Unit 3: A Modular World

Paul Ycay MATH 409

December 13, 2019

The following theorems are ones to be marked. There is a separate file of handwritten notes for the rest of the theorems in this chapter

Exercise 3.5. Find the remainder of $39|17^{48} - 5^{24}$

Solution. We can take the modulo of 13 instead of 39 as 13|39 and 13 < 17. Thus, we know that

$$17 \equiv 4 \pmod{13}$$

$$17^2 \equiv 4^2 \pmod{13}$$

$$17^2 \equiv 3 \pmod{13}$$

$$(17^2)^3 \equiv 3^3 \pmod{13}$$

$$17^6 \equiv 1 \pmod{13}$$

$$(17^6)^8 \equiv 1^8 \pmod{13}$$

$$17^{48} \equiv 1 \pmod{13}$$

Similarly,

$$5 \equiv 5 \pmod{13}$$

$$5^{2} \equiv -1 \pmod{13}$$

$$(5^{2})^{12} \equiv (-1)^{12} \pmod{13}$$

$$5^{24} \equiv 1 \pmod{13}$$

Thus,

$$[17^{48} - 5^{24}]_{39}$$

$$= [17^{48}]_{39} - [5^{24}]_{39}$$

$$= 1 - 1 = 0$$

Thus, the remainder is 0.

Theorem 3.7. Let $f(x) = 13x^{49} - 27x^{27} + x^{14} - 6$. Is it true that $f(98) \equiv f(-100) \pmod{99}$?

Proof. We know that $98 \equiv -1 \pmod{99}$. Thus, $f(98) \equiv f(-1) \pmod{99}$ implies

$$[13(-1)^{49} - 27(-1)^{27} + (-1)^{14} - 6]_{99}$$

$$[-13 + 27 + 1 - 6]_{99}$$

Furthermore, $-100 \equiv -1 \pmod{99}$ implies that $f(-100) \equiv f(-1) \pmod{99}$. Then

$$[13(-1)^{49} - 27(-1)^{27} + (-1)^{14} - 6]_{99}$$

$$[-13 + 27 + 1 - 6]_{99}$$
9

Thus, proved.

Theorem 3.14. Given any integer a and any natural number n, there exists a unique integer t in the set $0, 1, 2, \ldots, n-1$ such that $a \equiv t \pmod{n}$

Proof. Suppose $a \in Z$. By Division Algorithm, there exists $t, q \in Z$ such that a = nq + t, where $0 \le t < n$. Then $a - t = nq \implies n|a - t$. By definition of congruence, $a \equiv t \pmod{n}$. In other words, a has to be congruent to at least one of the elements in the set $0, 1, 2, \ldots, n-1$ since we claimed $0 \le t < n$.

Theorem 3.16. Let n be a natural number. Every complete residue system modulo n contains n elements.

Proof. Denote the set A := 0, 1, 2, ..., n-1 to be a complete residue system mod n. Suppose |A| (the size of A) is greater than n. By the Pigeonhole Principle, at least two elements in A will have the same remainder when divided by n. This contradicts the fact that A is a complete residue system mod n. Thus, $|A| \le n$.

Theorem 3.19. Let a, b, and n be integers with n > 0. Show that $ax \equiv b \pmod{n}$ has a solution if and only if there exists integers x and y such that ax + ny = b.

Proof. Proof of the 1st part. Suppose $ax \equiv b \pmod{n}$, with $a, b, n \in Z$ and n > 0. Then ax - b = nt, for some $t \in Z$. Since t is an integer, let t = -y. Thus, $ax - b = n(-y) \implies ax + ny = b$.

Proof of the 2nd part. Given ax + ny = b, for integers x, y, n, n > 0. Then $ax + ny = b \implies ax - b = -ny \implies ax - b = n(-y) \implies n|ax - b \implies ax \equiv b \pmod{n}$. Thus, proved.

Theorem 3.20. Let $a, b, n \in \mathbb{Z}$ with n > 0. The equation $ax \equiv b \pmod{n}$ has a solution if and only if (a, n)|b.

Proof. Proof of the 1st part. Given $ax \equiv b \pmod{n}$, $a, b, n \in Z$ with n > 0, then $n|ax - b \implies ny = ax - b \implies b = ax - ny$, $y \in Z$. Fix t = (a, n). Then, t = ac + nd, $c, d \in Z$. Thus, t|a and t|n. So, for integers $f_1, f_2 \in Z$, we have $a = tf_1$ and $n = tf_2$. From the equation b = ax - ny, apply substitution

$$b = (tf_1)x - (tf_2)y$$

$$b = t(f_1x - f_2y)$$

$$b = tg, g \in Z$$

Then $t|b \implies (a,n)|b$.

Proof of the 2nd part. Fix t = (a, n). Then t = ac + nd, $c, r \in \mathbb{Z}$. Since t|b, b = tg = (ac + nr)g, $g \in \mathbb{Z}$. Then, b = acg + nrg

$$nrg = b - a(cg)$$

$$n(y) = b - a(x)$$

$$-n(y) = ax - b$$

$$n(-y) = ax - b$$

$$\therefore y \in Z$$

Thus, $ax \equiv b \pmod{n}$.