Bibliography	413
Index	428

Bibliography

[ACGS88]	W. ALEXI, B. CHOR, O. GOLDREICH AND C. P. SCHNORR. RSA and Rabin functions: certain parts are as hard as the whole. <i>SIAM Journal on Computing</i> , 17 (1988), 194–209.
[AN91]	H. ANTON. <i>Elementary Linear Algebra</i> (Sixth Edition). John Wiley and Sons, 1991.
[BHS93]	D. BAYER, S. HABER AND W. S. STORNETTA. Improving the efficiency and reliability of digital time-stamping. In Sequences II, Methods in Communication, Security, and Computer Science, pages 329–334. Springer-Verlag, 1993.
[BB88]	P. BEAUCHEMIN AND G. BRASSARD. A generalization of Hellman's extension to Shannon's approach to cryptography. <i>Journal of Cryptology</i> , 1 (1988), 129–131.
[BBCGP88]	P. BEAUCHEMIN, G. BRASSARD, C. CRÉPEAU, C. GOUTIER AND C. POMERANCE. The generation of random numbers that are probably prime. <i>Journal of Cryptology</i> , 1 (1988), 53–64.
[BC94]	A. BEIMEL AND B. CHOR. Interaction in key distribution schemes. <i>Lecture Notes in Computer Science</i> , 773 (1994), 444–455. (Advances in Cryptology – CRYPTO '93.)
[BP82]	H. BEKER AND F. PIPER. Cipher Systems, The Protection of Communications. John Wiley and Sons, 1982.
[BL90]	J. BENALOH AND J. LEICHTER. Generalized secret sharing and monotone functions. <i>Lecture Notes in Computer Science</i> , 403 (1990), 27–35. (Advances in Cryptology – CRYPTO '88.)
[BE83]	T. Beth (Ed.) Cryptography Proceedings, 1982. Lecture Notes in Computer Science, vol. 149, Springer-Verlag, 1983.
[BCI85]	T. BETH, N. COT AND I. INGEMARSSON (EDS.) Advances in Cryptology: Proceedings of EUROCRYPT '84. Lecture Notes in Computer Science, vol. 209, Springer-Verlag, 1985.
[BJL85]	T. BETH, D. JUNGNICKEL, AND H. LENZ. Design Theory. Bibliographisches Institut, Zurich, 1985.

[BE94]	A. BEUTELSPACHER. <i>Cryptology</i> . Mathematical Association of America, 1994.
[BS91]	E. BIHAM AND A. SHAMIR. Differential cryptanalysis of DES-like cryptosystems. <i>Journal of Cryptology</i> , 4 (1991), 3–72.
[BS93]	E. BIHAM AND A. SHAMIR. Differential Cryptanalysis of the Data Encryption Standard. Springer-Verlag, 1993.
[BS93A]	E. BIHAM AND A. SHAMIR. Differential cryptanalysis of the full 16-round DES. <i>Lecture Notes in Computer Science</i> , 740 (1993), 494–502. (Advances in Cryptology – CRYPTO '92.)
[BL79]	G. R. BLAKLEY. Safeguarding cryptographic keys. <i>AFIPS Conference Proceedings</i> , 48 (1979), 313–317.
[BC85]	G. R. BLAKLEY AND D. CHAUM (EDS.) Advances in Cryptology: Proceedings of CRYPTO '84. Lecture Notes in Computer Science, vol. 196, Springer-Verlag, 1985.
[BL85]	R. BLOM An optimal class of symmetric key generation schemes. <i>Lecture Notes in Computer Science</i> , 209 (1985), 335–338. (Advances in Cryptology – EUROCRYPT '84.)
[BBS86]	L. BLUM, M. BLUM AND M. SHUB. A simple unpredictable random number generator. <i>SIAM Journal on Computing</i> , 15 (1986), 364–383.
[BL82]	M. BLUM. Coin flipping by telephone: a protocol for solving impossible problems In 24th IEEE Spring Computer Conference, pages 133–137. IEEE Press, 1982.
[BG85]	M. BLUM AND S. GOLDWASSER. An efficient probabilistic public-key cryptosystem that hides all partial information. Lecture Notes in Computer Science, 196 (1985), 289-302. (Advances in Cryptology - CRYPTO '84.)
[BM84]	M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. <i>SIAM Journal on Computing</i> , 13 (1984), 850–864.
[Bo89]	J. BOYAR. Inferring sequences produced by pseudo-random number generators. <i>Journal of Association for Computing Machinery</i> , 36 (1989), 129–141.
[BDSV93]	C. BLUNDO, A. DE SANTIS, D. R. STINSON, AND U. VACCARO. Graph decompositions and secret sharing schemes. <i>Lecture Notes in Computer Science</i> , 658 (1993), 1–24. (Advances in Cryptology – EUROCRYPT '92.)
[BDSHKVY93]	C. BLUNDO, A. DE SANTIS, A. HERZBERG, S. KUTTEN, U. VACCARO AND M. YUNG. Perfectly-secure key distribution for dynamic conferences. <i>Lecture Notes in Computer Science</i> , 740

