Создание ранжирующих моделей для систем информационного поиска.*

Лепехин М. Н., Кулунчаков А. С., Стрижов В. В. lepehin.mn@phystech.edu

В данной работе исследуются различные методы построения нелинейных моделей для задач регрессии. В качестве возможных моделей для задач регрессии рассматривается множество суперпозиций более простых функций, предлагаемых экспертами. Структура суперпозиции функций определяется с помощью обхода в глубину её синтаксического дерева. Предлагается метод прогнозирования такой структуры. Подход к порождению структуры оптимальной модели проверяется как на синтетических данных, так и на основе данных из текстовой коллекции TREC. На этих данных качество построенных суперпозиций алгебраических функций сравнивается с результатами уже известных моделей.

Ключевые слова: ранжирующие системы, информационный поиск, временные ряды, структурное обучение, суперпозиция моделей.

1 Введение

В данной работе решается задача ранжирования текстов по поисковым запросам. Задача ранжирования актуальна для современных поисковых систем. Для того, чтобы пользователь получал на свои запросы ссылки на релевантные им документы, производится ранжирующая процедура. Она для каждой пары документ-запрос выдаёт релевантность документа данному запросу.

Несмотря на то, что уже существует большая коллекция алгоритмов для решения этой задачи, часто качество их работы оказывается недостаточно высоким. Например, в работах [1, 2] приведены примеры решений задачи ранжирования, столкнувшиеся с проблемой переобучения.

Существуют алгоритмы построения моделей высокого качества, позволяющие относительно эффективно бороться с переобучением. Их примеры есть в работе [3]. Они строятся как суперпозиции элементарных функций. Под элементарными функциями в данном случае подразумеваются показательная, логарифмическая и степенная функции. Лучшие по качеству композиции алгебраических функций из [3] превосходят на коллекциях TREC модели из [1, 2]. Но проблема такого метода построения моделей в том, что он использует полный перебор. Из-за этого такие алгоритмы имеют высокую вычислительную сложность и, следовательно, продолжительное время работы даже при построении относительно простых формул. Поэтому построение более сложных моделей при помощи такого подхода становится чрезвычайно затратным по времени.

Кроме того, существуют решения задачи ранжирования с использованием генетического алгоритма. Генетические алгоритмы применяются для решения широкого класса задач. Например, в [6] они применяются для поиска и классификации изображений. Его основное преимущество - гибкость порождаемых им суперпозиций. В работах [4, 5] это позволило существенно расширить класс рассматриваемых ранжирующих функций по сравнению с

^{*}Работа выполнена при финансовой поддержке РФФИ, проект №00-00-00000. Научный руководитель: Стрижов В. В. Задачу поставил: Эксперт Кулунчаков А. С. Консультант: Консультант Кулунчаков А. С.

работой [3]. Однако после 30-40 итераций генетического алгоритма сложность порождаемых суперпозиций примитивов резко возрастает, не давая при этом существенного повышения качества. Причина такой работы заключается в том, что предложенные методы не решали проблему эволюционной стагнации при прекращении изменения популяции и не ограничивали сложность порождаемых ими моделей.

Как правило, проблема эволюционной стагнации возникает, когда значительная часть построенных функций похожи по структуре и дают результаты высокого качества. В таком случае модели, получаемые при операции кроссовера, мало отличаются по структуре от уже сохранённых. Однако из-за высокого качества сохранённых ранжирующих суперпозиций вероятность того, что операция мутации позволит позволит получить из более качественную модель, крайне мала. Из-за этого порождённая ранжирующая функция скорее всего будет удалена из множества.

В данном работе предлагается учесть проблемы, возникающие при решении задачи ранжирования текстов при помощи описанных выше алгоритмов. Для этого предлагается изменить реализацию генетического алгоритма так, чтобы он был устойчив к эволюционной стагнации. На каждом шаге алгоритма при помощи структурных метрик индицируется эволюционная стагнация. Если эволюционная стагнация произошла, производится преобразование популяции ранжирующих моделей путём замены наименее качественных из них на случайные. Такой подход позволяет внести разнообразие в популяцию и сделать метод порождения моделей более устойчивым к стагнации. Помимо этого, для ограничения структурной сложности предлагается использовать регуляризаторы, штрафующие за сложность порождаемых функций. Такое видоизменение алгоритма позволяет ограничивать структурную сложность генерируемых суперпозиций и, как следствие, бороться с переобучением.

При исследовании текстов в задачах ранжирования будут использованы основные характеристики слов текста - tf (частоты слов в документе) и idf (числа документов, в которых слово встречается).

В данной работе предлагается развить идею предсказания промежуточной метамодели. Для этого рассматривается кластеризация документов по значениям tf-idf, посчитанным по корпусу текста. При этом предполагается, что текст разбивается на кластеры таким образом, что внутри каждого кластера документы будут близки друг к другу при ранжировании. Мета-модель предлагается строить как линейную комбинацию моделей, построенных для каждого кластера.

