Lecture 6: Locally Convex Topological Vector Space

Tianpei Xie

Nov. 30th., 2022

Contents

1	Topological Vector Space	2
	1.1 Vector Space	2
2	Locally Convex Topological Vector Space	2

1 Topological Vector Space

1.1 Vector Space

- **Definition** A <u>vector space</u> over a <u>field</u> F is a set V together with two operations, the (vector) addition $+: V \times V \to V$ and scale multiplication $\cdot: \mathbb{R} \times V \to V$, that satisfy the eight axioms listed below: for all $x, y, z \in V$, $\alpha, \beta \in F$,
 - 1. The **associativity** of **vector addition**: x + (y + z) = (x + y) + z;
 - 2. The *commutativity* of *vector addition*: x + y = y + x;
 - 3. The *identity* of *vector addition*: $\exists 0 \in V$ such that 0 + x = x;
 - 4. The *inverse* of *vector addition*: $\forall x \in V, \exists -x \in V$, so that x + (-x) = 0;
 - 5. Compatibility of <u>scalar multiplication</u> with <u>field multiplication</u>: $\alpha(\beta \cdot x) = (\alpha\beta) \cdot x$:
 - 6. The *identity* of *scalar multiplication*: $\exists 1 \in F$, such that $1 \cdot x = x$;
 - 7. The <u>distributivity</u> of scalar multiplication with respect to vector addition: $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$;
 - 8. The <u>distributivity</u> of scalar multiplication with respect to field addition: $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$.

Elements of V are commonly called **vectors**. Elements of F are commonly called **scalars**.

- Definition (Topological Vector Space)
 - A vector space X endowed with a topology $\mathscr T$ is called a <u>topological vector space</u>, denoted as $(X,\mathscr T)$, if the addition $+: X \times X \to X$ and scale <u>multiplication $\cdot: \mathbb R \times X \to X$ </u> are **continuous**.
- Theorem 1.1 [Treves, 2016] Every locally compact Hausdorff topological vector space is finite-dimensional.

2 Locally Convex Topological Vector Space

- Definition (Locally Convex Space)
 - A topological vector space X is a <u>locally convex topological vector space</u> (or just locally convex space), if V is open and $x \in V$, then one can find a convex open set $U \subset X$ such that $x \in U \subset V$. That is, there exists a base of convex sets \mathscr{B} that generates the topology \mathscr{T} .
- **Remark** The most common way of defining locally convex topologies on vector spaces is in terms of *semi-norms*.
- Definition (Semi-Norm)
 - A **semi-norm** on a vector space X is a mapping $q: X \to \mathbb{R}_+$ satisfying the following conditions:

- 1. homogeneity: $q(\gamma \mathbf{x}) = |\gamma| q(\mathbf{x})$;
- 2. the triangle inequality: $q(x + y) \le q(x) + q(y)$.

If furthermore $q(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = 0$, then q is a **norm**.

- Remark A metric $d: X \times X \to \mathbb{R}_+$ that induced from a norm is given by $d_{\theta}(x, y) = q_{\theta}(y x), \forall x, y \in X$.
- Proposition 2.1 A normed space (X, \mathcal{T}) induced by $\{q_{\theta}, \theta \in \Theta\}$ is Hausdorff if and only if for any $x \neq 0, x \in X$, $\exists \theta \in \Theta$, such that $q_{\theta}(x) > 0$.
- Definition (Locally Convex Space generated by Semi-Norms)
 The smallest topology \mathscr{T} induced by the set of semi-norms $\{q_{\theta}, \theta \in \Theta\}$ is generated by the convex basis $U_{x,r,\theta} = \{y \in X \mid q_{\theta}(y-x) \leq r\} \in \mathscr{B}, x \in X, r > 0$. The topological vector space (X,\mathscr{T}) is thus locally convex space.

If $\{q_{\theta}, \theta \in \Theta\}$ is a set of **norms**, then (X, \mathcal{T}) is a **normed space**.

• Remark The most commonly seen topological vector space are the normed linear space. It is a vector space X equipped with norm $\|\cdot\|$ and the topology generated by the norm induced metric d. It is denoted as $(X, \|\cdot\|)$.

The *locally convex space* is seen as a generalization of *normed vector space*.

- Proposition 2.2 (Continuous Linear Operator) [Folland, 2013] Suppose X and Y are vector spaces with topologies defined, respectively, by the families $\{p_{\alpha}\}_{\alpha\in A}$ and $\{q_{\beta}\}_{\beta\in B}$ of semi-norms, and $T:X\to Y$ is a linear map. Then T is continuous if and only if for each $\beta\in B$, there exists $\alpha_1,\ldots,\alpha_k\in A$ and C>0 such that $q_{\beta}(Tx)\leq C\sum_{i=1}^k p_{\alpha_i}(x)$.
- **Remark** If the semi-norms are *norms*, then the condition above is *the bounded condition* for continuous linear operator.
- Proposition 2.3 [Folland, 2013] Let X be a vector space equipped with the topology defined by a family $\{p_{\alpha}\}_{{\alpha}\in A}$ of seminorms.
 - 1. X is **Hausdorff** if and only if for each $x \neq 0$ there exists $\alpha \in A$ such that $p_{\alpha}(x) \neq 0$.
 - 2. If X is **Hausdorff** and A is **countable**, then X is **metrizable** with a **translation** invariant metric (i.e., d(x,y) = d(x+z,y+z) for all $x,y,z \in X$).
- Definition (Fréchet Space)
 A <u>complete Hausdorff</u> topological vector space X whose topology is defined by a <u>countable</u> family of <u>seminorms</u> {q_θ, θ ∈ Θ} is called a **Fréchet space**.
- Example 1. A Fréchet space is a complete locally convex space.
 - 2. A Banach space is a Fréchet space.
- Example (Locally Integrable Functions $L^1_{loc}(X,\mu)$)

 The space of all locally integrable functions on \mathbb{R} , $L^1_{loc}(\mathbb{R})$, is a Fréchet space with the topology defined by the semi-norms

$$p_k(f) = \int_{|x| \le k} |f(x)| \, dx.$$

Completeness follows easily from the completeness of L^1 . An obvious generalization of this construction yields a **locally convex topological vector space** $L^1_{loc}(X,\mu)$ where X is any locally convex Hausdorff (LCH) space and μ is a Borel measure on X that is finite on compact sets.

References

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.

François Treves. Topological Vector Spaces, Distributions and Kernels: Pure and Applied Mathematics, Vol. 25, volume 25. Elsevier, 2016.