Homework №8

Author: David Oniani

Instructor: Tommy Occhipinti

October 20, 2018

Additional Proof Practice

- 53. A subset S of \mathbb{Z}^+ is called a P_3 -set if there exists (not necessarily distinct) elements $x, y, z \in S$ such that x + y + z is prime.
 - (a) Give some examples of P_3 -sets.
 - $\{1\}$ because 1 + 1 + 1 = 3 is a prime.
 - $\{2,3\}$ because 2+3=5 is a prime.
 - $\{12, 25, 30\}$ because 12 + 25 + 30 = 67 is a prime.
 - (b) Prove or Disprove: If A is a P_3 -set, and $A \subseteq B \subseteq \mathbb{Z}^+$, then B is a P_3 -set. It's right so let's prove it. Since we know that A is a P_3 -set, we know there exist elements (not necessarily distinct) x, y and z such that x + y + z is prime. Since $A \subseteq B$, we know that all elements of A are also in B meaning that x, y and z are in B as well and there exist elements x, y, z (which are also in A) such that x + y + z is a prime. Q.E.D.
 - (c) Prove or Disprove: If S is a P_3 -set, then so is $S_{+3} := \{x+3 \mid x \in S\}$. It's false. Counterexample: Let $S = \{1\}$, then we know that S is a P_3 -set since 1+1+1=3 is a prime. However, $S_{+3}=\{4\}$ and 4+4+4=12 which is certainly composite.
 - (d) Prove or Disprove: Every P_3 set contains a prime. False. Let $S = \{1\}$, then 1 is not a prime but 1+1+1=3 is a prime.
 - (e) Prove or Disprove: The intersection of two P₃-sets is a P₃-set.
 It's false. Let A = {1}, then A is P₃-set since 1 + 1 + 1 = 3 is a prime. Let B = {2,3}, then 2+3 = 5 is a prime thus B is also P₃-set.
 A∩B = Ø which means that there are no elements x, y, z such that x + y + z is a prime and thus, the intersection of two P₃-sets is not necessarily a P₃-set.

(f) Prove or Disprove: Every P_3 -set contains an odd integer.

It's true. Suppose, for the sake of contradiction, that S is a P_3 -set and it does not contain any odd integers. Thus, it means that all the elements of S are even. Now, since all the elements are even, it means that no matter what 3 elements x, y and z we take, their sum will always be even. On the other hand, the only even prime we have is 2. But unfortunately, there are no three numbers $x, y, z \in \mathbb{Z}^+$ which sum up to 2. The best we can do is 1+1+1 which is 3 and is one more than 2. Thus, there is no way to get 2 and otherwise, we won't have 3 elements which sum up to the prime. Hence, we have reached the contradiction and S is a not a P_3 -set.

Q.E.D.

(g) Prove or Disprove: Every infinite subset S of \mathbb{Z}^+ is a P_3 -set.

It's false. Since we already proved that every P_3 -set contains an odd integer, we can take a set of all positive even integers which is a subset of \mathbb{Z}^+ . Let's call this subset E. Then, we know that every element of the subset E is even and sum of any 3 elements (not necessarily distinct) will also be even. However, once again, the only even integer which is a prime is 2 and we cannot get 2 by summing 3 integers which are greater than or equal to 2 (greater than equal because $E = \{2, 4, 6, 8, 10...\}$).

(h) Prove or Disprove: If S is a finite subset of \mathbb{Z}^+ , then $\mathbb{Z}^+ - S$ is a P_3 -set.

It's true. Let's prove it. Since S is a finite set, we know that it cannot contain all the elements of \mathbb{Z}^+ because \mathbb{Z}^+ is infinite. We already proved that there are infinitely many primes. Then we can find a prime p such that $p-2 \notin S$. then, we can have a set $L = \{1, p-2\}$ which is a P_3 -set because 1+1+p-2=p is a prime.

Q.E.D.

