Step-by-step guide to designing a LL matching network.

- LL matching networks are commonly used to provide broad-band matching.
- Designing a LL network is similar to the π and T networks. You're basically creating two L networks, one for the source side and one for the load side, BUT:
 - o Both L networks will have the same Q value.
 - o Both L networks will be High Ω -Low Ω , (step-down) or both wil be Low Ω -High Ω (step-up).
 - o The 'virtual' resistance ' R_{ν} ' replaces R_P for one of the L networks, and R_{δ} for the other.
 - 0 No components are combined as they are in the π and T networks.
 - O Remember to place the X_P's next to the LARGER R-value!

NOTE: FOR CONVENTION CONSISTENT WITH CLASSROOM MATERIALS, THE FOLLOWING NOMENCLATURES ARE USED:

- ullet Xs1, Xp1 are the left side ${f s}$ eries and ${f p}$ arralel reactances, respectively
- Xs2, AND Xp2 REPRESENT THE RIGHT, (TYPICALLY LOAD-SIDE)SIDE VALUES

Figure 1. Matching LL Network Template. This one is a step-down example, where $R_{Gen} > R_V > R_{Load}$. In a step-up network, X_{P1} and X_{P2} would be to the right of X_{S1} and X_{S2} ...

STEPS:

- 1. Calculate the virtual resistance value RV:
 - RV is simply the square root of the product of RS and RP:

$$R_V = \sqrt{R_{gen} * R_{Load}}$$
 In our example: $R_V = \sqrt{75 * 15} = 33.54\Omega$

2. Calculate Q using the Q formula: $Q_1 = \sqrt{R_P/R_S - 1}$. In the example, note that the example is a step-down matching network, $(R_{gen} > R_V > R_{load})$. So R_{gen} is used in place of R_P , and R_V is used in place of R_S :

$$Q_1 = \sqrt{R_{gen}/R_v - 1} = \sqrt{75/33.54 - 1} = 1.112$$

3. Calculate the reactances using R_{V_i} and Q_i , and R_{GEN} for the source side, and R_{LOAD} for the load side.

$$X_s = +/-Q *R_s X_p = \pm R_P/Q$$

4. Determine whether you want HI-pass or LO-pass filters for each L network and assign $\pm j$'s accordingly. Values for a HI/LO arrangement of the example are shown here:

5. Use AC analysis to verify your work. The total impedance load seen by the generator should be equal to its source impedance.

REFERENCE MATERIAL: BOWICK, PGS. 63 - 72