stat 303 3 advanced modeling

May 25, 2022

0.0.1 Data Cleaning

```
[2]: import pandas as pd
    import numpy as np
    import statsmodels.formula.api as smf
    import statsmodels.api as sm
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.model_selection import StratifiedKFold, GridSearchCV, ParameterGrid
    from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, u
     → GradientBoostingClassifier, VotingClassifier, StackingClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import precision_score, accuracy_score, recall_score,
     →precision_recall_curve
    import xgboost as xgb
    import itertools as it
    import time as time
    import pickle
    import warnings
    warnings.filterwarnings("ignore")
    pd.set_option("display.max_rows", None)
    pd.set_option("display.max_columns", None)
    pd.set_option('display.float_format', lambda x: '%.4f' % x)
    train = pd.read_csv('data/train.csv', index_col = 0)
    test = pd.read_csv('data/test.csv', index_col = 0)
    def data_prep(df):
        df["satisfaction"] = df["satisfaction"].map({'neutral or dissatisfied': 0, |
     df = df.dropna()
        df = df.drop(columns=["id"])
        df.columns = df.columns.str.replace(' ', '_')
        df.columns = df.columns.str.replace('/', '_')
        df.columns = df.columns.str.replace('-', '_')
        df['Type_of_Travel'] = df['Type_of_Travel'].astype('string')
```

```
df['Class'] = df['Class'].astype('string')
         df['Gender'] = df['Gender'].astype('string')
         df['Customer_Type'] = df['Customer_Type'].astype('string')
         return df
     train = data_prep(train)
     test = data_prep(test)
     categorical_columns = list(train.select_dtypes('string').columns)
     train = pd.get_dummies(train, columns = categorical_columns, drop_first = False)
     test = pd.get_dummies(test, columns = categorical_columns, drop_first = False)
     train = train.dropna()
     test = test.dropna()
     print(f"Train size: {train.shape}")
     print(f"Test size: {test.shape}")
     X = train.drop(columns=["satisfaction"])
     y = train["satisfaction"]
     Xtest = test.drop(columns=["satisfaction"])
     ytest = test["satisfaction"]
     train[:3]
    Train size: (103594, 28)
    Test size: (25893, 28)
[2]:
        Age Flight_Distance Inflight_wifi_service \
        13
                         460
                                                   3
     0
        25
                         235
                                                   3
     1
                                                   2
     2
         26
                        1142
        Departure_Arrival_time_convenient Ease_of_Online_booking Gate_location \
     0
                                                                                1
     1
                                        2
                                                                 3
                                                                                3
                                        2
     2
                                                                 2
                                                                                2
        Food_and_drink Online_boarding Seat_comfort Inflight_entertainment
     0
                     5
     1
                     1
                                                     1
                                                                             1
     2
                     5
                                      5
                                                     5
                                                                             5
        On_board_service Leg_room_service Baggage_handling Checkin_service
     0
                       4
                                         3
                                                            4
     1
                       1
                                         5
                                                            3
                                                                             1
     2
                                         3
                       4
                                                            4
                                                                             4
```

```
0
                       5
                                     5
                                                                 25
                                     1
                                                                  1
     1
                       4
     2
                       4
                                     5
                                                                  0
        Arrival_Delay_in_Minutes satisfaction Gender_Female
                                                               Gender Male
                         18.0000
     0
                                              0
                                                                           1
                          6.0000
                                              0
                                                             0
                                                                           1
     1
     2
                          0.0000
                                              1
                                                             1
                                                                           0
        Customer_Type_Loyal Customer
                                      Customer_Type_disloyal Customer
     0
     1
                                    0
                                                                      1
     2
                                    1
                                                                      0
        Type_of_Travel_Business travel Type_of_Travel_Personal Travel
     0
                                      1
                                                                       0
     1
     2
                                      1
                                                                       0
        Class_Business Class_Eco Class_Eco Plus
     0
                     0
                                0
     1
                     1
                                0
                                                 0
     2
                     1
                                0
                                                 0
[4]: def save_model(model, filename):
         # save the model to disk
         filename = f'models/{filename}.sav'
         pickle.dump(model, open(filename, 'wb'))
     def load_model(filename):
         # load the model from disk
         loaded_model = pickle.load(open(f'models/{filename}.sav', 'rb'))
         return loaded model
     def precision_cutoff(actual, pred, cutoff=0.5):
         bins=np.array([0,cutoff,1])
         cm = np.histogram2d(actual, pred, bins=bins)[0]
         precision = (cm[1,1])/(cm[0,1]+cm[1,1])
         return precision
     def recall_cutoff(actual, pred, cutoff=0.5):
         bins=np.array([0,cutoff,1])
         cm = np.histogram2d(actual, pred, bins=bins)[0]
         recall = (cm[1,1])/(cm[1,0]+cm[1,1])
         return recall
```

