Introduction to EMBEDDED SYSTEMS

1112	_	2	•	_	
531				. 1	
-			н		
m					

Contents

		Objective Questions 67	
		Review Questions 69	
		Lab Assignments 71	
3.	Cha	racteristics and Quality Attributes of Embedded Systems	72
	3.1	Characteristics of an Embedded System 72	
	3.2	Quality Attributes of Embedded Systems 74	
- 4	1	Summary 79	
		Keywords 79	
		Objective Questions 80	
		Review Questions 81	
4.	Emb	edded Systems—Application- and Domain-Specific	83
	4.1	Washing Machine—Application-Specific Embedded System 83	
	4.2	Automotive - Domain-Specific Examples of Embedded System 85	
	-	Summary 89	
		Keywords 90	
		Objective Questions 90	
		Review Questions 91	
5.	Doci	gning Embedded Systems with 8bit Microcontrollers—8051	92
5.			94
	5.1		
	5.3	Why 8051 Microcontroller 94 Designing with 8051 94	
	5.4	The 8052 Microcontroller 155	
	5.5	8051/52 Variants 155	
	3.3	Summary 156	
		Keywords 157	
		Objective Questions 158	
		Review Questions 161	
		Lab Assignments 162	
	D		161
6.	6.1	Pramming the 8051 Microcontroller Different Addressing Modes Supported by 8051 165	164
	6.2	The 8051 Instruction Set 171	
	0.2	Summary 196	
		Keywords 197	
		Objective Questions 197	
		Review Questions 202	
		Lab Assignments 203	
125	038205	A STATE OF THE STA	
7.		dware Software Co-Design and Program Modelling	204
	7.1	Fundamental Issues in Hardware Software Co-Design 205	
	7.2	Computational Models in Embedded Design 207	
	7.3	Introduction to Unified Modelling Language (UML) 214	
	7.4	Hardware Software Trade-offs 219	
		Summary 220	

_				
_		_	-	
- 17	ara i	•	-	

	Keywords 221	
	Objective Questions 222	
	Review Questions 223	
	Lab Assignments 224	
	Part 2	
	Design and Development of Embedded Product	
Embe	dded Hardware Design and Development	228
8.1	Analog Electronic Components 229	
8.2	Digital Electronic Components 230	
8.3	VLSI and Integrated Circuit Design 243	
8.4	Electronic Design Automation (EDA) Tools 248	
8.5	How to use the OrCAD EDA Tool? 249	
8.6	Schematic Design using Orcad Capture CIS 249	
8.7	The PCB Layout Design 267	
8.8	Printed Circuit Board (PCB) Fabrication 288	
	Summary 294	
	Keywords 294	
	Objective Questions 296	
	Review Questions 298	
	Lab Assignments 299	
Fmbo	dded Firmware Design and Development	302
9.1	dded Firmware Design and Development	30.
9.1	Embedded Firmware Design Approaches 303	
	Embedded Firmware Development Languages 306	
9.3	Programming in Embedded C 318	
	Summary 371 Vanuarda 272	
	Keywords 372	
	Objective Questions 373	
	Review Questions 378	
	Lab Assignments 380	
Real-	Time Operating System (RTOS) based Embedded System Design	381
10.1	Operating System Basics 382	
10.2	Types of Operating Systems 386	
10.3	Tasks, Process and Threads 390	
10.4		
10.5		
10.6	를 잃어가면 있다면 하면 하면 하면 하면 하면 하면 보다 하면 보다 하면	
10.7	Task Communication 426	
10.8		
10.9		
10.10	How to Choose an RTOS 478	
	Summary 480	
	Keywords 481	
	Objective Questions 483	

Contents

- 35		Review Questions 492 Lab Assignments 496	
11.	An Ir	ntroduction to Embedded System Design with	
		orks and MicroC/OS-II RTOS	498
		VxWorks 499	170
	11.2	MicroC/OS-II 514	
100		Summary 541	
noc.		Keywords 542	
	1.2	Objective Questions 543	
	2.0	Review Questions 544	
	100	Lab Assignments 546	
	196.0	Lab Assignments 540	
12.	Integ	ration and Testing of Embedded Hardware and Firmware	548
	12.1	Integration of Hardware and Firmware 549	
	12.2	Board Power Up 553	
	Au	Summary 554	
		Keywords 554	
		Review Questions 555	
	7975 - 7		
13.		Embedded System Development Environment	556
	13.1	The Integrated Development Environment (IDE) 557	
1387	13.2	Types of Files Generated on Cross-compilation 588 Disassembler/Decompiler 597	
	13.3	sometime secondaries as	
	13.4	Simulators, Emulators and Debugging 598	
	13.5	Target Hardware Debugging 606	
	13.6	Boundary Scan 608	
		Summary 610	
		Keywords 611	
		Objective Questions 612	
		Review Questions 612	
		Lab Assignments 613	
14.	Prod	uct Enclosure Design and Development	615
	14.1	Product Enclosure Design Tools 616	
	14.2	Product Enclosure Development Techniques 616	
	14.3	Summary 618	
		Summary 618	
		Keywords 619	
		Objective Questions 620	
		Review Questions 620	
15.	The	Embadded Product Development Life Cycle (FDLC)	621
13.	15.1	Embedded Product Development Life Cycle (EDLC) What is EDLC? 622	021
	15.1	Why EDLC 622	
		Objectives of EDLC 622	
	15.4	- N C C C C C C C.	
	13.4	Different Filases of EDEC - 025	

Contents

		άl	H

15.5	EDLC Approaches (Modeling the EDLC) 636 Summary 641 Keywords 642	
	Objective Questions 643	
	Review Questions 644	
16. Tren	ds in the Embedded Industry	645
16.1	Processor Trends in Embedded System 645	
16.2	Embedded OS Trends 648	
16.3	Development Language Trends 648	
16.4	Open Standards, Frameworks and Alliances 651	
16.5	Bottlenecks 652	
Intro	I: Overview of PIC and AVR Family of Microcontrollers and ARM Processors duction to PIC® Family of Microcontrollers 653 duction to AVR® Family of Microcontrollers 657 duction to ARM® Family of Processors 664	653
Appendix	II: Design Case Studies	669
	gital Clock 669	
2. Ba	ttery-Operated Smartcard Reader 699	
	tomated Meter Reading System (AMR) 701	
	gital Camera 703	
Bibliograp	hy	706
Index		709
	3	

There exists a common misconception amongst students and young practising engineers that embedded system design is 'writing 'C' code'. This belief is absolutely wrong and I strongly emphasise that embedded system design refers to the design of embedded hardware, embedded firmware in 'C' or other supporting languages, integrating the hardware and firmware, and testing the functionalities of both.

Embedded system design is a highly specialised branch of Electronics Engineering where the technological advances of electronics and the design expertise of mechanical engineering work hand-in-hand to deliver cutting edge technologies and high-end products to a variety of diverse domains including consumer electronics, telecommunications, automobile, retail and banking applications. Embedded systems represent an integration of computer hardware, software along with programming concepts for developing special-purpose computer systems, designed to perform one or a few dedicated functions.

The embedded domain offers tremendous job opportunities worldwide. Design of embedded system is an art, and it demands talented people to take up the design challenges keeping the time frames in mind. The biggest challenge faced by the embedded industry today is the lack of skilled manpower in the domain. Though most of our fresh electronics and computer science engineering graduates are highly talented, they lack proper training and knowledge in the embedded domain. Lack of suitable books on the subject is one of the major reasons for this crisis. Although various books on embedded technology are available, almost none of them are capable of delivering the basic lessons in a simple and structured way. They are written from a high-end perspective, which are appropriate only for the practising engineers.

This book 'Introduction to Embedded Systems' is the first-of-its-kind, which will appeal as a comprehensive introduction to students, and as a guide to practising engineers and project managers. It has been specially designed for undergraduate courses in Computer Science & Engineering, Information Technology, Electrical Engineering, Electronics & Communication Engineering and Instrumentation & Control Engineering. Also, it will be a valuable reference for the students of BSc / MSc / MTech (CS/IT/Electronics), MCA and DOEACC 'B' level courses.

The book has been organised in such a way to provide the fundamentals of embedded systems; the steps involved in the design and development of embedded hardware and firmware, and their integration; and the life cycle management of embedded system development. Chapters 1 to 4 have been

Preface

structured to give the readers a basic idea of an embedded system. Chapters 5 to 13 have been organised to give an in-depth knowledge on designing the embedded hardware and firmware. They would be very helpful to practising embedded system engineers. Chapter 15 dealing with the design life cycle of an embedded system would be beneficial to both practising engineers as well as project managers. Each chapter begins with learning objectives, presenting the concepts in simple language supplemented with ample tables, figures and solved examples. An important part of this book comes at the end of each chapter where you will find a brief summary, list of keywords, objective questions (in multiple-choice format) and review questions. To aid students commence experimentation in the laboratory, lab assignments have been provided in relevant chapters. An extremely beneficial segment at the end of the book is the overview of PIC & AVR Family of Microcontrollers & ARM Processors as well as innovative design case studies presenting real-world situations.

The major highlights of this book are as follows.

- Brings an entirely different approach in the learning of embedded system. It looks at embedded systems as a whole, specifies what it is, what it comprises of, what is to be done with it and how to go about the whole process of designing an embedded system.
- Follows a design- and development-oriented approach through detailed explanations for Keil Micro Vision (i.e., embedded system/integrated development environment), ORCAD (PCB design software tool) and PCB Fabrication techniques.
- Practical implementation such as washing machines, automotives, and stepper motor and other
 I/O device interfacing circuits.
- Programming concepts: deals in embedded C, delving into basics to unravelling advance level concepts.
- Complete coverage of the 8051 microcontroller architecture and assembly language programming.
- Detailed coverage of RTOS internals, multitasking, task management, task scheduling, task communication and synchronisation. Ample examples on the various task scheduling policies.
- Comprehensive coverage on the internals of MicroC/OS-II and VxWorks RTOS kernels.
- Written in lucid, easy-to-understand language with strong emphasis on examples, tables and figures.
- Useful reference for practicing engineers not well conversant with embedded systems and their applications.
- Rich Pedagogy includes objective questions, lab assignments, solved examples and review questions.

The comprehensive online learning centre—http://www.mhhe.com/shibu/es1e— accompanying this book offers valuable resources for students, instructors and professionals.

For Instructors

- PowerPoint slides (chapter-wise)
- A brief chapter on Embedded Programming Language C++/ Java
- · Case studies that are given in the book and one new case study on heart beat monitoring system
- · Solution manual (chapter-wise)
- Short questions, quizzes in the category of fill in the blanks, true/false and multiple choice questions (25); programming questions with solution (5). (Level of difficulty: hard)
- Chapter-wise links to important websites and important text materials

Preface

For Students

- Chapter-wise tutorials
- A brief chapter on Embedded Programming Language C++/ Java
- · Case studies that are given in the book and one new case study on heart beat monitoring system
- Answers for objective questions/selected review questions and hints for lab assignments provided in the book.
- Short questions, self-test quizzes in the category of fill in the blanks, true/false and multiple choice questions (25); programming questions with solutions (5). (Level of difficulty: easy/medium)
- List of project ideas
- Chapter-wise links to important websites and important text materials.

This book is written purely on the basis of my working knowledge in the field of embedded hardware and firmware design, and expertise in dealing with the life cycle management of embedded systems. A few descriptions and images used in this book are taken from websites with prior written copyright permissions from the owner of the site/author of the articles.

The design references and data sheets of devices including the parametric reference used in the illustrative part of this book are taken from the following websites. Readers are requested to visit these sites for getting updates and more information on design articles. Also, you can order some free samples from some of the sites for your design.

www.intel.com Intel Corporation

www.maxim-ic.com Maxim/Dallas Semiconductor

 www.atmel.com
 Atmel Corporation

 www.analog.com
 Analog Devices

 www.microchip.com
 Microchip Technology

Texas Instruments www.ti.com NXP Semiconductors www.nxp.com National Semiconductor www.national.com www.fairchildsemi.com Fairchild Semiconductor www.intersil.com Intersil Corporation www.freescale.com Freescale Semiconductor www.xilinx.com Xilinx (Programmable Devices) Cadence Systems (Orcad Tool) www.orcad.com

www.keil.com Keil (MicroVision 3 IDE)
www.embedded.com Online Embedded Magazine
www.elecdesign.com Electronic Design Magazine

I would be looking forward to suggestions for further improvement of the book. You may contact me at the following email id—tmh.csefeedback@gmail.com. Kindly mention the title and author name in the subject line. Wish you luck as you embark on an exhilarating career path!

Shibu K V

Acknowledgements

I take this opportunity to thank Mr Mohammed Rijas (Group Project Manager, Mobility and Embedded Systems Practice, Infosys Technologies Ltd Thiruvananthapuram) and Mr Shafeer Badharudeen (Senior Project Manager, Mobility and Embedded Systems Practice, Infosys Technologies Ltd Thiruvananthapuram) for their valuable suggestions and guidance in writing this book. I am also grateful to my team and all other members of the Embedded Systems Group, Infosys Technologies for inspiring me to write this book. I acknowledge my senior management team at the Embedded Systems and Mobility practice, Infosys Technologies-Rohit P, Srinivasa Rao M, Tadimeti Srinivasan, Darshan Shankavaram and Ramesh Adig—for their constant encouragement and appreciation of my efforts. I am immensely grateful to Mr R Ravindra Kumar (Senior Director, CDAC Thiruvananthapuram) for giving me an opportunity to work with the Hardware Design Group of CDAC (Erstwhile ER&DCI), Mrs K G Sulochana (Joint Director CDAC Thiruvananthapuram) for giving me the first embedded project to kick start my professional career and also for all the support provided to me during my tenure with CDAC. I convey my appreciation to Mr Biju C Oommen (Addl. Director, Hardware Design Group, CDAC Thiruvananthapuram), who is my great source of inspiration, for giving me the basic lessons of embedded technology, Mr S Krishna Kumar Rao, Mr Sanju Gopal, Ms Deepa R S, Mr Shaji N M and Mr Suresh R Pillai for their helping hand during my research activities at CDAC, and Mr Praveen V L whose contribution in designing the graphics of this book is noteworthy. I extend my heartfelt gratitude to all my friends and ex-colleagues of Hardware Design Group CDAC Thiruvananthapuram-without their prayers and support, this book would not have been a reality. Last but not the least, I acknowledge my beloved friend Dr Sreeja for all the moral support provided to me during this endeavor, and my family members for their understanding and support during the writing of this book.

A token of special appreciation to *Mr S Krishnakumar Rao* (Deputy Director, Hardware Design Group, CDAC Thiruvananthapuram) for helping me in compiling the section on VLSI Design and *Mr Shameerudheen P T* for his help in compiling the section on PCB Layout Design using Orcad Layout Tool.

Copyrighted material

Acknowledgements

I would like to extend my special thanks to the following persons for coordinating and providing timely feedback on all requests to the concerned product development/service companies, semiconductor manufacturers and informative web pages.

Angela Williams of Keil Software

Natasha Wan, Jessen Wehrwein and Scott Wayne of Analog Devices

Derek Chan of Atmel Asia

Moe Rubenzahl of Maxim Dallas Semiconductor

Mark Auldering and Theresa Warren of Xilinx

Anders Edholm of Electrolux

Vijayeta Karol of Honda Siel Cars India Ltd

Mark David of Electronic Design Magazine

Vidur Naik of Adidas India Division

Steven Kamin of Cadence Design Systems

Deepak Pingle and Pralhad Joshi of Advanced Micronic Devices Limited (AMDL)

Regina Kim of WIZnet Inc.

Taranbir Singh Kochar of Siemens Audiology India Division

Crystal Whitcomb of Linksys-A Division of Cisco Systems

Kulbhushan Seth of Casio India Co. Pvt. Ltd

Jitesh Mathur and Meggy Chan of Philips Medical Systems

John Symonds of Burn Technology Limited

Citron Chang of Advantech Equipment Corp

Michael Barr of Netrino Consultants Networks

Peggy Vezina of GM Media Archive

David Mindell of MIT

Frank Miller of pulsar.gs

Gautam Awasthi of Agilent Technologies India Pvt. Ltd

A note of acknowledgement is due to the following reviewers for their valuable suggestions for the book.

Bimal Raj Dutta

Shri Ram Murti Smarak College of Engineering & Technology, Bareilly

Nilima Fulmare

Hindustan College of Science & Technology, Agra

PK Mukherjee

Institute of Technology, Banaras Hindu University, Varanasi

Kalyan Mahato

Government College of Engineering & Leather Technology, Kolkata

P Kabisatpathy

College of Engineering & Technology, Bhubaneswar

PK Dutta

North Eastern Regional Institute of Science and Technology College, Itanagar

Acknowledgements

Prabhat Ranjan

Dhirubhai Ambani Institute of Information and Communication Technology (DAIICT), Gandhinagar Lyla B Das

National Institute of Technology Calicut (NITC), Calicut

Finally, I thank the publishing team at McGraw-Hill Education India, more specifically Vibha Mahajan, Shalini Jha, Nilanjan Chakravarty, Surbhi Suman, Dipika Dey, Anjali Razdan and Baldev Raj for their praiseworthy initiatives and efficient management of the book.

SHIBU K V

Visual Preview

..... Learning Objectives C LEARNING OBJECTIVES **............** Leave the Afficiency tocomes Determined Sections and Leavest Lempating Specific the Marrier Section (Common Section Section of Commonted Sections Section on performance, common the complete Section Sec Each chapter begins with Learning Objectives which provides readers with specific outcomes they should `` be able to achieve after mastering the chapter content. Sections and Sub-sections **6.2 THE MAI INSTRUCTION SET** As motioned surface, the 2011 Burneston See is broadly classified into five categories namely, Data transfer instructions, declinate matrix time, Legical Instructions, Business instructions and Program resider assituations. The following sections describe each of them is detail Each chapter has been neatly divided 6.2.1 Data Transfer Instructions that therefore instructions transfer data between a source and destruction. The source can be an internal data memory, a register, external data memory, code memory of immediate data. Destination may be an into Sections and Sub-sections so isturned data monors, externel data memory or a register. that the subject matter is studied in 6.2.1.1 Internal Date Transfer Operations: Internal data transfer instructions perform the me a logical progression of ideas and ment of data between, register, memory location, accumulator and stack, MOV instruction is used for data transfer between register, memory location and accumulator. PUSH and POP instructions transfer data between memory location/register and stack. The following table remmarters the various unernal concepts. ,....., Example 1 The automobiles register postules BHI and B register postules BHS. And accommissor extensi with B register. Explain the major of the necessaries and the status of the curry flag ofter the actions operation. Author BHI with BHI results in 1999. State 1999 reports over than 6 bits to expressed, the accommissor bubble leads regulation that the transfer of the action of the lead regulated in the foreign of the addition appearant resulted to a marker greater flag EHI. Figure 6.11 Monthly the addition operation and the involvement of Carry 100 (CV). Solved Examples A CY | | 0 0 0 0 0 0 mm Provided at appropriate locations, Solved Examples aid in understanding of the fundamentals

of embedded hardware and firmware

design.

COLA, good eleptors never early of its beautiful our act disc UE todays to assess

instruction. Explain the output of the numeration and the status of the curry flag after the addition operation.

Photographs

ar thermodernes to expend expended expense contrastren-

are a build-in plug-in storage memory for enering the captured data. Some of them give the user a

meaningful representation of the collected data by visual (graphical/quantintine) or multile mean using display units [Lapad Crystal Display (LCD), Light Emitting Boole (LED), ex.] burgers, alarms, exc. Examples are: measuring entruments with storage memory and monitoring instruments with storage memory used in medical applications. Certain embedded systems state the data and will not give a representation of the arms to the user, whereas the data is used for internal processing.

for internal processing.

A digital cannot is a typical example of an embedded system with data infliction/storage representation of data, broages are captured and the captured image man be stored within the memory of the carnots. The captured image can also be presented to the user through a graphic

Fig. 1.1) A digital names for image replacing magnitudes

1.4.2 Data Communication

Embedded data communication systems are deployed in applications ranging from complex samiline communication systems to simple home networking systems. An immensed earlier in this chapter, the data collected by an embedded terminal may require transforming of the same to some other system located removely. The transmission is achieved either by a wire-line medium set by a wire-line medium or by a wire-line medium. Whe line medium was the most accusion shouse in all olders days embedded systems. As technology is charging, wireless medium in becoming the de-factor standard for data communication in embedded systems. A wireless medium offices chapter connectivity solutions and make the continuatication link free from the basis of wire brenders. Stata can either he tracemitted by analog means or by deptal means. Modern industry trends are setting towards digital communication.

The data collecting embedded terminal stock can

٠.....

1.2 I window servert protector for data construction

(Lean Sender-rent) of quantum of (CSC)). Suppose commonly of property

Photographs of important

concepts, designs and architectural

descriptions bring the subject to

5.3.2 The Memory Organisation

8051 is built around the Harvard processor architectum. The program and data moreousy of 8051 is built-only separated and they physically reside superately. Superate address spaces are arrigated for data moreousy and program moreousy. 8031's address but is 3000 wide and it can address up to 64KB (210) distincts.

8.3.2.1 The Program (Code) Memory: The basic NOTI inchinence provides lowest 48. bytes of program memory as on-chip memory (built-in ship memory), in NOTI, the ECREIOS counterpart of ACTI, all program memory is externed to the ship, Switching between the internal program memory and external program memory is accomplished by changing the logic level of the pin External Access (EA'). Tying EA' part to logic 1 (T_{err}), configures the ship to menute instructions from program memory up to 48, (program memory location up to 0TTTH) from internal memory and 68, (program memory location from 1900H) covaried from external memory, while connecting EA' pan to logic 0 (oPAD) contingens the chip to external program execution mode, where the entire used internal program of the control signal for external program memory execution in PSEN (Program South Enthic). The control signal for external program memory execution in PSEN (Program South Enthic). To internal program

Illustrations

Effective and accurate Illustrations demonstrate the concepts, design problems and steps involved in the design of embedded systems.

Chapter Summary and Keywords

Bulleted Summary gives a recap of the various topics illustrated in the

chapter and Keywords highlight

the important chapter terminology.

An embedded system is an Electronic Cartro-mechanical system designed to perfects a specific function and in a continuous of both backware and foreware (Software).

- A general purpose companing system is a constituation of genery, hardware and potential purpose operating a-cours for executing a variety of applications, whereas an embedded system is a consideration of special purpose bardware and embedded OS ferrowate for executing a specific set of applications.
- Apollo Custance Custopater (AGC) is the first recognised mothers articulated by own and Autonomous D-17°, the guidance componer for the Messachan-I retoolle, was the first managembased unbuilded system.

 Based on the assembleshy and performance requirements, multiplied systems are classified into analysis.
- median-wate said large-scats-employ.

 * The presence of embadded systems way from simple siminous trys to complex flight and missile control.
- systems. Excluded systems are dangered to some the purpose of any one or a street-nation of data collection of expresentation, data continuous are tripped processing, receiving, control or application specific uses

Embedded system 11. As electrosic/electro-machanical cotton which is designed to preferre a specific function and

is a conditution of both hardways and firmware

A allient dilp representing a Central Frontaining Unit (CPU)

A highly integrated disp that austrains a CPU, scentriquel RAM, special and general preprint register arrays and magnesoi perspherate.
Digital Signal Processor in a property appear \$76/12 NR microprocessor designed.

pucifically to more the unequantomic demonds and power constraints ANK Application Specific Integrated Circuit is a microckin designed to perform a specific of unique

A transferer device that converts energy from one firm to another for any most

1.00 Light Emitting Diade. An acqual device producing visual indication in the form of Tight in A phase-state device for generating sufficients. It possesses a prime electric displicages which produces sufficient solid in response to the voltage applied to it.

Operating system: 4 A power of software designed to manage and allocate system represent and muscule other

Dieter Cardingram As certestial device for impriest receiving (ECG)

SCADA

Supervisory Control and Data Ampaintien System: A data acquainties system used at indus-

ABC Agelog to Digital Conceptor An integrated closed which converts studies eigenia to digital

Objective Questions

- (b) Apper me
- Which of the following is not true about o (b) Always contin (d) All of these
- of the following is not an example of a 's (a) Electronic Bartier doll (a) Cell pione he fore more

- OCT Assumettes D-17
- 100 LTM Man menge devi 101 LTM Man menge devi 101 Digital carees (e) All of flease digital multi porter to an exam l Dan communication (b) Nament man (d) Manic player (d) None of these
- (c) Date commences (c) None of Base Which of the Editoring is an i
- edded noteen for signal precessing? (b) Sanithin 1788 mans storage device (d) Name of these to Bellen production

Review Questions

``.....

What is an ambedded motors? Explain the different applications of ambedded motors

Objective and Review Questions

Readers can assess their knowledge by answering the Objective Questions in multiple-choice format. Review Questions spur students to apply and integrate chapter content.

Lab Assignments

Lab Assignments

Note a C program to find the conference of the presence in which the program to moving. If the presence in this problem, print "The processes architecture in Sig malion", this print "The processes architecture in Little realism" on the contacts window. Expents the program separately on a PC with Windows, Little and MAC

- specifing systems. Does the contenting an LED to the part pix of a number of the LED to be small the white the principle part pix is at Lagar Ψ . Calculate the constitution response to consent in period with the LED the the Soliton long design parameters.
- 50 LED voltage shop on mentioning = 1.79
 dis LED connect storag = 20 mA
 dis LED connect storag = 20 mA
 dis Prover Experty Voltage = 59
 Bacque on EC (Executer Capacities) based mentionment for producing as unifor loss Prover Cacacite point of well
- 4. Design a sense disale and transacte based terremose protection circuit with active few reset pulse for it Edining large passation

Design Case Studies

relevant chapters.

Case Studies

1. DIGITAL CLOCK

Design and Implement a Digital Clock in per the requirements given below.

1. Use a 1st character 2-line display for displaying the current Time. Display the time in DAY 100.06M-30 format on the lines have. Despite the message "Here A Nove Day!" on the second line. Doly represents the day of the West, CEN, MON, TLE, WEST, TSELTES and ACV, 100 represents the second line. Doly represents the day of the format entitings it may very those 00 to 12 (12). Bine Presents or from 00 to 22 (12) format. Despite the remaining 2 days format. It wastes that the to 19. 35 represents the seconds in 2 days format. It wastes from 00 to 29. The eligential of display dispute colors from 00 to 29. The eligential of display dispute colors and or right and left and then display.

2. Interface a Hinter Nicolative compaction 1,CD with 801 microscorrection as per the following street from the forms.

To aid students conduct experiments

in the laboratory, Lab Assignments

have been provided at the end of

- Regions Select Control line (RS): Part Fin PLA Board Wrote Control Signal (RW): First Pin PLS LCD Seable (S): PLS

- E.C.D Smiths (E) P1.6

 The Smithgle of the LCD checking One

 Cor. ATMC 50/52 or AEMSSC02 managements to use a crossal Oscillator with Supports 12.00 100 to

 This will provide accentre through it is introducted byte P1 of the microconstraint. The key details are MENU key
 commenced to Rive 8. and Column 6 of the neutro, ESC key connected to Rive 9, and Column 1 of the matrix,

 UP key connected to Rive 1, and Column 0 of the matrix, DUNN key connected to Rive 1, and Column 1 of the
 matrix. The Riven 6, 2 and columns 8, 1 of matrix bayloand are interfaced to Part plan P1.6, P1.1, P1.2 and P1.5

 research.

A Terroritt winder 200 and a steath tent of a training one of the steath .

A comprehensive set of five Case Studies, at the end of the book demonstrate the applications of theoretical concepts.

Overview of PIC and AVR Family of Microcontrollers and ARM Processors

Appendix on different family of Microprocessors and Controllers

The Appendix section is intended to give an overview of PIC & AVR family of microcontrollers & ARM processor.

INTRODUCTION TO PICS FAMILY OF MICROCONTROLLERS

PICE in a popular \$16.52 for BESC manneausellar beauty from bilancelop Technology (promotionality pages). The fine PIC family comprises the products PICHIF, PICHIF, PICHIF and PICHIF. They differ to the anneal of program memory supported, performance, instruction length and pass count. Beauti on the architecture, the thirt PIC family is grouped into

Mid-Range. This is an extension to the boardess performence with acked finances like support for manages, on-clap-perspecials (Like A.D converted, formal invertibus, LCD interface, etc.), recommend territory, etc. The internations set for the extension of the wide of the continuous of the set of the control of the CPC (The Spin 129-529) and the 147 (20-pps 159-99) and 40-pps 107-97) will be control under an extension of the 127 (The Spin 129-529) and the 147 (20-pps 159-99) and 40-pps 107-97), unless control under the control of the 127 (The Spin 129-529) and the 147 (20-pps 159-99) and 40-pps 107-97), unless control under the control of the 127 (The Spin 129-529).

High Performance: The PK 10/1 and K series comes under the category. The remove density for these devices in very high IL is to 139kH program memory and distributes receiver). They provide hull-in support for advanced perigh state and communication entertains like USA, CAN, etc. The extraction set for the architecture in 1664 water. They are

erain and communications interfaces like USB, CAN, etc. The interactions of for this architecture in 1664 water. They are capatite of Authoriting a speed of 1664075.

An interfaced uniform we have a hands of devians to solect for our design, from the PIC that family. Some of from hand better of EO capabilities, on-chip Persphensis, data mentury (SEAM) and program recessory (FEASH) targeting from and applications. The LEPTOR commission is a typical managing for the in-contains 11.2 × 12.5 to of program instancy, 25 bytes of EAM, 6.300 lines and counts in an E-purp package. On the other hand some of the PIC limit of program instancy with a baseline of on-chip persphensis (Like ADC, UARL DC, SPL, etc.), higher data and program interage rectainty, targeting high end applications. The 18747 controlled in a hypotal example for this. It contains ETE 2 × 14 bits of PICASH program interact, 3 bits in our RAAM, 216 bytes of REPICAS, 2110 Date, Chocking persphensis like 10-bits AD amounted.

3-Time contail, USASE, Interrupt Commission in a 16-pin prockage.

5-Theoreman, 15AEC, Interrupt Committee, etc. 8 committee in a Might package.

How, the 14FET device is admitted as the candidate for illumining the generic PIC architecture. Figure 41-1 (files.

Copyrighted material

PART 1

EMBEDDED SYSTEM: UNDERSTANDING THE BASIC CONCEPTS Understanding the basic concepts is essential in the learning of any subject. Designing an *Embedded System* is not a herculean task if you know the fundamentals. Like any general computing systems, Embedded Systems also possess a set of characteristics which are unique to the embedded system under consideration. In contrast to the general computing systems, Embedded Systems are highly domain and application specific in nature, meaning; they are specifically designed for certain set of applications in certain domains like consumer electronics, telecom, automotive, industrial control, measurement systems etc. Unlike general computing systems it is not possible to replace an embedded system which is specifically designed for an application catering to a specific domain with another embedded system catering to another domain. The designer of the embedded system should be aware of its characteristics, and its domain and application specific nature.

An embedded system is an electrical/electro mechanical system which is specifically designed for an application catering to a specific domain. It is a combination of specialised hardware and firmware (software), which is tailored to meet the requirements of the application under consideration. An embedded system contains a processing unit which can be a microprocessor or a microcontroller or a System on Chip (SoC) or an Application Specific Integrated Circuit (ASIC)/Application Specific Standard Product (ASSP) or a Programmable Logic Device (PLD) like FPGA or CPLD, an I/O subsystem which facilitates the interfacing of sensors and actuators which acts as the messengers from and to the 'Real world' to which the embedded system is interacting, on-board and external communication interfaces for communicating between the various on-board subsystems and chips which builds the embedded system and external systems to which the embedded system interacts, and other supervisory systems and support units like watchdog timers, reset circuits, brown-out protection circuits, regulated power supply unit, clock generation circuit etc. which empower and monitor the functioning of the embedded system. The design of embedded system has two aspects: The hardware design which takes care of the selection of the processing unit, the various I/O sub systems and communication interface and the inter connection among them, and the design of the embedded firmware which deals with configuring the various sub systems, implementing data communication and processing/controlling algorithm requirements. Depending on the response requirements and the type of applications for which the embedded system is designed, the embedded system can be a Real-time or a Non-real time system. The response requirements for a real-time system like Flight Control System, Airbag Deployment System for Automotive etc., are time critical and the hardware and firmware design aspects for such systems should take these into account, whereas the response requirements for non-real time systems like Automatic Teller Machines (ATM), Media Playback Systems etc, need not be time critical and missing deadlines may be acceptable in such systems.

Like any other systems, embedded systems also possess a set of quality attributes, which are the non-functional requirements like security, scalability, availability, maintainability, safety, portability etc. The non-functional requirements for the embedded system should be identified and should be addressed properly in the system design. The designer of the embedded system should be aware of the different non-functional requirement for the embedded system and should handle this properly to ensure high quality.

This section of the book is dedicated for describing the basic concepts of Embedded Systems. The chapters in this section are organised in a way to give the readers a comprehensive introduction to 'Embedded Systems, their application areas and their role in real life', 'The different elements of a typical Embedded System', the basic lessons on 'The characteristics and quality attributes of Embedded Systems', 'Domain and Application specific usage examples for Embedded Systems' and the 'Hardware and Software Co-design approach for Embedded System Design', and a detailed introduction to 'The architecture and programming concepts for 8051 Microcontroller – The 8bit Microcontroller selected for our design examples'. We will start the section with the chapter on 'Introduction to Embedded Systems'

- ✓ Learn what an Embedded System is
- ✓ Learn the difference between Embedded Systems and General Computing Systems
- ✓ Know the history of Embedded Systems
- ✓ Learn the classification of Embedded Systems based on performance, complexity and the era in which they evolved
- ✓ Know the domains and areas of applications of Embedded Systems
- ✓ Understand the different purposes of Embedded Systems
- ✓ Analysis of a real life example on the bonding of embedded technology with human life.

Our day-to-day life is becoming more and more dependent on "embedded systems" and digital techniques. Embedded technologies are bonding into our daily activities even without our knowledge. Do you know the fact that the refrigerator, washing machine, microwave oven, air conditioner, television, DVD players, and music systems that we use in our home are built around an embedded system? You may be traveling by a 'Honda' or a 'Toyota' or a 'Ford' vehicle, but have you ever thought of the genius players working behind the special features and security systems offered by the vehicle to you? It is nothing but an intelligent embedded system. In your vehicle itself the presence of specialised embedded systems vary from intelligent head lamp controllers, engine controllers and ignition control systems to complex air bag control systems to protect you in case of a severe accident. People experience the power of embedded systems and enjoy the features and comfort provided by them. Most of us are totally unaware or ignorant of the intelligent embedded systems giving us so much comfort and security. Embedded systems are like reliable servants-they don't like to reveal their identity and neither they complain about their workloads to their owners or bosses. They are always sitting in a hidden place and are dedicated to their assigned task till their last breath. This book gives you an overview of embedded systems, the various steps involved in their design and development and the major domains where they are deployed.

1.1 WHAT IS AN EMBEDDED SYSTEM?

An embedded system is an electronic/electro-mechanical system designed to perform a specific function and is a combination of both hardware and firmware (software).

Every embedded system is unique, and the hardware as well as the firmware is highly specialised to the application domain. Embedded systems are becoming an inevitable part of any product or equipment in all fields including household appliances, telecommunications, medical equipment, industrial control, consumer products, etc.

1.2 EMBEDDED SYSTEMS vs. GENERAL COMPUTING SYSTEMS

The computing revolution began with the general purpose computing requirements. Later it was realised that the general computing requirements are not sufficient for the embedded computing requirements. The embedded computing requirements demand 'something special' in terms of response to stimuli, meeting the computational deadlines, power efficiency, limited memory availability, etc. Let's take the case of your personal computer, which may be either a desktop PC or a laptop PC or a palmtop PC. It is built around a general purpose processor like an Intel® Centrino or a Duo/Quad† core or an AMD TurionTM processor and is designed to support a set of multiple peripherals like multiple USB 2.0 ports, Wi-Fi, ethernet, video port, IEEE1394, SD/CF/MMC external interfaces, Bluetooth, etc and with additional interfaces like a CD read/writer, on-board Hard Disk Drive (HDD), gigabytes of RAM, etc. You can load any supported operating system (like Windows® XP/Vista/7, or Red Hat Linux/Ubuntu Linux, UNIX etc) into the hard disk of your PC. You can write or purchase a multitude of applications for your PC and can use your PC for running a large number of applications (like printing your dear's photo using a printer device connected to the PC and printer software, creating a document using Microsoft® Office Word tool, etc.) Now let us think about the DVD player you use for playing DVD movies. Is it possible for you to change the operating system of your DVD? Is it possible for you to write an application and download it to your DVD player for executing? Is it possible for you to add a printer software to your DVD player and connect a printer to your DVD player to take a printout? Is it possible for you to change the functioning of your DVD player to a television by changing the embedded software? The answers to all these questions are 'NO'. Can you see any general purpose interface like Bluetooth or Wi-Fi on your DVD player? Of course 'NO'. The only interface you can find out on the DVD player is the interface for connecting the DVD player with the display screen and one for controlling the DVD player through a remote (May be an IR or any other specific wireless interface). Indeed your DVD player is an embedded system designed specifically for decoding digital video and generating a video signal as output to your TV or any other display screen which supports the display interface supported by the DVD Player. Let us summarise our findings from the comparison of embedded system and general purpose computing system with the help of a table:

General Purpose Computing System	Embedded System
THE REPORT OF THE PROPERTY OF	A system which is a combination of special purpose hardware and embedded OS for executing a specific set of applications
Contains a General Purpose Operating System (GPOS)	May or may not contain an operating system for functioning

[†]The illustration given here is based on the processor details available till Dec 2008. Since processor technology is undergoing rapid changes, the processor names mentioned here may not be relevant in future.

Applications are alterable (programmable) by the user (It is possible for the end user to re-install the operating system, and also add or remove user applications)	The firmware of the embedded system is pre-programmed and it is non-alterable by the end-user (There may be exceptions for systems supporting OS kernel image flashing through special hardware settings)
Performance is the key deciding factor in the selection of the system. Always, 'Faster is Better'	Application-specific requirements (like performance, power requirements, memory usage, etc.) are the key deciding factors
Less/not at all tailored towards reduced operating power requirements, options for different levels of power management.	Highly tailored to take advantage of the power saving modes supported by the hardware and the operating system
Response requirements are not time-critical	For certain category of embedded systems like mission critical systems, the response time requirement is highly critical
Need not be deterministic in execution behaviour	Execution behaviour is deterministic for certain types of embedded systems like 'Hard Real Time' systems

However, the demarcation between desktop systems and embedded systems in certain areas of embedded applications are shrinking in certain contexts. Smart phones are typical examples of this. Nowadays smart phones are available with RAM up to 256 MB and users can extend most of their desktop applications to the smart phones and it waives the clause "Embedded systems are designed for a specific application" from the characteristics of the embedded system for the mobile embedded device category. However, smart phones come with a built-in operating system and it is not modifiable by the end user. It makes the clause: "The firmware of the embedded system is unalterable by the end user", still a valid clause in the mobile embedded device category.

1.3 HISTORY OF EMBEDDED SYSTEMS

Embedded systems were in existence even before the IT revolution. In the olden days embedded systems were built around the old vacuum tube and transistor technologies and the embedded algorithm was developed in low level languages. Advances in semiconductor and nano-technology and IT revolution gave way to the development of miniature embedded systems. The first recognised modern embedded system is the Apollo Guidance Computer (AGC) developed by the MIT Instrumentation Laboratory for the lunar expedition. They ran the inertial guidance systems of both the Command Module (CM) and the Lunar Excursion Module (LEM). The Command Module was designed to encircle the moon while the Lunar Module and its crew were designed to go down to the moon surface and land there safely. The Lunar Module featured in total 18 engines. There were 16 reaction control thrusters, a descent engine and an ascent engine. The descent engine was 'designed to' provide thrust to the lunar module out of the lunar orbit and land it safely on the moon. MIT's original design was based on 4K words of fixed memory (Read Only Memory) and 256 words of erasable memory (Random Access Memory). By June 1963, the figures reached 10K of fixed and 1K of erasable memory. The final configuration was 36K words of fixed memory and 2K words of erasable memory. The clock frequency of the first microchip proto model used in AGC was 1.024 MHz and it was derived from a 2.048 MHz crystal clock. The computing unit of AGC consisted of approximately 11 instructions and 16 bit word logic. Around 5000 ICs (3-input NOR gates, RTL logic) supplied by Fairchild Semiconductor were used in this design. The user interface unit of AGC is known as DSKY (display/keyboard). DSKY looked like a calculator type keypad with an array of numerals. It was used for inputting the commands to the module numerically.

The first mass-produced embedded system was the guidance computer for the Minuteman-I missile in 1961. It was the 'Autonetics D-17' guidance computer, built using discrete transistor logic and a hard-disk for main memory. The first integrated circuit was produced in September 1958 but computers using them didn't begin to appear until 1963. Some of their early uses were in embedded systems, notably used by NASA for the Apollo Guidance Computer and by the US military in the Minuteman-II intercontinental ballistic missile.

1.4 CLASSIFICATION OF EMBEDDED SYSTEMS

It is possible to have a multitude of classifications for embedded systems, based on different criteria. Some of the criteria used in the classification of embedded systems are:

- 1. Based on generation
- 2. Complexity and performance requirements
- 3. Based on deterministic behaviour
- 4. Based on triggering.

The classification based on deterministic system behaviour is applicable for 'Real Time' systems. The application/task execution behaviour for an embedded system can be either deterministic or non-deterministic. Based on the execution behaviour, Real Time embedded systems are classified into Hard and Soft. We will discuss about hard and soft real time systems in a later chapter. Embedded Systems which are 'Reactive' in nature (Like process control systems in industrial control applications) can be classified based on the trigger. Reactive systems can be either event triggered or time triggered.

1.4.1 Classification Based on Generation

This classification is based on the order in which the embedded processing systems evolved from the first version to where they are today. As per this criterion, embedded systems can be classified into:

- 1.4.1.1 First Generation The early embedded systems were built around 8bit microprocessors like 8085 and Z80, and 4bit microcontrollers. Simple in hardware circuits with firmware developed in Assembly code. Digital telephone keypads, stepper motor control units etc. are examples of this.
- 1.4.1.2 Second Generation These are embedded systems built around 16bit microprocessors and 8 or 16 bit microcontrollers, following the first generation embedded systems. The instruction set for the second generation processors/controllers were much more complex and powerful than the first generation processors/controllers. Some of the second generation embedded systems contained embedded operating systems for their operation. Data Acquisition Systems, SCADA systems, etc. are examples of second generation embedded systems.
- 1.4.1.3 Third Generation With advances in processor technology, embedded system developers started making use of powerful 32bit processors and 16bit microcontrollers for their design. A new concept of application and domain specific processors/controllers like Digital Signal Processors (DSP) and Application Specific Integrated Circuits (ASICs) came into the picture. The instruction set of processors became more complex and powerful and the concept of instruction pipelining also evolved. The processor market was flooded with different types of processors from different vendors. Processors like Intel Pentium, Motorola 68K, etc. gained attention in high performance embedded requirements. Dedicated embedded real time and general purpose operating systems entered into the embedded market. Embedded systems spread its ground to areas like robotics, media, industrial process control, networking, etc.

1.4.1.4 Fourth Generation The advent of System on Chips (SoC), reconfigurable processors and multicore processors are bringing high performance, tight integration and miniaturisation into the embedded device market. The SoC technique implements a total system on a chip by integrating different functionalities with a processor core on an integrated circuit. We will discuss about SoCs in a later chapter. The fourth generation embedded systems are making use of high performance real time embedded operating systems for their functioning. Smart phone devices, mobile internet devices (MIDs), etc. are examples of fourth generation embedded systems.

1.4.1.5 What Next? The processor and embedded market is highly dynamic and demanding. So 'what will be the next smart move in the next embedded generation?' Let's wait and see.

