Introduction to Machine Learning TTIC 31020

Prof. Nati Srebro

Lecture 2:

A non-probabilistic start: Online Learning
No Free Lunch vs Universal Learning
The Statistical Learning Model

Online Learning Process

- At each time t = 1,2,...
 - We receive an instance $x_t \in \mathcal{X}$
 - We predict a label $\hat{y}_t = h_t(x_t)$
 - We see the correct label y_t of x_t
 - We update the predictor h_{t+1} based on (x_t, y_t)
- Learning rule: mapping $A: (X \times Y)^* \to Y^X$
 - $h_t = A((x_1, y_1), (x_2, y_2), ..., (x_{t-1}, y_{t-1}))$
- Goal: make few mistakes $\hat{y}_t \neq y_t$
- Is this possible?

 $\mathcal{X} = \{\text{items in basket}\}, \mathcal{Y} = \{\text{lan , Oliver}\}$

No Free Lunch: Online Version

- For any finite \mathcal{X} with n elements, and any learning rule A, there exists a mapping f(x) and a sequence $\{(x_t, y_t = f(x_t))\}_t$ on which A makes at least n mistakes
 - x_1, \dots, x_n all different
 - Define f inductively as: $f(x_t) = -A\left(\big(x_1, f(x_1)\big), \big(x_2, f(x_2)\big), \dots, \big(x_{t-1}, f(x_{t-1})\big) \right), \ t = 1..n$
- For any **infinite** \mathcal{X} , and any learning rule A, there exists a mapping f(x) and a sequence $\{(x_t, y_t = f(x_t))\}_t$ on which A makes a mistake on every round
- If \mathcal{X} is small, we can limit ourselves to $|\mathcal{X}|$ mistakes by memorizing $f(x_t)$, but "memorizing" doesn't quite feel like "learning"....

Prior Knowledge

- Assume $y_t = f(x_t)$ for some $f \in \mathcal{H}$
- $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ is a "hypothesis class"
 - Learner knows \mathcal{H} , but of course doesn't know f
- ${\mathcal H}$ represents our "Prior Knowledge" or "Expert Knowledge"
- We say the sequence $\{(x_t, y_t)\}_t$ is realizable by \mathcal{H} if $\exists_{t \in \mathcal{H}} \ \forall_t \ y_t = f(x_t)$

```
E.g.: \mathcal{H} = \textit{all predictors based on single word occurence} \mathcal{H} = \{h_i \mid \textit{dictionary word } i\}, \quad h_i(x) = \begin{bmatrix} [\text{word } i \text{ appears in } x] \end{bmatrix} \begin{bmatrix} [\textit{condition}] \end{bmatrix} = \begin{cases} +1, & \textit{condition is true} \\ -1, & \textit{otherwise} \end{cases}
```

What if this assumption is wrong??
 → Later...

Learning Finite Hypothesis Classes

How can we learn problems realizable by a finite hypothesis class?

The learning rule CONSISTENT:

• use $h \in \mathcal{H}$ consistent with examples so far \mathcal{H} s. t. $\forall (x,y) \in S(h(x)=y)$ seen, but we use the information

(strictly speaking: not a specific function—we will refer to any rule returning a consistent h as "CONSISTENT")

- Iterative implementation:
 - Initialize $V_1 = \mathcal{H}$
 - For t = 1, 2, ...
- ive implementation: $V_1 = \mathcal{H}$ or t = 1, 2, ... Choose some $h_t \in V_t$ (and predict $\hat{y}_t = h_t(x_t)$) discord all hypothesises that Based on (x_t, y_t) , update $V_{t+1} = \{h \in V_t | h(x_t) = y_t\}$ are over incorrect.
- Theorem:

If $\{(x_t, y_t)\}_t$ is realizable by \mathcal{H} , **CONSISTENT**_{\mathcal{H}} will make $< |\mathcal{H}|$ mistakes

• Proof:

If $h_t(x_t) \neq y_t$, h_t is removed from V_t , hence $|V_{t+1}| \leq |V_t| - 1$. Since true f always remains in V_t , $|V_t| \geq 1$. Hence, #mistakes $\leq |V_1| - 1$.

