UCF Local Contest (Final Round) — September 10, 2022

Simplified Calendar System

filename: calendar

Difficulty Level: Easy-Medium

Time Limit: 5 seconds

Consider a simplified calendar system where each year is 12 months and each month is 30 days, i.e., each year is 360 days. This sure makes the math easy, or does it?

The Problem:

Given a date and what day of the week it is, determine what day of the week a second date is. The second date will be after (timewise) the first date.

The Input:

There are two input lines. The first input line contains four integers:

- d (1 \leq d \leq 30), providing what day of the month the first date is,
- m ($1 \le m \le 12$), providing what month of the year the first date is,
- $y (1000 \le y \le 2999)$, providing what year the first date is, and
- n ($1 \le n \le 7$), providing what day of the week the given date is (1 represents Sunday, 2 represents Monday, ..., 7 represents Saturday).

The second input line provides the second date; it contains three integers (similar to the first three integers of the first input line). Again, the second date will be later than the first date (timewise).

The Output:

Print an integer (between 1 and 7, inclusive) indicating what day of the week the second date is.

Sample Input Sample Output

20	11 2021	7	2
29	11 2021		
20	10 1999	5	4
15	4 2002		