1.4.2 Classification Based on Complexity and Performance

This classification is based on the complexity and system performance requirements. According to this classification, embedded systems can be grouped into:

- 1.4.2.1 Small-Scale Embedded Systems Embedded systems which are simple in application needs and where the performance requirements are not time critical fall under this category. An electronic toy is a typical example of a small-scale embedded system. Small-scale embedded systems are usually built around low performance and low cost 8 or 16 bit microprocessors/microcontrollers. A small-scale embedded system may or may not contain an operating system for its functioning.
- 1.4.2.2 Medium-Scale Embedded Systems Embedded systems which are slightly complex in hardware and firmware (software) requirements fall under this category. Medium-scale embedded systems are usually built around medium performance, low cost 16 or 32 bit microprocessors/microcontrollers or digital signal processors. They usually contain an embedded operating system (either general purpose or real time operating system) for functioning.
- 1.4.2.3 Large-Scale Embedded Systems/Complex Systems Embedded systems which involve highly complex hardware and firmware requirements fall under this category. They are employed in mission critical applications demanding high performance. Such systems are commonly built around high performance 32 or 64 bit RISC processors/controllers or Reconfigurable System on Chip (RSoC) or multi-core processors and programmable logic devices. They may contain multiple processors/controllers and co-units/hardware accelerators for offloading the processing requirements from the main processor of the system. Decoding/encoding of media, cryptographic function implementation, etc. are examples for processing requirements which can be implemented using a co-processor/hardware accelerator. Complex embedded systems usually contain a high performance Real Time Operating System (RTOS) for task scheduling, prioritization and management.

1.5 MAJOR APPLICATION AREAS OF EMBEDDED SYSTEMS

We are living in a world where embedded systems play a vital role in our day-to-day life, starting from home to the computer industry, where most of the people find their job for a livelihood. Embedded technology has acquired a new dimension from its first generation model, the Apollo guidance computer, to the latest radio navigation system combined with in-car entertainment technology and the microprocessor based "Smart" running shoes launched by Adidas in April 2005. The application areas and the products in the embedded domain are countless. A few of the important domains and products are listed below:

9

- 1. Consumer electronics: Camcorders, cameras, etc.
- 2. Household appliances: Television, DVD players, washing machine, fridge, microwave oven, etc.
- Home automation and security systems: Air conditioners, sprinklers, intruder detection alarms, closed circuit television cameras, fire alarms, etc.
- Automotive industry: Anti-lock breaking systems (ABS), engine control, ignition systems, automatic navigation systems, etc.
- 5. Telecom: Cellular telephones, telephone switches, handset multimedia applications, etc.
- 6. Computer peripherals: Printers, scanners, fax machines, etc.
- 7. Computer networking systems: Network routers, switches, hubs, firewalls, etc.
- 8. Healthcare: Different kinds of scanners, EEG, ECG machines etc.
- Measurement & Instrumentation: Digital multi meters, digital CROs, logic analyzers PLC systems, etc.
- 10. Banking & Retail: Automatic teller machines (ATM) and currency counters, point of sales (POS)
- 11. Card Readers: Barcode, smart card readers, hand held devices, etc.

1.6 PURPOSE OF EMBEDDED SYSTEMS

As mentioned in the previous section, embedded systems are used in various domains like consumer electronics, home automation, telecommunications, automotive industry, healthcare, control & instrumentation, retail and banking applications, etc. Within the domain itself, according to the application usage context, they may have different functionalities. Each embedded system is designed to serve the purpose of any one or a combination of the following tasks:

- 1. Data collection/Storage/Representation
- 2. Data communication
- 3. Data (signal) processing
- 4. Monitoring
- 5. Control
- 6. Application specific user interface

1.6.1 Data Collection/Storage/Representation

Embedded systems designed for the purpose of data collection performs acquisition of data from the external world. Data collection is usually done for storage, analysis, manipulation and transmission. The term "data" refers all kinds of information, viz. text, voice, image, video, electrical signals and any other measurable quantities. Data can be either analog (continuous) or digital (discrete). Embedded systems with analog data capturing techniques collect data directly in the form of analog signals whereas embedded systems with digital data collection mechanism converts the analog signal to corresponding digital signal using analog to digital (A/D) converters and then collects the binary equivalent of the analog data. If the data is digital, it can be directly captured without any additional interface by digital embedded systems.

The collected data may be stored directly in the system or may be transmitted to some other systems or it may be processed by the system or it may be deleted instantly after giving a meaningful representation. These actions are purely dependent on the purpose for which the embedded system is designed. Embedded systems designed for pure measurement applications without storage, used in control and

instrumentation domain, collects data and gives a meaningful representation of the collected data by means of graphical representation or quantity value and deletes the collected data when new data arrives at the data collection terminal. Analog and digital CROs without storage memory are typical examples of this. Any measuring equipment used in the medical domain for monitoring without storage functionality also comes under this category.

Some embedded systems store the collected data for processing and analysis. Such systems incorporate a built-in/plug-in storage memory for storing the captured data. Some of them give the user a

meaningful representation of the collected data by visual (graphical/quantitative) or audible means using display units [Liquid Crystal Display (LCD), Light Emitting Diode (LED), etc.] buzzers, alarms, etc. Examples are: measuring instruments with storage memory and monitoring instruments with storage memory used in medical applications. Certain embedded systems store the data and will not give a representation of the same to the user, whereas the data is used for internal processing.

A digital camera is a typical example of an embedded system with data collection/storage/ representation of data. Images are captured and the captured image may be stored within the memory of the camera. The captured image can also be presented to the user through a graphic LCD unit.

Fig. 1.1 A digital camera for image capturing/ storage/display

(Photo courtesy of Casio-Model EXILIM ex-2850 (www.casio.com))

1.6.2 Data Communication

Embedded data communication systems are deployed in applications ranging from complex satellite communication systems to simple home networking systems. As mentioned earlier in this chapter, the data collected by an embedded terminal may require transferring of the same to some other system located remotely. The transmission is achieved either by a wire-line medium or by a wireless medium. Wire-line medium was the most common choice in all olden days embedded systems. As technology is changing, wireless medium is becoming the de-facto standard for data communication in embedded systems. A wireless medium offers cheaper connectivity solutions and make the communication link free from the hassle of wire bundles. Data can either be transmitted by analog means or by digital means. Modern industry trends are settling towards digital communication.

The data collecting embedded terminal itself can incorporate data communication units like wireless

Fig. 1.2 A wireless network router for data communication (Photo courtesy of Linksys (www.linksys.com). A division of CISCO

system)

modules (Bluetooth, ZigBee, Wi-Fi, EDGE, GPRS, etc.) or wire-line modules (RS-232C, USB, TCP/IP, PS2, etc.). Certain embedded systems act as a dedicated transmission unit between the sending and receiving terminals, offering sophisticated functionalities like data packetizing, encrypting and decrypting. Network hubs, routers, switches, etc. are typical examples of dedicated data transmission embedded systems. They act as mediators in data communication and provide various features like data security, monitoring etc.

1.6.3 Data (Signal) Processing

As mentioned earlier, the data (voice, image, video, electrical signals and other measurable quantities) collected by embedded systems may be used for various kinds of data processing. Embedded systems with signal processing functionalities are employed in applications demanding signal processing like speech coding, synthesis, audio video codec, transmission applications, etc.

A digital hearing aid is a typical example of an embedded system employing data processing. Digital hearing aid improves the hearing capacity of hearing impaired persons.

1.6.4 Monitoring

Embedded systems falling under this category are specifically designed for monitoring purpose. Almost all embedded products coming under the medical domain are Fig. 1.3 A digital hearing aid employing signal processing technique (Siemens TRIANO 3 Digital hearing aid; Siemens Audiology Copyright© 2005)

with monitoring functions only. They are used for determining the state of some variables using input sensors. They cannot impose control over variables. A very good example is the electro cardiogram (ECG) machine for monitoring the heartbeat of a patient. The machine is intended to do the monitoring

of the heartbeat. It cannot impose control over the heartbeat. The sensors used in ECG are the different electrodes connected to the patient's body.

Some other examples of embedded systems with monitoring function are measuring instruments like digital CRO, digital multimeters, logic analyzers, etc. used in Control & Instrumentation applications. They are used for knowing (monitoring) the status of some variables like current, voltage, etc. They cannot control the variables in turn.

1.6.5 Control

Embedded systems with control functionalities impose control over some variables according to the changes in input variables. A system with control functionality contains both sensors and actuators. Sensors are connected to the input port for capturing

Fig. 1.4 A patient monitoring system for monitoring heartbeat

(Photo courtesy of Philips Medical Systems (www.medical.philips.com/)) the changes in environmental variable or measuring variable. The actuators connected to the output port are controlled according to the changes in input variable to put an impact on the controlling variable to bring the controlled variable to the specified range.

Air conditioner system used in our home to control the room temperature to a specified limit is a typical example for embedded system for control purpose. An airconditioner contains a room temperature-

sensing element (sensor) which may be a thermistor and a handheld unit for setting up (feeding) the desired temperature. The handheld unit may be connected to the central embedded unit residing inside the airconditioner through a wireless link or through a wired link. The air compressor unit acts as the actuator. The compressor is controlled according to the current room temperature and the desired temperature set by the end user.

Here the input variable is the current room temperature and the controlled variable is also the room

FSG21HRIA

"An Airconditioner for controlling room temperature. Embedded System with Control functionality" (Photo courtesy of Electrolux Corporation (www.electrolux.com/au))

temperature. The controlling variable is cool air flow by the compressor unit. If the controlled variable and input variable are not at the same value, the controlling variable tries to equalise them through taking actions on the cool air flow.

1.6.6 Application Specific User Interface

These are embedded systems with application-specific user interfaces like buttons, switches, keypad, lights, bells, display units, etc. Mobile phone is an example for this. In mobile phone the user interface is provided through the keypad, graphic LCD module, system speaker, vibration alert, etc.

1.7 'SMART' RUNNING SHOES FROM ADIDAS—THE INNOVATIVE BOND-ING OF LIFESTYLE WITH EMBEDDED TECHNOLOGY

After three years of extensive research work, Adidas launched the "Smart" running shoes in the market in April 2005. The term "Smart Shoe" may sound gimmicky. But adaptive cushioning provided by the shoe makes sense, and the design engineering behind the shoes is very impressive. The shoe constantly adapts its shock-absorbing characteristics to customize its value to the individual runner, depending on the running style, pace, body weight, and running surface. The shoe uses a magnetic sensing system to measure cushioning level, which is adjusted via a digital signal processing unit that controls a motor-driven cable system.

Fig. 1.6 An embedded system with an application-specific user interface (Photo courtesy of Nokia Mobile Handsets (www.nokia.com)) A hall effect sensor is positioned at the top of the "cushioning element", and the magnet is placed at the bottom of the element. As the cushioning compresses on each impact, the sensor measures the distance from top to bottom of mid-sole (accurate to 0.1 mm). About 1000 readings per second are taken and relayed to the shoe's microprocessor. The Microprocessor (MPU) is positioned under the arch of the shoe. It runs an algorithm that compares the compression messages received from the sensor to a preset range of proper cushioning levels, so it understands if the shoe is too soft or too firm. Then the MPU sends a command to a micro motor, housed in the mid-foot. The micro motor turns a lead screw to lengthen or shorten a cable secured to the walls of a plastic-cushioning element. When the cable is shortened, the cushioning element is pulled taut and compresses very little. A longer cable allows for a more cushioned feel. A replaceable 3-V battery powers the motor and lasts for about 100 hours of running.

The Portland, Ore-based Adidas Innovation Team that developed the shoe was led by Christian DiBenedetto. It also included electromechanical engineer Mark Oleson, as well as a footwear developer and two industrial designers. Oleson explains that the team chose a magnetic sensor because it could measure the amount of compression in addition to the time it took to reach full compression. Gathering sensor data, he says, meant little without building a comparative "running context". So one of the first steps in developing the MPU algorithms was building this database. Runners were test shoes that gathered information about various compression levels during a run. Then the runners were interviewed

to learn their thoughts about the different cushion levels. "When the two matched up, that helped validate our sensor," says Oleson.

Adaptations in the cushioning element account for the change of running surface and pace of the runner, and they're made gradually over an average of four running steps. The goal is for the runner not to feel any sudden changes. Adaptations are made during the "swing" phase rather than the "stance" phase of the stride (i.e. when the foot is off the ground). If the shoe's owner prefers a more cushioned or a firmer "ride," adjustments can be made via "+" and "-" buttons that also activate the intelligent functions of the shoe.

LED indicators confirm when the electronics are turned on (The lights do not remain on when the shoes are in use). If the shoes aren't turned on, they operate like old-fashioned "manual" running shoes. The shoes turn off if their owner is either inactive or at a walking pace for 10 minutes.

Source Electronic Design
www.electronicdesign.com/Articles/Index.
cfm?AD=1&ArticleID=10113
Re-printed with permission

Fig. 1.7 Electronics-enabled "Smart" running shoes from Adidas (Photo courtesy of Adidas – Salomon AG (www.adidas.com))

Summary

- An embedded system is an Electronic/Electro-mechanical system designed to perform a specific function and is a combination of both hardware and firmware (Software).
- A general purpose computing system is a combination of generic hardware and general purpose operating system for executing a variety of applications, whereas an embedded system is a combination of special purpose hardware and embedded OS/firmware for executing a specific set of applications.
- ✓ Apollo Guidance Computer (AGC) is the first recognised modern embedded system and 'Autonetics D-17', the guidance computer for the Minuteman-I missile, was the first mass-produced embedded system.
- Based on the complexity and performance requirements, embedded systems are classified into small-scale, medium-scale and large-scale/complex.
- ✓ The presence of embedded systems vary from simple electronic toys to complex flight and missile control systems.
- Embedded systems are designed to serve the purpose of any one or a combination of data collection/storage/ representation, data communication, data (signal) processing, monitoring, control or application specific user interface.

Embedded system : An electronic/electro-mechanical system which is designed to perform a specific function and

is a combination of both hardware and firmware

Microprocessor : A silicon chip representing a Central Processing Unit (CPU)

Microcontroller : A highly integrated chip that contains a CPU, scratchpad RAM, special and general purpose

register arrays and integrated peripherals

DSP : Digital Signal Processor is a powerful special purpose 8/16/32 bit microprocessor designed

specifically to meet the computational demands and power constraints

ASIC : Application Specific Integrated Circuit is a microchip designed to perform a specific or unique

application

Sensor : A transducer device that converts energy from one form to another for any measurement or

ontrol purpose

Actuator : A form of transducer device (mechanical or electrical) which converts signals to correspond-

ing physical action (motion)

LED : Light Emitting Diode. An output device producing visual indication in the form of light in

accordance with current flow

Buzzer : A piezo-electric device for generating audio indication. It contains a piezo-electric diaphragm

which produces audible sound in response to the voltage applied to it

Operating system : A piece of software designed to manage and allocate system resources and execute other

pieces of software

Electro Cardiogram: An embedded device for heartbeat monitoring

(ECG)

SCADA : Supervisory Control and Data Acquisition System. A data acquisition system used in indus-

trial control applications

RAM : Random Access memory. Volatile memory

ADC : Analog to Digital Converter. An integrated circuit which converts analog signals to digital

form

Introduction to Embedded Systems

Bluetooth Wi-Fi

- : A low cost, low power, short range wireless technology for data and voice communication
- : Wireless Fidelity is the popular wireless communication technique for networked communication of devices

- 1. Embedded systems are
 - (a) General purpose
- (b) Special purpose
- 2. Embedded system is
 - (a) An electronic system

- (b) A pure mechanical system
- (c) An electro-mechanical system

- (d) (a) or (c)
- 3. Which of the following is not true about embedded systems?
 - (a) Built around specialised hardware
- (b) Always contain an operating system
- (c) Execution behaviour may be deterministic
- (d) All of these

- (e) None of these
- 4. Which of the following is not an example of a 'Small-scale Embedded System'?
 - (a) Electronic Barbie doll

(b) Simple calculator

(c) Cell phone

- (d) Electronic toy car
- 5. The first recognised modern embedded system is
 - (a) Apple Computer

(b) Apollo Guidance Computer (AGC)

(d) Radio Navigation System

- (c) Calculator 6. The first mass produced embedded system is

(a) Minuteman-I

(b) Minuteman-II

(c) Autonetics D-17

- (d) Apollo Guidance Computer (AGC)
- 7. Which of the following is (are) an intended purpose(s) of embedded systems?
 - (a) Data collection
- (b) Data processing
- (c) Data communication

- (d) All of these
- (e) None of these
- 8. Which of the following is an (are) example(s) of embedded system for data communication?
 - (a) USB Mass storage device

(b) Network router

(c) Digital camera

- (d) Music player (f) None of these
- (e) All of these 9. A digital multi meter is an example of an embedded system for
 - (a) Data communication
- (b) Monitoring
- (c) Control
- (d) All of these

- (e) None of these
- 10. Which of the following is an (are) example(s) of an embedded system for signal processing?
 - (a) Apple iPOD (media player device)
- (b) SanDisk USB mass storage device

(c) Both (a) and (b)

(d) None of these

- What is an embedded system? Explain the different applications of embedded systems.
- Explain the various purposes of embedded systems in detail with illustrative examples.
- 3. Explain the different classifications of embedded systems. Give an example for each.

The Typical Embedded System

- ✓ Learn the building blocks of a typical Embedded System
- ✓ Learn about General Purpose Processors (GPPs), Application Specific Instruction Set Processors (ASIPs), Microprocessors, Microcontrollers, Digital Signal Processors, RISC & CISC processors, Harvard and Von-Neumann Processor Architecture, Big-endian v/s Little endian processors, Load Store operation and Instruction pipelining
- ✓ Learn about different PLDs like Complex Programmable Logic Devices (CPLDs), Field Programmable Gate Arrays (FPGAs), etc.
- ✓ Learn about the different memory technologies and memory types used in embedded system development.
- ✓ Learn about Masked ROM (MROM), PROM, OTP, EPROM, EEPROM and FLASH memory for embedded firmware storage
- ✓ Learn about Serial Access Memory (SAM), Static Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM) and Nonvolatile SRAM (NVRAM)
- ✓ Understand the different factors to be considered in the selection of memory for embedded systems
- ✓ Understand the role of sensors, actuators and their interfacing with the I/O subsystems of an embedded system.
- Learn about the interfacing of LEDs, 7-segment LED Displays, Piezo Buzzer, Stepper Motor, Relays, Optocouplers, Matrix keyboard, Push button switches, Programmable Peripheral Interface Device (e.g. 8255 PPI), etc. with the I/O subsystem of the embedded system
- ✓ Learn about the different communication interfaces of an embedded system.
- ✓ Understand the various chip level communication interfaces like I2C, SPI, UART, 1-wire, parallel bus, etc.
- Understand the different wired and wireless external communication interfaces like RS-232C, RS-485, Parallel Port, USB, IEEE1394, Infrared (IrDA), Bluetooth, Wi-Fi, ZigBee, GPRS, etc.
- ✓ Know what embedded firmware is and its role in embedded systems
- Understand the different system components like Reset Circuit, Brown-out protection circuit, Oscillator Unit, Real-Time Clock (RTC) and Watchdog Timer unit
- ✓ Understand the role of PCB in embedded systems

A typical embedded system (Fig. 2.1) contains a single chip controller, which acts as the master brain of the system. The controller can be a Microprocessor (e.g. Intel 8085) or a microcontroller (e.g. Atmel AT89C51) or a Field Programmable Gate Array (FPGA) device (e.g. Xilinx Spartan) or a Digital Signal Processor (DSP) (e.g. Blackfin® Processors from Analog Devices) or an Application Specific Integrated

Copyrighted material

Real World

(Fig. 2.1) Elements of an embedded system

Circuit (ASIC)/Application Specific Standard Product (ASSP) (e.g. ADE7760 Single Phase Energy Metreing IC from) Analog Devices for energy metering applications).

Embedded hardware/software systems are basically designed to regulate a physical variable or to manipulate the state of some devices by sending some control signals to the Actuators or devices connected to the O/p ports of the system, in response to the input signals provided by the end users or Sensors which are connected to the input ports. Hence an embedded system can be viewed as a reactive system. The control is achieved by processing the information coming from the sensors and user interfaces, and controlling some actuators that regulate the physical variable.

Key boards, push button switches, etc. are examples for common user interface input devices whereas LEDs, liquid crystal displays, piezoelectric buzzers, etc. are examples for common user interface output devices for a typical embedded system. It should be noted that it is not necessary that all embedded systems should incorporate these I/O user interfaces. It solely depends on the type of the application for which the embedded system is designed. For example, if the embedded system is designed for any handheld application, such as a mobile handset application, then the system should contain user interfaces like a keyboard for performing input operations and display unit for providing users the status of various activities in progress.

Some embedded systems do not require any manual intervention for their operation. They automatically sense the variations in the input parameters in accordance with the changes in the real world, to which they are interacting through the sensors which are connected to the input port of the system. The sensor information is passed to the processor after signal conditioning and digitisation. Upon receiving the sensor data the processor or brain of the embedded system performs some pre-defined operations with the help of the firmware embedded in the system and sends some actuating signals to the actuator connected to the output port of the embedded system, which in turn acts on the controlling variable to bring the controlled variable to the desired level to make the embedded system work in the desired manner.

The Memory of the system is responsible for holding the control algorithm and other important configuration details. For most of embedded systems, the memory for storing the algorithm or configuration data is of fixed type, which is a kind of Read Only Memory (ROM) and it is not available for the end user for modifications, which means the memory is protected from unwanted user interaction by implementing some kind of memory protection mechanism. The most common types of memories used in embedded systems for control algorithm storage are OTP, PROM, UVEPROM, EEPROM and FLASH. Depending on the control application, the memory size may vary from a few bytes to megabytes. We will discuss them in detail in the coming sections. Sometimes the system requires temporary memory for performing arithmetic operations or control algorithm execution and this type of memory is known as "working memory". Random Access Memory (RAM) is used in most of the systems as the working memory. Various types of RAM like SRAM, DRAM and NVRAM are used for this purpose. The size of the RAM also varies from a few bytes to kilobytes or megabytes depending on the application. The details given under the section "Memory" will give you a more detailed description of the working memory.

An embedded system without a control algorithm implemented memory is just like a new born baby. It is having all the peripherals but is not capable of making any decision depending on the situational as well as real world changes. The only difference is that the memory of a new born baby is self-adaptive, meaning that the baby will try to learn from the surroundings and from the mistakes committed. For embedded systems it is the responsibility of the designer to impart intelligence to the system.

In a controller-based embedded system, the controller may contain internal memory for storing the control algorithm and it may be an EEPROM or FLASH memory varying from a few kilobytes to megabytes. Such controllers are called controllers with on-chip ROM, e.g. Atmel AT89C51. Some controllers may not contain on-chip memory and they require an external (off-chip) memory for holding the control algorithm, e.g. Intel 8031AH.

2.1 CORE OF THE EMBEDDED SYSTEM

Embedded systems are domain and application specific and are built around a central core. The core of the embedded system falls into any one of the following categories:

- 1. General Purpose and Domain Specific Processors
 - 1.1 Microprocessors
 - 1.2 Microcontrollers
 - 1.3 Digital Signal Processors
- 2. Application Specific Integrated Circuits (ASICs)
- 3. Programmable Logic Devices (PLDs)
- 4. Commercial off-the-shelf Components (COTS)

If you examine any embedded system you will find that it is built around any of the core units mentioned above.

2.1.1 General Purpose and Domain Specific Processors

Almost 80% of the embedded systems are processor/controller based. The processor may be a microprocessor or a microcontroller or a digital signal processor, depending on the domain and application.

Most of the embedded systems in the industrial control and monitoring applications make use of the
commonly available microprocessors or microcontrollers whereas domains which require signal
processors supplied by manufacturers like, Analog Devices, Texas Instruments, etc.

2.1.1.1 Microprocessors A Microprocessor is a silicon chip representing a central processing unit (CPU), which is capable of performing arithmetic as well as logical operations according to a pre-defined set of instructions, which is specific to the manufacturer. In general the CPU contains the Arithmetic and Logic Unit (ALU), control unit and working registers. A microprocessor is a dependent unit and it requires the combination of other hardware like memory, timer unit, and interrupt controller, etc. for proper functioning. Intel claims the credit for developing the first microprocessor unit Intel 4004, a 4bit processor which was released in November 1971. It featured 1K data memory, a 12bit program counter and 4K program memory, sixteen 4bit general purpose registers and 46 instructions. It ran at a clock speed of 740 kHz. It was designed for olden day's calculators. In 1972, 14 more instructions were added to the 4004 instruction set and the program space is upgraded to 8K. Also interrupt capabilities were added to it and it is renamed as Intel 4040. It was quickly replaced in April 1972 by Intel 8008 which was similar to Intel 4040, the only difference was that its program counter was 14 bits wide and the 8008 served as a terminal controller. In April 1974 Intel launched the first 8 bit processor, the Intel 8080, with 16bit address bus and program counter and seven 8bit registers (A-E,H,L: BC, DE, and HL pairs formed the 16bit register for this processor). Intel 8080 was the most commonly used processors for industrial control and other embedded applications in the 1975s. Since the processor required other hardware components as mentioned earlier for its proper functioning, the systems made out of it were bulky and were lacking compactness.

Immediately after the release of Intel 8080, Motorola also entered the market with their processor, Motorola 6800 with a different architecture and instruction set compared to 8080.

In 1976 Intel came up with the upgraded version of 8080 – Intel 8085, with two newly added instructions, three interrupt pins and serial I/O. Clock generator and bus controller circuits were built-in and the power supply part was modified to a single +5 V supply.

In July 1976 Zilog entered the microprocessor market with its Z80 processor as competitor to Intel. Actually it was designed by an ex-Intel designer, Frederico Faggin and it was an improved version of Intel's 8080 processor, maintaining the original 8080 architecture and instruction set with an 8bit data bus and a 16bit address bus and was capable of executing all instructions of 8080. It included 80 more new instructions and it brought out the concept of register banking by doubling the register set. Z80 also included two sets of index registers for flexible design.

Technical advances in the field of semiconductor industry brought a new dimension to the microprocessor market and twentieth century witnessed a fast growth in processor technology. 16, 32 and 64 bit processors came into the place of conventional 8bit processors. The initial 2 MHz clock is now an old story. Today processors with clock speeds up to 2.4 GHz are available in the market. More and more competitors entered into the processor market offering high speed, high performance and low cost processors for customer design needs.

Intel, AMD, Freescale, IBM, TI, Cyrix, Hitachi, NEC, LSI Logic, etc. are the key players in the processor market. Intel still leads the market with cutting edge technologies in the processor industry.

Different instruction set and system architecture are available for the design of a microprocessor. Harvard and Von-Neumann are the two common system architectures for processor design. Processors based on Harvard architecture contains separate buses for program memory and data memory, whereas processors based on Von-Neumann architecture shares a single system bus for program and data memory. We will discuss more about these architectures later, under a separate topic. Reduced Instruction Set Computing (RISC) and Complex Instruction Set Computing (CISC) are the two common Instruction Set Architectures (ISA) available for processor design. We will discuss the same under a separate topic in this section.

2.1.1.2 General Purpose Processor (GPP) vs. Application-Specific Instruction Set Processor (ASIP) A General Purpose Processor or GPP is a processor designed for general computational tasks. The processor running inside your laptop or desktop (Pentium 4/AMD Athlon, etc.) is a typical example for general purpose processor. They are produced in large volumes and targeting the general market. Due to the high volume production, the per unit cost for a chip is low compared to ASIC or other specific ICs. A typical general purpose processor contains an Arithmetic and Logic Unit (ALU) and Control Unit (CU). On the other hand, Application Specific Instruction Set Processors (ASIPs) are processors with architecture and instruction set optimised to specific-domain/application requirements like network processing, automotive, telecom, media applications, digital signal processing, control applications, etc. ASIPs fill the architectural spectrum between general purpose processors and Application Specific Integrated Circuits (ASICs). The need for an ASIP arises when the traditional general purpose processor are unable to meet the increasing application needs. Most of the embedded systems are built around application specific instruction set processors. Some microcontrollers (like automotive AVR, USB AVR from Atmel), system on chips, digital signal processors, etc. are examples for application specific instruction set processors (ASIPs). ASIPs incorporate a processor and on-chip peripherals, demanded by the application requirement, program and data memory.

2.1.1.3 Microcontrollers A Microcontroller is a highly integrated chip that contains a CPU, scratch pad RAM, special and general purpose register arrays, on chip ROM/FLASH memory for program storage, timer and interrupt control units and dedicated I/O ports. Microcontrollers can be considered as a super set of microprocessors. Since a microcontroller contains all the necessary functional blocks for independent working, they found greater place in the embedded domain in place of microprocessors. Apart from this, they are cheap, cost effective and are readily available in the market.

Texas Instrument's TMS 1000 is considered as the world's first microcontroller. We cannot say it as a fully functional microcontroller when we compare it with modern microcontrollers. TI followed Intel's 4004/4040, 4 bit processor design and added some amount of RAM, program storage memory (ROM) and I/O support on a single chip, there by eliminated the requirement of multiple hardware chips for self-functioning. Provision to add custom instructions to the CPU was another innovative feature of TMS 1000. TMS 1000 was released in 1974.

In 1977 Intel entered the microcontroller market with a family of controllers coming under one umbrella named MCS-48TM family. The processors came under this family were 8038HL, 8039HL, 8040AHL, 8048H, 8049H and 8050AH. Intel 8048 is recognised as Intel's first microcontroller and it was the most prominent member in the MCS-48^{TM†} family. It was used in the original IBM PC keyboard. The inspiration behind 8048 was Fairchild's F8 microprocessor and Intel's goal of developing a low cost and small size processor. The design of 8048 adopted a true Harvard architecture where program and data memory shared the same address bus and is differentiated by the related control signals.

[†]MCS-48TM is a trade mark owned by Intel

The Typical Embedded System

Eventually Intel came out with its most fruitful design in the 8bit microcontroller domain-the 8051 family and its derivatives. It is the most popular and powerful 8bit microcontroller ever built. It was developed in the 1980s and was put under the family MCS-51. Almost 75% of the microcontrollers used in the embedded domain were 8051 family based controllers during the 1980-90s. 8051 processor cores are used in more than 100 devices by more than 20 independent manufacturers like Maxim. Philips, Atmel, etc. under the license from Intel. Due to the low cost, wide availability, memory efficient instruction set, mature development tools and Boolean processing (bit manipulation operation) capability, 8051 family derivative microcontrollers are much used in high-volume consumer electronic devices, entertainment industry and other gadgets where cost-cutting is essential.

Another important family of microcontrollers used in industrial control and embedded applications is the PIC family micro controllers from Microchip Technologies (It will be discussed in detail in a later section of this book). It is a high performance RISC microcontroller complementing the CISC (complex instruction set computing) features of 8051. The terms RISC and CISC will be explained in detail in a separate heading.

Some embedded system applications require only 8bit controllers whereas some embedded applications requiring superior performance and computational needs demand 16/32bit microcontrollers. Infineon, Freescale, Philips, Atmel, Maxim, Microchip etc. are the key suppliers of 16bit microcontrollers. Philips tried to extend the 8051 family microcontrollers to use for 16bit applications by developing the Philips XA (eXtended Architecture) microcontroller series.

8bit microcontrollers are commonly used in embedded systems where the processing power is not a big constraint. As mentioned earlier, more than 20 companies are producing different flavours of the 8051 family microcontroller. They try to add more and more functionalities like built in SPI, 12C serial buses, USB controller, ADC, Networking capability, etc. So the competitive market is driving towards a one-stop solution chip in microcontroller domain. High processing speed microcontroller families like ARM11 series are also available in the market, which provides solution to applications requiring hardware acceleration and high processing capability.

Freescale, NEC, Zilog, Hitachi, Mitsubishi, Infineon, ST Micro Electronics, National, Texas Instruments, Toshiba, Philips, Microchip, Analog Devices, Daewoo, Intel, Maxim, Sharp, Silicon Laboratories, TDK, Triscend, Winbond, Atmel, etc. are the key players in the microcontroller market. Of these Atmel has got special significance. They are the manufacturers of a variety of Flash memory based microcontrollers. They also provide In-System Programmability (which will be discussed in detail in a later section of this book) for the controller. The Flash memory technique helps in fast reprogramming of the chip and thereby reduces the product development time. Atmel also provides another special family of microcontroller called AVR (it will be discussed in detail in a later chapter), an 8bit RISC Flash microcontroller, fast enough to execute powerful instructions in a single clock cycle and provide the latitude you need to optimise power consumption.

The instruction set architecture of a microcontroller can be either RISC or CISC. Microcontrollers are designed for either general purpose application requirement (general purpose controller) or domainspecific application requirement (application specific instruction set processor). The Intel 8051 microcontroller is a typical example for a general purpose microcontroller, whereas the automotive AVR microcontroller family from Atmel Corporation is a typical example for ASIP specifically designed for the automotive domain.

2.1.1.4 Microprocessor vs Microcontroller The following table summarises the differences between a microcontroller and microprocessor.

Microprocessor

unit (CPU), which is capable of performing arith- contains a CPU, scratchpad RAM, special and metic as well as logical operations according to a general purpose register arrays, on chip ROM/ pre-defined set of instructions

tion of other chips like timers, program and data external interrupt controller, timer, UART, etc. for memory chips, interrupt controllers, etc. for func- its functioning

operation.

Doesn't contain a built in I/O port. The I/O port Most of the processors contain multiple built-in functionality needs to be implemented with the I/O ports which can be operated as a single 8 or 16 help of external programmable peripheral inter- or 32 bit port or as individual port pins face chips like 8255

is important

Limited power saving options compared to micro- Includes lot of power saving features controllers

Microcontroller

A silicon chip representing a central processing A microcontroller is a highly integrated chip that FLASH memory for program storage, timer and interrupt control units and dedicated I/O ports

It is a dependent unit. It requires the combina- It is a self-contained unit and it doesn't require

Most of the time general purpose in design and Mostly application-oriented or domain-specific

Targeted for high end market where performance Targeted for embedded market where performance is not so critical (At present this demarcation is invalid)

2.1.1.5 Digital Signal Processors Digital Signal Processors (DSPs) are powerful special purpose 8/16/32 bit microprocessors designed specifically to meet the computational demands and power constraints of today's embedded audio, video, and communications applications. Digital signal processors are 2 to 3 times faster than the general purpose microprocessors in signal processing applications. This is because of the architectural difference between the two. DSPs implement algorithms in hardware which speeds up the execution whereas general purpose processors implement the algorithm in firmware and the speed of execution depends primarily on the clock for the processors. In general, DSP can be viewed as a microchip designed for performing high speed computational operations for 'addition', 'subtraction', 'multiplication' and 'division'. A typical digital signal processor incorporates the following key units:

Program Memory Memory for storing the program required by DSP to process the data

Data Memory Working memory for storing temporary variables and data/signal to be processed.

Computational Engine Performs the signal processing in accordance with the stored program memory. Computational Engine incorporates many specialised arithmetic units and each of them operates simultaneously to increase the execution speed. It also incorporates multiple hardware shifters for shifting operands and thereby saves execution time.

L/O Unit Acts as an interface between the outside world and DSP. It is responsible for capturing signals to be processed and delivering the processed signals.

Audio video signal processing, telecommunication and multimedia applications are typical examples where DSP is employed. Digital signal processing employs a large amount of real-time calculations. Sum of products (SOP) calculation, convolution, fast fourier transform (FFT), discrete fourier transform (DFT), etc, are some of the operations performed by digital signal processors.

Blackfin® processors from Analog Devices is an example of DSP which delivers breakthrough signal-processing performance and power efficiency while also offering a full 32-bit RISC MCU programming model. Blackfin processors present high-performance, homogeneous software targets, which allows flexible resource allocation between hard real-time signal processing tasks and non real-time control tasks. System control tasks can often run in the shadow of demanding signal processing and multimedia tasks.

2.1.1.6 RISC vs. CISC Processors/Controllers The term RISC stands for Reduced Instruction Set Computing. As the name implies, all RISC processors/controllers possess lesser number of instructions, typically in the range of 30 to 40. CISC stands for Complex Instruction Set Computing. From the definition itself it is clear that the instruction set is complex and instructions are high in number. From a programmers point of view RISC processors are comfortable since s/he needs to learn only a few instructions, whereas for a CISC processor s/he needs to learn more number of instructions and should understand the context of usage of each instruction (This scenario is explained on the basis of a programmer following Assembly Language coding. For a programmer following C coding it doesn't matter since the cross-compiler is responsible for the conversion of the high level language instructions to machine dependent code). Atmel AVR microcontroller is an example for a RISC processor and its instruction set contains only 32 instructions. The original version of 8051 microcontroller (e.g. AT89C51) is a CISC controller and its instruction set contains 255 instructions. Remember it is not the number of instructions that determines whether a processor/controller is CISC or RISC. There are some other factors like pipelining features, instruction set type, etc. for determining the RISC/CISC criteria. Some of the important criteria are listed below:

RISC	CISC
Lesser number of instructions	Greater number of Instructions
Instruction pipelining and increased execution speed	Generally no instruction pipelining feature
Orthogonal instruction set (Allows each instruction to operate on any register and use any addressing mode)	Non-orthogonal instruction set (All instructions are not allowed to operate on any register and use any addressing mode, It is instruction-specific)
Operations are performed on registers only, the only memory operations are load and store	Operations are performed on registers or memory depending on the instruction
A large number of registers are available	Limited number of general purpose registers
Programmer needs to write more code to execute a task since the instructions are simpler ones	Instructions are like macros in C language. A programmer can achieve the desired functionality with a single instruction which in turn provides the effect of using more simpler single instructions in RISC
Single, fixed length instructions	Variable length instructions
Less silicon usage and pin count	More silicon usage since more additional decoder logic is required to implement the complex instruction decoding.
With Harvard Architecture	Can be Harvard or Von-Neumann Architecture

I hope now you are clear about the terms RISC and CISC in the processor technology. Isn't it?

Copyrighted material

2.1.1.7 Harvard vs. Von-Neumann Processor/Controller Architecture The terms Harvard and Von-Neumann refers to the processor architecture design.

Microprocessors/controllers based on the Von-Neumann architecture shares a single common bus for fetching both instructions and data. Program instructions and data are stored in a common main memory. Von-Neumann architecture based processors/controllers first fetch an instruction and then fetch the data to support the instruction from code memory. The two separate fetches slows down the controller's operation. Von-Neumann architecture is also referred as Princeton architecture, since it was developed by the Princeton University.

Microprocessors/controllers based on the Harvard architecture will have separate data bus and instruction bus. This allows the data transfer and program fetching to occur simultaneously on both buses. With Harvard architecture, the data memory can be read and written while the program memory is being accessed. These separated data memory and code memory buses allow one instruction to execute while the next instruction is fetched ("pre-fetching"). The pre-fetch theoretically allows much faster execution than Von-Neumann architecture. Since some additional hardware logic is required for the generation of control signals for this type of operation it adds silicon complexity to the system. Figure 2.2 explains the Harvard and Von-Neumann architecture concept.

Fig. 2.2 Harvard vs Von-Neumann architecture

The following table highlights the differences between Harvard and Von-Neumann architecture.

Harvard Architecture	Von-Neumann Architecture
Separate buses for instruction and data fetching	Single shared bus for instruction and data fetching
Easier to pipeline, so high performance can be achieved	Low performance compared to Harvard architecture
Comparatively high cost	Cheaper
No memory alignment problems	Allows self modifying codes [†]
Since data memory and program memory are stored physically in different locations, no chances for accidental corruption of program memory	Since data memory and program memory are stored physically in the same chip, chances for accidental corruption of program memory

- 2.1.1.8 Big-Endian vs. Little-Endian Processors/Controllers Endianness specifies the order in which the data is stored in the memory by processor operations in a multi byte system (Processors whose word size is greater than one byte). Suppose the word length is two byte then data can be stored in memory in two different ways:
 - Higher order of data byte at the higher memory and lower order of data byte at location just below the higher memory.
 - Lower order of data byte at the higher memory and higher order of data byte at location just below the higher memory.

[†]Blackfin® is a Registered trademark of Analog Devices Inc.

Self-modifying code is a code/instruction which modifies itself while execution.

Little-endian (Fig. 2.3) means the lower-order byte of the data is stored in memory at the lowest address, and the higher-order byte at the highest address. (The little end comes first.) For example, a 4 byte long integer Byte3 Byte2 Byte1 Byte0 will be stored in the memory as shown below:

			7
Base Address + 0	Byte 0	Byte 0	0×20000 (Base Address)
Base Address + 1	Byte 1	Byte 1	0×20001 (Base Address + 1)
Base Address + 2	Byte 2	Byte 2	0×20002 (Base Address + 2)
Base Address + 3	Byte 3	Byte 3	0×20003 (Base Address + 3)
	1		

Fig. 2.3 Little-Endian operation

Big-endian (Fig. 2.4) means the higher-order byte of the data is stored in memory at the lowest address, and the lower-order byte at the highest address. (The big end comes first.) For example, a 4 byte long integer **Byte3 Byte2 Byte1 Byte0** will be stored in the memory as follows:

Base Address + 0	Byte 3	Byte 3	0×20000 (Base Address)
Base Address + 1	Byte 2	Byte 2	0×20001 (Base Address + 1)
Base Address + 2	Byte 1	Byte 1	0×20002 (Base Address + 2)
Base Address + 3	Byte 0	Byte 0	0×20003 (Base Address + 3)

Fig. 2.4 Big-Endian operation

2.1.1.9 Load Store Operation and Instruction Pipelining As mentioned earlier, the RISC processor instruction set is orthogonal, meaning it operates on registers. The memory access related operations are performed by the special instructions load and store. If the operand is specified as memory location, the content of it is loaded to a register using the load instruction. The instruction store stores data from a specified register to a specified memory location. The concept of Load Store Architecture is illustrated with the following example:

Suppose x, y and z are memory locations and we want to add the contents of x and y and store the result in location z. Under the load store architecture the same is achieved with 4 instructions as shown in Fig. 2.5.

The first instruction load R1, x loads the register R1 with the content of memory location x, the second instruction load R2, y loads the register R2 with the content of memory location y. The instruction

add R3, R1, R2 adds the content of registers R1 and R2 and stores the result in register R3. The next

instruction store R3,z stores the content of register R3 in memory location z.

The conventional instruction execution by the processor follows the fetch-decode-execute sequence. Where the 'fetch' part fetches the instruction from program memory or code memory and the decode part decodes the instruction to generate the necessary control signals. The execute stage reads the operands, perform ALU operations and stores the result. In conventional program execution, the fetch and decode operations are performed in sequence. For simplicity let's consider decode and execution together. During the decode operation the memory address bus is available and if it is possible to effectively utilise it for an instruction fetch, the processing speed can be increased. In its simplest form instruction pipelining refers to the overlapped execution of instructions. Under normal program execution flow it is meaningful to fetch the next instruction to execute, while the decoding and execution of the current instruction is in progress. If the current instruction in progress is a program control flow transfer instruction like jump or call instruction, there is no meaning in fetching the instruction following the current instruction. In such cases the instruction fetched is flushed and a new instruction fetch is performed to fetch the instruction. Whenever the current instruction is executing the program counter will be loaded with the address of the next instruction. In case of jump or branch instruction, the new location is known only after completion of the jump or branch instruction. Depending on the stages involved in an instruction (fetch, read register and decode, execute instruction, access an operand in data memory, write back the result to register, etc.), there can be multiple levels of instruction pipelining. Figure 2.6 illustrates the concept of Instruction pipelining for single stage pipelining.

Fig. 2.6 The single-stage pipelining concept

Fig. 2.5 The concept of load store architecture

² Note that the base address is chosen arbitrarily as 0×20000

26

\$ 50 mm . A Sell"

2.1.2 Application Specific Integrated Circuits (ASICs)

Application Specific Integrated Circuit (ASIC) is a microchip designed to perform a specific or unique application. It is used as replacement to conventional general purpose logic chips. It integrates several functions into a single chip and there by reduces the system development cost. Most of the ASICs are proprietary products. As a single chip, ASIC consumes a very small area in the total system and thereby helps in the design of smaller systems with high capabilities/functionalities.

