SVD

Nicolas Verzelen, Joseph Salmon

INRA / Université de Montpellier

Plan

Algèbre linéaire SVD Pseudo-inverse

L'approche SVD pour les moindres carrés

La décomposition spectrale

Théorème spectral =

Une matrice symétrique $S \in \mathbb{R}^{n \times n}$ est diagonalisable en base orthonormée, *i.e.*, il existe $\lambda_1 \geq \ldots \geq \lambda_n$ et une matrice orthogonale $U \in \mathbb{R}^{n \times n}$ telle que :

$$S = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\top}$$
 ou $SU = U \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

Rem: Si l'on écrit $U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ cela signifie que :

$$S = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}, \quad \text{avec } \forall i \in [1, n], \quad S \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

 $\frac{\text{Rappel}}{U^{\top}U} : \text{ une matrice } U \in \mathbb{R}^{n \times n} \text{ est dite orthogonale si elle vérifie} \\ \overline{U^{\top}U} = UU^{\top} = \mathrm{Id}_n \text{ ou } \forall (i,j) \in [\![1,n]\!]^2 \mathbf{u}_i^{\top} \mathbf{u}_j = \langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{i,j}$

<u>Vocabulaire</u>: les λ_i sont les valeurs propres de S et les $\mathbf{u}_i \in \mathbb{R}^n$ sont les vecteurs propres associés

La décomposition en valeurs singulières (Singular Value Decomposition, SVD)

Théorème

Pour toute matrice $X \in \mathbb{R}^{n \times p}$, il existe une matrice orthogonale $U \in \mathbb{R}^{n \times n}$ et une matrice orthogonale $V \in \mathbb{R}^{p \times p}$, telles que

$$U^{\top}XV = \operatorname{diag}(s_1, \dots, s_{\min(n,p)}) = \Sigma \in \mathbb{R}^{n \times p}$$

avec $s_1 \geq s_2 \geq \ldots \geq s_{\min(n,p)} \geq 0$, ou encore :

$$X = U\Sigma V^{\top}$$

avec $U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ et $V = [\mathbf{v}_1, \dots, \mathbf{v}_p]$

$$\frac{\mathsf{Rappel}}{\mathsf{Rappel}} : \begin{cases} \langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{i,j}, & \forall (i,j) \in [1,n]^2 \\ \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{i,j}, & \forall (i,j) \in [1,p]^2 \end{cases}$$

<u>Démonstration</u>: diagonaliser $X^{T}X$ Golub et Van Loan (1996)

SVD: visualisation

SVD: visualisation

SVD la suite

<u>Vocabulaire</u>: les s_j sont les valeurs singulières de X; les \mathbf{u}_j (resp. \mathbf{v}_j) sont les vecteurs singuliers à gauche (resp. droite)

Propriété variationnelle de la plus grande valeur singulière

$$s_1 = \begin{cases} \max_{\mathbf{u} \in \mathbb{R}^n, \mathbf{v} \in \mathbb{R}^p} \mathbf{u}^\top X \mathbf{v} \\ \text{s.c.} \|\mathbf{u}\|^2 = 1 \text{ et } \|\mathbf{v}\|^2 = 1 \end{cases}$$

$$\begin{aligned} & \mathsf{Lagrangien} : \mathcal{L}(\mathbf{u}, \mathbf{v}) = \mathbf{u}^\top X \mathbf{v} - \lambda_1 (\|\mathbf{u}\|^2 - 1) - \lambda_2 (\|\mathbf{v}\|^2 - 1) \\ & \mathsf{CNO} : \begin{cases} \nabla_{\mathbf{u}} \mathcal{L} = X \mathbf{v} - 2\lambda_1 \mathbf{u} = 0 \\ \nabla_{\mathbf{v}} \mathcal{L} = X^\top \mathbf{u} - 2\lambda_2 \mathbf{v} = 0 \end{cases} \\ & \Leftrightarrow \begin{cases} X^\top \mathbf{u} = 2\lambda_1 \mathbf{u} \\ X^\top \mathbf{u} = 2\lambda_2 \mathbf{v} \end{cases} \\ & \Rightarrow \begin{cases} X^\top X \mathbf{v} = \alpha \mathbf{v} \\ XX^\top \mathbf{u} = \alpha \mathbf{u} \end{cases} \end{aligned}$$