Inflight_service Cleanliness Departure_Delay_in_Minutes

```
def accuracy_cutoff(actual, pred, cutoff=0.5):
   bins=np.array([0,cutoff,1])
    cm = np.histogram2d(actual, pred, bins=bins)[0]
   accuracy = (cm[0,0]+cm[1,1])/cm.sum()
   return accuracy
def precision_accuracy_cutoff(actual, pred, cutoff=0.5):
   bins=np.array([0,cutoff,1])
    cm = np.histogram2d(actual, pred, bins=bins)[0]
   precision = (cm[1,1])/(cm[0,1]+cm[1,1])
   accuracy = (cm[0,0]+cm[1,1])/cm.sum()
   return precision, accuracy
def plot_precision accuracy_vs_threshold(precisions, accuracies, thresholds):
       plt.figure(figsize=(8, 8))
       plt.title("Training Precision and Accuracy vs Threshold")
       plt.plot(thresholds, precisions, "b--", label="Precision")
       plt.plot(thresholds, accuracies, "g-", label="Accuracy")
       plt.plot(thresholds[accuracies.index(max(accuracies))],__
 →max(accuracies), "ro")
       plt.text(thresholds[accuracies.index(max(accuracies))], max(accuracies),
                 f"({round(thresholds[accuracies.index(max(accuracies))], 4)},
 → {round(max(accuracies), 4)}, {round(precisions[accuracies.
 →index(max(accuracies))], 4)})")
       plt.plot(thresholds[precisions.index(max(precisions))],__
 →max(precisions), "yo")
       plt.text(thresholds[precisions.index(max(precisions))], max(precisions),
                 f"({round(thresholds[precisions.index(max(precisions))], 4)},
 → {round(accuracies[precisions.index(max(precisions))], 4)},
 →{round(max(precisions), 4)})")
       plt.ylabel("Score")
       plt.xlabel("Decision Threshold")
       plt.legend(loc='best')
def find_cutoff(model):
   ypred = model.predict_proba(X)[:, 1]
   thresholds = precision_recall_curve(y, ypred)[2]
   precisions = []
   accuracies = []
   for threshold in thresholds:
       precision, accuracy = precision_accuracy_cutoff(y, ypred,__
 precisions.append(precision)
```

```
accuracies.append(accuracy)

plot_precision_accuracy_vs_threshold(precisions, accuracies, thresholds)

return thresholds[precisions.index(max(precisions))]
```

0.0.2 a) Random Forest

Precision on train data: 97.39933658896157 Parameters: (50, 14, 30, 1)

Random forest model -- Precision on test data: 0.9725667722951562
Random forest model -- Recall on test data: 0.9451825780906291
Random forest model -- Accuracy on test data: 0.9642374386899935

Random forest model -- Cutoff on test data: 0.5

Random forest model -- Precision on test data: 0.9990712074303405
Random forest model -- Recall on test data: 0.8518257809062912
Random forest model -- Accuracy on test data: 0.9346155331556791
Random forest model -- Cutoff on test data: 0.9126333919479468