ASICs can be pre-fabricated for a special application or it can be custom fabricated by using the components from a re-usable 'building block' library of components for a particular customer application. ASIC based systems are profitable only for large volume commercial productions. Fabrication of ASICs requires a non-refundable initial investment for the process technology and configuration expenses. This investment is known as Non-Recurring Engineering Charge (NRE) and it is a one time investment.

If the Non-Recurring Engineering Charges (NRE) is borne by a third party and the Application Specific Integrated Circuit (ASIC) is made openly available in the market, the ASIC is referred as Application Specific Standard Product (ASSP). The ASSP is marketed to multiple customers just as a general-purpose product is, but to a smaller number of customers since it is for a specific application. "The ADE7760 Energy Metre ASIC developed by Analog Devices for Energy metreing applications is a typical example for ASSP".

Since Application Specific Integrated Circuits (ASICs) are proprietary products, the developers of such chips may not be interested in revealing the internal details of it and hence it is very difficult to point out an example of it. Moreover it will create legal disputes if an illustration of such an ASIC product is given without getting prior permission from the manufacturer of the ASIC. For the time being, let us forget about it. We will come back to it in another part of this book series (Namely, Designing Advanced Embedded Systems).

2.1.3 Programmable Logic Devices

Logic devices provide specific functions, including device-to-device interfacing, data communication, signal processing, data display, timing and control operations, and almost every other function a system must perform. Logic devices can be classified into two broad categories-fixed and programmable. As the name indicates, the circuits in a fixed logic device are permanent, they perform one function or set of functions-once manufactured, they cannot be changed. On the other hand, Programmable Logic Devices (PLDs) offer customers a wide range of logic capacity, features, speed, and voltage characteristics-and these devices can be re-configured to perform any number of functions at any time.

With programmable logic devices, designers use inexpensive software tools to quickly develop, simulate, and test their designs. Then, a design can be quickly programmed into a device, and immediately tested in a live circuit. The PLD that is used for this prototyping is the exact same PLD that will be used in the final production of a piece of end equipment, such as a network router, a DSL modem, a DVD player, or an automotive navigation system. There are no NRE costs and the final design is completed much faster than that of a custom, fixed logic device. Another key benefit of using PLDs is that during the design phase customers can change the circuitry as often as they want until the design operates to their satisfaction. That's because PLDs are based on re-writable memory technology—to change the design, the device is simply reprogrammed. Once the design is final, customers can go into immediate production by simply programming as many PLDs as they need with the final software design file.

2.1.3.1 CPLDs and FPGAs The two major types of programmable logic devices are Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs). Of the two, FPGAs

offer the highest amount of logic density, the most features, and the highest performance. The largest FPGA now shipping, part of the Xilinx Virtex^{TM†} line of devices, provides eight million "system gates" (the relative density of logic). These advanced devices also offer features such as built-in hardwired processors (such as the IBM power PC), substantial amounts of memory, clock management systems, and support for many of the latest, very fast device-to-device signaling technologies. FPGAs are used in a wide variety of applications ranging from data processing and storage, to instrumentation, telecommunications, and digital signal processing.

CPLDs, by contrast, offer much smaller amounts of logic-up to about 10,000 gates. But CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. CPLDs such as the Xilinx CoolRunner^{TM†} series also require extremely low amounts of power and are very inexpensive, making them ideal for cost-sensitive, battery-operated, portable applications such as mobile phones and digital handheld assistants.

Advantages of PLD Programmable logic devices offer a number of important advantages over fixed logic devices, including:

- PLDs offer customers much more flexibility during the design cycle because design iterations are simply a matter of changing the programming file, and the results of design changes can be seen immediately in working parts.
- PLDs do not require long lead times for prototypes or production parts—the PLDs are already on a distributor's shelf and ready for shipment.
- PLDs do not require customers to pay for large NRE costs and purchase expensive mask sets-PLD suppliers incur those costs when they design their programmable devices and are able to amortize those costs over the multi-year lifespan of a given line of PLDs.
- PLDs allow customers to order just the number of parts they need, when they need them, allowing
 them to control inventory. Customers who use fixed logic devices often end up with excess inventory which must be scrapped, or if demand for their product surges, they may be caught short of
 parts and face production delays.
- PLDs can be reprogrammed even after a piece of equipment is shipped to a customer. In fact, thanks to programmable logic devices, a number of equipment manufacturers now tout the ability to add new features or upgrade products that already are in the field. To do this, they simply upload a new programming file to the PLD, via the Internet, creating new hardware logic in the system.

Over the last few years programmable logic suppliers have made such phenomenal technical advances that PLDs are now seen as the logic solution of choice from many designers. One reason for this is that PLD suppliers such as Xilinx are "fabless" companies; instead of owning chip manufacturing foundries, Xilinx outsource that job to partners like Toshiba and UMC, whose chief occupation is making chips. This strategy allows Xilinx to focus on designing new product architectures, software tools, and intellectual property cores while having access to the most advanced semiconductor process technologies. Advanced process technologies help PLDs in a number of key areas: faster performance, integration of more features, reduced power consumption, and lower cost.

FPGAs are especially popular for prototyping ASIC designs where the designer can test his design by downloading the design file into an FPGA device. Once the design is set, hardwired chips are produced for faster performance.

Just a few years ago, for example, the largest FPGA was measured in tens of thousands of system gates and operated at 40 MHz. Older FPGAs also were relatively expensive, costing often more than \$150 for the most advanced parts at the time. Today, however, FPGAs with advanced features offer

[†] Virtex™ and CoolRunner™ are the registered trademarks of Xilinx Inc.

integrated functions such as processors and memory.

2.1.4 Commercial Off-the-Shelf Components (COTS)

A Commercial Off-the-Shelf (COTS) product is one which is used 'as-is'. COTS products are designed in such a way to provide easy integration and interoperability with existing system components. The COTS component itself may be developed around a general purpose or domain specific processor or an Application Specific Integrated circuit or a programmable logic device. Typical examples of COTS hardware unit are remote controlled toy car control units including the RF circuitry part, high performance, high frequency microwave electronics (2–200 GHz), high bandwidth analog-to-digital converters, devices and components for operation at very high temperatures, electro-optic IR imaging arrays, UV/IR detectors, etc. The major advantage of using COTS is that they are readily available in the market, are cheap and a developer can cut down his/her development time to a great extent. This in turn reduces the time to market your embedded systems.

millions of gates of logic capacity, operate at 300 MHz, can cost less than \$10, and offer a new level of

The TCP/IP plug-in module available from various manufactures like 'WIZnet', 'Freescale', 'Dynalog', etc. are very good examples of COTS product (Fig. 2.7). This network plug-in module gives the TCP/IP connectivity to the system you are developing. There is no need to design this module yourself and write the firmware for the TCP/IP protocol and data transfer. Everything will be readily supplied by the COTS manufacturer. What you need to do is identify the COTS for your system and give the plug-in option on your board according to the hardware plug-in connections given in the specifications of the COTS. Though multiple vendors supply COTS for the same application, the major problem faced by the enduser is that there are no operational and manufacturing

Fig. 2.7 An example of a COTS product for TCP/IP plug-in from WIZnet (WIZnet NM7010A Plug in Module-Courtesy of WIZnet http://www.wiznet.co.kr/en/)

standards. A Commercial off-the-shelf (COTS) component manufactured by a vendor need not have hardware plug-in and firmware interface compatibility with one manufactured by a second vendor for the same application. This restricts the end-user to stick to a particular vendor for a particular COTS. This greatly affects the product design.

The major drawback of using COTS components in embedded design is that the manufacturer of the COTS component may withdraw the product or discontinue the production of the COTS at any time if a rapid change in technology occurs, and this will adversely affect a commercial manufacturer of the embedded system which makes use of the specific COTS product.

MANUAL REPORT OF THE PROPERTY OF THE PROPERTY

2.2 MEMORY

Memory is an important part of a processor/controller based embedded systems. Some of the processors/controllers contain built in memory and this memory is referred as on-chip memory. Others do not contain any memory inside the chip and requires external memory to be connected with the control-ler/processor to store the control algorithm. It is called off-chip memory. Also some working memory is required for holding data temporarily during certain operations. This section deals with the different types of memory used in embedded system applications.

2.2.1 Program Storage Memory (ROM)

The program memory or code storage memory of an embedded system stores the program instructions and it can be classified into different types as per the block diagram representation given in Fig. 2.8.

Fig. 2.8 Classification of Program Memory (ROM)

The code memory retains its contents even after the power to it is turned off. It is generally known as non-volatile storage memory. Depending on the fabrication, erasing and programming techniques they are classified into the following types.

2.2.1.1 Masked ROM (MROM) Masked ROM is a one-time programmable device. Masked ROM makes use of the hardwired technology for storing data. The device is factory programmed by masking and metallisation process at the time of production itself, according to the data provided by the end user. The primary advantage of this is low cost for high volume production. They are the least expensive type of solid state memory. Different mechanisms are used for the masking process of the ROM, like

- 1. Creation of an enhancement or depletion mode transistor through channel implant.
- By creating the memory cell either using a standard transistor or a high threshold transistor. In the high threshold mode, the supply voltage required to turn ON the transistor is above the normal ROM IC operating voltage. This ensures that the transistor is always off and the memory cell stores always logic 0.

Masked ROM is a good candidate for storing the embedded firmware for low cost embedded devices. Once the design is proven and the firmware requirements are tested and frozen, the binary data (The firmware cross compiled/assembled to target processor specific machine code) corresponding to it can be given to the MROM fabricator. The limitation with MROM based firmware storage is the inability to modify the device firmware against firmware upgrades. Since the MROM is permanent in bit storage, it is not possible to alter the bit information.

2.2.1.2 Programmable Read Only Memory (PROM) / (OTP) Unlike Masked ROM Memory, One Time Programmable Memory (OTP) or PROM is not pre-programmed by the manufacturer. The end user is responsible for programming these devices. This memory has nichrome or polysilicon wires arranged in a matrix. These wires can be functionally viewed as fuses. It is programmed by a PROM programmer which selectively burns the fuses according to the bit pattern to be stored. Fuses which are not blown/burned represents a logic "1" whereas fuses which are blown/burned represents a logic "0". The default state is logic "1". OTP is widely used for commercial production of embedded systems whose proto-typed versions are proven and the code is finalised. It is a low cost solution for commercial production. OTPs cannot be reprogrammed.

- 2.2.1.3 Erasable Programmable Read Only Memory (EPROM) OTPs are not useful and worth for development purpose. During the development phase the code is subject to continuous changes and using an OTP each time to load the code is not economical. Erasable Programmable Read Only Memory (EPROM) gives the flexibility to re-program the same chip. EPROM stores the bit information by charging the floating gate of an FET. Bit information is stored by using an EPROM programmer, which applies high voltage to charge the floating gate. EPROM contains a quartz crystal window for erasing the stored information. If the window is exposed to ultraviolet rays for a fixed duration, the entire memory will be erased. Even though the EPROM chip is flexible in terms of re-programmability, it needs to be taken out of the circuit board and put in a UV eraser device for 20 to 30 minutes. So it is a tedious and time-consuming process.
- 2.2.1.4 Electrically Erasable Programmable Read Only Memory (EEPROM) As the name indicates, the information contained in the EEPROM memory can be altered by using electrical signals at the register/Byte level. They can be erased and reprogrammed in-circuit. These chips include a chip erase mode and in this mode they can be erased in a few milliseconds. It provides greater flexibility for system design. The only limitation is their capacity is limited when compared with the standard ROM (A few kilobytes).
- 2.2.1.5 FLASH FLASH is the latest ROM technology and is the most popular ROM technology used in today's embedded designs. FLASH memory is a variation of EEPROM technology. It combines the re-programmability of EEPROM and the high capacity of standard ROMs. FLASH memory is organised as sectors (blocks) or pages. FLASH memory stores information in an array of floating gate MOS-FET transistors. The erasing of memory can be done at sector level or page level without affecting the other sectors or pages. Each sector/page should be erased before re-programming. The typical erasable capacity of FLASH is 1000 cycles. W27C512 from WINBOND (www.winbond.com) is an example of 64KB FLASH memory.
- 2.2.1.6 NVRAM Non-volatile RAM is a random access memory with battery backup. It contains static RAM based memory and a minute battery for providing supply to the memory in the absence of external power supply. The memory and battery are packed together in a single package. The life span of NVRAM is expected to be around 10 years. DS1644 from Maxim/Dallas is an example of 32KB NVRAM.

2.2.2 Read-Write Memory/Random Access Memory (RAM)

RAM is the data memory or working memory of the controller/processor. Controller/processor can read from it and write to it. RAM is volatile, meaning when the power is turned off, all the contents are destroyed. RAM is a direct access memory, meaning we can access the desired memory location directly without the need for traversing through the entire memory locations to reach the desired memory position (i.e. random access of memory location). This is in contrast to the Sequential Access Memory (SAM), where the desired memory location is accessed by either traversing through the entire memory or through a 'seek' method. Magnetic tapes, CD ROMs, etc. are examples of sequential access memories. RAM generally falls into three categories: Static RAM (SRAM), dynamic RAM (DRAM) and non-volatile RAM (NVRAM) (Fig. 2.9).

2.2.2.1 Static RAM (SRAM) Static RAM stores data in the form of voltage. They are made up of flip-flops. Static RAM is the fastest form of RAM available. In typical implementation, an SRAM cell (bit) is realised using six transistors (or 6 MOSFETs). Four of the transistors are used for building the

Fig. 2.9 Classification of Working Memory (RAM)

latch (flip-flop) part of the memory cell and two for controlling the access. SRAM is fast in operation due to its resistive networking and switching capabilities. In its simplest representation an SRAM cell can be visualised as shown in Fig. 2.10:

Fig. 2.10 SRAM cell implementation

This implementation in its simpler form can be visualised as two-cross coupled inverters with read/ write control through transistors. The four transistors in the middle form the cross-coupled inverters. This can be visualised as shown in Fig. 2.11.

From the SRAM implementation diagram, it is clear that access to the memory cell is controlled by the line Word Line, which controls the access transistors (MOSFETs) Q5 and Q6. The access transistors control the connection to bit lines B & B\. In

(Fig. 2.11) Visualisation of SRAM cell

order to write a value to the memory cell, apply the desired value to the bit control lines (For writing 1, make B = 1 and B = 0; For writing 0, make B = 0 and B = 1) and assert the Word Line (Make Word line

high). This operation latches the bit written in the flip-flop. For reading the content of the memory cell, assert both B and B bit lines to 1 and set the Word line to 1.

The major limitations of SRAM are low capacity and high cost. Since a minimum of six transistors are required to build a single memory cell, imagine how many memory cells we can fabricate on a silicon wafer.

2.2.2.2 Dynamic RAM (DRAM) Dynamic RAM stores data in the form of charge. They are made up of MOS transistor gates. The advantages of DRAM are its high density and low cost compared to SRAM. The disadvantage is that since the information is stored as charge it gets leaked off with time and to prevent this they need to be refreshed periodically. Special circuits called DRAM controllers are used for the refreshing operation. The refresh operation is done periodically in milliseconds interval. Figure 2.12 illustrates the typical implementation of a DRAM cell.

The MOSFET acts as the gate for the incoming and outgoing data whereas the capacitor acts as the bit storage unit. Table given below summarises the relative merits and demerits of SRAM and DRAM technology.

Fig. 2.12 DRAM cell implementation

SRAM cell	DRAM cell
Made up of 6 CMOS transistors (MOSFET)	Made up of a MOSFET and a capacitor
Doesn't require refreshing	Requires refreshing
Low capacity (Less dense)	High capacity (Highly dense)
More expensive	Less expensive
Fast in operation. Typical access time is 10ns	Slow in operation due to refresh requirements. Typical access time is 60ns. Write operation is faster than read operation.

2.2.2.3 NVRAM Non-volatile RAM is a random access memory with battery backup. It contains static RAM based memory and a minute battery for providing supply to the memory in the absence of external power supply. The memory and battery are packed together in a single package. NVRAM is used for the non-volatile storage of results of operations or for setting up of flags, etc. The life span of NVRAM is expected to be around 10 years. DS1744 from Maxim/Dallas is an example for 32KB NVRAM.

2.2.3 Memory According to the Type of Interface

The interface (connection) of memory with the processor/controller can be of various types. It may be a parallel interface [The parallel data lines (D0-D7) for an 8 bit processor/controller will be connected to D0-D7 of the memory] or the interface may be a serial interface like I2C (Pronounced as I Square C. It is a 2 line serial interface) or it may be an SPI (Serial peripheral interface, 2+n line interface where n stands for the total number of SPI bus devices in the system). It can also be of a single wire interconnection (like Dallas 1-Wire interface). Serial interface is commonly used for data storage memory like EEPROM. The memory density of a serial memory is usually expressed in terms of kilobits, whereas

that of a parallel interface memory is expressed in terms of kilobytes. Atmel Corporations AT24C512 is an example for serial memory with capacity 512 kilobits and 2-wire interface. Please refer to the section 'Communication Interface' for more details on I2C. SPI and 1-Wire Bus.

2.2.4 Memory Shadowing

Generally the execution of a program or a configuration from a Read Only Memory (ROM) is very slow (120 to 200 ns) compared to the execution from a random access memory (40 to 70 ns). From the timing parameters it is obvious that RAM access is about three times as fast as ROM access. Shadowing of memory is a technique adopted to solve the execution speed problem in processor-based systems. In computer systems and video systems there will be a configuration holding ROM called Basic Input Output Configuration ROM or simply BIOS. In personal computer systems BIOS stores the hardware configuration information like the address assigned for various serial ports and other non-plug 'n' play devices, etc. Usually it is read and the system is configured according to it during system boot up and it is time consuming. Now the manufactures included a RAM behind the logical layer of BIOS at its same address as a shadow to the BIOS and the first step that happens during the boot up is copying the BIOS to the shadowed RAM and write protecting the RAM then disabling the BIOS reading. You may be thinking that what a stupid idea it is and why both RAM and ROM are needed for holding the same data. The answer is: RAM is volatile and it cannot hold the configuration data which is copied from the BIOS when the power supply is switched off. Only a ROM can hold it permanently. But for high system performance it should be accessed from a RAM instead of accessing from a ROM.

2.2.5 Memory Selection for Embedded Systems

Embedded systems require a program memory for holding the control algorithm (For a super-loop based design) or embedded OS and the applications designed to run on top of it (for OS based designs), data memory for holding variables and temporary data during task execution, and memory for holding nonvolatile data (like configuration data, look up table etc) which are modifiable by the application (Unlike program memory, which is non-volatile as well unalterable by the end user). The memory requirement for an embedded system in terms of RAM and ROM (EEPROM/FLASH/NVRAM) is solely dependent on the type of the embedded system and the applications for which it is designed. There is no hard and fast rule for calculating the memory requirements. Lot of factors need to be considered when selecting the type and size of memory for embedded system. For example, if the embedded system is designed using SoC or a microcontroller with on-chip RAM and ROM (FLASH/EEPROM), depending on the application need the on-chip memory may be sufficient for designing the total system. As a rule of thumb, identify your system requirement and based on the type of processor (SoC or microcontroller with onchip memory) used for the design, take a decision on whether the on-chip memory is sufficient or external memory is required. Let's consider a simple electronic toy design as an example. As the complexity of requirements are less and data memory requirement are minimal, we can think of a microcontroller with a few bytes of internal RAM, a few bytes or kilobytes (depending on the number of tasks and the complexity of tasks) of FLASH memory and a few bytes of EEPROM (if required) for designing the system. Hence there is no need for external memory at all. A PIC microcontroller device which satisfies the I/O and memory requirements can be used in this case. If the embedded design is based on an RTOS, the RTOS requires certain amount of RAM for its execution and ROM for storing the RTOS image (Image is the common name given for the binary data generated by the compilation of all RTOS source files). Normally the binary code for RTOS kernel containing all the services is stored in a non-volatile memory (Like FLASH) as either compressed or non-compressed data. During boot-up of the device, APPROXIMATION OF THE PERSON OF

the RTOS files are copied from the program storage memory, decompressed if required and then loaded to the RAM for execution. The supplier of the RTOS usually gives a rough estimate on the run time RAM requirements and program memory requirements for the RTOS. On top of this add the RAM requirements for executing user tasks and ROM for storing user applications. On a safer side, always add a buffer value to the total estimated RAM and ROM size requirements. A smart phone device with Windows mobile operating system is a typical example for embedded device with OS. Say 64MB RAM and 128MB ROM are the minimum requirements for running the Windows mobile device, indeed you need extra RAM and ROM for running user applications. So while building the system, count the memory for that also and arrive at a value which is always at the safer side, so that you won't end up in a situation where you don't have sufficient memory to install and run user applications. There are two parameters for representing a memory. The first one is the size of the memory chip (Memory density expressed in terms of number of memory bytes per chip). There is no option to get a memory chip with the exact required number of bytes. Memory chips come in standard sizes like 512bytes, 1024bytes (1 kilobyte), 2048bytes (2 kilobytes), 4Kb, 8Kb, 16Kb, 32Kb, 64Kb, 128Kb, 256Kb, 512Kb, 1024Kb (1 megabytes), etc. Suppose your embedded application requires only 750 bytes of RAM, you don't have the option of getting a memory chip with size 750 bytes, the only option left with is to choose the memory chip with a size closer to the size needed. Here 1024 bytes is the least possible option. We cannot go for 512 bytes, because the minimum requirement is 750 bytes. While you select a memory size, always keep in mind the address range supported by your processor. For example, for a processor/ controller with 16 bit address bus, the maximum number of memory locations that can be addressed is 2¹⁶ = 65536 bytes = 64Kb. Hence it is meaningless to select a 128Kb memory chip for a processor with 16bit wide address bus. Also, the entire memory range supported by the processor/controller may not be available to the memory chip alone. It may be shared between I/O, other ICs and memory. Suppose the address bus is 16bit wide and only the lower 32Kb address range is assigned to the memory chip, the memory size maximum required is 32Kb only. It is not worth to use a memory chip with size 64Kb in such a situation. The second parameter that needs to be considered in selecting a memory is the word size of the memory. The word size refers to the number of memory bits that can be read/write together at a time. 4, 8, 12, 16, 24, 32, etc. are the word sizes supported by memory chips. Ensure that the word size supported by the memory chip matches with the data bus width of the processor/controller.

FLASH memory is the popular choice for ROM (program storage memory) in embedded applications. It is a powerful and cost-effective solid-state storage technology for mobile electronics devices
and other consumer applications. FLASH memory comes in two major variants, namely, NAND and
NOR FLASH. NAND FLASH is a high-density low cost non-volatile storage memory. On the other
hand, NOR FLASH is less dense and slightly expensive. But it supports the Execute in Place (XIP)
technique for program execution. The XIP technology allows the execution of code memory from ROM
itself without the need for copying it to the RAM as in the case of conventional execution method. It is
a good practice to use a combination of NOR and NAND memory for storage memory requirements,
where NAND can be used for storing the program code and or data like the data captured in a camera
device. NAND FLASH doesn't support XIP and if NAND FLASH is used for storing program code, a
DRAM can be used for copying and executing the program code. NOR FLASH supports XIP and it can
be used as the memory for bootloader or for even storing the complete program code.

The EEPROM data storage memory is available as either serial interface or parallel interface chip. If the processor/controller of the device supports serial interface and the amount of data to write and read to and from the device is less, it is better to have a serial EEPROM chip. The serial EEPROM saves the address space of the total system. The memory capacity of the serial EEPROM is usually expressed in bits or kilobits. 512 bits, 1Kbits, 2Kbits, 4Kbits, etc. are examples for serial EEPROM memory representation. For embedded systems with low power requirements like portable devices, choose low power memory devices. Certain embedded devices may be targeted for operating at extreme environmental conditions like high temperature, high humid area, etc. Select an industrial grade memory chip in place of the commercial grade chip for such devices.

2.3 SENSORS AND ACTUATORS

At the very beginning of this chapter it is already mentioned that an embedded system is in constant interaction with the Real world and the controlling/monitoring functions executed by the embedded system is achieved in accordance with the changes happening to the Real world. The changes in system environment or variables are detected by the sensors connected to the input port of the embedded system. If the embedded system is designed for any controlling purpose, the system will produce some changes in the controlling variable to bring the controlled variable to the desired value. It is achieved through an actuator connected to the output port of the embedded system. If the embedded system is designed for monitoring purpose only, then there is no need for including an actuator in the system. For example, take the case of an ECG machine. It is designed to monitor the heart beat status of a patient and it cannot impose a control over the patient's heart beat and its order. The sensors used here are the different electrode sets connected to the body of the patient. The variations are captured and presented to the user (may be a doctor) through a visual display or some printed chart.

2.3.1 Sensors

A sensor is a transducer device that converts energy from one form to another for any measurement or control purpose. This is what I "by-hearted" during my engineering degree from the transducers paper.

If we look back to the "Smart" running shoe example given at the end of Chapter 1, we can identify that the sensor which measures the distance between the cushion and magnet in the smart running shoe is a magnetic hall effect sensor (Please refer back).

2.3.2 Actuators

Actuator is a form of transducer device (mechanical or electrical) which converts signals to corresponding physical action (motion). Actuator acts as an output device.

Looking back to the "Smart" running shoe example given at the end of Chapter 1, we can see that the actuator used for adjusting the position of the cushioning element is a micro stepper motor (Please refer back).

2.3.3 The I/O Subsystem

The I/O subsystem of the embedded system facilitates the interaction of the embedded system with the external world. As mentioned earlier the interaction happens through the sensors and actuators connected to the input and output ports respectively of the embedded system. The sensors may not be directly interfaced to the input ports, instead they may be interfaced through signal conditioning and translating systems like ADC, optocouplers, etc. This section illustrates some of the sensors and actuators used in embedded systems and the I/O systems to facilitate the interaction of embedded systems with external world.

[†]Kb-Kilobytes

2.3.3.1 Light Emitting Diode (LED) Light Emitting Diode (LED) is an important output device for visual indication in any embedded system. LED can be used as an indicator for the status of various signals or situations. Typical examples are indicating the presence of power conditions like 'Device ON', 'Battery low' or 'Charging of battery' for a battery operated handheld embedded devices.

Light Emitting Diode is a p-n junction diode (Refer Analog Electronics fundamentals to refresh your memory for p-n junction diode (2) and it contains an anode and a cathode. For proper functioning of the LED, the anode of it should be connected to +ve terminal of the supply voltage and cathode to the -ve terminal of supply voltage. The current flowing through the LED must be limited to a value below the maximum current that it can conduct. A resister is used in series between the power supply and the LED to limit the current through the LED. The ideal LED interfacing circuit is shown in Fig. 2.13.

LEDs can be interfaced to the port pin of a processor/controller in two ways. In the first method, the anode is directly connected to the port pin and the port pin drives the LED. In this approach the port pin 'sources' current to the LED when the port pin is at logic High (Logic '1'). In the second method, the cathode of the LED is connected to the port pin of the processor/controller and the anode to the supply voltage through a current limiting resistor. The LED is turned on when the port pin is at logic Low (Logic '0'). Here the port pin 'sinks' current. If the LED is directly connected to the port pin, depending on the maximum current that a port pin can source, the brightness of LED may not be to the required level. In the second approach, the current is directly sourced by the power supply and the port pin acts as the sink for current. Here we will get the required brightness for the LED.

2.3.3.2 7-Segment LED Display The 7-segment LED display is an output device for displaying alpha numeric characters. It contains 8 light-emitting diode (LED) segments arranged in a special form. Out of the 8 LED segments, 7 are used for displaying alpha numeric characters and 1 is used for representing 'decimal point' in decimal number display. Figure 2.14 explains the arrangement of LED segments in a 7-segment LED display.

The LED segments are named A to G and the decimal point LED segment is named as DP. The LED segments A to G and DP should be lit accordingly to display numbers and characters. For example, for displaying the number 4, the segments F, G, B and C are lit. For displaying 3, the segments A, B, C, D, G and DP are lit. For

Fig. 2.14) 7-Segment LED Display

displaying the character 'd', the segments B, C, D, E and G are lit. All these 8 LED segments need to be connected to one port of the processor/controller for displaying alpha numeric digits. The 7-segment LED displays are available in two different configurations, namely; Common Anode and Common Cathode. In the common anode configuration, the anodes of the 8 segments are connected commonly whereas in the common cathode configuration, the 8 LED segments share a common cathode line. Figure 2.15 illustrates the Common Anode and Cathode configurations.

Based on the configuration of the 7-segment LED unit, the LED segment's anode or cathode is connected to the port of the processor/controller in the order 'A' segment to the least significant port pin and DP segment to the most significant port pin.

Fig. 2.15 Common anode and cathode configurations of a 7-segment LED Display

The current flow through each of the LED segments should be limited to the maximum value supported by the LED display unit. The typical value for the current falls within the range of 20mA. The current through each segment can be limited by connecting a current limiting resistor to the anode or cathode of each segment. The value for the current limiting resistors can be calculated using the current value from the electrical parameter listing of the LED display.

For common cathode configurations, the anode of each LED segment is connected to the port pins of the port to which the display is interfaced. The anode of the common anode LED display is connected to the 5V supply voltage through a current limiting resistor and the cathode of each LED segment is connected to the respective port pin lines. For an LED segment to lit in the Common anode LED configuration, the port pin to which the cathode of the LED segment is connected should be set at logic 0.

7-segment LED display is a popular choice for low cost embedded applications like, Public telephone call monitoring devices, point of sale terminals, etc.

2.3.3.3 Optocoupler Optocoupler is a solid state device to isolate two parts of a circuit. Optocoupler combines an LED and a photo-transistor in a single housing (package). Figure 2.16 illustrates the functioning of an optocoupler device.

(Fig. 2.16) An optocoupler device

In electronic circuits, an optocoupler is used for suppressing interference in data communication, circuit isolation, high voltage separation, simultaneous separation and signal intensification, etc. Optocouplers can be used in either input circuits or in output circuits. Figure 2.17 illustrates the usage

Fig. 2.17 Optocoupler in Input and Output circuit

of optocoupler in input circuit and output circuit of an embedded system with a microcontroller as the system core.

Optocoupler is available as ICs from different semiconductor manufacturers. The MCT2M IC from Fairchild semiconductor (http://www.fairchildsemi.com/) is an example for optocoupler IC.

2.3.3.4 Stepper Motor A stepper motor is an electro-mechanical device which generates discrete displacement (motion) in response to de electrical signals. It differs from the normal de motor in its operation. The de motor produces continuous rotation on applying de voltage whereas a stepper motor produces discrete rotation in response to the de voltage applied to it. Stepper motors are widely used in industrial embedded applications, consumer electronic products and robotics control systems. The paper feed mechanism of a printer/fax makes use of stepper motors for its functioning.

Based on the coil winding arrangements, a two-phase stepper motor is classified into two. They are:

- 1. Unipolar
- Bipolar
- 1. Unipolar A unipolar stepper motor contains two windings per phase. The direction of rotation (clockwise or anticlockwise) of a stepper motor is controlled by changing the direction of current flow. Current in one direction flows through one coil and in the opposite direction flows through the other coil. It is easy to shift the direction of rotation by just switching the terminals to which the coils are connected. Figure 2.18 illustrates the working of a two-phase unipolar stepper motor.

phase unipolar stepper motor.

The coils are represented as A, B, C and D. Coils A and C carry current in opposite directions for phase 1 (only one of them will be

carrying current at a time). Similarly, B and D carry current in opposite directions for phase 2 (only one of them will be carrying current at a time).

2. Bipolar A bipolar stepper motor contains single winding per phase. For reversing the motor rotation the current flow through the windings is reversed dynamically. It requires complex circuitry for current flow reversal. The stator winding details for a two phase unipolar stepper motor is shown in Fig. 2.19.

The stepping of stepper motor can be implemented in different ways by changing the sequence of activation of the stator windings. The different stepping modes supported by stepper motor are explained below.

Full Step In the full step mode both the phases are energised simultaneously. The coils A, B, C and D are energised in the following order:

Step	Coil A	Coil B	Coil C	Coil D
1	Н	Н	L	L
2	L	Н	Н	L
3	L	L	Н	Н
4	Н	L	L	Н

It should be noted that out of the two windings, only one winding of a phase is energised at a time.

Fig. 2.19 Stator Winding details for a 2 Phase unipolar stepper motor

Wave Step In the wave step mode only one phase is energised at a time and each coils of the phase is energised alternatively. The coils A, B, C and D are energised in the following order:

Step	Coll A	Coil B	Coil C	Coil D
Bad:	H	L	L	L
2	L	Н	L	L
3 70	L	L	H	L
4	L	L	L	H

Half Step It uses the combination of wave and full step. It has the highest torque and stability. The coil energising sequence for half step is given below.

Step	Coil A	Coil B	Coil C	Coil D
1	H	L	L	L
2	Н	Н	L	L
3	L	Н	L	L
4	L	Н	H	P
5	1	L	%- H -	L
6	L	L	Н	H
7	L	Land	L	- Н
8	H	L	L	Н

GND

2-Phase unipolar step-

Fig. 2.18)

The rotation of the stepper motor can be reversed by reversing the order in which the coil is energised.

Two-phase unipolar stepper motors are the popular choice for embedded applications. The current requirement for stepper motor is little high and hence the port pins of a microcontroller/processor may not be able to drive them directly. Also the supply voltage required to operate stepper motor varies normally in the range 5V to 24 V. Depending on the current and voltage requirements, special driving circuits are required to interface the stepper motor with microcontroller/processors. Commercial off-the-shelf stepper motor driver ICs are available in the market and they can be directly interfaced to the microcontroller port. ULN2803 is an octal peripheral driver array available from ON semiconductors and ST microelectronics for driving a 5V stepper motor. Simple driving circuit can also be built using transistors.

The following circuit diagram (Fig. 2.20) illustrates the interfacing of a stepper motor through a driver circuit connected to the port pins of a microcontroller/processor.

Fig. 2.20 Interfacing of stepper motor through driver circuit

2.3.3.5 Relay Relay is an electro-mechanical device. In embedded application, the 'Relay' unit acts as dynamic path selectors for signals and power. The 'Relay' unit contains a relay coil made up of insulated wire on a metal core and a metal armature with one or more contacts.

'Relay' works on electromagnetic principle. When a voltage is applied to the relay coil, current flows through the coil, which in turn generates a magnetic field. The magnetic field attracts the armature core and moves the contact point. The movement of the contact point changes the power/signal flow path. 'Relays' are available in different configurations. Figure 2.21 given below illustrates the widely used relay configurations for embedded applications.

Fig. 2.21 Relay configurations

The Single Pole Single Throw configuration has only one path for information flow. The path is either open or closed in normal condition. For normally Open Single Pole Single Throw relay, the circuit is normally open and it becomes closed when the relay is energised. For normally closed Single Pole Single Throw configuration, the circuit is normally closed and it becomes open when the relay is energised. For Single Pole Double Throw Relay, there are two paths for information flow and they are selected by energising or de-energising the relay.

The Relay is normally controlled using a relay driver circuit connected to the port pin of the processor/controller. A transistor is used for building the relay driver circuit. Figure 2.22 illustrates the same.

Fig. 2.22 Transistor based Relay driving circuit

A free-wheeling diode is used for free-wheeling the voltage produced in the opposite direction when the relay coil is de-energised. The freewheeling diode is essential for protecting the relay and the transistor.

Most of the industrial relays are bulky and requires high voltage to operate. Special relays called 'Reed' relays are available for embedded application requiring switching of low voltage DC signals.

2.3.3.6 Piezo Buzzer Piezo buzzer is a piezoelectric device for generating audio indications in embedded application. A piezoelectric buzzer contains a piezoelectric diaphragm which produces audible sound in response to the voltage applied to it. Piezoelectric buzzers are available in two types. 'Self-driving' and 'External driving'. The 'Self-driving' circuit contains all the necessary components to generate sound at a predefined tone. It will generate a tone on applying the voltage. External driving piezo buzzers supports the generation of different tones. The tone can be varied by applying a variable pulse train to the piezoelectric buzzer. A piezo buzzer can be directly interfaced to the port pin of the processor/control. Depending on the driving current requirements, the piezo buzzer can also be interfaced using a transistor based driver circuit as in the case of a 'Relay'.

2.3.3.7 Push Button Switch It is an input device. Push button switch comes in two configurations, namely 'Push to Make' and 'Push to Break'. In the 'Push to Make' configuration, the switch is normally in the open state and it makes a circuit contact when it is pushed or pressed. In the 'Push to Break' configuration, the switch is normally in the closed state and it breaks the circuit contact when it is pushed or pressed. The push button stays in the 'closed' (For Push to Make type) or 'open' (For Push to Break type) state as long as it is kept in the pushed state and it breaks/makes the circuit connection when it

is released. Push button is used for generating a momentary pulse. In embedded application push button is generally used as reset and start switch and pulse generator. The Push button is normally connected to the port pin of the host processor/controller. Depending on the way in which the push button interfaced to the controller, it can generate either a 'HIGH' pulse or a 'LOW' pulse. Figure 2.23 illustrates how the push button can be used for generating 'LOW' and 'HIGH' pulses.

2.3.3.8 Keyboard Keyboard is an input device for user interfacing. If the number of keys required is very limited, push button switches can be used and they can be directly interfaced to the port pins for

Fig. 2.23 Push button switch configurations

reading. However, there may be situations demanding a large number of keys for user input (e.g. PDA device with alpha-numeric keypad for user data entry). In such situations it may not be possible to interface each keys to a port pin due to the limitation in the number of general purpose port pins available for the processor/controller in use and moreover it is wastage of port pins. Matrix keyboard is an optimum solution for handling large key requirements. It greatly reduces the number of interface connections. For example, for interfacing 16 keys, in the direct interfacing technique 16 port pins are required, whereas in the matrix keyboard only 8 lines are required. The 16 keys are arranged in a 4 column × 4 Row matrix. Figure 2.24 illustrates the connection of keys in a matrix keyboard.

In a matrix keyboard, the keys are arranged in matrix fashion (i.e. they are connected in a row and column style). For detecting a key press, the keyboard uses the scanning technique, where each row of the matrix is pulled low and the columns are read. After reading the status of each columns corresponding to a row, the row is pulled high and the next row is pulled low and the status of the columns are read. This process is repeated until the scanning for all rows are completed. When a row is pulled low and if a key connected to the row is pressed, reading the column to which the key is connected will give logic 0. Since keys are mechanical devices, there is a possibility for de-bounce issues, which may give multiple key press effect for a single key press. To prevent this, a proper key de-bouncing technique should be applied. Hardware key de-bouncer circuits and software key de-bounce techniques are the key de-bouncing techniques available. The software key de-bouncing technique doesn't require any additional hardware and is easy to implement. In the software de-bouncing technique, on detecting a key-press, the key is read again after a de-bounce delay. If the key press is a genuine one, the state of the key will remain as 'pressed' on the second read also. Pull-up resistors are connected to the column lines to limit the current that flows to the Row line on a key press.

2.3.3.9 Programmable Peripheral Interface (PPI) Programmable Peripheral Interface (PPI) devices are used for extending the I/O capabilities of processors/controllers. Most of the processors/controllers provide very limited number of I/O and data ports and at times it may require more number of I/O ports than the one supported by the controller/processor. A programmable peripheral interface device expands the I/O capabilities of the processor/controller. 8255A is a popular PPI device for 8bit processors/controllers. 8255A supports 24 I/O pins and these I/O pins can be grouped as either three 8-bit parallel ports (Port A, Port B and Port C) or two 8bit parallel ports (Port A and Port B) with Port C in any one of the following configurations:

Fig. 2.24 Matrix keyboard Interfacing

1. As 8 individual I/O pins

2. Two 4bit ports namely Port Cupper (Cu) and Port CLOWER (CL)

This is configured by manipulating the control register of 8255A. The control register holds the configuration for Port A, Port B and Port C. The bit details of control register is given below:

D7 D6 D5 D4 D3 D2 D1 D0 ·

The table given below explains the meaning and use of each bit.

Bit	Description	
D0	Port C Lower (C_L) I/O mode selector D0 = 1; Sets C_L as input port D0 = 0; Sets C_L as output port	
D1	Port B I/O mode selector D1 = 1; Sets port B as input port D1 = 0; Sets port B as output port	

-		
D2	Mode selector for port C lower and port B D2 = 0; Mode 0 - Port B functions as 8bit I/O Port. Port C lower functions as 4bit port. D2 = 1; Mode 1 - Handshake mode. Port B uses 3 bits of Port C as handshake signals	
D3	Port C Upper (C _U) I/O mode selector D3 = 1; Sets C _U as input port D3 = 0; Sets C _U as output port	
D4	Port A I/O mode selector D4 = 1; Sets Port A as input port D4 = 0; Sets Port A as output port	
D5, D6	Mode selector for port C upper and port A D6 D5 = 00; Mode 0 - Simple I/O mode D6 D5 = 01; Mode 1 - Handshake mode. Port A uses 3 bits of Port C as handshake signals D6 D5 = 1X; Mode 2. X can be 0 or 1 - Port A functions as bi-directional port	
D7	Control/Data mode selector for port C D7 = 1; I/O mode. D7 = 0; Bit set/reset (BSR) mode. Functions as the control/status lines for ports A and B. The bits of port C can be set or reset just as if they were output ports.	

Please refer to the 8255A datasheet available at http://www.intersil.com/data/fn/fn2969.pdf for more details about the different operating modes of 8255.

Figure 2.25 illustrates the generic interfacing of a 8255A device with an 8bit processor/controller with 16bit address bus (Lower order Address bus is multiplexed with data bus).

Fig. 2.25 Interfacing of 8255 with an 8 bit microcontroller

The ports of 8255 can be configured for different modes of operation by the processor/controller.

2.4 COMMUNICATION INTERFACE

Communication interface is essential for communicating with various subsystems of the embedded system and with the external world. For an embedded product, the communication interface can be viewed in two different perspectives; namely; Device/board level communication interface (Onboard Communication Interface) and Product level communication interface (External Communication Interface). Embedded product is a combination of different types of components (chips/devices) arranged on a printed circuit board (PCB). The communication channel which interconnects the various components within an embedded product is referred as device/board level communication interface (onboard communication interface). Serial interfaces like 12C, SPI, UART, 1-Wire, etc and parallel bus interface are examples of 'Onboard Communication Interface'.

Some embedded systems are self-contained units and they don't require any interaction and data transfer with other sub-systems or external world. On the other hand, certain embedded systems may be a part of a large distributed system and they require interaction and data transfer between various devices and sub-modules. The 'Product level communication interface' (External Communication Interface) is responsible for data transfer between the embedded system and other devices or modules. The external communication interface can be either a wired media or a wireless media and it can be a serial or a parallel interface. Infrared (IR), Bluetooth (BT), Wireless LAN (Wi-Fi), Radio Frequency waves (RF), GPRS, etc. are examples for wireless communication interface. RS-232C/RS-422/RS-485, USB, Ethernet IEEE 1394 port, Parallel port, CF-II interface, SDIO, PCMCIA, etc. are examples for wired interfaces. It is not mandatory that an embedded system should contain an external communication interface. Mobile communication equipment is an example for embedded system with external communication interface.

The following section gives you an overview of the various 'Onboard' and 'External' communication interfaces for an embedded product. We will discuss about the various physical interface, firmware requirements and initialisation and communication sequence for these interfaces in a dedicated book titled 'Device Interfacing', which is planned under this series.

2.4.1 Onboard Communication Interfaces

Onboard Communication Interface refers to the different communication channels/buses for interconnecting the various integrated circuits and other peripherals within the embedded system. The following section gives an overview of the various interfaces for onboard communication.

