

Decision Tree

GU 4241/GR 5241

Statistical Machine Learning

Xiaofei Shi

Tasks

```
Input — Regressor — Predict real number

Input — Classifier — Predict category

Input — Density Estimator — Probability
```


Types of classifiers

- Discriminative classifiers:
 - Directly estimate a decision rule/boundary
 - e.g. decision tree, SVM
- Instance based classifiers:
 - Use observation directly
 - e.g. K nearest neighborhood
- Generative classifiers:
 - Build a generative statistical model
 - e.g. Bayesian Network

How to make a decision...

- A decision tree for whether to play tennis
- Given a decision tree, how do we assign a label to a test point

How to make a decision...

- A decision tree for whether to play tennis
- Each internal node: test one feature
- Each branch from a node: choose one value for the feature considered
- Each leaf node: prediction for the label

Prediction

If given a decision tree:

- What function does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Now the real problem is:

How do we learn a decision tree from training data?

How to learn and build a decision tree

Top-down induction: (ID3)

Main loop:

- 1. $X \leftarrow$ the "best" decision feature—for next node
- 2. Assign X as decision feature—for node
- 3. For each value of X, create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

After all features exhausted, assign majority label to each leaf node.

X ₁	X_2	Υ	
Τ	_	Т	
Т	F	Т	
Т	Т	Т	
Т	F	Т	
F	Т	Ţ	
F	F	F	
F	Т	F	
F	F	F	

X ₁	X ₂	Υ
Τ	_	T
Т	F	Т
Т	Т	T
Т	F	Т
F	Т	Ţ
F	F	F
F	Т	F
F	F	F

Good split if we are more certain about classification after split!

Pick the attribute/feature which yields maximum information gain:

$$\arg\max_{i} I(Y, X_i) = \arg\max_{i} [H(Y) - H(Y|X_i)]$$

Entropy: the level of uncertainty

Entropy: the level of uncertainty

Entropy of a random variable Y

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$

More uncertainty, more entropy!

Y~ Bernoulli(p)

Information gain

- Advantage of attribute = decrease in uncertainty
 - Entropy of Y before split

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$

- Entropy of Y after splitting based on X_i
 - Weight by probability of following each branch

$$H(Y \mid X_i) = \sum_{x} P(X_i = x) H(Y \mid X_i = x)$$

= $-\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$

Information gain is difference

$$I(Y, X_i) = H(Y) - H(Y \mid X_i)$$

Pick the attribute/feature which yields maximum information gain:

$$\arg\max_i I(Y,X_i) = \arg\max_i [H(Y) - H(Y|X_i)]$$

$$= \arg\min_i H(Y|X_i)$$
 Entropy of Y
$$H(Y) = -\sum_y P(Y=y) \log_2 P(Y=y)$$
 Conditional entropy of Y
$$H(Y|X_i) = \sum_x P(X_i=x) H(Y|X_i=x)$$

Feature which yields maximum reduction in entropy (uncertainty) provides maximum information about Y

X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

How to learn and build a decision tree

Top-down induction: (ID3)

Main loop:

- 1. $X \leftarrow$ the "best" decision feature—for next node
- 2. Assign X as decision feature—for node
- 3. For each value of X, create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

After all features exhausted, assign majority label to each leaf node.

More generally

$$X_1 \geq 0.5, X_2 = \{a, b\} \text{or} \{c, d\}$$

- Features can be discrete, continuous or categorical
- Each internal node: test some set of features {X_i}
- Each branch from a node: selects a set of value for {X_i}
- Each leaf node: prediction for Y

More generally

- Decision trees in general (without pruning)
 can express any function of the input
 features.
- There is a decision tree which perfectly classifies a training set with one path to leaf for each example - overfitting
- But it won't generalize well to new examples prefer to find more compact decision trees

Overfitting

One training example per leaf – overfits, need compact/pruned decision tree

When to stop...

- Occam's razor: the more assumptions you have to make, the more unlikely an explanation
- People therefore look for simpler trees:
 - Pre-Pruning:
 - Fixed depth
 - Fixed number of leaves
 - Post-Pruning: Chi-square test of independence
 - Convert decision tree to a set of rules
 - Eliminate variable values in rules which are independent of label (using Chi-square test)
 - Simplify rule set by eliminating unnecessary rules
 - Complexity Penalized/MDL model selection

Information Criteria

Penalize complex models by introducing cost

$$\widehat{f} = \arg\min_{T} \ \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathsf{loss}(\widehat{f}_{T}(X_{i}), Y_{i}) \ + \ \mathsf{pen}(T) \right\}$$

$$\mathsf{log} \ \mathsf{likelihood} \qquad \mathsf{cost}$$

$$\begin{array}{rcl} \operatorname{loss}(\widehat{f}_T(X_i),Y_i) &=& (\widehat{f}_T(X_i)-Y_i)^2 & \operatorname{regression} \\ &=& \mathbf{1}_{\widehat{f}_T(X_i)\neq Y_i} & \operatorname{classification} \end{array}$$

 ${\sf pen}(T) \propto |T|$ penalize trees with more leaves CART – optimization can be solved by dynamic programming

How to assign values to each leaf

Classification – Majority vote

Regression – Constant/ Linear/Poly fit

Regression Tree

$X^{(1)}$	 $X^{(p)}$	Y

Gender	Rich?	Num. Children	# travel per yr.	Age
F	No	2	5	38
M	No	0	2	25
M	Yes	1	0	72
3)	:	:	1	:

Average (fit a constant) using training data at the leaves

A 2D example

Takeaways

- Decision trees are one of the most popular data mining tools
 - Interpretability
 - Easy to implement
 - Good performance in practice (for small dimensions!!!)
- Information gain to select attributes (ID3, C4.5, CART...)
- Can be used for classification, regression and density estimation too
- Decision trees will overfit!!! Must use tricks to find "simple trees", e.g.,
 - Pre-Pruning: Fixed depth/Fixed number of leaves
 - Post-Pruning: Chi-square test of independence
 - Complexity Penalized/MDL model selection

References

- Christopher Bishop: Pattern Recognition and Machine Learning, Chapter 14.4
- Tom Mitchell: Machine Learning, Chapter 3
- Trevor Hastie, Robert Tibshirani, Jerome Friedman: The Elements of Statistical Learning: Data
 Mining, Inference and Prediction, Chapter 9
- Ziv Bar-Joseph, Tom Mitchell, Pradeep Ravikumar and Aarti Singh: CMU 10-701

