MCDS.exe Testing

Laura Marshall

2023-06-23

Things outstanding in mrds

In addition to the notes throughout this document the following also needs further work or investigations:

- **FIXED** Issue 83 in mrds relating to factor ordering differences between mrds and MCDS (https://github.com/DistanceDevelopment/mrds/issues/83)
- Now seems to spot and display warnings and errors from MCDS Reading in and processing the warnings and / or errors in the log file generated by MCDS What do we do about cases where mcds.exe fits with negative pdf? E.g. https://github.com/DistanceDevelopment/Distance/issues/160
- Do the monotonicity constraints get passed to MCDS correctly? YES
- Check the passing of parameter starting values to MCDS also potential issues here regarding factor ordering! Now passing parameter start values no problems with factor ordering as this is dealt with by the reordering of the factor names passed to MCDS
- Made errors into non fatal warnings and messages
- Check the passing of parameter bound to MCDS. Note this can only be done via mrds NOT via Distance. Low priority not done
- Could do with more tests of the case of uniform only models to check that abundance estimates are correctly calculated.

Capercaillie Data

Various warnings and errors that want further investigation:

Table 1: Comparison of R and MCDS model fits for Capercaillie data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	$Nhat_R$	Nhat_MCDS
unif	cos	0	-490.7870	-490.7870	mrds (nlminb)	1.00	1.00	112.00	112.00
unif	\cos	1	-478.1321	-478.1321	mrds (nlminb)	0.59	0.59	188.93	188.93
unif	\cos	2	-477.0771	-477.0765	MCDS.exe	0.68	0.68	164.27	164.21
unif	\cos	3	-477.0723	-477.0713	MCDS.exe	0.68	0.68	165.59	165.57
$_{ m hn}$	\cos	0	-477.9525	-477.9525	mrds (nlminb)	0.61	0.61	182.76	182.76
$_{ m hn}$	cos	1	-477.2076	-477.2057	MCDS.exe	0.66	0.66	169.09	169.04
$_{ m hn}$	\cos	2	-477.0673	-477.0672	MCDS.exe	0.69	0.69	162.03	162.04
$_{ m hn}$	$_{ m herm}$	0	-477.9525	-477.9525	mrds (nlminb)	0.61	0.61	182.76	182.76
$_{ m hn}$	herm	1	-477.2173	-477.2162	MCDS.exe	0.67	0.67	166.20	166.15
$_{ m hn}$	herm	2	-477.2205	NA	mrds (nlminb)	0.67	NA	166.04	NA
hr	poly	0	-476.9369	-476.9369	mrds (nlminb)	0.70	0.70	159.40	159.45
hr	poly	1	-476.9394	-476.9395	mrds (nlminb)	0.70	0.70	159.56	159.46
hr	poly	2	-476.8707	-476.7331	MCDS.exe	0.71	0.68	157.86	164.52

Cue Counting Data

Things that might want further investigation:

- Nhat for the hn herm 1 model is ~14% higher for the MCDS optimised model than the R optimised model
- Why is the lnl_R value for the hr poly 2 model negative? This has now changed!

Various warnings and errors that want further investigation:

```
# Fitting hazard-rate key function with simple polynomial (4,6) adjustments
# ** Warning: One or more cluster sizes are coded as -1. Distance assumes -1 to mean a cluster of undet
# Warning: Detection function is not strictly monotonic! Warning: Detection function is less than 0 at s
# Warning: Detection function is less than 0 at some distancesAIC= -0.103
# Fitting half-normal key function with Hermite(4,6) adjustments
# ** Warning: One or more cluster sizes are coded as -1. Distance assumes -1 to mean a cluster of undet
# ** Warning: convergence failure **
# Warning in check.mono(result, n.pts = control$mono.points) :
  Detection function is not strictly monotonic!
# Warning in check.mono(result, n.pts = control$mono.points) :
  Detection function is not strictly monotonic!
# AIC= -1.752
# Warning in mrds::check.mono(model, n.pts = 20) :
  Detection function is not strictly monotonic!
# No survey area information supplied, only estimating detection function.
# Fitting half-normal key function with Hermite(4,6) adjustments
# ** Warning: One or more cluster sizes are coded as -1. Distance assumes -1 to mean a cluster of undet
# ** Warning: convergence failure **
# Warning in check.mono(result, n.pts = control$mono.points) :
  Detection function is not strictly monotonic!
# AIC= 1.966
# No survey area information supplied, only estimating detection function.
data("CueCountingExample")
model.compare <- test.models(CueCountingExample,</pre>
                             truncation = max(CueCountingExample$distance, na.rm = TRUE),
                             transect = "point")
save(model.compare, file = "results/cue_counting.ROBJ")
```

