Transfer Learning for Phenotype Prediction from Small Gene Expression Data Sets

DOMEN MOHORČIČ

MENTOR: PROF. DR. BLAŽ ZUPAN

Problem definition

- Biomedical research produces huge amounts of data, analysed using machine learning, and is the foundation for personalised medicine.
- Many data sets have small sample sizes and numerous features, which makes learning difficult (Progeria, 144 patients). This is called the small data set problem.
- Solved by repeating samples, interpolating between samples, synthetic generation of new samples...

Proposed solution

- 1. Combine many small gene expression data sets into a larger one,
- 2. train a model, capable of producing informative gene expression encodings,
- 3. test the model by encoding unseen data and train new models for phenotype prediction.

From genotype to phenotype

We focused on phenotype prediction from small gene expression data sets.

Transfer learning using gene expressions

- Neural networks: gene expression embeddings for cancer data clustering (Choi et al., Frontiers in Genetics 2019).
- gene2vec model for gene embeddings, trained on gene co-expression pairs, tested on inference of interaction maps from gene names (Du et al., BMC Genomics 2019).
- predicted corn nitrogen use efficiency from model organism with boosting and tree-based methods (Cheng et al., Nature Communications 2021),
- scDEAL predicted cancer drug responses to DNA sequences with gene expressions as intermediate step (Chen et al., Nature Communications 2022),
- predicted cancer types from gene expressions and DNA sequences with focus on the performance of models based on hyperparameters (Henczar et al., BMC Bioinformatics 2022).

Data selection

We used the Gene Expression Omnibus database (GEO) and selected data sets with human data that have already been processed.

We used genes from L1000 method for feature selection and manually inspected all data sets for potential target variables from sample annotations.

Summary:

- 70 data sets (35 / 35),
- 6,713 samples (3,334 / 3,379),
- 884 gene expressions,
- 185 target variables (92 / 93).

Autoencoders

Designed to compress and reconstruct data, they are similar to PCA, LDA, and SVD, but are non-linear.

Problems:

- the latent space Z is not constraint,
- encoder is not aware of any downstream tasks.

Multi-task models

Designed as universal feature extractors by learning several tasks at the same time.

Problems:

 each prediction head has few samples, which makes learning slow.

Training

- Adam optimizer for parameter updates with early stopping,
- loss functions: MSE and log loss,
- alternate metrics: R² and AUC,
- fixed hidden layer size, the size of encoding layer varied from 4 to 64,
- trained 10 models for variance estimation.

Testing

- Used LOOCV with logistic regression for predictions on testing data,
- plotted AUC of testing data against baseline,
- analysed confusion matrix with TPR and TNR,
- inspected PCA projections of encoded data.

Training results: autoencoders

Autoencoders exhibit stable training behaviour.

Best MSE: 64-autoencoder (135.1 ± 3.3)

Best R^2 : 64-autoencoder (0.983 ± 0.001)

Training results: multi-task models

Multi-task models with smaller latent layer sizes are unstable and difficult to train.

Best logloss: 16-multitask (0.406 \pm 0.008)

Best AUC: 64-multitask (0.816 ± 0.010)

Testing results: AUC-AUC plots

Models with larger latent layers approach baseline, but neither architecture surpasses it.

The performance is improved for lower-performing, while degraded for higher-performing data sets.

Model with closest results to baseline: 64-multitask (y = 0.888x + 0.050)

Testing results: AUC-AUC plots

Models with larger latent layers approach baseline, but neither architecture surpasses it.

The performance is improved for lower-performing, while degraded for higher-performing data sets.

Model with closest results to baseline: 64-multitask (y = 0.888x + 0.050)

Testing results: TPR-TNR plots

Models with larger latent layers achieve higher TNR, but TPR increases only up to a certain value.

Best TNR: 64-autoencoder and 64-multitask (0.831 ± 0.003)

Best TPR: 32-multitask

 (0.655 ± 0.004)

Encodings: PCA

Autoencoders keep data structure, while multi-task models do not.

