Visual Computing: Image features

Prof. Marc Pollefeys

Prof. Markus Gross

Correlation

(e.g. Template-matching)

$$I' = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i,j)I(x+i,y+j) \qquad I' = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i,j)I(x-i,y-j)$$

Convolution

(e.g. point spread function)

$$I' = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i, j) I(x-i, y-j)$$

Integral images

 Integral images (also know as summed-area tables) allow to efficiently compute the convolution with a constant rectangle

$$II(x,y) = \bigcup_{0}^{x} \bigcup_{0}^{y} I(x',y') dx'dy'$$

$$A=II(1)$$
 $A+C=II(3)$
 $A+B=II(2)$ $A+B+C+D=II(4)$

D=II(4)-II(2)-II(3)+II(1)

Viola-Jones cascade face detection

Very efficient face detection using integral images

Also possible along diagonal

Visual Computing: Image features

Prof. Marc Pollefeys

Prof. Markus Gross

Template matching

• <u>Problem:</u> locate an object, described by a template t(x,y), in the image s(x,y)

Example

Template matching (cont.)

Search for the best match by minimizing mean-squared error

$$E(p,q) = \sum_{x=-\infty} \sum_{y=-\infty} \left[s(x,y) - t(x-p,y-q) \right]^{2}$$

$$= \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left| s(x,y) \right|^{2} + \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left| t(x,y) \right|^{2} - 2 \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} s(x,y) \cdot t(x-p,y-q)$$

Equivalently, maximize area correlation

$$r(p,q) = \mathop{\text{dis}}_{x=-\frac{1}{2}}^{\frac{1}{2}} \mathop{\text{dis}}_{y=-\frac{1}{2}}^{\frac{1}{2}} s(x,y) \times t(x-p,y-q) = s(p,q) * t(-p,-q)$$

• Area correlation is equivalent to convolution of image s(x,y) with impulse response t(-x,-y)

Template matching (cont.)

From Cauchy-Schwarz inequality

$$r(p,q) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} s(x,y) \cdot t(x-p,y-q) \le \sqrt{\left[\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left| s(x,y) \right|^{2} \right] \cdot \left[\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left| t(x,y) \right|^{2} \right]}$$

- Equality, iff $s(x, y) = \alpha \cdot t(x p, y q)$ with $\alpha \ge 0$
- Blockdiagram of template matcher

 Remove mean before template matching to avoid bias towards bright image areas

Edge detection

Idea (continous-space): Detect local gradient

$$\left| grad \left(f \left(x, y \right) \right) \right| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$

 Digital image: use finite differences instead

difference
$$(-1 \ 1)$$
central difference $(-1 \ [0] \ 1)$

Prewitt $\begin{pmatrix} -1 & 0 & 1 \\ -1 & [0] & 1 \\ -1 & 0 & 1 \end{pmatrix}$

Sobel $\begin{pmatrix} -1 & 0 & 1 \\ -2 & [0] & 2 \\ -1 & 0 & 1 \end{pmatrix}$

Edge detection filters

Prewitt
$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & [0] & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & [0] & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Sobel
$$\begin{pmatrix} -1 & 0 & 1 \\ -2 & [0] & 2 \\ -1 & 0 & 1 \end{pmatrix}$$
 $\begin{pmatrix} -1 & -2 & -1 \\ 0 & [0] & 0 \\ 1 & 2 & 1 \end{pmatrix}$

Roberts
$$\begin{pmatrix} \begin{bmatrix} 0 \end{bmatrix} & 1 \\ -1 & 0 \end{pmatrix} & \begin{pmatrix} \begin{bmatrix} 1 \end{bmatrix} & 0 \\ 0 & -1 \end{pmatrix}$$

Prewitt operator example

Original *Bridge* 220x160

magnitude of image filtered with

magnitude of image filtered with

Prewitt operator example (cont.)

