Bases de Dados

Módulo 14A2: Normalização

Prof. André Bruno de Oliveira

14/05/24 08:21

Tópicos

- Exercícios
- Formas Normais
 - 1FN
 - 2FN
 - 3FN
 - FNBC

Exercícios

• (1) Considere a relação a seguir:

	Α	В	С
(1)	10	b1	с1
(2)	10	b2	c2
(3)	11	b4	c1
(4)	12	b3	с4
(5)(6)	13	b1	c1
(6)	14	b3	c4

Dada a instância apresentada, quais das seguintes FD podem ser válidas:

i)
$$A \rightarrow B$$
 ii) $B \rightarrow C$ iii) $C \rightarrow B$ iv) $B \rightarrow A$ v) $C \rightarrow A$

Esta relação possui alguma chave candidata em potencial? Caso possua, indique-a. Caso não possua, explique o motivo.

Exercícios

i) $A \rightarrow B$ ii) $B \rightarrow C$ iii) $C \rightarrow B$ iv) $B \rightarrow A$ v) $C \rightarrow A$

	Α	В	С
(1)	10	b1	с1
(2)	10	b2	c2
(3)(4)(5)	11	b4	с1
(4)	12	b3	c4
(5)	13	b1	с1
(6)	14	b3	c4

Condição para ser FD $t_1[X]=t_2[X]$ devem ter também $t_1[Y]=t_2[Y]$.

- i) Viola nas linhas 1 e 2 ii) É válida iii) Viola nas linhas 1 e 3

- iv) Viola nas linhas 1 e 5; e 4 e 6
- v) Viola nas linhas 1, 3 e 5

Esta relação possui alguma chave candidata em potencial? Caso possua, indique-a. Caso não possua, explique o motivo.

	Α	В	С
(1)	10	b1	с1
(2)	10	b2	c2
(3)	11	b4	с1
(4)	12	b3	c4
(5)	13	b1	с1
(6)	14	b3	c4

Condição para ser FD $t_1[X]=t_2[X]$ devem ter também $t_1[Y]=t_2[Y]$.

$$AB \rightarrow C, AC \rightarrow B, B \rightarrow C, BC \rightarrow A e ABC$$
 não se repete

São chaves candidatas AB, AC, B, pois não violam a condição e se não houve-se FD ABC seria uma chave candidata, pois não se repete. B tem o menor conjunto, o que é desejável para ser chave.

Exercícios

- (2) Considere a relação abaixo, que armazena a matrícula, nome e endereço de diversos estudantes e além disso, o código e nome de matérias que eles estão cursando.
- Forneça um exemplo de cada tipo de anomalia (inclusão, atualização e exclusão) que pode ocorrer nesta relação.
- Na sua opinião, {matrícula, codMateria} poderia ser a chave dessa relação? Por que?

matricula	nome	endereço	cod_materia	nomMateria
S21	Jones	Edinburgh	9201	Big Data
S21	Jones	Edinburgh	9267	Física
S24	Smith	Glasgow	9267	Física
S30	Richards	Manchester	9444	Compiladores
S30	Richards	Manchester	9322	Redes

- Forneça um exemplo de cada tipo de anomalia (**inclusão**, atualização e exclusão) que pode ocorrer nesta relação.
- Incluir uma matéria nova sem que haja alunos, pois a inscrição em disciplinas não ocorreu e trata-se de uma eletiva.

matricula	nome	endereço	cod_materia	nomMateria
S21	Jones	Edinburgh	9201	Big Data
S21	Jones	Edinburgh	9267	Física
S24	Smith	Glasgow	9267	Física
S30	Richards	Manchester	9444	Compiladores
S30	Richards	Manchester	9322	Redes
NULL	NULL	NULL	9578	IA

- Forneça um exemplo de cada tipo de anomalia (inclusão, **atualização** e exclusão) que pode ocorrer nesta relação.
- Gera uma inconsistência, pois deixa de atualizar um outubro atributo equivalente.

matricula	nome	endereço	cod_materia	nomMateria
S21	Jones Edinburgh Sevilha		9201	Big Data
S21	Jones	Edinburgh	9267	Física
S24	Smith	Glasgow	9267	Física
S30	Richards	Manchester	9444	Compiladores
S30	Richards	Manchester	9322	Redes

