Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

Capítulo 8:

Realimentação de Estados e Estimadores de Estado

Valter J. S. Leite¹

¹CEFET-MG / Campus V Divinópolis, MG – Brasil

Pós-Graduação em Engenharia Elétrica CEFET–MG / campus Divinópolis

Conteúdo:

- Introdução
- Realimentação de estados
- 3 Regulação e Seguimento de Referência
- 4 Realimentação com estados estimados
- 5 Realimentação de Estados Estimados

- Anteriormente: conceitos de
- ⇒ Controlabilidade e Observabilidade para estudar estrutura interna e estabelecer relações entre as descrições internas e externas.
- Neste capítulo: implicações desses conceitos no projeto de controle de sistemas.
 - ⇒ Malha Aberta:
 - ⇒ Malha fechada:

- Anteriormente: conceitos de
- ⇒ Controlabilidade e Observabilidade para estudar estrutura interna e estabelecer relações entre as descrições internas e externas.
- Neste capítulo: implicações desses conceitos no projeto de controle de sistemas.
 - \Rightarrow Malha Aberta: u(t) dependende apenas de r(t)
 - ⇒ Malha fechada:

- Anteriormente: conceitos de
- ⇒ Controlabilidade e Observabilidade para estudar estrutura interna e estabelecer relações entre as descrições internas e externas.
- Neste capítulo: implicações desses conceitos no projeto de controle de sistemas.
 - \Rightarrow Malha Aberta: u(t) dependende apenas de r(t)
 - \Rightarrow Malha fechada: u(t) dependende r(t) e de y(t)

Objetivos de projeto: malha fechada

- Assegurar estabilidade
- Reduzir os efeitos de variações de parâmetros.
- Suprimir ruídos e distúrbios (efeitos de carga).

Objetivos de projeto: malha fechada

- Assegurar estabilidade
- Reduzir os efeitos de variações de parâmetros.
- Suprimir ruídos e distúrbios (efeitos de carga).

Estudos apenas para sistemas invariantes no tempo.

Seja o sistema

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{1}$$

$$y = \mathbf{c}\mathbf{x} \tag{2}$$

• Considere a lei de controle

$$u = r - \mathbf{k}\mathbf{x} = r - [k_1 \quad k_2 \quad \cdots \quad k_n]\mathbf{x} = r - \sum_{i=1}^{n} k_i x_i$$
 (3)

- \Rightarrow Valores k_i são reais e constantes.
- ⇒ Denomina-se realimentação de estados.

Diagrama de blocos

Figura: Projeto de sistema de controle

• Levando (3) em (1)-(2):

$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{x} + \mathbf{b}r \tag{4}$$

$$y = \mathbf{c}\mathbf{x} \tag{5}$$

Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

Teorema 8.1

O par $(\mathbf{A} - \mathbf{bk}, \mathbf{b})$, para qualquer vetor real constante \mathbf{b} de dimensões $n \times 1$, é controlável se e somente se o par (\mathbf{A}, \mathbf{b}) é controlável.

Teorema 8.1

O par $(\mathbf{A} - \mathbf{bk}, \mathbf{b})$, para qualquer vetor real constante \mathbf{b} de dimensões $n \times 1$, é controlável se e somente se o par (\mathbf{A}, \mathbf{b}) é controlável.

Prova: Considere n=4 e as matrizes de controlabilidade de (1) e (4), respectivamente:

$$C = [\mathbf{b} \ \mathbf{Ab} \ \mathbf{A}^2 \mathbf{b} \ \mathbf{A}^3 \mathbf{b}]$$

е

$$C_f = [\mathbf{b} \ (\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{b} \ (\mathbf{A} - \mathbf{b}\mathbf{k})^2\mathbf{b} \ (\mathbf{A} - \mathbf{b}\mathbf{k})^3\mathbf{b}]$$

Que pode ser reescrito como

$$C_f = C \begin{bmatrix} 1 & -\mathbf{k}\mathbf{b} & -\mathbf{k}(\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{b} & -\mathbf{k}(\mathbf{A} - \mathbf{b}\mathbf{k})^2\mathbf{b} \\ 0 & 1 & -\mathbf{k}\mathbf{b} & -\mathbf{k}(\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{b} \\ 0 & 0 & 1 & -\mathbf{k}\mathbf{b} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Posto Completo (6)

e portanto tem o mesmo posto de \mathcal{C} .

Note que:

⇒ Cada entrada da matriz mais à direita de (6) é um escalar.

Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

Observações...

• Veja na Figura 2 que r não controla ${\bf x}$ diretamente.

Observações...

- ullet Veja na Figura 2 que r não controla ${f x}$ diretamente.
 - \Rightarrow gera u para controlar \mathbf{x} .
 - \Rightarrow se u não controla x então r também não!

Observações...

- ullet Veja na Figura 2 que r não controla ${f x}$ diretamente.
 - \Rightarrow gera u para controlar \mathbf{x} .
 - \Rightarrow se u não controla x então r também não!
- Controlabilidade é invariante sob qualquer realimentação de estados.
- Observabilidade não !

Exemplo 8.1

Considere o sistema controlável e observável (Teste!)

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}$$

• Suponha $u = r - \begin{bmatrix} 3 & 1 \end{bmatrix} \mathbf{x}$ que resulta em

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r}$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}$$

cuja matrizes de controlabilidade e observabilidade são (Verifique!):

$$C_f = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \qquad C_f = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
V. J. S. Leite Controle Moderno

Exemplo 8.2

Objetivo

Mostrar que a realimentação de estados pode ser usada para alocar os autovalores da malha fechada em posições arbitrárias.

