Lycée Buffon
 TD 18

 MPSI
 Année 2020-2021

Arithmétique

Exercice 1 : Soit $n \in \mathbb{N}$.

- 1. Montrer que n+1 et 2n+1 sont premiers entre eux.
- 2. En déduire que n+1 divise $\binom{2n}{n}$

Exercice 2: Déterminez les couples $(a,b) \in \mathbb{Z}^2$ tels que $a \wedge b = 2$ et $a \vee b = 80$

Exercice 3:

- 1. Soit $n \geq 2$ et k un entier naturel tel que $2 \leq k \leq n$. Montrer que n! + k n'est pas premier.
- 2. En déduire que pour tout entier n, il existe n entiers consécutifs dont aucun n'est premier.

Exercice 4:

- 1. Soient a et b deux entiers relatifs. Montrer que $a \wedge b = 1 \Leftrightarrow (a+b) \wedge (ab) = 1$.
- 2. En déduire $(a+b) \wedge (a \vee b)$.
- 3. Soit $n \in \mathbb{N}$, déterminer $n \wedge (n+1)$ et $n \wedge (n+2)$. En déduire $(n \vee (n+1)) \vee (n+2)$.
- 4. Déterminer les entiers n tels que $(2n+1) \wedge (n^3+n) = 1$.

Exercice 5:

Montrer qu'il existe une infinité de nombres premiers congru à 3 modulo 4.

Exercice 6:

- 1. Montrer que si 2^n-1 est premier alors n aussi. Réciproque? Ces entiers sont appelés nombre de Mersenne.
- 2. Soit $n \in \mathbb{N}^*$, montrer que si 2^n+1 est premier alors il existe $q \in \mathbb{N}$ tel que $p=2^q$.
- 3. Trouver q tel que $2^{2^q} + 1$ ne soit pas premier.
- 4. Soit n > 2. Montrer que $2^n 1$ et $2^n + 1$ ne sont pas simultanément premiers mais sont premiers entre eux.

Exercice 7: Soit $(a, b, n, m) \in \mathbb{N}^4$ et $S = \{k \in \mathbb{Z} : k \equiv a[n] \text{ et } k \equiv b[m]\}.$

- 1. Montrer que $S \neq \emptyset$ si, et seulement si, $(n \land m) \mid (b-a)$.
- 2. On suppose que $c \in \mathcal{S}$. Prouver que $\mathcal{S} = \{c + q(n \vee m), q \in \mathbb{Z}\}.$

Exercice 8: Soient a, b et c trois entiers relatifs non nuls.

- 1. Montrer que∨ est distributif par rapport à ∧.
- 2. Montrer que \wedge est distributif par rapport à \vee .
- 3. Montrer que $(ab) \land c = (a \land c) \times d$ et que $(ab) \lor c = (a \lor c) \times \frac{|b|}{d}$ où $d = \frac{c}{a \land c} \land b$.