

| Mon Tun Wad Thu Pri Sat                |   |
|----------------------------------------|---|
| The negative work done by the          |   |
| at to move unit test                   | _ |
| charge with constant velocity          | _ |
| from one point to other                | _ |
| point is called Potential              |   |
| Difference between these points."      |   |
| $\Delta V = -\lambda \lambda$          |   |
| ev.                                    |   |
| V <sub>F</sub> -V <sub>i</sub> JW      |   |
|                                        |   |
| The electric potential Ve is zero when |   |
| timal position f is shifted at         |   |
| infinity. So,                          |   |
| 0-Vi W                                 |   |
| V-W                                    |   |
| q <sub>0</sub>                         |   |
|                                        |   |
|                                        |   |



| _ | between Initial position and final                         |     |
|---|------------------------------------------------------------|-----|
|   | position is:                                               |     |
|   | lul = CF.de                                                |     |
|   | position is:    U = \( \vec{\vec{\vec{\vec{\vec{\vec{\vec{ |     |
|   | W= (Fdx cos (180)                                          |     |
|   | W=-SFdr                                                    |     |
|   | U                                                          |     |
|   | we know that:                                              |     |
|   | $F = F \Rightarrow F = E_{V}.$                             |     |
|   | 9%                                                         |     |
| 1 | W=- ( Eq. dx                                               |     |
|   | $\left\{ E = K_{\Psi} \right\}$                            | - W |
|   | Y2 J                                                       |     |
|   | W=-9. \ K9 dr                                              |     |
|   | ) r*                                                       |     |
|   | W [K9/ -]                                                  |     |
|   | 9. y                                                       |     |
|   | ΔV = - Kg/(r-2)                                            |     |
|   | Applying Limit.                                            |     |
|   | DV = - K9/C 21                                             |     |
|   | YA OY                                                      |     |
|   |                                                            |     |



|          | (Applied Physics)=                   |
|----------|--------------------------------------|
| 5        | emester 01:-                         |
| - 11     | 1                                    |
|          | 11/4 : detric dipole 7 Calculate     |
| e        | lectric potential due to dipole at   |
| a        | point having diameter?               |
| MI Comme | nsuev:                               |
|          | Electric Dipole-                     |
|          | "Two equal charges of                |
| OP       | posite sign (±4) seperated by        |
|          | stance d'is called Electric Dipole." |
|          | ectric dipole Moment:                |
|          | "The product of magnitude            |
| of       | either charge and separation         |
| be       | tween them is called electric        |
| di       | pole moment."                        |
|          | P = vd                               |
| H        | is a vector quantity 9t. d. tion     |
| is       | from negative charges towards        |
| po.      | sitive charges.                      |
|          |                                      |

| Electric Potential due to electric    |
|---------------------------------------|
| dipole:-                              |
| Diagram -                             |
| V1                                    |
| +9/.                                  |
| <br>4 Y <sub>2</sub>                  |
|                                       |
| <br>-q2 Y5"                           |
|                                       |
| Consider a +2 charge and -4 charge    |
| seperated by distance d' placed on    |
| x-axis. Take a point P having         |
| distance 1/2 from to and 1/2 from -gr |
| charge                                |
| The electric potential due to +9      |
| charge is:                            |
| V1 = K9                               |
| Y <sub>1</sub>                        |
| The electric potential due to -ex     |
|                                       |
| charge is: Va Kg                      |
| Yo                                    |

| atora I tata | West Thu Pri Sat                             | 20 |
|--------------|----------------------------------------------|----|
|              |                                              |    |
|              | The net electric potential is:               |    |
|              | $V = V_1 + V_2$                              |    |
|              |                                              |    |
| _            | V = K9 - K9                                  |    |
|              | Y2 Y2                                        |    |
|              | V = K9/ 1 - 1                                |    |
|              | ( Y2 /2 /                                    |    |
|              | V- Kg/ (Y= -Y1)                              |    |
|              | Y2 Y2                                        |    |
| -            |                                              |    |
|              | from the diagram                             |    |
| TP.          | Y2-Y2 - d cos8                               |    |
|              | So,                                          |    |
|              | V = Ky (dosa)                                | 3  |
|              | V = Key (dcose)                              |    |
|              | V = K   V d cos0                             |    |
|              | V = 1/ V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |    |
|              | Y, Y2 /                                      |    |
|              | [: P= 9/d]                                   |    |
|              | V= K Pcoso                                   |    |
|              | \ Y. Y. \                                    |    |
|              |                                              |    |
|              |                                              |    |

