Lecture 10

Divergence Theorem

Statement:

The surface integral of the normal component of a vector function \mathbf{A} taken around a closed surface S is equal to the integral of the divergence of \mathbf{A} taken over the volume V enclosed by the surface S.

Mathematically,

$$\int_{V} \nabla \cdot \mathbf{A} \, dv = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$$

Example:

A vector field $\mathbf{A} = \hat{\mathbf{r}}r^3$ exists in the region between two concentric cylindrical surfaces defined by r = 1 and r = 2, with both cylinders extending between z = 0 and z = 5. Verify the divergence theorem by evaluating the following:

(a) $\oint_{S} \mathbf{A} \cdot d\mathbf{s}$ and (b) $\int_{V} \nabla \cdot \mathbf{A} dv$.

Solution:

Step 1: Evaluate the surface integral over the all faces.

i. Top face: z = 5, $\mathbf{A} = \hat{\mathbf{r}}r^3$ and $d\mathbf{s} = \hat{\mathbf{z}} \, r dr d\phi \int_{\text{face}} \mathbf{A} \cdot d\mathbf{s} = 0$.

Solution:

ii. Bottom face: z = 0, $\mathbf{A} = \hat{\mathbf{r}}r^3$ and $d\mathbf{s} = -\hat{\mathbf{z}}rdrd\phi$

$$\int_{\text{bottom}} \mathbf{A} \cdot d\mathbf{s} = 0.$$

iii. Outside surface: r=2, $\mathbf{A}=\hat{\mathbf{r}}$ 8 and $d\mathbf{s}=\hat{\mathbf{r}}rdzd\phi$

$$\therefore \int_{\text{outside}} \mathbf{A} \cdot d\mathbf{s} = 16 \int_{0}^{1} \int_{0}^{1} dz d\phi = 160\pi.$$

iv. Inside surface: r = 1, $\mathbf{A} = \hat{\mathbf{r}}$ and $d\mathbf{s} = -\hat{\mathbf{r}}rdzd\phi$

$$\therefore \int_{\text{intside}} \mathbf{A} \cdot d\mathbf{s} = -\int_0^{2\pi} \int_0^5 dz d\phi = -10\pi.$$

Solution:

Step 2: Adding the above four values.

Thus, we have
$$\oint_{S} \mathbf{A} \cdot d\mathbf{s} = 160\pi - 10\pi = 150\pi$$

Step 3: Find the divergence of **A**.

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial}{\partial \varphi} (A_{\varphi}) + \frac{1}{r} \frac{\partial}{\partial z} (rA_z)$$

$$= \frac{1}{r} \frac{\partial}{\partial r} (rr^3) + 0 + \frac{1}{r} \frac{\partial}{\partial \phi} (0) = \frac{1}{r} \frac{\partial}{\partial r} (r^4) = 4r^2.$$

$$\int_{V} \nabla \cdot \mathbf{A} dv = \int_{0}^{5} \int_{0}^{2\pi} \int_{1}^{2} 4r^{2} r dr d\varphi dz = \int_{0}^{5} \int_{0}^{2\pi} \int_{1}^{2} 4r^{3} dr d\varphi dz = \int_{0}^{5} \int_{0}^{2\pi} [r^{4}]_{1}^{2} d\varphi dz = 150\pi.$$

Step 4: Check whether
$$\int_{V} \nabla \cdot \mathbf{A} \, dv = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$$
.

Since, the result of step 2 and step 3 are equal.

Therefore, The divergence theorem is therefore verified.

Example:

For the vector field $A = \hat{R} 3R^2$, evaluate both sides the divergence theorem for the region enclosed between spherical shells defined by R = 1 and R = 2.

Solution:

Step 1: Evaluate the surface integral over the all faces.

- i. At the outer surface $d\mathbf{s} = \widehat{R}(R_2)^2 \sin \theta \, d\theta d\phi$ and we get $\mathbf{A} \cdot d\mathbf{s} = 3(R_2)^4 \sin \theta \, d\theta d\phi$
- $\therefore \oint_{S} \mathbf{A} \cdot d\mathbf{s} = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} 3 \times 2^{4} \times \sin \theta \, d\theta \, d\phi = 192\pi.$
- ii. At the inner surface $d\mathbf{s} = -\widehat{\mathbf{R}}(R_2)^2 \sin\theta \, d\theta d\phi$ we get $\mathbf{A} \cdot d\mathbf{s} = 3(R_2)^4 \sin\theta \, d\theta d\phi$
- $\therefore \oint_{S} \mathbf{A} \cdot d\mathbf{s} = -\int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} 3 \times 1^{4} \times \sin \theta \, d\theta \, d\phi = -12\pi.$

Solution:

Step 2: Adding the above four values.

Thus, we have $\oint_S \mathbf{A} \cdot d\mathbf{s} = 192\pi - 12\pi = 180\pi$.

Step 3: Find the divergence of **A.**

$$\nabla \cdot \mathbf{A} = \frac{1}{R^2 \sin \theta} \left[\frac{\partial}{\partial R} (3R^2 \cdot R^2 \sin \theta) + \frac{\partial}{\partial \theta} (0 \cdot R \sin \theta) + \frac{\partial}{\partial \phi} (0 \cdot R) \right] = 12R$$

Now, Outer sphere: $\int_{V} \nabla \cdot \mathbf{A} \, dv = \int_{V} 12R \, dv = \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \int_{R=0}^{2} 12 \, R^{3} \sin \theta \, dR \, d\phi \, d\theta = 192\pi$

Inner sphere: $\int_{V} \nabla \cdot \mathbf{A} \, dv = \int_{V} 12R \, dv = \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \int_{R=0}^{1} 12 \, R^{3} \sin \theta \, dR \, d\phi \, d\theta = 12\pi$

Total = $192\pi - 12\pi = 180\pi$.

Step 4: Check whether $\int_{V} \nabla \cdot \mathbf{A} \, dv = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$.

Since, the result of step 2 and step 3 are equal.

Therefore, The divergence theorem is therefore verified.

Sample Exercise

- 1. For a vector function $\mathbf{A} = \hat{\mathbf{r}}r^2 + \hat{\mathbf{z}} \, 2z$, verify for the circular cylindrical region enclosed by r = 5, z = 0, z = 4.
- 2. A vector field $\mathbf{A} = \hat{\mathbf{r}} \cdot 10e^{-r} \hat{\mathbf{z}} \cdot 3z$, verify the divergence theorem for the cylindrical region enclosed by r = 2, z = 0 and z = 4.
- 3. Find $\oint_{S} \mathbf{A} \cdot d\mathbf{s}$ over the surface of a hemispherical region that is the top half of a sphere of radius 3 centered at (0,0,0) with its flat base coinciding with the xy plane. Also verify divergence theorem. where $\mathbf{A} = \hat{\mathbf{z}} z$.

Sample MCQ

 Which of the following is the mathematical definition for Stokes theorem

a)
$$\int_{V} \nabla \cdot A \, dv = \oint_{S} A \times ds$$

b)
$$\int_{V} \nabla \cdot A \ dv = \oint_{S} A \cdot ds$$

c)
$$\int_{S} (\nabla \times A) \cdot ds = \oint_{C} A \times dl$$
.

d) none

Next Class

• Stokes theorem