: **SIEMEISTER, Gerhard** [DE/DE]; Reimerswalder Steig 26, 13503 Berlin (DE). **HABEREY, Martin** [DE/DE]; Steinstr. 1, 12169 Berlin (DE). **THIERAUCH, Karl-Heinz** [DE/DE]; Hochwildpfad 45, 14169 Berlin (DE).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/97850 A2

(54) Title: COMBINATIONS AND COMPOSITIONS WHICH INTERFERE WITH VEGF/VEGF AND ANGIOPOIETIN/TIE RECEPTOR FUNCTION AND THEIR USE (II)

(57) Abstract: The present invention describes the combination of substances interfering with the biological activity of Vascular Endothelial Growth Factor (VEGF)/VEGF receptor systems (compound I) and substances interfering with the biological function of Angiopoietin/Tie receptor systems (compound II) for inhibition of vascularization and for cancer treatment.

**Combinations and compositions which interfere with VEGF/ VEGF and
angiopoietin/ Tie receptor function and their use (II)**

5 The present invention provides the combination of substances interfering with the biological activity of Vascular Endothelial Growth Factor (VEGF)/VEGF receptor systems (compound I) and substances interfering with the biological function of Angiopoietin/Tie receptor systems (compound II) for inhibition of vascularization and for cancer treatment.

10

Protein ligands and receptor tyrosine kinases that specifically regulate endothelial cell function are substantially involved in physiological as well as in disease-related angiogenesis. These ligand/receptor systems include the Vascular Endothelial Growth Factor (VEGF) and the Angiopoietin (Ang) families, and their receptors, the VEGF receptor family and the tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (Tie) family. The members of the two families of receptor tyrosine kinases are expressed primarily on endothelial cells. The VEGF receptor family includes Flt1 (VEGF-R1), Flk1/KDR (VEGF-R2), and Flt4 (VEGF-R3). These receptors are recognized by members of the VEGF-related growth factors in that the ligands of Flt1 are VEGF and placenta growth factor (PIGF), whereas Flk1/KDR binds VEGF, VEGF-C and VEGF-D, and the ligands of Flt4 are VEGF-C and VEGF-D (Nicosia, Am. J. Pathol. 153, 11-16, 1998). The second family of endothelial cell specific receptor tyrosine kinases is represented by Tie1 and Tie2 (also known as Tek). Whereas Tie1 remains an orphan receptor, three secreted glycoprotein ligands of Tie2, Ang1, Ang2, and Ang3/Ang4 have been discovered (Davis et al., Cell 87, 1161-1169, 1996; Maisonpierre et al., Science 277, 55-60, 1997; Valenzuela et al., Proc. Natl. Acad. Sci. USA 96, 1904-1909, 1999; patents: US 5,521,073; US 5,650,490; US 5,814,464).

20

The pivotal role of VEGF and of its receptors during vascular development was exemplified in studies on targeted gene inactivation. Even the heterozygous disruption of the VEGF gene resulted in fatal deficiencies in vascularization (Carmeliet et al., Nature 380, 435-439, 1996; Ferrara et al., Nature 380, 439-442,

30

1996). Mice carrying homozygous disruptions in either Flt1 or Flk1/KDR gene die in mid-gestation of acute vascular defects. However, the phenotypes are distinct in that Flk1/KDR knock-out mice lack both endothelial cells and a developing hematopoietic system (Shalaby et al. *Nature* 376, 62-66, 1995), whereas Flt1 deficient mice have normal hematopoietic progenitors and endothelial cells, which fail to assemble into functional vessels (Fong et al., 376, 66-70, 1995). Disruption of the Flt4 gene, whose extensive embryonic expression becomes restricted to lymphatic vessels in adults, revealed an essential role of Flt4 for the remodeling and maturation of the primary vascular networks into larger blood vessels during early development of the cardiovascular system (Dumont et al., *Science* 282, 946-949, 1998). Consistent with the lymphatic expression of Flt4 in adults overexpression of VEGF-C in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement (Jeltsch et al., *Science* 276, 1423-1425, 1997). Moreover, VEGF-C was reported to induce neovascularization in mouse cornea and chicken embryo chorioallantoic membrane models of angiogenesis (Cao et al., *Proc. Natl. Acad. Sci. USA* 95, 14389-14394, 1998).

The second class of endothelial cell specific receptor tyrosine kinases has also been found to be critically involved in the formation and integrity of vasculature. Mice deficient in Tie1 die of edema and hemorrhage resulting from poor structural integrity of endothelial cells of the microvasculature (Sato et al., *Nature* 376, 70-74, 1995; Rodewald & Sato, *Oncogene* 12, 397-404, 1996). The Tie2 knock-out phenotype is characterized by immature vessels lacking branching networks and lacking periendothelial support cells (Sato et al., *Nature* 376, 70-74, 1995; Dumont et al., *Genes Dev.* 8, 1897-1909, 1994). Targeted inactivation of the Tie2 ligand Ang1, as well as overexpression of Ang2, an inhibitory ligand, resulted in phenotypes similar to the Tie2 knock out (Maisonneuve et al., *Science* 277, 55-60, 1997; Suri et al., *cell* 87, 1171-1180). Conversely, increased vascularization was observed upon transgenic overexpression of Ang1 (Suri et al., *Science* 282, 468-471, 1998; Thurstonen et al., *Science* 286, 2511-2514, 1999).

The results from angiogenic growth factor expression studies in corpus luteum development (Maisonneuve et al., *Science* 277, 55-60, 1997; Goede et al. Lab.

- Invest. 78, 1385-1394, 1998), studies on blood vessel maturation in the retina (Alon et al., Nature Med. 1, 1024-1028, 1995; Benjamin et al, Development 125, 1591-1598, 1998), and gene targeting and transgenic experiments on Tie2, Ang1, and Ang2, suggest a fundamental role of the Angiopoietin/Tie receptor system in
- 5 mediating interactions between endothelial cells and surrounding pericytes or smooth muscle cells. Ang1, which is expressed by the periendothelial cells and seems to be expressed constitutively in the adult, is thought to stabilize existing mature vessels. Ang2, the natural antagonist of Ang1 which is expressed by endothelial cells at sites of vessel sprouting, seems to mediate loosening of
- 10 endothelial-periendothelial cell contacts to allow vascular remodeling and sprouting in cooperation with angiogenesis initiators such as VEGF, or vessel regression in the absence of VEGF (Hanahan, Science 277, 48-50, 1997).
- In pathological settings associated with aberrant neovascularization elevated expression of angiogenic growth factors and of their receptors has been observed.
- 15 Most solid tumors express high levels of VEGF and the VEGF receptors appear predominantly in endothelial cells of vessels surrounding or penetrating the malignant tissue (Plate et al., Cancer Res. 53, 5822-5827, 1993). Interference with the VEGF/VEGF receptor system by means of VEGF-neutralizing antibodies
- 20 (Kim et al., Nature 362, 841-844, 1993), retroviral expression of dominant negative VEGF receptor variants (Millauer et al., Nature 367, 576-579, 1994), recombinant VEGF-neutralizing receptor variants (Goldman et al., Proc. Natl. Acad. Sci. USA 95, 8795-8800, 1998), or small molecule inhibitors of VEGF receptor tyrosine kinase (Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60,
- 25 970-975, 2000; Wood et al. Cancer Res. 60, 2178-2189, 2000), or targeting cytotoxic agents via the VEGF/VEGF receptor system (Arora et al., Cancer Res. 59, 183-188, 1999; EP 0696456A2) resulted in reduced tumor growth and tumor vascularization. However, although many tumors were inhibited by interference with the VEGF/VEGF receptor system, others were unaffected (Millauer et al.,
- 30 Cancer Res. 56, 1615-1620, 1996). Human tumors as well as experimental tumor xenografts contain a large number of immature blood vessels that have not yet recruited periendothelial cells. The fraction of immature vessels is in the range of 40% in slow growing prostate cancer and 90% in fast growing glioblastoma. A selective obliteration of immature tumor vessels was observed upon withdrawal of

VEGF by means of downregulation of VEGF transgene expression in a C6 glioblastoma xenograft model. This result is in accordance with a function of VEGF as endothelial cell survival factor. Similarly, in human prostate cancer shutting off VEGF expression as a consequence of androgen-ablation therapy led

- 5 to selective apoptotic death of endothelial cells in vessels lacking periendothelial cell coverage. In contrast, the fraction of vessels which resisted VEGF withdrawal showed periendothelial cell coverage (Benjamin et al., J. Clin. Invest. 103, 159-165, 1999).

- 10 The observation of elevated expression of Tie receptors in the endothelium of metastatic melanomas (Kaipainen et al., Cancer Res. 54, 6571-6577, 1994), in breast carcinomas (Salvén et al., Br. J. Cancer 74, 69-72, 1996), and in tumor xenografts grown in the presence of dominant-negative VEGF receptors (Millauer et al., Cancer Res. 56, 1615-1620, 1996), as well as elevated expression of Flt4
15 receptors in the endothelium of lymphatic vessels surrounding lymphomas and breast carcinomas (Jussila et al., Cancer Res. 58, 1599-1604, 1998), and of VEGF-C in various human tumor samples (Salvén et al., Am. J. Pathol. 153, 103-108, 1998), suggested these endothelium-specific growth factors and receptors as candidate alternative pathways driving tumor neovascularization. The high
20 upregulation of Ang2 expression already in early tumors has been interpreted in terms of a host defense mechanism against initial cooption of existing blood vessels by the developing tumor. In the absence of VEGF, the coopted vessels undergo regression leading to necrosis within the center of the tumor. Contrarily, hypoxic upregulation of VEGF expression in cooperation with elevated Ang2
25 expression rescues and supports tumor vascularization and tumor growth at the tumor margin (Holash et al., Science 284, 1994-1998, 1999; Holash et al., Oncogene 18, 5356-5362, 1999).

Interference with Tie2 receptor function by means of Angiopoietin-neutralizing

- 30 Tie2 variants consisting of the extracellular ligand-binding domain has been shown to result in inhibition of growth and vascularization of experimental tumors (Lin et al., J. Clin. Invest. 103, 159-165, 1999; Lin et al. Proc. Natl. Acad. Sci. USA 95, 8829-8834, 1998; Siemeister et al., Cancer Res. 59, 3185-3191, 1999). Comparing the effects of interference with the endothelium-specific receptor

tyrosine kinase pathways by means of paracrine expression of the respective extracellular receptor domains on the same cellular background demonstrated inhibition of tumor growth upon blockade of the VEGF receptor system and of the Tie2 receptor system, respectively (Siemeister et al., Cancer Res. 59, 3185-3191, 5 1999).

It is known that the inhibition of the VEGF/VEGR receptor system by various methods resulted only in slowing down growth of most experimental tumors (Millauer et al., Nature 367, 576-579, 1994; Kim et al., Nature 362, 841-844, 1993; Millauer et al., Cancer Res. 56, 1615-1620, 1996; Goldman et al., Proc. Natl.

10 Acad. Sci. USA 95, 8795-8800, 1998; Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60, 970-975, 2000; Wood et al. Cancer Res. 60, 2178-2189, 2000; Siemeister et al., Cancer Res. 59, 3185-3191, 1999). Even by escalation of therapeutic doses a plateau level of therapeutic efficacy was achieved (Kim et al., Nature 362, 841-844, 1993; Wood et al. Cancer Res. 60, 15 2178-2189, 2000). Similar results were observed upon interference with the Angiopoietin/Tie2 receptor system (Lin et al., J. Clin. Invest. 103, 159-165, 1999; Lin et al., Proc. Natl. Acad. Sci. USA 95, 8829-8834, 1998; Siemeister et al., Cancer Res. 59, 3185-3191, 1999).

20 However, there is a high demand for methods that enhance the therapeutic efficacy of anti-angiogenous compounds.

Searching for methods that enhance the therapeutic efficacy of anti-angiogenic compounds, superior anti-tumor effects were observed unexpectedly upon 25 combination of inhibition of VEGF/VEGF receptor systems and interference with biological function of Angiopoietin/Tie receptor systems. The mode of action underlying the superior effects observed may be that interference biological function of Angiopoietin/Tie receptor systems destabilizes endothelial cell-periendothelial cell interaction of existing mature tumor vessels and thereby 30 sensitizes the endothelium to compounds directed against VEGF/VEGF receptor systems.

Based on this unexpected finding the present invention provides the combination of functional interference with VEGF/VEGF receptor systems and with

Angiopoietin/Tie receptor systems for inhibition of vascularization and of tumor growth.

The pharmaceutical composition consists of two components: compound I inhibits the biological activity of one or several of the VEGF/VEGF receptor systems or

- 5 consists of cytotoxic agents which are targeted to the endothelium via recognition of VEGF/VEGF receptor systems. Compound II interferes with the biological function of one or several of Angiopoietin/Tie receptor systems or consists of cytotoxic agents which are targeted to the endothelium via recognition of Angiopoietin/Tie receptor systems. Alternatively, compound I inhibits the biological
10 activity of one or several of the VEGF/VEGF receptor systems or of the Angiopoietin/Tie receptor systems and compound II consists of cytotoxic agents which are targeted to the endothelium via recognition of one or several of the VEGF/VEGF receptor systems or of the Angiopoietin/Tie receptor systems.

Targeting or modulation of the biological activities of VEGF/VEGF receptor
15 systems and of Angiopoietin/Tie receptor systems can be performed by

- (a) compounds which inhibit receptor tyrosine kinase activity,
- (b) compounds which inhibit ligand binding to receptors,
- (c) compounds which inhibit activation of intracellular signal pathways of the
20 receptors,
- (d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- (e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents
25 or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- (f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

30

A compound comprised by compositions of the present invention can be a small molecular weight substance, an oligonucleotide, an oligopeptide, a recombinant protein, an antibody, or conjugates or fusionproteins thereof. An example of an inhibitor is a small molecular weight molecule which inactivates a receptor tyrosine

kinase by binding to and occupying the catalytic site such that the biological activity of the receptor is decreased. Kinase inhibitors are known in the art (Sugen: SU5416, SU6668; Fong et al. (1999), Cancer Res. 59, 99-106; Vajkoczy et al., Proc. Am. Assoc. Cancer Res. San Francisco (2000), Abstract ID 3612; Zeneca: 5 ZD4190, ZD6474; Wedge et al. (2000), Cancer Res. 60, 970-975; Parke-Davis PD0173073, PD0173074; Johnson et al., Proc. Am. Assoc. Cancer Res., San Francisco (2000), Abstract ID 3614; Dimitroff et al. (1999), Invest. New Drugs 17, 121-135). An example of an antagonist is a recombinant protein or an antibody which binds to a ligand such that activation of the receptor by the ligand is 10 prevented. Another example of an antagonist is an antibody which binds to the receptor such that activation of the receptor is prevented. An example of an expression modulator is an antisense RNA or ribozyme which controls expression of a ligand or a receptor. An example of a targeted cytotoxic agent is a fusion protein of a ligand with a bacterial or plant toxin such as Pseudomonas exotoxin A, Diphtheria toxin, or Ricin A. An example of a targeted coagulation-inducing 15 agent is a conjugate of a single chain antibody and tissue factor. Ligand-binding inhibitors such as neutralizing antibodies which are known in the art are described by Genentech (rhuMAbVEGF) and by Presta et al. (1997), Cancer Res. 57, 4593-4599. Ligand-binding receptor domains are described by Kendall & Thomas 20 (1993), Proc. Natl. Acad. Sci., U.S.A.90, 10705-10709; by Goldman et al. (1998) Proc. Natl. Acad. Sci., U.S.A.95, 8795-8800 and by Lin et al. (1997), J. Clin. Invest. 100, 2072-2078. Further, dominant negative receptors have been 25 described by Millauer et al. (1994), Nature 367, 567-579. Receptor blocking antibodies have been described by Imclone (c-p1C11, US 5,874,542). Further known are antagonistic ligand mutants (Siemeister et al. (1998), Proc. Natl. Acad. Sci., U.S.A.95, 4625-4629). High affinity ligand- or receptor binding oligo nucleotides have been described by NeXstar (NX-244) and Drolet et al. (1996), Nat. Biotech 14, 1021-1025. Further, small molecules and peptides have been described.

30 Expression regulators have been described as anti-sense oligo nucleotides and as ribozymes (RPI, Angiozyme™, see RPI Homepage).

- Examples for delivery-/Targeting-Systems have been described as ligand/antibody-toxin-fusion-proteins or conjugates (Arora et al. (1999), Cancer Res. 59, 183-188 and Olson et al. (1997), Int. J. Cancer 73, 865-870), as endothel cell targeting of liposomes (Spragg et al. (1997), Prog. Natl. Acad. Sci. U.S.A94, 8795-8800, and as endothel cell targeting plus coagulation-induction (Ran et al., (1998), Cancer Res. 58, 4646-4653).
- 5

- 10 Small molecules which inhibit the receptor tyrosine kinase activity are for example molecules of general formula I

15

20

I,

in which

r has the meaning of 0 to 2,

n has the meaning of 0 to 2;

25

R₃ und R₄

a) each independently from each other have the meaning of lower alkyl,

b) together form a bridge of general partial formula II;

5

wherein the binding is via the two terminal C- atoms, and
m has the meaning of 0 to 4; or

c) together form a bridge of partial formula III

10

15

wherein one or two of the ring members T₁, T₂, T₃, T₄ has the meaning of nitrogen, and each others have the meaning of CH, and the bining is via the atoms T₁ and T₄;

G has the meaning of C₁ -C₆ - alkyl, C₂ - C₆ - alkylene or

20 C₂ - C₆ - alkenylene; or C₂ - C₆ - alkylene or C₃ -C₆- alkenylene, which are substituted with acyloxy or hydroxy; -CH₂-O-, -CH₂-S-, -CH₂-NH-, -CH₂-O-CH₂-, -CH₂-S-CH₂-, -CH₂-NH-CH₂, oxa (-O-), thia (-S-) or imino (-NH-),

A, B, D, E and T independently from each other have the meaning of N or CH ,

25 with the proviso that not more than three of these Substituents have the meaning of N,

- Q has the meaning of lower alkyl, lower alkyloxy or halogene,
R₁ and R₂ independently from each other have the meaning of H or
lower alkyl,
- X has the meaning of imino, oxa or thia;
- 5 Y has the meaning of hydrogene, unsubstituted or substituted
aryl, heteroaryl, or unsubstituted or substituted cycloalkyl; and
- Z has the meaning of amino, mono- or disubstituted amino,
halogen, alkyl, substituted alkyl, hydroxy, etherificated or
esterificated hydroxy, nitro, cyano, carboxy, esterificated
10 carboxy, alkanoyl, carbamoyl, N-mono- or N, N-disubstituted
carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio,
phenyl-lower-alkyl-thio, alkyl-phenyl-thio, phenylsulfinyl,
phenyl-lower-alkyl-sulfinyl, alkylphenylsulfinyl, phenylsulfonyl,
phenyl-lower-alkan-sulfonyl, or alkylphenylsulfonyl, whereas, if
15 more than one rest Z is present ($m \geq 2$), the substituents Z are
equal or different from each other, and wherein the bonds
marked with an arrow are single or double bonds; or an N-
oxide of said compound, wherein one ore more N-atoms carry
an oxygene atom, or a salt thereof.
- 20 A preferred salt is the salt of an organic acid, especially a succinate.
- These compounds can preferentially be used as compound I or II in the inventive
pharmaceutical composition.
- 25 Compounds which stop a tyrosin phosphorylation, or the persistent angiogenesis,
respectively, which results in a prevention of tumor growth and tumor spread, are
for example
anthranyl acid derivatives of general formula IV
- 30

11

in which

A has the meaning of group =NR²,5 W has the meaning of oxygen, sulfur, two hydrogen atoms or the group =NR⁸,Z has the meaning of the group =NR¹⁰ or =N-, -N(R¹⁰)-(CH₂)_q-, branched or unbranched C₁₋₆-Alkyl or is the group

10

15

or A, Z and R¹ together form the group

20

	m, n and o	has the meaning of 0 – 3,
	q	has the meaning of 1 – 6,
5	R _a , R _b , R _c , R _d , R _e , R _f	independently from each other have the meaning of hydrogen, C ₁₋₄ alkyl or the group =NR ¹⁰ , and/or R _a and/or R _b together with R _c and/or R _d or R _e together with R _e and/or R _f form a bound, or up to two of the groups R _a -R _f form a bridge with each up to 3 C-atoms with R ¹ or R ² ,
10	X	has the meaning of group =NR ⁹ or =N-,
	Y	has the meaning of group -(CH ₂) _p ,
	p	has the meaning of integer 1-4,
	R ¹	has the meaning of unsubstituted or optionally substituted with one or more of halogen, C ₁₋₆ -alkyl, or C ₁₋₆ -alkyl or C ₁₋₆ -alkoxy, which is optionally substituted by one or more of halogen, or is unsubstituted or substituted aryl or heteroaryl,
15	R ²	has the meaning of hydrogen or C ₁₋₆ -alkyl, or form a bridge with up to 3 ring atoms with R _a -R _f together with Z or R ₁ ,
20	R ³	has the meaning of monocyclic or bicyclic aryl or heteroaryl which is unsubstituted or optionally substituted with one or more of halogen, C ₁₋₆ -alkyl, C ₁₋₆ -alkoxy or hydroxy,
25	R ⁴ , R ⁵ , R ⁶ and R ⁷	independently from each other have the meaning of hydrogen, halogen or C ₁₋₆ -alkoxy, C ₁₋₆ -alkyl or

C_{1-6} -carboxyalkyl, which are unsubstituted or optionally substituted with one or more of halogen, or R^5 and R^6 together form the group

- 5 R^8 , R^9 and R^{10} independently from each other have the meaning of hydrogen or C_{1-6} -alkyl,
as well as their isomers and salts.

