8. 論理回路

1610581 堀田 大地

2018/5/17

1 目的

トランジスタ、IC 等の半導体素子の発展と共に機 械システムへのエレクトロニクスの導入が進み、今 やエレクトロニクスと関わりのない機械システムは 考えられなくなった. 特にコンピュータを始め、そ の周辺機器, 各種情報機器,NC 工作機械, 家電製品 等にはディジタル回路が多用されている. そこで、 実際に広く利用されているディジタル用 IC を用い て, ディジタル回路, 特に論理回路の基礎的事項に ついて実験し、ディジタル IC の使い方、動作、設計 法について理解する.

2 方法

3 実験項目

3.1 ゲート回路

6種類のゲート回路についての素子名称,動作表, 回路の読み方, 真理値表, 論理式を表 4.1 に示した.

3.2 2 **入力** EX-OR ゲート

3.2.1 EX-OR **の機能**

回路図を図1,動作表,真理値表を表1,2,論理式を (1) に示した.

図1 NAND 素子 4 個を用いた EX-OR 機能の論理式

$$Y = A \cdot \overline{B} + \overline{A} + B = A \oplus B \quad (1)$$

3.2.2 考察

実験では、 S_0 と S_1 のうち 1 方がオンの状態で のみ、LED が光っていたことので、動作を確認でき $\overline{D} = A \cdot C = A \cdot (\overline{A} + \overline{B}) = A \cdot \overline{B}$ (3)

表1 EX-OR の回路の動作表. 入力の H はスイッ チ ON, 出力の H は LED の点灯を表す

	入力		出力
接続端子	S_0	S_1	L_0
端子名	A	В	Y
	L	L	L
電圧	L	Н	Н
	Н	L	Η
	Н	Н	L

表 2 EX-OR 機能の真理値表

	入力		出力
端子名	A	В	Y
	0	0	0
真理值	0	1	1
	1	0	1
	1	1	0

た. また,LED の光り方により, 回路の機能は理解 できた.

3.2.3 課題

実験で用いた回路を正論理/負論理の NAND 素 子を使って書き換えた回路を図に示した. この課題 では、図の回路の出力 Y が EX-OR 機能であるこ とを示した. $C,\overline{D},\overline{E}$ での論理式を次式 (2)-(5) に示 した.

図 2 正論理/負論理の NAND 素子を使って作っ た EX-OR 回路

$$C = \overline{A} + \overline{B} \quad (2)$$

$$\overline{D} = A \cdot C = A \cdot (\overline{A} + \overline{B}) = A \cdot \overline{B} \quad (3)$$

$$\overline{E} = B \cdot C = B \cdot (\overline{A} + \overline{B}) = \overline{A} \cdot B \quad (4)$$

$$Y = \overline{D} + \overline{E} = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B \quad (5)$$

よって, (5) より, 図が EX-OR 機能であることが示された.

3.3 デコーダとエンコーダ

3.3.1 デコーダの機能

デコーダ回路は,2 桁の 2 進数スイッチを使って入力し,10 進数の 0 から 3 を表す LED に"1(H)"を出力する. すなわち対応する LED が点灯する回路である. 回路図を図 3, デコーダの動作表, 真理値表を表 3.4 に示した.

図3 2入力4出力デコーダの回路図

表 3 デコーダの動作表. 入力の H はスイッチ ON, 出力の H は LED の点灯を表す.

	入力		出力			
端子名	S_1	S_0	L_0			
	L	L	Н	L	L L	L
電圧	L	m L $ m H$	L	Η	\mathbf{L}	L
	Н	L	L	L	Н	L
	Н	Η	L	${\bf L}$	${\bf L}$	Н

	入力		出力			
端子名	S1	S0	L0	L1	L2	L3
	0	0	1	0	0	0
電圧	0	1	0	1	0	0
	1	0	0	0	1	0
	1	1	0	0	0	1

3.3.2 考察

改めてこの回路の入力と出力の関係が「解読」であることを考察する. S_0 , S_1 の 2 入力 4 通りの組み合わせから, 4 つの出力が生まれる構造があり, 出力結果を見るだけで, 入力の信号がわかる. つまり, このことから, 入力と出力の関係が「解読」であると言える.

3.3.3 課題

エンコーダは 10 進数を 2 進数に変換する回路である。この課題では、10 進数から 0 から 3 をそれぞれに対応する 4 つのスイッチ (S_0,S_1,S_2,S_3) を使って入力し、2 つの $LED(L_0,L_1)$ を使って 2 ビットの 2 進数を出力するエンコーダ回路を設計し作成した。まず、エンコーダの真理値表を表 5 に、論理式を (6)、(7) に、回路図を図 4 に示した。

表 5 エンコーダの真理値表

	入力				出力	
端子名	S_0	S_1	S_2	S_3	L_1	L_0
	1	0	0	0	0	0
真理值	0	1	0	0	0	1
	0	0	1	0	1	0
	0	0	0	1	1	1

$$L_0 = S_1 + S_3$$
 (6)
 $L_1 = S_2 + S_3$ (7)

図 4 4入力 2出力エンコーダの回路図

3.4 加算回路

3.4.1 加算回路の機能

ハーフ・アダーは,2 進数の足し算, つまり 2 つの入力 A と B を加算し, その和 S(Sum) と桁上げ

表 6 ハーフ・アダーの真理値表

	入力		出力	
			和	桁上げ
端子名	A	В	S	С
真理值	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

C(Carry) を出力する. ハーフ・アダーの真理値表, 動作表を表 6,7 に, 回路図を図 5 に, 動作確認表を表 7 に, 論理式を (8),(9) に示した.

