Definition 1. Linear Code

An (n,k) linear code over a finite field F is a k-dimensional subspace V of the vector space

$$F^n = \underbrace{F \oplus F \oplus \cdots \oplus F}_{n \text{ copies}}$$

over F. The members of V are called the *code words*. The ratio k/n is called the *information rate* of the code. When F is \mathbb{Z}_2 , the code is called binary.

Example 1. The Hamming (7,4) Code.

Assuming that our message consists of all possible 4-tuples of 0's and 1's (i.e., we wish to send a sequence of 0's and 1's of length 4). Encoding will be done by viewing these messages as four-dimensional vectors over the field \mathbb{Z}_2 and multiplying each of the 16 possible messages on the right by the matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

The resulting seven-dimensional vectors are called *code words*. See Table 1.

Message	Encoder G	Code Word
0000	\rightarrow	0000000
0001	\rightarrow	0001111
0010	\rightarrow	0010110
0100	\rightarrow	0100101
1000	\rightarrow	1000011
1100	\rightarrow	1100110
1010	\rightarrow	1010101
1001	\rightarrow	1001100
0110	\rightarrow	0110011
0101	\rightarrow	0101010
0011	\rightarrow	0011001
1110	\rightarrow	1110000
1101	\rightarrow	1101001
1011	\rightarrow	1011010
0111	\rightarrow	0111100
1111	\rightarrow	1111111

Table 1

Definition 2. Hamming Distance, Hamming Weight

The *Hamming distance* between two vectors of a vector space is the number of components in which they differ. The *Hamming weight* of a vector is the umber of nonzero components of the vector.

We will use d(u, v) to denote the Hamming distance between the vectors u and v and wt(u) for the Hamming weight of the vector u.

Theorem 1. Properties of Hamming Distance and Hamming Weight

For any vectors u, v and w of a linear code, d(u, v) < d(u, w) + d(w, v) and d(u, v) = wt(u - v).

Theorem 2. Correcting Capability of a Linear Code

If the Hamming weight of every nonzero code word in a linear code is at least 2t+1, then the code can correct for any t or fewer errors. Furthermore, the same code can detect any 2t or fewer errors.