These compounds can also preferentially be used as compound I or II in the

- 10 inventive pharmaceutical composition.

More preferentially compounds of general formula V

- 15 V,
in which
 R^1 has the meaning of group

20

14

in which R⁵ is chloro, bromo or the group -OCH₃,

in which R⁷ is -CH₃ or chloro,

in which R⁸ is -CH₃, fluoro,
chloro or -CF₃

in which R⁴ is fluoro,
chloro, bromo, -CF₃,
-N=C, -CH₃, -OCF₃ or
-CH₂OH

in which R⁶ is
-CH₃ or chloro

5

R²

has the meaning of pyridyl or the group

10

and

R³ has the meaning of hydrogen or fluoro, as well as their isomers and salts can be used as compound I or II in the inventive pharmaceutical composition.

15

These compounds have the same properties as already mentioned above under compound IV and can be used for the treatment of angiogeneous diseases.

Compositions comprise compounds of general formulars I, IV and V, alone or in combination.

The above mentioned compounds are also claimed matter within the inventive combinations.

20

A further example for ligand binding inhibitors are peptides and DNA sequences coding for such peptides, which are used for the treatment of angiogeneous diseases. Such peptides and DNA sequences are disclosed in Seq. ID No. 1 to 59 of the sequence protocoll. It has been shown that Seq. ID Nos. 34 and 34a are of main interest.

Claimed matter of the instant invention are therefor pharmaceutical compositions

a) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems,

5

b) comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems,

10

c) comprising one or several agents as compound I which modulates the biological function of one or several of the VEGF/VEGF receptor systems or of one or several of the Angiopoietin/ Tie receptor systems and comprising one or several agents as compound II which are targeted to the endothelium,

15

d) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems,

20

e) comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems,

25

f) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems,

30

g) comprising one or several agents as compound I which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems and

- h) comprising one or several agents which interfere with both the function of one or several of the VEGF/VEGF receptor systems and the function of one or several of the Angiopoietin/Tie receptor systems.

5

For a sequential therapeutical application the inventive pharmaceutical compositions can be applied simultaneously or separately .

The inventive compositions comprise as compound I or as compound II at least

10 one of

- a) compounds which inhibit receptor tyrosine kinase activity,
- b) compounds which inhibit ligand binding to receptors,
- c) compounds which inhibit activation of intracellular signal pathways of the receptors,
- 15 d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- 20 f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

These compositions are also claimed matter of the present invention.

25

Also claimed matter of the present invention are pharmaceutical compositions which comprise as compound I and/ or II at least one of Seq. ID Nos. 1-59. Of most value are pharmaceutical compositions, which comprise as compound I and/ or II Seq. ID Nos. 34a und pharmaceutical compositions according to claims 30 which comprise as compound I and/ or II at least one of sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate.

Further preferred matter of the present invention are pharmaceutical compositions, which comprise as compound I and/ or II at least one small molecule of general formula I, general formula IV and/ or general formula V.

- 5 The most preferred compound which can be used as compound I or II in the inventive composition is (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate.
Therefore, claimed matter of the present invention are also pharmaceutical compositions, which comprise as compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate, and as compound II (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate, with the proviso that compound I is not identically to compound II, and most preferred
- 10 pharmaceutical compositions, which comprise as compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and as compound II sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate; pharmaceutical compositions, which comprise as compound I mAB 4301-42-35 and as compound II sTie2, and/ or scFv-tTF conjugate; pharmaceutical
- 15 compositions, which comprise as compound I scFv-tTF conjugate and as compound II sTie2 and/ or mAB 4301-42-35; pharmaceutical compositions, which comprise as compound I L19 scFv-tTF conjugate and as compound II sTie2.

The small molecule compounds, proteins and DNA's expressing proteins, as

- 25 mentioned above can be used as medicament alone, or in form of formulations for the treatment of tumors, cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaukoma, kidney diseases, such as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathic syndrome,
- 30 transplantation rejections and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis and damage of nerve tissues.

The treatment of the damaged nerve tissues with the inventive combination hinders the rapid formation of scars at the damaged position. Thus, there is no

scar formation before the axons communicate with each other. Therefore a reconstruction of the nerve bindings is much more easier.

Further, the inventive combinations can be used for suppression of the ascites

- 5 formation in patients. It is also possible to suppress VEGF oedemas.

For the use of the inventive combinations as medicament the compounds will be formulated as pharmaceutical composition. Said formulation comprises beside the active compound or compounds acceptable pharmaceutically, organically or inorganically inert carriers, such as water, gelatine, gum arabic, lactose, starch,

- 10 magnesium stearate, talcum, plant oils, polyalkylene glycols, etc. Said pharmaceutical preparations can be applied in solid form, such as tablets, pills, suppositories, capsules, or can be applied in fluid form, such as solutions, suspensions or emulsions.

If necessary, the compositions additionally contain additives, such as

- 15 preservatives, stabilizer, detergents or emulgators, salts for alteration of the osmotic pressure and/ or buffer.

These uses are also claimed matter of the instant invention, as well as the formulations of the active compounds

- 20 For parenteral application especially injectable solutions or suspensions are suitable, especially hydrous solutions of the active compound in polyhydroxyethoxylated castor-oil are suitable.

As carrier also additives can be used, such as salts of the gallic acid or animal or plant phospholipids, as well as mixtures thereof, and liposomes or ingredients

- 25 thereof.

For oral application especially suitable are tablets, pills or capsules with talcum and/ or hydrocarbon carriers or binders, such as lactose, maize or potato starch.

The oral application can also be in form of a liquid, such as juice, which optionally contains a sweetener.

- 30 The dosis of the active compound differs depending on the application of the compound, age and weight of the patient, as well as the form and the progress of the disease.

The daily dosage of the active compound is 0,5-1000 mg, especially 50-200 mg.

The dosis can be applied as single dose or as two or more daily dosis.

These formulations and application forms are also part of the instant invention.

- Combined functional interference with VEGF/VEGF receptor systems and with
- 5 Angiopoietin/Tie receptor systems can be performed simultaneously, or in sequential order such that the biological response to interference with one ligand/receptor system overlaps with the biological response to interference with a second ligand/receptor system. Alternatively, combined functional interference with VEGF/VEGF receptor systems or with Angiopoietin/Tie receptor systems and
- 10 targeting of cytotoxic agents via VEGF/VEGF receptor systems or via Angiopoietin/Tie receptor systems can be performed simultaneously, or in sequential order such that the biological response to functional interference with a ligand/receptor system overlaps in time with targeting of cytotoxic agents.
- 15 The invention is also directed to a substance which functional interferes with both VEGF/VEGF receptor systems and Angiopoietin/Tie receptor systems, or which are targeted via both VEGF/VEGF receptor systems and Angiopoietin/Tie receptor systems.
- 20 VEGF/VEGF receptor systems include the ligands VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF, and the receptor tyrosine kinases VEGF-R1 (Flt1), VEGF-R2 (KDR/Flk1), VEGF-R3 (Flt4), and their co-receptors (i.e. neuropilin-1). Angiopoietin/Tie receptor systems include Ang1, Ang2, Ang3/Ang4, and angiopoietin related polypeptides which bind to Tie1 or to Tie2, and the receptor
- 25 tyrosine kinases Tie1 and Tie2.

Pharmaceutical compositions of the present invention can be used for medicinal purposes. Such diseases are, for example, cancer, cancer metastasis, angiogenesis including retinopathy and psoriasis. Pharmaceutical compositions of

30 the present invention can be applied orally, parenterally, or via gene therapeutic methods.

Therefor the present invention also concerns the use of pharmaceutical compositions for the production of a medicament for the treatment of tumors,

cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathie, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplantation rejections
5 and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis, damage of nerve tissues, suppression of the ascites formation in patients and suppression of VEGF oedemas.

The following examples demonstrate the feasibility of the disclosed invention, without restricting the invention to the disclosed examples.

5 **Example 1**

Superior effect on inhibition of tumor growth via combination of inhibition of the VEGF A/VEGF receptor system together with functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention was demonstrated in an A375v human melanoma xenograft model.

10

Human melanoma cell line A375v was stably transfected to overexpress the extracellular ligand-neutralizing domain of human Tie2 receptor tyrosine kinase (sTie2; compound II) (Siemeister et al., Cancer Res. 59, 3185-3191, 1999). For control, A375v cells were stably transfected with the empty expression vector 15 (A375v/pCEP). Swiss *nu/nu* mice were s.c. injected with 1×10^6 transfected A375v/sTie2 or A375v/pCEP tumor cells, respectively. Animals receiving compound I were treated for up to 38 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 20 2178-2189, 2000). Various modes of treatment are described in Table 1. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 1

	mode of treatment	
treatment group	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	- []	+
Group 4: A375v/sTie2	+	+

- 5 Tumors derived from A375v/pCEP control cells reached a size of approx. 250 mm² (mean area) within 24 days (Figure 1) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) or separate interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) delayed growth of tumors to a size of approx. 250 mm² to 31 days, respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of interference with the VEGF/VEGF receptor system by means of the kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I + compound II, treatment group 4) delayed growth of the tumors to a size of approx. 250 mm² to 38 days.
- This result clearly demonstrates the superior effect of a combination of interference with the VEGF-A/VEGF receptor system and the Angiopoietin/Tie2 receptor system over separate modes of intervention.

Example 2

Combination of functional interference with the Angiopoietin/Tie2 receptor system and neutralization of VEGF-A is superior to separate modes of intervention in

- 5 inhibition of tumor growth.

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were

treated twice weekly over a period of time of 4 weeks with intraperitoneal doses of

- 10 200 µg of the VEGF-A-neutralizing monoclonal antibody (mAb) 4301-42-35 (Schlaeppi et al., J. Cancer Res. Clin. Oncol. 125, 336-342, 1999). Various modes of treatment are described in Table 2. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its

- 15 perpendicular.

Table 2

treatment group	mode of treatment	
	mAb 4301-42-35 (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000

- 20 mm³ within 28 days (Figure 2) without treatment (group 1). Tumors treated with the VEGF-A-neutralizing mAb 4301-42-35 (compound I, treatment group 2) grew to a volume of approx. 450 mm³ within 28 days. Interference with

Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and neutralizing of VEGF-A by means of
5 the mAb 4301-42-35 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 250 mm³ within 28 days.

The superior effect of a combination of neutralization of VEGF-A and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of
10 intervention is clearly shown.

Example 3

Combination of functional interference with the Angiopoietin/Tie2 receptor system and targeting of a coagulation-inducing protein via the VEGF/VEGF receptor system is superior to separate modes of intervention in inhibition of tumor growth.

5

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. A single chain antibody (scFv) specifically recognizing the human VEGF-A/VEGF receptor I complex (WO 99/19361) was expressed in E. coli and conjugated to coagulation-inducing

- 10 recombinant human truncated tissue factor (tTF) by methods described by Ran et al. (Cancer Res. 58, 4646-4653, 1998). When tumors reached a size of approx. 200 mm³ animals receiving compound I were treated on day 0 and on day 4 with intravenous doses of 20 µg of the scFv-tTF conjugate. Various modes of treatment are described in Table 3. Animals were sacrificed for ethical reasons
- 15 when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 3

treatment group	mode of treatment	
	scFv-tTF conjugate (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 3) without treatment (group 1). Tumors treated with the coagulation-inducting tTF targeted to the VEGF-A/VEGF receptor I complex via the scFv-tTF conjugate (compound I, treatment group 2) grew to a volume of
5 approx. 500 mm³ within 28 days. Interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of targeting the VEGF receptor complex
10 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 300 mm³ within 28 days.

The superior effect of a combination of targeting of the coagulation-inducting tTF to the VEGF-A/VEGF receptor I complex and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly
15 shown. Similar effects can be expected upon targeting of cytotoxic agents to VEGF/VEGF receptor systems.

Example 4

Combination of functional interference with the VEGF/VEGF receptor system and targeting of a coagulation-inducing protein via the VEGF/VEGF receptor system is

- 5 superior to separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated for up to 28 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-

- 10 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Compound II consists of a single chain antibody (scFv) specifically recognizing the human VEGF-A/VEGF receptor I complex (WO 99/19361) which was expressed in E. coli and conjugated to coagulation-inducing recombinant human truncated tissue factor (tTF) by methods
15 described by Ran et al. (Cancer Res. 58, 4646-4653, 1998). When tumors reached a size of approx. 200 mm³ animals receiving compound II were treated on day 0 and on day 4 with intravenous doses of 20 µg of the scFv-tTF conjugate. Various modes of treatment are described in Table 4. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor
20 growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 4

	mode of treatment	
treatment group	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthal-azin-1-yl]ammonium hydrogen succinate (compound I)	scFv-tTF conjugate (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/pCEP	-	+
Group 4: A375v/pCEP	+	+

- 5 Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 4) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) resulted in a reduction of the tumor volumes to approx. 550 mm³. Tumors treated with the
 10 coagulation-inducting tTF targeted to the VEGF-A/VEGF receptor I complex via the scFv-tTF conjugate (compound II, treatment group 3) grew to a volume of approx. 500 mm³ within 28 days. Combination of inhibition of VEGF receptor tyrosine kinase by means of (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and of targeting the VEGF receptor complex
 15 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 400 mm³ within 28 days.

The superior effect of a combination of targeting of the coagulation-inducting tTF to the VEGF-A/VEGF receptor I complex and functional interference with the

- 20 VEGF/VEGF receptor system over separate modes of intervention is clearly

shown. Similar effects can be expected upon targeting of cytotoxic agents to Angiopoietin/Tie receptor systems.

Example 5

Combination of functional interference with the Angiopoietin/Tie2 receptor system and endothelium-specific targeting of a coagulation-inducing protein is superior to

- 5 separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. A fusion protein (L19 scFv-tTF) consisting of L19 single chain antibody specifically recognizing the oncofoetal ED-

- 10 B domain of fibronectin and the extracellular domain of tissue factor was expressed in E. coli as described by Nilsson et al. (Nat. Med., in press). Further, L19 scFv-tTF data have been represented by D. Neri and F. Nilsson (Meeting "Advances in the application of monoclonal antibodies in clinical oncology", Samos, Greece, 31. May-2. June 2000). When tumors reached a size of approx.
- 15 200 mm³ animals receiving compound I were treated with a single intravenous dose of 20 µg of L19 scFv-tTF in 200 µl saline. Various modes of treatment are described in Table 5. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

20

Table 5

treatment group	mode of treatment	
	L19 scFv-tTF (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 5) without treatment (group 1). Tumors treated with the coagulation-inducting L19 scFv-tTF (compound I, treatment group 2)

- 5 grew to a volume of approx. 450 mm³ within 28 days. Interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of targeting the endothelium with L19 scFv-tTF
- 10 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 250 mm³ within 28 days.

The superior effect of a combination of targeting of L19 scFv-tTF to the endothelium and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly shown.

Example 6

Combination of functional interference with the VEGF/VEGF receptor system and endothelium-specific targeting of a coagulation-inducing protein is superior to

- 5 separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated for up to 28 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-

- 10 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Compound II consists of L19 scFv-tTF fusion protein as described in example 5. When tumors reached a size of approx. 200 mm³ animals receiving compound II were treated with a single intravenous dose of 20 µg of L19 scFv-tTF in 200 µl saline. Various modes of
15 treatment are described in Table 6. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 6

treatment group	mode of treatment	
	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthal-azin-1-yl]ammonium hydrogen succinate (compound I)	L19 scFv-tTF (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/pCEP	-	+
Group 4: A375v/pCEP	+	+

5

- Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 6) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) resulted in a 10 reduction of the tumor volumes to approx. 550 mm³. Tumors treated with the coagulation-inducting L19 scFv-tTF targeted to the endothelium (compound II, treatment group 3) grew to a volume of approx. 450 mm³ within 28 days. Combination of inhibition of VEGF receptor tyrosine kinase by means of (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate 15 and of targeting the VEGF receptor complex (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 200 mm³ within 28 days.

35

The superior effect of a combination of targeting of L19 scFv-tTF to the endothelium and functional interference with the VEGF/VEGF receptor system over separate modes of intervention is clearly shown.

5

10

Description of the figures

- Fig. 1 shows the superior effect of combination of interference with VEGF/VEGF receptor system by means of an specific tyrosine kinase inhibitor and with the
5 Angiopoietin/Tie2 receptor system by means of a soluble receptor domain on inhibition of tumor growth (treatment modes of groups 1-4 are given in Table 1).
The abbreviations have the following meaning:

mock, con.	=	treatment group 1
mock+VEGF-A	=	treatment group 2
10 sTIE2-cl13	=	treatment group 3
sTIE2-cl13+VEGF-A	=	treatment group 4

- Fig. 2 shows the superior effect on tumor growth inhibition of combination of
15 VEGF-neutralization and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in Table 2).

- 20 Fig. 3 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing tTF to the VEGF/VEGF receptor I complex via a scFv-tTF conjugate and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in Table 3).

- 25 Fig. 4 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing tTF to the VEGF/VEGF receptor I complex via a scFv-tTF conjugate and functional interference with VEGF/VEGF receptor system by means of the VEGF receptor tyrosine kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate over separate modes of intervention (treatment modes of groups 1-4 are given in Table 4).

Fig. 5 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing L19 scFv-tTF fusion protein to the endothelium and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in 5 Table 5).

Fig. 6 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing L19 scFv-tTF fusion protein to the endothelium and functional interference with VEGF/VEGF receptor system by means of the VEGF receptor tyrosine 10 kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate over separate modes of intervention (treatment modes of groups 1-4 are given in Table 6).

CLAIMS

1. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems.
5
2. Pharmaceutical compositions comprising one or several agents as compound I which are targeted to the endothelium via of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems.
10
- 15 3. Pharmaceutical compositions comprising one or several agents as compound I which modulates the biological function of one or several of the VEGF/VEGF receptor systems or of one or several of the Angiopoietin/ Tie receptor systems and comprising one or several agents as compound II which are targeted to the endothelium.
20
- 25 4. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
30
5. Pharmaceutical compositions comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
35
6. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF
40

receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems.

5 7. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the

Angiopoietin/Tie receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.

10

8. Pharmaceutical compositions comprising one or several agents which interfere with both the function of one or several of the VEGF/VEGF receptor systems and the function of one or several of the Angiopoietin/Tie receptor systems.

15 9. Pharmaceutical compositions according to claims 1-8 which are intended for simultaneous or separate sequential therapeutical application.

10. Pharmaceutical compositions according to claims 1-8 which comprise as compound I at least one of

20 a) compounds which inhibit receptor tyrosine kinase activity,
b) compounds which inhibit ligand binding to receptors,
c) compounds which inhibit activation of intracellular signal pathways of the receptors,

d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,

25 e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,

30 f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

11. Pharmaceutical compositions according to claims 1-8 which comprise as compound II at least one of

- g) compounds which inhibit receptor tyrosine kinase activity,
- h) compounds which inhibit ligand binding to receptors,
- 5 i) compounds which inhibit activation of intracellular signal pathways of the receptors,
- j) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- k) delivery systems, such as antibodies, ligands, high-affinity binding
- 10 oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- l) delivery systems, such as antibodies, ligands, high-affinity binding
- 15 oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

12. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one of Seq. ID Nos. 1-59.

20

13. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II Seq. ID Nos. 34a

14. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one of sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTFconjugate.

