

AFML-TR-77-33  
ADD 423938



## COMPOSITE MATERIALS WORKBOOK

AIR FORCE MATERIALS LABORATORY

MARCH 1977

19951109 068

TECHNICAL REPORT AFML-TR-77-33

Approved for public release; distribution unlimited

DTIC QUALITY INSPECTED 5

AIR FORCE MATERIALS LABORATORY  
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES  
AIR FORCE SYSTEMS COMMAND  
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

PLASTIC  
BAG  
RECEIVED

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (ASD/OIP) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.



STEPHEN W. TSAI  
Project Scientist

FOR THE COMMANDER



JEROME M. KELBLE, Chief  
Nonmetallic Materials Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

DDC will not accession report 2B78

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>AFML-TR-77-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. GOVT ACCESSION NO.          | 3. RECIPIENT'S CATALOG NUMBER                                                                       |
| 4. TITLE (and Subtitle)<br>COMPOSITE MATERIALS WORKBOOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | 5. TYPE OF REPORT & PERIOD COVERED<br>Interim Report<br>9/1/76 - 3/1/77                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 6. PERFORMING ORG. REPORT NUMBER                                                                    |
| 7. AUTHOR(s)<br>Stephen W. Tsai, H. Thomas Hahn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. CONTRACT OR GRANT NUMBER(s) |                                                                                                     |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Air Force Materials Laboratory (AFML/MBM)<br>Air Force Wright Aeronautical Laboratories<br>Wright-Patterson AFB, Ohio 45433 (over).                                                                                                                                                                                                                                                                                                                                                                                              |                                | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>2307 Task 2307P1<br>2419 Task 241903 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Air Force Materials Laboratory (AFML/MBM)<br>Air Force Wright Aeronautical Laboratories<br>Wright-Patterson AFB, Ohio (over)                                                                                                                                                                                                                                                                                                                                                                                                         |                                | 12. REPORT DATE<br>March 1977                                                                       |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br>Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 13. NUMBER OF PAGES<br>361                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 15. SECURITY CLASS. (of this report)<br>Unclassified                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                                     |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br>Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                                     |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                                                     |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Composite materials; material properties; formulas for: stress, strain, stress/strain relations, micromechanics, laminated plate theory, curing and swelling stresses, fatigue, fracture, moisture effect, time dependent behavior, statistical methodology and test methods.                                                                                                                                                                                                             |                                |                                                                                                     |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>This workbook is intended to present to the users of composite materials a set of tools to solve most commonly encountered problems in design and testing. Attempts are made to simplify both the operational and conceptual aspects. Subjects are selected from the standpoint of practical application rather than elegance.<br>This workbook is unique in that it requires the student to work through many numerical problems immediately after the presentation of formulas. Program- |                                |                                                                                                     |

**Unclassified**

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

**20. ABSTRACT (continued)**

mable pocket calculators, preferably with magnetic card capability, are most suitable to perform the necessary calculations. In a separate volume, a number of the formulas in this workbook have been preprogrammed. The description, operating instruction, and program listing for these formulas have been compiled for Texas Instruments SR-52.

It is envisioned that this workbook is suitable for both a supervised educational program for the novice, and a refresher course for the experienced. It is believed that composite materials can be made conceptually simple. Operational aspects can also be made simple by the use of programmable calculators. The performance characteristics of composite materials can now be fully appreciated and utilized.

The combined workbook and mc<sup>2</sup> (magnetic card calculator) approach, can make speed teaching and speed learning possible. This approach can be extended into subjects beyond composite materials.

**9. PERFORMING ORGANIZATION NAME AND ADDRESS (continued)**

University of Dayton Research Institute  
300 College Park Avenue  
Dayton, Ohio 45469

**11. CONTROLLING OFFICE NAME AND ADDRESS (continued)**

Air Force Office of Scientific Research, AFOSR/NA  
Bolling AFB, D.C. 20332

**Unclassified**

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

## FOREWORD

This report was prepared in the Mechanics and Surface Interactions Branch (AFML/MBM), Nonmetallic Materials Division, Air Force Materials Laboratory. Wright-Patterson AFB, Ohio. The work was performed under the joint support of Project No. 2419 "Nonmetallic Structural Materials," Task No. 241903 "Composite Materials and Mechanics Technology," and Project No. 2307 "Aerospace Sciences," Task No. 2307P1 "Life Analysis and Failure Mechanics in Engine and Airframe Structural Metals and Composites." The time period covered by the effort was 1 September 1976 to 1 March 1977. Stephen W. Tsai (AFML/MBM) was the laboratory project engineer.

Contributions from Wolfgang S. Knauss, California Institute of Technology, George S. Springer, University of Michigan, Richard H. Toland, Lawrence Livermore Laboratory, and Edward M. Wu, Lawrence Livermore Laboratory, are gratefully acknowledged. Unpublished data furnished by Ran Y. Kim, University of Dayton Research Institute, are also gratefully acknowledged.

|                     |                                     |
|---------------------|-------------------------------------|
| Accession For       |                                     |
| NTIS CRA&I          | <input checked="" type="checkbox"/> |
| DTIC TAB            | <input type="checkbox"/>            |
| Unannounced         | <input type="checkbox"/>            |
| Justification _____ |                                     |
| By DTIC-AI 11-2-95  |                                     |
| Distribution /      |                                     |
| Availability Codes  |                                     |
| Dist                | Avail and/or Special                |
| A-1                 |                                     |

## TABLE OF CONTENTS

| Section |                                                                   | Page |
|---------|-------------------------------------------------------------------|------|
| I       | MATERIALS PROPERTIES -- S. W. Tsai                                |      |
|         | 1. DENSITY OF COMPOSITES                                          | 1    |
|         | 2. ONE-DIMENSIONAL ELASTICITY PROPERTIES                          | 5    |
|         | 3. TWO-DIMENSIONAL ELASTICITY PROPERTIES                          | 9    |
| II      | STRESS AND STRAIN -- S. W. Tsai                                   |      |
|         | 1. STRESS AS COORDINATES ROTATE                                   | 13   |
|         | 2. MAXIMUM STRESS FAILURE CRITERION FOR UNIDIRECTIONAL COMPOSITES | 19   |
|         | 3. STRENGTH ESTIMATE OF RANDOM FIBER COMPOSITES                   | 21   |
|         | 4. STRAIN AS COORDINATES ROTATE                                   | 23   |
|         | 5. STRAIN ROSETTES                                                | 27   |
| III     | STRESS-STRAIN RELATIONS -- S. W. Tsai                             |      |
|         | 1. COMPLIANCE AND MODULUS MATRICES                                | 29   |
|         | 2. MAXIMUM STRAIN CRITERION                                       | 37   |
|         | 3. PLANE ELASTICITY SOLUTIONS                                     | 41   |
|         | 4. TRANSFORMATION RELATIONS FOR COMPLIANCE                        | 45   |
|         | 5. TRANSFORMATION RELATIONS FOR MODULUS MATRIX                    | 49   |
|         | 6. MODULI FOR RANDOM COMPOSITES                                   | 53   |
| IV      | MICROMECHANICS -- H. T. Hahn                                      |      |
|         | 1. ELASTIC PROPERTIES                                             | 55   |
|         | 2. STRESSES IN CONSTITUENT PHASES                                 | 71   |
|         | 3. STRENGTH                                                       | 75   |
|         | 4. SYNERGISTIC EFFECTS OF MATRIX AND FIBER STRENGTH SCATTER       | 85   |
| V       | IN-PLANE PROPERTIES OF SYMMETRIC LAMINATES -- S. W. Tsai          |      |
|         | 1. STRESS-STRAIN RELATIONS                                        | 89   |
|         | 2. FORMULAS FOR IN-PLANE MODULUS                                  | 93   |
|         | 3. CALCULATION OF PLY STRESSES                                    | 99   |
|         | 4. PLANE ELASTICITY SOLUTIONS FOR SYMMETRIC LAMINATES             | 101  |

TABLE OF CONTENTS (Continued)

| Section |                                                                                             | Page |
|---------|---------------------------------------------------------------------------------------------|------|
| VI      | FLEXURAL PROPERTIES OF SYMMETRIC LAMINATES -- S. W. Tsai                                    |      |
|         | 1. FLEXURE-CURVATURE RELATIONS                                                              | 103  |
|         | 2. FORMULA FOR FLEXURAL RIGIDITY                                                            | 105  |
|         | 3. FORMULA FOR RIGIDITY FOR SANDWICH PLATES                                                 | 123  |
|         | 4. DETERMINATION OF STRESSES                                                                | 127  |
| VII     | PROPERTIES OF UNSYMMETRICAL LAMINATES -- S. W. Tsai                                         |      |
|         | 1. BACKGROUND                                                                               | 135  |
|         | 2. COUPLING MODULUS                                                                         | 137  |
|         | 3. COUPLED BENDING AND EXTENSION OF LAMINATES                                               | 149  |
| VIII    | STRESS AND DEFORMATION DUE TO CURING AND SWELLING -- H. T. Hahn                             |      |
|         | 1. UNIDIRECTIONAL LAMINAEE                                                                  | 157  |
|         | 2. MULTIDIRECTIONAL LAMINATES                                                               | 165  |
| IX      | FAILURE THEORIES -- E. M. Wu                                                                |      |
|         | 1. INTRODUCTION                                                                             | 173  |
|         | 2. GEOMETRIC INTERPRETATION OF EMPLOYING FAILURE CRITERION TO INTERROGATE POTENTIAL FAILURE | 175  |
|         | 3. FAILURE CRITERIA FOR ONE GIVEN ORIENTATION                                               | 177  |
|         | 4. INTERACTING FAILURE CRITERION                                                            | 185  |
|         | 5. TRANSFORMATION OF FAILURE CRITERION FROM ONE ORIENTATION TO ANOTHER ORIENTATION          | 191  |
|         | 6. LAMINATE STRENGTH                                                                        | 193  |
|         | 7. SIZING FOR STRENGTH                                                                      | 197  |
| X       | FRACTURE TOUGHNESS -- H. T. Hahn                                                            |      |
|         | 1. ELASTIC STRESS ANALYSIS                                                                  | 207  |
|         | 2. FRACTURE TOUGHNESS OF UNIDIRECTIONAL LAMINAEE                                            | 211  |
|         | 3. FRACTURE TOUGHNESS OF MULTIDIRECTIONAL LAMINATES                                         | 215  |
| XI      | FATIGUE AND LIFE PREDICTION -- H. T. Hahn                                                   |      |
|         | 1. UNNOTCHED FATIGUE BEHAVIOR                                                               | 221  |
|         | 2. NOTCHED FATIGUE                                                                          | 225  |
|         | 3. APPROXIMATE PREDICTION FOR FATIGUE LIFE                                                  | 227  |
|         | 4. LIFE PREDICTION AND ANALYSIS OF SCATTER                                                  | 233  |

TABLE OF CONTENTS (Continued)

| Section |                                                                         | Page |
|---------|-------------------------------------------------------------------------|------|
| XII     | ENVIRONMENTAL EFFECTS ON COMPOSITES -- G. S. Springer                   |      |
|         | 1. HEAT CONDUCTION                                                      | 247  |
|         | 2. MOISTURE DIFFUSION                                                   | 249  |
|         | 3. TRANSIENT ANALYSIS                                                   | 255  |
| XIII    | TIME DEPENDENCE IN POLYMER DEFORMATION -- W. S. Knauss                  |      |
|         | 1. LINEARLY VISCOELASTIC CHARACTERIZATION                               | 257  |
|         | 2. EFFECT OF TEMPERATURE ON TIME DEPENDENCE                             | 263  |
|         | 3. PRACTICAL LIMITS ON TIME DOMAIN OF MATERIAL                          | 267  |
| XIV     | APPLICATION OF STATISTICAL THEORIES AND DATA AVERAGING -- H. T. Hahn    |      |
|         | 1. SAMPLE AND PARENT DISTRIBUTIONS                                      | 269  |
|         | 2. WEIBULL AND NORMAL DISTRIBUTIONS                                     | 273  |
|         | 3. RELIABILITY                                                          | 279  |
|         | 4. DESIGN ALLOWABLES                                                    | 281  |
|         | 5. STATISTICAL INTERPRETATION OF FAILURE PROCESS                        | 285  |
|         | 6. SIZE EFFECT                                                          | 289  |
|         | 7. DATA AVERAGING                                                       | 295  |
| XV      | STRUCTURAL ELEMENTS -- R. H. Toland                                     |      |
|         | 1. LAMINATED COMPOSITE BEAMS - STATIC BEHAVIOR                          | 299  |
|         | 2. LONG CYLINDRICAL TUBES (AXIAL LOAD, TORSION, PRESSURE, BEAM BENDING) | 305  |
|         | 3. COLUMNS (COMPRESSION LOADED 1-D MEMBERS)                             | 307  |
|         | 4. COMPOSITES FOR SELECTIVE REINFORCEMENT OF STRUCTURAL ELEMENTS        | 311  |
|         | 5. THERMAL STRESSES                                                     | 313  |
|         | 6. SIZING FOR STIFFNESS                                                 | 315  |
|         | 7. DESIGN PROBLEM - STRINGER REINFORCED COMPRESSION PANEL               | 321  |
| XVI     | SPECIMEN CONFIGURATIONS AND LOADINGS -- H. T. Hahn                      |      |
|         | 1. TESTS FOR LAMINA PROPERTIES                                          | 323  |
|         | 2. PROBLEMS RESULTING FROM ANISOTROPY AND NONHOMOGENEITY                | 329  |
|         | REFERENCES                                                              | 331  |

TABLE OF CONTENTS (Concluded)

|                                                          | PAGE |
|----------------------------------------------------------|------|
| APPENDIX A - SYSTEME INTERNATIONALE                      | 335  |
| APPENDIX B - TRIGONOMETRIC FUNCTIONS                     | 336  |
| APPENDIX C - NORMAL DISTRIBUTION                         | 337  |
| APPENDIX D - CHI-SQUARE DISTRIBUTION - PERCENTAGE POINTS | 339  |
| APPENDIX E - GAMMA FUNCTION                              | 340  |

## LIST OF ILLUSTRATIONS

| Figure |                                                                                                                                                                                                                                                                   | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Mass fractions must always add up in a composite with n phases.                                                                                                                                                                                                   | 1    |
| 2      | Volume fractions need not always add up for many reasons; phase boundary not defined, phase interactions due to mixing and binding, voids, etc.                                                                                                                   | 1    |
| 3      | Rule-of-mixtures relations imply non-interacting phases, within each of which Equation 8 holds.                                                                                                                                                                   | 2    |
| 4      | Linear plots are the easiest provided proper variables, $\rho$ or $1/\rho$ is taken. Relationships between mass and volume contents are readily seen.                                                                                                             | 2    |
| 5      | Mass and volume fraction curve.                                                                                                                                                                                                                                   | 4    |
| 6      | Modulus and compliance are reciprocal of each other. Either one can be used but one is usually preferred for a given situation. This will be illustrated on several occasions later.                                                                              | 5    |
| 7      | For a constant strain model with parallel phases, modulus E is the preferred property because simple rule of mixture equation applies:<br>$E = \sum E_i v_i$                                                                                                      | 5    |
| 8      | For a constant stress model with in-series phases, compliance S is the preferred property because: $S = \sum S_i v_i$ .                                                                                                                                           | 5    |
| 9      | Bounds for composite modulus. Note lower bound is the reciprocal of composite compliance.                                                                                                                                                                         | 6    |
| 10     | Bounds for composite compliance. Note lower bound is the reciprocal of composite modulus.                                                                                                                                                                         | 6    |
| 11     | Transformation of applied stress in coordinate x-y to material coordinate x'-y' by a positive rotation of $\theta$ .                                                                                                                                              | 13   |
| 12     | New coordinates x'-y' in terms of old coordinates x-y, or given x-y and $\theta$ , find x'-y'. Arrow of rotation is pointing up. If $\theta$ is negative, new coordinates are x''-y''.                                                                            | 14   |
| 13     | Mohr's Circle is defined by invariants I and R. Phase angle $\delta$ is defined by a specific combination of stress components $\sigma_x$ , $\sigma_y$ and $\sigma_{xy}$ . As reference coordinates change by $+θ$ , the rotation in Mohr's Circle is $2\theta$ . | 14   |
| 14     | Relevant trigonometric functions for stress transformations. Phase angle $\delta$ displaces the function to the right (vertical axis to the left).                                                                                                                | 15   |
| 15     | Typical stress transformation. Note principal stresses and maximum shear.                                                                                                                                                                                         | 15   |
| 16     | Coordinates for off-axis uniaxial tests. Shear stress will be positive if fibers oriented along $-θ$ .                                                                                                                                                            | 19   |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                                                                                                                                                                                                                      | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17     | Maximum stress criterion is typified by separate branches which may be related to fiber and matrix (transverse or shear) failures. There is no interaction.                                                                                                                                                                                          | 19   |
| 18     | Maximum stress criterion as applied to off-axis compressive tests. There is no interaction between tensile and compressive strength.                                                                                                                                                                                                                 | 19   |
| 19     | Off-axis shear strength based on maximum stress criterion. Six possible failure modes, including positive and negative shears are labeled. In this case, longitudinal tensile and compressive are never limiting cases. Matrix tensile, compressive and shear are the controlling modes.                                                             | 20   |
| 20     | The analytic estimate (based on high shear strength) falls below most available data by a factor of 1.5; but the trend appears to be in general agreement. The rule-of-mixtures equation, with correction factor $\beta$ , is shown in dashed lines.                                                                                                 | 21   |
| 21     | Positive and negative rotations for transformation.                                                                                                                                                                                                                                                                                                  | 23   |
| 22     | Mohr's Circle representation of strain transformation. Only the one-half factor for the shear strain is the difference between the strain representation and that for stress. Special attention must be paid to starting point: $\delta = \delta_1$ , if $\epsilon_x > \epsilon_y$ ; $\delta = \delta_1 + 90^\circ$ , if $\epsilon_x < \epsilon_y$ . | 23   |
| 23     | Relevant trigonometric functions and negative phase angle that would displace the functions to the left (or vertical axis to the right).                                                                                                                                                                                                             | 24   |
| 24     | Typical strains transformations, note, principal strain and maximum shear strain.                                                                                                                                                                                                                                                                    | 24   |
| 25     | Strain rosette orientation with positive angles. If an angle is negative, it shall be so entered into Equation (45) and (46).                                                                                                                                                                                                                        | 27   |
| 26     | Rosette for uniaxial test.                                                                                                                                                                                                                                                                                                                           | 28   |
| 27     | Coordinates for $\sigma_i$ and $S_{ij}$ are coincident.                                                                                                                                                                                                                                                                                              | 34   |
| 28     | For a given set of Imposed Stresses, shown are the resulting strains for T-300/5208 unidirectional composites for all orientations.                                                                                                                                                                                                                  | 34   |
| 29     | For a given set of Imposed Strains, shown are the resulting stresses for T-300/5208 unidirectional composites for all orientations.                                                                                                                                                                                                                  | 35   |
| 30     | Ultimate stress and strain determination.                                                                                                                                                                                                                                                                                                            | 37   |
| 31     | Three views of maximum strain envelope in strain space.                                                                                                                                                                                                                                                                                              | 38   |
| 32     | Longitudinal and transverse strain in uniaxial axial tension and compression tests.                                                                                                                                                                                                                                                                  | 38   |
| 33     | Strain criterion is limited to the material symmetry axes shown here.                                                                                                                                                                                                                                                                                | 39   |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                                                                                                                                                     | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 34     | Three views of the maximum strain failure envelope in stress space.                                                                                                                                                                                                                 | 39   |
| 35     | Difference between the predicted max stress and max strain criteria of the off-axis strength.                                                                                                                                                                                       | 40   |
| 36     | Elliptical opening transverse to the fibers.                                                                                                                                                                                                                                        | 43   |
| 37     | Stress concentration factor for various aspect ratio.                                                                                                                                                                                                                               | 43   |
| 38     | A composite body. Displacement continuity and equilibrium are maintained at the interface.                                                                                                                                                                                          | 55   |
| 39     | Unidirectional composite and the reference coordinate system.                                                                                                                                                                                                                       | 61   |
| 40     | Longitudinal modulus can be predicted by Equation (128) with $\eta_1 = 1$ . Constituents are E-glass fibers ( $E_f = 72.4$ GPa, $\nu_f = 0.20$ ) and epoxy matrix ( $E_m = 3.45$ GPa, $\nu_m = 0.35$ ).                                                                             | 63   |
| 41     | Prediction of transverse modulus by Equation (130) with $\eta_2 = 0.5$ , $\eta_1 = 1$ , is comparable to the more rigorous solutions. Constituents are E-glass fibers ( $E_f = 73.1$ GPa, $\nu_f = 0.22$ ) and epoxy matrix ( $E_m = 3.45$ GPa, $\nu_m = 0.35$ ).                   | 63   |
| 42     | Longitudinal shear modulus increases with decreasing $\eta_2$ when predicted by Equation (132). Good agreement is seen when $\eta_2 = 0.4 - 0.5$ . [2, 4]                                                                                                                           | 64   |
| 43     | Longitudinal Poisson's ratio can be predicted by Equation $\eta_1 = 1$ . Constituent properties are the same as those in Figure 40. [2]                                                                                                                                             | 64   |
| 44     | Transverse Poisson's ratio predicted by Equation $\eta_1 = 1$ , is higher than the upper bound from a more rigorous solution. [2]                                                                                                                                                   | 64   |
| 45     | Young's modulus of particulate composite can be predicted by Equation with $\eta = 0.4 - 0.5$ : (a) $\text{Al}_2\text{O}_3/\text{glass}$ ( $E_f \approx 396$ GPa, $E_m \approx 79.3$ GPa); (b) Sand/epoxy ( $E_f \approx 124$ GPa) ( $E_m \approx 3.45$ GPa). [5]                   | 65   |
| 46     | Thermal expansion coefficients predicted by Equations (162-163) with $\eta_1 = 1$ are comparable to the more rigorous solutions. [2]                                                                                                                                                | 68   |
| 47     | Hexagonal array of fibers and the coordinate system chosen.                                                                                                                                                                                                                         | 71   |
| 48     | Normalized stress components at the interface between the fiber and matrix under longitudinal loading ( $E_f = 414$ GPa, $E_m = 2.62$ GPa). The radial stress becomes tensile at the resin-rich area (in the vicinity of $\theta = 30^\circ$ ) even under longitudinal tension. [6] | 71   |
| 49     | Stress concentration under transverse tension. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively. [7, 8]                                                                                                           | 72   |
| 50     | Stress concentration under longitudinal shear. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively. [7, 8]                                                                                                           | 72   |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                                                                                                  | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 51     | Residual stresses at the interface in a composite with hexagonal array of fibers. Constituent properties are the same as those in Figure and the stresses correspond to the unconstrained matrix shrinkage strain of 1 mm/m. [6] | 73   |
| 52     | Longitudinal tensile strengths of $B_4$ /Al-6061 and BSC/Al-6061. [10]                                                                                                                                                           | 75   |
| 53     | Transverse strengths of $B_4$ /Al-6061 and BSC/Al-6061. [10]                                                                                                                                                                     | 79   |
| 54     | Effect on transverse strength of fiber diameter and matrix condition (B/Al). Failure of $B_4$ /Al-6061 is due to fiber splitting. [10]                                                                                           | 80   |
| 55     | Effect of void content on transverse and shear strengths of G1/E <sub>p</sub> ( $X_m = 82$ MPa, $S_m = 134$ MPa, $v_f = 0.56$ ). [8]                                                                                             | 80   |
| 56     | Effect of fiber surface treatment on shear strengths of Gr/E <sub>p</sub> . Note that $K_{Si}$ increases more rapidly with $v_f$ than does $K_{Sm}$ . [13]                                                                       | 81   |
| 57     | Failure mode in flexure test depends on the shear strength (Gr/E <sub>p</sub> , $v_f = 0.6$ ). [14]                                                                                                                              | 82   |
| 58     | Fiber breakages in composite.                                                                                                                                                                                                    | 85   |
| 59     | Normalized bundle strength vs. the inverse of shape parameter. [16]                                                                                                                                                              | 86   |
| 60     | Normalized composite strength vs. bundle strength. [16]                                                                                                                                                                          | 87   |
| 61     | Ply orientations and modulus of symmetric laminates.                                                                                                                                                                             | 89   |
| 62     | Assumed uniform in-plane strain across entire laminate.                                                                                                                                                                          | 89   |
| 63     | Average stress across laminate thickness.                                                                                                                                                                                        | 89   |
| 64     | Linear strain variation. The slope is curvature.                                                                                                                                                                                 | 103  |
| 65     | Ply stress is piece-wise-linear and discontinuous.                                                                                                                                                                               | 103  |
| 66     | Three-point bend test.                                                                                                                                                                                                           | 117  |
| 67     | 1-direction of [0/90].                                                                                                                                                                                                           | 117  |
| 68     | 2-direction of [0/90].                                                                                                                                                                                                           | 118  |
| 69     | Load deflection curves of 0° and 90° beams of [0 <sub>16</sub> /90 <sub>16</sub> ]s.                                                                                                                                             | 118  |
| 70     | Sandwich plate.                                                                                                                                                                                                                  | 123  |
| 71     | Specific rigidity as function of percentage of core. Note optimum combinations of density and stiffness ratios.                                                                                                                  | 123  |
| 72     | Transformation of D <sub>ij</sub> for a T-300/5208 sandwich plate.                                                                                                                                                               | 125  |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                                                   | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 73     | Flow diagram for ply stress calculation.                                                                                                                                          | 127  |
| 74     | Stresses and strain across laminate thickness.                                                                                                                                    | 129  |
| 75     | Stresses and strain across laminate thickness.                                                                                                                                    | 131  |
| 76     | Bending of plate with a hole filled with rigid core.                                                                                                                              | 132  |
| 77     | Symmetric versus unsymmetric laminates. Symmetry is based on mid or $\delta = 0$ plane.                                                                                           | 135  |
| 78     | Integration of unsymmetric laminates must be performed for the entire thickness from $-h/2$ to $h/2$ . (For symmetric laminates, integration can be limited to from 0 to $h/2$ ). | 138  |
| 79     | Transformed $B_{ij}$ for $[0_8/90_8]$ .                                                                                                                                           | 147  |
| 80     | 2-layer unsymmetric laminate.                                                                                                                                                     | 149  |
| 81     | Maximum deflection of $[\theta_4/-\theta_4]_T$ laminates after curing, $a=b=6.35\text{cm}$ . [20]                                                                                 | 170  |
| 82     | Transverse swelling strain in $[0]$ Gr/Ep (AS/3501) subjected to absorption and desorption tests.                                                                                 | 171  |
| 83     | Swelling strain in thickness direction of Gr/Ep laminates.                                                                                                                        | 171  |
| 84     | Maximum deflection of $[0_4/90_4]_T$ Gr/Ep (AS/3501) laminate due to curing and moisture absorption, $a=7.58\text{ cm}$ .                                                         | 172  |
| 85     | Definition of failure.                                                                                                                                                            | 173  |
| 86     | Failure surface.                                                                                                                                                                  | 175  |
| 87     | Maximum stress criterion in stress space.                                                                                                                                         | 177  |
| 88     | Maximum strain criterion in strain space.                                                                                                                                         | 181  |
| 89     | Reference coordinate definition and 9 guiding experiments for measuring failure tensors in a quadratic polynominal failure criterion.                                             | 185  |
| 90     | Polar coordinates.                                                                                                                                                                | 187  |
| 91     | Stress ratio $\sigma^{(k)}/\sigma^{(k)}$ versus the thickness $h^{(k)}$ .                                                                                                         | 197  |
| 92     | Method 1A.                                                                                                                                                                        | 199  |
| 93     | Method 1B.                                                                                                                                                                        | 199  |
| 94     | Maximum strain criterion applied to laminate.                                                                                                                                     | 203  |
| 95     | Reference coordinates.                                                                                                                                                            | 207  |
| 96     | Difference between isotropic and orthotropic finite width correction factors. [21]                                                                                                | 209  |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                                                                                                | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 97     | Mode I loading, Scotchply. [22]                                                                                                                                                                                                | 210  |
| 98     | Mode II loading, Scotchply. [22]                                                                                                                                                                                               | 210  |
| 99     | Interaction between $K_I$ and $K_{II}$ , Scotchply ( $E_L = 34.5$ GPa, $E_T = 11.5$ GPa). [23]                                                                                                                                 | 211  |
| 100    | Comparison of crack tip stress ratios with strength and fracture toughness ratios for unidirectional Gr/Ep. Elastic moduli are $E_L = 145$ GPa, $E_T = 11.7$ GPa, $G_{LT} = 4.48$ GPa, $\nu_{LT} = 0.21$ . [24]                | 211  |
| 101    | Crack opening displacement in $[O]_{8T}B/Al-6061$ , $E_L = 245$ GPa, $\gamma = 5.2$ . [24]                                                                                                                                     | 212  |
| 102    | Effect of interfacial bond on notch sensitivity of carbon/epoxy:<br>(a) surface treated; (b) surface untreated. [26]                                                                                                           | 212  |
| 103    | Typical fracture mode in unidirectional composite.                                                                                                                                                                             | 213  |
| 104    | NDE of crack tip damage in $[0/\pm 45]_{2s}$ Gr/Ep.                                                                                                                                                                            | 215  |
| 105    | Typical subcracks in $[0/\pm 0]$ and $[0/\pm 45/90]$ laminates.                                                                                                                                                                | 216  |
| 106    | Compliance based on the displacement between two points 3.8 mm above and below crack surface. The material is Gr/Ep. [29]                                                                                                      | 216  |
| 107    | Comparison between analysis and method of compliance match:<br>(a) $[0/\pm 45]_s$ Gr/Ep; (b) $[0/90/\pm 45]_s$ Gr/Gp. [24, 29]                                                                                                 | 217  |
| 108    | Resistance curves for $[0/\pm 45]$ Gr/Ep. Fracture stress is determined from $K = K_R$ and $\delta K / \delta a \geq dK_R / da$ . For the composite shown, the terminal point of $K_R$ corresponds to the final fracture. [29] | 218  |
| 109    | Variation of $c_o$ with crack half-length. [29]                                                                                                                                                                                | 219  |
| 110    | Geometry of specimen with an angle crack.                                                                                                                                                                                      | 220  |
| 111    | Normalized fracture strength vs. normalized equivalent crack half-length, Gr/Ep.                                                                                                                                               | 220  |
| 112    | Comparison between normal crack and angle crack, Gr/Ep.                                                                                                                                                                        | 220  |
| 113    | Constant amplitude $0^\circ$ fatigue of B/Ep at RTD. $R=0.1, -1, 10$ , $X=1331$ MPa, $X'=2206$ MPa. [31]                                                                                                                       | 221  |
| 114    | Constant amplitude $90^\circ$ fatigue of B/Ep at RTD. $R=0.1$ , $Y=61$ MPa, $Y'=276$ MPa. [31]                                                                                                                                 | 222  |
| 115    | Constant amplitude $\pm 45^\circ$ fatigue of B/Ep at RTD. $R=0.1$ , $X_{45}=133$ MPa, $S=X_{45}/2$ . [31]                                                                                                                      | 222  |
| 116    | S-N relationships of B/Ep laminates having various fraction of $0^\circ$ plies, $R=0.1$ . Maximum fatigue stress is normalized with respect to static strength. [31]                                                           | 223  |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                                                                                                                                             | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 117    | Effect of compression in fatigue of Gr/Ep laminate. [32]                                                                                                                                                                                                    | 223  |
| 118    | Constant life diagrams for B/Ep laminate and Al-7075-T6.                                                                                                                                                                                                    | 223  |
| 119    | Typical failure mode observed along edge of [0/90] laminate.                                                                                                                                                                                                | 224  |
| 120    | Change of secant modulus in fatigue of [0/±45/90] <sub>S</sub> G1/Ep,<br>$E_o = 20.3 \text{ GPa}$ . [33]                                                                                                                                                    | 224  |
| 121    | Equilibrium temperature increase in fatigue of G1/Ep laminate. The<br>increase is proportional to $S_{\max}^2 f$ , where $f$ is the frequency. [33]                                                                                                         | 224  |
| 122    | Typical crack tip damage in [0/±45] <sub>S</sub> Gr/Ep: (a) static tension;<br>(b) fatigue. Dotted lines represent the boundary of delamination.                                                                                                            | 225  |
| 123    | Increase of residual strength and compliance in fatigue of composite<br>laminate (schematic).                                                                                                                                                               | 225  |
| 124    | Notched fatigue strength normalized with respect to unnotched fatigue<br>strength. [31]                                                                                                                                                                     | 226  |
| 125    | S-N relationships in off-axis fatigue of [0] G1/Ep. [34]                                                                                                                                                                                                    | 227  |
| 126    | Comparison between data and prediction for off-axis S-N relationship<br>of [0] G1/Ep. [34]                                                                                                                                                                  | 228  |
| 127    | Experimental and predicted S-N curves of [±30] laminate. [35]                                                                                                                                                                                               | 230  |
| 128    | Experimental and predicted S-N curves of [±45] laminate. [35]                                                                                                                                                                                               | 231  |
| 129    | Experimental and predicted S-N curves of [±60] laminate. [35]                                                                                                                                                                                               | 231  |
| 130    | Fatigue strength of laminate is approximately equal to the longitudinal<br>fatigue strength multiplied by the fraction of 0° plies. [31]                                                                                                                    | 231  |
| 131    | Typical representations of S-N relationship.                                                                                                                                                                                                                | 234  |
| 132    | Life distribution of similar objects: (a) similar deterioration;<br>(b) nonsimilar deterioration.                                                                                                                                                           | 236  |
| 133    | Life distribution of nonsimilar objects: (a) similar deterioration;<br>(b) nonsimilar deterioration.                                                                                                                                                        | 236  |
| 134    | Plot of $(t_j x_j)$ for [0] G1/Ep subjected to constant stress. [39]                                                                                                                                                                                        | 237  |
| 135    | Effect of similarizing operation on life distribution.                                                                                                                                                                                                      | 237  |
| 136    | Relation between static strength and fatigue life of [0] Gr/Ep:<br>$\alpha_s = 7.77$ , $x_o = 1.44 \text{ GPa}$ , $\alpha_f = 0.74$ , $t_o = 1.6 \times 10^6 \text{ cycles}$ , $S_{\max}^o / x_o = 0.61$ .<br>Results of proof testing are also shown. [40] | 238  |
| 137    | Weibull plot of normalized life data. [32]                                                                                                                                                                                                                  | 244  |
| 138    | Experimental correlation of analytical models in terms of residual<br>strength. [32]                                                                                                                                                                        | 244  |

LIST OF ILLUSTRATIONS (Continued)

| Figure |                                                                                                                                         | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|------|
| 139    | Distribution of $N_2$ : theory and data. [31]                                                                                           | 245  |
| 140    | Change of diffusivity with temperature.                                                                                                 | 250  |
| 141    | Effects of temperature and moisture on strengths of T300/1034 Gr/Epoxy ( $v_f=0.68$ ).                                                  | 253  |
| 142    | Input to transient analysis.                                                                                                            | 255  |
| 143    | Weight gain over 20 years for 1/2" hybrid.                                                                                              | 255  |
| 144    | Moisture distribution at boundary layer (1-4 plies) and inside 1/2" hybrid over 20 years - note flat top level at 0.42% after 10 years. | 256  |
| 145    | Time required to reach flat top moisture level under constant ambient (insensitive to relative humidity).                               | 256  |
| 146    | Moisture pickup rates of constant and transient ambients (a guide to accelerated testing).                                              | 256  |
| 147    | Determination of glass transition temperature.                                                                                          | 263  |
| 148    | Relationship between stress and breaking time of the HMDA-crosslinked epoxy polymer.                                                    | 264  |
| 149    | Master curves of $\sigma$ -log $t_b$ plots of the HMDA polymer.                                                                         | 264  |
| 150    | Creep compliance for Shell 58-68R epoxy as a function of temperature.                                                                   | 265  |
| 151    | Net creep compliance, $\Delta D$ , for Shell 58-68R epoxy at different temperatures.                                                    | 265  |
| 152    | Temperature dependence of initial compliance, $D_o$ , for Shell 58-68R epoxy.                                                           | 265  |
| 153    | Master curve for net creep compliance, $\Delta D$ , for Shell 58-68R epoxy.                                                             | 266  |
| 154    | Temperature dependence of the shift factor, $a_T$ , for Shell 58-68R epoxy.                                                             | 266  |
| 155    | Relation between shape parameter and coefficient of variation.                                                                          | 274  |
| 156    | Weibull plot of the strength data. [32]                                                                                                 | 275  |
| 157    | Strength data plotted on normal probability paper.                                                                                      | 277  |
| 158    | Relation between "A" or "B" allowable and shape parameter.                                                                              | 282  |
| 159    | One-sided tolerance factors for normal distribution, $K_A$ and $K_B$ .                                                                  | 283  |
| 160    | Typical failure rate vs. time.                                                                                                          | 285  |
| 161    | Failure rate and probability density for Weibull distribution.                                                                          | 286  |

LIST OF ILLUSTRATIONS (Concluded)

| Figure |                                                                                                                          | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------|------|
| 162    | Failure rate and probability density for normal distribution.                                                            | 286  |
| 163    | Comparison in probability of failure between single link and 20-link chain.                                              | 289  |
| 164    | Comparison between $F_o$ and $F$ . System reliability is improved over element reliability.                              | 294  |
| 165    | Unidirectional beam under pure bending. Fibers oriented $\theta$ to x axis. Twisting curvature "lifts" beam at supports. | 299  |
| 166    | $(EI)_A/(b/D_{11})$ as a function of $\theta$ ; as a function of $R$ for a $10^\circ$ off axis unidirectional beam.      | 300  |
| 167    | Ratio of bending stiffness computed by Eqs. (781) and (784-785).                                                         | 301  |
| 168    | First failure in a beam can be either shear or flexural stress depending on span-to-depth ratio, $L/h$ .                 | 302  |
| 169    | A 'transformed section', all $0^\circ$ , $b_t = (E_{22}/E_{11})b$ .                                                      | 308  |
| 170    | Buckling parameter: (a) $[\pm\theta]$ laminate; (b) $[0/90]$ laminate.                                                   | 309  |
| 171    | Example calculations.                                                                                                    | 316  |
| 172    | Examples of uniaxial strength allowables (compression).                                                                  | 319  |
| 173    | Specimen configurations: (a) tension; (b) compression.                                                                   | 323  |
| 174    | Specimen configurations: (a) longitudinal shear; (b) interlaminar shear.                                                 | 324  |
| 175    | Rail shear tests: (a) single; (b) double.                                                                                | 324  |
| 176    | Flexure test configurations: (a) 3-pt.; (b) 4-pt.                                                                        | 325  |
| 177    | Relation between maximum tensile stress and maximum shear stress in flexure tests.                                       | 325  |
| 178    | Sandwich beam configuration.                                                                                             | 325  |
| 179    | Tube configuration.                                                                                                      | 326  |
| 180    | Tensile properties: (a) longitudinal; (b) transverse. [43]                                                               | 326  |
| 181    | Shear stress-strain relations. [44]                                                                                      | 326  |
| 182    | Effect of shear coupling.                                                                                                | 329  |
| 183    | Stress concentration at free edge of $[45/145]_s$ angle ply. [46]                                                        | 329  |
| 184    | Interlaminar normal stress concentration. [47]                                                                           | 330  |

## LIST OF TABLES

| Table |                                                                                               | Page |
|-------|-----------------------------------------------------------------------------------------------|------|
| 1     | Typical Constituent Densities                                                                 | 2    |
| 2     | Typical Constituent Stiffnesses                                                               | 7    |
| 3     | Stress Transformation Relations                                                               | 14   |
| 4     | Alternative Formula for Stress Transformation                                                 | 14   |
| 5     | Transformed and Principal Stresses                                                            | 16   |
| 6     | Transformed and Principal Stresses                                                            | 17   |
| 7     | Strain Transformation Relations                                                               | 23   |
| 8     | Transformed and Principal Strains                                                             | 25   |
| 9     | Transformed and Principal Strains                                                             | 26   |
| 10    | Compliance and Modulus in Terms of Elastic Symmetries                                         | 30   |
| 11    | Engineering Constants in Terms of $S_{ij}$ & $Q_{ij}$                                         | 31   |
| 12    | Engineering Constants for Unidirectional Composites                                           | 32   |
| 13    | Compliance $S_{ij}$ in Terms of Engineering Constants ( $10^{12} \text{ Pa}^{-1}$ )           | 33   |
| 14    | Modulus $Q_{ij}$ in Terms of Engineering Constants ( $10^6 \text{ Pa}$ )                      | 33   |
| 15    | Ultimate Strains of Unidirectional Composites (mm/m)                                          | 37   |
| 16    | Complex Parameters for Various Unidirectional Composites                                      | 41   |
| 17    | Transformation of Compliance                                                                  | 45   |
| 18    | Invariants for Compliance Matrix for Various Composites (TPa) $^{-1}$                         | 46   |
| 19    | Transformed Compliance & Engineering Constants for Various Composites (TPa) $^{-1}$ and (GPa) | 48   |
| 20    | Transformation of Modulus                                                                     | 49   |
| 21    | Invariants for Modulus Matrix for Various Composites (GPa)                                    | 50   |
| 22    | Transformed Modulus for Various Composites (GPa)                                              | 52   |
| 23    | Predicted Elastic Constants for Random Composites (GPa)                                       | 53   |
| 24    | Typical Composite Thermal Expansion Coefficients                                              | 69   |
| 25    | Total Stresses Under Longitudinal Tension (cf. [9])                                           | 74   |
| 26    | Typical Fiber Strengths                                                                       | 76   |

LIST OF TABLES (Continued)

| Table |                                                                                        | Page |
|-------|----------------------------------------------------------------------------------------|------|
| 27    | Typical Matrix Strengths                                                               | 77   |
| 28    | Typical Composite Strengths [11, 12]                                                   | 78   |
| 29    | Formulas for In-Plane Modulus for $[0_p/90_q/45_r/-45_s]$                              | 95   |
| 30    | In-Plane Properties of T-300/5208 Laminates                                            | 96   |
| 31    | Sample Calculations of Ply Stresses for T-300/5208                                     | 99   |
| 32    | Sample Calculation of Elliptic Hole Under Tension in a T-300/5208 Orthotropic Laminate | 101  |
| 33    | Formulas for Flexural Rigidity With Isotropic Substructure                             | 106  |
| 34    | Rigidity of Cross-Ply Laminates                                                        | 107  |
| 35    | Transformed Rigidity of Cross-Ply Laminates                                            | 107  |
| 36    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 108  |
| 37    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 109  |
| 38    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 110  |
| 39    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 111  |
| 40    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 112  |
| 41    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 113  |
| 42    | Calculation of Reduction Factors (V's) for Flexural Rigidity                           | 114  |
| 43    | Stacking Sequence Effect of Cross-Ply Laminates                                        | 115  |
| 44    | Flexural Rigidity of Cross-Ply Laminates                                               | 115  |
| 45    | Rigidity of T-300/5208 Cross-Ply Laminates                                             | 116  |
| 46    | Free Vibrations of Beams With Uniform Cross-Sections                                   | 119  |
| 47    | Special Isotropic Homogeneous Plate                                                    | 120  |
| 48    | Rigidity of $[-45/45/90/0]_2/(z_o)_8$ (Non-Symmetrical Face Sheet)                     | 124  |
| 49    | Rigidity of $[-45/45/90/0]_2/90/45/-45/(z_o)_8$ (Symmetrical Face Sheet)               | 125  |
| 50    | Flexure-Curvature Relations                                                            | 127  |
| 51    | Strain Variation from Ply to Ply                                                       | 128  |
| 52    | Ply Stress at Various Locations                                                        | 129  |

LIST OF TABLES (Concluded)

| Table |                                                                                                                        | Page |
|-------|------------------------------------------------------------------------------------------------------------------------|------|
| 53    | Strain Variation from Ply to Ply                                                                                       | 130  |
| 54    | Ply Stresses at Various Locations                                                                                      | 131  |
| 55    | Formula for Coupling Modulus                                                                                           | 139  |
| 56    | Formula for Transformed Coupling Modulus                                                                               | 140  |
| 57    | Calculation of Reduction Factors (V's) for Coupling Modulus                                                            | 141  |
| 58    | Calculation of Reduction Factors (V's) for Coupling Modulus                                                            | 142  |
| 59    | Calculation of Reduction Factors (V's) for Coupling Modulus                                                            | 143  |
| 60    | Calculation of Reduction Factors (V's) for Coupling Modulus                                                            | 144  |
| 61    | Calculation of Reduction Factors (V's) for Coupling Modulus                                                            | 145  |
| 62    | Calculation of Reduction Factors (V's) for Coupling Modulus                                                            | 146  |
| 63    | Lamina Curing Strains from Curing Temperature [12]                                                                     | 167  |
| 64    | Lamina Mechanical Properties [12]                                                                                      | 168  |
| 65    | Curing Strains of $[0_2/\pm 45]$ Laminates and Corresponding Stresses Within $45^\circ$ Ply [12,19]                    | 168  |
| 66    | Damage Zone Size (c) in $[0/\pm 45]_{2s}$ Gr/Ep                                                                        | 216  |
| 67    | ECDZ Size as Determined by Equation (545) [24]                                                                         | 219  |
| 68    | Parameters for Stress-Rupture Data [37]                                                                                | 235  |
| 69    | Average Tensile Strength and Coefficient of Variation [37]                                                             | 235  |
| 70    | Summary of Experimental Data on the Effects of Moisture and Temperature on the Ultimate Tensile Strength of Composites | 252  |
| 71    | Comparison Among Characteristic Strengths Under Different Test Methods                                                 | 291  |
| 72    | Stability of $0^\circ$ , $90^\circ$ , and $\pm 45^\circ$ Family of Plates                                              | 317  |
| 73    | Effects of Orientation Sequences on Stability of Symmetrical (Balanced) Quasi-Isotropic Plates                         | 318  |
| 74    | Compression Properties [45]                                                                                            | 327  |

## SECTION I

### MATERIALS PROPERTIES

#### 1. DENSITY OF COMPOSITES

##### a. Mass Fractions

Based on conservation of mass, the rule-of-mixtures mass-fraction relation always hold:

$$M_1 + M_2 + \dots + M_n \equiv \sum M_i = M \quad (1)$$

$$\frac{\sum M_i}{M} = \sum m_i = 1 \quad (2)$$

|       |       |         |       |   |     |
|-------|-------|---------|-------|---|-----|
| $M_1$ | $M_2$ | $\dots$ | $M_n$ | = | $M$ |
|-------|-------|---------|-------|---|-----|

|       |       |         |       |   |   |
|-------|-------|---------|-------|---|---|
| $m_1$ | $m_2$ | $\dots$ | $m_n$ | = | 1 |
|-------|-------|---------|-------|---|---|

Figure 1 Mass fractions must always add up in a composite with  $n$  phases.

##### b. Volume Fractions

Based on existence of definable constituent volumes, the rule-of-mixtures volume-fraction relation is assumed to be valid:

$$V_1 + V_2 + \dots + V_n \equiv \sum V_i = V \quad (3)$$

$$\frac{\sum V_i}{V} = \sum v_i = 1 \quad (4)$$

|       |       |         |       |   |     |
|-------|-------|---------|-------|---|-----|
| $V_1$ | $V_2$ | $\dots$ | $V_n$ | = | $V$ |
|-------|-------|---------|-------|---|-----|

|       |       |         |       |   |   |
|-------|-------|---------|-------|---|---|
| $v_1$ | $v_2$ | $\dots$ | $v_n$ | = | 1 |
|-------|-------|---------|-------|---|---|

Figure 2 Volume fractions need not always add up for many reasons; phase boundary not defined, phase interactions due to mixing and binding, voids, etc.

##### c. Mass and Volume Fractions for Density

$$\rho = \frac{\sum M_i}{V} = \frac{\sum \rho_i V_i}{V} = \sum \rho_i v_i = \rho_1 v_1 + \rho_2 v_2 + \dots + \rho_n v_n \quad (5)$$

$$\rho = \frac{M}{V} = \frac{\sum M_i}{\sum V_i} = \frac{\sum \rho_i V_i}{\sum V_i} = \frac{\sum \rho_i v_i}{\sum v_i} = \left[ \frac{\sum \rho_i v_i}{\sum v_i} \right]^{1/2} = \left[ \frac{\rho_1 v_1 + \rho_2 v_2 + \dots + \rho_n v_n}{\frac{v_1}{\rho_1} + \frac{v_2}{\rho_2} + \dots + \frac{v_n}{\rho_n}} \right]^{1/2} \quad (6)$$

$$\rho = \frac{M}{\sum V_i} = \frac{M}{\sum \frac{M_i}{\rho_i}} = \frac{1}{\sum \frac{m_i}{\rho_i}} = \frac{1}{\frac{m_1}{\rho_1} + \frac{m_2}{\rho_2} + \dots + \frac{m_n}{\rho_n}} \quad (7)$$

All equations are equally applicable and are limited by the basic assumption that

$$M_i = \rho_i V_i \quad (8)$$

holds within each constituent phase.

Equation 7 can be rewritten as follows:

$$\frac{1}{\rho} = \sum \frac{m_i}{\rho_i} \quad (9)$$



Figure 3 Rule-of-mixtures relations imply non-interacting phases, within each of which Equation 8 holds.

#### d. Density of Two-phase Composites

From Equation 5

$$\rho = \rho_1 v_1 + \rho_2 v_2$$



From Equation 7

$$\frac{1}{\rho} = \frac{m_1}{\rho_1} + \frac{m_2}{\rho_2}$$



Fiber Fraction  
 $v_2$  or  $m_2$



Fiber Fraction  
 $v_2$  or  $m_2$

TABLE 1 TYPICAL CONSTITUENT DENSITIES

| MATERIAL  | SPECIFIC GRAVITY | DENSITY kg m <sup>-3</sup> |
|-----------|------------------|----------------------------|
| Kevlar    | 1.45             | 1450                       |
| Graphite  | 1.7              | 1700                       |
| Glass     | 2.6              | 2600                       |
| Boron     | 2.6              | 2600                       |
| Steel     | 7.8              | 7800                       |
| W         | 19.3             | 19300                      |
| Nylon     | 1.1              | 1100                       |
| Epoxy     | 1.2              | 1200                       |
| Polyester | 1.4              | 1400                       |
| Be        | 1.8              | 1800                       |
| Al        | 2.8              | 2800                       |
| Ti        | 4.5              | 4500                       |

Figure 4 Linear plots are the easiest provided proper variables,  $\rho$  or  $1/\rho$ , is taken. Relationships between mass and volume contents are readily seen.

e. Void Content

Void content in a two-phase composite can be defined by

$$\begin{aligned} v_{\text{void}} &= 1 - (v_1 + v_2) \\ &= 1 - \frac{\rho_{\text{measured}}}{\rho_{\text{calculated}}} \\ &= 1 - \frac{M}{V} \left( \frac{m_1}{\rho_1} + \frac{m_2}{\rho_2} \right) \end{aligned} \quad (10)$$

This relationship is not accurate because:

- (1) The assumed non-interacting phases ignore curing stress which can induce up to 1 percent strain.
- (2) Absorbed moisture which can induce swelling of several percent.
- (3) Actual voids and cracks may be closed, thus, cannot influence the gross density beyond the detectable level.

Alternative methods for determination of voids will be covered later.

f. Relations between mass and volume fractions

$$v_1 = \frac{V_1}{V} = \frac{M_1}{\rho_1} \frac{\rho}{M} = \frac{m_1}{\rho_1} \rho = \frac{m_1}{\rho_1} \frac{1}{\frac{m_1}{\rho_1} + \frac{m_2}{\rho_2}} = \frac{1}{1 + \left( \frac{1}{m_1} - 1 \right) \frac{\rho_1}{\rho_2}} \quad (11)$$

| Composites | $\rho_m / \rho_f$ |
|------------|-------------------|
| Gr / Ep    | .71               |
| Gl / Ep    | .46               |
| B / Ep     | .46               |
| B' / Al    | 1.08              |



Figure 5 Mass and Volume Fraction Curve

## 2. ONE-DIMENSIONAL ELASTICITY PROPERTY

### a. Modulus vs Compliance

$$E = \text{Modulus} = \frac{\sigma}{e} = \frac{\text{Stress}}{\text{Strain}} \quad (12)$$

$$S = \text{Compliance} = \frac{e}{\sigma} = \frac{\text{Strain}}{\text{Stress}} \quad (13)$$

$$E \cdot S = 1 \quad (14)$$



Figure 6 Modulus and compliance are reciprocal of each other. Either one can be used but one is usually preferred for a given situation. This will be illustrated on several occasions later.

### b. Elasticity Property of 2 - Phase Composites



Figure 7 For a constant strain model with parallel phases, modulus  $E$  is the preferred property because simple rule of mixture equation applies:

$$E = \sum E_i v_i \quad (15)$$



Figure 8 For a constant stress model with in-series phases, compliance  $S$  is the preferred property because:

$$S = \sum S_i v_i \quad (16)$$

c. Graphic Illustrations of Composite Modulus and Compliance



Figure 9 Bounds for composite modulus.  
Note lower bound is the reciprocal of composite compliance.

Figure 10 Bounds for composite compliance. Note lower bound is the reciprocal of composite modulus.

d. Parallel and Series Models

|  | Elasticity                           | Conductivity                         | Resistivity                          | Model        |
|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------|
|  | $E = \sum E_i v_i$                   | $k = \sum k_i v_i$                   |                                      | "Modulus"    |
|  | $\frac{1}{S} = \sum \frac{v_i}{S_i}$ |                                      | $\frac{1}{R} = \sum \frac{v_i}{R_i}$ | "Compliance" |
|  | $S = \sum S_i v_i$                   |                                      | $R = \sum R_i v_i$                   | "Modulus"    |
|  | $\frac{1}{E} = \sum \frac{v_i}{E_i}$ | $\frac{1}{k} = \sum \frac{v_i}{k_i}$ |                                      | "Compliance" |

TABLE 2 TYPICAL CONSTITUENT STIFFNESSES

| MATERIAL  | YOUNG'S MODULUS<br>E(GPa) | ACOUSTIC<br>VELOCITY<br>C(km sec <sup>-1</sup> ) |
|-----------|---------------------------|--------------------------------------------------|
| Kevlar    | 131                       | 9,50                                             |
| Graphite  | 207                       | 11,0                                             |
| Glass     | 87                        | 5.78                                             |
| Boron     | 414                       | 12.6                                             |
| Steel     | 207                       | 5.15                                             |
| W         | 407                       | 4.59                                             |
| Nylon     | 4.8                       | 2.1                                              |
| Epoxy     | 3.4                       | 1.7                                              |
| Polyester | 3.4                       | 1.6                                              |
| Be        | 241                       | 11.6                                             |
| A1        | 69                        | 5.0                                              |
| Ti        | 103                       | 4.8                                              |



### 3. TWO-DIMENSIONAL ELASTICITY PROPERTIES

#### a. Strains in Terms of Stresses for Isotropic Bodies Under Plane Stress

##### (1) Compliance matrix in conventional form

$$\begin{aligned} e_x &= \frac{1}{E} \sigma_x - \frac{\nu}{E} \sigma_y \\ e_y &= -\frac{\nu}{E} \sigma_x + \frac{1}{E} \sigma_y \\ e_{xy} &= \frac{1}{G} \sigma_{xy} = \frac{2(1+\nu)}{E} \sigma_{xy} \end{aligned} \quad (17)$$

##### (3) Compliance matrix in matrix form

$$\begin{Bmatrix} e_x \\ e_y \\ e_{xy} \end{Bmatrix} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{Bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{Bmatrix} \quad (19)$$

##### (2) Compliance matrix in tabular form

|          | $\sigma_x$       | $\sigma_y$       | $\sigma_{xy}$                      |
|----------|------------------|------------------|------------------------------------|
| $e_x$    | $\frac{1}{E}$    | $-\frac{\nu}{E}$ | 0                                  |
| $e_y$    | $-\frac{\nu}{E}$ | $\frac{1}{E}$    | 0                                  |
| $e_{xy}$ | 0                | 0                | $\frac{1}{G} = \frac{2(1+\nu)}{E}$ |

(18)

##### (4) Compliance matrix in index form

$$\begin{Bmatrix} e_1 \\ e_2 \\ e_6 \end{Bmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{21} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} \quad (20)$$

##### (5) Contracted Notation:

$$\begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 5 \\ 2 & 4 & 3 \end{bmatrix} \quad (21)$$

|    |    |    |   |   |   |
|----|----|----|---|---|---|
| 11 | 12 | 13 | 1 | 6 | 5 |
| 21 | 22 | 23 | 2 | 4 |   |
| 31 | 32 | 33 | 3 |   |   |

b. Stresses in Terms of Strains for Isotropic Bodies Under Plane Stresses

(1) Modulus matrix in conventional form

$$\begin{aligned}\sigma_x &= \frac{E}{1-\nu^2} e_x + \frac{\nu E}{1-\nu^2} e_y \\ \sigma_y &= \frac{\nu E}{1-\nu^2} e_x + \frac{E}{1-\nu^2} e_y \\ \sigma_{xy} &= G e_{xy} = \frac{E}{2(1+\nu)} e_{xy}\end{aligned}\quad (22)$$

(3) Modulus matrix in matrix form

$$\begin{Bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{Bmatrix} = \begin{bmatrix} \frac{E}{1-\nu^2} & \frac{\nu E}{1-\nu^2} & 0 \\ \frac{\nu E}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & 0 & G \end{bmatrix} \begin{Bmatrix} e_x \\ e_y \\ e_{xy} \end{Bmatrix} \quad (24)$$

(2) Modulus matrix in tabular form

|               | $e_x$                   | $e_y$                   | $e_{xy}$ |
|---------------|-------------------------|-------------------------|----------|
| $\sigma_x$    | $\frac{E}{1-\nu^2}$     | $\frac{\nu E}{1-\nu^2}$ | 0        |
| $\sigma_y$    | $\frac{\nu E}{1-\nu^2}$ | $\frac{E}{1-\nu^2}$     | 0        |
| $\sigma_{xy}$ | 0                       | 0                       | G        |

(23)

(4) Modulus matrix in index form

$$\begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{Bmatrix} e_1 \\ e_2 \\ e_6 \end{Bmatrix} \quad (25)$$

Summation convention

$$\sigma_i = \sum Q_{ij} e_j = Q_{ij} e_j \quad (26)$$

i, j = 1, 2, 6

c. Components of  $S_{ij}$  and  $Q_{ij}$ .

d. 3 - Dimensional Elasticity Properties for Isotropic Bodies

2D / Plane Stress

$$\begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix} = S_{ij}$$

$$\begin{bmatrix} \frac{E}{1-\nu} & \frac{\nu E}{1-\nu} & 0 \\ \frac{\nu E}{1-\nu} & \frac{E}{1-\nu} & 0 \\ 0 & 0 & G \end{bmatrix} = Q_{ij}$$

2D / Plane Strain

$$\begin{bmatrix} \frac{1-\nu^2}{E} & -\frac{\nu(1+\nu)}{E} & 0 \\ -\frac{\nu(1+\nu)}{E} & \frac{1-\nu^2}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix} = R_{ij}$$

$$\begin{bmatrix} (1-\nu)mE & \nu mE & 0 \\ \nu mE & (1-\nu)mE & 0 \\ 0 & 0 & G \end{bmatrix} = C_{ij}$$

3D

$$\begin{bmatrix} \frac{1}{E} & \frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} = S_{ij}$$

$$\begin{bmatrix} (1-\nu)mE & \nu mE & \nu mE & 0 & 0 & 0 \\ + \nu mE & (1-\nu)mE & \nu mE & 0 & 0 & 0 \\ \nu mE & \nu mE & (1-\nu)mE & 0 & 0 & 0 \\ 0 & 0 & 0 & G & 0 & 0 \\ 0 & 0 & 0 & 0 & G & 0 \\ 0 & 0 & 0 & 0 & 0 & G \end{bmatrix} = C_{ij}$$

$$m = (1-\nu) / (1+\nu)(1-2\nu)$$

e. Kronecker Delta

Analogous to Equation 14,  $E \cdot S = 1$

We can show that

$$Q_{ij} S_{jk} = \delta_{ik} \quad (27)$$

where  $\delta_{ik}$  = Kronecker delta = 1 when  $i = k$   
= 0 when  $k \neq k$

## SECTION II

### STRESS AND STRAIN

#### 1. STRESS AS COORDINATES ROTATE

##### a. Introduction

Stress is NOT defined as  $\frac{P}{A}$  (You've flunked)

It is defined by how it changes as its reference coordinates change. That's why we need to know the ground rules. Rigid rules are particularly important for composites because composite properties also change with coordinates, by a different set of rules. All of these rules are called the transformation relations. In this section, we will discuss only those related to stress and strain.

