## CHAPTER 4 INDUCTION

# SECTION 4.1 MATHEMATICAL INDUCTION

Mathematical induction is used to prove statements that asserts that P(n) is true for all  $n \in \mathbb{Z}^+$  where P(n) is a propositional function. It is an extremely important proof technique.

#### PRINCIPLE OF MATHEMATICAL INDUCTION

To prove  $\forall n \in \mathbb{Z}^+(P(n))$  where P(n) is a propositional function, we complete two steps:

**BASIS STEP**: Verify that P(1) is true.

**INDUCTIVE STEP**: Show that  $\forall k \in \mathbb{Z}^+(P(1) \land P(2) \land \cdots \land P(k) \rightarrow P(k+1))$  is true.

To complete the inductive step, we assume that  $P(1), \ldots, P(k)$  are true, (this assumption is known as the **INDUCTION HYPOTHESIS**), and prove that P(k+1) is true. (It may seem circular and thus requires some clarification. We are not asserting that P(k) is true for all k here. What we are saying is that under the hypothesis that  $P(1), \ldots, P(k)$  are true, we can prove that P(k+1) is true.)

What we do here is the following.

$$P(1) \quad \text{(basis step)}$$
 
$$P(1) \Rightarrow P(2)$$
 
$$P(1) \land P(2) \Rightarrow P(3)$$
 
$$P(1) \land P(2) \land P(3) \Rightarrow P(4)$$

. .

Eventually, we get  $P(5), P(6), \ldots$ 

## EXAMPLE

• Prove that  $\forall n \in \mathbb{Z}^+, \quad \sum_{i=1}^n i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$ 

**PROOF:** Let P(n) be the proposition that  $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ .

Basis step: P(1) is true since  $\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$ .

Inductive step: Assume that  $P(1), \ldots, P(k)$  are true, where  $k \geq 1$ , i.e.,

$$\sum_{i=1}^{j} i = \frac{j(j+1)}{2} \quad \text{for } j = 1, 2, \dots, k \quad .$$

Then P(k+1) is true since

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + (k+1) = \frac{k(k+1)}{2} + (k+1) \quad \text{(we use } P(k) \text{ here)}$$
$$= \frac{(k+1)(k+2)}{2} = \frac{(k+1)((k+1)+1)}{2}.$$

Thus P(n) is true for all  $n \in \mathbb{Z}^+$  by mathematical induction.

• Prove that  $n < 2^n$  for all  $n \in \mathbb{Z}^+$ .

**PROOF:** Let P(n) be the proposition that  $n < 2^n$ .

Basis step: P(1) is true since  $1 < 2^1$ .

Inductive step: Assume  $P(1), \ldots, P(k)$  are true. From P(k), we have  $k < 2^k$ . Add 1 to both sides, we have

$$k+1 < 2^k + 1$$
$$< 2^k + 2^k = 2^{k+1}$$

and hence P(k+1) is true.

Therefore by mathematical induction  $n < 2^n$  for all  $n \in \mathbb{Z}^+$ .

• The **HARMONIC NUMBERS**  $H_j$ ,  $j \in \mathbb{Z}^+$ , are defined by

$$H_j = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{i}.$$

Prove that  $H_{2^n} \geq 1 + \frac{n}{2}$  for all  $n \in \mathbb{Z}^*$ .

**PROOF:** Let P(n) be the proposition that  $H_{2^n} \geq 1 + \frac{n}{2}$ .

Basis step: P(0) is true since  $H_{2^0} = \frac{1}{1} \ge 1 + \frac{0}{2}$ .

Inductive step: Assume that  $P(0), \ldots, P(k)$  are true. Then

$$\begin{split} H_{2^{k+1}} &= \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2^k}\right) + \left(\frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^{k+1}}\right) \\ &= H_{2^k} + \left(\frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^{k+1}}\right) \\ &\geq \left(1 + \frac{k}{2}\right) + \left(\frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^{k+1}}\right) \quad \text{(Use } P(k) \text{ here)} \\ &\geq \left(1 + \frac{k}{2}\right) + \left(\frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} + \dots + \frac{1}{2^{k+1}}\right) \\ &= \left(1 + \frac{k}{2}\right) + 2^k \cdot \frac{1}{2^{k+1}} = 1 + \frac{k+1}{2} \end{split}$$

Thus P(k+1) is true and the result follows by mathematical induction.

#### THEOREM: NUMBER OF SUBSETS OF A FINITE SET

A set with n elements has  $2^n$  subsets.

**PROOF:** Let Q(n) be the above proposition.

Basis step: When n = 0, the set concerned is  $\emptyset$  which has only one subset. Thus Q(0) is true.

Inductive step: Assume that  $Q(0), \ldots, Q(k)$  are true.

Let X be any set with k+1 elements. Take a particular element  $a \in X$ . Then  $Y = X - \{a\}$  is a set with k elements. By the induction hypothesis,

$$|P(Y)| = 2^k.$$

Subsets of X can be divided into two types:

- (i) Those that do not contain a. These are precisely the subsets of Y and there are  $2^k$  subsets of this type.
- (ii) Those that contain a. If the element a is deleted, they become subsets of Y. Thus each corresponds to a subset of Y. Therefore there are also  $2^k$  subsets of this type.

Thus

$$|P(X)| = 2^k + 2^k = 2^{k+1}.$$

Hence Q(k+1) is true.