Table 2: Comparison of R and MCDS model fits for cue counting data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-18.110662	-18.110662	mrds (nlminb)	1.00	1.00	40.00	40.00
unif	\cos	1	1.933002	1.933002	MCDS.exe	0.31	0.31	128.30	128.30
unif	\cos	2	2.377847	2.377847	MCDS.exe	0.25	0.25	160.47	160.45
unif	\cos	3	2.569996	2.661115	mrds (nlminb)	0.32	0.30	124.64	132.36
$_{ m hn}$	\cos	0	1.916333	1.916332	MCDS.exe	0.24	0.24	167.61	167.61
$_{ m hn}$	cos	1	2.109706	2.109790	mrds (nlminb)	0.30	0.30	132.40	132.27
$_{ m hn}$	\cos	2	2.132097	2.132096	MCDS.exe	0.28	0.28	144.42	144.34
$_{ m hn}$	$_{ m herm}$	0	1.916333	1.916332	MCDS.exe	0.24	0.24	167.61	167.61
$_{ m hn}$	$_{ m herm}$	1	2.016928	1.925329	MCDS.exe	0.28	0.24	145.05	165.77
$_{ m hn}$	herm	2	2.016971	3.876089	mrds (nlminb)	0.28	0.28	145.06	142.45
hr	poly	0	1.381404	1.381404	MCDS.exe	0.28	0.28	142.27	142.26
hr	poly	1	1.701666	1.701666	MCDS.exe	0.27	0.27	145.94	145.92
hr	poly	2	NA	4.051256	mrds (nlminb)	NA	0.29	NA	138.47

Ducknest Data

Things that might want further investigation:

• p_MCDS is 1 for a few of these models and when it is, it is estimating Nhat much lower than the R optimiser.

Fitting half-normal key function with Hermite(4,6) adjustments

save(model.compare, file = "results/ducknest.ROBJ")

Table 3: Comparison of R and MCDS model fits for Ducknest data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-467.5003	-467.5003	mrds (nlminb)	1.00	1.00	534.00	534.00
unif	\cos	1	-463.2398	-463.2398	MCDS.exe	0.85	0.85	630.88	630.88
unif	\cos	2	-462.6916	-462.6908	MCDS.exe	0.88	0.88	607.05	606.98
unif	\cos	3	-462.6444	-462.6443	MCDS.exe	0.89	0.89	599.64	599.63
hn	\cos	0	-463.0669	-467.4962	mrds (nlminb)	0.87	1.00	614.25	534.04
hn	\cos	1	-462.9360	-462.9358	MCDS.exe	0.89	0.89	599.84	599.78
$_{ m hn}$	\cos	2	-462.9327	-462.9326	MCDS.exe	0.89	0.89	597.68	597.66
$_{ m hn}$	herm	0	-463.0669	-467.4962	mrds (nlminb)	0.87	1.00	614.25	534.04
$_{ m hn}$	$_{ m herm}$	1	-463.0601	-463.0592	MCDS.exe	0.87	0.87	615.35	614.76
hn	herm	2	-463.0417	-463.0352	MCDS.exe	0.86	0.86	619.58	620.01
hr	poly	0	-462.8967	-462.8967	mrds (nlminb)	0.89	0.89	600.63	600.82
hr	poly	1	-462.8996	-462.9044	mrds (nlminb)	0.89	0.89	600.86	600.89
hr	poly	2	-462.4992	-462.1233	MCDS.exe	0.90	0.89	592.58	600.37

${\bf Duiker Camera Traps}$

Things that might want further investigation: - Nhat values look to differ by around 20% between the two optimisers

Table 4: Comparison of R and MCDS model fits for Duiker camera trap data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-14689.18	-14689.18	mrds (nlminb)	0.98	0.98	5971.15	5971.15
unif	\cos	1	-12497.73	-12497.73	mrds (nlminb)	0.30	0.30	19550.79	19550.13
unif	\cos	2	-12527.50	-12495.90	MCDS.exe	0.35	0.32	16662.78	18517.00
unif	\cos	3	-12463.77	-12463.65	MCDS.exe	0.34	0.34	17293.59	17283.16
$_{ m hn}$	\cos	0	-12539.80	-12539.80	mrds (nlminb)	0.26	0.26	22381.29	22380.94
$_{ m hn}$	cos	1	-12476.04	-12475.87	MCDS.exe	0.33	0.33	17813.30	17796.84
$_{ m hn}$	\cos	2	-12458.57	-12458.56	MCDS.exe	0.37	0.37	15798.09	15799.97
$_{ m hn}$	$_{ m herm}$	0	-12539.80	-12539.80	mrds (nlminb)	0.26	0.26	22381.29	22380.94
$_{ m hn}$	$_{ m herm}$	1	-12472.93	-12510.95	mrds (nlminb)	0.34	0.29	17320.90	20043.80
$_{ m hn}$	herm	2	-12472.49	-12504.09	mrds (nlminb)	0.34	0.29	17224.44	19894.14
hr	poly	0	-12436.80	-12436.80	mrds (nlminb)	0.40	0.40	14739.07	14738.80
hr	poly	1	-12436.80	-12436.81	mrds (nlminb)	0.40	0.40	14738.67	14742.50
hr	poly	2	-12436.22	-12434.54	MCDS.exe	0.39	0.38	14852.24	15326.45

LTExercise Data

Things that might want further investigation: - - Why is warning about "Warning in process.data(data, meta.data, check = FALSE): no truncation distance specified; using largest observed distance"?

Table 5: Comparison of R and MCDS model fits for LTExercise data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	$Nhat_R$	Nhat_MCDS
unif	cos	0	-375.6845	-375.6845	mrds (nlminb)	1.00	1.00	105.00	105.00
unif	\cos	1	-327.2768	-327.2768	mrds (nlminb)	0.51	0.51	207.38	207.38
unif	\cos	2	-335.3956	-315.8040	MCDS.exe	0.61	0.37	171.61	280.68
unif	\cos	3	-315.5099	-315.3818	MCDS.exe	0.34	0.35	306.93	304.08
$_{ m hn}$	\cos	0	-317.4681	-317.4681	mrds (nlminb)	0.35	0.35	300.70	300.70
$_{ m hn}$	cos	1	-317.4680	-317.4680	MCDS.exe	0.35	0.35	300.21	300.26
$_{ m hn}$	\cos	2	-317.2043	-317.2043	MCDS.exe	0.37	0.37	281.75	281.75
$_{ m hn}$	$_{ m herm}$	0	-317.4681	-317.4681	mrds (nlminb)	0.35	0.35	300.70	300.70
$_{ m hn}$	herm	1	-317.4610	-317.4610	mrds (nlminb)	0.35	0.35	300.77	300.78
$_{ m hn}$	herm	2	-315.4484	-315.4070	MCDS.exe	0.34	0.34	311.19	306.79
hr	poly	0	-317.5457	-317.5457	mrds (nlminb)	0.42	0.42	250.34	250.32
hr	poly	1	-317.5458	NA	mrds (nlminb)	0.42	NA	250.30	NA
hr	poly	2	-342.2048	-316.4437	MCDS.exe	0.59	0.39	177.21	270.83

PTExercise Data

Things that might want further investigation: - - Why is is warning about "Warning in process.data(data, meta.data, check = FALSE): no truncation distance specified; using largest observed distance"?

Table 6: Comparison of R and MCDS model fits for PTExercise data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	$p_{\rm MCDS}$	$Nhat_R$	Nhat_MCDS
unif	cos	0	-576.5580	-576.5580	mrds (nlminb)	1.00	1.00	144.00	144.00
unif	\cos	1	-472.1765	-472.1765	mrds (nlminb)	0.30	0.30	479.26	479.26
unif	\cos	2	-471.3570	-457.2211	MCDS.exe	0.29	0.18	489.04	814.73
unif	\cos	3	-467.8910	-457.0976	MCDS.exe	0.32	0.19	446.72	764.10
$_{ m hn}$	\cos	0	-458.5701	-458.5701	mrds (nlminb)	0.16	0.16	875.75	875.75
$_{ m hn}$	cos	1	-457.8850	-457.8850	mrds (nlminb)	0.20	0.20	726.49	726.28
$_{ m hn}$	\cos	2	-457.8646	-457.8646	mrds (nlminb)	0.21	0.21	700.66	700.37
$_{ m hn}$	$_{ m herm}$	0	-458.5701	-458.5701	mrds (nlminb)	0.16	0.16	875.75	875.75
$_{ m hn}$	$_{ m herm}$	1	-458.1114	-458.5393	mrds (nlminb)	0.19	0.17	750.89	866.98
$_{ m hn}$	herm	2	-458.1115	NA	mrds (nlminb)	0.19	NA	753.01	NA
hr	poly	0	-458.8069	-458.8069	mrds (nlminb)	0.26	0.26	549.29	549.27
hr	poly	1	-458.7402	-458.7402	MCDS.exe	0.26	0.26	557.15	557.16
hr	poly	2	-585.5221	-456.5765	MCDS.exe	0.24	0.22	610.24	643.09

Savannah Sparrow 1980

Table 7: Comparison of R and MCDS model fits for Savannah sparrow 1980 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-1352.103	-1352.103	mrds (nlminb)	1.00	1.00	276.00	276.00
unif	\cos	1	-1140.331	-1140.331	mrds (nlminb)	0.30	0.30	922.84	922.84
unif	\cos	2	-1103.437	-1103.140	MCDS.exe	0.17	0.17	1589.95	1632.38
unif	\cos	3	-1134.781	-1103.041	MCDS.exe	0.32	0.16	855.36	1696.16
$_{ m hn}$	\cos	0	-1103.866	-1103.866	mrds (nlminb)	0.15	0.15	1827.90	1827.80
$_{ m hn}$	cos	1	-1103.810	-1103.810	MCDS.exe	0.15	0.15	1886.75	1887.79
$_{ m hn}$	\cos	2	-1102.887	-1102.887	MCDS.exe	0.13	0.13	2153.27	2152.34
$_{ m hn}$	$_{ m herm}$	0	-1103.866	-1103.866	mrds (nlminb)	0.15	0.15	1827.90	1827.80
$_{ m hn}$	$_{ m herm}$	1	-1103.864	-1103.864	MCDS.exe	0.15	0.15	1828.57	1828.97
$_{ m hn}$	herm	2	-1102.912	-1102.593	MCDS.exe	0.16	0.16	1734.67	1694.40
hr	poly	0	-1112.460	-1112.460	mrds (nlminb)	0.20	0.20	1381.75	1381.48
hr	poly	1	-1109.578	-1109.578	mrds (nlminb)	0.19	0.19	1479.80	1479.61
hr	poly	2	-1109.428	-1102.601	MCDS.exe	0.19	0.15	1480.74	1843.54

Savannah Sparrow 1981

Everything looks to run fine.

