

Statistics and Learning

Julien Bect

(julien.bect@centralesupelec.fr)

Teaching : CentraleSupélec / dept. of Statistics and Signal Processing

Research: Laboratory of Signals and Systems (L2S)

J. Bect & L. Le Brusquet — 1A — Statistics and Learning

Lecture 3/9

Asymptotic distributions and confidence regions intervals

In this lecture you will learn how to...

- ► Take the asymptotic approach one step further, introducing asymptotic distributions.
- ► Learn what confidence intervals are and show how to construct them (using, again, asymptotic arguments if needed)

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency
- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Mathematical framework

In this section:

we consider a statistical model

$$\left(\underline{\mathcal{X}},\underline{\mathscr{A}},\left\{\mathbb{P}_{\theta}^{\underline{X}},\,\theta\in\Theta\right\}\right),$$

assumed (most of the time) to be parametric ($\Theta \subset \mathbb{R}^p$);

- $ightharpoonup X_1, X_2, \dots \stackrel{\mathsf{iid}}{\sim} \mathrm{P}_{\theta}$, defined on a common $(\Omega, \mathscr{F}, \mathbb{P}_{\theta})$
- we want to estimate a « quantity of interest » :
 - either θ itself (we assume in this case that $\Theta \subset \mathbb{R}^p$),
 - ightharpoonup or, more generally, $\eta = g(\theta) \in \mathbb{R}^q$.

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Convergence rate

Let $\hat{\eta}_n = \hat{\eta}_n(X_1, \dots, X_n)$ be a consistent estimator of $\eta = g(\theta)$.

Definition

If there exists a sequence $(a_n)_{n\in\mathbb{N}^*}$ of positive numbers such that :

- $ightharpoonup a_n (\hat{\eta}_n \eta) \xrightarrow[n \to \infty]{d} Z,$
- \blacktriangleright where Z is a non-degenerate* random variable (or vector),

then $\hat{\eta}_n$ converges to η at the rate $\frac{1}{a_n}$.

- * We say that Z is degenerate if :
 - ▶ scalar case : $\exists c \in \mathbb{R}, Z = c$ a.s.;
 - lacksquare vector case : $\exists a_1, \ldots, a_q, c \in \mathbb{R}, \ \sum_{j=1}^q a_j Z^{(j)} = c$ a.s.;

Exercise. Let Z be a random vector with finite second order moments.

 \blacksquare Prove that Z is non-degenerate iff its covariance matrix is invertible.

Asymptotic normality

Let $\hat{\eta}_n = \hat{\eta}_n(X_1, \dots, X_n)$ be a consistent estimator of $\eta = g(\theta)$.

Definition

If there exists

- ▶ a sequence $(a_n)_{n \in \mathbb{N}^*}$ of positive numbers s.t. $\lim_{n \to \infty} a_n = \infty$,
- ightharpoonup a symmetric positive-definite matrix $\Sigma(\theta)$,

such that

$$a_n(\hat{\eta}_n - \eta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \Sigma(\theta)),$$
 (1)

then we say that $\hat{\eta}_n$ is asymptotically normal.

Vocabulary. $\Sigma(\theta)$ is called the asymptotic covariance matrix (asymptotic variance, in the scalar case).

Note: it can be proved that (1) with $a_n \to +\infty$ implies consistency.

Relation between convergence in distribution and in proba.

We already know that convergence in probability implies convergence in distribution. Let $(Y_n)_{n\in\mathbb{N}^*}$ be a sequence of RV with values in \mathbb{R}^d .

Proposition

If $Y_n \xrightarrow{d} c$, with $c \in \mathbb{R}^d$ a constant, then $Y_n \xrightarrow{\mathbb{P}} c$.

Corollary

If there exists $c \in \mathbb{R}^d$.

- ▶ a RV Z with values in \mathbb{R}^d .
- ▶ a sequence $(a_n)_{n \in \mathbb{N}^*}$ of rel numbers such that $\lim_{n \to \infty} a_n = \infty$,

such that

$$a_n(Y_n-c)\xrightarrow[n\to\infty]{d} Z$$

then

$$Y_n \xrightarrow[n \to \infty]{\mathbb{P}} c.$$

Proof (exercise): use above proposition and Slutsky's theorem (see below).

Probability refresher: the Central Limit Theorem (CLT)

The CLT gives us the convergence rate of the empirical mean.

