Hypothesis tests

Aldo Solari Statistical Inference II PhD in Economics, Statistics and Data Science University of Milano-Bicocca

XXXVII cycle

Outline

Simple null hypotheses

Composite null hypotheses

Main references

– Cox and Hinkley (1976) Theoretical Statistics. Chapman and Hall/CRC, $\S 4, \, \S 5$

The Neyman–Pearson formulation of hypothesis testing requires to fix the probability of rejecting H_0 when it is true, denoted by α , aiming to maximize the probability of rejecting H_1 when false.

This approach demands the explicit formulation of the *alternative* $hypothesis H_1$.

The decision procedure, i.e. rejecting or not H_0 , is called the *test* of H_0 against H_1 .

Suppose *Y* has distribution $f_Y(y; \theta)$ for $\theta \in \Theta$

Formulate a null hypothesis $H_0: \theta \in \Theta_0$ and an alternative hypothesis $H_1: \theta \in \Theta_1$ with $\Theta_0 \cup \Theta_1 = \Theta$ and $\Theta_0 \cap \Theta_1 = \emptyset$

A *test* or *critical function* $\phi = \phi(Y)$ assigns to each possible value y one of these two decisions

$$\phi: \mathcal{Y} \mapsto \{0,1\}$$

where 1 denotes the decision of rejecting H_0 and 0 denotes the decision of not rejecting H_0 , and thereby partition the sample space \mathcal{Y} into two complementary regions \mathcal{Y}_0 and \mathcal{Y}_1

When performing a test one may arrive at the correct decision, or one may commit one of two errors: rejecting H_0 when it is true (*type I error*) or not rejecting it when it is false (*type II error*).

Critical region

Unfortunately, the probabilities of the two types of error cannot be controlled simultaneously

Choose the *level of significance* $\alpha \in (0, 1)$, and control the probability of type I error at α , i.e.

$$\operatorname{pr}_{\theta}(Y \in \mathcal{Y}_1) \le \alpha \quad \forall \ \theta \in \Theta_0$$

The *size* of the test is

$$\sup_{\theta \in \Theta_0} \operatorname{pr}_{\theta}(Y \in \mathcal{Y}_1)$$

If, for all α , the size of the test is α , we call \mathcal{Y}_1 a *critical region of size* α , denoted by \mathcal{Y}_{α}

Power function

Subject to

$$\sup_{\theta \in \Theta_0} \operatorname{pr}_{\theta}(Y \in \mathcal{Y}_{\alpha}) = \alpha$$

it is desired to maximize

$$\operatorname{pr}_{\theta}(Y \in \mathcal{Y}_{\alpha}) \quad \forall \ \theta \in \Theta_1$$

Considered as a function of θ , this probability is called the *power* function of the test

$$pow(\theta; \alpha) = pr_{\theta}(Y \in \mathcal{Y}_{\alpha}; \theta)$$

p-value

If we require that the rejection regions \mathcal{Y}_{α} and $\mathcal{Y}_{\tilde{\alpha}}$ are *nested* in the sense that

$$\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\tilde{\alpha}}$$
 if $\alpha < \tilde{\alpha}$

the p-value is defined as the smallest significance level at which the null hypothesis would be rejected for the given observation:

$$p_{\text{obs}} = \inf\{\alpha : y \in \mathcal{Y}_{\alpha}\}\$$

Table of Contents

Simple null hypotheses

Composite null hypotheses

In the present section we consider only the case where H_0 is a simple hypothesis

It is best to begin with a simple alternative hypothesis H_1

$$H_0: Y \sim f_0(y), \quad H_1: Y \sim f_1(y)$$

Let \mathcal{Y}_{α} and \mathcal{Y}'_{α} be two critical region of size α , i.e.

$$\operatorname{pr}_0(Y \in \mathcal{Y}_\alpha) = \operatorname{pr}_0(Y \in \mathcal{Y}'_\alpha)$$
 (1)

We regard \mathcal{Y}_{α} as preferable to \mathcal{Y}'_{α} for the alternative H_1 if

$$\operatorname{pr}_1(Y \in \mathcal{Y}_{\alpha}) > \operatorname{pr}_1(Y \in \mathcal{Y}'_{\alpha})$$
 (2)

The region \mathcal{Y}_{α} is called the *critical region* of size α if (2) is satisfied for all other \mathcal{Y}'_{α} satisfying the size condition (1).

We call $\operatorname{pr}_1(Y \in \mathcal{Y}_\alpha)$ the *size* α *power* of the test against H_1

Neyman-Pearson lemma

For simplicity, suppose that the likelihood ratio $lr(Y) = f_1(Y)/f_0(Y)$ is, under H_0 , a continuous random variable such that for all α , there exists a unique c_{α} such that

$$\operatorname{pr}_0(\operatorname{lr}(Y) \ge c_\alpha) = \alpha$$

We call the region defined by

$$lr(y) \ge c_{\alpha}$$

the size α likelihood ratio critical region

A fundamental result, called the Neyman-Pearson lemma, is that, for any size α , the likelihood ratio critical region is the best critical region.

