Miniaturization in Electronic Technology

ENIAC: the "Electronic Numerical Integrator and Calculator", 1943

ENIAC filled a 20 by 40 feet room, weighed 30 tons, and used more than 18,000 vacuum tubes.

A8 Chip, 2014 >109 transistor

Why Being Small?

- Savings in time & cost
 - Less materials and samples
 - Short processing time
- Disposable
- Parallel processing
- Integration/Automation
- Gain from the unique microscopic features
 - Laminar Flow
 - High surface to volume ratio
 High single-to-noise ratio in transuding signals
 - Small thermal mass
 - Strong fields such as electric fields

Why Being Small?

Length Scale Matching

- Manipulation of molecules and cells
- High resolution / sensitivity

e.g. to facilitate single-molecule diagnostics, study of single-cell biology

(Wang)

Classes of BioMEMS (<u>Bio-MicroElectroMechanicalSystem</u>)

- Microfluidics & Microfluidic Devices
- Biosensors and Bioelectronics
- Neural Interface Devices
- Chromatography /Electrophoresis Devices
- Microsurgical Tools
- Bioreactors
- Tissue Engineering Devices
- Molecule /Cell Handling Devices
- Implantable Devices, Drug Delivery Devices

Examples of MEMS Devices

Spider mite on gears

Micro-mirrors

(Sandia)

Examples of Industrial MEMS Devices

Air Bag Sensor

(Analog Device)

Bubble Inkjet

(HP)

Projector

(Texas Instruments)

Motion & Orientation sensor (Wii)

(Nintendo)

Apple iPhone 6

MEMS Is Everywhere in Your Daily Life

Trillions of MEMS sensors coming soon!

Capillary Electrophoresis

Micromachined Capillary Electrophoresis (μ-CE)

- High throughput
- Low volume
- Rapid analysis

- Integrated with thermal cycling and CE for Sanger sequencing
- Off-chip optical detection

(Ra Mathies, PNAS 2006)

Thermal Cycling for Polymerase Chain Reaction (PCR)

PCR is an expensive and time-consuming technique

Continuous-flow Micro PCR

Integration of CE and μ -PCR

(A. Manz, Science 2002)

(M.A. Burns U Mich, Science

- PCR reaction
- Gel electrophoresis
- **Microfluidics**
- On-line electrical detector

Microfluidic Digital PCR: Nanoliter-sized PCR arrays

- 1176 chamber
- 6.25 nL each chamber

(J.R. Leadbetter, Science 2006)

Droplet Digital PCR: Picoliter-sized PCR arrays

(T. Rane, Lab Chip, 2015)

Analysis of Single Cells

(R. Zare, Scinece 2006)

Laminar Flow-Based Assay

T-Sensor

- Laminar flow initiate reaction
- Diffusion-based analysis

Flied Flow Fraction-DEP cell sorter

 Field flow fraction using DEP force

Free Solution Hydrodynamic Separation

Nano Fluidics

100-nm-wide nanochannel array

Stretch of λ DNA (48.6 kbp)fragment DNA is driven by E-field

(R. Austin)

Digital Microfluidics

- Pump-free and valve-free
- Each sample and reagent is individually addressable
- Array-based analysis

Integrated DNA Preparation and PCR Detection

Using Silica Superparamagnetic Particles (SSP) as a solid phase within droplets

Surface topology assisted SSP and droplet manipulation

☐ Drops in Air

□ Drops in Oil

(Y Zhang, Lab Chip 2011)

On-Chip Real-Time PCR Detection

□ Detection of E coli 16S gene from cell culture

□ Detection of Rsf-1 marker from whole blood

Microfluidic Droplet Technology for High-Throughput Analysis

Features

- Monodisperse droplets of sizes ranging from nL-pL
- High speed droplet generation of > kHz
- Potential applications
 - Low-cost & High throughput screening
 - Biochemical synthesis
 - Digital PCR
 - Single-cell analysis

Droplet Microfluidics for Monitoring of Kinetics

DNA Microarrays

Affymetrix

- Fabricated with lithographic technique
- cDNA array
- Gene expression profiling
- Relative fluorescence measurement

Neural Probe/ Neuro Implant

- Neuro-circuit interaction neuro-recoding
- Prosthesis research
- Chemical delivery
- Issues with long term implant bio compatibility

Tissue Engineering / Cell Patterning

- Patterning cells using microfluidics
- Control of microenvironments using microfluidics
- Single-cell (controlled small number of cells) patterning
- High-throughput search for right cell conditions for controlling cell growth, differentiation, apoptosis)

(Whitesides)

Corneal Microtissue Culture

(C. Puleo, Lab Chip. 2009)