Notes on Design and Implementation of Anglican

David Tolpin dtolpin@robots.ox.ac.uk

July 30, 2015

Abstract

In these notes, I explain the rationale behind the macro-compiled implementation of Anglican, outline design choices, and describe important implementation aspects.

1 Introduction

Anglican is a probabilistic programming language integrated with Clojure. There are several ways to build a programming language on top or besides another language. The easiest to grasp is an interpreter — a program that reads a program, in its entirety or line-by-line, and executes it by applying operational semantics of a certain kind to the language. Basic is famous for line-by-line interpreted implementations.

Another approach is to write a compiler, either to a virtual architecture, so called p-code or byte-code, or to real hardware. Here, the whole program is translated from the 'higher-level' source language to a 'lower-level' object language, which can be directly executed, either by hardware or by an interpreter — but the latter interpreter can be made simpler and more efficient than an interpreter for the source language.

On top of these two approaches are methods in which a new language is implemented 'inside' another language of the same level of abstraction. Different languages provide different means for this; Lisp is notorious for the macro facility that allows to extend the language almost without restriction — by writing macros, one adds new constructs to the existing language. There are several uses of macros — one is to extend the language syntax, for example, by adding new control structures; another is to keep the existing syntax but alter the operational semantics — the way programs are executed and compute their outputs.

Anglican is implemented in just this way — a macro facility provided by Clojure, a Lisp dialect, is used both to extend Clojure with constructs that delimit probabilistic code, and to alter the operational semantics of Clojure expressions inside probabilistic code fragments. Anglican claims its right to count as a separate language because of the ubiquitous probabilistic execution semantics rather than a different syntax, which is actually an advantage rather than a drawback — Clojure programmers only need to know how to specify the boundaries of Anglican programs, but can use familiar Clojure syntax to write probabilistic code.

An implementation of Anglican must therefore address three issues:

- the Clojure syntax to introduce probabilistic Anglican code inside Clojure modules;
- source-to-source transformation of Anglican programs into Clojure, so that probabilistic execution becomes possible;
- algorithms which run Clojure code, obtained by transforming Anglican programs, according to the probabilistic operational semantics.

The following sections explain the way Anglican is implemented, from source-to-source transformation and syntactic wrappers to inference algorithms which accept Clojure functions built from Anglican code as a parameter, and produce probabilistic outputs.

2 Design Outline

A probabilistic program, or query, mostly runs deterministic code, except for certain checkpoints, in which probabilities are involved, and normal, linear execution of the program is disrupted. In Anglican and similar languages there are two types of such checkpoints:

- drawing a value from a random source (sample);
- conditioning the posterior distribution by conditioning a computed value on a random source (observe).

Anglican can be mostly implemented as a regular programming language, except for the handling of these checkpoints. Depending on the *inference algorithm*, sample and observe may result in implicit input/output operations and control changes. For example, observe in particle filtering inference algorithms is a non-deterministic control statement at which a particle can be either replicated or terminated. Similarly, in Metropolis-Hastings, sample is both an input and a non-deterministic control statement (with delayed effect), eventually affecting acceptance or rejection of a sample.

Because of the checkpoints, Anglican programs must allow the inference algorithm to step in, recording information and affecting control flow. This can be implemented through coroutines/cooperative multitasking, parallel execution/preemptive multitasking and shared memory, as well as through explicit maintenance of program continuations at checkpoints. Clojure is a functional language, and continuation-passing style (CPS) transformation is a well-developed technique in the area of functional languages. Implementing a variant of CPS transformation seemed to be the most flexible and lightweight option—any other form of concurrency would put a higher burden on the underlying runtime (JVM) and the operating system. Consequently, Anglican has been implemented as a CPS-transformed computation with access to continuations in probabilistic checkpoints. Anglican 'compiler', represented by a set of functions in the anglican.trap namespace, accepts a Clojure subset and transforms it into a variant of CPS representation, which allows inference algorithms to intervene in the execution flow at probabilistic checkpoints.

Anglican is intended to co-exist with Clojure and be a part of the source of a Clojure program. To facilitate this, Anglican programs, or queries, are wrapped by macros (defined in the anglican.emit namespace), which call the CPS transformations and define Clojure objects suitable for passing as arguments to inference algorithms (defquery, query). In addition to defining entire queries, Anglican promotes modularization of inference algorithms through definition of probabilistic functions using defm and fm (Anglican counterparts of Clojure defn and fn). Probabilistic functions are written in Anglican, may include probabilistic forms sample and observe (as well predict for the output), and can be seamlessly called from inside Anglican queries, just like functions locally defined within the same query.

