Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 61 Uses of Parametric Curves and Surfaces

Uses of Parametric Curves and Surfaces

- Primary use is in modeling and design
 - Need to build objects from scratch and/or edit and modify the shape of existing representations
- Several techniques for building and interacting with parametric curves and surfaces have been developed:
 - Interpolation of data sets using B-splines
 - Fitting a B-spline curve to a set of data points
 - Surface fitting
 - Cross-sectional design or sweep representations
 - Control polyhedron design: free-from sculpting

Interpolation Using B-splines

- Modeling: fitting a set of data points
 - Can then store and manipulate the spline surface
 - More compact than a large set of data points
- Animation: use a parametric curve to represent the path of an object or camera through space
 - Define a set of positions called key frames
 - Fit a curve through the key frame points
 - · The curve provides smooth motion as a function of time
- Two primary methods:
 - Uniform parameterization
 - Ignores geometric relationship between points
 - A poor interpolation
 - However, it is invariant under affine transformations
 - Chord length parameterization
 - Sets knot intervals in proportion to distance between data points
 - Creates a matrix representing a system of equations to solve for the control points

Surface Fitting

- Technique for interpolating a set of three dimensional data points with a parametric surface
 - Convert to a net of Bezier patches using B- spline curve interpolation and conversion from B-spline to Bezier
- Fit a network of uv curves through the data points
 - Using B-spline interpolation techniques
- Convert B-spline curves to Bezier curves
- Partition into individual mesh elements
 - Formed from four Bezier curve segments
 - These are the boundary edges of a Bezier patch
 - Can derive the control points for the patch

Sweep Representations

- Solids modeling packages often provide sweep representations
 - Useful for modeling objects that possess symmetry (rotational, translational)
 - Also called cross sectional design
- Constructing a solid by specifying cross sections and intervals along a sweep or curve
 - Linear axis design: surfaces of revolution
 - Sweep a curved cross section (spline) along a straight line
 - Rotational sweep
 - Spline representation is rotated about an axis specified in the plane of the cross section
 - General sweep constructions
 - Can sweep along any path
 - Can vary the shape or size of the cross section along the path

Control Polyhedron Design

- This is a method to perform free form sculpting of parametric surfaces
 - Move control points
 - Raise / lower local surfaces areas
 - Modeling approach described in most textbooks
- What if interacting with a set of surface patches rather than a single patch?
 - Continuity issues must be considered
- Locality and scale of control
 - Fine control
 - Limiting control so that fine adjustments affect a small enough part of the surface
 - Technique known as hierarchical B-spline deformation can be used
 - Coarse control
 - Sometimes need to operate on a large set or all control points simultaneously

