Дифференицальная геометрия. Неофициальный конспект

Лектор: Нина Дмитриевна Лебедева Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Рим	анова геометрия	2
	1.1	Гладкие многообразия	. 2
		1.1.1 Гладкие отображения	
		1.1.2 Касательное пространство	. 5
		1.1.3 Структура векторного пространства на T_pM	. 6
	1.2	Касательное расслоение	
		1.2.1 Дифференциал гладкого отображения	
	1.3	Гладкие векторные поля	
	1.4	Гладкие подмногообразия	
	1.5	Риманова геометрия	
		1.5.1 Отсупление в метрические пространства	
		1.5.2 Аксиомы плоскости Лобачевского	
	1.6	Модель Пуанкаре в круге	
	1.7	Касательный вектор как дифференцирование	
	1.8	Скобка Ли векторных полей	
		1.8.1 Выражение для скобки Ли в координатах	
		1.8.2 Пространство $\mathcal{X}(M)$ вместе со скобкой Ли образует алгебру Якоби	
		1.8.3 Специфичные свойства скобки Ли векторных полей	
	1.9	Тензоры на многообразии	
		1.9.1 Поведение скобки Ли при отображениях	
	1.10	Аффиные связности	
		1.10.1 Симметричная связность	
		1.10.2 Символы Кристоффеля	
		1.10.3 Единственность связности Леви-Чивиты	
	1.11	Ковариантная производная вдоль пути	
		Геодезические в римановых многообразиях	
		1.12.1 Уравнение геодезической	
		1.12.2 Параллельный перенос вдоль пути	
	1.13	Лемма Гаусса. Геодезические	
	1.14	Тензор кривизны	. 26
		Полугеодезические координаты	
		Формула Гаусса — Бонне	
	1.10	1.16.1 Ориентация	
		1.16.2 Вращение векторного поля вдоль кривой. Поворот кривой	
	1 17	Пространства постоянной кривизны. Сравнение треугольников	
	1.11	1.17.1 Теоремы сравнения	
	1.18	Полнота. Теорема Хопфа — Ринова	

Глава 1

Риманова геометрия

Лекция I 14 февраля 2024 г.

1.1 Гладкие многообразия

Определение 1.1.1 (Топологическое многообразие). Хаусдорфово топологическое пространство M со счётной базой, такое что $\forall x \in M: \exists U \ni x: U \sim \mathbb{R}^n$. Данное число n называется размерностью многообразия, пишут $\dim M = n$, или часто пишут это число верхним индексом: M^n .

Далее пусть M^n — топологическое многообразие.

Определение 1.1.2 (Карта). Пара из открытого $U \subset M^n$, и гомеоморфизма $\phi: U \to \Omega$, где открытое $\Omega \subset \mathbb{R}^n$. U называется носителем карты.

«В половине случаев в литературе картой называется обратное отображение».

Определение 1.1.3 (Атлас). Набор карт (U_i,ϕ_i) , таких, что $\bigcup_i U_i=M$.

Пусть даны две карты (U,ϕ) и (V,ψ) . Далее удобно считать, что их носители пересекаются: $U\cap V\neq\varnothing$, иначе определение не несёт смысла.

Определение 1.1.4 (Отображение перехода). Отображение $\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V)$. Обозначается $f_{\phi\psi}$

Определение 1.1.5 (Карты (U,ϕ) и (V,ψ) согласованы). Отображение перехода и ему обратное гладкие.

Определение 1.1.6 (Гладкий атлас). Атлас, такой, что любые две карты согласованы.

Далее все атласы предполагаются гладкими.

Определение 1.1.7 (Атласы эквивалентны). Их объединение (то есть все карты из первого и из второго атласа вместе взятые) — тоже гладкий атлас.

Предложение 1.1.1. Эквивалентность атласов — отношение эквивалентности.

Определение 1.1.8 (Гладкая структура на многообразии). Максимальный гладкий атлас (атлас, к которому нельзя добавить карт).

Замечание. К атласу можно добавить произвольное количество карт, согласованных с теми, что в атласе, и они будут согласованы между собой. В частности, для задания гладкой структуры достаточно произвольного атласа A: в A можно добавить всевозможные карты, согласованные с картами из A, и он станет максимальным.

Определение 1.1.9 (Гладкое многообразие). Многообразие с гладкой структурой.

Примеры (Атласы).

- Стандартная гладкая структура на \mathbb{R}^n задаётся атласом $\{(\mathbb{R}^n,\mathrm{id})\}.$
- В частности, стандартная структура на \mathbb{R}^1 задаётся атласом $\{(\mathbb{R}^1, [x \mapsto x])\}$.
- Можно задать нестандартную структуру на \mathbb{R}^1 : $\{(\mathbb{R}^1, [x \mapsto x^3])\}$.

Предостережение. Это действительно гладкая структура, хотя обратное отображение $[x \mapsto x^{1/3}]$ не гладкое. Тем не менее, определение и не требует гладкости от него.

ullet Пусть $f=egin{cases} x,&x\geqslant 0\ rac{1}{2}x,&x\leqslant 0 \end{cases}$. Тогда $\{(\mathbb{R}^1,f)\}$ — тоже гладкий атлас на \mathbb{R}^1 .

Тем не менее, любые два атласа из приведённых выше атласов на \mathbb{R}^1 не эквивалентны — отображения перехода получаются не гладкими.

• Гладкая структура на сфере задаётся двумя картами: пусть S^2 — сфера с северным полюсом N и южным S, пусть f,g — стереографические проекции с данными полюсами. Тогда $\{(S^2\setminus\{N\},f),(S^2\setminus\{S\},g)\}$ — атлас.

Замечание. Если M — гладкое многообразие, и открытое $W \subset M$, то на W естественным образом определена гладкая структура, наследующаяся с M.

1.1.1 Гладкие отображения

Пусть M^m, N^n — гладкие многообразия, A_M, A_N — соответствующие атласы. Рассмотрим отображение $f: M \to N$.

Определение 1.1.10 (Координатное представление f в картах (U,ϕ) на M и (V,ψ) на N). Такое $\widetilde{f}:\phi(U)\to\psi(V)$, что диаграмма коммутативна везде, где определена (то есть $\widetilde{f}=\psi\circ f\circ\phi^{-1}$ на $\phi(U\cap f^{-1}(V))$).

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} V \\ \downarrow^{\phi} & & \downarrow^{\psi} \\ \phi(U) & \stackrel{\widetilde{f}}{\longrightarrow} \psi(V) \end{array}$$

Далее считаем, что $f:M\to N$ непрерывна (эквивалентно, все координатные представления непрерывны).

Определение 1.1.11 (f гладкое). Любое координатное представление — гладкое.

Определение 1.1.12 (f — гладкое в точке $x \in M$). Найдётся окрестность $U_x \ni x$ и карты (U, ϕ) , (V, ψ) (где $V \ni y := f(x)$), такие, что $U_x \subset U$ и сужение на U_x координатного представления f — гладко.

Свойства (Гладкие отображения).

- Гладкость в точке не зависит от выбора карт.
- Гладкость отображения не зависит от выбора атласа в одном классе эквивалентности.
- Отображение гладкое 👄 оно гладкое в любой точке. На лекции было доказательство ⇐.
- Пусть $f:M \to N, g:N \to K$ гладкие. Тогда их композиция $g \circ f$ гладкая.
- Тождественное отображение гладкое, если в образе и прообразе выбраны эквивалентные атласы.
- Определение гладкости отображения совпадает с определением гладкости из матанализа (если считать, что $M \subset \mathbb{R}^n$ открыто, и порождающий атлас состоит из тождественной карты)

Определение 1.1.13 (Диффеоморфизм $f: M \to N$). Гладкое f, такое, что f^{-1} — тоже гладкое.

Определение 1.1.14 (Многообразия M и N диффеоморфны). Между ними существует диффеоморфизм.

Понятно, что диффеоморфность — отношение эквивалентности.

Утверждение 1.1.1. *Если* $M^m \stackrel{\partial u\phi}{\sim} N^n$, то m = n.

Доказательство. Рассмотрим произвольную $x\in M$. Пусть $f:M\to N$ — диффеоморфизм, пусть $\widetilde f$ — его координатное представление. Тогда $\widetilde f^{-1}$ — координатное представление f^{-1} , откуда $\widetilde f^{-1}$ — тоже гладкое. Рассмотрим дифференциал $\mathrm{d}_x\widetilde f(_)$, это изоморфизм векторных пространств, значит, m=n.

По умолчанию всегда считается, что на \mathbb{R}^m введена стандартная гладкая структура.

Предложение 1.1.2. Пусть M- гладкое многообразие, тогда карта — диффеоморфизм между U и $\phi(U)$. Обратно, любой диффеоморфизм между открытым подмножеством $W\subset M$ и областью $\Omega\subset \mathbb{R}^m-$ карта.

Доказательство.

Гладкость карты, как диффеоморфизма, эквивалентна тому, что карта согласована с остальными в атласе: пунктирная стрелка $\psi(U\cap V)\to\phi(U\cap V)$ одновременно является и отображением перехода между картами (U,ϕ) и (V,ψ) , и координатным представлением ϕ в картах (V,ψ) , (U,id) .

Следствие 1.1.1. Диффеоморфизм $f: M \to N$ задаёт естественную биекцию между картами M и картами N (а ещё между (максимальными) атласами M и (максимальными) атласами N).

Лекция II

21 февраля 2024 г.

Пример (Диффеоморфизм). Ранее приводились неэквивалентные карты (\mathbb{R} , id) и (\mathbb{R} , [$x \mapsto x^3$]). Вещественные прямые с данными картами диффеоморфны: [$x \mapsto x^3$] — диффеоморфизм, ему обратный [$x \mapsto \sqrt[3]{x}$] (где, как в школе, $\sqrt[3]{x} = \begin{cases} \sqrt[3]{x}, & x \geqslant 0 \\ -\sqrt[3]{-x}, & x < 0 \end{cases}$).

Таким образом, создать две недиффеоморфные структуры на одном и том же многообразии не то чтобы просто.

Интересный факт. Пусть M-n-мерное многообразие.

Если $\begin{cases} n < 4, & \text{на нём существует единственная гладкая структура} \\ n = 4, & \text{на нём существует бесконечно много гладких структур}. \\ n > 4, & \text{на нём существует конечное число гладких структур} \end{cases}$

В частности, при n > 4: если $M^n = \mathbb{R}^n$, то гладкая структура единственна.

1.1.2 Касательное пространство

Пусть M — гладкое многообразие, $p \in M$. Пусть $\alpha, \beta : (\varepsilon, +\varepsilon) \to M$ — гладкие (естественно, в смысле отображения многообразий) кривые, такие, что $\alpha(0) = p = \beta(0)$.

Определение 1.1.15 (α и β соприкасаются в p). В любой карте (U, ϕ) (где $U \ni p$) их производные в нуле совпадают: $(\phi \circ \alpha)'(0) = (\phi \circ \beta)'(0)$.

Предостережение. Определение требует совпадение векторов скорости, а не просто параллельности или сонаправленности.

Свойства (Соприкасающиеся кривые).

- Соприкасаемость кривых в какой-то конкретной точке отношение эквивалентности.
- Соприкасаемость не зависит от выбора карты: достаточно проверить в любой одной, содержащей p.

Доказательство. Пусть $(U,\phi),\,(V,\psi)$ — две карты, содержащие точку p, отображение $f_{\phi\psi}=\psi\circ\phi^{-1}$ гладкое, значит, оно переводит равные векторы в равные.

Определение 1.1.16 (Касательный вектор в точке $p \in M$). Класс эквивалентности соприкасающихся в точке p кривых.

Множество всех касательных векторов — κ асательное пространство, обозначают $T_p M$.

Координаты касательного вектора

Пусть $p \in M$, и (U, ϕ) — карта, содержащая p.

Определение 1.1.17 (Координатное представление вектора $v = [\alpha] \in T_p M$). Вектор скорости данной кривой в данной карте $v_{\phi} \stackrel{def}{=} (\phi \circ \alpha)'(0)$.

Понятно, что определение не зависит от выбора представителя — кривой α .

Также координаты v_{ϕ} в \mathbb{R}^{n} называют координатами v в карте ϕ .

Свойства (Координатное представление).

• $\forall p \in M, \forall (U, \phi) : p \in U \Rightarrow$ координатное представление — биекция $T_pM \to \mathbb{R}^n$ $v \mapsto v_\phi$.

Это сюръекция: $\forall w \in \mathbb{R}^n$ можно рассмотреть кривую $\gamma(t) \coloneqq wt + \phi(p)$. Координаты $[\phi^{-1} \circ \gamma]$ в карте ϕ как раз окажутся равными w.

Преобразование координатного представления в зависимости от карты

Утверждение 1.1.2. Пусть $M^n\ni p$ — гладкое многообразие и точка, (U,ϕ) и (V,ψ) — карты, содержащие p. Тогда $v_\psi=\mathrm{d}_{\phi(p)}f_{\phi\psi}(v_\phi)$.

Доказательство. Пусть $v=[\alpha]$. Тогда $v_\phi=(\phi\circ\alpha)'(0),\ v_\psi=(\psi\circ\alpha)'(0),\ и$ действительно, так как $f_{\phi\psi}=\psi\circ\phi^{-1},$ то $v_\psi=(f_{\phi\psi}\circ\phi\circ\alpha)'(0).$ Дифференцируя композицию, получаем утверждение.

Следствием данного утверждения является альтернативное определение касательного вектора:

Определение 1.1.18 (Касательные векторы в точке $p \in M$). Отображение из множества всех карт, содержащих точку p (обозначим их \mathcal{M}_p) в \mathbb{R}^n

$$\mathcal{M}_n \to \mathbb{R}^n$$

такое, что выполнены соотношения (утверждение 1.1.2).

Это определение сродни тому определению тензора, которое говорит: «Тензор — это многомерная матрица чисел, преобразующихся при замене базиса следующим образом...»

1.1.3 Структура векторного пространства на $T_p M$

Зафиксируем $p \in M$, и карту (U, ϕ) , содержащую p. Пусть $v, w \in T_pM$.

Определение 1.1.19 (Сумма векторов v и w). Такой вектор v+w, что $(v+w)_{\phi}=v_{\phi}+w_{\phi}$.

Определение 1.1.20 (Растяжение вектора v с коэффициентом α). Такой вектор αv , что $(\alpha v)_{\phi} = \alpha \cdot v_{\phi}$.

Иными словами, у нас была биекция T_pM с векторным пространством, и мы просто перенесли структуру векторного пространства с \mathbb{R}^n на T_pM . Определение не зависит от выбора карты, так как замена координат касательных векторов при переходе между картами — изоморфизм векторных пространств (дифференциал — линейный оператор).

Замечание. Из определения получается, что $v o v_\phi$ — изоморфизм векторных пространств.

1.2 Касательное расслоение

Как множество, $T(M) = \bigsqcup_{p \in M} T_p M$. Оказывается, на T(M) можно естественно ввести топологию и гладкую структуру размерности 2n. Преобразуем определение атласа так, чтобы это случилось одновременно.