avec $\alpha = 4\lambda_1\lambda_2$, et donc \mathbf{v} et \mathbf{u} sont des vecteurs propres de $X^\top X$ et de XX^\top

On part de la SVD $X = U\Sigma V^{\top}$

SVD réduite

On ne garde que les éléments utiles avec $r = \min(n, p)$:

$$X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top} = U_r \operatorname{diag}(s_1, \dots, s_r) V_r^{\top}$$

avec
$$s_i > 0, \forall i \in [1, r]$$
 et $U_r = [\mathbf{u}_1, \dots, \mathbf{u}_r], V_r = [\mathbf{v}_1, \dots, \mathbf{v}_r]$

Rem: Quand on en garde que les r = rang(X) valeurs singulières non-nulles, on parle alors de **SVD** compacte.

 $\underline{\mathsf{Rem}}$: les matrices $\mathbf{u}_i\mathbf{v}_i^ op$ sont toutes de rang 1

Rem: les \mathbf{u}_i (resp. les \mathbf{v}_i^{\top}) sont orthonormés et engendrent le même espace que celui engendré par les colonnes (resp. les lignes) de X

$$\boxed{\operatorname{vect}(\mathbf{x}_1,\ldots,\mathbf{x}_p) = \operatorname{vect}(\mathbf{u}_1,\ldots,\mathbf{u}_r)}$$

SVD et meilleure approximation

____ | Théorème (meilleure approximation de rang k) | .

Soit
$$X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$
 la SVD compacte de $X \in \mathbb{R}^{n \times p}$.

On note
$$X_k = \sum_{i=1}^k s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$
, pour tout $k \in [\![1,r]\!]$. Ainsi,

$$\min_{Z \in \mathbb{R}^{n \times p} \ : \ \mathrm{rang}(Z) = k} \|X - Z\|_2 = \|X - X_k\|_2 = s_{k+1}$$

Rem: la norme spectrale de X est définie par

$$||X||_2 = \sup_{u \in \mathbb{R}^p, ||u||=1} ||Xu|| = s_1(X)$$

Rem: crucial pour l'analyse en composante principale (ACP)

Définition

$$X^{+} = \sum_{i=1}^{r} \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^{\top}$$

Rem: si
$$X = \sum_{i=1}^n s_i \mathbf{u}_i \mathbf{v}_i^{\top} \in \mathbb{R}^{n \times n}$$
 est inversible alors $X^+ = X^{-1}$

$$\underline{\mathsf{D\'emonstration}}: \qquad XX^+ = \sum_{j=1}^n s_j \mathbf{u}_j \mathbf{v}_j^\top \sum_{i=1}^n \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^\top$$

Définition

$$X^{+} = \sum_{i=1}^{r} \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^{\top}$$

Rem: si
$$X = \sum_{i=1}^n s_i \mathbf{u}_i \mathbf{v}_i^{\top} \in \mathbb{R}^{n \times n}$$
 est inversible alors $X^+ = X^{-1}$

$$\underline{\mathsf{D}\mathsf{émonstration}}: \qquad XX^+ = \sum_{j=1}^n s_j \mathbf{u}_j \mathbf{v}_j^\top \sum_{i=1}^n \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^\top \\
= \sum_{i=1}^n \sum_{j=1}^n s_j \frac{1}{s_i} \mathbf{u}_j \mathbf{v}_j^\top \mathbf{v}_i \mathbf{u}_i^\top \\$$

Définition

$$X^{+} = \sum_{i=1}^{r} \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^{\top}$$

Rem: si
$$X = \sum_{i=1}^n s_i \mathbf{u}_i \mathbf{v}_i^{\top} \in \mathbb{R}^{n \times n}$$
 est inversible alors $X^+ = X^{-1}$

Démonstration:
$$XX^{+} = \sum_{j=1}^{n} s_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top} \sum_{i=1}^{n} \frac{1}{s_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{\top}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} s_{j} \frac{1}{s_{i}} \mathbf{u}_{j} \mathbf{v}_{j}^{\top} \mathbf{v}_{i} \mathbf{u}_{i}^{\top}$$
$$= \sum_{i=1}^{n} \sum_{i=1}^{n} s_{j} \frac{1}{s_{i}} \delta_{i,j} \mathbf{u}_{j} \mathbf{u}_{i}^{\top} = \sum_{i=1}^{n} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} = \mathrm{Id}_{n}$$

Définition

$$X^{+} = \sum_{i=1}^{r} \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^{\top}$$

$$\underline{\mathsf{Rem}} \text{: si } X = \sum s_i \mathbf{u}_i \mathbf{v}_i^\top \in \mathbb{R}^{n \times n} \text{ est inversible alors } X^+ = X^{-1}$$

$$\begin{aligned} \underline{\text{D\'emonstration}} : \qquad XX^+ &= \sum_{j=1}^n s_j \mathbf{u}_j \mathbf{v}_j^\top \sum_{i=1}^n \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^\top \\ &= \sum_{j=1}^n \sum_{i=1}^n s_j \frac{1}{s_i} \mathbf{u}_j \mathbf{v}_j^\top \mathbf{v}_i \mathbf{u}_i^\top \\ &= \sum_{i=1}^n \sum_{i=1}^n s_j \frac{1}{s_i} \delta_{i,j} \mathbf{u}_j \mathbf{u}_i^\top = \sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^\top = \mathrm{Id}_n \end{aligned}$$

SVD et numérique

Les fonctions SVD et pseudo-inverse sont disponibles dans les librairies numériques classiques, par exemple Numpy

► SVD: U, s, V = np.linalg.svd(X)

Attention dans ce cas: X = U.dot(np.diag(s).dot(V))
On accède aux variantes compactes ou non par l'option cf.
full matrices=True/False

Pseudo-inverse : Xinv = np.linalg.pinv(X)

Exercise: Évaluer numériquement le théorème de meilleure approximation de rang fixé. Pour cela calculer l'erreur d'approximation obtenue pour une matrice tirée aléatoirement selon une loi gaussienne (e.g., de taille 9×6 , pour k=3)

Plan

Algèbre linéaire

L'approche SVD pour les moindres carrés

SVD et moindres carrés Analyse du biais par la SVD Analyse de la variance par la SVD Stabilité numérique

Partons de la SVD de
$$X$$
, $X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{ op}$

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \left\| \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{u}_i^{\mathsf{T}} \mathbf{y}) - \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \mathbf{y} \right\|^2$$

Partons de la SVD de X, $\left|X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^\top \right|$

,
$$X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{ op}$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \left\| \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}} \boldsymbol{\beta} - \sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \mathbf{y} \right\|^2$$
$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{u}_i^{\mathsf{T}} \mathbf{y}) - \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \mathbf{y} \right\|^2$$
$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{u}_i^{\mathsf{T}} \mathbf{y}) \right\|^2 + \left\| \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \mathbf{y} \right\|^2$$

Partons de la SVD de X, $\left|X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top}\right|$

,
$$X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \left\| \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \mathbf{u}_i^{\top} \mathbf{y}) - \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \mathbf{u}_i^{\top} \mathbf{y}) \right\|^2 + \left\| \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^2 = \sum_{i=1}^r \left(s_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \mathbf{u}_i^{\top} \mathbf{y} \right)^2 + \sum_{i=r+1}^n \left(\mathbf{u}_i^{\top} \mathbf{y} \right)^2$$

Partons de la SVD de X, $X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top}$

,
$$X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{ op}$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^{2} = \left\| \sum_{i=1}^{r} s_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} \boldsymbol{\beta} - \sum_{i=1}^{n} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{y} \right\|^{2}$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^{2} = \left\| \sum_{i=1}^{r} \mathbf{u}_{i} (s_{i} \mathbf{v}_{i}^{\top} \boldsymbol{\beta} - \mathbf{u}_{i}^{\top} \mathbf{y}) - \sum_{i=r+1}^{n} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{y} \right\|^{2}$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^{2} = \left\| \sum_{i=1}^{r} \mathbf{u}_{i} (s_{i} \mathbf{v}_{i}^{\top} \boldsymbol{\beta} - \mathbf{u}_{i}^{\top} \mathbf{y}) \right\|^{2} + \left\| \sum_{i=r+1}^{n} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{y} \right\|^{2}$$

$$\|X\boldsymbol{\beta} - \mathbf{y}\|^{2} = \sum_{i=1}^{r} \left(s_{i} \mathbf{v}_{i}^{\top} \boldsymbol{\beta} - \mathbf{u}_{i}^{\top} \mathbf{y} \right)^{2} + \sum_{i=r+1}^{n} (\mathbf{u}_{i}^{\top} \mathbf{y})^{2}$$

 $\underline{\mathsf{Rem}} \colon \mathsf{choisir} \; \boldsymbol{\beta} = \sum_{i=1}^r \frac{\mathbf{y}^\top \mathbf{u}_i}{s_i} \mathbf{v}_i \; \mathsf{annule} \; \mathsf{le} \; 1^\mathsf{er} \; \mathsf{terme} \; \mathsf{du} \; 2^\mathsf{d} \; \mathsf{membre}$

Partons de la SVD de X, $X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top}$

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \left\| \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \mathbf{u}_i^{\top} \mathbf{y}) - \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \left\| \sum_{i=1}^r \mathbf{u}_i (s_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \mathbf{u}_i^{\top} \mathbf{y}) \right\|^2 + \left\| \sum_{i=r+1}^n \mathbf{u}_i \mathbf{u}_i^{\top} \mathbf{y} \right\|^2$$

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \sum_{i=1}^r \left(s_i \mathbf{v}_i^{\top} \boldsymbol{\beta} - \mathbf{u}_i^{\top} \mathbf{y} \right)^2 + \sum_{i=r+1}^n (\mathbf{u}_i^{\top} \mathbf{y})^2$$

Rem: choisir $\beta = \sum_{i=1}^r \frac{\mathbf{y}^{\top} \mathbf{u}_i}{s_i} \mathbf{v}_i$ annule le 1^{er} terme du 2^{d} membre

Retour sur les moindres carrés (suite)

$$||X\boldsymbol{\beta} - \mathbf{y}||^2 = \sum_{i=1}^r (s_i \mathbf{v}_i^\top \boldsymbol{\beta} - \mathbf{u}_i^\top \mathbf{y})^2 + \sum_{i=r+1}^n (\mathbf{u}_i^\top \mathbf{y})^2 \ge \sum_{i=r+1}^n (\mathbf{u}_i^\top \mathbf{y})^2$$

avec égalité si
$$\boldsymbol{\beta} = \sum_{i=1}^r \frac{\mathbf{y}^\top \mathbf{u}_i}{s_i} \mathbf{v}_i$$
, or $X^+ = \sum_{i=1}^r \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^\top$!

