Tangent Planes and Linear Approximations

David Robinson

Tangent Planes

Let $P_0 = (x_0, y_0, z_0)$ be a point on a surface S, and let C be any curve passing through P_0 and lying entirely in S. If the tangent lines to all such curves C at P_0 lie in the same plane, then this plane is called the **tangent plane** to S at P_0 .

Let S be a surface defined by a differentiable function z = f(x, y), and let $P_0 = (x_0, y_0)$ be a point in the domain of f. Then, the equation of the tangent plane to S at P_0 is given by

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Linear Approximations

Given a function z = f(x, y) with continuous partial derivatives that exist at the point (x_0, y_0) , the **linear approximation** of f at the point (x_0, y_0) is given by the equation

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Differentiability

A function f(x, y) is **differentiable** at a point $P(x_0, y_0)$ if, for all points (x, y) in a δ disk around P,

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + E(x, y)$$

where the error term E satisfies

$$\lim_{(x,y)\to(x_0,y_0)} \frac{E(x,y)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0$$

Let z = f(x, y) be a function of two variables with (x_0, y_0) in the domain of f. If f(x, y) is differentiable at (x_0, y_0) , then f(x, y) is continuous at (x_0, y_0) .

Let z = f(x, y) be a function of two variables with (x_0, y_0) in the domain of f. If f(x, y), $f_x(x, y)$, and $f_y(x, y)$ all exist in a neighborhood of (x_0, y_0) and are continuous at (x_0, y_0) , then f(x, y) is differentiable there.

Differentials

Let z = f(x, y) be a function of two variables with (x_0, y_0) in the domain of f, and let Δx and Δy be chosen so that $(x_0 + \Delta x, y_0 + \Delta y)$ is also in the domain of f. If f is differentiable at the point (x_0, y_0) , then the differentials dx and dy are defined as $dx = \Delta x$ and $dy = \Delta y$. The differential dz, also called the **total differential** of z = f(x, y) at (x_0, y_0) , is

$$dz = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$$