## Элементы теории чисел

Лектор: Королев Максим Александрович 10 октября 2024 г.



Конспект: Кирилл Яковлев, 108 группа tg: @fourkenz

## Содержание

| 1 | Делимость целых чисел                                           | 3      |
|---|-----------------------------------------------------------------|--------|
| 2 | Наименьшее общее кратное и наибольший общий делитель (HOlи HOД) | K<br>4 |
| 3 | Алгоритм Евклида                                                | 6      |
| 4 | Решение в целых числах линейного уравнения с двумя неизвестными | 6      |
| 5 | Простые числа                                                   | 7      |
| 6 | Мультипликативные функции                                       | 11     |
| 7 | Непрерывные дроби                                               | 18     |

Введение. Следующие понятия считаются интуитивно ясными:

- 1. Понятие натурального ряда  $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$ .
- 2. У каждого натурального числа n существует единственное натуральное число m=n+1 следующее за ним.
- 3. Понятие отрицательных чисел и нуля.
- 4. Понятие суммы, разности и произведения двух целых чисел.

**Аксиома.** Если  $M \subset \mathbb{N}$  обладает следующими свойствами:  $(1 \in M)$  и  $(\forall n \in M)$  выполнено  $n+1 \in M$ , то  $M=\mathbb{N}$ .

Следствие 1. Всякое непустое подмножество натурального ряда содержит минимальный элемент.

**Следствие 2.** Всякое непустое конечное подмножество натурального ряда содержит максимальный элемент.

Следствие 3. (Принцип математической индукции)

Если известно, что некоторое утверждение о натуральных числах выполнено для натурального числа a, а также из предположения о том, что утверждение верно при некотором n следует справедливость этого утверждения и для числа n+1, то это утверждение верно для всех натуральных чисел, больше или равных a.

## 1 Делимость целых чисел

**Определение 1.1.** Пусть  $a,b \in \mathbb{N}, b \neq 0$ . Говорят что a делится на b, если существует  $c \in \mathbb{Z}$ , такое, что a = bc.

Замечание. a называется делимым, а b называется делителем числа a. Запись  $b \mid a$  означает, что b делит a. Если b не делит a, то пишут  $b \nmid a$ .

**Лемма 1.1.** Пусть  $a, b, c \in \mathbb{Z}$ , тогда:

- 1.  $1 \mid a$ .
- 2.  $a \neq 0 \Rightarrow a \mid a$ .
- 3.  $a \mid b \Rightarrow a \mid bc$ .
- 4.  $a \mid b$  и  $b \mid c \Rightarrow a \mid c$ .

- 5.  $a \mid b$  и  $a \mid c \Rightarrow a \mid (b+c)$ .
- 6.  $a \mid b$  и  $b \neq 0 \Rightarrow |a| \leq |b|$ .

**Теорема 1.1.** Если  $a \in \mathbb{Z}, b \in \mathbb{N}$ , то существует единственная пара целых чисел q и r, такие, что a = bq + r, где  $0 \le r \le b - 1$ .

Доказательство. Докажем существование: Если a делится на b, то a = bc. В таком случае возьмем q = c, r = 0. Теперь пусть a не делится на b. Рассмотрим непустое множество M натуральных чисел, представимых в виде  $a-kb, k \in \mathbb{Z}$ , возьмем k = -(|a|+1), тогда  $a-kb = b(|a|+1)+a \ge b(|a|+1)-|a| \ge$  $1\cdot(|a|+1)-|a|=1\Rightarrow a-kb$  - натуральное. Значит, у M есть минимальный элемент a-kb. Возьмем q=k, r=a-kb=a-bq>1. Осталось показать, что  $0 \leq r \leq b-1$ . Предположим, что  $r \geq b$ . Если r=b, то a=bq+b=b(q+1)получаем противоречие, так как a не делится на b. Значит,  $r = b + m, m \ge 1$ . Получаем  $1 \leq m = r - b < r$ , при этом  $a = bq + r = bq + b + m = b(q+1) + m \Rightarrow$  $m = a - b(q+1) \Rightarrow m \in M$  и m < r, получаем противоречие, так как aне делится на b. Доказано, что  $r < b \Rightarrow$  представление a = bq + r - искомое. Докажем единственность: предположим, что для некоторого a и b имеются пары чисел с указанным свойством: q, r и  $q_1, r_1$ , причем  $0 \le r \le r_1 \le b-1$ . Тогда  $a = bq + r = bq_1 + r_1 \Rightarrow 0 \leq b(q - q_1) = r_1 - r$ . Значит, b делит разность  $r_1 - r$ . Допустим, что  $q \neq q_1$ , тогда по пункту 6 леммы 1.1 получаем  $b \leq r_1 - r$ и в то же время  $r_1 - r \le b - 1 < b$ . Получаем противоречие, поэтому  $q = q_1$ , следовательно, и  $r = r_1$ . 

# 2 Наименьшее общее кратное и наибольший общий делитель (НОК и НОД)

**Определение 2.0.**  $n \geq 2, a_1, \ldots, a_n \in \mathbb{N}$  пусть натуральное число k делится на каждое из этих чисел. Тогда k - общее кратное чисел  $a_1, \ldots, a_n$ .

Пусть  $a_1, \ldots, a_n$  - целые числа не все равные нулю. Натуральное число d называется общим делителем  $a_1, \ldots, a_n$ , если d делит каждое из этих чисел.

**Замечание.** Множество таких k непусто, в нем лежит, например, произведение всех этих чисел.

Множество таких d конечно: если  $a_i \neq 0$ , то d находится среди делителей числа  $a_i$ , (по пункту 6 леммы 1.1)  $d \leq |a_i|$ , значит числа d образуют конечное множество, оно непусто, так как содержит единицу.

**Определение 2.1.** Наименьшее натуральное число, делящееся на каждое из чисел  $a_1, \ldots, a_n$ , называют их наименьшим общим кратным, его обозначают  $[a_1, \ldots, a_n]$ .