54. If a subset S of \mathbb{Z}^+ is a P_3 -set then the **core** of S is the set

$$core(S) := \{ s \in S \mid S - \{s\} \text{ is not a } P_3\text{-set} \}.$$

(a) What is the core of $S = \{2, 3, 6\}$?

The core of $S = \{2, 3, 6\}$ is $core(S) = \{2, 3\}$. The reason is that if we take out 2, we are left with 3 and 6 which are both multiples of 3 and any variations of their sums will never be a prime (3 + 3 + 3) is a not a prime, 3 + 6 + 3 is not a prime etc.). If we take out 3, we are left with two even numbers, namely 2 and 6, and still we know that

every P_3 -set contains an odd integer thus, taking out 3 will leave us with non- P_3 -set (any variations of the sums of the even integers will not be even; the only case is 2 but 2 + 2 + 2 = 6 is the best we can do). On the other hand, if we take out 6, S will still be a P_3 -set since 2 + 2 + 3 = 7 is a prime. Thus, $\operatorname{core}(S) = \{2, 3\}$.

(b) Give an example of a P_3 -set whose core is the empty set, or prove none exists.

Here is an example: let $S = \{1\}$, then S is a P_3 set since 1 + 1 + 1 = 3 is a prime. However, if we take out 1, we have $S = \emptyset$ and there are no x, y, z such that x + y + z is a prime.

(c) Give an example of a P_3 -set whose core is infinite, or prove none exists.

There is no such P_3 -set. Let's prove it. Suppose, for the sake of contradiction, there exists a P_3 set S such that its core is infinite. Let the core be the set $C = \{c_0, c_1, c_2, c_3 \ldots\}$. Then, we know that if we took out c_0 , the set S would not be P_3 . Then, since c_0 affected the outcome of whether S is a P_3 -set or not, it means that c_0 plays a role in x + y + z. Same goes if we took out c_1 . The same for c_2 , and the same for c_4, c_5 ... etc. However, since c_0, c_1 and c_2 play a role in the sum, we know that there are at most 3 different elements of the set in the sum as by the definition x + y + z must be a prime. But here we see that infinitely many elements are in this sum and we reached a contradiction. Thus, there are no P_3 -set whose core is finite.

(d) Prove or Disprove: If S is a P_3 -set then core(S) is a P_3 -set.

It's false. Counterexample: let $S = \{2, 3, 5\}$. Then $core(S) = \{3\}$ since if we take out 2, 3 + 3 + 5 = 11 is still a prime and if we take out 5, 2 + 2 + 3 = 7 is still a prime. However, if we take out 3, all the possible sums are:

2+2+2=6 is not a prime

2+2+5=9 is not a prime

2+5+5=12 is not a prime

5+5+5=15 is not a prime

Thus, we end up with a set $core(S) = \{3\}$ which is not a P_3 -set since 3 + 3 + 3 = 9 is the only sum we can get and it is not a prime.

(e) Prove or Disprove: If S and T are P_3 -sets then $\operatorname{core}(S \cup T) \subseteq \operatorname{core}(S) \cap \operatorname{core}(T)$.

It's true, let's prove it. Suppose, for the sake of contradiction, that for some two P_3 -sets S_1 and S_2 , $\operatorname{core}(S_1) \cap \operatorname{core}(S_2) \subset \operatorname{core}(S_1 \cup S_2)$. Then we know that there exists $x \in \operatorname{core}(S_1 \cup S_2)$ such that $x \notin \operatorname{core}(S_1) \cap \operatorname{core}(S_2)$. Now, since $x \in \operatorname{core}(S_1) \cap \operatorname{core}(S_2)$, it means that $x \in \operatorname{core}(S_1)$ and $x \in \operatorname{core}(S_2)$.

(f) Prove or Disprove: If S and T are P_3 -sets with $S \subseteq T$ then we have $core(T) \subseteq core(S)$.