Table 8: Comparison of R and MCDS model fits for Savannah sparrow 1981 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-946.7393	-946.7393	mrds (nlminb)	1.00	1.00	186.00	186.00
unif	cos	1	-814.4403	-814.4403	mrds (nlminb)	0.30	0.30	614.72	614.72
unif	cos	2	-811.7519	-789.8251	MCDS.exe	0.29	0.18	642.58	1052.40
unif	cos	3	-788.2451	-1146.4401	mrds (nlminb)	0.15	0.18	1276.63	1020.20
$_{ m hn}$	\cos	0	-790.8846	-790.8846	mrds (nlminb)	0.16	0.16	1153.99	1153.93
$_{ m hn}$	\cos	1	-790.1360	-790.1360	mrds (nlminb)	0.14	0.14	1336.80	1336.55
$_{ m hn}$	\cos	2	-788.3169	-788.3169	mrds (nlminb)	0.17	0.17	1083.33	1083.00
$_{ m hn}$	$_{ m herm}$	0	-790.8846	-790.8846	mrds (nlminb)	0.16	0.16	1153.99	1153.93
$_{ m hn}$	herm	1	-790.8620	-790.8620	mrds (nlminb)	0.16	0.16	1154.83	1154.77
$_{ m hn}$	herm	2	-788.4557	-788.4557	mrds (nlminb)	0.15	0.15	1258.17	1257.86
hr	poly	0	-787.8818	-787.8818	mrds (nlminb)	0.20	0.20	950.35	950.29
hr	poly	1	-787.8781	-787.8781	mrds (nlminb)	0.20	0.20	952.19	952.12
hr	poly	2	-787.8423	-787.5409	MCDS.exe	0.19	0.19	968.09	981.53

Sika Deer

Table 9: Comparison of R and MCDS model fits for sikadeer data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-10178.07	-10178.07	mrds (nlminb)	1.00	1.00	1921.00	1921.00
unif	\cos	1	-10104.93	-10104.93	MCDS.exe	0.73	0.73	2638.66	2638.72
unif	\cos	2	-10097.06	-10096.96	MCDS.exe	0.66	0.66	2892.67	2900.70
unif	\cos	3	-10097.06	-10096.95	MCDS.exe	0.66	0.67	2893.42	2887.48
hn	\cos	0	-10117.72	-10117.72	mrds (nlminb)	0.77	0.77	2506.17	2506.17
hn	\cos	1	-10104.13	-10104.13	MCDS.exe	0.65	0.65	2939.25	2939.16
hn	\cos	2	-10101.39	-10101.15	MCDS.exe	0.69	0.69	2792.91	2796.22
$_{ m hn}$	$_{ m herm}$	0	-10117.72	-10117.72	mrds (nlminb)	0.77	0.77	2506.17	2506.17
$_{ m hn}$	$_{ m herm}$	1	-10117.29	-10117.29	MCDS.exe	0.77	0.77	2509.27	2509.21
hn	$_{ m herm}$	2	-10096.92	-10096.82	MCDS.exe	0.67	0.66	2887.08	2905.58
hr	poly	0	-10103.46	-10103.46	mrds (nlminb)	0.68	0.68	2816.55	2815.37
hr	poly	1	NA	-10098.33	MCDS.exe	NA	0.65	NA	2934.68
hr	poly	2	-10100.86	-10098.32	MCDS.exe	0.62	0.66	3086.04	2926.67

Wren 5 minute count

Note that the following model fails to fit in R and gives warnings in MCDS but does return a result with a very poor likelihood.

```
# Fitting uniform key function with cosine(1,2,3) adjustments
# ** Warning: Maximum probability of detection is greater than one: invalid model fitted **
# ** Warning: Maximum probability of detection is greater than one: invalid model fitted **
# ** Warning: Maximum probability of detection is greater than one: invalid model fitted **
# Warning in check.mono(result, n.pts = control$mono.points):
# Detection function is less than 0 at some distances
# Warning in check.mono(result, n.pts = control$mono.points):
# Detection function is less than 0 at some distances
# AIC= 7796.69
data("wren 5min")
```

