WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C08F 210/14, 222/00, 8/32

(11) Internationale Veröffentlichungsnummer: WO 95/07944

A1

(43) Internationales Veröffentlichungsdatum:

23. März 1995 (23.03.95)

(21) Internationales Aktenzeichen:

PCT/EP94/02963

- (22) Internationales Anmeldedatum: 6. September 1994 (06.09.94)
- (30) Prioritätsdaten:

P 43 30 971.2

13. September 1993 (13.09.93) DE

- (71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GÜNTHER, Wolfgang [DE/DE]; Hauptstrasse 9, D-67582 Mettenheim (DE). OPPENLÄNDER, Knut [DE/DE]; Otto-Dill-Strasse 23, D-67061 Ludwigshafen (DE). DENZINGER, Walter [DE/DE]; Wormser Landstrasse 65, D-67346 Speyer (DE). HARTMANN, Heinrich [DE/DE]; Weinheimer Strasse 46, D-67117 Limburgerhof (DE). MACH, Helmut [DE/DE]; Kaiserstrasse 43, D-69115 Heidelberg (DE). SCHWAHN, Harald [DE/DE]; Ziegelhäuser Landstrasse 7, D-69120 Heidelberg (DE). RATH, Hans, Peter [DE/DE]; Friedhofstrasse 7, D-67269 Grünstadt (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AU, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, NO, NZ, PL, RU, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: COPOLYMERS AND THEIR REACTION PRODUCTS WITH AMINES SUITABLE AS FUEL AND LUBRICANT **ADDITIVES**
- (54) Bezeichnung: COPOLYMERISATE SOWIE DEREN REAKTIONSPRODUKTE MIT AMINEN ALS KRAFTSTOFF- UND SCHMIERSTOFFADDITIV

(57) Abstract

Functional group bearing copolymers (I) consist of: a) 20-60 mol % of at least one monoethylenically unsaturated C4-C6-dicarboxylic acid or its anhydride; b) 10-70 mol % of at least one oligomer of propene or of a branched 1-olefin with 4 to 10 carbon atoms and a mean molecular weight Mw from 300 to 5000; and c) 1-50 mol % of at least one monoethylenically unsaturated compound that may be copolymerised with the monomers (a) and (b). Also disclosed is a process for producing these copolymers, oil-soluble reaction products obtained by reacting them with an amine and their use as additives for lubricants and fuels.

(57) Zusammenfassung

Funktionelle Gruppen tragende Copolymerisate (I) aus: a) 20-60 mol- % mindestens einer monoethylenisch ungesättigten C4-C6-Dicarbonsäure oder deren Anhydrid; b) 10-70 mol- % mindestens eines Oligomeren des Propens oder eines verzweigten 1-Olefins mit 4 bis 10 Kohlenstoffatomen und einem mittleren Molekulargewicht Mw von 300 bis 5000 und c) 1-50 mol- % mindestens einer monoethylenisch ungesättigen Verbindung, die mit den Monomeren (a) und (b) copolymerisierbar ist, ein Verfahren zu ihrer Herstellung, daraus durch Umsetzung mit einem Amin erhältliche öllösliche Reaktionsprodukte sowie deren Verwendung als Additiv für Schmierstoffe und Kraftstoffe.

BNSDOCID: <WO____ 9507944A1_l_>

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ΑT	Österreich	GA	Gabon	MR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IB	Irland	PL	Polen
BR	Brasilien	TT	Italien	PT	Portugal
BY .	Belarus	JP	Japan '	RO	Ruminien
CA	Kanada	KE	Кепуа	RŲ	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LÜ	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Prankreich	MN	Mongolei	VN	Vietnam

PCT/EP94/02963

Copolymerisate sowie deren Reaktionsprodukte mit Aminen als Kraftstoff- und Schmierstoffadditiv

5 Beschreibung

Die vorliegende Erfindung betrifft neue, funktionelle Gruppen tragende Copolymerisate I aus

- 10 a) 20-60 mol-% mindestens einer monoethylenisch ungesättigten C_4-C_6-D icarbonsäure oder deren Anhydrid,
- b) 10-70 mol-% mindestens eines Oligomeren des Propens oder eines verzweigten 1-Olefins mit 4 bis 10 Kohlenstoffatomen
 und einem mittleren Molekulargewicht Mw von 300 bis 5000 und
 - c) 1-50 mol-% mindestens einer monoethylenisch ungesättigen Verbindung, die mit den Monomeren a) und b) copolymerisierbar ist,
- sowie außerdem ein Verfahren zur Herstellung dieser Verbindungen I. Weiterhin betrifft sie aus den Copolymerisaten I durch
 Umsetzung mit einem Amin erhältliche, öllösliche Reaktionsprodukte II, ein Verfahren zu ihrer Herstellung, die Verwendung der
 25 Verrindungen II und Kraft- und Schmierstoffe, die diese
 Vertindungen enthalten.
- Schmierölen verwendet werden und dispergierende Eigenschaften für 30 darin enthaltende Schlamm- und Feststoffteilchen besitzen. Außerdem weisen die Polymerisate Viskositätsindex-verbessernde Eigenschaften auf, d.h. sie sorgen dafür, daß die Viskosität eines Schmieröls, das diese Verbindung enthält, bei Temperaturerhöhung deutlich weniger abfällt als in Ölen ohne einen solchen Zusatz.
- Diese Polymerisate sind aus zwei Monomergruppen aufgebaut, nämlich zum einen aus Maleinsäure oder Fumarsäure oder Derivaten dieser Verbindungen und zum anderen aus einem Olefin, dessen Molekulargewicht hinreichend groß ist, daß das aus diesen Monomeren 40 hergestellte Polymerisat öllöslich ist. In Mengen von mindestens 20 % muß das Olefin Alkylvinylidengruppen tragen.
- Die in der Druckschrift offenbarten Polymerisate zeigen nicht für alle Anwendungsgebiete befriedigende Eigenschaften, insbesondere 1äßt das Viskositäts-Temperatur-Verhalten von Schmierölen, die diese Polymerisate als Zusatz enthalten, noch zu wünschen übrig.

