Шпора

Диффуры

Содержание

1	Автономное уравнение	1
2	Разделяющиеся переменные	1
3	Однородные ДУ	2
4	Линейное ДУ	2
5	Уравнения Бернулли	2
6	Уравнения Риккати	2
7	ДУ в полных производных	2
8	ДУ Лагранжа / Клеро	3
9	Однородное Линейное ДУ повышенного порядка с постоянными коэффициентами	3
10	Неднородное Линейное ДУ повышенного порядка с постоянными коэффициентами	4
11	Однородное Уравнение Эйлера	4
12	Бонус ОЛДУ	4
13	Система ЛДУ	5

Внимание

Применяя данные методы не забываем проверять места, где мы потенциально делим на 0. Можно посмотреть pecypc EqWorld

1 Автономное уравнение

$$y' = f(x)$$

Интегрируем

2 Разделяющиеся переменные

$$y' = f(x)g(y)$$
$$\frac{dy}{g(y)} = f(x)dx$$

Интегрируем

3 Однородные ДУ

$$y' = f(x,y)$$
 и $f(mx, my) = f(x,y)$

Замена $z = \frac{y}{x}, \ y = zx, \ y' = z + z'x$

4 Линейное ДУ

$$y' + p(x)y = g(x)$$

- 1. Решаем однородную часть y' + p(x)y = 0. Это ДУ с разделяющимися
- 2. Вариация констант c = c(x). Подставляем так, доделываем

5 Уравнения Бернулли

$$y' + p(x)y = q(x)y^n|: y^n$$

$$\frac{y'}{y^n} + p(x)y^{1-n} = q(x)$$

Замена $w=y^{1-n},\,w'=(1-n)\frac{y'}{y^n}.$ Получаем

$$\frac{w'}{1-n} + p(x)w = q(x)$$

Это линейное ДУ

6 Уравнения Риккати

$$y' + a(x)y + b(x)y^2 = c(x)$$

Если y_1 - частное решение, то делаем замену $z=y-y_1$. После этого по идее решается.

7 ДУ в полных производных

Предполагаем, что уравнение имеет вид

$$F_x'dx + F_y'dy = 0$$

Проверяем, совпадает ли $F_{xy} = F_{yx}$. Если да, то

- 1. Интегрируем одну из производных $F(x) = \int F'_x dx = G(x) + C(y)$. Предполагаем, что константа функция от y.
- 2. Берем производную от всего, но уже по другой переменной и ищем такое C(y), чтобы выполнялось $(G(x) + C(y))' = F'_y$. Далее уже дособираем ответ

Если $F_{xy} \neq F_{yx}$, то начинаются танцы с интегрирующим множителем. Для этого пробуем выделять и собирать полные дифференциалы, например

$$ydx - (x^3y + x)dy = 0$$
, $(ydx - xdy) - x^3ydy = 0$: x^2

Видно, что первой скобки не хватает знаменателя, чтобы свернуться в дифференциал. Поделим, преобразуем.

$$\frac{ydx - xdy}{x^2} - xydy = 0, -d(\frac{y}{x}) - xydy = 0$$

Немного сообразительности и вводим замену $z = \frac{y}{r}$. Тогда

$$-d(z) - \frac{y^2}{z}dy = 0, -y^2dy = zdz$$

Получили разделяющиеся переменные.

Да как, блин, искать ваш интегрирующий множитель?

Есть алогритм, который может помочь нам делать это, но он не всегда работает. Для этого надо ввести функцию μ , которая может быть трёх видов: $\mu(x)$, $\mu(y)$, $\mu(x,y)$. Именно на неё мы будем домножать. Итак, чтобы найти μ , то делаем:

$$F_y'\frac{\partial\mu}{\partial x} - F_x'\frac{\partial\mu}{\partial y} = \mu \left(\frac{\partial F_x'}{\partial y} - \frac{\partial F_y'}{\partial x}\right)$$

Соответственно какое-то из слагаемых слева будет нулём (в зависимости от $\mu(x)$ или $\mu(y)$). Если $\mu=\mu(x)$:

$$\frac{1}{\mu} \frac{\partial \mu}{\partial x} = \frac{1}{F_y'} \left(\frac{\partial F_x'}{\partial y} - \frac{\partial F_y'}{\partial x} \right)$$

8 ДУ Лагранжа / Клеро

$$y = f(y')x + g(y')$$

ДУ Клеро - когда f(y') = y'. Предполагаем, что $y'_x = t, \ t = t(x)$. Тогда исходное уравнение имеет вид

$$y = f(t)x + g(t), \ t = y'_x = f(t) + xf'_t(t) \cdot t'_x + t'_x \cdot g'_t(t)$$

$$(xf'_t(t) + g'_t(t))t'_x = t - f(t)$$

Если $t - f(t) \equiv 0$, то это как раз ДУ Клеро. Тут понятно. Иначе сводится к линейному ДУ.

Ответ записываем в параметрическом виде, поэтому константы у переменных должны соответствовать.

Бонус 1: Ресмотрим ДУ $y = xy' - x^2(y')^3$. Оно не подходит под шаблон ДУ Лагранжа, но если сделать аналогичное предпложение y' = p, то в процессе получится свести к линейному относительно x(p) и уравнение решится.

Бонус 2: Иногда возможно решить уравнение относительно y' и не надо никаких замен. При этом уравнение может совсем не соответствовать вид ДУ Лагранжа. Например:

$$y'(2y-y')=y^2\sin^2x$$
 | квадратное уравнение относительно y' $(y')^3+(x+2)e^y=0$ | у' просто выражается

9 Однородное Линейное ДУ повышенного порядка с постоянными коэффициентами

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

Ищем корни в виде $y = Ce^{\lambda x}$ Составляем характеристическое уравнение, решаем.

- 1. Вещественный корень λ дает слагаемое $(C_1+C_2x+C_3x^2+\cdots+C_nx^{n-1})e^{\lambda x}$ в ответ, где n кратность корня
- 2. Т.к. мы рассматриваем многочлен в $\mathbb{R}[x]$, то пара (всегда пара) комплексных корней $a \pm bi$ дает слагаемое $e^a((C_{1,1}+C_{1,2}x+C_{1,3}x^2+\cdots+C_{1,n}x^{n-1})\cos(bx)+(C_{2,1}+C_{2,2}x+C_{2,3}x^2+\cdots+C_{2,n}x^{n-1})\sin(bx))$ в ответ, где n кратность корня.
- 3. Ответ сумма (линейная комбинация) написанных выше слагаемых.

10 Неднородное Линейное ДУ повышенного порядка с постоянными коэффициентами

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f(x)$$

- 1. Сначала решаем однородную часть, отбрасывая то, что находится справа.
- 2. Ищем частное решение. Есть два пути:
 - Если f(x) собрано из функций e^{ax} , $\sin(bx)$, $\cos(mx)$, $P^n(x) \in \mathbb{R}[x]$ многочлен степени n путем применения операций +, -, · другу и вещественным константам, то можно воспользоваться методом неопределенных кэффициентов путем применения соответствий

$$P^{n}(x) \leftrightarrow a_{n}x^{n} + a_{n_{1}}x^{n-1} + \dots + a_{1}x + a_{0}$$

 $e^{\lambda x} \leftrightarrow ae^{\lambda x}$
 $\sin(bx), \cos(bx) \leftrightarrow A\sin(bx) + B\cos(bx)$

Синус и косинус одинаково представляются в общем виде. Не забываем учитывать кратность корня (в том числе и в решении однородной части) и домножать на нужный многочлен. Например если в однородном решении был $(C_1 + xC_2)e^{2x}$ и $f(x) = P_m(x)e^{2x}$, то мы будем искать решение в виде $Q_m(x)x^2e^{2x}$. Так же e^{0x} считается полиномом, про это тоже не забываем.

