Machine Learning Using Tensorflow

Week 5:

Keras and MNIST Handwritings

Shu-Ting Pi, PhD UC Davis

What is MNIST?

Human Handwriting Numbers

- 60000 train set
- 10000 test set

Each Picture

- 28x28 pixels

Record High

- 0.83% error via H2O.ai

How to deal with pictures?

A figure is essentially a data array

MINST Recognition Using MLP

What is Keras

Fast Growing of Keras

Deep learning libraries: GitHub activity from February 11 to April 12, 2017

new_	contributo	rs from 2017-02-11 to 2017-04-12	new f	orks from	2017-02-11 to 2017-04-12
#1:	131	tensorflow/tensorflow		4192	tensorflow/tensorflow
#2:	63	fchollet/keras	#2:	991	fchollet/keras
#3:	51	pytorch/pytorch	#3:	810	BVLC/caffe
#4:	49	dmlc/mxnet	#4:	517	deeplearning4j/deeplearning4j
#5:	18	Theano/Theano	#5:	414	dmlc/mxnet
#6:	11	BVLC/caffe	#6:	307	pytorch/pytorch
#7:	11	Microsoft/CNTK	#7:	244	Microsoft/CNTK
#8:	9	tflearn/tflearn	#8:	211	tflearn/tflearn
#9:	9	pfnet/chainer	#9:	134	torch/torch7
#10:	8	torch/torch7	#10:	131	Theano/Theano
#11:	5	<pre>deeplearning4j/deeplearning4j</pre>	#11:	116	baidu/paddle
#12:	4	NVIDIA/DIGITS	#12:	88	NVIDIA/DIGITS
#13:	3	baidu/paddle	#13:	55	pfnet/chainer
new : #1:	issues from	n 2017-02-11 to 2017-04-12 tensorflow/tensorflow		gate activ	vity from 2017-02-11 to 2017-04-12 tensorflow/tensorflow
#2:	568	fchollet/keras		12.52	fchollet/keras
3:	499	dmlc/mxnet	#3:	8.53	dmlc/mxnet
£4:	286	pytorch/pytorch	#4:	6.09	BVLC/caffe
#5:	257	Microsoft/CNTK	#5:	5.92	pytorch/pytorch
#6:	239	deeplearning4j/deeplearning4j	#6:	5.12	deeplearning4j/deeplearning4j
PERSONAL PROPERTY.	219	baidu/paddle	#7:	4.12	Microsoft/CNTK
‡7:			#8:	2.93	Theano/Theano
-	173	Ineano/Ineano	#0.		
#8:	173 171	Theano/Theano BVLC/caffe	DOUGHOUSE CO.	100000000000000000000000000000000000000	
*8:	171	BVLC/caffe NVIDIA/DIGITS	#9: #10:	2.86	baidu/paddle
#8: #9: #10:	171 112	BVLC/caffe NVIDIA/DIGITS	#9: #10:	2.86	baidu/paddle tflearn/tflearn
#7: #8: #9: #10: #11: #12:	171	BVLC/caffe	#9:	2.86	baidu/paddle

What is Keras

Official Resource of Keras

Guiding principles

- User friendliness. Keras is an API designed for human beings, not machines. It center. Keras follows best practices for reducing cognitive load: it offers consist the number of user actions required for common use cases, and it provides cluser error.
- Modularity. A model is understood as a sequence or a graph of standalone, fu

Installation

You may also consider installing the following **optional dependencies**:

- cuDNN (recommended if you plan on running Keras on GPU).
- HDF5 and h5py (required if you plan on saving Keras models to disk).
- graphviz and pydot (used by visualization utilities to plot model graphs).

Then, you can install Keras itself. There are two ways to install Keras:

Install Keras from PyPI (recommended):

sudo pip install keras

Models in Keras

Sequential Model

Using a list

```
from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])
```

Using add method

```
from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('softmax'))
```

Functional API

```
from keras.layers import Input, Dense
from keras.models import Model

# This returns a tensor
inputs = Input(shape=(784,))

# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# This creates a model that includes
# the Input layer and three Dense layers
model = Model(inputs=inputs, outputs=predictions)
```

How to plot a model

Prerequisite

- install graphviz
- pip install graphviz, pip install pydot

How to

- from keras.utils import plot_model
- plot_model(model,to_file='model.png')

How to run a model

model.compile

- define postprocess after output, e.g: loss, optimizer, metrics

model.fit

- perform training
- output will be an object contains train history

save and reload a model

Save model:

- model.save(model,'model.h5')

Reload model:

- from keras.model import load_model
- model=model.load('model.h5')