CLIP: Contrastive Language-Image Pre-Training

Paper Title: Learning Transferable Visual Models From Natural Language Supervision

Intro

- Multimodal learning architecture developed by OpenAI
- Bridges the gap between text and visual data
- By jointly training a CLIP model on a large-scale dataset containing images and their corresponding textual descriptions
- Similar to the zero-shot capabilities of GPT-2 and GPT-3
- Effectiveness comes from a large-scale, diverse dataset of images and texts.

Intro

- CLIP is trained on a vast dataset containing 400 million image-text pairs collected online.
- This extensive training data allows it to generalize across various domains and tasks.
- One of CLIP's standout features is its ability to perform <u>zero-shot</u> <u>learning</u>.
- It can handle new tasks without requiring task-specific training data, simply by understanding the task description in natural language. How? Answer this at the end of the lecture!

CLIP uses **self-supervised learning** because it learns from the natural pairings of images and text, without needing explicit human-provided labels.

- The 20,000 (image, text) pair cap per query is a crucial step for balancing the dataset.
- By limiting the number of pairs per query, the dataset avoids being dominated by frequent concepts. This ensures greater diversity and prevents the model from overfitting to a small subset of the data.

Natural Language as a training signal

- > Predicting which caption goes with which image
- Collected a dataset of 400M image, text pairs from the internet
- Self-supervised pre-training
- Enabling zero-shot transfer to down-stream tasks

WebImageText (WIT) Dataset

- Constructed a dataset of 400M image/text pairs
- Based on 500000 queries collected from high frequent (+100) words in English Wikipedia
- Balancing the dataset with a cap of 20000 (image, text) pair per query

Motivation:

Supervised learning requires high-quality annotations (gold labels)

- · Difficult to obtain labels in specialized domains
- High annotation cost
- Limited labeled data
- → Pre-training using self-supervised learning with abundant textual data

What is contrastive learning?

- Contrastive learning is a technique used in machine learning, particularly in the field of <u>unsupervised learning</u>.
 - A method to teach an AI model to recognize similarities and differences of a large number of data points.
- Imagine you have a main item (the "anchor sample"), a similar item ("positive"), and a different item ("negative sample").
 - The goal is to make the model understand that the anchor and the positive item are alike, so it brings them closer together (with a score or rank) while recognizing that the negative item is different and pushing it away.

Why CLIP?

 Before CLIP, most deep learning models for image classification followed a supervised learning approach, where they were trained on labeled datasets like ImageNet. These models had several limitations:

Dependency on Labeled Data:

- Training a classification model required large amounts of manually labeled images (e.g., "dog," "cat," "car" in ImageNet).
- Collecting and labeling data is expensive and time-consuming.

Fixed Number of Classes:

- A model trained on ImageNet (with 1,000 categories) cannot classify objects outside this predefined set.
- If a new category is introduced (e.g., "electric scooter"), the model must be retrained.

Poor Generalization to New Domains:

• If a model is trained on standard dataset images (e.g., stock photos), it struggles with real-world images from different contexts.

How CLIP overcomes this?

• CLIP extends a **new paradigm** where it learns from **image-text pairs** rather than manually labeled datasets. This provides key advantages:

Learns from Internet-Scale Data:

- Instead of training on predefined labels, CLIP learns from millions of images with natural language descriptions found on the internet.
- This allows it to generalize well to unseen objects without additional training.

Zero-Shot Learning Capability:

- CLIP doesn't require explicit training for specific tasks.
- Once trained, it can classify images into any category specified by natural language without needing extra labeled data.
- Example: A CLIP model trained on internet images can classify "Tesla Cybertruck" without ever seeing a labeled image of it.

Flexible Text-Based Classification:

- Traditional classifiers assign images to fixed categories (e.g., "dog," "cat"), while CLIP allows classification by providing text prompts.
- Example: Instead of defining fixed classes, you can query CLIP with any text label:
 - "This is a picture of a lion" vs. "This is a picture of a tiger"
 - CLIP ranks the text descriptions based on similarity to the image.

CLIP Architecture (Training)

- CLIP uses a dual-encoder architecture to map images and text into a shared latent space.
 - It works by jointly training two encoders. One encoder for images (<u>Vision Transformer</u>) and one for text (Transformer-based language model).
- **Image Encoder:** The image encoder extracts salient features from the visual input. This encoder takes an 'image as input' and produces a high-dimensional vector representation. It typically uses a ViT or <u>ResNet</u>, for extracting image features.
- **Text Encoder:** The text encoder encodes the semantic meaning of the corresponding textual description. It takes a 'text caption/label as input' and produces another high-dimensional vector representation. It often uses a transformer-based architecture, like a Transformer or BERT, to process text sequences.
- Shared Embedding Space: The two encoders produce embeddings in a shared vector space. These shared embedding spaces allow CLIP to compare text and image representations and learn their underlying relationships.

