ЗАБАВНЫЕ ФАКТЫ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

Источник: Чернова Н.И., Теория вероятностей

Авторы заметок: Хоружий Кирилл

От: 4 anpeля 2021 г.

Содержание

1	Осн	Основные понятия теории вероятностей						
	1.1	Элементы комбинаторики	3					
	1.2	События и операции над ними	3					
	1.3	Дискретное пространство элементарных исходов	3					
	1.4	Дискретное пространство элементарных исходов	4					
	1.5	Геометрическая вероятность	4					
2	Aĸ	Аксиоматика теории вероятностей						
	2.1	Алгебра и σ -алгебра событий	5					
	2.2	Мера и вероятностная мера	5					
3	Усл	овная вероятность и независимость	6					
	3.1	Условная вероятность	6					
	3.2	Независимость событий	7					
	3.3	Формула полной вероятности	7					
	3.4	Формула Байеса	7					
4	Схема Бернулли							
	4.1	Распределение числа успехов в n испытаниях	7					
	4.2	Номер первого успешного испытания	8					
	4.3	Независимые испытания с несколькими исходами	8					
	4.4	Теорема Пуассона для схемы Бернулли	8					
5	Слу	Случайные величины и их распределения						
	5.1	Случайные величины	9					
	5.2	Распределения случайных величин	9					
	5.3	Функция распределения	10					
	5.4	(3) Примеры дискретных распределений	10					
	5.5	(3) Примеры абсолютно непрерывных распределений	10					
	5.6	Свойства функций распределения	11					
	5.7	Свойства нормального распределения	12					
6	Пре	Преобразования случайных величин						
	6.1	Измеримость функций от случайных величин	12					
	6.2	Распределения функций от случайных величин	12					
7	Х Многомерные распределения 1							
	7.1	Совместное распределение	13					
	7.2	Типы многомерных распределений	13					
	7.3	Примеры многомерных распределений	14					
	7.4	Независимость случайных величин	14					
	7.5	Функции от двух случайных величин	14					

8	Числовые характеристики распределений					
	8.1 Математическое ожидание случайной величины					
	8.2 Свойства математического ожидания					
	8.3 Дисперсия и моменты старших порядков					
	8.4 Свойства дисперсии					
	8.5 Математические ожидания и дисперсии стандартных распределений					
	8.6 Другие числовые характеристики распределений					
	8.7 Производящие функции					
	8.8 Вычисление моментов через производящие функции					
9	Числовые характеристики зависимости					
	9.1 Ковариация двух случайных величин					
	9.2 Коэффициент корреляции					
10	Характеристические функции					
	10.1 Определение и примеры					
	10.2 Свойства характеристических функций					

1 Основные понятия теории вероятностей

1.1 Элементы комбинаторики

Для начала подружимся с комбинаторикой, взяв некоторую её проекцию на теорвер

Thr 1.1. Пусть множества $A = \{a_1, \ldots, a_k\}$ состоит из k элементов, а множество $B = \{b_1, \ldots, b_m\}$ – из m элементов. Тогда можно образовать равно $k \cdot m$ пар (a_i, b_j) .

Thr 1.2. Общее количество различных наборов при выборе k элементов из n **без** возвращения и c учётом порядка равняется

$$A_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!},$$

 ${\it где}\ A_n^k$ называется числом размещений из n элементов $no\ k$ элементов.

Thr 1.3. Общее количество различных наборов при выборе k элементов из n **без** возвращения и **без** учета порядка равняется

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!},$$

где число C_n^k называется числом сочетаний из n элементов по k элементов.

Thr 1.4. Общее количество различных наборов при выборе k элементов из n с возвращением и без учёта порядка равняется

$$C_{n+k-1}^k = C_{n+k-1}^{n-1}.$$

1.2 События и операции над ними

Def 1.5. Пространством элементарных исходов называют множество Ω , содержащее все возможные взаимоисключающие результаты данного случайного эксперимента. Элементы множества Ω называются элементарными исходами и обозначаются ω .

Def 1.6. Событиями называются подмножества Ω . Говорят, что произошло событие A, если эксперимент завершился одним из элементарных исходов, входящих в множество A.

Вообще в силу таких определений события и множества оказываются очень похожими, так что определены операции объединения, пересечения, дополнения, а также взятия противоположного $\bar{A} = \Omega \backslash A$. Также можно выделить достоверное событие Ω и невозможное \varnothing .

События A и B называются *несовместными*, если они не могут произойти одновременно: $A \cap B = \emptyset$. События A_1, \ldots, A_n называются *попарно несовместными*, если несовместны любые два из них: $A_i \cap A_j = \emptyset$, $\forall i \neq j$. Говорят, что событие A влечет событие B ($A \subseteq B$), если $A \Rightarrow B$.

1.3 Дискретное пространство элементарных исходов

Пространство элементарных исходов назовём дискретным, если множество Ω конечно или счётно: $\Omega = \{\omega_1, ..., \omega_n, ...\}$.

Def 1.7. Сопоставим каждому элементарному исходу ω_i число $p_i \in [0,1]$ так, чтобы $\sum p_i = 1$. Вероятностью события A называют число

$$P(A) = \sum_{\omega_i \in A} p_i,$$

где в случае $A = \emptyset$ считаем P(A) = 0.

Def 1.8 (Классическое определение вероятности). Говорят, что эксперимент описывается *классической вероятностной моделью*, если пространство его элементарных исходов состоит из конечного числа равновозможных исходов. Для любого события верно, что

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}.$$
(1.1)

Эту формулу называют классическим определением вероятности.

Тут стоит вспомнить три схемы из модели с урнами: схема выбора с возвращением и с учётом порядка (n^k) , выбора без возвращения и с учётом порядка (A_n^k) , а также выбора без возвращения и без учёта порядка (C_n^k) , описываются классической вероятностной моделью. А вот схема выбора с возвращением и без учёта порядка уже не описывается классической вероятностью.

Пример с гипергеометрическим распределением

Из урны, в которой K белых и N-K чёрных шаров, наудачу и без возвращения вынимают n шаров, где $n\leqslant N$. Термин «наудачу» означает, что появление любого набора из n шаров равновозможно. Найти вероятность того, что будет выбрано k белых и n-k чёрных шаров.

Результат – набор из n шаров. Общее число $\operatorname{card}\Omega=C_N^n$. Пусть A_k – событие, состоящее в том, что в наборе окажется k белых и n-k черных. Есть ровно C_K^k способов выбрать k белых шаров из K, и C_{N-K}^{n-k} способов выбрать n-k черных шаров из N-K. Тогда $\operatorname{card}A_k=C_K^kC_{N_K}^{n-k}$,

$$P(A_k) = \frac{\operatorname{card} A_k}{\operatorname{card} \Omega} = \frac{C_K^k C_{N_K}^{n-k}}{C_N^n}.$$

Этот набор вероятностей называется гипергеометрическим распределением вероятностей.

1.4 Дискретное пространство элементарных исходов

Пространство элементарных исходов назовём дискретным, если множество Ω конечно или счётно: $\Omega = \{\omega_1, ..., \omega_n, ...\}$.

Def 1.9. Сопоставим каждому элементарному исходу ω_i число $p_i \in [0,1]$ так, чтобы $\sum p_i = 1$. Вероятностью события A называют число

$$P(A) = \sum_{\omega_i \in A} p_i,$$

где в случае $A = \emptyset$ считаем P(A) = 0.

Def 1.10 (Классическое определение вероятности). Говорят, что эксперимент описывается *классической вероятностной моделью*, если пространство его элементарных исходов состоит из конечного числа равновозможных исходов. Для любого события верно, что

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}.$$
(1.2)

Эту формулу называют классическим определением вероятности.

Тут стоит вспомнить три схемы из модели с урнами: схема выбора с возвращением и с учётом порядка (n^k) , выбора без возвращения и с учётом порядка (A_n^k) , а также выбора без возвращения и без учёта порядка (C_n^k) , описываются классической вероятностной моделью. А вот схема выбора с возвращением и без учёта порядка уже не описывается классической вероятностью.

Пример с гипергеометрическим распределением

Из урны, в которой K белых и N-K чёрных шаров, наудачу и без возвращения вынимают n шаров, где $n\leqslant N$. Термин «наудачу» означает, что появление любого набора из n шаров равновозможно. Найти вероятность того, что будет выбрано k белых и n-k чёрных шаров.

Результат – набор из n шаров. Общее число card $\Omega = C_N^n$. Пусть A_k – событие, состоящее в том, что в наборе окажется k белых и n-k черных. Есть ровно C_K^k способов выбрать k белых шаров из K, и C_{N-K}^{n-k} способов выбрать n-k черных шаров из N-K. Тогда card $A_k = C_K^k C_{N_K}^{n-k}$,

$$P(A_k) = \frac{\operatorname{card} A_k}{\operatorname{card} \Omega} = \frac{C_K^k C_{N_K}^{n-k}}{C_N^n}.$$

Этот набор вероятностей называется гипергеометрическим распределением вероятностей.

1.5 Геометрическая вероятность

Def 1.11. Пусть некоторая область $\Omega \subset \mathbb{R}^k$ такая, что $\mu(\Omega)$ конечна. Пусть эксперимент состоит из равновероятного выбора случайной точки в области Ω . *Геометрическое определение вероятности*:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

Если для точки выполнены условия геометрического определения, то говорят, что точка равномерно распределена в Ω .

2 Аксиоматика теории вероятностей

2.1 Алгебра и σ -алгебра событий

Def 2.1. Множество \mathcal{A} , элементами которого являются некоторые подмножества Ω называют *алгеброй*, если оно удовлетворяет следующим условиям:

- А1) $\Omega \in \mathcal{A}$ (алгебра содержит достоверные события);
- А2) если $A \in \mathcal{A}$, то $\bar{A} \in \mathcal{A}$ (вместе с любым множеством алгебра содержит противоположное к нему);
- А3) если $A \in \mathcal{A}$ и $B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$ (вместе с любыми двумя множествами алгебра содержит их объединение).

Вообще из A1 и A2 следует, что $\emptyset = \bar{\Omega} \in \mathcal{A}$. Пункт A3 экстраполируется на любой конечный набор. Кстати, объединение можно заменить (в силу закона де Моргана) на пересечение:

$$xy \in \mathcal{A} \quad \Leftrightarrow \quad \overline{xy} \in \mathcal{A} \quad \Leftrightarrow \quad \overline{x} + \overline{y} \in \mathcal{A}.$$

Thr 2.2 (закон де Моргана). Для множеств x, y верно, что

$$\overline{x+y} = \overline{x} \cdot \overline{y}, \qquad \overline{xy} = \overline{x} + \overline{y},$$

 $e \partial e \ xy = x \cap y, \ x + y = x \cup y.$

В случае счётного пространства элементарных исходов A3 алгебры оказывается недостаточно, так приходим к σ -алгебре:

- **Def 2.3.** Множество \mathcal{F} , элементами которого являются некоторые подмножества Ω называется σ -алгеброй, если выполнены следующий условия:
- S1) $\Omega \in \mathcal{F}$ (алгебра содержит достоверные события);
- S2) если $A \in \mathcal{F}$, то $\bar{A} \in \mathcal{F}$ (вместе с любым множеством алгебра содержит противоположное к нему);
- S3) если $\{A_i\} \in \mathcal{F}$, то $\cup_i A_i \in \mathcal{F}$ (вместе с любым *счетным* набором событий σ -алгебра содержит их объединение).
- **Def 2.4.** Минимальной σ -алгеброй, содержащей набор множеств \mathcal{U} , называется пересечение всех σ -алгебр, содержащих \mathcal{U} .
- **Def 2.5.** Минимальная σ -алгебра, содержащая множество \mathcal{U} всех интервалов на вещественной прямой называется борелевской сигма-алгеброй в \mathbb{R} и обозначается $\mathfrak{B}(\mathbb{R})$.

Итак, оказался определен специальный класс \mathcal{F} подмножеств Ω , названный σ -алгеброй событий. Применение счетного числа любых операция к множествам из \mathcal{F} снова дает множество из \mathcal{F} . Событиями будем называть только множества $A \in \mathcal{F}$.

2.2 Мера и вероятностная мера

Def 2.6. Пусть Ω – некоторое непустое множество \mathcal{F} – σ -алгебра его подмножеств. Функция

$$\mu \colon \mathcal{F} \mapsto \mathbb{R} \cap [0, +\infty) \cup \{+\infty\}$$

называется *мерой* на (Ω, \mathcal{F}) , если она удовлетворяет условиям

- μ 1) $\mu(A) \geqslant 0$ для любого множества $A \in \mathcal{F}$;
- μ 2) \forall счетного $\{A_i\} \in \mathcal{F}$ таких, что $A_i \cap A_j = \emptyset$, $\forall i \neq j$ мера их объединения равна сумме их мер:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Последнее свойство называют *счётное аддитивностью* или σ -аддитивностью меры.

Thr 2.7 (свойство непрерывности меры). Пусть дана убывающая последовательность $B_1 \supseteq B_2 \supseteq B_2 \supset B_3 \supset \dots$ множеств из \mathcal{F} , причем $\mu(B_1) < \infty$. Пусть $B = \bigcap_i^\infty B_i$. Тогда $\mu(B) = \lim_{n \to \infty} \mu(B_n)$.

Def 2.8. Пусть Ω – непустое множество, \mathcal{F} – σ -алгебра его подмножеств. Мера $\mu \colon \mathcal{F} \mapsto \mathbb{R}$ называется *нормированной*, если $\mu(\Omega) = 1$. Другое название нормированной меры – *вероятность*.

Def 2.9. Пусть Ω – пространство элементарных исходов, \mathcal{F} – σ -алгебра его подмножеств (событий). Вероятностью или вероятностной мерой на (Ω, \mathcal{F}) называется функция

$$P \colon \mathcal{F} \mapsto \mathbb{R}$$

обладающая свойствами

- P1) $P(A) \ge 0$ для любого события $A \in \mathcal{F}$;
- P2) для любого счётного набора nonapho несовместных событий $\{A_i\} \in \mathcal{F}$ имеет равенство

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{k=1}^{\infty} P(A_i);$$

Р3) вероятность достоверного события равна единице: $P(\Omega) = 1$.

Свойства (Р1) – (Р3) называют аксиомами вероятности.

Def 2.10. Тройка $\langle \Omega, \mathcal{F}, P \rangle$, в которой Ω – пространство элементарных исходов, \mathcal{F} – σ -алгебра его подмножеств и P – вероятная мера на \mathcal{F} , называется вероятностным пространством.

Вообще, для вероятности верны следующие свойства

- 1. $P(\emptyset) = 0$.
- 2. Для любого конечного набора попарно несовместных событий $A_1, \ldots, A_n \in \mathcal{F}$ имеет место равенство $P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$.
- 3. $P(\bar{A}) = 1 P(A)$.
- 4. Если $A \subseteq B$, то $P(B \setminus A) = P(B) P(A)$.
- 5. $A \subseteq B$, to $P(A) \leqslant P(B)$.
- 6. $P(A_1 \cup ... \cup A_n) \leq \sum_{i=1}^n P(A_i)$.

И это всё, конечно, хорошо, но если мы хотим что-то посчитать, то

Thr 2.11 (Формула включения-исключения). Для вероятности, в частности для двух событий, верно, что $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

и, обобщая, для объединения п множеств

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < m} P(A_i A_j A_m) - \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n).$$

3 Условная вероятность и независимость

3.1 Условная вероятность

 ${f Def 3.1.}$ Условной вероятностью события A при условии, что произошло событие B, называется число

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

которое само собой определено только при P(B) = 0.

