

11 Publication number:

0 417 838 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 90202366.2

(1) Int. Cl.5: H01L 21/20

② Date of filing: 06.09.90

Priority: 12.09.89 NL 8902271

Date of publication of application: 20.03.91 Bulletin 91/12

Designated Contracting States:
DE FR GB NL

Applicant: N.V. Philips' Gloeilampenfabrieken Groenewoudseweg 1 NL-5621 BA Eindhoven(NL)

② Inventor: Haisma, Jan c/o INT. OCTROOIBUREAU B.V., Prof. Holstlaan 6

NL-5656 AA Eindhoven(NL)

Inventor: Spierings, Gijsbertus Adrianus

Cornelis Maria

c/o INT. OCTROOIBUREAU B.V., Prof. Holstlaan 6

NL-5656 AA Eindhoven(NL)

Inventor: Van Lierop, Joseph Gijsbertus c/o INT. OCTROOIBUREAU B.V., Prof.

Holstlaan 6

NL-5656 AA Eindhoven(NL)

Inventor: Van den Bergh, Hendrik Frederik c/o INT. OCTROOIBUREAU B.V., Prof. Holstiaan 6

NL-5656 AA Eindhoven(NL)

(4) Representative: Rensen, Jan Geert et al Internationaal Octrooibureau B.V. Prof. Holstlaan 6

NL-5656 AA Eindhoven(NL)

- (4) Method of bonding together two bodies.
- (a) A method of bonding together two bodies (1, 2), according to which a first body (1) is provided with a flat surface (5) and the second body (2) is provided with a silicon oxide layer (4) with a flat surface (6), after which a connecting layer (7) containing sboron is provided on at least one of the two flat surfaces. Subsequently, the two bodies (1, 2) are pressed together at elevated temperature, so that a

borosilicate glass layer is formed. According to the invention, a layer of practically pure boron is used by way of connecting layer (7).

Among the advantages of this is that the composition of the borosilicate glass layer is exclusively determined by the previously chosen layer thicknesses.

FIG. 2

EP 0 417 838 A

METHOD OF BONDING TOGETHER TWO BODIES

10

15

25

35

The invention relates to a method of bonding together a first body and a second body, the first body being provided with a flat surface and the second body being coated with a silicon oxide layer, which is also provided with a flat surface, whereupon a connecting layer comprising boron is applied to at least one of the two flat surfaces and subsequently the first body and the second body are pressed against one another with the said flat surfaces during some time at an elevated temperature, after which one of the two bodies is made thin by removal of material.

1

The connection in this case is made by a borosilicate glass layer which is formed by the reaction at elevated temperature of the connecting layer comprising boron with the silicon oxide layer. A suitable choice of the layer thicknesses makes it possible to achieve a layer of borosilicate glass of such a composition that this layer has a comparatively low or high softening temperature.

By means of the method referred to, a structure is realised comprising a thin layer of material having, for example, semiconductor, magneto-optical, optoelectrical, ferroelectrical, electrically conductive, superconductive, isolating, or photorefractive characteristics and lying on an insulator. The insulator consists of a layer of silicon oxide which contains boron. The two layers are supported by the other body, which was not made thin. This body may be manufactured from, for example, silicon, quartz, sapphire, or a garnet. If silicon is used as the material for the thin layer, such a structure is called SOI (Silicon On Insulator). In such a thin layer of semiconductor material it is possible to provide semiconductor circuits. These circuits have the advantage that they are less prone to interference owing to, for example, "latch up", that they are insensitive to radiation, that the parasitic capacitances are smaller, and that they allow of a high circuit density.

A method of the kind mentioned in the opening paragraph is known from the US Patent no. 3,909,332, in which a glass connecting layer of boron oxide and silicon oxide (borosilicate glass) is used for bonding the bodies together. According to the method, two silicon wafers provided with a silicon oxide layer, with a borosilicate glass layer in-between, are pressed against one another with a pressure of approximately 3 x 10⁶ N/m². When the temperature is raised to 900° C, the borosilicate glass layer will start to flow from 500° C, so that borosilicate glass is partly pressed out from between the bodies and caught by means of mica leaves in the press. The remaining borosilicate glass reacts with the silicon oxidelayers, forming a

different borosilicate glass with a lower boron content than that of the original borosilicate glass. This results in a borosilicate glass having a higher softening temperature than the original borosilicate glass.

The invention has for its object inter alia to provide a method by which a connection is formed between the bodies in a simple way without the connecting layer containing the boron starting to flow. Another object of the invention is inter alia to provide a method by which a stronger bond between the bodies is achieved.

According to the invention, the method of the kind mentioned in the opening paragraph is characterized in that a layer of practically pure boron is used by way of connecting layer. Contrary to borosilicate glass layers, which have a relatively low softening temperature of approximately 500-800° C, practically pure boron is thermally more stable. Practically pure boron does not melt until at approximately 2300° C. While the bond is being formed, boron atoms can diffuse from the layer into the silicon oxide layer. These atoms are comparatively mobile because they do not form part of a lattice formed by the silicon/oxygen atoms of the silicon oxide layer. The boron is able to distribute itself over the silicon oxide layer without glass phases having a low softening temperature being created. A bond is thus obtained in which the bonding layer is not pressed out from between the bodies. Among the advantages of this is that the composition of the borosilicate glass layer formed by mixing of the connecting layer with the silicon oxide layer is determined exclusively by the layer thicknesses previously chosen.

