Parishram (2025)

Physics

Current Electricity

DPP: 5

Q1 A wire of resistance 12 Ω per metre is bent to form a complete circle of radius 10 cm. The resistance between any two of diameterically opposite points A and B as shown in the figure is:

- (A) 3Ω
- (B) 6Ω
- (C) $6 \pi \Omega$
- (D) $0.6 \pi \Omega$
- **Q2** Two wires of the same metal have same length, but their cross-sections are in the ratio 3:1. They are joined in series. The resistance of thicker wire is 10 Ω . The total resistance of the combination will be:
 - (A) $5/2 \Omega$
 - (B) $40/3 \Omega$
 - (C) $40~\Omega$
 - (D) $100~\Omega$
- **Q3** Three resistances each of 4Ω are connected to form a triangle. The resistance between any two terminals is
 - (A) 12Ω
 - (B) 2Ω
 - (C) 6 Ω
 - (D) $8/3\Omega$
- Q4 What will be the equivalent resistance between the points A and D?

- (A) $10~\Omega$
- (B) $20~\Omega$
- (C) 1.95Ω
- (D) 2V
- Q5 The internal resistance of a cell of e.m.f. 2V is 0.1 Ω . It is connected to a resistance of 3.9 Ω . The voltage across the cell will be:
 - (A) 0.5 V
- (B) 1.5 V
- (C) 1.95 V
- (D) 2 V
- **Q6** For a cell, the terminal potential difference is 2.2 V, when circuit is open and reduces to 1.8 V, when cell is connected to a resistance R = 5 Ω . The internal resistance of cell (r) is
 - (A) $10/9 \Omega$
 - (B) $9/10~\Omega$
 - (c) $11/9 \Omega$
 - (D) $5/9 \Omega$
- Q7 Which of the following equations is a correct equation for the electrical circuit shown in the figure?

- (A) $E_2 I_2 r_2 E_1 I_1 r_1 = 0$
- (B) $-E_2 (I_1 + I_2) R + I_2 r_2 = 0$
- (C) $E_1 (I_1 + I_2) R + I_1 r_1 = 0$
- (D) $E_1 (I_1 + I_2) R I_1 r_1 = 0$
- Q8 The effective resistance between points A and B in the given circuit A is

- (A) 10 Ω
- (B) 20 Ω
- (C) 40 Ω
- (D) 50 Ω
- Q9 For the network shown in the figure, the value of the current I is:

- (A) 9V/35
- (B) 18 V/5
- (C) 5V/9
- (D) 5V/18
- Q10 The resistance of each arm of a Wheatstone bridge is 10Ω . A resistance of 10Ω is connected in series with the galvanometer. Then, the

- equivalent resistance of the bridge across the battery will be:
- (A) 10Ω
- (B) 15Ω
- (C) 20Ω
- (D) 40Ω

Answer	Key
	110,9

Q1	(C)	Q6	(A)
Q2	(C)	Q7	(D)
Q3	(D)	Q6 Q7 Q8 Q9	(A)
Q4	(C)	Q9	(D)
Q5	(C)	Q10	(A)

Android App | iOS App | PW Website