G4 de Álgebra Linear I-2013.2

Data: 6 de Dezembro de 2013.

Nome:	Matrícula:
Assinatura:	Turma:

Duração: 1 hora 50 minutos

Ques.	1.a	1.b	1.c	1.d	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d	soma
Valor	1.0	0.5	1.0	0.5	1.0	0.5	0.5	1.0	1.5	1.0	0.5	1.0	10.0
Nota													

Instruções – leia atentamente

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- Verifique, revise e confira cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- O desenvolvimento de cada questão deve estar a seguir **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- \bullet J<u>ustifique cuidadosamente</u> todas as respostas de forma completa, ordenada e coerente.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota

cuidado.

fonte: mini-Aurélio

1) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$T(\vec{v}) = (\vec{v} \times (1, 1, 1)) \times (0, 1, 1).$$

- a) Determine a matriz $[T]_{\varepsilon}$ da transformação linear T na base canônica.
- b) Determine uma base ortonormal η da imagem de T. Lembre que: $\operatorname{imagem}(T) = \{ \vec{w} \in \mathbb{R}^3 \text{ tal que existe } \vec{v} \in \mathbb{R}^3 \text{ tal que } T(\vec{v}) = \vec{w} \}.$
- c) Considere a base

$$\gamma = \{(1, 1, 1), (1, -1, 2), (6, 0, 0)\}.$$

Determine a matriz $[T]_{\gamma}$ da transformação linear T na base $\gamma.$

d) Considere o plano de equação cartesiana

$$\rho : y = 0.$$

Determine uma base da imagem $T(\rho)$ de ρ pela transformação T.

Resposta:

2) Considere as bases de \mathbb{R}^2

$$\gamma = \{(-1, 1), (-1, 0)\}$$
 e $\sigma = \{(0, 1), (-1, -1)\}$

e a transformação linear $T\colon\mathbb{R}^2\to\mathbb{R}^2$ cuja matriz na base γ é

$$[T]_{\gamma} = \left(\begin{array}{cc} 3 & -2 \\ 1 & -1 \end{array}\right).$$

- a) Determine explicitamente as matrizes de mudança de base da base γ para a base σ e da base σ para a base γ .
- b) Determine explicitamente a matriz $[T]_{\sigma}$ da transformação linear T na base σ .
- c) Escreva, se possível, uma forma diagonal de T.
- d) Considere a matriz

$$[M] = \begin{pmatrix} a & b & c \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Sabendo que a matriz [M] admite uma base ortonormal de autovetores e que o seu determinante é 0, determine os valores de a, b e c

Resposta:

3) Considere a reta r em \mathbb{R}^3 de equação paramétrica

$$(t, t, -2t), \quad t \in \mathbb{R}$$

e a transformação linear $E\colon \mathbb{R}^3 \to \mathbb{R}^3$ espelhamento em relação a reta r.

- a) Encontre uma base ortonormal β de \mathbb{R}^3 formada por autovetores de E, e determine os respectivos autovalores.
- b) Determine a matriz $[E]_{\beta}$ da transformação linear E na base β .
- c) Determine a matriz $[E]_{\varepsilon}$ da transformação linear E na base canônica de \mathbb{R}^3 .
- d) Determine explicitamente as matrizes

$$[E]_{\varepsilon}^{400}$$
 e $[E]_{\varepsilon}^{401}$.

Resposta: