Lecture Notes for Week 5 (First Draft)

Continuation of the Proof of Theorem 4.3

It follows from Remark 4.6 that

$$E(\lambda_1)E(\lambda_2) = E(\lambda_2)E(\lambda_1) = E(\lambda_1)$$
 for $\lambda_1 \le \lambda_2$.

Put

$$\mathcal{E}(\lambda_1, \lambda_2) = E(\lambda_2) - E(\lambda_1),$$

and observe that

$$\mathcal{E}(\lambda_1, \lambda_2) \geq 0 \text{ for } \lambda_1 \leq \lambda_2.$$

Observe further that

$$E(\lambda_2)\mathcal{E}(\lambda_1, \lambda_2) = E(\lambda_2)^2 - E(\lambda_2)E(\lambda_1)$$

$$= E(\lambda_2) - E(\lambda_1) = \mathcal{E}(\lambda_1, \lambda_2) \text{ for } \lambda_1 \le \lambda_2,$$
(1)

and also that

$$E(\lambda_1)\mathcal{E}(\lambda_1, \lambda_2) = E(\lambda_1)E(\lambda_2) - E(\lambda_1)^2$$

$$= E(\lambda_1) - E(\lambda_1) = 0 \text{ for } \lambda_1 \le \lambda_2.$$
(2)

Moreover, we have

$$L(\lambda)E(\lambda) = E(\lambda)L(\lambda) = -L(\lambda)^{-}$$
(3)

and

$$L(\lambda)[I - E(\lambda)] = [I - E(\lambda)]L(\lambda) = L(\lambda)^{+}.$$
 (4)

Using (1) and (3) we find that

$$L(\lambda_2)\mathcal{E}(\lambda_1, \lambda_2) = L(\lambda_2)E(\lambda_2)\mathcal{E}(\lambda_1, \lambda_2)$$

$$= -L(\lambda_2)^{-}\mathcal{E}(\lambda_1, \lambda_2)$$

$$< 0 \text{ for } \lambda_1 < \lambda_2.$$
(5)

Using (2) and (4) we find that

$$L(\lambda_1)\mathcal{E}(\lambda_1, \lambda_2) = L(\lambda_1)[I - E(\lambda_1)]\mathcal{E}(\lambda_1, \lambda_2)$$

$$= L(\lambda_1)^+ \mathcal{E}(\lambda_1, \lambda_2)$$

$$\geq 0 \text{ for } \lambda_1 \leq \lambda_2.$$
(6)

Combining (5) and (6) we arrive at

$$\lambda_1 \mathcal{E}(\lambda_1, \lambda_2) \le A \mathcal{E}(\lambda_1, \lambda_2) \le \lambda_2 \mathcal{E}(\lambda_1, \lambda_2) \text{ for } \lambda_1 \le \lambda_2.$$
 (7)

Let a < m and $b \ge M$ be given and take any partition

$$a = \lambda_0 < \lambda_1 < \lambda_2 < \dots < \lambda_n = b.$$

of [a,b]. Put

$$\delta = \max\{\lambda_k - \lambda_{k-1}, k = 1, 2, \cdots, n\}.$$

Using (7) we find that

$$\sum_{k=1}^{n} \lambda_{k-1} [E(\lambda_k) - E(\lambda_{k-1})] \le A \sum_{k=1}^{n} [E(\lambda_k - E(\lambda_{k-1}))] \le \sum_{k=1}^{n} \lambda_k [E(\lambda_k) - E(\lambda_{k-1})]$$
(8)

Since

$$\sum_{k=1}^{n} [E(\lambda_k - E(\lambda_{k-1}))] = I,$$

it follows from (8) that

$$\sum_{k=1}^{n} \lambda_{k-1} [E(\lambda_k) - E(\lambda_{k-1})] \le A \le \sum_{k=1}^{n} \lambda_k [E(\lambda_k - E(\lambda_{k-1}))]. \tag{9}$$

For any choice of

$$\lambda_k^* \in [\lambda_{k-1}, \lambda_k], \quad k = 1, 2, \cdots, n,$$

it follows from (9) and a simple computation that

$$||A - \sum_{k=1}^{n} \lambda_k^* [E(\lambda_k - E(\lambda_{k-1}))]|| \le \delta,$$

which implies that

$$A = \int_{a}^{b} \lambda \, dE(\lambda).$$

To prove right continuity of the mapping $\lambda \to E(\lambda)$ in the strong operator topology, we make use of Problem 1 from Assignment 2 concerning bounded monotonic sequence of self-adjoint operators.

