Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №2
з дисципліни «Комп'ютерні системи»
на тему «Моделювання часових характеристик обчислювальних систем
та мереж»
Варіант №3

Виконав: студент ННІКІТ групи СП-325 Клокун В. Д. Перевірив: Ковальов М. О.

Київ 2019

1. МЕТА РОБОТИ

Вивчення методів оцінки трудомісткості алгоритмів.

2. ХІД РОБОТИ

Вихідними даними для лабораторної роботи є схема алгоритму (рис. 1).

Рис. 1: Схема алгоритму

2.1. Обчислення середньої кількості операцій за один прогін алгоритму

Нехай n_1, \dots, n_{k-1} — середня кількість звернень до операторів v_1, \dots, v_{k-1} . Тоді середня кількість операцій за один прогін алгоритму $\theta_{\text{осн}}$ визначається так:

$$\theta_{\text{осн}} = \sum n_i \cdot k_i. \tag{1}$$

Щоб знайти значення середньої кількості звернень n_1, \dots, n_{k-1} , за схемою алгоритму визначаємо та будуємо матрицю ймовірностей переходу, в якій кожен елемент P_{ij} визначає ймовірність переходу із стану i в стан j (табл. 1).

тион. 1. Интрици имовирностей переходу ехеми шпоритму											
	$V_{\alpha 1}$	$V_{\alpha 2}$	$V_{\alpha 3}$	$V_{\alpha 4}$	$V_{\alpha 5}$	$V_{\alpha 6}$	$V_{\alpha7}$	$V_{\alpha 8}$	V_k		
$V_{\alpha 1}$			0,9	0,025	0,075						
$V_{\alpha 2}$	1										
$V_{\alpha 3}$		0,95					0,05				
$V_{\alpha 4}$						0,75		0,25			
$V_{\alpha 5}$						0,75		0,25			
$V_{\alpha 6}$	1										
$V_{\alpha7}$								1			
$V_{\alpha 8}$	0,03								0,97		

Табл. 1: Матриця ймовірностей переходу схеми алгоритму

За матрицею ймовірностей переходу складаємо систему лінійних алгебраїчних рівнянь:

$$\begin{cases}
-n_1 + n_2 & + n_6 & +0.03n_8 = -1, \\
-n_2 + 0.95n_3 & = 0, \\
0.9n_1 & -n_3 & = 0, \\
0.025n_1 & -n_4 & = 0, \\
0.075n_1 & -n_5 & = 0, \\
0.75n_4 + 0.75n_5 & -n_6 & = 0, \\
0.05n_3 & -n_7 & = 0, \\
0.25n_4 + 0.25n_5 & + n_7 & -n_8 = 0.
\end{cases}$$
(2)

Знаходимо розв'язок системи лінійних алгебраїчних рівнянь і записуємо його:

$$n_1 = \frac{10000}{679},$$
 $n_2 = \frac{8550}{679},$ $n_3 = \frac{9000}{679},$ $n_4 = \frac{250}{679},$ $n_5 = \frac{750}{679},$ $n_6 = \frac{750}{679},$ $n_7 = \frac{450}{679},$ $n_8 = \frac{700}{679}.$

Отже, розв'язавши систему рівнянь, отримали середні кількості звернень n_1,\dots,n_{k-1} до операторів V_1,\dots,V_{k-1} .

Щоб обчислити значення середньої кількості операцій за один прогін алгоритму $\theta_{\text{осн}}$, необхідно знати значення кількості операцій k_i кожного оператора $V_{\alpha i}$ (для заданого варіанту №3 — табл. 2).

Табл. 2: Число операцій k_i , що складають оператор $V_{\alpha i}$

Номер варіанта					Кільк	ість оп	ератор	оів V_{α}
	V_{α_1}	V_{α_2}	V_{α_3}	V_{α_4}	V_{lpha_5}	V_{α_6}	V_{α_7}	V_{α_8}
3	30	10	30	20	20	30	50	100

Тепер обчислюємо середню кількість операцій за один прогін алгоритму. Для цього підставляємо задані значення кількості операцій кожного оператора (табл. 2) у формулу (1):

$$\theta_{\text{OCH}} = \frac{10000}{679} \cdot 30 + \frac{8550}{679} \cdot 10 + \frac{9000}{679} \cdot 30 + \frac{250}{679} \cdot 20 + \frac{750}{679} \cdot 20 + \frac{750}{679} \cdot 30 + \frac{450}{679} \cdot 50 + \frac{700}{679} \cdot 100$$

$$\approx 1164,21.$$

Отже, середня кількість операцій за один прогін заданого алгоритму $\theta_{\rm och} \approx 1164,21.$

2.2. Обчислення середньої кількості звернень до кожного з файлів

Середня кількість звернень до файлів визначається так:

$$N_h = \sum_{v_i \in S_h} n_i,\tag{3}$$

де n_i — середня кількість звернення до оператора v_i .