Encodings: explained variance

	Autoe	ncoder	Multi-task model		
Size	Component 1	Component 2	Component 1	Component 2	
4	0.522 ± 0.046	0.284 ± 0.050	0.639 ± 0.146	0.258 ± 0.105	
5	0.488 ± 0.050	0.310 ± 0.043	0.648 ± 0.178	0.208 ± 0.106	
6	0.480 ± 0.020	0.307 ± 0.031	0.595 ± 0.208	0.238 ± 0.132	
7	0.486 ± 0.029	0.273 ± 0.018	0.549 ± 0.106	0.235 ± 0.077	
8	0.475 ± 0.031	0.282 ± 0.022	0.459 ± 0.041	0.251 ± 0.040	
10	0.462 ± 0.032	0.272 ± 0.035	0.540 ± 0.094	0.240 ± 0.076	
12	0.432 ± 0.022	0.286 ± 0.019	0.443 ± 0.070	0.257 ± 0.053	
16	0.433 ± 0.017	0.282 ± 0.030	0.440 ± 0.091	0.221 ± 0.057	
32	0.388 ± 0.009	0.298 ± 0.021	0.518 ± 0.072	0.230 ± 0.029	
64	0.359 ± 0.017	0.299 ± 0.016	0.510 ± 0.047	0.256 ± 0.027	
raw	0.808	0.051	0.808	0.051	

Conclusion

A novel approach to small data set problem by combining many small data sets, training an encoder, and using transfer learning on unseen data sets.

Two architectures: autoencoders and multi-task models.

Autoencoders were easier to train, but multitask models yielded better results on unseen data. Autoencoders kept the data structure while multi-task models did not.

Future improvements:

- better and more informed data set selection,
- improved analysis of embedding space.

Appendix: data sets table

Name	N	A	Name	N	A	Name	N	A	Name	N	A
GDS4404	50	2	GDS3057	64	3	GDS4336	90	2	$\overline{\text{GDS}5393}$	120	3
GDS3829	50	3	GDS5083	64	1	GDS4761	91	7	GDS4222	130	5
GDS5074	52	1	GDS4381	64	1	GDS3885	92	3	GDS4274	130	1
GDS4167	52	1	GDS4587	66	1	GDS4456	93	1	GDS5000	131	2
GDS4299	52	1	GDS4198	70	3	GDS4182	96	1	GDS5363	139	2
GDS4513	53	1	GDS5205	70	1	GDS4562	96	2	GDS5499	140	3
GDS4906	54	3	GDS4358	72	6	GDS4968	99	1	GDS4267	154	3
GDS4896	54	3	GDS4471	7 6	5	GDS4273	103	2	GDS4278	154	1
GDS4412	56	3	GDS4282	76	5	GDS4057	103	5	${f GDS5027}$	156	3
GDS2643	56	5	GDS4103	78	1	GDS4130	104	2	GDS3952	162	3
GDS3459	56	4	GDS4758	7 9	3	GDS4516	104	5	GDS3312	163	1
GDS5093	56	3	GDS3329	79	1	GDS3257	107	4	GDS4600	170	1
GDS4266	58	3	GDS4181	80	1	GDS4318	108	3	GDS4296	174	9
GDS3627	58	1	GDS4975	81	1	GDS2767	108	4	GDS4602	180	1
GDS4607	60	2	GDS3539	82	4	${ m GDS}5037$	108	4	GDS2771	192	1
GDS4056	61	5	GDS5277	86	3	GDS4549	116	3	GDS4206	197	3
GDS4379	62	5	GDS4088	86	1	GDS4129	120	1			
GDS4176	62	3	GDS4837	88	2	GDS3837	120	1			

Appendix: autoencoder training results

	MS	SE	R^2		
Size	Train	Validation	Train	Validation	
4	186.7 ± 6.7	202.1 ± 5.2	0.9757 ± 0.0012	0.9747 ± 0.0009	
5	164.6 ± 5.4	183.9 ± 3.9	0.9785 ± 0.0008	0.9769 ± 0.0007	
6	159.2 ± 4.3	178.1 ± 2.1	0.9790 ± 0.0016	0.9777 ± 0.0003	
7	151.1 ± 5.5	171.2 ± 3.4	0.9802 ± 0.0006	0.9784 ± 0.0006	
8	145.4 ± 4.7	165.6 ± 3.3	0.9809 ± 0.0008	0.9792 ± 0.0005	
10	136.6 ± 4.7	158.5 ± 3.5	0.9820 ± 0.0010	0.9800 ± 0.0003	
12	130.4 ± 4.4	151.9 ± 3.0	0.9824 ± 0.0010	0.9808 ± 0.0006	
16	125.2 ± 3.5	138.5 ± 2.6	0.9832 ± 0.0007	0.9826 ± 0.0005	
32	112.8 ± 0.9	137.2 ± 1.0	0.9849 ± 0.0007	0.9828 ± 0.0003	
64	111.6 ± 4.0	135.1 ± 3.3	0.9850 ± 0.0006	0.9831 ± 0.0006	

