第五章 方波逆变器电路(DC-AC)

- 5.1 电压型逆变器
- 5.2 电流源型逆变器

竣实扬华 自强不息 第 1 页

- 电压型逆变电路,其直流 侧电源为电压源,直流回 路呈低阻抗。
- 交流侧输出电压波形为矩形波,输出电压波形与负载阻抗角无关。

电压型逆变电路

■ (1) 单相半桥型逆变器

- a) 工作原理
 - ◆ 单相半桥逆变电路由一对桥臂 和一个带有中点的直流电源构 成
 - ◆ 负载连接在直流电源中点y与 两个桥臂连接点x之间
 - ◆ 实际应用中常用一个直流电压 源与两个容量足够大的电容器 串联来代替带中点的直流电压 源

■ (1) 单相半桥型逆变器

- b) 带电阻性负载控制时序波形
 - ◆ T1与T2两个开关在导通、关断控制 上互补
 - 在0<ωt<π期间, T1通、T2断, i₀经
 T1和直流电源(上)流动,输出电
 压u₀为正, u₀=+U₀/2
 - 在π<ωt<2π期间, T2通、T1断, i₀
 经T2和直流电源(下)流动,输出电压u₀为负, u₀=-U₀/2
 - ◆ 由于是电阻负载,因此电流与电压 同相位

带电阻性负载单相半桥逆变电路及其工作波形

竣实扬华 自强不息 第 4 页

当负载为阻性,负载电流 i。为正弦波,电路分析过程可分为2个阶段。

阶段I: 在0<ωt<π期间,T1 通、T2断, i_o 经T1和直流电 源(上)流动,输出电压 u_o 为正, $u_o=+U_d/2$,电流为正 向。

阶段II:在 $\pi<\omega t<2\pi$ 时,关断 T1并给T2导通信号, i_{o} 经T2和 直流电源(下)流动,输出电 压 u_{o} 为负, $u_{o}=-U_{d}/2$,电流为 负向。

带电阻性负载单相半桥逆变电路工作波形

■(1) 单相半桥型逆变器

- c) 带感性负载控制时序波形
 - ◆ 负载电流i₀由流过开关T1与T2 与二极管D1、D2的电流组成
 - ◆ 当D1导通或D2导通时,负载 向直流电源反馈能量
 - ◆ 若触发信号是给桥臂上管T1
 的,则负载端输出电压为
 u_o=+U_d/2
 - ◆ 若触发信号是给桥臂上管T2 的,则负载端输出电压为 u₀=-U_d/2

带感性负载单相半桥 逆变电路及其工作波形

■ (1) 单相半桥型逆变器

● c)带感性负载控制时序波形

设负载为感性,负载电流*i*。为正弦波,负载电流滞后电压φ角, 电路分析过程可分为4个阶段。

带感性负载单相半桥逆变电路及其工作波形

阶段I:在 $\varphi < \omega t < \pi$ 期间,T1通、T2断, i_0 经T1和直流电源(上)流动,输出电压 U_0 为正, $U_0 = +U_d/2$,电流为正向

阶段II: 在 $\omega t=\pi$ 时,关断T1并给T2导通信号,由于感性负载电流不能立刻改变方向,于是D2导通, i_{o} 经D2与直流电源(下)续流,直到 i_{o} 衰减到零,T2才真正导通, i_{o} 开始反向, $U_{o}=-U_{d}/2$

带感性负载单相半桥逆变电路工作波形

阶段III: $\mathbf{c}_{\pi+\phi}<\omega t<2\pi$ 期间, \mathbf{T}^2 通、 \mathbf{T}^2 1断, i_o 经 \mathbf{T}^2 2和直流电源(下)流动,输出电压 U_o 为负, $U_o=-U_d/2$,电流为反向

阶段IV: 在 $\omega t=2\pi$ 时,关断T2并给T1导通信号,由于感性负载电流不能立刻改变方向,于是D1导通, i_0 经D1与直流电源(上)续流,直到 i_0 衰减到零,T1才真正导通, i_0 开始反向, $U_0=+U_d/2$

带感性负载单相半桥逆变电路工作波形

■ (2) 单相桥式逆变器

- a) 工作原理
 - ◆ 电路由四个开关管T₁~T₄以及反 并联的4个二极管D₁~D₄组成, 负载接在两个桥臂的中点x, y处
 - ◆ 电路中开关T₁与T₃、T₂与T₄的通、 断控制信号相同并且互补,即T₁、 T₃是导通信号时T₂、T₄为关断信 号; T₂、T₄是导通信号时T₁、T₃ 为关断信号
 - ◆ 当T₁、T₃导通时, *u*_o=+*u_d*; 当 T₂、T₄导通时, *u*_o=-*u_d*

单相桥式逆变电路及其工作波形

竢实扬华 自强不息 第 10 页

■ (2) 单相桥式逆变器

- b) 滞后负载控制时序波形
 - 假设负载电流, 为正弦波, 在 ωt=π时, T₁、T₃关断并给出 T₂、T₄的导通信号, 此时, i₆从 T₁、T₃转移到D₂、D₄与直流电 源构成的续流回路中去
 - 在滞后角φ内, i。继续保持原方向流动直到该电流为零, 然后i。
 才经T₂、T₄反向流动
 - ◆ 同理, 当关断T₂、T₄, 给出T₁、
 T₃导通信号后, 负载电流i₀改经
 D₁、D₃及直流电源U₀续流

■ (2) 单相桥式逆变器

● b) 滞后负载控制时序波形

设负载为滞后负载,负载电流i。为正弦波,负载电流滞后电压φ 角,电路分析过程可分为4个阶段。

阶段I: 在 ϕ < ω t< π 期间, T_1 、 T_3 通、 T_2 、 T_4 断, i_o 经 T_1 、 T_3 和直流电源流动,输出电压 u_o 为正, u_o =+ u_d ,电流为正向

带滞后负载单相桥式逆变电路工作波形

■ (2) 单相桥式逆变器

● b) 滞后负载控制时序波形

阶段II: 在ωt=π时,关断 T_1 、 T_3 并给 T_2 、 T_4 导通信号,由于感性负载电流不能立刻改变方向,于是 D_2 、 D_4 导通, i_0 经 D_2 、 D_4 与直流电源续流,直到 i_0 衰减到零, T_2 、 T_4 才真正导通, i_0 开始反向, $u_0=-u_d$

竣实扬华 自强不息 第 13 页

■ (2) 单相桥式逆变器

● b) 滞后负载控制时序波形

带滞后负载单相桥式逆变电路工作波形

族实扬华 自强不息 第 14 页

■ (2) 单相桥式逆变器

● b) 滞后负载控制时序波形

阶段IV: 在ωt=2π时,关断 T_2 、 T_4 并给 T_1 、 T_3 导通信号,由于感性负载电流不能立刻改变方向,于是 D_1 、 D_3 导通, i_0 经 D_1 、 D_3 与直流电源续流,直到 i_0 衰减到零, T_1 、 T_3 才真正导通, i_0 开始反向, u_0 =+ u_d

■ (2) 单相桥式逆变器

- c) 同相位负载控制时序波形
 - ◆ 设负载电流是正弦波,且负载 电压与电流同相(例如串联谐 振时)
 - ◆ 由于负载电压与负载电流的零点一致,开关T₁、T₃与T₂、T₄将分别流过正弦半波电流,而二极管D₁~D₄则完全没有电流流过
 - ◆ 开关T₁~T₄的导通与关断均发 生在负载电流过零处,所以开 关的开通与关断损耗为零

带同相位负载单相桥式 逆变电路及其工作波形

■ (2) 单相桥式逆变器

- d) 超前负载控制时序波形
 - 设负载电流 i。为正弦波且超前负载电压 u。一个相角φ
 - 开关(例如T₁、T₃)在导通πφ后,其中的电流会自然下降到零,在这个半周的其余部分它 们承受与之并联的二极管(即 D₁、D₃)导通产生的反压
 - ◆ 所以, 开关T₁~T₄可以使用诸如 晶闸管一类的半控开关而不必 采用强迫换流措施

族实扬华 自强不息 第 17 页

■ (2) 单相桥式逆变器

● b) 超前负载控制时序波形

设负载为超前负载,负载电流i。为正弦波,负载电流超前电压φ 角,电路分析过程可分为4个阶段。

阶段I: 在0<ωt<π-φ期间, T_1 、 T_3 通、 T_2 、 T_4 断, i_0 经 T_1 、 T_3 和直流电源流动,输出电压 u_0 为正, $u_0 = +u_d$,电流为正向

带滞后负载单相桥式逆变电路工作波形

■ (2) 单相桥式逆变器

● b) 超前负载控制时序波形

阶段II: 在 π - ϕ < ω t< π 期间,电流自然下降到0, T_1 、 T_3 承受与之并联的二极管 D_1 、 D_3 导通产生的反压,输出电压u。为正,u。= + ud,电流为负向

 i_{0} $i_{T1,3}$ φ $i_{D2,4}$ $i_{D2,4}$ $i_{T2,4}$

 $T_{1.3}$

 $U_{\rm d}$

带滞后负载单相桥式逆变电路工作波形

 $T_{2,4}$

■ (2) 单相桥式逆变器

● b) 超前负载控制时序波形

阶段III: 在 π < ω t< 2π -φ期间, T_2 、 T_4 通、 T_1 、 T_3 断, i_0 经 T_2 、 T_4 和直流电源流动,输出电压 u_0 为负, u_0 =- u_d ,电流为反向