図5 ハーフ・アダーの回路図

表 7 ハーフ・アダーの動作表

	入力		出力	
			和	桁上げ
接続端子	S_0	S_1	L_0	L_1
端子名	A	В	S	С
電圧	L	L	L	L
	L	Η	Н	L
	Н	L	Н	L
	Н	Η	L	Н

$$S = A \oplus B \quad (8)$$

$$C = A \cdot B \quad (9)$$

3.4.2 考察

和 S が EX-OR, 桁上げ C が AND となっており,A=B=1 の時に,S=0,C=1 となり, 桁上げが行えた.

3.4.3 課題

コンピュータの内部では、複数桁同士の 2 進数の加算が行われている。この課題では、そのような計算を実現させるために、2 桁の 2 進数の A_0,A_1 と B_0,B_1 との加算を行う回路を作成した。

- 1. 機能説明 2 桁 2 進数の計算が行える。そのため に、1 桁目の加算を行い、次に 2 桁目の加算を実 現させるために、1 桁目はハーフ・アダー、2 桁目は下位からの桁上げを考慮して入力できる全 加算器を使った。
- 2. フル・アダーの回路設計フル・アダーの真理値 表を表 8 に、論理式を (10),(11) に、回路図を図 6 に示した.

表 8 フル・アダーの直理値表

	入力			出力	
				和	桁上げ
端子名	A	В	C_{in}	S	C_{out}
電圧	0	0	0	0	0
	0	1	0	1	0
	1	0	0	1	0
	1	1	0	0	1
	0	0	1	1	0
	0	1	1	0	1
	1	0	1	0	1
	1	1	1	1	1

$$S = \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + \overline{A} \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot C_{in}$$
$$= (A \oplus B) \oplus C_{in} \quad (10)$$

$$C_{out} = A \cdot B \cdot \overline{C_{in}} + \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot C_{in}$$
$$= A \cdot B + (A \oplus B) \cdot C_{in} \quad (11)$$

図 6 フル・アダーの回路図

図7 2桁の2進数の加算回路図

3. 2 桁の 2 進数の加算回路の設計真理値表を表 9 に, 論理式を (12)-(14) に, 回路図を図 7 に示 した.

表 9 2 桁の 2 進数の加算回路の真理値表

	入力				出力		
					3 桁目	2 桁目	1 桁目
端子名	A_1	A_0	B_1	B_0	C_2	S_1	S_0
真理值	0	0	0	0	0	0	0
	0	1	0	0	0	0	1
	1	0	0	0	0	1	0
	1	1	0	0	0	1	1
	0	0	0	1	0	0	1
	0	1	0	1	0	1	0
	1	0	0	1	0	1	1
	1	1	0	1	1	0	0
	0	0	1	0	0	1	0
	0	1	1	0	0	1	1
	1	0	1	0	1	0	0
	1	1	1	0	1	0	1
	0	0	1	1	0	1	1
	0	1	1	1	1	0	0
	1	0	1	1	1	0	1
	1	1	1	1	1	1	0

$$S_0 = A_0 \oplus B_0$$
 (12)
 $S_1 = A_0 \cdot (A_1 \oplus B_1 \oplus B_0) + \overline{A_0} \cdot (A_1 \oplus B_1)$

$$C_2 = A_0 \cdot B_0(A_1 \oplus B_1) + A_1 \cdot B_1$$
 (14)

3.5 順序回路

順序回路とは、組み合わせ回路の時刻 t+1 の時の出力 Y_{t+1} が、時刻 t のときの出力 Y_t を含む入力条件によって決まる $Y_{t+1}=f(Y_t,A,B,C...)$ で表すことのできる回路である.

3.5.1 D **ラッチ回路**

1. 基本動作

D ラッチ回路は、RS ラッチ (Reset 入力と Set 入力を持つラッチ) の前段にデータ記憶用のゲートを追加し、入力した Data を止めるため、つまりラッチするための信号であるストローブ入力を備えている. つまり,D ラッチは、ストローブ入力によりデータを RS ラッチにいつ記憶させるかを制御している. 回路図を図 8 に、動作表を表 10 に、タイムチャートを図 9 に示した.