**Теорема 2.1.** Каждое общее кратное натуральных чисел  $a_1, \ldots, a_n$  делится на их НОК.

Доказательство. Пусть M - общее кратное  $a_1, \ldots, a_n, K = [a_1, \ldots, a_n]$ . Поделим M на K с остатком:  $M = kq + r, 0 \le r \le k - 1 \le k$ . Допустим, что  $K \ne 0$ . По определению, всякое число  $a_i$  делит оба числа M и  $K \Rightarrow a_i$  делит разность k = M - qK, значит k является общим кратным для  $a_1, \ldots, a_n$ , но k < K, получаем противоречие, так как какое-то кратное оказалось меньше минимального. Значит, k = 0 и M = qK.

**Определение 2.2.** Наибольшее из натуральных чисел d, делящих каждое из чисел  $a_1, \ldots, a_n$ , называют наибольшим общим делителем  $a_1, \ldots, a_n$ , его обозначают  $(a_1, \ldots, a_n)$ .

**Определение 2.3.** Числа a и b называется взаимно простыми, если (a,b)=1. Числа  $a_1,\ldots,a_n$  называются взаимно простыми в совокупности, если  $(a_1,\ldots,a_n)=1$ . Числа  $a_1,\ldots,a_n$  попарно взаимно просты, если  $(a_i,a_j)=1$   $\forall i,j:1\leq i< j\leq n$ .

**Теорема 2.2.**  $[a,b] \cdot (a,b) = ab, \forall a,b \in \mathbb{N}.$ 

Доказательство. ab - общее кратное a и b. По теореме 2.1 ab делится на [a,b], то есть ab = c[a,b], где  $c \geq 1$  - натуральное число. Покажем, что a и b делятся на c. Действительно,  $a = \frac{ab}{[a,b]} \cdot \frac{[a,b]}{b} = c \cdot \frac{[a,b]}{b}$ ,  $b = \frac{ab}{[a,b]} \cdot \frac{[a,b]}{a} = c \cdot \frac{[a,b]}{a}$ , но оба числа  $\frac{[a,b]}{a}$  и  $\frac{[a,b]}{b}$  - натуральные, значит c - общий делитель a и b. Пусть теперь d - произвольный общий делитель a и b, тогда  $\frac{ab}{d} = a \cdot \frac{b}{d}$ , то есть число  $\frac{ab}{d}$  делится нацело на каждое из чисел a и b. По теореме a 1, оно делится на a 1, то есть a 2, a 3, a 4, a 6, a 6, a 7, a 6, a 7, a 6, a 7, a 6, a 8, a 7, a 6, a 8, a 8, a 9, a 9,

**Теорема 2.3.** Пусть  $a, b, c \in \mathbb{N}$ , причем  $a \mid bc$  и (a, b) = 1, тогда  $a \mid c$ .

Доказательство.  $(a,b)=1\Rightarrow$  (по теореме 2.2) bc делится нацело на [a,b]=ab, то есть bc=abm, где  $m\geq 1$  - натуральное число. Сократим обе части на b, получим c=am.

**Теорема 2.4.** Пусть  $\Delta = (a, b) \ge 1 \Rightarrow (\frac{a}{\Delta}, \frac{b}{\Delta}) = 1.$ 

Доказательство. Пусть  $m \in \mathbb{N}$  и  $m \mid \frac{a}{\Delta}, m \mid \frac{b}{\Delta}$  предположим, что  $m > 1 \Rightarrow cm = \frac{a}{\Delta}, dm = \frac{b}{\Delta} \Rightarrow \Delta cm = a, \Delta dm = b \Rightarrow \Delta m \mid a$  и  $\Delta m \mid b \Rightarrow \Delta m$  - общий делитель a и b. Но т.к. m > 1, то  $\Delta m > \Delta \Rightarrow \Delta = (a,b) \leq \Delta m$  - противоречие, поскольку  $\Delta$  - НОД  $\Rightarrow m = 1 \Rightarrow (\frac{a}{\Delta}, \frac{b}{\Delta}) = 1$ .

## 3 Алгоритм Евклида

**Лемма 3.1.** Пусть  $a \in \mathbb{Z}, b \in \mathbb{N}$  и  $b \mid a$ . Тогда (a, b) = b.

Доказательство. Пусть  $(a,b)=c\Rightarrow c\mid b\Rightarrow$  (по лемме 1.1)  $c\leq b$ , но  $b\mid a$ ,  $b\mid b\Rightarrow b$  - общий делитель a и  $b\Rightarrow b\leq c\Rightarrow b=c=(a,b)$ .

**Лемма 3.2.** Пусть  $a \in \mathbb{Z}, b \in \mathbb{N}, a = bq + r : r, q \in \mathbb{Z}, r \geq 0$ . Тогда (a, b) = (b, r).

Доказательство. Пусть  $\Delta=(a,b), \delta=(b,r)$ . Имеем  $\delta\mid b\Rightarrow \delta\mid bq, \delta\mid r\Rightarrow$  (лемма 1.1)  $\delta\mid bq+r=a\Rightarrow \delta\mid a, \delta\mid b\Rightarrow \delta$  - общий делитель a и  $b\Rightarrow \delta\leq \Delta$ .  $\Delta\mid b, \Delta\mid bq, \Delta\mid a\Rightarrow$  (лемма 1.1)  $\Delta\mid a-bq=r\Rightarrow \Delta$  - общий делитель b и  $r\Rightarrow \Delta\leq \delta\Rightarrow \Delta=\delta$ .

**Алгоритм.** Получаем, что при поиске НОД a и b, (a,b) можно заменять любой парой  $(b,r)=(b,a-bq), q\in\mathbb{Z}$ . Положим  $r_0=a,r_1=b$ . Выполняем деление с остатком:

$$r_0 = r_1 q_1 + r_2, 0 < r_2 < r_1 \Rightarrow (r_0, r_1) = (r_1, r_2)$$

$$r_1 = r_2 q_2 + r_3, 0 < r_3 < r_2 \Rightarrow (r_1, r_2) = (r_2, r_3)$$

$$r_2 = r_3 q_3 + r_4, 0 < r_4 < r_3 \Rightarrow (r_2, r_3) = (r_3, r_4)$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n, 0 < r_n < r_{n-1} \Rightarrow (r_{n-2}, r_{n-1}) = (r_{n-1}, r_n)$$
  $r_{n-1} = r_nq_n$   $\Rightarrow (\text{лемма } 3.1)(r_{n-1}, r_n) = r_n \Rightarrow (a, b) = r_n$ 

## 4 Решение в целых числах линейного уравнения с двумя неизвестными

Рассмотрим уравнение (\*) ax + by = c, такое, что  $a, b, c \in \mathbb{Z}$ , a и b не равняются нулю одновременно.  $x, y \in \mathbb{Z}$  - неизвестные.

