

Lecture 10

Model Selection

STAT 8020 Statistical Methods II September 11, 2019

Whitney Huang Clemson University

Agenda

Variable Selection Criteria

Variable Selection

Variable Selection Criteria

- What is the appropriate subset size?
- What is the best model for a fixed size?

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathrm{E}(\hat{Y}_i) + \mathrm{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathrm{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathrm{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where
$$\mu_i = \mathrm{E}(Y_i|X_i = x_i)$$

- Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (E(\hat{Y}_{i}) \mu_{i})^{2}$
- *C_p* criterion measure:

$$\Gamma_p = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (E(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$$
$$= \frac{\sum Var_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{Var_{\mathsf{error}}}$$

C_n Criterion

- Do not know σ^2 nor numerator
- Use $\mathsf{MSE}_{X_1,\cdots,X_{p-1}} = \mathsf{MSE}_\mathsf{F}$ as the estimate for σ
- For numerator:
 - Can show $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - Can also show $\sum_{i=1}^{n} (E(\hat{Y}_i) \mu_i)^2 = E(SSE_F) (n-p)\sigma^2$

$$\Rightarrow C_p = \frac{\mathrm{SSE} - (n-p)\mathrm{MSE_F} + p\mathrm{MSE_F}}{\mathrm{MSE_F}}$$

C_n Criterion Cont'd

Model Selection CLEMS N UNIVERSITY

Recall

$$\Gamma_{p} = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (E(\hat{Y}_{i}) - \mu_{i})^{2}}{\sigma^{2}}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - By definition: C_p for full model equals p

Variable Selection