Computação Móvel e Ubíqua

Instituto de Informática - UFG

Prof. Fábio M. Costa — 2023/1

Redes de Sensores e Atuadores

Sensores

- Sensor: dispositivo que converte atividades ou mudanças físicas em sinais elétricos
 - Interface entre o mundo físico e sistemas computacionais
 - Ex.: abertura da porta dispara o sistema de alarme
- Transdutor: transforma uma forma de entrada (energia ou sinal) em outra
 - Sensores captam mudanças no ambiente físico e produzem sinais elétricos com o uso de transdutores

FIGURE 3.1 Basic concept of transducers.

Sensores

Exemplo de sensor (e atuador) com transdutor

FIGURE 3.2 Example of sensor with transducer.

 Desempenho medido em termos de: acurácia, sensibilidade, resolução e faixa de valores (range)

Exemplos de sensores

Presence & proximity loT sensor

Gyroscope IoT sensor

Image IoT sensor

https://www.avsystem.com/blog/iot-sensors-iot-actuators/

Atuadores

- Atuador: transdutor que recebe, como entrada, alguma forma de energia e produz alguma forma de movimento ou ação.
 - Atuadores pneumáticos: convertem energia na forma de ar comprimido em alguma forma de movimento
 - O Atuadores elétricos: convertem energia elétrica em energia mecânica
 - Atuadores mecânicos: convertem energia mecânica em alguma forma de movimento
- Generalizando: convertem sinais (ex., elétricos) em alguma forma de intervenção no ambiente

Atuadores

https://www.avsystem.com/blog/iot-sensors-iot-actuators/

Sensores e atuadores

Exemplo de sistema

Tipos de sensores: Localização

Alguns casos de uso

- Determinar se um usuário está nas proximidades de um hotspot Wi-Fi conhecido
 - ✓ Identificar locais habituais e configurar o dispositivo para cada local
- Determinar a localização absoluta, indoor ou outdoor; localização contínua
 - ✓ Rastrear percursos, locais frequentemente visitados etc.
- Calcular a localização em ambiente fechado (indoor prédio, andar, corredor, sala)
 - ✓ Ajudar a encontrar uma loja no shopping, lojas próximas com cupons de desconto
- Determinar se o usuário está em casa e a menos de 5m do celular (ex., via mic)
 - ✓ Relaxar as restrições de autenticação em ambientes seguros

Tipos de sensores: Localização

Os mais comuns

- Acelerômetro mede a aceleração própria (força g)
- Giroscópio determina movimento rotacional e orientação do dispositivo
- GPS latitude, longitude e altitude na superfície da Terra (triangulação de sinais de satélite)

Beacons — localização indoors (triangulação de sinal

Bluetooth, Wi-Fi)

Tipos de sensores: Proximidade

Detectar a aproximação ou presença de objetos próximos, sem contato físico

- Indutivo: detecção de objetos metálicos cria um campo magnético em torno de si
- Capacitivo: detecção de objetos metálicos e não-metálicos — campo eletrostático
- Fotoelétrico: detecta objetos por meio de uma fonte e um receptor de luz
- Magnético: usa uma chave elétrica que é ativada (fecha o circuito) quando próxima de um objeto magnético

Tipos de sensores

Outros tipos

- Sensor de Pressão: transdutor gera um sinal em resposta à pressão aplicada no sensor (geralmente em gases ou líquidos)
- Sensor de Toque: estímulo físico (touch/contact), detecção de movimento, detecção do contorno de objetos

Redes de Sensores

Sensores são mais úteis se conectados entre si e com a Internet

loT: Introdução

Para discutir:

Internet das Coisas (IoT)

X

Redes de Coisas (NoT)

- Comunicação e conectividade ubíqua
- Integração transparente entre pessoas e dispositivos: convergência entre o mundo físico e o virtual (ex.: cyber-physical systems, digital twins)
- Dois pilares: a "Internet" e as "coisas"
 - Coisas: Um conjunto genérico de entidades: dispositivos "smart", sensores, seres humanos, ou qualquer objeto ciente de seu contexto e capaz de comunicar com outras entidades — acessíveis sem restrições de tempo ou local
 - Conectividade ubíqua: aplicações com suporte a uma variedade de dispositivos e protocolos de comunicação integração entre dispositivos móveis, dispositivos de borda (roteadores etc.), humanos no loop (como controladores), servidores na nuvem