Thr 3.2. Ecau P(B) > 0 u P(A) > 0, mo

$$P(A \cap B) = P(B) P(A|B) = P(A) P(B|A).$$

Thr 3.3. Для любых событий $A_1, ..., A_n$ верно равенство:

$$P(A_1 ... A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) \cdot ... \cdot P(A_n | A_1 ... A_{n-1})$$

если все участвующие в нём условные вероятности определены.

3.2 Независимость событий

Def 3.4. События A и B называются *независимыми*, если $P(A \cap B) = P(A) P(B)$.

Из этого определения вытекают следующие леммы.

Lem 3.5. Пусть P(B) > 0. Тогда события A и B независимы тогда и только, когда P(A|B) = P(A).

Lem 3.6. Пусть A и B несовместны. Тогда независимыми они будут только в том случае, если P(A) = 0 или P(B) = 0.

Другими словами несовместные события не могут быть независимыми. Зависимость между ними – просто причинно-следственная: если $A \cap B = \emptyset$, то $A \subseteq \overline{B}$, т.е. при выполнении A события B не npoucxodum.

Lem 3.7. Если события A и B независимы, то независимы и события A и \bar{B} , \bar{A} и B, \bar{A} и \bar{B} .

Def 3.8. События A_1, \ldots, A_n называются *независимыми в совокупности*, если для любого $1 \le k \le n$ и любого набора различных меж собой индекс $1 \le i_1 < \ldots < i_k \le n$ имеет место равенство

$$P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k}).$$

3.3 Формула полной вероятности

Def 3.9. Конечный или счётный набор попарно несовместных событий $\{H_i\}$ таких, что $P(H_i) > 0 \ \forall i \ u \cup_i H_i = \Omega$, называется *полной группой событий* или разбиением пространства Ω . Также события, образующие полную группу событий, часто называют *гипотезами*.

При подходящем выборе гипотез для любого события A могут быть сравнительно просто вычислены $P(A|H_i)$ и, собственно, $P(H_i)$. Как посчитать вероятность события A?

Thr 3.10 (формула полной вероятности). Пусть дана полная группа событий $\{H_i\}$. Тогда вероятность любого события A может быть вычислена по формуле

$$P(A) = \sum_{i=1}^{\infty} P(H_i) \cdot P(A|H_i).$$

3.4 Формула Байеса

Thr 3.11 (формула Байеса). Пусть $\{H_i\}$ – полная группа событий, и A – некоторое событие, P(A) > 0. Тогда условная вероятность того, что имело место событие H_k , если в рещультате эксперимента наблюдалось событие A, может быть вычислена по формуле

$$P(H_k|A) = \frac{P(H_k) \cdot P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i) \cdot P(A|H_i)}.$$
(3.1)

Def 3.12. Вероятности $P(H_i)$, вычисленные заранее, до проведения эксперимента, называют априорными вероятностями. Условные вероятности $P(H_i|A)$ называют апостериорными вероятностями.

Формула Байеса позволяет переоценить заранее известные вероятности после того, как получено знание о результате эксперимента. Эта формула находит многочисленные применения в экономике, статистике, социлогии и т.п

4 Схема Бернулли

4.1 Распределение числа успехов в n испытаниях

Def 4.1. Схемой Бернулли называется последовательность независимых в совокупности испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех \checkmark в одном испытании происходит с вероятностью $p \in (0,1)$, а неудача \checkmark с вероятностью q = 1 - p.

 $[\]overline{\ \ }^1a$ 'priori – « до опыта ».

 $^{^2}$ a 'priori — « после опыта »

В испытаниях схемы Бернулли независимость в совокупности испытаний означает, что при любом n независимы в совокупности события успехов в каждом событие.

Эти события принадлежат одному и тому же пространству элементарных исходов, полученному декартовым произведением бесконечного числа двухэлементных множеств $\{\checkmark, X\}$:

$$\Omega = \{(a_1, a_2, \dots, a_n) \mid a_i \in \{ \checkmark, X \}, n \in \mathbb{Z}_+ \}.$$

Далее количество успехов для n испытаний схемы Бернулли будем называть ν_n . Заметим, что $\nu_n \in \mathbb{Z}_+ \cap [0, n]$.

Thr 4.2 (формула Бенулли). При любом k = 0, 1, ..., n имеет место равенство:

$$P(\nu_n = k) = C_n^k p^k q^{n-k}.$$

Def 4.3 (\mathfrak{D}). Набор чисел $\{C - n^k p^k q^{n-k}, k = 0, 1, \dots, n\}$ называется биномиальным распределением.

4.2 Номер первого успешного испытания

Далее, для схемы Бернулли, введем величину $\tau \in \mathbb{Z}_+ \cap [1, +\infty)$ равную номеру перого успешного испытания.

Thr 4.4. Вероятность того, что первый успех произойдёт в испытании с номером $k \in \mathbb{N} \cap [1, +\infty)$, равна $P(\tau = k) = pq^{k-1}$.

Def 4.5 (\mathfrak{D}). Набор чисел $\{pq^{k-1} \mid k=1,2,\ldots\}$ называется геометрическим распределением вероятностей.

Thr 4.6 («Нестарение» геометрического распределения). Пусть $P(\tau = k) = pq^{k-1} \ \forall k \in \mathbb{N}$. Тогда для любых неотрицательных целых n u k имеет место равенство:

$$P(\tau > n + k \mid \tau > n) = P(\tau > k).$$

Другими название – свойство отсутствия последствия.

4.3 Независимые испытания с несколькими исходами

Теперь рассмотрим схему независимых испытаний независимых испытаний уже не с двумя, а с болбшим количество возможных результатов в каждом испытании.

Пусть возможны m исходов, i-й исход в одном испытании случается с вероятностью p_i , где $\sum_i p_i = 1$. Через $P(n_1, \ldots, n_m)$ обозначим вероятность того, что в n независимых испытаниях первый исход случится n_1 раз, \ldots , m-исход – n_m раз.

Thr 4.7. Для любого n и любых неотрицательных целых чисел $\{n_i\}$, сумма которых равна n, верна формула

$$P(n_1, ..., n_m) = \frac{n!}{n_1! ... n_m!} p_1^{n_1} \cdot ... \cdot p_m^{n_m}.$$

Def 4.8 (**②**). Набор чисел

$$\left\{ \frac{n!}{n_1! \dots n_m!} p_1^{n_1} \cdot \dots \cdot p_m^{n_m} \mid n = 1, 2, \dots \right\}$$

называется мультиномиальным (полиномиальным) распределением.

4.4 Теорема Пуассона для схемы Бернулли

Сформулируем теорему о приближенном вычислении вероятности иметь k успехов в большом числе испытаний Бернулли с маленькой вероятностью успеха p.

Thr 4.9 (теорема Пуассона). Пусть $n \to \infty$ и $p_n \to 0$ так, что $np_n \to \lambda > 0$. Тогда для любого $k \geqslant 0$ вероятность получить k успехов в n испытаниях схемы Бернулли c вероятностью успеха p_n

$$P(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \rightarrow \frac{\lambda^k}{k!} e^{-\lambda}. \tag{4.1}$$

то есть стремится к величине $\lambda^k e^{-\lambda}/k!$.

Def 4.10 (**2**). Набор чисел

$$\left\{ \frac{\lambda^k}{k!} e^{-\lambda} \mid k = 0, 1, 2, \dots \right\}$$

называется распределением Пуассона с параметром $\lambda > 0$.

Для всех этих распределений можно посчитать вектора средних и матрицы ковариации.

5 Случайные величины и их распределения

5.1 Случайные величины

Пусть задано вероятностное пространство $\langle \Omega, \mathcal{F}, P \rangle$.

Def 5.1. Функция $\xi: \Omega \mapsto \mathbb{R}$ называется *случайное величиной*, если для любого борелевского множества $B \in \mathfrak{B}(\mathbb{R})$ множество $\xi^{-1}(B)$ является событием, т.е принадлежит σ -алгебре \mathcal{F} .