Operational semantics of Anglican queries is different from that of Clojure code, therefore queries must be called through inference algorithms, rather than 'directly'. The anglican.inference namespace supplies the infer multimethod, which accepts an Anglican query and returns a lazy sequence of weighted samples from the distribution defined by the query. When inference is performed on an Anglican query, the query is run by a particular inference algorithm. Inference algorithms must provide an implementation for infer, as well as override some of the methods of the checkpoint multimethod, called to handle sample and observe in an algorithmic-specific manner, as well as on termination of a probabilistic program.

Finally, Anglican queries use 'primitive', or commonly known and used, distributions, to draw random samples and condition observations. Many primitive distributions are provided by the anglican.runtime namespace, and additional distributions can be defined by the user by implementing the distribution protocol. The defdist macro provides a convenient syntax for defining primitive distributions.

Compilation, invocation, and runtime support of Anglican queries are discussed in detail in further sections.

3 Macro-based Compilation

Compilation of Anglican into Clojure relies on the Clojure macro facility. However, the compilation algorithm is implemented as a library of functions in namespace anglican.trap, which are invoked by macros. Namespace anglican.trap-test contains many transformation tests, which both help assure proper functioning of the transformation functions, and serve as illustrative examples of individual transformations, such as of functions, flow control, and probabilistic contstructs.

The CPS transformation is organized in top-down manner. The top-level function is cps-of-expression, which receives an expression and a continuation, and returns the expression in the CPS form, with the computed result passed to the continuation. A continuation accepts two arguments:

- the computed value;
- the internal state, bound to the local variable \$state in every lexical scope.

The state (\$state) is threaded through the computation and contains data used by inference algorithm. \$state is a Clojure hash map, and the map entries are algorithm-dependent. Except for transformation of mem, the memoization form, CPS transformation routines are not aware of contents of \$state, do not access or modify it directly, but rather just thread the state unmodified through the computation. Algorithm-specific handlers of checkpoints corresponding to the probabilistic forms (sample, observe) modify the state and reinject a new state into the computation.

3.1 Expression Kinds

There are three different kinds of inputs to CPS transformation:

- literals, which are passed as an argument to the continuation unmodified;
- value expressions (e.g. the fn form) (called *opaque* expressions in the code) which must be transformed to CPS, but the transformed object is passed to the continuation as a whole, opaquely;
- general expressions (let's call them *transparent*), through which the continuation is threaded in an expression-specific way, and can be called in multiple locations of the CPS-transformed code, such as in all branches of an if statement.

3.1.1 Literals

Literals are the same in Anglican and Clojure. They are left unmodified. Literals are a subset of opaque expressions, and are identified by test simple? called from opaque?. However, The Clojure syntax has a peculiarity of using the syntax of compound literals (vectors, hash maps, and sets) for data constructors. Hence, compound literals must be traversed recursively, and if there is a nested non-literal component, transformed into a call to the corresponding data constructor. Functions cps-of-vector, cps-of-hash-map, cps-of-set, called from cps-of-expression, transform Clojure constructor syntax ([...], {...}, #{...}) into the corresponding calls.

3.1.2 Opaque Expressions

Opaque, or value, expressions, have a different shape in the original and the CPS form. However, their CPS form follows the pattern (continuation transformed-expression), and thus the transformation does not depend on the continuation, and can be accomplished without passing the continuation as a transformation argument. Primitive (non-CPS) procedures used in Anglican code, (fn ...) forms, and (mem ...) forms are opaque and transformed by primitive-procedure-cps, fn-cps, and mem-cps, correspondingly.

3.1.3 General Expressions

The most general form of CPS transformation receives an expression and a continuation, and returns the expression in CPS form with the continuation potentially called in multiple tail positions. General expressions can be somewhat voluntarily divided into several groups:

• binding forms — let and loop/recur;

- flow control if, when, cond, case, and, or and do;
- function applications and apply;
- probabilistic forms predict, observe, sample, store, and retrieve.

Functions that transform general expressions accept the expression and the continuation as parameters, and are consistently named cps-of-form, for example, cps-of-do, cps-of-store.

3.2 Implementation Highlights

3.2.1 Continuations

Continuations are functions that are called in tail positions with the computed value and state as their arguments — in CPS there is always a function call in every tail position and never a value. Continuations are passed to CPS transformers, and when transformers are called recursively, the continuations are generated on the fly.

