Nachtrag zur Vorlesung über Verzweigung im Galoisfall

Diese Notiz soll einen ausführlichen Beweis der folgenden Behauptung geben:

Sei L|K eine Galoiserweiterung von Zahlkörpern. Sei $\mathfrak{P}\subseteq\mathcal{O}_L$ ein Primideal über $\mathfrak{p}:=\mathfrak{P}\cap\mathcal{O}_K$ mit $\mathfrak{P}\neq(0)$. Dann ist die Erweiterung $\kappa(\mathfrak{P})|\kappa(\mathfrak{p})$ galoissch und der kanonische Gruppenhomomorphismus

$$\begin{array}{ccc} G_{\mathfrak{p}} & \longrightarrow & \operatorname{Gal}(\kappa(\mathfrak{P})|\kappa(\mathfrak{p})) \\ \sigma & \longmapsto & \overline{\sigma} \end{array}$$

ist surjektiv.

Dabei ist $\kappa(\mathfrak{P}) = \mathcal{O}_L/\mathfrak{P}$, $\kappa(\mathfrak{p}) = \mathcal{O}_K/\mathfrak{p}$ und $G_{\mathfrak{P}} = \{ \sigma \in \operatorname{Gal}(L|K) \, | \, \sigma[\mathfrak{P}] = \mathfrak{P} \}$; und $\overline{\sigma}$ schickt [x] auf $[\sigma(x)]$.

Reduktionsschritt

Zunächst beobachtet man, dass man ohne Einschränkung der Allgemeinheit voraussetzen kann, dass die Zerlegungsgruppe $G_{\mathfrak{P}}$ schon gleich der gesamten Galoisgruppe $\operatorname{Gal}(L|K)$ ist. Denn das ist im Fall, dass man nicht die Erweiterung L|K, sondern die Erweiterung $L|Z_{\mathfrak{P}}$ betrachtet, der Fall (Teilaussage (0) des vorhergehenden Satzes); und beim Übergang von L|K zu $L|Z_{\mathfrak{P}}$ ändert sich die Behauptung nicht, denn $G_{\mathfrak{P}|\mathfrak{p}}=G_{\mathfrak{P}|\mathfrak{q}}$ und $\operatorname{Gal}(\kappa(\mathfrak{P})|\kappa(\mathfrak{p}))=\operatorname{Gal}(\kappa(\mathfrak{P})|\kappa(\mathfrak{q}))$. (Die letzte Gleichheit folgt aus $f(\mathfrak{q}|\mathfrak{p})=1$, denn somit gilt $\kappa(\mathfrak{p})=\kappa(\mathfrak{q})$.)

Die so geschenkte Zusatzvoraussetzung $G_{\mathfrak{P}}=\operatorname{Gal}(L|K)$ wird erst im letzten Teilschritt des Beweises eingehen.

Nachweis der Normalität

Sei $\overline{g} \in \kappa(\mathfrak{p})[X]$ ein normiertes irreduzibles Polynom, das in $\kappa(\mathfrak{P})$ eine Nullstelle $\overline{\theta}$ besitzt. Es gibt dann ein $\theta \in \mathcal{O}_L$ mit $\overline{\theta} = [\theta] \in \kappa(\mathfrak{P})$. Wir möchten zeigen, dass \overline{g} über $\kappa(\mathfrak{P})$ in Linearfaktoren zerfällt.

Sei $f \in K[X]$ das Minimalpolynom von θ über K. Da θ ganz ist, sind auch alle Koeffizienten von f ganz, also liegt f schon in $\mathcal{O}_K[X]$. Wir schreiben " \overline{f} " für dasjenige Polynom in $\kappa(\mathfrak{p})[X]$, das aus f entsteht, indem man alle Koeffizienten längs $\mathcal{O}_K \to \kappa(\mathfrak{p})$ abbildet.

Nun gilt $\overline{f}(\overline{\theta}) = [f(\theta)] = [0] = 0 \in \kappa(\mathfrak{P})$, also ist \overline{f} ein Vielfaches des Minimalpolynoms von $\overline{\theta}$. Somit $\overline{g} \mid \overline{f}$ über $\kappa(\mathfrak{p})$.