Weiterhin befriedigt die Dispergierwirkung dieser Verbindungsklasse in der technischen Anwendung nicht in allen Fällen.

Es stellte sich daher die Aufgabe, Additive für Schmieröle zur 5 Verfügung zu stellen, die diesen Nachteilen abhelfen.

Demgemäß wurden die eingangs definierten Copolymerisate gefunden.

Außerdem wurden ein Verfahren zu ihrer Herstellung, aus diesen

10 Copolymerisaten I durch Umsetzung mit einem Amin erhältliche Reaktionsprodukte II, ein Verfahren zu deren Herstellung und die
Verwendung der Reaktionsprodukte II gefunden. Weiterhin wurden
Schmier- und Kraftstoffe gefunden, die diese Verbindungen enthalten.

15

Im folgenden werden die für die Verwendung der Copolymerisate I als Zwischenprodukte für die Herstellung von Schmieröladditiven besonders vorteilhaften Ausführungsformen beschrieben.

20 Die Copolymerisate I sind aus den Monomeren a) bis c) aufgebaut.

Monomer a)

Als Monomere a) kommen monoethylenisch ungesättigte Dicarbon25 säuren mit 4 bis 6 Kohlenstoffatomen in Frage, wie Maleinsäure,
Fumarsäure, Itaconsäure, Mesaconsäure, Methylenmalonsäure,
Citraconsäure, Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid und Methylenmalonsäureanhydrid und deren
Mischungen untereinander. Bevorzugt ist Maleinsäureanhydrid.

30

Monomer b)

Als Monomer b) kommen Oligomere des Propens oder eines verzweigten 1-Olefins mit 4 bis 10 Kohlenstoffatomen in Betracht. Diese

- 35 Oligomere sind aus mindestens 3 Olefinmolekülen aufgebaut. Ihr mittleres Molekulargewicht Mw beträgt 300 bis 5000 g/mol. Es sind beispielsweise Oligomere des Propens, Isobutens sowie kettenverzweigter Isomere des Pentens, Hexens, Oktens und Decens zu nennen, wobei die copolymerisierbare Endgruppe des Oligomeren in
- 40 Form einer Vinyl-, Vinyliden- oder Alkylvinylidengruppe vorliegt. Bevorzugt sind Oligopropene und Oligopropengemische mit 9 bis 200 C-Atomen sowie besonders Oligoisobutene, wie sie z.B. nach der Lehre der DE-A 27 02 604 erhältlich sind. Auch Mischungen der genannten Oligomere kommen in Betracht. Die Molekulargewichte der
- 45 Oligomeren können in an sich bekannter Weise durch Gelpermeations-Chromatographie bestimmt werden.

5

Monomer c)

Als Monomer c) kommen alle solche Monomere in Betracht, die mit den Monomeren a) und b) copolymerisierbar sind.

Beispielsweise sind dies lineare 1-Olefine mit 2 bis 40 Kohlenstoffatomen, bevorzugt mit 8 bis 30 Kohlenstoffatomen, wie Decen, Dodecen, Oktadecen und technische Mischungen aus $C_{20}-C_{24}-1-Olefinen$ und $C_{24}-C_{28}-1-Olefinen$.

Als Monomere c) kommen ebenso monoethylenisch ungesättigte C3-C10-Monocarbonsäuren in Frage wie Acrylsäure, Methacrylsäure, Dimethacrylsäure, Ethylacrylsäure, Crotonsäure, Allylessigsäure und Vinylessigsäure, von denen Acrylsäure und Methacrylsäure betorzugt sind.

Weiterhin kommen Vinyl- und Allylalkylether mit 1 bis 40 Kohlenstoffatomen im Alkylrest in Betracht, wobei der Alkylrest noch
weitere Substituenten wie eine Hydroxygruppe, eine Amino- oder
20 Dialkylaminogruppe oder einen Alkoxyrest tragen kann. Beispielsweise seien Methylvinylether, Ethylvinylether, Propylvinylether,
Isobutylvinylether, 2-Ethylhexylvinylether, Decylvinylether,
Dodecylvinylether, Octadecylvinylether, 2-(Diethylamino)ethylvinylether, 2-(Di-n-butylamino)ethylvinylether, sowie die entsprechenden Allylether genannt.

Eine weitere Gruppe von Monomeren sind C₁- bis C₄₀-Alkylester, Amide und C₁-C₄₀-N-Alkylamide von monoethylenisch ungesättigten C₃- bis C₁₀-Mono- oder Dicarbonsäuren wie Ethylacrylat, Butyl
30 acrylat, 2-Ethylhexylacrylat, Decylacrylat, Dodecylacrylat, Oktadecylacrylat sowie die Ester von technischen Alkoholgemischen mit 14 bis 28 Kohlenstoffatomen, Ethylmethacrylat, 2-Ethylhexylmethacrylat, Decylmethacrylat, Oktadecylmethacrylat, Maleinsäuremonobutylester, Maleinsäuredibutylester, Maleinsäuremonodecylester,

35 Maleinsäuredidodecylester, Maleinsäuremonooktadecylester, Maleinsäuredioktadecylester, Dimethylaminoethylacrylat, Diethylamino-

35 Maleinsäuredidodecylester, Maleinsauremonooktadecylester, Maleinsäuredioktadecylester, Dimethylaminoethylacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Acrylamid, Methacrylamid, N-tert.-Butylacrylamid, N-Oktylacrylamid, N,N'-Dibutylacrylamid, N-Dodecylmethacrylamid und N-Oktadecylmethacrylamid.

Weiterhin können Vinyl- und Allylester von C₁- bis C₃₀-Monocarbonsäuren mit den Monomeren a) und b) copolymerisiert werden. Im
einzelnen handelt es sich dabei zum Beispiel um Vinylformiat,
Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinyllaurat, Vinylstearat, Vinylpivalat, Allylacetat, Allylbutyrat und Allylstearat.

Außerdem sind N-Vinylcarbonsäureamide von Carbonsäuren mit 1 bis 8 Kohlenstoffatomen wie N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-Nethylacetamid, N-Vinyl-N-methylpropionamid und N-Vinylpropionamid 5 geeignet. Weiterhin sind N-Vinylverbindungen von stickstoffhaltigen Heterocyclen wie N-Vinylimidazol, N-Vinylmethylimidazol, N-Vinylpyrrolidon und N-Vinylcaprolactam zu nennen.

Weiterhin kommen Mischungen der genannten Monomeren als Baustein 10 für die Copolymerisate in Betracht.

Bevorzugt von diesen Monomeren werden Acrylsäure, Methacrylsäure, $C_{:6}$ -Olefine, C_{20-24} -Olefine, C_{14} - C_{20} -Alkylvinylether und $C_{:4}-C_{20}-Alkylester$ von monoethylenisch ungesättigten $C_3-C_6-Mono-C_{:4}-C_{20}-Alkylester$ 15 und Dicarbonsäuren.

Die Copolymerisate I enthalten die Monomeren a) bis c) in Mengen von 20 bis 60 mol-% Monomer a), 10 bis 70 mol-% Monomer b) und 1 bis 50 mol-% Monomer c).

20 Die Copolymerisate können nach allen bekannten üblichen Polymerisationsverfahren hergestellt werden, z.B. durch Substanz-, Emulsions-, Suspensions-, Fällungs- und Lösungspolymerisation. bei allen genannten Polymerisationsverfahren wird unter Ausschluß 25 von Sauerstoff gearbeitet, vorzugsweise in einem Stickstoffstrom. Fur alle Polymerisationsmethoden werden die üblichen Apparaturen verwendet, z.B. Autoklaven und Kessel. Besonders bevorzugt ist die Substanzpolymerisation der Monomeren der Gruppen a) bis c). Sie kann bei Temperaturen von 80 bis 300, vorzugsweise von 120 30 tis 200°C durchgeführt werden, wobei die niedrigste zu wählende Polymerisationstemperatur vorzugsweise etwa mindestens 20°C über der Glastemperatur des gebildeten Polymeren liegt. Je nach Molekulargewicht, das die Copolymerisate haben sollen, werden die Polymerisationsbedingungen gewählt. Polymerisation bei hohen Tempe-35 raturen ergibt Copolymerisate mit niedrigen Molekulargewichten, während bei niedrigeren Polymerisationstemperaturen Polymerisate mit höheren Molekulargewichten entstehen.

Die Copolymerisation wird vorzugsweise in Gegenwart von Radikale 40 bildenden Verbindungen durchgeführt. Man benötigt von diesen Verbindungen bis zu 10, vorzugsweise 0,2 bis 5 Gew.-%, bezogen auf die bei der Copolymerisation eingesetzten Monomeren. Geeignete Polymerisationsinitiatoren sind beispielsweise Peroxidverbindungen wie tert.-Butylperpivalat, tert.- Butylperneodeka-45 noat, tert.-Butylperethylhexanoat, tert.-Butylperisobutyrat, Ditert.-butylperoxid, Di-tert.-Amylperoxid, Diacetylperoxidicarbonat, Dicyclohexylperoxidicarbonat oder Azoverbindungen wie

2,2'-Azobis(isobutyronitril). Die Initiatoren können allein oder in Mischung untereinander angewendet werden. Auch Redox-Co-Initiatoren können mitverwendet werden. Sie werden bei der Substanzpolymerisation vorzugsweise separat oder in Form einer Lösung in 5 den Polymerisationsreaktor eingebracht. Die Monomeren a), b) und c) können bei Temperaturen von oberhalb 200°C auch in Abwesenheit von Polymerisationsinitiatoren copolymerisiert werden.

Um niedrigmolekulare Polymerisate herzustellen ist es oft zweck
10 mäßig, die Copolymerisation in Gegenwart von Reglern durchzuführen. Hierfür können übliche Regler verwendet werden, wie C₁- bis
C₄-Aldehyde, Ameisensäure und organische SH-Gruppen enthaltende
Verbindungen, wie 2-Mercaptoethanol, 2-Mercaptopropanol,
Mercaptoessigsäure, tert.-Butylmercaptan, n-Oktylmercaptan, n-Do15 decylmercaptan und tert.-Dodecylmercaptan. Die Polymerisationsregler werden im allgemeinen in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die Monomeren eingesetzt.

Um höhermolekulare Copolymerisate herzustellen, ist es oft zweck20 mäßig, bei der Polymerisation in Gegenwart von Kettenverlängerern
zu arbeiten. Solche Kettenverlängerer sind Verbindungen mit zweioder mehrfach ethylenisch ungesättigten Gruppen wie Divinylbenzol, Pentaerythrittriallylether, Ester von Glykolen wie
Glykoldiacrylat, Glycerintriacrylat und Polyethylenglykol25 diacrylate. Sie können bei der Polymerisation in Mengen bis zu
5 Gew.-% zugesetzt werden.

Die Copolymerisation kann kontinuierlich oder diskontinuierlich durchgeführt werden. Die Molmassen der Produkte liegen in der Re30 gel bei 1000 bis 50 000 g/mol.

Die Copolymerisate I können mit Aminen der Formel HNR^1R^2 zu den stickstoffhaltigen Reaktionsprodukten II umgesetzt werden. Die Reste R^1 und R^2 können gleich oder verschieden sein. Als Amin- 35 komponente kommen in Betracht

- Ammoniak
- aliphatische und aromatische, primäre und sekundäre Amine mit 1 bis 50 Kohlenstoffatomen wie Methylamin, Ethylamin, Propylamin, Di-n-butylamin, Cyclohexylamin,
- Amine, in denen R¹ und R² mit dem Stickstoffatom, an das sie gebunden sind, einen gemeinsamen Ring bilden, der noch weitere Heteroatome enthalten kann, wie Morpholin, Pyridin, Piperidin, Pyrrol, Pyrimidin, Pyrrolin, Pyrrolidin, Pyrazin und Pyridazin,

40

25

Hydroxyalkylen- und Polyoxyalkylenreste tragende Amine, in denen R^2 und/oder R^2 für einen Rest

- stehen, wobei R^3 einen C_2-C_{10} -Alkylenrest bedeutet und m eine ganze Zahl von 1 bis 30 ist, wie Ethanolamin, 2-Aminopropanol-1, Neopentanolamin,
- Aminoendgruppen tragende Polyoxyalkylenamine, in denen R¹
 und/oder R² für einen Rest

$$-R^{4} - O = R^{3} - O = R^{5} - NR^{6}R^{7} \qquad IV$$

steht, wobei R^3 , R^4 , R^5 für C_2 - C_{10} -Alkylenreste stehen, m die oben angegebene Bedeutung hat und R^6 und R^7 für Wasserstoff, gegebenenfalls Hydroxy- oder Amino-substituiertes C_1 - C_{10} -Alkyl oder C_6 - C_{10} -Aryl steht, wie Polyoxypropylendiamine und Bis(3-aminopropyl)tetrahydrofurane.

Bevorzugt werden als Aminkomponente d) Polyamine, in denen R^1 und/ 30 oder R^2 für einen Rest der Formel V

- stehen, in der die Reste R³, R⁶ und R⁷ die oben angegebene Bedeu40 tung haben und n eine ganze Zahl von 1 bis 6 ist. Als Polyamine
 kommen in Betracht: Ethylendiamin, Propylendiamin, Dimethylaminopropylamin, Diethylentriamin, Dipropylentriamin, Triethylentetramin, Tripropylentetramin, Tetraethylenpentamin, Ethylaminoethylamin, Dimethylaminoethylamin, Isopropylaminopropylamin,
- 45 Ethylendipropylentetramin, 2-Di-isopropylaminoethylamin, Aminoethylethanolamin, Ethylenpropylentriamin, N,N,N',N'-Te-tra-(3-aminopropyl)-ethylendiamin, 2-(3-Aminopropyl)cyclonexyl-

amin, 2,5-Dimethylhexandiamin-2,5, N,N,N',N", N"-Penta-(3-aminopropyl)-dipropylentriamin. Weiterhin sind Polyamine bevorzugt, die einen Heterocyclus als Strukturbestandteil enthalten, wie Aminoethylpiperazin.

Als Aminkomponente können auch Mischungen verschiedener Amine eingesetzt werden.

Die erfindungsgemäßen Reaktionsprodukte II werden in an sich be10 kannter Weise durch Umsetzung von Copolymerisaten I mit den genannten Aminen erhalten. Das molare Verhältnis der Komponenten
hängt von der Zahl der Säure- bzw. Anhydridgruppen im Copolymerisat I ab. Diese kann in bekannter Weise z.B. durch Titration
mit einer starken Base bestimmt werden. Im allgemeinen werden pro
15 Mol Amin 0,1 bis 3 Äquivalente Säure- oder Anhydridgruppen im Polymer eingesetzt. In der Regel werden die Ausgangsmaterialien zur
Reaktion vermischt und auf 30 bis 200°C erhitzt. Vorzugsweise erfolgt die Reaktion unter einer Schutzgasatmosphäre. Die Reaktion
kann ohne oder in Lösungsmitteln vorgenommen werden. Als inerte
20 Lösungsmittel sind aliphatische und aromatische Kohlenwasserstoffe wie Toluol und Xylol ebenso zu nennen wie Mineralöle. Der
Fortgang der Reaktion kann IR-spektroskopisch verfolgt werden.

Die stickstoffhaltigen Reaktionsprodukte II können als Additive 25 für Schmierstoffe und Kraftstoffe verwendet werden.

Bei den Schmierstoffen handelt es sich um additivierte synthetische, teilsynthetische und mineralische Öle, vorzugsweise solche, die als Motorenöle Verwendung finden. Die synthetischen Öle um30 fassen synthetische Ester und Polymere von α-Olefinen. Die Reaktionsprodukte II werden den Schmierstoffen im allgemeinen als Konzentrat in einem inerten Lösungsmittel wie einem Mineralöl zugesetzt. Diese Konzentrate können weitere übliche Zusätze wie Rostinhibitoren, Verschleißschutz, Detergentien, Antioxidantien und Stockpunktverbesserer enthalten.

Die Reaktionsprodukte II werden den Schmierstoffen in Mengen von 1 bis 15 Gew.-%, bevorzugt in Mengen von 0,5 bis 10 Gew.-% zugesetzt.

In Kraftstoffen wie Ottobenzin oder Dieselkraftstoff werden die Reaktionsprodukte II als Detergentien zur Reinhaltung des Einlaßsystems eingesetzt. Aufgrund ihrer dispergierenden Eigenschaften wirken sie sich auch positiv auf Motorschmierstoffe aus, in die 45 sie während des Motorbetriebs gelangen können. Es werden dazu 20

WO 95/07944

0

PCT/EP94/02963

bis 5000 ppm, besonders bevorzugt 50 bis 1000 ppm, bezogen auf den Kraftstoff, zugesetzt.

Beispiele

5

1. Herstellung der Copolymerisate I

Allgemeine Herstellvorschrift

Die Monomeren b) und gegebenenfalls c) (Vorlage)wurden in einem Reaktor im schwachen Stickstoffstrom auf 150°C erhitzt und innerhalb von 4 Std. die Monomeren a) (in flüssiger Form als Schmelze von ca. 70°C) und gegebenenfalls c) (Zulauf)und innerhalb von 4,5 Std. eine Lösung von Ditertiärbutylperoxid, gelöst in 25 g o-Xylol, bei 150°C zudosiert. Anschließend

wurde noch 1 Std. bei 150°C nacherhitzt.

Die Molmasse der Copolymeren wurde mit Hilfe der Hochdruck-Gel-Permeationschromatographie bestimmt. Als Elutionsmittel diente Tetrahydrofuran. Die Eichung erfolgte mit eng verteilten Fraktionen von Polystyrol.

Details zu den Reaktionen können Tabelle 1 entnommen werden.

25

30

35

Tabelle 1

Ben	Monomere										Melmagaga
		U								[6]	[g/mol]
	a) MSA		b) 01ig	b) Oligoisobuten	u	(0					
••	Menge [g]	Mol-%	Σ,	[6]	Mo1-1	(a)	Att	Nol-3	Art der Zugabe		
1.1	86	50	1000	006	45	29,6	()	5	Vorlage	10,3	3500
1.2	86	47,4	1000	006	42,7	50	Laurylacrylat	6'6	Zulauf	11	3600
1.3	86	50	1000	006	45	22,4	C ₁₆ -Olefin-1	5	Vorlage	10,2	3800
1.4	86	50	1000	006	45	29,5	Octadecyl- vinylether	2	Vorlage	10,2	3900
1.5	86	50	1000	006	45	11,1	N-Vinylpyrro- lidon	ري د	Zulauf	10,1	3300
1.6	135	51,8	1000	765	28,8	100	2-Ethylhexyl- acrylat	19,4	Zulauf	10	4300
1.7	135	39	1000	765	21,7	100	Acrylsäure	39,3	Zulauf	10	2800
1.8	135	56,2	1000	765	31,2	100	Stearylacrylat	12,6	Zulauf	10	4800
1.9	98	50	1000	500	25	148	C ₂₀₋₂₄ -Olefin-1	25	Vorlage	7,5	4800
1.10	108	41,7	1000	612	23,1	80	Methacrylsäure	35,2	Zulauf	8	5200
1.11	135	41,1	1300	765	17,5	100	Acrylsäure	41,4	Zulauf	10	4800
1.12	135	44	1300	765	18,8	100	Methacrylsäure	37,2	Zulauf	10	2600
1.13	135	44,5	1200	765	10,7	100	Acrylsäure	44,8	Zulauf	10	9800
1.14	135	47,9	2300	765	11,6	100	Methacrylsäure	40,5	Zulauf	10	10800

* Maleinsäureanhydrid

2. Herstellung der öllöslichen Reaktionsprodukte II

Allgemeine Herstellvorschrift:

5

Ein Polymer gemäß den Beispielen 1 wurde in Xylol bei 70°C vorgelegt, mit einem Amin bzw. Polyamin versetzt und unter Rückfluß erhitzt, bis die zu erwartende Menge Reaktionswasser abgeschieden war. Nach Entfernung des Lösungsmittels fiel das Produkt in Form eines hellgelben bis bernsteinfarbenen, viskosen Rückstandes an. Die IR-Absorptionsbanden der Produkte lagen bei ca. 1770 und 1700 cm⁻¹. Wie in Tabelle 2 angegeben, wurden folgende Umsetzungen gemacht:

15 Tabelle 2

	Bsp.	Polymer nach Beispiel	Aminkomponente	molares Verhältnis Anhydridgehalt: Amin
20	2.1	1.1	Aminoethylpiperazin	1,5:1
	2.2	1.1	Triethylentetramin	3:1
	2.3	1.1	Etherdiamin 230 (Polyoxypropylendiamin, M~230 g mol-1)	1:1
25	2.4	1.1	Etherdiamin 230 (Polyoxypropylendiamin, M~230 g mol-1)	2:1
30	2.5	1.1	Etherdiamin 400 (Polyoxypropylendiamin, M~400 g mol-1)	1:1
	2.6	1.1	Etherdiamin 400 (Polyoxypropylendiamin, M~400 g mol-1)	2:1
	2.7	1.1	Triethylentetramin	2:1
35	2.8	1.1	Aminoethylpiperazin	1:1
	2.9	1.1	Dimethylaminopropylamin	1:1
	2.10	1.1	Dimethylaminopropylamin	1.2
	2.11	1.2	Dimethylaminopropylamin	1:1
40	2.12	1.2	Dimethylaminopropylamin	1:2
	2.13	1.2	Aminoethylpiperazin	1:1
	2.14	1.2	Aminoethylpiperazin	2:1
	2.15	1.2	Triethylentetramin	3:1
45	2.16	1.2	Triethylentetramin	2:1

