

Exercício 4

Neste exercício vamos retomar a famosa sequência de Fibonacci introduzida no nosso segundo encontro. Talvez você já tenha lido ou ouvido algo sobre a história desse famoso matemático que, na verdade, se chamava Leonardo Pisano. Em seu livro *Liber Abaci*, que significa "O livro do ábaco", publicado no século XIII, lia-se o subtítulo *filius Bonacci* ("filho de Bonacci"), em referência ao pai do autor, Guglielmo Bonaccio¹. Talvez Leonardo ficaria muito surpreso hoje se

soubesse que é famoso e conhecido como Fibonacci, um nome que ele próprio nunca deve ter ouvido. Em *Liber Abaci*, além de advogar em favor da substituição dos algarismos romanos pelos algarismos arábicos, muito mais simples para fazer cálculos, Fibonacci (ou Leonardo) introduz sua famosa sequência para explicar a progressão da reprodução de coelhos. Como você irá perceber, a sequência de Fibonacci é reconhecida em diversas formações geométricas e naturais, como nas estruturas das conchas, nas flores, nas sequências de reprodução celular e até nas proporções do corpo humano.

Retomando a atividade 2 do nosso segundo encontro, definimos a sequência de Fibonacci pela expressão:

$$F(t+2) = F(t+1) + F(t)$$

Geralmente, considerando que a série começa em t = 1, são dados F(1) = 1 e F(2) = 1.

Ou seja, a sequência seria 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ...

1. Implementando a sequência de Fibonacci

Faça um código em Python, de preferência utilizando o iPython Notebook, para gerar os primeiros N termos da sequência de Fibonacci. Para isso, você deverá implementar uma função que recebe a quantidade de termos a serem gerados (N) e retorna uma lista com os N primeiros termos da sequência de Fibonacci.

Assim que a função estiver pronta e funcional, implemente um código adicional com a chamada desta função para uma sequência de 20 termos (N=20) e plote um gráfico com essa sequência em função de N.

2. Calculando a proporção áurea

1

¹ Fonte: https://plus.maths.org/content/life-and-numbers-fibonacci

Quando estudamos a sequência de Fibonacci, inevitavelmente nos deparamos com um número muito famoso e misterioso: a chamada proporção áurea (ou, em inglês, the golden ratio). A proporção áurea tem intrigado matemáticos por séculos, e talvez consigamos deixa-lo intrigado também.

Antes de implementar código adicional, vamos obter duas medidas simples. Dado o pentagrama regular abaixo, e utilizando-se de uma régua, meça as distâncias v e a indicadas na figura.

Calcule a razão
$$\frac{v}{a} =$$

Agora calcule a razão
$$\frac{v+a}{v} =$$

Utilizando agora uma trena, vamos medir uma proporção interessante em seu corpo. Sem sapatos, meça com a maior precisão possível a sua altura. Meça também a distância entre o chão e seu umbigo, conforme ilustrado na figura. Marque ambas as medidas na própria figura.

Calcule a razão
$$\frac{h}{u} =$$
______.

Agora voltemos ao seu código. Adicione mais uma implementação que calcule, para uma sequência de 50 termos de Fibonacci, a razão entre dois termos consecutivos da sequência, ou seja, $r(t) = \frac{r(t+1)}{r(t)}$. No seu código, as razões r(t) devem ser armazenadas em uma lista. Note que, se sua lista de Fibonacci tem 50 termos, a lista de razões deverá conter 49 termos. Se não entendeu porque, faça um exercício no papel para 10 termos e ficará claro que teremos apenas 9 razões (teremos sempre N-1 razões para uma lista de N termos). O seu código deve plotar o gráfico da série de razões r(t).

A série de razões tende a algum número? Qual?

Se ainda não fez isso, digite no Google "proporção áurea". Que número aparece?

Esse número é próximo às proporções que encontrou nas medições acima? Se for muito diferente para as medidas de seu corpo, não se preocupe, talvez você descenda de uma linhagem não áurea...

3. Definindo a proporção áurea

Agora considere o segmento de reta apresentado a seguir:

Vamos definir uma proporção r de tal forma que:

$$r = \frac{a}{b} = \frac{a+b}{a}$$

Ou seja, a razão do maior segmento sobre o menor deve ser igual à razão da soma dos dois sobre o maior. Desenvolvendo o termo à direita da equação, temos:

$$\frac{a+b}{a} = \frac{a}{a} + \frac{b}{a} = 1 + \frac{b}{a}$$

Que resulta em:

$$r = 1 + \frac{1}{r}$$

Poderíamos também substituir r no lado direito da equação por $1+\frac{1}{r}$, indefinidamente.

$$r = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cdots}}}}$$

Ou ainda, podemos escrever:

$$r - 1 = \frac{1}{r}$$

Vejamos que interessante: definimos um número r que, ao ser subtraído de 1, o resultado é o seu inverso.

Retomando nossa equação, ao multiplicarmos ambos os lados por r, teremos:

$$r^2 - r = 1$$

Voltando ao Python, resolva essa equação de segundo grau e calcule os valores de r. Por se tratar de uma equação de segundo grau, esperamos encontrar duas raízes. É claro que aqui você poderia usar a fórmula de Bháskara, mas talvez fosse mais interessante utilizar a função "roots" da biblioteca numpy. Essa função retorna as raízes de um polinômio de ordem n. Para o nosso caso, bastaria usar o comando numpy.roots([1,-1,-1]).

Quais números você encontrou para r? Achou intrigante?

Se isso não o deixa intrigado, talvez nada o faça. Mas se quiser saber mais, basta digitar Fibonacci e *Golden Ratio* no Youtube. Divirta-se!