COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 5B_1: Di https://eduassistpro.gitionb.(3/).

Comparing two systeme hat edu_assist_pro

COMP9334

Discrete event simulations so far

- You have learnt:
 - How to write simulation program
 - You know you cannot get exact mean response time from simulation but you can get a confidence interval
 - You can reduce the width of the confidence interval by Assignment Project Exam Help
 Simulate for longer

 - Increase the https://eduassistpro.github.io/
- Today, you will lead the Chat edu_assist_pertwo systems in a statistically sound way
- Before that, we show you that comparing systems can be tricky

COMP9334 T1, 2021

Problem: How do we compare 2 alternative choices?

Week 4B's Revision Problem #2. The question asks you to simulate each of the following 2 queues 10 times:

M/M/2 queue with λ =

 $\mu = 1$

 $\mu = 0.5$

COMP9334 T1, 2021 3

Comparing two systems: motivation

- An application of simulation is to compare two systems
- For example, in Week 4B's revision question, you used simulation to compare the mean response time of
 - System 1: Assignment Project ExampHelp
 - System 2: M/M https://eduassistpro.github.io/
- If you use analytical methods tedu_assist_the steady state mean response time of both systems exactly and you compare two numbers
- If you use simulation, you get a confidence interval for each system instead. How do you compare them?

Example: Comparing two systems

- Let us assume our goal is to use simulation to compare:
 - System 1: M/M/1 queue with λ = 0.9 and μ = 1
 - System 2: M/M/2 queue with λ = 0.9 and μ = 0.5 for both server
- For each system we carry out 3 independent replications
 - That is, we designment epolecht Exam Helpers together
- After removing the https://eduassistpro.github.io/ean response times are:
 - System 1: 6.8769 A CON edu_assist_pro
 - System 2: 8.8087, 7.4616, 9.1565
- In order to compare them, let us pair up these results
 - 1st experiment for System 1 with 1st experiment for System 2
 - 2nd experiment for System 1 with 2nd experiment for System 2 etc.

A paired-t confidence interval

- Let us summarise the data in a table
 - EMRT = estimated mean response time

	EMRT System 1	EMRT System 2	EMRT System 2 - EMRT System 1
Rep. 1	6.8769	8.8087	1.9318
Rep. 2	8. 5769	gnment Projete	Exam Help -1.1154
Rep. 3	10.6340	attraci/aducacia	-1.4775

https://eduassistpro.github.io/

- We compute the 100 (1-α)% confidence e difference between 2 systems (= last column) Add WeChat edu_assist_pro
- Let us denote the computed confidence interval by [p,q]
 - Case 1: p,q > 0 \rightarrow System 1 is better than System 2 with probability (1- α)
 - Case 2: p,q < 0 → System 2 is better than System 1 with probability (1-α)
 - Case 3: q > 0 & p < 0 → Systems 1 and 2 are not different with probability (1-α)

Example: Paired-t confidence interval

- We compute the 95% confidence interval of the data showed in the last slide, the confidence interval is:
 - [-4.8721,4.4314]
- Therefore, with spanner by bility that the paper response times of the two ent https://eduassistpro.github.io/
- Hmmm, we have Addrobbe that edu_assist wo from queueing theory that System 1 has a better mean response time than System 2, but our simulation does not seem to be able to distinguish them.
- What can we do?

Let us increase the number of replications

- Since increasing the number of replications can reduce the width of the confidence interval, let us try that.
- Let us try 5, 10, 20, 30 replications

# independent replications Assignr	95% Confidence interval of nent Project Exam Help EMRT System 2 - EMRT System 1
http	s://eduassistpro.github[iththe.9540, 5.0242]
10	d WeChat edu_assist_pro
20	[-1.2724, 1.9870]
30	[-0.6001, 1.8046]

- Increasing the number of replications does reduce the width of the confidence interval
- However, we still cannot conclude which system is better

Let us have a look at how we did our experiments ...