Theorem

Let

- ▶ a sequence $(X_n)_{n \in \mathbb{N}^*}$ of IID RV taking values in \mathbb{R}^d , with finite second order moments.
- ho $\mu = \mathbb{E}(X_1)$ and $\Sigma = \mathbb{V}(X_1) \in \mathbb{R}^{d \times d}$.

Then:
$$\sqrt{n}\left(\bar{X}_n-\mu\right)\xrightarrow[n\to\infty]{d}\mathcal{N}(0,\Sigma),$$

with $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ the sample mean.

Convergence rate of the sample mean.

 \bar{X}_n converges to $\mathbb{E}(X_1)$ at the rate $\frac{1}{\sqrt{n}}$.

Example: component reliability

Recall that

- $ightharpoonup X_i \stackrel{\mathsf{iid}}{\sim} \mathcal{E}(\theta), \ \theta > 0, \ \ \mathsf{and} \ \ \ \eta = \mathbb{E}_{\theta}(X_1) = \frac{1}{\theta}.$
- $\hat{\eta}_n = \bar{X}_n$ is obtained by ML and the method of moments.
- \longrightarrow Direct application of the CLT : $\sqrt{n} \left(\bar{X}_n \eta \right) \xrightarrow[n \to \infty]{d} \mathcal{N} \left(0, \eta^2 \right)$.

Another exemple: indicator function

Let $(X_n)_{n\geq 1}$ be a sequence of IID RV with values in $(\mathcal{X}, \mathscr{A})$.

For a given $A \in \mathscr{A}$, we estimate $\eta = \mathbb{P}(X_1 \in A)$ by

$$\hat{\eta}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \in A}.$$

Direct application of the CLT:

$$Y_i = \mathbb{1}_{X_i \in A} \stackrel{\text{iid}}{\sim} \operatorname{Ber}(\eta)$$

$$\sqrt{n}\left(\hat{\eta}_n-\eta\right) \xrightarrow[n\to\infty]{d} \mathscr{N}\left(0,\eta(1-\eta)\right).$$

Concl. : if $0 < \eta < 1$, then $\hat{\eta}_n$ is asymptotically Gaussian, with

- ightharpoonup convergence rate : $\frac{1}{\sqrt{n}}$,
- **asymptotic** variance : $\eta(1-\eta)$.

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Slutsky's theorem

Theorem

Let

▶ $(X_n)_{n \in \mathbb{N}^*}$ a sequence of random variables that converges in distribution to a RV X:

$$X_n \xrightarrow[n\to\infty]{d} X$$
,

▶ $(Y_n)_{n \in \mathbb{N}^*}$ a sequence of random variables that converges in distribution (therefore in probability) to a constant c:

$$Y_n \xrightarrow[n \to \infty]{d} c$$

Then

$$(X_n, Y_n) \xrightarrow[n \to \infty]{d} (X, c).$$

Remark : $Y_n \xrightarrow[n \to \infty]{d} c$ implies $Y_n \xrightarrow[n \to \infty]{\mathbb{P}} c$ (constant limit).

The continuous mapping theorem

Theorem (Mann-Wald)

Let

- $\blacktriangleright h: \mathbb{R}^d \to \mathbb{R}^q$ a continuous function
- \triangleright Y a random vector, taking values in \mathbb{R}^d ,

such that

h is continuous at the point Y, almost surely.

Then, for any sequence $(Y_n)_{n\in\mathbb{N}^*}$ of RV with values in \mathbb{R}^d ,

(i)
$$Y_n \xrightarrow{as} Y \Rightarrow h(Y_n) \xrightarrow{as} h(Y)$$
,

(ii)
$$Y_n \stackrel{\mathbb{P}}{\to} Y \Rightarrow h(Y_n) \stackrel{\mathbb{P}}{\to} h(Y),$$

(iii)
$$Y_n \xrightarrow{d} Y \Rightarrow h(Y_n) \xrightarrow{d} h(Y)$$
.

Example: component reliability (cont'd)

Recall that

- $ightharpoonup X_i \stackrel{\mathrm{iid}}{\sim} \mathcal{E}(\theta), \ \theta > 0, \ \ \mathrm{and} \ \ \ \eta = \mathbb{E}_{\theta}(X_1) = \frac{1}{\theta}.$
- $\hat{\eta}_n = \bar{X}_n$ is obtained by ML and the method of moments.