	Зsр.	Polymer nach Beispiel	Aminkomponente	molares Verhältnis Anhydridgehalt: Amin
5	2.17	1.2	Etherdiamin 230 (Polyoxypropylendiamin, M~230 g mol ⁻¹)	2:1
	2.18	1.2	Etherdiamin 230 (Polyoxypropylendiamin, M~230 g mol ⁻¹)	1:1
10	2.19	1.2	Aminoethylpiperazin	1,5:1
10.	2.20	1.3	Triethylentetramin	2:1
	2.21	1.3	Triethylentetramin	3:1
	2.22	1.4	Triethylentetramin	2:1
	2.23	1.4	Triethylentetramin	3:1
15	2.24	1.5	Triethylentetramin	1:1
	2.25	1.5	Triethylentetramin -	2:1
	2.26	1.6	Triethylentetramin	2:1
	2.27	1.6	Triethylentetramin	3:1
20	2.28	1.7	Triethylentetramin	2:1
	2.29	1.7	Aminoethylpiperazin	1:1,5
	2.30	1.9	Etherdiamin 400 (Polyoxypropylendiamin, $M\sim400$ g mol ⁻¹)	2:1
25	2.31	1.9	Etherdiamin 400 (Polyoxypropylendiamin, M~400 g mol-1)	1:1
	2.32	1.9	Triethylentetramin	2:1
30	2.33	1.10	Triethylentetramin	2:1
30	2.34	1.10	Etherdiamin 400 (Polyoxypropylendiamin, $M\sim400$ g mol ⁻¹)	1:2
	2.35	1.10	Aminoethylpiperazin	1:1,5
35	2.36	1.11	Aminoethylpiperazin	1:1,5
	2.37	1.11	Bis(aminopropyl)piperazin	2:1
	2.38	1.12	Aminoethylpiperazin	1:1,5
	2.39	1.12	Bis(aminopropyl)piperazin	2:1

40

3. Vergleich

Vergleichsadditiv V1: Reaktionsprodukt aus Copolymerisat nach Beispiel 6 der WO-A 30/03359 und Triethylentetramin TETA

5

Die genannten Ausgangsstoffe wurden in Analogie zu den Beispielen 2 im molaren Verhältnis von 1:1 umgesetzt.

Vergleichsadditiv V2: Reaktionsprodukt aus Copolymerisat nach 10 Beispiel 6 der WO-A 90/03359 und TETA

Die genannten Ausgangsstoffe wurden wie in den Beispielen 2 im molaren Verhältnis von 2:1 umgesetzt.

15 4. Prütung des Viskosität-Temperatur-Verhaltens

Die Additive wurden in einer Konzentration von 6 Gew.-% in einem 5 W-30-Motoröl getestet:

20			·	
20	Additiv nach bei- spiel	/iskoritat 100°C	Viskosität -25°C [mPas] CCS	Löslichkeit
	-	7,55	1900	-
25	2.28	9,71	2940	klar
25	2.33	9,79	3065	klar
	V1	9,00	3100	trüb
	V2	9,19	3200	trüb

30

Die erfindungsgemäßen Additive sind denen nach dem Stand der Technik nicht nur bei hoher Temperatur wegen ihrer viskositätserhöhenden Wirkung überlegen, sondern sorgen auch bei tiefer Temperatur für die gewünschte Eigenschaft, d.h. eine möglichst niedrige Viskosität.

35

5. Prüfung der Dispergierwirkung

Zur Prüfung der Dispergierwirkung wurde ein Tüpfeltest durchgeführt, wie er in "Les Huiles pour Moteurs et la Graissage des Moteurs", A. Schilling, Vol. 1, S. 89 f, 1962 beschrieben ist. Es wurden dazu 3 gew.-%ige Mischungen der Additive in einem Dieselrußöl hergestellt. Die so erhaltenen Dispersionen wurden auf einem Filterpapier wie ein Chromatogramm entwikkelt. Die Werteskala reicht von 0-1000: je höher der erzielte Wert, deste besser die Dispergierwirkung des Additivs.

Probenvorbereitung:

5	Additiv nach Beispiel	10 mir bei RT ohne Wasser	10 min bei RT 1 % Wasser	250°C	10 min bei 250°C mit Wasser
	2.28	635	632	650	682
	2.33	636	634	679	675
	V1	583	593	511	603
10	V2	570	686	. 605	558

RT = Raumtemperatur

Die erfindungsgemäßen Additive zeigen in allen Fällen eine deutlich bessere Dispergierwirkung als die Additive nach dem Stand der Technik.

20

25

30

35

40

5

Patentansprüche

- 1. Funktionelle Gruppen tragende Copolymerisate I aus
 - a) 20-60 mol-% mindestens einer monoethylenisch ungesättigten $C_4-C_6-Dicarbonsäure$ oder deren Anhydrid,
- b) 10-70 mol-% mindestens eines Oligomeren des Propens oder eines verzweigten 1-Olefins mit 4 bis 10 Kohlenstoff- atomen und einem mittleren Molekulargewicht M_W von 300 bis 5000 und
- c) 1-50 mol-% mindestens einer monoethylenisch ungesättigen
 Verbindung, die mit den Monomeren a) und b) copolymerisierbar ist.
 - Copolymerisate nach Anspruch 1, die Oligoisobutene als Monomer b) enthalten.
- Copolymerisate nach Anspruch 1 oder 2, erhältlich aus
 - monoethylenisch ungesättigten C₃-C₁₀-Monocarbonsäuren
 - linearen 1-Olefinen mit 2 bis 40 Kohlenstoffatomen
- 25 Vinyl- und Alkylallylethern mit 1 bis 40 Kohlenstoffatomen im Alkylrest

als Monomer (c).

