

FIT1043 Lecture 9 Introduction to Data Science

Mahsa Salehi*

Faculty of Information Technology, Monash University

Semester 2, 2022

Assignment 2

- Due Monday 3rd October 11:55pm
- Using libraries/packages in Python
- Any questions:
 - Post to Ed discussion
 - Email: : <u>fit1043.clayton-x@monash.edu</u>
 - Email your tutors

Unit Schedule

Week	Activities	Assignments
1	Overview of data science	Weekly Lecture/tutorial active participation assessment
2	Introduction to Python for data science	
3	Data visualisation and descriptive statistics	
4	Data sources and data wrangling	
5	Data analysis theory	Assignment 1
6	Regression analysis	
7	Classification and clustering	
8	Introduction to R for data science	
9	Characterising data and "big" data	
10	Big data processing	Assignment 2 (Monday)
11	Issues in data management	
12	Industry guest lecture	Assignment 3

Our Standard Value Chain

Last Week

Tools for data science

Outline

- Characterising data and "big data"
 - the V's
 - Metadata
 - Dimensions of data
 - Growth laws
- Introduction to Unix Shell for data science
 - Why Unix shell
 - Useful commands to read/manipulate large data files

Learning Outcomes (Week 9)

By the end of this week you should be able to:

- Characterize data sets used to assess a data science project
- Explain what Big data is
- Understand the V's in Big data
- Understand and analyse the growth laws: Moore's Law, Koomey's Law, Bell's Law and Zimmerman's Law
- Analyze and use shell commands to read and manipulate big data

Characterising Data

Characterising Data

Some general charactisations of data sets used to assess a project:

- The V's
 - The first characterisations by someone with a penchant for alliteration
- Metadata
 - Data about data is critical to understanding
- Dimensions of data
 - Infographics on data dimensions (how big is "big")
- Growth laws
 - Understanding the exponential growth

Characterising Data The V's

The first charactisations of big data were by someone with a penchant for alliteration ... others followed

The Four V's of Big Data

"The Four V's of Big Data," by IBM (infographic)

Big Data

From **Big data** on Wikipedia:

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process data within a tolerable elapsed time. Big data "size" is a constantly moving target, ...

- Don't always ask why, can simply detect patterns
- A cost-free byproduct of digital interaction
- Enabled by the cloud: affordability, extensibility, agility

Big Data and "V"s

- 2001 Doug Laney produced report describing 3 V's:
 "3-D Data Management: Controlling Data Volume, Velocity and Variety"
- These characterise bigness, adequately
- Other V's characterise problems with analysis and understanding

Veracity: correctness, truth, *i.e.*. lack of ... Variability: change in meaning over time, *e.g.*, natural language

 Other V's characterise aspirations Visualisation: one method for analysis

Value: what we want to get out of the data

· Think of any more? write a blog!

FLUX Question

The 3Vs of big data are important because:

- A. They are an industry standard
- B. They are the basis for the development of more Vs (e.g. Value)
- C. They are used to describe in what way a dataset may be too big to handle
- D. They are from the influential Gartner Inc

FLUX Question

Which of the following is considered as big data?

Summary

BIG DATA is ANY attribute that challenges
CONSTRAINTS of a system CAPABILITY or BUSINESS
NEED

Characterising Data Metadata

Data about data is critical to understanding

Metadata

MetaData ::= structured information that describes, explains, locates, or otherwise makes it easier to retrieve, use or manage an information resource.

MetaData is:

- Data about data
- Structured so that a computer can process & interpret it

Metadata (cont.)

Metadata can be:

Descriptive: Describes content for identification and retrieval e.g. title, author of a book

Structural: Documents relationships and links e.g. chapters in a book, elements in XML, containers in MPEG

Administrative: Helps to manage information e.g. version number, archiving date, Digital Rights Management (DRM)

Why Use Metadata?

- Facilitate data discovery
- Help users determine the applicability of the data
- Enable interpretation and reuse
- Clarify ownership and restrictions on reuse

FLUX Question

Name a type of metadata might be associated with an image.

EXIF Metadata

Book Metadata

Copyright © 1994 by John Wiley & Sons Ltd.
Baffins Lane, Chichester
West Sussex POI9 IUD. England
National Chichester (0243, 779777)
International (4-4th 243, 779777)

All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd. 22 Worcester Road, Rexdale, Ontario M9W ILI, Canada

John Wiley & Sons (SEA) Pte Ltd. 37 Jalan Pemimpin #05-04, Block B. Union Industrial Building, Singapore 2057

book metadata listed on about third page

Library of Congress Cataloging-in-Publication Data

Bayesian theory / José M. Bernardo, Adrian F.M. Smith. p. cm. — (Wiley series in probability and mathematical

Includes bibliographical references and indexes. ISBN 0 471 92416 4

I. Bayesian statistical decision theory. I. Smith, Adrian F.M. II. Title. III. Series. QA279.5.B47 1993 519.5'42—de20 93-37554

93-37554 CIP

British Library Cataloguing in Publication Data

ISBN 0 471 92416 4

A catalogue record for this book is available from the British Library

Characterising Data Dimensions of data

Infographics on data dimensions (how big is "big")

Things that happen in 60secs

Infographics on Data

- <u>"Data Science Matters"</u> from the datascience@berkeley Blog
- Social Media Prisma from the Ethority.de site

