## Artificial Intelligence



Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology





#### What is regression analysis?

✓ A basic and commonly used predictive analysis (predictive analysis: the use of data, statistical algorithms and machine learning techniques to identify the likelihood of future outcomes based on historical data)

**Examples**: Sales manager trying to predict next month's numbers

- ✓ Monthly sales numbers for, e.g., the past three years
- ✓ Weather
- ✓ Competitor's promotion
- Rumor of a new and improved model
- **√** . . .





# Regression analysis: examine relationship between one dependent variable and one or more independent variables.

- ✓ Can a set of predictor variables predict an outcome (dependent) variable?
- ✓ Which variables matter most?
- ✓ Which can we ignore?
- ✓ How do those factors interact with each other?
- ✓ How certain are we about all of these factors?





#### Simple linear regression

$$f(x) = w_0 + w_1 x$$



#### Least-square linear regression problem







#### Simple linear regression

#### Least-square linear regression problem







#### **Multiple Linear Regression**

#### **Loss function**

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

$$\mathbf{w} = \begin{bmatrix} w_0, w_1, w_2, \dots, w_p \end{bmatrix}^T \qquad \mathbf{w}^T = \begin{bmatrix} w_0, w_1, w_2, \dots, w_p \end{bmatrix}^T \qquad \mathbf{w}^T = \mathbf{x}^T = \begin{bmatrix} w_0, w_1, w_2, \dots, w_p \end{bmatrix}^T \qquad \mathbf{w}^T = \mathbf{x}^T = \mathbf{x}^T$$

$$f(\mathbf{x}) = \overline{\mathbf{x}}\mathbf{w}$$





$$\mathbf{y} = [y_1; y_2; \dots; y_N]$$
 $\mathbf{\bar{X}} = [\mathbf{\bar{x}}_1; \mathbf{\bar{x}}_2; \dots; \mathbf{\bar{x}}_N]$ 
 $\mathbf{\bar{x}} = [\mathbf{\bar{x}}_1; \mathbf{\bar{x}}_2; \dots; \mathbf{\bar{x}}_N]$ 

$$=rac{1}{2}\|\mathbf{y}-ar{\mathbf{X}}\mathbf{w}\|_2^2$$
 (3)

$$\left\|oldsymbol{x}
ight\|_2 := \sqrt{x_1^2 + \cdots + x_n^2}$$





#### **Example: Simple Linear Regression**









| No. | W(g) | $A(cm^2)$ | No. | W(g) | $A(cm^2)$  | No.     | W(g)        | A(cm <sup>2</sup> ) | No. | W(g) | A(cm <sup>2</sup> ) |
|-----|------|-----------|-----|------|------------|---------|-------------|---------------------|-----|------|---------------------|
| 1   | 388  | 230.30    | 14  | 570  | 274.25     | 27      | 490         | 242.90              | 40  | 638  | 296.00              |
| 2   | 428  | 234.06    | 15  | 492  | 253.580A   | CN28    | 480         | 252.60              | 41  | 602  | 273.70              |
| 3   | 352  | 220.60    | 16  | 496  | 244.89     | 29      | 512         | 255.20              | 42  | 600  | 266.00              |
| 4   | 374  | 227.70    | 17  | 462  | 248.10     | 30      | 460         | 233.91              | 43  | 616  | 273.30              |
| 5   | 450  | 251.07    | 18  | 436  | 237.16     | CP31    | 484         | 248.40              | 44  | 584  | 285.30              |
| 6   | 462  | 245.40    | 19  | 432  | 231.26     | 32      | 528         | 254.20              | 45  | 482  | 251.35              |
| 7   | 332  | 214.10    | 20  | 464  | 250.66 U   | SUB3T   | <b>A498</b> | 2420                | 46  | 454  | 240.08              |
| 8   | 338  | 208.20    | 21  | 418  | 235.76нсми | JT-C134 | 442         | 239.9               | 47  | 484  | 242.99              |
| 9   | 444  | 238.35    | 22  | 442  | 234.70     | 35      | 610         | 292.10              | 48  | 484  | 246.30              |
| 10  | 388  | 231.8     | 23  | 408  | 224.60     | 36      | 746         | 309.80              | 49  | 440  | 230.10              |
| 11  | 408  | 216.77    | 24  | 428  | 232.06     | 37      | 678         | 296.20              | 50  | 388  | 224.29              |
| 12  | 388  | 231.08    | 25  | 558  | 270.70     | 38      | 574         | 265.95              |     |      |                     |
| 13  | 360  | 214.10    | 26  | 512  | 268.30     | 39      | 684         | 308.10              |     |      |                     |





$$W = 3.7074 * A + 438.66$$

Scatter plot of weight versus area







Max error: 9.12g (1.97%)

