ARMing-sword: Scabbard on ARM

HyeokDong Kwon¹, Hyunjun Kim¹, Minjoo Sim¹, Siwoo Eum¹, Minwoo Lee¹, Wai-Kong Lee², and Hwajeong Seo¹

¹Hansung University, ²Gachon University

22. 08. 24.

Introduction Backgrounds **ARMing-sword Evaluation** Conclusion

Introduction

- With the development of quantum computers, classic cryptography algorithms are threatened. (e.g. RSA, ECC)
- In preparation for the quantum computer era, the Post-quantum cryptography (PQC) became necessary.
- The **Scabbard** is one of the PQC.
 - Originated from Saber.
 - Round 3 candidate of Public-key Encryption.
- In this paper, we proposed **ARMing-sword**.
 - Optimized implementation of Scabbard.

Introduction

Our main contributions

- 1. Step-by-step optimization of multiplier.
 - Scabbard multiplier consists of three steps: Evaluation, Multiplication, Interpolation.
 - We focused on Evaluation and Multiplication steps.
 - Implemented with revised internal structure and using parallel operations.
- 2. Customized optimized implementation for each scheme.
 - Scabbard has three schemes: Florete, Espada, Sable.
 - Each scheme has different structure, so **our approaches also applied in various way s.**
- 3. The first implementation of Scabbard on the ARMv8 processors.
 - It might be **helpful to following researchers.**

Background: Saber and Scabbard

- Lattice-based cryptography.
- Round 3 candidate of NIST PQC standardization for KEM.
 - Other candidates: Classic McEliece, CRYSTALS-Kyber, NTRU.
 - Failed to advance to Round 4.

Common parameters: $q = 2^{13}$, $p = 2^{10}$, $f(x) = x^{256} + 1$

Category	Failure Probability	Classical Core-SVP	Quantum Core-SVP	Pk(Byte)	Sk(Byte)	Ct(Byte)		
LightSaber-KEM: $l=2,\ T=2^3,\ \mu=5$								
1	2^{-120}	2^{118}	2^{107}	672	1568 (992)	736		
Saber-KEM: $l = 3$, $T = 2^4$, $\mu = 4$								
2	2^{-136}	2^{189}	2^{172}	992	2304 (1440)	1088		
FireSaber-KEM: $l=4$, $T=2^6$, $\mu=3$								
3	2^{-165}	2^{260}	2^{236}	1312	3040 (1760)	1472		

Background: Saber and Scabbard

- Scabbard is originated from Saber and has three schemes.
- Florete
 - Reusing the hardware architecture and software modules developed for Saber.
 - Quotient ring \mathbb{R}_q^n changed to $\mathbb{Z}_q[x]/(x^{768}-x^{384}+1)$.
 - 768 \times 768 polynomial multiplication \rightarrow five of 256 \times 256 polynomial multiplications.
- Espada
 - Small memory footprint.
 - Can be parallelized in a resource-constraint environment.
- Sable
 - Sample the secret value from the **Centered Binomial Distribution**.

Background: Apple M1 processor

- One of the ARMv8 processor.
- 64-bit general purpose registers, **128-bit vector registers**.
- Vector registers can be calculated values in parallel.
 - Internal values treated in different units depending on the arrangement specifier.
 - 8-bit(8b, 16b), 16-bit(4h, 8h), 32-bit(2s, 4s), 64-bit(1d, 2d).
 - Arrangement specifiers belong to instructions.
 - Operational units can be changed by specifiers of instructions.

- We propose ARMing-sword.
 - Optimized implementation of **Scabbard on ARM** processors.
- Two kinds of optimization techniques.
 - Evaluation step: **Direct Mapping.**
 - Multiplication step: Sliding Window.

- In the Evaluation stage
 - All of input arrays are traversed and stored in different variables.
 - N length of 16-bit array \rightarrow N/4 length of 16-bit arrays of 9.
 - It takes very long time.
- Is there any additional method besides parallelization?

Algorithm 1 Pseudo-code of Scabbard Espada Evaluation step.

```
Input: N length of 16-bit array A1, mid- 10: AW00[j] \leftarrow AW0[j+M]
   dle length M = N/2, output length 11: AW01[j] \leftarrow AW0[j] + AW0[j+M]
                                          12: AW02[j] \leftarrow AW0[j]
   L = N/4.
Output: L length of 16-bit array AW00, 13: AW10[j] \leftarrow AW1[j+M]
   AW01, AW02, AW10, AW11, AW12, 14: AW11[j] \leftarrow AW1[j] + AW1[j+M]
   AW20, AW21, AW22.
                                          15: AW12[j] \leftarrow AW1[j]
1: i \leftarrow 0
                                          16: AW20[j] \leftarrow AW2[j+M]
                                          17: AW21[j] \leftarrow AW2[j] + AW2[j+M]
2: for i to M do
 3: AW0[i] \leftarrow A1[i+L]
                                          18: AW22[j] \leftarrow AW2[j]
4: AW2[i] \leftarrow A1[i]
                                          19: j \leftarrow j + 1
5: AW1[i] \leftarrow A1[i] + A1[i+L]
                                           20: end for
6: i \leftarrow i + 1
                                           21: return
                                                          AW00, AW01, AW02,
 7: end for
                                              AW10, AW11, AW12, AW20, AW21,
8: j \leftarrow 0
                                              AW22
9: for j to L do
```

- Evaluation consists of three stage.
 - N length of 1 \rightarrow N/2 length of 3 \rightarrow N/4 length of 9
 - At each step, half of the array is moved to the same way.
 - Each variable **moves in two places**.

- Revised structure of Evaluation step. → **Direct Mapping**.
 - To generate result values directly.
 - Move multiple variables at once using vector instructions.
- It can be reduced number of variables move and calculation.

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f 0x0c 0x0d 0x0e 0x0f 0x08 0x09 0x0a 0x14 0x16 0x18 0x1a

Algorithm 2 Pseudo-code of Direct Mapping technique for ARMing-sword.

```
Input: N length of 16-bit array A1, mid- 6: AW20[i] \leftarrow A1[i+M]
   dle length M = N/2, output length 7: AW22[i] \leftarrow A1[i]
                                          8: AW21[i] \leftarrow AW20[i] + AW21[i]
   L = N/4.
Output: L length of 16-bit array AW00, 9: AW10[i] \leftarrow AW00[i] + AW20[i]
   AW01, AW02, AW10, AW11, AW12, 10: AW12[i] \leftarrow AW01[i] + AW21[i]
   AW20, AW21, AW22.
                                         11: AW11[i] \leftarrow AW02[i] + AW22[i]
                                         12: i \leftarrow i + 1
1: i \leftarrow 0
                                         13: end for
2: for i to L do
    AW00[i] \leftarrow A1[i+L+M] 14: return
                                                        AW00, AW01, AW02,
                                            AW10, AW11, AW12, AW20, AW21,
   AW02[i] \leftarrow A1[i+L]
   AW01[i] \leftarrow AW00[i] + AW02[i]
                                             AW22
```

- Implementation codes for Direct Mapping technique.
 - Written by ARM assembly.

