Επιλογή Στηλών κατά την Ανάπτυξη Μεθόδων HPLC

Μ. ΚΟΥΠΠΑΡΗΣ

Εισαγωγή

Συνήθη Λάθη στην Ανάπτυξη Μεθόδων:

- Ανεπαρκής Διατύπωση Σκοπούμενης Χρήσης της Μεθόδου
- Ελάχιστη Γνώση της Χημείας του Μίγματος των Αναλυτών
- Χρήση της Πρώτης Διαθέσιμης Στήλης Αντίστροφης Φάσης C18
- Δοκιμή και Λάθος (Trial and Error) με Διαφορετικές Στήλες και Κινητές Φάσεις

Αυτά τα Λάθη Προκαλούν:

- Κοπιώδη και Χρονοβόρα Έργα Ανάπτυξης Μεθόδων
- Μεθόδους που Αποτυγχάνουν να Ικανοποιούν τις Ανάγκες του Αναλυτή

Ανάπτυξη Μεθόδου HPLC - Προτεινόμενη Διαδικασία

Στο Γραφείο

- Καθορισμός της γνώσης του δείγματος
- Καθορισμός των στόχων της μεθόδου διαχωρισμού
- Επιλογή στηλών προς δοκιμή / αξιολόγηση

Στο Εργαστήριο

- Επιλογή χημικής σύστασης αρχικής κινητής φάσης
- Επιλογή τύπου ανιχνευτή και αρχικών παραμέτρων
- Αξιολόγηση των δυνητικών στηλών για το δείγμα
- Βελτιστοποίηση των συνθηκών διαχωρισμού (ισοκρατικός ή βαθμιδωτός) για τις επιλεγείσες στήλες
- Επικύρωση μεθόδου και μεταφορά στο εργαστήριο ρουτίνας

Η Επιλογή της Κατάλληλης Στήλης Πρέπει να Βασίζεται στη Γνώση του Δείγματος και των Στόχων του Διαχωρισμού

Οφέλη αυτής της διαδικασίας:

- Επένδυση μικρού αρχικού χρόνου
- Μεγάλη οικονομία χρόνου στο εργαστήριο HPLC
- Περισσότερο "ενημερωμένη" διαδικασία επιλογής στήλης
- Αποδοτικότερη από τη διαδικασία "δοκιμή και λάθος"

Η Γνώση του Δείγματος Επηρεάζει την Επιλογή των Χαρακτηριστικών των Συνδεδεμένων Φάσεων της Στήλης

Γνώση του Δείγματος

- Δομή συστατικών δείγματος?
- Αριθμός ενώσεων που υπάρχουν?
- Μήτρα (matrix) δείγματος?
- Τιμές pK_a των συστατικών του δείγματος?
- Περιοχή συγκεντρώσεων?
- Περιοχή μοριακών βαρών?
- Διαλυτότητα?
- Άλλα σχετικά δεδομένα?

Χημεία Στήλης

(Συνδεδεμένη φάση, τύπος σύνδεσης, κάλυψη άκρων (endcapping), φορτίο άνθρακα (carbon load)

Οι Στόχοι Διαχωρισμού Επηρεάζουν την Επιλογή των Φυσικών Χαρακτηριστικών των Σωματιδίων της Στήλης

Στόχοι Διαχωρισμού

- Μέγιστη διαχωριστικότητα όλων των συστατικών?
- Μερική διαχωριστικότητα?
- Ταχεία ανάλυση?
- Οικονομία (χαμηλή χρήση διαλύτη)?
- Σταθερότητα και χρόνος ζωής στήλης?
- Παρασκευαστική μέθοδος?
- Υψηλή Ευαισθησία?
- Άλλοι στόχοι?

Φυσική Στήλης

(διαστάσεις σωματιδίων, σχήμα σωματιδίων, εμβαδόν επιφάνειας, μέγεθος πόρων)

