

Ayudantía 9 - Relaciones

10 de octubre de 2025

Elías Ayaach, Manuel Villablanca, Caetano Borges

Resumen

Relación Binaria

Una relación binaria es un conjunto de pares ordenados que establece una conexión o asociación entre elementos de dos conjuntos distintos.

R es una relación binaria de A en B si $R \subseteq A \times B$.

Propiedades de una Relación Binaria

Refleja

Una relación R es refleja si para todo elemento x en el conjunto, el par (x, x) está en R.

$$\forall x \in A, (x, x) \in R$$

Irrefleja

Una relación R es irrefleja si ningún par (x,x) está en R para cualquier x en el conjunto.

$$\forall x \in A, (x, x) \notin R$$

Simétrica

Una relación R es simétrica si para cada par (x, y) en R, también está presente el par (y, x).

$$\forall x, y \in A, (x, y) \in R \rightarrow (y, x) \in R$$

Antisimétrica

Una relación R es antisimétrica si para cualquier par (x,y) en R, si $x \neq y$, entonces el par (y,x) no está en R.

$$\forall x,y \in A, (x,y) \in R \land x \neq y \to (y,x) \notin R$$

Transitiva

Una relación R es transitiva si para cada par (x, y) y (y, z) en R, el par (x, z) también está en R.

$$\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

Conexidad

Una relación R es conexa si para cada par de elementos x,y podemos encontar a (x, y) en R, o a (y, x) en R.

$$\forall x, y \in A, (x, y) \in R \lor (y, x) \in R$$

Relación de Equivalencia

Una relación de equivalencia es una relación binaria que cumple **reflexividad**, **simetría** y **transitividad**.

A la relación se le denota como $x \sim y$.

Clase de equivalencia

Dado $x \in A$, la clase de equivalencia de x bajo \sim es el conjunto

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}$$

Conjunto cociente

Sea \sim una relación de equivalencia sobre un conjunto A. El conjunto cociente de A con respecto a \sim es el conjunto de todas las clases de equivalencia de \sim :

$$A/\sim = \{[x] \mid x \in A\}$$

1. Meme del día

2. Relaciones

Decimos que un conjunto $X \subseteq \mathbb{R}$ es **bueno para la suma** si satisface las siguientes condiciones:

- 1. $0 \in X$
- $2. \ \forall x, y \in X, x + y \in X.$

Dado un conjunto $X \subseteq \mathbb{R}$, se define en \mathbb{R} la relación \mathcal{R}_X como:

$$x\mathcal{R}_X y \leftrightarrow (x-y) \in X$$

Demuestre que si X es bueno para la suma, entonces \mathcal{R}_X es una relación refleja y transitiva.

3. Inducción + Relación de equivalencia

Sea Σ un alfabeto de símbolos y $\mathcal{S} = \{(a_i, b_i)\}_{i=1}^m \subseteq \Sigma \times \Sigma$ un conjunto finito de pares ordenados (a_i, b_i) para $1 \leq i \leq m$. Definimos la relación $\rightarrow \subseteq \Sigma^* \times \Sigma^*$ como

 $x \to y \iff y$ se puede obtener de x reemplazando una ocurrencia de algún a_i por b_i (o vice versa, de algún b_i por a_i)

Ahora, sea $\sim \subseteq \Sigma^* \times \Sigma^*$ una relación tal que $x \sim y$ si y solo si y se puede obtener mediante una cantidad finita de pasos \to desde x.

Demuestre que \sim es una relación de equivalencia.

4. Relaciones de equivalencia

Sea A un conjunto, y $S,T\subseteq A\times A$ ambas relaciones de equivalencia sobre A. Demuestre que

$$S \circ T = T \circ S \iff S \circ T$$
 es una relación de equivalencia

Nota: la composición de dos relaciones definidas sobre un conjunto A, denotada por $R_1 \circ R_2$, es una relación definida como

$$R_1 \circ R_2 = \{(a_1, a_2) \in A^2 \mid \exists a' \in A \text{ tal que } a_1 R_2 a' \land a' R_1 a_2\}$$