## Hospital Readmission Analysis

Axel Houte, Thomas Hédan, Minji Kim – DIA3

Python For Data Analysis



## Summary

| Dataset                                |
|----------------------------------------|
| Variables                              |
| Visualizations                         |
| Link between readmission and variables |

| Decision | ı trees       |        |  |
|----------|---------------|--------|--|
| Bagging  |               |        |  |
| Gradien  | t boosting    |        |  |
| Why re-  | sample ?      |        |  |
| Use agai | in the same r | nodels |  |
| Conclus  | ion           |        |  |



# Dataset: Diabetes 130 US hospitals for years 1999–2008

**Readmitted**: Days to inpatient readmission. Values: "<30" if the patient was readmitted in less than 30 days, ">30" if the patient was readmitted in more than 30 days, and "No" for no record of readmission

#### **VARIABLES**

**Encounter ID**: Unique identifier of an encounter **Patient number**: Unique identifier of a patient

Race Values: Caucasian, Asian, African American, Hispanic, and other

Gender Values: male, female, and unknown/invalid

**Age Grouped in 10-year intervals**: 0, 10), 10, 20), ..., 90, 100)

Weight: Weight in pounds

**Admission type**: Integer identifier corresponding to 9 distinct values, for example, emergency, urgent, elective, newborn, and not available

**Discharge disposition**: Integer identifier corresponding to 29 distinct values, for example, discharged to home, expired, and not available

**Admission source**: Integer identifier corresponding to 21 distinct values, for example, physician referral, emergency room, and transfer from a hospital

Time in hospital: Integer number of days between admission and discharge

Payer code: Integer identifier corresponding to 23 distinct values, for example,

Blue Cross/Blue Shield, Medicare, and self-pay Medical

**Medical specialty**: Integer identifier of a specialty of the admitting physician, corresponding to 84 distinct values, for example, cardiology, internal medicine, family/general practice, and surgeon

**Number of lab procedures**: Number of lab tests performed during the encounter **Number of procedures**: Numeric Number of procedures (other than lab tests) performed during the encounter

**Number of medications**: Number of distinct generic names administered during the encounter

**Number of outpatient**: visits Number of outpatient visits of the patient in the year preceding the encounter

**Number of emergency**: visits Number of emergency visits of the patient in the year preceding the encounter

**Number of inpatient visits**: Number of inpatient visits of the patient in the year preceding the encounter

**Number of diagnoses**: Number of diagnoses entered to the system 0%

**Glucose serum** test result Indicates the range of the result or if the test was not taken. Values: ">200," ">300," "normal," and "none" if not measured

**A1c** test result Indicates the range of the result or if the test was not taken. Values: ">8" if the result was greater than 8%, ">7" if the result was greater than 7% but less than 8%, "normal" if the result was less than 7%, and "none" if not measured.

**Change of medications**: Indicates if there was a change in diabetic medications (either dosage or generic name).

Values: "change" and "no change"

**Diabetes medications**: Indicates if there was any diabetic medication prescribed. Values: "yes" and "no" 24 features for medications Values: "up" if the dosage was increased during the encounter, "down" if the dosage was decreased, "steady" if the dosage did not change, and "no" if the drug was not prescribed

## Visalulizations





#### Link between readmission and variables



Indicates if there was any diabetic medication prescribed. Values: "yes" and "no"



Indicates the range of the result or if the test was not taken. Values: ">200," ">300," "normal," and "none" if not measured

#### Link between readmission and variables



Indicates if there was a change in diabetic medications (either dosage or generic name). Values: "change" and "no change"



Indicates the range of the result or if the test was not taken. Values: ">8" if the result was greater than 8%, ">7" if the result was greater than 7% but less than 8%, "normal" if the result was less than 7%, and "none" if not measured.

## Data pre-processing

#### 1- Identify Null values

```
List_NA = ['?','Unknown/Invalid','Not Mapped','NULL']
for col in df.columns:
    df[col] = df[col].apply(lambda x : np.NaN if(x in List_NA) else x)

check_null(df)

2.2335554114340743 % of col race is null.
0.002947939390366134 % of col gender is null.
96.85847925633315 % of col weight is null.
39.5574160328597 % of col payer_code is null.
49.08220820313268 % of col medical_specialty is null.
0.02063557573256294 % of col diag_1 is null.
0.3517874339170253 % of col diag_2 is null.
1.398305917497003 % of col diag_3 is null.
['race', 'gender', 'weight', 'payer_code', 'medical_specialty', 'diag_1', 'diag_2', 'diag_3']
```

