Chayan Bhawal

Students' Reading Group

October 26, 2017

Standard eigenvalue problem

• Find $\lambda \in \mathbb{C}$ such that there exists nonzero $x \in \mathbb{C}^n$ such that

$$Ax = \lambda x$$
, where $A \in \mathbb{C}^{n \times n}$.

x is the **eigenvector** of A corresponding to **eigenvalue** λ .

• For example
$$A = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
. Eigenvalues of A are 1 and 2.

Then

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 \end{bmatrix}$$
$$A[v_1 \quad v_2 \quad v_3 \quad v_4] = [v_1 \quad v_2 \quad v_3 \quad v_4]J$$

Standard eigenvalue problem

• Find $\lambda \in \mathbb{C}$ such that there exists nonzero $x \in \mathbb{C}^n$ such that

$$Ax = \lambda x$$
, where $A \in \mathbb{C}^{n \times n}$.

x is the **eigenvector** of A corresponding to **eigenvalue** λ .

• For example
$$A = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
. Eigenvalues of A are 1 and 2.

Then

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 \end{bmatrix}$$
$$A[v_1 \quad v_2 \quad v_3 \quad v_4] = [v_1 \quad v_2 \quad v_3 \quad v_4]J$$

century, Journal of Computational and Applied Mathematics 123, no. 1 \(\frac{1}{2}\)2000\(\frac{1}{2}\).

- Is the matrix real or complex?
- What special properties does the matrix have?
 - symmetric, Hermitian, skew symmetric, unitary.
- Structure?
 - band, sparse, structured sparseness, Toeplitz.
- Eigenvalues required?
 - largest, smallest in magnitude, real part of eigenvalues negative,

¹G.H. Golub and H.A. van der Vorst. Eigenvalue computation in the 20th century, Journal of Computational and Applied Mathematics 123, no. 1 (2000).

- Is the matrix real or complex?
- What special properties does the matrix have?
 - symmetric, Hermitian, skew symmetric, unitary.
- Structure?
 - band, sparse, structured sparseness, Toeplitz.
- Eigenvalues required?
 - largest, smallest in magnitude, real part of eigenvalues negative, sums of intermediate eigenvalues.

¹G.H. Golub and H.A. van der Vorst. *Eigenvalue computation in the 20th century*, Journal of Computational and Applied Mathematics 123, no. 1 (2000).

- Is the matrix real or complex?
- What special properties does the matrix have?
 - $\bullet\,$ symmetric, Hermitian, skew symmetric, unitary.
- Structure?
 - band, sparse, structured sparseness, Toeplitz.
- Eigenvalues required?
 - largest, smallest in magnitude, real part of eigenvalues negative, sums of intermediate eigenvalues.

¹G.H. Golub and H.A. van der Vorst. *Eigenvalue computation in the 20th century*, Journal of Computational and Applied Mathematics 123, no. 1 (2000).

- Is the matrix real or complex?
- What special properties does the matrix have?
 - symmetric, Hermitian, skew symmetric, unitary.
- Structure?
 - band, sparse, structured sparseness, Toeplitz.
- Eigenvalues required?
 - largest, smallest in magnitude, real part of eigenvalues negative, sums of intermediate eigenvalues.

¹G.H. Golub and H.A. van der Vorst. *Eigenvalue computation in the 20th century*, Journal of Computational and Applied Mathematics 123, no. 1 (2000).

[2	6	1	5	7	9	8
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	1	2	4	7	8	10
0	4	1	7	4	6	3
0	0	7	6	5	1	4
0 0 0 0	0		1	3	1	2
0	0	0	0	2	8	9
0	0	0	0	0	1	2

Upper Hessenberg form

[2	6	0	0 0 7 6 7	0	0	0
9	1	2	0	0	0	0
0	4	5	7	0	0	0
0	0	8	6	5	0	0
0	0	0	7	3	1	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	6	8	9
0	0	0	0	0	1	$2 \rfloor$

Tridiagonal form

Method	Applies to	Produces	Description	
	General		Reflect each column	
Householder		Hessenberg	through a subspace	
			to zero out its lower	
			entries.	
Givens rotations	General		Apply planar	
		Hessenberg	rotations to zero	
			out each entry.	
Arnoldi iteration	General		Perform Gram-Schmidt	
		Hessenberg	orthogonalization on	
			Krylov subspaces	
Lanczos	Hermitian		Arnoldi iteration for	
		Tridiagonal	Hermetian matrices,	
algorithm			with shortcuts	

Method	Applies to	Produces Eigenvalue	Description
Power iteration	General	Largest	Repeatedly applies matrix to an arbitrary initial vector.
Inverse iteration	General	closest to μ	Power iteration $(A - \mu I)^{-1}$
Rayleigh quotient iteration	Hermitian	closest to μ	Power iteration using Rayleigh quotient.
QR algorithm Hessenberg		All eigenvalues	Factors $A = QR$, Q : orthogonal R : triangular.

QR Algorithm: Schur decomposition

Schur decomposition:

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that

$$Q^*AQ = U$$

where $U \in \mathbb{C}^{n \times n}$ is a upper triangular matrix.

Real-Schur decomposition:

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$Q^T A Q = U$$

where $U \in \mathbb{R}^{n \times n}$ is a quasi-upper triangular matrix.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りゅ○

QR Algorithm: Schur decomposition

Schur decomposition:

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that

$$Q^*AQ = U$$

where $U \in \mathbb{C}^{n \times n}$ is a upper triangular matrix.