Утверждение 1.2.1 (Атлас для множества). Пусть X — множество с картами (U, ϕ) , то есть парами (U, ϕ) где $U \subset X$, и каждая ϕ — биекция $U \to \mathbb{R}^n$. При этом $X = \bigcup U$

Потребуем для любых двух карт (U,ϕ) и (V,ψ) : $\phi(U\cap V)$ открыто (в частности, $\phi(U)$ открыто), и потребуем, чтобы все функции перехода $f_{\phi\psi}=\psi\circ\phi^{-1}$ были гладкими.

Введём на X топологию: $W \subset X$ открыто, если $\forall (U,\phi): \phi(U\cap W)$ открыто, и предположим, что топология получилась хаусдорфовой, и на X есть счётная база.

Tогда утверждается, что данная процедура задаёт на X одновременно и топологию, и глад-кую структуру.

Зададим такую гладкую структуру на T(M). Обозначим $TU = \bigsqcup_{p \in U} T_p M$. Можно рассматривать $TU = \{(p,v) | p \in U, v \in T_p M\}$.

Пусть имеется карта (U, ϕ) на M. Построим по ней карту

$$\Phi: TU \to \mathbb{R}^n \times \mathbb{R}^n$$
$$(p, v) \mapsto (\phi(p), v_{\phi})$$

Проверим согласованность: пусть (U,ϕ) и (V,ψ) — две карты на M. По ним построены карты (TU,Φ) и (TV,Ψ) соответственно. Тогда $(\Psi\circ\Phi^{-1})(p,v)=((\psi\circ\phi^{-1})(p),\mathrm{d}_{\phi(p)}f_{\phi\psi}(v))$, видно, что $\Psi\circ\Phi^{-1}$ гладко.

Упражнение 1.2.1. Получилось хаусдорфовое пространство со счётной базой.

1.2.1 Дифференциал гладкого отображения

Пусть M и N — гладкие многообразия, и есть гладкое отображение $f:M\to N$. Зафиксируем $p\in M$.

Определение 1.2.1 (Дифференциал f в точке p). Отображение $d_p f: T_p M \to T_{f(p)} N$, заданное следующим образом: $d_p f: [\alpha] \mapsto [f \circ \alpha]$.

Утверждение 1.2.2. Определение дифференциала не зависит от выбора представителей.

Доказательство. Пусть $\alpha \sim \beta$ — две кривые, $\alpha(0) = \beta(0) = p$, $\alpha'(0) = \beta'(0) = v$.

Проверим, что $f \circ \alpha \sim f \circ \beta$. Достаточно проверить, что совпадают координатные представления.

Выберем две карты (U,ϕ) и (V,ψ) (где $U\ni p,\ V\ni f(p)$). Координатное представление f — это $\widetilde{f}=\psi\circ f\circ\phi^{-1}$.

Дифференциал \widetilde{f} переносит координаты представления векторов из T_pM в координаты представления векторов из $T_{f(p)}N$:

$$\psi \circ f \circ \alpha = \widetilde{f} \circ \phi \circ \alpha \quad \text{и} \quad \psi \circ f \circ \beta = \widetilde{f} \circ \phi \circ \beta$$

$$(\psi \circ (f \circ \alpha))'(0) = \mathrm{d}_{\phi(p)} \widetilde{f}((\phi \circ \alpha)'(0)) = \mathrm{d}_{\phi(p)} \widetilde{f}((\phi \circ \beta)'(0)) = (\psi \circ (f \circ \beta))'(0) \qquad \square$$

Нетрудно заметить, что $(d_p f(v))_{\psi} = (d_{f(p)} \widetilde{f})(v_{\phi})$ в обозначениях из доказательства выше $(u \ v = [\alpha]).$

Следствие 1.2.1. $d_p f$ — линейное отображение.

Лекция III 28 февраля 2024 г.

Замечание. Можно естественным определить дифференциал на всём пространстве $Tf:TM\to TN$. На вектор $v\in T_pM$ Tf действует понятным образом: $v\mapsto \mathrm{d}_pf(v)$.

Если $U \subset \mathbb{R}^n$, то касательное пространство TU естественным образом отождествляется с $U \times \mathbb{R}^n$.

1.3 Гладкие векторные поля

Пусть M — гладкое многообразие, выберем произвольное подмножество $A\subset M$.

Определение 1.3.1 (Непрерывное векторное поле на A). Непрерывное отображение $X:A\to TM$, такое, что $\forall p\in A: X(p)\in T_pM$.

Определение 1.3.2 (Гладкое векторное поле на A). Векторное поле $X:A\to TM$, такое, что \exists открытое $U\subset M:U\supset A$, и X продолжается на U, как гладкое векторное поле (то есть гладкое отображение, являющееся непрерывным векторным полем).

Для гладкого многообразия M будем обозначать пространство всех гладких векторных полей за $\mathcal{X}(M)$.

Пусть в M имеется карта (U, ϕ) .

Определение 1.3.3 (Координатное векторное поле, соответствующее i-й координате). Векторное поле $V_i: U \to TM$, такое, что $\mathrm{d}\phi(V_i) = e_i \ (V_i(p) = e_i)$ Или что-то похожее, я не очень понял

Лемма 1.3.1. Пусть имеется открытое $U \subset \mathbb{R}^n$, и компактное $K \subset U$. Утверждается, что $\forall V \supset K : \operatorname{Cl} V \subset U \Rightarrow$ можно построить гладкую функцию $f : \mathbb{R}^n \to \mathbb{R}$, такую, что $f \big|_{K} = 1$, $f \big|_{\mathbb{R}^n \setminus V} = 0$.

Доказательство. На лекции шло без доказательства.

Следствие 1.3.1. Пусть V_i — координатное поле карты (U,ϕ) . Тогда $\forall K \subset U: \exists$ векторное поле $\widetilde{V}_i:\widetilde{V}_i\big|_K = V_i,\widetilde{V}_i\big|_{M \setminus U} \equiv 0$.

Иными словами, всегда немного уменьшив карту, можно продолжить координатное векторное поле на всё многообразие.

1.4 Гладкие подмногообразия

Пусть M^m — гладкое многообразие размерности m.

Определение 1.4.1 (Гладкое подмногообразие размерности $n \leq m$). Подмножество $N \subset M$, такое, что $\forall x \in N : \exists$ выпрямляющая карта (U, ϕ) (карта на M), такая, что $U \ni p$ и $\phi(U) \cap \mathbb{R}^n = \phi(N \cap U)$.

Здесь имеется в виду, что ϕ действует в \mathbb{R}^m , где как-то введены координаты, и имеется определённое вложение $\mathbb{R}^n \hookrightarrow \mathbb{R}^m$.

Утверждение 1.4.1. На N каноническим образом индуцируется гладкая структура из M. Карты на N- сужения выпрямляющих карт (карте (U,ϕ) отвечает карта $N\cap U,\psi$, где $\psi:N\cap U\to\mathbb{R}^n\subset\mathbb{R}^m,\ \psi(x)=\phi(x)$).

Доказательство. Согласованность карт на N следует из согласованности карт на M. \square

Пусть N^n, M^m — гладкие многообразия.

Определение 1.4.2 (Погружение $f:N\to M$). Гладкое отображение $f:N\to M$, такое, что $\forall p\in N:\mathrm{d}_p f$ — инъекция. Само f не обязано быть инъекцией.

Понятно, что такое возможно только при $n\leqslant m.$

Определение 1.4.3 (Вложение $f: N \to M$). Погружение $f: N \to M$, которое является топологическим вложением, то есть гомеоморфизмом на образ.

Примеры.

- В случае поверхностей размерности 2 погружение подмногообразия размерности 1 кривой называлось регулярной параметризацией.
- Петля слева является погружением, но даже инъективная петля справа вложением не является: в выделенной точке топология не совпадает с топологией интервала.

Предложение 1.4.1.

- 1. Погружение локально является вложением: $\forall x \in N: \exists U_x \ni x: f\big|_{U_x}$ вложение.
- 2. Образ вложения гладкое подмногообразие.

C доказательством этого очевидного предположения возникли неожиданные проблемы, я что-то написал ниже, за правильность не ручаюсь.

Доказательство. Достаточно доказать для случая открытых $N \subset \mathbb{R}^n$, $M = \mathbb{R}^m$, потому что карты — диффеоморфизмы, и определения сохраняются при диффеоморфизмах.

Зафиксируем $x \in N$. Введём координаты в \mathbb{R}^m , выделив первые n координат, так, чтобы подпространство, натянутое на них, совпадало с $d_x f(\mathbb{R}^n)$.

Также домножим пространство, содержащее N, на \mathbb{R}^{m-n} .

Лемма 1.4.1. Существует $W\ni x,W'\ni f(x),\phi:W\to W':\phi\big|_{N\cap W}=f$ ($W\in\mathbb{R}^m,W'\in\mathbb{R}^m$).

Доказательство леммы.

Обозначим координаты в $\mathbb{R}^n \times \mathbb{R}^{m-n}$ за (ξ, ζ) , и определим $\phi(x+\xi, \eta) = f(x) + f(\xi) + (0, \eta)$. Действительно, дифференциал $d_x \phi = (df, id)$ невырожден.

По теореме об обратной функции $\exists W:\phiig|_W$ — диффеоморфизм.

- 1. Образ $f\big|_{N\cap W}$ подмногообразие $W\cap \mathbb{R}^n\subset N.$ $\phi^{-1}\big|_{W'}$ выпрямляющая карта,
- 2. ϕ гомеоморфизм на образ \Rightarrow $f|_{N\cap W}$ топологическое вложение и гомеоморфизм. Значит, локально погружение вложение.

3. Так как f — топологическое вложение, то f(N) — подмногообразие.

Лекция IV

6 марта 2023 г.

Контрпример. Тождественное отображение между прямыми $(\mathbb{R}, x^3) \to (\mathbb{R}, \mathrm{id})$ — не вложение (и даже не погружение).

Пусть $N\subset M$ — гладкое подмногообразие. Отображение in : $N\hookrightarrow M$ можно рассматривать, как вложение многообразия.

Утверждение 1.4.2. Следующие определения подмногообразия равносильны:

- ullet Подмножество $N\subset M$ с выпрямляющими картами.
- Образ вложения некоторого многообразия.

 $\mathit{Интересный}\ \phi a \kappa m$ (Теорема Уитни). Для любого гладкого многообразия M^m существует вложения $M^m \hookrightarrow \mathbb{R}^{2m}$.

1.5 Риманова геометрия

Пусть дано гладкое многообразие M^m .

Определение 1.5.1 (Риманова структура на M^m). Совокупность (положительно определённых) скалярных произведений $\{g_x\}_{x\in M}$ $(g_x:T_xM\times T_xM\to\mathbb{R},g_x=\langle_,_\rangle_x)$). Иначе это называют метрическим тензором.

Напомним, что $\mathcal{X}(M)$ — пространство гладких векторных полей на M.

Определение 1.5.2 (Гладкая риманова структура на M^m). Такая риманова структура, что $\forall X,Y\in\mathcal{X}(M):M\to\mathbb{R}$

$$x\mapsto \langle X_x,Y_x
angle_x$$
 гладко

Далее везде будем говорить *риманово многообразие* для многообразия с гладкой римановой структурой.

Пример. Пример (гладкого) метрического тензора для поверхностей — первая квадратичная форма.

Пусть заданы два римановых многообразия (M_1, g_1) и (M_2, g_2) .

Определение 1.5.3 (Изометрия между M_1 и M_2). Диффеоморфизм $f: M_1 \to M_2$, сохраняющий скалярные произведения: $\forall x \in M_1: \forall v, w \in T_x M_1: \langle v, w \rangle = g_{f(x)}(\mathrm{d}_x f(v), \mathrm{d}_x f(w)).$

Примеры.

• Пусть имеется вложение гладкого многообразия $f:M^m\to \mathbb{R}^n$. В соответствии с ним на M^m можно естественным образом задать риманову метрику:

$$\forall x \in M : \forall v, w \in T_x M : \langle v, w \rangle_x := \langle d_x f(v), d_x f(w) \rangle_{f(x)}$$

Так как $d_n f$ инъективен, то скалярное произведение получится невырожденным.

В предыдущем семестре в точности это происходило с вложением поверхности в \mathbb{R}^3 .

• Пусть на многообразии N^n задана риманова структура, и имеется вложение $f:M^m\to\mathbb{R}^n$. Тогда абсолютно аналогично можно задать риманову метрику на M^m :

$$\forall x \in M : \forall v, w \in T_x M : \langle v, w \rangle_x := \langle d_x f(v), d_x f(w) \rangle_{f(x)}$$

• В обеих пунктах можно ослабить требования на f: достаточно, чтобы f было погружением.

Пусть (M^m,g) — риманово многообразие, (U,ϕ) — карта: $\phi:U\to\phi(U)\subset\mathbb{R}^m$. Выберем в \mathbb{R}^m ортонормированный базис $(e_i)_{1\leqslant i\leqslant m}$. Базисный вектор e_i — координатное представление вектора $\mathrm{d}_x\phi^{-1}(e_i)$, и $(\mathrm{d}_x\phi^{-1}(e_i))_{1\leqslant i\leqslant m}$ — базис T_xM .

Значит, можно записать координаты метрического тензора g_x в данных базисных векторах $\mathrm{d}_x\phi^{-1}(e_i)$, получатся метрические коэффициенты для карты $(U,\phi)\colon (g_{i,j})_{1\leqslant i,j\leqslant m}$. Для векторов $X=X_1\,\mathrm{d}_x\phi^{-1}(e_1)+\cdots+X_m\,\mathrm{d}_x\phi^{-1}(e_m)$ и $Y=Y_1\,\mathrm{d}_x\phi^{-1}(e_1)+\cdots+Y_m\,\mathrm{d}_x\phi^{-1}(e_m)$: $\langle X,Y\rangle=\sum_{i,j}X_ig_{i,j}Y_j$.

Теорема 1.5.1. $g_{i,j}$ — гладкие во всех картах \iff метрический тензор g гладок.

Доказательство.

 \Leftarrow . Не успел нормально записать Рассмотрим карту (U, ϕ) .

В определении гладкого метрического тензора были $X,Y\in \mathcal{M}$, но на прошлой лекции мы обсудили, что можно считать, что для компакта $K\subset U$, сколь угодно близкого приближающего $U,\dots g(\overline{X}_i,\overline{Y}_i)$ — гладкая функция, совпадает с $g_{i,j}$ на компакте.

Проверяем гладкость в какой-то конкретной точке, точку можно захватить компактом, получается, верно для всех точек.

 \Rightarrow . Рассмотрим гладкие векторные поля $X,Y\in \mathcal{X}(M)$.

Проверим гладкость в точке $x\in M$. Рассмотрим произвольную карту (U,ϕ) , содержащую x, Распишем $X=\sum_i \xi_i X_i, Y=\sum_j \eta_j X_j$. Понятно, что $\xi_i,\eta_j:M\to \mathbb{R}$ — гладкие функции.

Получается,
$$\langle X,Y \rangle_x = \sum\limits_{i,j} \xi_i \eta_j \, \langle X_i,X_j \rangle = \sum\limits_{i,j} \xi_i \eta_j g_{i,j}.$$

Пример. Пусть многообразие M^m покрыто одной картой (M,ϕ) . Можно ввести $m \times m$ гладких метрических коэффиицентов $g_{i,j}: M \to \mathbb{R}$ так, что матрица $(g_{i,j})$ всюду положительно определена.

