The title of my thesis

Any short subtitle

Lucas Charpentier

Thesis submitted for the degree of Master in Computational Science (Imaging and Biomedical Computing) 60 credits

Departement of Informatics

Departement of Physics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020

The title of my thesis

Any short subtitle

Lucas Charpentier

© 2020 Lucas Charpentier

The title of my thesis

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

The title of my thesis

Lucas Charpentier

6th July 2020

Abstract

Contents

1	Intr	oduction	1
	1.1	Background and Motivation	1
	1.2	Problem Statement	1
	1.3	Thesis Outline	1
2	Plar	ning the project	3
	2.1	Machine Learning	4
		2.1.1 Supervised Learning	4
		2.1.2 Unsupervised Learning	4
	2.2	Artificial Neural Networks	4
		2.2.1 Perceptron	4
		2.2.2 Multilayer Perceptron	4
		2.2.3 Training a Neural Network	4
	2.3	Convolutional Neural Network	4
		2.3.1 Convolutional Layers	4
		2.3.2 Pooling Layers	4
	2.4	Neural Network Training Optimization	4
		2.4.1 Weight Initialization	4
		2.4.2 Training Batch Size	4
		2.4.3 Dropout	4
	2.5	Network Pruning	4
	2.6	Datasets	4
		2.6.1 MNIST	4
		2.6.2 Fashion MNIST	4
		2.6.3 CIFAR-10	4
	2.7	Architectures	4
		2.7.1 VGG-16	4
3	Sing	le Layer ANN	5
	3.1	Pruning Nodes at Random	5
		3.1.1 MNIST	5
		3.1.2 Fashion MNIST	7
	3.2	Estimating Node Importance based on Loss and Accuracy .	9
	3.3	Pruning Nodes based on the Loss and Accuracy	9
	3.4	Effects of Changing Training Batch Size on Node Importance	9
	3.5	Effects of Using Dropout	9

4	Mu	lti-Layer Perceptron	11
	4.1	Pruning network with pre-calculated importance	11
	4.2	Greedy approach to pruning instead of Exhaustive approach	11
	4.3	Iterative weight initialization using Node importance	11
5	Con	volutional Neural Network	13
	5.1	Looking at effects of per class accuracy after pruning	13
	5.2	Pruning based on class accuracy	13
6	Cas	e study: Reducing a VGG-16 model trained on X dataset	15
7	Con	clusion	17
	7.1	Summary	17
	7.2	Future Works	17

List of Figures

3.1	Short title.		•											•		6
	Short title .															
	Short title .															
3.4	Short title .															7
3.5	Short title .															8
3.6	Short title .															8
3.7	Short title .															9
3.8	Short title.															10
3.9	Short title.															10
3.10	Short title.															10

List of Tables

3.1	Short																	5
3.2	Short																	5
3.3	Short																	6
3.4	Short																	8
3.5	Short																	9
3.6	Short																	9

Preface

Introduction

- 1.1 Background and Motivation
- 1.2 Problem Statement
- 1.3 Thesis Outline

Planning the project

^ 4	3 f 1 ·	T .
2.1	Machine	Learning

- 2.1.1 Supervised Learning
- 2.1.2 Unsupervised Learning
- 2.2 Artificial Neural Networks
- 2.2.1 Perceptron
- 2.2.2 Multilayer Perceptron
- 2.2.3 Training a Neural Network
- 2.3 Convolutional Neural Network
- 2.3.1 Convolutional Layers
- 2.3.2 Pooling Layers
- 2.4 Neural Network Training Optimization
- 2.4.1 Weight Initialization
- 2.4.2 Training Batch Size
- 2.4.3 Dropout
- 2.5 Network Pruning
- 2.6 Datasets
- 2.6.1 MNIST
- 2.6.2 Fashion MNIST
- 2.6.3 CIFAR-10
- 2.7 Architectures
- 2.7.1 VGG-16

Single Layer ANN

3.1 Pruning Nodes at Random

3.1.1 MNIST

Artificial Neural Network with single hidden layer of 128 nodes, using ADAM as optimizer with a learning rate of 0.001 trained on 5 epochs, batch size of 32. Final Accuracy and Loss on test set are: Loss: 0.0734 Accuracy: 0.9770

	Number of Nodes													
	1	2	4	8	16	32	64							
Mean	0.9765	0.9760	0.9750	0.9724	0.9658	0.9464	0.8555							
σ	0.0007	0.0010	0.0015	0.0027	0.0053	0.0122	0.0394							
min	0.9740	0.9660	0.9635	0.9494	0.9337	0.8688	0.6598							
25%	0.9762	0.9756	0.9742	0.9710	0.9632	0.9410	0.8331							
50%	0.9767	0.9762	0.9753	0.9728	0.9669	0.9489	0.8616							
75%	0.9770	0.9767	0.9760	0.9742	0.9695	0.9543	0.8837							
max	0.9778	0.9780	0.9779	0.9769	0.9769	0.9685	0.9334							