• Можно пользоваться стандартным методом вариации констант. Пусть решение однородной части имеет вид $y = C_1y_1 + C_2y_2 + \cdots + C_ny_n$. Тогда мы должны решить систему

$$\begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{n-2} & y_2^{n-2} & \dots & y_n^{n-2} \\ y_1^{n-1} & y_2^{n-1} & \dots & y_n^{n-1} \end{pmatrix} \begin{pmatrix} C'_1 \\ C'_2 \\ \vdots \\ C'_{n-1} \\ C'_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \frac{f(x)}{a_n} \end{pmatrix}$$

Для этого используем правило Крамера. Матрица слева называется матрицей Вронского, а определитель матрицы - Вронскиан

11 Однородное Уравнение Эйлера

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = 0$$

Сводится к ОЛДУ с постоянными коэффициентами заменой $x = e^t$. Иногда работает и $y = x^k$.

12 Бонус ОЛДУ

$$a_2(x)y'' + a_1(x)y' + a_0y = 0$$

Пусть y_1 - частное решение. Тогда

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = Ce^{-\int \frac{a_1(x)}{a_2(x)} dx}$$

От сюда находится y_2 и итоговое решение равно $y = C_1 y_1 + C_2 y_2$.

Тут можно пытаться подобрать это частное решение как: многочлен в общем виде, либо (если старшие степени при иксах одинаковые) как экспонента e^{ax} .

13 Система ЛДУ

Section under construction.

Диагонализуя матрицу, мы сводим к случаю ОЛДУ но в векторной форме. Поэтому должно быть очевидно. При решении НСЛДУ вроде должно все получиться при вариации констант. Можно так же ставить соответствия, но это rip.

Пусть у нас есть система (напишем для двух переменных)

$$\begin{cases} \dot{x} = a_0 x + b_0 y + f_1(t) \\ \dot{y} = a_1 y + b_1 y + f_2(t) \end{cases}$$

• Сначала решаем однородную часть. Для это запишем матрицу, соответствующей однородной части:

$$A = \begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \end{pmatrix}$$

Ищем собственные значения этой матрицы. Пусть они равны λ_1 , λ_2 . Ищем собственные вектора v_1 и v_2 , соответствующие этим собственным значением, тогда однородное решение будет

$$\begin{pmatrix} x_o \\ y_o \end{pmatrix} = c_1 e^{\lambda_1 t} \cdot v_1 + c_2 e^{\lambda_2 t} \cdot v_2$$

Если $\lambda_1 = \lambda_2$, это означает, что у нас будет не диагональна матрица, а жорданова клетка размера два. Тогда нам надо найти присоединенный вектор u, то есть вектор, являющийся собственным для матрицы $(A - \lambda E)^2$ и при этом $(A - \lambda E)u = v_1$. Тогда ответ запишется в виде

$$\begin{pmatrix} x_o \\ y_o \end{pmatrix} = c_1 e^{\lambda t} \cdot v_1 + c_2 e^{\lambda t} \cdot (u + t \cdot v_1)$$

• Теперь разбираемся с неоднородной частью. При этом $f(t) = e^{\alpha t}(P_m(t)\cos\beta t + Q_m(t)\sin\beta t)$. Тогда мы допускаем, что частное решение $(x_1, y_1)^t$ будет примерно в таком же виде, при этом учитываем кратность корня α, β . Я тут подразумеваю $f(t) = \begin{pmatrix} f_1(t) & f_2(t) \end{pmatrix}^t$

Допустим $f(t) = P_m(t)e^{\alpha t}$ и в однородном решении был $e^{\alpha t}$, тогда ищем частное решение в виде $P_{m+k}(t)e^{\alpha t}$, где k- размер жордановой клетки для корня α (в нашем примере k=1). Далее подставляем это решение и ищем методом неопр. коэффициентов.

Допустим $f(t) = \cos \alpha t$, то ищем в виде $(a\cos \alpha t + b\sin \alpha t)$.

• Ответ – сумма однородного решения и частного решения.