DSC530 Final Project

David Suffolk

Statistical Question/Hypothesis

- If a customer pays for an app on their phone (compared to getting it for free), is that a signal of higher satisfaction with the product?
- The marketplace for apps is filled with free applications and many have the option to purchase a premium version while some are only available if purchased.
- If a customer is happy enough with the free app that they are willing to upgrade to a paid version, shouldn't paid apps have higher ratings in the app store?
- Since there are free options available and a customer chooses to purchase a different app instead, does this reflect higher satisfaction in the app through ratings and reviews?

Overview of Variables

- The dataset contains information on apps within the Google Play Store
- The five variables that will be the focus of the project are the following:
 - Rating The overall rating the app has received based on user reviews
 - o Reviews The number of reviews the app has received
 - o Installs The number of installs the app has received
 - Type Binary variable defining if the app is Free or Paid
 - Content Rating The recommended maturity level for the user accessing the app
- Rating, Reviews, and Installs all speak to the engagement between user and app and can give an overview of how a particular app is viewed by users.
- Content Rating is one method of determining what types of apps are installed, rated, and reviewed.

Rating

- Histogram shows a left-skewed distribution
- Mean: 4.192
- Mode: 4.4
- Median: 4.3
- Variance: 0.265
- Standard Deviation: 0.515

Reviews

- Histogram shows that most apps receive less than 100K reviews
- Mean: 514,049
- Mode: 2
- Median: 5,930.5
- Variance: 9,885,000,896,407.732
- Standard Deviation: 3,144,042.127

Installs

- The histogram shows that most apps have less than 1 million installs
- Mean: 17,897,443.726
- Mode: 1,000,000
- Median: 500,000
- Variance: 8,324,412,310,163,610
- Standard Deviation: 91,238,217.377

Type

- Histogram shows that most of the apps in the data are Free
- For calculations, the values were made binary. Free = 0. Paid = 1.
- Mean: 0.069
- Mode: 0
- Median: 0
- Variance: 0.064
- Standard Deviation: 0.254

Content Rating

- The histogram shows that most of the apps have a Content Rating of Everyone
- For calculations, the following numeric values were assigned:
 - Unrated 0
 - Everyone 1
 - Everyone 10+ 2
 - Teen 3
 - Mature 17+ 4
 - Adults only 18+ 5

Content Rating

Unrated - 0, Everyone - 1, Everyone 10+ - 2, Teen - 3, Mature 17+ - 4, Adults only 18+ - 5

- Mean: 1.423

- Mode: 1 (Everyone)

- Median: 1 (Everyone)

- Variance: 0.775

- Standard Deviation: 0.88

PMF

PMF

- For PMF, I looked into the ratings of Free apps against the ratings of Paid apps
- Based on the graphs on the previous slide, Paid apps do seem to receive a higher frequency of higher ratings.

CDF

The CDF for Ratings shows that a very low percentage of apps get a rating lower than
 4. In fact, only about 20% of the apps have a rating that is below 4 out of 5.

CDF Comparison

- When comparing the CDF of ratings for Paid and Free apps, we see that the line for Paid apps is slightly to the right of Free apps.
- We can see that there is a slightly higher chance of Paid apps receiving a higher rating than Free apps.

Analytical Distribution

- Compare the CDF of Ratings to a normal model with the same variance and mean
- Mean: 4.208
- Variance: 0.202
- The data for the CDF of Ratings fits the model very closely indicating a normal distribution for a model with the same variance and mean.

Scatter Plot #1

- The Scatter Plot shows the Rating against the Number of Reviews
- We can see that most reviews give a rating between 4 and 5
- Covariance: 110,368.519
 - Indicates a positive relationship between the two variables
- Pearson: 0.068
 - Close to zero indicating no relationship
- Spearman: 0.156
 - Higher than 0.05 so it is not statistically significant

Scatter Plot #2

- The Scatter Plot shows Ratings against the number of Installs
- We can see that as the installs increase, the variance in Ratings decreases
- Covariance: 2,413,799.731
 - Indicates a positive relationship between the two variables
- Pearson: 0.051
 - Close to zero indicating no relationship
- Spearman: 0.0695
 - Slightly higher than 0.05 so we should consider it statistically insignificant

Hypothesis Test

- I used Difference of Means with the Null Hypothesis that there is no difference between the ratings for Paid apps vs. Free apps.
- The result was 0 which indicates that the null hypothesis should be accepted indicating that there is no significant difference between the ratings for Paid and Free apps.

Regression Analysis

Optimization terminated successfully.

Current function value: 0.250396

Iterations 7

Logit Regression Results

9366	No. Observations:		neric No	Type_Numeric		Dep. Varia
9364	Df Residuals:		ogit.	Logit		Мо
1	Df Model:		MLE	MLE		Meth
0.003406	R-squ.:	Pseudo	2019	, 08 Aug	ate: Thu	D
-2345.2	elihood:	_og-Like	5:41 I	18:0	me:	Ti
-2353.2	LL-Null:	3	True		ged:	converç
6.236e-05	o-value:	LLR				
0.975]	[0.025	P> z	z	std err	coef	
-3.306	-4.826	0.000	-10.490	0.388	-4.0659	Intercept
0.524	0.169	0.000	3.831	0.090	0.3465	Rating

- Compared Rating as a predictor of Type (Free vs. Paid)
- The Coefficient is 0.3465 which means that there is a moderate positive relationship between the rating of a paid app.

Regression Analysis

Optimization terminated successfully.

Current function value: 0.208602

Iterations 15

Logit Regression Results

Dep. Variable:	Type_Numeric	No. Observatio	ns: 9366
Model:	Logit	Df Residua	als: 9361
Method:	MLE	Df Mod	del: 4
Date:	Thu, 08 Aug 2019	Pseudo R-so	Ju.: 0.1697
Time:	18:09:26	Log-Likeliho	od: -1953.8
converged:	True	LL-N	ull: -2353.2
		LLR p-val	ue: 1.317e-171
		coef std err	z P> z
	1	2710 0 220	10.000 0.000

[0.025 0.975]-4.337-3.007Intercept -3.6718 -10.822 0.000 0.4861 6.283 0.000 0.334 0.638 Rating 5.618e-06 4.64e-07 12.103 0.000 4.71e-06 6.53e-06 Reviews -12.271 0.000 -2.94e-06 -2.13e-06 Installs Numeric -2.537e-06 2.07e-07 Content_Rating_Numeric -0.1114 0.057 -1.961 0.050 -0.223-3.51e-05

- Compared all variables as a predictor of Type (Free vs. Paid)
- The Coefficient for Rating increases when controlled for Reviews, Installs, and Content Rating. The value is 0.4861.
- However, this relationship is still a moderately positive.