There are two critical issues related to generation of continuations:

- unbounded *stack growth* in recursive code;
- code size *explosion* when a non-atomic continuation is symbolically substituted in multiple locations.

In implementations of functional programming languages stack growth is avoided through tail call optimization (TCO). However, Clojure does not support a general form of TCO, and CPS-transformed code that creates deeply nested calls will easily exhaust the stack. Anglican employs a workaround called trampolining — instead of inserting a continuation call directly, the transformer always wraps the call into a thunk, or parameterless function. The thunk is returned and called by the trampoline (Clojure provides function trampoline for this purpose) — this way the computation continues, but the stack is collapsed on every continuation call. Function continue implements the wrapping.

To realize potential danger of code size explosion, consider CPS transformation of code

with continuation

```
(fn [choice _]
  (case (kind choice)
    :beer (beer-jar choice)
    :wine (wine-glass choice)
    :juice (juice-bottle choice)))
```

The code of continuation, represented by an fn form, will be repeated three times. In general, CPS code can grow extremely large if symbolic continuations are inserted repeatedly.

To circumvent this inefficiency, CPS transformers for expressions with multiple continuation points (if and derivatives, and, or, and case) bind the continuation to a fresh symbol if it is not yet a symbol. Macro defn-with-named-cont establishes the binding automatically.

3.2.2 Primitive Procedures

When an Anglican function is transformed into a Clojure function by fn-cps, two auxiliary parameters are added to the beginning of the parameter list — continuation and state. Correspondingly, when a function call is transformed (by cps-of-application or cps-of-apply), the current continuation and the state are passed to the called function. Anglican can also call Clojure functions; however Clojure functions do not expect these auxiliary parameters. To allow the mixing of Anglican (CPS-transformed) and Clojure function calls in Anglican code, the Anglican compiler must be able to recognize 'primitive' (that is, implemented in Clojure rather than in Anglican) functions.

Providing an explicit syntax for differentiating between Anglican and Clojure function calls would be cumbersome. Another option would be to use metadata to identify Anglican function calls at runtime, however this would impact performance, and a good runtime performance is critical for probabilistic programs. The approach taken by Anglican is to maintain a list of unqualified names of primitive functions, as well of namespaces in which all functions are primitive, and recognize primitive functions by name — if a function name is not in the list, the function is a Clojure function. Global dynamically bound variables *primitive-procedures* and *primitive-namespace* contain the initial lists of names and namespaces, correspondingly. Of course, local bindings can shade global primitive function names. For example, first is a Clojure function inside the let block in the following example:

```
(let [first (fn [[x & y]] x)]
(first '[1 2 3]))
```

The Anglican compiler takes care of the shading by rebinding *primitive-procedures* in every lexical scope (fn-cps, cps-of-let). Macro shading-primitive-procedures automates the shading.

3.2.3 Probabilistic forms

There are two proper probabilistic forms turning Anglican into a probabilistic programming language — sample and observe. Their purpose is to interrupt deterministic computation and transfer control to the inference algorithm. Practically, this is achieved through returning *checkpoints* — Clojure records of the corresponding types (anglican.trap.sample or anglican.trap.observe). The records contain fields specific to each form, as well as the continuation; calling the continuation resumes the computation. Checkpoints expose the program state to the inference algorithm, and the updated state is re-injected into the computation when the continuation is called.

In addition to checkpoints, there are a few other special forms — predict, store, retrieve, mem — which modify program state. These forms are translated into expressions involving calls of functions from the anglican.state namespace. The mem form, which implements stochastic memoization, deserves a more detailed explanation.

Memoization is often implemented on top of a mutable dictionary, where the key is the argument list and the value is the returned value. However, there are no mutable data structures in a probabilistic program, hence mem's memory is stored as a nested dictionary in the program state (function mem-cps). Each memoized function receives a unique automatically generated identifier.

Each time a memoized function is called, one of two continuations is chosen, depending on whether the same function (a function with the same identifier) was previously called in the same run of the probabilistic program with the same arguments. If the memoized result is available, the continuation of the memoized function call is immediately called with the stored result. Otherwise, the argument of mem is called with a continuation that first creates an updated state with the memoized result, and then calls the 'outer' continuation with the result and the updated state.

Memoized results are not shared among multiple runs of a probabilistic program, which is intended. Otherwise, it would be impossible to memoize functions with random results.

4 Inference Algorithms

5 Definitions and Runtime Library