房山区 2017——2018 学年度第二学期期末检测试卷 九年级数学

- 一、选择题(本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个是符合题意的.
- 1. 若代数式 $\frac{x^2}{x-2}$ 有意义,则实数 x 的取值范围是

B.
$$x = 2$$

C.
$$x \neq 0$$

2. 如图, 在 $\triangle ABC$ 中, 过点 B作 $PB \perp BC$ 于 B, 交 AC 于 P, 过点 C作 $CQ \perp AB$, 交 AB 延长线于 Q, 则 $\triangle ABC$ 的高是

B. 线段 BC

C. 线段 CQ

D. 线段 AQ

3. 某城市几条道路的位置关系如图所示,已知 $AB/\!\!/\!\!/ CD$,AE 与 AB 的夹角为 $A8^\circ$,若 CF 与 EF 的长度相等,则 $\angle C$ 的度数为

A. 48°

C. 30°

4. 右图是某个几何体的三视图,该几何体是

A. 圆锥

C. 圆柱

D. 四棱柱

5. 如图是根据我市某天七个整点时的气温绘制成的 统计图,则这七个整点时气温的中位数和平均数分别是

A. 30, 28 B. 26, 26

C. 31, 30 D. 26, 22

6. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端 距离地面2米.则小巷的宽度为.

- A. 0.7米
- B. 1.5 米 C. 2.2 米
- 7. 某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共 20 件. 其中甲种 奖品每件 40 元, 乙种奖品每件 30 元. 如果购买甲、乙两种奖品共花费了 650 元, 求甲、乙 两种奖品各购买了多少件. 设购买甲种奖品 x 件, 乙种奖品 y 件.依题意,可列方程组为

A.
$$\begin{cases} x + y = 20, \\ 40x + 30y = 650 \end{cases}$$

B.
$$\begin{cases} x + y = 20, \\ 40x + 20y = 650 \end{cases}$$

c.
$$\begin{cases} x + y = 20, \\ 30x + 40y = 650 \end{cases}$$

D.
$$\begin{cases} x + y = 70, \\ 40x + 30y = 650 \end{cases}$$

8. 一列动车从 A 地开往 B 地, 一列普通列车从 B 地开往 A 地, 两车同时出发,设普通列车 行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的 函数关系. 下列叙述错误的是

- A. AB 两地相距 1000 千米
- B. 两车出发后 3 小时相遇
- C. 动车的速度为
- D. 普通列车行驶t小时后,动车到达终点 B 地,此时普通列车还需行驶 $\frac{2000}{3}$ 千米到达 A 地
- 二、填空题(本题共16分,每小题2分)
- 9. 估计无理数 $\sqrt{11}$ 在连续整数 _______ 与 ______ 之间.
- 10. 若代数式 $x^2 6x + b$ 可化为 $(x+a)^2 5$,则 a+b 的值为

11. 某校广播台要招聘一批小主持人,对 A、B 两名小主持人进行了专业素质、创新能力、 外语水平和应变能力进行了测试,他们各项的成绩(百分制)如下表所示:

应聘者	专业素质	创新能力	外语水平	应变能力
A	73	85	78	85
В	81	82	80	75

如果只招一名主持人,该选用 ; 依据是 .

12. 某校体育室里有球类数量如下表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.

球类	篮球	排球	足球
数量	3	5	4

13. 某花店有单位为 10 元、18 元、25 元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.

14. 如图, AB 为 \odot O 的直径, 弦 $CD \perp AB$, 垂足为点 E, 连结 OC, 若 OC=5, CD=8, 则 AE=

15. 如图,在正方形网格中,线段 A'B'可以看作是线段 AB 经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段 AB 得到线段 A'B'的过程:

16. 阅读下面材料:

在数学课上,老师提出如下问题:

尺规作图: 作一条线段等于已知线段.

已知:线段 AB.

 $A \longrightarrow B$

求作:线段 CD,使 CD=AB.

小亮的作法如下:

如图:

- (1) 作射线 CE;
- (2) 以 C 为圆心, AB 长为 半径作弧交 CE 于 D.

则线段 CD 就是所求作的线段.

老师说:"小亮的作法正确"

请回答: 小亮的作图依据是

三、解答题(本题共 68 分, 第 17、18 题, 每小题 5 分; 第 19 题 4 分; 第 20-23 题, 每小题 5 分; 第 24、25 题, 每小题 6 分; 第 26、27 题, 每小题 7 分; 第 28 题 8 分). 解答应写出文字说明,演算步骤或证明过程.

17. 解不等式组: $\begin{cases} 3x-1 > 2(x+2), \\ \frac{x+9}{2} < 5x. \end{cases}$

求证: AE=CD.

19. 已知 $x^2 - 2x - 1 = 2$. 求代数式 $(x-1)^2 + x(x-4) + (x-2)(x+2)$ 的值.