30 15. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one small molecule of general formula I

41

in which

5 r has the meaning of 0 to 2,

n has the meaning of 0 to 2;

R₃ und R₄ a) each independently from each other have the
 meaning of lower alkyl,10 b) together form a bridge of general partial formula
 II,

15

wherein the binding is via the two terminal C- atoms,
and

m has the meaning of 0 to 4; or

c) together form a bridge of partial formula III

20

wherein one or two of the ring members T₁,T₂,T₃,T₄
has the meaning of nitrogen, and each others have the
meaning of CH, and the bining is via the atoms T₁ and
T₄;

5 G has the meaning of C₁ -C₆ - alkyl, C₂ - C₆ – alkylene or
 C₂ - C₆ – alkenylene; or C₂ - C₆ - alkylene or C₃ -C₆-
 alkenylene, which are substituted with acyloxy or
 hydroxy; -CH₂-O-, -CH₂-S-, -CH₂-NH-, -CH₂-O-CH₂-,
10 -CH₂-S-CH₂-, -CH₂-NH-CH₂, oxa (-O-) or
 thia (-S-) or
 imino (-NH-),

A, B, D, E and T independently from each other have the meaning of N
 or CH , with the provisio that not more than three of
 these Substituents have the meaning of N,

15 Q has the meaning of lower alkyl, lower alkyloxy or
 halogene,

R₁ and R₂ independently from each other have the meaning of H
 or lower alkyl,

20 X has the meaning of imino, oxa or thia;

Y has the meaning of hydrogen, unsubstituted or
 substituted aryl, heteroaryl, or unsubstituted or
 substituted cycloalkyl; and

Z has the meaning of amino, mono- or disubstituted
 amino, halogen, alkyl, substituted alkyl, hydroxy,
25 etherificated or esterificated hydroxy, nitro, cyano,
 carboxy, esterificated carboxy, alkanoyl, carbamoyl, N-
 mono- or N, N- disubstituted carbamoyl, amidino,
 guanidino, mercapto, sulfo, phenylthio, phenyl-lower-
 alkyl-thio, alkyl-phenyl-thio, phenylsulfinyl, phenyl-
30 lower-alkyl-sulfinyl, alkylphenylsulfinyl, phenylsulfonyl,
 phenyl-lower-alkan-sulfonyl, or alkylphenylsulfonyl,
 whereas, if more than one rest Z is present (m≥2), the
 substituents Z are equal or different from each other,
 and wherein the bonds marked with an arrow are single

or double bonds; or an N-oxide of said compound,
wherein one ore more N-atoms carry an oxygene atom,
or a salt thereof,
and/or a compound of genaral formula IV

5

in which

- A has the meaning of group =NR²,
 10 W has the meaning of oxygen, sulfur, two hydrogen atoms
 or the group =NR⁸,
 Z has the meaning of the group =NR¹⁰ or =N-, -N(R¹⁰)-
 (CH₂)_q-, branched or unbranched C₁₋₆-Alkyl or is the
 group

15

or A, Z and R¹ together form the group

20

44

	m, n and o	has the meaning of 0 – 3,
5	q	has the meaning of 1 – 6,
	R _a , R _b , R _c , R _d , R _e , R _f	independently from each other have the meaning of hydrogen, C ₁₋₄ alkyl or the group =NR ¹⁰ , and/or R _a and/or R _b together with R _c and/or R _d or R _c together with R _e and/or R _f form a bound, or up to two of the groups R _a -R _f form a bridge with each up to 3 C-atoms with R ¹ or R ² ,
10	X	has the meaning of group =NR ⁹ or =N-,
	Y	has the meaning of group -(CH ₂) _p ,
	p	has the meaning of integer 1-4,
15	R ¹	has the meaning of unsubstituted or optionally substituted with one or more of halogen, C ₁₋₆ -alkyl, or C ₁₋₆ -alkyl or C ₁₋₆ -alkoxy, which is optionally substituted by one or more of halogen, or is unsubstituted or substituted aryl or heteroaryl,
20	R ²	has the meaning of hydrogen or C ₁₋₆ -alkyl, or form a bridge with up to 3 ring atoms with R _a -R _f together with Z or R ₁ ,
25	R ³	has the meaning of monocyclic or bicyclic aryl or heteroaryl which is unsubstituted or optionally

substituted with one or more of für halogen, C₁₋₆-alkyl, C₁₋₆-alkoxy or hydroxy,

5 R⁴, R⁵, R⁶ and R⁷ independently from each other have the meaning of hydrogen, halogene or C₁₋₆-alkoxy, C₁₋₆-alkyl or C₁₋₆-carboxyalkyl, which are unsubstituted or optionally substituted with one or more of halogene, or R⁵ and R⁶ together form the group

10 R⁸, R⁹ and R¹⁰ independently from each other have the meaning of hydrogen or C₁₋₆-alkyl, as well as their isomers and salts,

and/ or a compound of general formula V

15

V,

20

in which

R¹ has the meaning of group

46

in which R⁵ is chloro, bromo or the group -OCH₃,

5

in which R⁷ is -CH₃ or chloro,

in which R⁸ is -CH₃, fluoro,
chloro or -CF₃

5

in which R⁴ is fluoro,
chloro, bromo, -CF₃,
-N=C, -CH₃, -OCF₃ or
-CH₂OH

in which R⁶ is
-CH₃ or chloro

R² has the meaning of pyridyl or the group

10

and

R³ has the meaning of hydrogen or fluoro, as well as their
isomers and salts.

16. Pharmaceutical compositions according to claim 15 which comprise as

15 compound I and/ or II (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate

17. Pharmaceutical compositions according to claims 1-16 which comprise as

compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium
20 hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF
conjugate, and as compound II (4-Chlorophenyl)[4-(4-pyridylmethyl)-
phthalazin-1-yl]ammonium hydrogen succinate Tie2, mAB 4301-42-35, scFv-
tTF and/ or L19 scFv-tTF conjugate, with the proviso that compound I is not
identically to compound II.

25

18. Pharmaceutical compositions according to claims 1-17 which comprise as

compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium

hydrogen succinate and as compound II sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate.

19. Pharmaceutical compositions according to claims 1-17 which comprise as compound I mAB 4301-42-35 and as compound II sTie2, and/ or scFv-tTF conjugate.
20. Pharmaceutical compositions according to claims 1-17 which comprise as compound I scFv-tTF conjugate and as compound II sTie2 and/ or mAB 4301-42-35.
21. Pharmaceutical compositions according to claims 1-17 which comprise as compound I L19 scFv-tTF conjugate and as compound II sTie2.
22. Use of pharmaceutical compositions according to claims 1-21, for the production of a medicament for the treatment of tumors, cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathie, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplantation rejections and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis, damage of nerve tissues, suppression of the ascites formation in patients and suppression of VEGF oedemas.

Fig. 1

Best Available Copy

Fig. 2

Fig. 3

Fig. 4

Best Available Copy

Fig. 5

Fig. 6

Sequence Identifier

5

<110> Schering Aktiengesellschaft

10 <120> Combinations and compositions which interfere with VEGF/ VEGF and
angiopoietin/ Tie receptor function and their use II

<130> 51867AEPM1XX00-P

<140>

15 <141>

<160> 59

20 <210> 1

<211> 1835

<212> DNA

<213> Human

25 <400> 1

ttttacagtt ttccctttct tcagagtta tttgaattt tcattttgg ataaccaagc 60
agctcttttaa gaagaatgca cagaagagtc attctggcac tttggatag tacataagat 120
tttctttttt ttttttaaat tttttttaat agtcacatcc agtcgcctt ctcaaaccag 180
actccccat tgggtgagca agatgagccc ataggattcc agagttataa cgtaaccgta 240
20 tataaaaaca gccaaaaaac cataatggtg ccacaggat ggacgaggaa agggcatctc 300
taacgtgtcc tctagtctat cttcgctaaa cagaacccac gtacacatg ataactagag 360
agcacactgt gttgaaacga ggatgctgac cccaaatggc acttggcagc atgcagttt 420
aagaaaaaga gacatcctt aataactgtt taaaatccag gcagttccat taaagggtt 480
aagaaaaacca acaacaacaa aaagcgaggg actgtctgtt gtcactgtca aaaaggcact 540
25 tggagttaat gggaccagga ttggaggact cttagctgat acagatttc gtacgattc 600
attaaaaaggc ttggatgtta agagaggaca ctcagcggtt cctgaaggaa gacgctgaga 660
30 tggacccgctg ayaagcggaa cagatgaaaca caaaggaatc aaatcttac accaaattt 720
catttaagcg acaacaaaaaa aaggcaaaacc cccaaacgcg acttaacccaa agcaaaatct 780
aagaaaaatc agacaacgaa gcagcgatgc atagttcc tttagagaa cgcatacctt 840
35 tggagttaat gggaccagga ttggaggact cttagctgat acagatttc gtacgattc 600
attaaaaaggc ttggatgtta agagaggaca ctcagcggtt cctgaaggaa gacgctgaga 660
tggacccgctg ayaagcggaa cagatgaaaca caaaggaatc aaatcttac accaaattt 720
catttaagcg acaacaaaaaa aaggcaaaacc cccaaacgcg acttaacccaa agcaaaatct 780
aagaaaaatc agacaacgaa gcagcgatgc atagttcc tttagagaa cgcatacctt 840
40 gagacgctac gtgcacaccc aagttctcaa cgacagttc acagtaggat tattgtata 900
aaaatgactc aagcgatgca aaaagttca tctgttccca gaatccggg gagaactgtag 960
gtgatcgta gaggcatagcg acatcacgt cggttctta atgtccctgg tggcggatac 1020
gcccgaatcct cggaggaca tctggacacc actttcagcc accttcgtc agggggcgaca 1080
tccgcacaaag tcatcttta ttcccgatggaa taactttaat tccttctaa catttacacg 1140
45 gcaaacacgg atgcagttaa cgtccacgtc cgccccacgg ctgggctgco gttccgttcc 1200
ctccacgaaac ggtacagccgc ttccatgaga aaggatattt ggcattttt tattccacag 1260
tcaggtgggt ctgcgatagc tcatttaatg taaaacgcga tcaggggcct ctcccccgt 1320
ttctggcagg ggtttttttt gtcttctctt tgccgatgc ttggggcagat ttctctgg 1380
50 gggggctggc tgctggctcc gagggggcat ccgcgtccg tctggctgco tcctcctgca 1440
ggctggccag ctggccacca cttctccgac tcgacccctc caacaagcat cgcaggccac 1500
tgtccctcggt ggtacagacc gtggcccac attcgctacc actctgttcc acgtcatcca 1560
ggtacacgag ctgcgtgttag gccgtgtgt ctggggctcg aggcttttgc tgctgggtct 1620
cttggacggg cggtagttc tgctgcagag acaaagcatc tcccccttcc ttccgggtctg 1680
attttggttc attcatatct acgccagatg ccaaactggc atcattactt cggccatcttc 1740
55 cagcttttg gagaatcaat gtagatgt ctaacctgac cgttggaccc gccatccaag 1800
gagacgaacc acggccgggg gtgcggaaagc ggcct

60 <210> 2

<211> 581

<212> DNA

<213> Human

<400> 2

5 gttctagatt gttttattca gtaatttagct cttaaagaccc ctggggcctg tgctaccag 60
 acactaaca cagtcttat ccagttgtc gttctgggtg acgtatctc cccatcatga 120
 tcaacttact tcctgtggcc cattaggaa gtggtacact cgggagctat ttgccttttg 180
 agtgcacaca cctggaaaca tactgtctc atttttcat ccacatcagt gagaaatgag 240
 tggccgtta gcaagatata actatgcaat catgcacaa agctgcctaa taacattca 300
 10 tttattacag gactaaaagt tcattattgt ttgtaaagga tgaattcata acctctgcag 360
 agttatagtt catacacagt tgatttccat ttataaaggc agaaagtctt tgttttctct 420
 aaatgtcaag ctggactga aaactccgt tttccagtc actggagtgt gtgcgtatga 480
 aaaaaaatct ttagcaatta gatgggagag aaggaaata gtacttgaaa tgtaggccct 540
 cacctccccca tgacatcctc catgacccctc ctgatgttagt g

15 <210> 3
 <211> 516
 <212> DNA
 <213> Human

20 <400> 3

tagagatgtt gggtgatgac ccccggtatc tggagcagat gaatgaagag tctctggaaag 60
 tcagcccaga catgtgcatt tacatcacag aggacatgtt catgtcgccg aacctgaatg 120
 25 gacactctgg gttgattgtt aaagaaattt ggtcttccac ctcgagctct tcagaaaacag 180
 ttgttaagct tcgtggccag agtactgatt ctcttccaca gactatatgt cgaaaaccaa 240
 agacctccac ttagtgcacac agtttgcgtt tcgtatgcacat cagactttac cagaaagact 300
 tcctgcgtat tgcaggctgt tgcaggaca ctgcctcaggat ttacacccctt ggatgtggcc 360
 atgaactgga ttaggaaggc ctctatttgc acagttgtt gggccagcag tgcataaca 420
 30 tccaagatgc tttccagtc aaaagaacca gcaaataactt ttctctggat ctcaactcatg 480
 atgaagttcc agagtttgtt gtgtaaagtc cgtctg

<210> 4
 <211> 1099
 <212> DNA
 <213> Human

<400> 4

40 cccacaaacac agggggccctg aaacacgcca gccttcctc tgggtcagg ttggcccaatg 60
 cctgtcaact ggatcacagc ccattttagg tggggcatgg tggggatcag ggcccctggc 120
 ccacggggag ttagaaagaag acctggccg tgtaagggtc ttagaaagggtg ccctgggtcg 180
 ggggtgcgtc ttggccttgc cgtccctca tccccggctt gaggcagcga cacagcagg 240
 45 gcaccaactc cagcagggtt agcaccagg agatgatcc aaccaccaac atgaagatga 300
 tgaagatgtt ctcttcgtt gggcgagaga caaaggatgc caccggatgg tagggcagggtg 360
 ctcgctggca cacaacacg ggctccatgg tccagccgtt caccggccac tggccataga 420
 ggaaggctgc ctcttagcaca ctcttgcaga gcacactggc gacataggtt cccatcaatg 480
 ctccgcggat ggcaggcga ccattttctg ccacccggat ctggccatc tgacgtctta 540
 cggcccccggc cggcccttc acctgtggg ctttgcggc cagtggccgc agtccccct 600
 50 ctttcgtcc cagccgttct ttcgcggag acaggtaat gacatggccc agtagacca 660
 ggggtgggtt gctgacgaag aggaacttgc gcacccgtt gggatgtgg gagatgggaa 720
 aggcctggtc atagcagacg ttggtgcagg ctgggtgggc cgtgttacac tcgaaatctg 780
 actgtcggtt accccacact gactgcggc ccaggccccag gatgaggatg cggaaatgaa 840
 agagcaccgtt cagccgttcc ttacccacca cggtcgttgc ctccctggacc tggccagca 900
 55 acttctccac gaagccccag tcacccatgg ctccccggcc tccgtcggca aggagacaga 960
 gcacgtcagt gtgtcagcat ggcacatccatc tcgttgcggcc agcaacaacg ctgcaggag 1020
 gtctggccacg cccgttctac cgcctgcctg cggggccggc caggtggagg tggggacat 1080
 ggcggagtg acggcccgcg

60 <210> 5
 <211> 1015
 <212> DNA
 <213> Human

65 <400> 5

gaggataggg agcctgggtt caggagttgtt ggagacacag cgagactctg tctccaaaaa 60

aaaaagtgc tttgaaaat gttgagggtg aatgatggg aaccaacatt ctttggatt 120
 agtggggagc ataatacgaa acacccctt gggtcgaca tgtacaggaa tgggaccag 180
 ttggggcaca gccatggact tccccgcctt ggaatgtgt gtgeaaagt gggccaggc 240
 ccagacccaa gaggaggg tggtecgca acacccggg atgtcagcat ccccccacct 300
 5 gccttcggc ggacacccc gggtgcgtg ttgagtcage aggcattggg tgagagcctg 360
 gtatatgtct ggaacagggt gcaggggcca agcgttcctc cttcagccct gacttggcc 420
 atgcacccccc tctcccccac acacaaacaa gcacttctcc agtatggtgc caggacaggt 480
 gtcccttcag tccctctgggt atgacctcaa gtcctacttg ggcctgcag cccagcctgt 540
 gttgtaaccc ctgcgttcctc aagaccacac ctggaaggt cttcttcctt ttgaaggaga 600
 10 atcatatttgc ttgcatttgc actttctaaga cattttgtac ggcacggaca agttaaacag 660
 aatgtcttc cttccctggg gtcctcacacg ctccccacag aatgccacag gggccgtgca 720
 ctggcaggc ttctctgttag aaccccagg gcttcggccc agaccacagc gtcttgccct 780
 gagcctagag cagggagttc cgaacttctg cattcacaga ccacccctcc aattttata 840
 accaaaggcc tcctgttctg ttatccact taaatcaaca tgctattttt ttttcaactca 900
 15 cttctactt tagccctcgta ctgagccgtg tatccatgca gtcatgttca cgtgcttagtt 960
 acgtttttct tcttacat gaaaataaat gcataagtgt tagaagaaaa aaaaa

<210> 6
 <211> 2313
 20 <212> DNA
 <213> Human

<400> 6

25 ccagagcagg cctgggggtt agcagggacg gtgcacccga cgccgggatc gagcaaatgg 60
 gtctggccat ggagcacggg gggtcctacg ctggggcggg gggcagctct cggggctgct 120
 ggtattaccc tgcgtacttc ttcccttctcg tctccctcat ccaatttcctc atcatctgg 180
 ggctcgctgt ctgcgttcgtc tatggcaacg tgcactgtg cacagagtcc aacctgcagg 240
 ccacccggcg cccggccgg ggcctataca gtcagctcctt agggttcacg geetcccaatg 300
 30 ccaacttgc caaggagctc aacttcacca cccgcgcacca ggtatccatc atgcagatgt 360
 ggctaatgc tcgccccgac ctggaccgc tcaatgcgg cttccgcgg tgccagggtt 420
 accgggtcat ctacacgaaac aatcagaggt acatgtctc catcatctt agtgagaagc 480
 aatgcagaga tcaattcaag gacatgaaca agagctgcga tgccctgtc ttcatgtcga 540
 atcagaaggtaa gaagacgtt gagggtggaa tagccaaaggaa gaagaccatt tgcaactaagg 600
 35 ataaggaaag ctgtctgtt aacaaacgcg tggcgaggaa acagctgggtt gaatgcgtga 660
 aaacccggga gctgcggcac caagagcggc actggccaaag gaccaactgc aaaaggtgca 720
 agccctctgc ctggccctgg acaaggacaa gtttggatg gacccctgtt acctgtggag 780
 ggacttcatt atccacacca gcttggatcc aaccttcatttcc atccccctggg 840
 ctcggatttgc gctccatcc gcaagggctt cggaccatcg cccagcctca tgagctccaa 900
 40 ggtggaggag ctggcccgaa gctccggggc ggtatccaa cgcgtggccc gcgagaactc 960
 agacccctaa cgccagaagc tggaaagccca gcaggccctt cggggccatgc aggaggccaa 1020
 acagaagggtt gagaaggagg ctcaggcccg ggaggccaaatgc ctccaaatgtt aatgctcccg 1080
 gcagaccccg ctgcgtctt aggagaaggc ggtgtcgcc aaggaacagc acaacctggc 1140
 45 caaggagctg gaagagaaga agagggaggc ggagcagctc agatggagc tggccatcatcg 1200
 aaactcagcc ctggacaccct gcatcaagac caagtgcgg cccatgtatgc cagtgtcaag 1260
 gccccatggc cctgtccca acccccaccc catcgacccca gtcggcccttgg aggagtccaa 1320
 gaggaaatgc ctggatgttttcc agaggatgc tgcggccatcc cttgtatggcc catccatgg 1380
 ctgaggaggc tccaggccctt gggccatgc gatggcccaatgc ctggccgggtt tgccggagat 1440
 50 gcaggatataatgc gctcacacgc cccgacacaa cccctcccg cccggcccaaa ccacccagg 1500
 ccaccatcg acaactccct gcatgcaccc gcatccatgc cccttagtacc ctctcacacc cgcacccggc 1560
 cctcacatcc ctcacccatcc agcacacggc cgcggagatg acgtcacgcgca agcaacggcg 1620
 ctgacgtcac atatcaccgt ggtgtggcg tcacgtggcc atgttagacgt cacgaagaga 1680
 tatacgatgc gctgcgtgc gatgcggcac gtcgcacaca gacatggggaa acttggcatg 1740
 55 acgtcacacc gagatgcgcg aacgcgttca cggggccatgtt cgcacgttca catattaatg 1800
 tcacacacac gccccatggc catcacacac acgggtatgtt tgcacacac agacacatgt 1860
 acaacacaca ccatgacaaac gacacccat gatatggccac caacatcaca tgcacgcatt 1920
 cccttcaca cacactttctt acccaatttc cacatgtgtt cacttgcggcc cgcacccatgg 1980
 acacggccca aggtacccat cccctcccg acagccctgg gccccagcac 2040
 60 ctccttcctt ccagttccctt ggcctcccg ccacttcctc acccccactgtt cctggaccc 2100
 gaggtgagaa caggaagccca ttcacccatccg ctccttgaccc gttgatgtttt ccaggacccc 2160
 ctggggccca tgagccgggg gttgagggtca cctgtgtgc ggaggggagc cacttccttct 2220
 ccccaactc ccagccctgc ctgtggcccg ttgaaatgtt ggtggcactt aataaatatt 2280
 agtaaatcc taaaaaaaaaaa aaaaaaaaaaaa aaa