Множество $\xi^{-1}(B) = \{\omega \mid \xi(\omega) \in B\}$, состоящее из элементарных исходов ω , называется *полным прообразом множества* B. Можно немного другим способом сформулировать требования к величине:

Def 5.2. Функция $\xi \colon \Omega \mapsto \mathbb{R}$ называется случайной величиной, если для любых веществиных a < b множество

$$\{\omega \colon \xi(\omega) \in (a,b)\} \in \mathcal{F}$$

принадлежит σ -алгебре.

5.2 Распределения случайных величин

Def 5.3. *Распределением* случайной величины ξ называется вероятностная мера $\mu(B) = P(\xi \in B)$ на множестве борелевских подмножеств \mathbb{R} .

Можно представить себе распределение случайной величины ξ как соответствие между множествами $B \in \mathfrak{B}(\mathbb{R})$ и вероятностями $P(\xi \in B)$.

Def 5.4. Если две функции ξ и η отличаются на множестве меры нуль, при этом имеют одинаковое распределение, то говорят, что ξ и η совпадают *почти наверное*: $P(\xi = \eta) = 1$.

Def 5.5. Случайная велчина ξ имеет $\partial uc\kappa pemhoe$ распределение, если существует конечный, или счётный набор чисел $\{a_i\}$ такой, что

$$P(\xi = a_i) > 0 \quad \forall i, \qquad \sum_{i=1}^{\infty} P(\xi = \alpha_i) = 1.$$

Значения эти называют *атомами*: ξ имеет атом в точке x, если $P(\xi = x) > 0$.

Если случайная величина ξ имеет дискретное распределение, то для любого $B\subseteq\mathbb{R}$

$$P(\xi \in B) = \sum_{a_i \in B} P(\xi = a_i).$$

Вообще дискретные распредления удобно задавать вероятностной таблицей

Def 5.6. Случайная величина ξ имеет *абсолютно непрерывно* распределение, если существует неотрицательная функция $f_{\xi}(x)$ такая, что для любого борелевского множества B имеет место равенство:

$$P(\xi \in B) = \int_B f_{\xi}(x) \, dx.$$

Функцию $f_{\xi}(x)$ называют плотностью распределения величины ξ .

Thr 5.7. Плотность распределения обладает свойствами:

(f1)
$$f_{\xi}(x) \geqslant 0 \quad \forall x,$$
 (f2) $\int_{-\infty}^{+\infty} f_{\xi}(t) dt = 1.$

Thr 5.8. Если функция f обладает свойствами (f1) u (f2), то существует вероятностное пространство u случаяная величина ξ на нём, для которой f является плотностью распределения.

Ещё бывает сингулярное распределение³, смешанные варианты, и всё (*Лебег approved*).

³На континуальном множестве меры нуль.

5.3 Функция распределения

Хотелось бы найти некоторый универсальный способ для описания распределения.

Def 5.9. Функцией распределения случайной величины ξ называется функция $F_{\xi} \colon \mathbb{R} \mapsto [0,1]$, при каждом $x \in \mathbb{R}$ равная вероятности случайной величине ξ принимать значения, меньшие x:

$$F_{\xi}(x) = P(\xi < x) = P\{\omega \mid \xi(\omega) < x\}.$$

Далее перечислены основные дискретные и абсолютно непрерывные распределения и найдены их функции распределения.

5.4 (3) Примеры дискретных распределений

Вырожденное распределение. Для удобства вводят *вырожденное распределение*, когда возможен единственный результат при $P(\xi = c) = 1$, тогда функция распрееления имеет вид

$$F_{\xi}(x) = P(\xi < x) = P(c < x) = \begin{cases} 0, & x \le x, \\ 1, & x > c. \end{cases}$$

В таком случае принято писать, что $\xi \in I_c$.

Распределение Бернулли. Говорят про *распределение Бернулли* с параметром p ($\xi \in \mathbf{B}_p$), если ξ принимает значения 1 и 0 с вероятностью p и 1-p соответственно. Случайная величина ξ с таким распределением равна *числу упехов* в одном испытании схемы Бернулли с вероятностью успеха p. Функция распредления случайной величины ξ тогда равна

$$F_{\xi}(x) = P(\xi < x) = \begin{cases} 0, & x \le 0, \\ 1 - p, & 0 < x \le 1, \\ 1, & x > 1. \end{cases}$$

Биномиальое распределение. Говорят, что случайная величина ξ имеет биномиальное распределение с параметрами $n \in \mathbb{N}$ и p(0,1), и пишут $\xi \in B_{n,p}$, если ξ принимает значения $k=0,\ldots,n$ с вероятностями $P(\xi=k)=C_n^k p^k (1-p)^{n-k}$. Случайная величиная с таким распределением имеет смысл числа успехов в n исыпытаниях схемы Бернулли с вероятностью успеха p.

Геометрическое распределение. Говорят, что случайная величина τ имеет геометрическое распределение с параметром $p \in (0,1)$, и пишут $\tau \in G_p$, если τ принимает значения $k=1,2,3,\ldots$ с вероятностями $P(\tau=k)=p(1-p)^{k-1}$. Случайная величина с таким распределением имеет смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха р.

Распрееление Пуассона. Говорят, что случайная величина ξ имеет распределение Пуассона с параметром $\lambda > 0$, и пишут $\xi \in \Pi_{\lambda}$, если ξ принимает значения $k = 0, 1, \dots$ с вероятностью $P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$. Иначе распределение Пуассона называют распределением числа редких событий.

Гипергеметрическое распределение. Говорят, что случайная величина ξ имеет гипергеометрическое распределение с параметрами $N,\ n\leqslant N$ и $K\leqslant N,$ если ξ принимает целые значения k такие, что $0\leqslant k\leqslant K,$ $0\leqslant n-k\leqslant N_K,$ с вероятностями $\mathrm{P}(\xi=k)=C_K^kC_{N_K}^{n-k}/C_N^n.$ Случайная величина с таким распределением имеет смысл числа белых шаров среди n шаров, выбранных наудачу и без возвращения из урны, содержащей K белых и N-K не белых.

5.5 (3) Примеры абсолютно непрерывных распределений

Равномерное распределение. Говорят, что ξ имеет равномерное распределение на отрезке [a,b] ($\xi \in U_{a,b}$), если плотность распределения ξ постоянна на отрезке [a,b] и равна нуля вне него:

$$f_{\xi}(x) = \begin{cases} (b-a)^{-1}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

Площадь под графиком этой функции равна единице, $f_{\xi} \geqslant 0$, так что $f_{\xi}(x)$ действительно плотность. Легко теперь посчитать функцию распределения величины ξ :

$$F_{\xi}(x) = P(\xi < x) = \int_{-\infty}^{x} f_{\xi}(t) dt = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \leqslant x \leqslant b, \\ 1, & x > b, \end{cases}$$

что вполне логично. График функции распределения и плотности распределения приведен ниже.

Рис. 1: Плотность и функция распределения $U_{a,b}$

Показательное распределение. Говорят, что ξ имеет показательное (экспоненциальное) распределение с параметром $\alpha > 0$ ($\xi \in E_{\alpha}$), если ξ имеет следующую плотность распределения:

$$f_{\xi}(x) = \begin{cases} 0, & x < 0, \\ \alpha e^{-\alpha x}, x \geqslant 0. \end{cases}$$

Функция распределения случайной величины ξ непрерывна:

$$F_{\xi}(x) = P(\xi < x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\alpha x}, & x \ge 0. \end{cases}$$

Стоит заметить, что показательное распределение является единственным абсоютно непрерывным распределением, для которого выполнено свойство «нестарения» (а-ля геоетрическое):

Thr 5.10. Пусть $\xi \in E_{\alpha}$. Тогда для любых x, y > 0 верно, что $P(\xi > x + y \mid \xi > x) = P(\xi > y)$.