带滞后负载单相桥式逆变电路工作波形

■ (2) 单相桥式逆变器

● b) 超前负载控制时序波形

阶段IV: 在2π- φ <ωt<2π时,电流自然下降到0, T_2 、 T_4 承受与之并联的二极管 D_2 、 D_4 导通产生的反压, U_0 =- U_d ,电流正向

阶段IV

带滞后负载单相桥式逆变电路工作波形

■ (3) 三相电压型逆变器

- a) 工作原理
 - ◆ 三相逆变电路由 6 个带无功反馈二极管的全控开关构成
 - ◆ 三相负载接在三个半桥的输出端,负载中点为 "n"
 - ◆ 虽然实际上只需要一个直流电压源,但为分析方便,可将该电源看成是两个电源的串联,并有一个假想的中点"o"。

三相180°导通电压型逆变电路

竣实扬华 自强不息 第 22 页

■ (3) 三相电压型逆变器

- b) 方波控制时序波形
 - ◆ 电路工作时开关T₁~T₆均导通 180°
 - ◆ 导通控制顺序为: T₁、T₂、T₃
 →T₂、T₃、T₄→T₃、T₄、T₅→T₄、
 T₅、T₆→T₅、T₆、T₁→T₆、T₁、
 T₂,每个状态持续60°
 - ◆ 根据半桥逆变器工作原理,可由 开关状态直接得到桥臂中点对电 源中点o的电位波形。它们是 180°的方波交流电压,其幅值为 U_d/2,每个半桥工作180°,三 个半桥相位相差120°

三相电压型逆变电路及其工作波形

■ (3) 三相电压型逆变器

• b) 方波控制时序波形

T₂、T₃、T₄导通

三相电压型逆变电路及其工作波形

■ (3) 三相电压型逆变器

• b) 方波控制时序波形

 T_3 、 T_4 、 T_5 导通

 T_4 、 T_5 、 T_6 导通

三相电压型逆变电路及其工作波形

■ (3) 三相电压型逆变器

• b) 方波控制时序波形

 T_5 、 T_6 、 T_1 导通 $U_{d/2}$ $U_{d/2}$ $U_{d/2}$ T_6 T_2 T_2 T_2 T_3 T_4 T_2 T_4 T_5 T_6 T_2 T_6 T_2

T₆、T₁、T₂导通

三相电压型逆变电路及其工作波形

- ■(3)三相电压型逆变器
 - c) 输出电压计算

逆变电路的输出线电压可由两个半 桥间的电压差得到,即:

$$\left. \begin{array}{l} u_{ab} = u_{ao} - u_{bo} \\ u_{bc} = u_{bo} - u_{co} \\ u_{ca} = u_{co} - u_{ao} \end{array} \right\}$$

 $u_{\rm bc}$ 、 $u_{\rm ca}$ 波形与 $u_{\rm ab}$ 相同,只是各相差 120°

三相电压型逆变电路及其工作波形

若三相负载对称、星形连接,可得到负载相电压(u_{an} 、 u_{bn} 、 u_{cn})、桥臂输出电压(u_{ao} 、 u_{bo} 、 u_{co})、三相负载中点n与假想的直流电源中点o间的电压 u_{no} 三者间的电压平衡方程,即:

$$\left\{
 \begin{array}{l}
 u_{an} = u_{ao} - u_{no} \\
 u_{bn} = u_{bo} - u_{no} \\
 u_{cn} = u_{co} - u_{no}
 \end{array}
 \right\}$$

$$u_{an} + u_{bn} + u_{cn} = 0$$

$$u_{no} = \frac{1}{3}(u_{ao} + u_{bo} + u_{co})$$

三相电压型逆变电路及其工作波形

将输出线电压展开成傅里叶级数,得:

$$u_{ab} = \frac{2\sqrt{3}U_d}{\pi} \left(\sin\omega t - \frac{1}{5}\sin5\omega t - \frac{1}{7}\sin7\omega t + \frac{1}{11}\sin11\omega t + \frac{1}{13}\sin13\omega t - \cdots\right)$$

输出线电压的有效值为: $U_{ab} = \sqrt{\frac{2}{3}} U_d = 0.816 U_d$

输出线电压的基波幅值为: $U_{ab(1)M} = \frac{2\sqrt{3}U_d}{\pi} = 1.1U_d$

输出线电压的基波有效值为: $U_{ab(1)} = \frac{2\sqrt{3}}{\pi\sqrt{2}} U_d = 0.78 U_d$

将负载相电压展开成傅里叶级数,得:

$$u_{an} = \frac{2U_d}{\pi} \left(\sin \omega t + \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7\omega t + \frac{1}{11} \sin 11\omega t + \frac{1}{13} \sin 13\omega t + \cdots \right)$$

输出相电压的有效值为:

$$U_{\rm an} = \frac{\sqrt{2}}{3} U_d = 0.471 U_d$$

输出相电压的基波幅值为:

$$U_{an(1)M} = \frac{2U_d}{\pi} = 0.637U_d$$

输出相电压的基波有效值为: $U_{an(1)} = \frac{2U_d}{\pi\sqrt{2}} = 0.45U_d$

■ (4) 电压型逆变器优缺点

- a) 优点
 - ◆ 抑制浪涌电压能力强
 - ◆ 频率可向上、向下调节
 - ◆ 电压利用率高,适用于负载比较稳定的运行方式
- b)缺点
 - ◆ 只能单向传递功率
 - ◆ 故障电流较难克制
 - ◆ 不能调压,谐波含量大

- 电流型逆变电路的直流侧电源为电流源。直流电流无脉动,直流回路呈高阻抗。
- 交流侧输出电流的波形为矩形波,并且与负载阻抗角无关。
- 交流侧输出电压波形则取决于负载的性质。由于电流源电流的单向性,逆变桥的各桥臂不必并联无功反馈二极管。

■ 三相电流源型逆变器

- a)工作原理
 - ◆ 电路中开关T₁~T₆为GTO
 - ◆ 在一个周期内,各管均导通120°,导通顺序是 T_1 、 $T_2 \rightarrow T_2$ 、 $T_3 \rightarrow T_3$ 、 $T_4 \rightarrow T_4$ 、 $T_5 \rightarrow T_5$ 、 $T_6 \rightarrow T_6$ 、 T_1 ,每个状态持续60°
 - ◆ 电路工作时,任何瞬时都只有两个开关导通,一个在共阴极组, 另一个在共阳极组
 - ◆ 为使每相绕组在任何时刻都有电流,一般负载多采用三角形连接

三相电流源型逆变电路

■ 三相电流源型逆变器

- b) 方波控制时序波形
 - ◆ 忽略换流过程,假定T₁~T₆为理想 开关,一个周期内,各管均导通 120°
 - ◆ 导通控制顺序为: T_1 、 T_2 → T_2 、 T_3 → T_3 、 T_4 → T_4 、 T_5 → T_5 、 T_6 → T_6 、 T_1 , 每个状态持续60°
 - ◆ 为确定逆变电路的输出线电流及负载的相电流波形,可以首先分别作出在不同工作状态时的等值电路,再利用电路的分流公式,求出各个线电流与负载相电流

三相电流源型逆变电路工作波形

- 三相电流源型逆变器
 - b) 方波控制时序波形

T₁、T₂导通

T₂、T₃导通

三相电流源型逆变电路工作波形

■ 三相电流源型逆变器

• b) 方波控制时序波形

三相电流源型逆变电路工作波形

- 三相电流源型逆变器
 - b) 方波控制时序波形

三相电流源型逆变电路工作波形

■ 三相电流源型逆变器

• c) 输出电压计算

例: T₆、T₁导通, 其等效电路为

则: $i_A = I_d$ $i_B = -I_d$ $i_C = 0$ $i_{AB} = 2I_d/3$

$$i_{\rm CA} = i_{\rm BC} - I_d/3$$

三相电流源型逆变电路工作波形

将线电流,和相电流,AB展开成傅里叶级数,得:

$$i_{A} = \frac{2\sqrt{3}I_{d}}{\pi} \left(\sin \omega t - \frac{1}{5}\sin 5\omega t - \frac{1}{7}\sin 7 \omega t + \frac{1}{11}\sin 11\omega t + \frac{1}{13}\sin 13 \omega t - \cdots\right)$$

$$i_{AB} = \frac{2I_{d}}{\pi} \left(\sin \omega t + \frac{1}{5}\sin 5\omega t + \frac{1}{7}\sin 7 \omega t\right)$$

$$i_{AB} = \frac{2I_d}{\pi} \left(\sin \omega t + \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7 \omega t + \frac{1}{11} \sin 11\omega t + \frac{1}{13} \sin 13 \omega t + \cdots \right)$$

线电流的有效值为:

$$I_{\rm A} = \sqrt{\frac{2}{3}} I_d = 0.816 I_d$$

线电流的基波幅值为:

$$I_{A_{(1)M}} = \frac{2\sqrt{3}}{\pi} I_d = 1.1 I_d$$

线电流的基波有效值为:

$$I_{A(1)} = \frac{\sqrt{6}}{\pi} I_d = 0.78 I_d$$

第五章 方波逆变器电路(DC-AC)

■作业: XXXXXXXXX