

The derivative

1. Derivative:

2. The forward/backward difference formula:

Derivative formulat [at $x=x_0$]

This formula is known as the forward-difference formula if and the backward-difference formula if

Error Bound:

3. The (n+1)-point formula to approximate $f^{\prime}(x_j)$:

o Derivation:

4. Three-point Formula:

for each j=0,1,2, where the notation ζ_j indicates that this point depends on x_j .

o Derivation:

Three-Point Formulas

1. Equally Spaced nodes:

The formulas from Eq. (4.3) become especially useful if

$$x_1 =$$

$$x_2 =$$

2. Three-Point Endpoint Formula:

The approximation in Eq. (4.4) is useful at

Errors: the errors in both Eq. (4.4) and Eq. (4.5) are

3. Three-Point Midpoint Formula:

Errors:

This is because Eq. (4.5) uses data on and Eq. (4.4) uses data

Note also that f needs to be evaluated at in Eq. (4.5), whereas in

Eq. (4.4) it

Five-Point Formulas

1. What?

2. **Why?**

3. **Error**:

The error term for these formulas is

4. Five-Point Midpoint Formula:

Used	for	approximation	at
03C u	101	approximation	ac

5. Five-Point Endpoint Formula:

Used for approximation at

Left-endpoint approximations are found using this formula with
 right-endpoint approximations with
 .

The five-point endpoint formula is particularly useful for

Approximating Higher Derivatives

1. Approximations to Second Derivatives:

2. Second Derivative Midpoint Formula:

Derivation:

Error Bound: If $f^{(4)}$ is $\hspace{1cm}$ on $\hspace{1cm}$ it is $\hspace{1cm}$, and the approximation is $\hspace{1cm}$.

Round-Off Error Instability

- 1. Form of Error:
 - We assume that our computations actually use the values
 - which are related to the true values by:

&

2. The total error:

It is due to

- 3. Error Bound:
 - ASSUMPTION:
 - ERROR:

- 4. Reducing Truncation Error:
 - o How?

 \circ Effect of reducing h:

5. Conclusion:

4.2/

Extrapolation

1. What?

- \circ Extrapolation is used to
- o Extrapolation can be applied whenever
- \circ Suppose that for each number $h \neq 0$ we have a formula $N_1(h)$ that approximates an unknown constant , and that the truncation error involved with the approximation has the form,

 The truncation error is
and, in general,
 The object of extrapolation is
2. Why?
1.
2.
3. The $\mathcal{O}(h)$ formula for approximating M :
The First Formula:
The Second Formula:

4. The $\mathcal{O}(h^2)$ approximation formula for M:

5. When to apply Extrapolation?

6. The $\mathcal{O}(h^4)$ formula for approximating M:

7. The $\mathcal{O}(h^6)$ formula for approximating M:

8. The $\mathcal{O}(h^{2j})$ formula for approximating M:

9. The Order the Approximations Generated:

Deriving n-point Formulas with Extrapolation

1. Deriving Five-point Formula:

Numerical Quadrature

1. What?

2. How?

3. Based on?:

4. Method:

	The	O		Formu	
5	Ine	()IIIa	iratiire	Formu	ıa.
∵ .		Juu	ai atai t	I OLLIIG	ıu.

6. The Error:

The Trapezoidal Rule

1. What?

2. The Trapezoidal Rule:

Derivation:

3. Error:

Simpson's Rule

1. **What?**

2. Simpson's Rule:

Derivation:

3. **Error:**

Measuring Precision

1. What?

2. Precision [degree of accuracy]:

3. Precision of Quadrature Formulas:

- The degree of precision of a quadrature formula is
- o The Trapezoidal and Simpson's rules are examples of
- Types of Newton-Cotes formulas:

Closed Newton-Cotes Formulas

1. What?

It is called closed because:

2. Form of the Formula:

where,

3. The Error Analysis:

- 4. Degree of Preceision:
 - **Even-n:** the degree of precision is
 - o **Odd-n:** the degree of precision is
- 5. Closed Form Formulas:

$$\circ$$
 $n=1$: rule

 \circ n=2:

$$\circ$$
 $n=3$:

rule

Open Newton-Cotes Formulas

1. What?

- They
- o They use
- This implies that
- o Open formulas contain

2. Form of the Formula:

where,

3. The Error Analysis:

4. Degree of Preceision:

- o Even-n:
- o Odd-n:

5. Open Form Formulas:

$$\circ \ n=0$$
: [PUT NAME HERE]

$$\circ$$
 $n=1$:

$$\circ$$
 $n=2$:

Composite Rules

1. What?

2. Why?

1.

