Homework 6: The fundamental order and non-forking extensions

Advanced Model Theory

Due April 7, 2022

Work in a monster model \mathbb{M} of a complete theory T. Don't assume stability.

- 1. Let $p \in S_1(M)$ be a non-constant type. Show that [p] is not a minimal element in the fundamental order. *Hint*: take an extension q of p over a bigger model N, such that q is constant, and show [q] < [p].
- 2. Let $p \in S_1(M)$ be a constant type and let $q \in S_1(N)$ be an extension of p. Show that [q] = [p].
- 3. Let $p \in S_1(M)$ be a constant type. Show that [p] is a minimal element in the fundamental order. *Hint:* if [q] < [p], embed p into an ultrapower of q.
- 4. Suppose the theory T is DLO. Let M, N be small models. Let a, b be elements of \mathbb{M} . Suppose $a \notin M$, and $\operatorname{tp}(a/M)$ is not the type at $+\infty$ or $-\infty$. Suppose $b \notin N$, and $\operatorname{tp}(b/N)$ is not the type at $+\infty$ or $-\infty$. Let $\varphi(x, \bar{c})$ be a formula in $\operatorname{tp}(a/M)$. Show there is $\bar{c}' \in N$ such that $\varphi(x, \bar{c}')$ is a formula in $\operatorname{tp}(b/N)$. Hint: let $S = \{c_1, \ldots, c_n\} \subseteq M$ where $\bar{c} = (c_1, \ldots, c_n)$. Find $S' \subseteq N$ and a partial elementary map $S \cup \{a\} \to S' \cup \{b\}$.

(Problem 4 shows that tp(a/M) and tp(b/N) have the same class in the fundamental order.)