We have a grid of boxes on a line as shown





- We also have two kinds of tiles
- A blue tile can cover any two consecutive boxes on the grid



A red tile can cover any three consecutive boxes





- We have unlimited numbers of blue and red tiles
- The goal is to cover the whole grid





#### **Allowed**

- Put red tiles next to each other
- Put blue tiles next to each other
- Use only blue tiles
- Use only red tiles

#### **Not Allowed**

- Tiles not aligned to boxes
- Leaving some box uncovered



Another way to tile the grid



- Two ways are different if the color of the tile covering a box is different in one way from the other, for at least one box
- How many ways are there to tile a grid of n boxes?



#### **And Its Solution?**





#### **And Its Solution?**

```
def ways(n):
    if n == 1:
        return 0
    elif n == 2 or n == 3:
        return 1
    else:
        return ways(n - 2) + ways(n - 3)
```



### Run It For Bigger and Bigger n

- What is the largest n for which you are willing to wait?
- Why so slow?
  - In the recursion tree, each node spawns two other nodes
  - n levels before reaching base case
  - $-0(2^n)$
  - Rough estimate only: the tree is imbalanced one branch reaches the base case sooner than the other
  - But the actual running time is still exponential
- How to make it faster? Let's try computing it ourselves first to see if we can observe anything



#### **How Did We Compute It Faster than the Computer?**

- Didn't need to stupidly solve some subproblems
- Because we have seen it before and have memorized the answer
- Transferring this "smartness" to the computer
  - First time a subproblem is encountered, do it the hard way
  - So that hard work is not wasted, store the answer in memory
  - Every succeeding time, just retrieve and instantly return the answer from memory



#### Where to Store the Answers?

- A list where the ith item stores the answer for ways (i)
- Initially contains None to mean "answer was not computed before"
  - In C++, use a dummy value instead, such as -1
    - We know -1 can't be a valid output of ways



### A Simple Change to Make It Faster

```
memo = [None for n in range(N)]
                                                      Compute
def ways(n):
    if memo[n] is None:
                                                      as usual,
        if n == 1:
                                                      but store
             answer = 0
                                                      answer in
        elif n == 2 \text{ or } n == 3:
             answer = 1
                                                      memo
        else:
                                                      before
             answer = ways(n - 2) + ways(n - 3)
        memo[n] = answer
                                                      returning
        return answer
                               Answer already computed
    else:
        return memo[n]
                                before, just retrieve from memo
```



# We Can Slightly Simplify

```
memo = [None for n in range(N)]
def ways(n):
    if memo[n] is None:
        if n == 1:
            answer = 0
        elif n == 2 or n == 3:
            answer = 1
        else:
            answer = ways(n - 2) + ways(n - 3)
        memo[n] = answer
    return memo[n]
```



# Why Is It Faster? How Fast Is It Exactly?

Look at the recursion tree





# Why Is It Faster? How Fast Is It Exactly?

First time → solve normally





# Why Is It Faster? How Fast Is It Exactly?

Solved before → further calls get pruned





# **Can You Figure It Out?**

- What is the running time of ways (n), using the improved definition?
- Only black nodes and blue nodes contribute
- Black nodes → first encounters
- Blue nodes → at most two for each black node
- O(1) non-recursive work in each node
- Running time is directly proportional to number of first encounters, or number of unique subproblems
- $\blacksquare$   $\Theta(n)$



### This Totally Works for Any Recursive Function

```
memo = [None for i in range(MAX PROBLEM SIZE)]
def f(subproblem):
    if memo[subproblem] is None:
        # Solve normally, with recursion,
        # but instead of returning the answer,
        # assign it to "answer"
        memo[subproblem] = answer
    return memo[subproblem]
```



# As Long As It's Pure

 Pure function: always returns the same value when called with the same values as input



# As Long As It's Pure

Example of impure function:

```
a = [1, 2, 3]
def impure(n):
    a[n] += 1
    return a[n]
```

Why it's impure:

```
print(impure(2))
print(impure(2))
print(impure(2))
```

Prints three different values



### As Long As It's <u>Pure</u>

- Pure function: always returns the same value when called with the same values as input
- Think: why can't we apply this memo technique on impure functions?
- If we expect answers to change at each call, storing old answers is useless because they would be wrong by the time they are retrieved



# We Only Gain Efficiency If There Are Overlapping Subproblems





### People Call This Technique Memoization

- Looks like a misspelling but it is what it is
  - Idea: to memoize = to put into a memo
- "Memorization" would have been ok, but we're stuck with "memoization" now so that's what we'll use
- Key idea: if you memo(r)ize answers, you can (sometimes)
   compute faster



# A Robot is Standing in a Maze

- Health tiles increase points
- Harm tiles decrease points





# Represent the Maze as a Grid of Integers

- Points increase/decrease by specific amounts
- Start at the upper-left corner
  - Automatically gain/lose points on that tile
- End at lower-right corner
  - Automatically gain/lose points on that tile
- Can only move downwards or rightwards
  - Gain/lose points on all stepped tiles
- What is the best path?





