情報学基礎 10章補足資料

表計算ソフトの使い方

- 詳細はe-Learningシステムで学習すること
 - https://kif2.keio.jp/jukunai/hiyoshi/gakuji/index.html

表計算

- ■表計算とは
 - □ 数値データの集計および分析
 - □ 表形式(シートもしくはスプレッドシート)
 - □ セル中に数値, 数式を入力
 - □ さまざまな関数, グラフ機能が用意されている
 - □ プログラミングも可能(自分で使いたい機能を自由に作成できる)

表計算の基本操作

MS-Excel 2010 の画面

ツールボタン(1)

ホーム

挿入

ページレイアウト

ツールボタン(2)

数式

データ

セルの記述方法(1)

数值

半角文字で記述

セルの記述方法②

MS-Wordへのコピー(1)

① コピーしたいセル(表)を選択

② 右クリック→「コピー」

MS-Wordへのコピー②

記述統計量の求め方

平均値(相加平均)の求め方①

■ クラスAの点数の平均値を求める

相加平均

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

平均値(相加平均)の求め方②

編集

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

クラスAの平均値 → セルB14に結果を示す場合 =(B4+B5+B6+B7+B8+B9+B10+B11+B12+B13)/10

式の書き方(1)

=F2+F3-E3

- 結果を求めたいセルに記述
- ■「=」から開始する
 - F2 と F3 の値を加算
 - その値からE3の値を減算
- 式中のセルの参照には3つ方法がある
 - 相対参照
 - 絶対参照
 - 複合参照

式の書き方②(四則演算)

$$=F2+F3-E3$$

=F2*F3-E3

=F2*(F3-E3)

=F2*F3/E3

- + 足し算
- 引き算
- * 掛け算
- / 割り算
- ^ べき乗

平均値(相加平均)の求め方③

平均値(相加平均)の求め方④

関数によって合計を求める

- =SUM(開始するセル:終了するセル)
 - □列の場合
 - $\square = SUM(C2:C6)$
 - □ =C2+C3+C4+C5+C6 と同じ
 - □行の場合
 - $\square = SUM(B3:G3)$
 - □ =B3+C3+D3+E3+F3+G3 と同じ

連続するセルの表記①

連続するセルの表記②

関数によって平均値を求める

- =AVERAGE(開始するセル:終了するセル)
 - □列の場合
 - = =AVERAGE(B2:B6)
 - □ 行の場合
 - □ =AVERAGE(B2:G2)
 - =AVERAGE(B3:G3)

平均値(相乗平均)の求め方①

■ クラスBの点数の相乗平均を求める

相乗平均

$$\overline{x} = \sqrt[n]{\prod_{i=1}^{n} x_i}$$

平均値(相乗平均)の求め方②

編集

$$\bar{x} = \sqrt{\prod_{i=1}^{n} x_i}$$

クラスBの相乗平均 → セルD14に結果を示す場合 =(D4*D5*D6*D7*D8*D9*D10*D11*D12*D13)^(1/10)

平均値(相乗平均)の求め方③

平均値(相乗平均)の求め方④

- ■べき乗
 - $\Box = A3^2$
 - $\Box = A3^{(1/2)}$
- 相乗平均
 - $\Box = (A2*A3*A4)^{(1/3)}$
- 関数によって相乗平均を求める
 - =GEOMEAN(開始するセル:終了するセル)
 - =GEOMEAN(B4:B13)

移動平均の求め方①

d=3(3期前から)の移動平均

移動平均の求め方②

d=3(3期前から)の移動平均

中央値の求め方①

■ クラスCの点数の中央値を求める

中央値の求め方②

^{*}データ数が偶数個の場合,中央値は2個存在する.その場合,二つの値の平均値を中央値としている

最頻値の求め方①

■ 全てのクラスの点数の最頻値を求める

最頻値の求め方②

偏差平方和の求め方①

■ クラスCの点数の偏差平方和を求める

偏差平方和

$$S = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

偏差平方和の求め方②

$$S = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

1) 平均値を求める
 クラスCの平均値 → セルF14に結果を示す場合
 =AVERAGE(F4:F13)

偏差平方和の求め方③

偏差平方和の求め方④

セルG4→右クリック →コピー

セルG5からG13を選択→ 右クリック→貼り付け

偏差平方和の求め方⑤

偏差平方和の求め方⑥

絶対参照と相対参照①

- ■絶対参照
 - □ セル C2 において
 - □ =\$G\$2
 - □ セル G2 という絶対的な位置を示す

- ■相対参照
 - □ セル C2 において
 - $\Box = G2$
 - □ セル C2 から4つ右にあるセルを示す

絶対参照と相対参照②

- ■絶対参照
 - □ セル C2 において
 - □ =\$E\$1
 - □ セル E1 という絶対的な位置を示す

- ■相対参照
 - □ セル C2 において
 - □ =E1
 - -・
 □ セル C2 から2つ右, 一つ上にある位置を示す

分散の求め方①

クラスCの点数の分散を求める

分散

$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

分散の求め方②

分散の求め方③

分散と不偏分散

- 分散を求める場合
 - $\square = DEVSQ(F4:F13)/10$
 - $\square = VARP(F4:F13)$

$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

- 不偏分散を求める場合
 - = DEVSQ(F4:F13)/9
 - $\square = VAR(F4:F13)$

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

標準偏差の求め方①

■ クラスCの点数の標準偏差を求める

標準偏差

$$S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

標準偏差の求め方②

★ ▶ ▶ Sheet1 Sheet2 Sheet3

編集

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

平方根を求める関数 SQRT

クラスCの標準偏差 → セルF14に結果を示す場合 = SQRT(DEVSQ(F4:F13)/10))

III III 100% -

標準偏差の求め方③

標準偏差と不偏標準偏差

- ■標準偏差を求める場合
 - $\square = SQRT(DEVSQ(F4:F13)/10)$
 - $\square = STDEVP(F4:F13)$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

- 不偏標準偏差を求める場合
 - $\square = SQRT(DEVSQ(F4:F13)/9)$
 - =STDEV(F4:F13)

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

関数のまとめ①

A12 のセル

=SUM(A2:A11)

合計を求める関数

=SUM(開始セル:終了セル)

平均を求める関数

=AVERAGE(開始セル:終了セル)

関数のまとめ2

A12 のセル

=MAX(A2:A11)

最大値を求める関数

=MAX(開始セル:終了セル)

最小値を求める関数

=MIN(開始セル:終了セル)

関数のまとめ3

- 連続してセルを選択
 - $\square = SUM(A1:A6)$
 - $\square = SUM(A1:A6,B1:B6)$
- ■単独にセルを選択
 - $\square = SUM(A1,A2,A3,A4,A5,A6)$
 - $\square = SUM(A1,A2,A3,B1,B2,B3)$

関数のまとめ4

- □ 引数が一つ
- □ (例) SIN, COS

$$f(x_1, x_2, \cdots x_n)$$

- □引数が複数
- □ (例) SUM, AVERAGE

引数

数値でない場合もある

使いたい関数を知る方法(1)

数式→関数のライブラリ

使いたい関数を知る方法②