**Теорема 4.1.** (1) Уравнение (\*) разрешимо  $\Leftrightarrow \Delta = (a, b) \mid c$ .

(2) В случае разрешимости, множество решений этого уравнения бесконечно, все решения имеют вид  $x=x_0+\frac{b}{\Delta}t,y=y_0-\frac{a}{\Delta}t$ , где  $x_0,y_0$  - произвольное решение, а  $t\in\mathbb{Z}$ .

Доказательство. Докажем первый пункт:

- $(\Rightarrow)$  Если x,y решение, то  $\Delta\mid ax,\Delta\mid by\Rightarrow$  (лемма 1.1)  $\Delta\mid ax+by\Rightarrow\Delta\mid c$ .
- $(\Leftarrow)$  Не теряя общности, можем считать, что  $a \geq b \geq 0$ . Доказываем индукцией по сумме a+b.

База:  $a+b=1 \Rightarrow b=0$  и  $a=1 \Rightarrow$  уравнение имеет вид  $ax=c \Rightarrow x=c$ . Можем предъявить решение x=c,y=0. В этом случае  $\Delta=(1,0)\mid 1$ .

Шаг:  $n \ge 1$ , считаем, что утверждение доказано для всех уравнений с условием  $a \ge b \ge 0$ ,  $1 \le a+b \le n$ . Пусть ax+by=c, где  $a \ge b \ge 0$ ,

a+b=n+1 и  $\Delta=(a,b)\mid c\Rightarrow$  докажем, что есть хотя бы одно решение.

Пусть  $b = 0, ax = c, \Delta = (a, 0) = a, a \mid c \Rightarrow c = am \Rightarrow x = m, y = 0$  - решение. Пусть  $b \ge 1$ . Рассмотрим уравнение (a - b)X + bY = c,

 $a-b \ge 0, b \ge 1 > 0.$   $(a-b)+b = (a+b)-b = n+1-b \le n.$   $(a-b,b) = (a,b) \mid c$ 

 $\Rightarrow$  по предположению индукции есть целочисленное решение  $X_0, X_0$ .

 $(a-b)X_0 + bY_0 = c \Rightarrow aX_0 - b(Y_0 - X_0) = c \Rightarrow x = X_0, y = Y_0 - X_0$  решение.

Докажем второй пункт (проверим, что  $x_0, y_0$  - решение):

 $a(x_0 + \frac{b}{\Delta}t) + b(y_0 - \frac{a}{\Delta}t) = ax_0 + \frac{ab}{\Delta}t + ay_0 - \frac{ab}{\Delta}t = ax_0 + by_0$ . Обратно: пусть

 $x_0,y_0$  и x,y - различные решения.  $ax_0+by_0=c,ax+by=c$ 

 $\Rightarrow a(x - x_0) + b(y - y_0) = 0 \Rightarrow a(x - x_0) = b(y_0 - y). \ \Delta = (a, b)$ 

 $\Rightarrow a = \alpha \Delta, b = \beta \Delta \Rightarrow$  (теорема 2.4)  $(\alpha, \beta) = 1$ 

 $\Rightarrow \alpha \Delta(x - x_0) = \beta \Delta(y_0 - y) \Rightarrow \alpha(x - x_0) = \beta(y_0 - y)$ 

 $\Rightarrow \alpha \mid \beta(y_0 - y) \Rightarrow \alpha \mid (y_0 - y) \Rightarrow y_0 - y = \alpha t \Rightarrow \alpha(x - x_0) = \beta \alpha t$ 

 $\Rightarrow x - x_0 = \beta t.$ 

## 5 Простые числа

**Определение 5.1.** Натуральное число n > 1 называется простым, если оно имеет ровно два делителя: 1 и n. В противном случае это число называется составным.

Замечание. Единица не причисляется ни к простым, ни к составным.

7

**Лемма 5.1.** Наименьший делитель натурального числа n > 1, отличный от единицы - простое число.

Доказательство. Пусть  $d \mid n, 1 < d \le n$ , и d - наименьший с этими свойствами. Пусть d - составное. Тогда  $\exists k : k \mid d$  и 1 < k < d. По лемме  $1.1 \mid k \mid n$ , но 1 < k < d - противоречие с тем, что d - минимальный.

#### Теорема 5.1. Множество простых чисел бесконечно.

Доказательство. Пусть множество простых конечно:  $p_1 < p_2 < \dots < p_n$  - все простые числа. Рассмотрим число  $N = p_1 p_2 \dots p_n + 1$ . По лемме 5.1 наименьший делитель p > 1 числа N - простое число. Но p отлично от  $p_1 \dots p_k, p$  делит N нацело, а N при делении на каждое из  $p_1 \dots p_n$  дает остаток 1 - противоречие.