Preferably, the method according to the invention is characterized in that the connecting layer of practically pure sboron receives a polishing treatment before the first body and the second body are pressed together. This polishing may take place either in a wet chemical or in a wet mechanical process. Preferably, the polishing treatment is so carried out that an optically smooth surface is obtained, because the connection is then activated by van der Waals forces. It should be noted that it is difficult to polish borosilicate glass, contrary to a layer of practically pure boron, without water and other impurities remaining behind in the glass, because this glass is hygroscopic.

A further preferred embodiment of the method according to the invention is characterized in that the layer of practically pure boron has a thickness of between 1 and 200 nm and the silicon oxide layer has a thickn ss of b twe n 0,01 and 2 μ m. If the thickness of the silicon oxide layer is chosen to

50

be greater than the thickness of the layer of practically pure boron, it is possible to achieve a connection between the bodies without the boron reaching and polluting the adjoining body by diffusion in the silicon oxide layer.

A particular preferred embodiment of the method according to the invention is characterized in that the elevated temperature required for forming the bond is obtained by heating the practically pure boron by means of radiation which is transmitted by the body and absorbed by the layer of practically pure boron. The radiation may be generated by means of, for example, a laser, so that local heating of the boron layer is achieved.

The invention is explained in more detail below, by way of example, with reference to the drawing and a few embodiments.

In the drawing:

Figs. 1-4 show a number of stages in the bonding process of two bodies by a method according to the invention,

Fig. 5 shows a semiconductor device manufactured by a method according to the invention, a transistor being provided in the thin layer of semiconductor material, and

Fig. 6 shows a preferred embodiment of a method according to the invention by which the connection between the two bodies is obtained by means of a laser.

Figs. 1-4 diagrammatically show a number of stages in the bonding process of two bodies by a method according to the invention, in which the first body 1 is provided with a flat surface 5 and the second body 2 is coated with a silicon oxide layer 4, which is also provided with a flat surface 6, after which a connecting layer 7 containing boron is applied to at least one of the two surfaces 5, 6. Subsequently, the first body 1 and the second body 2 are pressed together at elevated temperature with the said flat surfaces 5, 6 for some time, after which one of the two bodies 1, 2 is made thin by removal of material.

The first body 1 and the second body 2 in this example are a support body 1 and a semiconductor body 2, both silicon wafers with a diameter of 7,5 cm and a thickness of 500 μ m. Other semiconductor materials than silicon are also possible for the wafers, for example gallium arsenide or indium phosphide, while also the material of the support body 1 does not have to be the same as that of the semiconductor body 2. Thus the support body 1 may also be made from a material other than semiconductor material, such as, for example, glass, sapphire, or a garnet.

The semiconductor body 2 and the support body 1 are both provided with a silicon oxide layer 3, 4, for example by deposition from th gas phase by decomposition at elevated temperature of

tetraethoxysilane, Fig. 1. The surface of the silicon dioxide layers 3, 4 is then polished flat. Subsequently, at least one surfac 5 of a silicon oxide layer 3 is provided with a connecting lay r 7, Fig. 2, after which the semiconductor body 2 and the support body 1 ar pressed together with the flat surfaces 5, 6, Fig. 3. After bonding of the bodies 1, 2, the silicon semiconductor body 2 with a thickness of approximately 500 μ m is made thin, Fig. 4, for example by isotropic etching back of the semiconductor body 2 until a layer 8 remains having a thickness of approximately 1 μ m.

Fig. 5 shows a semiconductor device in which a transistor 9 having lateral dimensions of approximately 4 x 4 μm is provided in the thin layer of semiconductor material 8. The transistor 9 In this example is a MOSFET transistor comprising a source and a drain zone 11, 12 and a gate 13 of polysilicon with a gate oxide 14 and a gate insulation 15 of silicon oxide. The transistor 9 is bounded by field oxide regions 10 in the thin layer 8, which regions are obtained, for example, by local thermal oxidation of the thin layer 8 during one hour at a temperature of 1050° C. A transistor 9 manufactured in this way is an example of an SOI structure which is not sensitive to latch up, which is insensitive to radiation, and whose parasitic capacitances are low in comparison with other structures.

According to the invention, a layer of practically pure boron is used for the connecting layer 7. Thus a bond is achieved between the bodies without the connecting layer 7 starting to flow out while the bond is being formed. The boron layer 7 may be provided on one or both surfaces 5, 6 of the silicon oxide layers 3, 4 in a usual manner, for example by sputtering.

The boron layer 7 is preferably pollshed before the semiconductor body 2 and the support body 1 are pressed together. A flatter surface of the connecting layer 7 is obtained in this way, which reduces the risk of mechanical stresses and the formation of dislocations in the semiconductor body 2 during pressing together of the bodies 1, 2. The boron layer 7 may be polished either in a wet chemical or alternatively in a wet mechanical process with the relevant suitable polishing means. If polishing is carried out in such a way that an optically smooth surface of the boron connecting layer 7 is obtained, the bond will be reinforced by van der Waals forces. An optically smooth surface is understood to mean a surface with a roughness below 10 nm. Good results are obtained with the so-called "Syton" polishing method, a combination of both chemical and mechanical etching. Polishing takes place in this case with a colloidal suspension of silicon oxide in a watery solution of sodium hydroxide. The connecting layer 7 is pr ferably applied on both surfaces 5, 6 of the silicon oxide

16

26

30

35

40

45

layers and polished to optical smoothness in order to reinforce the bond with van der Waals forces.

The bodies 1, 2 are pressed against one another with a pressure between 1 x 10^5 and 1 x 10^7 N/m² for forming a bond b tween the semiconductor body 2 and the support body 1. The minimum value for the pressure is approximately 1 x 105 N/m² for achieving the bond. On the other hand, the pressure must not exceed 1 x 107 N/m2, since the mechanical stresses would then become too great. A minimum temperature of 900° C is required for achieving the bond, the boron entering into a chemical reaction with the silicon oxide layers 3, 4. The reaction takes place at an elevated temperature of 900° C after approximately four hours in the case of a silicon oxide layer having a thickness of approximately 1 µm, at 950° C after approximately two hours, at 1000° C after approximately half an hour, and at 1050° C after a few minutes.

Fig. 6 shows a preferred embodiment of a method according to the invention, in which the bond between the two bodies 1, 2 is obtained by means of a laser 16. The elevated temperature required for forming the bond is realised here by heating the boron layer 7 locally by means of the laser radiation 17. Heating is continued here until the boron has been absorbed in the silicon oxide layers 3, 4. In this example the laser beam 17 is generated with a solid-state laser of the Yttrium Neodymium Garnet type with an effective radiation power of at least 1 Watt. A suitable wavelength to which this laser may be tuned is 1064 nm. Radiation of this wavelength is substantially completely absorbed by practically pure boron and substantially completely transmitted by materials like silicon oxide and pure silicon.

Claims

- 1. A method of bonding together a first body and a second body, the first body being provided with a flat surface and the second body being coated with a silicon oxide layer, which is also provided with a flat surface, whereupon a connecting layer comprising boron is applied to at least one of the two flat surfaces and subsequently the first body and the second body are pressed against one another with the said flat surfaces during some time at an elevated temperature, after which one of the two bodies is made thin by removal of material, characterized in that a layer of practically pure boron is used by way of connecting layer.
- 2. A method as claimed in Claim 1, characterized in that the connecting layer of practically pure boron receives a polishing treatment b fore the first body and the second body are pressed to-

gether

- 3. A method as claimed in Claim 2, charact rized in that the polishing treatment is so carried out that an optically smooth surface is obtained.
- A method as claimed in Claim 3, characterized in that the connecting layer is provided on both said surfaces.
 - 5. A method as claimed in one of the preceding Claims, characterized in that the first body and the second body are pressed against one another with a pressure between 1 x 10⁵ and 1 x 10⁷ N/m² at an elevated temperature between 900 and 1050° C for at least a few minutes and at most for hours.
 - 6. A method as claimed in any one of the preceding Claims, characterized in that the layer of practically pure boron has a thickness between 1 and 200 nm and the silicon oxide layer has a thickness between 0,01 and 2 μ m.
- 7. A method as claimed in any one of the preceding Claims, characterized in that the elevated temperature required for forming the bond is obtained by heating the practically pure boron by means of radiation which is transmitted by the body and absorbed by the layer of practically pure boron.

4

55

FIG.3

FPO FORM 1501 01.82 (1960)

EP 90 20 2366

	DOCUMENTS CONS	IDERED TO BE RELEVA	NI	
Category	Citation of document with of relevant p	indication, where appropriate, assages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL.5)
A	EP-A-0 238 066 (FI * Figure 4; column 5, line 25 *	JJITSU LTD) 4, line 41 - column		H 01 L 21/20
A	EXTENDED ABSTRACTS 1987, Spring meeting Philadelphia, PA, I al.: "Low-temperate with oxides"	ng, pages 333-334,	<u> </u>	
A	JAPANESE JOURNAL OF vol. 28, no. 8, par pages 1426-1443, To et al.: "Silicon-or bonding-wafer thing evaluations"	rt 1, August 1989, okyo, JP; J. HAISMA n-insulator wafer		
	FR-A-2 232 080 (GE & US-A-3 909 332	ENERAL ELECTRIC CO.)		
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)
				H 01 L
	The present search report hus t	een drawn up for all claims	· -	
	Place of search	Date of completion of the search		Examiner
THE	HAGUE	10-10-1990	GELE	BART Y.C.M.
X : part Y : part duct A : tech O : non-	ATEGORY OF CITED DOCUME icularly relevant if taken alone icularly relevant if cumbined with an iment of the same caregory nological background written dividuoure mediate document	E : earlier patent after the film other D : document cite L : document cite	ed in the application ed for other reasons	shed on. ar