ELT221 - Circuitos Elétricos II

Prof. Tarcísio Pizziolo

Aula 10

10) Transformador Ideal - CA

O **Transformador Ideal** é um equipamento em que o **acoplamento** entre suas bobinas é **perfeito**. Todas as bobinas concatenam, ou "**abraçam**", o mesmo fluxo, o que vale dizer que não há dispersão de fluxo. Isso implica assumir a hipótese de que a permeabilidade magnética do núcleo ferromagnético é alta ou, no caso ideal, infinita, e o circuito magnético é fechado. Além disso, admite-se que o transformador não possui perdas de qualquer natureza, seja nos enrolamentos, seja no núcleo.

Seja o esquema dado a seguir:

Partes constitutivas de um Transformador Ideal

Onde:

 N_1 = número de bobinas (enrolamentos) no primário

 V_1 = tensão no primário

I₁ = corrente no primário

N₂ = número de bobinas (enrolamentos) no secundário

V₂ = tensão no secundário

I₂ = corrente no secundário

Núcleo = núcleo ferromagnético com permeabilidade magnética infinita

 ϕ = fluxo magnético que enlaça as bobinas

Considerações:

- A resistência elétrica rь dos enrolamentos é nula.
- O acoplamento magnético entre as bobinas é perfeito (K = 1).
- O material constituinte do núcleo não possui **histerese**.
- As **perdas no núcleo são nulas** (por efeito das correntes de Foucault).
- A Potência no primário = a Potência no secundário $(P_1 = P_2 \Rightarrow V_1I_1 = V_2I_2)$.

(Os Transformadores com núcleo de Ferro Silício (FeSi) "aproximam-se" do ideal!)

Circuito equivalente de um Transformador Ideal:

Relação do Número de Espiras:

Definição:
$$\mathbf{n} = \frac{\mathbf{N}_2}{\mathbf{N}_1}$$

 N_1 = Número de espiras primário.

 N_2 = Número de espiras secundário.

Símbolo:

Relação entre as Auto-Indutâncias:

Considerando que:

$$\varphi_{11} = \alpha \mathbf{N}_1 \mathbf{i}_1 \quad \mathbf{e} \quad \varphi_{22} = \alpha \mathbf{N}_2 \mathbf{i}_2$$

 $\phi_{11}=\alpha N_1 i_1 \quad \text{e} \quad \phi_{22}=\alpha N_2 i_2$ (\$\alpha\$ = constante de proporcionalidade e depende das propriedades físicas do transformador)

E sabendo-se que:

$$L_1i_1 = N_1\phi_{11}$$
 e $L_2i_2 = N_2\phi_{22}$

Dividindo-se L₁i₁/L₂i₂ obtém-se a relação entre as **auto-indutâncias**:

$$\frac{L_{1}i_{1}}{L_{2}i_{2}} = \frac{N_{1}\phi_{11}}{N_{2}\phi_{22}} \Rightarrow \frac{L_{1}i_{1}}{L_{2}i_{2}} = \frac{N_{1}(\alpha N_{1}i_{1})}{N_{2}(\alpha N_{2}i_{2})} \Rightarrow \frac{L_{1}}{L_{2}} = \left(\frac{N_{1}}{N_{2}}\right)^{2} = \frac{1}{n^{2}} \Rightarrow \boxed{\frac{L_{2}}{L_{1}} = n^{2}}$$

Relação entre as Tensões e Correntes do Primário e do Secundário

A relação entre as tensões do **primário** (v₁) e do **secundário** (v₂) pode ser calculada aplicando-se a **Lei de Faraday**. Sabe-se que:

Tensão induzida no primário
$$\Rightarrow v_1 = N_1 \frac{d\phi}{dt} \Rightarrow \frac{d\phi}{dt} = \frac{v_1}{N_1}$$

Tensão induzida no secundário
$$\Rightarrow v_2 = N_2 \frac{d\phi}{dt} \Rightarrow \frac{d\phi}{dt} = \frac{v_2}{N_2}$$