# **Solving in General**

- $\blacksquare$  A list A of n lists containing m numbers each
- A[i][j] is points gained/lost when stepping on ith row and jth column of the grid



#### **A Smart Idea**

 At every step, pick the direction with the larger number

At 
$$(0,0): -1 > -4$$
 so go right

At 
$$(0, 1): 5 > 3$$
 so go down

At 
$$(1, 1): 2 > -8$$
 so go right

| 2  | -1 | 3 |
|----|----|---|
| -4 | 5  | 2 |
| -9 | -8 | 7 |



# **But It's Wrong!**

- Can try other smart ideas but you'll find problems with them
  - Example: force pass through largest value in the grid
    - What if there are multiple and you can't pass through all of them? Which ones to pick?
- Instead, think complete search
- Try all possible paths! Surely one of them is the right one

| 1   | 1  | 1 |
|-----|----|---|
| -1  | -1 | 1 |
| 999 | -1 | 1 |



### **Enumerating All Possible Paths**

- Paths are not nicely given to us in a list, need to think recursive backtracking
- Break down "decide a path" into stages: "decide right or down" n+m-2 times
  - Choices at each stage are basically the same
  - Except: at rightmost column or lowest row



### **Enumerating All Possible Paths**

- Paths are not nicely given to us in a list, need to think recursive backtracking
- We can also think about the recursive structure directly
- Find a single step that transforms the problem into a smaller subproblem which looks like the original
  - Literally, take a step in the grid
  - Notice that the resulting problem looks like the original find the best path in the part of the grid without either the first row or the first column



| 2  | -1 | 3 |
|----|----|---|
| -4 | 5  | 2 |
| -9 | -8 | 7 |

| 2  | -1 | 3 |
|----|----|---|
| -4 | 5  | 2 |
| -9 | -8 | 7 |



 Believe that there is a way to get the best path after taking the first step









- The best path for the whole grid must contain one of these two options
  - Otherwise, we can replace the not-best partial path with one of these two, and get a better overall path



 We don't know which step is the correct first step, so just try both

```
best path = max(
    best path that starts with a rightward step,
    best path that starts with a downward step
)
```



- Try one option = solve with recursion, then just transform the answer obtained from the subproblem into the answer for the original problem
  - In short, add the tile currently stepped on









#### **Recursive Structure**

```
best path = max(
        tile stepped now + best path after going right,
        tile stepped now + best path after going down
)
```

Or, more simply

```
best path = tile stepped now + max(
    best path after going right,
    best path after going down
)
```



## **Translating into Code**

 First, let's not think of outputting the best path, just the maximum points obtained



## **Translating into Code**

- What variables do we need to identify a subproblem?
  - Which subgrid is considered
    - The upper-left corner
      - Which row, which column
    - The lower-right corner
      - It's the same for all subproblems, so don't need to include as a parameter
  - For same reason, the grid itself, number of rows, and number of columns also not included
  - Notice: upper-left corner = "current position"



#### **Translating into Code**

```
def best_from(row, col):
    return A[row][col] + max(
        best_from(row, col + 1),
        best_from(row + 1, col)
)
```



# If you're not convinced this really tries all paths, stare at this diagram for a few minutes





#### Now with (Literal) Corner and Edge Cases

```
def best from(row, col):
    if row == n - 1 and col == m - 1:
        return A[row][col]
    elif row == n - 1: # and col != m - 1
        return A[row][col] + best from(row, col + 1)
    elif col == \bar{m} - \bar{1}: # and row \bar{!} = \bar{n} - 1
        return A[row][col] + best_from(row + 1, col)
    else: # col != m - 1 and row != n - 1
        return A[row][col] + max(
             best from(row, col + 1),
             best from(row + 1, col)
```



#### Is This Solution Efficient or Not?

- For almost all subproblems, recursion branches into 2 at each step
- lacksquare  $\Theta(n+m)$  steps
- $\bullet$   $\Theta(2^{n+m})$
- For a grid with 50 rows and 50 columns, this is already
   1000 times the age of the universe (13.4 billion years)
- Any suggestions to make it faster?



# Where Are the Overlapping Subproblems?





#### So, We Can Memoize!

```
memo = [[None for col in range(m + 1)] for row in range(n + 1)]
def best from(row, col):
    if memo[row][col] is None:
        if row == n - 1 and col == m - 1:
            answer = A[row][col]
        elif row == n - 1: # and col != m - 1
            answer = A[row][col] + best from(row, col + 1)
        elif col == m - 1: # and row != n - 1
            answer = A[row][col] + best from(row + 1, col)
        else: # col != m - 1 and row != n - 1
            answer = A[row][col] + max(
                best_from(row, col + 1),
                best from(row + 1, col)
        memo[row][col] = answer
    return memo[row][col]
```



#### So, We Can Memoize!

- Again, notice how the main bulk of the code is the same as before, the memoization parts just added somewhat "mechanically"
- This time, since the function has two parameters, we use a list of lists to have a proper place in the memo for each subproblem



