In [68]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [69]: data = pd.read_csv(r"C:\Users\DD\Desktop\ML PROJECTS\Unsupervised Learning\Mall_Customers.csv")

In [70]: data

Out[70]:

_		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19.0	15	39.0
	1	2	Male	21.0	15	81.0
	2	3	Female	20.0	16	6.0
	3	4	Female	23.0	16	77.0
	4	5	Female	31.0	17	40.0
	195	196	Female	NaN	120	79.0
	196	197	Female	NaN	126	28.0
	197	198	Male	NaN	126	74.0
	198	199	Male	NaN	137	18.0
	199	200	Male	30.0	137	83.0

200 rows × 5 columns


```
In [71]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

Duc	a coramiis (cocar s corami	15).					
#	Column	Non-Null Count	Dtype				
0	CustomerID	200 non-null	int64				
1	Gender	200 non-null	object				
2	Age	190 non-null	float64				
3	Annual Income (k\$)	200 non-null	int64				
4	Spending Score (1-100)	187 non-null	float64				
<pre>dtypes: float64(2), int64(2), object(1)</pre>							
memory usage: 7.9+ KB							

In [72]: data.describe()

Out[72]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	190.000000	200.000000	187.000000
mean	100.500000	39.047368	60.560000	50.379679
std	57.879185	14.240670	26.264721	25.267392
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.000000	41.500000	35.000000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	71.500000
max	200.000000	70.000000	137.000000	99.000000

In [73]: data.isnull().sum()

Out[73]: CustomerID

CustomerID 0
Gender 0
Age 10
Annual Income (k\$) 0
Spending Score (1-100) 13

dtype: int64


```
data['Age'].fillna(data['Age'].median(),inplace=True)
In [74]:
          data['Spending Score (1-100)'].fillna(data['Spending Score (1-100)'].median(),inplace=True)
         sns.heatmap(data.isnull(),yticklabels=False,cmap="viridis")
In [75]:
Out[75]: <Axes: >
                                                                                                                     - 0.100
                                                                                                                    - 0.075
                                                                                                                     - 0.050
                                                                                                                     - 0.025
                                                                                                                     - 0.000
                                                                                                                      -0.025
                                                                                                                     -0.050
                                                                                                                     - -0.075
```

Age

Annual Income (k\$)

-0.100

Spending Score (1-100)

CustomerID

Gender

In [76]: sns.pairplot(data)

Out[76]: <seaborn.axisgrid.PairGrid at 0x19b2c777690>

Annual Income (k\$)

```
In [77]: numeric_columns = data.select_dtypes(include=np.number).columns.tolist()
    for i in numeric_columns:
        sns.boxplot(x=data[i])
        plt.show()
Age
```

Age

Spending Score (1-100)

CustomerID

```
In [78]: import warnings
warnings.filterwarnings('ignore')

plt.rcParams['figure.figsize'] = (14, 6)

plt.subplot(1, 2, 1)
sns.set(style = 'whitegrid')
sns.distplot(data['Annual Income (k$)'])
plt.title('Distribution of Annual Income', fontsize = 15)
plt.xlabel('Range of Annual Income')
plt.ylabel('Count')
Out[78]: Text(0, 0.5, 'Count')
```



```
In [79]: plt.subplot(1, 2, 2)
    sns.set(style = 'whitegrid')
    sns.distplot(data['Age'], color = 'orange')
    plt.title('Distribution of Age', fontsize = 15)
    plt.xlabel('Range of Age')
    plt.ylabel('Count')
    plt.show()
```



```
In [80]: labels = ['Female', 'Male']
size = data['Gender'].value_counts()
colors = ['blue', 'orange']

plt.pie(size, colors = colors, labels = labels, shadow = True, autopct = '%.2f%')
plt.title('Gender', fontsize = 15)
plt.axis('off')
plt.legend()
plt.show()
```

Gender


```
In [81]: sns.kdeplot(x='Age',data=data)
```

Out[81]: <Axes: xlabel='Age', ylabel='Density'>


