Linear differential equations

Definition L. inear Differential equation. Homogeneous if b = 0, inho $mogeneous\ otherwise.$

 $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$

Theorem 2.2.3. ... y is k-times differentiable ...

For the homogeneous equation, given a choice of x_0 and $(y_0,...,y_{k-1})$ there's a unique solution $f \in \mathcal{S}$ such that $f(x_0) = y_0, \ f'(x_0) = y_1, \dots, \ f^{(k-1)}(x_0) = y_{k-1}$

For the inhomogeneous equation with a b continous on the interval, the set of solutions S_b is the set of functions $f + f_0$ where $f \in S$. Again, for any x_0 and $(y_0,...,y_{k-1})$ there's a unique solution such that (1).

If $b \neq 0$ then S_b is not a vector space.

Proposition 2.3.1. Any solution of y' + ay = 0 is in the form f(x) = $ze^{-A(x)}$, where A is a primitive of a and $z \in \mathbb{C}$. Unique solution is $f(x) = y_0 e^{A(x_0) - A(x)}$

To solve the inhomogeneous equation y' + ay = b, the prev solution is used. Using Variation of the constant we replace z with z(x) and then $y' + ay = b \Leftrightarrow z'(x) = b(x) \ e^{A(x)}$ and $f_0(x) = C(x)e^{-A(x)}$, where C(x)is a primitive of z'(x).

1.1 Constant coefficients

Definition L. et $a_0,...,a_{k-1} \in \mathbb{C}$. Linear differentian equation $y^{(k)}$ + $a_{k-1}y^{(k-1)}+\ldots+a_1y'+a_0y=b$. Homogeneous solution is in the form $f(x)=e^{\alpha x},\ \alpha\in\mathbb{C}$. We have $f^{(j)}(x)=\alpha^je^{\alpha x}$ for all $j\geq 0$ and x.

Conclusion: f(x) is a solution iff $P(\alpha) = 0$, where $P(X) = X^k + 1$ $a_{k-1}X^{k-1} + \dots + a_1X + a_0.$

This polynomial of degree k has k roots (counted with multiplicity). There exist complex numbers $\alpha_1, ..., \alpha_k$ such that $P(X) = (X - \alpha_1)...(X - \alpha_k)$ α_k). This is the companion or characteristic polynomial of the homoge $neous\ diff.\ equation.$

- No multiple roots When $\alpha_i \neq \alpha_j$ for all i, j.
 - Solution of the homogeneous equation (b=0): form $f(x)=z_1e^{\alpha_1x}+\ldots+z_ke^{\alpha_kx}$. Unique solution with $f(x_0)=y_0,\ldots,f^{(k-1)}(x_0)=y_{k-1}$ can be obtained by viewing z_i as unknowns. Substitute $x=x_0$ in the formula for f and solve for $z_1, ..., z_k$ (linear system).
- \bullet Multiple roots Assume α is a multiple root of order j of the polyno-

mial P, with $2 \le j \le k$. Then $f_{\alpha,0}(x) = e^{\alpha x}$, $f_{\alpha,1}(x) = xe^{\alpha x}$, ..., $f_{\alpha,j-1}(x) = x^{j-1}e^{\alpha x}$ are linearly independent and are solutions of the h.l.d.e.

Example S. uppose $P(X) = X(X-4)^3(X-(1+i))(X-(1-i))$, then the solutions are $f_0(x) = 1$ (sol. for X = 0), $f_1(x) = e^{4x}$, $f_2(x) = xe^{4x}$, $f_3(x) = x^2e^{4x}$, $f_4(x) = e^{(1+i)x}$, $f_5(x) = e^{(1-i)x}$

Now the inhomogeneous equation $(b \neq 0)$:

Should avoid variation of the constants. Can use special cases:

- 1. $b(x) = x^d e^{\beta x}$ for some integer d = ge0 and an item β which is NOT a root of P, then the solution is of the form $f(x) = Q(x)e^{\beta x}$, where Q is a polynomial of degree d.
- 2. $b(x) = x^d \cos(\beta x)$ or $b(x) = x^d \sin(\beta x)$ for some integer $d \ge 0$ and β is NOT a root of P, then one can transform it to a combination of complex exponentials or look for a solution of the form f(x) = $Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x), Q_1, Q_2$ have degree d.
- 3. b(x) is in the form of the previous two but IS a root of multiplicity j, then one looks for $f(x) = Q(x)e^{\beta x}$, with Q of degree q + j.
- 4. Special case $\beta = 0$ of the previous 3 (b polynomial of degree $d \geq 0$): if 0 is NOT a root, look for a solution f (polynomial) of deg d, or degree d + j if 0 IS a root, where j is the multiplicity of 0.