- Forneça um exemplo de cada tipo de anomalia (inclusão, atualização e **exclusão**) que pode ocorrer nesta relação.
- Perde-se a informação do aluno quando é excluída a matéria

matricula	nome	endereço	cod_materia	nomMateria
S21	Jones	Edinburgh	9201	Big Data
S21	Jones	Edinburgh	9267	Física
S24	Smith	Glasgow	9267	Física
S30	Richards	Manchester	9444	Compiladores
S30	Richards	Manchester	9322	Redes

- Na sua opinião, {matrícula, codMateria} poderia ser a chave dessa relação? Por que?
- matrícula define nome, endereço e cod_matéria define nom_Materia, logo {matrícula, codMateria} define os outros atributos.

matricula	nome	endereço	cod_materia	nomMateria
S21	Jones	Edinburgh	9201	Big Data
S21	Jones	Edinburgh	9267	Física
S24	Smith	Glasgow	9267	Física
S30	Richards	Manchester	9444	Compiladores
S30	Richards	Manchester	9322	Redes

Exercícios

• 5 FD que não são válidas. Neste caso, explique o motivo indicando as tuplas que causam a violação.

(1) A	В	С	D
2) a1	b1	c1	d1
a1	b2	c2	d2
) a2	b2	$\begin{array}{c} c \\ c1 \\ c2 \\ c2 \\ c4 \\ \end{array}$ $t_k[X] = t_n[X]$	d3
a3	b3	c4	d3

 $A \rightarrow B$ viola nas linhas 1 e 2 $A \rightarrow C$ viola nas linhas 1 e 2

 $A \rightarrow D$ viola nas linhas 1 e 2 D \rightarrow B viola nas linhas 4 e 5

 $D \rightarrow C$ viola nas linhas 4 e 5

• 5 FD não-triviais que podem ser válidas

A	В	C	D
a1	b1	c1	d1
a1	b2	c2	d2
a2	b2	c2	d3
a3	b3	c4	d3

Válida É **não-trivial**, pois {titulo , duração} \nsubseteq {titulo, ano} \nsubseteq **BA** → **C**, **B** → **C** logo BX → C

$$\mathbf{BA} \to \mathbf{C}, \ \mathbf{B} \to \mathbf{C} \log_{\mathbf{B}} \mathbf{BX} \to \mathbf{C}$$

$${\stackrel{\boxtimes}{\mathbb{B}}} BD \to C; \mathbf{B} \to \mathbf{C} \text{ logo } BX \to C$$

$$CA \rightarrow B$$
; $C \rightarrow B \log_0 CX \rightarrow B$

$$CD \rightarrow B$$
; $C \rightarrow B \log_0 CX \rightarrow B$

$$AB \rightarrow D; AB \rightarrow D$$

Para estas FD Não há conjunto de atributo contido na chave

Exercícios

- (4) Considere a relação *Livro*(titulo, tipo, editora, país, preço) e suponha que as seguintes FD existam:
- $titulo \rightarrow \{editora, tipo\}$
- tipo → preço
- editora → país
- Responda as seguintes questões:
 - •Qual é a chave da relação?
 - •Quais são as dependências transitivas?
 - •Uma dependência transitiva pode causar anomalias? Dê um exemplo.
 - •Projete novas relações de modo a eliminar todas as dependências transitivas de *Livro*, mas ao mesmo tempo, preservando a informação do BD.

Livro(titulo, tipo, editora, pais, preço) e suponha que as seguintes FD existam:

- $titulo \rightarrow \{editora, tipo\}$

tipo → preço
editora → pais
Responda as seguintes questões:
•Qual é a chave da relação?

Dado que titulo → {editora, tipo} Pela definição titulo → editora, titulo → tipo

Dado que tipo \rightarrow preço, editora \rightarrow país

Logo titulo → {tipo, editora, pais, preco} e titulo é uma chave candidata que pode ser escolhida como chave da relação.

Livro(titulo, tipo, editora, pais, preço) e suponha que as seguintes FD existam:

- $titulo \rightarrow \{editora, tipo\}$
- tipo → preço
- editora → país
- •Quais são as dependências transitivas?
- Como titulo → editora e titulo → tipo
- Dado que, tipo → preço e editora → pais

tipo e editora possuem dependência transitiva de titulo.

Livro(titulo, tipo, editora, país, preço) e suponha que as seguintes FD existam:

titulo \rightarrow {editora, tipo}; tipo \rightarrow preço; editora \rightarrow país

•Uma dependência transitiva pode causar anomalias? Dê um exemplo.

Inclusão: É possível incluir um país novo na relação sem que saiba-se a editora.

Alteração: Pode ocorrer uma alteração da editora e1 sem que seja feita a devida alteração na segunda linha do mesmo titulo.

Exclusão: Se for excluído o país p2 as informações de titulo, tipo e editora serão perdidas.

titulo	tipo	editora	pais	preco
a1	t1	e1 e9	p1	10
a1	t1	e1	p1	10
_a2	t2	e2	p2	15
a3	t3	e3	р3	20
a3	t3	e3	р3	20
NULL	NULL	NULL	<i>p4</i>	NULL

Livro(titulo, tipo, editora, país, preço) e suponha que as seguintes FD existam:

- $titulo \rightarrow \{editora, tipo\}$
- tipo → preço
- editora → país
- •Projete novas relações de modo a eliminar todas as dependências transitivas de *Livro*, mas ao mesmo tempo, preservando a informação do BD.

```
{titulo, editora, tipo}
{tipo, preco}
{editora, pais}
```

Através de junções é possível recuperar as informações, então não há perda.

Obrigado

Normalização

Normalização

- Após os conceitos teóricos preliminares terem sido abordados, pode-se abordar a Normalização propriamente dita.
- No processo de **normalização**, <u>uma relação</u> **é decomposta** em duas ou mais relações quando isto remover **anomalias**.
- Em geral, o processo é **guiado** pela identificação de **dependências funcionais**.
- A relação é submetida a uma **série de testes** para que seja verificado se ela satisfaz uma determinada **forma normal**.
- 1FN
- 2FN
- 3FN
- FNBC
- 4FN, 5FN e outras pouco utilizadas na prática.

- Baseia se na definição formal de Relação (Teoria Relacional)
 - "O **domínio** de um atributo de uma Relação deve incluir apenas valores **atômicos** (simples, indivisíveis). Portanto, o valor de qualquer atributo em uma tupla deve representar **um único valor** do domínio do atributo".
- A relação abaixo viola a 1FN, pois "elenco" possui uma lista de valores
- Na terminologia relacional: "elenco" é um atributo multivalorado.

<u>titulo</u>	ano	pais	duração	elenco
Ensina-me a Viver	1971	US	95	Ruth, Bud Cort
Estado de Sítio	1972	FR	102	Yves Montand, Bud Cort
A Vingançade Manon	1986	FR	113	Emmanuelle Béart, Johon cleese
Edukatros	2004	DE	127	Daniel
		•••		

- Solução 1: Continuar mantendo uma tabela só, expandindo a PK.
- Neste caso, a PK de R passa ser (titolo, ano, artista).

<u>titulo</u>	ano	pais	duração	<u>artista</u>
Ensina-me a Viver	1971	US	95	Ruth
Ensina-me a Viver	1971	US	95	Bud Cort
Estado de Sítio	1972	FR	102	Yves Montand
Estado de Sítio	1972	FR	102	Bud Cort
A Vingançade Manon	1986	FR	113	Emmanuelle Béart
A Vingançade Manon	1986	FR	113	Johon cleese
Edukatros	2004	DE	127	Daniel
	•••	•••	••••	•••

• DESVANTAGEM: introduz redundância -- "país" e "duração" (atributos não chave) são repetidos para cada artista.

- Solução 2 : Se um número máximo k de valores é conhecido para o atributo multivalorado A, mantém-se uma tabela e criam se k atributos $A_1, A_2, ..., A_k$.
 - Exemplo: Se existisse a regra: "filme não pode ter mais de 2 artistas"
 - Poderiam ser criados os atributos artista1, artista2.

<u>titulo</u>	ano	pais	duração	artista1	artista2
Ensina-me a Viver	1971	US	95	Ruth	Bud Cort
Estado de Sítio	1972	FR	102	Bud Cort	Yves Montand
A Vingançade Manon	1986	FR	113	Emmanuelle Béart	Johon cleese
Edukatros	2004	DE	127	Daniel	NULL
	•••	•••	••••		

- Vantagem da Solução 2: Elimina redundâncias.
 - DESVANTAGENS da Solução 2.
 - Frequentemente, k é grande ou até mesmo desconhecido.
 - Introduz a dificuldade para localizar um valor. Por exemplo, Bud Cort no filme "Ensina-me a Viver" está em artista2 e no filme "Estado de Sítio" está em artista1.
 - Além disso, gera atributos nulos.

<u>titulo</u>	ano	pais	duração	artista1	artista2
Ensina-me a Viver	1971	US	95	Ruth	Bud Cort
Estado de Sítio	1972	FR	102	Bud Cort	Yves Montand
A Vingançade Manon	1986	FR	113	Emmanuelle Béart	Johon cleese
Edukatros	2004	DE	127	Daniel	NULL
	•••	•••	••••	•••	

- Solução 3: Dividir a tabela original em 2 tabelas. Levar a PK da tabela original e o atributo multivalorado para a nova tabela.
- Exemplo: A relação original é dividida em *Filme* e *FilmeElenco*. Na segunda relação, uma tupla distinta para cada ator existirá.

FilmeElenco

<u>titulo</u>	ano	artista
Ensina-me a Viver	1971	Ruth
Ensina-me a Viver	1971	Bud Cort
Estado de Sítio	1972	Yves Montand
A Vingançade Manon	1986	Emmanuelle Béart
A Vingançade Manon	1986	Johon cleese
Edukatros	2004	Daniel
•••	•••	

Filme

<u>titulo</u>	ano	pais	duração
Ensina-me a Viver	1971	US	95
Estado de Sítio	1972	FR	102
A Vingançade Manon	1986	FR	113
Edukatros	2004	DE	127
	•••	•••	••••

- Solução 3 é a recomendada, pois não introduz redundância e resolve todas as desvantagens da Solução 2.
- O princípio "cada informação deve estar armazenada em apenas uma tupla" é respeitado.

FilmeElenco

<u>titulo</u>	<u>ano</u>	artista
Ensina-me a Viver	1971	Ruth
Ensina-me a Viver	1971	Bud Cort
Estado de Sítio	1972	Yves Montand
A Vingançade Manon	1986	Emmanuelle Béart
A Vingançade Manon	1986	Johon cleese
Edukatros	2004	Daniel
	•••	

Filme

<u>titulo</u>	<u>ano</u>	pais	duração
Ensina-me a Viver	1971	US	95
Estado de Sítio	1972	FR	102
A Vingançade Manon	1986	FR	113
Edukatros	2004	DE	127
•••	•••	•••	••••

- Definição Formal 1FN
- Uma relação *R* está na 1FN se não possui atributos multivalorados.

- Precisa ser verificada sempre que existir uma chave composta.
- A 2FN é violada sempre que um atributo não chave for **parcialmente dependente da chave composta** (ele deveria ser dependente da chave toda!).

titulo	ano	<u>nomeartista</u>	sexo	datnasc
Ensina-me a Viver	1971	Ruth Gordon	F	30/10/1896
Ensina-me a Viver	1971	Bud Cort	M	29/03/1948
Monty Oython	1988	John Cleese	M	27/10/1939
Um peixe chamado Wanda	1988	John Cleese	M	27/10/1939
Um peixe chamado Wanda	1988	Robert	M	24/10/1947
Um peixe chamado Wanda	1988	Michael Palin	M	05/05/1943

- Precisa ser verificada sempre que existir uma chave composta.
- A chave desta relação é (título, ano, nomeArtista).
- Os atributos "sexo" e "datNasc" (atributo não chave) são funcionalmente dependentes apenas de "nomeArtista".
- Essa situação gera redundâncias e, por consequência, pode causar anomalias, por exemplo, atualizar "datNasc" em uma tupla e esquecer em outra.

titulo	ano	nomeartista	sexo	datnasc
Ensina-me a Viver	1971	Ruth Gordon	F	30/10/1896
Ensina-me a Viver	1971	Bud Cort	M	29/03/1948
Monty Oython	1988	John Cleese	M	27/10/1939
Um peixe chamado Wanda	1988	John Cleese	M	27/10/1939
Um peixe chamado Wanda	1988	Robert	M	24/10/1947
Um peixe chamado Wanda	1988	Michael Palin	M	05/05/1943

Solução:

- 1. Dividir a relação original em 2 relações.
- 2. Eliminar a dependência parcial: uma das relações irá conter os atributos parcialmente determinados pela chave + a parte da chave que os determina.
- Em nosso exemplo Divide-se em *FilmeElenco* (titulo , ano nomeArtista) e *Artista*(nomeArtista ,sexo, datNasc).

FilmeElenco

<u>titulo</u>	ano	<u>nomeartista</u>
Ensina-me a Viver	1971	Ruth Gordon
Ensina-me a Viver	1971	Bud Cort
Monty Oython	1988	John Cleese
Um peixe chamado Wanda	1988	John Cleese
Um peixe chamado Wanda	1988	Robert
Um peixe chamado Wanda	1988	Michael Palin

Artista

<u>nomeartista</u>	sexo	datnasc
Ruth Gordon	F	30/10/1896
Bud Cort	M	29/03/1948
John Cleese	M	27/10/1939
John Cleese	M	27/10/1939
Robert	M	24/10/1947
Michael Palin	M	05/05/1943

Eliminar tuplas iguais

• Definição Formal Dependência Funcional Completa

• X → Y é uma dependência funcional completa se X contém mais de um atributo e a remoção de qualquer atributo A de X significa que a dependência deixa de ser válida.

Definição Formal 2FN

• Uma relação R está na 2FN se todo atributo não chave A em R possui dependência funcional completa em relação à chave de R.

IMPORTNATE

- A recuperação das informações após a fragmentação em mais tabelas deve ser possível através de JUNÇÃO.
 - Ex.: Recuperar as informações titulo, ano, nomeartista, sexo e datnasc para sexo feminino.

 $\theta_{\text{sexo='F'}}(Filmelenco \bowtie Artista)$

FilmeElenco

<u>titulo</u>	ano	nomeartista
Ensina-me a Viver	1971	Ruth Gordon
Ensina-me a Viver	1971	Bud Cort
Monty Oython	1988	John Cleese
Um peixe chamado Wanda	1988	John Cleese
Um peixe chamado Wanda	1988	Robert
Um peixe chamado Wanda	1988	Michael Palin

Artista

<u>nomeartista</u>	sexo	datnasc
Ruth Gordon	F	30/10/1896
Bud Cort	M	29/03/1948
John Cleese	M	27/10/1939
John Cleese	M	27/10/1939
Robert	M	24/10/1947
Michael Palin	M	05/05/1943

- Baseada no conceito de dependência transitiva.
- A 3FN é violada sempre que, em função da transitividade, um atributo não-chave da relação determinar algum outro atributo nãochave.

<u>titulo</u>	ano	<u>duracao</u>	siglapais	nomepais
Ensina-me a Viver	1971	95	US	Estados Unidos
Monty Python em Busca do Cálice Sagrado	1971	91	UK	Reino Unido
Edukators	1988	127	DE	Alemanha
Um peixe chamado Wanda	1988	108	UK	Reino Unido
O Lado Bom da Vida	1988	122	US	Estados Unidos
Noel: Poeta da Vila	1988	99	BR	Brasil
Bye Bye Brasil	1980	100	BR	Brasil

- Baseada no conceito de **dependência transitiva**.
- Veja que:
- $\{\text{titulo, ano}\} \rightarrow \text{siglapais \'e FD.}$
- siglapais → nomepais é FD.
- Logo, {titulo, ano}→ nomepais. Assim, nomepais é transitiva em relação a siglapais.