[CW91]	T. W. CUSICK AND M. C. WOOD. The REDOC-II cryptosystem. Lecture Notes in Computer Science, 537 (1991), 545-563. (Advances in Cryptology – CRYPTO '90.)
[DA90]	I. B. DÅMGARD. A design principle for hash functions. <i>Lecture Notes in Computer Science</i> , 435 (1990), 416–427. (Advances in Cryptology – CRYPTO '89.)
[Da91]	I. B. DÅMGARD (ED.) Advances in Cryptology – EUROCRYPT '90 Proceedings. Lecture Notes in Computer Science, vol. 473, Springer-Verlag, 1991.
[DLP93]	I. DÅMGARD, P. LANDROCK AND C. POMERANCE. Average case error estimates for the strong probable prime test. <i>Mathematics of Computation</i> , 61 (1993), 177–194.
[DA91A]	D. W. DAVIES (ED.) Advances in Cryptology – EUROCRYPT '91 Proceedings. Lecture Notes in Computer Science, vol. 547, Springer-Verlag, 1991.
[DE84]	J. M. DELAURENTIS. A further weakness in the common modulus protocol for the RSA cryptosystem. <i>Cryptologia</i> , 8 (1984), 253–259.
[DBB92]	B. DEN BOER AND A. BOSSALAERS. An attack on the last two rounds of MD4. Lecture Notes in Computer Science, 576 (1992), 194–203. (Advances in Cryptology – CRYPTO '91.)
[DE82]	D. E. R. DENNING. <i>Cryptography and Data Security</i> . Addison-Wesley, 1982.
[De94]	Y. G. DESMEDT (ED.) Advances in Cryptology – CRYPTO '94 Proceedings. Lecture Notes in Computer Science, vol. 839, Springer-Verlag, 1994.
[bWQ93]	D. DE WALEFFE AND JJ. QUISQUATER. Better login protocols for computer networks. <i>Lecture Notes in Computer Science</i> , 741 (1993), 50–70. (Computer Security and Industrial Cryptography, State of the Art and Evolution, ESAT Course, May 1991.)
[D192]	W. DIFFIE. The first ten years of public-key cryptography. In Contemporary Cryptology, The Science of Information Integrity, pages 135–175. IEEE Press, 1992.
[DH76]	W. DIFFIE AND M. E. HELLMAN. Multiuser cryptographic techniques. AFIPS Conference Proceedings, 45 (1976), 109–112.
[DH76A]	W. DIFFIE AND M. E. HELLMAN. New directions in cryptography. <i>IEEE Transactions on Information Theory</i> , 22 (1976), 644–654.
[DVW92]	W. DIFFIE, P. C. VAN OORSCHOT AND M. J. WIENER. Authen-

Cambridge University Press, 1991. [GMW91] O. GOLDREICH, A. MICALI AND A. WIGDERSON. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38 (1991), 691-729. [Go90] S. GOLDWASSER (ED.) Advances in Cryptology - CRYPTO '88 Proceedings. Lecture Notes in Computer Science, vol. 403, Springer-Verlag, 1990. [GM84] S. GOLDWASSER AND A. MICALI. Probabilistic encryption. Journal of Computer and Systems Science, 28 (1984), 270-299. [GMR89] S. GOLDWASSER, S. MICALI AND C. RACKOFF. The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 18 (1989), 186-208. [GMT82] S. GOLDWASSER, S. MICALI AND P. TONG. Why and how to establish a common code on a public network. In 23rd Annual Symposium on the Foundations of Computer Science, pages 134-144. IEEE Press, 1982. D. M. GORDON AND K. S. MCCURLEY. Massively parallel [GM93] computation of discrete logarithms. Lecture Notes in Computer Science, 740 (1993), 312–323. (Advances in Cryptology - CRYPTO '92.) [GQ88] L. C. GUILLOU AND J.-J. QUISQUATER. A practical zeroknowledge protocol fitted to security microprocessor minimizing both transmission and memory. Lecture Notes in Computer Science, 330 (1988), 123-128. (Advances in Cryptology - EUROCRYPT '88.) [GU88] C. G. GUNTHER Alternating step generators controlled by de Bruijn sequences. Lecture Notes in Computer Science, 304 (1988), 88-92. (Advances in Cryptology - EUROCRYPT '87.)

[GU88A] C. G. GUNTHER (ED.) Advances in Cryptology – EUROCRYPT '88 Proceedings. Lecture Notes in Computer Science, vol. 330, Springer-Verlag, 1988.

[HS91] S. HABER AND W. S. STORNETTA. How to timestamp a digital document. *Journal of Cryptology*, **3** (1991), 99–111.

[HSS93] J. HÅSTAD, A. W. SCHRIFT AND A. SHAMIR. The discrete logarithm modulo a composite hides O(n) bits. Journal of Computer and Systems Science, 47 (1993), 376–404.

[HE80] M. E. HELLMAN. A cryptanalytic time-memory trade-off. *IEEE Transactions on Information Theory*, **26** (1980), 401–

406.

[Hi29] L. S. Hill. Cryptogaphy in an algebraic alphabet. *American Mathematical Monthly*, **36** (1929), 306–312.

[HE94] T. HELLESETH (ED.) Advances in Cryptology – EUROCRYPT '93 Proceedings. Lecture Notes in Computer Science, vol. 765, Springer-Verlag, 1994.

