Security Service & Security Mechanism

Dr. E. Suresh Babu

Assistant Professor

Department of CSE

National Institute of Technology, Warangal

Outline

- Security Service
- Security Mechanism
 - **✓ Specific Security Mechanisms**
- **❖ Network Security Model**
- *** Model for Network Access Security**

Security Services

Definition of Security Services

Security Services are defined from **Relevant standards**

X.800 defines a Security service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers

Security Services Defined by X.800

- **X.800** Security Architecture for OSI defines
 - ✓ A systematic approach for security services.
- * X.800 divides the security services into five categories.
 - **✓** Authentication
 - ✓ Access Control
 - **✓ Data Confidentiality**

- ✓ Data Integrity
- √ Non-Repudiation

Security Mechanism

Security Mechanism

- A Security Mechanism is any process that is designed to detect, prevent, or recover from a security attack.
 - ✓ Examples of mechanisms are Encryption Algorithms, Digital Signatures, and Authentication Protocols.
- Security Mechanism which are the specific means of implementing one or more security services.

Security Mechanism

Security Mechanisms (X.800)

Specific Security Mechanisms

- Encipherment
- Digital signatures
- Access controls
- Data integrity
- Authentication exchange
- Traffic padding
- Routing control
- Notarization

Pervasive Security Mechanisms

- Trusted functionality
- Security labels
- Event detection
- Security audit trails
- Security recovery

Specific Security Mechanisms

Encipherment

* The use of **mathematical algorithms** to **transform data** into a form that is not readily intelligible.

❖ The transformation and subsequent recovery of the data depend on an algorithm and zero or more encryption keys.

Digital Signature

❖ Data appended to a **cryptographic transformation** of, a data unit that allows a recipient of the data unit to prove the source and **integrity of the data unit** and **protect against forgery** (e.g., by the recipient).

Authentication Exchange

❖ A mechanism intended to **ensure the identity of an entity** by means of information exchange..

Traffic Padding

* The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

* Enables selection of particular physically secure routes for certain data and allows routing changes, especially when a breach of security is suspected.

Notarization

❖ The use of a trusted third party to assure certain properties of a data exchange.

Relationship Between Security Services And Mechanisms

Security Service	Supporting Security Mechanisms
Authentication	Encipherment, Digital Signature, Authentication Exchange
Access Control	Access Control
Confidentiality	Encipherment, Routing Control
Data Integrity	Encipherment, Digital Signature, Data Integrity
Nonrepudiation	Digital Signature, Data Integrity, Notarization
Availability	Data Integrity, Authentication Exchange

Observation

- No single mechanism that will support all services required
- One particular element underlies many of the security

mechanisms in use

✓ CRYPTOGRAPHIC TECHNIQUES

- ❖ There are four basic tasks in designing a particular security service:
 - 1. Design a suitable algorithm for the security transformation
 - 2. Generate the secret information (keys) used by the algorithm
 - 3. Develop methods to distribute and share the secret information
 - 4. Specify a protocol enabling the principals to use the transformation and secret information for a security service

Cryptography Basics

Thank U