65 <210> 7
 <211> 389

tgtaaattag cagatgactt ttttccattg ttttctccag agagaatgtg ctatatttt 1080
 gtatatacaa taatatttgc aactgtaaa aacaagtggt gccatactac atggcacaga 1140
 cacaaaaatata tactaataa tgggtacat tcggaaagat gtgaatcaat cagttatgtt 1200
 ttagattgtt tttgcctt cagaaggct ttattgtaa actctgattt cccttggac 1260
 5 ttcatgtata ttgtacagt acagtaaaat tcaaccttaa ttttctaatt ttttcaacat 1320
 attgtttagt gtaaagaata ttatgtaa gttttattat ttataaaaaa agaatattta 1380
 ttttaagagg catcttacaa atttgcctt ttttatgagg atgtgatagt tgctgcaat 1440
 gaggggttac agatgcatat gtccaatata aaatagaaaa tatattaacg tttgaaatta 1500
 aaaaaaaaaa
 10 <210> 11
 <211> 389
 <212> DNA
 <213> Human
 15 <400> 11

 gggcagggtga tcagggcaca catttccgt ccattgagac agtagcattc cgggcaccca 60
 20 tcgtgccagc ttccttcatt tttatgtga tgaccatcca cggtgagaca agtgcggc 120
 agatgggtg gcccagctga agcacagcc getctgcact tgcaagataag acagccgtga 180
 ctgtcctgc gaaaacccaa gggcagatc ttactgcatt agagctctgg acatttctta 240
 cagcagacaga tgcacagcc gtgcttattc ttcaagcaatc caagtggaca atacttgtca 300
 cagattatgg gtcgtcactt cttgggcctt gggccgact cacagatctc acagtttgg 360
 acctcgcccg cgaccacgct gggtaaccga
 25 <210> 12
 <211> 981
 <212> DNA
 <213> Human
 30 <400> 12

 tttttttttt ttggattgca aaaatttatt aaaattggag acactgtttt aatcttcttg 60
 35 tgccatgaga cttccatcagg cagtctacaa agaccactgg gaggctgagg atcactttag 120
 cccagaagtt tgaggctgtt gtaagcttca aaggccactg cactctagct tgggtgaggc 180
 aagaccctt caagcgttacaa gctgcattgt tgctgttgc ggttattaaa aacccttagt 240
 taggataaca acatattat caggcaaaa tacaaatgtg tgatgttgc tagtagagta 300
 acctcagaat caaatggaa cgggttaca gtgtatcatatatttcat ttggcagaat 360
 cattacatca ttggttacac tgaaaatcat cacaatgttcc aaaagctgac tcacctagtt 420
 40 taggataaca ggtctgcctg ttgaagatg aaaataata cccatattaaa atttgcctt 480
 ctcaatttcc ttctcagtcat cattttact tttaaacagc taatcactcc catctacaga 540
 ttaaggtgtt tatgccacca aaaccttttgc ccaccttaaa aatttccttca aaagtttaaa 600
 ctaatgcctg catttcttca atcatgaatt ctgagtcctt tgcttcttta aaacttgctc 660
 cacacagtgt agtcaagccg actctccata cccaaagcaag tcatccatgg ataaaaaacgt 720
 45 taccaggcgc agaaccatca agctggtcca ggcagaatgg actccacat ttcaacttcc 780
 agcttctgt ctaatgcctg tggccatag gcttgcattt ggcttgcattt ttaggactt 840
 agtagtatt ctcatccctt cttggggaca caactgttca taagggtgtca tccagagcca 900
 cactgcatct gcacccagca ccatacctca caggagtgcg ctccccacgag ccgcctgtat 960
 ataagatgc ttgtatgtac g
 50 <210> 13
 <211> 401
 <212> DNA
 <213> Human
 55 <400> 13

 ataactacag cttcagcaga caactaaaga gactgcatta aggtgattt tctggctata 60
 60 aagagagccc ggccgcagag catgtgactg ctgggacctc tggataggg aacactgccc 120
 tctctccccc agagcgaccc cccggcagg tcggggccca aggaatgacc cagcaactgc 180
 tccctaccca gcacactctc ttactgcca cctgcattt tgctgtgaag atgactgggt 240
 gtggcatca cgattcagag aaatcaagat ctatgaccat tttaggcaaa gagagaaact 300
 tggagaattt ctgaggacta ctgaaccttgc ttgttgcattt taaaaata ctaaatccctc 360
 acttcagcat atttagttgt cattaaaatt aagctgatatt t
 65 <210> 14

taccagagt aaccacaacg gaacttaata gatagggcac caattttgtg caggaagctt 1380
 catcgtccc tgaaggctt aatttttttag caaggttctc actaagatca gtgaagtc当地 1440
 catctacaga ccaactttct gacaatgaag agaaagaagt aattttctca actggcaact 1500
 cccaaaaccag tgccagtga tacattgtct aaaattttcc ttctcacatg atacttctga 1560
 5 tcataatgaaa atctcaggag agtaagaata aggtattcg gttcctccgt gatttgata 1620
 gttttctcg cattttgcag agaggcacag ttttcacaat aatattgggtt atcaccagta 1680
 agaatctctg gagccaaaaa aataatttag taagtcagtt actgaaggtg tgggttccacc 1740
 tccccgttgcag ttaggtacat ctttattaac aagaatcttg ttagattcgt tagggacaga 1800
 10 agtgtttca gaacagttaa actcattagg aggactgcct atgggtttt cattcacaag 1860
 tgagtacacag atgaaggcag ctgttgcagg attataact actggcttctt ctgaaggacc 1920
 gggtagacac gcttgcatta gaccaccatc ttgtatactg ggtgtatgt ctggatctt 1980
 gacagacatg tttccaaag aagaggaagc aaaaaacgc agcgaaagat ctgtaaaggc 2040
 t

15 <210> 17
 <211> 235
 <212> DNA
 <213> Human

20 <400> 17

cgtccccgggc aggtgtcagg ggttceaaac cagccctgggg aaacacagcg tagaccctc 60
 acctctacaa ataaaaaaatt aaaaaattag ccaggtgtgg cagcgaacaa ctgttagtctc 120
 25 agataactcg gagactgagc tggaaaggat cacttgagcc caagaagttc aaggttacag 180
 tggccacga tcatgtcatt acactccacg ttgggtgaca aatagagact gtcta
 <210> 18
 <211> 2732
 <212> DNA
 30 <213> Human

<400> 18

35 gtgtggagtt tcagctgcta ttgactataa gagctatgga acagaaaaag cttgctgct 60
 tcatgttcat aactacttta tatggagctt cattggacct gtacatctca ttatttctgct 120
 aaatatttac ttcttgggtga tcacattgtg caaaatgggt aagcattcaa acactttgaa 180
 accagatttctt accgggttgg aaaacattaa gtcttgggtt cttggcgctt tcgctcttct 240
 gtgttcttcc ggcctcacct ggtcttttgg ttgtctttt attaatgggg agactattgt 300
 gatggcatat ctcttcaacta tattttatgc tttccaggga gtgttcattt tcatcttca 360
 40 ctgtgtctc caaaagaaaag tacgaaaaga atatggcaag tgcttcagac actcatactg 420
 ctgtggaggc ctcccaactg agagtccccca cagttcagtg aaggcatcaa ccaccagaac 480
 cagtgtcgc tatttctctg gcacacagag tctgtataaga agaatgtggg atgataactgt 540
 gagaacaa tcaaatctt cttttatctc aggtgacatc aatagcactt caacactaa 600
 tcaagggtgc ataaaatctt atatatttac acaggactga catcacatgg tctgagagcc 660
 45 catcttcaag atttatatca tttagaggac attcaactgaa caatgccagg gatacaagtg 720
 ccatggatcat tctaccgctt aatggtaatt ttaacaacag ctactcgctg cacaagggtg 780
 actataatgaa cagcgtgcaat gttgtggatc gtggactaag tctgtatgt actgttttg 840
 agaaaatgtat catttcagaa tttagtgcaca acaacttacg gggcagcagc aagactcaca 900
 50 acctcgagct cacgctacca gtcaaacctg tgattggagg tagcagcagt gaagatgtg 960
 ctattttggc agatgttca tctttatgc acagcaca cccagggtctg gagctccatc 1020
 acaaaagaact cgaggcacca cttatttctc agcggactca cttcccttctg taccaccccc 1080
 agaagaaaatgaa gaaatcccgag ggaactgaca gctatgtctc ccaactgaca gcagaggctg 1140
 aagatcacct acagtcccccc aacagagact ctctttatc aagcatgccc aatcttagag 1200
 55 actctcccttac tccggagagc agccctgaca tggaaagaaga cctctctccc tccaggagga 1260
 gtgagaatgaa ggacatttac tataaaaacca tgccaaatct tggagctggc catcgttcc 1320
 agatgtcttcc caagatcagc agggcaata gtgtatgttataaactccc attaacaag 1380
 aagggtgtat tccagaagga gatgttagag aaggacaaat gcaatgttca acaatcttt 1440
 aatcatatcgat ctaaggaaattt ccaagggcca catcgatc ttaataaaata aagacaccat 1500
 60 tggctgacg cagctccctc aaactctgt tgaagagatg actcttgacc tgggttctc 1560
 tgggtaaaaa aagatgtactg aacccctgcag ttctgtgaat ttttataaaaa catacaaaaa 1620
 ctttgtat acacagatg tactaaatgt aattttttgt tacaatggaaa agagatgcca 1680
 gccaggatattt ttaagattct gctgtgtt agaaaattt tggaaacaagc aaaacaaaac 1740
 tttccagccat ttttactgtca gcaatgttca aactaaatgtt gtaaaatatgg ctgcaccatt 1800
 tttgtggcc tgcattgtat tatatacaag acgttggatc taaaatctgt tgggacaaat 1860
 65 ttactgtacc ttactattcc tgacaagact tggaaaagca ggagagatat tctgcattcag 1920
 tttgcaggatc actgcaatc ttttacatca aggcaaaatg tggaaaacatg cttaaccact 1980

agcaatcaag ccacaggcct tatttcatat gtttcccaa ctgtacaatg aactattctc 2040
 ataaaaaaatg gctaaaagaaa ttatatttg ttctattgct agggtaaaat aaatacattt 2100
 gtgtccaact gaaatataat tgtcattaaa ataattttaa agagtgaaga aaatattgtg 2160
 aaaagcttt ggttgcacat gttatgaaaat gtttttctt acacttgc acgtgttct 2220
 5 ctactcatt tcacttcctt tccactgtat acagtgttct gctttgacaa agttagtctt 2280
 tattactac atttaaattt ctatggcca aaagaacgtg ttttatgggg agaaaacaac 2340
 tcttgaagc cagttatgtc atgccttgca caaaagtgt gaaatctaga aaagattgtg 2400
 tgcacccct gtttttgc gaacagaggg caaagaggc actggcact tctcacaaac 2460
 tttctagtga aaaaaagggt cctattctt tttttttttt taaaataaaa cataaaatatt 2520
 10 actcttccat attccctctg cctatattta gtaattaatt tattttatga taaaaggctt 2580
 atgaaatgtt aattgtttca gcaaaattct gctttttttt catcccttg tgtaaacctg 2640
 ttaataatgtt gccccatcact aatatccagt gtaaagtttta acacgggtt acagtaataa 2700
 aatgtgaatt tttcaagtt aaaaaaaaaa aa
 15 <210> 19
 <211> 276
 <212> DNA
 <213> Human
 20 <400> 19

 ctcccataat gattttaaaa taaattggat aaacatatga tataaaagtgg gtactttaga 60
 aaccgcctt gcatattttt tatgtacaaa tctttgtata caattccgtt gttccttata 120
 25 tattccctat atagcaaacc aaaaccagga cctcccaact gcatgcttca agtccctgtg 180
 gagcactctg gcaactggat ggccttactt gctttctgtac aaaatagctg gaaaggagga 240
 gggaccaattt aaataccctcg gccgcgacca cgctgg

 <210> 20
 <211> 2361
 <212> DNA
 <213> Human

 <400> 20

 35 atgttaccag ctttgatgaa cgtggccct gcttcgttt tgagggccat aagtcattt 60
 cccactgggt tagaggctac cttatcattt tctccgtga ccggaaagggt tctcccaagt 120
 cagagtttac cagcaggat tcacagagct ccgacaagca gattctaaac atctatgacc 180
 tggcaacaa gttcatagcc tatacgaccg tctttgagga ttagttggat gtgttgcgtg 240
 40 agtggggctc cctgtacgtg ctgacgcggg atggcggtt ccacgcactg caggagaagg 300
 acacacagac caaactggag atgtgttta agaagaacctt atttgagatg gcgattaaacc 360
 ttgccaagag ccagcatcg gacagtgtat ggctggccca gattttcatg cagtagggag 420
 accatctcta cagcaaggc aaccacatg gggctgtcca gcaatataatc cgaaccattt 480
 gaaagttgga gccatctac gtatccgca agtttcttggat tgcccgccg attcacaacc 540
 tgaactgcctt cctgcagacc ctgcaccgc aatccctggc caatccgcg cataaccacc 600
 tgcctctcaa ctgtatacc aagtcatttgc acagtcgtt gctggaggat ttcatcaaga 660
 aaaaggtga gtagtggatc cacttgcgtat tggagacagc catcaaggatc ctccggcagg 720
 ctggctacta ctcccatgtcc ctgtatctgg cggagaacca tgcacatcat gatgtgttacc 780
 tgaagatcca gctagaagac attaagaattt atcaggaaatc cttcgatatac atccgcattt 840
 tgccttttga gcaggcagag agcaacatga agcgtacgg caagatctc atgcaccacca 900
 50 taccagagca gacaactcgat ttgtgttgcgtt gactttgtac tgattatcgcc cccagccctcg 960
 aaggccgcag cgataggagg gccccaggct gcagggccaa ctctgaggat ttcatccca 1020
 tctttgccaa taacccgcga gagtggaaat ctttccttgcgtt gacatgtatc gaaatgtgc 1080
 cagactcacc ccaggggatc tacgacacac cccttgcgtt gcgactgcg aactggccc 1140
 acggaaagga tccacatgcgaa aagggaaatc ttcacgcgca ggcatttcc ctgtgttgc 1200
 55 gtggtcgtt ctgcgcgtc tttgacaaat ccctggccat gtggccatgcgatc atgcacttcc 1260
 agatgggtt ctttttgcgtt ttttgcgtt gtagtggagg ggaagctgtt ccagcagatc atgcacttcc 1320
 acatgcagca cgagcgtatc cggcaggatca tcacgcgtgt tgacgcctt gggggccagg 1380
 acccccttccct gtggggatcg gcccctcgtt acttcgttgcgca aaggaggag gactgcattt 1440
 60 agtatgttgc agtgcgttcc aagcatatcg agaacaagaa ctttcatttgcac cctttcttgcgtt 1500
 tggtgcagac cctggccac aactccacag ccacactctc cgtcatcagg gactacctgg 1560
 tccaaaaactt acagaaacag agccacgcgaa ttgcacacggat tgagctgcgg gtgcggccgt 1620
 accggagggaa gaccacccgtt atccgcggg agatccaaat gctcaaggcc agtcttcaaga 1680
 tttccaaaaa gacaatgttgc agcatgttgc acgtgttgcgtt ggatgttgcgg ttagtccact 1740
 tctctgttgc ccactccctt cacaacact gctttggagat ttacttgcggaa agtgcgttgc 1800
 65 actgccccac ctgcctccctt gaaaacccggaa aggtcatggaa tatgtatccgg gcccaggaaac 1860
 agaaaacccggaa tttccatgtatc caatccgcgtt atcagcttgcgtt gtcgtccaaat gacagttttt 1920

	ctgtgattgc	tgactacttt	ggcagagggtg	tttcaacaa	attgactctg	ctgaccgacc	1980
	ctccccacagc	cagactgacc	tccagcctgg	aggctgggct	gcaacgcgac	ctactcatgc	2040
	actccaggag	gggcacttaa	gcagcctgga	ggaagatgtg	ggcaacagtg	gaggaccaag	2100
5	agaacagaca	caatgggacc	tggcgccgc	ttacacagaa	ggctggctga	catgcccagg	2160
	gctccactct	catctaatgt	cacagccctc	acaagactaa	agcggactt	tttctttcc	2220
	ctggccttcc	ttaattttaa	gtcaagctt	gcaatccctt	cctcttaac	taggcagggt	2280
	ttagaatcat	ttccagatta	atggggggga	aggggaacct	caggcaaacc	tcctgaagtt	2340
	ttggaaaaaa	aagctggttt	c				
10	<210> 21						
	<211> 179						
	<212> DNA						
	<213> Human						
15	<400> 21						
	aggtgttaga	tgctcttga	aaagaaaactg	catctaagct	gtcagaaaatg	gattctttta	60
	acaatcaact	aaaggaactg	agagaaaacct	acaacacaca	gcagttagcc	cttgaacagc	120
20	tttataagat	caacgtgaca	agtgttagga	aattgtaaaagg	aaaaaaattag	aactaatgc	
	<210> 22						
	<211> 905						
	<212> DNA						
	<213> Human						
25	<400> 22						
	tttttttttt	ttcttttaacc	gtgtggctt	tatttcagtg	ccagtgttac	agataacaaca	60
30	caaatgttcc	agtttagaagg	aatttcaacg	aatgtccaag	gtccaagcca	ggctcaagaa	120
	ataaaaaaggg	aggtttggag	taatagataa	gatgactcca	atactcactc	ttcttaaggg	180
	caaaggtaact	tttgatacacag	agtctgtatct	ttgaaaactgg	tgaactccctc	ttccacccat	240
	taccatagtt	caaacaggca	agttatggc	tttaggacac	tttaaaattt	gtgtggaa	300
	tagggtcatt	aataactatg	aatatatctt	ttagaagggt	accattttgc	actttaaagg	360
	gaatcaattt	tgaaaatcat	ggagactt	catgactaca	gctaaagaat	ggcgagaaaag	420
35	gggagctgga	agagccttgg	aagtttctat	tacaaataga	gcacccatata	cttcatgc	480
	aatctcaaca	aaagctttt	ttaactccat	ctgtccagtg	tttacaaata	aactcgcaag	540
	gtctgaccag	ttcttggtaa	caaacataca	tgtgtgtc	tgtgtgtata	cagaatgc	600
	cagaaaaaggc	taccaggagc	ctaatgcctc	tttcaaacat	tggggaaacc	agtagaaaaaa	660
40	ggcagggctc	cctaattgtcc	attattacat	ttccattccg	aatgccagat	gtttaaaatgt	720
	cctgaagatg	gttaaccacgc	tagtgaggaa	taaatacccc	accttgc	gtccacagag	780
	aaacaacagt	agaaaagaagg	ggcaactt	tgctgcagag	acaaaatgt	tgtttttcg	840
	ccatggattt	cagtccctc	ctccagacca	gtgtcttatt	tcctcagggg	cccaggaaat	900
	gttga						
45	<210> 23						
	<211> 2134						
	<212> DNA						
	<213> Human						
50	<400> 23						
	ggctctttct	ttccctttttt	tttttccaaa	agtgttctt	tatttctagt	aacatatatt	60
	gtataaatac	tctattttat	atgcacttcc	acaaaagcg	tataattaa	aagtttttt	120
	cattagaaat	aatatgtataa	aaataaaat	tttattatag	gcattttata	ctaactatag	180
55	tccttcttgg	aaggaacacc	caaaccata	tttataaagt	acatgttaatt	tatataaaca	240
	tattttacta	tatacatatg	aaaaaaatca	tattctcaca	gaagagctga	acagacattc	300
	accaggatac	gactgttgg	ccagctgt	gagatggacc	tgctaccct	cagcagcc	360
	cccacccacaa	gacaagtgt	ctcaatgtcc	ccaaacctgt	gggaccctgt	tctacacacc	420
	tcatttttgt	tccggcg	catccctt	gtgtgattgt	actgattt	atgagacaca	480
	agttacttct	ttacatccat	attccaaag	cagggttaca	tggtagaaa	gaaaggaagt	540
	tggaggtact	aagcttattt	tgtctctt	agcttttacc	agcatctat	gcttca	600
	tttttttccca	ttgttagactt	taatgcactt	gaataaaat	atggagggt	tttttcttca	660
	aaatgaatata	cacaataaa	gactgagat	gttccaaaaaa	ggaaagagga	agccatttgc	720
	gttattttcac	gttgcgt	ttttcttca	tgttgaacaa	tctgaagttt	taatttcttgc	780
	tagaaataat	gttataacat	tctctgaaac	catagcagcc	ataaaatgt	ctgtcaaaag	840
	atccttattt	tactcc	tccccccatt	ttttagtgg	taaaatgt	caqgtttag	900

