Technological Institute of the Philippines	Quezon City - Computer Engineering
Course Code:	CPE 019
Code Title:	Emerging Technologies in CpE 2
2nd Semester	AY 2023-2024
Assignment 5.2	**Build and Apply Multilayer Perceptron**
Name	Guevarra, Hans Angelo C.
Section	CPE32S3
Date Performed:	3-25-24
Date Submitted:	3-25-24
Instructor:	Engr. Roman M. Richard

Explain the problem you are trying to solve.

I chose the SUDS dataset, which stands for Soap Underwater Detection System. The problem that it is trying to solve is the inefficiency and wastage of water rinsing dishes that are already clean caused by automated dishwashers in homes, which run on preset timers by detecting the cleanliness of dishwasher water to end dishwashing cycles when all detergent is washed off the dishes.

This dataset aims to predict whether a sample is soapy or clean.

```
In [22]:
```

```
import numpy as np
import pandas as pd

SUDS = pd.read_csv("/content/combined.csv")
SUDS.head()
```

Out[22]:

	Function	Sample num	Time	SMUX config	ATIME	ASTEP	T_INT [ms]	WTIME_EN	WTIME	WTIME [ms]	 Corr F1 (410nm)	Corr F2 (440nm)	Cor (470
0	clean	10	15.07.2020- 22:49:18	4	0	65534	182.1873	False	0	2.78	 0.035662	0.073566	0.106
1	clean	11	15.07.2020- 22:49:19	4	0	65534	182.1873	False	0	2.78	 0.034992	0.072179	0.104
2	clean	12	15.07.2020- 22:49:20	4	0	65534	182.1873	False	0	2.78	 0.035909	0.073981	0.107
3	clean	13	15.07.2020- 22:49:21	4	0	65534	182.1873	False	0	2.78	 0.036507	0.075237	0.109
4	clean	14	15.07.2020- 22:49:21	4	0	65534	182.1873	False	0	2.78	 0.036095	0.074362	0.108

5 rows × 45 columns

In [23]:

SUDS.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2040 entries, 0 to 2039

```
Data columns (total 45 columns):
 #
    Column
                     Non-Null Count Dtype
0
    Function
                     2040 non-null
                                    object
                     2040 non-null
1
    Sample num
                                     int64
                      2040 non-null
    Time
                                     object
 3
                     2040 non-null
    SMUX config
                                     int64
 4
    ATIME
                     2040 non-null
                                     int64
 5
    ASTEP
                      2040 non-null
                                     int64
    T INT [ms]
                     2040 non-null
 7
    WTIME EN
                      2040 non-null
                                     bool
                                    int64
 8
    WTIME
                      2040 non-null
    WTIME [ms]
                                    float64
 9
                     2040 non-null
                                    int64
 10 AGAIN
                     2040 non-null
                                    int64
 11 AGAIN [x]
                     2040 non-null
12 LED EN
                     2040 non-null
                                    bool
13 LED Current
                     2040 non-null
                                    int64
14 LED Current [mA] 2040 non-null
15 F1 (410nm)
                     2040 non-null
                     2040 non-null
16 F2 (440nm)
17
    F3 (470nm)
                     2040 non-null
    F4 (510nm)
                     2040 non-null
18
                                     int.64
    F5 (550nm)
19
                     2040 non-null
                                     int.64
20 F6 (583nm)
                     2040 non-null
                                     int64
    F7 (620nm)
 21
                     2040 non-null
                                     int64
    F8 (670nm)
 22
                      2040 non-null
                                     int64
 23
    CLEAR
                      2040 non-null
                                     int64
 24
    NIR
                      2040 non-null
 25
    Basic F1 (410nm) 2040 non-null
                                    float64
 26
    Basic F2 (440nm) 2040 non-null
                                    float64
 27
    Basic F3 (470nm) 2040 non-null
    Basic F4 (510nm) 2040 non-null float64
 2.8
 29 Basic F5 (550nm) 2040 non-null float64
 30 Basic F6 (583nm) 2040 non-null float64
 31
    Basic F7 (620nm) 2040 non-null float64
 32 Basic F8 (670nm) 2040 non-null float64
 33 Basic CLEAR
                     2040 non-null float64
 34 Basic NIR
                     2040 non-null float64
 35 Corr F1 (410nm) 2040 non-null float64
 36 Corr F2 (440nm) 2040 non-null
                                   float64
 37
    Corr F3 (470nm)
                    2040 non-null
                                   float64
 38 Corr F4 (510nm)
                                    float64
                    2040 non-null
    Corr F5 (550nm)
 39
                    2040 non-null
                                    float64
    Corr F6 (583nm)
                     2040 non-null
                                    float64
 40
    Corr F7 (620nm)
                     2040 non-null
 41
                                     float64
 42
    Corr F8 (670nm)
                      2040 non-null
                                     float64
    Corr CLEAR
                      2040 non-null
 4.3
                                     float64
                      2040 non-null
    Corr NIR
dtypes: bool(2), float64(22), int64(19), object(2)
memory usage: 689.4+ KB
```

