CS 474

Homework 3

Name: Adharsh Kamath NetID: ak128

Problem 1

Soln: We are given three models with signatures (U, 0, 1, +, *) where U is \mathbb{N} , \mathbb{Q} and \mathbb{R} .

(a)

For each formula given below, we shall see if the formula is true or false over \mathbb{N} , \mathbb{Q} and \mathbb{R} .

1.
$$\exists y.(y * y = 1 + 1)$$

N	\mathbb{Q}	\mathbb{R}
False	False	True

This formula is true over \mathbb{R} since there is a real number $(\sqrt{2})$ which satisfies the formula. However, the same is not true for \mathbb{N} and \mathbb{Q} .

2.
$$\forall x. \exists y. (x + y = 0)$$

N	Q	\mathbb{R}
False	True	True

This formula is true over \mathbb{Q} and \mathbb{R} since for any $x \in \mathbb{Q}$ (or \mathbb{R}), there exists a $y \in \mathbb{Q}$ (or \mathbb{R}) such that x + y = 0. (We can take y = -x when $x \neq 0$ and y = 0 otherwise). However, this is not true for \mathbb{N} since there is no $y \in \mathbb{N}$ such that x + y = 0 for any $x \in \mathbb{N}$.

3.
$$\forall x. \forall y. (\neg (y=0) \Rightarrow (\exists z. x * y = x + z))$$

N	Q	\mathbb{R}
True	True	True

This formula is true over \mathbb{N} , \mathbb{Q} and \mathbb{R} since for any $x, y \in \mathbb{N}$ (or \mathbb{Q} or \mathbb{R}), we can find a $z \in \mathbb{N}$ (or \mathbb{Q} or \mathbb{R}) such that x * y = x + z. (We can take z = x * (y - 1), and still ensure $z \in \mathbb{N}$ (or \mathbb{Q} or \mathbb{R}). This is possible since the premise of the implication is that $y \neq 0$).

4.
$$\exists x. \exists y. (x+1=0 \land y * y=x)$$

N	\mathbb{Q}	\mathbb{R}
False	False	False

This formula is false over \mathbb{N} , \mathbb{Q} and \mathbb{R} since there is no $x, y \in \mathbb{N}$ (or \mathbb{Q} or \mathbb{R}) such that x + 1 = 0 and y * y = x. This formula can evaluate to true only if x = -1 and $y = \pm \sqrt{-1}$, which is possible only in \mathbb{C} (complex numbers) and not in \mathbb{N} , \mathbb{Q} or \mathbb{R} .

(b)

Task 1:

We need to write a formula $gt_{\mathbb{N}}(x,y)$ that is true precisely when x>y for any $x,y\in\mathbb{N}$.

We can write the formula as $gt_{\mathbb{N}}(x,y) = \exists z.(z \neq 0 \land x = y + z).$

Task 2:

We need to write a formula $gt_{\mathbb{R}}(x,y)$ that is true precisely when x>y for any $x,y\in\mathbb{R}$. We can write the formula as $gt_{\mathbb{R}}(x,y)=\exists z.(z\neq 0 \land x=y+(z*z))$.

(c)

We need to write a formula that is true over \mathbb{N} , but false over \mathbb{R} .

Using the definitions of $gt_{\mathbb{N}}(x,y)$ and $gt_{\mathbb{R}}(x,y)$ from above, we can write the following formula:

$$\forall x.(x > 0 \lor x = 0)$$

where x > 0 is $gt_{\mathbb{N}}(x,0)$ for \mathbb{N} and x > 0 is $gt_{\mathbb{R}}(x,0)$ for \mathbb{R} . This formula is true over \mathbb{N} since for any $x \in \mathbb{N}$, x is greater than or equal to 0, which is not true for \mathbb{R} .

Problem 2

Soln: (a)

Task 1:

We are given the following formula over the logic $(\mathbb{R}, 0, 1, <)$:

$$\forall z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2$$

$$\Rightarrow (\exists w. l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land w \neq z))$$

Consider the inner formula that is quantified by $\exists w$:

$$\exists w. (l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land w \neq z)$$

Rewriting $w \neq z$ as $\neg (w = z)$, which is equivalent to $w < z \lor w > z$, we get:

$$\exists w. (l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land (w < z \lor w > z))$$

Applying the distributive property and simplifying, we get the DNF form:

$$\exists w. (l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land w < z)$$

$$\forall \exists w. (l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land w > z)$$

Consider the first disjunct:

$$\exists w. (l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land w < z)$$

In the context of the Q.E procedure for DLOWE, the lower bounds in this case are l_1, l_2 and the upper bounds are u_1, u_2, z . Eliminating the existential quantifier, we get:

$$(l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

Consider the second disjunct:

$$\exists w. (l_1 < w \land w < u_1 \land l_2 < w \land w < u_2 \land w > z)$$

In the context of the Q.E procedure for DLOWE, the lower bounds in this case are l_1, l_2, z and the upper bounds are u_1, u_2 . Eliminating the existential quantifier, we get:

$$(l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2)$$

Combining the two disjuncts, we get:

$$(l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

$$\lor (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2)$$

Thus we have eliminated the existential quantifier $\exists w$ from the original formula.