When we apply a stress to an isotropic material, we can analyze the response of the material in the same coordinate system. There is no reason to look into any other coordinates with the possible exception of the plane where shear stress is maximum.

For composites, the response is highly dependent on the orientation of the material. It is therefore important to know how an applied stress can be transformed to the material axes.

(See Figure 11) We use stress transformation relations to do this job.

Conversely, if we know the stresses in the material system  $x-y$ , we want to know what apply stresses must be for any coordinate system, we simply rotate the  $\theta$  backward, or apply inverse transformation. The same rule applies except now we use negative  $\theta$  in the formula.

It is therefore an important rule of transformation to know the positive from the negative. We are all aware of the difference between tension and compression, but we rarely pay attention to positive from negative shears because they are not important for isotropic materials. For composites, we must make sure the proper signs for all angles of rotation, stresses, etc., are used. For rotation, we will use the right handed system.



Figure 11 Transformation of applied stress in coordinate  $x-y$  to material coordinate  $x'-y'$  by a positive rotation of  $\theta$ .

b. Formula for Stress Transformation

TABLE 3 STRESS TRANSFORMATION RELATIONS

|                | I | R                          |
|----------------|---|----------------------------|
| $\sigma'_x$    | 1 | $\cos 2(\theta + \delta)$  |
| $\sigma'_y$    | 1 | $-\cos 2(\theta + \delta)$ |
| $\sigma'_{xy}$ | 0 | $-\sin 2(\theta + \delta)$ |

$$I = \frac{\sigma_x + \sigma_y}{2} \quad (28)$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \sigma_{xy}^2} \quad (29)$$

$$\tan 2\delta_I = \frac{2\sigma_{xy}}{\sigma_x - \sigma_y} \quad (30)$$

$\delta = \delta_1 + 90^\circ$  if  $\sigma_x < \sigma_y$ ;  $\delta = \delta_1$  if  $\sigma_x > \sigma_y$

Both I and R are invariants, as shown in the Mohr's Circle.

Special orientations:

(1) When  $\theta = \delta$ , i.e., Principal Directions

$\sigma'_x, \sigma'_y$  = maximum or minimum

$\sigma'_{xy} = 0$

(2) When  $\theta - \delta = \pm \pi/4$ , i.e., max. shear orientation

$\sigma'_x = \sigma'_y = I$

$\sigma'_{xy} = \text{max.} = R$

TABLE 4 ALTERNATIVE FORMULA FOR STRESS TRANSFORMATION

|                | $\sigma'_x$ | $\sigma'_y$ | $\sigma'_{xy}$ |
|----------------|-------------|-------------|----------------|
| $\sigma'_x$    | $m^2$       | $n^2$       | $2mn$          |
| $\sigma'_y$    | $n^2$       | $m^2$       | $-2mn$         |
| $\sigma'_{xy}$ | $-mn$       | $mn$        | $m^2 - n^2$    |

$$m = \cos \theta, \quad n = \sin \theta$$



Figure 12 New coordinates  $x'$ -  $y'$  in terms of old coordinates  $x$ - $y$ , or given  $x$ - $y$  and  $\theta$ , find  $x'$ - $y'$ . Arrow of rotation is pointing up. If  $\theta$  is negative, new coordinates are  $x''$ - $y''$ .



Figure 13 Mohr's Circle is defined by invariants I and R. Phase angle  $\delta$  is defined by a specific combination of stress components  $\sigma_x, \sigma_y$  and  $\sigma_{xy}$ . As reference coordinates change by  $\theta$ , the rotation in Mohr's Circle is  $2\theta$ . Special attention should be given to value of  $\delta$ :

$$\delta = \begin{cases} \delta_1 & \text{if } \sigma_x > \sigma_y \\ \delta_1 + 90^\circ & \text{if } \sigma_x < \sigma_y \end{cases}$$

c. Graphical Illustrations of Trigonometric Relations



Figure 14 Relevant trigonometric functions for stress transformations. Phase angle  $\delta$  displaces the function to the right (vertical axis to the left).



Figure 15 Typical stress transformation. Note principal stresses and maximum shear.

d. Numerical Examples

$$(1) \text{ Given } \sigma_i = \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \text{ (MPa)}$$

I

$\sigma'_x$

R

$\sigma'_y$

S

$\sigma'_{xy}$

TABLE 5 TRANSFORMED AND PRINCIPAL STRESSES

$\sigma'_x$

$\sigma'_y$

$\sigma'_{xy}$

$$(2) \text{ Given } \sigma_i = \left\{ \begin{array}{l} I \\ R \end{array} \right. \text{ (MPa)} - \delta =$$

$\sigma_x^I$

$\sigma_y^I$

$\sigma_{xy}^I$

**TABLE 6 TRANSFORMED AND PRINCIPAL STRESSES**

|            |      |  |  |  |  |  |
|------------|------|--|--|--|--|--|
| $\sigma^1$ | $x$  |  |  |  |  |  |
| $\sigma^1$ | $y$  |  |  |  |  |  |
| $\sigma^1$ | $xy$ |  |  |  |  |  |



## 2. MAXIMUM STRESS FAILURE CRITERION FOR UNIDIRECTIONAL COMPOSITES

- a. Off-Axis Tensile Failure Stresses Under Uniaxial Stress  $\sigma_x$  ( $\sigma_y = \sigma_{xy} = 0$ ). The stresses in the material symmetry axis  $x'$  (along the fibers) can be obtained directly from Table 4.

$$\begin{aligned}\sigma_x' &= \sigma_L = \text{Longitudinal stress} = m^2 \sigma_x \\ \sigma_y' &= \sigma_T = \text{Transverse stress} = n^2 \sigma_x \\ \sigma_{xy}' &= \sigma_{LT} = \text{Shear stress LT} = -mn\sigma_x\end{aligned}\quad (31)$$

Maximum stress criterion assumes that failure will occur when lowest of the following 3  $\sigma'$ 's is reached.

$$\sigma_x = \begin{cases} \frac{\sigma_L | \max}{m^2} & = \frac{x}{m^2} \\ \frac{\sigma_T | \max}{n^2} & = \frac{y}{n^2} \\ \frac{\sigma_s | \max}{-mn} & = \frac{s'}{mn} \end{cases} \quad (32)$$



Figure 16 Coordinates for off-axis uniaxial tests. Shear stress will be positive if fibers oriented along  $-θ$ .



Figure 17 Maximum stress criterion is typified by separate branches which may be related to fiber and matrix (transverse or shear) failures. There is no interaction.

### b. Off-Axis Compressive Uniaxial Strength

$$\sigma_x' = \begin{cases} \frac{x'}{m^2} \\ \frac{y'}{n^2} \\ \frac{s'}{mn} \end{cases} \quad (33)$$

Shear strength  $S$  is assumed to be equal in positive and negative shear stresses.



Figure 18 Maximum stress criterion as applied to off-axis compressive tests. There is no interaction between tensile and compressive strength.

c. Off-Axis Shear Strength  
Substituting  $\sigma'_x = \sigma'_y = 0$  into Table 4 (for  $\theta = 0$ ),

$$\left. \begin{aligned} \sigma'_x &= 2mn\sigma_{xy} = (\sin 2\theta)\sigma_{xy} \\ \sigma'_y &= -2mn\sigma_{xy} = -(\sin 2\theta)\sigma_{xy} \\ \sigma'_{xy} &= (m^2-n^2)\sigma_{xy} = (\cos 2\theta)\sigma_{xy} \end{aligned} \right\} \quad (34)$$

Depending on the signs of the stress components  $\sigma'_x$ ,  $\sigma'_y$ ,  $\sigma'_{xy}$ , which are functions of the signs of  $\theta$  and  $\sigma_{xy}$ , the following strength criteria shall be used. Note: Each quadrant in the table has distinct combinations.

|                | $-\theta$                             | $+\theta$                             |
|----------------|---------------------------------------|---------------------------------------|
| $+\sigma_{xy}$ | $X'/\sin 2\theta$<br>$Y/\sin 2\theta$ | $X/\sin 2\theta$<br>$Y'/\sin 2\theta$ |
| $-\sigma_{xy}$ | $X/\sin 2\theta$<br>$Y'/\sin 2\theta$ | $X'/\sin 2\theta$<br>$Y/\sin 2\theta$ |

| $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$   | $-\frac{3\pi}{4} \leq \theta \leq -\frac{1\pi}{4}$ |
|--------------------------------------------------|----------------------------------------------------|
| $\frac{1}{4}\pi \leq \theta \leq \frac{3}{4}\pi$ |                                                    |
| $+\sigma_{xy}$                                   | $S/\cos 2\theta$<br>$S'/\cos 2\theta$              |
| $-\sigma_{xy}$                                   | $S'/\cos 2\theta$<br>$S/\cos 2\theta$              |

Numerous failure criteria other than the maximum stress will be discussed later.

d. The intersection of any 2-failure curves in Figure 17 are as follows:

$$\theta_1 = \cot^{-1} \frac{X}{S'} \quad (35)$$

$$\theta_2 = \tan^{-1} \frac{Y}{S'} \quad (36)$$

$$\theta_3 = \cot^{-1} \sqrt{\frac{X}{Y}} \quad (37)$$



Figure 19 Off-axis shear strength based on maximum stress criterion. Six possible failure modes, including positive and negative shears are labeled. In this case, longitudinal tensile and compressive are never limiting cases. Matrix tensile, compressive and shear are the controlling modes.

### 3. STRENGTH ESTIMATE OF RANDOM FIBER COMPOSITES

#### a. Tensile Strength

It may be assumed that the strength of a random fiber composite is equal to the average strength of the area under the off-axis tensile strength of the area under the off-axis tensile strength of a unidirectional composite with the same constituents, (Figure 14).

$$\bar{X} = \frac{2}{\pi} \int_0^{\pi/2} X_\theta d\theta \quad (38)$$

$$= \frac{2}{\pi} \left[ X \int_0^{\theta_1} \frac{1}{\sin^2 \theta} d\theta + S \int_{\theta_1}^{\theta_2} \frac{d\theta}{\sin \theta \cos \theta} + Y \int_{\theta_2}^{\pi/2} \frac{d\theta}{\cos^2 \theta} \right] \quad (39)$$

After integration -

$$\frac{\bar{X}}{Y} = \begin{cases} \frac{4}{\pi} a \left[ 1 + \frac{1}{2} \sqrt{\frac{X}{Y}} \right], a \leq \sqrt{\frac{X}{Y}} \\ \frac{4}{\pi} \sqrt{\frac{X}{Y}}, a > \sqrt{\frac{X}{Y}} \end{cases} \quad (40)$$

$$\quad \quad \quad (41)$$

$$\text{Where } a = \frac{S}{Y}$$



Figure 20 The analytic estimate (based on high shear strength) falls below most available data by a factor of 1.5; but the trend appears to be in general agreement. The rule-of-mixtures equation, with correction factor  $\beta$ , is shown in dashed lines. [1]

|    |                                     |
|----|-------------------------------------|
| b. | Compressive Strength                |
| c. | Shear Strength                      |
| d. | Strengths of Particulate Composites |

## 4. STRAIN AS COORDINATES ROTATE

### a. Formula for Strain Transformation

Only the shear component is the difference between the strain and stress transformation relations, i.e.,

TABLE 7 STRAIN TRANSFORMATION RELATIONS

|                  | I | R                           |
|------------------|---|-----------------------------|
| $\epsilon'_x$    | 1 | $\cos 2(\theta - \delta)$   |
| $\epsilon'_y$    | 1 | $-\cos 2(\theta - \delta)$  |
| $\epsilon'_{xy}$ | 0 | $-2\sin 2(\theta - \delta)$ |

$$I = \frac{\epsilon_x + \epsilon_y}{2} \quad (42)$$

$$R = \sqrt{\left(\frac{\epsilon_x - \epsilon_y}{2}\right)^2 + \left(\frac{\epsilon_{xy}}{2}\right)^2} \quad (43)$$

$$\tan 2\delta_1 = \frac{\epsilon_{xy}}{\frac{\epsilon_x - \epsilon_y}{2}} \quad (44)$$

$$\delta = \delta_1 \text{ if } \epsilon_x > \epsilon_y$$

$$\delta = \delta_1 + 90 \text{ if } \epsilon_x < \epsilon_y$$



Figure 21 Positive and negative rotations for transformation.



Figure 22 Mohr's Circle representation of strain transformation. Only the one-half factor for the shear strain is the difference between the strain representation and that for stress. Special attention must be paid to starting point:

$$\delta = \delta_1, \text{ if } \epsilon_x > \epsilon_y; \quad \delta = \delta_1 + 90, \text{ if } \epsilon_x < \epsilon_y.$$



Figure 23 Relevant trigonometric functions and negative phase angle that would displace the functions to the left (or vertical axis to the right).



Figure 24 Typical strains transformations, note, principal strain and maximum shear strain.

### c. Numerical Examples

$$(1) \text{ Given } \epsilon_1 = \left\{ \quad \right\} \text{ (mm/m) or } (10^3 \mu\text{m/m})$$

$$I = \dots R = \dots \delta = \dots$$

2

e!  
y

$e^x$

TABLE 8 TRANSFORMED AND PRINCIPAL STRAINS

A diagram on grid paper showing a horizontal rectangle divided into four vertical columns by three vertical lines. To the left of the first column, there are three labels:  $e_x$  at the top,  $e_y$  in the middle, and  $e_{xy}$  at the bottom.

$$(2) \text{ Given } \epsilon_i = \left\{ \begin{array}{l} \\ \\ \end{array} \right\} \quad (\text{mm/m}) \text{ or } (10^3 \mu\text{m/m})$$

$$I = R = \delta =$$

$\epsilon'_x$        $\epsilon'_y$        $\epsilon'_{xy}$

TABLE 9 TRANSFORMED AND PRINCIPAL STRAINS

| $\epsilon'_x$ | $\epsilon'_y$ | $\epsilon'_{xy}$ |  |  |  |  |
|---------------|---------------|------------------|--|--|--|--|
|               |               |                  |  |  |  |  |

## 5. STRAIN ROSETTES

### a. Three-Element Rosettes

Since there are 3 strain components at each point, 3-element rosettes are in general needed to solve for 3 unknowns. Assuming 3 elements are mounted at 3 different angles from some reference coordinates, each rosette must satisfy

$$\epsilon_A = (\cos^2 A)\epsilon_x + (\sin^2 A)\epsilon_y + (\sin A \cos A)\epsilon_{xy}$$

$$\epsilon_B = (\cos^2 B)\epsilon_x + (\sin^2 B)\epsilon_y + (\sin B \cos B)\epsilon_{xy} \quad (45)$$

$$\epsilon_C = (\cos^2 C)\epsilon_x + (\sin^2 C)\epsilon_y + (\sin C \cos C)\epsilon_{xy}$$

In matrix form

$$\begin{bmatrix} \cos^2 A & \sin^2 A & \sin A \cos A \\ \cos^2 B & \sin^2 B & \sin B \cos B \\ \cos^2 C & \sin^2 C & \sin C \cos C \end{bmatrix} \begin{Bmatrix} \epsilon_x \\ \epsilon_y \\ \epsilon_{xy} \end{Bmatrix} = \begin{Bmatrix} \epsilon_A \\ \epsilon_B \\ \epsilon_C \end{Bmatrix} \quad (46)$$

### b. Other Rosettes

Four-element rosette is an over-determined system when a 4th equation is added:

$$\epsilon_D = (\cos^2 D)\epsilon_x + (\sin^2 D)\epsilon_y + (\sin D \cos D)\epsilon_{xy} \quad (47)$$

Methods of solution for an over-determined (4 or more equations for 3 unknowns) are available. The additional strain gage also serves as a redundant gage, in case of a defective gage.

Two-element rosette is adequate if additional information on the strain components is given. For example, if from symmetry considerations,  $\epsilon_{xy}$  is known to be zero, or  $\epsilon_x = \epsilon_y$ , two-element rosette can be used. The angle between the elements (i.e., A-B) can be any value, although normally it is  $90^\circ$ .

One-element rosette is adequate if it is known that  $\epsilon_x = \epsilon_y = 0$ ,  $\epsilon_{xy} \neq 0$ ; or only uniaxial strain is needed.



Figure 25 Strain rosette orientation with positive angles. If an angle is negative, it shall be so entered into Equations (45) and (46).

c. Sample Problems.

(1) From a uniaxial test,

$A = 0$ ,  $B = 60^\circ$ ,  $C = -60^\circ$ , and  $\epsilon_A, \epsilon_B, \epsilon_C = 10, -3, -3$  mm/m,  
find Poisson's ratio along a-axis.



Figure 26. Rosette for uniaxial test.

(2) Find off-axis mounted 2-element orthogonal rosette in order to achieve full 15 mm/m range. Assume ultimate longitudinal strain of 3 percent and Poisson's ratio of 0.3.  
Is there an optimum orientation?



### SECTION III

### STRESS - STRAIN RELATIONS

#### 1. COMPLIANCE AND MODULUS MATRICES

##### a. Stress-Strain Relations in Longhand Form (Plane Stress)

$$\epsilon_i = S_{ij} \sigma_j, \quad i, j = 1, 2, 6 \quad (48)$$

$$\epsilon_1 = S_{1j} \sigma_j = S_{11} \sigma_1 + S_{12} \sigma_2 + S_{16} \sigma_6$$

$$\epsilon_2 = S_{2j} \sigma_j = S_{21} \sigma_1 + S_{22} \sigma_2 + S_{26} \sigma_6 \quad (49)$$

$$\epsilon_6 = S_{6j} \sigma_j = S_{61} \sigma_1 + S_{62} \sigma_2 + S_{66} \sigma_6$$

$$\sigma_i = Q_{ij} \epsilon_j \quad (50)$$

$$\sigma_1 = Q_{1i} \epsilon_i = Q_{11} \epsilon_1 + Q_{12} \epsilon_2 + Q_{16} \epsilon_6$$

$$\sigma_2 = Q_{2i} \epsilon_i = Q_{21} \epsilon_1 + Q_{22} \epsilon_2 + Q_{26} \epsilon_6 \quad (51)$$

$$\sigma_6 = Q_{6i} \epsilon_i = Q_{61} \epsilon_1 + Q_{62} \epsilon_2 + Q_{66} \epsilon_6$$

##### b. In Matrix Form

$$\begin{Bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_6 \end{Bmatrix} = \begin{Bmatrix} S_{11} & S_{12} & S_{16} \\ S_{21} & S_{22} & S_{26} \\ S_{61} & S_{62} & S_{66} \end{Bmatrix} \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} \quad (52)$$

$S_{ij}$  is symmetric, i.e.,  $S_{ij} = S_{ji}$ , or  $S_{12} = S_{21}$ ,  $S_{16} = S_{61}$ ,  $S_{26} = S_{62}$

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{62} & Q_{66} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_6 \end{bmatrix} \quad (53)$$

$Q_{ij}$  is also symmetric, i.e.,  $Q_{ij} = Q_{ji}$ , or  $Q_{12} = Q_{21}$ ,  $Q_{16} = Q_{61}$ ,  $Q_{26} = Q_{62}$

### c. Elastic Symmetries

TABLE 10 COMPLIANCE AND MODULUS IN TERMS OF ELASTIC SYMMETRIES

| Symmetry<br>(No Indep. Const.)                              | Compliance Matrix $S_{ij}$<br>$(\text{TPa})^{-1}$                                                                                                                                  | Modulus Matrix $Q_{ij}$<br>$(\text{MPa})$                                                                        |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Anisotropic<br>(6)<br>or<br>Generally<br>Orthotropic<br>(4) | $\begin{bmatrix} \frac{1}{E_{11}} & -\frac{\nu_{12}}{E_{11}} & S_{16} \\ -\frac{\nu_{21}}{E_{22}} & \frac{1}{E_{22}} & S_{26} \\ S_{61} & S_{62} & \frac{1}{G_{12}} \end{bmatrix}$ | $\begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{62} & Q_{66} \end{bmatrix}$ |
| Specially<br>Orthotropic<br>(4)                             | $\begin{bmatrix} \frac{1}{E_L} & -\frac{\nu_{LT}}{E_L} & 0 \\ -\frac{\nu_{TL}}{E_T} & \frac{1}{E_T} & 0 \\ 0 & 0 & \frac{1}{G_{LT}} \end{bmatrix}$                                 | $\begin{bmatrix} mE_L & \nu_{TL}mE_L & 0 \\ \nu_{LT}mE_T & mE_T & 0 \\ 0 & 0 & G_{LT} \end{bmatrix}$             |
| Isotropic<br>(2)                                            | $\begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix}$                                                        | $\begin{bmatrix} mE & \nu mE & 0 \\ \nu mE & mE & 0 \\ 0 & 0 & G \end{bmatrix}$                                  |

$$\text{For orthotropic material: } m = \frac{1}{1-\nu_{LT}\nu_{TL}} = \frac{1}{1-\nu_{LT}^2 \frac{E_T}{E_L}} \quad (54)$$

$$\nu_{LT} E_T = \nu_{TL} E_L$$

$$\text{For isotropic material: } m = \frac{1}{1-\nu} \quad (55)$$

$$G = \frac{E}{2(1+\nu)}$$

Note:  $Q_{ij}$  can be expressed in terms of engineering constants only for orthotropic and isotropic materials, not for anisotropic materials.  $S_{ij}$  does not have such limitations.

TABLE II ENGINEERING CONSTANTS IN TERMS OF  $S_{ij}$  &  $Q_{ij}$

|            | $S_{ij}$                 | $Q_{ij}$                           |
|------------|--------------------------|------------------------------------|
| $E_L$      | $\frac{1}{S_{11}}$       | $Q_{11} - \frac{Q_{12}^2}{Q_{22}}$ |
| $E_T$      | $\frac{1}{S_{22}}$       | $Q_{22} - \frac{Q_{12}^2}{Q_{11}}$ |
| $\nu_{12}$ | $\frac{S_{12}}{S_{11}}$  | $\frac{Q_{12}}{Q_{22}}$            |
| $\nu_{21}$ | $-\frac{S_{12}}{S_{22}}$ | $\frac{Q_{12}}{Q_{11}}$            |
| $G_{LT}$   | $\frac{1}{S_{66}}$       | $Q_{66}$                           |

d. Elastic Constants

TABLE 12 ENGINEERING CONSTANTS FOR UNIDIRECTIONAL COMPOSITES

| Type                    | Material | Fiber Vol.<br>$v_f$ | Specific Gravity<br>$\gamma$ | $E_L$<br>GPa | $E_T$<br>GPa | $\nu_{LT}$ | $G_{LT}$<br>GPa |
|-------------------------|----------|---------------------|------------------------------|--------------|--------------|------------|-----------------|
| B(4)<br>5505            | B/Ep     | 0.5                 | 2.0                          | 204          | 18.5         | 0.23       | 5.79            |
| Mod II<br>5206          | Gr/Ep    | 0.55                | 1.5                          | 55           | 8.83         | 0.30       | 5.24            |
| HMS<br>3002M            | Gr/Ep    | 0.48                | 1.58                         | 185          | 6.76         | 0.20       | 5.86            |
| T300<br>5208            | Gr/Ep    | 0.70                | 1.60                         | 181          | 10.3         | 0.28       | 7.17            |
| Mod I<br>ERLA 4289      | Gr/Ep    | 0.51                | 1.56                         | 188          | 4.14         | 0.20       | 4.83            |
| Mod I<br>ERLA 4617      | Gr/Ep    | 0.45                | 1.54                         | 190          | 7.10         | 0.10       | 6.2             |
| AS<br>3501              | Gr/Ep    | 0.66                | 1.60                         | 138          | 8.96         | 0.30       | 7.1             |
| B(4)<br>WRD 9371        | B/PI     | 0.49                | 2.0                          | 222          | 14.5         | 0.16       | 7.7             |
| Mod I<br>WRD 9371       | Gr/PI    | 0.45                | 1.54                         | 216          | 4.97         | 0.25       | 4.5             |
| S Glass<br>1009-26-5901 | Gl/Ep    | 0.72                | 2.13                         | 60.7         | 24.8         | 0.23       | 12.0            |
| Scotchply<br>1002       | Gl/Ep    | 0.45                | 1.8                          | 38.6         | 8.27         | 0.26       | 4.14            |
| T300<br>SP-313          | Gr/Ep    | 0.65                | 1.55                         | 140          | 9.7          | 0.32       |                 |
| Kevlar 49<br>Epoxy      | Kev/Ep   | 0.60                | 1.38                         | 76           | 5.5          | 0.34       | 2.3             |

TABLE 13 COMPLIANCE  $S_{ij}$  IN TERMS OF ENGINEERING CONSTANTS ( $10^{12} \text{ Pa}^{-1}$ )

| Composites     | $S_{11} = \frac{1}{E_L}$<br>(TPa) $^{-1}$ | $S_{22} = \frac{1}{E_T}$<br>(TPa) $^{-1}$ | $S_{12} = -\nu_{LT} S_{11}$<br>$= -\nu_{TL} S_{22}$ | $S_{66} = \frac{1}{G_{LT}}$<br>(TPa) $^{-1}$ |
|----------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| T-300/5208     | 5.52                                      | 97.1                                      | - 1.55                                              | 139                                          |
| B/5505         | 4.90                                      | 54.0                                      | - 1.12                                              | 173                                          |
| Scotchply 1002 | 25.9                                      | 121.0                                     | - 6.74                                              | 242                                          |

TABLE 14 MODULUS  $Q_{ij}$  IN TERMS OF ENGINEERING CONSTANTS ( $10^6 \text{ Pa}$ )

| Composites     | $m$   | $Q_{11} = mE_L$<br>(GPa) | $Q_{22} = mE_T$<br>(GPa) | $Q_{12} = \nu_{LT} Q_{22}$<br>$= \nu_{TL} Q_{11}$ | $Q_{66} = G_{LT}$<br>(GPa) | $S_{ij} Q_{jk} = \delta_{ik}$ |
|----------------|-------|--------------------------|--------------------------|---------------------------------------------------|----------------------------|-------------------------------|
| T-300/5208     | 1.004 | 182                      | 10.3                     | 2.90                                              | 7.17                       |                               |
| B/5505         | 1.005 | 205                      | 18.6                     | 4.28                                              | 5.79                       |                               |
| Scotchply 1002 | 1.005 | 39.2                     | 8.39                     | 2.18                                              | 4.14                       |                               |

$$m = \frac{1}{1 + \nu_{LT} \nu_{TL}} = \frac{1}{1 + \nu_{LT}^2 E_T / E_L}$$

e. Determination of Strains from Stresses for a

$$\sigma_i \text{ in MPa} = \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} = \begin{Bmatrix} 400 \\ 60 \\ 15 \end{Bmatrix}$$

$$S_{ij} \text{ for } G_r/E_p \text{ in (TPa)}^{-1} = \begin{bmatrix} 5.52 & -1.55 & 0 \\ -1.55 & 97.1 & 0 \\ 0 & 0 & 139 \end{bmatrix}$$



Figure 27 Coordinates for  $\sigma_i$  and  $S_{ij}$  are coincident.

$$e_i \text{ in mm/m} = \begin{Bmatrix} e_1 \\ e_2 \\ e_6 \end{Bmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{21} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} = \begin{Bmatrix} 2.15 \\ 5.21 \\ 2.08 \end{Bmatrix} \text{ mm/m}$$

$\sigma_x^1$

$\sigma_y^1$

$\sigma_{xy}^1$

$e_x^1$

$e_y^1$

$e_{xy}^1$

Figure 28. For a given set of Imposed Stresses, shown are the resulting strains for T-300/5208 unidirectional composites for all orientations.

f. Determination of Stresses from Strains for a Given Material

$$e_i \text{ in mm/m} = \begin{Bmatrix} e_1 \\ e_2 \\ e_6 \end{Bmatrix} = \begin{Bmatrix} \quad \\ \quad \\ \quad \end{Bmatrix}$$

$$Q_{ij} \text{ for Gr/Ep in GPa} = \begin{bmatrix} \quad & \quad & \quad \\ \quad & \quad & \quad \\ \quad & \quad & \quad \end{bmatrix}$$

$$\sigma_i \text{ in MPa} = \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{Bmatrix} e_1 \\ e_2 \\ e_6 \end{Bmatrix} = \begin{Bmatrix} \quad \\ \quad \\ \quad \end{Bmatrix}$$



Figure 29. For a given set of Imposed Strains, shown are the resulting stresses for T-300/5208 unidirectional composites for all orientations.



## 2. MAXIMUM STRAIN CRITERION

### a. Determination of Ultimate Strains



Figure 30 Ultimate stress and strain determination.

**b. Typical Ultimate Strains of Unidirectional Composites**

TABLE 15. ULTIMATE STRAINS OF UNIDIRECTIONAL COMPOSITES (mm/m)

| Material       | $\epsilon_L^{\text{I}}$ | $\epsilon_L^{\text{II}}$ | $\epsilon_T^{\text{I}}$ | $\epsilon_T^{\text{II}}$ | $\epsilon_S$ |
|----------------|-------------------------|--------------------------|-------------------------|--------------------------|--------------|
| T-300/5208     | 8.30                    | 8.30                     | 3.91                    | 23.8                     | 9.42         |
| B/5505         | 6.18                    | 12.2                     | 3.30                    | 10.9                     | 11.6         |
| Scotchply 1002 | 27.5                    | 15.8                     | 3.80                    | 14.2                     | 17.4         |

c. Maximum Strains Criterion in Strain Space



Figure 31. Three views of maximum strain envelope in strain space.

d. Limitation Imposed by Poisson Strain



Figure 32. Longitudinal and transverse strain in uniaxial axial tension and compression tests.

If  $\nu_{LT}\epsilon_L' > \epsilon_T'$ , strains envelope may not include all failure points. Point A, for example, could be outside failure surface as shown in Figure 31. This can be an inconsistency of this failure criterion.

e. Maximum Strain Criteria in Stress Space

From Stress-Strain relation  $S_{ij}\sigma_j = e_i$

$$\nu_1 - \nu_{LT}\sigma_2 \leq E_L e_L \\ \leq X \quad (56)$$

$$-\sigma_1 + \nu_{LT}\sigma_2 \leq X' \quad (57)$$

$$-\nu_{TL}\sigma_1 + \sigma_2 \leq Y \quad (58)$$

$$\nu_{TL}\sigma_1 + \sigma_2 \leq Y' \quad (59)$$

$$\sigma_6 \leq S \quad (60)$$



Figure 33 Strain criterion is limited to the material symmetry axes shown here.



Figure 34 Three views of the maximum strain failure envelope in stress space.

f. Off-axis Uniaxial Tests

(1) Maximum Strain Criterion

Substitute

$$\sigma'_1 = n^2 \sigma_1, \quad \sigma'_2 = m^2 \sigma_1, \quad \sigma'_6 = mn \sigma_1 \text{ into SSR}$$

$$e_L \geq (n^2 - v_{LT} m^2) \sigma_1 / E_L \quad (61)$$

$$e_T \geq (m^2 - v_{TL} n^2) \sigma_1 / E_T \quad (62)$$

$$e_{LT} \geq -mn \sigma_1 / G_{LT} \quad (63)$$

$$\sigma_1 \leq \left\{ \begin{array}{c} \frac{x}{n^2 - v_{LT} m^2} \\ \frac{y}{m^2 - v_{TL} n^2} \\ \frac{s}{mn} \end{array} \right\} \quad (64)$$

$$-\sigma_1 \leq \left\{ \begin{array}{c} \frac{x'}{n^2 - v_{LT} m^2} \\ \frac{y'}{m^2 - v_{TL} n^2} \\ \frac{s'}{mn} \end{array} \right\} \quad (65)$$

(2) Maximum Stress Criterion

A special case of (1) when  $v_{LT} = v_{TL} = 0$ .



Figure 35 Difference between the predicted max stress and max strain criteria of the off-axis strength.

### 3. PLANE ELASTICITY SOLUTIONS

### a. Complex Parameters

Stress distribution in a plane problem is a function of the characteristic equation for an orthotropic material:

$$S_{11} \mu^4 + (2S_{12} + S_{66})\mu^2 + S_{22} = 0 \quad (66)$$

In terms of engineering constants with  $0^\circ$  oriented along the reference coordinate:

$$\mu^4 + \left( \frac{E_L}{G_{LT}} - 2v_{LT} \right) \mu^2 + \frac{E_L}{E_T} = 0 \quad (67)$$

Roots of this equation are called complex parameters which constitute another measure of the elastic constants:

$$\mu = \beta i, \quad \delta i \quad (68)$$

### Numerical example for B/Ep unidirectional composites:

$$\mu^4 + \left( \frac{206.5}{6.9} - 2 \times 0.21 \right) \mu^2 + \left( \frac{206.5}{18.6} \right) = 0 \quad (69)$$

$$\frac{4}{\mu} + 29.1 \frac{2}{\mu^2} + 11.1 = 0 \quad (70)$$

$$\frac{2}{11} = -14.6 \pm \sqrt{214-11.1} = -14.6 \pm 14.2 = -28.8, -4$$

$$\therefore \delta = 5.35, \quad \delta = .63 \quad (71)$$

For isotropic material,  $\delta = \delta = 1$

TABLE 16 COMPLEX PARAMETERS FOR VARIOUS UNIDIRECTIONAL COMPOSITES

| Composites | $\beta$ | $\delta$ | $n = \beta + \delta$ | $k = \beta\delta$ |
|------------|---------|----------|----------------------|-------------------|
|            |         |          |                      |                   |

b. Stress Concentrations at Various Boundary Conditions

(1) Elliptic Hole Under Tension



$$\sigma_{\theta} = p \left( 1 + \frac{nb}{a} \right)$$

(2) Elliptic Hole Under Bending



$$\sigma_{\theta} = \pm \frac{Mb}{I} \left( 1 + \frac{nb}{2a} \right)$$

(3) Circular Hole Under Internal Pressure



$$\text{At Point A } \sigma_{\theta} = q \frac{n-1}{k}$$

$$\text{At Point B } \sigma_{\theta} = q(n-k)$$

(4) Circular Hole Under Uniform Tension



$$\text{At Point A } \sigma_{\theta} = p \sqrt{\frac{E_{11}}{E_{22}}} (n+k-1)$$

$$\text{At Point B } \sigma_{\theta} = p(n-k+1)$$

(5) Circular Hole Subjected to Twist



$$\sigma_r = - \frac{a}{g} [k - \nu_{12} + n(\cos^2 \theta + \sin^2 \theta)]$$

$$\tau_{r\theta} = - \frac{a}{g} [k - \nu_{12} + n(\cos^2 \theta + n \sin^2 \theta)]$$

$$g = \frac{1}{Q_{22}} + \frac{k}{G_{12}}$$

(6) Rigid Reinforcement Under Tension



$$\text{At Point A } \sigma_r = \frac{p}{g \sqrt{E_{11} E_{22}}} \left( k + n - \nu_{12} + \frac{E_{11}}{G_{12}} \right)$$

$$\sigma_{\theta} = \nu_{12} \sigma_r, \quad \sigma_{r\theta} = 0 \quad (77)$$

At Point B

$$\sigma_r = \frac{p}{g E_{11}} [k - \nu_{12}(1+n)]$$

$$\sigma_{\theta} = \nu_{12} \sigma_r, \quad \sigma_{r\theta} = 0 \quad (78)$$

General Reference:

S. G. LEKHNTSKII, Anisotropic Plates,  
English translation by Gordon & Breach.

c. Numerical Example of Elliptic Hole Under Tension

(1) For  $0^\circ$  composites

At Point B

$$\frac{\sigma_\theta}{p} = 1 + n \frac{b}{a} \quad (79)$$

For  $B/E_p$ ,

$$\frac{\sigma_\theta}{p} = 1 + 5.98 \frac{b}{a} \quad (80)$$

For  $G_r/E_p$

$$\frac{\sigma_\theta}{p} = 1 + \frac{b}{a} \quad (81)$$

(2) For  $90^\circ$  composite



Figure 36 Elliptical opening transverse to the fibers.



Figure 37 Stress concentration factor for various aspect ratio.



#### 4. TRANSFORMATION RELATIONS FOR COMPLIANCE

##### a. Formulas

TABLE 17 TRANSFORMATION OF COMPLIANCE

|          | $I_1$ | $I_2$ | $R_1$                        | $R_2$                          |
|----------|-------|-------|------------------------------|--------------------------------|
| $S_{11}$ | 1     | 1     | $-\cos 2(\theta - \delta_1)$ | $-\cos 4(\theta - \delta_2)$   |
| $S_{22}$ | 1     | 1     | $\cos 2(\theta - \delta_1)$  | $-\cos 4(\theta - \delta_2)$   |
| $S_{12}$ | 1     | -1    | 0                            | $\cos 4(\theta - \delta_2)$    |
| $S_{66}$ | 0     | 4     | 0                            | $4 \cos 4(\theta - \delta_2)$  |
| $S_{16}$ | 0     | 0     | $\sin 2(\theta - \delta_1)$  | $2 \sin 4(\theta - \delta_2)$  |
| $S_{26}$ | 0     | 0     | $\sin 2(\theta - \delta_1)$  | $-2 \sin 4(\theta - \delta_2)$ |

$$I_1 = \frac{1}{4} (S_{11} + S_{22} + 2S_{12}) \quad (82)$$

$$I_2 = \frac{1}{8} (S_{11} + S_{22} - 2S_{12} + S_{66}) \quad (83)$$

$$R_1 = \frac{1}{2} \sqrt{(-S_{11} + S_{22})^2 + (S_{16} + S_{26})^2} \quad (84)$$

$$R_2 = \frac{1}{8} \sqrt{(S_{11} + S_{22} - 2S_{12} - S_{66})^2 + 4(S_{26} - S_{16})^2} \quad (85)$$

$$\tan 2\delta_1 = \frac{S_{16} + S_{26}}{S_{11} - S_{22}} \quad (86)$$

$$\tan 4\delta_2 = \frac{2(S_{16} - S_{26})}{S_{11} + S_{22} - 2S_{12} - S_{66}} \quad (87)$$

For orthotropic material

$$\delta_1 = \delta_2 \quad (88)$$

For anisotropic material

$$\delta_1 \neq \delta_2 \quad (89)$$

b. Typed Numerical Data

TABLE 18 INVARIANTS FOR COMPLIANCE MATRIX FOR VARIOUS COMPOSITES  
(TPa)<sup>-1</sup>

| Material       | I <sub>1S</sub> | I <sub>2S</sub> | R <sub>1S</sub> | R <sub>2S</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|
| T-300/5208     | 24.9            | 30.6            | 45.7            | 4.22            |
| B/5505         | 14.2            | 29.2            | 24.6            | 13.9            |
| Scotchply 1002 | 33.3            | 50.2            | 47.5            | 10.2            |

c. Graphical Illustration

(1) Trigonometric Relations



(2) Transformed Compliance for T-300/5208,

$$S_{ij} = \begin{bmatrix} 5.5 & -1.5 & 0 \\ -1.5 & 97 & 0 \\ 0 & 0 & 139 \end{bmatrix} \text{ (TPa)}^{-1}$$

$$I_1 = 25, I_2 = 30, R_1 = 45, R_2 = 4$$



(3) Variation in Engineering Constants as Coordinates Rotate (GPa)

$$\bar{E}'_{11} = \frac{1}{S'_{11}}, \quad \bar{E}'_{22} = \frac{1}{S'_{22}}, \quad \nu'_{12} = -\frac{S'_{12}}{S'_{11}}, \quad \nu'_{21} = -\frac{S'_{12}}{S'_{22}}, \quad G'_{12} = \frac{1}{S'_{66}}$$

TABLE 19 TRANSFORMED COMPLIANCE & ENGINEERING CONSTANTS FOR VARIOUS COMPOSITES (TPa)<sup>-1</sup> AND (GPa)

| T-300 / 5208 |           |       |                       |                                        |                       |
|--------------|-----------|-------|-----------------------|----------------------------------------|-----------------------|
|              | $S'_{ij}$ |       | Engineering Constants | $S'_{ij}$                              | Engineering Constants |
|              | 5.52      | -1.54 | 0                     | $E_{11} = 182$<br>$E_{22} = 10.3$      |                       |
| 0°           |           | 97.1  | 0                     | $\nu_{12} = .28$<br>$\nu_{21} = .016$  |                       |
|              |           |       | 139                   | $G_{12} = 7.2$                         |                       |
|              | 13.7      | -3.62 | 30                    | $E_{11} = 73$<br>$E_{22} = 10.8$       |                       |
| 15°          |           | 92    | 15.7                  | $\nu_{12} = .264$<br>$\nu_{21} = .039$ |                       |
|              |           |       | 130                   | $G_{12} = 7.7$                         |                       |
| 30°          |           |       |                       |                                        |                       |
| 45°          |           |       |                       |                                        |                       |

## 5. TRANSFORMATION RELATIONS FOR MODULUS MATRIX

### a. Formulas

TABLE 20 TRANSFORMATION OF MODULUS

|            | $I_1$ | $I_2$ | $R_1$                                    | $R_2$                        |
|------------|-------|-------|------------------------------------------|------------------------------|
| $Q_{11}^t$ | 1     | 1     | $\cos 2(\theta - \delta_1)$              | $\cos 4(\theta - \delta_2)$  |
| $Q_{22}^t$ | 1     | 1     | $-\cos 2(\theta - \delta_1)$             | $\cos 4(\theta - \delta_2)$  |
| $Q_{12}^t$ | 1     | -1    | 0                                        | $-\cos 4(\theta - \delta_2)$ |
| $Q_{66}^t$ | 0     | 1     | 0                                        | $-\cos 4(\theta - \delta_2)$ |
| $Q_{16}^t$ | 0     | 0     | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $\sin 4(\theta - \delta_2)$  |
| $Q_{26}^t$ | 0     | 0     | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $\sin 4(\theta - \delta_2)$  |

$$I_1 = \frac{1}{4} (Q_{11} + Q_{22} + 2Q_{12}) \quad (90)$$

$$I_2 = \frac{1}{8} (Q_{11} + Q_{22} - 2Q_{12} + 4Q_{66}) \quad (91)$$

$$R_1 = \frac{1}{2} \sqrt{(-Q_{11} + Q_{22})^2 + 4(Q_{16} + Q_{26})^2} \quad (92)$$

$$R_2 = \frac{1}{8} \sqrt{(Q_{11} + Q_{22} - 2Q_{12} - 4Q_{66})^2 + 16(Q_{16} - Q_{26})^2} \quad (93)$$

$$\tan 2\delta_1 = - \frac{2(Q_{16} + Q_{26})}{Q_{11} - Q_{22}} \quad (94)$$

$$\tan 4\delta_2 = - \frac{4(Q_{16} - Q_{26})}{Q_{11} + Q_{22} - 2Q_{12} - 4Q_{66}} \quad (95)$$

$\delta_1 = \delta_2$  for orthotropic materials

$\delta_1 \neq \delta_2$  for anisotropic materials

b. Typical Numerical Data

TABLE 21 INVARIANTS FOR MODULUS MATRIX FOR VARIOUS COMPOSITES (GPa)

| Material          | I <sub>1Q</sub> | I <sub>2Q</sub> | R <sub>1Q</sub> | R <sub>2Q</sub> |  |
|-------------------|-----------------|-----------------|-----------------|-----------------|--|
| T-300/5208        | 49.5            | 26.9            | 85.7            | 19.7            |  |
| B/5505            | 58.0            | 29.8            | 93.2            | 24.0            |  |
| Scotchply<br>1002 | 13.0            | 7.47            | 15.4            | 3.33            |  |

c. Graphical Illustration

(1) Trigonometric Relations



(2) Transformed Modulus for T-300/5208



d. Typical Data for Transformed Modulus for Various Composites

TABLE 22 TRANSFORMED MODULUS FOR VARIOUS COMPOSITES (GPa)

| T-300/5208           |     |      |     |
|----------------------|-----|------|-----|
| $\Omega_{ij}^{(0)}$  | 182 | 2.9  | 0   |
|                      |     | 10.3 | 0   |
|                      |     |      | 7.2 |
| $\Omega_{ij}^{(15)}$ | 160 | 13   | -38 |
|                      |     | 12   | -4  |
|                      |     |      | 17  |
| $\Omega_{ij}^{(30)}$ |     |      |     |
| $\Omega_{ij}^{(45)}$ |     |      |     |

## 6. MODULI FOR RANDOM COMPOSITES

### a. Constant Stress or Series Model

$$\bar{e}_j = \sigma_j \int_{-\pi/2}^{\pi/2} S_{ij} d\theta = \begin{bmatrix} I_1 + I_2 & I_1 - I_2 & 0 \\ I_1 - I_2 & I_1 + I_2 & 0 \\ 0 & 0 & 4I_2 \end{bmatrix} \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix} \quad (96)$$

The invariants are those for  $S_{ij}$  in Table 18.

$$E_s = \frac{1}{I_1 + I_2} \quad (97)$$

$$\nu_s = -\frac{I_1 - I_2}{I_1 + I_2} \quad (98)$$

$$G_s = \frac{1}{4I_2} \quad (99)$$

### b. Constant Strain or Parallel Model

$$\bar{e}_j = e_j \int_{-\pi/2}^{\pi/2} Q_{ij} d\theta = \begin{bmatrix} I_1 + I_2 & I_1 - I_2 & 0 \\ I_1 - I_2 & I_1 + I_2 & 0 \\ 0 & 0 & I_2 \end{bmatrix} \begin{Bmatrix} e_1 \\ e_2 \\ e_6 \end{Bmatrix} \quad (100)$$

The invariants are those for  $Q_{ij}$  in Table 21.

$$\nu_p = \frac{I_1 - I_2}{I_1 + I_2} \quad (101)$$

$$E_p = (1 - \nu_p^2) (I_1 + I_2) \quad (102)$$

$$G_p = I_2 \quad (103)$$

### c. Isotropic Constants for Various Random Composites

TABLE 23 PREDICTED ELASTIC CONSTANTS FOR RANDOM COMPOSITES (GPa)

| Material       | $E_s$ | $G_s$ | $E_p$ | $G_p$ |
|----------------|-------|-------|-------|-------|
| T-300/5208     | 18.   | 8.17  | 69.7  | 26.9  |
| B/5505         | 23.0  | 8.56  | 78.7  | 29.8  |
| Scotchply 1002 | 12.0  | 4.98  | 19.0  | 15.4  |



SECTION IV  
MICROMECHANICS

## 1. ELASTIC PROPERTIES

### a. Definitions

Average strains depend on the boundary displacement only.

$$\begin{aligned}\bar{\epsilon}_{ij} &= \frac{1}{V} \int_V \epsilon_{ij} dV = \frac{1}{2V} \int_V (u_{i,j} + u_{j,i}) dV \\ &= \frac{1}{2V} \int_S (u_i n_j + u_j n_i) dS\end{aligned}\quad (104)$$



Average stresses depend on the boundary tractions only.

$$\begin{aligned}\bar{\sigma}_{ij} &= \frac{1}{V} \int_V \sigma_{ij} dV = \frac{1}{V} \int_V (\sigma_{ik} x_j)_k dV \\ &= \frac{1}{2V} \int_S (T_i x_j + T_j x_i) dS\end{aligned}\quad (105)$$

Figure 38 A composite body. Displacement continuity and equilibrium are maintained at the interface.

### Virtual work

$$\sigma_{ij} \epsilon_{ij} = \frac{1}{V} \int_V \sigma_{ij} \epsilon_{ij} dV = \frac{1}{V} \int_S T_i u_i dS \quad (106)$$

$\sigma_{ij}$ : statically admissible,  $u_i$ : kinematically admissible

### Divergence theorem

$$\int_S f_i n_j dS = \int_V f_{i,j} dV \quad (107)$$

(1) Sample Problems

- (a) A composite bar of length  $l$  is given a displacement  $\delta l$  at one end while the other end is held fixed. What is the average strain  $\bar{\epsilon}_{11}$ ?



- (b) A composite bar is subjected to the pressure  $p$  at both ends. What is the average stress  $\bar{\sigma}_{11}$ ?



b. Homogeneous Boundary Conditions

$$\text{If } u_i = e_{ij}^o x_j \text{ on } S, \text{ then } e_{ij} = e_{ij}^o. \quad (108)$$

$$\text{If } T_i = \sigma_{ij}^o x_j \text{ on } S, \text{ then } \bar{\sigma}_{ij} = \sigma_{ij}^o. \quad (109)$$

$$\text{If either of the above, then } \bar{\sigma}_{ij} e_{ij} = \bar{\sigma}_{ij} \bar{e}_{ij}. \quad (110)$$

The above reductions follow from the definitions and the divergence theorem.

(1) Sample Problem

- (a) Prescribe the homogeneous boundary conditions on a two-dimensional, rectangular body.



c. Effective Elastic Constants

$$\text{Displacement B.C. } u_i = e_{ij}^0 x_j \text{ on } S.$$

$$u_i(x) = u_{ikl}(x) e_{kl}^0 \quad \text{in } V \quad (111)$$

$$e_{ij}(x) = e_{ijkl} e_{kl}^0, \quad e_{ijkl} = \frac{1}{2} (u_{ikl,j} + u_{jkl,i}) \quad (112)$$

$$\sigma_{ij}(x) = G_{ijkl}(x) e_{kl}^0(x) \quad (113)$$

$$\therefore \bar{\sigma}_{ij} = G_{ijkl}^* \bar{e}_{kl}, \quad G_{ijkl}^* = \frac{1}{V} \int_V G_{ijmn}(x) e_{mnkl}(x) dV \quad (114)$$

$$\text{Traction B.C. } T_i = \sigma_{ij}^0 n_j$$

$$\bar{e}_{ij} = S_{ijkl}^* \bar{\sigma}_{kl}, \quad S_{ijkl}^* = \frac{1}{V} \int_V S_{ijmn}(x) \sigma_{mnkl}(x) dV \quad (115)$$

$$\sigma_{ij}(x) = \sigma_{ijkl}(x) e_{kl}^0 \quad (116)$$

Strain energy

$$\bar{W}^e = \frac{1}{2} G_{ijkl}^* e_{ij}^0 e_{kl}^0 = \frac{1}{2} G_{ijkl}^* \bar{e}_{ij} \bar{e}_{kl} : \text{ Displacement B.C.} \quad (117)$$

$$\bar{W}^\sigma = \frac{1}{2} S_{ijkl}^* \sigma_{ij}^0 \sigma_{kl}^0 = \frac{1}{2} S_{ijkl}^* \bar{\sigma}_{ij} \bar{\sigma}_{kl} : \text{ Traction B.C.} \quad (118)$$

Statistically homogeneous body

$$G_{ijkl}^* S_{klmn}^* = I_{ijmn}, \quad I_{ijmn} = \frac{1}{2} (\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm}) \quad (119)$$

d. Prediction Based on Averages

$$\text{Determine : } \bar{\epsilon}_i = S_{ij}^* \bar{\sigma}_j \quad (6 \text{ equations}) \quad (120)$$

$$\text{Unknowns : } \bar{\sigma}_i, \bar{\epsilon}_i, \bar{\sigma}_{fi}, \bar{\epsilon}_{fi}, \bar{\sigma}_{mi}, \bar{\epsilon}_{mi} \quad (36) \quad (121)$$

Available Equations:

$$\text{Const. Eqns. } \bar{\epsilon}_{fi} = S_{fij} \bar{\sigma}_{fj}, \bar{\epsilon}_{mi} = S_{mij} \bar{\sigma}_{mj} \quad (12 \text{ equations}) \quad (122)$$

$$\text{Definitions } \bar{\epsilon}_i = v_f \bar{\epsilon}_{fi} + v_m \bar{\epsilon}_{mi}, \bar{\sigma}_i = v_f \bar{\sigma}_{fi} + v_m \bar{\sigma}_{mi} \quad (12 \text{ equations}) \quad (123)$$

No. of additional equations required : 6

To be provided from the equilibrium and compatibility conditions.

Suppose

$$\bar{\sigma}_{fi} = B_{fij} \bar{\sigma}_j \quad (124)$$

Then

$$S_{ij}^* = v_f S_{fik} B_{fkj} + S_{mik} (\delta_{kj} - v_f B_{fkj}) \quad (125)$$

e. Approximation for Unidirectional Laminae

For equilibrium

$$\bar{\nu}_{mi} = \eta_i \bar{\nu}_{fi}, \quad i = 2-6. \quad (126)$$

For compatibility

$$\bar{\epsilon}_{fl} = \eta_1 \bar{\epsilon}_{ml} \quad (127)$$

$$E_1^* = \frac{1}{\eta_1 v_f + v_m} (\eta_1 v_f E_f + v_m E_m) \quad (128)$$

$$v_{12}^* = \frac{1}{\eta_1 v_f + v_m} (\eta_1 v_f v_f + v_m v_m) \quad (129)$$

$$\frac{1}{E_a^*} = \left( \frac{v_f}{E_f} + \frac{\eta_a v_m}{E_m} \right) \frac{1}{v_f v_m} \frac{(\eta_1 \eta_a E_f v_m - E_m v_f)(v_m/E_m - v_f/E_f)}{(\eta_1 v_f E_f + v_m E_m)(v_f + \eta_a v_m)} \quad (130)$$

$$v_{al}^* = v_{1a}^* E_a^* / E_1^* \quad (131)$$

$$\frac{1}{G_{cc}^*} = \left( \frac{v_f}{G_f} + \frac{\eta_c v_m}{G_m} \right) \frac{1}{v_f + \eta_c v_m} \quad (132)$$

$$v_{ab}^* = \frac{E_a^*}{v_f + \eta_a v_m} \left( v_f \frac{1 + v_f}{E_f} + \eta_a v_m \frac{1 + v_m}{E_m} \right) - 1 \quad (133)$$

$$a, b = 2, 3 \quad c = 4, 5, 6$$

Note that

$$\frac{v_{23}^*}{E_2^*} \neq \frac{v_{32}^*}{E_3^*} \quad \text{unless } \eta_2 = \eta_3. \quad (134)$$



Figure 39. Unidirectional composite and the reference coordinate system.

f. Transverse Isotropy

$$E_2^* = E_3^* \rightarrow \eta_2 = \eta_3 \quad (135)$$

$$\frac{\nu_{23}^*}{E_2^*} = \frac{1}{E_2^*} - \frac{1}{2G_{44}^*} \rightarrow \eta_2 = \eta_4 \quad (136)$$

$$G_{44}^* = G_{55}^* \rightarrow \eta_4 = \eta_5 \quad (137)$$

Independent  $\eta$ 's :  $\eta_1, \eta_2, \eta_6$

Independent elastic moduli :

$$E_L = E_1^* \quad (138)$$

$$E_T = E_2^* = E_3^* \quad (139)$$

$$\nu_{LT} = \nu_{TL} \frac{E_L}{E_T} = \nu_{12}^* \quad (140)$$

$$G_{LT} = G_{66}^* \quad (141)$$

$$\nu_{TT} = \nu_{23}^* = \nu_{32}^* \quad (142)$$

$$G_{TT} (= G_{44}^* = G_{55}^*) \text{ is determined from} \quad (143)$$

$$G_{TT} = \frac{E_T}{2(1 + \nu_{TT})} \quad (144)$$



Figure 40 Longitudinal modulus can be predicted by Eq. (128) with  $n_1 = 1$ . Constituents are E-glass fibers ( $E_f = 72.4 \text{ GPa}$ ,  $\nu_f = 0.20$ ) and epoxy matrix ( $E_m = 3.45 \text{ GPa}$ ,  $\nu_m = 0.35$ ).



Figure 41 Prediction of transverse modulus by Eq. (130) with  $n_2 = 0.5$ ,  $n_1 = 1$ , is comparable to the more rigorous solutions. Constituents are E-glass fibers ( $E_f = 73.1 \text{ GPa}$ ,  $\nu_f = 0.22$ ) and epoxy matrix ( $E_m = 3.45 \text{ GPa}$ ,  $\nu_m = 0.35$ ). [2, 3]



Figure 42. Longitudinal shear modulus increases with decreasing  $\eta_2$  when predicted by Eq. (132). Good agreement is seen when  $\eta_2 = 0.4 - 0.5$ . [2, 4]



Figure 43. Longitudinal Poisson's ratio can be predicted by Eq. (129) with  $\eta_1 = 1$ . Constituent properties are the same as those in Figure 40. [2]



Figure 44. Transverse Poisson's ratio predicted by Eq. (133) with  $\eta_2 = 0.5$ ,  $\eta_1 = 1$ , is higher than the upper bound from a more rigorous solution. [2]

g. Approximations for Particulate Composite

Assume

$$\bar{\sigma}_{mi} = \eta_1 \bar{\sigma}_{fi}, \quad i = 1 - 3; \quad \bar{\sigma}_{mi} = \eta_2 \bar{\sigma}_{fi}, \quad i = 4 - 6. \quad (145)$$

$$\frac{1}{E^*} = \frac{v_f}{E_f} + \frac{\eta v_m}{E_m} \frac{1}{v_f + \eta v_m} \quad (146)$$

$$\nu^* = \frac{v_f \nu_f E_m + \eta v_m \nu_m E_f}{v_f E_m + \eta v_m E_f} \quad (147)$$

Isotropy requires that

$$\eta_1 = \eta_2 = \eta$$



Figure 45 Young's modulus of particulate composite can be predicted by Eq. (146) with  $\eta = 0.4 - 0.5$ : (a)  $\text{Al}_2\text{O}_3/\text{glass}$  ( $E_f \approx 396 \text{ GPa}$ ,  $E_m \approx 79.3 \text{ GPa}$ ); (b) Sand/epoxy ( $E_f \approx 124 \text{ GPa}$ ,  $E_m \approx 3.45 \text{ GPa}$ ). [5]

### h. Thermal Expansion and Swelling Coefficients

Hygro-thermo-elastic relations for homogeneous constituent materials

$$\begin{aligned} \epsilon_i &= S_{ij} \sigma_j + \alpha_i \theta \quad \text{or} \\ \sigma_i &= C_{ij} \epsilon_j + \beta_i \theta \end{aligned} \quad (148)$$

where  $\theta$  is the temperature difference ( $T$ ) or the moisture concentration  $c$ . If both,  $\alpha_i \theta$  should be replaced by  $(\alpha_i^T T + \alpha_i^H c)$ .

