ANSWER Do Not Print!

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING SEMESTER II AY2017/2018

MIDTERM ASSESSMENT FOR TIC1002: INTRODUCTION TO COMPUTING AND PROGRAMMING II

8 th March 2018		Time A	llowe	d: 1 Hou	r 15 M	inutes
Student Number:	A					

INSTRUCTIONS TO CANDIDATES:

- 1. Use a pen to write your student number in the space provided above.
- 2. This assessment paper consists of SIX (6) questions.
- 3. This assessment paper comprises SIX(6) printed pages including this front page.
- 4. Answer all questions directly in the space given after each question. If necessary, use the back of the page. **You may write in pencil.**
- 5. Marks allocated to each question are indicated. Total marks for the paper is 40.
- 6. This is an open book assessment.

EXAMINER'S USE ONLY					
Questions	Possible	Marks			
Q1	7				
Q2	5				
Q3	5				
Q4	7				
Q5	7				
Q6	9				
Total	40				

1. [7 marks] Given function £ () below:

```
void f( int input )
{
    int i, d;
    while (input > 0) {
        d = input % 10;
        for (i = 0; i < d; i++) {
            printf("%d", d);
        }
        input /= 10;
    }
}</pre>
```

Give the output for the following function calls:

f(5);	55555
f(123);	333221
f(1023);	333221

State the complexity of the code, briefly explain how you arrive at the complexity. Be careful to state the meaning of any variables used in the Big-O notation.

O(D) // where D is the number of digits in input

The outer-loop runs D times

The for-loop runs at most 9 times, so we know that the time needed is always lesser than $10D \rightarrow O(D)$

2. [5 marks] Implement a function print_power_table (B, E) such that it prints out B rows of number, each row contains E numbers. The value at row B_x and column E_y is B_xE_y, where rows and columns both start from 1. For example, print_power_table (3, 4) give the following output:

1	1	1	1
2	4	8	16
3	9	27	81

```
void print_power_table( int B, int E)
{
   int row, col, value;

   for (row = 1; row <= B; row++) {
      value = row;
      for (col = 1; col <= E; col++) {
            printf("%d ", value);
            value *= row;
      }
      printf("\n");
   }
}</pre>
```

3. [5 marks] Give a recursive implementation for the following function. This function returns the number of odd digits in the given number N. For example, count_odd(12345) returns 3 (the digits "1", "3", "5" are odd), count_odd(2468) returns 0 (no odd digits).

```
int count_odd( int N )
{
   if (N == 0)
      return 0;

return (N % 2) + count_odd( N / 10);
}
```

4. [7 marks] Given the following code:

```
#define MAXROW 10
#define MAXCOL 7
void splash(int canvas[MAXROW][MAXCOL],
            int value, int row, int col)
{
    int size = 0, i, j, pi, pj;
    while (value > 0) {
        for (i = row-size; i<=row+size; i++){</pre>
            for (j = col-size; j \leq col+size; j++){
                 pi = (i + MAXROW) % MAXROW;
                 pj = (j + MAXCOL) %MAXCOL;
                 if (canvas[pi][pj] == 0)
                     canvas[pi][pj] = value;
             }
        }
        size++;
        value--;
```

If we execute the following code fragment:

```
int canvas[MAXROW][MAXCOL] = {{0}};
splash(canvas, 3, 1, 5);
```

fill in the values for all **non-zero** locations in the **canvas**[][] at the end of execution

	0	1	2	3	4	5	6
0	1			1	2	2	2
1	1			1	2	3	2
2	1			1	2	2	2
3	1			1	1	1	1
4							
5							
6							
7							
8							
9	1			1	1	1	1

5. [7 marks] Given the Frac (fraction) structure and function:

```
struct Frac {
   int num, den; //numerator and denominator
};
int go(struct Frac Farr[], int N, struct Frac X)
{
   int i;
   for ( i = 0; i < N; i++) {
      if ( equal(&Farr[i], &X) ) {
        return i;
      }
   }
   return -1;
}</pre>
```

Give an implementation of the **equal ()** function if we are looking for a fraction that matches **exactly** with the target fraction X, e.g. if we look for 2/4, then 1/2, 4/8 are NOT acceptable, only an exact match 2/4 is returned.

Give an implementation of the **equal()** function if we are looking for a fraction that matches **in value** with the target fraction X, e.g. if we look for 2/4, then 1/2, 4/8 or similar fractions are all acceptable. If needed, you can assume the function int GCD(int X, int Y) which returns the **greatest common divisor of X and Y** is available.

- 6. [9 marks] Suppose we have the following two lists:
 - a. The citizen list with N citizen names.
 - b. The criminal list with M criminal names.

We know that the citizen list is **much larger** than the criminal list and both lists are **unsorted** initially. Suppose we need to find out which of the **M** criminal is in the citizen list, evaluates the following strategies by using time complexity:

Strategy A:	Linear Search the	citizen list for	each crimin	ıal.	
Cost to search	ch for one criminal	: O() O (]	N)	
Total Cost to	search for M crimi	inals: O()O(N	MxN)	
Strategy B:	Bubble Sort the cit	izen list then	binary searc	h for criminal.	
Bubble Sort	the citizen list	: O() O (N^2)	
Cost to searce	the citizen list th for one criminal	: O() O(1	lg N)	
Total Cost to	search for M crimi	inals: O() O(]	M lg N)	
rategy and stat	ing algorithms is Note the time complexing: Bubble Sort the nary search in the	ty. ne criminal li	st. Then tal		
Analysis:					
Cost for bi Total Cost As the don	rt the criminal lis nary search one of for searching thr ninating cost is th	citizen in the cough all N c	itizens: O(N lg M)	
5514 45 54	ated in question.				