Considere

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

⇒ cujo polinômio característico é

$$\det(s\mathbf{I} - \mathbf{A}) = \Delta(s) = (s-1)^2 - 9 = (s-4)(s+2)$$

- \Rightarrow Portanto, autovalores em 4 e -2.
- Suponha $u=r-\left[\begin{array}{cc} k_1 & k_2 \end{array}\right]\mathbf{x}$

resultando em:

$$\dot{\mathbf{x}} = \left(\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} k_1 & k_2 \\ 0 & 0 \end{bmatrix} \right) \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{r}$$

$$= \underbrace{\begin{bmatrix} 1 - k_1 & 3 - k_2 \\ 3 & 1 \end{bmatrix}}_{\mathbf{A}_f(k_1, k_2) = \mathbf{A}_f(\mathbf{k})} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{r}$$

Novo polinômio característico

$$\Delta_f(s) = (s\mathbf{I} - \mathbf{A}_f(\mathbf{k})) = s^2 + (k_1 - 2)s + (3k_2 - k_1 - 8)$$
 (7)

• Para autovalores λ_1 e λ_2 :

$$\Delta_{\text{desejado}}(s) = (s - \lambda_1)(s - \lambda_2) = s^2 - (\lambda_1 + \lambda_2)s + \lambda_1\lambda_2 \quad (8)$$

V. J. S. Leite

• Pode-se igualar os coeficientes de (7) e (8):

$$\left[\begin{array}{cc} 1 & 0 \\ -1 & 3 \end{array}\right] \left[\begin{array}{c} k_1 \\ k_2 \end{array}\right] = \left[\begin{array}{c} 2 - \lambda_1 - \lambda_2 \\ 8 + \lambda_1 \lambda_2 \end{array}\right]$$

• Se $\lambda_1 = -1 + 2j$ e $\lambda_2 = -1 - 2j$:

$$\begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 13 \end{bmatrix} \quad \Rightarrow \quad \mathbf{k} = \begin{bmatrix} 4 \\ \frac{17}{3} \end{bmatrix}$$

⇒ No matlab:

Teorema 8.2

- Objetivo: preparar condições para um procedimento mais geral para o projeto de ${\bf k}$.
- Considere (1) com a equação característica

$$\Delta(s) = \det(s\mathbf{I} - \mathbf{A}) = s^n + \alpha_1 s^{n-1} + \dots + \alpha_{n-1} s + \alpha_n = 0$$
 (9)

Se (1) é controlável, então ela pode ser transformada usando $ar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ em que

$$Q = P^{-1} =$$

$$\begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \cdots & \mathbf{A}^{n-2}\mathbf{b} & \mathbf{A}^{n-1}\mathbf{b} \end{bmatrix} \begin{bmatrix} 1 & \alpha_{1} & \cdots & \alpha_{n-2} & \alpha_{n-1} \\ 0 & 1 & \cdots & \alpha_{n-3} & \alpha_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \alpha_{1} \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$
(10)

o que resulta na forma canônica controlável

$$\dot{\mathbf{x}} = \bar{\mathbf{A}}\bar{\mathbf{x}} + \bar{\mathbf{b}}u$$

$$= \begin{bmatrix}
-\alpha_1 & -\alpha_2 & \cdots & -\alpha_{n-1} & -\alpha_n \\
1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix}
1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix} u(11)$$

$$y = \bar{\mathbf{c}}\bar{\mathbf{x}} = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_{n-1} & \beta_n \end{bmatrix} \bar{\mathbf{x}} \tag{12}$$

• Além disso a função de transferência de (1)–(2) é

$$\hat{g}(s) = \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_{n-1} s + \beta_n}{s^n + \alpha_1 s^{n-1} + \dots + \alpha_{n-1} s + \alpha_n}$$
(13)

V. J. S. Leite

Controle Moderno

Prova

- Sejam \mathcal{C} e $\bar{\mathcal{C}}$ as matrizes de controlabilidade de (1) e (11).
- C e \bar{C} são quadradas (no caso SISO)
- Se (1) é controlável ($\mathcal C$ é não-singular) o mesmo vale para (11) ($\bar{\mathcal C}$).
- $\bar{\mathcal{C}} = \mathbf{P}\mathcal{C} \Rightarrow \mathbf{P} = \bar{\mathcal{C}}\mathcal{C}^{-1}$ ou $\mathbf{Q} = \mathbf{P}^{-1} = \mathcal{C}\bar{\mathcal{C}}^{-1}$

ullet Mostra-se que a matriz 1 $ar{\mathcal{C}}^{-1}$ resulta em

$$\bar{C}^{-1} = \begin{bmatrix} 1 & \alpha_1 & \cdots & \alpha_{n-2} & \alpha_{n-1} \\ 0 & 1 & \cdots & \alpha_{n-3} & \alpha_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \alpha_1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$
 (14)

- \Rightarrow Note que α_n não aparece em (14).
- Substituindo (14) em $\mathbf{Q} = \mathcal{C}\bar{\mathcal{C}}^{-1}$ obtém-se (10).
- Note que (11) é a realização de (13).
- \Rightarrow Portanto, (11)-(12) e consequentemente (1)-(2) é uma realização de (13), o que estabelece o teorema.

 1 Veia cômputo de $\bar{\mathcal{C}}$ à pág. 186

Um resultado mais geral

Teorema 8.3

Se o sistema n-dimensional (1)-(2) é controlável, então a lei de realimentação de estados $u = r - \mathbf{k}\mathbf{x}$, $\mathbf{k} \in \mathbb{R}^{1 \times n}$ pode alocar de forma arbitrária os autovalores de A - bk, desde que os autovalores complexos sejam atribuídos em pares complexos conjugados.

- Prova:
- \Rightarrow (1) controlável \Rightarrow pode ser transformado na forma canônica controlável (11)-(12).
 - \Rightarrow Sejam $\bar{\mathbf{A}}$ e $\bar{\mathbf{b}}$ as matrizes em (11), então:

$$\bar{\mathbf{A}} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}; \quad \bar{\mathbf{b}} = \mathbf{P}\mathbf{x}$$

V. J. S. Leite Controle Moderno

 \Rightarrow Substituindo $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ na realimentação de estados:

$$u = r - \mathbf{k}\mathbf{x} = r - \mathbf{k}\mathbf{P}^{-1}\bar{\mathbf{x}} = r - \bar{\mathbf{k}}\bar{\mathbf{x}}$$

portanto,

$$\bar{\mathbf{k}} = \mathbf{k} \mathbf{P}^{-1} \quad \Rightarrow \quad \mathbf{k} = \bar{\mathbf{k}} \mathbf{P}$$

 \Rightarrow Substituindo $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ na realimentação de estados:

$$u = r - \mathbf{k}\mathbf{x} = r - \mathbf{k}\mathbf{P}^{-1}\bar{\mathbf{x}} = r - \bar{\mathbf{k}}\bar{\mathbf{x}}$$

portanto,

$$\bar{\mathbf{k}} = \mathbf{k} \mathbf{P}^{-1} \quad \Rightarrow \quad \mathbf{k} = \bar{\mathbf{k}} \mathbf{P}$$

⇒ Os autovalores do sistema são os mesmos em qualquer representação, pois:

$$\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}} = \mathbf{P}(\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{P}^{-1}$$

e portanto $\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}}$ e $\mathbf{A} - \mathbf{b}\mathbf{k}$ possuem os mesmos autovalores.

