Math 323 HW16

Minh Bui

June 13, 2017

Problem 10.14: Consider the relation on \mathbb{Z} given by a = b if and only if a - b is divisible by 7.

(a) Prove that this is an equivalence relation.

Proof. We will need to prove 3 properties of equivalence relation.

1 ~ is reflevive

Assume $z \in \mathbb{Z}$. We want to show a = a. In other words, we need to show a - a is divisible by 7. But a - a = 0 and 0 = 0.7. So a - a is divisible by 7. Thus a = a is reflexive.

2. \Rightarrow is symmetric.

We want to show: If $a, b \in \mathbb{Z}$ and a = b, then b = a. Assume a = b. So a - b is divisible by 7. So then $\exists q \in \mathbb{Z}$ s.t a - b = 7q. Since a - b = 7q, b - a = -7q. Since $q \in \mathbb{Z}$, $(-q) \in \mathbb{Z}$. So then b - a is divisible by 7. Thus = is symmetric.

3. \simeq is transitive.

We want to show: If a,b, and $c\in\mathbb{Z}$ and $a\simeq b$ and $b\simeq c,$ then $a\simeq c.$

Assume a,b, and $c\in\mathbb{Z}$ and $a\simeq b$ and $b\simeq c.$ Respectively this means

$$\exists q_1 \in \mathbb{Z} \text{ s.t } a - b = 7q_1$$

$$\exists q_2 \in \mathbb{Z} \text{ s.t } b - c = 7q_2$$

Consider (a-b) + (b-c).

$$a-b+b-c = 7q_1 + 7q_2$$

 $a-c = 7q_1 + 7q_2$
 $a-c = 7(q_1 + q_2)$

Since q_1 and $q_2 \in \mathbb{Z}$, $q_1 + q_2 \in \mathbb{Z}$. So then a - c is divisible by 7 and thus a = c. \Rightarrow is transitive.

(b) Describe [3] for this relation.

Solution. $[3] = \{..., 23, 17, 10, 3, -4, -11, -19, ...\}$

(c) Find $\mathbb{Z}/_{\widehat{-}}$.

Solution. $\mathbb{Z}/_{\cong} = \{[0], [1], [2], [3], [4], [5], [6]\}.$

(d) Prove that an addition on $\mathbb{Z}/_{\cong}$ defined by [n] + [m] = [n+m] is well defined.

Proof. Assume $n, m, a, b \in \mathbb{Z}$ so that [n] = [a] and [m] = [b]. We want to show: [n] + [m] = [a] + [b]. Since [n] = [a] and [m] = [b], we have

$$\exists k_1 \in \mathbb{Z} \text{ s.t } n = 7k_1 + a$$

$$\exists k_2 \in \mathbb{Z} \text{ s.t } m = 7k_2 + b$$

$$n + m = 7k_1 + a + 7k_2 + b$$

$$n + m = 7(k_1 + k_2) + (a + b)$$

$$(n + m) - (a + b) = 7(k_1 + k_2)$$

$$(n + m) = (a + b) \text{ since } k_1 + k_2 \in \mathbb{Z}.$$

$$[n + m] = [a + b]$$

But we defined [n] + [m] = [n+m] and [n+m] = [a+b] = [a] + [b]. Thus [n] + [m] = [a] + [b].

Problem 10.16: Let $S = \mathbb{Z} \times \mathbb{N}$. Define a relation on S by $(n, m) \equiv (p, q)$ if nq = mp.

(a) Prove that this is an equivalence relation.

Proof. We need to prove 3 properties.

i. \equiv is reflexive.

Assume $n \in \mathbb{Z}$ and $m \in \mathbb{N}$. We want to show that $(n, m) \equiv (n, m)$. Since nm = mn in \mathbb{Z} by commutativity, $(n, m) \equiv (n, m)$.

ii. \equiv is symmetric.

Assume $m, p \in \mathbb{Z}$ and $n, q \in \mathbb{N}$. We want to show that: If $(m, n) \equiv (p, q)$, then $(p, q) \equiv (m, n)$.

Assume $(m, n) \equiv (p, q)$. Then mq = np in \mathbb{Z} . By commutativity in \mathbb{Z} , pn = qm in \mathbb{Z} . This means $(p, q) \equiv (m, n)$.

iii. \equiv is transitive.

Assume $m, n, p \in \mathbb{Z}$ and $q, r, s \in \mathbb{N}$. We want to show that: If $(m, q) \equiv (n, r)$ and $(n, r) \equiv (p, s)$, then $(m, q) \equiv (p, s)$.

Assume $(m,q) \equiv (n,r)$ and $(n,r) \equiv (p,s)$. Respectively these means

$$mr = qn \text{ in } \mathbb{Z}$$

 $ns = rp \text{ in } \mathbb{Z}$

Consider mr = qn.

mrs = qns since we know $s \in \mathbb{N}$ mrs = qrp because ns = rpms = qp since we know $r \in \mathbb{N}$

This means $(m,q) \equiv (p,s)$.

- (b) The set $S/_{\equiv}$ has a much better and more familiar name, what is it? Answer. Equivalence of two fractions.
- (c) Define an addition on $S/_{\equiv}$ by $(n,m)\oplus(p,q)=(nq+mp,mq).$ Prove it is well defined.

Proof. Let $n, p, a, b \in \mathbb{Z}$ and $m, q, c, d \in \mathbb{N}$ so that (n, m) = (a, c) and (p, q) = (b, d). We want to show that $(n, m) \oplus (p, q) = (a, c) \oplus (b, d)$. Since (n, m) = (a, c), nc = ma in \mathbb{Z} . Since (p, q) = (b, d), pd = qb in \mathbb{Z} . Consider

 $\begin{aligned} nc &= ma \\ ncd &= mad \text{ since } d \in \mathbb{N} \\ ncdq &= madq \text{ since } q \in \mathbb{N} \end{aligned}$

And

 $\begin{aligned} pd &= qb \\ mpd &= mqb \text{ since } m \in \mathbb{N} \\ cmpd &= cmqp \text{ since } c \in \mathbb{N} \end{aligned}$

Now consider

ncdq + cmpd = madq + cmpd nqcd + mpcd = mqad + mqcp (nq + mp)cd = mq(ad + bc) (nq + mp, mq) = (ad + bc, cd) $(n, m) \oplus (p, q) = (a, c) \oplus (b, d).$

(d) We cannot define an addition on S/\equiv by $(n,m)\boxplus(p,q)=(n+p,m+q)$. Why not? (In the book it was (m+p,m+q) but I believe it's a typo) Answer. Because the operation is not well defined. (Do I really need to prove this?)

Proof. Assume BWOC, the addition operation on S/\equiv by $(n,m)\boxplus(p,q)=(n+p,m+q)$ is well defined. Mathematically speaking, if (n,m)=(a,b) and (p,q)=(c,d), then $(n,m)\boxplus(p,q)=(a,b)\boxplus(c,d)$. We know these:

- Since $(n,m)=(a,b),\ nb=ma$ in \mathbb{Z} . So then $n=\frac{ma}{b}$ in \mathbb{Q} because $b\in\mathbb{N}$.
- Since (p,q)=(c,d), pd=qc in \mathbb{Z} . So then $p=\frac{qc}{d}$ in \mathbb{Q} because $d\in\mathbb{N}$.
- We also have $(n,m) \boxplus (p,q) = (a,b) \boxplus (c,d)$. This means (n+p,m+q) = (a+c,b+d). So (n+p)(b+d) = (m+q)(a+c). So (n+p)(b+d) = (m+q)(a+c).

Now, consider (n+p)(b+d) = (m+q)(a+c)

$$(n+p)(b+d) = (m+q)(a+c)$$

$$(\frac{ma}{b} + \frac{qc}{d})(b+d) = (m+q)(a+c)$$

$$ma + \frac{qc}{d}b + \frac{ma}{b}d + qc = ma + qa + mc + qc$$

$$\frac{qc}{d}b + \frac{ma}{b}d = qa + mc \text{ in } \mathbb{Q}$$

$$\frac{qb}{d}c + \frac{md}{b}a = mc + qa \text{ in } \mathbb{Q}$$

$$c(\frac{qb}{d} - m) = a(q - \frac{md}{b})$$

And now I'm stuck. :(

Problem 10.19: Consider the set $S = \{a, b, c, d, e, f\}$ and the relation $\mathcal{R} \subseteq S \times S$ given by.

$$\mathcal{R} = \{(a, a), (a, b), (a, d), (b, a), (b, b), (b, d), (c, c), (c, f), (d, a), (d, b), (d, d), (e, e), (f, c), (f, f)\}$$

As it happens \mathcal{R} is an equivalence relation on S. Find S/\mathcal{R} .

Solution. We observe [a] = [b] = [d], [c] = [f], and [e] stands alone. So $S/_{\mathcal{R}} = \{[a], [e], [c]\}$

Problem 11.2: Let $A = \{a, b, c, d, e\}$. Define a function $f: A \to A$ using a table of values:

Define a function $g: A \to A$ and using a table of values:

\boldsymbol{x}	g(x)
a	b
b	c
c	d
d	e
e	a

- (a) Is either f(x) or g(x) injective? f(x) is not injective but g(x) is injective.
- (b) Is either f(x) or g(x) surjective? f(x) is not surjective but g(x) is surjective.
- (c) Find a table for $(f \circ g)(x)$.

x	$f \circ g(x)$
a	b
b	b
c	d
d	c
e	e

(d) Find a table for $(f \circ f)(x)$.

\boldsymbol{x}	$(f \circ f)(x)$
\overline{a}	b
b	b
c	d
d	c
e	e

Problem 11.3: Consider the functions $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^{-1}$, and $g: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ given by $g(x) = x^{-1}$.

(a) Prove f(x) is injective.

Proof. We want to prove: Let $a_1, a_2 \in \mathbb{R}$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

We need to consider 2 cases:

- 1. $a_1 = 0$ and $a_2 = 0$. Then $a_1 = a_2 = 0$ and the conditional statement is true by default.
- 2. Assume $a_1 \neq 0$, $a_2 \neq 0$ and $f(a_1) = f(a_2)$. So $a_1^{-1} = a_2^{-1}$. So then $\frac{1}{a_1} = \frac{1}{a_2}$. Since both $a_1, a_2 \in \mathbb{R}$, $a_1 = a_2$.

(b) Prove g(x) is injective.

Proof. We want to prove: if $a_1, a_2 \in \mathbb{R} \setminus 0$

(c) Prove f(x) is not surjective.

Proof. We just need to pick at least one $b \in \mathbb{R}$ so that $\nexists a \in \mathbb{R}$ s.t b = f(a). Let b = 0 and have found it.

(d) Prove g(x) is surjective.

Proof. We want to show: if $b \in \mathbb{R} \setminus \{0\}$, then $\exists a \in \mathbb{R} \setminus \{0\}$ s.t g(a) = b. Assume $b \in \mathbb{R} \setminus \{0\}$. Then $\frac{1}{b} \in \mathbb{R} \setminus \{0\}$. Let $a = \frac{1}{b}$ so $a \in \mathbb{R} \setminus \{0\}$ and we are done.

(e) Carefully evaluate the two functions $(f\circ f)(x)$ and $(g\circ g)(x)$. Be completely precise about these 2 results.

Solution.

i.
$$(f \circ f)(x) : \mathbb{R} \to \mathbb{R}$$
. $(f \circ f)(x) = f(f(x)) = \frac{1}{\frac{1}{x}}$

ii.
$$(g \circ g)(x) : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$$
. $(g \circ g)(x) = g(g(x)) = \frac{1}{\frac{1}{x}} = x$.