Congruencia

Prof. Jhon Fredy Tavera Bucurú

2025

Congruencias

Clases de Equivalencia

Congruencia

Definición (Definición de congruencia)

Sean $a, b, n \in \mathbb{Z}$. Decimos que a es congruente a b módulo n, y escribimos

$$a \equiv b \pmod{n}$$

si $n \mid (a - b)$, es decir, si a y b dejan el mismo resto en la división por n.

Por ejemplo, tenemos que

$$17 \equiv 3 \pmod{7}$$
 y $10 \equiv -5 \pmod{3}$.

Teorema

Dos enteros a y b son congruentes módulo n si y solo si tienen el mismo residuo al dividirlos por n.

Demostración: Supongamos que $a \equiv b \pmod{n}$.

Sea r el residuo de dividir b por n. Entonces, por hipótesis, existe un entero k tal que:

$$a-b=kn$$
,

y además:

$$b = qn + r \quad \text{con } 0 \le r < n.$$

En consecuencia:

$$a = kn + b = kn + (qn + r) = n(k + q) + r \text{ con } 0 \le r < n.$$

Por el algoritmo de la división, r es el residuo de dividir a por n. Por lo tanto, a y b tienen el mismo residuo.

Ahora, en la dirección inversa, supongamos que:

$$a = q_1 n + r$$
 y $b = q_2 n + r$ con $0 \le r < n$.

Entonces:

$$a - b = (q_1 - q_2)n$$
.

Por lo tanto, $n \mid (a - b)$, lo que implica que:

$$a \equiv b \pmod{n}$$
.

Proposición (Relación de Equivalencia)

Para cualesquiera a, b, c, d, $n \in \mathbb{Z}$, tenemos:

- 1. (**Reflexividad**) $a \equiv a \pmod{n}$;
- 2. (Simetría) si $a \equiv b \pmod{n}$, entonces $b \equiv a \pmod{n}$;
- 3. (**Transitividad**) si $a \equiv b \pmod{n}$ y $b \equiv c \pmod{n}$, entonces $a \equiv c \pmod{n}$;

Demostración: Para el ítem (1), basta observar que:

$$n\mid (a-a)=0.$$

En el ítem (2), si $n \mid (a - b)$, entonces:

$$n \mid -(a-b) \iff n \mid (b-a).$$

Para el ítem (3), si $n \mid (a - b)$ y $n \mid (b - c)$, entonces:

$$n \mid ((a-b)+(b-c)) \iff n \mid (a-c).$$

Teorema

Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$, entonces:

1. Para todo par de enteros r y s,

$$ar + cs \equiv br + ds \pmod{n}$$
.

- 2. $a + c \equiv b + d \pmod{n}$.
- 3. $a-c \equiv b-d \pmod{n}$.
- 4. $ac \equiv bd \pmod{n}$.
- 5. Para todo entero positivo k, $a^k \equiv b^k \pmod{n}$.
- 6. Para todo entero r, $a + r \equiv b + r \pmod{n}$.
- 7. Para todo entero r, ar $\equiv br \pmod{n}$.

Demostración:

1. La hipótesis dice que $n \mid (a - b)$ y $n \mid (c - d)$, luego, por el Teorema 2.1, tenemos que:

$$n \mid \{r(a-b) + s(c-d)\} = (ar + cs) - (br + ds),$$

y por lo tanto:

$$ar + cs \equiv br + ds \pmod{n}$$
.

- 2. Se sigue de (1) tomando r = s = 1.
- 3. Se sigue de (1) tomando r = 1 y s = -1.
- 4. Basta observar que:

$$ac - bd = (a - b)c + b(c - d).$$

- 5. La demostración es por inducción sobre *k*:
- 6. Es suficiente aplicar (2) a las congruencias $a \equiv b \pmod{n}$ y $r \equiv r \pmod{n}$.
- 7. Es suficiente aplicar (4) a las congruencias $a \equiv b \pmod{n}$ y $r \equiv r \pmod{n}$.

Determine el último digito de 3^{2016}

Corolario

Si $a \equiv b \pmod{n}$ y P(x) es un polinomio con coeficientes enteros, entonces:

$$P(a) \equiv P(b) \pmod{n}$$
.

Proposición

Un entero positivo expresado en forma decimal es divisible por 3 si y solo si la suma de sus dígitos es divisible por 3.

Ejemplo

Sean a y b enteros cualesquiera y p un número primo, veamos que:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
.

En efecto, por el Teorema del Binomio, tenemos:

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k,$$

lo que implica:

$$(a+b)^p=a^p+\binom{p}{1}a^{p-1}b+\cdots+\binom{p}{p-1}ab^{p-1}+b^p.$$

Por lo tanto:

$$(a+b)^p-(a^p+b^p)=inom{p}{1}a^{p-1}b+\cdots+inom{p}{p-1}ab^{p-1}=tp,$$

puesto que los coeficientes binomiales $\binom{p}{k}$ con $k=1,2,\ldots,p-1$ son divisibles por p. En consecuencia:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
.

Teorema (eliminación) Si $ac \equiv bc \pmod{n}$ y d = (c, n), entonces:

$$a \equiv b \pmod{\frac{n}{d}}$$
.

Demostración: Por hipótesis, $n \mid (ac - bc)$, es decir, c(a - b) = kn con k entero.

Por otra parte, como d = (c, n), tenemos que c = dC y n = dN, donde (C, N) = 1. Por lo tanto, tenemos:

$$dC(a-b)=kdN,$$

y entonces:

$$C(a-b)=kN$$
.

Luego, $N \mid C(a-b)$, y como (C, N) = 1, entonces:

$$N | (a - b).$$

En otros términos, $a \equiv b \pmod{N}$, o sea:

$$a \equiv b \pmod{\frac{n}{d}}$$
.

