Math 13 - Week 2: Sets

1. Suppose A and B are finite sets. Given that $|A|=10, |A\cup B|=15,$ and $|A\cap B|=3,$ determine |B|.

2. Consider the sets $A = \{a \in \mathbb{Z} : a \text{ is divisible by 2}\}$ and $B = \{b \in \mathbb{Z} : b \text{ is divisible by 3}\}$. What is the set $A \cap B$?

- 3. True or false
 - (a) If A and B are finite sets, then $A \cap B$ has strictly smaller cardinality than that of A.
 - (b) If A is a finite set then A^C is a finite set.
 - (c) If A and B are finite sets, then $|A \cup B| \le \max(|A|, |B|)$.
 - (d) $2^{A \cap B} = 2^A \cap 2^B$, where A and B are finite sets
 - (e) $2^{A \cup B} = 2^A \cup 2^B$, where A and B are finite sets
 - (f) $2^{A\triangle B} = 2^{A}\triangle 2^{B}$, where A and B are finite sets

- 4. Let A be a set. Which of the following are true and which are false?
 - (a) $x \in A \iff x \in 2^A$
 - (b) $T \subseteq A \iff T \in 2^A$
 - (c) $x \in A \iff \{x\} \in 2^A$
 - (d) $\{x\} \in A \iff \{\{x\}\} \in 2^A$.

5. For any sets of real numbers A and B, define $AB = \{ab : a \in A \text{ and } b \in B\}$. If $A = \{1, 2\}$ and $B = \{2, 3, 4\}$, what is |AB|? What is $|A \times B|$?

- 6. For any sets of real numbers A and B, define their sumset $A+B=\{a+b:a\in A \text{ and } b\in B\}.$
 - (a) Suppose $A = \{1, 2, 3, \dots, 12\}$. What is |A + A|?
 - (b) Suppose $A = \{2, 4, 6, \dots, 12\}$. What is |A + A|?
 - (c) Suppose $A = \{1, 3, 4, 5, 12\}$. What is |A + A|?
 - (d) Can you come up with a guess for when |A + A| is "big" compared to |A|?