

2D Image Processing & Augmented Reality Winter Semester 2019/2020 Survey on Face Tracking with Deep Learning

Vinay Balasubramanian

v_balasubr18@cs.uni-kl.de

Supervisor: Jilliam Diaz Barros

Outline

Quick recap

Face Tracking

Tracking a face across all frames of a video.

Can be bounding-box based tracking or landmark based (track specific number of keypoints around facial components)

Applications - Face analysis, Person identification, Activity recognition, Expression analysis, Face modeling etc.

Challenges - Videos can be captured in unconstrained conditions.

May have illumination variations, large head poses, occlusions, etc.

Image source: Google

Datasets

- AFLW
- COFW
- Helen
- IBUG
- LFPW
- LFW
- 3D Menpo
- **300-W**
- BIWI
- FM
- RWMB
- SynHead
- TF
- **300-VW**

Method

- Video Sequence of frames with temporal connection
- Sequence data? (Use RNN)

Method

- Video Sequence of frames with temporal connection
- Sequence data? (Use RNN)
- Give frames in temporal order, detect landmarks, feedback along with next frame.

Why Deep Learning?

- State-of-the-art in image processing tasks
- Operate directly on data
- Learn more generic features directly from data
- Computational efficiency
- Domain knowledge is never obsolete

Using RNNs

RNNs and Bayesian filters are operationally similar

Using RNNs

- FC-RNN is used to retain generalization of pretrained CNN
- Trained end-to-end
- SynHead dataset for head pose estimation
- 300-VW dataset for facial landmark localization
- L2 loss function
- Evaluation Area Under the Curve (AUC), Failure Rate (FR %)

Two-stream network

- Exploit both appearance information from still frames(spatial) and temporal information across frames(temporal)
- Spatial stream Image pixels (still) -> landmark locations
- Temporal stream Compress video as active appearance codes(whole face changes across frames)

Two-stream network

- Spatial stream transforms local facial patches to shape residuals used to refine current face shape from previous.
- Temporal stream Encoder-decoder network with 2-layer RNN. Capture facial dynamics in temporal dimension
- Final prediction is a weighted fusion of spatial and temporal streams shape updates

Two-stream network

- Tested on 300-VW and TF datasets
- Evaluation Normalized RMSE and Cumulative Error Distribution plots
- Weighted fusion β_1 and β_2 = 0.5 yields the best performance

LSTMs

LSTM is used to exploit spatial and temporal information

LSTMs

- Input Image and Initial face shape
- Output Predicted shape increment for the initial face shape
- Input -> several conv + max pooling -> ROI pooling for initial face shape -> concat -> FC layer -> LSTM -> predicted shape increment
- Update initial shape according to predicted shape increment

LSTMs

- Landmark detection method
- Trained on COFW, LFPW, Helen, AFW
- Evaluation Point-to-point RMSE
- Runtime 18ms

- Encoder Image pixels -> Low dimensional feature space
- Decoder Features in low dimensional space -> facial landmark heatmaps
- Feedback loop between the output(facial points) and the input

- Encoder -> Feature disentangling on low dimensional representation -> Decoder
- Disentangle temporal-variant and temporal-invariant factors
- Temporal-invariant: Person identity
- Temporal-variant: Pose, expression, illumination

- Spatial recurrent learning: Coarse-to-fine landmark search
- Feedback loop: Previous prediction + image
- Landmark detection: Detect major landmarks
- Landmark regression: Refine predicted locations from previous detection step

 Temporal recurrent learning: Model non-identity factors (temporal-variant) using LSTM

- Evaluated on AFLW, LFW, Helen, LFPW, TF, FM, 300-VW
- Evaluation Inter-ocular distance normalized RMSE

- Bounding box generation and facial landmark detection are heavily dependent
- Two agents bounding box generation and landmark detection

- Communication channels between agents (Deep Q-learning)
- Current state initialized to terminal state of previous frame
- Agents decide sequence of actions to adjust bounding box and regress landmarks simultaneously based on observed state and received messages

23

- Go to next frame when landmarks are finalized
- State Current image region extracted by bounding box
- Action Tracking agent(Movement), Alignment agent(stop/continue iterations)

Reward – Landmark detection accuracy improvements

- Evaluated on Category 3 of 300-VW
- Supervised learning stage -
 - Alignment agent trained on 300-W
 - Tracking agent trained on 300-VW
- Reinforcement learning stage
 - Whole network trained on 300-VW
- Evaluation Normalized RMSE and cumulative error distribution curves
- DADRL-3D Trained with 3D data from 3D Menpo. More robust to large pose

Comparison

Approach	Evaluated on dataset	Evaluation metrics
Dynamic Facial Analysis using RNN	300-VW	AUC, FR
Two stream transformer network	TF, 300-VW	RMSE, CED plot
Face alignment recurrent network	COFW, LFPW, IBUG, 300-VW	RMSE
Recurrent encoder- decoder network	TF, 300-VW	RMSE
Dual agent deep reinforcement learning	300-VW	RMSE and CED plot

Comparison

Approach	300-VW		TF	
	RMSE(68 landmarks)	RMSE(7 landmarks)	RMSE(68 landmarks)	RMSE(7 landmarks)
Dynamic Facial Analysis using RNN	6.16			
Two stream transformer network	5.59			2.13
Face alignment recurrent network	5.9			
Recurrent encoder- decoder network	5.15	5.29	2.77	2.89
Dual agent deep reinforcement learning	3.09			

References

- 1. Jinwei Gu, Xiaodong Yang, Shalini De Mello, Jan Kautz: Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network(2017).
- 2. Hao Liu, Jiwen Lu, Jianjiang Feng, Jie Zhou: Two-Stream Transformer Networks for Video-based Face Alignment (2017).
- 3. Qiqi Hou, Jinjun Wang, Ruibin Bai, Sanping Zhou, Yihong Gong: Face Alignment Recurrent Network(2017).
- 4. Xi Peng, Rogerio S. Feris, Xiaoyu Wang, Dimitris N. Metaxas: RED-Net: A Recurrent Encoder-Decoder Network for Video-based Face Alignment (2017).
- 5. Minghao Guo, Jiwen Lu, and Jie Zhou: Dual-Agent Deep Reinforcement Learning for Deformable Face Tracking (2018).

THANK YOU

