ENSIIE 2A 2018-2019 UE Méthodes de Simulation

Feuille 1 de Travaux pratiques

1. Méthode d'inversion

Rappel de la méthode d'inversion. On suppose que l'on sait simuler des réalisations indépendantes de loi uniforme sur]0,1[, c'est-à-dire, une suite $(U_n)_{n\geq 1}$ de variables aléatoires indépendantes de même loi $\mathcal{U}[0,1[$. L'appel à la fonction rand génère une réalisation $u=U(\omega)$ de la loi uniforme sur]0,1[.

Soit $U \sim \mathcal{U}(]0,1[)$ et soit X une variable aléatoire de fonction de répartition $F\colon F(x)=\mathbb{P}(X\leq x)$, $\forall \, x\in\mathbb{R}$. Pour simuler des réalisations de variables aléatoires $(X_n)_{n\geq 1}$ indépendantes de même loi que X on utilise le résultat suivant: si

$$F^{-1}(u) := \inf\{t \in \mathbb{R} : F(t) \ge u\}, \quad \text{pour tout } u \in]0,1[$$

alors X et $F^{-1}(U)$ ont même loi: on note $X \stackrel{d}{=} F^{-1}(U)$.

Exercice 1. (Loi de Bernoulli) Soit U une loi uniforme sur]0,1[et soit $p \in]0,1[$.

- 1. Vérifier que la variable aléatoire $X=\mathbb{1}_{\{U\leq p\}}$ suit une loi de Bernoulli de paramètre p.
- 2. Utiliser la question précédente pour simuler un échantillon indépendant $(X_i)_{1 \le i \le N}$ de taille N de la loi de Bernoulli de paramètre p = 0.3, pour N = 100, 1000 puis 10000.
- 3. Calculer pour chaque N, la quantité

$$\frac{\#\{i\in\{1,\cdots,N\} \text{ tel que } X_i=1\}}{N}$$

et le comparer avec p.

4. On rappelle le *Théorème Central Limite* (TCL): Pour toute suite de variables aléatoires $(X_n)_{n\geq 1}$ iid de moyenne $\mu=\mathbb{E}(X_1)$ et de variance finie σ^2 , on a:

$$Z_n := \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \quad \stackrel{n \to \infty}{\longrightarrow} \quad Z \sim \mathcal{N}(0, 1), \tag{1}$$

où $\bar{X}_n = (X_1 + \ldots + X_n)/n$ est la moyenne empirique associée à l'échantillon.

- (a) Gérérez un échantillon $(Z_n^i)_{i=1,...,N}$ de taille N=10 de la loi de Z_n pour n=10,30,40.
- (b) Gérérez un échantillon $(Z_n^i)_{i=1,\dots,N}$ de taille $N=10^5$ de la loi de Z_n pour n=10, 30, 40. Pour tout $n\in\{10,30,40\}$, tracez sur le même graphique l'histogramme empirique associé à l'échantillon $(Z_n^i)_{i=1,\dots,N}$ et la densité

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

d'une loi $\mathcal{N}(0,1)$.

(c) Commentez les graphiques obtenus dans la question précédente.

Exercice 2. (Loi binomiale) Soit n=30 et p=0.1. Soit $(U_k)_{k\geq 1}$ une suite de variables aléatoires indépendantes de loi uniforme sur]0,1[.

1. Vérifiez, que la variable aléatoire X suivante suit une loi binomiale de paramètres (n, p):

$$X = \sum_{k=1}^{n} \mathbb{1}_{\{U_k \le p\}}.$$

- 2. Générez un échantillon indépendant de taille N=10000 de la loi binomiale de paramètres (n,p) en utilisant la question précédente.
- 3. Tracez l'histogramme des fréquences empiriques associées à l'échantillon simulé.
- 4. Tracez le graphe $k \in \{0, \dots, n\} \mapsto p_k = \mathbb{P}(X = k), \ k = 0, \dots, n$ et comparez le avec l'histogramme des fréquences empiriques.
- 5. On rappelle à nouveau le *Théorème Central Limite* (TCL): Pour toute suite de variables aléatoires $(X_k)_{k\geq 1}$ iid de moyenne $\mu=\mathbb{E}(X_1)$ et de variance finie σ^2 , on a:

$$Z_k := \sqrt{k} \frac{\bar{X}_k - \mu}{\sigma} \quad \xrightarrow{k \to \infty} \quad Z \sim \mathcal{N}(0, 1), \tag{2}$$

où $\bar{X}_k = (X_1 + \ldots + X_k)/k$ est la moyenne empirique associée à l'échantillon.

