The matrix linear transformation

TA: Fr __ Fr given by TA(x) = Ax
where A is an mxn matrize (i.e. A & Fmxn).

For any vectors \overline{x} , $\overline{y} \in F^n$, $A(\overline{x}+\overline{y}) = A\overline{x} + A\overline{y}$ and $A(c(\overline{x}) = cA\overline{x})$

・メーメーメ

what is then (TA)?

KutA = { \ \vec EFT: A \vec = \vec)

= Nul (A)

: millity of (TA) = millity A

What in Range (TA)?

Range TA = { Tef照m: T= Axfor some sic e FFn}

= Col (A)

· rank (TA) = dim Col A = rank A

- The future, we need not deistringwish between The and A

Escample to illustrate wordinate systems.

In IR2 given a vector to = [2], ite wordinate vector with regard to the standard ordered bears 5 is nothing but [2]

However, suppose we take a different ordered basis, say $B = \frac{9}{2} \overline{u}_1, \overline{u}_2$ } where $\overline{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \overline{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

e.g. [2] = u (1) 2011

He nee by mispection that

 $\begin{bmatrix} a \\ B \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}_B$

Let's take another vector,
say &= [15]
[24].

To bind [Te] , we need to find scalars x_1 and x_2 reach that x_1 x_2 x_3 x_4 x_2 x_4 x_5 x_6 x_6 x_6 x_7 x_8 x_8

 $x_1 + x_2 = 15$ $x_2 = 24$

where A is the matrix with U_1 and U_2 as its when the

But now, since the the columns of

A form a basis (i.e. B) A

is nivertible.

given by \$ 50 = A-1 To.

(4)

So if me find A-1 me can find out the test coordinate vector relative to B for any whitiary vector ye 132.

Now: A-1 = [1 -1]

 $\begin{bmatrix} \overline{a} \\ B \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 15 \\ 24 \end{bmatrix} = \begin{bmatrix} -9 \\ 24 \end{bmatrix}$

Check: -9 \(\bar{u}_1 + 24 \) \(\bar{u}_2 = -9 \) \[\bar{0} \] \(\bar{0} \) \[\bar{1} \] \[\bar{1} \] \[\bar{1} \] \[\bar{0} \] \[\ba

Outcome of the above discussion: - to find the coordinate vector of any \bar{x} wat a new book ordered basis $B = \{\bar{u}_1, ..., \bar{u}_r\}$, set up the matrix $A = [\bar{u}_1, \bar{u}_2, ..., \bar{u}_r]$, A is nivertible by VIT, so we can build A^{-1} .

Then $[\bar{x}]_B = \bar{A}\bar{x}$ (\bar{x} is given as an R-tuple in FR, i.e. its standard coordinate vector is given)