	taaaatctca	cttttctcct	acttttcatt	tcccaacccc	catgatacta	agtatttgat	960
	aagtaccagg	aaacaggggt	tgtaatagtt	ctaaaccttt	ttgacaattt	ctttgttttt	1020
	tctaaacttg	taatagatgt	aacaaaagaa	ataataataa	taatgcccg	ggctttatta	1080
	tgctatatca	ctgctcagag	gtaataatc	ctcaactaact	atccatcaa	atttgcaact	1140
5	ggcagttac	tctgtatgatt	caactccctt	tctatctacc	cccataatcc	caccctactg	1200
	atacacccct	ctgggttaact	gcaagatacg	ctggatccct	ccagccctct	tgctttccct	1260
	gcaccagccc	ttcctcactt	tgccttgccc	tcaaagctaa	caccacttaa	accacttaac	1320
	tgcatctgc	catttgtcaa	aagtctatga	aatgttttag	tttctttaaa	ggatcagc	1380
	tctcatgaga	taacacccct	ccatcatggg	acagacactt	caagcttctt	ttttttaac	1440
10	ccttccccaca	ggtcttagaa	catgatgacc	actccccca	ctgcccactgg	gggcagggt	1500
	ggtctgcaca	aggctctggt	ctggctggct	tcacttcctt	tgcacactcg	gaagcaggct	1560
	gtccattaaat	gtctcggcat	tctaccagtc	ttctctgcca	acccaattca	catgacttag	1620
	aacattcgc	ccactcttca	atgacccatg	ctgaaaaagt	ggggatagca	ttgaaaagatt	1680
	ccttcttc	ctttacgaag	tagtgtatt	taattttagg	tgcaggc	ttgcccacag	1740
15	taagaacctg	gatggtcaag	ggctctttga	gagggtctaa	gctgcaatt	ctttccaatg	1800
	ccgcagagga	gcccgtgtac	ctcaagacaa	cacccttgt	cataatgtct	tgcttcaagg	1860
	tgcacaaagt	gtagtccacca	ttaagaatat	atgtgccatc	agcagcttgc	atggcaagaa	1920
	agctgcatt	gttccctggat	cccccttgg	tccgtgttt	cacttcgat	ttggtggtc	1980
	cagttggaat	tgtgtatgata	tcatgatatc	caggtttgc	actagtaact	gatccgtata	2040
20	tttttttaca	agtagatcca	tttcccccgc	aaacaccaca	tttatcaaac	ttctttttgg	2100
	agtctatgat	gcgatcacaa	ccagcttta	caca			

25 <210> 24
<211> 1626
<212> DNA
<213> Human

<400> 24

30	ggacaatttc	tagaatctat	agtagtatca	ggatatattt	tgtttaaaa	tatattttgg	60
	ttattttgaa	tacagacatt	ggctccaaat	tttcatctt	gcacaatagt	atgacttttc	120
	actagaacct	ctcaacattt	gggaactttg	caaatatgag	catcatatgt	gttaaggctg	180
	tatcatttaa	tgctatgaga	tacattgttt	tctccctatg	ccaaacaggt	gaacaaacgt	240
35	agttgtttt	tactgatact	aaatgttggc	tacctgtat	tttatagtat	gcacatgtca	300
	gaaaaaggca	agacaaatgg	cctcttgtac	tgaataacttc	ggcaaactta	ttgggtcttc	360
	atttctgac	agacaggatt	tgactcaata	ttttagagc	ttgcgtagaa	tggattacat	420
	ggtagtgatg	cactgttaga	aatgttttt	agttatttgac	tcagaattca	tctcaggatg	480
	aatcttttt	gtctttttat	tgttafcata	tctgaattta	ctttataaaag	atgttttag	540
40	aaagctttgt	ctaaaaattt	ggccttaggaa	ttgttaacttc	attttcgtt	gccaagggggt	600
	agaaaaataa	tatgtgtt	tttatgttta	ttgttaacata	ttatttagta	ctatctatcg	660
	atgtatttaa	atatttttca	tattctgtga	caagcattt	taatttgc当地	caagtggagt	720
	ccatTTAGCC	cagtggaaaa	gtcttggAAC	tcaggttacc	cttgaaggat	atgtggcag	780
	ccatctctt	gatctgtct	taaactgtaa	ttttagatccc	agctaaatcc	ctaacttgg	840
45	tctggatgC	attagttatg	ccttgatcca	ttcccagaat	ttcagggca	tcgtgggtt	900
	ggtctagtga	ttgaaaacac	aagaacagag	agatccagct	aaaaaagagt	gatccctcaat	960
	atccctaacta	actggctc	aactcaagca	gagtttctt	actctggcac	tgtatcatg	1020
	aaacttgc	gaggggatg	tgtgtattt	atacaattt	aatacataatg	tttacattga	1080
	taaaaattctt	aaagagccaa	actgcattt	atttctgtat	ccacatttca	atcatattag	1140
50	aactaagata	tttatctatg	aaagatataaa	ttgtgcagag	agactttcat	ctgtggattt	1200
	cgttgttct	tagggttct	agcactgtat	cctgcacaag	catgtatgtat	gtgaaataaa	1260
	atggattctt	ctatagctaa	atgagttccc	tctggggaga	gttctgtac	tgcataatcaca	1320
	atgccagatg	gtgtttatgg	gctatttgg	taagtaagt	gtaaagatgt	atgaagtaag	1380
	tgtgtttgtt	ttcatcttat	ggaaactctt	gatgtatgt	ctttgtatg	gaataaaattt	1440
	tggtgcataa	tgatgtcatt	caactttgca	ttgaattgaa	ttttgggtt	atttatatgt	1500
55	attatacctg	tcacgttct	agttgttca	accattttat	aaccatttt	gtacatattt	1560
	tactggaaaa	tatTTTAAAT	ggaaattttaa	ataaacattt	gatagttac	ataataaaaa	1620
	aaaaaaa						

60 <210> 25
<211> 1420
<212> DNA
<213> Human

<400> 25

65 attcagcatt gtttctactt ctgaaatctg tatagtacac tggtttgtaa tcattatata 60

5 ggtgaactca gtgcattggg ccaatggtc gacacaggct ctgccagcca caaccatcc 60
 gctgttctg acggtttggc tgctggggg cttccccctc actgtcattt gaggcatctt 120
 tggaaagaac aacgccagcc cctttagtgc accctgtcg accaagaaca tcgcccggg 180
 gattccaccc cagcccttgtt acaagtctac tgtcatccac atgactgttg gagggttctt 240
 gccttcaagt gccatctctg tggagctgtt acatctttt gccacagtat ggggtcggg 300
 gcaactacact ttgtacggca tccttcttctt tgtcttcggc atcctgctga gtgtggggc 360
 ttgcattctcc attgcactca cctacttcca gttgtctggg gaggattacc gctgggtgt 420
 gcatctgtg ctgagtggtt gtcacccggg ccttccatc ttccctactt cagtttcta 480
 ttatgccccg cgctccaaaca tgcgtggggc agtacagaca gtagagttt tcggctactc 540
 cttaactact ggttatgtt tcttcctcat gctgggcacc atccctttt ttctccctt 600
 aaatgcattc cggtagatct atgttaaccc caagatggac tgagttctgt atggcagaac 660
 tattgtgtt ctctccctt cttcatgccc tggtaactc tcttaccaggc ttcttctctg 720
 attgactgaa ttgtgtgttgc gcattgttgc ctccctttt cccttttggg cattccctcc 780
 ccagagaggg cctggaaatt ataaatctct atcacataag gattatatat ttgaactttt 840
 taagttgcct ttagtttgg tcctgatttt tcttttaca attacaaaaaaa taaaatttt 900
 taagaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

 20 <210> 29
 <211> 1775
 <212> DNA
 <213> Human

 25 <400> 29

 30 gaacgtgatg ggaactttgg gaggatgtct gagaaaatgt ccgaaggat tttggccaac 60
 accagaaaac gccaatgtcc taggaattcc ctcccaaat gttcccaaa aaattactca 120
 ttgacaattc aaattgcaact tggctggggc cagccggggc gccctcaagt ccgtgtggg 180
 cggccgcgtg gccttctctt cgttagactc cccaaactcg ttcaactctgc gtttatccac 240
 aggataaagc caccgctgtt acaggtagac cagaaacacc acgtcgtccc ggaagcaggc 300
 cagccgggtga gacgtggggc tggtgatgtt gaaggcaag acgtcatcaa tgaaggttt 360
 gaaaggcttg taggtgaagg ctttcaggg cagatgtggc actgacttca actttaggtt 420
 cacaagagc tggggcagca tgaagaggaa accaaaggca tagaccctgt tgacgaagct 480
 gttgattaaac caggagtacc agctttata ttgtatattc agggtgaat agacagcacc 540
 35 cccgacacag agagggtaca gcaggatgtt caagtacttc atggccttag tatcgactc 600
 ctcggttttc ctctcagatt cgctgttaagt gccaaactgtaa aattccgggca tcaggcctct 660
 ccaaaaaata gtcatcttca atgccttctt cactttccac agctcaatgg cggctccaaac 720
 accggccggg accagcacca gcaggctgt ctgtctgtcc agcaggaaca gaaagatgac 780
 40 cacgggtctg aaggcagcgcc agagcacttc ctgggtggac atggcgatca tgctttctt 840
 ctcttcaggaa aactgtatgtt cattttaaa gcccaggaaa tcaaagagaa gatggaaacgc 900
 tgcgacaaag aaggctcagcg ccaggaagta taatgttgc tctacaaaaaa ttcccttcac 960
 ctcatcagca tctttctctg aaaacccgaa ctgctgcagg gagtacacgg cgtccctgc 1020
 gtggatccag aagcgcagcc gccccagtga gaccttgcgg taggacacgg tgaggggcag 1080
 45 ctcgggtgtt gaggcggttta tgaccatcg gtccttcacg cggttgtga gctggctcat 1140
 gaacaggatg ggcaggtaat gcacggtttt ccccaagctgg atcatcttca tgcgttgc 12000
 cacatggca ggcaggggg acccgtaaaa gacaaagttt tccgcattca cgttcagcgc 12600
 cagccgggtt cggccagttt acacttgc accaggggca ctcgtcggtt tcttctccgc 13200
 ctcgatctgc tggatcttgc actcccccgtt gaggcggtt atttcttctg gcttggggac 13800
 catgttaggtt gtcagaggac tgaccaggatcacctgttcc cgcgtgtcc acggcaggac 14400
 50 cccagctgtt gggaggaaatgtt gtaggcata cagcgccccca ttgtttctcg ttttcttgg 15000
 tacagaaaaac ttaactgttcc ttcaattttt ggactccaca tcaaagtctt ccacattcaa 15600
 gaccaggatcg atgttggttt cagcaccccg gtgggacccctc gtcgtgggtt acacgctcag 16200
 ctgcagcttgc gggccggcg ccaggtaggg ctggatcgac ttggcgtcgc cggagcacgg 16800
 gccccgttagt acgatggccgt acatgaccca gcaagggtgtc accacgtaga ccacgaacac 17400
 55 gcccaccacc aagctgggtga aggagctgcg gcccc

 <210> 30
 <211> 1546
 <212> DNA
 <213> Human

 60 <400> 30

 65 aaaataagta ggaatggggca gtgggttattc acattacta cacctttcc atttgctaat 60
 aaggccctgc caqgctqgqa qgaaattgtc cctgcctgtt tctqqaaaaaa qaagatattg 120

	acaccatcta	cgggcaccat	ggaactgctt	caagtgcacca	ttctttttct	tctgcccagt	180
	atttcagca	gtacacagcac	aggtgtttta	gaggcagcta	ataattca	tgttgttact	240
	acaacaaaac	catctataac	aacaccaaac	acagaatcat	tacagaaaaaa	tgttgccaca	300
	ccaacaactg	gaacaactcc	taaagaaca	atcacaatg	aattactta	aatgtctctg	360
5	atgtcaacag	ctacttttt	aacaagtaaa	gatgaaggat	tgaaagccac	aaccactgat	420
	gtcaggaaaga	atgactccat	catttcaaac	gtAACAGTAA	caagtgttac	acttccaaat	480
	gcttttcaa	cattacaag	ttccaaaccc	aagactgaaa	ctcagagttc	aattaaaaca	540
	acagaaatac	caggtagt	tctacaacca	gatgcacac	cttctaaaac	tggtaccatta	600
	acccataac	caggtaatac	tccagaaaaac	acccatcac	ctcaagaat	aggcactgag	660
10	ggtgaaaaaa	atgcaagcac	ttcagaacc	agccggctt	attccagtat	tatTTGCG	720
	gtgttattt	ctttgattt	aataacactt	tcaatatttt	ttctgttggg	tttgtaaccga	780
	atgtgctgga	aggcagatcc	gggcacacca	gaaaatggaa	atgatcaacc	tcaatgttgc	840
	aaagagagcg	tgaagcttct	taccgttaag	acaatttctc	atgagtctgg	tgagcactct	900
	gcacaaggaa	aaaccaggaa	ctgacagctt	gaggaattct	ctccacac	aggcaataat	960
15	tacgcttaat	cttcagcttc	tatgcacca	gcgtggaaa	ggagaaagt	ctgcagaatc	1020
	aatcccgcact	tccatcacctg	ctgctggact	gtaccagac	tctgtccca	taaagtgtat	1080
	tccagctgac	atgcaataat	tgtatggat	caaaaagaac	cccggggctc	tcctgttctc	1140
	tcacatttaa	aaattccatt	actccattta	caggagcgtt	ccttagaaaa	ggaattttag	1200
	gaggagaatt	tgtgagcgt	gaatctgaca	gcccgaggag	ttggctcgct	gataggcatg	1260
20	actttcccta	atgtttaaag	ttttccgggc	caagaatttt	tatccatgaa	gactttccta	1320
	cttttctcg	tgttcttata	ttacctactg	ttagtattta	ttgtttacca	ctatgttaat	1380
	gcagggaaaa	gttgcacgt	tattattaaa	tattaggttag	aaatcataacc	atgactactt	1440
	gtacatataa	gtatTTTATT	cctgcttctg	tgttactttt	aataaataac	tactgtactc	1500
25	aatactctaa	aaataactata	acatgactgt	gaaaatggca	aaaaaaa		
	<210> 31						
	<211> 750						
	<212> DNA						
	<213> Human						
30	<400> 31						
	cacttgggca	cccccatttt	ctaaaaaaat	gaaaatctgg	agggcaaaaa	aggtgtgctg	60
	aagggaagt	cctctgtatgg	cccaaaaaacc	tttccctaaa	ctagtgttag	aatggatgg	120
35	atagcaaaat	gatccctttt	ggcccttctt	ggagcatgcc	ttccctatct	tatcccttggc	180
	ccactaaag	cagaacgtt	cggatattt	tgttttgcc	attggatgcc	tatctggcca	240
	aacagccctt	ccctaatttgg	aaaatgcagt	cctgtttaaa	accccttggat	tacgactact	300
	tgtacatgt	tgctcattac	aatttgcata	ttttttatcat	agtgaagacc	ccaaacatat	360
	cagtaaaaca	tgacaagatc	ataaagaaca	gtatcatatt	attatttatgt	cgcttttaca	420
40	gtggcaagcc	aattttgaaa	tatctcattt	aaaactcaga	cccaatttccac	tgagttatac	480
	tttaatagc	ttcctcagca	cactatttcc	catgcattaa	atatgataaa	ataatctatc	540
	actgcccatt	ggctttgtaa	aaaggaaatgc	tgaatacaga	gcccaacaca	ctaaaattgt	600
	ttttctagct	acaaaatgtata	gcatcatcaa	cacagacacg	atttggactc	cctgacaggt	660
45	ggattggaaa	acgggtttt	aaagagaagag	aacattttaa	cataaaatgtc	attaagaatc	720
	ccaaaggcc	tattttgtcac	caccgtcccg				
	<210> 32						
	<211> 1620						
	<212> DNA						
50	<213> Human						
	<400> 32						
	gcaattcccc	cctcccaacta	aacgactccc	agtaattatg	tttacaaccc	attggatgca	60
	gtgcagccat	tcataagaac	cttggccccc	cagaaaaatc	tgtccttttt	ggtaccaac	120
55	ctgaggctt	tttgaagata	atgttagaaaa	ccactaccta	tttgaaggcc	gttttggct	180
	atctgtgcaa	actctgtatga	tacctgcctt	atgtggattc	ttttccacac	tgcttttcatt	240
	tttaagtata	aagacttaga	aaactagaat	aatgtttttt	caaataatta	aaagatgtg	300
	atgttctggg	tttttccctt	cttttttagaa	ccccgcctcc	attnaaaaaa	ttaaaaaaaa	360
60	aaaaaaaaact	tttacatt	aaaaaataaa	aattaacaaa	attcactta	ttccaggaca	420
	cgtggcatt	tggactcaat	aaaaaggggca	cctaaagaaaa	ataaggctg	ctgaatgttt	480
	tccataattt	tcacacaata	acagttccctt	tctatccage	ttgccttcca	tttatctct	540
	gggttagctt	ttcaggcaac	atccttggtc	atggccca	aagtacgtg	gtatctgt	600
	atggatgtt	cacagggaaac	cgaatcat	gggtgccttc	cccttgggtt	tcaatgtatc	660
65	tggagttgt	cacaaaatt	aggtcatgcc	ttcagttgtct	tgttcttaa	acaccatcc	720
	tgacaatcat	gtgctaatga	ttgtataacta	ttaaaaccag	cacataagta	ttgttaatgt	780