2.4.1.1 Inter Integrated Circuit (I2C) Bus The Inter Integrated Circuit Bus (I2C-Pronounced 'I square C') is a synchronous bi-directional half duplex (one-directional communication at a given point of time) two wire serial interface bus. The concept of I2C bus was developed by 'Philips semi-conductors' in the early 1980s. The original intention of I2C was to provide an easy way of connection between a microprocessor/microcontroller system and the peripheral chips in television sets. The I2C bus comprise of two bus lines, namely; Serial Clock-SCL and Serial Data-SDA. SCL line is responsible for generating synchronisation clock pulses and SDA is responsible for transmitting the serial data across devices. I2C bus is a shared bus system to which many number of I2C devices can be connected. Devices connected to the I2C bus can act as either 'Master' device or 'Slave' device. The 'Master' device is responsible for controlling the communication by initiating/terminating data transfer, sending data and generating necessary synchronisation clock pulses. 'Slave' devices wait for the commands

from the master and respond upon receiving the commands. 'Master' and 'Slave' devices can act as either transmitter or receiver. Regardless whether a master is acting as transmitter or receiver, the synchronisation clock signal is generated by the 'Master' device only. I2C supports multi masters on the same bus. The following bus interface diagram shown in Fig. 2.26 illustrates the connection of master and slave devices on the I2C bus.

Fig. 2.26 12C Bus Interfacing

The I2C bus interface is built around an input buffer and an open drain or collector transistor. When the bus is in the idle state, the open drain/collector transistor will be in the floating state and the output lines (SDA and SCL) switch to the 'High Impedance' state. For proper operation of the bus, both the bus lines should be pulled to the supply voltage (+5V for TTL family and +3.3V for CMOS family devices) using pull-up resistors. The typical value of resistors used in pull-up is 2.2K. With pull-up resistors, the output lines of the bus in the idle state will be 'HIGH'.

The address of a I2C device is assigned by hardwiring the address lines of the device to the desired logic level. The address to various I2C devices in an embedded device is assigned and hardwired at the time of designing the embedded hardware. The sequence of operations for communicating with an I2C slave device is listed below:

- The master device pulls the clock line (SCL) of the bus to 'HIGH'
- The master device pulls the data line (SDA) 'LOW', when the SCL line is at logic 'HIGH' (This is the 'Start' condition for data transfer)
- 3. The master device sends the address (7 bit or 10 bit wide) of the 'slave' device to which it wants to communicate, over the SDA line. Clock pulses are generated at the SCL line for synchronising the bit reception by the slave device. The MSB of the data is always transmitted first. The data in the bus is valid during the 'HIGH' period of the clock signal

- The master device sends the Read or Write bit (Bit value = 1 Read operation; Bit value = 0 Write operation) according to the requirement
- The master device waits for the acknowledgement bit from the slave device whose address is sent on the bus along with the Read/Write operation command. Slave devices connected to the bus compares the address received with the address assigned to them
- The slave device with the address requested by the master device responds by sending an acknowledge bit (Bit value = 1) over the SDA line
- 7. Upon receiving the acknowledge bit, the Master device sends the 8bit data to the slave device over SDA line, if the requested operation is 'Write to device'. If the requested operation is 'Read from device', the slave device sends data to the master over the SDA line
- The master device waits for the acknowledgement bit from the device upon byte transfer complete
 for a write operation and sends an acknowledge bit to the Slave device for a read operation
- The master device terminates the transfer by pulling the SDA line 'HIGH' when the clock line SCL is at logic 'HIGH' (Indicating the 'STOP' condition)

I2C bus supports three different data rates. They are: Standard mode (Data rate up to 100kbits/sec (100 kbps)), Fast mode (Data rate up to 400kbits/sec (400 kbps)) and High speed mode (Data rate up to 3.4Mbits/sec (3.4 Mbps)). The first generation I2C devices were designed to support data rates only up to 100kbps. The new generation I2C devices are designed to operate at data rates up to 3.4Mbits/sec.

2.4.1.2 Serial Peripheral Interface (SPI) Bus The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four-wire serial interface bus. The concept of SPI was introduced by Motorola. SPI is a single master multi-slave system. It is possible to have a system where more than one SPI device can be master, provided the condition only one master device is active at any given point of time, is satisfied. SPI requires four signal lines for communication. They are:

Master Out Slave In (MOSI): Signal line carrying the data from master to slave device. It is

also known as Slave Input/Slave Data In (SI/SDI)

Master In Slave Out (MISO): Signal line carrying the data from slave to master device. It is

also known as Slave Output (SO/SDO)

Serial Clock (SCLK): Signal line carrying the clock signals

Slave Select (SS): Signal line for slave device select. It is an active low signal

The bus interface diagram shown in Fig. 2.27 illustrates the connection of master and slave devices on the SPI bus.

The master device is responsible for generating the clock signal. It selects the required slave device by asserting the corresponding slave device's slave select signal 'LOW'. The data out line (MISO) of all the slave devices when not selected floats at high impedance state.

The serial data transmission through SPI bus is fully configurable. SPI devices contain a certain set of registers for holding these configurations. The serial peripheral control register holds the various configuration parameters like master/slave selection for the device, baudrate selection for communication, clock signal control, etc. The status register holds the status of various conditions for transmission and reception.

SPI works on the principle of 'Shift Register'. The master and slave devices contain a special shift register for the data to transmit or receive. The size of the shift register is device dependent. Normally it is a multiple of 8. During transmission from the master to slave, the data in the master's shift register is shifted out to the MOSI pin and it enters the shift register of the slave device through the MOSI pin of the slave device. At the same time the shifted out data bit from the slave device's shift register enters

Fig. 2,27 SPI bus interfacing

the shift register of the master device through MISO pin. In summary, the shift registers of 'master' and 'slave' devices form a circular buffer. For some devices, the decision on whether the LS/MS bit of data needs to be sent out first is configurable through configuration register (e.g. LSBF bit of the SPI control register for Motorola's 68HC12 controller).

When compared to I2C, SPI bus is most suitable for applications requiring transfer of data in 'streams'.

The only limitation is SPI doesn't support an acknowledgement mechanism.

2.4.1.3 Universal Asynchronous Receiver Transmitter (UART) Universal Asynchronous Receiver Transmitter (UART) based data transmission is an asynchronous form of serial data transmission. UART based serial data transmission doesn't require a clock signal to synchronise the transmitting end and receiving end for transmission. Instead it relies upon the pre-defined agreement between the transmitting device and receiving device. The serial communication settings (Baudrate, number of bits per byte, parity, number of start bits and stop bit and flow control) for both transmitter and receiver should be set as identical. The start and stop of communication is indicated through inserting special bits in the data stream. While sending a byte of data, a start bit is added first and a stop bit is added at the end of the bit stream. The least significant bit of the data byte follows the 'start' bit.

The 'start' bit informs the receiver that a data byte is about to arrive. The receiver device starts polling its 'receive line' as per the baudrate settings. If the baudrate is 'x' bits per second, the time slot available for one bit is 1/x seconds. The receiver unit polls the receiver line at exactly half of the time slot available for the bit. If parity is enabled for communication, the UART of the transmitting device adds a parity bit (bit value is 1 for odd number of 1s in the transmitted bit stream and 0 for even number of 1s). The UART of the receiving device calculates the parity of the bits received and compares it with the received parity bit for error checking. The UART of the receiving device discards the 'Start', 'Stop' and 'Parity'

bit from the received bit stream and converts the received serial bit data to a word (In the case of 8 bits/byte, the byte is formed with the received 8 bits with the first received bit as the LSB and last received data bit as MSB).

For proper communication, the 'Transmit line' of the sending device should be connected to the 'Receive line' of the receiving device. Figure 2.28 illustrates the same.

In addition to the serial data transmission function, UART provides hardware handshaking signal support for controlling the serial data flow. UART chips are available from different semiconductor manufacturers. National

TXD: Transmitter line RXD: Receiver line

Fig. 2.28 UART Interfacing

Semiconductor's 8250 UART chip is considered as the standard setting UART. It was used in the original IBM PC.

Nowadays most of the microprocessors/controllers are available with integrated UART functionality and they provide built-in instruction support for serial data transmission and reception.

2.4.1.4 1-Wire Interface 1-wire interface is an asynchronous half-duplex communication protocol developed by Maxim Dallas Semiconductor (http://www.maxim-ic.com). It is also known as Dallas 1-Wire® protocol. It makes use of only a single signal line (wire) called DQ for communication and follows the master-slave communication model. One of the key feature of 1-wire bus is that it allows power to be sent along the signal wire as well. The 12C slave devices incorporate internal capacitor (typically of the order of 800 pF) to power the device from the signal line. The 1-wire interface supports a single master and one or more slave devices on the bus. The bus interface diagram shown in Fig. 2.29 illustrates the connection of master and slave devices on the 1-wire bus.

Fig. 2.29 1-Wire Interface bus

Every 1-wire device contains a globally unique 64bit identification number stored within it. This unique identification number can be used for addressing individual devices present on the bus in case there are multiple slave devices connected to the 1-wire bus. The identifier has three parts: an 8bit family code, a 48bit serial number and an 8bit CRC computed from the first 56 bits. The sequence of operation for communicating with a 1-wire slave device is listed below.

- The master device sends a 'Reset' pulse on the 1-wire bus.
- The slave device(s) present on the bus respond with a 'Presence' pulse.
- The master device sends a ROM command (Net Address Command followed by the 64bit address of the device). This addresses the slave device(s) to which it wants to initiate a communication.
- The master device sends a read/write function command to read/write the internal memory or register of the slave device.
- 5. The master initiates a Read data/Write data from the device or to the device

All communication over the 1-wire bus is master initiated. The communication over the 1-wire bus is divided into timeslots of 60 microseconds. The 'Reset' pulse occupies 8 time slots. For starting a communication, the master asserts the reset pulse by pulling the 1-wire bus 'LOW' for at least 8 time slots (480µs). If a 'slave' device is present on the bus and is ready for communication it should respond to the master with a 'Presence' pulse, within 60µs of the release of the 'Reset' pulse by the master. The slave device(s) responds with a 'Presence' pulse by pulling the 1-wire bus 'LOW' for a minimum of 1 time slot (60µs). For writing a bit value of 1 on the 1-wire bus, the bus master pulls the bus for 1 to 15µs and then releases the bus for the rest of the time slot. A bit value of '0' is written on the bus by master pulling the bus for a minimum of 1 time slot (60µs) and a maximum of 2 time slots (120µs). To Read a bit from the slave device, the master pulls the bus 'LOW' for 1 to 15µs. If the slave wants to send a bit value '1' in response to the read request from the master, it simply releases the bus for the rest of the time slot. If the slave wants to send a bit value '0', it pulls the bus 'LOW' for the rest of the time slot.

2.4.1.5 Parallel Interface The on-board parallel interface is normally used for communicating with peripheral devices which are memory mapped to the host of the system. The host processor/controller of the embedded system contains a parallel bus and the device which supports parallel bus can directly connect to this bus system. The communication through the parallel bus is controlled by the control signal interface between the device and the host. The 'Control Signals' for communication includes 'Read/ Write' signal and device select signal. The device normally contains a device select line and the device becomes active only when this line is asserted by the host processor. The direction of data transfer (Host to Device or Device to Host) can be controlled through the control signal lines for 'Read' and 'Write'. Only the host processor has control over the 'Read' and 'Write' control signals. The device is normally memory mapped to the host processor and a range of address is assigned to it. An address decoder circuit is used for generating the chip select signal for the device. When the address selected by the processor is within the range assigned for the device, the decoder circuit activates the chip select line and thereby the device becomes active. The processor then can read or write from or to the device by asserting the corresponding control line (RD\ and WR\ respectively). Strict timing characteristics are followed for parallel communication. As mentioned earlier, parallel communication is host processor initiated. If a device wants to initiate the communication, it can inform the same to the processor through interrupts. For this, the interrupt line of the device is connected to the interrupt line of the processor and the corresponding interrupt is enabled in the host processor. The width of the parallel interface is determined by the data bus width of the host processor. It can be 4bit, 8bit, 16bit, 32bit or 64bit etc. The bus width supported by the device should be same as that of the host processor. The bus interface diagram shown in Fig. 2.30 illustrates the interfacing of devices through parallel interface.

Fig. 2.30 Parallel Interface Bus

Parallel data communication offers the highest speed for data transfer.

2.4.2 External Communication Interfaces

The External Communication Interface refers to the different communication channels/buses used by the embedded system to communicate with the external world. The following section gives an overview of the various interfaces for external communication.

2.4.2.1 RS-232 C & RS-485 RS-232 C (Recommended Standard number 232, revision C from the Electronic Industry Association) is a legacy, full duplex, wired, asynchronous serial communication interface. The RS-232 interface is developed by the Electronics Industries Association (EIA) during the early 1960s. RS-232 extends the UART communication signals for external data communication.

UART uses the standard TTL/CMOS logic (Logic 'High' corresponds to bit value 1 and Logic 'Low' corresponds to bit value 0) for bit transmission whereas RS-232 follows the EIA standard for bit transmission. As per the EIA standard, a logic '0' is represented with voltage between +3 and +25V and a logic '1' is represented with voltage between -3 and -25V. In EIA standard, logic '0' is known as 'Space' and logic '1' as 'Mark'. The RS-232 interface defines various handshaking and control signals for communication apart from the 'Transmit' and 'Receive' signal lines for data communication. RS-232 supports two different types of connectors, namely; DB-9: 9-Pin connector and DB-25: 25-Pin connector. Figure 2.31 illustrates the connector details for DB-9 and DB-25.

Fig. 2.31 DB-9 and DB-25 R5-232 Connector Interface

The pin details for the two connectors are explained in the following table:

Pin Name	Pin no: (For DB-9 Connector)	Pin no: (For DB-25 Connector)	Description
TXD	3	2	Transmit Pin for Transmitting Serial Data
RXD	2	3	Receive Pin for Receiving Serial Data
RTS	7	4	Request to send.
CTS	8	5	Clear To Send
DSR	6	6	Data Set Ready
GND	5	7	Signal Ground
DCD	1	8	Data Carrier Detect
DTR	4	20	Data Terminal Ready
RI	9	22	Ring Indicator
FG		1	Frame Ground
SDCD		12	Secondary DCD
SCTS		13	Secondary CTS
STXD		14	Secondary TXD
TC		15	Transmission Signal Element Timing
SRXD		16	Secondary RXD
RC		17	Receiver Signal Element Timing
SRTS		19	Secondary RTS
SQ		21	Signal Quality detector
NC		9	No Connection
NC		10	No Connection
NC		11	No Connection
NC		18	No Connection
NC		23	No Connection
NC		24	No Connection
NC		25	No Connection

RS-232 is a point-to-point communication interface and the devices involved in RS-232 communication are called 'Data Terminal Equipment (DTE)' and 'Data Communication Equipment (DCE)'. If no data flow control is required, only TXD and RXD signal lines and ground line (GND) are required for data transmission and reception. The RXD pin of DCE should be connected to the TXD pin of DTE and vice versa for proper data transmission.

If hardware data flow control is required for serial transmission, various control signal lines of the RS-232 connection are used appropriately. The control signals are implemented mainly for modem communication and some of them may not be irrelevant for other type of devices. The Request To Send (RTS) and Clear To Send (CTS) signals co-ordinate the communication between DTE and DCE. Whenever the DTE has a data to send, it activates the RTS line and if the DCE is ready to accept the data, it activates the CTS line.

The Data Terminal Ready (DTR) signal is activated by DTE when it is ready to accept data. The Data Set Ready (DSR) is activated by DCE when it is ready for establishing a communication link. DTR should be in the activated state before the activation of DSR.

The Data Carrier Detect (DCD) control signal is used by the DCE to indicate the DTE that a good signal is being received.

Ring Indicator (RI) is a modem specific signal line for indicating an incoming call on the telephone line.

The 25 pin DB connector contains two sets of signal lines for transmit, receive and control lines.

1.owadays DB-25 connector is obsolete and most of the desktop systems are available with DB-9 connectors only.

As per the EIA standard RS-232 C supports baudrates up to 20Kbps (Upper limit 19.2 Kbps) The commonly used baudrates by devices are 300bps, 1200bps, 2400bps, 9600bps, 11.52Kbps and 19.2Kbps. 9600 is the popular baudrate setting used for PC communication. The maximum operating distance supported by RS-232 is 50 feet at the highest supported baudrate.

Embedded devices contain a UART for serial communication and they generate signal levels conforming to TTL/CMOS logic. A level translator IC like MAX 232 from Maxim Dallas semiconductor is used for converting the signal lines from the UART to RS-232 signal lines for communication. On the receiving side the received data is converted back to digital logic level by a converter IC. Converter chips contain converters for both transmitter and receiver.

Though RS-232 was the most popular communication interface during the olden days, the advent of other communication techniques like Bluetooth, USB, Firewire, etc are pushing down RS-232 from the scenes. Still RS-232 is popular in certain legacy industrial applications.

RS-232 supports only point-to-point communication and not suitable for multi-drop communication. It uses single ended data transfer technique for signal transmission and thereby more susceptible to noise and it greatly reduces the operating distance.

RS-422 is another serial interface standard from EIA for differential data communication. It supports data rates up to 100Kbps and distance up to 400 ft. The same RS-232 connector is used at the device end and an RS-232 to RS-422 converter is plugged in the transmission line. At the receiver end the conversion from RS-422 to RS-232 is performed. RS-422 supports multi-drop communication with one transmitter device and receiver devices up to 10.

RS-485 is the enhanced version of RS-422 and it supports multi-drop communication with up to 32 transmitting devices (drivers) and 32 receiving devices on the bus. The communication between devices in the bus uses the 'addressing' mechanism to identify slave devices.

2.4.2.2 Universal Serial Bus (USB) Universal Serial Bus (USB) is a wired high speed serial bus for data communication. The first version of USB (USB1.0) was released in 1995 and was created by the USB core group members consisting of Intel, Microsoft, IBM, Compaq, Digital and Northern Telecom. The USB communication system follows a star topology with a USB host at the centre and one or more USB peripheral devices/USB hosts connected to it. A USB host can support connections up to 127, including slave peripheral devices and other USB hosts. Figure 2.32 illustrates the star topology for USB device connection.

USB transmits data in packet format. Each data packet has a standard format. The USB communication is a host initiated one. The USB host contains a host controller which is responsible for controlling the data communication, including establishing connectivity with USB slave devices, packetizing and formatting the data. There are different standards for implementing the USB Host Control interface; namely Open Host Control Interface (OHCI) and Universal Host Control Interface (UHCI). The physical connection between a USB peripheral device and master device is established with a USB cable. The USB cable supports communication distance of up to 5 metres. The USB standard uses two different types of connector at the ends of the USB cable for connecting the USB peripheral device and host device. 'Type A' connector is used for upstream connection (connection with host) and Type B connector is used for downstream connection (connection with slave device). The USB connector present in desktop PCs or laptops are examples for 'Type A' USB connector. Both Type A and Type B connectors contain 4 pins for communication. The Pin details for the connectors are listed in the table given below.

Pin no:	Pin name	Description
The state of	V _{BUS}	Carries power (5V)
2	D-	Differential data carrier line
3	D+	Differential data carrier line
4	GND	Ground signal line

Fig. 2.32 USB Device Connection topology

USB uses differential signals for data transmission. It

improves the noise immunity. USB interface has the ability to supply power to the connecting devices. Two connection lines (Ground and Power) of the USB interface are dedicated for carrying power. It can supply power up to 500 mA at 5 V. It is sufficient to operate low power devices. Mini and Micro USB connectors are available for small form factor devices like portable media players.

Each USB device contains a Product ID (PID) and a Vendor ID (VID). The PID and VID are embedded into the USB chip by the USB device manufacturer. The VID for a device is supplied by the USB standards forum. PID and VID are essential for loading the drivers corresponding to a USB device for communication.

USB supports four different types of data transfers, namely; Control, Bulk, Isochronous and Interrupt. Control transfer is used by USB system software to query, configure and issue commands to the USB device. Bulk transfer is used for sending a block of data to a device. Bulk transfer supports error checking and correction. Transferring data to a printer is an example for bulk transfer. Isochronous data transfer is used for real-time data communication. In Isochronous transfer, data is transmitted as streams in real-time. Isochronous transfer doesn't support error checking and re-transmission of data in case of any transmission loss. All streaming devices like audio devices and medical equipment for data collection make use of the isochronous transfer. Interrupt transfer is used for transferring small amount of data. Interrupt transfer mechanism makes use of polling technique to see whether the USB device has any data to send. The frequency of polling is determined by the USB device and it varies from 1 to 255 milliseconds. Devices like Mouse and Keyboard, which transmits fewer amounts of data, uses Interrupt transfer.

USB.ORG (www.usb.org) is the standards body for defining and controlling the standards for USB communication. Presently USB supports four different data rates namely; Low Speed (1.5Mbps), Full Speed (12Mbps), High Speed (480Mbps) and Super Speed (4.8Gbps). The Low Speed and Full Speed specifications are defined by USB 1.0 and the High Speed specification is defined by USB 2.0. USB 3.0

defines the specifications for Super Speed. USB 3.0 is expected to be in action by year 2009. There is a move happening towards wireless USB for data transmission using Ultra Wide Band (UWB) technology. Some laptops are already available in the market with wireless USB support.

2.4.2.3 IEEE 1394 (Firewire) IEEE 1394 is a wired, isochronous high speed serial communication bus. It is also known as High Performance Serial Bus (HPSB). The research on 1394 was started by Apple Inc. in 1985 and the standard for this was coined by IEEE. The implementation of it is available from various players with different names. Apple Inc's (www.apple.com) implementation of 1394 protocol is popularly known as Firewire. i.LINK is the 1394 implementation from Sony Corporation (www.sony.net) and Lynx is the implementation from Texas Instruments (www.ti.com). 1394 supports peer-to-peer connection and point-to-multipoint communication allowing 63 devices to be connected on the bus in a tree topology. 1394 is a wired serial interface and it can support a cable length of up to 15 feet for interconnection.

The 1394 standard has evolved a lot from the first version IEEE 1394–1995 released in 1995 to the recent version IEEE 1394–2008 released in June 2008. The 1394 standard supports a data rate of 400 to 3200Mbits/second. The IEEE 1394 uses differential data transfer (The information is sent using differential signals through a pair of twisted cables. It increases the noise immunity) and the interface cable supports 3 types of connectors, namely; 4-pin connector, 6-pin connector (alpha connector) and 9 pin connector (beta connector). The 6 and 9 pin connectors carry power also to support external devices (In case an embedded device is connected to a PC through an IEEE 1394 cable with 6 or 9 pin connector interface, it can operate from the power available through the connector.) It can supply unregulated power in the range of 24 to 30V. (The Apple implementation is for battery operated devices and it can supply a voltage in the range 9 to 12V.) The table given below illustrates the pin details for 4, 6 and 9 pin connectors.

Pin name	Pin no: (4 Pin Connector)	Pin no: (6 Pin Connector)	Pin no: (9 Pin Connector)	Description
Power		1	8	Unregulated DC supply. 24 to 30V
Signal Ground	Lake Sale	2 2	6	Ground connection
TPB-	1.00	3	1.7.0	Differential Signal line for Signal line B
TPB+	2	100 A	2	Differential Signal line for Signal line B
TPA-	3	5	3	Differential Signal line for Signal line A
TPA+	4	6	4	Differential Signal line for Signal line A
TPA(S)			5	Shield for the differential signal line A. Normally grounded
TPB(S)			9	Shield for the differential signal line B. Normally grounded
NC .	000		7	No connection

There are two differential data transfer lines A and B per connector. In a 1394 cable, normally the differential lines of A are connected to B (TPA+ to TPB+ and TPA-to TPB-) and vice versa.

1394 is a popular communication interface for connecting embedded devices like Digital Camera, Camcorder, Scanners to desktop computers for data transfer and storage.

Unlike USB interface (Except USB OTG), IEEE 1394 doesn't require a host for communicating between devices. For example, you can directly connect a scanner with a printer for printing. The data-

rate supported by 1394 is far higher than the one supported by USB2.0 interface. The 1394 hardware implementation is much costlier than USB implementation.

2.4.2.4 Infrared (IrDA) Infrared (IrDA) is a serial, half duplex, line of sight based wireless technology for data communication between devices. It is in use from the olden days of communication and you may be very familiar with it. The remote control of your TV, VCD player, etc. works on Infrared data communication principle. Infrared communication technique uses infrared waves of the electromagnetic spectrum for transmitting the data. IrDA supports point-point and point-to-multipoint communication, provided all devices involved in the communication are within the line of sight. The typical communication range for IrDA lies in the range 10 cm to 1 m. The range can be increased by increasing the transmitting power of the IR device. IR supports data rates ranging from 9600bits/second to 16Mbps. Depending on the speed of data transmission IR is classified into Serial IR (SIR), Medium IR (MIR), Fast IR (FIR), Very Fast IR (VFIR) and Ultra Fast IR (UFIR). SIR supports transmission rates ranging from 9600bps to 115.2kbps. MIR supports data rates of 0.576Mbps and 1.152Mbps. FIR supports data rates up to 4Mbps. VFIR is designed to support high data rates up to 16Mbps. The UFIR specs are under development and it is targeting a data rate up to 100Mbps.

IrDA communication involves a transmitter unit for transmitting the data over IR and a receiver for receiving the data. Infrared Light Emitting Diode (LED) is the IR source for transmitter and at the receiving end a photodiode acts as the receiver. Both transmitter and receiver unit will be present in each device supporting IrDA communication for bidirectional data transfer. Such IR units are known as 'Transceiver'. Certain devices like a TV remote control always require unidirectional communication and so they contain either the transmitter or receiver unit (The remote control unit contains the transmitter unit and TV contains the receiver unit).

'Infra-red Data Association' (IrDA - http://www.irda.org/) is the regulatory body responsible for defining and licensing the specifications for IR data communication. IrDA communication has two essential parts; a physical link part and a protocol part. The physical link is responsible for the physical transmission of data between devices supporting IR communication and protocol part is responsible for defining the rules of communication. The physical link works on the wireless principle making use of Infrared for communication. The IrDA specifications include the standard for both physical link and protocol layer.

The IrDA control protocol contains implementations for Physical Layer (PHY), Media Access Control (MAC) and Logical Link Control (LLC). The Physical Layer defines the physical characteristics of communication like range, data rates, power, etc.

IrDA is a popular interface for file exchange and data transfer in low cost devices. IrDA was the prominent communication channel in mobile phones before Bluetooth's existence. Even now most of the mobile phone devices support IrDA.

2.4.2.5 Bluetooth (BT) Bluetooth is a low cost, low power, short range wireless technology for data and voice communication. Bluetooth was first proposed by 'Ericsson' in 1994. Bluetooth operates at 2.4GHz of the Radio Frequency spectrum and uses the Frequency Hopping Spread Spectrum (FHSS) technique for communication. Literally it supports a data rate of up to 1Mbps and a range of approximately 30 feet for data communication. Like IrDA, Bluetooth communication also has two essential parts; a physical link part and a protocol part. The physical link is responsible for the physical transmission of data between devices supporting Bluetooth communication and protocol part is responsible

for defining the rules of communication. The physical link works on the wireless principle making use of RF waves for communication. Bluetooth enabled devices essentially contain a Bluetooth wireless radio for the transmission and reception of data. The rules governing the Bluetooth communication is implemented in the 'Bluetooth protocol stack'. The Bluetooth communication IC holds the stack. Each Bluetooth device will have a 48 bit unique identification number. Bluetooth communication follows packet based data transfer.

Bluetooth supports point-to-point (device to device) and point-to-multipoint (device to multiple device broadcasting) wireless communication. The point-to-point communication follows the master-slave relationship. A Bluetooth device can function as either master or slave. When a network is formed with one Bluetooth device as master and more than one device as slaves, it is called a Piconet. A Piconet supports a maximum of seven slave devices.

Bluetooth is the favourite choice for short range data communication in handheld embedded devices. Bluetooth technology is very popular among cell phone users as they are the easiest communication channel for transferring ringtones, music files, pictures, media files, etc. between neighbouring Bluetooth enabled phones.

The Bluetooth standard specifies the minimum requirements that a Bluetooth device must support for a specific usage scenario. The Generic Access Profile (GAP) defines the requirements for detecting a Bluetooth device and establishing a connection with it. All other specific usage profiles are based on GAP. Serial Port Profile (SPP) for serial data communication, File Transfer Profile (FTP) for file transfer between devices, Human Interface Device (HID) for supporting human interface devices like keyboard and mouse are examples for Bluetooth profiles.

The specifications for Bluetooth communication is defined and licensed by the standards body 'Bluetooth Special Interest Group (SIG)'. For more information, please visit the website www.bluetooth.org.

2.4.2.6 Wi-Fi Wi-Fi or Wireless Fidelity is the popular wireless communication technique for networked communication of devices. Wi-Fi follows the IEEE 802.11 standard. Wi-Fi is intended for network communication and it supports Internet Protocol (IP) based communication. It is essential to have device identities in a multipoint communication to address specific devices for data communication. In an IP based communication each device is identified by an IP address, which is unique to each device on the network. Wi-Fi based communications require an intermediate agent called Wi-Fi router/Wireless Access point to manage the communications. The Wi-Fi router is responsible for restricting the access to a network, assigning IP address to devices on the network, routing data packets to the intended devices on the network. Wi-Fi enabled devices contain a wireless adaptor for transmitting and receiving data in the form of radio signals through an antenna. The hardware part of it is known as Wi-Fi Radio.

Wi-Fi operates at 2.4GHz or 5GHz of radio spectrum and they co-exist with other ISM band devices like Bluetooth. Figure 2.33 illustrates the typical interfacing of devices in a Wi-Fi network.

For communicating with devices over a Wi-Fi network, the device when its Wi-Fi radio is turned ON, searches the available Wi-Fi network in its vicinity and lists out the Service Set Identifier (SSID) of the available networks. If the network is security enabled, a password may be required to connect to a particular SSID. Wi-Fi employs different security mechanisms like Wired Equivalency Privacy (WEP) Wireless Protected Access (WPA), etc. for securing the data communication.

Wi-Fi supports data rates ranging from 1Mbps to 150Mbps (Growing towards higher rates as technology progresses) depending on the standards (802.11a/b/g/n) and access/modulation method. Depending on the type of antenna and usage location (indoor/outdoor), Wi-Fi offers a range of 100 to 300 feet.

Wi-Fi router

Device 2

2.4.2.7 ZigBee ZigBee is a low power, low cost, wireless network communication protocol based on the IEEE 802.15.4-2006 standard. ZigBee is targeted for low power, low data rate and secure applications for Wireless Personal Area Networking (WPAN). The ZigBee specifications support a robust mesh network containing multiple nodes. This networking strategy makes the network reliable by permitting messages to travel through a number of different paths to get from one node to another.

ZigBee operates worldwide at the unlicensed bands of Radio spectrum, mainly at 2.400 to 2.484 GHz, 902 to 928 MHz and 868.0 to 868.6 MHz. ZigBee Supports an operating distance of up to 100 metres and a data rate of 20 to 250Kbps.

In the ZigBee terminology, each ZigBee

device falls under any one of the following ZigBee device category.

ZigBee Coordinator (ZC)/Network Coordinator: The ZigBee coordinator acts as the root of the Zig-Bee network. The ZC is responsible for initiating the ZigBee network and it has the capability to store information about the network.

Device 1

Fig. 2.33 Wi-Fi network

ZigBee Router (ZR)/Full function Device (FFD): Responsible for passing information from device to another device or to another ZR.

ZigBee End Device (ZED)/Reduced Function Device (RFD): End device containing ZigBee functionality for data communication. It can talk only with a ZR or ZC and doesn't have the capability to act as a mediator for transferring data from one device to another.

The diagram shown in Fig. 2.34 gives an overview of ZC, ZED and ZR in a ZigBee network.

ZigBee is primarily targeting application areas like home & industrial automation, energy management, home control/ security, medical/patient tracking, logistics & asset tracking and sensor networks & active RFID. Automatic Meter Reading (AMR), smoke detectors, wireless telemetry, HVAC control, heating control, lighting controls, environmental controls, etc. are examples for applications which can make use of the Zig-Bee technology.

The specifications for ZigBee is developed and managed by the ZigBee alliance (www.zigbee.org), a non-profit consortium of leading semiconductor manufacturers, technology providers, OEMs and end-users worldwide.

Fig. 2.34 A ZigBee network model

2.4.2.8 General Packet Radio Service (GPRS) General Packet Radio Service (GPRS) is a communication technique for transferring data over a mobile communication network like GSM. Data is sent as packets in GPRS communication. The transmitting device splits the data into several related packets. At the receiving end the data is re-constructed by combining the received data packets. GPRS

supports a theoretical maximum transfer rate of 171.2kbps. In GPRS communication, the radio channel is concurrently shared between several users instead of dedicating a radio channel to a cell phone user. The GPRS communication divides the channel into 8 timeslots and transmits data over the available channel, GPRS supports Internet Protocol (IP), Point to Point Protocol (PPP) and X.25 protocols for communication.

GPRS is mainly used by mobile enabled embedded devices for data communication. The device should support the necessary GPRS hardware like GPRS modem and GPRS radio. To accomplish GPRS based communication, the carrier network also should have support for GPRS communication. GPRS is an old technology and it is being replaced by new generation data communication techniques like EDGE, High Speed Downlink Packet Access (HSDPA), etc. which offers higher bandwidths for communication.

EMBEDDED FIRMWARE

Embedded firmware refers to the control algorithm (Program instructions) and or the configuration settings that an embedded system developer dumps into the code (Program) memory of the embedded system. It is an un-avoidable part of an embedded system. There are various methods available for developing the embedded firmware. They are listed below.

- 1. Write the program in high level languages like Embedded C/C++ using an Integrated Development Environment (The IDE will contain an editor, compiler, linker, debugger, simulator, etc. IDEs are different for different family of processors/controllers. For example, Keil micro vision3 IDE is used for all family members of 8051 microcontroller, since it contains the generic 8051 compiler C51).
- 2. Write the program in Assembly language using the instructions supported by your application's target processor/controller.

The instruction set for each family of processor/controller is different and the program written in either of the methods given above should be converted into a processor understandable machine code before loading it into the program memory.

The process of converting the program written in either a high level language or processor/controller specific Assembly code to machine readable binary code is called 'HEX File Creation'. The methods used for 'HEX File Creation' is different depending on the programming techniques used. If the program is written in Embedded C/C++ using an IDE, the cross compiler included in the IDE converts it into corresponding processor/controller understandable 'HEX File'. If you are following the Assembly language based programming technique (method 2), you can use the utilities supplied by the processor/controller vendors to convert the source code into 'HEX File'. Also third party tools are available, which may be of free of cost, for this conversion.

For a beginner in the embedded software field, it is strongly recommended to use the high level language based development technique. The reasons for this being: writing codes in a high level language is easy, the code written in high level language is highly portable which means you can use the same code to run on different processor/controller with little or less modification. The only thing you need to do is re-compile the program with the required processor's IDE, after replacing the include files for that particular processor. Also the programs written in high level languages are not developer dependent. Any skilled programmer can trace out the functionalities of the program by just having a look at the program. It will be much easier if the source code contains necessary comments and documentation lines. It is very easy to debug and the overall system development time will be reduced to a greater extent.

Device 3

The developer needs to know about all the instruction sets of the processor/controller or at least s/he should carry an instruction set reference manual with her/him. A programmer using assembly language technique writes the program according to his/her view and taste. Often he/she may be writing a method or functionality which can be achieved through a single instruction as an experienced person's point of view, by two or three instructions in his/her own style. So the program will be highly dependent on the developer. It is very difficult for a second person to understand the code written in Assembly even if it is well documented.

We will discuss both approaches of embedded software development in a later chapter dealing with design of embedded firmware, in detail. Two types of control algorithm design exist in embedded firmware development. The first type of control algorithm development is known as the infinite loop or 'super loop' based approach, where the control flow runs from top to bottom and then jumps back to the top of the program in a conventional procedure. It is similar to the while (1) { }; based technique in C. The second method deals with splitting the functions to be executed into tasks and running these tasks using a scheduler which is part of a General Purpose or Real Time Embedded Operating System (GPOS/RTOS). We will discuss both of these approaches in separate chapters of this book.

2.6 OTHER SYSTEM COMPONENTS

The other system components refer to the components/circuits/ICs which are necessary for the proper functioning of the embedded system. Some of these circuits may be essential for the proper functioning of the processor/controller and firmware execution. Watchdog timer, Reset IC (or passive circuit), brown-out protection IC (or passive circuit), etc. are examples of circuits/ICs which are essential for the proper functioning of the processor/controllers. Some of the controllers or SoCs integrate these components within a single IC and doesn't require such components externally connected to the chip for proper functioning. Depending on the system requirement, the embedded system may include other integrated circuits for performing specific functions, level translator ICs for interfacing circuits with different logic levels, etc. The following section explains the essential circuits for the proper functioning of the processor/controller of the embedded system.

2.6.1 Reset Circuit

The reset circuit is essential to ensure that the device is not operating at a voltage level where the device is not guaranteed to operate, during system power ON. The reset signal brings the internal registers and the different hardware systems of the processor/controller to a known state and starts the firmware execution from the reset vector (Normally from vector address 0x0000 for conventional processors/controllers. The reset vector can be relocated to an address for processors/controllers supporting bootloader). The reset signal can be either active high (The processor undergoes reset when the reset pin of the processor is at logic high) or active low (The processor undergoes reset when the reset pin of the processor is at logic low). Since the processor operation is synchronised to a clock signal, the reset pulse should be wide enough to give time for the clock oscillator to stabilise before the internal reset state starts. The reset signal to the processor can be applied at power ON through an external passive reset circuit comprising a Capacitor and Resistor or through a standard Reset IC like MAX810 from Maxim Dallas (www.maxim-ic.com). Select the reset IC based on the type of reset signal and logic level (CMOS/TTL) supported by the processor/controller in use. Some microprocessors/controllers contain built-in internal

reset circuitry and they don't require external reset circuitry. Figure 2.35 illustrates a resistor capacitor based passive reset circuit for active high and low configurations. The reset pulse width can be adjusted by changing the resistance value R and capacitance value C.

Fig. 2.35 RC based reset circuit

2.6.2 Brown-out Protection Circuit

Brown-out protection circuit prevents the processor/controller from unexpected program execution behaviour when the supply voltage to the processor/controller falls below a specified voltage. It is essential for battery powered devices since there are greater chances for the battery voltage to drop below the required threshold. The processor behaviour may not be predictable if the supply voltage falls below the recommended operating voltage. It may lead to situations like data corruption. A brown-out protection circuit holds the processor/controller in reset state, when the operating voltage falls below the threshold, until it rises above the threshold voltage. Certain processors/controllers support built in brown-out protection circuit which monitors the supply voltage internally. If the processor/controller doesn't integrate a built-in brown-out protection circuit, the same can be implemented using external passive circuits or supervisor ICs. Figure 2.36 illustrates a brown-out circuit implementation using Zener diode and transistor for processor/controller with active low Reset logic.

Fig. 2.36 Brown-out protection circuit with Active low output

The Zener diode Dz and transistor Q forms the heart of this circuit. The transistor conducts always when the supply voltage V_{cc} is greater than that of the sum of V_{BE} and V_{z} (Zener voltage). The transistor stops conducting when the supply voltage falls below the sum of V_{BE} and V_{z} . Select the Zener diode with required voltage for setting the low threshold value for V_{CC} . The values of R1, R2, and R3 can be selected based on the electrical characteristics (Absolute maximum current and voltage ratings) of the transistor in use. Microprocessor Supervisor ICs like DS1232 from Maxim Dallas (www.maximic.com) also provides Brown-out protection.

2.6.3 Oscillator Unit

A microprocessor/microcontroller is a digital device made up of digital combinational and sequential circuits. The instruction execution of a microprocessor/controller occurs in sync with a clock signal. It is analogous to the heartbeat of a living being which synchronises the execution of life. For a living being, the heart is responsible for the generation of the beat whereas the oscillator unit of the embedded system is responsible for generating the precise clock for the processor. Certain processors/controllers integrate a built-in oscillator unit and simply require an external ceramic resonator/quartz crystal for producing the necessary clock signals. Quartz crystals and ceramic resonators are equivalent in operation, however they possess physical difference. A quartz crystal is normally mounted in a hermetically sealed metal case with two leads protruding out of the case. Certain devices may not contain a built-in oscillator unit and require the clock pulses to be generated and supplied externally. Quartz crystal Oscillators are available in the form chips and they can be used for generating the clock pulses in such a cases. The speed of operation of a processor is primarily dependent on the clock frequency. However we cannot increase the clock frequency blindly for increasing the speed of execution. The logical circuits lying inside the processor always have an upper threshold value for the maximum clock at which the system can run, beyond which the system becomes unstable and non functional. The total system power consumption is directly proportional to the clock frequency. The power consumption increases with increase in clock frequency. The accuracy of program execution depends on the accuracy of the clock signal. The accuracy of the crystal oscillator or ceramic resonator is normally expressed in terms of +/-ppm (Parts per million). Figure 2.37 illustrates the usage of quartz crystal/ceramic resonator and external oscillator chip for clock generation.

Fig. 2.37 Oscillator circuitry using quartz crystal and quartz crystal oscillator

2.6.4 Real-Time Clock (RTC)

Real-Time Clock (RTC) is a system component responsible for keeping track of time. RTC holds information like current time (In hours, minutes and seconds) in 12 hour/24 hour format, date, month, year, day of the week, etc. and supplies timing reference to the system. RTC is intended to function even in the absence of power. RTCs are available in the form of Integrated Circuits from different semiconductor manufacturers like Maxim/Dallas, ST Microelectronics etc. The RTC chip contains a microchip for holding the time and date related information and backup battery cell for functioning in the absence of power, in a single IC package. The RTC chip is interfaced to the processor or controller of the embedded system. For Operating System based embedded devices, a timing reference is essential for synchronising

the operations of the OS kernel. The RTC can interrupt the OS kernel by asserting the interrupt line of the processor/controller to which the RTC interrupt line is connected. The OS kernel identifies the interrupt in terms of the Interrupt Request (IRQ) number generated by an interrupt controller. One IRQ can be assigned to the RTC interrupt and the kernel can perform necessary operations like system date time updation, managing software timers etc when an RTC timer tick interrupt occurs. The RTC can be configured to interrupt the processor at predefined intervals or to interrupt the processor when the RTC register reaches a specified value (used as alarm interrupt).

2.6.5 Watchdog Timer

In desktop Windows systems, if we feel our application is behaving in an abnormal way or if the system hangs up, we have the 'Ctrl + Alt + Del' to come out of the situation. What if it happens to our embedded system? Do we really have a 'Ctrl + Alt + Del' to take control of the situation? Of course not ⊗, but we have a watchdog to monitor the firmware execution and reset the system processor/microcontroller when the program execution hangs up. A watchdog timer, or simply a watchdog, is a hardware timer for monitoring the firmware execution. Depending on the internal implementation, the watchdog timer increments or decrements a free running counter with each clock pulse and generates a reset signal to reset the processor if the count reaches zero for a down counting watchdog, or the highest count value for an upcounting watchdog. If the watchdog counter is in the enabled state, the firmware can write a zero (for upcounting watchdog implementation) to it before starting the execution of a piece of code (subroutine or portion of code which is susceptible to execution hang up) and the watchdog will start counting. If the firmware execution doesn't complete due to malfunctioning, within the time required by the watchdog to reach the maximum count, the counter will generate a reset pulse and this will reset the processor (if it is connected to the reset line of the processor). If the firmware execution completes before the expiration of the watchdog timer you can reset the count by writing a 0 (for an upcounting watchdog timer) to the watchdog timer register. Most of the processors implement watchdog as a built-in component and provides status register to control the watchdog timer (like enabling and disabling watchdog functioning) and watchdog timer register for writing the count value. If the processor/controller doesn't contain a built in watchdog timer, the same can be implemented using an external watchdog timer IC circuit. The external watchdog timer uses hardware logic for enabling/disabling, resetting the watchdog count, etc instead of the firmware based 'writing' to the status and watchdog timer register. The Microprocessor supervisor IC DS1232 integrates a hardware watchdog timer in it. In modern systems running on embedded operating systems, the watchdog can be implemented in such a way that when a watchdog timeout occurs, an interrupt is generated instead of resetting the processor. The interrupt handler for this handles the situation in an appropriate fashion. Figure 2.38 illustrates the implementa-

Fig. 2.38) Watchdog timer for firmware execution supervision

Introduction to Embedded Systems

tion of an external watchdog timer based microprocessor supervisor circuit for a small scale embedded system.

