

Daniel Fraiman

Contenidos clase 4 de R: Ordenando datos, estadística descriptiva y dependencia entre variables.

- 1.- Bajar los datos births2006smpl.rda del campus, y cargarlos utilizando el comando load("births2006smpl.rda").
 - (a) Renombre los datos. *Hint*: datos = births2006smpl
 - (b) ¿Qué tipo de objeto es datos? Hint: class(\star)
 - (c) ¿Cuántas filas y cuántas columnas tiene la tabla de datos? *Hint*: dim(datos)
 - (d) Mire los primeros datos para entender qué información tiene la tabla. *Hint*: head(datos).

DOB_MM= Month of date of birth

DOB₋WK= Day of week of birth

MAGER= Mother's age

TBO_REC= Total birth order

WTGAIN= Weight gain by mother

SEX= a factor with levels F M, representing the sex of the child

APGAR5= APGAR score

DMEDUC= Mother's education level

UPREVIS= Number of prenatal visits

ESTGEST = Estimated weeks of gestation

DMETH_REC= Delivery Method

DPLURAL= "Plural Births;" levels include 1 Single, 2 Twin, 3 Triplet, 4 Quadruplet, and 5 Quintuplet or higher

DBWT= Birth weight, in grams

- (e) Renombre las variables. *Hint*: names(datos)=c("mes", "dia", "edad_madre", "num_hijos", "peso_ganado_madre", "sexo", "apgar", "educ", "visitas_medicas", "gestacion", "tipo_parto", "parto_multiple", "peso")
- (f) **Observación:** Hay otra manera de hacer el item (d) usando el paquete [tidyverse. > datos = datos % > % rename(mes = DOB_MM, dia = DOB_WK)
- (g) Limpie la base. ¿Cuál es el valor más alto para la variable gestación? Cambie este valor por NA. Luego calcule el número promedio de semanas de gestación. *Hint*: mean(datos\$gestacion,na.rm=T). ¿Qué significa ra.rm=T?
- (h) Cambie los valores de la variable dia por domingo, lunes, martes, ..., sabado. *Hint*: datos\$dia=as.factor(datos\$dia); levels(datos\$dia)=c("domingo", ..., "sabado").
- (i) Agregarle a la tabla una nueva variable construida a partir de las variables peso y gestación. Usar el comando *mutate* paquete *tidyverse*. Abajo un ejemplo.

Hint: > datos = mutate(datos, W=peso/gestacion)

Daniel Fraiman

- (j) Seleccionar solamente los casos que tienen sexo F (o sea filtrar por sexo F). Usar el comando filter pero tenga en cuenta que filter trabaja sobre dataframes. Abajo como hacerlo. **Hint:**
 - > datos2=as.data.frame(datos) # as_tibble(datos) es otra opción
 - > datos_filtrados_F=filter(datos2,sexo=="F")
- (k) Seleccionar solamente los casos que tienen gestación menor a 30 semanas.
- (l) Seleccionar solamente la variable *visitas_medicas*. *Hint:* Use el comando $select(\star_1, \star_2)$.
- (m) Se pueden seleccionar dos o más variables, ¿cómo?
- (n) ¿Qué le parece que hace el comando arrange? Correr arrange(datos2, edad_madre). Correr arrange(datos2, edad_madre, num_hijos).
- (o) ¿Qué pasa si corre lo de abajo? > datos %> % group_by(educ)
- (p) ¿Qué pasa si corre lo de abajo?
 > datos %> % group_by(educ) %> % summarise(promedio = mean(visitas_medicas))

2.- Tipos de variables.

- (a) ¿Qué tipo de variable es el peso? class(datos\$peso)
- (b) ¿Qué tipo de variable es el tipo_parto? ♠: class(datos\$tipo_parto)
- (c) ¿Qué valores toma la variable categórica educ ? Revels(datos\$educ)
- (d) Notar que no están ordenadas las categorías como uno querría. Se pueden ordenar escribiendo el comando.

datos\$educ=factor(datos\$educ,levels=c("No formal educ.","1Y elementary","2Y elementary","3Y elementary","4Y elementary","5Y elementary","6Y elementary","7Y elementary","8Y elementary","1Y high","2Y high","3Y high","4Y high","1Y college"."2Y college","3Y college"))

Estudiando una única variable

3.- Variable numérica.