```
In [82]: sns.histplot(data['Age'])
    plt.title('Distribution of Age')
    plt.xlabel('Range of Age')
    plt.ylabel('Count')
    plt.show()
```



```
In [83]: sns.lineplot(x='Gender',y='Gender',data=data)
```

Out[83]: <Axes: xlabel='Gender', ylabel='Gender'>


```
In [84]: x = data['Annual Income (k$)']
y = data['Age']
z = data['Spending Score (1-100)']

sns.lineplot(x=x, y=y, color='green')
sns.lineplot(x=x, y=z, color='orange')
plt.title('Annual Income vs Age and Spending Score', fontsize=15)
plt.show()
```



```
In [85]: sns.kdeplot(x='Annual Income (k$)',data=data)
```

Out[85]: <Axes: xlabel='Annual Income (k\$)', ylabel='Density'>


```
In [86]: sns.histplot(x='Gender',data=data)
```

Out[86]: <Axes: xlabel='Gender', ylabel='Count'>

In [87]: sns.histplot(x='Spending Score (1-100)',data=data)

Out[87]: <Axes: xlabel='Spending Score (1-100)', ylabel='Count'>


```
In [88]: sns.stripplot(x=data['Gender'], y=data['Age'], palette='Purples')
    plt.title('Gender vs Age')
    plt.show()
```



```
In [89]: sns.violinplot(x=data['Gender'], y=data['Annual Income (k$)'], palette='rainbow')
   plt.title('Gender vs Annual Income')
   plt.show()
```



```
In [90]: from scipy.stats import zscore
    z_scores = zscore(data['Annual Income (k$)'])
    z_score_outliers=(z_scores<-3)|(z_scores>3)
    z_score_outlier_rows=data[z_score_outliers]
    print("outliers detected by Z-score:",z_score_outlier_rows)
    outliers detected by Z-score: Empty DataFrame
```

Columns: [CustomerID, Gender, Age, Annual Income (k\$), Spending Score (1-100)] Index: []


```
In [91]: x=(z_scores>-3)&(z_scores<3)
df=data[x]
df</pre>
```

Out[91]:

CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
1	Male	19.0	15	39.0
2	Male	21.0	15	81.0
3	Female	20.0	16	6.0
4	Female	23.0	16	77.0
5	Female	31.0	17	40.0
196	Female	36.0	120	79.0
197	Female	36.0	126	28.0
198	Male	36.0	126	74.0
199	Male	36.0	137	18.0
200	Male	30.0	137	83.0
	1 2 3 4 5 196 197 198 199	1 Male 2 Male 3 Female 4 Female 5 Female 196 Female 197 Female 198 Male 199 Male	1 Male 19.0 2 Male 21.0 3 Female 20.0 4 Female 23.0 5 Female 31.0 196 Female 36.0 197 Female 36.0 198 Male 36.0 199 Male 36.0	2 Male 21.0 15 3 Female 20.0 16 4 Female 23.0 16 5 Female 31.0 17 196 Female 36.0 120 197 Female 36.0 126 198 Male 36.0 126 199 Male 36.0 137

200 rows × 5 columns

K-Means Clustering

feature scaling

```
In [92]: #set the 'Gender' column as the index of the DataFrame 'data'
data.set_index('Gender',inplace = True)
```



```
In [93]: #Heatmap of the data
plt.figure(figsize = (8,6))
sns.heatmap(data.corr(),annot = True,cmap="YlGnBu")
plt.show()
```



