

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Krakow

Inteligencja obliczeniowa w analizie danych cyfrowych

mgr inż. Damian Płóciennik

dplociennik@agh.edu.pl

Katedra Biocybernetyki i Inżynierii Biomedycznej Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Centrum Doskonałości Sztucznej Inteligencji AGH

18 marca 2025

Informacje organizacyjne

- Mam przyjemność poprowadzić państwu zajęcia 3, 4, 5 (STRIPS) oraz 11 i 12 (uczenie ze wzmocnieniem w przestrzeniach ciągłych).
- Projekty realizujemy w grupach dwuosobowych (lub samodzielnie).
- Projekty należy przesłać na MS Teams przed ostatnimi zajęciami z danego tematu, na których odbędzie się ich oddawanie. W przypadku STRIPS jest to ok. 31.03.
- Konsultacje odbywają się po wcześniejszym umówieniu zdalnie (MS Teams) lub stacjonarnie. Proszę o kontakt poprzez wiadomość e-mail dplociennik@agh.edu.pl lub MS Teams.

Część I

STRIPS

STRIPS

Definicja

STRIPS (Stanford Research Institute Problem Solver) to formalny język używany do wyrażania problemów planowania, który pierwotnie został zaprojektowany do sterowania działaniami robota w manipulowalnym środowisku. Jego głównym celem jest automatyczne generowanie planów, czyli sekwencji działań, które przeprowadzają system z początkowego stanu do pożądanego stanu docelowego.

Kluczowe elementy STRIPS

- States określane przez zbiór logicznych propozycji.
- Goals określane jako zbiór warunków opisujących pożądany wynik.
- Actions każda akcja jest opisywana przez:
 - Preconditions warunki, które muszą być spełnione, aby działanie mogło zostać wykonane.
 - Effects zmiany w stanie systemu, które zachodzą w wyniku wykonania działania.

Przykładowa domena

Właściwości

- RLoc Rob's location
- RHC Rob has coffee.
- SWC Sam wants coffee
- MW Mail is waiting
- RHM Rob has mail

Akcje

- mc move clockwise
- mcc move counterclockwise
- puc pickup coffee
- dc deliver coffee
- pum pick up mail
- dm deliver mail

Przykładowe akcje

Pick-up coffee (puc):

- precondition: RLoc = cs, RHC = False. Robot musi być w coffee shop i nie trzymać kawy, aby móc podnieść kawę.
- effect: RHC = True. Po tym jak robot podniesie kawę, będzie trzymać kawę. Nic więcej się nie zmienia.

Deliver coffee (dc):

- precondition: RLoc = off, RHC = True. Robot musi być w biurze i trzymać kawę, aby móc dostarczyć kawę.
- effect: RHC = False, SWC = False. Po tym jak robot dostarczy kawę, przestaje trzymać kawę, a Sam więcej nie chce kawy. Nic więcej się nie zmienia.

Forward planning

Definicja

Forward planning to metoda eksploracji przestrzeni stanów, w której zaczynamy od stanu początkowego i poprzez zastosowanie akcji staramy się dotrzeć do stanu docelowego.

Forward planning

Heurystyka

Definicja

Heurystyka to funkcja oceny, która pomaga przewidzieć, jak blisko jesteśmy rozwiązania.

Przykład

Dla planu robota dostarczającego, jeśli wszystkie działania mają koszt równy 1, możliwa dopuszczalna funkcja heurystyczna dla określonego celu to maksimum z:

- odległości od lokalizacji robota w stanie s do lokalizacji celu, jeśli taka istnieje,
- odległości od lokalizacji robota w stanie s do kawiarni powiększonej o trzy (ponieważ robot musi przynajmniej dotrzeć do kawiarni, odebrać kawę i dostarczyć ją do biura), jeśli cel zawiera SWC = false, natomiast stan s zawiera SWC=true, RHC=false.

Bibliografia i przydatne linki

Slajdy utworzono na podstawie materiałów dostępnych na stronie https://artint.info/AIPython/.

- Fragmenty kodu Al Python z opisami: https://artint.info/AIPython/aipython.pdf
- Archiwum .zip z kodem AlPython: https://artint.info/AIPython/aipython.zip
- Prezentacje (chapter 6): https://artint.info/3e/slides/index.html
- Treść książki, opisy teoretyczne: https://artint.info/3e/html/ArtInt3e.Ch6.html