IoT and NoT

NIST white paper: Network of Things — Jeffrey Voas

- loT necessariamente envolve: sensoriamento, computação, comunicação e atuação
- loT é uma instanciação de NoT (Network of Things), onde as coisas estão conectadas à Internet
- Coisas no mundo real pessoas, carros, residências, computadores, interruptores, roteadores, dispositivos "inteligentes", estradas, edifícios etc.
- Coisas no mundo virtual software, mídias sociais, arquivos, streams de dados, máquinas virtuais, redes virtuais etc.
- Primitivas que dão significado/sentido às coisas: sensor, agregador, canal de comunicação, "utility" externa, gatilho de decisão

Fonte: NIST

loT — Evolução da definição

Short video 1 (Edureka)
Short video 2 (IoT-A.eu)

- Primeira menção do termo: 1999 <u>Kevin Ashton (Auto-ID Center, MIT)</u>
- Internet de tudo (Internet of Everything) pessoas, coisas e lugares, que podem expor seus serviços para outras entidades (Cisco, 2013)
- **IoT Industrial** comunicação M2M (machine-to-machine), Big Data, aprendizado de máquina. E.g., rastreio e gerenciamento da cadeia de suprimentos, controle e garantia de qualidade, economia energética
- Inteligência (smartness) em IoT dispositivos "smart", redes "smart" (redes baseadas em padrões abertos, esquemas de endereçamento universais, multifuncionalidade
- Humanos no loop comunicação M2M, pessoa-máquina, pessoa-ambiente; capacidade de intervenção/controle, leitura do ambiente...
- Melhoria na qualidade de vida canal de comunicação expandido entre objetos; monitoramento, automação e controle; eficiência no uso de recursos

loT — Arquiteturas

- Ambiente distribuído, composto por alguns blocos básicos:
 - Dispositivos sensores
 - Chamada remota de serviços
 - Redes de comunicação
 - Processamento de eventos ciente de contexto
 - Aplicações
- Mobilidade: requer adaptabilidade dinâmica e.g., para lidar com interações e situações não previstas, ou para melhor utilizar os recursos do ambiente
- Arquiteturas de referência: componentes e suas interfaces, geralmente estruturados em camadas
- Modelo comum: SOA e APIs Web (REST), Web of Things (WoT)

Uma arquitetura de referência para lo T

Visão geral

- Recursos: dispositivos (sensores, atuadores), processamento, armazenamento
 - Identificação e descoberta de recursos
 - Particionamento maximizar a utilização (custo, energia, desempenho)
 - Escalonamento quais tarefas alocar em quais recursos (e quando)
- Escala, heterogeneidade, dinamicidade em IoT — desafio para soluções tradicionais

Particionamento de recursos

- Alocação de partes de um recurso para aplicações diferentes mesma motivação para virtualização e contêineres em computação em nuvem
- Contêineres mais leves e apropriados para dispositivos com recursos limitados (ex.: <u>Docker</u>)
 - Ambiente portável e independente de plataforma para hospedar aplicações e suas dependências, configurações, entrada/saída, sistema de arquivos...
 - Menor tempo de carga e inicialização (em comparação com VMs)

"Offloading" de computação

- Também chamado de "offloading" de código
- Transferir carga de computação do dispositivo de IoT para processamento em outro lugar (ex.: na nuvem)
- Motivação: gerenciamento de energia, requisitos de armazenamento, performance

Técnicas:

- anotação do código (programador indica as partes da aplicação que podem ser "offloaded")
- analisadores de código (mais adaptativo)

Identificação e descoberta de recursos/serviços

- Identificar e localizar um dispositivo
- Descobrir o serviço a ser chamado (no dispositivo)
- Permite que os dispositivos se "encontrem" e se conectem
- Ex.: Serviço de diretório, UPnP, CoAP-based, consulta em serviços de busca
- Recursos físicos vs. Recursos virtuais
- Descoberta semântica metadados associados aos recursos, ontologias (RDF, OWL) — Semantic Web of Things
- Aspectos de segurança...