Suppose S_1 and S_2 are two P_3 -sets and $S_1 \subseteq S_2$. Then for all $x \in S_1$, $x \in S_2$. If there are k elements in $\operatorname{core}(S_1)$, it means that $\operatorname{core}(S_2)$ will

- 55. A subset S of \mathbb{Z} is called three qualine if for every $x, y \in S$ one has $3 \mid (x - y)$.
 - (a) Prove or Disprove: Every subset of a threequaline set is threequaline.

It's false. Let, for the sake of contradiction, that S is a threequaline set and also suppose that all the subsets of S are threequaline. Then we know that an empty set is a subset of every set and S is also a set thus, the emptyset is also a subset of S. However, an empty set has no elements and we cannot find x, y such that x - y is a multiple of 3 and we reached the contradiction.

Q.E.D.

(b) Prove that if S is three qualine than either every element of S is divisible by 3 or none are.

Suppose, for the sake of contradiction, that S is a threequaline set and there exists two elements x, y such that x is a multiple of 3 and y is not a multiple of 3. Then x - y will not be a multiple of 3 and we have reached the contradiction.

Q.E.D.

(c) Prove that if S is three qualine and r and t are integers, then the set $\{rx+t\mid x\in S\}$ is also three qualine.

Since we know that S is a threequaline set, for every $x, y \in S$, x - y is a multiple of 3. Suppose, z_1, z_2 are some elements of the set S. Then, we know that $z_1 - z_2$ is a multiple of 3. The new set will "transform" these elements into $rz_1 + t$ and $rz_2 + t$. On the other hand, $z_1 - z_2 = rz_1 + t - (rz_2 + t) = r(z_1 - z_2)$ which is a multiple of 3 since z_1, z_2 are the members of S and $z_1 - z_2$ is a multiple of 3.

Q.E.D.

(d) Prove that if S and T are three qualine and $S \cap T \neq \emptyset$ then $S \cup T$ is three qualine.

> Suppose, for the sake of contradiction, that S_1 and S_2 are three qualine sets and $S_1 \cap S_2 \neq \emptyset$ and let's prove that $S_1 \cup S_2$ is not a threequaline. Since $S_1 \cap S_2 \neq 0$, there exists element x, such that

 $x \in S_1$ and $x \in S_2$. Let's consider the following cases:

Case I: x is divisible by 3, thus x = 3k where $k \in \mathbb{Z}$

Case II: x gives remainder of 1 when divided by 3, thus x = 3k + 1 where $k \in \mathbb{Z}$

Case III: x gives remainder of 2 when divided by 3, thus x = 3k + 2 where $k \in \mathbb{Z}$

In Case I, if x = 3k, then all the other elements of S_1 as well as S_2 must be of the type 3l where $l \in \mathbb{Z}$ and all the elements in the union of S_1 and S_2 will be the multiples of 3 which means that for all $i, j \in S_1 \cup S_2, i-j$ is a multiple of 3. And we reached the contradiction.

In Case II, if x = 3k + 1, then all the other elements of S_1 as well as S_2 must be of the type 3l + 1 where $l \in \mathbb{Z}$ and all the elements in the union of S_1 and S_2 will be the multiples of 3 plus 1 which means that for all $i, j \in S_1 \cup S_2$, i - j is a multiple of 3. And we reached the contradiction.

In Case II, if x = 3k + 2, then all the other elements of S_1 as well as S_2 must be of the type 3l + 2 where $l \in \mathbb{Z}$ and all the elements in the union of S_1 and S_2 will be the multiples of 3 plus 2 which means that for all $i, j \in S_1 \cup S_2$, i - j is a multiple of 3. And we reached the contradiction.

56. A subset S of \mathbb{R} is called **crunched** if there exist integers $m, n \in \mathbb{Z}$ such that for all $x \in S$ we have m < x < n.

NOTE: When I mention lower bound or upper bound, I really mean the smallest element or the biggest element of the set.

(a) Give some examples of sets that are and are not crunched.

 $S_1 = \{1\}$ is crunched as for all $x \in S$, 0 < x < 2 (m = 0, n = 2).