[HLLPRW91] D. G. HOFFMAN, D. A. LEONARD, C. C. LINDNER, K. T. PHELPS, C. A. RODGER AND J. R. WALL. *Coding Theory, The Essentials*. Marcel Dekker, 1991.

[IRM93] H. IMAI, R. L. RIVEST AND T. MATSUMOTO (EDS.) Advances in Cryptology – ASIACRYPT '91 Proceedings. Lecture Notes in Computer Science, vol. 739, Springer-Verlag, 1993.

[ISN87] M. ITO, A. SAITO, AND T. NISHIZEKI. Secret sharing scheme realizing general access structure. *Proceedings IEEE Globecom* '87, pages 99–102, 1987.

[JO88] D. S. JOHNSON. The NP-completeness column: an ongoing guide. *Journal of Algorithms*, **9** (1988), 426–444.

[KA67] D. KAHN. The Codebreakers. The Story of Secret Writing. Macmillan, 1967.

[KO87] N. KOBLITZ. A Course in Number Theory and Cryptography. Springer-Verlag, 1987.

[KO87A] N. KOBLITZ. Elliptic curve cryptosystems. *Mathematics of Computation*, **48** (1987), 203–209.

[K087A] N. KOBLITZ. Elliptic curve cryptosystems. *Mathematics of Computation*, **48** (1987), 203–209.

[KN93] J. KOHL AND C. NEUMAN. *The Kerboros Network Authentication Service*. Network Working Group Request for Comments: 1510, September 1993.

[KO81] A. G. KONHEIM. Cryptography, A Primer. John Wiley and Sons, 1981.

[KR86] E. KRANAKIS. *Primality and Cryptography*. John Wiley and Sons, 1986.

[LA90] J. C. LAGARIAS Pseudo-random number generators in cryptography and number theory. In *Cryptology and Computational Number Theory*, pages 115–143. American Mathematical Society, 1990.

[LO91] B. A. LAMACCHIA AND A. M. ODLYZKO. Computation of discrete logarithms in finite fields. *Designs, Codes and Cryptography*, 1 (1991), 47-62.

[LL93] A. K. LENSTRA AND H. W. LENSTRA, JR. (EDS.) The Develop-

tology - CRYPTO '90 Proceedings, Lecture Notes in Computer Science, vol. 537, Springer-Verlag, 1991. [MV931 A. J. MENEZES AND S. A. VANSTONE. Elliptic curve cryptosystems and their implementation. Journal of Cryptology, 6 (1993), 209-224. [ME78] R. C. MERKLE. Secure communications over insecure channels. Communications of the ACM, 21 (1978), 294-299. [ME90] R. C. MERKLE. One way hash functions and DES. Lecture Notes in Computer Science, 435 (1990), 428-446. (Advances in Cryptology – CRYPTO '89.) [ME90A] R. C. MERKLE. A fast software one-way hash function. Journal of Cryptology, 3 (1990), 43-58. [MH78] R. C. MERKLE AND M. E. HELLMAN. Hiding information and signatures in trapdoor knapsacks. IEEE Transactions on Information Theory, 24 (1978), 525-530. [MM82] C. MEYER AND S. MATYAS. Cryptography: A New Dimension in Computer Security. John Wiley and Sons, 1982. [M₁76] G. L. MILLER. Riemann's hypothesis and tests for primality. Journal of Computer and Systems Science, 13 (1976), 300-317. [Mi86] V. MILLER. Uses of elliptic curves in cryptography. Lecture Notes in Computer Science, 218 (1986), 417–426. (Advances in Cryptology – CRYPTO '85.) [MPW92] C. J. MITCHELL, F. PIPER AND P. WILD. Digital signatures. In Contemporary Cryptology, The Science of Information Integrity, pages 325-378. IEEE Press, 1992. [Mi91] S. MIYAGUCHI. The FEAL cipher family. Lecture Notes in Computer Science, 537 (1991), 627-638. (Advances in Cryptology – CRYPTO '90.) [MOI90] S. MIYAGUCHI, K. OHTA AND M. IWATA. 128-bit hash function (N-hash). Proceedings of SECURICOM 1990, 127–137. [Mo92] J. H. MOORE. Protocol failures in cryptosystems. In Contemporary Cryptology, The Science of Information Integrity, pages 541-558. IEEE Press, 1992. [NBS77] Data Encryption Standard (DES). National Bureau of Standards FIPS Publication 46, 1977. [NBS80] DES modes of operation. National Bureau of Standards FIPS

Publication 81, 1980.

Guidelines for implementing and using the NBS data encryption standard. National Bureau of Standards FIPS Publication

[NBS81]

