

中级微观经济学(拔尖班)笔记

2024-2025 学年秋冬学期

作者: Yishu Jiang

组织: School of Economics, Zhejiang University

时间: September 23, 2024

前言

本笔记是 2024-2025 学年秋冬学期面向经济学拔尖班开设的中级微观经济学的学习笔记, 主要使用的教材为范里安的《微观经济学: 现代观点》, 本人使用范里安的《微观经济分析》、MWG 的《微观经济理论》和平新乔的《微观经济学十八讲》作为参考书, 授课老师为汪淼军. 由于本人初次学习中微且水平能力有限, 笔记中有所疏漏处, 恳请指正.

基本的授课思路是先介绍基本假设下的消费者理论和生产者理论,接着从局部均衡到一般均衡,得到福利经济学第一第二定理,以及对市场均衡做进一步分析,再破除假设研究实际问题;更加确切地说,微观经济学更应当称为"价格理论",主要研究"看不见的手"在资源配置中的作用.

这份笔记的思路基本按照汪老师的上课思路展开,但在细节上会补充一些课上没有处理的特别好的技术细节,力求让笔记阅读起来更加流畅,因此会涉及一些高微的内容做补充,在初学时遇到这些内容如果感到困难的话可以先跳过.

目录

弗 I 草	拟备数字知识	J
1.1	最优化的数学工具: 拉格朗日方法与哈密尔顿方法	1
1.2	包络定理	1
1.3	凹函数与拟凹函数	1
第2章	消费者行为	2
2.1	消费集和预算约束	3
	2.1.1 消费集	3
	2.1.2 预算约束	3
2.2	偏好关系和效用函数	4
2.3	偏好与选择	4
	2.3.1 特殊效用函数的计算事例	4
2.4	消费者的最优选择	5
	2.4.1 效用最大化问题 (UMP) 与支出最小化问题 (EMP)	5
	2.4.2 对偶性: UMP 与 EMP 的联系	6
2.5	基于最优选择的进一步分析	7
	2.5.1 收入效应与替代效应	8
	2.5.2 福利分析	9
	2.5.3 加总和需求	10
2.6	其他问题	11
	2.6.1 不确定性下的选择	12
	2.6.2 跨期选择	13
笙3音	生产者行为	14
3.1	技术	
3.2	生产者的最优选择	
5.2	3.2.1 利润最大化与利润函数	
	3.2.2 成本最小化与成本函数	
	3.2.3 对偶	
3.3	短期生产分析	
3.4	长期生产分析	
第4章	一般均衡理论	15
第5章	博弈论基础	16
第6章	市场结构分析	17
第7章	市场失灵	18
7.1	公共物品	
7.2	外部性	

第1章 预备数学知识

1.1 最优化的数学工具: 拉格朗日方法与哈密尔顿方法

日方法只能给出内点解,对于二阶条件和角点解的处理,后续会介绍 KKT 条件.

拉格朗日方法 (一般用在静态的处理中)

$$\max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t.
$$g(\mathbf{x}) \leq 0$$

构造拉格朗日函数 $L(\mathbf{x}; \lambda) = f(\mathbf{x}) - \lambda g(x)$ (经济学中一般喜欢让 $\lambda > 0$, 在后面有相应的经济学含义). 一阶条件 $FOC: \frac{\partial L}{\partial x_i} = 0$ 且 $g(\mathbf{x}) = 0$. 当然, 解出来的结果并不一定就是最值, 还需要验证二阶条件; 另外, 拉格朗

哈密尔顿方法(往往和动态最优化相关)

1.2 包络定理

考虑一个带参数的最优化问题 (这里假设 f 性质足够好):

$$\max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}; a) =: v(a)$$

记 $\mathbf{x}^* \in \arg \max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}; a)$, 两边同时对 a 求导, 有:

$$\frac{\mathrm{d}v(a)}{\mathrm{d}a} = \frac{\partial f}{\partial x_1^*} \frac{\partial x_1^*}{\partial a} + \dots + \frac{\partial f}{\partial x_n^*} \frac{\partial x_n^*}{\partial a} + \frac{\partial f}{\partial a}$$

又根据最值的一阶条件: $\frac{\partial f}{\partial x_i} = 0, i = 1, 2, \dots, n$, 故有

$$\frac{\mathrm{d}v(a)}{\mathrm{d}a} = \frac{\partial f}{\partial a}$$

包络定理在我们只关注参数对最值的影响时,直接绕开了求解最值的过程,对比较静态分析的化简有很大帮助.

1.3 凹函数与拟凹函数

 $f: \mathbb{R}^n \to \mathbb{R}$ 为凹函数等价于 $tf(x_1) + (1-t)f(x_2) \leq f(tx_1 + (1-t)x_2), \forall t \in (0,1);$ 一般会假设 $f''(\cdot) \leq 0$. $f: \mathbb{R}^n \to \mathbb{R}$ 为拟凹函数等价于 $f(tx_1 + (1-t)x_2) \geq \min\{f(x_1), f(x_2)\}, \forall t \in (0,1).$

第2章 消费者行为

对于消费者, 我们要刻画其需求——构成需求需要三个元素: 可选择的商品组合、价格以及消费者的收入. 基本知识框架:

- 1. 偏好关系与效用函数
- 2. 消费集、预算集
- 3. 约束下的最优化问题; 无差异曲线、Walras 需求函数、效用最大化问题、支出最小化问题、间接效用函数、花费函数、对偶关系.