В случае покрытия M несколькими картами так может не получиться, надо ещё проверять согласованность, что может быть неудобно.

Аналогично поверхностям, определим длину путей.

Пусть $v \in T_x M$.

Определение 1.5.4 (Длина вектора v). $|v| \stackrel{def}{=} \sqrt{\langle v, v \rangle_x}$.

Теперь $\gamma:[a,b] \to M$ — кусочно-гладкая кривая (имеется разбиение $a=t_0\leqslant t_1\leqslant\ldots\leqslant t)n=b$, такое, что $\gamma\big|_{[t_i,t_{i+1}]}$) — гладкая.

Определение 1.5.5 (Длина кривой). $L(\gamma) = \sum_{i}^{t_{i+1}} |\gamma'(t)| \, \mathrm{d}t$. Длина γ' определена: из гладкости $\forall t \in (t_i, t_{i+1}) : \gamma'(t) \in T_{\gamma(t)}M$.

Пусть (M,g) — связное риманово многообразие, $x,y \in M$ — две точки.

Определение 1.5.6 (Расстояние между точками x,y). $d_l(x,y) \stackrel{def}{=} \inf_{\gamma} l(\gamma)$, где инфимум берётся по всем кусочно гладким $\gamma:[a,b] \to M$, таким, что $\gamma(a)=x,\gamma(b)=y$.

Теорема 1.5.2.

1. d_l — метрика

2. Топология, порождённая d_l совпадает с исходной топологией ΩM .

Доказательство.

- 1. Проверим три аксиомы метрики.
 - Меняя направление пути, получаем $d_l(x,y) = d_l(y,x)$.
 - Выберем $\varepsilon > 0$, найдутся две кусочно гладкие кривые $\gamma_{x,y}$ и $\gamma_{y,z}$, почти оптимально соединяющие x,y и y,z соответственно $(l(\gamma_{x,y}) \leqslant d(x,y) + \varepsilon;\ l(\gamma_{y,z}) \leqslant d(y,z) + \varepsilon)$. Конкатенируя $\gamma_{x,y} \cdot \gamma_{y,z}$, получаем $d_l(x,z) \leqslant d_l(x,y) + d_l(y,z) + 2\varepsilon$. Устремляя $\varepsilon \to 0$, получаем неравенство треугольника.
 - Проверим положительную определённость.

Лемма 1.5.1. $\forall x \in M: \exists$ карта (U,ϕ) , содержащая x, такая, что $\forall \varepsilon > 0: \exists V \subset U \ (V \ni x)$, причём $\phi\big|_V: V \to \phi(V) \ (1 \pm \varepsilon)$ -билипшицево:

$$\forall a, b \in V : (1 - \varepsilon)|\phi(a) - \phi(b)| \leqslant d_l(a, b) \leqslant (1 + \varepsilon)|\phi(a) - \phi(b)|$$

Отсюда сразу получается, что $\forall \gamma : [c,d] \rightarrow V$:

$$(1 - \varepsilon) \cdot l(\phi \circ \gamma) \leq l(\gamma) \leq (1 + \varepsilon) \cdot l(\phi \circ \gamma)$$

Доказательство леммы.

Выберем ортонормированный базис X_1, \dots, X_m в $T_x M$ (такой найдётся, так как скалярное произведение положительно определено).

Выберем произвольную карту (U,ϕ) , содержащую x. $\mathrm{d}_x\phi(X_1),\ldots,\mathrm{d}_x\phi(X_m)$ — базис в \mathbb{R}^m , его можно линейным преобразованием L перевести в ортонормированный. Далее считаем, что он уже ортонормирован (можно заменить карту ϕ на $T\circ\phi$).

Коэффициенты метрического тензора в этой карте $g_{i,j}$ таковы, что $g_{i,j}(x) = \delta_{i,j}$.

Из непрерывности $g_{i,j}: \forall \varepsilon>0: \exists \underset{\ni x}{V}\subset U: \forall y\in V, v\in T_yM: |\operatorname{d}_x\phi(v)|=(1\pm\varepsilon)|v|.$

2. Применяем (лемма 1.5.1) для $\varepsilon=1/2$. Из билипшицевости сразу получается совпадение топологий.

1.5.1 Отсупление в метрические пространства

Более частым случаем является определение расстояние, как инфимум длин всех кривых, а не только кусочно-гладких.

Пусть (X,d) — метрическое пространство, $\gamma:(c,d)\to X$ — (непрерывный) путь. Здесь длина определяется по формуле $L_d(\gamma)=\sup\sum_i d(\gamma(t_i),\gamma(t_{i+1}))$, где супремум берётся по всем разбиениям $c=t_0\leqslant t_1\leqslant\ldots\leqslant t_n=d$.

Определение 1.5.7 (Спрямляемая кривая γ). $L_d(\gamma) < \infty$.

Пусть $x, y \in X$.

Определение 1.5.8 (Внутренняя метрика, порождённая метрикой d). $d_I(x,y) \stackrel{def}{=} \inf_{\gamma} l(\gamma)$, где инфимум берётся по всем кусочно гладким $\gamma : [a,b] \to M$, таким, что $\gamma(a) = x, \gamma(b) = y$.

Из неравенства треугольника $d_I \geqslant d$.

Интересный факт. $(d_I)_I = d_I$.

Определение 1.5.9 (Внутренняя метрика). Метрика d, совпадающая с внутренней метрикой, порождённой d.

Пример (Не внутернняя метрика). Рассмотрим окружность $S^1 \subset \mathbb{R}^2$. Метрика, индуцированная с \mathbb{R}^2 на S^1 — не внутренняя.

 $\mathit{Интересный}\ \phi \mathit{акт}.\ d_l$ — внутренняя метрика, и $l=L_{d_l}.$

Для доказательства стоит использовать (лемма 1.5.1).

 Π екция V 13 марта 2023 г.

//todo

Лекция VI 20 марта 2024 г.

1.5.2 Аксиомы плоскости Лобачевского

«На самом деле, аксиом много, и их можно по-разному выбирать»

Аксиомы аналогичны евклидовым.

- 1. Через любые две точки проходит единственная прямая.
- 2. Прямая разбивает плоскость на две части: любой отрезок, соединяющий две точки, пересекает данную прямую не более, чем в одной точке, и точки бьются на два класса эквивалентности относительно данного отношения.
- 3. Аксиома параллельных не верна: через одну точку можно провести много прямых, параллельных данной (не пересекающих данную):

Интересный факт. Это равносильно тому, что не существует точки O, в которой можно произвести гомотетию: $d(\lambda A, \lambda B) \neq \lambda d(A, B)$.

4. Однородность движения.

Определение 1.5.10 (Флаг). Тройка из точки, луча и полуплоскости, расположенных так:

Любой флаг переводится в любой другой движением.

Докажем, что данная аксиома верна в нашей модели.

Доказательство. Достаточно доказать, что в данный флаг можно перевести любой другой.

В качестве фиксированного флага выберем [(0,1), вверх, вправо].

Далее инверсия, сдвиг, отражение.

5. Неравенство треугольника: $d(x,y) \le d(x,z) + d(z,y)$, и равенство имеет место только когда $z \in [x,y]$.

И вот прямо такая маленькая система аксиом задаёт плоскость Лобачевского? Я забыл спросить

1.6 Модель Пуанкаре в круге

Сделаем инверсию I модели Лобачевского относительно A=(0,-1) с коэффициентом $K=\sqrt{2}$. $\langle v,w\rangle_{H_P}=\langle \mathrm{d}I(v),\mathrm{d}I(w)\rangle_{H_L}.$

Метрика осталась конформной, роль прямых теперь играют диаметры и ортогональные дуги окружностей.

Теорема 1.6.1. Конформный фактор метрики равен $\frac{2}{1-x^2-y^2}$. Иными словами, для $v\in T_{(x,y)}H_P:$ $|v|_{H_P}=\frac{2}{1-x^2-y^2}|v|_E.$

Доказательство. Рассмотрим $(x_0,y_0)\in H_P$. Пусть $(x_1,y_1)=I(x_0,y_0)$. Конформный фактор гиперболической плоскости в модели Лобачевского в точке (x_1,y_1) равен $\frac{1}{y_1}$.

Пусть при инверсии с центром в точке A точка B переходит в B'. Тогда имеется равенство $\overrightarrow{AB} = \overrightarrow{AB'} \frac{R^2}{|AB'|^2|}$. Выразим y_1 через x_0, y_0 :

$$y_1 = -1 + (y_0 + 1) \cdot \frac{2}{x_0^2 + (y_0 + 1)^2} = \frac{-x_0^2 - y_0^2 + 1}{r^2}$$

С другой стороны, конформный фактор инверсии равен $\lambda_I = \frac{2}{r^2} |v|_E$.

Получаем $|\operatorname{d}_{(x_0,y_0)}I(v)|_{H_L}=rac{|\operatorname{d}I(v)|_E}{y_1}=rac{2}{1-x_0^2-y_0^2}.$

Матрица Грама имеет вид $\begin{pmatrix} \frac{4}{(1-x^2-y^2)^2} & 0 \\ 0 & \frac{4}{(1-x^2-y^2)^2} \end{pmatrix}$.

1.7 Касательный вектор как дифференцирование

Пусть M — гладкое многообразие. $\mathscr{F}(M)$ — множество гладких функций, $\mathscr{X}(M)$ — множество гладких векторных полей.

Естественным образом, $\mathscr{F}(M)$ и $\mathscr{X}(M)$ образуют векторные пространства над \mathbb{R} . При этом, на $\mathscr{X}(M)$ также есть поточечное умножение, и $\mathscr{F}(M)$ таким образом формируют ассоциативную, коммутативную \mathbb{R} -алгебру. При этом $\mathscr{X}(M)$ также является модулем над $\mathscr{F}(M)$. Видимо, относительно поточечного умножения.

Как известно из курса алгебры, дифференциальный оператор D на \mathbb{R} -алгебре A — это такой линейный оператор $D:A\to A$, что выполнено правило Лейбница: $D(f\cdot g)=D(f)\cdot g+f\cdot D(g).$ Все дифференцирования образуют \mathbb{R} -линейной пространство $\mathrm{Der}(A).$

Для алгебры $\mathcal{F}(M)$ всякий $X \in \mathcal{X}(M)$ индуцирует дифференцирование D_X :

$$(D_X(f))(x) = d_x f(X_x)$$

Правило Лейбница выполнено, так как оно имеет место при дифференцировании произведения.

Теорема 1.7.1. Выше определённое отображение $\mathcal{X}(M) \to \mathrm{Der}(\mathcal{F}(M))$ является изоморфизмом.

Доказательство.

Лемма 1.7.1. Зафиксируем $p \in M$.

Пусть $\overline{D}: \mathcal{F}(M) \to \mathbb{R} - \mathbb{R}$ -линейное отображение, такое, что $\overline{D}(f \cdot g) = \overline{D}(f) \cdot g(p) + f(p) \cdot \overline{D}(g)$.

- 1. $Tor \partial a \exists ! v \in T_pM : \overline{D} = D_v \stackrel{def}{=} [f \mapsto d_p f(v)].$
- 2. В любой карте (U,ϕ) : $\widetilde{x}_i \stackrel{def}{=} x_i \circ \phi$: $v_i = \overline{D}(\widetilde{x}_i)$.

Доказательство леммы.

Заметим, что $\overline{D}(\text{const}) = 0$ (проверим для $1 : \overline{D}(1) = \overline{D}(1) \cdot 1 + 1 \cdot \overline{D}(1) = 2\overline{D}(1)$).

Заметим, что \overline{D} локально: если $f\big|_{U_n}=g\big|_{U_n}$, то $\overline{D}(f)=\overline{D}(g)$.

Сконструируем такую h, что в некоторой окрестности $p:h\equiv 1$, и $h\big|_{M\setminus U}\equiv 0$ (шапочка). Далее показываем локальность...

Пусть ϕ — карта, $v=(v_1,\ldots,v_n)$. Заметим, что $D_v(\widetilde{x}_i)=v_i$. Отсюда следует единственность и 2.

Теперь докажем существование. Зафиксируем карту. $v_i := D(\widetilde{x}_i)$.

Лемма 1.7.2 (Адамар). Пусть $f \in C^{\infty}(\mathbb{R}^n)$. Тогда $\exists g_1, \dots, g_n$ — гладкие, такие, что $f(x) - f(0) = \sum_i g_i(x) \cdot x_i$.

Доказательство леммы.

Положим $g_i(x)\coloneqq\int\limits_0^1 rac{\partial f}{\partial x_i}(tx)\,\mathrm{d}t.$ Проверим, что всё работает:

$$f(x) - f(0) = \int_0^1 \frac{\mathrm{d}f(tx)}{\mathrm{d}t} \,\mathrm{d}t = \int_0^1 \sum_{i=1}^n \frac{\partial f}{\partial x_i}(tx) \cdot x_i \,\mathrm{d}t = \sum_{i=1}^n g_i(t) \cdot x_i$$

$$\overline{D}(f(0) + \sum_{i} x_{i} \cdot g_{i}(x)) = \sum_{i} \overline{D}(x_{i} \cdot g_{i}) = \sum_{i} \overline{D}(x_{i}) \cdot g + x_{i} \cdot \overline{D}(g)...$$

Отсюда следует сюръективность $\mathcal{X}(M) \to \mathrm{Der}(\mathcal{F}(M))$ — по D определяем X(D), и проверяем, что получился (гладкий) элемент $\mathcal{X}(M)$.

Лекция VII 27 марта 2024 г.

1.8 Скобка Ли векторных полей

Пусть M — гладкое многообразие, $X,Y \in \mathcal{X}(M)$.

Определение 1.8.1 (Скобка Ли векторных полей). Отображение $[_,_]: \mathcal{X}(M) \times \mathcal{X} \to \mathcal{X}$, которое двум полям X,Y сопоставляет векторное поле, соответствующее дифференцированию

$$X(Y(f)) - Y(X(f))$$

Иными словами, [X,Y]f = X(Y(f)) - Y(X(f)).

Проверим, что это действительно дифференцирование. Линейность очевидна; правило Лейбница:

$$\begin{split} X(Y(f)) \cdot g + \underline{Y(f)} \cdot X(g) + \overline{X(f)} \cdot Y(g) + f \cdot X(Y(g)) - Y(X(f)) \cdot g - \overline{X(f)} \cdot Y(g) - \underline{Y(f)} \cdot X(g) - f \cdot Y(X(g)) = \\ &= X(Y(f) \cdot g + f \cdot Y(g)) - Y(X(f) \cdot g + f \cdot X(g)) = X(Y(f \cdot g)) - Y(X(f \cdot g)) = [X, Y](f \cdot g) \stackrel{?}{=} \\ &\stackrel{?}{=} ([X, Y]f) \cdot g + f \cdot ([X, Y]g) = (X(Y(f)) - Y(X(f))) \cdot g + f \cdot (X(Y(g)) - Y(X(g))) \end{split}$$

1.8.1 Выражение для скобки Ли в координатах

Пусть X,Y — два гладких векторных поля, $\phi:U\to\Omega$ — карта.

