

An agent-based model for modal shift in public transport

J. Raimbault^{1,2,3,*} and M. Batty¹

*j.raimbault@ucl.ac.uk

¹Center for Advanced Spatial Analysis, University College London ²UPS CNRS 3611 Complex Systems Institute Paris ³UMR CNRS 8504 Géographie-cités

ECTQG 2021

Special Session: Exploration and validation of spatial simulation models

November 4th 2021

[Zhuge et al., 2019]

Urban transportation models

MATSim model: heterogenous data and integration of many sub-models

Source: [Balmer et al., 2009]

Land-use transport models

Land-use transport models as a progressive complexification through coupling of detailed sub-models

Models	Speed of change							
	Very slow		Slow		Fast		Immediate	
	Networks	Land use	Work- places	Housing	Employ- ment	Popula- tion	Goods transport	Travel
BOYCE	+				+	+		+
CUFM		+	+	+	+	+		
DELTA/START	+	+	+	+	+	+	+	+
HUDS				+	+	+		
IMREL	+	+	+	+	+	+		+
IRPUD	+	+	+	+	+	+		+
ITLUP	+	+			+	+		+
KIM	+				+	+	+	+
LILT	+	+	+	+	+	+		+
MEPLAN	+	+	+	+	+	+	+	+
METROSIM	+	+	+	+	+	+		+
MUSSA	+	+			+	+		+
POLIS		+			+	+		+
RURBAN		+			+	+		+
STASA	+	+	+	+	+	+	+	+
TRANUS	+	+	+	+	+	+	+	+
URBANSIM		+	+	+	+	+		+

Source: [?]

MATSim model integration

Case study: Construct a modular four-step multimodal transportation model using open source projects and data

Integrated models:

- MATSim model (MATSim Community) for the transportation system https://www.matsim.org/[?]
- SPENSER model (University of Leeds) for the synthetic population https://github.com/nismod/microsimulation
- QUANT model (CASA, University College London) for spatial interactions to generate home-work plans http://quant.casa.ucl.ac.uk/ [?]
- spatialdata library (OpenMOLE community) for data processing https://github.com/openmole/spatialdata [?]

Data and implementation

Data:

Generic for any Functional Urban Area (GHSL [?]) or any arbitrary area in the UK: NOMIS census, OrdnanceSurvey roads, Traveline National Dataset for public transport

Workflow systems:

- DAFNI facility funded by UKCRIC https://dafni.ac.uk
- OpenMOLE software https://openmole.org/[?]

Implementation

Currently integrated into the DAFNI platform:

- synthetic SPENSER population with uniform job locations
- QUANT model to generate home-work commuting flows
- network and plans prepared into MATSim xml files and fed into a one-mode MATSim (multimodal version still tested locally)
- models integrated as Docker containers

Data preparation

 \rightarrow Road network preprocessing: implemented into the spatial data scala library $\cite{Gradient}$

figures/road_data.png

OpenMOLE workflow engine

OpenMOLE model exploration open source software [?]

Enables seamlessly (i) model embedding; (ii) access to HPC resources; (iii) exploration and optimization algorithms

https://openmole.org/

Role of stochasticity

Global Sensitivity Analysis

GSA results

Conclusion

- \rightarrow
- -

Open repositories

https://github.com/JusteRaimbault/UrbanDynamics/Models/Matsim for containers and workflows

https://github.com/openmole/spatialdata for data processing

Acknowledgements

DAFNI platform/Champions program; Urban Dynamics Lab Grant EP-SRC EP/M023583/1

References I

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., and Nagel, K. (2009).

Matsim-t: Architecture and simulation times.

In Multi-agent systems for traffic and transportation engineering, pages 57–78. IGI Global.

Zhuge, C., Shao, C., Wang, S., and Hu, Y. (2019). Sensitivity analysis of integrated activity-based model: Using matsim as an example.

Transportation Letters, 11(2):93–103.