<u>titulo</u>	ano	duracao	siglapais	nomepais
Ensina-me a Viver	1971	95	US	Estados Unidos
Monty Python em Busca do Cálice Sagrado	1971	91	UK	Reino Unido
Edukators	1988	127	DE	Alemanha
Um peixe chamado Wanda	1988	108	UK	Reino Unido
O Lado Bom da Vida	1988	122	US	Estados Unidos
Noel: Poeta da Vila	1988	99	BR	Brasil
Bye Bye Brasil	1980	100	BR	Brasil

- Baseada no conceito de **dependência transitiva**.
- A transitividade causa redundância e, por consequência, riscos de anomalias.
- A 3FN é violada pela transitividade, pois titulo define país por transitividade. Neste caso, deve ser resolvida a transitividade gerada pela FD siglapais → nomepais.

<u>titulo</u>	ano	<u>duracao</u>	siglapais	nomepais
Ensina-me a Viver	1971	95	US	Estados Unidos
Monty Python em Busca do Cálice Sagrado	1971	91	UK	Reino Unido
Edukators	1988	127	DE	Alemanha
Um peixe chamado Wanda	1988	108	UK	Reino Unido
O Lado Bom da Vida	1988	122	US	Estados Unidos
Noel: Poeta da Vila	1988	99	BR	Brasil
Bye Bye Brasil	1980	100	BR	Brasil

Solução:

- 1. Dividir a relação original em 2 relações.
- 2. Eliminar a transitividade: o atributo determinado pelo atributo nã-chave deve migrar para outra tabela e junto com seu determinante.
- 3. O atributo determinante deve ser mantido na tabela original para que as tabelas fiquem associadas.

Filme

<u>titulo</u>	ano	duracao	siglapais
Ensina-me a Viver	1971	95	US
Monty Python em Busca do Cálice Sagrado	1971	91	UK
Edukators	1988	127	DE
Um peixe chamado Wanda	1988	108	UK
O Lado Bom da Vida	1988	122	US
Noel: Poeta da Vila	1988	99	BR
Bye Bye Brasil	1980	100	BR

Pais

siglapais	nomepais
US	Estados Unidos
UK	Reino Unido
DE	Alemanha
UK	Reino Unido
US	Estados Unidos
BR	Brasil
BR	Brasil

- Solução:
- Definição Formal: 3FN
 - Uma relação R está na 3FN se satisfaz a 2FN e nenhum atributo $n\tilde{a}o$ -chave A é determinado de forma transitiva pela chave de R.

• Pode ser utilizada para substituir as 3FN (3 formas normais) anteriores!!!

Definição Formal – FNBC

• Uma relação *R* está na FNBC se todos os seus determinantes são chaves candidatas.

• OBSERVAÇÃO IMPORTANTE 1

- A PK também é uma chave candidata
- Trata-se apenas de uma chave candidata especial que foi designada como PK.

- **OBSERVAÇÃO IMPORTANTE 2**
- A FNBC substitui todas as Formas Normais anteriores.
 - É possível transformar uma tabela desnormalizada em uma normalizada aplicando diretamente a FNBC.
 - Porém, isso não costuma ser feito na prática, por diversos motivos:
 - As três primeiras FN são mais fáceis de serem entendidas e aplicadas.
 - Motivos históricos: as três primeiras FN surgiram antes da FNBC.
 - Existem situações práticas onde deixa-se a tabela na 3FN por questões de desempenho ou simplicidade.

Formas Normais Superiores

- Existem ainda outras formas normais de nível superior:
- 4FN
- 5FN
- Forma Normal de Chave Domínio (FNCD)
- No entanto, elas são pouco utilizadas na prática (especialmente a 5FN e a FNCD), pois envolvem restrições que são muito difíceis de se testar e entender.

Normalização - Resumo

EXERCÍCIO PARA ENTREGAR

- (1) Formule uma relação contendo um conjunto de atributos que não respeite as formas normais até a 3FN. Aplique as regras de normalização 1FN 2FN e 3FN. Exiba cada conjunto de relações novas obtida após cada normalização através de tabelas com conteúdos. Cada relação deve ter atributos, a indicação do atributo chave e um conjunto de linhas que exemplifique o conteúdo das tabelas. Por fim exiba uma diagrama de relacionamento semelhante ao exemplo do banco de dados de cinema mostrado no início deste módulo.
- Entregar na próxima terça feira.
- Obs.: Vale como lista de exercícios.

Obrigado