Appendix: multi-task models training results

	log	loss	AUC		
Size	Train	Validation	Train	Validation	
4	0.458 ± 0.072	0.507 ± 0.064	0.720 ± 0.068	0.670 ± 0.060	
5	0.442 ± 0.093	0.493 ± 0.084	0.757 ± 0.085	0.694 ± 0.080	
6	0.421 ± 0.093	0.479 ± 0.082	0.768 ± 0.089	0.712 ± 0.076	
7	0.380 ± 0.039	0.443 ± 0.032	0.806 ± 0.040	0.735 ± 0.039	
8	0.357 ± 0.018	0.424 ± 0.010	0.832 ± 0.017	0.758 ± 0.016	
10	0.349 ± 0.020	0.422 ± 0.012	0.845 ± 0.018	0.767 ± 0.017	
12	0.340 ± 0.025	0.408 ± 0.012	0.855 ± 0.022	0.783 ± 0.022	
16	0.339 ± 0.016	0.406 ± 0.008	0.857 ± 0.013	0.783 ± 0.019	
32	0.340 ± 0.016	0.444 ± 0.007	0.859 ± 0.015	0.800 ± 0.016	
64	0.322 ± 0.014	0.430 ± 0.009	0.873 ± 0.013	0.816 ± 0.010	

Appendix: multi-task models have unstable training

Appendix: training times

	Autoe	ncoder	Multi-task model		
Size	Train time [s]	Val time [s]	Train time [s]	Val time [s]	
4	0.286 ± 0.025	0.012 ± 0.001	0.257 ± 0.023	0.013 ± 0.002	
5	0.283 ± 0.023	0.012 ± 0.001	0.250 ± 0.017	0.013 ± 0.001	
6	0.283 ± 0.021	0.012 ± 0.001	0.255 ± 0.019	0.013 ± 0.001	
7	0.286 ± 0.025	0.012 ± 0.001	0.248 ± 0.019	0.013 ± 0.001	
8	0.282 ± 0.023	0.012 ± 0.002	0.252 ± 0.023	0.013 ± 0.002	
10	0.285 ± 0.025	0.012 ± 0.001	0.247 ± 0.017	0.013 ± 0.001	
12	0.283 ± 0.025	0.012 ± 0.001	0.248 ± 0.016	0.013 ± 0.001	
16	0.281 ± 0.025	0.012 ± 0.002	0.249 ± 0.020	0.013 ± 0.002	
32	1.310 ± 0.408	0.016 ± 0.004	0.254 ± 0.021	0.013 ± 0.002	
64	0.442 ± 0.152	0.015 ± 0.004	0.253 ± 0.051	0.013 ± 0.001	

Appendix: training epochs

	Autoencoder	Multi-task model
Size	Epochs	Epochs
4	413.0 ± 40.4	278.9 ± 94.5
5	447.7 ± 62.0	265.8 ± 104.4
6	413.9 ± 31.4	243.4 ± 42.0
7	422.9 ± 44.9	273.0 ± 58.7
8	445.2 ± 35.7	239.4 ± 29.6
10	466.5 ± 55.8	241.7 ± 28.8
12	514.9 ± 53.3	241.1 ± 32.8
16	552.9 ± 45.9	225.2 ± 17.7
32	605.1 ± 18.9	201.2 ± 20.5
64	593.6 ± 49.4	211.0 ± 17.7

