การวิเคราะห์ความต้องการและการรั่วไหลของการเดินทางทางอากาศ

Analysis of Air Travel Demand and Spill

Background and Motivation

ในปัจจุบันการเดินทางทางอากาศได้รับความนิยมมากขึ้น ส่งผลให้ทางสายการบินต้องทำการรองรับความต้องการของผู้โดยสารที่มีจำนวน เพิ่มขึ้นไปด้วย โดยเมื่อใดมีความต้องการของผู้โดยสารหรือ Demand มากกว่า จำนวนที่นั่งผู้โดยสาร หรือ Supply จะเกิดการรั่วไหลหรือ Spill โดยเมื่อเกิด Spill ขึ้น จะทำให้เครื่องบินไม่สามารถรองรับผู้โดยสารได้เพียงพอ และความ ต้องการของผู้โดยสารทางอากาศมีความแตกต่างกันในแต่ละช่วงเวลา จึงต้อง ทราบถึงลักษณะต่างๆของความต้องการของผู้โดยสารในแต่ละช่วงเวลา เพื่อ ทำให้เข้าใจความต้องการของผู้โดยสารทางอากาศตามช่วงเวลาต่างๆได้ดีขึ้น

โครงงานนี้ขอนำเสนอการศึกษาและวิเคราะห์ลักษณะความต้องการของ ผู้โดยสารทางอากาศในช่วงเวลาต่างๆ เพื่อทำการวิเคราะห์ค่า Demand Supply และ Spill โดยรวม และสามารถสร้างโมเดลที่ใช้ในการทำนายความต้องการของผู้ โดยสารทางอากาศในแต่ละช่วงเวลาได้ โดยผลลัพธ์ที่ได้ สามารถช่วยให้วางแผน รองรับความต้องการได้ดี

ใช้ข้อมูลสถิติขนส่งทางอากาศจากกรมท่าอากาศยาน ตั้งแต่ปีพ.ศ.2543 - 2562 (ค.ศ. 2000 - 2019) รวมเป็นระยะเวลา 20 ปี

Methods

การจัดกลุ่มผู้โดยสารทางอากาศ

ทำการจัดกลุ่มผู้โดยสารทางอากาศ โดยใช้ Dynamic Time Warping (DTW) วัดความคล้ายกันของข้อมูล โดยข้อมูลที่มีความคล้ายกันจะอยู่กลุ่มเดียวกัน ถ้าไม่มีความคล้ายกัน จะถูกจัดแยกออกจากกัน

การวิเคราะห์การรั่วไหลทางอากาศ

ทำการแบ่งช่วงเวลาที่มีจำนวนผู้โดยสารเพิ่มขึ้นและลดลงแยกออกจากกัน และ คำนวณหาค่า K-Factor, Demand Factor, Load Factor, Spill Factor และ Spill จาก Boeing Spill Model และหาค่าเปอร์เซ็นต์ของ Spill จากค่า Demand เพื่อที่จะนำไปสร้างกราฟเปรียบเทียบระหว่าง เปอร์เซ็นต์ของ Spill กับ Load Factor

สร้างโมเดลทำนายจำนวนผู้โดยสาร

โมเดลการทำนายเลือกใช้ โมเดลเส้นตรง (Linear model), Random Forest Regressor และ Neural Network โดยใช้ปัจจัยทางด้านเวลา ปัจจัยทางด้าน เศรษฐกิจของจังหวัด ปัจจัยทางด้านสภาพภูมิอากาศของจังหวัด และปัจจัย ระดับประเทศเป็นข้อมูลนำเข้า และทำนายจำนวนผู้โดยสารในรูปแบบของราย เที่ยวบิน ราย 1 ชั่วโมง ราย 2 ชั่วโมงและราย 3 ชั่วโมง โดยหาค่าความผิดพลาด ของโมเดลจาก RMSE, %Error และ R-Squared

Results

การจัดกลุ่มผู้โดยสารทางอากาศ

จากการจัดกลุ่มผู้โดยสารจากท่าอากาศยานนานาชาติกระบี่ ในช่วงฤดูร้อน ในรูปแบบของขาเข้า ของปีพ.ศ. 2561 และ 2562 พบว่า การจัดกลุ่มแบบรายเดือนและแบบวันในสัปดาห์ ยังไม่เห็นลักษณะที่ ชัดเจนมากนัก และจากการจัดกลุ่มตามเวลาในวัน พบว่าจะมีอยู่ 3 ช่วงเวลาที่มี จำนวนผู้โดยสารเป็นจำนวนมากกว่าช่วงเวลาอื่น คือช่วงเวลา 10:00 - 11:00, 15:00 - 16:00 และ 18:00 - 19:00

การวิเคราะห์การรั่วไหลทางอากาศ

จากการคำนวณ K-Factor ที่เกิดขึ้นโดยคำนวณจากจำนวนผู้โดยสารทางอากาศ ของท่าอากาศยานนานาชาติกระบี่ ช่วงฤดูร้อน ในช่วงปี พ.ศ. 2558 ถึงปีพ.ศ. 2562 ได้ผลลัพธ์ดังภาพ

ค่า K-Factor จะมีการเปลี่ยนแปลงไปในทุกๆปี เมื่อมีค่าที่เพิ่มสูงขึ้นถึงจุดหนึ่ง ในปีถัดมามีแนวโน้มที่จะมีค่าที่ลดลงมา และปีที่ค่า K-Factor มีค่าน้อย ในปีถัด ไปก็จะมีแนวโน้มที่จะมีค่าเพิ่มขึ้นมา

ผลลัพธ์ของโมเดลในการทำนาย

จากการทำนายจำนวนผู้โดยสาร พบว่าการใช้ข้อมูลปัจจัยทุกปัจจัยกับใช้เฉพาะ ปัจจัยทางด้านเวลาให้ค่าความผิดพลาดที่ใกล้เคียงกัน และพบว่าการทำนายใน รูปแบบของราย 3 ชั่วโมงให้ค่าความผิดพลาดที่น้อยที่สุด และโมเดลที่ดีที่สุดคือ โมเดล Random Forest Regressor มีความแม่นยำอยู่ที่ 71.53%

Conclusions

การจัดกลุ่มผู้โดยสารทางอากาศ

จากการจัดกลุ่มของผู้โดยสารทางอากาศ พบว่าการจัดกลุ่มนั้นจะจัดโดย พิจารณาจากช่วงเวลาที่มีผู้โดยสารทางอากาศเป็นจำนวนมากเป็นหลัก

การวิเคราะห์การรั่วไหลทางอากาศ

ค่า K-Factor ในแต่ละช่วงเวลามีการเปลี่ยนแปลงในทุกๆปี เนื่องจากจำนวนผู้ โดยสารที่มีการเปลี่ยนแปลง ส่วนปัจจัยในด้านอุปทาน (Supply) มีผลต่อจำนวน ผู้โดยสารทางอากาศ ส่งผลให้ค่า K-Factor สามารถระบุถึงโอกาสในการเกิด Spill มีการเปลี่ยนแปลง

สร้างโมเดลทำนายจำนวนผู้โดยสาร

จากโมเดลในการทำนายจำนวนผู้โดยสาร พบว่าโมเดล Random Forest
Regressor จะเป็นโมเดลที่ให้ผลการทำนายที่ดีที่สุด เนื่องจากมีความถูกต้องและ
ผิดพลาดน้อยที่สุด เมื่อเปรียบเทียบกับโมเดลในการทำนายตัวอื่น