- 30 4. Verfahren zur Herstellung von funktionelle Gruppen tragenden Copolymerisaten I gemäß Anspruch 1, dadurch gekennzeichnet, daß man
- a) 20-60 mol-% mindestens einer monoethylenisch ungesättigten C_4-C_6-D icarbonsäure oder deren Anhydrid,
- b) 10-70 mol-% mindestens eines Oligomeren des Propens oder eines verzweigten 1-Olefins mit 4 bis 10 Kohlenstoff-atomen und einem mittleren Molekulargewicht Mw von 300 bis 5000 und

WO 95/07944 PCT/EP94/02963

15

- c) 1-50 mcl-% mindestens einer monoethylenisch ungesättigen Verbindung, die mit den Monomeren a) und b) copolymerisierbar ist,
- 5 radikalisch polymerisiert.
 - 5. Öllösliche Reaktionsprodukte II auf der Basis von Copolymerisaten I gemäß den Ansprüchen 1 bis 3, erhältlich durch Umsetzung der Copolymerisate I mit

10

- d) einem Amin der Formel HNR¹R², wobei die Reste R¹ und R²
 gleich oder verschieden sein können und für Wasserstoff,
 aliphatische oder aromatische Kohlenwasserstoffreste,
 primäre oder sekundäre, aromatische oder aliphatische
 Aminoalkylenreste, Polyaminoalkylenreste, Hydroxyalkylenreste, Polyoxyalkylenreste, die gegebenenfalls Aminoendgruppen tragen, Heteroaryl- oder Heterocyclylreste, die
 gegebenenfalls Aminoendgruppen tragen, stehen können,
 oder gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Ring bilden, in dem noch weitere Heteroatome vorhanden sein können.
- Öllösliche Reaktionsprodukte II nach Anspruch 5, erhältlich aus Ethylendiamin, Propylendiamin, Dimethylaminopropylamin,
 Diethylentriamin, Dipropylentriamin oder Triethylentetramin

als Aminkomponente (d).

- 7. Verfahren zur Herstellung von Reaktionsprodukten II gemäß den 30 Ansprüchen 5 oder 6, dadurch gekennzeichnet, daß man Copolymerisate I gemäß den Ansprüchen 1 bis 3 mit
- d) einem Amin der Formel HNR¹R², wobei die Reste R¹ und R²
 gleich oder verschieden sein können und für Wasserstoff,
 aliphatische oder aromatische Kohlenwasserstoffreste,
 primäre oder sekundäre, aromatische oder aliphatische
 Aminoalkylenreste, Polyaminoalkylenreste, Hydroxyalkylenreste, Polyoxyalkylenreste, die gegebenenfalls Aminoendgruppen tragen, Heteroaryl- oder Heterocyclylreste, die
 gegebenenfalls Aminoendgruppen tragen, stehen können,
 oder gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Ring bilden, in dem noch weitere Heteroatome vorhanden sein könnnen,
- 45 umsetzt.

PCT/EP94/02963

- 8. Verwendung der Reaktionsprodukte II gemäß den Ansprüchen 5 und 6 als Additiv für Schmierstoffe und Kraftstoffe.
- Schmierstoffe, enthaltend 1 bis 15 Gew.-% der Reaktionsprodukte II gemäß den Ansprüchen 5 und 6.
 - 10. Kraftstoffe, enthaltend 20 bis 5000 ppm der Reaktionsprodukte II gemäß den Ansprüchen 5 und 6.

Inter. .nal Application No PCT/EP 94/02963

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C08F210/14 C08F222/00 C08F8/32 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by dassification symbols) IPC 6 CO8F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US,A,4 184 993 (U. P. SINGH) 22 January 1,2,4 1980 see column 1, line 66 - column 2, line 68; claims 1-15 GB, A, 2 065 676 (INSTITUT FRANCAIS DU 1,5,8 PETROLE) 1 July 1981 see page 1, line 48 - page 2, line 54; claims 1-23 EP,A,0 009 170 (BASF AG) 2 April 1980 see page 2, line 23 - page 5, line 10; claims 1-3 US,A,4 240 916 (A. ROSSI) 23 December 1 see column 2, line 41 - column 3, line 43; claims 1-3 Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 0. 01. 95 27 December 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2220 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Permentier, W

Form PCT/ISA/210 (second sheet) (July 1992)

Inter anal Application No
PCT/EP 94/02963

C.(Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 94	.,	
	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
A	EP,A,O 009 185 (BAYER AG) 2 April 1980 see page 4, line 20 - page 5, line 8; claims 1-4		1	• .
	FR,A,2 028 522 (LONZA S.A.) 9 October 1970 see claims 1-9		1,3	-
	+			
	·	•		
		•		
		·		
	•			
				,
		•		
		•		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Information on patent family members