- **Objective** of Contrastive Learning:
- Maximize similar image-text pair embeddings
- Minimize dissimilar image-text pair embeddings

- CLIP's architecture consists of two main components:
- **1.A Vision Encoder** (for processing images)
- **2.A Text Encoder** (for processing text descriptions)
- Both of these encoders map their respective inputs into a shared embedding space, where similar images and text align closely.

CLIP Objective: Contrastive loss on (image, text) pairs

Which text (as a whole, not word-by-word) goes with which image

Increase the cosine similarity of <u>correct</u> pairs in a batch

Reduce the cosine similarity of n² - n incorrect pairings

How do u get n² - n incorrect pairings?

- Let's say you have a batch size of n = 4 image-text pairs.
- Total Pairings (n^2): 4 * 4 = 16
- Correct Pairings (n): 4
- Incorrect Pairings $(n^2 n)$: 16 4 = 12
- Why n² n is Important for CLIP:
- CLIP's training objective is to maximize the similarity between the correct (positive) pairs and minimize the similarity between the incorrect (negative) pairs.
- The n^2 n incorrect pairings provide a large number of negative examples that help the model learn to distinguish between matching and non-matching image-text combinations.
- This contrastive learning process is what allows CLIP to develop a robust understanding of the relationship between images and text.

Vision Encoder (ViT or CNN)

- For image encoding, CLIP primarily uses a **Vision Transformer (ViT)**, although it can also use a **ResNet**. The process:
- 1. The image is passed through **ViT**.
- 2. ViT converts the image into smaller patches (like dividing the image into grids).
- 3. These patches are **linearly embedded and processed through Transformer layers** to extract deep visual features.
- 4. The final output is an **image embedding vector** that represents the image in a high-dimensional space.
- This embedding captures the semantic content of the image—objects, textures, relationships—without requiring explicit labels.

Text Encoder (Transformer for NLP/caption)

- For text encoding, CLIP uses a Transformer-based language model (similar to GPT or BERT) to process the textual description.
- 1.The input text (e.g., "A photo of a cat") is tokenized into individual words (e.g., [A, photo, of, a, cat]).
- 2. These tokens are passed through an **embedding layer** that converts them into dense numerical vectors.
- 3. The **Transformer processes the tokens** using self-attention mechanisms to understand their relationships.
- 4. The **final text representation** is obtained from the last layer of the Transformer.

Single Embedding for the Whole Caption?

- Transformer Output: The text transformer processes the caption and produces a sequence of output embeddings, one for each word/token.
- Mean Pooling: CLIP then applies mean pooling to these output embeddings. This means it simply averages the embeddings across all tokens in the caption (including any special start or end tokens).
- **Text Embedding:** The result of this mean pooling is the final text embedding used by CLIP.
- The authors experimented with using a [CLS] token but found that mean pooling performed just as well or even better in their experiments. Mean pooling is simpler and computationally less expensive than training a dedicated [CLS] token.

At the end of the encoding process:

- The Vision Encoder provides an image embedding.
- The Text Encoder provides a text embedding.
- A linear layer is applied at both ends (image n text encoder) to match the dimensions for text and image.
- Both embeddings exist in the same space, allowing comparison.
- It then compares every image with every text description using cosine similarity.
- The model is trained to **maximize similarity** for the **correct** image-text pair and **minimize** similarity for incorrect pairs.
- Cosine similarity for the correct image-caption pair will be higher and lower for the incorrect pairs.
- The diagonal values represent the correct image-caption pair.


```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
               - learned temperature parameter
# t
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss
      = (loss_i + loss_t)/2
```

images and text captions are mapped into a **joint embedding space** and trained using a **contrastive loss**.


```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# W_i|d_i, d_e| - learned proj of image to embed
# W t[d_t. d_e] - learned proi of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss
       = (loss_i + loss_t)/2
```


We normalize the embeddings to have unit length (||x|| = 1) so that:

- 1.Cosine similarity becomes equivalent to the dot product when the vectors are unit vectors.
- **2.Distances become comparable** across different embeddings, bcz on same scale (magnitude 1).
- 3.Prevents large embeddings from dominating similarity scores due to magnitude differences.