 \Rightarrow Substituindo $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ na realimentação de estados:

$$u = r - \mathbf{k}\mathbf{x} = r - \mathbf{k}\mathbf{P}^{-1}\bar{\mathbf{x}} = r - \bar{\mathbf{k}}\bar{\mathbf{x}}$$

portanto,

$$\bar{\mathbf{k}} = \mathbf{k} \mathbf{P}^{-1} \quad \Rightarrow \quad \mathbf{k} = \bar{\mathbf{k}} \mathbf{P}$$

⇒ Os autovalores do sistema são os mesmos em qualquer representação, pois:

$$\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}} = \mathbf{P}(\mathbf{A} - \mathbf{b}\mathbf{k})\mathbf{P}^{-1}$$

e portanto $\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}}$ e $\mathbf{A} - \mathbf{b}\mathbf{k}$ possuem os mesmos autovalores.

⇒ Para qualquer conjunto desejado de autovalores, pode-se obter:

$$\Delta_{\mathsf{desejado}}(s) = (s+\lambda_1)(s+\lambda_2)\cdots(s+\lambda_n)$$
$$= s^n + \bar{\alpha}_1 s^{(n-1)} + \cdots + \bar{\alpha}_{n-1} s + \bar{\alpha}_n \quad (15)$$

Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

⇒ Escolhendo-se

$$\bar{\mathbf{k}} = \begin{bmatrix} \bar{\alpha}_1 - \alpha_1 & \bar{\alpha}_2 - \alpha_2 & \cdots & \bar{\alpha}_{n-1} - \alpha_{n-1} & \bar{\alpha}_n - \alpha_n \end{bmatrix}$$
 (16)

a equação realimentada torna-se

⇒ Escolhendo-se

$$\bar{\mathbf{k}} = \begin{bmatrix} \bar{\alpha}_1 - \alpha_1 & \bar{\alpha}_2 - \alpha_2 & \cdots & \bar{\alpha}_{n-1} - \alpha_{n-1} & \bar{\alpha}_n - \alpha_n \end{bmatrix}$$
 (16)

a equação realimentada torna-se

$$\dot{\bar{\mathbf{x}}} = (\bar{\mathbf{A}} - \bar{\mathbf{b}}\bar{\mathbf{k}})\bar{\mathbf{x}} + \bar{\mathbf{b}}r$$

$$= \begin{bmatrix}
-\bar{\alpha}_1 & -\bar{\alpha}_2 & \cdots & -\bar{\alpha}_{n-1} & -\bar{\alpha}_n \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} r(17)$$

$$y = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_{n-1} & \beta_n \end{bmatrix} \bar{\mathbf{x}} \tag{18}$$

Introdução
Realimentação de estados
Regulação e Seguimento de Referência
Realimentação com estados estimados
Realimentação de Estados Estimados

 \Rightarrow Como (17) está na forma companheira, o polinômio característicos de $(\bar{\bf A}-\bar{\bf b}{\bf k})$ e consequentemente de $({\bf A}-{\bf b}{\bf k})$ são iguais a (15)

Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

 \Rightarrow Como (17) está na forma companheira, o polinômio característicos de $(\bar{\bf A}-\bar{\bf b}{\bf k})$ e consequentemente de $({\bf A}-{\bf b}{\bf k})$ são iguais a (15)

Portanto, o ssitema realimentado possui os autovalores desejados!

 \Rightarrow Como (17) está na forma companheira, o polinômio característicos de $(\bar{\bf A}-\bar{\bf b}{\bf k})$ e consequentemente de $({\bf A}-{\bf b}{\bf k})$ são iguais a (15)

Portanto, o ssitema realimentado possui os autovalores desejados!

 \Rightarrow O ganho k é computado como:

$$\mathbf{k} = \bar{\mathbf{k}} \mathbf{P} = \bar{\mathbf{k}} \bar{\mathcal{C}} \mathcal{C}^{-1}$$

$$= \bar{\mathbf{k}} \begin{bmatrix} 1 & \alpha_1 & \cdots & \alpha_{n-2} & \alpha_{n-1} \\ 0 & 1 & \cdots & \alpha_{n-3} & \alpha_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \alpha_1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{b} & \mathbf{A} \mathbf{b} & \cdots & \mathbf{A}^{n-1} \mathbf{b} \end{bmatrix}^{-1}$$

 $\mathbf{P} \Rightarrow \mathsf{melhor} \; \mathsf{calcular} \; \mathbf{P}^{-1} = \mathcal{C} \bar{\mathcal{C}}^{-1}$

Função de Transferência

- Considere a planta descrita por $(\mathbf{A}, \mathbf{b}, \mathbf{c})$.
- \Rightarrow Se o par (A,b) é controlável \Rightarrow pode-se transformar (A,b,c) na forma controlável (11)–(12) e
 - ⇒ sua função de transferência é dada por

$$\hat{g}(s) = \mathbf{c}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b} = \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_{n-1} s + \beta_n}{s^n + \alpha_1 s^{n-1} + \dots + \alpha_{n-1} s + \alpha_n}$$

Função de Transferência do Sistema Realimentado

- Após a realimentação, a equação de estados torna-se $(\mathbf{A} \mathbf{bk}, \mathbf{b}, \mathbf{c})$.
 - \Rightarrow Ainda terá forma canônica controlável (17)–(18);
 - ⇒ Possui função de transferência

$$\hat{g}_{\mathsf{Desejado}}(s) = \mathbf{c}(s\mathbf{I} - \mathbf{A} + \mathbf{b}\mathbf{k})^{-1}\mathbf{b}
= \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_{n-1} s + \beta_n}{s^n + \bar{\alpha}_1 s^{n-1} + \dots + \bar{\alpha}_{n-1} s + \bar{\alpha}_n} \tag{19}$$

Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

- Note que os zeros n\u00e3o foram afetados
- Se algum dos novos pólos coincide com algum dos zeros *haverá* cancelamento

- Note que os zeros não foram afetados
- Se algum dos novos pólos coincide com algum dos zeros *haverá* cancelamento

Portanto, realimentação de estados pode afetar *observabilidade*!