Table 3.1: Long

Trial text Trial text

	Number of Nodes														
	1	2	4	8	16	32	64								
Mean	0.0751	0.0767	0.0801	0.0885	0.1090	0.1680	0.4298								
σ	0.0023	0.0032	0.0047	0.0083	0.0157	0.0338	0.0989								
min	0.0720	0.0714	0.0710	0.0735	0.0791	0.1006	0.2311								
25%	0.07	0.	0.9742	0.9710	0.9632	0.9410	0.8331								
50%	0.9767	0.9762	0.9753	0.9728	0.9669	0.9489	0.8616								
75%	0.9770	0.9767	0.9760	0.9742	0.9695	0.9543	0.8837								
max	0.9778	0.9780	0.9779	0.9769	0.9769	0.9685	0.9334								

Table 3.2: Long

Figure 3.1: Testing

Trial text

Figure 3.2: Testing

Trial text

	Number of Nodes													
	1	2	4	8	16	32	64							
Mean	0.0751	0.0767	0.0801	0.0885	0.1090	0.1680	0.4298							
σ	0.0023	0.0032	0.0047	0.0083	0.0157	0.0338	0.0989							
min	0.0720	0.0714	0.0710	0.0735	0.0791	0.1006	0.2311							
25%	0.	0.9756	0.9742	0.9710	0.9632	0.9410	0.8331							
50%	0.9767	0.9762	0.9753	0.9728	0.9669	0.9489	0.8616							
75%	0.9770	0.9767	0.9760	0.9742	0.9695	0.9543	0.8837							
max	0.9778	0.9780	0.9779	0.9769	0.9769	0.9685	0.9334							

Table 3.3: Long

Trial text

Number of nodes removed that improve model depending on the number removed at a time

Figure 3.3: Testing

Trial text

Figure 3.4: Testing

Trial text Trial text

3.1.2 Fashion MNIST

Trial text

Trial text

Trial text

Trial text

There is trial text here

Trial text

Trial text

Figure 3.5: Testing

	Number of Nodes													
	1	2	4	8	16	32	64							
Mean	0.9765	0.9760	0.9750	0.9724	0.9658	0.9464	0.8555							
σ	0.0007	0.0010	0.0015	0.0027	0.0053	0.0122	0.0394							
min	0.9740	0.9660	0.9635	0.9494	0.9337	0.8688	0.6598							
25%	0.9762	0.9756	0.9742	0.9710	0.9632	0.9410	0.8331							
50%	0.9767	0.9762	0.9753	0.9728	0.9669	0.9489	0.8616							
75%	0.9770	0.9767	0.9760	0.9742	0.9695	0.9543	0.8837							
max	0.9778	0.9780	0.9779	0.9769	0.9769	0.9685	0.9334							

Table 3.4: Long

Figure 3.6: Testing

Trial text Trial text

	Number of Nodes													
	1	2	4	8	16	32	64							
Mean	0.9765	0.9760	0.9750	0.9724	0.9658	0.9464	0.8555							
σ	0.0007	0.0010	0.0015	0.0027	0.0053	0.0122	0.0394							
min	0.9740	0.9660	0.9635	0.9494	0.9337	0.8688	0.6598							
25%	0.9762	0.9756	0.9742	0.9710	0.9632	0.9410	0.8331							
50%	0.9767	0.9762	0.9753	0.9728	0.9669	0.9489	0.8616							
75%	0.9770	0.9767	0.9760	0.9742	0.9695	0.9543	0.8837							
max	0.9778	0.9780	0.9779	0.9769	0.9769	0.9685	0.9334							

Table 3.5: Long

Figure 3.7: Testing

	Number of Nodes													
	1	2	4	8	16	32	64							
Mean	0.0751	0.0767	0.0801	0.0885	0.1090	0.1680	0.4298							
σ	0.0023	0.0032	0.0047	0.0083	0.0157	0.0338	0.0989							
min	0.0720	0.0714	0.0710	0.0735	0.0791	0.1006	0.2311							
25%	0.	0.9756	0.9742	0.9710	0.9632	0.9410	0.8331							
50%	0.9767	0.9762	0.9753	0.9728	0.9669	0.9489	0.8616							
75%	0.9770	0.9767	0.9760	0.9742	0.9695	0.9543	0.8837							
max	0.9778	0.9780	0.9779	0.9769	0.9769	0.9685	0.9334							

Table 3.6: Long

- 3.2 Estimating Node Importance based on Loss and Accuracy
- 3.3 Pruning Nodes based on the Loss and Accuracy
- Effects of Changing Training Batch Size on Node 3.4 **Importance**
- **Effects of Using Dropout** 3.5

Figure 3.8: Testing

Figure 3.9: Testing

Figure 3.10: Testing

Multi-Layer Perceptron

- 4.1 Pruning network with pre-calculated importance
- 4.2 Greedy approach to pruning instead of Exhaustive approach
- 4.3 Iterative weight initialization using Node importance

Convolutional Neural Network

- 5.1 Looking at effects of per class accuracy after pruning
- 5.2 Pruning based on class accuracy

Case study: Reducing a VGG-16 model trained on X dataset

Conclusion

- 7.1 Summary
- 7.2 Future Works