Como a variação do fluxo magnético é a mesma podemos igualar as expressões:

$$\frac{d\phi}{dt} = \frac{v_1}{N_1} \quad e \quad \frac{d\phi}{dt} = \frac{v_2}{N_2} \quad \Rightarrow \quad \frac{v_1}{N_1} = \frac{v_2}{N_2} \quad \Rightarrow \quad \frac{v_1}{v_2} = \frac{N_1}{N_2}$$

A relação entre as correntes do **primário** (i_1) e do **secundário** (i_2) pode ser calculada considerando que a potência P_1 do **primário** é igual à potência P_2 do **secundário**.

Assim:

$$P_1 = P_2 \implies v_1 i_1 = v_2 i_2 \implies \frac{i_1}{i_2} = \frac{v_2}{v_1} = \frac{N_2}{N_1} \implies \left| \frac{i_1}{i_2} = \frac{N_2}{N_1} \right|$$

É importante verificar a polaridade apropriada das tensões e os sentidos das correntes no Transformador Ideal! A polaridade implica na mudança de sinal da relação de espiras!

Vejamos:

IMPORTANTE:

- Se tanto V_1 quanto V_2 forem **positivas** ou ambas forem **negativas** nos **terminais pontuados**, devese usar $+\mathbf{n}$ na relação de espiras. Caso **contrário** deve-se usar $-\mathbf{n}$.
- Se tanto I_1 quanto I_2 entrarem ou ambas deixarem os terminais pontuados, deve-se usar -n na relação de espiras. Caso contrário deve-se usar +n.

Circuito Elétrico Equivalente

O **comportamento eletromagnético** das duas **bobinas acopladas** representadas na figura a seguir é descrito pelas duas equações de malha dadas:

No caso particular do **regime permanente senoidal** onde $\mathbf{s} = \mathbf{j}\mathbf{w}$ pode-se representar como:

$$\begin{cases} \mathbf{V}_1(\mathbf{s}) = \mathbf{sL}_1\mathbf{I}_1(\mathbf{s}) + \mathbf{sMI}_2(\mathbf{s}) \\ \mathbf{V}_2(\mathbf{s}) = \mathbf{sMI}_1(\mathbf{s}) + \mathbf{sL}_2\mathbf{I}_2(\mathbf{s}) \end{cases} \Rightarrow \begin{cases} \mathbf{V}_1 = \mathbf{j}\mathbf{w}\mathbf{L}_1\mathbf{I}_1 + \mathbf{j}\mathbf{w}\mathbf{MI}_2 \\ \mathbf{V}_2 = \mathbf{j}\mathbf{w}\mathbf{MI}_1 + \mathbf{j}\mathbf{w}\mathbf{L}_2\mathbf{I}_2 \end{cases}$$

Impedância Refletida

a) Impedância Refletida pelos parâmetros do circuito

Admita agora que aos terminais da **bobina-2** conecta-se uma **carga** (**impedância**) **Z** conforme a figura seguinte.

$$\begin{array}{c|c} I_1 & \underline{I_2} \\ V_1 & jwL_1 & jwL_2 \\ \hline jwMI_2 & jwMI_1 \\ \end{array} V_2 \ \ \begin{array}{c|c} Z \\ \end{array}$$

Então: $V_2 = Z I_2$.

Aplicando a LKT:

$$\begin{cases} V_{1} = jwL_{1}I_{1} + jwM(-I_{2}) \\ 0 = jwMI_{1} + (Z + jwL_{2})(-I_{2}) \end{cases} \Rightarrow \begin{cases} V_{1} = jwL_{1}I_{1} - jwMI_{2}......(1) \\ I_{2} = \frac{jwMI_{1}}{(Z + jwL_{2})}.....(2) \end{cases}$$

Substituindo (2) em (1) eliminando
$$I_2$$
: $V_1 = \left[\mathbf{j} \mathbf{w} \mathbf{L}_1 - \frac{\left[\mathbf{j} \mathbf{w} \mathbf{M} (\mathbf{j} \mathbf{w} \mathbf{M}) \right]}{(\mathbf{Z} + \mathbf{j} \mathbf{w} \mathbf{L}_2)} \right] \mathbf{I}_1$

A expressão da impedância vista nos terminais do **Primário** do Transformador é:

$$Z_1 = \frac{V_1}{I_1} = jwL_1 + \frac{w^2M^2}{(Z + jwL_2)} \Rightarrow Z_1 = jwL_1 + Z_R$$

A parcela $\mathbf{Z}_{\mathbf{R}} = \frac{\mathbf{w}^2 \mathbf{M}^2}{(\mathbf{Z} + \mathbf{j} \mathbf{w} \mathbf{L}_2)}$ é devida ao **acoplamento mútuo** entre as bobinas do primário e a do

secundário. Esta parcela designa-se por Impedância Refletida (ou Acoplada) e representa a reflexão para os terminais da bobina-1 do primário da indutância da bobina-2 do secundário e dos componentes a ela ligados (neste caso a carga Z).

A impedância de entrada vista pela fonte será:

$$\mathbf{Z_{in}} = \mathbf{jwL_1} + \mathbf{Z_R}$$
; onde: $\mathbf{Z_R} = \frac{\mathbf{w}^2 \mathbf{M}^2}{(\mathbf{Z} + \mathbf{jwL}_2)}$

 $\underline{\text{Exemplo}}$ Determine $\mathbf{i}_1(\mathbf{t})$ para o circuito dado abaixo aplicando **impedância refletida pelos** parâmetros do circuito.

Dados:

$$V_g = 10 \angle 0^\circ$$
 (V) e $w = 2 \left(\frac{rd}{s} \right)$

LKT:

$$\begin{cases} V_1 = jwL_1I_1 + jwMI_2 \\ 0 = jwMI_1 + (Z_2 + jwL_2)I_2 \end{cases}; \quad Z_1 = \frac{V_1}{I_1} = jwL_1 + \frac{w^2M^2}{(Z + jwL_2)}$$

Determinação da indutância mútua M: $\mathbf{j}\mathbf{w}\mathbf{M} = \mathbf{j}\mathbf{1} \Rightarrow \mathbf{2}\mathbf{M} = \mathbf{1} \Rightarrow \mathbf{M} = \frac{1}{2}(\mathbf{H})$

Circuito com a impedância refletida:

Cálculo da impedância refletida:

$$\mathbf{Z}_{1} = \begin{bmatrix} \mathbf{j}1 + \frac{4\left(\frac{1}{2}\right)^{2}}{(2 - \mathbf{j}10) + \mathbf{j}8} \end{bmatrix} = \mathbf{j}1 + \frac{1}{(2 - \mathbf{j}2)} = \frac{(\mathbf{j}2 + 2 + 1)}{(2 - \mathbf{j}2)} \implies \mathbf{Z}_{1} = \frac{(3 + \mathbf{j}2)}{(2 - \mathbf{j}2)}$$

$$\mathbf{V}_{g} = 1\mathbf{I}_{1} + \mathbf{Z}_{1}\mathbf{I}_{1} \implies \mathbf{V}_{g} = (1 + \mathbf{Z}_{1})\mathbf{I}_{1} \implies \mathbf{I}_{1} = \frac{\mathbf{V}_{g}}{(\mathbf{Z}_{1} + 1)}$$