Χάρτης Επιλογής Στ	ήλης									NI SERVICIONES			
Στόχοι Μεθόδου	Συνήθεις Στήλες (Καλές για τις περισσότερες	εφαρμογές) Υψηλή Αποδοτικότητα	Υψηλή Χωρητικότητα	Χαμηλή οπισθοπίεηση	Υψηλή Διαχωριστικότητ	α Υψηλή Φόρτιση δείγματος	Κατάλληλη για MW >2000	Υψηλή σταθερότητα	Υψηλή Ευαισθησία	Ταχεία ανάλυση	Χαμηλή κατανάλωση κινητής φάσης	Σταθερότητα σε ακραία pH	Ταχεία εξισορρόπηση
Μέγεθος Σωματιδίων small (3μm) medium (5μm) large (10μm)	•	•		•	•								
Mήκος Στήλης short (30mm) medium (150mm) long (300mm)	•			•	•				•	•	•		•
ID Στήλης narrow (2.1mm) medium (4.6mm) wide (22.5mm)	•					•			•		•		
Εμβαδόν επιφάνειας low (200m²/g) high (300m²/g)	•		•		•	•				•			•
Μέγεθος πόρων small (60Å) medium (100Å) large (300Å)	•		•		•		•						
Φορτίο ἀνθρακα low (3%) medium (10%) high (20%)	•		•		•	•				•			
Τύπος σύνδεσης (Bonding monomeric polymeric	ng Type)	•	•			•		•				•	
Σχήμα σωματιδίων spherical irregular	•	•	•	•				•					

HPLC Columns

Within the Column is where separation occurs.

Proper choice of column is critical for success in HPLC

Column dimensions in HPLC:

- Analytical [internal diameter (i.d.) 1.0 4.6-mm; lengths 15 – 250 mm]
- Preparative (i.d. > 4.6 mm; lengths 50 250 mm)
- Capillary (i.d. 0.1 0.5 mm; various lengths)
- Nano (i.d. < 0.1 mm, or sometimes stated as < 100 μm)

Column Particle Sizes:

7, 5, 3.5 (RR), & 1.8 um (RRHT)

Materials of construction for the tubing

- Stainless Steel (the most popular; gives high pressure capabilities)
- Glass (mostly for biomolecules)
- PEEK polymer (biocompatible and chemically inert to most solvents)

Agilent Technologies

Group/Presentation Title Agilent Restricted

Choose Column Configuration for Application

Column Type	I.D. (mm)	Lengths (mm)	Particle Sizes (um)	Flow Rate Ranges	Applications	Sensitivity Increase**
Nano	0.1, 0.075	150*	3.5	100 – 600 nL/min	Proteomics LC/MS	2000
Capillary	0.3, 0.5	35 – 250	3.5, 5	1 – 10 μL/min	Peptide Mapping LC/MS	100
MicroBore	1.0	30 – 150	3.5, 5	30 – 60 μL/min	High sensitivity LC/MS	20
Narrow Bore	2.1	15 – 150	1.8, 3.5, 5	0.1 – 0.3 mL/min	Sample limited, LC/MS	5
Solvent Saver	3.0	150, 250	1.8, 3.5, 5	0.3 – 1.0 mL/min	Analytical	2
Analytical	4.6	15 – 250	1.8, 3.5, 5	1 – 4 mL/min	Analytical	1
Semi-prep	9.4	50 – 250	5	4 – 10 mL/min	Small scale Protein purification	-
Preparative	21.2	50 – 250	5, 7	20 – 60 mL/min	CombiChem purification	-

** Based on 4.6 mm id columns

roup/Presentation Title Aglient Restricted Month ##, 200X

Επιλογή της Συνδεδεμένης φάσης

Σχεδιάστε τις μοριακές δομές για όλα τα συστατικά του δείγματος. Εντοπίστε τις δύο ενώσεις με τις πλέον όμοιες δομές.

п.χ.:

Prednisone

Επιλογή της Συνδεδεμένης φάσης

Για αυτά τα δύο μόρια, κυκλώστε τις λειτουργικές ομάδες που διαφέρουν. Αυτές είναι οι διαφορές που θα αξιοποιηθούν για τη βελτιστοποίηση του διαχωρισμού.

п.χ.:

HO

Prednisolone

Prednisone

Επιλογή της Συνδεδεμένης φάσης

Χρησιμοποιήστε τα αποτελέσματα της δομικής σύγκρισης για την επιλογή της συνδεδεμένης φάσης που θα έχει τη βέλτιστη ειδικότητα (selectivity) για αυτά τα δύο μόρια. Σε αυτή την περίπτωση δοκιμάστε μια στήλη πυριτίας (silica column, χωρίς συνδεδεμένη φάση) λόγω της ικανότητας να συγκρατεί πολικά συστατικά μέσω δεσμών υδρογόνου.

