ABSTAT17

IGC, April 10-13, 2017

EXERCISE: EM Algoritm

The main locus for the blood type of mice is called Ag-B (B). Several alleles are associated to this locus but for some crossovers Mendel's laws do not seem to hold. A mating $AaBb \times AaBb \equiv F_1 \times F_1$, originated a F_2 progeny, yielding

Genotype	Frequency	Probability
\overline{AABB}	11	$(1-\theta)^2/4$
AABb	14	$\theta(1-\theta)/2$
AAbb	1	$\theta^2/4$
AaBB	10	$\theta(1-\theta)/2$
AaBb	27	$(\theta^2/2) + [(1-\theta)^2]/2$
Aabb	12	$\theta(1-\theta)/2$
aaBB	3	$\theta^2/4$
aaBb	13	$\theta(1-\theta)/2$
aabb	11	$(1-\theta)^2/4$

Estimate the recombination fraction, θ , from these data by the EM algorithm.

Step 1

Read the data and state ao many recombinant gametes are there for each genotype.

```
nAABB<-11 # 0 recombinant gametes
nAABb<-14 # 1 recombinant gamete
nAAbb<-1 # 2 recombinant gametes
nAaBB<-10 # 1 recombinant gamete
nAaBb<-27 # 0 or 2 recombinant gametes
nAabb<-12 # 1 recombinant gamete
naaBB<-3 # 2 recombinant gametes
naaBb<-13 # 1 recombinant gamete
naabb<-11 # 0 recombinant gametes
```

Calculate n_1 , the number of individuals from 1 recombinant gametes (n1).

Calculate n_2 , the number of individuals from 2 recombinant gametes (n2). Note that $n_{AaBb} = n_2^* + n_0^*$ (nAaBb = n2.star + n0.star).

Calculate n, the total number of individuals (n).

Step 2

Initialize $\theta \in]0, 0.5[$ (r).

$$r < -0.3$$

Step 3 - E (Expectation)

Create function expected in order to calculate the expected value for N_2^* :

 N_2^* : random variable representing the number of individuals from 2 recombinant gametes, among n_{AaBb} individuals.

$$N_2^* \frown Binomial(n_{AaBb}, p)$$
 with $p = \frac{\theta^2}{\theta^2 + (1 - \theta)^2}$

then,
$$n_2^* = E(N_2^*) = n_{AaBb} \times p$$

Step 4 - M (Maximization)

Create function update.theta in order to update θ according to:

$$\theta = \frac{n_1 + 2(n_{AAbb} + n_{aaBB} + n_2^*)}{2n}$$

meaning that the proportion of recombinant gametes is calculated as the total number of recombinant gametes (0, 1 or 2 for each individual) over the total number of gametes for n individuals.

```
update.theta <- function(n2.star){
r <- (n1+2*(nAAbb+naaBB+n2.star))/(2*n)
r}</pre>
```

Step 5

EM algorithm: Iterative procedure.

```
i<-0
er<-1
error<-10^(-5)
while(er>=error)
{  # Step E
  n2.star<-expected(r)
# Step M
r.updated<-update.theta(n2.star)
# Stop criteria
er<-abs(r-r.updated)
i<-i+1
r<-r.updated
cat(i,r,"\n")
}
r</pre>
```

Step 6

Print the results.

cat("\nThe final solution, after",i,"iterations, is $nr^ = ",r," \ "$)