HAX501X – Groupes et anneaux 1

CM3 14/09/2023

Clément Dupont

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- $2.2 \ \mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5 Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Retour sur les exercices du cours

Exercice 13

On définit une relation \sim sur \mathbb{R}^2 par :

$$\vec{u} \sim \vec{v} \iff \exists \lambda > 0 , \ \vec{u} = \lambda \vec{v}.$$

Montrer que c'est une relation d'équivalence.

- Réflexivité. Soit $\vec{u} \in \mathbb{R}^2$. On a $\vec{u} = 1\vec{u}$ et 1 > 0, donc $\vec{u} \sim \vec{u}$.
- Symétrie. Soient $\vec{u}, \vec{v} \in \mathbb{R}^2$ tels que $\vec{u} \sim \vec{v}$. Alors il existe $\lambda > 0$ tel que $\vec{u} = \lambda \vec{v}$. On a donc $\vec{v} = \frac{1}{\lambda} \vec{u}$, et comme $\frac{1}{\lambda} > 0$ on en conclut que $\vec{v} \sim \vec{u}$.
- Transitivité. Soient $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$ tels que $\vec{u} \sim \vec{v}$ et $\vec{v} \sim \vec{w}$. Alors il existe $\lambda, \mu > 0$ tels que $\vec{u} = \lambda \vec{v}$ et $\vec{v} = \mu \vec{w}$. On a donc $\vec{u} = \lambda \mu \vec{w}$, et comme $\lambda \mu > 0$ on en conclut que $\vec{u} \sim \vec{w}$.

Exercice 14

Dans le contexte de l'exercice précédent, quelle est la classe d'équivalence de (1,0) ? de (1,2) ? de (0,0) ? Décrire la partition de \mathbb{R}^2 en classes d'équivalence.

► La classe d'équivalence de (1,0) est :

ightharpoonup La classe d'équivalence de (1,2) est :

La classe d'équivalence de
$$(0,0)$$
 est :

$$\overline{(0,0)} = \{\lambda(0,0), \, \lambda > 0\} = \{(0,0)\}$$

Les classes d'équivalence sont toutes les demi-droites (ouvertes) issues de (0,0), et le singleton $\{(0,0)\}$.

Exercice 15

Les applications suivantes passent-elles au quotient par la relation de congruence modulo $6\ ?$

$$f_1: \mathbb{Z} \longrightarrow \mathbb{Z}, \ n \mapsto (-1)^n;$$

 $f_2: \mathbb{Z} \longrightarrow \mathbb{Z}, \ n \mapsto n^2 - 1.$

▶ On montre que f_1 passe au quotient par la relation de congruence modulo 6. Soient $n, n' \in \mathbb{Z}$ tels que $n \equiv n' \pmod 6$. Alors il existe $k \in \mathbb{Z}$ tel que n = n' + 6k. Alors :

$$f_1(n) = (-1)^n = (-1)^{n'+6k} = (-1)^{n'}(-1)^{6k} = f_1(n').$$

Elle induit donc une application

$$g_1: \mathbb{Z}/6\mathbb{Z} \longrightarrow \mathbb{Z}, \ \overline{n} \mapsto (-1)^n.$$

▶ f_2 ne passe **pas** au quotient par la relation de congruence modulo 6. En effet, on a $0 \equiv 6 \pmod{6}$ et

$$f_2(0) = -1 \neq f_2(6) = 35.$$

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- $2.2 \ \mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5 Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

2.1 Définition

- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5 Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des resternants
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Rappels

Définition

On définit $\mathbb{Z}/n\mathbb{Z}$ comme le quotient de l'ensemble \mathbb{Z} par la relation de congruence modulo n. Pour un entier $k \in \mathbb{Z}$, on note donc \overline{k} sa classe d'équivalence dans $\mathbb{Z}/n\mathbb{Z}$.

▶ On a donc, pour $a, b \in \mathbb{Z}$:

$$\overline{a} = \overline{b} \quad \mathsf{dans} \ \mathbb{Z}/n\mathbb{Z} \quad \iff \quad a \equiv b \pmod{n}$$

et donc notamment, pour $a \in \mathbb{Z}$:

$$\overline{a} = \overline{0} \quad \text{dans} \quad \mathbb{Z}/n\mathbb{Z} \qquad \Longleftrightarrow \qquad n|a.$$

Exemple

Dans $\mathbb{Z}/7\mathbb{Z}$ on a $\overline{3}=\overline{10}=\overline{73}=\overline{-4}$, qui est l'ensemble des entiers $a\equiv 3\pmod{7}$, c'est-à-dire l'ensemble des $a\in\mathbb{Z}$ dont le reste dans la division euclidienne par 7 est 3, ou encore l'ensemble $\{7k+3, k\in\mathbb{Z}\}$.

Proposition

L'ensemble $\mathbb{Z}/n\mathbb{Z}$ a n éléments : $\overline{0}$, $\overline{1}$, ..., $\overline{n-1}$.

