Algebra und Diskrete Mathematik Übungsblatt 11

Beispiele 495, 544, 556

Aufgabe 495. Untersuchen Sie, ob die folgenden Vektoren des \mathbb{Z}_5^4 linear unabhängig sind: (1,2,3,4), (2,3,4,1), (3,4,2,1).

Lösung.

Aufgabe 544. Bestimmen Sie den Rang der folgenden reellen Matrix:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8
\end{pmatrix}$$

Lösung.

- 1. Erste Zeile mal 2.
- 2. Zweite Zeile erste Zeile.
- 3. Erste Zeile dividiert durch 2.
- 4. Erste Zeile mal 3.
- 5. Dritte Zeile erste Zeile.
- 6. Erste Zeile dividiert durch 3.
- 7. Erste Zeile mal 4.
- 8. Vierte Zeile erste Zeile.
- 9. Zweite Zeile mal -1.
- 10. Zweite Zeile mal -2.
- 11. Dritte Zeile zweite Zeile.
- 12. Zweite Zeile dividiert durch -2.
- 13. Zweite Zeile mal -3.
- 14. Vierte Zeile zweite Zeile.
- 15. Zweite Zeile mal -1.

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Zwei linear unabhängige Zeilen, deshalb ist der Rang = 2.

Aufgabe 556. Bestimmen Sie die inverse Matrix A^{-1} .

$$A = \begin{pmatrix} -1 & 3 & 2 \\ -2 & 4 & 6 \\ 1 & -2 & 2 \end{pmatrix}$$

Lösung.

	A			\mathbf{E}		Umformungen
-1	3	2	1	0	0	$Z_1 = Z_1 + Z_3$
-2	4	6	0	1	0	$Z_2 = Z_2 + 2 \cdot Z_3$
1	-2	2	0	0	1	$Z_3 = Z_3 - Z_1$
0	1	4	1	0	1	$Z_1 = 5 \cdot Z_1 - 2 \cdot Z_2$
0	0	10	0	1	2	
1	-2	2	0	0	1	$Z_3 = Z_3 + 2 \cdot Z_1$
0	5	0	5	-2	1	$Z_1 = 2 \cdot Z_1$
0	0	10	0	1	2	
1	0	10	2	0	3	$Z_3 = (Z_3 - Z_2) \cdot 10$
0	10	0	10	-4	2	tausche Z_1 mit Z_2
0	0	10	0	1	2	tausche Z_2 mit Z_3
10	0	0	20	-10	10	tausche Z_3 mit Z_1
10	0	0	20	-10	10	
0	10	0	10	-4	2	
0	0	10	0	1	2	

$$A^{-1} = \frac{1}{10} \cdot \begin{pmatrix} 20 & -10 & 10 \\ 10 & -4 & 2 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & -0.4 & 0.2 \\ 0 & 0.1 & 0.2 \end{pmatrix}$$