$$\mathbf{I}_{1} = \frac{10\angle 0^{\circ}}{\left[\frac{(3 + \mathbf{j}2)}{(2 - \mathbf{j}2)} + 1\right]} = \frac{10\angle 0^{\circ}}{\frac{(3 + \mathbf{j}2) + (2 - \mathbf{j}2)}{(2 - \mathbf{j}2)}} = \frac{10\angle 0^{\circ}}{\left[\frac{5}{(2 - \mathbf{j}2)}\right]} \Rightarrow \mathbf{I}_{1} = \frac{(2 - \mathbf{j}2)(10\angle 0^{\circ})}{5} \Rightarrow \mathbf{I}_{1} = 4\sqrt{2}\angle - 45^{\circ} (\mathbf{A})$$
No domínio do tempo: $\mathbf{i}_{1}(\mathbf{t}) = 4\sqrt{2}(\cos 2\mathbf{t} - 45^{\circ}) (\mathbf{A})$

b) Impedância Refletida pela relação de espiras

Seja o **Trafo Ideal** carregado dado a seguir:

- Tanto V_1 quanto V_2 são **positivas** nos **terminais pontuados** => usar +n na relação de espiras.
- I_1 entra e I_2 deixa o terminal pontuado => usar +n.

Então:

$$\frac{\mathbf{V}_1}{\mathbf{V}_2} = \frac{\mathbf{N}_1}{\mathbf{N}_2} \Rightarrow \mathbf{v}_1 = \frac{\mathbf{V}_2}{\mathbf{n}} \quad \mathbf{e} \quad \frac{\mathbf{I}_1}{\mathbf{I}_2} = \frac{\mathbf{N}_2}{\mathbf{N}_1} \Rightarrow \mathbf{I}_1 = \mathbf{n}\mathbf{I}_2$$

Daí:

$$\mathbf{Z}_{1} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}} = \frac{\left(\frac{\mathbf{V}_{2}}{\mathbf{n}}\right)}{\mathbf{n}\mathbf{I}_{2}} = \frac{\left(\frac{\mathbf{V}_{2}}{\mathbf{I}_{2}}\right)}{\mathbf{n}^{2}} \quad \text{ou} \quad \mathbf{Z}_{1} = \frac{\mathbf{Z}_{2}}{\mathbf{n}^{2}}$$
$$\mathbf{Z}_{in} = \mathbf{Z}_{g} + \mathbf{Z}_{1} \quad \Rightarrow \quad \mathbf{Z}_{in} = \mathbf{Z}_{g} + \frac{\mathbf{Z}_{2}}{\mathbf{n}^{2}}$$

Assim:

$$V_{g}$$

$$I_{1} = nI_{2}$$

$$Z_{g}$$

$$V_{g}$$

$$V_{g}$$

Exemplo) Dado que $v_g = 120 \, \sqcup \, 0^o$ (V) no circuito abaixo, determine I_1 , V_0 e a potência complexa S fornecida pela fonte aplicando **impedância refletida pela relação de espiras**.

A impedância de $20~\Omega$ refletida no primário é: Z_R = $20/n^2$ = $20/(2)^2~$ => $~Z_R$ = $5~\Omega$

Portanto:
$$\mathbf{Z_{in}} = (4 - j6) + \mathbf{Z_R} = (4 - j6) + 5 = (9 - j6) = \mathbf{10,82} \, \bot \, \mathbf{-33,69}^{\circ} \, \Omega$$

$$I_1 = \frac{V_g}{Z_{in}} \Rightarrow I_1 = \frac{120\angle 0^{\circ}}{10.82\angle -33.69^{\circ}} \Rightarrow I_1 = 11.09\angle 33.69^{\circ} \text{ (A)}$$

Como I_1 e I_2 deixam o terminal pontuado => usar -n.

$$\begin{split} &I_{2} = -\frac{1}{n}I_{1} = -\frac{11,09\angle 33,69^{\circ}}{2} \Rightarrow I_{2} = -5,545\angle 33,69^{\circ} \text{ (A)} \\ &e \quad V_{0} = 20I_{2} \Rightarrow V_{0} = (20)\times(-5,545\angle 33,69^{\circ}) \Rightarrow V_{0} = -110,9\angle 33,69^{\circ} \text{ (V)} \\ &Ou: \quad V_{0} = 110,9\angle 213,69^{\circ} \text{ (V)} \end{split}$$

