Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Linguagens Formais

* Linguagens Formais

Linguagens Formais

- * Uma linguagem formal é tal que:
 - * Tem uma sintaxe bem definida, de forma que, dada uma sentença, seja sempre possível saber se ela pertence ou não à linguagem; e
 - * Tem semântica precisa, de modo que não contenha sentenças sem significado ou ambígua
- * Exemplos de concretização de Linguagens Formais
 - * C++, Java, Pascal, HTML, etc

Nomenclatura

- * Toda linguagem tem um alfabeto associado
 - * Um alfabeto é um conjunto finito, não vazio, de símbolos
 - * Uma palavra sobre um alfabeto é uma sequência <u>finita</u> de símbolos do alfabeto
 - * O tamanho de uma palavra x, |x|, é o número de símbolos que a compõem
 - * Palavra vazia: λ
 - * $|\lambda| = 0$

Sejam os seguintes alfabetos

$$\Sigma = \{1\} \ \mathrm{e} \ \Gamma = \{0, 1\}$$

- * Com estes alfabetos é possível representar qualquer número natural
 - * Representações sobre Σ são exponencialmente maiores que sobre Γ
- Exemplos de palavras sobre
 - * Γ : λ , 0° , 0, 1, 00, 01, 10, 11, 0^{3}
 - * Σ : λ , 1°, 1, 11, 111, 1111, 1⁵

Linguagens sobre Alfabetos

- * Seja o alfabeto Σ
 - st Uma linguagem sobre Σ é um conjunto de palavras sobre Σ
- * Seja Σ^* o conjunto de todas as palavras sobre Σ
 - * Uma linguagem sobre Σ é um subconjunto de Σ^*

$$L \subseteq \Sigma^*$$

Linguagens sobre Alfabetos

- * Fecho de Kleene sobre um alfabeto Σ
 - * Seja Σ um alfabeto. O Fecho de *Kleene* ou **fecho estrela** de Σ , denotado por Σ^* , é o conjunto de todas as cadeias (finitas) obtidas concatenando zero ou mais símbolos de Σ . Por exemplo, se $\Sigma = \{a\}$, então: $\Sigma^* = \{\lambda, a, aa, aaa, aaaa, . . . \}$
 - * Formalmente, podemos definir o fecho estrela de um alfabeto Σ , indutivamente, por:
 - * 1) $\lambda \in \Sigma^*$
 - * 2) Se $w \in \Sigma^*$ e $a \in \Sigma$, então $wa \in \Sigma^*$
 - * 3) os únicos elementos de Σ * são aqueles obtidos aplicando uma quantidade finita de vezes as regras 1) e 2).

- * Seja o alfabeto $\Sigma = \{0,1\}$. O conjunto de todas as palavra sobre Σ é $\Sigma^* = \{\lambda,0,1,00,01,10,11,000,....\}$.
- * São exemplos de linguagens sobre Σ :
 - * { }. A mais simples. Não contém palavras;
 - * $\{\lambda\}$. Contém somente a palavra vazia;
 - * {0}. Contém uma única palavra: 0;
 - * $\{\lambda,0\}$. Contém duas palavras;

*
$$\{w \in \Sigma^* | 1 \le |w| \le 5\}$$
. Contém $\sum_{i=1}^{5} 2^i$ palavras;

* $\{0^n1^n|n\in\mathbb{N}\}$ Linguagem com todas as palavras de tamanho par, cuja primeira metade só contém 0s e a segunda metade só 1s

Operações sobre Palavras

* Concatenação

- * $x = a_1 a_2 \dots a_m$
- * $y = b_1 b_2 \dots b_n$
- * $xy = a_1 a_2 \dots a_m b_1 b_2 \dots b_n$
- * Em particular $\lambda w = w\lambda = w$

* Reverso

- * $w = a_1 a_2 \dots a_m$
- $* w^R = a_m a_{m-1} \dots a_1$
 - st Um palíndromo é uma palavra tal que $w=w^R$

Prefixo, Sufixo e Sub-palavra

- * Seja a palavra w = xyz, em que x, y e z podem ser λ ou não
 - st x é um prefixo de w
 - st y é uma sub-palavra de w
 - * z é um sufixo de w
 - * Em particular λ é um prefixo, sufixo e uma sub-palavra de qualquer palavra, e w é um prefixo, sufixo e sub-palavra de qualquer palavra w

* Sejam duas palavras v = abaabb e w = abc

```
* vw =
```

*
$$\lambda v =$$

*
$$w^R =$$

*
$$\lambda^R =$$

- * Todos prefixos de w =
- * Todos sufixos de w =
- * Todas sub-palavras de w =
- * 6 palíndromos =

- * Sejam duas palavras v = abaabb e w = abc
 - *vw = abaabbabc
 - * wv = abcabaabb
 - * $\lambda v = abaabb$
 - * $w^R = cba$
 - * $\lambda^R = \lambda$
 - * Todos prefixos de $w = \lambda$, a, $ab \ e \ abc$
 - * Todos sufixos de $w = \lambda$, c, bc, abc
 - * Todas sub-palavras de $w = \lambda$, a, b, c, ab, bc, abc
- * 6 palíndromos = λ , a, bb, ccc, aba, baab

Operações sobre Linguagens

* Como uma linguagem é um conjunto, pode-se lançar mão das operações sobre **conjuntos**.

