Multi-agent simulation of trust in vaccination Project presentation

Calvin Massonnet calvin.massonnet@etu.univ-grenoble-alpes.fr

Internship funded by CNRS MODCOV19 Supervised by Carole ADAM (LIG) and Didier GEAORGES (GIPSA-lab) With the help of Pierrick TRANOUEZ (Litis, Université Rouen Normandie)

Masters defence - 1st of September 2022

- 1 Introduction
- 2 State-of-the-art
- 3 Conceptual model
- 4 Implementation
- **6** Key observations
- 6 Discussion

1 Introduction

Introduction

- 2 State-of-the-art
- 3 Conceptual model
- 4 Implementation
- 6 Key observations
- 6 Discussion

Vaccine hesitancy

Introduction 00000

Influencing factors:

- Complacency
- Fear of needles.
- Lack of proper scientific background
- Distrust of public authorities
- Deaths from vaccine-preventable diseases

Vaccine hesitancy

Introduction

Influencing factors:

- Complacency
- Fear of needles
- Lack of proper scientific background
- Distrust of public authorities
- Deaths from vaccine-preventable diseases

COVID-19 vaccine additional influencing factors:

- Early vaccine roll-out
- "New" vaccine technology

Misleading information and misinterpretation

Word cloud visualization for vaccine misinformation tweets

5 / 30

Introduction

https://twitter.com/BFMTV/status/1471539246985060360

²https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648668/

Problem

Introduction

Misleading information and misinterpretation of information

Decrease in the population's trust

Effects of the decrease

- Lower trust in vaccines and institutions
- Lower vaccination rates

Goal

Educational simulation

- Agent-based simulations on vaccine effectiveness
- Public trust in vaccines.
- Computer Science, Psychology, and Epidemiology

In the continuity of CoVprehension

GRETSI'22 presentation by Pierrick TRANOUEZ

- 1 Introduction
- 2 State-of-the-art
- 3 Conceptual model
- 4 Implementation
- 6 Key observations
- 6 Discussion

³https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology ← 🗇 ト ← 💆 ト → 💆 → 💆 💎 🤉

Epidemic simulations - Agent-based models (ABM)

⁴https://covprehension.org/2020/03/30/q6.html

Epidemic simulations

Mathematical models

- Homogeneous
- Macro-level model
- Macro-level analysis

Agent-based models

- Heterogeneous
- Micro-level model
- Micro & Macro-level analysis

Conceptual model •000000

- 1 Introduction
- State-of-the-art
- 3 Conceptual model

- Epidemiological state
- Vaccine status (boolean)
- Trust level (float: 0.0 1.0)
- Misinterpretation status (boolean)

Epidemiological model

S: Susceptible; I: Symptomatic; A: Asymptomatic; H: Hospitalised;

R: Recovered; D: Deceased

Agent behaviour

- Move randomly
- Hospitalised are put apart
- Susceptible, Asymptomatic & Recovered visit hospitalised
- Uninfected get vaccinated based on their trust level

Three influence over trust:

- Interpersonal
- Observational
- Institutional

Interpersonal influence

Agent A's	Agent B's	Resulting influence
trust level	trust level	
0.9	0.5	High influence of A over B
0.9	0.8	Mutual confirmation
0.9	0.3	A less influenced than B
0.9	0.1	Influence almost cancelled out

Observational influence

Agent's observation	Resulting influence
Vaccinated and not infected	Small increase in observer's trust
Vaccinated and infected	Decrease in observer's trust

Negative information have more impact than positive information

- 1 Introduction
- State-of-the-art
- 4 Implementation

Details

- NetLogo
- ∼800 lines
- Based on CoVprehension's Q17
- Available on GitHub
- Runnable on NetLogo Web

Simulation environment

22 / 30

Environment details

- 2000 agents
- Agents initialised unvaccinated
- Agents initialised as Susceptible
- One agent initialised as Symptomatic
- Trust initialised randomly following custom law similar to a skew normal distribution

Figure 1: Output of the algorithm used in the initialisation of the population's average trust.

Inputs & Outputs

Input:

Population average initial trust (0.1 - 0.9)

Outputs:

- Trust level per misinterpretation status
- Deceased per vaccination & per misinterpretation status

•00

- 1 Introduction
- State-of-the-art

- **6** Key observations

Trust and misinterpretation

Figure 2: Average trust level per misinterpretation status

Population's initial average trust: **0.3**

Population's initial average trust: **0.7**

Figure 3: Deceased per vaccination & per misinterpretation status

- 1 Introduction
- 2 State-of-the-art
- Conceptual model
- 4 Implementation
- 6 Key observations
- **6** Discussion

- Combination of epidemiological ABM & trust in vaccines
- Population trust is important and needed before the start of the vaccination campaign
- Making sure that the population correctly understands given information is crucial to heighten trust and give people the desire to get vaccinated

- Add age groups
- Households (influence trust among families)
- Different types of information sources (influence trust differently)

Multi-agent simulation of trust in vaccination Project presentation

Calvin Massonnet calvin.massonnet@etu.univ-grenoble-alpes.fr

Internship funded by CNRS MODCOV19
Supervised by Carole ADAM (LIG) and Didier GEAORGES (GIPSA-lab)
With the help of Pierrick TRANOUEZ (Litis, Université Rouen Normandie)

Masters defence - 1st of September 2022