	gtgttccccc	taggttgaa	gaaatgtctt	tccttctatac	tgggtcctgt	taaagcgggt	840
5	gtcagttgtg	tcttttacc	tcgattttgt	aattaataga	attgggggga	gaggaaatga	900
	tgtatgtcaat	taagtttcag	gttggcatg	atcatcatc	tcgatgatat	tctacttgc	960
	tcgcaaataatct	gcccttatcg	taagaacaag	tttcagaatt	ttccctccac	tatacgactc	1020
	cagtattatg	tttacaatcc	attggatgag	tcgcgcattta	taagacccctt	gtgcccagaa	1080
	aaatctgtcc	tttttggtag	caaacctgag	gtcttttgg	agataatgt	gaaaaccact	1140
	acattatggaa	ggcctgtttt	ggctaatctg	tgcaaaactct	gatgataacct	gcttatgtgg	1200
	atttttttcc	acactgcctt	catttttaag	tataaaagact	tagaaaacta	gaataatgtct	1260
10	tttacaaaata	ataaaaagta	tgtgatgttc	ttgggtttttt	ccttctttt	agaaccctgt	1320
	attnaaacaa	gccttctttt	taagtcttgt	ttgaaaatttt	agtctcagat	cttctggata	1380
	ccaaatcaaa	aacccaacgc	gtaaaacagg	gcagtattt	tgttcctaatt	ttttaaaagg	1440
	tttatgtata	ctctataaaat	atagatgcat	aaacaacact	tcccctttag	tagcacatca	1500
	acatacagca	ttgtacat	caatgaaaat	gtgtacttta	agggtattat	atatataaaat	1560
15	acatatatac	ctttgttaacc	tttatactgt	aaataaaaaaa	gttgctttag	tcaaaaaaaaa	1620
	<210> 33						
	<211> 2968						
	<212> DNA						
	<213> Human						
20							
	<400> 33						
25	aaaaaaagtag	aaggaaacac	agttcatata	gaagtaaaaag	aaaaccctga	agaggaggag	60
	gaggaggaag	aagaggaaga	agaagatgaa	gaaagtgaag	aggaggagga	agaggaggga	120
	gaaagtgaag	gcagtgaagg	tgtatgaggaa	gatgaaaagg	tgtcagatga	gaaggattca	180
	gggaagacat	tagataaaaaa	gccaagtaaa	gaaatgagct	cagattctga	atatgactct	240
	gatgtatgtc	ggactaaaga	agaaggggct	tatgacaaag	caaaacggag	gatttagaaa	300
	cgcgcacttg	aacatagtaa	aaatgtaaaac	accgaaaagg	taagagcccc	tattatctgc	360
30	gtacttgggc	atgtggacac	agggaaagaca	aaaattctag	ataagctccg	tcacacat	420
	gtacaagatg	gtgaagcagg	ttgtatcaca	caacaaaattt	gggcacccaa	ttttcctt	480
	gaagcttata	atgaacagac	taagatgatt	aaaaattttt	atagagagaa	tgtacggatt	540
	ccaggaatgc	taattatgt	tactcttggg	catgaatctt	tcagtaatct	gaaaaataga	600
	ggaagctctc	tttgcacat	tgccatttt	gttgcata	ttatgcattt	tttggagccc	660
	cagacaattt	agtctatcaa	cccttcctaaa	tctaaaaat	gtcccttcat	tgttgcactc	720
35	aataagattt	atagtttata	tgatggaaa	aaagtccttg	actctgtatgt	ggctgtact	780
	ttaaagaaggc	agaaaaaaagaa	tacaaaaat	gaattttgggg	agcggacaaa	ggcttatttt	840
	gtgaaatttgc	cacacggagg	tttgcacat	gtttttttt	atgagaataaa	agatccccgc	900
	acttttgcgt	ctttgttacc	tacctctgca	catactggt	atggcatggg	aagtctgat	960
40	taccttcttg	taggttaac	tcagaccatg	ttgagcaaga	gacttgcaca	ctgttgaagag	1020
	ctgagagcac	agggtatgtt	ggttaaagct	ctcccgggga	tgggcacccac	tataatgttc	1080
	atcttgcata	atgggcgttt	gaaggaaagg	gatacaatca	ttgttcttgg	agtagaagg	1140
	cccattgtaa	ctcagatcg	aggctctctg	ttaccttcctc	ctatgaagga	attacgagtg	1200
	aagaaccagt	atgaaaaagca	taaagaagta	gaagcagctc	agggggtaaa	gatttttgc	1260
	aaagaccctgg	agaaaaacatt	ggcttgcgtt	cccttccttg	tggcttataa	agaatgtaa	1320
45	atccctgttc	ttaaagatgt	attgtatccat	gagttttaagg	agacactaaa	tgtatctaaa	1380
	ttagaaagaaa	aaggagtcta	tgtccaggca	tctacacttg	gttctttgg	agctctact	1440
	gaatttctga	aaacatcaga	agtgcctat	gcaggaat	acatggcccc	agtgcataaa	1500
	aaagatgtta	tgaaggcttc	agtgtatgtt	gaacatgacc	ctcagat	atgtatttt	1560
	gccttcgtat	tgagaattgt	acggagatgc	caagaaatgg	ctgatagttt	aggatgtta	1620
50	atttttatgt	cagaaattat	ttatcat	tttgatgcct	ttacaaaata	tagacaagac	1680
	tacaagaaac	agaaacaaga	agaattttaa	cacatagcag	tatttcctg	caagataaaa	1740
	atccctccctc	agtacat	ttatctcg	gatccgatag	tgatgggggt	gacgggtggaa	1800
	gcagggtcagg	tgaaacagg	gacacccat	tgtgtcccaaa	gcaaaaattt	tgttgcacat	1860
	ggaatagtagt	caagatgtt	aataaaacat	aaacaatgtt	atgttgcaaa	aaaaggacaa	1920
55	gaagtgttgc	taaaaataga	acatccct	gtgtgatgtc	ccaaaaatgtt	tggaaagat	1980
	tttgcacat	catgatattt	tttgcacat	atcagccgc	ccaaaaatgtt	tggaaagat	2040
	gactgggtca	gagatgaat	gcagaagagt	gactggcagc	ttatttgc	gctgaaagaaa	2100
	gtatgttgc	tcatctaatt	ttttcacat	gagcaggaaac	tggatgtttt	gcaatactgt	2160
	gttgtat	cccaacaaaa	atcagacaaa	aaatggacaa	gacgtat	tttgcact	2220
60	gacttaagta	ttgaaaggaag	aaaaataggt	gtataaaaat	ttttccat	gaaaccaaga	2280
	aacttacact	ggtttgcac	tggtcagtt	catgtccccca	cagttccat	gtgcctgttc	2340
	actcacccct	cccttccca	acccttcct	acttgcgttc	tgtttttaaag	tttgccttc	2400
	ccccaaatttgc	gat	tttttattt	acagatctt	agcttttgc	attttatcat	2460
	gtactgcagt	ttttgat	aaaaaaaat	gcagat	tttttttttgc	gacttttttgc	2520
	acgtaaagaaa	tacttctt	tttatgcata	tttgccttc	atgtat	tttgccttc	2580
65	tctgcacat	gcctttaggg	cttttataaa	atagaaaatt	aggcatttgc	atatttctt	2640

agctgcttg tggtaaacca tggtgtaaaa gcacagctgg ctgctttta ctgcttgcgt 2700
 agtcacgagt ccattgtaat catcacaatt ctaaaccaaa ctaccaataa agaaaacaga 2760
 catccaccag taagcaagct ctgttaggtt tccatggta gtggtagctt ctctccaca 2820
 5 agttgtctc ctaggacaag gaattatctt aacaactaa actatccatc acactaccc 2880
 ggtatgccag cacctggta acagtaggag atttataca ttaatctgat ctgtttaatc 2940
 tgatcggtt agtagagatt ttatacat

<210> 34

<211> 6011

10 <212> DNA

<213> Human

<400> 34

15

20 acggggcgcc ggacgacccg cacaatcttat cctccacgccc ccactcgac tcggagcggg 60
 accgccccgg actccccctc gggccggcca ctcgaggagt gaggagagag gcccgggcc 120
 cggcttgagc cgagcgcagc acccccccgcg ccccgccca gaagtttgggt tgaaccgggc 180
 tgccgggaga aactttttc ttttttcccc ctctcccggtt agagtctctg gaggaggagg 240
 ggaactcccc cggcccaagg ctcgtgggtt cggggctcgcc cgccgcaga aggggcgccc 300
 tccgccccggc aggggaggcg ccccccggga cccgagaggg ggttggggac cgccggctgc 360
 25 tggtgccggc gggcagcgt gtggcccgcg caggggaggc gccgccccgc tcccgcccg 420
 gctgcgagga ggaggcgccg ggggcgagg aggatgtact tggtgccggg ggacaggggg 480
 ttggccggct gggggcacct cctggctctcg ctgctgggc tgcgtctgtt gccggcgcgc 540
 tccggcaccc gggcgctggc ctgcctgccc tgcgtccgtt ccaagtgcga ggagccagg 600
 aaccggccgg aaccatcgatcg cggggcgctc tgccgtctgtt gtcacacgtt cgccagccag 660
 30 gggaaacgaga gttggccggg cacccttggg atttaacggaa ctgcgcggc ggggtcgctt 720
 tggtgcatcc gccccccgtt caatggcgac tccctcaccc agtacaaacgc gggcgtttc 780
 gaagatgaga actggactga tgaccaactt cttgggttta aaccatgcga tgaaaacctt 840
 attgtggct gcaatataat caatggggaa tgcgtatgtt acaccattcg aacatgcac 900
 aatccctttg agtttccaaat tcaggatatg tgccttcag cttaaaagag aattgaagaa 960
 35 gagaagccag attgtccaaat gattctgttc tgatcgagggtt ttatgtctt cctggggagt gtcgtccctt acccagccgc 1080
 tgcgtgtgc accccgcagg ctgtctgcgc aaagtctgcg accggggaaa cctgaacata 1140
 ctatgtccaa aacccttcagg gaagccgggaa gagtgtgtt acctctatga gtgaaaccca 1200
 gtttggcg tgcgtccatcg gactgtggaa tgccctactt ttcagcagac cgcgttccc 1260
 40 ccggacagct atgaaactca agtgcagactt actgcagatg gttgtctgtt tttgccaaca 1320
 agatgcgagt gttctctgg ctatgtgtt ttccctgtt gtggagggtt atccactccc 1380
 cgcatagtct ctcgtggcga tgggacacctt ggaaagtgcg tgcgtgtt tgaatgtttt 1440
 aatgatacaa accgcgcctg cgtatattaaat aatgtggaaat attatgtatgg agacatgtt 1500
 cgaatggaca actgtcggtt ctgtcgatgc caagggggcg ttgccatctg cttcacccgc 1560
 45 cagtgtggt agataaactg cgagaggatc tacgtccccg aaggagatg tgcggccatgt 1620
 tggtaagatc cagtgtatcc tttaataat cccgcgtggcgt gtcgtccaa tggcctgatc 1680
 cttggccaccc gagaccgggtt gcgggagac gactgcacat tgcgtccgtt cgtcaacgg 1740
 gaaccccaact gctgtgcac cgtctgcggc cagacatgcg caaaccctgtt gaaagtgcct 1800
 gggggagtgtt gcccctgtgtt cgaagaacca accatcatca cttgtatcc acctgcattt 1860
 50 gggggagttat caaactgcac tgcgtacacgg aaggactgc ttaatggttt caaacgcgtt 1920
 cacaatgggtt gtcggacactt tcagtgcata aacacccagg aactatgttc agaacgtaaa 1980
 caaggctgca ctttgcactt tcccttcggg ttccttactt atgcccgggg ctgtgagatc 2040
 tggtaagtgc gcccaaggcc caagaagtgc agacccataa tctgtgacaa gtattgtcca 2100
 cttggattgc tgaagaataa gcacggctgt gacatgtgc gtcgtatgtt atgtccagag 2160
 55 ctctcatgca gtaagatctg ccccttgggt ttccagcagg acagtgcacgg ctgtcttatac 2220
 tgcaatgcg gagaggccctc tgcttcgtt gggccacccca tccgtcgccc cacttgcctc 2280
 accgtggatg gtcatcatca taaaaatgtt gaggactggc acgtatgggtt ccgggaatgc 2340
 tactgtctca atggacggga aatgtgtgc ctgatcaccc gcccgggtt tgcgtgtggc 2400
 aacccccacca ttccacccctgg acgtgcgtc ccatcatgtt cagatgtttt tgcgtgtcc 2460
 60 aagccagacgc tcagttactcc tccttgcata caccgcctt gaggagaata ctttgtgaa 2520
 ggagaaaacgt ggaacattttt ctccctgtact cagtcgcaccc gccacagccg acgggtgtc 2580
 tggtaagacag aggtgtgttcc accgcgtctc tgccagaacc ctcacgcac ccaggatcc 2640
 tgcgtggccaccc agtgtacaga tcaacccctt cggcccttcc tgcgtatgtt taaacagcgta 2700
 cctaattact gcaaaaatgtt tgaaggggat atattccctgg cagctgcgttgc ctggaaaggct 2760
 65 gacgtttgtt ccagctgcattt ctgcattgtt agcgtatgtt gtcgttttctc tgatgtcc 2820
 ctttgcattt cttgtgaaag acgtgttttcc agaaaaggcc agtgtgttcc ctactgcata 2880
 aagacaccaa ttccaaagaa ggtgggtgc cacttcgtt ggaaggccca tgccgacgag 2940

gagcgggtggg accttgacag ctgcacccac tgctactgcc tgcagggcca gaccctctgc 3000
 tcgaccgtca gctccccccc tctgcccctgt gttgagccca tcaacgtgga aggaagtgc 3060
 tgcccaatgt gtccagaaaat gtagtccca gaaccacca atatacccat tgagaagaca 3120
 aaccatcgag gagaggtga cctggagggtt cccctgtgc ccacgcctag tgaaaatgat 3180
 5 atcgccatc tccctagaga tatgggtcac ctccaggtag attacagaga taacaggctg 3240
 caccaagtg aagattctc actggactcc attgcctcg ttgtggttcc cataattata 3300
 tgccctcta ttataatagc attccctattc atcaatcaga agaaaacagtg gataccactg 3360
 ctttgtgt atcgaacacc aactaagcct tcttccttaa ataatcagct agtatctgt 3420
 10 gactgaaga aaggaaccag agtccaggtg gacagttccc agagaatgtc aagaattgca 3480
 gaaccagatg caagattcg tggcttctac agcatcaaa aacagaacca tctacagca 3540
 gacaattctt accaaacagt gtagaagaag gcaacttaga tgagggttca aaagacgaa 3600
 gacgactaaa tctgtcttaa aaagtaaact agaatttgtg cacttgctt gtggattgt 3660
 ttggattgtg acttgatgt a cagcgctaa accttactgg gatgggctc gtctacagca 3720
 atgtgcagaa caagcattcc cactttcct caagataact gaccaagtgt tttcttagaa 3780
 15 cccaaagttt taaagttgt aagatataatt tgccgttaa atagctgtag agatatttg 3840
 ggtggggaca gtgagtttg atggggaaag ggggtggagg ttgggtgttgg gaagaaaaat 3900
 tggtcagttt ggctcgggga gaaacctgtt aacataaaag cagttcagtg gcccagaggt 3960
 tattttttc ctattgtctt gaagactgca ctgggtgtg caaagctcag gcctgaatga 4020
 20 gcaggaaaaca aaaaaggcct tgccacccag ctgcacataac caccccttagaa ctaccagacg 4080
 agcacatcg aaccctttga cagccatcc aggtcttaaag ccacaaagtgg cttttctata 4140
 cagtcacaac tgcaatggc agtgaggaag ccagagaaat gcgatagcgg catttctcta 4200
 aaggcggtta ttaaggatata atacagttaa actttttgtc gcttttattt tcttccaagc 4260
 caatcaatca gccagttccctt agcagagtc a gcacatgaac aagatctaag tcatttcttg 4320
 atgtgagcac tggagctttt ttttttaca acgtgacagg aagaggaggg agagggtgac 4380
 25 gaacaccagg catttccagg ggctatattt cactgtttgt ttgtgttttgc ttctgttata 4440
 ttgttgttgc ttcatagttt ttgtgttgc tctagcttaa gaagaaactt tttttaaaaa 4500
 gactgtttgg ggattctttt tccttattt atactgatc tacaaaatag aaactacttc 4560
 atttttattt tatatttttc aagcacccctt gttgaagctc aaaaatggat atgcctttt 4620
 30 aaactttagc aattatagga gtattttatgt aactatctta tgcttcaaaa aacaaaatgt 4680
 ttttgtgtca tttgtatata atatatataat atacatataat atattatac acataatatta 4740
 tttttccctt tttgtatata ttttatgaga ttttaaccag aacaaaggca gataaacagg 4800
 cattccatag cagtgtttt gatcaatttca aaattttttt aataacacaa aatctcatc 4860
 tacctgcagt ttaattggaa agatgtgtgt gtgagagttt gtatgtgtgt 4920
 35 gtgtgtgcgc ggcacgcac gccttgagca gtcagcatttgc caccctgttat aatttgctca 5040
 attcccttttataaaatctt ctcatttttgc ttgtgttttca gtgggttttgc tggatttttt 5100
 ctggccagag acattgtatgg cagtttttctt ctgcacatcaacttgc aatcagctcc aataagctgg 5160
 tttttttttt tcaaacaatgg gtttgaacaa actatggaa tattgtccac aatcttca 5220
 aagtttgttgc tagtgcctt aaaaatggat aactatggata ctatgtgttgc aacttttca 5280
 40 acagccctta gcaacttttgc actaatttacccatggcatttgc atgagtttttgc ctttttttttgc 5280
 tgcttgttgc gaaagacaca gatacccaatgcttgc tggatggatggaa atgtgttctg 5340
 ttttgtaaag gaactttcaaa gtattgttgc aataacttgg acagagggttgc tggatggatgg 5400
 aaaaaatattt atttatttttataatgacct aatttttatttgc ttttttttttgc aaccatttttgc 5460
 ttgtttaga atatcaaaaaa gaaaaagaaaa aagggttttgc agtgcattttgc atcaaaaggaa 5520
 45 aaaaagattt attatcaagg ggcataattt ttatcttttgc caaaataaat ttgttaatgc 5580
 tacattacca aaatagatgg acatcggccat gattgtata aattttttttgc gtaattatc 5640
 cattcctggc ataaaaatgtt tttatcaaaa aaaaatgttgc atgcttgc ttttttttttgc 5700
 caatcatggc catatgttgc aataacttgc aaggatattgg acaagggttgc aatttttttgc 5760
 ttatttttttgc aaaaatgttgc tttatcttgc gtgtgttgc tattacttttgc ttacttttttgc 5820
 50 tcctgttgttgc ctcttgc aaaaatgttgc aaaaatgttgc aaaaatgttgc aaaaatgttgc 5880
 cacttggagt gcatcatgt ttttttttttgc ttttttttttgc ttttttttttgc aaaaatgttgc 5940
 gaattatctg caacttgc ttttttttttgc ttttttttttgc ttttttttttgc aaaaatgttgc 6000
 aaaaaaaaaaaaaa a

55 <210> 34a
 <211> 1036
 <212> DNA
 <213> Human

60 <400> 34a

mylvgdrgl agcghllvsl lgllllpars gtralvclpc deskceeprn rpgsivqgvc 60
 gccytcasqg nescggtfgi ygtcdrglrc virpplngds lteyeagvc denwtdql 120
 65 gfkpcnenli agcniingkc ecntirtcsn pfefpsqdmc lsalkrieee kpdcskarce 180
 vqfsprcped svliegyapp geccplsrc vcnpagclrk vcqpgnlnil vskasgkpe 240

ccdlyeckpv fgvd crtvec ptvqqtacpp dsyetqvr1t adgcctlptr ceclsglcgf 300
 pvcevgstpr ivsrgdgtpg kccdvfecvn dtkpacvfnn veyydgdmfr mdnrcfcrcq 360
 ggvaicftaq cgeinceryy vpegeccpvc edpvypfnnp agcyanglil ahgdrwredd 420
 5 ctfccvngc rhcvatvcgq tctnpvkpg eccpvceep iitvdppacg elsnctltrk 480
 dcincfkrdh ncrtcqcin tqelcserkq gctlncpfgf lttdaqnceic ecrprpkcr 540
 piicdkycpl gllknkhgcd icrckkcpel scskicplgf qqdshgclic kcreasasag 600
 ppilsgtclt vdghhhknee swhdgcrecy clngremcal itcpvpacgn ptihpgqccp 660
 scaddfvvqk pelstpsich apggeyfveg etwnidsctq ctchsgrvlc etevcppllc 720
 10 qnpsrtqdsc cpqctdqfr pslsrnnsvp nyckndegdi flaaeswkpd vctscicids 780
 viscfsescp svscerpvlr kgqccpycik dtipkkvvch fsgkayadee rwldscthc 840
 yclqqgtlcs tvscpplpvc epinvegscc pmcpemvype ptnipiektn hrgevdlevp 900
 lwptpsendi vhlpdrdmghl qvdyrdnrlh psedssldsi asvvpiici lsiiiaflfi 960
 nqkkwipl1l cwyrptkps slnnqlvsd ckkgrtrqvdy ssqrmlriae pdarfsgfys 1020
 mqkqnhlqad nfyqtv
 15

<210> 35
 <211> 716
 <212> DNA
 20 <213> Human

<400> 35

25 gcagtacctg gagtgtcctg cagggggaaa gCGAACGGG ccctgaagtc cggggcagtc 60
 acccggggct cctgggccc tctggggc tggggcttag cagcgatcct gctttgtccc 120
 agaagtccag agggatcagc cccagaacac accctccctc cccggacgco gcagcttct 180
 ggaggcttag gaaggcatga agagtggct ccacctgtg gccgacttag aaaaagat 240
 ccagaactcg gtcttatattt acagatttag aaactatggt tcaagaagag aggacggggc 300
 30 ttgaggaaat ctctgattc tccttatatg acctcaaaact gaccatacta aacagtgtag 360
 aaggctttt taaggctcta aatgtcaggg tctccatcc cctgatgcct gacttgtaca 420
 gtcagtgtgg agtagacggt ttccctccacc cagggttgac tcagggggat gatctgggtc 480
 ccattctgtt ctaagaccc caaacaaggg tttttcage tccaggatct ggagcctcta 540
 35 tctggtagt gtcgtaacct ctgtgtgcct cccgttaccc catctgtcca gtgagctcag 600
 ccccatcca cctaacaggg tggccacagg gattacttag ggttaagacc ttagaactgg 660
 gtctagcacc cgataagagc tcaataaatg ttgttcctt ccacatcaaa aaaaaa