Ainsi UNE solution des moindres carrés peut s'écrire :

$$\widehat{\hat{\boldsymbol{\beta}}} = X^{+}\mathbf{y} \in \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{P}^{p}} \frac{1}{2} \|X\boldsymbol{\beta} - \mathbf{y}\|^{2}$$

Rem: l'ensemble de toutes les solutions est :

$$\left\{ X^{+}\mathbf{y} + \sum_{i=r+1}^{p} \alpha_{i}\mathbf{v}_{i}, (\alpha_{r+1}, \dots, \alpha_{p}) \in \mathbb{R}^{p-r} \right\}$$

<u>Rem</u>: X^+y est **Ia** solution de norme $\|\cdot\|_2$ minimale

Le biais dans le cas général

Sous l'hypothèse de bruit "blanc" (i.e., $\mathbb{E}(\varepsilon) = 0$) :

$$\mathbb{E}(\hat{\boldsymbol{\beta}}) = \mathbb{E}(X^{+}\mathbf{y}) = \mathbb{E}(X^{+}X\boldsymbol{\beta}^{*} + X^{+}\boldsymbol{\varepsilon}) = X^{+}X\boldsymbol{\beta}^{*}$$

$$= \sum_{i=1}^{r} \frac{1}{s_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{\top} \sum_{j=1}^{r} s_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top} \boldsymbol{\beta}^{*}$$

$$= \sum_{i=1}^{r} \mathbf{v}_{j} \mathbf{v}_{j}^{\top} \boldsymbol{\beta}^{*} = \Pi_{l} \boldsymbol{\beta}^{*}$$

 $ightharpoonup \Pi_l$: projecteur sur l'espace des lignes de X

$$\Pi_l = \sum_{i=1}^r \mathbf{v}_i \mathbf{v}_i^\top = X^+ X$$

 $ightharpoonup \Pi_c$: projecteur sur l'espace des colonnes de X

$$\Pi_c = \sum_{i=1}^r \mathbf{u}_i \mathbf{u}_i^\top = XX^+$$

Rem: si r = rang(X) = n on retrouve que les MCO sont sans biais

Matrice de variance/covariance des moindres carrés

Sous l'hypothèse de modèle homoscédastique ($\mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 \operatorname{Id}_n$) :

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 X^+ (X^+)^\top$$

Démonstration: notons
$$V = \text{Cov}(\hat{\beta})$$
 et $y = X\beta^* + \varepsilon$

$$V = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \mathbb{E}\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}} - \mathbb{E}\hat{\boldsymbol{\beta}})^{\top} \right] = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - X^{+}X\boldsymbol{\beta}^{*})(\hat{\boldsymbol{\beta}} - X^{+}X\boldsymbol{\beta}^{*})^{\top} \right]$$
$$= \mathbb{E}\left[(X^{+}\varepsilon)(X^{+}\varepsilon)^{\top} \right]$$

Matrice de variance/covariance des moindres carrés

Sous l'hypothèse de modèle homoscédastique ($\mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 \operatorname{Id}_n$) :

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 X^+ (X^+)^\top$$

$$\begin{split} & \underline{\text{D\'emonstration}} : \text{notons } V = \text{Cov}(\hat{\boldsymbol{\beta}}) \text{ et } y = X\boldsymbol{\beta}^{\star} + \boldsymbol{\varepsilon} \\ & V = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \mathbb{E}\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}} - \mathbb{E}\hat{\boldsymbol{\beta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - X^{+}X\boldsymbol{\beta}^{\star})(\hat{\boldsymbol{\beta}} - X^{+}X\boldsymbol{\beta}^{\star})^{\top}\right] \\ & = \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})(X^{+}\boldsymbol{\varepsilon})^{\top}\right] \\ & = \mathbb{E}\left[X^{+}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}(X^{+})^{\top}\right] \end{split}$$

Matrice de variance/covariance des moindres carrés

Sous l'hypothèse de modèle homoscédastique ($\mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 \operatorname{Id}_n$) :

