Q1.
or On')
b. To prove that fcn)=7n+3n2+2n(ogn+2 is Ocn2), we show that there exists a
constant C and no such that for any integer n2no, f(n) = Cn2
Since IN EIN21
2 nlogn = 2n2 4n > 2
2 = 5u, Aus
So $f(n) = 7n + 3n^2 + 2n \log n + 2 \leq 7n^2 + 2n^2 + 2n^2 + 3n^2 = 14n^2$
As a result, $\forall n \ge 2$, $f(n) \le 4n^2 $, So by definition $f(n) = O(n^2)$
Q_2 .
01. Divide and Conquer
b. Initialize (=0 m=).
Iteration : $m = [\frac{0+7}{2}] = 3$, $A[3] = 49 < 99 = k$, so update $[= 4]$
Iteration 2: $m = \left[\frac{(4+)}{2}\right] = 5$. A is $j = 55 \angle 99 = k$. so update $j = 6$
Iteration 3: $m = \left[\frac{bt}{2}\right] = b$, $A[b] = 99 = k$, return $m = 6$
So the output is 6
C. After first comparison, the search interval is peduced to $\frac{n}{2}$;
After second comparison, the search interval is yeduced to $\frac{n}{4}$;
After Kth comparison, the search interval is the;

The process stops when the search interval has been reduced to only one element, which means 1 = 1. so 2 = = | L: 10g2n

Since each iteration uses a constant amount of work, so the ovellall run time is proportional to login. Hence the time complexity is Oclogn). Q3. a. When i=0, compare with indices 1, 2, 5, 4, 5 -> 5 comparisons when i=1, compare with indices 2,3,4,5 -> 4 comparisons when i=2, compare with indices 3,4,5 -> 3 comparisons when i=3, compare with indices 4,5 -> 2 comparisons when i=4, compare with indices 5 -> 1 comparison So Total Comparisons = St4+3+2+1 = 15 b. 0 Compare 6 and 1 , swap -> [1,6,2,3,4,5] 2. Compare 6 and 2. SWap - [1,2,6,3,4,5] 3 compare 6 and 3, smap -> [1,2,3.6,4,5] P. compare 6 and 4, Swap → [1,2,3,4,6,5] D. Compare 6 and v, swap → [1,2,3,4,5,6] The array has been sorted into the ascending order. So the number of swapping operations is s.

Or. The adjacency matrix:	The adjacency list:
abcdef	[a] -> [a
0,010010	TO SOLD CHOCKED
6 1 0 1 10 1	C)=>[b]=> [#]
	MADE TO THE
d 0 1 1 0 0 i	(e) -> (a) -> (+) A
f v 1 1 0	TIPOLETINETI

Order of BFS traversal: a > b > e > c > d > f

Order of DFS traversal: a > b > c > d > f > e

BFS Tree:

DFS Tree:

9-4-8

05

a. The order in which the vertices are selected is as follows: a.e.f.b.g.c.d.h

Or der Selected	0(0,-)	b(-, vo)	(∞,-)	d (-, ∞)	e (- ,0°)	f(-,∞)	9 (-,0)	hc-,00)
(۵٫-)		b(9,4)	(·-,∞)	d c-,001	e(a,1)	f(-,0°)	g(-,&)	h(-,∞)
200 1)		b(a,4)	Cc-,00)	d (-,∞)		fce,1)	9ر-,۵۰)	h (-, ∞)
f(e,1)		b(f ,3)	C(f,10)	d(-,~)			J(+12)	h (- ,00)
pctv)			C (b,6)	d(-,00)			g(f,5)	h(-,000)
9(4.5)			C (9,11)	(دار و) ام				h(9,7)
[cg,1)				dccij				h (g,7)
الردي)								h (אור)
h(g,7)								

The	T2M	:	01	
		L	e´ !	
		P,	9	
		4	c' \	1

The MST drawn is not unique

C. selected order of edges: (a,e), (e,f), (a,b), (f,g), (g,c), (g,h), (c,d)

Order Selected	0(0,-)	hc- ,৩0)	(ح,۳)	d (-,∞)	e (- ,00)	f(-,∞)	g (- , 0)	hc-,00)	
(-,د)		b(a,4)	(·-, °°)	d (-,001	e(a,1)	f(-,0°)	g(-,00)	hc-,~)	
00 il)		b (a,4)	Cc-,00)	d (-,∞)		fce3)	g(-, ^{co})	h (-, ∞)	-
f(e,3)		b(0,4)	c (f ,13)	d(-,∞)			gcf (8)	h c- ۱۵۵۱)	
b(9,4)			[(b , lo)	d(-,00)			<u> </u>	h(-,000)	
9(+18)			C c9,9)	(لار وع ال				h(9/15)	
[cg,ŋ)				d cc,1b)				h G115)	
hcg.15)				d (cc ,(b)					
d ((1 1 1)									

