

Feuille d'exercice 1

Exercice 1 Risques non homogènes

L'assureur garantit n=250~000 contrats contre le décès sur la base d'un capital décès de C=50~000 \in et d'une probabilité de décès q=1%. Il applique un chargement de sécurité de 6% et dispose d'une réserve $\mathcal{R}=2~\mathrm{M} \in$.

- 1. Calculer l'espérance du résultat E[R].
- 2. Calculer son écart-type $\sigma(R)$.
- 3. Calculer son coefficient de sécurité β .
- 4. En déduire la probabilité de ruine P si on suppose que l'approximation normale est valide.
- 5. L'assureur souscrit un contrat supplémentaire garantissant $C' = 50 \text{ M} \in \text{à un assuré}$.
 - a) Calculer la nouvelle espérance du résultat E[R'], le nouvel écart-type $\sigma(R')$ et le nouveau coefficient de sécurité β' .
 - b) En déduire la nouvelle probabilité P' de ruine si on suppose que l'approximation normale reste valide (ce qui n'est plus du tout justifié!).

Exercice 2

On suppose que le nombre N de sinistres d'un groupe de risques suit la loi de Poisson mélangée $\mathcal{PM}(\Lambda)$. Sachant que les deux premiers moments de N sont :

$$E(N) = 10\ 000 \text{ et } \sigma(N) = 1\ 000$$

En déduire $\mathbb{E}[\Lambda]$ et $\mathbb{V}(\Lambda)$.

Exercice 3

Soit N une variable aléatoire qui suit une loi de Poisson mélangée $\mathcal{PM}(\Lambda)$. Montrer que

$$\mu_3(N) = \mu_3(\Lambda) + 3\mathbb{V}(\Lambda) + \mathbb{E}[N]$$

Exercice 4

Soit N une variable aléatoire qui suit une loi de Poisson mélangée $\mathcal{PM}(\Lambda)$. La loi du mélange est la loi gamma $\gamma(r,\alpha)$ de densité

$$h(\lambda) = \frac{\alpha^r}{\Gamma(r)} \lambda^{r-1} e^{-\alpha \lambda} \mathbf{1}_{]0,1[}(x).$$

Montrer que N suit la loi binomiale négative $\mathcal{BN}\left(r, \frac{\alpha}{1+\alpha}\right)$.

Exercice 5

On considère une variable aléatoire N de loi $PM(\Lambda)$. La loi de Λ admet une densité h donnée par

$$h(\lambda) = \begin{cases} 1/c & \text{si } 0 \leqslant \lambda \leqslant c \\ 0 & \text{sinon} \end{cases}$$

où c est une constante positive donnée.

1. Déterminer $\mathbb{E}[N]$, $\mathbb{V}(N)$ et $\mu_3(N)$ en fonction de c.

- 2. Déterminer la loi de N par sa fonction génératrice des moments et par ses probabilités individuelles.
- 3. Plus généralement, reprendre la question 1 lorsque $\Lambda' = \Lambda/c$ suit la loi $\Gamma(a,b)$. La densité h de Λ' est donc donnée par

$$h(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \mathbf{1}_{]0,1[}(x) \qquad x \in \mathbb{R}$$

où a et b sont des paramètres strictement positifs. On pourra utiliser la fonction Bêta (fonction eulérienne de deuxième espèce), notée B, dont on rappelle la définition

$$B(u,v) = \int_0^1 w^{u-1} (1-w)^{v-1} dw, \qquad u,v > 0$$

ainsi que l'expression à l'aide de la fonction gamma

$$B(u,v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}.$$

Exercice 6

Le nombre annuel de sinistres d'un certain groupe de risques est modélisé par la loi de Poisson mélangée $\mathcal{PM}(\Lambda)$.

Ici, Λ est une variable aléatoire dont les seules valeurs possibles sont λ_1 et λ_2 . On a $P(\Lambda = \lambda_1) = p$ et $P(\Lambda = \lambda_2) = 1 - p$ avec $0 < \lambda_1 < \lambda_2$ et 0 .

- 1. Déterminer la loi de N par ses probabilités individuelles et par sa fonction génératrice des moments factoriels.
- 2. Suite à des études statistiques antérieures, on admet que p=0,9 et que $\lambda_2=2\lambda_1$. De plus, dans un échantillon de taille n=500, on a observé que 460 assurés n'avaient subi aucun sinistre durant l'année précédente. Suggérer des estimateurs pour λ_1 et λ_2 , puis calculer les estimations numériques correspondantes.

Exercice 7 Risques non indépendants

Un assureur garantit contre le décès le déplacement de n=400 congressistes. Chaque congressiste a une probabilité de décès égale à q=0,1%. Le capital décès est de 1 M€.

On considère les trois cas suivants :

- cas 1 : les 400 congressistes voyagent indépendamment,
- cas 2 : les 400 congressistes voyagent par couple, chacun des couples voyageant indépendamment les uns des autres,
- cas 3 : les 400 congressistes voyagent ensemble, dans le même avion.

Calculer, dans chaque cas, l'espérance $\mathbb{E}(\sum Y_i)$ et l'écart-type $\sigma(\sum Y_i)$ du montant des prestations décès que l'assureur devra verser.

Exercice 8 Modèle associé au risque de prime dans la formule standard de Solvabilité 2

On note Y la charge cumulée des sinistres annuelle d'un certain portefeuille d'assurance. Elle s'exprime sous la forme :

$$Y = \sum_{i=1}^{N} X_i$$

N étant le nombre de sinistres et les X_i correspondant aux montants des différents sinistres.