2.1 消费集和预算约束

2.1.1 消费集

首先我们讨论消费者选择的对象:商品.不考虑任何经济上的约束,对于可供消费者选择的商品,假设共有 n种.用一个 n 维向量 $x=(x_1,\cdots,x_n)$ 表示一个消费选择,称作**消费束**,所有消费束所构成的集合 $X\subset\mathbb{R}^n_+$ 称作**消费集**.

消费集通常符合以下假设:

- 1. $X \subset \mathbb{R}_{+}^{n}$, 即消费数量非负("减少一些东西"可以用绝对值替代).
- $0 \in X$
- 3. X 是**闭集**, 指 $\partial X \subset X$ (或者 $\forall x \in X, \exists \{x_n\} \subset X, \text{s.t. } x_n \to x, as \ n \to \infty$). 换言之: 消费集中的任意一消费 束都可以由一列消费束进行逼近, 即消费集允许"极限行为""擦边球行为".
- 4. X 是**凸集**, 指 $\forall x^1, x^2 \in X, \forall \lambda \in [0, 1], \lambda x^1 + (1 \lambda)x^2 \in X$, 换言之: **消费集中任意两点连线上的所有点都在消费集内部**, 即可以通过连续的调整, 实现一种消费向另一种消费的过渡.
- 5. *X* 无上界. 消费集仅仅表示消费者客观上可选择的商品组合 (也就是在刻画消费者的欲望,是允许无穷大的),不考虑消费是否能够实现.

2.1.2 预算约束

进一步地,我们引入经济约束——商品的价格和人们的收入限制了消费. 设价格向量 $p=(p_1,\cdots,p_n)$; 设消费这的预算为 m,则有 $p\cdot x \le m$. 在这一限制条件下,所有可行的消费品集合为 $\{x\in X\mid p\cdot x \le m\}$,它是消费集的子集——消费者能负担得起的所有消费束的集合,也就是**预算集**. 当然,预算集能表示成 $\{x\in X\mid p\cdot x \le m\}$,得建立在**市场完备性** (所有商品的价格都是公开、透明的) 的基础上. 考虑最简单的情况,价格 p 不变,这种最简单的预算集被称为 Walrasian 运算集,这建立在**价格接受**假设上,仅当单个消费者的需求占总需求的占比很小时才成立. 此外,还有一些因素也会影响消费者选择的可行域: 比如资源约束、分配方式(配额等). 预算集的边界 $\{x\in X\mid p\cdot x=m\}$ 是 n 为空间中的 n-1 为超平面,称为**预算超平面**. 可以看出,价格向量 $p=(p_1,\cdots,p_n)$ 与预算超平面正交.

2.2 偏好关系和效用函数

2.3 偏好与选择

接下来我们需要刻画消费者的选择行为本身. 微观经济学假定人是"理性"的, 反映在偏好上, 也就是说: 对于一个理性的消费者而言, 所有消费束都是可比较的并且这种比较是完备的.

定义 2.1

偏好关系 \succ 是消费集 X 上的一个二元关系, $\forall x,y \in X, x \succeq y$ 当且仅当"X 至少和 y 一样好".

由此引申出另两种二元关系:

定义 2.2 (严格偏好关系)

 $x \succ y$ 当且仅当 $x \succeq y$ 但 $y \succeq x$ 不成立.

定义 2.3 (无差异关系)

 $x \sim y$ 当且仅当 $x \succeq y$ 且 $y \succeq x$.

2.3.1 特殊效用函数的计算事例

以下均假设预算约束为 $\sum_{i=1}^{n} p_i x_i \leq m$.

首先介绍 CES 效用函数 (替代弹性恒定 Constant Elasticity Substitution).

例题 2.1 (CES 效用函数)

$$u(\mathbf{x}) = \left(\sum_{i=1}^{n} x_i^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

边际效用 $MU_{x_i}=x_i^{-\frac{1}{\sigma}}\left(\sum_{i=1}^n x_i^{\frac{\sigma-1}{\sigma}}\right)^{\frac{1}{\sigma-1}}.$ 边际替代率 $MRS_{x_i,x_j}=\frac{MU_{x_i}}{MU_{x_j}}=\frac{x_j}{x_i}^{\frac{1}{\sigma}}$

2.4 消费者的最优选择

在给定的约束下, 理性的消费者会选择自己最喜欢的商品组合. 这样的最优化结果有两种刻画指标: 给定支付能力(收入), 获取最大效用——效用最大化问题 (Utility Maximizing Problem,UMP);给定效用, 使用最小的支出——支出最小化问题 (Expenditure Minimizing Problem,EMP). 这两种问题在最优化问题的意义上且具有**对偶性**.

2.4.1 效用最大化问题 (UMP) 与支出最小化问题 (EMP)

在理性人和价格接受者的假设下,消费者的最优选择

2.4.2 对偶性: UMP 与 EMP 的联系

2.5 基于最优选择的进一步分析

2.5.1 收入效应与替代效应

2.5.2 福利分析

2.5.3 加总和需求

2.6 其他问题

2.6.1 不确定性下的选择

2.6.2 跨期选择

这一部分内容在中级宏观经济学中也有讲到.

第3章 生产者行为

- 3.1 技术
- 3.2 生产者的最优选择
- 3.2.1 利润最大化与利润函数
- 3.2.2 成本最小化与成本函数
- 3.2.3 对偶
- 3.3 短期生产分析
- 3.4 长期生产分析

第4章 一般均衡理论

第5章 博弈论基础

第6章 市场结构分析

第7章 市场失灵

- 7.1 公共物品
- 7.2 外部性