Введём $\widetilde{x}_i \coloneqq x_i \circ \phi$, запишем

$$[X,Y]_i = D_{[X,Y]}(\widetilde{x}_i) = D_{[X_\phi,Y_\phi]}(x_i) = [X_\phi,Y_\phi]_i = X_\phi Y_\phi(x_i) - Y_\phi X_\phi(x_i)$$

1.8.2 Пространство $\mathcal{X}(M)$ вместе со скобкой Ли образует алгебру Якоби

Чтобы проверить, что $\mathcal{X}(M)$ образует алгебру Ли, убедимся, что выполнены три аксиомы алгебр Ли:

1. Линейность по обеим аргументам: $\forall \alpha_i, \beta_i \in \mathbb{R}, X, Y \in \mathcal{X}(M)$:

$$[\alpha_1 X_1 + \alpha_2 X_2, Y] = \alpha_1 [X_1, Y] + \alpha_2 [X_2, Y]$$
$$[X, \beta_1 Y_1 + \beta_2 Y_2] = \beta_1 [X, Y_1] + \beta_2 [X, Y_2]$$

- 2. Кососимметричность: [X,Y] = -[Y,X], или же (эквивалентно) антисимметричность [X,X] = 0.
- 3. Тождество Якоби [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

1.8.3 Специфичные свойства скобки Ли векторных полей

Пусть $f, g \in \mathcal{F}(M)$.

Свойства (Скобка Ли).

• $[fX,Y] = f \cdot [X,Y] - Y(f) \cdot X$.

Доказательство.

$$[f \cdot X, Y](h) = (f \cdot X)(Y(h)) - Y((f \cdot X)(h)) = (f \cdot X)(Y(h)) - Y(f \cdot X(h)) = (f \cdot X)(Y(h)) -$$

Так как $(f \cdot X)(\cdots)$ — это производные по направлению, то это равно $f \cdot X(\cdots)$.

$$(=) f \cdot (X(Y(h))) - Y(f) \cdot X(h) - f \cdot Y(X(h))$$

• $[X, g \cdot Y] = g \cdot [X, Y] + X(g) \cdot Y$.

Доказательство. Ради разнообразия, выведем из первого и кососимметричности

$$[X,g\cdot Y] = -[g\cdot Y,X] = -(g\cdot [Y,X] - X(g)\cdot Y) = g\cdot [X,Y] + X(g)\cdot Y$$

• $[f \cdot X, q \cdot Y] = f \cdot q \cdot [X, Y] + f \cdot X(q) \cdot Y - q(Y(f)) \cdot X$.

Доказательство.

$$[f \cdot X, q \cdot Y] = q \cdot [f \cdot X, Y] + (f \cdot X)(q) \cdot Y = q \cdot (f \cdot [X, Y] - Y(f) \cdot X) + (f \cdot X)(q) \cdot Y \quad \Box$$

Определение 1.8.2 (Группа Ли). Гладкое многообразие, являющееся топологической группой; умножение $G \times G \to G$ и взятие обратного $G \to G$ — гладкие отображения.

Пример (Группы Ли). Различные линейные группы: $GL(n,\mathbb{R}), SL(n,\mathbb{R}), O(n,\mathbb{R}), \dots$

Всякий элемент $g \in G$ действует на группе левыми и правыми трансляциями: $L_g: x \mapsto gx, R_g: x \mapsto xg$.

Определение 1.8.3 (Левоинвариантное векторное поле X). Такое поле, что $\mathrm{d} L_q(X) = X$.

Выбрав ортонормированный базис $(x_1,\ldots,x_n)\in T_1(G)$ $(1\in G-$ единица в группе), и распространим x_1,\ldots,x_n до левоинвариантых векторных полей X_1,\ldots,X_n соответствующим дифференциалом L_g (действие транзитивно, поэтому, X_1,\ldots,X_n определены всюду). Это будут векторные поля, отвечающие за ортонормированные базисы во всех точках группы.

Можно определить левоинвариантную метрику: для $\widetilde{X},\widetilde{Y}\in T_g(G):\langle \widetilde{X},\widetilde{Y}\rangle=\langle \mathrm{d}_1L_g(X),\mathrm{d}_1L_g(Y)\rangle.$

1.9 Тензоры на многообразии

Пусть V — векторное пространство.

Определение 1.9.1 (Тензор типа
$$(k,m)$$
). Тензор $\underbrace{(V^* \otimes \cdots \otimes V^*)}_k \otimes \underbrace{(V \otimes \cdots \otimes V)}_m$

Мы будем рассматривать только тензоры типа (k,0) и (k,1), что, как известно, можно рассматривать, как полилинейные отображения

$$\underbrace{V \times \cdots \times V}_k \to \mathbb{R}$$
 и $\underbrace{V \times \cdots \times V}_k \to V$ соответственно

Определение 1.9.2 (Тензор (тензорное поле) на M типа (k,0)). Семейство $\{F_x\}_{x\in M}$ тензоров валентности (k,0) вместе со следующим условием гладкости:

$$\forall X_1, \dots, X_k \in \mathcal{X}(M) : F(X_1, \dots, X_k) \in \mathcal{F}(M)$$

Пример (Тензор тпа (n,0)).

Риманова метрика на n-мерном многообразии.

Контрпример (Не тензор).

Символ Кристоффеля $\Gamma^k_{i,j}$ не является записью какого-то тензора в координатах: отображение $F(X,Y)=\nabla_X Y$ не $\mathscr{F}(M)$ -линейно: $\nabla_X (f\cdot Y)=X\cdot f+f\cdot \nabla_X (Y).$

Определение 1.9.3 (Тензор (тензорное поле) на M типа (k,1)). Семейство $\{F_x\}_{x\in M}$ тензоров валентности (k,1) вместе со следующим условием гладкости:

$$\forall X_1, \ldots, X_k \in \mathcal{X}(M) : F(X_1, \ldots, X_k) \in \mathcal{X}(M)$$

Таким образом, тензорному полю на M сопоставляется \mathbb{R} -полилинейное (и даже $\mathscr{F}(M)$ -полилинейное)

$$F: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to \begin{bmatrix} \mathcal{F}(M) \\ \mathcal{X}(M) \end{bmatrix}$$

Теорема 1.9.1. Если $F:\mathcal{X}(M)\times\cdots\times\mathcal{X}(M)\to egin{bmatrix} \mathscr{F}(M) \\ \mathcal{X}(M) \end{pmatrix}$ является $\mathscr{F}(M)$ -полилинейным, то F является гладким тензорным полем.

Доказательство.

1. Докажем локально случай k=1.

Проверим локальность. Рассмотрим $p\in U$. Пусть $X\big|_U=Y\big|_U$. (F(X))(p)=(F(Y))(p). Пусть h- гладкий спуск с единицы, $h\big|_{U'}\equiv 1, h\big|_{M\setminus U}\equiv 0$, где $p\in U'\subset U$.

Теперь
$$h \cdot F(Y) = h \cdot F(X) = F(hX) = F(hY)$$
.

2. Достаточно доказать для $X \in \mathcal{X}(M)$, что значение (F(X))(p) зависит только от X_p . Доказав, мы построим семейство, отвечающее F.

Зафиксируем карту (U, ϕ) . Выберем базис e_1, \dots, e_n , ему отвечают координатные векторные поля E_i . Согласно $\mathcal{F}(M)$ -линейности все раскладывается в сумму $X_i \cdot F_i$.

(Распространим координатное векторное поле, используя гладкий спуск с единицы: $\widetilde{E}_i|_U \equiv 0$ в дополнении карты). Из локальности

$$F(X) = F(X_1 \widetilde{E}_1 + \dots + X_n \cdot \widetilde{E}_n)$$

3. Случай $k \neq 1$ сводится к предыдущему последовательным применением.

Лекция VIII

3 апреля 2024 г.

Пусть E_i, E_j — координатные поля. Имеется такой факт, что $[E_i, E_j] = 0$.

Доказательство.
$$[X,Y]^{\phi}=(Y^{\phi})'_{X^{\phi}}-(X^{\phi})'_{Y_{\phi}}=0.$$

Вообще, скобка Ли — мера некоммутативности векторных полей, что мы докажем позже.

1.9.1 Поведение скобки Ли при отображениях

Пусть M, N — гладкие многообразия, $X \in \mathcal{X}(M), Y \in \mathcal{X}(M), F : M \to N$ — гладкое.

Определение 1.9.4 (F переводит X в Y). $\forall p \in M : d_p F(X_p) = Y_p$.

Вообще говоря, если дано отображение $F:M\to N$, и векторное поле $X\in\mathcal{X}(M)$, то не всегда найдётся $Y\in\mathcal{X}(N)$ такой, что X переходит в Y (например, F(p)=F(q), и $\mathrm{d}_pF(X_p)\neq\mathrm{d}_pF(X_q)$), а если и найдётся, то может быть не единственно, если F не сюръективно.

Пусть $F:M \to N$ переводит $X \in \mathcal{X}(M)$ в $Y \in \mathcal{X}(N)$.

Лемма 1.9.1. F переводит X в $Y \iff \forall$ гладкого $f:Y \to \mathbb{R}: (Y(f) \circ F)(p) = X(f \circ F)(p)$.

Доказательство.

- \Rightarrow . $X(f \circ F)(p) = d_p(f \circ F)(X) = (d_p f \circ dF)(X) = d_p f(Y) = (Yf)(F(p))$.
- \Leftarrow . Выберем локально $f \coloneqq x_i$ координатная функция. $Y_i(F(p)) = ((Yx_i) \circ F)(p) = X(x_i \circ F)(p) = d(x_i \circ F)(X) = dx_i \circ dF(X) = (dF(X))_i$. Тем самым, совпали i-е координаты полей, значит, сами поля совпали.

Теорема 1.9.2. Пусть $F:N\to M$ гладкое, $X_1,X_2\in\mathcal{X}(M),Y_1,Y_2\in\mathcal{X}(N)$. Если $F(X_1)=Y_1$ и $F(X_2)=Y_2$, то $F([X_1,X_2])=[Y_1,Y_2]$.

Доказательство. Пусть $f:N\to\mathbb{R}$ — произвольная гладкая. Проверим, что $F([X_1,X_2])$ и $Y_1,Y_2]$ одинаково действуют на f:

$$[Y_1, Y_2](f) = Y_1(Y_2(f)) - Y_2(Y_1(f)) = Y_1(X_2(f \circ F)) - Y_2(X_1(f \circ F)) = [X_1, X_2](f \circ F)$$

Согласно (лемма 1.9.1), имеет место равенство.

Следствие 1.9.1. Пусть M — гладкое многообразие, $N \subset M$ — гладкое подмногообразие.

Eсли $X,Y \in \mathcal{X}(N)$ касательны к N, то и [X,Y] — касательно к N.

Доказательство. Рассмотреть F = in.

1.10 Аффинные связности

Пусть M — гладкое многообразие

Определение 1.10.1 (Аффинная связность). Отображение

$$\mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$$

 $V, W \mapsto \nabla_V W$

со следующими свойствами:

- 1. \mathbb{R} -билинейность.
- 2. $\mathscr{F}(M)$ -линейность по первому аргументу: $\nabla_{f \cdot V} W = f \cdot \nabla_V W$.
- 3. Правило Лейбница по второму аргументу: $\nabla_V(f\cdot W)=V(f)\cdot W+f\cdot \nabla_V W.$

Примеры.

- Обычное дифференцирование: на \mathbb{R}^n заданы векторные поля.
- Ковариантная производная на поверхности $\Sigma^2 \subset \mathbb{R}^3$
- Покоординатное дифференцирование в карте.

Теорема 1.10.1 (О пространстве связностей). Пусть M — гладкое многообразие, $\nabla, \widetilde{\nabla}$ — две аффинные связности.

- 1. $\nabla \widetilde{\nabla}$ тензор типа (2,1).
- 2. Если T тензор типа (2,1), ∇ связность, то T + ∇ связность.

Доказательство.

• Достаточно проверить $\mathcal{F}(M)$ -линейность по второму аргументу:

$$\nabla_V(f \cdot W) - \widetilde{\nabla}_V(f \cdot W) = \underline{V(f) \cdot W} + f \cdot \nabla_V W - \underline{V(f) \cdot W} - f \cdot \widetilde{\nabla}_V W$$

• Достаточно проверить правило Лейбница:

$$(\nabla + T)_V(f \cdot W) = f(V) \cdot W + f \cdot \nabla_V W + T(V, f \cdot W) = f(V) \cdot W + f \cdot (\nabla + T)_V(W)$$

Предложение 1.10.1 (Локальность аффинной связности). Пусть ∇ — аффинная связность. $\forall V,W\in\mathcal{X}(M): \nabla_V(W)$ зависит только от V_p и W в окрестности p.

Доказательство. При фиксированном втором аргументе $\nabla (W)$ — тензор типа (1,1), значит, зависит только от V_p .

Пусть имеются два поля W_1, W_2 , совпадающие в окрестности $U_p \ni p$. Пусть h — гладкий спуск с единицы в окрестности $p, h|_{U^{\complement}} \equiv 0.$

$$h \cdot (\nabla_V W_2) + \underbrace{(W_2(h) \cdot V)_p}_0 = \nabla_V (h \cdot W_2) = \nabla_V (h \cdot W_1) = h \cdot (\nabla_V W_1) + \underbrace{(W_1(h) \cdot V)_p}_0$$

Следствие 1.10.1. Для аффинной связности ∇ и открытого $U\subset M$ имеет смысл говорить о сужении $\nabla |_{T}$.

Рассмотрим карту $\phi:(U\subset M) o \mathbb{R}^n.$ Пусть ∇ – аффинная связность на M, а ∇^ϕ — покоординатное дифференцирование в карте. Тогда $\nabla - \nabla^{\phi}$ — некоторый тензор Γ типа (2,1).

Пусть E_1, \ldots, E_n — координатные векторные поля. Тогда $\Gamma(E_i, E_j) = \Gamma_{i,j}$

Определение 1.10.2 (Символы Кристоффеля). $\Gamma_{i,j} = \Gamma(E_i, E_j)$.

В отличие от сивмолов Кристоффеля прошлого семестра, эти отвечают координатам тензора, и имеют смысл не на всём многообразии, а только в данной карте.

1.10.1 Симметричная связность

Определение 1.10.3 (∇ — симметричная связность). Такая аффинная связность ∇ , что $\forall X, Y \in \mathcal{X}(M): \nabla_X Y - \nabla_Y X = [X,Y].$

Утверждение 1.10.1. $T := \nabla_X Y - \nabla_Y X - [X,Y] -$ *тензор типа* (2,1).

Доказательство. Выражение антисимметрично ($\nabla_X X - \nabla_X X - [X, X] = 0$) и \mathbb{R} -билинейно. Проверим $\mathscr{F}(M)$ -билинейность по второму аргументу:

$$\nabla_X(f \cdot Y) - \nabla_{f \cdot Y}X - [X, f \cdot Y] = \underbrace{X(f) \cdot Y} + f \cdot \nabla_X Y - f \cdot \nabla_Y X - (f \cdot [X, Y] + \underbrace{X(f) \cdot Y}) =$$

$$= f \cdot (\nabla_X Y - \nabla_Y X - [X, Y])$$

Этот тензор T называется тензор кручения.

Следствие 1.10.2. Проверку того, что связность симметрично, достаточно осуществлять на координатных полях. Для координатных полей $\nabla_{E_i} E_j - [E_i, E_j] = \Gamma_{i,j}$. Тем самым, связность симметрична \iff символы Кристоффеля равны нулю.