Пусть x>0, через  $\pi(x)$  обозначим количество простых чисел на отрезке [0,x]  $(\pi(x)$  - количество простых чисел не превосходящих x).

$$\pi(x) = \sum_{p \le x} 1$$

(Теорема 5.1)  $\Leftrightarrow \pi(x)$  - не ограничена сверху  $\Leftrightarrow \pi(x) \to +\infty$  при  $x \to +\infty$ . Гипотеза Лежандра:  $\pi(x) = \frac{x}{\ln x - C}$ , где C = 1,08366. Позднее Гаусс выдвинет более сложное и более точное предположение. Из доказательства теоремы Чебышева:  $\forall \varepsilon > 0 \exists x_0 = x_0(\varepsilon)$ , т.ч.  $\forall x \geq x_0$  выполнено неравенство:

$$(A - \varepsilon) \frac{x}{\ln x} < \pi(x) < (B + \varepsilon) \frac{x}{\ln x}$$
$$A = \ln(\frac{2^{\frac{1}{2}} 3^{\frac{1}{3}} 5^{\frac{1}{5}}}{30^{\frac{1}{30}}}), B = \frac{6}{5}A$$

Асимптотический закон распределения простых чисел:

$$\lim_{x \to +\infty} \left(\frac{\pi(x)}{\frac{x}{\ln x}}\right) = 1 \Leftrightarrow A = B = 1 \Leftrightarrow \pi(x) = (1 + \bar{o}(1)) \frac{x}{\ln x}$$

**Лемма 5.2.** Пусть N - составное число, p - наименьший простой делитель. Тогда  $p \leq \sqrt{N}$ .

Доказательство. N - составное  $\Rightarrow \exists a,b: 1 < a < N, 1 < b < N$  и ab = N. Значит  $a \mid N,b \mid N,p$  - наименьший  $\Rightarrow p \leq a,p \leq b \Rightarrow p^2 \leq ab = N$   $\Rightarrow p \leq \sqrt{N}$ .

**Решето Эратосфена.** Выписываем все числа от 2 до N, первое число в таблице - простое, это 2. Вычеркиваем все числа кратные 2, кроме нее самой. Первое невычеркнутое число после 2 - это 3 - значит оно простое. Вычеркиваем все числа, кратные 3, кроме самой 3. Первое невычеркнутое число после 3 - простое и т.д. После того как найдено наибольшее простое p не превосходящее  $\sqrt{N}$  и вычеркнуты все числа кратные p, в таблице останутся лишь простые числа, не превосходящие N и только они.

#### Теорема 5.2. (Основная теорема арифметики)

Каждое целое число, большее 1, раскладывается в произведение простых чисел, притом единственным способом (с точностью до порядка сомножителей).

#### Доказательство. Существование:

Индукция по n>1. Числа n=2, n=3 - простые, для них это утверждение справедливо. Пусть n>3, и допустим, что справедливость утверждения проверена для всех m< n. Если n - простое, то утверждение очевидно. Пусть n - составное. По лемме 5.1 его наименьший делитель - простое число  $\Rightarrow n=p_1k$ , но  $k=\frac{n}{p_1}\leq \frac{n}{2}< n$ . По предположению индукции  $k=p_2\dots p_r$ , где  $p_2,\dots,p_r$  - простые.  $\Rightarrow n=p_1k=p_1p_2\dots p_r$  - искомое разложение.

Единственность:

Пусть  $n=p_1\dots p_r=q_1\dots q_s$ , где  $p_i,q_i$  - простые числа и  $r\leq s$ . Тогда  $p_1\dots p_r=q_1a_1$ , где  $a_1=q_2\dots q_s\Rightarrow p_1\mid q_1a_1$ . Возможно два случая:

- 1)  $(p,q) > 1 \Rightarrow p_1 = q_1$ .
- 2)  $(p,q) = 1 \Rightarrow \text{(теорема 2.3)} \ p_1 \mid a_1 = q_2 \dots q_s, a_1 = q_2 a_2, a_2 = q_3 \dots q_s,$

 $p_1 \mid q_2 a_2 \Rightarrow$  либо  $p_1 = q_2$ , либо  $p_1 \mid a_2$  и т.д. Но  $a_1 > a_2 > \dots \geq 1 \Rightarrow$  на одном из шагов обязательно будет иметь место равенство  $p_1 = q_k, k \leq s$  (иначе оказалось бы, что  $p_1 \mid 1$ , а это невозможно). Итак,  $p_1$  совпадает с одним из чисел  $q_1, \dots, q_s$ . Будем считать, что  $p_1 = q_1 \Rightarrow p_2 \dots p_r = q_2 \dots q_s$  продолжаем рассуждение и получаем, что  $p_2$  совпадает с одним из  $q_2, \dots q_s$ , пусть  $p_2 = q_2$  и т.д. Если r < s после r шагов получили бы противоречивое равенство:  $1 = q_{r+1} \dots q_s$ 

$$\Rightarrow r = s$$
 и множества  $\{p_1, \dots, p_r\}$  и  $\{q_1, \dots, q_s\}$  совпадают.

**Замечание.**  $n>1, n=q_1\dots q_s\Rightarrow n$  можно записать в виде  $n=p_1^{\alpha_1}\dots p_k^{\alpha_k},$   $p_1< p_2<\dots < p_k$  - каноническое разложение n на простые сомножители.

**Определение 5.2.** Пусть  $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}, p$  - простое. Тогда

$$u_p(n) = \begin{cases} 0, \text{ если } p \nmid n, \\ \alpha, \text{ если} p = p_i. \end{cases}$$

#### **Лемма 5.3.** (Свойства $\nu_p(n)$ )

- 1. Для любых целых чисел a, b > 1 и любого простого p справедливо равенство:  $\nu_n(ab) = \nu_n(a) + \nu_n(b)$ .
- 2. Пусть m, n > 1 целые числа, тогда  $m \mid n \Leftrightarrow \nu_p(m) \leq \nu_p(n)$  для любого простого p.

#### Доказательство.

- 1. При перемножении степеней с одинаковыми основаниями, их показатели складываются.
- $2.(\Rightarrow)$  Пусть  $n = km \Rightarrow \nu_p(n) = \nu_p(k) + \nu_p(m) \ge \nu_p(m)$ .
  - $(\Leftarrow)$  Все разности  $\nu_p(n) \nu_p(m)$  целые неотрицательные. Рассмотрим число:

$$k = \prod_{n} p^{\nu_p(n) - \nu_p(m)}$$

Если k=1, то  $\nu_p(n)=\nu_p(m)$  для всех p и m=n. В силу основной теоремы арифметики, в этом случае  $m \mid n$ . Пусть k > 1, тогда в силу пункта 1:

$$km = \prod_{p} p^{\nu_p(n) - \nu_p(m)} \cdot \prod_{p} p^{\nu_p(m)} = \prod_{p} p^{\nu_p(n)} = n$$

то есть  $m \mid n$ .