The result then follows by the principle of mathematical induction.

#### SUM OF GP

For all integers  $n \in \mathbb{Z}^*$ , and all real numbers  $r \neq 1$ :

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.$$

**PROOF:** When n = 0, l.h.s = 1 and r.h.s =  $\frac{r-1}{r-1} = 1$ . Thus the formula is true when n = 0.

Assume that the formula is true for  $n=0,1,\ldots,k$ . Thus  $\sum_{i=0}^k r^i = \frac{r^{k+1}-1}{r-1}$ . Then

$$\sum_{i=0}^{k+1} r^i = \sum_{i=0}^{k} r^i + r^{k+1} = \frac{r^{k+1} - 1}{r - 1} + r^{k+1} = \frac{r^{k+2} - 1}{r - 1}.$$

Thus the formula is also true at k + 1.

By the principle of mathematical, the formula is true.

• Prove that for any integer  $n \ge 1$ , if one square is removed from a  $2^n \times 2^n$  checkerboard, the remaining squares can be covered by an L-tromino. (An L-tromino is an L-shape formed by 3 squares of the checkerboard.)

**SOLN:** Let P(n) be the given statement.

Basis step. P(1) is true since the board is itself an L-tromino.



Assume that  $P(1), \ldots, P(k)$  are true. Consider a  $2^{k+1} \times 2^{k+1}$  checkerboard with one square removed. Divide the checkerboard in 4 equal quadrants so that each quadrant is a  $2^k \times 2^k$  board. Without loss of generality, assume that the removed square is from the first quadrant. Now remove a tromino from the centre of the board. (This tromino has one square in each of the last three quadrants.) Now we are left with four  $2^k \times 2^k$  checkerboards, each with a square removed. Thus by the induction hypothesis, each can be covered by trominoes. Hence the  $2^{k+1} \times 2^{k+1}$  checkerboard with one square removed can be so covered as well. The proof is now complete by mathematical induction.

• FIBONACCI NUMBERS  $F_0, F_1, \ldots$  are defined by

$$F_0 = 0, F_1 = 1$$
  
 $F_{n+1} = F_n + F_{n-1}$  for  $n \ge 1$ 

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_2 = 1$ ,  $F_3 = 2$ ,  $F_4 = 3$ ,  $F_5 = 5$ ,...

• Prove that for  $n \geq 3$ ,  $F_n > \alpha^{n-2}$ , where  $\alpha = (1 + \sqrt{5})/2$ .

**SOLN:** Let P(n) be  $F_n > \alpha^{n-2}$ ,  $n \ge 3$ .

Basis step: Since  $F_3 = 2 > \alpha$ , and  $F_4 = 3 \ge \alpha^2$ , P(3) and P(4) are true.

We need both as P(3) on its own will not yield P(4).

Inductive step:

Suppose P(n) is true, i.e.,  $F_n > \alpha^{n-2}$  for n = 3, ..., k. First note that

$$\alpha^2 = \frac{(1+\sqrt{5})^2}{4} = \frac{3+\sqrt{5}}{2} = 1+\alpha.$$

Now P(k+1) is true since

$$F_{k+1} = F_k + F_{k-1} > \alpha^{k-2} + \alpha^{k-3} = \alpha^{k-3}(\alpha + 1) = \alpha^{k-1}$$

## LAME'S THEOREM

Let a and b be positive integers with  $a \ge b$ . Then the number of divisions used by the Euclidean algorithm to find gcd(a, b) is at most  $5 \times$  the number of decimal digits in b.

(For example, to find gcd(1034578929341, 2018), the number of divisions is  $\leq 5 \cdot 4 = 20$ .)

**PROOF:** Let m be the number of digits of b. The algorithm runs as follows: Let  $r_1 = a$ ,  $r_2 = b$ . Then

$$r_1 \ \mathbf{Mod} \ r_2 = r_3$$
  $r_2 \ \mathbf{Mod} \ r_3 = r_4$   $\cdots$   $r_{n-1} \ \mathbf{Mod} \ r_n = r_{n+1}$   $r_n \ \mathbf{Mod} \ r_{n+1} = 0$ 

It stops after n steps with  $gcd(a,b) = r_{n+1}$ . We need to prove that  $n \leq 5m$ . We shall prove that  $r_i \geq F_{n+3-i}$  for all i = 2, ..., n+1.

We have

$$r_{n+1} \ge 1 = F_2$$
 (:  $\gcd = r_{n+1}$ )
 $r_n \ge 2 = F_3$  (:  $r_n \ne \gcd$ )
 $r_{n-1} \ge r_n + r_{n+1}$  (:  $r_{n-1} = r_n q + r_{n+1} \& q \ge 1$ )
 $\ge F_3 + F_2 = F_4$ 
...
 $r_3 \ge r_4 + r_5$ 
 $\ge F_{n-1} + F_{n-2} = F_n$ 
 $b = r_2 \ge r_3 + r_4$ 
 $\ge F_n + F_{n-1}$ 
 $= F_{n+1} > \alpha^{n-1}$ 

Note that  $\log_{10} \alpha > 1/5$  (use your calculator to check). Thus

$$m \ge \log_{10}(b+1) \ge (n-1)\log_{10}\alpha > (n-1)/5.$$

Therefore n-1 < 5m. Since n is an integer,  $n \le 5m$ .