Пусть $(M, \langle _, _ \rangle)$ — многообразие с римановой метрикой.

Определение 1.10.4 (Риманова связность ∇). Аффинная связность ∇ , согласованная с римановой метрикой: $X\langle Y,Z\rangle = \langle \nabla_XY,Z\rangle + \langle Y,\nabla_XZ\rangle$.

Утверждение 1.10.2. $S := X \langle Y, Z \rangle - \langle \nabla_X Y, Z \rangle - \langle Y, \nabla_X Z \rangle$ — тензор типа (3,0).

 \mathcal{A} оказательство. \mathbb{R} -полилинейность по всем аргументам и $\mathcal{F}(M)$ -линейность по первому очевидны.

По второму и третьему аргументам симметрично, проверим билинейность по второму:

$$X \langle f \cdot Y, Z \rangle - \langle \nabla_X (f \cdot Y), Z \rangle - \langle f \cdot Y, \nabla_X Z \rangle =$$

$$= \underline{X(f) - \langle Y, Z \rangle} + f \cdot X \langle Y, Z \rangle - \underline{\langle X(f) - Y, Z \rangle} - \langle f \rangle \nabla_X (Y), Z - f \cdot \langle Y, \nabla_X Z \rangle$$

Следствие 1.10.3. Можно проверять римановость связности только на координатных полях.

Определение 1.10.5 (Связность Леви-Чивиты). Симметричная риманова связность.

Лекция IX 10 апреля 2024 г.

1.10.2 Символы Кристоффеля

Дадим второе определение, и поймём, что оно совпадает с первым.

Определение 1.10.6 (Символы Кристоффеля в карте). $\Gamma_{i,j} = \nabla_{E_i} E_j$.

Опять же, символы первого рода $\Gamma_{i,j;k}=\langle \Gamma_{i,j},E_k \rangle$, и символы второго рода $\Gamma_{i,j}=\sum_i \Gamma_{i,j}^k E_k$.

Это совпадает с (определение 1.10.2), так как $\Gamma^{\phi}(E_i,E_j)=
abla_{E_i}E_jabla_{E_i}^{\phi}E_j.$

Факт 1.10.1. Доказательство. $\left\langle \Gamma_{i,j}^{k}, E_{l} \right\rangle = \Gamma_{i,j}^{k} \cdot g_{k,l}$ Пусть $(g_{n,m})_{n,m}$ — матрица Грама, $(g_{n,m}') = (g_{n,m})^{-1}$ — обратная матрица, тогда так как $(g_{n,m}) \begin{pmatrix} \Gamma_{i,j}^{1} \\ \vdots \\ \Gamma_{i,j}^{n} \end{pmatrix} = \begin{pmatrix} \Gamma_{i,j;1} \\ \vdots \\ \Gamma_{i,j;n} \end{pmatrix}$, то $(g_{n,m}) \begin{pmatrix} \Gamma_{i,j}^{1} \\ \vdots \\ \Gamma_{i,j;n} \end{pmatrix}$. $(g_{n,m}') \begin{pmatrix} \Gamma_{i,j;1} \\ \vdots \\ \Gamma_{i,j;n} \end{pmatrix}$.

Тем самым, одни символы гладкие тогда и только тогда, когда гладкие — другие.

1.10.3 Единственность связности Леви-Чивиты

Теорема 1.10.2 (Основная теорема римановой геометрии). Пусть $(M, \langle _, _ \rangle)$ — риманово многообразие. Тогда существует и единственна связность Леви-Чивиты ∇ .

Доказательство. Перепишем: $(g_{i,j})'_{x_k} = \langle \Gamma_{k,i}, E_j \rangle + \langle E_i, \Gamma_{k,j} \rangle = \Gamma_{k,i;j} + \Gamma_{k,j;i}$. Переставляя индексы циклически, получаем уравнения $\begin{cases} (g_{i,j})'_{x_k} = \langle \Gamma_{k,i}, E_j \rangle + \langle E_i, \Gamma_{k,j} \rangle = \Gamma_{k,i;j} + \Gamma_{k,j;i} \\ (g_{i,j})'_{x_k} = \langle \Gamma_{k,i}, E_j \rangle + \langle E_i, \Gamma_{k,j} \rangle = \Gamma_{k,i;j} + \Gamma_{k,j;i} \end{cases}$ Так как символы симметричны, то есть $\Gamma^k_{i,j} = \Gamma^k_{j,i}$, то

$$\Gamma_{i,j;k} = \frac{(g_{i,k})'_{x_j} + (g_{i,k})'_{x_i} - (g_{i,j})'_{x_k}}{2} \tag{*}$$

Используя разложение $\nabla = \nabla^{\phi} + \Gamma^{\phi}$, получаем единственность в каждой карте, значит, и глобальная единственность.

Доказали существование связности Леви-Чивиты в карте, согласованность следует из единственности (пересечение карт — карта). \Box

Ковариантное дифференцирование из прошлого семестра — эта самая связность.

1.11 Ковариантная производная вдоль пути

Пусть $\gamma:[a,b]\to M$ — гладкая (необязательно регулярная) кривая на гладком многообразии M.

Определение 1.11.1 (Гладкое векторное поле вдоль пути γ). Гладкое отображение $V:[a,b] \to TM$, такое, что $\forall t \in [a,b]: V(t) \in T_{\gamma(t)}M$.

Пусть M — гладкое многообразие, ∇ — связность, γ — гладкая кривая, V — векторное поле вдоль γ .

Определение 1.11.2 (Ковариантная производная V вдоль γ). Отображение $V\mapsto \frac{\nabla}{\mathrm{d}t}V$ со следующими свойствами:

- 1. $\frac{\nabla}{\mathrm{d}t}(V+W) = \frac{\nabla}{\mathrm{d}t}V + \frac{\nabla}{\mathrm{d}t}W$
- 2. $\frac{\nabla}{\mathrm{d}t}(f \cdot V) = f' \cdot V + f \cdot \frac{\nabla}{\mathrm{d}t}V$.
- 3. Если $\exists \widetilde{V}$ векторное поле на M, такое, что $\widetilde{V}(\gamma(t)) = V(t)$, то $\frac{\nabla}{\mathrm{d}t}V = \nabla_{\gamma'}\widetilde{V}.$

Выглядит, как ковариантная производная (по теореме о выпрямлении всё можно сделать), но если $\gamma'=0$, то там по-другому.

Теорема 1.11.1. Ковариантная производная вдоль пути существует и единственна.

Доказательство. Сначала докажем единственность. Разложим покоординатно: $V(t) = \sum_i V_i(t) \cdot E_i(\gamma(t))$.

$$\frac{\nabla}{\mathrm{d}t}V = \frac{\nabla}{\mathrm{d}t}\left(\sum_{i}V_{i}(t)\cdot E_{i}(\gamma(t))\right) = \sum_{i}\frac{\mathrm{d}v_{i}}{\mathrm{d}t}\cdot E_{i} + \sum_{i}V_{i}\cdot\frac{\nabla}{\mathrm{d}t}E_{i}$$

Обозначим $\gamma'(t) = \sum_i \alpha_i(t) \cdot E_i(\gamma(t))$. Так как координатное векторное поле вдоль пути отвечает обычному координатному векторному полю, то

$$V_i \cdot \frac{\nabla}{\mathrm{d}t} E_i = V_i \cdot \alpha_j \Gamma_{i,j}$$

Этого достаточно для единственности, распишем подробнее, чтобы показать существование

$$\frac{\nabla}{\mathrm{d}t}V = \sum_{i} V_i' \cdot E_i + \sum_{i,j,k} V_j \alpha_k \Gamma_{j,k}^i E_i \tag{**}$$

Существование, опять же, получается из единственности и соответствующей формулы: покроем носитель открытыми множествами W_i , таких, что $\forall W_i: \exists (U,\phi): U\supset W_i$. Далее несложно проверить, что определение при помощи формулы (**) даёт корректно определённую ковариантную производную вдоль пути. На пересечениях всё согласовано из единственности.

1.12 Геодезические в римановых многообразиях

Далее везде на гладком многообразии M определён гладкий метрический тензор, и ∇ — связность Леви-Чивиты.

Пусть $\gamma:[a,b] o M$ — гладкая кривая.

Определение 1.12.1 (γ — геодезическая). Такая кривая γ , что ковариантная производная её вектора скорости вдоль неё самой нулевая: $\frac{\nabla}{\mathrm{d}t}\gamma'=0$.

Пусть кривая натурально параметризована: $|\gamma'| \equiv 1$. Тогда кривизна $K_{\gamma} = \left| \frac{\nabla}{\mathrm{d}t} \gamma' \right|$.

Утверждение 1.12.1. Кривая геодезическая $\iff K_{\gamma} \equiv 0.$

Свойства.

- Если γ геодезическая, то $|\gamma'|=\mathrm{const}$: $\frac{\mathrm{d}}{\mathrm{d}t}\langle\gamma',\gamma'\rangle=\left\langle\frac{\mathrm{d}}{\mathrm{d}t}\gamma',\gamma'\right\rangle+\left\langle\gamma',\frac{\mathrm{d}}{\mathrm{d}t}\gamma'\right\rangle=0$ (докажем позже, что так можно).
- Если γ геодезическая, то $\widetilde{\gamma}(t)\coloneqq \gamma(at+b)$ тоже.

Доказательство.
$$\widetilde{\gamma}'=a\cdot\gamma'$$
, откуда $\frac{\nabla_{\widetilde{\gamma}}}{\mathrm{d}t}\widetilde{\gamma}'=a^2\frac{\nabla_{\gamma}\mathrm{d}t'}{\gamma}=0.$

1.12.1 Уравнение геодезической

Пусть в карте $\widetilde{\gamma} = \phi \circ \gamma = (a_1(t), \dots, a_n(t))$, тогда $\widetilde{\gamma}'(t) = (a_1'(t), \dots, a_n'(t))$. Запишем (**):

$$\widetilde{\gamma}'' = \sum_{i} a_i'' \cdot E_i + \sum_{i,j} a_i a_j \cdot \Gamma_{i,j}^k \cdot E_k$$

Фиксируя E_k , получаем n уравнений, проиндексированных при помощи k: $a_k'' + \sum_{i,j} a_i a_j \Gamma_{i,j}^k$.

Теорема 1.12.1. Пусть $(M, \langle _, _ \rangle)$ — гладкое риманово многообразие, ∇ — связность Леви-Чивиты, $p \in M, v \in T_pM$.

Тогда $\exists \varepsilon>0, \gamma:(-\varepsilon,\varepsilon)\to M$ — такая геодезическая. что $\gamma(0)=p, \gamma'(0)=v.$

Доказательство. Решаем систему дифференциальных уравнений второго порядка.

1.12.2 Параллельный перенос вдоль пути

Пусть $\gamma:[a,b] o M$ — гладкая кривая, V — гладкое векторное поле вдоль $\gamma.$

Определение 1.12.2 (V паралелльно влоль γ). $\frac{\nabla}{dt}V\equiv 0$.

В частности, вектор скорости геодезической параллелен вдоль неё.

Теорема 1.12.2. Пусть $p \in M, v_0 \in T_pM$. $\gamma(0) = p, \gamma'(0) = p$. Утверждается, что $\exists! V(t)$ — векторное поле вдоль γ , параллельное вдоль γ , такое, что $V(0) = v_0$.

Доказательство. Опять запишем (**) $\frac{\nabla}{\mathrm{d}t}V=0=\sum_i V_i'\cdot E_i+\sum_{i,j,k}V_ja_k\Gamma_{j,k}^i\cdot E_i$. Получили n уравнений первого порядка с необходимым количеством начальных данных. Значит, $\exists !$ решение на всей области определения.

Определение 1.12.3 (Параллельный перенос вектора v_0 вдоль γ в точку $\gamma(t_*)$). Значение векторного поля вдоль γ , параллельного γ , в точке t_* .

Обозначим за $P_{t_1}^{t_2}: T_{\gamma(t_1)}M o T_{\gamma(t_2)}M$ отображение переноса вектора.

Замечание. Параллельный перенос — линейное отображение, так как свойство быть параллельным вдоль пути сохраняется при взятии линейных комбинаций.

Свойства.

• Пусть X,Y — векторные поля, параллельные вдоль γ . Тогда $\langle X(t),Y(t)\rangle=\mathrm{const.}$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle X(t), Y(t) \right\rangle = \left\langle \frac{\nabla}{\mathrm{d}t} X, Y \right\rangle + \left\langle X, \frac{\nabla Y}{\mathrm{d}t} \right\rangle$$

Следствие 1.12.1. Вдоль пути наблюдается изоморфизм векторных пространств $T_p M$ и $T_q M$.

Предложение 1.12.1. Пусть $t_0 \in [a,b]$ Тогда $\frac{\nabla}{\mathrm{d}t}X = \frac{\mathrm{d}}{\mathrm{d}t}(P_t^{t_0}X(t))$

Запишем $X = \sum\limits_{i} X_{i}B_{i}$. Тогда

$$\frac{\nabla X}{\mathrm{d}t} = \sum_{i} x_i' \cdot B_i + \sum_{i} x_i \cdot \underbrace{\frac{\nabla}{\mathrm{d}t} B_i}_{0}$$

Зафиксируем $p \in M, v \in T_pM$.

Определение 1.12.4 (Экспоненциальное отображение). Частично определённое отображение $\exp_p:$ $(\subset T_pM)\to M$, такое, что $\exp_p(v)$ — это $\gamma(1)$, где γ — геодезическая с начальными данными $\gamma(0)=p,\gamma'(0)=v.$ $\exp_p(v)$ определено если и только если геодезическая с такими параметрами определена в 1.

Также определяют $\exp:(\subset TM)\to M$, определённое поточечно. В курсе дифференциальных уравнений доказывались соответствующие теоремы, из которых видно, что $\exp-$ гладкое отображение, однозначно определённое на некотором открытом подмножестве TM.

Докажем утверждение

Утверждение 1.12.2. Пусть $\gamma:[0,1]\to M$ — кривая на римановом многообразии, ∇ — связность Леви-Чивиты, X,Y — гладкие векторные поля вдоль γ . Тогда

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle X, Y \rangle = \left\langle \frac{\nabla}{\mathrm{d}t} X, Y \right\rangle + \left\langle X, \frac{\nabla}{\mathrm{d}t} Y \right\rangle$$

Доказательство. Пусть (U,ϕ) — карта, и E_i — координатные векторные поля. Разложим $X=\sum_i x_i E_i$ и $Y=\sum_i y_j E_j$. Преобразуем левую часть:

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i,j} \left\langle x_i E_i, y_j E_j \right\rangle = (x_i, y_j)' \cdot g_{i,j} + x_i y_j \cdot \frac{\mathrm{d}g_{i,j}}{\mathrm{d}t}, \text{ fige } \frac{\mathrm{d}g_{i,j}}{\mathrm{d}t} = \underbrace{\widetilde{\gamma}_k'}_{a_k} \cdot (g_{i,j})_{x_k}' = a_k \cdot (\Gamma_{i,k;j} + \Gamma_{j,k;i})$$

Теперь преобразуем правую часть, воспользовавшись (**):

$$\sum_{k} \left\langle x_i' E_i + \sum_{i,j} a_i x_j \Gamma_{i,j}, y_k E_k \right\rangle + \sum_{i} \left\langle x_i E_i, y_k' E_k + \sum_{i,k} a_j y_k \Gamma_{j,k} \right\rangle$$

Несложно видеть, что выражения равны.