Нормальное распределение. Говорят, что ξ имеет *нормальное* (*гауссовское*) распределение с параметрами a, σ^2 , где $a \in \mathbb{R}, \sigma > 0$ ($\xi \in \mathbf{N}_{a,\sigma^2}$), если ξ имеет плотность распределения вида

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}.$$
 (5.1)

Это действительно функция распределения, ведь вспоминая интеграл Пуассона

$$I = \int_{-\infty}^{+\infty} e^{-x^2/2} \, dx = \sqrt{2\pi},$$

нетрудно заменой переменных свести $\int f_{\xi}(x) dx$ к I.

Def 5.11. Нормальное распределение $N_{0,1}$ называется *стандартным нормальным* распределением.

Для функции распределения нормального закона N_{a,σ^2} далее будет использоваться $\Phi_{a,\sigma^2}(x)$ для функции распределения нормального закона N_{a,σ^2} .

Распределение Коши. Говорят, что ξ имеет распределение Коши с параметрами $a \in \mathbb{R}, \ \sigma > 0 \ (\xi \in \mathcal{C}_{a,\sigma}),$ если ξ имеет следующую плотность распределения:

$$f_{\xi}(x) = \frac{1}{\pi} \frac{\sigma}{\sigma^2 + (x - a)^2}, \quad \forall x \in \mathbb{R}.$$

Плотность распределения Коши симметрична относительно x=a и похожа на нормальное, но с более толыстыми хвостами на $\pm\infty$. Функция распределения случайной величины ξ с распределением Коши равна

$$F_{\xi}(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-a}{\sigma}\right).$$

Гамма-распределение.

Распределение Парето.

5.6 Свойства функций распределения

Общие свойства функций распределения. Функцией распределения случайной величины ξ мы назвали функцию $F_{\xi}(x) = P(\xi < x)$.

Thr 5.12. Любая функция распределения обладает свойствами

- F1) она не убвает;
- F2) в прелелах $x \to -\infty$, $u x \to +\infty$ равна 0 и 1 соответственно;
- F3) она в любой точке непрерывна слева.

Thr 5.13. Если функция $F: \mathbb{R} \mapsto [0,1]$ удовлетворяет свойствам (F1)-(F3), то F есть функция распределения некоторой случайной величины ξ , т.е. найдётся вероятностное пространство $\langle \Omega, \mathcal{F}, P \rangle$ и случайная величина ξ на нём такая, что $F(x) \equiv F_{\xi}(x)$.

Lem 5.14. любой точке x_0 разница $F_{\xi}(x_0+0)-F_{\xi}(x_0)$ равна $P(\xi=x_0)$:

$$F_{\xi}(x_0 + 0) = F_{\xi}(x_0) + P(\xi = x_0) = P(\xi \le x_0).$$

Lem 5.15. Для любой случайной величины ξ

$$P(a \leq \xi < b) = F_{\varepsilon}(b) - F_{\varepsilon}(a).$$

Функция распределения дискретного распределения. Как мы поним, функция распределения может быть найдена по талице распределения, как сумма $F_{\xi}(x) = P(\xi < x) = \sum_{k} P(\xi = a_k)$, где $a_k < x$.

Lem 5.16. Случайная величина ξ имеет дискретное распределение тогда и только тогда, когда функция распределения $F_{\xi}(x)$ имеет в точках a_i скачки c величиной $p_i = P(\xi = a_i) = F_{\xi}(a_i + 0) - F_{\xi}(a_i)$, и растёт только за счёт скачков.

Свойства абсолютно непрерывного распределения. Пусть слу- чайная величина ξ имеет абсолюлютно непрерывное распределение с плотностью $f_{\xi}(t)$. Тогда функция распределения может быть найдена, как интеград.

Lem 5.17. Если случайная величина ξ имеет абсолютно непрерывное распределение, то её функция распределения всюду непрерывна. Более того её функция распределенеия дифференцируема почти всюду: $f_{\xi}(x) = F'_{\xi}(x) = d_x F_{\xi}(x)$.

Функция распределения сингулярного распределения.

Функция распределения смешанного распределения.

5.7 Свойства нормального распределения

Lem 5.18. Для любого $x \in \mathbb{R}$ справедливо соотношение:

$$\Phi_{a,\sigma^2}(x) = \Phi_{0,1}\left(\frac{x-a}{\sigma}\right).$$

Аналогичное утверждение для случайных величичн: если $\xi \in \mathcal{N}_{a,\sigma^2}$, то $\eta = \frac{\xi - a}{\sigma} \in \mathcal{N}_{0,1}$. Более того, если $\xi \in \mathcal{N}_{a,\sigma^2}$, то

$$P(x_1 < \xi < x_2) = \Phi_{a,\sigma^2}(x_2) - \Phi_{a,\sigma^2}(x_2) = \Phi_{0,1}\left(\frac{x_2 - a}{\sigma}\right) - \Phi_{0,1}\left(\frac{x_1 - a}{\sigma}\right).$$

В общем вычисления любых вероятностей для нормального распределения сводятся к вычислению $\Phi_{0,1}(x)$, которое обладает следующими свойствами:

- $\Phi_{0,1}(0) = 0.5$, $\Phi_{0,1}(-x) = 1 \Phi_{0,1}(x)$.
- Если $\xi \in \mathcal{N}_{0,1}$, то для любого x > 0, верно что $\mathcal{P}(|\xi| < x) = 1 2\Phi_{0,1}(-x) = 2\Phi_{0,1}(x) 1$.

6 Преобразования случайных величин

6.1 Измеримость функций от случайных величин

Пусть на векторном пространстве $\langle \Omega, \mathcal{F}, P \rangle$ задана случайная величина ξ

Thr 6.1. Пусть ξ – случайная величина, а $g: \mathbb{R} \mapsto \mathbb{R}$ – борелевская функция, т.е. такая, что для всякого борелевского множества B его прообраз $g^{-1}(B)$ есть снова борелевское множество. Тогда $g(\xi)$ – случайная величина.

6.2 Распределения функций от случайных величин

Линейные и монотонные преобразования. Если с дискретными распределениями всё понятно, то с абсолютно непрерывными чуть интереснее, о них дальше и поговорим. Пусть случайная величина ξ имеет функцию распределения $F_{\xi}(x)$ и плотность распределения $f_{\xi}(x)$. Построим с помощью борелевской функции $g \colon \mathbb{R} \to \mathbb{R}$ случайную величину $\eta = g(\xi)$, и найдём плотность распределения (если она существует).

Thr 6.2. Пусть ξ имеет функцию распределения $F_{\xi}(x)$ и плотность распределения $f_{\xi}(x)$, и постоянная а отлична от нуля. Тогда случайная величина $\eta = a\xi + b$ имеет плотность распределения

$$f_{\eta}(x) = \frac{1}{|a|} f_{\xi} \left(\frac{x-b}{a} \right).$$

Квантильное преобразование. Полезно уметь строить случайные величины с заданным распределением по равномерно распределенной случайной величине.

Thr 6.3. Пусть функция распределения $F(x) = F_{\xi}(x)$ непрерывна. Тогда случайная величина $\eta = F(\xi)$ имеет равномерное на отрезке [0,1] распределение.

Thr 6.4 (alarm). Пусть $\eta \in U_{0,1}$, а F – произвольная функция распределения. Тогда случайная величина $\xi = F^{-1}(\eta)$ («квантильное преобразование» над η) имеет функцию распределения F.

Как следствие, для $\eta \in U_{0,1}$,верны следующие утверждения:

$$-\frac{1}{\alpha}\ln(1-\eta) \in \mathcal{E}_{\alpha}, \quad a + \sigma \operatorname{tg}(\pi \eta - \pi/2) \in \mathcal{C}_{\alpha,\sigma}, \quad \Phi_{0,1}^{-1}(\eta) \in \mathcal{N}_{0,1}.$$

7 ХМногомерные распределения

7.1 Совместное распределение

Пусть случайные величины ξ_1, \ldots, ξ_n заданы на одном вероятностном пространстве (Ω, \mathcal{F}, P) .

Def 7.1. Функция

$$F_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n) = P(\xi_1 < x_1, \dots, \xi_n < x_n)$$
 (7.1)

называется функцией распределения вектора (ξ_1, \dots, ξ_n) или функцией *совместного* распределения случайных величины ξ_1, \dots, ξ_n .