Law of large numbers (strong and in L^2):

$$\hat{\eta}_n = \bar{X}_n \xrightarrow{\mathsf{as}, L^2} \eta.$$

By the continuous mapping theorem :

$$\hat{\theta}_n = \frac{1}{\hat{\eta}_n} \xrightarrow{\mathsf{as}} \frac{1}{\eta} = \theta,$$

therefore $\hat{\theta}_n$ is strongly consistent.

Exercise : prove that $\hat{\theta}_n$ is also consistent the L^2 sense.

Example: component reliability (cont'd)

Recall that (CLT)
$$\sqrt{n} \left(\bar{X}_n - \eta \right) \xrightarrow[n \to \infty]{d} \mathcal{N} \left(0, \eta^2 \right).$$

Since $\bar{X}_n \xrightarrow[n \to \infty]{as} \eta$ (constant), we have by Slutsky's theorem : :

$$\left(\sqrt{n}\left(\bar{X}_{n}-\eta\right),\,\bar{X}_{n}\right) \xrightarrow[n\to\infty]{d} \left(Z,\eta\right) \text{ with } Z\sim\mathscr{N}\left(0,\eta^{2}\right).$$

Therefore, by the continuous mapping theorem,

$$\sqrt{n} \frac{\left(\overline{X}_n - \eta\right)}{\overline{X}_n} \xrightarrow[n \to \infty]{d} \frac{Z}{\eta} \sim \mathcal{N}\left(0, 1\right),$$

since $(z, y) \mapsto \frac{z}{y}$ is continuous at any point where $y \neq 0$.

Linearization method ("delta method")

Theorem ("delta theorem")

Let $(Y_n)_{n\in\mathbb{N}^*}$ be a sequence of RV with values in \mathbb{R}^d , s.t.

$$\sqrt{n}(Y_n-m) \xrightarrow[n\to\infty]{d} Z,$$

Y a random vector, taking values in \mathbb{R}^d and $m \in \mathbb{R}^d$.

Then, for any $h: \mathbb{R}^d \to \mathbb{R}^q$ that is differentiable at m,

$$\sqrt{n}(h(Y_n)-h(m)) \xrightarrow[n\to\infty]{d} (Dh)(m) Z,$$

where (Dh)(m) is the Jacobian matrix of h at m:

$$(Dh)(m) = \left((\partial_j h_i)(m) \right)_{1 \leq i \leq q, \ 1 \leq j \leq d}.$$

Intuition: $h(y) - h(m) \approx (Dh)(m)(y - m)$.

Special cases

Gaussian case

If
$$\sqrt{n}(Y_n - m) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \Sigma)$$
, then

$$\sqrt{n}\left(h(Y_n)-h(m)\right) \xrightarrow[n\to\infty]{d} \mathscr{N}\left(0,\ (Dh)(m)\ \Sigma\ (Dh)(m)^\top\right).$$

Scalar case

If
$$d = q = 1$$
 and $\sqrt{n}(Y_n - m) \xrightarrow[n \to \infty]{d} Z$, then

$$\sqrt{n}(h(Y_n)-h(m)) \xrightarrow[n\to\infty]{d} h'(m) Z.$$

Exercise. If h'(m) = 0, and if h is twice differentiable at m, show that

$$n(h(Y_n)-h(m)) \xrightarrow[n\to\infty]{d} \frac{1}{2}h''(m)Z^2.$$

Proof (scalar case)

Consider the function ψ defined by :

$$\psi(y) = \begin{cases} \frac{h(y) - h(m)}{y - m} & \text{si } y \neq m, \\ h'(m) & \text{si } y = m; \end{cases}$$

 ψ is continuous at m because h est differentiable at m. Since $Y_n \xrightarrow[n \to \infty]{d} m$,

$$\psi(Y_n) \xrightarrow[n \to \infty]{d} \psi(m) = h'(m),$$

and thus (Slutsky)

$$(\sqrt{n}(Y_n-m),\psi(Y_n)) \xrightarrow{d} (Z,h'(m)).$$

Finally, we have

$$\sqrt{n}(h(Y_n) - h(m)) = \sqrt{n}(Y_n - m)\psi(Y_n) \xrightarrow{d} h'(m)Z.$$

Example: component reliability (cont'd)

Application : comparing estimators of $\eta = \mathbb{E}_{\theta}(X_1)$.

1) For
$$\hat{\eta}^{(1)} = \overline{X}_n$$
, we have (CLT) : $\sqrt{n} \left(\hat{\eta}^{(1)} - \eta \right) \xrightarrow[n \to \infty]{d} \mathcal{N} \left(0, \eta^2 \right)$.

