CMSC 330: Organization of **Programming Languages**

Finite Automata, con't.

NFA \rightarrow DFA Example 3

 NFA • DFA {B,D,E} (A, E)

> {B,D,E}, {C,D} $R = \{ \{A, E\} \}$

CMSC 330

Equivalence of DFAs and NFAs

 Any string from {A} to either {D} or {CD} represents a path from A to D in the original NFA

Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - Since a set with n items may have 2ⁿ subsets
 - Corollary
 - Reducing a NFA with n states may be O(2ⁿ)

CMSC 330 **CMSC 330**

Implementing DFAs

It's easy to build a program which mimics a DFA

CMSC 330

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

```
given components (\Sigma, Q, q_0, F, \delta) of a DFA: q := q_0 while (there exists another symbol s of the input string) q := \delta(q, s) if q \in F then accept else reject
```

- q is just an integer
- represent δ using arrays or hash tables
- represent F as a set

CMSC 330 6

Run Time of Algorithm

- Given a string s, how long does algorithm take to decide whether s is accepted?
 - assume we can compute $\delta(q0, c)$ in constant time
 - then the time per string s to determine acceptance is O(|s|)
 - can't get much faster!
- But recall that constructing the DFA from the NFA constructed from the regular expression A may take O(2|A|) time
 - but this is usually not the case in practice
- So there's the initial overhead, but then accepting strings is fast

Regular Expressions in Practice

- Regular expressions are typically "compiled" into tables for the generic algorithm
 - can think of this as a simple byte code interpreter
 - but really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the r.e.
- Regular expression implementations often have extra constructs that are non-regular
 - i.e., can accept more than the regular languages
 - can be useful in certain cases
 - disadvantages: nonstandard, plus can have higher complexity

8

CMSC 330

Minimizing DFA

- · Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is **unique** up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language

Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input
- · Algorithm
 - Construct initial partition
 - · Accepting and non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions and remove dead states

CMSC 330

J. Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," 1971

10

Splitting Partitions

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

Splitting Partitions (cont.)

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3

CMSC 330

12

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} need to split partition {S,T,U} into {S,T}, {U}

DFA Minimization Algorithm (1)

- Input DFA (Σ , Q, q₀, F_n, δ _n), output DFA (Σ , R, r₀, F_d, δ _d)
- Algorithm

13

```
Let p_0 = F_n, p_1 = Q - F // initial partitions = final, nonfinal states

Let R = \{ p \mid p \in \{p_0, p_1\} \text{ and } p \mid = \emptyset \}, P = \emptyset // add p to R if nonempty

While P \mid = R do // while partitions changed on previteration

Let P = R, R = \emptyset // P = P // For each P = P // for each partition from previous iteration
```

DFA Minimization Algorithm (2)

Algorithm for split(p,P)

partition

```
Choose some r \in p, let q = p - \{r\}, m = \{\} // pick some state r in p

For each s \in q // for each state in p except for r

For each c \in \Sigma // for each symbol in alphabet lf \delta_d(r,c) = q_0 and \delta_d(s,c) = q_1 and // q's = states reached for c there is no p_1 \in P such that q_0 \in p_1 and q_1 \in p_1 then
```

 $m = m \cup \{s\}$ // add s to m if q's not in same

```
CMReturn p - m, m // m = states that behave _{15}
```

Minimizing DFA: Example 1

Split partition? → Not required, minimization done

$$- \text{ move}(S, a) = T \rightarrow P2 \qquad - \text{ move}(S, b) = R \rightarrow P1$$

$$- \text{ move}(T, a) = T \rightarrow P2 \qquad - \text{ move}(T, b) = R \rightarrow P1$$

CM\$C 330 16

Minimizing DFA: Example 2

• DFA **After** cleanup Initial partitions → P1 - Accept { R } - Reject { S, T } → **P2**

- Split partition? → Not required, minimization done
 - $\text{move}(S, a) = T \rightarrow P2$ $\text{move}(S, b) = R \rightarrow P1$
 - $\text{ move}(T, a) = S \rightarrow P2$
- move (T, b) = $\mathbf{R} \rightarrow \mathbf{P1}$

CMSC 330

Minimizing DFA: Example 3

• DFA

- Initial partitions
 - Accept { R }
 - Reject { S, T } → **P2**
- Split partition? → Yes, different partitions for b
 - move(S, a) = \mathbf{T} → $\mathbf{P2}$
- $\text{move}(S, b) = T \rightarrow P2$

DFA

already

minimal

- move(T, a) = T → P2 $- \text{move}(T, b) = R \rightarrow P1$

CMSC 330

Complement of DFA

- Given a DFA accepting language L, how can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a,b\}$

Complement of DFA (cont.)

- Algorithm:
 - Add explicit transitions to a dead state
 - Change every final state to a nonfinal state and every nonfinal state to a final state
- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

CMSC 330

Reducing DFAs to REs

· General idea

21

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

CMSC 330 22

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

CMSC 330 23