Observation: Upon using the .info command, I noticed that there are some non-numerical data.

```
In [24]:
SUDS["LED_EN"] = SUDS["LED_EN"].apply(lambda toLabel: 0 if toLabel == "False" else 1)
In [25]:
SUDS["WTIME_EN"] = SUDS["WTIME_EN"].apply(lambda toLabel: 0 if toLabel == "False" else 1)
```

By using lambda, I converted the boolean data into a numerical value, indicating "false" as 0.

```
In [27]:
SUDS
Out[27]:
```

	Function	Sample num	Time	SMUX config	ATIME	ASTEP	T_INT [ms]	WTIME_EN	WTIME	WTIME [ms]	 Corr F1 (410nm)	Corr F2 (440nm)	ĺ
0	clean	10	15.07.2020- 22:49:18	4	0	65534	182.1873	1	0	2.78	 0.035662	0.073566	0
1	clean	11	15.07.2020- 22:49:19	4	0	65534	182.1873	1	0	2.78	 0.034992	0.072179	0.
2	clean	12	15.07.2020- 22:49:20	4	0	65534	182.1873	1	0	2.78	 0.035909	0.073981	0
3	clean	13	15.07.2020- 22:49:21	4	0	65534	182.1873	1	0	2.78	 0.036507	0.075237	0.
4	clean	14	15.07.2020- 22:49:21	4	0	65534	182.1873	1	0	2.78	 0.036095	0.074362	0

2035	liquid	656	22.07.2020- 17:07:28	4	0	65534	182.1873	1	0	2.78	 0.010347	0.021174	0.
2036	liquid	657	22.07.2020- 17:07:29	4	0	65534	182.1873	1	0	2.78	 0.010368	0.021217	0.
2037	liquid	658	22.07.2020- 17:07:30	4	0	65534	182.1873	1	0	2.78	 0.010389	0.021259	0.
2038	liquid	659	22.07.2020- 17:07:31	4	0	65534	182.1873	1	0	2.78	 0.010410	0.021280	0.
2039	liquid	660	22.07.2020- 17:07:31	4	0	65534	182.1873	1	0	2.78	 0.010411	0.021323	0.

2040 rows × 45 columns

In [28]:

```
SUDS["Function"] = SUDS["Function"].apply(lambda toLabel: 1 if toLabel == "clean" else 0
)
```

By using lambda, I converted the "Function" columns which represents whether the water is clean or not into numerical value.

In [29]:

```
SUDS.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2040 entries, 0 to 2039
Data columns (total 45 columns):

Data	columns (total 45	columns):	
#	Column	Non-Null Count	Dtype
0	Function	2040 non-null	int64
1	Sample num	2040 non-null	int64
2	Time	2040 non-null	object
3	SMUX config	2040 non-null	int64
4	ATIME	2040 non-null	int64
5	ASTEP	2040 non-null	int64
6	T_INT [ms]	2040 non-null	float64
7	WTIME_EN	2040 non-null	int64
8	WTIME	2040 non-null	int64
9	WTIME [ms]	2040 non-null	float64
10	AGAIN	2040 non-null	int64
11	AGAIN [x]	2040 non-null	int64
12	LED_EN	2040 non-null	int64
13	LED_Current	2040 non-null	int64
14	LED_Current [mA]	2040 non-null	int64
15	F1 (410nm)	2040 non-null	int64
16	F2 (440nm)	2040 non-null	int64
17	F3 (470nm)	2040 non-null	int64
18	F4 (510nm)	2040 non-null	int64
19	F5 (550nm)	2040 non-null	int64

