### MV011 Statistika I

### 7. Průzkumová analýza dat

Jan Koláček (kolacek@math.muni.cz)

Ústav matematiky a statistiky, Přírodovědecká fakulta, Masarykova univerzita, Brno



# Průzkumová analýza jednorozměrných dat

## **Exploratory data analysis**

Průzkumová analýza dat je odvětví statistiky, které pomocí různých postupů odhaluje zvláštnosti v datech. Při zpracování dat se často používají metody, které jsou založeny na předpokladu, že data pocházejí z nějakého konkrétního rozložení, nejčastěji normálního. Tento předpoklad nemusí být vždy splněn, protože data

- mohou pocházet z jiného rozložení
- mohou být zatížena hrubými chybami
- mohou pocházet ze směsi několika rozložení.

Proto je důležité provést průzkumovou analýzu dat, abychom se vyvarovali neadekvátního použití statistických metod.

### Funkcionální charakteristiky datového souboru

#### Označení

Na množině objektů  $\{\varepsilon_1,\ldots,\varepsilon_n\}$  zjišťujeme hodnoty znaku X. Hodnotu znaku X na objektu  $\varepsilon_i$  označíme  $x_i,i=1,\ldots,n$ . V teorii pravděpodobnosti se jim také říká **realizace** náhodné veličiny X. Tyto hodnoty zaznamenáme do jednorozměrného datového souboru:

$$\mathbf{x} = (x_1, \ldots, x_n)'.$$

Uspořádané hodnoty  $x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}$  tvoří uspořádaný datový soubor:

$$\mathbf{x}_{(\cdot)} = (x_{(1)}, \dots, x_{(n)})'.$$

Vektor

$$\mathbf{x}_{[\cdot]} = (x_{[1]}, \dots, x_{[r]})',$$

kde  $x_{[1]} < \ldots < x_{[r]}$ ,  $r \le n$ , jsou navzájem různé hodnoty znaku X, se nazývá **vektor variant** (levels).

Jan Koláček (PřF MU) MV011 Statistika I 3 / 41

### Bodové rozložení četností

indikátor množiny:

$$I_B(x) = \begin{cases} 1 & x \in B, \\ 0 & x \notin B. \end{cases}$$

Pro datový soubor  $\mathbf{x} = (x_1, \dots, x_n)'$  definujeme následující pojmy

• absolutní četnost (absolute frequency) varianty  $x_{[j]}$ :

$$n_j = \sum_{i=1}^n I_{\{x_{[j]}\}}(x_i)$$

• relativní četnost (relative frequency) varianty  $x_{[j]}$ :

$$p_j = \frac{n_j}{n}$$

• absolutní kumulativní četnost prvních j variant:

$$N_j = n_1 + \ldots + n_j$$

Jan Koláček (PřF MU) MV011 Statistika I 4 / 41

• relativní kumulativní četnost prvních j variant:

$$F_j = \frac{N_j}{n} = p_1 + \ldots + p_j$$

četnostní funkce:

$$p(x) = \begin{cases} p_j & \text{pro } x = x_{[j]}, \ j = 1, \dots, r \\ 0 & \text{jinak} \end{cases}$$

• empirická distribuční funkce (empirical distribution function):

$$F(x) = \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,x)}(x_i)$$

Absolutní či relativní četnosti znázorňujeme graficky např. pomocí sloupkového diagramu či polygonu četností.

Jan Koláček (PřF MU) MV011 Statistika I 5 / 41

U 30 domácností byl zjišťován počet členů.

| Počet členů      | 1 | 2 | 3 | 4  | 5 | 6 |
|------------------|---|---|---|----|---|---|
| Počet domácností | 2 | 6 | 4 | 10 | 5 | 3 |

Vytvořte tabulku rozložení četností. Nakreslete grafy četnostní funkce a empirické distribuční funkce. Dále nakreslete sloupkový diagram a polygon četností počtu členů domácnosti.

