Problem 12.6. Let A be an invertible matrix. Prove that if $A = Q_1R_1 = Q_2R_2$ are two QR-decompositions of A and if the diagonal entries of R_1 and R_2 are positive, then $Q_1 = Q_2$ and $R_1 = R_2$.

Problem 12.7. Prove that the first Hadamard inequality can be deduced from the second Hadamard inequality.

Problem 12.8. Let E be a real vector space of finite dimension, $n \geq 1$. Say that two bases, (u_1, \ldots, u_n) and (v_1, \ldots, v_n) , of E have the same orientation iff $\det(P) > 0$, where P the change of basis matrix from (u_1, \ldots, u_n) to (v_1, \ldots, v_n) , namely, the matrix whose jth columns consist of the coordinates of v_j over the basis (u_1, \ldots, u_n) .

(1) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e_1, \ldots, e_n) , of E. Any other basis, (v_1, \ldots, v_n) , has the same orientation as (e_1, \ldots, e_n) (and is said to be positive or direct) iff $\det(P) > 0$, else it is said to have the opposite orientation of (e_1, \ldots, e_n) (or to be negative or indirect), where P is the change of basis matrix from (e_1, \ldots, e_n) to (v_1, \ldots, v_n) . An oriented vector space is a vector space with some chosen orientation (a positive basis).

(2) Let $B_1 = (u_1, \ldots, u_n)$ and $B_2 = (v_1, \ldots, v_n)$ be two orthonormal bases. For any sequence of vectors, (w_1, \ldots, w_n) , in E, let $\det_{B_1}(w_1, \ldots, w_n)$ be the determinant of the matrix whose columns are the coordinates of the w_j 's over the basis B_1 and similarly for $\det_{B_2}(w_1, \ldots, w_n)$.

Prove that if B_1 and B_2 have the same orientation, then

$$\det_{B_1}(w_1,\ldots,w_n)=\det_{B_2}(w_1,\ldots,w_n).$$

Given any oriented vector space, E, for any sequence of vectors, (w_1, \ldots, w_n) , in E, the common value, $\det_B(w_1, \ldots, w_n)$, for all positive orthonormal bases, B, of E is denoted

$$\lambda_E(w_1,\ldots,w_n)$$

and called a *volume form* of (w_1, \ldots, w_n) .

(3) Given any Euclidean oriented vector space, E, of dimension n for any n-1 vectors, w_1, \ldots, w_{n-1} , in E, check that the map

$$x \mapsto \lambda_E(w_1, \dots, w_{n-1}, x)$$

is a linear form. Then prove that there is a unique vector, denoted $w_1 \times \cdots \times w_{n-1}$, such that

$$\lambda_E(w_1,\ldots,w_{n-1},x)=(w_1\times\cdots\times w_{n-1})\cdot x,$$

for all $x \in E$. The vector $w_1 \times \cdots \times w_{n-1}$ is called the *cross-product* of (w_1, \dots, w_{n-1}) . It is a generalization of the cross-product in \mathbb{R}^3 (when n = 3).