## **Note for C++ Programmers**

- The grid has negative values, so -1 could be a legitimate answer to a subproblem
- Cannot use -1 as a dummy value
  - Otherwise, might mistakenly think subproblem has not been solved yet and recompute manually, losing efficiency
- Instead, use something like



### With Memoization, How Fast Is It Exactly?

- n possible values of row and m possible values of col, so  $n \times m$  unique subproblems
- Each subproblem solved manually once
  - Non-recursive work is  $\Theta(1)$
- Recursive call to already solved subproblem takes  $\Theta(1)$  to retrieve the answer
- Recursive call to not yet solved subproblem already counted in "each subproblem solved manually once"
- $\bullet$   $\Theta(nm)$



## With Memoization, How Fast Is It Exactly?

From this and the tiling puzzle, seems there's a shortcut:

Running time =  $\Theta$ (number of unique subproblems) (black nodes in the recursion tree)



### With Memoization, How Fast Is It Exactly?

- ullet  $\Theta(nm)$  is such a big improvement from  $\Theta(2^{n+m})!$
- On grid with 50 rows and 50 columns, one finishes instantly, the other takes several universe lifetimes
- And we applied only a simple trick!
- Not a lot of problem-specific smartness



### **Printing the Actual Path**

- We can modify the function to return the path, but this leads to uglier and slower code
  - Memo will contain lists instead of numbers
- Vaguely feels like shortest paths with BFS
  - What we did there: reconstruct the paths in a separate phase after computing the distances
  - Calling best\_from(0, 0) will make memo[i][j] store the best "distance" to the goal from every position (i, j)



#### We Can Do Something Similar Here

```
path = [[0, 0]]
while path[-1] != [n - 1, m - 1]:
  row, col = path[-1]
  if row == n - 1:
    path.append([row, col + 1])
  elif col == m - 1:
    path.append([row + 1, col])
  else:
    if memo[row + 1][col] > memo[row][col + 1]:
      path.append([row + 1, col])
    else:
      path.append([row, col + 1])
```



### We Can Do Something Similar Here

- There are only  $\Theta(n+m)$  steps in the path
- Each step is only  $\Theta(1)$  for accessing the memo
- The bottleneck is still in filling up the memo,  $\Theta(nm)$



# Actually, We Can Use best\_from Directly, Even Without Calling best\_from(0, 0)

And simplify the logic a bit...

```
path = [[0, 0]]
while path[-1] != [n - 1, m - 1]:
   row, col = path[-1]
   if col == m - 1 or best_from(row + 1, col) > best_from(row, col + 1):
      path.append([row + 1, col])
   else:
      path.append([row, col + 1])
```

■ Think about why this works (and still in  $\Theta(nm)$  time)



# **Making Change**





# **Making Change**

- You buy from a vending machine and expect to get P pesos change
- It can always return P I-peso coins, but that's annoying
- lacktriangle Natural goal: minimize number of pieces of money to give out to make P
- Easy version for now: machine has either an infinite number or none of each denomination
  - Problem turns out to be way harder with finite non-zero of each denomination



# **Turning This into a Programming Problem**

#### Input:

- An integer amount P
- A list of denominations which are available in infinite number
  - Those not in the list have run out
  - To make it simpler, assume ₱I is always in this list
    - Avoid cases where making P is impossible

#### Output:

- List of bills or coins to give out
- Can start with simpler version: just the minimum number of pieces needed



# **A Simple Algorithm**

- Repeatedly give out the largest denomination less than or equal to the amount needed
- Example:
  - $\triangleright 1234 \rightarrow \text{give out } \triangleright 1000 \rightarrow \triangleright 234 \text{ remains}$
  - $\triangleright 234 \rightarrow \text{give out } \triangleright 200 \rightarrow \triangleright 34 \text{ remains}$
  - $\triangleright 34 \rightarrow \text{give out } \triangleright 20 \rightarrow \triangleright 14 \text{ remains}$
  - $\triangleright 14 \rightarrow \text{give out } \triangleright 10 \rightarrow \triangleright 4 \text{ remains}$
  - $P4 \rightarrow give out P1 (repeat 4 times)$
- This is what cashiers normally do when they give change



### The Cashier's Algorithm

```
pieces_of_money_used = 0
while amount > 0:
    amount -= max(d for d in denominations if d <= amount)
    pieces_of_money_used += 1
return pieces_of_money_used</pre>
```

- Does it work correctly for all cases?
- Can you come up with an amount and a set of denominations for which this algorithm gives a wrong answer?



# The Cashier's Algorithm Is Wrong!

- Denominations: [1, 20, 50]
- Amount: 60
- Cashier's algorithm gives out one ₱50 and ten ₱1
- Much better answer: three ₱20



# The Cashier's Algorithm Is Wrong!

- Comes from the following intuitive idea: "to minimize the number of pieces used, reduce the amount by as much as possible with every single piece."
- Sounds reasonable, but intuition isn't always right
- Being clever is not bad cleverness can lead to faster algorithms and is sometimes required
- However, it's much harder to guarantee correct
- Also, the problem must allow it
  - For some problems, no amount of cleverness is going to help



# The Cashier's Algorithm Is Wrong!

- On the other hand, complete search is always right
- And works for all problems
- Unfortunately, it's slow



#### **Dynamic Programming to the Rescue!**

- Dynamic programming: do (careful) complete search and then memoize
  - Name has no meaning person who invented it just wanted a cool-sounding name for the politicians funding his research
- Guaranteed correct because it's just complete search
- But fast because of memoization!