Table 10: Comparison of R and MCDS model fits for wren_5min data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-664.8902	-664.8902	mrds (nlminb)	1.00	1.00	134.00	134.00
unif	cos	1	-601.4723	-601.4723	mrds (nlminb)	0.31	0.31	435.61	435.61
unif	cos	2	-601.4600	-601.4600	mrds (nlminb)	0.32	0.32	424.20	424.12
unif	cos	3	NA	-3895.3448	mrds (nlminb)	NA	0.11	NA	1271.25
hn	\cos	0	-604.6857	-604.6857	mrds (nlminb)	0.26	0.26	524.24	524.22
$_{ m hn}$	\cos	1	-600.3846	-600.3704	MCDS.exe	0.31	0.31	428.89	428.51
$_{ m hn}$	\cos	2	-597.6245	-597.5602	MCDS.exe	0.37	0.38	360.38	355.28
$_{ m hn}$	$_{ m herm}$	0	-604.6857	-604.6857	mrds (nlminb)	0.26	0.26	524.24	524.22
$_{ m hn}$	$_{ m herm}$	1	-600.1696	-603.7420	mrds (nlminb)	0.32	0.27	418.55	493.43
hn	herm	2	-600.1190	-600.0568	MCDS.exe	0.32	0.32	416.87	413.04
hr	poly	0	-597.2705	-597.2705	mrds (nlminb)	0.39	0.39	345.72	345.71
hr	poly	1	-597.2698	-597.2698	MCDS.exe	0.39	0.39	346.21	346.18
hr	poly	2	-596.8258	-594.3689	MCDS.exe	0.39	0.37	345.46	361.61

Wren cue counting

This one brings up the warning 'Detection function is less than 0 at some distances' for quite a few of the models. This warning occurred for the last model where there is a substantial difference in abundance estimates.

Table 11: Comparison of R and MCDS model fits for wren_cuecount data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-4245.327	-4245.327	mrds (nlminb)	1.00	1.00	774.00	774.00
unif	\cos	1	-3591.352	-3591.352	MCDS.exe	0.30	0.30	2594.48	2594.48
unif	\cos	2	-3437.363	-3424.317	MCDS.exe	0.17	0.16	4518.35	4835.56
unif	\cos	3	-3430.144	-35113.874	mrds (nlminb)	0.14	0.82	5525.55	946.66
$_{ m hn}$	\cos	0	-3446.447	-3446.447	mrds (nlminb)	0.13	0.13	5883.48	5883.13
$_{ m hn}$	\cos	1	-3415.952	-3415.825	MCDS.exe	0.17	0.17	4512.30	4504.66
$_{ m hn}$	\cos	2	-3410.772	-3410.746	MCDS.exe	0.19	0.19	4074.65	4072.11
$_{ m hn}$	$_{ m herm}$	0	-3446.447	-3446.447	mrds (nlminb)	0.13	0.13	5883.48	5883.13
$_{ m hn}$	$_{ m herm}$	1	-3416.716	-3497.836	mrds (nlminb)	0.17	0.15	4518.43	5224.07
$_{ m hn}$	$_{ m herm}$	2	-3416.781	-3435.901	mrds (nlminb)	0.17	0.15	4507.43	5128.45
hr	poly	0	-3425.337	-3425.337	mrds (nlminb)	0.23	0.23	3354.83	3354.43
hr	poly	1	-3423.197	-3423.197	MCDS.exe	0.22	0.22	3587.06	3586.67
hr	poly	2	-4500.702	-3409.010	MCDS.exe	0.26	0.20	3005.98	3908.23

Wren line transect

Table 12: Comparison of R and MCDS model fits for wren_lt data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-718.4065	-718.4065	mrds (nlminb)	1.00	1.00	156.00	156.00
unif	\cos	1	-709.8168	-709.8168	mrds (nlminb)	0.66	0.66	235.41	235.41
unif	\cos	2	-706.9010	-706.8959	MCDS.exe	0.71	0.71	218.95	218.90
unif	\cos	3	-705.2165	-705.2152	MCDS.exe	0.76	0.76	206.18	205.97
hn	\cos	0	-708.0940	-708.0940	mrds (nlminb)	0.69	0.69	227.72	227.73
$_{ m hn}$	\cos	1	-706.8055	-706.8016	MCDS.exe	0.72	0.72	216.36	216.31
$_{ m hn}$	\cos	2	-705.8964	-705.8591	MCDS.exe	0.76	0.76	206.22	205.41
$_{ m hn}$	$_{ m herm}$	0	-708.0940	-708.0940	mrds (nlminb)	0.69	0.69	227.72	227.73
$_{ m hn}$	$_{ m herm}$	1	-706.1314	-706.1162	MCDS.exe	0.73	0.73	213.46	212.84
$_{ m hn}$	herm	2	-706.0683	-705.5404	MCDS.exe	0.73	0.74	212.74	210.18
hr	poly	0	-704.0664	-704.0674	mrds (nlminb)	0.84	0.84	184.83	184.65
hr	poly	1	-703.7942	-703.7942	mrds (nlminb)	0.81	0.81	191.89	191.89
hr	poly	2	-703.5428	-702.9242	MCDS.exe	0.81	0.75	193.26	208.62

Wren snapshot

The below analysis is problematic in R but works in MCDS

```
data("wren_snapshot")
fit.test <- ds(wren_snapshot,</pre>
               key = "hn",
               adjustment = "herm",
               nadj = 1,
               truncation = max(wren_snapshot$distance, na.rm = TRUE),
               transect = "point",
               optimizer = "R")
## Fitting half-normal key function with Hermite(4) adjustments
## Warning in check.mono(result, n.pts = control$mono.points): Detection function
## is less than 0 at some distances
## AIC= 2e+24
## Warning in mrds::check.mono(model, n.pts = 20): Detection function is less than
## 0 at some distances
## Some variance-covariance matrix elements were NA, possible numerical problems; only estimating detec
data("wren_snapshot")
model.compare <- test.models(wren_snapshot,</pre>
                             truncation = max(wren_snapshot$distance, na.rm = TRUE),
                             transect = "point")
save(model.compare, file = "results/wren_snapshot.ROBJ")
```

