IMPROPER INTEGRAL

Motivasi

- Akumulasi Pada Ruang Tak Terbatas
- Pemodelan Radar

TIPE 1: $\int_a^b f(x) dx$

Diberikan $f: [a, b] \rightarrow R$ yang memenuhi minimal satu dari tiga keadaan berikut

- $\lim_{x \to a+} f(x) = \infty$
- $\lim_{x \to b^{-}} f(x) = \infty$
- Ada a < c < b sehingga $\lim_{x \to c} f(x) = \infty$

TIPE 2: DOMAIN TAK-TERBATAS

•
$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

•
$$\int_{-\infty}^{a} f(x) dx = \lim_{b \to -\infty} \int_{b}^{a} f(x) dx$$

•
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{-b}^{b} f(x) \, dx$$

DEFINISI KONVERGEN

- Improper integral dikatakan konvergen jika
 - 1. Nilai integral / limitnya ada untuk tipe 1, atau
 - 2. Nilai integral / limitnya ada untuk tipe 2
- Jika tidak demikian, improper integral dikatakan divergen.

Selidiki kekonvergenan dari integral tak wajar $\int_{1}^{4} \frac{3}{\sqrt{x-1}} dx$!

Penyelesaian:

Fungsi $f(x) = \frac{3}{\sqrt{x-1}}$ kontinu pada selang (1, 4], integral tak wajar dari fungsi f(x)

pada selang [1, 4] adalah

$$\int_{1}^{4} \frac{3}{\sqrt{x-1}} dx = \lim_{a \to 1^{+}} \int_{a}^{4} \frac{3}{\sqrt{x-1}} dx$$

$$= 3 \lim_{a \to 1^{+}} (2\sqrt{x-1})_{a}^{4}$$

$$= 3 \lim_{a \to 1^{+}} (2\sqrt{3} - 2\sqrt{a-1}) = 6\sqrt{3}.$$

Activate Wind

Selidiki kekonvergenan integral tak wajar $\int \sinh x \, dx$.

Penyelesaian

$$\int_{-\infty}^{\infty} \sinh x \, dx = \int_{-\infty}^{0} \sinh x \, dx + \int_{0}^{\infty} \sinh x \, dx = \lim_{a \to -\infty} \int_{a}^{0} \sinh x \, dx + \lim_{b \to \infty} \int_{0}^{b} \sinh x \, dx$$

$$= \lim_{a \to -\infty} (\cosh x)_{a}^{0} + \lim_{b \to \infty} (\cosh x)_{0}^{b}$$

$$= \lim_{a \to -\infty} (1 - \cosh a) + \lim_{b \to \infty} (\cosh b - 1).$$

Karena $\lim_{a \to -\infty} (1 - \cosh a) = -\infty$ dan $\lim_{b \to \infty} (\cosh b - 1) = \infty$, maka kedua limit tersebut

tidak ada. Sehingga integral tak wajar ini divergen.

UJI KONV IMPROPER INTEGRAL TIPE I

TEOREMA I

1.
$$\int_a^b \frac{dx}{(x-a)^p}$$
 converges if $p < 1$ and diverges if $p \ge 1$.

2.
$$\int_a^b \frac{dx}{(b-x)^p}$$
 converes if $p < 1$ and diverges if $p \ge 1$.

TEOREMA 2

- (a) Convergence Let $g(x) \ge 0$ for $a < x \le b$, and suppose that $\int_a^b g(x) dx$ converges. Then if $0 \le f(x) \le g(x)$ for $a < x \le b$, $\int_a^b f(x) dx$ also converges.
- (b) Divergence. Let $g(x) \ge 0$ for $a < x \le b$, and suppose that $\int_a^b g(x) dx$ diverges. Then if $f(x) \ge g(x)$ for $a < x \ge b$, $\int_a^b f(x) dx$ also diverges.