 $S_2 = \{1, 2, 3\}$ is crunched as for all $x \in S$, 0 < x < 4 (m = 0, n = 4).

 $S_3 = \mathbb{Z}^+$ is not crunched as it has no bounds and we cannot find m, n such that for all $x \in \mathbb{Z}^+, m < x < n$.

 $S_4 = \{2, 4, 6...\}$ (a set of positive even numbers) is not crunched as it has no upper bound and we cannot find n such that for all $x \in \mathbb{Z}^+, m < x < n$ (note: we can find m. m can be any integer that is less than or equal to 1 but n cannot be fixed).

(b) Prove or Disprove: All crunched sets are finite.

That's false. Counterexample: let $S = \{1, 1/2, 1/4, ...\}$ (infinite geometric series), then we know that S has an upper bound 1 and the lower bound which is 0. Then, we can say with the great certainty, that for all $x \in S$, -10 < x < 10 (m = -10, n = 10). Thus, crunched sets are not necessarily finite and the initial claim is false.

(c) Prove or Disprove: All finite sets are crunched.

It's true. Let S be a finite set. Then it must have a lower bound (the smallest element), let it be k_1 and the upper bound (the biggest element), let it be k_2 . Then let $m = k_1 - 1$ and let $n = k_2 + 1$ and we have that for all $x \in S$, m < x < n.

Q.E.D.

(d) Prove or Disprove: Every subset of a crunched set is crunched

It's true. Suppose S is a crunched set. Then we know that for all $x \in S$, there exist m, n such that m < x < n. Let S_0 be a subset of S. Then, since all the elements of S_0 are also in S_1 , we know that all elements of S_0 are between m and n which makes S_0 crunched. Thus, every subset of a crunched set is crunched.

Q.E.D.

(e) Prove or Disprove: The union of two crunched sets is crunched.

Suppose S_1 and S_2 are two crunched sets. Then we know that for all $x_1 \in S_1$, $m_1 < x_1 < n_1$ and for all $x_2 \in S_2$, $m_2 < x_1 < n_2$. Then, for all z in $S_1 \cup S_2$, $max(m_1, m_2) < z < max(n_1, n_2)$ which means that $S_1 \cup S_2$ is crunched.

Q.E.D.

57. We call a finite subset S of \mathbb{Z} balanced if $|\mathbb{Z}^+ \cap S| = |\mathbb{Z}^- \cap S|$. (Recall that $\mathbb{Z}^- = \{-1, -2, -3, ...\}$).

NOTE: This statement really means that if A is balanced, the number of positive elements in it equals the number of negative elements in it.

(a) Prove or Disprove: If A is a balanced set then so is $A \cup \{0\}$.

It's true. Let's prove it.

Suppose A is a balanced set, then we know that $|\mathbb{Z}^+ \cap A| = |\mathbb{Z}^- \cap A|$. Now, since $0 \notin \mathbb{Z}^+$ and $0 \notin \mathbb{Z}^-$, it means that $\mathbb{Z}^+ \cap A = \mathbb{Z}^+ \cap (A \cup \{0\})$ and $\mathbb{Z}^- \cap A = \mathbb{Z}^- \cap (A \cup \{0\})$ and finally, $|\mathbb{Z}^+ \cap A \cup \{0\}| = |\mathbb{Z}^- \cap (A \cup \{0\})|$. Thus, if A is a balanced set then so is $A \cup \{0\}$. (b) Prove or Disprove: The union of two balanced sets is balanced.

