

DE LA RECHERCHE À L'INDUSTRIE

RISC-V week Introduction

3rd, may 2022

Fabien CLERMIDY, PhD

welcome to a real event: Melcome to a real event:

Nanoelec Technology Research Institute

Innovative components, systems and processes, for electronics industry

Technology dissemination

Human Capital & training engineering

Nanoelec Technology Research Institute

Key figures

- 22 members
- o Average Annual Budget 54 M€
- o 214 equivalent Full time jobs in 2021
- 224 patents and 46 software solutions filled since 2012
- o 544 publications since 2015
- 295 associated partners (inc. 218 SME)since 2012

Current scientific themes

Images & Photons

Smart Imagers, Displays

Photonic sensors

Digital Trust

IOT & cybersecurity for embedded components & systems

Characterization of components & systems

Semiconductor general context

More performance / less power paradox

- Exploding design costs of advanced nodes
- Specialization required for power consumption

Embedded & critical

- Safety
- Security

Designer shortage

- Training
- Community

RISC-V & OpenHw opportunities

HORIZON-KDT-JU-2021-1-IA - Focus Topic 1: Development of open-sources RISC-V building blocks

RISC-V is getting momentum in our chips developments

Highperfor mance

MAG-3D 3D Network-on-Chip

HUBEO Photonic NoC interposer

RETINE Ultra-fast smart imager

INTACT 6 chiplets & 96 processors

EPAC
HPC Variable Precision Accelerator

Lowpower

LOCOMOTIV

Adaptive Voltage &

Frequency Scaling

FRISBEE ULP FDSOI demonstrator

WARRIOR RISC-V IoT IC with wake-up

SAMURAI IoT IC with NN accelerator

Cyber-VT Test Vehicle for IoT security enhancement

Non-Volatile-Memory NVM subsystem for Microcontrolers

New concepts

REPTILE Analogue neuron

SPIDER Neuromorphic DSP

SPIRIT Spiking NN with eNVM

In-Memory-Computing Compute-SRAM

CRYOCMOS
Control for quantum
computing

ESPERANTO RNN with 50k synapses

2011

VR/XP: VaRiable eXtended Precision RISC-V Accelerator

Hardware RISC-V accelerator enabling computations with Variable and eXtended Precision Floating-Point (FP) numbers.

Why another hardware accelerator?

Native hardware support for arithmetic and memory operations enables much higher performance than software-based approaches (up to x835 speedup)

Why variable precision (VP)?

Allows to tailor the data format to the needs of the application. This reduces both latency and memory footprint.

Why extended precision?

Allows the solver to converge faster (it reduces the number of iterations)

LEAF: formal analysis of HW/SW processing

Verifying timing properties requires to encompass both SW+HW

- Safety property: code-specific detection of timing anomalies within pipelines of processors
- Security property: identification of fault-injection points in a μ -architecture that lead to SW exploits

LEAF: combine both HW and SW formal models in the analysis

- Use of formal methods (model-checking / static analyses)
- Based on HDL design or timing specification
- Towards mitigation solutions: SW (compilation) and/or HW (e.g. flex. arbitration policies)

Education & Training

- > Training Modules RISC-V for embedded systems @Grenoble-INP
 - GINP/Phelma: Integrated Digital Systems
 > module « Design project of an integrated system »
 - GINP/Phelma & Ensimag: Embedded Systems & Smart Objects (IOT)
 - >module « Embedded system project »
- Prepare future engineers to use the platform Risc-V.
- Design a semi-generic reference platform for teaching by developing basic units
 - 1. Design of FPGA embedded vision systems
 - 2. Al based applications (neuronal networks CNN).
- Involving students on generic projects
 - 1. With educational demonstrator
 - 2. Reference design environment, user manual

3rd, may 2022

Enjoy the eventi Enjoy the eventi

Fabien Clermidy

12