

Topic 10 - Graphs Lecture 10b - Algorithms

CSCI 240

Data Structures and Algorithms

Prof. Dominick Atanasio

Today

This Class

- Single-source shortest path problem
 - Dijkstra's algorithm
 - Uninformed
 - Informed

Finding a Path

Idea:

A problem is often represented by a graph, and the answer to the problem can be found by answering some question about paths in the graph. For example, "Does a path exist?".

Problem:

 We have a network of computers. The question is whether one macl another machine.

Finding a Path

Abstraction:

- The network of computers can be represented by a graph, with each vertex representing one of the machines in the network and each edge representing a communication wire between two machines.
- The question now is whether the corresponding vertices are connected by a path.

Solution:

Either a BFS or a DFS can be used to determine whether a path exist

■ In an unweighted graph, the shortest path between two given vertices has the shortest length—that is, it has the fewest edges.

(b)
$$A \rightarrow B \rightarrow E \rightarrow F \rightarrow H$$

 $A \rightarrow B \rightarrow E \rightarrow H$
 $A \rightarrow D \rightarrow G \rightarrow H$
 $A \rightarrow E \rightarrow F \rightarrow H$
 $A \rightarrow E \rightarrow H$

The algorithm to find this path is based on a breadth-first traversal.

B E D
F H G

Paths form a breadth-first tree (Order in which the nodes are expanded)

 In a weighted graph, each edge has a value attached to it, called the weight or cost of the edge.

- A weighted edge is an edge together with an integer called the edge's weight.
- The weight of a path is the total sum of the weights of all the edges in the path.
- If two vertices are connected by at least one path, then we can define the shortest path between two vertices, which is the path that has the smallest weight.
 - There may be several paths with equally small weights, in which case each of the paths is called "smallest".

- A weighted edge is an edge together with an integer called the edge's weight.
- The weight of a path is the total sum of the weights of all the edges in the path.
- If two vertices are connected by at least one path, then we can define the shortest path between two vertices, which is the path that has the smallest weight.
 - There may be several paths with equally small weights, in which case each of the paths is called "smallest".

what is the weight of each path?

- A weighted edge is an edge together with an integer called the edge's weight.
- The weight of a path is the total sum of the weights of all the edges in the path.
- If two vertices are connected by at least one path, then we can define the shortest path between two vertices, which is the path that has the smallest weight.
 - There may be several paths with equally small weights, in which case each of the paths is called "smallest".

(b) Path Weight
$$A \rightarrow B \rightarrow E \rightarrow F \rightarrow H \quad 9$$

$$A \rightarrow B \rightarrow E \rightarrow H \quad 9$$

$$A \rightarrow D \rightarrow G \rightarrow H \quad 8$$

$$A \rightarrow E \rightarrow F \rightarrow H \quad 10$$

$$A \rightarrow E \rightarrow H \quad 10$$

In a weighted graph, the shortest path is not necessarily the one with the fewest edges.

- Single-source shortest path problem
 - Bellman-Ford algorithm
 - Allows negative-weight edges
 - Slower than Dijkstra's algorithm
 - Dijkstra's algorithm
 - All edge weights are non-negative

• Given a directed graph G = (V, E) with edge-weight function $w: E \to R$, and a source vertex s.

- From a given source vertex s in V, find the shortest path weights for all vertices in V.
 - Let $\delta(s, v)$ be the shortest path for all v in V.

Find the shortest paths from A to B, C, D, E, F, G, H, and I

- Brute-Force Algorithm:
- Distance(s, t):
- for each path p from s to t:
- compute w(p)
- return p encountered with smallest w(p)

Find the shortest paths from A to B, C, D, E, F, G, H, and I

- Brute-Force Algorithm:
- Distance(s, t):
- for each path p from s to t:
- compute w(p)
- return p encountered with smallest w(p)

However,

- The number of paths can be infinite when there's negative-weight cycles.
- Assume there's no negative-weight cycles, the number of paths can be exponential.

