Given actor parameter θ

$$au^1$$
: (s_1^1, a_1^1) $R(\tau^1)$
 (s_2^1, a_2^1) $R(\tau^1)$
 \vdots \vdots
 τ^2 : (s_1^2, a_1^2) $R(\tau^2)$
 (s_2^2, a_2^2) $R(\tau^2)$

Update Model

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$$

Data Collection

Given actor parameter θ

$$au^1$$
: (s_1^1, a_1^1) $R(\tau^1)$ (s_2^1, a_2^1) $R(\tau^1)$ \vdots \vdots $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$ $R(\tau^2)$

Given actor parameter θ

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} =$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$$

Each training data is weighted by $R(\tau^n)$