Therefore, the original formula can be simplified to:

$$\forall z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2)$$

$$\Rightarrow ((l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z))$$

$$\lor (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2)))$$

Rewriting the implication as a disjunction, we get:

$$\forall z. \neg (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2)$$

$$\lor ((l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

$$\lor (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2))$$

Rewriting the universal quantifier as an existential quantifier, and pushing the negation inside, we get:

$$\neg(\exists z.(l_1 < z \land z < u_1 \land l_2 < z \land z < u_2))$$

$$\land \neg((l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

$$\lor (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2))$$

Consider the inner existential formula:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2)$$

$$\land \neg ((l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

$$\lor (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2))$$

Applying De Morgan's law, we get:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2)$$

$$\land (\neg (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

$$\land \neg (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2))$$

Consider the first inner negated formula:

$$\neg (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land l_1 < z \land l_2 < z)$$

Using De Morgan's law, we get:

$$(l_1 > u_1 \lor l_1 = u_1) \lor (l_2 > u_1 \lor l_2 = u_1) \lor (l_1 > u_2 \lor l_1 = u_2) \lor (l_2 > u_2 \lor l_2 = u_2)$$

 $\lor (l_1 > z \lor l_1 = z) \lor (l_2 > z \lor l_2 = z)$

Similarly for the other inner negated formula:

$$\neg (l_1 < u_1 \land l_2 < u_1 \land l_1 < u_2 \land l_2 < u_2 \land z < u_1 \land z < u_2)$$

Applying De Morgan's law, we get:

$$(l_1 > u_1 \lor l_1 = u_1) \lor (l_2 > u_1 \lor l_2 = u_1) \lor (l_1 > u_2 \lor l_1 = u_2) \lor (l_2 > u_2 \lor l_2 = u_2)$$

 $\lor (z > u_1 \lor z = u_1) \lor (z > u_2 \lor z = u_2)$

The conjunction of the above two formulae is:

$$((l_{1} > u_{1} \lor l_{1} = u_{1}) \lor (l_{2} > u_{1} \lor l_{2} = u_{1}) \lor (l_{1} > u_{2} \lor l_{1} = u_{2}) \lor (l_{2} > u_{2} \lor l_{2} = u_{2})$$

$$\lor (l_{1} > z \lor l_{1} = z) \lor (l_{2} > z \lor l_{2} = z))$$

$$\land ((l_{1} > u_{1} \lor l_{1} = u_{1}) \lor (l_{2} > u_{1} \lor l_{2} = u_{1}) \lor (l_{1} > u_{2} \lor l_{1} = u_{2}) \lor (l_{2} > u_{2} \lor l_{2} = u_{2})$$

$$\lor (z > u_{1} \lor z = u_{1}) \lor (z > u_{2} \lor z = u_{2})$$

Applying the distributive property and simplifying, we get:

$$(l_1 > u_1 \lor l_1 = u_1) \lor (l_2 > u_1 \lor l_2 = u_1) \lor (l_1 > u_2 \lor l_1 = u_2) \lor (l_2 > u_2 \lor l_2 = u_2)$$

$$\lor ((l_1 > z \lor l_1 = z) \land (z > u_1 \lor z = u_1)) \lor ((l_2 > z \lor l_2 = z) \land (z > u_1 \lor z = u_1))$$

$$\lor ((l_1 > z \lor l_1 = z) \land (z > u_2 \lor z = u_2)) \lor ((l_2 > z \lor l_2 = z) \land (z > u_2 \lor z = u_2))$$

(The term after applying distributive property and before simplification is omitted for brevity). Putting the above back into the original formula, we get:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2)$$

$$\land (l_1 > u_1 \lor l_1 = u_1 \lor l_2 > u_1 \lor l_2 = u_1 \lor l_1 > u_2 \lor l_1 = u_2 \lor l_2 > u_2 \lor l_2 = u_2$$

$$\lor ((l_1 > z \lor l_1 = z) \land (z > u_1 \lor z = u_1)) \lor ((l_2 > z \lor l_2 = z) \land (z > u_1 \lor z = u_1))$$

$$\lor ((l_1 > z \lor l_1 = z) \land (z > u_2 \lor z = u_2)) \lor ((l_2 > z \lor l_2 = z) \land (z > u_2 \lor z = u_2)))$$

