アルゴリズムとデータ構造 並びに同演習 ~第9回再帰的アルゴリズム~

総合情報学専攻 メディア情報学専攻 橋本直己

naoki@cs.uec.ac.jp

再帰とは?

 ある事象は、それが自分自身を含んでいたり、それを 用いて定義されているときに、再帰的(recursive)であるという。

- ・ 例)自然数の再帰的定義 (recursive definition)
 - (a)1は自然数である
 - (b)ある自然数の直後の整数も自然数である
- ※ 簡潔かつ効率的な表現が可能(プログラムでも)

階乗値

- ・整数nの階乗は、以下のように再帰的に定義 される
 - 階乗n!の定義(nは非負整数)
 - (a) 0 != 1
 - · (b)n > 0 ならば n! = n × (n 1)!
 - 例) 10の階乗 10! = 10 × 9! = 10 × 9 × 8!

演習9-1

prog9-1.cを実行し、再帰的なプログラムの動作を確認せよ.

再帰関数呼出し(1)

factorial(3) = 3 × factorial(2)
 = 3 × 2 × factorial(1)
 = 3 × 2 × 1 × factorial(0)
 = 3 × 2 × 1 × 1

- 関数factorialは、行うべき計算を実現する為に、 関数factorialを呼び出す
- → 再帰関数呼出し(recursive function call)

再帰関数呼出し(2)

・再帰関数呼出しは「"自分自身の関数"を呼び出す」と考えるよりも、「"自分自身と同じ関数"を別途呼出す」と考えた方が自然

- 自分自身を呼び出したら, 延々と自分を呼び出し続けて無限ループしてしまう

直接的な再帰と間接的な再帰

- ・ 階乗を求める関数factorialは, 直接factorial を呼び出す=直接的な(direct)再帰と呼ぶ
- 関数aが関数bを呼び出し、その関数bが関数 aを呼び出す=間接的な(indirect)再帰と呼ぶ。

再帰的アルゴリズムの適用

再帰的アルゴリズムが適しているのは、解くべき問題や計算すべき関数、あるいは処理すべきデータ構造が再帰的に定義されている場合である。

再帰的手続きによって階乗数を求めるのは、 あくまでも解説のためであり、現実的には適切ではない。

演習9-2

・prog9-1.cで使用したfactorial関数を,再帰関 数呼び出しを用いないように修正せよ

- ヒント: 再帰的呼び出しの代わりに、while文を使用せよ

ユークリッドの互除法

二つの整数値の最大公約数(greatest common divisor)
 を求める。

【利用する特性】

- ・ 整数 a, b とすると「a = bk + r」と表せる
- aとbの最大公約数をG, bとrの最大公約数をG'とすると, 上式より, Gはrの約数でなければならない(G≦G')
- ・ 逆に、bとrの最大公約数G'は、上式よりaの約数、つまりG≧G'
- よって、『aとbの最大公約数G』=『bとrの最大公約数G'』

アルゴリズムで表現すると

整数a, bの場合:

まずaをbで割ってみる

- 1. 割り切れた場合: bが最大公約数
- 2. 割り切れなかった場合:
 - r = a % b (aをbで割った余り)
 - ・ bとrの最大公約数を求める(再帰)
- ※ aとbの大小関係は無視してもOK a < b の場合: a % b = a, よってbとa の最大公約数 を求めることになる(自動的にaとbが逆になる)

演習9-3

ユークリッドの互除法を用いて、二つの整数の 最大公約数を求めるプログラムを、再帰関数呼 び出しを用いて作成せよ。

prog9-3の動作

- 例:整数 14と6の最大公約数(gcd)を求める

- 1. 14 / 6 = 2 余り 2, よって6はgcdではない
- 2. 再帰呼出:6と2のgcdを求める
- 3. 6 / 2 = 3 余り 0, よって2がgcdである.

故に、14と6のgcdは2である

再帰アルゴリズムの解析(演習9-4)

再帰プログラムの動作を解析し、再帰に関する理解を深めましょう。

まずprog9-4.c 内の 関数 recurを読解せよ.

補足:関数recur内では,再帰呼出しを2回行っている. 2回以上再帰呼出を行う関数は,真に(genuinely) 再帰的であると呼ばれる.

prog9-4.cの実行結果

・ 真に再帰的な関数は、短くても複雑な挙動を 示します.

- 右例では、入力4の場合の出力 を示しています.
- ・入力が3や5の場合の結果を想像 することは困難.

```
> ./prog9-4
整数を入力せよ:4
```

【実行結果】

トップダウン解析

- ・ 仮引数nに4を受け取った関数recurの動作
 - (a) recur (3)
 - (b) 4を出力
 - (c) recur (2)
- ・ (a), (b), (c)の順番に実行されるが, "(b)の4" の前に何が出力されるかは, (a)を実行してみ なければ分からない
- なので、プログラムの実行順に処理を追いかけてみる(=トップダウン解析)

トップダウン法(top-down method)

- この図をたどると、プログラム全体の出力が分かる
- しかし無駄も多い(recur(1), recur(0)の重複)

ボトムアップ解析(1)

- 上から解析することが効率的とは限らない
- ・ 次は、下から積み上げる方法で解析
- まず、nが正であるときのみ具体的な動作を するので、recur(1)について考える
 - (a) recur (0)
 - (b) 1を出力
 - (c) recur (-1)
 - recur(0), recur(-1)は何もしないので、結果recur(1)は1を出力するだけと分かる。

ボトムアップ解析(2)

- 次に、recur(2)について考える.
 - (a) recur (1)
 - (b) 2を出力
 - (c) recur (0)
 - recur(1)は1を出力するので、結果"12"を出力

・これをrecur(4)まで積み上げていくことで、recur(4)の出力を知ることができる.