Пусть M^2 — риманово многообразие, γ — геодезическая. Вектор γ' параллелен вдоль γ . Выберем какой-нибудь вектор $v \in T_{\gamma(0)}M, v \perp \gamma'(0)$, и разнесём его вдоль γ . Из сохранения скалярного произведения мы получим ортонормированный базис вдоль γ .

Свойства (Экспонента).

- Прямо по определению получаем $\exp(tv) = \gamma_v(t)$. Тем самым, для фиксированного $v \in TM$: отображение $t \mapsto \exp(tv)$ геодезическая с вектором скорости v в нуле.
- $\forall p \in M : d_p \exp_p = \mathrm{id}$ напрямую следует из предыдущего.

Следствие 1.12.2. По теореме об обратной функции \exp_p — локальный диффеоморфизм окрестностей $0 \in T_pM$ и $p \in M$.

Рассматриваем риманово многообразие со связностью Леви-Чивиты $(M,\langle _,_\rangle\,, \nabla).$

Определение 1.12.5 (Радиус инъективности M в точке p). Число

$$r_{\mathrm{inj}}(p) \stackrel{def}{=} \sup \left\{ r \in \mathbb{R}_{>0} \middle| \exp_p : (B_r(0) \subset T_pM) o M - \mathsf{диффеоморфизм} \ \mathrm{на} \ \mathrm{oбраз}
ight\}$$

Бывают различные причины того, что радиус инъективности конечен:

- В цилиндре геодезические встречаются
- В некомпактном они могут уткнуться в «край»
- Геодезические могут сойтись

Определение 1.12.6 (Радиус инъективности многообразия M). Число $r_{\mathrm{inj}}(M) = \inf_{p \in M} r_{\mathrm{inj}}(p)$.

Теорема 1.12.3. Радиус инъективности локально отделён от нуля: $\forall p \in M: \exists \varepsilon > 0, U \ni p: \inf_{x \in U} r_{\mathrm{inj}}(x) > \varepsilon.$

Доказательство. Определим $F:TM\to M\times M, \underbrace{v_p}_{\in T_pM}\mapsto (\exp_p v_p,p)$. Изучим его дифференциал в $(x_1,\dots,x_n,\xi_1,\dots,\xi_n)$. F(0,x)=(x,x) и $F(\xi_p,p)=(\xi_p,p)$, откуда

$$rac{\partial F}{\partial (x, \xi)} = egin{pmatrix} E & 0 \ E & E \end{pmatrix}$$
 — невырожден

Получаем, что F — локальный диффеоморфизм.

Тем самым, имеется открытое подмножество в TM, и в нём есть параллелепипед $V \times W$, где $p \in V \subset M$ и $0 \in W \subset T_pM$. Отсюда получаем, что и требовалось доказать (но почему-то надо ещё воспользоваться непрерывностью метрического тензора?...) Видимо, предполагалось немного другое определение F, в карте, чтобы можно было пользоваться теоремой об обратной функции.

Пусть D — декартовы координаты в T_pM , P — полярные (отображения $T_pM \to \mathbb{R}^n$). $U \ni p$ — окрестность, на которую \exp_p отображается диффеоморфизм.

Определение 1.12.7 (Нормальные геодезические координаты в окрестности $p \in M$). $D \circ (\exp_p^{-1})$

Определение 1.12.8 (Полярные геодезические координаты в окрестности $p \in M$). $P \circ (\exp_p^{-1})$

1.13 Лемма Гаусса. Геодезические

Пусть $(M,\langle_,_\rangle,\nabla)$ — риманово многообразие со связностью Леви-Чивиты, $\gamma:[a,b]\to M$ — гладкая кривая.

Определение 1.13.1 (Гладкая вариация γ). Гладкое отображение $Q:[a,b] \times [-\varepsilon,\varepsilon] \to M$, такое, что $Q(_,0) \equiv \gamma$. Отображения $\gamma_\tau \coloneqq Q(_,\tau)$ называют продольными линиями вариациями, а $\delta_t \coloneqq Q(t,_)$ — поперечными линиями. Вариация называется геодезической, если все продольные линии γ_τ — геодезические.

Определение 1.13.2 (Поле вариации Q). Векторы скорости поперечных линий δ' (можно рассматривать его, как гладкое поле вдоль γ , заданное по формуле $\delta'_t(0)$, можно — везде как что?)

Заметим, что $\frac{\partial Q}{\partial t}$ — векторные поля вдоль соответствующих поперечных линий, и $\frac{\partial Q}{\partial \tau}$ — векторные поля вдоль продольных линий.

Лемма 1.13.1. $\frac{\nabla}{\mathrm{d}t} \frac{\partial Q}{\partial \tau} = \frac{\nabla}{\mathrm{d}\tau} \frac{\partial Q}{\partial t}$. Если бы векторные поля индуцировались из соответствующего поля на многообразии, то это была бы обычная перестановка производных, но Q необязательно инъективно.

Доказательство. Разложим в карте $\phi \circ Q = (x_1(t,\tau),\ldots,x_n(t,\tau))$

Посмотрим на векторы скорости продольных линий $\frac{\partial Q}{\partial \operatorname{d} t} = \gamma_{\tau}'(t) = \sum_i \frac{\partial x_i}{\partial t}(t,\tau) E_i$. и поперечных $\frac{\partial Q}{\partial \tau} = \delta_t'(\tau) = \frac{\partial x_j}{\partial \tau} E_j$. Подставляя в (**) $(a_i = \frac{\partial x_i}{\partial t})$, получаем

$$\sum_{i} \frac{\partial}{\partial t} \frac{\partial \tau}{\partial x_{i}} E_{i} + \sum_{i,j} \frac{\partial x_{i}}{\partial t} \cdot \frac{\partial x_{i}}{\partial \tau} \Gamma_{i,j}$$

Выражение симметрично относительно t и τ .

Теорема 1.13.1 (Лемма Гаусса). $(M, \langle _, _ \rangle, \nabla)$ — многообразие со связностью Леви-Чивиты, $v \in T_pM$ таков, что определена $\exp_p(v)$.

Отождествим $T_pM = T_vT_pM$. $\forall w \in T_pM, w \perp v \Rightarrow d_v \exp_p(v) \perp d_v \exp(w)$.

Доказательство. Построим вариацию $V(\tau)=\cos \tau\cdot v+\sin \tau\cdot w$, далее $Q(t,\tau)\coloneqq \exp(t\cdot V(\tau))$. Так как экспонента \exp_p определена в некоторой окрестности v, то вариация Q определена в некоторой окрестности v.

Заметим, что Q — геодезическая вариация. Обозначим соответствующие векторные поля $X\coloneqq \frac{\partial Q}{\partial t}$ и $Y:=\frac{\partial Q}{\partial \tau},\ \gamma_0$ — геодезическая $t\mapsto \exp_p(tv).$

Продифференцируем $\langle X, Y \rangle$ вдоль γ_0 :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle X, Y \right\rangle = \left\langle \frac{\nabla}{\mathrm{d}t} X, Y \right\rangle + \left\langle X, \frac{\nabla}{\mathrm{d}t} Y \right\rangle = 0 + \left\langle X, \frac{\nabla}{\mathrm{d}\tau} X \right\rangle = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}\tau} \underbrace{\left\langle X, X \right\rangle}_{|V|^2}$$

Тем самым, $\langle X,Y \rangle = \mathrm{const.}$ Так как $|Y| \underset{t \to 0}{\longrightarrow} 0$, то $\langle X,Y \rangle \equiv 0$.

В точке $t=1, \tau=0$ это как раз означает ортогональность соответствующих производных.

Следствие 1.13.1. Применяя экспоненту к сфере с радиусом, получим сферу на многообразии, которая будет перпендикулярна радиусу, входящему в неё.

Лекция XI 24 апреля 2024 г.

Пусть $a,b \in M$, где M — риманово многообразие со связностью Леви-Чивиты ∇ .

Определение 1.13.3 (Кратчайшая между a и b). Кусочно-гладкая кривая $\gamma:[c,d]\to M$, реализующая расстояние между точками: $L(\gamma)=\mathrm{dist}(a,b)=\inf_{\widetilde{\gamma}}L(\widetilde{\gamma})$, где $\gamma,\widetilde{\gamma}$ соединяют a и b. Также кратчайшие называют ompesками.

Теорема 1.13.2. Пусть $p \in M, r_0 < r_{\rm inj}(p), v \in T_pM, |v| = r_0$. Тогда кривая $\gamma_0 : t \mapsto \exp_p(t \cdot v)$, определённая на [0,1] — единственная (с точность до перепараметризации) кратчайшая между своими концами.

Доказательство. Убедимся, что $\forall \gamma: [0,L] \to M: \gamma(0) = p, \gamma(L) = \gamma_0(1) \Rightarrow L(\gamma) \geqslant L(\gamma_0)$, и равенство имеет место лишь тогда, когда γ — перепараметризация γ_0 .

В полярных координатах, индуцированных экспонентой, γ_0 идёт по радиусу, и мы сейчас будем проецировать γ на этот же радиус.

Можно считать, что $\forall t \in (0,L): 0 < |\exp^{-1}(\gamma(0))| < r_0$: удовлетворяя этим границам, мы только уменьшаем длину γ (быть может, после этого кривая γ будет заканчиваться в другой точке сферы радиуса r_0).

Поднимем γ до $\widetilde{\gamma} := \exp_p^{-1} \circ \gamma$, и представим $\widetilde{\gamma} = \rho(t) \cdot u(t)$, где $\rho(t) = |\widetilde{\gamma}|, u(t) = \frac{\widetilde{\gamma}}{|\widetilde{\gamma}|}$. Вычислим производную. $\widetilde{\gamma}' = \rho' \cdot u + \rho \cdot u'$, и так как $\langle u, u \rangle = 1$, то $u' \perp u$.

Так как $\gamma = \exp_p \circ \widetilde{\gamma}$, то $\gamma' = \underbrace{\mathrm{d}_{\widetilde{\gamma}(t)} \exp(u)}_{v_1} \cdot \rho' + \underbrace{\mathrm{d}_{\widetilde{\gamma}(t)} \exp(u')}_{v_2} \cdot \rho$. По лемме Гаусса $v_1 \perp v_2$, откуда

 $|\gamma'|^2 = (\rho')^2 + \rho^2 \cdot (\mathrm{d}_{\widetilde{\gamma}(t)} \exp(u'))^2$. Тем самым, $|\gamma'| \geqslant |\rho'|$, и равенство на всей области определения достигается только при $u \equiv \mathrm{const.}$ Также понятно, что ρ должен монотонно возрастать, иначе $\int |\rho'|$ будет больше минимума.

Определение 1.13.4 (Кривая $\gamma:(0,L)\to M$ — локально кратчайшая). $\forall t_0\in(0,L):\exists \varepsilon:\gamma|_{[-\varepsilon-t_0:\varepsilon+t_0]}$ — кратчайшая.

Контрпример (Локально кратчаяшая, но не кратчайшая). Экватор на сфере.

Следствие 1.13.2.

- Геодезические локально кратчайшие.
- $\forall p \in M: \exists U_p: p \in U_p \subset M: \, \forall x,y \in U_p$: между x и y имеется единственная кратчайшая.

Доказательство. Подойдёт
$$U_p\coloneqq B_{\frac{r_{\rm inj}(p)}{4}}(p): \forall x,y\in U_p: x\in B_{r_{\rm inj}y}(y)\supset B_{\frac{r_{\rm inj}p}{2}}(y)$$

ullet γ — геодезическая \iff γ — локально кратчайшая.

Доказательство. Согласно предыдущему пункту, кратчайшие локально единственны. Геодезические тоже, и согласно (теорема 1.13.2), они локально совпадают. □

1.14 Тензор кривизны

M — риманово многообразие со связностью Леви-Чивиты ∇ .

Пусть $X, Y, Z, W \in \mathcal{X}(M)$.

Определение 1.14.1 (Преобразование кривизны). $R(X,Y)Z \stackrel{def}{=} \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$.

Лемма 1.14.1. Преобразование кривизны — тензор типа (3,1).

 $\ \ \,$ Доказательство. $\ \ \, \mathbb{R}$ -полилинейность очевидна из формулы, надо проверить $\mathcal{F}(M)$ -полилинейность.

Пусть $f \in \mathcal{F}(M)$, проверим тензориальность по Z:

$$\begin{split} R(X,Y)(f\cdot Z) &= \nabla_X(Y(f)\cdot Z + f\cdot \nabla_X Z) - \nabla_Y(X(f)Z + f\cdot \nabla_X Z) - (f\cdot \nabla_{[X,Y]}Z + ([X,Y](f))\cdot Z) = \\ &= X(Y(f))\cdot Z + Y(f)\cdot \nabla_X Z + X(f)\cdot \nabla_Y Z + f\cdot \nabla_X \nabla_Y Z - \\ &- (Y(X(f))\cdot Z + X(f)\cdot \nabla_Y Z + Y(f)\cdot \nabla_X Z + f\cdot \nabla_Y \nabla_X Z) - (f\cdot \nabla_{[X,Y]} + [X,Y])Z \end{split}$$

Теперь убедимся в тензориальности по Y:

$$R(X,f\cdot Y)Z=
abla_X(f\cdot
abla_YZ)-f\cdot
abla_Y\nabla_XZ-
abla_{[X,f\cdot Y]}Z=(X\cdot f)\cdot
abla_YZ+f\cdot
abla_X\nabla_YZ-f
abla_YZ-f
abla_{[X,Y]}Z-(Xf)
abla_YZ$$
Ура, сошлось. Тензориальность по X следует из кососимметричности по X и Y .

Определение 1.14.2 (Тензор кривизны). $\langle R(X,Y)Z,W \rangle$.

Теперь пусть $p \in M$, и зафиксирована двумерная плоскость $\sigma \leqslant T_p M$ с базисом (u,v). Преобразование и тензор кривизны — вещи, с которыми просто работать, а геометрический смысл кривизны заключается в секционной кривизне.

Интересный факт. Тензор криивзны восстанавливается из секционной кривизны.

Определение 1.14.3 (Секционная кривизна). $K_{\sigma}(u,v) \stackrel{def}{=} \frac{\langle R(u,v)v,u \rangle}{|u \wedge v|^2}$, где $u \wedge v$ — смешанное произведение, то есть $|u \wedge v| = \left| \begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right|$, если $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ и $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ в некотором **ортонормированном базисе**.

Лемма 1.14.2. Докажем, что секционная кривизна K_{σ} не зависит от выбора базиса (u,v).

Доказательство. Рассмотрим R(u,v), как линейный оператор $T_pM \to T_pM$. Воспользуемся линейностью и кососимметричностью...

Можно вспомнить выражение для гауссовой кривизны из предыдущего семестра

$$K = \frac{\langle \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y, X \rangle}{\det I}$$

в котором не было скобки Ли, но для координатных полей скобка Ли равна нулю, так что аналогия получается полная. Тем самым, можно сразу сказать, что $K_{\sigma}(S^n)=1$, и вскоре мы покажем, что $K_{\sigma}(\mathbb{H}^n)=-1$.