Inte: Jual Application No PCT/EP 94/02963

			PCI/EP	34/02303
Patent document cited in search report	Publication date	Patent i memb		Publication date
US-A-4184993	22-01-80	US-A-	4399248	16-08-83
		AU-A-	1779176	23-03-78
		BE-A-	846330	17-03-77
		DE-A-	2639804	31-03-77
		FR-A-	2324654	15-04-77
		NL-A-	7610386	22-03-77
	•	SE-A-	7610082	19-03-77
GB-A-2065676	01-07-81	FR-A-	2471390	19-06-81
		FR-A-	2471405	19-06-81
		BE-A-	886551	09-06-81
•		DE-A-	3046714	27-08-81
		JP-B-	1041645	06-09-89
		JP-C∸	1557380	16-05-90
		JP-A-	56092904	28-07-81
		NL-A-	8006745	16-07-81
		SE-B-	449493	04-05-87
		SE-A-	8008715	14-06-81
	•	US-A-	4359325	16-11-82
		0A-A-	6675	30-09-81
EP-A-0009170	02-04-80	DE-A-	2840502	27-03-80 .
		AT-T-	158	15-09-81
		CA-A-	1150897	26-07-83
	•	JP-C-	1422169	29-01-88
		JP-A-	55040796	22-03-80
•		JP-B-	62028804	23-06-87
		US-A-	4282342 	04-08-81
US-A-4240916	23-12-80	NONE		
EP-A-0009185	02-04-80	DE-A-	2840650	27-03-80
		DE-A-	2928984	12-02-81
·		CA-A-	1153142	30-08-83
		JP-C-	1438691	19-05-88
		JP-A-	55045894	31-03-80
		JP-B-	62046678	03-10-87
		US-A-	4481319	06-11-84
FR-A-2028522	09-10-70	BE-A-	744557	01-07-70

Information on patent family members

Inte. onal Application No PCT/EP 94/02963

Patent document cited in search report	Publication date	Patent f membe		Publication date	
FR-A-2028522		CH-A- DE-A- GB-A- NL-A- US-A-	505158 2000751 1240812 7000643 3651026	31-03-71 03-09-70 28-07-71 21-07-70 21-03-72	-
					-

nales Aktenzeichen

PCT/EP 94/02963 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDE IPK 6 C08F210/14 C08F222/00 C08 C08F8/32 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüstoff (Klassisikationssystem und Klassisikationssymbole) IPK 6 CO8F Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete sallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* 1,2,4 US,A,4 184 993 (U. P. SINGH) 22. Januar X siehe Spalte 1, Zeile 66 - Spalte 2, Zeile 68; Ansprüche 1-15 1,5,8 GB,A,2 065 676 (INSTITUT FRANCAIS DU PETROLE) 1. Juli 1981 siehe Seite 1, Zeile 48 - Seite 2, Zeile 54; Ansprüche 1-23 EP,A,O 009 170 (BASF AG) 2. April 1980 1 siehe Seite 2, Zeile 23 - Seite 5, Zeile 10; Ansprüche 1-3 US,A,4 240 916 (A. ROSSI) 23. Dezember siehe Spalte 2, Zeile 41 - Spalte 3, Zeile 43; Ansprüche 1-3 Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Besondere Kategorien von angegebenen Veröffentlichungen Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindu kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweiselhast erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenbenehts Datum des Abschlusses der internationalen Recherche 1 0. 01. 95 27. Dezember 1994 Bevollmächtigter Bediensteter Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Fax (+31-70) 340-3016

Permentier, W

Inter. nales Aktenzeichen
PCT/EP 94/02963

		94/02963	-1
	ng) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.	┥
Categorie*	Bezeichnung der Verottenutenung, soweit erforderlich unter Ausgebe der in Bedacht kommitten.		_
A	EP,A,O 009 185 (BAYER AG) 2. April 1980 siehe Seite 4, Zeile 20 - Seite 5, Zeile 8; Ansprüche 1-4	1	-
A	FR,A,2 028 522 (LONZA S.A.) 9. Oktober 1970 siehe Ansprüche 1-9	1,3	
٠	-		·:
7 			
		·	
		÷	

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inter unales Aktenzeichen
PCT/EP 94/02963

· · · · · · · · · · · · · · · · · · ·			10172	3 17 02 300	
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		ed(er) der otfamilie	Datum der Veröffentlichung	
US-A-4184993	22-01-80	US-A-	4399248	16-08-83	
		AU-A-	1779176	23-03-78	
	•	BE-A-	846330	17-03-77	
		DE-A-	2639804	31-03-77	
		FR-A-	2324654	15-04-77	
		NL-A-	7610386	22-03-77	
		SE-A-	7610082	19-03-77	
GB-A-2065676	01-07-81	FR-A-	2471390	19-06-81	
		FR-A-	2471405	19-06-81	
		BE-A-	886551	09-06-81	
		DE-A-	3046714	27-08-81	
		JP-B-	1041645	06-09-89	
		JP-C-	1557380	16-05-90	
		JP-A-	56092904	28-07-81	
		NL-A-	8006745	16-07-81	
		SE-B-	449493	04-05-87	
		SE-A-	8008715	14-06-81	
·		US-A-	4359325	16-11-82	
·		0A-A-	6675	30-09-81	
EP-A-0009170	02-04-80	DE-A-	2840502	27-03-80	
		AT-T-	158	15-09-81	
		CA-A-	1150897	26-07-83	
		JP-C-	1422169	29-01-88	
		JP-A-	55040796	22-03-80	
		JP-B-	62028804	23-06-87	
	• • • • • • • • • • • • • • • • • • • •	US-A-	4282342	04-08-81	٠.
US-A-4240916	23-12-80	KEINE			
EP-A-0009185	02-04-80	DE-A-	2840650	27-03-80	
•		DE-A-	2928984	12-02-81	
		CA-A-	1153142	30-08-83	
		JP-C-	1438691	19-05-88	
		JP-A-	55045894	31-03-80	
		JP-B-	62046678	03-10-87	
******	·	US-A-	4481319	06-11-84	
FR-A-2028522	09-10-70	BE-A-	744557	01-07-70	
				_	

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte. onales Aktenzeichen
PCT/EP 94/02963

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied Patentí		Datum der Veröffentlichung	
FR-A-2028522		CH-A- DE-A- GB-A- NL-A- US-A-	505158 2000751 1240812 7000643 3651026	31-03-71 03-09-70 28-07-71 21-07-70 21-03-72	