TUM WS 2023/2

APPROACHING INFORMATION SYSTEM CHALLENGES WITH NATURAL LANGUAGE PROCESSING

Topic B (rule based)

Rule-based Extraction of Constraints from Regulatory Texts

Leo Holzhauer | Feb 08 2024

MOTIVATION

Ensuring efficient and robust business process compliance

Input

This methodology is applicable under the following conditions:

- (a) The land subject to the project activity does not fall in wetland category;
- (b) Soil disturbance attributable to the project activity does not cover more than 10 per cent of area in each of the following types of land, when these lands are included within the project boundary:
- (i) Land containing organic soils;
- (ii) Land which, in the baseline, is subjected to land-use and management practices and receives inputs listed in appendices 2 and 3 to this methodology.

After pre-processing and constraint search

methodology be applicable under follow condition: (a) land subject to project activity not fall wetland category; (b) soil disturbance attributable to project activity not cover more than 10 per cent of area each of follow type of land, when land be include project boundary: (i) land contain organic soil; (ii) land, baseline, be subject to land - use and management practice and receive input list appendix 2 and 3 to methodology.

Constraint as defined in GS

({check type of land}, {check compliance with applicability conditions of contained tools}, {directly follows}, {land_project_activity!= wetland AND (containing_organic_soils == False OR (containing_organic_soils == True AND soil_disturbance_area <= 10)) AND (land_subject_to_land_use_and_management == False OR (land_subject_to_land_use_and_management == True AND receives_listed_inputs == True AND soil_disturbance_area <= 10))})

TUM WS 23/34 Topic B (rule based) | Feb 08 2024

DATA

Table 1: Data sources (RW: real-world, S: synthetic)

	Symbol	Name	Constraints	Type	Source
1	AKTG	German Stock Corporation Act	8	RW	(6)
2	CDM1	Afforestation and reforestation of degraded mangrove	5	RW	(7)
		habitats (UNFCCC CDM)			
3	CDM2	Afforestation and reforestation project activities imple-	5	RW	(8)
		mented on lands other than wetlands (UNFCCC CDM)			
4	CDM3	Cable cars for mass rapid transit system (UNFCCC CDM)	6	RW	(9)
5	CDM4	Energy efficiency and/or energy supply projects in com-	10	RW	(10)
		mercial buildings (UNFCCC CDM)			
6	CDM5	Electricity generation by the user (UNFCCC CDM)	14	RW	(11)
7	COFFEE	Coffee Roasting Process	26	S	(12)
8	PATG	German Patent Act	4	RW	(13)

TYPES OF CONSTRAINT ITEMS

Table 2: Types of constraint items

Туре	Operators	Example
Inequality	<, <=, >, >=	x less than y
Equality	==, !=	x must be y
Meta	AND, OR	if x, then y

PIPELINE

Pre-processing

- split to chunks
- stop words
- lemmatize
- enumeration details
- linebreaks

Modelling

- search constraint items
- prune constraints
- build constraints

Evaluation

- similarityscores
- precision and recall

MODELLING

Modelling

- search constraint items
- prune constraints
- build constraints

Algorithm 1 Get Constraint

Require: nlp, builder, chunk, eqParams, ineqParams, metaParams, enumSummary, linebreaks

Ensure: constraint

- Initialize inequality, equality, meta searchers with respective parameters
- 2: Search for inequality CI in chunk
- 3: Search for equality CI in chunk
- 4: Search for meta enumeration CI in chunk with enumSummary
- 5: Search for meta if and for clauses in chunk
- 6: Combine findings into constraint
- 7: if constraint found then
- 8: constraint ← Determine context
- 9: constraint ← Insert connections
- 10: constraint ← Insert boolean CI
- 11: constraint ← Sort and prune
- 12: if constraint left then
- 13: Build formattedConstraint
- 14: end if
- 15: end if
- 16: Add formattedConstraint to constraint
- 17: return constraint

EVALUATION

$$Precision = \frac{|c_e \in C_E \mid \exists c_{gs} \in C_{GS} : S(c_e, c_{gs}) > \theta|}{|C_E|}$$

$$(1)$$

Recall =
$$\frac{|c_e \in C_E \mid \exists c_{gs} \in C_{GS} : S(c_e, c_{gs}) > \theta|}{|C_{GS}|}$$
(2)

EVALUATION

Evaluation

- similarity scores
- precision and recall

Input

This methodology is applicable under the following conditions:

- (a) The land subject to the project activity does not fall in wetland category;
- (b) Soil disturbance attributable to the project activity does not cover more than 10 per cent of area in each of the following types of land, when these lands are included within the project boundary:
- (i) Land containing organic soils;
- (ii) Land which, in the baseline, is subjected to land-use and management practices and receives inputs listed in appendices 2 and 3 to this methodology.

Extracted constraint

methodology == follow_condition(() AND (attributable_project_activity_cover <= 10 AND ((land_contain_organic_soil == True) OR (receive_input_list_methodology == True))))

Constraint as defined in GS

land_project_activity != wetland AND
(containing_organic_soils == False OR
(containing_organic_soils == True AND
soil_disturbance_area <= 10)) AND
(land_subject_to_land_use_and_management == False OR
(land_subject_to_land_use_and_management == True
AND receives_listed_inputs == True AND
soil_disturbance_area <= 10))</pre>

CONCLUSION

Modular processing pipeline

Reliability of rule-based detection

Annotated dataset

Flexibility of LLM-based construction

Theoretical framework for costraint categorisation

Precision and recall for constraint extraction

Process step - constraint matching

Tackling non-deterministic evaluation

OUTLOOK

Rule-based Extraction of Constraints from Regulatory Texts

> Leo Holzhauer Feb 08 2024