Corollary 0.1

 $T \in \text{Hom}(V, V)$ is diagonalisable if and only if $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$, where $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues.

Proof. If T is diagonalisable, then there exists an ordered basis of eigenvectors β . Note that $\beta \subseteq E_{\lambda_1} + \cdots + E_{\lambda_k}$, and therefore span $\beta \subseteq E_{\lambda_1} + \cdots + E_{\lambda_k}$, showing that $V = E_{\lambda_1} + \cdots + E_{\lambda_k}$. Since eigenvectors are distinct, they are linearly independent. Thus, $w_1 + \cdots + w_k = 0$ for $w_i \in E_{\lambda_i}$ implies $w_i = 0$, and hence $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$.

Conversely, suppose $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$. Pick a basis β_i of E_{λ_i} for all $i \in [1, k] \cap \mathbb{N}$. Note that $\beta_1 \cup \cdots \cup \beta_k$ is a basis of V, which implies that T is diagonalisable. \square

We can also give a better argument for the theorem from last lecture.

Theorem 0.2

If T is diagonalisable, then characteristic polynomial splits and dim $E_{\lambda} = m_{\lambda}$.

Proof. Suppose $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors. Suppose also $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T. Renumbering the basis if necessary, the first d_1 basis elements have a corresponding eigenvalue λ_1 , the next d_2 basis elements have an eigenvalue λ_2 , and so on.

Therefore, since T is diagonalisable,

$$[T]_{eta} = egin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_1 & & & \\ & & & \lambda_2 & & \\ & & & \ddots & & \\ & & & & \lambda_2 & & \\ & & & & \ddots & \\ & & & & & \ddots & \end{pmatrix}$$

Moreover, $d_i = m_{\lambda_i}$. Note that $d_i \leq \dim E_{\lambda_i} \leq m_{\lambda_i}$, which implies that $\dim E_{\lambda_i} = m_{\lambda_i}$.

Theorem 0.3

If $A \in M_{n \times n(F)}$, then f(A) = 0, where f(t) is the characteristic polynomial of A.

Example 0.4

If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, then $f(t) = t^2 - 5t - 2$ and

$$f(A) = f(A) = A^2 - 5A - 2I = \begin{pmatrix} 7 - 5 - 2 & 10 - 10 - 0 \\ 15 - 15 - 0 & 22 - 20 - 2 \end{pmatrix} = \mathbf{0}$$

Remark 0.5. Note that f(t) = g(t)h(t), which implies that f(A) = g(A)h(A).

Remark 0.6. Similarly f(T) can be defined, where T is a linear transformation.

Example 0.7 (Wrong 'Proof')
$$f(t) = \det(A - tI) \Rightarrow f(A) = \det(A - AI) = 0.$$

Remark 0.8. If A is diagonal, the proof is easy.

Definition 0.9. A subspace $W \subseteq V$ is T-invariant if $T(W) \subseteq W$.

e.g. 0,
$$V$$
, $\ker(T)$, $\operatorname{Im}(T)$, E_{λ}

If $W \subseteq V$ is T-invariant, we can define

$$T_W \in \text{Hom}(W, W)$$
 by restriction $\forall x \in W : T_W(x) = T(x)$

Definition 0.10. If $v \in V$, the *T*-cyclic subspace generated by v is span $\{v, T(v), T^2(v), \ldots\}$.

Claim. T-cyclic subspace generated by v is T-invariant.

Proof.
$$T(a_0 + a_1 T(v_1) + \dots + a_n T(v_n)) \in \text{span}\{v, T(v), T^2(v), \dots\}$$

Claim. T-cyclic subspace is the smallest T-invariant subspace containing v.

Proof. If $v \in W$, where W is a W-invariant subspace, by definition of W, Tv, T^2v , T^3v , $T^{n-1}v$ must also be in W, and thus a T-cyclic subspace generated by v is in W.