

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica

University of California, Berkeley

NSDI 2012

Contents

- 1) Motivation
- 2 Resilient Distributed Datasets (RDDs)
- 3 Spark programming
- 4 Evaluation
- 5 Conclusion

Motivation

MapReduce greatly simplifies "big data" analysis on large, unreliable clusters

Problems:

- Iterative algorithm & graph processing
- Interactive data mining

Cause:

Inefficient data sharing

Motivation

Motivation

GOAL DESIGN

- Efficient in-memory cluster computing (iterative algorithm & interactive data mining)
- Fault-tolerant
- General-purpose abstraction
- Explicitly persist intermediate results in memory
- Control partitioning to optimize data placement

Replication & Disk I/O

Resilient Distributed Datasets (RDDs)

An RDD is a read-only, partitioned collection of records, which provides a restricted form of shared memory.

Restricted conditions:

- Read-only, partitioned
- Built through coarse-grained transformations (e.g., map, filter and join)

Powerful properties:

- Generality of RDDs —Abstraction
- Running backup copies of tasks from the slow nodes
- Automatic schedule based on data locality
- Keeping intermediate data in memory
- Efficient fault recovery using lineage

Resilient Distributed Datasets (RDDs)

Fault recovery

Language-integrated API in Scala language

Runtime: a driver connects to a cluster of workers

Two type of operations:

- Transformations ——create RDDs
- Actions ——compute and output results

Control partitioning

Control persistence (storage in RAM, on disk, etc)

	$map(f:T\Rightarrow U)$:	:	$RDD[T] \Rightarrow RDD[U]$	
	$filter(f: T \Rightarrow Bool)$:	:	$RDD[T] \Rightarrow RDD[T]$	-
	$flatMap(f: T \Rightarrow Seq[U])$:	:	$RDD[T] \Rightarrow RDD[U]$	-
	<pre>sample(fraction : Float) :</pre>	:	$RDD[T] \Rightarrow RDD[T]$ (Deterministic sampling)	-
	groupByKey():	:	$RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$	-
	$reduceByKey(f:(V,V) \Rightarrow V)$:	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$	-
Transformations	union() :	:	$(RDD[T], RDD[T]) \Rightarrow RDD[T]$	١
	join() :	:	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$	١
	cogroup() :	:	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$	١
	crossProduct() :	:	$(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$	١
	$mapValues(f : V \Rightarrow W)$:	:	$RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)	-
	sort(c : Comparator[K]):	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$	
	partitionBy(p : Partitioner[K]):	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$	
	count() :	R	$RDD[T] \Rightarrow Long$	I
	collect() :	R	$RDD[T] \Rightarrow Seq[T]$	1
Actions	$reduce(f:(T,T)\Rightarrow T)$:	R	$RDD[T] \Rightarrow T$	
	lookup(k:K) :	R	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)	- 1
	save(path : String) :	C	Outputs RDD to a storage system, e.g., HDFS	

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Example 1: Log Mining

```
lines = spark.textFile("hdfs://...") •

errors = lines.filter(_.startsWith("ERROR")) •

messages = errors.map(_.split('\t')(2)) •

messages.persist() •

messages.count() •

messages.filter(_.contains("MySQL")).count() Action
```

Example 2: PageRank

```
val links = spark.textFile(...).map(...).persist() // RDD of (URL, neighbors) pairs
  var ranks = // RDD of (URL, rank) pairs
  for (i <- 1 to ITERATIONS) {
                                                                Links
                                                                                       Ranks
    // Build an RDD of (targetURL, float) pairs
                                                            (url, neighbors)
                                                                                      (url, rank)
    // with the contributions sent by each page
                                                                                            ioin
    val contribs = links.join(ranks).flatMap {
    (url, (links, rank)) =>
                                                                                     Contribs<sub>0</sub>
               links.map(dest => (dest, rank/links.size))
                                                                                            reduce
    // SumRR(tar)buti\frac{a}{N}ms(tay-UR). \sum_{i} \frac{PR(I_i)}{d \cdot get} new ranks
                                                                                       Ranks<sub>1</sub>
    ranks = contribs.reduceByKey((x,y) => x+y)
                                                                                            ioin
                    .mapValues(sum => a/N + (1-a)*sum)
                                                                                     Contribs<sub>1</sub>
                                                                                            reduce
Optimizing RDD placement
                                                                                       Ranks<sub>2</sub>
    hash-partition the links and ranks by URL
     custom Partitioner using partitionBy
```


e.g., links = spark.textFile(...).map(...) .partitionBy(myPartFunc).persist()

Implementation

Representing RDDs

Interface exposes five pieces of information:

- > a set of partitions
- > a set of dependencies on parent RDDs
- > a function for computing the dataset based on its parents
- > the metadata about its partitioning scheme
- > the data placement

Job Scheduling

Delay scheduling Schedule based on data locality

Memory Management

- in-memory storage as deserialized Java objects
- in-memory storage as serialized data
- on-disk storage
- Support for Checkpointing

limited memory available —— LRU

Persist——REPLICATE flag

Evaluation

Iterative Machine Learning Applications

Figure 7: Duration of the first and later iterations in Hadoop, HadoopBinMem and Spark for logistic regression and k-means using 100 GB of data on a 100-node cluster.

Figure 8: Running times for iterations after the first in Hadoop, HadoopBinMem, and Spark. The jobs all processed 100 GB.

- ✓ Hadoop: The Hadoop 0.20.2 stable release.
- ✓ HadoopBinMem: A Hadoop deployment that converts the input data into a low-overhead binary format in the first iteration and stores it in an in-memory HDFS instance.
- ✓ Spark: Our implementation of RDDs.

Evaluation

PageRank

Performance of PageRank on Hadoop and Spark

Fault Recovery

Iteration times for k-means in presence of a failure. One machine was killed at the start of the 6th iteration, resulting in partial reconstruction of an RDD using lineage

Evaluation

Behavior with Insufficient Memory

Performance of logistic regression using 100GB data on 25 machines with varying amounts of data in memory

Conclusion

- Resilient distributed datasets (RDDs) is an efficient, general-purpose and fault-tolerant abstraction for sharing data in cluster applications.
- RDDs offer an API based on coarse-grained transformations that lets them recover data efficiently using lineage.
- Implement RDDs in Spark that outperforms Hadoop by up to 20x in iterative applications.