

IN THE CLAIMS:

Please amend claims 4-8 and 11-14 as follows.

1. (Original) A method for selecting a swapping technique from a group consisting of a bit-swapping and a gain-swapping techniques in a discrete multi-tone (DMT) system having multiple sub-channels, gain factor constraints, a threshold index value (T), and a maximum mean square error (MSE_{max}) and a minimum mean square error (MSE_{min}), the method comprising:

determining a first index value (I) and a second index value (J) based on MSE_{max} , MSE_{min} and said gain factor constraints according to a predetermined manner, I denoting range of improvement when adopting the gain-swapping as the swapping technique, and J denoting range of improvement when adopting a combination of the gain-swapping and the bit-swapping as the swapping technique; determine whether larger one of I and J is larger than T;

if larger one of I and J is larger than T, determining whether I is equal to or larger than J; and selecting the gain-swapping as the swapping technique if I is equal to or larger than J.

1. (Original) The method as recited in claim 1, further comprising a step of selecting a combination of gain-swapping and bit-swapping as the swapping technique if I is smaller than J.

2. (Currently Amended) The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (G_{cm}) and a minimum gain factor constraint (G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , said predetermined manner comprises the steps of:

obtaining a ~~first~~-gain margin value (Gmv_1) by subtracting g_{max} from Gcm , and obtaining ~~an~~ ~~second~~ another gain margin value (Gmv'_2) by subtracting Gcn from g_{min} ;
obtaining a ~~first~~ parameter (P_1) by subtracting MSE_{min} from MSE_{max} ; and
obtaining the I by doubling a smallest one of the group consisting of Gmv_1 , Gmv'_2 and $(0.5*P_1)$.

3. (Currently Amended) The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes an arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping and MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

obtaining a ~~third~~ gain margin value (Gmv_b3) by subtracting Gcn from g_{max} , and obtaining a ~~fourth~~ another gain margin value (Gmv'_b4) by subtracting g_{min} from Gcm ;
obtaining a ~~second~~ parameter (P_2) by subtracting MSE_{maxbs} from MSE_{minbs} ;
obtaining ~~an~~ ~~third~~ another parameter (P'_3) by subtracting MSE_{maxbs} and a smallest one of the group, consisting of Gmv_b3 , Gmv'_b4 and $(0.5*P_2)$, from MSE_{avgbs} ; and
obtaining the J by subtracting MSE_{min} and $(2*P'_3)$ from MSE_{max} .

4. (Currently Amended) The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denoted the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping and

MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

obtaining a fifth gain margin value (Gmv_5) by subtracting g_{max} from Gcm , and
obtaining ~~an sixth another~~ gain margin value (Gmv'_6) by subtracting Gcn from g_{min} ;
obtaining a fourth parameter ($P4$) by subtracting MSE_{minbs} from MSE_{maxbs} ;
obtaining ~~an fifth another~~ parameter (P'_5) by subtracting MSE_{avgbs} and a smallest one of the group, consisting of Gmv_5 , Gmv'_6 and $(0.5*P4)$, from MSE_{maxbs} ; and
obtaining the J by subtracting MSE_{min} and $(2*P'_5)$ from MSE_{max} .

5. (Currently Amended) The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

obtaining a seventh gain margin value (Gmv_{b7}) by subtracting Gcn from g_{max} , and obtaining ~~an eighth another~~ gain margin value (Gmv'_{b8}) by subtracting g_{min} from Gcm ;
obtaining a sixth parameter ($P6$) by subtracting MSE_{maxbs} from MSE_{minbs} ;
obtaining ~~an seventh another~~ parameter (P'_7) by subtracting a smallest one of the group, consisting of Gmv_{b7} , Gmv'_{b8} and $(0.5*P6)$, and MSE_{avgbs} from MSE_{minbs} ; and
obtaining the J by subtracting MSE_{min} and $(2*P'_7)$ from MSE_{max} .

6. (Currently Amended) The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes

the gain of the channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

- obtaining a ninth gain margin value (Gmv_9) by subtracting g_{max} from Gcm , and obtaining ~~an tenth~~ another gain margin value (Gmv'_10) by subtracting Gcn from g_{min} ;
- obtaining a eighth parameter ($P8$) by subtracting MSE_{minbs} from MSE_{maxbs} ;
- obtaining ~~an ninth~~ another parameter (P'_9) by subtracting MSE_{minbs} and a smallest one of the group, consisting of Gmv_9 , Gmv'_10 and $(0.5*P8)$, from MSE_{avgbs} ; and
- obtaining the J by subtracting MSE_{min} and $(2*P'_9)$ from MSE_{max} .

7. (Currently Amended) A method for performing gain-swapping in a discrete multi-tone (DMT) system having multiple sub-channels, gain factor constraints, and a maximum mean square error (MSE_{max}) and a minimum mean square error (MSE_{min}), wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the channel respecting MSE_{min} , said method comprising the steps of:

- obtaining ~~an eleventh~~ gain margin value (Gmv_{11}) by subtracting g_{max} from Gcm , and obtaining ~~an twelfth~~ another gain margin value (Gmv'_12) by subtracting Gcn from g_{min} ;
- obtaining a tenth parameter ($P10$) by subtracting MSE_{min} from MSE_{max} ;
- obtaining the value MIN of the smallest one of the group consisting of Gmv_{11} , Gmv'_12 and $(0.5*P10)$; and
- adding gain in amount of MIN to the sub-channel having MSE_{max} and subtracting gain in amount of MIN from the sub-channel having MSE_{min} .