Appendix: AUC-AUC trend lines

	Autoe	ncoder	Multi-task model		
Size	slope	intercept	slope	intercept	
4	0.615 ± 0.051	0.188 ± 0.039	0.564 ± 0.043	0.223 ± 0.034	
5	0.650 ± 0.046	0.168 ± 0.035	0.611 ± 0.045	0.195 ± 0.035	
6	0.691 ± 0.044	0.145 ± 0.034	0.673 ± 0.042	0.155 ± 0.032	
7	0.753 ± 0.042	0.104 ± 0.033	0.692 ± 0.041	0.153 ± 0.032	
8	0.732 ± 0.041	0.128 ± 0.032	0.724 ± 0.038	0.133 ± 0.030	
10	0.771 ± 0.041	0.105 ± 0.032	0.755 ± 0.037	0.115 ± 0.029	
12	0.785 ± 0.039	0.101 ± 0.030	0.773 ± 0.037	0.108 ± 0.028	
16	0.810 ± 0.036	0.089 ± 0.028	0.804 ± 0.037	0.090 ± 0.029	
32	0.866 ± 0.035	0.059 ± 0.027	0.842 ± 0.031	0.080 ± 0.024	
64	0.873 ± 0.033	0.059 ± 0.025	0.888 ± 0.027	0.050 ± 0.021	

Appendix: TPR-TNR values

	Autoe	ncoder	Multi-task model		
Size	TPR	TNR	TPR	TNR	
4	0.629 ± 0.008	0.678 ± 0.005	0.629 ± 0.009	0.671 ± 0.009	
5	0.637 ± 0.006	0.691 ± 0.005	0.631 ± 0.011	0.685 ± 0.007	
6	0.639 ± 0.008	0.705 ± 0.006	0.636 ± 0.011	0.702 ± 0.006	
7	0.641 ± 0.008	0.717 ± 0.004	0.646 ± 0.008	0.717 ± 0.008	
8	0.647 ± 0.006	0.731 ± 0.003	0.648 ± 0.007	0.724 ± 0.008	
10	0.648 ± 0.005	0.743 ± 0.005	0.646 ± 0.007	0.739 ± 0.004	
12	0.652 ± 0.007	0.758 ± 0.006	0.652 ± 0.008	0.752 ± 0.004	
16	0.653 ± 0.007	0.777 ± 0.005	0.650 ± 0.007	0.768 ± 0.004	
32	0.650 ± 0.004	0.809 ± 0.004	0.655 ± 0.004	0.808 ± 0.004	
64	0.641 ± 0.005	0.831 ± 0.003	0.647 ± 0.007	0.831 ± 0.003	

Appendix: PCA explained variance

	A	Autoencode	r	Multi-task model		
Size	50%	90%	95%	50%	90%	95%
4	1.3 ± 0.5	3.0 ± 0.0	3.6 ± 0.5	1.1 ± 0.3	2.4 ± 0.7	3.0 ± 0.6
5	1.8 ± 0.4	3.1 ± 0.3	4.1 ± 0.3	1.2 ± 0.4	2.5 ± 0.8	3.3 ± 1.0
6	1.9 ± 0.3	3.3 ± 0.5	4.0 ± 0.0	1.6 ± 0.5	2.8 ± 1.1	3.2 ± 1.2
7	1.7 ± 0.5	3.7 ± 0.5	4.8 ± 0.4	1.5 ± 0.5	3.4 ± 0.7	4.2 ± 0.9
8	1.8 ± 0.4	3.9 ± 0.3	5.0 ± 0.0	1.8 ± 0.4	3.7 ± 0.5	4.7 ± 0.5
10	1.9 ± 0.3	4.2 ± 0.4	5.3 ± 0.5	1.3 ± 0.5	3.7 ± 0.5	4.9 ± 0.5
12	2.0 ± 0.0	4.3 ± 0.5	5.8 ± 0.4	1.9 ± 0.3	4.6 ± 0.7	5.9 ± 0.8
16	2.0 ± 0.0	4.5 ± 0.5	6.1 ± 0.3	1.7 ± 0.5	4.9 ± 0.5	6.1 ± 0.5
32	2.0 ± 0.0	5.0 ± 0.0	6.9 ± 0.3	1.4 ± 0.5	4.2 ± 0.6	5.7 ± 0.5
64	2.0 ± 0.0	5.3 ± 0.5	7.2 ± 0.4	1.5 ± 0.5	3.7 ± 0.5	4.8 ± 0.4
raw	1	4	13	1	4	13