	74, 1981.
[NBS85]	Computer data authentication. National Bureau of Standards FIPS Publication 113, 1985.
[NBS93]	Secure hash standard. National Bureau of Standards FIPS Publication 180, 1993.
[NBS94]	Digital signature standard. National Bureau of Standards FIPS Publication 186, 1994.
[OD87]	A. M. ODLYZKO (ED.) Advances in Cryptology – CRYPTO '86 Proceedings. Lecture Notes in Computer Science, vol. 263, Springer-Verlag, 1987.
[Ок93]	T. OKAMOTO. Provably secure and practical identification schemes and corresponding signature schemes. <i>Lecture Notes in Computer Science</i> , 740 (1993), 31–53. (Advances in Cryptology – CRYPTO '92.)
[OSS85]	H. ONG, C. P. SCHNORR AND A. SHAMIR. Efficient signature schemes based on polynomial equations. <i>Lecture Notes in Computer Science</i> , 196 (1985), 37–46. (Advances in Cryptology – CRYPTO '84.)
[PA87]	W. PATTERSON. Mathematical Cryptology for Computer Scientists and Mathematicians. Rowman and Littlefield, 1987.
[PE86]	R. PERALTA. Simultaneous security of bits in the discrete log. Lecture Notes in Computer Science, 219 (1986), 62–72. (Advances in Cryptology – EUROCRYPT '85.)
[Pi86]	F. PICHLER (ED.) Advances in Cryptology – EUROCRYPT '85 Proceedings. Lecture Notes in Computer Science, vol. 219, Springer-Verlag, 1986.
[PB45]	R. L. PLACKETT AND J. P. BURMAN. The design of optimum multi-factorial experiments. <i>Biometrika</i> , 33 (1945), 305–325.
[PH78]	S. C. POHLIG AND M. E. HELLMAN. An improved algorithm for computing logarithms over $GF(p)$ and its cryptographic significance. <i>IEEE Transactions on Information Theory</i> , 24 (1978), 106–110.
[Po88]	C. POMERANCE (ED.) Advances in Cryptology – CRYPTO '87 Proceedings. Lecture Notes in Computer Science, vol. 293, Springer-Verlag, 1988.
[Po90]	C. POMERANCE. Factoring. In <i>Cryptology and Computational Number Theory</i> , pages 27–47. American Mathematical Society, 1990.
[Po90A]	C. POMERANCE (ED.) Cryptology and Computational Number

Theory, American Mathematical Society, 1990.

B. PRENEEL, R. GOVAERTS AND J. VANDEWALLE. Information

[PGV93]

authentication: hash functions and digital signatures. Lecture Notes in Computer Science, 741 (1993), 87-131. (Computer Security and Industrial Cryptography. State of the Art and Evolution, ESAT Course, May 1991.) [PGV94] B. PRENEEL, R. GOVAERTS AND J. VANDEWALLE, Hash functions based on block ciphers: a synthetic approach. Lecture Notes in Computer Science, 773 (1994), 368–378. (Advances in Cryptology - CRYPTO '93.) [QG90] J.-J. OUISQUATER AND L. GUILLOU. How to explain zeroknowledge protocols to your children. Lecture Notes in Computer Science, 435 (1990), 628-631. (Advances in Cryptology - CRYPTO '89.) [OV90] J.-J. QUISQUATER AND J. VANDEWALLE (EDS.) Advances in Cryptology - EUROCRYPT '89 Proceedings, Lecture Notes in Computer Science, vol. 434, Springer-Verlag, 1990. [RA79] M. O. RABIN. Digitized signatures and public-key functions as intractible as factorization. MIT Laboratory for Computer Science Technical Report, LCS/TR-212, 1979. [RA80] M. O. RABIN. Probabilistic algorithms for testing primality. Journal of Number Theory, 12 (1980), 128-138. [Ri91] R. L. RIVEST. The MD4 message digest algorithm. Lecture Notes in Computer Science, 537 (1991), 303-311. (Advances in Cryptology - CRYPTO '90.) [RSA78] R. L. RIVEST, A. SHAMIR, AND L. ADLEMAN. A method for obtaining digital signatures and public key cryptosystems. Commununications of the ACM, 21 (1978), 120-126. [Ro93] K. H. ROSEN. Elementary Number Theory and its Applications (Third Edition). Addison Wesley, 1993. [Ru86] R. A. RUEPPEL. Analysis and Design of Stream Ciphers. Springer-Verlag, 1986. [Ru93] R. A. RUEPPEL (ED.) Advances in Cryptology – EUROCRYPT '92 Proceedings. Lecture Notes in Computer Science, vol. 658, Springer-Verlag, 1993. [RV94] R. A. RUEPPEL AND P. C. VAN OORSCHOT Modern key agreement techniques. To appear in Computer Communications, 1994. [SA90] A. SALOMAA. Public-Key Cryptography. Springer-Verlag, 1990. [SC94] J. I. SCHILLER. Secure distributed computing. Scientific Amer-