7.2 Типы многомерных распределений

Далее рассмотрим два типичных случая, когда совместное распределение либо дискретно, либо непрерывно. Сингулярное распределение не является редкостью: стоит выбрать отрезок на плоскости.

Def 7.2. Случайные величины ξ_1 , ξ_2 имеют *дискретное* совместное распределение, если существует конечный или счётный набор пар числе $\{a_i, b_j\}$ такой, что

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(\xi_1 = a_i, \ \xi_2 = b_j) = 1.$$

Таблицу, на пересечении i-й строки и j-го столбца которых стоит $P(\xi_1 = a_i, \xi_2 = b_j)$, называют таблицей совместного распределения случайных величин ξ_1 и ξ_2 .

Def 7.3. Случайные величины ξ_1, ξ_2 имеют *абсолютно непрерывное* совместное распредеение, если существует неотрицательная функция $f_{\xi_1,\xi_2}(x,y)$ такая, что для любого множества $B \in \mathfrak{B}(\mathbb{R}^2)$ имеет место равенство

$$P((\xi_1, \xi_2) \in B) = \iint_B f_{\xi_1, \xi_2}(x, y) dx dy.$$

Функция $f_{\xi_1,\xi_2}(x,y)$ называется плотностью совместного распределения случайных величин ξ_1 и ξ_2 .

Если случайные величины ξ_1 и ξ_2 имеют абсолютно непрерывное совместное распределение, то для любых x_1, x_2 имеет место равенство

$$F_{\xi_1,\xi_2}(x_1,x_2) = P(\xi_1 < x_1, \ \xi_2 < x_2) = \int_{-\infty}^{x_1} \left(\int_{-\infty}^{x_2} f_{\xi_1,\xi_2}(x,y) \, dy \right) \, dx.$$

По функции совместного распределения его плотность находится как смешанная частная производная:

$$f_{\xi_1,\xi_2}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi_1,\xi_2}(x,y)$$

для почти всех (x, y).

Thr 7.4. Если случайные величины ξ_1 и ξ_2 имеютабсолютно непреывное совместное распределение с плотностью f(x,y), то ξ_1 и ξ_2 в отдельности также имеют абсолютно непрерывное распределение с плотностями:

$$f_{\xi_1}(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy;$$
 $f_{\xi_2}(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx.$

7.3 Примеры многомерных распределений

Многомерное нормальное распределение. Пусть $\Sigma > 0$ – положительно определенная симметричная матрица. Говорят, что вектор (ξ_1, \dots, ξ_n) имеет многомерное нормально распределение $N_{\vec{a}, \Sigma}$ с вектором средних a и матрицей ковариации Σ , если плотность совместного распределения $f_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n)$ равна

$$f_{\xi}(\boldsymbol{x}) = \frac{1}{\sqrt{\det \Sigma}(\sqrt{2\pi})^n} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{a})^{\mathrm{T}} \cdot \Sigma^{-1} \cdot (\boldsymbol{x} - \boldsymbol{a})\right)$$

В частном случае, когда Σ – диагональная матрица с элементами $\sigma_1^2,\dots,\sigma_n^2$ на диагонали, совместная плотность превращается в произведение плотностей нормальных величин. Вообще это равенство означает независимость величин ξ_1,\dots,ξ_n .

7.4 Независимость случайных величин

Def 7.5. Случайные величины $\xi_1, ..., \xi_n$ называются *независимыми* (в совокупности), если *для любого* набора борелевских множеств $B_1, ..., B_n \in \mathfrak{B}(\mathbb{R})$ имеет место равенство

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_n \in B_n).$$

Определение независимости можно сформулировать в терминах функций распределения.

Def 7.6. Случайные величины ξ_1, \ldots, ξ_n независимы (в совокупности), если для любых x_1, \ldots, x_n имеет место равенство

$$F_{\xi_1,...,\xi_n}(x_1,...,x_n) = F_{\xi_1}(x_1) \cdot ... \cdot F_{\xi_n}(x_n).$$

Thr 7.7. Случайные величины ξ_1, \ldots, ξ_n с абсолютно непрерывными распределениями независимы (в совокупности) тогда и только тогда, когда плотность их совместного распределения существует и равна произведению плотностей, т.е.для любых x_1, \ldots, x_n имеет место равенство:

$$f_{\xi_1,...,\xi_n}(x_1,...,x_n) = f_{\xi_1}(x_1) \cdot ... \cdot f_{\xi_n}(x_n).$$

7.5 Функции от двух случайных величин

Пусть ξ_1 и ξ_2 – случайные величины с плотностью совместного распределения $f_{\xi_1,\xi_2}(x_1,x_2)$, и задана борелевская функция $g\colon \mathbb{R}^2 \mapsto \mathbb{R}$. Требуется найти функцию (и плотность, если повезет) распределения случайной величины $\eta = g(\xi_1,\xi_2)$.

Thr 7.8. Пусть $x \in \mathbb{R}$, и область $D_x \subseteq \mathbb{R}^2$ состоит из точек (u,v) таких, что g(u,v) < x. Тогда случайная величина $\eta = g(\xi_1, \xi_2)$ имеет функцию распределения

$$F_{\eta}(x) = P(g(\xi_1, \xi_2) < x) = P((\xi_1, \xi_2) \in D_x) = \iint_{D_x} f_{\xi_1, \xi_2}(u, v) \, du \, dv.$$

Если ξ_1 и ξ_2 независимы, то распределение $g(\xi_1, \xi_2)$ полностью определяется частными распределениями величин ξ_1 и ξ_2 .

Thr 7.9 (формула свёртки). Если случайные величины ξ_1 и ξ_2 независимы и имеют абсолютно непрерывные распределения с плотностями $f_{\xi_1}(u)$ и $f_{\xi_2}(v)$, то плотность распределения суммы $\xi_1 + \xi_2$ существует и равна «свёртке» плотностей f_{ξ_1} и f_{ξ_2} :

$$f_{\xi_1+\xi_2}(t) = \int_{-\infty}^{+\infty} f_{\xi_1}(u) f_{\xi_2}(t-u) \, du = \int_{-\infty}^{+\infty} f_{\xi_2}(u) f_{\xi_1}(t-u) \, du. \tag{7.2}$$

8 Числовые характеристики распределений

8.1 Математическое ожидание случайной величины

Далее будет использовать термин *математического ожидания*, и также можно встретить наименования: *среднее значение*, *первый момент*.

Def 8.1. *Математическим ожиданием* $E(\xi)$ случайной величины ξ с дискретным распределением называется *число*

$$E(\xi) = \sum_{k} a_k p_k = \sum_{k} a_k P(\xi = a_k),$$

если данный ряд абсолютно сходится, т.е. если $\sum_i |a_i| p_i < +\infty$. В противном случае говорят, что математическое ожидание *не существует*.

Def 8.2. *Математическим ожиданием* $E(\xi)$ случайное величины ξ с абсолютно непрерывным распределением с плотностью распределения $f_{\xi}(x)$ называется *число*

$$E(\xi) = \int_{-\infty}^{+\infty} x f_{\xi}(x) \, dx,$$

если этот интеграл абсолютно сходится, т.е. если $\int |x| f_{\xi}(x) dx < +\infty$.

8.2 Свойства математического ожидания

Далее всегда предполагается, что матожидание существует.

(E1) Для \forall борелевской $g: \mathbb{R} \mapsto \mathbb{R}$, для дискретного и непрерывного распределения, при существующем E:

$$\operatorname{E} g(\xi) = \sum_{k} g(a_k) \operatorname{P}(\xi = a_k), \qquad \operatorname{E} g(\xi) = \int_{-\infty}^{+\infty} g(x) f_{\xi}(x) dx.$$

- (Е3) Матожидание линейно по константам: $E(c\xi) = c E(\xi)$.
- (E4) Матожидание суммы любых случайных величин равно сумме их матожиданий: $E(\xi + \eta) = E(\xi) + E(\eta)$.
- (Е7) Если ξ и η независимы и их матожидания существуют, то $E(\xi\eta) = E(\xi) \cdot E(\eta)$.