Prednisolone

Prednisone

Function	al Group Polarity	Comparisons		
Polarity	Functional Group	Structure	Bonding Types	Intermolecular Forces Displayed
Low	Methylene	R-(CH ₂) ₂ -	σ	London
	Phenyl	R	σ,π	London
	Halide	R—F, Cl, Br, I	σ	London, Dipole-Dipole
	Ether	R-O_R	σ	London, Dipole-Dipole, H-bonding
	Nitro	R-O R O R-N ⁺ O	σ,π	London, Dipole-Dipole, H-bonding
	Ester	O R-√ O-R	σ,π	London, Dipole-Dipole, H-bonding
Ż	Aldehyde	O R H	σ,π	London, Dipole-Dipole, H-bonding
	Ketone	R—(σ,π	London, Dipole-Dipole, H-bonding
	Amino	R-NH ₂	σ,π	London, Dipole-Dipole, H-bonding, Acid-base chemistry
	Hydroxyl	R—OH	σ	London, Dipole-Dipole, H-bonding
High	Carboxylic Acid	O R—(OH	σ,π	London, Dipole-Dipole, H-bonding, Acid-base chemistry

History of HPLC Particle Development

Year(s) of Acceptance	Particle Size	Most Popular Nominal Size	Plates / 15cm	
1950's	\bigcirc	100µm	200	
1967		57μm (pellicular)	1,000	
1972	₩	10µm	6,000	
1985	•	5µm	12,000	
1992	•	3.5µm	22,000	
2003	•	<u>_<</u> 2µm*	>30,000	

*Zorbax "Rapid Resolution HT", product launch 5/1/03

oup/Presentation Title Aglient Restricted Month ##, 200X

Columns Packed with Smaller Particles Provide Higher Efficiency

Group/Presentation Title Aglient Restricted Month ##, 200X

Silica Column Characteristics Suface Chemistry Surface Area Silanols **Bonding** Pore **Particle** Distribution Distribution Size Size NOTE: SILICA IS STABLE AT 1.0 > pH < 11.0* * range depends on manufacturer's bonding **Agilent Technologies**

ZORBAX Porous Silica Particles

Agilent Technologies

Παραδείγματα συνδεδεμένων φάσεων για μέσα πλήρωσης στηλών HPLC:

C18 ή Οκταδεκυλοσιλάνιο (Octadecylsilane, ODS)

Πολύ ἀπολη – Η συγκράτηση βασίζεται σε αλληλεπιδράσεις London (διασποράς) με τις υδρόφοβες ενώσεις.

Παράδειγμα Alltech Phase: Alltima™ C18

Φαίνυλο (Phenyl)

Άπολη – Η συγκράτηση είναι ένα μείγμα υδροφοβικών και π - π αλληλεπιδράσεων.

Παράδειγμα Alltech Phase: Platinum™ Phenyl

Κυανοπρόπυλο (Cyanopropyl)

Μέσης πολικότητας – Η συγκράτηση είναι μείγμα μηχανισμών υδρόφοβων, διπόλου-διπόλου και π - π αλληλεπιδράσεων.

Παράδειγμα Alltech Phase: Alltima™ CN

Κάθε συνδεδεμένη φάση έχει μια μοναδική εκλεκτικότητα για ορισμένους τύπους ενώσεων.

Ως πρακτικό παράδειγμα, για να διαχωρίσουμε τολουόλιο και αιθυλο-βενζόλιο:

- Υπάρχει διαφορά μιας μονάδας -CH₂-
- Επιλογή μιας συνδεδεμένης φάσης C18 για κατακράτηση μέσω υδροφοβικότητας
- Μεγιστοποίηση της υδροφοβικής εκλεκτικότητας με υλικό C18 μεγάλης επιφάνειας σίλικα και υψηλού φορτίου άνθρακα.

