Termometria

J. R. Oliveira

24 de janeiro de 2020

Sumário

1	Temperatura e Calor	3
2	Escalas Termométricas	3
3	Exercícios Resolvidos	4
4	Exercícios Propostos	6
5	Gabaritos	6
6	Soluções	6

1 Temperatura e Calor

- Temperatura:
 - Macroscópico: quantidade que informa quão quente ou frio está um objeto em relação a algum padrão;
 - Microscópico: grau de agitação térmica de moléculas.
- Instrumento de medida: termômetro (analógico, digital, infravermelho...);
- Sensação térmica: sensação de "mais quente" ou "mais frio";
- Calor: energia transferida de uma coisa a outra por causa da diferença de temperatura;
- Equilíbrio térmico: estado em que os corpos apresentam a mesma temperatura;
- Lei de Zero da Termodinâmica: "Se dois corpos A e B estão separadamente em equilíbrio térmico com um terceiro corpo C, então A e B estão em equilíbrio térmico entre si". (Se $T_a = T_c$ e $T_b = T_c$, então $T_a = T_b$).

2 Escalas Termométricas

- Celsius: escala usada no Brasil e na maior parte dos países (conhecida como escala centígrada);
- Fahrenheit: escalas mais utilizadas em países de língua inglesa;
- Kelvin: escala mais utilizada meios científicos;
- Relação entre as principais escalas:

$$\frac{T_C}{5} = \frac{T_F - 32}{9} = \frac{T_K - 273}{5}$$

De forma mais simplificada:

$$\frac{T_C}{5} = \frac{T_F - 32}{9} \tag{1}$$

$$\frac{T_F - 32}{9} = \frac{T_K - 273}{5} \tag{2}$$

$$T_C = T_K - 273 \tag{3}$$

• Variações: $\Delta T_F = 1, 8 \cdot \Delta T_C = 1, 8 \cdot \Delta T_K$;

• Escalas Arbitrárias: utiliza-se proporção simples.

3 Exercícios Resolvidos

1. Maria usou um livro de receitas para fazer um bolo de fubá. Mas, ao fazer a tradução do livro do inglês para o português, a temperatura permaneceu em Fahrenheit (${}^{\circ}F$). A receita disse que o bolo deve ser levado ao forno a 392 ${}^{\circ}F$ e permanecer nessa temperatura por 30 minutos. Qual é a temperatura em graus Celsius que Maria deve deixar o forno para não errar a receita?

Solução 1:

Dado que $T_F = 392 \, {}^{\circ}F$ e utilizando a equação de conversão entre Celsius e Fahrenheit, temos:

$$\frac{T_C}{5} = \frac{392 - 32}{9}$$

Desta forma, isolando T_C , obtemos: $T_C = 200 \, ^{\circ}C$

2. Determine o valor da temperatura de zero absoluto nas escalas Celsius e Fahrenheit.

Solução 2:

A temperatura de zero absoluto é igual a 0 K.

Utilizando a equação de conversão entre Celsius e Kelvin, temos:

$$T_C = 0 - 273$$

Logo, isolando T_C , obtemos: $T_C = -273 \, ^{\circ}C$.

Agora, utilizando a equação de conversão entre Fahrenheit e Kelvin, temos:

$$\frac{T_F - 32}{9} = \frac{0 - 273}{5}$$

Logo, isolando T_F , temos: $T_F = -459, 4 \,^{\circ}F$.

Assim, podemos concluir que: $0K = -273 \degree C = -459, 4 \degree F$

3. Determine a única temperatura cuja indicação é a mesma nas escalas Celsius e Fahrenheit.

Solução 3:

A condição é $T_C = T_F = T$. Portanto, substituindo na equação de conversão entre Celsius e Fahrenheit, temos o seguinte:

$$\frac{T}{5} = \frac{T - 32}{9}$$

4

Assim, isolando T, obtemos: $T = -40^{\circ}$ Logo, $-40^{\circ}C$ é igual a $-40^{\circ}F$.

4. O verão de 1994 foi particularmente quente nos Estados Unidos da América. A diferença entre a máxima temperatura do verão e a mínima no inverno anterior foi de $60 \, ^{\circ}C$. Qual o valor dessa diferença na escala Fahrenheit?

Solução 4:

A relação entre a variação de temperatura na escala Fahrenheit e a escala Celsius é a seguinte: $\Delta 1$ ° $C = \Delta 1, 8$ °F.

Desta forma, a partir de uma proporção simples, obtemos:

$$\frac{x}{1,8} = \frac{60}{1}$$

$$Logo, x = 108 °F$$

Ou seja, uma variação de 60 °C equivale a uma variação de 108 °F.

