Nombre del algoritmo	QuickSort		
Mejor caso	El pivote esta en el centro de la lista. Dividiéndola en dos sublistas de igual tamaño		
Complejidad en el mejor caso	O(nlog n)		
Peor caso	El pivote esta en un extremo de la lista.		
Complejidad en el peor caso	O(n^2)		
Algoritmo inplace	Si		
Algoritmo Adaptativo	No		
Algoritmo Estable	No		
Nombre del algoritmo	ShellSort		
Mejor caso			
Complejidad en el mejor caso	O(1)		
Peor caso			
Complejidad en el peor caso	O(n^3/2)		
Algoritmo inplace	Si		
Algoritmo Adaptativo	No		
Algoritmo Estable	No		
Nombre del algoritmo	MergeSort		
Mejor caso	S		
Complejidad en el mejor caso	O (n log n)		
Peor caso	Cuando las tuplas finales están desordenadas		
Complejidad en el peor caso	O(n)		
Algoritmo inplace	No		
Algoritmo Adaptativo	No		

Algoritmo Estable	Si

	ShellSort(mseg)	MergeSort(mseg)	QuickSort(mseg)
Tiempo Ejecución 1	6,556	5,679	7,30
Tiempo Ejecución 2	6,518	5,154	5,871
Tiempo Ejecución 3	6,177	5,224	6,193
Tiempo Promedio(mseg):	6,417	5,352333333333333	6,45466666666667

Conclusión: Por el tiempo promedio de ejecución, para el caso general, el algoritmo más eficiente es MergeSort. El siguiente algoritmo en eficiencia es ShellSort debido que los resultados obtenidos tienen poca varianza entre ellos. El algoritmo menos eficiente es QuickSort debido a su inestabilidad y la gran varianza entre sus datos.