Системный анализ

ЗАДАЧА ВЫБОРА СТРУКТУРЫ СЛОЖНОЙ СИСТЕМЫ

Снигирева Лочман Мельничук

Задание

- Построить иерархическую структуру сложной системы (СС) любой природы с альтернативными вариантами каждого типа ФЭ на каждом иерархическом уровне;
- Построить множество Парето структур для СС;
- Предложить структуру на основании приоритетных требований, предъявляемых заказчиком к СС в целом.

Дрон

Структура данного проектируемого объекта состоит из m = 4 иерархических уровней:

- 1. Имиджевая составляющая, состоит из 1 типа функционального элемента (ФЭ) корпус [4 параметра]
- 2. Механика, представляет собой 2 типа ФЭ: двигатели [5 параметров] и пропеллеры [4 параметра].
- 3. Аппаратная составляющая, представляет собой 3 типа ФЭ: процессор [3 параметра], датчик связи [2 параметра], программное обеспечение [4 параметра], камера [5 параметров].
- 4. Аккумулятор (он же является типом функционального элемента с 5 параметрами)

имиджевая составляющая							
1. Корпус							
Название	Цена	Bec	Портативность	Материал			
AgDrone	15000	180	TRUE	волоконный композит			
<u>Hubsan H501S</u>	10500	230	TRUE	экструдированный пенополистирол			
Raytheon	7000	300	FALSE	кевлар			
<u>Тахион</u>	8000	450	FALSE	углепластика			

МЕХАНИКА										
1. Двигатели										
Название	Название Цена Вес Тип Число двигателей Тип движителя									
DJI SPARK	10000	160	Бесколлекторный электродвигатель	6	реактивная тяга					
WL Toys WLFalseQ282Jw	8000	200	Коллекторный электродвигатель	4	реактивная тяга					
Syma X5SW	5000	320	Электродвигатель	4	винт					
Syma X8HW	1000	130	Электродвигатель	2 винт						
		2. Пр	опеллеры							
Название	Цена	Bec	Материал	Чис	ло					
Phantom 3	200	30	волоконный композит	2						
DJI Inspire 2	150	50	карбон	2						
DJI 9450 CW	240	130	карбон	6						
AEE Propeller	245	75	карбон	4						

АППАРАТНАЯ СОСТАВЛЯЮЩАЯ								
1. Программное обеспечение								
Название Цена Наличие GPS Наличие ИИ Производитель								
ENIVI One Button	750	TRUE	TRUE	Harris Geospatial				
ENVI OneButton	750	IKUE	IKUE	<u>Solutions</u>				
<u>UASMaster</u>	640	TRUE	TRUE <u>Trimble</u>					
Agisoft Photoscan	360	TRUE	FALSE Agisoft					
PHOTOMOD UAS	260	FALSE	FALSE <u>Trimble</u>					
		2. Процессор						
Название	Цена	Частота	Кількіс	ть ядер				
TMS320C6678	460	1.8	6					

		4. Камера		
Название	Цена	Мп	Угол обзора	ИК подсветка
AVT 6600AUXSDWF	1750	2.4	180	35
AVT AHDCH 108	1200	2	180	18
JIMI JH012	980	2.4	105	15
AVT 3300AUXSD	330	1.5	90	10

АККУМУЛЯТОР								
1. Аккумулятор								
Название	Цена	Продолжительность полета	Взлетная масса	Висота полета				
Luftera	1400	360	5	150				
Aladin	800	60	4	300				
LiPo	600	120	10	400				
Skywalker X8	2100	240	8	1200				

Алгоритм

$$Q_0 = \{K_r^0 | K_r^- \le K_r^0 \le K_r^+; r = \overline{1, R_0}\},$$
 - Множество требований к объекту в целом

Необходимо выбрать по одному функциональному элементу каждого j-го типа на каждом i-м иерархическом уровне согласно требованиям. Далее строится множество Паретто.

Известно $M\Phi_{i\,j}$ - множество альтернатив. Оно раскладывается на подмножества:

Попытки

 $n_{ij}^- > 0$; $n_{ij}^+ > 0$, - количество элементов в множествах $M\Phi_{ij}^-$ чи $M\Phi_{ij}^+$ соответственно.

