Linear Algebra and Applications

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 09

(Aug 07, 2019)

Time: 10:00 -10:55 am

Make-up lecture

Proof of The Invertible Matrix Theorem (TIMT)

We will proceed as follows:

$$(a) \implies (c) \implies (b) \implies (a),$$

and

(a)
$$\iff$$
 (d), i.e., (a) \implies (d) \implies (a) (using corollaries!)

Proof:

 \bullet (a) \Longrightarrow (c)

Given that A is invertible. Need to show that the system AX=0 has only the trivial solution. Suppose Y is any solution of the homogeneous system. Therefore, AY=0. Multiply on the left by A^{-1} , we get:

$$(A^{-1}A)Y = A^{-1}0 \implies IY = 0 \implies Y = 0.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

 \bullet (c) \Longrightarrow (b)

[**Note:** This is actually Proposition 3 (See Lecture 5, Slides5), but we will now give a proof]

Suppose AX = 0 has only trivial solution, i.e., X = 0. If R is the RREF matrix of A, then R has no free variables. Therefore, all variables of R are basic variables. Since no. of variables = no. of columns = no. of rows (since A is square), there must be a basic variable in each row and in each column. Therefore R = I, as required.

 \bullet (b) \Longrightarrow (a)

Given A is row-equivalent to I, need to show that A is invertible. Since $A \sim I$, there are elementary row operations such that:

$$e_1(e_2(\dots(e_{n-1}(e_nA))\dots)) = I$$

 $\therefore (E_1E_2\dots E_{n-1}E_n)A = I$

Put $B = E_1 E_2 \dots E_{n-1} E_n$. Then, since each E_i is invertible, so is B.

$$\therefore BA = I$$

$$(B^{-1}B)A = B^{-1}I$$

$$A = B^{-1}$$

So A being the inverse of an invertible matrix is itself invertible.

Proof of
$$(a) \iff (d)$$

• (a) \Longrightarrow (d)

Suppose A is invertible and $b \in \mathbb{R}^m$, where

$$\mathbb{R}^m = \{(b_1,\ldots,b_m) : b_i \in \mathbb{R}\} = \left\{b = \begin{bmatrix}b_1 \\ \vdots \\ b_m\end{bmatrix}_{m \times 1} : b_i \in \mathbb{R}\right\}.$$

Consider the vector $u = A^{-1}b \in \mathbb{R}^m$. Then:

$$Au = A(A^{-1}b) = Ib = b.$$

Therefore, the system Ax = b has u as a solution.

$$\bullet$$
 (d) \Longrightarrow (a)

Suppose the system AX = b has a solution for every $b \in \mathbb{R}^m$. Let u_i be a solution of the system $AX = e_i$ for i = 1, 2, ..., m, where e_i denote the column vector having 1 at the i^{th} position and 0 elsewhere. Let B be the matrix whose columns are the u_i , i.e., $B = [u_1, u_2, ..., u_m]$. Then:

$$AB = A[u_1, u_2, \dots, u_m] = [Au_1, Au_2, \dots, Au_m] = [e_1, e_2, \dots, e_m] = I.$$

Since A has a right inverse, by Corollary 1.2, it is invertible.

Vector Formulation

- A system of linear equations can also be expressed in a vector form: $X_1v_1 + X_2v_2 + \cdots + X_nv_n = b$, where the X_i are scalar unknowns and the v_i are column vectors formed from the coefficients of the original linear system.
- This formulation can be interpreted as: if we can find scalars X_i satisfying the equation, then the given vector b can be expressed in terms of the given vectors v_i . This formulation is not useful for solving the system, but will become very important when we start working with vectors.

Uniqueness of RREF

Corollary 1.5: Uniqueness of RREF matrix of any matrix A.

Proof of Corollary 1.5: We may assume that $A \neq [0]$, i.e., A is non-zero. Let A be any $m \times n$ matrix. We keep m fixed, and prove the result by induction on n.

Base case: n = 1

Then the only possible non-zero RREF matrix is $\begin{bmatrix} 1 \\ 0 \\ . \\ . \\ . \end{bmatrix}$, so uniqueness

holds.

Induction Step: So suppose $n \geq 2$ and the result holds for all matrices with n-1 columns. Let A be an $m \times n$ matrix, and suppose BWOC that A has two distinct RREF matrices, B and C. Let A' be the matrix obtained from A by deleting the n-th column.

Proof of uniqueness of RREF (Conti · · ·)

Proof of Corollary 1.5 (Conti ···) : Because, the row-reduction algorithm proceeds downwards and rightwards column-wise, the sequence which reduces A to an RREF matrix. also reduces A' to an RREF matrix. However, by induction hypothesis, RREF matrix of A' is unique. Hence Band C can differ only in the n-th column. So, since $B \neq C$, there exists some j-th row, $1 \le j \le m$ such that the n-th entries of B and C differ, i.e., $b_{in} \neq c_{in}$. Now, let v be any vector such that Bv = 0, and we may assume $v \neq 0$ (else, the system Ax = 0 has only trivial solution \implies both B and C have I_n on top with zero rows below). Now, $Bv = 0 \implies Cv = 0 \implies (B - C)v = 0$. But the first (n - 1) columns of B-C are zero, so by considering the j-th component (coordinate) of v, we get that $(b_{in} - c_{in})v_n = 0$. Since $b_{in} \neq c_{in}$, we get that $v_n = 0$. Thus,

in case
$$B \neq C$$
, then any solution $v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ of $Bx = 0$ or $Cx = 0$ must

have $v_n = 0$.

Proof of uniqueness of RREF (Conti · · ·)

Proof of Corollary 1.5 (Conti · · ·) :

It follows that x_n can not be a free variable. Recall that if any x_i is a free variable, then we have to insert a dummy equation $x_i = x_i$, and so we get a vector that contain 1 in its i-th coordinate. Therefore, x_n has to be basic variable. In that case, the n-th column of B has to contain a 1 in the first zero row in the RREF matrix of A' (since A' can have at most (n-1) basic variables). But then the n-th column of B consists of a 1 with 0's above and below. The same is true of C. Hence B = C, contradicting our assumption that $B \neq C$. Result follows.