It's false. Counterexample: let $S_1 = \{-1, 1\}$ and $S_2 = \{-1, 5\}$. Then S_1 is balanced since $\mathbb{Z}^+ \cap S_1 = \{1\}$ and $\mathbb{Z}^- \cap S_1 = \{-1\}$ which means that $|\mathbb{Z}^+ \cap S_1| = |\mathbb{Z}^- \cap S_1| = 1$. S_2 is balanced too since $\mathbb{Z}^+ \cap S_2 = \{5\}$ and $\mathbb{Z}^- \cap S_2 = \{-1\}$ which means that $|\mathbb{Z}^+ \cap S_2| = |\mathbb{Z}^- \cap S_2| = 1$. On the other hand, set $S_1 \cup S_2$ is not balanced since $S_1 \cup S_2 = \{-1, 1, 5\}$ and $|\mathbb{Z}^+ \cap (S_1 \cup S_2)| = 2$ while $|\mathbb{Z}^- \cap (S_1 \cup S_2)| = 1$.

(c) Prove or Disprove: The intersection of two balanced sets is balanced.

It's false. Counterexample: let $S_1 = \{-1, 1\}$ and $S_2 = \{-1, 5\}$. Then S_1 is balanced since $\mathbb{Z}^+ \cap S_1 = \{1\}$ and $\mathbb{Z}^- \cap S_1 = \{-1\}$ which means that $|\mathbb{Z}^+ \cap S_1| = |\mathbb{Z}^- \cap S_1| = 1$. S_2 is balanced too since $\mathbb{Z}^+ \cap S_2 = \{5\}$ and $\mathbb{Z}^- \cap S_2 = \{-1\}$ which means that $|\mathbb{Z}^+ \cap S_2| = |\mathbb{Z}^- \cap S_2| = 1$. On the other hand, $S_1 \cap S_2$ is not balanced since $S_1 \cap S_2 = \{-1\}$ and $|\mathbb{Z}^+ \cap (S_1 \cap S_2)| = \emptyset$ while $|\mathbb{Z}^- \cap (S_1 \cap S_2)| = 1$.

(d) Prove or Disprove: For every $n \in \mathbb{Z}^+$ there exists a balanced set S with exactly n elements.

It's true. Let's prove it by construction. Let S be a set and for all $n \in \mathbb{Z}^+$, dump in some elements to make it balanced. If n is even, then we take n/2 elements that are positive and n/2 elements that are negative which will give us a balanced set since $|\mathbb{Z}^+ \cap S| = |\mathbb{Z}^- \cap S|$. If n is odd, then we can throw in 0 and then take (n-1)/2 positive elements and (n-1)/2 negative elements. This will guarantee that $|\mathbb{Z}^+ \cap S| = |\mathbb{Z}^- \cap S|$ since there will be exactly same number of positive and negative elements while 0 is neither in \mathbb{Z}^+ , nor in \mathbb{Z}^- .

Q.E.D.

(e) If A is a subset of \mathbb{Z} we denote by \overline{A} the set $\{-a \mid a \in A\}$. Prove or Disprove: For every finite subset of A of \mathbb{Z} , the set $A \cup \overline{A}$ is balanced.

It's true. Let's prove it by cases.

Case I: suppose that A is a subset of \mathbb{Z} such that it does not contain 0.

Case II: suppose that A is a subset of \mathbb{Z} such that it does contain 0.

Proof of Case I: If A is a subset of \mathbb{Z} such that it does not contain 0, we know that for all $x \in A$, we have $-x \in \overline{A}$. This means that the number of negative elements in $A \cup \overline{A}$ will be equal to the number of positive elements in $A \cup \overline{A}$ and because of this, $|\mathbb{Z}^+ \cap (A \cup \overline{A})| = |\mathbb{Z}^- \cap (A \cup \overline{A})|$.

Proof of Case II: If A is a subset of \mathbb{Z} such that it does contain 0, for all $x \in A$, we have $-x \in \overline{A}$. This means that if we took out 0 out of $A \cup \overline{A}$, the number of positive and negative elements in $A \cup \overline{A}$ would be equal. On the other hand, 0 plays no role in determining whether $|\mathbb{Z}^+ \cap (A \cup \overline{A})| = |\mathbb{Z}^- \cap (A \cup \overline{A})|$ or not because $0 \notin \mathbb{Z}^+$ and $0 \notin \mathbb{Z}^-$. Thus, $|\mathbb{Z}^+ \cap (A \cup \overline{A})| = |\mathbb{Z}^- \cap (A \cup \overline{A})|$.