//геометрический смысл — сходящиеся и расходящиеся геодезические

Теорема 1.14.1.

$$-\langle R(Y,X)Z,W\rangle = \langle R(X,Y)Z,W\rangle = -\langle R(X,Y)W,Z\rangle$$

Доказательство. Первое очевидно из определения.

Для проверки кососимметричности билинейной формы $Z,W\mapsto \langle R(X,Y)Z,W\rangle$ достаточно проверить, что $\langle R(X,Y)Z,Z\rangle=0$. Запишем

$$\begin{split} X\left\langle Z,Z\right\rangle &=2\left\langle \nabla_{X}Z,Z\right\rangle \quad \Rightarrow \quad YX\left\langle Z,Z\right\rangle =2(\left\langle \nabla_{Y}\nabla_{X}Z,Z\right\rangle +\left\langle \nabla_{X}Z,\nabla_{Y}Z\right\rangle)\\ \left[X,Y\right]\left\langle Z,Z\right\rangle &=2\left\langle \nabla_{X}\nabla_{Y}Z-\nabla_{Y}\nabla_{X}Z,Z\right\rangle =2\left\langle \nabla_{[X,Y]}Z,Z\right\rangle \end{split}$$

Должно сойтись

1.15 Полугеодезические координаты

Пусть M^2 — двумерное многообразие, $X,Y\in \mathcal{F}(M)$ — координаты, причём |X|=1 и $X\perp Y$. Метрический тензор в этом базисе имеет вид $\begin{pmatrix} 1 & 0 \\ 0 & G \end{pmatrix}$, где $G=\langle Y,Y\rangle$.

Пример (Полугеодезические координаты). Полярные координаты (то есть координаты (ρ, ϕ) на \mathbb{R}^2).

Задача 1.15.1. Общий вид полугеодезических координат — эквидистанты от некоторой глад-кой регулярной кривой.

Лекция XII

8 мая 2024 г

Теорема 1.15.1. В полугеодезических координатах первая координатная линия — геодезическая: $\nabla_X X = 0$, причём $\nabla_X Y = \nabla_Y X = \frac{G_X'}{2G} Y$.

Доказательство.

- 1. $\nabla_X Y = \nabla_Y X$, так как для координатных векторных полей $[X,Y] = 0 = \nabla_X Y \nabla_Y X$.
- 2. $0 = X \langle X, X \rangle = 2 \langle \nabla_X X, X \rangle$
- 3. $0 = Y \langle Y, Y \rangle = 2 \langle \nabla_Y Y, Y \rangle$
- 4. $0 = X \langle X, Y \rangle = \langle \nabla_X X, Y \rangle + \langle X, \nabla_X Y \rangle$.
- 5. Так как X и Y базис, то $\nabla_X X \perp X, Y \Rightarrow \nabla_X X = 0$.

6.
$$\langle Y,Y \rangle = G \Rightarrow G_X' = 2 \, \langle \nabla_X Y,Y \rangle$$
. Из (3) получаем $\langle \nabla_X Y,X \rangle = 0 \Rightarrow \nabla_X Y \parallel Y$. Тем самым, $\nabla_X Y = \frac{\langle \nabla_X Y,Y \rangle \cdot Y}{\langle Y,Y \rangle} = \frac{G_X'}{2G} Y$.

Теорема 1.15.2 (О выражении секционной кривизны в полугеодезических координатах). В полугеодезических координатах $K = -\frac{\sqrt{G}''_{X,X}}{\sqrt{G}} = -\frac{|Y|''_{X,X}}{|Y|}$.

Доказательство. Посчитаем по определению гауссову кривизну $K = K_{X \wedge Y} = -\frac{\langle R(X,Y)X,Y \rangle}{|X \wedge Y|^2}$. Вопервых, $|X \wedge Y|^2 = G$. Далее скобка Ли отсутствует, так как поля координатные:

$$R(X,Y)X = \nabla_X \nabla_Y X - \nabla_Y \underbrace{\nabla_X X}_0 = \nabla_X \left(\frac{G_X'}{2G} Y \right) =$$

$$= \frac{1}{2} \left(\frac{G_{X,X}'' G - G_X'^2}{G} \cdot Y + \frac{G_X'}{2G} \nabla_X Y \right) = \frac{1}{2} \left(\frac{2G_{X,X}'' G - G_X'^2}{2G^2} \right) Y$$

Сравним с выражением $\frac{\sqrt{f}''}{\sqrt{f}}=\frac{1}{2}\left(\frac{f''}{f}-\frac{(f')^2}{2f^2}\right)$

Утверждение 1.15.1. $K(\mathbb{H}^2) = -1$.

Доказательство. Возьмём модель в верхней полуплоскости. Введём полугеодезические координаты, запараметризовав $r(u,v)=(v,e^u)$. Это действительно полугеодезические координаты: $X=r'_u=(0,e^u), Y=r'_v=(1,0),$ и $X\perp Y, |X|_{\mathbb{H}^2}^2=\frac{e^{2u}}{e^{2u}}=1.$

Посчитаем
$$G=|Y|_{\mathbb{H}^2}^2=\frac{1}{e^{2u}}.$$
 Воспользуемся формулой: $K=-\frac{\frac{\mathrm{d}^2}{\mathrm{d}u^2}(e^{-u})}{e^{-u}}=-1.$

Итак, $K(S^2) = 1, K(\mathbb{H}^2) = -1$. Немного порисовав, видим, что кривизна показывает, сходятся или расходятся геодезические.

1.16 Формула Гаусса — Бонне

1.16.1 Ориентация

Пусть V-n-мерное пространство над \mathbb{R} , и $\mathcal{B}(V)-$ множество всевозможных базисов. Напомним следующие определения:

Определение 1.16.1 $(B_1, B_2 \in \mathcal{B}(V))$ одинаково ориентированы). $\det(B_1 \leadsto B_2) > 0$.

Определение 1.16.2 $(B_1, B_2 \in \mathcal{B}(V)$ против. ориентированы). $\det(B_1 \leadsto B_2) < 0$.

Определение 1.16.3 (Ориентация V). Отображение $\tau : \mathcal{B}(V) \to \{-1,1\}$, такое, что $\tau(B_1) \cdot \tau(B_2) = \operatorname{sign}(\det(B_1 \leadsto B_2))$.

Пусть M^n — гладкое многообразие. Обозначим за $\mathcal{B}(TM) = \bigcup_{x \in M} \mathcal{B}(T_xM)$ все базисы во всех касательных пространствах. Введём на нём топологию подмножества, индуцированную с $\underbrace{TM \times \cdots \times T_M}_{x \in M}$.

Определение 1.16.4 (Ориентация M). Непрерывное отображение $\tau: \mathcal{B}(TM) \to \{-1,1\}$, такое, что $\forall x \in M: \tau\big|_{T_xM}$ — ориентация на T_xM . Если ориентация существует, то многообразие *ориентируемо*.

1.16.2 Вращение векторного поля вдоль кривой. Поворот кривой

Пусть $(M^2,\langle_,_\rangle)$ — двумерное риманово многообразие, и $\gamma:[a,b]\to M$ — кусочно-гладкая кривая, W — векторное поле вдоль $\gamma.$

Определение 1.16.5 (W — кусочно-гладкое и кусочно-непрерывное). $\exists a=t_1\leqslant\ldots\leqslant t_n=b:W|_{[t_i,t_{i+1}]}$ — гладкое. Данное разбиение может никак не соотноситься с разбиением кусочной гладкости для самой кривой γ .

При этом для точки t_i из разбиения гладкости для W обозначим $W_- := \lim_{\varepsilon \to 0_-} W(t_i + \varepsilon), W_+ := \lim_{\varepsilon \to 0_+} W(t_i + \varepsilon)$. По техническим причинам потребуем $W_- \neq -W_+$. Пусть M^2 ориентировано, то есть имеются понятия лево, право, по часовой стрелке, против часовой стрелки. Пусть в t_i имеется излом векторного поля W, обозначим за θ_i ориентированный угол между W_- и W_+ : $\theta_i = \begin{cases} \angle(W_-, W_+), & W_- \to W_+ \text{ поворачивается против часовой стрелки} \\ -\angle(W_-, W_+), & \text{иначе} \end{cases}$. Теперь W_- кусочно

гладкое векторное поле вдоль $\gamma, \ |W|=1.$ Пусть \widetilde{W} — такое, что (W,\widetilde{W}) — ортонормированный положительно ориентированный базис.

Определение 1.16.6 (Вращение векторного поля W вдоль γ). $\operatorname{rot}_{\gamma}W=\int\limits_{a}^{b}\left\langle \frac{\nabla}{\mathrm{d}t}W,\widetilde{W}\right\rangle \mathrm{d}t+\theta_{1}+\cdots+\theta_{n}.$

Пусть γ — кусочно-гладкая, $|\gamma'|=1, W=\gamma'$. Тогда $m\coloneqq\widetilde{W}$ — ориентированная нормаль к γ .

Определение 1.16.7 (Геодезическая кривизна). $K_{\gamma} = \left\langle \frac{\nabla \gamma'}{\mathrm{d}t}, m \right\rangle$. Ещё её называют *кривизной кривой со знаком*.

Определение 1.16.8 (Полная кривизна γ со знаком). $\psi(\gamma) = \text{rot}_{\gamma} \gamma'$. Ещё говорят *поворот кривой*.

Теорема 1.16.1. Пусть $\gamma:[0,L]\to M$ — кусочно-гладкая петля, $\gamma'(0)=\gamma'(L),\ W$ — кусочно-непрерывное кусочно-гладкое векторное поле вдоль γ (и тоже W(0)=W(L)).

Тогда параллельный перенос $P_0^L: T_{\gamma(0)}M \to T_{\gamma(L)}M$ — поворот на угол $\mathrm{rot}_{\gamma}W.$

Доказательство. Пусть E — векторное поле вдоль γ , параллельное вдоль γ , такое, что E(0) = W(0).

Сопоставим $E \leadsto \widetilde{E}$ и $W \leadsto \widetilde{W}$. $\begin{cases} W = \cos \alpha E + \sin \alpha \widetilde{E} \\ \widetilde{W} = -\sin \alpha E + \cos \alpha \widetilde{E} \end{cases}$ Можно выбрать α (единственным образом с точностью до глобального сдвига на $2\pi k$) так, что это — кусочно-непрерывный аргумент с разрывами в точках излома $<\pi$.

$$rac{
abla W}{\mathrm{d}t} = -\sinlpha\cdotlpha'E + \coslpha\cdotlpha'\widetilde{E}$$
, откуда $\left\langle rac{
abla W}{\mathrm{d}t},\widetilde{W}
ight
angle = lpha'.$

Сначала пусть W — гладкое. $\operatorname{rot}_{\gamma}W=\int\limits_{0}^{L}\left\langle \frac{\nabla W}{\mathrm{d}t},\widetilde{W}\right\rangle \mathrm{d}t=\int\limits_{0}^{L}\alpha'=\alpha(L)-\alpha(0)=\alpha(L)$. В общем более-менее всё.

Теперь если есть изломы W в точках t_i , то

$$\operatorname{rot}_{\gamma} W = \sum_{i=1}^{s} \int_{t_{i}}^{t_{i+1}} \left\langle \frac{\nabla W}{\mathrm{d}t}, \widetilde{W} \right\rangle \mathrm{d}t + \theta_{i} = \sum_{i=1}^{s} (\alpha(t_{i+1})_{-} - \alpha(t_{i})_{+}) + (\alpha(t_{i+1})_{+} - \alpha(t_{i+1})_{-})$$

и всё сокращается

Следствие 1.16.1. Если W_1 , $W_2 - \kappa a \kappa$ в условии теоремы, то $\operatorname{rot}_{\gamma} W_1 \equiv \operatorname{rot}_{\gamma} W_2 \pmod{2\pi}$.

Лекция XIII

Теорема 1.16.2 (Формула Гаусса — Бонне).

- 1. Пусть двумерная риманова поверхность M^2 ориентирована, $\Delta\subset M$ диск, и $\partial\Delta$ граница Δ , причём Δ слева при обходе вдоль границы. Тогда $\psi(\partial\Delta)+\iint\limits_{\Delta}K\,\mathrm{d}A=2\pi$.
- 2. Теперь если диски $\Delta_1, \dots, \Delta_k$ замостили какую-то открытую область $\Delta \subset M^2$, и γ_i куски ориентированной границы Δ (Δ остаётся слева при обходе по γ_i), то $\psi(\gamma_1) + \dots + \psi(\gamma_k) + \prod_{i=1}^{n} K = 2\pi \chi(\Delta)$.

Доказательство.

• Докажем аддитивность формулы Гаусса — Бонне для дисков. Введём отображение Гаусса — Бонне $GB(\Delta) = \psi(2\Delta) + \iint\limits_{\Lambda} \mathrm{d}A - 2\pi$, достаточно доказать, что $GB(\Delta) = 0$.

Пусть Δ_1, Δ_2 — два диска с ориентированными границами $\gamma_1 \cdot \gamma_3^-$ и $\gamma_2 \cdot \gamma_3$ соответственно, пересекающихся по связной части границы, и $\Delta = \Delta_1 \cup \Delta_2$ — тоже диск. Пусть $\alpha_1, \beta_1, \alpha_2, \beta_2$ — углы между концами разных путей.

Тогда
$$\begin{cases} \psi(\partial\Delta_1) = \psi(\gamma_1) - \psi(\gamma_3) + (\pi - \alpha_1) + (\pi - \beta_1) \\ \psi(\Delta_1) = \psi(\gamma_2) + \psi(\gamma_3) + (\pi - \alpha_2) + (\pi - \beta_2) \\ \psi(\Delta) = \psi(\gamma_1) + \psi(\gamma_2) + (\pi - (\alpha_1 + \alpha_2)) + (\pi - (\beta_1 + \beta_2)) \end{cases}$$

Получаем $GB(\Delta) = GB(\Delta_1) + GB(\Delta_2)$, что показывает аддитивность формулы.

• Сначала докажем для диска $\Delta \subset U$, где в U есть карта $\phi: U \to \mathbb{R}^2 = \langle X, Y \rangle$ с полугеодезическими координатами. Пусть $s = \phi^{-1}, X = \mathrm{d}s(e_1), Y = \mathrm{d}s(e_2)$.

Лемма 1.16.1 (Формула Грина). Пусть в \mathbb{R}^2 есть область D с кусочно-гладкой границей $\gamma=(x,y)$, при обходе вдоль которой диск остаётся слева. Пусть $P,Q:\mathbb{R}^2 \to \mathbb{R}$ — гладкие функции, тогда

$$\iint\limits_D Q_X' - P_Y' \, \mathrm{d}x \, \mathrm{d}y = \int\limits_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int\limits_{\gamma} (x'P + y'Q) \, \mathrm{d}t$$

Доказательство леммы.

Сначала докажем для простых областей, проинтегрировав формулу Ньютона — Лейбница, а затем всё сложим. \Box

Лемма 1.16.2. Пусть γ обходит область Δ , в которой введены полугеодезические координаты $\nabla_X X = 0$. Тогда $\operatorname{rot}_{\gamma} X + \iint K \, \mathrm{d} A = 0$

Доказательство леммы.