Řešení. Tabulka rozložení četností:

| $\overline{x_{[j]}}$ | $n_j$ | $p_j$ | $N_{j}$ | $F_{j}$ |
|----------------------|-------|-------|---------|---------|
| 1                    | 2     | 2/30  | 2       | 2/30    |
| 2                    | 6     | 6/30  | 8       | 8/30    |
| 3                    | 4     | 4/30  | 12      | 12/30   |
| 4                    | 10    | 10/30 | 22      | 22/30   |
| 5                    | 5     | 5/30  | 27      | 27/30   |
| 6                    | 3     | 3/30  | 30      | 1       |

Jan Koláček (PřF MU) MV011 Statistika I 6 / 41

# Příklad – pokračování





Obr.: Graf četnostní funkce

Obr.: Graf empirické distribuční funkce

Jan Koláček (PřF MU) MV011 Statistika I 7 / 41

# Příklad – pokračování





Obr.: Sloupkový diagram

Obr.: Polygon četností

Jan Koláček (PřF MU) MV011 Statistika I 8 / 41

### Intervalové rozložení četností

- ightharpoonup třídicí intervaly  $(u_1,u_2),\ldots,(u_r,u_{r+1})$
- ightharpoonup doporučuje se volit r blízké  $\sqrt{n}$ .

Četnostní hustota j-tého třídicího intervalu je definována vztahem

$$f_j = \frac{p_j}{d_j}$$

kde  $d_j = u_{j+1} - u_j$ . Soustava obdélníků sestrojených nad třídicími intervaly, jejichž plochy jsou rovny relativním četnostem, se nazývá **histogram**.

hustota četnosti:

$$f(x) = \begin{cases} f_j & \text{pro } u_j < x \le u_{j+1}, \ j = 1, \dots, r \\ 0 & \text{jinak} \end{cases}$$

(grafem hustoty četnosti je schodovitá čára shora omezující histogram)

• Intervalová empirická distribuční funkce:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Jan Koláček (PřF MU) MV011 Statistika I 9 / 41

U 70 domácností byly zjišťovány týdenní výdaje na nealkoholické nápoje (v Kč).

| Výdaje           | (35,65) | (65,95) | (95, 125) | (125, 155) | (155, 185) | (185, 215) |
|------------------|---------|---------|-----------|------------|------------|------------|
| Počet domácností | 7       | 16      | 27        | 14         | 4          | 2          |

Sestavte tabulku rozložení četností, nakreslete histogram a graf intervalové empirické distribuční funkce.

Řešení. Tabulka rozložení četností

| $(u_j,u_{j+1})$ | $n_j$ | $p_j$ | $f_j$   | $N_j$ | $F_j$ |
|-----------------|-------|-------|---------|-------|-------|
| (35,65)         | 7     | 7/70  | 7/2100  | 7     | 7/70  |
| (65, 95)        | 16    | 16/70 | 16/2100 | 23    | 23/70 |
| (95, 125)       | 27    | 27/70 | 27/2100 | 50    | 50/70 |
| (125, 155)      | 14    | 14/70 | 14/2100 | 64    | 64/70 |
| (155, 185)      | 4     | 4/70  | 4/2100  | 68    | 68/70 |
| (185,215)       | 2     | 2/70  | 2/2100  | 70    | 1     |

Jan Koláček (PřF MU) MV011 Statistika I 10 / 41

# Příklad – pokračování





Obr.: Histogram

Obr.: Graf intervalové empirické distribuční funkce

Jan Koláček (PřF MU) MV011 Statistika I 11 / 41

# Číselné charakteristiky datového souboru

#### Znaky nominálního typu

Nominální škála klasifikuje objekty do určitých předem vymezených tříd či kategorií. Hodnoty v nominální škále se dají vyjádřit slovně a mezi různými hodnotami není definováno žádné uspořádání. Pokud jsou hodnoty nominální škály někdy označovány číselně, mějme na paměti, že toto číslo je pouze jakousi zkratkou (kódem) slovní hodnoty. O znacích měřených v nominální škále hovoříme jako o znacích nominálního typu.