|       | -: (Hpplied Physics ):-               |
|-------|---------------------------------------|
|       | Semester O1:-                         |
|       | QN018:-                               |
|       | Calculate Electric Potential due      |
| 3 (8) | to quadrupole?                        |
|       | Answer:                               |
|       | The two electric dipoles arranged     |
|       | in such a way that they almost        |
|       | cancel electric effects of each       |
|       | other at distant points is.           |
|       | called Quadrupole.                    |
|       | Diagrams-                             |
|       | (-e)                                  |
|       | (4e) (4e)                             |
|       |                                       |
|       | 1-C;                                  |
|       | D                                     |
| 1     | An elementary quadrupole can be       |
|       | represented as two dipoles oriented   |
|       | antiporallel. The most important uses |
|       | of quadrupole is the characterization |
|       | of nuclici.                           |



|          | Now take a point P on z-axis       |       |
|----------|------------------------------------|-------|
|          | having distance 'r' from -2%       |       |
|          | and Idiameter) distance (red) from |       |
| MGEAL)   | ty charges at B.                   |       |
|          | The electric potential at P due    |       |
|          | to to at A is:                     | 3     |
| Plan     | V1 = K9                            |       |
|          | v-4                                |       |
|          | Similarly due to to at B.          |       |
|          | V2 - K9                            |       |
|          | V+ d                               |       |
|          | due to -20/ charge.                |       |
|          | V3 = K(-29)                        |       |
| <b>3</b> | ~                                  |       |
|          | The total electric potential is:   |       |
| DOM:     | V = V1 + V2 + V3                   |       |
| is .     | V= K9 + K9 - 2K9                   |       |
|          | v-d r+d r                          | TE IE |
|          | V- Key   1 - 2                     |       |
|          |                                    |       |
|          | 1 r-d r+d r                        |       |

|          | V= Kq/ (1+dx+1-dx-2(1-2))         |     |
|----------|-----------------------------------|-----|
|          | \ \(\(r\d)(\(r\d)\)               |     |
|          | V- KN 25-25+212)                  | Evi |
|          | ( v(r*-d*)                        |     |
|          | V- Ky (222)                       |     |
|          | r(r²-d²)                          | *   |
| <u> </u> | V= K(202')                        |     |
|          | Y3 1-23                           |     |
| -        | \ Y <sup>3</sup> /                |     |
|          | f: P= 9/2}                        |     |
|          | Q=2912                            |     |
|          | V= KQ (1-2")-1                    |     |
|          | γ <sup>3</sup> \ γ <sup>2</sup> / | 13  |
|          | By Binomial :-                    |     |
|          | V= KQ (1+1-1)(-22)                |     |
|          | Y3 \ \ Y <sup>2</sup> \           |     |
|          | The term (-d') = 0 because r>>>d  |     |
|          | \ \r^2 )                          |     |
|          | V= KQ                             |     |
| ,        | γ³                                | 40  |

| 3 |                                  |
|---|----------------------------------|
|   | Topic:-                          |
|   | Equipotential Surfaces:          |
|   | The family of surfaces that      |
|   | connect points having same value |
|   | of the electric potential are    |
|   | called equipotential surfaces.   |
|   | Due to Uniform field:            |
|   | Diagrams                         |
|   |                                  |
|   | E                                |
|   | D E                              |
|   | E                                |
|   | A] B                             |