ボトムアップ法

- recur(0): 何もしない
- recur(1): recur(0), [1], recur(-1) \rightarrow 1
- recur(2): recur(1), [2], recur(0) \rightarrow 12
- recur(3): recur(2), [3], recur(1) \rightarrow 1231
- recur(4): recur(3), [4], recur(2) \rightarrow 1231412

ボトムアップ解析結果

演習9-5

・以下に示す関数recur2のトップダウン解析およびボトムアップ解析を行え

- 仮引数 n = 4 とせよ

- 紙に書く or Text Editor


```
void recur2(int n)
{
    if ( n > 0 ) {
        recur2( n - 2 );
        printf("%d\u00e4n", n);
        recur2( n - 1 );
    }
}
```

ここまでのまとめ

以下は非常に重要!!

- 再帰関数呼び出し
 - ユークリッドの互除法

- 再帰アルゴリズムの解析
 - トップダウン解析
 - ・ボトムアップ解析

本日の演習課題

・有名な「ハノイの塔」と「8王妃問題」を取り上 げます。

講義中の説明に基づいて、演習時間に実装してもらいます。

ハノイの塔

- ・ハノイの塔(towers of Hanoi)は、重なった円盤を3本の柱の間で移動する問題.
 - 全ての円盤の大きさは異なる
 - 初期は第1軸上. これを第3軸上に移動する
 - 移動は一枚ずつ
 - より大きな円盤を上に重ねることはできない

円盤が3枚のときの解法

ハノイの塔の考え方(円盤が3枚)

最大の円盤を最短のステップで目的軸へ移動する為には、上に乗っている円盤群(グループ)を、いったん中間軸に移せばよい。

円盤が4枚になると

- 円盤1~3を重ねたものをグループとする.
- グループが大きくなるが、動かし方は前スライドで紹介済み

円盤が2枚になると

・円盤1だけをグループとして考えると、円盤が 3枚のときと同じ考え方で実現出来る.

つまり

そこに置かれている最も大きい円盤以外の円盤を"グループ"とみなせば、円盤の枚数とは無関係に、全く同じ手続きで実現可能。

円盤がn枚の時にアルゴリズム

- 1. 底の円盤を除いたn-1枚の円盤を, 開始軸から中間軸へ移動
- 2. 底の円盤を開始軸から目的軸へ移動
- 3. 底の円盤を除いたn-1枚の円盤を,中間軸から目的軸へ移動

演習では、これをプログラムで実現してみよう!

演習9-6

・以上の考えに基づいてハノイの塔を実現するプログラム prog9-6.c を完成させよ.

【説明】

- 関数moveは再帰的に定義せよ(前ページ参照)
- 関数moveの引数noは移動すべき円盤の枚数
- -xは開始軸、yは目的軸
- 軸は整数値1, 2, 3で表す.
 - このとき、開始軸・目的軸がどの軸であっても、 中間軸は6-x-yとして求められる

8王妃問題(8-Queen Problem)

8×8のチェス盤において、8個の王妃を互いに取り合うことのないように配置せよ.

- チェスの王妃は、将棋での飛車と角の動きを併せ持っている。

− つまり、縦・横・斜めのライン上のコマをとることができる。

チェス

将棋

飛車と角の動き

解答の一例

・ 問題の解答は複数ある. 以下はその一例.

王妃の配置(1)

- チェス盤は8×8すなわち64個のマス
- 8個の王妃を置く組合せは

$$64 \times 63 \times \cdots \times 57 = 178,462,987,637,760 通り$$

※ 全探索は非現実的

王妃は列(縦)方向のコマを取れるため

【方針1】

各列には王妃を1個だけ配置する.

- 組合せは8×8×···×8=16,777,216通り
- ※ 激減するが、それでもまだ多い

王妃の配置(2)

王妃は行(横)方向のコマを取れるため

【方針2】

各行に王妃は1個だけ配置する

 $8 \times 7 \times \cdots \times 1 = 40,320$ 通り

- それでも、解答を探すのはとても大変

- ・ そこで方針1に戻って、可能性のある組合せ を列挙するアルゴリズムを考える
 - (計算機の力を活用)

組合せの列挙(方針1)

各列に1つだけ王妃を置ける

0列目の配置を決める(8通り)

・1列目の配置を決める(8通り)

分岐操作

以上のように、どんどん枝分かれを行っていく操作を分岐(branching)と呼ぶ。

【方針1】を満たした 組み合わせを全て列挙

1列目

2列目

3列目

• • •

演習9-7

・分岐操作によって組合せを列挙するプログラム prog9-7.c を実行し、その内容を読解せよ.