Можем расчитать вероятность выбора функционального элемента $\Phi_{ij} \in M\Phi_{ij}^+$ с к-й попытки:

$$P_{k}\left(\Phi_{ij} \in M\Phi_{ij}^{+}\right) = 1 - \left(1 - n_{ij}^{+} / \left(n_{ij} - (k-1)\right)\right)^{\binom{n_{ij} - \binom{k-1}{j}}{2}},$$

для $k = n_{ij}^- + 1$:

$$P_k(\Phi_{ij} \in M\Phi_{ij}^+) = 1 - (1 - n_{ij}^+ / n_{ij}^+)^{n_{ij}^+} = 1.$$

Следовательно, можем вывести, что $k_{ij}^{+} = n_{ij}^{-} + 1$.

Попытки

Для каждого функционального элемента количество попыток выбора независимо. Получаем:

$$k_i^+ = \sum_{j=1}^{n_i} (n_{ij}^- + 1),$$

На каждом иерархическом уровне количество попыток взаимно независимо. Получаем:

$$k^+ = \sum_{i=1}^{\hat{m}} k_i^+$$
.

Начало работы программы
— имеем возможность
описать требования к
внешним показателям для
каждого типа
функциональных
элементов в виде таких
показателей качества.

Допустим, имеем такие требования. Также, пусть заказчику в приоритете общая стоимость конечного продукта. Необходимо выбрать по одному ФЭ каждого типа на каждом иерархическом уровне.

В таком случае имеем множество структур Паретто мощности 32. В данной вкладке имеем возможность просмотреть все структуры из множества.

Также можно просмотреть все множество структур Паретто в одной таблице. Вспомним, что всего имеет 8 типов функциональных элементов, каждый содержит по 4 альтернативы.

При использовании метода целенаправленного выбора ФЭ потребовалось 16 попыток. В то время как при полном переборе нужно было выполнить 4*4*4*4* 4*4*4*4 = 65536 попыток

	Accumulator	Body	CPU	Camera	Engine	Propeller	Sensor	Software
0	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP C66x', 'price': 980, 'weight': 0	{'name': 'AVT AHDCH 108', 'price': 1200, 'weig	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'Phantom 5', 'price': 245, 'weight':	{'name': 'Namur', 'price': 0, 'weight': 0, 'si	{'name': 'Agisoft Photoscan', 'price': 360, 'w
1	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP C66x', 'price': 980, 'weight': 0	{'name': 'JIMI JH012', 'price': 980, 'weight':	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'Phantom 5', 'price': 245, 'weight':	{'name': 'Namur', 'price': 0, 'weight': 0, 'si	{'name': 'Agisoft Photoscan', 'price': 360, 'w
2	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP C66x', 'price': 980, 'weight': 0	{'name': 'AVT AHDCH 108', 'price': 1200, 'weig	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'AEE N7638', 'price': 240, 'weight':	{'name': 'Namur', 'price': 0, 'weight': 0, 'si	{'name': 'Agisoft Photoscan', 'price': 360, 'w
3	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP C66x', 'price': 980, 'weight': 0	{'name': 'JIMI JH012', 'price': 980, 'weight'	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'AEE N7638', 'price': 240, 'weight':	{'name': 'Namur', 'price': 0, 'weight': 0, 'si	{'name': 'Agisoft Photoscan', 'price': 360, 'w
4	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP A871', 'price': 750, 'weight': 0	{'name': 'AVT AHDCH 108', 'price': 1200, 'weig	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'Phantom 5', 'price': 245, 'weight':	{'name': 'Namur', 'price': 0, 'weight': 0, 'si	{'name': 'Agisoft Photoscan', 'price': 360, 'w
				• • •				
27	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP C66x', 'price': 980, 'weight': 0	{'name': 'JIMI JH012', 'price': 980, 'weight':	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'AEE N7638', 'price': 240, 'weight':	{'name': 'ATEX', 'price': 0, 'weight': 0, 'sig	{'name': 'Agisoft Photoscan', 'price': 360, 'w
28	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP A871', 'price': 750, 'weight': 0	{'name': 'AVT AHDCH 108', 'price': 1200, 'weig	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'Phantom 5', 'price': 245, 'weight':	{'name': 'ATEX', 'price': 0, 'weight': 0, 'sig	{'name': 'Agisoft Photoscan', 'price': 360, 'w
29	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP A871', 'price': 750, 'weight': 0	{'name': 'JIMI JH012', 'price': 980, 'weight':	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'Phantom 5', 'price': 245, 'weight':	{'name': 'ATEX', 'price': 0, 'weight': 0, 'sig	{'name': 'Agisoft Photoscan', 'price': 360, 'w
30	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP A871', 'price': 750, 'weight': 0	{'name': 'AVT AHDCH 108', 'price': 1200, 'weig	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'AEE N7638', 'price': 240, 'weight':	{'name': 'ATEX', 'price': 0, 'weight': 0, 'sig	{'name': 'Agisoft Photoscan', 'price': 360, 'w
31	{'name': 'Skywalker X8', 'price': 2100, 'weigh	{'name': 'AgDrone', 'price': 15000, 'weight':	{'name': 'DSP A871', 'price': 750, 'weight': 0	{'name': 'JIMI JH012', 'price': 980, 'weight':	{'name': 'Syma NHYDXS', 'price': 1600, 'weight	{'name': 'AEE N7638', 'price': 240, 'weight':	{'name': 'ATEX', 'price': 0, 'weight': 0, 'sig	{'name': 'Agisoft Photoscan', 'price': 360, 'w

