

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Nowhere do we regard the fork as made up of two bars attached to a solid base. Since the question of how we may best regard a vibrating tuning fork has been raised, we have turned once more to Rayleigh.³ After a mathematical discussion he writes:

. . . These laws find an important application in the case of tuning forks, whose prongs vibrate as rods, fixed at the ends where they join the stalk, and free at the other ends.

Also Edwin H. Barton,⁴ a pupil of Lord Rayleigh, writes:

The behavior of the U-shaped bars just dealt with approximates to that of tuning forks. But the vibration of tuning forks is usually further complicated by the presence of an additional block at the center of the bend and the stem attached thereto. Indeed, it may be a nearer approximation to regard each prong as a straight bar fixed at the end near the stem and free at the other end.

It appears, then, that this "crude" manner of considering a tuning fork, which has been wrongly attributed to us, is actually accepted by no less an authority than Rayleigh and his pupil, Barton.

Professor Wead's interpretation of our view is probably based upon our statement that the fork has a single node at the base. This, of course, is only an approximation.

An alternative explanation, according to Professor F. R. Watson, of this university, is to consider the fork as a single vibrating system in which the center of mass tends to remain fixed in position. As the tines of the fork are bending outward, the center of mass tends to lower, so that the stem and block of the fork rise a bit so as to keep the position of the center of mass unchanged. As the tines return inward, the center of mass tends to rise, so that the stem of the fork lowers. The stem of the fork thus executes minute up and down movements.

PAUL THOMAS YOUNG

UNIVERSITY OF ILLINOIS

AN ANECDOTE CONCERNING DR. FIELD

I HAVE read with great interest Dr. Ward's sketch of the life and work of the late Herb-

³ "Theory of Sound," 1894, Vol. I., 274.

⁴ "A Text-Book on Sound," 1908, 298.

ert Haviland Field. It, however, omits any mention of his appreciation of humor, and perhaps I may be allowed to tell of one of his practical jokes which, to me at least, was most amusing.

The late Henry B. Pollard had just completed his work on the anatomy of *Polypterus* and had gone from Wiedersheim's laboratory for lunch. I came in a little later, started my studies, and then Pollard came in, and in a moment I realized what "Uncle Toby" meant when he referred to the profanity of "our army in Flanders." Pollard turned to me, holding up a drawing of the cranial nerves of that fish which was almost completely covered with haematoxylin, and demanded who did it. I knew nothing of it and so replied. Pollard said he would call the attention of the professor (Wiedersheim) to it and at once left the room. As he went out of one door of the laboratory, the door from the anatomical museum opened and in came Field, who removed the damaged drawing from Pollard's table, opened a drawer and took out another drawing, and again left the room. Pollard almost immediately returned, bringing the professor with him. "Look at that!" said Pollard. "Was ist los?" asked Wiedersheim, and then Pollard looked and saw his drawing in perfect condition. I never saw such an expression of complete inability to comprehend as that on Pollard's face. He was utterly without words. The explanation of the whole was that Field had found the tracing paper which Pollard had used, had rapidly redrawn on another sheet the nerves and skull of *Polypterus*, had deluged it with staining fluid and left it for Pollard to find, waiting in the museum to hear what the English youth would and could say.

S.

TWO RETROSPECTIVE FEATURES OF THE TORONTO MEETING

THE membership list in the last volume of the Summarized Proceedings, recently published, shows that the Association has a considerable number of members living in coun-