Correction IE1 Statique - Pince schraders-belows

Graphe des liaisons

Remarque générale : Les torseurs seront notés en colonne dans la base 0

1. Question préliminaire : Action mécanique de pression sur 1

La pression étant uniforme sur l'ensemble du disque, on a $\overrightarrow{F_p} = p * S$, et par symétrie, les moments élémentaires se compensent au centre du disque. Ainsi :

$$\left\{F_{fluide \to 1}\right\} = \left\{\begin{matrix} X_p & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}\right\}_G \quad \text{avec} \quad X_p = p\pi \frac{D^2}{4}$$

Action mécanique du ressort sur 1 :

D'après les données de l'énoncé : $F_{R/1} = -K\Delta L - F_o$

Et le torseur s'écrit, en A, ou tout autre point de l'axe $(A, \overrightarrow{x_0})$:

$$\{F_{R\to 1}\} = \begin{cases} F_{R/1} & 0\\ 0 & 0\\ 0 & 0 \end{cases}_{A.G}$$

2. Bilan inconnues:

Inconnues	2D
6 pivots	12
1 pivot glissant (glissière)	2
Pression p	1
	15

3. PFS appliqué à 2 au point A

Bilan des Actions Mécaniques Extérieures à 2 :

• Action de $\underline{\mathbf{4}}$ sur $\underline{\mathbf{2}}$ en B : liaison pivot d'axe $(B, \overrightarrow{z_0})$

$$\{F_{4\to 2}\} = \begin{cases} X_{42} & - \\ Y_{42} & - \\ - & 0 \end{cases}_B = \begin{cases} X_{42} & - \\ Y_{42} & - \\ - & (e-a)Y_{42} - \left(b + \frac{d}{2}\right)X_{42} \end{cases}_A$$

• Action de $\underline{\mathbf{1}}$ sur $\underline{\mathbf{2}}$ en A : liaison pivot d'axe $(A, \overrightarrow{z_0})$

$$\{F_{1\to 2}\} = \begin{cases} X_{12} & - \\ Y_{12} & - \\ - & 0 \end{cases}_{A}$$

$$\begin{cases} X_{42} + X_{12} = 0 & (R2x) \\ Y_{42} + Y_{12} = 0 & (R2y) \\ (e - a)Y_{42} - \left(b + \frac{d}{2}\right)X_{42} = 0 & (M2z) \end{cases}$$

PFS en A:

4. PFS appliqué à 1 au point A

Bilan des Actions Mécaniques Extérieures à 1 :

$$\bullet \quad \text{L'action du ressort sur } \underline{\mathbf{1}}: \{F_{R \to 1}\} = \begin{cases} F_{R/1} & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{A,G,O_0} \text{ où } F_{R/1} = -K\Delta L - R_o$$

• L'action du fluide sur
$$\underline{\mathbf{1}}: \{F_{fluide \to 2}\} = \begin{cases} X_p & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G,A}$$
 avec $X_p = p\pi \frac{D^2}{4}$

• L'action de $\underline{\mathbf{3}}$ sur $\underline{\mathbf{1}}$: liaison pivot d'axe $(A, \overrightarrow{z_0})$

$$\{F_{3\to 1}\} = \begin{cases} X_{31} & -\\ Y_{31} & -\\ - & 0 \end{cases}_A$$

- L'action de $\underline{\mathbf{2}}$ sur $\underline{\mathbf{1}}$ $\{F_{2\rightarrow 1}\} = -\{F_{1\rightarrow 2}\}$ (déjà exprimée)
- L'action de $\underline{\mathbf{0}}$ sur $\underline{\mathbf{1}}$: liaison pivot glissant d'axe $(F, \overrightarrow{x_0})$

$$\{F_{0\to 1}\} = \begin{cases} 0 & - \\ Y_{01} & - \\ - & N_{01} \end{cases}_A$$

PFS en A :

$$\begin{cases} X_p + F_{R/1} + X_{31} - X_{12} = 0 & (R1x) \\ Y_{01} + Y_{31} - Y_{12} = 0 & (R1y) \\ N_{01} = 0 & (M1z) \end{cases}$$

5. PFS appliqué à 4 au point C

Bilan des Actions Mécaniques Extérieures sur 4 :

• L'action de
$$\underline{\mathbf{2}}$$
 sur $\underline{\mathbf{4}}$: $\{F_{2\to 4}\} = -\{F_{4\to 2}\}$

$$\{F_{2\to 4}\} = \begin{cases} -X_{42} & -\\ -Y_{42} & -\\ - & 0 \end{cases}_{P} = \begin{cases} -X_{42} & -\\ -Y_{42} & -\\ - & bX_{42} + aY_{42} \end{cases}_{Q}$$

• L'action de $\underline{\mathbf{0}}$ sur $\underline{\mathbf{4}}$: Liaison pivot d'axe $(C, \overline{Z_0})$

$$\{F_{0\rightarrow 4}\} = \begin{cases} X_{04} & -\\ Y_{04} & -\\ - & 0 \end{cases}_{C}$$
 • L'action de **S** sur 4 en H :
$$\{F_{S\rightarrow 4}\} = \begin{cases} 0 & -\\ F_{S} & -\\ - & 0 \end{cases}_{H} = \begin{cases} 0 & -\\ F_{S} & -\\ - & cF_{S} \end{cases}_{C}$$

PFS en C:

$$\begin{cases}
-X_{42} + X_{04} = 0 & (R4x) \\
-Y_{42} + Y_{04} + F_S = 0 & (R4y) \\
bX_{42} + aY_{42} + cF_S = 0 & (M4z)
\end{cases}$$

6. X_p en fonction de S et $F_{R/2}$

En raison de la symétrie du système, on vérifie les équations suivantes

$$(i) \ X_{31} = X_{21}$$

(ii)
$$Y_{31} = -Y_{21}$$

$$(iii) Y_{01} = 0$$

$$\begin{array}{lll} (i) \ X_{31} = X_{21} & & (ii) \ Y_{31} = -Y_{21} & & (iii) \ Y_{01} = 0 \\ (iv) \ X_{24} = X_{35} & & (v) \ Y_{04} = -Y_{05} & & (vi) \ X_{04} = X_{05} & & (vii) \ Y_{24} = -Y_{35} \\ \end{array}$$

On injecte les résultats donnés dans nos équations :

$$\begin{cases} X_{42} + X_{12} = 0 & (R2x) \\ Y_{42} + Y_{12} = 0 & (R2y) \\ (e - a)Y_{42} - \left(b + \frac{d}{2}\right)X_{42} = 0 & (M2z) \end{cases} \begin{cases} X_p + F_{R/1} - 2X_{12} = 0 & (R1x) \\ 0 = 0 & (R1y) \\ 0 = 0 & (M1z) \end{cases}$$

$$\begin{cases} -X_{42} + X_{04} = 0 & (R4x) \\ -Y_{42} + Y_{04} + F_S = 0 & (R4y) \\ bX_{42} + aY_{42} + cF_S = 0 & (M4z) \end{cases}$$

On injecte (M2z) dans (M4z): $\left(b + a \frac{b + \frac{d}{2}}{e - a}\right) X_{42} + cF_S = 0$

En y injectant
$$(R2x):-\left(b+a\frac{b+\frac{d}{2}}{e-a}\right)X_{12}+cF_{S}=0$$

Enfin, on injecte cette équation dans $(R1x): X_p + F_{R/2} - 2c\left(b + a\frac{b + \frac{a}{2}}{e - a}\right)^{-1}F_S = 0$

Finalement:

$$X_p = -F_{R/2} + 2c \left(\frac{e - a}{b(e - a) + a\left(b + \frac{d}{2}\right)} \right) F_S$$

7. A.N:
$$-F_{R/2} = K\Delta L + R_0 = 10 * 13 + 10 = 140N$$

$$2c\left(\frac{e-a}{b(e-a)+a\left(b+\frac{d}{2}\right)}\right)F_S = 2*54*\left(\frac{32-27}{10*(32-27)+27*(10+11)}\right)*80 = 70N$$

Donc : $X_p = 210N$

$$p = \frac{4X_p}{\pi D^2} = 218e^3 Pa = 2.18^{e}5 \text{ N/m}^2$$

8. Effort de <u>4</u> sur <u>0</u>

- On isole <u>2</u>: solide soumis à 2 glisseurs. D'après le PFS, les deux forces seront égales en normes, opposées, et de même support (AB)
- On isole 4: solide soumis à 3 glisseurs coplanaires

B.A.M.E	Direction	Norme
<u>S</u> sur <u>4</u>	Connue	Connue
<u>0</u> sur <u>4</u>	?	?
<u>2</u> sur <u>4</u>	(AB)	?
	d'après isolement de 2	

Les 3 forces sont concourantes au point I_4 et le triangle des forces nous donne les sens et normes manquants.

9. Effort de <u>2</u> sur <u>1</u>

• L'isolement de $\underline{\mathbf{1}}$ et la connaissance de $\overrightarrow{F_{24}} = -\overrightarrow{F_{42}}$ nous donne $\overrightarrow{F_{12}} = -\overrightarrow{F_{21}} = -\overrightarrow{F_{42}}$,

10. Effort du fluide sur 1

• On isole 1:

B.A.M.E	Direction	Norme
<u>2</u> sur <u>1</u>	Connue (AB)	Connue
<u>3</u> sur <u>1</u>	Déduite de F21 par	Déduite de F21 par
	symétrie	symétrie
Ressort sur 1	Connue	connue
Fluide sur 1	Connue	?

On construit la somme vectorielle pour déterminer la force du fluide sur 1.

11. AN : Effort du fluide sur $\underline{1} \rightarrow$ avec l'échelle proposée, on trouve autour de 448N $\pm 10\%$.

On remarque que la configuration proposée