We only kick out one hypothesis at a time.

Majority/Halving

- The **MAJORITY**_{\mathcal{H}} learning rule (aka the HALVING learning rule):
 - Initialize $V_1 = \mathcal{H}$
 - For t = 1, 2, ...
- Use h_t , where $h_t(x) = \text{MAJORITY}(h(x) : h \in V_t)$ We use information $\text{i.e. } h_t = A\big((x_1,y_1),\dots,(x_{t-1},y_{t-1})\big) = \text{MAJORITY}(\ h(x):h\in\mathcal{H},\forall_{i=1\dots t-1}h(x_i)=y_i)$ $\Rightarrow \text{predict } \hat{y}_t = \text{MAJORITY}(\ h(x_t):h\in V_t\)) \qquad \text{Many learning rules}.$ • Based on (x_t, y_t) , update $V_{t+1} = \{h \in V_t | h(x_t) = y_t\}$
- Theorem:

If $\{(x_t, y_t)\}_t$ is realizable by \mathcal{H} , MAJORITY_{\mathcal{H}} will make $< \log_2 |\mathcal{H}|$ mistakes

Proof:

If $h_t(x_t) \neq y_t$, then at least half of the functions $h \in V_t$ are wrong and will be removed, hence $|V_{t+1}| \leq |V_t|/2$. Since true f always remains in V_t , $|V_t| \ge 1$. Hence, #mistakes $\le \log_2 |V_1|$.

The Complexity of ${\cal H}$

- $\log_2 |\mathcal{H}|$ measures the "complexity" of the hypothesis class
 - More complex → more mistakes → more data until we learn
 - More specific "expert knowledge" \rightarrow smaller \mathcal{H} \rightarrow less mistakes, learn quicker

The Complexity of ${\cal H}$

- $\log_2 |\mathcal{H}|$ measures the "complexity" of the hypothesis class
 - More complex → more mistakes → more data until we learn
 - More specific "expert knowledge" \rightarrow smaller \mathcal{H} \rightarrow less mistakes, learn quicker

Why not use $\mathcal{H} = \{ \text{ short programs } \} ?$

- Learn SPAM detectable by 100-line program with $\leq \log_2 128^{100.80} = 56,000$ mistakes (that's nothing!)
- Running MAJORITY requires checking, at each step, and for each program, whether it returns the right answer. That's not even computable! - Can't felif aprelram even terminates!
- Even for classes where predictors are easily computable, such as decision trees:
 - #mistakes (\approx data needed to learn) $\leq \log_2 |\mathcal{H}|$

 - But runtime scales linearly with $|\mathcal{H}|$ (need to check all $h \in \mathcal{H}$) a lot at things in $|\mathcal{H}|$ that take a E.g. for decision trees of size k over features D: $|\mathcal{H}|$ mistakes $|\mathcal{H}|$ mistakes Runtime = $O(\#trees \cdot (checktree)) = (|D|^k \cdot \#points \cdot k)$
- We want hypothesis classes that:
 - Capture lots of interesting stuff with low complexity (e.g. low cardinality)
 - Are computationally efficiently learnable

But we don't come about Hpymins since we wont to replece programmers, i.e. we only core about solving solvable problems.

Interim Summary

- $\log_2 |\mathcal{H}|$ measures complexity, gives bounds on number of mistakes (\approx data required for learning), at least in realizable case
- Lots of interesting "universal" classes with small log-cardinality
- ... but runtime is exponential (or worse)
- Issues we still need to worry about:
 - Computational efficiency
 - Errors (non-realizability)

Bonus slides—not required

Initial Segments: Can we bound the number of mistakes?

$$\mathcal{H} = \left\{ \left[\left[x \le \theta \right] \right] \mid \theta \in \mathbb{R} \right\} \qquad x \in [0,1] \qquad \text{e.g. } x = \frac{\text{\#CAPS in } x}{\text{total \#chars}}$$

- Try it out!
- Can you think of a rule that will limit the number of mistakes?
- Or play the adversary: no matter what the learning rule predicts, you can always force many mistakes?

