Test Case Selection Strategies III

1

# Contents

This lecture covers

- Effectiveness metrics
- Proportional Sampling Strategy

#### Notation

- Input Domain: D
- Domain size : d
- Number of failure-causing inputs : m
- Number of test cases : *n*
- Failure rate :  $\theta = \frac{m}{d}$
- Sampling rate :  $\sigma = \frac{n}{d}$

1

#### Notation (continued)

Suppose we have an input domain with

- Domain size : d = 100
- Number of failure-causing inputs : m = 5
- Number of test cases : n = 20

Then, we have

- Failure rate = 5/100 = 0.05
- Sampling rate = 20/100 = 0.2

#### Example

Consider the following partitioning scheme



5

# Example (continued)

• 
$$k = 4$$
,  $d = 100$ ,  $m = 5$ ,  $n = 20$ 

• 
$$d_1=10, d_2=20, d_3=30, d_4=40$$

• 
$$m_1 = 0$$
,  $m_2 = 0$ ,  $m_3 = 3$ ,  $m_4 = 2$ 

• 
$$n_1 = 2$$
,  $n_2 = 2$ ,  $n_3 = 6$ ,  $n_4 = 10$ 

# Notation (continued)

• k partitions:  $D_1, ..., D_k$ 

$$d = \sum_{i=1}^{k} d_i$$

$$m = \sum_{i=1}^{k} m_i$$

$$n = \sum_{i=1}^{k} n_i$$

-

#### Effectiveness Measures

- Probability of detecting at least one failure (P-measure)
- Expected number of failures (E-measure)
- Expected number of test cases to detect the first failure (F-measure)

#### P-measure

- Random Testing Partition Testing

$$P_r = 1 - (1 - \theta)^n$$

$$P_r = 1 - (1 - \theta)^n$$
  $P_p = 1 - \prod_{i=1}^k (1 - \theta_i)^{n_i}$ 

### Example (continued)

- k = 4
- $d_1=10, d_2=20, d_3=30, d_4=40$
- $m_1 = 0$ ,  $m_2 = 0$ ,  $m_3 = 3$ ,  $m_4 = 2$
- $n_1 = 2$ ,  $n_2 = 2$ ,  $n_3 = 6$ ,  $n_4 = 10$

### Example (continued)

- d = 100, m = 5, n = 20
- m/d = 5/100 = 0.05

$$P_r = 1 - (1 - 0.05)**20 = 1 - (0.95**20)$$
  
= 0.6415

11

### Example (continued)

- $m_1/d_1 = 0/10 = 0$
- $m_2/d_2 = 0/20 = 0$
- $m_3/d_3 = 3/30 = 0.1$
- $m_4/d_4 = 2/40 = 0.05$
- $n_1 = 2$ ,  $n_2 = 2$ ,  $n_3 = 6$ ,  $n_4 = 10$

$$P_p = 1 - ((1 - 0)**2)* ((1 - 0)**2)*$$

$$((1 - 0.1)**6)* ((1 - 0.05)**10)$$

$$= 1 - (0.9**6)* (0.95**10) = 0.6818$$

### E-measure

- Random Testing
- Partition Testing

$$E_r = n\theta$$

$$E_p = \sum_{i=1}^k n_i \theta_i$$

13

# Example (continued)

- m/d = 5/100 = 0.05
- n = 20

$$E_r = 20 * 0.05 = 1$$

# Example (continued)

• 
$$m_1/d_1 = 0/10 = 0$$

• 
$$m_2/d_2 = 0/20 = 0$$

• 
$$m_3/d_3 = 3/30 = 0.1$$

• 
$$m_4/d_4 = 2/40 = 0.05$$

• 
$$n_1 = 2$$
,  $n_2 = 2$ ,  $n_3 = 6$ ,  $n_4 = 10$ 

$$E_p = 2*0 + 2*0 + 6*0.1 + 10*0.05$$
  
= 1.1

15

#### Partition Testing versus Random Testing

Consider a case that the input domain is divided into two partitions of different sizes



Partition Testing versus Random Testing (continued)

- Random Testing randomly select 2 test cases from the input domain
- Partition Testing randomly select 1 test case from each partition

17

| Parti | tion Testing    | versus Random | Testing (co | ntinued) |
|-------|-----------------|---------------|-------------|----------|
| Whiel | h method is bet | ter?          |             |          |
|       |                 |               |             |          |
|       |                 |               |             |          |
|       |                 |               |             |          |

Partition Testing versus Random Testing (continued)

#### Suppose

$$d = 100, m = 1, n = 2,$$
  
 $d_1 = 80, d_2 = 20, n_1 = 1, n_2 = 1$ 

Then, we have

- $E_r = 2 * (1/100) = 0.02$
- $P_r = 1 (1 (1/100))**2 = 1 (1 0.01)**2$ = 0.0199

19

Partition Testing versus Random Testing (continued)

$$E_r = 0.02$$
 and  $P_r = 0.0199$ 

Consider the following scenarios:  $m_1 = 1, m_2 = 0$ We have

- $E_p = 1 * (1/80) + 1* (0/20) = 0.0125$
- $P_p = 1 ((1 1/80)**1)* ((1 0/20)**1)$ = 0.0125

Then, RT is better than PT

Partition Testing versus Random Testing (continued)

$$E_r = 0.02$$
 and  $P_r = 0.0199$ 

Consider the following scenarios:  $m_1 = 0$ ,  $m_2 = 1$ We have

- $E_p = 1 * (0/80) + 1* (1/20) = 0.05$
- $P_p = 1 ((1 0/80)^{**1})^* ((1 1/20)^{**1})$ = 0.05

Then, PT is better than RT

2

Partition Testing versus Random Testing (continued)

Partition Testing may not be better than Random Testing

But, partition testing needs more resources!

How to make PT better than RT?

#### Proportional Sampling Strategy (PSS)

- All partitions have the same sampling rates
- Random selection of test cases

2

# Example for PSS

• 
$$k = 4$$
,  $d = 100$ ,  $n = 20$ 

• 
$$d_1=10, d_2=20, d_3=30, d_4=40$$

For n=20, if we allocate test cases as follows:

• 
$$n_1 = 2$$
,  $n_2 = 4$ ,  $n_3 = 6$ ,  $n_4 = 8$ 

Then, we have PSS because

$$(n_1/d_1) = (n_2/d_2) = (n_3/d_3) = (n_4/d_4) = 0.2$$

# Proportional Sampling Strategy (continued)

- Assumptions
  - Random selection with replacement
  - Uniform probability distribution
- The P-measure of PSS is not less than that of random testing
- The E-measures of PSS and random testing are equal

25

# Proportional Sampling Strategy (continued)

- conceptually simple
- applicable to any partitioning scheme
- need only to know the relative size ratios of the partitons
- in practice, the PSS may not be followed strictly

# Proportional Sampling Strategy (continued)

- k = 4, d = 100,
- $d_1=10, d_2=20, d_3=30, d_4=40$

If n=13, then impossible to have strictly PSS, that is,  $n_1 = ?$ ,  $n_2 = ?$ ,  $n_3 = ?$ ,  $n_4 = ?$  such that  $(n_1/d_1) = (n_2/d_2) = (n_3/d_3) = (n_4/d_4)$ 

27

#### The Basic Maximin Algorithm

- 1. Set  $n_i := 1$  and  $\sigma_i := 1/d_i$  for i = 1, 2, ..., k
- 2. Set q := n k
- 3. While q > 0, repeat the following:
  - (a) Find j such that  $\sigma_j = \min \sigma_i$
  - (b) Set  $n_j := n_j + 1$
  - (c) Set  $\sigma_j := \sigma_j + 1/d_j$
  - (d) Set q := q 1