# The Complete Search Part is Typically Recursive, and the Thought Process is Always Like This

- I. Think about one step that relates a problem to a smaller subproblem
- 2. Believe the smaller subproblem has already been solved
- 3. Use the answer to the smaller subproblem to construct the answer to the original problem, applying some operation related to step I
- 4. With more than one choice for a step, try all choices "in parallel" and take a sum/min/max over all these choices depending on the problem



# The Recursion Suggests Itself If You Imagine the Solution Construction as a Step-by-Step Process

- A step in this step-by-step process is usually the natural step to use to bridge a subproblem to smaller subproblems
- Example:
  - making change = giving out bills or coins one at a time
  - relate original problem P to subproblem that results after giving out one piece with value d, in other words subproblem P-d
  - $lackbox{\bf P}-d$  must be made in the best way, so that P is made in the best way
    - This is what allows recursion to work
    - If this were not true, recursion would be wrong



## **Making Change Recursively**

- First pretend available denominations are always [1, 2, 5]
- The best solution must be one of the following:
  - Give out a ₱1 coin and recursively obtain the best solution for the remaining amount
  - Give out a ₱2 coin and recursively obtain the best solution for the remaining amount
  - Give out a ₱5 coin and recursively obtain the best solution for the remaining amount
- We don't know which one, so try all of them and take the one which results in the fewest pieces



#### **Translating into Code: Basic Idea / Recursive Case**

When making a single step, the remaining amount decreases by the value of the coin given out, and the number of coins increases by one

```
def min_to_make(amount):
    return 1 + min_to_make(amount - value_given_out)
```



#### **Translating into Code: Basic Idea / Recursive Case**

■ Can give out  $\triangleright 1$ ,  $\triangleright 2$ , or  $\triangleright 5$ 

```
def min_to_make(amount):
    1 + min_to_make(amount - 1)
    1 + min_to_make(amount - 2)
    1 + min_to_make(amount - 5)
```



#### **Translating into Code: Basic Idea / Recursive Case**

And we want to minimize

```
def min_to_make(amount):
    return min(
        1 + min_to_make(amount - 1),
        1 + min_to_make(amount - 2),
        1 + min_to_make(amount - 5)
    )
```



#### **Translating into Code: Details / Base Case**

When amount is 0, we're done, so 0 coins needed for that case

```
def min_to_make(amount):
       if \overline{a}mount > 0:
              return min(
                     1 + min_to_make(amount - 1),
1 + min_to_make(amount - 2),
1 + min_to_make(amount - 5)
       else:
              return 0
```



#### **Translating into Code: Details / Base Case**

- Can only give out a coin if its value is less than or equal the remaining amount
- Many different ways to implement this check
- Simple way: if some choice is invalid, make it ∞



#### **Translating into Code: Details / Base Case**

```
import math
def min to make(amount):
  if amount > 0:
    return min(
      1 + min to make(amount - 1),
      1 + min to make(amount - 2) if 2 <= amount else math.inf,
      1 + min to make(amount - 5) if 5 <= amount else math.inf
  else:
    return 0
```



## **Translating into Code: Details / Base Case**

- Can only give out a coin if its value is less than or equal the remaining amount
- Many different ways to implement this check
- Simple way: if some choice is invalid, make it ∞
  - Why this works:  $min(x, \infty) = x$
  - So, branch(es) with ∞ are just ignored
  - ₱1 is always a valid choice, so can never return ∞



# Generalizing to Any Set of Denominations

Replace the individually specified branches with a loop

```
def min_to_make(amount):
    if amount > 0:
        return min(
        1 + min_to_make(amount - d) if d <= amount else math.inf
        for d in denominations
    )
    else:
        return 0</pre>
```



# Generalizing to Any Set of Denominations

Can simplify a bit (just filter out the invalid choices)

```
def min to make(amount):
  if amount > 0:
    return min(
      1 + min_to_make(amount - d)
      for d in denominations
      if d <= amount</pre>
  else:
    return 0
```



#### In C++

```
int min to make(int amount) {
  if(amount > 0) {
    int best = INFINITY OR A REALLY LARGE NUMBER;
    for(int d : denominations)
      if(d <= amount)</pre>
          best = min(best, 1 + min to make(amount - d));
    return best;
  } else {
    return 0;
```



#### **Exercise**

- Draw the recursion tree for min\_to\_make(10) to convince yourself that it indeed generates all the ways to make change for 10
- You can probably guess what's coming next...
- Do you notice any overlapping subproblems?



