#### Dartmouth



# Amulet: An Energy-Efficient, Multi-Application Wearable Platform

Josiah Hester\*, Travis Peters†, Tianlong Yun†, Ronald Peterson†, Joseph Skinner†, Bhargav Golla\*, Kevin Storer\*, Steven Hearndon\*, Sarah Lord†, Ryan Halter†, David Kotz†, Jacob Sorber\*



\*Clemson University and †Dartmouth College

amulet-project.org

SenSys'16—Nov 15, 2016

## Wearables

#### Wristbands

Long lived wearables usually for fitness sensing, with longer lifetimes, but closed source and hardware.



#### **Smartwatches**

Very flexible development platforms, with short lifetime, often closed operating systems and hardware.



## **Tradeoffs**

#### Wristbands

#### **Pros:**

Long lifetime

#### Cons:

- Closed platform
- Not flexible



#### **Smartwatches**

#### **Pros:**

Flexibility

#### Cons:

- Closed hardware or software
- Short lifetimes



# Shortcomings

### Flexibility

Not open

#### Lifetime

Does not enable mHealth





# mHealth mobile systems in healthcare



Courtesy: http://sarahcait.blogspot.com/



Courtesy: experientia.com



Courtesy: good.is



Courtesy: seniorcarecenter.com



Courtesy: sana mit edu

# **Amulet Platform**







# This Talk

1. Design

2. Implementation

3. Evaluation

# Design

### Multiple applications

Need app isolation

### Long battery lifetime

Designed for low power operation

#### Developer tools

Focused on energy

#### Usable

**Open Source and Hardware** 

# Multi Application

### Flexibility

- Multiple developers, multiple apps
- Users have different needs

### Security

- Sandboxing for isolation among apps
- Access control for sensors, peripherals

# Lifetime

#### Need weeks and months

- Not hours and days!
- Support long term studies, deployments



# **Developer Tools**

1. Where is my energy going?

2. How does the environment, and the user behavior change energy?

**3.** What can I change in my code to increase the lifetime?

# Open

#### Open Source

• Use, adapt, change

### Open Hardware

• Remix, redo, enhance





## **Amulet**

1. Open Hardware Wearable

2. Amulet-OS and API

3. Amulet Firmware Toolchain

4. Amulet Resource Profiler and UI

## Device



#### Sensors

- 3-axis gyroscope, ST Electronics L3GD20H
- 3-axis nano-power accelerometer, Analog ADXL362
- Ambient light, UVA/B, temp, sound, battery

#### Computing

- Nordic nRF51822, ARM Cortex M0, 32K RAM, 256K FLASH
- TI MSP430FR5989, 2KB SRAM, 128KB FRAM
- microSD card slot

#### Network

- BLE radio (Central & Peripheral)
- Supported protocols: heartrate, battery, running services

#### Output

- Monochrome 128x128 Sharp Memory LCD
- or two single color LEDs
- haptic feedback via vibrator motor

#### Input

- two buttons
- capacitive touch slider
- accelerometer

#### **Battery**

• Polymer Li-Ion,110 mAh, 3.7V,MCP73831 recharge

## **Amulet-OS**

### Apps: finite-state machines w/memory

- set of states, variables, and event handlers
- all state is explicit, in non-volatile storage
- no threads: handlers run to completion

API calls post event to relevant system service



# **Amulet-OS**



```
void AmuletSubscribeInternalSensor(
    uint8_t sensor_id);
uint16_t AmuletGetHR();
uint8_t AmuletGetBatteryLevel();
uint16_t AmuletGetLightLevel();
uint16_t AmuletGetTemperature();
uint16_t AmuletGetAudio();
int16_t AmuletGetAccelX(uint8_t idx);
void AmuletBoldText(uint8_t x, uint8_t y,
    __char_array message);
void AmuletClearRect(int16_t x, int16_t y,
    uint8_t w, uint8_t h);
void AmuletHapticSingleBuzz();
uint8_t AmuletLogAppend(uint8_t log_name,
    __char_array line_contents);
```

Subscribe to sensors, log data, communicate, interact.

