Student Information

Full Name : Murat Bolu Id Number : 2521300

Answer 1

A function $f: A \to B$ is surjective if and only if $\forall b \in B$, $\exists a \in A$ such that f(a) = b. A function $f: A \to B$ is injective if and only if $\forall a_1 \in A$, $\forall a_2 \in A$, $f(a_1) = f(a_2) \to a_1 = a_2$. The set of nonnegative real numbers $\overline{\mathbb{R}}^+ = \{0\} \cup \mathbb{R}^+$.

a)

- f_1 is not surjective since $-1 \in \mathbb{R}$, and there does not exists an a such that $f_1(a) = -1$, since $\forall x \in \mathbb{R}, \ x^2 \ge 0 > -1$.
- f_1 is not injective since $f_1(2) = f_1(-2) = 4$, and $2 \neq -2$.

b)

- f_2 is not surjective since $-1 \in \mathbb{R}$, and there does not exists an a such that $f_2(a) = -1$, since $\forall x \in \mathbb{R}, \ x^2 \ge 0 > -1$.
- f_2 is injective since $\forall a_1 \in \overline{\mathbb{R}}^+, \ \forall a_2 \in \overline{\mathbb{R}}^+$:

$$f_2(a_1) = f_2(a_2) \rightarrow a_1^2 = a_2^2$$

 $\rightarrow a_1^2 - a_2^2 = 0$
 $\rightarrow (a_1 - a_2)(a_1 + a_2) = 0$

This means that either $a_1 - a_2 = 0 \to a_1 = a_2$ or $a_1 + a_2 = 0$. If $a_1 + a_2 = 0$, $a_1 = a_2 = 0$ since $a_1 \in \{0\} \cup \mathbb{R}^+$ and $a_2 \in \{0\} \cup \mathbb{R}^+$. I will prove this by contradiction. Suppose that a_1 is not zero but a positive real number. This would mean that $a_1 + a_2$ is strictly greater than a_2 : $a_1 + a_2 > a_2$. That would mean zero is strictly greater than a_2 : $0 > a_2$. That is not possible since $a_2 \in \{0\} \cup \mathbb{R}^+$ and every value of a_2 is equal to or greater than zero. This leads to a contradiction, therefore a_1 must be zero since $a_1 \in \{0\} \cup \mathbb{R}^+$. Since $a_1 = 0$, $a_1 + a_2 = 0 \to 0 + a_2 = 0 \to a_2 = 0$. Therefore, if $a_1 + a_2 = 0$, $a_1 = a_2$. We have already shown that if $a_1 - a_2 = 0$, $a_1 = a_2$. Therefore, $\forall a_1 \in \overline{\mathbb{R}}^+$, $\forall a_2 \in \overline{\mathbb{R}}^+$, $f_2(a_1) = f_2(a_2) \to a_1 = a_2$.

c)

- f_3 is surjective since $\forall b \in \overline{\mathbb{R}}^+$, $\exists a \in \mathbb{R}$ such that $a = \sqrt{b}$ and $f_3(\sqrt{b}) = (\sqrt{b})^2 = |b| = b$ since $b \ge 0$ since $b \in \{0\} \cup \mathbb{R}^+$. Therefore, $\forall b \in \overline{\mathbb{R}}^+$, $\exists a = \sqrt{b} \in \mathbb{R}$ such that $f_3(a) = b$.
- f_3 is not injective since $f_3(2) = f_3(-2) = 4$, and $2 \neq -2$.

d)

- f_4 is surjective since $\forall b \in \overline{\mathbb{R}}^+$, $\exists a \in \overline{\mathbb{R}}^+$ such that $a = \sqrt{b}$ and $f_4(\sqrt{b}) = (\sqrt{b})^2 = |b| = b$ since $b \ge 0$ since $b \in \{0\} \cup \mathbb{R}^+$. Therefore, $\forall b \in \overline{\mathbb{R}}^+$, $\exists a = \sqrt{b} \in \overline{\mathbb{R}}^+$ such that $f_4(a) = b$.
- f_4 is injective since $\forall a_1 \in \overline{\mathbb{R}}^+, \ \forall a_2 \in \overline{\mathbb{R}}^+$:

$$f_4(a_1) = f_4(a_2) \rightarrow a_1^2 = a_2^2$$

 $\rightarrow a_1^2 - a_2^2 = 0$
 $\rightarrow (a_1 - a_2)(a_1 + a_2) = 0$

This means that either $a_1 - a_2 = 0 \to a_1 = a_2$ or $a_1 + a_2 = 0$. If $a_1 + a_2 = 0$, $a_1 = a_2 = 0$ since $a_1 \in \{0\} \cup \mathbb{R}^+$ and $a_2 \in \{0\} \cup \mathbb{R}^+$. The proof is similar to above.

Answer 2

a) Since $f: A \subset \mathbb{Z} \subset \mathbb{R} \to \mathbb{R}$, we can take n and m to be 1 and apply the definition of continuity.

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ \ \forall x \in A \ (\|x - x_0\| < \delta \to \|f(x) - f(x_0)\| < \varepsilon)$$

The Euclidean norm in $\mathbb{R}^n = \mathbb{R}$ simply becomes the absolute value of the number itself, since $||x|| = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\sum_{i=1}^1 x_i^2} = \sqrt{x_1^2} = |x_1|$.

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ \ \forall x \in A \ (|x - x_0| < \delta \to |f(x) - f(x_0)| < \varepsilon)$$

I claim that for all ε , taking $\delta < 1$ works, which would mean $|x - x_0|$ must also be less than one.

$$\forall x \in A (|x - x_0| < 1 \rightarrow |f(x) - f(x_0)| < \varepsilon)$$

In that case, either $x = x_0$ or $x \neq x_0$.

- In the first case, $x = x_0 \to f(x) = f(x_0) \to f(x) f(x_0) = 0$. Additionally, $x = x_0 \to x x_0 = 0$. Since the both sides of the implication are true, the result is true.
- In the second case, $|x-x_0|$ must take positive integer values like $\{1, 2, 3, ...\}$ since $x, x_0 \in \mathbb{Z}$. In that case $|x-x_0| < 1$ is always false, and the result is vacuously true.

Therefore, $\delta < 1$ satisfies the definition of continuity for all ε , x and x_0 . Since we assumed nothing about x_0 , the function f is continuous for all x_0 in A.

b) Since $f: \mathbb{R} \to \mathbb{Z} \subset \mathbb{R}$, we can take n and m to be 1 and apply the definition of continuity.

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ \ \forall x \in \mathbb{R} \ (\|x - x_0\| < \delta \to \|f(x) - f(x_0)\| < \varepsilon)$$

Similarly, the Euclidean norm in $\mathbb{R}^n = \mathbb{R}$ simply becomes the absolute value of the number itself, since $||x|| = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\sum_{i=1}^1 x_i^2} = \sqrt{x_1^2} = |x_1|$.

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ \ \forall x \in \mathbb{R} \ (|x - x_0| < \delta \to |f(x) - f(x_0)| < \varepsilon)$$

The question is to show that f being a constant function is a necessary and sufficient condition for the function $f: \mathbb{R} \to \mathbb{Z}$ to be continuous (at every point). This means that the truth of one implies the other.

- The first part is to show that f being a constant function is a sufficient condition for the function $f: \mathbb{R} \to \mathbb{Z}$ to be continuous. That means f being a constant function implies $f: \mathbb{R} \to \mathbb{Z}$ is continuous. Since f is constant, $f(x) = f(x_0)$ for all $x \in \mathbb{R}$ and $x_0 \in \mathbb{R}$, which would imply $|f(x) f(x_0)| = |0| = 0 < e$ for all $\varepsilon \in \mathbb{R}^+$. Since the right hand side of the implication is true for all ε , x and x_0 , and it is independent of δ , it is always true. δ can be chosen arbitrarily.
- The second part is to show that f being a constant function is a necessary condition for the function $f: \mathbb{R} \to \mathbb{Z}$ to be continuous. That means $f: \mathbb{R} \to \mathbb{Z}$ being continuous implies f is a constant function. The proof will involve Intermediate Value Theorem, which says that a continuous function f whose domain contains the interval [a, b] takes on all values between f(a) and f(b) in that interval. I will pick two numbers and show that f(a) = f(b) for all a and b.
 - If a and b are equal, f(a) = f(b) trivially by the virtue of f being a function.
 - If a and b are different, assume that $f(a) \neq f(b)$. That would mean f needs to take a non-integer value between f(a) and f(b), since there always exist (uncountably infinitely many) real numbers between any two different integers. Since the codomain of f is the set of integers, that is not possible, thus f(a) cannot be different from f(b).

Since we assumed nothing about a and b, they can be chosen arbitrarily among all real numbers, showing that f has the same value throughout its domain, i.e. f is constant.

Answer 3

- a) Proof by mathematical induction:
 - 1. Basis: $X_2 = A_1 \times A_2$ is countable since $A_1 = \{a_{11}, a_{12}, \dots\}$ and $A_2 = \{a_{21}, a_{22}, \dots\}$ can be enumerated by the sum of i and j in indices of a_{1i} and a_{2j} .

$$(a_{11}, a_{21}) \qquad i+j=2$$

$$(a_{11}, a_{22}), (a_{12}, a_{21}) \qquad i+j=3$$

$$(a_{11}, a_{23}), (a_{12}, a_{22}), (a_{13}, a_{21}) \qquad i+j=4$$

$$\cdots \qquad \cdots$$

$$(a_{11}, a_{2(n-1)}), (a_{12}, a_{2(n-2)}), \dots, (a_{1(n-2)}, a_{22}), (a_{1(n-1)}, a_{21}) \qquad i+j=n$$

- 2. Inductive Step: Assuming $X_k = A_1 \times A_2 \times \ldots \times A_k$ is countable, I will show that $X_{k+1} = A_1 \times A_2 \times \ldots \times A_k \times A_{k+1}$ is countable.
- b)

Answer 4

- **a**)
- b)
- **c**)
- d)
- **e**)
- f)

Answer 5

- $\mathbf{a})$
- b)