Algorithm 3 Source codes for Direct Mapping technique.

```
15: ST1.8h {v0, v1, v2, v3},
Input: A1 \text{ address} = x0, AW
                               4: LD1.8h {v0, v1}, [x0], #32
    address = x1
                               5: ADD.8h v2, v0, v4
                                                                [x1], #64
                               6: ADD.8h v3, v1, v5
Output: AW00, AW01,
                                                            16: ST1.8h {v4, v5, v6, v7},
    AW02, AW10, AW11, 7: ADD.8h v14, v12, v16
                                                                [x1], #64
                                                            17: ST1.8h {v8, v9, v10, v11},
    AW12, AW20, AW21,
                               8: ADD.8h v15, v13, v17
    AW22 values
                               9: ADD.8h v6, v0, v12
                                                                [x1], #64
                              10: ADD.8h v7, v1, v13
                                                            18: ST1.8h {v12, v13, v14,
 1: LD1.8h {v16, v17}, [x0],
                              11: ADD.8h v10, v4, v16
                                                                v15}, [x1], #64
    #32
 2: LD1.8h {v12, v13}, [x0],
                              12: ADD.8h v11, v5, v17
                                                            19: ST1.8h {v16, v17}, [x1],
                              13: ADD.8h v8, v2, v14
                                                                #32
    #32
 3: LD1.8h {v4, v5}, [x0], #32
                              14: ADD.8h v9, v3, v15
```

- Toom-Cook 3-way with Direct Mapping.
 - Multiplication source codes are based on Scabbard.
 - Toom-Cook 4-way also can be implemented same method.

Algorithm 4 Source codes for Toom-Cook 3-way Evaluation.

```
Input: A[0] address = x0, p0-
                                6: ADD.8h v12, v0, v8
                                                              20: ADD.8h v16, v16, v8
    4 address = x1-5, A[256]
                                7: ADD.8h v13, v1, v9
                                                              21: ADD.8h v17, v17, v9
    address = x6, A[512] ad-
                                8: ADD.8h v14, v2, v10
                                                              22: ADD.8h v18, v18, v10
                                9: ADD.8h v15, v3, v11
                                                              23: ADD.8h v19, v19, v11
    dress = x7.
                               10: ADD.8h v16, v12, v4
                                                              24: SHL.8h v16, v16, #1
Output: p0, p1, p2, p3, p4 val-
                               11: ADD.8h v17, v13, v5
                                                              25: SHL.8h v17, v17, #1
    ues.
                               12: ADD.8h v18, v14, v6
                                                              26: SHL.8h v18, v18, #1
 1: LD1.8h {v0, v1, v2, v3},
    [x0], #64
                                                              27: SHL.8h v19, v19, #1
                               13: ADD.8h v19, v15, v7
                                                              28: SUB.8h v16, v16, v0
                               14: ST1.8h {v16, v17, v18,
 2: LD1.8h {v4, v5, v6, v7},
                                                              29: SUB.8h v17, v17, v1
                                   v19}, [x2], #64
    [x6], #64
                                                              30: SUB.8h v18, v18, v2
 3: LD1.8h {v8, v9, v10, v11},
                               15: SUB.8h v16, v12, v4
    [x7], #64
                               16: SUB.8h v17, v13, v5
                                                              31: SUB.8h v19, v19, v3
 4: ST1.8h {v0, v1, v2, v3},
                                                              32: ST1.8h {v16, v17, v18,
                               17: SUB.8h v18, v14, v6
                               18: SUB.8h v19, v15, v7
                                                                  v19}, [x4], #64
    [x1], #64
                               19: ST1.8h {v16, v17, v18,
 5: ST1.8h {v8, v9, v10,
                                   v19}, [x3], #64
    v11}, [x5], #64
```

- In the multiplication stage.
 - It implemented as a nested loop.
 - The indexes are moved to 16-bit units.
 - However vector instructions only can be moved pointer to 32-byte or 64-byte units.