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

$\mathbb{Z}/12\mathbb{Z}$ est une horloge

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge

2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restern
- 2.7 Multiplicativité de l'indicatrice d'Euler

3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$

3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Les lois + et \times dans $\mathbb{Z}/n\mathbb{Z}$

Proposition

L'addition dans $\mathbb Z$ passe au quotient et induit une loi + dans $\mathbb Z/n\mathbb Z$ définie par

$$\overline{a} + \overline{b} = \overline{a+b}.$$

La multiplication dans $\mathbb Z$ passe au quotient et induit une loi \times dans $\mathbb Z/n\mathbb Z$ définie par

$$\overline{a} \times \overline{b} = \overline{a \times b}.$$

Illustration

lackbox Voici une illustration de l'addition dans $\mathbb{Z}/12\mathbb{Z}$, vu comme une horloge.

Une table d'addition

Exercice 16 Écrire la table d'addition de $\mathbb{Z}/7\mathbb{Z}.$

+	$\bar{0}$	1	$\overline{2}$	3	$\overline{4}$	$\overline{5}$	$\overline{6}$
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5	$\overline{6}$
1	1	$\overline{2}$	3	$\overline{4}$	5	$\overline{6}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	3	$\overline{4}$	5	$\overline{6}$	$\overline{0}$	$\overline{1}$
3	3	$\overline{4}$	5	6	$\overline{0}$	1	$\overline{2}$
$\overline{4}$	$\overline{4}$	5	6	$\overline{0}$	1	$\overline{2}$	3
$\overline{5}$	5	<u>6</u>	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$
<u>6</u>	<u>6</u>	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5

$\mathbb{Z}/n\mathbb{Z}$ est un groupe abélien

Proposition

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe abélien, au sens où on a les propriétés suivantes.

- 1) La loi + est associative : pour tous $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}$, $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$.
- 2) L'élément $\overline{0}$ est élément neutre pour +: pour tout $\overline{a}\in\mathbb{Z}/n\mathbb{Z}$, $\overline{a}+\overline{0}=\overline{a}=\overline{0}+\overline{a}$.
- 3) Tout élément $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ a un inverse pour la loi +, qui est $\overline{-a}$: $\overline{a} + \overline{-a} = \overline{0} = \overline{-a} + \overline{a}$. On note aussi $-\overline{a} = \overline{-a}$.
- 4) La loi + est commutative : pour tous $\overline{a},\overline{b}\in\mathbb{Z}/n\mathbb{Z}$, $\overline{a}+\overline{b}=\overline{b}+\overline{a}$.

Exemples (multiplication)

Exemple

Dans $\mathbb{Z}/7\mathbb{Z}$ on a $\overline{3} \times \overline{6} = \overline{3 \times 6} = \overline{18} = \overline{11} = \overline{4} = \overline{-10} = \overline{74}$.

Exercice 17

Écrire la table de multiplication de $\mathbb{Z}/7\mathbb{Z}$.

$\mathbb{Z}/n\mathbb{Z}$ est un anneau commutatif

Proposition

 $(\mathbb{Z}/n\mathbb{Z},+,\times)$ est un anneau commutatif, au sens où on a les propriétés suivantes.

- 1) $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe abélien.
- 2) La loi \times est associative : pour tous $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}$, $(\overline{a} \times \overline{b}) \times \overline{c} = \overline{a} \times (\overline{b} \times \overline{c})$.
- L'élément \(\overline{1}\) est élément neutre pour \(\times\): pour tout \(\overline{a}\) ∈ \(\overline{\mathbb{Z}}/n\)\(\overline{Z}\),
 \(\overline{a}\times\)\(\overline{1}=\overline{a}=\)\(\overline{1}\times\)\(\overline{a}\).
- 4) La loi \times est distributive par rapport à la loi +: pour tous $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}, \ \overline{a} \times (\overline{b} + \overline{c}) = (\overline{a} \times \overline{b}) + (\overline{a} \times \overline{c})$ et $(\overline{a} + \overline{b}) \times \overline{c} = (\overline{a} \times \overline{c}) + (\overline{b} \times \overline{c}).$
- 5) La loi \times est commutative : pour tous $\overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$, $\overline{a} \times \overline{b} = \overline{b} \times \overline{a}$.

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5 Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restern
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Inversion dans $\mathbb{Z}/n\mathbb{Z}$

Définition

On dit qu'un élément $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$ s'il existe $\overline{b} \in \mathbb{Z}/n\mathbb{Z}$ tel que $\overline{a} \times \overline{b} = \overline{1}$. Dans ce cas, \overline{b} est appelé l'inverse de \overline{a} dans $\mathbb{Z}/n\mathbb{Z}$ et noté

$$\overline{b} = \overline{a}^{-1}$$
.

- ▶ Vu que $\overline{a} \times \overline{b} = \overline{ab}$ par définition, c'est une manière de reformuler la notion d'inversibilité modulo n:
 - a est inversible modulo $n \iff \overline{a}$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$.
- ▶ Ce qu'on gagne à travailler avec $\mathbb{Z}/n\mathbb{Z}$ est la possibilité de parler de l'inverse de \overline{a} .

Proposition

Si \overline{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$, il existe un unique \overline{b} tel que $\overline{a} \times \overline{b} = \overline{1}$.