Let  $\bar{\epsilon}_i^\sigma$  and  $\bar{\epsilon}_i^\theta$  be the strains resulting respectively from the homogeneous stress B.C. with  $\theta = 0$  and the stress free B.C. with  $\theta = \theta^0$ .

Then

$$\bar{\epsilon}_i^\sigma = S_{ij}^* \sigma_j^0 = S_{ij}^* \bar{\sigma}_j, \quad \bar{\epsilon}_i^\theta = \alpha_i^* \theta^0 = \alpha_i^* \bar{\theta} \quad (149)$$

Therefore

$$\bar{\epsilon}_i = S_{ij}^* \bar{\sigma}_j + \alpha_i^* \bar{\theta}. \quad (150)$$

Similarly

$$\bar{\sigma}_i = C_{ij}^* \bar{\epsilon}_j + \beta_i^* \bar{\theta}. \quad (151)$$

(1) Sample Problem [2]

(a) Show that

$$\bar{\sigma}_i^* = \bar{\sigma}_{mi} + (\bar{\sigma}_{fj} - \bar{\sigma}_{mj}) S_{fmjk}^{-1} (S_{ki}^* - S_{mkj}) \quad (152)$$

where

$$S_{fmij} = S_{fij} - S_{mij} \quad (153)$$

Proof

From the virtual work theorem

$$\overline{\sigma_i e_i \theta} = \overline{\sigma_i e_i \theta} = \overline{\sigma_i a_i \theta} \quad (154)$$

But

$$\overline{\sigma_i e_i \theta} = \overline{S_{ij} \sigma_j e_j \theta} + \overline{\sigma_i a_i \theta} \quad (155)$$

$$= \overline{e_i \sigma_j \theta} + \overline{\sigma_i a_i \theta} = \overline{\sigma_i a_i \theta} \quad (156)$$

Therefore

$$\overline{\sigma_i a_i \theta}^* = v_m \bar{\sigma}_{mi} \overline{\sigma_{mi}} + v_f \bar{\sigma}_{fi} \overline{\sigma_{fi}} \quad (157)$$

Let

$$\overline{\sigma_{fi}} = B_{fij} \overline{\sigma_j} . \text{ Then,} \quad (158)$$

$$S_{ik}^* = S_{mik} + v_f (S_{fij} - S_{mij}) B_{fjk} \text{ or} \quad (159)$$

$$v_f B_{fij} = S_{fmik}^{-1} (S_{kj}^* - S_{mkj}) \quad (160)$$

Noting that  $v_m \overline{\sigma_{mi}} = \overline{\sigma_i} - v_f \overline{\sigma_{fi}}$ , we obtain

$$\overline{\sigma_i a_i \theta}^* = \bar{\sigma}_{mi} \overline{\sigma_i} + (\bar{\sigma}_{fj} - \bar{\sigma}_{mj}) S_{fmik}^{-1} (S_{kj}^* - S_{mkj}) \overline{\sigma_j} . \quad (161)$$

Since  $\overline{\sigma_j}$  is arbitrary, the proof follows.

i. Approximations for  $\alpha_i^*$

Following the same procedure as in Section e, we obtain

$$\alpha_L = \alpha_1^* = (v_f E_f \alpha_f + v_m E_m \alpha_m) / (\eta_1 v_f E_f + v_m E_m) \quad (162)$$

$$\alpha_T = \alpha_2^* = v_f \alpha_f + v_m \alpha_m + (v_f \alpha_f \nu_f + v_m \alpha_m \nu_m) - (\eta_1 v_f \nu_f + v_m \nu_m) \alpha_1^* \quad (163)$$



Figure 46 Thermal expansion coefficients predicted by Eqs. (162-163) with  $\eta_1 = 1$  are comparable to the more rigorous solutions. [2]

TABLE 24 TYPICAL COMPOSITE THERMAL EXPANSION COEFFICIENTS

TABLE 24 TYPICAL COMPOSITE THERMAL EXPANSION COEFFICIENTS

| COMPOSITE | CONSTITUENTS             | $v_f$ | LONG EXP.<br>m/m/°K | TRANS.<br>EXP.<br>m/m/°K |
|-----------|--------------------------|-------|---------------------|--------------------------|
| B/Ep      | B <sub>4</sub> /5505     | 0.5   | 4.32                | 22.1                     |
| B/PI      | B <sub>4</sub> /WRD 9371 | 0.49  | 4.90                | 28.4                     |
| Gr/Ep     | Mod II/5206              | 0.55  | -0.23               | 34.0                     |
| Gr/Ep     | HMS/3002M                | 0.48  | -0.23               | 33.5                     |
| Gr/Ep     | T300/5208                | 0.70  | 0.01                | 12.5                     |
| Gr/Ep     | Mod I/ERLA 4289          | 0.51  | -1.10               | 31.5                     |
| Gr/Ep     | Mod I/ERLA 4617          | 0.45  | -0.90               | 33.3                     |
| Gr/PI     | Mod I/WRD 9371           | 0.45  | 0.                  | 25.3                     |
| Gl/Ep     | S-Glass/1009             | 0.72  | 3.8                 | 16.7                     |
| Gl/Ep     | Scotchply 1002           | 0.45  | 4.16                | 15.5                     |



## 2. STRESSES IN CONSTITUENT PHASES

### a. Microstresses Under Longitudinal Tension



Figure 47 Hexagonal array of fibers and the coordinate system chosen.



Figure 48 Normalized stress components at the interface between the fiber and matrix under longitudinal loading ( $E_f = 414$  GPa,  $E_m = 2.62$  GPa). The radial stress becomes tensile at the resin-rich area (in the vicinity of  $\theta = 30^\circ$ ) even under longitudinal tension. [6]



Figure 49 Stress concentration under transverse tension. Solid and broken lines represent the stress concentration factors at the interface and in the matrix, respectively. [7, 8]



Figure 51 Residual stresses at the interface in a composite with hexagonal array of fibers. Constituent properties are the same as those in Figure 48, and the stresses correspond to the unconstrained matrix shrinkage strain of 1 cm/m. [6]



TABLE 25 TOTAL STRESSES UNDER LONGITUDINAL TENSION  
[cf. [9]]

| Fiber Volume Content<br>$V_f$                   | Modulus Ratio<br>$E_f / E_m$ | Radial Stress, $\sigma_r$<br>(ksi) |                     | Hoop Stress, $\sigma_\theta$<br>(ksi)<br>$\theta = 30^\circ$ | Maximum Shear Stress, $\tau_{r\theta}$<br>(ksi) |
|-------------------------------------------------|------------------------------|------------------------------------|---------------------|--------------------------------------------------------------|-------------------------------------------------|
|                                                 |                              | $\theta = 0^\circ$                 | $\theta = 30^\circ$ | $\theta = 30^\circ$                                          |                                                 |
| Curing Stresses (Resin shrinkage = 0.6%)        |                              |                                    |                     |                                                              |                                                 |
| 0.64                                            | 150                          | -1.2                               | 0.3                 | 3.0                                                          | 0.6                                             |
| 0.70                                            | 150                          | -1.2                               | 0.6                 | 3.6                                                          | 0.6                                             |
| 0.64                                            | 26                           | -1.5                               | 0.3                 | 3.0                                                          | 0.6                                             |
| 0.70                                            | 26                           | -1.8                               | 0.6                 | 3.6                                                          | 0.6                                             |
| Stresses Due to Longitudinal Tension of 100 ksi |                              |                                    |                     |                                                              |                                                 |
| 0.64                                            | 150                          | -0.7                               | 0.4                 | 7.5                                                          | 1.5                                             |
| 0.70                                            | 150                          | -1.2                               | 1.0                 | 9.0                                                          | 2.5                                             |
| 0.64                                            | 26                           | -1.0                               | 1.0                 | 7.5                                                          | 2.0                                             |
| 0.70                                            | 26                           | -1.3                               | 1.3                 | 9.0                                                          | 2.5                                             |
| Combined Stresses                               |                              |                                    |                     |                                                              |                                                 |
| 0.64                                            | 150                          | -1.7                               | 0.7                 | 10.5                                                         | 2.1                                             |
| 0.70                                            | 150                          | -2.4                               | 1.6                 | 12.6                                                         | 3.1                                             |
| 0.64                                            | 26                           | -2.5                               | 1.3                 | 10.5                                                         | 2.6                                             |
| 0.70                                            | 26                           | -3.1                               | 1.9                 | 12.6                                                         | 3.1                                             |

### 3. STRENGTH

#### a. Longitudinal Tensile Strength

Brittle matrix

$$X = [v_f + (1-v_f)E_m/E_f]X_f \quad (164)$$

Ductile matrix (tough)

$$X = v_f X_f + v_m X_m \quad (165)$$

Influencing factors

Fiber damage - fiber surface treatment (Gr fibers), heat treatment (B/Al)

Strength of  $B_4/Al-6061$  ( $v_f = 0,25$ )

Heat treatment

98 MPa

No treatment

104 MPa



Figure 52 Longitudinal tensile strengths of  $B_4/Al-6061$  and BSC/Al-6061. [10]

TABLE 26 TYPICAL FIBER STRENGTHS

| MATERIAL         | DIAMETER<br>μm | TENSILE STRENGTH<br>MPa |
|------------------|----------------|-------------------------|
| Kevlar           | 11.7           | 2760                    |
| Graphite (Gr)    | 7.6            |                         |
| MODMOR II<br>HTS |                | 2760                    |
| MODMOR I<br>HMS  |                | 1850                    |
| T300<br>AS       |                | 2240                    |
| Glass (Gl)       |                |                         |
| E-Glass          | 5-10           | 3450                    |
| S-Glass          | 2.5            | 4480                    |
| Boron (B)        | 100, 140       | 3450                    |
| Borsic (BSC)     | 140            | 3010                    |
| Steel            | 13             | 4140                    |
| Tungsten (W)     | 13             | 4000                    |
| Beryllium (Be)   | 127            | 1280                    |

TABLE 27 TYPICAL MATRIX STRENGTHS

| MATERIAL      | TENSILE<br>STRENGTH<br>MPa | COMPRESSIVE<br>STRENGTH<br>MPa | SHEAR<br>STRENGTH<br>MPa |
|---------------|----------------------------|--------------------------------|--------------------------|
| Epoxy (Ep)    |                            |                                |                          |
| Narmco 2387   | 29                         | 159                            | 10                       |
| Narmco 5505   | 59                         | 128                            |                          |
| Epon 828      | 72                         | 150                            | 83                       |
| 1004          | 82                         | 207                            | 134                      |
| ERLA 4289     | 34                         | 93                             |                          |
| ERLA 4617     | 132                        | 226                            |                          |
| Polyester     | 72                         |                                |                          |
| Aluminum (Al) |                            |                                |                          |
| 2024 - T3     | 427                        | 221                            | 255                      |
| 6061 - T6     | 290                        | 241                            | 186                      |
| 6061 - O      | 131                        | -                              | 83                       |
| Titanium (Ti) |                            |                                |                          |
| 6Al-4V        | 958                        | 951                            | 558                      |
| Pure          | 552                        | 483                            | 290                      |

TABLE 28 TYPICAL COMPOSITE STRENGTHS [11, 12]

TABLE 28 TYPICAL COMPOSITE STRENGTHS [11,12]

| COMPOSITE | CONSTITUENTS              | $v_f$ | LONG.<br>TENS.<br>MPa | LONG.<br>COMP.<br>MPa | TRANS.<br>TENS.<br>MPa | TRANS.<br>COMP.<br>MPa | SHEAR<br>MPa |
|-----------|---------------------------|-------|-----------------------|-----------------------|------------------------|------------------------|--------------|
| B/Ep      | B <sub>4</sub> /5505      | 0.5   | 1260                  | 2500                  | 61                     | 202                    | 67           |
| B/PI      | B <sub>4</sub> /WRD 9371  | 0.49  | 1040                  | 1090                  | 11                     | 63                     | 26           |
| Gr/Ep     | Mod II/5206               | 0.55  | 1110                  | 970                   | 36                     | 170                    | 63           |
| Gr/Ep     | HMS/3002M                 | 0.48  | 680                   | 690                   | 16                     | 186                    | 72           |
| Gr/Ep     | T300/5208                 | 0.70  | 1500                  | 1500                  | 40                     | 246                    | 68           |
| Gr/Ep     | Mod I/ERLA 4617           | 0.45  | 840                   | 880                   | 42                     | 197                    | 62           |
| Gr/PI     | Mod I/WRD 9371            | 0.45  | 807                   | 652                   | 15                     | 71                     | 22           |
| G1/Ep     | S-Glass/1009              | 0.72  | 1290                  | 822                   | 46                     | 174                    | 45           |
| B/Al      | B <sub>4</sub> /Al-6061-F | 0.5   | 1110                  | 1480                  | 103                    | 159                    | 103          |
| BSC/Ti    | BSC/Ti-6Al-4V             | 0.5   | 1310                  | -                     | 441                    | -                      | 483          |
| Gr/Ep     | Mod I/4289                | 0.5   | 1120                  | 990                   | 4.2                    | -                      | 34           |
| G1/Ep     | Scotchply 1002            | 0.45  | 1062                  | 610                   | 31.4                   | 118                    | 72           |

b. Transverse Tensile Strength

Failure occurs when

$$K_T \bar{\sigma}_m = X_m, \quad K_T : \text{effective stress concentration factor}$$

$$\therefore Y = \frac{1}{K_{Tm}} (v_m + v_f/\eta_2) X_m \leq X_m : \text{matrix failure} \quad (166)$$

$$= \frac{1}{K_{Ti}} (v_m + v_f/\eta_2) X_i \leq X_i : \text{interface failure} \quad (167)$$



Figure 53 Transverse strengths of  $B_4/Al$ -6061 and BSC/Al-6061 [10]

Influencing factors

Fiber splitting decreases  $Y - B_4/Al$

Heat treatment increases  $X_m$  and in turn  $Y$ .

Voids increase  $K_T$  and in turn decrease  $Y$ .

Fiber surface treatment increases interface strength and in turn  $Y$ .



Figure 54 Effect on transverse strength of fiber diameter and matrix condition (B/Al).  
Failure of  $B_4$ /Al-6061 is due to fiber splitting. [10]



Figure 55 Effect of void content on transverse and shear strengths of G1/Ep ( $X_m = 82$  MPa,  
 $S_m = 134$  MPa,  $v_f = 0.56$ ). [8]

c. Longitudinal Shear Strength

$$S = \frac{1}{K_{Sm}} (v_m + v_f/\eta_6) S_m \leq S_m : \text{matrix failure} \quad (168)$$

$$= \frac{1}{K_{Si}} (v_m + v_f/\eta_6) S_i \leq S_i : \text{interface failure} \quad (169)$$

Influencing factors

Same as those for transverse strength.



Figure 56 Effect of fiber surface treatment on shear strengths of Gr/Ep. Note that  $K_{Si}$  increases more rapidly with  $v_f$  than does  $K_{Sm}$ . [13]



Figure 57 Failure mode in flexure test depends on the shear strength  
 $(Gr/E_p, v_f = 0.6)$ : U - fiber surface untreated; T - fiber surface  
treated. [14]

d. Longitudinal Compression Strength

$$(1) \text{ Buckling in Shear Mode} \quad X' = \frac{G_m}{1 - v_f} + \lambda \frac{\pi^2 v_f}{16 E_f} \left( \frac{d_f}{L} \right)^2 \quad \text{from [15]} \quad (170)$$

$L$  : gage length

$$\lambda = \begin{cases} 1 & \text{for simply supported ends} \\ 4 & \text{for fixed ends} \end{cases}$$

(2) Actual Composites

$$\frac{G_m}{1 - v_f} \approx \frac{3}{1 - v_f} \text{ GPa} \quad ; \quad \text{too high!} \quad (171)$$

$$X' \leq v_f X'_f \quad (172)$$

$$\text{For Gr fibers} \quad X'_f \approx X_f$$

$$\frac{X'}{v_f X'_f} \approx 0.36 - 0.84 \quad \text{for some Gr/Ep. [15]} \quad (173)$$

For T300/5208

$$X' \approx X_f$$

Influencing factors

Debond

Bowed fibers

Misaligned fibers

Voids

e. Transverse Compressive Strength

$$Y' \leq X_m \quad (174)$$

Compare the transverse strengths in Table 28.



## 4. SYNERGISTIC EFFECTS OF MATRIX AND FIBER STRENGTH SCATTER

### a. Role of Matrix

Minimizes interaction among fiber breakages - beneficial.  
Induces stress concentration and hence possible fracture - deleterious.



Figure 58 Fiber breakages in composite.

### b. Bundle Strength

Fiber strength in stress

$$R_f(X_f) = \exp[-L(X_f/X_{fo})^\alpha], \quad \bar{X}_f = X_{fo} L^{-1/\alpha} \Gamma(1 + 1/\alpha) \quad (175)$$

Linear stress-strain relation

$$\sigma = E_f \epsilon \quad (176)$$

Fiber strength in strain

$$R_f(Y_f) = \exp[-L(Y_f/Y_{fo})^\alpha], \quad Y_{fo} = X_{fo}/E_f \quad (177)$$

Fraction of remaining fibers at  $\epsilon = R_f(\epsilon)$ .

Gross stress of bundle

$$\sigma = E_f \epsilon R_f(\epsilon) \quad (178)$$

Failure occurs when  $\frac{d\sigma}{d\epsilon} \Big|_{\epsilon=Y_B} = 0$ .

$$Y_B = Y_{fo}(L\alpha)^{-1/\alpha} \quad (179)$$

Bundle strength

$$X_B = E_f Y_B R_f(Y_B) = X_{fo} (L\alpha e)^{-1/\alpha} = \bar{X}_f (\alpha e)^{-1/\alpha} / \Gamma(1 + 1/\alpha) \quad (180)$$

Bundle secant modulus

$$E_B = \frac{\sigma}{\epsilon} = E_f R_f(\epsilon) = E_f \exp[-L(\epsilon/Y_{fo})^\alpha] \quad (181)$$



Figure 59 Normalized bundle strength vs. the inverse of shape parameter. [16]

c. Composite Strength [17]

$$\begin{aligned} X &= v_f (\text{strength of bundle of length } \delta) \\ &= v_f X_B (L/\delta)^{-1/\alpha} \end{aligned} \quad (182)$$

$$= v_f X_{f_0} (\delta \alpha e)^{-1/\alpha} \quad (183)$$

d. Determination of  $\delta$

Elastic shear lag analysis [17]

$$\frac{\sigma_f}{\sigma} = \frac{E_f}{E} \left[ 1 - \frac{\cosh \eta(\bar{l}-\bar{x})}{\cosh \eta \bar{l}} \right] \quad (184)$$

$$\frac{\tau}{\sigma} = \frac{\eta}{4} \frac{E_f \sinh \eta(\bar{l}-\bar{x})}{\cosh \eta \bar{l}} \quad (185)$$

$$\eta = \frac{2\sqrt{2}}{(1/\sqrt{v_f} - 1)}^{1/2} \left( \frac{G_m}{E_f} \right)^{1/2}, \quad \bar{x} = x/d_f, \quad \bar{l} = l/d_f \quad (186)$$

$$\int_0^{\bar{l}} \sigma_f d\bar{x} = \sigma_f \left| \frac{(\bar{l}-\bar{x})}{2} \right|_{\bar{x}=\bar{l}} \rightarrow \bar{\delta}/2 = 1/\eta \text{ as } \bar{x} \rightarrow \infty. \quad (187)$$

$$\therefore \bar{\delta} = \frac{\delta}{d_f} = \left[ \frac{1}{2} \frac{E_f}{G_m} \frac{1 + \sqrt{v_f}}{\sqrt{v_f}} \right]^{1/2} \quad (188)$$

Perfectly plastic shear lag analysis

$$\bar{X}_f \pi d_f^2 / 4 = \tau_y \pi d_f \bar{\delta} / 2 \quad \tau_y: \text{matrix yield stress} \quad (189)$$

$$\therefore \bar{\delta} = \bar{X}_f / (2\tau_y) \quad (190)$$

| Composite | $\alpha$ | $d_f$<br>mm | $X_{fo}$<br>MPa | $E_f$<br>GPa | $G_m$<br>GPa | $v_f$ | $\delta(\text{elastic})$<br>mm | X, MPa |      |        |
|-----------|----------|-------------|-----------------|--------------|--------------|-------|--------------------------------|--------|------|--------|
|           |          |             |                 |              |              |       |                                | Theory | Exp  | R. M.* |
| E-glass   | 6.20     | 0.127       | 3323            | 79.3         |              |       |                                |        |      |        |
| Epon 815  |          |             |                 |              | 0.024        | 0.095 | 7.73                           | 144    | 71.7 | 150    |
| Epon 815  |          |             |                 |              |              | 0.442 | 3.67                           | 755    | 145  | 681    |
| S-glass   | 7.68     | 0.127       | 4413            | 86.2         |              |       |                                |        |      |        |
| Epon 815  |          |             |                 |              | 0.024        | 0.095 | 8.06                           | 215    | 265  | 230    |
| Epon 828  |          |             |                 |              | 0.187        | 0.565 | 1.11                           | 1656   | 1207 | 1365   |
| Boron     | 11.11    | 0.102       | 3994            | 372          |              |       |                                |        |      |        |
| Epon 815  |          |             |                 |              | 0.024        | 0.061 | 15.68                          | 140    | 132  | 161    |

\*Rule of Mixtures:  $X = \bar{X}_f [v_f + (1-v_f)E_m/E_f]$ . Data from [18].

#### e. Remarks

- (1) Stress concentration due to fiber breakage
- (2) Dispersion of failure sites



Figure 60 Normalized composite strength vs. bundle strength. [16]



## SECTION V

### IN-PLANE PROPERTIES OF SYMMETRIC LAMINATES

#### 1. STRESS-STRAIN RELATIONS

##### a. Definition and Assumptions

###### (1) Symmetric Laminates

$$\theta(z) = \theta(-z) \quad (191)$$

$$Q_{ij}(z) = Q_{ij}(-z)$$



###### (2) Constant In-Plane Strain

$$\epsilon_1^0 = \epsilon_1^{(1)} = \dots = \epsilon_1^{(N/2)}$$

$$\epsilon_2^0 = \epsilon_2^{(1)} = \dots = \epsilon_2^{(N/2)} \quad (192)$$

$$\epsilon_6^0 = \epsilon_6^{(1)} = \dots = \epsilon_6^{(N/2)}$$

Figure 61 Ply orientations and modulus of symmetric laminates.

###### (3) Average Stress

$$\bar{\sigma}_i = \frac{2}{h} \int_0^{h/2} \sigma_i dz \quad (193)$$

$$= \frac{2}{h} \sum_{t=1}^{N/2} \sigma_i^{(t)} (h_t - h_{t-1}) \quad (194)$$

$$= \frac{2}{N} \sum_{t=1}^{N/2} \sigma_i^{(t)} t \quad (195)$$

where N = total number of plies

or  $\frac{h}{N}$  = ply thickness =  $h_o$

$$\text{or } N = \frac{h}{h_o}$$



Figure 62 Assumed uniform in-plane strain across entire laminate.



Figure 63 Average stress across laminate thickness.

(4) Stress Resultant

$$\left. \begin{aligned} N_1 &= h \bar{\sigma}_1 \\ N_2 &= h \bar{\sigma}_2 \\ N_6 &= h \bar{\sigma}_6 \end{aligned} \right\} \text{ or } N_i = h \bar{\sigma}_i \quad (196)$$

where  $N_i$  = Distributed load per unit width of a plate with thickness  $h$ ; in  $\text{Nm}^{-1}$  or  $\text{Pam}$

(5) In-Plane Modulus  $A_{ij}$  (same as  $N_i$ , or  $\text{Nm}^{-1}$  or  $\text{Pam}$ )

Substitute

$$\sigma_i^{(t)} = Q_{ij}^{(t)} e_j^{(t)} = Q_{ij}^{(t)} e_j^o \quad (197)$$

$$N_1 = 2h_o \sum_{t=1}^{N/2} Q_{ij}^{(t)} e_j^o t \quad (198)$$

$$= 2h_o e_j^o \sum_{t=1}^{N/2} Q_{ij}^{(t)} t \quad (199)$$

$$= A_{ij} e_j^o \quad (200)$$

$$\text{where } A_{ij} = 2h_o \sum_{t=1}^{N/2} Q_{ij}^{(t)} t \quad (201)$$

Since most practical laminates have up to 4 ply orientations,

$$A_{ij} = h_o \sum_{\alpha_1, \alpha_2, \dots} Q_{ij}^{(\alpha)} \eta_\alpha \quad (202)$$

$\eta_\alpha$  = total number of plies with  $\alpha$  orientation.

$Q_{ij}^{(\alpha)}$  = Modulus of  $\alpha$  orientation.

$A_{ij}$  is governed by simple rule of mixtures; stacking sequence is of no consequence.

Stacking sequence is critical for other laminate properties, such as flexural rigidity.

b. In-Plane Modulus and Compliance

$$\begin{Bmatrix} N_1 \\ N_2 \\ N_6 \end{Bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{21} & A_{22} & A_{26} \\ A_{61} & A_{62} & A_{66} \end{bmatrix} \begin{Bmatrix} e_i^o \\ e_2^o \\ e_6^o \end{Bmatrix} \quad \text{or } N_i = A_{ij} e_j^o \quad (203)$$

$$\text{Let Compliance } = a_{ij} = [A_{ij}]^{-1} \text{ or } a_{ij} A_{jk} = \delta_{ik} \quad (204)$$

$$\begin{Bmatrix} e_i^o \\ e_2^o \\ e_6^o \end{Bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{16} \\ a_{21} & a_{22} & a_{26} \\ a_{61} & a_{62} & a_{66} \end{bmatrix} \begin{Bmatrix} N_1 \\ N_2 \\ N_6 \end{Bmatrix} \quad \text{or } e_i^o = a_{ij} N_j \quad (205)$$

where

$$a_{11} = \frac{1}{\Delta} (A_{22} A_{66} - A_{26}^2), \quad a_{22} = \frac{1}{\Delta} (A_{11} A_{66} - A_{16}^2), \\ a_{12} = \frac{1}{\Delta} (A_{16} A_{26} - A_{12} A_{66}), \quad a_{66} = \frac{1}{\Delta} (A_{11} A_{22} - A_{12}^2) \\ a_{16} = \frac{1}{\Delta} (A_{12} A_{26} - A_{22} A_{16}), \quad a_{26} = \frac{1}{\Delta} (A_{12} A_{16} - A_{11} A_{26}) \quad (206)$$

$$\Delta = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{21} & A_{22} & A_{26} \\ A_{61} & A_{62} & A_{66} \end{bmatrix}$$

In-Plane Engineering Constants:

$$E_{11}^o = \frac{1}{h a_{11}}, \quad E_{22}^o = \frac{1}{h a_{22}}, \quad N_{12}^o = -\frac{a_{12}}{a_{11}}, \quad \nu_{12}^o = -\frac{a_{12}}{a_{22}}, \quad G_{12}^o = \frac{1}{h a_{66}} \quad (207)$$

Units:  $e_i^o$  ( $\text{mm m}^{-1}$  or  $\text{mm/m}$ )

$N_i$  ( $\text{Nm}^{-1}$  or  $\text{Pam}$ )

$A_{ij}$  ( $\text{Nm}^{-1}$  or  $\text{Pam}$ )

$a_{ij}$  [ $\text{N}^{-1}\text{m}$  or  $(\text{Pam})^{-1}$ ]

$E_{11}^o$  ( $\text{Nm}^{-2}$  or  $\text{Pa}$ )



## 2. FORMULAS FOR IN-PLANE MODULUS

a. General Multi-directional Laminates

$$A_{ij}/h = \frac{1}{N} \sum_{\alpha=1,2,\dots,N} Q_{ij}^{(\alpha)} \eta_\alpha \quad (208)$$

$$A_{11}/h = I_1 + I_2 + V_1 R_1 + V_2 R_2 \quad (209)$$

$$A_{22}/h = I_1 + I_2 - V_1 R_1 + V_2 R_2 \quad (210)$$

$$A_{12}/h = I_1 - I_2 - V_2 R_2 \quad (211)$$

$$A_{66}/h = I_2 - V_2 R_2 \quad (212)$$

$$A_{16}/h = -\frac{1}{2} V_3 R_1 - V_4 R_2 \quad (213)$$

$$A_{26}/h = -\frac{1}{2} V_3 R_1 + V_4 R_2 \quad (214)$$

$$\text{where } V_1 = \frac{1}{N} \sum \eta_\alpha \cos 2\alpha \quad (215)$$

$$V_2 = \frac{1}{N} \sum \eta_\alpha \cos 4\alpha \quad (216)$$

$$V_3 = \frac{1}{N} \sum \eta_\alpha \sin 2\alpha \quad (217)$$

$$V_4 = \frac{1}{N} \sum \eta_\alpha \sin 4\alpha \quad (218)$$

Since  $A_{ij}$  transforms the same way as  $Q_{ij}$ , some invariants must exist:

$$I_{1A} = \frac{1}{4} (A_{11} + A_{22} + 2A_{12}) = hI_1 \quad (219)$$

$$I_{2A} = \frac{1}{8} (A_{11} + A_{22} - 2A_{12} - 4A_{66}) = hI_2 \quad (220)$$

$$R_{1A} = \frac{1}{2} \sqrt{(-A_{11} + A_{22})^2 + 4(A_{16} + A_{26})^2} \\ = h \sqrt{V_1^2 + V_3^2} R_1 \quad (221)$$

$$R_{2A} = \frac{1}{2} \sqrt{(A_{11} + A_{22} - 2A_{12} - 4A_{66})^2 + 16(A_{16} - A_{26})^2} \\ = h \sqrt{V_2^2 + V_4^2} R_2 \quad (222)$$

b. In-Plane Modulus for  $[0_p/90_q/45_r/-45_s]$

Simplification of ply composite's factors because

| $\alpha$ | $\cos 2\alpha$ | $\cos 4\alpha$ | $\sin 2\alpha$ | $\sin 4\alpha$ |
|----------|----------------|----------------|----------------|----------------|
| 0        | 1              | 1              | 0              | 0              |
| 90       | -1             | 1              | 0              | 0              |
| 45       | 0              | -1             | 1              | 0              |
| -45      | 0              | -1             | -1             | 0              |

$$V_1 = \frac{1}{N} (\eta_0 - \eta_{90}) \quad (223)$$

$$V_2 = \frac{1}{N} (\eta_0 + \eta_{90} - \eta_{45} - \eta_{-45}) \quad (224)$$

$$V_3 = \frac{1}{N} (\eta_{45} - \eta_{-45}) \quad (225)$$

$$V_4 = 0 \quad (226)$$

$$\tan 2\delta_1 = \frac{2(A_{16} + A_{26})}{A_{11} - A_{22}} = \frac{\eta_{45} - \eta_{-45}}{\eta_0 - \eta_{90}} = -\frac{V_3}{V_1} \quad (227)$$

$$\tan 4\delta_2 = \frac{4(A_{16} - A_{26})}{A_{11} + A_{22} - 2A_{12} - 4A_{66}} = -\frac{V_4}{V_2} = 0 \quad \text{or} \quad \delta_2 = 0, \pm\pi, \pm 2\pi \quad (228)$$

TABLE 29 FORMULAS FOR IN-PLANE MODULUS FOR [0<sub>p</sub> / 90<sub>q</sub> / 45<sub>r</sub> / -45<sub>s</sub>]

|        | I <sub>1</sub> | I <sub>2</sub> | $\sqrt{V_1^2 + V_3^2}$ R <sub>1</sub>    | $\sqrt{V_2^2 + V_4^2}$ R <sub>2</sub> |
|--------|----------------|----------------|------------------------------------------|---------------------------------------|
| A'₁₁/h | 1              | 1              | $\cos 2(\theta - \delta_1)$              | $\cos 4\theta$                        |
| A'₂₂/h | 1              | 1              | $-\cos 2(\theta - \delta_1)$             | $\cos 4\theta$                        |
| A'₁₂/h | 1              | -1             | 0                                        | $-\cos 4\theta$                       |
| A'₆₆/h | 0              | 1              | 0                                        | $-\cos 4\theta$                       |
| A'₁₆/h | 0              | 0              | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $-\sin 4\theta$                       |
| A'₂₆/h | 0              | 0              | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $\sin 4\theta$                        |

$$\sqrt{V_1^2 + V_3^2} = \frac{1}{N} \sqrt{(\eta_0 - \eta_{90})^2 + (\eta_{45} - \eta_{-45})^2} \quad (229)$$

$$\sqrt{V_2^2 + V_4^2} = \frac{1}{N} (\eta_0 + \eta_{90} - \eta_{45} - \eta_{-45}) \quad (230)$$

$$\tan 2\delta_1 = \frac{\eta_{45} - \eta_{-45}}{\eta_0 - \eta_{90}} \quad (231)$$

Laminate is orthotropic if  $\eta_{45} = \eta_{-45}$ .

Note:  $0 \leq V_1 \leq 1, 0 \leq V_2 \leq 1$  (232)

- o At lower bound (equal to zero), the laminate is isotropic.
- o At upper bound (equal to unity), the laminate is homogeneous.
- o In general, laminates are always less anisotropic than the constituent ply.

c. Numerical Example of In-Plane Properties of T-300/5208 Laminates. For this material, the ply properties in GPa are:  $I_1 = 49.5$ ,  $I_2 = 26.9$ ,  $R_1 = 85.7$ , and  $R_2 = 19.7$

TABLE 30 IN-PLANE PROPERTIES OF T-300/5208 LAMINATES

| Laminates              | [0/90] | [45/-45] | [0/90/45/-45] |  |  |  |
|------------------------|--------|----------|---------------|--|--|--|
| N                      | 2      | 2        | 4             |  |  |  |
| $\sqrt{V_1^2 + V_3^2}$ | 0      | 0        | 0             |  |  |  |
| $\sqrt{V_1^2 + V_4^2}$ | 1      | -1       | 0             |  |  |  |
| $\delta_1$             | 0      | 0        | 0             |  |  |  |
| $A_{11}/h$ (MPa)       |        |          |               |  |  |  |
| $A_{22}/h$ "           |        |          |               |  |  |  |
| $A_{12}/h$ "           |        |          |               |  |  |  |
| $A_{66}/h$ "           |        |          |               |  |  |  |
| $A_{16}/h = A_{26}/h$  |        |          |               |  |  |  |
| $a_{11}h$ (MPa)        |        |          |               |  |  |  |
| $a_{22}h$ "            |        |          |               |  |  |  |
| $a_{12}h$ "            |        |          |               |  |  |  |
| $a_{66}h$ "            |        |          |               |  |  |  |
| $a_{16}h = a_{26}h$ "  |        |          |               |  |  |  |
| $E_{11}^o$ (MPa)       |        |          |               |  |  |  |
| $E_{22}^o$ "           |        |          |               |  |  |  |
| $v_{12}^o$             |        |          |               |  |  |  |
| $G_{12}^o$ (MPa)       |        |          |               |  |  |  |

| Laminates                   | [0/90] | [45/-45] | [0/90/45/-45] |  |  |  |  |
|-----------------------------|--------|----------|---------------|--|--|--|--|
| $\beta^o$ (for $A_{16}=0$ ) |        |          |               |  |  |  |  |
| $\delta^o$ ( " )            |        |          |               |  |  |  |  |
| $n^o = \beta^o + \delta^o$  |        |          |               |  |  |  |  |
| $k^o = \beta^o \delta^o$    |        |          |               |  |  |  |  |

d. Difference Between Beams and Plates Theory.



### 3. CALCULATION OF PLY STRESSES

#### a. Calculation of In-Plane Strains

$$\begin{aligned} e_1^o &= a_{11}N_1 + a_{12}N_2 + a_{16}N_6 \\ e_2^o &= a_{21}N_1 + a_{22}N_2 + a_{26}N_6 \\ e_6^o &= a_{61}N_1 + a_{62}N_2 + a_{66}N_6 \end{aligned} \quad (233)$$

or

$$\begin{Bmatrix} e_1^o \\ e_2^o \\ e_6^o \end{Bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{16} \\ a_{21} & a_{22} & a_{26} \\ a_{61} & a_{62} & a_{66} \end{bmatrix} \begin{Bmatrix} N_1 \\ N_2 \\ N_6 \end{Bmatrix} \quad \text{or } e_i^o = a_{ij}N_j \quad (234)$$

#### b. Calculation of Stresses of the t-th ply

$$\begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{Bmatrix}^{(t)} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{16} \\ Q_{21} & Q_{22} & Q_{26} \\ Q_{61} & Q_{62} & Q_{66} \end{bmatrix}^{(t)} \begin{Bmatrix} e_1^o \\ e_2^o \\ e_6^o \end{Bmatrix} \quad (235)$$

For the  $\alpha$  oriented ply, replace index "t" by " $\alpha$ " in the above equation

c.

TABLE 31 SAMPLE CALCULATIONS OF PLY STRESSES  
FOR T-300/5208

| Laminate      | Imposed $N_i$ | Resulting $e_i^o$ | $\sigma_i^{(o)}$ | $\sigma_i^{(90)}$ | $\sigma_i^{(45)}$ | $\sigma_i^{(-45)}$ |
|---------------|---------------|-------------------|------------------|-------------------|-------------------|--------------------|
| [0/90]        | 1             |                   |                  |                   |                   |                    |
| [0/90]        | 0             |                   |                  |                   |                   |                    |
| [0/90]        | 0             |                   |                  |                   |                   |                    |
| [0/90]        | 1             |                   |                  |                   |                   |                    |
| [45/-45]      | 1             |                   |                  |                   |                   |                    |
| [45/-45]      | 0             |                   |                  |                   |                   |                    |
| [45/-45]      | 0             |                   |                  |                   |                   |                    |
| [45/-45]      | 1             |                   |                  |                   |                   |                    |
| [0/90/45/-45] | 1             |                   |                  |                   |                   |                    |
| [0/90/45/-45] | 0             |                   |                  |                   |                   |                    |
| [0/90/45/-45] | 0             |                   |                  |                   |                   |                    |

d. Other Examples

| Laminate | $N_i$ | $e_i^o$ | $\sigma_i(0)$ | $\sigma_i^{(90)}$ | $\sigma_i^{(45)}$ | $\sigma_i^{(-45)}$ |
|----------|-------|---------|---------------|-------------------|-------------------|--------------------|
|          |       |         |               |                   |                   |                    |

## 4. PLANE ELASTICITY SOLUTIONS FOR SYMMETRIC LAMINATES

### a. Complex Parameters

Formulation and solution for laminates are identical to those for microscopically homogeneous material such as unidirectional composites. Only the complex parameters need to be exchanged:

$$\beta^0 \text{ for } \beta, \quad \delta^0 \text{ for } \delta, \quad n^0 = n, \quad k^0 \text{ for } k.$$

### b. Stress Concentrations

These are applied to the average stresses in a laminate; i.e.,

$$\bar{\sigma}_i \text{ or } N_i/h$$

The actual stress concentration within each ply can be calculated by the same ply stress methodology, i.e.

$$SCF = \frac{\bar{\sigma}_\theta}{p} = \frac{N_\theta}{hp}, \quad \text{or} \quad \frac{\bar{\sigma}_r}{p} = \frac{N_r}{hp} \quad (236)$$

The in-plane strains can be calculated from, as before,

$$\epsilon_i^0 = a_{ij} N_j$$

Then the ply stress are

$$\sigma_i^{(t)} = Q_{ij}^{(t)} \epsilon_j^0 \quad \text{or} \quad \sigma_i^{(\alpha)} = Q_{ij}^{(\alpha)} \epsilon_j^0$$

c. TABLE 32 SAMPLE CALCULATION OF ELLIPTIC HOLE UNDER TENSION IN A  
T-300/5208 ORTHOTROPIC LAMINATE

$$\frac{\sigma_\theta}{p} = 1 + \frac{nb}{\mu} \rightarrow n = \beta + \delta$$

| Laminate      | $\epsilon_i^0$ | $\sigma_i^{(0)}$ | $\sigma_i^{(90)}$ | $\sigma_i^{(45)}$ | $\sigma_i^{(-45)}$ |
|---------------|----------------|------------------|-------------------|-------------------|--------------------|
| [0/90]        |                |                  |                   |                   |                    |
| n =           |                |                  |                   |                   |                    |
| [45/-45]      |                |                  |                   |                   |                    |
| n =           |                |                  |                   |                   |                    |
| [0/90/45/-45] |                |                  |                   |                   |                    |
| n =           |                |                  |                   |                   |                    |

d. Other Examples



## SECTION VI

### FLEXURAL PROPERTIES OF SYMMETRIC LAMINATES

#### 1. FLEXURE - CURVATURE RELATIONS

##### a. Definitions and Assumptions

(1) Symmetric laminates, as before is assumed.

$$\theta(z) = \theta(-z)$$

$$Q_{ij}(z) = Q_{ij}(-z)$$
(237)

(2) Instead varying strain across laminate thickness is assumed

$$e_1 = k_1, e_2 = -zk_2, e_6 = zk_6 \quad (238)$$

where  $k_1, k_2, k_6$  are curvatures ( $m^{-1}$ )

##### (3) Moments

$$M_i = \int_{-h/2}^{h/2} \sigma_i Z dZ \quad (239)$$

$$= 2 \int_0^{h/2} Q_{ij} e_j Z dZ \quad (240)$$

$$= 2k_j \int_0^{h/2} Q_{ij} Z dZ \quad (241)$$

$$= \frac{2}{3} k_j \sum_{t=1}^{N/2} Q_{ij}^{(t)} (h_t^3 - h_{t-1}^3) \quad (242)$$

$$M_i = D_{ij} k_j \quad (243)$$

$M_1, M_2, M_6$  = distributed moments or moments per unit length (N)

$D_{ij}$  = flexural rigidity (Nm)



Figure 64 Linear strain variation. The slope is curvature.



Figure 65 Ply stress is piece-wise-linear and discontinuous.

b. Flexural Rigidity and Compliance

In-plane modulus or rigidity

$$A_{ij} = \sum Q_{ij}^{(t)} (h_t - h_{t-1}) \quad (244)$$

Flexural rigidity

$$D_{ij} = \frac{1}{3} \sum Q_{ij}^{(t)} (h_t^3 - h_{t-1}^3) \quad (245)$$

$A_{ij}$  follows a linear rule of mixtures, and independent of stacking sequence.

$D_{ij}$  follows a weighted or cubic mixtures relation, and is highly dependent on stacking sequence.

Inverse of rigidity  $D_{ij}$  is compliance  $d_{ij}$  such that

$$\begin{Bmatrix} k_1 \\ k_2 \\ k_6 \end{Bmatrix} = \begin{bmatrix} d_{11} & d_{12} & d_{16} \\ d_{21} & d_{22} & d_{26} \\ d_{61} & d_{62} & d_{66} \end{bmatrix} \begin{Bmatrix} M_1 \\ M_2 \\ M_6 \end{Bmatrix} \quad \text{or} \quad k_i = d_{ij} M_j \quad (246)$$

Unit of  $d_{ij}$  is  $(\text{Nm})^{-1}$

c. Engineering Constants

Similar to those for in-plane properties, engineering constants for flexural properties must also be derived from the compliance  $d_{ij}$ , not the rigidity  $D_{ij}$  because the latter can be related to engineering constants only when  $D_{ij}$  is orthotropic

$$\text{Therefore } E_{11}^f = \frac{1}{Id_{11}} = \frac{12}{h^3 d_{11}}, \quad (EI)_1 = \frac{1}{d_{11}}$$

$$E_{22}^f = \frac{12}{h^3 d_{22}}, \quad (EI)_2 = \frac{1}{d_{22}} \quad (247)$$

$$G_{12}^f = \frac{d_{12}}{d_{11}} \quad (248)$$

$$G_{12}^f = \frac{12}{h^3 d_{66}} \quad (248)$$

## 2. FORMULA FOR FLEXURAL RIGIDITY

### a. Derivation

For a general symmetric structure consisting of

(1) A substructure of modulus  $Q_{ij}^o$  and half depth  $z_o$ , or equivalent plies  $N_o$  ( $= z_o/h_o$ ).

(2) Two symmetric facing sheets (with respect to the mid-plane of the total structure) with composite laminates of  $(N/2) - N_o$  plies each.

Rearrange of formula for rigidity

$$\frac{12}{h^3} D_{ij} = \left(\frac{2z_o}{h}\right)^3 Q_{ij}^o + \left(\frac{2}{N}\right)^3 \sum_{t=N_o+1}^{N/2} Q_{ij}^t F_t \quad (249)$$

$$\text{where } F_t = t^3 - (t-1)^3 = 3t^2 - 3t + 1 \quad (250)$$

Express in terms of invariant-form transformation

$$\frac{12}{h^3} D_{11} - \left(\frac{2z_o}{h}\right)^3 Q_{11}^o = (I_1 + I_2) + V_1 R_1 + V_2 R_2 \quad (251)$$

$$\frac{12}{h^3} D_{22} - \left(\frac{2z_o}{h}\right)^3 Q_{22}^o = (I_1 + I_2) - V_1 R_1 + V_2 R_2 \quad (252)$$

$$\frac{12}{h^3} D_{12} - \left(\frac{2z_o}{h}\right)^3 Q_{12}^o = (I_1 - I_2) - V_2 R_2 \quad (253)$$

$$\frac{12}{h^3} D_{66} - \left(\frac{2z_o}{h}\right)^3 Q_{66}^o = I_2 - V_2 R_2 \quad (254)$$

$$\frac{12}{h^3} D_{16} - \left(\frac{2z_o}{h}\right)^3 Q_{16}^o = -\frac{1}{2} V_3 R_1 - V_4 R_2 \quad (255)$$

$$\frac{12}{h^3} D_{26} - \left(\frac{2z_o}{h}\right)^3 Q_{26}^o = +\frac{1}{2} V_3 R_1 + V_4 R_2 \quad (256)$$

$$\text{where } V_1 = \left(\frac{2}{N}\right)^3 \sum F_t \cos 2\alpha_t, \quad V_2 = \left(\frac{2}{N}\right)^3 \sum F_t \cos 4\alpha_t \quad (257)$$

$$V_3 = \left(\frac{2}{N}\right)^3 \sum F_t \sin 2\alpha_t, \quad V_4 = \left(\frac{2}{N}\right)^3 \sum F_t \sin 4\alpha_t \quad (258)$$

TABLE 33 FORMULAS FOR FLEXURAL RIGIDITY WITH ISOTROPIC SUBSTRUCTURE

|                                                                                           | $\left[1 - \left(\frac{2z_o}{h}\right)^3\right] I_1$ | $\left[1 - \left(\frac{2z_o}{h}\right)^3\right] I_2$ | $\sqrt{V_1^2 + V_3^2} R$                 | $\sqrt{V_2^2 + V_4^2} R_2$   |
|-------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------|------------------------------|
| $\frac{12}{h^3} D_{11}^t \left(\frac{2z_o}{h}\right)^3 Q_{11}^o$                          | 1                                                    | 1                                                    | $\cos 2(\theta - \delta_1)$              | $\cos 4(\theta - \delta_2)$  |
| $\frac{12}{h^3} D_{22}^t \left(\frac{2z_o}{h}\right)^3 Q_{11}^o$                          | 1                                                    | 1                                                    | $-\cos 2(\theta - \delta_1)$             | $\cos 4(\theta - \delta_2)$  |
| $\frac{12}{h^3} D_{12}^t \left(\frac{2z_o}{h}\right)^3 Q_{12}^o$                          | 1                                                    | -1                                                   | 0                                        | $-\cos 4(\theta - \delta_2)$ |
| $\frac{12}{h^3} D_{66}^t \frac{1}{2} \left(\frac{2z_o}{h}\right)^3 (Q_{11}^o - Q_{12}^o)$ | 0                                                    | 1                                                    | 0                                        | $-\cos 4(\theta - \delta_2)$ |
| $\frac{12}{h^3} D_{16}^t$                                                                 | 0                                                    | 0                                                    | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $-\sin 4(\theta - \delta_2)$ |
| $\frac{12}{h^3} D_{26}^t$                                                                 | 0                                                    | 0                                                    | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $\sin 4(\theta - \delta_2)$  |

$$\sqrt{V_1^2 + V_3^2} = \left(\frac{2}{N}\right)^3 \sqrt{\left(\sum F_t \cos 2\alpha_t\right)^2 + \left(\sum F_t \sin 2\alpha_t\right)^2} \quad (259)$$

$$\sqrt{V_2^2 + V_4^2} = \left(\frac{2}{N}\right)^3 \sqrt{\left(\sum F_t \cos 4\alpha_t\right)^2 + \left(\sum F_t \sin 4\alpha_t\right)^2} \quad (260)$$

$$\tan 2\delta_1 = \frac{2(D_{16} + D_{26})}{D_{11} - D_{22}} = -\frac{V_3}{V_1} \quad (261)$$

$$\tan 4\delta_2 = \frac{4(D_{16} - D_{26})}{D_{11} + D_{22} - 2D_{12} - 4D_{66}} = -\frac{V_4}{V_2} \quad (262)$$

$$F_t = 3\left(t + \frac{z_o}{h_o}\right)^3 - 3\left(t + \frac{z_o}{h_o}\right) + 1 \quad (263)$$

(1)  $\theta = 0$

TABLE 34 RIGIDITY OF CROSS-PLY LAMINATES

|                         | $I_1 + I_2$ | $\sqrt{V_1^2 + V_3^2}$ | $R_1$ | $R_2$ |
|-------------------------|-------------|------------------------|-------|-------|
| $\frac{12}{h^3} D_{11}$ | 1           | 1                      | 1     | 1     |
| $\frac{12}{h^3} D_{22}$ | 1           | -1                     | 1     |       |

$$D_{11} \rightarrow D_{22} \text{ as } N = \infty$$

$D_{12}, D_{66}$  not affected by stacking sequence

$$D_{16} = D_{26} = 0$$

(2)  $\theta = \pi/4$  (This is the same as the  $\pm 45$  laminate)

TABLE 35 TRANSFORMED RIGIDITY OF CROSS-PLY LAMINATES

|                          | $I_1$ | $I_2$ | $\sqrt{V_1^2 + V_3^2}$ | $R_1$ | $R_2$                          |
|--------------------------|-------|-------|------------------------|-------|--------------------------------|
| $\frac{12}{h^3} D'_{11}$ | 1     | 1     | 0                      | -1    | $D'_{11} = D'_{22}$            |
| $\frac{12}{h^3} D'_{22}$ | 1     | 1     | 0                      | -1    | $D'_{16} = D'_{26}$            |
| $\frac{12}{h^3} D'_{12}$ | 1     | -1    | 0                      | 1     | (has stacking sequence effect) |
| $\frac{12}{h^3} D'_{66}$ | 0     | 1     | 0                      | 1     | $D'_{16} = D'_{26} = 0$ as $N$ |
| $\frac{12}{h^3} D'_{16}$ | 0     | 0     | $\frac{1}{2}$          | 0     |                                |
| $\frac{12}{h^3} D'_{26}$ | 0     | 0     | $-\frac{1}{2}$         | 0     |                                |

TABLE 36 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

| $\alpha_t$ | $\cos 2\alpha_t$ | $\sin 2\alpha_t$         | $\cos 4\alpha_t$     | $\sin 4\alpha_t$         |                      |
|------------|------------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$        | $F_t$            | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     | $F_t \sin 4\alpha_t$ |
| 1          | 1                |                          |                      |                          |                      |
| 2          | 7                |                          |                      |                          |                      |
| 3          | 19               |                          |                      |                          |                      |
| 4          | 37               |                          |                      |                          |                      |
| 5          | 61               |                          |                      |                          |                      |
| 6          | 91               |                          |                      |                          |                      |
| 7          | 127              |                          |                      |                          |                      |
| 8          | 169              |                          |                      |                          |                      |
| 9          | 217              |                          |                      |                          |                      |
| 10         | 271              |                          |                      |                          |                      |
| 11         | 331              |                          |                      |                          |                      |
| 12         | 397              |                          |                      |                          |                      |
| 13         | 469              |                          |                      |                          |                      |
| 14         | 547              |                          |                      |                          |                      |
| 15         | 631              |                          |                      |                          |                      |
| 16         | 721              |                          |                      |                          |                      |
| $h =$      |                  | $\Sigma F c 2 =$         | $\Sigma F s 2 =$     | $\Sigma F c 4 =$         | $\Sigma F s 4 =$     |
| $h_0 =$    |                  | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| $N =$      |                  | $- v_3 / v_1 =$          |                      | $- v_4 / v_2 =$          |                      |
| $z_0 =$    |                  | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

TABLE 37 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

| $\alpha_t$ | $\cos 2\alpha_t$         | $\sin 2\alpha_t$     | $\cos 4\alpha_t$         | $\sin 4\alpha_t$     |
|------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$        | $F_t$                    | $F_t \cos 2\alpha_t$ | $F_t \sin 2\alpha_t$     | $F_t \cos 4\alpha_t$ |
| 1          | 1                        |                      |                          |                      |
| 2          | 7                        |                      |                          |                      |
| 3          | 19                       |                      |                          |                      |
| 4          | 37                       |                      |                          |                      |
| 5          | 61                       |                      |                          |                      |
| 6          | 91                       |                      |                          |                      |
| 7          | 127                      |                      |                          |                      |
| 8          | 169                      |                      |                          |                      |
| 9          | 217                      |                      |                          |                      |
| 10         | 271                      |                      |                          |                      |
| 11         | 331                      |                      |                          |                      |
| 12         | 397                      |                      |                          |                      |
| 13         | 469                      |                      |                          |                      |
| 14         | 547                      |                      |                          |                      |
| 15         | 631                      |                      |                          |                      |
| 16         | 721                      |                      |                          |                      |
| $h =$      | $\Sigma F_{c2} =$        | $\Sigma F_{s2} =$    | $\Sigma F_{c4} =$        | $\Sigma F_{s4} =$    |
| $h_0 =$    | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| $N =$      | $-v_3 / v_1 =$           |                      | $-v_4 / v_2 =$           |                      |
| $r_0 =$    | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

TABLE 38 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

|         | $\alpha_t$ | $\cos 2\alpha_t$         | $\sin 2\alpha_t$     | $\cos 4\alpha_t$         | $\sin 4\alpha_t$     |  |
|---------|------------|--------------------------|----------------------|--------------------------|----------------------|--|
| t       | $F_t$      | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     | $F_t \sin 4\alpha_t$ |  |
| 1       | 1          |                          |                      |                          |                      |  |
| 2       | 7          |                          |                      |                          |                      |  |
| 3       | 19         |                          |                      |                          |                      |  |
| 4       | 37         |                          |                      |                          |                      |  |
| 5       | 61         |                          |                      |                          |                      |  |
| 6       | 91         |                          |                      |                          |                      |  |
| 7       | 127        |                          |                      |                          |                      |  |
| 8       | 169        |                          |                      |                          |                      |  |
| 9       | 217        |                          |                      |                          |                      |  |
| 10      | 271        |                          |                      |                          |                      |  |
| 11      | 331        |                          |                      |                          |                      |  |
| 12      | 397        |                          |                      |                          |                      |  |
| 13      | 469        |                          |                      |                          |                      |  |
| 14      | 547        |                          |                      |                          |                      |  |
| 15      | 631        |                          |                      |                          |                      |  |
| 16      | 721        |                          |                      |                          |                      |  |
| $h =$   |            | $\Sigma F_{c2} =$        | $\Sigma F_{s2} =$    | $\Sigma F_{c4} =$        | $\Sigma F_{s4} =$    |  |
| $h_o =$ |            | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |  |
| $N =$   |            | $+ v_3 / v_1 =$          |                      | $- v_4 / v_2 =$          |                      |  |
| $z_0 =$ |            | $\delta_1 =$             |                      | $\delta_2 =$             |                      |  |

TABLE 39 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

|         | $\alpha_t$ | $\cos 2\alpha_t$         | $\sin 2\alpha_t$     | $\cos 4\alpha_t$         | $\sin 4\alpha_t$     |
|---------|------------|--------------------------|----------------------|--------------------------|----------------------|
| t       | $F_t$      | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     | $F_t \sin 4\alpha_t$ |
| 1       | 1          |                          |                      |                          |                      |
| 2       | 7          |                          |                      |                          |                      |
| 3       | 19         |                          |                      |                          |                      |
| 4       | 37         |                          |                      |                          |                      |
| 5       | 61         |                          |                      |                          |                      |
| 6       | 91         |                          |                      |                          |                      |
| 7       | 127        |                          |                      |                          |                      |
| 8       | 169        |                          |                      |                          |                      |
| 9       | 217        |                          |                      |                          |                      |
| 10      | 271        |                          |                      |                          |                      |
| 11      | 331        |                          |                      |                          |                      |
| 12      | 397        |                          |                      |                          |                      |
| 13      | 469        |                          |                      |                          |                      |
| 14      | 547        |                          |                      |                          |                      |
| 15      | 631        |                          |                      |                          |                      |
| 16      | 721        |                          |                      |                          |                      |
| h =     |            | $\Sigma F_{c2} =$        | $\Sigma F_{s2} =$    | $\Sigma F_{c4} =$        | $\Sigma F_{s4} =$    |
| $h_o =$ |            | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| N =     |            | $+ v_3 / v_1 =$          |                      | $- v_4 / v_2 =$          |                      |
| $z_o =$ |            | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

TABLE 40 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

|         | $\alpha_t$     | $\cos 2\alpha_t$                   | $\sin 2\alpha_t$                   | $\cos 4\alpha_t$                   | $\sin 4\alpha_t$                   |
|---------|----------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| t       | F <sub>t</sub> | F <sub>t</sub> cos 2α <sub>t</sub> | F <sub>t</sub> sin 2α <sub>t</sub> | F <sub>t</sub> cos 4α <sub>t</sub> | F <sub>t</sub> sin 4α <sub>t</sub> |
| 1       | 1              |                                    |                                    |                                    |                                    |
| 2       | 7              |                                    |                                    |                                    |                                    |
| 3       | 19             |                                    |                                    |                                    |                                    |
| 4       | 37             |                                    |                                    |                                    |                                    |
| 5       | 61             |                                    |                                    |                                    |                                    |
| 6       | 91             |                                    |                                    |                                    |                                    |
| 7       | 127            |                                    |                                    |                                    |                                    |
| 8       | 169            |                                    |                                    |                                    |                                    |
| 9       | 217            |                                    |                                    |                                    |                                    |
| 10      | 271            |                                    |                                    |                                    |                                    |
| 11      | 331            |                                    |                                    |                                    |                                    |
| 12      | 397            |                                    |                                    |                                    |                                    |
| 13      | 469            |                                    |                                    |                                    |                                    |
| 14      | 547            |                                    |                                    |                                    |                                    |
| 15      | 631            |                                    |                                    |                                    |                                    |
| 16      | 721            |                                    |                                    |                                    |                                    |
| h =     |                | $\Sigma F c 2 =$                   | $\Sigma F s 2 =$                   | $\Sigma F c 4 =$                   | $\Sigma F s 4 =$                   |
| $h_o$ = |                | $\sqrt{v_1^2 + v_3^2} =$           |                                    | $\sqrt{v_2^2 + v_4^2} =$           |                                    |
| N =     |                | $- v_3 / v_1 =$                    |                                    | $- v_4 / v_2 =$                    |                                    |
| $v_o$ = |                | $\delta_1 =$                       |                                    | $\delta_2 =$                       |                                    |

TABLE 41 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

| $c_t$        | $\cos 2\alpha_t$ | $\sin 2\alpha_t$         | $\cos 4\alpha_t$     | $\sin 4\alpha_t$         |                      |
|--------------|------------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$          | $F_t$            | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     | $F_t \sin 4\alpha_t$ |
| 1            | 1                |                          |                      |                          |                      |
| 2            | 7                |                          |                      |                          |                      |
| 3            | 19               |                          |                      |                          |                      |
| 4            | 37               |                          |                      |                          |                      |
| 5            | 61               |                          |                      |                          |                      |
| 6            | 91               |                          |                      |                          |                      |
| 7            | 127              |                          |                      |                          |                      |
| 8            | 169              |                          |                      |                          |                      |
| 9            | 217              |                          |                      |                          |                      |
| 10           | 271              |                          |                      |                          |                      |
| 11           | 331              |                          |                      |                          |                      |
| 12           | 397              |                          |                      |                          |                      |
| 13           | 469              |                          |                      |                          |                      |
| 14           | 547              |                          |                      |                          |                      |
| 15           | 631              |                          |                      |                          |                      |
| 16           | 721              |                          |                      |                          |                      |
| $h =$        |                  | $\Sigma F c 2 =$         | $\Sigma F s 2 =$     | $\Sigma F c 4 =$         | $\Sigma F s 4 =$     |
| $b_0 =$      |                  | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| $N =$        |                  | $-v_3 / v_1 =$           |                      | $-v_4 / v_2 =$           |                      |
| $\delta_0 =$ |                  | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

TABLE 42 CALCULATION OF REDUCTION FACTORS (V's) FOR FLEXURAL RIGIDITY

| $\alpha_t$ | $\cos 2\alpha_t$         | $\sin 2\alpha_t$     | $\cos 4\alpha_t$         | $\sin 4\alpha_t$     |
|------------|--------------------------|----------------------|--------------------------|----------------------|
| t          | $F_t$                    | $F_t \cos 2\alpha_t$ | $F_t \sin 2\alpha_t$     | $F_t \cos 4\alpha_t$ |
| 1          | 1                        |                      |                          |                      |
| 2          | 7                        |                      |                          |                      |
| 3          | 19                       |                      |                          |                      |
| 4          | 37                       |                      |                          |                      |
| 5          | 61                       |                      |                          |                      |
| 6          | 91                       |                      |                          |                      |
| 7          | 127                      |                      |                          |                      |
| 8          | 169                      |                      |                          |                      |
| 9          | 217                      |                      |                          |                      |
| 10         | 271                      |                      |                          |                      |
| 11         | 331                      |                      |                          |                      |
| 12         | 397                      |                      |                          |                      |
| 13         | 469                      |                      |                          |                      |
| 14         | 547                      |                      |                          |                      |
| 15         | 631                      |                      |                          |                      |
| 16         | 721                      |                      |                          |                      |
| $h =$      | $\Sigma F_{c2} =$        | $\Sigma F_{s2} =$    | $\Sigma F_{c4} =$        | $\Sigma F_{s4} =$    |
| $h_o =$    | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| N =        | $-v_3 / v_1 =$           |                      | $-v_4 / v_2 =$           |                      |
| $z_o =$    | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

b. Stacking Sequence Effect on Symmetric Cross-ply Composites

Assume no substructure; i.e.,  $z_0 = 0$ .