2.7 PCB AND PASSIVE COMPONENTS

Printed Circuit Board (PCB) is the backbone of every embedded system. After finalising the components and the inter-connection among them, a schematic design is created and according to the schematic the PCB is fabricated. This will be described in detail in a chapter dedicated for "Embedded Hardware Design and Development". PCB acts as a platform for mounting all the necessary components as per the design requirement. Also it acts as a platform for testing your embedded firmware. Apart from the above-mentioned important subsystems of an embedded system, you can find some passive electronic components like resistor, capacitor, diodes, etc. on your board. They are the co-workers of various chips contained in your embedded hardware. They are very essential for the proper functioning of your embedded system. For example for providing a regulated ripple-free supply voltage to the system, a regulator IC and spike suppressor filter capacitors are very essential.

- ✓ The core of an embedded system is usually built around a commercial off-the-shelf component or an application specific integrated circuit (ASIC) or a general purpose processor like a microprocessor or microcontroller or application specific instruction set processors (ASIP like DSP, Microcontroller, etc.) or a Programmable Logic Device (PLD) or a System on Chip (SoC)
- ✓ Processors/controllers support either Reduced Instruction Set Computing (RISC) or Complex Instruction Set Computing (CISC)
- ✓ Microprocessors/controllers based on the Harvard architecture will have separate data bus and instruction bus, whereas Microprocessors/controllers based on the Von-Neumann architecture shares a single common bus for fetching both instructions and data
- ✓ The Big-endian processors store the higher-order byte of the data in memory at the lowest address, whereas
 Little-endian processors store the lower-order byte of data in memory at the lowest address
- ✓ Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs) are the two
 major types of programmable logic devices
- ✓ The Read Only Memory (ROM) is a non-volatile memory for storing the firmware and embedded OS files.

 MROM, PROM (OTP), EPROM, EEPROM and FLASH are the commonly used firmware storage memory
- ✓ Random Access Memory (RAM) is a volatile memory for temporary data storage. RAM can be either Static RAM (SRAM) or Dynamic RAM (DRAM). SRAM is made up of flip-flops, whereas DRAM is made up of MOS Transistor and Capacitor
- ✓ The sensors connected to the input port of an embedded system senses the changes in input variables and the
 actuators connected at the output port of an embedded system controls some variables in accordance with changes
 in input
- ✓ Light Emitting Diode (LED), 7-Segment LED displays, Liquid Crystal Display (LCD), Piezo Buzzer, Speaker, Optocoupler, Stepper Motor, Digital to Analog Converters (DAC), Relays etc are examples for output devices of an embedded system
- Keyboard, Touch screen, Push Button switches, Optocoupler, Analog to Digital Converter (ADC) etc are examples for Input devices in an embedded system

The Typical Embedded System

- ✓ The Programmable Peripheral Interface (PPI) device extends the I/O capabilities of the processor used in embedded system
- ✓ 12C, SPI, UART, 1-Wire, Parallel bus etc are examples for onboard communication interface and RS-232C, RS-485, USB, IEEE1394 (FireWire), Wi-Fi, ZigBee, Infrared (IrDA), Bluetooth, GPRS, etc. are examples for external communication interface
- ✓ The control algorithm for the embedded device is known as Embedded Firmware. Embedded firmware can be developed on top of an embedded operating system or without an operating system.
- ✓ The reset circuit ensures that the device is not operating at a voltage level where the device is not guaranteed
 to operate, during system power ON. The reset signal brings the internal registers and the different hardware
 systems of the processor/controller to a known state and starts the firmware execution from the reset vector
- ✓ The brown-out protection circuit prevents the processor/controller from unexpected program execution behaviour
 when the supply voltage to the processor/controller falls below a specified voltage
- ✓ The oscillator unit generates clock signals for synchronising the operations of the processor.
- The time keeping activity for the embedded system is performed by the Real Time Clock (RTC) of the system. RTC holds current time, date, month, year, day of the week, etc.
- ✓ The watchdog timer monitors the firmware execution and resets the processor or generates an Interrupt in case
 the execution time for a task is exceeding the maximum allowed limit
- ✓ Printed circuit board or PCB acts as a platform for mounting all the necessary hardware components as per the design requirement

COTS : Commercial-off-the-Shelf. Commercially available ready to use component

ASIC : Application Specific Integrated Circuit is a microchip designed to perform a specific or unique

application

ASSP : Application Specific Standard Product-An ASIC marketed to multiple customers just as a

general-purpose product is, but to a smaller number of customers

Microprocessor : A silicon chip representing a Central Processing Unit (CPU)

GPP : General Purpose Processor or GPP is a processor designed for general computational tasks

ASIP : Application Specific Instruction Set processors are processors with architecture and instruction

set optimized to specific domain/application requirements

Microcontroller : A highly integrated chip that contains a CPU, scratchpad RAM, Special and General purpose

Register Arrays and Integrated peripherals

DSP : Digital Signal Processor is a powerful special purpose 8/16/32 bit microprocessors designed

specifically to meet the computational demands and power constraints

RISC : Reduced Instruction Set Computing. Refers to processors with Reduced and Orthogonal

Instruction Set

CISC : Refers to processors with Complex Instruction Set Computing

Harvard : A type of processor architecture with separate buses for program instruction and data

Architecture

cture ici

Von-Neumann : A type of processor architecture with a shared single common bus for fetching both instructions and data

Big-Endian : Refers to processors which store the higher-order byte of the data in memory at the lowest

address

Little-Endian : Refers to processors which store the lower-order byte of the data in memory at the lowest address

addres

Introduction to Embedded Systems

1	MROM OTP EPROM	function. Popular for prototyping ASIC designs : Masked ROM is a one-time programmable memory, which uses the hardwired technology for storing data : One Time Programmable Read Only Memory made up of nichrome or polysilicon wires
1		가입니다 하는데
1	EPROM	arranged in a matrix
		: Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by exposing to UV light
1 2 2	EEPROM	: Electrically Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by applying electrical signals
	FLASH	 Electrically Erasable Programmable Read Only Memory. Same as EEPROM but with high capacity and support for block level memory erasing
1	RAM	: Random Access memory. Volatile memory
	SRAM	: Static RAM. A type of RAM, made up of flip-flops
	DRAM	: Dynamic RAM. A type of RAM, made up of MOS Transistor and Capacitor
	NVRAM	: Non-volatile SRAM. Battery-backed SRAM
	ADC	: Analog to Digital Converter. An integrated circuit which converts analog signals to digital form
1	LED	: Light Emitting Diode. An output device which produces visual indication in the form of light in accordance with current flow
	7-Segment	: The 7-segment LED display is an output device for displaying alpha numeric characters.
1	LED Display	It contains 8 light-emitting diode (LED) segments arranged in a special form
	Optocoupler	 A solid state device to isolate two parts of a circuit. Optocoupler combines an LED and a photo- transistor in a single housing (package)
:	Stepper motor	 An electro-mechanical device which generates discrete displacement (motion) in response to de electrical signals
1	Relay	: An electro-mechanical device which acts as dynamic path selector for signals and power
1	Piezo Buzzer	 A piezo-electric device for generating audio indication. It contains a piezo-electric diaphragm which produces audible sound in response to the voltage applied to it
1	Push Button	: A mechanical device for electric circuit 'make' and 'break' operation
- 07	switch	
1	PPI	 Programmable Peripheral Interface is a device for extending the I/O capabilities of processors/ controllers
1	12C	: The Inter Integrated Circuit Bus (I2C-Pronounced 'I square C') is a synchronous bi-directional half duplex two wire serial interface bus.
:	SPI	 The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four wire serial interface bus
1	UART	: The Universal Asynchronous Receiver Transmitter is an asynchronous communication implementation standard
1	l-Wire interface	: An asynchronous half-duplex communication protocol developed by Maxim Dallas Semiconductor. It is also known as Dallas 1-Wire® protocol.
1	RS-232 C	 Recommended Standard number 232, revision C from the Electronic Industry Association, is a legacy, full duplex, wired, asynchronous serial communication interface
1	RS-485	: The enhanced version of RS-232, which supports multi-drop communication with up to 32 transmitting devices (drivers) and 32 receiving devices on the bus
- 3	USB	: Universal Serial Bus is a wired high speed serial bus for data communication
1	EEE 1394	: A wired, isochronous high speed serial communication bus
1	Firewire	: The Apple Inc.'s implementation of the 1394 protocol

Copyrighted material

The Typical Embedded System

Infrared (IrDA) : A serial, half duplex, line of sight based wireless technology for data communication between

devices

Bluetooth : A low cost, low power, short range wireless technology for data and voice communication

WI-FI : Wireless Fidelity is the popular wireless communication technique for networked communication

of devices

ZigBee : A low power, low cost, wireless network communication protocol based on the IEEE 802.15.4-

2006 standard. ZigBee is targeted for low power, low data-rate and secure applications for

Wireless Personal Area Networking (WPAN)

GPRS : General Packet Radio Service is a communication technique for transferring data over a mobile

communication network like GSM

Reset Circuit : A passive circuit or IC device to supply a reset signal to the processor/controller of the embedded

system

Brown-out : A passive circuit or IC device to protect the processor from unexpected program execution

Protection Circuit flow due to the drop in power supply voltage

RTC : Real Time Clock is a system component keeping track of time

Watchdog Timer: Timer for monitoring the firmware execution

(WDT) PCB

Printed Circuit Board is the place holder for arranging the different hardware components

required to build the embedded product

1. Embedded hardware/software systems are basically designed to

(a) Regulate a physical variable

(b) Change the state of some devices

(c) Measure/Read the state of a variable/device

(d) Any/All of these

2. Little Endian processors

(a) Store the lower-order byte of the data at the lowest address and the higher-order byte of the data at the highest address of memory

(b) Store the higher-order byte of the data at the lowest address and the lower-order byte of the data at the highest address of memory

(c) Store both higher order and lower order byte of the data at the same address of memory

(d) None of these

3. An integer variable with value 255 is stored in memory location at 0x8000. The processor word length is 8 bits and the processor is a big endian processor. The size of integer is considered as 4 bytes in the system. What is the value held by the memory location 0x8000?

(a) 0xFF

(b) 0x00

(c) 0x01

(d) None of these

4. The instruction set of RISC processor is

(c) Simple and larger in number

(a) Simple and lesser in number

(0)

(b) Complex and lesser in number(d) Complex and larger in number

5. Which of the following is true about CISC processors?

(a) The instruction set is non-orthogonal

(b) The number of general purpose registers is limited

(c) Instructions are like macros in C language

(d) Variable length Instructions

(e) All of these

(f) None of these

6.	Which of the following proce	essor architecture supports e	asier	instruction pipelining	?	
	(a) Harvard	(b) Von Neumann		Both of them		None of these
7.	Microprocessors/controllers	based on the Harvard archit	tectur	e will have separate	data be	us and instruction bus.
	This allows the data transfer	and program fetching to occ	ur sir	nultaneously on both	buses.	State True or False
	(a) True	(b) False				
8.	Which of the following is on	e-time programmable memo	ry?			
	(a) SRAM	(b) PROM		FLASH	(d)	NVRAM
9.	Which of the following mem	ory type is best suited for de	velop	oment purpose?	-	
	(a) EEPROM	(b) FLASH	- 0 - 5	UVEPROM		
	(d) OTP	(e) (a) or (b)	0.0			
10.	EEPROM memory is alterab		Fals	c		
	(a) True	(b) False				
11.	Non-volatile RAM is a Rand		ttery	backup. State True or	False	
	(a) True	(b) False				
12.	Execution of program from F	OM is faster than the execu	tion i	from RAM. State Tru	e or Fa	lse
	(a) True	(b) False				
13.	Dynamic RAM stores data in	the form of voltage. State T	rue o	r False		
	(a) True	(b) False				
14.	The control algorithm (Progr	am instructions) and or the o	config	puration settings that	are kept	in the code (Program)
	memory of the embedded sys	tem are known as Embedde	d Sof	tware. State True or I	False	•
	(a) True	(b) False				
15.	Which of the following is an	example for Wireless Comn	nunic	ation interface?		
	(a) RS-232C	(b) Wi-Fi		Bluetooth		
	(d) EEE1394	(e) both (b) and (c)	3.3			
16.	Which of the following is (ar	e) examples for Application	Spec	ific Instruction set Pr	ocessor	r(s)
	(a) Intel Centrino	(b) Atmel Automotive AV	'R			
	(c) AMD Turion	(d) Microchip CAN PIC	(e)	All of these	(f)	both (b) and (d)
17.	How many memory cells are	present in 1Kb RAM				
	(a) 1024	(b) 8192	(c)	512	(d)	4096
	(e) None of these					
18.	Which of the following mem					
	(a) EEPROM	(b) NOR FLASH	(c)	NAND FLASH		
	(d) both (b) and (c)	(e) None of these				
19.	How many memory cells are		OM			
	(a) 1024	(b) 8192	(c)	512	(d)	4096
	(e) None of these					
20.	Which of the following is (a	re) example(s) for the input	subs	ystem of an embedde	ed syste	em dealing with digital
	data?	2.20	-212	20.20	6522	200 201
	(a) ADC	(b) Optocoupler	(c)	DAC	(d)	All of them
	(e) only (a) and (b)					
21.	Which of the following is (ar	e) example(s) for the output	t subs	system of an embedd	ed syste	em dealing with digital
	data?			2	4.80	
	(a) LED	(b) Optocoupler	(c)	Stepper Motor	(d)	All of these
	(e) only (a) and (c)					
22.	Which of the following is tru					
	(a) Optocoupler acts as an i	- 12 表のとうさく (O.C.) (2011) (11 D. 11 D. 21 D. 2				
	(b) Optocoupler acts as an o	그림 그래 사람들이 얼마나 얼마를 하면 하는데 그리는 그리고 있다.				
	(c) Optocoupler can be used	in both input and output cit	reuitr	У		
	(d) None of these					

Copyrighted material

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-				ä
23.	Which of the following is	true abo	ut a unipolar stepper	motor				
	(a) Contains only a sing	de windir	ng per stator phase	(b)	Contains two	windings per	stator phase	
	(c) Contains four windi	ngs per s	tator phase	(d)	None of these	11 50		
24.	Which of the following is	(are) tru	e about normally op	en sing!	e pole relays?			
	(a) The circuit remains			-				
	(b) The circuit remains			-				
	(c) There are two outpu			2				
	(d) Both (a) and (b)	(e)	None of these					
25.	What is the minimum nur	mber I/O	line required to inter	face a l	6-Key matrix l	ceyboard?		
	(a) 16	(b)		(c)	The same of the sa	(d)	9	
26.	Which is the optimal row	-column	configuration for a 2	4 key n	natrix keyboard			
	(a) 6×4	(b)	8×3	(c)	12×2	(d)	5×5	
27	Which of the following is	an exan	ple for on-board into	erface in	the embedded			
	(a) 12C		Bluetooth		SPI		All of them	

(c) 3

(c) 4

(c) 5

(c) UART

(d) 4

(d) 8

(d) All of these

(d) None of these

.2Kbps

The Typical Embedded System

	(e) Only (a) and (b)			
31.	RS-232 is a synchrono	us serial interface. State	True or False	
	(a) True	(b) False		
32,	What is the maximum	number of USB devices	that can be connected to a USB	host?
	(a) Unlimited	(b) 128	(c) 127	

(b) SPI

(b) 2

(b) 3

30. Which of the following are synchronous serial interface?

28. What is the minimum number of interface lines required for implementing I2C interface?

29. What is the minimum number of interface lines required for implementing SPI interface?

(e) Only (a) and (c)

(a) 2

(a) 2

(a) I2C

	(a) ZigBee Coordinat	or	(b)	ZigBee Router		
	(c) ZigBee Reduced	Function Device	(d)	All of them		
34.	What is the theoretical	maximum data rate supporte	d by GPRS	3		
	(a) 8Mbps	(b) 12Mbps	(c)	100Kbps	(d)	171
35.	GPRS communication	divides the radio channel int	0	timeslots	0.5000	

33. In the ZigBee network, which of the following ZigBee entity stores the information about the network?

- 1. Explain the components of a typical embedded system in detail
- 2. Which are the components used as the core of an embedded system? Explain the merits, drawbacks, if any, and the applications/domains where they are commonly used
- 3. What is Application Specific Integrated Circuit (ASIC)? Explain the role of ASIC in Embedded System design?
- 4. What is the difference between Application Specific Integrated Circuit (ASIC) Application Specific Standard Product (ASSP)?
- 5. What is the difference between microprocessor and microcontroller? Explain the role of microprocessors and controllers in embedded system design?
- 6. What is Digital Signal Processor (DSP)? Explain the role of DSP in embedded system design?
- 7. What is the difference between RISC and CISC processors? Give an example for each.

Introduction to Embedded Systems

- 8. What is processor architecture? What are the different processor architectures available for processor/controller design? Give an example for each.
- 9. What is the difference between big-endian and little-endian processors? Give an example of each.
- What is Programmable Logic Device (PLD)? What are the different types of PLDs? Explain the role of PLDs in Embedded System design.
- 11. What is the difference between PLD and ASIC?
- 12. What are the advantages of PLD over fixed logic device?
- 13. What are the different types of memories used in Embedded System design? Explain the role of each.
- 14. What are the different types of memories used for Program storage in Embedded System Design?
- 15. What is the difference between Masked ROM and OTP?
- 16. What is the difference between PROM and EPROM?
- 17. What are the advantages of FLASH over other program storage memory in Embedded System design?
- 18. What is the difference between RAM and ROM?
- 19. What are the different types of RAM used for Embedded System design?
- 20. What is memory shadowing? What is its advantage?
- 21. What is Sensor? Explain its role in Embedded System Design? Illustrate with an example.
- 22. What is Actuator? Explain its role in Embedded System Design? Illustrate with an example.
- 23. What is Embedded Firmware? What are the different approaches available for Embedded Firmware development?
- What is the difference between General Purpose Processor (GPP) and Application Specific Instruction Set Processor (ASIP). Give an example for both.
- 25. Explain the concept of Load Store architecture and instruction pipelining.
- 26. Explain the operation of Static RAM (SRAM) cell.
- 27. Explain the merits and limitations of SRAM and DRAM as Random Access Memory.
- Explain the difference between Serial Access Memory (SAM) and Random Access Memory (RAM). Give an example for both.
- Explain the different factors that needs to be considered in the selection of memory for Embedded Systems.
- 30. Explain the different types of FLASH memory and their relative merits and de-merits.
- 31. Explain the different Input and output subsystems of Embedded Systems.
- 32. What is stepper motor? How is it different from ordinary dc motor?
- 33. Explain the role of Stepper motor in embedded applications with examples.
- 34. Explain the different step modes for stepper motor.
- 35. What is Relay? What are the different types of relays available? Explain the role of relay in embedded applications.
- 36. Explain the operation of the transistor based Relay driver circuit.
- 37. Explain the operation of a Matrix Keyboard.
- What is Programmable Peripheral Interface (PPI) Device? Explain the interfacing of 8255 PPI with an 8bit microprocessor/controller.

Copyrighted material

- 39. Explain the different on-board communication interfaces in brief.
- 40. Explain the different external communication interfaces in brief.
- 41. Explain the sequence of operation for communicating with an I2C slave device.
- 42. Explain the difference between 12C and SPI communication interface.
- 43. Explain the sequence of operation for communicating with a 1-Wire slave device.
- 44. Explain the RS-232 C serial interface in detail.
- 45. Explain the merits and limitations of Parallel port over Seria! RS-232 interface.
- 46. Explain the merits and limitations of IEEE 1394 interface over USB.
- 47. Compare the operation of ZigBee and Wi-Fi network.
- 48. Explain the role of Reset circuit in Embedded System.
- Explain the role of Real Time Clock (RTC) in Embedded System.
- 50. Explain the role of Watchdog Timer in Embedded System.

The Typical Embedded System

- Write a "C" program to find the endianness of the processor in which the program is running. If the processor
 is big endian, print "The processor architecture is Big endian", else print "The processor architecture is Little
 endian" on the console window. Execute the program separately on a PC with Windows, Linux and MAC
 operating systems.
- Draw the interfacing diagram for connecting an LED to the port pin of a microcontroller. The LED is turned ON
 when the microcontroller port pin is at Logic '0'. Calculate the resistance required to connect in series with the
 LED for the following design parameters.
 - (a) LED voltage drop on conducting = 1.7V
 - (b) LED current rating = 20 mA
 - (c) Power Supply Voltage = 5V
- Design an RC (Resistor-Capacitor) based reset circuit for producing an active low Power-On reset pulse of width 0.1 milli seconds.
- Design a zener diode and transistor based brown-out protection circuit with active low reset pulse for the following design parameters.
 - (a) Use BC327 PNP transistor for the design
 - (b) The supply voltage to the system is 5V
 - (c) The reset pulse is asserted when the supply voltage falls below 4.7V

Introduction to Embedded Systems

1	MROM OTP EPROM	function. Popular for prototyping ASIC designs : Masked ROM is a one-time programmable memory, which uses the hardwired technology for storing data : One Time Programmable Read Only Memory made up of nichrome or polysilicon wires
1		가입니다 하는데
1	EPROM	arranged in a matrix
		: Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by exposing to UV light
1 2 2	EEPROM	: Electrically Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by applying electrical signals
	FLASH	 Electrically Erasable Programmable Read Only Memory. Same as EEPROM but with high capacity and support for block level memory erasing
1	RAM	: Random Access memory. Volatile memory
	SRAM	: Static RAM. A type of RAM, made up of flip-flops
	DRAM	: Dynamic RAM. A type of RAM, made up of MOS Transistor and Capacitor
	NVRAM	: Non-volatile SRAM. Battery-backed SRAM
	ADC	: Analog to Digital Converter. An integrated circuit which converts analog signals to digital form
1	LED	: Light Emitting Diode. An output device which produces visual indication in the form of light in accordance with current flow
	7-Segment	: The 7-segment LED display is an output device for displaying alpha numeric characters.
1	LED Display	It contains 8 light-emitting diode (LED) segments arranged in a special form
	Optocoupler	 A solid state device to isolate two parts of a circuit. Optocoupler combines an LED and a photo- transistor in a single housing (package)
:	Stepper motor	 An electro-mechanical device which generates discrete displacement (motion) in response to de electrical signals
1	Relay	: An electro-mechanical device which acts as dynamic path selector for signals and power
1	Piezo Buzzer	 A piezo-electric device for generating audio indication. It contains a piezo-electric diaphragm which produces audible sound in response to the voltage applied to it
1	Push Button	: A mechanical device for electric circuit 'make' and 'break' operation
- 07	switch	
1	PPI	 Programmable Peripheral Interface is a device for extending the I/O capabilities of processors/ controllers
1	12C	: The Inter Integrated Circuit Bus (I2C-Pronounced 'I square C') is a synchronous bi-directional half duplex two wire serial interface bus.
:	SPI	 The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four wire serial interface bus
1	UART	: The Universal Asynchronous Receiver Transmitter is an asynchronous communication implementation standard
1	l-Wire interface	: An asynchronous half-duplex communication protocol developed by Maxim Dallas Semiconductor. It is also known as Dallas 1-Wire® protocol.
1	RS-232 C	 Recommended Standard number 232, revision C from the Electronic Industry Association, is a legacy, full duplex, wired, asynchronous serial communication interface
1	RS-485	: The enhanced version of RS-232, which supports multi-drop communication with up to 32 transmitting devices (drivers) and 32 receiving devices on the bus
- 3	USB	: Universal Serial Bus is a wired high speed serial bus for data communication
1	EEE 1394	: A wired, isochronous high speed serial communication bus
1	Firewire	: The Apple Inc.'s implementation of the 1394 protocol

Copyrighted material

The Typical Embedded System

Infrared (IrDA) : A serial, half duplex, line of sight based wireless technology for data communication between

devices

Bluetooth : A low cost, low power, short range wireless technology for data and voice communication

WI-FI : Wireless Fidelity is the popular wireless communication technique for networked communication

of devices

ZigBee : A low power, low cost, wireless network communication protocol based on the IEEE 802.15.4-

2006 standard. ZigBee is targeted for low power, low data-rate and secure applications for

Wireless Personal Area Networking (WPAN)

GPRS : General Packet Radio Service is a communication technique for transferring data over a mobile

communication network like GSM

Reset Circuit : A passive circuit or IC device to supply a reset signal to the processor/controller of the embedded

system

Brown-out : A passive circuit or IC device to protect the processor from unexpected program execution

Protection Circuit flow due to the drop in power supply voltage

RTC : Real Time Clock is a system component keeping track of time

Watchdog Timer: Timer for monitoring the firmware execution

(WDT) PCB

Printed Circuit Board is the place holder for arranging the different hardware components

required to build the embedded product

1. Embedded hardware/software systems are basically designed to

(a) Regulate a physical variable

(b) Change the state of some devices

(c) Measure/Read the state of a variable/device

(d) Any/All of these

2. Little Endian processors

(a) Store the lower-order byte of the data at the lowest address and the higher-order byte of the data at the highest address of memory

(b) Store the higher-order byte of the data at the lowest address and the lower-order byte of the data at the highest address of memory

(c) Store both higher order and lower order byte of the data at the same address of memory

(d) None of these

3. An integer variable with value 255 is stored in memory location at 0x8000. The processor word length is 8 bits and the processor is a big endian processor. The size of integer is considered as 4 bytes in the system. What is the value held by the memory location 0x8000?

(a) 0xFF

(b) 0x00

(c) 0x01

(d) None of these

4. The instruction set of RISC processor is

(c) Simple and larger in number

(a) Simple and lesser in number

(0)

(b) Complex and lesser in number(d) Complex and larger in number

5. Which of the following is true about CISC processors?

(a) The instruction set is non-orthogonal

(b) The number of general purpose registers is limited

(c) Instructions are like macros in C language

(d) Variable length Instructions

(e) All of these

(f) None of these

6.	Which of the following proce	essor architecture supports e	asier	instruction pipelining	?	
	(a) Harvard	(b) Von Neumann		Both of them		None of these
7.	Microprocessors/controllers	based on the Harvard archit	tectur	e will have separate	data be	us and instruction bus.
	This allows the data transfer	and program fetching to occ	ur sir	nultaneously on both	buses.	State True or False
	(a) True	(b) False				
8.	Which of the following is on	e-time programmable memo	ry?			
	(a) SRAM	(b) PROM		FLASH	(d)	NVRAM
9.	Which of the following mem	ory type is best suited for de	velop	oment purpose?	-	
	(a) EEPROM	(b) FLASH	- 0 - 5	UVEPROM		
	(d) OTP	(e) (a) or (b)	0.0			
10.	EEPROM memory is alterab		Fals	c		
	(a) True	(b) False				
11.	Non-volatile RAM is a Rand		ttery	backup. State True or	False	
	(a) True	(b) False				
12.	Execution of program from F	OM is faster than the execu	tion i	from RAM. State Tru	e or Fa	lse
	(a) True	(b) False				
13.	Dynamic RAM stores data in	the form of voltage. State T	rue o	r False		
	(a) True	(b) False				
14.	The control algorithm (Progr	am instructions) and or the o	config	puration settings that	are kept	in the code (Program)
	memory of the embedded sys	tem are known as Embedde	d Sof	tware. State True or I	False	•
	(a) True	(b) False				
15.	Which of the following is an	example for Wireless Comn	nunic	ation interface?		
	(a) RS-232C	(b) Wi-Fi		Bluetooth		
	(d) EEE1394	(e) both (b) and (c)	3.3			
16.	Which of the following is (ar	e) examples for Application	Spec	ific Instruction set Pr	ocessor	r(s)
	(a) Intel Centrino	(b) Atmel Automotive AV	'R			
	(c) AMD Turion	(d) Microchip CAN PIC	(e)	All of these	(f)	both (b) and (d)
17.	How many memory cells are	present in 1Kb RAM				
	(a) 1024	(b) 8192	(c)	512	(d)	4096
	(e) None of these					
18.	Which of the following mem					
	(a) EEPROM	(b) NOR FLASH	(c)	NAND FLASH		
	(d) both (b) and (c)	(e) None of these				
19.	How many memory cells are		OM			
	(a) 1024	(b) 8192	(c)	512	(d)	4096
	(e) None of these					
20.	Which of the following is (a	re) example(s) for the input	subs	ystem of an embedde	ed syste	em dealing with digital
	data?	2.20	-212	20.20	6522	200 201
	(a) ADC	(b) Optocoupler	(c)	DAC	(d)	All of them
	(e) only (a) and (b)					
21.	Which of the following is (ar	e) example(s) for the output	t subs	system of an embedd	ed syste	em dealing with digital
	data?			2	4.80	
	(a) LED	(b) Optocoupler	(c)	Stepper Motor	(d)	All of these
	(e) only (a) and (c)					
22.	Which of the following is tru					
	(a) Optocoupler acts as an i	- 12 表のとうさく (O.C.) (2011) (11 D. 11 D. 21 D. 2				
	(b) Optocoupler acts as an o	그림 그래 사람들이 얼마나 얼마를 하면 하는데 그리는 그리고 있다.				
	(c) Optocoupler can be used	in both input and output cit	reuitr	У		
	(d) None of these					

Copyrighted material

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-				ä
23.	Which of the following is	true abo	ut a unipolar stepper	motor				
	(a) Contains only a sing	de windir	ng per stator phase	(b)	Contains two	windings per	stator phase	
	(c) Contains four windi	ngs per s	tator phase	(d)	None of these	11 50		
24.	Which of the following is	(are) tru	e about normally op	en sing!	e pole relays?			
	(a) The circuit remains			-				
	(b) The circuit remains			-				
	(c) There are two outpu			2				
	(d) Both (a) and (b)	(e)	None of these					
25.	What is the minimum nur	mber I/O	line required to inter	face a l	6-Key matrix l	ceyboard?		
	(a) 16	(b)		(c)	The same of the sa	(d)	9	
26.	Which is the optimal row	-column	configuration for a 2	4 key n	natrix keyboard			
	(a) 6×4	(b)	8×3	(c)	12×2	(d)	5×5	
27	Which of the following is	an exan	ple for on-board into	erface in	the embedded			
	(a) 12C		Bluetooth		SPI		All of them	

(c) 3

(c) 4

(c) 5

(c) UART

(d) 4

(d) 8

(d) All of these

(d) None of these

.2Kbps

The Typical Embedded System

	(e) Only (a) and (b)			
31.	RS-232 is a synchrono	us serial interface. State	True or False	
	(a) True	(b) False		
32,	What is the maximum	number of USB devices	that can be connected to a USB	host?
	(a) Unlimited	(b) 128	(c) 127	

(b) SPI

(b) 2

(b) 3

30. Which of the following are synchronous serial interface?

28. What is the minimum number of interface lines required for implementing I2C interface?

29. What is the minimum number of interface lines required for implementing SPI interface?

(e) Only (a) and (c)

(a) 2

(a) 2

(a) I2C

	(a) ZigBee Coordinat	or	(b)	ZigBee Router		
	(c) ZigBee Reduced	Function Device	(d)	All of them		
34.	What is the theoretical	maximum data rate supporte	d by GPRS	3		
	(a) 8Mbps	(b) 12Mbps	(c)	100Kbps	(d)	171
35.	GPRS communication	divides the radio channel int	0	timeslots	0.5000	

33. In the ZigBee network, which of the following ZigBee entity stores the information about the network?

- 1. Explain the components of a typical embedded system in detail
- 2. Which are the components used as the core of an embedded system? Explain the merits, drawbacks, if any, and the applications/domains where they are commonly used
- 3. What is Application Specific Integrated Circuit (ASIC)? Explain the role of ASIC in Embedded System design?
- 4. What is the difference between Application Specific Integrated Circuit (ASIC) Application Specific Standard Product (ASSP)?
- 5. What is the difference between microprocessor and microcontroller? Explain the role of microprocessors and controllers in embedded system design?
- 6. What is Digital Signal Processor (DSP)? Explain the role of DSP in embedded system design?
- 7. What is the difference between RISC and CISC processors? Give an example for each.

Introduction to Embedded Systems

- 8. What is processor architecture? What are the different processor architectures available for processor/controller design? Give an example for each.
- 9. What is the difference between big-endian and little-endian processors? Give an example of each.
- What is Programmable Logic Device (PLD)? What are the different types of PLDs? Explain the role of PLDs in Embedded System design.
- 11. What is the difference between PLD and ASIC?
- 12. What are the advantages of PLD over fixed logic device?
- 13. What are the different types of memories used in Embedded System design? Explain the role of each.
- 14. What are the different types of memories used for Program storage in Embedded System Design?
- 15. What is the difference between Masked ROM and OTP?
- 16. What is the difference between PROM and EPROM?
- 17. What are the advantages of FLASH over other program storage memory in Embedded System design?
- 18. What is the difference between RAM and ROM?
- 19. What are the different types of RAM used for Embedded System design?
- 20. What is memory shadowing? What is its advantage?
- 21. What is Sensor? Explain its role in Embedded System Design? Illustrate with an example.
- 22. What is Actuator? Explain its role in Embedded System Design? Illustrate with an example.
- 23. What is Embedded Firmware? What are the different approaches available for Embedded Firmware development?
- What is the difference between General Purpose Processor (GPP) and Application Specific Instruction Set Processor (ASIP). Give an example for both.
- 25. Explain the concept of Load Store architecture and instruction pipelining.
- 26. Explain the operation of Static RAM (SRAM) cell.
- 27. Explain the merits and limitations of SRAM and DRAM as Random Access Memory.
- Explain the difference between Serial Access Memory (SAM) and Random Access Memory (RAM). Give an example for both.
- Explain the different factors that needs to be considered in the selection of memory for Embedded Systems.
- 30. Explain the different types of FLASH memory and their relative merits and de-merits.
- 31. Explain the different Input and output subsystems of Embedded Systems.
- 32. What is stepper motor? How is it different from ordinary dc motor?
- 33. Explain the role of Stepper motor in embedded applications with examples.
- 34. Explain the different step modes for stepper motor.
- 35. What is Relay? What are the different types of relays available? Explain the role of relay in embedded applications.
- 36. Explain the operation of the transistor based Relay driver circuit.
- 37. Explain the operation of a Matrix Keyboard.
- What is Programmable Peripheral Interface (PPI) Device? Explain the interfacing of 8255 PPI with an 8bit microprocessor/controller.

Copyrighted material

- 39. Explain the different on-board communication interfaces in brief.
- 40. Explain the different external communication interfaces in brief.
- 41. Explain the sequence of operation for communicating with an I2C slave device.
- 42. Explain the difference between 12C and SPI communication interface.
- 43. Explain the sequence of operation for communicating with a 1-Wire slave device.
- 44. Explain the RS-232 C serial interface in detail.
- 45. Explain the merits and limitations of Parallel port over Seria! RS-232 interface.
- 46. Explain the merits and limitations of IEEE 1394 interface over USB.
- 47. Compare the operation of ZigBee and Wi-Fi network.
- 48. Explain the role of Reset circuit in Embedded System.
- Explain the role of Real Time Clock (RTC) in Embedded System.
- 50. Explain the role of Watchdog Timer in Embedded System.

The Typical Embedded System

- Write a "C" program to find the endianness of the processor in which the program is running. If the processor
 is big endian, print "The processor architecture is Big endian", else print "The processor architecture is Little
 endian" on the console window. Execute the program separately on a PC with Windows, Linux and MAC
 operating systems.
- Draw the interfacing diagram for connecting an LED to the port pin of a microcontroller. The LED is turned ON
 when the microcontroller port pin is at Logic '0'. Calculate the resistance required to connect in series with the
 LED for the following design parameters.
 - (a) LED voltage drop on conducting = 1.7V
 - (b) LED current rating = 20 mA
 - (c) Power Supply Voltage = 5V
- Design an RC (Resistor-Capacitor) based reset circuit for producing an active low Power-On reset pulse of width 0.1 milli seconds.
- Design a zener diode and transistor based brown-out protection circuit with active low reset pulse for the following design parameters.
 - (a) Use BC327 PNP transistor for the design
 - (b) The supply voltage to the system is 5V
 - (c) The reset pulse is asserted when the supply voltage falls below 4.7V

Characteristics and Quality Attributes of Embedded Systems

- ✓ Learn the characteristics describing an embedded system
- ✓ Learn the non-functional requirements that needs to be addressed in the design of an embedded system.
- ✓ Learn the important quality attributes of the embedded system that needs to be addressed for the operational mode (online mode) of the system. This includes Response, Throughput, Reliability, Maintainability, Security, Safety, etc.
- ✓ Learn the important quality attributes of the embedded system that needs to be addressed for the non-operational mode (offline mode) of the system. This includes Testability, Debug-ability, Evolvability, Portability, Time to prototype and market, Per unit cost and revenue, etc.
- ✓ Understand the Product Life Cycle (PLC)

No matter whether it is an embedded or a non-embedded system, there will be a set of characteristics describing the system. The non-functional aspects that need to be addressed in embedded system design are commonly referred as quality attributes. Whenever you design an embedded system, the design should take into consideration of both the functional and non-functional aspects. The following topics give an overview of the characteristics and quality attributes of an embedded system.

3.1 CHARACTERISTICS OF AN EMBEDDED SYSTEM

Unlike general purpose computing systems, embedded systems possess certain specific characteristics and these characteristics are unique to each embedded system. Some of the important characteristics of an embedded system are:

- 1. Application and domain specific
- 2. Reactive and Real Time
- Operates in harsh environments
- 4. Distributed
- 5. Small size and weight
- Power concerns

Characteristics and Quality Attributes of Embedded Systems

3.1.1 Application and Domain Specific

If you closely observe any embedded system, you will find that each embedded system is having certain functions to perform and they are developed in such a manner to do the intended functions only. They cannot be used for any other purpose. It is the major criterion which distinguishes an embedded system from a general purpose system. For example, you cannot replace the embedded control unit of your microwave oven with your air conditioner's embedded control unit, because the embedded control units of microwave oven and airconditioner are specifically designed to perform certain specific tasks. Also you cannot replace an embedded control unit developed for a particular domain say telecom with another control unit designed to serve another domain like consumer electronics.

3.1.2 Reactive and Real Time

As mentioned earlier, embedded systems are in constant interaction with the Real world through sensors and user-defined input devices which are connected to the input port of the system. Any changes happening in the Real world (which is called an Event) are captured by the sensors or input devices in Real Time and the control algorithm running inside the unit reacts in a designed manner to bring the controlled output variables to the desired level. The event may be a periodic one or an unpredicted one. If the event is an unpredicted one then such systems should be designed in such a way that it should be scheduled to capture the events without missing them. Embedded systems produce changes in output in response to the changes in the input. So they are generally referred as Reactive Systems.

Real Time System operation means the timing behaviour of the system should be deterministic; meaning the system should respond to requests or tasks in a known amount of time. A Real Time system should not miss any deadlines for tasks or operations. It is not necessary that all embedded systems should be Real Time in operations. Embedded applications or systems which are mission critical, like flight control systems, Antilock Brake Systems (ABS), etc. are examples of Real Time systems. The design of an embedded Real time system should take the worst case scenario into consideration.

3.1.3 Operates in Harsh Environment

It is not necessary that all embedded systems should be deployed in controlled environments. The environment in which the embedded system deployed may be a dusty one or a high temperature zone or an area subject to vibrations and shock. Systems placed in such areas should be capable to withstand all these adverse operating conditions. The design should take care of the operating conditions of the area where the system is going to implement. For example, if the system needs to be deployed in a high temperature zone, then all the components used in the system should be of high temperature grade. Here we cannot go for a compromise in cost. Also proper shock absorption techniques should be provided to systems which are going to be commissioned in places subject to high shock. Power supply fluctuations, corrosion and component aging, etc. are the other factors that need to be taken into consideration for embedded systems to work in harsh environments.

3.1.4 Distributed

The term distributed means that embedded systems may be a part of larger systems. Many numbers of such distributed embedded systems form a single large embedded control unit. An automatic vending machine is a typical example for this. The vending machine contains a card reader (for pre-paid vending systems), a vending unit, etc. Each of them are independent embedded units but they work together

to perform the overall vending function. Another example is the Automatic Teller Machine (ATM). An ATM contains a card reader embedded unit, responsible for reading and validating the user's ATM card, transaction unit for performing transactions, a currency counter for dispatching/vending currency to the authorised person and a printer unit for printing the transaction details. We can visualise these as independent embedded systems. But they work together to achieve a common goal.

Another typical example of a distributed embedded system is the Supervisory Control And Data Acquisition (SCADA) system used in Control & Instrumentation applications, which contains physically distributed individual embedded control units connected to a supervisory module.

3.1.5 Small Size and Weight

Product aesthetics is an important factor in choosing a product. For example, when you plan to buy a new mobile phone, you may make a comparative study on the pros and corns of the products available in the market. Definitely the product aesthetics (size, weight, shape, style, etc.) will be one of the deciding factors to choose a product. People believe in the phrase "Small is beautiful". Moreover it is convenient to handle a compact device than a bulky product. In embedded domain also compactness is a significant deciding factor. Most of the application demands small sized and low weight products.

3.1.6 Power Concerns

Power management is another important factor that needs to be considered in designing embedded systems. Embedded systems should be designed in such a way as to minimise the heat dissipation by the system. The production of high amount of heat demands cooling requirements like cooling fans which in turn occupies additional space and make the system bulky. Nowadays ultra low power components are available in the market. Select the design according to the low power components like low dropout regulators, and controllers/processors with power saving modes. Also power management is a critical constraint in battery operated application. The more the power consumption the less is the battery life.

3.2 QUALITY ATTRIBUTES OF EMBEDDED SYSTEMS

Quality attributes are the non-functional requirements that need to be documented properly in any system design. If the quality attributes are more concrete and measurable it will give a positive impact on the system development process and the end product. The various quality attributes that needs to be addressed in any embedded system development are broadly classified into two, namely 'Operational Quality Attributes' and 'Non-Operational Quality Attributes'.

3.2.1 Operational Quality Attributes

The operational quality attributes represent the relevant quality attributes related to the embedded system when it is in the operational mode or 'online' mode. The important quality attributes coming under this category are listed below:

- 1. Response
- 2. Throughput
- 3. Reliability
- 4. Maintainability
- 5. Security
- 6. Safety

- 3.2.1.1 Response Response is a measure of quickness of the system. It gives you an idea about how fast your system is tracking the changes in input variables. Most of the embedded systems demand fast response which should be almost Real Time. For example, an embedded system deployed in flight control application should respond in a Real Time manner. Any response delay in the system will create potential damages to the safety of the flight as well as the passengers. It is not necessary that all embedded systems should be Real Time in response. For example, the response time requirement for an electronic toy is not at all time-critical. There is no specific deadline that this system should respond within this particular timeline.
- 3.2.1.2 Throughput Throughput deals with the efficiency of a system. In general it can be defined as the rate of production or operation of a defined process over a stated period of time. The rates can be expressed in terms of units of products, batches produced, or any other meaningful measurements. In the case of a Card Reader, throughput means how many transactions the Reader can perform in a minute or in an hour or in a day. Throughput is generally measured in terms of 'Benchmark'. A 'Benchmark' is a reference point by which something can be measured. Benchmark can be a set of performance criteria that a product is expected to meet or a standard product that can be used for comparing other products of the same product line.
- 3.2.1.3 Reliability Reliability is a measure of how much % you can rely upon the proper functioning of the system or what is the % susceptibility of the system to failures.

Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are the terms used in defining system reliability. MTBF gives the frequency of failures in hours/weeks/months. MTTR specifies how long the system is allowed to be out of order following a failure. For an embedded system with critical application need, it should be of the order of minutes.