Operações sobre Linguagens

- * Sejam as linguagens L_1 e L_2 sobre Σ_1 e Σ_2 respectivamente. São também linguagens:
 - * $L_1 \cup L_2$, uma linguagem sobre $\Sigma_1 \cup \Sigma_2$;
 - * $L_1 \cap L_2$, uma linguagem sobre $\Sigma_1 \cap \Sigma_2$;
 - * $L_1 L_2$, uma linguagem sobre Σ_1 .
- * Concatenação
 - $*L_1L_2 = \{xy | x \in L_1 \text{ e } y \in L_2\}$
 - * Em particular

$$\emptyset L = L\emptyset = \emptyset \in \{\lambda\}L = L\{\lambda\} = L$$

Operações sobre Linguagens

- st Fecho de Kleene sobre uma linguagem L
 - * Definição recursiva
 - * 1) $\lambda \in L^*$
 - * 2) Se $x \in L^*$ e $y \in L$, então $xy \in L^*$
 - * Informalmente, L^{\ast} é o conjunto de todos os elementos formados a partir da concatenação de zero ou mais elementos de L .
 - * O Fecho de Kleene positivo, L^+ , é igual a L^* sem a palavra vazia:

$$L^* = L^+ \cup \{\lambda\}$$

Um olhar para o futuro

- * Como uma linguagem sobre um alfabeto Σ é sempre um conjunto contável, pois é um subconjunto de Σ^* , que é enumerável, existe a possibilidade de fazer uma definição recursiva, como foi visto anteriormente. Mas a verdade é que, na prática, as linguagens raramente são definidas dessa forma.
- * Existe um formalismo, que permite o uso de recursão, porém foi especialmente projetado para a definição de linguagens: a **gramática**. Veremos este assunto em aulas posteriores.

* Sejam as linguagens a seguir

$$L_1 = \{ w \in \{0, 1\}^* | |w| = 5 \}$$
$$L_2 = \{ 0y | y \in \{0, 1\}^* \}$$

- * Quais são as seguintes linguagens?
 - * $L_1L_1 =$
 - * $L_1L_2=$
 - * $L_2L_1 =$
 - * $L_2L_2=$

Sejam as linguagens a seguir

$$L_1 = \{ w \in \{0, 1\}^* | |w| = 5 \}$$
$$L_2 = \{ 0y | y \in \{0, 1\}^* \}$$

- * Quais são as seguintes linguagens?
 - * $L_1L_1=\{w\in\{0,1\}^*\mid |w|=10\};$
 - * $L_1L_2=\{w\in\{0,1\}^*\mid \text{o sexto símbolo de }w\in 0\};$
 - * $L_2L_1=\{w \in \{0,1\}^* \mid w \text{ começa com } 0 \in |w| >= 6\};$
 - * $L_2L_2 = \{ 0y \mid y \in \{0,1\}^* \text{ e } y \text{ cont\'em no m\'inimo um } 0 \};$

* Qual o número de prefixos, sufixos e sub-palavras de uma palavra de tamanho n?

- * Qual o número de prefixos, sufixos e sub-palavras de uma palavra de tamanho n?
- * O número de prefixos e sufixos para palavras de tamanho n é n+1; Para subpalavras não é possível generalizar, pois não se sabe ao certo quantos símbolos compõem a palavra, nem se existem símbolos repetidos, etc.
- * Veja o exemplo a seguir:

- * w = aaa (n = 3)
- * w = abcb (n = 4)
 - * **Prefixos** de aaa = λ , a, aa, aaa;
 - * Sufixos de aaa = λ , a, aa, aaa;
 - * Subpalavras de aaa = λ , a, aa, aaa
 - * **Prefixos** de abcb = λ , a, ab, abc, abcb;
 - * **Sufixos** de abcb = λ , b, cb, bcb, abcb;
 - * **Subpalavras** de abcb = λ , a, b, c, ab, bc, cb, abc, bcb, abcb;

- * A seguir, exemplos de definições informais de linguagens, seguidas das suas definições formais:
- Conjunto das palavras que começam com 0: {0}{0,1}*
- * Conjunto das palavras que contêm 00 ou 11: {0,1}*{00,11}{0,1}*
- * Conjunto das palavras que terminam em um 0 seguido de um número ímpar de 1s: {0,1}*{01}{11}*
- * Conjunto das palavras de tamanho par, que começam com 0 ou terminam com 0: $(\{0,1\}\{0,1\})*\cap [\{0\}\{0,1\}*\cup \{0,1\}*\{0\}\};$ ou $[\{0\}\{0,1\}(\{0,1\}\{0,1\})*]$ U $[\{0,1\}\{\{0,1\}\{0,1\}\})*\{0\}];$

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