1.2 Variation of the constants for degree ge 2

Does not require the coefficients to be constants, but it makes it easier. Inhomogeneous equation

 $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$ Solutions $f_1, ..., f_k$ for the homogeneous equations must be found first.

We then search for a solution of the form $f(x) = z_1(x)f_1(x) + ... +$ $z_k(x)f_k(x)$, such that we have (for all x):

$$\begin{cases} z'_1(x)f_1(x) + \dots + z'_k(x)f_k(x) = 0 \\ z'_1(x)f'_1(x) + \dots + z'_k(x)f'_k(x) = 0 \\ \dots \\ z'_1(x)f_1^{(k-2)}(x) + \dots + z'_k(x)f_k^{(k-2)}(x) = 0 \end{cases}$$

Example C. as k = 2: Write again $f = z_1 f_1 + z_2 f_2$ and the constraint $z_1'f_1 + z_2'f_2 = 0.$

Definition 3.3.5. $f: X \mapsto \mathbb{R}$ has a partial derivative with respect to the $i\hbox{--}th\ variable\ if\ the\ function$

$$\frac{\partial f}{\partial x_i}(x_0), \ \partial_{x_i}(x_0), \ \partial_i(x_0)$$

Proposition 3.3.7. $x \subset \mathbb{R}^n$ open, f, g functions from X to \mathbb{R}^m . Let $1 \leq 1 \leq n$.

- 1. if f, g have partial derivatives of i-th coordinate on X, then f + galso does. $\partial_{x_i}(f+g) = \partial_{x_i}(f) + \partial_{x_i}(g)$
- 2. if the previous is true and m=1, then fg also does and $\partial_{x_i}(fg)=$ $\partial_{x_i}(f) \cdot g + f \cdot \partial_{x_i}(g)$
- 3. If the previous is true and $g(x) \neq 0$ for all $x \in X$, then f/g has a partial derivative $\partial_{x_i}(f/g) = (\partial_{x_i}(f)g - f\partial_{x_i}(g))/g^2$

Definition 3.3.9. $f: X \mapsto \mathbb{R}^m$ has partial derivatives on X. Write $f(x) = (f_1(x), f_2(x), ..., f_m(x)).$

For any $x \in X$, the **Jacobi Matrix** (m rows, n columns) of f at x is

$$J_f(x) = (\partial_{x_i} f_i(x))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Definition 3.3.11. 1. If all partial derivatives of $f: X \mapsto \mathbb{R}$ exist at $x_0 \in X$, then the column vector

$$x_0 \in X$$
, then the column vector
$$\nabla f(x_0) = \begin{pmatrix} \partial_{x_1} f(x_0) \\ \dots \\ \partial_{x_n} f(x_0) \end{pmatrix}$$
 is called the **gradient** of f at x_0 .

2. Let $f = (f_1, f_2, ..., f_n) : X \mapsto \mathbb{R}^n$ and all partial derivatives of all coordinates f_i of f exist at $x_0 \in X$. Then

$$Tr(J_f(x_0)) = \sum_{i=1}^n \partial_{x_i} f_i(x_0)$$

 $Tr(J_f(x_0)) = \sum_{i=1}^n \partial_{x_i} f_i(x_0)$ is the trace of the Jacobi Matrix and is called the **divergence** of f at x_0 , also $div(f)(x_0)$

Definition 3.4.2. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$ be a function. Let u be a linear map $\mathbb{R}^n \mapsto \mathbb{R}^m$ and $x_0 \in X$. We say that f is

tion. Let
$$u$$
 be a linear map $\mathbb{R}^n \to \mathbb{R}^m$ and $x_0 \in X$. We differentiable at x_0 with differential u if
$$\lim_{\substack{x \to x_0 \\ x \neq 0}} \frac{1}{\|x - x_0\|} (f(x) - f(x_0) - u(x - x_0)) = 0$$

We then denote $df(x_0) = u$. If it is differentiable at every $x_0 \in X$, then $it\ is\ differentiable\ on\ X.$

Then, close to x_0 , we can approximate f(x) by $g(x) = f(x_0) + u(x-x_0)$

Proposition 3.4.4. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$ be a function $differentiable\ on\ X.\ Then$

- 1. f is continuous on X.
- 2. f admits partial derivatives on X with respect to each variable.
- 3. Assume that m = 1. Let $x_0 \in X$ and $u(x_1, ..., x_n) = a_1x_1 + ... + a_nx_n$ be the differential of f at x_0 . We then have $\partial_{x_i} f(x_0) = a_i$ for

Proposition 3.4.6. $X \subset \mathbb{R}^n$ open, $f: x \mapsto \mathbb{R}^m$, $g: X \mapsto \mathbb{R}^m$ differen $tiable\ functions\ on\ X.$

- 1. f + g is differentiable on X with differential d(f + g) = df + df.
- 2. If m = 1, then fg is differentiable. If we also have $g(x) \neq 0$ for all $x \in X$, then f/g is differentiable.

