

Partially wrapped Fukaya categories of symmetric products of marked disks

Gustavo Jasso 1 (joint with Tobias Dyckerhoff 2 and Yankı Lekili 3)

Winter School: Connections between representation theory and geometry Online from Bonn, Germany, October 19, 2020

¹Universität Bonn

²Universität Hamburg

³King's College London

Exact (m+2)-angles in A_{∞} -categories (Kontsevich)

$$\mathcal{C}_m\ (m\geq -1)$$
 : A_∞ -category

- ightharpoonup |x|=0 and |y|=m
- $\blacktriangleright \ \mu_{m+2}(x,\ldots,x,y,x,\ldots,x)=1$
- $ightharpoonup \mu_{
 eq m+2} = 0$ (mod unitality)

Why are these interesting?

$$\operatorname{\mathsf{Fun}}_{A_\infty}(\mathcal{C}_m,\mathcal{A})$$
 : exact $(m+2)$ -angles

$$\mathcal{A}:A_{\infty} ext{-}\mathsf{category}$$

$$\mathcal{C}_{-1}
ightarrow \mathcal{A} \leadsto \mathsf{zero} \, \mathsf{object}$$

$$\mathcal{C}_0 o \mathcal{A} \leadsto isomorphism$$

$$\mathcal{C}_1 o \mathcal{A} \leadsto \mathsf{exact\ triangle}$$

$$\mathcal{C}_m o \mathcal{A} \leadsto \mathsf{exact}\,(m+2)$$
-angle

Symplectic interpretation of exact (m + 2)-angles

Partially wrapped Fukaya category

$$\mathcal{W}(\mathbb{D},\Lambda_n)$$

$$\operatorname{thick}(igoplus_{i=1}^n L_{i,i+1}) = \mathcal{W}(\mathbb{D}, \Lambda_n)$$

There exist grading structures such that

$$\mathcal{C}_{n-1} \simeq \mathrm{REnd}(L_{0n} \oplus \bigoplus_{i=1}^n L_{i,i+1})$$

Moreover $L_{0n} \in \operatorname{thick}(igoplus_{i=1}^n L_{i,i+1})$ and

$$\operatorname{REnd}(igoplus_{i=1}^n L_{i,i+1}) \cong \mathbf{k} \vec{A}_n/J^2$$

where
$$ec{A}_n = 1
ightarrow 2
ightarrow \cdots
ightarrow n$$

Theorem (Folklore)

$$\operatorname{perf}(\mathbf{k}ec{A}_n/J^2) \xrightarrow{\sim} \mathcal{W}(\mathbb{D},\Lambda_n)$$

Auroux, Kontsevich, Seidel, ...

Higher octahedra in A_{∞} -categories (Hermes)

A_∞ -category \mathcal{M}_n

For all 0 $\leq i < j \leq n$ the diagram

$$(i,j+1)\oplus(i+1,j)$$
 μ_3
 $(i+1,j+1)$

is an exact triangle in $\operatorname{perf}(\mathcal{M}_n)$

$$\mathcal{M}_n o \mathcal{A} \leadsto n$$
-octahedron

Symplectic interpretation of higher octahedra

$$\mathcal{W}(\mathbb{D},\Lambda_n)$$

$$\operatorname{thick}(igoplus_{i=1}^n L_{0i}) = \mathcal{W}(\mathbb{D}, \Lambda_n)$$

There exist grading structures such that

$$\mathcal{M}_n \simeq ext{REnd}(igoplus_{i < j} L_{ij})$$

Moreover
$$(L_i := L_{0i})$$

$$\operatorname{REnd}(igoplus_{i=1}^n L_i) \cong \mathbf{k} \vec{A}_n$$

Theorem (Folklore)

$$\operatorname{perf}(\mathbf{k}ec{A}_n) \xrightarrow{\sim} \mathcal{W}(\mathbb{D}, \Lambda_n)$$

Auroux, Kontsevich, Seidel, ...

Koszul duality for the path algebra $ec{A}_n$

$\operatorname{REnd}(\bigoplus_{i=1}^n L_i)$ is a Koszul A_{∞} -algebra

 $A_n := \operatorname{REnd}(igoplus_{i=1}^n L_i)$

 $A_n^ee := \mathtt{REnd}(igoplus_{i=1}^n L_i^ee)$

Koszul duality (Keller)

Stop removal functors & recollements (Auroux, Sylvan)