Příklady znaků nominálního typu mohou být např.:

- pohlaví (s možnými hodnotami mužské, ženské)
- barva očí (modrá, hnědá, černá)
- výsledek léčby (uzdraven, zemřel)
- národnost (česká, slovenská, polská, německá, ...)

Charakteristikou polohy je **modus** – nejčetnější varianta či střed nejčetnějšího intervalu. (Modus je jediná charakteristika polohy vhodná pro nominální veličiny).

Jan Koláček (PřF MU) MV011 Statistika I 12 / 41

# Číselné charakteristiky datového souboru

#### Znaky ordinálního typu

Znaky ordinálního typu lze podle sledované vlastnosti nejen rozlišovat, ale také uspořádat ve smyslu vztahů "je větší", "je menší" nebo "předchází", "následuje", aniž bychom však byli schopni vyjádřit číselně vzdálenost mezi větším a menším či mezi předcházejícím a následujícím.

Znaky ordinálního typu mohou být např.:

- dosažené vzdělání (základní, střední, vysokoškolské)
- prospěch ve školním předmětu (výborně, velmi dobře, dobře, nevyhověl)
- stav pacienta (vyléčen, remise, recidiva)
- hodnocení funkce technických zařízení (stupně závažnosti poruchy jaderné elektrárny)
- hodnocení postojů v sociologických průzkumech (škála má hodnoty např. souhlasím, spíše souhlasím, spíše nesouhlasím, nesouhlasím)
- četnost výskytu (často, občas, zřídka, nikdy)

Vhodnou charakteristikou polohy je  $\alpha$ -**kvantil**.

Je-li  $\alpha \in (0;1)$ , pak  $\alpha$ -kvantil  $x_a$  je číslo, které rozděluje uspořádaný datový soubor na dolní úsek, obsahující aspoň podíl  $\alpha$  všech dat a na horní úsek obsahující aspoň podíl  $1-\alpha$  všech dat.

# Číselné charakteristiky datového souboru

Pro výpočet  $\alpha$ -kvantilu slouží algoritmus:

$$n\alpha = \begin{cases} \text{cel\'e } \ \text{\'c\'islo} \ c & \Rightarrow x_\alpha = \frac{x_{(c)} + x_{(c+1)}}{2} \\ \text{necel\'e } \ \text{\'c\'islo} & \Rightarrow \text{zaokrouhl\'ime nahoru na nejbliž\'s\'i cel\'e } \ \text{\'c\'islo} \\ & x_\alpha = x_{(c)} \end{cases}$$

Pro speciálně zvolená  $\alpha$  užíváme názvů:

- $x_{0.50}$  medián
- $x_{0.25}$  dolní kvartil
- $x_{0.75}$  horní kvartil
- $x_{0,1}, \ldots, x_{0,9}$  decily
- $x_{0,01}, \ldots, x_{0,99}$  percentily.

Jako charakteristika variability slouží **kvartilová odchylka**:  $q = x_{0,75} - x_{0,25}$  (interquartile range).

Jan Koláček (PřF MU) MV011 Statistika I 14 / 41

Během semestru se studenti podrobili písemnému testu z matematiky, v němž bylo možno získat 0 až 10 bodů. Výsledky jsou uvedeny v tabulce:

| Počet bodů     | 0 | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8  | 9 | 10 |
|----------------|---|---|---|---|----|----|----|----|----|---|----|
| Počet studentů | 1 | 4 | 6 | 7 | 11 | 15 | 19 | 17 | 12 | 6 | 3  |

Zjistěte modus, medián, 1. decil, 9. decil a kvartilovou odchylku počtu bodů. **Řešení.** Modus je nejčetnější varianta znaku, v tomto případě tedy 6. Vypočtěme rozsah datového souboru:  $n=1+4+\cdots+3=101$ . Výpočty uspořádáme do tabulky.

| α    | nα    | С  | $x_{\alpha} = x_{(c)}$ |
|------|-------|----|------------------------|
| 0,50 | 50,5  | 51 | 6                      |
| 0,10 | 10,1  | 11 | 2                      |
| 0,90 | 90,9  | 91 | 8                      |
| 0,25 | 25,25 | 26 | 4                      |
| 0,75 | 75,75 | 76 | 7                      |

Kvartilová odchylka: q = 7 - 4 = 3.