	ican, 271 (5) (1994), 72–76.
[Sc93]	B. SCHNEIER. Applied Cryptography, Protocols, Algorithms and Source Code in C. John Wiley and Sons, 1993.
[Sc91]	C. P. SCHNORR. Efficient signature generation by smart cards. Journal of Cryptology, 4 (1991), 161–174.
[SP89]	J. SEBERRY AND J. PIEPRZYK Cryptography: An Introduction to Computer Security. Prentice-Hall, 1989.
[SP90]	J. SEBERRY AND J. PIEPRZYK (EDS.) Advances in Cryptology – AUSCRYPT '90 Proceedings. Lecture Notes in Computer Science, vol. 453, Springer-Verlag, 1990.
[SZ92]	J. SEBERRY AND Y. ZHENG (EDS.) Advances in Cryptology – AUSCRYPT '92 Proceedings. Lecture Notes in Computer Science, vol. 718, Springer-Verlag, 1993.
[Ѕн79]	A. SHAMIR. How to share a secret. Communications of the ACM, 22 (1979), 612–613.
[SH84]	A. SHAMIR. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem. <i>IEEE Transactions on Information Theory</i> , 30 (1984), 699–704.
[SH90]	A. SHAMIR. An efficient identification scheme based on permuted kernels. <i>Lecture Notes in Computer Science</i> , 435 (1990), 606–609. (Advances in Cryptology – CRYPTO '89.)
[SH94]	A. SHAMIR. Efficient signature schemes based on birational permutations. <i>Lecture Notes in Computer Science</i> , 773 (1994), 1–12. (Advances in Cryptology – CRYPTO '93.)
[SH48]	C. E. SHANNON. A mathematical theory of communication. <i>Bell Systems Technical Journal</i> , 27 (1948), 379–423, 623–656.
[SH49]	C. E. SHANNON. Communication theory of secrecy systems. Bell Systems Technical Journal, 28 (1949), 656–715.
[ST92]	J. H. SILVERMAN AND J. TATE. Rational Points on Elliptic Curves. Springer-Verlag, 1992.
[Si85]	G. J. SIMMONS. Authentication theory / coding theory. Lecture Notes in Computer Science, 196 (1985), 411–432. (Advances in Cryptology – CRYPTO '84.)
[S188]	G. J. SIMMONS. A natural taxonomy for digital information authentication schemes. <i>Lecture Notes in Computer Science</i> , 293 (1988), 269–288. (Advances in Cryptology – CRYPTO '87.)
[S192]	G. J. SIMMONS. A survey of information authentication. In

Contemporary Cryptology, The Science of Information In-

tegrity, pages 379-419. IEEE Press, 1992. [S192A] G. J. SIMMONS. An introduction to shared secret and/or shared control schemes and their application. In Contemporary Cryptology, The Science of Information Integrity, pages 441-497. IEEE Press, 1992. [S192B] G. J. SIMMONS (ED.) Contemporary Cryptology, The Science of Information Integrity. IEEE Press, 1992. [SB92] M. E. SMID AND D. K. BRANSTAD. The data encryption standard: past and future. In Contemporary Cryptology, The Science of Information Integrity, pages 43-64. IEEE Press, 1992. [SB93] M. E. SMID AND D. K. BRANSTAD. Response to comments on the NIST proposed digital signature standard. Lecture Notes in Computer Science, 740 (1993), 76-88. (Advances in Cryptology - CRYPTO '92.) [SS77] R. SOLOVAY AND V. STRASSEN. A fast Monte Carlo test for primality. SIAM Journal on Computing, 6 (1977), 84–85. [ST88] D. R. STINSON. Some constructions and bounds for authentication codes. Journal of Cryptology, 1 (1988), 37–51. [ST90] D. R. STINSON. The combinatorics of authentication and secrecy codes. Journal of Cryptology, 2 (1990), 23–49. [ST92] D. R. STINSON. Combinatorial characterizations of authentication codes. Designs, Codes and Cryptography, 2 (1992), 175–187. [ST92A] D. R. STINSON. An explication of secret sharing schemes. Designs, Codes and Cryptography, 2 (1992), 357-390. [ST94] D. R. STINSON (ED.) Advances in Cryptology – CRYPTO '93 Proceedings. Lecture Notes in Computer Science, vol. 773, Springer-Verlag, 1994. [vHP93] E. VAN HEYST AND T. P. PEDERSEN. How to make efficient fail-stop signatures. Lecture Notes in Computer Science, 658 (1993), 366-377. (Advances in Cryptology - EUROCRYPT '92.) S. A. VANSTONE AND P. C. VAN OORSCHOT. An Introduction to [VV89] Error Correcting Codes with Applications. Kluwer Academic Publishers, 1989. [vT88] H. C. A. VAN TILBORG. An Introduction to Cryptology. Kluwer Academic Publishers, 1988. [vT93] J. VAN TILBURG. Secret-key exchange with authentication. Lecture Notes in Computer Science, 741 (1993), 71-86. (Com-

puter Security and Industrial Cryptography, State of the Art

and Evolution, ESAT Course, May 1991.) [VV84] U. VAZIRANI AND V. VAZIRANI. Efficient and secure pseudorandom number generation. In Proceedings of the 25th Annual Symposium on the Foundations of Computer Science, pages 458-463. IEEE Press, 1984. [WA90] M. WALKER. Information-theoretic bounds for authentication systems. Journal of Cryptology, 2 (1990), 131–143. D. WELSH. Codes and Cryptography. Oxford Science Publi-[WE88] cations, 1988. [Wi94] M. J. WIENER. Efficient DES key search. Technical report TR-244, School of Computer Science, Carleton University, Ottawa, Canada, May 1994 (also presented at CRYPTO '93 Rump Session). [W180] H. C. WILLIAMS. A modification of the RSA public-key encryption procedure. IEEE Transactions on Information Theory, 26 (1980), 726-729. [Wi86] H. C. WILLIAMS (ED.) Advances in Cryptology - CRYPTO '85 Proceedings. Lecture Notes in Computer Science, vol. 218, Springer-Verlag, 1986. [YA82] A. YAO. Theory and applications of trapdoor functions. In Proceedings of the 23rd Annual Symposium on the Foundations of Computer Science, pages 80-91. IEEE Press, 1982.

