

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

CAMOS CO., LTD. #424-9, Chongchon-2dong, Pupyong-ku, Inchon-si, Korea

Dates of Tests: April 2 ~ 6, 2007 Test Report S/N: DR50110704D Test Site: DIGITAL EMC CO., LTD.

FCC ID

APPLICANT

U6CCAMOS-BHS500

CAMOS CO., LTD.

FCC Classification : Frequency Hopping Spread Spectrum (FHSS)

Device name : Motorcycle Bluetooth System

Manufacturer : CAMOS CO., LTD. FCC ID : U6CCAMOS-BHS500

Model name : BHS-500

Test Device Serial number : Identical prototype

FCC Rule Part(s) : FCC Part 15.247 Subpart C

ANSI C-63.4-2003

Frequency Range : 2402 ~ 2480 MHz

Max. Output power : 2.73dBm Conducted

Data of issue : April 10, 2007

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

NVLAP LAB CODE 200559-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TRANSMITTER REQUIREMENTS	6
3.2.1 CARRIER FREQUENCY SEPARATION	6
3.2.2 NUMBER OF HOPPING FREQUENCIES	8
3.2.3 20 dB BANDWIDTH	11
3.2.4 TIME OF OCCUPANCY (Dwell Time)	14
3.2.5 PEAK OUTPUT POWER	18
3.2.6 CONDUCTED SPURIOUS EMISSIONS	21
3.2.7 RADIATED EMISSIONS	28
3.2.8 AC LINE CONDUCTED EMISSIONS	35
APPENDIX TEST EQUIPMENT FOR TESTS	40
ALLENDIA TEST EQUITMENT FOR TESTS	40

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 http://www.digitalemc.com E-mail: Harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200559-0.

Test operator: engineer

April 10,2007 Won-Jung LEE

Data Name Signature

Report Reviewed By: manager

April 10,2007 Harvay Sung

Data Name Signature

Ordering party:

Company name : CAMOS CO., LTD.

Address : #424-9, Chongchon-2dong, Pupyong-ku

City/town : Inchon-si
Country : Korea
Zip code : 403-858

Date of order : March 14, 2007

2. Information about test item

U6CCAMOS-BHS500

2.1 Equipment information

Equipment model no.	BHS-500
Equipment serial no.	Identical prototype
Type of equipment	Bluetooth Headset
Frequency band	2402 ~ 2480 MHz
Type of Modulation	GFSK
Channel Access Protocol	Frequency Hopping
Channel Spacing	1.0 MHz
Type of antenna	Chip Antenna

2.2 Tested frequency

Frequency	TX	RX
Low frequency	2402MHz	2402MHz
Middle frequency	2441MHz	2441MHz
High frequency	2480MHz	2480MHz

2.3 Tested environment

Temperature	:	15 ~ 35 (°C)
Relative humidity content	:	20 ~ 75 %
Air pressure	:	86 ~ 103 kPa
Details of power supply	:	5.0 VDC

2.4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Adaptor	SP0507A	SB0610001978	Seung Bo ElecomCo., Ltd
-	-	-	-

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

-> None

3. Test Report

3.1 Summary of tests

FCC Part	Parameter	Limit	Test	Status
Section(s)	Parameter	Limit	Condition	(note 1)
I. Test Items				
	Carrier Frequency Separation	> 25 kHz		С
	Number of Hopping Frequencies	> 75 hops		С
15.247(a)	20 dB Bandwidth	< 1 MHz		С
	Dwell Time	0.4 seconds within a 30 second period per any frequency	Conducted	С
15.247(b)	Transmitter Output Power	< 1Watt		С
	Band-edge /Conducted	The radiated emission to any 100 kHz of outband		С
15.247(c)	Conducted Spurious Emissions	shall be at least 20dB below the highest inband spectral density.		С
15.205	Radiated Emissions	FCC 15.209 Limits	Radiated	C
15.209	Radiated Ellissions	FCC 13.209 Limits	Radiated	C
15.207	AC Conducted Emissions	EN 55022	AC Line	С
13.207	AC Conducted Emissions	EIN JJUZZ	Conducted	
Note 1: C=Comp	blies NC=Not Complies NT=Not T	Cested NA=Not Applicable	Conducted	

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 3 MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 30 kHz (1% of the span or more) Sweep = auto

VBW = 30 kHz Detector function = peak

Trace = max hold

Measurement Data:

Frequency of marker #1 Frequency (MHz)	Frequency of marker #2	Test Results	
	(MHz)	Carrier Frequency Separation (MHz)	Result
2440.992	2441.992	1.000	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Frequency range 1: Start = 2389.5MHz, Stop = 2414.5 MHz 2: Start = 2414.5MHz, Stop = 2439.5 MHz

3: Start = 2439.5MHz, Stop = 2464.5 MHz

4: Start = 2464.5MHz, Stop = 2489.5 MHz

RBW = 300 kHz (1% of the span or more) Sweep = auto

 $VBW = 300 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = $\max \text{ hold}$ Span = 25MHz

Measurement Data: Complies

Total number of Hopping Channels	79
----------------------------------	----

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 75 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels...