On suppose en outre qu'on a les propriétés suivantes :

- N suit une loi de Poisson **mélange** de paramètre $\lambda \times \Theta$ où λ est un réel strictement positif et Θ est une variable aléatoire strictement positive d'espérance 1.
- Les X_i sont indépendants, équidistribués et ont pour moyenne μ et pour variance σ^2 .
- N et la suite de montant de sinistres (X_i) sont indépendants.
 - 1. a) Calculer l'espérance de Y (prime pure).
 - b) Montrer que la variance de Y est donnée par :

$$\mathbf{Var}(Y) = \mu^2 \lambda^2 \mathbf{Var}(\Theta) + \lambda \mu^2 + \lambda \sigma^2$$

- 2. On suppose désormais que N suit une loi de Poisson de paramètre λ (autrement dit Θ est constant égal à 1), et que X_i suit la loi exponentielle de paramètre α .
 - a) Recalculer dans ce cas particulier la prime pure $\mathbf{E}[Y]$ et la variance $\mathbf{Var}(Y)$.
 - b) On suppose que le chargement technique β appliqué par l'assureur est proportionnelle à la prime pure :

$$\mathbf{Prime} = \mathbf{E}(Y) + \beta \mathbf{E}(Y)$$

On suppose en outre que l'assureur dispose d'un capital noté K.

Calculer la valeur minimale du chargement technique β permettant d'assurer une probabilité de ruine inférieure à ε sur la base de l'approximation normale.

Exercice 9

Les résultats d'années antérieures permettent de considérer que, pour un certain groupe de risques, le montant annuel des dépenses pour sinistres est une variable aléatoire X d'espérance mathématique E(X) = 1200 et d'écart-type $\sigma(X) = 200$ (l'unité monétaire n'est pas précisée). On suppose que la prime technique de l'exercice qui débute est donnée par $\Pi_T(X) = (1 + \alpha)E(X)$ où α désigne le coefficient de chargement technique appliqué par l'assureur. Le montant des réserves affectées au risque est noté \mathcal{R} .

- 1. Donner l'expression du coefficient de sécurité T de l'assureur en fonction des éléments précédents. Indiquer l'inégalité que doit vérifier \mathcal{R} pour que T soit au moins égal à une valeur cible t donnée.
- 2. En supposant que le coefficient α est égal à 0,05, calculer la valeur minimale de R correspondant à t=4. Si l'on a seulement $\mathcal{R}=700$, que vaut T? L'assureur envisage alors une augmentation du taux de chargement technique. Comment doit-on choisir le coefficient α pour que T soit au moins égal à 4?
- 3. Tenant compte de la concurrence, l'assureur estime que le coefficient α ne peut excéder la valeur 0,06. Indiquer la valeur de T correspondant à $\alpha=0,06$. Considérant que sa sécurité est encore insuffisante, l'assureur souscrit un traité en quote-part auprès d'un réassureur. Ce dernier applique aussi le principe de chargement technique basé sur l'espérance mathématique, mais avec un coefficient de chargement $\beta=0,09$. L'assureur souhaite donner à son coefficient de sécurité une valeur au moins égale à 4. Déterminer la valeur la plus petite du plein de conservation θ réalisant cet objectif. Calculer la valeur du bénéfice moyen après réassurance et comparer avec la situation avant réassurance.

Exercice 10 Réduction de la probabilité de ruine

On considère un groupe de risques de type mono-sinistre et on se place dans le modèle individuel statique (mono-période).

Chacun des risques peut donc donner lieu au plus à un sinistre durant la période de garantie considérée. Exemples : assurance décès (temporaire d'un an), assurance résiliation d'un voyage...

On pose:

- \bullet n: le nombre de risques,
- p: probabilité de survenance d'un sinistre pour un risque donné, supposée identique pour tous les risques,
- C : le montant de l'indemnité versée par l'assureur lorsqu'un sinistre survient, montant supposé identique pour tous les risques.
- Y_i : le coût de sinistre du risque i,

$$Y_i = \left\{ \begin{array}{ll} C & \text{ si le risque i est touch\'e par un sinistre au cours de l'ann\'ee} \\ 0 & \text{ sinon} \end{array} \right.$$

• X : le montant cumulé des sinistres,

$$X := Y_1 + Y_2 + \dots + Y_n.$$

Hypothèses de base pour les A.N.: C = 100, p = 10%, n = 1000, $\alpha = 10\%$.

Dans toute la suite, on supposera que l'approximation normale est toujours valide.

- 1. Déterminer la loi de X.
- 2. On suppose dans un premier temps que l'assureur ne reçoit que la prime pure.
 - a) Ecrire le résultat de l'assureur en fonction de X.
 - b) Calculer l'espérance et l'écart-type de ce résultat.
 - c) En déduire la probabilité de ruine de l'assureur.

3. Chargement de la prime pure

On cherche à réduire cette probabilité de ruine. Pour cela l'assureur ajoute un chargement technique proportionnelle à la prime pure avec chargement de sécurité $\alpha = 10\%$.

- a) Calculer l'espérance et l'écart-type du résultat de l'assureur.
- b) En déduire la probabilité de ruine de l'assureur.
- c) Etudier l'effet taille du portefeuille en faisant varier n: n = 100, 10000.
- d) Pour observer l'effet de la dangerosité du risque on considère le cas avec les nouvelles données numériques suivantes (les autres restant inchangées):

$$C = 1 000, \qquad q = 1\%$$

Calculer l'espérance et l'écart-type du résultat ainsi que la probabilité de ruine.

4. Introduction d'une réserve

Pour réduire encore la probabilité de ruine l'assureur constitue une réserve $\mathcal{R}=1$ 200 affectée à ce groupe de risque.

- a) Calculer le coefficient suivant appelé coefficient de sécurité : $\frac{\mathcal{R} + \alpha \mathbb{E}[X]}{\sigma(X)}$.
- b) En déduire la nouvelle probabilité de ruine.