Linear Algebra I - Fall 2017

Homework 3

Homework should be submitted through Moodle as a pdf file by 17:00 on Friday, November 17. Late submissions will not be accepted. Additional instructions are available on Moodle.

1. Determine whether $\mathbf{v_1} = \begin{pmatrix} 5 \\ 7 \\ 7 \end{pmatrix}$, $\mathbf{v_2} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{v_3} = \begin{pmatrix} -2 \\ -4 \\ -6 \end{pmatrix}$ are linearly independent.

Solution: The vectors are linearly dependent iff there exist $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, not all zero, such that

$$\alpha_1 \begin{pmatrix} 5 \\ 7 \\ 7 \end{pmatrix} + \alpha_2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \alpha_3 \begin{pmatrix} -2 \\ -4 \\ -6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This is aquivalent to the following homogenous system of linear equations, written in matrix form, having a nontrivial solution:

$$\begin{pmatrix} 5 & 4 & -2 \\ 7 & 5 & -4 \\ 7 & 6 & -6 \end{pmatrix}$$

We apply row operations to bring it to an REF:

$$\begin{pmatrix}
5 & 4 & -2 \\
7 & 5 & -4 \\
7 & 6 & -6
\end{pmatrix}
\xrightarrow{R_1 \to \frac{1}{5}R_1}
\begin{pmatrix}
1 & \frac{4}{5} & -\frac{2}{5} \\
7 & 5 & -4 \\
7 & 6 & -6
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 7R_1}
\begin{pmatrix}
1 & \frac{4}{5} & -\frac{2}{5} \\
0 & -\frac{3}{5} & -\frac{6}{5} \\
0 & \frac{2}{5} & -\frac{16}{5}
\end{pmatrix}$$

$$\xrightarrow{R_2 \to -\frac{5}{3}R_2}
\begin{pmatrix}
1 & \frac{4}{5} & -\frac{2}{5} \\
0 & 1 & 2 \\
0 & \frac{2}{5} & -\frac{16}{5}
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - \frac{2}{5}R_2}
\begin{pmatrix}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & -4
\end{pmatrix}
\xrightarrow{R_3 \to -\frac{1}{4}R_3}
\begin{pmatrix}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix}$$

It is now evident that the system has only the trivial solution. Thus, the vectors are linearly independent.

2. In each of the following cases determine whether the set A spans V. If so, given an arbitrary vector $\mathbf{v} \in V$ ($\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ or $\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$), express \mathbf{v} as a linear combination of the vectors in A with the weights in terms of the entries of \mathbf{v} . If not, give an example of a vector which is not a linear combination of the vectors in A.

1

(a)
$$A = \left\{ \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, V = \mathbb{R}^3.$$

Solution: A vector $\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ is in the span of A iff there exist $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that the following system of linear equations, written in matrix form, has a solution:

$$\begin{pmatrix} -1 & 2 & 0 & a \\ -1 & 5 & 0 & b \\ -1 & 8 & 1 & c \end{pmatrix}$$

This system has the RREF:

$$\begin{pmatrix} 1 & 0 & 0 & \frac{-5a+2b}{3} \\ 0 & 1 & 0 & \frac{-a+b}{3} \\ 0 & 0 & 1 & a-2b+c \end{pmatrix}$$

It follows that A spans V and

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{-5a + 2b}{3} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + \frac{-a + b}{3} \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + (a - 2b + c) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

(b)
$$A = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}, V = \mathbb{R}^2.$$

Solution: A vector $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ is in the span of A iff there exist $\alpha_1, \alpha_2 \in \mathbb{R}$ such that the following system of linear equations, written in matrix form, has a solution:

$$\begin{pmatrix} 1 & 2 & a \\ 1 & -1 & b \end{pmatrix}$$

This system has the RREF:

$$\begin{pmatrix} 1 & 0 & \frac{a+2b}{3} \\ 0 & 1 & \frac{a-b}{3} \end{pmatrix}$$

It follows that A spans V and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{a+2b}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{a-b}{3} \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

3. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Suppose $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. Then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent if and only if \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$.

Solution: Suppose $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent. Thus, there exist $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, not all zero, such that

$$\alpha_1 \mathbf{u} + \alpha_2 \mathbf{v} + \alpha_3 \mathbf{w} = 0.$$

If $\alpha_3 = 0$, then at least one of α_1, α_2 is nonzero, in contradiction to the assumption that $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. Thus, $\alpha_3 \neq 0$. It follows that

$$\mathbf{w} = -\frac{\alpha_1}{\alpha_3}\mathbf{u} - \frac{\alpha_2}{\alpha_3}\mathbf{v} \in \mathrm{Span}\{\mathbf{u}, \mathbf{v}\}.$$

In the other direction, suppose \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$. Thus, there are $\alpha_1, \alpha_2 \in \mathbb{R}$ such that $\mathbf{w} = \alpha_1 \mathbf{u} + \alpha_2 \mathbf{v}$. Thus, $\alpha_1 \mathbf{u} + \alpha_2 \mathbf{v} - \mathbf{w} = 0$ is a nontrivial linear combination of zero and it follows that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

4. For each of the following solution sets find a set of vectors that spans it:

(a)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x+y+z=0 \right\}$$
.

Solution: We have $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x+y+z=0 \right\} = \left\{ \begin{pmatrix} -y-z \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid y,z \in \mathbb{R} \right\} = \left\{ y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3 \mid y,z \in \mathbb{R} \right\} = \operatorname{Span}\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$. Thus, an example of such

a set is
$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$
.

(b)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 - x_4 = 0, 2x_1 + x_2 + 2x_3 + x_4 = 0 \right\}.$$

Solution: One easily sees that the solution set of the system of linear equations is given by

$$\left\{ \begin{pmatrix} -s \\ -t \\ s \\ t \end{pmatrix} \in \mathbb{R}^4 \mid s, t \in \mathbb{R} \right\} = \left\{ s \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^4 \mid s, t \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Thus, an example of such a set is $\left\{ \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix} \right\}$.

5. Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a linearly independent set of vectors in \mathbb{R}^n . Determine whether the set

$$\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$$

is linearly independent.

Solution: Let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that

$$\alpha_1 \mathbf{v_1} + \alpha_2 (\mathbf{v_1} + \mathbf{v_2}) + \alpha_3 (\mathbf{v_1} + \mathbf{v_2} + \mathbf{v_3}) = 0.$$

Thus,

$$(\alpha_1 + \alpha_2 + \alpha_3)\mathbf{v_1} + (\alpha_2 + \alpha_3)\mathbf{v_2} + \alpha_3\mathbf{v_3} = 0.$$

As $\{v_1, v_2, v_3\}$ is linearly independent, we have

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$\alpha_2 + \alpha_3 = 0$$

$$\alpha_3 = 0$$

This system obviously has only the trivial solution, i.e., $\alpha_1 = \alpha_2 = \alpha_3 = 0$. It follows that

$$\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$$

is linearly independent.

6. Prove: Let $A = \{\mathbf{v_1}, \dots, \mathbf{v_k}\}$ be a linearly independent set of vectors in \mathbb{R}^n and let B be a nonempty subset of A. Then B is linearly independent.

Solution: Without loss, $B = \{\mathbf{v_1}, \dots, \mathbf{v_m}\}$ where $1 \leq m \leq k$. Let $\alpha_1, \dots, \alpha_m \in \mathbb{R}$, not all zero, such that

$$\alpha_1 \mathbf{v_1} + \dots + \alpha_m \mathbf{v_m} = 0.$$

Thus,

$$\alpha_1 \mathbf{v_1} + \dots + \alpha_m \mathbf{v_m} + 0 \cdot \mathbf{v_{m+1}} + \dots \cdot 0 \cdot \mathbf{v_k} = 0$$

is a nontrival linear combination of zero. In contradiction to the assumption.

- 7. Let A be an $m \times n$ matrix in REF. Prove or provide a counterexample:
 - (a) If A has a leading entry in every column then the columns of A are linearly independent. **Solution:** This is true. In this case A can be brought to an RREF of the form:

$$\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
0 & 0 & \ddots & 0 \\
\vdots & & & 1 \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0
\end{pmatrix}$$

The columns of this matrix are obviously linearly independent and therefore also the columns of A are linearly independent.

(b) If A has a leading entry in every column then the columns of A span \mathbb{R}^m .

Solution: This is false. A counterexample is given by

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Obviously, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ cannot be generated by $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Thus, the columns of A do not span \mathbb{R}^3 .

(c) If A has a leading entry in every row then the columns of A span \mathbb{R}^m .

Solution: In an REF each column can have at most one leading entry. Thus, the set of

columns of A has a subset of the form $\left\{ \begin{pmatrix} a_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} * \\ a_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} * \\ \vdots \\ * \\ a_m \end{pmatrix} \right\}$ where the asteriks

stand for real numbers and a_1, \ldots, a_m are all nonzero real numbers. It is clear that this subset spans \mathbb{R}^m and therefore the set of columns of A spans \mathbb{R}^m .