<210> 36
 <211> 395
 40 <212> DNA
 <213> Human

<400> 36

45 ccaatacttc attttcatt ggtggagaag atttagact tctaagcatt ttccaaataa 60
 aaaagctatg atttgattt caactttaa acattgcatt tccttgcca tttactacat 120
 tctccaaaaa aaccttggaa tgaagaaggc caccctaaa atacttcaga ggctgaaaat 180
 atgattattt cattgaaatc ctttagctt tgtatattt cttaactttt gcactttcac 240
 50 gcccagtaaa accaaagtca ggttaaccaa tgtcattttt caaaaatgtta aaacccttaat 300
 tgcaggccct tttttaaattt attttaaga ttacttaaca acattagaca gtgcaaaaaa 360
 agaagcaagg aaagcattct taattctacc atcct

<210> 37
 <211> 134
 55 <212> DNA
 <213> Human

<400> 37

60 ccctcgagcg gccgccccggg caggtacttt taccaccgaa ttgttcactt gactttaaga 60
 aaccctaaaaa gctgcctggc tttcagcaac aggccatca acaccatggt gagtctccat 120
 aaggacacc gtgt

65 <210> 38
 <211> 644
 <212> DNA

<213> Human

<400> 38

5 aagcctgttgcatggggaa ggtggtggcg cttggtgcc actggcgcc gaggttaggg 60
 cagtggcgct ttagttggtc gggggcagcg gcagatttga gccttaagca acttcttccg 120
 gggaaagatgg ccagtgcagc cactgttaca attcaagatc ttgatctata tccatagatt 180
 ggaatatttgg tggccagca atcctcagac gcctcactta ggacaaatgaa gaaaacttag 240
 gtttggaa ttacgaaac ttgtccaaaa tcacacaact taaaagggc acagccaaga 300
 10 ttcagagccaa ggtgtaaaa attaaatgaa acaaatttgc gcaaaggttt aggagaaaga 360
 aggtgttta tggccagag gccagtgcgtc cacatcagtgc gagacagat gaagaaggcg 420
 ttcgcacccgg aaaatgttagc ttcccgttta agtaccttgg ccatgttagaa gttgtatgaat 480
 caagagaaat gcacatctgt gaagatgttgc taaaagatt gaaagctgaa aggaattct 540
 15 tcaaaggctt ctggaaaaa actggaaaga aagcgttac agcagttct gtgggtctaa 600
 gcagatggac tcaaggttgc tggatggaaa actaaggacc tcat

<210> 39

<211> 657

<212> DNA

20 <213> Human

<400> 39

25 cttttgtttt gggttttcca atgttagatgt ctcagtggaaa tgtgcagata tactttgttc 60
 ctttatatggt caccagtgtt aattatggac aaatacatta aaacaagggt tcctggccca 120
 gcctccatc taatctctt gatacttttgaatctaagt ctgaggagcg atttctgtat 180
 tagccagtgt tgaccaact ttctgttagg aattgttataa gaataacctt tctttttcag 240
 acctgtctgt tgagacatct tggggaaatgaa agtagggaaa tagacatttg gtggaaaaac 300
 30 agcaaatgaa acatattaa aagacttcaatgatggatggc atggaaattc 360
 tggtcctttt agcaaatgaa gaagaaaaaa ttctgtctgt cagtattcac tggatgttataa 420
 tttttgtttt ttacacgaa tggaaaaatg atgtgttataa ggtatagatt ttaatcagct 480
 aacagtcaact ccagagattt tgatcagcac caattccat agtagtataatgatggaaatgt 540
 taagaaaatac tactacattt aacattataa agtagatgttgc tggacataac tgaaaattag 600
 35 atgttgttcaatgaaat ttgttccac ttgttattttc aacaaaatttac tcggaac

<210> 40

<211> 1328

<212> DNA

40 <213> Human

<400> 40

45 acaattttaa aataaacttagc aattaatcac agcatatcag gaaaaagtac acagttagtt 60
 ctggtagttttttaggtt cattatggttt agggtcgta agatgttat aagaacctac 120
 ctatcatgtgtatgttca ctcattccat tttcatgttc catgcatact cgggcatcat 180
 gctaataatgtt atccctttttaa gcaacttccaa gggaaacaaaaa gggcccttttaa tttttataaa 240
 ggttaaaaaaaatggccatc ttttgcac tgaatgttacca aaggtgttgc ggcattaca 300
 atatgactaa cagcaactcc atcaatttgc ttttgcac ttttgcac ttttgcac 360
 50 acttccttca cagtggcggtg ttttgcac ttttgcac ttttgcac ttttgcac 420
 taagatttccatc tatatgttgc ttttgcac ttttgcac ttttgcac ttttgcac 480
 ccatccatca aatacttttac aggtggcat ttttgcac ttttgcac ttttgcac 540
 gctttttttt ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 600
 ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 660
 55 actcagaact atatgttgc ttttgcac ttttgcac ttttgcac ttttgcac 720
 aagagacatgtt ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 780
 ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 840
 ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 900
 attggatttgc ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 960
 60 tgagatcttat ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 1020
 ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 1080
 gtgagtttgc ttttgcac ttttgcac ttttgcac ttttgcac ttttgcac 1140
 ctgcactaaa ggcacgtact gcaatgttgc ttttgcac ttttgcac ttttgcac 1200
 tggaaataag aaaggaagag ctctctgtat ttttgcac ttttgcac ttttgcac 1260
 ttttacttgc aatgttgc ttttgcac ttttgcac ttttgcac ttttgcac 1320
 65 tgaaaaaa

<210> 41
<211> 987
<212> DNA
<213> Human

5 <400> 41

aacagagact ggcacaggac ctcttcattt caggaagatg gtatgttagg caggtaacat 60
tgagctcttt tcaaaaaagg agagctttc ttcaagataa ggaagtggta gttatgggg 120
10 taaccccccgg ctatcgtcc ggatggttgc caccctctt gctgttaggat ggaaggcagcc 180
atggagtggg agggaggcgc aataagacac ccctccacag acgttggcat catgggaagc 240
tggttctacc tcttcctggc tcctttgtt aaaggcctgg ctgggagcct tcctttggg 300
tgtcttcctc ttctccaacc aacagaaaag actgtcttc aaaggtggag ggtcttcatg 360
aaacacagct gccaggagcc caggcacagg gctgggggcc tgaaaaaagg agggcacaca 420
15 ggaggaggga ggagctggta gggagatgt ggctttaccc aaggcttcga aacaaggagg 480
gcagaatagg cagaggcctc tccgtcccg gcccattttt gacagatggc gggacggaaa 540
tgcaataagac cagcctgc当地 gaaagacatg tggtttgatg acaggcagtg tggccgggtg 600
gaacaagcac aggccctggg atccaatggc ctgaatcaga acccttaggcc tgccatctgt 660
cagccgggtg acctgggtca attttagctt ctaaaaggct cagtcttcctt atctgc当地 720
20 tgaggctgt gatacctgtt ttgaagggtt gctgaaaaaa tttaagataa ggttatccaa 780
aatagtctac ggcataccca cctgggttagt acctggatgg ggagagtatg gaaaacatac ctgccccgag 840
actctgtctt aacagtagcgc tggcacacag aaggcactca gtaaataactt gttgaataaa 900
tgaagtagcgtt atttgggtgtg aaaaaaaaaa 960

25 <210> 42
<211> 956
<212> DNA
<213> Human

30 <400> 42

cggacgggtgg ggccggacgcg tgggtgcagg agcagggcgg ctgccgactg ccccaaccaa 60
35 ggaaggagcc cctgagtccg cctgcgcctc catccatctg tccggccaga gccggcatcc 120
ttgcctgtct aaagccttaa ctaagactcc cgccccggc tggccctgtg cagaccttac 180
tcaggggatg ttacctggc gctcgggaag ggaagggaag gggccggggg gggggcacgg 240
caggcgtgtg gcagccacac gcaggccgcg agggccgcca gggacccaaa gcaggatgac 300
cacgcaccc cacecccaactg cccccccccc atgcatttg aaaaaaaatgc taaactgac 360
40 tcgcagcccc cgcgcctcc ctccgcctcc catcccgctt agcgtctgg acagatggac 420
gcagggccctg tccagcccccc agtgcgtcg ttcccggtccc cacagactgc cccagccaa 480
gagattgctg gaaaccaagt caggccagg gggccgacaa aaggggccagg tggccctgg 540
ggggAACGGA tgctccgagg actggactgt tttttcaca catcgttgcc gcagccgtgg 600
gaagggaaagg cagatgtaaa tgatgtttt gtttacaggg tatattttt atacettcaa 660
tgaattaatt cagatgtttt acgcaaggaa ggacttaccc agtattactg ctgctgtgt 720
45 ttgtatctct gcttaccgtt caagaggcgt gtgcaggccg acagtccgtg accccatcac 780
tcgcaggacc aaggggggccg ggactgtcg ttcacgcccc gctgtgtctt ccctccctc 840
ccttccttgg gcaagaatgaa ttcgatgcgtt attctgtggc cgccatctgc gcagggtgg 900
gttattctgtt catttacaca cgtcggttca attaaaaaaggc gaattataactt cccaaaaa

50 <210> 43
<211> 536
<212> DNA
<213> Human

55 <400> 43

aaaaaacac ttccataaca ttttgttttca gaagtcttatt aatgcatacc cacttttttc 60
cccctagttt ctaaatgtt aagagagggg aaaaaaggct caggatagtt ttcacctcac 120
agtgttagct gtctttttt ttaactctgg aaatagagac tccatttaggg ttttgacatt 180
60 ttggaaaccctt agttttacca ttgtgtcagt aaaacaataa gatagttga gagcatatga 240
tctaataaa gacatttgaa ggtttagttt gaattctaaa agtaggttaat agccaaatag 300
catttcatac ccttaacaga caaaaactt tttgtcaaaa gaatttagaaa aggtgaaaat 360
atttttccca gatgaaactt gtgcacactt caatgtacta atgaaataca aggagacaga 420
ctggaaaaag tgggttatgc cacccttttaccctt gtaaataattt tggtagctaa 480
65 agggtggttt ccccgccacc tggaccttga caggtaggtt tccgtggta accagt

ggacatgttg acggagagga aaggttaggaa agggttaggg atagaagcc

<210> 47
<211> 2529

5 <212> DNA
<213> Human

<400> 47

10	tttagttcat	agtaatgtaa	aaccatttgt	ttaattctaa	atcaaatcac	tttcacaaca	60
	gtgaaaatta	gtgactgggt	aagggtgcc	actgtacata	tcatcatttt	ctgactgggg	120
	tcaggacctg	gtcctagtcc	acaagggtgg	caggaggagg	gtggaggcta	agaacacaga	180
	aaacacacaa	aagaaagaa	agtcgcctt	gcagaaggat	gaggtggtga	gcttgcgcag	240
15	ggatggtggg	aagggggctc	cctgttgggg	ccgagccagg	agtcccaagt	cagctctct	300
	gccttactta	gctcctgca	gagggtgagt	ggggacctac	gaggttcaaa	atcaaatggc	360
	atttggccag	cctggctta	ctaacaggtt	cccagagtgc	ctctgttggc	tgagctctcc	420
	tggctcaact	ccatttcatt	gaagagtcca	aatgatccat	tttcttaccc	acaactttt	480
20	attatttc	tggaaaccca	tttctgttga	gtccatctga	cttaagtctt	ctctccctcc	540
	actagttggg	gccactgcac	tgaggggggt	cccaccaatt	ctctctagag	aagagacact	600
	ccagaggccc	ctgcaactt	gcccatttcc	agaagggtat	aaaaagagca	ctcttgatgt	660
	ggtgcccagg	aatgtttaaa	atctatcagg	cacactataa	agctgggtt	ttcttcctac	720
	caagtggatt	cgccatatga	accacctact	caatacttta	tattttgtct	gtttaaacac	780
	tgaactctgg	tgttgacagg	tacaaaggag	aagagatggg	gactgtgaag	aggggagggc	840
	ttccctcatc	ttcctcaaga	tctttgttc	cataaactat	gcagtcataa	ttgagaaaaaa	900
	gcaatagatg	gggcttccta	ccatttgggt	gttattgtct	gggttagcca	ggagcagtgt	960
25	ggatggcaaa	gttaggagaga	ggcccgagg	aaagcccatc	tccctccagc	tttgggtct	1020
	ccagaaaagag	gctggatttgc	tggatgaag	cctagaaggc	agagcaagaa	ctgttccacc	1080
	aggtgaacag	tccttacctgc	ttggattccat	agtccctcaa	taaggatccag	aggaagaagc	1140
	ttatgaaatgg	gaaaatcaaa	tcaaggttat	gggaagaata	attttccctc	gattccacag	1200
30	gagggaaagac	cacacaatat	catttgctg	gggctccccca	aggccctgc	acctggcttt	1260
	acaaaatcatc	aggggttgc	tgcttggcag	tcacatgttt	ccctggttt	agcacacata	1320
	caaggagttt	tcagggact	ctataaagcc	ataccaaaat	cagggtcaca	tgtgggttcc	1380
	ccctttccct	gcctttcat	aaaagacaac	ttggcttctg	aggatggtgg	tctttgcatt	1440
	gcagttggc	tgacctgaca	aagccccag	tttccctgtg	caggttctgg	gagaggatgc	1500
35	attcaagctt	ctgcagccta	ggggacagg	ctgcttgc	agttattact	gcctcgagc	1560
	tccaaatccc	accaaagtcc	tgactccagg	tctttctaa	tgcacagtag	tcagtcctag	1620
	cttcggcagt	attctcgct	gtatgttctc	ttggcagagag	aggcagatga	acatagttt	1680
	aggggaaaag	ctgatggaa	acctgtgagt	taagccatc	gtctccacag	gaataattta	1740
40	tggcaggaaa	ccaggaagtc	attcaagtt	ttctctgt	ccaaagacac	tgagcacagc	1800
	ccagagccaa	aaaagatgt	tttgcgtct	ggtgaattca	cgaagtgacc	ccagctttag	1860
	ctactgcaat	tatgattttt	atggacagc	aatttcttgc	atctctacag	aggaagaaga	1920
	ggggggagtgg	gaggggaagg	aaagagaaca	gagcggcact	gggatttgaa	aggggaacct	1980
	ctctatctga	ggagccccca	ctggcttcag	aagcaactt	ccaagggtt	tttaaagaca	2040
45	tggaaaatttc	cagaaatacc	atttggtgc	tccctttgtt	tctgtaatat	taaactcagg	2100
	tggaaaattata	ctctgacagt	ttctctctt	ctgcctcttc	cctctgcaga	gtcaggacat	2160
	gcagaactgg	ctgaaaacaa	atttcatgg	gtcacccat	agagatact	caatgccaag	2220
	gcctgaagg	atagagtgtt	tacaggggt	gcatattca	ggggtcatcg	ccaaactggtc	2280
	tcgagttcca	aagctctgt	gaagaaacaa	gactcttgc	tgtgttactg	atccctactga	2340
50	ttccaggagt	caagatttc	caggaaggg	aacaccagg	gttgggttgg	cacgtccacca	2400
	gtccagagcc	ctgcccacca	tgtacgcagg	agcccagcat	taggcaatca	ggagccagaa	2460
	catgatcacc	aggggccacaa	ataggaagag	gcgtgacagg	aactgctgt	ccacatacct	2520
	gggggtgtcc						

55 <210> 48
<211> 1553
<212> DNA
<213> Human

<400> 48

```

60 tttttttttt ttttgattt ctgggacaat taagcttat ttttcatata tatatatatt 60
ttccatataata tatatacata catatataaa gggaaacaatt tgcaaaatc cacacgtgcac 120
aaaaccatata atacacacat atgtatgcac acacacacac agacacacac acccgaaagt 180
cttagccaggc ccgttttcca ttccctaaga cttatcttc atttggggcc ttcttaggtt 240
ggggccctga gcttggtttg tagaaatgtt gtctaatat aaccataagct ttaatccccca 300
tgaaggacag tgttagaccc atctttgtct gctccccgct gcctttcagt tttacgtgat 360

```

ccatcaagag ggctatggga gccaagtcaa cacggggat tgaggcta at tcacctgaac 420
 tcgaaaacag cgccccagctt cctcaccgca ggcacgcgtc ttttctttt ttttcctcga 480
 gacggagtct cgctgtgtt cccaggctgg agtgcagtgg cacggctcg gctcaactgca 540
 agctccaccc cctggattca taccatttc ctgcttcagc cttccgagta gctgggacta 600
 5 taggtgccaa ccactacgccc tagctaattt ttttttgat ttttagtaga gacagggtt 660
 caccgtgtta gcacaggatgg tctcgtcccg actttgtat ccggcccgccct cggcctccca 720
 aagtgtctggg attacaggcg tgagccacca caccctggccc cggcacgtat ctttaagga 780
 atgacaccag ttccctggctt ctgacccaaag aaaaaatgtc acaggagact ttgaagaggc 840
 10 agacaggagg gtgggtggcag caacactgca gctgcttcgat gatgtctg ggggtctc 900
 cgagacgggt gtgaacacgccc cacttcaaa tgagcaggcg cctggctccg gtgtgtcctc 960
 acttcagtgg tgcacctgga tgggtggaaagc cagcccttgg ggcaggaaac cagtcagag 1020
 aggctaccca gctcagctgc tggcaggagc caggatattta cagccataat gtgtgtaaag 1080
 aaaaaacacg ttctgcaaga aactctccta cccgtcggg agactggggc tccttgctt 1140
 15 ggatgagctt cactcaacgt ggagatgtt gttggactgtt ccctgaaaag cggggcttgc 1200
 agggccaagt gaggtcctca ggtcctaacc ccaaggcccccc tctgaaaggg ggtgtgcagg 1260
 cgaggggagc aggaggcttc tctctagtc ctggggaggc ttggctgag agaagagtga 1320
 gcagggagct gggaaatggc caggcaggga agggactga atgttgcgg ggctaattgcc 1380
 tcagatcgat gtatccctct ccctggctc ccggagccctt ctgtcaccgc ctgctgcctc 1440
 20 gcaggaggccc catctttctt gggagcttat ctgacttaac ttcaactaca agttcgctct 1500
 tacagagaccg ggggttagcgt gatctctgc ttccctgagc gcctgcacgg cag

 <210> 49
 <211> 921
 <212> DNA
 25 <213> Human

 <400> 49

 30 ctgtggtccc agctactcag gaggctgagg cgggaggatt gcttgagccc aggagttgga 60
 tggtcagtgc accaaacatgc gacccattgc cctccactct gggccacggc gcaataccct 120
 gtctcagaaa acaaacaaca aaaagcagaa acgctgaagg ggtcggttta cgggaaaacc 180
 gcctgtcaga acacttggct actcctaccc cagatcagtg gacctggaa tgagggttgg 240
 tcccgggagg ctttctccaa agctgttgc accagacccg ccatggaaac cctggccaca 300
 gaagcctccc ggggagttag ccagagctg gaccgctgtg ctgtatgttc tgggggtggag 360
 35 ggaggggtggg gagtgtgc aa ggtgtgtgt gtgcggggg ggtgttcatg ggcaagcatg 420
 tgcgtgcctg tgggtgtgc tgcccccctt ctgcagccgt cgggtgttac tccctccagc 480
 cccttcgcca ctttctgagc attgtctgtc cacgtgagac tgcccagaga cagcagagct 540
 ccacgtgtt ttaaggggag acctttccctt ggacccgggg gtcctggcgat atctcatgac 600
 40 cagggtctaa atgacccgcac atgcattcacc tgccttcga tgaccaacct ccctgtcccc 660
 gtcccgcgtc cctgcccccg tggcgtctca cgggtatgcc tgctcctgac attgggtttc 720
 actgttagcaa actacattctt ggatggaaat tttcatgtac atgtgtggca tggaaaat 780
 ttcaaaataaa atggacttga tttagaaagc caaaaagctg tgggtccctt ccagcacggc 840
 tactttgacc tcttgcctac aacccttcc ttgggtccga ggctggtagc tttgttact 900
 tcagatgggtt gggggcggtt g

