## Guía 2 - Monte Carlo

Lic. Joaquín Torres - LabSim (CONICET/CNEA)

#### Agenda

- Repaso básico integración Monte Carlo
  - Distribución Uniforme
  - Importance sampling
- Ejercicio 2.2
  - Esquema de la solución
  - Tasa de aceptación
- Consultas Guía 2/Ejercicio 1

## Recordando Monte Carlo

#### Integración Monte Carlo: Muestreo directo

- L muestras tomadas de una uniforme
- Estimador de I para L muy grande
- Eficiencia baja

$$I = \int_0^1 dx f(x) pprox \sum_{i=1}^L rac{f[\chi(u_i)]}{w[\chi(u_i)]}$$

## Importance Sampling

- Una distribución que muestrea con mayor tasa de aceptación
- El peso de la distribución influye en el cálculo



# Guía 2 - Ejercicio 2

#### Ejercicio 2

#### Problema 2: Monte Carlo con muestreo directo. Obtención del número $\pi$ .

a) Realice un programa para estimar el número  $\pi$  en base a la obtención de una serie pares (x,y), donde x e y son obtenidos de una distribución uniforme de números pseudo-aleatorios entre 0 y 1.

Si se piensa en ejes cartesianos y que el primer cuadrante, en una área de  $A=1\times 1=1$  contiene un cuarto de círculo de radio r=1. La superficie de éste es  $S=\frac{1}{4}\pi r^2=\frac{1}{4}\pi$ . La fracción entre áreas será proporcional al cociente de pares (x,y) que caen dentro del círculo, respecto de todos los pares obtenidos.

$$\frac{N_{circ}}{N_{tot}} = \frac{\int_0^1 dx \sqrt{1 - x^2}}{A} = \frac{S_{1/4 \, circ}}{A} = \frac{\pi/4}{1}$$

**Nota:** Este problema puede pensarse como un ejemplo en el cuál se utiliza Monte Carlo para realizar una integral definida.

b) Discutir por qué funciona el muestreo y en qué condiciones el muestreo directo no sería una buena opción para calcular el valor medio de una variable de interés.

## Ejercicio 2

Estimo la integral -> estimo  $\pi$ 



#### Ejercicio 2: Muestreo directo

```
for i=(1,N)

x = unif(0,1)

y = unif(0,1)
```

¿Cómo contabilizo N\_circ?

#### Ejercicio 2: Muestreo directo

```
for i=(1,N)
    x = unif(0,1)
    y = unif(0,1)
    if (cond)
        N_circ+=1
```

¿Cómo contabilizo N\_circ? Aplico la condición de la función a integrar.

#### Ejercicio 2: Muestreo Directo

- Tasa de aceptación: aceptado/total
- Misma tasa de aceptación, menor error para más muestras

#### Ejercicio 2: Muestreo directo

```
./pi <número de muestras>
```

¿Qué tan buena es la estimación? ¿Cuántas muestras son? ¿Cómo se ve el histograma?

### Importance sampling

- Elijo una mejor distribución
- Aplico los pesos
- Comparo la tasa de aceptación

#### Repaso conceptual

Monte Carlo nos permite hacer una estimación

#### Repaso conceptual

- Monte Carlo nos permite hacer una estimación
- El muestreo directo es fácil de implementar, baja eficiencia/convergencia larga

#### Repaso conceptual

- Monte Carlo nos permite hacer una estimación
- El muestreo directo es fácil de implementar, baja eficiencia/convergencia larga
- El muestreo de importance sampling mejora la eficiencia