Table 13: Comparison of R and MCDS model fits for wren_snapshot data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	$Nhat_MCDS$
unif	cos	0	-5.806245e+02	-580.6245	mrds (nlminb)	1.00	1.00	118.00	118.00
unif	cos	1	-5.314629e+02	-531.4629	mrds (nlminb)	0.31	0.31	381.80	381.80
unif	cos	2	-5.309127e + 02	-530.9127	mrds (nlminb)	0.38	0.38	310.14	310.10
unif	cos	3	-5.295474e + 02	-529.5405	MCDS.exe	0.36	0.36	332.07	331.91
$_{ m hn}$	cos	0	-5.339206e+02	-533.9206	mrds (nlminb)	0.28	0.28	427.98	427.97
$_{ m hn}$	cos	1	-5.304114e+02	-530.4001	MCDS.exe	0.33	0.33	353.86	353.57
$_{ m hn}$	cos	2	-5.285742e+02	-528.5358	MCDS.exe	0.39	0.40	299.20	296.36
$_{ m hn}$	herm	0	-5.339206e+02	-533.9206	mrds (nlminb)	0.28	0.28	427.98	427.97
$_{ m hn}$	herm	1	-1.000000e + 24	-532.7566	MCDS.exe	0.00	0.30	56967.30	393.40
$_{ m hn}$	herm	2	-5.301192e+02	-531.6170	mrds (nlminb)	0.34	0.32	343.63	372.80
hr	poly	0	-5.269604e+02	-526.9604	mrds (nlminb)	0.40	0.40	295.58	295.58
hr	poly	1	-5.269605e+02	-526.9634	mrds (nlminb)	0.40	0.40	295.58	295.63
hr	poly	2	-5.276001e+02	-526.9494	MCDS.exe	0.39	0.40	298.95	295.19

Some estimates of abundance differ significantly!

Table 14: Comparison of R and MCDS model fits for dathr1 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	\cos	0	-216.7738	-216.7738	mrds (nlminb)	1.00	1.00	60.00	60.00
unif	\cos	1	-198.2567	-198.2567	mrds (nlminb)	0.35	0.35	170.38	170.38
unif	\cos	2	-197.7078	-197.7078	mrds (nlminb)	0.28	0.28	212.21	212.19
unif	\cos	3	-197.6642	-197.6642	mrds (nlminb)	0.30	0.30	198.64	198.65
hn	\cos	0	-198.1089	-198.1089	mrds (nlminb)	0.31	0.31	190.77	190.76
hn	\cos	1	-197.9999	-197.9999	mrds (nlminb)	0.28	0.28	215.86	215.80
$_{ m hn}$	\cos	2	-197.9895	-197.9895	mrds (nlminb)	0.27	0.27	225.83	225.75
$_{ m hn}$	$_{ m herm}$	0	-198.1089	-198.1089	mrds (nlminb)	0.31	0.31	190.77	190.76
$_{ m hn}$	herm	1	-198.1012	-198.1012	mrds (nlminb)	0.31	0.31	191.06	191.06
hn	herm	2	-197.6630	-197.6522	MCDS.exe	0.29	0.29	208.07	206.06
hr	poly	0	-198.5277	-198.5277	mrds (nlminb)	0.41	0.41	146.99	146.98
hr	poly	1	-197.8696	-198.5283	mrds (nlminb)	0.26	0.41	234.37	147.03
hr	poly	2	-198.2563	-195.0557	MCDS.exe	0.42	0.19	142.31	323.83

Best AIC is a slightly concerning model which gives a very different Nhat estimate.

```
load(file = "data/dathr2.RData")
fit <- ds(dat,
          truncation = 30,
          transect = "point",
         key = "hr",
          adjustment = "poly",
          nadj = 2
## Fitting hazard-rate key function with simple polynomial(4,6) adjustments
## Warning in check.mono(result, n.pts = control$mono.points): Detection function
## is not strictly monotonic!
## Warning in check.mono(result, n.pts = control$mono.points): Detection function
## is not strictly monotonic!
## AIC= 398.111
## Warning in mrds::check.mono(model, n.pts = 20): Detection function is not
## strictly monotonic!
## No survey area information supplied, only estimating detection function.
plot(fit)
```


