Symmetric Encryption

 $Gen(\lambda) \to k$ $Enc(\lambda, k, m) \to c$ $Dec(\lambda, k, c) \to m'$

Perfect Indistinguishability (PI)

 $P[Enc(k, m_0) = c] = P[Enc(k, m_1) = c]$ $|P[A(Enc(k, m_0)) = 1] - P[A(Enc(k, m_1)) = 1]| = 0$

Limitation

○ Satisfiability: $|K| \ge |M|$

Computational Indistinguishability (CI)

$$\left|P\big[A\big(Enc(k,m_0)\big)=1\big]-P\big[A\big(Enc(k,m_1)\big)=1\big]\right|<\epsilon$$

Pseudo-Random Generator (PRG)

• Pseudo-Randomness

o Indistinguishable from uniform distribution

• Deterministic: $G: \{0,1\}^{\lambda} \to \{0,1\}^{m(\lambda)}$

Expansion: $m(\lambda) > \lambda$ (The larger the better)

Stream Ciphers

 $Gen(\lambda) \to k$

 $Enc(\lambda,k,m)\to G(k)\oplus m=c$

 $Dec(\lambda, k, c) \to G(k) \oplus c = m'$

• Confusion: Each bit of c depends on multiple bits of k

 Lack of structure: prevent algorithms from exploiting them to break the construction

Issues: Message Length

Solution: Extending PRGs

 $\circ \qquad G'(s_1,\ldots,s_n) = G(s_1) \parallel \cdots \parallel G(s_n)$

 $\circ \qquad (b_i, s_{i+1}) \leftarrow G(s_i)$

Issues: Key Reuse

 $\circ \qquad c_0 \oplus c_1 = m_0 \oplus m_1$

Issues: Integrity

 $\circ \qquad (G(k) \oplus m) \oplus \Delta = G(k) \oplus (m \oplus \Delta)$

Cl-Secure

Not CPA-Secure

Pseudo-Random Functions (PRF)

 $F_k = \left\{ f_k \colon \{0,1\}^\lambda \to \{0,1\}^\lambda \right\}$

 $Gen(\lambda) \to k = f_k$

 $Eval(\lambda, k, x) \rightarrow y = f_k(x)$

CPA-Secure

Pseudo-Random Permutations (PRP)

Similar to PRF, except with:

 $Invert(\lambda, k, y) \rightarrow x' = f_k^{-1}(y)$

CI-Secure

Not CPA-Secure

Block Ciphers (uses PRP)

 $Enc(\lambda, k, m) \rightarrow c = f_k(m)$

 $Dec(\lambda, k, c) \rightarrow m' = Invert(\lambda, k, c) = f_k^{-1}(c)$

CI-Secure

Not CPA-Secure

Electronic Code Book mode (ECB)

Counter mode (CTR)

CPA-Secure

Not parallelisable

Cipher Block Chaining mode (CBC)

CPA-Secure

Not parallelisable

Message-Authentication Code (MAC)

 $Gen(\lambda) \to k$

 $Mac(\lambda, k, m) \rightarrow t$

 $Verify(\lambda, k, m, t) \rightarrow accept or reject$

Universal Hash Functions (UHF)

 $H_n = \{h_k : \{0,1\}^n \to \{0,1\}^{\lambda}\}$

 $Gen(\lambda) \rightarrow k = h_k$

 $Eval(\lambda, k, x) \rightarrow y = h_k(x)$

Hash Functions

Same as UHF, except with:

• Compression: $n > \lambda$

Collision Resistance (x, x')

For random k , hard to find $x \neq x'$ s.t. $h_k(x) = h_k(x')$

Second-Preimage Resistance x'

For random x, k, hard to find $x' \neq x$ s.t. $h_k(x) = h_k(x')$

One-Way x'

For random x, k, hard to find x' s.t. $h_k(x) = h_k(x')$

Universality (x, x')

Hard to find $x \neq x'$ s.t. for random k, $h_k(x) = h_k(x')$

RSA Encryption

N = pq where $p, q \in \mathbb{Z}_{prime}$ $pk = (N, e) \leftarrow \gcd(e, \emptyset(N)) = 1$ $sk = (N, d) \leftarrow d = e^{-1} (\operatorname{mod} \emptyset(N))$

Not CPA-Secure

Not CCA-Secure

Key Encapsulation Mechanism (KEM)

 $Gen(\lambda) \rightarrow (pk, sk)$

 $Encaps(\lambda, pk) \rightarrow (k, \hat{k})$

 $Decaps(\lambda, sk, \hat{k}) \rightarrow k$

Trapdoor Permutations (TDP)

One-way

 \circ Easy $a \to a^e \pmod{N}$

Invertible

 $\circ \quad \text{Hard } a \leftarrow a^e \pmod{N}$

o Easy if given $d = e^{-1} \pmod{\emptyset(N)}$

Random Oracle Model (ROM)

