PROVA 1 - Análise de Sobrevivência - Mestrado (05/06/2023)

NOME:	Matricula:	
_		

1. Considere uma variável aleatória T que possui a seguinte Função de Sobrevivência:

$$S(t) = \left(\frac{\beta}{t+\beta}\right)^{\alpha}$$
, $t \ge 0$, $\alpha > 0$, $\beta > 0$.

- i) Obtenha a função de risco de T e responda: h(t) é constante, crescente ou decrescente? (1 ponto)
- ii) Obtenha a v(t) (Função Vida Média Residual de T), para $\alpha > 1$. (1 ponto)

Bônus) Qual é o valor de v(t) quando $\alpha \le 1$? (0,5 ponto)

2. Seja T uma variável aleatória que representa o tempo (em horas) até que um indivíduo entregue sua prova em um concurso. Considere que esse concurso tem duração máxima de 1 hora, isto é, $T \in [0,1]$. Suponha que a variável T pode ser modelada pela seguinte função densidade de probabilidades:

$$f(t) = \theta(1-t)^{\theta-1}, 0 < t < 1$$

que resulta em $S(t)=(1-t)^{\theta}$, 0 < t < 1. Considere que $t_1, t_2, ..., t_n$ é uma amostra aleatória de T, com seus respectivos indicadores de censura dados por $\delta_1, \delta_2, ..., \delta_n$. Considerando também que $\theta(\theta > 0)$ é o parâmetro desconhecido do modelo e também um mecanismo de censura a direita.

- i) Calcule o Estimador de Máxima Verossimilhança de θ . (1 ponto)
- ii) Mostre que o quantil p de T é dado por

$$t_p = 1 - (1 - p)^{1/\theta}, \quad 0$$

e apresente um intervalo de confiança para t_p que não ultrapasse o limite do intervalo [0,1]. (2 pontos)

<u>Sugestão</u>: construa o intervalo considerando a transformação $log(-log(1-t_p))$.

Nota 1: Este item pode ser apresentado em termos de $\hat{\theta}$ e $\widehat{Var}[\hat{\theta}]$.

Nota 2: 0.5 ponto para a demonstração do quantil, 0.5 ponto para o cálculo da variância da transformação e 1 ponto para a construção do IC.

Bônus 1) Considere que o concurso tem duração máxima de a horas (a é uma constante real positiva), isto é, $T \in [0,a]$. Assim, $f(t) = \frac{1}{a}\theta \left(1 - \frac{t}{a}\right)^{\theta-1}$, 0 < t < a. Encontre S(t). (0,5 ponto).

Bônus 2) Considere que o concurso tem duração mínima de a horas e máxima de b horas (a e b são constantes reais positivas tal que a < b), isto é, $T \in [a, b]$. Sugira uma transformação para a construção de um IC para as principais medidas de posição (média, mediana, quantis) que não ultrapasse os limites dos possíveis valores de T. **(0,5 ponto)**.

3. Considere que $t_1, t_2, ..., t_n$ é uma amostra aleatória de T, com seus respectivos indicadores de censura dados por $\delta_1, \delta_2, ..., \delta_n$. Se $T \sim Binomial-Negativa(2, \theta)$, então

$$p(t) = (t+1)\theta^{2}(1-\theta)^{t}, t=0, 1, 2, \dots e \ 0 < \theta < 1$$

е

$$S(t) = [(t+1)\theta + 1](1-\theta)^{t+1}$$

- i) Encontre a estimativa de máxima verossimilhança de θ . (1 ponto)
- ii) Obtenha a estimativa de $Var(\hat{\theta})$. (1 ponto)

Bônus) Demostre a fórmula da função de sobrevivência S(t) apresentada. (0,5 ponto)

- **4.** Explique, com poucas palavras, porque o tipo da censura à direita (tipo I, II ou aleatória) não influencia na obtenção do estimador de máxima verossimilhança pontual e no cálculo da informação de Fisher observada. **(1 ponto)**
- **5.** Considere três tratamentos, A, B e C, para o combate de uma doença. O tempo (em semanas) até a cura é representado por uma variável aleatória *T*, que depende de qual tratamento foi utilizado. A figura abaixo apresenta a Função de Sobrevivência para os três tratamentos.

Com base na figura acima, responda os itens abaixo como verdadeiro (V) ou falso (F). (0.5 ponto por item).

- i) () Se o objetivo é a cura da doença em menos de uma semana, o tratamento A deve ser preferido.
- ii) () O tempo médio até a cura para aqueles pacientes que fizeram o tratamento A é maior do que para aqueles que fizeram o tratamento C.
- iii) () A Vida Média Residual em *t*=1 no tratamento A é menor do que no tratamento B.
- iv) () O primeiro quartil do tempo até a cura é menor no tratamento A do que no tratamento B.