Characterising Data Growth laws

Understanding the exponential growth

Moore's Law

Moore's Law - The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Moore's Law

- Number of transistors per chip doubles every 2 years (starting from 1975)
- Transistor count translates to:
 - More memory
 - Bigger CPUs
 - Faster memory, CPUs (smaller==faster)
- Pace currently slowing

Koomey's

By Dr Jon Koomey CC BY-SA 3.0, via Wikimedia Commons

Koomey's Law

- Corollary of Moores Law
- Amount of battery needed will fall by a factor of 100 every decade
- Leads to ubiquitous computing

Bell's Law

Gordon Bell, Digital Equipment Corporation (DEC), 1972

- Corollary of Moore's Law and Koomey's Law
- "Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry."

Yes: PCs, mobile computing, cloud, internet-of things No: Java, big data, Hadoop, flash memory

Zimmerman's Law

- Zimmerman is creator of Pretty Good Privacy (PGP), an early encryption system
- "Surveillance is constantly increasing"
- Privacy constantly decreasing

Introduction to Unix Shell for Data Science

This is a very brief introduction to shell

What is a Unix Shell?

- Command line interface to a Unix computer
 - Different shells have been around since the 70s
- Why are shells interesting for Data Scientists?
 - Provide powerful & easy way to manipulate large data files
 - And move data around a network
- Available on most Unix based operating systems
 - o Linux
 - Mac OSX (BSD based)

What Shell Scripting?

Super-computers are typically UNIX based

- Explore data before you use it in Python or R
- Easier to manipulate and wrangle Big Data
 - Simple and easy to learn.
 - Ideal for textual data, e.g. unstructured data for social networks, life sciences, system logs, etc.
 - Quick to sort, search, match, replace and clean your data.

Getting Started

Installing a Shell on Windows:

- https://www.cygwin.com/
- For Windows 10, you can enable the Linux subsystem under (Control Panel → Programs → Turn Windows features on or off) after you have enabled the Developer mode on Windows.

Running a Shell:

- In Linux, click on the black square at the top left of the screen.
- In MacOSX, go to Applications -> Utilities -> Terminal.

Navigating the Filesystem

Working directory:
 pwd

· Change directory:

cd [destination]
cd /my/favourite/place

· Special cases:

cd .. <- Takes you up one directorycd <- Without argument, takes you to home directory

· List files in the current directory:

Is

Copy files from one location to another:

```
cp [source] [destination] cp Desktop/myfile .
```

Reading a Text File

 Open a text file for reading using less: less myfile.txt

```
Navigate within the text file using
[up/down] <- move one line the file
[space] <- move down a whole page
q <- quit
[shift]+g <- go to the end of file
g <- go to the start of file
/keyword <- search for the first occurrence of
"keyword"
/ <- find the next occurrence of keyword</li>
```

Some Useful Commands

- Count the number of words/lines in a file (-I for line) wc myfile.txt
- Find lines in a file containing a keyword grep "elephant" myfile.txt
- Print the first/last few lines of a file head myfile.txt tail myfile.txt

Some Useful Commands

- Print the contents of a file to the screen cat myfile.txt
- Read manual for a particular command man wc
 Then hit q for quit

Note: If you ever get into trouble on the command line (for example you get trapped in some program and don't know how to quit, just type [control]+c to kill the program.

FLUX Question

Unix shell commands like "less" and "grep":

- A. can be used to manipulate large data files easily
- B. are poorly documented
- C. are examples of technology that is too old to be useful to a modern data scientis
- D. are used to fit regression tree models

Flags and Arguments

Many programs take flags and command line arguments that modify their behaviour, for example:

- Sort the contents of a file lexicographically (alphabetically) sort myfile.txt
- Sort the data by column one, then column two and finally column three:

sort -k1,3 myfile.txt

Pipes

Sometimes we'd like the output of one program to be used as the input to another.

 Doing this is super easy in the shell. We just use the pipe operator "|"

```
program1 | program2
```

 We can chain as many programs together as we want, for example:

```
cat hourly_44201_2014-06.csv.gz | gunzip | less
```

Pipes(Cont.)

The pipe is buffered

- Each program in the list only generates data as it is needed by the next stage in the pipeline.
- Thus memory requirement for processing the data is limited
- Crucial for scaling up processing to enormous data files.

Redirects

If we want to save the results in a file rather than pipe them to a new program:

 Just change the pipe operator "|" to be a greater than symbol ">" and provide a filename:

cat hourly_44201_2014-06.csv.gz | gunzip > newFile.txt

Wildcards

 Some unix commands can take multiple files as input, for example:

cat myfile1.txt myfile2.txt

 In order to avoid listing large number of files, we can use the wildcard syntax to specify all files in a directory with a certain pattern, e.g.:

cat myfile*.txt

awk

In the tutorial, we'll have a look at a powerful command for processing text files one line at a time called awk

 awk syntax: awk '[select line?] {do something}'

- Example awk 'rand()<1/100 {print \$6,\$7,\$14}'
- Since awk processes data one line a time, it can scale up to massive datasets!

End of Introduction

- We'll be experimenting with the Unix shell in this week's tutorial
- There are MANY excellent shell tutorials online if you'd like to learn more!