Everyone has access to H

If x not seen before: H(x) is random

If x seen before: H(x) is previous output

Signatures

 $Gen(\lambda) \rightarrow (sk, vk)$

 $Sign(\lambda, sk, m) \rightarrow \sigma$

 $Verify(\lambda, vk, m, \sigma) \rightarrow accept or reject$

Publicly verifiable

Non-Repudiation

Zero-Knowledge Proofs

Prove without revealing any secrets Use Interactive Proofs

Confidentiality

• Eve can only read bits on the channel

• Cannot learn m

CPA-Secure

Integrity

- Eve can modify bits on the channel
- Bob knows if $m' \neq m$
- EUF-CMA-Secure

Authenticated Encryption (AE)

Must satisfy both confidentiality and integrity

Non-Repudiation

Cannot deny ownership of the message

Group Theory

 $\begin{array}{ll} \text{Identity} & \exists e \in \textit{G}, \forall g \in \textit{G} \colon e * g = g \\ \text{Inverse} & \forall g \in \textit{G}, \exists g^{-1} \in \textit{G} \colon g * g^{-1} = e \\ \text{Associativity} & \forall a, b, c \in \textit{G} \colon (a * b) * c = a * (b * c) \\ \text{Exponentiation} & g * g * \dots * g = g^x \\ \end{array}$

Bezout's Identity

- Let gcd(a, b) = d, then $\exists x, y \in \mathbb{Z}$: ax + by = d
- $\forall c \in \mathbb{Z}: 0 < c < d, \nexists x, y \in \mathbb{Z}: ax + by = c$
- Suppose $\exists x : ax = 1 \pmod{p}$
 - o $ax = 1 + py, \forall y \in \mathbb{Z}$
 - $\circ \quad ax py = 1$
 - $\circ \quad \gcd(a,p)=1$

Euler's Theorem

 $a^{\emptyset(N)} = 1 \pmod{N}$, where $\emptyset(N) = (p-1)(q-1)$

Lattice Problems

Shortest Vector Problems: Hard to shortest vector

Closest Vector Problems: Hard to closest vector

Learning With Errors (LWE) Problem

Search LWE

Given (A, As + e) hard to find s

Decision I WF

Hard to distinguish between (A, As + e) and (A, b)

Quantum Encryption

Quantum Enoryption	
Symmetric-Key	Public-Key
$Gen(n) \rightarrow s \in \mathbb{Z}_q^n$	$Gen(n) \rightarrow (A, As + e),$
	sk = s
	• $A \leftarrow \mathbb{Z}_q^{m \times n}$
	• $e \leftarrow [-\eta q, \eta q]^m$
	• $s \in \mathbb{Z}_q^n$
$Enc(s,\mu) \rightarrow$	$Enc(A, b, \mu) \rightarrow$
$\left(a,\langle a,s\rangle+e+\mu\left\lfloor\frac{q}{2}\right\rfloor\right)$	$\left(r^T A, r^T b + e\mu \left[\frac{q}{2}\right]\right)$
• $a \in \mathbb{Z}_q^n$	
• $e \leftarrow [-\eta q, \eta q]$	• $r \in \{0,1\}^m$
$Dec(s, a, b) \rightarrow 1 \text{ or } 0$	$Dec(s,c,d) \rightarrow 1 \text{ or } 0$
• $z = b - \langle a, s \rangle$	• $z = \langle c, s \rangle - d$
$=\mu[q/2]+e$	$= r^T A s - r^T b - \mu \left \frac{q}{2} \right $
	$=r^Te-\mu\left \frac{q}{2}\right $
	$=-\mu \left \frac{q}{2} \right $
• Output $ z > \frac{q}{4}$	• Output $ z > \frac{q}{z}$

CI-Secure

- 1. Challenger C generates $k \leftarrow Gen(\lambda)$
- 2. C picks $b \in \{0,1\}$ uniformly at random
- 3. $A \text{ sends } m_0, m_1 \in M, m_0, m_1 \notin \{m_i\} \text{ to } C$
- 4. C encrypts $Enc(k, m_b) \rightarrow c$ and sends c to A
- 5. A outputs b'. A wins iff b' = b

CPA-Secure CI under Chosen Plaintext attack (IND-CPA) **Encryption**

- 1. Challenger C generates $k \leftarrow Gen(\lambda)$
- 2. C picks $b \in \{0,1\}$ uniformly at random
- 3. Adversary A can send multiple encryption queries $Enc(k, m_i) \rightarrow c_i$
- 4. $A \text{ sends } m_0, m_1 \in M, m_0, m_1 \notin \{m_i\} \text{ to } C$
 - 5. C encrypts $Enc(k, m_b) \rightarrow c$ and sends c to A
- 6. A outputs b'. A wins iff b' = b

PRF / PRP

- 1. Challenger C generates $k \leftarrow Gen(\lambda)$
- 2. C picks $b \in \{0,1\}$ uniformly at random
- 3. Adversary A can send multiple evaluation queries $Eval(k, x_i) \rightarrow y_i$
- 4. $A \text{ sends } x \in \{0,1\}^{\lambda} \text{ to } C$
- 5. $C \text{ sends } g(x) \rightarrow y, x \notin \{x_i\} \text{ to } A$
 - 5.1. If b = 0, $g = f_k$
- 5.2. If b = 1, $g = f \in F_{\lambda}$
- 6. A outputs b'. A wins iff b' = b