3.2.1.4 Maintainability Maintainability deals with support and maintenance to the end user or client in case of technical issues and product failures or on the basis of a routine system checkup. Reliability and maintainability are considered as two complementary disciplines. A more reliable system means a system with less corrective maintainability requirements and vice versa. As the reliability of the system increases, the chances of failure and non-functioning also reduces, thereby the need for maintainability is also reduced. Maintainability is closely related to the system availability. Maintainability can be broadly classified into two categories, namely, 'Scheduled or Periodic Maintenance (preventive maintenance)' and 'Maintenance to unexpected failures (corrective maintenance)'. Some embedded products may use consumable components or may contain components which are subject to wear and tear and they should be replaced on a periodic basis. The period may be based on the total hours of the system usage or the total output the system delivered. A printer is a typical example for illustrating the two types of maintainability. An inkjet printer uses ink cartridges, which are consumable components and as per the printer manufacturer the end user should replace the cartridge after each 'n' number of printouts to get quality prints. This is an example for 'Scheduled or Periodic maintenance'. If the paper feeding part of the printer fails the printer fails to print and it requires immediate repairs to rectify this problem. This is an example of 'Maintenance to unexpected failure'. In both of the maintenances (scheduled and repair), the printer needs to be brought offline and during this time it will not be available for the user. Hence it is obvious that maintainability is simply an indication of the availability of the product for use. In any embedded system design, the ideal value for availability is expressed as

result of flaws in the firmware.

$A_i = MTBF/(MTBF + MTTR)$

where A_i = Availability in the ideal condition, MTBF = Mean Time Between Failures, and MTTR = Mean Time To Repair

3.2.1.5 Security Confidentiality, 'Integrity', and 'Availability' (The term 'Availability' mentioned here is not related to the term 'Availability' mentioned under the 'Maintainability' section) are the three major measures of information security. Confidentiality deals with the protection of data and application from unauthorised disclosure. Integrity deals with the protection of data and application from unauthorised modification. Availability deals with protection of data and application from unauthorized users. A very good example of the 'Security' aspect in an embedded product is a Personal Digital Assistant (PDA). The PDA can be either a shared resource (e.g. PDAs used in LAB setups) or an individual one. If it is a shared one there should be some mechanism in the form of a user name and password to access into a particular person's profile—This is an example of 'Availability'. Also all data and applications present in the PDA need not be accessible to all users. Some of them are specifically accessible to administrators only. For achieving this, Administrator and user levels of security should be implemented—An example of Confidentiality. Some data present in the PDA may be visible to all users but there may not be necessary permissions to alter the data by the users. That is Read Only access is allocated to all users—An example of Integrity.

3.2.1.6 Safety 'Safety' and 'Security' are two confusing terms. Sometimes you may feel both of them as a single attribute. But they represent two unique aspects in quality attributes. Safety deals with the possible damages that can happen to the operators, public and the environment due to the breakdown of an embedded system or due to the emission of radioactive or hazardous materials from the embedded products. The breakdown of an embedded system may occur due to a hardware failure or a firmware failure. Safety analysis is a must in product engineering to evaluate the anticipated damages and determine the best course of action to bring down the consequences of the damages to an acceptable level. As stated before, some of the safety threats are sudden (like product breakdown) and some of them are gradual (like hazardous emissions from the product).

3.2.2 Non-Operational Quality Attributes

The quality attributes that needs to be addressed for the product 'not' on the basis of operational aspects are grouped under this category. The important quality attributes coming under this category are listed below.

- 1. Testability & Debug-ability
- 2. Evolvability
- 3. Portability
- 4. Time to prototype and market
- 5. Per unit and total cost.
- 3.2.2.1 Testability & Debug-ability Testability deals with how easily one can test his/her design, application and by which means he/she can test it. For an embedded product, testability is applicable to both the embedded hardware and firmware. Embedded hardware testing ensures that the peripherals and the total hardware functions in the desired manner, whereas firmware testing ensures that the firmware is functioning in the expected way. Debug-ability is a means of debugging the product as such for figuring out the probable sources that create unexpected behaviour in the total system. Debug-ability

has two aspects in the embedded system development context, namely, hardware level debugging and firmware level debugging. Hardware debugging is used for figuring out the issues created by hardware problems whereas firmware debugging is employed to figure out the probable errors that appear as a

3.2.2.2 Evolvability Evolvability is a term which is closely related to Biology. Evolvability is referred as the non-heritable variation. For an embedded system, the quality attribute 'Evolvability' refers to the ease with which the embedded product (including firmware and hardware) can be modified to take advantage of new firmware or hardware technologies.

3.2.2.3 Portability Portability is a measure of 'system independence'. An embedded product is said to be portable if the product is capable of functioning 'as such' in various environments, target processors/controllers and embedded operating systems. The ease with which an embedded product can be ported on to a new platform is a direct measure of the re-work required. A standard embedded product should always be flexible and portable. In embedded products, the term 'porting' represents the migration of the embedded firmware written for one target processor (e.g. Intel x86) to a different target processor (say Hitachi SH3 processor). If the firmware is written in a high level language like 'C' with little target processor-specific functions (operating system extensions or compiler specific utilities), it is very easy to port the firmware for the new processor by replacing those 'target processor-specific functions' with the ones for the new target processor and re-compiling the program for the new target processor-specific settings. Re-compiling the program for the new target processor-specific machine codes. If the firmware is written in Assembly Language for a particular family of processor (say x86 family), it will be very difficult to translate the assembly language instructions to the new target processor specific language and so the portability is poor.

If you look into various programming languages for application development for desktop applications, you will see that certain applications developed on certain languages run only on specific operating systems and some of them run independent of the desktop operating systems. For example, applications developed using Microsoft technologies (e.g. Microsoft Visual C++ using Visual studio) is capable of running only on Microsoft platforms and will not function on other operating systems; whereas applications developed using 'Java' from Sun Microsystems works on any operating system that supports Java standards.

3.2.2.4 Time-to-Prototype and Market Time-to-market is the time elapsed between the conceptualisation of a product and the time at which the product is ready for selling (for commercial product) or use (for non-commercial products). The commercial embedded product market is highly competitive and time to market the product is a critical factor in the success of a commercial embedded product. There may be multiple players in the embedded industry who develop products of the same category (like mobile phone, portable media players, etc.). If you come up with a new design and if it takes long time to develop and market it, the competitor product may take advantage of it with their product. Also, embedded technology is one where rapid technology change is happening. If you start your design by making use of a new technology and if it takes long time to develop and market the product, by the time you market the product, the technology might have superseded with a new technology. Product prototyping helps a lot in reducing time-to-market. Whenever you have a product idea, you may not be certain about the feasibility of the idea. Prototyping is an informal kind of rapid product development in which the important features of the product under consideration are developed. The time to prototype is also another critical factor. If the prototype is developed faster, the actual estimated development time

can be brought down significantly. In order to shorten the time to prototype, make use of all possible options like the use of off-the-shelf components, re-usable assets, etc.

3.2.2.5 Per Unit Cost and Revenue Cost is a factor which is closely monitored by both end user (those who buy the product) and product manufacturer (those who build the product). Cost is a highly sensitive factor for commercial products. Any failure to position the cost of a commercial product at a nominal rate, may lead to the failure of the product in the market. Proper market study and cost benefit analysis should be carried out before taking a decision on the per-unit cost of the embedded product. From a designer/product development company perspective the ultimate aim of a product is to generate marginal profit. So the budget and total system cost should be properly balanced to provide a marginal profit. Every embedded product has a product life cycle which starts with the design and development phase. The product idea generation, prototyping, Roadmap definition, actual product design and development are the activities carried out during this phase. During the design and development phase there is only investment and no returns. Once the product is ready to sell, it is introduced to the market. This stage is known as the Product Introduction stage. During the initial period the sales and revenue will be low. There won't be much competition and the product sales and revenue increases with time. In the growth phase, the product grabs high market share. During the maturity phase, the growth and sales will be steady and the revenue reaches at its peak. The Product Retirement/Decline phase starts with the drop in sales volume, market share and revenue. The decline happens due to various reasons like competition from similar product with enhanced features or technology changes, etc. At some point of the decline stage, the manufacturer announces discontinuing of the product. The different stages of the embedded products life cycle-revenue, unit cost and profit in each stage-are represented in the following Product Life-cycle graph.

From the graph, it is clear that the total revenue increases from the product introduction stage to the product maturity stage. The revenue peaks at the maturity stage and starts falling in the decline/retirement stage. The unit cost is very high during the introductory stage (a typical example is cell phone; if

you buy a new model of cell phone during its launch time, the price will be high and you will get the same model with a very reduced price after three or four months of its launching). The profit increases with increase in sales and attains a steady value and then falls with a dip in sales. You can see a negative value for profit during the initial period. It is because during the product development phase there is only investment and no returns. Profit occurs only when the total returns exceed the investment and operating cost.

- ✓ There exists a set of characteristics which are unique to each embedded system.
- Embedded systems are application and domain specific.
- Quality attributes of a system represents the non-functional requirements that need to be documented properly in any system design.
- ✓ The operational quality attributes of an embedded system refers to the non-functional requirements that needs to be considered for the operational mode of the system. Response, Throughput, Reliability, Maintainability, Security, Safety, etc. are examples of operational quality attributes.
- ✓ The non-operational quality attributes of an embedded system refers to the non-functional requirements that needs to be considered for the non-operational mode of the system. Testability, debug-ability, evolvability, portability, time-to-prototype and market, per unit cost and revenue, etc. are examples of non-operational quality attributes.
- ✓ The product life cycle curve (PLC) is the graphical representation of the unit cost, product sales and profit with respect to the various life cycle stages of the product starting from conception to disposal.
- ✓ For a commercial embedded product, the unit cost is peak at the introductory stage and it falls in the maturity stage.
- ✓ The revenue of a commercial embedded product is at the peak during the maturity stage.

Quality attributes : The non-functional requirements that need to be addressed in any system design

: An embedded system which produces changes in output in response to the changes in

Real-Time system : A system which adheres to strict timing behaviour and responds to requests in a known amount of time

Response : It is a measure of quickness of the system

Reactive system

Throughput

Reliability

It is a measure of how much % one can rely upon the proper functioning of a system

MTBF

Mean Time Between Failures—The frequency of failures in hours/weeks/months

Mean Time To Repair—Specifies how long the system is allowed to be out of order following a failure.

Time-to-prototype : A measure of the time required to prototype a design

Product life-cycle (PLC): The representation of the different stages of a product from its conception to disposal
 Product life cycle curve: The graphical representation of the unit cost, product sales and profit with respect to the

various life cycle stages of the product starting from conception to disposal

Introduction to Embedded Systems

Embedded systems are application and domain specific. State True or False

		(a) True (b) False
	2	Which of the following is true about Embedded Systems?
,	-	(a) Reactive and Real Time (b) Distributed (c) Operates in harsh environment
		(d) All of these (e) None of these
	3	Which of the following is a distributed embedded system?
		(a) Cell phone (b) Notebook Computer (c) SCADA system (d) All of these
		(e) None of these
	*.	Quality attributes of an embedded system are
		(a) Functional requirements (b) Non-functional requirements
		(c) Both (d) None of these
	5.	Response is a measure of
		(a) Quickness of the system (b) How fast the system tracks changes in Input
		(c) Both (d) None of these
-4	6.	Throughput of an embedded system is a measure of
		(a) The efficiency of the system (b) The output over a stated period of time
		(c) Both (d) None of these
	7.	Benchmark is
		(a) A reference point (b) A set of performance criteria
		(c) (a) or (b) (d) None of these
	8,	Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) defines the reliability of an embedded
		system. State True or False
		(a) True (b) False
	9.	MTBF gives the frequency of failures of an embedded system. State True or False
		(a) True (b) False
1	10.	Which of the following is true about the quality attribute 'maintainability'?
		(a) The corrective maintainability requirement for a highly reliable embedded system is very less
		(b) Availability of an embedded system is directly related to the maintainability of the system
		(c) Both of these
		(d) None of these
1	11.	The Mean Time Between Failure (MTBF) for an embedded product is very high. This means:
		(a) The product is highly reliable
		(b) The availability of the product is very high
		(c) The preventive maintenance requirement for the product is very less
		(d) All of these
		(e) None of these
1	12	The Mean Time Between Failure (MTBF) of an embedded product is 4 months and the Mean Time To Repair
1	-	(MTTR) of the product is 2 weeks. What is the availability of the product?
		(a) 100% (b) 50% (c) 89% (d) 10%
,	13	Which of the following are the three measures of information security in embedded systems?
í		(a) Confidentiality, secrecy, integrity (b) Confidentiality, integrity, availability
		(c) Confidentiality, secrecy, integrity (d) Integrity, transparency, availability (e) Confidentiality, transparency, availability
		(c) Commontantly, transparency, availability (d) linegity, transparency, availability

Characteristics and Quality Attributes of Embedded Systems

14.	company has signed a	mission critical embedded syster Non Disclosure Agreement (ND) e project you are working with y	A) on th	e disclosure of the p	roject-re	lated information. You
	(a) Integrity	(b) Confidentiality	(c)	Availability	(d)	None of these
15.		g is an example of 'gradual' safet	1 (4)			
	그 마다 그런 한 점점 하는데 그는 이번 그리고 있다고 있습니다. 하는데 하는데 하는데 하는데 그 때문	to overheating of the battery		UV emission from	3 M 1 1 1 1	
	(c) Both of these			None of these		
16.	Non operational qualit	y attributes are				
	(a) Non-functional re		(b)	Functional requirer	nents	
		for an offline product		(a) and (c)		
	(e) None of these	2				
17.	Which of the following	g is (are) an operational quality a	ttribute	?		
	(a) Testability	(b) Safety	(c)	Debug-ability	(d)	Portability
	(e) All of these					V CONTROL CONTROL
18.	Which of the following	g is (are) non-operational quality	attribu	te?		
	(a) Reliability	(b) Safety	(c)	Maintainability	(d)	Portability
	(e) All of these	(f) None of these		350		1.5%
19.	In the Information secu	urity context, Confidentiality deal	s with t	he protection of data	and app	lication from unautho-
	rised disclosure. State	True or False				
	(a) True	(b) False				
20.	What are the two diffe	rent aspects of debug-ability in the	he emb	edded system develo	pment c	ontext?
	(a) Hardware & Firm	ware debug-ability	(b)	Firmware & Softwa	are debu	g-ability
	(c) None of these					
21.		em, the quality attribute 'Evolvah				
	(a) The upgradability	of the product		The modifiability o	f the pro	duct
	(c) Both of these			None of these		
22.	50~000 (10 m) . Con 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	e of 'system independence'. Stat	e True	or False		
988	(a) True	(b) False	TO 1200/00			
23.		edded product the unit cost is hig				
	(a) Product launching	g		Product maturity		
	(c) Product growth			Product discontinui	ng	
24.		edded product the sales volume				
	(a) Product launching	g	1.5	Product maturity		
	(c) Product growth		(d)	Product discontinui	ng	

- 1. Explain the different characteristics of embedded systems in detail.
- Explain quality attribute in the embedded system development context? What are the different Quality attributes to be considered in an embedded system design.
- What is operational quality attribute? Explain the important operational quality attributes to be considered in any embedded system design.
- What is non-operational quality attribute? Explain the important non-operational quality attributes to be considered in any embedded system design.
- 5. Explain the quality attribute Response in the embedded system design context.
- 6. Explain the quality attribute Throughput in the embedded system design context.

Introduction to Embedded Systems

- Explain the quality attribute Reliability in the embedded system design context.
- 8. Explain the quality attribute Maintainability in the embedded system design context.
- 9. The availability of an embedded product is 90%. The Mean Time Between Failure (MTBF) of the product is 30 days. What is the Mean Time To Repair (MTTR) in days/hours for the product?
- Explain the quality attribute Information Security in the embedded system design context.
- 11. Explain the quality attribute Safety in the embedded system design context,
- Explain the significance of the quality attributes Testability and Debug-ability in the embedded system design context.
- 13. Explain the quality attribute Portability in the embedded system design context.
- 14. Explain Time-to-market? What is its significance in product development?
- 15. Explain Time-to-prototype? What is its significance in product development?
- Explain the Product Life-cycle curve of an embedded product development.

- ✓ Illustrate the domain and application specific aspect of embedded systems with examples
- ✓ Know the presence of embedded systems in automotive industry
- ✓ Learn about High Speed Electronic Control Units (HECUs) and Low Speed Electronic Control Units (LECUs) employed
 in automotive applications
- ✓ Learn about the Controller Area Network (CAN), Local Interconnect Network (LIN) and Media Oriented System
 Transport (MOST) communication buses used in automotive applications
- ✓ Know the semiconductor chip providers, tools and platform providers and solution providers for automotive embedded applications

As mentioned in the previous chapter on the characteristics of embedded systems, embedded systems are application and domain specific, meaning; they are specifically built for certain applications in certain domains like consumer electronics, telecom, automotive, industrial control, etc. In general purpose computing, it is possible to replace a system with another system which is closely matching with the existing system, whereas it is not the case with embedded systems. Embedded systems are highly specialised in functioning and are dedicated for a specific application. Hence it is not possible to replace an embedded system developed for a specific application in a specific domain with another embedded system designed for some other application in some other domain. The following sections are intended to give the readers some idea on the application and domain specific characteristics of embedded systems.

4.1 WASHING MACHINE—APPLICATION-SPECIFIC EMBEDDED SYSTEM

People experience the power of embedded systems and enjoy the features and comfort provided by them, but they are totally unaware or ignorant of the intelligent embedded players working behind the products providing enhanced features and comfort. Washing machine is a typical example of an embedded system providing extensive support in home automation applications (Fig. 4.1).

Copyrighted material

As mentioned in an earlier chapter, an embedded system contains sensors, actuators, control unit and application-specific user interfaces like keyboards, display units, etc. You can see all these components in a washing machine if you have a closer look at it. Some of them are visible and some of them may be invisible to you.

The actuator part of the washing machine consists of a motorised agitator, tumble tub, water drawing pump and inlet valve to control the flow of water into the unit. The sensor part consists of the water temperature sensor, level sensor, etc. The control part contains a microprocessor/controller based board with interfaces to the sensors and actuators. The sensor data is fed back to the control unit and the control unit generates the necessary actuator outputs. The control unit also provides connectivity to user interfaces like keypad for setting the washing time, selecting the type of material to be washed like light, medium, heavy duty, etc. User feedback is reflected through the display unit and LEDs connected to the control board. The functional block diagram of a washing machine is shown in Fig. 4.2.

EWF 1495

Fig. 4.1 Washing Machine – Typical example of an embedded system

(Photo courtesy of Electrolux Corporation (www.electrolux.com/au))

Picture not to scale

Fig. 4.2 Washing machine - Functional block diagram

Washing machine comes in two models, namely, top loading and front loading machines. In top loading models the agitator of the machine twists back and forth and pulls the cloth down to the bottom of the tub. On reaching the bottom of the tub the clothes work their way back up to the top of the tub where the agitator grabs them again and repeats the mechanism. In the front loading machines, the clothes are tumbled and plunged into the water over and over again. This is the first phase of washing.

In the second phase of washing, water is pumped out from the tub and the inner tub uses centrifugal force to wring out more water from the clothes by spinning at several hundred Rotations Per Minute (RPM). This is called a 'Spin Phase'. If you look into the keyboard panel of your washing machine you can see three buttons namely' Wash, Spin and Rinse. You can use these buttons to configure the washing stages. As you can see from the picture, the inner tub of the machine contains a number of holes and during the spin cycle the inner tub spins, and forces the water out through these holes to the stationary outer tub from which it is drained off through the outlet pipe.

It is to be noted that the design of washing machines may vary from manufacturer to manufacturer, but the general principle underlying in the working of the washing machine remains the same. The basic controls consist of a timer, cycle selector mechanism, water temperature selector, load size selector and start button. The mechanism includes the motor, transmission, clutch, pump, agitator, inner tub, outer tub and water inlet valve. Water inlet valve connects to the water supply line using at home and regulates the flow of water into the tub.

The integrated control panel consists of a microprocessor/controller based board with I/O interfaces and a control algorithm running in it. Input interface includes the keyboard which consists of wash type selector namely* Wash, Spin and Rinse, cloth type selector namely* Light, Medium, Heavy duty and washing time setting, etc. The output interface consists of LED/LCD displays, status indication LEDs, etc. connected to the I/O bus of the controller. It is to be noted that this interface may vary from manufacturer to manufacturer and model to model. The other types of I/O interfaces which are invisible to the end user are different kinds of sensor interfaces, namely, water temperature sensor, water level sensor, etc. and actuator interface including motor control for agitator and tub movement control, inlet water flow control, etc.

4.2 AUTOMOTIVE - DOMAIN-SPECIFIC EXAMPLES OF EMBEDDED SYSTEM

The major application domains of embedded systems are consumer, industrial, automotive, telecom, etc., of which telecom and automotive industry holds a big market share.

Figure 4.3 gives an overview of the various types of electronic control units employed in automotive applications.

4.2.1 Inner Workings of Automotive Embedded Systems

Automotive embedded systems are the one where electronics take control over the mechanical systems. The presence of automotive embedded system in a vehicle varies from simple mirror and wiper controls to complex air bag controller and antilock brake systems (ABS). Automotive embedded systems are normally built around microcontrollers or DSPs or a hybrid of the two and are generally known as Electronic Control Units (ECUs). The number of embedded controllers in an ordinary vehicle varies

^{*}Name may vary depending on the manufacturer.

13. Airbag control 14. Power steering 15. Air conditioner 16. Instrumentation 17. Instrumentation 18. Supension control 19. Power windows 19. Engine control 19. Power windows 10. Power windows

Fig. 4.3 Embedded system in the automotive domain
(Photo courtesy of Honda Siel Car India (www.hondacarindia.com))

from 20 to 40 whereas a luxury vehicle like Mercedes S and BMW 7 may contain 75 to 100 numbers of embedded controllers. Government regulations on fuel economy, environmental factors and emission standards and increasing customer demands on safety, comfort and infotainment forces the automotive manufactures to opt for sophisticated embedded control units within the vehicle. The first embedded system used in automotive application was the microprocessor based fuel injection system introduced by Volkswagen 1600 in 1968.

The various types of electronic control units (ECUs) used in the automotive embedded industry can be broadly classified into two-High-speed embedded control units and Low-speed embedded control units.

- 4.2.1.1 High-speed Electronic Control Units (HECUs) High-speed electronic control units (HECUs) are deployed in critical control units requiring fast response. They include fuel injection systems, antilock brake systems, engine control, electronic throttle, steering controls, transmission control unit and central control unit.
- 4.2.1.2 Low-speed Electronic Control Units (LECUs) Low-Speed Electronic Control Units (LECUs) are deployed in applications where response time is not so critical. They generally are built around low cost microprocessors/microcontrollers and digital signal processors. Audio controllers, passenger and driver door locks, door glass controls (power windows), wiper control, mirror control, seat control systems, head lamp and tail lamp controls, sun roof control unit etc. are examples of LECUs.

4.2.2 Automotive Communication Buses

Automotive applications make use of serial buses for communication, which greatly reduces the amount of wiring required inside a vehicle. The following section will give you an overview of the different types of serial interface buses deployed in automotive embedded applications.

- 4.2.2.1 Controller Area Network (CAN) The CAN bus was originally proposed by Robert Bosch, pioneer in the Automotive embedded solution providers. It supports medium speed (ISO11519-class B with data rates up to 125 Kbps) and high speed (ISO11898 class C with data rates up to 1Mbps) data transfer. CAN is an event-driven protocol interface with support for error handling in data transmission. It is generally employed in safety system like airbag control; power train systems like engine control and Antilock Brake System (ABS); and navigation systems like GPS. The protocol format and interface application development for CAN bus will be explained in detail in another volume of this book series.
- 4.2.2.2 Local Interconnect Network (LIN) LIN bus is a single master multiple slave (up to 16 independent slave nodes) communication interface. LIN is a low speed, single wire communication interface with support for data rates up to 20 Kbps and is used for sensor/actuator interfacing. LIN bus follows the master communication triggering technique to eliminate the possible bus arbitration problem that can occur by the simultaneous talking of different slave nodes connected to a single interface bus. LIN bus is employed in applications like mirror controls, fan controls, seat positioning controls, window controls, and position controls where response time is not a critical issue.
- 4.2.2.3 Media-Oriented System Transport (MOST) Bus The Media-oriented system transport (MOST) is targeted for automotive audio/video equipment interfacing, used primarily in European cars. A MOST bus is a multimedia fibre-optic point-to-point network implemented in a star, ring or daisy-chained topology over optical fibre cables. The MOST bus specifications define the physical (electrical and optical parameters) layer as well as the application layer, network layer, and media access control. MOST bus is an optical fibre cable connected between the Electrical Optical Converter (EOC) and Optical Electrical Converter (OEC), which would translate into the optical cable MOST bus.

4.2.3 Key Players of the Automotive Embedded Market

The key players of the automotive embedded market can be visualised in three verticals namely, silicon providers, solution providers and tools and platform providers.

4.2.3.1 Silicon Providers Silicon providers are responsible for providing the necessary chips which are used in the control application development. The chip may be a standard product like microcontroller or DSP or ADC/DAC chips. Some applications may require specific chips and they are manufactured as Application Specific Integrated Chip (ASIC). The leading silicon providers in the automotive industry are:

Analog Devices (www.analog.com): Provider of world class digital signal processing chips, precision analog microcontrollers, programmable inclinometer/accelerometer, LED drivers, etc. for automotive signal processing applications, driver assistance systems, audio system, GPS/Navigation system, etc.

Xilinx (www.xilinx.com): Supplier of high performance FPGAs, CPLDs and automotive specific IP cores for GPS navigation systems, driver information systems, distance control, collision avoidance, rear seat entertainment, adaptive cruise control, voice recognition, etc.

Atmel (www.atmel.com): Supplier of cost-effective high-density Flash controllers and memories. Atmel provides a series of high performance microcontrollers, namely, ARM^{®1}, AVR^{®2}, and 80C51. A wide range of Application Specific Standard Products (ASSPs) for chassis, body electronics, security, safety and car infotainment and automotive networking products for CAN, LIN and FlexRay are also supplied by Atmel.

Maxim/Dallas (www.maxim-ic.com): Supplier of world class analog, digital and mixed signal products (Microcontrollers, ADC/DAC, amplifiers, comparators, regulators, etc.), RF components, etc. for all kinds of automotive solutions.

Nxp semiconductor (www.nxp.com): Supplier of 8/16/32 Flash microcontrollers.

Renesas (www.renesas.com): Provider of high speed microcontrollers and Large Scale Integration (LSI) technology for car navigation systems accommodating three transfer speeds: high, medium and low.

Texas Instruments (www.ti.com): Supplier of microcontrollers, digital signal processors and automotive communication control chips for Local Inter Connect (LIN) bus products.

Fujitsu (www.fmal.fujitsu.com): Supplier of fingerprint sensors for security applications, graphic display controller for instrumentation application, AGPS/GPS for vehicle navigation system and different types of microcontrollers for automotive control applications.

Infineon (www.infineon.com): Supplier of high performance microcontrollers and customised application specific chips.

NEC (www.nec.co.jp): Provider of high performance microcontrollers.

There are lots of other silicon manufactures which provides various automotive support systems like power supply, sensors/actuators, optoelectronics, etc. Describing all of them is out of the scope of this book. Readers are requested to use the Internet for finding more information on them.

4.2.3.2 Tools and Platform Providers Tools and platform providers are manufacturers and suppliers of various kinds of development tools and Real Time Embedded Operating Systems for developing and debugging different control unit related applications. Tools fall into two categories, namely embedded software application development tools and embedded hardware development tools. Sometimes the silicon suppliers provide the development suite for application development using their chip. Some third party suppliers may also provide development kits and libraries. Some of the leading suppliers of tools and platforms in automotive embedded applications are listed below.

ENEA (www.enea.com): Enea Embedded Technology is the developer of the OSE Real-Time operating system. The OSE RTOS supports both CPU and DSP and has also been specially developed to support multi-core and fault-tolerant system development.

The MathWorks (www.mathworks.com): It is the world's leading developer and supplier of technical software. It offers a wide range of tools, consultancy and training for numeric computation, visualisation, modelling and simulation across many different industries. MathWork's breakthrough product is MATLAB—a high-level programming language and environment for technical computation and numerical analysis. Together MATLAB, SIMULINK, Stateflow and Real-Time Workshop provide top quality tools for data analysis, test & measurement, application development and deployment, image processing and development of dynamic and reactive systems for DSP and control applications.

Keil Software (www.keil.com): The Integrated Development Environment Keil Microvision from Keil software is a powerful embedded software design tool for 8051 & C166 family of microcontrollers.

Lauterbach (http://www.lauterbach.com/): It is the world's number one supplier of debug tools, providing support for processors from multiple silicon vendors in the automotive market.

ARTiSAN (www.artisansw.com): Is the leading supplier of collaborative modelling tools for requirement analysis, specification, design and development of complex applications.

Microsoft (www.microsoft.com): It is a platform provider for automotive embedded applications. Microsoft's WindowsCE is a powerful RTOS platform for automotive applications. Automotive features are included in the new WinCE Version for providing support for automotive application developers.

4.2.3.3 Solution Providers Solution providers supply OEM and complete solution for automotive applications making use of the chips, platforms and different development tools. The major players of this domain are listed below.

Bosch Automotive (www.boschindia.com): Bosch is providing complete automotive solution ranging from body electronics, diesel engine control, gasoline engine control, powertrain systems, safety systems, in-car navigation systems and infotainment systems.

DENSO Automotive (www.globaldensoproducts.com): Denso is an Original Equipment Manufacturer (OEM) and solution provider for engine management, climate control, body electronics, driving control & safety, hybrid vehicles, embedded infotainment and communications.

Infosys Technologies (www.infosys.com): Infosys is a solution provider for automotive embedded hardware and software. Infosys provides the competitive edge in integrating technology change through costeffective solutions.

Delphi (www.delphi.com): Delphi is the complete solution provider for engine control, safety, infotainment, etc., and OEM for spark plugs, bearings, etc.

.....and many more. The list is incomplete. Describing all providers is out of the scope of this book.

- Embedded systems designed for a particular application for a specific domain cannot be replaced with another embedded system designed for another application for a different domain
- Consumer, industrial, automotive, telecom, etc. are the major application domains of embedded systems. Telecom and automotive industry are the two segments holding a big market share of embedded systems
- Automotive embedded systems are normally built around microcontrollers or DSPs or a hybrid of the two and are generally known as Electronic Control Units (ECUs)
- ✓ High speed Electronic Control Units (HECUs) are deployed in critical control units requiring fast response, like fuel injection systems, antilock brake system, etc.
- Low speed Electronic Control Units (LECUs) are deployed in applications where response time is not so critical. They are generally built around low cost microprocessors/microcontrollers and digital signal processors. Audio controllers, passenger and driver door locks, door glass controls, etc., are examples for LECUs.
- Automotive applications use serial buses for communication. Controller Area Network (CAN), Local Interconnect Network (LIN), Media Oriented System Transport (MOST) bus, etc. are the important automotive communication buses.

¹ ARM® is the registered trademark of ARM Holdings.

² AVR® is the registered trademark of Atmel Corporation.

Introduction to Embedded Systems

- ✓ CAN is an event driven serial protocol interface with support for error handling in data transmission. It is generally employed in safety system like airbag control, powertrain systems like engine control and Antilock Brake Systems (ABS).
- ✓ LIN bus is a single master multiple slave (up to 16 independent slave nodes) communication interface. LIN is a low speed, single wire communication interface with support for data rates up to 20Kbps and is used for sensor/actuator interfacing
- ✓ The Media Oriented System Transport (MOST) bus is targeted for automotive audio video equipment interfacing. MOST bus is a multimedia fibre-optic point-to-point network implemented in a star, ring or daisy-chained topology over optical fibres cables
- ✓ The key players of the automotive embedded market can be classified into 'Silicon Providers', 'Tools and Platform Providers' and 'Solution Providers'

- ECU : Electronic Control Unit. The generic term for the embedded control units in automotive application
- HECU: High-speed Electronic Control Unit. The high-speed embedded control unit deployed in automotive applications
- LECU: Low-speed Electronic Control Unit. The low-speed embedded control unit deployed in automotive applica-
- CAN : Controller Area Network. An event driven serial protocol interface used primarily for automotive applica-
- LIN : Local Interconnect Network. A single master multiple slave, low speed serial bus used in automotive ap-
- MOST: Media Oriented System Transport Bus. A multimedia fibre-optic point-to-point network implemented in a star, ring or daisy-chained topology over optical fibres cables

- 1. In Automotive systems, High-speed Electronic Control Units (HECUs) are deployed in
 - (a) Fuel injection systems (b) Antilock brake systems (c) Power windows
 - (d) Wiper control
- (e) Only (a) and (b)
- 2. In Automotive systems, Low speed electronic control units (LECUs) are deployed in
- (a) Electronic throttle
- (b) Steering controls
- (c) Transmission control (d) Mirror control
- 3. The first embedded system used in automotive application is the microprocessor based fuel injection system introduced by
 - (a) BMW
- (b) Volkswagen 1600
- (c) Benz E Class
- (d) KIA
- 4. CAN bus is an event driven protocol for communication. State True or False

- (b) False
- 5. Which of the following serial bus is (are) used for communication in Automotive Embedded Applications?
 - (a) Controller Area Network (CAN)

- (b) Local Interconnect Network (LIN)
- (c) Media Oriented System Transport (MOST) bus
- 6. Which of the following is true about LIN bus?
- (d) All of these
- (a) Single master multiple slave interface (c) Used for sensor/actuator interfacing
- (d) All of these

(b) Low speed serial bus

(e) None of these

(e) None of these

Copyrighted material

Embedded Systems—Application- and Domain-Specific

- 7. Which of the following is true about MOST bus?
 - (a) Used for automotive audio video system interfacing
 - (b) It is a fibre optic point-to-point network
 - (c) It is implemented in star, ring or daisy-chained topology
 - (d) All of these
- (e) None of these
- 8. Which of the following is (are) example(s) of Silicon providers for automotive applications? (c) Xilinx
 - (d) Atmel

- (a) Maxim/Dallas (e) All of these
- (b) Analog Devices (f) None of these

- Explain the role of embedded systems in automotive domain.
- Explain the different electronic control units (ECUs) used in automotive systems.
- 3. Explain the different communication buses used in automotive application.
- 4. Give an overview of the different market players of the automotive embedded application domain.

Copyrighted material

Designing Embedded Systems with 8bit Microcontrollers—8051

- ✓ Understand the different factors that need to be considered while selecting a microcontroller for an embedded design
- ✓ Know why 8051 is the popular choice for low cost low performance embedded system design
- ✓ Learn the A to Z of 8051 microcontroller architecture
- ✓ Learn the Internals of the 8051 microcontroller
- ✓ Learn the program memory and internal data memory organisation of 8051
- ✓ Learn the Paged Data memory access and Von-Neumann memory model implementation for 8051
- ✓ Learn about the organisation of lower 128 bytes RAM for data memory, upper 128 bytes RAM for SFR and upper 128 bytes RAM for Internal Data memory (IRAM)
- ✓ Learn about the CPU registers and general purpose registers of 8051
- ✓ Learn about the Oscillator unit and speed of execution of 8051
- ✓ Learn about the different I/O ports, organisation of the ports, the internal implementation of the port pins, the
 different registers associated with the ports and the operation of ports
- ✓ Learn about interrupts and its significance in embedded applications
- ✓ Learn about the Interrupt System of 8051, the interrupts supported by 8051, interrupt priorities, different registers associated with configuring the interrupts, Interrupt Service Routine and their vector address
- ✓ Learn about the Timer/Counter units supported by 8051 and configuring the Timer unit for Timer/Counter operation. Learn the different registers associated with timer units and the different modes of operations supported by Timer/Counter units
- ✓ Learn about the Serial Port of the 8051, the different control, status and data registers associated with it.
- ✓ Learn the different modes of operations supported by the Serial port and setting the baudrate for each mode.
- ✓ Learn about the Power-On Reset circuit implementation for 8051
- Learn about the different power saving modes supported by 8051
- ✓ Learn the difference between 8051 and 8052

A recent survey on the microcontroller industry reveals that 8bit microcontrollers account for more than 40% of the total sales in the microcontroller industry. Among the 8bit microcontrollers, the 8051 family is the most popular, cost effective and versatile device offering extensive support in the embedded appli-

cation domain. Looking back to the history of microcontrollers you can find that the 8bit microcontroller industry has travelled a lot from its first popular model 8031AH built by Intel in 1977 to the advanced 8bit microcontroller built by Maxim/Dallas recently, which offers high performance 4 Clock, 75MHz operation 8051 microcontroller core (Remember the original 8031 core was 12 Clock with support for a maximum system clock of 6MHz, so a performance improvement of 3 times on the original version in execution) with extensive support for networking by integrating 10/100 Ethernet MAC with IEEE 802.3 MMI, CAN bus for automotive application support, RS-232 C interface for legacy serial applications, SPI serial interface for board level device inter connect, 1-wire interface for connecting to low cost multi-drop sensors and actuators, and 16MB addressing space for code and data memory.

5.1 FACTORS TO BE CONSIDERED IN SELECTING A CONTROLLER

Selection of a microcontroller for any application depends on some design factors. A good designer finalises his selection based on a comparative study of the design factors. The important factors to be considered in the selection process of a microcontroller are listed below.

5.1.1 Feature Set

The important queries related to the feature set are: Does the microcontroller support all the peripherals required by the application, say serial interface, parallel interface, etc.? Does it satisfy the general I/O port requirements by the application? Does the controller support sufficient number of timers and counters? Does the controller support built-in ADC/DAC hardware in case of signal processing applications? Does the controller provide the required performance?

5.1.2 Speed of Operation

Speed of operation or performance of the controller is another important design factor. The number of clocks required per instruction cycle and the maximum operating clock frequency supported by the processor greatly affects the speed of operation of the controller. The speed of operation of the controller is usually expressed in terms of million instructions per second (MIPS).

5.1.3 Code Memory Space

If the target processor/controller application is written in C or any other high level language, does the controller support sufficient code memory space to hold the compiled hex code (In case of controllers with internal code memory)?

5.1.4 Data Memory Space

Does the controller support sufficient internal data memory (on chip RAM) to hold run time variables and data structures?

5.1.5 Development Support

Development support is another important factor for consideration. It deals with-Does the controller manufacture provide cost-effective development tools? Does the manufacture provide product samples

for prototyping and sample development stuffs to alleviate the development pains? Does the controller support third party development tools? Does the manufacture provide technical support if necessary?

5.1.6 Availability

Availability is another important factor that should be taken into account for the selection process. Since the product is entirely dependent on the controller, the product development time and time to market the product solely depends on its availability. By technical terms it is referred to as *Lead time*. Lead time is the time elapsed between the purchase order approval and the supply of the product.

5.1.7 Power Consumption

The power consumption of the controller should be minimal. It is a crucial factor since high power requirement leads to bulky power supply designs. The high power dissipation also demands for cooling fans and it will make the overall system messy and expensive. Controllers should support idle and power down modes of operation to reduce power consumption.

5.1.8 Cost

Last but not least, cost is a big deciding factor in selecting a controller. The cost should be within the reachable limit of the end user and the targeted user should not be high tech. Remember the ultimate aim of a product is to gain marginal benefit.

5.2 WHY 8051 MICROCONTROLLER

8051 is a very versatile microcontroller featuring powerful Boolean processor which supports bit manipulation instructions for real time industrial control applications. The standard 8051 architecture supports 6 interrupts (2 external interrupts, 2 timer interrupts and 2 serial interrupts), two 16bit timers/counters, 32 I/O lines and a programmable full duplex serial interface. Another fascinating feature of 8051 is the way it handles interrupts. The interrupts have two priority levels and each interrupt is allocated fixed 8 bytes of code memory. This approach is very efficient in real time application. Though 8051 is invented by Intel, today it is available in the market from more than 20 vendors and with more than 100 variants of the original 8051 flavour, supporting CAN, USB, SPI and TCP/IP interfaces, integrated ADC/DAC, LCD Controller and extended number of I/O ports. Another remarkable feature of 8051 is its low cost. The 8051 flash microcontroller (4789C51) from Atmel is available in the market for less than 1USS per piece. So imagine its cost for high volume purchases.

5.3 DESIGNING WITH 8051

5.3.1 The 8051 Architecture

The basic 8051 architecture consist of an 8bit CPU with Boolean processing capability, oscillator driver unit, 4K bytes of on-chip program memory, 128 bytes of internal data memory, 128 bytes of special function register memory area, 32 general purpose I/O lines organised into four 8bit bi-directional ports, two 16bit timer units and a full duplex programmable UART for serial data transmission with configurable baudrates. Figure 5.1 illustrates the basic 8051 architecture.

Fig. 5.1) 8051 Architecture—Block diagram representation

5.3.2 The Memory Organisation

8051 is built around the *Harvard* processor architecture. The program and data memory of 8051 is logically separated and they physically reside separately. Separate address spaces are assigned for data memory and program memory. 8051's address bus is 16bit wide and it can address up to 64KB (2¹⁶) memory.

5.3.2.1 The Program (Code) Memory The basic 8051 architecture provides lowest 4K bytes of program memory as on-chip memory (built-in chip memory). In 8031, the ROMless counterpart of 8051, all program memory is external to the chip. Switching between the internal program memory and external program memory is accomplished by changing the logic level of the pin External Access (EA\). Tying EA\ pin to logic 1 ($V_{\rm CC}$), configures the chip to execute instructions from program memory up to 4K (program memory location up to 0FFFH) from internal memory and 4K (program memory location from 1000H) onwards from external memory, while connecting EA\ pin to logic 0 (GND) configures the chip to external program execution mode, where the entire code memory is executed from the external memory. Remember External Access pin is an active low pin (Normally referred as EA\). The control signal for external program memory execution is PSEN\ (Program Strobe Enable). For internal program

memory fetches PSEN\ is not activated. For 8031 controller without on-chip memory, the PSEN\ signal is always activated during program memory execution. The External Access pin (EA\) configuration and the corresponding code memory access are illustrated in Fig. 5.2.

Fig. 5.2 8051 Program memory organisation

If the program memory is external, 16 I/O lines are used for accessing the external memory. Port 0 and Port 2 are used for external memory accessing. Port 0 serves as multiplexed address/data bus for external program memory access. Similar to the 8085 microprocessor, Port 0 emits the lower order address first. This can be latched to an 8bit external latch with the Address Latch Enable (ALE) signal emitted by 8051. Once the address outing is over, Port 0 functions as input port for data transfer from the corresponding memory location. The address from which the program instruction to be fetched is supplied by the 16bit register, Program Counter (PC), which is part of the CPU. The Program Counter is a 16bit register made up of two 8bit registers. The lower order byte of program counter register is held by the PCL register and higher order by the PCH register. PCL and PCH in combination serve as a 16bit register. During external program memory fetching, Port 0 emits the contents of PCL and Port 2 emits the contents of PCH register. Port 0 emits the contents of PCL only for a fixed duration allowing the external latch to hold the content on arrival of the ALE signal. Afterwards Port 0 goes into high impedance state, waiting for the arrival of data from the corresponding memory location of external memory. Whereas Port 2 continues emitting the contents of PCH register throughout the external memory fetch. Once the PSEN\ signal is active, data from the program memory is clocked into Port 0. Remember, during external program memory access Port 0 and Port 2 are dedicated for it and cannot be used as general purpose I/O ports. The interfacing of an external program memory chip is illustrated in Fig. 5.3.

5.3.2.2 The Data Memory The basic 8051 architecture supports 128 bytes of internal data memory and 128 bytes of Special Function Register memory. Special Function Register memory is not available for the user for general data memory applications. The address range for internal user data memory is 00H to 7FH. Special Function Registers are residing at memory area 80H to FFH. 8051 supports interface for 64 Kbytes of external data memory. The control signals used for external data memory

Fig. 5.3 8051 External Program Memory chip (ROM) interfacing

access are RD\ and WR\ and the 16bit register holding the address of external data memory address to be accessed is Data Pointer (DPTR). Similar to the Program Counter, the Data Pointer is also made up of two 8bit registers, namely, DPL (holding the lower order 8bit) and DPH (holding the higher order 8bit). The program counter is not accessible to the user whereas DPTR is accessible to the user and the contents of DPTR register can be modified. In external data memory operations, Port 0 emits the content of DPL and Port 2 emits the content of DPH. Port 0 is address/data multiplexed in external data memory operations also. The internal and external data memory model of 8051 is diagrammatically represented in Fig. 5.4.

Fig. 5.4 Data memory map for 8051

Internal data memory addresses are always one byte long. So it can accommodate up to 256 bytes of internal data memory (Ranging from 0 to 255). However the addressing techniques used in 8051 can accommodate 384 bytes using a simple memory addressing technique. The technique is: Direct

addressing of data memory greater than 7FH will access one memory space, namely Special Function Register memory and indirect addressing of memory address greater than 7FH will access another memory space, the upper 128 bytes of data memory (Direct and indirect memory addressing will be discussed in detail in a later section). Remember these techniques will work only if the upper data memory is physically implemented in the chip. The basic version of 8051 does not implement the upper data memory physically. However the 8052 family implements the upper data memory physically in the chip and so the upper 128 byte memory is also available for the user as general purpose memory, if accessed through indirect addressing.

External data memory address can be either one or two bytes long. As described earlier, Port 0 emits the lower order 8bit address and, if the memory address is two bytes and if it ranges up to 64K, the entire bits of Port 2 is used for holding the higher order value of data memory address. If the memory range is 32K, only 7 bits of Port 2 is required for addressing the memory. For 16K, only 6 lines of Port 2 are required for interfacing and so on. Thereby you can save some port pins of Port 2. The interfacing of an external data memory chip is illustrated Fig. 5.5.

Fig. 5.5 External Data memory access

5.3.2.3 Paged Data Memory Access In paged mode addressing, the memory is arranged like the lines of a notebook. The notebook may contain 100 to 200 pages and each page may contain a fixed number of lines. You can access a specific line by knowing its page number and the line number. Memory can also arrange like the lines of a notebook. By using 8bit address, memory up to 256 bytes can be accessed. Imagine the situation where the memory is stacked of 256 bytes each. You can use port pins (High order address rule) to signal the page number and the lower order 8 bits to indicate the memory location corresponding to that page.

For example, take the case where paging is done using the port pin P2.0 and port 0 is used for holding the lower address. The memory range will be

Page selector (P2.0)	Lower order address	Address range
0	00H to FFH	000H to 0FFH
1	00H to FFH	100H to 1FFH

5.3.2.4 The Von-Neumann Memory Model for 8051 The code memory and data memory of 8051 can be combined together to give the Von-Neumann architectural benefit for 8051. A single memory chip with read/write option can be used for this. The program memory can be allocated to the lower memory space starting from 0000H and data memory can be assigned to some other specific area after the code memory. For program memory fetching and data memory read operations combine the PSEN\ and RD\ signals using an AND gate and connect it to the Output Enable (OE\) signal of the memory chip as shown in Fig. 5.6.

(Fig. 5.6) Combining Code memory and Data memory

The Von-Neumann memory model is very helpful in evaluation boards for the controller, which allows modification of code memory on the fly. The major drawbacks of using a single chip for program and data memory are

- Accidental corruption of program memory
- Reduction in total memory space. In separate program and data memory model the total available memory is 128KB (64KB program memory + 64KB Data memory) whereas in the combined model the total available memory is only 64KB

5.3.2.5 Lower 128 Byte Internal Data Memory (RAM) Organisation This memory area is volatile; meaning the contents of these locations are not retained on power lose. On power up these memory locations contain random data. The lowest 32 bytes of RAM (00H to 1FH) are grouped into 4 banks of 8 registers each. These registers are known as R0 to R7 registers which are used as temporary data storage registers during program execution. The effective usage of these registers reduces the code memory requirement since register instructions are shorter than direct memory addressing instructions. The next 16 bytes of RAM with address 20H to 2FH is a bit addressable memory area. It accommodates 128 bits (16 bytes x 8), which can be accessed by direct bit addressing. The address of bits ranges from 00H to 7FH. This is very useful since 8051 is providing extensive support for Boolean operations (Bit Manipulation Operations). Also it saves memory since flag variables can be set up with these bits and

there is no need to waste one full byte of memory for setting up a flag variable. These 16 bytes can also be used as byte variables. The context in which these bytes are used as either byte variable or bit variable is determined by the type of instruction. If the instruction is a bit manipulation instruction and the operand is given as a direct address in the range 00H to 7FH, it is treated as a bit variable. The lower 128 bytes of internal RAM for 8051 family members is organised as shown in Fig. 5.7.

Fig. 5.7 Internal 128 bytes of lower order data memory organisation

Remember the byte-wise storage and bitwise storage in the area 20H to 2FH shares a common physical memory area and you cannot use this for both byte storage and bit storage simultaneously. If you do so, depending on the usage, the byte variables and bit variables may get corrupted and it may produce unpredicted results in your application. This is explained more precisely using the following table.

B7	B6	B5	B4	В3	B2	BI	B0	Byte Address
7FH	7EH	7DH	7CH	7BH	7AH	79H	78H	2FH
77H	76H	75H	74H	73H	72H	71H	70H	2EH
6FH	6EH	6DH	6CH	6BH	6AH	69H	68H	2DH
67H	66H	65H	64H	63H	62H	61H	60H	2CH
5FH	5EH	5DH	5CH	5BH	5AH	59H	58H	2BH
57H	56H	55H	54H	53H	52H	51H	50H	2AH
4FH	4EH	4DH	4CH	4BH	4AH	49H	48H	29H
47H	46H	45H	44H	43H	42H	41H	40H	28H
3FH	3EH	3DH	3CH	3ВН	3AH	39H	38H	27H
37H	36H	35H	34H	33H	32H	31H	30H	26H
2FH	2EH	2DH	2CH	2BH	2AH	29H	28H	25H
27H	26H	25H	24H	23H	22H	21H	20H	24H
IFH	1EH	1DH	1CH	1BH	1AH	19H	18H	23H

17H	16H	15H	14H	13H	12H	11H	10H	22H
0FH	0EH	0DH	0CH	0BH	0AH	09H	08H	21H
07H	06H	05H	04H	03H	02H	01H	00H	20H

B0, B1, B3 ...B7 represents the bit addresses. Now let's have a look at the following piece of Assembly code:

```
ORG 0000H ; Reset Vector. Assembler directive

LJMP 0050H ; Jump to location 0050H. Avoid conflicts in ISR Code

ORG 0050H ; Location 0050H. Assembler directive

MOV 20H, #00H ; Clear memory location 20H

SETB 01H ; Store logic 1 in bit address 01H.

MOV 20H, #0F0H ; Load memory location 20H with F0H

END ; End of program. Assembler directive
```

This piece of assembly code sets the bit with bit address 01H and loads the memory location 20H with value F0H. Don't worry about the different instructions used here. We will discuss about the 8051 instruction set in a later chapter. The MOV 20H, #00H instruction clears the memory location 20H. The SETB 01H instruction stores logic 1 in the bit address 01H. In reality the bit address 01H is the bit 1 of the memory location pointed by address 20H. Executing the instruction SETB 01H changes the contents of memory location 20H to 02H (00000010b. Only bit 1 is in logic 1 state). The instruction MOV 20H, #F0H alters the content of memory location 20H with F0H (11110000b). This overwrites the information held by bit address 01H and leads to data corruption. So be careful while using bitwise storage and byte-wise storage simultaneously.

The next 80 bytes of RAM with address space 30H to 7FH is used as general purpose scratchpad RAM. Though memory spaces 00H to 2FH have specific usage, they can also be used as general purpose scratchpad (Read/Write) RAM. The lower 128 byte RAM can be accessed by either direct addressing or indirect addressing.

5.3.2.6 The Upper 128 bytes RAM (Special Function Registers) The upper 128 bytes of RAM when accessed by direct addressing, accesses the Special Function Registers (SFRs). SFRs include port latches, status and control bits, timer control and value registers, CPU registers, stack pointer, accumulator, etc. Some of the SFR registers are only byte level accessible and some of them are both byte-wise and bit-wise accessible. SFRs with address ends in 0H and 8H are both bit level and byte level accessible. In the standard 8051 architecture, among the 128 bytes, only a few bytes are occupied by the SFR and the rest are left unused and are reserved for future implementations. The table given below explains the SFR implementation for standard 8051 architecture.

Memory Address	SFR Name	Memory Address	SFR Name	Memory Address	SFR Name
80H	Port 0	8AH	TLO	A0H	Port 2
81H	SP	8BH	TL1	A8H	IE.
82H	DPL	8CH	TH0	ВОН	Port 3
83H	DPH	8DH	THI	B8H	IP
87H	PCON	90H	Port 1	DOH	PSW
88H	TCON	98H	SCON	EOH	A
89H	TMOD	99H	SBUF	FOH	В

SFR memory is not available to the user for general purpose scratchpad RAM usage. However the user can modify the contents of some of the SFR according to the program requirements. Some of the SFRs are Read Only. Some of the SFR memory spaces are not implemented in the basic 8051 version. They are reserved for future use and users are instructed not to do anything with this reserved SFR space. Reading from the unimplemented SFR memory address returns random data and writing to this memory location will not produce any effect. Each of the SFRs will be discussed in detail in the sections covering their usage.

5.3.2.7 Upper 128 Bytes of Scratchpad RAM (IRAM) Variants of 8051 and the 8052 architecture where the upper 128 bytes of RAM are physically implemented in the chip can be used as general purpose scratchpad RAM by indirect addressing. They are generally known as IRAM. The address of IRAM ranges from 80H to FFH and the access is indirect. Registers R0 and R1 are used for indirect addressing. For example, for accessing the IRAM located at address 80H, load R0 or R1 with 80H and use the indirect memory access instruction. The following piece of assembly code illustrates the same.

MOV	RO, #80H	;	Load	IRAM address 80H in indirect register	
MOV	A, @R0	;	Load	Accumulator with IRAM content at address 80	H

5.3.3 Registers

Section Section

Registers of 8051 can be broadly classified into CPU Registers and Scratchpad Registers.

5.3.3.1 CPU Registers Accumulator, B register, Program Status Word (PSW), Stack Pointer (SP), Data Pointer (DPTR, Combination of DPL and DPH), and Program Counter (PC) constitute the CPU registers. They are described in detail below.

Accumulator (ACC) (SFR-E0H) It is the most important CPU register which acts as the heart of all CPU related Arithmetic operations. Accumulator is an implicit operand in most of the arithmetic operations. Accumulator is a bit addressable register.

Section and the second section of the second section of							
A PROPERTY.	1000	1000	1001	1000	1000	1001	
ACC.	ACC.0	ACC.5	ACC.4	ACC.3	ACC.Z	ACC.I	ACC.0
Section 2 To Secti							

B Register (SFR-F0H) It is a CPU register that acts as an operand in multiply and division operations. It also stores the remainder in division and MSB in multiplication Instruction. B can also be used as a general purpose register for programming.

Program Status Word (PSW) (SFR-D0H) It is an 8-bit, bit addressable Special Function register signalling the status of accumulator related operations and register bank selector for the scratch pad registers R0 to R7. The bit details of PSW register is given below.

PSW.7	PSW.6	PSW.5	PSW.4	PSW.3	PSW.2	PSW.1.	PSW.0
CY	AC	The second of the	DESIGNATION OF THE PARTY OF THE	C. L. Complete Street, and a second	ov	177	P

The table given below explains the meaning and use of each bit.

Bit	Name	Explanation
CY	Carry flag	Sets when a carry occurs on the addition of two 8-bit numbers or when a borrow occurs on the subtraction of two 8-bit numbers.
AC	Auxiliary carry flag	Sets when a carry generated out of bit 3 (bit index starts from 0) on addition

F0	Flag 0	General purpose user programmable flag (PSW.5)		
ov	Over flow	Sets when overflow occurs. OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum from two negative operands.		
P	Parity flag	Set or cleared by hardware each instruction cycle to indicate an odd or even number of 1s in the accumulator, 'P' is set to 1 if the number of 1s in the accumulator content is odd else reset to 0.		
PSW.1	General flag	User programmable general purpose bit		
RS0	n. d. t. t. t.			
RS1	Register bank selector	The bit status and bank selected is given in the following table		

The following table illustrates the possible combinations for the register bank select bits, the corresponding register bank number and the address for the scratchpad registers R0-R7 in the specified register bank.

RS1	RS0	Register Bank	Register Address
0	0	0	00H-07H
0	I -	1	08H-0FH
1	0	2	10H-17H
Allege 17 The same of	1	3	18H-1FH

The power-on reset value for the bits RS1 and RS2 are 0 and the default register bank for scratchpad registers R0 to R7 is 0 and the address range for R0 to R7 is 00H to 07H. A programmer can change the register bank by changing the values of RS1 and RS0. The following piece of assembly code illustrates the selection of bank 2 for the scratchpad registers R0 to R7.

CLR RSO	; Clear bit RS1	The state of the s
SETB RS1	; Set bit RS1. Bank 2 is selected	

Data Pointer (DPTR) (DPL: SFR-82H, DPH: SFR-83H) It is a combination of two 8-bit register namely DPL (Lower 8-bit holder of DPTR) and DPH (Higher order 8-bit holder of DPTR). DPTR holds the 16-bit address of the external memory to be read or written in external data memory operations. DPH and DPL can be used as two independent 8-bit general purpose registers for application programming.

Program Counter (PC) It is a 16-bit register holding the address of the code memory to be fetched. It is an integral part of the CPU and it is hidden from the programmer (It is not accessible to the programmer).

Stack Pointer (SP) (SFR-81H) It is an 8-bit register holding the current address of stack memory. Stack memory stores the program counter address, other memory and register values during a sub routine/function call. On power on reset the stack pointer register value is set as 07H. The stack pointer address and bank 0, address of R7 is same when the controller is at reset, so care should be taken for selecting SP address. It is the responsibility of the programmer to assign sufficient stack memory by entering the starting address of stack into the Stack Pointer register. Care should be taken to avoid the

overflow of stacks and merging of stack memory with data memory. This will result in un-predicted program flow. The stack grows up in memory.

5.3.3.2 Scratchpad Registers (R0 to R7) The scratchpad registers R0 to R7 is located in the lower 32 bytes of internal RAM. It can be on one of the four banks, which is selected by the register selector bits RS0 and RS1 of the PSW register. On power on reset, by default, RS0 and RS1 are 0 and the default bank selected is bank 0. There are eight scratchpad registers and they are named as R0, R1...R7. The register names and their memory address corresponding to bank 0 are given below.

R7	R6	R5	R4	R3	R2	R1	R0
07H	06H	05H	04H	03H	02H	01H	00H

As the bank number changes the register address also offsets by the memory address bank number multiplied by 8. Though you can select between the register banks 0 and 3, there will be only one active register bank at a time and it depends on the RS0 and RS1 bits of Program Status Word (PSW). Registers R0 to R7 are used as general purpose working registers. R0 and R1 also handle the role of index addressing or indirect addressing register (@R0 and @R1 instructions). R0 and R1 can also be used for external memory access in place of DPTR, if the memory address is 8-bit wide ((MOVX A, @R0) – will be discussed later).

5.3.4 Oscillator Unit

The program execution is dependent on the clock and the oscillator unit is responsible for generating the clock signals. All 8051 family microcontrollers contain an on-chip oscillator. This contains all necessary oscillator driving circuits. The only external component required is a ceramic crystal resonator. The 8051 on chip oscillator circuit provides external interface option through two pins of the microcontroller, namely, XTAL1 and XTAL2.

If you are using a ceramic resonator, you can connect it across the XTAL1 and XTAL2 pins of the chip with two external capacitors. Capacitors with values 15pF, 22pF, 33pF, etc. are used with the crystal resonator. This is the cheapest solution since the total cost for a ceramic resonator and two capacitors is always less than a standalone oscillator module.

If an external stand alone oscillator unit is used, the output signal of the oscillator unit should be connected to the pin XTAL1 of the chip and the pin XTAL2 should be left unconnected for a CMOS* type microcontroller (80C51). For an NMOS** type microcontroller, the oscillator output signal should be connected to the Pin XTAL2 and the pin XTAL1 should be grounded (Fig. 5.8).

Fig. 5.8 Circuit configuration for using on-chip oscillator

You may be thinking why an oscillator circuit is required? The answer is—The microcontroller chip is made up of digital combinational and sequential circuits and they require a clock to drive the digital circuitry. The clock is supplied by this oscillator circuit and the operational speed of the chip is dependent on the clock speed.

5.3.4.1 Execution Speed The execution speed of the processor is directly proportional to the oscillator clock frequency. Increasing the clock speed will have direct impact on the speed of program execution. But the internal processor core design will always have certain limitations on the maximum clock frequency on which it can be operated. During program execution the instructions stored in the code memory is fetched, decoded and corresponding action is initiated. Each instruction fetching consists of the number of machine cycles. The instruction set of 8051 contains single cycle to four machine cycle instructions.

Each machine cycle is made up of a sequence of states called *T states*. The original 8051 processor's machine cycle consists of 6 T states and is named S1, S2, S3...S6. Each T states in turn consist of two oscillator periods (Clock cycles) and so one machine cycle contains 12 clock cycles. For a one machine cycle instruction to execute, it takes 12 clock cycles. If the system clock frequency is 12MHz, it takes 1 microsecond (1μs) time to execute one machine cycle. The machine cycle, T state and clock cycle relationship is illustrated in the following Fig. 5.9.

ig. 5.9 Machine Cycles, T state & clock periods

5.3.5 Port

Port is a group of Input/Output (I/O) lines. Each port has its own port control unit, port driver and buffers. The original version of 8051 supports 32 I/O lines grouped into 4 I/O ports, consisting of 8 I/O lines per port. The ports are named as Port 0, Port 1, Port 2 and Port 3. One output driver and one input buffer is associated with each I/O line. All four ports are bi-directional and an 8bit latch (Special Function Register) is associated with each port.

5.3.5.1 Port 0 PORT 0 is a bi-directional port, which is used as a multiplexed address/data bus in external data memory/program memory operations. Port 0 pin organisation is illustrated in Fig. 5.10.

Each pin of Port 0 possesses a bit latch which is part of the Special Function Register (SFR) for Port 0, P0. The latch is a D flip flop and it clocks in a logic value (either logic 1 or logic 0) from the internal

CMOS—Complementary metal—oxide–semiconductor field effect transistor technology for digital circuit design. CMOS features less
power consumption and high logic density on an integrated circuit.

^{**} NMOS—n-type metal-oxide-semiconductor field effect transistor technology for digital circuit design. It is an old technology and possesses the drawback of noise susceptibility and slow logic transition. In modern designs it is supplanted by CMOS technology.

Write to Pox Latch

Write to latch

CI,

Internal bus

Address/

Control

Pox pin

(x = 0,1,7)

Fig. 5.10 Port 0 pin organisation

bus when a write to the corresponding latch signal is issued by the internal control unit. Apart from the write to latch operation you can read the contents of the corresponding Port 0 Pin latch by activating a Read Latch signal. The Read Latch signal is asserted on executing an instruction with a read from the corresponding 'port latch' instruction (e.g. ANL P0, A reads the P0 latch, logical AND it with accumulator and loads the latch with the result. Similarly, the instruction MOV P0.0, C reads the Port 0 byte (8 bits of the P0 latch) and modify bit 0 and write the new byte back to the P0 latch. In summary all 'Read-Modify-Write' instructions generate Read Latch control signal).

The Read Pin control signal enables reading the status of a port pin. The Read Latch and Read Pin operations act on two different ways. Read Latch reads the content of corresponding port's SFR/SFR bit latch whereas Read Pin reads the present state of the corresponding port pin.

Port 0 is designed in a way to operate in different modes. It acts as an I/O port in normal mode of operation and as a multiplexed address data bus in external data memory/program memory operations. If the program memory is external to the chip, Port 0 emits the program counter low byte in external program memory operation for specific time duration and then acts as an input port to fetch the instruction from the address specified by the program counter. In external data memory operations P0 emits the lower order byte of the DPTR Register (DPL).

If you look back to the Port 0 pin organisation, you can see that during external memory related operations the multiplexer disconnects the port 0 bit output line from its corresponding bit latch and directly connect it to the ADDRESS/DATA line and the output driver circuitry is driven according to the ADDRESS/DATA line and the control.

The output drivers of Port 0 are formed by two FETs, out of which the top FET functions as the internal port pull-up. The pull-up FET driver for Port 0 is active only when the address line is emitting 1s during external memory operations. The pull-up FET will be off on all other conditions and the Port 0 pins which are used as output pins will become open drain (Open Collector for TTL logic). On writing a 1 to the corresponding port bit SFR latch, the bottom FET is turned off and the pin floats and it enters in a high impedance state.

In order to make any Port 0 pin an input pin, a logic 1 should be written to the corresponding Port 0 SFR latch bit and an external pull-up resistor (in the range of Kilo ohms, typically 4.7K) should be connected across the corresponding Port 0 pin and power supply V_{CC} which will act as a bypass to the internal pull-up FET.

If Port 0 is used for external memory or device interfacing, it should be equipped with external pullup resistors to provide noise immunity to Port 0 data lines. When configured as O/p port by writing 1s to the Port 0 SFR, all Port 0 pins floats and it is said to be in a high impedance state. Port 0 is a true bi-directional port.

Port 0 SFR (P0) (SFR-80H) Port 0 SFR is a bit addressable Special Function Register that acts as the bit latch for each Port 0 pins.

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	4

During external memory operations P0 SFR gets 1s written into it. The reset value of Port 0 SFR is FFH (All latch bits set to 1)

5.3.5.2 Port 1 PORT 1 is a bi-directional port which is used as a general purpose I/O port. The Port 1 pin organisation is given in Fig. 5.11.

Fig. 5.11 Port 1 pin organisation

As seen in the pin organisation, Port 1 pin contains an internal pull-up resistor. In order to make the Port 1 pins as input line, the corresponding SFR latch bit for Port 1 should be kept as 1. Writing a 1 into any of the P1 SFR bit latch turns off the output driver FET and produces logic high at the corresponding port pin. The internal pull up for Port 1 is fixed and weak. When Port 1 pins are configured as inputs (by writing a 1 to the corresponding Port 1 SFR bit latch) the pins are pulled high and they can source current when an externally connected device pulls the port pin to low, signaling a logic 0 at the corresponding input line and places logic 0 to the internal bus in response to a Read Pin command. If the externally connected device forces logic high, the Read Pin control signal generated by a Read Pin related command (e.g. MOV A,P1, MOV C,P1.0, etc.) places logic high into the internal bus.

Since Port 1 holds fixed internal pull ups and are capable of sourcing current, it is known as Quasi Bi-directional.

Port 1 SFR (P1) (SFR- 90H) It is also a bit addressable Special Function Register that acts as the bit latch for each pin of Port 1. The bit details of Port1 SFR is given below.

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0

The reset value of Port 1 SFR is FFH (All bit latches set to 1).

Introduction to Embedded Systems

5.3.5.3 Port 2 Port 2 is designed to operate in two different modes. It acts as general purpose I/O port in normal operational mode and acts as higher order address bus in external data memory/program memory operations. Figure 5.12 illustrates the Port 2 pin organisation.

Fig. 5.12 Port 2 pin organisation

Port 2 emits the higher order byte of external memory address if the address is 16 bits wide. As seen in the figure, during 16-bit wide external memory operations the base drive for the O/p driver FET is internally switched to the address line. If the address line is emitting a 1, the O/p driver FET is turned off and the logic 1 is reflected on the O/p pin. If the address line is emitting a 0, the O/p driver FET is turned on and the logic 0 is reflected at the corresponding pin.

The content of Port 2 SFR remains unchanged during external memory access and it holds the previous content as such. It is to be noted that if Port 2 is in external memory operation it cannot be used as general purpose I/O line. When not used for external memory access, Port 2 can be used as general purpose I/O port. During normal operation mode, the internal multiplexer switches the base line (GATE) of O/p FET to the D latch O/p of corresponding SFR bit latch. In normal operation mode when a 1 is written into any of the P2 bit latch, the O/p driver FET is turned off and as in the case of Port 1 this line acts as an I/p line. P2 is a *Quasi bi-directional* port.

Port 2 SFR (P2) (SFR-A0H) It is a bit addressable Special Function Register that acts as the bit latch for each pins of Port 2. The reset value of Port 2 SFR is FFH (All bit latches set to 1).

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BITT	BITO
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0

5.3.5.4 Port 3 Port 3 is a general purpose I/O port which is also configurable for implementing alternative functions. Port 3 Pin configuration is shown in Fig. 5.13.

Port 3 is identical to Port 1 in operation. All the settings that need to be done for configuring Port 1 as I/O port is applicable to Port 3 also. The only difference is that the SFR latch for Port 3 is P3. Port 3 supports alternate I/O functions. The alternate I/O functions supported by Port 3 and the pins used for these alternate functions are tabulated below.

Designing Embedded Systems with 8bit Microcontrollers—8051

Fig. 5.13 Port 3 pin organisation

Port Pin	Alternate I/O Function
P3.0	RXD (Receive Pin - Serial Input Port Pin) - Input line
P3.1	TXD (Transmit Pin - Serial O/p Pin) - Output line
P3.2	INTO (External Interrupt 0 line) - Input line
P3.3	INT1\ (External Interrupt 1 line) - Input line
P3.4	T0 (Counter 0 External Input line) - Input line
P3.5	T1 (Counter 1 External Input line) - Input line
P3.6	WR\ (Write signal for External data memory access) - O/p line
P3.7	RD\ (Read signal for External data memory access) - O/p line

It is obvious from the table that all 8 pins of Port 3 are having some alternate I/O function associated with them. From the Port 3 pin configuration it is clear that the alternate I/O functions will come into action only if the corresponding SFR bit latch is set to logic 1. Otherwise the port pin remains at logic 0.

Port 3 SFR (P3) (SFR-B0H) It is a bit addressable Special Function Register that acts as the bit latch for each pin of Port 3. Reset value of Port 3 SFR is FFH (All bit latches set to 1).

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0

5.3.5.5 'Read Port Latch' and 'Read Port Pin' Operations As we discussed earlier, the 'Port Read' operations fall into two categories namely, Read Latch and Read Pin. The Read Latch operation reads the content of the corresponding port latch. The port architecture for all 4 ports contains necessary circuit for reading the Port Latch for all port pins. The read Port Latch operation is triggered by the control signal Read Latch. The Read Latch control signal is generated internally on executing an instruction implementing the Read Latch operation. The Read-Modify-Write instructions which reads the port, modifies it and re-writes it to the port, operates on the port latch instead of port pins. The fol-

m

lowing Read-Modify-Write instructions operate on port latch when the destination operand is a Port or a Port bit.

```
ANL Px, <source> (x= 0,1,2,3. e.g. ANL P0, A)
ORL Px, <source> (x= 0,1,2,3. e.g. ORL P1, A)
XRL Px, <source> (x= 0,1,2,3. e.g. XRL P2, A)
JBC Px.y, LABEL (x= 0,1,2,3. y = 0 to 7 e.g. JBC P3.0, REPEAT)
CPL Px.y (x= 0,1,2,3. y = 0 to 7 e.g. CPL P0.2)
INC Px (x= 0,1,2,3. e.g. INC P0)
DEC Px (x= 0,1,2,3. e.g. DEC P1)
DJNZ Px, LABEL Px (x= 0,1,2,3. e.g. DJNZ P0, REPEAT)
MOV Px.y, C (x= 0,1,2,3. y = 0 to 7 e.g. MOV P3.7, C)
CLR Px.y (x= 0,1,2,3. y = 0 to 7 e.g. CLR P1.0)
SETB Px.y (x= 0,1,2,3. y = 0 to 7 e.g. SETB P3.6)
```

The instructions MOV Px.y, C, CLR Px.y and SETB Px.y, read the Port x byte (8 bits of the Px latch) and modify bit y and write the new byte back to the Px latch.

The following assembly code snippet illustrates the Read Latch operation.

```
MOV PO, #OFH ; Configure PO.O to PO.3 pins as input pins
MOV A, #OFH ; Load Accumulator with OFH
ANL PO, A ; Read PO latch, logical AND with Accumulator-
; content and load PO latch with the result
```

Executing the instruction MOV P0, #0FH loads the Port 0 latch with 0FH (The latches for port pins P0.0 to P0.3 are set). Now Port pins P0.0 to P0.3 acts as input pins. Executing the instruction MOV A, #0FH loads the accumulator with 0FH. The ANL P0, A instruction reads the P0 latch and logical AND it with accumulator and rewrites the P0 latch with the ANDed result. The status of port pins configured as input port has no effect on the instruction ANL P0, A. Suppose P0.0 pin (Not P0.0 latch bit) is at logic 0 and pins P0.1 to P0.3 are at logic 1 at the time of executing the instruction ANL P0, A, still Port 0 latch is loaded with 0FH and not 0EH.

The Read Pin operation reads the status of a port pin when the corresponding port pin is configured as input pin (When the corresponding port latch bit is loaded with logic 1). The port architecture for all 4 ports contains necessary circuit for reading the Port Pin for all ports. The read Port Pin operation is triggered by the control signal Read Pin. The Read Pin control signal is generated internally on executing an instruction implementing the Read Pin operation. MOV A, Px, MOV C, Px.y are examples for Read Pin instructions. The following code snippet illustrates the 'Read Pin' operation.

```
MOV PO, #OFH : Configure PO.0 to PO.3 pins as input pins MOV A, PO : Load Accumulator with PO Port pin status
```

Executing the instruction MOV P0, #0FH loads the Port 0 latch with 0FH (The latches for port pins P0.0 to P0.3 are set). Now Port pins P0.0 to P0.3 act as input pins. Executing the instruction MOV A, P0 loads accumulator with the Pin status of pins P0.0 P0.3. Suppose P0.0 pin is at logic 0 and pins P0.1 to P0.3 are at logic 1 at the time of executing the instruction MOV A, P0, the accumulator is loaded with 0EH.

5.3.5.6 Source and Sink Currents for 8051 Ports

Source Current The term *source current* refers to how much current the 8051 port pin can supply to drive an externally connected device. The device can be an LED, a buzzer or a TTL logic device. For TTL family of 8051 devices the source current is defined in terms of TTL logic. TTL logic has two logic levels

namely logic 1 (High) and logic 0 (Low). The typical voltage levels for logic Low and High is given in the following table.

Logic Level	Input sig	gnal level	Output si	gnal level	
Logic Level	Min	Max	Min	Max	ec
Low	0V	0.8V	0V	0.5V	5V
High	2V	5V	2.7V	5V	5\V

The logic levels are defined for a TTL gate acting as input and output. For logic 0 the input voltage level is defined as any voltage below 0.8V and the current is 1.6mA sinking current to ground through a TTL input. According to the 8051 design reference, the maximum current that a port pin (For an LS TTL logic based 8051 devices) can source is 60 µA.

Sink Current It refers to the maximum current that the 8051 port pin can absorb through a device which is connected to an external supply. The device can be an LED, a buzzer or a TTL logic device (For TTL logic based 8051 devices). Pins of Ports P1, P2 and P3 can sink a maximum current of 1.6 mA. Port 0 pins can sink currents up to 3.2 mA. Under steady state the maximum sink current is limited by the criteria: Maximum Sink Current per port pin = 10 mA, Maximum Sink current per 8-bit port for port 0 = 26 mA, Maximum Sink Current per 8-bit port for port 1, 2, & 3 = 15 mA, Maximum total Sink current for all output pin = 71 mA (As per the AT89C51 Datasheet). Figure 5.14 illustrates the circuits for source, sink and ideal port interfacing for 8051 port pins.

Fig. 5.14 (a) Current Sourcing, (b) Current Sinking (c) Ideal Port pin interface for 8051

Figure 5.14(a) illustrates the current sourcing for port pins. Since 8051 port pins are only capable of sourcing less than 1 mA current, the brightness of LED will be very poor. Figure 5.14(b) illustrates the current sinking for port pins. In this configuration, the forward voltage of LED while conducting is approximately 2V and the supply voltage 5V (V_{cc}) is distributed across the LED and the internal TTL circuitry. The extra 3V has to be dropped across the internal TTL circuitry and this will lead to high power dissipation, which in turn will result in the damage of the LED or the port pin. This type of design is not recommended in embedded design. Instead the current through the LED is limited by connecting the LED to the power supply through a resistor as shown in Fig. 5.14(c). In this configuration, the port pin should be at Logic 0 for the LED to conduct. For a 2.2V LED, the drop across Resistor is calculated as Supply voltage – (LED Forward Voltage + TTL Low Voltage) = 5 - (2.2 + 0.8) = 2.0V. The Resistance value is calculated as 2V (Required LED Current). Refer LED data sheet for LED current. If the resistance value is not properly selected, it may lead to the flow of high current through the LED and may damage the LED.

Designing Embedded Systems with 8bit Microcontrollers-8051

Example 1

Design an 8051 microcontroller based system for displaying the binary numbers from 0 to 255 using 8 LEDs as per the specifications given below:

- Use Atmel's AT89C51/52 or AT89S8252 (Flash microcontroller with In System Programming (ISP) support) for designing the system.
- 2. Use a 12MHz crystal resonator for generating the necessary clock signal for the controller.
- 3. Use on-chip program memory for storing the program instructions.
- The 8 LEDs are connected to the port pins P2.0 to P2.7 of the microcontroller and are arranged in a single row with the LED connected to P2.0 at the rightmost position (LSB) and the LED connected to P2.7 at the leftmost position (MSB).
- The LEDs are connected to the port pins through pull-up resistors of 470 ohms and will conduct only when the corresponding port pin is at logic 0.
- Each LED represents the corresponding binary bit of a byte and it reflects the logic levels of the bit through turning ON and OFF the LED (The LED is turned on when the bit is at logic 1 and off when the LED is at logic 0).
- The counting starts from 0 (All LEDs at turned OFF state) and increments by one. The counter is incremented at the rate of 5 seconds.
- When the counter is at 255 (0FFH, all LEDs are in the turn ON state), the next increment resets the counter to 00H
 and the counting process is repeated.

The design of this system has two parts. The first part is the design of the microcontroller based hardware circuit. The hardware circuit part can be wired on a breadboard for simplifying the development. The controller for this can be chosen as either AT89C51/52 or AT89S8252. Both of these controllers are from the 8051 family and are pin compatible. Both of them contain built in program memory. The only difference is that for programming the AT89C51/52 device an EEPROM/FLASH programmer device is required whereas AT89S8252 doesn't require a special programmer. It can be programmed through the In System Programming (ISP) utility running on the firmware development PC and through the parallel port of the PC. The In System Programming technique for AT89S8252 is described in OLC. For the controller to work, a regulated 5V dc supply is required. For generating a regulated 5V dc supply, a regulator IC is used. For the current design the regulator IC LM7805 from National semiconductor is selected. The input voltage required for this regulator IC is in the range of 9V to 12V dc. A wall mounted dc adaptor with ratings 9V or 12V, 250mA can be used for supplying the input power. It is better to use a 9V dc adaptor to avoid the excessive heating of the regulator IC. Excessive heat production in the regulator IC leads to the requirement for heat sinks. The circuit details and the components required to implement the counter is shown in Fig. 5.15.

As mentioned earlier, it requires a regulated 5V dc supply for powering the controller. The 12 MHZ crystal resonator in combination with the external 22 picofarad (pF) capacitors drives the on-chip oscillator unit and generates the required clock signal for the controller. The RC circuit connected to the RST pin of the controller provides Power-On reset for the controller. The capacitor and resistor values are selected in such a way that the reset pulse is active (high) for at least 2 machine cycle duration. The diode in the reset circuitry is used as freewheeling diode and it is not mandatory. The 0.1 Microfarad (0.1 MFD) capacitor connected to the power supply line filters the spurious (noise) signals from the power supply line. For proper driving, the LEDs should be connected to the respective port pins through pull-up resistors. The pull-up resistor values are determined by the forward voltage of LEDs and the current rating of the LEDs. The current design uses 470 ohms as the pull up resistor. If you are not sure about the forward voltage and current ratings of the LED, it is better to start with a high value (say 8.2K) for the resistor and replace it with successive low value resistors (4.2 K, 2.7K, 1 K, 870 E, 470 E etc.) till you feel that the brightness of the LED while it is conducting is reasonably good. The controller contains on-chip program memory and it can be used for storing the firmware. In order to use the on-chip program memory, the EA\ pin should be tied to V_{CC} Pulling the EA\ pin to V_{CC} through a high value resistor ensures that the pin draws very minimal amount of current.

The second part is the design and development of program code (firmware) for implementing the binary counter and displaying the counter content using the LEDs interfaced to Port 2. The firmware requirement can be modelled in the form of a flow chart as given in Fig. 5.16.

Fig. 5.15 Binary number display circuit using 8051 and LEDs

Fig. 5.16 Flow chart for Binary Number Display using LEDs

Ш

Introduction to Embedded Systems

Once the firmware requirements are modelled using the flow chart, the next step is implementing it in either processor specific assembly code or high level language. For the time being let us implement the requirements in 8051 specific assembly language. The firmware for implementing the binary counter in 8051 assembly language is given below.

```
;Binary Counter.src
;Source code for implementing a binary counter and displaying the
; count through the LEDs connected to P2.0 to P2.7 port pins
The LED is turned on when the port line is at logic 0
The counter value should be complemented to display the count
jusing the LEDs connected at Port 2. Written by Shibu K V
Copyright (C) 2008
ORG 0000H
                    ; Reset vector
       JMP 0050H
                    ; Jump to code mem location 0050H
ORG 0003H
                    ; External Interrupt 0 ISR location
                    ; Simply return. Do nothing
       RETI
ORG COOBH
                   : Timer 0 Interrupt ISR location
       RETI
                    ; Simply return. Do nothing
ORG 0013H
                    ; External Interrupt 1 ISR location
      RETI
                    ; Simply return. Do nothing
ORG 001BH
                    ; Timer 1 Interrupt ISR location
                    ; Simply return. Do nothing
       RETI
ORG 0023H
                    ; Serial Interrupt ISR location
       RETI
                    ; Simply return. Do nothing
ORG 0050H
                    ; Start of Program Execution
      MOV P2, #OFFH ; Turn off all LEDs
      CLR EA
                    ; Disable All interrupts
                   ; Set stack at memory location 08H
       MOV SP, #08H
      MOV R7, #00H
                   ; Set counter Register R7 to zero.
REPEAT: CALL DELAY
                    ; Wait for 5 seconds
      INC R7
                    ; Increment binary counter
      MOV A, R7
       CPL A: The LED's are turned on when corresponding bit is 0
      MOV P2, A; Display the count on LEDs connected at Port 2
       JMP REPEAT ; Repeat counting
;Routine for generating 5 seconds delay
;Delay generation is dependent on clock frequency
;This routine assumes a clock frequency of 12.00MHZ
;LOOP1 generates 248 x 2 Machine cycles (496microseconds) delay
:LOOP2 generates 200 x (496+2+1) Machine cycles (99800microseconds)
;delay. LOOP3 generate 50 x (99800+2+1) Machine cycles
; (4990150microseconds) delay. The routine generates a-
;precise delay of 4.99 seconds
```

Copyrighted material

Designing Embedded Systems with 8bit Microcontrollers—8051


```
DELAY: MOV R2, #50
LOOP1: MOV R1, #200
LOOP2: MOV R0, #248
LOOP3: DJNZ R0, LOOP3
DJNZ R1, LOOP2
DJNZ R2, LOOP1
RET
END; END of Assembly Program
```

Once the assembly code is written and checked for syntax errors, it is converted into a controller specific machine code (hex file) using an assembler program. The conversion can be done using a freely/commercially available assembler program for 8051 or an IDE based tool (like Keil microvison 3). The final stage is embedding the hex code in the program memory of the controller. If the controller used is AT89C51, the program can be embedded using a FLASH programmer device. For controllers supporting In System Programming (ISP), like AT89S8252, the hex file can be directly loaded into the program memory of the controller using an ISP application running on the development PC.

Example 2

Design an 8051 microcontroller based control system for controlling a 5V, 2-phase 6-wire stepper motor. The system should satisfy the following:

- Use Atmel's AT89C51/52 or AT89S8252 (Flash microcontroller with In System Programming (ISP) support) for designing the system.
- 2. Use a 12 MHz crystal resonator for generating the necessary clock signal for the controller.
- Use on-chip program memory for storing the program instructions.
- 4. The wires of the stepper motor are marked corresponding to the coils (A, B, C & D) and Ground (2 wires)
- Use the octal peripheral driver IC ULN2803 from National semiconductors for driving the stepper motor.
- Step the motor in 'Full step' mode with a delay of 1 sec between the steps.
- 7. Connect the coil drives to Port 1 in the order Coil A to P1.0, Coil B to P1.1, Coil C to P1.2, and Coil D to P1.3

Refer to the description on stepper motors given in Chapter 2 to get an understanding of unipolar stepper motors and the coil energising sequence for 'Full step' mode.

Figure 5.17 illustrates the interfacing of stepper motor through the driver circuit connected to Port 1 of 8051.

The flow chart given in Fig. 5.18 models the firmware requirements for interfacing the stepper motor.

From the pulse sequence for running the stepper motor in 'Full step' it is clear that the pulse sequence for next step is obtained by right shifting the current pulse sequence. The initial pulse sequence required is H, H, L, I at coils A, B, C & D respectively (Please refer to the stepper motor section in Chapter 2). In our case we have only 4 bits to shift and our controller is an 8bit controller. Performing a right shift operation of the accumulator moves the LS bit of accumulator to the MS bit position (Bit position 7 in 0–7 numbering). We want the LS bit to be available at 3rd bit position after each rotation. This can be achieved by some bit manipulation operation. We can also achieve it by loading the MS nibble of accumulator with the same initial sequence HHLL. In this example we are not using Port P1 for any other operation. Hence the values of port pins P1.4 to P1.7 are irrelevant in our case. But in real life scenario it may not be the case always. The firmware implementation for this is given below:

Fig. 5.17 Stepper Motor Interfacing circuit for 8051

Fig. 5.18 Flow chart for Implementing Stepper Motor Interfacing

```
:Stepper motor.src. Firmware for Interfacing stepper motor
:The stator coils A, B, C and Dare controlled through Port pins Pl.O,
;P1.1, P1.2 and P1.3 respectively.
; Accumulator is used for generating the pulse sequence for 'Fullstep'
; The initial pulse sequence is represented by OCH
;Written & Compiled for A51 Assembler. Written by Shibu K V
:Copyright (C) 2008
ORG 0000H
                   : Reset vector
       JMP 0100H
                   ; Jump to code mem location 0100H to start-
                   ; execution
ORG 0003H
                   ; External Interrupt 0 ISR location
                   ; Simply return. Do nothing
       RETI
ORG COOBH
                   ; Timer O Interrupt ISR location
                   ; Simply return. Do nothing
       RETI
ORG 0013H
                   ; External Interrupt 1 ISR location
       RETI
                   ; Simply return. Do nothing
ORG 001BH
                   ; Timer 1 Interrupt ISR location
       RETI
                   ; Simply return. Do nothing
ORG 0023H
                   ; Serial Interrupt ISR location
                   ; Simply return. Do nothing
; Start of main Program
ORG 0100H
                   ; Turn off the drives to all stator coils
       MOV P1, #00H
                   ; Set stack at memory location 08H
      MOV SP, #08H
       MOV A, #OCCH
                   ; Load the initial pulse sequence
REPEAT: MOV P1, A
                   ; Load Port P1 with pulse sequence
                   ; Rotate Accumulator to right
       RR A
       CALL DELAY
                   ; Wait for 1 second
       JMP REPEAT
                   ; Load Port P1 with new pulse sequence
;Routine for generating 1 second delay
;Delay generation is dependent on clock frequency
:This routine assumes a clock frequency of 12.00MHz
;LOOP1 generates 248 x 2 Machine cycles (496microseconds) delay
;LOOP2 generates 200 x (496+2+1) Machine cycles (99800microseconds)
;delay. LOOP3 generate 10 x (99800+2+1) Machine cycles
; (998030microseconds) delay. ; The routine generates a-
; precise delay of 0.99 seconds
DELAY: MOV R2, #10
LOOP1: MOV R1, #200
LOOP2: MOV RO, #248
LOOP3: DJNZ RO, LOOP3
       DJNZ R1, LOOP2
       DJNZ R2, LOOP1
       RET
END
       ; END of Assembly Program
```


Example 3

Design an 8051 microcontroller based system for interfacing the Programmable Peripheral Interface (PPI) device 8255. The system should satisfy the following:

- Use Atmel's AT89C51/52 or AT89S8252 (Flash microcontroller with In System Programming (ISP) support) for designing the system
- 2. Use a 12 MHz crystal resonator for generating the necessary clock signal for the controller. Use on-chip program memory for storing the program instructions
- Use Intersil Corporation's (wwww.intersil.com) 82C55A PPI device
- 4. Allocate the address space 8000H to FFFFH to 8255. Initialise the Port A, Port B and Port C of 8255 as Output ports

Here we are allocating the address space 8000H to FFFFH to 8255. Hence the 8255 is activated when the 15th bit of address line becomes 1. Here we have to use a single NOT gate to invert the A15 line before applying it to the Chip Select (CS\) line of 8255. In this configuration 8255 requires only four address space namely 8000H for Port A, 8001H for Port B, 8002H for Port C and 8003H for the Control Register. Rest of the address space 8004H to FFFFH is left unused. Here we have the luxury of using the entire address range since we don't have any other devices to connect. In real life applications it may not be the case. We may have multiple devices sharing the entire address space 0000H to FFFFH and we need to select each device in their own address space. In such scenarios the address lines A2 to A15 needs to be decoded using a combination of logic gates (NAND, AND, NOT, OR, NOR) and decoders. Figure 5.19 illustrates the interfacing of 8255 with 8051.