Proposition 3.4.7. If f has all partial derivatives on X and they are all continuous on X, then f is differentiable on X. The matrix of the differential $df(x_0)$ is the Jacobi Matrix of f at x_0 .

Proposition 3.4.9 (Chain Rule). Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open. Let $f:X\mapsto Y$ and $g:Y\mapsto R^p$ be differentiable functions. Then $g \circ f: X \mapsto \mathbb{R}^p$ is differentiable on X, and for any $x \in X$, its differential is given by

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$

The Jacobi Matrix satisfies

$$J_{g \circ f}(x_0) = J_g(f(x_0))J_f(x_0)$$
 (matrix product)

Definition L. et $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$ differentiable. Let $x_0 \in X$ and $u = df(x_0)$ be the differential of f at x_0 . The graph of the affine linear approximation

$$g(x) = f(x_0) + u(x - x_0)$$

from \mathbb{R}^n to \mathbb{R}^m , or in other words the set

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m \mid y = f(x_0) + u(x - x_0)\}$$

is called the **tangent space** at x_0 to the graph of f.

Definition 3.4.13 (Directional Derivative). Let $X \subset \mathbb{R}^n$ be open, $f: X \mapsto \mathbb{R}^m$ a function.

Let $v \in \mathbb{R}^n$ be a non-zero vector and $x_0 \in X$.

We say that f has directional derivative $w \in \mathbb{R}^m$ in the direction v if the function g defined on the set I has a derivative at t = 0 and this is equal to w.

$$g(t) = f(x_0 + tv), \quad I = \{t \in \mathbb{R} \mid x_0 + tv \in R\}$$

$$g(t) = f(x_0 + tv), \quad I = \{t \in \mathbb{R} \mid x \in \mathbb{R} \mid x \in \mathbb{R} \mid x \in \mathbb{R} \mid t \in \mathbb{R} \mid x \in \mathbb{R} \mid t \in$$

Proposition 3.4.15. X open, f differentiable. Then for any $x_0 \in X$ and non-zero v, the function has a directional derivative at x_0 in the direction v, equal to $df(x_0)(v)$

Definition 3.5.1. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$. We say that f is of class:

- ullet C^1 is differentiable on X and all partial derivatives are continuous.
- C^k if differentiable on X and all partial derivatives $\partial_{x_i} f: X \mapsto \mathbb{R}^m$ are of class C^{k-1} .
- C^{∞} if $f \in C^k(X; \mathbb{R}^m)$ for all k > 1

Set of functions of class C^k from X to \mathbb{R}^m is denoted $C^k(X;\mathbb{R}^m)$

Proposition 3.5.4 (Mixed derivatives commute). $X \subset \mathbb{R}^n$ open and $f: X \mapsto \mathbb{R}^m$ of class C^k . Then the partial derivatives of order k are independent of the order in which the partial derivatives are taken: for any variables $x_1, x_2, ..., x_n$ we have

$$\partial_{x_1,x_2,...,x_n}f=\partial_{x_2,x_1,...,x_n}f=...$$
 (all combinations)

Definition 3.5.9 (Hessian). Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}$ a C^2 function. For $x \in X$, the **Hessian matrix** of f at x is the symmetrix square matrix

$$H_f(x) = \operatorname{Hess}_f(x) = (\partial_{x_i, x_i} f)_{1 \le i, j \le n}$$

Example (Change of variable). Idea: create h, which is f on a dif $ferent\ coordinate\ system.$

Open set $U \subset \mathbb{R}^n$ containing the new variables $(y_1,...,y_n)$ and a change of variable $g: U \mapsto X$ that expresses $(x_1, ..., x_n)$ in terms of $(y_1, ..., y_n)$.

Consider $x_1 = g_1(y_0, ..., y_n), \quad x_n = g_n(y_1, ..., y_n)$ Composite $h = f \circ g : U \mapsto \mathbb{R}$ is the function f expressed in terms of the new variables y.

