

Tin sinh học ứng dụng (Applied Bioinformatics)

Phuc Loi Luu, PhD

<u>Luu.p.loi@googlemail.com</u>

Nov 02 2024

Content

- Class member introduction
- Curriculum of Applied Bioinformatics 2024
- Projects and important dates
- Evalutation for the course
- How my lecture work?
- Linux OS, Google Colab and Linux Command Lines

Class member introduction

EDUCATION AND PROFESSION

2014 – 2022	Garvan Institute of Medical Research, UNSW Sydney	Bioinformatics researcher in Computational Epigenomics under the supervision of Prof. Susan Clark Conjoint Senior Lecturer	Sydney, Australia
2011 - 2014	Max Planck Institute for Molecular Biomedicine, University of Muenster	PhD student in stem cell computational biology under the supervision of Prof. Hans R. Schöler	Muenster, Germany
2010 – 2011	KIST-Europe	Data Scientist	Saarbruecken, Germany
2008 – 2010	Max Planck Institute for Informatics, University of Saarland	Bioinformatics Post-graduate student under the supervision of Prof. Thomas Langauer	Saarbruecken, Germany
2005 – 2008	Nong Lam University - Ho Chi Minh City	Lecturer	Ho Chi Minh City, Vietnam
2000 – 2005	University of Science - Ho Chi Minh City National University	Bioinformatics undergraduate student under the supervision of Prof. Ho Huynh Thuy Duong	Ho Chi Minh City, Vietnam

Curriculum of Applied Bioinformatics 2024

- 1. Linux OS, Google Colab and Linux Command Lines (02 Nov)
- 2. Basic Bash script and Awk (09 Nov)
- 3. Basic R (16 Nov)
- 4. Statistics with R (23 Nov)
- 5. Data visualization with R (30 Nov)
- 6. Review basic molecular biology and the human genome (09 Nov)
- 7. Introduction to Next Generation Sequencing (NGS), Gene annotation and the related databases (23 Nov)
- 8. Next Generation Sequencing (NGS) and its applications in clinic and agriculture (30 Nov)
- 9. Short read sequencing and upstream analysis for DNA-seq (7 Dec)
- 10. Short read sequencing and downstream analysis (variant calling and variant annotation) for DNA-seq (14 Dec)
- 11. A brief introduction to clinical genomics and precision medicine (21 Dec)
- 12. Long read sequencing introduction and upstream analysis for DNA-seq (28 Dec)
- 13. Long read sequencing and downstream analysis (denovo assembly and genome annotation) for DNA-seq (4 Jan 2025)
- 14. Presenting group projects (11 Jan 2025)

Human Genome Variation

- Humans genomes are >99% similar by sequence
- A typical human genome has ~5 million variants with 3-4 million singlenucleotide variants
- Humans are diploid

Sequencing DNA

Read Alignment

Set of reads

Alignment and variant viewers

Cancer Genomics Variant Calling

Interpreting Genomic Variants

Popular Tools: VEP, Annovar, snpEff

Projects and important dates

No	Project	Aim	Requirement	Group
1	A breast cancer gene panel (BRCA1 and BRCA2)	Processing a dataset of 10 samples	Programming bashHuman Moclecular biologyClinical background	
2	A gene panel sequencing dataset of a cancer	Processing a dataset of 2 samples	Programming bashHuman Moclecular biologyClinical background	
3	Whole Exome sequencing (WES) dataset of a cancer	Processing WES and interpretation of the result	Programming bashHuman Moclecular biologyClinical background	
4	Whole Exome sequencing (WES) dataset of a genetic disease	Processing WES and interpretation of the result	Programming bashHuman Moclecular biologyClinical background	
5	Denovo assembly of a viral genome ONT/PacBio	Understanding processing and interpretation of the result	Programming bashMoclecular microbiologyClinical background	
6	Variant calling and subtyping of bacteria Whole Genome Sequencing	Understanding the artical and interpretation of the result	Programming bashMoclecular microbiologyClinical background	

Do we need to install and learn Ubuntu and programing?

Do we need to install and learn Ubuntu and programing?

Evalutation for the course

- Presentation date (final exam): 11 Jan 2025
- Max 30 min each group
- 5-10 questions each student
- Report (20) +
 Presentation (20) +
 Slide (10) +
 Questions for the presentation (25) +
 Questions for the all of lectures (25)

How does my lecture work?

- Start at 1:30 PM every Saturday from **02 Nov 2024** to **12 Jan 2025** (14 weeks)
- 15 min oral test at the begin of the lecture
- Time breaks in a lecture (2:45-3:00 PM and 4:00-4:15 PM)
- Lecture end at 5 PM
- No attendance checking

No attendance checking

No attendance checking

Nghỉ học được không bạn?

Nhưng khó đậu nhe!

https://github.com/luuloi/AppliedBioinformatics2024/tree/main

https://www.youtube.com/@vpivnpathoinformatics8930/playlists

Thank you for your attention!

