Introduction to Simulation - Lecture 8

1-D Nonlinear Solution Methods Jacob White

Thanks to Deepak Ramaswamy Jaime Peraire, Michal Rewienski, and Karen Veroy

Outline

- Nonlinear Problems
 - Struts and Circuit Example
- Richardson and Linear Convergence
 - Simple Linear Example
- Newton's Method
 - Derivation of Newton
 - Quadratic Convergence
 - Examples
 - Global Convergence
 - Convergence Checks

Nonlinear problems

Strut Example

Given: x0, y0, x1, y1, W Find: x2, y2

Need to Solve
$$\sum f_x = 0$$
 $\sum f_y + W = 0$

Nonlinear Problems

Struts Example

Reminder: Strut Forces

$$f = EA_c \frac{L_0 - L}{L_0} = \varepsilon (L_0 - L)$$

$$f_x = \frac{x_1}{L} f$$

$$f_{y} = \frac{y_{1}}{L} f$$

$$L = \sqrt{x_1^2 + y_1^2}$$

Nonlinear problems

Strut Example

Nonlinear problems

Strut Example

Why Nonlinear?

$$\frac{y_{2} - y_{1}}{L_{2}} \varepsilon(L_{o} - L_{2}) + \frac{y_{2} - y_{0}}{L_{1}} \varepsilon(L_{o} - L_{1}) + W = 0$$

Pull Hard on the Struts

The strut forces change in both magnitude and direction

Nonlinear problems

Circuit Example

$$I_r - \frac{1}{10}V_r = 0$$

$$I_d - I_s(e^{V_d/V_t} - 1) = 0$$

Need to Solve

$$I_d + I_r = 0$$

$$I_{v_{src}} - I_r = 0$$

Solve Iteratively

Hard to find analytical solution for f(x) = 0

Solve iteratively

guess at a solution $x^0 = x_0$ repeat for k = 0, 1, 2,

$$x^{k+1} = W(x^k)$$
until $f(x^{k+1}) \approx 0$

Ask

- Does the iteration converge to correct solution?
- How fast does the iteration converge?

Richardson Iteration Definition

$$x^{k+1} = x^k + f(x^k)$$

An iteration stationary point is a solution

$$x^{k+1} = x^{k}$$

$$\Rightarrow f(x^{k}) = 0$$

$$\Rightarrow x^{k} = x^{*} (Solution)$$

Example 1

$$f(x) = -0.7x + 10$$

Start with $\chi^0 = 0$

$$x^{1} = x^{0} + f(x^{0}) = 10$$

$$x^5 = 14.25$$

$$x^2 = x^1 + f(x^1) = 13$$

$$x^6 = 14.27$$

$$x_3 = x^2 + f(x^2) = 13.9$$

$$x^7 = 14.28$$

$$x_4 = x^3 + f(x^3) = 14.17$$

$$x^8 = 14.28$$

Converged

Example 1

$$f(x) = -0.7x + 10$$

Example 2

$$f(x) = 2x + 10$$

Start with $x_0 = 0$

$$x_1 = x_0 + f(x_0) = 10$$

 $x_2 = x_1 + f(x_1) = 40$
 $x_3 = x_2 + f(x_2) = 130$
 $x_4 = x_3 + f(x_3) = 400$

No convergence!

Convergence

Setup

Iteration Equation
$$x^{k+1} = x^k + f(x^k)$$

Exact Solution $x^* = x^* + f(x^*)$

Computing Differences

$$x^{k+1} - x^* = x^k - x^* + f(x^k) - f(x^*)$$

Need to Estimate

Convergence

Mean Value Theorem

$$f(v) - f(y) = \frac{\partial f(\tilde{v})}{\partial x} (v - y) \quad \tilde{v} \in [v, y]$$

Convergence

Use MVT

Iteration Equation
$$x^{k+1} = x^k + f(x^k)$$

Exact Solution $x^* = x^* + f(x^*)$

Computing Differences

$$x^{k+1} - x^* = x^k - x^* + f(x^k) - f(x^*)$$
$$= \left(1 + \frac{\partial f(\tilde{x})}{\partial x}\right) \left(x^k - x^*\right)$$

Convergence

Richardson Theorem

If
$$\left| 1 + \frac{\partial f(\tilde{x})}{\partial x} \right| \le \gamma < 1 \text{ for all } \tilde{x} \text{ s.t. } \left| \tilde{x} - x^* \right| < \delta$$

And
$$|x^0 - x^*| < \delta$$

Then
$$\left|x^{k+1}-x^*\right| \leq \gamma \left|x^k-x^*\right|$$

Or
$$\lim_{k \to \infty} |x^{k+1} - x^*| = \lim_{k \to \infty} \gamma^k |x^0 - x^*| = 0$$

Linear Convergence

Example 1

$$f(x) = -0.7x + 10$$

Problems

- Convergence is only linear
- x, f(x) not in the same units:
 - -x is a voltage, f(x) a current in circuits
 - -x is a displacement, f(x) a force in struts
 - Adding 2 different physical quantities
- But a Simple Algorithm
 - Just calculate f(x) and update