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 X^+ (X^+)^\top$$

$$\begin{split} & \underline{\text{D\'emonstration}} : \text{notons } V = \text{Cov}(\hat{\beta}) \text{ et } y = X\beta^{\star} + \varepsilon \\ & V = \mathbb{E}\left[(\hat{\beta} - \mathbb{E}\hat{\beta})(\hat{\beta} - \mathbb{E}\hat{\beta})^{\top}\right] = \mathbb{E}\left[(\hat{\beta} - X^{+}X\beta^{\star})(\hat{\beta} - X^{+}X\beta^{\star})^{\top}\right] \\ & = \mathbb{E}\left[(X^{+}\varepsilon)(X^{+}\varepsilon)^{\top}\right] \\ & = \mathbb{E}\left[X^{+}\varepsilon\varepsilon^{\top}(X^{+})^{\top}\right] \\ & = \sigma^{2}X^{+}(X^{+})^{\top} = \sum_{i=1}^{r} \frac{\sigma^{2}}{s_{i}^{2}} \mathbf{v}_{i}\mathbf{v}_{i}^{\top} \end{split}$$

Matrice de variance/covariance des moindres carrés

Sous l'hypothèse de modèle homoscédastique ($\mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 \operatorname{Id}_n$) :

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 X^+ (X^+)^\top$$

Démonstration: notons
$$V = \text{Cov}(\hat{\beta})$$
 et $y = X\beta^* + \varepsilon$

$$V = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \mathbb{E}\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}} - \mathbb{E}\hat{\boldsymbol{\beta}})^{\top} \right] = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - X^{+}X\boldsymbol{\beta}^{\star})(\hat{\boldsymbol{\beta}} - X^{+}X\boldsymbol{\beta}^{\star})^{\top} \right]$$

$$= \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})(X^{+}\boldsymbol{\varepsilon})^{\top} \right]$$

$$= \mathbb{E}\left[X^{+}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}(X^{+})^{\top} \right]$$

$$= \sigma^{2}X^{+}(X^{+})^{\top} = \sum_{i=1}^{r} \frac{\sigma^{2}}{s_{i}^{2}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}$$

Rem: si $\operatorname{rg}(X) = n$ on retrouve $\operatorname{Cov}(\beta) = \sigma^2(X^{\top}X)^{-1}$

Matrice de variance/covariance des moindres carrés

Sous l'hypothèse de modèle homoscédastique ($\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}) = \sigma^2\operatorname{Id}_n$) :

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 X^+ (X^+)^\top$$

<u>Démonstration</u>: notons $V = \text{Cov}(\hat{\beta})$ et $y = X\beta^* + \varepsilon$

$$V = \mathbb{E}\left[(\hat{\beta} - \mathbb{E}\hat{\beta})(\hat{\beta} - \mathbb{E}\hat{\beta})^{\top} \right] = \mathbb{E}\left[(\hat{\beta} - X^{+}X\beta^{*})(\hat{\beta} - X^{+}X\beta^{*})^{\top} \right]$$

$$= \mathbb{E}\left[(X^{+}\varepsilon)(X^{+}\varepsilon)^{\top} \right]$$

$$= \mathbb{E}\left[X^{+}\varepsilon\varepsilon^{\top}(X^{+})^{\top} \right]$$

$$= \sigma^{2}X^{+}(X^{+})^{\top} = \sum_{i=1}^{r} \frac{\sigma^{2}}{s_{i}^{2}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}$$

Rem: $\operatorname{si} \operatorname{rg}(X) = n$ on retrouve $\operatorname{Cov}(\hat{\beta}) = \sigma^2(X^\top X)^{-1}$

Risque (quadratique) de prédiction
$$\mathbb{E}\|X\beta^{\star} - X\hat{\beta}\|^2$$

Sous l'hypothèse de modèle homoscédastique $(\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}) = \sigma^2\operatorname{Id}_n)$:

$$R_{\mathrm{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\right] = \sigma^{2} \operatorname{rang}(\boldsymbol{X})$$

$$\begin{split} \text{Preuve (d\'ebut identique)} : \\ R_{\text{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] \\ & + \boldsymbol{\beta}^{\star}(\Pi_{l} - \operatorname{Id}_{p})^{\top}(X^{\top}X)(\Pi_{l} - \operatorname{Id}_{p})\boldsymbol{\beta}^{\star} \\ = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] = \operatorname{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] \end{split}$$