Table 15: Comparison of R and MCDS model fits for dathr2 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	$Nhat_R$	$Nhat_MCDS$
unif	cos	0	-216.7738	-216.7738	mrds (nlminb)	1.00	1.00	60.00	60.00
unif	\cos	1	-198.2567	-198.2567	mrds (nlminb)	0.35	0.35	170.38	170.38
unif	\cos	2	-197.7078	-197.7078	mrds (nlminb)	0.28	0.28	212.21	212.19
unif	\cos	3	-197.6642	-197.6642	MCDS.exe	0.30	0.30	198.68	198.65
$_{ m hn}$	\cos	0	-198.1089	-198.1089	mrds (nlminb)	0.31	0.31	190.77	190.76
$_{ m hn}$	cos	1	-197.9999	-197.9999	mrds (nlminb)	0.28	0.28	215.86	215.80
$_{ m hn}$	\cos	2	-197.9895	-197.9895	mrds (nlminb)	0.27	0.27	225.83	225.75
$_{ m hn}$	herm	0	-198.1089	-198.1089	mrds (nlminb)	0.31	0.31	190.77	190.76
$_{ m hn}$	herm	1	-198.1012	-198.1012	mrds (nlminb)	0.31	0.31	191.06	191.06
$_{ m hn}$	herm	2	-197.6630	-197.6522	MCDS.exe	0.29	0.29	208.07	206.06
hr	poly	0	-198.5277	-198.5277	mrds (nlminb)	0.41	0.41	146.99	146.98
hr	poly	1	-197.8696	-198.5283	mrds (nlminb)	0.26	0.41	234.37	147.03
hr	poly	2	-198.2563	-195.0557	MCDS.exe	0.42	0.19	142.31	323.83

Some errors / warnings:

Table 16: Comparison of R and MCDS model fits for dathr3 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-217.4289	-217.4289	mrds (nlminb)	1.00	1.00	60.00	60.00
unif	\cos	1	-198.8233	-198.8233	mrds (nlminb)	0.35	0.35	169.81	169.80
unif	\cos	2	-197.8924	-197.8919	MCDS.exe	0.27	0.27	220.49	221.81
unif	\cos	3	-197.7923	-197.7923	mrds (nlminb)	0.24	0.24	246.02	245.98
$_{ m hn}$	\cos	0	-198.4751	-198.4751	mrds (nlminb)	0.31	0.31	192.29	192.29
$_{ m hn}$	cos	1	-197.8558	-197.8558	mrds (nlminb)	0.23	0.23	258.19	258.15
$_{ m hn}$	\cos	2	-197.8472	-197.8472	mrds (nlminb)	0.24	0.24	249.59	249.52
$_{ m hn}$	$_{ m herm}$	0	-198.4751	-198.4751	mrds (nlminb)	0.31	0.31	192.29	192.29
$_{ m hn}$	$_{ m herm}$	1	-198.4644	-198.4644	mrds (nlminb)	0.31	0.31	192.59	192.58
hn	herm	2	-197.7853	NA	mrds (nlminb)	0.25	NA	244.31	NA
hr	poly	0	-197.6157	-197.6157	mrds (nlminb)	0.26	0.26	232.46	232.43
hr	poly	1	-197.5302	-197.5302	mrds (nlminb)	0.25	0.25	235.85	235.81
hr	poly	2	-197.5311	-197.5301	MCDS.exe	0.25	0.25	235.89	235.78

Table 17: Comparison of R and MCDS model fits for dathr4 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-216.9210	-216.9210	mrds (nlminb)	1.00	1.00	60.00	60.00
unif	cos	1	-195.3522	-195.3522	mrds (nlminb)	0.32	0.32	185.55	185.55
unif	cos	2	-195.3505	-195.3505	MCDS.exe	0.32	0.32	187.80	187.80
unif	\cos	3	-195.1100	-195.1100	mrds (nlminb)	0.27	0.27	221.78	221.63
$_{ m hn}$	cos	0	-195.4085	-195.4085	mrds (nlminb)	0.29	0.29	205.79	205.79
$_{ m hn}$	cos	1	-195.4086	-195.4083	MCDS.exe	0.29	0.29	208.55	206.82
$_{ m hn}$	cos	2	-195.2546	-195.2546	mrds (nlminb)	0.25	0.25	242.96	242.89
$_{ m hn}$	herm	0	-195.4085	-195.4085	mrds (nlminb)	0.29	0.29	205.79	205.79
$_{ m hn}$	herm	1	-195.3781	-195.3252	MCDS.exe	0.30	0.31	196.85	194.22
$_{ m hn}$	herm	2	-195.3267	-195.3251	MCDS.exe	0.31	0.31	193.86	194.25
hr	poly	0	-196.2594	-196.2594	mrds (nlminb)	0.41	0.41	146.31	146.28
hr	poly	1	-195.3085	-195.3085	MCDS.exe	0.29	0.29	209.31	209.39
hr	poly	2	-195.2953	-195.0819	MCDS.exe	0.29	0.29	209.42	207.56