A potência complexa S será dada por:

$$S = V_g.I_1^* => S = (120 \sqcup 0^\circ).(11,09 \sqcup -33,69^\circ) => S = 1.330,8 \sqcup -33,69^\circ (VA)$$

Exercício) Dado que $v_g = 100 \, \sqcup \, 0^o$ (V) no circuito abaixo, determine V_0 e a potência complexa S fornecida pela fonte aplicando impedância refletida pela relação de espiras.

c) Impedância Refletida pelo Teorema de Thévenin

Determinar o circuito refletido no **secundário** aplicando o **Teorema de Thévenin** para o circuito dado.

Cálculo de Zth:

$$\boxed{ \mathbf{Z_{th}} = \frac{\mathbf{V_{oc}}}{\mathbf{I_{sc}}} \quad ; \quad \begin{cases} \mathbf{V}_2 = \mathbf{nV}_1 \\ \mathbf{I}_1 = \mathbf{nI}_2 \end{cases} }$$

Cálculo de Voc:

$$\mathbf{V}_{\mathrm{oc}} = \mathbf{V}_{2} = \mathbf{n}\mathbf{V}_{1} \; ; \quad \mathbf{I}_{2} = \mathbf{0}$$

Como: $I_1 = nI_2 \Rightarrow I_1 = 0$.

Como:
$$I_1 = 0 \Rightarrow V_g - Z_g I_1 - V_1 = 0 \Rightarrow V_g = V_1$$

$$\mathbf{Dai}: \quad \mathbf{V}_{oc} = \mathbf{nV}_{1} \Rightarrow \mathbf{V}_{oc} = \mathbf{nV}_{g}$$

Cálculo de Isc:

$$I_{sc} = I_2 \Rightarrow V_2 = 0 \Rightarrow V_1 = nV_2 \Rightarrow V_1 = 0$$
; então: $I_{sc} = I_2 = \frac{I_1}{n}$

$$\mathbf{Mas:} \quad \mathbf{I}_{1} = \frac{\mathbf{V}_{g}}{\mathbf{Z}_{g}} \quad \Rightarrow \quad \mathbf{I}_{sc} = \frac{\mathbf{V}_{g}}{\mathbf{n}\mathbf{Z}_{g}}$$

Z_{th}:

$$\mathbf{Z}_{th} = \frac{\mathbf{V}_{oc}}{\mathbf{I}_{sc}} \Rightarrow \mathbf{Z}_{th} = \frac{\mathbf{n}\mathbf{V}_{g}}{\left(\frac{\mathbf{V}_{g}}{\mathbf{n}\mathbf{Z}_{g}}\right)} \Rightarrow \mathbf{Z}_{th} = \mathbf{n}^{2}\mathbf{Z}_{g}$$

Finalmente:

<u>Exemplo</u>) Determinar o circuito refletido no **primário** aplicando o **Teorema de Thévenin** para o circuito dado.

Cálculo de Zth:

$$\begin{split} \mathbf{Z}_{th} &= \frac{\mathbf{V}_{oc}}{\mathbf{I}_{sc}} \Rightarrow \mathbf{Z}_{th} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}} \; ; \; \begin{cases} \mathbf{V}_{1} &= \frac{\mathbf{V}_{2}}{\mathbf{n}} \\ \mathbf{I}_{1} &= \mathbf{n} \mathbf{I}_{2} \end{cases} \\ \mathbf{Z}_{th} &= \frac{\frac{\mathbf{V}_{2}}{\mathbf{n}}}{\mathbf{n} \mathbf{I}_{2}} \Rightarrow \mathbf{Z}_{th} = \frac{\mathbf{V}_{2}}{\mathbf{n}^{2} \mathbf{I}_{2}} \Rightarrow \mathbf{Z}_{th} = \frac{\mathbf{Z}_{2}}{\mathbf{n}^{2}} \end{split}$$

Finalmente:

AUTOTRANSFORMADORES

Denomina-se Autotransformador um transformador cujos enrolamentos primário e secundário estão conectados em série.

