

郑州大学大学物理实验中心

Physics Experiment Center Of Zhengzhou University

分光计的调节与使用

主要内容

郑州大学大学物理实验中心

Experiment Center Of Zhengzhou University

实验简介

实验目的

实验原理

实验内容

注 意 事 项

据记录

据处理

实验简介

分光计是用来精确测量角度的仪器。分光计 是光学实验的基本仪器之一,通过角度的测量可 以计算介质折射率、光波波长等相关的物理量, 检验棱镜的棱角是否合格、平板玻璃砖的两个表 面是否平行等。

实验目的

- 1、了解分光计的结构和工作原理。
- 2、掌握分光计的调节要求和调节方法。
- 3、学会用分光计测量玻璃三棱镜的折射率。

- 1 分光计的结构
- 2 分光计的调节
- 3 测量角度的原理
- 4 测量三棱镜的折射率

1、分光计的结构

2、分光计的调节

分光计的调节要求:

- 2.1 望远镜聚焦无穷远
- 2.2 望远镜的光轴与仪器中心轴垂直
- 2.3 平行光管出射平行光
- 2.4 平行光管光轴与仪器中心轴垂直。

特点:

1、目视粗调 2、理论指导实验 3、按先后顺序

1) 目视粗调、放置双面镜

2) 调节望远镜聚焦无穷远

①调<u>目镜手轮</u>使分划板清晰a

②调<mark>调焦手轮</mark>使绿十字清晰b

郑州大学大学物理实验中心 Physics Experiment Center Of Zhengzhou

3) 调节望远镜光轴与中心轴垂直

①调调倾螺钉 使h成为h/2.

②调<u>a1或a2</u>使 绿十字与分 划板上方十 字重合。

郑州大学大学物理实验中心

Physics Experiment Center Of Zhengzhou

4) 调节平行光管出射平行光,平行光管光轴与中心轴垂直

①调调焦手轮 使狭缝像清 晰。

②调调倾螺钉 使中心横线 均分狭缝。

③调狭缝宽度使其合适;并 使竖线与分划板竖线平行。

Physics Experiment Center Of Zhengzhou University

- 3、测量角度的原理
 - 1) 分光计的读数

187°49′

Physics Experiment Center Of Zhengzhou University

2) 测量角度

郑州大学大学物理实验中心

Physics Experiment Center Of Zhengzhou University

4、测量三棱镜的折射率

$$n = \sin\frac{A + \delta_m}{2} / \sin\frac{A}{2}$$

实验内容

- 1 调节三棱镜光学面平行于中心轴
- 2 测量谱线最小偏向角

实验内容

1、调节三棱镜光学面平行于中心轴

AB面调后

AC面调前

实验内容

Center Of Zhengzhou

2、测量谱线最小偏向角

注意事项

- 1 光学元件要轻拿轻放,以免损坏,切忌用手触摸光学面。
- 2 分光计调整完成后,不要随意转动望远镜,平行光管的任意螺钉。
- **3** 读取数据时,注意望远镜是否经过刻度盘零点,若经过刻度盘零点,则读数加上360度。

数据记录

Physics Experiment Center Of Zhengzhou University

表 最小偏向角測量数据 $\lambda=$ ______; A=

_				70		12 ====		
0	测量 次数	入射光		出射光				0 10 0 1
	<i>1</i> /\ <i>9</i> \	$ heta_{1}^{'}$	$\theta_{2}^{'}$	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	$\delta_{\min} = \frac{1}{2}$	$\left[\left \theta_{1}^{'}-\theta_{1}\right +\left \theta_{2}^{'}\right \right]$	$-\theta_{2}$
	1		*	****	***	Kar.		X X
	2	*Noo		~~~~ `	00			
	3							
	4 >		×	*	×		×	×
	5							
1	6	5	0		5			
	$\overline{\delta}_{ ext{min}}$					***		
		W.X.		(A)		·	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

数据处理

郑州大学大学物理实验中心

Physics Experiment Center Of Zhengzhou University

- 最小偏向角测量结果
- 三棱镜玻璃折射率测量结果

数据处理

Physics Experiment Center Of Zhengzhou University

最小偏向角测量结果

$$\Delta_{A} = \frac{t_{0.95}}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n} (\delta_{mi} - \overline{\delta}_{m})^{2}}{n-1}} =$$

$$\Delta_{\delta_{m}} = \sqrt{\Delta_{A}^{2} + \Delta_{B}^{2}} =$$

$$\delta_{\scriptscriptstyle M} = \overline{\delta}_{\scriptscriptstyle M} \pm \Delta_{\delta_{\scriptscriptstyle M}} =$$

数据处理

科州大学大学物理实验中心

Physics Experiment Center Of Zhengzhou University

三棱镜玻璃折射率测量结果

$$\frac{1}{n} = \frac{\sin\frac{\overline{\delta}_m + \overline{A}}{2}}{\sin\frac{\overline{A}}{2}} =$$

$$\Delta_n = \sqrt{\left(\frac{\partial n}{\partial A} \Delta_A\right)^2 + \left(\frac{\partial n}{\partial \delta_m} \Delta_{\delta_m}\right)^2} =$$

$$n = n \pm \Delta_n =$$

科州大学大学物理实验中心 Physics Experiment Center Of Zhengzhou University