rocio_dat

Table 18: Comparison of R and MCDS model fits for rocio_dat data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-1800.225	-1800.225	mrds (nlminb)	1.00	1.00	500.00	500.00
unif	\cos	1	-1692.738	-1692.738	mrds (nlminb)	0.40	0.40	1250.09	1250.06
unif	\cos	2	-1677.557	-1677.350	MCDS.exe	0.29	0.28	1754.32	1775.85
unif	\cos	3	-1676.162	-1675.853	MCDS.exe	0.26	0.24	1940.48	2069.18
$_{ m hn}$	\cos	0	-1695.395	-1695.395	mrds (nlminb)	0.38	0.38	1318.76	1318.69
$_{ m hn}$	\cos	1	-1679.401	-1679.401	MCDS.exe	0.23	0.23	2196.20	2196.70
$_{ m hn}$	cos	2	-1678.248	-1678.248	MCDS.exe	0.25	0.25	1964.17	1963.41
$_{ m hn}$	$_{ m herm}$	0	-1695.395	-1695.395	mrds (nlminb)	0.38	0.38	1318.76	1318.69
$_{ m hn}$	$_{ m herm}$	1	-1695.216	-1695.216	mrds (nlminb)	0.38	0.38	1321.14	1321.11
hn	herm	2	-1676.157	-1676.157	mrds (nlminb)	0.25	0.25	2014.21	2013.56
hr	poly	0	-1676.297	-1676.297	mrds (nlminb)	0.24	0.24	2091.89	2091.17
hr	poly	1	-1676.302	-1676.386	mrds (nlminb)	0.24	0.24	2116.31	2096.87
hr	poly	2	-1675.256	-1675.234	MCDS.exe	0.25	0.25	1973.53	1984.58

$rocio_dat2$

Table 19: Comparison of R and MCDS model fits for rocio_dat2 data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

key	adj	nadj	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
unif	cos	0	-153.3827	-153.3827	mrds (nlminb)	1.00	1.00	42.00	42.00
unif	\cos	1	-126.2630	-126.2630	MCDS.exe	0.30	0.30	141.24	141.24
unif	\cos	2	-126.2630	-120.3592	MCDS.exe	0.30	0.29	141.24	142.45
unif	\cos	3	-124.7425	-118.4524	MCDS.exe	0.32	0.32	129.62	131.65
$_{ m hn}$	\cos	0	-127.7456	-127.7456	mrds (nlminb)	0.21	0.21	201.75	201.74
$_{ m hn}$	cos	1	-125.6836	-125.6764	MCDS.exe	0.26	0.26	162.02	161.83
$_{ m hn}$	\cos	2	-122.3967	-122.0822	MCDS.exe	0.30	0.23	138.45	180.95
$_{ m hn}$	$_{ m herm}$	0	-127.7456	-127.7456	mrds (nlminb)	0.21	0.21	201.75	201.74
$_{ m hn}$	$_{ m herm}$	1	-125.4281	-121.2811	MCDS.exe	0.26	0.27	159.26	157.90
$_{ m hn}$	herm	2	-125.3682	-121.1492	MCDS.exe	0.26	0.25	158.70	166.01
hr	poly	0	-118.4312	-119.2224	mrds (nlminb)	0.42	0.40	101.04	105.12
hr	poly	1	-118.3055	-118.9848	mrds (nlminb)	0.40	0.34	106.18	122.04
hr	poly	2	-118.2833	-118.5401	mrds (nlminb)	0.39	0.36	108.42	117.62

amakihi

There is a very big difference in estimated abundance for the first model here!

Table 20: Comparison of R and MCDS model fits for a makihi data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

models	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
\sim as.factor(OBs) + HAS + MAS	-5396.835	-5396.836	mrds (nlminb)	0.34	0.34	3629.41	3629.99
\sim as.factor(OBs) + MAS	-5397.937	-5397.937	mrds (nlminb)	0.34	0.34	3624.30	3624.94
\sim as.factor(OBs) + HAS	-5397.039	-5397.039	mrds (nlminb)	0.34	0.34	3628.48	3629.01

akepa data

Table 21: Comparison of R and MCDS model fits for akepa data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

models	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
~as.factor(Obs)	-373.0925	-373.0925	mrds (nlminb)	0.72	0.72	128.84	128.86

ETP Dolphins

Some errors / warnings:

Table 22: Comparison of R and MCDS model fits for ETP dolphin data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

models	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	$Nhat_R$	$Nhat_MCDS$
~size	-1682.444		mrds (nlminb)		0.71		1545.41
~size + Beauf.class ~LnCluster	NA -1679.498		MCDS.exe mrds (nlminb)	NA 0.69	0.70 0.69	NA 1582.67	1546.83 1585.12

Minke data

Table 23: Comparison of R and MCDS model fits for minke data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, lnl_R - estimated abundance in covered region from R optimised model, lnl_R - estimated abundance in covered region from MCDS optimised model.

models	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
~as.factor(Region.Label)	-26.50247	-26.50247	mrds (nlminb)	0.42	0.42	212.06	212.05

Cluster Exercise

Table 24: Comparison of R and MCDS model fits for ClusterExercise data. key - key function, adj - type of adjustment term, nadj - number of adjustments, lnl_R - likelihood value for R optimiser, lnl_MCDS - likelihood value for MCDS optimiser, optimizer - the selected optimiser, p_R the estimated average probability of detection for the R optimised model, p_MCDS the estimated average probability of detection for the MCDS optimised model, Nhat_R - estimated abundance in covered region from R optimised model, Nhat_MCDS - estimated abundance in covered region from MCDS optimised model.

models	lnl_R	lnl_MCDS	optimizer	p_R	p_MCDS	Nhat_R	Nhat_MCDS
~size ~Cluster.strat	-157.4264 -158.2488		mrds (nlminb) mrds (nlminb)	0.40 0.41	0.43 0.44	218.35 216.43	202.58 199.34