TBEA 诗变电工

智能监控终端内部串口通信协议 V1.0

特变电工智慧能源有限公司 2025 年 3 月

前言

资料简介

本手册主要介绍智能监控终端控制器内部串口通信协议。

在使用之前, 应阅读本手册以及相关产品的手册, 并在充分理解其规格的前提下正确使用。

适用产品范围

本手册介绍了以下产品及内容:

- 背板通信协议
- LCD 面板通信协议

版本变更记录

发布版本	变更内容

	目录
目录	
前言	
目录	
第 2 章 ARM CPU 背板通信协议内容	
2.1 读背板固件信息	6
2.2 读模块信息	6
2.3 ARM CPU 写 TX PDO	8
2.4 ARM CPU 读 RX PDO	9
2.5 ARM CPU 读背板诊断信息	9
第 3 章 ARM CPU 与 LCD MCU 串口通信协议内容	
3.1 读系统信息	11
3.2 读网卡信息(多个网卡)	11
3.3 读背板模块状态信息	12
3.4 LCD MCU 固件刷新	13
3.4.1 更新固件请求	13
3.4.2 开始更新文件系统	13
3.4.3 开始更新背板 MCU 固件	13
3.4.4 开始更新 LCD MCU 固件	14
3.4.5 LCD 发送 REBOOT 指令	14
3.5 设置系统时间	15
3.6 设置网卡信息	15
3.7 设置主机名称	15
3.8 恢复出厂设置	15
3.9 读 PLC 循环时间	16
3.10 读 ECT 从站	16
3.10.1 读 ECT 从站列表	16
3.10.2 读某个从站的模块信息	17
3.11 PLC 日志导出	18
3.12 清空用户程序	
3.13 读 PN 从站信息(CPU 做 PN 主站时)	19

	目录
3.13.1 读 PN 从站列表	19
3.13.2 读某个从站的模块信息	20
3.14 PN 从站信息(CPU 做 PN 从站时)	20

V1.0 简介

第1章 简介

TTOS 变压器智能监控终端 CPU 内部主控制器有两个 USART 接口,分别与左右载板上面的两个 MCU 通信,MCU 由我公司提供,一个完成背板总线信息的采集,一个用来完成 LCD 显示屏的操作处理交互,示意图如下所示:

通信参数定义如下:

背板模块通讯串口: /dev/ttyS5: 1.5M 波特率, 8 数据位, 1 停止位, 无校验显示屏通讯串口: /dev/ttyS7: 115200 波特率, 8 数据位, 1 停止位, 偶校验

读背板固件信息

第2章 ARM CPU 背板通信协议内容

ARM CPU 通过串口连接背板 MCU,本协议定义了 ARM CPU 与背板 MCU 的串口数据交互过程,按照该协议,ARM CPU 可以读取背板模块信息,对背板模块 IO 进行读写

读背板固件信息

2.1 读背板固件信息

ARM CPU 向 MCU 发送读背板固件版本信息指令:

数据

帧长 功能码

MCU 向 ARM CPU 应答背板固件版本信息数据:

数据 帧长

功能码

1表示RXTX数据帧长 占2bytes,0表示占

一个byte

0x55	0x55	Len	0x11	4bytes 版 本号字符串	0x1	reserved 31 bytes	0x16
				一个了丁们中		or bytes	

2.2 读模块信息

ARM CPU 向 MCU 发送读模块信息指令:

数据

帧长 功能码

背板没有准备好,MCU 向 ARM CPU 应答:

数据

帧长 功能码

0x55 0x55 0x05 0x02 0x16

背板准备好,MCU 向 ARM CPU 应答模块信息:

数据

帧长 功能码

 0x55
 0x55
 1en
 0x10
 模块个数
 模块类型编码
 --- 模块类型编码
 0x16

模块类型编码及模块所占输入输出字节数如下表所示:模块类型编码表

产品型号 产品描述 输入字 输出字节 模块 节 编码 数字量输入模块,16输入,支 TTOS-214-00A 2bytes 0x00持 PNP/NPN 输入 数字量输入模块,32输入,支 TTOS-215-00A 4bytes 0x01持 PNP/NPN 输入 数字量输出模块,16输 TTOS-224-00A 0 0x022bytes 出,PNP 输出 数字量输出模块,16输出,继 TTOS-224-01A 0 2bytes 0x03电器输出 数 数字量输出模块,32输 TTOS-225-00A 0 4bytes 0x04字 出,PNP 输出 量 TTOS-234-00A 数字量输入/输出模块,8输 1byte 1byte 0x05IO 入/8 输出,PNP 输出 数字量输入/输出模块,8输 TTOS-234-01A 0x06 1byte 1byte 入/8 输出,继电器输出 数字量输入/输出模块, 16 输 TTOS-235-00A 2bytes 2bytes 0x07 入/16 输出,PNP 输出 模拟量输入模块,4 输入,16 8bytes TTOS-312-03A 1byte 0x08位精度, 电压/电流输入 用于模块参数配置 TTOS-313-03A 模拟量输入模块,8 输入,16 16byte 1byte 0x09 位精度, 电压/电流输入 用于模块参数配置 模拟量输入模块,16 输入,16 TTOS-314-02A 32byte 1byte 0x0a位精度, 电压输入 用于模块参数配置 模拟量输入模块,16 输入,16 TTOS-314-01A 32byte 1byte 0x0b位精度, 电流输入 用于模块参数配置 TTOS-322-03A 模拟量输出模块,4 输出,16 0 0x0c8bytes 位精度, 电压/电流输出, TTOS-323-01A 模拟量输出模块,8 输出,16 0 16bytes 0x0d模 位精度, 电流输出 0~20mA 拟 量 IO TTOS-312-0TA 热电偶测量模块,4 输入,通 8bytes 1byte 0x0e道隔离, J、K 等输入 用于模块参数配置 (XML 文件配置), 支持外 温 部 NTC 补偿 度

测	TTOS-313-0TA	热电偶测量模块, 8 输入,通	16byte	1byte	0x0f
量	1105 515 0171	道隔离,J、K等输入	s	用于模块参数配置	OAOI
			S	用] 医坏多数癿且	
IO		(XML 文件配置),支持外			
		部 NTC 补偿			
	TTOS-312-0RA	热电阻测量模块,4 输入,通	8bytes	1byte	0x10
		道隔离,PT100、PT1000 等		用于模块参数配置	
	TTOS-313-0RA	热电阻测量模块,8 输入,通	16byte	1byte	0x11
		道隔离,PT100、PT1000 等	S	用于模块参数配置	
	TTOS-412-1CA	2 通道高速计数模块,24V 单	28byte	20bytes	0x12
计	1103-412-1CA	端输入/5V 差分,最大频率	S		
数		200KHZ/1MHZ,支持 A,B 正交			
器		脉冲计数和脉冲+方向计数			
模	TTOS-412-0CA	2 组同步串行(D+,D-,CI+,CI-)	16byte	11bytes	0x13
块	1103-412-0CA	接口,最大通信速率 1MHZ,	S		
		支持多圈和单圈 SSI 编码器,			
串	TTOS-402-3NA	两个 COM,Modbus 主/从站	128	128bytes	0x14
П	1105-402-3NA	模式;每个串口拥有 128 个	bytes		
模		字节(输入、输出)数据。			
块					
	TTOC 400 000	两个 COM, 自由口模式; 每	128	128bytes	0x15
	TTOS-402-3NA	个串口拥有 128 个字节(输	bytes	,	
		入、输出)数据。	,		
	(Free Port)	/ · · · · · · · · · · · · · · · · · · ·			

2.3 ARM CPU 写 TX PDO

ARM CPU 向 MCU 发送 PDO 数据: (数据帧长占两个字节):

数据

帧长 功能码

0x55 0x55	len	0x34	PDO数据	0x16	
-----------	-----	------	-------	------	--

根据背板模块信息,依次排列发送输出字节

例如: 背板组态了四个模块, 分别是 TTOS-214-00A (0x00)、TTOS-224-00A(0x02)、TTOS-215-00A(0x01)、TTOS-224-01A(0x03), 此时 TX PDO 数据帧为:

0x55	0x55	len 低位	len 高位	0x34	TTOS-	TTOS-	0x16
					224-00A	224-01A	
					2Bytes	2bytes	
					DO	DO	

最终报文为: 0x55 0x55 0x10 0x00 0x34 XX XX XX XX 0x16

第 8 页

ARM CPU 读 RX PDO

MCU 应答:

数据

帧长 功能码

2.4 ARM CPU 读 RX PDO

ARM CPU 向 MCU 发送读 RX PDO 指令:

数据

帧长 功能码

 0x55
 0x55
 0x05
 0x56
 0x16

MCU 向 ARM CPU 应答 RX PDO 数据: (数据帧长占两个字节):

数据

帧长 功能码

例如: 背板组态了四个模块, 分别是 TTOS-214-00A (0x00)、TTOS-224-00A(0x02)、TTOS-215-00A(0x01)、TTOS-224-01A(0x03), 此时 RX PDO 数据帧为:

0x55	0x55	len 低位	len 高位	0x06	TTOS-	TTOS-	0x16
					214-00A	215-00A	
					2Bytes	4bytes	
					DI	DI	

最终报文为: 0x55 0x55 0x12 0x00 0x06 xx xx xx xx xx xx xx 0x16

2.5 ARM CPU 读背板诊断信息

ARM CPU 向 MCU 发送读诊断信息指令:

数据

帧长 功能码

0x55 0x55 0x05 0x78 0x16

ARM CPU 向 MCU 发送读诊断信息指令:

ARM CPU 读背板诊断信息

		数据 帧长	功能码		身个Bit表示一个扩展 其块的电源诊断故障		
0x55	0x55	Len	0x70	4bytes	4bytes	32bytes	0x16

每个Bit表示一个扩展 模块的背板总线故障 依次表示扩展模块的软件版本号,如 0x10,表示该模块的软件版本号是V1.0

读系统信息

第3章 ARM CPU 与 LCD MCU 串口通信协议内容

ARM CPU 通过串口连接 LCD MCU,本协议定义了 ARM CPU 与 LCD MCU 的串口数据交互过程。

LCD MCU 会主动发送指令给 ARM CPU, ARM CPU 在接收到请求指令后, 根据不同指令回复特定的信息。其中 ARM CPU 回复的每条信息中要包含以下信息(后文中以"公共信息"代替以下信息):

- 1) USER2 灯: 用户自定义 2 指示灯标志, 0: 灯灭; 1: 灯亮。
- 2) RUN 灯: PLC 应用程序运行状态 (1byte): 1: 运行; 2: 停止。
- 3) BF 灯: ARMCPU 背板总线状态 (1byte): 1: 停止; 2: 运行; 3: 错误。
- 4) NETF 灯: CPU 本体通讯口出现通讯错误如网络连接中断则点亮; 0: 灯灭; 1: 灯亮。
 - 5) USER1 灯: 用户自定义 1 指示灯标志, 0: 灯灭; 1: 灯亮。
 - 6) SF 灯: 0: 灯灭; 1: 灯亮。
 - 7) 眨眼功能标志位: 0: 未进行眨眼; 1: 正在进行眨眼。

3.1 读系统信息

LCD MCU 向 ARM CPU 发送读系统信息指令 (7bytes):

			- >) (· 3 · -) U F	1,0.11	()	
0x55	0x01	0x00	0x01	0x02	0x03	0x16	

ARM CPU 向 LCD MCU 应答系统信息:

0x55	0x01	0x0	Len(公共	СР	不同核心占用	内 存	硬盘占	硬盘性	CPU 温	PLCLOA
		1	不 含	信息	U	率(每个核心占	占 用	用率	能(保留	度	D(PLC
			头尾)		占	一个字节, 共	率		项:填		负载)
					用	4bytes)			固定值)		
					率						
代码存	年	月	日	时	分	秒	主 机	主机名	背板版	文件系	0x16
储器剩	(2bytes						名 称	称(字	本号字	统版本	
余)						长度	符串)	符 串	号字符	
(4bytes									(4byte	串	
, 单位:									s)	(11by	
MB)										tes)	