Mean error: 1.77g (0.83%)

**Standard deviation: 2.21g** 

| No. | A (cm <sup>2</sup> ) | $W_1(g)$ | $W_2(g)$ | ε (g)  | ε%   | No. | A (cm <sup>2</sup> ) | $W_1(g)$ | $W_2(g)$ | ε (g) | ε%   |
|-----|----------------------|----------|----------|--------|------|-----|----------------------|----------|----------|-------|------|
| 1   | 238.18               | 442      | 444.35   | -2.35  | 0.53 | 26  | 229.86               | 408      | 413.52   | -5.52 | 1.35 |
| 2   | 228.93               | 408      | 410.06   | -2.06  | 0.50 | 27  | 223.53               | 388      | 390.04   | -2.04 | 0.53 |
| 3   | 232.81               | 428      | 424.46   | 3.54   | 0.83 | 28  | 213.97               | 360      | 354.62   | 5.38  | 1.49 |
| 4   | 268.24               | 558      | 555.82   | 2.18   | 0.39 | 29  | 223.66               | 388      | 390.52   | -2.52 | 0.65 |
| 5   | 256.07               | 512      | 510.70   | 1.30   | 0.25 | 30  | 233.38               | 428      | 426.57   | 1.43  | 0.33 |
| 6   | 244.83               | 462      | 469.02   | -7.02  | 1.52 | 31  | 214.35               | 352      | 356.02   | -4.02 | 1.14 |
| 7   | 208.04               | 332      | 332.62   | -0.62  | 0.19 | 32  | 271.03               | 570      | 566.15   | 3.85  | 0.68 |
| 8   | 209.42               | 338      | 337.75   | 0.25   | 0.07 | 33  | 250.95               | 492      | 491.72   | 0.28  | 0.06 |
| 9   | 237.50               | 444      | 441.84   | 2.16   | 0.49 | 34  | 302.08               | 678      | 681.26   | -3.26 | 0.48 |
| 10  | 223.90               | 388      | 391.42   | -3.42  | 0.88 | 35  | 272.21               | 574      | 570.52   | 3.48  | 0.61 |
| 11  | 251.62               | 490      | 494.21   | -4.21  | 0.86 | 36  | 219.83               | 374      | 376.33   | -2.33 | 0.62 |
| 12  | 248.92               | 480      | 484.19   | -4.19  | 0.87 | 37  | 248.18               | 484      | 481.46   | 2.54  | 0.52 |
| 13_ | 254.25               | 512      | 503.96   | 8.04   | 1.57 | 38  | 236.43               | 440      | 437.89   | 2.11  | 0.48 |
| 14  | 275.26               | 584      | 581.84   | 2.16   | 0.37 | 39  | 222.62               | 388      | 386.67   | 1.33  | 0.34 |
| 15  | 248.89               | 482 M    | 484.07   | p-2.07 | 0.43 | 40  | 245.94               | 464      | 473.12   | -9.12 | 1.97 |
| 16  | 242.18               | 454      | 459.19   | -5.19  | 1.14 | 41  | 233.04               | 418      | 425.33   | -7.33 | 1.75 |
| 17  | 250.58               | 484      | 490.35   | -6.35  | 1.31 | 42  | 240.95               | 460      | 454.65   | 5.35  | 1.16 |
| 18  | 254.09               | 498      | 503.35   | -5.35  | 1.07 | 43  | 247.60               | 484      | 479.28   | 4.72  | 0.98 |
| 19  | 236.20               | 442      | 437.04   | 4.96   | 1.12 | 44  | 262.96               | 528      | 536.24   | -8.24 | 1.56 |
| 20  | 284.78               | 610      | 617.12   | -7.12  | 1.17 | 45  | 279.96               | 602      | 599.27   | 2.73  | 0.45 |
| 21  | 320.09               | 746      | 748.06   | -2.06  | 0.28 | 46  | 281.14               | 600      | 603.65   | -3.65 | 0.61 |
| 22  | 254.47               | 496      | 504.77   | -8.77  | 1.77 | 47  | 285.70               | 616      | 620.53   | -4.53 | 0.74 |
| 23  | 241.99               | 462      | 458.48   | 3.52   | 0.76 | 48  | 304.12               | 684      | 688.83   | -4.83 | 0.71 |
| 24  | 236.70               | 436      | 438.89   | -2.89  | 0.66 | 49  | 289.38               | 638      | 634.19   | 3.81  | 0.60 |
| 25  | 233.59               | 432      | 427.35   | 4.65   | 1.08 | 50  | 238.07               | 450      | 443.95   | 6.05  | 1.34 |