Bonus slides—not required

Initial Segments: Can we bound the number of mistakes?

$$\mathcal{H} = \left\{ \left[\left[x \le \theta \right] \right] \mid \theta \in \mathbb{R} \right\} \qquad x \in [0,1] \qquad \text{e.g. } x = \frac{\text{\#CAPS in } x}{\text{total \#chars}}$$

- **Theorem**: For any learning rule A, there exists a sequence realized by \mathcal{H} , on which A makes a mistake on every round
- Proof:
 - $x_1 = 0.5$
 - $y_t = -\hat{y}_t$
 - $x_{t+1} = x_t + y_t 2^{-(t+1)}$
 - Realized by $\theta = 0.5 + \sum_{t} y_{t} 2^{-(t+1)}$

Bonus slides—not required

So we really can't learn initial segments (which are linear predictors, so we can't learn linear predictors?)

• Answer 1:

- Counterexample based on extremely high resolution
- If we discretize $\theta \in \{0, \frac{1}{r}, \frac{2}{r}, \frac{3}{r}, ..., 1\}, \log_2 |\mathcal{H}| = \log_2 (r+1)$
- More generally, for linear predictors over $\mathcal{H}_{linear} = \{ h_w : x \mapsto sign(\langle w, x \rangle) \mid w \in \mathbb{R}^d \}$: $\log |\mathcal{H}_{linear}| = O(d \log r) = O(d \cdot (\#bits \ per \ number))$
- But runtime of MAJORITY would still be $\mathit{O}(r^d)$...
- Using Online Ellipsoid: Can ensure $O(d^2 \log(rd))$ mistakes in time poly(d) keep track of outer ellipsoid containing all consistent predictors, i.e. $V_{t+1} = \text{smallest-enclosing-ellipsoid}(\{w \in V_t | sign(\langle w, x_t \rangle) = y_t\})$
- Also: randomized poly-time methods can approximate MAJORITY and further reduce mistake bound

Answer 2:

- Counterexample based on very specific sequence, in very specific order
- What happens if examples (x_t, y_t) come in a random order?

From Adversarial Online to Statistical

- What if data not *exactly* realized by \mathcal{H} ? How do we deal with errors?
- Want to avoid non-learnability due to very specific, adversarial, order of examples

See optional expansion material on course website, or challenge problem in HW2

- Also, want to depart from online model where we always receive the correct label after each prediction.
- Instead:
 - 1. Learn from labeled training data
 - 2. Ship your predictor
 - 3. Get tested on how well the predictor you shipped does on future data

The Statistical Learning Model

- Unknown source distribution \mathcal{D} over (x, y)
 - Describes "reality". What we want to classify, and what should it be classified as.
 - E.g. joint distribution over (**b** , b)
- Can think of \mathcal{D} as: distribution over x and y|x=f(x)
 - <u>Distribution</u> over images we expect to see (we don't expect to see uniformly distributed images:), and what character each image represents Hi write " & " what characters will his he?
 - Or, as: distribution over y and over x|y
 - Distribution over characters ('e' more likely then '&'), and for each character, over possible images of that character
 - Goal: find predictor h with small expected error: (also called generalization error, risk or true error)

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y]$$
or
$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}}[loss(h(x); y)]$$

$$loss(\hat{y}; y) = \begin{cases} 0, \hat{y} = y \\ 1, \hat{y} \neq y \end{cases}$$
which is the contraction of the property of the property

• Based on a sample $S = ((x_1, y_1), (x_2, y_2), ..., (x_m, y_m))$ of m training points $(x_t, y_t) \sim i.i.d.\mathcal{D}$ (we can also write: $S \sim \mathcal{D}^m$)

The Statistical Learning Model

- Unknown source distribution \mathcal{D} over (x, y)
- Goal: find predictor h with small expected error:

$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[loss(h(x);y)] = \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x) \neq y]$$

• Based on sample $S = ((x_1, y_1), (x_2, y_2), ..., (x_m, y_m))$ of m training points $(x_t, y_t) \sim i.i.d.\mathcal{D}$ (i.e. $S \sim \mathcal{D}^m$)

• Statistical (batch) learning:

wheat Learning Rule?