Χρησιμοποιήστε το Χάρτη Επιλογής Στηλών (Column Selection Chart)

- Ξεκινήστε με τη συνηθισμένη "default" στήλη ως αρχή
- Συσχετίστε τους στόχους της μεθόδου με τα ιδιαίτερα φυσικά χαρακτηριστικά των σωματιδίων
- Αλλάξτε μόνο εκείνες τις παραμέτρους των σωματιδίων που επηρεάζουν τους στόχους της μεθόδου
- Αναγνωρίστε τη "βέλτιστη" στήλη ως ένα πιθανό συμβιβασμό

Παράδειγμα:

Τύπος δείγματος: Υδρόφοβες ενώσεις

Στόχος Μεθόδου: Μέγιστη διαχωριστικότητα

Παράδειγμα:

Τύπος δείγματος: Υδρόφοβες ενώσεις

Στόχος Μεθόδου: Μέγιστη διαχωριστικότητα

Column Selection Chart Default Στήλη Βέλτιστη Στήλη Διαστάσεις στήλης 150 x 4.6mm 250 x 4.6mm Μέγεθος σωματιδίων 3* or 5µm 5µm Εμβαδόν επιφάνειας 200m²/g $>200m^2/q$ 100Å Μέγεθος πόρων 100Å Φορτίο άνθρακα 16 - 20% 10% Τύπος σύνδεσης Monomeric Mono- or Polymeric Υλικό βάσης Silica Silica Σχήμα σωματιδίων Spherical **Spherical**

^{*} Η οπισθοπίεση της κινητής φάσης μπορεί να είναι αυξημένη

Διαστάσεις Στήλης

• Μήκος και εσωτερική διάμετρος πληρωτικού υλικού (packing bed)

Σχήμα Σωματιδίων

Σφαιρικό ή Ακανόνιστο (irregular)

Μέγεθος Σωματιδίων

Μέση διάμετρος σωματιδίων, τυπικά 3-20μm

Εμβαδόν Επιφάνειας

• Άθροισμα εξωτερικής επιφάνειας σωματιδίων και της εσωτερικής επιφάνειας πόρων, σε m²/g

Resolving Power

Column Length (mm)	Resolving Power N(5 µm)	Resolving Power N(3.5 µm)	Resolving Power N(1.8 µm)	Typical Pressure Bar (1.8 µm)	1	Analysis Time*
150	12,500	21,000	32,500	N.A.		
100	8,500	14,000	24,000	420	Analysis Time	-33%
75	6000	10,500	17,000	320	Peak	-50%
50	4,200	7,000	12,000	210	Volume	-67%
30	N.A.	4,200	6,500	126	Solvent	-80%
15	N.A.	2,100	2,500	55	Usage	-90%
					-	

^{*} Reduction in analysis time compared to 150 mm column

[•] pressure determined with 60:40 MeOH/water, 1ml/min, 4.6mm ID

roup/Presentation Title Aglient Restricted Month ##, 200X

Pick the Column and Particle Size to Meet Your Needs

Columns: ZORBAX SB-C18 Mobile Phase: 50% 20 mM NaH₂PO₄, pH 2.8: 50% ACN Flow Rate: 1 mL/min Temperature: R Detection: UV 230 nm Sample: 1. Estradiol 2. Ethynylestradiol 3. Dienestrol 4. Norethindrone

roup/Presentation Title Aglient Restricted Month ##, 200X

Smaller Particles Maintain Efficiency Over Wider Flow Rate Ranges

H = A + B/u + Cu

Smaller particle sizes yield flatter curves, minima shift to higher flow rates

up/Presentation Title Agilent Restricted Month ##, 200X

Μέγεθος πόρων

 Μέσο μέγεθος πόρων ή κοιλοτήτων (cavities) στα σωματίδια, εύρους 60-10,000Å

Τύπος Σύνδεσης

- Μονομερική πρόσδεση μορίου συνδεδεμένης φάσης σε ένα σημείο
- Πολυμερική πρόσδεση μορίου συνδεδεμένης φάσης σε πολλά σημεία

Φορτίο Άνθρακα (Carbon Load)

Ποσότητα συνδεδεμένης φάσης στο υλικό βάσης, εκφρασμένη ως
 %C

Κάλυψη Άκρων (Endcapping)

 "Καλυψη" εκτεθειμένων σιλανολών με βραχείες αλυσίδες υδρογοναθράκων μετά το αρχικό στάδιο σύνδεσης

Monomeric vs. Polymeric Bonding

Monomeric bonding

Typical ZORBAX Bonding

- Eclipse Plus
- Eclipse XDB
- StableBond
- •Bonus-RP
- Agilent HC/TC

Polymeric Bonding Eclipse PAH

figure courtesy of Vydac

Agilent Technologies

roup/Presentation Title Agilent Restricted Month ##, 200X

Διαστάσεις Στήλης

Επίδραση στη χρωματογραφία

Διάσταση Στήλης

- **Βραχεία** (30-50mm) μικροί χρόνοι ανάλυσης, χαμηλή οπισθοπίεση
- Μακριά (250-300mm) υψηλή διαχωριστότητα, μεγάλοι χρόνοι ανάλυσης
- **Στενή** (≤ 2.1mm) μεγάλη ευαισθησία ανιχνευτή
- Ευρεία (10-22mm) υψηλή φόρτωση δείγματος

