Esercizio del Semaforo

Si vuole progettare una rete di controllo di un semaforo che controlli la rete di NS (North-South) e di EW (East-West). Si usa un clock di 0.066 Hz in modo che ogni transizione sia regolata sui 15".

Il semaforo ha normalmente un Ciclo R-G-Y da Rosso (che dura 30"), Verde G (che dura 30") e Giallo Y (che dura 15"). La rete ha due uscite Z1 e Z0 che significano:

- 00 → NS Green e EW Red
- $01 \rightarrow NS$ Yellow e EW Red
- 10 → NS Red e EW Green
- $11 \rightarrow NS \text{ Red e EW Yellow}$

Si vuole progettare una rete di controllo di un semaforo che controlli la rete di NS (North-South) e di EW (East-West). Si usa un clock di 0.066 Hz in modo che ogni transizione sia regolata sui 15".

Il semaforo ha normalmente un Ciclo R-G-Y da Rosso (che dura 30"), Verde G (che dura 30") e Giallo Y (che dura 15"). La rete ha due uscite Z1 e Z0 che significano:

- 00 → NS Green e EW Red
- $01 \rightarrow NS$ Yellow e EW Red
- 10 → NS Red e EW Green
- $11 \rightarrow NS \text{ Red e EW Yellow}$

Si vuole progettare una rete di controllo di un semaforo che controlli la rete di NS (North-South) e di EW (East-West). Si usa un clock di 0.066 Hz in modo che ogni transizione sia regolata sui 15".

Il semaforo ha normalmente un Ciclo R-G-Y da Rosso (che dura 30"), Verde G (che dura 30") e Giallo Y (che dura 15"). La rete ha due uscite Z1 e Z0 che significano:

00 → NS Green e EW Red

01 → NS Yellow e EW Red

10 → NS Red e EW Green

 $11 \rightarrow NS \text{ Red e EW Yellow}$

Si vuole progettare una rete di controllo di un semaforo che controlli la rete di NS (North-South) e di EW (East-West). Si usa un clock di 0.066 Hz in modo che ogni transizione sia regolata sui 15".

Il semaforo ha normalmente un Ciclo R-G-Y da Rosso (che dura 30"), Verde G (che dura 30") e Giallo Y (che dura 15"). La rete ha due uscite Z1 e Z0 che significano:

00 → NS Green e EW Red

 $01 \rightarrow NS$ Yellow e EW Red

10 → NS Red e EW Green

 $11 \rightarrow NS \text{ Red e EW Yellow}$

Si vuole progettare una rete di controllo di un semaforo che controlli la rete di NS (North-South) e di EW (East-West). Si usa un clock di 0.066 Hz in modo che ogni transizione sia regolata sui 15".

Il semaforo ha normalmente un Ciclo R-G-Y da Rosso (che dura 30"), Verde G (che dura 30") e Giallo Y (che dura 15"). La rete ha due uscite Z1 e Z0 che significano:

00 → NS Green e EW Red

01 → NS Yellow e EW Red

10 → NS Red e EW Green

 $11 \rightarrow NS \text{ Red e EW Yellow}$

Automa di Moore con R = 30" senza NScar e EWcar

- 00 → NS Green e EW Red
- 01 → NS Yellow e EW Red
- 10 → NS Red e EW Green
- 11 → NS Red e EW Yellow

Automa di Mealy con R = 45" senza NScar e EWcar

- 00 → NS Green e EW Red
- $01 \rightarrow NS$ Yellow e EW Red
- 10 → NS Red e EW Green
- $11 \rightarrow NS \text{ Red e EW Yellow}$

Automa di Moore con R = 45" e NScar e EWcar

	00	01	10	11
S0				
S1				
S2				
S3				
S4				
S5				

	00	01	10	11
SO			-,-	-,-
S1			-,-	-,-
S2				
S3		-,-		-,-
S4		-,-		-,-
S5				

Input non disponibile se ho un'auto in attesa ma il semaforo in quella direzione è verde.

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1			-,-	-,-
S2				
S3		-,-		-,-
S4		-,-		-,-
S5				

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00		-,-	-,-
S2				
S3		-,-		-,-
S4		-,-		-,-
S5				

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00	S2, 01	-,-	-,-
S2				
S3		-,-		-,-
S4		-,-		-,-
S5				

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00	S2, 01	-,-	-,-
S2	S3, 10	S3, 10	S3, 10	S3, 10
S3		-,-		-,-
S4		-,-		-,-
S5				

Se il semaforo in una delle due direzioni è giallo possono esserci tutte le configurazioni in ingresso. Ci può essere un'auto in attesa in entrambe le direzioni.

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00	S2, 01	-,-	-,-
S2	S3, 10	S3, 10	S3, 10	S3, 10
S3	S4, 10	-,-	S4, 10	-,-
S4		-,-		-,-
S5				

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00	S2, 01	-,-	-,-
S2	S3, 10	S3, 10	S3, 10	S3, 10
S3	S4, 10	-,-	S4, 10	-,-
S4	S4, 10	-,-		-,-
S5				

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00	S2, 01	-,-	-,-
S2	S3, 10	S3, 10	S3, 10	S3, 10
S3	S4, 10	-,-	S4, 10	-,-
S4	S4, 10	-,-	S5, 11	-,-
S5				

	00	01	10	11
S0	S1, 00	S1, 00	-,-	-,-
S1	S1, 00	S2, 01	-,-	-,-
S2	S3, 10	S3, 10	S3, 10	S3, 10
S3	S4, 10	-,-	S4, 10	-,-
S4	S4, 10	-,-	S5, 11	-,-
S5	S0, 00	S0, 00	S0, 00	S0, 00

y2y1y0	00	01	10	11
000				
001				
010				
011				
100				
101				
101				
111				

y2y1y0	00	01	10	11
000			-	-
001			-	-
010				
011		-		-
100		-		-
101				
101	-	-	-	-
111	-	-	-	-

y2y1y0	00	01	10	11
000	001	001	-	-
001			-	-
010				
011		-		-
100		-		-
101				
101	-	-	-	-
111	-	-	-	-

y2y1y0	00	01	10	11
000	001	001	-	-
001	001	010	-	-
010				
011		-		-
100		-		-
101				
101	-	-	-	-
111	-	-	-	-

y2y1y0	00	01	10	11
000	001	001	-	-
001	001	010	-	-
010	011	011	011	011
011		-		-
100		-		-
101				
101	-	-	-	-
111	-	-	-	-

y2y1y0	00	01	10	11
000	001	001	-	-
001	001	010	-	-
010	011	011	011	011
011	100	-	100	-
100	100	-	101	-
101	000	000	000	000
101	-	-	-	-
111	-	-	-	-

Tabella delle Uscite

y2y1y0	00	01	10	11
000	00	00	-	-
001	00	01	-	-
010	10	10	10	10
011	10	-	10	-
100	10	-	11	-
101	00	00	00	00
101	-	-	-	-
111	-	-	-	-

Rete logica finale

