Prometheus Al Sean Stappas — Supervised by Prof. Vybihal

Introduction

- ► Prometheus
- Model of the human brain.
- ► Controls multiple robots in a swarm.

Figure 1: Prometheus Al model with labeled input and output.

- Neural Netowrk (NN)
- Low-level signal processor.
- Knowledge Node Network (KNN)
- Represents memory.

Figure 2: Methods of searching and thinking in the KNN.

- Expert System (ES)
- Logical reasoner.
- Unaware of context.

Table 1: Fact predicates in the ES.

Fact Meaning (A) A is true or active. (A=1) A is equal to 1. (A > 1) A is greater than 1. $(A ?) \mid A$ can take any value. $Fact_1\cdots Fact_m o Tag_1\cdots Tag_n$

- Meta Reasoner (META)
- ► High-level decision-maker.

Problem

- ▶ Design and implement the ES and KNN in Java.
- Create an initial design.
- Build a code skeleton.
- ▶ Implement integration and unit tests.
- ► Supervise undergraduate students working on Prometheus.
- Provide resources.
- Review code.

Design & Implementation

- ▶ Dependencies modeled using Google Guice.
- ► Framework for modular dependency injection.
- Allows for easily testable code.

Figure 3: Guice dependency graph.

- ▶ Tag object is central to the ES and KNN.
- Represents a unit of information.
- ► Can be instantiated as Fact, Rule or Recommendation classes.

Unit tests.

(1)

- ► Testing individual methods of every class in the KNN and ES.
- Dependencies mocked using the Mockito library.
- ▶ Integration tests.

Results & Tests

- ► Testing end-to-end behavior of the ES and KNN modules.
- ▶ All unit and integration tests written with TestNG and executed with TravisCI.

State	Ready Rules	Active Rules	Active	Active
			Facts	Recommendations
Initial	$(A)(B) \to (D)$			
	$(D)(B) \to (E)$			
	$(D)(E) \to (F)$		(A),(B)	(#X), (#Y)
	$(G)(A) \to (H)$			
	$(E)(F) \to (\#Z)$			
÷	:	:	:	:
Final		$(A)(B) \to (D)$	(A), (B), $(D), (E)$ (F)	(#X), (#Y), (#Z)
	$(G)(A) \to (H)$	$(D)(B) \to (E)$		
		$(D)(E) \to (F)$		
		$(E)(F) \to (\#Z)$		

Figure 5: ES test setup representing simple rules and facts that must be brought to quiescence.

Results & Tests (continued)

Figure 6: Elaborate test KNN network representing connections between memories of animals and their characteristics.

- Graph visualization tests.
- ▶ Iterations of the KNN searching algorithms are presented visually.

Conclusion

- ► Skills learned:
- Planning and implementing large software project.
- ► Time management.
- People management.
- ► Possible future work:
- ▶ Implement the missing NN and META layers.
- ▶ Explore further features in the KNN, such as learning and attention.