BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI CHÍNH THỰC

KÌ THI CHỌN HỌC SINH GIỚI QUỐC GIA LỚP 12 THPT NĂM 2009

Môn: TOÁN

Thời gian: **180** phút (không kể thời gian giao đề)

Ngày thi: 25/02/2009

Câu 1 (4 điểm). Giải hệ phương trình sau:

$$\begin{cases} \frac{1}{\sqrt{1+2x^2}} + \frac{1}{\sqrt{1+2y^2}} = \frac{2}{\sqrt{1+2xy}} \\ \sqrt{x(1-2x)} + \sqrt{y(1-2y)} = \frac{2}{9}. \end{cases}$$

Câu 2 (5 điểm). Cho dãy số thực (x_n) xác định bởi

$$x_1 = \frac{1}{2}$$
 và $x_n = \frac{\sqrt{x_{n-1}^2 + 4x_{n-1}} + x_{n-1}}{2}$ với mọi $n \ge 2$.

Với mỗi số nguyên dương n, đặt $y_n = \sum_{i=1}^n \frac{1}{x_i^2}$.

Chứng minh rằng dãy số (y_n) có giới hạn hữu hạn khi $n \to \infty$. Hãy tìm giới hạn đó.

Câu 3 (5 điểm). Trong mặt phẳng, cho hai điểm cố định A, B ($A \neq B$). Xét một điểm C di động trong mặt phẳng sao cho $\widehat{ACB} = \alpha$, trong đó α là một góc cho trước ($0^0 < \alpha < 180^0$). Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC và CA tương ứng tại D, E và F. Các đường thẳng AI và BI lần lượt cắt đường thẳng EF tại M và N. Chứng minh rằng:

1/ Đoạn thẳng MN có độ dài không đổi;

2/ Đường tròn ngoại tiếp tam giác *DMN* luôn đi qua một điểm cố định.

Câu 4 (3 điểm). Cho ba số thực a, b, c thỏa mãn điều kiện: với mỗi số nguyên dương n, $a^n + b^n + c^n$ là một số nguyên. Chứng minh rằng tồn tại các số nguyên p, q, r sao cho a, b, c là 3 nghiệm của phương trình $x^3 + px^2 + qx + r = 0$.

Câu 5 (3 điểm). Cho số nguyên dương n. Kí hiệu T là tập hợp gồm 2n số nguyên dương đầu tiên. Hỏi có tất cả bao nhiều tập con S của T có tính chất: trong S không tồn tại các số a, b mà $|a-b| \in \{1; n\}$?

(Lưu ý: Tập rỗng được coi là tập con có tính chất nêu trên).

- Thí sinh không được sử dụng tài liệu.
- Giám thị không được giải thích gì thêm.