Find the shortest paths from A to B, C, D, E, F, G, H, and I

- Some Theorems associated with shortest path
 - A subpath of a shortest path is a shortest path. Proof by contradiction.
 - Triangle inequality. For all u, v, x that belong to V, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$, where $\delta(i, j)$ is the shortest path weight from i to j.

- According to triangle inequality:
- $\delta(s, v) \le \delta(s, u) + \delta(u, v) \le \delta(s, u) + w(u, v)$
- Relaxation technique:
 - Initialization: s.d = 0, v.d = ∞ for v ≠ s
 - Goal: v.d = $\delta(s, v)$ for all v in V
 - Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
 - Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: **v.d** is called the distance estimate of the path from s to v

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for v ≠ s
- Goal: v.d = δ(s, v) for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: **v.d** is called the distance estimate of the path from s to v

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for v \neq s
- Goal: v.d = $\delta(s, v)$ for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: $\mathbf{v.d}$ is called the distance estimate of the path from s to \mathbf{v}

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for $v \neq s$
- Goal: v.d = $\delta(s, v)$ for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: **v.d** is called the distance estimate of the path from s to v

A (0)

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for $v \neq s$
- Goal: v.d = $\delta(s, v)$ for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: $\mathbf{v.d}$ is called the distance estimate of the path from s to \mathbf{v}

31 < ∞

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for $v \neq s$
- Goal: v.d = $\delta(s, v)$ for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: $\mathbf{v.d}$ is called the distance estimate of the path from s to \mathbf{v}

31 < 35 < ∞

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for v \neq s
- Goal: v.d = $\delta(s, v)$ for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: **v.d** is called the distance estimate of the path from s to v

12 < 31 < 35 < ∞

Relaxation technique:

- Initialization: s.d = 0, v.d = ∞ for v \neq s
- Goal: v.d = $\delta(s, v)$ for all v in V
- Repeatedly improve estimates toward goal, by aiming to achieve triangle inequality
- Consider an edge (u, v)
 - relax (u, v): if v.d > u.d + w(u, v), then v.d = u.d + w(u, v)

Note: $\mathbf{v.d}$ is called the distance estimate of the path from s to v

```
Relaxation technique:
    for v in V:
       v.d = infinity
       s.d = 0
    while some edege (u, v) has v.d > u.d + w(u,v):
       pick such an edge (u, v)
       relax(u, v):
               if v.d > u.d + w(u,v):
                     v.d = u.d + w(u,v)
```

Note: **v.d** is called the distance estimate of the path from s to v

Dijkstra's Algorithm

- Dijkstra's algorithm,
 - Conceived by Dutch computer scientist Edsger Dijkstra in 1959,
 - Is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.
 - This algorithm is often used in network routing protocols.
- Idea: Greedy
 - Maintain a set S of vertices whose shortest path distance from s are known.
 - At each step add to S the vertex v in (V S) whose distance estimate from s is minimal.
 - Update the distance estimates of vertices adjacent to v.

Dijkstra's Algorithm

Demonstrated in class

In-Class Exercise

Implementation of Dijkstra's Algorithm

```
function Dijkstra(Graph, source):
      for each vertex v in Graph:
                                             // Initializations
            dist[v] := infinity
                                             // Unknown distance function from source to v
            previous[v] := undefined
                                      // Previous node in optimal path from source
                                             // Distance from source to source
      dist[source] := 0
                                             // All nodes in the graph are unoptimized thus are in Q (priority queue)
      Q := the set of all nodes in Graph
                                             // The main loop
      while Q is not empty:
             u := vertex in Q with smallest dist[]
             if dist[u] = infinity:
                                            // all remaining vertices are inaccessible
                    break
             remove u from Q
             for each neighbor v of u: // where v has not yet been removed from Q
                   alt := dist[u] + dist_between(u, v)
                   if alt < dist[v]
                        dist[v] := alt
                         previous[v] := u
       return previous[]
```

