Computational Physics

Übungsblatt 9.1

Miriam Simm miriam.simm@tu-dortmund.de

Katrin Bolsmann katrin.bolsmann@tu-dortmund.de

 ${\it Mario~Alex~Hollberg} \\ {\it mario-alex.hollberg@tu-dortmund.de}$

Abgabe: 26. Juni 2020

Monte-Carlo-Simulation eines einzelnen Spins

Bei dieser Aufgabe wird eine MC-Simulation mittels des Metropolis-Alogrithmus eines einzelnen Spins $\sigma=\pm 1$ mit der Energie

$$\mathcal{H} = -\sigma H$$

im äußeren Magnetfeld H implementiert.

Folgende Schritte werden dabei gemacht:

- 1. Der Spin σ wird auf +1 gesetzt. Alternativ könnte man hier auch den Anfangsspin zufällig wählen.
- 2. Die Energiedifferenz $\Delta E = \Delta \sigma H$ mit $\Delta \sigma = \pm 2$ und die Übergangswahrscheinlichkeit $p = \exp(-\beta \Delta E)$ werden bestimmt.
 - Falls $\Delta E \leq 0$, dann wird der Spin-Flip akzeptiert, da dieser Zustand energetisch günstiger ist.
 - Falls $\Delta E > 0$, dann wird die Übergangswahrscheinlichkeit p mit einer gleichverteilten Vorschlagswarhscheinlichkeit $V \in [0,1]$ verglichen. Ist $V \leq p$, so wird der Spin-Flip akzeptiert. Ansonsten wird der Zustand beigehalten.
- 3. Die Magnetisierung m wird aktualisiert.
- 4. Wiederholung der Schritte (2) bis (3).

Die numerisch bestimmte Magnetisierung m wird zuletzt auf die betragsmäßig größten Magnetisierung m_{\max} normiert. In Abbildung 1 wird das numerische und das analytische Ergebnis: $m = \tanh\left(\beta H\right)$ mit $\beta = \frac{1}{k_{\rm b}T} = 1$ dargestellt.

Abbildung 1: Vergleich zwischen dem analytischen und dem numerischen Ergebnis für die Magnetisierung m eines einzelnen Spins. Der Metropolis-Algorithmus wird mit 10^4 Werten für das äußere Magnetfeld H, mit jeweils 10^6 Schritten durchgeführt.