Let \mathcal{Y}_{α} be the likelihood ratio critical region and let \mathcal{Y}_{1} be any other critical region, both being of size α . Then

$$\alpha = \int_{\mathcal{V}_0} f_0(y) dy = \int_{\mathcal{V}_1} f_0(y) dy$$

so that

$$\int_{\mathcal{Y}_{\alpha}\setminus\mathcal{Y}_{1}}f_{0}(y)dy=\int_{\mathcal{Y}_{1}\setminus\mathcal{Y}_{\alpha}}f_{0}(y)dy$$

since
$$\int_{\mathcal{Y}_{\alpha}} f_0(y) dy = \int_{\mathcal{Y}_{\alpha} \setminus \mathcal{Y}_1} f_0(y) dy + \int_{\mathcal{Y}_{\alpha} \cap \mathcal{Y}_1} f_0(y) dy$$

Now, if $y \in \mathcal{Y}_{\alpha} \setminus \mathcal{Y}_{1}$, which is inside \mathcal{Y}_{α} , $f_{1}(y) \geq c_{\alpha}f_{0}(y)$, while if $y \in \mathcal{Y}_{1} \setminus \mathcal{Y}_{\alpha}$, which is outside \mathcal{Y}_{α} , $c_{\alpha}f_{0}(y) > f_{1}(y)$.

We have that

$$\int_{\mathcal{Y}_{\alpha}\setminus\mathcal{Y}_{1}} f_{1}(y)dy \geq c_{\alpha} \int_{\mathcal{Y}_{\alpha}\setminus\mathcal{Y}_{1}} f_{0}(y)dy = c_{\alpha} \int_{\mathcal{Y}_{1}\setminus\mathcal{Y}_{\alpha}} f_{0}(y)dy \geq \int_{\mathcal{Y}_{1}\setminus\mathcal{Y}_{\alpha}} f_{1}(y)dy$$

with strict inequality unless the regions are equivalent

Then

$$\int_{\mathcal{Y}_{\alpha}} f_1(y) dy \ge \int_{\mathcal{Y}_1} f_1(y) dy$$

thus the power of \mathcal{Y}_{α} is at least that of \mathcal{Y}_{1}

Note that if \mathcal{Y}_1 had been of size less than α the final inequality holds

Let Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$. Consider

$$H_0: \mu = \mu_0, \quad H_1: \mu = \mu_1$$

with $\mu_1 > \mu_0$.

$$lr(y) = \exp\left\{n\bar{y}(\mu_1 - \mu_0) - \frac{1}{2}n\mu_1^2 + \frac{1}{2}n\mu_0^2\right\}$$

Because all quantities, except for \bar{y} , are fixed constants, and because $\mu_1 - \mu_0 > 0$, a critical region of the form $\ln(y) \ge c_\alpha$ is equivalent to one of the form $\bar{y} \ge d_\alpha$. Since $\bar{Y} \stackrel{H_0}{\sim} N(\mu_0, 1/n)$

$$d_{\alpha} = \mu_0 + \frac{z_{\alpha}}{\sqrt{n}}$$

where z_{α} is the $1 - \alpha$ quantile of N(0, 1), and

$$\mathcal{Y}_{\alpha}^{+} = \{y_1, \ldots, y_n : \sqrt{n}(\bar{y} - \mu_0) \ge z_{\alpha}\}$$

Let Y_1, \ldots, Y_n be i.i.d. in the single parameter exponential family

$$\exp\{a(\theta)b(y) + c(\theta) + d(y)\}\$$

among them the normal, gamma, binomial and Poisson distribution, and that the hypotheses are $H_0: \theta=\theta_0$ and $H_1: \theta=\theta_1$ Then the likelihood ratio involves the data only through the sufficient statistic $S=\sum b(Y_j)$ and the best critical region has the form

$$\exp\{a(\theta_1) - a(\theta_0)\} s \ge e_\alpha$$

If $a(\theta_1)-a(\theta_0)>0$, this is equivalent to $s\geq \tilde{e}_\alpha$, the critical region being the same for all such θ_1

Let $Y \sim \text{Poisson}(\lambda)$. Consider

$$H_0: \lambda = 1, \quad H_1: \lambda = \lambda_1 > 1$$

The likelihood critical regions have the form $y \ge d_{\alpha}$

However, because *Y* is discrete, the only critical regions are of the form $y \ge r$, where *r* is an integer

$$r$$
 0 1 2 3 4 5 6 $\operatorname{pr}_0(Y \ge r)$ 1 0.632 0.264 0.08 0.0189 0.0037 0.0006

If α is one of the values above, a likelihood ratio region of the required size does exist.

By a mathematical artifice, it is, however, possible to achieve likelihood ratio critical regions with other values of α

Suppose that $\alpha=0.05$. The region $y\geq 4$ is too small, whereas the region $y\geq 3$ is too large. All values $y\geq 4$ are put in the critical region, whereas if y=3 we regard the data as in the critical region with probability π such that

$$\mathrm{pr}_0(\mathit{Y} \geq 4) + \pi \cdot \mathrm{pr}_0(\mathit{Y} = 3) = 0.05$$

leading to $\pi=0.51$. This is a randomized critical region of size 0.05.

