Série: N5

ENSA d'Al-Hoceima

CP-II

TD Analyse 3

Semestre 1,

Exercice 1:

 $\frac{1}{\text{Soit}} \frac{f(x, y)}{f(x, y)} = (x - y)^2 + x^3 + y^3$

- 1- Calculer $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$.
- 2- Montrer que f admet un unique point critique (0,0).
- 3- Calculer $r = \frac{\partial^2 f}{(\partial x)^2}(x, y)$, $s = \frac{\partial^2 f}{\partial x \partial y}(x, y)$ et $t = \frac{\partial^2 f}{(\partial y)^2}(x, y)$.
- 4- En deduire Δ_0
- 5- Posons

$$D_1 = \{(x,x) \in \mathbb{R}^2 \colon x \geq 0\} \text{ et } D_2 = \{(x,x) \in \mathbb{R}^2 \colon x \leq 0\}.$$

Montrer que:

$$\forall (x, y) \in D_1: f(x, y) \ge f(0,0)$$
 et $\forall (x, y) \in D_2: f(x, y) \le f(0,0)$

6- Que peut- on dire du point critique (0,0)?

Exercice 2:

Soit $g(x, y) = (x - y)^2 + x^4 + y^4$

- 1- Montrer que : $\forall (x, y) \in \mathbb{R}^2$: $g(x, y) \ge 0$.
- 2- Calculer $\frac{\partial g}{\partial x}(x,y)$ et $\frac{\partial g}{\partial y}(x,y)$.

Puis déterminer les points critiques de g.

3- Montrer que g admet un minimum global.

Exercice 3:

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe C^1 sur un ouvert U de \mathbb{R}^3 , $a = (x_0, y_0, z_0) \in U$ tels que:

$$f(x_0, y_0, z_0) = 0$$
 et $\frac{\partial f}{\partial z}(x_0, y_0, z_0) \neq 0$.

Soit V un voisinage de (x_0, y_0, z_0) , W un voisinage de (x_0, y_0) et φ une fonction de classe \mathcal{C}^1 de W dans \mathbb{R} tels que :

$$z_0 = \varphi(x_0, y_0)$$
 et

$$\begin{cases} f(x, y, z) = 0 \\ (x, y, z) \in V \end{cases} \Leftrightarrow \begin{cases} z = \varphi(x, y) \\ (x, y, z) \in V \end{cases}$$

Soit $g: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe C^1 sur V et $G: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$G(x,y) = g(x,y,\varphi(x,y))$$

Montrer que si (x_0, y_0) est un extrémum local de G alors

$$\begin{cases} \frac{\partial g}{\partial x}(a) \cdot \frac{\partial f}{\partial z}(a) = \frac{\partial f}{\partial x}(a) \cdot \frac{\partial g}{\partial z}(a) \\ \frac{\partial g}{\partial y}(a) \cdot \frac{\partial f}{\partial z}(a) = \frac{\partial f}{\partial y}(a) \cdot \frac{\partial g}{\partial z}(a) \end{cases}$$

Application:

Soit $g(x, y, z) = x \ln x + y \ln y + z \ln z$

Et $f(x, y, z) = x + y + z - 3\alpha$ où $\alpha > 0$.

1- Montrer que si (x, y, z) est un extrémum de g avec :

 $x + y + z = 3\alpha$ alors $x = y = z = \alpha$.

- 2- Posons: $x = \alpha + u$, $y = \alpha + v$ et $z = \alpha + w$
- a- Donner la formule de Taylor young à l'ordre 2 de $ln(\alpha + u)$.
- b- En déduire la formule de g(x, y, z)
- c- Que peut- on dire du point (α, α, α) ?