TABLE 43 STACKING SEQUENCE EFFECT OF CROSS-PLY LAMINATES

| Laminates               | $\sqrt{V_1^2 + V_3^2}$       | $\delta_1$ | $\sqrt{V_2^2 + V_4^2}$ | $\delta_2$ |
|-------------------------|------------------------------|------------|------------------------|------------|
| $[0_m / 90_m]_s$        | 0.75                         | 0          | 1                      | 0          |
| $[0_m / 90_m]_{2s}$     | $0.375 (\frac{.75}{2})$      | 0          | 1                      | 0          |
| $[0_m / 90_m]_{4s}$     | $0.1875 (\frac{.75}{4})$     | 0          | 1                      | 0          |
| $[0_2 / 90_4 / 0_2]_s$  | 0.1875                       | 0          | 1                      | 0          |
| $[0/90_2/0_2/90_2/0]_s$ | 0.0468                       | 0          | 1                      | 0          |
| $[0/90]_\infty$         | 0 ( $= \frac{.75}{\infty}$ ) | 0          | 1                      | 0          |

\* m = any positive integer, and has no effect on stacking sequence, but strong effect on  $D_{ij}$  values.

TABLE 44 FLEXURAL RIGIDITY OF CROSS-PLY LAMINATES

|                         | $I_1$ | $I_2$ | $\sqrt{V_1^2 + V_3^2}$      | $R_1$           | $R_2$ |
|-------------------------|-------|-------|-----------------------------|-----------------|-------|
| $\frac{12}{h^3} D_{11}$ | 1     | 1     | $\cos 2\theta$              | $\cos 4\theta$  |       |
| $\frac{12}{h^3} D_{22}$ | 1     | 1     | $-\cos 2\theta$             | $\cos 4\theta$  |       |
| $\frac{12}{h^3} D_{12}$ | 1     | -1    | 0                           | $-\cos 4\theta$ |       |
| $\frac{12}{h^3} D_{66}$ | 0     | 1     | 0                           | $-\cos 4\theta$ |       |
| $\frac{12}{h^3} D_{16}$ | 0     | 0     | $\frac{1}{2} \sin 2\theta$  | $-\sin 4\theta$ |       |
| $\frac{12}{h^3} D_{26}$ | 0     | 0     | $-\frac{1}{2} \sin 2\theta$ | $\sin 4\theta$  |       |

c. Flexural Rigidity of T-300/5208 Cross-Ply Plates and Beams

$$I_1 = 49.5 \quad I_2 = 26.9 \quad R_1 = 85.8 \quad R_2 = 19.7 \quad (\text{GPa})$$

$$h_o = .005 \times 25.4 = .125 \text{ mm.}$$

TABLE 45 RIGIDITY OF T-300/5208 CROSS-PLY LAMINATES

| Laminates                                   | $D_{ij}$ (Nm)        | $\alpha_{ij}$ $(\text{kNm})^{-1}$ | Eng'g Constants<br>(GPa)                                       |
|---------------------------------------------|----------------------|-----------------------------------|----------------------------------------------------------------|
| $[0_4/90_4]_s$<br>$h = 2\text{mm}$          | 107.0<br>21.2<br>4.8 | 1.93<br>0<br>0                    | $E_{11}^f =$<br>$E_{22}^f =$<br>$\nu_{12}^f =$<br>$G_{12}^f =$ |
| $[0_{16}/90_{16}]_s$<br>$h = 8\text{mm}$    | 6848<br>1357<br>307  | 124<br>0<br>0                     | $E_{11}^f =$<br>$E_{22}^f =$<br>$\nu_{12}^f =$<br>$G_{12}^f =$ |
| $[0/90]_{4s}$<br>$h = 2\text{mm}$           | 74.8<br>53.3<br>4.8  | 1.93<br>0<br>0                    |                                                                |
| $[0/90_2/0_2/90_2/0]_s$<br>$h = 2\text{mm}$ | 66.7<br>61.4<br>4.8  | 1.93<br>0<br>0                    |                                                                |
| $[0/90]_\infty$<br>$h = 2\text{mm}$         | 64.0<br>64.0<br>4.8  | 1.93<br>0<br>0                    |                                                                |
| $[45_4/-45_4]_s$<br>$h = 2\text{mm}$        | 37.8<br>37.8<br>31.1 | 28.2<br>-21.4<br>-21.4            | $E_{11}^f = E_{22}^f =$<br>$\nu_{12}^f =$<br>$G_{12}^f =$      |

#### d. Numerical Examples

(1) Three Point Bend Test of T-300/5208 : [0<sub>16</sub>/90<sub>16</sub>]<sub>s</sub>, h = 8mm, L = 10cm, b = 2cm

$$D_{ij} = \begin{bmatrix} 6848 & 186 & 0 \\ 1357 & 0 & 0 \\ 307 & 0 & 0 \end{bmatrix} \text{ (Nm)} \quad d_{ij} = \begin{bmatrix} .146 & -.020 & 0 \\ .740 & 0 & 0 \\ 3.26 & 0 & 0 \end{bmatrix} \text{ (kNm)}^{-1}$$

(a) Beam along  $0^\circ$  on outside

$$(\bar{EI})_1 = \frac{b}{d} = .137 \text{ (kNm}^2\text{)} \quad (264)$$

$$\frac{P}{\delta} = \frac{48EI}{3} = 6576 \text{ kNm}^{-1} \quad (265)$$

(i) Load at First-Ply Failure (FPF)

$$e_T = 3.9 \text{ mm/m} \quad (266)$$

$z = 2\text{mm}$  (267)

$$\therefore k = \frac{e}{T} = 1.95 \text{ m}^{-1} \quad (268)$$

$$M = D_{1,1} k_1 = 6848 \times 1.95 = 13.4 \text{ kN/unit width}$$

$$\therefore P_{EPE} = \frac{2Mb}{L} = \frac{2 \times 13.4 \times .02}{.05} = 10.72 \text{ kN}$$

$$\delta_{\text{FPP}} = \frac{10.72}{6576} = 1.63 \text{ mm} \quad (269)$$

(ii) Load at Ultimate, assuming  $X = 1503$  MPa or

$$e_{\text{ult}} = 8.3 \text{ mm/mm}$$

$$k_{Ult} = \frac{e_{Ult}}{4} = 2.08 \text{ m}^{-1} \quad (270)$$

$$M_{Ult} = 6848 \times 2.08 = 14.2 \text{ kN} \quad (271)$$

$$P_{Ult} = 11.36 \text{ kN}, s_{Ult} = 1.73 \text{ mm.} \quad (272)$$



Figure 66 Three-point bend test.



Figure 67 1-direction of [0/90].

(b) Beam along  $90^\circ$  out side

$$(EI)_2 = \frac{b}{d_{22}}$$

(273)

$$\frac{P}{\delta} =$$



(i) Load at First-Ply Failure (FPP)

(ii) Load at Ultimate



Figure 69 Load deflection curves of  $0^\circ$  and  $90^\circ$  beams of  $[0_{16}/90_{16}]_s$ .

e. Natural Frequencies of Transverse Vibrations of Beams

$$\omega_n = \frac{\lambda_n^2}{L^2} \sqrt{\frac{1}{d_{11}\mu}} \quad (273)$$

TABLE 46 FREE VIBRATIONS OF BEAMS WITH UNIFORM CROSS-SECTIONS

| End Conditions  | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda$ for large $n$ |
|-----------------|-------------|-------------|-------------|-------------------------|
| Clamped-Free    | 1.875       | 4.694       | 7.855       | $(2n-1)/2$              |
| Hinged-Hinged   | 3.142       | 6.283       | 9.425       | $n\pi$                  |
| Clamped-Hinged  | 3.927       | 7.068       | 10.210      | $(4n+1)/4$              |
| Free-Hinged     | "           | "           | "           | "                       |
| Clamped-Clamped | 4.730       | 7.853       | 10.996      | $(2n+1)/2$              |
| Free-Free       | "           | "           | "           | "                       |

Example: T-300/5208 beams from  $[0_{16}/90_{16}]_s$  plate

$L = 10\text{cm}$ ,  $b = 2\text{cm}$ ,  $h = .8\text{cm}$ , density =  $1600 \text{ kgm}^{-3}$

$\mu = \text{mass/unit length} = 0.256 \text{ kg/m}$

$d_{11} = .146 \text{ kNm}^{-1}$ ,  $\frac{b}{d_{11}} = 137 \text{ Nm}^2$

$$\omega_n = \lambda_n^2 \sqrt{\frac{137}{1^2 \cdot 0.256}} = 2313 \lambda_n^2 \text{ s}^{-1} \quad (274)$$

$$\text{For hinged-hinged, } \omega_1 = 2 \times 2313 = 22832 \text{ s}^{-1} \quad (275)$$

By heating 3-point bend test as a 1-degree of freedom approximation

$$\omega_1 = \sqrt{\frac{P}{8M}} = \sqrt{\frac{6576000}{0.025612}} = 22666 \text{ s}^{-1} \quad (276)$$

The difference by 2 methods is negligible as expected.

The effective mass  $M$  is one half of total mass of beam for a beam under 3-point bending.

f. Special Isotropic Homogeneous Plates Consisting of Orthotropic Plies

TABLE 47 SPECIAL ISOTROPIC HOMOGENEOUS PLATE

$$[-60/0/60_2/0/-60/60/0/-60/0/60]_s$$

For T-300/5208 material,  $I_1 = 49.5$ ,  $I_2 = 26.9$ ,  $R_1 = 85.8$ ,  $R_2 = 19.7$

(GPa)

$$V_1 = V_2 = \frac{1}{144}, V_3 = V_4 = 0, \delta_1 = \delta_2 = 0$$

|                         | $I_1$ | $I_2$ | $\frac{1}{144} R_1$        | $\frac{1}{144} R_2$ |
|-------------------------|-------|-------|----------------------------|---------------------|
| $\frac{12}{h^3} D_{11}$ | 1     | 1     | $\cos 2\theta$             | $\cos 4\theta$      |
| $\frac{12}{h^3} D_{12}$ | 1     | -1    |                            | $-\cos 4\theta$     |
| $\frac{12}{h^3} D_{16}$ | 0     | 0     | $\frac{1}{2} \sin 2\theta$ | $-\sin 4\theta$     |

|                         | 0    | 15   | 30   | 45   | 60   | 75   | 90   | Theory |
|-------------------------|------|------|------|------|------|------|------|--------|
| $\frac{12}{h^3} D_{11}$ | 77.1 | 77.0 | 76.6 | 76.3 | 76.0 | 75.9 | 75.9 | 76.4   |
| $\frac{12}{h^3} D_{12}$ | 22.5 | 22.5 | 22.7 | 22.7 |      |      |      | 22.6   |
| $\frac{12}{h^3} D_{66}$ | 26.8 | 26.8 | 27.0 | 27.0 |      |      |      | 26.9   |
| $\frac{12}{h^3} D_{16}$ | 0    | .03  | .14  | .30  | .38  | .27  | 0    | 0      |

Since stacking sequence is not important for in-plane modulus  $A_{ij}$ , this special laminate is equivalent to  $[0/60/-60]_{4s}$ , from which

$$\sum \cos 2\alpha_t = \sum \sin 2\alpha_t = \sum \cos 4\alpha_t = \sum \sin 4\alpha_t = 0 \quad (277)$$

$$\begin{aligned} \text{Then } A_{11}/h &= A_{22}/h = I_1 + I_2 \\ A_{12}/h &= I_1 - I_2, \quad A_{66}/h = I_2 \\ A_{16} &= A_{26} = 0 \end{aligned} \tag{278}$$

Then  $A_{ij}$  is isotropic

Since  $A_{ij} = \frac{12}{h^2} D_{ij}$  for this plate, the laminate is also homogeneous.



### 3. FORMULA FOR RIGIDITY FOR SANDWICH PLATES

#### a. General Considerations

Assuming: Core stiffness  $Q_{ij}^o = 0$

Facing material = homogeneous (not laminated)

$$D_{ij} = \frac{2}{3} Q_{ij}^F \left[ \left( \frac{h}{2} \right)^3 - z_o^3 \right], \quad \text{or} \quad (279)$$

$$\frac{12}{h^3} \frac{D_{ij}}{Q_{ij}^F} = 1 - \left( \frac{2z_o}{h} \right)^3 \quad (280)$$

Density of sandwich:

$$\frac{\rho}{\rho_F} = 1 - \frac{2z_o}{h} \left( 1 - \frac{\rho_c}{\rho_F} \right)$$

$$\rho_c \leq 500 \text{ kg m}^{-2}$$

$$\frac{\rho_c}{\rho_F} \approx .2$$



Figure 70 Sandwich Plate.



Figure 71 Specific rigidity as function of percentage of core. Note optimum combinations of density and stiffness ratios.

b. Flexural Rigidity of T-300/5208 Sandwich Plates

$$I_1 = 49.5, \quad I_2 = 26.9, \quad R_1 = 85.8, \quad R_2 = 19.7 \text{ MPa}$$

$$z_o = 1 \text{ mm (or } 8 h_o), \quad h_o = .125 \text{ mm}, \quad h = 4 \text{ mm (or } 32 h_o)$$

$$Q_{ij}^o = 0. \quad 1 - \left( \frac{2z_o}{h} \right)^3 = \frac{7}{8}, \quad \frac{h^3}{12} = 5.33 \text{ (mm)}^3$$

TABLE 48 RIGIDITY OF  $[-45/45/90/0]_2/(z_o)_{8s}$  (NON-SYMMETRICAL FACE SHEET)

|                           | $\frac{7}{8} I_1$<br>= 43.3 | $\frac{7}{8} I_2$<br>= 23.5 | .050 R <sub>1</sub><br>= 4.29      | .14 R <sub>2</sub><br>= 2.76 |
|---------------------------|-----------------------------|-----------------------------|------------------------------------|------------------------------|
| $\frac{12}{h^3} D_{11}^1$ | 1                           | 1                           | $\cos 2(\theta - 25)$              | $\cos 40$                    |
| $\frac{12}{h^3} D_{22}^1$ | 1                           | 1                           | $-\cos 2(\theta - 25)$             | $\cos 40$                    |
| $\frac{12}{h^3} D_{12}^1$ | 1                           | -1                          | 0                                  | $-\cos 40$                   |
| $\frac{12}{h^3} D_{66}^1$ | 0                           | 1                           | 0                                  | $-\cos 40$                   |
| $\frac{12}{h^3} D_{16}^1$ | 0                           | 0                           | $-\frac{1}{2} \sin 2(\theta - 25)$ | $-\sin 40$                   |
| $\frac{12}{h^3} D_{26}^1$ | 0                           | 0                           | $-\frac{1}{2} \sin 2(\theta - 25)$ | $\sin 40$                    |

$$D_{ij} \Big|_{\theta=0} = \begin{bmatrix} 385 & 90.8 & 8.6 \\ 356 & 8.6 & 110 \end{bmatrix} \text{ (10}^{-3} \text{ Nm}) \quad d_{ij} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$D_{ij} \Big|_{\theta=25} = \begin{bmatrix} 376 & 108 & -14.5 \\ 331 & 14.5 & 128 \end{bmatrix} \text{ (10}^{-3} \text{ Nm}) \quad d_{ij} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$



|                          | $\frac{7}{8} I_1 = 43.3$ | $\frac{7}{8} I_2 = 23.5$ | $.00926 R_1 = 0.794$              | $.0234 R_2 = 0.461$ |
|--------------------------|--------------------------|--------------------------|-----------------------------------|---------------------|
| $\frac{12}{h^3} D'_{11}$ | 1                        | 1                        | $\cos 2(\theta - 36)$             | $\cos 4\theta$      |
| $\frac{12}{h^3} D'_{22}$ | 1                        | 1                        | $-\cos 2(\theta - 36)$            | $\cos 4\theta$      |
| $\frac{12}{h^3} D'_{12}$ | 1                        | -1                       | 0                                 | $-\cos 4\theta$     |
| $\frac{12}{h^3} D'_{66}$ | 0                        | 1                        | 0                                 | $-\cos 4\theta$     |
| $\frac{12}{h^3} D'_{16}$ | 0                        | 0                        | $-\frac{1}{2}\sin 2(\theta - 36)$ | $-\sin 4\theta$     |
| $\frac{12}{h^3} D'_{26}$ | 0                        | 0                        | $-\frac{1}{2}\sin 2(\theta - 36)$ | $\sin 4\theta$      |

  

|          |               |                                                                                            |                                                                  |
|----------|---------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| $D_{ij}$ | $\theta = 0$  | $= \begin{bmatrix} 360 & 103 & 2.0 \\ 357 & 2.0 & 123 \end{bmatrix} (10^{-3} \text{ Nm})$  | $d_{ij} = \begin{bmatrix} \quad \\ \quad \\ \quad \end{bmatrix}$ |
| $D_{ij}$ | $\theta = 36$ | $= \begin{bmatrix} 358 & 108 & -1.4 \\ 350 & 1.4 & 127 \end{bmatrix} (10^{-3} \text{ Nm})$ | $d_{ij} = \begin{bmatrix} \quad \\ \quad \\ \quad \end{bmatrix}$ |

  

$\theta$

$D'_{11}$

$D'_{12}$

$D'_{16}$

$\theta$

$\theta$

Figure 72 Transformation of  $D_{ij}$  for a T-300/5208 Sandwich Plate.

c. Sample Problems



#### 4. DETERMINATION OF STRESSES

##### a. Basic Relations

TABLE 50 FLEXURE-CURVATURE RELATIONS

|       | $k_1$    | $k_2$    | $k_6$    |
|-------|----------|----------|----------|
| $M_1$ | $D_{11}$ | $D_{12}$ | $D_{16}$ |
| $M_2$ | $D_{21}$ | $D_{22}$ | $D_{26}$ |
| $M_6$ | $D_{61}$ | $D_{62}$ | $D_{66}$ |

|  | $M_1$ | $M_2$    | $M_6$    |          |
|--|-------|----------|----------|----------|
|  | $k_1$ | $d_{11}$ | $d_{12}$ | $d_{16}$ |
|  | $k_2$ | $d_{21}$ | $d_{22}$ | $d_{26}$ |
|  | $k_6$ | $d_{61}$ | $d_{62}$ | $d_{66}$ |

$$\text{Since } \epsilon_1 = zk_1, \quad \epsilon_2 = zk_2, \quad \epsilon_6 = zk_6$$

Finally, from stress-strain relation of the  $t$ -th layer.

$$\left. \begin{aligned} \sigma_1 &= Q_{11}\epsilon_1 + Q_{12}\epsilon_2 + Q_{16}\epsilon_6 \\ \sigma_2 &= Q_{21}\epsilon_1 + Q_{22}\epsilon_2 + Q_{26}\epsilon_6 \\ \sigma_6 &= Q_{61}\epsilon_1 + Q_{62}\epsilon_2 + Q_{66}\epsilon_6 \end{aligned} \right\} \quad (281)$$



Figure 73 Flow diagram for ply stress calculation.

b. Numerical Example for Ply Stress Calculation

For T-300/5208 sandwich plate,  $[-45/45/90/0_2/90/45/-45/(z_o)_8]_s$

$$D_{ij} = \begin{bmatrix} 360 & 103 & 2 \\ & 357 & 2 \\ & & 123 \end{bmatrix} \quad (10^3 \text{ Nm}) \quad (282)$$

Determination of ply stresses under  $M_i = \left\{ \quad \right\}$  (283)

(1) Inverse of  $D_{ij}$ :

$$d_{ij} = \left[ \quad \right] \quad (284)$$

$$(2) Curvature  $k_i = d_{ij} M_j = \left\{ \quad \right\}$  (285)$$

$$(3) Strain  $\epsilon_i = zk_i$  (286)$$

TABLE 51 STRAIN VARIATION FROM PLY TO PLY

| $t$ | $t-1$ | $z(\text{mm})$ | $\epsilon_1$ | $\epsilon_2$ | $\epsilon_6$ |
|-----|-------|----------------|--------------|--------------|--------------|
| 8   | 9     | 1.             |              |              |              |
| 9   | 10    | 1.125          |              |              |              |
| 10  | 11    | 1.25           |              |              |              |
| 11  | 12    | 1.375          |              |              |              |
| 12  | 13    | 1.5            |              |              |              |
| 13  | 14    | 1.625          |              |              |              |
| 14  | 15    | 1.750          |              |              |              |
| 15  | 16    | 1.875          |              |              |              |

$$(4) \text{ Stress } \sigma_i^{(t)} = Q_{ij}^{(t)} e_j^{(t)}$$

TABLE 52 PLY STRESS AT VARIOUS LOCATIONS

| t  | $z_t$ (mm) | Stresses at $z_{t-1}$ |            |            | Stresses at $z_t$ |            |            |
|----|------------|-----------------------|------------|------------|-------------------|------------|------------|
|    |            | $\sigma_1$            | $\sigma_2$ | $\sigma_6$ | $\sigma_1$        | $\sigma_2$ | $\sigma_6$ |
| 9  | 1.125      |                       |            |            |                   |            |            |
| 10 | 1.25       |                       |            |            |                   |            |            |
| 11 | 1.375      |                       |            |            |                   |            |            |
| 12 | 1.5        |                       |            |            |                   |            |            |
| 13 | 1.625      |                       |            |            |                   |            |            |
| 14 | 1.75       |                       |            |            |                   |            |            |
| 15 | 1.875      |                       |            |            |                   |            |            |
| 16 | 2.         |                       |            |            |                   |            |            |



Figure 74 Stresses and Strain across laminate thickness.

### c. Numerical Example for Ply Stress Calculation

$$D_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases} \quad (10^3 \text{ Nm}) \quad (287)$$

Determination of ply stresses under  $M_i$  = { } (288)

(1) Inverse of  $D_{ij}$ :

$$d_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i \neq j \end{cases} \quad (289)$$

$$(3) \text{ Strain } e_i = zk_i$$

TABLE 53 STRAIN VARIATION FROM PLY TO PLY

| $t$ | $t-1$ | $z(\text{mm})$ | $e_1$ | $e_2$ | $e_6$ |
|-----|-------|----------------|-------|-------|-------|
|     |       |                |       |       |       |

$$(4) \text{ Stress } \sigma_i^{(t)} = Q_{ij}^{(t)} e_j^{(t)}$$

**TABLE 54 PLY STRESSES AT VARIOUS LOCATIONS**

|     |            | Stresses at $z_{t-1}$ |            |            | Stresses at $z_t$ |            |            |
|-----|------------|-----------------------|------------|------------|-------------------|------------|------------|
| $t$ | $z_t$ (mm) | $\sigma_1$            | $\sigma_2$ | $\sigma_6$ | $\sigma_1$        | $\sigma_2$ | $\sigma_6$ |
|     |            |                       |            |            |                   |            |            |

Figure 75 Stresses and Strain across laminate thickness.

d. Stress Concentration of Orthotropic Plates with a Filled Hole

Assume a cross-ply T-300/5208 laminate

$$[0_{16}/90_{16}]$$

(1) Elastic Constants

From previous calculations

$$D_{ij} = \begin{bmatrix} 6848 & 186 & 0 \\ 1357 & 0 & 0 \\ 307 & & \end{bmatrix} \text{ (Nm)}$$

$$E_{11}^f = 160, E_{22}^f = 31.6, \nu_{12}^f = .136, G_{12}^f = 7.2 \text{ (MPa)} \quad (291)$$

Complex parameters are roots of equations

$$D_{22}\mu^4 + 2(D_{12} + 2D_{66})\mu^2 + D_{11} = 0 \quad (292)$$

$$\mu^2 = - .590 \pm 2.167i = 2.246 [\cos(\pm 1.30) + i \sin(\pm 1.30)]$$

$$\begin{aligned} \mu_1 &= \pm 1.50 [\cos(\pm .65) + i \sin(\pm .65)] \\ &= \pm 1.50 [.80 \pm .60i] = \pm (1.2 \pm 0.9i) \end{aligned} \quad (293)$$

$$n = i(\mu_1 + \mu_2) = \pm 2.4i, \pm 1.8 \quad (294)$$

$$k = -\mu_1 \mu_2 = 1.2^2 + .9^2 = 2.25 \quad (295)$$

(2) Bending Moments

(a) At point A

$$M_r = \frac{M}{1 - \nu_{12} \nu_{21}} \left( 1 + \frac{\nu_{12} + n}{k} \right) = 1.86 M \quad (296)$$

$$M_\theta = \nu_{21} M_r = .050M, \quad M_{r\theta} = 0$$

(b) At point B

$$M_r = -\frac{M}{1 - \nu_{12} \nu_{21}} \frac{D_2}{D_1} (\nu_{12} + \nu_{12} n + k) = -.523M \quad (297)$$

$$M_\theta = \nu_{12} M_r = -.0712M, \quad M_{r\theta} = 0$$



Figure 76 Bending of plate with a hole filled with rigid core.

(3) Ply Stresses

From previous calculations

$$d_{ij} = \begin{bmatrix} & \\ & \\ & \end{bmatrix} \quad (298)$$

(a) At Point A

$$M_i = \begin{Bmatrix} 1.86 \\ .50 \\ 0 \end{Bmatrix} M, \text{ then } k_i = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M \quad (299)$$

At  $z = 4\text{mm}$  (outer most ply)

$$\epsilon_i = 4k_i = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M, \quad \sigma_i = Q_{ij}^{(0)} \epsilon_j = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M \quad (300)$$

At  $z = 2\text{mm}$  (0utermost 90° ply)

$$\epsilon_i = 2k_i = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M, \quad \sigma_i = Q_{ij}^{(90)} \epsilon_j = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M \quad (301)$$

$$M_{FPP} = \quad M_{Ult} = \quad (302)$$

(b) At Point B

$$M_i = \begin{Bmatrix} -.523 \\ -.071 \\ 0 \end{Bmatrix} M, \text{ then } k_i = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M \quad (303)$$

$$\text{At } z = 4\text{mm}, \quad \epsilon_i = 4k_i = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M, \quad \sigma_i = Q_{ij}^{(0)} \epsilon_j = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M \quad (304)$$

$$\text{At } z = 2\text{mm}, \quad \epsilon_i = 2k_i = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M, \quad \sigma_i = Q_{ij}^{(90)} \epsilon_j = \begin{Bmatrix} & \\ & \\ & \end{Bmatrix} M \quad (305)$$

$$M_{FPP} = \quad M_{Ult} = \quad (306)$$



## SECTION VII

### PROPERTIES OF UNSYMMETRICAL LAMINATES

#### 1. BACKGROUND

An unsymmetrical laminate is one that does not have mid-plane symmetry in the layup of plies. This type of laminate has not been used extensively in actual structures, but may be considered if special constraints or effects, such as minimum gage, aeroelastic tailoring, and bimetallic setup are desired. Unsymmetric laminates will warp after curing and cooling. The degree of warpage will change by temperature and moisture absorption, in addition to applied loads.

The properties of unsymmetric laminates are a little more complicated than the symmetric ones. Because of the lack of symmetry, the laminate will bend or twist when an in-plane load is applied or it will stretch when a moment is applied. This coupled response is unique and has no counterpart in symmetric laminates. Unsymmetrical structures, however, are not uncommon in real life. Floor slabs, fuselage, and many other built-up structures are usually unsymmetrical. Thus, the theory of unsymmetrical laminates will be discussed. They may uniquely fulfill requirements not possible with symmetric laminates.



Figure 77 Symmetric versus unsymmetric laminates. Symmetry is based on mid or  $\delta = 0$  plane.



## 2. COUPLING MODULUS

a. Definition: In symmetric laminates, in-plane and flexural behavior are independent of each other; i.e., they are not coupled. But for unsymmetric laminates, they are coupled; i.e., in-plane extension requires both in-plane stresses as well as moments (to keep the laminate from warping), and conversely, the bending of a laminate induces both in-plane stresses and moments. The coupling modulus can be defined as follows

$$N_i = \int_{-h/2}^{h/2} \sigma_i dz \quad (307)$$

$$= \int Q_{ij} e_j dz \quad (308)$$

$$\text{If } e_i = e_i^0 + z k_i \quad (309)$$

$$\begin{aligned} N_i &= \int Q_{ij} (e_j^0 + 2k_j) dz = e_j \int Q_{ij} dz + k_j \int Q_{ij} z dz \\ &= A_{ij} N_j + B_{ij} k_j \end{aligned} \quad (310)$$

Alternatively,

$$M_i = \int_{-h/2}^{h/2} \sigma_i z dz = \int Q_{ij} e_j z dz \quad (311)$$

$$\text{If } e_i = e_i^0 + z k_i$$

$$\begin{aligned} M_i &= \int Q_{ij} (e_j^0 + 2k_j) z dz = e_j^0 \int Q_{ij} z dz + k_j \int Q_{ij} z^2 dz \\ &= B_{ij} e_j^0 + D_{ij} M_j \end{aligned} \quad (312)$$

Thus, the coupling modulus is the same between  $N$  and  $k$  as that between  $M$  and  $e^0$ . Needless to say,  $B_{ij}$  is identically zero for symmetric laminates.

- For  $[0/90]_T$ ,  $-B_{11} = B_{22}$ ,  $B_{12} = B_{66} = B_{16} = B_{26} = 0'$

- For  $[\theta/-\theta]_T$ ,  $B_{16}, B_{26} \neq 0$ ,  $B_{11} = B_{22} = B_{12} = B_{66} = 0$ .

b. Formulas for Coupling Modulus

$$B_{ij} = \int_{-h/2}^{h/2} \sigma_{ij} z dz$$

$$= \frac{1}{2} \sum_{t=1-N/2}^{N/2} Q_{ij}^{(t)} (h_t^2 - h_{t-1}^2) \quad (313)$$

For N plies with uniform thickness  $h_o$ ,  
(N even)

$$B_{ij} = \frac{h_o^2}{2} \sum_{1-(N/2)}^{N/2} Q_{ij}^{(t)} [t^2 - (t-1)^2]$$

$$= \frac{h_o^2}{2} \sum Q_{ij}^{(t)} (2t-1) \quad (314)$$

$$\frac{2}{h^2} B_{ij} = \left(\frac{1}{N}\right)^2 \sum Q_{ij}^{(t)} F_t \quad (315)$$

$$F_t = 2t-1$$

Unlike  $A_{11}$  and  $D_{11}$ ,  $B_{11}$  can be positive or negative depending on the shifting of the neutral plane up or down.

Substituting transformation of  $Q_{ij}$ ,  $B_{ij}$  can be defined.



Figure 78 Integration of unsymmetric laminates must be performed for the entire thickness from  $-h/2$  to  $h/2$ . (For symmetric laminates, integration can be limited to from 0 to  $h/2$ ).

TABLE 55 FORMULA FOR COUPLING MODULUS

|                        | $\frac{1}{N^2} R_1$                    | $\frac{1}{N^2} R_2$        |
|------------------------|----------------------------------------|----------------------------|
| $\frac{2}{h^2} B_{11}$ | $\sum F_t \cos 2\alpha_t$              | $\sum F_t \cos 4\alpha_t$  |
| $\frac{2}{h^2} B_{22}$ | $-\sum F_t \cos 2\alpha_t$             | $\sum F_t \cos 4\alpha_t$  |
| $\frac{2}{h^2} B_{12}$ |                                        | $-\sum F_t \cos 4\alpha_t$ |
| $\frac{2}{h^2} B_{66}$ |                                        | $-\sum F_t \cos 4\alpha_t$ |
| $\frac{2}{h^2} B_{16}$ | $-\frac{1}{2} \sum F_t \sin 2\alpha_t$ | $-\sum F_t \sin 4\alpha_t$ |
| $\frac{2}{h^2} B_{26}$ | $-\frac{1}{2} \sum F_t \sin 2\alpha_t$ | $\sum F_t \sin 4\alpha_t$  |

$\alpha_t$  = orientation of t-ply,  $-N/2 \leq t \leq N/2$

$$I_{1B} = \frac{1}{4} (B_{11} + B_{22} + 2B_{12}) = 0 \quad (316)$$

$$I_{2B} = \frac{1}{8} (B_{11} + B_{22} - 2B_{12} + 4B_{66}) = 0 \quad (317)$$

$$R_{1B} = \frac{1}{2} \sqrt{(-B_{11} + B_{22})^2 + 4(B_{16} + B_{26})^2}$$

$$= \frac{R_1}{N^2} \sqrt{(\sum F_t \cos 2\alpha_t)^2 + (\sum F_t \sin 2\alpha_t)^2} = R_1 \sqrt{V_1^2 + V_3^2} \quad (318)$$

$$R_{2B} = \frac{1}{8} \sqrt{(B_{11} + B_{22} - 2B_{16} - 4B_{66})^2 + 16(B_{16} - B_{26})^2}$$

$$= \frac{R_2}{N^2} \sqrt{(\sum F_t \cos 4\alpha_t)^2 + (\sum F_t \sin 4\alpha_t)^2} = R_2 \sqrt{V_2^2 + V_4^2} \quad (319)$$

$$\tan 2\delta_1 = - \frac{2(B_{16} + B_{26})}{B_{11} - B_{22}} = - \frac{V_3}{V_1} \quad (320)$$

$$\tan 4\delta_1 = - \frac{4(B_{16} - B_{26})}{B_{11} + B_{22} - 2B_{12} - 4B_{66}} = - \frac{V_4}{V_2} \quad (321)$$

TABLE 56 FORMULA FOR TRANSFORMED COUPLING MODULUS

|                         | $\sqrt{V_1^2 + V_3^2}$ R <sub>1</sub>    | $\sqrt{V_2^2 + V_4^2}$ R <sub>2</sub> |
|-------------------------|------------------------------------------|---------------------------------------|
| $\frac{h^2}{2} B'_{11}$ | $\cos 2(\theta - \delta_1)$              | $\cos 4(\theta - \delta_2)$           |
| $\frac{h^2}{2} B'_{22}$ | $-\cos 2(\theta - \delta_1)$             | $\cos 4(\theta - \delta_2)$           |
| $\frac{h^2}{2} B'_{12}$ | 0                                        | $-\cos 4(\theta - \delta_2)$          |
| $\frac{h^2}{2} B'_{66}$ | 0                                        | $-\cos 4(\theta - \delta_2)$          |
| $\frac{h^2}{2} B'_{16}$ | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $-\sin 4(\theta - \delta_2)$          |
| $\frac{h^2}{2} B'_{26}$ | $-\frac{1}{2} \sin 2(\theta - \delta_1)$ | $\sin 4(\theta - \delta_2)$           |

$$V_1 = \frac{1}{N^2} \sum F_t \cos 2\alpha, \quad V_2 = \frac{1}{N^2} \sum F_t \cos 4\alpha \quad (322)$$

$$V_3 = \frac{1}{N^2} \sum F_t \sin 2\alpha \quad V_4 = \frac{1}{N^2} \sum F_t \sin 4\alpha \quad (323)$$

TABLE 57 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

| $\alpha_t$   | $\cos 2\alpha_t$ | $\sin 2\alpha_t$         | $\cos 4\alpha_t$     | $\sin 4\alpha_t$         |                      |
|--------------|------------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$          | $F_t$            | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     | $F_t \sin 4\alpha_t$ |
| -7           | -15              |                          |                      |                          |                      |
| -6           | -13              |                          |                      |                          |                      |
| -5           | -11              |                          |                      |                          |                      |
| -4           | -9               |                          |                      |                          |                      |
| -3           | -7               |                          |                      |                          |                      |
| -2           | -5               |                          |                      |                          |                      |
| -1           | -3               |                          |                      |                          |                      |
| 0            | -1               |                          |                      |                          |                      |
| 1            | 1                |                          |                      |                          |                      |
| 2            | 3                |                          |                      |                          |                      |
| 3            | 5                |                          |                      |                          |                      |
| 4            | 7                |                          |                      |                          |                      |
| 5            | 9                |                          |                      |                          |                      |
| 6            | 11               |                          |                      |                          |                      |
| 7            | 13               |                          |                      |                          |                      |
| 8            | 15               |                          |                      |                          |                      |
| $b =$        |                  | $\Sigma F c 2 =$         | $\Sigma F s 2 =$     | $\Sigma F c 4 =$         | $\Sigma F s 4 =$     |
| $h_o =$      |                  | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| $N =$        |                  | $-v_3 / v_1 =$           |                      | $-v_4 / v_2 =$           |                      |
| $\alpha_o =$ |                  | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

TABLE 58 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

| $\alpha_t$   | $\cos 2\alpha_t$ | $\sin 2\alpha_t$         | $\cos 4\alpha_t$     | $\sin 4\alpha_t$         |                      |
|--------------|------------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$          | $F_t$            | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     | $F_t \sin 4\alpha_t$ |
| -7           | -15              |                          |                      |                          |                      |
| -6           | -13              |                          |                      |                          |                      |
| -5           | -11              |                          |                      |                          |                      |
| -4           | -9               |                          |                      |                          |                      |
| -3           | -7               |                          |                      |                          |                      |
| -2           | -5               |                          |                      |                          |                      |
| -1           | -3               |                          |                      |                          |                      |
| 0            | -1               |                          |                      |                          |                      |
| 1            | 1                |                          |                      |                          |                      |
| 2            | 3                |                          |                      |                          |                      |
| 3            | 5                |                          |                      |                          |                      |
| 4            | 7                |                          |                      |                          |                      |
| 5            | 9                |                          |                      |                          |                      |
| 6            | 11               |                          |                      |                          |                      |
| 7            | 13               |                          |                      |                          |                      |
| 8            | 15               |                          |                      |                          |                      |
| $h =$        |                  | $\Sigma F c2 =$          | $\Sigma F s2 =$      | $\Sigma F c4 =$          | $\Sigma F s4 =$      |
| $h_o =$      |                  | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| $N =$        |                  | $-v_3 / v_1 =$           |                      | $-v_4 / v_2 =$           |                      |
| $\alpha_o =$ |                  | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

TABLE 59 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

| $\alpha_t$ | $\cos 2\alpha_t$ | $\sin 2\alpha_t$         | $\cos 4\alpha_t$     | $\sin 4\alpha_t$         |
|------------|------------------|--------------------------|----------------------|--------------------------|
| $t$        | $F_t$            | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     |
| -7         | -15              |                          |                      |                          |
| -6         | -13              |                          |                      |                          |
| -5         | -11              |                          |                      |                          |
| -4         | -9               |                          |                      |                          |
| -3         | -7               |                          |                      |                          |
| -2         | -5               |                          |                      |                          |
| -1         | -3               |                          |                      |                          |
| 0          | -1               |                          |                      |                          |
| 1          | 1                |                          |                      |                          |
| 2          | 3                |                          |                      |                          |
| 3          | 5                |                          |                      |                          |
| 4          | 7                |                          |                      |                          |
| 5          | 9                |                          |                      |                          |
| 6          | 11               |                          |                      |                          |
| 7          | 13               |                          |                      |                          |
| 8          | 15               |                          |                      |                          |
| $h =$      |                  | $\Sigma F_c 2 =$         | $\Sigma F_s 2 =$     | $\Sigma F_c 4 =$         |
| $h_o =$    |                  | $\sqrt{V_1^2 + V_3^2} =$ |                      | $\sqrt{V_2^2 + V_4^2} =$ |
| $N =$      |                  | $-V_3 / V_1 =$           |                      | $-V_4 / V_2 =$           |
| $z_o =$    |                  | $\delta_1 =$             |                      | $\delta_2 =$             |

TABLE 60 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

| $\alpha_t$   | $\cos 2\alpha_t$ | $\sin 2\alpha_t$         | $\cos 4\alpha_t$     | $\sin 4\alpha_t$         |
|--------------|------------------|--------------------------|----------------------|--------------------------|
| $t$          | $F_t$            | $F_t \cos 2\alpha_t$     | $F_t \sin 2\alpha_t$ | $F_t \cos 4\alpha_t$     |
| -7           | -15              |                          |                      |                          |
| -6           | -13              |                          |                      |                          |
| -5           | -11              |                          |                      |                          |
| -4           | -9               |                          |                      |                          |
| -3           | -7               |                          |                      |                          |
| -2           | -5               |                          |                      |                          |
| -1           | -3               |                          |                      |                          |
| 0            | -1               |                          |                      |                          |
| 1            | 1                |                          |                      |                          |
| 2            | 3                |                          |                      |                          |
| 3            | 5                |                          |                      |                          |
| 4            | 7                |                          |                      |                          |
| 5            | 9                |                          |                      |                          |
| 6            | 11               |                          |                      |                          |
| 7            | 13               |                          |                      |                          |
| 8            | 15               |                          |                      |                          |
| $h =$        |                  | $\Sigma F c2 =$          | $\Sigma F s2 =$      | $\Sigma F c4 =$          |
| $h_o =$      |                  | $\sqrt{V_1^2 + V_3^2} =$ |                      | $\sqrt{V_2^2 + V_4^2} =$ |
| $N =$        |                  | $- V_3 / V_1 =$          |                      | $- V_4 / V_2 =$          |
| $\sigma_o =$ |                  | $\sigma_1 =$             |                      | $\sigma_2 =$             |

TABLE 61 CALCULATION OF REDUCTION FACTORS (V's) FOR COUPLING MODULUS

| $\alpha_t$ | $\cos 2\alpha_t$         | $\sin 2\alpha_t$     | $\cos 4\alpha_t$         | $\sin 4\alpha_t$     |
|------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$        | $F_t$                    | $F_t \cos 2\alpha_t$ | $F_t \sin 2\alpha_t$     | $F_t \cos 4\alpha_t$ |
| -7         | -15                      |                      |                          |                      |
| -6         | -13                      |                      |                          |                      |
| -5         | -11                      |                      |                          |                      |
| -4         | -9                       |                      |                          |                      |
| 3          | -7                       |                      |                          |                      |
| -2         | -5                       |                      |                          |                      |
| -1         | -3                       |                      |                          |                      |
| 0          | -1                       |                      |                          |                      |
| 1          | 1                        |                      |                          |                      |
| 2          | 3                        |                      |                          |                      |
| 3          | 5                        |                      |                          |                      |
| 4          | 7                        |                      |                          |                      |
| 5          | 9                        |                      |                          |                      |
| 6          | 11                       |                      |                          |                      |
| 7          | 13                       |                      |                          |                      |
| 8          | 15                       |                      |                          |                      |
| $b =$      | $\Sigma F c 2 =$         | $\Sigma F s 2 =$     | $\Sigma F c 4 =$         | $\Sigma F s 4 =$     |
| $n_o =$    | $\sqrt{v_1^2 + v_3^2} =$ |                      | $\sqrt{v_2^2 + v_4^2} =$ |                      |
| $N =$      | $-v_3 / v_1 =$           |                      | $-v_4 / v_2 =$           |                      |
| $z_o =$    |                          | $\delta_1 =$         |                          | $\delta_2 =$         |

TABLE 62 CALCULATION OF REDUCTION FACTORS ( $V_i^2$ ) FOR COUPLING MODULUS

| $\alpha_t$ | $\cos 2\alpha_t$         | $\sin 2\alpha_t$     | $\cos 4\alpha_t$         | $\sin 4\alpha_t$     |
|------------|--------------------------|----------------------|--------------------------|----------------------|
| $t$        | $F_t$                    | $F_t \cos 2\alpha_t$ | $F_t \sin 2\alpha_t$     | $F_t \cos 4\alpha_t$ |
| -7         | -15                      |                      |                          |                      |
| -6         | -13                      |                      |                          |                      |
| -5         | -11                      |                      |                          |                      |
| -4         | -9                       |                      |                          |                      |
| -3         | -7                       |                      |                          |                      |
| -2         | -5                       |                      |                          |                      |
| -1         | -3                       |                      |                          |                      |
| 0          | -1                       |                      |                          |                      |
| 1          | 1                        |                      |                          |                      |
| 2          | 3                        |                      |                          |                      |
| 3          | 5                        |                      |                          |                      |
| 4          | 7                        |                      |                          |                      |
| 5          | 9                        |                      |                          |                      |
| 6          | 11                       |                      |                          |                      |
| 7          | 13                       |                      |                          |                      |
| 8          | 15                       |                      |                          |                      |
| $h =$      | $\Sigma F c2 =$          | $\Sigma F s2 =$      | $\Sigma F c4 =$          | $\Sigma F s4 =$      |
| $h_o =$    | $\sqrt{V_1^2 + V_3^2} =$ |                      | $\sqrt{V_2^2 + V_4^2} =$ |                      |
| $N =$      | $-V_3 / V_1 =$           |                      | $-V_4 / V_2 =$           |                      |
| $z_o =$    | $\delta_1 =$             |                      | $\delta_2 =$             |                      |

c. Computation of Reduction Factors, V's

$$(1) [0_8/90_8]_T$$

$$h = 2\text{mm}$$

$$V_1 = -1/2, \quad V_2 = V_3 = V_4 = 0 \quad (324)$$

$$\delta_1 = 90 \quad (\text{do not use } 0 \text{ because } B_{11} \text{ is negative})$$

$$\text{For T-300/5208} \quad R_1 = 85.85, \quad R_2 = 19.7 \text{ GPa}$$

$$B_{11} = -B_{22} = \frac{h^2}{2} V_1 R_1 = -85.85 \text{ kN} \quad (325)$$

$$B_{12} = B_{55} = 0, \quad B_{16} = B_{26} = 0 \quad (326)$$



Figure 79 Transformed  $B_{ij}$  for  $[0_8/90_8]_T$ .

$$(2) [45_8/-45_8]_T$$

This is the same as  $\theta = 45$  for  $[0_8/90_8]_T$

For this laminate (angle-ply),  $B_{11} = B_{22} = 0, \quad B_{16} = -B_{26} = 42.9 \text{ kN.}$

(3)  $[0_4/90_4/0_4/90_4]_T$ .  $B_{ij}$  for this laminate is exactly one half that of  $[0_8/90_8]_T$ .  
So for N - even,  $B_{ij}/N = \text{constant}$ .

### 3. COUPLED BENDING AND EXTENSION OF LAMINATES

#### a. Constitutive Relations

Between 2 generalized stresses ( $N_i$  &  $M_i$ ), and 2 generalized deformations ( $\epsilon_i^0$  &  $k_i$ ), there are 6 possible relations, all of which are listed below in terms of the original modulus matrices: Inplane  $A_{ij}$ , Coupling  $B_{ij}$  and Flexural  $D_{ij}$ .

$$\begin{Bmatrix} N \\ M \end{Bmatrix} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{Bmatrix} \epsilon^0 \\ k \end{Bmatrix} \quad \begin{aligned} a &= A^{-1} \\ b &= B^{-1} \\ d &= D^{-1} \end{aligned} \quad (327)$$

$$\begin{Bmatrix} \epsilon^0 \\ M \end{Bmatrix} = \begin{bmatrix} a & -aB \\ Ba & D-BaB \end{bmatrix} \begin{Bmatrix} N \\ k \end{Bmatrix} \quad \begin{Bmatrix} N \\ k \end{Bmatrix} = \begin{bmatrix} A-BdB & Bd \\ -dB & d \end{bmatrix} \begin{Bmatrix} \epsilon^0 \\ M \end{Bmatrix} \quad (328)$$

$$\begin{Bmatrix} N \\ \epsilon^0 \end{Bmatrix} = \begin{bmatrix} B-AbD & Ab \\ -bD & b \end{bmatrix} \begin{Bmatrix} k \\ M \end{Bmatrix} \quad \begin{Bmatrix} k \\ M \end{Bmatrix} = \begin{bmatrix} b & -bA \\ Db & B-DbA \end{bmatrix} \begin{Bmatrix} N \\ \epsilon^0 \end{Bmatrix} \quad (329)$$

$$\begin{Bmatrix} \epsilon^0 \\ k \end{Bmatrix} = \begin{bmatrix} (A-BdB)^{-1} & -(A-BdB)^{-1}Bd \\ -(D-BaB)^{-1}Ba & (D-BaB)^{-1} \end{bmatrix} \begin{Bmatrix} N \\ M \end{Bmatrix} \quad (330)$$

All submatrices are  $3 \times 3$ , which are numerically simple to calculate. The unpartitioned, original matrices are  $6 \times 6$ , which normally require bigger computer to evaluate. A sample problem will be solved in the next section using the  $3 \times 3$  submatrices only.

#### b. Numerical Example

T-300/5208  $[0_8/90_8]_T$ ,  $h = 2\text{mm}$

$$Q_{ij} = \begin{bmatrix} 182 & 2.9 & 0 \\ & 10.3 & 0 \\ & & 7.2 \end{bmatrix} \text{ GPa} \quad (331)$$



Figure 80 2-layer unsymmetric laminate.

$$A_{ij} = \begin{bmatrix} 192.3 & 5.8 & 0 \\ 192.3 & 192.3 & 0 \\ 0 & 14.4 & \end{bmatrix} \text{ MNm}^{-1} \quad (332)$$

$$B_{ij} = \begin{bmatrix} -85.85 & 0 & 0 \\ 0 & 85.85 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ kN} \quad (333) \quad D_{ij} = \begin{bmatrix} 64.1 & 1.93 & 0 \\ 64.1 & 64.1 & 0 \\ 0 & 0 & 4.8 \end{bmatrix} \text{ Nm} \quad (334)$$

$$|A| = 532017 \quad a_{ij} = \begin{bmatrix} 5.20 & - .157 & 0 \\ 5.20 & 5.20 & 0 \\ 69.4 & 0 & \end{bmatrix} (\text{GNm}^{-1})^{-1} \quad (335)$$

$|B| = 0$ ,  $B_{ij}$  is singular, therefore, there is no inverse.

$$|D| = 19740 \quad d_{ij} = \begin{bmatrix} 15.58 & - .469 & 0 \\ 15.58 & 15.58 & 0 \\ 208 & 0 & \end{bmatrix} (\text{kNm})^{-1} \quad (336)$$

$$Ba = \begin{bmatrix} -446 & 13.48 & 0 \\ -13.48 & 446 & 0 \\ 0 & 0 & 0 \end{bmatrix} (\text{Mm}^{-1})^{-1} \quad (337)$$

$$aB = \begin{bmatrix} -446 & -13.48 & 0 \\ 13.48 & 446 & 0 \\ 0 & 0 & 0 \end{bmatrix} (\text{Mm}^{-1})^{-1} \quad (338)$$

$$BaB = \begin{bmatrix} 38.3 & 1.16 & 0 \\ 38.3 & 38.3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ Nm} \quad (339) \quad D - BaB = \begin{bmatrix} 25.8 & .77 & 0 \\ 25.8 & 25.8 & 0 \\ 0 & 0 & 4.8 \end{bmatrix} \text{ Nm} \quad (340)$$

$$Bd = \begin{bmatrix} -1337 & 40.26 & 0 \\ -40.26 & 1337 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ m}^{-1} \quad (341)$$

$$dB = \begin{bmatrix} -1337 & -40.26 & 0 \\ 40.26 & 1337 & 0 \\ 0 & 0 & 0 \end{bmatrix} m^{-1} \quad (342)$$

$$BdB = \begin{bmatrix} 114 & 3.46 & 0 \\ 114 & 114 & 0 \\ 0 & 0 & 0 \end{bmatrix} MNm^{-1} \quad (343)$$

$$A - BdB = \begin{bmatrix} 78.3 & 2.34 & 0 \\ 78.3 & 78.3 & 0 \\ 0 & 0 & 14.4 \end{bmatrix} MNm^{-1} \quad (344)$$

$$(D - BaB)^{-1} = \begin{bmatrix} 38.8 & -1.16 & 0 \\ 38.8 & 38.8 & 0 \\ 0 & 0 & 208 \end{bmatrix} (kNm)^{-1} \quad (345)$$

$$(A - BdB)^{-1} = \begin{bmatrix} 12.8 & -.382 & 0 \\ 12.8 & 12.8 & 0 \\ 0 & 0 & 69.4 \end{bmatrix} (GNm^{-1})^{-1} \quad (346)$$

$$(D - BaB)^{-1} Ba = \begin{bmatrix} -17.29 & 0 & 0 \\ 0 & 17.29 & 0 \\ 0 & 0 & 0 \end{bmatrix} (MN)^{-1} \quad (347)$$

$$(A - BdB)^{-1} Bd = \begin{bmatrix} -17.13 & 0 & 0 \\ 0 & 17.13 & 0 \\ 0 & 0 & 0 \end{bmatrix} (MN)^{-1} \quad (348)$$

c. Summary of Constitutive Equations for T-300/5208 [0<sub>8</sub>/90<sub>8</sub>]<sub>T</sub>, h = 2mm

Units: - N is MNm<sup>-1</sup>

M is N

$\epsilon^0$  is  $10^{-3}$  m/m or mm/m

k is m<sup>-1</sup>

$$\begin{Bmatrix} N \\ M \end{Bmatrix} = \begin{bmatrix} 192.3 & 5.8 & 0 & -85.85 & 0 & 0 \\ 5.8 & 192.3 & 0 & 0 & 85.85 & 0 \\ 0 & 0 & 14.4 & 0 & 0 & 0 \\ -85.85 & 0 & 0 & 64.1 & 1.93 & 0 \\ 0 & 85.85 & 0 & 1.93 & 64.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4.8 \end{bmatrix} \begin{Bmatrix} \epsilon^0 \\ k \end{Bmatrix} \quad (349)$$

$$\begin{Bmatrix} \epsilon^0 \\ k \end{Bmatrix} = \begin{bmatrix} \text{MNm}^{-1} & & & \text{kN} \\ & \text{kN} & & \text{Nm} \\ & & \text{N} & \\ \text{N} & & & \end{bmatrix} \begin{bmatrix} 12.8 & -.382 & 0 & 17 & 0 & 0 \\ -.382 & 12.8 & 0 & 0 & -17 & 0 \\ 0 & 0 & 69.4 & 0 & 0 & 0 \\ 17 & 0 & 0 & 38.8 & -1.16 & 0 \\ 0 & -17 & 0 & -1.16 & 38.8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 208 \end{bmatrix} \begin{Bmatrix} N \\ M \end{Bmatrix} \quad (350)$$

$$\begin{Bmatrix} \epsilon^0 \\ k \end{Bmatrix} = \begin{bmatrix} (\text{GNm})^{-1} & & & (\text{MN})^{-1} \\ & (\text{MN})^{-1} & & (\text{kNm})^{-1} \\ & & \text{N} & \\ \text{N} & & & \end{bmatrix} \quad (351)$$

(1) Determine N<sub>1(FPF)</sub> under uniaxial tension.

$$\epsilon_1^0 = 12.8 N_1, \quad k_1 = 17 N_1, \quad (352)$$

$$\therefore \epsilon_1^0 \Big|_{z=1\text{mm}} = (12.8 + 1 \times 17) N_1 = 29.8 N_1 \quad (353)$$

$$\text{Let } e_{\text{FPP}} = 3.91 \text{ mm/m} \quad (354)$$

$$\therefore N_{1(\text{FPP})} = \frac{3.91}{29.8} = .131 \text{ MNm}^{-1} \quad (355)$$

$$\bar{\sigma}_{1(\text{FPP})} = N_{1(\text{FPP})}/h = 65.6 \text{ MPa} \quad (356)$$

(2) Determine  $N_{1(\text{FPP})}$  if the same plies were symmetrical;

e.g., instead of  $[0_8/90_8]_T$ , use  $[0_4/90_4]_S$ .

