Mid Demester Exam

Aunab Sen

Theory of Computation
082204 Name: Subject:

indus of the straigs

Code:

20 April 2021 Date:

Gaute: 500519006. avenab @ iles Students. ii ests. ac. ii

from such that the case was

con be approal ? Some street

L' Longie aproprie à Novembre de la Serie

(b) FALSE

Regular languages are Content free but the opposite sonot-true i.e all content pree are not regular. G= (V, Z, R, 3) RC (J-2) x (2. RC (N-Z) X (Z*, ((N-Z) U ?e3))

For Context free grammar G= (V, Z, R, 3) NOR de North RC(V-Z)XV

elle can consider a of finite language L'ontains alphabet Z as a finite set of strings. It contains the eymbols of Z.

But, we can also say that those stocky one dymbols for some attrem tanguage alphabet 2° and hence I can be alphabet of some other language h Honce eue can conclude that any fincte language Lawr an alphabet Σ can itself be the alphabet you some other longuage & thus TRVE.

al know ϕ is a negator longuage over \mathcal{D} at Alow $\dot{\gamma}$ a $\dot{\epsilon}$ \dot{z} . Here a $\dot{\epsilon}$ dosed emoter and a $\dot{\epsilon}$ \dot{z} . Alow $\dot{\gamma}$ and $\dot{\epsilon}$ \dot{z} $\dot{\epsilon}$ \dot{z} $\dot{z$

	4	n	equin story	
m	L	,	700	A Marie Comment
<u> </u>	0	0	e;	
O			b	
0		197-	. 2	abbec.
17.0	2	2.	abbe	abbec.
	1		bc	1614
\circ	1	20	00	- 7
O		· / :- 1	d 70. 1 8	
1		,		
. \		1	,	

$$3. \longrightarrow 3.C$$

$$3. \longrightarrow a 3.C$$

$$3. \longrightarrow 32$$

$$3. \longrightarrow 32$$

$$3. \longrightarrow 32$$

$$3. \longrightarrow a 3.D$$

$$3. \longrightarrow e$$

$$G = (v, Z, R, S)$$
where $v = \{ 5, c, a, g, b \}$

$$\Sigma = \{ a, b, c \}$$

$$R = \{ 3, \rightarrow S, c, g, \beta, \rightarrow a, c, g, \beta, \beta, \beta, c \}$$

$$S_1 \rightarrow c, S_2 \rightarrow S_2b \quad S_2 \rightarrow a, S_2b \quad S_1 \rightarrow c \}$$

$$S_1 \rightarrow c \}$$

$$S_1 \rightarrow c \}$$

$$S_1 \rightarrow c \}$$

 $m \mid m, n \geq 0$ and $m \neq n$ b, ele 3, e/e. e, ele Z = 2 a, b3 T = ? a, e}

$$G = (V_1 \geq_1 R_1 3)$$

$$V = \begin{cases} 6, A_1 B, a_1 b \end{cases}$$

$$V = \begin{cases} 3 \rightarrow Aq_1 \\ A \rightarrow q A \end{cases}$$

$$A \rightarrow e_1$$

$$A \rightarrow e_1$$

$$A \rightarrow Bq A \end{cases}$$

BED With town things

The language L C {a,b}* supresented & the negular expression a a the DFA of the large LC 20,637

\$

$$F = \frac{95}{10!}$$

$$F = \frac{95}{10!}$$

$$K = \frac{9}{10!}$$

$$S = \frac{9}{10!}$$