Polar coordinates: Map $g: U \mapsto \mathbb{R}^2$, $g(r,\theta) = (r\cos\theta, r\sin\theta)$. Replace f by h: $h(r,\theta) = f(r\cos\theta, r\sin\theta)$.

$$J_g(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{pmatrix}$$

Taylor Polynomials

Definition 3.7.1 (Taylor polynomials). Let $k \geq 1$ be an integer, $f: X \mapsto \mathbb{R}$ a function of class C^k on X, and fix $x_0 \in X$. The k-th Taylor polynomial of f at point x_0 is the poly in n variables of degree $\leq k$ given

$$T_k f(y; x_0) = f(x_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0)y_i + \dots$$

$$+\sum_{m_1+\ldots+m_n=k}\frac{1}{m_1!\ldots m_n!}\frac{\partial^k f}{\partial x_1^{m_1}\ldots \partial x_n^{m_n}}(x_0)y_1^{m_1}\ldots y_n^{m_n}$$
 where the last sum ranges over the tuples of n positive integers such that

the sum is k.

Case n = 1 (one variable):

$$T_k f(y; x_0) = f(x_0) + f'(x_0)y + \frac{f''(x_0)}{2}y^2 + \dots + \frac{f^{(k)}(x_0)}{k!}y^k$$

Proposition 3.7.3 (Taylor Approximation). $k \geq 1, X \subset \mathbb{R}^n$ open, $f: X \mapsto \mathbb{R}$ a C^k function. For x_0 in X, we define $E_k f(x; x_0)$ by $f(x) = T_k f(x - x_0; x_0) + E_k f(x; x_0)$

then we have

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{e_k f(x; x_0)}{\|x - x_0\|^k} = 0$$

1.4 Critical Points

Proposition 3.8.1. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}$ be differentiable. If $x_0 \in X$ is a local maximum or a local minimum, then we have (equivalent) for $1 \le i \le n$:

$$df(x_0) = 0, \ \nabla f(x_0) = 0, \ \frac{\partial f}{\partial x_i}(x_0) = 0$$

Definition 3.8.2 (Critical Point). Let X be open and f be differentiable. A point x_0 is called a **critical point** of f if $\nabla f(x_0) = 0$.

Definition 3.8.6 (Non-degenerate critical point). f of class C^2 . Acritical point x_0 is non-degenerate if the Hessian matrix has non-zero determinant.

Corollary 3.8.7. X open and $f: X \mapsto \mathbb{R}$ of class C^2 . Let x_0 be a non-degenerate critical point of f. Let p,q be the number of positive and negative eigenvalues of $Hess_f(x_0)$

- 1. if p = n, equivalently if q = 0, the function f has a local minimum
- 2. if q = n, equivalently if p = 0, f has a local maximum at x_0 .
- 3. Otherwise, the function f does not have a local extremum at x_0 , equivalently it has a saddle point at x_0 .

Limit Cheat Sheet

$$x \in \mathbb{R}, \quad a, b \in \mathbb{R}^+, \quad n \in \mathbb{N}$$

$$\lim_{n \to \infty} a^n = +\infty \text{ if } a > 1 \qquad \lim_{n \to \infty} a^n = 0 \text{ if } 0 < a < 1$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \qquad \lim_{n \to \infty} \sqrt[n]{a} \text{ if } a > 0$$

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\ln^b(x)}{x^a} = 0 \qquad \lim_{x \to \infty} x^a \ln^b(x) = 0$$

$$\lim_{x \to \infty} \frac{e^{ax}}{x^b} = +\infty \qquad \lim_{x \to \infty} \frac{x^b}{e^{ax}} = 0$$

Derivative Cheat Sheet

Properties

$$(cf)' = cf'(x) \qquad (f \pm g)' = f'(x) \pm g'(x)$$
$$(fg)' = f'g + fg' \qquad (\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$
$$\frac{d}{dx}(c) = 0 \qquad \frac{d}{dx}(g(f(x))) = g'(f(x))f'(x)$$