8.3 Дисперсия и моменты старших порядков

Def 8.3. Пусть $E |\xi|^k < +\infty$. Число $\nu_k = E \xi^k$ называется моментом порядка k, или k-м моментом случайной величины ξ , число $E |\xi|^k$ называется абсолютным k-м моментом. Число $E [\xi - E(\xi)]^k$ называется центральным k-м моментом, $E |\xi - E(\xi)|^2 - aбсолютным центральным <math>k$ -м моментом.

Def 8.4. Число $D(\xi) = E(\xi - E \xi)^2$ (центральный момент второго порядка) называется *дисперсией* случайной величины ξ . Другими словами, это «среднее значение квадрата отклонения случайной величины ξ от своего среднего».

Def 8.5. Число $\sigma = \sqrt{D\xi}$ называют *среднеквадратичным отклонением* случайной величины ξ .

Thr 8.6 (неравенство Йенсена). Пусть вещественнозначная функция g выпукла. Тогда для любой случайной величины ξ с конечным первым моментом верно неравенство

$$E g(\xi) \geqslant g(E \xi),$$

где для вогнутых функций знак неравенства меняется на противоположный.

Lem 8.7. Если $\mathbf{E} |\xi|^t < \infty$, то для любого 0 < s < t верно, что

$$\sqrt[s]{\mathbf{E}\,|\xi|^s} \leqslant \sqrt[t]{\mathbf{E}\,|\xi|^t}.$$

Также из неравенства Йенсена вытекает ряд удобных неравенств:

$$E e^{\xi} \geqslant e^{E \xi}, \dots$$

8.4 Свойства дисперсии

Во всех свойствах ниже предполагается существование вторых моментов случайных величин.

(D1) Дисперсия может быть вычислена по формуле $D \xi = E \xi^2 - (E \xi)^2$.

$$D\xi = E(\xi - E\xi)^2 = /a = E\xi/ = E(\xi^2) - 2a E\xi + a^2 = E\xi^2 - (E\xi)^2.$$

- (D2) Считая c константной: $D(c\xi) = c^2 D \xi$.
- (D3) Дисперсия нетрицательна: $D \xi \geqslant 0$, более того обращается в ноль, только при $\xi = \text{const}$ почти наверное.
- (D4) $D(\xi + c) = D \xi$.

(D5) Если
$$\xi$$
 и η независимы, то $D(\xi + \eta) = D \xi + D \eta$. Вообще верна формула
$$D(\xi + \eta) = D \xi + D \eta + 2(E(\xi \eta) - E \xi E \eta). \tag{8.1}$$

(D6) Минимум среднеквадратичного отклонения ξ от точек числовой прямой есть D ξ :

$$D \xi = E(\xi - E \xi)^2 = \min_{a} E(\xi - a)^2.$$

8.5 Математические ожидания и дисперсии стандартных распределений

Посчитаем несколько характерных значений для различных распределений:

Имя	$\mathrm{E}\xi$	$\mathrm{E}\xi^2$	$\mathrm{D}\xi$
$B_{1,p}$	p	p	pq
G_p	1/p		qp^{-2}
Π_{λ}	λ	$\lambda^2 + \lambda$	λ
$U_{a,b}$	(a+b)/2	$\frac{1}{3}(a^2+ab+b^2)$	$\frac{1}{12}(b-a)^2$
$N_{0,1}$	0	1	1
$N_{a,\sigma}$	a		σ^2
$\dot{\mathrm{E}_{lpha}}$	$1!/\alpha^1$	$2!/\alpha^2$	$1/\alpha^2$
$C_{0,1}$	∄	∄	∄

8.6 Другие числовые характеристики распределений

Далее кратко познакомимся с другими показателями из статистики.

Def 8.8. $\mathit{Meduaho\'u}$ распределения случайной величины ξ называется любое из чисел μ таких, что

$$P(\xi \leqslant \mu) \geqslant \frac{1}{2}, \quad P(\xi \geqslant \mu) \geqslant \frac{1}{2}.$$

Обобщая, приходим к понятию квантили уровня $\delta \in (0,1)$, так назывется решение уравнения $P(x_{\delta}) = \delta$, где x_{δ} отрезает площадь δ слева от себя и $1 - \delta$ справа.

Вообще ещё есть такой зоопарк, что квантили уровней кратных 0.01 в прикладной статистике называют процентилями, кратных $0.1 - \partial e u u n m u$, кратных $0.25 - \kappa a p m u n m u$.

Def 8.9. *Модой* абсолютно непрерывного распределения называют любую точку локального максимума плотности распределения. Для дискретных распределений модой считают любое значение a_i , вероятность которого больше соседних.

Для описания унимодеальных распределений используют следующие величины:

Def 8.10. Коэффициентом асимметрии распределения с конечным третьим моментом называют число

$$\beta_1 = E\left(\frac{x-a}{\sigma}\right)^3$$
,

где $a = \mathcal{E}\xi$, а $\sigma = \sqrt{D\xi}$.

Для симметричных распределений коэффициент асимметрии равен нулю, если $\beta_1 > 0$, то график плотности имеет более крутой наклон слева, и более пологий справа.

Def 8.11. Коэффициентом эксцесса распределения с конечным четвертым моментом называется число

$$\beta_2 = E\left(\frac{\xi - a}{\sigma}\right) - 3,$$

где $a = E \xi$, а $\sigma = \sqrt{D\xi}$.

Для нормального распределения $\beta_2=0$, при $\beta_2>0$ плотность распределения имеет более острую вершину, чем у нормального распределения.

8.7 Производящие функции

Дискретные величины, рассмотренные раннее, принимают только целые значения $X=0,1,\ldots$ Нахождение числовых характеристик упрощается, если рассматреть производящие функции.

Def 8.12. Производящей функцией дискретной целочисленной случайной величины ξ с законом распределения $P(\xi = k) = p_k$, где $k = 0, 1, \ldots$ называется функция, заданная степенным рядом

$$E(s^{\xi}) = P(s) = p_0 + p_1 s + p_2 s^2 + \dots,$$
(8.2)

который сходится по крайней мере для $|s| \leqslant 1$.

Thr 8.13. Производящая функция суммы независимых случайных величин ξ и η равна произведению производящих функций слагаемых

$$P_{\xi+\eta}(s) = P_{\xi}(s) \cdot P_{\eta}(s). \tag{8.3}$$

Так например для биномального распределения производящая функция примет вид

$$P(s) = (q + ps)^n.$$

А для геометрического закона распределения

$$P(s) = ps + pqs^2 + pq^2s^3 + \dots = \frac{ps}{1 - qs}.$$

В случае же Пуассона

$$P(s) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}.$$

Thr 8.14. Сумма независимых случайных величин, распределенных по закону Пуассона, распределена по тому же закону.

Thr 8.15. Для дискретной случайной величины ξ с производящей функцией P(s) выполняются следующие требования:

$$E(\xi) = P'_s(1), \qquad D(\xi) = P''_{s,s}(1) + P'_s(1) - [P'_s(1)]^2.$$
 (8.4)

8.8 Вычисление моментов через производящие функции

Def 8.16. Производящей функцией моментов случайной величины ξ называют математическое ожидание случайной величины $e^{s\xi}$, где s – действительный параметр:

$$\psi_{\xi}(s) = \mathcal{E}(e^{s\xi}). \tag{8.5}$$

Thr 8.17. Если случайная величина ξ имеет начальный момент порядка n, то производящая функция $\psi_{\xi}(s)$ n раз дифференцируема по s, u для всех $k \leqslant n$ выполняется соотношение

$$\nu_k = \psi_{\xi}^{(k)}(0). \tag{8.6}$$

Действительно, разлагая функции моментов в ряд Маклорена, можно получить её разложение в ряд с начальными моментами

$$\psi_{\xi}(s) = 1 + \nu_1 s + \frac{\nu_2}{2!} s^2 + \dots$$

9 Числовые характеристики зависимости

9.1 Ковариация двух случайных величин

Дисперсия суммы двух случайных величин равна

$$D(\xi + \eta) = D \xi + D \eta + 2 (E(\xi \eta) - E(\xi) E(\eta)).$$

Величина $E(\xi \eta) - E \xi E \eta = 0$, если ξ и η независимы, но это верно только в одну сторону, поэтому эту величину используют как «индикатор наличия зависимости» между двумя случайными величинами.