- (a) Estudie gráficamente la variable peso de los recién nacidos.
 - i. Realice un histograma del peso de los recién nacidos. Hint: hist (\star)
 - ii. ¿Para qué sirven los argumentos xlab, main, col, breaks en el histograma? hist(datos\$peso,xlab="Peso",main="Histograma del peso",col=2)
 - iii. Calcule medidas de resumen del peso. Hint: mean(\star ,na.rm=T), median(\star), sd(\star), mad(\star), IQR(\star)
 - iv. Realice un boxplox de la variable peso. Hint: boxplot(\star)
 - v. Cambie el color del boxplot anterior.

Daniel Fraiman

- vi. Grafique la acumulada empírica. Hint: plot(ecdf(\star))
- vii. Realice un qqplot usando alguna distribución "razonable". *Hint*: vaya a la teórica.
- viii. Realice un qqplot usando la distribución exponencial con $\lambda = 1$. **Hint**: goto Hint 3 (a) vii.
- (b) Calcule medidas de resumen de la *edad* de la madre. Hint: mean(\star), median(\star), summary(\star), max(\star), min(\star), sd(\star), mad(\star), IQR(\star)
- 4.- Variable categórica.
 - (a) Estudie la variable tipo_parto.
 - i. Construya una tabla de frecuencia con la variable tipo_parto. Hint table(\star)
 - ii. ¿Cuántos partos fueron por cesárea (C-section)?
 - iii. Utilizando la tabla del item (a) realice un diagrama de barra. Hint barplot(\star)
 - iv. A partir de la tabla del item (a) realice un diagrama de torta. **Hint** $pie(\star)$
 - (b) Estudie la variable dia del parto.
 - i. Realice un diagrama de barra.
 - ii. ¿Quedaron ordenados los días? Vuelva a realizar un diagrama de barra pero ahora ordene los días haciendo algo similar a lo realizado en el ejercicio 2 (d).

Estudiando la relación entre dos variables

- 5.- Relación entre una variable numérica y una categórica.
 - (a) Estudie la relación entre peso del recién nacido y la multiplicidad del parto.
 - i. Grafique esta relación
 - **R**: plot(datos\$parto_multiple, datos\$peso)
 - ii. ¿Cómo se interpreta el gráfico anterior?
 - (b) Estudie la relación entre la edad de la madre y la educación.
 - Grafique esta relación. Verifique que tiene bien ordenadas la categoría educación.
 - ii. ¿Se puede observar alguna relación entre las dos variables?
 - iii. Realice el gráfico del item i pero ahora haciendo que la cajas de la primaria tengan el mismo color, lo mismo para el secundario y para la universidad. \boldsymbol{Hint} : col=c($\star_1, \star_2, \ldots, \star_n$)
- **6.-** Relación entre una variable categórica y otra categórica.
 - (a) Estudie la relación entre el tipo de parto y el día del parto.
 - i. ¿Qué pasa si escribe $table(datos\$tipo_parto, datos\$dia)$?

Daniel Fraiman

- ii. Guarde la información de la tabla en alguna variable. Hint: \star = table(datos\$tipo_parto,datos\$dia)
- iii. Haga un barplot de la tabla, utilice beside=T dentro del barplot. Y represente con los colores rojo y verde las barras.
- 7.- Relación entre una variable numérica y otra numérica.
 - (a) Estudie la relación entre el tiempo de gestación y el índice Apgar.
 - i. Grafique los datos. **R**: plot(datos\$gestacion,datos\$apgar)
 - ii. ¿Puede observar alguna relación?
 - iii. Grafique el índice Apgar promedio para cada uno de los valores de gestación.
 •• tabla3=aggregate(datos\$apgar,list(datos\$gestacion), mean,na.rm=T)
 tabla3= datos %> % select(gestacion,apgar) %> % group_by(gestacion) %> %
 summarize(APGAR=mean(apgar,na.rm=T))
 plot(tabla3,xlab="gestacion",ylab="apgar")
 - iv. ¿Ahora puede visualizar alguna relación?
- 8.- (a) Cargue los archivos datos_indec_2022.csv y datos_indec_2010.csv . Hint: datos=read.csv("datos_ir
 - (b) Preste atencion a ambos planillas de datos. ¿ Están las mismas provincias representadas?
 - (c) Junte la información de ambas planillas en un único data frame usando las herramientas de las guías 1 y 2. (for, if, ect)
 - (d) Consolide una planilla con todas las provincias en las que hay información completa.
 - (e) ¿Qué diferencia hay entre los comandos de abajo?
 left_join(datos1, datos2, by = c("AREA"="Jurisdiccion"))
 rigth_join(datos1, datos2, by = c("AREA"="Jurisdiccion"))
 inner_join(datos1, datos2, by = c("AREA"="Jurisdiccion"))
 full_join(datos1, datos2, by = c("AREA"="Jurisdiccion"))