0.0.3 b) AdaBoost

```
[6]: model = AdaBoostClassifier(random_state = 1)
    grid = dict()
    grid['n_estimators'] = [450, 500, 550]
    grid['learning_rate'] = [0.025, 0.05, 0.075]
    grid['base_estimator'] = [DecisionTreeClassifier(max_depth=5),
                           DecisionTreeClassifier(max_depth=6)]
    cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=1)
    grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv,
                             verbose=1, scoring=['precision', 'accuracy'],
     →refit='precision')
    grid_result = grid_search.fit(X, y)
    print("Best Training Precision: %f\nParameters: %s" % (grid_result.best_score_,_
     →grid_result.best_params_))
    Fitting 3 folds for each of 18 candidates, totalling 54 fits
    Best Training Precision: 0.974918
    Parameters: {'base_estimator': DecisionTreeClassifier(max_depth=6),
    'learning_rate': 0.025, 'n_estimators': 450}
[9]: params = grid_result.best_params_
    m2 = AdaBoostClassifier(**params, random state=1)
    # model = load model('ada')
    model = grid_result
    pred = model.predict(Xtest)
    print(f"Adaptive boosting model -- Precision on test data:
     →{precision_score(y_true = ytest, y_pred = pred)}")

ytest, y_pred = pred)}")
    print(f"Adaptive boosting model -- Accuracy on test data: ___
     →{accuracy_score(y_true = ytest, y_pred = pred)}")
    print("Adaptive boosting model -- Cutoff on test data: 0.5")
    save_model(model, 'ada')
    Adaptive boosting model -- Precision on test data: 0.9744406039657996
    Adaptive boosting model -- Recall on test data: 0.9426308842938848
    Adaptive boosting model -- Accuracy on test data: 0.9639670953539566
    Adaptive boosting model -- Cutoff on test data: 0.5
[8]: cutoff = find_cutoff(model)
    plt.savefig('images/ada.jpg')
    \rightarrow point, first value of 3)
    pred = model.predict_proba(Xtest)[:, 1]
```

Adaptive boosting model -- Precision on test data: 0.9979014689717198

Adaptive boosting model -- Recall on test data: 0.8786625604927408

Adaptive boosting model -- Accuracy on test data: 0.9459313327926466

Adaptive boosting model -- Cutoff on test data: 0.5714002413880679

Training Precision and Accuracy vs Threshold

0.0.4 c) Gradient Boost

```
[11]: model = GradientBoostingClassifier(random_state=1)
      grid = dict()
      grid['n_estimators'] = [250, 300]
      grid['learning_rate'] = [0.01, 0.05]
      grid['max_depth'] = [6]
      grid['subsample'] = [0.5, 1.0]
      cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=1)
      grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv,
                                 verbose=1, scoring=['precision', 'accuracy'], __
      grid_result = grid_search.fit(X, y)
      print("Best Training Precision: %f\nBest Parameters: %s" % (grid_result.
       →best_score_, grid_result.best_params_))
     Fitting 3 folds for each of 8 candidates, totalling 24 fits
     Best Training Precision: 0.973097
     Best Parameters: {'learning_rate': 0.05, 'max_depth': 6, 'n_estimators': 300,
     'subsample': 1.0}
[12]: params = grid_result.best_params_
      m3 = GradientBoostingClassifier(**params,random_state=1)
      # model = load_model('qb')
      model = grid_result
      pred = model.predict(Xtest)
      print(f"Gradient boosting model -- Precision on test data: u
      →{precision_score(y_true = ytest, y_pred = pred)}")
      print(f"Gradient boosting model -- Recall on test data: {recall_score(y_true = ∪
       →ytest, y_pred = pred)}")
      print(f"Gradient boosting model -- Accuracy on test data: u
       →{accuracy_score(y_true = ytest, y_pred = pred)}")
      print("Gradient boosting model -- Cutoff on test data: 0.5")
      save_model(model, 'gb')
     Gradient boosting model -- Precision on test data: 0.9725444001449801
     Gradient boosting model -- Recall on test data: 0.9443906731192256
     Gradient boosting model -- Accuracy on test data: 0.9638898544008033
     Gradient boosting model -- Cutoff on test data: 0.5
[13]: cutoff = find_cutoff(model)
      plt.savefig('images/gb.jpg')
      # We use the cutoff where precision is maximized on training data (yellow_
      \rightarrow point, first value of 3)
      pred = model.predict_proba(Xtest)[:, 1]
```

Gradient boosting model -- Precision on test data: 0.9998811645870469 Gradient boosting model -- Recall on test data: 0.7403431588209415 Gradient boosting model -- Accuracy on test data: 0.8859923531456378 Gradient boosting model -- Cutoff on test data: 0.9900664567731479