- 20. 已知: 关于 x 的一元二次方程**错误!未找到引用源**。(**错误!未找到引用源**。是整数). (1)求证: 方程有两个不相等的实数根;
 - (2) 若方程的两个实数根都是整数,求k的值.

- (1) 求证: 四边形 ABCD 是菱形;
- (2) 如果 ∠BDC=30°, DE=2, EC=3, 求 CD 的长.

22. 如图,在平面直角坐标系xOy中,直线 y = kx + m 与双

曲线
$$y = -\frac{2}{x}$$
 相交于点

A (m, 2).

(1) 求直线 y = kx + m 的表达式;

23. 如图, $\triangle ABC$ 内接于 $\bigcirc O$, AB=AC, CO的延长线交AB于点D

- (1) 求证: AO 平分∠BAC;
- (2) 若 BC=6, $\sin \angle BAC=\frac{3}{5}$,求AC和CD的长.

备用图

24. 某商场甲、乙两名业务员 10 个月的销售额(单位:万元)如下:

甲 7.2 9.6 9.6 7.8 9.3 4 6.5 8.5 9.9 9.6

Z 5.8 9.7 9.7 6.8 9.9 6.9 8.2 6.7 8.6 9.7

根据上面的数据,将下表补充完整:

数量 销售额 人员	4.0≤ <i>x</i> ≤4.9	5.0≤ <i>x</i> ≤5.9	6.0≤ <i>x</i> ≤6.9	7.0≤ <i>x</i> ≤7.9	8.0≤ <i>x</i> ≤8.9	9.0≤x≤10.0
甲	1	0	1	2	1	5
乙			\			

(说明:月销售额在 8.0 万元及以上可以获得奖金,7.0~7.9 万元为良好,6.0~6.9 万元为合格,6.0 万元以下为不合格)

两组样本数据的平均数、中位数、众数如下表所示:

人员	平均数(万元)	中位数 (万元)	众数 (万元)
F	8.2	8.9	9.6
Z	8.2	8.4	9.7

结论 (1) 估计乙业务员能获得奖金的月份有______个;

(2)可以推断出_____业务员的销售业绩好,理由为_____.(至 少从两个不同的角度说明推断的合理性)

25. 有这样一个问题: 探究函数 $y = \frac{1}{6}x^3 - 2x$ 的图象与性质.

小东根据学习函数的经验,对函数 $y = \frac{1}{6}x^3 - 2x$ 的图象与性质进行了探究.

下面是小东的探究过程,请补充完整:

(1) 函数
$$y = \frac{1}{6}x^3 - 2x$$
 的自变量 x 的取值范围是______;

(2) 下表是 y 与 x 的几组对应值

х		- 4	- 3.5	- 3	- 2	- 1	0	1	2	3	3.5	4	
у	•••	$-\frac{8}{3}$	$-\frac{7}{48}$	$\frac{3}{2}$	8/3	<u>11</u> 6	0	$-\frac{11}{6}$	$-\frac{8}{3}$	m	7/48	8/3	

则 *m* 的值为_____;

- (3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点, 画出该函数的图象;
- (4)观察图象,写出该函数的两条性质

26. 在平面直角坐标系 xOy 中,二次函数 $y=ax^2+bx+c$ ($a\neq 0$)的图象经过 A (0, 4),

B(2, 0), C(-2, 0) 三点.

(1) 求二次函数的表达式;

(2) 在x轴上有一点D(-4,0),将二次函数的图象沿射 线 DA 方向平移, 使图象再次经过点 B.

- 27. 己知 AC=DC, $AC\perp DC$, 直线 MN 经过点 A, 作 $DB\perp MN$, 垂足为 B, 连接 CB.
 - (1) 直接写出 $\angle D$ 与 $\angle MAC$ 之间的数量关系:
 - (2) ① 如图 1, 猜想 AB, BD 与 BC 之间的数量关系, 并说明理由;
 - ② 如图 2, 直接写出 AB, BD 与 BC 之间的数量关系;
- (3) 在 MN 绕点 A 旋转的过程中,当 $\angle BCD$ =30°,BD= $\sqrt{2}$ 错误!未找到引用源。时, 直接写出 BC 的值.

28. 已知点 P, Q 为平面直角坐标系 xOv 中不重合的两点, 以点 P 为圆心且经过点 Q 作 O则称点 Q 为 $\bigcirc P$ 的 "关联点", $\bigcirc P$ 为点 Q 的 "关联圆".