Real-Schur decomposition:

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$Q^TAQ=U$$

where $U \in \mathbb{R}^{n \times n}$ is a quasi-upper triangular matrix.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९

QR Algorithm: Real-Schur decomposition

For example:

$$A = \begin{bmatrix} -2 & -2 & -1 \\ -2 & -4 & -3 \\ 1 & 3 & 1 \end{bmatrix}$$

Use Scilab: $[Q,U] = \operatorname{schur}(A);$

$$Q = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & 1 & -\sqrt{3} \\ \sqrt{2} & 1 & \sqrt{3} \\ -\sqrt{2} & 2 & 0 \end{bmatrix}, \quad U = \frac{1}{\sqrt{12}} \begin{bmatrix} -3\sqrt{12} & -8\sqrt{6} & -4\sqrt{2} \\ 0 & -\sqrt{12} & 2 \\ 0 & -6 & -\sqrt{12} \end{bmatrix}$$

Eigenvalues of A: $\{-3, 1 \pm j1\}$

QR Algorithm: Real-Schur decomposition

For example:

$$A = \begin{bmatrix} -2 & -2 & -1 \\ -2 & -4 & -3 \\ 1 & 3 & 1 \end{bmatrix}$$

Use Scilab: [Q,U] = schur(A);

$$Q = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & 1 & -\sqrt{3} \\ \sqrt{2} & 1 & \sqrt{3} \\ -\sqrt{2} & 2 & 0 \end{bmatrix}, \quad U = \frac{1}{\sqrt{12}} \begin{bmatrix} -3\sqrt{12} & -8\sqrt{6} & -4\sqrt{2} \\ 0 & -\sqrt{12} & 2 \\ 0 & -6 & -\sqrt{12} \end{bmatrix}$$

Eigenvalues of A: $\{-3, 1 \pm j1\}$

Chayan Bhawal (IIT Bombay)

QR Algorithm: Real-Schur decomposition

For example:

$$A = \begin{bmatrix} -2 & -2 & -1 \\ -2 & -4 & -3 \\ 1 & 3 & 1 \end{bmatrix}$$

Use Scilab: $[Q,U] = \operatorname{schur}(A);$

$$Q = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & 1 & -\sqrt{3} \\ \sqrt{2} & 1 & \sqrt{3} \\ -\sqrt{2} & 2 & 0 \end{bmatrix}, \quad U = \frac{1}{\sqrt{12}} \begin{bmatrix} -3\sqrt{12} & -8\sqrt{6} & -4\sqrt{2} \\ 0 & -\sqrt{12} & 2 \\ 0 & -6 & -\sqrt{12} \end{bmatrix}$$

Eigenvalues of A: $\{-3, 1 \pm j1\}$

Standard Eigenvalue problem

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda x$$
, where $A \in \mathbb{R}^{n \times n}$.

x is the **eigenvector** of the matrix A corresponding to **eigenvalue** λ .

• Algorithm: Schur decomposition.

- Number of eigenvalues = n.
- Number of eigenvectors depends on the algebraic multiplicity and geometric multiplicity of eigenvalues.

Standard Eigenvalue problem

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda Ix$$
, where $A \in \mathbb{R}^{n \times n}$.

x is the **eigenvector** of the matrix pair (I, A) corresponding to **eigenvalue** λ .

- Algorithm: Schur decomposition.
- Number of eigenvalues = n.
- Number of eigenvectors depends on the algebraic multiplicity and geometric multiplicity of eigenvalues.

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda \mathbf{B}x$$
, where $A, B \in \mathbb{R}^{n \times n}$.

x is the **generalized eigenvector** of the matrix (B, A) corresponding to **generalized eigenvalue** λ .

• How to find the *generalized* eigenvalues?

$$(A - \lambda B)x = 0.$$

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda \mathbf{B}x$$
, where $A, B \in \mathbb{R}^{n \times n}$.

x is the **generalized eigenvector** of the matrix (B, A) corresponding to **generalized eigenvalue** λ .

• How to find the *generalized* eigenvalues?

$$(A - \lambda B)x = 0.$$

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda \mathbf{B}x$$
, where $A, B \in \mathbb{R}^{n \times n}$.

x is the **generalized principal eigenvector** of the matrix (B, A) corresponding to **generalized eigenvalue** λ .

• How to find the *generalized* eigenvalues?

$$(A - \lambda B)x = 0.$$

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda \mathbf{B}x$$
, where $A, B \in \mathbb{R}^{n \times n}$.

x is the **generalized principal eigenvector** of the matrix (B, A) corresponding to **generalized eigenvalue** λ .

• How to find the *generalized* eigenvalues?

$$(A - \lambda B)x = 0.$$

• Find $\lambda \in \mathbb{C}$ such that there exists $x \in \mathbb{C}^n$ such that

$$Ax = \lambda \mathbf{B}x$$
, where $A, B \in \mathbb{R}^{n \times n}$.

x is the **generalized principal eigenvector** of the matrix (B, A) corresponding to **generalized eigenvalue** λ .

• How to find the *generalized* eigenvalues?

$$(A - \lambda B)x = 0.$$

Will Real-Schur decomposition work?

$$Q^TAQ = U \Rightarrow A = QUQ^T$$

$$Q^TBQ = \tilde{B} \Rightarrow B = Q\tilde{B}Q^T$$

$$Ax = \lambda Bx$$

$$QUQ^{T}x = \lambda Q\tilde{B}Q^{T}x$$

$$UQ^{T}x = \lambda \tilde{B}Q^{T}x$$

For example:

$$\begin{bmatrix}
-2 & -2 & -1 \\
-2 & -4 & -3 \\
1 & 3 & 1
\end{bmatrix} x = \lambda \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} x$$

Will Real-Schur decomposition work?

$$Q^TAQ = U \Rightarrow A = QUQ^T$$

$$Q^TBQ = \tilde{B} \Rightarrow B = Q\tilde{B}Q^T$$

$$Ax = \lambda Bx$$

$$QUQ^{T}x = \lambda Q\tilde{B}Q^{T}x$$

$$UQ^{T}x = \lambda \tilde{B}Q^{T}x$$

For example:

$$\underbrace{\frac{1}{\sqrt{12}} \begin{bmatrix} -3\sqrt{12} & -8\sqrt{6} & -4\sqrt{2} \\ 0 & -\sqrt{12} & 2 \\ 0 & -6 & -\sqrt{12} \end{bmatrix}}_{U} Q^{T}x = \lambda \underbrace{\frac{1}{6} \begin{bmatrix} 2 & \sqrt{2} & \sqrt{6} \\ \sqrt{2} & 1 & \sqrt{3} \\ -\sqrt{6} & -\sqrt{3} & 3 \end{bmatrix}}_{\hat{\mathcal{B}}} Q^{T}x$$

QZ Algorithm: Generalized Schur decomposition

Generalized Schur decomposition

Given a matrix $A, B \in \mathbb{R}^{n \times n}$ there exists a unitary matrix $Q, Z \in \mathbb{C}^{n \times n}$ such that

$$Q^*AZ = U \quad Q^*BZ = T$$

where $U, T \in \mathbb{C}^{n \times n}$ are upper triangular matrix.

Generalized Real-Schur decomposition

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $Q, Z \in \mathbb{R}^{n \times n}$ such that

$$Q^T A Z = U \quad Q^T B Z = T$$

where $U \in \mathbb{R}^{n \times n}$ is a quasi-upper triangular matrix and T is a triangular matrix.