f(x)	f'(x)
x	1
x^n	nx^{n-1}
e^x	e^x
a^x	$a^x \ln a$
\sqrt{x}	$ \frac{1}{2\sqrt{x}}, \ x \neq 0 $
1	$\begin{bmatrix} 2\sqrt{x} \\ 1 \end{bmatrix}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
x	$x > 0 \implies 1, \text{ or } x < 0 \implies -1, x \neq 0$
$\ln(x)$	1
` ′	x
$\log_a(x) = \frac{1}{x \ln(a)}$	
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{1}{1}$ - 1 + tan ² (r)
	$\cos^2(x)$
$\cot(x)$	$\begin{vmatrix} \frac{1}{\cos^2(x)} = 1 + \tan^2(x) \\ -\frac{1}{\sin^2(x)} = -1 - \cot^2(x) \end{vmatrix}$
	$\begin{pmatrix} \sin^2(x) \\ 1 \end{pmatrix}$
$\arcsin x$	$\sqrt{1-x^2}$
$\arccos x$	
ar coos ar	$\sqrt{1-x^2}$
$\arctan x$	$ \begin{array}{c c} \hline $
	1 + x-
$\operatorname{arccot}(x)$	$1+x^2$
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
tanh(x)	$\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$
	$\cosh^2(x)$
$\coth(x)$	$-\frac{1}{\sin^2(x)} = 1 - \coth^2(x)$
a aimle ()	1
asinh(x)	$\frac{\sqrt{x_1^2+1}}{\sqrt{x_1^2-1}}$
$a\cosh(x)$	
	$\sqrt{x^2-1}$
atanh(x)	$\frac{1}{1-x^2}$
	I W

4 Integral Cheat Sheet

$\int f(x)dx = F(x) + C$		
Per parti	$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$	
Per sostituzione immediata	$\int g(f(x))f'(x)dx = G(f(x)) + C$	
Per sostituzione (cambiamento di variabile)	$\int g(x)dx = \int g(f(t))f'(t)dt$	
	with $x = f(t)$	
Integrale logarit- mico	$\int \frac{f'(x)}{f(x)} dx = \ln \left f(x) \right + C$	

f(x)	F(X)(without + C)
a	ax
x^n	$\frac{x^{n+1}}{}$
1	n+1
$\frac{-}{x}$	$\frac{\ln x }{2}$
\sqrt{x}	$\frac{2}{3}x\sqrt{x}$
1	$\frac{3}{2\sqrt{x}}$
$\frac{1}{\sqrt{x}}$	
$\frac{1}{(x-a)(x-b)}$	$\frac{1}{a-b}\ln\left \frac{x-a}{x-b}\right $
(x-a)(x-b) ax+b	$\frac{a-b}{c} \frac{ x-b }{c^2} \ln cx+d $
$\overline{cx+d}$	$\frac{1}{c} - \frac{1}{c^2} \ln cx + d $
1 2 + 2	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$
$\overline{x^2 + a^2}$	$\begin{bmatrix} a & \langle a \rangle \\ 1 & x-a \end{bmatrix}$
$\overline{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x - a}{x + a} \right $ e^{x}
e^x $\ln(x)$	_
a^x	$x(\ln(x) - 1)$ a^x
	$\overline{\ln(a)}$
$\log_a(x)$	$x(\log_a(x) - \log_a(e))$
xe^{ax}	$\frac{1}{a^2}(ax-1)e^{ax}$
$x \ln(ax)$	$\frac{\frac{1}{a^2}(ax-1)e^{ax}}{\frac{x^2}{4}(2\ln(ax)-1)}$
$\sin(x)$	$-\cos(x)$
$\arcsin(x)$	$x \arcsin(x) + \sqrt{1-x^2}$
$\cos(x)$	$\sin(x)$
$\arccos(x)$	$x \arccos(x) - \sqrt{1 - x^2}$
$\tan(x)$	$-\ln \cos(x) $
$\arctan(x)$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\cot(x)$	$\ln \sin(x) $
$\operatorname{arccot}(x)$	$x \operatorname{arccot}(x) + \frac{1}{2}\ln(1+x^2)$
$\sin^2(x)$	$\frac{1}{2}(x-\sin(x)\cos(x))$
$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$
$\tan^2(x)$	$\tan(x) - x$
$\sqrt{x^2+a}$	$\frac{\tan(x) - x}{\frac{1}{2}x\sqrt{x^2 + a} + \frac{a}{2}\ln\left x + \sqrt{x^2} + a\right }$
$\frac{1}{\sqrt{x^2+a}}$	$\ln\left x + \sqrt{x^2 + a}\right $
V	$1 \qquad r^2 \qquad r^2$
$\sqrt{r^2-x^2}$	$\frac{1}{2}x\sqrt{r^2 - x^2} + \frac{r^2}{2}\arcsin\left(\frac{x}{r}\right)$
$\frac{1}{\sqrt{r^2-r^2}}$	$\arcsin\left(\frac{x}{r}\right)$

More?