For the latter laminate,

$$A_{ij} \text{ remains same, but } B_{ij} = 0.$$

$$e_1 = 12.8N_1, \quad k_1 = 0. \quad (357)$$

$$N_{1(\text{FPP})} = \frac{3.91}{12.8} = .305 \text{ MNm}^{-1} \quad (358)$$

$$\bar{\sigma}_{1(\text{FPP})} = 153 \text{ MPa} \quad (359)$$

(About 2.3 times higher than the unsymmetric laminate)

d. Alternative Constitutive Equations of T-300/5208 [0<sub>8</sub>/90<sub>8</sub>]<sub>T</sub> Laminate (From Equation 328)

$$\begin{Bmatrix} \epsilon^0 \\ M \end{Bmatrix} = \begin{bmatrix} 5.20 & -.157 & 0 & | & 446 & 13.48 & 0 \\ -.157 & 5.20 & 0 & | & -13.48 & -446 & 0 \\ 0 & 0 & 69.4 & | & 0 & 0 & 0 \\ -446 & 13.48 & 0 & | & 25.8 & .77 & 0 \\ -13.48 & 446 & 0 & | & .77 & 25.8 & 0 \\ 0 & 0 & 0 & | & 0 & 0 & 4.8 \end{bmatrix} \begin{Bmatrix} N \\ k \end{Bmatrix} \quad (360)$$

Units :  $\begin{bmatrix} (\text{GNm}^{-1})^{-1} & | & (\text{Mm}^{-1})^{-1} \\ | & + & | \\ (\text{Mm}^{-1})^{-1} & | & \text{Nm} \end{bmatrix} \quad (361)$

$$\begin{Bmatrix} N \\ k \end{Bmatrix} = \begin{bmatrix} 78.3 & 2.34 & 0 & | & -1337 & 40.26 & 0 \\ 2.34 & 78.3 & 0 & | & -40.26 & 1337 & 0 \\ 0 & 0 & 14.4 & | & 0 & 0 & 0 \\ -1337 & 40.26 & 0 & | & 15.58 & -.469 & 0 \\ -40.26 & -1337 & 0 & | & -.469 & 15.58 & 0 \\ 0 & 0 & 0 & | & 0 & 0 & 208 \end{bmatrix} \begin{Bmatrix} \epsilon^0 \\ M \end{Bmatrix} \quad (362)$$

Units :  $\begin{bmatrix} \text{MNm}^{-1} & | & \text{m}^{-1} \\ | & + & | \\ \text{m}^{-1} & | & (\text{kNm})^{-1} \end{bmatrix} \quad (363)$

- (1) Determine ply stresses in uniaxial extension ( $N_1$  only) of a tubular specimen of  $[0_8/90_8]$  ply orientation.

For long cylindrical tubes:  $k_1 = k_2 = k_6 = 0$  (364)

$$\epsilon_1^o = 5.20N_1 \quad (365)$$

$$\epsilon_2^o = -1.157N_1 \quad (366)$$

$$M_1 = 446N_1 \quad (367)$$

$$M_2 = 13.48N_1 \quad (368)$$

Moments are induced because curvature is prevented.

At FPF -

$$N_{1(FPF)} = \frac{3.91}{5.20} = .752 \text{ MNm}^{-1} \quad (369)$$

$$\bar{\sigma}_{1(FPF)} = 375 \text{ MPa} \quad (370)$$

The tube has higher FPF-stress than both unsymmetric (65.6) and symmetric (153) laminates. The induced moments have beneficial effects.

- (2) Are they still beneficial if the tube is under axial compression?

- (3) What is the difference between shear response of flat laminates and tubes?



## SECTION VIII

### STRESS AND DEFORMATION DUE TO CURING AND SWELLING

#### 1. UNIDIRECTIONAL LAMINAE

##### a. Moisture Concentration

Dry State

$$M = M_m + M_f \quad (371)$$

$$V = V_m + V_f + V_v , \quad (372)$$

Wet State

$$M' = M + M_{mw} + M_{fw} + M_{vw} \quad (373)$$

Moisture concentration

$$\begin{aligned} c &= \frac{M' - M}{M} = c_m m_m + c_f m_f + M_{vw} / M \\ &= (c_m v_m \rho_m + c_f v_f \rho_f + v_v \rho_w) / \rho \\ &= (c_m v_m s_m + c_f v_f s_f + v_v) / s \end{aligned} \quad (374)$$

$V_v$  : volume of voids

$M_{mw}$ : mass of water in matrix

$M_{fw}$ : " " " fiber

$M_{vw}$ : " " " voids

$$c_{[f, m]} = M_{[f, m]w} / M_{[f, m]} \quad (375)$$

$s$  : specific gravity

In many cases  $c_f \approx 0$

$$c = (c_m v_m s_m + v_v) / s \quad (376)$$

(1) Sample Problem

Maximum water absorption in a typical epoxy is 6%.

What is the maximum amount of water which can be absorbed in a Gr/Ep ( $v_f = 0.65$ )?

Specific gravities for the epoxy and composite are 1.25 and 1.6, respectively, and the void content is 0.4%.

Solution

$$\text{Since } c_f = 0, \quad c = (c_m v_m s_m + v_v) / s = 1.89\%$$

b. Approximations for Curing and Swelling Strains

$$e_L = \frac{v_f E_f e_f + v_m E_m e_m}{v_f E_f + v_m E_m} : \text{longitudinal strain} \quad (377)$$

$$e_T = \frac{v_f e_f + v_m e_m + v_f \nu_f e_f + v_m \nu_m e_m}{(v_f \nu_f + v_m \nu_m) e_L} : \text{transverse strain} \quad (378)$$

$N = T$  (curing), or  $H$  (swelling), or  $T + H$  (both)

$e_{[f, m]} = e_{[f, m]}^T + e_{[f, m]}^H : \text{strains resulting from a change of temperature and moisture concentration, measured from the initial stress-free state to a final state.}$



$E_{[f, m]}, \nu_{[f, m]} : \text{Elastic constants at the final state of interest.}$

Curing strains

$$e_{[f, m]}^T \approx \alpha_{[f, m]}^T \Delta T \quad (379)$$

$\Delta T : (\text{temperature of interest}) - (\text{curing temperature})$

Swelling strains

$$e_f^H \approx 0, \quad (380)$$

$$\alpha_f \approx 0 \quad (381)$$

$$e_m^H \approx \alpha_m^H c_m \quad (382)$$

$$\alpha_m^H = \frac{1}{3} s_m : \text{volume additivity} \quad (383)$$

$$e_L^H \approx 0 \quad (384)$$

$$\begin{aligned} e_T^H &\approx \frac{1 + \nu_m}{3} v_m s_m c_m \\ &= \frac{1 + \nu_m}{3} s(c - c_o) \end{aligned} \quad (385)$$

In general

$$e_T^H = \alpha_T^H (c - c_o) H(c_o) \quad (386)$$

$\alpha_T^H$  : Swelling coefficient



$H(\cdot)$  : Heaviside step function

$c_o$  :  $= v_v / s$ ; in general, threshold value of  $c_o$  below which no appreciable swelling occurs.

### (1) Sample Problem

What is the expected swelling coefficient of the Gr/Ep in sample problem

l.a.(1)? Poisson's ratio of a typical epoxy is 0.35.

$$c_o = v_v / s = 0.25\%$$

$$\alpha_T^H = \frac{1 + \nu_m}{3} s = 0.72$$

c. Approximations for Residual Stresses in Unidirectional Laminae

Refer to Section IV.

Matrix

$$\frac{\sigma_R}{\sigma_{mL}} = \frac{v_f E_f E_m (e_f - \eta_1 e_m)}{\eta_1 v_f E_f + v_m E_m} \quad (387)$$

$$\frac{\sigma_R}{\sigma_{mT}} = 0 \quad (388)$$

Fiber

$$\frac{\sigma_R}{\sigma_{fL}} = \frac{v_m}{v_f} \frac{\sigma_R}{\sigma_{mL}} = \frac{v_m E_m E_f (\eta_1 e_m - e_f)}{\eta_1 v_f E_f + v_m E_m} \quad (389)$$

$$\frac{\sigma_R}{\sigma_{fT}} = 0 \quad (390)$$

Residual stresses manifest themselves in the residual fringes in photoelastic composites.

d. Change of Densities Due to Curing

Volume changes

$$\frac{\Delta V_m}{V_m} = \frac{e_L}{\eta_1 v_f + v_m} + 2 \left[ e_m + \frac{\eta_1 v_f E_f \nu_m (e_m - e_f/\eta_1)}{\eta_1 v_f E_f + v_m E_m} \right] \quad (391)$$

$$\frac{\Delta V_f}{V_f} = \frac{\eta_1 e_L}{\eta_1 v_f + v_m} + 2 \left[ e_f + \frac{\eta_1 v_m E_m \nu_f (e_f/\eta_1 - e_m)}{\eta_1 v_f E_f + v_m E_m} \right] \quad (392)$$

In-situ densities (dry) after curing

$$\eta_1 = 1$$

$$\rho_m = \rho_{mo} \frac{1 + 3e_m^T}{1 + 2e_m^T (1 + \nu_m) + (1 - 2\nu_m)e_L^T} \approx \rho_{mo} \quad (393)$$

$$\text{For } Gr/E_p, \quad \nu_m = 0.35, \quad e_m^L = 0, \quad -e_m^T \approx 0.77\%.$$

$$\rho_m = \rho_{mo} \frac{1 + 3e_m^T}{1 + 2.7e_m^T} = 0.9976 \rho_{mo} \approx \rho_{mo}$$

$$\rho_f = \rho_{fo} \frac{1+3e_f^T}{1+2e_f^T (1+\nu_f) + (1-2\nu_f)e_L^T} \approx \rho_{fo} \quad (394)$$

$\rho_m, \rho_{fo}$ : densities of constituents themselves at the temperature of interest

Composite density

$$M = M_m + M_f \quad (395)$$

$$V = M_m / \rho_m + M_f / \rho_f + V_v \quad (396)$$

$$\rho = \rho_m v_m + \rho_f v_f \quad (397)$$

#### e. Change of Densities Due to Moisture Absorption

Dry State

$$M = M_m + M_f, \quad V = V_m + V_f + V_v \quad (398)$$

Wet State

$$M' = M + M_{mw} + M_{fw} + M_{vw} \quad (399)$$

$$V' = V + \Delta V_m + \Delta V_f \quad (400)$$

Wet density

$$\begin{aligned} \rho' &= \frac{M'}{V'} = \frac{M'}{M} \frac{M}{V} \frac{V}{V'} = \frac{\rho(1+c)}{1+\Delta V_m/V + \Delta V_f/V} \\ &\approx \rho \frac{1+c}{1+2\nu_m(1+\nu_m)e_m^H} \\ &\approx \rho \frac{1+c}{1+2\nu_m(1+\nu_m)s_m c_m / 3} \end{aligned} \quad (401)$$

or

$$\frac{V}{V'} = \frac{1}{1+c} \frac{\rho'}{\rho} \quad (402)$$

f. Remarks on Thermal Expansion Coefficients of Composites

Assume

$$e_{[f,m]}^T = \alpha_{[f,m]}^T (T - T_o) \quad (403)$$

$\alpha_{[f,m]}^T$  : independent of T

$T_o$  : initial reference temperature

From Eq. (377)

$$\alpha_L^T(T) = \frac{v_f E_f(T) \alpha_f^T + v_m E_m(T) \alpha_m^T}{\eta_1 v_f E_f(T) + v_m E_m(T)} \quad (404)$$

where

$$\alpha_L^T(T) = \frac{e_L^T(T)}{T - T_o} \quad (405)$$

Comments

1.  $T_o$  is not arbitrary and  $e_L^T$  must be measured from  $T_o$ .

2.  $\alpha_L^T$  depends on T while  $\alpha_f^T$  and  $\alpha_m^T$  do not.

Define

$$\alpha_L^T(T_2, T_1) = \frac{e_L^T(T_2) - e_L^T(T_1)}{T_2 - T_1} \quad (406)$$

From Eq. (377)

$$\begin{aligned} \alpha_L^T(T_2, T_1) &= \frac{v_f E_f(T_2) \alpha_f^T + v_m E_m(T_2) \alpha_m^T}{\eta_1 v_f E_f(T_2) + v_m E_m(T_2)} + \left( \frac{v_f E_f(T_2) \alpha_f^T + v_m E_m(T_2) \alpha_m^T}{\eta_1 v_f E_f(T_2) + v_m E_m(T_2)} \right. \\ &\quad \left. - \frac{v_f E_f(T_1) \alpha_f^T + v_m E_m(T_1) \alpha_m^T}{\eta_1 v_f E_f(T_1) + v_m E_m(T_1)} \right) \frac{T_1 - T_o}{T_2 - T_1} \end{aligned} \quad (407)$$

$\alpha_L^T(T_2, T_1)$  becomes independent of temperature if so are the moduli.



## 2. MULTIDIRECTIONAL LAMINATES

### a. Curing and Swelling Strains

Constitutive relations of a constituent ply

$$\sigma_i = G_{ij}(\epsilon_j - \epsilon_j) + G_{iA}(\epsilon_A - \epsilon_A) : \text{in-plane stresses} \quad (408)$$

$$\sigma_A = G_{Aj}(\epsilon_j - \epsilon_j) + G_{AB}(\epsilon_B - \epsilon_B) : \text{out-of-plane stresses} \quad (409)$$

Reduced stiffnesses  $Q_{ij}$

$$Q_{ij} = G_{ij} - G_{iA}G_{AB}^{-1}G_{Bj} \quad (410)$$

$$\sigma_i = Q_{ij}(\epsilon_j - \epsilon_j) + G_{iA}G_{AB}^{-1}\sigma_B \quad (411)$$

In-plane strains and curvatures

$$\epsilon_i = \epsilon_j^o + zk_j \quad (412)$$

Classical laminated plate theory

$\sigma_B, \epsilon_j^o, k_j$  independent of  $z$

$$\int \sigma_i dz = N_i = A_{ij} \epsilon_j^o + B_{ij} k_j - N_i^N + T_{iB} \sigma_B \quad (413)$$

$$\int \sigma_i z dz = M_i = B_{ij} \epsilon_j^o + D_{ij} k_j - M_i^N + R_{iB} \sigma_B \quad (414)$$

$$\frac{1}{h} \int e_A dz = \bar{\epsilon}_A = \overline{G_{AB}^{-1} \sigma_B} - \overline{G_{AB}^{-1} G_{Bj}^{-1} \epsilon_j^o} - \overline{G_{AB}^{-1} G_{Bj}^{-1} z k_j} + \overline{G_{AB}^{-1} G_{Bj}^{-1} \epsilon_j} + \overline{\epsilon_A} \quad (415)$$

where

$$[N_i^N, M_i^N] = \int_{-h/2}^{h/2} Q_{ij} \epsilon_j [1, z] dz \quad (416)$$

$$[T_{iB}, R_{iB}] = \int_{-h/2}^{h/2} G_{iA} G_{AB}^{-1} [1, z] dz \quad (417)$$

$$\overline{(\quad)} = \frac{1}{h} \int_{-h/2}^{h/2} (\quad) dz \quad (418)$$

Nonmechanical laminate strains and curvatures

$$N_i = M_i = \sigma_A = 0 \quad (419)$$

$$e_i^o = F_{ij}^{-1} (N_j^N - B_{jk} D_{kn}^{-1} M_n^N) \quad (420)$$

$$k_i^N = D_{ij}^{-1} (M_j^N - B_{jk} e_k^o) \quad (421)$$

$$\bar{e}_A = \overline{e}_A + \overline{C}_{AB}^{-1} C_{Bj} e_j^o - \overline{C}_{AB}^{-1} C_{Bj} e_j^o - \overline{C}_{AB}^{-1} C_{Bj} z k_j^N \quad (422)$$

where

$$F_{ij} = A_{ij} - B_{ik} D_{kn}^{-1} B_{nj} \quad (423)$$

Strain-displacement relations

$$e_1^o = \partial u / \partial x_1, \quad e_2^o = \partial v / \partial x_2, \quad e_6^o = \partial u / \partial x_2 + \partial v / \partial x_1 \quad (424)$$

$$k_1 = -\partial^2 w / \partial x_1^2, \quad k_2 = -\partial^2 w / \partial x_2^2, \quad k_6 = -2 \partial^2 w / \partial x_1 \partial x_2 \quad (425)$$

All the elastic constants are taken at the final state (T, H).

In the material symmetry axes of transversely isotropic laminae

$$Q_{ij} = \begin{bmatrix} E_L / U_1 & E_T \nu_{LT} / U_1 & 0 \\ 0 & E_T / U_1 & 0 \\ 0 & 0 & G_{LT} \end{bmatrix} \quad (426)$$

$$C_{AB}^{-1} = \begin{bmatrix} 1/E_T & 0 & 0 \\ 0 & 2(1+\nu_{TT})/E_T & 0 \\ 0 & 0 & 1/G_{LT} \end{bmatrix} \quad (427)$$

$$C_{iA} = C_{Ai}^T = \begin{bmatrix} \nu_{LT}(1+\nu_{TT})E_T/U_2 & 0 & 0 \\ (\nu_{TT} + \nu_{LT}\nu_{TL})E_T/U_2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad (428)$$

$$U_1 = 1 - \nu_{LT}\nu_{TL} \quad (429)$$

$$U_2 = (1 + \nu_{TT})(1 - \nu_{TT} - 2\nu_{LT}\nu_{TL}) \quad (430)$$

### b. Curing Strains and Residual Stresses of Symmetric Laminates

$$B_{ij} = 0, \quad M_i^N = 0, \quad k_i^N = 0 \quad (431)$$

TABLE 63. LAMINA CURING STRAINS FROM CURING TEMPERATURE [12]

|                               | $v_f$ | $s$  | $e_L^T$<br>% | $e_T^T$<br>% | $T_o$<br>$^oK$ |
|-------------------------------|-------|------|--------------|--------------|----------------|
| Boron/Epoxy (B/Ep)            | 0.50  | 2.03 | 0.118        | 0.451        | 450            |
| Boron/Polyimide<br>(B/PI)     | 0.49  | 2.00 | 0.081        | 0.443        | 450            |
| Graphite/Epoxy<br>(Gr/Ep)     | 0.45  | 1.54 | -0.009       | 0.318        | 445            |
| Graphite/Polyimide<br>(Gr/PI) | 0.45  | 1.54 | 0.           | 0.391        | 450            |
| Glass/Epoxy<br>(G1/Ep)        | 0.72  | 2.13 | 0.072        | 0.530        | 435            |

TABLE 64 LAMINA MECHANICAL PROPERTIES [12]

|       | $E_L$<br>GNm $^{-2}$ | $E_T$<br>GNm $^{-2}$ | $G_{LT}$<br>GNm $^{-2}$ | $\nu_{LT}$ | X<br>MNm $^{-2}$ | Y<br>MNm $^{-2}$ | S<br>MNm $^{-2}$ |
|-------|----------------------|----------------------|-------------------------|------------|------------------|------------------|------------------|
| B/Ep  | 201                  | 21.7                 | 5.4                     | 0.17       | 1375             | 56.0             | 62.3             |
| B/PI  | 222                  | 14.5                 | 7.7                     | 0.16       | 1040             | 10.8             | 25.9             |
| Gr/Ep | 190                  | 7.10                 | 6.2                     | 0.10       | 1115             | 41.9             | 61.5             |
| Gr/PI | 216                  | 4.97                 | 4.5                     | 0.25       | 841              | 14.9             | 21.7             |
| G1/Ep | 60.7                 | 24.8                 | 12.0                    | 0.23       | 807              | 46.0             | 45.0             |

TABLE 65 CURING STRAINS OF  $[0_2/\pm 45]$  LAMINATES AND CORRESPONDING STRESSES WITHIN 45° PLY [12,19]

|       | $-e_0^T$ , %       |        | $-e_{90}^T$ , %  |       | $-e_{45}^T$ , %  |       | $\frac{\sigma_R}{\sigma_T}$ | $\frac{\sigma_R}{\sigma_{LT}}$ |
|-------|--------------------|--------|------------------|-------|------------------|-------|-----------------------------|--------------------------------|
|       | EXP.               | CAL.   | EXP.             | CAL.  | EXP.             | CAL.  | $\gamma$                    | S                              |
| B/Ep  | 0.123              | 0.109  | 0.234            | 0.259 | 0.171            | 0.184 | 0.99                        | 0.13                           |
| B/PI  | 0.100              | 0.075  | 0.214            | 0.186 | 0.163            | 0.131 | 4.09                        | 0.33                           |
| Gr/Ep | -0.018<br>(-0.009) | -0.019 | 0.104<br>(0.068) | 0.122 | 0.036<br>(0.026) | 0.052 | 1.09                        | 0.11                           |
| Gr/PI | 0.002              | -0.004 | 0.031            | 0.051 | 0.017            | 0.028 | 1.20                        | 0.11                           |
| G1/Ep | 0.105              | 0.117  | 0.260            | 0.361 | 0.182            | 0.239 | 1.39                        | 0.65                           |

Remarks: Numbers inside the parentheses for Gr/Ep are measured during the cooling stage of curing and the heating stage of postcuring.

c. Warping of Asymmetric Laminates After Curing

Input mechanical properties at room temperature

| Material | $E_L$ | $E_T$ | $G_{LT}$ | $\nu_{LT}$ |
|----------|-------|-------|----------|------------|
|          | GPa   | GPa   | GPa      |            |
| Gr/Ep    | 153   | 11.2  | 7.10     | 0.33       |
| G1/Ep    | 39.1  | 13.1  | 4.70     | 0.30       |

Input curing strains for lamina

| Material | $T_o = 450^{\circ}\text{K}$ |                      | $T_o = 394^{\circ}\text{K}$ |                      |
|----------|-----------------------------|----------------------|-----------------------------|----------------------|
|          | $e_L^T, \text{mm/m}$        | $e_T^T, \text{mm/m}$ | $e_L^T, \text{mm/m}$        | $e_T^T, \text{mm/m}$ |
| Gr/Ep    | 0.304                       | -3.503               | 0.267                       | -2.167               |
| G1/Ep    | -1.345                      | -4.077               | -0.743                      | -2.235               |

Amount of warping

$$w^T = -\frac{1}{2} (k_1^T x^2 + k_2^T y^2 + k_6^T xy) + c_1 x + c_2 y + c_3 \quad (432)$$



$$(433)$$

For  $[+0/-0]$  laminates

$$k_1^T = k_2^T = 0, \quad w_{\max}^T(a, b) = -\frac{k_6^T}{2} ab \quad (434)$$



Figure 81 Maximum deflection of  $[\theta_4 / -\theta_4]_T$  laminates after curing,  $a = b = 6.35\text{cm}$ . [20]

#### d. Swelling Strains of Symmetric Laminates

$$k_i^H = 0 \quad (435)$$

$$e_T^H = \alpha_T^H (c - c_o) H (c_o), \quad e_L^H = 0 \quad (436)$$

$$\frac{c - c_o}{c_\infty - c_o} = 1 - \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^j}{(2j+1)} \cos \frac{(2j+1)\pi z}{h} \exp - \frac{(2j+1)^2 \pi^2 dt}{h^2} \quad (437)$$

$$\frac{\bar{c} - c_o}{c_\infty - c_o} = 1 - \frac{8}{\pi^2} \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} \exp - \frac{(2j+1)^2 \pi^2 Dt}{h^2} \quad (438)$$

Absorption

$$c_o = 0 \quad (439)$$

Desorption

$$c_\infty = 0 \quad (440)$$



Figure 82 Transverse swelling strain in [0] Gr/Ep (AS/3501) subjected to absorption and desorption tests. Note that

$$\alpha_T^H = 0.59, \quad c_0 = -0.4\%.$$



Figure 83 Swelling strain in thickness direction of Gr/Ep laminates.

e. Warping of Asymmetric Laminates Due to Swelling

$$\text{Total } w^N = w^T + w^H \quad (441)$$

For square [0/90] laminate of side  $a$ ,  $k_6^N = 0$ ,  $k_1^N = k_2^N$ .

$$w_{\max}^N = -\frac{1}{2} \left(\frac{a}{2}\right)^2 (k_1^T + k_1^H) \quad (442)$$



Figure 84 Maximum deflection of  $[0_4/90_4]_T$  Gr/Ep (AS/3501) laminate due to curing and moisture absorption,  $a = 7.58\text{cm}$ .

## SECTION IX

### FAILURE THEORIES

#### 1. INTRODUCTION

**Definition of failure:**

Any consistently definable point on  
the stress-strain relation

**Simplifying Hypothesis:**

Only one point of failure associated  
with one state of stress



Figure 85 Definition of failure.

Geometric interpretation of failure (in stress space)

| Dimension of Physical Space | Dimension of Stress Space                     | Failure Contour                                                |
|-----------------------------|-----------------------------------------------|----------------------------------------------------------------|
| One ( $x_1$ )               | One ( $\sigma_1$ )                            | Points $-\sigma_1 \quad x_1' \quad O \quad x_1 \quad \sigma_1$ |
| Two ( $x_1, x_2$ )          | Three ( $\sigma_1, \sigma_2, \sigma_3$ )      | 3-D Surface                                                    |
| Three ( $x_1, x_2, x_3$ )   | Six ( $\sigma_1, \sigma_2, \dots, \sigma_6$ ) | 6-D hypersurface                                               |

**Failure Criterion:** Definition of the loci (or contour) of failure surface.

**Representation:** Material is safe for any state of stress within the failure surface.

**Application:** Predictive design.

Strength Anisotropy - Failure surface dependent on material orientation





## 2. GEOMETRIC INTERPRETATION OF EMPLOYING FAILURE CRITERION TO INTERROGATE POTENTIAL FAILURE

A given state of stress  $\sigma_1, \sigma_2, \sigma_6$  (in 2-D) can be represented as a vector  $\vec{\sigma}$  in stress space:

$$\vec{\sigma} = \sigma_1 e_1 + \sigma_2 e_2 + \sigma_6 e_6 \quad (443)$$

The magnitude of this stress vector is

$$|\vec{\sigma}| = [\sigma_1^2 + \sigma_2^2 + \sigma_6^2]^{1/2} \quad (444)$$

The potential of this stress vector which can lead to failure depends on its proximity to the failure surface along the same direction as the stress vector. The strength in this direction can be characterized by a strength vector  $\vec{F}$

$$|\vec{F}| = [\sigma_1^{*2} + \sigma_2^{*2} + \sigma_6^{*2}]^{1/2} \quad (445)$$

where  $\sigma_1^*, \sigma_2^*, \sigma_6^*$  is the point on the failure surface.

Safety factor can be considered as

$$\frac{\vec{\sigma}}{\vec{F}} = \frac{1}{\text{Safety factor}} \quad \left\{ \begin{array}{l} = 1 \text{ imminent failure} \\ < 1 \text{ no failure} \end{array} \right. \quad (446)$$

### Utility of Failure Criterion

- A, For a given state of stress  $\sigma_i$ , interrogate whether failure is imminent
- B, For a given state of strain  $e_i$ , interrogate whether failure is imminent
- C, For a given stress ratio  $\frac{\sigma_1}{\sigma_2}, \frac{\sigma_1}{\sigma_6}$  etc., what are the failure stresses?
- D, For a given state of stress, what is the margin of safety?

Applications for different failure criteria will be illustrated by examples. All examples will use the following mechanical properties of a 0° graphite/epoxy lamina

$$\Omega_{ij} = \begin{bmatrix} 17.6 & 0.581 & 0 \\ 0.581 & 1.21 & 0 \\ 0 & 0 & 0.760 \end{bmatrix} \times 10^3 \text{ ksi/in/in} \quad (447)$$



Figure 86. Failure surface.

$$S_{ij} = \begin{bmatrix} 0.057 & -0.027 & 0 \\ -0.027 & 0.838 & 0 \\ 0 & 0 & 1.32 \end{bmatrix} \times 10^{-3} \text{ in/in/ksi} \quad (448)$$

$$\begin{aligned} X_1 &= 149 \text{ ksi} & X_2 &= 6.3 \text{ ksi} & X_6 &= 10.5 \text{ ksi} \\ X'_1 &= 103 \text{ ksi} & X'_2 &= -18.2 \text{ ksi} & X'_6 &= 10.5 \text{ ksi} \end{aligned} \quad (449)$$

$$\text{Biaxial Strength } \left\{ \begin{array}{l} \tilde{\sigma}_1 = 177 \text{ ksi} \\ \tilde{\sigma}_2 = -12.8 \text{ ksi} \end{array} \right. \quad (450)$$

### 3. FAILURE CRITERIA FOR ONE GIVEN ORIENTATION

NON - Interacting Failure Criteria: biaxial stress does not change uniaxial strength

#### a. Maximum Stress Criterion

$$\begin{aligned} -X'_1 &\leq \sigma_1 \leq X_1 & a \\ -X'_2 &\leq \sigma_2 \leq X_2 & b \\ -X'_6 &\leq \sigma_6 \leq X_6 & c \end{aligned} \quad (451)$$

Geometry: Rectangular Parallelepiped in Stress-Space



Figure 87 Maximum stress criterion in stress space.

#### Maximum Stress Criterion in Strain Space

For linearity  $\sigma_i = C_{ij} e_j$  Combine with Eq. (451)

The strain allowables are

$$\begin{aligned} e_1 &= -\frac{C_{12}}{C_{11}} e_2 - \frac{C_{16}}{C_{11}} e_6 + \frac{X'_1}{C_{11}} & a \\ e_1 &= -\frac{C_{12}}{C_{11}} e_2 - \frac{C_{16}}{C_{11}} e_6 - \frac{X'_1}{C_{11}} & b \\ e_2 &= -\frac{C_{12}}{C_{22}} e_1 - \frac{C_{26}}{C_{22}} e_6 + \frac{X'_2}{C_{22}} & c \\ e_2 &= -\frac{C_{12}}{C_{22}} e_1 - \frac{C_{26}}{C_{22}} e_6 - \frac{X'_2}{C_{22}} & d \\ e_6 &= -\frac{C_{16}}{C_{66}} e_1 - \frac{C_{26}}{C_{66}} e_6 + \frac{X'_6}{C_{66}} & e \\ e_6 &= -\frac{C_{16}}{C_{66}} e_1 - \frac{C_{26}}{C_{66}} e_6 - \frac{X'_6}{C_{66}} & f \end{aligned} \quad \text{maximum stress criterion in strain space} \quad (452)$$

(1) Example

For plane stress condition, plot maximum stress failure criterion in stress space and in strain space using properties given in Section 2.



(2) Example

Given stress  $\sigma_i$  interrogate failure by maximum stress criterion

$$\sigma_1 = 100 \text{ ksi}$$

$$\sigma_2 = 8 \text{ ksi}$$

$$\sigma_6 = 9 \text{ ksi}$$

Substitute into Eq. (451), if any one equation not satisfied, failure occurs

$$100 < X_1 = 149 \quad \text{no failure}$$

$$8 > X_2 = 6.3 \quad \text{failure}$$

$$9 < X_6 = 10.3 \quad \text{no failure}$$

Failure for lamina

(3) Example

Given strain  $e_i$  interrogate failure

$$e_1 = -5.5 \times 10^{-3}$$

$$e_2 = 6 \times 10^{-3}$$

$$e_6 = 2 \times 10^{-3}$$

(4) Example

For the following state of stress (ratios), using maximum stress criterion, find the failure stresses.

$$\sigma_1 = 70$$

$$\sigma_2 = 3$$

$$\sigma_6 = 5.5$$

We need to find, along the stress ratios  $\frac{\sigma_2}{\sigma_1}, \frac{\sigma_6}{\sigma_1}$ ,

what is the intercept of the failure surface.

Since the maximum stress failure criterion (a rectangular parallelepiped) is a surface bounded 6 sides, the stress vector  $\sigma$  may penetrate any one of the sides. Accounting for the signs, we may interrogate the positive surfaces only.



(5) Example

For the state of stress given in example 4, what is the stress vector, strength vector and the factor of safety predicted by the maximum stress criterion.

b. Maximum Strain Criterion

$$E_i = S_{11} X_1 \geq -\epsilon_1$$

$$E'_i = S_{11} X'_1 \geq -\epsilon'_1$$

$$E_2 = S_{22} X_2 \geq -\epsilon_2$$

$$E'_2 = S_{22} X'_2 \geq -\epsilon'_2 \quad (453)$$

$$E_6 = S_{66} X_6 \geq -\epsilon_6$$

$$E'_6 = S_{66} X'_6 \geq -\epsilon'_6$$

$E_i$  Positive Uniaxial Maximum Strain in i component

$E'_i$  Negative Uniaxial Maximum Strain in i component



Geometry: Rectangular Parallelepiped in Strain Space



Figure 88 Maximum strain criterion in strain space.

### Maximum Strain Criterion in Stress Space

For linearity  $\epsilon_i = S_{ij} \sigma_j$ , combine with Eq. (453).

The allowable stresses are:

$$\begin{aligned}
 \sigma_1 &= -\frac{S_{12}}{S_{11}} \sigma_2 - \frac{S_{16}}{S_{11}} \sigma_6 + X_1 & a \\
 \sigma_1 &= -\frac{S_{12}}{S_{11}} \sigma_2 - \frac{S_{16}}{S_{11}} \sigma_6 - X_1' & b \\
 \sigma_2 &= -\frac{S_{12}}{S_{22}} \sigma_1 - \frac{S_{26}}{S_{22}} \sigma_6 + X_2 & c \\
 \sigma_2 &= -\frac{S_{12}}{S_{22}} \sigma_1 - \frac{S_{26}}{S_{22}} \sigma_6 - X_2' & d \\
 \sigma_6 &= -\frac{S_{16}}{S_{66}} \sigma_1 - \frac{S_{26}}{S_{66}} \sigma_2 + X_6 & e \\
 \sigma_6 &= -\frac{S_{16}}{S_{66}} \sigma_1 - \frac{S_{26}}{S_{66}} \sigma_2 - X_6' & f
 \end{aligned}
 \quad \left. \begin{array}{l} \\ \\ \\ \\ \\ \end{array} \right\} \text{maximum strain criterion in stress space} \quad (454)$$

#### (1) Example

For graphite epoxy lamia, find the maximum strain failure criterion using the given data.

(2) Example

Given stress  $\sigma_i$ , interrogate failure by maximum strain criterion.

$$\sigma_1 = 100 \text{ ksi}$$

$$\sigma_2 = 8 \text{ ksi}$$

$$\sigma_6 = 9 \text{ ksi}$$

(3) Example

Given strain  $e_i$ , interrogate failure by maximum strain criterion.

$$e_1 = -5.5 \times 10^{-3}$$

$$e_2 = 6 \times 10^{-3}$$

$$e_6 = 2 \times 10^{-3}$$



## 4. INTERACTING FAILURE CRITERION

### a. Formulation

$$f(\sigma_i) = F_{ii}\sigma_i + F_{ij}\sigma_i\sigma_j + F_{ijk}\sigma_i\sigma_j\sigma_k + \dots = 1 \quad (455)$$

Important features

- (1) Each term Scalar product; independent of material coordinate.
- (2) Can be expanded to include sufficient (but not excessive) number of terms to describe a given composite

For a 2nd order polynomial i.e.,

$$F_{ii}\sigma_i + F_{ij}\sigma_i\sigma_j = 1 \quad \text{expanded for two dimension, i.e., } i, j = 1, 2, 6. \quad (456)$$

The failure tensors  $F_{ii}$ ,  $F_{ij}$  are determined by 9 experiments



Figure 89 Reference coordinate definition and 9 guiding experiments for measuring failure tensors in a quadratic polynomial failure criterion.

For tests 1 through 6

$$F_{ii} = \left( \frac{1}{X_i} \right) - \left( \frac{1}{X'_i} \right) \quad (\text{no sum}) \quad (457)$$

$$F_{ii} = \frac{1}{X_i X'_i} \quad (\text{no sum})$$

For tests 7 through 9 (or any multiaxial experiments):

$$(B^2 F_{ii} + 2BF_{ij} + F_{jj})\tilde{\sigma}_j^2 + (BF_i + F_j)\tilde{\sigma}_j = 1 \quad (\text{no sum})$$

$$B = \tilde{\sigma}_i / \tilde{\sigma}_j, \quad i, j = 1, 2, 6$$



$$(458)$$

$$(459)$$

The optimal biaxial ratios can be solved from

$$\tilde{\sigma}_j = \frac{-(F_i B + F_j) \pm [(F_i B + F_j)^2 + 4(F_{ii} B^2 + 2F_{ij} B + F_{jj})]^{1/2}}{2(F_{ii} B^2 + 2F_{ij} B + F_{jj})} \quad (460)$$

$$\frac{[2\sigma_j(F_{ii} B + F_{ij}) + F_i]}{[2\sigma_j(F_{ii} B^2 - F_{jj}) - F_j]} = \frac{[2\sigma_j(F_{ii} B^2 + 2F_{ij} B + F_{jj}) + F_i B + F_j]}{B(BF_i + F_j)} \quad (461)$$

or approximated by

Test 7

$$B = \frac{x_1}{x'_2} \text{ or } \frac{x'_1}{x'_2} \text{ or } \frac{x'_1}{x_2} \text{ or } \frac{x_1}{x_2} \quad (462)$$



Geometrically these ratios correspond to the four corners of the failure surface.

Similarly the approximate optional ratios for Tests 8, 9 are shown geometrically



Geometric meanings of the failure tensors (individual effects)



Computation using the TENSOR POLYNOMIAL CRITERION (of 2nd order)

$$F_{ij}\sigma_i\sigma_j + F_i\sigma_i < 1 \Rightarrow \text{no failure} \quad i, j = 1, 2, 6$$

$$F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1 \Rightarrow \text{failure occurs}$$
(463)

Plotting the equation  $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$  in the  $\sigma_1$ ,  $\sigma_2$ ,  $\sigma_6$  space, one will obtain a failure envelope in the stress space.

Let:  $\sigma_1 = R \cos \alpha \cos \beta$  a  
 $\sigma_2 = R \sin \alpha \cos \beta$  b  
 $\sigma_6 = R \sin \beta$  c

(464)

where:

$$R = [\sigma_1^2 + \sigma_2^2 + \sigma_6^2]^{1/2} \quad \text{a}$$
(465)

$$\alpha = \tan^{-1} \left( \frac{\sigma_2}{\sigma_1} \right) \quad \text{b}$$

$$\beta = \tan^{-1} \left( \frac{\sigma_6}{\sqrt{\sigma_1^2 + \sigma_2^2}} \right) \quad \text{c}$$



Figure 90 Polar coordinates.

Thus, we can rewrite  $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$  as follows:

$$AR^2 + BR = 1 \quad (466)$$

where:

$$A = (F_{11}\cos^2\alpha + F_{12}\sin^2\alpha + F_{22}\sin^2\alpha)\cos^2\beta + F_{66}\sin^2\beta + (F_{16}\cos\alpha + F_{26}\sin\alpha)\sin^2\beta \quad (467)$$

$$B = (F_1\cos\alpha + F_2\sin\alpha)\cos\beta + F_6\sin\beta \quad (468)$$

Solving Eq. (466) for R, taking positive root, we obtain

$$R^* = \frac{-B + \sqrt{B^2 + 4A}}{2A} \quad (469)$$

For an applied stress  $\sigma_i$ , the stress and strength vectors can be computed from Eqs.

(465a) and (469), respectively, i.e.:

$$\mathcal{S} = R \text{ (from Eq. (465))}$$

$$\mathcal{F} = R^* \text{ (from Eq. (469) where } \alpha \text{ and } \beta \text{ are from Eqs. (465 b, c) )}$$

If:  $\mathcal{S} < \mathcal{F} \Rightarrow$  no failure

If:  $\mathcal{S} \geq \mathcal{F} \Rightarrow$  failure occurs

To compute the  $\mathcal{F}$  vector for a given stress ratios, e.g.  $\frac{\sigma_2}{\sigma_1}, \frac{\sigma_6}{\sigma_1}$ ,  $\alpha$  and  $\beta$  are computed

from Eqs. (465b,c) by setting  $\sigma_1 = 1$ , and  $\mathcal{F}$  can be obtained from Eq. (469).

Caution: The signs of the angles  $\alpha$  and  $\beta$  should be set according to Figure 90.

### b. Computation of the Failure Tensors

Using the strength given in Section IX. 2 and Eqs. (457-458),

$$F_1 = \frac{1}{X_1} - \frac{1}{X'_1} = \frac{1}{149} - \frac{1}{103} = -0.003 \frac{1}{\text{ksi}}$$

$$F_2 = \frac{1}{X_2} - \frac{1}{X'_2} = \frac{1}{6.3} - \frac{1}{18.3} = 0.105 \frac{1}{\text{ksi}}$$

$$F_6 = \frac{1}{X_6} - \frac{1}{X'_6} = \frac{1}{10.5} - \frac{1}{10.5} = 0$$

$$F_{11} = \frac{1}{XX'_1} = \frac{1}{(149)(103)} = 0.065 \times 10^{-3} \frac{1}{(\text{ksi})^2}$$

$$F_{22} = \frac{1}{XX'_2} = \frac{1}{(6.3)(18.3)} = 8.72 \times 10^{-3} \frac{1}{(\text{ksi})^2}$$

$$F_{66} = \frac{1}{XX'_6} = \frac{1}{(10.5)(10.5)} = 9.07 \times 10^{-3} \frac{1}{(\text{ksi})^2}$$

From Eq. (459)

$$B = \frac{\tilde{\sigma}_1}{\tilde{\sigma}_2} = \frac{177}{-12.8} = -13.82$$

$$(B^2 F_{11} + 2BF_{12} + F_{22})\tilde{\sigma}_2^2 + (BF_1 + F_2)\tilde{\sigma}_2 = 1$$

$$((-13.82)^2(0.065 \times 10^{-3}) + (2)(-13.82)F_{12} + (8.72 \times 10^{-3})(-12.8)) \\ + (13.82(-0.003) + 0.105) - 12.8 = 1$$

Solve for  $F_{12}$        $F_{12} = 0.20 \times 10^{-3} \frac{1}{(\text{ksi})^2}$

c. Application Examples

(1) Given stress  $\sigma_i$ , interrogate failure condition by tensor polynomial

$$\sigma_1 = 50 \text{ ksi}$$

$$\sigma_2 = -15 \text{ ksi}$$

$$\sigma_6 = 5 \text{ ksi}$$

(2) Given strain  $\epsilon_i$ , interrogate failure condition by tensor polyminal

$$\epsilon_1 = -5.5 \times 10^{-3}$$

$$\epsilon_2 = 6 \times 10^{-3}$$

$$\epsilon_6 = 2 \times 10^{-3}$$

(3) Given stress ratios  $\frac{\sigma_2}{\sigma_1} = 0.5$ ,  $\frac{\sigma_6}{\sigma_1} = -0.2$ ,  $\sigma_1 > 0$  compute the strength in this direction

of loading

(4) Given  $\sigma_1 = 10$ ,  $\sigma_2 = 5$ ,  $\sigma_6 = -2$  ksi, what is the safety factor

## 5. TRANSFORMATION OF FAILURE CRITERION FROM ONE ORIENTATION TO ANOTHER ORIENTATION.



### Method 1

For maximum stress or maximum strain criterion, transform stress (or strain) to reference direction where failure criterion is known.



Apply failure criterion  
Eq. (451) or (455).

Only one state of stress  
can be evaluated per  
operation.

### Method 2

For tensor polynomial failure criterion, either use method 1 or transform failure tensors from reference direction to desired direction.



Reference direction

Arbitrary direction

$X_i'$

Any state of stress in  
orientation  $X_i'$  can be  
evaluated



## 6. LAMINATE STRENGTH

### a. First Ply Failure

To assess laminate strength two approaches can be used.

- (1) Assume laminate as homogeneous, following method outline in Sections 3 and 4, but replace the lamina failure criterion by a laminate failure criterion; i.e., by appropriate numerical value for  $F_i$ ,  $F_{ij}$  and higher order terms when appropriate
- (2) Use laminate analysis as discussed in Section V to obtain stress in each layer and interrogate layer by layer using procedure outlined in Section IX.5.

In this case stress vector and strength vector for the  $k^{\text{th}}$  layer are respectively

$$\sigma^{(k)} = [(\sigma_1^{(k)})^2 + (\sigma_2^{(k)})^2 + (\sigma_6^{(k)})^2]^{1/2} \quad (471)$$

$$F^{(k)} = [(\sigma_1^{*(k)})^2 + (\sigma_2^{*(k)})^2 + (\sigma_6^{*(k)})^2]^{1/2} \quad (472)$$

where  $\sigma_i^{*(k)}$  are the failure stresses of the  $k^{\text{th}}$  layer from the roots of

$$F_i^{(k)} \sigma_i^{*(k)} + F_{ij}^{(k)} \sigma_i^{*(k)} \sigma_j^{*(k)} = 1 \quad (473)$$

and  $F_i^{(k)}$ ,  $F_{ij}^{(k)}$  are the failure tensors for the direction of the  $k^{\text{th}}$  layer determined by transformation as described in Section III.4.

Repeating this for all the layers in the laminate, the potential failure layer can be seen graphically in representation such as in Figure 91.

In Figure 91a, the layer  $\theta^{(2)}$  is closest to failure and layer  $\theta^{(4)}$  has the greatest margin of safety. Further loading would lead to first-ply failure in  $\theta^{(2)}$ .

Note that margins of safety are in general not equal for all laminates. The layer thickness and/or orientation may be varied to achieve a uniform failure condition as shown in Figure 91b which is the optimal design. The methods for varying these parameters are sizing and mathematical optimization.

The procedure of determining the strength of a laminate configuration, i.e.,  $\theta^{(k)}$ , undergoing applied loads  $N_1$ ,  $N_2$ , and  $N_6$  is following:

(i) Compute  $Q_{ij}^{(k)}$ ,  $F_{ij}^{(k)}$ , and  $F_i^{(k)}$

(ii) Compute  $A_{ij} = \sum Q_{ij}^{(k)}$

(iii) Compute  $A_{ij}^{-1}$

(iv) Compute  $e_i^o = A_{ij}^{-1} N_j$

(v) Compute  $\sigma_i^{(k)} = Q_{ij}^{(k)} e_j^o$

(vi) Compute  $\mathbf{J}^{(k)} = \mathbf{R}$  (from Eq. (465a))

(vii) Compute  $\mathcal{F}^{(k)} = R^*$  (from Eq. (469))

(viii) Comparing  $S^{(k)}$  to  $F^{(k)}$  to determine whether failure has occurred at the  $\theta^{(k)}$  layer

## 1. Example

$$\text{Given } [45/-45/0/0]_s; h^{(0)} + h^{(45)} + h^{(-45)} = 0.200 \text{ inch}$$

$$\left. \begin{array}{l} N_1 = 10. \\ N_2 = 1. \\ N_6 = 4. \end{array} \right\} \text{(klbf/in)}$$

b. Behavior After First Ply Failure

"Failure" of a ply (any mode) in a laminate "degrades" the laminate but may not produce ultimate failure. Several schemes have been proposed to account for this degradation including:

- (a) Total ply discount - assign zero stiffness and strength to the failed ply, all modes.
- (b) Mode limited discount - assign zero stiffness and strength to transverse and shear modes if ply failure is in the matrix phase; if fiber phase, discount all modes as (a) above.
- (c) Assign residual properties.

(1) Example

Consider a laminate  $[90, 0_2, +45, -45]_s$  subject to  $N_i = \{3380, 1320, 0\}$  lbs/in.

$$\text{with } Q_{ij} = \begin{bmatrix} 20 & 0.3 & 0 \\ 0.3 & 1 & 0 \\ 0 & 0 & 0.5 \end{bmatrix} \times 10^6 \text{ psi}$$

Assume a membrane state of stress exists such that

$$\{\epsilon\}_{x,y} = \{\epsilon^0\}_{x,y} = [A]^{-1} \{N\}_{x,y} \text{ all layers}$$

Use a maximum strain failure criterion with

$$\begin{cases} E_1 = 0.010, -0.010 \\ E_2 = 0.005, -0.007 \\ E_6 = 0.015, -0.015 \end{cases}$$

| LAYER | $\epsilon_1$ | $\epsilon_2$ | $\epsilon_{12}$ | M.S. (1) | M.S. (2) | M.S. (1-2) |
|-------|--------------|--------------|-----------------|----------|----------|------------|
| 0     | 0.006        | 0.002        | 0               | 0.67     | 1.5      | -          |
| 90    | 0.002        | 0.006        | 0               | 4.0      | 0.17     | -          |
| +45   | 0.004        | 0.004        | -0.004          | 1.5      | 0.25     | 2.75       |
| -45   | 0.004        | 0.004        | 0.004           | 1.5      | 0.25     | 2.75       |

A transverse tension failure is predicted in the  $90^\circ$  ply.

Following degradation scheme (b)

$$Q_{22}^{90} = Q_{12}^{90} = Q_{66}^{90} = 0 ; \epsilon_2^{90} = \epsilon_6^{90} = 0$$

Recalculate  $[A]$  and  $\{\epsilon\}_{1,2}^k$ , evaluate M.S.

Problems      Confirm and complete the above analysis

Repeat using the first scheme

Notes

1. Bending

$$\begin{Bmatrix} \epsilon^0 \\ k \end{Bmatrix} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \begin{Bmatrix} \bar{N} \\ \bar{M} \end{Bmatrix} \quad (\text{bar denotes inclusion of thermal term})$$

$$\{e\}^k = \{e^0\} + z^k \{k\}$$

2. Composite laminates are 'statically indeterminate' systems in one or both of two senses:

(a) structural - a structural member has boundary conditions or geometry such that the constitutive equations are necessary in determining stress resultants at any location.

(b) lamination - the determination of stresses in any given layer requires a knowledge of the laminate constitutive equations and each layer stiffness.

ex. homogeneous materials N's, M's  $\Rightarrow$   $\sigma$ 's

layered materials N's, M's  $\Rightarrow$  e's  $\Rightarrow$   $\sigma$ 's

3. Each cycle of a stress-strength analysis involving degraded laminate properties will, in general, require a new stress analysis for {N, M}.

## 7. SIZING FOR STRENGTH

In Section 6, we outlined the procedure for checking the strengths when the lamination configuration is given. In this section, we discuss the methods for determining the lamination configuration. The lamination configuration consists of the orientation and thickness of each lamina.

Using  $\frac{\sigma}{\sigma_F}$  to represent the failure condition of the  $k^{\text{th}}$  layer lamina, i.e.,  $\frac{\sigma}{\sigma_F} = 1$  is the state of imminent failure, whereas  $\frac{\sigma}{\sigma_F} < 1$  is a no-failure condition. When the lamination configuration is not optimized, as in Figure 91a, each layer would be at different degree from failure. For example layer  $\theta^{(2)}$  is close to failure and  $\theta^{(4)}$  has the greater margin of safety. It can be seen that the orientation of the individual layers or their thickness or both can be varied such that they will have the same factor of safety. This is illustrated in Figure 91b and is the optimum configuration. This optimum configuration cannot be obtained explicitly for the reasons to be explored; it can, however, be determined by formal optimization and nonlinear programming. We present several direct sizing methods for estimating the optimal configurations.



a. Computation for Laminate Strength

In applications where loading configuration  $N_i$  and lamination configuration  $h_i, \theta_i$  (thickness and orientation of  $i^{\text{th}}$  layer) are given, strength can be estimated by:



I-1 Obtain laminate average strain by:

$$Q_{ij}^{(k)} = Q_{ij}^{(k)}(Q_{ij}^{(0)}, \theta_k) \quad (474)$$

$$A_{ij} = A_{ij}(Q_{ij}^{(k)}, h^{(k)}) \quad (475)$$

$$A_{ij}^* = A_{ij}^*(A_{ij}) \quad (476)$$

$$e_i^{(0)} = A_{ij}^* N_j \quad (477)$$

Apply failure criterion in strain

or (II)

Apply failure criterion in stress

$$g^{(k)}(e_i^{(0)}) < > 1$$

$$f(\sigma_i^{(k)}) < > 1$$

• In order to compute  $A_{ij}^*$ ;  $h^{(k)}$ ,  $\theta^{(k)}$  must be known

• However, in design where only load carrying capacity  $N_i$  is given,  $A_{ij}^* = A_{ij}^{(h^{(k)}, \theta^{(k)})}$ ,  $Q_{ij}^{(6)}$  is generally not explicit, the determination of thickness requires either mathematical optimization or direct sizing.

b. Sizing: Strength at Minimum Weight (no pre existing flaws)

Given a generalized loading configuration, determine directly the composite lamination configuration for minimum weight.

Definition of Problem

Given:  $N_1, N_2, N_6$ , find  $h^{(k)}$  and  $\theta^{(k)}$  (thickness and orientation of  $k^{\text{th}}$  layer)

(1) Method 1: Assume total decoupling of layers and fiber direction carry the load completely.

Limitation for  $E_{\text{fiber}} \gg E_{\text{matrix}}$  (example, fiber reinforced elastomer).  
 Method 1A: Use  $0^\circ$  and  $90^\circ$  layers exclusively.

Applicability useful for complex but homogeneous state of stress



Figure 92 Method 1A.

$$\begin{aligned} h^{(0)} &= \frac{\bar{N}_1}{X_1} \text{ if } \bar{N}_1 > 0 \\ &= \frac{-\bar{N}_1}{X_1} \text{ if } \bar{N}_1 < 0 \end{aligned} \quad \begin{aligned} h^{(90)} &= \frac{\bar{N}_2}{X_1} \text{ if } \bar{N}_2 > 0 \\ &= \frac{-\bar{N}_2}{X_1} \text{ if } \bar{N}_2 < 0 \end{aligned} \quad (478)$$

For  $e_{\text{ult}}^T > e_{\text{ult}}^L$ :

$X_1, X_1'$  are longitudinal tension and compression strength of  $0^\circ$  lamina

For  $e_{\text{ult}}^L > e_{\text{ult}}^T$

$$X_1 = e_{\text{ult}}^T Q_{11}, \quad X_1' = -e_{\text{ult}}^T Q_{11}$$

Method 1E: Same assumptions and limitations as method 1A.

use  $0^\circ, 90^\circ, \pm 45^\circ$  layers

Applicability useful for complex and nonhomogeneous state of stress.



Figure 93 Method 1B.

$$h^0 = \begin{cases} \frac{N_1}{X_1} & \text{if } N_1 > 0 \\ \frac{N_1}{X'_1} & \text{if } N_1 < 0 \end{cases} \quad h^{90} = \begin{cases} \frac{N_2}{X_1} & \text{if } N_2 > 0 \\ \frac{N_2}{X'_1} & \text{if } N_2 < 0 \end{cases} \quad (479)$$

$$h^{(+45)} = \begin{cases} \frac{N_6}{X_1} & \text{if } N_6 > 0 \\ \frac{N_6}{X'_1} & \text{if } N_6 < 0 \end{cases} \quad h^{(-45)} = \begin{cases} \frac{N_6}{X_1} & \text{if } N_6 > 0 \\ \frac{N_6}{X'_1} & \text{if } N_6 < 0 \end{cases} \quad (480)$$

• For  $e_{ult}^T \geq e_{ult}^T$

$X_1, X'_1$  are longitudinal tension and compression strength of  $0^\circ$  lamina

• For  $e_{ult}^L > e_{ult}^T$

$$X_1 = e_{ult}^T Q_{11}, \quad X'_1 = e_{ult}^T Q_{11}$$

#### Discussions

• Equivalent to netting analysis, matrix contribution in stiffness and strength are ignored.

• Geometric interpretation.



Figure

• For composite which does not satisfy criterion for being conservative, the actual tensile and compressive strength must be replaced by

$$X_1 = e_{ult}^T Q_{11}$$

$$X'_1 = -e_{ult}^T Q_{11}$$

#### c. Explicit Sizing Method (no pre-existing flaws)

##### (1) Method 2

This method accounts for the interaction between layers by using linear laminated plate analysis. Explicit relationships are presented if lamination orientation are pre-selected.

**Definition of Problem:**

Given:  $N_i$ ,  $e_i^*$ ,  $\theta^{(k)}$  (stress resultant, failure strain of lamina, lamina orientations)

Find:  $h^{(k)}$  (thickness of the  $k^{\text{th}}$  layer)

General Approach: from classical laminated plate theory, we have

$$A_{ij} = \sum_{k=1}^n Q_{ij}^{(k)} h^{(k)} \quad n \text{ total number of layer} \quad (481)$$

$Q_{ij}^{(k)}$  stiffness of  $k^{\text{th}}$  layer  
 $h^{(k)}$  thickness of  $k^{\text{th}}$  layer

$$N_i = A_{ij} e_{ij} \quad (482)$$

To solve for  $h^{(k)}$  explicitly, Eqs. (481-482) are combined as :

$$[N] = [E] [Q] [H]$$

where

$$[N] = \begin{bmatrix} N_1 \\ N_2 \\ \vdots \\ N_6 \end{bmatrix} \quad \text{Stress to be carried} \quad (483)$$

$$[E] = \begin{bmatrix} e_1^* & e_2^* & 0 & e_6^* & 0 & 0 \\ 0 & e_1^* & e_2^* & 0 & e_6^* & 0 \\ 0 & 0 & 0 & e_1^* & e_2^* & e_6^* \end{bmatrix} \quad \begin{array}{l} \text{Failure strain} \\ (\text{using max. strain criterion}) \end{array} \quad (484)$$

$$[Q] = \begin{bmatrix} Q_{11}^{(1)} & Q_{11}^{(2)} & \dots & Q_{11}^{(n)} \\ Q_{12}^{(1)} & Q_{12}^{(2)} & & Q_{12}^{(n)} \\ Q_{22}^{(1)} & Q_{22}^{(2)} & \dots & Q_{22}^{(n)} \\ Q_{16}^{(1)} & Q_{16}^{(2)} & & Q_{16}^{(n)} \\ Q_{26}^{(1)} & Q_{26}^{(2)} & \dots & Q_{26}^{(n)} \\ Q_{66}^{(1)} & Q_{66}^{(2)} & \dots & Q_{66}^{(n)} \end{bmatrix} \quad 6 \times n \text{ (matrix)} \quad (485)$$

(Stiffness of  $k^{\text{th}}$  layer obtain from Table 20.)

$$[H] = \begin{bmatrix} h^{(1)} \\ h^{(2)} \\ h^{(3)} \\ \vdots \\ h^{(k)} \\ h \\ \vdots \\ h^{(n)} \end{bmatrix} \quad n \times 1 \text{ matrix} \quad \text{Thickness of each layer} \quad (486)$$

To solve for  $[H]$ , let  $[K] = [E][Q]$ , combining

$$\text{then } [H] = [[K]^T [K]]^{-1} [K]^T [N] \quad (487)$$

- Eq ( 487 ) can be used to determine the necessary thickness for any preselected balanced lamination geometries.
- Explicit solution possible only when non-interactive failure criteria are employed i.e., in Eq. 484  $\epsilon_i = \epsilon_i^*$
- Simplification of Eq. 487 is possible for certain laminate configurations given in

(2) Method 3: Use  $0^\circ$  and  $90^\circ$  layers only for Eq. (487)

Applicability: Homogeneous state of stress,  $0^\circ$  and  $90^\circ$  referred to principal direction.

Compute principal stress  $\bar{N}_1$  and  $\bar{N}_2$  from given  $N_i$ .

$$\text{Eq. (483) becomes } [N] = \begin{bmatrix} \bar{N}_1 \\ \bar{N}_2 \end{bmatrix} \quad (488)$$

$$\text{Eq. (484) becomes } [E] = \begin{bmatrix} * & * & 0 \\ \epsilon_1 & \epsilon_2 & 0 \\ 0 & \epsilon_1 & \epsilon_2^* \end{bmatrix} \quad (488)$$

$$\text{Eq. (485) becomes } [Q] = \begin{bmatrix} Q_{11} & Q_{22} \\ Q_{12} & Q_{12} \\ Q_{22} & Q_{11} \end{bmatrix} \quad (489)$$

$$\text{Eq. (486) becomes } [H] = \begin{bmatrix} h^{(0)} \\ h^{(90)} \end{bmatrix} \quad (490)$$

Eq.(487) becomes  $[H] = [K^{-1}] [N]$   
or expanding

$$\left. \begin{aligned} h(0) &= \frac{-(Q_{12}\bar{N}_1 + Q_{22}\bar{N}_1)\epsilon_1^* + (Q_{11}\bar{N}_1 + Q_{12}\bar{N}_2)\epsilon_2^*}{(Q_{11}-Q_{22})\{Q_{12}(\epsilon_1^*)^2 + (\epsilon_2^*)^2\} + (Q_{11} + Q_{22})\epsilon_1^*\epsilon_2^*} \\ h(90) &= \frac{(Q_{11}\bar{N}_2 - Q_{12}\bar{N}_1)\epsilon_1^* + (Q_{12}\bar{N}_2 - Q_{22}\bar{N}_1)\epsilon_2^*}{(Q_{11}-Q_{22})\{Q_{12}(\epsilon_1^*)^2 + (\epsilon_2^*)^2\} + (Q_{11} + Q_{22})\epsilon_1^*\epsilon_2^*} \end{aligned} \right\} \quad (492)$$

Inputs to Eq. (491)

$Q_{ij}$  Stiffness of  $0^\circ$  lamina

$\bar{N}_1$  Principal stress from given  $N_1$

$\epsilon_1^*$ ,  $\epsilon_2^*$  are determined from Figure 94.

for  $\bar{N}_1, \bar{N}_2 > 0$  use point A, for  $\bar{N}_1 < 0, \bar{N}_2 > 0$  use point B

$\bar{N}_1, \bar{N}_2 < 0$  use point C, for  $\bar{N}_2 < 0, \bar{N}_1 > 0$  use point D



Figure 94 Maximum strain criterion applied to laminate

| Example                        | Scotch-ply 1002                | Fiberglass-Epoxy |
|--------------------------------|--------------------------------|------------------|
| $Q_{11} = 0.500 \times 10^4$   |                                | ksi              |
| $Q_{12} = 0.823 \times 10^2$   |                                |                  |
| $Q_{22} = 0.167 \times 10^4$   |                                |                  |
| For $N_i = 1000 \text{ lb/in}$ | $N_2 = 500 \text{ lb/in}$      |                  |
| $e_T^* = 1.8 \times 10^{-3}$   | $e_L^* = 31 \times 10^{-3}$    |                  |
| $-e_T^* = 12 \times 10^{-3}$   | $-e_L^* = 20.2 \times 10^{-3}$ |                  |
| Method 3<br>Eq.                | Method 4<br>Eq.                |                  |
| $h^{(0)}$                      | 0.111                          | 0.10             |
| $h^{(90)}$                     | 0.056                          | 0.020            |
| Total                          | 0.167                          | 0.120            |

(3) Method 5: Use 0/90 and  $\pm 45$  in pairs.

**Applicability:** For nonhomogeneous state of stress where a single principal direction does not exist

$$\text{Eq.(483) unchange } [N] = \begin{bmatrix} N_1 \\ N_2 \\ N_6 \end{bmatrix} \quad (493)$$

$$\text{Eq. (484) becomes } [E] = \begin{bmatrix} e_1^* & e_2^* & 0 & 0 \\ 0 & e_1^* & e_2^* & 0 \\ 0 & 0 & 0 & e_6^* \end{bmatrix} \quad (494)$$

$$\text{Eq. (485) becomes } [Q] = \begin{bmatrix} Q_{11}^{(0)} & Q_{22}^{(0)} & Q_{11}^{(45)} \\ Q_{12}^{(0)} & Q_{12}^{(0)} & Q_{12}^{(45)} \\ Q_{22}^{(0)} & Q_{11}^{(0)} & Q_{22}^{(45)} \\ Q_{66}^{(0)} & Q_{66}^{(0)} & Q_{66}^{(45)} \end{bmatrix} \quad (495)$$

$$\text{Eq. 486 becomes } [H] = \begin{bmatrix} h^{(0)} \\ h^{(90)} \\ h^{(45)} + h^{(-45)} \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} h^{(0)} \\ h^{(90)} \\ 2h^{(45)} \end{bmatrix} \quad (496)$$

$$\text{Eq. 487 becomes } [H] = [K^{-1}] [N] \quad (497)$$

Expanding  $[K]$

$$[K] = \begin{bmatrix} (Q_{11}^{(0)} e_1^* + Q_{12}^{(0)} e_2^*) & (Q_{22}^{(0)} e_1^* + Q_{12}^{(0)} e_2^*) & (Q_{11}^{(45)} e_1^* + Q_{22}^{(45)} e_2^*) \\ (Q_{12}^{(0)} e_1^* + Q_{22}^{(0)} e_2^*) & (Q_{12}^{(0)} e_1^* + Q_{11}^{(0)} e_2^*) & (Q_{12}^{(45)} e_1^* + Q_{22}^{(45)} e_2^*) \\ Q_{66}^{(0)} e_6^* & Q_{66}^{(0)} e_6^* & Q_{66}^{(45)} e_6^* \end{bmatrix} \quad (498)$$

Selection of  $e_1^*$ ,  $e_2^*$ ,  $e_6^*$  can be obtained from Figure 94 using same rules as presented in Method 5.



## SECTION X

### FRACTURE TOUGHNESS

#### 1. ELASTIC STRESS ANALYSIS

##### a. Stress Intensity Factors

$$K_I = \sigma \sqrt{\pi a}, \quad (499)$$

$$K_{II} = r \sqrt{\pi a}. \quad (500)$$



Figure 95 Reference coordinates.

##### b. Crack Tip Stresses

$$\sigma_x = \frac{K_I}{\sqrt{2\pi r}} \operatorname{Re} \left[ \frac{\mu_1 \mu_2}{\mu_1 - \mu_2} \left( \frac{\mu_2}{\sqrt{\psi_2}} - \frac{\mu_1}{\sqrt{\psi_1}} \right) \right] + \frac{K_{II}}{\sqrt{2\pi r}} \operatorname{Re} \left[ \frac{1}{\mu_1 - \mu_2} \left( \frac{2}{\sqrt{\psi_2}} - \frac{2}{\sqrt{\psi_1}} \right) \right] \quad (501)$$

$$\sigma_y = \frac{K_I}{\sqrt{2\pi r}} \operatorname{Re} \left[ \frac{1}{\mu_1 - \mu_2} \left( \frac{\mu_1}{\sqrt{\psi_2}} - \frac{\mu_2}{\sqrt{\psi_1}} \right) \right] + \frac{K_{II}}{\sqrt{2\pi r}} \operatorname{Re} \left[ \frac{1}{\mu_1 - \mu_2} \left( \frac{1}{\sqrt{\psi_2}} - \frac{1}{\sqrt{\psi_1}} \right) \right] \quad (502)$$

$$\tau_{xy} = \frac{K_I}{\sqrt{2\pi r}} \operatorname{Re} \left[ \frac{\mu_1 \mu_2}{\mu_1 - \mu_2} \left( \frac{1}{\sqrt{\psi_1}} - \frac{1}{\sqrt{\psi_2}} \right) \right] + \frac{K_{II}}{\sqrt{2\pi r}} \operatorname{Re} \left[ \frac{1}{\mu_1 - \mu_2} \left( \frac{\mu_1}{\sqrt{\psi_1}} - \frac{\mu_2}{\sqrt{\psi_2}} \right) \right] \quad (503)$$

$$\psi_1 = \cos \theta + \mu_1 \sin \theta, \quad \psi_2 = \cos \theta + \mu_2 \sin \theta \quad (504)$$

$\mu_1$  and  $\mu_2$  are the roots of the characteristic equation

$$S_{11}\mu^4 - 2S_{16}\mu^3 + (2S_{12} + S_{66})\mu^2 - 2S_{26}\mu + S_{22} = 0. \quad (505)$$

Note that  $\mu_3 = \bar{\mu}_1$ ,  $\mu_4 = \bar{\mu}_2$ .

c. Displacements Along  $y = 0^+$ ,  $|x| \leq a$

$$u/a = \sigma \operatorname{Re} \left\{ \left[ S_{11}\mu_1\mu_2 - S_{12} \right] \phi \right\} + r \operatorname{Re} \left\{ \left[ S_{11}(\mu_1 + \mu_2) - S_{16} \right] \phi \right\} \quad (506)$$

$$v/a = \sigma \operatorname{Re} \left\{ \left[ -S_{22} \frac{\mu_1 + \mu_2}{\mu_1 \mu_2} + S_{26} \right] \phi \right\} + r \operatorname{Re} \left\{ \left[ S_{12} - \frac{S_{22}}{\mu_1 \mu_2} \right] \phi \right\} \quad (507)$$

$$\phi = \frac{1}{a} \left[ x - i(a^2 - x^2)^{1/2} \right] \quad (508)$$

d. Energy Release Rate

$$G = \frac{1}{2} \frac{d}{da} \left( \sigma \int_{-a}^a v dx + r \int_{-a}^a u dx \right)$$

$$= \frac{1}{2} \left\{ K_I^2 \operatorname{Im} \left[ -S_{22} \frac{\mu_1 + \mu_2}{\mu_1 \mu_2} + S_{26} \right] + K_I K_{II} \operatorname{Im} \left[ S_{11} \mu_1 \mu_2 - \frac{S_{22}}{\mu_1 \mu_2} \right] \right\} \quad (509)$$

$$+ K_{II}^2 \operatorname{Im} \left[ S_{11}(\mu_1 + \mu_2) - S_{16} \right] \quad (510)$$

e. Reductions for Orthotropic Materials

$$\mu_1 = \frac{1}{2} \left[ n + (n^2 - 4k)^{1/2} \right] i, \quad \mu_2 = \frac{1}{2} \left[ n - (n^2 - 4k)^{1/2} \right] i \quad (511)$$

$$n = \left[ 2 \left( \sqrt{\frac{S_{22}}{S_{11}}} + \frac{S_{12}}{S_{11}} \right) + \frac{S_{66}}{S_{11}} \right]^{1/2}, \quad k = \left( \frac{S_{22}}{S_{11}} \right)^{1/2} \quad (512)$$

$$u = -\sigma (S_{11}k + S_{12})x + r S_{11} n (a^2 - x^2)^{1/2} \quad (513)$$

$$v = \sigma S_{22} (n/k)(a^2 - x^2)^{1/2} + r (S_{12} + S_{22}/k)x \quad (514)$$

$$G = n \left[ (S_{22}/k)K_I^2 + S_{11}K_{II}^2 \right] \quad (515)$$

f. Finite Width Correction Factor

Isotropic plates

$$Y = 1 + 0.1282 (a/w) - 0.2881 (a/w)^2 + 1.5254 (a/w)^3 \quad (516)$$

Orthotropic plates

$$Y(\text{ortho.}) \approx Y(\text{iso.}) \text{ for } L/w > 3.$$



Figure 9.6 Difference between isotropic and orthotropic finite width correction factors.  
[21]

g. Particular Cases

$$\theta = 0^\circ$$

$$\sigma_x = \frac{K_I}{\sqrt{2\pi r}} k, \quad \sigma_y = \frac{K_I}{\sqrt{2\pi r}}$$

$$r_{xy} = 0$$

$$(517)$$

$$\theta = 90^\circ$$

$$\mu_1 = [n + (n^2 - 4k)^{1/2}] / 2, \quad \mu_2 = [n - (n^2 - 4k)^{1/2}] / 2$$

$$\sigma_x = \frac{K_I}{\sqrt{2\pi r}} \frac{k}{\sqrt{\frac{1}{\mu_1} - \frac{1}{\mu_2}}} (\sqrt{\mu_1} - \sqrt{\mu_2}), \quad \sigma_y = \frac{K_I}{\sqrt{2\pi r}} \frac{1}{\sqrt{\frac{1}{\mu_1} - \frac{1}{\mu_2}}} \left( \frac{\mu_1}{\sqrt{\mu_2}} - \frac{\mu_2}{\sqrt{\mu_1}} \right)$$

$$(518)$$

$$r_{xy} = \frac{K_I}{\sqrt{2\pi r}} \frac{k}{\sqrt{\frac{1}{\mu_1} - \frac{1}{\mu_2}}} \left( \frac{1}{\sqrt{\mu_1}} - \frac{1}{\sqrt{\mu_2}} \right), \quad \bar{\mu} = \mu_1 - \mu_2$$

## 2. FRACTURE TOUGHNESS OF UNIDIRECTIONAL LAMINAE

### a. Crack Parallel to Fibers

#### (1) Mode I and II Loadings

$$\sigma \sqrt{\pi a} = K_{IC} , \quad \tau \sqrt{\pi a} = K_{IIC} \quad (519)$$



Figure 97 Mode I loading, Scotchply. [22]



Figure 98 Mode II loading, Scotchply. [22]

#### (2) Mixed-Mode Loading

Energy criterion

$$G_c = n \left[ \left( S_{22}/K_I \right) K_I^2 + S_{11} K_{IIc}^2 \right] \quad (520)$$

$$\frac{K_{IIc}}{K_{Ic}} = \left( \frac{S_{22}}{S_{11}} \right)^{1/4} \quad (521)$$

Circumferential stress criterion

$$\sqrt{r} \sigma_\theta \Big|_{\theta=0} = \text{const.} \quad (522)$$

Failure strength criterion [23]

$$f(\sigma_i) = F_i \sigma_i + F_{ij} \sigma_i \sigma_j = 1 , \quad \sigma_i = \sigma_i(r_o, \theta) \quad (523)$$

$$\frac{\partial f}{\partial \theta} \Big|_{\theta=\theta_o} = 1 , \quad f(r_o, \theta_o) = 1$$



Figure 99 Interaction between  $K_I$  and  $K_{II}$ , Scotchply ( $E_L = 34.5$  GPa,  $E_T = 11.5$  GPa). [23]

b. Crack Normal to Fibers

(1) Crack Tip Damage

Composites with brittle matrix - longitudinal cracking

| $\frac{\sigma_\theta(90)}{\sigma_\theta(0)}$ | $\frac{X_T}{X_L}$ | $\frac{K_{Ic}(90)}{K_{Ic}(0)}$ | $\frac{T_{r\theta}(90)}{\sigma_\theta(0)}$ | $\frac{S}{X_L}$ | $\frac{K_{IIc}(90)}{K_{Ic}(0)}$ |
|----------------------------------------------|-------------------|--------------------------------|--------------------------------------------|-----------------|---------------------------------|
| 0.119                                        | 0.051             | 0.048                          | 0.224                                      | 0.066           | >0.089                          |

Figure 100 Comparison of crack tip stress ratios with strength and fracture toughness ratios for unidirectional Gr/Ep. Elastic moduli are  $E_L = 145$  GPa,  $E_T = 11.7$  GPa,  $G_{LT} = 4.48$  GPa,  $\nu_{LT} = 0.21$ . [24]

Composites with ductile matrix - longitudinal plastic deformation

Elastic crack opening displacement (COD) at the center of crack

$$\text{elastic COD} = \frac{\gamma Y a}{E_L} \sigma, \quad \gamma = 2 \left[ 2 \left( \sqrt{\frac{E_L}{E_T}} - \nu_{LT} \right) + \frac{E_L}{G_{LT}} \right]^{1/2} \quad (524)$$

Plastic crack tip opening displacement (CTOD) [25]

$$\text{plastic CTOD} = \frac{\pi}{2} \frac{Y^2 a}{E_L \tau_y} \sigma^2, \quad \tau_y \text{ yield stress of matrix} \quad (525)$$

Total COD

$$\text{COD} = \text{elastic COD} + \text{plastic CTOD}$$

$$= \frac{Y a \sigma}{E_L} \left( \gamma + \frac{\pi}{2} \frac{Y}{\tau_y} \sigma \right) \quad (526)$$

For isotropic materials

$$\gamma = 4, \quad 2\tau_y = \frac{\sigma_y}{y_s}$$



## (2) Notch Sensitivity

Longitudinal cracking reduces the notch sensitivity.



Figure 102 Effect of interfacial bond on notch sensitivity of carbon/epoxy:  
(a) surface treated; (b) surface untreated. [26]

Longitudinal plastic deformation is much less effective in reducing the notch sensitivity than is the longitudinal cracking.

For B/Al the notched strength is given by

$$\frac{X_n}{X} = \frac{1}{Y} \left( \frac{c_o}{a+c_o} \right)^{1/2}, \quad c_o = 0.908 \text{ mm}. \quad (527)$$

### (3) Work of Fracture

$W$  = work accompanying fracture / unit crack extension

Matrix fracture

$$W_1 = W_m (1 - v_f) \quad (528)$$

Fiber fracture

$$W_2 = W_f v_f \quad (529)$$

Fiber / matrix debond

$$W_3 = 2W_d (L/d_f) v_f \quad (530)$$

Work after debond [27]

$$W_4 = \frac{4}{3} \left( \frac{\tau_y^2}{E_f} \right) (L/d_f)^2 L v_f, \quad \tau_y: \text{bond strength or friction} \quad (531)$$

or

$$W_4 = \frac{1}{4} \left( \frac{\sigma_f^2}{E_f} \right) L v_f \quad (532)$$

Fiber pull-out [28]

$$W_5 = \frac{2}{3} \left( \frac{\tau_y d_f}{E_f} \right)^2 (L/d_f)^2 v_f \quad (533)$$

Plastic work in matrix

$$W_6 = \frac{(1 - v_f)^2}{v_f} \sigma_{my} e_{my} d_f \quad (534)$$

$L$ : maximum debond length  $L/d_f = X_f/(4\tau_y)$

Uniform distribution of debond length.

$$W = \sum_{i=1}^6 W_i \quad (535)$$



Figure 103 Typical fracture mode in unidirectional composite.



### 3. FRACTURE TOUGHNESS OF MULTIDIRECTIONAL LAMINATES

#### a. Crack Tip Damage

##### (1) Nondestructive Examinations (NDE)

Transmitted light - translucent composites (Gl/Ep)

Radiograph with tetrabromoethane - Gr/Ep, B/Ep

Dye penetrant: regular, fluorescent

Ultrasonic C-scan

Reflected light - smooth surface



Figure 104 NDE of crack tip damage in  $[0/\pm 45]_{2s}$  Gr/Ep.

##### (2) Typical Crack Tip Damage

Subcracks along fiber directions

Delamination between subcracks



Figure 105 Typical subcracks in  $[0/+θ]$  and  $[0/±45/90]$  laminates.

### (3) Size of Crack Tip Damage Zone (c)

Direct measurement - projected length along the crack plane

Compliance match - compliance based on COD

Plastic zone analogy - analytical

$$K_I = Y_0 \sqrt{\pi(a+c)} , \quad c = \frac{1}{2\pi} \left( \frac{K_I}{\sigma_y} \right)^2 . \quad (536)$$

$$c = \frac{(K^I/\sigma_0)^2}{\pi - (K^I/\sigma_0)^2/a} , \quad K^I = Y_0 \sqrt{\pi a} , \quad \sigma_y = \sigma_0 / \sqrt{2} . \quad (537)$$

TABLE 66 DAMAGE ZONE SIZE (c) IN  $[0/±45]_{2s}$  Gr/Ep

| $\alpha/\sigma_n$ | $K^I/\sigma_0$ | Theory mm | Radiograph mm | C-scan mm |
|-------------------|----------------|-----------|---------------|-----------|
| 0.73              | 1.41           | 0.690     | 0.762         | 0.254     |
| 0.86              | 1.66           | 0.991     | 1.524         | 1.778     |
| 0.89              | 1.72           | 1.075     | 2.286         | 2.032     |
| 0.93              | 1.79           | 1.178     | 3.302         | 3.556     |



Figure 106 Compliance based on the displacement between two points 3.8 mm above and below crack surface. The material is Gr/Ep. [29]



Figure 107 - Comparison between analysis and method of compliance match; (a)  $[0/\pm 45]_s$  Gr/Ep; (b)  $[0/90/\pm 45]_s$  Gr/Gp. [24, 29]

#### b. Resistance Curves

$$K_R = Y\sigma \sqrt{\pi a_{eff}}, \quad a_{eff} = a + c \quad (538)$$

$c$  is determined by the method of compliance match.

#### c. Prediction of Notched Strength

##### (1) Final Fracture

$$K_c = YX_n \sqrt{n(a+c)} \quad (539)$$

$c_o$  can be interpreted as an effective critical damage zone (ECDZ) size.

$$\frac{YX_n}{X} = \left( \frac{c_o}{a+c} \right)^{1/2}. \quad (540)$$

This equation also follows from [30]

$$\frac{1}{2c_o} \int_a^{a+2c_o} \sigma_y dx = X. \quad (541)$$



Figure 108 Resistance curves for  $[0/\pm 45]_s$  Gr/Epoxy. Fracture stress is determined from  $K = K_R$  and  $\partial K / \partial a \geq dK_R / da$ . For the composite shown, the terminal point of  $K_R$  corresponds to the final fracture. [29]

Define  $K_n = YX_n \sqrt{\pi a}$ . Then (542)

$$K_n = X \left( \frac{\pi a c_o}{a + c_o} \right)^{1/2} \quad (543)$$

$K_n = 0$  when  $a = 0$ .  $K_n \rightarrow X\sqrt{\pi c_o} = K_c$  as  $a \rightarrow \infty$ .

### (2) Damage Initiation

$$K_d = Y\sigma_d \sqrt{\pi a}, \quad \sigma_d: \text{stress at damage initiation.} \quad (544)$$

$K_d$  is seen to be fairly independent of  $a$  from the resistance curves.

### (3) Determination of $c_o$

$c_o$  is the slope of the following linear equation:

$$a = c_o \left[ \left( \frac{X}{YX_n} \right)^2 - 1 \right] \quad (545)$$

TABLE 67 ECDZ SIZE AS DETERMINED BY EQ. (545) [24]

| Material           | Laminate                                 | $\sigma_o$<br>MN/m <sup>2</sup> | $c_o$<br>mm | $K_c / \sigma_o$<br>$\sqrt{\text{mm}}$ | N  | Range of 2a<br>mm |
|--------------------|------------------------------------------|---------------------------------|-------------|----------------------------------------|----|-------------------|
| Gr/Ep<br>T300/5208 | [0/ $\pm 45$ ] <sub>s</sub>              | 541                             | 1.372       | 2.076                                  | 27 | 5-25              |
|                    | [0/ $\pm 45$ ] <sub>2s</sub>             | 454                             | 2.540       | 2.825                                  | 10 | 5-25              |
|                    | [0/90/ $\pm 45$ ] <sub>s</sub>           | 494                             | 4.419       | 3.726                                  | 12 | 2-25              |
|                    | [0/ $\pm 45$ /90] <sub>s</sub>           | 637                             | 3.175       | 3.158                                  | 12 | 2-25              |
|                    | [0/90] <sub>4s</sub>                     |                                 |             |                                        |    |                   |
| Gr/Ep<br>T300/934  | [ $\pm 45$ /0/90] <sub>s</sub>           | 451                             | 3.422       | 3.279                                  | 52 | 2-15              |
|                    | [90/0/ $\pm 45$ ] <sub>s</sub>           | 499                             | 2.224       | 2.643                                  | 53 | 2-15              |
| B/Ep               | { [0/ $\pm 45$ ] <sub>s</sub>            |                                 |             |                                        |    |                   |
|                    | { [0/ $\pm 45$ /0/-45] <sub>s</sub>      |                                 |             |                                        |    |                   |
|                    | { [ $\pm 45$ /0/ $\pm 45$ ] <sub>s</sub> | 802                             | 2.859       | 2.997                                  | 13 | 1-13              |
|                    | { [0/ $\pm 45$ /0/-45] <sub>3s</sub>     |                                 |             |                                        |    |                   |
|                    | { [0/ $\pm 45$ /90] <sub>s</sub>         |                                 |             |                                        |    |                   |
| G1/Ep<br>Scotchply | [0/ $\pm 45$ /90] <sub>2s</sub>          | 320                             | 1.930       | 2.462                                  | 12 | 2-25              |
|                    | [0/90] <sub>4s</sub>                     | 423                             | 1.290       | 2.013                                  | 12 | 2-25              |
| B/Al<br>6061-F     | [0] <sub>8T</sub>                        | 2004                            | 0.991       | 1.764                                  | 11 | 1.3-13            |
| BSiC/Ti<br>Ti6-4   | [0] <sub>6T</sub>                        | 837                             | 2.206       | 2.633                                  | 12 | 1.3-13            |


 Figure 109 Variation of  $c_o$  with crack half-length. [29]

## (4) Angle Crack

$$\frac{YX_n}{X} = \left( \frac{c_o}{a \sin \theta + c_o} \right)^{1/2} \quad (546)$$



Figure 110 Geometry of specimen with an angle crack.



Figure 111 Normalized fracture strength vs. normalized equivalent crack half-length,  $Gr/Ep$ .



Figure 112 Comparison between normal crack and angle crack,  $Gr/Ep$ .

## SECTION XI

### FATIGUE AND LIFE PREDICTION

#### 1. UNNOTCHED FATIGUE BEHAVIOR

##### a. Unidirectional Laminae

###### (1) Longitudinal Fatigue



Figure 113 Constant amplitude  $0^\circ$  fatigue of B/Ep at RTD.  $R=0.1, -1, 10$ ,  $X=1331 \text{ MPa}$ ,  $X'=2206 \text{ MPa}$ . [31]

##### Failure mode

Extensive longitudinal cracking

Frequent tab debond

Failure initiation in the form of longitudinal cracking

Residual strength degradation minimal until immediately before final failure

No change of modulus in B/Ep, Gr/Ep, Gl/Ep.

Flat S-N curve and hence, large scatter.

(2) Transverse Fatigue



Figure 114 Constant amplitude 90° fatigue of B/Ep at R TD.  
R=0.1, Y=61 MPa, Y'=276 MPa. [31]

(3) Shear Fatigue



Figure 115 Constant amplitude ±45° fatigue of B/Ep at R TD.  
R=0.1, X<sub>45</sub>=133 MPa, S=X<sub>45</sub>/2. [31]

b. Multidirectional Laminates

Fiber controlled laminates

Characteristics of longitudinal fatigue

Matrix controlled laminates

Characteristics of transverse or shear fatigue



Figure 116 S-N relationships of B/Ep laminates having various fraction of 0° plies, R=0.1. Maximum fatigue stress is normalized with respect to static strength. [31]



Figure 117 Effect of compression in fatigue of Gr/Ep laminate. [32]



Figure 118 Constant life diagrams for B/Ep laminate and Al 7075-T6.

(2) Failure Mode

Failure sequence in  $[0/\pm 45/90]$  laminate

Failure of  $90^\circ$  ply  $\rightarrow$  delamination  $\rightarrow$  failure of  $\pm 45^\circ$  plies  $\rightarrow$  failure of  $0^\circ$  ply



Figure 119 Typical failure mode observed along edge of  $[0/90]$  laminate.



Figure 120 Change of secant modulus in fatigue of  $[0/\pm 45/90]_S$   
 $G_1/E_p, E_0 = 20.3 \text{ GPa}$ . [33]



Figure 121 Equilibrium temperature increase in fatigue of  $G_1/E_p$  laminate. The increase is proportional to  $S_{\max}^2 f$ , where  $f$  is the frequency. [33]

## 2. NOTCHED FATIGUE

### a. Failure Mode

Longitudinal cracking at notch tip more extensive than in static tension

More effective relief of stress concentration at crack tip



Figure 122 Typical crack tip damage in  $[0/\pm 45]_S$  Gr/Epoxy: (a) static tension;  
(b) fatigue. Dotted lines represent the boundary of delamination.

### b. Notch Sensitivity

Residual Strength increases.

Compliance based on notch opening displacement increases.

No penalty for notch.



Figure 123 Increase of residual strength and compliance in fatigue  
of composite laminate (schematic).



Figure 124 Notched fatigue strength normalized with respect to unnotched fatigue strength. [31]

### 3. APPROXIMATE PREDICTION FOR FATIGUE LIFE

#### a. Off-Axis Fatigue Strength

$S_L$ ,  $S_T$ ,  $S_S$ : longitudinal, transverse, shear fatigue strength, respectively.

$S_\theta$  can be determined by applying any static failure criterion.

For example, the maximum stress criterion of Section II.2.a. yields

$$S_\theta = \min \left\{ S_L/m^2, S_T/n^2, S_S/(mn) \right\} \quad (547)$$



Figure 125 S-N relationships in off-axis fatigue of [0] Gl/Epo. [34]

Assume  $30^\circ$  off-axis fatigue is controlled by shear failure and  $60^\circ$  off-axis fatigue by transverse failure. The data can be fit by

$$S_\theta = -a_\theta \log N + b_\theta \quad (548)$$

| $\theta^\circ$ | $a_\theta$ | $b_\theta$ | $a_S$ | $b_S$ | $a_T$ | $b_T$ |
|----------------|------------|------------|-------|-------|-------|-------|
|                | MPa        | MPa        | MPa   | MPa   | MPa   | MPa   |
| 30             | 7.14       | 67.97      | 3.09  | 29.43 | —     | —     |
| 60             | 2.29       | 35.85      | —     | —     | 1.72  | 26.89 |

For  $\theta=30^\circ$ ,  $m=\cos 30^\circ$ ,  $n=\sin 30^\circ$ ,

$$S_S = mn S_{30} = -a_S \log N + b_S \quad (549)$$

$$a_S = mn a_{30}, \quad b_S = mn b_{30}$$

For  $\theta = 60^\circ$ ,  $m = \cos 60^\circ$ ,  $n = \sin 60^\circ$

$$S_T = n^2 S_{60} = -a_T \log N + b_T \quad (550)$$

$$a_T = n^2 a_{60}, \quad b_T = n^2 b_{60}$$

Predicted S-N for  $\theta = 20^\circ$

$$S_{20} = -9.614 \log N + 91.57 \text{ MPa} : \text{shear failure} \quad (551)$$

$$S_{20} = -14.70 \log N + 229.87 \text{ MPa} : \text{transverse failure} \quad (552)$$

The first Eq. gives lower fatigue strength and hence represents the S-N relation.

S-N equations based on shear failure

| $\theta^\circ$ | $a_\theta$ , MPa | $b_\theta$ , MPa |
|----------------|------------------|------------------|
| 5              | 35.59            | 338.96           |
| 10             | 18.07            | 172.10           |
| 15             | 12.36            | 117.72           |



Figure 126 Comparison between data and prediction for off-axis  
S-N relationship of [0] GI/Ep. [34]

b. Angle - Ply [ $\pm\theta$ ] Laminates

Assume elastic moduli do not change in fatigue.

Application of the maximum stress criterion to fatigue strengths leads to

$$S_\theta = \min \left\{ S_L / k_L, S_T / k_T, S_S / k_S \right\} \quad (553)$$

where

$$k_L = \frac{1}{2} \left[ 1 + \sec 2\theta - \frac{(u_1 + \sec 2\theta) \tan^2 2\theta}{u_2 + \tan^2 2\theta} \right] \quad (554)$$

$$k_T = \frac{1}{2} \left[ 1 - \sec 2\theta + \frac{(u_1 + \sec 2\theta) \tan^2 2\theta}{u_2 + \tan^2 2\theta} \right] \quad (555)$$

$$k_S = \frac{1}{2} \left[ \frac{(u_1 + \sec 2\theta) \tan 2\theta}{u_2 + \tan^2 2\theta} \right] \quad (556)$$

$$u_1 = \frac{1 - E_L / E_T}{1 + 2\nu_{LT} + E_L / E_T} \quad (557)$$

$$u_2 = \frac{E_L / G_{LT}}{1 + 2\nu_{LT} + E_L / E_T} \quad (558)$$

$$S_\theta = -a_\theta \log N + b_\theta \quad (559)$$

$$a_\theta = a_i / k_i \quad i = L, T, \text{ or } S \quad (560)$$

$$b_\theta = b_i / k_i \quad (561)$$



Figure 127 Experimental and predicted S-N curves of  $[\pm 30]$  laminate. [35]

### c. Fiber-Controlled Laminates

Fatigue strength of laminate (tension-tension)

$$= S_L \times (\text{fraction of } 0^\circ \text{ plies}) \quad (562)$$



Figure 128 Experimental and predicted S-N curves of  $[ \pm 45 ]$  laminate. [ 35 ]



Figure 129 Experimental and predicted S-N curves of  $[ +60 ]$  laminate. [ 35 ]



Figure 130 Fatigue strength of laminate is approximately equal to the longitudinal fatigue strength multiplied by the fraction of  $0^\circ$  plies. [ 31 ]



## 4. LIFE PREDICTION AND ANALYSIS OF SCATTER

### a. Application of Failure Potential

#### (1) General Formulation

Probability of surviving time  $t$  under a loading history

$s(t)$  :

$$R(t) = \exp [-\psi(\tau)] \quad (563)$$

$$\tau = \frac{1}{C_1} \int_{t_0}^t K(s(\xi)) d\xi, \quad \hat{\tau} \text{ has the dimension of } t. \quad (564)$$

Failure potential

$$\psi(\tau) = \tau^\alpha \quad (565)$$

Breakdown rules [36]

$$\text{Power law: } K(s) = (s/C_1)^\beta \quad (566)$$

$$\text{Exponential law: } K(s) = \frac{1}{C_2} \exp (s/C_3) \quad (567)$$

#### (2) Stress Rupture

$s(\xi) = s$  const.

Power law breakdown rule

$$\tau = \frac{1}{C_1} \int_{t_0}^t (s/C_1)^\beta d\xi = (s/C_1)^\beta t/\hat{\tau} \quad (568)$$

$$\therefore R(t) = \exp \left[ - (s/C_1)^\beta \alpha \left( t/\hat{\tau} \right)^\alpha \right] = \exp \left[ -(t/t_0)^\alpha \right] \quad (569)$$

$$(t_0/\hat{\tau}) (s/C_1)^\beta = 1 \quad (570)$$

or  $\log (t_0/\hat{\tau}) + \beta \log s = \beta \log C_1$ : Power law (log stress - log time) representation of S-N relationship

Exponential breakdown rule

$$\tau = \frac{1}{C_2} \int_{t_0}^t \frac{1}{C_3} \exp (s/C_3) d\xi = \frac{1}{C_2} \exp (s/C_3) t/\hat{\tau} \quad (571)$$

$$\therefore R(t) = \exp \left\{ - \left[ \frac{1}{C_2} \exp (s/C_3) \right]^\alpha \left( t/\hat{\tau} \right)^\alpha \right\} = \exp \left[ -(t/t_0)^\alpha \right] \quad (572)$$

$$(t_0/\hat{\tau}) \exp (s/C_3) = C_2 : \text{Exponential (log time - log stress) representation of S-N relationship}$$

$$\log(t_0/\hat{\tau}) + \left( \frac{\log e}{C_3} \right) s = \log C_2 \quad (573)$$



Figure 131. Typical representations of S-N relationship.

(3) Tension With Constant Loading Rate

$$s(\xi) = Lt \quad (574)$$

Power law breakdown rule

$$\tau = \frac{1}{t} \int_0^t \left( \frac{L}{C_1} \right)^\beta \xi^\beta d\xi = \frac{(L/C_1)^\beta}{\beta+1} t^{\beta+1}/t \quad (575)$$

$$R(t) = \exp \left[ - \left( \frac{(L/C_1)^\beta}{t^{(\beta+1)}} \right) t^{\alpha(\beta+1)} \right] = \exp \left[ - (t/t_o)^{\alpha(\beta+1)} \right] \quad (576)$$

$$t_o = \left[ \frac{(\beta+1)^\alpha}{(L/C_1)^\beta} \right]^{1/(\beta+1)} \quad (577)$$

$$\text{Let } x = Lt \quad (578)$$

$$R(x) = \exp \left[ - \left( \frac{x}{x_o} \right)^{\alpha(\beta+1)} \right] \quad (579)$$

$$x_o = Lt_o = \left[ \frac{t L C_1^\beta}{(\beta+1)} \right]^{1/(\beta+1)} \quad (580)$$

Exponential breakdown rule

$$\tau = \frac{1}{t} \int_0^t \frac{1}{C_2} \exp(L\xi/C_3) d\xi = \frac{C_3}{t L C_2} [\exp(Lt/C_3) - 1] \quad (581)$$

$$R(t) = \exp \left\{ - \left( \frac{C_3}{t L C_2} \right)^\alpha [\exp(Lt/C_3) - 1]^\alpha \right\} \quad (582)$$

$$R(x) = \exp \left\{ - \left( \frac{C_3}{t L C_2} \right)^\alpha [\exp(x/C_3) - 1]^\alpha \right\} \quad (583)$$

In the failure range  $\exp(x/C_3) \ll 1$ .

$$\therefore R(x) = \exp \left\{ - \left( \frac{C_3}{tLC_2} \right)^{\alpha} \exp(\alpha x/C_3) \right\} \quad (584)$$

$$x = \frac{C_3}{\alpha} [\alpha \ln(tLC_2/C_3) - \gamma] \quad \gamma: \text{Euler constant} (-0.5772) \quad (585)$$

TABLE 68 PARAMETERS FOR STRESS-RUPTURE DATA [37]

| Strand Type  | $v_f$<br>% | Power Law |                            |          | Exponential Law            |                       |
|--------------|------------|-----------|----------------------------|----------|----------------------------|-----------------------|
|              |            | $\beta$   | $C_1$<br>MN/m <sup>2</sup> | $\alpha$ | $C_3$<br>MN/m <sup>2</sup> | $C_2$                 |
| Kevlar 49/Ep | 71.5       | 42        | 2239                       | 0.87     | 50.5                       | $1.86 \times 10^{19}$ |
| Gr/Ep        | 62         | 78        | 922                        | 0.30     | 10.8                       | $8.32 \times 10^{36}$ |
| S-G1/Ep      | 65         | 30        | 2109                       | 0.75     | 62.9                       | $1.91 \times 10^{14}$ |
| Be/Ep        | 66         | 26        | 733                        | 3.75     | 25.1                       | $3.06 \times 10^{12}$ |

TABLE 69 AVERAGE TENSILE STRENGTH AND COEFFICIENT OF VARIATION [37]

| Strand Type  | $L$<br>MN/m <sup>2</sup> /h | Average Strength |             |            | Coefficient of Variation |            |
|--------------|-----------------------------|------------------|-------------|------------|--------------------------|------------|
|              |                             | Power            | Exponential | Experiment | Power                    | Experiment |
| Kevlar 49/Ep | $2.96 \times 10^5$          |                  | 2645        | 2940       |                          | 0.025      |
| Gr/Ep        | $6.32 \times 10^5$          |                  |             | 915        |                          | 0.05       |
| S-G1/Ep      | $1.34 \times 10^5$          |                  |             | 2560       |                          | 0.036      |
| Be/Ep        | $5.46 \times 10^5$          |                  |             | 769        |                          | 0.005      |

b. Concept of Similarity and Nonsimilarity

(1) Definitions [38]

Objects that follow the same law of behavior are similar.

Objects that follow different laws of behavior are nonsimilar.

Two objects are identical if there is an exact duplication of the atoms of the first one in the second.



(a)



(b)

Figure 132. Life distribution of similar objects: (a) similar deterioration; (b) nonsimilar deterioration.



(a)



(b)

Figure 133. Life distribution of nonsimilar objects: (a) similar deterioration; (b) nonsimilar deterioration.

(2) Relationship Between Static Strength and Life of Similar Objects With Similar Deterioration

(a) Pairing of static strength and life

Static Strength Data

$$s \leq x_1 \leq x_2 \leq \dots \leq x_n, s : \text{fatigue stress}$$

Life Data

$$t_1 \leq t_2 \leq \dots \leq t_n$$

Strength and life of  $j$ th object :  $(x_j, t_j)$



Figure 134 Plot of  $(t_j, x_j)$  for  $[o]$  G1/Epoxy subjected to constant stress. [39]

(b) Similarizing operation (proof testing)

Proof load to  $x_i$ . Then the minimum guaranteed life corresponding to  $x_i$  is  $t_i$



Figure 135 Effect of similarizing operation on life distribution.

(c) Mathematical formulation

Determine strength and life reliability functions

$$R_s(x) \text{ and } P_{\ell}(t)$$

Relationship between  $x$  and  $t$  is obtained from

$$\bar{R}_s(x|s) = R_{\ell}(t) \quad (586)$$

$$\text{where } \bar{R}_s(x|s) = R_s(x) / R_s(s) \quad (587)$$

In particular, if

$$R_s(x) = \exp [-(x/x_0)^{\alpha_s}] \quad (588)$$

$$R_{\ell}(t) = \exp [-(t/t_0)^{\alpha_{\ell}}] \quad (589)$$

then

$$t = t_0 \left[ (x/x_0)^{\alpha_s} - (s/x_0)^{\alpha_s} \right]^{1/\alpha_{\ell}} \quad (590)$$

In terms of residual strength at  $t$

$$\bar{R}_s(x|s) = R_r(x_r) \quad (591)$$

where

$$R_r(s) = R_{\ell}(t) \quad (592)$$



Figure 136 Relation between static strength and fatigue life of [o] Gr/Ep:

$$\alpha_s = 7.77, x_0 = 1.44 \text{ GPa}, \alpha_{\ell} = 0.74, t_0 = 1.6 \times 10^6 \text{ cycles},$$

$$S_{max}/x_0 = 0.61. \text{ Results of proof testing are also shown. [40]}$$

c. Strength Degradation Model [39, 41]

(1) General Formulation

$x_s^*$ : ideal static strength

$\bar{x}_r$ : residual strength at time  $t$  under a loading history  $s(t)$

$\tau$ : material age

Introduce normalized variables

$$\bar{x}_r = \frac{x_r}{x_s^*}, \quad \bar{t} = \frac{t}{\hat{t}}, \quad \bar{x}_s = \frac{x_s}{x_s^*} \quad (593)$$

$$\frac{d\bar{x}_r}{d\bar{\tau}} = -\bar{x}_r^{1-\alpha_r}, \quad \alpha_r \geq 1 \quad (594)$$

$$\frac{\bar{x}_r \alpha_r}{\bar{x}_s} + \frac{\bar{x}_s \alpha_r}{\bar{x}_r} = \alpha_r \bar{\tau} \quad (595)$$

$$d\bar{\tau} = K(s, \bar{t}) dt \quad (596)$$

Assume

$$K(s, \bar{t}) = \left(\frac{s}{C_1}\right)^{\beta} \bar{t}^{\alpha_l - 1} \quad (597)$$

Assume a Weibull distribution for static strength

$$R_s(\bar{x}_s) = \exp \left[ -\left( \frac{\bar{x}_s}{\bar{x}_{os}} \right)^{\alpha_s} \right] \quad (598)$$

$$\therefore R_r(\bar{x}_r) = R_s(\bar{x}_s) = \exp \left[ -\left( \frac{\bar{x}_r \alpha_r + \alpha_r \bar{\tau}}{\bar{x}_{os} \alpha_r} \right)^{\alpha_s / \alpha_r} \right] \quad (599)$$

Failure occurs when  $\bar{x}_r = s(t)$ .

(2) Tension With Constant Loading Rate

$$s(t) = Lt = (L\hat{t}) \bar{t} \quad (600)$$

$$\tau = \int_0^{\bar{t}} \left( \frac{L\hat{t}}{C_1} \right)^{\beta} \xi^{\beta + \alpha_l - 1} d\xi = \frac{(L\hat{t}/C_1)^{\beta}}{\beta + \alpha_l} \bar{t}^{\beta + \alpha_l} \quad (601)$$

$$\therefore \frac{\bar{x}_r \alpha_r}{\bar{x}_s} = \frac{\bar{x}_r \alpha_r}{\bar{x}_s} - \frac{\alpha_r (L\hat{t}/C_1)^{\beta}}{\beta + \alpha_l} \bar{t}^{\beta + \alpha_l} \quad (602)$$

$$\text{At failure, } \bar{x}_r = s(t)/x_s^* = (L\hat{t}/x_s^*) \bar{t} \quad (603)$$

$$\therefore \frac{\bar{x}_r}{x_r} = \frac{\bar{x}_s}{x_s} - \frac{\alpha_r \hat{x}^{\beta + \alpha_\ell}}{(\beta + \alpha_\ell) (L t)^{\alpha_\ell} C_1} \frac{\bar{x}^{\beta + \alpha_\ell}}{x_r} \quad (604)$$

$\bar{x}_r \rightarrow x_s$  as  $L \rightarrow \infty$ :  $x_s$  is the strength under a very high loading rate.

$$R_r(\bar{x}_r) = \exp \left[ -\frac{1}{\frac{\bar{x}_{os}}{x_r}} \left( \frac{\bar{x}_r}{x_r} + \frac{\alpha_r \hat{x}^{\beta + \alpha_\ell}}{(\beta + \alpha_\ell) C_1} \frac{\bar{x}^{\beta + \alpha_\ell}}{x_r} \right) \frac{\alpha_s / \alpha_r}{\bar{x}_r} \right] \quad (605)$$

If the second term is negligible compared with the first term, which can happen when, e.g.,  $L$  is large (fast loading rate), then

$$\frac{\bar{x}_r}{x_r} \approx \frac{\bar{x}_s}{x_s} \quad (606)$$

$$\therefore R_r(\bar{x}_r) = \exp \left[ -\left( \frac{\bar{x}_r}{\bar{x}_{os}} \right) \frac{\alpha_s}{\alpha_r} \right] \quad (607)$$

If the first term is negligible, which can happen when, e.g.,  $L$  is small (slow loading rate), then

$$\therefore R_r(\bar{x}_r) = \exp \left[ -\left( \frac{\bar{x}_r}{\bar{x}_{os}} \right) \frac{(\beta + \alpha_\ell) \alpha_s / \alpha_r}{\alpha_r} \right] \quad (608)$$

$$\bar{x}_{os} = \left[ \frac{(\hat{t} L)^{\alpha_\ell} (\beta + \alpha_\ell) C_1 \frac{\bar{x}_r}{x_r} \alpha_r}{\alpha_r} \right]^{1/(\beta + \alpha_\ell)} \quad (609)$$

Note that, if  $\alpha_\ell = \alpha_r = 1$ , then Eq. (608) is equivalent to Eq. (579).

### (3) Stress Rupture

$$s(t) = s \text{ const.} \quad (610)$$

$$\tau = (s/C_1)^{\beta/t} \alpha_\ell / \alpha_r \quad (611)$$

$$R_r(\bar{x}_r) = \exp \left[ -\left( \frac{\frac{\bar{x}_r}{x_r} + (\alpha_r / \alpha_\ell) (s/C_1)^{\beta/t} \alpha_\ell}{\frac{\bar{x}_{os}}{x_r}} \right) \frac{\alpha_s / \alpha_r}{\alpha_r} \right] \quad (612)$$

$$R_\ell(\bar{t}) = R_r(s/\bar{x}) = \exp \left[ -\left( \frac{(s/\bar{x})^{\alpha_r} + (\alpha_r / \alpha_\ell) (s/C_1)^{\beta/t} \alpha_\ell}{\frac{\bar{x}_{os}}{x_r}} \right) \frac{\alpha_s / \alpha_r}{\alpha_r} \right] \quad (613)$$

In the fatigue failure region, the first term can be neglected.

$$R_\ell(\bar{t}) = \exp \left[ - \left( \frac{\bar{t}}{t_0} \right)^{\alpha_\ell \alpha_s / \alpha_r} \right] \quad (614)$$

$$\bar{t}_0 (s/C_1)^{\beta/\alpha_\ell} = \left( \frac{\alpha_r}{x_{\text{o}} \alpha_s \alpha_\ell / \alpha_r} \right)^{1/\alpha_\ell} \quad (615)$$

Note that, if  $\alpha_\ell = \alpha_r = 1$ , then Eq. (614) is equivalent to Eq. (569).

#### (4) Constant Amplitude Fatigue

$x$  : realistic static strength

$$s(n) = f(S_{\max}, R, n), \quad (616)$$

$$K(s, n) = \left( \frac{S_{\max}}{C_1} \right)^{\beta_n \alpha_\ell - 1} \quad (617)$$

$$\frac{x_r}{x_o} \alpha_r - \frac{x_r}{x_o} \alpha_r = - \frac{\alpha_r}{\alpha_\ell} \left( \frac{S_{\max}}{C_1} \right)^{\beta_n \alpha_\ell} \quad (618)$$

$$R_r(\bar{x}_r) = R_s(\bar{x}_s | S_{\max}) = \exp \left[ - \frac{\left( \frac{x_r}{x_o} \alpha_r + (\alpha_r / \alpha_\ell) (S_{\max}/C_1)^{\beta_n \alpha_\ell} \alpha_s / \alpha_r \right)}{\frac{x_o}{x_r} \alpha_s} \right] + \left( \frac{S_{\max}}{\bar{x}_o} \right)^{\alpha_s} \quad (619)$$

$$R_\ell(N) \approx \exp \left[ - \left( \frac{N}{N_o} \right)^{\alpha_\ell \alpha_s / \alpha_r} \right] \quad (620)$$

$$N_o (S_{\max}/C_1)^{\beta/\alpha_\ell} = \left( \frac{x_r}{x_o} \alpha_r \alpha_\ell / \alpha_r \right)^{1/\alpha_\ell} \quad (621)$$

$$(a) \alpha_r = \alpha_s$$

$$R_r(\bar{x}_r) = \exp \left[ - \frac{\frac{\alpha_s}{x_r} + (\alpha_s / \alpha_\ell) (S_{\max}/C_1)^{\beta_n \alpha_\ell}}{\frac{x_o}{x_r} \alpha_s} + \left( \frac{S_{\max}}{\bar{x}_o} \right)^{\alpha_s} \right]$$

$$= \exp \left[ - \left( \frac{x_r}{x_o} \right)^{\alpha_s} - \left( \frac{n}{N_o} \right)^{\alpha_\ell} + \left( \frac{S_{\max}}{\bar{x}_o} \right)^{\alpha_s} \right] \quad (622)$$

$$R_{\ell}(N) = \exp \left[ - \left( \frac{N}{N_o} \right)^{\alpha_{\ell}} \right] \quad (623)$$

$$N_o(S_{max}/C_1)^{\beta/\alpha_{\ell}} = (x_o^{\alpha_s} \alpha_{\ell} / \alpha_s)^{1/\alpha_{\ell}} \quad (624)$$

$$\bar{R}_r(x_r | S_{max}) = \exp \left[ - \left( \frac{x_r}{x_o} \right)^{\alpha_s} + \left( \frac{S_{max}}{x_o} \right)^{\alpha_s} \right] \quad (625)$$

Note that

$$R_r(\bar{S}_{max}) = R_{\ell}(N) \quad (626)$$

(b)  $\alpha_{\ell} = 1$

$$R_r(\bar{x}_r) = \exp \left[ - \left( \frac{\alpha_r}{x_r} + \alpha_r (S_{max}/C_1)^{\beta/n} \right) \frac{\alpha_s / \alpha_r}{x_o} + \left( \frac{S_{max}}{x_o} \right)^{\alpha_s} \right]$$

$$= \exp \left\{ - \left[ \left( \frac{\alpha_r}{x_o} + \left( \frac{n}{N_o} \right) \right) \alpha_s / \alpha_r + \left( \frac{S_{max}}{x_o} \right)^{\alpha_s} \right] \right\} \quad (627)$$

$$R_{\ell}(N) = \exp \left[ - \left( \frac{N}{N_o} \right)^{\alpha_s / \alpha_r} \right] \quad (628)$$

$$N_o(S_{max}/C_1)^{\beta} = \frac{\alpha_r}{x_o} / \alpha_r \quad (629)$$

Strength and fatigue properties of  $[0/45/90/-45/90/45/0]_s$  Gr/Ep.

|           | $\alpha_s$ | $x_o$ , MPa | $\alpha_r$ | $\alpha_{\ell}$ | $\beta$ | $C_1$ , MPa |
|-----------|------------|-------------|------------|-----------------|---------|-------------|
| Model (a) | 24.12      | 487         | 24.12      | 1.089           | 21.68   | 6.153       |
| Model (b) | 24.12      | 487         | 22.16      | 1               | 19.92   | 6.231       |

##### (5) Cumulative Damage Model

$n_1$  cycles at  $S_{max1}$  followed by  $n_2$  cycles at  $S_{max2}$ .

$$\frac{\alpha_r}{x_{r1}} - \frac{\alpha_r}{x_r} = \frac{\alpha_r}{\alpha_{\ell}} \left( \frac{S_{max1}}{C_1} \right)^{\beta} n_1 \quad (630)$$

$$\frac{\alpha_r}{x_{r2}} - \frac{\alpha_r}{x_{r1}} = \frac{\alpha_r}{\alpha_{\ell}} \left( \frac{S_{max2}}{C_1} \right)^{\beta} n_2 \quad (631)$$



Figure 137 Weibull plot of normalized life data. [32]



Figure 138 Experimental correlation of analytical models in terms of residual strength. [32]

$$\therefore \frac{\alpha_r}{x_{r2}} = \frac{\alpha_r}{x} + \frac{\alpha_r}{\alpha_\ell} \left\{ \left( \frac{S_{max1}}{C_1} \right)^\beta \alpha_\ell^{n_1} + \left( \frac{S_{max2}}{C_1} \right)^\beta \alpha_\ell^{n_2} \right\} \quad (632)$$

$$\therefore R_r(\bar{x}_{r2}) = \exp \left\{ - \frac{\left\{ \frac{\alpha_r}{x_{r2}} + (\alpha_r/\alpha_\ell) \left[ (S_{max1}/C_1)^{\beta n_1} + (S_{max2}/C_1)^{\beta n_2} \right] \right\}^{\alpha_s/\alpha_r}}{\frac{\alpha_s}{x_o}} + \left( \frac{S_{max1}}{x_o} \right)^{\alpha_s} \right\} \quad (633)$$

(a)  $\alpha_r = \alpha_s$

$$R_{ln1}(N_2) = \exp \left[ - \left( \frac{n_1}{N_{o1}} \right)^{\alpha_\ell} - \left( \frac{N_2}{N_{o2}} \right)^{\alpha_\ell} \right] \quad (634)$$

For  $R_{ln1}(N_2) = 1$

$$\left( \frac{n_1}{N_{o1}} \right)^{\alpha_\ell} + \left( \frac{N_2}{N_{o2}} \right)^{\alpha_\ell} = 1 \quad (635)$$

(b)  $\alpha_\ell = 1$

$$R_{ln1}(N_2) = \exp \left[ - \left( \frac{n_1}{N_{o1}} + \frac{N_2}{N_{o2}} \right)^{\alpha_s/\alpha_r} \right] \quad (636)$$

For  $R_{ln1}(N_2) = 1$

$$\frac{n_1}{N_{o1}} + \frac{N_2}{N_{o2}} = 1 \quad (637)$$

(c) Experimental correlation

Strength and fatigue properties of  $[0_3/\pm 45] B/E_p$

|           | $\alpha_s$ | $x_o, MPa$ | $\alpha_r$ | $\alpha_\ell$ | $\beta$ | $C_1, MPa$ |
|-----------|------------|------------|------------|---------------|---------|------------|
| Model (a) | 24.19      | 845        | 24.19      | 0.4881        | 20.73   | 3.989      |
| Model (b) | 24.19      | 845        | 49.56      | 1             | 42.47   | 3.358      |

| $S_{max1}, MPa$ | $N_{o1}$             | $n_1$           | $S_{max2}, MPa$ | $N_{o2}$             |
|-----------------|----------------------|-----------------|-----------------|----------------------|
| 649             | $1.3694 \times 10^6$ | $5 \times 10^5$ | 724             | $1.2454 \times 10^4$ |



Figure 139 Distribution of  $N_2$ : theory and data. [31]



## SECTION XII

### ENVIRONMENTAL EFFECTS ON COMPOSITES

#### 1. HEAT CONDUCTION

##### a. Formulation

Heat Transfer (temperature effects)

$$q = -K \nabla T \quad (638)$$

One-dimensional steady

$$q_x = +K_x \frac{T_1 - T_2}{L} \quad (639)$$

Composite Materials

$$K_x = K_{11} \cos^2 \alpha + K_{22} \sin^2 \alpha \quad (640)$$

Approximations ( $v_f < 0.785$ )

$$K_{11} = (1 - v_f) K_r + v_f K_f \quad (641)$$

$$K_{22} = K_r \left\{ (1 - 2\sqrt{v_f/\pi}) + \frac{1}{B_K} \left[ \pi - \frac{4}{\sqrt{1 - B_K^2 v_f/\pi}} \tan^{-1} \frac{\sqrt{1 - (B_K^2 v_f/\pi)}}{1 + \sqrt{B_K^2 v_f/\pi}} \right] \right\} \quad (642)$$

$$B_K \equiv 2 \left( \frac{K_m}{K_f} - 1 \right) \quad (643)$$

Input:  $K_r$ ,  $K_f$ ,  $v_f$ ,  $\alpha$

Output:  $K_{11}$ ,  $K_{22}$ ,  $K_x$



##### Thermal conductivities of selected materials

$K$  - BTU/hr/ft<sup>2</sup>/°F/in; room temperature

| <u>Resins</u>    | <u>Filaments</u> |
|------------------|------------------|
| <u>K</u>         | <u>K</u>         |
| Phenolic         | 1.4              |
| Phenolic, SC1008 | 1.5              |
| Polyethylene     | 1.7              |
| Carbon fabric    | 40.0             |
| Glass fabric     | 7.5              |
| Graphite fabric  | 1000.0           |
| Quartz fabric    | 7.5              |
| Silica fabric    | 7.5              |

b. Example

A 0.5-inch thick fiber reinforced graphite epoxy plate is exposed to a  $120^{\circ}\text{F}$  environment on one side, and to  $70^{\circ}\text{F}$  on the opposite side. The fiber volume fraction is 68%. Estimate the heat transfer through the plate for the following fiber orientations:  $\alpha = 0, 30, 45, 60 degrees.$



## 2. MOISTURE DIFFUSION

### a. Formulation

Moisture Effects

$$\Gamma = -D \nabla C \quad (644)$$

Steady Bound. Cond.

One Dimensional

Temp Constant

Uniform Initial Distributions

Moisture Distribution:

$$C^* = \frac{C - C_i}{C_m - C_i} = 1 - \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{1}{(2j+1)} \sin \frac{(2j+1)\pi x}{h} \exp \left\{ - \left[ \frac{(2j+1)^2 \pi^2}{s^2} \frac{D_x t}{x^2} \right] \right\} \quad (645)$$

Moisture Content (weight gain):

$$M = \frac{W - W_0}{W_0 D} = G(M_m M_i) + M_i \quad (646)$$

$$G \equiv 1 - \frac{8}{\pi^2} \sum_{j=1}^{\infty} \frac{\exp \left[ - \left( \frac{(2j+1)^2 \pi^2}{s^2} \frac{D_x t}{x^2} \right) \right]}{(2j+1)^2} \quad (647)$$

Time to reach 99.9% saturation:

$$t_m = \frac{0.67 s^2}{D_x} \quad (648)$$

Input:  $h, M_i, M_m, D_x, t, x$  ( $s=h$  or  $2h$ )

Output:  $C^*, M, t_m$

Maximum Moisture Content:

$$M_m = a H^b \quad (649)$$

Diffusivity:

$$D_x = D_{11} \cos^2 \alpha + D_{22} \sin^2 \alpha \quad (650)$$

Approximations ( $v_f < 0.785$ )

$$D_{11} = (1-v_f) D_r + v_f D_f \quad (651)$$



$$D_{22} = D_r \left\{ \left( 1 - 2 \sqrt{\frac{v_f}{\pi}} \right) D_r + \frac{1}{B_D} \left[ \pi - \sqrt{1 - \frac{4}{B_D^2 v_f}} \tan^{-1} \frac{\sqrt{1 - B_D^2 v_f / \pi}}{1 + \sqrt{B_D^2 v_f / \pi}} \right] \right\} \quad (652)$$

$$B_D = 2 \left( \frac{D_r}{D_f} - 1 \right) \quad (653)$$

For  $D_f \ll D_r$

$$D_x = D_x \left[ (1 - v_f) \cos^2 \alpha + (1 - 2 \sqrt{v_f / \pi}) \sin^2 \alpha \right] \quad (654)$$

Input:  $D_r$ ,  $D_f$ ,  $v_f$ ,  $\alpha$

Output:  $D_{11}$ ,  $D_{22}$ ,  $D_x$

#### b. Examples

(1) Both sides of a 12.5 mm thick Graphite T-300 Fiberite plate are exposed to air at 350°K and 90 percent humidity. The initial moisture concentration is uniform inside the plate. The initial moisture content of the plate is 0.5 percent. The diffusivities:  $D_{11}$  and  $D_{22}$  are given in the accompanying figure ( $v_f = 0.68$ ). The constants  $a$  and  $b$  are 0.0014 and 2, respectively.

