MA3832-Practical 4: Multi-layer perceptron neural network

Dr. Kelly Trinh

Sofwares

1. Install Tensorflow (version 2 or >) and Keras on your computer.

Goals

- 1. Implementing techniques for regularisation, dealing with unstable gradients, and adaptive learning rate.
- 2. Transfer learning

Data Description

In this section, we work with the Fashion MNIST dataset, which contains 60000 small suare 28×28 pixel grayscale images of 10 types of clothing 0: T-shirt/top

- 1: Trouser
- 2: Pullover
- 3: Dress
- 4: Coat
- 5: Sandal
- 6: Shirt
- 7: Sneaker
- 8: Bag
- 9: Ankle boot

Our task is to construct a MLP to classify the types of clothing. Comments on the performance of the MLP.

- 1. Repeat step 1-3 from Practical 3
- 2. Build a neural network with the following structure:
 - Number of Hidden layers = 2: The first hidden layer contains 64 neurons while the second layer includes 32 neurons.
 - Activation function: Both hidden layers will use a non-saturating activation function, and he_normal initialization.

- Include a dropout layer at the last layer
- Optimizer: Momentum optimisation with learning rate is 0.001 and momentum = 0.9
- Use early stop in training a model
- 3. Repeat the exercise using nadam optimiser with exponential scheduling, selu activation function, lecun_normal initialization.

4. Reuse pretrained layers

Let's split the fashion MNIST training set into two datasets:

- X_train_A: all images of all items except for sandals and shirts (classes 5 and 6).
- X_train_B: the first 200 images of sandals and shirts.

We will first

- train a model on dataset A (classification task with 8 classes). The model used to train dataset A has the following structure:
 - It has 5 hidden layers. The first hidden layer contains 300 neurons, the second has 100 neurons, the last three hidden layers contain 50 neurons each.
 - the activation function is scaled relu
 - loss function is sparse_categorical_crossentropy
- reuse the model for dataset A to classify sandals and shirts in dataset B.