図8 Dラッチの回路図

表 10 D ラッチの動作表

	入力		出力	
接続端子	S_1	S_0	L_1	L_0
端子名	Data	\overline{Stb}	Q	\overline{Q}
電圧	L	L	Q_0	$\overline{Q_0}$
	Н	L	Q_0	$\overline{Q_0}$
	L	Η	L	Η
	Н	Η	Н	L

図9 Dラッチのタイムチャート

2. 考察

- (a) ストローブ信号が H のとき,Data 信号の 出力を Q は受けとって出力していた.
- (b) ストローブ信号が L のとき, Data 信号の出力に関わらず, 前の状態を維持していた.
- (c) Data 信号が動いているときに、ストロー ブ信号を H から L にしたとき、Data 信号 の動きに関わらず出力 Q の状態は変わら なかった.
- (d) 以上の (a)-(b) より,ストローブ信号の機能は,Data 信号を出力に伝える機能であった. ラッチ機能は,ストローブ機能が L のときに,Data 信号を止めて,もし Data 信号が変わっても受け取らないようにするための機能であった.

3.5.2 フリップフロップ回路

- 1. J-K フリップフロップ回路 (74HC112)
 - (a) 基本動作

J-K フリップフロップ回路とは、入力端子 J,K の組み合わせにより、出力端子 Q, その反転出力である \overline{Q} にクロックを同期し

て新しい状態を出力できる回路である. 基本動作は, リセット, セット, 維持, 反転の 4パターンである. 回路図を図 10 に, 動作表を表 11 に示した.

図 10 J-K フリップフロップ回路の回路図

表 11 J-K フリップフロップ回路の回路図の入出 力端子を動作表

入力					出力		機能
S_0	S_1	S_2	S_3	DA	L_1	L_0	
\overline{CLR}	\overline{PR}	J	K	\overline{CLK}	Q	\overline{Q}	
L	Η	x	x	X	L	Н	クリア (Q → L)
H	L	x	x	X	H	L	プリセット (Q → H)
L	L	x	x	X	H*	H^*	不定. 通常使用しない
H	Η	$_{\rm L}$	$_{\rm L}$	\downarrow	Q_0	$\overline{Q_0}$	t_0 の状態を保持
H	Η	$_{\rm L}$	Η	\downarrow	L	Η	ラッチ J → Q
H	Η	Η	\mathbf{L}	\downarrow	H	L	$K \to Q$
H	Η	Η	Η	\downarrow	$\overline{Q_0}$	Q_0	トグル
Н	Η	x	x	H	Q_0	$\overline{Q_0}$	t_0 の状態を保持

(b) 実験

図 11 に、タイムチャートに従って入力端 子を操作したときの出力 Q,\overline{Q} を示した.

図 11 J-K フリップフロップ回路のタイムチャート

(c) 考察

出力 $Q.\overline{Q}$ は, \overline{CLR} が H の状態で \overline{PR} が L

になったとき、H、L になった.逆に、 \overline{PR} が H の状態で \overline{CLR} が L になったとき、L,H になった.つまりこの 2 点から, \overline{CLR} は L になると,Q を L に, \overline{Q} を H に変え, \overline{PR} は L になると,Q を H に, \overline{Q} を L に変えていると考えられた. \overline{CLR} , \overline{PR} を H の状態のまま,J を H,K を L の状態にして, \overline{CLK} を L にすると,Q が H, \overline{Q} が L になったことより,タイムチャート前半の \overline{PR} の機能を呼び出せられると考えられた.また,その状態のまま J を L,K を H の状態にして, \overline{CLK} を L にすると, \overline{CLR} の機能を呼び出せられると考えられた.J,K を両方 H にすると, \overline{CLK} を L にする度,前の状態が復元されると考えられた.

- 2. D フリップフロップ回路 (74HC74) を用いた 1/2 分周器
 - (a) 実験 D フリップフロップの動作表を表 12 に,D フリップフロップ回路を用いた 1/2 分周器の回路図を図 12 に,動作表を表 13 に,タイムチャートを図 13 に示した

表 12 My caption

入力				出力		機能
\overline{CLR}	\overline{PR}	D	CLK	Q	\overline{Q}	
L	Н	x	x	L	Н	クリア
H	L	x	x	H	L	プリセット
\mathbf{L}	L	x	x	H*	H^*	不定
H	H	$_{\rm L}$	\uparrow	L	Η	$D \to Q$
H	H	Η	\uparrow	Н	L	$D \to Q$
H	Η	x	L	Q_0	$\overline{Q_0}$	t_0 の状態を保持

図12 Dフリップフロップ回路分周器の回路図

(b) 考察

3.6 カウンタ回路

3.6.1 非同期 16 進カウンタ回路

- 1. 基本動作
- 2. 実験
- 3. 考察

4 感想

参考文献

- [1] CT-311S 実習セット (デジタル編) 学習の手引き, サンハヤト株式会社
- [2] 最新 74 シリーズ IC 規格票,CQ 出版社
- [3] 猪飼國夫, 本多中二共著, 定本 ディジタルシステムの設計, CQ 出版社