

Mathématiques et Calcul : Contrôle continu n°3 janvier 2014

L1 : Licence Sciences et Technologies, mention Mathématiques, Informatique et Applications

Correction succincte (Noté sur 28)

On rappelle les développements limités suivants. Ils pourront être utilisés au cours de ce contrôle continu. Ils sont donnés au voisinage de 0 (n et p sont des entiers quelconques).

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n) \qquad \left| \ln(1+x) \right| = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$

$$\sin(x) = x - \frac{x^3}{3!} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+1}) \qquad \left| \frac{1}{1-x} \right| = 1 + x + x^2 + \dots + x^n + o(x^n)$$

Exercice 1 1.5

Soit f et g deux fonctions dont les développements limités en 0 sont donnés par $f(x) = 1 + 2x + x^2 + o(x^2)$ et $g(x) = 1 - x + 3x^2 + o(x^2)$.

1) Donner le développement limité à l'ordre 2 en 0 de $f \times g$.

$$f \times g(x) = 1 + x + 2x^2 + o(x^2)$$
. 0.5

2) Donner le dévelopement limité à l'ordre 2 en 0 de $\frac{1}{f}$ et $\frac{1}{q}$.

$$\frac{1}{f(x)} = 1 - 2x + 3x^2 + o(x^2), \quad \boxed{0.5}$$

$$\frac{1}{g(x)} = 1 + x - 2x^2 + o(x^2). \quad \boxed{0.5}$$

Exercice 2 1

1) Calculer le développement limité de $f(x) = \exp(x)\sin(x)$ à l'ordre 3 au voisinage de 0.

$$f(x) = x + x^2 + \frac{1}{3}x^3 + o(x^3).$$
 0.5

2) En déduire le développement limité de $\frac{1}{1+f(x)}$ à l'ordre 3 au voisinage de 0.

$$\frac{1}{1+f(x)} = 1 - x + \frac{5}{3}x^3 + o(x^3). \quad \boxed{0.5}$$

Exercice 3 2

1) Calculer le développement limité de $\ln(1-x+\sin(x))$ à l'ordre 3 au voisinage de 0.

$$\ln(1 - x + \sin(x)) = \frac{x^3}{6} + o(x^3).$$
 1

2) À l'aide d'un développement limité, en déduire $\lim_{x\to 0} (1-x+\sin(x))^{\frac{1}{x^3}}$.

$$\lim_{x \to 0} (1 - x + \sin(x))^{\frac{1}{x^3}} = \exp\left(\frac{1}{6}\right). \quad \boxed{1}$$

Exercice 4 2.5

Soit f la fonction définie sur]1, $+\infty$ [par $f(x) = \frac{2x}{x-1}$.

1) Montrer que f est une bijection continue de $]1, +\infty[\rightarrow]2, +\infty[$.

f continue et strictement décroissante, $\lim_{x\to +\infty} f(x) = 2$, et $\lim_{x\to 1} f(x) = 2$.

D'après le théorème de la bijection, f réalise une bijection de $]1, +\infty[\rightarrow]2, +\infty[$

2) Calculer explicitement f^{-1} en précisant son ensemble de définition $D_{f^{-1}}$.

Pour
$$y \in D_{f^{-1}} =]2, +\infty[$$
, $\boxed{0.5}$
$$f^{-1}(y) = \frac{y}{y-2}. \boxed{0.5}$$

3) Calculer la dérivée de f^{-1} en utilisant la forme explicite de f^{-1} obtenue à la question précédente.

$$(f^{-1}(y))' = -\frac{2}{(y-2)^2}.$$
 0.5

Exercice 5 4.5

On considère la fonction f définie par $f(x) = \exp\left(\frac{1}{x}\right)$ pour x > 0.

1) Donner l'ensemble de définition de f et l'expression de la dérivée de la fonction f.

$$D_f = \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[. \quad \boxed{0.5}$$

$$\left(\exp\left(\frac{1}{x}\right)\right)' = -\frac{1}{x^2} \exp\left(\frac{1}{x}\right). \quad \boxed{0.5}$$

2) On se fixe un réel x > 0. Montrer qu'il existe c dans]x, x+1[tel que $f(x)-f(x+1) = \frac{1}{c^2} \exp\left(\frac{1}{c}\right)$.

f continue sur [x, x+1] et dérivable sur]x, x+1[, d'après le théorème des accroissements finis, il existe c dans]x, x+1[tel que

$$\frac{f(x+1) - f(x)}{x+1-x} = f'(c) = -\frac{1}{c^2} \exp\left(\frac{1}{c}\right), \quad \boxed{1}$$

3) En déduire que pour tout x > 0,

$$\frac{1}{(x+1)^2} \exp\left(\frac{1}{x+1}\right) \leqslant f(x) - f(x+1) \leqslant \frac{1}{x^2} \exp\left(\frac{1}{x}\right).$$

La fonction $y \mapsto \frac{1}{y^2} \exp\left(\frac{1}{y}\right)$ est décroissante sur]x, x+1[, donc

$$\frac{1}{(x+1)^2} \exp\left(\frac{1}{x+1}\right) \; \leqslant \; \frac{1}{c^2} \exp\left(\frac{1}{c}\right) \; \leqslant \; \frac{1}{x^2} \exp\left(\frac{1}{x}\right).$$

On conclut avec la question précédente. 1

4) En déduire la limite

$$\lim_{x \to +\infty} x^2 \left(f(x) - f(x+1) \right).$$

D'après les questions précédentes, on a

$$\frac{x^2}{(x+1)^2} \exp\left(\frac{1}{x+1}\right) \leqslant x^2 (f(x) - f(x+1)) \leqslant \exp\left(\frac{1}{x}\right), \quad \boxed{0.5}$$

or

$$\frac{x^2}{(x+1)^2} \exp\left(\frac{1}{x+1}\right) \to 1, \quad \exp\left(\frac{1}{x}\right) \to 1, \quad \boxed{0.5}$$

donc d'après le théorème des gendarmes $\lim_{x\to +\infty} x^2 \left(f(x)-f(x+1)\right)=1$. 0.5