### **Amulet Firmware Toolchain**

Firmware analysis, translation, compile

- Manage multiple applications
- Analyze for isolation
- Profile for energy and memory usage

App Isolation and Resource Profiling

### **AFT Workflow**



#### Some restrictions on C:

- 1. no dynamic memory
- 2. no pointers
- 3. no recursion

Check app access control and language violations.

## **AFT Workflow**



Profile energy and memory resource usage.

## **AFT Workflow**



## Amulet Resource Profiler (ARP)



## **Amulet Resource Profiler**

Designing for low power is not enough

- Developers can always write bad apps
- This can be because of ignorance
- Or because tools don't exist!

#### Must support developers!

## **Amulet Resource Profiler**

89% of users consider battery lifetime the most important feature[1].

Energy is a first class concern for users.

Why not for developers?

<sup>[1] &</sup>quot;Your smartphone's best app? battery life, say 89% of Britons." The Guardian, May 2014

## Resource Model

### Concerned with energy

Secondary concern: memory

#### Model the device itself

One time, at device manufacture

### Model the application(s)

Compile time

# Device Energy Model





#### **Device Profile**

#### **Hardware Info**

- Steady state draw
- Sleep currents
- Sensor power costs
- Device memory
- API Calls

Generated once per device type.

# App Energy Model

GN, GRBNL, RRUC (ISRCE
Vector 1, Jun 1961) Deptide (CISRA, 1961) the School function, inc. 51 helps flack, Subs.198, Belon, NA 1012-1201
US 1 Segment-perification up and distributive function opins of the loses incurrent, but cheeping its not allowed.

Anamolie
The loses of named outputs of the protect, the SWI German Advictions in interded to gravative year freedom.

Source of the contract of the

#### **Device Profile**



Analyze App(s)



Construct Model

```
// Update temperature if changed:
uint8_t new_temp = AmuletGetTemperature();
if (new_temp != temp) {
    temp = new_temp;
    char temp_disp[5];
    AmuletITOA(temp, temp_disp);
    char F[2] = "F";
    AmuletConcat(temp_disp, F);
    AmuletClearRect(0,75,
      LCD_HORIZONTAL_MAX, MEDIUM_FONT_SIZE);
    AmuletMediumCenteredText(75, temp_disp);
    refresh_display = 1;
```

## **ARP-View**

### Interface for energy insights

Generated at compile time

#### Can model user behavior

Model environment triggers as well

Explore design tradeoffs

## **ARP-View**



## **Evaluation**

#### 1. Battery Lifetime





Battery lifetimes ranging from 2 weeks, to 8 months.

## **Evaluation**

### **ARP Prediction Accuracy**





**Predictions** 

Actual

Prediction accuracy of 90-98% for our apps.

# **User Study**

#### ARP-View: usability and energy

- what is the developer energy mental model?
- does ARP-view force devs to think about energy?
- 10 programmers, 30 minute task and survey
- 9/10 subject reported positive outcomes

#### ARP-view assists developers.

# Pilot Study

#### mHealth: smoking cessation surveys

- monitored heart rate using BLE
- presented surveys at intervals during the day
- recorded survey responses and heart rate
- 6 participants, 1 week, 48 hours of deployment
- usability survey that informed hardware rev(s)

#### Demonstrates mHealth feasibility.

## Evaluation

#### Great battery lifetimes

2 weeks to 8 months

#### Accurate prediction results

90-98% accuracy

Usable by users, researchers, and developers.

### **Future**

#### Secure firmware toolchain

OTA firmware updates and security

Body are health network (BAHN)

Extending the reach of Amulet

**Energy Harvesting Wearables** 

Solar, or vibration powered, no charging!

Priority: Enabling your applications!



#### Amulet is...

- 1. Open source, open hardware, multi app wearable device
- 2. Firmware toolchain isolating applications and resource profiling.
- **3.** Energy focused application development with ARP-View

amulet-project.org

https://github.com/AmuletGroup/amulet-project