The randomized definition of p_{obs} corresponding to Y = y is

$$\operatorname{pr}_0(Y > y) + U \cdot \operatorname{pr}_0(Y = y)$$

where $U \sim \text{Uniform}(0, 1)$, independently of Y. The corresponding random variable is, under H_0 , Uniform(0, 1).

Composite alternatives

Suppose $H_0: \theta = \theta_0$ and $H_1: \theta \in \Theta_1$. Two cases now arise.

- We get the same size α best critical region for all θ ∈ Θ₁. Then we say that the region is *uniformly most powerful* size α region. If this holds for each α, then the test itself is called uniformly most powerful (UMP).
- The best critical region depends on the particular $\theta \in \Theta_1$. Then no uniformly most powerful exists. One possibility is to take $\theta \in \Theta_1$ very close to θ_0 , to maximize the power locally near the null hypothesis.

 Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$. Test $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ with critical region $\mathcal{Y}_{\alpha}^+ = \{y_1, \ldots, y_n: \sqrt{n}(\bar{y} - \mu_0) \geq z_{\alpha}\}$

$$pow(\mu;\alpha) = \Phi(\sqrt{n}(\mu - \mu_0) - z_\alpha)$$

Two-sided tests

Let Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$. Test $H_0: \mu = \mu_0$ against $H_1: \mu < \mu_0$ with critical region $\mathcal{Y}_{\alpha}^- = \{y_1, \ldots, y_n: \sqrt{n}(\bar{y} - \mu_0) \leq -z_{\alpha}\}$

Suppose now that we wish to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.

The critical region

$$\mathcal{Y}_{\alpha} = \mathcal{Y}_{\alpha}^{-} \cup \mathcal{Y}_{\alpha}^{+}$$

has size 2α , and no uniformly more powerful test exists for the two-sided alternative.

A critical region \mathcal{Y}_{α} of size α is called *unbiased* if

$$\operatorname{pr}(Y \in \mathcal{Y}_{\alpha}; \theta) \ge \operatorname{pr}(Y \in \mathcal{Y}_{\alpha}; \theta_0) \quad \forall \ \theta \in \Theta_1$$

One may restrict attention to unbiased regions and among these look for the one with maximum power

A test which is uniformly most powerful amongst the class of all unbiased tests is *uniformly most powerful unbiased* (UMPU)

Suppose $Y = (Y_1, \dots, Y_m)^t$ is multivariate normal with mean vector $\mu = (\mu_1, \dots, \mu_m)^t \geq 0$ and known nonsingular covariance matrix Σ

For testing $H_0: \mu = 0$ against $H_1: \mu = \mu_1$, the most powerful test rejects for large values of

$$\mu_1^t \Sigma^{-1} Y$$

In particular, no UMP test exists

For testing $H_0: \mu=0$ against $H_1: \mu=(k,\ldots,k)^t$ for k>0, a UMP test exists and rejects for large values of the sum of the components of $\Sigma^{-1}Y$. If, in particular, Σ has diagonal elements 1 and off-diagonal elements ρ , then the test rejects when

$$\sum_{i} Y_i \ge z_{\alpha} (m + m(m-1)\rho)^{1/2}$$

Locally most powerful tests

Let $f_0(y) = f(y; \theta_0)$ and $f_1(y) = f(y; \theta_1)$ with $\theta_1 = \theta_0 + \epsilon$ for small $\epsilon > 0$

$$\log \operatorname{lr}(y) = \log \frac{f(y; \theta_0 + \epsilon)}{f(y; \theta_0)}$$

$$= \log f(y; \theta_0 + \epsilon) - \log f(y; \theta_0)$$

$$= \epsilon \frac{\partial \log f(y; \theta_0)}{\partial \theta_0} + \dots$$

Then the appropriate test statistic is the score

$$U(\theta_0) = \frac{\partial \log f(Y; \theta_0)}{\partial \theta_0}$$

Its null distribution has mean o and variance $i(\theta_0)$, the Fisher information

Let Y_1, \ldots, Y_n be i.i.d. in the Cauchy distribution

$$\frac{1}{\pi[1+(y-\theta)^2]}$$

For the null hypothesis $H_0: \theta = \theta_0$ the score from Y_1 is

$$U_1(\theta_0) = \frac{2(Y_1 - \theta_0)}{1 + (Y_1 - \theta_0)^2}$$

and the information from a single observation is

$$i_1(\theta_0) = \frac{1}{2}$$

The test statistic is thus

$$U(\theta_0) = 2\sum_{i=1}^{n} \frac{(Y_i - \theta_0)}{1 + (Y_i - \theta_0)^2}$$

Its null distribution has mean o and variance n/2

Table of Contents

Simple null hypotheses

Composite null hypotheses