Risque (quadratique) de prédiction $\mathbb{E}||X\beta^{\star} - X\hat{\beta}||^2$

Sous l'hypothèse de modèle homoscédastique $(\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}) = \sigma^2\operatorname{Id}_n)$:

$$R_{\mathrm{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\right] = \sigma^{2} \operatorname{rang}(\boldsymbol{X})$$

$$\begin{split} \text{Preuve (d\'ebut identique)} : \\ R_{\text{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] \\ & + \boldsymbol{\beta}^{\star}(\Pi_{l} - \operatorname{Id}_{p})^{\top}(X^{\top}X)(\Pi_{l} - \operatorname{Id}_{p})\boldsymbol{\beta}^{\star} \\ = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] = \operatorname{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] \\ = & \mathbb{E}[\operatorname{tr}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] = \mathbb{E}[\operatorname{tr}(\Pi_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top})] \end{split}$$

Risque (quadratique) de prédiction $\mathbb{E}||X\beta^{\star} - X\hat{\beta}||^2$

Sous l'hypothèse de modèle homoscédastique $(\mathbb{E}(\varepsilon \varepsilon^{\top}) = \sigma^2 \operatorname{Id}_n)$:

$$R_{\mathrm{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\right] = \sigma^{2} \operatorname{rang}(\boldsymbol{X})$$

Preuve (début identique) :
$$\begin{split} R_{\mathrm{pred}}(\beta^{\star}, \hat{\beta}) = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] \\ & + \beta^{\star}(\Pi_{l} - \mathrm{Id}_{p})^{\top}(X^{\top}X)(\Pi_{l} - \mathrm{Id}_{p})\beta^{\star} \\ = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] = \mathrm{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] \\ = & \mathbb{E}[\mathrm{tr}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] = \mathbb{E}[\mathrm{tr}(\Pi_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top})] \\ = & \mathrm{tr}[\mathbb{E}(\Pi_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top})] = \mathrm{tr}\,\Pi_{c}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})\Pi_{c}^{\top} \end{split}$$

Risque (quadratique) de prédiction $\mathbb{E}\|X\beta^{\star} - X\hat{\beta}\|^2$

Sous l'hypothèse de modèle homoscédastique $(\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}) = \sigma^2\operatorname{Id}_n)$:

$$R_{\mathrm{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\right] = \sigma^{2} \operatorname{rang}(\boldsymbol{X})$$

Preuve (début identique):
$$R_{\mathrm{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = \mathbb{E}\left[(\boldsymbol{X}^{+}\boldsymbol{\varepsilon})^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{X}^{+}\boldsymbol{\varepsilon}) \right] \\ + \boldsymbol{\beta}^{\star}(\boldsymbol{\Pi}_{l} - \mathrm{Id}_{p})^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{\Pi}_{l} - \mathrm{Id}_{p})\boldsymbol{\beta}^{\star} \\ = \mathbb{E}\left[(\boldsymbol{X}^{+}\boldsymbol{\varepsilon})^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{X}^{+}\boldsymbol{\varepsilon}) \right] = \mathrm{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}\boldsymbol{\Pi}_{c}^{\top}\boldsymbol{\Pi}_{c}\boldsymbol{\varepsilon})] \\ = \mathbb{E}[\mathrm{tr}(\boldsymbol{\varepsilon}^{\top}\boldsymbol{\Pi}_{c}^{\top}\boldsymbol{\Pi}_{c}\boldsymbol{\varepsilon})] = \mathbb{E}[\mathrm{tr}(\boldsymbol{\Pi}_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\boldsymbol{\Pi}_{c}^{\top})] \\ = \mathrm{tr}[\mathbb{E}(\boldsymbol{\Pi}_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\boldsymbol{\Pi}_{c}^{\top})] = \mathrm{tr}\,\boldsymbol{\Pi}_{c}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})\boldsymbol{\Pi}_{c}^{\top} \\ = \boldsymbol{\sigma}^{2}\,\mathrm{tr}(\boldsymbol{\Pi}_{c}) = \boldsymbol{\sigma}^{2}\,\mathrm{rang}(\boldsymbol{\Pi}_{c}) = \boldsymbol{\sigma}^{2}\,\mathrm{rang}(\boldsymbol{X})$$