Exemplo 8.3

Considere o pêndulo invertido estudado no Exemplo 6.2 com

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}$$

• Por inspeção (A bloco triangular):

$$\Delta(s) = s^{2}(s^{2} - 5) = s^{4} + \underbrace{0}_{\alpha_{1}} s^{3} \underbrace{-5}_{\alpha_{2}} s^{2} + \underbrace{0}_{\alpha_{3}} s + \underbrace{0}_{\alpha_{4}}$$

• Calculando $\mathbf{P}^{-1} = \mathcal{C}\bar{\mathcal{C}}^{-1}$:

$$\mathbf{P}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & -2 & 0 & -10 \\ -2 & 0 & -10 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ logo:}$$

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & 0 & -\frac{1}{6} \\ -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \end{bmatrix}$$
(20)

V. J. S. Leite

Controle Moderno

• Autovalores desejados: $-1.5 \pm 0.5j$ e $-1 \pm j$. Logo:

$$\Delta_{\mathsf{Desejado}}(s) = (s+1.5+0.5j)(s+1.5-0.5j)(s+1+j)(s+1-j)$$

$$= s^4 + \underbrace{5}_{\bar{\alpha}_1} s^3 + \underbrace{10.5}_{\bar{\alpha}_2} s^2 + \underbrace{11}_{\bar{\alpha}_3} s + \underbrace{5}_{\bar{\alpha}_4}$$
(21)

• Autovalores desejados: $-1.5 \pm 0.5 j$ e $-1 \pm j$. Logo:

$$\Delta_{\mathsf{Desejado}}(s) = (s+1.5+0.5j)(s+1.5-0.5j)(s+1+j)(s+1-j)$$

$$= s^4 + \underbrace{5}_{\bar{\alpha}_1} s^3 + \underbrace{10.5}_{\bar{\alpha}_2} s^2 + \underbrace{11}_{\bar{\alpha}_3} s + \underbrace{5}_{\bar{\alpha}_4}$$
(21)

• Para o projeto de $\bar{\mathbf{k}}$, usa-se (16):

$$\bar{\mathbf{k}} = [5 - 0 \quad 10.5 - (-5) \quad 11 - 0 \quad 5 - 0] = [5 \quad 15.5 \quad 11 \quad 5]$$

• Autovalores desejados: $-1.5 \pm 0.5 j$ e $-1 \pm j$. Logo:

$$\Delta_{\mathsf{Desejado}}(s) = (s+1.5+0.5j)(s+1.5-0.5j)(s+1+j)(s+1-j)$$

$$= s^4 + \underbrace{5}_{\bar{\alpha}_1} s^3 + \underbrace{10.5}_{\bar{\alpha}_2} s^2 + \underbrace{11}_{\bar{\alpha}_3} s + \underbrace{5}_{\bar{\alpha}_4}$$
(21)

• Para o projeto de $\bar{\mathbf{k}}$, usa-se (16):

$$\bar{\mathbf{k}} = [5 - 0 \quad 10.5 - (-5) \quad 11 - 0 \quad 5 - 0] = [5 \quad 15.5 \quad 11 \quad 5]$$

 \Rightarrow e recupera-se ${f k}$ fazendo

$$\mathbf{k} = \bar{\mathbf{k}}\mathbf{P} = \begin{bmatrix} -\frac{5}{3} & -\frac{11}{3} & -\frac{103}{12} & -\frac{13}{3} \end{bmatrix}$$

V. J. S. Leite

- Os autovalores foram deslocados de $\{0,0,\pm j\sqrt{5}\}$ para $\{-1.5\pm 0.5j,-1\pm j\}.$
- No matlab, use place:

-5/3

```
>> format rat
>> A = [0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 5 0];
>> b = [0 1 0 -2]';
>> polos = [-1.5+0.5j -1.5-0.5j -1+j -1-j];
>> k = place(A,b,polos)
k =
```

V. J. S. Leite

-11/3

Controle Moderno

-103/12

-13/3

Escolha dos pólos

- Pólos rápidos (parte real muito negativa) leva a sinais de controle grandes.
 - ⇒ pode ocorrer saturação.
- Pólos lentos (próximos à origem) serão dominantes.
 - ⇒ Sistema terá resposta lenta.
- Parte imaginária com módulo elevado: maior overshoot.

Escolha dos pólos

- Pólos rápidos (parte real muito negativa) leva a sinais de controle grandes.
 - ⇒ pode ocorrer saturação.
- Pólos lentos (próximos à origem) serão dominantes.
 - ⇒ Sistema terá resposta lenta.
- Parte imaginária com módulo elevado: maior overshoot.

Veja regiões da figura 8.3!

 \Rightarrow Observe em 8.3.(a) a região: interna ao círculo, dentro do cone e a esquerda de $-\sigma$: boa localização!

Comentários sobre Controle Ótimo

ullet Busca-se um controlador ${f k}$ tal que a função de custo

$$J = \int_0^\infty [\mathbf{x}'(t)\mathbf{Q}\mathbf{x}(t) + u'(t)\mathbf{R}u(t)]dt$$

seja minimizada.

