CS229 Section: Midterm Review

May 12, 2023

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- Exponential Family
- 6 GLMs
- 7 Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- k-Means Clustering

Supervised Learning: Recap

- Given: a set of data points (or attributes) $\{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$ and their associated labels $\{y^{(1)}, y^{(2)}, ..., y^{(n)}\}$
- **Dimensions**: x usually d-dimensional $\in \mathbb{R}^d$, y typically scalar
- Goal: build a model that predicts y from x for unseen x

Supervised Learning: Recap

Types of predictions

- y is continuous, real-valued: Regression
- Example: Linear regression
- y is discrete classes: Classification
- Example: Logistic regression, SVM, Naive Bayes

Supervised Learning: Recap

Types of models

- Discriminative
- Directly estimate p(y|x) by learning decision boundary
- Example: Logistic regression, SVM
- Generative
- Estimate p(x | y) and infer p(y | x) from it
- Can generate new samples
- Example: GDA, Naive Bayes

Notations and Concepts

- Hypothesis: Denoted by h_{θ} . Given an input $x^{(i)}$, predicted output is $h_{\theta}(x^{(i)})$
- Loss Function: Function $\ell(z,y): \mathbb{R} \times \mathbb{Y} \mapsto \mathbb{R}$ computes how different the predicted value z and the ground truth label are

Least squared error	Logistic loss	Hinge loss	Cross-entropy	
$\frac{1}{2}(y-z)^2$	$\log(1+\exp(-yz))$	$\max(0,1-yz)$	$-\Big[y\log(z)+(1-y)\log(1-\\z)\Big]$	
$y \in \mathbb{R}$	y = -1 $y = 1$	y = -1 $y = 1$	y = 0 0 $y = 1$	
Linear regression	Logistic regression	SVM	Neural Network	

Notations and Concepts

• Cost function: Function J taking model parameters θ as input and giving a score to reflect how badly the model performs. Average of loss over all predictions

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(x^{(i)}, y^{(i)}; \theta) \quad \text{where} \quad L(x^{(i)}, y^{(i)}; \theta) = \ell(h_{\theta}(x^{(i)}), y^{(i)})$$

• Maximum Likelihood: Often we assume a probabilistic model $p(y | x; \theta)$, in which case the loss is the negative log likelihood (NLL):

$$L(x^{(i)}, y^{(i)}; \theta) = -\log p(y^{(i)} | x^{(i)}; \theta)$$

Minimizing NLL is equivalent to maximizing likelihood.

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- 5 Exponential Family
- 6 GI Ms
- 7 Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Optimization: Gradient Descent

• To find the optimal θ that minimizes the cost function $J(\theta)$, we can use gradient descent with a learning rate $\alpha \in \mathbb{R}$

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_{\theta} J(\theta^{(t)})$$

• By linearity of the ∇ operator, $\nabla_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L(x^{(i)}, y^{(i)}; \theta)$

Stochastic Gradient Descent

- In stochastic gradient descent (SGD), we update the parameter based on **each** training example, whereas in batch gradient descent we update based on a batch of examples.
- Stochastic gradient is correct in expectation:

$$\mathbb{E}_{i \sim \mathsf{Unif}[n]} [\nabla_{\theta} L(x^{(i)}, y^{(i)}; \theta)] = \nabla_{\theta} J(\theta)$$

Optimization: Newton's method

- Numerical method to estimate θ such that $\nabla J(\theta)$ is 0
- Idea: approximate $J(\theta)$ by a quadratic locally around current parameters $\theta^{(t)}$

$$J(\theta^{(t)} + \Delta \theta) \approx J(\theta^{(t)}) + \nabla_{\theta} J(\theta^{(t)})^{\top} \Delta \theta + \frac{1}{2} \Delta \theta^{\top} \nabla_{\theta}^2 J(\theta^{(t)}) \Delta \theta$$

• To minimize, we set the derivative of this quadratic, with respect to $\Delta\theta$, equal to zero:

$$0 = \nabla_{\theta} J(\theta^{(t)}) + \nabla_{\theta}^2 J(\theta^{(t)}) \Delta \theta$$

• Then jump to the minimum of the quadratic:

$$heta^{(t+1)} = heta^{(t)} + \Delta heta = heta^{(t)} - \left[
abla_{ heta}^2 J(heta^{(t)})
ight]^{-1}
abla_{ heta} J(heta^{(t)})$$

Recap: Gradients and Hessians

• Gradient and Hessian (differentiable function $f: \mathbb{R}^d \mapsto \mathbb{R}$)

$$\nabla_{x} f = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \dots & \frac{\partial f}{\partial x_{d}} \end{bmatrix}^{\top} \in \mathbb{R}^{d}$$

$$\nabla_{x}^{2} f = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{d} \partial x_{1}} & \dots & \frac{\partial^{2} f}{\partial x_{d}^{2}} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- Exponential Family
- 6 GIMs
- 7 Generative Algorithm
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Linear Regression

- Model: $h_{\theta}(x) = \theta^{\top} x$
- Loss: $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- Update rule:

$$\theta^{(t+1)} = \theta^{(t)} - \frac{\alpha}{n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Stochastic Gradient Descent (SGD)

Pick one data point $x^{(i)}$ and then update:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Solving Least Squares: Closed Form

- Loss in matrix form: $J(\theta) = \frac{1}{2} ||X\theta y||_2^2$, where $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$
- Normal Equation (set gradient to 0):

$$X^{\top}(X\theta^{\star}-y)=0$$

Closed form solution:

$$\theta^{\star} = \left(X^{\top}X\right)^{-1}X^{\top}y$$

Connection to Newton's Method

$$\theta^{\star} = \left[\nabla_{\theta}^2 J\right]^{-1} \nabla_{\theta} J$$
, when the gradient is evaluated at $\theta = 0$

Newton's method is exact with only one step iteration if we started from $\theta^{(0)} = 0$.

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- **5** Exponential Family
- 6 GLMs
- 7 Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Logistic Regression

A binary classification model and $y^{(i)} \in \{0, 1\}$

Assumed model:

$$p\left(y\mid x; heta
ight) = egin{cases} g_{ heta}\left(x
ight) & ext{if } y=1 \ 1-g_{ heta}\left(x
ight) & ext{if } y=0 \end{cases}, \quad ext{where } g_{ heta}\left(x
ight) = rac{1}{1+e^{- heta^{ op}x}}$$

• Likelihood and log-likelihood:

$$p(y \mid x; \theta) = g_{\theta}(x)^{y} (1 - g_{\theta}(x))^{1-y}$$

$$\log p(y \mid x; \theta) = y \log g_{\theta}(x) + (1 - y) \log(1 - g_{\theta}(x))$$

Sigmoid and Softmax

• Sigmoid: The sigmoid function (also known as logistic function) is given by:

$$g(z)=\frac{1}{1+e^{-z}}$$

• **Softmax regression**: Also called as multi-class logistic regression, it generalizes logistic regression to multi-class cases

$$p(y = k \mid x; \theta) = \frac{\exp \theta_k^{\top} x}{\sum_j \exp \theta_j^{\top} x}$$

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- **5** Exponential Family
- 6 GLMs
- 7 Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Exponential Family

Definition

Probability distribution with natural or canonical parameter η , sufficient statistic T(y) and a log-partition function $a(\eta)$ whose density (or mass function) can be written as

$$p(y; \eta) = b(y) \exp \left(\eta^{\top} T(y) - a(\eta)\right)$$

- Oftentimes, T(y) = y
- In many cases, $\exp(-a(\eta))$ can be considered as a normalization term that makes the probabilities sum to one

Common Exponential Distributions

Bernoulli distribution:

$$p(y;\phi) = \phi^y (1-\phi)^{1-y} = \exp\left(\left(\log\left(\frac{\phi}{1-\phi}\right)\right)y + \log(1-\phi)\right)$$
 $\implies b(y) = 1, \quad T(y) = y, \quad \eta = \log\left(\frac{\phi}{1-\phi}\right), \quad a(\eta) = \log(1+e^{\eta})$

More examples:

Categorical distribution, Poisson distribution, Multivariate normal distribution, etc

Common Exponential Distributions

Distribution	η	T(y)	$a(\eta)$	b(y)
Bernoulli	$\log\left(rac{\phi}{1-\phi} ight)$	y	$\log(1+\exp(\eta))$	1
Gaussian	μ	y	$\frac{\eta^2}{2}$	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{y^2}{2}\right)$
Poisson	$\log(\lambda)$	y	e^{η}	$\frac{1}{y!}$
Geometric	$\log(1-\phi)$	y	$\log\left(rac{e^{\eta}}{1-e^{\eta}} ight)$	1

Properties

- $\mathbb{E}[T(Y); \eta] = \nabla_{\eta} a(\eta)$
- $Var(T(Y); \eta) = \nabla_{\eta}^2 a(\eta)$

Non-exponential Family Distribution

Uniform distribution over interval [a, b]:

$$p(y; a, b) = \frac{1}{b-a} \cdot 1_{\{a \le y \le b\}}$$

Reason: b(y) cannot depend on parameter η .

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- 5 Exponential Family
- 6 GLMs
- 7 Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Generalized Linear Model (GLM)

Generalized Linear Models (GLM) aim at predicting a random variable y as a function of x and rely on the following components:

Assumed model:

$$p(y \mid x; \theta) \sim \text{ExponentialFamily}(\theta^{\top} x)$$

- \bullet $\eta = \theta^{\top} x$
- Predictor: $h(x) = \mathbb{E}[T(Y); \eta] = \nabla_{\eta} a(\eta)$.
- Fit by maximum likelihood:

$$rg \max_{\theta} J(\theta) = rg \max_{\theta} \sum_{i=1}^{n} \log p(y^{(i)} \mid \theta^{\top} x^{(i)})$$

Generalized Linear Model (GLM)

Examples

- GLM under Bernoulli distribution: Logistic regression
- GLM under Poisson distribution: Poisson regression (in Pset1)
- GLM under Normal distribution: Linear regression
- GLM under Categorical distribution: Softmax regression

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- **5** Exponential Family
- 6 GLMs
- **7** Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Gaussian Discriminant Analysis (GDA)

Generative Algorithm for Classification

- Learn p(x | y) and p(y)
- Classify through Bayes rule: $\operatorname{argmax}_{v} p(y \mid x) = \operatorname{argmax}_{v} p(x \mid y) p(y)$

GDA Formulation

- Assume $p(x | y) \sim \mathcal{N}(\mu_v, \Sigma)$ for some $\mu_v \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$
- Estimate μ_y , Σ and p(y) through maximum likelihood, which is

$$\operatorname{argmax} \sum_{i=1}^{n} \left[\log p(x^{(i)} | y^{(i)}) + \log p(y^{(i)}) \right]$$

$$p(y) = \frac{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}{n}, \mu_y = \frac{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}} x^{(i)}}{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}, \Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^{\top}$$

Naive Bayes

Formulation

- Assume $p(x | y) = \prod_{i=1}^{d} p(x_i | y)$
- Estimate $p(x_i | y)$ and p(y) through maximum likelihood, which gives

$$p(x_j \mid y) = \frac{\sum_{i=1}^{n} 1_{\{x_j^{(i)} = x_j, y^{(i)} = y\}}}{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}, \quad p(y) = \frac{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}{n}$$

Laplace Smoothing

Assume x_j takes value in $\{1, 2, \dots, k\}$, the corresponding modified estimator is

$$p(x_j \mid y) = \frac{1 + \sum_{i=1}^{n} 1_{\left\{x_j^{(i)} = x_j, y^{(i)} = y\right\}}}{k + \sum_{i=1}^{n} 1_{\left\{y^{(i)} = y\right\}}}$$

- Supervised Learning
- 2 Optimizatio
- 3 Linear Regression
- 4 Logistic Regression
- 5 Exponential Family
- 6 GLMs
- 7 Generative Algorithm
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Kernel

- \bullet Core idea: reparametrize parameter θ as a linear combination of featurized vectors
- Feature map: $\phi : \mathbb{R}^d \mapsto \mathbb{R}^p$
- Fitting linear model with gradient descent (assuming $\theta^{(0)} = 0$) gives us

$$\theta = \sum_{i=1}^{n} \beta_i \phi(x^{(i)})$$

• Predict a new example z:

$$h_{\theta}(z) = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)})^{\top} \phi(z) = \sum_{i=1}^{n} \beta_{i} K(x^{(i)}, z)$$

• It brings nonlinearity without much sacrifice in efficiency as long as $K(\cdot, \cdot)$ can be computed efficiently

Kernel

• Given a feature mapping ϕ , we define the kernel K as follows:

$$K(x,z) = \phi(x)^{\top} \phi(z)$$

- "Kernel trick" to compute the cost function using the kernel because we actually don't need to know the explicit mapping ϕ , which is often very complicated
- Instead, only the values K(x, z) are needed
- Suppose $K(x^{(i)}, x^{(j)}) = K_{ij}$
- If $K = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ then is K a valid kernel function?
- If $K = \begin{bmatrix} 3 & 5 \\ 5 & 3 \end{bmatrix}$ then is K a valid kernel function?

Kernel

Theorem

K(x,z) is a valid kernel if and only if for any set of $\{x^{(1)},\ldots,x^{(n)}\}$, its Gram matrix, defined as

$$G = \begin{bmatrix} K(x^{(1)}, x^{(1)}) & \dots & K(x^{(1)}, x^{(n)}) \\ \vdots & \ddots & \vdots \\ K(x^{(n)}, x^{(1)}) & \dots & K(x^{(n)}, x^{(n)}) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is positive semi-definite.

Examples

- Polynomial kernels: $K(x,z) = (x^{\top}z + c)^d$, $\forall c > 0$ and $d \in \mathbb{N}$
- Gaussian kernels: $K(x,z) = \exp(-\frac{\|x-z\|_2^2}{2\sigma^2})$

Support Vector Machine (SVM)

Support Vector Machines are maximum margin classifiers.

Support Vector Machine (SVM)

Goal: find the line that maximizes the minimum distance to the line The optimal margin classifier h with $(y \in \{-1, 1\})$ is such that:

$$h(x) = \operatorname{sign}(w^{\top}x - b)$$

$$\min_{w,b} \frac{1}{2} \|w\|_2^2$$

subject to $y^{(i)}(w^\top x^{(i)} - b) \ge 1, \quad \forall \ i \in \{1, \dots, n\}$

Properties

- The optimal solution has the form $w^* = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)}$ and thus can be kernelized.
- \bullet The soft-SVM can be treated as a minimization over hinge loss plus ℓ_2 regularization:

$$\min_{w,b} \sum_{i=1}^{n} \max \left\{ 0, 1 - y^{(i)} (w^{\top} x^{(i)} - b) \right\} + \lambda \|w\|_{2}^{2}$$

- Supervised Learning
- 2 Optimizatio
- 3 Linear Regression
- 4 Logistic Regression
- **5** Exponential Family
- 6 GIMs
- 7 Generative Algorithm
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Neural Networks

By noting i the i^{th} layer of the network and j the j^{th} hidden unit of the layer, we have:

$$z_j^{[i]} = w_j^{[i]T} x + b_j^{[i]}$$

where we note w, b, z the weight, bias and output respectively.