#### **Sources:**

- 1. Yu-Teng Liang and Yih-Chih Chiou. "Machine Vision-Based Automatic Raw Fish Handling and Weighing System of Taiwan Tilapia." B.-C. Chien et al.
- (Eds.): IEA/AIE 2009, LNAI 5579, pp. 711-720, 2009
- 2. http://www.mit.edu/~6.s085/notes/lecture3.pdf
- 3. https://www.statisticssolutions.com/what-is-linear-regression/
- 4. https://hbr.org/2015/11/a-refresher-on-regression-analysis
- 5. https://www.surveygizmo.com/resources/blog/regression-analysis/
- 6. https://machinelearningcoban.com/2016/12/28/linearregression/





| No. | W(g) | $A(cm^2)$ | No. | W(g) | $A(cm^2)$  | No.     | W(g)        | A(cm <sup>2</sup> ) | No. | W(g) | A(cm <sup>2</sup> ) |
|-----|------|-----------|-----|------|------------|---------|-------------|---------------------|-----|------|---------------------|
| 1   | 388  | 230.30    | 14  | 570  | 274.25     | 27      | 490         | 242.90              | 40  | 638  | 296.00              |
| 2   | 428  | 234.06    | 15  | 492  | 253.580A   | CN28    | 480         | 252.60              | 41  | 602  | 273.70              |
| 3   | 352  | 220.60    | 16  | 496  | 244.89     | 29      | 512         | 255.20              | 42  | 600  | 266.00              |
| 4   | 374  | 227.70    | 17  | 462  | 248.10     | 30      | 460         | 233.91              | 43  | 616  | 273.30              |
| 5   | 450  | 251.07    | 18  | 436  | 237.16     | CP31    | 484         | 248.40              | 44  | 584  | 285.30              |
| 6   | 462  | 245.40    | 19  | 432  | 231.26     | 32      | 528         | 254.20              | 45  | 482  | 251.35              |
| 7   | 332  | 214.10    | 20  | 464  | 250.66 U   | SUB3T   | <b>A498</b> | 2420                | 46  | 454  | 240.08              |
| 8   | 338  | 208.20    | 21  | 418  | 235.76нсми | JT-C134 | 442         | 239.9               | 47  | 484  | 242.99              |
| 9   | 444  | 238.35    | 22  | 442  | 234.70     | 35      | 610         | 292.10              | 48  | 484  | 246.30              |
| 10  | 388  | 231.8     | 23  | 408  | 224.60     | 36      | 746         | 309.80              | 49  | 440  | 230.10              |
| 11  | 408  | 216.77    | 24  | 428  | 232.06     | 37      | 678         | 296.20              | 50  | 388  | 224.29              |
| 12  | 388  | 231.08    | 25  | 558  | 270.70     | 38      | 574         | 265.95              |     |      |                     |
| 13  | 360  | 214.10    | 26  | 512  | 268.30     | 39      | 684         | 308.10              |     |      |                     |





fish\_data1 - Notepad

File Edit Format View Help

1 388 230.30 14 570 274.25 27 490 242.90 40 638 296.00 2 428 234.06 15 492 253.58 28 480 252.60 41 602 273.70 3 352 220.60 16 496 244.89 29 512 255.20 42 600 266.00 4 374 227.70 17 462 248.10 30 4







```
read_data.m 💥
        clear
        clc
        fileID = fopen('D:\Research\Shrimp\fish datal.txt');
        Cl = textscan(fileID, '%f');
        data1 = C1{1,1}; \(\nabla\)
        fclose(fileID);
        fileID = fopen('D:\Research\Shrimp\fish data2.txt');
        C2 = textscan(fileID, 'af');
data2 = C2{1,1}; AI LIEU SUU TÂP
10 -
11 -
                               BỞI HCMUT-CNCP
12 -
        fclose(fileID);
13
14 -
        W1 = datal(2:3:end);
15 -
        Al = datal(3:3:end);
16
17 -
       A2 = data2(2:6:end);
18 -
        W2 = data2(3:6:end);
19 -
        W2 \text{ bar} = \text{data2}(4:6:\text{end});
```









