```
from sklearn.preprocessing import StandardScaler
In [94]:
          scaler = StandardScaler()
In [95]: #instantiate and fit 'StandardScaler' function
          gender_scaler = scaler.fit_transform(data)
In [96]: #new dataframe of the scaled features
          gender_scaler = pd.DataFrame(gender scaler)
          gender_scaler.columns = ['CustomerID', 'Age', 'Annual Income (k$)', 'Spending Score (1-100)']
          #to display top five rows
          gender_scaler.head()
Out[96]:
             CustomerID
                             Age Annual Income (k$) Spending Score (1-100)
              -1.723412 -1.435484
                                         -1.738999
                                                              -0.465996
               -1.706091 -1.291178
                                         -1.738999
                                                              1.257635
              -1.688771 -1.363331
                                         -1.700830
          2
                                                             -1.820277
          3
               -1.671450 -1.146872
                                         -1.700830
                                                              1.093479
               -1.654129 -0.569648
                                         -1.662660
                                                             -0.424957
In [97]: #Importing libraries required for KMeans
          from sklearn.cluster import KMeans
```


from sklearn.metrics import silhouette_score

```
In [98]: #create a list for different values of k
          n_{clusters} = [4, 5, 6, 7, 8]
          for K in n clusters :
              cluster = KMeans(n_clusters=K, random_state=10)
              predict = cluster.fit_predict(gender_scaler)
              score = silhouette_score(gender_scaler, predict, random_state=10)
              print("For n_clusters = {}, silhouette score is {})".format(K, score))
          For n_clusters = 4, silhouette score is 0.3940736473040689)
          For n_clusters = 5, silhouette score is 0.3783523335126997)
          For n_clusters = 6, silhouette score is 0.396794439779569)
          For n_clusters = 7, silhouette score is 0.3731111105185087)
          For n_clusters = 8, silhouette score is 0.3628265445047377)
 In [99]: wcss = []
                                           #Create an empty list to store the WCSS values
          K = range(1,10)
                                           #Set a range of values for the number of clusters (K)
          # Loop through each value of K
          for k in K:
              kmeanModel = KMeans(n_clusters=k)
              kmeanModel.fit(gender scaler)
              wcss.append(kmeanModel.inertia )
In [100]: wcss
Out[100]: [799.999999999998,
           515.1159818402758,
           378.86248891036837,
           268.1336994823401,
           221.5841139517122,
           179.1720378318771,
           162.6897410058919,
           147.53858594961417,
           132.10461324044832]
```



```
In [101]: #Elbow Method
plt.figure(figsize=(10,8))

# Plotting the WCSS values against the number of clusters (K)
plt.plot(K, wcss, 'bx-')  #'bx-' specifies blue color marker type xand line style '-'
plt.xlabel('k')
plt.ylabel('WCSS')
plt.title('The Elbow Method showing the optimal k')
plt.show()
```


K-Means Clustering with K= 6

```
In [102]: #building a K-Means model for k=6
    model = KMeans(n_clusters=6, random_state=10)
    #fit the model
    model.fit(gender_scaler)

Out[102]: KMeans(n_clusters=6, random_state=10)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [103]: data_output = data.copy(deep = True)
    #add a column 'cluster' in the data giving cluster number corresponding to each observation
    data_output['Cluster'] = model.labels_
    #head to display top 5 rows
    data_output.head()
```

Out[103]:	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
-----------	------------	-----	---------------------	------------------------	---------

Gender					
Male	1	19.0	15	39.0	4
Male	2	21.0	15	81.0	4
Female	3	20.0	16	6.0	1
Female	4	23.0	16	77.0	4
Female	5	31.0	17	40.0	4

In [104]: #Shape of data_output
data_output.shape

Out[104]: (200, 5)

O - -- -I - --


```
In [106]: sns.countplot(data=data_output, x='Cluster')
   plt.title('Cluster Sizes', fontsize=15)
   plt.xlabel('Clusters', fontsize=15)
   plt.ylabel('No values', fontsize=15)
   plt.text(x=0.18, y=60, s=np.unique(model.labels_, return_counts=True)[1][0])
   plt.text(x=0.9, y=20, s=np.unique(model.labels_, return_counts=True)[1][1])
   plt.text(x=1.85, y=10, s=np.unique(model.labels_, return_counts=True)[1][2])
   plt.text(x=2.85, y=5, s=np.unique(model.labels_, return_counts=True)[1][3])
```

37

Hierarchical clustering