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 2 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

RBW = 10 kHz (1% of the 20dB bandwidth or more) Sweep = auto

 $VBW = 30 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

Measurement Data:

Frequency	G. IV	Test Results		
(MHz)	Channel No.	Measured Bandwidth (MHz)	Result	
2402	1	0.865	Complies	
2441	40	0.875	Complies	
2480	79	0.865	Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The transmitter shall have a maximum 20dB bandwidth of 1 MHz.

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

20 dB Bandwidth

20 dB Bandwidth

3.2.4 Time of Occupancy (Dwell Time)

Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero

RBW = 1 MHz $VBW = 1 MHz (VBW \ge RBW)$

Trace = max hold Detector function = peak

Measurement Data:

Packet Type	Burst duration in one	Test Results		
Packet Type	hop (us)	Dwell Time (ms) R		
DH 1	0.4189	134.094	Complies	
DH 3	1.7340	279.451	Complies	
DH 5	2.9320	312.229	Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

0.4 seconds within a 30 second period per any frequency

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Time of Occupancy for Packet Type DH 1

The system makes worst case 1600 hopes per second or 1 time slot has a length of 625 us with 79 channels. A DH 1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/2 = 800 hops per second with 79 channels. So you have each channel 800/79 = 10.13 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $10.13 \times 31.6 = 320.11$ times of appearance.

Each Tx-time per appearance is 418.9 us

So we have $320.11 \times 418.9 \text{us} = 134.0974 \text{ ms per } 31.6 \text{ seconds.}$

Time of Occupancy for Packet Type DH 3

The system makes worst case 1600 hopes per second or 1 time slot has a length of 625 us with 79 channels. A DH 3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/4 = 400 hops per second with 79 channels. So you have each channel 400/79 = 5.1 times per second and so for a period of 0.4 x 79 = 31.6 seconds you have 5.1 x 31.6 = 161.16 times of appearance.

Each Tx-time per appearance is 1.734 ms

So we have $161.16 \times 1.734 \text{ ms} = 279.451 \text{ ms per } 31.6 \text{ seconds.}$

Time of Occupancy for Packet Type DH 5

The system makes worst case 1600 hopes per second or 1 time slot has a length of 625 us with 79 channels. A DH 5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 = 266.67 hops per second with 79 channels. So you have each channel 266.67/79 = 3.37 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $3.37 \times 31.6 = 106.49$ times of appearance.

Each Tx-time per appearance is 2.932 ms

So we have $106.49 \times 2.932 \text{ ms} = 312.229 \text{ ms}$ per 31.6 seconds.

.

3.2.5 Peak Output Power

Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Detector function = peak

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 5 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)

 $VBW = 1 MHz (VBW \ge RBW)$

Trace = \max hold Sweep = auto

Measurement Data:

Frequency	Ch.	Test Results		
(MHz)	CII.	dBm	mW	Result
2402	1	2.73	1.875	Complies
2441	40	2.63	1.832	Complies
2480	79	1.97	1.574	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W	
-------------------	------	--

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Peak Output Power

Peak Output Power

3.2.6 Conducted Spurious Emissions

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Low band with hopping disabled

Low band with hopping enabled

Low channel spurious

Mid channel ref

Mid channel spurious

High band with hopping disabled

High band with hopping enabled

High channel spurious

3.2.7 Radiated Emissions

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = 30 MHz ~ 10th harmonic.

 $RBW = 120 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW (Peak)$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$ VBW = 10 Hz (Average)

Trace = \max hold Sweep = auto

Measurement Data: Complies

- No emissions were detected at a level greater than 10dB below limit.

- Refer to the next page.

Minimum Standard: FCC Part 15.205 (a), 15.205(b), 15.209(a) and (b)

Limit: FCC P15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Restricted Band Edge: Low Channel (Peak, Horizontal)

Restricted Band Edge: Low Channel (Average, Horizontal)

Restricted Band Edge: Low Channel (Peak, Vertical)

Restricted Band Edge: Low Channel (Average, Vertical)

Restricted Band Edge: High Channel (Peak, Horizontal)

Restricted Band Edge: High Channel (Average, Horizontal)

Restricted Band Edge: High Channel (Peak, Vertical)

Restricted Band Edge: High Channel (Average, Vertical)

Radiated Spurious Emission Data(Harmonics)

Low Channe	Low Channel(2402MHz)									
Frequency (MHz)	ANT Pol. (H/V)	Reading Value (dBuV) T.F (dB)		Result (dBuV)		Limit (dBuV)		Margin (dB)		
(WITIZ)	(11/ V)	PK	AV	(ub)	PK	AV	PK	AV	PK	AV
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	1

Middle Channel(2441MHz)

Frequency (MHz)	ANT Pol. (H/V)	(ubu v /		T.F (dB)	T.F (dE	sult uV)	Limit (dBuV)		Margin (dB)	
(IVIIIZ)	(11/ 1/)	PK	AV	(db)	PK AV	AV	PK	AV	PK	AV
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	_	-	-	-	-	-	-	-	-

High Channel(2480MHz)

Frequency (MHz)	ANT Pol. (H/V)	(ubu v i			sult uV)	Limit (dBuV)		Margin (dB)		
(IVIIIZ)	(11/ V)	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

Not. 1. "** ": No emissions were detected at a level greater than 10dB below limit.

- 2. T.F(Total Factor) = Cable Loss + Ant Factor AMP Gain
- 3. Result = Reading Value + T.F
- 4. Margin = Limit Result

Radiated Spurious Emission Data(Other Emissions)

(Continued...)

Other Em	Other Emissions													
Frequency (MHz)	ANT Pol.	Re	ading Va (dBuV)		T.F (dB)		Result (dBuV)			Limit (dBuV)			Margin (dB)	
(WITIZ)	(MHZ) (H/V) PK QP		QP	AV	(dD)	PK	QP	AV	PK	QP	AV	PK	QP	AV
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Not. 1. "** ": No emissions were detected at a level greater than 10dB below limit.

- 2. T.F(Total Factor) = Cable Loss + Ant Factor AMP Gain
- 3. Result = Reading Value + T.F
- 4. Margin = Limit Result

3.2.8 AC Line Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- Refer to the next page.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

Figure 2: Measurement setup for AC Conducted Emission

<<CONDUCTED EMISSION>> 2 April,2007 15:37 Standard : FCC Part 15 Manufacturer Model : PST : BHS500 Operator : W.J.LEE : 120V 60 : 20°C 40% : Traffic Mode AC Fower 60Hz Temp, Humidity Remark2 Remark3 Final Result --- N Phase ---Result Result Limit No. Frequency Reading Reading c.f Limit Margin Margin Remark AV AV AV QP QP QP QP PW[MHz] [dB(μV)] [dB(μV)] [dB] $[dB(\mu V)]$ $[dB(\mu V)]$ $[dB(\mu V)]$ [dB(µV)] 32.3 23.4 10.6 0.1 0.1 0.5 0.383 35.3 1.047 27.2 35.4 27.3 32.4 23.5 58.2 56.0 48.9 46.0 22.8 28.7 16.5 22.5 12.538 --- L1 Phase ---No. Frequency Reading Reading c.f Result Result Limit Limit Margin Margin Remark \mathcal{W} NVAV [MHz] [dB(µV)] [dB(µV)] 0.333 30.9 26.2 1.098 24.5 20.6 10.988 16.6 11.8 [dB] [dB(μ V)] 0.1 31.0 26.3 59.4 50.4 0.1 24.6 20.7 56.0 46.0 [dB] [dB] 31.0 24.6 17.0 26.3 20.7 28.4 24.1 56.0 31.4 0.4 12.2 60.0 50.0 43.0 37.8

DIGITAL EMC

<<CONDUCTED EMISSION>> 2 April,2007 15:37 : FCC Part 15 Manufacturer Model : PST : BHS500 Operator : W.J.LEE AC Power Temp, Humidity Remark1 : 120V 60Hz : 20°C 40% : Idle Mode Remark2 Remark3

****	******	******	******	******	*******	******	******	*******	******	******	******
Fina	l Result										
	N Phase										
No.	Frequency	Reading QF	Reading AV	c.f	Result QP	Result AV	Limit QF	Limit AV	Margin QP	Margin AV	Remark
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(µV)]	[dB]	[dB]	
1	0.383	35.3	32.3	0.1	35.4	32.4	58.2	48.9	22.8	16.5	
2	1.047	27.2	23.4	0.1	27.3	23.5	56.0	46.0	28.7	22.5	
3	12.538	16.4	10.6	0.5	16.9	11.1	60.0	50.0	43.1	38.9	
	L1 Phase	-									
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Remark
		QP	AV.		QP	AV	QF	AV	QP	PW.	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	$[dB(\mu V)]$	[dB(µV)]	[dB(µV)]	[dB]	[dB]	
1	0.333	30.9	26.2	0.1	31.0	26.3	59.4	50.4	28.4	24.1	
2	1.098	24.5	20.6	0.1	24.6	20.7	56.0	46.0	31.4	25.3	
3	10.988	16.6	11.8	0.4	17.0	12.2	60.0	50.0	43.0	37.8	

