→ IMPORTING LIBRARIES

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

→ IMPORTINNG DATASET

car_df = pd.read_csv('https://raw.githubusercontent.com/amankharwal/Website-data/master/CarPrice.csv')
car_df.head()

•	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	•••	enginesize
	0 1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6		130
	1 2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6		130
	2 3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5		152
	3 4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8		109
	4 5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4		136
5 rows × 26 columns												
	4											+

→ DATA ANALYSIS

car_df.info()
car_df.describe()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
                       Non-Null Count
                                        Dtvpe
 #
     Column
 0
     car_ID
                       205 non-null
                                        int64
 1
     symboling
                       205 non-null
                                        int64
     CarName
                        205 non-null
                                        object
                       205 non-null
                                        object
     fueltype
```

sns.histplot(car_df['price'], kde=True)
plt.show()

sns.scatterplot(x='horsepower', y='price', data=car_df)
plt.show()

plt.figure(figsize=(12, 8))
sns.heatmap(car_df.corr(), annot=True, cmap='YlGnBu')
plt.show()

→ DATA PREPARATION

```
# removing irrelevant columns
car_df = car_df.drop(['CarName', 'car_ID'], axis=1)
# handling missing values
car_df.isnull().sum()
# handling categorical variables
car_df = pd.get_dummies(car_df, drop_first=True)
```

→ CORRELATION TABLE

car_df.corr()

	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	bor
symboling	1.000000	-0.531954	-0.357612	-0.232919	-0.541038	-0.227691	-0.105790	-0
wheelbase	-0.531954	1.000000	0.874587	0.795144	0.589435	0.776386	0.569329	0
carlength	-0.357612	0.874587	1.000000	0.841118	0.491029	0.877728	0.683360	0
carwidth	-0.232919	0.795144	0.841118	1.000000	0.279210	0.867032	0.735433	0
carheight	-0.541038	0.589435	0.491029	0.279210	1.000000	0.295572	0.067149	0
curbweight	-0.227691	0.776386	0.877728	0.867032	0.295572	1.000000	0.850594	0
enginesize	-0.105790	0.569329	0.683360	0.735433	0.067149	0.850594	1.000000	0
boreratio	-0.130051	0.488750	0.606454	0.559150	0.171071	0.648480	0.583774	1
stroke	-0.008735	0.160959	0.129533	0.182942	-0.055307	0.168790	0.203129	-0

→ SPLITTING DATA INTO TRAIN AND TEST DATASETS

```
from sklearn.model_selection import train_test_split

X = car_df.drop('price', axis=1)
y = car_df['price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

aspiration turbo    -0.059866    0.257611    0.234539    0.300567    0.087311    0.324902    0.108217    0
```

LINEAR REGRESSION

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

lr_model = LinearRegression()
```

▼ TRAINING AND EVALUATING THE MODEL

• ×