Jan Koláček (PřF MU) MV011 Statistika I 15 / 41

U znaků **intervalového typu** lze stanovit vzdálenost mezi hodnotami měřené veličiny. Je zde definována jednotka měření, avšak nula je definována pouze relativně. To nám dovoluje proto počítat s rozdíly naměřených hodnot, nikoliv s jejich podíly. Typickým příkladem je teplota, která se dá měřit v různých stupnicích (Celsiova, Fahrenheitova).

U znaků **poměrového typu** lze určit nejen rozdíly (intervaly) mezi hodnotami, ale i podíly hodnot, neboť tyto znaky mají nulu stanovenu absolutně a jednoznačně. Charakteristiky **polohy**:

• Aritmetický průměr (mean)  $\bar{x}$ :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

U poměrových znaků, které nabývají pouze kladných hodnot, lze použít

• geometrický průměr (geometric mean):

$$\sqrt[n]{x_1 \cdot \ldots \cdot x_n}$$
 (2)

Jan Koláček (PřF MU) MV011 Statistika I 16 / 41

#### Charakteristiky variability:

• rozptyl (variance):

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{3}$$

směrodatná odchylka (standard deviation):

$$s = \sqrt{s^2} \tag{4}$$

koeficient variace (variation):

$$\frac{s}{\bar{x}}$$
 (5)

Rozptyl se zpravidla počítá podle vzorce  $s^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$ .

Známe-li absolutní či relativní četnosti variant  $x_{[1]}, \ldots, x_{[r]}$ , můžeme spočítat

• vážený průměr (weighted mean):

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{r} n_j x_{[j]} \tag{6}$$

nebo

• vážený rozptyl (weighted variance):

$$s^{2} = \frac{1}{n} \sum_{j=1}^{r} n_{j} (x_{[j]} - \bar{x})^{2}$$
 (7)

Vážený rozptyl se zpravidla počítá podle vzorce  $s^2 = \frac{1}{n} \sum_{j=1}^r n_j x_{[j]}^2 - \bar{x}^2$ .

Jan Koláček (PřF MU) MV011 Statistika I 18 / 41

Aritmetický průměr a rozptyl jsou speciální případy tzv. momentů. V následující definici obecně zavedeme k-tý počáteční a centrální moment.

• k-tý počáteční moment (k<sup>th</sup> moment):

$$m'_k = \frac{1}{n} \sum_{i=1}^n x_i^k, \quad \text{kde } k = 1, 2, \dots$$
 (8)

• k-tý centrální moment:

$$m_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^k, \quad \text{kde } k = 1, 2, \dots$$
 (9)

Jan Koláček (PřF MU) MV011 Statistika I 19 / 41

Pomocí 3. a 4. centrálního momentu se definuje šikmost a špičatost:

• šikmost (skew):

$$\alpha_3 = \frac{m_3}{s^3} \tag{10}$$

Šikmost měří nesouměrnost rozložení četností kolem průměru.

• špičatost (kurtosis):

$$\alpha_4 = \frac{m_4}{s^4} - 3 \tag{11}$$

20 / 41

Špičatost měří koncentraci rozložení četností kolem průměru.

Jan Koláček (PřF MU) MV011 Statistika I

Pro údaje z příkladu o domácnostech vypočtěte průměr a rozptyl počtu členů domácnosti.