Algorithm 5 Pseudo-code of Scabbard Espada Multiplication stage.

```
C[1][0][i] \leftarrow A[i] * B[1][0][j]
Input: Evaluation result array A, input
                                                     8:
                                                              C[1][1][i] \leftarrow A[i] * B[1][1][j]
    array B.
                                                               C[1][2][i] \leftarrow A[i] * B[1][2][j]
Output: output result C.
                                                    10:
                                                    11: C[2][0][i] \leftarrow A[i] * B[2][0][j]
 1: i \leftarrow 0
                                                    12: C[2][1][i] \leftarrow A[i] * B[2][1][j]
 2: j \leftarrow 0
 3: for i to 32 do
                                                    13: C[2][2][i] \leftarrow A[i] * B[2][2][j]
      for j to 63 do
                                                    14: j \leftarrow j + 1
 5: C[0][0][i] \leftarrow A[i] * B[0][0][j]
                                                    15:
                                                            end for
 6: C[0][1][i] \leftarrow A[i] * B[0][1][j]
                                                            i \leftarrow i + 1
       C[0][2][i] \leftarrow A[i] * B[0][2][j]
                                                    17: end for C
```

- We using general register to pointer. → **Sliding Window**.
 - Calculate by calling the values at the point currently pointed to by the pointer.
 - When the calculation is finished, the value is stored in the memory of that pointer.
 - Move a pointer to calculate the next value.
 - Values of multiplication step can be accumulated in this way.

- Implementation codes for Sliding Window technique.
 - Written by ARM assembly.

Algorithm 6 Source codes of Sliding Window technique for ARMing-sword.

```
Input: B address = x1, A address = x2.4: MUL v24.8h, v19.8h, v0.h[0]Output: multiplication result C.5: ADD.8h v21, v21, v231: LD1.8h {v18, v19}, [x1], #326: ADD.8h v22, v22, v242: LD1.8h {v21, v22}, [x2]7: ST1.8h {v21, v22}, [x2]3: MUL v23.8h, v18.8h, v0.h[0]8: ADD x2, x2, #2
```

Evaluation

- Target processor: **Apple M1** processor (@3.2GHz).
- Framework: Xcode IDE.
- Language: Objective-C, C, ARM assembly.
- Compare with previous reference C implementation.
 - Scabbard open source C code used.
 - Compiled with –O3 option (fastest).
- Two kinds of result.
 - Multiplier: average time of 1,000,000 iterations.
 - Scabbard and ARMing-sword: average time of 10,000 iterations.

Evaluation

- Multiplier results (Unit: clock cycles).
 - Performance gap 6.34 when best case.
 - Multiplier of ARMing-sword Espada shows effective then Scabbard.
 - Multiplier of ARMing-sword Florete and Sable has similar performances with Scabbard.

Algorithms	Scabbard	ARMing-sword	Improvement	
Evaluation single	272	137.6	1.97×	
Evaluation 3-way	1740.8	329.6	5.28×	
Evaluation 4-way	588.8	92.8	6.34×	
Multiplier for Espada	29,286.4	8736	3.35×	
Multiplier for Florete/Sable	496	425.6	1.16×	

Evaluation

- Result of cryptography algorithm (Unit: \times 10⁴ clock cycles).
 - In almost all cases, ARMing-sword has better performance than Scabbard.
 - In case of Espada shows best improvement.

Scheme	Algorithm	Scabbard	ARMing-sword
	KeyGeneration	80.8	75.7
Sablo	Encapsulation	89.8	84.1
Sable	Decapsulation	93.4	88.4
	All	263.2	247.5
	KeyGeneration	475.6	230.7
Ecnada	Encapsulation	505.4	239.7
Espada	Decapsulation	521.2	241.7
	All	1497.4	720.4
	KeyGeneration	53.2	50.8
Florete	Encapsulation	72.5	72.6
Fiorete	Decapsulation	86.0	78.9
	All	222.1	203.8

Conclusion

- We proposed **ARMing-sword** cryptography algorithms.
 - Optimized implementation version of Scabbard on ARM processors.
- ARMing-sword using two kinds of optimization techniques for multiplier.
 - Direct Mapping
 - Sliding Window
- The evaluation results show better than Scabbard performances.
 - In case of multiplier, 6.34× improvement is best case.
 - ARMing-sword Espada decapsulation shows most performance improvement.
 - Presented implementation is effective to ARM processors.

Q&A