- 2) For $\hat{\eta}^{(2)} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} X_i^2}$ (see lecture #1)?
 - ► Since $\mathbb{E}(X_1^2) = 2\eta^2$ et $\mathbb{E}(X_1^4) = 24\eta^4$, we have (CLT) :

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-2\eta^{2}\right)\xrightarrow[n\to\infty]{d}\mathcal{N}\left(0,20\,\eta^{4}\right).$$

▶ Hence, using the delta method with $h(z) = \sqrt{\frac{1}{2}z}$,

$$\sqrt{n}\left(\hat{\eta}^{(2)} - \eta\right) \xrightarrow[n \to \infty]{d} \mathcal{N}\left(0, \frac{5}{4}\eta^2\right).$$

Conclusion : $\hat{\eta}^{(1)}$ is "asymptotically preferable" to $\hat{\eta}^{(2)}$.

(Actually, it can be proved that $\hat{\eta}^{(1)}$ is efficient; see comput. of the FIM below).

Asymptotic comparison of (scalar) estimators

Let $\hat{\eta}_n$ and $\tilde{\eta}_n$ be two estimators of $\eta = g(\theta) \in \mathbb{R}$,

- asymptotically Gaussian.
- with asymptotic variances $\sigma^2(\theta)$ and $\tilde{\sigma}^2(\theta)$.

Definition: asymptotically preferable

lf

- ▶ the two estimators have the same convergence rate,

then we say that

$$\hat{\eta}_n$$
 is asymptotically preferable to $\tilde{\eta}_n$

("strictly" if
$$\exists \theta \in \Theta$$
 such that $\sigma^2(\theta) < \tilde{\sigma}^2(\theta)$).

Note : comparing vector-valued estimators \Rightarrow compare matrices. . .

Example: component reliability (cont'd)

We already saw that

- $\hat{\theta}_n = 1/\bar{X}_n$ is a consistent estimator of θ ,
- $lackbox{}\sqrt{n}\left(ar{X}_n-\eta
 ight)\xrightarrow[n
 ightarrow\infty]{d}\mathcal{N}\left(0,\eta^2
 ight)$, where $\eta=rac{1}{ heta}$.

Using the delta method with $h(\eta) = \frac{1}{\eta}$, we get :

$$\sqrt{n}\left(\frac{1}{\bar{X}_n}-\theta\right) \xrightarrow[n\to\infty]{d} \mathcal{N}\left(0,\,\eta^2\left(\frac{h'(\eta)}{\eta}\right)^2\right),$$

hence, since $h'(\eta) = -\frac{1}{\eta^2}$,

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow[n\to\infty]{d} \mathcal{N}\left(0,\theta^{2}\right).$$

 \blacksquare the estimator $\hat{\theta}_n$ is asymptotically Gaussian.

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Asymptotic efficiency

Recall the Cramér-Rao lower bound (scalar parameter)

 $\forall \hat{\theta} \text{ regular UE of } \theta, \, \forall \theta \in \Theta$,

$$R_{\theta}\left(\hat{\theta}\right) = \mathbb{V}_{\theta}\left(\hat{\theta}\right) \geq \frac{1}{n} I_{1}^{-1}(\theta),$$

with
$$I_1(\theta) = \mathbb{V}_{\theta}(S_{\theta}(X_1))$$
.

 \blacksquare When equality holds for all θ , the estimator is called efficient.

Asymptotic efficiency

Definition. An estimator is called asymptotically efficient:

- if it is asymptotically normal with rate $\frac{1}{\sqrt{n}}$,
- **>** is its asymptotic variance is such that $\Sigma(\theta) = I_1^{-1}(\theta)$.

Remark: this definition is valid for the vector-valued case as well.

Asymptotic efficiency of the MLE

Context : $X_1, X_2, \dots \stackrel{\mathsf{iid}}{\sim} P_{\theta}$ and, $\forall \theta \in \Theta$, P_{θ} admits a pdf f_{θ} .

Definition: regular model

The statistical model is called regular if

- ightharpoonup conditions C_1 – C_4 hold, (C_3 and C_4 defined below)
- ▶ $\forall \theta \in \Theta$, the Fisher information matrix $I_1(\theta)$ is positive definite.

Theorem

If the statistical model is regular and if the MLE $\hat{\theta}_n$ is consistent, then it is asymptotically efficient :

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\xrightarrow[n\to\infty]{d}\mathcal{N}\left(0,I_{1}^{-1}\left(\theta\right)\right).$$

Counter-example in a non-regular model

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{U}_{[0,\theta]}$, with $\theta > 0$ unknown.