**Лемма 5.4.** Для любых  $a, b \in \mathbb{N}$  справедливы равенства:

$$[a,b] = \prod_{p} p^{\max(\nu_p(a),\nu_p(b))}$$
$$(a,b) = \prod_{p} p^{\min(\nu_p(a),\nu_p(b))}$$

$$(a,b) = \prod_{p} p^{\min(\nu_p(a),\nu_p(b))}$$

 $\mathcal{A}$ оказательство. Обозначим  $K=[a,b],\, N=\prod_{r}p^{\max(\nu_p(a),\nu_p(b))}$  поскольку

 $u_p(a) \leq \nu_p(N), \, \nu_p(b) \leq \nu_p(N), \, \text{то } a \text{ и } b \text{ делят } N \text{ в силу леммы } 5.3. \, \text{Значит } N \text{ - об-}$ щее кратное чисел a и b. С другой стороны, поскольку a и b делят K, то по лемме 5.3 имеем  $\nu_p(a) \le \nu_p(K), \nu_p(b) \le \nu_p(K),$  так что  $\nu_p(K) \ge \max(\nu_p(a), \nu_p(b)) =$  $\nu_p(N)$  для любого простого p. Значит,  $N\mid K$ , но  $N\leq K\Rightarrow N=K$ . Вторая часть утверждения следует из первой, если воспользоваться равенством

$$(a,b) = \frac{ab}{[a,b]}$$

и тем, что  $x + y = \max(x, y) + \min(x, y) \ \forall x, y \in \mathbb{R}$ .

## 6 Мультипликативные функции

Обозначения и пояснения:

- 1. Обозначение  $\sum\limits_{d|n} f(d)$  сумма значений функции f по всем делиителям d числа n.
- 2. Двойная сумма вычисляется следующим образом:

$$\sum_{m=1}^{M} \sum_{n=1}^{N} g(mn) = \sum_{n=1}^{N} g(1,n) + \sum_{n=1}^{N} g(2,n) + \dots + \sum_{n=1}^{N} g(M,n)$$

**Определение 6.1.** Функция f, определенная на множестве  $\mathbb{N}$  называется мультипликативной, если для любых взаимно простых  $a,b\in\mathbb{N}$  выполнено равенство:

$$f(ab) = f(a)f(b)$$

**Теорема 6.1.** (Простейшие свойтсва мультипликативных функций) Пусть f,g - мультипликативные функции. Тогда:

- 1. Если  $f \not\equiv 0$ , то f(1) = 1.
- 2. Если  $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$  каноническое разложение n, то  $f(n) = f(p_1^{\alpha_1}) \dots f(p_r^{\alpha_r})$ .
- 3. Функция h, определенная для любого  $n \in \mathbb{N}$  равенством h(n) = f(n)g(n) мультипликативна.

Доказательство. 1. Так как  $f \not\equiv 0$ , то  $\exists a \in \mathbb{N} : f(a) \not= 0$ . Тогда  $f(a) = f(a \cdot 1) = f(a)f(1) \Rightarrow f(1) = 1$ .

2. 3. Напрямую следует из определения.

Для исседование дальнейших свойств мультипликативных функций потребуется несколько вспомогательных лемм

**Лемма 6.1.** Пусть p - простое число,  $r \geq 2$  и пусть целые числа  $a_1, \ldots, a_r$  попарно взаимно просты, причем  $p \mid a_1 \ldots a_r$ . Тогда найдется номер  $1 \leq s \leq r$  такой, что  $p \mid a_s$ .

Доказательство. Индукция по r. Если r=2, то это есть очевидно следствие теоремы 2.3. Пусть  $m\geq 3$  и утверждение доказано для всех  $r\leq m-1$ . Пусть  $a_1,\ldots a_m$  попарно взаимно просты и  $p\mid a_1\cdot\ldots\cdot a_m$ . Полагая  $a=a_1\cdot\ldots\cdot a_{m-1}$ 

будем иметь:  $p \mid aa_m$ . Если (p,a) = 1, то  $p \mid a_m$  по теореме 2.3. Пусть (p,a) > 1. Так как p - простое, то (p,a) = p и p делит некоторый сомножитель  $a_s : 1 \ge s \ge m-1$ .

**Лемма 6.2.** Пусть  $b \mid a$  и  $c \mid a$ , причем (b, c) = 1. Тогда  $bc \mid a$ .

Доказательство. Из условия следует, что a - общее кратное b и c. По теореме 2.1 a делится на [b,c], по теореме 2.2 [b,c]=bc.

**Следствие.** Пусть  $r \ge 2$ , и пусть целые числа  $b_1 \dots b_r$  попарно взаимно просты, причем  $b_1 \mid a, \dots, b_r \mid a$ . Тогда  $b_1 \dots b_r \mid a$ .

Доказательство. Индукция по r. Если r=2, получаем утверждение леммы. Пусть  $m\geq 3$  и утверждение доказано для всех  $r\leq m-1$ . Пусть  $b_1,\ldots b_m$  попарно взаимно просты и каждое из них делит a. В силу предложения индукции, a делится на произведение  $b=b_1\ldots b_{m-1}$ . Заметим, что  $(b,b_m)=1$ . Действительно, в противном случае найдется простое число p, делящееся как на  $b_m$  так и на b. По лемме 6.1 p будет делить и некоторые  $b_\xi: 1\geq \xi\geq m-1$ . Следовательно  $(b_m,b_\xi)\geq p>1$ , что противоречит условию. Так как a делится на b и  $b_m$ , и  $(b,b_m)=1$ , то в силу леммы 6.2 a делится на  $bb_m=b_1\ldots b_m$ .

**Лемма 6.3.** Пусть числа a и b взаимно просты, и пусть  $d_1$  и  $d_2$  пробегают соответственно множества всех делителей a и b. Тогда величина  $d=d_1d_2$  пробегает без повторений всё множество делителей числа ab.

Доказательство.

