4) Indépendance

<u>Définition</u>: deux événements A et B sont indépendants si la probabilité de réalisation de A (respectivement de B) n'est pas changée si on sait que B (respectivement A) est réalisé.

4) Indépendance

<u>Définition</u>: deux événements A et B sont indépendants si la probabilité de réalisation de A (respectivement de B) n'est pas changée si on sait que B (respectivement A) est réalisé. On a donc $P(A) = P_B(A)$ (respectivement $P(B) = P_A(B)$).

On a aussi $P(A \cap B) = P(A)P(B)$.

On a aussi $P(A \cap B) = P(A)P(B)$. <u>Justification</u>:

$$P(A) = P_B(A) = \frac{P(A \cap B)}{P(B)}$$
 donc

On a aussi
$$P(A \cap B) = P(A)P(B)$$
.
Justification:

$$\overline{P(A)} = P_B(A) = \frac{P(A \cap B)}{P(B)}$$
 donc
 $P(A \cap B) = P(A)P(B)$.

Si A et B sont deux événements incompatibles de probabilités non nulles alors $P(A \cap B) =$

Si A et B sont deux événements incompatibles de probabilités non nulles alors $P(A \cap B) = P(\emptyset)$

Si A et B sont deux événements incompatibles de probabilités non nulles alors $P(A \cap B) = P(\emptyset) = 0$

Si A et B sont deux événements incompatibles de probabilités non nulles alors $B(A \cap B) = B(A) \cap B(B)$

$$P(A \cap B) = P(\emptyset) = 0 \neq P(A)P(B)$$

Si A et B sont deux événements incompatibles de probabilités non nulles alors $P(A \cap B) = P(\emptyset) = 0 \neq P(A)P(B)$ donc A et B ne sont pas indépendants.

Propriété: Si A et \overline{B} sont indpépendants, alors \overline{A} et \overline{B} , A et \overline{B} le sont aussi.

$$P(A) = P(A \cap B) + P(A \cap \overline{B}) =$$

Propriété: Si A et \overline{B} sont indpépendants, alors \overline{A} et \overline{B} , A et \overline{B} le sont aussi.

$$P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(A)P(B) + P(A \cap \overline{B})$$

$$\overline{P(A)} = P(A \cap B) + P(A \cap \overline{B}) = P(A)P(B) + P(A \cap \overline{B})$$

donc $P(A) - P(A)P(B) = P(A \cap \overline{B})$

$$\overline{P(A) = P(A \cap B) + P(A \cap \overline{B})} = P(A)P(B) + P(A \cap \overline{B})$$

$$donc P(A) - P(A)P(B) = P(A \cap \overline{B})$$

$$donc P(A)(1 - P(B)) = P(A \cap \overline{B})$$

$$\overline{P(A) = P(A \cap B) + P(A \cap \overline{B})} = P(A)P(B) + P(A \cap \overline{B})$$

$$donc P(A) - P(A)P(B) = P(A \cap \overline{B})$$

$$donc P(A)(1 - P(B)) = P(A \cap \overline{B})$$

$$donc P(A)P(\overline{B}) = P(A \cap \overline{B})$$