EUF-Secure (Existential Unforgeability)

- 1. Challenger C generates $k \leftarrow Gen(\lambda)$
- 2. $A \operatorname{sends} m \in M \operatorname{to} C$
- 3. C sends tag $t \leftarrow Mac(k, m)$ and to A
- 4. A outputs $(m', t'), m' \neq m$.
 - . A wins iff $Verify(\lambda, k, m', t') \rightarrow accept$

EUF-CMA-Secure (EUF under Chosen Message Attack)

- 1. Challenger C generates $k \leftarrow Gen(\lambda)$
- 2. Adversary A can send multiple MAC queries $Mac(k, m_i) \rightarrow t_i$
- 3. A outputs $(m', t'), m' \notin \{m_i\}$.
- 4. A wins iff $Verify(\lambda, k, m', t') \rightarrow accept$

AE-Secure

Prove both CPA-Secure and EUF-CMA-Secure Is CCA-Secure

CCA Security Chosen Ciphertext Attacks

- 1. Challenger C generates $k \leftarrow Gen(\lambda)$
- 2. C picks $b \in \{0,1\}$ uniformly at random
- 3. Adversary A can send multiple encryption queries $Enc(k,m_i) \rightarrow c_i$ and decryption queries $Dec(k,c_i) \rightarrow m_i'$
- 4. $A \operatorname{sends} m_0, m_1 \in M, m_0, m_1 \notin \{m_i\} \operatorname{to} C$
- 5. C encrypts $Enc(k, m_b) \rightarrow c$ and sends c to A
- 6. A outputs b'. A wins iff b' = b

KE-Secure Key Exchange

- 1. Alice and Bob will pass σ_i to each other
- . Eve wins if can output k after seeing σ

KEI-Secure Indistinguishability for Keys (KE-IND)

- 1. Simulate a Key Exchange game and output σ
- 2. C picks $b \in \{0,1\}$ uniformly at random
- 3. C outputs σ, k
 - 3.1. If $b = 0, k \leftarrow Gen(\lambda)$
 - 3.2. If $b = 1, k \in K$
- 4. A outputs b. A wins iff b' = b

KEM-Secure Key Encapsulation Mechanism (KEM-CPA)

- 1. Challenger C generates $(pk, sk) \leftarrow Gen(\lambda)$
- 2. C generates $(k, \hat{k}) \leftarrow Encaps(\lambda, pk)$
- 3. C picks $b \in \{0,1\}$ uniformly at random
- . C outputs (pk, k', \hat{k})
- 4.1. If b = 0, k' = k
- 4.2. If $b = 1, k' \in K$
- 5. *A* outputs *b*. *A* wins iff b' = b

One-Time Pad

 $Gen(\lambda) \rightarrow k \in \{0,1\}^n$ $Enc(\lambda, k, m) \rightarrow c = k \oplus m$ $Dec(\lambda, k, c) \rightarrow m' = k \oplus c$

Limitation: cannot reuse keys

$$c_0 \oplus c_1 = m_0 \oplus m_1$$

ElGamal Encryption

$$Gen(\lambda) \to (g, g^x)$$

$$Enc(\lambda, k, m) \rightarrow (g^{y}, g^{xy} \cdot m)$$

$$Dec(\lambda, k, c) \rightarrow (g^{xy})^{-1}(g^{xy} \cdot m)$$

Discrete Log Problem

Given g and h, hard to find x: $g^x = h$

Discrete Log Assumption

 \forall PPT $A \exists$ negl \mathcal{I} :

$$P_{\substack{p \leftarrow PRIME_{\lambda} \\ g \leftarrow Gen_p \\ h \leftarrow x_p^*}} [h = g^x (\text{mod } p)] < \mathcal{I}(\lambda)$$

 $x \leftarrow A(p,g,h)$

Computational Diffie-Hellman (CDH) Assumption

 $\forall PPT A \exists negl \mathcal{I}$:

$$P_{\substack{p \leftarrow PRIME_{\lambda} \\ g \leftarrow Gen_p \\ a,b \leftarrow \{0,1,\dots,p-2\}}} [A(p,g,g^a,g^b) = g^{ab}] < \mathcal{I}(\lambda)$$

Decisional Diffie-Hellman (DDH) Assumption

Given g, g^a, g^b , then g^{ab} is hard to recognise

• Not true with \mathbb{Z}_p^*

RSA Assumption

 $\forall PPT A \exists negl \mathcal{I}$:

$$P_{\substack{p,q \leftarrow PRIME_{\lambda} \\ N \leftarrow pq}} [A(N, e, a^{e} \mod N) = a] < \mathcal{I}(\lambda)$$

$$e: \gcd(e, \emptyset(N)) = 1$$