#### Without Memoization, How Slow Is It?

- Let D be the number of denominations and P be the amount given in the input
- lacktriangleright Roughly speaking, each step multiplies the number of branches by D
- $\blacksquare$  Roughly speaking, P steps required to reach the base case
- Very roughly,  $O(D^P)$
- This is very imprecise actual running time is better
- But point is, it's still exponential so it's painfully slow
- Just run the un-memoized function if you don't believe



# So Memoize, Exactly Like Before

```
memo = [None for amount in range(p + 1)]
def min to make(amount):
    if memo[amount] is None:
        if amount > 0:
            answer = min(
                 1 + min_to_make(amount - d)
                 for d in denominations
                 if d <= amount</pre>
        else:
            answer = 0
        memo[amount] = answer
    return memo[amount]
print(min to make(p))
```



#### In C++

```
vector<int> memo;
int min_to_make(int amount) {
  if(memo[amount] == -1) {
    int answer;
    if(amount > 0) {
      int best = INFINITY;
      for(int d : denominations)
        if(d <= amount)</pre>
          best = min(
            best,
            1 + min_to_make(amount - d)
      answer = best;
    } else {
      answer = 0;
    memo[amount] = answer;
  return memo[amount];
```

```
int main() {
    ...
    memo.resize(p, -1);
    cout << min_to_make(p) << endl;
}</pre>
```



#### With Memoization, How Fast Is It?

Shortcut earlier

Running time =  $\Theta$ (number of unique subproblems)

- P unique subproblems, one for every amount up to P
- $\bullet$   $\Theta(P)$
- But this is wrong!
  - No dependence on *D*
  - Just as fast when D=1 vs. when  $D=10^6$ : is that reasonable?



# Look at the Recursion Tree Again

- Number of unique subproblems = black nodes
- But blue nodes contribute to the running time too, we also need to count them





# Look at the Recursion Tree Again

 Earlier, it was ok to ignore them, because the was only a small constant number of them below each black node





# Look at the Recursion Tree Again

- P black nodes, at most D blue nodes below each black node  $\rightarrow O(PD)$  blue nodes  $\rightarrow O(P+PD)$  total nodes
- O(PD) running time





#### We Can Refine Our Earlier Shortcut

Count black nodes and blue nodes directly under each





#### We Can Refine Our Earlier Shortcut

- Running time =  $\Theta$ (number of unique subproblems  $\times$  number of branches per subproblem)
- Actually, slightly wrong
  - Code loops through all d denominations, not all of them producing branches because of the if  $d \le a$ mount check
    - So, each black node contributes  $\Theta(D)$  work anyway
  - Better shortcut: Running time = number of unique subproblems  $\times$  non-recursive work per subproblem, assuming recursive calls are  $\Theta(1)$
  - In many cases, slightly wrong shortcut above is correct or good enough and easier to think about



# Producing the Actual List of Coins or Bills, Not Just Its Length

- Repeatedly pick the denomination d which results in an amount p-d "closest" to 0
  - But not based on the absolute value of p-d
  - Rather, based on its "distance" in number of coins

```
pieces = []
while amount > 0:
    best_d = None
    for d in denominations:
        if best_d is None or min_to_make(amount - d) < min_to_make(amount - best_d):
            best_d = d
        pieces.append(best_d)
        amount -= best_d</pre>
```



# **Planning Store Locations**

- Open convenience stores along one side of a street
- Street is divided into blocks
- For each block, we know the estimated daily profit if we open a store there
- Can't open on blocks next to each other the two stores will compete against each other and bring profits down
- What stores to open to maximize the profit?



# **Example**

## Street Block Block Block Block Block ₱750 ₱1600 ₱1000 ₱500

- Open on blocks 0, 2, 4: profit ₱2950
- The following greedy approach does not work: open a store in the block with the highest profit and continue from there
  - Opening at block 3 yields ₱1600
  - But disallows opening at 2 or 4
  - Only remaining options are 0 or 1
  - Only one of them can be picked
  - Neither beats ₱2950



#### For Each Algorithm Below, Find a Counterexample

- Open stores on all even-numbered blocks
- Open stores on all odd-numbered blocks
- Open stores on either all even-numbered blocks or all odd-numbered blocks, depending on which strategy gives a higher profit



#### Don't Be So Smart. Just Brute Force!

- Try all valid ways to open stores
- How exactly?
  - Break down "choose some stores to open" into single decisions
    - Where to open the leftmost store
    - Then, where to open the next store to the right
    - Then, where to open the next store to the right
    - Etc.
  - A single decision is the "one step away" that reveals the recursive structure



# Where to Open the Leftmost Store?

Don't know which one is the best, just try all

```
max profit = max(
    max profit if the leftmost store is on block 0,
    max profit if the leftmost store is on block 1,
    ...,
    max profit if the leftmost store is on block n - 1
)
```



# **How to Build the Smaller Subproblem?**

- If the leftmost store is opened at block i, then the next store can't be at blocks  $0,1,2,\ldots,i$ 
  - Because we said that the leftmost is i
- It also can't be at block i+1
  - Because of the problem restriction that stores cannot be next to each other
- What is the smaller subproblem after the first step?
  - lacktriangle Original problem: try all ways to open stores at blocks 0 to n
  - Subproblem: try all ways to open stores at blocks i + 2 to n