| No. of Lot | DAY:                                    | 0.000 |
|------------|-----------------------------------------|-------|
|            | Explanation:-                           |       |
|            | Consider uniform electric field         |       |
|            | indicated by horizontal electric        |       |
|            | lines of force. The perpendicular dech  |       |
|            | lines are cross-section of equipotentia |       |
|            | Take two points having distance 1.      | In I  |
|            | $\Delta V = -\int F \cdot ds$           |       |
| N. F.      |                                         |       |
| 100-       | $\Delta V = -EL$                        |       |
|            | Patential difference b/w B and C:       |       |
|            | Electric potential at B is VB - Kg/     |       |
|            | · Y <sub>B</sub>                        |       |
|            | Electric potential at C is Vc = Key     |       |
| EAL        | Ye                                      |       |
|            | $\Delta V = V_B - V_C$                  |       |
|            | VR-Ve = K9 - K9                         | 7152  |
|            | ra re [: ra=re]                         |       |
| -          | VR-Vc - Kg/ - Kg/                       |       |
|            | No ke                                   | I DAY |
|            | VB-Vc = 0                               |       |
|            | (VB = Vc)                               | 60.7  |



| Potential difference blw A and B.    |
|--------------------------------------|
| Va-Va - Kay/ 1 - 1 )                 |
| rn rs                                |
| when points A and B lies on the      |
| surface of some sphere Ya = YB       |
| In this case:                        |
| VA-VB = Kay ( X, - 1)                |
| (ra /ra)                             |
| VA-VB = 0                            |
| [ Va = Va]                           |
| VH = VIS                             |
| It means all points at a given       |
| radius have the same potential.      |
|                                      |
| Therefore, the equipotential surface |
| of a given charge from a             |
| family of concentric sphere.         |
| For a dipole, the equipotential      |
|                                      |

|        | - (Applied Physics) :-                  |
|--------|-----------------------------------------|
| wall . | Semester 01:-                           |
|        | QN019:-                                 |
|        | What is continous charge                |
|        | distribution? Derive an expression to   |
|        | calculate electric potential at a point |
| 100    | due to continous charge distributions   |
|        | Ans.                                    |
| E      | Electric Potential due to Continous     |
| 4 11 1 | charge distribution:                    |
|        | The electric charge is quantized.       |
|        | The collection of large number of       |
| 4      | charges is called continues charge:     |
|        | distribution. The continous charge      |
|        | distribution has three types.           |
|        | Linear charge distribution              |
| •      | Surface charge distribution             |
|        | Volume charge distribution              |
|        |                                         |
| 1000   |                                         |







| , 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -: (Applied Physics):-                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semester 01:-                            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qno20:-                                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calculate electric potential at          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a point due to ring of charges?          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inswer:- 10                              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.                                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 100    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | daysta                                   | ~      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Consider a uniformly charged ring        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | having radius R. Take a small lenst      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | element do of ring having charge         | SHOT S |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | day. The linear charge density is:       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda = dv = \lambda dv = \lambda ds$ |        |
| Control of the Contro | ds                                       |        |
| Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | By Integration:                          | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/= 2(2xR)                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |        |

| 4.11.60    | Now take a point on z-axis havin                        |       |
|------------|---------------------------------------------------------|-------|
| 0.000      | distance z' from the plane of                           |       |
| -          | ring. Electric potential dV due to                      |       |
|            | charge day is:                                          |       |
|            | dV = K dq/                                              | 7-8   |
|            | Υ                                                       |       |
|            | dv = K Ads                                              | 100   |
| Section 7  | Y                                                       |       |
|            | By Integration:                                         |       |
|            | V= SK Ads                                               |       |
|            | Y                                                       |       |
|            | 1 = a + b } -> V = K > \ [ds                            |       |
|            | $Y^{2} = R^{3} + z^{3}$ $(R^{3} + z^{2})^{\frac{1}{3}}$ |       |
| 1 37 12 -  | Y = JR3+ 23 V = K 2(27R)                                |       |
| - 10 -     | $\left(R^{2}+z^{2}\right)^{\frac{1}{2}}$                |       |
|            | V= KV                                                   | HUZ   |
|            | $\sqrt{R^2+z^2}$                                        |       |
| 1 9010     | This is the electric potential due                      |       |
|            | to a ring of charges                                    | 1,5/1 |
|            |                                                         |       |
| A STATE OF |                                                         |       |