Fix $\lambda \in \mathbb{R}$ and notice that $\mathcal{E}(\lambda_1, \lambda_2)$ is nondecreasing in λ_2 and is bounded above. (In addition $\mathcal{E}(\lambda_1, \lambda_2)\mathcal{E}(\lambda_1, \hat{\lambda}_2) = \mathcal{E}(\lambda_1, \hat{\lambda}_2)\mathcal{E}(\lambda_1, \lambda_2)$.) Consequently there is a bounded self-adjoint operator $G(\lambda_1)$ such that

$$\forall x \in X$$
, we have $\lim_{\lambda_2 \downarrow \lambda_1} \mathcal{E}(\lambda_1, \lambda_2) x = G(\lambda_1) x$.

We need to show that $G(\lambda_1) = 0$. Letting $\lambda_2 \downarrow \lambda_1$ in (7) we find that

$$\lambda_1(G(\lambda_1)x, x) \le (AG(\lambda_1)x, x) \le \lambda_1(G(\lambda_1)x, x) \text{ for all } x \in X.$$
 (10)

It follows from (10) that

$$0 \le L(\lambda_1)G(\lambda_1) \le 0,$$

and since $L(\lambda_1)G(\lambda_1)$ is self-adjoint, Corollary 1.8 implies that

$$L(\lambda_1)G(\lambda_1) = 0. (11)$$

Using (4) we have

$$L(\lambda_1)^+ G(\lambda_1) = [I - E(\lambda_1)]L(\lambda_1)G(\lambda_1) = 0,$$

which implies that

$$\mathcal{R}(G(\lambda_1)) \subset \mathcal{N}(L(\lambda_1)^+),$$

and consequently

$$E(\lambda_1)G(\lambda_1) = G(\lambda_1).$$

Letting $\lambda_2 \downarrow \lambda_1$ in (2), we obtain

$$E(\lambda_1)G(\lambda_1) = 0,$$

and consequently

$$G(\lambda_1) = 0.$$

Remark 5.1:

- (a) The family $(E(\lambda)|\lambda \in \mathbb{R})$ of projections in Theorem 4.3 is called the spectral resolution of the identity corresponding to A or the family of spectral projections for A.
- (b) Under the assumptions of Theorem 4.1, we also have

For all
$$\lambda_0 \in \mathbb{R}$$
 and all $x \in X$, we have $\lim_{\lambda \uparrow \lambda_0} E(\lambda)x = E(\lambda_0)x$.

(c) Under the assumptions of Theorem 4.3, we also have

$$A^n = \int_a^b \lambda^n dE(\lambda)$$
 for all $n \in \mathbb{N}, \ a < m, \ b \ge M$.

(d) Some authors construct the spectral family in such a way that the mapping $\lambda \to E(\lambda)$ is continuous from the left in the strong operator topology. In this case, the integral representations are valid for $a \leq m, b > M$.

Definition 5.2: Let X be a Banach space and $T \in \mathcal{L}(X;X)$ be given.

(a) The resolvent set of T, denoted $\rho(T)$ is defined by

$$\rho(T) = \{\lambda \in \mathbb{K} : \lambda I - T \text{ is bijective}\}.$$

(b) The spectrum of T, denoted $\sigma(T)$ is defined by

$$\sigma(T) = \mathbb{K} \backslash \rho(T).$$

- (c) A number $\lambda \in \mathbb{K}$ is called an *eigenvalue* for T provided $\mathcal{N}(\lambda I T) \neq \{0\}$.
- (d) If λ is an eigenvalue for T, the nonzero elements of $\mathcal{N}(\lambda I T)$ are called eigenvectors corresponding to λ .
- (e) The set of all eigenvalues of T is called the point spectrum of T and is denoted by $\sigma_p(T)$.
- (f) A number $\lambda \in \mathbb{K}$ is called a generalized eigenvalue or approximate eigenvalue provided that

$$\inf\{\|(\lambda I - T)x\} : x \in X, \|x\| = 1\} = 0.$$

(g) The set of all generalized eigenvalues is called the approximate point spectrum of T and is denoted by $\sigma_{ap}(T)$.