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
       = (loss_i + loss_t)/2
loss
```

axis=1 → Normalizes **each row independently** (each sample).

L2 normalization enforces **unit vectors**, making cosine similarity a **dot product**.

Ensures similarity is **only based on direction**, not magnitude.

cosine_similarity(a, b) = $a \cdot b / (||a|| * ||b||)$

Since ||a|| = ||b|| = 1 (due to L2 normalization), the equation simplifies to:

cosine_similarity(a, b) = $a \cdot b$

Example: L2 Normalization of a Vector

Suppose we have a vector:

$$A = [3, 4]$$

To normalize it, we compute its L2 norm (also called Euclidean norm):

$$\|A\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Now, we divide each element by the L2 norm:

$$A_{ ext{normalized}} = \left[rac{3}{5}, rac{4}{5}
ight] = \left[0.6, 0.8
ight]$$

Now, this is a unit vector because its magnitude is 1:

$$\sqrt{(0.6)^2 + (0.8)^2} = \sqrt{0.36 + 0.64} = \sqrt{1} = 1$$

1. L2 Norm Calculation: The L2 norm (or Euclidean norm) of a vector $v = [v_i, v_2, ..., v_n]$ is calculated as:

$$||v|| = \sqrt{(v_1^2 + v_2^2 + ... + v_n^2)}$$

2. L2 Normalization: L2 normalization involves dividing each element of the vector by its L2 norm:

$$v \text{ normalized} = [v_1/||v||, v_2/||v||, ..., v_r/||v||]$$

3. Magnitude of Normalized Vector: Now, let's calculate the magnitude of the normalized vector:

$$||v_normalized|| = \sqrt{((v_1/||v||)^2 + (v_2/||v||)^2 + ... + (v_n/||v||)^2)}$$

$$= \sqrt{(({v_1}^2 + {v_2}^2 + ... + {v_n}^2) / ||v||^2)}$$

$$= \sqrt{(||v||^2 / ||v||^2)}$$

Temperature T

Higher T → More uniform distribution, better generalization, but may hinder learning distinctions.

Lower T→ More sharp distinctions but can lead to overfitting.

T is learnable → The model **optimizes it automatically** for best performance.

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
       = (loss_i + loss_t)/2
loss
```

The temperature parameter plays a crucial role in *calibrating* the model's predictions. Calibration means that the predicted probabilities reflect the model's true confidence in its predictions. A well-calibrated model will have predicted probabilities close to 1 for correct predictions and close to 0 for incorrect predictions.

What will happen if we remove temperature? How will the learning be impacted?

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# t
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
       = (loss_i + loss_t)/2
loss
```

The temperature parameter plays a crucial role in *calibrating* the model's predictions. Calibration means that the predicted probabilities reflect the model's true confidence in its predictions. A well-calibrated model will have predicted probabilities close to 1 for correct predictions and close to 0 for incorrect predictions.

- •labels = np.arange(n): Each image should be most similar to **its corresponding text** (diagonal elements of logits).
- •cross_entropy_loss(logits, labels, axis=0): Computes image-to-text contrastive loss.
- •cross_entropy_loss(logits, labels, axis=1): Computes **textto-image** contrastive loss.

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12\_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
       = (loss_i + loss_t)/2
loss
```

- •Why Both Losses? Ensures both modalities (images and texts) align properly.
- •loss = (loss_i + loss_t) / 2: Averages the losses to treat both directions symmetrically.

- At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.
- Zero Short Learning: the model can classify new images without being explicitly trained on labeled examples from that category.
- Instead of relying on a fixed classifier trained with labeled data, CLIP can predict any category by comparing images to textual descriptions.

- Step 1: Constructing Text-Based Classifier
- We are given a set of class labels (e.g., "dog", "cat", "bird", "car").
- Instead of training a classifier, we convert these class names into text prompts, such as:
- "A photo of a dog."
- "A photo of a cat."
- "A photo of a car."
- These prompts are then passed through the Text Encoder, which converts them into text embeddings (T1, T2, ..., TN).
- These embeddings act as class prototypes—i.e., they represent what it means to be a dog, cat, car, etc., in vector space.

- Step 2: Encoding the Image
- When we input an unseen image (e.g., an image of a dog), the Image Encoder (a ViT or ResNet) extracts its feature embedding 11
- Step 3: Compute Cosine Similarity Between Image and Text Embeddings

- Step 2: Encoding the Image
- When we input an unseen image (e.g., an image of a dog), the Image Encoder (a ViT or ResNet) extracts its feature embedding I1
- Step 3: Compute Cosine Similarity Between Image and Text Embeddings
- We compute the cosine similarity between the image embedding I1 and all text embeddings T1,T2,...,TN.
- This results in a similarity score matrix:

```
I_1 \cdot T_1 (similarity with "a photo of a plane") I_1 \cdot T_2 (similarity with "a photo of a car") I_1 \cdot T_3 (similarity with "a photo of a dog")
```

- The most similar text embedding is chosen as the predicted class.
- I1·T3 (for "a photo of a dog") has the **highest score**, so the model predicts "dog".