- 1. Receive training set $S \sim \mathcal{D}^m$
- 2. Learn h = A(S) using learning rule $A: (X \times Y)^* \to Y^X$
- 3. Use h on future examples drawn form \mathcal{D} , suffering expected error $L_{\mathcal{D}}(h)$

• Main assumption:

• i.i.d. samples

acksim Samples drawn from distribution ${\mathcal D}$ we will later use the predictor on

Pavely catistics.

e.g. I'm not going to ask lok ppl to write I char

I'M ask (or ppl to write lov churs.

e.g. time dependent data - 30 fps self-driving carly

we don't have 30.60 sec i.i.d. samples.

Train car based on pics en Chreage vs drivity in

Expected vs Empirical Error

What we care about is the expected error

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[loss(h(x); y)]$$

Why not just minimize it directly?

$$P(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[loss(h(x); y)]$$

$$P(x,y) \sim \mathcal{D}[loss(h(x); y)]$$

Instead, a given sample S we can calculate the empirical (training) error

$$L_S(h) = \frac{1}{m} \sum_{t=1}^{m} loss(h(x_t); y_t)$$

Details in tutorial

Is it a good estimate for the expected error?

For any
$$h$$
, with probability at least $1-\delta$: $|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)| \leq \sqrt{\frac{\log 2/\delta}{2m}} \leq 0.02$
Letting from the finance $m=10000$
When $0 \leq loss \leq 1$, e.g. $0/1$ error

Empirical Risk Minimization

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[loss(h(x);y)] \qquad L_{S}(h) = \frac{1}{m} \sum_{t=1}^{m} loss(h(x_{t});y_{t})$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$ERM(S) = \hat{h} = \arg\min_{h} L_{S}(h)$$
which does \hat{h} look \hat{h}

• Solution: memorize

$$\hat{h}(x) = \begin{cases} y_t, & x = x_t \\ 0, & \text{otherwise} \end{cases}$$

Empirical Risk Minimization

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[loss(h(x);y)] \qquad L_{S}(h) = \frac{1}{m} \sum_{t=1}^{m} loss(h(x_{t});y_{t})$$
We don't want to memorize
$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

$$loss(\hat{y};y) = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

Example:

- $\mathcal{H} = \{\text{decision trees of depth } \leq 5\}$
- $ERM_{\mathcal{H}}(S)$ find decision tree \hat{h} of depth ≤ 5 that's best on the training data S, i.e. with minimum training error (smallest number of mistakes on S)

Example:

- $\mathcal{H} = \mathcal{Y}^{\mathcal{X}}$ (all functions $h: \mathcal{X} \to \mathcal{Y}$)
- $ERM_{\mathcal{H}}(S)$ memorize

$$\hat{h}(x) = \begin{cases} y_t, & x = x_t \\ 0, & \text{otherwise} \end{cases}$$
7 This is ERM belove.

• We said that for any h, with probability at least $1-\delta$: $|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)| \leq \sqrt{\frac{\log 2/\delta}{2m}}$

$$L_{S}(\hat{h}) = 0, \text{ but is } L_{D}(\hat{h}) \leq \sqrt{\frac{\log 2/\delta}{2m}} \leq 0.02 \text{ (with } m = 10,000) ???$$

$$L_{S}(\hat{h}) = 0, \text{ but is } L_{D}(\hat{h}) \leq \sqrt{\frac{\log 2/\delta}{2m}} \leq 0.02 \text{ (with } m = 10,000) ???$$

Overfitting

- \mathcal{X} = students in UChicago
- Predict y = prefer deep dish or thin crust, \mathcal{D} is joint distribution on (student,pizza-pref)
- \mathcal{H} = Decision tree of depth five (63 nodes) over: birth month in some range, phone, threshold on height, parity of floor you live on
- S (training set) = students in the class

We can probably find some crazy tree that works for the students in the class, i.e. with $L_S(\hat{h}) = 0$ but will it generalize?? Will it get small $L_D(\hat{h})$?

