Juan Carlos Llamas Núñez 3º DG Mat-Inf

Ejercicio I - Utilizando la definición y suponiendo que el alfabeto es Z= {a,b}, calcular la función IT para el patros P= ababbabbababb.

Recordamos que II es una función de 31-m3 en 30-m-17. En este cuso m=13. La definición de ∏ es:

Π(4) = máx {K|K<4 Px = Pa} para q € {1-m}, es decir, calcula la longitud del prefijo más largo de P que es sufijo de Pq (sin contar a Pq).

$$\Pi(\mathbf{1}) = 0$$
 $P_1 = \alpha$
 $\Pi(\mathbf{1}) = 0$ (No es 1 porque $P_2 = \alpha$ no is sufijo de $P_2 = \alpha b$) $\overline{P_2} = \alpha b$

l.El único sufijo que acaba en bb es Ps pero no es sufijo de P8.

```
TT(4) = 1 /PE es el único que acaba en bba pero no es sufijo por la primera letra)
      Pa=ababbabba
11 (10) = 2 ( Pyy Pz acaban en bab pero no son sufijos de Pio y Pz sí lo es)
        Pro = ababbabbab
M(11) = 3 (El único prefijo que acaba en aba es P3)
        Pir=ababbabbaba
17 (12) = 4 [El único profijo que acaba en cabab es Py)
        Piz=ababbabbabab
17 (13) = 5 ( Los pre lijos que terminan en abb son la yls pero la no es suljoy Resi)
        Piz = ababbabababb
Ejercicio 2- Calcular los conjuntos TT (q) y Eq para dicho patrón.
Recordamos que 11/4) = } 11/4) | i > 1, 17 i-1/4) ≠ 0} con
\Pi^i definide de manera usual \Pi^i(q) = \begin{cases} \Pi(\Pi^{i-1}(q)) & \text{si } i \neq 0 \\ q & \text{si } i = 0 \end{cases}
Esta probado que TT(q)= {K|K=q, Px IPq} es decir, TT(q) es el
conjunto de das longitudes de los presijos de P que son susijos de Pa.
Por otrolado, dado get 2-mil se define
Eq-1 = { K|= K = 17 (q-1), P[K+1] = P[q] } = { K | K < q-1, P_L = P_q-1, P[K+1] = P[q] },
es decir, el conjunto de las longiludes de los prefijos del que son sufijos de Pq-1
y se pueden extender con un caracter más para ser sufijos de Pq.
  (Eq C 17 14) y YKE Eq => P[K+1]=P[q+1])
```

Con es las ideas podemos calcular
$$E_q \times \Pi^*(q) \quad \forall q \in \{1, -\infty, m\}$$
 $\Pi^*(\Delta) = \{0\}; E_A = \emptyset \quad (P_1 = \alpha)$
 $\Pi^*(2) = \{0\}; E_2 = \{0\} \quad (P_2 = \alpha b) \quad (P_1 = p \in [3])$
 $\Pi^*(3) = \{0,1\}; E_3 = \{1\}; \quad (P_3 = \alpha b a) \quad (P_4 = \alpha b) \quad$

Ejercicio 3- Repetir el calculo de II, pero ahora utilizando la fase de precondicionamiento del algoritmo KMP.

El algor: Imo de preprocesado era:

preprocesa do - kinuth - Morris - Pratt (P[1-m], out pi [1-m])

p[1]=0;

k=0;

for (q=2 to m){

 do while (k>0 AA P[k+1]!=P[4])}

 K= pi [k];

 if (P[k+1]=P[4]) { k++; }

 return p;
}

4	. 1	,2	3	4	5	6	7	8	9	10	10	12	13	K
2	0	-	-	-	-	-	-	/see-	-		_	-	_	0
3	0	0	-	-	_	-	التسوية	-	-		-	-	_	0
4	0	0	1	-	-	***	-	-	-	-	=	-	Garden .	1
5	0	0	1	2	-	-	laye (71)	_	-		1,000	-	-	2
6	0	0	1	2	0	-	-	-	-	-	-		=	0
7	0	0	1	2	0	1		-	-	-carro	-	=		1
8	0	0	1	2	0	1	2		_	_			=	2
9	0	0	1	2	0	1	2	0	_		-		-	0
10	0	0	1	2	0	1	2	0	1	_	ea _{ec}	-	-	1
10	0	0	1	2	0	1	2	0	1	2	-		Name:	2
12	0	0	1	2	0	1	2	0	1	2	3	_	-	3
13	0	0	1	2	0	1	2	0	1	2	3	4	-	4
/	0	0	1	2	0	1	2	0	1	2	3	4	5	5
,	1	2	3	ч	5	6	7	8	9	10	11	12	13	

El vector pi toma les mismos valores que en el ejercicio I.

revnimos la información de IT, IT y E en

misma	tabla.			
q	TT (9)	17+(4)	E_q	Pg
1	0	30}	Ø	a
2	0	307	308	ab
3	1	30,17	117	aba
4	2	20,27	ø	abab
5	O	307	<i>{0}</i>	ababb
6	1	30,13	318	ababba
7	2	{0,2}	Ø 70	ababbab
8	0	307	306	ababbabb
9	1	30,13	{1}	ababbabba
10	2	30,23	30,23	ababbabbab
11	3	30,1,37	71,31	ababbabbaba
12	4	30,2,43	341	ababbabbabab
13	5	10,5}		ababbabbababb
				12744670010111112

Observamos que:
$$\Pi(q) = \max_{K \in \Pi'(q)} \{K\} = \begin{cases}
0 & \text{s: } E_{q-1} = \emptyset \\
1 + \max_{K \in E_{q-1}} \{K\} & \text{s. } E_{q+1} \neq \emptyset
\end{cases}$$