- (a) Gérérez un échantillon $(Z_k^i)_{i=1,\dots,N}$ de taille N=10 de la loi de Z_k pour k=10,30,40.
- (b) Gérérez un échantillon $(Z_k^i)_{i=1,\dots,N}$ de taille $N=10^5$ de la loi de Z_n pour k=10,30,40. Pour tout $k\in\{10,30,40\}$, tracez sur le même graphique l'histogramme empirique associé à l'échantillon $(Z_k^i)_{i=1,\dots,N}$ et la densité

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

d'une loi $\mathcal{N}(0,1)$.

6. Reprendre toute la question 5. mais avec cette fois-ci p=0.5. Comparez les résutats obtenus avec ceux de la question 5.

Exercice 3. (Loi discrète quelconque) Soit X une variable aléatoire prenant ses valeurs dans $\{a_1,a_2,a_3,a_4\}$ avec $a_1:=0.5; a_2:=1$ $a_3:=1.5; a_4:=2$ et soit $(p_i)_{i=1,\cdots,4}$ les poids associés définis par

$$\begin{cases} p_1 = \mathbb{P}(X = a_1) = 1/4 \\ p_2 = \mathbb{P}(X = a_2) = 1/8 \\ p_3 = \mathbb{P}(X = a_3) = 1/8 \\ p_4 = \mathbb{P}(X = a_4) = 1/2. \end{cases}$$

- 1. Simuler un échantillon indépendant de taille N = 10000 de X et tracer l'histogramme des fréquences.
- 2. Comparer l'histogramme au graphe $i \in \{1, \dots, 4\} \mapsto p_i$.

Exercice 4. Ecrivez une fonction qui considère les lois usuelles: *Bernouilli, binomiale, de Poisson, exponentielle, Weibull* et qui, pour une loi choisie:

- 1. Demande en entrée les paramètres de la loi.
- 2. Trace sur le même graphique l'histogramme des fréquences empiriques de Z_k dans (2), pour k=30, et la densité d'une loi normale standard (autrement dit, qui vérifie le TCL).

2. Méthodes de rejet et de transformation

Rappel de la méthode de rejet. On veut simuler une v.a. X de densité f. On suppose qu'il existe une v.a. Y que l'on sait simuler, de densité g vérifiant pour tout $x \in \mathbb{R}$, $f(x) \le cg(x)$, pour une constante $c \ge 1$. On considère l'algorithme suivant:

1. Simuler U de loi $\mathcal{U}([0,1])$ et Y de densité g et poser h(Y)=f(Y)/(cg(Y));

2. Si U < h(Y), on pose X = Y, sinon on retourne en 1.

Alors on montre que l'algorithme converge en temps fini et que X est de densité f.

Exercice 5. On veut générer une réalisation de la loi $\mathcal{N}(0,1)$ par la méthode de rejet.

1. Montrer que si X est de loi $\mathcal{N}(0,1)$, alors |X| a pour densité

$$f(x) = \frac{2}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \mathbb{1}_{\{x>0\}}.$$

2. Montrer que pour tout $x \in \mathbb{R}$,

$$f(x) \le \sqrt{\frac{2e}{\pi}} e^{-x}$$
.

- 3. En déduire un algorithme de simulation de |X| par la méthode de rejet.
- 4. Tracer l'histogramme des fréquences pour un échantillon de taille N assez grand et le comparer avec la densité théorique de |X|.
- 5. Soit Θ une v.a. ăleurs dans $\{-1,+1\}$ avec $\mathbb{P}(\Theta=+1)=\mathbb{P}(\Theta=-1)=1/2$. Montrer que X a la même loi de probabilité que $\Theta|X|$.
- 6. Simuler un échantillon indépendant de taille N de loi normale en utilisant les questions précédentes et comparer les densités théoriques et empiriques.

Exercice 6. Soit X une variable aléatoire de loi uniforme sur la boule unité $A=\{(x,y)\in\mathbb{R}^2,\ x^2+y^2\leq 1\}$ et soit le domaine $S=\{(x,y)\in\mathbb{R}^2,\ x\in]-1,+1[,\ y\in]-1,+1[\}$, de sorte que $A\subset S$.

1. L'algorithme suivant simule une réalisation de quelle variable aléatoire (on rappelle que rand () génère une réalisation d'une loi uniforme sur]0,1[):

do u1
$$\leftarrow$$
 2*rand() -1
u2 \leftarrow 2*rand() -1
while (u1*u1 + u2*u2 > 1)
end
U1 \leftarrow u1 and U2 \leftarrow u2

2. Générer un échantillon indépendant de taille N=10000 de la v.a. précédente et représenter les points simulés sur \mathbb{R}^2 .

Exercice 6. (Méthode de Box-Muller). Soit R une v.a. de loi exponentielle de paramètre 1/2: $R \sim \text{Exp}(1/2)$, et soit $\Theta \sim \mathcal{U}(]0, 2\pi[)$.

1. Montrer que $X_1 = \sqrt{R}\cos(\Theta)$ et $X_2 = \sqrt{R}\sin(\Theta)$ sont des v.a. gaussiennes indépendantes, centrées et réduites. On rapelle que la densité f de la $\mathcal{N}(0,1)$ est donnée pour tout $x \in \mathbb{R}$ par

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}.$$

2. En déduire une simulation de N=10000 réalisations indépendantes de la loi gaussienne

$$Z = (X_1, X_2) \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right).$$

et représenter les points générés sur \mathbb{R}^2 .

- 3. Tracer la densité empirique de votre échantillon de la question précédente et le comparer avec la densité théorique.
- 4. En utilisant la question 1., simuler un N-échantillon de $X_1 \sim \mathcal{N}(0;1)$ de taille N=10000.
- 5. Tracer la densité empirique de votre échantillon de la question précédente et le comparer avec la densité théorique.
- 6. Soit $\mu_1, \mu_2 \in \mathbb{R}$ et $\sigma_{ij} > 0$, pour $i, j \in \{1, 2\}$. Soit

$$\begin{cases} Z_1 = \mu_1 + \sigma_{11} X_1 + \sigma_{12} X_2 \\ Z_2 = \mu_2 + \sigma_{21} X_1 + \sigma_{22} X_2. \end{cases}$$

On montre que $Z=(Z_1,Z_2)\sim \mathcal{N}(\mu,\Sigma)$ où

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
 et $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$

et σ_1, σ_2, ρ sont définis par:

$$\sigma_1^2 = \sigma_{11}^2 + \sigma_{12}^2, \qquad \sigma_2^2 = \sigma_{21}^2 + \sigma_{22}^2, \qquad \rho = \frac{\sigma_{11}\sigma_{21} + \sigma_{12}\sigma_{22}}{\sigma_1\sigma_2}.$$

- (a) Choisir des valeurs pour les σ_{ij} pour que ρ prenne les valeurs 0.1, 0.5, 0.9 et pour chaque valeur de ρ générer un échantillon de taille N=10000 de (Z_1,Z_2) .
- (b) Repésenter les points des échantillons de la question précédente pour chaque valeur de ρ et commenter les graphes.
- (c) Représenter les densités empiriques pour chaque valeur de ρ et commenter les graphes.

Exercice 7. (Mélange de lois) Soit $X_1 \sim \mathcal{N}(-3,1)$ et $X_2 \sim \mathcal{N}(3,1)$ deux v.a. indépendantes de densités respectives f_1 et f_2 . Soit X la v.a. de densité

$$f(x) = p_1 f_1(x) + p_2 f_2(x),$$
 $p_1, p_2 \in [0, 1], p_1 + p_2 = 1.$

- Représenter graphiquement f pour $(p_1, p_2) = (1/2, 1/2), (p_1, p_2) = (1/4, 3/4), (p_1, p_2) = (3/4, 1/4).$
- Générer un échantillon de taille N=10000 de la loi de X pour chaque valeur de (p_1,p_2) et représenter les densités empiriques associées. Commenter les graphes obtenus.