8. (Original) A swapping technique selector for selecting an optimal swapping technique from a group consisting of a bit-swapping and a gain-swapping techniques in a discrete multi-tone (DMT) system having multiple sub-channels, gain factor constraints, and a threshold index value (T) and a maximum mean square error (MSE_{max}) and a minimum mean square error (MSE_{min}), the swapping technique selector comprising:

a performance improvement pre-calculator for determining a first index value (I) and a second index value (J) based on MSE_{max} , MSE_{min} and said gain factor constraints according to a predetermined manner, I denoting range of improvement when adopting the gain-swapping as the optimal swapping technique, and J denoting range of improvement when adopting a combination of the gain-swapping and the bit-swapping as the optimal swapping technique;

a threshold comparator, connected to the performance improvement pre-calculator, for determining whether larger one of I and J is larger than T;

a performance improvement comparator, connected to the threshold comparator, for selectively determining whether I is equal to or larger than J; and

a swapping technique selection device, connected to the performance improvement comparator, for selecting either the gain-swapping or the combination of gain-swapping and bit-swapping as the optimal swapping technique.

9. (Currently Amended) The selector of claim 9, wherein the gain factor constraints have a maximum gain factor constraint (G_{cm}) and a minimum gain factor constraint (G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , said predetermined manner comprises the steps of:

obtaining a ~~first~~ gain margin value (Gmv_1) by subtracting g_{max} from Gcm , and obtaining ~~an~~ ~~second~~ another gain margin value (Gmv_2) by subtracting Gcn from g_{min} ;
obtaining a ~~first~~ parameter (P_1) by subtracting MSE_{min} from MSE_{max} ; and
obtaining the I by doubling a smallest one of the group consisting of Gmv_1 , Gmv_2 and $(0.5*P_1)$.

10. (Currently Amended) The selector of claim 9, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes an arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner comprises the steps of: obtaining a ~~third~~ gain margin value (Gmv_3) by subtracting Gcn from g_{max} , and obtaining ~~an~~ ~~fourth~~ another gain margin value (Gmv_b4) by subtracting g_{min} from Gcm ;

obtaining a ~~second~~ parameter (P_2) by subtracting MSE_{maxbs} from MSE_{minbs} ;
obtaining ~~an~~ ~~third~~ another parameter (P'_3) by subtracting MSE_{maxbs} and a smallest one of the group, consisting of Gmv_3 , Gmv_b4 and $(0.5*P_2)$, from MSE_{avgbs} ; and
obtaining the J by subtracting MSE_{min} and $(2*P'_3)$ from MSE_{max} .

11. (Currently Amended) The selector of claim 9, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denoted the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping and MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

obtaining a ~~fifth~~ gain margin value (Gmv~~5~~) by subtracting g_{max} from G_{cm} , and obtaining ~~an~~ ~~sixth~~ another gain margin value (Gmv'_6) by subtracting G_{cn} from g_{min} ;

obtaining a ~~fourth~~ parameter (P4) by subtracting MSE_{minbs} from MSE_{maxbs} ;

obtaining ~~an~~ ~~fifth~~ another parameter (P'_5) by subtracting MSE_{avgbs} and a smallest one of the group, consisting of Gmv~~5~~, Gmv'_6 and (0.5*P4), from MSE_{maxbs} ; and

obtaining the J by subtracting MSE_{min} and (2*P'_5) from MSE_{max} .

12. (Currently Amended) The selector of claim 9, wherein the gain factor constraints have a maximum gain factor constraint (G_{cm}) and a minimum gain factor constraint (G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

obtaining a ~~seventh~~ gain margin value (Gmv_b7) by subtracting G_{cn} from g_{max} , and obtaining ~~an~~ ~~eight~~ another gain margin value (Gmv'__b8) by subtracting g_{min} from G_{cm} ;

obtaining a ~~sixth~~ parameter (P6) by subtracting MSE_{maxbs} from MSE_{minbs} ;

obtaining ~~an~~ ~~seventh~~ another parameter (P'_7) by subtracting a smallest one of the group consisting of Gmv_b7, Gmv'__b8 and (0.5*P6) and MSE_{avgbs} from MSE_{minbs} ; and

obtaining the J by subtracting MSE_{min} and (2*P'_7) from MSE_{max} .

13. (Currently Amended) The selector of claim 9, wherein the gain factor constraints have a maximum gain factor constraint (G_{cm}) and a minimum gain factor constraint (G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs}

denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

- obtaining a ~~ninth~~ gain margin value ($Gmv-9$) by subtracting g_{max} from Gcm ,
- and obtaining ~~an tenth~~ another gain margin value ($Gmv'-10$) by subtracting Gcn from g_{min} ;
- obtaining a ~~eighth~~ parameter ($P8$) by subtracting MSE_{minbs} from MSE_{maxbs} ;
- obtaining ~~an ninth~~ another parameter ($P'9$) by subtracting MSE_{minbs} and a smallest one of the group consisting of $Gmv9$, $Gmv'-10$ and $(0.5*P8)$ from MSE_{avgbs} ; and
- obtaining the J by subtracting MSE_{min} and $(2*P'9)$ from MSE_{max} .