Fault Modeling

- Introduction
- Fault Models
 - Stuck-at fault (1961)
 - Bridging fault (1973)
 - Delay fault (1974)
 - Path delay fault (PDF)
 - Transition delay fault (TDF)
 - Transistor level fault
- Fault Detection
- Fault Coverage
- Conclusion

Classification of Fault Models

Some Defects Are Not Stuck-at

- Some defects change circuit timing but not function
 - Random defects: Resistive opens, resistive bridging,
 - 2 Systematic defects: crosstalk, process variation in V_t

- Delay fault cause a circuit [Breuer 74]
 - fails to operate correctly at specified speed
 - but produces correct output at slower speed

Delay Fault Models Are Needed

How to Detect Delay Faults?

- Two categories
 - O Global delay fault: affects large area of circuit
 - * Example: Wrong doping → V_t shift
 - * Can be detected by on-chip process monitors

- 2 Local delay fault: affects small area of circuit
 - * Poor contact/via → resistive open
 - Can be detected by delay testing

What Patterns for Delay Test?

- Delay faults needs two-pattern test
 - As opposed to one-pattern test for stuck-at faults
- A two-pattern test consists of a pair of test patterns (test vectors)
 - V₁: initialize circuit state
 - V₂: launch transition, propagate fault effect to output
- Control timing (7) between V₁ and V₂ carefully

Delay Faults Require 2-pattern Test

Fault Modeling

- Introduction
- Fault Models
 - Stuck-at fault (1961)
 - Bridging fault (1973)
 - Delay fault (1974)
 - Path delay fault (PDF)
 - Transition delay fault (TDF)
 - Transistor level fault
- Fault Detection
- Fault Coverage
- Conclusion

Two Delay Fault Models

- Path Delay Fault, PDF [Smith 85]
 - Path delay of the faulty path > clock period
- Transition (Delay) Fault, TDF [Barzilai 83] [Levendel 86]
 - Path delay of all paths through the faulty node > clock period
- Other delay fault models
 - Gate delay fault [lyengar 88]
 - Segment delay fault [Heragu 96]
 - **•** . . .

Trade off Model Complexity and Accuracy

Example

- Clock period = 10.0ns
 - good gate delay = 2.0ns
- PDF (fault distributed along path)

•
$$3.0 + 2.6 + 2.7 = 8.3 < 10 \rightarrow pass$$

•
$$3.0 + 2.6 + 2.7 + 2.9 = 11.2 > 10 \rightarrow fail$$

- TDF (lumped fault = 9.0 ns)
 - $2.0+2.0+2.0+9.0=15.0 \rightarrow fail$
 - $2.0+2.0+2.0+9.0+2.0 = 17.0 \rightarrow fail$

Faulty size=delay_{faulty} - delay_{good}

PDF TDF Lumped Small fault size

Path Delay Fault (PDF)

- For each path, two polarity: falling ↓, rising ↑ (at PI)
- Example:
 - 5 paths: {AHK, BELHK, BEFJK, CELHK, CEFJK}
 - 10 path delay faults
 - Two-pattern test for PDF ↓BEFJK

Quiz

Q1: How many path delay faults in this circuit?

A:

Q2: Does ABC=001→011 detect ↑BEFK fault?

A:

Fault Modeling

- Introduction
- Fault Models
 - Stuck-at fault (1961)
 - Bridging fault (1973)
 - Delay fault (1974)
 - Path delay fault (PDF)
 - Transition delay fault (TDF)
 - Transistor level fault
- Fault Detection
- Fault Coverage
- Conclusion

Transition Delay Fault (TDF)

- Each node has 2 TDF: slow-to-rise (STR), slow-to-fall (STF)
- Two-pattern test for TDF
 - V₁: Initialization pattern: control initial value at fault site
 - * 0 for STR fault, 1 for STF fault
 - V₂: launch transition and propagate fault effect to output
 - Detect SA0 for STR fault, SA1 for STF fault
- Example: total 9 nodes, 18 TDF
 - B STF fault detected

Quiz

Q1: How many transition delay faults in this circuit?

A:

Q2: Does ABC=001→011 detects B STR fault?

A:

Experimental Results

No One Can Replace Each Other

Summary

- Delay fault important for advanced technologies
- Two popular delay fault models
 - Path delay fault (PDF): two faults per path
 - Rising, falling
 - Transition delay fault (TDF): two faults per node
 - * STR, STF

	Path Delay Fault	Transition Delay Fault
Number of faults	⊗ WC exponential	© linear
Fault size and distribution	© small fault size © distributed	⊗ large fault size only⊗ lumped

FFT

 Q: Give an example circuit where number of paths is exponential to number of gates

	Path Delay Fault	Transition Delay Fault
Number of faults	⊗ WC exponential	© linear
Fault size and distribution	© small fault size © distributed	⊗ large fault size⊗ lumped