其中 Len: 两个字节,是指去掉头尾字节的实际信息长度,占 2bytes (后文中的 Len 同义)。

3.2 读网卡信息 (多个网卡)

LCD MCU 向 ARM CPU 发送读网卡信息指令:

0x55 0x02 0x00	0x01 0x02	02 0x03 0x16
----------------	-----------	--------------

ARM CPU 向 LCD MCU 应答网卡信息: 网卡信息按照 IP+NetMask+GateWay 排序。

0x55	0x02	0x01	Len(不含头	公共信息	网卡总数	第一个网卡 IP
			尾)			(4bytes)

读背板模块状态信息

第一个掩码	第一个网	 第 n 个网卡	第n个掩码	第 n 个网关	0x16
(4bytes)	美(4bytes)	IP(4bytes)	(4bytes)	(4bytes)	

3.3 读背板模块状态信息

LCD MCU 向 ARM CPU 发送读背板模块编码指令(5bytes):

				•
0x55	0x04	0x02	0x00	0x16

获取失败则 ARM CPU 回复:

		0x55	0x04	0x03	0x01	0x16
--	--	------	------	------	------	------

成功则 ARM CPU 向 LCD MCU 应答背板模块编码信息:

0x55	0x04	0x03	Len(不含头尾)	公共信 息	背板 实际挂的模块数量	第一个模 块编码
	第 n 个模块 编码	Codesys 软件组 态的模块数量	第一个模块编码		第 n 个模块 编码	0x16

LCD MCU 向 ARM CPU 发送读背板模块状态信息指令 (5bytes):

0x55	0x04	0x00	0x00	0x16

获取失败则 ARM CPU 回复:

Ī	0x55	0x04	0x01	0x01	0x16

成功则 ARM CPU 向 LCD MCU 应答背板模块状态信息:

0x55	0x04	0x01	Len(不	公共信息	0x00	模块个	第一个	第 1 个模	第一个模
			含头尾)			数	模块的	块的总线	块电源故
							模块编	状态(值	障状态 (值
							码	0:正常;	0: 正常; 值
								值 1: 总线	1: 电源故
								故障)	障)
第一	第一		第n个	第 n 个模	第 n 个模块	第n个	第n个模	0x16	
个 模	个 模		模块的	块的总线	电源故障状	模块大	块小版		
块大	块 小		模块编	状态(值	态(值0:正	版本号	本号		
版本	版 本		码	0:正常;	常;值1:电				
号	号			值 1: 总线	源故障)				
				故障)					

注: 例如模块版本号为 V1.0,则大版本号表示小数点前面的值: 1; 小版本号表示小数点后面的值: 0。

第 12 页

LCD MCU 固件刷新

3.4 LCD MCU **固件刷新**

固件更新方法:需要读取插入的 SD 卡中的固件包,通过串口发送至 LCD MCU。更新的内容包含:LCD MCU 的固件。

3.4.1 更新固件请求

LCD MCU 向 ARM CPU 发送固件更新请求指令 (7bytes):

Ī	0x55	0x05	80x0	0x01	0x02	0x03	0x16

主机回复有以下情况:

a. 通过请求回复:

0x55	0x05	0x09	0x00	0x16

b. 未插 SD 卡回复:

0x55 0x05 0x09 0x01 0x16		0x55	0x05	0x09	0x01	0x16
--------------------------	--	------	------	------	------	------

c. 不存在新固件回复:

0x55	0x05	0x09	0x02	0x16	

3.4.2 开始更新文件系统

LCD MCU 向主机发送开始更新文件系统指令 (7bytes):

0x55	0x05	0x04	0x01	0x02	0x03	0x16

成功回复:

0x55 0x05 0x05 0x00 0x16

失败回复:

	0x55	0x05	0x05	0x01	0x16
ı					•

3.4.3 开始更新背板 MCU 固件

LCD MCU 向主机发送背板 MCU 固件更新指令 (7bytes):