Fig. 5.19 Interfacing 8255 PPI with 8051

The Octal latch 74LS373 latches the lower order address bus (A0-A7) which is multiplexed with the data bus (D0-D7). A 3 to 8 decoder chip, 74LS138, decodes the address bus to generate the Chip Select (CS\) signal for 8255. Here we have only one address line (A15) to decode. The rest of the 2 input lines to the decoder (Pins 2 & 3) are grounded. Our intention is to assert the CS\ signal of 8255 when A15 line is 1. The I/p condition corresponds to this is 001. The decoded output for this is Output 1 (Y1). You can replace the decoder with a NOT Logic IC. The reset line of 8255 is controlled through port pin P1.0. The Reset of 8255 is active high and when 8051 is initialised, the port pin P1.0 automatically generates a reset high signal for 8255.

The flow chart given in Fig. 5.20 models the firmware requirements for interfacing 8255 with 8051 controller.

Fig. 5.20 Flow chart for Interfacing 8255 with 8051

The control word for configuring all the 8255 ports as output ports in mode 0 is shown below. Please refer to the section on Programmable Peripheral Interface (PPI) given in Chapter 2 for more details on 8255's control register.

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	0	0

The firmware implementation for this is given below.


```
120
```

Introduction to Embedded Systems

5.3.6 Interrupts

Before going to the details of 8051 interrupt system, let us have a look at interrupts in general and how interrupts work in microprocessor/controller systems.

5.3.6.1 What is Interrupt? As the name indicates, interrupt is something that produces some kind of interruption. In microprocessor and microcontroller systems, an interrupt is defined as a signal that initiates changes in normal program execution flow. The signal that generates changes in normal program execution flow may come from an external device connected to the microprocessor/controller, requesting the system that it needs immediate attention or the interrupt signal may come from some of the internal units of the processor/controller such as timer overflow indication signal. The first type of interrupt signals are referred as external interrupts.

5.3.6.2 Why Interrupts? From a programmer point of view interrupt is a boon. Interrupts are very useful in situations where you need to read or write some data from or to an externally connected device. Without interrupts, the normal procedure adopted is polling the device to get the status. You can write your program in two ways to poll the device. In the first method your program polls the device continuously till the device is ready to send data to the controller or ready to accept data from the controller. This technique achieves the desired objective effectively by sacrificing the processor time for that single task. Also there is a chance for the program hang up and the total system to crash in certain situations where the external device fails or stops functioning. Another approach for implementing the polling technique is to schedule the polling operation on a time slice basis and allocate the total time on a shared basis to rest of the tasks also. This leads to much more effective utilisation of the processor time. The biggest drawback of this approach is that there is a chance for missing some information coming from the device if the total tasks are high in number. Your device polling will get another chance to poll the device only after the other tasks are done at least once.

Here comes the role of interrupts. If the external device supports interrupt, you can connect the interrupt pin of the device to the interrupt line of the controller. Enable the corresponding interrupt in firmware. Write the code to handle the interrupt request service in a separate function and put the other tasks
in the main program code. Here the main program is executed normally and when the external device
asserts an interrupt, the main program is interrupted and the processor switches the program execution
to the interrupt request service. On finishing the execution of the interrupt request service, the program
flow is automatically diverted back to the main stream and the main program resumes its execution
exactly from the point where it got interrupted.

Designing Embedded Systems with 8bit Microcontrollers-8051

- 5.3.6.3 Use of Interrupts In any interrupt based systems, interrupts are mainly used for accomplishing the following tasks:
- 1. I/O data transfer between peripheral devices and processor/controller
- 2. Timing applications
- Handling emergency situations (e.g. switch off the system when the battery status falls below the critical limit in battery operated systems)
- 4. Context switching/Multitasking/Real-Time application programming
- 5. Event driven programming

5.3.7 The 8051 Interrupt System

I hope by now you got reasonably good information on interrupts and interrupt handling. Now let us move on to the interrupt system of 8051 microcontroller. The basic 8051 and its ROMless counterpart 8031AH supports five interrupt sources; namely two external interrupts, two timer interrupts and the serial interrupt. The serial interrupt is an ORed combination of the two serial interrupts; Receive Interrupt (RI) and Transmit Interrupt (TI).

5.3.7.1 Enabling Interrupts The interrupt system of 8051 can be enabled or disabled totally under software control. This is achieved by setting or clearing the global interrupt enable bit of the Special Function Register Interrupt Enable (IE). Also, each interrupt can be enabled or disabled individually by setting or clearing the corresponding interrupt enable bit in the SFR Interrupt Enable.

Interrupt Enable (IE) (SFR- A8H) The bit details of the Interrupt Enable Register is given below:

IE.7	IE.6	IE.5	IE.4	IE.3	IE.2	IE.1	IE.0
EA	RSD	RSD	ES	ET1	EXI	ET0	EX0

The table given below explains the meaning and use of each bit.

Bit	Name	Description
EA	Enable All	EA = 0 disable all interrupts. EA = 1 enable all interrupts, which are individually enabled by setting their corresponding enable bit in Interrupt Enable SFR.
RSD	Reserved	Unimplemented. Reserved for future use
ES	Enable Serial	ES = 1 enables Serial Interrupt. ES = 0 disables it
ETI	Enable Timer 1	ET1 = 1 enable Timer1 Interrupt. ET1 = 0 disables it
EX1	Enable External 1	EX1 = 1 enable External Interrupt 1. EX1 = 0 disables it
ETO	Enable Timer 0	ET0=1 enable Timer0 Interrupt. ET0=0 disables it
EX0	Enable External 0	EX0=1 enable External Interrupt 0. EX0 = 0 disables it

The following code snippet illustrates the enabling of Timer 0 interrupt and disabling of all other interrupts.

```
ORL IE, #10000010B ; Set bits EA & ETO. Preserve other ; bits as such ANL IE, #11100010B ; Reset bits ES, ET1, EX1 and EX0. ; Preserve other bits as such
```

Copyrighted material

The instruction *ORL IE*, #10000010B sets the global interrupt enabler bit *EA(IE.7)* and the Timer 0 Interrupt enabler bit *ETO (IE.1)*. The status of all other bits in the IE register is preserved. The instruction *ANL IE*, #11100010B preserves the status of the global interrupt enabler bit *EA(IE.7)*, the *RSD (IE.6 & IE.5)* bits and the Timer 0 Interrupt enabler bit *ETO (IE.1)* and resets the Serial interrupt enabler bit *ES(IE.4)*, Timer 1 Interrupt enabler bit *ETI (IE.3)*, External Interrupt 1 enabler bit *EXI (IE.2)* and External Interrupt 0 enabler bit *EXO (IE.0)*. This ensures that the reserved bits *RSD (IE.6 & IE.5)* are left untouched. The same can also be achieved by individually setting or clearing the corresponding bits of IE register using *SETB* and *CLR* instructions. This requires more number of instructions to achieve the result.

Note: Though the corresponding interrupt bits are 'set' in the IE register, the Interrupts will not be enabled and serviced if the global interrupt enabler, EA bit of the Interrupt Enable Register (IE) is 0.

5.3.7.2 Setting Interrupt Priorities In a Real World application, interrupts can occur at any time (asynchronous behaviour) and different interrupts may occur simultaneously. This may confuse the processor on deciding which interrupt is to be serviced first. This arbitration problem is resolved by setting interrupt priorities. Interrupt priority is configured under software control. The Special Function Register Interrupt Priority (IP) Register is the one holding the interrupt priority settings for each interrupt.

Interrupt Priority Register (IP) (SFR-B8H) The bit details of the Interrupt Priority Register is explained in the table below.

IP.7	IP.6	IP.5	IP.4	IP.3	IP.2	IP.1	IP.0
RSD	RSD	RSD	PS	PT1	PXI	PTO	PX0

The table given below explains the meaning and use of each bit in the IP register.

Bit	Name	Description
RSD	Reserved	Unimplemented. Reserved for future use
PS	Serial interrupt priority	PS = 1 sets priority to Serial Interrupt
PT1	Timer 1 interrupt priority	PT1 = 1 sets priority to Timer1 Interrupt
PX1	External 1 interrupt priority	PX1 = 1 sets priority to External Interrupt 1
PT0	Timer 0 interrupt priority	PT0 = 1 sets priority to Timer 0 interrupt
PX0	External 0 interrupt priority	EX0 = 1 sets priority to External interrupt 0

The interrupt control system of 8051 contains latches to hold the status of each interrupt. The status of each interrupt flags are latched and updated during S5P2 of every machine cycle (Refer to machine cycles for information on S5P2). The latched samples are polled during the following machine cycle. If the flag for an enabled interrupt is found to be set in S5P2 of the previous cycle, the interrupt system transfers the program flow to the corresponding interrupt's service routine in the code memory (Provided none of the conditions described in section "Different conditions blocking an interrupt" blocks the vectoring of the interrupt). The Interrupt Service Routine address for each interrupt in the code memory is listed below.

Interrupt number	Interrupt source	ISR Location in code memory
0	External interrupt 0	0003H
1	Timer 0 interrupt	000BH

2	External interrupt 1	0013H
3	Timer 1 interrupt	001BH
4	Serial interrupt	0023H

It is to be noted that each Interrupt Service Routine (ISR) is allocated 8 bytes of code memory in the code memory space.

From the IP Register architecture it is obvious that each interrupt can be individually programmed to one of two priority levels by setting or clearing the corresponding priority bit in the Interrupt Priority Register. Some general info on 8051 interrupts is given below:

- If two interrupt requests of different priority levels are received simultaneously, the request of higher priority interrupt is serviced.
- If interrupt requests of the same priority level are received simultaneously, the order in which the interrupt flags are polled internally is served first. First polled first served. (Also known as internal polling sequence.)
- 3. A low-priority interrupt can always be interrupted by a high priority interrupt.
- 4. A low-priority interrupt in progress can never be interrupted by another low priority interrupt.
- A high priority interrupt in progress cannot be interrupted by a low priority interrupt or an interrupt of equal priority.
- 5.3.7.3 Different conditions blocking an Interrupt It is not necessary that an interrupt should be serviced immediately on request. The following situations can block an interrupt request or delay the servicing of an interrupt request in 8051 architecture.
 - All interrupts are globally disabled by clearing the Enable All (EA) bit of Interrupt Enable register.
 - The interrupt is individually disabled by clearing its corresponding enable bit in the Interrupt Enable Register (IE).
 - 3. An interrupt of higher priority or equal priority is already in progress.
 - 4. The current polling machine cycle is not the final cycle in the execution of the instruction in progress (To ensure that the instruction in progress will be completed before vectoring to the interrupt service routine. In this state the LCALL generation to the ISR location is postponed till the completion of the current instruction).
 - The instruction in execution is RETI or a write to the IE/IP Register. (Ensures the interrupt related instructions will not make any conflicts).

In the first three conditions the interrupt is not serviced at all whereas conditions 4 and 5 services the interrupt request with a delay.

5.3.7.4 Returning from an Interrupt Service Routine An Interrupt Service Routine should end with an RETI instruction as the last executable instruction for the corresponding ISR. Executing the RETI instruction informs the interrupt system that the service routine for the corresponding interrupt is finished and it clears the corresponding priority-X (X=1 High priority) interrupt in progress flag by clearing the corresponding flip flop. This enables the system to accept any interrupts with low priority or equal priority of the interrupt which was just serviced. Remember an interrupt of higher priority can always interrupt a lower priority even if the corresponding priority's interrupt in progress flag is set. Executing the RETI instruction POPs (retrieves) the Program Counter (PC) content from stack and the program flow is brought back to the point where the interruption occurred.

In operation, RETI is similar to RET where RETI indicates return from an Interrupt Service Routine and RET indicates return from a normal routine. RETI clears the interrupt in progress flag as well as POPs (retrieves) the content of the Program Counter register to bring the program flow back to the point where it got interrupted. RET instruction only POPs the content of the Program Counter register and brings the program flow back to the point where the interruption occurred.

Will a non serviced Interrupt be serviced later? This is a genuine doubt raised by beginners in the 8051 based system design. The answer is 'No'. Each interrupt polling sequence is a new one and it happens at S5P2 of each machine cycle. If an interrupt is not serviced in a machine cycle for the reason that it occurred simultaneously with another high priority interrupt, will be lost. There is no mechanism in place for holding the non serviced interrupts in queue and marking them as pending interrupts and servicing them later.

5.3.7.5 Priority Levels for 8051 Interrupts By default the 8051 architecture supports two levels of priority which is already explained in the previous sections. The first priority level is determined by the settings of the Interrupt Priority (IP) register. The second level is determined by the internal hardware polling sequence. The internal polling sequence based priority determination comes into action if two or more interrupt requests of equal priority occurs simultaneously. The internal polling based priority within the same level of priority is listed below in the descending order of priority.

Interrupt	Priority	
External interrupt 0	HIGHEST	
Timer 0 overflow interrupt		
External interrupt 1		
Timer I overflow interrupt	Z-S-H-S-M-S-H-S-M-S-M-S-M-S-M-S-M-S-M-S-M	
Serial interrupt	LOWEST	

5.3.7.6 What Happens when an Interrupt Occurs? On identifying the interrupt request number, the following actions are generated by the processor:

- 1. Complete the execution of instruction in progress.
- The Program Counter (PC) content which is the address of the next instruction in code memory which will be executed in normal program flow is pushed automatically to the stack. Program Counter Low byte (PCL) is pushed first and Program Counter High (PCH) byte is pushed next.
- Clear the corresponding interrupt flags if the interrupt is a timer or external interrupt (only for transition activated (edge triggered) configuration).
- Set interrupt in progress flip flop.
- Generate a long call (LCALL) to the corresponding Interrupt Service Routine address in the code memory (Known as vectoring of interrupt).

5.3.7.7 Interrupt Latency In the 8051 architecture, the interrupt flags are sampled and latched at S5P2 of each machine cycle. The latched samples are polled during S5P2 of the following machine cycle to find out their state. If the polling process identifies a priority interrupt flag's flip flop as set, an LCALL to its ISR location is generated (If and only if none of the conditions listed under the topic "Different conditions blocking an interrupt" blocks it). Interrupt latency is the time elapsed between the assertion of the interrupt and the start of the ISR for the same.

Pig. 5.21 Interrupt Latency

Interrupt latency is highly significant in real-time applications and is very crucial in time-critical applications. Interrupt latency can happen due to various reasons. For external interrupts there is no synchronisation with the system (asynchronous in behaviour) and so it can occur at any point of time. But the processor latches each interrupt flag only at S5P2 of each machine cycle. So there is no point even if the interrupt occurs at S1P1 of the machine cycle. It is latched only at S5P2 of the current machine cycle and the latched interrupts flags are polled at S5P2 of the following machine cycle and an LCALL is generated to the corresponding ISR, if no other conditions block the call. So this delay itself contributes a significant part in interrupt latency. Even if the ISR is entered some delay can be happened by the number of register contents to be stored (PUSH instructions) and other actions to be taken before executing the ISR task. The interrupt latency part which contributes the delay in servicing the ISR is the sum of the following time delays.

Time between the interrupt assertion to the start of state S5 of current machine cycle (polling cycle) + (Time for S5 & S6) + Remaining machine cycles for the current instruction in execution (The current execution should not be RETI or instructions accessing registers IE or IP, if so there will be an additional delay of the execution time for the next instruction) + LCALL generation time. The LCALL generation time is 12 T States (2 Machine cycles).

If the current machine cycle (the polling cycle) is the last cycle of the current instruction in execution and the current instruction in execution is other than RETI or instruction accessing IE or IP register, the interrupt vectoring happens at the shortest possible time and it is given as

Time between the interrupt asserted to start of state S5 of current machine cycle (polling cycle) + (S5+S6 T state + 12 clock)

= Time between the Interrupt Asserted to the start of state S5 + $(((1+1+12) \times 2)/f_{osc})$ seconds. (1 T state = 2 clock cycles and 1 clock cycle = $1/f_{osc}$)

The minimum time required to identify an interrupt by the system is one machine cycle, i.e. if an interrupt occurs at S5 of a machine cycle, it is latched and it is identified as an interrupt at state S5 of next machine cycle (Polling cycle). Hence the minimum time from interrupt assertion to S5 of the polling machine cycle is 1 machine cycle (12 clock periods). The maximum time required to identify an interrupt by the system is approximately 2 machine cycles. Assume the interrupt is asserted at state S6 of a machine cycle, it is latched at S5 of next machine cycle and the latched value is polled at S5 of next machine cycle. Hence the minimum time between the 'Interrupt Asserted' to state S5 of the current machine cycle (polling cycle) is 6 T States (1 machine cycle). That means State S6 of previous machine cycle to state S5 of current machine cycle. Hence the minimum acknowledgement time will be 20 T States (Since 1 machine cycle = 6 T states. The approximate response delay will be 3 machine cycles).

3 machine cycles is the minimum response delay for acknowledging an interrupt in a single interrupt system. There may have additional wait times which come as an addition to the minimum response delay, depending on some other conditions. If you look back to the section "Different conditions blocking an Interrupt" you can see that if the current machine cycle when the interrupt asserted (The machine
cycle at which the interrupt is latched) is the last machine cycle of the current instruction in progress, the
interrupt vectoring will happen only after completing the next instruction. If the instruction in progress
is not in its final machine cycle, the maximum additional waiting (waiting time excluding the LCALL
generation time) time required to vector the Interrupt cannot be more than 3 machine cycles since the
longest instructions MUL AB and DIV AB are 4 cycle instructions. If the instruction in progress is a
RETI instruction or any access to IP or IE register then also the vectoring of the interrupt service routine
will be delayed till the execution of next instruction. If the next instruction following the RETI or IP/IE
register related instruction is MUL AB or DIV AB, the additional wait time will be 5 machine cycles
(RETI and IP/IE related instructions are 2 machine cycle instructions).

In brief, the response time for interrupt in 8051 system is always more than 3 machine cycles and less than 9 machine cycles.

5.3.7.8 Configuring External Interrupts 8051 supports two external interrupts, namely, External interrupt 0 and External interrupt 1. These are hardware interrupts. Two port pins of Port 3 serve the purpose of external interrupt input line. External interrupts are usually used for connecting peripheral devices. The external interrupt assertion can be either level triggered or edge triggered depending on the external device connected to the interrupt line. From the 8051 side it is configurable and the configuration is done at the SFR Timer/Counter Control Register (TCON). Bits TCON.0 and TCON.2 of TCON register configures the same for External Interrupt 0 and 1 respectively. TCON.0 is also known as Interrupt 0 type control bit (IT0). Setting this bit to 1 configures the external interrupt 0 as falling edge triggered. Clearing the bit configures the external interrupt 0 as low level triggered. Similarly, TCON.2 is known as Interrupt 1 type control bit (IT1). Setting this bit to 1 configures the external interrupt 1 as falling edge triggered. Clearing this bit configures the external interrupt 1 as low level triggered.

For external interrupts, the interrupt line should be asserted by the externally connected device to a minimum time period of the interval between two consecutive latching, i.e. S6P1 of previous machine cycle to S5P2 of current machine cycle (1 Machine cycle). Otherwise it may not be identified by the processor (Only interrupts which are found asserted during the latching time (S5P2) will be identified).

5.3.7.9 Single Stepping Program with the Help of External Interrupts Single stepping is the process of executing the program instruction by instruction. This can be achieved with the help of the external interrupt 0 or 1 and a small firmware modification. This works on the basic principle that an interrupt request will not be acknowledged if an interrupt of equal priority is in progress and if the instruction in progress when the interrupt is asserted is a RETI instruction, the vectoring will happen only after executing an instruction from the main program, which is interrupted by the interrupt. If the external interrupt is in the asserted state, the interrupt vectoring happens after executing one instruction from the main program. This execution switching between the main program and ISR can be achieved by a simple ISR firmware modification. Connecting a push button switch to the external interrupt line 0 through a resistor is the only hardware change needed for a single step operation (Fig. 5.22). Configure INTO as level triggered in firmware. Activating the push button asserts the INTO interrupt and the processor starts executing the ISR for interrupt 0. At the end, the ISR waits for a 1 to 0 transition at the INTO line that asserts the external interrupt 0 again. The next instruction that is going to be executed on asserting the INT0 is RETI and according to the general interrupt vectoring principle the processor will go back to the point in the main code where it got interrupted and after completing one instruction it will again come back to the INT0 ISR. This process is repeated.

Single stepping can also be done with external interrupt 1. Make external interrupt 1 as level triggered and connect the hardware set up to pin P3.3 (external interrupt 1 line) and modify the ISR for external interrupt 1 as explained for external interrupt 0 ISR. It will work fine. Single stepping is a very useful method in debugging the application. It gives an insight into the various effects produced by the execution of an instruction, like registers and memory locations modified as a result of the execution of an instruction.

Fig. 5.22 Hardware setup for single stepping program with external interrupt

Example 1

Design an 8051 microcontroller based data acquisition system for interfacing the Analog to Digital Converter ADC, ADC0801 from National semiconductors. The system should satisfy the following:

- Use Atmel's AT89C51/52 or AT89S8252 (Flash microcontroller with In System Programming (ISP) support) for designing the system. Use a 12MHZ crystal resonator for generating the necessary clock signal for the controller. Use on-chip program memory for storing the program instructions.
- The data lines of the ADC is interfaced to Port 2 of the microcontroller. The control signals (RD\, WR\, CS\) to the ADC is supplied through Port 3 pins of microcontroller.
- The Analog voltage range for conversion is from 0V to 5. The varying analog input voltage is generated from the 5V supply voltage (Vcc) using a variable resistor (Potentiometer). The ADC asserts its interrupt line to interrupt the microcontroller when the AD conversion is over and data is available at the ADC data port.
- The microcontroller reads the data on receiving the interrupt and stores it in the memory. The successive data conversion is initiated after reading the converted data for a sample. Only the most recent 16 samples are stored in the microcontroller memory.

This example is a good starting point for a discussion on data converters and their use in embedded applications. The processing/controlling unit (The core of the embedded system) of every embedded system is made up of digital systems and they work only on digital data. The processor/controller is capable of dealing with binary (digital) data only. As mentioned in the beginning, embedded systems are in constant interaction with the real world through sensors and actuators. In most of the situations, the signals which are handled by embedded systems fall into the category 'analog'. Analog signals are continuous in nature. Most of the embedded systems used in control and instrumentation applications include the monitoring or control of at least one analog signal. The thermocouple-based temperature sensing system used in industrial control is a typical example for this. The thermocouple generates millivoltage (mV) in response to the changes in temperature. This voltage signals are filtered and signal conditioned and then applied to the monitoring system for monitoring and control purpose. Digital systems are not capable of handling analog signals as such for processing. The analog input signal from sensors needs to be digitized (quantized) before inputting to the digital systems. In a similar fashion, the output from digital systems are digital (discrete) in nature and they cannot be applied directly to analog systems which require continuous signals for their operation. The problem of handling the analog and digital data in embedded systems is handled by data converters. Data converters fall into two categories, namely; Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC). Analog to Digital Converter (ADC) converts analog signals to corresponding digital representation, whereas Digital to Analog Converter (DAC) converts digital signals to the corresponding analog representation.

ADCs are used at the input stage of the processor/controller and DACs are used at the output stage of the processor/controller. ADCs and DACs are available in the form of Integrated Circuits (ICs) from different manufacturers. These chips are used for interfacing the processor/controller with sensors/actuators which produces/requires analog signals.

Analog to digital conversion can be accomplished through different conversion techniques. Successive approximation and integrator are the two commonly adopted analog to digital conversion techniques. In the successive approxi-

Introduction to Embedded Systems

1	MROM OTP EPROM	function. Popular for prototyping ASIC designs : Masked ROM is a one-time programmable memory, which uses the hardwired technology for storing data : One Time Programmable Read Only Memory made up of nichrome or polysilicon wires arranged in a matrix
1		: One Time Programmable Read Only Memory made up of nichrome or polysilicon wires arranged in a matrix
1	EPROM	
		 Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by exposing to UV light
	EEPROM	: Electrically Erasable Programmable Read Only Memory. Reprogrammable ROM. Erased by applying electrical signals
	FLASH	 Electrically Erasable Programmable Read Only Memory. Same as EEPROM but with high capacity and support for block level memory erasing
1	RAM	: Random Access memory. Volatile memory
	SRAM	: Static RAM. A type of RAM, made up of flip-flops
- 55	DRAM	: Dynamic RAM. A type of RAM, made up of MOS Transistor and Capacitor
	NVRAM	: Non-volatile SRAM. Battery-backed SRAM
	ADC	: Analog to Digital Converter. An integrated circuit which converts analog signals to digital form
1	LED	: Light Emitting Diode. An output device which produces visual indication in the form of light in accordance with current flow
7	7-Segment	: The 7-segment LED display is an output device for displaying alpha numeric characters.
1	LED Display	It contains 8 light-emitting diode (LED) segments arranged in a special form
	Optocoupler	 A solid state device to isolate two parts of a circuit. Optocoupler combines an LED and a photo- transistor in a single housing (package)
5	Stepper motor	 An electro-mechanical device which generates discrete displacement (motion) in response to de electrical signals
1	Relay	: An electro-mechanical device which acts as dynamic path selector for signals and power
1	Piezo Buzzer	 A piezo-electric device for generating audio indication. It contains a piezo-electric diaphragm which produces audible sound in response to the voltage applied to it
1	Push Button	: A mechanical device for electric circuit 'make' and 'break' operation
	switch	
ì	PPI	 Programmable Peripheral Interface is a device for extending the I/O capabilities of processors/ controllers
1	12C	: The Inter Integrated Circuit Bus (I2C-Pronounced 'I square C') is a synchronous bi-directional half duplex two wire serial interface bus.
5	SPI	 The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four wire serial interface bus
ı	UART	: The Universal Asynchronous Receiver Transmitter is an asynchronous communication implementation standard
1	l-Wire interface	: An asynchronous half-duplex communication protocol developed by Maxim Dallas Semiconductor. It is also known as Dallas 1-Wire® protocol.
F	RS-232 C	 Recommended Standard number 232, revision C from the Electronic Industry Association, is a legacy, full duplex, wired, asynchronous serial communication interface
F	RS-485	: The enhanced version of RS-232, which supports multi-drop communication with up to 32 transmitting devices (drivers) and 32 receiving devices on the bus
1	USB	: Universal Serial Bus is a wired high speed serial bus for data communication
1	EEE 1394	: A wired, isochronous high speed serial communication bus
I	Firewire	: The Apple Inc.'s implementation of the 1394 protocol

Copyrighted material

The Typical Embedded System

Infrared (IrDA) : A serial, half duplex, line of sight based wireless technology for data communication between

devices

Bluetooth : A low cost, low power, short range wireless technology for data and voice communication

WI-FI : Wireless Fidelity is the popular wireless communication technique for networked communication

of devices

ZigBee : A low power, low cost, wireless network communication protocol based on the IEEE 802.15.4-

2006 standard. ZigBee is targeted for low power, low data-rate and secure applications for

Wireless Personal Area Networking (WPAN)

GPRS : General Packet Radio Service is a communication technique for transferring data over a mobile

communication network like GSM

Reset Circuit : A passive circuit or IC device to supply a reset signal to the processor/controller of the embedded

system

Brown-out : A passive circuit or IC device to protect the processor from unexpected program execution

Protection Circuit flow due to the drop in power supply voltage

RTC : Real Time Clock is a system component keeping track of time

Watchdog Timer: Timer for monitoring the firmware execution

(WDT) PCB

Printed Circuit Board is the place holder for arranging the different hardware components

required to build the embedded product

1. Embedded hardware/software systems are basically designed to

(a) Regulate a physical variable

(b) Change the state of some devices

(c) Measure/Read the state of a variable/device

(d) Any/All of these

2. Little Endian processors

(a) Store the lower-order byte of the data at the lowest address and the higher-order byte of the data at the highest address of memory

(b) Store the higher-order byte of the data at the lowest address and the lower-order byte of the data at the highest address of memory

(c) Store both higher order and lower order byte of the data at the same address of memory

(d) None of these

3. An integer variable with value 255 is stored in memory location at 0x8000. The processor word length is 8 bits and the processor is a big endian processor. The size of integer is considered as 4 bytes in the system. What is the value held by the memory location 0x8000?

(a) 0xFF

(b) 0x00

(c) 0x01

(d) None of these

4. The instruction set of RISC processor is

(a) Simple and lesser in number

(c) Simple and larger in number

(b) Complex and lesser in number(d) Complex and larger in number

5. Which of the following is true about CISC processors?

(a) The instruction set is non-orthogonal

(b) The number of general purpose registers is limited

(c) Instructions are like macros in C language

(d) Variable length Instructions

(e) All of these

(f) None of these

6.	Which of the following proce	essor architecture supports e	asier	instruction pipelining	?	
	(a) Harvard	(b) Von Neumann		Both of them		None of these
7.	Microprocessors/controllers	based on the Harvard archi	tectur	e will have separate	data be	us and instruction bus.
	This allows the data transfer	and program fetching to occ	ur sir	nultaneously on both	buses.	State True or False
	(a) True	(b) False				
8.	Which of the following is on	e-time programmable memo	ry?			
	(a) SRAM	(b) PROM		FLASH	(d)	NVRAM
9.	Which of the following mem	ory type is best suited for de	velop	ment purpose?		
	(a) EEPROM	(b) FLASH	- 0 - 5	UVEPROM		
	(d) OTP	(e) (a) or (b)	0.0			
10.	EEPROM memory is alterab		r Fals	c		
	(a) True	(b) False				
11.	Non-volatile RAM is a Rand		ttery	backup. State True or	False	
	(a) True	(b) False				
12.	Execution of program from F	OM is faster than the execu	ition i	from RAM. State Tru	e or Fa	lse
	(a) True	(b) False				
13.	Dynamic RAM stores data in	the form of voltage. State T	True o	r False		
	(a) True	(b) False				
14.	The control algorithm (Progr	am instructions) and or the o	config	puration settings that	are kept	in the code (Program)
	memory of the embedded sys	stem are known as Embedde	d Sof	tware. State True or I	False	•
	(a) True	(b) False				
15.	Which of the following is an	example for Wireless Comp	nunic	ation interface?		
	(a) RS-232C	(b) Wi-Fi		Bluetooth		
	(d) EEE1394	(e) both (b) and (c)	3.5			
16.	Which of the following is (ar	e) examples for Application	Spec	ific Instruction set Pr	ocessor	r(s)
	(a) Intel Centrino	(b) Atmel Automotive AV	R.			
	(c) AMD Turion	(d) Microchip CAN PIC	(e)	All of these	(f)	both (b) and (d)
17.	How many memory cells are	present in 1Kb RAM				
	(a) 1024	(b) 8192	(c)	512	(d)	4096
	(e) None of these					
18.	Which of the following mem	[1] 2 (2) T				
	(a) EEPROM	(b) NOR FLASH	(c)	NAND FLASH		
	(d) both (b) and (c)	(e) None of these				
19.	How many memory cells are		tOM			
	(a) 1024	(b) 8192	(c)	512	(d)	4096
	(e) None of these					
20.	Which of the following is (a	re) example(s) for the input	subs	ystem of an embedde	ed syste	em dealing with digital
	data?		-212	20.20	6522	200 201
	(a) ADC	(b) Optocoupler	(c)	DAC	(d)	All of them
	(e) only (a) and (b)					
21.	Which of the following is (ar	re) example(s) for the outpu	t subs	system of an embedd	ed syste	em dealing with digital
	data?			2	4.80	
	(a) LED	(b) Optocoupler	(c)	Stepper Motor	(d)	All of these
	(e) only (a) and (c)					
22.	Which of the following is tru					
	(a) Optocoupler acts as an i	77 TO 2015 OF BUILDING BUILDING WATER TO A				
	(b) Optocoupler acts as an o	그림, 아픈, 이번 이번 생각이 없는데 없는데 이번 가는데 보다 하다.	200042			
	(c) Optocoupler can be used	in both input and output ci	rcuitr	y		
	(d) None of these					

Copyrighted material

			, , ,	,.				ä
23.	Which of the following is	s true abo	ut a unipolar stepper	motor				
	(a) Contains only a sing	de windin	g per stator phase	(b)	Contains two	windings per	stator phase	
	(c) Contains four windi	ngs per st	ator phase	(d)	None of these	11 50		
24.	Which of the following is	s (are) tru	e about normally op	en sing!	e pole relays?			
	(a) The circuit remains							
	(b) The circuit remains			-				
	(c) There are two outpu							
	(d) Both (a) and (b)	(e)	None of these					
25.	What is the minimum nu	mber I/O	line required to inter	face a l	6-Key matrix l	ceyboard?		
	(a) 16	(b)		(c)	The same of the sa	(d)	9	
26.	Which is the optimal row	-column	configuration for a 2	4 key n	natrix keyboard			
	(a) 6×4	(b)	8×3	(c)	12×2	(d)	5×5	
27	Which of the following is	s an exam	ple for on-board into	rface in	the embedded	system conte	ext?	
	(a) 12C		Bluetooth		SPI		All of them	

(c) 3

(c) 4

(c) 5

(c) UART

(d) 4

(d) 8

(d) All of these

(d) None of these

.2Kbps

The Typical Embedded System

	(e) Only (a) and (b)			
31.	RS-232 is a synchrono	us serial interface. State	True or False	
	(a) True	(b) False		
32,	What is the maximum	number of USB devices	that can be connected to a USB	host?
	(a) Unlimited	(b) 128	(c) 127	

(b) SPI

(b) 2

(b) 3

30. Which of the following are synchronous serial interface?

28. What is the minimum number of interface lines required for implementing I2C interface?

29. What is the minimum number of interface lines required for implementing SPI interface?

(e) Only (a) and (c)

(a) 2

(a) 2

(a) I2C

	(a) ZigBee Coordinat	or	(b)	ZigBee Router		
	(c) ZigBee Reduced l	Function Device	(d)	All of them		
34.	What is the theoretical	maximum data rate supporte	d by GPRS			
	(a) 8Mbps	(b) 12Mbps	(c)	100Kbps	(d)	171
35.	GPRS communication	divides the radio channel into	00	timeslots	0.51500	

33. In the ZigBee network, which of the following ZigBee entity stores the information about the network?

- 1. Explain the components of a typical embedded system in detail
- 2. Which are the components used as the core of an embedded system? Explain the merits, drawbacks, if any, and the applications/domains where they are commonly used
- 3. What is Application Specific Integrated Circuit (ASIC)? Explain the role of ASIC in Embedded System design?
- 4. What is the difference between Application Specific Integrated Circuit (ASIC) Application Specific Standard Product (ASSP)?
- 5. What is the difference between microprocessor and microcontroller? Explain the role of microprocessors and controllers in embedded system design?
- 6. What is Digital Signal Processor (DSP)? Explain the role of DSP in embedded system design?
- 7. What is the difference between RISC and CISC processors? Give an example for each.

Introduction to Embedded Systems

- 8. What is processor architecture? What are the different processor architectures available for processor/controller design? Give an example for each.
- 9. What is the difference between big-endian and little-endian processors? Give an example of each.
- What is Programmable Logic Device (PLD)? What are the different types of PLDs? Explain the role of PLDs in Embedded System design.
- 11. What is the difference between PLD and ASIC?
- 12. What are the advantages of PLD over fixed logic device?
- 13. What are the different types of memories used in Embedded System design? Explain the role of each.
- 14. What are the different types of memories used for Program storage in Embedded System Design?
- 15. What is the difference between Masked ROM and OTP?
- 16. What is the difference between PROM and EPROM?
- 17. What are the advantages of FLASH over other program storage memory in Embedded System design?
- 18. What is the difference between RAM and ROM?
- 19. What are the different types of RAM used for Embedded System design?
- 20. What is memory shadowing? What is its advantage?
- 21. What is Sensor? Explain its role in Embedded System Design? Illustrate with an example.
- 22. What is Actuator? Explain its role in Embedded System Design? Illustrate with an example.
- 23. What is Embedded Firmware? What are the different approaches available for Embedded Firmware development?
- What is the difference between General Purpose Processor (GPP) and Application Specific Instruction Set Processor (ASIP). Give an example for both.
- 25. Explain the concept of Load Store architecture and instruction pipelining.
- Explain the operation of Static RAM (SRAM) cell.
- 27. Explain the merits and limitations of SRAM and DRAM as Random Access Memory.
- Explain the difference between Serial Access Memory (SAM) and Random Access Memory (RAM). Give an example for both.
- Explain the different factors that needs to be considered in the selection of memory for Embedded Systems.
- 30. Explain the different types of FLASH memory and their relative merits and de-merits.
- 31. Explain the different Input and output subsystems of Embedded Systems.
- 32. What is stepper motor? How is it different from ordinary dc motor?
- 33. Explain the role of Stepper motor in embedded applications with examples.
- 34. Explain the different step modes for stepper motor.
- 35. What is Relay? What are the different types of relays available? Explain the role of relay in embedded applications.
- 36. Explain the operation of the transistor based Relay driver circuit.
- 37. Explain the operation of a Matrix Keyboard.
- What is Programmable Peripheral Interface (PPI) Device? Explain the interfacing of 8255 PPI with an 8bit microprocessor/controller.
- 39. Explain the different on-board communication interfaces in brief.
- 40. Explain the different external communication interfaces in brief.
- 41. Explain the sequence of operation for communicating with an I2C slave device.
- 42. Explain the difference between 12C and SPI communication interface.
- 43. Explain the sequence of operation for communicating with a 1-Wire slave device.
- 44. Explain the RS-232 C serial interface in detail.
- 45. Explain the merits and limitations of Parallel port over Seria! RS-232 interface.
- 46. Explain the merits and limitations of IEEE1394 interface over USB.
- 47. Compare the operation of ZigBee and Wi-Fi network.
- 48. Explain the role of Reset circuit in Embedded System.
- Explain the role of Real Time Clock (RTC) in Embedded System.
- 50. Explain the role of Watchdog Timer in Embedded System.

Copyrighted material

The Typical Embedded System

- Write a "C" program to find the endianness of the processor in which the program is running. If the processor
 is big endian, print "The processor architecture is Big endian", else print "The processor architecture is Little
 endian" on the console window. Execute the program separately on a PC with Windows, Linux and MAC
 operating systems.
- Draw the interfacing diagram for connecting an LED to the port pin of a microcontroller. The LED is turned ON
 when the microcontroller port pin is at Logic '0'. Calculate the resistance required to connect in series with the
 LED for the following design parameters.
 - (a) LED voltage drop on conducting = 1.7V
 - (b) LED current rating = 20 mA
 - (c) Power Supply Voltage = 5V
- Design an RC (Resistor-Capacitor) based reset circuit for producing an active low Power-On reset pulse of width 0.1 milli seconds.
- Design a zener diode and transistor based brown-out protection circuit with active low reset pulse for the following design parameters.
 - (a) Use BC327 PNP transistor for the design
 - (b) The supply voltage to the system is 5V
 - (c) The reset pulse is asserted when the supply voltage falls below 4.7V

Characteristics and Quality Attributes of Embedded Systems

- ✓ Learn the characteristics describing an embedded system
- ✓ Learn the non-functional requirements that needs to be addressed in the design of an embedded system.
- ✓ Learn the important quality attributes of the embedded system that needs to be addressed for the operational mode (online mode) of the system. This includes Response, Throughput, Reliability, Maintainability, Security, Safety, etc.
- ✓ Learn the important quality attributes of the embedded system that needs to be addressed for the non-operational mode (offline mode) of the system. This includes Testability, Debug-ability, Evolvability, Portability, Time to prototype and market, Per unit cost and revenue, etc.
- ✓ Understand the Product Life Cycle (PLC)

No matter whether it is an embedded or a non-embedded system, there will be a set of characteristics describing the system. The non-functional aspects that need to be addressed in embedded system design are commonly referred as quality attributes. Whenever you design an embedded system, the design should take into consideration of both the functional and non-functional aspects. The following topics give an overview of the characteristics and quality attributes of an embedded system.

3.1 CHARACTERISTICS OF AN EMBEDDED SYSTEM

Unlike general purpose computing systems, embedded systems possess certain specific characteristics and these characteristics are unique to each embedded system. Some of the important characteristics of an embedded system are:

- 1. Application and domain specific
- 2. Reactive and Real Time
- Operates in harsh environments
- 4. Distributed
- 5. Small size and weight
- Power concerns

Characteristics and Quality Attributes of Embedded Systems

3.1.1 Application and Domain Specific

If you closely observe any embedded system, you will find that each embedded system is having certain functions to perform and they are developed in such a manner to do the intended functions only. They cannot be used for any other purpose. It is the major criterion which distinguishes an embedded system from a general purpose system. For example, you cannot replace the embedded control unit of your microwave oven with your air conditioner's embedded control unit, because the embedded control units of microwave oven and airconditioner are specifically designed to perform certain specific tasks. Also you cannot replace an embedded control unit developed for a particular domain say telecom with another control unit designed to serve another domain like consumer electronics.

3.1.2 Reactive and Real Time

As mentioned earlier, embedded systems are in constant interaction with the Real world through sensors and user-defined input devices which are connected to the input port of the system. Any changes happening in the Real world (which is called an Event) are captured by the sensors or input devices in Real Time and the control algorithm running inside the unit reacts in a designed manner to bring the controlled output variables to the desired level. The event may be a periodic one or an unpredicted one. If the event is an unpredicted one then such systems should be designed in such a way that it should be scheduled to capture the events without missing them. Embedded systems produce changes in output in response to the changes in the input. So they are generally referred as Reactive Systems.

Real Time System operation means the timing behaviour of the system should be deterministic; meaning the system should respond to requests or tasks in a known amount of time. A Real Time system should not miss any deadlines for tasks or operations. It is not necessary that all embedded systems should be Real Time in operations. Embedded applications or systems which are mission critical, like flight control systems, Antilock Brake Systems (ABS), etc. are examples of Real Time systems. The design of an embedded Real time system should take the worst case scenario into consideration.

3.1.3 Operates in Harsh Environment

It is not necessary that all embedded systems should be deployed in controlled environments. The environment in which the embedded system deployed may be a dusty one or a high temperature zone or an area subject to vibrations and shock. Systems placed in such areas should be capable to withstand all these adverse operating conditions. The design should take care of the operating conditions of the area where the system is going to implement. For example, if the system needs to be deployed in a high temperature zone, then all the components used in the system should be of high temperature grade. Here we cannot go for a compromise in cost. Also proper shock absorption techniques should be provided to systems which are going to be commissioned in places subject to high shock. Power supply fluctuations, corrosion and component aging, etc. are the other factors that need to be taken into consideration for embedded systems to work in harsh environments.

3.1.4 Distributed

The term distributed means that embedded systems may be a part of larger systems. Many numbers of such distributed embedded systems form a single large embedded control unit. An automatic vending machine is a typical example for this. The vending machine contains a card reader (for pre-paid vending systems), a vending unit, etc. Each of them are independent embedded units but they work together