From the Taylor series about solution

$$0 = f(x^*) \simeq f(x^k) + \frac{df}{dx}(x^k)(x^* - x^k)$$

Define iteration

Do
$$k = 0$$
 to ...
$$x^{k+1} = x^k - \left[\frac{df}{dx}(x^k)\right]^{-1} f(x^k)$$

$$if \left[\frac{df}{dx}(x^k)\right]^{-1} exists$$

until convergence

Graphically

Example

EXAMPLE: $f(x) = x^3 - 2$, $x^* = \sqrt[3]{2} \approx 1.259921$

\boldsymbol{k}	$oldsymbol{x^k}$	$ oldsymbol{x}^{oldsymbol{k}}-oldsymbol{x}^* $
0	10.0	8.740
1	6.673333	5.413
•	•	•
8	1.261665	1.744e - 03
9	1.259924	2.410e - 06
10	1.259921	4.609e - 12

Asymptotically,

$$|x^{k+1}\!-\!x^*|pprox C|x^k\!-\!x^*|^lpha$$

$$C = 0.7951$$

$$\alpha = 2.000$$

Quadratic

Example

Convergence

$$0 = f(x^*) = f(x^k) + \frac{df}{dx}(x^k)(x^* - x^k) + \frac{d^2f}{dx^2}(\tilde{x})(x^* - x^k)^2$$

some
$$\tilde{x} \in [x^k, x^*]$$

Mean Value theorem truncates Taylor series

But

$$0 = f(x^k) + \frac{df}{dx}(x^k)(x^{k+1} - x^k)$$
 by Newton definition

Convergence

Contd.

Subtracting
$$\frac{df}{dx}(x^{k})(x^{k+1}-x^{*}) = \frac{d^{2}f}{d^{2}x}(\tilde{x})(x^{k}-x^{*})^{2}$$

Dividing through
$$(x^{k+1} - x^*) = \left[\frac{df}{dx}(x^k)\right]^{-1} \frac{d^2f}{d^2x}(\tilde{x})(x^k - x^*)^2$$

Suppose
$$\left[\frac{df}{dx}(x)\right]^{-1} \frac{d^2f}{d^2x}(x) \le L$$
 for all x
then $\left|x^{k+1} - x^*\right| \le L \left|x^k - x^*\right|^2$

Convergence is quadratic if L is bounded

Convergence

Example 1

$$f(x) = x^{2} - 1 = 0, \quad \text{find} \quad x \quad (x^{*} = 1)$$

$$\frac{df}{dx}(x^{k}) = 2x^{k}$$

$$2x^{k}(x^{k+1} - x^{k}) = -\left(\left(x^{k}\right)^{2} - 1\right)$$

$$2x^{k}(x^{k+1} - x^{*}) + 2x^{k}(x^{*} - x^{k}) = -\left(\left(x^{k}\right)^{2} - \left(x^{*}\right)^{2}\right)$$

$$or \quad (x^{k+1} - x^{*}) = \frac{1}{2x^{k}}(x^{k} - x^{*})^{2}$$

Convergence is quadratic

Convergence

Example 2

$$f(x) = x^2 = 0, \quad x^* = 0$$

$$\frac{df}{dx}(x^k) = 2x^k$$

Note:
$$\left(\frac{df}{dx}\right)^{-1}$$
 not bounded

away from zero

$$\Rightarrow 2x^{k}(x^{k+1}-0)=(x^{k}-0)^{2}$$

$$x^{k+1} - 0 = \frac{1}{2}(x^k - 0)$$
 for $x^k \neq x^* = 0$

or
$$(x_{k+1} - x^*) = \frac{1}{2}(x_k - x^*)$$

Convergence is linear

Convergence

Examples 1, 2

Convergence

Suppose
$$\left[\frac{df}{dx}(x) \right]^{-1} \frac{d^2f}{d^2x}(x) \le L$$
 for all x

if
$$L\left|x_0 - x^*\right| \le \gamma < 1$$

then x_k converges to x^*

Proof
$$|x_1 - x^*| \le L |(x_0 - x^*)| |x_0 - x^*|$$

 $\Rightarrow |x_1 - x^*| \le \gamma |x_0 - x^*|$
 $\Rightarrow |x_2 - x^*| \le L\gamma |x_0 - x^*| |x_1 - x^*|$
 $or |x_2 - x^*| \le \gamma^2 |x_1 - x^*| \le \gamma^3 |x_0 - x^*|$
 $\Rightarrow |x_3 - x^*| \le \gamma^4 |x_2 - x^*| \le \gamma^7 |x_0 - x^*|$

Convergence

Theorem

If L is bounded ($\frac{df}{dx}$ bounded away from zero; $\frac{d^2f}{dx^2}$ bounded) then Newton's method is guaranteed to converge given a "close enough" guess

Always converges?

Convergence

Example

Convergence Depends on a Good Initial Guess

Convergence

Convergence Checks

Need a "delta-x" check to avoid false convergence

Convergence

Convergence Checks

Also need an "f(x)" check to avoid false convergence

Summary

- Nonlinear Problems
 - Struts and Circuit Example
- Richardson and Linear Convergence
 - Simple Linear Example
- 1-D Newton's Method
 - Derivation of Newton
 - Quadratic Convergence
 - Examples
 - Global Convergence
 - Convergence Checks