Gerenciamento de dados e analítica em lo T

- Processamento da imensa quantidade de dados originados na IoT
- Big Data: aquisição, filtragem, transmissão e análise (com escalabilidade)
- Processamento de fluxos (stream processing) detecção de eventos
- Detecção de padrões e mineração de dados para extrair conhecimento e instrumentar a tomada de decisões (em todos os níveis)
- Na nuvem...

Fonte: https://www.scnsoft.com/blog/iot-big-data

loT e Computação em Nuvem

Várias facetas

- Capacidade computacional sob demanda para armazenar e processar grandes quantidades de dados provenientes da IoT
 - Processamento de fluxo e em lote
 - Agregação e filtragem de dados de sensores
- Representação virtual dos dispositivos da IoT
 - "Servitização" da IoT
 - Seleção simultânea de múltiplas fontes de dados
 - Balanceamento de carga, escalonamento

loT e Computação na Névoa

Objetivos

- Escalabilidade
- Redução da latência de rede
- Economia de processamento e armazenamento (na nuvem)
- Agregação de dados próxima da fonte
- Evitar que dados sensíveis precisem deixar a rede local
- Usando dispositivos na borda (edge computing) ou na névoa (fog computing)
 - Edge: roteadores, switches, pontos de acesso
 - Fog: mesmas características da nuvem, mas com baixa latência

Fog vs Cloud

	Fog	Cloud
Response time	Low	High
Availability	Low	High
Security level	Medium to hard	Easy to medium
Service focus	Edge devices	Network/enterprise core services
Cost for each device	Low	High
Dominant architecture	Distributed	Central/distributed
Main content generator—consumer	Smart devices— humans and devices	Humans—end devices

Fog + Cloud

loT — Protocolos de comunicação

Em cada camada (exemplos)

loT — Protocolos de comunicação

Comparação

Table 1.2 IoT Communication Protocols Comparison						
Protocol Name	Transport Protocol	Messaging Model	Security	Best-Use Cases	Architecture	
AMPQ	TCP	Publish/Subscribe	High-Optional	Enterprise integration	P2P	
CoAP	UDP	Request/Response	Medium-Optional	Utility field	Tree	
DDS	UDP	Publish/Subscribe and Request/Response	High-Optional	Military	Bus	
MQTT	TCP	Publish/Subscribe and Request/Response	Medium-Optional	IoT messaging	Tree	
UPnP		Publish/Subscribe and Request/Response	None	Consumer	P2P	
XMPP	TCP	Publish/Subscribe and Request/Response	High-Compulsory	Remote management	Client server	
ZeroMQ	UDP	Publish/Subscribe and Request/Response	High-Optional	CERN	P2P	

Aplicações de loT

Três grandes áreas

- Aplicações industriais
 - Logística, transportes, cadeia de suprimentos, gerenciamento de frotas, aviação, sistemas de automação empresarial
- Aplicações para melhorar a qualidade de vida
 - Sistemas de cuidados de saúde, cidades/edifícios/escritórios/... inteligentes, IoT social, smart shopping
- Aplicações para o meio ambiente
 - Gerenciamento de desastres, monitoramento ambiental, irrigação inteligente, smart grids, smart metering

Aplicações de loT

Monitoramento e Atuação

- APIs para o monitoramento de dispositivos
 - Uso de energia, performance, status dos sensores, comandos para atuação
 - Detecção de anomalias, defeitos
- Em ambientes industriais, residenciais, no campo...
 - Economia de recursos, segurança, produtividade

Social Internet of Things (SloT)

- IoT e redes sociais
- Conectando os objetos à nossa volta com nossas mídias sociais
- Avaliação da confiança de comunidades na loT
- Descoberta de serviços e objetos na loT por meio dos relacionamentos, comunidades e interações nas redes sociais
- Rede social como fonte de dados (parte "soft" da IoT)