```
20 F6 (583nm)
                      2040 non-null
                                     int64
                                    int64
 21
    F7 (620nm)
                      2040 non-null
                      2040 non-null
                                    int64
22
   F8 (670nm)
                                    int64
23
    CLEAR
                      2040 non-null
24 NIR
                                    int64
                      2040 non-null
25 Basic F1 (410nm)
                     2040 non-null
                                    float64
26 Basic F2 (440nm)
                    2040 non-null
                                    float64
27 Basic F3 (470nm)
                     2040 non-null
                                    float64
28 Basic F4 (510nm)
                     2040 non-null
                                    float64
29 Basic F5 (550nm)
                     2040 non-null
                                    float64
30 Basic F6 (583nm)
                     2040 non-null
                                    float64
                     2040 non-null
31 Basic F7 (620nm)
                                    float64
32 Basic F8 (670nm) 2040 non-null
                                    float64
                      2040 non-null
33 Basic CLEAR
                                    float64
34 Basic NIR
                      2040 non-null
                                    float64
35 Corr F1 (410nm)
                     2040 non-null
                                     float64
    Corr F2 (440nm)
 36
                      2040 non-null
                                     float64
    Corr F3 (470nm)
 37
                      2040 non-null
                                     float64
                                    float64
 38
    Corr F4 (510nm)
                      2040 non-null
                                    float64
 39 Corr F5 (550nm)
                      2040 non-null
                                    float64
 40 Corr F6 (583nm)
                      2040 non-null
                                    float64
 41 Corr F7 (620nm)
                      2040 non-null
                                    float64
 42 Corr F8 (670nm)
                      2040 non-null
 43 Corr CLEAR
                      2040 non-null
                                    float64
 44 Corr NIR
                     2040 non-null
                                    float64
dtypes: float64(22), int64(22), object(1)
memory usage: 717.3+ KB
```

In [30]:

SUDS

Out[30]:

	Function	Sample num	Time	SMUX config	ATIME	ASTEP	T_INT [ms]	WTIME_EN	WTIME	WTIME [ms]	 Corr F1 (410nm)	Corr F2 (440nm)	(
0	1	10	15.07.2020- 22:49:18	4	0	65534	182.1873	1	0	2.78	 0.035662	0.073566	0
1	1	11	15.07.2020- 22:49:19	4	0	65534	182.1873	1	0	2.78	 0.034992	0.072179	0.
2	1	12	15.07.2020- 22:49:20	4	0	65534	182.1873	1	0	2.78	 0.035909	0.073981	0.
3	1	13	15.07.2020- 22:49:21	4	0	65534	182.1873	1	0	2.78	 0.036507	0.075237	0.
4	1	14	15.07.2020- 22:49:21	4	0	65534	182.1873	1	0	2.78	 0.036095	0.074362	0.
	•••							***			 	***	
2035	0	656	22.07.2020- 17:07:28	4	0	65534	182.1873	1	0	2.78	 0.010347	0.021174	0.
2036	0	657	22.07.2020- 17:07:29	4	0	65534	182.1873	1	0	2.78	 0.010368	0.021217	0.
2037	0	658	22.07.2020- 17:07:30	4	0	65534	182.1873	1	0	2.78	 0.010389	0.021259	0.
2038	0	659	22.07.2020- 17:07:31	4	0	65534	182.1873	1	0	2.78	 0.010410	0.021280	0
2039	0	660	22.07.2020- 17:07:31	4	0	65534	182.1873	1	0	2.78	 0.010411	0.021323	0.

2040 rows × 45 columns

In [31]:

```
Out [31]:

0 1

0 0 1

1 0 1

2 0 1

3 0 1

4 0 1

... ...

2035 1 0

2036 1 0

2037 1 0

2038 1 0

2039 1 0
```

У

2040 rows × 2 columns

This represents the "y" values wherein 1 represents the clean samples.

```
In [32]:
```

```
x = SUDS.drop(["Function", "Sample num", "Time"], axis=1)
x
```

Out[32]:

	SMUX config	ATIME	ASTEP	T_INT [ms]	WTIME_EN	WTIME	WTIME [ms]	AGAIN	AGAIN [x]	LED_EN	 Corr F1 (410nm)	Corr F2 (440nm)	Corr F (470nn
0	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.035662	0.073566	0.10690
1	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.034992	0.072179	0.10497
2	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.035909	0.073981	0.10759
3	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.036507	0.075237	0.10940
4	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.036095	0.074362	0.10816
•••										•••	 		į.
2035	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.010347	0.021174	0.03131
2036	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.010368	0.021217	0.03139
2037	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.010389	0.021259	0.03142
2038	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.010410	0.021280	0.03148
2039	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.010411	0.021323	0.03148

2040 rows × 42 columns

This represents the "x" values.

```
In [33]:
```

```
# split dataset
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [34]:

```
x_train
```

Out[34]:

	SMUX config	ATIME	ASTEP	T_INT [ms]	WTIME_EN	WTIME	WTIME [ms]	AGAIN	AGAIN [x]	LED_EN	 Corr F1 (410nm)	Corr F2 (440nm)	Corr F (470nn
1060	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.035767	0.073438	0.10754
917	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.039208	0.081349	0.11784
756	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.036428	0.075562	0.10773
1553	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.036165	0.075126	0.10707
417	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.031950	0.065555	0.09680
										•••	 		1
249	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.034228	0.070863	0.10185
127	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.025656	0.053516	0.07627
94	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.033917	0.070464	0.09993
1225	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.041852	0.086093	0.12635
424	4	0	65534	182.1873	1	0	2.78	9	256	1	 0.010146	0.020696	0.03054

1428 rows × 42 columns

```
In [35]:
```

y_train

Out[35]:

```
0 1
1060 0 1
917 0 1
756 0 1
1553 1 0
417 1 0
... ...
249 1 0
127 1 0
94 1 0
1225 0 1
```

1428 rows × 2 columns

In [46]:

424 1 0

```
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical

# Convert y_train to one-hot encoded format
y_train_encoded = to_categorical(y_train, num_classes=3)

y_train_encoded = y_train_encoded[:, 0, :]

input_shape = x_train.shape[1]
```

```
model = Sequential()
model.add(Dense(6, activation="sigmoid", input shape=(input shape,))) # Hidden layer
model.add(Dense(3, activation="softmax")) # Output layer
# Compile the model
model.compile(loss="categorical crossentropy", metrics=["accuracy"])
model.fit(x train, y train encoded, epochs=25, batch size=5)
Epoch 1/25
Epoch 2/25
Epoch 3/25
Epoch 4/25
Epoch 5/25
Epoch 6/25
Epoch 7/25
Epoch 8/25
Epoch 9/25
Epoch 10/25
Epoch 11/25
Epoch 12/25
Epoch 13/25
Epoch 14/25
Epoch 15/25
Epoch 16/25
Epoch 17/25
Epoch 18/25
Epoch 19/25
Epoch 20/25
Epoch 21/25
Epoch 22/25
Epoch 23/25
Epoch 24/25
Epoch 25/25
Out[46]:
<keras.src.callbacks.History at 0x7d35335fd5a0>
```

OBSERVATION: As the iteration goes forward, the loss function decreases while the accuracy increases.

```
In [48]:
```

Define your model

```
from keras.utils import to_categorical
y_test_encoded = to_categorical(y_test, num_classes=3)
```

In [56]:

```
import matplotlib.pyplot as plt

plt.plot(plot.history['accuracy'], label = 'Accuracy')
plt.plot(plot.history['loss'], label = 'Loss')
plt.title('Model Evaluation')
plt.legend()
plt.show()
```


CONCLUSION/EVALUATION:

After performing MLP in the SUDS dataset that predicts whether a water sample is soapy or clean, the accuracy score of the model is 0.7516, or 75.16%, and upon looking at the graph, we can see that as the accuracy increases, the loss also decreases.