## **Understanding and Implementing Image Denoising with DnCNN**

Compiled and Written by: Saurabh Jondhale

| Introduction                                                                                       |
|----------------------------------------------------------------------------------------------------|
| Image denoising is the process of removing noise from images while preserving important structures |
| like edges and textures. The Deep CNN-based Denoising (DnCNN) model has shown excellen             |
| performance for this task.                                                                         |
| Mathematical Formulation                                                                           |
| <del></del>                                                                                        |
| Let:                                                                                               |
| - x be the clean image                                                                             |
| - n be the noise                                                                                   |
| - y be the noisy image                                                                             |
| Then, $y = x + n$                                                                                  |
| The goal is to recover x given y.                                                                  |
| DnCNN Model                                                                                        |
| DnCNN learns the residual noise $R(y)$ , and recovers the image as: $ x = y - R(y) $               |

## **Understanding and Implementing Image Denoising with DnCNN**



Output = Sum(Patch \* Kernel) = 1.5

After ReLU: max(0, 1.5) = 1.5

## **Understanding and Implementing Image Denoising with DnCNN**



## Citations

-----

[1] Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26(7), 3142-3155.

[2] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research, 11, 3371-3408.

[3] Buades, A., Coll, B., & Morel, J. M. (2005). A Non-Local Algorithm for Image Denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), Vol. 2, pp. 6065.

[4] Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(14), 259268.