

Analog IC Design

Lecture 19 Common-Mode Feedback (CMFB)

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

$$v_{bs} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \square Bulk effect: $g_m \rightarrow g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$
 $G_m = \frac{i_{out,sc}}{v_{in}}$
 $A_v = G_m R_{out}$
 $A_i = G_m R_{in}$

- ☐ Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D , Vout V _{in} Jiout,sc V _X	R _D , V _{out} j _{out,sc} R _s	V _{in} V _x V _{out} V _{out} R _s
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S / / \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o} \right)$	∞
out	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

19: CMFE

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} $ $\gg 1$

What is an OTA / Op-Amp?

- ☐ An op-amp is simply a high gain differential amplifier
- The gain can be increased by using cascodes and multi-stage amplifiers

Op-Amp vs OTA

- ☐ An OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	OTA	
Rout	LOW	HIGH	
Model	$V_{in} \bigcirc V_{in} \bigcirc V_{out}$ $R_{in} = A_{v}V_{in} \bigcirc V_{out}$	$V_{in} \longrightarrow I_{in}$ $G_m V_{in} \longrightarrow R_{out}$ $Q_m V_{in} \longrightarrow R_{out}$	
Diff input, SE output			
Fully diff		12	

Negative Feedback

- \Box A_{OL} = Open loop (OL) gain $\gg 1$
- \square Error signal = $X X_F$

$$Y = A_{OL}(X - X_F) = A_{OL}(X - \beta Y)$$
$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta \cdot A_{OL}} \approx \frac{1}{\beta}$$

Stability: Phase Margin

- \Box If $\omega_{p2}=\omega_u$: PM = 45° \Rightarrow typically inadequate (peaking/ringing)
- \Box The ultimate ω_u cannot exceed $\omega_{p2} \rightarrow \omega_{p1} < \omega_u < \omega_{p2}$
 - For $\omega < \omega_u$ the Bode plot is similar to a 1st order system

Why Fully Differential Circuits

- ☐ Fully differential vs diff input SE output
 - Larger output swing
 - No mirror poles (higher speed)
 - Better CMRR
 - Better linearity (lower distortion)

But common-mode feedback (CMFB) circuit is required...

Well Defined Input/Output CM Level

- The input and output common-mode levels are fairly well defined
- \Box VCM = VDD ISS*RD/2

[Razavi, 2017]

ILL-Defined Input/Output CM Level

- ☐ Mismatches ALWAYS create a finite error between ID3,4 and ISS/2
- ☐ If ID3,4 > ISS/2: VX and VY must rise (M3 and M4 enter triode) so that ID3,4 fall to ISS/2
- ☐ If ID3,4 < ISS/2: VX and VY must drop (M5 enters triode) region so that ISS falls to 2*ID3,4

17

19: CMFB [Razavi, 2017]

ILL-Defined Input/Output CM Level

- ☐ This is a fundamental problem in high-gain amplifiers
- ☐ Vb can be adjusted in simulations but not in a real circuit
- Why don't we suffer from this problem in SE output OTA?

18

19: CMFB [Razavi, 2017]

Common-Mode Feedback (CMFB)

- Negative FB system
 - 1. Sense CM level
 - 2. Compare it to a reference
 - 3. Return the error to the bias circuit

19: CMFB [Razavi, 2017]

CMFB

- CM level must be independent of the differential signal
 - CM sensing must not depend on the differential signal

CM Sensing: Resistive Sensing

- ☐ Small R will degrade the gain
- Large R occupies large area and has large parasitic capacitors
 - May degrade the CMFB loop stability!

19: CMFB [Razavi, 2017]

- Resistive sensing
- The feedback network forces the CM level of Vout1 and Vout2 to approach VREF
- The feedback can also be applied to the PMOS current sources

19: CMF_b

- Resistive sensing
- The feedback network forces the CM level of Vout1 and Vout2 to approach VREF

- ☐ For CM level M3 and M4 behave as diode connected devices
- \square Maximum swing obtained by setting $\frac{l_1}{2}R_F = V_{TH}$

Two stage OTA: Two separate CMFB loops for the first and second stages

19: CMFB [Razavi, 2017]

- ☐ Simulating CMFB loop stability
 - Place the OTA in a closed-loop feedback system
 - Apply differential pulses (transient analysis)
 - Large signal effects are captured

[Razavi, 2017]

- ☐ The CMFB loop is unstable!
 - Requires compensation

- Hand analysis: Break the loop to analyze the CMFB loop gain
- Simulation: Use STB analysis (loading and bilateral effects)

[Razavi, 2017]

 \Box PM = -10°

☐ Note the CMFB loop does not require very high gain

 \Box Add 3pF to the error amplifier output \rightarrow PM = 50°

- ☐ Transient analysis repeated → CMFB loop is stable
- But there is differential ringing?

- The feedback resistance and the OTA input cap add a pole
- ☐ Fixed by adding small cap parallel with the large feedback resistance (usually required when using large feedback res)

Thank you!

CM Sensing: Source Followers

Voltage shift can be taken into account in the comparison step

19: CMFB [Razavi, 2017]

CM Sensing: Source Followers

- R1 and R2 or I1 and I2 must be large enough to ensure that M7 or M8 is not "starved" when a large differential swing appears at the output
- ☐ If Vout2 >> Vout1
 - I1 must sink both IX ≈ (Vout2 Vout1)/(R1 + R2) and ID7.
 - If R1 + R2 or I1 is not sufficiently large: ID7 drops to zero

[Razavi, 2017]

CM Sensing: Source Followers

Output swing is reduced

• Without CMFB: $V_{out,min} = V_{ov3} + V_{ov5}$

• With CMFB: $V_{out,min} = V_{TH} + V_{ov7} + V_{I1}$

CM Sensing: Deep Triode

$$R_{tot} = R_{on7} \| R_{on8}$$

$$= \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{out1} - V_{TH})} \| \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{out2} - V_{TH})}$$

$$= \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{out2} + V_{out1} - 2V_{TH})}$$

CM Sensing: Deep Triode

- If the assumption of deep triode is invalid, R_{tot} will be function of the individual values of V_{out1} and V_{out2}
 - If V_{out1} approaches V_{TH} (V_{ov} is very small) M7 will enter sat
 - CM sensing becomes nonlinear and dependent on the individual values of V_{out1} and V_{out2}

- Sensing by deep triode devices
- \square (W/L)₁₅ = (W/L)₉ and (W/L)₁₆ = (W/L)₇+(W/L)₈
- $\square I_{D9} = I_{D15} \text{ if } V_{\text{out,CM}} = V_{\text{REF}}$

Continuous Time vs Discrete Time CMFB

- ☐ Resistive sensing → Low voltage gain
- \square Source followers or deep triode o Limited linear range
- All the previous techniques are continuous-time CMFB circuits
- Designing continuous-time (CT) CMFB circuits that are both linear and operate with low power-supply voltages is not an easy task
 - Actually it is an area of continuing research!
- Another technique that is currently very popular is using switchedcapacitor circuits
 - But the circuit must be refreshed periodically
 - Suitable for discrete time switched-capacitor circuits

Discrete time (DT) CMFB

Switched Capacitor CMFB

- ☐ Reset phase: S1, S4, and S5 close
 - Capacitor charged to $V_{CM} V_{GS6}$
- ☐ Amplification phase: S2 and S3 close

$$- V_{outCM} = V_C + V_{GS5} = V_{CM} - V_{GS6} + V_{GS5} \approx V_{CM}$$