Original *Billsface* 310x241

log magnitude of image filtered with

log magnitude of image filtered with

Prewitt operator example (cont.)

log sum of squared horizontal and vertical gradients

different thresholds

Sobel operator example

log sum of squared horizontal and vertical gradients

different thresholds

Roberts operator example

Original *Billsface* 309x240

log magnitude of image filtered with

log magnitude of image filtered with

Roberts operator example (cont.)

log sum of squared diagonal gradients

different thresholds

Laplacian operator

Detect discontiuities by considering second derivative

$$\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

- Isotropic (rotationally invariant) operator
- Zero-crossings mark edge location
- Discrete-space approximation by convolution with 3x3 impulse response

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & [-4] & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \text{or} \qquad \begin{pmatrix} 1 & 1 & 1 \\ 1 & [-8] & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

1-d illustration of 2nd derivative edge detector

Zero crossings of Laplacian

- Sensitive to very fine detail and noise → blur image first
- Responds equally to strong and weak edges
 - → suppress "edges" with low gradient magnitude

Laplacian of Gaussian

 Blurring of image with Gaussian and Laplacian operator can be combined into convolution with Laplacian of Gaussian (LoG) operator

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Continuous function and discrete approximation

$$\sigma = 1.4$$

0	1	1	2	2	2	1	1	0
1	2	4	5	5	5	4	2	1
1	4	5	3	0	3	5	4	1
2	5	თ	-12	-24	-12	Э	5	2
2	5	0	-24	-40	-24	0	5	2
2	5	э	-12	-24	-12	Э	5	2
1	4	5	3	0	3	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	7	1	0

Zero crossings of LoG

w/o Gaussian

 $\sigma = 1.4$

$$\sigma = 3$$

 $\sigma = 6$

Zero crossings of LoG – gradient-based threshold

w/o Gaussian

$$\sigma = 6$$

Canny edge detector

- 1. Smooth image with a Gaussian filter
- 2. Compute gradient magnitude and angle (Sobel, Prewitt . . .)

$$M(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\alpha(x,y) = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

- 3. Apply nonmaxima suppression to gradient magnitude image
- 4. Double thresholding to detect strong and weak edge pixels
- 5. Reject weak edge pixels not connected with strong edge pixels

Canny nonmaxima suppression

- Quantize edge normal to one of four directions: horizontal, -45°, vertical, +45°
- If M(x,y) is smaller than either of its neighbors in edge normal direction \rightarrow suppress; else keep.

Canny thresholding and suppression of weak edges

Double-thresholding of gradient magnitude

Strong edge:
$$M(x, y) \ge \theta_{high}$$

Weak edge:
$$\theta_{high} > M(x, y) \ge \theta_{low}$$

- Typical setting: $\theta_{high}/\theta_{low} = 2...3$
- Region labeling of edge pixels
- Reject regions without strong edge pixels

Canny edge detector

$$\sigma = 6$$

 $\sigma = 3$

Canny edge detector

$$\sigma = 1.4$$

Hough transform

- Problem: fit a straight line (or curve) to a set of edge pixels
- Hough transform (1962): generalized template matching technique
- Consider detection of straight lines y = mx + c

Hough transform (cont.)

- Subdivide (m,c) plane into discrete "bins," initialize all bin counts by θ
- Draw a line in the parameter space m,c for each edge pixel x,y and increment bin counts along line.
- Detect peak(s) in (m,c) plane

Hough transform (cont.)

Alternative parameterization avoids infinite-slope problem

Hough transform Example A

Original image

Courtesy: P. Salembier

Hough transform Example B

Original image

Courtesy: P. Salembier

Hough transform Example C

Original image

Courtesy: P. Salembier

Hough transform example Original IC image (256x256)

Edge detection (Prewitt)

Circle detection by Hough transform

Find circles of fixed radius r

• For circles of undetermined radius, use 3-d Hough transform for parameters (x_0, y_0, r)

Example: circle detection by Hough transform

Original blood image

Prewitt edge detection

Detecting corner points

- Many applications benefit from features localized in (x,y)
- Edges well localized only in one direction → detect corners

- Desirable properties of corner detector
 - Accurate localization
 - Invariance against shift, rotation, scale, brightness change
 - Robust against noise, high repeatability

What patterns can be localized most accurately?

Local displacement sensitivity

$$S(\Delta x, \Delta y) = \sum_{(x,y) \in window} \left[f(x,y) - f(x + \Delta x, y + \Delta y) \right]^{2}$$

• Linear approximation for small $\Delta x, \Delta y$

$$f\left(x + \Delta x, y + \Delta y\right) \approx f\left(x, y\right) + f_x\left(x, y\right) \Delta x + f_y\left(x, y\right) \Delta y \qquad \qquad f_x(x, y) - \text{horizontal image gradient} \\ f_y(x, y) - \text{vertical image gradient}$$

$$S(\Delta x, \Delta y) \approx \sum_{(x,y) \in window} \left[\left(f_x(x,y) - f_y(x,y) \right) \left(\frac{\Delta x}{\Delta y} \right) \right]^2$$

$$= (\Delta x - \Delta y) \left(\sum_{(x,y) \in window} \left[f_x^2(x,y) - f_x(x,y) f_y(x,y) - f_y^2(x,y) \right] \right) \left(\frac{\Delta x}{\Delta y} \right)$$

$$= (\Delta x - \Delta y) \mathbf{M} \left(\frac{\Delta x}{\Delta y} \right)$$

Iso-sensitivity curves are ellipses

Feature point extraction

$$SSD \approx \Delta^{\top} M \Delta$$

Find points for which the following is large

$$\min \Delta^{ op} \mathbf{M} \Delta$$
 for $\|\Delta\| = 1$

i.e. maximize eigenvalues of M

Keypoint detection

Often based on eigenvalues λ_1 , λ_2 of "structure matrix" (aka "normal matrix" aka "second-moment matrix")

$$\mathbf{M} = \begin{bmatrix} \sum_{(x,y) \in window} f_x^2(x,y) & \sum_{(x,y) \in window} f_x(x,y) f_y(x,y) \\ \sum_{(x,y) \in window} f_x(x,y) f_y(x,y) & \sum_{(x,y) \in window} f_y^2(x,y) \end{bmatrix}$$

 $f_{x}(x,y)$ – horizontal image gradient $f_{y}(x,y)$ – vertical image gradient

Measure of "cornerness"

$$C(x, y) = \det(\mathbf{M}) - k \cdot (trace(\mathbf{M}))^{2}$$
$$= \lambda_{1}\lambda_{2} - k \cdot (\lambda_{1} + \lambda_{2})$$

Contour plot of Harris cornerness

$$C(x, y) = \det(\mathbf{M}) - k \cdot (trace(\mathbf{M}))^{2}$$
$$= \lambda_{1}\lambda_{2} - k \cdot (\lambda_{1} + \lambda_{2})$$

Keypoint Detection: Input

Harris cornerness

Thresholded cornerness

Local maxima of cornerness

Superimposed keypoints

Better localization of corners

 Give more importance to central pixels by using Gaussian weighting function

$$\mathbf{M} = \sum_{(x,y) \in window} G(x - x_o, y - y_o, \sigma) \begin{bmatrix} f_x^2(x,y) & f_x(x,y) f_y(x,y) \\ f_x(x,y) f_y(x,y) & f_y^2(x,y) \end{bmatrix}$$

e.g.
$$5x5, \sigma = 0.7$$

 Compute subpixel localization by fitting parabola to cornerness function

Robustness of Harris corner detector

- Invariant to brightness offset: $f(x,y) \rightarrow f(x,y) + c$
- Invariant to shift and rotation

Not invariant to scaling

Lowe's SIFT features

(Lowe, ICCV99)

Recover features with position, orientation and scale

Position

- Look for strong responses of DoG filter (Difference-Of-Gaussian)
- Only consider local maxima

$$DOG(x,y) = \frac{1}{k}e^{-\frac{x^2+y^2}{(k\sigma)^2}} - e^{-\frac{x^2+y^2}{\sigma^2}}$$

Scale

- Look for strong responses of DoG filter (Difference-of-Gaussian) over scale space
- Only consider local maxima in both position and scale
- Fit quadratic around maxima for subpixel accuracy

Orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable
 2D coordinates (x, y, scale, orientation)

Minimum contrast and "cornerness"

Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an additional threshold on ratio of principle curvatures.

SIFT descriptor

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

Keypoint descriptor

Example 1

Input images (zip 1.1Mb)

Output panorama 1

http://www.cs.ubo.ca/~mbrown/autostitch/autostitch.htm http://cvlab.epfl.ch/~brown/autostitch/autostitch.html

Matas et al.'s maximally stable regions

Look for extremal regions

Image features in the era of deep learning

Dusmanu et al., D2-Net: A Trainable CNN for Joint Description and Detection of Local Features, CVPR 2019

Next week: Fourier transform