5. O cientista francês René Réaumur criou uma escala muito usada no passado, que adotava os seguintes valores: $0 \, ^{\circ}R$ para o ponto de gelo e $80 \, ^{\circ}R$ para o ponto vapor, ambos sob pressão normal. Calcule a temperatura nessa escala correspondente a $35 \, ^{\circ}C$.

Solução 5:

Utilizando proporção entre as escalas, obtemos o seguinte:

$$\frac{35 - 0}{100 - 0} = \frac{T_R - 0}{80 - 0}$$

Assim, após isolarmos T_R , encontramos que: $T_R = 28 \, ^{\circ}R$ Ou seja, $35 \, ^{\circ}C = 28 \, ^{\circ}R$.

6. Um estudante de física criou uma escala (${}^{\circ}X$), comparada com a escala Celsius ele obteve o seguinte gráfico:

5

- a) Qual a equação de conversão entre a escala X e a escala Celsius?
- b) Qual a temperatura do corpo humano $(37 \, {}^{\circ}C)$ nesta escala?

Solução 6:

a) A partir do gráfico, é possível escolher dois pontos $P_1 = (-40,0)$ e $P_2 = (100, 120)$. Fazendo uma proporção entre as escalas, obtemos:

$$\frac{T_X - (-40)}{120 - (-40)} = \frac{T_C - 0}{100 - 0}$$

Desta forma:

$$T_X = \frac{8 \cdot T_C}{5} - 40$$

b) Substituindo 37 °C na relação anterior, encontramos: $\boxed{19,2$ °X

4 Exercícios Propostos

5 Gabaritos

- **1**. 200 °*C*.
- **2**. $-273 \, ^{\circ}C \, e \, -459, 4 \, ^{\circ}F$.
- **3**. −40 °
- **4**. 108 °F
- **5**. 28 °*R*
- **6**. 19, 2 $^{\circ}X$

6 Soluções

Solução 1:

Dado que $T_F=392\ ^{\circ}F$ e utilizando a equação de conversão entre Celsius e Fahrenheit, temos:

$$\frac{T_C}{5} = \frac{392 - 32}{9}$$

Desta forma, isolando T_C , obtemos: $T_C = 200 \, ^{\circ}C$

Solução 2:

A temperatura de zero absoluto é igual a 0 K.

Utilizando a equação de conversão entre Celsius e Kelvin, temos:

$$T_C = 0 - 273$$

Logo, isolando T_C , obtemos: $T_C = -273 \, ^{\circ}C$.

Agora, utilizando a equação de conversão entre Fahrenheit e Kelvin, temos:

$$\frac{T_F - 32}{9} = \frac{0 - 273}{5}$$

Logo, isolando T_F , temos: $T_F = -459, 4 \, {}^{\circ}F$.

Assim, podemos concluir que: 0K = -273 C = -459, 4 F

Solução 3:

A condição é $T_C = T_F = T$. Portanto, substituindo na equação de conversão entre Celsius e Fahrenheit, temos o seguinte:

$$\frac{T}{5} = \frac{T - 32}{9}$$

Assim, isolando T, obtemos: $T = -40^{\circ}$ Logo, $-40^{\circ}C$ é igual a $-40^{\circ}F$.

Solução 4:

A relação entre a variação de temperatura na escala Fahrenheit e a escala Celsius é a seguinte: $\Delta 1$ ° $C = \Delta 1, 8$ °F.

Desta forma, a partir de uma proporção simples, obtemos:

$$\frac{x}{1,8} = \frac{60}{1}$$

Logo, $x = 108 \, ^{\circ}F$

Ou seja, uma variação de 60 °C equivale a uma variação de 108 °F.

Solução 5:

Utilizando proporção entre as escalas, obtemos o seguinte:

$$\frac{35-0}{100-0} = \frac{T_R-0}{80-0}$$

Assim, após isolarmos T_R , encontramos que: $T_R = 28 \, ^{\circ}R$ Ou seja, 35 $^{\circ}C = 28 \, ^{\circ}R$.

Solução 6:

a) A partir do gráfico, é possível escolher dois pontos $P_1=(-40,0)$ e $P_2=(100,120)$. Fazendo uma proporção entre as escalas, obtemos:

$$\frac{T_X - (-40)}{120 - (-40)} = \frac{T_C - 0}{100 - 0}$$

Desta forma:

$$T_X = \frac{8 \cdot T_C}{5} - 40$$

b) Substituindo 37 °C na relação anterior, encontramos: $\boxed{19,2\;{}^{\circ}X}$