Predicting Election Outcome in Eight Races

$$P(all correct) = 2^{-8} = \frac{1}{256} = 0.004$$

• For any particular h, chosen **before we see the sample**, we can ensure that with high probability $L_S(h)$ is close to $L_D(h)$:

$$\forall_h \mathbb{P}_S(|L_S(h) - L_D(h)| \le t) \le 1 - 2e^{-2mt^2}$$

- But there is some tiny probability $|L_S(h) L_D(h)|$ is large... With many h to consider, the probability adds up, and our search might really prefer that one lucky h with $L_S(h) \ll L_D(h)$ and we are brosed towards finding the h that screws every here h.
- We want to ensure that with high probability, all empirical errors are close to their expectations:

$$\mathbb{P}_{S}(\forall_{h} | L_{S}(h) - L_{\mathcal{D}}(h) | \leq t) \leq \cdots$$
This is much harder to bound.

• For any particular h, chosen **before we see the sample**, we can ensure that with high probability $L_S(h)$ is close to $L_D(h)$:

$$\forall_h \ \mathbb{P}_S(|L_S(h) - L_D(h)| \le t) \le 1 - 2e^{-2mt^2}$$

• We want to ensure that with high probability, all empirical errors are close to their expectations

$$\mathbb{P}_{S}(\exists_{\boldsymbol{h}\in\boldsymbol{\mathcal{H}}} |L_{S}(h) - L_{\mathcal{D}}(h)| \geq \epsilon) \leq \sum_{h\in\boldsymbol{\mathcal{H}}} \mathbb{P}_{S}(|L_{S}(h) - L_{\mathcal{D}}(h)| \geq \epsilon) \leq |\boldsymbol{\mathcal{H}}| \cdot 2e^{-\epsilon^{2}/m}$$

lack o For any hypothesis class $\mathcal H$ and any $\mathcal D$, $\mathbb P_{S\sim\mathcal D^m}\left[\forall_{h\in\mathcal H}, |L_S(h)-L_{\mathcal D}(h)|\leq \sqrt{\frac{\log|\mathcal H|+\log^2/\delta}{2m}}\right]\geq 1-\delta$

• Another way to view this: $\mathbb{P}_{S}\left[|L_{S}(h)-L_{\mathcal{D}}(h)| \geq \sqrt{\frac{\log^{2}/\delta_{h}}{2m}}\right] \leq \delta_{h} \stackrel{\text{def}}{=} \frac{\delta}{|\mathcal{H}|}$

and then $\log 2/\delta_h = \log 2|\mathcal{H}|/\delta = \log |\mathcal{H}| + \log 2/\delta$

Want to choose Sy 5.t. adding it up will Still give us a good bound.

Bounds presented are for bounded loss, $0 \le loss \le 1$, e.g. 0/1 error Results can be extended to unbounded loss, but beyond scope of course.

• Theorem: For any $\mathcal H$ and any $\mathcal D$, $\forall_{S\sim\mathcal D^m}^\delta$, $L_{\mathcal D}(\hat h) \leq L_S(\hat h) + \sqrt{\frac{\log |\mathcal H| + \log^2/\delta}{2m}}$

$$lack ext{For any hypothesis class } \mathcal{H} ext{ and any } \mathcal{D}, \, \mathbb{P}_{S \sim \mathcal{D}^m} \left| \forall_{h \in \mathcal{H}}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}} \right| \geq 1 - \delta$$

Bounds presented are for bounded loss, $0 \le loss \le 1$, e.g. 0/1 error Results can be extended to unbounded loss, but beyond scope of course.

• Theorem: For any
$$\mathcal{H}$$
 and any \mathcal{D} , $\forall \overset{\delta}{S \sim \mathcal{D}^m}$,
$$L_{\mathcal{D}}(\hat{h}) \leq L_{S}(\hat{h}) + \sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}}$$

- Without ANY assumptions about the source distribution (i.e. about reality), if we find a predictor h with low $L_S(h)$, we can promise (with high probability) that it will perform well on future examples!
- Should we fine the programmer? Yes! Why?idk.
- Instead, use independent test set S' (e.g. split available examples into a training set S and test set S').

$$L_{\mathcal{D}}(A(S)) \le L_{S'}(A(S)) + \sqrt{\frac{\log 1/\delta}{2|S'|}}$$

Random, but depends only on S, independent of S'

- Even better:tighter numerical confidence intervals using inverse CDF of Binomial or its Gaussian approx
- Crucial: h = A(S) should be fixed before peeking at S'!