Exercice 6 5

On considère les deux suites (u_n) et (v_n) définies, pour tout entier naturel n, par :

$$u_0 = 3,$$
 $v_0 = 4,$ $u_{n+1} = \frac{u_n + v_n}{2},$ $v_{n+1} = \frac{u_{n+1} + v_n}{2}.$

1) Calculer u_1, v_1, u_2 et v_2 .

$$u_1 = \frac{7}{2}, \quad v_1 = \frac{15}{4}, \quad \boxed{0.5}$$
 $u_2 = \frac{29}{8}, \quad v_2 = \frac{59}{16}. \quad \boxed{0.5}$

- 8 2 16 2) Soit la suite (w_n) définie, pour tout entier naturel n, par : $w_n = v_n u_n$
 - (a) Montrer que la suite (w_n) est une suite géométrique de raison $\frac{1}{4}$.

$$w_{n+1} = v_{n+1} - u_{n+1} = \frac{w_n}{4}.$$
 0.5

(b) Exprimer w_n en fonction de n et préciser la limite de la suite (w_n) .

$$w_n = w_0 \left(\frac{1}{4}\right)^n = \frac{1}{4^n} \to 0.$$
 1

3) Après avoir étudié le sens de variation des suites (u_n) et (v_n) , démontrer que ces deux suites sont adjacentes. Que peut-on en déduire?

 $(u_n)_n$ est croissante, $(v_n)_n$ est décroissante et $(v_n - u_n)_n$ est positive et tend vers 0. Les deux suites $(u_n)_n$ et $(v_n)_n$ donc convergentes et ont la même limite. $\boxed{0.5}$

- 4) On considère à présent la suite (t_n) définie, pour tout entier naturel n, par $t_n = \frac{u_n + 2v_n}{3}$
 - (a) Montrer que la suite (t_n) est constante.

$$t_{n+1} = \frac{u_{n+1} + 2v_{n+1}}{3} = \frac{1}{6}(u_n + 3v_n + u_n + v_n) = t_n. \quad \boxed{0.5}$$

(b) En déduire la limite des suites (u_n) et (v_n) . Soit ℓ la limite commune de $(u_n)_n$ et $(v_n)_n$, alors $t_n = \frac{11}{3} \to \frac{\ell+2\ell}{3} = \ell = \frac{11}{3}$.

Exercice 7 3

On considère le système d'équations linéaires suivant

$$\begin{cases} z + y + 2x &= 4\\ 2y + x + z &= 2\\ 3x + 2z + 2y &= 6 \end{cases}$$

1) Mettre le système sous forme matricielle : AX = Y.

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix}. \quad \boxed{0.5}$$

2) Calculer l'inverse de la matrice A.

On utilise la méthode de Gauss-Jordan. 0.5

$$A^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & -1 \\ -4 & -1 & 3 \end{pmatrix}. \quad \boxed{1}$$

3) Calculer les solutions du système.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} Y = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}. \quad \boxed{1}$$

Exercice 8 3.5
Soit

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (3x - y, x + 2y)$

- 1) Montrer que f est linéaire. 0.5
- 2) Donner la matrice de f dans la base canonique \mathcal{B} de \mathbb{R}^2 .

$$Mat_{\mathcal{B}}(f) = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}.$$
 1

3) Soit $\mathcal{B} = \{\vec{u} = (1, 1), \ \vec{v} = (1, -1)\}$. Montrer que \mathcal{B}' est une base de \mathbb{R}^2 .

 \mathcal{B}' est une famille libre maximale. 1

4) Donner la matrice de f dans la base \mathcal{B}' .

On obtient

$$f(\vec{u}) = (2,3) = \frac{5}{2}\vec{u} - \frac{1}{2}\vec{v}$$
 et $f(\vec{v}) = (4,-1) = \frac{3}{2}\vec{u} + \frac{5}{2}\vec{v}$, $\boxed{0.5}$

$$Mat_{\mathcal{B}'}(f) = \frac{1}{2} \begin{pmatrix} 5 & -1 \\ 1 & 5 \end{pmatrix}. \quad \boxed{0.5}$$

Exercice 9 5

On considère la famille de vecteurs dans \mathbb{R}^3

$$\mathcal{F} = \{ \vec{u} = (-2, 1, 1); \ \vec{v} = (1, -2, 1); \ \vec{w} = (1, 1, -2) \}$$

et l'ensemble $E = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}.$

- 1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 . 1
- 2) Donner une base de E et déterminer la dimension de E.

$$\mathcal{B} = \{\vec{u} = (1, -1, 0), \ \vec{v} = (1, 0, -1)\}$$
 est une base de E. 0.5 Dimension de E = 2 (Plan vectoriel). 0.5

3) Calculer le rang de la matrice

$$A = \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}.$$

On utilise des opérations élémentaires $(C_1 + C_2 + C_3 = 0)$ 0.5

$$A \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Rang de A = 2. 0.5

4) En déduire que $\dim (Vect(\mathcal{F})) \geqslant 2$.

$$dim(Vect(\mathcal{F})) = rang(A) = 2.$$
 1

5) En déduire que \mathcal{F} est une famille génératrice de E.

Comme $\mathcal{F} \subset E$, $Vect(\mathcal{F})$ est un sous-espace vectoriel de E. De plus, $dim(Vect(\mathcal{F})) = 2 = dim(E)$, donc $Vect(\mathcal{F}) = E$. 1