2018年度 春中間試験問題・解答

試験実施日 2018 年 11 月 15 日 1 時限

出題者記入欄

試 験 科 目 名 応用数学 II-J	出題者名佐藤弘康	
試 験 時 間 <u>60</u> 分	平常授業	業 日<u>木</u>曜日 1 時限
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	メ・コピーも可) ・電卓 ・辞書)
本紙以外に必要とする用紙	解答用紙_	
通信欄		

受験者記入欄

学	科	学 年		学	籍	番	号		氏	名	
			1								

採点者記入欄

	3 1 3 A A A A A A A A A A A A A A A A A
採 点 欄	評価

問 次の微分方程式について各間に答えなさい.

- 選択肢 A -

- **(ア)** (x-y) dx + dy = 0
- (1) (2x+3y) dx + (3x+1) dy = 0
- (ウ) $y(1-x^3y^2) dx + x dy = 0$
- **(I)** $y^2 dx + x dy = 0$
- (π) $(x^2 + y^2) dx xy dy = 0$
- (カ) $(3y^2 + 2xy) dx + (3xy + y) dy = 0$
- $1 \mid y = 2e^x + x + 1$ が **(ア)** の解であることを示しなさい.

3 選択肢 A の中から, 同次形微分方程式をすべて選び, $u = \frac{y}{x}$ と変換して, x と u の変数分離形微分方程式にし なさい.

|**4| 選択肢 A** の中から, 線形微分方程式をすべて選びなさい.

- 2 選択肢 A の中から,変数分離形微分方程式をすべて選び, 一般解を求めなさい.
- $|\mathbf{5}|$ 選択肢 \mathbf{A} の中から,変数分離形でも線形でもないベル ヌーイの微分方程式をすべて選び、 $u=y^{1-n}$ と変換し て、u に関する線形微分方程式にしなさい.

6	次の文章を読んで, (1)~(5) の各問に答えなさい.
	微分方程式
	P(x,y) dx + Q(x,y) dy = 0 (*)
	が, ある関数 $u(x,y)$ に対して, 条件
	(a) $=u_x(x,y),$
	(b) $=u_y(x,y)$
	を満たすとき, (*) を (c) 微分方程式という.
	これは、 $(*)$ の左辺が、 $u(x,y)$ の (d) に等しいことを意味しいる。また、この条件は
	(e)
	が成り立つことと同値である. 選択肢 A の中で (c) 微
	分方程式は、(記号) のみである.
	微分方程式 (*) が (c) 微分方程式のとき, 一般解は
	$\int_{a}^{x} P(t,y) dt + \int_{b}^{y} Q(a,t) dt = c$
	で与えられる(ただし, c は任意の定数).
	微分方程式 (*) が (c) ではないが, ある関数 $\lambda =$
	$\lambda(x,y)$ を $(*)$ の両辺に (g) 微分方程式が
	(c) 微分方程式になる場合がある. このとき, 関数 λ
	のことを (*) の (h)という.
	(i) 微分方程式(カ)の \bigcirc (h) は $\lambda=rac{1}{y}$ である.

(1) 空欄 (a) \sim (h) を適切な言葉または数式で埋めて、 文章を完成させなさい. ただし、(e) と (f) に入る

(2) 空欄 (記号) にあてはまる微分方程式を**選択肢 A**の

数式の順番は問わない.

中から選びなさい.

(3) 下線 (i) の主張を示しなさい.

(4) (力) の一般解を求めなさい.

(5) **(カ)** の特殊解で、初期条件 (x,y)=(0,0) を満たすものを求めなさい.