#### 2- Handle Null values and useless features

#### 3- Outputs transformation and drop duplicates

```
df['readmitted'] = df['readmitted'].apply(lambda x : 'YES' if(x == '<30') else 'NO')
df['readmitted'].value_counts()

NO    88309
YES    11164
Name: readmitted, dtype: int64

print(df.shape)
df = df.drop_duplicates(subset= ['patient_nbr'], keep = 'first')
print(df.shape)

(99473, 40)
(69658, 40)</pre>
```

```
def level1 diag1(x):
    if(type(x) == int):
        if (x >= 390 \text{ and } x < 460) \text{ or } (np.floor(x) == 785):
        elif (x >= 460 and x < 520) or (np.floor(x) == 786):
        elif (x >= 520 and x < 580) or (np.floor(x) == 787):
            return 3
        elif (np.floor(x) == 250):
        elif (x >= 800 and x < 1000):
            return 5
        elif (x >= 710 \text{ and } x < 740):
        elif (x >= 580 and x < 630) or (np.floor(x) == 788):
        elif (x >= 140 \text{ and } x < 240):
             return 8
        else:
             return 0
    else:
        return 0
```

#### 4- Partition some of the features

#### 5- Scale the data

```
from sklearn.preprocessing import StandardScaler
```

#### 6- One hot encoding for some features

```
def modify_and_add_col_in(col,df1=df,df2=df2):
    new_cols = []
    for val in df1[col].unique():
        df2[col+'_'+ str(val)] = df1[col].apply(lambda x : 1 if(x==val) else 0)
for col in cols_to_change :
    modify_and_add_col_in(col)
```

| insulin | insulin_No | insulin_Up | insulin_Steady | insulin_D |
|---------|------------|------------|----------------|-----------|
| Steady  | 0          | 0          | 1              |           |
| Up      | 0          | 1          | 0              |           |
| Steady  | 0          | 0          | 1              |           |
| Up      | 0          | 1          | 0              |           |
| No      | 1          | 0          | 0              |           |

#### 7- Over sampling

```
from imblearn.over sampling import SMOTE
 sm = SMOTE(k neighbors = 3 ,random state=42)
 print('X shape : ', X.shape,' Y shape', y.shape)
 X res, y res = sm.fit resample(X, y)
 print('Resampling...')
 print('new X shape : ', X res.shape,'new Y shape', y_res.shape)
X shape: (69658, 72) Y shape (69658,)
Resampling...
new X shape : (126986, 72) new Y shape (126986,)
```

### Decision tree

```
[[63427 5974]
[ 66 191]]
```



## Random Forest

```
[[63487 1296]
[ 6 4869]]
```



### Gradient Boosting

30

25

35

```
Gradiant boosting:
Best training accuracy = 0.9126440087143864
Best parameters : {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 25, 'random_state': 1, 'subsample': 1}
Validation accuracy = 0.9069049669824863
test repartition:
0 12635
     1297
Name: readmitted YES, dtype: int64
Confusion matrix :
[[12635 1297]
 [ 0
           0]]
    1e-5+9.1260000@Geracy vs n_estimators
 4.25
 4.00
                                                                       [[63493 6164]
 3.75
 3.50
 3.25
 3.00
 2.75
```

## Why resample?



91.10%

Non-readmitted patients of the training sample

Only 8.89%

Readmitted patients of the training sample

## Before resampling



## After resampling



## Decision tree with oversampling

## Random Forest with oversampling

```
Random Forest:
Best training accuracy = 0.9572882679885077
Best parameters : {'max features': 'sqrt', 'n estimators': 360}
Validation accuracy = 0.9567288762894716
test repartition:
     12741
    12657
Name: readmitted YES, dtype: int64
Confusion matrix :
[[12544 986]
[ 113 11755]]
                 accuracy vs n estimators
 0.957
 0.956
 0.955
 0.954
 0.953
 0.952
 0.951
                              250 300
              100
                    150
                         200
                                         350
```



```
array([[63380, 958],
[ 113, 5207]], dtype=int64)
```

## Gradient Boosting with oversampling

```
Gradiant boosting:
Best training accuracy = 0.8443419051851366
Best parameters : {'learning_rate': 0.01, 'max_depth': 3, 'n_estimators': 500, 'random_state': 1, 'subsample': 1}
Validation accuracy = 0.8446334357035987
test repartition:
1 12741
    12657
Name: readmitted YES, dtype: int64
Confusion matrix:
[[11454 2743]
 [ 1203 9998]]
               accuracy vs n estimators
 0.84
 0.82
                                                            array([[57310, 5068],
 0.80
                                                                        [ 6183, 1097]], dtype=int64)
 0.78
 0.76
```

0.74

0.72

250 300 350

200

400

### Conclusion



## Thank you!

Do you have any questions?