Food101 guacamole (90.1%) Ranked 1 out of 101 labels

✓ a photo of guacamole, a type of food.

X a photo of **ceviche**, a type of food.

X a photo of edamame, a type of food.

x a photo of tuna tartare, a type of food.

x a photo of hummus, a type of food.

SUN397

television studio (90.2%) Ranked 1 out of 397 labels

✓ a photo of a television studio.

x a photo of a **podium indoor**.

× a photo of a conference room.

x a photo of a lecture room.

x a photo of a control room.

PatchCamelyon (PCam) healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels

x this is a photo of lymph node tumor tissue

✓ this is a photo of healthy lymph node tissue

```
query = "a family standing next to the ocean on a sandy beach with a surf board"
matches = find_matches(image_embeddings, [query], normalize=True)[0]

plt.figure(figsize=(20, 20))
for i in range(9):
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(mpimg.imread(matches[i]))
    plt.axis("off")
```


Outputs top 9 images against this caption It doesn't generate but ranks the images

How CLIP generalizes?

- During training, it might have seen captions like:
 - "A cute animal is running."
 - "A fluffy pet is playing in the grass."
 - "A furry mammal with four legs."
- Even if "dog" was never explicitly labeled, the model **learned to** associate visual patterns with textual concepts.
- Now, at test time, when we provide the prompt "A photo of a dog.", CLIP compares it with the image and recognizes that this text is most similar to what it has learned about similar animals.

- The output of the CLIP model is usually a set of similarity scores or similarity rankings.
- CLIP does not generate captions by itself, but it can rank or match existing captions to images.
- Its output is usually a **similarity score** or ranking, showing how well each caption or class matches the image.
- Image-to-Text (or Text-to-Image) Matching: You provide an image and a set of textual descriptions (like class names, captions, etc.), and CLIP will predict which description is most relevant to the image.
- **Zero-shot Learning**: Since CLIP has been trained on vast datasets with both images and text, it can generalize to new tasks without needing further fine-tuning.
 - For example, you can give it a new set of images and text that it has never seen before, and it will still be able to rank the matching relevance between them.

Applications

- Image Classification: Given a set of possible categories (e.g., "dog," "cat," "car"), CLIP can tell you which category is most likely for a given image.
- Image-to-Text Search (Retrieval): You can input an image and a large set of text captions and ask CLIP to retrieve the most relevant caption for the image. Essentially, CLIP can act like an image search engine using natural language descriptions.
- Text-to-Image Search (Retrieval): Similarly, you can input a text and a set of images, and CLIP can rank the images based on which one best matches the text query.
- **Zero-shot Learning**: CLIP excels in tasks where you provide new categories or descriptions (that it hasn't specifically been trained on), and it can still perform well without needing extra training.
- Cross-modal Retrieval: This is when you search for one modality using another. For example, you can search for images using text queries or search for text descriptions using images.

Limitations & Challenges of CLIP

Bias in Training Data:

• Since CLIP learns from unfiltered internet data, it inherits biases present in the dataset, such as gender stereotypes, racial biases, or associating certain objects with specific demographics.

Dependence on Image-Text Alignment:

• Works best when image-text pairs are well-aligned; struggles when captions are ambiguous, incomplete or inaccurate.

Lack of Fine-Grained Understanding:

• CLIP focuses on high-level concepts but may miss details in complex images. For example, it might struggle to differentiate between closely related species of birds or identify specific artistic styles in paintings.

Sensitivity to Prompts

• CLIP's performance can be sensitive to the specific wording of the text prompts used for zero-shot classification or image retrieval. Slight changes in wording can sometimes lead to significant changes in the model's output.

- https://medium.com/towards-data-science/simple- implementation-of-openai-clip-model-a-tutorial-ace6ff01d9f2
- https://openai.com/index/clip/
- https://summergeometry.org/sgi2024/a-deeper-understanding-openais-clip-model/
- https://viso.ai/deep-learning/clip-machine-learning/
- https://medium.com/@paluchasz/understanding-openais-clip-model-6b52bade3fa3
- https://www.youtube.com/watch?v=jXD6O93Ptks

Explore code:

 https://github.com/moein-shariatnia/OpenAI-CLIP/blob/master/OpenAI%20CLIP%20Simple%20Implementation.ipynb