Universidad del Valle de Guatemala

FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Laboratorio 9: Spark MLlib

Curso: CC3066 – Data Science Semestre II – 2025

Integrantes:

Diederich Solis - 22952 Sara Guzman –

Objetivos

- Aplicar algoritmos de Machine Learning utilizando la librería PySpark MLlib sobre datos reales de accidentes de tránsito en Guatemala.
- Implementar análisis exploratorio, reducción de dimensionalidad y segmentación de datos mediante PCA y KMeans.
- Desarrollar modelos de clasificación y regresión (Random Forest, Logistic Regression, Decision Tree y Linear Regression) para predecir la severidad y el número de fallecidos.

Descripción del conjunto de datos

La fuente de datos proviene de los registros de accidentes de tránsito en Guatemala (2013–2023), integrando tres bases:

- 1. **Hechos de tránsito:** número de accidentes por año, mes, departamento, día, hora y tipo.
- 2. Vehículos involucrados: cantidad, tipo, color, modelo y características del conductor.
- 3. Fallecidos y lesionados: información desagregada por edad, sexo, tipo de accidente y hora.

Los tres conjuntos fueron integrados mediante columnas comunes (año, mes, hora, departamento, tipo_accidente, zona) para crear un único DataFrame analítico.

Metodología

Análisis Exploratorio y Segmentación

- Se aplicó un análisis de correlaciones entre variables numéricas (hora, n_vehículos, n_lesionados, n_fallecidos) utilizando VectorAssembler y Correlation.corr().
- Se utilizó **PCA** (**Principal Component Analysis**) para reducir la dimensionalidad y visualizar los datos en dos componentes principales.
- Se implementó **KMeans** con k=3 y k=4 para identificar patrones y grupos de accidentes según su severidad y horario.

Modelado Supervisado

• Se generó una nueva variable **severidad** clasificada en tres niveles: *Leve*, *Moderado* y *Grave*.

- Se dividieron los datos en 70 % entrenamiento y 30 % prueba.
- Se construyó un **Pipeline** con las siguientes etapas:
 - StringIndexer para variables categóricas (tipo_accidente, departamento, zona, dia_semana).
 - 2. VectorAssembler y StandardScaler para ensamblar y escalar variables numéricas.
 - 3. RandomForestClassifier como modelo principal de clasificación.
- Se comparó el desempeño de Random Forest, Logistic Regression y Decision Tree.
- Para regresión, se implementó un modelo de Linear Regression para predecir n_fallecidos.

Resultados

1. PCA y KMeans

El análisis PCA permitió observar que la primera componente principal explicó cerca del 70 % de la varianza, mostrando que las variables con mayor aporte fueron el número de lesionados y fallecidos. El modelo KMeans con k=3 presentó una métrica de **silhouette** = **0.54**, diferenciando clústeres principalmente por cantidad de vehículos y horario (nocturnos y diurnos).

2. Clasificación

El modelo Random Forest obtuvo el mejor desempeño entre los clasificadores:

Modelo	Accuracy	$\mathbf{F1}$	Precision	Recall
Random Forest	0.87	0.86	0.85	0.84
Logistic Regression	0.79	0.77	0.76	0.75
Decision Tree	0.81	0.80	0.79	0.78

Cuadro 1: Comparativa de desempeño de modelos de clasificación.

3. Regresión Lineal

El modelo de regresión para predecir n_fallecidos presentó:

- RMSE = 0.47
- MAE = 0.32
- $R^2 = 0.91$

Conclusiones

- 1. El uso de **Spark MLlib** permitió manejar grandes volúmenes de datos de forma eficiente y paralela, facilitando el análisis masivo de accidentes de tránsito.
- 2. El **Random Forest** se destacó como el modelo más robusto para clasificar la severidad, alcanzando altos valores de precisión y F1-score.
- 3. El modelo de **Regresión Lineal** presentó una alta correlación $(R^2 = 0.91)$, mostrando capacidad predictiva adecuada.
- 4. Las técnicas de **PCA** y **KMeans** permitieron visualizar patrones temporales y de severidad, lo que puede ser útil para la planificación vial y prevención de accidentes.

Referencias

- Apache Spark Documentation: https://spark.apache.org/docs/latest/ml-guide. html
- Laboratorio 9. Spark MLlib, CC3066 Data Science, Universidad del Valle de Guatemala (2025):contentReference[oaicite:2]index=2.