QZ Algorithm: Generalized Schur decomposition

Generalized Schur decomposition:

Given a matrix $A, B \in \mathbb{R}^{n \times n}$ there exists a unitary matrix $Q, Z \in \mathbb{C}^{n \times n}$ such that

$$Q^*AZ = U \quad Q^*BZ = T$$

where $U, T \in \mathbb{C}^{n \times n}$ are upper triangular matrix.

Generalized Real-Schur decomposition:

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $Q, Z \in \mathbb{R}^{n \times n}$ such that

$$Q^T A Z = U \quad Q^T B Z = T$$

where $U \in \mathbb{R}^{n \times n}$ is a quasi-upper triangular matrix and T is a triangular matrix.

QZ Algorithm: Generalized Schur decomposition

Generalized Schur decomposition:

Given a matrix $A, B \in \mathbb{R}^{n \times n}$ there exists a unitary matrix $Q, Z \in \mathbb{C}^{n \times n}$ such that

$$Q^*AZ = U \quad Q^*BZ = T$$

where $U, T \in \mathbb{C}^{n \times n}$ are upper triangular matrix.

Generalized Real-Schur decomposition:

Given a matrix $A \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $Q, Z \in \mathbb{R}^{n \times n}$ such that

$$Q^T A Z = U \quad Q^T B Z = T$$

where $U \in \mathbb{R}^{n \times n}$ is a quasi-upper triangular matrix and T is a triangular matrix.

$$Q^T A Q = U \Rightarrow A = Q U Q^T$$

$$Q^TBQ = \tilde{B} \Rightarrow B = Q\tilde{B}Q^T$$

$$Ax = \lambda Bx$$
$$QUQ^{T}x = \lambda Q\tilde{B}Q^{T}x$$
$$UQ^{T}x = \lambda \tilde{B}Q^{T}x$$

$$\underbrace{\frac{1}{\sqrt{12}} \begin{bmatrix} -3\sqrt{12} & -8\sqrt{6} & -4\sqrt{2} \\ 0 & -\sqrt{12} & 2 \\ 0 & -6 & -\sqrt{12} \end{bmatrix}}_{U} Q^{T} x = \lambda \underbrace{\frac{1}{6} \begin{bmatrix} 2 & \sqrt{2} & \sqrt{6} \\ \sqrt{2} & 1 & \sqrt{3} \\ -\sqrt{6} & -\sqrt{3} & 3 \end{bmatrix}}_{\tilde{B}} Q^{T} x$$

$$Q^TAZ = U \Rightarrow A = QUZ^T$$

$$Q^TBZ = T \Rightarrow B = QTZ^T$$

$$Ax = \lambda Bx$$

$$QUZ^{T}x = \lambda QTZ^{T}x$$

$$UZ^{T}x = \lambda TZ^{T}x$$

Use Scilab: [U,T,Q,Z] = schur(A,B);

$$Q = \frac{1}{3\sqrt{2}} \begin{bmatrix} -3 & 2\sqrt{2} & 1\\ 3 & 2\sqrt{2} & 1\\ 0 & -\sqrt{2} & 2 \end{bmatrix}, \quad Z = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & -1 & 0\\ 0 & 0 & \sqrt{2}\\ 1 & -1 & 0 \end{bmatrix}$$

Chayan Bhawal (IIT Bombay)

$$Q^TAZ = U \Rightarrow A = QUZ^T$$

$$Q^TBZ = T \Rightarrow B = QTZ^T$$

$$Ax = \lambda Bx$$

$$QUZ^{T}x = \lambda QTZ^{T}x$$

$$UZ^{T}x = \lambda TZ^{T}x$$

Use Scilab: [U,T,Q,Z] = schur(A,B);

$$\begin{bmatrix} -1 & 1 & -\sqrt{2} \\ 0 & 3\sqrt{2} & -5 \\ 0 & 0 & \sqrt{2} \end{bmatrix} Z^{T} x = \lambda \begin{bmatrix} 1 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{3\sqrt{2}} \end{bmatrix} Z^{T} x$$

$$Q^T A Z = U \Rightarrow A = Q U Z^T \qquad \qquad Q^T B Z = T \Rightarrow B = Q T Z^T$$

$$Q^T B Z = T \Rightarrow B = Q T Z^T$$

$$Ax = \lambda Bx$$

$$QUZ^{T}x = \lambda QTZ^{T}x$$

$$UZ^{T}x = \lambda TZ^{T}x$$

Use Scilab: [U,T,Q,Z] = schur(A,B);

$$\begin{bmatrix} -1 - \lambda & 1 - \lambda & -\sqrt{2} - \frac{\lambda}{\sqrt{2}} \\ 0 & 3\sqrt{2} & -5 - \frac{2\lambda}{\sqrt{3}} \\ 0 & 0 & \sqrt{2} - \frac{\lambda}{3\sqrt{2}} \end{bmatrix} Z^T x = 0$$

Values of λ at which we have a kernel: $\{-1,6\}$. These are the finite eigenvalues of (A, B). Where is the other eigenvalue?

$$Ax = \lambda Bx$$

$$\begin{bmatrix} a_{11} & \star & \cdots & \star \\ 0 & a_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} b_{11} & \star & \cdots & \star \\ 0 & b_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & b_{nn} \end{bmatrix} Z^T x.$$

- Eigenvalues: $\{(a_{11}, b_{11}), (a_{22}, b_{22}), \cdots, (a_{nn}, b_{nn})\}$
- Finite eigenvalue: $\lambda_i = \frac{a_{ii}}{b_{ii}}$.
- For our example:

$$\begin{bmatrix} -1 & 1 & -\sqrt{2} \\ 0 & 3\sqrt{2} & -5 \\ 0 & 0 & \sqrt{2} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} 1 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{3\sqrt{2}} \end{bmatrix} Z^T x$$

• Eigenvalues: $\{(-1,1), (3\sqrt{2},0), (\sqrt{2},\frac{1}{3\sqrt{2}})\}$.

