Let V be a finite-dimensional complex vector space, let TEL(N), and let $\lambda_1, \ldots, \lambda_k$ be the distanct eigenvalues of T. Recall that

is always a direct sum, and that I is diagonalizable iff

However, (x) does not hold for all T.

For each lj,

 $G(\lambda_{j},T) = \{v \in V \mid (T-\lambda_{j}I)^{l}(v) = 0 \text{ for some } l \geq l\}$ $= \Re((T-\lambda_{j}I)^{m_{j}}) \text{ for some } l \leq m_{j} \leq n$ $= \Re((T-\lambda_{j}I)^{m_{j}}) \text{ (since } \Re((T-\lambda_{j}I)^{l}) = \Re((T-\lambda_{j}I)^{m_{j}})$ $\forall l \geq m_{j}, l$

and G(hj, T) is invariant under T. Also, $G(\lambda_1, T) + G(\lambda_2, T) + --+G(\lambda_k, T)$

is always a direct sum. If we can prove that

V= GG, TABGG, T) +-- + BGG, T),

then $M_{B,B}(T)$ is block diagonal (where B is the union of bases for $G(S_1,T), ..., G(S_k,T)$). Moreover, if we choose the basis for $G(S_1,T)$ carefully, then the block corresponding to λ_j is "almost" diagonal.

Theorem: Let V be a finite-dimensional complex inner product Space, let TEL(V), and let history, -, he he the distinct eigenvalues of T. Then

 $V = G(\lambda_1, T) \oplus G(\lambda_2, T) \oplus --- \oplus G(\lambda_u, T).$

Proof: We argue by induction on n = dim(V). The result is obvious for n = 1. Assume the result holds for all complex vector spaces of dimension less than n, where $n \ge 2$, and let V be a complex vector space of dimension n, let $T \in \mathcal{L}(V)$, and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the distinct eigenvalues of T (we lenas that $k \ge 1$ because V is complex). Now,

G(x,,T) = n(cT-2, 7)")

is invariant under T. By an earlier result,

V= 91((T-1,I)m) @ R((T-1,I)m).

Note that R((T-XI)m) is also invariant under T:

ue R((T-A,I)m) => u= (T-A,I)m(v) for som v+ V

=> The = T ((T-) [)(v))

= (T-1, I) "(T(v)) (since puly narriels in

T communt)

=> The R((T-AI)").

Define U= R((I-AI)), Se L(u), S=Tlu, Let 2,..., 2/2

he the district eigenvalues of S. By the induction hypothesis,

 $U = G(\lambda'_{\lambda}, S) \oplus \cdots \oplus G(\lambda'_{\ell}, S)$

 \Rightarrow $V = G(\lambda_1, 7) \oplus G(\lambda_2', s) \oplus \cdots \oplus G(\lambda_{\ell}', s)$.

Now, it is clear that each λ_j is an eigenvalue of T: $S(v_j) = \lambda_j' v_j \implies T(v_j) = \lambda_j' v_j$.

Thus, $\{\lambda'_2,\dots,\lambda'_k\} \subseteq \{\lambda_2,\dots,\lambda_k\}$. We can thus write $V = G(\lambda_1,T) \oplus G(\lambda_2,S) \oplus \dots \oplus G(\lambda_k,S)$,

with the understanding that Glajis) may be trivial for some j's.

(Actually, this is not possible, but we must prove this.)

Note that G(xj,S) = G(xj,T) for each j=2,3,--,4:

 $V \in G(\lambda_j, S) \Rightarrow (S - \lambda_j I)^t (v) = 0$ for some t > 0 $\Rightarrow (T - \lambda_j I)^t |v| = 0$ (Since S(v) = T|v| for all $v \in U$) $\Rightarrow V \in G(\lambda_j, T).$

We wish to show that, in fact, $G(x_j, S) = G(x_j, T)$ for all j=2,...,k. Suppose $2 \le j \le k$ and $v \in G(x_j, T)$. Since

 $veV = G(\lambda_1, T) \oplus G(\lambda_2, S) \oplus --- \oplus G(\lambda_1, S),$

There exist

 $V_1 \in G(\lambda_1, T), v_2 \in G(\lambda_2, S), \dots, V_n \in G(\lambda_n, S)$ Such that

V=V1+V1+--+V4.

But we then have $v_j \in G(\lambda_j, T)$ for all j=1,2,...,k (since $G(\lambda_j, S) \subseteq G(\lambda_j, T)$ and hence

V= V; EG(2;, S), V==0 41+j

(since otherwise we have two different representations of V as an element of $G(\lambda_1,T)$ & .-- $\mathfrak{G}((\lambda_1,T))$. This shar that $G(\lambda_1,T)\subseteq G(\lambda_1,S)$ and hence that $G(\lambda_1,S)=G(\lambda_1,T)$. We have thus preved that

V=G(),,T) +--+ + G(),,T)

and the proof by induction is completer/

Corollary: Let V be a finite-dimensional complex vector space and let TELLV). Then there exists a basis for V consisting of generalized eigenvalues of T.