Disclaimer: all bounds presented are for bounded loss, $0 \le loss \le 1$, e.g. 0/1 error Results can be extended to unbounded loss (eg squared loss), but beyond scope of course.

with prob
$$\geq 1 - \delta$$
 $\hat{h} = ERM_{\mathcal{H}}(S) = \arg\min_{h \in \mathcal{H}} L_S(h)$

• Theorem: For any \mathcal{H} and any \mathcal{D} , $\forall_{S \sim \mathcal{D}}^{\delta}$,

$$L_{\mathcal{D}}(\hat{h}) \leq L_{\mathcal{S}}(\hat{h}) + \sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}}$$

Post-Hoc Guarantee

• Theorem: For any \mathcal{H} and any \mathcal{D} , $\forall_{S \sim \mathcal{D}^m}^{\delta}$,

$$L_{\mathcal{D}}(\hat{h}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + 2 \sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}}$$
 A-priori Guarantee

Proof: if indeed
$$\forall_{h \in \mathcal{H}}$$
, $|L_{\mathcal{D}}(h) - L_{S}(h)| \leq \sqrt{\cdots}$, then:
$$L_{\mathcal{D}}(\hat{h}) \leq L_{S}(\hat{h}) + \sqrt{\cdots} \leq L_{S}(h^{*}) + \sqrt{\cdots} \leq L_{\mathcal{D}}(h^{*}) + \sqrt{\cdots} + \sqrt{\cdots}$$

$$h^{*} = \arg\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$$

Disclaimer: all bounds presented are for bounded loss, $0 \le loss \le 1$, e.g. 0/1 error Results can be extended to unbounded loss (eg squared loss), but beyond scope of course.

with prob
$$\geq 1 - \delta$$
 $\hat{h} = ERM_{\mathcal{H}}(S) = \arg\min_{h \in \mathcal{H}} L_S(h)$

• Theorem: For any \mathcal{H} and any \mathcal{D} , $\forall_{S \sim \mathcal{D}}^{\delta}$,

$$L_{\mathcal{D}}(\hat{h}) \leq L_{\mathcal{S}}(\hat{h}) + \sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}}$$

Post-Hoc Guarantee

• Theorem: For any $\mathcal H$ and any $\mathcal D$, $\forall_{S \sim \mathcal D^m}^{\delta}$,

$$L_{\mathcal{D}}(\hat{h}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + 2\sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}}$$

A-priori Guarantee

• Conclusion: For any $\delta, \epsilon > 0$, using

$$m = 2 \frac{\log|\mathcal{H}| + \log^2/\delta}{\epsilon^2}$$

samples is enough to ensure $L_{\mathcal{D}}(\hat{h}) \leq L_{\mathcal{D}}(h^*) + \epsilon$ w.p. $\geq 1 - \delta$

Sample Complexity Bound

Disclaimer: all bounds presented are for bounded loss, $0 \le loss \le 1$, e.g. 0/1 error Results can be extended to unbounded loss (eg squared loss), but beyond scope of course.

Complexity of Learning

$$\hat{h} = \arg\min_{h \in \mathcal{H}} L_{S}(h)$$

$$L_{D}(\hat{h}) \leq \inf_{h \in \mathcal{H}} L_{D}(h) + 2 \sqrt{\frac{\log |\mathcal{H}| + \log^{2}/\delta}{2m}}$$

$$m = O\left(\frac{\log |\mathcal{H}|}{\epsilon^{2}}\right)$$

Lecture 2: Summary

- Basic Concepts: domain \mathcal{X} , label set \mathcal{Y} , predictor h, hypothesis class \mathcal{H}
- Online Learning Model
 - No Free Lunch
 - $\log_2 |\mathcal{H}|$ mistake bound
- Complexity Control; Specific prior knowledge vs #mistakes
- Importance of computational issues
- Why statistical?
 - Deal with errors
 - Train-then-ship
- Statistical Learning Model: source distribution \mathcal{D} , training set S, exp. error $L_{\mathcal{D}}$
- ERM as a template learning rule
- Union bound \rightarrow again $\log_2 |\mathcal{H}|$ controls complexity