Union, Intersection, and Difference of Sets

Union, Intersection, and Difference of Sets

Union

If A and B are sets, the union C of A and B, written $C = A \cup B$, is the set of elements of either A or B or both.

$$A\cup B=\{x:x\in A\text{ or }x\in B\}.$$

$$\{1,2,3\} \cup \{3,5,6\} = \{1,2,3,5,6\}$$

Intersection

If A and B are sets, the intersection C of A and B, written $C = A \cap B$, is the set of elements in both A and B.

$$A\cap B=\{x:x\in A\text{ and }x\in B\}.$$

$$\{1,2,3\} \cap \{3,5,6\} = \{3\}$$

Difference

If A and B are sets, the difference C of A and B, written C = A - B, is the set of elements in A but not in B.

$$A-B=\{x:x\in A\text{ and }x\not\in B\}.$$

$${1,2,3} - {3,5,6} = {1,2}$$

Example

 $A = \{0, 1\}$ and $B = \{1, 2\}$. What is $(A \times B) \cap (B \times B)$?

Example

Let $X = [1,3] \times [1,3]$ and $Y = [2,4] \times [2,4]$ in \mathbb{R}^2 . Sketch the sets

- ➤ X ∪ Y
- $\triangleright X \cap Y$
- ► *X* − *Y*
- Y − X