Задание: Прогнозирование качества вин

Отчет по проделанной работе

Выполнил: Белоконев Даниил Артемович

Результаты проделанной работы

Скачал и распаковал данные, после чего ознакомился с их содержанием

hite win	ies							
< < 5 ra	ows v > > 5	rows × 13 columns					カ 🕹 Static Output	i p
fixed	l acidity ÷	volatile acidity ÷	citric acid ÷	residual sugar ÷	chlorides ÷	free sulfur dioxide ÷	total sulfur dioxide :	den
	7.0	0.27	0.36	20.7	0.045	45.0	170.0	
	6.3	0.30	0.34	1.6	0.049	14.0	132.0	
	8.1	0.28	0.40	6.9	0.050	30.0	97.0	
	7.2	0.23	0.32	8.5	0.058	47.0	186.0	
	7.2	0.23	0.32	8.5	0.058	47.0	186.0	
D. d								
		rows × 13 columns					ہ Static Output	i (i)
< < 5 ro	ows ~ > > 5		citric acid ÷	residual sugar :	chlorides ÷	free sulfur dioxide :	カ 点 Static Output total sulfur dioxide :	
	ows ~ > > 5		citric acid ÷ 0.00				total sulfur dioxide ÷	den
< < 5 ro	ows \checkmark \Rightarrow \Rightarrow 5	volatile acidity ÷		1.9	0.076	11.0	total sulfur dioxide ÷ 34.0	den
< < 5 ro	ows > > 5 acidity ÷ 7.4	volatile acidity ÷ 0.70	0.00	1.9	0.076 0.098	11.0 25.0	total sulfur dioxide ÷ 34.0 67.0	den
< < 5 rd	ows > > > 5 I acidity ÷ 7.4 7.8	volatile acidity = 0.70	0.00 0.00	1.9 2.6 2.3	0.076 0.098 0.092	11.0 25.0 15.0	total sulfur dioxide = 34.0 67.0 54.0	den

Обозрел датасет на наличие выбросов (аномалий) или Null-значений. Для этого использовать стандартные инструменты:

- Pandas: для поиска Null-значений
- Matplotlib: для анализа данных на наличие выбросов с графиков распределения и boxplot-графиков
- Scipy для вычисления z score для каждого атрибута (подсчета количества выбросов в среди атрибутов) Считал, что z score выше 3 это выброс
- Seaborn: для визуализация матрицы корреляции признаков

Boxplot-график (один из) и информация о пропущенных значениях

График распределения (один из) и информация о количестве выбросов за счет показателя z score


```
Колонка: fixed acidity, количество выбросов: 46
Колонка: volatile acidity, количество выбросов: 81
Колонка: citric acid, количество выбросов: 85
Колонка: residual sugar, количество выбросов: 9
Колонка: chlorides, количество выбросов: 102
Колонка: free sulfur dioxide, количество выбросов: 32
Колонка: total sulfur dioxide, количество выбросов: 12
Колонка: density, количество выбросов: 3
Колонка: pH, количество выбросов: 32
Колонка: sulphates, количество выбросов: 48
Колонка: alcohol, количество выбросов: 0
```

Подготовил данные:

- Разделил и стандартизировал данные
- Превратил pd.DataFrame и pd.Series в tensors, которые впоследствии были объединены в dataloaders

Создал архитектуру нейросети:

```
# Heäpoceth для решения perpeccuoнных задач

class WineRegressor(nn.Module);

def __init__(self, input_size, hidden_sizes, dropout=0.3);

super()__init__()

layers = []

sizes = [input_size] + hidden_sizes

# Для каждого перехода sizes[i] B sizes[i+1]

for 1 in range(len(sizes) - 1);

# дниейное преобразование

layers.append(nn.Linear(sizes[i], sizes[i + 1]))

# нормализация для ускорения и стабилизации обучения

layers.append(nn.BatchMormId(sizes[i + 1]))

# дункция актавции (в отнацатись обучения)

layers.append(nn.BatchMormId(sizes[i + 1]))

# регуляризация, которое борестве с переобучением, не давая нейросети зацикливаться на каких-то определенных нейренах

layers.append(nn.Dropout(dropout))

# последний линейный слой для составления нужного выходного размера

layers.append(nn.Linear(sizes[-1], 1))

# сборка нейросети

self.net = nn.Sequential(*layers)

self_initialize_weights()

def __initialize_weights(self):

# инициализация для всех линейных слоев

for m in self.modules():

if isinstance(m, nn.Linear):

nn.init.xavier_uniform_(m.weight)

# обнуляет отклонение bias

if m.bias is not None:

nn.init.zeros_(m.bias)

def forward(self, x):

return self.net(x).squeeze(-1)
```

Базовая нейросеть с Feedforward структурой: линейные слои + нормализация + нелинейность + регуляризация.

- **Линейные слои**: для преобразования данных и извлечения из них более богатого представления, которые помогают модели лучше понять данные
- **Нормализация** (Batch Norm): для ускорения и стабилизации обучения
- **Функция активация** (Leaky ReLU): используется данная функция активации, чтобы снизить вероятность "отмирания" нейронов

- **Регуляризация** (Dropout): борется с переобучением, не давая нейросети зацикливаться на определенных нейронах
- Последний слой: преобразует выходные данные нейросети под нужный размер (в нашем случае требуется непрерывное число, тк решаем задачу регрессии)
- Инициализация весов (Xavier): устанавливает начальные веса так, чтобы дисперсия выходов градиентов сохранялась одинаковой во всех слоях

Данная нейросеть обучается по стандартному циклу градиентного спуска:

- 1) Обнуляем градиенты параметров нейросети для того, чтобы градиенты не складывались и не искажали обновление весов
- 2) Forward pass прогон входных данных через нейросеть
- 3) Вычисляем функцию потерь (в нашем случае используем MSELoss)
- 4) backpropagation обратное распространения ошибки (вычисляем градиенты ошибки по каждому параметру нейросети, данные градиенты сохраняются внутри каждого параметра)
- 5) Исходя из вычисленных градиентов и значения learning rate, делаем шаг градиентного спуска обновляем веса нейросети (У нас в качестве оптимизатора используется Adam)
- 6) Данный цикл повторяется для каждого батча и эпохи

Нейросеть была сначала проверена с помощью инструмента optuma. Данный инструмент позволил нам подобрать оптимальные параметры для нашей модели. На основе полученных параметров обучили нейросеть.

Нейросеть обучалась 300 эпох, в конечном итоге на тестовой выборке обученная нейросеть показала результат MAE = 0.4767

```
Epoch 292 | Train Loss: 0.1776 | Val MAE: 0.4725 | LR: 1.50e-06
Epoch 293 | Train Loss: 0.1799 | Val MAE: 0.4753 | LR: 1.50e-06
Epoch 294 | Train Loss: 0.1757 | Val MAE: 0.4716 | LR: 1.50e-06
Epoch 295 | Train Loss: 0.1772 | Val MAE: 0.4724 | LR: 1.00e-06
Epoch 296 | Train Loss: 0.1764 | Val MAE: 0.4746 | LR: 1.00e-06
Epoch 297 | Train Loss: 0.1758 | Val MAE: 0.4721 | LR: 1.00e-06
Epoch 298 | Train Loss: 0.1753 | Val MAE: 0.4739 | LR: 1.00e-06
Epoch 299 | Train Loss: 0.1766 | Val MAE: 0.4726 | LR: 1.00e-06
Epoch 300 | Train Loss: 0.1746 | Val MAE: 0.4767 | LR: 1.00e-06
```

В качестве визуализации результатов работы использовались графики scatter plot граф, на котором показано как близко предсказанные классы лежат к идеальной диагонали + гистограмма распределения абсолютных ошибок, на которой показано насколько часто модель ошибается на N-единиц

Исходя из показаний двух графиков можно сказать:

- 1) Модель неплохо предсказывает средние классы (5, 6, 7), но ей очень сложно даются крайние классы (впоследствии мы выясним, что крайних классов как раз-таки крайне мало, и предложим варианты исправления данной проблемы)
- 2) Модель преимущественно имеет наиболее частые предсказания, которые укладываются в ошибку меньше 0.6, что хорошо в задачах с ограниченной шкалой, но далеко от идеала

Какие улучшения можно сделать для данной модели

- 1) Обогатить датасет: датасет насчитывает порядка 6 тысяч записей, что является недостаточным количеством для обучения полноценных нейросетей (особенно мало крайних классов, таких как 3, 4, 8 и 9). Это даст нейросети больше информации для обучения, а также поможет ей более точно понять и предсказывать крайние классы.
- 2) Изменить датасет: одним из возможных решений может стать объединение крайних классов (например, 3 и 4 или 8 и 9). Такое решение освободит нейросеть от поиска сложных зависимостях в данных, которых крайне мало, что должно облегчить работу для нее
- 3) SMOTE обогащение или аугментация: можно воспользоваться инструментов генерации синтетических данных, что уравновесит баланс классов и даст модели большее количество данных, с которыми можно работать
- 4) Feature Engineering: важным этапом в оптимизации модели является feature engineering.
 - а) Можно убрать низко-коррелирующие атрибуты (модель не будет путаться бесполезными данными, а сфокусируется лишь на самых полезных)
 - b) Можно вывести новые атрибуты путем группировки ч, преобразования или бинаризации некоторых фич
- 5) Пересмотр архитектуры:
 - а) Можно изменить слои существующей нейросети
 - b) Можно пересмотреть задачу и переделать нашу модель под задачу классификации
 - с) Можно отказаться от столь тяжелого и сложного варианта, в пользу ансамблей или других моделей классического машинного обучения (например, Random Forest или XGBoosting)

Данные предложения не являются 100% методами повышения точности модели, поэтому очень важно всегда тестировать и проверять новую модель, на наличие улучшений.

Более подробное описание работы можно посмотреть в notebook!