- \Rightarrow ${f Q}$ pondera os desvios de ${f x}(t)$ em relação ao ponto de equilíbrio (${f x}={f 0}$).
- $\Rightarrow \mathbf{R}$ pondera o sinal de controle: quanto maior $\mathbf{R},$ menor a energia disponível.

Procedimento 8.1

Problema

Dado um par (\mathbf{A}, \mathbf{b}) controlável, $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^{n \times 1}$, encontre $\mathbf{k} \in \mathbb{R}^{1 \times n}$ tal que $(\mathbf{A} - \mathbf{b}\mathbf{k})$ possua qualquer conjunto de autovalores desejado que não contenha os autovalores de \mathbf{A} .

Procedimento:

- **1** Escolha $\mathbf{F} \in \mathbb{R}^{n \times n}$ com os autovalores desejados.
- ② Selecione qualquer $\bar{\mathbf{k}} \in \mathbb{R}^{1 \times n}$ tal que $(\mathbf{F}, \bar{\mathbf{k}})$ seja observável.
- $oldsymbol{3}$ Encontre o único $oldsymbol{T}$ solução de $oldsymbol{AT} oldsymbol{TF} = oldsymbol{b}ar{k}$

Procedimento 8.1: que bruxaria é essa?

- \bullet Do procedimento, vemos que $\bar{\mathbf{k}}=\mathbf{k}\mathbf{T}.$
- ullet Levando em $AT-TF=bar{k}$: (A-bk)T=TF ou

$$\mathbf{A} - \mathbf{b}\mathbf{k} = \mathbf{T}\mathbf{F}\mathbf{T}^{-1}$$

Portanto, trata-se de uma transformação de similaridade!

Exemplo no Matlab

```
A = [0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 5 0];
b = [0 1 0 -2]';
F = diag([-2 -3 -4 -5]);
kb = [1 1 1 1];
0 = obsv(F,kb);
rank(0)
T = lyap(A,-F,-b*kb)
k = kb*inv(T)
eig(A-b*k)
```

Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

Existência de T não-singular

Teorema 8.4

Se ${\bf A}$ e ${\bf F}$ não possuem autovalores em comum, então a solução ${\bf T}$ de ${\bf AT}-{\bf TF}={\bf b}\bar{\bf k}$ é não singular se e somente se $({\bf A},{\bf b})$ é controlável e $({\bf F},\bar{\bf k})$ é observável.

Escolha de F

- Dado o polinômio característico desejado, monte ${\bf F}$ na forma companheira e selecione $\bar{\bf k}=[1\ 0\ \cdots\ 0]$ que o par $({\bf F},\bar{\bf k})$ será observável.
- ullet Autovalores complexos: use ${f F}$ na forma modal.
 - \Rightarrow Exemplo: autovalores $\{\lambda_1, \alpha_1 \pm \beta_1 j, \alpha_2 \pm \beta_2 j\}$

$$\mathbf{F} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \alpha_1 & \beta_1 & 0 & 0 \\ 0 & -\beta_1 & \alpha_1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_2 & \beta_2 \\ 0 & 0 & 0 & -\beta_2 & \alpha_2 \end{bmatrix}$$

Escolha de $\bar{\mathbf{k}}$

- ullet possíveis (basta ter entrada não nula para cada bloco da diagonal):
 - $\bar{\mathbf{k}} = [1 \ 1 \ 0 \ 1 \ 0],$
 - \bullet $\bar{\mathbf{k}} = [1 \ 1 \ 0 \ 0 \ 1],$
 - $\bar{\mathbf{k}} = [1 \ 1 \ 1 \ 1 \ 1], \text{ etc.}$
- Use a função lyap(A,B,C) que resolve a equação

$$AT + TB + C = 0$$

Regulação

- Deficiência importante da realimentação de estados: não anula o erro entre a saída y(t) e a referência r(t).
- ⇒ Útil para regulação e nem tanto para seguimento de referência (controle servo).
- ⇒ Controle em regulação ⇒ levar o sistema de uma condição dada para a condição de equilíbrio, com um comportamento especificado.
 - \Rightarrow Regulação \Rightarrow r(t) = 0.

Controle Servo

- Mais complexo que o controle para regulação.
- Além de k deve-se ajustar um ganho p na lei de controle:

$$u(t) = pr(t) - \mathbf{kx}(t) \tag{22}$$

 \Rightarrow resulta em função de transferência equivalente a (13) com um ganho direto:

$$\hat{g}(s) = p \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_{n-1} s + \beta_n}{s^n + \bar{\alpha}_1 s^{n-1} + \dots + \bar{\alpha}_{n-1} s + \bar{\alpha}_n}$$
(23)

• Usando Teorema 5.2, pág. 123, para uma entrada em degrau com aplitude a, a saída do sistema será

$$y(t) = a\hat{g}(0) = p\frac{\beta_n}{\bar{\alpha}_n}$$

• Para y(t) = u(t) é necessário

$$\hat{g}(0) = p \frac{\beta_n}{\bar{\alpha}_n} = 1 \quad \Rightarrow \quad p = \frac{\bar{\alpha}_n}{\beta_n}$$

 \Rightarrow o que requer

 $\beta_n \neq 0 \implies \text{Sistema não possui zero na origem.}$

Resumindo...

Ajuste para entrada em degrau

Dado $(\mathbf{A}, \mathbf{b}, \mathbf{c})$, se (\mathbf{A}, \mathbf{b}) é controlável então faz-se a realimentação de estados para ajustar os autovalores da malha fechada $(\mathbf{A} - \mathbf{b}\mathbf{k})$ em qualquer posição desejada de forma a prover regulação ao sistema.

Resumindo...

Ajuste para entrada em degrau

Dado $(\mathbf{A},\mathbf{b},\mathbf{c})$, se (\mathbf{A},\mathbf{b}) é controlável então faz-se a realimentação de estados para ajustar os autovalores da malha fechada $(\mathbf{A}-\mathbf{b}\mathbf{k})$ em qualquer posição desejada de forma a prover regulação ao sistema. Em seguida coloca-se um ganho direto $p=\frac{\bar{\alpha}_n}{\beta_n}$ como em (23), provendo seguimento de referência em degrau (de qualquer amplitude).

