Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет»

Факультет физики, математики и инженерных технологий Кафедра электротехники, электроники и автоматики

РАЗРАБОТКА МОБИЛЬНОГО РОБОТА С СИСТЕМОЙ КОМПЬЮТЕРНОГО ЗРЕНИЯ ДЛЯ ПРОВЕДЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАБОТ

Выполнил: студент группы РТ-41 Кучиев Феликс Робертович

Научный руководитель: к.ф.-м.н, доцент кафедры ЭЭиА Рыбаков Алексей Владимирович

Актуальность

В настоящее время идет тенденция вытеснения ручного труда, причем сельскохозяйственная область нуждается в этом не менее чем иные промышленные предприятия, автоматизация которых идет достигло давно впечатляющих уже результатов, чего не сказать сельскохозяйственном секторе. Поэтому создание робототехнических систем для сельского хозяйства задача не тривиальная и требует повышенного внимания. Использование данного робота в сельском хозяйстве имеет ряд преимуществ, таких как точное определение и подсчет спелых помидоров без наличия человека, роботы не нуждаются отдыхе не имеет возможность обманывать работодателя.

Цель работы

Мобильная платформа с системой компьютерного зрения разрабатывается с целью мониторинга тепличного помещения, облегчения и ускорения процесса сбора томатов.

Задачи

Исходя из цели были сформулированы следующие задачи:

- провести обзор аналогичных систем
- построить 3D модель мобильного робота
- разработать программу определения и подсчета томатов
- разработать программу обнаружения QR-кода
- разработать программу движения мобильного робота
- разработать принципиальную электрическую схему
- спроектировать печатную плату управления двигателями
- спроектировать сборочный чертеж мобильного робота
- спроектировать развертку корпуса мобильного робота
- разработать технологическую схему сборки мобильного робота
- разработать кинематическую схему мобильного робота
- разработать макет разрабатываемой системы

Обзор аналогов

ХАРАКТЕРИСТИКИ	FarmWise	Abundant Robotics	Sweeper	FarmView
Возможность работы без участия человека	да	да	да	да
Оснащение	Техническое зрение, машинное обучение	Техническое зрение, манипулятор	Техническое зрение, манипулятор	Техническое зрение, манипулятор
Преимущества	Автономность, увеличение кол-ва собранного урожая, сокращает затраты на обеспечение	Срывает фрукты не вредя веткам растения.	Манипулятор работает аккуратно и не устает, а на каждый плод тратит около 24 секунд, сокращает затраты на рабочую силу	Предоставляет фермеру примерный прогноз урожайности, что увеличивает урожайность выращиваемых культур.
Недостатки	-	Не способен работать с мягкими помидорами, клубниками	-	-
Внешний вид				

Конструктивно-технологическая часть Структурная схема:

Функциональная схема:

Корпус мобильного робота:

- 2. Мотор-редуктор IG-43GM
- 3. Кронштейн с камерой
- 4. Плата управления двигателями
- 5. Плата управления

Обозначение отверстий	Диаметр отверстий, мм	Диаметр контактной площадки, мм	Количество отверстий
*	0.6*1	2.5	94
•	0.8 ⁻¹	2.5	2

1. * Размер для справок 2. Плата должна соответствовать ГОСТ 2.417–91

2. плата облжна собтоетствоводников 1 ост 2.417—91
3. Минимальная ширина проводников 0,7 мм.
4. Требования к параметрам элементов платы — в соответствии с конструктивными данными.
5. Наименьшее расстояние между проводниками 0.4 мм.
6. Наименьшее расстоянеие между контактными площадками 0.7 мм.

Προβ.	Кучиев Ф.Р. Рыбаков А.В.	Подп.	Дата	Плата управления двигателями	/lum.	Масса	Масштац 2:1
Т.контр. Н.контр. Утв.	Рыбаков А.В. Рыбаков А.В			Стеклотекстолит СТЭФ ГОСТ-12652-74	Лист АГ	<u> Улист</u> 19, Р7	

Копировал

Формат

Разработка программы

Движение мобильной платформы

Первым делом для того, чтобы робот выполнял поставленные перед собой задачи, робот должен распознавать следующие классы объектов:

- 1. Дорога. Представляет собой черную линию толщиной 50 мм;
- 2. Перекресток. Представляет собой пересечение двух линий;
- 3. Знаки. QR-коды.

QR-код - это машиночитаемая оптическая метка, которая содержит информацию об элементе, к которому он прикреплен.

Обнаружение томатов

- (а)Исходное цветное изображение,
 - (b) Серое изображение,
 - (с) Двоичное изображение,
- (d) Изображение после удаления фона,
 - (e-f) Извлечение красных пикселей,
 - (g) Распознавание томата

HSV преобразование

$$Hue = \begin{cases} 0 \sim 10 \text{ или } 170 \sim 180, \text{ зрелый томат} \\ 10 \sim 38, \text{ полузрелый томат} \\ 40 \sim 67, \text{ незрелый томат} \end{cases}$$

Результаты тестирования вне теплицы (на белом фоне)

	C	Обнаружение	Ошибки	Точность	
No	Зрелые	Полузрелые	Неспелые		
1	12	7	4	2	93.3%
2	21	12	2	9	92.5%
3	37	25	6	9	92.5%

Результаты тестирования в теплице

Результаты тестирования в теплице

Обнаружение			Ошибки	Точность	
No	Зрелые	Полузрелые			
1	29	2	10	31.7%	
2	27	5	12	37.8%	
3	24	2	9	34.2%	
4	21	7	15	29.3%	

Кинематика мобильного робота

$$R_{z}(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} \dot{x}_{c} = \frac{r}{2} \cdot (\omega_{l} + \omega_{r}) \cdot \cos \theta; \\ \dot{y}_{c} = 0; \\ \dot{\theta} = \frac{r}{2} \cdot (\omega_{r} - \omega_{l}), \end{cases}$$

$$\dot{q} = \begin{bmatrix} \dot{x}_c \\ \dot{y}_c \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2} \cdot \cos\theta & \frac{r}{2} \cdot \cos\theta \\ \frac{r}{2} \cdot \sin\theta & \frac{r}{2} \cdot \sin\theta \\ \frac{r}{b} & \frac{r}{-b} \end{bmatrix} \begin{bmatrix} \omega_r \\ \omega_l \end{bmatrix}.$$

Заключение

В процессе выполнения выпускной квалификационной работы, была разработана мобильная платформа и алгоритмы, которые позволяют получить положение движущейся машины вдоль рядов относительно границы коридоров в определенной теплице, считывание QR-кодов, определение и подсчет томатов. Мобильная платформа позволяет повысить уровень безопасности при выполнении задач в жаркой, грязной и тяжелой тепличной среде, также снизить занятость рабочих во время вредных операций.

•