Question	Scheme	Marks
8(a)	$(Grad_{AB}) = \frac{2-8}{12-(-6)}$ oe	M1
		dM1
	$y-2 = "\left(-\frac{1}{3}\right)"(x-12)$ oe	(A1 on
		ePen)
	$\Rightarrow x + 3y - 18 = 0$ or $-x - 3y + 18 = 0$ oe	A1 [3]
(b)	Length = $\sqrt{(12-6)^2 + (2-8)^2} = 6\sqrt{10}$ eg $\sqrt{360}$ oe	M1A1
(c)		[2] B1 B1
(c)	$\left(\left(\frac{2\times-6+1\times12}{1+2},\frac{2\times8+1\times2}{1+2}\right)\right)$	(M1A1 on
	(0,6) or $m=0, n=6$	ePen) [2]
(d)		[2]
Mark	Gradient of $CA = \frac{q-8}{p+6}$ or gradient of $CB = \frac{q-2}{p-12}$ oe	M1
parts (i) and (ii)	$\frac{q-8}{p+6} = -\frac{1}{q-2} = -\left(\frac{p-12}{q-2}\right) \Rightarrow q^2 - 10q + 16 = -p^2 + 6p + 72$	M1
together	$p+6$ $\frac{q-2}{p-12}$ $(q-2)$	
		B1ft
	Gradient of $XC = -\frac{1}{-\frac{1}{2}} \Rightarrow -\frac{1}{-\frac{1}{2}} = \frac{q-6}{p-0} (\Rightarrow q = 3p+6)$	
	3 3	ddM1A1
	$(3p+6)^2 -10(3p+6) +16 = -p^2 +6p +72 \Rightarrow 10p^2 -80 = 0$	GGIVIII
		M1A1
AT TI	$10p^2 - 80 = 0 \Rightarrow p = \sqrt{8}$ oe $q = 3 \times \sqrt{8} + 6 = 6 + 6\sqrt{2}$ oe	[7]
ALT1 Mark	(midpoint of $AB = $) $\left(\frac{-6+12}{2}, \frac{8+2}{2}\right)$ (= (3,5))	M1
parts (i)	"6√10"	
and (ii) together	(radius of C) = $\frac{6\sqrt{10}}{2}$ oe	M1
	or $\sqrt{(-6-3)^2 + (8-5)^2}$ oe $y = \frac{-1}{-\frac{1}{3}}x + 6$ $(y = 3x + 6)$ oe	
	$v = \frac{-1}{-1}x + 6$ ($v = 3x + 6$) oe	B1ft
	" $-\frac{1}{3}$ "	
	$\left(\frac{1}{10000000000000000000000000000000000$	ddM1
	$(x-"3")^2 + (y-"5")^2 = \left(\frac{"6\sqrt{10}"}{2}\right)^2 \Rightarrow (x-"3")^2 + ("3x+6"-"5")^2 = \left(\frac{"6\sqrt{10}"}{2}\right)^2$ $10x^2 = 80 \qquad \text{oe}$	uuivi i
	$10x^2 = 80$ oe	A1 M1
	$10x^{2} = 80 oe$ $x = \sqrt{8} oe$ $p = \sqrt{8}, q = 6 + 3\sqrt{8} oe$	A1
	$p = \sqrt{8}, q = 6 + 3\sqrt{8}$ oe	[7]

