PSR

Impact Analysis of the Inclusion of *FACTs* and *Smart Wires* in Transmission Expansion Planning

Ricardo Perez

Djalma Falcão

Gerson C. Oliveira

PSR/COPPE

COPPE/UFRJ

PSR

20 a 23 de Maio 2012 May – 20th to 23rd – 2012 RIO DE JANEIRO (RJ) -BRASIL

Introduction

- ► There are several reasons to explain why transmission system loading is less than 100%:
 - Reliability
 - Uncertainties associated with the demand growth forecast
 - Different dispatch scenarios (hydrothermal systems)

► The conjunction of these facts leads to high investments to meet different dispatch scenarios and low loading throughout the year

DFACTs - Smart Wires

- Distributed Series Reactance (DSR)
- Operating possibilities: fixed value / setpoints received by remote communication system
- ► The trigger control can be made gradually, so that not all the compensation reactance is added at once

DFACTs - Smart Wires

- With regard to investment costs, it is estimated that today a 10kVA module costs \$ 1000
- ➤ To compensate 10% of typical 345 and 765kV lines, 5 and 25 modules per kilometer are respectively needed

TRANSMISSION INVESTMENT: BAU VS SMART WIRES

DFACTs - Smart Wires

- ► Technological differential → modularity technology → economic scale gains
- ► This standardization is one of the great advantages over the traditional *FACTs* devices, since they are manufactured for specific applications, resulting in higher costs and lead times
- Smart wires' technology is still being developed and consequently the associated costs are not fully known
- ► The objective of this work is not the inclusion of still uncertain costs in the expansion planning problem, but getting a ceiling cost reference to ensure the economic viability of its application

Linearized Power Flow Equations

$$Min \sum_{k=1}^{K} c_k x_k$$

Subject to:

Binary *x* variables "couple" the OPF equations for all dispatch scenarios

$$S f^{n} = d^{n} - g^{n}$$

$$-M(1-x) \le f^{n} - \gamma x S' \theta^{n} \le M(1-x)$$

$$-\bar{f} x \le f^{n} \le \bar{f} x$$

Disjunctive formulation

Second Kirchhoff's law for candidate circuits:

$$f_k = \gamma_k \, \mathbf{x_k} \big(\mathbf{\theta_i} - \mathbf{\theta_j} \big)$$

- Non linearity due to product of bus angle and binary variable
- Disjunctive linear inequality replacing non linear equality:

$$-M(1-x_k) \le f_k - \gamma_k (\theta_i - \theta_i) \le M(1-x_k)$$

Extremely high values of *M* leads to ill conditioning of the problem.

A special algorithm is used in order to obtain optimal value of *M* for each circuit [2].

Hybrid Model

Changes in the problem formulation are needed to include the following constraint:

$$0 \le \gamma \le \overline{\gamma}$$

Multiplying the terms from the constraint shown above by $\Delta \theta$, $\gamma \Delta \theta$ can be replaced by a variable I (which denotes an injection) and the problem is reformulated as follows:

Hybrid Model

$$Min \sum_{k=1}^{K} c_k x_k$$

Subject to:

$$Sf^n + I^n = d^n - g^n$$

$$-\bar{\gamma} \, \Delta \theta^n \leq \underline{I}^n \leq \bar{\gamma} \, \Delta \theta^n$$

$$-\left|\overline{f}\right| x \le \underline{I^n} \le \left|\overline{f}\right| x$$

$$\underline{I_j^n} - f_k^n \le |\overline{f}| (1 - x_j)$$

$$\underline{I_j^n} - f_k^n \ge \left| \overline{f} \right| (1 - x_j)$$

Case Study – IEEE24-Bus System

► The system under analysis presents 30 existing circuits and 84 candidates: 56 duplications; 28 located in 14 new corridors.

Expansion Plans: Single Dispatch Scenario

Expansion Plans: Single Dispatch Scenario

252.0

285.0

229.0

196.0

Expansion Plans: Single Dispatch Scenarios

Scenario	Total Cost [10 ⁶ U\$]	Average Loading [%]
G1	860	69.37
G2	864	72.76
G3	814	70.36
G4	736	74.89

- ▶ Least cost expansion plan → G4
- ► G1 is 16.85% more expensive than G4
- ▶ G2 is 17.39% more expensive than G4
- ► G3 is 10.60% more expensive than G4

Expansion Plans: All Dispatch Scenarios

Expansion Plans: All Dispatch Scenarios

- ► The expansion plan total cost is \$ 1.2 billion dollars
- ▶ 25 added candidates (duplications: 20; new corridors: 5)
- ▶ 61% more expensive than the least cost expansion plan
- ► Average Loading equal to 63.23%.
- Network Usage Reduction:

Scenario in Comparison	Loading Reduction [%]	
G 1	9.71	
G2	15.07	
G 3	11.27	
G4	18.44	

Hybrid: All Dispatch Scenarios + Same Costs

- ▶ 18 added candidates (duplications: 10; new corridors: 8)
- Hybrid expansion plan is 22.36% more economical than the conventional expansion plan

Expansion Plans – Comparison

Candidate Cost Hybrid / Conventional [%]	N° of Hybrid Candidates	N° of Conventional Candidates	Expansion Plan Cost Hybrid / Conventional [%]	Loading Increase Hybrid / Conventional [%]
100	8	10	77.64	8.87
110	8	10	82.26	8.87
120	7	13	84.76	10.07
130	7	13	88.15	10.71
140	7	13	91.54	10.94
150	7	13	94.94	10.94
160	6	14	98.57	10.49
170	6	14	101.69	10.49

Expansion Plans – Comparison

Candidate Cost Hybrid / Conventional [%]	N° of Hybrid Candidates	N° of Conventional Candidates	Expansion Plan Cost Hybrid / Conventional [%]	Loading Increase Hybrid / Conventional [%]		
100	8	10	77.64	8.87		
110	8	10	82.26	8.87		
120	7	13	84.76	10.07		
130	7	13	88.15	10.71		
140	7	13	91.54	10.94		
150	7	13	94.94	10.94		
160	6	14	98.57	10.49		
170	6	14	101.69	10.49		
Break-even-point						

► Hybrid candidates can be up to 60% more expensive than conventional candidates that the expansion plan is still more economical.

Conclusions

► Two different transmission expansion planning methodologies were presented → considering or not candidates with variable reactance

- ► Case Study → Robust expansion plan attending all dispatch scenarios with conventional candidates:
 - More reinforcements are needed
 - Lower average loading
 - 61% more expensive than the least cost expansion plan for a single dispatch scenario

Conclusions

- Smart Wires are very important for transmission expansion planning by providing an operational flexibility to different dispatch scenarios
- Case Study → Hybrid candidates can be up to 60% more expensive than conventional candidates that the expansion plan is still more economical → Ceiling Cost Reference
- ► The relevance of this theme is even greater in hydrothermal systems such as Brazil → Future Work

PSR

THANKS! Questions?

Ricardo Perez

ricardo@psr-inc.com

