Homework 4 Problems

Instructor: Div Bhagia

ECON 441: Introduction to Mathematical Economics

Exercise 5.3

- 1. Use the determinant $\begin{vmatrix} 4 & 0 & -1 \\ 2 & 1 & -7 \\ 3 & 3 & 9 \end{vmatrix}$ to verify the first four properties of determinants.
- 4. Show that when all the elements of an *n*th-order determinant |A| are multiplied by a number k, the result will be $k^n|A|$.
- 5. Calculate the determinant for the following matrices. Comment on whether the matrices are nonsingular and the rank of each matrix.

- 8. Comment on the validity of the following statements:
 - (a) Given any matrix A, we can always derive from it a transpose and a determinant.
 - (b) Multiplying each element of an $n \times n$ determinant by 2 will double the value of that determinant.
 - (c) If a square matrix A vanishes, then we can be sure that the equation system Ax = d is nonsingular.

1

Exercise 5.4

2. Find the inverse of each of the following matrices:

$$\begin{array}{c} \text{(tsk4a)} \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix} \\ \text{(tsk4a)} \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix} \\ \text{(tsk4a)} \begin{bmatrix} 3 & 7 \\ 3 & -1 \end{bmatrix} \\ \text{(tsk4a)} \begin{bmatrix} 7 & 6 \\ 0 & 3 \end{bmatrix} \\ \end{array}$$

- 3. (a) Drawing on your answers to Prob. 2, formulate a two-step rule for finding the adjoint of a given 2×2 matrix A: In the first step, indicate what should be done to the two diagonal elements of A in order to get the diagonal elements of adjA; in the second step, indicate what should be done to the two off-diagonal elements of A. (Warning: This rule applies only to 2×2 matrices.)
 - (b) Add a third step which, in conjunction with the previous two steps, yields the 2×2 inverse matrix A^{-1} .
- 4. Find the inverse of each of the following matrices:

6. Solve the system Ax = d by matrix inversion, where

(tsk[a]]+
$$3y = 28$$
 (tsk[a]]+ $x_1 + x_2 - 5x_3 = 8$
 $2x + 5y = 42$ $-2x_1 + 3x_2 + x_3 = 12$
 $3x_1 - x_2 + 4x_3 = 5$

7. Is it possible for a matrix to be its own inverse?

Exercise 5.5

1. Use Cramer's rule to solve the following equation systems:

$$(tsk[a]) - 2x_2 = 6 (tsk[a]) + 3x_2 = -3$$

$$2x_1 + x_2 = 11 4x_1 - x_2 = 12$$

$$(tsk[a]) - 7x_2 = 9 (tsk[a]) + 9x_2 = 14$$

$$x_1 + x_2 = 3 7x_1 - 3x_2 = 4$$

- 2. For each of the equation systems in Prob. 1, find the inverse of the coefficient matrix, and get the solution by the formula $x^* = A^{-1}d$.
- 3. Use Cramer's rule to solve the following equation systems:

(a)
$$8x_1 - x_2 = 16$$

 $2x_2 + 5x_3 = 5$
 $2x_1 + 3x_3 = 7$
 (d) $-x + y + z = a$
 $x - y + z = b$
 $x + y - z = c$