Package 'MonotonicityTest'

January 17, 2025

Type Package
Author Dylan Huynh [aut, cre]
Maintainer Dylan Huynh <dylanhuynh@utexas.edu></dylanhuynh@utexas.edu>
Title Nonparametric Bootstrap Test for Regression Monotonicity
Version 1.0
Description Implements nonparametric bootstrap tests for detecting monotonicity in regression functions from Hall, P. and Heckman, N. (2000) <doi:10.1214 1016120363="" aos=""> Includes tools for visualizing results using Nadaraya-Watson kernel regression and supports efficient computation with 'C++'.</doi:10.1214>
License GPL
Encoding UTF-8
RoxygenNote 7.3.2
LinkingTo Rcpp, RcppEigen
Imports Rcpp (>= 1.0.13-1), parallel, stats, graphics, ggplot2 (>= 3.0.0), rlang
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation yes
Contents
create_kernel_plot
Index
create_kernel_plot Generate Kernel Plot
Description
Creates a scatter plot of the input vectors X and Y , and overlays a Nadaraya-Watson kernel regre sion curve using the specified bandwidth.
Usage
<pre>create_kernel_plot(X, Y, bandwidth = bw.nrd(X) * (length(X)^-0.1), nrows = 4)</pre>

2 monotonicity_test

Arguments

X Vector of x values.Y Vector of y values.

bandwidth Kernel bandwidth used for the Nadaraya-Watson estimator. Can be a single

numeric value or a vector of bandwidths. Default is calculated as bw.nrd(X) *

 $(length(X) ^-0.1).$

nrows Number of rows in the facet grid if multiple bandwidths are provided. Does not

do anything if only a single bandwidth value is provided. Default is 4.

Value

A ggplot object containing the scatter plot(s) with the kernel regression curve(s). If a vector of bandwidths is supplied, the plots are put into a grid using faceting.

References

Nadaraya, E. A. (1964). On estimating regression. *Theory of Probability and Its Applications*, **9**(1), 141–142.

Watson, G. S. (1964). Smooth estimates of regression functions. *Sankhyā: The Indian Journal of Statistics, Series A*, 359-372.

Examples

```
# Example 1: Basic plot on quadratic function
seed <- 42
set.seed(seed)
X <- runif(500)
Y <- X ^ 2 + rnorm(500, sd = 0.1)
plot <- create_kernel_plot(X, Y, bandwidth = bw.nrd(X) * (length(X) ^ -0.1))</pre>
```

monotonicity_test

Perform Monotonicity Test

Description

Performs a monotonicity test between the vectors X and Y as described in Hall and Heckman (2000). This function uses a bootstrap approach to test for monotonicity in a nonparametric regression setting.

Usage

```
monotonicity_test(
    X,
    Y,
    bandwidth = bw.nrd(X) * (length(X)^-0.1),
    boot_num = 200,
    m = floor(0.05 * length(X)),
    ncores = 1,
    negative = FALSE,
    seed = NULL
)
```

monotonicity_test 3

Arguments

Χ Numeric vector of predictor variable values. Must not contain missing or infinite values. Υ Numeric vector of response variable values. Must not contain missing or infinite values. bandwidth Numeric value for the kernel bandwidth used in the Nadaraya-Watson estimator. Default is calculated as bw. $nrd(X) * (length(X) ^ -0.1)$. boot_num Integer specifying the number of bootstrap samples. Default is 200. Integer parameter used in the calculation of the test statistic. Corresponds to m the minimum window size to calculate the test statistic over or a "smoothing" parameter. Lower values increase the sensitivity of the test to local deviations from monotonicity. Default is floor(0.05 * length(X)). Integer specifying the number of cores to use for parallel processing. Default is ncores Logical value indicating whether to test for a monotonic decreasing (negative) negative

relationship. Default is FALSE.

Optional integer for setting the random seed. If NULL (default), the global

random state is used.

Details

seed

The test evaluates the following hypotheses:

 H_0 : The regression function is monotonic

- Non-decreasing if negative = FALSE
- Non-increasing if negative = TRUE

 H_A : The regression function is not monotonic

Value

A list with the following components:

- p The p-value of the test. A small p-value (e.g., < 0.05) suggests evidence against the null hypothesis of monotonicity.
- dist The distribution of test statistic under the null from bootstrap samples. The length of dist is equal to boot_num.
- stat The test statistic T_m calculated from the original data.
- plot A ggplot object with a scatter plot where the points of the "critical interval" are highlighted. This critical interval is the interval where T_m is greatest.
- interval Numeric vector containing the indices of the "critical interval". The first index indicates where the interval starts, and the second indicates where it ends in the sorted X vector.

Note

For large datasets (e.g., $n \ge 6500$) this function may require significant computation time due to having to compute the statistic for every possible interval. Consider reducing boot_num, using a subset of the data, or using parallel processing with ncores to improve performance.

In addition to this, a minimum of 300 observations is recommended for kernel estimates to be reliable.

4 monotonicity_test

References

Hall, P., & Heckman, N. E. (2000). Testing for monotonicity of a regression mean by calibrating for linear functions. *The Annals of Statistics*, **28**(1), 20–39.

Examples

```
# Example 1: Usage on monotonic increasing function
# Generate sample data
seed <- 42
set.seed(seed)
X <- runif(500)</pre>
Y < -4 * X + rnorm(500, sd = 1)
result <- monotonicity_test(X, Y, boot_num = 25, seed = seed)</pre>
print(result$p)
print(result$stat)
print(result$dist)
print(result$interval)
# Example 2: Usage on non-monotonic function
seed <- 42
set.seed(seed)
X <- runif(500)</pre>
Y \leftarrow (X - 0.5) ^2 + rnorm(500, sd = 0.5)
result <- monotonicity_test(X, Y, boot_num = 25, seed = seed)</pre>
print(result$p)
print(result$stat)
print(result$dist)
print(result$interval)
```

Index

create_kernel_plot, 1