Solution

递增路径(increase)

签且原。

按边权从大往小扫描,设 f_u,g_u 分别表示只考虑当前加入的边,以 u 作为起点,Alice 或 Bob 先手时操作的轮数,则加入边 (u,v) 时,只需令

- $\bullet \ \ f_u' \leftarrow \max(f_u, g_v + 1)$
- $\bullet \ \ g_u' \leftarrow \min(g_u, f_v + 1)$
- $\bullet \ \ f'_v \leftarrow \max(f_v, g_u + 1)$
- $\bullet \ \ g'_v \leftarrow \min(g_v, f_u + 1)$

注意单独讨论一下 $g_u=0$ 或 $g_v=0$ 的情况。

最终 f_1, f_2, \ldots, f_n 就是答案。时间复杂度为 O(n+m)。

机房惨案(network)

Codeforces 825 G Tree Queries

妙题, 想起来可能比石头游戏难一点。但是很好写。

考虑将第一台被 ${
m JC}$ 的电脑当做根,先 ${
m DFS}$ 预处理每个点到根路径上的编号最小值,记 x 到根路径上的路径最小值是 a_x 。

然后修改 x,对 x 子树内的答案是没有影响的,而对于 x 子树外的点,假设这个点为 y,用来更新的答案是 y 到 x 路径上的编号最小值,考虑到我们至少已经有了 a_y 的贡献,所以我们可以将 y 到 x 路径上的编号最小值转化为 $\min(a_x,a_y)$ 。

所以对于修改,我们维护一个全局被 JC 的电脑的 a_x 的 \min 的变量 \min , 每次修改对 a_x 取 \min 。 然后对于询问,我们的答案就是 $\min(a_x, mn)$ 。

时间复杂度 O(n+q)。

石头游戏(stone)

一个显然的最优策略:对于每一个局面,一直选择第一个 $a_i=i$ 的位置进行操作可以操作尽可能多次。 因为这样操作不会破坏其他已经可以操作的位置的性质,同时也会让前面的各堆石头更加接近操作。

显然只有后面的石头堆可能影响前面的石头堆。不妨直接倒着 DP。对于第 i 堆石子,我们只关心后面的石子堆给了这一堆石子多少石头。

故记 f(i,j) 表示从后往前处理到第 i 堆石头,后面的这些石子堆一共提供了 j 次 +1 操作的方案数。接着我们枚举第 i 堆石子的初始值 x,如果可以操作 $(x \leq i)$,那么操作次数即为 $\lfloor \frac{x+j}{i} \rfloor$,继续转移即可,操作次数不超过 n^2 次,暴力枚举状态转移的时间复杂度是 $O(N^4)$ 。常数 $\frac{1}{4}$,直接跑即可。

简单计数(count)

30分: $O(n^2m^2)$

记 f[i][j] 表示做到第 i 个音符,最后一个音符为第 j 种的方案数。

根据题意,我们可以直接枚举,将第 k 个音符到第 i 个音符定为第 j 种音符(需要满足限制条件 $i-k+1\leq a_j$),则有 $f[i][j]=\sum_{k=i-a_j}^{i-1}\sum_{x\neq j}f[k][x]$ 。

50分: $O(n^2m)$

如何优化式子呢?我们记 S_i 表示前 i 个音符的方案数和,则有 $S_i=\sum_{k=1}^i\sum_{x=1}^m f[k][x]$ $S_i-S_{i-a_j-1}=\sum_{k=i-a_j}^{i-1}\sum_{x=1}^m f[k][x]$.

于是我们就可以简化一下 30分 的式子, 如:

$$f[i][j] = \sum_{k=i-a_j}^{i-1} \sum_{x
eq j} f[k][x] = S_i - S_{i-a_j-1} - \sum_{k=i-a_j}^{i-1} f[k][j]$$
 .

70分: O(n(n+m))

我们再来优化一下式子,记 g[i][j] 表示前 i 个音符,末尾均为 j 的方案数,则有: $g[i][j] = \sum_{k=1}^i f[k][j]$ 。

于是我们可以简化一下50分的式子,如:

$$f[i][j] = S_i - S_{i-a_j-1} - \sum_{k=i-a_j}^{i-1} f[k][j] = S_i - S_{i-a_j-1} - (g[i][j] - g[i-a_j-1][j])$$

100分: $O(n^2+m)$

由于 $a_i \leq n$,若 $a_i = a_j$,则 f[*][i] = f[*][j],再优化一波,该记 f[i][j] 为做到第 i 个音符,最后一个音符为是 $a_i = j$ 的方案数,再改一改式子就 OK 了。

工团运输(synd)

Subtask 3

写出距离和 $dis = \sum |(x - x_i)(y - y_i)|$ 。

把坐标按照 x 排序,得到这个式子:

$$\sum_{i=1}^p (x-x_i)|y-y_i| - \sum_{i=p+1}^n (x-x_i)(y-y_i)$$

其中 $x_p \leq x \leq x_{p+1}$ 。

然后对与任意一个确定的 $x,y_q \leq y \leq y_{q+1}$,这个式子是一个自变量为 y 的一次函数 f(y) = kx + b 。

如果 k>0, y 取 y_q 最优, 如果 k<0, y 取 y_{q+1} 最优, 如果 k=0, $y=y_q$ 是最优之一。

故答案 $y \in y_i$ 。同理 $x \in x_i$.同时这里也说明了:最优解一定是整数。

然后我们枚举x,y,逐一带入计算,时间复杂度为 $O(n^3)$ 。

Subtask 4:

可以打表发现 x 一定时,这是关于 y 的单峰函数,而设 f(x) 为 $\min_{y\in\{y_i\}}\sum |(x-x_i)(y-y_i)|$,可以发现 f(x) 也是单峰函数,然后三分套三分做了。

证明:容易发现 $\frac{\partial^2 dis}{\partial y^2}=C$,C 为一常数,故在 x 一定时 dis 是关于 y 的单峰函数。然后 $\lim_{y\to\infty}dis=\infty$,所以这是下凸函数,然后关于 x 同理,然后就证完了。

注意开 double 而不是 long long 。由于不输出具体距离,所以说可以认为 double 精度是够用的。

有一个乱搞。注意到在数据较大的时候,一般情况下答案会比较靠近坐标的中位数。并且我不知道怎么卡。枚举可。