MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Prepared by: Er. Ankit Kharel

Nepal college of information technology

FINITE STATE AUTOMATA

- Sequential Circuits and Finite state Machine
- Finite State Automata
- Non-deterministic Finite State Automata
- Language and Grammars
- Language and Automata
- Regular Expression

LANGUAGE AND GRAMMAR

- Merriam-Webster's Dictionary describes language as "the words, their pronunciation, and the methods of combining them used and understood by a community".
- But this description of language is for natural languages The rules of natural languages are very complex and difficult to characterize completely.
- Hence, comes the Formal language .
- Formal languages are used to model natural languages and to communicate with the computers .
- As it is possible to specify completely the rules by which certain formal languages are constructed.

LANGUAGE AND GRAMMAR

- Let A be a finite set of alphabets.
- A (formal) language L over A is a subset of A^* , the set of all strings over A.
- For example: Let A = {a, b}. The set L of all strings over A containing an odd number of a's is a language over A.
- One way to define a language is to give a list of rules that the language is assumed to obey(GRAMMAR)

GRAMMAR

A grammar is also called generator that can generate the language.

Let's consider Grammar,

 $S \rightarrow aA$

 $A \rightarrow aA/bA/\epsilon$

Capital Symbols : Non-terminals

Small Symbols : Terminals

 $\alpha \rightarrow \beta$ is known a production rules which means α can be written as β .

Example:

$$S \rightarrow aA$$
 $S \rightarrow aA$ $S \rightarrow aA$

$$= a \qquad = abA$$

$$= abA$$

$$= abaA$$

$$= aba$$

If we use Grammar mentioned above we can make all string that starts with a.

$$L(G) = \{w | w \in \Sigma *, S_{-\rightarrow}^* > w\}$$

FORMAL DEFINITION OF GRAMMAR:

A phrase-structure grammar (or, simply, grammar) G is defined by quadruple, $G=\{N,T,P,\sigma\}$ where,

N = Finite set non-terminal symbols (Uppercase)

T = Finite non-empty set terminal symbols where(Lowercase)

P = Finite non-empty set of productions rules

 $\sigma = \text{starting symbol } \sigma \in N$

The production rule $\alpha \rightarrow \beta$ is valid if:

i) $\alpha \in (T \cup N)^* \setminus (T \cup N)^*$ i.e. α must have at least one non-terminal symbol

ii) $\beta \in (T \cup N)^*$ i.e. β can consist of any combination of nonterminal and terminal symbols.

CHOMSKY HIERARCHY:

• Chomsky Hierarchy is a brand classification of the various types of grammar available. Grammars are classified by the form of their production category represents a class of languages that can be recognized by different automata.

TYPE-0 (RECURSIVE ENUMERABLE GRAMMAR):

- Type 0 Grammar(REG/Unrestricted grammar/Phase structured grammar)
 generates recursively enumerable language(REL). The production have no
 restriction. They generate the language that are recognized by a Turing
 Machine(TM).
- The production is in the form:

$$\alpha \rightarrow \beta$$
;
 $\alpha \in (T \cup N)^* N (T \cup N)^*$
 $\beta \in (T \cup N)^*$

Example:

 $S \rightarrow ACaB$

 $Bc \rightarrow acB$

 $CB \rightarrow DB$

TYPE-1 (CONTEXT SENSITIVE GRAMMAR):

- Type I Grammar(CSG/Length Increasing Grammar/Non-contracting grammar) generates Context Sensitive Language(CSL) which is accepted by Linearly Bounded Automata(LBA).
- The production is in the form:

$$\alpha \rightarrow \beta$$
;
 $\alpha \in (T \cup N)^* N (T \cup N)^*$
 $\beta \in (T \cup N)^+$
 $|\alpha| \leq |\beta|$

Example:

 $AB \rightarrow AbBc$ $A \rightarrow bcA$ $B \rightarrow a$

Exception:

$$S \rightarrow \epsilon$$

• S should be a start symbol but should not appear in RHS of production.

Example:

where α , $\beta \in (N \cup T)^*$, $A \in N$ and $\partial \in (N \cup T)^+$ - the grammar is called context sensitive grammar.

Example:

TYPE-2 (CONTEXT FREE GRAMMAR):

- Type 2 Grammar(CFG) generates Context Free Language(CFL) which is accepted by Push Down Automata(PDA).
- The production is in the form:

$$\alpha \rightarrow \beta$$
;
 $\alpha \in N$; $|\alpha| = I$
 $\beta \in (T \cup N)^*$

Example:

 $S \rightarrow Xa$

 $B \rightarrow acB$

 $C \rightarrow a$

TYPE-3 (REGULAR GRAMMAR):

• Type – 3 Grammar(RG) generates Reuglar Language(RL) which is accepted by Finite Automata(FA).

I. Left Linear Grammar:

 $A \rightarrow a$

 $A \rightarrow Ba$

- A, B $\in N$
- |A| = |B| = 1
- $a \in T^*$

Example:

 $A \rightarrow abc$

A→aBa(invalid)

 $A \rightarrow Ca$

I. Right Linear Grammar:

 $A \rightarrow a$

 $A \rightarrow aB$

- A, B \in N
- |A| = |B| = 1
- $a \in T^*$

Example:

 $A \rightarrow a$

A→aBa(invalid)

A→Ca(invalid)

 $A \rightarrow aC$

Q. Consider the following Grammar:

 $S \rightarrow ACaB$

 $Bc \rightarrow acB$

 $CB \rightarrow DB$

 $aD \rightarrow Db$

Determine whether the given grammar is Context-sensitive, Context-Free, Regular or None of these.

Solution:

The Given grammar is:

 $S \rightarrow ACaB$

 $Bc \rightarrow acB$

 $CB \rightarrow DB$

 $aD \rightarrow Db$

(a) Checking For Regular (Type-3)

The production rule for regular grammar is given by,

 $A \rightarrow a$

 $A \rightarrow Ba$

A, B $\in N$

|A| = |B| = 1 $a \in T^*$

Since the production, $S \rightarrow ACaB$ violates the rule, It is not REGULAR GRAMMAR

(b)Checking For Context- Free(Type-2)
The production rule for Context-Free grammar is given by, $\alpha \to \beta \text{ ;}$ $\alpha \in \text{N} \text{ ; } |\alpha| = \text{I}$ $\beta \in (\text{T U N})^*$

Since the production, Bc \rightarrow acB violates the rule, It is not CONTEXT FREE GRAMMAR.

(c)Checking For Context- Sensitive (Type-I)

The production rule for Context-Sensitive grammar is given by,

$$\alpha \rightarrow \beta$$
;
 $\alpha \in (T \cup N)^* N (T \cup N)^*$
 $\beta \in (T \cup N)^*$
 $|\alpha| \le |\beta|$

Ever production given in the grammar satisfies above rule, Therefore, it is

CONTEXT SENSITIVE GRAMMAR

- A derivation Tree or Parse Tree is an ordered rooted tree that graphically represents the semantic information of string derived from a Context Free Grammar.
 - 1. Root Vertex : Must be labelled by start symbol
 - 2. Vertex: Labelled by Non-Terminal symbols
 - 3. Leaves: Labelled by Terminal Symbols
- Consider the following grammar:

```
G={ N ,T ,P ,\sigma } where Production rule is given by: S\rightarrow0B A\rightarrow1AA/\epsilon B\rightarrow0AA
```

Construct Derivation Tree for the string "001"

```
S→0B
00AA
001AAA
001
```


I. <u>LEFTMOST DERIVATION:</u>

A leftmost Derivation Tree is obtained by applying production function to the leftmost variable in each step.

Consider the following grammar:

 $G=\{N,T,P,\sigma\}$ where Production rule is given by:

 $S \rightarrow aAS/aSS/e$

A→SbA/ba

Construct Derivation Tree for the string "aabaa"

 $S \rightarrow aSS$

aaASS

aabaSS

aabaaSSS

aabaa

2. RIGHTMOST DERIVATION:

A rightmost Derivation Tree is obtained by applying production function to the rightmost variable in each step.

Consider the following grammar:

 $G=\{N,T,P,\sigma\}$ where Production rule is given by:

S→aAS/aSS/e

A→SbA/ba

Construct Derivation Tree for the string "aabaa"

 $S \rightarrow aSS$

aSaAS

aSaAaSS

aSaAa

aSabaa

aabaa

 $G=\{N,T,P,\sigma\}$ where Production rule is given by:

 $S \rightarrow aB/bA$

 $A \rightarrow a/aS/bAA$

B→b/bS/aBB

Construct left Derivation Tree for the string "aabbabba"

 $S \rightarrow aB$

aaBB

aabSB

aabbAB

aabbaB

aabbabS

aabbabbA

aabbabba

 $G=\{N,T,P,\sigma\}$ where Production rule is given by:

 $S \rightarrow aB/bA$

 $A \rightarrow a/aS/bAA$

B→b/bS/aBB

Construct right Derivation Tree for the string "aabbabba"

 $S \rightarrow aB$

aaBB

aaBbS

aaBbbA

aaBbba

aabSbba

aabbAbba

aabbabba

Consider the grammar $G=\{N,T,P,\sigma\}$ where Production rule is given by:

$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

Construct Derivation Tree for the id * id + id

$$E \rightarrow E + E$$

 $E * E + E$
 $id * id + id$

Construct Derivation Tree for the (id + id) * id

BNF(BACKUS NORMAL FORM):

• An alternative way to state of productions of a grammar is by using Backus Normal Form(BNF). It is meta syntax for CFG.

Syntax:

```
\langle LHS \rangle ::= RHS
(Non – terminals) (Terminals)
```

Example:

```
<letter> ::= a/b/c/d/e/t/o
  <word> ::= <letter><letter>
(This generates word consisting of two letter)
```


BNF(BACKUS NORMAL FORM):

Grammer for integers:

An integer is defined as a string consisting of an optional sign(+ or -) followed by a string of digits(0 though 9)

The following Grammar generates all string:

```
<digit> :: = 0/1/2/3/4/5/6/7/8/9
<sign> :: = +/-
<unsigned integer> :: = <digit>/<digit><unsigned integer>
<signed integer> :: = <sign><unsigned integer>
<integer> :: = <signed integer>/<unsigned integer>
```

Derive integer -102 using above grammar and construct derivation tree.

BNF(BACKUS NORMAL FORM):

<digit> ::= 0/1/2/3/4/5/6/7/8/9

<sign> ::= +/-

<unsigned integer> ::= <digit>/<digit><unsigned integer>

<signed integer> ::= <sign><unsigned integer>

<integer> ::= <signed integer>/<unsigned integer>

<integer> ::= <signed integer>

<sign><unsigned integer>

- -<digit><unsigned integer>
- -I < digit > < unsigned integer >
- -10<digit>
- -102