0.0.5 d) XGBoost

```
[23]: model = xgb.XGBClassifier(random_state=1)
      grid = {'gamma': [0.25],
              'learning_rate': [0.1, 0.001],
              'max_depth': [9],
              'n_estimators': [100, 1000],
              'reg_lambda': [0],
              'scale_pos_weight': [1]}
      cv = StratifiedKFold(n_splits=3,shuffle=True,random_state=1)
      grid_search = GridSearchCV(estimator=model,param_grid = grid,verbose =__
      \rightarrow 1, n_jobs=-1,
                                 cv = cv, scoring=['precision', 'accuracy'], __
      →refit='precision')
      grid_result = grid_search.fit(X,y, eval_metric = 'logloss')
      print("Best Training Precision: %f\nBest Parameters: %s" % (grid result.
       →best_score_, grid_result.best_params_))
     Fitting 3 folds for each of 4 candidates, totalling 12 fits
     Best Training Precision: 0.972061
     Best Parameters: {'gamma': 0.25, 'learning_rate': 0.1, 'max_depth': 9,
     'n_estimators': 100, 'reg_lambda': 0, 'scale_pos_weight': 1}
[24]: params = grid_result.best_params_
      m4 = xgb.XGBClassifier(**params,random state=1)
      # model = load_model('xgb')
      model = grid_result
      pred = model.predict(Xtest)
      print(f"Extreme gradient boosting model -- Precision on test data:⊔
      →{precision_score(y_true = ytest, y_pred = pred)}")
      print(f"Extreme gradient boosting model -- Recall on test data:
      →{recall_score(y_true = ytest, y_pred = pred)}")
      print(f"Extreme gradient boosting model -- Accuracy on test data: u
      →{accuracy_score(y_true = ytest, y_pred = pred)}")
      print("Extreme gradient boosting model -- Cutoff on test data: 0.5")
      save_model(model, 'xgb')
     Extreme gradient boosting model -- Precision on test data: 0.972046318074905
     Extreme gradient boosting model -- Recall on test data: 0.9454465464144303
     Extreme gradient boosting model -- Accuracy on test data: 0.9641215772602634
     Extreme gradient boosting model -- Cutoff on test data: 0.5
[25]: cutoff = find cutoff(model)
      plt.savefig('images/xgb.jpg')
```

Extreme gradient boosting model -- Precision on test data: 0.9991920008079992 Extreme gradient boosting model -- Recall on test data: 0.8704795424549054 Extreme gradient boosting model -- Accuracy on test data: 0.9428416946665121 Extreme gradient boosting model -- Cutoff on test data: 0.9480050206184387

0.0.6 1) Voting ensemble Soft

```
[28]: en1 = VotingClassifier(estimators = [('rf',m1), ('ada',m2), ('gb',m3),__
      model = en1.fit(X,y)
     pred = model.predict(Xtest)
     print(f"Soft voting model -- Precision on test data: {precision_score(y_true = ∪
      →ytest, y_pred = pred)}")
     print(f"Soft voting model -- Recall on test data: {recall_score(y_true = ytest,__
      →y_pred = pred)}")
     print(f"Soft voting model -- Accuracy on test data: {accuracy_score(y_true = ∪
      →ytest, y_pred = pred)}")
     save_model(model, 'voting_soft')
     [01:10:54] WARNING: D:\bld\xgboost-split 1645118015404\work\src\learner.cc:1115:
     Starting in XGBoost 1.3.0, the default evaluation metric used with the objective
     'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set
     eval_metric if you'd like to restore the old behavior.
     Soft voting model -- Precision on test data: 0.9774552756480467
     Soft voting model -- Recall on test data: 0.9422789265288165
     Soft voting model -- Accuracy on test data: 0.9651257096512571
     Soft voting model -- Cutoff on test data: 0.5
     Hard
[29]: en2 = VotingClassifier(estimators = [('rf',m1), ('ada',m2), ('gb',m3),__
      model = en2.fit(X,y)
     pred = model.predict(Xtest)
     print(f"Hard voting model -- Precision on test data: {precision_score(y_true = ⊔
      →ytest, y_pred = pred)}")
     print(f"Hard voting model -- Recall on test data: {recall_score(y_true = ytest,__
      →y_pred = pred)}")
     print(f"Hard voting model -- Accuracy on test data: {accuracy_score(y_true = __
      →ytest, y_pred = pred)}")
     print("Hard voting model -- Cutoff on test data: 0.5")
     save_model(model, 'voting_hard')
     [01:16:56] WARNING: D:\bld\xgboost-split_1645118015404\work\src\learner.cc:1115:
     Starting in XGBoost 1.3.0, the default evaluation metric used with the objective
     'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set
     eval_metric if you'd like to restore the old behavior.
     Hard voting model -- Precision on test data: 0.9744985933387784
     Hard voting model -- Recall on test data: 0.944830620325561
     Hard voting model -- Accuracy on test data: 0.9649326072683737
     Hard voting model -- Cutoff on test data: 0.5
```