Neural Networks

Multi-layer Fully-connected Neural Networks (with Activation Function σ)

$$a^{[1]} = \sigma(W^{[1]}x + b^{[1]})$$
 $a^{[2]} = \sigma(W^{[2]}a^{[1]} + b^{[2]})$
 \dots
 $a^{[r-1]} = \sigma(W^{[r-1]}a^{[r-2]} + b^{[r-1]})$
 $h_{\theta}(x) = a^{[r]} = W^{[r]}a^{[r-1]} + b^{[r]}$

Activation Functions

Sigmoid	Tanh	ReLU	Leaky ReLU	
$g(z) = \frac{1}{1+e^{-z}}$	$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	$g(z) = \max(0, z)$	$g(z) = \max(\epsilon z, z)$ with $\epsilon \ll 1$	
$\frac{1}{2}$	1 -4 0 4	0	0 1	

Updating Weights

- Step 1: Take a batch of training data
- Step 2: Perform forward propagation to obtain the corresponding loss
- Step 3: Backpropagate the loss to get the gradients
- Step 4: Use the gradients to update the weights of the network

$$\frac{\partial J}{\partial W_{ij}^{[r]}} = \frac{\partial J}{\partial z_{i}^{[r]}} \frac{\partial z_{i}^{[r]}}{\partial W_{ij}^{[r]}} = \frac{\partial J}{\partial z_{i}^{[r]}} a_{j}^{[r-1]} \implies \frac{\partial J}{\partial W^{[r]}} = \frac{\partial J}{\partial z^{[r]}} a^{[r-1]\top}, \quad \frac{\partial J}{\partial b^{[r]}} = \frac{\partial J}{\partial z^{[r]}}$$

$$\frac{\partial J}{\partial a_{i}^{[r-1]}} = \sum_{j=1}^{d_{r}} \frac{\partial J}{\partial z_{j}^{[r]}} \frac{\partial z_{j}^{[r]}}{\partial a_{i}^{[r-1]}} = \sum_{j=1}^{d_{r}} \frac{\partial J}{\partial z_{j}^{[r]}} W_{ji}^{[r]} \implies \frac{\partial J}{\partial a^{[r-1]}} = W^{[r]\top} \frac{\partial J}{\partial z^{[r]}}$$

$$\frac{\partial J}{\partial z^{[r]}} := \delta^{[r]} \implies \frac{\partial J}{\partial z^{[r-1]}} = (W^{[r]\top} \delta^{[r]}) \odot \sigma'(z^{[r-1]}) := \delta^{[r-1]}$$

$$\implies \frac{\partial J}{\partial W^{[r-1]}} = \delta^{[r-1]} a^{[r-2]\top}, \quad \frac{\partial J}{\partial z^{[r-1]}} = \delta^{[r-1]}$$

Continue for layers $r - 2, \ldots, 1$.

- Supervised Learning
- 2 Optimization
- 3 Linear Regression
- 4 Logistic Regression
- Exponential Family
- 6 GLMs
- 7 Generative Algorithms
- 8 Kernels and SVMs
- 9 NNs
- 10 k-Means Clustering

Clustering

In unsupervised learning, we don't have labels $y^{(i)}$. Instead, our goal is to find "interesting" patterns in the features $x^{(i)}$. One such task is to identify *clusters* of data points that are nearer to each other than they are to other points:

k-means algorithm

We randomly initialize k cluster centers $\mu^{(1)}, \ldots, \mu^{(k)}$ and then alternate between two steps:

- **①** Assign each point to closest $\mu^{(j)}$: $C^{(i)} = \arg\min_{j \in [k]} \|x^{(i)} \mu^{(j)}\|$
- **3** Re-compute cluster centers: $\mu^{(j)} = \frac{1}{|\Omega_j|} \sum_{i \in \Omega_j} x^{(i)}$ where $\Omega_j = \{i : C^{(i)} = j\}$

Comments:

- The number of clusters k is left as a hyperparameter.
- The algorithm is guaranteed to converge to a local optimum of the cost function

$$\min_{C,\mu} \sum_{i=1}^{n} \|x^{(i)} - \mu^{C^{(i)}}\|^2$$

but may not find a global optimum.

Tips

- Practice, practice, practice
- For proofs, give reasoning and show how you go from one step to the next
- Prepare a cheat sheet easy to run out of time in open book exams
- Pay attention to notation and indices. "Silly mistakes" can completely change the meaning of your reasoning
- Think in vector terms!

All the best:)