(ロ) (個) (重) (重) (重) (9)

$$Ax = \lambda Bx$$

$$\begin{bmatrix} a_{11} & \star & \cdots & \star \\ 0 & a_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} b_{11} & \star & \cdots & \star \\ 0 & b_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & b_{nn} \end{bmatrix} Z^T x.$$

- Eigenvalues: $\{(a_{11}, b_{11}), (a_{22}, b_{22}), \cdots, (a_{nn}, b_{nn})\}$
- Finite eigenvalue: $\lambda_i = \frac{a_{ii}}{b_{ii}}$.
- For our example:

$$\begin{bmatrix} -1 & 1 & -\sqrt{2} \\ 0 & 3\sqrt{2} & -5 \\ 0 & 0 & \sqrt{2} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} 1 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{3\sqrt{2}} \end{bmatrix} Z^T x$$

• Eigenvalues: $\{(-1,1), (3\sqrt{2},0), (\sqrt{2},\frac{1}{3\sqrt{2}})\}$. Finite eigenvalues: $\{-1,6\}$.

$$Ax = \lambda Bx$$

$$\begin{bmatrix} a_{11} & \star & \cdots & \star \\ 0 & a_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} b_{11} & \star & \cdots & \star \\ 0 & b_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & b_{nn} \end{bmatrix} Z^T x.$$

- Eigenvalues: $\{(a_{11}, b_{11}), (a_{22}, b_{22}), \cdots, (a_{nn}, b_{nn})\}$
- Finite eigenvalue: $\lambda_i = \frac{a_{ii}}{b_{ii}}$.
- For our example:

$$\begin{bmatrix} -1 & 1 & -\sqrt{2} \\ 0 & 3\sqrt{2} & -5 \\ 0 & 0 & \sqrt{2} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} 1 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{3\sqrt{2}} \end{bmatrix} Z^T x$$

• Eigenvalues: $\{(-1,1), (3\sqrt{2},0), (\sqrt{2}, \frac{1}{3\sqrt{2}})\}$. Finite eigenvalues: $\{-1,6\}$.

$$Ax = \lambda Bx$$

$$\begin{bmatrix} a_{11} & \star & \cdots & \star \\ 0 & a_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} b_{11} & \star & \cdots & \star \\ 0 & b_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & b_{nn} \end{bmatrix} Z^T x.$$

- Eigenvalues: $\{(a_{11}, b_{11}), (a_{22}, b_{22}), \cdots, (a_{nn}, b_{nn})\}$
- Finite eigenvalue: $\lambda_i = \frac{a_{ii}}{b_{ii}}$.
- For our example:

$$\begin{bmatrix} -1 & 1 & -\sqrt{2} \\ 0 & 3\sqrt{2} & -5 \\ 0 & 0 & \sqrt{2} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} 1 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{3\sqrt{2}} \end{bmatrix} Z^T x$$

• Eigenvalues: $\{(-1,1), (3\sqrt{2},0), (\sqrt{2}, \frac{1}{3\sqrt{2}})\}$. Finite eigenvalues: $\{-1,6\}$.

Generalized eigenvalue problem

$$Ax = \lambda Bx$$

$$\begin{bmatrix} a_{11} & \star & \cdots & \star \\ 0 & a_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix} Z^T x = \lambda \begin{bmatrix} b_{11} & \star & \cdots & \star \\ 0 & b_{22} & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & b_{nn} \end{bmatrix} Z^T x.$$

- Eigenvalues: $\{(a_{11}, b_{11}), (a_{22}, b_{22}), \cdots, (a_{nn}, b_{nn})\}$
- Finite eigenvalue: $\lambda_i = \frac{a_{ii}}{b_{ii}}$.
- For our example:

$$\begin{bmatrix} -1 & 1 & -\sqrt{2} \\ 0 & 3\sqrt{2} & -5 \\ 0 & 0 & \sqrt{2} \end{bmatrix} Z^{T} x = \lambda \begin{bmatrix} 1 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{3\sqrt{2}} \end{bmatrix} Z^{T} x$$

• Eigenvalues: $\{(-1,1), (3\sqrt{2},0), (\sqrt{2}, \frac{1}{3\sqrt{2}})\}$. Finite eigenvalues: $\{-1,6\}$.

- deg det(sI A) = n. Hence n finite eigenvalues.
- $\operatorname{deg} \operatorname{det}(sB A) \leqslant n$. Let $\operatorname{deg} \operatorname{det}(sB A) = n_f$.

Number of finite eigenvalues = n_f .

Number of inifite eigenvalue = n_{∞} .

• For our example:

$$\det(sB - A) = s^2 - 5s + 6.$$

 $n_f = 2 \text{ and } n_{\infty} = 3 - 2 = 1.$

Roots of $det(sB - A) = \{-1, 6\}$ = Finite eigenvalues of (A, B).

- deg det(sI A) = n. Hence n finite eigenvalues.
- $deg det(sB A) \leq n$. Let $deg det(sB A) = n_f$.

Number of finite eigenvalues = n_f .

Number of inifite eigenvalue = n_{∞} .

• For our example:

$$\det(sB - A) = s^2 - 5s + 6.$$

 $n_f = 2$ and $n_\infty = 3 - 2 = 1.$

Roots of $det(sB - A) = \{-1, 6\}$ = Finite eigenvalues of (A, B).

- deg det(sI A) = n. Hence n finite eigenvalues.
- $deg det(sB A) \leq n$. Let $deg det(sB A) = n_f$.

Number of finite eigenvalues = n_f .

Number of inifite eigenvalue = n_{∞} .

• For our example:

$$\det(sB - A) = s^2 - 5s + 6.$$

 $n_f = 2$ and $n_\infty = 3 - 2 = 1.$

Roots of $det(sB - A) = \{-1, 6\}$ = Finite eigenvalues of (A, B).

• deg det(sB - A) = n if and only if B is nonsingular.

$$Ax = \lambda Bx$$
 $B^{-1}Ax = \lambda x$ Never ever ever ... Too costly

- $\det(sB A) = 0 \Rightarrow \det(\lambda B A) = 0$ for any $\lambda \in \mathbb{C}$. This happens if and only if $\exists a_{ii} = b_{ii} = 0$.
- $\det(sB-A) \neq 0 \Rightarrow (sB-A)$ called regular matrix pencil.

• deg det(sB - A) = n if and only if B is nonsingular.

$$Ax = \lambda Bx$$

$$B^{-1}Ax = \lambda x$$
Never ever ever ... Too costly

- $\det(sB A) = 0 \Rightarrow \det(\lambda B A) = 0$ for any $\lambda \in \mathbb{C}$. This happens if and only if $\exists a_{ii} = b_{ii} = 0$.
- $det(sB A) \neq 0 \Rightarrow (sB A)$ called regular matrix pencil.