- 1. Если  $d_1 \mid a, d_2 \mid b$ , то  $a = kd_1, b = md_2$  при некоторых  $k, m \in \mathbb{Z}$ , так что  $ab = kmd_1d_2$ , то есть  $d_1d_2$  делитель ab.
- 2. Допустим, что  $d_1d_2 = \delta_1\delta_2$  для некоторых чисел  $d_1, \delta_1$  делящих a и некоторых чисел  $d_2, \delta_2$ , делящих b. Очевидно, что  $(d_1, \delta_2) = 1$ , так как в противном случае нашлось бы простое p, делящееся одновременно и a и b, что невозможно. Но  $d_1 \mid \delta_1\delta_2$  по теореме 2.3  $d_1 \mid \delta_1$  и, следовательно  $d_1 \leq \delta_1$ . Аналогично доказывается, что  $\delta_1 \mid d_1$  и  $\delta_1 \leq d_1$ . Значит  $d_1 = \delta_1, d_2 = \delta_2$ , то есть все произведения  $d_1$  и  $d_2$  различны.
- 3. Докажем, наконец, что всякий делитель d числа ab встретится среди произведений  $d_1d_2$ . Если d=1, то это очевидно. Пусть  $d\geq 2$  и  $p_1^{\alpha_1}\dots p_r^{\alpha_r}$  - каноническое разложение d. Число  $q_1=p_1^{\alpha_1}\mid ab$ . Из теоремы 2.3 следует, что  $q_1$  делит либо a, либо b (но не оба сразу). То же верно и для чисел  $q_\xi=p_\xi^{\alpha_\xi}, \xi=2,3,\ldots,r$ . Пусть, для определенности,  $q_1,\ldots,q_t$  - все

сомножители, делящие a, и  $q_{t+1},\ldots,q_r$  - все сомножители, делящие b. По следствию леммы 6.2 произведение  $d_1=q_1\ldots q_t$  делит a, произведение  $d_2=q_{t+1},\ldots,q_r$  делит b, но  $d_1d_2=d$ .

**Теорема 6.2.** Пусть функция f мультипликативна. Тогда функция F, определенная при любом  $n \in \mathbb{N}$  равенством:

$$F(n) = \sum_{d|n} f(d)$$

мультипликативна.

Доказательство. Пусть (a,b)=1. По лемме 6.3, все делители ab получим без повторений, рассмотрев все произведения  $d=d_1d_2$ , где  $d_1\mid a,\,d_2\mid b$ . Значит

$$F(ab) = \sum_{d|ab} f(d) = \sum_{d_1|a} \sum_{d_2|b} f(d_1d_2) = \sum_{d_1|a} \sum_{d_2|b} f(d_1)f(d_2) =$$

$$= (\sum_{d_1|a} f(d_1))(\sum_{d_2|b} f(d_2)) = F(a)F(b).$$

Взаимная простота  $d_1$  и  $d_2$  очевидна.

**Следствие.** Если  $p_1^{\alpha_1}\dots p_r^{\alpha_r}$  - каноническое разложение n, а F - функция из условия теоремы, то

$$F(n) = \prod_{i=1}^{r} (1 + f(p_i) + f(p_i^2) + \dots + f(p_i^{\alpha_i}))$$

(при условии что  $f \not\equiv 0$ ).

**Определение 6.2.** Функция Мебиуса  $\mu(n)$  определяется равенствами:

$$\mu(n) = \begin{cases} 1, & \text{если } n = 1, \\ 0, & \text{если } n \text{ делится на квадрат простого числа,} \\ (-1)^k, & \text{если } n = p_1 \dots p_k - \text{различные простые числа.} \end{cases}$$

Примеры:  $\mu(2) = (-1)^1 = -1, \mu(3) = -1, \mu(4) = 0, \mu(5) = -1, \mu(6) = (-1)^2 = 1, \mu(7) = -1, \mu(8) = \mu(9) = 0, \mu(10) = (-1)^2 = 1 \ n = p_1 \dots p_k,$   $m = q_1 \dots q_r, \ (m, n) = 1 \Rightarrow mn = p_1 \dots p_k q_1 \dots q_r \Rightarrow \mu(mn) = (-1)^{k+r} = (-1)^k (-1)^r = \mu(m)\mu(n). \ p$  - простое  $\Rightarrow \mu(p) = -1, \mu(p^2) = 0, \mu(p^3) = 0, \dots$ 

Теорема 6.3. (Основное свойство функции Мебиуса)

$$\sum_{d|n} \mu(d) = \begin{cases} 1, \text{ если } n = 1, \\ 0, \text{ во всех остальных случаях.} \end{cases}$$

Доказательство. Пусть  $F(n) = \sum_{d|n} \mu(d) \Rightarrow$  (По теореме 6.2) F - мультипликативна. Пусть p - простое,  $n = p^{\alpha}, \alpha \geq 1 \Rightarrow F(p^{\alpha}) = \sum_{d|p^{\alpha}} \mu(d) = \mu(1) + \mu(p) + \mu(p^2) + \dots + \mu(p^{\alpha}) = 1 - 1 = 0.$ 

Определение 6.3. Функция Эйлера  $\varphi(n)$  определяется для натурального n как количество чисел m с условиями  $1 \le m \le n$ , таких, что (m,n)=1

Примеры. 
$$\varphi(1)=1,\ \varphi(2)=1,\ \varphi(3)=1+1+0=2,\ \varphi(4)=1+0+1+0=2,$$
  $\varphi(5)=1+1+1+1+0=4,\ \varphi(6)=1+0+0+1+0=2$ 

**Теорема 6.4.** Функция Эйлера  $\varphi$  мультипликативна. Кроме того, если  $p_1, \ldots, p_k$  - все различные делители n, тогда:

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}) = n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k})$$