Un rappel... dans le nouveau langage

Proposition

Un élément $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $a \wedge n = 1$.

▶ Rappelons que l'inverse de \overline{a} dans $\mathbb{Z}/n\mathbb{Z}$, quand il existe, se calcule en cherchant une relation de Bézout entre a et n: si au+nv=1 alors on a $\overline{au+nv}=\overline{1}$ et donc $\overline{au}=\overline{1}$, d'où $\overline{a}\times\overline{u}=\overline{1}$ et donc

$$\overline{a}^{-1} = \overline{u}$$
.

Exercice 18

Montrer que $\overline{13}$ est inversible dans $\mathbb{Z}/57\mathbb{Z}$ et calculer son inverse.

$\mathbb{Z}/p\mathbb{Z}$ est un corps si p est premier

Théorème

Soit p un nombre premier. Alors l'anneau $\mathbb{Z}/p\mathbb{Z}$ est un **corps**, au sens où tout élément $\neq \overline{0}$ de $\mathbb{Z}/p\mathbb{Z}$ est inversible.

Quelques exercices

Exercice 19

Calculer les inverses de $\overline{1}, \ldots, \overline{12}$ dans $\mathbb{Z}/13\mathbb{Z}$.

Exercice 20

Soit p un nombre premier. Montrer qu'on a, pour tous $\overline{a},\overline{b}\in\mathbb{Z}/p\mathbb{Z}$:

$$\overline{a} \times \overline{b} = \overline{0} \iff (\overline{a} = \overline{0} \text{ ou } \overline{b} = \overline{0}).$$

Montrer que cette propriété est fausse dans $\mathbb{Z}/n\mathbb{Z}$ si n est composé.

Exercice 21

Soit n un nombre composé. Montrer que $\mathbb{Z}/n\mathbb{Z}$ n'est pas un corps, c'est-à-dire qu'il existe un élément $\neq \overline{0}$ dans $\mathbb{Z}/n\mathbb{Z}$ qui n'est pas inversible.

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n

2.5 Indicatrice d'Euler

- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

L'indicatrice d'Euler

Définition

L'indicatrice d'Euler est la fonction $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ définie par

$$\varphi(n) = \text{le nombre d'entiers } k \in \{1, \dots, n\} \text{ qui sont premiers avec } n.$$

- ▶ D'après ce qu'on vient de voir, $\varphi(n)$ est le nombre d'éléments parmi $\overline{1}, \ldots, \overline{n}$ qui sont inversibles dans $\mathbb{Z}/n\mathbb{Z}$.
- ▶ Donc $\varphi(n)$ est le nombre d'éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Exercice 22

- 1) Pour $n=1,\ldots,12$, lister les inversibles de $\mathbb{Z}/n\mathbb{Z}$ et calculer $\varphi(n)$.
- 2) Pour un nombre premier p, calculer $\varphi(p)$.
- 3) Pour un nombre premier p et un entier $r \geqslant 1$, calculer $\varphi(p^r)$.

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Le théorème chinois des restes... formulation abstraite

Théorème (Théorème chinois des restes)

Soient $m, n \in \mathbb{N}$ tels que $m \wedge n = 1$. L'application

$$g: \mathbb{Z}/mn\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

définie par

$$g(\overline{k})=(\,\widetilde{k}\,,\,\widehat{k}\,)$$

est une bijection. (Où l'on utilise les notations \overline{k} , \widetilde{k} et \widehat{k} pour désigner les classes d'équivalence dans $\mathbb{Z}/mn\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$, et $\mathbb{Z}/n\mathbb{Z}$ respectivement.)

Exercice 23

Écrire explicitement l'application g dans le cas $m=3,\ n=4,$ et vérifier qu'elle est bijective. Faire de même dans le cas $m=2,\ n=4,$ et montrer que dans ce cas-là elle n'est pas bijective.

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des rester
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Multiplicativité de l'indicatrice d'Euler

Théorème

Soient $m,n\in\mathbb{N}^*$ tels que $m\wedge n=1$. Alors on a :

$$\varphi(mn) = \varphi(m)\varphi(n).$$

Exercice 24

Déduire du théorème précédent et de l'exercice 22 la formule suivante pour l'indicatrice d'Euler :

$$\varphi(n) = n \times \prod_{\substack{p \text{ premier} \\ -1}} \left(1 - \frac{1}{p}\right).$$

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 2.4 Retour sur l'inversion modulo n
- 2.5. Indicatrice d'Euler
- 2.6 Retour sur le théorème chinois des restes
- 2.7 Multiplicativité de l'indicatrice d'Euler
- 3. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$
- 3.1 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ engendrés par un élément

Définition

Définition

Soit $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Le sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ engendré par \overline{a} est le sous-ensemble formé par les classes des multiples de a dans $\mathbb{Z}/n\mathbb{Z}$:

$$\langle\,\overline{a}\,\rangle=\{\overline{ka}\,,\,k\in\mathbb{Z}\}.$$

Exemple

Dans $\mathbb{Z}/12\mathbb{Z}$ on a $\langle\,\overline{2}\,\rangle=\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}.$