• deg det(sB - A) = n if and only if B is nonsingular.

$$Ax = \lambda Bx$$
 $B^{-1}Ax = \lambda x$ Never ever ever ... Too costly

- $\det(sB A) = 0 \Rightarrow \det(\lambda B A) = 0$ for any $\lambda \in \mathbb{C}$. This happens if and only if $\exists a_{ii} = b_{ii} = 0$.
- $det(sB A) \neq 0 \Rightarrow (sB A)$ called regular matrix pencil.

• deg det(sB - A) = n if and only if B is nonsingular.

$$Ax = \lambda Bx$$
 $B^{-1}Ax = \lambda x$ Never ever ever ... Too costly

- $\det(sB A) = 0 \Rightarrow \det(\lambda B A) = 0$ for any $\lambda \in \mathbb{C}$. This happens if and only if $\exists a_{ii} = b_{ii} = 0$.
- $det(sB A) \neq 0 \Rightarrow (sB A)$ called regular matrix pencil.

Application: Mechanical structures

Assume the solution is of the form $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \sin \omega t$. This leads to

$$\left(K - \omega^2 M\right) \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

↓□▶ ↓□▶ ↓ □▶ ↓ □▶ □ ♥ ♀○

Application: Mechanical structures

• Dynamic response analysis of an assemblage of structural elements

$$(K - \omega^2 M) \phi = 0$$

K is the stiffness matrix and M is the mass-matrix.

• The n solutions are

$$K\Phi = M\Phi\Omega^2$$

 $\Phi = [\Phi_1 \quad \cdots \quad \Phi_n]$ where each Φ_i are M-orthonormalized eigenvectors (free vibration modes).

 $\Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$, where each ω_i is free vibration frequency.

Application: Mechanical structures

• Dynamic response analysis of an assemblage of structural elements

$$(K - \omega^2 M) \, \phi = 0$$

K is the stiffness matrix and M is the mass-matrix.

• The n solutions are

$$K\Phi = M\Phi\Omega^2$$

 $\Phi = [\Phi_1 \quad \cdots \quad \Phi_n]$ where each Φ_i are M-orthonormalized eigenvectors (free vibration modes).

 $\Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$, where each ω_i is free vibration frequency.

- $\mathcal{V} \subseteq \mathbb{R}^n$ is called A-invariant if $Ax \in \mathcal{V}$ for all $x \in \mathcal{V}$.
- Vector space formed by the span of eigenvectors are naturally A invariant.

For example: Let $\{v_1, v_2\}$ are eigenvectors of A corresponding to eigenvalues $\{\lambda_1, \lambda_2\}$.

$$A(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 \in \langle v_1, v_2 \rangle.$$

 $\mathcal{V} = \langle v_1, v_2 \rangle$ is an A-invariant subspace.

• What is its analogy in case of generalized eigenvalue problem?

- $\mathcal{V} \subseteq \mathbb{R}^n$ is called A-invariant if $Ax \in \mathcal{V}$ for all $x \in \mathcal{V}$.
- Vector space formed by the span of eigenvectors are naturally A invariant.

For example: Let $\{v_1, v_2\}$ are eigenvectors of A corresponding to eigenvalues $\{\lambda_1, \lambda_2\}$.

$$A(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 \in \langle v_1, v_2 \rangle.$$

 $\mathcal{V} = \langle v_1, v_2 \rangle$ is an A-invariant subspace.

• What is its analogy in case of generalized eigenvalue problem?

- $\mathcal{V} \subseteq \mathbb{R}^n$ is called A-invariant if $Ax \in \mathcal{V}$ for all $x \in \mathcal{V}$.
- Vector space formed by the span of eigenvectors are naturally A invariant.

For example: Let $\{v_1, v_2\}$ are eigenvectors of A corresponding to eigenvalues $\{\lambda_1, \lambda_2\}$.

$$A(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 \in \langle v_1, v_2 \rangle.$$

 $\mathcal{V} = \langle v_1, v_2 \rangle$ is an A-invariant subspace.

• What is its analogy in case of generalized eigenvalue problem?

- $\mathcal{V} \subseteq \mathbb{R}^n$ is called A-invariant if $Ax \in \mathcal{V}$ for all $x \in \mathcal{V}$.
- Vector space formed by the span of eigenvectors are naturally A invariant.

For example: Let $\{v_1, v_2\}$ are eigenvectors of A corresponding to eigenvalues $\{\lambda_1, \lambda_2\}$.

$$A(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 \in \langle v_1, v_2 \rangle.$$

 $\mathcal{V} = \langle v_1, v_2 \rangle$ is an A-invariant subspace.

• What is its analogy in case of generalized eigenvalue problem?

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ 差 ○ からぐ

• \mathcal{X} is called deflating subspace of a matrix pair (A, B) if

$$\dim\left(B\mathcal{X}+A\mathcal{X}\right)=\dim\left(\mathcal{X}\right).$$

- Is it an arbitrary definition? NO.
- We check for the standard eigenvalue problem case. For B = I, when does

$$\dim (IX + AX) = \dim (X).$$

• \mathcal{X} is called deflating subspace of a matrix pair (A, B) if

$$\dim\left(B\mathcal{X}+A\mathcal{X}\right)=\dim\left(\mathcal{X}\right).$$

- Is it an arbitrary definition? NO.
- We check for the standard eigenvalue problem case. For B = I, when does

$$\dim (IX + AX) = \dim (X).$$

• \mathcal{X} is called deflating subspace of a matrix pair (A, B) if

$$\dim\left(B\mathcal{X}+A\mathcal{X}\right)=\dim\left(\mathcal{X}\right).$$

- Is it an arbitrary definition? NO.
- We check for the standard eigenvalue problem case. For B = I, when does

$$\dim \left(\mathbf{I}\mathcal{X} + A\mathcal{X} \right) = \dim \left(\mathcal{X} \right).$$

• \mathcal{X} is called deflating subspace of a matrix pair (A, B) if

$$\dim\left(B\mathcal{X}+A\mathcal{X}\right)=\dim\left(\mathcal{X}\right).$$

- Is it an arbitrary definition? NO.
- We check for the standard eigenvalue problem case. For B = I, when does

$$\dim \left(\mathbf{I}\mathcal{X} + A\mathcal{X} \right) = \dim \left(\mathcal{X} \right).$$

• Recall there exists $Q^T A Z = U$ and $Q^T B Z = T$.