This model is not regular (why?).

It can be proved that (cf. TD1, exercise 1.3)

- $ightharpoonup \hat{\theta}_n = \max_{i \leq n} X_i$ is the MLE of θ , and

In this particular case

- the MLE is not asymptotically Gaussian;
- \implies the convergence rate is $\frac{1}{n}$: faster than $\frac{1}{\sqrt{n}}$.

Partial solution of exercise 1.3 (TD 1)

By maximization of the likelihood, we get (see TD1) :

$$\hat{\theta}_n = \max_{i=1...n} X_i.$$

We have, for $0 < t < \theta$:

$$\mathbb{P}_{\theta}\left(\hat{\theta}_n \leq t\right) = \left(\frac{t}{\theta}\right)^n,$$

thus, for all u < 0:

$$\mathbb{P}_{\theta}\left(n\left(\hat{\theta}_{n}-\theta\right)\leq u\right)=\begin{cases} \left(1+\frac{u}{n\theta}\right)^{n} & \text{if } u\geq -n\theta,\\ 0 & \text{otherwise}. \end{cases}$$

Finally, for all $u \leq 0$,

$$\mathbb{P}_{\theta}\left(n\left(\hat{\theta}_{n}-\theta\right)\leq u\right)\xrightarrow[n\to\infty]{}\exp\left(\frac{u}{\theta}\right).$$

Regularity conditions : C_3 and C_4

We assume that C_1 and C_2 hold.

Regularity condition C_3

 $\theta \mapsto f_{\theta}(\underline{x})$ is twice continuously differentiable for ν -almost all \underline{x} .

Regularity condition C_4

At any point $\theta \in \Theta$, we have

$$\int_{\mathcal{S}} \nabla_{\theta} \nabla_{\theta}^{\top} f_{\theta}(\underline{x}) \, \nu(\mathrm{d}\underline{x}) = \nabla_{\theta} \int_{\mathcal{S}} \nabla_{\theta}^{\top} f_{\theta}(\underline{x}) \, \nu(\mathrm{d}\underline{x}).$$

In other words, : $\forall \theta \in \Theta$, $\forall k \leq p$, $\forall j \leq p$,

$$\int_{\mathcal{S}} \frac{\partial^2 f_{\theta}(\underline{x})}{\partial \theta_{\mathbf{k}} \partial \theta_{j}} \nu(\mathrm{d}\underline{x}) = \frac{\partial}{\partial \theta_{\mathbf{k}}} \int_{\mathcal{S}} \frac{\partial f_{\theta}(\underline{x})}{\partial \theta_{j}} \nu(\mathrm{d}\underline{x}).$$

Consequence of $C_3 + C_4$: Fisher information matrix

We assume that C_1 and C_2 hold.

Reminder. The Fisher information brought by X is the matrix

$$I_{\underline{X}}(\theta) = \mathbb{V}_{\theta}(S_{\theta}(\underline{X})) = \mathbb{E}_{\theta}\left(S_{\theta}(\underline{X}) S_{\theta}(\underline{X})^{\top}\right).$$

Proposition: another expression for the FIM

If conditions C_1 – C_4 hold, then

$$I_{\underline{X}}(\theta) = -\mathbb{E}_{\theta}\left(\nabla_{\theta}\left(S_{\theta}(\underline{X})^{\top}\right)\right), \tag{*}$$

In other words, : $\forall \theta \in \Theta$, $\forall j \leq p$, $\forall k \leq p$,

$$\left(\mathit{I}_{\underline{X}}(\theta)\right)_{j,k} = -\operatorname{\mathbb{E}}_{\theta}\left(\frac{\partial}{\partial\theta_{j}}S_{\theta}^{(k)}(\underline{X})\right) = -\operatorname{\mathbb{E}}_{\theta}\left(\frac{\partial^{2}}{\partial\theta_{j}\partial\theta_{k}}\ln f_{\theta}(\underline{X})\right).$$

Remark : actually, if C_1 – C_3 hold, then C_4 and (\star) are equivalent.

Example: component reliability (cont'd)

Question : is $\hat{\theta}_n = 1/\bar{X}_n$ asymptotically efficient?

We have already computed the score : $S_{\theta}(X_1) = \frac{1}{\theta} - X_1$.

Computation of Fisher's information (two approaches):

Comput. of
$$\mathbb{E}_{\theta}\left(S_{\theta}(X_1)^2\right)$$
 Comput. of $-\mathbb{E}_{\theta}\left(\frac{\partial S_{\theta}}{\partial \theta}(X_1)\right)$ $I_1(\theta) = \mathbb{V}_{\theta}(X_1) = \eta^2 = \frac{1}{\theta^2}$ $I_1(\theta) = -\mathbb{E}_{\theta}\left(-\frac{1}{\theta^2}\right) = \frac{1}{\theta^2}$

Conclusion : since
$$\sqrt{n}\left(\frac{1}{X_n}-\theta\right) \xrightarrow[n \to \infty]{d} \mathcal{N}\left(0,\theta^2\right)$$
,
$$\hat{\theta}_n = \frac{1}{X_n} \text{ is asymptotically efficient.}$$

We recover the conclusions of the theorem $(C_1-C_4 \text{ hold indeed})$.

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Motivation

Problem

A point estimator necessarily makes some estimation error. How can we "report" this error?

Two approaches:

- provide, in addition to the estimated value,
 - the distribution of the estimator $\hat{\eta}$, exact or approximate,
 - or at least some « measure of dispersion » (e.g., its standard deviation);
- \triangleright give, instead of a point estimation $\hat{\eta}$,

a confidence interval for η .

Confidence regions and confidence intervals

Recall that $\eta = g(\theta)$. We denote by $\mathcal{P}(N)$ the subsets of $N = g(\Theta)$.

Definition: confidence region

Let $\alpha \in]0,1[$. A confidence region with level (at least) $1-\alpha$ for η is a statistics $I_{\alpha}\left(\underline{X}\right)$ taking values in $\mathcal{P}(N)$, such that :

$$\forall \theta \in \Theta, \quad \mathbb{P}_{\theta} \left(g(\theta) \in I_{\alpha} \left(\underline{X} \right) \right) \geq 1 - \alpha.$$

We say that $I_{\alpha}(\underline{X})$ is a confidence region with level *exactly* $1-\alpha$ if

$$\forall \theta \in \Theta, \quad \mathbb{P}_{\theta} \left(g(\theta) \in I_{\alpha} \left(\underline{X} \right) \right) = 1 - \alpha.$$

(Some authors also write : of "size" $1 - \alpha$.)

Scalar case : if $I_{\alpha}(\underline{X})$ is an interval, it is called a confidence interval.

Example : $\mathscr{N}(\mu,1)$ *n*-sample, with known σ_0^2

Since
$$\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma_0^2}{n}\right)$$
, $T = \sqrt{n} \frac{\bar{X} - \mu}{\sigma_0} \sim \mathcal{N}\left(0, 1\right)$, therefore

$$\mathbb{P}_{\mu}\left(\sqrt{n}\,\frac{\bar{X}-\mu}{\sigma_0}\in\left[q_{\frac{\alpha}{2}},q_{1-\frac{\alpha}{2}}\right]\right)=1-\alpha,$$

with q_r the quantile of order r of the $\mathcal{N}(0,1)$ distribution.

Interpretation: simulations

We simulate 100 realizations with $\mu = 10$ and $\sigma_0 = 1$.

In red : realizations where the IC does not contain $\mu=$ 10.

The proportion of cases where the CI doe snot contain μ is (approx.) α .

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Pivotal functions

The method can be formalized using pivotal functions.

Definitions

A function

$$T: \underline{\mathcal{X}} \times N \rightarrow \mathbb{R}$$

is called pivotal if the distribution of the RV $T = T(\underline{X}, \eta)$ does not depend on θ . We say that the distribution of $T(\underline{X}, \eta)$ is free from the parameter.

Back to the **example** : $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma_0^2)$ with known σ_0 .

Then $T=\sqrt{n}\,rac{ar{X}_n-\mu}{\sigma_0}$ is pivotal since

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma_0} \sim \mathcal{N}(0, 1).$$

Remark : we can also choose $T = \sqrt{n} (\bar{X}_n - \mu) \sim \mathcal{N}(0, \sigma_0^2)$.

Probability refresher : quantiles

Definition : quantile of order r

Let F(x) be the cdf of a probability distribution on \mathbb{R} .

For 0 < r < 1, the quantile of order r of the distribution is defined as :

$$q_r = \inf \{x \in \mathbb{R}, \ F(x) \ge r\}.$$

Properties:

- ▶ If F is continuous, then $F(q_r) = r$.
- ▶ If, in addition, F is strictly increasing, then $q_r = F^{-1}(r)$.