Identify
$$\Lambda_n = \Lambda_{n+1} \setminus \{p_{n+1}\}$$

Stop-removal functor

$$s: \mathcal{W}(\mathbb{D}, \Lambda_{n+1}) o \mathcal{W}(\mathbb{D}, \Lambda_n)$$

$$ext{thick}(extstyle{L_{n+1}^{ee}}) \overset{\iota_L}{\overset{\iota_L}{\leftarrow} \iota_R} \mathcal{W}(\mathbb{D}, \Lambda_{n+1}) \overset{\iota_S}{\overset{s_L}{\leftarrow} s} \mathcal{W}(\mathbb{D}, \Lambda_n) \ \iota_L \dashv \iota \dashv \iota_R \qquad \iota = \ker(s) \qquad s_L \dashv s \dashv s_R$$

The Waldhausen S_{\bullet} -construction

Stop-removal functors and their adjoints turn

$$\mathcal{W}(\mathbb{D}, \Lambda_n) \simeq \operatorname{perf}(\mathcal{M}_n) \quad n \geq 0,$$

into a **simplicial** triangulated A_{∞} -category

- Coherence is established combinatorially
- [Tanaka] Approach via stack of broken paracycles

Theorem (Folklore)

$$\mathcal{A} = \operatorname{perf}(A)$$

$$\mathcal{W}(\mathbb{D},\Lambda_n)\otimes\mathcal{A}\simeq S_n(\mathcal{A})\quad n\geq 0$$

 $S_{\bullet}(\mathcal{A})$: Waldhausen S_{\bullet} -construction

Rotating the disk \leadsto **paracyclic** structure

K-theory of A_{∞} -categories (Waldhausen, Thomason, ...)

Definition

 ${\mathcal A}$: triangulated A_{∞} -category

$$K(A) := \Omega |S_ullet(\mathcal{A})^\simeq|$$

Algebraic K-theory space of A

$$K_m(\mathcal{A}) := \pi_m(K(\mathcal{A}),0)$$

 m -th algebraic K -group of \mathcal{A}

$K_0(\mathcal{A})$: Grothendieck group of \mathcal{A}

- **b** base point: $0 \in \mathcal{A}$: zero object
- ▶ loop at 0: object $0 \xrightarrow{A} 0$ in A

▶ 3-simplex: octahedron in A

Partially wrapped Fukaya categories (Auroux, Sylvan)

 Σ : Riemann surface, $\partial \Sigma \neq \emptyset$ $\Lambda \subset \partial \Sigma$: finite set of marked points

$$\operatorname{\mathsf{Sym}}^d(\Sigma) = \underbrace{\Sigma imes \cdots imes \Sigma}_{d ext{ times}} / \mathfrak{S}_d$$
 $\Lambda^{(d)} = igcup_{p \in \Lambda} \{p\} imes \operatorname{\mathsf{Sym}}^{d-1}(\Sigma)$

 $\mathcal{W}(\operatorname{Sym}^d(\Sigma), \Lambda^{(d)})$ partially wrapped Fukaya category

Proposition (Perutz)

 $\exists \omega$ symplectic form on $\mathrm{Sym}^d(\Sigma)$ s.t. $\omega = \omega_\Sigma^{ imes d}$ away from big diagonal

- $ightharpoonup L_1, \ldots, L_d$: Lagrangians in Σ
- $\blacktriangleright \ \forall i \neq j : L_i \cap L_j = \emptyset$
- $\Rightarrow \prod L_i \in \operatorname{\mathtt{Sym}}^d(\Sigma)$: Lagrangian

Kontsevich's proposal

 $\mathcal{W}(\operatorname{Sym}^d(\Sigma), \Lambda^{(d)}) \simeq \operatorname{\mathsf{homotopy}}$ colimit of triangulated A_∞ -categories of the form

$$igotimes_i \mathcal{W}(\operatorname{\mathsf{Sym}}^{d_i}(\mathbb{D}), \Lambda_{n_i}^{(d_i)}) : \sum_i d_i = d$$

where

$$\operatorname{perf}(A) \otimes \operatorname{perf}(B) = \operatorname{perf}(A \otimes B)$$

Haiden-Katzarkov-Kontsevich Dyckerhoff-Kapranov

Complete proofs in the case d = 1

shaded triangle \rightsquigarrow exact triangle (μ_3) empty triangle \rightsquigarrow no relations

Work in progress (DJL)

Gluing description for $\operatorname{genus}(\Sigma)=0\ \&\ d\geq 1$

- ▶ [Lekili-Polishchuk] Direct computation for genus(Σ) = 0 & d > 1
- ▶ genus(Σ) > 0 \Rightarrow no \mathbb{Z} -grading!
- precise description of indexing diagram (difficult)

 $\mathbb{D}: 2$ -dim unit disk

 $\Lambda_n \subset \partial \mathbb{D}: (n+1)$ -st roots of unity

Theorem (Dyckerhoff-J-Lekili 2019)

There are equivalences of triangulated A_{∞} -categories

 $A_{n,d}: d$ -dimensional Auslander algebra of type \mathbb{A}_{n-d+1} [Iyama]

Higher Auslander algebras of type $\mathbb A$

[Oppermann-Thomas]

$$I,J\subset\{1,\ldots,n\}$$
 with $\#I=\#J=d$ Write $I\leadsto J$ if $i_1\le j_1\le i_2\le j_2\le \cdots \le i_d\le j_d$ $A_{n,d}=igoplus_{I\leadsto J}\mathbf{k}\cdot f_{JI}$ $f_{KJ}\cdot f_{JI}=egin{cases} f_{KI} & ext{if }I\leadsto K \ 0 & ext{otherwise} \end{cases}$

No higher products!

Orlov functors & stop removal functors

Identify
$$\Lambda_n = \Lambda_{n+1} \setminus \{p_{n+1}\}$$

$$\mathcal{W}(\operatorname{Sym}^d(\mathbb{D}), \Lambda_n^{(d)}) \overset{\iota_L}{ \overset{\iota_L}{\longleftarrow} \overset{\iota_L}{\longleftarrow}}$$

i: Orlow functor

$$\iota: \mathcal{W}(\operatorname{\mathsf{Sym}}^d(\mathbb{D}), \Lambda_n^{(d)}) \hookrightarrow \mathcal{W}(\operatorname{\mathsf{Sym}}^{d+1}(\mathbb{D}), \Lambda_{n+1}^{(d+1)})$$

product with small arc L_{n+1}^{\vee} near stop p_{n+1}

$$L_{n} \xrightarrow{\overset{\sim}{\bigsqcup_{[1]}}} \xrightarrow{\overset{\iota}{\bigsqcup_{n+1}}} (L_{n+1} \times \overset{\iota}{\bigsqcup_{n+1}}) \xrightarrow{\overset{\sim}{\bigsqcup_{n+1}}} (L_{n} \times \overset{\iota}{\bigsqcup_{n+1}}) \xrightarrow{\overset{\sim}{\bigsqcup_{n+1}}} (L_{n} \times \overset{\iota}{\bigsqcup_{n+1}})$$

$$\mathcal{W}(\operatorname{Sym}^d(\mathbb{D}), \Lambda_n^{(d)}) \overset{\iota_L}{ \overset{\iota_L}{\longleftarrow} } \mathcal{W}(\operatorname{Sym}^{d+1}(\mathbb{D}), \Lambda_{n+1}^{(d+1)}) \overset{s_L}{\overset{s_L}{\longleftarrow} } \mathcal{W}(\operatorname{Sym}^{d+1}(\mathbb{D}), \Lambda_n^{(d+1)})$$

s: Stop-removal functor

Higher Waldhausen S_{\bullet} -construction (Dyckerhoff, Poguntke)

Corollary (DJL, Dyckerhoff-J-Walde)

 $\mathcal{A}=\operatorname{perf} A$

$$\mathcal{W}(\operatorname{\mathsf{Sym}}^d(\mathbb{D}), \Lambda_n^{(d)}) \otimes \mathcal{A} \simeq S_n^{(d)}(\mathcal{A})$$

 $S_{\bullet}^{(d)}(\mathcal{A}): d$ -dim Waldhausen S_{\bullet} -construction

Theorem (Poguntke)

$$K(\mathcal{A})\simeq \Omega^d |S^{(d)}_ullet(\mathcal{A})^\simeq|$$

An object of $S_4^{(2)}(A)$ all cubes are *bicartesian*

$$\mathcal{W}_{0}^{(0)}$$
 $\mathcal{W}_{1}^{(0)}$
 $\mathcal{W}_{1}^{(0)}$
 $\mathcal{W}_{1}^{(1)}$
 $\mathcal{W}_{1}^{(0)}$
 $\mathcal{W}_{1}^{(1)}$
 $\mathcal{W}_{2}^{(0)}$
 $\mathcal{W}_{2}^{(1)}$
 $\mathcal{W}_{2}^{(2)}$
 $\mathcal{W}_{3}^{(2)}$
 $\mathcal{W}_{3}^{(3)}$
 $\mathcal{W}_{3}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(1)}$
 $\mathcal{W}_{4}^{(1)}$
 $\mathcal{W}_{4}^{(2)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(4)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(4)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(4)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(4)}$
 $\mathcal{W}_{4}^{(4)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(3)}$
 $\mathcal{W}_{4}^{(4)}$
 \mathcal{W}

Thank you for your attention!

https://arxiv.org/abs/1911.11719