 45 <210> 50
 <211> 338
 <212> DNA
 <213> Human
 50 <400> 50

 atgatctatc tagatgcctt accgtaaaaat caaaacacaa aaccctacty actcattccc 60
 tccctccag atattacccc atttctctac ttcccattgt agccaaactt tccaaaaatt 120
 55 catgttctgt ctccattttcc tcatgttcaa cccaccctgt cttagctacc acccctcagt 180
 aacgacgttag cctgggtaga aacaaatgtc agcatgatac catactcaat gatccttgc 240
 cactgttgc atgtcatca ttccatggcc ttactttccc tctcagcgcctt atttgcatac 300
 gtaagaaact ttctttctt aatttttgtt tcttttgg

 60 <210> 51
 <211> 1191
 <212> DNA
 <213> Human
 65 <400> 51

	ctagcaaggca	ggtaaacacgag	ctttgtacaa	acacacacag	accaaacat	ccggggatgg	60
	ctgtgttgc	ctagagcaga	ggctgattaa	acactcagt	tgttggctct	ctgtgccact	120
	cctggaaaat	aatgaatttg	gtaaggaaca	gttataaga	aatgtgcct	tgctaactgt	180
	gcacattaca	acaaagagct	ggcagctcct	gaaggaaaag	ggcttgcgc	gctgcgttc	240
5	aaacttgtca	gtcaactcat	gccagcagcc	tcagcgctcg	ccctccccagc	acaccctcat	300
	tacatgtgtc	tgtctggct	gatctgtgc	tctgtctcgga	gacgctctg	acaagtccgg	360
	aatttctcta	tttctccat	ggtgc当地	ggggatctct	ccctgcttct	cttctgtcac	420
	ccccgcctct	ctccccccagg	aggctccttg	attttatggta	gctttggact	tgcttcccccc	480
10	tctgactgtc	cttgc当地	agaatggaaag	aagctgact	ggtaaggaa	agactccagg	540
	ccatcacaga	taaaagaaaa	atacaggaag	aaatctcaca	gaagctctg	aaaatagagg	600
	aagacaaaact	aaagcaccag	catttgaaga	aaaaggccct	gagggagaaa	tggcttctag	660
	atggaatcag	cagcggaaaa	gaacaggaag	agatgaagaa	gcaaaatcaa	caagaccagc	720
	accagatcca	ggttctagaa	caaagtatcc	tcaggcttga	gaaagagatc	caagatcttg	780
15	aaaaagctga	actgc当地	tcaacgaagg	aaagggccat	ttaaaagaaa	ctaaagtcaa	840
	tttagccggac	aacagaagac	attataagat	ctgtgaaagt	gaaaagagaa	gaaagagcag	900
	aagagtcaat	tgaggacatc	tatgtctaata	ccccgtacct	tccaaagtcc	tacataccct	960
	cttaggttaag	gaaggagata	aatgaagaaa	aagaagatga	tgaacaaaat	agggaaagctt	1020
	tatatgcctat	ggaaaattaaa	gttggaaaaag	acttgaagac	tggagaaaagt	acagttctgt	1080
20	cttccaatac	ctctggccat	catgtgactt	taaaaggta	aggagtaaaa	gtttaagatg	1140
	atgggc当地	gtccagtgt	ttcagtaaaag	tgcttaatc	aagtggagg	t	

25 <210> 52
<211> 1200
<212> DNA
<213> Human

<400> 52

30	aacagggact	ctcactctat	caacccccagg	ctggagtcgg	gtgcgcac	cctggctccc	60
	tgcAACCTCC	gcctcccaagg	ctcaagcaac	tccctgcct	cagtcgtct	agtagctggg	120
	actacaggca	cacaccacca	tgcccaagcca	atttttgcatt	tttttgtaga	gacagggttt	180
	cggcttctgt	ccaggccccgc	atcatatact	ttaaatcatg	cccagatgac	ttaataacct	240
	aatacaatat	atcagggttgg	ttaaaaata	attgtttttt	tattatttt	gcatttttgc	300
35	accaacctta	atgctatgtt	aataatgtt	atactgttgc	ttaacaacag	tatgacaatt	360
	ttggctttt	cttggatattt	ttttgttattt	tttttttttta	tttgtgtgtc	tttttttttt	420
	ttctcagtgt	tttcaatcc	tccttgggtt	aatccatgg	tgcaaaaacc	acagatatga	480
	agggctggct	atataatgcatt	tgatgattgt	cctattatata	tagttataaa	gtgtcattta	540
	atatgtatgt	aaagtttatgg	tacagtggaa	agagtagttt	aaaacataaa	catttggacc	600
40	tttcaagaaaa	ggtagcttgg	tgaagttttt	cacccatcaa	ctatgtccca	gtcagggctc	660
	tgtctactaat	tagctataat	ctttgcacaa	attacatcac	ctttgagtct	cagggtcctc	720
	acctgtaaaa	tgaaaagaact	ggatactctc	taaggtcaact	tccagccctg	tcattctata	780
	actctgttat	gctgaggaag	aaattccacat	tgtgttaact	gtatgagtca	aactgaaaat	840
	gattattaaaa	gtggggaaaaaa	gcattgtt	tctcttagaa	agctcaacta	aatttgagaa	900
	gaataatctt	ttcaattttt	taagaatttta	aatatttttta	agggttttgc	ctattttttt	960
45	agagatgggg	tctcactctg	tcacccagac	tggagttacag	tggcacaatc	atagctact	1020
	gctgcctcaa	attcatggc	tcaagtgtatc	ctccctgcctc	tgcctccaga	tgtactgcga	1080
	ctatgggcat	gtgccaccac	gcctggctaa	catttgcattt	gacctattta	tttattgtga	1140
	tttatatatctt	ttttttttttt	ttttttttttt	ttttttacaa	aatcagaaaat	acttattttt	1200

50 <210> 53
<211> 989
<212> DNA
<213> Human

55 <400> 53

	aaggccaccac	tcaaaaacttc	ctatacattt	tcacagcaga	gacaagtgaa	cattttatTTT	60
	tatgcctttc	ttcctatgtg	tatttcaagt	ctttttcaaa	acaaggcccc	aggactctcc	120
	gattcaatta	gtccttgggc	tggtcgactg	tgcaggagtc	cagggagcct	ctacaaatgc	180
60	agagtgactc	tttaccaaca	taaacccctag	atacatgcaa	aaagcaggac	ccttcctcca	240
	ggaatgtgcc	atttcagatg	cacagcaccc	atgcagaaaa	gctggattt	tccttggAAC	300
	cgactgtgtat	agaggtgttt	acatgaacat	tgctactgtc	tttctttttt	tttgagacag	360
	gttctcgctt	tgcccaggct	gagtgcataat	cgtgtatctca	ctcaactgtaa	ttccacccctcc	420
65	aggttcaagg	attctCCTGc	tcagcctcct	agtagctggg	ttacaggcac	tgccaccatg	480
	cccgctaaatt	ttgttatttt	gtagagatgg	atttctccat	tttgtcaggc	ggttctcgAAc	540
	cccaacctca	gtgatctgcc	acctcagcct	cctaagtgtt	ggattacagg	atgagccacc	600

cgaccggcca ctactgtctt tctttgaccc ttccagttc gaagataaaag aggaataat 660
 ttctctgaag tacttgataa aatttccaaa caaaacacat gtccacttca ctgataaaaa 720
 atttaccgcgta gtttggcacc taagagtatg acaacagcaa taaaaagtagaa ttccaaagag 780
 5 ttaagatttc ttccatcgaa tagatgattc acatcttcaa gtcccttttgaatcagtt 840
 ttaatattat tctttcctca ttccatctg aatgactgca gcaatagttt tttttttt 900
 tttttttt ttgcgagatg gaatctcgct ctgtcgccc gcggggagtgc actggcgaa 960
 gccccgctca ccgcaatctc tgccacccg

10 <210> 54
 <211> 250
 <212> DNA
 <213> Human

15 <400> 54
 20 catttccccca ttggtcctga tggtaagat ttagttaaag aggctgttaag tcagggttgc 60
 gcagaggcta ctaacaagaag taggaaatca agtccctcac atgggttattt aaaaacttaggt 120
 agtgggtggag tagtggaaaaa gaaatctgag caacttcata acgtaacttgc ctttcaggaa 180
 aaaggccatt tttaggaac tgcattctgtt aaccacaccc ttgatccaag agcttagggaa 240
 acttcagttg

25 <210> 55
 <211> 2270
 <212> DNA
 <213> Human

30 <400> 55
 35 ggcggcccccga gcagcgccccg cgccctccgc gccttctccg cggggaccc gagegaaaga 60
 gggccgcgcg ccgcggcagcc ctgcgcctccc tgccacccgg gcacacccgc ccgcaccc 120
 gaccccgctg cgcacggcct gtccgctca caccagcttgg tggcgtt cgtgcgcgc 180
 ctgcgcgcgg gctactctcg cgcgcacaa tgagctccgc catgcgcagg ggcgcgcct 240
 tagtgcgtcacttctccac ttgaccaggc tggcgttcc caccgtcccc gtcgcctgc 300
 actgcgcgcct ggaggcgccc aagtgcgcgc cgggacttgc gctgggtccgg gacggctgc 360
 40 gctgtgttaa ggtctgcgc aagcagctca acgaggactg cagcaaaacgc cagccctgc 420
 accacaccaa ggggctggaa tgcaacttcg ggcgcactc caccgtctcg aaggggatct 480
 gcagagctca gtcagaggggc agaccctgtt aataactac cagaatctac caaaacgggg 540
 aaagtccca gcccaactgtt aacatctgtt acatgttat tgcgttgc gtcggctgc 600
 ttccctctgtt tcccccaagaa ctatcttcc ccaacttggg ctgtcccaac ctcggctgg 660
 tcaaaattttac cggggcagtgc tgcgaggagt gggctgttgc cgaggatgt atcaaggacc 720
 45 ccatggagga ccaggacggc ctcccttgc caccgttgc aggacttgg attcgatgcc tccgagggtgg 780
 agttgacgag aaacaatgaa ttgatttgcg ttggaaaagg cagctactg aacgggcctcc 840
 ctgtttttgg aatggggcctt cgcattctt acaaccctt acaaggccag aaatgttattt 900
 ttcaaacaac ttcatggtcc cagtgcctaa agacctgtgg aactgttattt tccacaccc 960
 50 ttaccaatgtca caacccttgc tgccgcctt tgaaagaaac ccggattttgtt gaggtgcggc 1020
 ctttgtggaca gccagttgtac agcagcccttgc aaaaggccaa gaaatgcgcg aagaccaaga 1080
 aatccccca accgttcagg tttacttcg ctggatgtt ggtgttgc gaaatccggc 1140
 ccaagttactg cgggttctgc tgggacggcc gatgtgcac gcccgccttgc accaggactg 1200
 tgaagatgcg gttccgcgtgc gaaatgggg agacattttc caagaacgtc atgtatgttcc 1260
 agtctgcacaa atgcaacttac aactgcggcc atgcacatgc agcagcggtt cccttctaca 1320
 ggctgttcaaa tgacatttacaa aatatttggg actaaatgtt acctgggtt ccaggccaca 1380
 cctagacaaa caagggagaa ggtgttgc aatcacaatgc tggagaaaat gggccgggg 1440
 ggtgtgggtt atggggactca ttgttagaaag gaaggcttgc tcattcttgc ggagcataa 1500
 55 ggtatccgtt aactgtccaa ggtgttgc ggtgttgc cttatgttgc gtttttttttttgc 1560
 gaatacttttgc ttccatgtat ttggagcaca ttgttacttgc tcatgttgc gtttttttttttgc 1620
 ttgtatgttgc ttgttgcatttgc ttttttttttttgc gtttttttttttgc ttttttttttttgc 1680
 tttcccttttgc ggtgttgc ttttttttttttgc gtttttttttttgc gtttttttttttgc 1740
 cttttatttgc tcccttgc aatgttgc ggtgttgc ttttttttttttgc gtttttttttttgc 1800
 acactccatg agtgcgttgc agaggcacttgc atgcacatgc taaactgc aacagaatgc 1860
 60 ggtgtttttaa gactgttgc ttttttttttttgc gtttttttttttgc gtttttttttttgc 1920
 tggtaataactg gaataatgtt aatgttgc ttttttttttttgc gtttttttttttgc 1980
 tatggatata accatgttgc aatgttgc ttttttttttttgc gtttttttttttgc 2040
 ttttttttttttgc ggtgttgc ttttttttttttgc gtttttttttttgc gtttttttttttgc 2100
 aacaggactt atggggatatac agcgttgc aatgttgc ttttttttttttgc gtttttttttttgc 2160
 65 ttatacccttgc agtagagaaa agtgcgttgc tataaagttaa ttttttttttttgc gtttttttttttgc 2220
 aacacgacat ttttttttttttgc gtttttttttttgc gtttttttttttgc gtttttttttttgc 2220

5 <210> 56
 <211> 1636
 <212> DNA
 <213> Human

10 <400> 56

```

  cttgaatgaa gctgacacca agaaccgcgg gaagagctt ggcggaaaaggaa aggaaaggaa 60
  agcgctcgag ttggaaaagga accgctgtc ctggccaaac tcaagcccgg gcgcggccac 120
  cagtttgatt ggaagtccag ctgtgaaacc tggagctcg cttctcccc agatggctcc 180
  tggtttgctt ggtctcaagg acactgcac tccaaactga tccctggcc gttggaggag 240
  cagttcatcc ctaaagggtt tgaagccaaa agccagaatgaa gcaaaaaatgaa gacgaaaggaa 300
  cggggcagcc caaaagagaa gacgctggac tgggtcaga ttgtctgggg gctggccccc 360
  15 agcccggtgc ctccccacc cagcaggaag ctctggcac gccaccaccc ccaagtggcc 420
  gatgtcttcttgccttgc tgctacggg ctcaacatg ggcagatcaa gatctggag 480
  gtgcacacgg ggtctctgtctt gatgttccatcc tccggccacc aagatgtcg gagatctg 540
  agcttcacac ccagtggcag tttgatatttgc tccctccgt cacgggataa gactcttcgc 600
  atctgggacc tgaataaaaca cggtaaacag attcaagtgt tatcggggca cctgcagtgg 660
  20 gtttactgtc gttccatctc cccagactgc agcatgtgt gctctgcagc tggagagaag 720
  tcgggttttc tatggagcat gagggttcatc acgttaattt ggaagctaga gggccatcaa 780
  agcagtgttgc tctcttgta ctctcccccc gactctggcc tgcttgtac ggcttcttac 840
  gataccaatg tgattatgtg ggaccctac accgggaaa ggctgaggta actccaccac 900
  acccaggttgc accccgcatc ggatgacatg gacgtccaca tttagctact gagatctgt 960
  25 tgcttccttc cagaaggctt gtaccttgc acgggtggcag atgacagact cctcaggatc 1020
  tggggccttgg aactggaaaac tcccatgtca ttgtctcta tgaccaatgg gctttgtc 1080
  acatttttc cacatgggtgg agtcattgtcc acaggacataa gagatggccca cgtccagttc 1140
  tggacacgtc cttaggttctt gtcctactg aagcaatttgc tccggaaagg ctttcgaatg 1200
  ttccctaaaca cttaccaagt cctagactg ccaatccccca agaaaatggaa agagttctc 1260
  30 acatacagga ctttttaagc aacaccacat ctgtgttcc ttgttagcag ggtaatcgt 1320
  cctgtcaag ggagttgtc gaataatggg ccaacatctt ggtcttgcattt gtaaatagca 1380
  tttctttggg attgtgataa gaatgtgca aaaccagattt ccagtgtaca taaaagaattt 1440
  tttttgtctt taaatagataa caaatgtcta tcaactttaa tcaagttgtta acttatattt 1500
  35 aagacaattt gatacataat aaaaaattt gacaatgtcc tggggaaaaaaa aaaatgtaga 1560
  aagatgtgaa aggggtggat ggatgaggag cgtggtgacg gggccctgca gcgggttggg 1620
  gaccctgtgc tgcgtt
  
```

40 <210> 57
 <211> 460
 <212> DNA
 <213> Human

45 <400> 57

```

  ccatgtgtgt atgagagagaa gagagatgg gaggagagg gagctcaacta ggcgcataatgt 60
  gcctccagggg ggtgcagat gtgtctgagg gtgagcctgg tggaaagagaa gacaaaaggaa 120
  tggaaatgagc taaagcagcc gcctgggggtt ggaggccggcc cccatggta tgcagcagg 180
  ggcaggagcc cagcaaggaa gcctccatcc ccaggactctt ggagggagctt gagaccatcc 240
  50 atgcccggcag accccctccctt cacaactccat cctgtccagc cctaattgtt caggtggggaa 300
  aactgaggctt gggaaagtcaat atagcaagtgc actggcagag ctgggacttgg aacccaaacca 360
  gcctccatgtca ccacgggttctt tcccatcaat ggaatgttagt agactccacgc caggtggggta 420
  ccgagctgaa attcgtatcc atggtcatatc ctgtttctgt
  
```

55 <210> 58
 <211> 1049
 <212> DNA
 <213> Human

60 <400> 58

```

  atctgatcaa gaataccctgc cctggtcaact ctggatgt ttctgtccac ttgttcacat 60
  tgaggaccaa gatccctttt tttacagagg cactgttgc gtctaaacaca gacaccccttca 120
  tgacgacatg ctggctcaca ttgtcgttgc ctgcagaatg cccctccca gcctggacta 180
  cagcagcaacttcccttggg ggtgcagtagt ccgttgcac agacgtggaa gcaactctgaa 240
  65 gtcagtgtctt gtcaggttgc taccgtgttgc ctgcatttgc caggcattaa aggtctttt 300
  ggtatctacaa tttttagtgc tttccatttgc tgagtctggg tcataactttt actgcttgat 360
  
```

aaaatgtaaa cttcacctag ttcatcttct ccaaatccca agatgtgacc ggaaaagtag 420
cctctacagg acccactagt gcccacacag agtggtttt ctgcactg ctttgtaca 480
ggactttctg ggagagtttag gaaattccca ttacgatctc caaacacgta gcttcatac 540
5 aatcttctg actggcagcc ccggataaca aatccaccaa ccaaaggacc attactaat 600
ggcttgaatt ctaaaagtga tggctcactt tcataatctt tccccttat tatctgtaga 660
attctggctg atgatctgtt tttccattt gagtctgaac acagtatcgtaaaattgatg 720
tttatatcg tggatgtct atccacagca catctgcctg gatctggag cccatgagca 780
aacacctcg gggctgggt ggtgctgtt aagtgtgggt tgctccttgatggaataa 840
10 ggcacgttgc acatgtctgt gtccacatcc agccgtagca ctgagcctgt gaaatcactt 900
aaccatcca tttcttccat atcatccagt gtaatcatcc catcaccaag aatgatgtac 960
aaaaaccctg caggccaaa gagcagtgc ctccttccat gctttctgtt gaggcttgca 1020
acttcaagaa agactctggc tttcttccat

<210> 59
15 <211> 747
<212> DNA
<213> Human

<400> 59
20 ttttcaaat cacatatggc ttctttgacc ccatcaaata actttattca cacaaacgtc 60
cctaattta caagcctca gtcattcata cacataggg gatccacagt gttcaaggaa 120
cttaaatata atgtatcata ccaacccaag taaaccaagt aaaaaaaaaata ttcatataaa 180
gttgcata ctaggtcct agattaccag ttctgtgca aaaaaaggaa atgaagaaaa 240
25 atagatttat taacttagtat tggaaactaa ctttgcct ggcttaaaac ctccttcacg 300
ctcgctgtc ccacacaaat gtttaagaag tcactgcaat gtactccccg gctctgtatga 360
aaagaagccc ctggcacaaa agattccagt gcccctgaag aggtccctt ctcctgtgg 420
gctctccctag aaaaccagcg ggacggcctc ctcgtgtata ccgtctataa ctttaggggg 480
30 ccctcggca ggcaacggca gtggactcat ctcgggtatg gctgtatgt ctaacactgg 540
ccaattcaat gccacaccta ctggttaccc ttggggca ttctccatgaga cagaagcccc 600
ttgaaggcta ggttagggcag gatcagatg acaccgtgt ttgtctcgaa gggctccaca 660
gcccagtacg acatgttgc agaagtagta tctctggact tctgcctcca gtcgaccggc 720
cgcaattta gtatgtatag cggccgc