#### Řešení

$$\bar{x} = \frac{1}{30}(1 \cdot 2 + 2 \cdot 6 + 3 \cdot 4 + 4 \cdot 10 + 5 \cdot 5 + 6 \cdot 3) = \frac{109}{30} = 3,6\bar{3}$$

$$s^2 = \frac{1}{30}(1^2 \cdot 2 + 2^2 \cdot 6 + 3^2 \cdot 4 + 4^2 \cdot 10 + 5^2 \cdot 5 + 6^2 \cdot 3) - \left(\frac{109}{30}\right)^2 = \frac{1769}{900} = 1,96\bar{5}$$

21 / 41 MV011 Statistika I

Nechť  $\bar{x}$  je průměr a  $s_1^2$  rozptyl hodnot  $x_1,\ldots,x_n$ . Nechť a,b jsou reálné konstanty. Položme  $y_i=a+bx_i, i=1,\ldots,n$ . Vypočtěte průměr  $\bar{y}$  a rozptyl  $s_2^2$  hodnot  $y_1,\ldots,y_n$ .

#### Řešení

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (a + bx_i) = a + b \frac{1}{n} \sum_{i=1}^{n} x_i = a + b\bar{x},$$

$$s_2^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n} \sum_{i=1}^n (a + bx_i - a - b\bar{x})^2 = b^2 \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = b^2 s_1^2.$$

Jan Koláček (PřF MU) MV011 Statistika I 22 / 41

### Krabicový diagram (Box plot)

Umožňuje posoudit symetrii a variabilitu datového souboru a existenci odlehlých či extrémních hodnot. Můžete se setkat i z názvem **box plot**.

Krabicový diagram je specifikován těmito pojmy:

Dolní vnitřní hradba:

$$x_{0,25}-1,5q$$

Horní vnitřní hradba:

$$x_{0.75} + 1,5q$$

Dolní vnější hradba:

$$x_{0,25} - 3q$$

• Horní vnější hradba:

$$x_{0.75} + 3q$$

Odlehlá hodnota (Outlier) je hodnota, která leží mezi vnitřními a vnějšími hradbami. Extrémní hodnota (Extreme value) je hodnota, která leží za vnějšími hradbami.

#### Způsob konstrukce krabicového diagramu:



Jan Koláček (PřF MU) MV011 Statistika I 24 / 41

Pro data z příkladu o domácnostech sestrojte krabicový diagram.

| Počet členů      | 1 | 2 | 3 | 4  | 5 | 6 |
|------------------|---|---|---|----|---|---|
| Počet domácností | 2 | 6 | 4 | 10 | 5 | 3 |

### Řešení.

Rozsah souboru n=30. Výpočty potřebných kvantilů uspořádáme do tabulky.

| α    | пα   | С  |                                                                         | $x_{\alpha}$ |
|------|------|----|-------------------------------------------------------------------------|--------------|
| 0,25 | 7,5  | 8  | $\begin{array}{c} x_{(c)} = x_{(8)} \\ x_{(15)} + x_{(16)} \end{array}$ | 2            |
| 0,50 | 15   | 15 | $\frac{x_{(15)} + x_{(16)}}{2}$                                         | 4            |
| 0,75 | 22,5 | 23 | $x_{(c)} = x_{(23)}$                                                    | 5            |

$$q = 5 - 2 = 3$$

Dolní vnitřní hradba:  $x_{0,25} - 1, 5q = 2 - 1, 5.3 = -2, 5$ 

Horní vnitřní hradba:  $x_{0.75} + 1.5q = 5 + 1.5.3 = 9.5$ 

Jan Koláček (PřF MU) MV011 Statistika I 25 / 41



Obr.: Krabicový diagram

Jan Koláček (PřF MU) MV011 Statistika I 26 / 41

#### Normal probability plot (N-P plot)

N-P plot konstruujeme tak, že na vodorovnou osu vynášíme uspořádané hodnoty  $x_{(1)} \leq \cdots \leq x_{(n)}$  a na svislou osu kvantily normálního rozdělení  $u_{\alpha_i}$ , kde

$$\alpha_j = \frac{3j-1}{3n+1}.$$

 $\alpha_j=\frac{3j-1}{3n+1}.$  Jsou-li některé hodnoty  $x_{(1)}\leq\cdots\leq x_{(n)}$  stejné, pak za j bereme průměrné pořadí odpovídající takové skupince.