Index

abelian group, 4, 116, 184 accept, 387 access structure, 333 threshold, 333, 334 active adversary, 259 additive identity, 3 additive inverse, 3 adjoint matrix, 17 adversary active, 259 passive, 259 Affine Cipher, 8, 8–12 cryptanalysis of, 26–28 affine function, 8	authentication matrix, 307 authentication rule, 306 authentication tag, 306 authorized subset, 333 minimal, 333 Autokey Cipher, 23, 24 basis, 334 Bayes' Theorem, 45, 60, 135, 341, 342 binding, 401 binomial coefficient, 32 birthday paradox, 237 bit commitment scheme, 401, 400–
Affine-Hill Cipher, 41	403, 407–409 blob, 401
algorithm deterministic, 129 Las Vegas, 139, 171, 235 Monte Carlo, 129, 129 probabilistic, 129 associative property, 3 of cryptosystems, 66 authentication code, 305, 305–324	block cipher, 20 Blom Key Predistribution Scheme, 262, 261–264 Blum-Blum-Shub Generator, 374, 372– 379, 381 Blum-Goldwasser Cryptosystem, 382, 381–384 boolean circuit, 334
combinatorial bounds, 312–315 deception probability, 306 , 307– 315, 320–324 entropy bounds, 322–324 impersonation attack, 306 , 307– 309 orthogonal array characterization, 320–322 substitution attack, 306 , 308– 310	fan-in, 334 fan-out, 334 monotone, 334 boolean formula, 335 conjunctive normal form, 338 disjunctive normal form, 335 Bos-Chaum Signature Scheme, 217, 216–218 Brickell Secret Sharing Scheme, 346, 345–350
310	343-330

Caesar Cipher, 4	strictly, 56
certificate, 265	concealing, 401
challenge, 387	conditional entropy, 59
challenge-and-response protocol, 218,	conditional probability, 45
284, 387	congruence, 3
Chaum-van Antwerpen Signature Scheme, 219 , 219–225	conjunctive normal form boolean formula, 338
Chaum-van Heijst-Pfitzmann hash func-	cryptanalysis, 6
tion, 239 , 239–242	chosen ciphertext, 25
Chinese remainder theorem, 122, 119-	chosen plaintext, 25
122, 142, 166, 382	ciphertext-only, 25
Chor-Rivest Cryptosystem, 115	known-plaintext, 25
chosen ciphertext cryptanalysis, 25	cryptogram, 7
chosen plaintext cryptanalysis, 25	cryptosystem, 1
cipher	endomorphic, 64
block, 20	idempotent, 66
stream, 21, 20-24, 362	iterated, 66
cipher block chaining mode, 83, 84,	monoalphabetic, 12
268	polyalphabetic, 14
cipher feedback mode, 83, 85	private-key, 114
ciphertext, 1, 21, 380	probabilistic public-key, 380
ciphertext-only cryptanalysis, 25	product, 64 , 64–67
closure, 334	public-key, 114
closure property, 3	cyclic group, 123, 184
code, 194	eyene group, 120, 10.
distance of, 195	Data Encryption Standard, 51, 70
dual code, 195	description of, 70–79
generating matrix, 194	differential cryptanalysis of, 89,
Goppa code, 196	89–104
Hamming code, 197	dual keys, 110
nearest neighbor decoding, 195	exhaustive key search, 83
parity-check matrix, 195	expansion function, 71, 73
syndrome, 195	initial permutation, 70, 73
syndrome decoding, 196	key schedule, 71 , 75–79
coin-flipping by telephone, 402	modes of operation, 83, 83–86
commutative cryptosystems, 66	S-boxes, 72 , 73–75, 82
commutative property, 3	time-memory tradeoff, 86 , 86-
complete graph, 347	89
complete multipartite graph, 347, 354,	dealer, 327
355	deception probability, 306
completeness, 287, 388	decision problem, 129, 191
Composites, 129, 130	decomposition construction, 356, 357,
computational security, 44	355–359
concave function, 56	decryption rule, 1, 21, 380
,	

determinant, 16	ElGamal Cryptosystem, 115, 163,
deterministic algorithm, 129	162–164, 267–268
differential cryptanalysis, 89	elliptic curve, 188–190
characteristic, 98	generalized, 177–178, 179
filtering operation, 101	ElGamal Signature Scheme, 206, 206–
input x-or, 89	210
output x-or, 89	elliptic curve, 184 , 184–187
right pair, 100	point at infinity, 184
wrong pair, 100	Elliptic Curve Cryptosystem, 115,
Diffie-Hellman Key Exchange, 271,	188–190
271–272	encryption matrix, 47
Diffie-Hellman Key Predistribution	encryption rule, 1, 21, 380
Scheme, 266 , 264–268	endomorphic cryptosystem, 64
Diffie-Hellman problem, 267, 266–	entropy, 52 , 51–52
268, 277	conditional, 59
Digital Signature Standard, 206, 212,	of a natural language, 61
210–214	of a secret sharing scheme, 350-
digram, 26	354
disavowal protocol, 219	of authentication code, 322-324
Discrete Logarithm Generator, 385	properties of, 56-59, 351
Discrete Logarithm problem, 162,	Euclidean algorithm, 116–120, 140,
163 , 164–177, 207, 208,	178, 181
211, 239, 264, 267, 277,	extended, 117, 119
288, 291, 364, 399, 402,	running time of, 128
408	Euler phi-function, 9
bit security of, 173-177, 402	Euler pseudo-prime, 132
elliptic curve, 187–188	Euler's criterion, 130, 131, 173
generalized, 178 , 177–180	exclusive-or, 22
in Galois fields, 183–184	exhaustive key search, 6, 13
index calculus method, 171-172	of DES, 83
ith Bit problem, 173	
Pohlig-Hellman algorithm, 169,	factor base, 171
166–170	factoring, 150–156
Shanks' algorithm, 165, 165-	factor base, 153
166	number field sieve, 155
disjunctive normal form boolean for-	p-1 algorithm, 151, 151–153
mula, 335	quadratic sieve, 154
distinguishable probability distribu-	trial division, 151
tions, 366	fan-in, 334
distinguisher, 366	fan-out, 334
distribution rule, 339	Fermat's theorem, 122 , 137
distributive property, 4	Fibonacci number, 128
	field, 10 , 181
electronic codebook mode, 83, 84	forging algorithm, 392