Вспомним формулу $K=-rac{(\sqrt{G})_{X,X}^{\prime\prime}}{\sqrt{G}}.$ Будем считать, что γ натурально параметризована. Теперь

$$\operatorname{rot}_{\gamma} X = \int_{Y} \left\langle \frac{\nabla X}{\mathrm{d}t}, \frac{Y}{|Y|} \right\rangle = \int \left\langle \nabla_{\gamma'} X, \frac{Y}{|Y|} \right\rangle \textcircled{=}$$

Пусть в карте $\phi\circ\gamma=\widetilde{\gamma}=(x(t),y(t)).$ Тогда $\gamma'=x'\cdot X+y'\cdot Y,$ и

$$\underbrace{\left\{ \nabla_X X, \frac{Y}{|Y|} \right\}}_{0} + Y' \left\langle \nabla_Y X, \frac{Y}{|Y|} \right\rangle =$$

$$= \int Y' \left\langle \frac{G_X'}{2G} Y, \frac{Y}{\sqrt{G}} \right\rangle = \int y' \cdot \frac{G_X' \cdot G}{2G \cdot \sqrt{G}} = \int y' (\sqrt{G})_X' \, \mathrm{d}t$$

Применяя формулу Грина, получаем $\iint \left(\sqrt{G}\right)_{X,X}'' \,\mathrm{d}x\,\mathrm{d}y = \iint \frac{(\sqrt{G})_{X,X}''}{\sqrt{G}} \cdot \sqrt{G}\,\mathrm{d}x\,\mathrm{d}y = -\iint K\,\mathrm{d}A.$

Введём два векторных поля $V=\gamma'$ и W=X, и согласно (следствие 1.16.1): $\psi(\gamma')+\iint K\,\mathrm{d}A=2\pi n, n\in\mathbb{Z}$. Теперь осталось доказать n=1.

Введём непрерывное семейство метрик $g_{i,j}^{\tau}=(1-\tau)g_{i,j}+\tau\delta_{i,j}$, и заметим, что так как поворот плоской кривой равен 2π (мы это доказывали в предыдущем семестре для гладких кривых, но это верно и для кусочно-гладких — можно сгладить либо адаптировать доказательство), то из непрерывности n=1.

Теперь осталось сказать, что любой диск можно триангулировать так мелко, что каждый треугольник лежит в какой-то карте. Из аддитивности получаем (1).

• Теперь выведем (2). Примем без доказательства такой факт, что у любой области с кусочногладкими границами существует триангуляция (границы треугольников тоже кусочно-гладкие).

Триангулируем поверхность на треугольники $\Delta_1,\dots,\Delta_\Gamma$, и будем использовать, что все $GB(\Delta_i)=0.$

Складывая
$$\psi(\Delta_1) + \dots + \psi(\Delta_{\Gamma}) = \left(\iint_{\Delta_1} + \dots + \iint_{\Delta_{\Gamma}}\right) K \, \mathrm{d}A = 2\pi\Gamma$$
 Докажем, что $\psi(\gamma_1) + \dots + \psi(\gamma_n) - \psi(\partial \Delta_1) - \dots - \psi(\partial \Delta_{\Gamma}) \stackrel{?}{=} 2\pi (\chi(\Delta) - \Gamma) = 2\pi (\mathsf{B} - \mathsf{P}).$

Все интегралы по отрезкам кривых сокращаются, и остаются лишь углы. Посмотрим по очереди на все вершины треугольников.

- Внутренняя вершина p степени d (соприкасающаяся с d треугольниками) вносит вклад в сумму $-\sum\limits_{i=1}^d (\pi-\alpha_i) = -\pi d + \sum\limits_i \alpha_i = \pi(2-d).$
- Граничная вершина p степени d (соприкасающаяся с d-1 треугольником) вносит вклад $-\sum_{i=1}^d (\pi-\alpha_i) + \alpha = \pi(1-d) + \sum_{i=1}^d \alpha_i + \alpha = \pi(2-d).$

Осталось увидеть, что сумма по всем вершинам p величины $(2-d_p)$ даёт вклад $2\pi \mathsf{B} - \sum_{i=1}^\mathsf{B} d_j \pi =$ $2\pi(B-P)$

Пространства постоянной кривизны. Сравнение треугольников

Теорема 1.17.1. У любой замкнутой (компактной) поверхности существует метрика постоянной кривизны, причём знак кривизны равен знаку эйлеровой характеристики.

Доказательство. $\iint K = 2\pi \chi$, утверждение про знак тривиально.

Воспользуемся теоремой о классификации двумерных поверхностей.

- Если поверхность ориентируема, то это сфера с q ручками. При q=0 это сфера, на ней есть структура постоянной кривизны. При g=1 это тор, на нём есть плоская метрика. При $g\geqslant 2$ кривизна отрицательна, об этом позже.
- Если поверхность неориентируема, то (m=1) проективная плоскость получается, как фактормногообразие сферы, а при m=2 бутылка Клейна склеивается из квадрата.
- Иначе кривизна отрицательная. Нарисуем развёртку в виде правильного многоугольника, и поместим на гиперболической плоскости так, чтобы все углы были $rac{2\pi}{n}.$

Пусть M — двумерное многообразие, $K=-\frac{\left(\sqrt{G}\right)_{X,X}^{"}}{\sqrt{G}}\equiv {
m const.}$ Тогда $\left(\sqrt{G}\right)_{X,X}^{"}=-K\sqrt{G}.$ Рассмотрим это уравнение — уравнение Якоби — как дифференциальное уравнение на \sqrt{G} второго порядка. Поле Y зовётся nолем Якоби, и уравнение Якоби можно записать и решать для произвольных размерностей.

Введём полярные координаты, полугеодезические вне центра координат. Покажем, что $\sqrt{G} \underset{x \to 0}{\longrightarrow} 0$, и $\left(\sqrt{G}\right)_x' \underset{x \to 0}{\longrightarrow} 1$. Из симметрии достаточно доказать для произвольного луча \overrightarrow{v} . Пусть $\overrightarrow{w} \perp \overrightarrow{v}$, |w| = 1. $Y = \mathrm{d}_{xv} \exp_p(xw)$.

Пусть $f(x) = \mathrm{d}_{xv} \exp_p(wx)$. Так как $\mathrm{d}_0 \exp_p = \mathrm{id}$, то |f(x)| — гладкая функция в окрестности 0. $|Y|_x' = x \cdot |f|' + |f| \underset{x \to 0}{\longrightarrow} \mathrm{d}_0 \exp_p(w) = 1$.

Лекция XIV 22 мая 2024 г.

Получили начальные данные на дифференциальное уравнение $\sqrt{G}(0) = 0, (\sqrt{G})'_X(0) = 1.$

При постоянной кривизне решениями являются $\begin{cases} \sqrt{G} = x, & K \equiv 0 \\ \sqrt{G} = \sin x, & K \equiv 1 \end{cases}$ Подправляя на постоянный положительный множитель, получаем $\begin{cases} \sqrt{G} = \sin x, & K \equiv -1 \\ \sqrt{G} = \sinh x, & K \equiv -1 \end{cases}$ ный положительный множитель, получаем $\begin{cases} \sqrt{G} = \frac{1}{\sqrt{K}} \sin \sqrt{K}x, & K > 0 \\ \sqrt{G} = \frac{1}{\sqrt{-K}} \sinh \sqrt{-K}x, & K < 0 \end{cases}$

Теорема 1.17.2. Пусть (M^2,g_M) и (N^2,g_N) — два двумерных многообразия, их кривизны равны и постоянны $K_N \equiv K_M \equiv {
m const}, \, p \in M, q \in N,$ и $r < {
m min} \left(r_{{
m inj}} p, r_{{
m inj}} q \right)$. Вводя на шарах $B_r(0) \subset T_p M$ и $B_r(0)\subset T_qN$ полярные координаты, и зафиксируем некоторую изометрию $I:T_pM o T_qN.$ Тогда $\exp_q \circ I \circ \exp_p^{-1}$ — изометрия окрестностей p и q. В частности, она сохраняет кривизну.

1.17.1 Теоремы сравнения

Теорема 1.17.3. Пусть $p \in M, r < r_{\text{inj}}p$, кривизна одного знака, но не факт, что постоянна. Следующее условие связывает длины кривых в $B_r(0)$ и $B_r(p)$, между которыми действует экспонента.

- 1. Если $K \geqslant 0$, то \exp_p не увеличивает длины кривых.
- 2. Если $K \le 0$, то \exp_p не уменьшает длины кривых.

Доказательство. Запишем уравнение $\left(\sqrt{G}\right)_{x,x}'' = -K\sqrt{G}$. Пусть G_1 — решение на плоскости: $\sqrt{G_1}_{x,x}'' = 0$, и $\sqrt{G_2}_{x,x}'' \leqslant 0$. В первом случае $\sqrt{G_1} = x$, значит, во втором случае $\sqrt{G_2} \leqslant x$.

Аналогично для полярных координат в касательной плоскости и на поверхности: $\sqrt{G_1} \geqslant \sqrt{G_2}$. Используя формулу длины кривой $l(\gamma) = \sqrt{(X')^2 + G(y')^2} \, \mathrm{d}t$, получаем, что $G_1 \leqslant G_2 \Rightarrow$ длина кривых увеличивается.

Если же $K \leq 0$, то аналогично.

1. Пусть $\Delta \subset M$ — треугольник OAB из кратчайших, $\angle AOB = \alpha$. Возьмём на плоскости треугольник с такими же AO,OB и $\angle AOB$, это *треугольник сравнения с углом*.

2. Если же взять на плоскости треугольник с такими же длинами сторон (в случае, если он существует), то это *теугольник сравнения*.

Треугольник OAB маленький, если $P(OAB) \leqslant \min(r_{\text{inj}}A, r_{\text{inj}}B, r_{\text{inj}}O)$.

Следствие **1.17.1.** Пусть $r < r_{inj}O$, $A, B \in B_r(O)$.

- 1. Если $K\geqslant 0$, то в треугольнике сравнения с углом $|\overline{AB}|_{\mathbb{R}^2}\geqslant |AB|_M.$
- 2. Если $K \leq 0$, то в треугольнике сравнения с углом $|\overline{AB}|_{\mathbb{R}^2} \leq |AB|_M$.

Если же треугольник ОАВ маленький, то

- 1. Если $K \geqslant 0$, то в треугольнике сравнения $\angle AOB \geqslant \widetilde{\angle}\overline{AOB}$.
- 2. Если $K \leq 0$, то в треугольнике сравнения $\angle AOB \leqslant \widetilde{\angle}\overline{AOB}$.

Доказательство.

- 1. Сразу следует из предыдущей теоремы.
- 2. Выведем из первого пункта и теоремы косинусов.

Интересный факт (Теорема Топоногова). Если M^n — полное многообразие, и $K\geqslant 0$, то для него верно заключение теоремы для больших треугольников. Если M^n — полное многообразие, $K\leqslant 0$, и M односвязно, то для него верно заключение теоремы для больших треугольников.

Односвязность важна — например, можно поиграться с цилиндром.

1.18 Полнота. Теорема Хопфа — Ринова

Пусть $(X, d_X), (Y, d_Y)$ — два многообразия, которые для удобства будем считать компактными. Это автоматически влечёт полноту почему?.

$$C(X,Y)$$
 — пространство непрерывных функций, $d(f,g) = \sup_{x \in X} |f(x) - g(x)|$.

Теорема 1.18.1 (Арцела – Асколи). Если f_n — последовательность равностепенно непрерывных функций, то $\exists f_{n_k} \underset{k \to \infty}{\Longrightarrow} f_{\infty}$.

Далее все пространства с внутренней метрикой: $d(x,y) = \inf l(\gamma)$.

Определение 1.18.1 (Кратчайшая γ). $\operatorname{dist}(\gamma(t_2), \gamma(t_1)) = |t_2 - t_1|$ в натуральной параметризации.

Определение 1.18.2 (X — собственное). Все замкнутые шары $D_r(p) = \{x \in M | \operatorname{dist}(x,p) \leqslant r\}$ компактны.

Пусть $\gamma:[0,1]\to X$.

Теорема 1.18.2. Пусть X — компактное, с внутренней метрикой, тогда любые две точки можно соединить кратчайшей.

Доказательство. Пусть $\gamma_n:[0,1]\to X$ — последовательность кривых, минимизирующая расстояние. Применяем теорему Арцела — Асколи.

Определение 1.18.3 (Риманово многообразие полное). Оно полное, как метрическое пространство.

Определение 1.18.4 (Риманово многообразие геодезически полное). Любая геодезическая продолжима на интервал $(-\infty, +\infty)$.

Следующая теорема, разумеется, формулируется для многообразий без края.

Теорема 1.18.3 (Хопф — Ринов). Многообразие M метрически полное \iff многообразие геодезически полное.

Если M полное, то M собственное, $\exp_p(\overline{D}_R^{T_pM}(0))=\overline{D}_R^M(p)$ и любые две точки соединены кратчайшей.

Доказательство.

Лемма 1.18.1. Пусть (X,d) — локально компактное, с внутренней метрикой, $p \in X, R>0$, и выполнено следующее условие: \forall кратчайшей $\gamma:[0,1)\to B_R(p)$: можно продолжить до $\gamma:[0,1]\to X$. Тогда $D_R(p)$ компактен.

Доказательство леммы.

Замечание. Так как метрика внутренняя, то $\forall \varepsilon > 0 : D_r \subset U_{\varepsilon}(B_r(p)).$

Полнота: пусть $\{x_n\}_{n\in\mathbb{N}}$ — фундаментальная последовательность точек $x_n\in D_r(p)$. Согласно замечанию, можно считать, что $x_n\in B_r(p)$.

Пусть $\gamma_n:[0,r-\varepsilon_n]\to X$ — натурально параметризованная кратчайшая, соединяющая p и $x_n.$ Можно считать, что $\varepsilon_n\searrow 0$.

Пусть $\gamma_n\big|_{[0,1-arepsilon_1]}$. Выберем последовательность $(n_1)(j)$ так, что $\gamma_{n_1(j)}{}_{j\to\infty}\gamma_\infty[0,1-arepsilon_1]$. Проредим $n_1(j)\supset n_2(j)\supset\dots$, и возьмём диагональ: $\gamma_{n_j(j)\gamma}\infty$, где $\gamma_\infty:[0,1)\to X$ — кратчайшая (предел кратчайших). Согласно условию теоремы γ_∞ можно продолжить в точку 1, и несложно проверить, что этот конец — $\lim_{n\to\infty}x_n$.

Тем самым, D_r полон. Компактность следует из вполне ограниченности: $D_{r-\frac{\varepsilon}{2}}$ компактен, в нём есть $\frac{\varepsilon}{2}$ -сеть.

Теперь докажем, что $\exists \varepsilon > 0: D_{r+\varepsilon}$ тоже компактен. $\forall x \in X$: выберем $r(x): D_{2r(x)}$ компактен. Далее выберем конечное подпокрытие из $B_{r(x)}(x)$, и плюс-минус всё.

Пусть $\gamma:[0,L) \to X$ — геодезическая в натуральной параметризации. Из полноты $\exists x_0\coloneqq \lim_{t\to L} \gamma(t).$

Так как радиус инъективности отделён от нуля числом $\frac{r_0}{2}$, то достаточно близко к x_0 геодезическую можно продолжить за x_0 . Из геодезической полноты выполнено условие леммы.

Тогда любой шар компактен. Вроде всё.