- Pocházejí-li data z normálního rozložení, pak budou všechny dvojice  $(x_{(i)}, u_{\alpha_i})$  ležet na přímce.
- ullet Pro data z rozložení s kladnou šikmostí se budou dvojice  $\left(x_{(j)},u_{lpha_{j}}
  ight)$  řadit do konkávní křivky.
- Pro data z rozložení se zápornou šikmostí se budou dvojice  $(x_{(j)}, u_{\alpha_j})$  řadit do konvexní křivky.

Jan Koláček (PřF MU) MV011 Statistika I 27 / 41

### Quantile - quantile plot (Q-Q plot)

Q-Q plot konstruujeme tak, že na svislou osu vynášíme uspořádané hodnoty  $x_{(1)} \leq \cdots \leq x_{(n)}$  a na vodorovnou osu kvantily  $K_{\alpha_i}(X)$  vybraného rozložení, kde

$$\alpha_j = \frac{j - r_{adj}}{n + n_{adj}},$$

přičemž  $r_{adj}$  a  $n_{adj}$  jsou korigující faktory  $\leq 0,5$ . Implicitně se klade  $r_{adj}=0,375$  a  $n_{adj}=0,25$ . Pokud vybrané rozložení závisí na nějakých parametrech, pak se tyto parametry odhadují z dat, nebo se volí na základě teoretického modelu. Body  $(K_{\alpha_j}(X),x_{(j)})$  se metodou nejmenších čtverců proloží přímka. Čím méně se body odchylují od této přímky, tím lepší je soulad mezi empirickým a teoretickým rozložením.

Jsou-li některé hodnoty  $x_{(1)} \leq \cdots \leq x_{(n)}$  stejné, pak za j bereme průměrné pořadí odpovídající takové skupince.

Jan Koláček (PřF MU) MV011 Statistika I 28 / 41

Desetkrát nezávisle na sobě byla změřena jistá konstanta. Výsledky měření: 2 1,8 2,1 2,4 1,9 2,1 2 1,8 2,3 2,2. Pomocí N-P plotu a Q-Q plotu ověřte, zda se tato data řídí normálním rozložením.

### Řešení

| usp.hodnoty     | 1,8 | 1,8 | 1,9 | 2   | 2   | 2,1 | 2,1 | 2,2 | 2,3 | 2,4 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| pořadí          | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
| průměrné pořadí | 1,5 | 1,5 | 3   | 4,5 | 4,5 | 6,5 | 6,5 | 8   | 9   | 10  |

#### N-P plot:

$$j = (1,5; 3; 4,5; 6,5; 8; 9; 10)$$
  
 $\alpha_j = \frac{3j-1}{3n+1} = (0,1129; 0,2581; 0,4032; 0,5968; 0,7419; 0,8387; 0,9355)$   
 $u_{\alpha_j} = (-1,2112; -0,6493; -0,245; 0,245; 0,6493; 0,9892; 1,5179)$ 

Jan Koláček (PřF MU) MV011 Statistika I

29 / 41

#### Q-Q plot:

$$j = (1,5; 3; 4,5; 6,5; 8; 9; 10)$$

$$\alpha_j = \frac{j - 0.375}{n + 0.25} = (0,1098; 0,2561; 0,4024; 0,5976; 0,7439; 0,8415; 0,939)$$

$$u_{\alpha_j} = (-1,2278; -0,6554; -0,247; 0,247; 0,6554; 1,0005; 1,566)$$





Jan Koláček (PřF MU) MV011 Statistika I 30 / 41

#### Probability - probability plot (P-P plot)

Spočtou se standardizované hodnoty

$$z_{(j)} = \frac{x_{(j)} - \bar{x}}{s}, \quad j = 1, \dots, n.$$

Na vodorovnou osu se vynesou hodnoty teoretické distribuční funkce  $\Phi(z_{(j)})$  a na svislou osu hodnoty empirické distribuční funkce  $F(z_{(j)})=j/n$ . Pokud se body  $(\Phi(z_{(j)}),F(z_{(j)}))$  řadí kolem hlavní diagonály čtverce  $\langle 0,1\rangle \times \langle 0,1\rangle$ , lze usuzovat na dobrou shodu empirického a teoretického rozložení.