Первый элемент множества в табличном виде

Внешний вид Волоконный композит Портативность Механика Тип двигателя Бесколлекторный электродвигатель Число двигателей 2 − 6 Тип движителя Винт Материал пропеллера Волоконный композит Число пропеллеров 3 − 6 Стоимость, грн 15000 − 25021

Accumulator		Body	CPU	Camera	Engine	Propeller	Sensor	Software
Al	-	-	-	-	-	-	-	False
GPS	-	-	-	-	-	-	-	True
IR_illumination	-	-	-	18	-	-	-	-
angle	-	-	-	180	-	-	-	-
duration	240	-	-	-	-	-	-	-
engine_type	-	-	-	-	Бесколлекторный электродвигатель	-	-	-
frequency	-	-	2.7	-	-	-	-	-
height	1200	-	-	-	-	-	-	-
manufacturer	-	-	-	-	-	-	-	Agisoft
material	-	Волоконный композит	-	-	-	Волоконный композит	-	-
name	Skywalker X8	AgDrone	DSP C66x	AVT AHDCH 108	Syma NHYDXS	Phantom 5	Namur	Agisoft Photoscan
num_cores	-	-	8	-	-	-	-	-
number	-	-	-	-	2	4	-	-
portability	-	True	-	-	-	-	-	-
price	2100	15000	980	1200	1600	245	0	360
propulsion_type	-	-	-	-	Винт	-	-	-
resolution	-	-	-	2	-	-	-	-
signal_acceptance_distance	-	-	-	-	-	-	1	-
take_off_weight	8	-	-	-	-	-	-	-
weight	200	180	0	200	330	50	0	0

Как уже говорилось ранее, заказчику нужен наиболее дешевый вариант. Выбираем это требование из списка и получаем приоритетную структуру проектируемого объекта.

Идеи

- Генетический алгоритм: приоритетность выбора рациональной структуры задается в начале и представляет собой фитнес-функцию (количественная характеристика, например, цена)

Литература

- https://geektimes.ru/company/dronk/blog/269722/ Классы квадрокоптеров какие бывают и для чего используются
- http://robotrends.ru/robopedia/osnovye-konstrukcii-bespilotnikov Основные конструкции беспилотников
- https://www.dronezon.com/learn-about-drones-quadcopters/what-is-dronetechnology-or-how-does-drone-technology-work/ - How Do Drones Work And What Is Drone Technology