Q.E.D.

(f) Prove or Disprove: If A is balanced and |A| is odd, then $0 \in A$.

It's true so let's prove it. Suppose, for the sake of contradiction, that A is balanced and |A| is odd, but $0 \notin A$. Now, since |A| is odd, it means that there is no way to have the number of positive elements be equal to the number of negative elements and we've reached a contradiction.

Q.E.D.

- 58. We call a subset S of \mathbb{R} **positively scattered** if for every $x \in S$ there exists $y \in \mathbb{R}$ such that y > x and $S \cap (x, y] = \emptyset$.
 - (a) Is \mathbb{Z}^+ positively scattered?

It is. Let's prove it by construction. If we take some element $x \in \mathbb{Z}^+$, then we know that it is positive. If y > x, we know that y is also positive and let y = x + 0.1. Then, we know that interval (x, x + 0.1] contains no positive integers and thus, $\mathbb{Z}^+ \cap (x, x + 0.1] = \emptyset$. Hence, for all $e \in \mathbb{Z}$, we can construct (e, e + 0.1] (there are no positive integers in this interval) and finally, \mathbb{Z}^+ is indeed positively scattered.

Q.E.D.

(b) Is [2, 3] positively scattered?

It is not. Suppose, for the sake of contradiction, that for all $x \in [2,3]$, there exists y such that y > x and $[2,3] \cap (x,y] = \emptyset$. Now, since the condition holds for all $x \in [2,3]$ and [2,3] is a closed interval, it should hold for 2 as well. Then, let x=2. If the condition holds for x=2, it means that we can find y>x such that $[2,3] \cap (2,y] = \emptyset$. Since y>x, y=2+t where t>0. Thus, we have $[2,3] \cap (2,2+t] = \emptyset$, but this is impossible and to see why, let's consider two cases:

Case I: $t \ge 1$ Case I: 0 < t < 1

If $t \ge 1$, it means that $[2,3] \cap (2,2+t] = (2,3]$ and we have reach the contradiction.

If 0 < t < 1, it means that $[2,3] \cap (2,2+t] = (2,2+t]$ and interval (2,2+t) is obviously infinite. Thus, we have, once again, reached the contradiction.

Thus, in all cases we've reached the contradiction and [2, 3] is not positively scattered.

Q.E.D.

(c) Is $\{\frac{1}{n} \mid n \in \mathbb{Z}^+\}$ positively scattered?

It is. Let's prove it by construction. Let $x \in \{\frac{1}{n} \mid n \in \mathbb{Z}^+\}$, then we know that $x = \frac{1}{k}$ where $k \in \mathbb{Z}^+$. Now, let's take $y = \frac{1}{k+0.5}$. Then, we know that $\{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cap (\frac{1}{k}, \frac{1}{k+0.5}] = \emptyset$ because n is always an integer and there are no integer denominators in the interval (k, k+0.5].

Q.E.D.

(d) Is $\{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cup \{0\}$ positively scattered?

It is not. Suppose, for the sake of contradiction, that $\{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cup \{0\}$ is scattered. Then for all $x \in \{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cup \{0\}$, there exist y > x, such that $(\{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cup \{0\}) \cap (x, y] = \emptyset$. If the condition holds for all $x \in \{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cup \{0\}$, it should hold for x = 0 too (x = 0) is the member of the set as well as the set contains element 0). If x = 0, there must exist y > 0 such that $(\{\frac{1}{n} \mid n \in \mathbb{Z}^+\} \cup \{0\}) \cap (0, y] = \emptyset$. This, however, is impossible since the interval (0, y] is infinite and we can always find n for which $\frac{1}{n} \in (0, y]$. Thus, we've reached the contradiction.

Q.E.D.

(e) Prove or Disprove: A subset of a positively scattered set is positively scattered.