- (1) 已知 $\odot O$ 的半径为 1,在点 E (1, 1),F ($-\frac{1}{2}$, $\frac{\sqrt{3}}{2}$),M (0, -1) 中, $\odot O$ 的 "关 联点"为______;
- (2) 若点 P (2, 0),点 Q (3, n), $\odot Q$ 为点 P 的 "关联圆",且 $\odot Q$ 的半径为 $\sqrt{5}$,求 n 的值;
- (3) 已知点 D (0, 2), 点 H (m, 2), $\odot D$ 是点 H 的 "关联圆", 直线 $y = -\frac{4}{3}x + 4$ 与 x 轴, y 轴分别交于点 A, B. 若线段 AB 上存在 $\odot D$ 的 "关联点", 求 m 的取值范围.

房山区 2017-2018 学年度第二学期期末检测试卷

九年级数学参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	D	С	D	В	В	С	A	С

- 二、填空题(本题共16分,每小题2分)
- 9. 3, 4; 10. 1; 11. 答案不唯一,理由支撑选项即可; 12. $\frac{1}{3}$; 13. 17;
- 14. 2; 15. 如: 将线段 AB 绕点 B 逆时针旋转 90°, 再向左平移 2 个单位长度;
- 16. 两点确定一条直线; 同圆或等圆中半径相等;
- 三、解答题(本题共 68 分, 第 17、18 题, 每小题 5 分; 第 19 题 4 分; 第 20-23 题, 每小题 5 分; 第 24、25 题, 每小题 6 分; 第 26、27 题, 每小题 7 分; 第 28 题 8 分).

17.
$$\mathbb{M}: \begin{cases}
3x-1 > 2(x+2) & \text{(1)} \\
\frac{x+9}{2} < 5x & \text{(2)}
\end{cases}$$

∴不等式组的解集为 *x*>5. ······5′

18. 解: ∵AD//BC

∴ ∠ADB=∠DBC······1′

 $:DC \perp BC$ 于点 C, $AE \perp BD$ 于点 E

∴∠C=∠AED=90°2′

∇ : DB = DA

:. △AED≌ △DCB······4′

∴AE=CD······5′

19. \emptyset $\exists x^2 - 2x + 1 + x^2 - 4x + x^2 - 4$

 $\therefore x^2 - 2x - 1 = 2$

∴ 原式= $3x^2-6x-3=3(x^2-2x-1)=6$4′

20. $mathred{M}$: (1) $\Delta = \left[-\left(4k+1\right) \right]^2 - 4k\left(3k+3\right) = \left(2k-1\right)^2 \cdots 1^n$

∵ k 为整数
$\therefore (2k-1)^2 > 0$
即 Δ>0
∴方程有两个不相等的实数根······2
(2) 由求根公式得, $x = \frac{4k+1\pm(2k-1)}{2k}$
$\therefore x_1 = 3, x_2 = \frac{k+1}{k} = 1 + \frac{1}{k}$
由题意得, $k=1$ 或 -1 ····································
21. 解: (1) ∵ <i>AD=CD,EA=EC,DE=DE</i>
$\therefore \triangle ADE \cong \triangle CDE$
∴ ∠ADE=∠CDE
∵AD // BC
∴ ∠ADB=∠DBC
∴ ∠DBC=∠BDC
∴BC=CD
∴AD=BC
又∵AD∥BC
∴四边形 <i>ABCD</i> 是平行四边形······2
AD=CD
:.四边形 <i>ABCD</i> 是菱形······3
(2) 作 $EF \perp CD$ 于 F
$\therefore \angle BDC = 30^{\circ}$, $DE = 2$
$\therefore EF=1, DF=\sqrt{3} \cdots \qquad \cdots$
∵ CE=3
$\therefore CF=2\sqrt{2}$
$\therefore CD = 2\sqrt{2} + \sqrt{3} - \dots - 5$
22. 解: (1) :: 点 $A(m,2)$ 在双曲线 $y = -\frac{2}{r}$ 上,
∴ <i>m</i> = −1. ······1

∵点
$$A$$
 (-1, 2) 在直线 $y = kx - 1$ 上,

$$\therefore y = -3x-1 \dots 3'$$

- 23. 解: (1) 证明: 如图, 延长 AO 交 BC 于 H, 连接 BO.
 - AB=AC,OB=OC
 - $\therefore A$ 、O 在线段 BC 的中垂线上
 - ∴ $AO \bot BC$