Quantile function of the $\mathcal{N}(0,1)$ distribution

How to use pivotal functions

Let $T(X, \eta)$ be a pivotal function and $\alpha \in]0, 1[$.

Proposition

Assume that the cdf F of $T(\underline{X}, \eta)$ is continuous, denote by $q_r = F^{-1}(r)$ the quantile of order r.

Then, for all $\gamma \in [0, \alpha]$:

$$I_{lpha}^{\gamma}\left(\underline{X}
ight) = \left\{\eta \in \mathsf{N} ext{ such that } q_{\gamma} \leq T\left(\underline{X}, \eta
ight) \leq q_{\gamma+1-lpha}
ight\} \ = \mathcal{S}^{-1}\left(\underline{X}, \left[q_{\gamma}, q_{\gamma+1-lpha}
ight]
ight)$$

is a confidence interval for η with level exactly $1 - \alpha$.

$$\begin{array}{ll} \mathsf{Proof.} & \mathbb{P}_{\theta}\left(I_{\alpha}^{\gamma}\left(\underline{X}\right)\right) = \mathbb{P}_{\theta}\left(q_{\gamma} \leq T\left(\underline{X}, \eta\right) \leq q_{\gamma+1-\alpha}\right) \\ & = F\left(q_{\gamma+1-\alpha}\right) - F\left(q_{\gamma}\right) = 1 - \alpha \end{array}$$

Example : $\mathcal{N}(\mu,1)$ *n*-sample, with known σ_0^2

Consider once more the pivotal function

$$T(\underline{X},\mu) = \sqrt{n} \frac{(\bar{X}-\mu)}{\sigma_0} \sim \mathcal{N}(0,1).$$

For all $\gamma \leq \alpha$, we obtain a CI with level (exactly) $1 - \alpha$:

$$I_{lpha}^{\gamma} = \left[ar{X} + rac{\sigma_0}{\sqrt{n}} \, q_{\gamma}, \quad ar{X} + rac{\sigma_0}{\sqrt{n}} \, q_{1-lpha+\gamma}
ight],$$

with q_r the quantile of order r of the $\mathcal{N}(0,1)$ distribution.

For instance, with $\gamma=\frac{\alpha}{2}$ and $\alpha=0.05$:

$$q_{\gamma} pprox -1.96$$
 and $q_{1-\alpha+\gamma} pprox 1.96$.

How to choose γ ?

Density of the $\mathcal{N}(0,1)$ distribution and corresponding quantiles for $\alpha=0.1$ and several values of γ (in red : $q_{\gamma+1-\alpha}-q_{\gamma}$).

Usual criterion : value s.t. the CI has minimal length (here $\gamma = \frac{\alpha}{2}$).

It can be proved that:

$$T(\underline{X},\eta) = \frac{\bar{X}}{\eta} \sim \Gamma(n,n).$$

Thus, a CI with level exactly $1 - \alpha$ is :

$$I_{lpha}^{\gamma} = \left[rac{ar{X}}{q_{\gamma+1-lpha}}, \; rac{ar{X}}{q_{\gamma}}
ight],$$

with q_r the quantile of order r of the $\Gamma(n, n)$ distribution.

Choic of γ : we can take $\gamma=\frac{\alpha}{2}$ for simplicity, or search numerically for the value γ such that the length $q_{1+\gamma-\alpha}-q_{\gamma}$ is minimal.

Probability density function of the pivotal distribution $\Gamma(n, n)$ and corresponding quantiles for $\alpha = 0.05$ and $\gamma = \frac{\alpha}{2}$.

Another exemple : the Rayleigh distribution

Definition : Rayleigh distribution with parameter σ^2

$$X \sim \mathcal{R}\left(\sigma^2\right)$$
 if (déf.) $f(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$, $x \ge 0$.

Pivotal function. Finding a pivotal function in this case requires the knowledge of some "fine" properties of the Rayleigh distribution. . .

It can be proved that : if $X \sim \mathcal{R}(\sigma^2)$ then $Y = X^2 \sim \mathcal{E}\left(\frac{1}{2\sigma^2}\right)$;

$$^{\bullet \bullet}$$
 thus $T\left(\underline{X}, \sigma^2\right) = \frac{1}{n\sigma^2} \sum_{i=1}^n X_i^2 \sim \Gamma\left(n, \frac{1}{2}\right)$ is pivotal for σ^2 .

Hence a CI with level exactly $1 - \alpha$:

$$I_{\alpha}^{\gamma = \frac{\alpha}{2}} = \left[\frac{1}{nq_{1-\frac{\alpha}{2}}} \sum_{i=1}^{n} X_{i}^{2}, \frac{1}{nq_{\frac{\alpha}{2}}} \sum_{i=1}^{n} X_{i}^{2} \right].$$

Lecture outline

- 1 Convergence rate and asymptotic distribution
 - 1.1 Definitions and examples
 - 1.2 Theoretical tools
 - 1.3 Asymptotic efficiency

- 2 Confidence regions and confidence intervals
 - 2.1 Definition and example
 - 2.2 Exact confidence intervals
 - 2.3 Asymptotic confidence intervals

Motivation and goal

Problem

It is sometimes (often) difficult to find a pivotal function.

Solution: use once again an asymptotic approach.

- Intervals with "approximate guarantees" will be obtained.
- Comput. become easier with the tools that we already have (CLT, Slutsky, delta method...).

Any analysis carried out in an asymptotic setting is

approximate when n is finite.

 \blacksquare The results can be bad for small n...

Asymptotic confidence regions (intervals)

We set $\underline{X}_n = (X_1, \dots, X_n)$. Recall that $\eta = g(\theta)$ and $N = g(\Theta)$.

Definition: asymptotic confidence region

An asymptotic confidence region with level (at least) $1 - \alpha$ is a statistic $I_{n,\alpha}(\underline{X}_n)$, with values in $\mathcal{P}(N)$, such that

$$\forall \theta \in \Theta, \quad \lim_{n \to \infty} \mathbb{P}_{\theta} \left(g(\theta) \in I_{n,\alpha} \left(\underline{X}_n \right) \right) \geq 1 - \alpha.$$

(variant : « exactly » if equality holds for all θ .)

Recall that for an "exact" CR with level (at least) $1-\alpha$,

$$\forall \theta \in \Theta, \quad \mathbb{P}_{\theta} \left(g(\theta) \in I_{\alpha} \left(\underline{X}_{n} \right) \right) \geq 1 - \alpha$$

(here, « exact » means « non asymptotic »).

Asymptotic pivotal function

Definition

A (sequence of) function(s)

$$T_n: \mathcal{X}^n \times N \rightarrow \mathbb{R}$$

is an asymptotic pivotal function if the limit distribution of $T_n(\underline{X}_n, \eta)$ does not depend on θ :

$$T_n(\underline{X}_n,\eta) \xrightarrow[n\to\infty]{d} T_\infty.$$

where T_{∞} is a RV whose distribution is free of θ .

How to use asymptotic pivotal functions :

exactly as we used the non-asymptotic ones!

We already saw that (Slutsky + continuity theorem)

$$\sqrt{n} \frac{\left(\bar{X}_n - \eta\right)}{\bar{X}_n} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1).$$

■ Asymptotic pivotal function :

$$T_n\left(\underline{X}_n,\eta\right)=\sqrt{n}\,\frac{\bar{X}-\eta}{\bar{X}}.$$

 \blacksquare Asymptotic CI with level (exactly) $1-\alpha$ for η :

$$I_{\alpha} = \left[\left(1 - \frac{1}{\sqrt{n}} \, q_{1 - \frac{\alpha}{2}} \right) \, \bar{X}, \, \left(1 + \frac{1}{\sqrt{n}} \, q_{1 - \frac{\alpha}{2}} \right) \, \bar{X} \right]$$

with q_r the quantile of order r of the $\mathcal{N}(0,1)$ distribution.

Comparison of the pdfs of pivotal functions (exact and asymptotic)

Comparison of exact and asymptotic CIs, as a function of n

Coverage probability of a confidence interval

Definition

For $\theta \in \Theta$, the coverage probability of $I_{\alpha}(\underline{X}_n)$ is defined by

$$au_{n,\theta}^{c}\left(I_{\alpha}\left(\underline{X}_{n}\right)\right) = \mathbb{P}_{\theta}\left(\eta \in I_{\alpha}\left(\underline{X}_{n}\right)\right)$$

Ex. « component reliability » : $\tau_{n,\theta}^c$ for the asympt. CI with level 95%

Remark. If $I_{\alpha}\left(\underline{X}_{n}\right)$ is an asympt. CI with level $1-\alpha$, then :

$$\forall \theta, \lim_{n \to \infty} \tau_{\theta}^{c} \left(I_{\alpha}(\underline{X}_{n}) \right) \geq 1 - \alpha.$$