Hard voting model -- Precision on test data: 0.9991007194244604 Hard voting model -- Recall on test data: 0.8798064232292125 Hard voting model -- Accuracy on test data: 0.9468968447070637 Hard voting model -- Cutoff on test data: 0.81913270032123

0.0.7 2) Stacking ensemble

Linear

```
print(f"Linear stacking model -- Precision on test data:
       →{precision_score(y_true = ytest, y_pred = pred)}")
      print(f"Linear stacking model -- Recall on test data: {recall_score(y_true = ∪
      →ytest, y_pred = pred)}")
      print(f"Linear stacking model -- Accuracy on test data: {accuracy_score(y_true∟
      →= ytest, y_pred = pred)}")
      print("Linear stacking model -- Cutoff on test data: 0.5")
      save_model(model, 'stacking_linear')
      coefs = model.final_estimator_.coef_
     Linear stacking model -- Precision on test data: 0.9715729627289956
     Linear stacking model -- Recall on test data: 0.9472943246810382
     Linear stacking model -- Accuracy on test data: 0.9647008844089137
     Linear stacking model -- Cutoff on test data: 0.5
[37]: cutoff = find_cutoff(model)
      plt.savefig('images/stacking_linear.jpg')
      # We use the cutoff where precision is maximized on training data (yellow \Box
      \rightarrow point, first value of 3)
      pred = model.predict_proba(Xtest)[:, 1]
      print(f"Linear stacking model -- Precision on test data:⊔
      →{precision_cutoff(ytest, pred, cutoff = cutoff)}")
      print(f"Linear stacking model -- Recall on test data: {recall_cutoff(ytest, ⊔
       →pred, cutoff = cutoff)}")
      print(f"Linear stacking model -- Accuracy on test data: {accuracy_cutoff(ytest,__
       →pred, cutoff = cutoff)}")
      print(f"Linear stacking model -- Cutoff on test data: {cutoff}")
     Linear stacking model -- Precision on test data: 0.9984174085064292
     Linear stacking model -- Recall on test data: 0.888165420149582
     Linear stacking model -- Accuracy on test data: 0.9502954466458116
     Linear stacking model -- Cutoff on test data: 0.9469758638168861
```



```
cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=1)
      grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv,
                                 verbose=1, scoring=['precision', 'accuracy'],
      →refit='precision')
      grid_result = grid_search.fit(X, y)
      print("Best Training Precision: %f\nBest Parameters: %s" % (grid result.
       →best_score_, grid_result.best_params_))
     Fitting 3 folds for each of 4 candidates, totalling 12 fits
     Best Training Precision: 0.974121
     Best Parameters: {'final_estimator': RandomForestClassifier(max_features=1,
     n_estimators=50, oob_score=True,
                            random_state=1)}
[39]: params = {'final_estimator': RandomForestClassifier(n_estimators=500,__
      →max_features=1,random_state=1,oob_score=True)}
      en4 = StackingClassifier(**params, estimators = [('rf',m1), ('ada',m2),__
       \rightarrow ('gb',m3), ('xgb',m4)],
                               n_jobs=-1,cv=
      →StratifiedKFold(n_splits=3,shuffle=True,random_state=1))
      # model = load model('stacking nonlinear')
      model = grid result
      pred = model.predict(Xtest)
      print(f"Nonlinear stacking model -- Precision on test data:
       →{precision_score(y_true = ytest, y_pred = pred)}")
      print(f"Nonlinear stacking model -- Recall on test data: {recall_score(y_true = __
      →ytest, y_pred = pred)}")
      print(f"Nonlinear stacking model -- Accuracy on test data:
      →{accuracy_score(y_true = ytest, y_pred = pred)}")
      print("Nonlinear stacking model -- Cutoff on test data: 0.5")
      save model(model, 'stacking nonlinear')
     Nonlinear stacking model -- Precision on test data: 0.9715164119721493
     Nonlinear stacking model -- Recall on test data: 0.9453585569731632
     Nonlinear stacking model -- Accuracy on test data: 0.9638512339242267
     Nonlinear stacking model -- Cutoff on test data: 0.5
[40]: cutoff = find cutoff(model)
      plt.savefig('images/stacking_nonlinear.jpg')
      # We use the cutoff where precision is maximized on training data (yellow \ 
      \rightarrow point, first value of 3)
      pred = model.predict proba(Xtest)[:, 1]
      print(f"Nonlinear stacking model -- Precision on test data:
       →{precision_cutoff(ytest, pred, cutoff = cutoff)}")
```

```
Nonlinear stacking model -- Precision on test data: 1.0
Nonlinear stacking model -- Recall on test data: 1.0
Nonlinear stacking model -- Accuracy on test data: 1.0
Nonlinear stacking model -- Cutoff on test data: 0.0
```

Training Precision and Accuracy vs Threshold

0.0.8 Model Importances (Stacking Logistic Regression)

```
[41]: models = ['Random forest', 'AdaBoost', 'Gradient Boost', 'XGBoost']
importances = dict(zip(models, list(coefs[0])))
def importance(val):
    return importances[val]

ordered = sorted(importances, key = importance, reverse = True)

print("Models in order of importance:")
print("-"*50)
for i, model in enumerate(ordered):
    print(f"#{i+1}: {model} ({importances[model]})")
```

Models in order of importance:

```
#1: AdaBoost (12.757848552498661)
```

#2: Random forest (3.3923974770753493)

#3: XGBoost (0.98194674359408)

#4: Gradient Boost (0.775493753999609)

0.0.9 Feature Importance Plots

```
[48]: loaded_model = load_model('f4') # old xgb model
importances = [round(feature, 6) for feature in list(loaded_model.

→feature_importances_)]
feature_data = pd.DataFrame({'Feature': list(X.columns), 'Importance': 
→importances}).sort_values(by = 'Importance', ascending = False)
sns.barplot(y='Feature', x='Importance', data = pd.concat([feature_data.iloc[:

→5,:], feature_data.iloc[-5:,:]], axis = 0))
plt.title("Top 5 and Bottom 5 Most Important Features")
```

[48]: Text(0.5, 1.0, 'Top 5 and Bottom 5 Most Important Features')

Some of the takeaways were foreseen. For example, gender is not that important, whereas business class is very important.

0.0.10 Conclusions

In order of precision:

[]: #TODO

In order of accuracy:

[]: #TODO

Nonlinear stacking probabilities

[51]: pd.Series(model.predict_proba(Xtest)[:, 1]).value_counts()

```
[51]: 0.0000
                 11227
      1.0000
                  9903
      0.0200
                   660
      0.0400
                   378
      0.0600
                   268
      0.0800
                   255
      0.1000
                   181
      0.9800
                   175
      0.1200
                   166
      0.1400
                   130
      0.2000
                   117
      0.1800
                   116
      0.2800
                   112
```

0.1600		111
0.2400	:	110
0.3000	:	108
0.2200		107
0.2600	:	107
0.3400		89
0.9600		87
0.3200		87
0.3800		84
0.3600		79
0.4000		77
0.4600		68
0.9400		56
0.5400		56
0.4400		54
0.4200		52
0.5000		51
0.6200		49
0.6000		48
0.6600		47
0.9200		46
0.6400		45
0.8000		44
0.7400		43
0.5600		41
0.5800		41
0.7600		40
0.4800		40
0.8200		39
0.7800		37
0.7200		36
0.5200		35
0.7000		33
0.9000		33
0.6800		33
0.8400		31
0.8800		31
0.8600		30
dtype:	int64	
V 1		

Main takeaway: as precision increases, accuracy decreases.

It appears that the best model is the nonlinear stacking model with a cutoff of 0%. It has 100% accuracy on testing data. Surprisingly, it either predicts 0% or 100% probability of satisfaction for the majority of observations.