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4440A	05/10/07	MY45304199
02	Spectrum Analyzer	H.P	8563E	06/10/07	3551A04634
03	Power Meter	H.P	EPM-442A	06/07/07	GB37170413
04	Power Sensor	H.P	8481A	14/07/07	3318A96332
05	Frequency Counter	H.P	5342A	15/09/07	2119A04450
06	Multifunction Synthesizer	H.P	8904A	12/10/07	3633A08404
07	Signal Generator	Rohde Schwarz	SMR20	21/03/08	101251
08	Signal Generator	H.P	E4421A	06/07/07	US37230529
09	Audio Analyzer	H.P	8903B	06/07/07	3011A0944B
10	Modulation Analyzer	H.P	8901B	10/07/07	3028A03029
11	Oscilloscope	Tektronix	TDS3052	01/10/07	B016821
12	8960 Series 10 Wireless Comms Test Set	Agilent	Z5515C	13/06/08	GB43461134
13	Universal Radio Communication Test	Rohde Schwarz	CMU200	21/03/08	107631
14	CDMA Mobile Station Test Set	H.P	8924C	15/09/07	US35360688
15	PCS Interface	НР	83236B	15/09/07	3711J03014
16	Multi system Ue Tester	Japan Radid Co., Ltd	NJZ-2000	20/11/07	ET00095
17	Power Splitter	WEINSCHEL	1593	14/10/07	332
18	BAND Reject Filter	Microwave Circuits	N0308372	19/10/07	3125-01DC0312
19	BAND Reject Filter	Wainwright	WRCG1750	19/10/07	SN2
20	AC Power supply	DAEKWANG	5KVA	20/03/08	N/A
21	DC Power Supply	H.P	6622A	20/03/08	465487
22	HORN ANT	EMCO	3115	24/07/07	6419
23	HORN ANT	EMCO	3115	21/08/07	21097
24	HORN ANT	A.H.Systems	SAS-574	16/08/07	154
25	HORN ANT	A.H.Systems	SAS-574	16/08/07	155
26	Dipole Antenna	Schwarzbeck	VHA9103	18/11/07	2116
27	Dipole Antenna	Schwarzbeck	VHA9103	18/11/07	2117
28	Dipole Antenna	Schwarzbeck	UHA9105	18/11/07	2261
29	Dipole Antenna	Schwarzbeck	UHA9105	18/11/07	2262
30	Loop Antenna	ETS	6502	22/11/07	3471

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	S/N
31	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	13/09/07	021031
32	RFI/FIELD Intensity Meter	Kyorits	KNM-504D	21/07/07	4N-161-4
33	Frequency Converter	Kyorits	KCV-604C	21/07/07	4-230-3
34	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	26/09/07	1098
35	Biconical Antenna	Schwarzbeck	VHA9103	12/09/07	2233
36	Digital Multimeter	H.P	34401A	20/03/08	3146A13475
37	Attenuator (10dB)	WEINSCHEL	23-10-34	17/10/07	BP4386
38	High-Pass Filter	ANRITSU	MP526	13/10/07	M27756
39	Attenuator (3dB)	Agilent	8491B	10/07/07	58177
40	Attenuator (10dB)	WEINSCHEL	23-10-34	26/01/08	BP4387
41	Attenuator (30dB)	Н.Р	8498A	17/10/07	50101
42	Amplifier (25dB)	Agilent	8447D	12/04/07	2944A10144
43	Amplifier (30dB)	Agilent	8449B	13/10/07	3008A01590
44	Position Controller	TOKIN	5901T	N/A	14173
45	Driver	TOKIN	5902T2	N/A	14174
46	Spectrum Analyzer	Agilent	8594E	04/11/07	3649A05889
47	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	11/07/07	4N-170-3
48	LISN	Kyorits	KNW-407	19/08/07	8-317-8
49	LISN	Kyorits	KNW-242	09/10/07	8-654-15
50	CVCF	NF Electronic	4400	N/A	344536 4420064
51	Software	ToYo EMI	EP5/RE	N/A	Ver 2.0.800
52	Software	ToYo EMI	EP5/CE	N/A	Ver 2.0.801
53	Software	AUDIX	e3	N/A	Ver 3.0
54	Software	Agilent	Benchlink	N/A	A.01.09 021211