Da L|K normal ist und f in L eine Nullstelle besitzt (nämlich θ), zerfällt f über L schon in Linearfaktoren. Die einzelnen Nullstellen sind wie θ jeweils ganz, also zerfällt L sogar schon über \mathcal{O}_L in Linearfaktoren.

Somit zerfällt auch \overline{f} über $\kappa(\mathfrak{P})$ in Linearfaktoren. Und \overline{g} als Teiler von \overline{f} damit ebenfalls.

Nachweis der Surjektivität

Dieser Teil des Beweises geht an vielen Stellen genau wie der vorherige Teilbeweis vor, jedoch ist die Zielsetzung eine andere. Sei $\tau \in \operatorname{Gal}(\kappa(\mathfrak{P})|\kappa(\mathfrak{p}))$ gegeben; wir suchen ein Urbild in $G_{\mathfrak{P}}$.

Da die Voraussetzungen des Satzes über das primitive Element erfüllt sind, gibt es ein $\overline{\theta} \in \kappa(\mathfrak{P})$ mit $\kappa(\mathfrak{P}) = \kappa(\mathfrak{p})(\overline{\theta})$. Es gibt dann ein $\theta \in \mathcal{O}_L$ mit $\overline{\theta} = [\theta]$.

Sei $\overline{g} \in \kappa(\mathfrak{p})[X]$ das Minimalpolynom von $[\theta]$ über $\kappa(\mathfrak{p})$ und seien f und \overline{f} wie im vorherigen Abschnitt definiert, sei also $f \in \mathcal{O}_K[X]$ das Minimalpolynom von θ über K und \overline{f} seine Reduktion modulo \mathfrak{p} .

Der Automorphismus τ ist durch die Angabe seines Bilds $\overline{\theta}':=\tau(\overline{\theta})$ schon eindeutig festgelegt. Da wir einen Lift von τ auf L finden möchten, sollten wir dieses Bild genauer studieren. Zumindest ist klar, dass es eine der Nullstellen von \overline{g} ist. (Wie immer: $\overline{g}(\overline{\theta}')=\overline{g}(\tau(\overline{\theta}))=\tau(\overline{g}(\overline{\theta}))=\tau(0)=0$, da τ die Koeffizienten von \overline{g} invariant lässt, da sie in $\kappa(\mathfrak{p})$ liegen.)

Wie oben zerfällt f über \mathcal{O}_L in Linearfaktoren: $f=\prod_i(X-\theta_i)$ mit Nullstellen $\theta_i\in\mathcal{O}_L$. Somit zerfällt auch \overline{f} über $\kappa(\mathfrak{P})$ in Linearfaktoren, nämlich in die $\prod_i(X-[\theta_i])$. Da \overline{g} ein Teiler von \overline{f} ist, ist $\overline{\theta}'$ eine der Nullstellen von \overline{f} . Also gibt es einen Index i mit $\overline{\theta}'=[\theta_i]$.

Wir können nun einen Automorphismus $\sigma:L\to L$ über K durch die Forderung $\sigma(\theta)=\theta_i$ konstruieren. Das machen wir, indem wir zunächst eine Körpereinbettung $K(\theta)\to L$ durch $\theta\mapsto\theta_i$ definieren (dazu müssen wir bekanntlich nur beachten, dass das Bildelement θ_i Nullstelle des Minimalpolynoms des Erzeugers θ ist) und diese dann beliebig zu einem Automorphismus $L\to L$ fortsetzen.

Wegen der Zusatzvoraussetzung ist σ nicht nur ein Element von $\mathrm{Gal}(L|K)$, sondern sogar von $G_{\mathfrak{P}}$. Dieses Element ist das gesuchte Urbild, denn $\overline{\sigma}$ und τ stimmen auf dem Erzeuger $\overline{\theta}$ überein: $\overline{\sigma}(\overline{\theta}) = \overline{\sigma}([\theta]) = [\sigma(\theta)] = [\theta_i] = \overline{\theta}' = \tau(\overline{\theta})$, und stimmen somit schon auf ganz $\kappa(\mathfrak{P})$ überein.