0x55	0x05	0x06	0x01	0x02	0x03	0x16
------	------	------	------	------	------	------

成功回复:

0x55	0x05	0x07	0x00	0x16

LCD MCU 固件刷新

失败回复:

0x55	0x05	0x07	0x01	0x16

3.4.4 开始更新 LCD MCU 固件

LCD MCU 向 ARM CPU 发送 LCD 固件更新请求指令 (7bytes):

0x55 0x05 0x00 0x01 0x02 0x03 0x16
--

主机回复有以下情况:

a. 通过请求回复:

		-					
0x55	0x05	0x01	0x00	MD5 标志位: 0-不支持;	32bytes	预 留	0x16
				1-支持	MD5 值	7bytes	

b. 不存在固件回复:

0x55	0x05	0x01	0x01	0x16

LCD MCU 向主机发送 LCD MCU 固件更新指令 (7bytes):

							•
0x55	0x05	0x02	0x01	0x02	0x03	0x16	

主机接收到指令后, 读取 SD 卡中的 LCD MCU 的固件 (.bin 文件), 发送给 LCD MCU:

0x55	0x05	0x03	固件的总	已发送的	本次发送	实际的数据	校验和 (实际	0x16
			字节大小	字 节 数	的实际固	(1000bytes)	数据的每个	
			(4bytes)	(4bytes)	件字节数		字节值相加)	
					(2bytes)		(4bytes)	

此固件更新指令是循环发送的,每次主机发送 1000bytes 的实际固件数据,直至固件实际数据发送完为止。

当 LCD 接收完固件后进行 MD5 值比对,正确则更新成功,否则更新失败。

3.4.5 LCD 发送 REBOOT 指令

当 LCDMCU 更新完成后,LCD 点击重启时向 ARMCPU 发送 REBOOT 指令:

0x55 0x13 0x00 0x01 0x02 0x03 0x16
--

ARMCPU 接收到指令后向 LCDMCU 发送接收成功指令:

0x55	0x13	0x01	0x00	0x16

设置系统时间

3.5 设置系统时间

LCD MCU 向 ARM CPU 发送设置系统时间指令:

0x55 0x06	0x00	年(2bytes)	月	日	时	分	秒	0x16	Ì
-----------	------	-----------	---	---	---	---	---	------	---

设置成功回复:

设置失败回复:

0x55 0x06 0x01 0x01 0x16	
--------------------------	--

3.6 设置网卡信息

LCD MCU 向 ARM CPU 发送设置网卡信息指令:

0x55	0x07	0x00	网卡索引 (第几个网	IP	子网掩码	网 关	0x16
			卡,索引从0开始)	(4bytes)	(4bytes)	(4bytes)	

设置成功回复:

0x55 0x07 0x01 0x00 0x	16
------------------------	----

设置失败回复:

0x55	0x07	0x01	0x01	0x16	
------	------	------	------	------	--

3.7 设置主机名称

LCD MCU 向 ARM CPU 发送设置主机名称指令:

x55 0x08 0x00	名称长度	主机名称	0x16
---------------	------	------	------

设置成功回复:

0x55 0x08 0x01 0x00 0x16

设置失败回复:

0x55	0x08	0x01	0x01	0x16

3.8 恢复出厂设置

LCD MCU 向 ARM CPU 发送恢复出厂设置指令:

0x55 0x11 0x00 0x01 0x16

读 PLC 循环时间

成功回复:

0x55 0x11 0x01 0x00 0x16

失败回复:

0x55 0x11 0x01 0x01 0x16

3.9 读 PLC 循环时间

LCD MCU 向 ARM CPU 发送读 PLC 循环时间指令:

0x55 0x12 0x00 0x01 0x02 0x03 0x16		0x55	0x12	0x00	0x01	0x02	0x03	0x16	
--	--	------	------	------	------	------	------	------	--

ARM CPU 向 LCD MCU 应答读 PLC 循环时间信息:

0x55	0x12	0x01	Len(不含头	任务总数	第一个任务	第一个任务名
			尾)		名称长度	称(字符串)
第一个 PLC 循		第n个任务名	第n个任务	第n个PLC	0x16	
环 时 间		称长度	名称 (字符	循环时间		
(4bytes)			串)	(4bytes)		

3.10 读 ECT 从站

3.10.1 读 ECT 从站列表

LCD MCU 向 ARM CPU 发送读 ECT 从站列表指令 (7bytes):

Ī	0x55	0x09	0x00	0x01	0x02	0x03	0x16
- 1							

没接 ECT 从站或者获取失败,则 ARMCPU 回复:

0x55	0x09	0x01	0x01	0x16

接了 ECT 从站, ARM CPU 向 LCD MCU 应答 ECT 从站列表信息:

0x55	0x09	0x01	Len(不	公 共	从站总数	第一个从	第一个从	第一个
			含 头	信息		站状态	站名称长	从站名
			尾)				度	称(字
								符串)

读 ECT 从站

第一个从站	第一个从		第n个	第 n 个从	第n个从	第 n 个从	第 n 个从	0x16
硬件版本	站软件版		从 站	站名称长	站名称	站硬件版	站软件版	
(字符串:	本(字符		状态	度	(字符	本(字符	本(字符	
例如 1.0,占	串: 例如				串)	串: 例如	串: 例如	
4bytes)	1.0 , 占					1.0 , 占	1.0 , 占	
	4bytes)					4bytes)	4bytes)	

3.10.2 读某个从站的模块信息

LCD MCU 向 ARM CPU 发送读某个从站的模块信息指令 (5bytes):

0x55 0x10 0x0	k00 从站索引(从0开始)	0x16
---------------	----------------	------

模块个数为 0 或者获取失败,则 ARMCPU 回复:

0x55	0x10	0x01	从站索引(从0开始)	0x01	0x16	
------	------	------	------------	------	------	--

获取成功 ARM CPU 向 LCD MCU 应答此从站的模块信息:

0x55	0x10	0x01	Len(不	公共	从站				实际模	第一个
			含 头	信息	索引				块个数	模块编
			尾)		(从					码
					0 开					
					始)					
	第 n	实际第	实际第	实 际	实际	 实际第	实际第	实 际	实际第	0x16
	个 模	1 个模	一个模	第一	第一	n 个模	n 个模	第n个	n 个模	
	块 编	块的总	块电源	个 模	个模	块的总	块电源	模 块	块小版	
	码	线状态	故障状	块 大	块小	线状态	故障状	大 版	本号	
		(值0:	态(值	版本	版本	(值0:	态(值	本号		
		正常;值	0: 正	号	号	正常;	0: 正常;			
		1: 总线	常; 值			值 1: 总	值 1: 电			
		故障)	1: 电源			线 故	源故障)			
			故障)			障)				

注: 例如模块版本号为 V1.0,则大版本号表示小数点前面的值: 1; 小版本号表示小数点后面的值: 0。

第 17 页

3.11 PLC 日志导出

LCD MCU 向 ARM CPU 发送日志导出请求指令:

0x55 0x14 0x00 0x01 0x02 0x03 0x16	
--	--

ARM CPU 回复有以下情况:

a. 通过请求回复:

I	0x55	0x14	0x01	0x00	0x16

b. 未插 SD 卡回复:

0x55	0x14	0x01	0x01	0x16

c. 无日志回复:

0x55	0x14	0x01	0x02	0x16

请求通过后,LCD MCU 向 ARM CPU 发送开始日志导出指令:

0x55	0x14	0x02	0x01	0x02	0x03	0x16
------	------	------	------	------	------	------

ARM CPU 将日志导出到 SD 卡, ARM CPU 向 LCD MCU 回复导出结果, 有以下情况:

a. 导出成功回复:

0x55 0x14	0x03	0x00	0x16	
-----------	------	------	------	--

b. SD 卡容量不足回复:

0x55	0x14	0x03	0x01	0x16	

c. 导出失败回复:

0x55	0x14	0x03	0x02	0x16

3.12 清空用户程序

LCD MCU 向 ARM CPU 发送清空用户程序指令:

Ovee	0.41	0,400	0.01	0,402	0,402	0v16
0x55	0x15	0x00	0x01	0x02	0x03	0x16

ARM CPU 回复有以下情况:

第 18 页

读 PN 从站信息(CPU 做 PN 主站时)

a. 清空成功回复:

0x55	0x15	0x01	0x00	0x16

b. 清空失败回复:

0001 0001 0001	0x55	0x15	0x01	0x01	0x16
----------------	------	------	------	------	------

3.13 读 PN 从站信息 (CPU 做 PN 主站时)

3.13.1 读 PN 从站列表

LCD MCU 向 ARM CPU 发送读 PN 从站信息指令:

0x55 0x16 0x00 0x01 0x02 0x03	0x16
---	------

ARM CPU 回复有以下情况:

未使用 PN 主站或者获取失败,则 ARMCPU 回复:

0x55	0x16	0x01	0x01	0x16

组态使用了 PN 主站, ARM CPU 向 LCD MCU 应答 PN 主站信息:

0x55	0x16	0x01	Len(不	公 共	PN 总线	PN 主站	PN 主站	PN 从站	第一个
			含	头	信息	状态(1:	网口 (1:	网口IP地	总数	从站状
			尾)			正常; 2:	X1; 2:	址		态(见
						异常)	X2)	(4bytes)		备注)
第一个	第一个	第一个从			第n个	第 n 个从	第n个从	第 n 个从	0x16	
从站名	从站名	站 IP 地址			从 站	站名称长	站名称	站 IP 地址		
称长度	称 (字符	(4bytes)			状 态	度	(字符	(4bytes)		
	串)				(见		串)			
					备注					

备注:

从站状态包含以下几种情况:

- 0: 通讯正常;
- 1: 设备 X (对应从站名称) 未连接
- 2: CPU 无法找到设备,设备名称与实际设备不符(IP 地址一致时)

第 19 页

PN 从站信息(CPU 做 PN 从站时)

- 3: 已经连接,但模块存在报警
- 4: 看门狗时间超时
- 5: Profinet 总线未运行

3.13.2 读某个从站的模块信息

LCD MCU 向 ARM CPU 发送读某个从站的模块信息指令(5bytes):

0x55 0x17	0x00	从站索引(从0开始)	0x16
-----------	------	------------	------

获取失败,则 ARMCPU 回复:

0x55	0x17	0x01	从站索引(从0开始)	0x01	0x16
------	------	------	------------	------	------

获取成功 ARM CPU 向 LCD MCU 应答此从站的模块信息:

0x55	0x17	0x01	Len(不含头尾)	公 共	从站索引(从0开	模块个数	第1个模
				信息	始)		块编码
	第n个	第1个模块的	第 1 个模块电		第 n 个模块的总	第 n 个模块电	0x16
	模块编	总线状态 (值	源故障状态		线状态(值0:正	源故障状态 (值	
	码	0:正常;值1:	(值0:正常;		常;值1:总线故	0: 正常; 值 1:	
		总线故障)	值 1: 电源故		障)	电源故障)	
			障)				

3.14 PN 从站信息 (CPU 做 PN 从站时)

LCD MCU 向 ARM CPU 发送 PN 从站信息指令:

|--|

ARM CPU 回复有以下情况:

获取失败回复:

0x55	0x18	0x01	0x01	0x16

获取成功 ARM CPU 向 LCD MCU 应答从站信息:

0x55	0x18	0x01	Len(不	公共信	PN 总线状态	PN 从站网	PN 从站网	从站状	0x16
			含头尾)	息	(1: 正常;	□ (1: X1;	口 IP 地址	态 (见备	
					2: 异常)	2: X2)	(4bytes)	注)	

PN 从站信息(CPU 做 PN 从站时)

备注:

从站状态:

- 0: 通讯正常;
- 1: 与上位控制器断开连接
- 2: 已经连接,但设备组态与上位控制器不匹配