- We want $\dim (A\mathcal{X} + B\mathcal{X}) = \dim (\mathcal{X})$. $\dim (QUZ^T\mathcal{X} + QTZ^T\mathcal{X}) = \dim (UZ^T\mathcal{X} + TZ^T\mathcal{X})$
- We want 1 dimensional deflating subspace. Chose $Z = \langle z_1 \rangle$.

$$UZ^{T}(\alpha z_{1}) + TZ^{T}(\beta z_{1}) = \alpha Ue_{1} + \beta Te_{1} = \alpha \begin{bmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \beta \begin{bmatrix} b_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$= (\alpha a_{11} + \beta b_{11}) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\dim (A\langle z_1 \rangle + B\langle z_1 \rangle) = 1 = \dim(\langle z_1 \rangle).$$

• Recall there exists $Q^T A Z = U$ and $Q^T B Z = T$.

- We want $\dim(AX + BX) = \dim(X)$. $\dim(QUZ^TX + QTZ^TX) = \dim(UZ^TX + TZ^TX)$
- We want 1 dimensional deflating subspace. Chose $Z = \langle z_1 \rangle$.

$$UZ^{T}(\alpha z_{1}) + TZ^{T}(\beta z_{1}) = \alpha Ue_{1} + \beta Te_{1} = \alpha \begin{bmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \beta \begin{bmatrix} b_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$= (\alpha a_{11} + \beta b_{11}) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\dim (A\langle z_1\rangle + B\langle z_1\rangle) = 1 = \dim(\langle z_1\rangle).$$

• Recall there exists $Q^T A Z = U$ and $Q^T B Z = T$.

- We want $\dim (A\mathcal{X} + B\mathcal{X}) = \dim (\mathcal{X})$. $\dim \left(QUZ^T\mathcal{X} + QTZ^T\mathcal{X} \right) = \dim \left(UZ^T\mathcal{X} + TZ^T\mathcal{X} \right)$
- We want 1 dimensional deflating subspace. Chose $Z = \langle z_1 \rangle$.

$$UZ^{T}(\alpha z_{1}) + TZ^{T}(\beta z_{1}) = \alpha Ue_{1} + \beta Te_{1} = \alpha \begin{bmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \beta \begin{bmatrix} b_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$= (\alpha a_{11} + \beta b_{11}) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\dim (A\langle z_1\rangle + B\langle z_1\rangle) = 1 = \dim(\langle z_1\rangle).$$

• Recall there exists $Q^T A Z = U$ and $Q^T B Z = T$.

- We want $\dim(A\mathcal{X} + B\mathcal{X}) = \dim(\mathcal{X})$. $\dim(QUZ^T\mathcal{X} + QTZ^T\mathcal{X}) = \dim(UZ^T\mathcal{X} + TZ^T\mathcal{X})$
- We want 1 dimensional deflating subspace. Chose $Z = \langle z_1 \rangle$.

$$UZ^{T}(\alpha z_{1}) + TZ^{T}(\beta z_{1}) = \alpha Ue_{1} + \beta Te_{1} = \alpha \begin{bmatrix} a_{11} \\ \vdots \\ \dot{0} \end{bmatrix} + \beta \begin{bmatrix} b_{11} \\ 0 \\ \vdots \\ \dot{0} \end{bmatrix}$$
$$= (\alpha a_{11} + \beta b_{11}) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ \dot{0} \end{bmatrix}$$

$$\dim (A\langle z_1\rangle + B\langle z_1\rangle) = 1 = \dim(\langle z_1\rangle).$$

• Recall there exists $Q^T A Z = U$ and $Q^T B Z = T$.

- We want $\dim(A\mathcal{X} + B\mathcal{X}) = \dim(\mathcal{X})$. $\dim(QUZ^T\mathcal{X} + QTZ^T\mathcal{X}) = \dim(UZ^T\mathcal{X} + TZ^T\mathcal{X})$
- We want 1 dimensional deflating subspace. Chose $Z = \langle z_1 \rangle$.

$$UZ^{T}(\alpha z_{1}) + TZ^{T}(\beta z_{1}) = \alpha Ue_{1} + \beta Te_{1} = \alpha \begin{bmatrix} a_{11} \\ \vdots \\ 0 \end{bmatrix} + \beta \begin{bmatrix} b_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$= (\alpha a_{11} + \beta b_{11}) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\dim (A\langle z_1 \rangle + B\langle z_1 \rangle) = 1 = \dim(\langle z_1 \rangle).$$

Application of deflating subspace

• Given a, b, c, solve

$$ax^2 + bx + c = 0.$$

Too easy

• Try this: Find $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$A^{T}K + KA + KBR^{-1}B^{T}K - Q = 0.$$

where
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times p}$, $Q = Q^T \in \mathbb{R}^{n \times n}$ and $R = R^T \in \mathbb{R}^{p \times p}$.

• Deflating subspaces of Generalized eigenvalue problem helps.

Application of deflating subspace

• Given a, b, c, solve

$$ax^2 + bx + c = 0.$$

Too easy

• Try this: Find $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$A^{T}K + KA + KBR^{-1}B^{T}K - Q = 0.$$

where
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times p}$, $Q = Q^T \in \mathbb{R}^{n \times n}$ and $R = R^T \in \mathbb{R}^{p \times p}$.

• Deflating subspaces of Generalized eigenvalue problem helps.

Application of deflating subspace

• Given a, b, c, solve

$$ax^2 + bx + c = 0.$$

Too easy

• Try this: Find $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$A^TK + KA + KBR^{-1}B^TK - Q = 0.$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $Q = Q^T \in \mathbb{R}^{n \times n}$ and $R = R^T \in \mathbb{R}^{p \times p}$.

• Deflating subspaces of Generalized eigenvalue problem helps.

Riccati equation

• LQR Optimal control problem: Given the stabilizable system

$$\frac{d}{dt}x = Ax + Bu$$

find the control u(t) = -Kx(t) minimizing the functional

$$J = \int_0^\infty [x(t)^T Q x(t) + u(t)^T R u(t)] dt,$$

where (A, Q) is detectable, $Q \ge 0$ and R > 0.

• Solutions of Riccati equation solves the LQR problem

$$A^{T}K + KA + KBR^{-1}B^{T}K - Q = 0.$$

Riccati equation

• LQR Optimal control problem: Given the stabilizable system

$$\frac{d}{dt}x = Ax + Bu$$

find the control u(t) = -Kx(t) minimizing the functional

$$J = \int_0^\infty [x(t)^T Q x(t) + u(t)^T R u(t)] dt,$$

where (A, Q) is detectable, $Q \ge 0$ and R > 0.