Lista de projetos em loT (academia/indústria)

Table 1.3 List of IoT-Related Projects				
Name of Project/Product	Area of Focus			
Tiny OS	Operating System			
Contiki	Operating System			
Mantis	Operating System			
Nano-RK	Operating System			
LiteOS	Operating System			
FreeRTOS	Operating System			
RIOT	Operating System			
Wit.AI	Natural Language			
Node-RED	Visual Programming Toolkit			
NetLab	Visual Programming Toolkit			
SensorML	Modeling and Encoding			
Extended Environments Markup Language (EEML)	Modeling and Encoding			
ProSyst	Middleware			
MundoCore	Middleware			
Gaia	Middleware			
Ubiware	Middleware			
SensorWare	Middleware			
SensorBus	Middleware			
OpenIoT	Middleware and development platform			
Koneki	M2M Development Toolkit			
MIHINI	M2M Development Toolkit			

Segurança em lo T

- Sensores e dispositivos de loT são menos protegidos que servidores
- Facilidade de acesso físico aos dispositivos
- Número de dispositivos que podem ser comprometidos em um ataque
- Dispositivos estão próximos do usuários consequências potencialmente dramáticas
- Heterogeneidade e administração descentralizada: difícil coordenar a correção de bugs (patching)
- Dispositivos com baixo poder computacional barreira para a implantação de mecanismos de segurança padrão (ex.: criptografia de chaves públicas)

Gerenciamento de identidade e autenticação

- Identificação dos objetos na IoT, configuração de níveis de acesso
- Autenticação de dispositivos e usuários
- Ex.: em redes veiculares, carros trocam informações básicas entre si (para evitar acidentes, por exemplo), mas informações e controles mais sensíveis só são acessíveis ao motorista e seus dispositivos.
- Escalabilidade: gerenciamento de identidade delegado para sistemas locais
 - Dada a localidade (geográfica) de boa parte das interações
- Pareamento sensível ao contexto: autenticação automática

Privacidade em loT

- Sensores capazes de monitorar diferentes parâmetros localização do usuário, frequência cardíaca, movimentos
- Abordagem centralizada: cada usuário/entidade controla os dados que entram e saem
- Privacy-preserving algorithms permitir o processamento colaborativo de dados de vários usuários sem revelar suas identidades (direta ou indiretamente)

Padronização e regulamentações

- Beneficia a interoperabilidade
 - padrões facilitam a compatibilidade
- Mas atrasam a adoção até que padrões sejam definidos e publicados
- Regulamentação frequências de rádio, interoperabilidade, autenticação, identificação, autorização, protocolos de comunicação, auditabilidade, ...

Table 1.4 IoT Standards				
Organization Name	Outcome			
Internet of Things Global Standards Initiative (IoT-GSI)	JCA-IoT			
Open Source Internet of Things (OSIoT)	Open Horizontal Platform			
IEEE	802.15.4 standards, developing a reference architecture			
Internet Engineering Task Force (IETF)	Constrained RESTful Environments (CoRE), 6LOWPAN, Routing Over Low power and Lossy networks (ROLL), IPv6			
The World Wide Web Consortium (W3C)	Semantic Sensor Net Ontology, Web Socket, Web of Things			
XMPP Standards Foundation	XMPP			
Eclipse Foundation	Paho project, Ponte project, Kura, Mihini/M3DA, Concierge			
Organization for the Advancement of Structured Information Standards	MQTT, AMPQ			

Leitura

- Gajjar, Manish. Mobile Sensors and Context-Aware Computing, MKP, 2017
 - Ch. 3 Sensors and actuators

- Buyya, R. and Dastjerdi, A.V.
 Internet of Things —
 Principles and Paradigms,
 MKP, 2016
 - Ch. 1 Internet of Things:
 An Overview

 Colina, Vives, Zennaro, Bagula and Petrosemoli.
 Internet of Things in Five Days, V. 1.1, 2016 (Creative Commons)