Jsou-li některé hodnoty  $x_{(1)} \leq \ldots \leq x_{(n)}$  stejné, pak za j bereme průměrné pořadí odpovídající takové skupince.

Jan Koláček (PřF MU) MV011 Statistika I 31 / 41

#### Histogram

Umožňuje porovnat tvar hustoty četnosti s tvarem hustoty pravděpodobnosti vybraného teoretického rozložení. Např. normálního, Pearsonova, Studentova a jiných.

Jan Koláček (PřF MU) MV011 Statistika I 32 / 41

### Vzhled diagnostických grafů pro rozložení s různou šikmostí

Vlastnosti rozložení četností datového souboru se projeví ve vzhledu histogramu, N-P plotu a krabicového diagramu, jak ukazují následující obrázky:



Obr.: Histogramy







Obr.: N-P plot







34 / 41

Obr.: Box plot

#### Příklad 1

Deset pokusných osob mělo nezávisle na sobě bez předchozího nácviku odhadnout, kdy od daného signálu uplyne jedna minuta. Výsledky pokusu jsou uloženy v souboru "minuta. RData". Testujte graficky, zda se jedná o výběr z normálního rozdělení.

### Řešení Histogram a teoretická hustota



Jan Koláček (PřF MU) MV011 Statistika I 35 / 41

# Řešení

Q-Q plot



# Řešení

### Výběrová distribuční funkce



Jan Koláček (PřF MU) MV011 Statistika I 37 / 41

# Řešení

P-P plot



Jan Koláček (PřF MU) MV011 Statistika I 38 / 41

# Úlohy k procvičení

#### Příklad 2.1

U 20 studentů 1. ročníku byla zjišťována známka z matematiky na prvním zkušebním termínu.

Vytvořte tabulku rozložení četností. Nakreslete grafy četnostní funkce a empirické distribuční funkce. Dále nakreslete sloupkový diagram a polygon četností známek.

Jan Koláček (PřF MU) MV011 Statistika I 39 / 41

# Úlohy k procvičení

#### Příklad 2.2

U 60 vzorků oceli byla zjišťována mez plasticity.

Mez plasticity
 
$$(30,50)$$
 $(50,70)$ 
 $(70,90)$ 
 $(90,110)$ 
 $(110,130)$ 
 $(130,150)$ 
 $(150,170)$ 

 Počet vzorků
 8
 4
 13
 15
 9
 7
 4

Sestavte tabulku rozložení četností, nakreslete histogram a graf intervalové empirické distribuční funkce.

#### Příklad 2.3

Pro údaje z příkladu 2.2 vypočtěte průměr a rozptyl meze plasticity.

$$[\bar{x} = 96, 67, s^2 = 1148, 89]$$

40 / 41

Jan Koláček (PřF MU) MV011 Statistika I

# Úlohy k procvičení

#### Příklad 2.4

V datovém souboru, z něhož byl vypočten průměr 110 a rozptyl 800, byly zjištěny 2 chyby: místo 85 má být 95 a místo 120 má být 150. Ostatních 18 údajů je správných. Opravte průměr a rozptyl.

 $[\bar{x} = 112, s^2 = 851]$ 

#### Příklad 2.5

Pro údaje z příkladu 2.1 sestrojte krabicový diagram.

 $[x_{0,50}=2,5,\,x_{0,25}=1,\,x_{0,75}=4,\,q=3,\,dolni\,\,vnitrni\,\,hradba=-3,5,\,horni\,\,vnitrni\,\,hradba=8,5]$ 

Jan Koláček (PřF MU) MV011 Statistika I 41 /