Outils mathématiques pour l'électronique

Sara El Bouch

sara.el-bouch@univ-cotedazur.fr Université Côte d'Azur, EUR DS4H, J-.L Lagrange

Octobre 2024

Introduction

- Les espaces euclidiens sont des espaces vectoriels réels munis d'un produit scalaire.
- Ces espaces permettent de généraliser les notions de distance, angle et orthogonalité.

Application bilinéaire

Definition

Une forme bilinéaire d'un espace vectoriel est une application:

$$\phi: E \times E \to \mathbb{R}
(\vec{u}, \vec{v}) \mapsto \phi(\vec{u}, \vec{v})$$
(1)

linéaire en chacune de ses entrées, c-à-d:

$$\phi(\vec{u}, \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2) = \lambda_1 \phi(\vec{u}, \vec{v}_1) + \lambda_2 \phi(\vec{u}, \vec{v}_2)$$
 (2)

$$\phi(\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2, \vec{v}) = \lambda_1 \phi(\vec{u}_1, \vec{v}) + \lambda_2 \phi(\vec{u}_2, \vec{v})$$
(3)

Une forme bilinéaire est dite:

- symétrique si $\phi(\vec{u}, \vec{v}) = \phi(\vec{v}, \vec{u})$
- **•** positive: $\phi(\vec{u}, \vec{u}) \geq 0$
- définie: $\phi(\vec{u}, \vec{u}) = 0 \implies \vec{u} = \vec{0}$.

Matrice associée à une application bilinéaire

Dans une base donnée $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$. Une forme bilinéaire peut être représentée par une matrice A tel que:

$$\phi(\vec{u}, \vec{v}) = u^{\top} A v$$

où u et v sont les coordonnées de \vec{u}, \vec{v} dans la base \mathcal{B} .

Matrice définie positive

Une matrice est dite:

- Symétrique: $A^T = A$
- ▶ Positive: $u^T A u \ge 0$
- **positive et**: $u^T A u = 0 \implies u = 0$.

Exemple

Soit $\phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ une forme bilinéaire symétrique définie par :

$$\phi(u,v) = u_1v_1 + 2u_2v_2.$$

La matrice associée à ϕ dans la base canonique est :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Cette matrice est définie positive car pour tout $x=(x_1,x_2)^T\in\mathbb{R}^2$, on a :

$$x^T A x = x_1^2 + 2x_2^2 > 0$$
 pour tout $x \neq 0$.

Par conséquent, la forme bilinéaire ϕ est définie positive.

Critère de Sylvestre

Une matrice symétrique est définie positive si tous les mineurs extraits dominants de la matrice associée dans une base sont

Produit scalaire

Définition

Un produit scalaire sur un espace vectoriel réel E est une application bilinéaire $\langle\cdot,\cdot\rangle:E\times E\to\mathbb{R}$, vérifiant :

- 1. Symétrie : $\langle u, v \rangle = \langle v, u \rangle$ pour tous $u, v \in E$.
- 2. Bilinéarité : $\langle au + bv, w \rangle = a \langle u, w \rangle + b \langle v, w \rangle$, pour tous $u, v, w \in E$ et $a, b \in \mathbb{R}$.
- 3. **Définie positive** : $\langle u, u \rangle \ge 0$ et $\langle u, u \rangle = 0$ si et seulement si u = 0.

Exercice

Montrer que

$$\langle X, Y \rangle = X^T Y = \sum_{k=1}^n x_k y_k$$

est un produit scalaire sur \mathbb{R}^n .

Norme et Distance dans un Espace Euclidien

La **norme** d'un vecteur $u \in E$ est définie par :

$$||u|| = \sqrt{\langle u, u \rangle}$$

▶ La **distance** entre deux vecteurs $u, v \in E$ est donnée par :

$$d(u,v) = \|u-v\|$$

Propriétés fondamentales de la norme

- ► Homogénéité: $\|\lambda u\| = |\lambda|u$
- Inégalité de Cauchy-Schwarz:

$$|\langle u, v \rangle| \leq ||u||.||v||$$

▶ Inégalité triangulaire: $||u + v|| \le ||u|| + ||v||$

Orthogonalité

Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si leur produit scalaire est nul.

Famille orthogonale

Une famille $A = \{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$ est dite orthogonale ssi tous ces vecteurs sont orthogonaux deux à deux:

$$\langle \vec{a}_i, \vec{a}_j \rangle = 0$$

pour $i \neq j$

Famille orthonormée

Définition

Une famille $A = \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ est dite orthonormale ssi:

- $ightharpoonup \langle \vec{a_i}, \vec{a_j} \rangle = 0 \text{ pour } i \neq j$
- $||\vec{a}_i|| = 1$

Proposition

Une famille $\mathcal{A} = \{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$ de vecteurs dans \mathbb{R}^n forme une base orthonormale ssi la matrice de passage de \mathcal{A} dans la base canonique est une matrice orthogonale. Soit

$$P = Mat_{\mathcal{B},\mathcal{A}}(id), P^{\top}P = I_n$$

Exemple

Montrer que la famille de vecteurs est une base orthonormée de \mathbb{R}^3 :

$$\vec{f_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{f_2} = \frac{\sqrt{2}}{2} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \frac{\sqrt{2}}{2} \vec{f_3} = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$$
 (4)

Orthogonalité

Pour tout ensemble $A \subset E$ de vecteurs, on définit son **ensemble orthogonal** par l'ensemble de tous les vecteurs de A tel que:

$$A^{\perp} = \{ \vec{x} \in E, \langle \vec{x}, \vec{a} \rangle = 0, \forall \vec{a} \in A \}$$

Definition (Projection orthogonale)

La projection orthogonale sur P est la projection sur P parallèlement à P^{\perp} . On la note $proj_P^{\perp}$

Projection Orthogonale sur un espace vectoriel

Definition

Soit $P \subset E$ un sous-espace vectoriel d'un espace euclidien et soit $\{\vec{e}_1, \ldots, \vec{e}_n\}$ une base orthonormée. La projection orthogonale sur F est donnée par la formule:

$$proj_{P}(\vec{v}) = \langle \vec{v}, \vec{e}_{1} \rangle \vec{e}_{1} + \ldots + \langle \vec{v}, \vec{e}_{n} \rangle \vec{e}_{n}$$
 (5)

Proposition importante

Le projeté orthogonal sur P est l'unique vecteur de P qui minimise la distance de \vec{v} à P.

Procédure d'orthogonalisation de Gram-Schmidt

Exemple

▶ Orthonoramliser la base suivante de \mathbb{R}^3 (p.197):

$$\vec{f_1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \vec{f_2} = \begin{pmatrix} -3 \\ 5 \\ 0 \end{pmatrix}, \vec{f_3} = \begin{pmatrix} 1 \\ 7 \\ -2 \end{pmatrix} \tag{6}$$

Diagonalisation des matrices symétriques

Toute matrice symétrique est diagonalisable dans une base orthonormée de vecteurs propres de l'espace euclidien. Il existe donc une matrice **orthognonale** P tel que: $A = P^T \Delta P$

Exemple

On considère
$$M = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

Solutions des systèmes d'équations linéaires Ax = b

Résumé

- \rightarrow m < n: Infinité de solutions.
- ► A de rang < n: Infinité de solutions.
- ightharpoonup m = n et rang de A = n, solution unique.
 - $x = A^{-1}b$
- A de rang > n, il n'existe pas de solution → le problème des moindres carrés.

La méthode des moindre carrés

Une solution approchée, au sens des moindre carrées au système d'équations linéaires incompatible est:

$$A\vec{x} = \vec{b} \tag{7}$$

$$\vec{x'} = (A^T A)^{-1} A^T \vec{b}.$$
 (8)