A **ABNT** define o **Autotransformador** como sendo o Transformador no qual parte do enrolamento é comum a ambos os circuitos (primário e secundário) a ele ligados.

Vantagens:

- 1) Corrente de excitação menor;
- 2) Melhor regulação;
- 3) Menor custo;
- 4) Maior rendimento;
- 5) Menores dimensões.

Desvantagens:

- 1) Corrente de curto-circuito mais elevada;
- 2) Existência de conexão elétrica entre os enrolamentos de maior e menor tensão.

Relações entre Tensões e Correntes

Sejam os esquemas de **Autotransformadores** dados nas **Figuras a** e **b** a seguir, onde os mesmos apresentam **enrolamentos subtrativos (Regra do Ponto)**.

Para o Autotransformador Abaixador (Figura a) temos que:

$$\frac{V_1}{V_2} = \frac{(N_1 + N_2)}{N_2}$$
 e $\frac{I_1}{I_2} = \frac{N_2}{(N_1 + N_2)}$

Para o Autotransformador Elevador (**Figura b**) temos que:

$$\frac{V_1}{V_2} = \frac{N_1}{(N_1 + N_2)}$$
 e $\frac{I_1}{I_2} = \frac{(N_1 + N_2)}{N_1}$

Exemplo: Seja o Autotransformador dado.

- a) Se o enrolamento do primário é $N_P = (N_1 + N_2)$ e o enrolamento do secundário é N_2 , calcule as relações de tensão e de corrente.
- b) Se $V_1 = 100 \angle 0^{\circ} V$, $I_1 = 4 \angle 30^{\circ} A$; $N_1 = 1000 e N_2 = 400$, calcule V_2 e I_2 .

$$\begin{array}{ll} a) & Sabe - se \ que: & \frac{V_P}{V_S} = \frac{N_P}{N_S} \Rightarrow \frac{V_1}{V_2} = \frac{(N_1 + N_2)}{N_2} \\ Como \ P_P = P_S \Rightarrow V_P I_P = V_S I_S \Rightarrow \frac{V_P}{V_S} = \frac{I_S}{I_P} \Rightarrow \frac{V_1}{V_2} = \frac{I_2}{I_1} \Rightarrow \frac{I_1}{I_2} = \frac{V_2}{V_1} \Rightarrow \frac{I_1}{I_2} = \frac{N_2}{(N_1 + N_2)} \\ b) \\ \begin{cases} V_1 = 100 \angle 0^o \\ N_1 = 1000 \\ N_2 = 400 \end{cases} \\ V_1 = \frac{(N_1 + N_2)}{N_2} \Rightarrow V_2 = \frac{N_2}{(N_1 + N_2)} V_1 \Rightarrow V_2 = \frac{400}{(1000 + 400)} (100 \angle 0^o) \Rightarrow V_2 = 28.57 \angle 0^o \ V_1 = \frac{N_2}{(N_1 + N_2)} \Rightarrow V_2 = \frac{(N_1 + N_2)}{N_2} V_1 \Rightarrow V_2 = \frac{(1000 + 400)}{400} (4 \angle 30^o) \Rightarrow I_2 = 14 \angle 30^o \ A \end{array}$$

Exercício: Seja o Autotransformador elevador dado a seguir.

Considerando que $V_1=120$ $\perp 30^{\circ}$, $N_1=80$, $N_2=120$ e que a carga seja igual a $Z_L=8+j6$ (Ω), determinar:

a) a corrente I₁; b) a corrente I₂; c) a corrente I_C; d) a potência complexa fornecida S pela carga.