Σχήμα Σωματιδίων

Επίδραση στη χρωματογραφία

Σφαιρικά σωματίδια εξασφαλίζουν μειωμένη οπισθοπίεση και μεγάλο χρόνο ζωής της στήλης όταν χρησιμοποιούνται ιξώδεις κινητές φάσεις όπως 50:50 MeOH:H₂O.

Σχήμα Σωματιδίων

Επίδραση στη χρωματογραφία

Μικρότερα σωματίδια προσφέρουν υψηλότερη απόδοση, αλλά επίσης προκαλούν υψηλή οπισθοπίεση. Επιλέξτε σωματίδια 3 μm για το διαχωρισμό πολύπλοκων δειγμάτων πολλών συστατικών. Διαφορετικά επιλέξτε πληρωτικά υλικά 5 ή 10μm.

Εμβαδόν Επιφάνειας

Επίδραση στη χρωματογραφία

Υψηλό εμβαδόν επιφάνειας γενικά παρέχει μεγαλύτερη συγκράτηση, χωρητικότητα (capacity) και διαχωριστικότητα για το διαχωρισμό πολύπλοκων δειγμάτων πολλών συστατικών. Πληρωτικά χαμηλού εμβαδού επιφάνειας γενικά εξισορροπούν ταχύτατα, γεγονός πολύ σημαντικό στις βαθμιδωτές αναλύσεις.

Μέγεθος Πόρων

Επίδραση στη χρωματογραφία

Μεγάλοι πόροι επιτρέπουν στα μεγαλύτερα μόρια να κατακρατούνται περισσότερο χρόνο μέσω της μεγαλύτερης έκθεσης στην περιοχή της επιφάνειας των σωματιδίων. Επιλέξτε μέγεθος πόρων 150Å ή μικρότερο για ουσίες MW ≤ 2000. Επιλέξτε μέγεθος πόρων 300Å ή μεγαλύτερο για ουσίες MW > 2000.

Τύπος Σύνδεσης

lltech

Επίδραση στη χρωματογραφία

Μονομερική σύνδεση προσφέρει αυξημένη ταχύτητα μεταφοράς μάζας, υψηλότερη αποδοτικότητα στήλης, και ταχύτερη εξισορρόπηση στήλης.

Πολυμερική σύνδεση προσφέρει αυξημένη σταθερότητα στήλης, ειδικότερα όταν χρησιμοποιούνται κινητές φάσεις με υψηλή περιεκτικότητα ύδατος. Επίσης επιτρέπει στη στήλη να δεχθεί υψηλότερο φορτίο δείγματος.

3. The Surface of Silica Supports

Φορτίο Άνθρακα

Επίδραση στη χρωματογραφία

Υψηλότερο φορτίο άνθρακα γενικά προσφέρει μεγαλύτερη διαχωριστικότητα και μεγαλύτερους χρόνους ανάλυσης. Χαμηλό φορτίο άνθρακα μειώνει το χρόνο ανάλυσης και μπορεί να δείξει διαφορετική εκλεκτικότητα.

Κάλυψη Άκρων (Endcapping)

Επίδραση στη χρωματογραφία

Μειώνει την εμφάνιση ουράς (peak-tailing) πολικών ουσιών που αλληλεπιδρούν έντονα με τις διαφορετικά εκτεθειμένες, κυρίως όξινες σιλανόλες. Πληρωτικά υλικά χωρίς κάλυψη άκρων παρέχουν διαφορετική εκλεκτικότητα από ό,τι τα πληρωτικά υλικά με κάλυψη άκρων, ιδιαίτερα για πολικές ουσίες.

Traditional Stationary Phase Bonding and Endcapping Reaction

- · Dimethyl silanes
- Endcapped with TMS

Potential Ion Exchange and Hydrogen Bonding Secondary Interactions

Ion-exchange

 Ionized silanols (SiO⁻) will ion-exchange with protonated bases (R₃NH⁺) which can cause tailing and method variability. This occurs most often at mid pH where silanols are ionized.