Robustez no seguimento de referência

- Solução para entradas em degrau (inclusão do ganho de caminho direto) não é adequado se os parâmetros da planta mudam ou não são bem conhecidos.
 - ⇒ Neste caso: falta robustez ao seguimento de referência.
- \Rightarrow Inclui caso em que uma perturbação constante w(t) com amplitude desconhecida pode afetar a saída da planta (efeito de carga).

 Alternativa: Realimentação unitária de saída com integração do sinal de erro

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) + \mathbf{b}w(t) \tag{24}$$

$$y(t) = \mathbf{cx}(t) \tag{25}$$

Diagrama

Figura: Topologia para controle servo.

Do diagrama temos:

$$\dot{x}_a = r - y = r - \mathbf{c}\mathbf{x}$$

$$u(t) = v(t) - \mathbf{k}\mathbf{x}(t) = \underbrace{k_a x_a}_{v(t)} - \mathbf{k}\mathbf{x} = \begin{bmatrix} -\mathbf{k} & k_a \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_a \end{bmatrix}$$

Definindo:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ x_a \end{bmatrix}; \quad \tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} - \mathbf{b}\mathbf{k} & \mathbf{b}k_a \\ -\mathbf{c} & \mathbf{0} \end{bmatrix}; \quad \tilde{\mathbf{b}} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}; \quad \mathbf{e} = \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix}$$
$$\tilde{\mathbf{c}} = \begin{bmatrix} \mathbf{c} & 0 \end{bmatrix}$$

Assim,

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{x}_a \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{b}\mathbf{k} & \mathbf{b}k_a \\ -\mathbf{c} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_a \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r + \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix} w$$
$$y = \begin{bmatrix} \mathbf{c} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_a \end{bmatrix}$$

Levando em (24)–(25):

$$\left. \begin{array}{l} \tilde{\mathbf{x}} = \tilde{\mathbf{A}} \tilde{\mathbf{x}} + \tilde{\mathbf{b}} r + \mathbf{e} w \\ y = \tilde{\mathbf{c}} \tilde{\mathbf{x}} \end{array} \right\}$$

V. J. S. Leite

Controle Moderno

Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

Teorema 8.5

Se (\mathbf{A},\mathbf{b}) é controlável e se $\hat{g}(s)=\mathbf{c}(s\mathbf{I}-\mathbf{A})^{-1}\mathbf{b}$ não possui zeros em s=0, então todos os autovalores de $\tilde{\mathbf{A}}$ podem ser alocados arbitrariamente selecionando o ganho $[-\mathbf{k}\ k_a]$

Prova

- Assume-se que $(\mathbf{A}, \mathbf{b}, \mathbf{c})$ pode ser colocado na forma canônica controlável (11)–(12) e sua função de transferência é dada por (13).
- Sem zeros em $s = 0 \Rightarrow \beta_n \neq 0$.
 - ⇒ Mostra-se que o par

$$\left(\left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ -\mathbf{c} & 0 \end{array} \right], \left[\begin{array}{c} \mathbf{b} \\ 0 \end{array} \right] \right) \tag{26}$$

é controlável $\Leftrightarrow \beta_n \neq 0$.

- Pode-se mostrar que a matriz de controlabilidade do par (26): possui determinante $-\beta_n$ (veja pág. 245 para n=4).
- Conclui-se que, se (\mathbf{A}, \mathbf{b}) é controlável e $\hat{g}(s)$ não possui zero em s = 0, então o par (26) é controlável.
- \Rightarrow Segue-se que, do Teorema 8.3, todos os autovalores de $\tilde{\mathbf{A}}$ podem ser arbitrariamente escolhidos por uma adequada seleção de $[-\mathbf{k}\ k_a]$

Estabilização

- Suponha que a equação de estados não seja controlável.
- A equação de estados pode, então, ser transformada em

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{bmatrix} = \underbrace{\begin{bmatrix} \bar{\mathbf{A}}_c & \bar{\mathbf{A}}_{12} \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix}}_{\tilde{A}_c} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{b}}_c \\ \mathbf{0} \end{bmatrix} u \tag{27}$$

em que $(\bar{\mathbf{A}}_c, \bar{\mathbf{b}}_c)$ é controlável.

• Como $\tilde{\bf A}_c$ é bloco triangular, seus autovalores são dados pelos de $\bar{\bf A}_c$ e de $\bar{\bf A}_{\bar c}$.

Introduzindo a realimentação de estados:

$$u = r - \mathbf{k}\mathbf{x} = r - \bar{\mathbf{k}}\bar{\mathbf{x}} = r - \begin{bmatrix} \bar{\mathbf{k}}_1 & \bar{\mathbf{k}}_2 \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix}$$

resulta em

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}_c \\ \dot{\bar{\mathbf{x}}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}}_c - \bar{\mathbf{b}}_c \bar{\mathbf{k}}_1 & \bar{\mathbf{A}}_{12} - \bar{\mathbf{b}}_c \bar{\mathbf{k}}_2 \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_c \\ \bar{\mathbf{x}}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{b}}_c \\ \mathbf{0} \end{bmatrix} r \quad (28)$$

 $\Rightarrow \bar{\mathbf{A}}_{\bar{c}}$ não é afetada pela realimentação \Rightarrow controlabilidade de (\mathbf{A},\mathbf{b}) é *necessária e suficiente* para que seja possível alocar os autovalores de $(\mathbf{A}-\mathbf{b}\mathbf{k})$ em quaisquer posições.

Colocação do Problema

• Dado o sistema:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{29}$$

$$y = \mathbf{c}\mathbf{x} \tag{30}$$

⇒ Matrizes A, b e c são conhecidas.

Colocação do Problema

• Dado o sistema:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{29}$$

$$y = \mathbf{c}\mathbf{x} \tag{30}$$

 \Rightarrow Matrizes A, b e c são conhecidas.

O problema

Estimar x a partir de u e y com o conhecimento de A, b e c.

Colocação do Problema

• Dado o sistema:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{29}$$

$$y = \mathbf{c}\mathbf{x} \tag{30}$$

 \Rightarrow Matrizes A, b e c são conhecidas.

