Zestaw nr 16

Zadanie 16.1

Oporność R próbki platyny od temperatury t dana jest zależnością:

$$R(t) = R_o(1 + \alpha * t)$$

gdzie R_0 jest wartością oporu drutu z platyny w temperaturze 0° C (dana do odszukania w Internecie), zaś t jest temperaturą mierzoną w stopniach Celsjusza, a α jest temperaturowym współczynnikiem oporu. Zależność ta może posłużyć do wyznaczenia wartości współczynnika α jeśli doświadczalnie wyznaczona zostanie zależność R(t):

t[°C]	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
$R[\Omega]$	109.4	110.1	112	114.7	116	118.1	119.5	121.8	123.1	124.9	127.6	129.4	130.6	131.9	134.1

Należy wyznaczyć temperaturowy współczynnik oporu platyny oz i porównać go z danymi tablicowymi.

- a) Wyznacz współczynniki a i b funkcji aproksymującej postaci: R(t) = a * t + b
- b) Napisz program w C++, który wykona tablicowanie wyznaczonej funkcji R(t) w przedziale wartości t = [25, 95] z zadanym krokiem $\Delta t = 5$
- c) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu
- d) Wykorzystując pakiet Excel sporządź wykres otrzymanej funkcji R(t) oraz nanieś w postaci punktów wartości danych tj. (t_i, R_i)

Zadanie 16.2

- a) Narysuj schemat blokowy i napisz program w C++ do rozwiązania równania $3 * \ln(0.5x + 1) + 3 = 0$, którego pierwiastek leży w przedziale <-2, 3>
- b) Znajdź pierwiastek tego równania za pomocą metody bisekcji dla zadanej dokładności eps=0,0001. Warunek końca obliczeń f(x_n) ≤ eps
- c) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu, program powinien drukować kolejne przybliżenia szukanego pierwiastka równania

Zadanie 16.3

a) Narysuj schemat blokowy i napisz program w C++, który oblicza wartość całki oznaczonej postaci:

$$\int_{1}^{5} 2 * \left(\frac{1}{1 + x^{2}} + \frac{1}{2x} - 3x^{3} \right) dx$$

za pomocą wzoru Simpsona i prostokątów tak, aby błąd był mniejszy lub równy niż eps=10⁻⁴ i porównywał je z wartością dokładną wyznaczoną analitycznie, program powinien wydrukować także liczbę iteracji dla obu przypadków, która była konieczna dla uzyskania założonej dokładności obliczeń

b) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu

Zadanie 16.4

Mając wartości funkcji $f(x) = \ln(x+2)$ w tablicy

	` '
X	$f(x) = \ln(x)$
-1.5	-0.69
-1	0
0	0.69
1	1.09
2	1.38
5	1.95

- a) Napisz program w C++, który wyznaczy w postaci stablicowanej przybliżone wartości wielomianu $W_5(x)$ od $W_6(-1,5)$ do $W_5(5)$ z krokiem Δx =0.2 (wykorzystaj interpolację wielomianową Lagrange'a) oraz wartości dokładne uzyskane przy użyciu funkcji bibliotecznej logarytmu naturalnego
- b) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu

Zadanie 16.2

Oblicz wartość całki

$$\int_{-4}^{4} \frac{dx}{1+x^2}$$

za pomocą:

- wzoru Simpsona,
- wzoru trapezów,
- wzoru prostokątów,

tak, aby błąd był mniejszy niż $0.5*10^{-5}$ a następnie:

- o porównaj otrzymaną wartość z wynikiem dokładnym,
- o porównaj krok obliczeniowy h w każdej z ww. metod, przy którym osiągnięto założoną dokładność.

Zadanie należy zrealizować rysując schemat blokowy algorytmu oraz tworząc program w języku C++.

Zadanie 16.3

Dana jest funkcja o stabelaryzowanych rzędnych:

i	0	1	2	3	4	5
Xi	-π/6	0,00	π/6	π/4	π/3	π/2
fi	0,50	0,55	0,60	0,30	0,20	-0,10

- a) Wyznacz współczynniki a i b funkcji aproksymującej postaci $F(x) = a * \cos(x) + b$
- **b)** Napisz program w C++, który wykona tablicowanie wyznaczonej funkcji F(x) w przedziale wartości $x = [-\pi/6, \pi/2]$ z zadanym krokiem $\Delta x = \pi/30$
- c) Wykonaj obliczenia i załącz wyniki
- d) Wykorzystując pakiet Excel sporządź wykres otrzymanej funkcji oraz nanieś w postaci punktów wartości danych tj. (x_i, f_i)