- a) Estimate the time required to reach one percent moisture content
- b) Estimate the time required to reach at least 99.9% of the maximum possible moisture content
- c) Estimate the maximum possible moisture content inside the material
- d) Estimate the moisture content in 5 years
- e) Draw the moisture distribution inside the material after 5 years

Perform the calculations for fiber orientations  $\alpha = 0, 30, 60$ , and 90 degrees.



Figure 140 Change of diffusivity with temperature

(2) The plate described in the previous example is exposed to air on one side only. The other side of the plate is insulated. Repeat the calculations for this plate.

(3) The initial moisture distribution is uniform inside a 12.5 mm thick Graphite T-300-Fiberite 1034 plate. The initial moisture content of the plate is one percent. The plate is then exposed on both sides to humid air at 333°K and 10% relative humidity. Estimate the

moisture content of the plate after 10 days. The fiber volume fraction is  $v_f = 0.68$ , the constants  $a$  and  $b$  are 0.0014 and 2, respectively. The diffusivity of the resin is  $D_r = 1.6 \times 10^{-6} \text{ mm}^2 \text{ s}^{-1}$ . Perform the calculations for fiber orientations  $\alpha = 0, 30, 60, \text{ and } 90$  degrees.

c. Tests to Determine  $M_m$  and  $D$



Edge effects negligible [42]

$$D_x = \pi \left( \frac{h}{4M_m} \right)^2 \left( \frac{M_2 - M_1}{\sqrt{t_2} - \sqrt{t_1}} \right)^2 \quad (655)$$

- for a) accelerated test procedures  
b) edge effects corrections



Observations (approximations)

$$D \cong f(T) \quad (\text{but not } M?)$$

$$M_m \cong f(H) \quad (\text{but not } T?)$$

$$M_m = aH^b$$

(656)

Present information  $b = 1 \sim 2$

d. Multilayered-Unsteady Problem

One Dimensional

Temp same on both sides, or

One side insulated



Numerical Solution ("W8GAIN")

Input:  $T(t)$ ,  $H_L(t)$ ,  $H_R(t)$

Initial moisture distribution

$D(T)$ ,  $M_m(H)$ ,  $K(T)$ ,  $\rho$ ,  $h$  (for each layer)

Output:  
(As a  
Fn of Time) Total Weight Gain  
Weight Gain of Each Layer  
Moisture Distribution in Each Layer

TABLE 70 SUMMARY OF EXPERIMENTAL DATA ON THE EFFECTS OF MOISTURE AND TEMPERATURE ON THE ULTIMATE TENSILE STRENGTH OF COMPOSITES

| Composite                                        | Reference                  | Laminate Lay-Up Orientation |                      |                      |            |             |             | Remarks                                      |
|--------------------------------------------------|----------------------------|-----------------------------|----------------------|----------------------|------------|-------------|-------------|----------------------------------------------|
|                                                  |                            | 0°<br>Moist<br>Temp         | π/4<br>Moist<br>Temp | 90°<br>Moist<br>Temp | 0°<br>Temp | π/4<br>Temp | 90°<br>Temp |                                              |
| Thornel 300/<br>Fiberite 1034                    | Shen &<br>Springer<br>1976 | L                           | N                    | L                    | N          | S           | S           |                                              |
| Hercules AS-5/<br>3501                           | Browning<br>et al 1976     | N                           | N                    | N                    | N          | S           | S           |                                              |
|                                                  | Verette<br>1975            | N                           | N                    | N                    | -          | S           | S           | Limited data (2-3<br>points)                 |
|                                                  | Kerr et al<br>1975         | -                           | N                    | -                    | N          | -           | S           | Two data points<br>for 90° laminates         |
|                                                  | Kim &<br>Whitney<br>1976   | -                           | -                    | N                    | N          | -           | -           |                                              |
| Thornel 300/<br>Narmco 5208                      | Hofer<br>et al 1975        | L                           | L                    | N                    | L          | S           | S           |                                              |
|                                                  | Husman<br>1976             | -                           | -                    | -                    | -          | S           | L           |                                              |
| Modmor II/<br>Narmco 5206                        | Hofer<br>et al 1974        | N                           | L                    | N                    | L          | S           | S           |                                              |
| Courtaulds HMS/<br>Hercules 3002M                | Hofer<br>et al 1974        | N                           | N                    | N                    | N          | S           | S           | Very scattered<br>data for 90°<br>laminates  |
| HT-S/ERLA-<br>4617                               | Browning<br>1972           | -                           | -                    | L                    | S          | -           | -           | Only two data<br>points for<br>temperature   |
| HT-S/<br>Fiberite X-911                          | Browning<br>1972           | -                           | -                    | N                    | N          | -           | -           |                                              |
| HT-S/U.C.C.X-<br>2546                            | Browning<br>1972           | -                           | -                    | L                    | N          | -           | -           |                                              |
| PRD 49/<br>ERLB-4617                             | Hanson<br>1972             | -                           | L                    | -                    | -          | -           | -           |                                              |
| HT-S/(8183/137-<br>NDA-BF <sub>3</sub> MEA)<br>3 | Hertz<br>1973              | -                           | -                    | -                    | -          | S           | S           |                                              |
| HT-S/Hysol<br>ADX-516                            | Browning<br>1972           | -                           | -                    | N                    | S          | -           | -           | Only two data<br>points for<br>temperature   |
| Hercules HT-S/<br>710 Polyimide                  | Kerr et al<br>1975         | -                           | N                    | -                    | N          | -           | N           | Only two data<br>points for 90°<br>laminates |

TABLE 70 (Continued)

| Composite              | Reference           | Laminate Lay-Up Orientation |      |         |      |       |      | Remarks |  |
|------------------------|---------------------|-----------------------------|------|---------|------|-------|------|---------|--|
|                        |                     | 0°                          |      | $\pi/4$ |      | 90°   |      |         |  |
|                        |                     | Moist                       | Temp | Moist   | Temp | Moist | Temp |         |  |
| HT-S/P13N<br>Polyimide | Browning<br>1972    | -                           | -    | -       | L    | -     | -    |         |  |
| Boron/AVCO<br>5505     | Hofer<br>et al 1974 | L                           | N    | L       | L    | S     | S    |         |  |
| Boron/Narmco<br>5505   | Kaminski<br>1973    | -                           | L    | -       | -    | -     | S    |         |  |
|                        | Browning<br>1972    | -                           | -    | N       | N    | -     | -    |         |  |

(a) N = Negligible effect (b) L = Little effect (<30%) (c) S = Strong effect (>30%)



Figure 141 Effects of temperature and moisture on strengths of T300/1034 Gr/Epoxy ( $v_f = 0.68$ ).



### 3. TRANSIENT ANALYSIS



Figure 142 Input to transient analysis.



Figure 143 Weight gain over 20 years for 1/2! hybrid.



Figure 144 Moisture distribution at boundary layer  
(1-4 plies) and inside 1/2" hybrid over  
20 years - note flat top level at 0.42%  
after 10 years.



## SECTION XIII

### TIME DEPENDENCE IN POLYMER DEFORMATION

#### 1. LINEARLY VISCOELASTIC CHARACTERIZATION

##### a. Uniaxial, Homogeneous Deformation; Isotropic Solid

###### (1) Relaxation behavior (prescribe step strain)



###### (2) Creep behavior (prescribe step stress)



(3) Non-simple histories



sum  
of  
small (infinitesimal)  
steps

$$\sigma(t) = \epsilon_0 H(t) + \int_0^t E_r(t-\xi) \frac{d\epsilon(\xi)}{d\xi} d\xi \quad (659)$$

$$\epsilon(t) = \sigma_0 D(t) + \int_0^t D_c(t-\xi) \frac{d\sigma(\xi)}{d\xi} d\xi \quad (660)$$



(4) Example

Find the stress response in a uniaxial constant strain rate test

$$\epsilon(t) = R \cdot t$$

Approximate graphical construction or analytical  $E_r(t) = 4 + 50 e^{-t/3}$  plot answer



(5) Homogeneous shear deformation (totally analogous)

Relaxation modulus in shear  $\mu_r(t)$

Creep compliance in shear  $J_c(t)$

$$\text{Shear stress } \tau(t) = 2\epsilon_s \mu_r(t) + 2 \int_0^t \mu_r(t-\xi) \frac{d\epsilon_s}{d\xi} d\xi \quad (662)$$

$$\text{Shear strain } 2\epsilon_s(t) = \tau_0 J_c(t) + \int_0^t J_c(t-\xi) \frac{d\tau}{d\xi} d\xi \quad (663)$$

(6) Cyclic deformation

$$\epsilon_s(t) = \epsilon_{os} \cos \omega t + i \epsilon_{os} \sin \omega t = \epsilon_{os} e^{i\omega t} \quad (664)$$

simple example

$$\mu(t) = \mu_\infty + \mu_1 e^{-t/t_1} \quad (665)$$

$$\begin{aligned} \tau(t) &= 2\epsilon_{os} \left[ \mu(t) - \mu_\infty \right] = 2\epsilon_{os} \left\{ \frac{\omega^2 t_1^2 \mu_1}{1 + \omega^2 t_1^2} e^{-t/t_1} - 2i\epsilon_{os} \frac{\omega t_1 \mu_1}{1 + \omega^2 t_1^2} e^{-t/t_1} \right. \\ &\quad \left. + 2\epsilon(t) \left( \mu_\infty + \mu_1 \frac{\omega^2 t_1^2}{1 + \omega^2 t_1^2} + i \mu_1 \frac{\omega t_1}{1 + \omega^2 t_1^2} \right) \right\} \end{aligned} \quad (666)$$

Complex modulus

$$\mu^*(\omega) = \mu'(\omega) + i \mu''(\omega) \quad (667)$$

$$\mu'(\omega) = \mu_\infty + \mu_1 \frac{\omega^2 t_1^2}{1 + \omega^2 t_1^2} \quad (668)$$

$$\mu''(\omega) = \mu_1 \frac{\omega t_1}{1 + \omega^2 t_1^2} \quad (669)$$

$$\mu(\omega) = |\mu^*(\omega)| = \sqrt{(\mu')^2 + (\mu'')^2} \quad \tan \Delta(\omega) = \frac{\mu''(\omega)}{\mu'(\omega)} \quad (670)$$

Energy loss per cycle (steady state)

$$\mu^*(\omega) \cdot J^*(\omega) = 1 ; J^* = \frac{1}{\mu} - i \frac{\mu'}{\mu} \quad (671)$$

$$\tau(t) = \sum_{n=1}^{\infty} \tau_n \sin \frac{2n\pi}{T} t \quad (672)$$

Then

$$\epsilon_s(t) = \sum_{m=1}^{\infty} \frac{\tau_m}{\mu(\frac{2m\pi}{T})} \sin \left[ \frac{2m\pi}{T} t + \Delta(2m\pi) \right] \quad (673)$$

$$W/cycle = \pi \sum_{m=1}^{\infty} m \tau_m^2 J''\left(\frac{2m\pi}{T}\right) = \pi \sum_{m=1}^{\infty} m \tau_m^2 \frac{\mu''\left(\frac{2m\pi}{T}\right)}{\mu^2\left(\frac{2m\pi}{T}\right)} \quad (674)$$

If the strain  $\epsilon_s(t) = \sum_{m=1}^{\infty} \epsilon_{sm} \sin \frac{2m\pi t}{T}$  is prescribed

$$W/cycle = \pi \sum_{m=1}^{\infty} m \epsilon_{sm}^2 \mu''\left(\frac{2m\pi}{T}\right) \quad (676)$$



### b. 3-D Stress-Strain Law for Isotropic Solid (Neat Resin)

$$\theta = \sigma_x + \sigma_y + \sigma_z, \quad \Delta = \epsilon_x + \epsilon_y + \epsilon_z \quad (677)$$

$$s_{ij} = \sigma_{ij} - \frac{1}{3} \theta \delta_{ij}, \quad e_{ij} = \epsilon_{ij} - \frac{1}{3} \Delta \delta_{ij} \quad (678)$$

$$s_{ij}(t) = 2e_{ij}(o) \mu_r(t) + 2 \int_0^t \mu_r(t-\xi) \frac{\partial e_{ij}(\xi)}{\partial \xi} d\xi = 2\mu_r(t)*e_{ij}(t) \quad (679)$$

$$\theta(t) = 3\Delta(o) K_r(t) + 3 \int_0^t K_r(t-\xi) \frac{\partial \Delta(\xi)}{\partial \xi} d\xi \quad K_r(t) = \text{Bulk relaxation modulus}$$

$$\epsilon_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \quad (680)$$

$$\begin{Bmatrix} \sigma_x(t) \\ \sigma_y(t) \\ \sigma_z(t) \\ \tau_{xy}(t) \\ \tau_{yz}(t) \\ \tau_{zx}(t) \end{Bmatrix} = \begin{bmatrix} \lambda(t) + 2\mu(t) & \lambda(t) & \lambda(t) & 0 & 0 & 0 \\ \lambda(t) & \lambda(t) + 2\mu(t) & \lambda(t) & 0 & 0 & 0 \\ \lambda(t) & \lambda(t) & \lambda(t) + 2\mu(t) & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu(t) & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu(t) \end{bmatrix} * \begin{Bmatrix} \epsilon_x(t) \\ \epsilon_y(t) \\ \epsilon_z(t) \\ \epsilon_{xy}(t) \\ \epsilon_{yz}(t) \\ \epsilon_{zx}(t) \end{Bmatrix} \quad (681)$$

c. 2-D Orthotropic Relation

$$\begin{Bmatrix} \sigma_x(t) \\ \sigma_y(t) \\ \tau_{xy}(t) \end{Bmatrix} = \begin{bmatrix} C_{11}(t) & C_{12}(t) & 0 \\ C_{12}(t) & C_{22}(t) & 0 \\ 0 & 0 & C_{44}(t) \end{bmatrix} \begin{Bmatrix} \epsilon_x(t) \\ \epsilon_y(t) \\ \epsilon_{xy}(t) \end{Bmatrix} \quad \text{plane stress} \quad (682)$$



## 2. EFFECT OF TEMPERATURE ON TIME DEPENDENCE

### a. WLF Equation

$\log E_r(t) \sim$  Absolute temperature towards rubbery domain  
Short time not well known



### b. Glass Transition Temperature



Figure 147 Determination of glass transition temperature.

c. Effect of Water (Plasticizer) on Rheological Behavior



Figure 148 Relationship between stress and breaking time of the HMDA-crosslinked epoxy polymer.



Figure 149 Master curves of  $\sigma$ -log  $t_b$  plots of the HMDA polymer.

d. Creep Compliance of Shell 58-68R Epoxy

(Example problem in time-temperature shifting)



Figure 150 Creep compliance for Shell 58-68R epoxy as a function of temperature.



Figure 151 Net creep compliance,  $\Delta D$ , for Shell 58-68R epoxy at different temperatures.



Figure 152 Temperature dependence of initial compliance,  $D_0$ , for Shell 58-68R epoxy.



Figure 153 Master curve for net creep compliance,  $\Delta D$ , for Shell 58-68R epoxy.



Figure 154 Temperature dependence of the shift factor,  $a_t$ , for Shell 58-68R epoxy.

### **3. PRACTICAL LIMITS ON TIME DOMAIN OF MATERIAL**

- a. Time Scale of Structural Problem Determined
- b. Time Scale of Material that Needs to be Known
- c. Principle of Recent Memory



## SECTION XIV

### APPLICATION OF STATISTICAL THEORIES AND DATA AVERAGING

#### I. SAMPLE AND PARENT DISTRIBUTIONS

##### a. Sample Distribution

Results of  $n$  random experiments

$$x_1 \leq x_2 \leq x_3 \leq \dots \leq x_n,$$

Sample mean  $\bar{x}$

$$\bar{x} = \frac{1}{n} \sum_i x_i \quad (684)$$

Sample variance  $s^2$

$$s^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2 \quad (685)$$

Sample distribution function  $F(x)$

$$P[x \leq x] = F^*(x) = \frac{j-1}{n}, \quad x_{j-1} \leq x \leq x_j \quad (686)$$

or

$$\begin{aligned} F^*(x_j) &= j/n && \text{upper bound} \\ &= (j-1)/n && \text{lower bound} \\ &= (j-1/2)/n && \text{midpoint} \\ &= j/(n+1) && \text{mean rank} \\ &= (j-0.3)(n+0.4) && \text{median rank} \end{aligned}$$

Sample probability density function  $f^*(x)$

$$f^*(x) = \frac{dF^*}{dx} \quad (687)$$

##### b. Parent Distribution

Parent distribution function :  $F(x)$

Parent probability density function :  $f(x)$

Mean of the parent population :  $\mu$

$$\mu = \int_{-\infty}^{\infty} xf(x) dx \quad (688)$$

Variance of the parent population :  $\sigma^2$

$$\text{Var}(x) = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \quad (689)$$

Let  $Y = g(X)$ . Then

$$E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx \quad (690)$$

$$\text{Var}(Y) = E[(Y - E[Y])^2] = \int_{-\infty}^{\infty} (g(x) - E[Y])^2 f(x) dx \quad (691)$$

We can show that

$$E(\bar{x}) = \mu, \quad (692)$$

$$\text{Var}(\bar{x}) = \sigma^2/n \quad (693)$$

$$E(s^2) = \sigma^2(n-1)/n \quad (694)$$

$$\text{Var}(s^2) = \frac{\mu_4 - \sigma^4}{n} - \frac{2(\mu_4 - 2\sigma^4)}{n^2} + \frac{\mu_4 - 3\sigma^4}{n^3} \quad (695)$$

$$\mu_4 = \int_{-\infty}^{\infty} (x - \mu)^4 f(x) dx \quad (696)$$

### c. Method of Maximum Likelihood

Problem

Given: A random sample  $x_1, x_2, \dots, x_n$  from the parent distribution whose p.d.f is  $f(x; \theta)$ , where  $\theta$  is a parameter.

Find:  $\hat{\theta}(x_1, x_2, \dots, x_n)$  which is a good estimator for  $\theta$ .

Solution

Consider the function

$$L(x_1, x_2, \dots, x_n; \theta) = f(x_1; \theta) \cdots f(x_n; \theta) \quad (697)$$

$L$  represents the probability of obtaining the results  $x_1, \dots, x_n$ .

Find value of  $\theta$  which maximizes  $L$ .

Define

$$\ell = \log L = \log f(x_1; \theta) + \cdots + \log f(x_n; \theta) \quad (698)$$

Find  $\theta$  from

$$\frac{\partial \ell}{\partial \theta} = 0. \quad (699)$$

d. Strength and Life Distributions

$X$  : strength  $\longrightarrow$   $F(x)$  : strength distribution

$$F(x) = P[\text{strength} \leq x]$$

(700)

$X$  : life  $\longrightarrow$   $F(x)$  : life distribution

$$F(x) = P[\text{life} \leq x]$$

(701)

Also

$F(x)$  : probability of failure



## 2. WEIBULL AND NORMAL DISTRIBUTIONS

### a. Weibull Distribution (Two-Parameter)

#### (1) Properties

$$F = 1 - \exp \left[ -\left( \frac{x}{x_0} \right)^\alpha \right] \quad (702)$$

$\alpha$  : shape parameter,  $x_0$  : scale parameter

Probability density function

$$f = \frac{\alpha}{x_0} \cdot x^{\alpha-1} \exp \left[ -\left( \frac{x}{x_0} \right)^\alpha \right] \quad (703)$$

$$\text{Mean } \mu = x_0 \Gamma \left( \frac{1}{\alpha} + 1 \right) \quad (704)$$

$$\text{Standard deviation } \sigma = x_0 \left[ \Gamma \left( \frac{2}{\alpha} + 1 \right) - \Gamma^2 \left( \frac{1}{\alpha} + 1 \right) \right]^{1/2} \quad (705)$$

C.V. (Coefficient of variation) =  $\sigma / \mu$

$$\begin{aligned} \text{C.V.} &= \left[ \frac{\Gamma \left( \frac{2}{\alpha} + 1 \right)}{\Gamma \left( \frac{2}{\alpha} + 1 \right)} - 1 \right]^{1/2} \\ &\approx \frac{1.2}{\alpha} \text{ or } \left( \frac{1}{\alpha} \right)^{0.94} \end{aligned} \quad (706)$$



Figure 155 Relation between shape parameter and coefficient of variation.

(2) Estimation of  $\hat{\alpha}$  and  $\hat{x}_o$

(a)  $\hat{\alpha}$  from C.V.

$$\hat{x}_o \text{ from } \hat{\alpha} \text{ and } \bar{x}$$

(b) Maximum likelihood estimate

$$\hat{x}_o = \left( \frac{1}{n} \sum x_i^{\hat{\alpha}} \right)^{1/\hat{\alpha}} \quad (707)$$

$$\hat{\alpha} = \frac{n}{\hat{x}_o^{\hat{\alpha}} \sum x_i^{\hat{\alpha}} \log x_i - \sum \log x_i} \quad (708)$$

If  $\sigma$  is known, then

$$\hat{x}_o = \left( \frac{1}{n} \sum x_i^{\hat{\alpha}} \right)^{1/\hat{\alpha}} \quad (709)$$

(c) Linear least squares method (Graphical method)

$$\ln [-\ln(1-F)] = \hat{\alpha} \ln x - \hat{\alpha} \ln \hat{x}_o \quad (710)$$

$$y = ax + b \quad (711)$$

(d) Sample problem

Static strength data for  $[0/45/90/-45_2/90/45/0]$  s T300/934 laminate are as follows:

| i                  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| X(MPa)             | 427  | 444  | 445  | 445  | 450  | 455  | 455  | 466  | 469  | 478  | 478  | 481  |
| F(x <sub>i</sub> ) | .028 | .067 | .106 | .146 | .185 | .224 | .264 | .303 | .343 | .382 | .421 | .461 |

| i                  | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   | 25   |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| x(MPa)             | 482  | 482  | 482  | 487  | 487  | 492  | 492  | 495  | 496  | 501  | 503  | 512  | 520  |
| F(x <sub>i</sub> ) | .500 | .539 | .579 | .618 | .657 | .697 | .736 | .776 | .815 | .854 | .894 | .933 | .972 |

Find  $\bar{x}$ ,  $s$ , C.V.,  $\hat{\alpha}$ , and  $\hat{x}_o$ . Use the median rank for F.

$$\bar{x} = 477 \text{ MPa}, s = 23 \text{ MPa}, \text{C.V.} = 4.82\%$$

$$\text{From method (a), } \hat{\alpha} = 24.9, \hat{x}_o = 488.$$

$$\text{From method (c), } \hat{\alpha} = 23.4, \hat{x}_o = 488 \text{ (r = 0.983)}$$



Figure 156 Weibull plot of the strength data. [32]

b. Normal Distribution

(1) Properties

$$F = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x \exp\left[-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2\right] dt \quad (712)$$

Probability density function

$$f = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] \quad (713)$$

Mean :  $\mu$

Standard deviation :  $\sigma$

(2) Estimation of  $\mu$  and  $\sigma$

$$(a) \hat{\mu} = \bar{x}, \hat{\sigma} = s \quad (714)$$

(b) Maximum likelihood estimate

Same as above

(c) Linear least squares method (graphical method)

$$\text{Define } \frac{x-\mu}{\sigma} = y, \quad \frac{t-\mu}{\sigma} = s \quad (715)$$

$$F = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^y e^{-s^2/2} ds \quad (716)$$

$$x = \sigma y + \mu \quad (717)$$

(d) Sample problem

For the data of the previous sample problem 2.a.(2).(d),  
determine  $\hat{\mu}$  and  $\hat{\sigma}$ .

From method (a),  $\hat{\mu} = \bar{x} = 478 \text{ MPa}$ ,  $\hat{\sigma} = s = 23 \text{ MPa}$ .

For method (b), first determine

| i | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13 |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|
| y | -1.91 | -1.50 | -1.25 | -1.05 | -0.90 | -0.76 | -0.63 | -0.52 | -0.40 | -0.30 | -0.20 | -0.10 | 0  |
| i | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    |    |
| y | 0.10  | 0.20  | 0.30  | 0.40  | 0.52  | 0.63  | 0.76  | 0.90  | 1.05  | 1.25  | 1.50  | 1.91  |    |

The linear least squares method yields

$$\hat{\mu} = 477 \text{ MPa}, \hat{\sigma} = 24.3 \text{ MPa}.$$



Figure 157 Strength data plotted on normal probability paper.



### 3. RELIABILITY

#### a. Definition

The probability of a successful operation of the device in the manner and under the conditions of intended use.

$F(x; \theta_1, \theta_2, \dots)$  : distribution function with parameters  $\theta_1, \theta_2, \dots$ .

$x_1 \leq x_2$  : limits defining the event : Success.

Reliability function R

$$\begin{aligned} R &= P(x_1 \leq X \leq x_2) = F(x_2; \theta_1, \theta_2, \dots) - F(x_1; \theta_1, \theta_2, \dots) \\ &= R(\theta_1, \theta_2, \dots; x_1, x_2) \end{aligned} \tag{718}$$

#### b. Reliability for Strength and Life

X : strength

$$R(x) = P[\text{strength} \geq x] = 1 - F(x) \tag{719}$$

X : life

$$R(x) = P[\text{life} \geq x] = 1 - F(x) \tag{720}$$

#### c. Estimation of R

$$R^* = R(\theta_1^*, \theta_2^*, \dots; x_1, x_2) \tag{721}$$



## 4. DESIGN ALLOWABLES

### a. Definition

"A" allowable  $\hat{x}_o$ : Probability is 95% that at least 99% of the distribution will be contained within the interval  $(\hat{x}_o, \infty)$ .

"B" allowable  $\hat{x}_o$ : Probability is 95% that at least 90% of the distribution will be contained within the interval  $(\hat{x}_o, \infty)$ .

### b. Weibull Distribution

Suppose  $\alpha$  is known.

$\frac{2n \hat{x}^\alpha}{x_o^\alpha}$  has the  $\chi^2$  distribution with  $2n$  degrees of freedom:

$$P\left[\frac{2n \hat{x}^\alpha}{x_o^\alpha} \leq y\right] = \frac{1}{2^n \Gamma(n)} \int_0^y t^{n-1} e^{-t/2} dt \quad (722)$$

Given the confidence level  $\gamma$ , let  $\chi_{2n; \gamma}^2$  be defined by

$$P[\chi_{2n}^2 \leq \chi_{2n; \gamma}^2] = \gamma \quad (723)$$

$$\therefore P\left[\frac{2n \hat{x}^\alpha}{x_o^\alpha} \leq \chi_{2n; \gamma}^2\right] = \gamma \quad (724)$$

$$= P\left[\frac{2n \hat{x}^\alpha}{\chi_{2n; \gamma}^2} \leq \frac{\hat{x}^\alpha}{x_o^\alpha}\right] \quad (725)$$

Lower confidence limit of  $\hat{x}_o$  with confidence level  $\gamma$ :  $\hat{x}_{\gamma}$

$$\hat{x}_{\gamma} = \left(\frac{2n}{\chi_{2n; \gamma}^2}\right)^{1/\alpha} \hat{x}_o \quad (726)$$

Since  $x_{o1} < x_{o2}$  implies  $R_1 < R_2$ , the lower confidence limit for  $R$ ,  $\hat{R}_{\gamma}$ , is

$$\hat{R}_{\gamma} = \exp\left[-\left(\frac{x}{\hat{x}_{\gamma}}\right)^\alpha\right] \quad (727)$$

|                         |                    |            |
|-------------------------|--------------------|------------|
| For "A" allowable $x_A$ | $\hat{R}_y = 0.99$ | $y = 0.95$ |
| For "B" allowable $x_B$ | $\hat{R}_y = 0.90$ | $y = 0.95$ |

$x_{A,B} = [-2n \ln \hat{R}_y / X_{2n,y}^2]^{1/\alpha} \hat{x}_o$  (728)

$\hat{x}_o = [\frac{1}{n} \sum_{i=1}^n x_i^\alpha]^{1/\alpha}$  (729)



Figure 158 Relation between "A" or "B" allowable and shape parameter.

### c. Normal Distribution

$$\bar{x} - K s' , \quad s' = s [n/(n-1)]^{1/2}, \quad \bar{x} = \frac{1}{n} \sum_i x_i, \quad s = [\frac{1}{n} \sum_i (x_i - \bar{x})^2]^{1/2} \quad (730)$$

K is chosen in such a way that the probability is  $y$  that at least a fraction  $R$  of the distribution will be contained within the interval between  $\bar{x} - K s'$  and  $\infty$ .

|                   |            |            |
|-------------------|------------|------------|
| For "A" allowable | $R = 0.99$ | $y = 0.95$ |
| For "B" allowable | $R = 0.90$ | $y = 0.95$ |

$$x_A = \bar{x} - K_A s', \quad x_B = \bar{x} - K_B s' \quad (731)$$



Figure 159 One-sided tolerance factors for normal distribution,  $K_A$  and  $K_B$ .

d. Sample problem

For the data of sample problem 2.a(2)(d), determine the "A" and "B" allowables.

For the Weibull distribution assume  $\bar{d} = 23.4$

Solution

For the Weibull distribution

$$\hat{x}_o = \left[ \frac{1}{25} \sum_{i=1}^{25} x_i^{23.4} \right]^{1/23.4} = 488$$

From  $\chi^2$  distribution table

$$\chi^2_{50;0.95} = 67.5$$

$$\therefore x_A = [-50 \ln 0.99/67.5]^{1/23.4} 488 = 396 \text{ MPa}$$

$$x_B = [-50 \ln 0.90/67.5]^{1/23.4} 488 = 438 \text{ MPa}$$

For the normal distribution

$$\bar{x} = 478, s = 23.5$$

From the figure

$$K_A = 3.15 \quad K_B = 1.85$$

$$\therefore x_A = 478 - 3.15 \times 23.5 = 404 \text{ MPa}$$

$$K_B = 478 - 1.85 \times 23.5 = 435 \text{ MPa}$$

## 5. STATISTICAL INTERPRETATION OF FAILURE PROCESS

### a. Typical Failure Process

Failure rate at time  $t$  : the probability of failure per unit time after having survived to time  $t$ .



Figure 160 Typical failure rate vs. time.

Initial failure period : Break-in period.

Failure due to initial defect or weakness.

Chance failure period : Failure due to unusually severe, unpredictable, and/or unavoidable environmental conditions.

Wear-out failure period: Failure due to fatigue, aging.

### b. Mathematical Representation of Failure Rate

$\lambda(t)$  : failure rate, hazard function, risk function

$f(t)dt$ : proportion of the initial population, which will fail in the time interval  $(t, t+dt)$

$R(t)=1-F(t)$  : proportion of the initial population, which have survived to time  $t$ .

$$\lambda(t) = \frac{f(t)}{R(t)} = \frac{1}{1-F} \frac{dF}{dt} = -\frac{1}{R} \frac{dR}{dt} \quad (732)$$

$$\frac{dR}{R} = -\lambda(t)dt \quad \ln R = - \int \lambda dt \quad (733)$$

$$\therefore \frac{R(t)}{R(0)} = \exp \left[ - \int_0^t \lambda(\xi) d\xi \right] \quad (734)$$

$$\frac{1-F(t)}{1-F(0)} = \exp \left[ - \int_0^t \lambda(\xi) d\xi \right] \quad (735)$$

$$f(t) = (1-F(0)) \lambda(t) \exp \left[ - \int_0^t \lambda(\xi) d\xi \right] \quad (736)$$

For Weibull distribution

$$\lambda(t) = \frac{\alpha}{t^\alpha} t^{\alpha-1} \quad (737)$$



Figure 161 Failure rate and probability density for Weibull distribution.

For normal distribution

$$\lambda(t) = \frac{\exp \left[ -\frac{1}{2} \left( \frac{t-\mu}{\sigma} \right)^2 \right]}{\int_t^\infty \exp \left[ -\frac{1}{2} \left( \xi - \mu \right)^2 \right] d\xi} \quad (738)$$



Figure 162 Failure rate and probability density for normal distribution.

c. Concept of Failure Potential

$$\lambda(t) = \frac{d\psi}{dt} \quad \psi : \text{failure potential} \quad (739)$$

Introduce

$r$  : material "age"

$r$  depends on the loading history  $s(\xi)$  through

$$r = \int_0^t K(s(\xi)) d\xi \quad (740)$$

$K$  : breakdown rule

$$\lambda(t) = \frac{d\psi}{dr} \frac{dr}{dt} \quad (741)$$

$$\therefore R(t) = \exp [-\psi(r)] \quad (742)$$



## 6. SIZE EFFECT

### a. Simple Chain or Series Model

Consider a chain consisting of  $N$  identical links



$R_o(\sigma)$ : reliability of link, i.e., probability of strength exceeding  $\sigma$ .

$R(\sigma)$  : reliability of chain

$\sigma$  is the same in all the links.

The chain fails if at least one link fails.

$$R = R_o^N$$

$$\therefore F = 1 - R = 1 - R_o^N = 1 - (1 - F_o)^N \quad (743)$$

$$\text{If } R_o = \exp [-(\sigma/\sigma_o)^\alpha], \text{ then} \quad (744)$$

$$R(\sigma) = \exp [-(N(\sigma/\sigma_o)^\alpha)] = \exp [-(\sigma/\sigma_o N)^\alpha], \quad (745)$$

$$\sigma_{oN} = \sigma_o^{N^{-1/\alpha}} \quad (746)$$



Figure 163 Comparison in probability of failure between single link and 20-link chain.



b. General Chain Model

Homogeneous material : uniformly distributed flaws

$\sigma_i$  is uniform in each element.

$$R_i = \left[ R_o(\sigma_i) \right] \Delta V_i \quad (747)$$

$$R = \prod_{i=1}^N \left[ R_o(\sigma_i) \right] \Delta V_i \quad (748)$$

$$\ln R = \sum_{i=1}^N \Delta V_i \ln \left[ R_o(\sigma_i) \right] \quad (749)$$

$$\ln R = \int_V \ln \left[ R_o(\sigma) \right] dV \quad (750)$$

$$\therefore R = \exp \left[ \int_V \ln \left[ R_o(\sigma) \right] dV \right] \quad (751)$$

For Weibull distribution

$$R_o(\sigma) = \exp \left[ -\left( \sigma / \sigma_o \right)^\alpha \right] \quad (752)$$

$$\ln \left[ R_o(\sigma) \right] = -\left( \sigma / \sigma_o \right)^\alpha \quad (753)$$

$$R = \exp \left[ - \int_V \left( \sigma / \sigma_o \right)^\alpha dV \right] \quad (754)$$

R is the probability of surviving the stress distribution  $\sigma$ .

Let

$$\sigma = \mathbf{x} f(\mathbf{x}) \quad \mathbf{x} : \text{position vector within the body.} \quad (755)$$

$\mathbf{x}$ : reference stress

Then

$$R(X) = \exp \left[ -\left( X / X_o \right)^\alpha \right] \quad (756)$$

$$X_o = \sigma_o \left[ \int_V f^\alpha(\mathbf{x}) dV \right]^{-1/\alpha}; \quad \text{characteristic strength} \quad (757)$$



TABLE 71 COMPARISON AMONG CHARACTERISTIC STRENGTHS  
UNDER DIFFERENT TEST METHODS

| 3-pt. flexure<br>(center point loading)                                                                       |                                                                                            | 4-pt. flexure<br>(quarter point loading)                                                                                |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Volume                                                                                                        | $\frac{(X_o)_f}{(X_o)_t} = \left[ 2(a+1)^2 \frac{V_t}{V_f} \right]^{\frac{1}{a}}$          | $\frac{(X_o)_f}{(X_o)_t} = \left[ \frac{4(a+1)^2}{a+2} \frac{V_t}{V_f} \right]^{\frac{1}{a}}$                           |  |
| Surface                                                                                                       | $\frac{(X_o)_f}{(X_o)_t} = \left[ \frac{(a+1) A_t}{A_f + B_f/(a+1)} \right]^{\frac{1}{a}}$ | $\frac{(X_o)_f}{(X_o)_t} = \left[ \frac{(a+1)^2 A_t}{B_f/2 + (a+1)(A_f + B_f)/2 + (a+1)^2 A_f/2} \right]^{\frac{1}{a}}$ |  |
| Edge                                                                                                          | $\frac{(X_o)_f}{(X_o)_t} = \left[ (a+1) \frac{t_t}{t_f} \right]^{\frac{1}{a}}$             | $\frac{(X_o)_f}{(X_o)_t} = \left[ \frac{a+1}{a+2} \frac{t_t}{t_f/2} \right]^{\frac{1}{a}}$                              |  |
| $V_t = WLH, \quad V_f = WLH$<br>$A_t = 2L(W+H), \quad A_f = WL, \quad B_f = LH$<br>$t_t = 4L, \quad t_f = 2L$ |                                                                                            |                                                                                                                         |  |
|                           |                                                                                            |                                                                                                                         |  |

(1) Sample Problem

From tensile coupon tests  $X_o$  and  $\alpha$  are found to be

$$X_o = 134 \text{ MPa}, \quad \alpha = 4.126.$$

What are the expected values of  $X_o$  and  $\alpha$  in 3-pt and 4-pt flexure tests?

Specimen dimensions are:

|              | W<br>mm | L<br>mm | H<br>mm |
|--------------|---------|---------|---------|
| tension      | 13      | 50      | 4       |
| 3-pt flexure | 25      | 64      | 4       |
| 4-pt flexure | 25      | 64      | 4       |

Use the volume model in Table 71 .

Solution

$$V_t = 2600 \text{ mm}^2, \quad V_{f3} = 5400 \text{ mm}^2$$

$$V_{f4} = 5400 \text{ mm}^2$$

$$(X_o)_{f3} = 293 \text{ MPa}, \quad (X_o)_{f4} = 224 \text{ MPa}$$

c. Size Effect in Fatigue

For the representative element

$R_o(t|\sigma_i)$  : Probability of surviving  $t$  when subjected to a loading characterized by  $\sigma_i$ .

For the entire body

$$R(t|\sigma) = \exp \left[ \int_V \ln [R_o(t|\sigma)] dV \right] \quad (758)$$

If  $\sigma$  is uniform throughout the body, and

$$R_o(t|\sigma) = R_o(t) = \exp [-(t/t_o)^\beta], \quad (759)$$

then

$$R(t) = \exp \left[ -V (t/t_o)^\beta \right] \quad (760)$$

(1) Sample Problem

The life distribution of a tensile coupon of unit volume subjected to a constant stress  $\sigma$  is given by

$$R_o(t|\sigma) = \exp \left[ -\left( \frac{t}{t_o} \right)^\beta \left( \frac{\sigma}{\sigma_o} \right)^\alpha \right].$$

Determine the life distribution under a three-point bend stress rupture. Use the volume model in Table 71.

Solution

$$\ln [R_o(t|\sigma)] = -\left( \frac{t}{t_o} \right)^\alpha \left( \frac{\sigma}{\sigma_o} \right)^\beta$$



$$R(t|s) = \exp \left[ -\left( \frac{t}{t_o} \right)^\alpha \int_V \left( \frac{\sigma}{\sigma_o} \right)^\beta dV \right]$$

From Table 71,

$$\int_V \left( \frac{\sigma}{\sigma_o} \right)^\beta dV = \left( \frac{s}{s_o} \right)^\beta, \quad s_o = \sigma_o \left[ \frac{2(\beta+1)^2}{V_f} \right]^{1/\beta}$$

$$\therefore R(t|s) = \exp \left[ -\left( \frac{t}{t_o} \right)^\alpha \left( \frac{s}{s_o} \right)^\beta \right]$$

d. Parallel Model

Definition

The system fails when and only when all subsystems fail.

Probability of failure of the system

$$F = F_o^N \quad (761)$$



System reliability

$$R = 1 - F = 1 - F_o^N \quad (762)$$

(1) Sample Problem

Determine the reliability of a parallel system of 10 bars under a strain controlled test. Assume that the probability of failure of each element is

$$F_o = 1 - \exp - (e/0.6)^3, \text{ where } e \text{ is in \%}.$$

**Solution**

Since  $\epsilon$  is the same in all bars, and since  $\epsilon$  is controlled, failure of one bar does not affect the strain in the other bars. Therefore,

$$F = F_0^N = \left[ 1 - \exp [-(\epsilon/\epsilon_0)]^3 \right]^{10}$$



Figure 164 Comparison between  $F_0$  and  $F$ . System reliability is improved over element reliability.

## 7. DATA AVERAGING

### a. Compliances

Invariants : independent of fiber orientation

Measure:  $S'_{11}, S'_{22}, S'_{12}, S'_{66}, S'_{16}, S'_{26}$

Calculate:  $I_1, I_2, R_1, R_2$

$$I_1 = (S'_{11} + S'_{22} + 2S'_{12}) / 4$$

$$I_2 = (S'_{11} + S'_{22} - 2S'_{12} + S'_{66}) / 8$$

$$R_1 = [(S'_{11} + S'_{22})^2 + (S'_{16} + S'_{26})^2]^{1/2} / 2$$

$$R_2 = [(S'_{11} + S'_{22} - 2S'_{12} - S'_{66})^2 + 4(S'_{26} - S'_{16})^2]^{1/2} / 8$$

(763)

Calculate average values :  $\bar{I}_1, \bar{I}_2, \bar{R}_1, \bar{R}_2$

Average compliances :

$$\bar{S}'_{11} = \bar{I}_1 + \bar{I}_2 - \bar{R}_1 - \bar{R}_2$$

$$\bar{S}'_{22} = \bar{I}_1 + \bar{I}_2 + \bar{R}_1 - \bar{R}_2$$

$$\bar{S}'_{12} = \bar{I}_1 - \bar{I}_2 + \bar{R}_2$$

$$\bar{S}'_{66} = 4\bar{I}_2 + 4\bar{R}_2$$

(764)

### (1) Sample Problem

Test data for compliance of unidirectional composite

| Off-axis Angle | $S'_{11}$ | $S'_{12}$ | $S'_{16}$ | $S'_{22}$ | $S'_{26}$ | $S'_{66}$ |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0°             | .059      | -.028     | .0        | .892      | .0        | 1.380     |
| 15°            | .115      | -.097     | .318      | .864      | .078      | 1.292     |
| 30°            | .308      | -.085     | .381      | .661      | .206      | 1.055     |
| 45°            | .496      | -.126     | .390      | .496      | .338      | .896      |

Determine  $S_{11}, S_{12}, S_{22}, S_{66}$

**Solution**

| Off-axis Angle | $I_1$ | $I_2$ | $R_1$ | $R_2$ |
|----------------|-------|-------|-------|-------|
| 0°             | .2238 | .2984 | .4165 | .0466 |
| 15°            | .1963 | .3081 | .4236 | .0618 |
| 30°            | .1998 | .2743 | .3425 | .0450 |
| 45°            | .1850 | .2675 | .3640 | .0454 |
| Ave.           | .2012 | .2871 | .3867 | .0497 |

$$\bar{S}_{11} = .0519$$

$$\bar{S}_{12} = -.0362$$

$$\bar{S}_{22} = .8252$$

$$\bar{S}_{66} = 1.3472$$

b. Strength Under Combined Loading

Failure function  $f$

$$f(\sigma_1) = F_1 \sigma_1 + F_2 \sigma_2 + F_{11} \sigma_1^2 + F_{12} \sigma_1 \sigma_2 + F_{22} \sigma_2^2 + F_{66} \sigma_6^2 = 1 \quad (765)$$

Determine:  $F_1, F_2, F_{11}, F_{12}, F_{22}, F_{66}$

Measure  $\sigma_1, \sigma_2, \sigma_6$  at failure.

$$\begin{bmatrix} \sigma_1^{(1)} & \sigma_2^{(1)} & \sigma_1^{(1)2} & \sigma_1^{(1)} \sigma_2^{(1)} & \sigma_2^{(1)2} & \sigma_6^{(1)2} \\ \sigma_1^{(2)} & \sigma_2^{(2)} & \sigma_1^{(2)2} & \sigma_1^{(2)} \sigma_2^{(2)} & \sigma_2^{(2)2} & \sigma_6^{(2)2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_1^{(n)} & \sigma_2^{(n)} & \sigma_1^{(n)2} & \sigma_1^{(n)} \sigma_2^{(n)} & \sigma_2^{(n)2} & \sigma_6^{(n)2} \end{bmatrix} = \begin{Bmatrix} F_1 \\ F_2 \\ F_{11} \\ F_{12} \\ F_{22} \\ F_{66} \end{Bmatrix} \quad (766)$$

$$[\sigma] \{F\} = \{1\} \quad (767)$$

$[\sigma]$  :  $6 \times n$  matrix

$\{F\}$  :  $1 \times 6$  matrix  $n$ : no. of tests

$\{1\}$  :  $1 \times n$  matrix

$$[\sigma]^T [\sigma] \{F\} = [\sigma]^T \{1\} \quad (768)$$

$$\therefore \{F\} = ([\sigma]^T [\sigma])^{-1} [\sigma]^T \{1\} \quad (769)$$

Minimum no. of tests required = no. of components of F

Distribution of f

$$f_i(\sigma_i) = F_1 \sigma_1^{(i)} + F_2 \sigma_2^{(i)} + F_{11} \sigma_1^{(i)2} + F_{12} \sigma_1^{(i)} \sigma_2^{(i)} + F_{22} \sigma_2^{(i)2} + F_{66} \sigma_6^{(i)2} \quad (770)$$

$$\bar{f} = \frac{1}{n} \sum_i f_i \quad (771)$$

$$s = \left[ \frac{1}{n} \sum_i (f_i - \bar{f})^2 \right]^{1/2} \quad (772)$$

$$F(f) = 1 - \exp \left[ -\left( \frac{f - \bar{f}}{s} \right)^{\alpha} \right] \quad (773)$$

If no coupling is assumed between  $\sigma_1$  and  $(\sigma_2, \sigma_6)$ , then one can define

$$f_f(\sigma_1) = F_1 \sigma_1 + F_{11} \sigma_1^2, \quad (774)$$

$$f_m(\sigma_2, \sigma_6) = F_2 \sigma_2 + F_{22} \sigma_2^2 + F_{66} \sigma_6^2. \quad (775)$$

### (1) Sample problem

Failure occurred at the following values of  $\sigma_2$  and  $\sigma_6$ .

Determine  $F_2$ ,  $F_{22}$ ,  $F_{66}$ , and f.

|                  |       |        |       |       |        |       |
|------------------|-------|--------|-------|-------|--------|-------|
| $\sigma_2$ , MPa | 9.99  | 12.78  | 25.03 | 11.05 | -18.62 | 12.82 |
| $\sigma_6$ , MPa | 37.30 | -45.26 | 5.62  | 51.34 | 69.50  | 0     |

Solution

$$[\sigma]^T [\sigma] = \begin{bmatrix} 1423 & 14761 & -33868 \\ 581209 & 2350972 & \\ \text{symmetric} & 34472975 \end{bmatrix}$$

$$[\sigma]^T \{1\} = \begin{Bmatrix} 43.1 \\ 1423 \\ 9545 \end{Bmatrix} \quad F_2 = 3.035 \times 10^{-2} \text{ (MPa)}^{-1}$$
$$F_{22} = 6.035 \times 10^{-4} \text{ (MPa)}^{-2}$$
$$F_{66} = 2.655 \times 10^{-4} \text{ (MPa)}^{-2}$$

$$f: 0.73, 1.03, 1.15, 1.11, 0.93, 0.49$$

## SECTION XV STRUCTURAL ELEMENTS

### 1. LAMINATED COMPOSITE BEAMS - STATIC BEHAVIOR

#### a. Formulation

The classical beam bending equation is derived by combining the appropriate moment-curvature relationship and equilibrium equation.

$$K_x = \frac{-d^2 w}{dx^2} = \frac{M}{EI} \quad (776)$$

$$\frac{d^2 M}{dx^2} + q(x) = 0 \quad (777)$$

Then  $EI \frac{d^4 w}{dx^4} = q(x)$  (778)

For laminated beams it is convenient to replace EI by an "effective bending stiffness".

The suitability of this approach has been investigated by deriving a beam theory from classical plate theory. The plate constitutive equations - inverted form

$$\begin{Bmatrix} e^0 \\ K \end{Bmatrix} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \begin{Bmatrix} N \\ M \end{Bmatrix} \quad (779)$$

A solution for the deflection of a wide beam, simply supported, loaded by a uniform moment is available. The apparent bending stiffness is

$$(EI)_A = \frac{bR^2}{[D_{11}' R^2 + D_{16}' R + D_{12}']} \quad (780)$$

where R-length to width ratio.

The effect of bending anisotropy can be significant.

Figure 165 Unidirectional beam under pure bending. Fibers oriented  $\theta$  to x axis. Twisting curvature "lifts" beam at supports.





Figure 166  $(EI)_A / (b/D_{11}')$  as a function of  $\theta$ ; as a function of  $R$  for a  $10^\circ$  off axis unidirectional beam.

The  $D'$  matrix is defined as  $[D - BA^{-1}B]^{-1}$  and involves the B-coupling matrix for unsymmetrical laminates.

Effects of bending anisotropy on  $(EI)_A$  depend on  $E_{11}/E_{22}$ ,  $h$ ,  $R$ , and stacking sequence.

Effects of B-coupling on  $(EI)_A$  depend on  $E_{11}/E_{22}$ ,  $h$  and stacking sequence.

$R$  large or  $D_{16}'/D_{11}'$  small

$$(EI)_A \approx \frac{b}{D_{11}'} \quad (781)$$

$D_{16}' = 0$

$$(EI)_A = \frac{b}{D_{11}'} \sim (D_{11} - B_{11}^2/A_{11})b \quad (782)$$

$(D_{11} - B_{11}^2/A_{11})b$  is a "reduced bending stiffness" and is comparable to the transformed area method of computing EI.

Mid-plane symmetry and no bending anisotropy,  $B_{ij} = D_{16} = 0$

$$(EI)_A \sim D_{11}b \quad (783)$$

occasionally, one finds

$$(EI)_A = \sum_k E_x^{k,k} I_k \quad (784)$$

where  $I^k$  is computed about the beam mid-surface

$$\text{and } \frac{1}{E_x} = \frac{\cos^4 \theta}{E_{11}} + \left( \frac{1}{G_{12}} + \frac{2\nu_{12}}{E_{22}} \right) \sin^2 \theta \cos^2 \theta + \frac{\sin^4 \theta}{E_{22}} \quad (785)$$

Significant error can result if Eq. (784) is used when B coupling and bending anisotropy are present.



Figure 167 Ratio of bending stiffness computed by Eqs. (781) and (784-785)

The assumed linear strain in a beam results from considering bending deformation only.

Shearing deformation can be significant in composite beams.

Example. Simply supported beam, point loaded at center, deflection computed for the center (by virtual work).

$$\delta_c = \frac{P\ell}{4EI} \left[ \frac{\ell^2}{12} + \lambda n \Gamma^2 \right] = \frac{P\ell}{4EI} [\delta_b + \delta_s] \quad (786)$$

↑ shear term  
 ↓ bending term

where

$\ell$  = beam length

$$\Gamma^2 = I/A$$

$$n = E_x/G_{xz}$$

$\lambda$  = form factor

consider a unidirectional composite, fibers oriented to x-axis

$$\ell = 8, 4, 2 \text{ in}$$

$$E_{11} = E_x = 25 \times 10^6 \text{ psi}, \quad G_{13} = G_{xz} = 0.5 \times 10^6 \text{ psi}$$

$$b = 1 \text{ in}, \quad t = 0.25 \text{ in.}$$

$$I = 0.0013 \text{ in}^4$$

$$d = 1.2 \text{ (rectangular beam)}$$

$$A = 0.25 \text{ in}^2$$

$$\Gamma^2 = 0.0052 \text{ in}^2$$

|         | $\delta_b = l^2/12$ | $\delta_s = n\Gamma^2$ | $\delta_b / (\delta_s + \delta_b)$ | $\delta_s / (\delta_s + \delta_b)$ |
|---------|---------------------|------------------------|------------------------------------|------------------------------------|
| $l = 8$ | 5.333               | 0.312                  | 0.945                              | 0.055                              |
| $l = 4$ | 1.333               | 0.312                  | 0.810                              | 0.190                              |
| $l = 2$ | 0.333               | 0.312                  | 0.516                              | 0.484                              |

Beam deflections (negligible or zero bending anisotropy)

$$(EI)_A = (D_{11} - B_{11}^2/A_{11})b \quad (787)$$

and

$$(EI)_A W(x) = \iiint q(x) dx \quad (788)$$

as in classical beam theory

Beam stresses

$$\text{normal } \sigma_x^k = E_x^k (e_x^0 + z_x^k) \quad (789)$$

$$e_x^0 = B_{11}^{-1} M \quad (790)$$

$$z_x^k = D_{11}^{-1} M \quad M = b M_x \quad (791)$$

shear

$$(\text{rect. cross-section}) \quad \tau_{xz} \approx \frac{V}{2I} \left[ \left( \frac{h}{2} \right)^2 - y_k^2 \right] \quad (\text{str. of mat'l's}) \quad (792)$$

$y_k$  - distance from mid-surface to  $k^{\text{th}}$  interface

$$\tau_{xz} (\text{max}) = \frac{3}{2} \frac{V}{A} \quad (793)$$

Figure 168 First failure in a beam can be either shear or flexural stress depending on span-to-depth ratio,  $L/h$ .



b. Problems

(1) Assess the effect of B-coupling on  $\{EI\}_A$  for

a)  $0^\circ \begin{matrix} 24 \\ 24 \end{matrix} / 90^\circ \begin{matrix} 24 \\ 24 \end{matrix}$

b)  $0^\circ \begin{matrix} 12 \\ 12 \end{matrix} / 90^\circ \begin{matrix} 12 \\ 12 \end{matrix} / 0^\circ \begin{matrix} 12 \\ 12 \end{matrix} / 90^\circ \begin{matrix} 12 \\ 12 \end{matrix}$

c)  $(0^\circ \begin{matrix} 2 \\ 2 \end{matrix} / 90^\circ \begin{matrix} 2 \\ 2 \end{matrix}) \begin{matrix} 12 \\ 12 \end{matrix}$

where  $E_{11} = 20 \times 10^6$  psi

$G_{12} = 0.5 \times 10^6$  psi

$E_{22} = 1 \times 10^6$  psi

$\nu_{12} = 0.3$

$t = 0.005$  in.

(2) Use the equilibrium equations given below and Eq. (779) to derive a governing equation for the beam-column.

$$\frac{dN_x}{dx} = 0, \quad , \quad \frac{d^2M_x}{dx^2} + N_x \frac{d^2W}{dx^2} + q(x) = 0$$



## 2. LONG CYLINDRICAL TUBES (AXIAL LOAD, TORSION, PRESSURE, BEAM BENDING)

### a. Formulation

Membrane theory with anisotropy and B-coupling included.

Stress fields more than one diameter from ends.

$$\text{Define } a_{ij} = \frac{1}{h} \begin{bmatrix} A_{11} & A_{12} - B_{12}/R & A_{16} + B_{16}/R \\ A_{12} & A_{22} - B_{22}/R & A_{26} + B_{26}/R \\ A_{16} & A_{26} - B_{26}/R & A_{66} + B_{66}/R \end{bmatrix} \quad (794)$$

and

$$b_{ij} = a_{ij}^{-1} \quad (795)$$

now

$$e_i^o = \frac{b_{ij}}{h} N_j \quad (796)$$

and stress in a layer

$$\sigma_i = Q_{ij} \frac{b_{jk}}{h} N_k = \frac{Z}{Rh} [Q_{i6} b_{6j} - Q_{i2} b_{2j}] N_j \quad (797)$$

$N_x$  - axial load

$N_\theta$  =  $pR$  - pressure load

$N_{x\theta}$  - torsion load

Axial compliance

$$e_x^o = \frac{b_{11}}{h} N_x ; S_x = b_{11}/h \quad (798)$$

Effective axial modulus

$$E_x = 1/S_x = h/b_{11} \quad (799)$$

Cylindrical tube in beam bending (approx.)

$$E_x I \frac{d^4 w}{dx^4} = q(x) \quad (800)$$

Tubes with low  $A_{66}$  terms (all 0°, 0/90), include effect of shear deformation. Form factor,  $\lambda = 2$

b. Problem

Design a laminated tube,  $0^\circ / \pm 45^\circ$  ply configuration, and calculate the stress in the innermost and outermost  $45^\circ$  and  $0^\circ$  layers.

$$R_i = 2 \text{ in.}$$

$$E_{11} = 20 \times 10^6 \text{ psi} \quad e_1^l = +0.066, -0.005 \quad N_x = 2300 \text{ lbs/in.}$$

$$E_{22} = 1 \times 10^6 \text{ psi} \quad e_2^l = +0.003, -0.006 \quad N_{x\theta} = 500 \text{ lbs/in.}$$

$$G_{12} = 0.5 \times 10^6 \text{ psi} \quad e_6^l = \pm 0.015$$

$$\nu_{12} = 0.3$$

$$t = 0.005 \text{ in.}$$

### 3. COLUMNS (COMPRESSION LOADED 1-D MEMBERS)

#### a. Formulation

Laminated column  $D_{16} = 0$  or  $D_{16}/D_{11}$  very small

Bending stiffness

$$(EI)_A = (D_{11} - B_{11})^2/A_{11} \quad (801)$$

Column equation

$$(EI)_A \frac{d^4 w}{dx^4} + P \frac{d^2 w}{dx^2} = 0 \quad (802)$$

Euler buckling load, simply supported columns

$$P_e = \frac{\pi^2 (EI)_A}{L^2} \quad (803)$$

For general end restraints  $\frac{dw}{dx} = M_1/\alpha_1$  @  $x = 0$

$$\frac{dw}{dx} = M_2/\alpha_2 \text{ @ } x = L \quad (804)$$

$$\text{defining } \lambda_1 = \frac{(EI)_A}{\alpha_1 L}, \quad \lambda_2 = \frac{(EI)_A}{\alpha_2 L} \quad (805)$$

$$\phi = kL, \quad k^2 = p/(EI)_A$$

the characteristic equation is

$$(1 - \lambda_1^2 - \lambda_2^2) \phi \sin \phi + (2 + \lambda_2^2) \cos \phi - 2 = 0 \quad (806)$$

For special boundary conditions, the effective length approach can be used with

|                                           |                                                                 |      |      |     |     |      |
|-------------------------------------------|-----------------------------------------------------------------|------|------|-----|-----|------|
| $L_{eff} = KL$                            | Buckled shape of column is shown by dashed line                 |      |      |     |     |      |
|                                           | Theoretical K value                                             | 0.5  | 0.7  | 1.0 | 1.0 | 2.0  |
| $P_{cr} = \frac{\pi^2 (EI)_A}{L_{eff}^2}$ | Recommended design value when ideal conditions are approximated | 0.65 | 0.80 | 1.2 | 1.0 | 2.10 |
|                                           | End condition code                                              |      |      |     |     |      |

### Role of $B_{11}$ coupling

- (1) Reduced bending stiffness - lower  $P_{cr}$
- (2) The reduced bending stiffness can also be calculated by the transformed area method. This illustrates the additional effect of shifting the columns effective centroid (neutral axis for bending)



Figure 169 A 'transformed section', all  $0^\circ$ ,  $b_t = (E_{22}/E_{11})b$ .

Therefore, axial loads applied coincident to the mid surface produce bending deformations with possible failure due to excessive deformation with

$$P < P_{cr} \text{ (reduced)}$$

### Role of low interlaminar shear modulus $G_{xz}$

Reduces resistance (total effective stiffness) to out-of-plane deformation (buckling)

$$\bar{P}_{cr} = k P_{cr} \quad (807)$$

where

$$k = \frac{1}{1 + \lambda \frac{P_{cr}}{AG}} \quad - \text{form factor} \quad (808)$$

### Laminated circular tube - compression

no anisotropy

$$(EI)_A = E_x I \quad (809)$$

$E_x$  defined by

### Secondary column failure modes

For cylindrical tubes, high  $R/h$ , high compressive load, there can be cylindrical buckling - many analytical tools available.

Anisotropy and heterogeneous - Cheng and Ho

heterogeneous - Tsai

orthotropic - NASA and Air Force Design Guides, Handbooks

Homogeneous, orthotropic approximation

$$\sigma_{cr} = KE_1 (h/D)$$

(810)

K is evaluated for various laminates and materials

Legend:  
 — Boron Epoxy  
 - - - U.H. M. Graphite/Epoxy  
 - - H. M. Graphite/Epoxy  
 - - H. S. Graphite/Epoxy  
 - - - Fiberglas



(a)

Legend:  
 — Boron/Epoxy  
 - - - U.H. M. Graphite/Epoxy  
 - - H. M. Graphite/Epoxy  
 - - H. S. Graphite/Epoxy



(b)

Figure 170 Buckling parameter:  
 (a)  $[\pm\theta]$  laminate;  
 (b)  $[0/90]$  laminate.

#### b. Problems

- (1) Develop an expression for the layer stresses in a laminated beam-column.
- (2) Size a laminated tube for the given compressive load and geometry

$$P = 20,000 \text{ lbs}$$

$$R = 2 \text{ in.}$$

$$L = 15 \text{ ft.}$$

$$K = 1$$

$$E_{11} = 40 \times 10^6 \text{ psi}$$

$$G_{12} = 0.5 \times 10^6 \text{ psi}$$

$$t = 0.005 \text{ in.}$$

$$E_{22} = 1 \times 10^6 \text{ psi}$$

$$\nu_{12} = 0.3$$

- (3) Assess the effect of low shear stiffness on  $P_{cr}$ .

- (4) Re-evaluate the design of (2) for local instability.



## 4. COMPOSITES FOR SELECTIVE REINFORCEMENT OF STRUCTURAL ELEMENTS

### a. Formulation

Standard structural forms can be reinforced by unidirectional ( $0^\circ$ ) composites for enhanced specific stiffness and strength.

#### Examples



Beams



Panel Stringers

Mid plane symmetric

$$(EI)_A = \sum (EI) \quad (811)$$

$$(EI)_A = D_x + B_x^2 / A_x \quad (812)$$

or transformed area method

Specific stiffness

$$(EI)_A / \rho_T = \frac{\sum (EI)}{\sum (\rho V)} = \frac{\sum (EI)}{\rho V} \quad (813)$$

Shear stress in adhesive



$$\tau = \frac{VQ}{Ib} \quad (814)$$

$\bar{I}$  - moment of inertia, transformed area, all material ①

b - width

V - shear force at x

Q - first moment of area, composite reinforcement about centroid axis

Secondary failure mode

local buckling - compare to sandwich beam face sheet.

b. Problem

An aluminum stringer reinforced panel is to be upgraded for higher specific stiffness.

Unidirectional boron/epoxy strip reinforcement is chosen. Evaluate the change in

specific stiffness ( $EI/A$ )



$$t_p = 0.050 \text{ in.} \quad t_s = 0.010 \text{ in.}$$

$$h_s = 0.50 \text{ in.} \quad t_c = 0.0$$

$$b_s = 1.0 \text{ in.} \quad b = 4.0 \text{ in.}$$

$$\bar{A}_x = A_{11} + E_s A_s / b$$

$b$  - stringer spacing

$$\bar{B}_x = B_{11} + Z_s E_s A_s / b$$

subscript  $s$  - relates to stringer

$$\bar{D}_x = D_{11} + E_s I_s / b + Z_s^2 E_s A_s / b$$

$$E_{11} = 35 \times 10^6 \text{ psi} \quad G_{12} = 1 \times 10^6 \text{ psi}$$

$$E_{22} = 3.5 \times 10^6 \quad \nu_{12} = 0.25$$

$$\rho_{AL} = 0.1 \text{ lbs/in}^3 \quad \rho_c = 0.075 \text{ lbs/in}^3$$

## 5. THERMAL STRESSES

Tubes

$$\sigma_i = \bar{Q}_{ij} \left[ \frac{b_{jk}}{h} \bar{N}_k - \bar{\epsilon}_j \right] + \frac{Z}{Rh} \left[ \bar{Q}_{i6} b_{6j} - \bar{Q}_{i2} b_{2j} \right] \bar{N}_j \quad (815)$$

$$\text{where } \bar{N}_i = \int_{-h/a}^{h/2} \bar{Q}_{ij} \bar{\epsilon}_j dz \quad (816)$$

$$\bar{\epsilon}_i = \bar{\alpha}_i \Delta T \quad (817)$$

$\bar{\alpha}_i$  = lamina coef. of thermal expansion in  $x, \theta$  coord.

$(\bar{\alpha}_x, \bar{\alpha}_\theta, \bar{\alpha}_{x\theta}$  from  $\alpha_1, \alpha_2$ )



## 6. SIZING FOR STIFFNESS

### a. Formulation

Stiffness critical designs : bending - deflection  
compression - stability  
dynamic - frequency control

In 1-D structures (beams, columns), unidirectional laminates will predominate in designs.

In 2-D structures (plates, shells), angle-plyed laminates become more efficient.

Plate stability (assume quasi-homogeneous, orthotropic :  $B_{ij} = 0$ ,  $D_{16}$ ,  $D_{26}$  - negligible)  
simply supported, compression loaded on X edges

$$N_{xcr} = \frac{2\pi^2}{b^2} \left\{ (D_{11} D_{22})^{1/2} + D_{12}^2 D_{66} \right\} \quad (818)$$

or

$$\sigma_{xcr} = K(h/b)^2 \quad (819)$$

Numerous sources exist which give K for different materials and laminate configurations.  
Examples are given.



Figure 171 Example calculations.

| 0°/90°/±45° laminates                    |     |     |      | PLATE STABILITY OF 0°, 90°, AND ±45° FAMILY OF PLATES                             |                                                     |                         |
|------------------------------------------|-----|-----|------|-----------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|
| example                                  |     |     |      | Loading                                                                           | $\sigma_{cr} = K_{cr} \left( \frac{t}{b} \right)^2$ | t - Laminate Thickness  |
|                                          |     |     |      |  | $K_{cr} \times 10^{-6}$ psi                         |                         |
| Thickness Fraction of Ply Orientation, % |     |     |      | Quasi-Homogeneous Plying Order                                                    | Symmetric Plying Order                              | Unbalanced Plying Order |
| 45°                                      | 0°  | 90° | 135° |                                                                                   |                                                     |                         |
| 50                                       | 0   | 0   | 50   | 54.5                                                                              | 45.8                                                | 27.1                    |
| 40                                       | 20  | 0   | 40   | 50.0                                                                              | 42.7                                                | 25.2                    |
| 30                                       | 40  | 0   | 30   | 45.5                                                                              | 40.7                                                | 25.8                    |
| 20                                       | 60  | 0   | 20   | 41.1                                                                              | 39.1                                                | 29.0                    |
| 10                                       | 80  | 0   | 10   | 36.5                                                                              | 36.8                                                | 33.5                    |
| 0                                        | 100 | 0   | 0    | 32.0                                                                              | 32.0                                                | 32.0                    |
| 40                                       | 0   | 20  | 40   | 50.0                                                                              | 42.8                                                | 25.2                    |
| 30                                       | 20  | 20  | 30   | 45.5                                                                              | 40.8                                                | 27.7                    |
| 20                                       | 40  | 20  | 20   | 41.1                                                                              | 39.1                                                | 29.6                    |
| 10                                       | 60  | 20  | 10   | 36.5                                                                              | 36.8                                                | 30.4                    |
| 0                                        | 80  | 20  | 0    | 32.0                                                                              | 32.0                                                | 24.3                    |
| 30                                       | 0   | 40  | 30   | 45.5                                                                              | 40.5                                                | 25.8                    |
| 20                                       | 20  | 40  | 20   | 41.1                                                                              | 39.2                                                | 29.6                    |
| 10                                       | 40  | 40  | 10   | 36.5                                                                              | 36.8                                                | 28.2                    |
| 0                                        | 60  | 40  | 0    | 32.0                                                                              | 32.0                                                | 18.5                    |
| 20                                       | 0   | 60  | 20   | 41.1                                                                              | 38.9                                                | 29.0                    |
| 10                                       | 20  | 60  | 10   | 36.5                                                                              | 36.8                                                | 30.4                    |
| 0                                        | 40  | 60  | 0    | 32.0                                                                              | 32.0                                                | 18.5                    |
| 10                                       | 0   | 80  | 10   | 31.2                                                                              | 32.6                                                | 33.2                    |
| 0                                        | 20  | 80  | 0    | 32.0                                                                              | 32.0                                                | 24.3                    |
| 0                                        | 0   | 100 | 0    | 20.8                                                                              | 20.8                                                | 20.8                    |
| Quasi-Isotropic                          |     |     |      |                                                                                   |                                                     |                         |
| 25                                       | 25  | 25  | 25   | 43.3                                                                              | 40.0                                                | 28.6                    |

1. Quasi-homogeneous plying orders contain a sufficient number of consistently repeated sequences of lamina to make negligible the effects of resulting bending couples. The basis for these sequences is 45°, 0°, 90°, and 135°.

2. Symmetric plying orders contain balanced ply orientations where the sequence of lamina directions are exactly mirror image about the laminate midplane. The bases for these are 45°, 0°, 90°, 135°, 90°, 0°, and 45°.

3. Unbalanced plying orders contain only one sequence of orientations based on 45°, 0°, 90°, and 135°.

It is evident that for  $N_x$  loading the  $\pm 45^\circ$  plate gives the maximum resistance to buckling. This results from the dominant  $2D_{66}$  term in Eq. (818). Since strength must also be adequate,  $0^\circ$  plies may be added or  $\pm \theta$  laminates at lower angles may be considered.

Hole of stacking sequence - example

$\pm 45^\circ$  plies on the outer surfaces produces the maximum  $D_{66}$ .

TABLE 73 EFFECTS OF ORIENTATION SEQUENCES ON STABILITY OF SYMMETRICAL (BALANCED) QUASI-ISOTROPIC PLATES

| Orientation Sequence of Layers |             |            |             |             |            |             |             | $K_{cr} \times 10^{-6}$ psi |
|--------------------------------|-------------|------------|-------------|-------------|------------|-------------|-------------|-----------------------------|
| $45^\circ$                     | $135^\circ$ | $0^\circ$  | $90^\circ$  | $90^\circ$  | $0^\circ$  | $135^\circ$ | $45^\circ$  | 50.6                        |
| $135^\circ$                    | $0^\circ$   | $45^\circ$ | $90^\circ$  | $90^\circ$  | $45^\circ$ | $0^\circ$   | $135^\circ$ | 44.0                        |
| $0^\circ$                      | $135^\circ$ | $45^\circ$ | $90^\circ$  | $90^\circ$  | $45^\circ$ | $135^\circ$ | $0^\circ$   | 40.6                        |
| $45^\circ$                     | $0^\circ$   | $90^\circ$ | $135^\circ$ | $135^\circ$ | $90^\circ$ | $0^\circ$   | $45^\circ$  | 40.0                        |
| $0^\circ$                      | $135^\circ$ | $90^\circ$ | $45^\circ$  | $45^\circ$  | $90^\circ$ | $135^\circ$ | $0^\circ$   | 37.7                        |
| $0^\circ$                      | $90^\circ$  | $45^\circ$ | $135^\circ$ | $135^\circ$ | $45^\circ$ | $90^\circ$  | $0^\circ$   | 34.7                        |

1. All plates are equal in thickness.

2. Loading and laminate plane coordinates are the same as in Table 72

Consider compression strength

$$\sigma_x = N_x/h \quad (820)$$

Requiring  $\sigma_x = \sigma_{xcr}$  and defining as  $\sigma$  optimum

$$\sigma_{OPT}^3 = \sigma_{xcr} \cdot \sigma_x^2 = K(h/b)^2 (N_x/h)^2 \quad (821)$$

eliminates  $h$  as

$$\sigma_{OPT} = K^{1/3} \left( \frac{N_x}{b} \right)^{2/3} \quad (822)$$

$$\left( \frac{N_x}{b} \right)^{2/3} - \text{structural index}$$

Combining with a laminate failure criterion, the optimum laminate can be designed for the specific class being considered ( $\pm\theta_m$ ,  $\pm\theta_n$ ,  $0^\circ/90^\circ/\pm45^\circ$ )



Figure 172 Examples of Uniaxial strength allowables (compression).

### b. Problems

- (1) Calculate the individual bending stiffnesses (D's) of Eq. (818) for the following laminates and material

$$[+45, -45, +45, -45]_s$$

$$[0, 90, 0, 90]_s$$

$$[+45, -45, 0, 90]_s$$

$$E_{11} = 30 \times 10^6 \text{ psi} \quad G_{12} = 0.5 \times 10^6 \text{ psi} \quad t = 0.005$$

$$E_{22} = 1.5 \times 10^6 \text{ psi} \quad v_{12} = 0.3$$

- (2) Using the charts and tables available for strength and  $K_{cr}$  for  $(0^\circ/\pm45^\circ/90^\circ)$  laminate class, determine a minimum weight design for a compression panel where

$$N_x = 5,000 \text{ lbs/in.} \quad N_y = N_{xy} = 0 \\ a = b = 10 \text{ inches}$$

Plot  $WT/b$  vs  $N_x/b$  for stability controlled and strength controlled designs

Plot  $\sigma_{OPT}$  vs  $(N_x/b)^{2/3}$



## 7. DESIGN PROBLEM - STRINGER REINFORCED COMPRESSION PANEL

Discussion and notes

A large grid of squares, approximately 20 columns by 30 rows, intended for drawing the design problem.



## SECTION XVI

### SPECIMEN CONFIGURATIONS AND LOADINGS

#### 1. TESTS FOR LAMINA PROPERTIES

##### a. Properties to Be Measured

1. TENSION -  $E_L$ ,  $E_T$ ,  $V_{LT}$ ,  $F_L^t$ ,  $F_T^t$   
COUPON, SANDWICH BEAM, TUBE
2. COMPRESSION -  $E_L$ ,  $E_T$ ,  $V_{LT}$ ,  $F_L^c$ ,  $F_T^c$   
COUPON, SANDWICH BEAM, TUBE, SHORT BAR
3. INPLANE SHEAR -  $G_{LT}$ ,  $F_{LT}^s$   
[ $\pm 45^\circ$ ] COUPON, CROSS SANDWICH BEAM, TUBE
4. FLEXURE -  $E_f$ ,  $F_f$   
BEAM
5. INTERLAMINAR SHEAR -  $G_{IS}$ ,  $F_{IS}$   
SHORT BEAM
6. GENERAL STATE OF STRESS  
OFF-AXIS COUPON, TUBE, CROSS SANDWICH BEAM

##### b. Tension and Compression



| ORIENTATION    | L | W   | T     | $L_T$ | $T_T$ |
|----------------|---|-----|-------|-------|-------|
| $0^\circ$      | 9 | 0.5 | 6 pl. | 1.5   | 1/16  |
| $90^\circ$     | 9 | 1   | 8 pl. | 1.5   | 1/16  |
| $\pm 45^\circ$ | 9 | 1   | 8 pl. | 1.5   | 1/16  |

(a)



|       | CELANESE | SWRI* |
|-------|----------|-------|
| L     | 5.5      | 8.5   |
| W     | .25      | .50   |
| T     | —        | —     |
| $L_T$ | 2.5      | 2.5   |

\*SIDE SUPPORT

(b)

Figure 173. Specimen configurations: (a) tension; (b) compression.



d. Flexure Tests



$$L = 4, W = 0.5, T = 0.075 - 0.090, S = 2.5$$

$$\sigma = 3PS/2WT^2$$

$$E_f = (S^3/4WT^3)(P/U)$$

U: DEFLECTION



$$L = 3.0, W = 0.5, T = 0.075 - 0.090, S = 2.0$$

$$\sigma = 3PS/4WT^2$$

$$E_f = (11S^3/64WT^3)(P/U)$$

U: DEFLECTION

(a)

(b)

Figure 176 Flexure test configurations: (a) 3-pt.; (b) 4-pt.



Figure 177 Relation between maximum tensile stress and maximum shear stress in flexure tests.

e. Sandwich Beam Test



SANDWICH BEAM DETAILS

| ORIENTATION | NO. OF PLIES | SECOND FACE MATERIAL          | CORE ALUMINUM HONEYCOMB DENSITY (pcf) |
|-------------|--------------|-------------------------------|---------------------------------------|
| 0°          | 6            | STAINLESS STEEL (.125" THICK) | 23                                    |
| 90°         | 8            | GLASS/EPOXY (.08" THICK)      | 4.5                                   |

$$\sigma = 4P/T [1.5 + (T + T_F)/2]$$

Figure 178 Sandwich beam configuration.



Figure 179 Tube configuration.



Figure 181 Shear stress-strain relations. [44]

TABLE 74 COMPRESSION PROPERTIES [45]

| ORIENTATION  | TYPE OF SPECIMEN | TEST TEMP. ( $^{\circ}$ F) | E (MSI) | V   | $\sigma_{ult}$ (KSI) | $\epsilon_{ult}$ (%) |
|--------------|------------------|----------------------------|---------|-----|----------------------|----------------------|
| $0^{\circ}$  | COUPON           | RT                         | 23      | .34 | 218                  | .95                  |
|              | S. BEAM          | RT                         | 23      | .39 | 247                  | 1.42                 |
|              | COUPON           | 350                        | 22.5    | .31 | 206                  | 1.16                 |
|              | S. BEAM          | 350                        | 21.4    | .50 | 214                  | 1.30                 |
| $90^{\circ}$ | COUPON           | RT                         | 1.64    | .01 | 36.3                 | 2.50                 |
|              | S. BEAM          | RT                         | 1.76    | .02 | 35.7                 | 2.36                 |
|              | COUPON           | 350                        | 1.60    | .01 | 30.4                 | 2.29                 |
|              | S. BEAM          | 350                        | 1.76    | .03 | 28.6                 | 2.17                 |

T300/5208

$I_G = 0.5"$  FOR COUPON



## 2. PROBLEMS RESULTING FROM ANISOTROPY AND NONHOMOGENEITY

### a. Coupling Effects

Shear coupling -  $S_{16}, S_{26} \neq 0$

Extension - twisting coupling -  $B_{16}, B_{26} \neq 0$



Figure 182 Effect of shear coupling.

### b. Free Edge Effects



Figure 183 Stress concentration at free edge of  $[45/-45]_s$  angle ply. [46]



Figure 184. Interlaminar normal stress concentration. [47]

## REFERENCES

1. Hahn, H. T., "On Approximations for Strength of Random Fiber Composites", J. Composite Materials, Vol. 9 (1975), pp 316-326.
2. Hashin, Z., Theory of Fiber Reinforced Materials, NASA Contract NAS1-8818, Nov. 1970.
3. Tsai, S. W., Structural Behavior of Composite Materials, NASA CR-71, 1964.
4. Noyes, J. V. and Jones, B. H., "Analytical Design Procedures for the Strength and Elastic Properties of Multilayer Fiber Composites", Proc. AIAA/ASME 9th SDM Conf., paper No. 68-336, 1968.
5. Lange, F. F., "Fracture of Brittle Matrix, Particulate Composites", in Composite Materials, Vol. 5, L. J. Broutman, Ed., Academic Press, 1974.
6. Haener, J., Ashbough, N., Chia, C. Y., and Feng, M. Y., Investigation of Micro-mechanical Behavior of Fiber Reinforced Plastics, USAAVLABS-TR-67-66, AD667901.
7. Adams, D. F., Doner, D. R., and Thomas, R. L., Mechanical Behavior of Fiber-Reinforced Composite Materials, AFML-TR-67-96, Air Force Materials Laboratory, 1967.
8. Greszczuk, L. B., Micromechanics Failure Criteria for Composites, Naval Air Systems Command Contract No. N00019-72-0211, 1973.
9. Chamis, C. C., "Mechanics of Load Transfer at the Interface", in Composite Materials, Vol. 6, E. P. Plueddemann, Ed., Academic Press, 1974.
10. Toth, I. J., Brentnall, W. D., and Menke, G. D., "Mechanical Properties of Aluminum Matrix Composites", J. Metals, Vol. 24 (1972), pp 72-78.
11. Hofer, K. E., Rao, N., and Larsen, D., Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials, AFML-TR-72-205, Parts I and II, Air Force Materials Laboratory, 1972 and 1974.
12. Daniel, I. M. and Liber, T., Lamination Residual Stresses in Fiber Composites, NASA CR-134828, March 1975.
13. Novak, R. C., "Fracture in Graphite Filament Reinforced Epoxy Loaded in Shear", in Composite Materials: Testing and Design (1st Conf.), ASTM STP 460, 1969, pp 540-549.
14. Hanna, G. L. and Steingiser, S., "Defining the Adhesion Characteristics in Advanced Composites", in Composite Materials: Testing and Design (1st Conf.), ASTM STP 460, 1969, pp 182-191.
15. Greszczuk, L. B., Failure Mechanics of Composites Subjected to Compressive Loading, AFML-TR-72-107, Air Force Materials Laboratory, 1972.
16. Tsai, S. W., Adams, D. F., and Doner, D. R., Effect of Constituent Material Properties on the Strength of Fiber-Reinforced Composite Materials, AFML-TR-66-190, Air Force Materials Laboratory, 1966.
17. Rosen, B. W., Dow, N. F., and Hashin, Z., Mechanical Properties of Fibrous Composites, NASA CR-31, 1964.

REFERENCES (Continued)

18. Grinius, V. G., Micromechanics-Failure Mechanism Studies, AFML-TR-66-177, Air Force Materials Laboratory, 1966.
19. Hahn, H. T., "Residual Stresses in Polymer Matrix Composite Laminates", J. Composite Materials, Vol. 10 (1976), pp 266-278.
20. Pagano, N. J. and Hahn, H. T., "Evaluation of Composite Curing Stresses", to appear in ASTM STP 617, 1977.
21. Mar, J., in Mechanics of Composites Review, Air Force Materials Laboratory, 1976, pp 117-122.
22. Wu, E. M., "Fracture Mechanics of Anisotropic Plates", in Composite Materials Workshop, Technomic Pub., 1968, pp 20-43.
23. Wu, E. M., "Strength and Fracture of Composites", in Composite Materials, Vol. 5, L. J. Broutman, Ed., Academic Press, 1974.
24. Hahn, H. T., "Fracture Behavior of Composite Laminates", to be presented at the International Conference on Fracture Mechanics and Technology, Hong Kong, 1977.
25. McClintock, F. A., "Problems in the Fracture of Composites with Plastic Matrices", presented at the Fourth Symposium on High Performance Composites at St. Louis, Mo., 1969.
26. Beaumont, P. W. R. and Phillips, D. C., "Tensile Strengths of Notched Composites", J. Composite Materials, Vol. 6 (1972), pp 32-46.
27. Outwater, J. O. and Murphy, M. C., "The Fracture Energy of Unidirectional Laminates", 24th Annual Tech. Conf., SPI Inc., 1969.
28. Kelly, A., "Interface Effects and the Work of Fracture of a Fibrous Composite", Proc. Roy Soc., Series A, Vol. 319 (1970), pp 95-116.
29. Morris, D. H. and Hahn, H. T., "Fracture Resistance Characterization of Gr/Ep Composite Laminates", to appear in ASTM STP 617, 1977.
30. Whitney, J. M. and Nuismer, R. J., "Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations", J. Composite Materials, Vol. 8 (1974), pp 253-265.
31. Shockley, P. D., Anderson, J. D., and Hofer, K. E., Structural Airframe Application of Advanced Composite Materials, AFML-TR-69-101, Vol. V, Air Force Materials Laboratory, 1970.
32. Ryder, J. T. and Walker, E. K., Ascertainment of the Effect of Compressive Loading on the Fatigue Lifetime of Graphite/Epoxy Laminates for Structural Applications, to be published as an AFML Technical Report.
33. Hahn, H. T. and Kim, R. Y., "Fatigue Behavior of Composite Laminates", J. Composite Materials, Vol. 10 (1976), pp 156-180.
34. Hashin, Z. and Rotem, A., "A Fatigue Failure Criterion for Fiber Reinforced Materials", J. Composite Materials, Vol. 7 (1973), pp 448-464.

REFERENCES (Concluded)

35. Rotem, A. and Hashin, Z., "Fatigue Failure of Angle Ply Laminates", AIAA Journal, Vol. 14 (1976), pp 868-872.
36. Coleman, B. D., "Statistics and Time Dependence of Mechanical Breakdown in Fibers", J. Appl. Phys., Vol. 29 (1958), pp 968-983.
37. Phoenix, S. L., "The Tensile Strength and Time to Failure in Fatigue of Mechanical Parallel Member Systems", AIAA Journal.
38. Haviland, R. P., Engineering Reliability and Long Life Design, D. Van Nostrand Co., 1964.
39. Hahn, H. T. and Kim, R. Y., "Proof Testing of Composite Materials", J. Composite Materials, Vol. 9 (1975), pp 297-311.
40. Awerbuch, J. and Hahn, H. T., "Fatigue and Proof Testing of Unidirectional Gr/Ep Composite", presented at the Symposium on Fatigue of Filamentary Composites, Denver, 1976.
41. Halpin, J. C., Jerina, K. L., and Johnson, T. A., "Characterization of Composites for the Purpose of Reliability Prediction", Analysis of Test Methods for High Modulus Fibers and Composites, ASTM STP 521, 1973, pp 5-64.
42. Shen, C. H. and Springer, G. S., "Moisture Absorption and Desorption of Composite Materials", J. Composite Materials, Vol. 10(1976), pp 2-20.
43. Kaminsky, B. E., Lemon, G. H., and McKague, E. L., Development of Engineering Data for Advanced Composite Materials, AFML-TR-70-108, Air Force Materials Laboratory, Vol. 1, 1972.
44. Sims, D. F., "In-Plane Shear Stress-Strain Response of Unidirectional Composite Materials", J. Composite Materials, Vol. 7 (1973), pp 124-126.
45. Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials, AFML-TR-74-266, Air Force Materials Laboratory, 1975.
46. Pipes, R. B. and Pagano, N. J., "Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension", J. Composite Materials, Vol. 4 (1970), pp 538-548.
47. Pagano, N. J., "On the Calculation of Interlaminar Normal Stress in Composite Laminate", J. Composite Materials, Vol. 8 (1974), pp 65-81.



## APPENDIX A

### SYSTEME INTERNATIONALE

#### 1. METRIC PREFIXES

| Prefix | Abbreviation | Multiplier |
|--------|--------------|------------|
| tera-  | T            | $10^{12}$  |
| giga-  | G            | $10^9$     |
| mega-  | M            | $10^6$     |
| kilo-  | k            | $10^3$     |
| hecto- | h            | $10^2$     |
| deca-  | da           | $10^1$     |
| deci-  | d            | $10^{-1}$  |
| centi- | c            | $10^{-2}$  |
| milli- | m            | $10^{-3}$  |
| micro- | $\mu$        | $10^{-6}$  |
| nano-  | n            | $10^{-9}$  |
| pico-  | p            | $10^{-12}$ |
| femto- | f            | $10^{-15}$ |
| atto-  | a            | $10^{-18}$ |

#### 2. CONVERSION EQUATIONS

|                                                            |                                                         |
|------------------------------------------------------------|---------------------------------------------------------|
| $1 \text{ kg} = 2.20 \text{ lb}$                           | $1 \text{ lb} = .454 \text{ kg}$                        |
| $1 \text{ kgm}^{-3} = 3.61 \times 10^{-5} \text{ lb/in}^3$ | $1 \text{ lb/in}^3 = 2.77 \times 10^4 \text{ kgm}^{-3}$ |
| $1 \text{ N} = .225 \text{ lb-f}$                          | $1 \text{ lb-f} = 4.45 \text{ N}$                       |
| $1 \text{ N} = .102 \text{ kg-f}$                          | $1 \text{ kg-f} = 9.81 \text{ N}$                       |
| $1 \text{ Pa} = 1.45 \times 10^{-4} \text{ psi}$           | $1 \text{ psi} = 6.895 \text{ Pa}$                      |
| $1 \text{ MPa} = .145 \text{ ksi}$                         | $1 \text{ ksi} = 6.895 \text{ MPa}$                     |
| $1 \text{ GPa} = .145 \times 10^6 \text{ psi}$             | $10^6 \text{ psi} = 6.895 \text{ GPa}$                  |
| $1 \text{ Pa} = .102 \text{ kg-f m}^{-2}$                  | $1 \text{ kgf m}^{-2} = 9.81 \text{ Pa}$                |
| $1 \text{ MPa} = .102 \text{ kg-f mm}^{-2}$                | $1 \text{ kg-f mm}^{-2} = 9.81 \text{ MPa}$             |
| $1 \text{ Nm}^{-1} = .00571 \text{ lbf/in}$                | $1 \text{ lbf/in} = 175 \text{ Nm}^{-1}$                |
| $1 \text{ Nm}^{-1} = .102 \text{ kgf/m}$                   | $1 \text{ kgf/m} = 9.81 \text{ Nm}^{-1}$                |
| $1 \text{ Nm} = 8.98 \text{ in-lbf}$                       | $1 \text{ inlbf} = \frac{1}{8.98} \text{ Nm}$           |

APPENDIX B  
TRIGONOMETRIC FUNCTIONS

| THETA<br>(DEG) | COS 2θ   | COS 4θ   | SIN 2θ   | SIN 4θ  | THETA<br>(DEG) |
|----------------|----------|----------|----------|---------|----------------|
| -90            | -1.00000 | 1.00000  | -.00000  | .00000  | -90            |
| -85            | -.98481  | .93969   | -.17365  | .34202  | -85            |
| -80            | -.93969  | .76604   | -.34202  | .64279  | -80            |
| -75            | -.86603  | .50000   | -.50000  | .86603  | -75            |
| -70            | -.76604  | .17365   | -.64279  | .98481  | -70            |
| -65            | -.64279  | -.17365  | -.76604  | .98481  | -65            |
| -60            | -.50000  | -.50000  | -.86603  | .86603  | -60            |
| -55            | -.34202  | -.76604  | -.93969  | .64279  | -55            |
| -50            | -.17365  | -.93969  | -.98481  | .34202  | -50            |
| -45            | .00000   | -1.00000 | -1.00000 | -.00000 | -45            |
| -40            | .17365   | -.93969  | -.98481  | -.34202 | -40            |
| -35            | .34202   | -.76604  | -.93969  | -.64279 | -35            |
| -30            | .50000   | -.50000  | -.86603  | -.86603 | -30            |
| -25            | .64279   | -.17365  | -.76604  | -.98481 | -25            |
| -20            | .76604   | .17365   | -.64279  | -.98481 | -20            |
| -15            | .86603   | .50000   | -.50000  | -.86603 | -15            |
| -10            | .93969   | .76604   | -.34202  | -.64279 | -10            |
| -5             | .98481   | .93969   | -.17365  | -.34202 | -5             |
| 0              | 1.00000  | 1.00000  | .00000   | .00000  | 0              |
| 5              | .98481   | .93969   | .17365   | .34202  | 5              |
| 10             | .93969   | .76604   | .34202   | .64279  | 10             |
| 15             | .86603   | .50000   | .50000   | .86603  | 15             |
| 20             | .76604   | .17365   | .64279   | .98481  | 20             |
| 25             | .64279   | -.17365  | .76604   | .98481  | 25             |
| 30             | .50000   | -.50000  | .86603   | .86603  | 30             |
| 35             | .34202   | -.76604  | .93969   | .64279  | 35             |
| 40             | .17365   | -.93969  | .98481   | .34202  | 40             |
| 45             | .00000   | -1.00000 | 1.00000  | -.00000 | 45             |
| 50             | -.17365  | -.93969  | .98481   | -.34202 | 50             |
| 55             | -.34202  | -.76604  | .93969   | -.64279 | 55             |
| 60             | -.50000  | -.50000  | .86603   | -.86603 | 60             |
| 65             | -.64279  | -.17365  | .76604   | -.98481 | 65             |
| 70             | -.76604  | .17365   | .64279   | -.98481 | 70             |
| 75             | -.86603  | .50000   | .50000   | -.86603 | 75             |
| 80             | -.93969  | .76604   | .34202   | -.64279 | 80             |
| 85             | -.98481  | .93969   | .17365   | -.34202 | 85             |
| 90             | -1.00000 | 1.00000  | .00000   | -.00000 | 90             |

**APPENDIX C**  
**NORMAL DISTRIBUTION**

| <i>z</i> | <i>F(z)</i> | 1 - <i>F(z)</i> |
|----------|-------------|-----------------|----------|-------------|-----------------|----------|-------------|-----------------|----------|-------------|-----------------|
| .00      | .5000       | .5000           | .80      | .6915       | .3085           | 1.00     | .8413       | .1587           | 1.80     | .9332       | .0668           |
| .01      | .5040       | .4960           | .81      | .6950       | .3050           | 1.01     | .8438       | .1562           | 1.81     | .9345       | .0655           |
| .02      | .5080       | .4920           | .82      | .6985       | .3015           | 1.02     | .8461       | .1539           | 1.82     | .9357       | .0643           |
| .03      | .5120       | .4880           | .83      | .7019       | .2981           | 1.03     | .8485       | .1515           | 1.83     | .9370       | .0630           |
| .04      | .5160       | .4840           | .84      | .7054       | .2946           | 1.04     | .8508       | .1492           | 1.84     | .9382       | .0618           |
| .05      | .5199       | .4801           | .85      | .7088       | .2912           | 1.05     | .8531       | .1469           | 1.85     | .9394       | .0606           |
| .06      | .5239       | .4761           | .86      | .7123       | .2877           | 1.06     | .8554       | .1446           | 1.86     | .9406       | .0594           |
| .07      | .5279       | .4721           | .87      | .7157       | .2843           | 1.07     | .8577       | .1423           | 1.87     | .9418       | .0582           |
| .08      | .5319       | .4681           | .88      | .7190       | .2810           | 1.08     | .8599       | .1401           | 1.88     | .9429       | .0571           |
| .09      | .5359       | .4641           | .89      | .7224       | .2776           | 1.09     | .8621       | .1379           | 1.89     | .9441       | .0559           |
| .10      | .5398       | .4602           | .90      | .7257       | .2743           | 1.10     | .8643       | .1357           | 1.90     | .9452       | .0548           |
| .11      | .5438       | .4562           | .91      | .7291       | .2709           | 1.11     | .8665       | .1335           | 1.91     | .9463       | .0537           |
| .12      | .5478       | .4522           | .92      | .7324       | .2676           | 1.12     | .8686       | .1314           | 1.92     | .9474       | .0526           |
| .13      | .5517       | .4483           | .93      | .7357       | .2643           | 1.13     | .8708       | .1292           | 1.93     | .9484       | .0516           |
| .14      | .5557       | .4443           | .94      | .7389       | .2611           | 1.14     | .8729       | .1271           | 1.94     | .9495       | .0505           |
| .15      | .5596       | .4404           | .95      | .7422       | .2578           | 1.15     | .8749       | .1251           | 1.95     | .9505       | .0495           |
| .16      | .5636       | .4364           | .96      | .7454       | .2546           | 1.16     | .8770       | .1230           | 1.96     | .9515       | .0485           |
| .17      | .5675       | .4325           | .97      | .7486       | .2514           | 1.17     | .8790       | .1210           | 1.97     | .9525       | .0475           |
| .18      | .5714       | .4286           | .98      | .7517       | .2483           | 1.18     | .8810       | .1190           | 1.98     | .9535       | .0465           |
| .19      | .5753       | .4247           | .99      | .7549       | .2451           | 1.19     | .8830       | .1170           | 1.99     | .9545       | .0455           |
| .20      | .5793       | .4207           | .70      | .7580       | .2420           | 1.20     | .8849       | .1151           | 1.70     | .9554       | .0446           |
| .21      | .5832       | .4168           | .71      | .7611       | .2389           | 1.21     | .8869       | .1131           | 1.71     | .9564       | .0436           |
| .22      | .5871       | .4129           | .72      | .7642       | .2358           | 1.22     | .8888       | .1112           | 1.72     | .9573       | .0427           |
| .23      | .5910       | .4090           | .73      | .7673       | .2327           | 1.23     | .8907       | .1093           | 1.73     | .9582       | .0418           |
| .24      | .5948       | .4052           | .74      | .7704       | .2296           | 1.24     | .8925       | .1075           | 1.74     | .9591       | .0409           |
| .25      | .5987       | .4013           | .75      | .7734       | .2266           | 1.25     | .8944       | .1056           | 1.75     | .9599       | .0401           |
| .26      | .6026       | .3974           | .76      | .7764       | .2236           | 1.26     | .8962       | .1038           | 1.76     | .9608       | .0392           |
| .27      | .6064       | .3936           | .77      | .7794       | .2206           | 1.27     | .8980       | .1020           | 1.77     | .9616       | .0384           |
| .28      | .6103       | .3897           | .78      | .7823       | .2177           | 1.28     | .8997       | .1003           | 1.78     | .9625       | .0375           |
| .29      | .6141       | .3859           | .79      | .7852       | .2148           | 1.29     | .9015       | .0985           | 1.79     | .9633       | .0367           |
| .30      | .6179       | .3821           | .80      | .7881       | .2119           | 1.30     | .9032       | .0968           | 1.80     | .9641       | .0359           |
| .31      | .6217       | .3783           | .81      | .7910       | .2090           | 1.31     | .9049       | .0951           | 1.81     | .9649       | .0351           |
| .32      | .6255       | .3745           | .82      | .7939       | .2061           | 1.32     | .9066       | .0934           | 1.82     | .9656       | .0344           |
| .33      | .6293       | .3707           | .83      | .7967       | .2033           | 1.33     | .9082       | .0918           | 1.83     | .9664       | .0336           |
| .34      | .6331       | .3669           | .84      | .7995       | .2005           | 1.34     | .9099       | .0901           | 1.84     | .9671       | .0329           |
| .35      | .6368       | .3632           | .85      | .8023       | .1977           | 1.35     | .9115       | .0885           | 1.85     | .9678       | .0322           |
| .36      | .6406       | .3594           | .86      | .8051       | .1949           | 1.36     | .9131       | .0869           | 1.86     | .9686       | .0314           |
| .37      | .6443       | .3557           | .87      | .8079       | .1921           | 1.37     | .9147       | .0853           | 1.87     | .9693       | .0307           |
| .38      | .6480       | .3520           | .88      | .8106       | .1894           | 1.38     | .9162       | .0838           | 1.88     | .9699       | .0301           |
| .39      | .6517       | .3483           | .89      | .8133       | .1867           | 1.39     | .9177       | .0823           | 1.89     | .9706       | .0294           |
| .40      | .6554       | .3446           | .90      | .8159       | .1841           | 1.40     | .9192       | .0808           | 1.90     | .9713       | .0287           |
| .41      | .6591       | .3409           | .91      | .8186       | .1814           | 1.41     | .9207       | .0793           | 1.91     | .9719       | .0281           |
| .42      | .6628       | .3372           | .92      | .8212       | .1788           | 1.42     | .9222       | .0778           | 1.92     | .9726       | .0274           |
| .43      | .6664       | .3336           | .93      | .8238       | .1762           | 1.43     | .9236       | .0764           | 1.93     | .9732       | .0268           |
| .44      | .6700       | .3300           | .94      | .8264       | .1736           | 1.44     | .9251       | .0749           | 1.94     | .9738       | .0262           |
| .45      | .6736       | .3264           | .95      | .8289       | .1711           | 1.45     | .9265       | .0735           | 1.95     | .9744       | .0256           |
| .46      | .6772       | .3228           | .96      | .8315       | .1685           | 1.46     | .9279       | .0721           | 1.96     | .9750       | .0250           |
| .47      | .6808       | .3192           | .97      | .8340       | .1660           | 1.47     | .9292       | .0708           | 1.97     | .9756       | .0244           |
| .48      | .6844       | .3156           | .98      | .8365       | .1635           | 1.48     | .9306       | .0694           | 1.98     | .9761       | .0239           |
| .49      | .6879       | .3121           | .99      | .8389       | .1611           | 1.49     | .9319       | .0681           | 1.99     | .9767       | .0233           |
| .50      | .6915       | .3085           | 1.00     | .8413       | .1587           | 1.50     | .9332       | .0668           | 2.00     | .9773       | .0227           |

| <i>x</i> | <i>F(x)</i> | <i>1 - F(x)</i> |
|----------|-------------|-----------------|----------|-------------|-----------------|----------|-------------|-----------------|----------|-------------|-----------------|
| 2.00     | .9773       | .0227           | 2.50     | .9938       | .0062           | 3.00     | .9987       | .0013           | 3.50     | .9998       | .0002           |
| 2.01     | .9778       | .0222           | 2.51     | .9940       | .0060           | 3.01     | .9987       | .0013           | 3.51     | .9998       | .0002           |
| 2.02     | .9783       | .0217           | 2.52     | .9941       | .0059           | 3.02     | .9987       | .0013           | 3.52     | .9998       | .0002           |
| 2.03     | .9785       | .0212           | 2.53     | .9943       | .0057           | 3.03     | .9988       | .0012           | 3.53     | .9998       | .0002           |
| 2.04     | .9793       | .0207           | 2.54     | .9945       | .0055           | 3.04     | .9988       | .0012           | 3.54     | .9998       | .0002           |
| 2.05     | .9798       | .0202           | 2.55     | .9946       | .0054           | 3.05     | .9989       | .0011           | 3.55     | .9998       | .0002           |
| 2.06     | .9803       | .0197           | 2.56     | .9948       | .0052           | 3.06     | .9989       | .0011           | 3.56     | .9998       | .0002           |
| 2.07     | .9808       | .0192           | 2.57     | .9949       | .0051           | 3.07     | .9989       | .0011           | 3.57     | .9998       | .0002           |
| 2.08     | .9812       | .0188           | 2.58     | .9951       | .0049           | 3.08     | .9990       | .0010           | 3.58     | .9998       | .0002           |
| 2.09     | .9817       | .0183           | 2.59     | .9952       | .0048           | 3.09     | .9990       | .0010           | 3.59     | .9998       | .0002           |
| 2.10     | .9821       | .0179           | 2.60     | .9953       | .0047           | 3.10     | .9990       | .0010           | 3.60     | .9998       | .0002           |
| 2.11     | .9826       | .0174           | 2.61     | .9955       | .0045           | 3.11     | .9991       | .0009           | 3.61     | .9998       | .0002           |
| 2.12     | .9830       | .0170           | 2.62     | .9956       | .0044           | 3.12     | .9991       | .0009           | 3.62     | .9999       | .0001           |
| 2.13     | .9834       | .0166           | 2.63     | .9957       | .0043           | 3.13     | .9991       | .0009           | 3.63     | .9999       | .0001           |
| 2.14     | .9838       | .0162           | 2.64     | .9959       | .0041           | 3.14     | .9992       | .0008           | 3.64     | .9999       | .0001           |
| 2.15     | .9842       | .0158           | 2.65     | .9960       | .0040           | 3.15     | .9992       | .0008           | 3.65     | .9999       | .0001           |
| 2.16     | .9846       | .0154           | 2.66     | .9961       | .0039           | 3.16     | .9992       | .0008           | 3.66     | .9999       | .0001           |
| 2.17     | .9850       | .0150           | 2.67     | .9962       | .0038           | 3.17     | .9992       | .0008           | 3.67     | .9999       | .0001           |
| 2.18     | .9854       | .0146           | 2.68     | .9963       | .0037           | 3.18     | .9993       | .0007           | 3.68     | .9999       | .0001           |
| 2.19     | .9857       | .0143           | 2.69     | .9964       | .0036           | 3.19     | .9993       | .0007           | 3.69     | .9999       | .0001           |
| 2.20     | .9861       | .0139           | 2.70     | .9965       | .0035           | 3.20     | .9993       | .0007           | 3.70     | .9999       | .0001           |
| 2.21     | .9864       | .0136           | 2.71     | .9966       | .0034           | 3.21     | .9993       | .0007           | 3.71     | .9999       | .0001           |
| 2.22     | .9868       | .0132           | 2.72     | .9967       | .0033           | 3.22     | .9994       | .0006           | 3.72     | .9999       | .0001           |
| 2.23     | .9871       | .0129           | 2.73     | .9968       | .0032           | 3.23     | .9994       | .0006           | 3.73     | .9999       | .0001           |
| 2.24     | .9875       | .0125           | 2.74     | .9969       | .0031           | 3.24     | .9994       | .0006           | 3.74     | .9999       | .0001           |
| 2.25     | .9878       | .0122           | 2.75     | .9970       | .0030           | 3.25     | .9994       | .0006           | 3.75     | .9999       | .0001           |
| 2.26     | .9881       | .0119           | 2.76     | .9971       | .0029           | 3.26     | .9994       | .0006           | 3.76     | .9999       | .0001           |
| 2.27     | .9884       | .0116           | 2.77     | .9972       | .0028           | 3.27     | .9995       | .0005           | 3.77     | .9999       | .0001           |
| 2.28     | .9887       | .0113           | 2.78     | .9973       | .0027           | 3.28     | .9995       | .0005           | 3.78     | .9999       | .0001           |
| 2.29     | .9890       | .0110           | 2.79     | .9974       | .0026           | 3.29     | .9995       | .0005           | 3.79     | .9999       | .0001           |
| 2.30     | .9893       | .0107           | 2.80     | .9974       | .0026           | 3.30     | .9995       | .0005           | 3.80     | .9999       | .0001           |
| 2.31     | .9896       | .0104           | 2.81     | .9975       | .0025           | 3.31     | .9995       | .0005           | 3.81     | .9999       | .0001           |
| 2.32     | .9898       | .0102           | 2.82     | .9976       | .0024           | 3.32     | .9996       | .0004           | 3.82     | .9999       | .0001           |
| 2.33     | .9901       | .0099           | 2.83     | .9977       | .0023           | 3.33     | .9996       | .0004           | 3.83     | .9999       | .0001           |
| 2.34     | .9904       | .0096           | 2.84     | .9977       | .0023           | 3.34     | .9996       | .0004           | 3.84     | .9999       | .0001           |
| 2.35     | .9906       | .0094           | 2.85     | .9978       | .0022           | 3.35     | .9996       | .0004           | 3.85     | .9999       | .0001           |
| 2.36     | .9909       | .0091           | 2.86     | .9979       | .0021           | 3.36     | .9996       | .0004           | 3.86     | .9999       | .0001           |
| 2.37     | .9911       | .0089           | 2.87     | .9979       | .0021           | 3.37     | .9996       | .0004           | 3.87     | .9999       | .0001           |
| 2.38     | .9913       | .0087           | 2.88     | .9980       | .0020           | 3.38     | .9996       | .0004           | 3.88     | .9999       | .0001           |
| 2.39     | .9916       | .0084           | 2.89     | .9981       | .0019           | 3.39     | .9997       | .0003           | 3.89     | 1.0000      | .0000           |
| 2.40     | .9918       | .0082           | 2.90     | .9981       | .0019           | 3.40     | .9997       | .0003           | 3.90     | 1.0000      | .0000           |
| 2.41     | .9920       | .0080           | 2.91     | .9982       | .0018           | 3.41     | .9997       | .0003           | 3.91     | 1.0000      | .0000           |
| 2.42     | .9922       | .0078           | 2.92     | .9983       | .0017           | 3.42     | .9997       | .0003           | 3.92     | 1.0000      | .0000           |
| 2.43     | .9925       | .0075           | 2.93     | .9983       | .0017           | 3.43     | .9997       | .0003           | 3.93     | 1.0000      | .0000           |
| 2.44     | .9927       | .0073           | 2.94     | .9984       | .0016           | 3.44     | .9997       | .0003           | 3.94     | 1.0000      | .0000           |
| 2.45     | .9929       | .0071           | 2.95     | .9984       | .0016           | 3.45     | .9997       | .0003           | 3.95     | 1.0000      | .0000           |
| 2.46     | .9931       | .0069           | 2.96     | .9985       | .0015           | 3.46     | .9997       | .0003           | 3.96     | 1.0000      | .0000           |
| 2.47     | .9932       | .0068           | 2.97     | .9985       | .0015           | 3.47     | .9997       | .0003           | 3.97     | 1.0000      | .0000           |
| 2.48     | .9934       | .0066           | 2.98     | .9986       | .0014           | 3.48     | .9997       | .0003           | 3.98     | 1.0000      | .0000           |
| 2.49     | .9936       | .0064           | 2.99     | .9986       | .0014           | 3.49     | .9998       | .0002           | 3.99     | 1.0000      | .0000           |
| 2.50     | .9938       | .0062           | 3.00     | .9987       | .0013           | 3.50     | .9998       | .0002           | 4.00     | 1.0000      | .0000           |

## APPENDIX D

CHI-SQUARE DISTRIBUTION  
PERCENTAGE POINTS

$$F(x^2) = \int_0^{x^2} \frac{1}{2^{n/2}\Gamma(\frac{n}{2})} x^{\frac{n-2}{2}} e^{-\frac{x^2}{2}} dx$$

| <i>n</i> | .005    | .010    | .025    | .050    | .100  | .250 | .500 | .750 | .900 | .950 | .975 | .990 | .995 |
|----------|---------|---------|---------|---------|-------|------|------|------|------|------|------|------|------|
| 1        | .000393 | .000157 | .000082 | .000393 | .0158 | .102 | .455 | 1.32 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 |
| 2        | .0100   | .0201   | .0506   | .103    | .211  | .575 | 1.39 | 2.77 | 4.61 | 5.99 | 7.38 | 9.21 | 10.6 |
| 3        | .0717   | .115    | .216    | .352    | .584  | 1.21 | 2.37 | 4.11 | 6.25 | 7.81 | 9.35 | 11.3 | 12.8 |
| 4        | .207    | .297    | .484    | .711    | 1.06  | 1.92 | 3.36 | 5.39 | 7.78 | 9.49 | 11.1 | 13.3 | 14.9 |
| 5        | .412    | .554    | .831    | 1.15    | 1.61  | 2.67 | 4.35 | 6.63 | 9.24 | 11.1 | 12.8 | 15.1 | 16.7 |
| 6        | .676    | .872    | 1.24    | 1.64    | 2.20  | 3.45 | 5.35 | 7.84 | 10.6 | 12.6 | 14.4 | 16.8 | 18.5 |
| 7        | 1.09    | 1.24    | 1.69    | 2.17    | 2.83  | 4.25 | 6.35 | 9.04 | 12.0 | 14.1 | 16.0 | 18.5 | 20.3 |
| 8        | 1.34    | 1.65    | 2.18    | 2.73    | 3.49  | 5.07 | 7.34 | 10.2 | 13.4 | 15.5 | 17.5 | 20.1 | 22.0 |
| 9        | 1.73    | 2.09    | 2.70    | 3.33    | 4.17  | 5.90 | 8.34 | 11.4 | 14.7 | 16.9 | 19.0 | 21.7 | 23.6 |
| 10       | 2.16    | 2.56    | 3.25    | 3.94    | 4.87  | 6.74 | 9.34 | 12.5 | 16.0 | 18.3 | 20.5 | 23.2 | 25.2 |
| 11       | 2.60    | 3.05    | 3.82    | 4.57    | 5.58  | 7.58 | 10.3 | 13.7 | 17.3 | 19.7 | 21.9 | 24.7 | 26.8 |
| 12       | 3.07    | 3.57    | 4.40    | 5.33    | 6.30  | 8.44 | 11.3 | 14.8 | 18.5 | 21.0 | 23.3 | 26.2 | 28.3 |
| 13       | 3.57    | 4.11    | 5.01    | 5.89    | 7.04  | 9.30 | 12.3 | 16.0 | 19.8 | 22.4 | 24.7 | 27.7 | 29.8 |
| 14       | 4.07    | 4.66    | 5.63    | 6.57    | 7.79  | 10.2 | 13.3 | 17.1 | 21.1 | 23.7 | 26.1 | 29.1 | 31.3 |
| 15       | 4.60    | 5.23    | 6.26    | 7.26    | 8.55  | 11.0 | 14.3 | 18.2 | 22.3 | 25.0 | 27.5 | 30.6 | 32.8 |
| 16       | 5.14    | 5.81    | 6.91    | 7.96    | 9.31  | 11.9 | 15.3 | 19.4 | 23.5 | 26.3 | 28.8 | 32.0 | 34.3 |
| 17       | 5.70    | 6.41    | 7.56    | 8.67    | 10.1  | 12.8 | 16.3 | 20.5 | 24.8 | 27.6 | 30.2 | 33.4 | 35.7 |
| 18       | 6.26    | 7.01    | 8.22    | 9.39    | 10.9  | 13.7 | 17.3 | 21.6 | 26.0 | 28.9 | 31.5 | 34.8 | 37.2 |
| 19       | 6.84    | 7.63    | 8.91    | 10.1    | 11.7  | 14.6 | 18.3 | 22.7 | 27.2 | 30.1 | 32.9 | 36.2 | 38.6 |
| 20       | 7.43    | 8.26    | 9.59    | 10.9    | 12.4  | 15.5 | 19.3 | 23.8 | 28.4 | 31.4 | 34.2 | 37.6 | 40.0 |
| 21       | 8.03    | 8.90    | 10.3    | 11.6    | 13.2  | 16.3 | 20.3 | 24.9 | 29.6 | 32.7 | 35.5 | 38.9 | 41.4 |
| 22       | 8.64    | 9.54    | 11.0    | 12.3    | 14.0  | 17.2 | 21.3 | 26.0 | 30.8 | 33.9 | 36.8 | 40.3 | 42.8 |
| 23       | 9.26    | 10.2    | 11.7    | 13.1    | 14.8  | 18.1 | 22.3 | 27.1 | 32.0 | 35.2 | 38.1 | 41.6 | 44.2 |
| 24       | 9.89    | 10.9    | 12.4    | 13.8    | 15.7  | 19.0 | 23.3 | 28.2 | 33.2 | 36.4 | 39.4 | 43.0 | 45.6 |
| 25       | 10.5    | 11.5    | 13.1    | 14.6    | 16.5  | 19.9 | 24.3 | 29.3 | 34.4 | 37.7 | 40.6 | 44.3 | 46.9 |
| 26       | 11.2    | 12.2    | 13.8    | 15.4    | 17.3  | 20.8 | 25.3 | 30.4 | 35.6 | 38.9 | 41.9 | 45.6 | 48.3 |
| 27       | 11.8    | 12.9    | 14.6    | 16.2    | 18.1  | 21.7 | 26.3 | 31.5 | 36.7 | 40.1 | 43.2 | 46.9 | 49.6 |
| 28       | 12.5    | 13.6    | 15.3    | 16.9    | 18.9  | 22.7 | 27.3 | 32.6 | 37.9 | 41.6 | 44.5 | 48.2 | 51.0 |
| 29       | 13.1    | 14.3    | 16.0    | 17.7    | 19.8  | 23.6 | 28.3 | 33.7 | 39.1 | 42.8 | 45.7 | 49.6 | 52.3 |
| 30       | 13.8    | 15.0    | 16.8    | 18.5    | 20.6  | 24.5 | 29.3 | 34.8 | 40.3 | 43.8 | 47.0 | 50.9 | 53.7 |

## APPENDIX E

### GAMMA FUNCTION

Values of  $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx; (n+1) = n\Gamma(n)$

| $n$  | $\Gamma(n)$ | $n$  | $\Gamma(n)$ | $n$  | $\Gamma(n)$ | $n$  | $\Gamma(n)$ |
|------|-------------|------|-------------|------|-------------|------|-------------|
| 1.00 | 1.00000     | 1.25 | .90640      | 1.50 | .88623      | 1.75 | .91908      |
| 1.01 | .99433      | 1.26 | .90440      | 1.51 | .88650      | 1.76 | .92127      |
| 1.02 | .98884      | 1.27 | .90250      | 1.52 | .88704      | 1.77 | .92376      |
| 1.03 | .98355      | 1.28 | .90072      | 1.53 | .88757      | 1.78 | .92623      |
| 1.04 | .97841      | 1.29 | .89901      | 1.54 | .88818      | 1.79 | .92877      |
| 1.05 | .97350      | 1.30 | .89747      | 1.55 | .88887      | 1.80 | .93138      |
| 1.06 | .96874      | 1.31 | .89600      | 1.56 | .88964      | 1.81 | .93408      |
| 1.07 | .96415      | 1.32 | .89464      | 1.57 | .89049      | 1.82 | .93685      |
| 1.08 | .95973      | 1.33 | .89338      | 1.58 | .89142      | 1.83 | .93969      |
| 1.09 | .95546      | 1.34 | .89222      | 1.59 | .89243      | 1.84 | .94261      |
| 1.10 | .95135      | 1.35 | .89115      | 1.60 | .89352      | 1.85 | .94561      |
| 1.11 | .94739      | 1.36 | .89018      | 1.61 | .89468      | 1.86 | .94869      |
| 1.12 | .94359      | 1.37 | .88931      | 1.62 | .89592      | 1.87 | .95184      |
| 1.13 | .93993      | 1.38 | .88854      | 1.63 | .89724      | 1.88 | .95507      |
| 1.14 | .93642      | 1.39 | .88785      | 1.64 | .89864      | 1.89 | .95838      |
| 1.15 | .93304      | 1.40 | .88726      | 1.65 | .90012      | 1.90 | .96177      |
| 1.16 | .92980      | 1.41 | .88676      | 1.66 | .90167      | 1.91 | .96523      |
| 1.17 | .92670      | 1.42 | .88636      | 1.67 | .90330      | 1.92 | .96878      |
| 1.18 | .92373      | 1.43 | .88604      | 1.68 | .90500      | 1.93 | .97240      |
| 1.19 | .92088      | 1.44 | .88580      | 1.69 | .90678      | 1.94 | .97610      |
| 1.20 | .91817      | 1.45 | .88565      | 1.70 | .90864      | 1.95 | .97988      |
| 1.21 | .91558      | 1.46 | .88560      | 1.71 | .91057      | 1.96 | .98374      |
| 1.22 | .91311      | 1.47 | .88563      | 1.72 | .91258      | 1.97 | .98768      |
| 1.23 | .91075      | 1.48 | .88575      | 1.73 | .91466      | 1.98 | .99171      |
| 1.24 | .90852      | 1.49 | .88595      | 1.74 | .91683      | 1.99 | .99581      |
|      |             |      |             |      |             | 2.00 | 1.00000     |

\* For large positive values of  $x$ ,  $\Gamma(x)$  approximates the asymptotic series  $x^{x-e-x} \sqrt{\frac{2x}{x}} \left[ 1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51840x^3} - \frac{571}{2488320x^4} + \dots \right]$ .