for Graph 3-colorability, 407 for Graph Isomorphism, 393 , 396	Hill Cipher, 14–17, 18 cryptanalysis of, 37 Huffman encoding, 53–56 Huffman's algorithm, 55
Galois field, 180–184 Girault Key Agreement Scheme, 279, 277–280	ideal decomposition, 355 ideal secret sharing scheme, 345, 345,
Goldwasser-Micali Cryptosystem, 381, 381, 401 graph, 347 complete, 347 complete multipartite, 347, 354, 355 induced subgraph, 354 isomorphic, 388 proper 3-coloring, 403 Graph 3-colorability, 403 Graph 3-colorability Interactive Proof System, 404, 402–407, 409 Graph Isomorphism, 388	347–350 idempotent cryptosystem, 66 identification scheme, 283–302 converted to signature scheme, 302 identity-based, 300, 300–302 identity matrix, 15 impersonation, 306 implicit key authentication, 277, 279 independent random variables, 45 index of coincidence, 32 mutual, 33 indistinguishable probability distri-
Graph Isomorphism, 388 Graph Isomorphism Interactive Proof System, 391, 390–397 Graph Non-isomorphism, 388 Graph Non-isomorphism Interactive Proof System, 389, 388–390, 397–398 group, 4 abelian, 4, 116, 184 cyclic, 123, 183, 184, 187 order of element in, 122 Guillou-Quisquater Identification Scheme, 298, 296–300 identity-based, 301	butions, 365–372, 380, 406 induced subgraph, 354 information rate, 343 monotone circuit construction, 344 injective function, 2 interactive argument perfect zero-knowledge, 409 zero-knowledge, 408, 407–409 interactive proof, 387, 387–399 computational zero-knowledge, 400, 406, 402–407 perfect zero-knowledge, 395, 390–399
Hamming distance, 194 hash function, 204, 233, 233–255 birthday attack, 237–238 collision-free, 234–236 constructed from a cryptosystem, 247–248 extending, 242–247 one-way, 235 strongly collision-free, 234 weakly collision-free, 234	perfect zero-knowledge for Vic, 393 zero-knowledge, 387 intruder-in-the-middle attack, 272, 306 inverse matrix, 15 inverse permutation, 7 isomorphic graphs, 388 iterated cryptosystem, 66 Jacobi symbol, 132, 132–134, 372, 383

Jensen's Inequality, 56, 63, 318	MD4 Hash Function, 250, 248-251
joint probability, 45	MD5 Hash Function, 248, 251
	memoryless source, 53
Kasiski test, 31	Menezes-Vanstone Cryptosystem, 189,
Kerboros, 269, 268-271	189–190
key lifetime, 269	Merkle-Hellman Cryptosystem, 115,
session key, 268	193 , 191–194
timestamp, 269	message, 204, 306
Kerckhoff's principle, 25	message authentication code, 86, 305
key, 1, 21, 204, 306, 327, 380	message digest, 233
key agreement, 259	Miller-Rabin algorithm, 129, 130,
authenticated, 272	137 , 136–138
key confirmation, 270	error probability of, 138
key distribution, 259	mod operator, 3
on-line, 260	modular exponentiation, 127
key equivocation, 59	square-and-multiply algorithm,
key freshness, 268	127, 127 , 131
key predistribution, 260, 261-268	modular multiplication, 127
key server, 260	modular reduction, 3
keystream, 20	modulus, 3
keystream alphabet, 21	monoalphabetic cryptosystem, 12
keystream generator, 21	monotone circuit, 334
keyword, 13	monotone circuit construction, 334,
known-plaintext cryptanalysis, 25	336
	information rate, 344
Lagrange interpolation formula, 331,	monotone property, 333
330–331	Monte Carlo algorithm, 129, 129,
Lagrange's theorem, 122	376
Lamport Signature Scheme, 215, 214–	error probability of, 129
216	no-biased, 129
Lamé's theorem, 128	unbiased, 376 , 376–379
Las Vegas algorithm, 139 , 171, 235	yes-biased, 129
Legendre symbol, 131, 131–132	MTI Key Agreement Protocol, 275,
Linear Congruential Generator, 362,	274–277
362	Multiplicative Cipher, 65, 65
linear feedback shift register, 23, 362,	multiplicative identity, 4
364	multiplicative inverse, 10
linear recurrence, 22	mutual index of coincidence, 33
linear transformation, 14	next bit predictor, 367-372
	NP-complete problem, 44, 191, 194,
m-gram Substitution Cipher, 68	402, 407
matrix product, 14	·
McEliece Cryptosystem, 115, 197,	Okamoto Identification Scheme, 293,
194–199	291–296