На схемі алгоритму вершини з операціями звернення до файлів позначені $V_{\beta i}$. Оскільки всі вершини мають різні індекси, вважаємо, що в кожній з них відбувається звернення до окремого файлу. Також на схемі алгоритму оператори звернення до файлів йдуть одразу ж після основних операторів, отже середня кількість звернення до операторів звернення до файлів буде дорівнювати середній кількості звернення до відповідного основного оператора. Тоді:

$$N_1 = n_1 = \frac{10000}{679}, \quad N_2 = n_2 = \frac{8550}{679}, \quad N_3 = n_3 = \frac{9000}{679}, \quad N_4 = n_4 = \frac{250}{679},$$

 $N_5 = n_5 = \frac{750}{679}, \quad N_6 = n_6 = \frac{750}{679}, \quad N_7 = n_7 = \frac{450}{679}, \quad N_8 = n_8 = \frac{700}{679}.$

Отже, були знайдені значення середньої кількості звернень до кожного з файлів.

2.3. Обчислення середньої кількості інформації, яка передається при одному зверненні до файлу

Середня кількість інформації, яка передається при одному зверненні до файлу визначається так:

$$\theta_h = \frac{1}{N_h} \sum_{v_i \in S_h} n_i \cdot l_i, \tag{4}$$

де N_h — середня кількість звернення до файлу F_h , n_i — середня кількість звернення до оператора v_i , l_i — середня кількість інформації, що передається при виконанні оператора звернення v_i (табл. 3).

Табл. 3: Середня кількість інформації l_i , що передається при виконанні оператора звернення $v_{\beta i}$

Номер варіанта	та Кількість інформації							
	$V_{oldsymbol{eta}_1}$	V_{β_2}	V_{β_3}	V_{eta_4}	V_{eta_5}	V_{eta_6}	V_{eta_7}	$V_{oldsymbol{eta}_8}$
3	250	500	150	1000	200	100	400	200

Оскільки звернення до кожного з файлів відбувається лише в одній вершині $N_h = n_h$. Підставляємо вихідні дані у формулу (4):

$$\theta_1 = \frac{679}{10000} \cdot \frac{10000}{679} \cdot 250 = 250, \quad \theta_2 = \frac{679}{8550} \cdot \frac{8550}{679} \cdot 500 = 500,$$

$$\theta_3 = \frac{679}{9000} \cdot \frac{9000}{679} \cdot 150 = 150, \quad \theta_4 = \frac{679}{250} \cdot \frac{250}{679} \cdot 1000 = 1000,$$

$$\theta_5 = \frac{679}{750} \cdot \frac{750}{679} \cdot 200 = 200, \quad \theta_6 = \frac{679}{750} \cdot \frac{750}{679} \cdot 100 = 100,$$

$$\theta_7 = \frac{679}{450} \cdot \frac{450}{679} \cdot 400 = 400, \quad \theta_8 = \frac{679}{700} \cdot \frac{700}{679} \cdot 200 = 200.$$

Отже, знайшли середню кількість інформації, яка передається при одному зверненні до файлу θ_h для кожного з файлів F_h .

2.4. Обчислення середньої трудомісткості етапу рахування

Середня трудомісткість етапу рахування $\theta_{\rm O}$ визначається так:

$$\theta_{\rm O} = \frac{\theta}{N},\tag{5}$$

де N — сума середнього числа N_i звернень до основних операторів S_{O} , тобто:

$$N = \sum_{i=1}^{V_{Oi}} n_i,\tag{6}$$

Отже, спочатку обчислюємо суму середнього числа звернень до основних операторів N:

$$N = \frac{10000 + 8550 + 9000 + 250 + 750 + 750 + 450 + 700}{679} = \frac{30450}{679} \approx 48,85.$$

Підставляємо отримане значення у формулу (5) і знаходимо середню трудоміскістість етапу рахування:

$$\theta_{\rm O} = \frac{790500}{679} \cdot \frac{679}{30450} = \frac{790500}{30450} \approx 25,96.$$

Отже, знайшли значення середньої трудомісткості етапу рахування $\theta_{\rm O} = 25{,}96.$

3. Висновок

Виконуючи дану лабораторну роботу, ми вивчили методі оцінки трудомісткості алгоритмів.