

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

Figure 3-2. The symbols and functional behavior for the five basic gates.

Figure 3-3. (a) The truth table for the majority function of three variables. (b) A circuit for (a).

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND gates or only NOR gates.

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

Figure 3-6. Some identities of Boolean algebra.

Figure 3-8. (a) The truth table for the XOR function. (b)-(d) Three circuits for computing it.

Figure 3-11. An eight-input multiplexer circuit.

Figure 3-13. A 3-to-8 decoder circuit.

Figure 3-14. A simple 4-bit comparator.

Figure 3-16. A 1-bit left/right shifter.

Figure 3-17. (a) Truth table for 1-bit addition. (b) A circuit for a half adder.

Figure 3-18. (a) Truth table for full adder. (b) Circuit for a full adder.

Figure 3-19. A 1-bit ALU.

Figure 3-20. Eight 1-bit ALU slices connected to make an 8-bit ALU. The enables and invert signals are not shown for simplicity.

Figure 3-34. A computer system with multiple buses.