Teorema

Sean n_1, n_2, \ldots, n_r enteros positivos. Si para cada $i = 1, \ldots, r$,

$$a \equiv b \pmod{n_i}$$
,

entonces:

$$a \equiv b \pmod{[n_1,\ldots,n_r]},$$

donde $[n_1, \ldots, n_r]$ denota el mínimo común múltiplo de n_1, \ldots, n_r .

Definición (Clase de equivalencia)

Para cada $a \in \mathbb{Z}$, representamos su clase de equivalencia por \overline{a} . donde \overline{a} está definida por:

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}\$$

= $\{x \in \mathbb{Z} \mid x = a + kn, \text{ para algún } k \in \mathbb{Z}\}.$

Note que $\overline{a} = \overline{b}$ si y solamente si $a \equiv b \pmod{n}$.

El conjunto de todos los \overline{r} donde $0 \le r < n$ es llamado las *clases residuales módulo n* y lo notamos así

$$\mathbb{Z}/(n), \ \mathbb{Z}/n\mathbb{Z}, \ \mathbb{Z}/n$$
 o a veces \mathbb{Z}_n .

Veamos ahora que el conjunto cociente de $\mathbb Z$ por esta relación está formado precisamente por las clases

$$\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}$$
.

En efecto, si a es un entero arbitrario, por el algoritmo de la división podemos representarlo en la forma

$$a = qn + r \quad \text{con } 0 \le r < n,$$

luego:

$$a \equiv r \pmod{n}$$
 y en consecuencia $\overline{a} = \overline{r}$.

Sobre \mathbb{Z}_n podemos definir una adición y una multiplicación mediante las fórmulas siguientes:

$$\overline{x} + \overline{y} = \overline{x + y}, \quad \overline{x} \cdot \overline{y} = \overline{xy}.$$

Estas operaciones están bien definidas ya que siempre producen resultados que pertenecen a \mathbb{Z}_n .

Un grupo (G,*) es un conjunto G provisto de una operación binaria * que satisface las siguientes propiedades:

1. **Propiedad clausurativa:** Para todo $a, b \in G$, el resultado de la operación a * b pertenece a G, es decir:

$$a*b \in G$$
.

2. **Propiedad asociativa:** Para todo $a, b, c \in G$, se cumple que:

$$a*(b*c)=(a*b)*c.$$

3. **Elemento neutro:** Existe un elemento $e \in G$ tal que para todo $a \in G$:

$$a * e = e * a = a$$
.

Este elemento se llama la identidad.

4. **Elemento inverso:** Para cada $a \in G$, existe un elemento $a' \in G$ tal que:

$$a*a'=a'*a=e,$$

Un grupo G se llama abeliano o conmutativo si satisface además la condición:

a*b=b*a para todo $a,b\in G$.

Un anillo $(A, +, \cdot)$ es un conjunto A provisto de dos operaciones, + $y \cdot$, llamadas adición y multiplicación, que satisfacen los siguientes axiomas:

- **A-1** (A, +) es un grupo abeliano.
- A-2 La multiplicación · es asociativa.
- A-3 Las dos operaciones están relacionadas por las propiedades distributivas:

$$a \cdot (b+c) = a \cdot b + a \cdot c, \quad (b+c) \cdot a = b \cdot a + c \cdot a,$$

para todo $a, b, c \in A$.

Definición

Un anillo conmutativo es un anillo donde la multiplicación es conmutativa, es decir, $a \cdot b = b \cdot a$ para todo $a, b \in A$. Un anillo que además tiene una identidad para la multiplicación, usualmente representada por 1, se denomina anillo con identidad.

Proposición

 $(\mathbb{Z}_n,+,\cdot)$ es un anillo conmutativo con identidad. La identidad de este anillo es precisamente $\overline{1}$. Este anillo se llama el anillo de los enteros módulo n.

Decimos que un anillo $(A, +, \cdot)$ tiene divisores de cero si existen elementos $a, b \in A$, distintos de cero, pero tales que:

$$ab = 0$$
.

Por ejemplo el anillo \mathbb{Z}_6 tiene divisores de cero. También observamos que en este anillo no se cumple la ley cancelativa para la multiplicación, ya que tenemos, por ejemplo:

$$\overline{3} \cdot \overline{2} = \overline{3} \cdot \overline{4}$$
 pero $\overline{2} \neq \overline{4}$.

Proposición

Sean a, $n \in \mathbb{Z}$ y n > 0. Entonces, existe $b \in \mathbb{Z}$ tal que:

$$ab \equiv 1 \pmod{n}$$

si, y solo si, gcd(a, n) = 1.

Decimos, por lo tanto, que a es invertible módulo n cuando $\gcd(a,n)=1$, y llamamos a b, con $ab\equiv 1\pmod n$, el inverso multiplicativo de a módulo n.

El inverso es siempre único módulo n: si $ab \equiv ab' \equiv 1 \pmod{n}$, tenemos:

$$b \equiv b \cdot 1 \equiv b \cdot (ab') \equiv (ba) \cdot b' \equiv 1 \cdot b' \equiv b' \pmod{n}.$$

Así, \overline{b} está bien definido y, en términos de clases de congruencia, tenemos que:

$$\overline{a} \cdot \overline{b} = \overline{1}$$
.

Denotamos \overline{b} por $(\overline{a})^{-1}$.

Proposición (Caracterización clases residuales)

Sean $\overline{a} \in \mathbb{Z}_n$ Entonces \overline{a} es una unidad o es un divisor de cero.

Definición (cuerpo)

Un cuerpo es un anillo conmutativo con identidad en el cual todo elemento distinto de cero tiene un inverso para la multiplicación.

Teorema

 \mathbb{Z}_n es un cuerpo si y solo si n es un número primo.