Transformador Ideal - CC

O transformador somente apresentará tensão no **estágio permanente** em seu secundário se for aplicada uma **tensão CA** em seu primário (e vice-versa). Ao se aplicar uma **tensão CC** no primário de um transformador **não haverá tensão no secundário no estágio permanente**. A **aplicação de uma tensão CC no primário de um transformador somente induzirá tensão no secundário do mesmo no estágio transitório**. Isto ocorre porque o transformador só funciona com tensão variável. É preciso que a tensão varie no primário para que alguma tensão seja induzida no secundário.

Considerando que a impedância Z_b da bobina do primário é dada por $Z_b = R_b + jX_b$ e que $X_b = wL_b$, para CC temos que w = 0 no estágio estacionário implicando em $X_b = 0$. Assim sendo, no estágio permanente temos somente $Z_b = R_b$ para a impedância da bobina. Daí, aplicando-se uma fonte CC ao primário do transformador, coloca-se a fonte em um "quase curto-circuito", pois para a fonte CC o enrolamento primário será somente um "resistor" (R_b) dado pelo condutor da bobina com valores de resistência extremamente baixos.

Conclusão

"Ao se aplicar **tensão CC** no primário do transformador, a tensão induzida no secundário do mesmo ocorrerá somente no **estágio transitório**, não havendo assim indução no secundário no estágio permanente!"

Circuitos com Transformador em CC

Seja o circuito:

Calcular $\mathbf{i}_1(t) \mathbf{e} \mathbf{i}_2(t)$ para t > 0.

Dados que:
$$\mathbf{M} = \frac{\sqrt{2}}{2} (\mathbf{H}); \mathbf{i}_1(0^-) = \mathbf{i}_2(0^-) = 0.$$

$$Como \ v_1 \ \acute{e} \ cc \ \Rightarrow \ i_{2f} = 0 \ ; \ s\acute{o} \ existir\'{a}i_{2n}. \ \begin{cases} i_{2f} = resposta \ forçada \\ i_{2n} = resposta \ natural \end{cases}$$

Também sabemos que : $i_1(0^+) = i_2(0^+) = 0$ (indutor).

Circuito Fasorial:

Aplicando a **LKT** nas malhas do primário e do secundário:

$$\begin{cases} V_1 = \left(\frac{3}{2}s + 2\right) I_1 - \frac{\sqrt{2}}{2}sI_2 \\ 0 = -\frac{\sqrt{2}}{2}sI_1 + (s+2)I_2 \end{cases}$$

Daí:
$$H(s) = \frac{I_2}{V_1} = \frac{\sqrt{2}}{2} \left[\frac{s}{(s+1)(s+4)} \right]$$
; $G(s) = \frac{I_1}{V_1} = \frac{(s+2)}{(s+1)(s+4)}$ e $V_1 = \frac{12}{s}$
Pólos: $s_1 = -1$ e $s_2 = -4$
A resposta natural (transitória) será: $i_{2n} = A_1 e^{-t} + A_2 e^{-4t}$

 $\begin{cases} 12 = (2 \times 0) + \left(\frac{3}{2}\right) \left[\frac{\operatorname{di}_{1}(0^{+})}{\operatorname{dt}}\right] - \left(\frac{\sqrt{2}}{2}\right) \left[\frac{\operatorname{di}_{2}(0^{+})}{\operatorname{dt}}\right] \\ 0 = \left(-\frac{\sqrt{2}}{2}\right) \left[\frac{\operatorname{di}_{1}(0^{+})}{\operatorname{dt}}\right] + \left[\frac{\operatorname{di}_{2}(0^{+})}{\operatorname{dt}}\right] + (2 \times 0) \end{cases}$ Através das condições iniciais :

$$\therefore \frac{di_2(0^+)}{dt} = 6\sqrt{2} \quad (A/s)$$

Então: $A_1 = 2\sqrt{2}$ e $A_2 = -2\sqrt{2}$ Finalmente: $i_1(t) = 6 - (2e^{-4t} + 4e^{-t})$ (A) e $i_2(t) = 2\sqrt{2}(e^{-t} - e^{-4t})$ (A)