- 配列posは、各列において、何行目に王妃が配置 されたのかを格納する

実行結果

>./prog9-7 $0\ 0\ 0\ 0\ 0\ 1\ 0$ $0\ 0\ 0\ 0\ 0\ 1\ 2$ $0\ 0\ 0\ 0\ 0\ 1\ 4$ (以下、省略)

補足:分割統治法

・ハノイの塔や、8王妃問題のように、問題を小問題(部分問題)に分割し、小問題の解を統合して全体の解を得ようとする方法を分割統治法(divide and conquer)と呼ぶ.

限定操作

分岐操作を行っても、組合せを列挙するだけであり、8王妃問題を解くことはできない(当然)

・次に、【方針2】である、 「各行には王妃を1個だけ配置する」 という考えを組み入れる。

演習9-8

• prog9-7.cに, 方針2を加えて, 組合せを列挙 するプログラムを作成せよ

• 条件:

- -j行に王妃が配置されていれば、flag[j] = 1とすることで、その行に重複して王妃を配置できないようにせよ.
- int flag[8];

解説

```
void set(int i)
int j;
 for(j = 0; j < 8; j++) {
  pos[i] = j;
  if (i == 7) /* 全列に配置終了 */
    print();
   else
    set(i + 1);
           【方針1】
```

```
void set(int i)
int j;
for(j = 0; j < 8; j++) {
 if (!flag[j]) { /*j行には王妃は未配置 */
  pos[i] = j;
  if (i == 7) /* 全列に配置終了 */
   print();
  else {
   flag[j] = 1;
   set(i+1);
   flag[j] = 0;
             【方針1+方針2】
```

実行結果

```
>./prog9-8
01234567
01234576
01234657
01234675
01234756
01234765
01235467
01235476
01235647
01235674
01235746
01235764
01236457
01236475
01236547
(以下、省略)
```

分岐限定法

必要のない分岐操作を省略するための手法を限定操作(bounding)と呼び、分岐操作と合わせて分岐限定法(branching and bounding method)と呼ぶ。

8王妃問題のための分岐限定操作

王妃は斜め方向のコマをとることができる

• prog9-8.cに、どの斜めライン上にも王妃を1個だけしか配置できないことを限定操作として追加することで、8王妃問題が解ける.

新たなflagの追加

・配列flag_bとflag_cは、/方向および\方向の 対角線上に王妃が配置されているかどうかを 示す

演習9-9

・ prog9-8.cにflag_bとflag_cを導入して、8王妃問 題の解を列挙するプログラムを作成せよ.

(prog9-8におけるflagはflag_aに改名せよ)

ヒント

i列j行目の場所に着目しているとき:

限定:各行で王妃は1つ 【If文内での条件式】
 flag a[j]!= 1
 if(! flag a[j])

・ 限定:/対角線に王妃は1つ

if(!flag_b[i+j])

・ 限定: \対角線に王妃は1つ

$$flag_c[i-j+7] != 1 if(!flag_c[i-j+7])$$

※!は論理演算子(否定)、真を偽、偽を真に変換する

ヒント(続き)

実行結果

>./prog9-9 04752613 05726314 06357142 06471352 13572064 14602753 14630752 15063724 15720364 16257403 16470352 17502463	25160374 25164073 25307461 25317460 25703641 25704613 25713064 26174035 26175304 27360514 30471625 30475261 31475026	35716024 35720641 36074152 36271405 36415027 36420571 37025164 37046152 37420615 40357162 40731625 40752613 41357206	46027531 46031752 46137025 46152037 46152073 46302751 47306152 50417263 51602473 51603742 52073164 52073164	5 3 0 4 7 1 6 2 5 3 1 7 4 6 0 2 5 3 6 0 2 4 1 7 5 3 6 0 7 1 4 2 5 7 1 3 0 6 4 2 6 0 2 7 5 3 1 4 6 1 3 0 7 4 2 5 6 1 5 2 0 3 7 4 6 2 0 5 7 4 1 3 6 2 7 1 4 0 5 3 6 3 1 4 7 0 2 5 6 3 1 7 5 0 2 4 6 4 2 0 5 7 1 3 7 1 3 0 6 4 2 5
17502463 20647135 24170635 24175360 24603175 24730615	31475026 31625704 31625740 31640752 31746025 31750246	41357206 41362750 41506372 41703625 42057136 42061753	52073164 52074136 52460317 52470316 52613704 52617403	64205713 71306425 71420635 72051463 73025164
25147063	35041726	42736051	52630714	全92通り

今回の演習内容

- ・講義の復習:
 - 演習9-1~9-5(計5問)

- ・演習独自の課題:
 - 演習9-6~9-9(計4問)

- ・提出課題: ※ 今回は2題とも必須課題
 - 課題9-1~9-2(計2問)