TEOREMA 3

Let
$$\lim_{x \to a^+} (x - a)^p f(x) = A$$
. Then

- (i) $\int_a^b f(x)dx$ converges if p < 1 and A is finite.
 - (ii) $\int_{a}^{b} f(x)dx \text{ diverges if } p \ge 1 \text{ and } A \ne 0$

TEOREMA4

Let
$$\lim_{x \to b^{-}} (b - x)^{p} f(x) = B$$
. Then

- (i) $\int_a^b f(x) dx$ converges of p < 1 and B is finite.
- (ii) $\int_a^b f(x)dx$ diverges if $p \ge 1$ and $B \ne 0$

Improper integral ini
$$\int_{3}^{b} \frac{\ln x}{(x-3)^4} dx$$
 divergen

karena
$$\frac{\ln x}{(x-3)^4} > \frac{1}{(x-3)^4} \quad \text{dan} \quad \int_3^b \frac{dx}{(x-3)^4} \quad \text{divergen}$$

$$\int_{1}^{5} \frac{dx}{\sqrt{x^{4} - 1}} \text{ converges, since}$$

$$\lim_{x \to 1^{+}} (x - 1)^{1/2} \cdot \frac{1}{(x^{4} - 1)^{1/2}}$$

$$= \lim_{x \to 1^{+}} \sqrt{\frac{x - 1}{x^{4} - 1}} = \frac{1}{2}.$$

$$\int_0^3 \frac{dx}{(3-x)\sqrt{x^2+1}}$$
 diverges, since

$$\lim_{x \to 3^{-}} (3 - x) \cdot \frac{1}{(3 - x)\sqrt{x^2 + 1}} = \frac{1}{\sqrt{10}}$$

TEOREMA I

Misalkan

$$\int_{a}^{\infty} \frac{dx}{x^{p}}$$

- Konvergen jika p > 1
- Divergen jika $p \le 1$

TEOREMA 2

Let $g(x) \ge 0$ for all $x \ge a$, and suppose that

$$\int_{a}^{\infty} g(x) dx$$
 converges.

$$\int_{a}^{\infty} g(x) dx \text{ converges.}$$
if $0 \le f(x) \le g(x)$ for all $x \ge a$.

$$\int_{a}^{\infty} f(x) dx$$
 also converges.

TEOREMA 3

Jika $a \le g(x) \le f(x)$ untuk setiap $x \ge a$, dan

$$\int_{a}^{\infty} g(x) \, dx$$

Divergen, maka

$$\int_{a}^{\infty} f(x) \, dx$$

Divergen juga

TEOREMA 4

Misalkan

$$\lim_{x \to \infty} x^p f(x) = a$$

- Konvergen, jika p > 1 dan a hingga
- Divergen, jika $p \le 1$ dan $a \ne 0$

CONTOH I

Selidiki konv.

$$\int_{2}^{\infty} \frac{dx}{\ln(x)}$$

 $\int_{2}^{\infty} \frac{dx}{\ln(x)}$ Karena $\frac{1}{\ln(x)} \ge \frac{1}{x}$ untuk $\int_{2}^{\infty} \frac{dx}{x}$ divergen (lihat

Teo. 1), maka

$$\int_{2}^{\infty} \frac{dx}{\ln(x)}$$

divergen

Buktikan

$$\int_0^\infty e^{-x^2} dx$$

Konveregen. Gunakan teorema 4 untuk p = 2 > 1, maka

$$\lim_{x \to \infty} x^2 e^{-x^2} = 0$$

Sehingga improper tersebut konvergen.

LATIHAN I :TIPE I

Selidiki konvergensi

(a)
$$\int_0^1 \frac{dx}{(x+1)\sqrt{1-x^2}}$$

(c)
$$\int_0^{\pi/2} \frac{e^{-x} \cos x}{x} dx$$

(b)
$$\int_0^1 \frac{\cos x}{x^2} \, dx$$

(d)
$$\int_{1}^{2} \frac{\ln x}{\sqrt[3]{8-x^3}} dx$$

LATIHAN 2:TIPE 2

Selidiki konvergensi

(a)
$$\int_0^\infty \frac{x^2 + 1}{x^4 + 1} dx$$
 (d) $\int_0^\infty \frac{dx}{x^4 + 4}$ (b) $\int_2^\infty \frac{x dx}{\sqrt{3x + 2}}$ (c) $\int_t^\infty \frac{dx}{x\sqrt{3x + 2}}$

(b)
$$\int_{2}^{\infty} \frac{x \, dx}{\sqrt{x^3 - 1}}$$

(c)
$$\int_{t}^{\infty} \frac{dx}{x\sqrt{3x+2}}$$