Applying distributive property and simplifying, we get:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 = u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 = u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 = u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 = u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land (l_1 > z \lor l_1 = z) \land (z > u_1 \lor z = u_1))$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land (l_1 > z \lor l_1 = z) \land (z > u_2 \lor z = u_2))$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land (l_1 > z \lor l_1 = z) \land (z > u_2 \lor z = u_2))$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land (l_1 > z \lor l_1 = z) \land (z > u_2 \lor z = u_2))$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land (l_1 > z \lor l_1 = z) \land (z > u_2 \lor z = u_2))$$

Simplifying the last four disjuncts, we get:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 = u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z < u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z < u_1)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z < u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z > u_2)$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z < u_2$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 = z \land z < u_2$$

$$\lor \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_$$

The following terms can be pulled out from the first eight disjuncts since they do not refer to z:

$$(l_1 > u_1) \lor (l_1 = u_1) \lor (l_2 > u_1) \lor (l_2 = u_1) \lor (l_1 > u_2) \lor (l_1 = u_2) \lor (l_2 > u_2) \lor (l_2 = u_2)$$

Upon removing the above terms, the first eight disjuncts all become the same:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2)$$

The existential can be eliminated using the Q.E procedure for DLOWE, and we get:

$$l_1 < u_1 \land l_1 < u_2 \land l_2 < u_1 \land l_2 < u_2$$

Combining this formula with the terms that were pulled out, we get the simplified formula:

$$((l_1 > u_1 \lor l_1 = u_1) \lor (l_2 > u_1 \lor l_2 = u_1) \lor (l_1 > u_2 \lor l_1 = u_2) \lor (l_2 > u_2 \lor l_2 = u_2))$$
$$\land (l_1 < u_1 \land l_1 < u_2 \land l_2 < u_1 \land l_2 < u_2)$$

The next four disjuncts are:

$$\exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_1)$$

$$\forall \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > z \land z > u_1)$$

$$\forall \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_1 > z \land z > u_2)$$

$$\forall \exists z. (l_1 < z \land z < u_1 \land l_2 < z \land z < u_2 \land l_2 > z \land z > u_2)$$

and they can be eliminated since they contain terms that are not satisfiable (e.g. $l_1 < z \land l_1 > z$ which cannot be satisfied).

The next twelve disjuncts contain terms of the form $l_1 = z$ and also $l_1 < z$ or $l_1 > z$ which are not satisfiable together.

Bringing back the outermost negation, we get the simplified formula:

$$\neg((l_1 > u_1 \lor l_1 = u_1) \lor (l_2 > u_1 \lor l_2 = u_1) \lor (l_1 > u_2 \lor l_1 = u_2) \lor (l_2 > u_2 \lor l_2 = u_2))$$

$$\wedge(l_1 < u_1 \land l_1 < u_2 \land l_2 < u_1 \land l_2 < u_2)$$

Simplifying the above formula (and using the fact that $\neg(l_1 > u_1 \lor l_1 = u_1) \equiv l_1 < u_1$), we get:

$$(l_1 < u_1 \land l_1 < u_2 \land l_2 < u_1 \land l_2 < u_2)$$

$$\lor \neg (l_1 < u_1 \land l_1 < u_2 \land l_2 < u_1 \land l_2 < u_2)$$

which is a equivalent to the original formula.

We can also see that the formula is a tautology of the form $A \vee \neg A$, where A is $l_1 < u_1 \wedge l_1 < u_2 \wedge l_2 < u_1 \wedge l_2 < u_2$.

Hence, the formula simplifies to \top .

Task 2: Encoding the above formula in Z3 and using the Q.E tactic:

```
from z3 import *
11 = Real("11")
12 = Real("12")
u1 = Real("u1")
u2 = Real("u2")
w = Real("w")
z = Real("z")
goal = Goal()
goal.add(
    ForAll(
        [z],
        Implies (
            And (11 < z, z < u1, 12 < z, z < u2),
            Exists([w], And(11 < w, w < u1, 12 < w, w < u2, w != z)),
        ),
    )
tactic = Tactic("qe")
```

```
result = tactic(goal)
print(result)
```

The output of the above code is:

[[]]

(b)

Task 1:

Let us name the vertices of the given graph as A, B, C, D where A is the topmost vertex and D is the bottommost vertex.

C is the vertex on the left and B is the vertex on the right.

The following vertices are connected by an edge: A and B, A and C, B and D, C and D.

Let us represent each vertex as an interval, using (l_A, u_A) to represent vertex A, and so on.

Problem 3

Soln: