Worksheet 8: Equilibrium

- 1. What does equilibrium mean in terms of the rates of the forward and reverse reactions?
- 2. For the reaction below, state how each change will affect the equilibrium constant K_c .

$$A + B \longrightarrow C$$

- (a) Reversing the reaction $(C \longrightarrow B + A)$
- (b) Doubling the coefficients of the products and reactants $(2A + 2B \longrightarrow 2C)$
- (c) Halving the coefficients of the products and reactants $(\frac{1}{2}A + \frac{1}{2}B \longrightarrow \frac{1}{2}C)$
- 3. For the reaction in the previous problem, what would be the effects on the equilibrium constant of doubling the starting concentrations of A and B and halving the initial concentration of C.
- 4. Using the equations and associated equilibrium constants below, determine the equilibrium constant for the reaction $2 \, \text{NO} + \text{Br}_2 \Longrightarrow 2 \, \text{NOBr}$.

•
$$2 \text{ NO} \rightleftharpoons N_2 + O_2$$
, $K_c = 1 \times 10^{30}$

•
$$N_2 + Br_2 + O_2 \Longrightarrow 2 \text{ NOBr}, K_c = 2 \times 10^{-27}$$

5. Use the reaction below and the equilibrium constant $K_c=0.040$ to fill in the table below. $Zn(C_2H_5)_2+5\,O_2 \Longrightarrow ZnO+4\,CO_2+5\,H_2O$

Reaction	$(\operatorname{Zn}(C_2H_5)_2)$ [M]	(O_2) [M]	(ZnO) [M]	(CO_2) [M]	(H_2O) $[M]$	Q	Direction?
1	2.00	3.00	2.00	3.00	1.00		
2	1.00	1.00	1.00	1.00	0.50		
3	1.00	1.00	1.00	1.06	0.50		