Задание

Исследование поведения различных пар базисных элементов для скорости и давления в задаче Стокса для круглой области $\Omega = \{(x,y): x^2 + y^2 \le 1\}$:

$$-\Delta \mathbf{u} + \nabla p = \mathbf{f} \in \Omega$$
$$-\nabla \mathbf{u} = 0 \in \Omega$$

с граничными условиями $\mathbf{u}=0$ на $\partial\Omega$ и правой частью $\mathbf{f}(x,y)=(0,x)$.

Исследование конечно-элементных пар, которые (не) приводят к возникновению паразитных мод решения в поле давлений (осцилляций). Необходимо выделить две "хорошие" (осцилляций нет без регуляризации), одну "очень плохую" (для подавления осцилляций нужен настолько большой коэф-т регуляризации ε , что решение регуляризованной задачи значительно отличается от решения исходной), и одну "плохую" (есть осцилляции без регуляризации, для подавления осцилляции нужен ε порядка шага сетки h^2).

Ход работы

Для исследования были взять комбинации конечно-элементных пар со следующими базисными функциями:

- 'P0': ElementTriP0() элемент с постоянной аппроксимацией внутри каждого треугольника,
- 'P1': ElementTriP1() линейный элемент с линейной аппроксимацией внутри каждого треугольника,
- 'P2': ElementTriP2() квадратичный элемент с квадратичной аппроксимацией внутри каждого треугольника,
- 'P3': ElementTriP3() кубический элемент с кубической аппроксимацией внутри каждого треугольника,
- 'P4': ElementTriP4() квартальный элемент с квартальной аппроксимацией внутри каждого треугольника.

Также было исследовано поведение решения на различных вычислительных сетках (mesh 3, mesh 4, mesh 5).

«Хорошие» базисные пары

Были определены конечно-элементные пары, исключающие осцилляции в процессе решения: (P2-P0), (P3-P1):

«Плохие» базисные пары

Пример "неблагоприятной пары" представлен в виде (Р1, Р1).

При E=0 на графике давления наблюдаются заметные осцилляции. Однако, при визуальном анализе можно заметить, что изменение значений регуляризации, например, при E=1e-10, позволяет устранить эти осцилляции.

Также рассмотрим результаты вычислений с одновременным изменением сетки и уменьшением $\epsilon \sim h^2$:

Видно, что при измельчении $\epsilon \sim h^2$ сходимость решения улучшается.

«Очень плохие» базисные пары

Примером очень плохой пары является пара, например, (Р4-Р1).

При коэффициенте регуляризации 0.5 наблюдаем решение без осцилляций, однако даже при визуальной оценке решение не является устойчивым.