| -: (Applied Physics):-             |
|------------------------------------|
| Semester 01:-                      |
| QN021-                             |
| Calculate electric Potential due   |
| to disk of charges?                |
| Ano:-                              |
| B                                  |
| */ 2                               |
|                                    |
| d. (T)                             |
| 15.22                              |
| Consider a disk of radius R having |
| uniform charge density 'or' on its |
| top surface.                       |
| Take a point P on the central      |
| · axis of disk having distance 2:  |
| Now take such a ring having        |
| radius 'r'                         |
| The surface charge density is:     |
|                                    |
|                                    |



|      | dv=1 or(2xr)dr                                                                |           |
|------|-------------------------------------------------------------------------------|-----------|
|      | 475. Jr2 2                                                                    | 1000      |
|      | dv= or dr                                                                     |           |
|      | 2 E. \( \sqrt{2}^* + \ta^* \)                                                 |           |
|      | By Integration:                                                               |           |
|      | V= d ( Ydr                                                                    |           |
|      | (24. o) (r3+23) 1/2.                                                          | NUVE I    |
| 2    | V= ~ ((x3+z2) -1/2 rdr                                                        | I William |
| 15   | 28.                                                                           |           |
|      | V= 02 1 ((x,z)= (2x)dr                                                        |           |
|      | 24. 2                                                                         |           |
|      | $V = \alpha \left[ \left( V^2 + z^2 \right)^{\frac{1}{2}} \right]^R$          |           |
| SK I | 48. 2 3                                                                       | H         |
|      | $V = \alpha 2[(y^2 + z^2)^{\frac{1}{2}}]^R$                                   | 1.54      |
| 1150 | 4£6 ( ).                                                                      |           |
|      | $V = O\left((R + Z^{2})^{\frac{1}{2}} - (o^{2} - Z^{2})^{\frac{1}{2}}\right)$ |           |
|      | ν= ο (R+Z) - (0-Z) ]<br>λε.                                                   |           |
| 7    |                                                                               |           |
|      | V= 0 ((R2+22 - 7))                                                            |           |
| - (  | 25.                                                                           |           |
|      | By Binomial Series                                                            |           |

| $(z^2+R^2)^2 = z(1+R^2)^{\frac{1}{2}}$                                                                    |         |
|-----------------------------------------------------------------------------------------------------------|---------|
| 2'                                                                                                        |         |
| 7/1.18                                                                                                    |         |
| 2 z 3                                                                                                     |         |
| 7/1.0.1                                                                                                   |         |
| 72,                                                                                                       |         |
| $(z^2 + R^2)^{\frac{1}{2}} = (7 + R^2)$                                                                   | 122     |
| 7- (                                                                                                      |         |
| Pit in and O                                                                                              |         |
| Int in eq (ii)                                                                                            | - 1     |
| V= 0 (7 + K - 7)                                                                                          |         |
| 25. \ 27                                                                                                  |         |
| V= or R                                                                                                   |         |
| 4280                                                                                                      |         |
| Let make assumption:                                                                                      |         |
| V= ork ?                                                                                                  |         |
| 478. 2                                                                                                    |         |
| V= Kα/πR <sup>2</sup> ) {dx= αda                                                                          |         |
| $\frac{1}{2}$ $\frac{dy = 0'da}{2}$                                                                       |         |
| $V = K \alpha / \pi R^{2}$ $V = K \alpha / \pi R^{2}$ $V = \alpha (2\pi R^{2})$ $V = \alpha (2\pi R^{2})$ |         |
| V- N 9                                                                                                    |         |
| 7:/                                                                                                       |         |
|                                                                                                           | Edition |