List of Tables

5.1	Run range and luminosity of the proton-proton collisions data col-	
	lected at the center-of-mass energy of 8 TeV by the CMS experiment	
	in the year of 2012 in different run periods	75
5.2	The official Monte Carlo samples produced in phase space slices in	
	$H_{\rm T}$ with the generator MadGraph5 and interfaced to Pythia6	76
5.3	The single jet HLT trigger paths used in the analysis	77
5.4	The jet identification criteria (ID) removes noise and non-physical jets	
	based on the properties of the reconstructed jets and the clustered	
	particle candidates	82
5.5	The jet energy resolution in the data is actually worse than in sim-	
	ulation. To match the resolution in the data, the reconstructed jet	
	transverse momentum in simulated events need to be smeared by ap-	
	plying the scale factors	90
5.6	The parameters obtained by fitting the relative resolution as a func-	
	tion of $H_{\mathrm{T},2}/2$	94
5.7	An overview of all experimental uncertainties affecting the measure-	
	ment of cross-sections and the cross-section ratio	112
6.1	NLO PDF sets available via LHAPDF6 with various assumptions	
	on the value of $\alpha_s(M_Z)$	115

xxiv LIST OF TABLES

6.2	Overview of all systematic theoretical uncertainties affecting the mea-	
	surement of cross-sections and the cross-section ratio	124
7.1	Determination of $\alpha_s(M_Z)$ from the inclusive 2-jet and 3-jet event	
	cross-sections using five PDF sets	138
7.2	Determination of $\alpha_s(M_Z)$ from the inclusive 2-jet and 3-jet event	
	cross-sections simultaneously and from their ratio R_{32} using five PDF	
	sets	138
7.3	Determination of $\alpha_s(M_Z)$ from the inclusive 2-jet event cross-section	
	using five PDF sets at NLO without (left) and with (right) elec-	
	troweak (EW) corrections	139
7.4	Determination of $\alpha_s(M_Z)$ from the ratio R_{32} using the two most com-	
	patible PDF sets MSTW2008 and MMHT2014	141
7.5	Determination of $\alpha_s(M_Z)$ from the ratio R_{32} in the $H_{\rm T,2}/2$ range from	
	300 up to 1680 GeV at the central scale and for the six scale factor	
	combinations for the two PDF sets MSTW2008 and MMHT2014. $$	141
7.6	Uncertainty decomposition for $\alpha_s(M_Z)$ from the determination of α_S	
	from the jet event rate R_{32} in bins of $H_{\mathrm{T},2}/2$	141
7.7	Evolution of the strong coupling constant	143
A.1	Differential cross-sections (× 10^{-3} (pb/GeV)) and the cross-section	
	ratio R_{32} at detector level in each bin of $H_{\rm T,2}/2$, along with statistical	
	uncertainty (in %)	162
A.2	Experimental uncertainties (in $\%$) affecting the cross-section measure-	
	ment in each bin of $H_{\mathrm{T},2}/2$ for inclusive 2-jet events	167
A.3	Experimental uncertainties (in $\%$) affecting the cross-section measure-	
	ment in each bin of $H_{\rm T.2}/2$ for inclusive 3-jet events	168

LIST OF TABLES xxv

A.4	Experimental uncertainties (in $\%$) affecting the cross-section measure-	
	ment in each bin of $H_{\mathrm{T},2}/2$ for cross-section ratio	169
A.5	Theoretical uncertainties (in $\%$), calculated using CT10-NLO PDF	
	set, affecting the cross-section measurement in each bin of $H_{\mathrm{T},2}/2$ for	
	inclusive 2-jet events	170
A.6	Theoretical uncertainties (in $\%$), calculated using CT10-NLO PDF	
	set, affecting the cross-section measurement in each bin of $H_{\mathrm{T},2}/2$ for	
	inclusive 3-jet events	171
A.7	Theoretical uncertainties (in %), calculated using CT10-NLO PDF	
	set, affecting the measurement of cross-section ratio in each bin of	
	$H_{\mathrm{T},2}/2$	172