We did our experiment with independent random numbers

T1, 2021 COMP9334

Common random numbers method

An alternative is to compare two systems under similar condition

Common random numbers method

- A method to reduce the variance when comparing two alternative systems is to subject them to similar experimental condition
- In each replication, generate only one arrival time and one service time sequence

 - Apply this to bot https://eduassistpro.github.io/ d according to service rate

Add WeChat edu_assist_pro

- In next replication, generate a new arrival time and a new service time sequence
 - Apply this to both systems
- This method can reduce the variance if the behaviour of the two systems is positively correlated

COMP9334 T1, 2021

Applying common random numbers to our problem (1)

- Let us apply the common random numbers method to compare
 - System 1: M/M/1 queue with λ = 0.9 and μ = 1
 - System 2: M/M/2 queue with λ = 0.9 and μ = 0.5 for both server

Assignment Project Exam Help

- Let us carry out https://eduassistpro.github.io/
- In each replication of the land one service time sequence (adjusted by service rate) and apply to both systems

Applying common random numbers to our problem (2)

 Let us compare the estimated mean response time (EMRT) from the 5 replications:

	EMRT System 1	EMRT System 2	EMRT System 2 - EMRT System 1
Rep. 1	8.3022	8.8087	0.5065
Rep. 2	6. %	gnment Projett	Exam Help 0.5807
Rep. 3	8.5769	otto o . //o du o o o i o	0.5796
Rep. 4	10.6340	nttps://eduassis	tpro.github.io/ 0.7069
Rep. 5	16.2648	Add We Chat ec	u_assist_pro 0.3837

- Observation: The EMRT of System 2 is higher than that of System 1 in all 5 replications
- If we compute the 95% confidence interval of the last column, we get [0.4046,0.6983]
- There is a 95% probability that System 1 is better than System 2

Comparing two methods

Let us compare using common random number (CRN) method or not

# independent	95% Confidence interval of				
replications	EMRT System 2 - EMRT System 1				
	Assignmingt Project Exam Helpsing CRN				
5	[0.4046, 0.6983]				
10	https://eduassistpro.github.io/[0.4705, 0.6103]				
20	A@d.2722Chat edu_assist_pro [0.5127, 0.5942]				
30	[-0.6001, 1.8046] [0.5026, 0.5786]				

- Observations
 - By using CRN, all 95% confidence interval does not include 0
 - The width of the confidence interval for CRN method is a lot lower!

Approximate visual test

- Let us assume that you know the mean response time and its confidence interval (CI) for 2 systems: System 1 and System 2
- Consider the following 3 possibilities:

T1, 2021 COMP9334 15

not different

Ex: Multicast protocol design for wireless mesh networks

Comparing 3
 multicast protocols
 (WCMA, SPT and
 RCAM) for
 wireless mesh
 networks

Assignment Project Exam Help

 The thin vertical line shows the confidence interval

https://eduassistpro.github.io/

What conclusion can you draw? Add WeChat edu_assist_pro

 Source: Chou et al, "Maximizing Broadcast and Multicast Traffic Load through Link-Rate Diversity in Wireless Mesh Networks", you can download it from my web site: http://www.cse.unsw.edu.au/~ctchou/

Simulation tools and some applications (1)

- You do not always have to write your own simulation programs from scratch
- There are plenty of simulation tools available
 - Many with GUI

Assignment Project Exam Help

- Simulation tools research
 https://eduassistpro.github.io/
 - Protocol #1 is the dais who Chatt edu_assist_desogned Protocol #2. You want to see whether Protocol #2 is better or not.
 - You have two options (Option #1 and Option #2) to design a network. Which option is better?

Simulation tools and some applications (2)

- Some examples of publicly available simulation tools
 - General purpose: OMNet++
 - http://www.omnetpp.org/
 - For networking research: ns3
 - http://www.isi.edu/nsnam/ns/
- Some commercial ntockst Project Exam Help
 - For network de
 - http://www.ohttps://eduassistpro.github.io/
 - http://web.scalable-networks.c alnet Add WeChat edu_assist_pro
- Important note: These tools save you time in writing simulation program but don't forget that you still need to analyse your simulation results using statistically sound methods!

Summary

- Simulation is not just a computer programming exercise
- You need to make sure that your program is correct
- It is also important to analyse your results using statistically sound methods based on confidence interval
- Unfortunatel sai the published research papers in computer netwo https://eduassistpro.github.io/
 - Optional readin
 redibility of
 studies of telecommunications
 Magazine, Pages 132-139, Jan

References

- The primary reference is Law and Kelton, "Simulation Modelling and Analysis"
 - Comparing two alternatives, Section 10.1, 10.2 (10.2.1 only)
 - Common random numbers, Section 11.2
- Raj Jain, "The Art of Computer Systems Performance Analysis" has materials on
 - Comparing two alternatives, Sections 13.3, 13.4 (13.4.1 and 13.4.3 only)
- Note that we have simulation data. The https://eduassistpro.github.lo/lo/life specified sections)
 will provide you with more in depth on the topic.
 Add WeChat edu_assist_pro