两辆平板车装货问题

有七种规格的包装箱要装到两辆平板车上.包装箱的宽和高是一样的,但厚度 t (厘米)和重量 w (公斤)是不同的。表 1 给出了每种包装箱的厚度,重量以及数量。每辆平板车有 10.2 米的地方可用来装包装箱(象面包片那样),载重为 40 吨。由于地区货运的限制,对 C_5 , C_6 , C_7 类包装箱的总数有一个特别的限制:这三类包装箱所占的空间(厚度)不能超过 302.7 厘米。

表 1 包装箱参数信息

包装箱类型	C_1	C_2	C_3	C_4	C_5	C_6	C_7
厚度 t (厘米)	48.7	52.0	61.3	72.0	48.7	52.0	64.0
重量w(公斤)	2000	3000	1000	500	4000	2000	1000
件数	8	7	9	6	6	4	8

问题要求:设计一种装车方案,使剩余的空间最小。(AMCM--88B)

分析与解答:

设 C_i 类包装箱厚度 t_i 厘米,重量 w_i 公斤,件数为 n_i 件。

设第一辆车装载 C_i 类包装箱 x_i 件,第二辆车装载 C_i 类包装箱 y_i 件 $(i = 1, 2, \dots, 7)$ 。

第一辆车剩余空间
$$Z_1 = 1020 - \sum_{i=1}^{7} t_i . x_i$$

第二辆车剩余空间
$$Z_2 = 1020 - \sum_{i=1}^{7} t_i \cdot y_i$$

总剩余空间最小为目标,则目标函数为:

$$\min Z = Z_1 + Z_2$$

约束满足:

- 1). 件数满足 $x_i + y_i \le n_i$ $i = 1, 2, \dots, 7$,且 x_i, y_i 为整数。
- 2). 各辆车载重量过 40 吨,有:

$$\sum_{i=1}^{7} w_i.x_i \le 40000 , \quad \sum_{i=1}^{7} w_i.y_i \le 40000$$

- 3). 各辆车载长度不超过 1020 厘米,有: $Z_1 \ge 0, Z_2 \ge 0$
- 4) C_5, C_6, C_7 类包装箱的厚度不能超过 302.7 厘米,有: $\sum_{i=5}^{7} t_i . (x_i + y_i) \le 302.7$

由此得到整数线性规划模型:

$$\min Z = (1020 - \sum_{i=1}^{7} t_i . x_i) + (1020 - \sum_{i=1}^{7} t_i . y_i)$$

$$\sum_{i=1}^{7} t_i.x_i \le 1020$$

$$\sum_{i=1}^{7} t_i.y_i \le 1020$$

$$x_i + y_i \le n_i \qquad i = 1,2,\dots,7$$

$$\sum_{i=1}^{7} w_i.x_i \le 40000$$

$$\sum_{i=1}^{7} w_i.y_i \le 40000$$

$$\sum_{i=1}^{7} t_i.(x_i + y_i) \le 302.7$$

$$x_i, y_i 为非负整数$$

得到解为:

$$x_1 = 5, x_2 = 1, x_3 = 5, x_4 = 3, x_5 = 2, x_6 = 2, x_7 = 0,$$

$$y_1 = 3, y_2 = 6, y_3 = 4, y_4 = 3, y_5 = 1, y_6 = 1, y_7 = 0$$

目标值 Z = 0.6.

其中第一辆平板车剩余空间 z1=0.6 厘米; 第二辆平板车剩余空间 z2=0 厘米;

LINGO 程序为:

```
!两辆平板车装货问题AMCM88B;
model:
```

sets:

num/1...7/:w, t, n, x, y;

endsets

data:

t=48.7,52.0,61.3,72.0,48.7,52.0,64.0;

w=2000,3000,1000,500,4000,2000,1000;

n=8,7,9,6,6,4,8;

enddata

min=z1+z2;

z1=1020-@sum(num(i):t(i)*x(i));

z2=1020-@sum(num(i):t(i)*y(i));

 $@sum(num(i):t(i)*x(i)) \le 1020;$

 $@sum(num(i):t(i)*y(i)) \le 1020;$

 $@sum(num(i):w(i)*x(i)) \le 40000;$

 $@sum(num(i):w(i)*y(i)) \le 40000;$

Lingo 输出界面:

Lingo 输出结果:

Global optimal solution found.		
Objective value:		0.6000000
Objective bound:		0.6000000
Infeasibilities:		0.000000
Extended solver steps:		777
Total solver iterations:		13001
Model Class:		MILP
Total variables:	16	
Nonlinear variables:	0	
Integer variables:	14	

Total constraints: 15
Nonlinear constraints: 0

Total nonzeros: 66
Nonlinear nonzeros: 0

Variable	Value	Reduced Cost
Z1	0.6000000	0.000000
Z2	0.000000	0.000000
W(1)	2000.000	0.000000
W(1)	3000.000	0.000000
W(2)	1000.000	0.000000
W (3)	500.0000	0.000000
W (4)	4000.000	0.000000
	2000.000	0.000000
W(6)		
W(7) T(1)	1000.000 48.70000	0.000000
		0.000000
T(2)	52.00000	0.000000
T(3)	61.30000	0.000000
T(4)	72.00000	0.000000
T(5)	48.70000	0.000000
T(6)	52.00000	0.000000
T(7)	64.00000	0.000000
N(1)	8.000000	0.000000
N(2)	7.000000	0.000000
N(3)	9.000000	0.000000
N (4)	6.000000	0.000000
N(5)	6.000000	0.000000
N(6)	4.000000	0.000000
N(7)	8.000000	0.000000
X(1)	5.000000	-48.70000
X(2)	1.000000	-52.00000
X (3)	5.000000	-61.30000
X (4)	3.000000	-72.00000
X (5)	2.000000	-48.70000
X (6)	2.000000	-52.00000
X (7)	0.000000	-64.00000
Y(1)	3.000000	-48.70000
Y(2)	6.000000	-52.00000
Y (3)	4.000000	-61.30000
Y (4)	3.000000	-72.00000
Y (5)	1.000000	-48.70000
Y(6)	1.000000	-52.00000
Y(7)	0.000000	-64.00000

Row	Slack or Surplus	Dual Price	
1	0.6000000	-1.000000	
2	0.000000	-1.000000	
3	0.000000	-1.000000	
4	0.6000000	0.00000	
5	0.000000	0.000000	
6	8500.000	0.000000	
7	4500.000	0.000000	
8	0.000000	0.000000	
9	0.000000	0.000000	
10	0.000000	0.00000	
11	0.000000	0.00000	
12	3.000000	0.00000	
13	1.000000	0.00000	
14	8.000000	0.00000	
15	0.600000	0.000000	