

模拟试卷三

一、选择题

- 1. 过点(1,1,2)且平行于平面x-y+2z-6=0的平面方程为()
- $A. \quad x y + 2z = 0$
- B. x y + 2z 4 = 0
- C. x + y + 2z = 0
- D. x + y + 2z 4 = 0
- 2. 极限 $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{\sqrt{1+xy}-1} = ($)
- $A. \quad \frac{1}{2}$
- B. 1 C. 2
- D. 0
- 3. $I_1 = \iint_{\mathbb{R}} (x+y)^2 d\sigma$, $I_2 = \iint_{\mathbb{R}} (x+y)^3 d\sigma$, $D \, \text{由} \, x \, \text{、} y \, \text{轴与直线} \, x + y = 1 \, \text{围成}$,

则()

- $A. I_1 > I_2$ $B. I_1 < I_2$ $C. I_1 = I_2$ D. 不能确定
- 4. 下列级数中绝对收敛的是()
- $A. \sum_{n=1}^{\infty} \left(\frac{n}{2n-1}\right)^2$
 - B. $\sum_{n=1}^{\infty} \frac{1}{n}$
- C. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ D. $\sum_{n=1}^{\infty} \frac{\sin na}{n^2} (a \neq 0)$

二、填空题

- 5. 已知 $\vec{a} = (1, 1, 1), \ \vec{b} = (3, -2, 1), \ \ 贝 \vec{a} \cdot \vec{b} =$ ______
- 6. 函数 $z = \frac{1}{\sqrt{4 x^2 v^2}}$ 的定义域为_____

学习交流 QQ 群: 978080722

7.
$$D$$
 是长方形区域{ $(x,y) | 0 \le x \le 2, 1 \le y \le 2$ },则 $\iint_D \frac{x}{y^3} dx dy =$ ______

三、解答题

9. 求直线
$$\frac{x+3}{3} = \frac{y+2}{-2} = z$$
 与平面 $x + 2y + 2z + 6 = 0$ 的交点.

10. 函数
$$z = y^x$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

11. 函数 z = f(xy,y), 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

12. 计算二重积分
$$\iint_{D} \frac{xy+1}{1+x^2+y^2} d\sigma$$
, 其中 $D = \{ (x,y) | x^2+y^2 \leq 1 \}$

13. 利用格林公式计算曲线积分 $I = \int_L (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$, L 为 逆时针方向上半圆周 $x^2 + y^2 = 2x$ $(y \ge 0)$.

14. 计算
$$\iint_{\Sigma} x dy dz + y dz dx + z dx dy$$
, 其中 Σ 为柱体 $x^2 + y^2 \le 9$ 介于 $z = 0$ 与 $z = 3$

之间部分的全表面,取外侧.

15. 求幂级数
$$\sum_{n=1}^{\infty} nx^n$$
 的收敛域以及和函数 $S(x)$.

16. 将函数
$$f(x) = \frac{1}{x^2 - 2x}$$
 展开成 $x + 1$ 的幂级数,并指出其收敛域.

17. 求函数
$$f(x,y) = 4(x-y) - x^2 - y^2$$
 的极值.

18. 某工厂生产两种商品的日产量分别为x和y(件),总成本函数

$$C(x,y) = 8x^2 - xy + 12y^2 \ (\vec{\pi})$$

商品的限额为x+y=42,求最小成本.