COLOR MODELS (Section 14-4 in *Computer Graphics*)

A Color Model is a Method of Modeling the Properties or Behavior of Light in a Particular Context

- Properties Of Light
- Standard Primaries
- The Chromaticity Diagram
- Intuitive Color Concepts
- RGB Color Model
- CMY Color Model
- Conversion Between RGB and CMY Models
- HSV Color Model
- Conversion Between HSV and RGB Models
- HLS Color Model
- Color Selection

Properties of Light

 perceived light is a narrow frequency band within the electromagnetic spectrum

- each frequency in the visible band corresponds to a distinct color
- the eye can perceive 400,000 distinct frequencies
- colors can be described in terms of frequency or wavelength, which are inverses with a proportionality constant

Properties of Light, continued

white light emits all frequencies within the visible range

- objects absorb some frequencies and reflect others
- the combination of reflected frequencies determines the perceived color
- the frequency range which predominates is called the dominant frequency, the dominant wavelength, the color or hue.

Properties of Light, continued

- luminance or brightness is related to intensity or energy
- purity or saturation describes how pure the color appears
 - pastels are less pure
- chromaticity refers to purity and dominant frequency together
- light can have a color corresponding to a dominant frequency

- purity depends on the difference between ED and EW
- brightness (emitted energy) is the area under the curve

Properties of Light, continued

- two color sources which combine to produce white light are called complementary colors
 - red and cyan
 - green and magenta
 - blue and yellow
- a wide range of colors (color gamut) can be produced from a small, judiciously chosen set of colors (primary colors)
 - three primaries generally are sufficient

Standard Primaries

- in 1931, the International Commission on Illumination established an international standard for primary colors
 - all other colors can be described as weighted sums of the three primaries
 - each primary represents an imaginary color described by an energy distribution curve
- let A, B, and C represent the amounts of the standard primaries needed to match a given color
 - components of the color are represented as

```
x = A/(A + B + C)
```

$$y = B/(A + B + C)$$

$$z = C/(A + B + C)$$

- note that z = 1 - (x + y)

The Chromaticity Diagram

 plotting x and y for all visible colors produces a chromaticity diagram based on wavelengths in nanometers

The Chromaticity Diagram, continued

- "C" is the white-light position
- purity is the relative distance of a color point from the white-light position along a line to the border
- dominant wavelength is the point of intersection from the white-light point through the color point at the spectral curve

- C1 is 25% pure
- C2 shows the dominant wavelength

The Chromaticity Diagram, continued

- complimentary colors are found by reflecting across the white light position

- color gamuts are represented by regions between the color points defining the gamut

Intuitive Color Concepts

- artists create shades by starting with a pure color and adding black pigment
- tints are obtained by adding white pigment
- tones are produced by adding black and white pigments
- graphics packages often provide an intuitive color model for the user and different model suited to the output device

RGB Color Model

- the eye perceives color when the (three)
 visual pigments in the cones of the retina are stimulated
- visual pigments have peak sensitivities at
 - 630 nm (red)
 - 530 nm (green)
 - 450 nm (blue)
- the RGB color model for a video monitor combines light from red, green and blue screen phosphors

- an additive model
- halftoning techniques can increase the number of combinations in an on-or-off system from 8 to 125 using 2-by-2 pixels

CMY Color Model

- uses primary colors cyan, magenta and yellow
- used for color output to hard-copy devices
 - coats paper with color pigments
 - a subtractive model in which colors are seen by reflected light

• the point (1, 1, 1) represents black because all components of incident light are subtracted

Conversion Between RGB and CMY Models

RGB to CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} W \\ W \\ W \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

where (1, 1, 1) represents white light

CMY to RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} B \\ B \\ B \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

where (1, 1, 1) represents black

HSV Color Model

- a more intuitive model
- the user specifies
 - a color
 - the amount of black and white to achieve the desired shade, tint and tone
 - components presented to the user
 - hue
 - saturation (ratio of purity to maximum purity)
 - value (intensity)

HSV Color Model, continued

- derivation
 - view the RGB cube along the black-white diagonal

 use the boundary of this hexagon as the top of the HSV hexacone

- · saturation is measured horizontally
- · value is measured vertically

HSV Color Model, continued

- the user starts with a pure hue
- adding black decreases V
- adding white decreases S
- the eye can distinguish
 - 128 different hues (colors)
 - 130 different tints (saturations)
 - 23 shades (values) of yellows
 - 16 shades of blues

Conversion Between HSV and RGB Models

- the user may prefer the HSV model and the color monitor may require the RGB model
 - the diagonal of the RGB cube from black at the origin to white at (1, 1, 1) corresponds to the V axis of the hexacone
 - each subcube of the RGB cube corresponds to a hexagonal cross section of the hexacone
 - a procedure for mapping between hue, saturation and value (HSV) and red, green and blue (RGB) is given on pages 304 and 305 of the course text

HLS Color Model

- another intuitive model
- three parameters
 - hue (identical to HSV hue)
 - lightness (pure hues lie on the L = 0.5 plane)
 - saturation (identical to HSV saturation)

 shade, tint and tone are achieved by adjusting L and S

Color Selection

- obtaining a set of coordinating colors
 - generate the set from a subspace of the color model
 - select colors at regular intervals along straight lines in the RGB or CMY cube
 - restrict colors to one half (or less) of the HSV hexacone
 - the eyes focus on colors according to their frequencies, causing them to appear at different depths
 - tints and shades blend better than pure hues
- use a small number of colors
- for background
 - gray or
 - a complement of a foreground color

COLOR MODELS

- Properties of Light
- Standard Primaries
- The Chromaticity Diagram
- Intuitive Color Concepts
- RGB Color Model
- CMY Color Model
- Conversion Between RGB and CMY Models
- HSV Color Model
- Conversion Between HSV and RGB Models
- HLS Color Model
- Color Selection