∀ : AB=AC

- (2) 如图,过点D作 $DK \perp AO$ 于K
 - ∵由(1)知 *AO*⊥*BC*, *OB=OC,BC*=6

$$\therefore BH = CH = \frac{1}{2}BC = 3 , \angle COH = \frac{1}{2}\angle BOC$$

$$\therefore \angle BAC = \frac{1}{2} \angle BOC$$

$$\therefore \angle COH = \angle BAC$$

在 Rt $\triangle COH$ 中, $\angle OHC$ =90°, $\sin \angle COH = \frac{HC}{CO}$

$$\therefore \sin \angle COH = \frac{3}{CO} = \frac{3}{5}$$

$$\therefore CH=3, OH = \sqrt{OC^2 - HC^2} = 4$$

$$\therefore AH=AO+OH=9$$
, tan $\angle COH=$ tan $\angle DOK=\frac{3}{4}$

在Rt△ACH中,∠AHC=90°,AH=9,CH=3

$$\therefore \tan \angle CAH = \frac{CH}{AH} = \frac{1}{3}, AC = \sqrt{AH^2 + HC^2} = 3\sqrt{10} \cdot \dots \cdot 4'$$

由(1)知 $\angle COH = \angle BOH$, $\tan \angle BAH = \tan \angle CAH = \frac{1}{3}$

设 DK=3a,在 $\operatorname{Rt}\triangle ADK$ 中, $\tan\angle BAH=\frac{1}{3}$,在 $\operatorname{Rt}\triangle DOK$ 中, $\tan\angle DOK=\frac{3}{4}$

 $\therefore OK=4$ a, DO=5 a, AK=9 a

 $\therefore OA = 13 \ a = 5$

$$\therefore AC = 3\sqrt{10} , CD = \frac{90}{13}$$

24. 解:

数量 销售额 太员	4.0≤ <i>x</i> ≤4.9	5.0≤ <i>x</i> ≤5.9	6.0≤ <i>x</i> ≤6.9	7.0≤ <i>x</i> ≤7.9	8.0≤ <i>x</i> ≤8.9	9.0≤x≤10.0
					0	
Z	0	1	3	0	2	4

.....2′

- (1) 6;·············4′
- (2)答案不唯一,理由结合数据支撑选项即可……6′
- 25. (1) 任意实数;

- (4) 答案不唯一6'
- 26. M: (1) : A (0, 4), B (2, 0), C (-2, 0)
 - :二次函数的图象的顶点为A(0,4)
 - ∴设二次函数表达式为 $y = ax^2 + 4$ 将 B(2, 0) 代入,得 4a + 4 = 0 解得, a = -1

(2) ①设直线 DA: $y = kx + b(k \neq 0)$

将A(0, 4), D(-4, 0)代入,得

$$\begin{cases} b = 4 \\ -4k + b = 0 \end{cases}$$

解得,
$$\begin{cases} k=1\\ b=4 \end{cases}$$

∴直线 <i>DA</i> : y=x+4 ·······3 分
由题意可知,平移后的抛物线的顶点 E 在直线 DA 上
∴设顶点 E (m, m+4)
\therefore 平移后的抛物线表达式为 $y = -(x-m)^2 + m + 4$
又:平移后的抛物线过点 $B(2,0)$
∴将其代入得, $-(2-m)^2+m+4=0$
解得, $m_1 = 5$, $m_2 = 0$ (不合题意,舍去)
∴顶点 <i>E</i> (5, 9) ······5 分
② 307 分
27. 解: (1) 相等或互补;2 分
(注: 每个1分)
(2)① 猜想: <i>BD+AB</i> =√2 <i>BC</i> ·······3 分
如图 1,在射线 AM 上截取 $AE=BD$,连接 CE .
$X : \angle D = \angle EAC, CD = AC$
$\therefore \triangle BCD \cong \triangle ECA$
$\therefore BC=EC, \angle BCD=\angle ECA$ $M \qquad E$ A
$AC \perp CD$
∴∠ACD=90°
即 $\angle ACB+\angle BCD=90^{\circ}$
∴ ∠ACB+∠ECA=90° 图1
即 ∠ECB=90°
$\therefore BE = \sqrt{2}BC$
$AE+AB=BE=\sqrt{2}BC$
∴BD+AB=√2BC ·······4分
② AB -BD=√2BC ····································
(3) $BC = \sqrt{3} + 1$ 或 $\sqrt{3} - 1$

(注:每正确1个得1分)

(2) 如图 1, 过点 Q 作 $QH \perp x$ 轴于 H.

$$\therefore PH=1$$
, $QH=n$, $PQ=\sqrt{5}$

∴由勾股定理得, PH²+QH²=PQ²

$$\mathbb{H} 1^2 + n^2 = \left(\sqrt{5}\right)^2$$

(3) $ext{ deg } y = -\frac{4}{3}x + 4$, $ext{ find } A$ (3, 0), B (0, 4)

∴可得 AB=5

I. 如图 2(1), 当 $\odot D$ 与线段 AB 相切于点 T 时,连接 DT.

则 DT LAB, ∠DTB=90°

∴可得 *DT=DH*₁=6/5

II. 如图 2 (2), 当 $\odot D$ 过点 A 时, 连接 AD.

由勾股定理得 *DA*=√*OD*²+*OA*²=*DH*₂=√13 ·················6′