```
In [110]: import scipy.cluster.hierarchy as sch
from sklearn.preprocessing import scale as s
from scipy.cluster.hierarchy import dendrogram, linkage
```



```
In [111]: Z = sch.linkage(gender_scaler,method='ward')
Out[111]: array([[2.10000000e+01, 2.30000000e+01, 5.15454685e-02, 2.00000000e+00],
                  [1.29000000e+02, 1.31000000e+02, 8.00380307e-02, 2.000000000e+00],
                  [6.50000000e+01, 6.80000000e+01, 8.89163869e-02, 2.00000000e+00],
                  [1.530000000e+02, 1.560000000e+02, 8.89163869e-02, 2.000000000e+00],
                  [1.06000000e+02, 1.09000000e+02, 9.71432333e-02, 2.00000000e+00],
                  [3.00000000e+00, 5.00000000e+00, 9.77096554e-02, 2.00000000e+00],
                  [1.14000000e+02, 1.15000000e+02, 1.10647206e-01, 2.00000000e+00],
                  [9.20000000e+01, 9.60000000e+01, 1.29394423e-01, 2.00000000e+00],
                  [1.33000000e+02, 1.37000000e+02, 1.34906716e-01, 2.00000000e+00],
                  [1.17000000e+02, 1.19000000e+02, 1.37733249e-01, 2.00000000e+00],
                  [4.80000000e+01, 4.90000000e+01, 1.45341780e-01, 2.00000000e+00],
                  [1.13000000e+02, 2.06000000e+02, 1.57442484e-01, 3.000000000e+00],
                  [8.40000000e+01, 8.70000000e+01, 1.66598355e-01, 2.00000000e+00],
                  [8.30000000e+01, 8.50000000e+01, 1.69590671e-01, 2.00000000e+00],
                  [1.10000000e+02, 2.04000000e+02, 1.72196666e-01, 3.00000000e+00],
                  [1.000000000e+02, 1.05000000e+02, 1.73229899e-01, 2.00000000e+00],
                  [4.60000000e+01, 5.00000000e+01, 1.76043924e-01, 2.00000000e+00],
                  [7.200000000e+01, 7.40000000e+01, 1.90927504e-01, 2.00000000e+00],
                  [6.20000000e+01, 6.70000000e+01, 2.02756283e-01, 2.00000000e+00],
```



```
In [112]: den = sch.dendrogram(Z)
    plt.tick_params(
        axis='x',
        which='both',
        bottom=False,
        top=False,
        labelbottom=False)
    plt.title('Hierarchical Clustering')
```

Out[112]: Text(0.5, 1.0, 'Hierarchical Clustering')

In [113]: from sklearn.cluster import AgglomerativeClustering

In [114]: hc_model = AgglomerativeClustering(n_clusters = 2, affinity = 'euclidean', linkage = 'ward')


```
In [115]: y_cluster = hc_model.fit_predict(gender_scaler)
In [116]: y_cluster
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
            0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 1], dtype=int64)
In [117]: data out = gender scaler.copy(deep = True)
       data out['Cluster'] = hc model.labels
       data out.head()
Out[117]:
                   Age Annual Income (k$) Spending Score (1-100) Cluster
         CustomerID
          -1.723412 -1.435484
                           -1.738999
                                         -0.465996
                                                  0
       0
          -1.706091 -1.291178
                           -1.738999
                                         1.257635
                                                  0
       1
         -1.688771 -1.363331
                           -1.700830
                                         -1.820277
                                                  0
       3
         -1.671450 -1.146872
                           -1.700830
                                         1.093479
                                                  0
          -1.654129 -0.569648
                           -1.662660
                                         -0.424957
                                                  0
In [152]: silhouette avg = silhouette score(gender scaler, y cluster)
       print(f"Silhouette Score: {silhouette avg}")
       Silhouette Score: 0.30765207464216293
In [119]: | calinski_harabasz_index = calinski_harabasz_score(gender_scaler, y_cluster)
       print(f"Calinski-Harabasz Index: {calinski harabasz index}")
       Calinski-Harabasz Index: 95.12518004324022
```

In [67]: davies_bouldin_index = davies_bouldin_score(gender_scaler, y_cluster)
 print(f"Davies-Bouldin Index: {davies_bouldin_index}")

Davies-Bouldin Index: 1.3122719763348933

In [124]: #Scatter plot of child_mort in x-axis and income in y-axis with different colors indicating the cluster assign
sns.scatterplot(x='Age',y='Annual Income (k\$)',hue='ClusterID',data=data_cluster,palette=['green','orange','br
plt.show()

In [164]: #Scatter plot of child_mort in x-axis and income in y-axis with different colors indicating the cluster assign
sns.scatterplot(x='Annual Income (k\$)',y='Spending Score (1-100)',hue='ClusterID',data=data_cluster,palette=['
plt.show()

In [130]: #Importing libraries required for Hierarchical clustering
import scipy.cluster.hierarchy as sch
from sklearn.preprocessing import scale as s
from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree


```
In [131]: Z = sch.linkage(gender_scaler, method='ward')
                                                               #Using linkage function to perform hierarchical clustering
                                                                                                                         \triangle
                  [1.52000000e+02, 1.54000000e+02, 2.19213451e-01, 2.00000000e+00],
                  [3.30000000e+01, 3.50000000e+01, 2.19213451e-01, 2.00000000e+00],
                  [5.40000000e+01, 5.60000000e+01, 2.23534379e-01, 2.00000000e+00],
                  [1.430000000e+02, 1.49000000e+02, 2.29368224e-01, 2.000000000e+00],
                  [1.34000000e+02, 1.38000000e+02, 2.31446988e-01, 2.00000000e+00],
                  [9.500000000e+01, 9.70000000e+01, 2.34075367e-01, 2.00000000e+00],
                  [4.30000000e+01, 5.10000000e+01, 2.34138930e-01, 2.00000000e+00],
                  [1.81000000e+02, 1.83000000e+02, 2.37166994e-01, 2.00000000e+00],
                  [7.500000000e+01, 7.80000000e+01, 2.37257908e-01, 2.00000000e+00],
                  [6.100000000e+01, 2.02000000e+02, 2.39864749e-01, 3.00000000e+00],
                 [7.90000000e+01, 2.13000000e+02, 2.40782277e-01, 3.00000000e+00],
                  [1.03000000e+02, 2.31000000e+02, 2.55020166e-01, 3.00000000e+00],
                  [5.90000000e+01, 2.28000000e+02, 2.58799915e-01, 3.00000000e+00],
                 [1.63000000e+02, 1.67000000e+02, 2.62266503e-01, 2.00000000e+00],
                  [1.000000000e+00, 2.05000000e+02, 2.62796446e-01, 3.00000000e+00],
                  [1.41000000e+02, 2.29000000e+02, 2.64924172e-01, 3.00000000e+00],
                  [1.30000000e+02, 1.36000000e+02, 2.64988941e-01, 2.00000000e+00],
                 [1.730000000e+02, 1.79000000e+02, 2.74210974e-01, 2.000000000e+00],
                 [1.71000000e+02, 1.77000000e+02, 2.79452848e-01, 2.00000000e+00],
                  [0 00000000.101 1 200000000.102 2 04740674 01 4 00000000.100]
```


In [132]: #Creating and Plotting a Dendrogram den = sch.dendrogram(Z) #Dendrogram plot based on the hierarchical clustering linkage matrix Z. plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plt.title('Hierarchical Clustering')

Out[132]: Text(0.5, 1.0, 'Hierarchical Clustering')


```
In [134]: hc_model = AgglomerativeClustering(n_clusters = 2, affinity = 'euclidean', linkage ='ward')
In [135]: y_cluster = hc_model.fit_predict(gender_scaler)
In [136]: data_clustered = gender_scaler.copy()
In [137]: data_clustered["Cluster"] = y_cluster.astype('object')
```