O problema

Estimar x a partir de u e y com o conhecimento de A, b e c.

• Pode-se duplicar o sistema orignal:

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u \tag{31}$$

em que $\hat{\mathbf{x}}$ é uma estimativa de $\hat{\mathbf{x}}$

Observador em malha aberta

Figura: Estimador de estados em malha aberta.

- Neste caso tem-se o estimador em malha aberta da Fig. 4.
- \Rightarrow Se o sistema e o observador possuem as mesmas condições iniciais, $\mathbf{x}(t) = \hat{\mathbf{x}}(t)$, $\forall t \geq 0$.
- \Rightarrow Se (29)–(30) é observável, pode-se estimar o estado inicial em um dado instante.

- Neste caso tem-se o estimador em malha aberta da Fig. 4.
- \Rightarrow Se o sistema e o observador possuem as mesmas condições iniciais, $\mathbf{x}(t) = \hat{\mathbf{x}}(t)$, $\forall t \geq 0$.
- \Rightarrow Se (29)–(30) é observável, pode-se estimar o estado inicial em um dado instante.
- Desvantagens:
 - Estado inicial precisa ser calculado a cada uso do observador.
 - ② Se algum autovalor de $\bf A$ possui parte real positiva, então pequenos desvios de $\hat{\bf x}(t)$ em relação a $\bf x(t)$ implicará em erros crescentes com o tempo.

Uma alternativa...

- Usar a diferença entre a saídas real (y(t)) e estimada $(\hat{y}(t))$ para corrigir os estados estimados.
- Correção de estados proporcional a $y(t) \hat{y}(t)$:

$$\frac{\mathsf{Corre} \hat{\mathsf{gao}}(\mathsf{t})}{\mathsf{Corre} \hat{\mathsf{gao}}(\mathsf{t})} = \mathbf{L}(y(t) - \hat{y}(t)) = \mathbf{L}(y(t) - \underbrace{\mathbf{c} \hat{\mathbf{x}}(t)}_{\hat{y}(t)})$$

Nova equação do estimador

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{L}(y - \mathbf{c}\hat{\mathbf{x}}) \tag{32}$$

V. J. S. Leite

Realimentação de $y - \hat{y}$

Figura: Estimador de estados em malha fechada.

Comportamento do erro de estimação

- Seja $\mathbf{e}(t) = \mathbf{x}(t) \hat{\mathbf{x}}(t)$ o erro de estimação.
 - ⇒ Derivando:

$$\dot{\mathbf{e}}(t) = \dot{\mathbf{x}} - \dot{\hat{\mathbf{x}}}
= \mathbf{A}\mathbf{x} + \mathbf{b}u - (\mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{L}(y - \mathbf{c}\hat{\mathbf{x}}))
= (\mathbf{A} - \mathbf{L}\mathbf{c})\mathbf{x} - (\mathbf{A} - \mathbf{L}\mathbf{c})\hat{\mathbf{x}}
= (\mathbf{A} - \mathbf{L}\mathbf{c})(\mathbf{x} - \hat{\mathbf{x}})
= (\mathbf{A} - \mathbf{L}\mathbf{c})\mathbf{e}$$
(33)

 \Rightarrow A taxa com a qual $\mathbf{e}(t)$ aproxima-se de zero pode ser arbitrariamente escolhida ajustando-se os autovalores de $(\mathbf{A} - \mathbf{L}\mathbf{c})$.

Introdução Realimentação de estados Regulação e Seguimento de Referência Realimentação com estados estimados Realimentação de Estados Estimados

• Se todos os autovalores de $(\mathbf{A} - \mathbf{L}\mathbf{c})$ possuem parte real negativa e menor que $-\sigma$, então todos os elementos de $\mathbf{e}(t)$ convergirão para zero em taxas mais rápidas que $e^{-\sigma t}$.

- Se todos os autovalores de $(\mathbf{A} \mathbf{L}\mathbf{c})$ possuem parte real negativa e menor que $-\sigma$, então todos os elementos de $\mathbf{e}(t)$ convergirão para zero em taxas mais rápidas que $e^{-\sigma t}$.
- ullet Portanto, a escolha adequada de ${f L}$ dispensa o cálculo de ${f x}(t_0)$
- \Rightarrow mesmo com erro inicial grande, rapidamente $\hat{\mathbf{x}}(t) \longrightarrow \mathbf{x}(t)$.

- Se todos os autovalores de $(\mathbf{A} \mathbf{L}\mathbf{c})$ possuem parte real negativa e menor que $-\sigma$, então todos os elementos de $\mathbf{e}(t)$ convergirão para zero em taxas mais rápidas que $e^{-\sigma t}$.
- ullet Portanto, a escolha adequada de ${f L}$ dispensa o cálculo de ${f x}(t_0)$
- \Rightarrow mesmo com erro inicial grande, rapidamente $\hat{\mathbf{x}}(t) \longrightarrow \mathbf{x}(t)$.
- ullet Quais autovalores escolher para $({f A}-{f L}{f c})$?

- Quais autovalores escolher para (A Lc)?
- ⇒ Mesma região discutida no caso de realimentação de estados;
- ⇒ Se o estimador é usado para realimentação de estados ⇒ seus autovalores devem ser mais rápidos que os da malha fechada;
- ⇒ Limitação: quanto mais rápido o estimador, maiores serão os problemas devidos a saturação e <u>ruído</u>.

Se existe perturbação...

Considere o sistema

$$\begin{vmatrix}
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) + \mathbf{E}w(t) \\
y(t) = \mathbf{c}\mathbf{x}(t) + \mathbf{d}u(t) + \mathbf{F}w(t)
\end{vmatrix}$$
(34)

Se existe perturbação...