Corollary: Let V be a finite-dimensional complex vector space, let TES(V), and let \(\lambda_1, \lambda_2, \ldots_1 \rangle_n\) be the distinct eigenvalues of T. Then

$$\sum_{j=1}^{k} dim (6/x_j, T)) = dim(V).$$

Definition: Let V be a finite-dimensional complex vector spau, let TellV), and let λ be an eigenvalue of T. We call dim (GG,T)) the algebraic multiplicity of λ and dim(E(λ ,T)) the gentric multiplicity of λ .

Definition: Let F be a field, let $\lambda \in F$, and let $t \in \mathbb{Z}^+$. We call the matrix

Example: Suppose din(V)=12, TE L(V) has three distinct
eigenvalues 2,2,2, with algebraic multiplication 6,4,2, respectively
and geometric multiplications 2,2,1, respectively. Suppose further that

$$G(\lambda_{1},T) = \mathcal{N}((T-\lambda_{1}I)^{3}),$$

$$G(\lambda_{2},T) = \mathcal{N}((T-\lambda_{2}I)^{2}),$$

$$G(\lambda_{3},T) = \mathcal{N}((T-\lambda_{3}I)^{2}),$$

Where we have chosen the smallest exponent in each case (for example, $\mathcal{N}(CT-\lambda_1T)^2$) $\subseteq \mathcal{N}(CT-\lambda_1T)^3$). How do we construct a basis B for V Such that $\mathcal{M}_{\theta,B}(T)$ is as close to diagonal as possible?

Since $V = G(\lambda_1, T) \oplus G(\lambda_2, T) \oplus G(\lambda_3, T)$ and each $G(\lambda_3, T)$ is invariant under T, $M_{B,B}(T)$ will be block diagonal lwith block sizes G(H,Z) if B is the union of bases for $G(\lambda_3, T)$, $G(\lambda_3, T)$.

(la) There exists $u_i \in G(\lambda_1, T)$ such that $\{u_i, (T-\lambda_i I)(u_i), (T-\lambda_i I)(u_i)\}$ is linearly independent. Define

$$V_1 = (T - \lambda_1 I)^2 (u_1), V_2 = (T - \lambda_1 I) (u_1), V_3 = u_1.$$

Then

$$(T-\lambda_{1}I)(v_{1}) = (T-\lambda_{1}I)^{3}(u_{1}) = 0 \implies T(v_{1}) = \lambda_{1}v_{1},$$

$$(T-\lambda_{1}I)(v_{2}) = (T-\lambda_{1}I)^{2}(u_{1}) = v_{1} \implies T(v_{2}) = \lambda_{1}v_{2} + v_{1},$$

$$(T-\lambda_{1}I)(v_{3}) = (T-\lambda_{1}I)(u_{1}) = v_{2} \implies T(v_{3}I) = \lambda_{1}v_{3} + v_{2},$$

(16) By assumption, dim (G(1,,T1)=6, so there must be another linearly independent set

Define

$$V_{4} = (T - \lambda_{1} I)^{2} (u_{2}), v_{5} = (T - \lambda_{1} I) (u_{3}), v_{6} = (T - \lambda_{1} I) (u_{3}).$$

Then

$$T(v_y) = \lambda_1 v_y$$
, $T(v_5) = \lambda_1 v_5 + v_y$, $T(v_6) = \lambda_1 v_6 + v_5$.

(c) Now the block corresponding to $G(x_1,T) = Span(v_1,v_2,v_3,v_4,v_5,v_6)$

is

$$\begin{bmatrix}
\lambda_1 & 1 & & \\
& \lambda_1 & 1 & \\
& & \lambda_1 & 1 & \\
& & & \lambda_1 & 1 & \\
& & & & & \lambda_1
\end{bmatrix}$$

$$\in \mathbb{C}^{6\times 6}$$

(made up of two 3x3 Jordan blocks)

Important: Was there any other choice lif we insist on using Jordan blocks? Answer: No. Since dim (Elin, 1)=2 and each generalized eigenvector chain contains one eigenvector, there and be exactly two chains, so two 3x3 blocks.

(2) Since dim (E(\(\lambda_{2},\text{T}))=2, dim (G(\(\lambda_{2},\text{T}))=4, and G(\(\lambda_{2},\text{T})=(T-\(\lambda_{2}\text{T})^{2}\),

There must be two independent generalized eigenvector charts of

length 2 in G(\(\lambda_{2},\text{T}\):

$$G(\lambda_{2},T) = Span(v_{7},v_{8},v_{9},v_{10}),$$
 $T(v_{7}) = \lambda_{2}v_{7},$
 $T(v_{8}) = \lambda_{2}v_{8}+v_{7},$
 $T(v_{9}) = \lambda_{2}v_{9},$
 $T(v_{10}) = \lambda_{2}v_{10}+v_{9}$

The block corresponding to G(1, T) = span(v, v, v, v, v, v, v) it

$$\begin{bmatrix}
\lambda_2 & 1 \\
\lambda_2 & \lambda_3
\end{bmatrix}$$

$$((\lambda_{3}, T) = Span(V_{11}, V_{12}),$$

$$T(V_{11}) = \lambda_{3}V_{11},$$

$$T(V_{12}) = \lambda_{3}V_{n} + V_{11}.$$

The block is

$$\begin{bmatrix} \lambda_3 & l \\ & \lambda_3 \end{bmatrix}.$$

Thus, if B= {v,,v2,--, v,2}, the