Proposition 5.3: Let X be a Banach space and $T \in \mathcal{L}(X;X)$ be given. Assume that $\lambda_1, \lambda_2, \dots, \lambda_m$ are eigenvalues for T and let x_1, x_2, \dots, x_m be corresponding eigenvectors. Assume further that $\lambda_j \neq \lambda_k$ for $j \neq k$ (i.e. that the eigenvalues are distinct). Then $\{x_1, x_2, \dots, x_m\}$ is a linearly independent set.

The proof is the same as in the finite dimensional setting and will therefore be omitted.

Proposition 5.4: Let X be a Banach space and let $T \in \mathcal{L}(X;X)$ with ||T|| < 1 be given. Then $1 \in \rho(T)$ and

$$(I-T)^{-1} = \sum_{k=0}^{\infty} T^k.$$

Proof: Observe that

$$||T^k|| \le ||T||^k$$
 for all $k \in \mathbb{N}$.

Since ||T|| < 1, the series

$$\sum_{k=0}^{\infty} ||T||^k$$

converges, and consequently the series

$$\sum_{k=0}^{\infty} ||T^k||$$

converges. Since $\mathcal{L}(X;X)$ is complete, absolute summability implies summability, so the series

$$\sum_{k=0}^{\infty} T^k$$

converges in the uniform operator topology.

Put

$$S_n = \sum_{k=0}^n T^k$$
 for all $n \in \mathbb{N}$,

and notice that

$$(I-T)S_n = I - T^{n+1} = S_n(I-T) \text{ for all } n \in \mathbb{N}.$$
(12)

Since $||T^{n+1}|| \to 0$ as $n \to \infty$, we conclude from (12) that

$$(I-T)\sum_{k=0}^{\infty} T^k = I = \left(\sum_{k=0}^{\infty} T^k\right)(I-T). \quad \Box$$

Corollary 5.5: Let $T \in \mathcal{L}(X;X)$ and $\lambda \in \mathbb{K}$ with $|\lambda| > ||T||$ be given. Then $\lambda \in \rho(T)$.

Let $\lambda_0 \in \rho(T)$ and $\lambda \in \mathbb{K}$ be given. Observe that

$$(\lambda I - T) = (\lambda_0 I - T) + (\lambda - \lambda_0) I$$
$$= (\lambda_0 I - T) [I + (\lambda - \lambda_0)(\lambda_0 I - T)^{-1}]$$
$$= (\lambda_0 I - T) [I - (\lambda_0 - \lambda) R(\lambda_0; T)].$$

If $|\lambda - \lambda_0| \cdot ||R(\lambda_0; T)|| < 1$ then we can apply Proposition 5.4 to conclude that $\lambda I - T$ is bijective and

$$R(\lambda;T) = \left(\sum_{k=0}^{\infty} (\lambda_0 - \lambda)^k R(\lambda_0;T)^k\right) R(\lambda_0;T)$$
$$= \sum_{k=0}^{\infty} (-1)^k (\lambda - \lambda_0)^k R(\lambda_0;)^{k+1}.$$

We have just proved the following result.

Proposition 5.6: Let X be a Banach space and $T \in \mathcal{L}(X;X)$ be given. Then

- (i) $\rho(T)$ is open,
- (ii) $\sigma(T)$ is closed,
- (iii) for all $\lambda \in \rho(T)$ and all $\lambda \in \mathbb{K}$ with $|\lambda \lambda_0| \cdot ||R(\lambda_0; T)|| < 1$ we have $\lambda \in \rho(T)$ and

$$R(\lambda;T) = \sum_{n=1}^{\infty} (-1)^n (\lambda - \lambda_0)^n R(\lambda_0;T)^{n+1},$$

- (iv) the mapping $\lambda \to R(\lambda; T)$ is analytic on $\rho(T)$,
- (v) for all $\lambda_0 \in \rho(T)$ and all $n \in \mathbb{N}$ we have

$$R^{(n)}(\lambda_0; T) = (-1)^n n! R(\lambda_0; T)^{n+1}.$$

Here $R^{(n)}$ is the n^{th} derivative of R with respect to the first argument.