## **How to Build the Smaller Subproblem?**

```
max profit given list of profits P = max(
    P[0] + max profit of P without 0 to 1,
    P[1] + max profit of P without 0 to 2,
    P[2] + max profit of P without 0 to 3,
    P[n - 1] + max profit of P without 0 to n
```



## Suggests the Following Code

```
def max_profit(P):
    return max(
        P[choice] + max_profit(P[choice+2:])
        for choice in range(len(P))
    )
```



#### **And the Base Case**

```
def max profit(P):
  if len(P) == 0:
    return 0
  else:
    return max(
      P[choice] + max profit(P[choice+2:])
      for choice in range(len(P))
```



# **Making it More Efficient**

- As you might guess, this gets the correct answer, but painfully slowly
- Think about it: will this have overlapping subproblems?
- This suggests we use memoization
- One problem: the parameter to the function is a list
  - How to code the memo?
    - There are ways, but they're rather ugly
  - Copying and slicing lists is slow



# Instead, "Fake" the List Slicing

- Important information to keep track of: what part of the list is the subproblem looking at?
- Start and end indices
- Notice though: end index is always n
  - Subproblems are suffixes of the original problem



## Instead, "Fake" the List Slicing

```
def max profit(P):
  return max(
    P[choice] + max profit(P[choice+2:])
    for choice in range(len(P))
def max profit(start):
  return max(
    P[choice] + max profit(choice + 2)
    for choice in range(start, len(P))
```



#### **And the Base Case**

```
def max profit(start):
    if start < len(P):</pre>
        return max(
             P[choice] + max profit(choice + 2)
             for choice in range(start, len(P))
    else:
        return 0
```

Try memozing it yourself!



#### **Final Solution**

```
memo = [None for i in range(len(P) + 2)]
def max profit(start):
    if memo[start] is None:
        if start < len(P):</pre>
            answer = max(
                 P[choice] + max profit(choice + 2)
                 for choice in range(start, len(P))
        else:
            answer = 0
        memo[start] = answer
    return memo[start]
```



## **Things to Think About**

- Why does the memo have length len(P) + 2?
  - max\_profit can be called with start = len(P) + 1
    - When choice goes to len(P) 1
- What is the initial call to print the answer for the original problem?
  - print(max\_profit(0))



#### **How Fast is This?**

- How many unique subproblems?
  - ullet  $\Theta(n)$  different possible values of start
    - Another way to say it  $\Theta(n)$  different possible suffixes
- How many branches or how much non-recursive work per subproblem?
  - O(n), because of the i loop
- Therefore, how much time in total?
  - $O(n^2)$  by our shortcut



#### **How Fast is This?**

- More precisely, branches / non-recursive work is:
  - $\blacksquare \approx n$  when subproblem size is n
  - $\blacksquare \approx n-1$  when subproblem size is n-1
  - $\blacksquare \approx n-2$  when subproblem size is n-2
  - etc.
- Total is  $1 + 2 + \cdots + n$  but this is also just  $\Theta(n^2)$



- "Choose some stores to open" can be broken down into this way instead:
  - Open store I or not?
  - Open store 2 or not?
  - •
  - Open store n or not?
- Smells like Lights Out
- Recursive structure: decide to open a store at start or not, then recursively decide the rest



- Opening at start means we cannot open at start + 1
- To capture this constraint, exclude start + 1 from the list of possible places for the next store
  - In other words, start index for the subproblem is start + 2



```
def max profit(start):
  if start < len(P):</pre>
    return max(
      # leftmost allowed block is chosen
      P[start] + max profit(start + 2),
      # leftmost allowed block is not chosen
      max profit(start + 1)
                      Convince yourself that this works.
  else:
    return 0
                      Then, you can memoize it yourself.
```



- How many unique subproblems?
  - ullet  $\Theta(n)$  different possible values of start
- How many branches or how much non-recursive work per subproblem?
  - Now only  $\Theta(1)$
- Therefore, how much time in total?
  - Just  $\Theta(n)$



Recursion is just a fancier loop

```
i = 0
while i < n:
    print(i)
    i = i + 1
    loop(i):
        if i < n:
        print(i)
        loop(i = i + 1)
        loop(i = 0)</pre>
```



- A "greedy" algorithm uses some smart rule to choose what the next move should be
  - The algorithm can be expressed recursively and if we do, the resulting recursion tree always has one branch per node
- Recursive backtracking / dynamic programming is just the "multiple" branches version
  - Instead of having some magic rule to decide what the next move is, try all possible next moves "in parallel"



Making Change by Recursive Backtracking (try all branches)

```
def min_to_make(amount):
    return min(
        1 + min_to_make(amount - d)
        for d in denominations if d <= amount # many branches
)</pre>
```

Making Change by Cashier's Algorithm (always choose one branch)

```
def min_to_make(amount):
    d = max(d for d in denominations if d <= amount)
    return 1 + min_to_make(amount - d) # only one branch</pre>
```



```
Choosing Store Locations by Recursive Backtracking (try both branches)
def max_profit(choice):
    if choice < len(P):
         return max(P[choice] + max_profit(choice + 2), max_profit(choice + 1))
    else:
         return 0
Choosing Store Locations by "open on even-numbered blocks" (always choose one branch)
output = 0
                                 def max profit(choice):
while choice < len(P):</pre>
                                     if choice < len(P):
                                          return P[choice] + max_profit(choice + 2)
    output += P[choice]
    choice = choice + 2
                                     else:
                                          return 0
```



# **Hint for Coming Up with DP Solutions**

- Usually, one of the parameters is a "loop counter" that tells us "where we are" in the input list as we construct the solution
- This parameter is used to distinguish the base case from the recursive case
- And this parameter is what advances towards the base case, just like the loop counter in a loop which advances towards the terminating condition



# Printing the Actual Blocks Where to Open

- Idea: like before, repeatedly:
  - Find subproblem with the best "distance" to the base case
  - Change parameters into that subproblem

```
stores = []
start = 0
while start < len(P):
    best = None
    for choice in range(start, len(P)):
        if best is None or max_profit(choice) > max_profit(best):
            best = choice
    stores.append(best)
    start = best + 2
```



# **But It's Wrong!**

- If you run this code, it will just print out the evennumbered blocks, which we already know is wrong
  - $max_profit(i)$  is always  $\geq max_profit(j)$  for any i > j
    - Remember, max\_profit(i) means "can open at blocks i onwards"
    - The valid ways to open stores from block j onwards are also valid ways to open stores from block i onwards
    - max\_profit(i) is considering the same possibilities as max\_profit(j), and others that are not valid for j
  - So, code above will repeatedly pick the leftmost allowed block to open a store



# Fixing It

```
max profit given list of profits P = max(
   P[0] + max profit of P without 0 to 1,
   P[1] + max profit of P without 0 to 2,
   P[n - 1] + max profit of P without 0 to n
```

 The best choice depends not only on the recursive call, but also on the profit of the block being considered



# Fixing It

Let profit\_if\_start(choice) be the maximum profit gained from blocks i onwards and committing to the choice of opening a store at block i

```
def profit_if_start(choice):
    return P[choice] + max_profit(choice + 2)
```



# Fixing It

Then the correct way to construct the optimal plan is:

```
stores = []
start = 0
while start < len(P):
    best = None
    for choice in range(start, len(P)):
        if best is None or profit_if_start(choice) > profit_if_start(best):
            best = choice
    stores.append(best)
    start = best + 2
```



### Why The Wrong Solution Worked Earlier

```
def min_to_make(amount):
    return min(
        1 + min_to_make(amount - 1),
        1 + min_to_make(amount - 2),
        1 + min_to_make(amount - 5)
    )
```

The "commitment" contribution of a choice to the answer is the same for all the choices



# You Are A Burglar

| Item         | Value   | Weight |
|--------------|---------|--------|
| TV           | ₱15,000 | 35 kg  |
| Computer     | ₱20,000 | 10 kg  |
| Sack of rice | ₱100    | 25 kg  |
| Motorcycle   | ₱30,000 | 40 kg  |

Limit: 45kg

- You can carry at most 45kg in your huge knapsack
  - "Knapsack" is what older people who invented this problem called what we call "backpack"
- A house has some items, each with a value and weight
- Which items should you steal to get the most value?
  - TV + computer = ₱35,000



# You Are A Professional Burglar

- Write a program that solves the problem in general, so that you can know what items to steal every night at different houses
- Of course, the program must be efficient; otherwise, you'll get caught before it finishes running!



#### Disclaimer

- For educational purposes only
- Don't try in real life
- A non-evil equivalent scenario:
  - Many activities to do, but limited time
  - Each activity requires some time to complete
  - Each activity gives you some amount of happiness
  - Choose which activities to do to maximize your happiness



#### **Think**

- How would you solve this?
- Any rules that come to mind on how to choose the items?
- Possible ideas:
  - Keep choosing the most valuable item first
  - Keep choosing the lightest item first



# Don't Be A Greedy Burglar

| Item         | Value   | Weight |
|--------------|---------|--------|
| TV           | ₱15,000 | 35 kg  |
| Computer     | ₱20,000 | 10 kg  |
| Sack of rice | ₱100    | 25 kg  |
| Motorcycle   | ₱30,000 | 40 kg  |

Limit: 45kg

- Best answer:
  - TV + computer = \$35,000
- Most valuable item first:
  - Motorcycle only = ₱30,000
- Lightest item first:
  - Computer + sack of rice =  $\Rightarrow$ 20,100



# **Dynamic Programming to the Rescue!**

- Identify the "single step" in the process
- This single step is what relates a problem to a subproblem
- When there are multiple choices for a single step, try them all "in parallel"



- Items in the problem have no inherent order
- We can invent an order so that we can speak of a 0<sup>th</sup> item,
   Ist item, 2<sup>nd</sup> item, etc.
- Given any list of items where the ith item has weight W[i] and value V[i], choose items so that the total value is maximized and the total weight does not exceed a limit L
- This allows us to have a "loop counter" or measure of progress in the recursion