Risque (quadratique) de prédiction $\mathbb{E}\|X\beta^{\star} - X\hat{\beta}\|^2$

Sous l'hypothèse de modèle homoscédastique $(\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}) = \sigma^2\operatorname{Id}_n)$:

$$R_{\text{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\star})\right] = \sigma^{2} \operatorname{rang}(\boldsymbol{X})$$

Preuve (début identique):
$$\begin{split} R_{\mathrm{pred}}(\boldsymbol{\beta}^{\star}, \hat{\boldsymbol{\beta}}) = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] \\ & + \boldsymbol{\beta}^{\star}(\Pi_{l} - \mathrm{Id}_{p})^{\top}(X^{\top}X)(\Pi_{l} - \mathrm{Id}_{p})\boldsymbol{\beta}^{\star} \\ = & \mathbb{E}\left[(X^{+}\boldsymbol{\varepsilon})^{\top}(X^{\top}X)(X^{+}\boldsymbol{\varepsilon})\right] = \mathrm{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] \\ = & \mathbb{E}[\mathrm{tr}(\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top}\Pi_{c}\boldsymbol{\varepsilon})] = \mathbb{E}[\mathrm{tr}(\Pi_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top})] \\ = & \mathrm{tr}[\mathbb{E}(\Pi_{c}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\Pi_{c}^{\top})] = \mathrm{tr}\,\Pi_{c}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})\Pi_{c}^{\top} \end{split}$$

 $=\sigma^2 \operatorname{tr}(\Pi_c) = \sigma^2 \operatorname{rang}(\Pi_c) = \sigma^2 r = \sigma^2 \operatorname{rang}(X)$

Quelques mots de stabilité numérique

Prenons $\hat{\beta} = X^+ y$ comme solution des moindres carrés.

Supposons qu'on observe maintenant non plus \mathbf{y} mais $\mathbf{y} + \Delta$ où Δ est une erreur très petite : $\|\Delta\| \ll \|\mathbf{y}\|$.

Alors l'estimateur des moindres carrés pour $\mathbf{y} + \Delta$ par X donne

$$\hat{\boldsymbol{\beta}}^{\Delta} = X^{+}(\mathbf{y} + \Delta)$$

$$\hat{\boldsymbol{\beta}}^{\Delta} = \hat{\boldsymbol{\beta}} + X^{+}\Delta$$

$$\hat{\boldsymbol{\beta}}^{\Delta} = \hat{\boldsymbol{\beta}} + \sum_{i=1}^{r} \frac{1}{s_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{\top} \Delta$$

Rem: Noter l'influence des "petites" valeurs singulières.

Exemple de problème de conditionnement

 $X \in \mathbb{R}^{10 \times 6}$ dont les valeurs singulières sont ci-dessous ⁽¹⁾ :

Amplification des erreurs

^{(1).} voir code SVD.ipynb associé

Prochains cours

Remèdes possibles contre les mauvais "conditionnements"

- ► Régulariser le spectre / les valeurs singulières
- ightharpoonup Contraindre les coefficients de $\hat{\beta}$ à n'être pas trop grands

Une solution rendant ces deux points de vue équivalents : Ridge Regression / Régularisation de Tychonoff

Références

GOLUB, G. H. et C. F. VAN LOAN. *Matrix computations*. Third. Baltimore, MD: Johns Hopkins University Press, 1996, p. xxx+698.