Examen Final

- Responde cada pregunta, justificando, los resultados utilizados. Cada pregunta del examen contiene el desarrollo de propiedades hechas en clase y en las notas de clase.
- Está prohibido compatir cuadernos entre estudiantes. Si se trasgede esta regla, se eliminará la utilización de los cuadernos en el examen.
- Se prohiben, copias de todo índole, así como el uso de libros electrónicos.

1. Resuelve los siguiente:

- (a) (1 pto) Sea $X \sim N(\mu, \sigma^2)$. Encuentra la función de distribución de probabilidad de $|X \mu|$ y su valor esperado.
- (b) (1 pto) Muestra que la media μ , la mediana m y la varianza σ^2 de una variable aleatoria continua X, satisface la siguiente desigualdad:

$$(\mu - m)^2 \le \sigma^2$$
.

(c) (2 pto) Sean X e Y tienen la función densidad bivariada normal,

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right\}.$$

Muestra que X y $Z=(Y-\rho X)/\sqrt{1-\rho^2}$ son variables independientes N(0,1) y deduce que ,

$$\mathbb{P}(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \sin^{-1} \rho.$$

Si $Z = \max\{X, Y\}$, muestra también que $\mathbb{E}(Z) = \sqrt{(1-\rho)/\pi}$ y $\mathbb{E}(Z^2) = 1$.

2. Responde las siguientes preguntas:

(a) (1 pto) X e Y tienen densidad conjunta,

$$f(x,y) = cx^{n_1-1}(y-x)^{n_2-1}e^{-y}$$
 para $0 < x < y < \infty$.

Encuentra (a) la constante c, (b) las distribuciones marginales de X e Y.

- (b) (1 pto) Si X_1 , X_2 son variables aleatorias uniformes e independientes sobre el intervalo (0,1), encuentra la densidades de (a) $X_1 + X_2$, (b) $X_1 X_2$ (c) $|X_1 X_2|$, (d) = X_1/X_2 .
- (c) (1 pto) Dado n números aleatorios independientes X_1, X_2, \ldots, X_n desde (0,1) llamados números pseudoaleatorios, muestra que:
 - $Y = -2\sum_{i=1}^{n} 2\log X_i$, tiene una distribución χ^2 con 2n grados de libertad.

1

• las variables,

$$\xi = -\sqrt{-2\log X_1}\cos(2\pi X_2),$$

$$\eta = -\sqrt{-2\log X_1}\sin(2\pi X_2),$$

son independientes N(0,1).

(d) (1 pto) Muestra que si F(x,y) es la función de distribución de X e Y, además que,

$$Z = \max(X, Y)$$
 $W = \min(X, Y)$,

entonces,

$$F_Z(z) = F(z,z), \qquad F_W(w) = F_X(w) + F_Y(w) - F(w,w).$$

Si F(x, y) es continua, encuentra las densidades de Z y W.

3. Sea $\{X_1, X_2, X_3, \ldots, X_n\}$ un conjunto de variables aleatorias independientes, idénticamente distribuidas con función de distribución y densidad común F y f respectivamente. Sea $X_{(1)}$ el menor valor de $\{X_1, X_2, X_3, \ldots, X_n\}$, $X_{(2)}$, el segundo menor valor, $X_{(3)}$, el tercero menor valor y en general, $X_{(k)}(1 \le k \le n)$ el k-ésimo menor valor de $\{X_1, X_2, X_3, \ldots, X_n\}$. Entonces $X_{(k)}$ se le llama k-ésimo estadístico de orden y el conjunto $\{X_{(1)}, X_{(2)}, X_{(3)}, \ldots, X_{(n)}\}$, se dice que consisten de los estadísticos de orden de $\{X_1, X_2, X_3, \ldots, X_n\}$.

Por esta definición, por ejemplo, si en un punto ω del espacio muestral, $X_1(\omega)=8, X_2(\omega)=2, X_3(\omega)=5$ y $X_4(\omega)=6$, entonces los estadísticos de orden de $\{X_1,X_2,X_3,X_4\}$ es $\{X_{(1)},X_{(2)},X_{(3)},X_{(4)}\}$, donde, $X_{(1)}(\omega)=2, X_{(2)}(\omega)=5, X_{(3)}(\omega)=6$ y $X_{(4)}(\omega)=8$. La continuidad de X_i implica que $\mathbb{P}(X_{(i)}=X_{(j)}=0.$ Así:

$$\mathbb{P}(X_{(1)} < X_{(2)} < X_{(3)} < \cdots < X_{(n)}) = 1.$$

Hay algunas propiedades, con respecto al tema:

Si tenemos el conjunto $\{X_{(1)}, X_{(2)}, \dots X_{(n)}\}$ los estimadores de orden de las variables aleatorias idénticamente distribuidas e independientes $X_1, X_2, \dots X_n$ con funciones de distribución de probabilidad y densidad F y f respectivamente. Entonces F_k y f_k , las funciones distribución de probabilidad y densidad de $X_{(k)}$ respectivamente, están dadas por:

$$F_k(x) = \sum_{i=k} {n \choose i} [F(x)]^i [1 - F(x)]^{n-i}, \quad -\infty < x < \infty.$$

y

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} f(x) [F(x)]^{k-1} [1 - F(x)]^{n-k}, \quad -\infty < x < \infty.$$

Si tenemos el conjunto $\{X_{(1)}, X_{(2)}, \dots X_{(n)}\}$ los estimadores de orden de las variables aleatorias idénticamente distribuidas e independientes $X_1, X_2, \dots X_n$ con funciones de distribución de probabilidad y densidad F y f respectivamente. Entonces para x < y, $f_{ij}(x,y)$, la función densidad de probabilidad conjunta de $X_{(i)}$ y $X_{(i)}$ (i < j) es dada por:

$$f_{ij}(x,y) = \frac{n!}{(i-1)!(j-i-1)!(n-j)} f(x)f(y)[F(x)]^{i-1}[F(y) - F(x)]^{j-i-1}[1 - F(y)]^{n-j}.$$

Esto es claro que para $x \ge y$, $f_{ij}(x,y) = 0$.

- (a) (1 ptos) Sean X_1 y X_2 dos variables aleatorias exponencial independientes cada una con paramétro λ . Muestra que $X_{(1)}$ y $X_{(2)} X_{(1)}$ son independientes.
- (b) (1 ptos) Sean X_1 , X_2 y X_3 variables aleatorias independientes de (0,1). Encuentra la función de densidad de probabilidad y el valor esperado del rango medio de estas variables aleatorias $[X_{(1)} + X_{(2)}]/2$.

(c) (1 pto) Sea $X_1, X_2, ..., X_n$ variables aleatorias independientes exponenciales con parámetros λ y sea $X_{(1)} \le X_{(2)} \le \cdots X_{(n)}$, sus estadísticos de orden. Muestra que:

$$Y_1 = nX_{(1)}, \qquad Y_r = (n+1-r)(X_{(r)} - X_{(r-1)}), \quad 1 < r \le n,$$

son también independientes y tienen la misma distribución conjunta de las X_i .

4. (a) (1 ptos) Sea *X* una variable aleatoria que toma valores enteros no negativos y es asociado con una transformada de la forma:

$$M_X(s) = c \cdot \frac{3 + 4e^{2s} + 2e^{3s}}{3 - e^s},$$

donde c es un escalar. Encuentra $\mathbb{E}(X)$ y $p_X(1)$.

(b) (1 pto) La función de matricial simétrica G(X) de la matriz X de orden $m \times n$ es llamada convexa, si para cada par de matrices X_1, X_2 de matrices $m \times n$ y $0 \le \lambda \le 1$, satisface:

$$G(\lambda X_1 + (1 - \lambda)X_2) \le \lambda G(X_1) + (1 - \lambda)G(X_2),$$

donde para matrices simétricas X, Y escribimos $X \ge Y$ si X - Y es una matriz definida no negativa. Sea X una variable aleatoria, esto es una matriz, cuyos elementos son variables aleatorias y G una función matricial convexa. Entonces prueba que:

$$G(\mathbb{E}X) \leq \mathbb{E}G(X)$$
.

También para una matriz aleatoria positiva muestra que:

$$\mathbb{E}(X^{-1}) \ge (\mathbb{E}(X))^{-1}.$$

(c) (1 pto) Muestra que si $\mathbb{E}(Y) < \infty$ y Y > 0, entonces,

$$\mathbb{E}\log(Y) < \log \mathbb{E}(Y)$$
.

Usa este resultado para probar, que si tenemos $X_1, X_2, ... X_n$ variables aleatorias idénticamente distribuidas independientes, con $\mathbb{P}(X_i > 0) = 1$ y $\mathbb{V}(\log X_i) = \sigma^2$, se cumple, que para cada $\epsilon > 0$

$$\mathbb{P}(e^{n[\mathbb{E}(\log Y_i) - \epsilon]} < X_1 X_2 \dots X_n < e^{n[\mathbb{E}(\log Y_i) + \epsilon]}) \ge 1 - \frac{\sigma^2}{n\epsilon^2}.$$

Y así deducimos,

$$\mathbb{P}\bigg(X_1X_2\ldots X_n<(\mathbb{E}Y_i)^ne^{n\varepsilon}\bigg)\geq 1-\frac{\sigma^2}{n\varepsilon^2}.$$

5. (a) (1 pto) Para un entero positivo n, sea $\tau(n)=(2^k,i)$, donde i es el resto de dividir n por 2^k , la mayor potencia de 2. Por ejemplo $\tau(10)=(2^3,2), \tau(12)=(2^3,4), \tau(19)=(2^4,3)$ y $\tau(69)=(2^6,5)$. En un experimento un punto es seleccionado aleatoriamente en [0,1]. Para $n\geq 1, \tau(n)=(2^k,i)$, sea,

$$X_n = \begin{cases} 1 & \text{si la salida está en} & \left[\frac{i}{2^k}, \frac{i+1}{2^k} \right] \\ 0 & \text{en otros casos.} \end{cases}$$

Muestra que X_n converge a 0 en probabilidad, mientras que no converge en ningún punto, y mucho menos en convergencia casi segura.

- (b) (1 pto) En una secuencia de variables aleatorias $X_1, X_2, \ldots, X_n, \ldots$ supongamos que X_k , depende sólo de X_{k-1}, X_{k+1} , pero que es independiente de todas las otras variables aleatorias $(k=2,3,\ldots)$. Muestra que si, la varianza es finita, entonces la ley de los grandes números débil se cumple.
- (c) (1 pto) Sean X_1, X_2, \ldots variables aleatorias independientes, idénticamente distribuidas con media 2. Sean Y_1, Y_2, \ldots variables aleatorias independientes, idénticamente distribuidas con media 3. Muestra que:

$$\frac{X_1 + X_2 + \dots + X_n}{Y_1 + Y_2 + \dots + Y_n} \rightarrow \frac{2}{3}$$

con probabilidad 1. ¿Importa si los X_i son independientes del Y_i ?.

6. El teorema de límite central en el contexto de Levy-Lindeberg, dice que si $\mathbb{E}(X_i) = \mu$ y $\mathbb{V}(X_i) = \sigma^2$, entonces:

$$S_n^* = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} = \frac{\sum_{i=1}^n (X_i - \mu)}{\sqrt{n}\sigma} \to N(0, 1),$$

Esto es, para cada x,

$$\lim_{n\to\infty} \mathbb{P}(S_n^* \le x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du.$$

(a) (1 pto) Sean $\{X_1, X_2, ...\}$ una secuencia de variables aleatorias normales independientes. Sea $S_n = X_1^2 + X_2^2 + \cdots + X_n^2$. Encuentra:

$$\lim_{n\to\infty} \mathbb{P}(S_n \le n + \sqrt{n}).$$

Sugerencia: Si $X_1, X_2, ..., X_n$ son variables aleatorias normales independientes. Entonces $X = X_1^2 + X_2^2 + \cdots + X_n^2$ se refiere a una distribución chi-cuadrado con n grados de libertad, es una distribución gamma con parámetros (n/2, 1/2).

(b) (1 pto) Compara los resultados dados por la desigualdad de Chebyshev y el teorema de límite central, para las probabilidades,

$$\mathbb{P}(-k < S_n^* \le k)$$
 para $k = 1, 2, 3$.

(c) (1 pto) Sea $X_1, X_2, ...$ variables aleatorias independientes, con una función densidad común $f(x) = 1/[2|x|(\log|x|)^2]$ para $|x| < e^{-1}$. Muestra que las variables aleatorias X_i tiene cero como media y tienen finita varianza, pero que no satisfacen el teorema de límite central.