2.

3.

3. Notice:

Composite Simpson's rule

1. Composite Simpson's rule:

2.	Error	in	Comoposite	Simpson's	Rule:
----	--------------	----	------------	-----------	-------

Error:

3. Theorem [Rule and Error]:

4. Algorithm:

Composite Newton-Cotes Rules

1. Composite Trapezoidal rule:

2. Composite Midpoint rule:

Round-Off Error Stability

1. Stability Property:

2. Proof:

Main Idea

1. What?

2. Why?

3. Error in Composite Trapezoidal rule:

This implies that

4. Extrapolation Formula:

Extrapolation then is used to produce

approximations by

and according to this table,

Calculate the Romberg table this way:

5. Algorithm:

4.6/

Main Idea

1. What?

1.

2.

2. Why?

3. Approximation Formula:

$$\int_a^b f(x) dx =$$

Derivation:

- 4. Error Bound:
 - Error relative to *Composite Approximations*:
 - Error relative to *True Value*:

• ERROR DERIVATION:

This implies

5. Procedure:

When the approximations in (4.38)

Then we use the error estimation procedure to

If the approximation on one of the subintervals fails to be within the tolerance , then

6. Algorithm:

7. **Derivation:**

4.7/

Main Idea

 What? 	1		۷	V	h	a	t	7
---------------------------	---	--	---	---	---	---	---	---

- 1.
- 2.
- 3.
- To Measure Accuracy:
- \circ The **Coefficients** c_1, c_2, \ldots, c_n in the approximation formula are

and,

The **Nodes** x_1, x_2, \ldots, x_n are restricted by/to

This gives,

The number of Parameters to choose is

o If the coefficients of a polynomial are considered parameters,

This, then, is

Ahmad Badary

2. **Why?**

Legendre Polynomials

1. What?

2. Why?

- 3. Properties:
 - 1.
 - 2.
 - 3. The roots of these polynomials are:
- 4. The first Legendre Polynomials:

$$P_0(x) = \quad , \qquad \qquad P_1(x) = \qquad \qquad P_2(x) = \qquad ,$$
 $P_3(x) = \qquad , \qquad \qquad P_4(x) = \qquad .$

5. **Determining the nodes:**

o PROOF:

The nodes x_1, x_2, \ldots, x_n needed to

Gaussian Quadrature on Arbitrary Intervals

1. What?

2. The Change of Variables:

 ${\it 3.}$ Gaussian quadrature [arbitrary interval]:

4.8/

Approximating Double Integral

1. What?

2. Why?

3. Comoposite Trapezoidal Rule for Double Integral:

$$\iint_{R} f(x,y) \, dA =$$

• DERIVATION:

- $4. \ \textbf{Comoposite Simpsons' Rule for Double Integral:}$
 - o Rule:

o Error:			
o Derivation:			
Gaussian Quadratur	e for Double	Integral Ann	rovimation
1. What?	e for Double	ппседгаг Аррг	OXIIIIatioii
2. Why?			
3. Example:			

Non-Rectangular Regions

1. **What?**

Form:

or,

- 2. **How?**
 - We use
 - o Step Size:
 - **x**:
 - **■** y:
- 3. Simpsons' Rule for Non-Rect Regions:

4. Simpsons' Double Integral [Algorithm]:

5	Gaussian	Double	Integral	[Algorithm	1.
J.	Gaussiaii	Double	IIILEEI AI	IMIZULICIIII	١.

Triple Integral Approximation

- 1. What?
- o On what?
- o Form:

2. Gaussian Triple Integral [Algorithm]: