

Trabajo Práctico N°2: Potencia y Energía

Nota: Para todos los ejercicios de este práctico considere que la frecuencia de las senoides es de 50 Hz a no ser que se especifique lo contrario.

Ejercicio N°1: Para el siguiente circuito resolver la intensidad y calcular:

- a) La potencia activa de la carga (Pz), la potencia aparente de la carga Z (Sz) y la potencia reactiva de la carga Z(Qz),
- b) La potencia activa de P_R,
- c) La potencia aparente de la fuente de tensión (S_E).
- d) Hallar las relaciones entre P_R/Pz ; S_E/Pz

$$E=240 V e^{j0}; Z=10 \Omega e^{j20}; R=1 \Omega$$

Ejercicio N°2: Para el ejercicio anterior

a) encontrar el valor de C tal que el desfasaje de la corriente I y la Tensión en la carga Z sea nulo (coseno de fi = 1).

Ejercicio N°3: Con el valor de C calculado en el ejercicio anterior, calcular:

- a) La potencia activa de la carga (), la potencia aparente de la carga Z (S) y la potencia reactiva de la carga Z(Q),
- b) La potencia activa de R,
- c) La potencia aparente de la fuente de tensión (S).
- d) Hallar las relaciones entre P_R// Pz; S_E/Pz
- e) Comparando estos resultados con los del ejercicio N°1 podemos decir que:
 - Para una carga inductiva el fp se corrige adicionando una carga del tipo en paralelo
 - Si R representa una linea de alimentación al mejorar el fp las perdidas por energía entregada (aumentan/disminuyen). Por esto para mejorar la eficiencia de la instalación es mas conveniente adoptar una compensación (global/local) a una (global/local) porque....
 - Si la potencia S que puede entregar la fuente E siempre convendrá que el factor de potencia sea cercano a

Introducción a Electrotecnia Ingeniería Mecánica

2019

Ejercicio N°4: En la tabla siguiente se listan factores de potencia típicos en cargas usuales.

Factor de potencia de las cargas más usuales

Aparato			cos φ	tg φ
Motor asíncrono	carga a	0%	0,17	5,80
		25%	0,55	1,52
		50%	0,73	0,94
		75%	0,80	0,75
		100%	0,85	0,62
Lámparas incandescentes			1	0
Tubos fluorescentes no compensados			0,5	1,73
Tubos fluorescentes compensados			0,93	0,39
Lámparas de descarga			0,4 a 0,6	2,29 a 1,33
Hornos a resistencias			1	0
Hornos a inducción con compensación incorporada			0,85	0,62
Hornos a calentamiento dieléctrico			0,85	0,62
Hornos de arco			0,8	0,75
Máquinas de soldar a resistencia			0,8 a 0,9	0,75 a 0,48
Electrodos monofásicos, estáticos de soldadura al arco			0,5	1,73
Electrodos rotativos de soldadura al arco			0,7 a 0,9	1,02 a 0,48
Transformadores-rectificadores de soldadura al arco			0,7 a 0,9	1,02 a 0,75

Tabla E1-008: tabla de los valores del cos φ y de la tg φ.

Las lámparas incandescentes y los hornos a resistencia tienen un cos fi = 1 porque son cargas del tipo... Los asíncronos son máquinas del tipo y su cos fi aumenta a medida que entregan (mas *menos*) energía.... Por lo que desde el punto de vista de la instalación conviene que funcionen en (vacío/media carga/ carga nominal)