Statistics and Data Analysis

Dr. Anna McLeod

Michaelmas, 2024/25

E-mail: anna.mcleod@durham.ac.uk Web: http://www.astro.dur.ac.uk/ dwvw48/

Office Hours: open door policy (stop by any time)

Office: Zoom or OCW120

Lecture Hours: Tue 2-4 pm Class Room: TLC025/026

Workshop Hours: Fri 9-11 am Workshop Room: TLC025/26

Course Description

The course is divided into four segments, each of which lasts 1 week. Each week we will have 1 lecture (Tuesdays 1-3 pm). The lecture will be in-person. After each lecture, I will release the weekly Problem Sheet. Therefore, there are four Problem Sheets (one per week), which you will have to hand in. The first three Problem Sheets are **formative** and will be released weekly each Tuesday at 3 pm, and will be due by Tuesday 1 pm the following week. The fourth Problem Sheet will be **summative**, more information about this is given below. It is mandatory to hand in all four Problem Sheets.

In addition, there is a weekly workshop. This will take place on Fridays, 9-11 am. During the workshops, we will discuss the previous week's Problem Sheets as a group (the tutorial in the first week will be on a drop-in basis with the aim of providing assistance with the first Problem Sheet).

Course Materials

- The course is based on the book *Measurements and their Uncertainties* by I G Hughes and T P A Hase, Oxford University Press. Copies are available in the Bill Bryson Library Library (shelfmark 511.43HUG) and some college libraries. An e-book version is available here.
- Lecture slides will be available on Learn Ultra (Course Materials → Data Analysis)
- Weekly formative assessments will be released on Learn Ultra as Jupyter Notebooks (Course Materials → Data Analysis → Notebook Server). Once you have finished the Problem Sheet, you will submit your Jupyter Notebook via the same server.

Prerequisites/Corequisites

Prerequisites

Programming knowledge in at least one programming language and commitment to learning C and Python independently if not known before.

Corequisites

PHYSPGNEW03 Core Ib: Introduction to Scientific and High-Performance Computing.

Course Structure

Week 1

The first lecture (chapters 1-3 in the book) will cover:

- **Introduction** and **Precision & Accuracy**. Related to these are questions 1 to 2 in the Problem Sheet.
- Gauss & Poisson and Central Limit Theory. Related to these are questions 3 to 6 in the Problem Sheet.

The slides about the *Incredible Goal* help with this week's material, and are needed to complete question 3 in Problem Sheet 2.

Week 2

The second lecture (chapters 4-5 in the book) will cover:

- Error propagation. Related to this are questions 1 to 3 in the Problem Sheet.
- **Residuals** and **Method of Least Squares**. Related to these are questions 4 to 6 in the Problem Sheet.

Week 3

The third lecture (chapters 6-7 in the book) will cover:

- **Arbitrary Function Least Squares** and **Errors in fit parameters**. Related to these is question 1 in the Problem Sheet.
- How do Codes Minimise? and Fits Errors and Correlations. Related to these are questions 2 to 4 in the Problem Sheet.

Week 4

The second lecture (chapters 8-9 in the book) will cover:

- What is a Good Fit? and Testing Distributions. Related to these are questions 1 to 4 in the Problem Sheet.
- Occam's Razor and Visualization. This gives you more insight into the Problem Sheet.

Remember that the last Problem Sheet is summative.

Problem Sheets

There are four problem sheets, all of these are Jupyter notebooks. *Formative* means that you do not get a grade for it but must hand it in to complete the course. *Summative* means that this is an exam, it will be graded and your grade will count towards the final grade of Core Ia.

Here is a summary of the problem sheets:

- Problem sheet 1: formative, due by Tuesday, October 15th, 1 pm
- Problem sheet 2: formative, due by Tuesday, October 22nd, 1 pm
- Problem sheet 3: formative, due by Tuesday, October 29th, 1 pm
- Problem sheet 4: summative, this is an in-person exam on Friday, November 8th, 2-5 pm, in TLC025/026

Like the first three formative problem sheets, the summative one will be released as a Jupyter Notebook via the same server (see above). You will have **3 hours** to complete and submit the assignment. Further details regarding the date of the assignment will be communicated in class and via Learn Ultra.