One-time Pad, 50, 50	proper 3-coloring, 403
one-way function, 116 , 214, 235	protocol failure, 156, 158 , 209
trapdoor, 116 oracle, 139	prover, 387
orthogonal array, 315, 315–322	pseudo-random bit generator, 361, 361–379
bounds, 316–319	
constructions, 319–320	pseudo-square, 372 public-key cryptosystem, 114
output feedback mode, 84, 85, 364	probabilistic, 380
output feedback mode, 64, 83, 304	probabilistic, 360
passive adversary, 259	quadratic non-residue, 130
perfect secrecy, 48, 44-51	Quadratic Non-residues Interactive
perfect secret sharing scheme, 333,	Proof System, 410
341, 351	quadratic reciprocity, 133
periodic stream cipher, 21	quadratic residue, 130
permutation, 2	Quadratic Residues, 130, 130, 373,
Permutation Cipher, 18, 18, 18–20	372–373, 376, 377, 379,
permutation matrix, 20	398, 401, 408
plaintext, 1, 21, 380	Quadratic Residues Interactive Proof
polyalphabetic cryptosystem, 14	System, 398 , 398–399
polynomial	
congruence of, 181	Rabin Cryptosystem, 146 , 145–150
degree of, 180	security of, 149–150
division, 180	rank, 227
irreducible, 181	redundancy of a natural language, 61
modular reduction of, 181	reject, 387
polynomial equivalence, 126	relative shift, 34
prefix-free encoding, 54	relatively prime, 9
previous bit predictor, 375	replay attack, 270
primality testing, 129–138	response, 387
prime, 9	ring, 4, 180
Prime number theorem, 129, 135	round, 387
primitive element, 123	RSA Cryptosystem, 114, 124 , 124–
principal square root, 375, 381	125
private-key cryptosystem, 114	attacks on, 138–145
probabilistic algorithm, 129	bit security of, 144–145
probabilistic encryption, 380–384	implementation of, 125-128
probabilistic public-key cryptosystem,	RSA Generator, 364 , 364–365
380 probability, 45	RSA Signature Scheme, 204, 205
conditional, 45	Schnorr Identification Scheme, 287,
joint, 45	285–291, 296
product cryptosystem, 64 , 64–67	Schnorr Signature Scheme, 303
proof of forgery algorithm, 225	search problem, 191
proof of knowledge, 286	secret sharing scheme, 327–359
proof of Kilowicuge, 200	secret stiarting schedile, 321-337

decomposition construction, 355–359	Subgroup Membership, 399
	Subgroup Membership Interactive Proof
ideal, 345, 345, 347–350	System, 400
information rate, 343 , 343–345,	Subset Sum problem, 191, 191
350–357	modular transformation, 192
monotone circuit construction,	superincreasing, 191
334–339	substitution, 306
threshold scheme, 327–332	Substitution Cipher, 7, 7–8
Secure Hash Standard, 248, 251-	cryptanalysis of, 28–31
253	<i>m</i> -gram, 68
security parameter, 285, 380	synchronous stream cipher, 21, 85
seed, 361	threshold scheme 327 327 322
self-certifying public key, 277	threshold scheme, 327 , 327–332
session key, 260	timestamping, 254–255 transcript, 392
Shamir Threshold Scheme, 328, 328–	Transposition Cipher, 18
332, 344, 347	
share, 327	trapdoor, 116
Shift Cipher, 4, 3–7	trigram, 26
Shrinking Generator, 364	trusted authority, 259
signature, 204	unconditional security, 45
signature scheme, 204 , 203–230	unicity distance, 63, 59–64
constructed from identification	difference, ob, 57 04
scheme, 302	van Heyst-Pedersen Signature Scheme,
fail-stop, 225–230	226 , 225–230
one-time, 214–218, 229	Vandermonde matrix, 330
undeniable, 218–225	determinant of, 330
signing algorithm, 204	verification algorithm, 204
simulator, 392	verifier, 387
Solovay-Strassen algorithm, 133, 129–	Vernam One-time Pad, 50, 50
136	Vigenère Cipher, 12, 12–14, 40
error probability, 136 , 134–136	cryptanalysis of, 31–36
soundness, 289	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
source state, 305	zero-knowledge interactive argument,
Sperner property, 216	408 , 407–409
spurious keys, 60 , 59–64	perfect, 409
expected number of, 63	zero-knowledge interactive proof, 387
square-and-multiply algorithm, 127,	computational, 400, 406 , 402-
127 , 131	407
Station-to-station Protocol, 273, 272–	perfect, 395 , 390–399
274	perfect, for Vic, 393
Stirling's formula, 68, 218	
stream cipher, 21, 20-24, 362	
cryptanalysis of, 37	
aunahranaua 21 05	

synchronous, 21, 85