

DSLab. 09 Adders

Lab. 09 Adders

- Design and Verify the following circuits using Verilog HDL and Schematic
- Verilog
 - Behavioral level modeling
 - Dataflow modeling
 - Structural level (Gate-level) modeling
- Schematic
- Please write and upload the lab report (Lab09) -- Due on 2022/11/04 23:59

Behavioral level Description of 4-bit Adder

```
// Behavioral level description of 4-bit adder
module r_4_bit_bl (C_out, Sum, A, B, C_in);
  output C_out;
  output [3:0] Sum;
  input [3:0] A, B;
  input C_in;
  reg C_out;
  reg [3:0] Sum;
  always @(A or B or C_in)
     \{C_{out}, Sum\} = A + B + C_{in};
endmodule
```

Dataflow Description of 4-bit Adder

```
// Dataflow description of 4-bit adder
module adder_4_bit_df (
  output [3:0]
                    Sum,
                   C_out,
  output
                    A, B,
  input [3: 0]
  input C_in
   assign \{C_{out}, Sum\} = A + B + C_{in};
endmodule
```

Gate-level Description of 4-bit Ripple-Carry Adder

```
module half_adder (output S, C, input x, y);
  xor(S, x, y);
                                                     Half adder
                                                                      Half adder
  and (C, x, y);
endmodule
                                                                            P_i \oplus C_i
module full_adder (output S, C, input x, y, z);
  wire S1, C1, C2;
  half_adder HA1 (S1, C1, x, y);
  half_adder HA2 (S, C2, S1, z);
  or G1 (C, C2, C1);
endmodule
module ripple_carry_4_bit_adder (output [3: 0] Sum, output C4, input [3:0] A, B, input C0);
              C1, C2, C3; // Intermediate carries
   wire
   full_adder FA0 (Sum[0], C1, A[0], B[0], C0),
                FA1 (Sum[1], C2, A[1], B[1], C1),
                                                                                   C_1
                FA2 (Sum[2], C3, A[2], B[2], C2),
                                                          FA
                                                                              FA
                                                                    FA
                                                                                        FA
                FA3 (Sum[3], C4, A[3], B[3], C3);
endmodule
```

Exercise 1: 8-bit Carry-look Ahead Adder (1/3)

- Design and verify the 8-bit carry-look ahead adder composed of two 4-bit carry-look ahead adders (using Verilog Structural level modeling)
 - carry propagate: $P_i = A_i \oplus B_i$, carry generate: $G_i = A_i B_i$
 - sum: $S_i = P_i \oplus C_i$, carry: $C_{i+1} = G_i + P_i C_i$
 - $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
 - $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - $C_4 = G_3 + P_3 C_3 = ...$

Exercise 1: 8-bit Carry-look Ahead Adder (2/3)

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

Exercise 1: 8-bit Carry-look Ahead Adder (3/3)

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Exercise 2: Decimal Adder (1/2)

Design and verify the 2-digit decimal adder

Exercise 2: Decimal Adder (2/2)

Table 4.5 *Derivation of BCD Adder*

Binary Sum			BCD Sum				
Z 1	Z_8 Z_4	c	S 8	S 4	S ₂	S ₁	
0	0 0	0	0	0	0	0	0
1	0 0	0	0	0	0	1	1
0	0 0	0	0	0	1	0	2
1	0 0	0	0	0	1	1	3
0	0 1	0	0	1	0	0	4
1	0 1	0	0	1	0	1	5
0	0 1	0	0	1	1	0	6
1	0 1	0	0	1	1	1	7
0	1 0	0	1	0	0	0	8
1	1 0	0	1	0	0	1	9
0	1 0	1	0	0	0	0	10
1) 1 0	1	0	0	0	1	11
0	1 1	. 1	0	0	1	0	12
1	1 1	+0 1	0	0	1	1	13
0	1 1	+6 1 ⇒ 1	0	1	0	0	14
1	1 1	1	0	1	0	1	15
0	0 0	1	0	1	1	0	16
1	0 0	1	0	1	1	1	17
0	0 0	1	1	0	0	0	18
1	0 0	1	1	0	0	1	19