Доказательство. Надо подсчитать число тех m, для которых (m,n)=1. По теореме 6.3

$$\sum_{d|(m,n)} \mu(d) = \begin{cases} 1, & \text{если } (m,n) = 1, \\ 0, & \text{иначе.} \end{cases}$$
 
$$\Rightarrow \varphi(n) = \sum_{1 \leq m \leq n} \sum_{d|(m,n)} \mu(d) = \sum_{d|n} \mu(d) \sum_{d \leq m \leq n, d|m} 1$$
 
$$1 \leq m = kd \leq n \Rightarrow 1 \leq k \leq \frac{n}{d}$$
 
$$\Rightarrow \sum_{d|n} \mu(d) \sum_{d < m < n, d|m} 1 = \sum_{d|n} \mu(d) \frac{n}{d} = n \sum_{d|n} \frac{\mu(d)}{d}$$

Функции  $\mu(d)$  и  $\frac{1}{d}$  - мультипликативные  $\Rightarrow \frac{\mu(d)}{d}$  - мультипликативна  $\Rightarrow$  по теореме  $6.2 \Rightarrow \sum_{d|n} \frac{\mu(d)}{d}$  - мультипликативна  $\Rightarrow \varphi(n)$  - мультипликативна.

$$n=p^{\alpha},\ p$$
 - простое,  $\alpha\geq 1$ 

$$\Rightarrow \varphi(p^{\alpha}) = p^{\alpha} \sum_{d|p^{\alpha}} \frac{\mu(d)}{d} = p^{\alpha} \left( \frac{\mu(1)}{1} + \frac{\mu(p)}{p} + \frac{\mu(p^{2})}{p^{2}} + \dots + \frac{\mu(p^{\alpha})}{p^{\alpha}} \right) =$$

$$= p^{\alpha} \left( 1 + \frac{\mu(p)}{p} \right) = p^{\alpha} \left( 1 + \frac{1}{p} \right)$$

 $n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \Rightarrow \varphi(n) = \varphi(p_1^{\alpha_1}) \dots \varphi(p_k^{\alpha_k}) = p_1^{\alpha_1} (1 - \frac{1}{p_1}) \dots p_k^{\alpha_k} (1 - \frac{1}{p_k}) =$   $= p_1^{\alpha_1} \dots p_k^{\alpha_k} (1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k}) = n \prod_{p|n} (1 - \frac{1}{p}).$ 

**Теорема 6.5.** (Формула обращения Мебиуса) Пусть  $\forall n \geq 1$  функции f и g связаны соотношением

$$f(n) = \sum_{d|n} g(d) \tag{1}$$

Тогда  $\forall n \geq 1$  выполнено равенство

$$g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) \tag{2}$$

Обратно, если  $\forall n \geq 1$  f и g связаны соотношением (2), то  $\forall n \geq 1$  верно (1).

Доказательство. (⇒) Пусть выполнено (1), преобразуем величину

$$\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(d) \sum_{\delta \mid \frac{n}{d}} g(\delta) = \sum_{d\delta \mid n} \mu(d) g(\delta) = \sum_{\delta \mid n} g(\delta) \sum_{d \mid \frac{n}{\delta}} \mu(d) =$$

$$= (\text{по теореме 6.3}) g(n).$$

Пояснение:

$$\sum_{d|\frac{n}{\delta}}\mu(d) = \begin{cases} 1, \text{ если } \frac{n}{\delta} = 1, \\ 0, \text{ если } \frac{n}{\delta} > 1. \end{cases} \Leftrightarrow \begin{cases} 1, \text{ если } n = \delta, \\ 0, \text{ если } n > \delta. \end{cases}$$

 $(\Leftarrow)$  Пусть есть (2), преобразуем

$$\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \sum_{\delta \mid d} \mu(\delta) f(\frac{d}{\delta}) =$$
 
$$(\delta \mid d \Rightarrow d = \Delta \delta \Rightarrow \frac{d}{\delta} = \Delta)$$
 
$$= \sum_{\Delta \delta \mid d} \mu(\delta) f(\Delta) = \sum_{\Delta \mid n} f(\Delta) \sum_{\delta \mid \frac{n}{\Delta}} \mu(\delta) = \text{(по теореме 6.3) } f(n)$$

Следствие.

$$\sum_{d|n} \varphi(n) = n$$

Доказательство. Выше доказали, что

$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

это равенство (2), где  $g(n) = \varphi(n), f(k) = k$ . По формуле обращения Мебиуса, для этих функций выполнено (1):  $f(n) = n = \sum_{d|n} g(n) = \sum_{d|n} \varphi(n)$ 

**Определение 6.4.** Функция делителей  $\tau(n)$  определяется, как число делителей натурального  $n \geq 1$ .

$$\tau(n) = \sum_{d|n} 1.$$

**Замечание.**  $f(1) \equiv 1$  - мультипликативна  $\Rightarrow$  (по теореме 6.2)  $\tau(n)$  - мультипликативна.

**Утверждение 6.1.**  $n = p^{\alpha}$ , p - простое.

$$\tau(p^{\alpha}) = \sum_{d|p^{\alpha}} 1 = \alpha + 1$$

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \Rightarrow \tau(n) = (\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_k + 1).$$

**Определение 6.5.**  $\sigma(n)$  - сумма делителей числа  $n \geq 1$ 

$$\sigma(n) = \sum_{d|n} d$$

Примеры.  $\sigma(6) = 1 + 2 + 3 + 6 = 12$ , p - простое  $\Rightarrow \sigma(p) = p + 1$ .

Из теоремы 6.2 следует мультипликативность  $\sigma(n)$ .

$$n = p^{\alpha} \Rightarrow \sigma = 1 + p + p^2 + \dots p^{\alpha} = \frac{p^{\alpha+1}-1}{p-1}.$$

Если 
$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \Rightarrow \sigma(n) = \sigma(p_1^{\alpha_1}) \dots \sigma(p_k^{\alpha_k}) = \prod_{s=1}^r \frac{p_1^{\alpha_s+1}-1}{p_s-1} = \prod_{p^{\alpha}||n|} \frac{p^{\alpha+1}-1}{p-1}$$

**Замечание.** Функции  $\tau(n)$  и  $\sigma(n)$  - частный случай функции  $\sigma_{\beta}(n)$ ,  $\beta$  - любое вещественное число.  $\sigma_{\beta}(n) \sum_{d|n} 1 = \tau(n), \ \sigma_{1}(n) = \sigma(n).$ 

Упражнение: Доказать, что  $\sigma(n) + \varphi(n) = n\tau(n)$  имеет место  $\Leftrightarrow n$  - простое.