- Breaking down the process into steps:
  - Pick first item to steal
  - Pick second item to steal (must be to the right of the first)
  - Pick third item to steal (must be to the right of the second)
  - Etc.
- This looks like store planning!



```
max value = max(
    max value when first chosen item is item 0,
    max value when first chosen item is item 1,
    ...,
    max value when first chosen item is item n - 1
)
```



```
def best value(start):
  if start < len(V):</pre>
    return max(
      V[choice] + best_value(choice + 1)
      for choice in range(start, len(V))
  else:
    return 0
```



# Something's Missing

- If you run this code, it always just returns the sum of the values of all the items
- We forgot to include the weight limit in the code



#### An Idea

- Keep track of what items have been selected so far
- So that we can check if a combination is valid at the end



#### An Idea

```
def best_value(start, chosen):
    global limit
    if start < len(V):
        return max(
        V[choice] + best_value(choice + 1, chosen + [choice])
        for choice in range(start, len(V))
    )
    else:
    return 0 if sum(W[j] for j in chosen) <= limit else ???</pre>
```



#### What to Return When Some Choice is Invalid?

- $-\infty$ , so that the invalid branch gets eliminated by the max function
- Think about it: why don't we just return, for example, -1?



#### What to Return When Some Choice is Invalid?

```
def best_value(start, chosen):
    global limit
    if start < len(V):
        return max(
        V[choice] + best_value(choice + 1, chosen + [choice])
        for choice in range(start, len(V))
    )
    else:
    return 0 if sum(W[j] for j in chosen) <= limit else -math.inf</pre>
```



#### There's an Issue

- There's a parameter in the function, chosen, which is a list
- Memoizing this is difficult
- Even more serious issue: chosen ensures no overlapping subproblems, making memoization useless!



# **DP vs. Backtracking**

- DP is "careful" brute force
- Unlike backtracking where we can use as many variables as we want, in DP, we should try to "remember" as little information as possible in the function parameters
  - While still having a way to eliminate invalid solutions
- More parameters ⇒ more subproblems ⇒ lower chances of overlapping ⇒ slower (even when memoized)



# Remembering the Choices is Too Much Info

 Only the sum of the weights of the choices is needed to check if a solution is valid or not



## Only Remember the Sum

```
def best_value(start, total_weight):
  global limit
  if start < len(V):</pre>
    return max(
      V[choice] + best value(
        choice + 1,
        total_weight + W[choice]
      for choice in range(start, len(V))
  else:
    return 0 if total_weight <= limit else -math.inf
```



# There's Another Way to Write This, Can You Explain Why It's Bad?

```
def best_value(start, total_weight, total value):
  global limit
  if start < len(V):</pre>
    return max(
      best value(
        choice + 1,
        total_weight + W[choice],
        total value + V[choice]
      for choice in range(start, len(V))
  else:
    return total_value if total_weight <= limit else - math.inf</pre>
```



# Steps of the Solution to Try Yourself

- Memoize!
- Constructing the actual list of items once we have a DP solution for getting the maximum value
  - Notice: usually, once you have a DP solution that gets the best "score" of a solution, getting the actual solution is much easier
  - Good idea to focus on solving for the "score" first and then worry about constructing the actual solution later, or not at all



# Running Time Analysis (Assuming Memoized)

- Only thing changed from store planning problem: extra parameter
- Changes the number of subproblems from  $\Theta(n)$  to  $\Theta(nS)$ 
  - lacktriangle Where S is the maximum possible total weight of any one branch: in other words, the total weight of all items
- Work per subproblem:  $\Theta(n)$
- Total:  $\Theta(nS) \times O(n) = O(n^2S)$



# **A Slight Improvement**

 We can do slightly better by pruning branches that already go over the limit



# **A Slight Improvement**

```
def best_value(start, total_weight):
  global limit
  if start < len(V):</pre>
    return max(
      V[choice] + best value(choice + 1, total weight + W[choice])
      for choice in range(start, len(V))
      if total weight + W[choice] <= limit</pre>
  else:
    return 0
```



# **Something to Think About**

Why does the base case just return 0, no more check?



# Running Time Analysis (Assuming Memoized)

- Work per subproblem is still the same:  $\Theta(n)$
- But now, the number of subproblems is  $\Theta(nL)$  instead of  $\Theta(nS)$ , where L is the carrying limit
  - lacktrianspace L can be much smaller than S, the total weight of all the items
  - More technically, it is  $\Theta(n \times \min(L, S))$
- So, the total work is  $\Theta(n^2L)$ 
  - Or  $\Theta(n^2 \times \min(L, S))$  if you want to be more technical



# **Try It Yourself**

- Earlier, we found a way to improve the solution for store planning from  $\Theta(n^2)$  to  $\Theta(n)$
- Same idea can be used to improve the solution for this knapsack problem from  $\Theta(n^2L)$  to  $\Theta(nL)$



#### **Practice Problems**

https://progvar.fun/problemsets/dp-classic



#### Thanks!