ALT2 Mark	$((AC)^2 = (p-6)^2 + (q-8)^2$ or $(AC = \sqrt{(p-6)^2 + (q-8)^2}$ oe	M1
parts (i) and (ii)	$(BC)^2 = (p-12)^2 + (q-2)^2$ or $(AC) = \sqrt{(p-12)^2 + (q-2)^2}$ oe	M1
together	q = 3p + 6	B1ft
	$\left(\left(AB \right)^2 = \left(AC \right)^2 + \left(BC \right)^2 \right)$	
	$\left((6\sqrt{10})^2 + (9-6)^2 + (9+6)^2 + (p-12)^2 + (9+6)^2 + (p-12)^2 + (9+6)^$	ddM1A1
	$10p^2 = 80$ oe	M1
	$p = \sqrt{8}$ oe	A1
	$p = \sqrt{8}, q = 6 + 3\sqrt{8}$ oe	[7]
(e)	Length $CX = \sqrt{("\sqrt{8}" - "0")^2 + ("6 + 6\sqrt{2}" - "6")^2} (= 4\sqrt{5})$	M1
	Area of triangle $ABC = \frac{1}{2} \times "4\sqrt{5}" \times "6\sqrt{10}" = 60\sqrt{2}$ oe	dM1 A1 [3]
ALT	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1
	$\frac{1}{2} \left[\left(-6 \times 2 + 12 \times "(6 + 3\sqrt{8})" + "\sqrt{8}" \times 8 \right) - \left(-6 \times "(6 + 3\sqrt{8})" + "\sqrt{8}" \times 2 + 12 \times 8 \right) \right] \text{ oe}$	dM1
	$60\sqrt{2}$ oe	A1 [3]
Total 17 I		

Part	Mark	Notes
(a)	M1	For correctly finding the gradient of AB in unsimplified form.
	dM1	For a full and correct attempt to find the equation of the line using their gradient.
	(A1 on	No simplification is required.
	ePen)	If using $y = mx + c$, a value for c must be found.
	A1	For a correct equation in the required form.
(b)	M1	For using a correct method to find the length of line segment AB, in unsimplified
, ,		form.
	A1	For the correct exact length.
(c)	B1 (M1	For either coordinate correct.
	on	
	ePen)	
	B1 (A1	For both correct coordinates (0, 6)
	on	For part c the values of m and n can be explicitly identified or written in a
	ePen)	coordinate.
In part	(d) allow	p to be interchangeable with x , q to be interchangeable with y throughout
(d)	M1	For a correct statement of the gradient for either CA or CB
	M1	For using the negative perpendicular of either gradient and equating the gradients
		to form an equation in terms of p and q only.
	B1ft	For finding the negative reciprocal of their gradient of XC and placing this equal
		to a correct expression in p and q as shown.
	ddM1	For correctly substituting their linear expression for p or q into a quadratic
		equation in q or p to obtain an equation in one variable.
		Must use their $q = 3p + 6$ and is dependent on both previous method marks.
	A1	For the correct two term quadratic
	M1	For correctly solving their quadratic to find a value for either p or q
	A1	For both p and q correct.
ALT1	M1	For the correct method to find the midpoint of AB
(d)	M1	For the correct method to find the radius of C, ft their answer from part b if used.
	B1ft	For the equation of the line, unsimplified, ft their gradient of AB
	ddM1	For correctly substituting their $y = 3x + 6$ into the equation of a circle, using their
		midpoint of AB and their radius of C
	A 1	Must use their $y = 3x + 6$ and is dependent on both previous method marks.
	A1 M1	Correct equation
	M1	For correctly solving their quadratic to find a value for either x or y
AT TO	A1	For both p and q correct.
ALT2	M1	For the correct method to find the length of AC or $(AC)^2$
(d)	M1 D1f4	For the correct method to find the length of BC or $(BC)^2$
	B1ft	For the equation of the line, unsimplified, ft their gradient of AB
	ddM1	For correctly substituting their lengths and their $q = 3p + 6$ into a correct
	A1	Pythagorean equation, dependent on both previous method marks.
	M1	Correct equation For correctly solving their quadratic to find a value for either n or g
		For correctly solving their quadratic to find a value for either <i>p</i> or <i>q</i>
	A1	For both p and q correct.

(e)	M1	For using a correct method to find the length of the perpendicular from AB to C
	dM1	For using their results from part (b) and their length of perpendicular from AB to
		C with the correct formula for the area of a triangle.
		Dependent on previous method mark.
	A1	For the correct area of $60\sqrt{2}$ or $30\sqrt{8}$ (units ²)
ALT	M1	For a correct statement for the area such as the one shown, using their values of p
		and q
	dM1	For the correct evaluation of their determinant
		Dependent on previous method mark.
	A1	For the correct area of $60\sqrt{2}$ or $30\sqrt{8}$ (units ²)

Useful Sketch for Parts c/d – look for any working on or near a sketch.