Hydrogen Bonding

 Unprotonated acids can compete for H+ with protonated silanols. This can occur at low pH.

Some mobile phase additives can be added to the mobile phase to reduce these interactions and this will be discussed in the mobile phase section.

Group/Presentation Title Agilent Restricted Month ## 2003

Zorbax StableBond with Rx-SIL Improves Peak Shape

Mobile Phase: 75% 50 mM KH2PO4, pH 4.4: 25% ACN Flow Rate: 1.5 mL/min

Silica Type – More Acidic
Column: ODS, 4.6 x 250 mm, 5 μm
Plates: 92
USP T_f (5%):

2.90

Propranolol OH
pKa 9.5

Column: SB-C18, 4.6 x 150 mm, 5 μm
Plates: 6371
USP T_f (5%):

1.09

• The high purity Rx-SIL improves the peak shape dramatically on a C18 column

Group/Presentation Title Aglient Restricte Month ##, 2003

Different C18 Bonded Phases for Max Selectivity

Συμπέρασμα

- •Σε αυτή τη διαδικασία επιλογής στηλών HPLC, η χημεία συνδεδεμένης φάσης της στήλης επιλέγεται με βάση την ανάλυση των δομών των συστατικών του δείγματος.
- Τα φυσικά χαρακτηριστικά της στήλης επιλέγονται σύμφωνα με την ανάλυση των στόχων της μεθόδου διαχωρισμού.
- Αυτή η διαδικασία επιτυγχάνει την πρόβλεψη μοναδικών, βέλτιστων συνδεδεμένων φάσεων και φυσικών χαρακτηριστικών σωματιδίων πληρωτικού υλικού που να εκπληρώνουν τους στόχους της μεθόδου διαχωρισμού.

Ποιοί είναι οι στόχοι της μεθόδου;

	Μέγιστη διαχωριστικότητα όλων των συστατικών;	
	Βέλτιστο σχήμα κορυφής για δύσκολα δείγματα;	✓
3	Ταχεία ανάλυσης;	✓
1	Οικονομία (χαμηλή κατανάλωση διαλύτη);	✓
	Σταθερότητα και αυξημένος χρόνος ζωής στήλης;	
9	Καθαρισμός ενός ή περισσότερων άγνωστων συστατικών	
	Υψηλή φόρτιση δείγματος;	
	Υψηλή ευαισθησία;	
	'Αλλοι (Μεγάλος αριθμός δειγμάτων—Γρήγορη εξισορ	ρόπηση)

Τι πρέπει να ξέρω για το δείγμα

Αριθμός συστατικών	4
Μήτρα δείγματος	
ρΚα συστατικών	
Πληροφορίες φάσματος UV;	UV -254
Περιοχή συγκεντρώσεων ενώσεων	
Εύρος μοριακών βαρών ενώσεων	94 - 323

Δομές ενώσεων

Phenol

3-Butylpyridine

Anthracene

3-Hexylanthracene

Ποιά δύο συστατικά του δείγματος έχουν τις πλέον όμοιες δομές? Σχεδιάστε τις και κυκλώστε τις δομικές διαφορές μεταξύ τους.

Η δομική διαφορά μεταξύ των δύο ενώσεων είναι η υδρόφοβη πλευρική εξυλική ομάδα. Αυτό προτείνει μια άπολη στήλη C18 ή C8 που θα αλληλεπιδρά με αυτή την περιοχή διαφοράς για την επίτευξη διαχωρισμού των δύο ενώσεων

Προτεινόμενες φάσεις (με βάση τη σίλικα μόνο) – επιλέξτε μια

Normal phase	silica	NH ₂	CN			
Reversed phase	(C18)	C8	Ph	CN		

Επιλογή Στήλης Παράδειγμα #1

Φυσικά χαρακτηριστικά στήλης – χρήση Column Selection Chart και Στόχων Μεθόδου

«Def	fault» Στήλη Ιδ	σνική Στήλη
Column bed dimensions (mm)	150 x 4.6	100 x 2.1
Particle Size (µm)	5	5
Surface area (m ² /g)	200	<u><</u> 200
Pore Size (Å)	100	100
Carbon Load (%)	10	10
Bonding type	Monomeric	Monomeric
Particle shape	spherical	spherical

Επιλογή Στήλης Παράδειγμα #1

Διαθέσιμα Εναλλακτικά Πληρωτικά Συμμορφούμενα με τα ανωτέρω κριτήρια:

	Packing	Base Material		Particle Size (µm)	Carbon Load (%)	Pore Size (Å)	_	Bonding Type	End- cap'd
100	Allsphere ODS-2	silica	Sph.	3, 5, 10	12	80	220	Mono.	Yes
	Brava BDS C18	silica	Sph.	3, 5	8.5	145	185	Mono.	Yes
	Econosphere C18	silica	Sph.	3, 5, 10	10	80	200	Mono.	Yes
11 - 1 - 17	Platinum C18	silica	Sph.	3, 5, 10	6	100	200	Mono.	Yes

Καλύτερο Σχήμα Κορυφής

Αυξημένη Ευαισθησία, **Χαμηλή Κατανάλωση Διαλύτη**, Ταχεία Ανάλυση

(Ταχεία Εξισορρόπηση)

Στήλη επιλογής: Brava BDS C18, 100x2.1, 5μm (Spherical, 185m²/g,

monomeric)

Alltech

Καλή ισορροπία επίδοσης & οπισθοπίεσης

Μειωμένη οπισθοπίε ση

Επιλογή Στήλης Παράδειγμα #2

Στόχοι μεθόδου?

Μέγιστη διαχωριστικότητα όλων των συστατικών? ✓	/
Μερική διαχωριστικότητα, διαχωρισμός μόνο επιλεγμένων συστατικώ	٧?
Ταχεία ανάλυση?	
Οικονομία (χαμηλή κατανάλωση διαλύτη)?	
Σταθερότητα – μεγάλος χρόνος ζωής στήλης?	
Καθαρισμός ενός ή περισσότερων συστατικών για χαρακτηρισμό?	
Υψηλή φόρτωση δείγματος?	
Υψηλή ευαισθησία?	
'Αλλοι	

What do I know about the sample?

Αριθμός παρόντων συστατικών	6+
Μήτρα δείγματος	
Τιμές pKa ενώσεων?	
Πληροφορίες φάσματος UV ενώσεων?	UV -254
Περιοχή συγκεντρώσεων ενώσεων	
Περιοχή μοριακών βαρών ενώσεων	349 - 645

Δομές Ενώσεων

Ποια δύο συστατικά δείγματος έχουν τις πλέον όμοιες δομές? Εντοπίστε τις διαφορές.

Σχόλια: αμφότερες δομές πολύ πολικές, με λειτουργίες αμίνης και π δεσμών –μια στήλη RP CN μπορεί να δώσει καλό διαχωρισμό με μεικτό τύπο κατακράτησης υδρόφοβο, δεσμούς υδρογόνου CN---H---NR₂ και αλληλεπιδράσεις π-π με διπλούς δεσμούς.

Προτεινόμενη συνδεδεμένη φάση (μόνο υλικά silica)

Normal phase	silica	NH ₂	CN			
Reversed phase	C18	C8	Ph	CN		

Φυσικά χαρακτηριστικά στήλης – χρήση Column Selection Chart και Στόχων Μεθόδου

*	Default» Στἡλη	Ιδανική Στήλη
Column bed dimensions (mm)	150 x 4.6	250 x 2.1
Particle Size (µm)	5	5
Surface area (m ² /g)	200	200 +
Pore Size (Å)	100	Not critical
Carbon Load (%)	10	
Bonding type	Monomeric	Polymeric
Particle shape	spherical	spherical

Διαθέσιμα εναλλακτικά πληρωτικά συμμορφούμενα στα ανωτέρω κριτήρια:

	Packing	Base Material		Particle Size (µm)	Carbon Load (%)	Pore Size (Å)	Surface Area (m²/g)	Bonding Type	End- cap'd
2000	Adsorbosil CN	silica	Irreg.	5, 10		60	450	Poly.	Yes
	Alltima CN	silica	Sph.	3, 5		100	350	Poly.	Yes
7.4.	Allsphere CN	silica	Sph.	3, 5, 10		80	220	Mono.	No
ALC: WILL	Platinum CN	silica	Sph.	3, 5, 10		100	200	Mono.	No

Υψηλή διαχωριστικότητα, Υψηλή ευαισθησία

Υψηλή Rs.

Στήλη επιλογής: Alltima CN, 250 x 2.1 , 5μm (Spherical , 350 m²/g ,

polymeric)

Καλή ισορροπία απόδοσης & οπισθοπίεσης

Μειωμένη οπισθοπίεση