Def 9.1. Ковариацией $cov(\xi, \eta)$ случайных величин ξ и η называется число

$$cov(\xi \eta) = E(\xi - E\xi)(\eta - E\eta). \tag{9.1}$$

Для ковариации справедливы следующие равенства:

$$cov(\xi, \eta) = E(\xi \eta) - E(\xi) E(\eta);$$
 $cov(\xi, \xi) = D(\xi);$ $cov(\xi, \eta) = cov(\eta, \xi);$ $cov(c\xi, \eta) = c cov(\xi, \eta).$

Lem 9.2. Дисперсия суммы нескольких случайных величин вычисляется по формуле:

$$D(\xi_1 + \ldots + \xi_n) = \sum_{i=1}^n D(\xi_i) + \sum_{i \neq j} \text{cov}(\xi_i, \xi_j) = \sum_{i,j} \text{cov}(\xi_i, \xi_j).$$
(9.2)

Если ковариация $cov(\xi, \eta) \neq 0$, то ξ и η зависимы. Найти совместное распределение бывает сложнее, чем посчитать $E(\xi\eta)$, поэтому, если повезет, и $E(\xi\eta) \neq E(\xi) E(\eta)$, то, не находя совместное распределение, мы обнаружим зависимость ξ и η , не находя их совсметного распределения. Это очень хорошо.

Однако есть проблема – ковариация не безразмерно, поэтому большие значения ковариции не говорят о более сильной зависимости. Хотелось бы как-то отнормировать $\text{cov}(\xi,\eta)$, получив «безразмерную» величину. Так мы приходим к коэффициенту корреляции.

9.2 Коэффициент корреляции

Def 9.3. Коэффициентом корреляции $\rho(\xi,\eta)$ случайных величин ξ и η , дисперсии которых существуют и отличны от нуля, называется число

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{D\xi}\sqrt{D\eta}}.$$
(9.3)

Можно наполнить это достаточно глубоким смыслом. На самом деле это «косинус угла» между двумя элементами $\xi - E \xi$ и $\eta - E \eta$ гильбертова пространства, образованного случайными величинами с нулевым матожиданием и конечным вторым моментом. Пространство набжено скалярным произведением $cov(\xi, \eta)$ и «нормой», равной корню из дисперсии, или $\sqrt{cov(\xi, \xi)}$.

Thr 9.4. Коэффициент корреляции обладает свойствами:

- 1) если ξ и η независимы, то $\rho(\xi, \eta) = 0$;
- 2) $\operatorname{scer} \partial a |\rho(\xi,\eta)| \leq 1;$
- 3) $|\rho(\xi,\eta)| = 1$ тогда и только тогда, когда ξ и η почти наверное линейно связаны.

Def 9.5. Стандартизацией случайной величины называется преобразование

$$\hat{\xi} = \frac{\xi - E(\xi)}{\sqrt{D(\xi)}}.$$
(9.4)

В терминах стандартизации чуть проще записывается коэффициент корреляции:

$$\rho(\xi, \eta) = \mathbf{E}\left(\hat{\xi} \cdot \hat{\eta}\right).$$

Def 9.6. Говорят, что ξ и η отрицательно коррелированы, если $\rho(\xi,\eta) < 0$; положительно коррелированы, если $\rho(\xi,\eta) > 0$; некоррелированы, если $\rho(\xi,\eta) = 0$.

Lem 9.7. Для любых случайных величин ξ и η с конечной и ненулевой дсперсией при любых постоянных $a \neq 0$ и b имеет место равенство

$$\rho(\alpha \xi + b, \eta) = \operatorname{sign}(a) \cdot \rho(\xi, \eta). \tag{9.5}$$

Разобрать пример 67 и далее.

10 Характеристические функции

10.1 Определение и примеры

Def 10.1. Функция $\varphi_{\xi}(t) = \mathbf{E}\left(e^{it\xi}\right)$ вещественной переменной t называется характеричтической функцией случайной величины ξ .

Например, если характеристическая функция имеет стандратное нормальное распределение, то её характеристическая функция равна

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{itx} e^{-x^2/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-t^2/2} \int_{-\infty}^{+\infty} e^{-(x-it)^2/2} d(x-it) = e^{-t^2/2}.$$

10.2 Свойства характеристических функций

- (Ф1). Характеристическая функция всегда существует: $|\varphi_{\xi}(t)| = |\mathop{\mathrm{E}} e^{it\xi}| \leqslant 1$.
- $(\Phi 2)$. По харакетристической функции однозначно восстанавливается распределение. Например, если модуль характеристической функции интегрируем на всей прямой, то

$$f_{\xi}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi_x(t) dt.$$

 $(\Phi 3)$. Характерестическая функция случайной величины $a+b\xi$ связана с характеристической функцией случайной величины ξ равенством

$$\varphi_{a+b\xi}(t) = \operatorname{E} e^{it(a+b\xi)} = e^{ita} \operatorname{E} (i(tb)\xi) = e^{ita} \varphi_{\xi}(tb).$$

 $(\Phi 4)$. Характеристическая функция суммы независимых случайных величин равна произведению характеричтических функций слагаемых: если случайные величины ξ и η независимы, то

$$\varphi_{\xi+\eta}(t) = \mathbf{E} e^{it(\xi+\eta)} = \mathbf{E}(e^{it\xi}) \mathbf{E}(e^{it\eta}) = \varphi_{\xi}(t)\varphi_{\eta}(t).$$

Собственно, это очень простой и приятный инструмент для доказательства *устойчивости* распределений. Чем надо было бы и воспользоваться.

 $(\Phi 5)$. Пусть существует момент порядка $k \in \mathbb{N}$ случайной величины ξ . Тогда характеристическая функция $\varphi_{\xi}(t)$ непрерывно дифференцируема k раз и её k-я производная в ny-ne связана с моментом порядка k равенством

$$\varphi_{\xi}^{(k)}(0) = \left(\frac{d^k}{dt^k} \operatorname{E} e^{it\xi}\right) \bigg|_{t=0} = \left(\operatorname{E} i^k \xi^k e^{it\xi}\right) \bigg|_{t=0} = i^k \operatorname{E}(\xi^k).$$

Lem 10.2. Для случайной величины ξ со стандартным нормальным распределением момент чёного порядка 2k равен

$$E(\xi^{2k}) = (2k-1)!! = (2k-1) \cdot (2k-3) \cdot \dots \cdot 3 \cdot 1.$$

Все моменты нечётных порядков существуют и равны нулю.

Как только появились производные высших порядков, самое время разложить функцию в ряд Тейлора: $(\Phi 6)$. Пусть существует момент порядка $k \in \mathbb{N}$ случайной величина ξ , тогда характеричтическая функция $\varphi_{\xi}(t)$ в окрестности точки t=0 разлагается в ряд Тейлора

$$\varphi_{\xi}(t) = \varphi_{\xi}(0) + \sum_{i=1}^{k} \frac{t^{j}}{j!} \varphi_{\xi}^{(j)}(0) + o(|t^{k}|) = 1 + \sum_{i=1}^{k} \frac{i^{j} t^{j}}{j!} \operatorname{E}(\xi^{j}) + o(|t^{k}|).$$

Thr 10.3 (теорема о непрерывно соответствии). Случайные величины ξ_n слабо сходятся к случайной величине ξ тогда и только тогда, когда для любого t характеристические функции $\varphi_{\xi-b}(t)$ сходятся к характеристической функции $\varphi_{\xi}(t)$.