Time Complexity

```
function Dijkstra(Graph, source):
                           for each vertex v in Graph:
                                                                 // Initializations
                                dist[v] := infinity
                                                                 // Unknown distance function from source to v
                                previous[v] := undefined
                                                                 // Previous node in optimal path from source
                           dist[source] := 0
                                                                 // Distance from source to source
                                                                 // All nodes in the graph are unoptimized - thus are in Q (priority queue)
                           Q := the set of all nodes in Graph
                           while Q is not empty:
                                                                 // The main loop
                                  u := vertex in Q with smallest dist[]
                                  if dist[u] = infinity:
                                        break
                                                                 // all remaining vertices are inaccessible
                                  remove u from Q
|V| times
                                 for each neighbor v of u:
                                                                // where v has not yet been removed from Q
                 degree(u)
                                       alt := dist[u] + dist_between(u, v)
                                       if alt < dist[v]
                                             dist[v] := alt
                                             previous[v] := u
                            return previous[]
```

Time complexity =
$$O(|V| \cdot T_{Extract_min} + |E| \cdot T_{Decrease_dist})$$

Uninformed Search Strategies

- Uninformed search (blind search) strategies use only the information available in the problem definition
- Strategies that know whether one non-goal state is expected to be better than another are called informed search or heuristic search
- General uninformed search strategies:
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search

Road Map of Romania

Frontier and Explored Set

- Goal of frontier: Contain the set of discovered node(s) to expand (explore)
 - Possible data structures?
- Goal of explored set: Contains Explored states to prevent for repeated exploration
- Possible data structures?

Uniform-Cost Search

- Expand least-cost unexpanded node
- Implementation:
 - Frontier = priority queue ordered by path cost g(n)
- Example, shown on board, from Sibiu to Bucharest

Uniform-Cost Search

```
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
  node \leftarrow a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
  frontier \leftarrow a priority queue ordered by PATH-COST, with node as the only element
  explored \leftarrow an empty set
  loop do
      if EMPTY?(frontier) then return failure
      node \leftarrow Pop(frontier) /* chooses the lowest-cost node in frontier */
      if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
      add node.STATE to explored
      for each action in problem.ACTIONS(node.STATE) do
          child \leftarrow CHILD-NODE(problem, node, action)
         if child.STATE is not in explored or frontier then
             frontier \leftarrow INSERT(child, frontier)
         else if child.STATE is in frontier with higher PATH-COST then
             replace that frontier node with child
```

Uniform-Cost Search is Optimal

- Uniform-cost search expands nodes in order of their optimal path cost
- Hence, the first goal node selected for expansion must be the optimal solution

Informed Search

- Definition:
 - Use problem-specific knowledge beyond the definition of the problem itself
- Can find solutions more efficiently
- Best-first search strategies
 - Greedy best-first search
 - A*

Best-First Search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node
- Implementation: use a data structure that maintains the frontier in a decreasing order of desirability
- Is it really the best?
- Special cases: uniform-cost (Dijkstra's algorithm), greedy search, A* search
- A key component is a heuristic function h(n):
 - h(n) = estimated cost of the cheapest path from node n to a goal node
 - h(n) = 0 if n is the goal
 - h(n) could be general or problem-specific

Best First Search Pseudo-code

```
Best_First_Search(problem)
       initialize the queue, Q, with the initial state (node)
       while Q is not empty, do
              assign the first element of Q to N
              if N is the goal, return SUCCESS
               remove N from Q
               add the children of N to Q
               sort the entire Q by f (n)
       end-while
       return FAILURE
```

Recall Romania Map Example

What's a proper heuristic that measures cheapest path from current node to goal node?

Romania Map with Costs

Greedy Best-First Search

- Evaluation function: f(n) = h(n)
 - estimate the cost from n to goal
- hSLD = straight line distance from n to Bucharest

A*: Minimizing Total Est. Cost

- Idea: avoid expanding paths that are already expensive
- Evaluation function f (n) = g(n) + h(n)
 - g (n) = path cost so far to reach n
 - h (n) = estimated cost from n to goal
 - f (n) = estimated total cost of path from n to goal

Exercise

 Use A* graph-search to generate a path from Lugoj to Bucharest using the straight-line distance heuristic.

Exercise

 Use A* graph-search to generate a path from Lugoj to Bucharest using the straight-line distance heuristic.

