Push-forward Measures for Parameter Identification under Uncertainty

Mathematical Michael
University of Colorado: Denver

Introduction

Motivation

How do we update initial descriptions of uncertainty using model predictions and data?

Data-Consistent Inversion is a novel framework that uses push-forward and pull-back measures to ensure solutions are consistent with the observed distribution of data.

Question

How do we cast a **Parameter Identification** problem in the context of Data-Consistent Inversion?

Framework

• \mathbb{P}, π Probability Measure, Density

 $\begin{array}{ll} \bullet \ \Lambda \subset \mathbb{R}^P & \text{Parameter Space} \\ \bullet \ \pmb{o} : \Lambda \to \mathcal{O} \subset \mathbb{R}^D & \text{Observables} \\ \bullet \ \Xi \subset \mathbb{R}^D & \text{Noise Space} \end{array}$

• $\lambda^\dagger \in \Lambda$ True Parameter

• $\boldsymbol{d}(\xi) \subset \mathbb{R}^D$ Possible Data, $d_i(\xi) = \boldsymbol{o}_i(\lambda^\dagger) + \xi_i$

• $\xi^{\dagger} \in \Xi$ Noise in Measurements

• σ^2 Variance of Noise

• $m{d}^\dagger \in \mathbb{R}^D$ Observed Data, $m{d}^\dagger = m{d}(\xi^\dagger)$

 $ullet \mathbb{P}_{
m in}, \ \pi_{
m in}$ Initial $ullet \mathbb{P}_{
m obs}, \ \pi_{
m obs}$ Observed

• $\mathbb{P}_{\mathrm{pre}}, \ \pi_{\mathrm{pre}}$ Predicted (push-forward)

• $\mathbb{P}_{\mathrm{up}}, \ \pi_{\mathrm{up}}$ Updated (**pull-back**)

Updating with Observations and Predictions

$$\mathbb{P}_{\text{up}} = \mathbb{P}_{\text{in}} \frac{\mathbb{P}_{\text{obs}}}{\mathbb{P}_{\text{pre}}} \qquad \pi_{\text{up}}(\lambda) = \pi_{\text{in}}(\lambda) \frac{\pi_{\text{obs}}(Q(\lambda))}{\pi_{\text{pre}}(Q(\lambda))}$$

References & Attribution

Author: Michael Pilosov | Advisor: Dr. Troy Butler

Left to Right: Theory, Stability, BET, ConsistentBayes, Personal Website. Funding provided by NSF DMS-1818941.

Approach

Quantity of Interest Map

A Functional Relating **Predictions** and **Data**

- Ideal $Q\left(\lambda,\xi\right) = F\left(\boldsymbol{o}(\lambda),\boldsymbol{d}(\xi)\right)$

• Theoretical $Q\left(\Lambda,\Xi\right)=:\mathcal{D}_{\mathcal{T}}\subset\mathbb{R}$ • Practical $Q\left(\lambda\right)=F\left(\boldsymbol{o}(\lambda),\boldsymbol{d}^{\dagger}\right)$

• Computable $Q\left(\Lambda\right) =: \mathcal{D}_{\mathcal{C}} \subset \mathcal{D}_{\mathcal{T}}$

How do conditionals of Ξ compare to the joint density?

Observed Distribution

Given a functional, what measure do we invert? $Q(\lambda^\dagger,\xi) \sim \pi_{\rm obs} \mbox{ when we allow } \xi \mbox{ to vary over } \Xi$

$F(oldsymbol{o}(\lambda),oldsymbol{d}^\dagger)$	ξ	$\pi_{ m obs}$
$rac{1}{\sigma\sqrt{D}}\sum\left(oldsymbol{o}_{i}\left(\lambda ight)-oldsymbol{d}_{i}^{\dagger} ight)$	$\xi \sim L^2$	N(0, 1)
$rac{1}{\sigma^2}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\chi^2(D)$
$rac{1}{\sigma^2 D}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\Gamma\left(D/2,D/2\right)$
:	:	:

Choices of F and associated π_{obs} for stochastic inverse problem with $\mathbf{d}^{\dagger} = \mathbf{o}_i(\lambda^{\dagger}) + \xi_i^{\dagger}$

Example

Consider an exponential decay problem with uncertain initial condition:

Convergence

How do solutions change with more data?

 λ^{\dagger} and π_{up} for D=1,10,50,100 for N=1000

Stability

How do solutions on conditionals of Ξ compare?

 λ^{\dagger} and π_{up} for one hundred realizations of ξ^{\dagger} for D=1,10,50,100