Proposition 5.7: Let X be a Banach space and $S, T \in \mathcal{L}(X; X)$. Let $\lambda, \mu \in \rho(T)$ be given. Then

- (i) $R(\lambda;T) R(\mu;T) = (\mu \lambda)R(\lambda;T)R(\mu;T)$,
- (ii) $R(\lambda; T)R(\mu; T) = R(\mu; T)R(\lambda; T)$
- (iii) If ST = TS then $SR(\lambda; T) = R(\lambda; T)S$.

Proof: Let $\lambda, \mu \in \rho(T)$ be given. Then we have

$$R(\lambda;T) - R(\mu;T) = R(\lambda;T)(\mu I - T)R(\mu;T) - R(\lambda;T)(\lambda I - T)R(\mu;T)$$

$$= R(\lambda;T)[\mu I - \lambda I]R(\mu;T)$$

$$= (\mu - \lambda)R(\lambda;T)R(\mu;T),$$

which establishes (i). Part (ii) follows from part (i) by interchanging λ and μ . To prove part (iii), observe that

$$S(\lambda I - T) = (\lambda I - T)S.$$

Multiplying on the right by $R(\lambda; T)$ we find that

$$S = (\lambda I - T)SR(\lambda; T).$$

Multiplying this last expression on the left by $R(\lambda; T)$ we obtain

$$SR(\lambda;T) = R(\lambda;T)S.$$

Theorem 5.8: Let X be a complex Banach space and $T \in \mathcal{L}(X;X)$ be given. Assume that $X \neq \{0\}$. Then $\sigma(T) \neq \emptyset$.

Proof: Suppose $\sigma(T) = \emptyset$. Then $\rho(T) = \mathbb{C}$. Put

$$D = \{ \lambda \in \mathbb{C} : |\lambda| \le 2||T|| \},$$

and observe that D is nonempty and compact. Let

$$M = \max\{\|R(\lambda; T)\| : \lambda \in D\} < \infty. \tag{13}$$

For all $\lambda \in \mathbb{C} \backslash D$ we have

$$R(\lambda;T) = \frac{1}{\lambda} \left(I - \frac{T}{\lambda} \right) = \frac{1}{\lambda} \sum_{k=0}^{\infty} \left(\frac{T}{\lambda} \right)^k \tag{14}$$

and

$$\left\| \frac{T}{\lambda} \right\| \le \frac{1}{2} \tag{15}$$

Combining (13) and (15), we find that

$$||R(\lambda;T)|| \le \max\{M, ||T||\} \text{ for all } \lambda \in \mathbb{C}$$
 (16)

and

$$||R(\lambda;T)|| \to 0 \text{ as } |\lambda| \to \infty.$$
 (17)

Now let $x \in X$ and $x^* \in X^*$ be given and define $f : \mathbb{C} \to \mathbb{C}$ by

$$f(\lambda) = x^* R(\lambda; T) x$$
 for all $\lambda \in \mathbb{C}$.

Then f is an entire function and it is bounded by virtue of (16). Liouville's Theorem implies that f is constant. We see from (17) that

$$f(\lambda) \to 0$$
 as $|\lambda| \to \infty$,

and consequently

$$f(\lambda) = 0$$
 for all $\lambda \in \mathbb{C}$.

In other words, we have

$$x^*(R(\lambda;T)x) = 0$$
 for all $x \in X, x^* \in X^*, \lambda \in \mathbb{C}$.

This is impossible, because for $R(\lambda;T)$ is invertible, so we may choose $x \in X$ such that $R(\lambda;T)x \neq 0$ and then (by the Hahn Banach Theorem), we may choose $x^* \in X^*$ such that $x^*(R(\lambda;T)x \neq 0)$. \square

Spectral Mapping Theorem for Polynomials

Lemma 5.9: Let X be a Banach space, $T \in \mathcal{L}(X; X)$, $\lambda \in \sigma(T)$ and $n \in \mathbb{N}$ be given. Then $\lambda^n \in \sigma(T^n)$.