**Определение 6.6.** Делитель d числа n называется собстввенным, если d < n.

**Определение 6.7.** Число n называется совершенным, если оно равно сумме своих собственных делителей:  $n = \sigma(n) - n \Leftrightarrow \sigma(n) = 2n$ 

Примеры.  $\sigma(6) = 12 = 6 \cdot 2$ ,  $\sigma(28) = 56 = 2 \cdot 28$ .

#### **Теорема 6.6.** (Эйлер)

Четное число является совершенным  $\Leftrightarrow$  когда оно имеет вид  $2^{p-1}(2^p-1)$ , где p и  $2^p-1$  - простые числа. (без доказательства)

Простые числа вида  $M_p=2^p-1$ , где p - простое, называются простыми Мерсена. Сейчас известно 51 простое число Мерсена. Самое большое из них отвечает простому p=82589933. В записи  $M_p$  - 24862048 цифр. (результат получен 21.12.2018) Неизвестно, конечно или нет множество простых Мерсена. Гипотеза: если  $\pi_M(x)$  - число простых Мерсена не превосходящих x, то  $\pi_M(x) \approx \ln \ln x$ . Неизвестно, существуют или нет нечетные совершенные числа. Если N - нечетное совершенное число, то

- (1)  $N > 10^{1500} (2012 \text{ r.})$
- (2) Наибольший простой делитель N превосходит  $10^8$  (2008г.)
- (3) Второй по величине простой делитель N превосходит  $10^4$  (1999г.)
- (4) Пусть  $k \ge 1$ . Тогда имеется не более чем  $2^{4^k}$  несчетных совершенных чисел, имеющих ровно k различных простых делителей. (2003г.)

**Определение 6.8.** Числа a и b (1 < a < b) называются дружественными, если (a) a есть сумма собственных делителей b, (b) число b - сумма собственных делителей a:  $\begin{cases} \sigma(b) - b = a, \\ \sigma(a) - a = b. \end{cases} \Leftrightarrow \sigma(a) = \sigma(b) = a + b.$ 

#### **Примеры.** (ЕЩЕ НЕ ГОТОВО)

Неизвестно, конечно или нет множество дружественных пар чисел. Сейчас извество 1229319267 таких пар. Пусть A(x) - число дружественных пар с  $a \le x$ .  $\frac{A(X)}{x} \to 0$  при  $x \to \infty$  (П. Эрдеш 1955г.)

### 7 Непрерывные дроби

**Пример.** Заметим, что  $43 = 19 \cdot 2 + 5$ ,  $19 = 5 \cdot 3 + 4$ . Рассмотрим дробь:

$$\frac{a}{b} = \frac{19}{43} = \frac{1}{\frac{43}{19}} = \frac{1}{\frac{2 \cdot 19 + 5}{19}} = \frac{1}{2 + \frac{5}{19}} = \frac{1}{2 + \frac{1}{\frac{19}{5}}} = \frac{1}{2 + \frac{1}{\frac{5 \cdot 3 + 4}{5}}} = \frac{1}{2 + \frac{1}{\frac{5 \cdot 3 + 4}{5}}} = \frac{1}{2 + \frac{1}{\frac{1}{3 + \frac{1}{5}}}} = \frac{1}{2 + \frac{1}{\frac{1}{1 + \frac{1}{4}}}}$$

**Определение 7.1.** Непрерывной (цепной) дробью будем называть выражение вида:

$$[q_0; q_1, q_2, \dots q_n] = q_0 = \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_n}}} \quad (*)$$

**Теорема 7.1.** Пусть a - целое, b - натуральное и пусть (a,b)=1. Пусть кроме того,  $q_0,q_1,\ldots,q_n$  - все неполные частные, возникающие при отыскании (a,b) с помощью алгоритма Евклида. Тогда число  $\alpha=\frac{a}{b}$  разлагается в непрерывную дробь вида (\*).

Доказательство. Доказательство следует из цепочки равненств:

$$a = bq_0 + r_1,$$

$$b = r_1q_1 + r_2,$$

$$r_1 = r_2q_2 + r_3,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$

Получаем:

$$\frac{a}{b} = q_0 + \frac{r_1}{b} = q_0 + \frac{1}{\frac{b}{r_1}} = q_0 + \frac{1}{\frac{r_2}{r_1}} = q_0 + \frac{1}{\frac{1}{q_1 + \frac{1}{r_2}}} = q_0 + \frac{1}{\frac{1}{q_1 + \frac{1}{r_2}}} = q_0 + \frac{1}{\frac{1}{q_1 + \frac{1}{r_2}}} = \dots$$

Собирая полученые равенства вместе приходим к (\*).

#### Пример.

$$a=37,\ b=8,$$
  $37=8\cdot 4+5,$   $8=5\cdot 1+3,$   $5=3\cdot 1+2,$   $\Rightarrow \alpha=\frac{37}{8}=[4;1,1,1,2].$   $3=2\cdot 1+1,$   $2=1\cdot 2.$ 

**Определение 7.2.** Величины  $q_0, q_1, \ldots, q_n$  в разложении числа  $\alpha = \frac{a}{b}$  из теоремы 7.1 называется неполным частным b в разложении  $\alpha$  в непрерывную дробь.

Дроби

$$\delta_0 = q_0$$

$$\delta_1 = q_0 + \frac{1}{q_1}$$

$$\delta_2 = q_0 + \frac{1}{q_1 + \frac{1}{q_2}}$$
:

называются подходящими дробями.

#### Пример.

$$q_0 = 4, \ q_1 = 1, \ q_2 = 1, \ q_3 = 1, q_4 = 2.$$

Тогда

$$\delta_0 = 4$$

$$\delta_1 = 4 + \frac{1}{1} = 5$$

$$\delta_2 = 4 + \frac{1}{1 + \frac{1}{1}} = 4 + \frac{1}{2} = \frac{9}{2}$$

$$\delta_3 = 4 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = 4 + \frac{2}{3} = \frac{14}{3}$$