PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA

- 1º Cálculo teórico y experimental de la aceleración del sistema
- 2º Cálculo del coeficiente de rozamiento del sistema

DATOS:

Sensor:	Polea lineal inteligente
Factor de polea:	0,015
Masa del carrito de madera:	132,58 gramos
Masa del carrito con muelle:	490,53 gramos
Masa del carrito sin muelle:	501,06 gramos
Masa del soporte de pesas:	5,27 gramos
Masa del plástico:	12,62 gramos

Montaje general:

- 1. Limpiar concienzudamente la superficie de las vías y las guías de las ruedas.
- 2. Colocar las vías sobre una superficie horizontal y nivelarlas adecuadamente con un nivel
- 3. Instalar la polea lineal inteligente y el fotosensor en el extremo de las vías según el esquema.

1º CÁLCULO TEÓRICO Y EXPERIMENTAL DE LA ACELERACIÓN DE UN SISTEMA SIN ROZAMIENTO

Objetivo:

Comprobar la calidad de los resultados obtenidos experimentalmente en relación con el valor calculado teóricamente

Montaje:

Colocar el carrito sin muelle en el extremo del tope fijo y atarlo con un hilo que se hace pasar a través de la polea al soporte de pesas tal y como se indica en el esquema.

Procedimiento:

- Cálculo teórico de la aceleración
- Obtención experimental del valor de la aceleración
- Cálculo de los errores absoluto y relativo
- Cálculo de la tensión real que soporta el hilo

Se asume que el sistema no tiene rozamiento ni en la polea, ni en el carrito.

$$m_2g - T = m_2a$$

$$N = m_{1}g$$

$$T = m_{1}a$$

$$m_{2}g - T = m_{2}a$$

$$T = m_{1}a$$

$$a = \frac{m_{2}}{m_{1} + m_{2}}g$$

$$a = \frac{m_{2}}{m_{1} + m_{2}}g$$

$$Error \, relativo = \frac{Error \, absoluto}{aceleración \, teórica} \cdot 100$$

Error absoluto = (aceleración teórica – aceleración experimental)

2° CÁLCULO DEL COEFICIENTE DE ROZAMIENTO DEL SISTEMA

Objetivo:

Cálculo del coeficiente de rozamiento entre el bloque de madera y el suelo

Montaje:

Sustituir el carrito sin muelle por el bloque de madera y colocar en el soporte de pesas una masa de 30 o 35 gramos, tal y como se indica en el esquema

Procedimiento:

- Obtención experimental de la aceleración del sistema
- Estimación de los valores máximo y mínimo del coeficiente de rozamiento en función del error relativo obtenido en la primera parte de la práctica
- Cálculo de la tensión de la cuerda

$$m_{2}g - T = m_{2}a$$

$$m_{2}g - T = m_{2}a$$

$$T - \mu m_{1}g = m_{1}a$$

$$m_{2}g - T = m_{2}a$$

$$T - \mu m_{1}g = m_{1}a$$

$$\mu = \frac{m_{2} - (m_{1} + m_{2})\frac{a}{g}}{m_{1}}$$

MANEJO DEL PROGRAMA DATASTUDIO

Una vez que se ha seleccionado el archivo adecuado la pantalla principal de DataStudio se divide en tres partes:

- En el cuadro Datos aparecen los datos obtenidos en el experimento, indicando "Posición", "Velocidad" y "Aceleración" y la identificación de los ensayos realizados
- En el cuadro "Pantalla" se presentan las diferentes posibilidades de tratamiento de los datos. De ellos nos interesan las opciones "Gráfica" y "Tabla"
- En el cuadro "Gráficos y Tablas" se visualizan las representaciones gráficas y las tablas previamente seleccionadas en el cuadro "Pantalla".

Manejo de las principales opciones de DataStudio

Para seleccionar datos, se puede realizar, tanto sobre los gráficos como sobre los datos, manteniendo pulsado el ratón y abriendo un recuadro que abarque los datos deseados.

Para saber qué función realiza cada icono de este menú sólo hay que colocar (sin pulsar) el cursor encima de cada uno. Las funciones más utilizadas son:

Los principales iconos son:

Optimizar escala

Se ajusta automáticamente la escala del gráfico de forma que se visualicen todos los datos experimentales.

∑ Herramienta Estadísticas

El icono con el signo (Σ) sumatorio sirve para seleccionar que cálculos estadísticos se van a realizar con los datos disponibles. Permite, entre otros, calcular el valor medio de la magnitud representada.

✓ Ajustar ▼ Herramienta de ajuste

Permite ajustar los datos a diferentes funciones matemáticas (sinusoidal, exponencial, etc.).

Con esta herramienta los datos se hacen "editables", es decir, modificables. Para eliminar una o más filas de datos hay que seleccionarlos previamente y posteriormente activar el icono "Suprimir filas".

Herramienta inteligente

Muestra las coordenadas de un punto del gráfico

Medición de cambios: herramienta Delta

Práctica laboratorio nº 1.

1ª parte: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA

Apellidos:	Nombre:	Grupo:
-------------------	---------	--------

No olvides indicar las unidades en todas las variables utilizadas.

DATOS:

Sensor:	Polea lineal inteligente
Factor de polea:	0,015
Masa del carrito de madera:	132,58 gramos
Masa del carrito con muelle:	490,53 gramos
Masa del carrito sin muelle:	501,06 gramos
Masa del soporte de pesas:	5,27 gramos
Masa del plástico:	12,62 gramos

1º CÁLCULO TEÓRICO Y EXPERIMENTAL DE LA ACELERACIÓN DEL SISTEMA SIN ROZAMIENTO

Masa del carrito sin muelle (m ₁)	
Masa del soporte de pesas (m ₂)	
Valor teórico de la aceleración del sistema	
Valor teórico de la tensión del hilo	
Valor experimental de la aceleración del sistema	
Error absoluto	
Error relativo	

2° CÁLCULO DEL COEFICIENTE DE ROZAMIENTO DEL SISTEMA

Masa del bloque de madera (m ₁)	
Masa total que cuelga (m ₂)	
Aceleración experimental del sistema	
Tensión del hilo	
Coeficiente de rozamiento	

Para cada parte de la práctica, en la <u>parte posterior</u> de este folio, realizar un <u>croquis</u> detallado de cada sistema indicando las fuerzas que actúan. Hacer además el correspondiente diagrama de aceleraciones

Diagrama fuerzas

D. aceleraciones