2 Постановка задачи

Имеется коллекция текстовых документов C, состоящая из документов $\{d_i\}_{i=1}^{|C|}$ и множество поисковых запросов $Q=\{q_j\}_{j=1}^{|Q|}$. Для каждого из запросов $q\in Q$ есть непустое множество документов $C_q\subseteq C$, оценённых экспертами. Все оценки r - бинарные:

 $r(d,q) \to \{0,1\}$, где оценка 1 ставится в случае релевантности документа d запросу q. Для каждого слова при зафиксированной коллекции документов C введём обозначение $\mathrm{count}(w,C)$ - количество документов $d \in C$, в которые входит слово w.

Кроме того, для каждой пары cnoso-doкумент определим freq(w, d) - количество вхождений слова w в документ d.

Введём характеристику коллекции $size_{avg}$ - среднее количество слов в документах коллекции. Для каждого документа $d \in C$ определим size(d) - количество слов в документе d.

Будем рассматривать две характеристики пары документ-слово: $(d, w, C) \to (tf, idf)$, где

$$idf(w,C) := \frac{count(w,C)}{|C|}$$

$$tf(w,d,C) := freq(w,d) * log\left(1 + \frac{size_{avg}}{size(d)}\right)$$

В дальнейшем для удобства будем опускать параметр C, считая его заданным изначально.

Для аппроксимации функции r будем генерировать суперпозицию грамматических элементов. Значение функции f на паре (d,q) определяется как сумма её значений на парах (d,w), где $w\in q$ - слово из запроса.

$$f(d,q) := \sum_{w \in q} f(tf(w,d), idf(w))$$

Генерируемая суперпозиция оценивает релевантность документа для каждого запроса. Для оценивания качества модели на выборке, содержащей множество запросов Q, нужно усреднить оценки по все запросам. Для этого будем использовать метрику качества МАР (mean average precision).

$$MAP(f, C, Q) = \frac{1}{|Q|} \sum_{q \in Q} AvgP(f, q),$$

где

$$AvgP(f,q) = \frac{\sum_{k=1}^{|C_q|} Prec(k) \times r(q,k)}{\sum_{k=1}^{|C_q|} r(q,k)}, Prec(k) = \frac{\sum_{s=1}^{k} r(q,s)}{k}$$

Пространство функций, в пределах которого будем генерировать ранжирующую суперпозиции обозначим \mathcal{F} .

Основная цель данной статьи - нахождение функции f, которая максимизирует следующую метрику качества:

$$f^* = \operatorname*{arg\,max}_{f \in \mathcal{F}} S(f, C, Q), S(f, C, Q) = MAP(f, C, Q) - R(f),$$

где R - регуляризатор, штрафующий за структурную сложность порождаемой суперпозиции.

3 Постановка задачи на кластерах документов

Определим tf - idf для всей коллекции документов. Рассмотрим отображение $V:C\to\mathbb{R}^n$, в котором каждому документу сопоставляется вектор tf - idf представления всех слов в нем. Для кластеризации документов будем использовать их представление в пространстве \mathbb{R}^n . Расстояние между документами считаем при помощи стандартной эвклидовой метрики.

Получаем множество кластеров $D = \{d_i : d_i = \{c_j \in C\}\}, |D| = m$. Для каждого кластера при помощи генетического алгоритма построим семейство ранжирующих функций

 $F_{d_i}^* = \{f_i^1, \dots, f_i^n\}$. В каждом семействе i выделим наилучшую по описанной выше метрике ранжирующую функцию $f_i^* \in F_{d_i}$.

Определим ранжирующую функцию на кластерах:

$$f^* = \underset{W \in \mathbb{R}^m}{\operatorname{arg\,max}} \left(\left(MAP(\sum_{i=1}^m W_i f_i^*, C, Q) \right) - \sum_{i=1}^m R(f_i^*) \right)$$

Значения весов будем подбирать при помощи кросс-валидации.

Литература

- [1] Salton, Gerard and McGill, Michael J. Introduction to Modern Information Retrieval // McGraw-Hill, Inc. New York, NY, USA, 1986
- [2] Ponte, Jay M. and Croft, W. Bruce A Language Modeling Approach to Information Retrieval // In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM
- [3] P. Goswami, S. Moura, E. Gaussier, M.-R. Amini, F. Maes Exploring the space of ir functions // ECIR'14, 2014, pp. 372–384.
- [4] Fan, Weiguo and Gordon, Michael D. and Pathak, Praveen Personalization of Search Engine Services for Effective Retrieval and Knowledge Management // In Proceedings of the twenty first international conference on Information systems (ICIS '00). Association for Information Systems Atlanta, GA, USA, 20-34.
- [5] Fan, Weiguo and Gordon, Michael D. and Pathak, Praveen A Generic Ranking Function Discovery Framework by Genetic Programming for Information Retrieval // Inf. Process. Manage. 40, 4 (May 2004), 587-602.
- [6] C.-H. Lina, H.-Y. Chenb, Y.-S. Wua Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection, Expert Systems with Applications 38241 (2014) 66116621.