Proof: Put

$$B = T^{n-1} + \lambda T^{n-2} + \lambda^2 T^{n-3} + \dots + \lambda^{n-1} I,$$

and observe that

$$T^{n} - \lambda^{n} I = (T - \lambda I)B = B(T - \lambda I). \tag{18}$$

Suppose that $\lambda^n \in \rho(T^n)$. Then $T^n - \lambda I$ is bijective. It follows from (18) that $(T - \lambda I)B$ is surjective and consequently $T - \lambda I$ is surjective. It also follows from (18) that $B(T - \lambda I)$ is injective and consequently $T - \lambda I$ is injective. This contradicts the fact that $\lambda \in \sigma(T)$. \square

Lemma 5.10: Let X be a complex Banach space, $T \in \mathcal{L}(X;X)$, $n \in \mathbb{N}$, and $\mu \in \sigma(T^n)$ be given. Then there exists $\lambda \in \sigma(T)$ such that $\mu = \lambda^n$.

Proof: We may choose $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$ such that

$$z^n - \mu = \prod_{j=1}^n (z - \alpha_j)$$
 for all $z \in \mathbb{C}$.

Then we also have

$$T^n - \mu I = \prod_{j=1}^n (T - \alpha_j I).$$

Since $T^n - \mu I$ fails to be bijective, we may choose $k \in \{1, 2, \dots, n\}$ such that $T - \alpha_k I$ fails to be bijective. It follows that $\alpha_k \in \sigma(T)$ and $\alpha_k^n = \mu$.

Theorem 5.11 (Spectral Mapping Theorem for Polynomials): Let X be a complex Banach space, $T \in \mathcal{L}(X;X)$ and $p : \mathbb{C} \to \mathbb{C}$ be a polynomial. Let $\mu \in \mathbb{C}$ be given. Then $\mu \in \sigma(p(T))$ if and only if there exists $\lambda \in \sigma(T)$ such $\mu = p(\lambda)$.

Spectral Radius

Definition 5.12: Let X be a Banach space and $T \in \mathcal{L}(X; X)$ be given. Assume that $\sigma(T) \neq \emptyset$. The *spectral radius* of T, denoted by $r_{\sigma}(T)$, is defined by

$$r_{\sigma}(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}.$$

Observe that

$$0 \le r_{\sigma}(T) \le ||T||. \tag{19}$$

Theorem 5.13: Let X be a complex Banach space (with $X \neq \{0\}$) and $T \in \mathcal{L}(X; X)$ be given. Then

$$r_{\sigma}(T) = \lim_{n \to \infty} \sqrt[n]{\|T^n\|},$$

and the limit above exists.

Proof: Let $n \in \mathbb{N}$ be given. By Lemmas 5.9 and 5.10, and (19), we have

$$(r_{\sigma}(T))^n = r_{\sigma}(T^n) \le ||T^n||.$$

It follows that

$$r_{\sigma}(T) \le \liminf_{n \to \infty} \sqrt[n]{\|T^n\|}.$$
 (20)

It remains to show that

$$\limsup_{n \to \infty} \sqrt[n]{\|T^n\|} \le r_{\sigma}(T).$$

For $|\lambda|$ large, we have

$$R(\lambda;T) = \frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n. \tag{21}$$

For z near zero, let us consider the power series

$$F(z) = z \sum_{n=0}^{\infty} z^n T^n, \tag{22}$$

(which is obtained from the series in (21) by putting $z = \lambda^{-1}$.) This power series has radius of convergence $r \in [0, \infty]$ satisfying

$$\frac{1}{r} = \limsup_{n \to \infty} \sqrt[n]{\|T^n\|}.$$

To understand the relationship between r and r_{σ} , we put

$$\Omega = \{ z \in \mathbb{C} \setminus \{0\} : z^{-1} \in \rho(T) \} \cup \{0\}.$$

Consider the function $G: \Omega \to \mathcal{L}(X;X)$ defined by

$$G(z) = \begin{cases} R(z^{-1}; T) & \text{for } z \neq 0 \\ 0 & \text{for } z = 0. \end{cases}$$

Observe that G is analytic on Ω . (For z near zero, analyticity of G follows from the series representation for F. For z away from 0, analyticity of G follows from analyticity of the resolvent.) Moreover, F(z) = G(z) for all z for which the series for F converges. The radius of convergence r of the series for F will therefore be the supremum of all radii ρ such the disc of radius ρ centered at 0 is included in Ω . In other words, we have

$$r_{\sigma} = \frac{1}{r}$$
.

We conclude that

$$\limsup_{n \to \infty} \sqrt[n]{\|T^n\|} \le r_{\sigma}(T). \quad \Box$$