Lecture6: MOSFET, its structure and history

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

MOSFET

- Metal-Oxide-Semiconductor Field Effect Transistor
- Vertical structure
 - Metal-Oxide-Semiconductor
- Terminals
 - Gate, Source, Drain, (and substrate)

Its operation

- The MOSFET has three terminals.
 - At low frequencies, the gate current is zero.
 - Source current + drain current = 0, $I_S + I_D = 0$
 - Source is connected to the GND.
 - Gate voltage (V_{GS}) and drain voltage (V_{DS}) are variables.

Recent history

- If not stated otherwise, the figures are taken from...
 - M. Bohr, International Electron Device Meeting (IEDM) 2011
 - Other Intel's IEDM (or VLSI) papers
- It's a "logic-centric" history
 - Memory devices have their own history.
 - Two representative memory devices are:
 - DRAM
 - NAND

Chronicles

- IEDM papers presented by Intel
 - 130nm: 2000
 - 90nm: 2003
 - 65nm: 2004
 - 45nm: 2007
 - 32nm: 2008
 - 22nm: 2012 (VLSI, not IEDM) (FinFET)
 - 14nm: 2014
 - 10nm: 2017 (IEDM)
 - 7nm: 2017 (VLSI, not IEDM) (Nanowire) (IBM-Samsung-Global Foundries, not Intel)

Prehistoric(?) MOSFET

130-nm MOSFET

Major issue: Cu interconnection (Previously, Al)

Operation voltage: 1.3 V

Oxide thickness: 1.5 nm

Poly-silicon gate

SUMMARY OF TRANSISTOR CHARACTERISTICS

Parameter	,	180 nm	This Work
		Generation [1]	
V _{DD}	[V]	1.5	1.3
L_{GATE}	[nm]	130	70
Tox	[nm]	2.0	1.5
I _{OFF}	[nA/µm]	3	10
$I_{DSAT}(n)$	[mA/µm]	1.04	1.02
I _{DSAT} (p)	[mA/ _µ m]	0.46	0.5
Low Vt I _{OFF}	[nA/µm]	-	100
Low Vt I _{DSAT} (n	n) [mA/μm]	-	1.17
Low Vt IDSAT	p) [mA/ _µ m]	-	0.6

Cross-section drawing

Many features...

Leakage problem

Why?

- The SiO₂ gate oxide had scaled to ~1.2 nm at the 90 nm generation.
 - → The gate oxide leakage was increasing exponentially and had become a noticeable percentage of total chip power.
- Deceasing supply voltage → decreasing threshold voltage → everhigher subthreshold leakage current

Increasing transistor leakage

- Was against the market preferences.
- The 1980s and 1990s were the era of the home PC.
- The 2000s was the "mobile" era.

90-nm node

- Oxide thickness: 1.2nm (\times 0.8 scaling, not \times 0.7)
 - SiGe was selectively deposited in PMOS source-drain regions to provide compressive channel strain.
 - A tensile SiN cap layer was deposited over NMOS transistors to provide tensile channel strain.

90nm uniaxial strained silicon transistors

Its impact

- Mobility enhancement
 - For electrons, tensile strain
 - For holes, compressive strain

Mobility characteristics under <110> uniaxial strain (K. Uchida, IEDM 2004)

"High-k + metal" gate

- We need to scale the "effective" oxide thickness.
 - Keeping the physical thickness
 - Increasing the oxide capacitance
- Poly depletion effect is now removed.

65nm

45nm high-k metal gate transistor

Performance

- Drive current improvement
 - Strain engineering
 - High-k + metal gate

32nm transistor performance and leakage options

FinFET

FinFET

- So named after its shape
- Initially proposed as a SOI FinFET
- Later, a bulk FinFET

Fins (Google images)

Planar transistor structure (left) and FinFET structure (right)

SEM image

FinFET

Improved electrostatic control of the channel region

32nm planar transistors (left) and 22nm FinFETs (right)

Performance

Steeper sub-threshold slope

Transistor IV characteristics

IEDM 2017

State-of-the-art FinFET technology

Nanosheet

- Proposed as an viable option at 5nm node and beyond
 - Gate-All-Around (GAA) transistor

Fig. 2: Increase in W_{eff} going from aggressively scaled FinFET to double and single stack Nanosheets structures. Best improvement is obtained using a single wide Nanosheet stack at constant active width (RX.W).