• Solutions of Riccati equation solves the LQR problem

$$A^TK + KA + KBR^{-1}B^TK - Q = 0.$$

Riccati equation and deflating subspaces

• P. Van Dooren² showed that deflating subspace of a special matrix pencils solves the problem.

$$s\underbrace{\begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} - \underbrace{\begin{bmatrix} A & 0 & B \\ Q & -A^{T} & 0 \\ 0 & -B^{T} & R \end{bmatrix}}_{H}$$

• Chosen n-dimensional deflating subspace* of the pair (H, E).

$$V = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \in \mathbb{R}^{(2\mathbf{n} + \mathbf{p}) \times \mathbf{n}}$$

Then,

$$K = X_2 X_1^{-1}$$

²P. Van Dooren, A Generalized eigenvalue approach for solving Riccati equations, SIAM Journal on Scientific and Statistical Computing, 2.2 (1981): 121-135

Riccati equation and deflating subspaces

• P. Van Dooren² showed that deflating subspace of a special matrix pencils solves the problem.

$$s\underbrace{\begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} - \underbrace{\begin{bmatrix} A & 0 & B \\ Q & -A^{T} & 0 \\ 0 & -B^{T} & R \end{bmatrix}}_{H}$$

• Chosen n-dimensional deflating subspace* of the pair (H, E).

$$V = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \in \mathbb{R}^{(2\mathbf{n} + \mathbf{p}) \times \mathbf{n}}$$

Then,

$$K = X_2 X_1^{-1}$$

²P. Van Dooren, A Generalized eigenvalue approach for solving Riccati equations, SIAM Journal on Scientific and Statistical Computing, 2.2 (1981): 121-135 23 / 30

- Standard eigenvalue problems have canonical forms like Jordan canonical form. What do we have for the generalized case?
- There exists nonsingular P and Q such that any pencil $\lambda B A$ has a canonical quasi-diagonal form $P(\lambda B A)Q =$

$$\operatorname{block\,diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right).$$

$$\begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & -1 \end{bmatrix}$$

- \tilde{L}_v is a $(v+1) \times v$ matrix with λ along the diagonal and -1 along the first subdiagonal.
- \bullet N is a nilpotent Jordan matrix.
- J is in Jordan (or in rational) form.

• There exists nonsingular P and Q such that any pencil $\lambda B - A$ has a canonical quasi-diagonal form

$$P(\lambda B-A)Q=\begin{bmatrix} L_{\mu_1} & & & & \\ & \ddots & & & \\ & & \tilde{L}_{v_1} & & & \\ & & & \tilde{L}_{v_\ell} & & \\ & & & \lambda N-I & \\ & & & \lambda I-J \end{bmatrix}$$
 here exists nonsingular P and Q such that any pencil $\lambda B-A$ as a canonical quasi-diagonal form $P(\lambda B-A)Q=A$

• There exists nonsingular P and Q such that any pencil $\lambda B - A$

block diag
$$(L_{\mu_1}, \cdots, L_{\mu_k}, \tilde{L}_{v_1}, \cdots, \tilde{L}_{\mu_\ell}, \lambda N - I, \lambda I - J)$$
.

• There exists nonsingular P and Q such that any pencil $\lambda B - A$ has a canonical quasi-diagonal form $P(\lambda B - A)Q =$

$${\tt block\,diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right).$$

$$\begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & -1 \end{bmatrix}$$

- \tilde{L}_v is a $(v+1) \times v$ matrix with λ along the diagonal and -1 along the first subdiagonal.
- \bullet N is a nilpotent Jordan matrix.
- J is in Jordan (or in rational) form.

• There exists nonsingular P and Q such that any pencil $\lambda B - A$ has a canonical quasi-diagonal form $P(\lambda B - A)Q =$

$$\operatorname{block\,diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right).$$

$$\begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & -1 \end{bmatrix}$$

- \tilde{L}_v is a $(v+1) \times v$ matrix with λ along the diagonal and -1 along the first subdiagonal.
- \bullet N is a nilpotent Jordan matrix.
- J is in Jordan (or in rational) form.

• There exists nonsingular P and Q such that any pencil $\lambda B - A$ has a canonical quasi-diagonal form $P(\lambda B - A)Q =$

$$\operatorname{block\,diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right).$$

$$\begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & -1 \end{bmatrix}$$

- \tilde{L}_v is a $(v+1) \times v$ matrix with λ along the diagonal and -1 along the first subdiagonal.
- \bullet N is a nilpotent Jordan matrix.
- J is in Jordan (or in rational) form.

Canonical form

• There exists nonsingular P and Q such that any pencil $\lambda B - A$ has a canonical quasi-diagonal form $P(\lambda B - A)Q =$

$$\operatorname{block\,diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right).$$

• L_{μ} is a $\mu \times (\mu + 1)$ matrix of the form

$$\begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & -1 \end{bmatrix}$$

- \tilde{L}_v is a $(v+1) \times v$ matrix with λ along the diagonal and -1 along the first subdiagonal.
- \bullet N is a nilpotent Jordan matrix.
- J is in Jordan (or in rational) form.

Canonical form

• There exists nonsingular P and Q such that any pencil $\lambda B - A$ has a canonical quasi-diagonal form $P(\lambda B - A)Q =$

$$\operatorname{block\,diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right).$$

• L_{μ} is a $\mu \times (\mu + 1)$ matrix of the form

$$\begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & -1 \end{bmatrix}$$

- \tilde{L}_v is a $(v+1) \times v$ matrix with λ along the diagonal and -1 along the first subdiagonal.
- \bullet N is a nilpotent Jordan matrix.
- \bullet J is in Jordan (or in rational) form.

Some features of Kronecker canonical form

- $\begin{array}{l} \bullet \ P(\lambda B-A)Q = \\ \text{block} \operatorname{diag}\left(L_{\mu_1}, \cdots, L_{\mu_k}, \tilde{L}_{v_1}, \cdots, \tilde{L}_{\mu_\ell}, \lambda N-I, \lambda I-J\right). \end{array}$
- Matrices L_{μ} and \tilde{L}_{v} will not appear if the pencil is regular, i.e. $\det(sB-A)\neq 0$.
- For regular pencils:

$$P(\lambda B - A)Q = exttt{block diag}\left(\lambda N - I, \lambda I - J
ight)$$

• For pencils with only finite eigenvalues (B is invertible):

$$P(\lambda B - A)Q = (\lambda I - J).$$

Guess what will be PB^{-1} ?

Some features of Kronecker canonical form

- $\begin{array}{l} \bullet \ P(\lambda B-A)Q = \\ \quad \text{block} \operatorname{diag}\left(L_{\mu_1},\cdots,L_{\mu_k},\tilde{L}_{v_1},\cdots,\tilde{L}_{\mu_\ell},\lambda N-I,\lambda I-J\right). \end{array}$
- Matrices L_{μ} and \tilde{L}_{v} will not appear if the pencil is regular, i.e. $\det(sB-A)\neq 0$.
- For regular pencils:

$$P(\lambda B - A)Q = \operatorname{block}\operatorname{diag}\left(\lambda N - I,\lambda I - J\right)$$

• For pencils with only finite eigenvalues (B is invertible):

$$P(\lambda B - A)Q = (\lambda I - J).$$

Guess what will be PB^{-1} ?

Some features of Kronecker canonical form

- $\begin{array}{l} \bullet \ P(\lambda B-A)Q = \\ \text{block}\, \text{diag} \left(L_{\mu_1}, \cdots, L_{\mu_k}, \tilde{L}_{v_1}, \cdots, \tilde{L}_{\mu_\ell}, \lambda N-I, \lambda I-J\right). \end{array}$
- Matrices L_{μ} and \tilde{L}_{v} will not appear if the pencil is regular, i.e. $\det(sB-A)\neq 0$.
- For regular pencils:

$$P(\lambda B - A)Q = \operatorname{block}\operatorname{diag}\left(\lambda N - I,\lambda I - J\right)$$

• For pencils with only finite eigenvalues (B is invertible):

$$P(\lambda B - A)Q = (\lambda I - J).$$

Guess what will be PB^{-1} ?

Application

$$\begin{bmatrix} L & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} i(t) \\ v_L(t) \\ v_C(t) \\ v_R(t) \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{C} & 0 & 0 & 0 \\ -R & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} i(t) \\ v_L(t) \\ v_C(t) \\ v_R(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} V_s(t)$$

Application: RLC network

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\frac{d}{dt} \begin{bmatrix} i(t) \\ v_L(t) \\ v_C(t) \\ v_R(t) \end{bmatrix}}_{C} = \underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} i(t) \\ v_L(t) \\ v_C(t) \\ v_R(t) \end{bmatrix}}_{C} + \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}}_{C} V_s(t)$$

Application: Descriptor system

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} i(t) \\ v_L(t) \\ v_C(t) \\ v_R(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} i(t) \\ v_L(t) \\ v_C(t) \\ v_R(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} V_s(t)$$

Use Scilab: [P,Q,i] = pencan(E,A).

$$\begin{split} &P(\lambda E - A)Q = \lambda \begin{bmatrix} I & \\ & N \end{bmatrix} - \begin{bmatrix} J & \\ & I \end{bmatrix} \\ \Rightarrow \lambda E - A = \lambda P^{-1} \begin{bmatrix} I & \\ & N \end{bmatrix} Q^{-1} - P^{-1} \begin{bmatrix} J & \\ & I \end{bmatrix} Q^{-1} \end{split}$$

Application: Descriptor system

You can easily compute the solutions to the differential equation.

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.816 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -0.057 \end{bmatrix} \dot{x}(t) = \frac{1}{\sqrt{6}} \begin{bmatrix} 2\sqrt{3} & \sqrt{3} & \sqrt{3} & -\sqrt{3} \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & \sqrt{6} \\ 0 & 0 & \sqrt{2} & \sqrt{2} \end{bmatrix} x(t) + \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{6} \\ 0 \\ -\frac{1}{\sqrt{3}} \end{bmatrix} V_s(t)$$

Application: Descriptor system

You can easily compute the solutions to the differential equation.

Try Scilab: [P,Q] = kroneck(E,A).

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.816 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -0.057 \end{bmatrix} \dot{x}(t) = \frac{1}{\sqrt{6}} \begin{bmatrix} 2\sqrt{3} & \sqrt{3} & \sqrt{3} & -\sqrt{3} \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & \sqrt{6} \\ 0 & 0 & \sqrt{2} & \sqrt{2} \end{bmatrix} x(t) + \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{6} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix} V_s(t)$$

Conclusion

Properties	Standard Eigenvalue Problem	Generalized Eigenvalue Problem
Eigenvalues	λ	Pairs (α, β)
Number of	— n	≤ n
eigenvalues	= n	n 🤘
Geometry	Invariant subspaces	Deflating subspaces
Canonical Forms	Jordan	Kronecker canonical form

• Does the generalization end here?

 $(\lambda^2 A_2 + \lambda A_1 + A_0)x = 0$ or $(\sum_{i=0}^k \lambda^i A_i)x = 0$ or $R(\lambda)x = 0$. Canonical form: Smith canonical form.

4□ > 4□ > 4 = > 4 = > = 9 < ○

Conclusion

Properties	Standard Eigenvalue Problem	Generalized Eigenvalue Problem
Eigenvalues	λ	Pairs (α, β)
Number of		
eigenvalues	= n	≤ n
Geometry	Invariant subspaces	Deflating subspaces
Canonical Forms	Jordan	Kronecker canonical form

• Does the generalization end here?

$$(\lambda^2 A_2 + \lambda A_1 + A_0)x = 0 \text{ or } (\sum_{i=0}^k \lambda^i A_i)x = 0 \text{ or } R(\lambda)x = 0.$$

Canonical form: Smith canonical form.

Chayan Bhawal (IIT Bombay)

Conclusion

Properties	Standard Eigenvalue Problem	Generalized Eigenvalue Problem
Eigenvalues	λ	Pairs (α, β)
Number of	= n	≤ n
eigenvalues		
Geometry	Invariant subspaces	Deflating subspaces
Canonical Forms	Jordan	Kronecker canonical form

• Does the generalization end here?

$$(\lambda^2 A_2 + \lambda A_1 + A_0)x = 0 \text{ or } (\sum_{i=0}^k \lambda^i A_i)x = 0 \text{ or } R(\lambda)x = 0.$$

Canonical form: Smith canonical form.

Chayan Bhawal (IIT Bombay)

Thank You