Considere o sistema

$$\begin{vmatrix}
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) + \mathbf{E}w(t) \\
y(t) = \mathbf{c}\mathbf{x}(t) + \mathbf{d}u(t) + \mathbf{F}w(t)
\end{vmatrix}$$
(34)

⇒ O observador é dado por:

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathsf{Corre}\hat{\mathsf{gao}}$$
 (35)

Correção =
$$\mathbf{L}(y - \hat{y}) = \mathbf{L}[y - (\mathbf{c}\hat{\mathbf{x}} + \mathbf{d}u)]$$
 (36)

$$= \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{L}y - \mathbf{L}c\hat{\mathbf{x}} - \mathbf{L}du \tag{37}$$

$$= (\mathbf{A} - \mathbf{L}\mathbf{c})\hat{\mathbf{x}} + (\mathbf{b} - \mathbf{L}\mathbf{d})u + \mathbf{L}y$$
 (38)

Se existe perturbação...

Considere o sistema

$$\begin{vmatrix}
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) + \mathbf{E}w(t) \\
y(t) = \mathbf{c}\mathbf{x}(t) + \mathbf{d}u(t) + \mathbf{F}w(t)
\end{vmatrix}$$
(34)

⇒ O observador é dado por:

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathsf{Corre}\hat{\mathsf{gao}}$$
 (35)

Correção =
$$\mathbf{L}(y - \hat{y}) = \mathbf{L}[y - (\mathbf{c}\hat{\mathbf{x}} + \mathbf{d}u)]$$
 (36)

$$= \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{L}y - \mathbf{L}c\hat{\mathbf{x}} - \mathbf{L}du \tag{37}$$

$$= (\mathbf{A} - \mathbf{L}\mathbf{c})\hat{\mathbf{x}} + (\mathbf{b} - \mathbf{L}\mathbf{d})u + \mathbf{L}y \tag{38}$$

$$\Rightarrow$$
 Usando (38), (34) e $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$:

$$\dot{\mathbf{e}}(t) = (\mathbf{A} - \mathbf{L}\mathbf{c})\mathbf{e}(t) + (\mathbf{E} - \mathbf{L}\mathbf{F})w(t)$$
(39)

Procedimento 8.01

Teorema 8.03

Considere o par (\mathbf{A}, \mathbf{c}) . Todos os autovalores de $(\mathbf{A} - \mathbf{L}\mathbf{c})$ podem ser arbitrariamente escolhidos selecionando-se um vetor real \mathbf{L} se e somente se (\mathbf{A}, \mathbf{c}) (ou $(\mathbf{A}', \mathbf{c}')$) é observável (controlável).

Procedimento 8.01

Teorema 8.03

Considere o par (\mathbf{A}, \mathbf{c}) . Todos os autovalores de $(\mathbf{A} - \mathbf{L}\mathbf{c})$ podem ser arbitrariamente escolhidos selecionando-se um vetor real \mathbf{L} se e somente se (\mathbf{A}, \mathbf{c}) (ou $(\mathbf{A}', \mathbf{c}')$) é observável (controlável).

- Procedimento 8.01
 - **1** Escolha $\mathbf{F} \in \mathbb{R}^{n \times n}$ com os autovalores desejados.
 - **②** Selecione qualquer $\mathbf{L} \in \mathbb{R}^{n \times 1}$ tal que (\mathbf{F}, \mathbf{L}) seja controlável.
 - **3** Encontre o único T solução de TA FT = Lc. T é não singular, conforme Teorema 8.4, pág. 240.
 - Uma estimativa de x é gerada por

$$\dot{\mathbf{z}} = \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{L}y \tag{40}$$

$$\hat{\mathbf{x}} = \mathbf{T}^{-1}\mathbf{z} \tag{41}$$

V. J. S. Leite Controle Moderno

Seja o erro dado por

$$\tilde{\mathbf{e}} = \mathbf{x} - \hat{\mathbf{x}} \Rightarrow \mathbf{T}\mathbf{e} = \mathbf{T}\mathbf{x} - \underbrace{\mathbf{T}\hat{\mathbf{x}}}_{\mathbf{z}} \Rightarrow \tilde{\mathbf{e}} = \mathbf{T}\mathbf{x} - \mathbf{z}$$

Derivando:

$$\dot{\tilde{\mathbf{e}}} = \mathbf{T}\dot{\mathbf{x}} - \dot{\mathbf{z}}$$

Usando: $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$ e, da equação de Silvester (Lyapunov), $\mathbf{T}\mathbf{A} = \mathbf{L}\mathbf{c} + \mathbf{F}\mathbf{T}$:

$$\dot{\tilde{\mathbf{e}}} = \underbrace{\mathbf{T}\mathbf{A}\mathbf{x} + \mathbf{T}\mathbf{b}u}_{\mathbf{T}\dot{\mathbf{x}}} \underbrace{-(\mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{L}\underbrace{\mathbf{c}\mathbf{x}}^{g})}_{\dot{\mathbf{z}}}$$

$$= (\mathbf{F}\mathbf{T} + \mathbf{L}\mathbf{c})\mathbf{x} - (\mathbf{F}\mathbf{z} + \mathbf{L}\mathbf{c}\mathbf{x})$$

$$= \mathbf{F}\underbrace{(\mathbf{T}\mathbf{x} - \mathbf{z})}_{\tilde{\mathbf{e}}}$$

$$= \mathbf{F}\tilde{\mathbf{e}}$$

Controle Moderno

(42)

- \bullet Se ${\bf F}$ é estável, $\lim_{t\to\infty}{\bf e}(t)={\bf 0}$
 - \Rightarrow portanto $\mathbf{z}(t)$ aproxima-se de $\mathbf{T}\mathbf{x}(t)$
- \Rightarrow de forma equivalente: $\mathbf{T}\hat{\mathbf{x}}(t)$ aproxima-se de $\mathbf{T}\mathbf{x}(t)$ \Leftrightarrow $\hat{\mathbf{x}}(t) \longrightarrow \mathbf{x}(t)$
- \bullet Toda a discussão feita sobre a escolha de F e $\bar{\mathbf{k}}$ (aqui $\mathbf{L})$ aplica-se novamente.

Estimador de ordem reduzida

Note que o sistema² (29)-(30) pode ser levado à forma canônica observável:

$$\dot{\mathbf{x}} = \mathbf{A}'\mathbf{x} + \mathbf{c}'u = \begin{bmatrix} -\alpha_1 & 1 & 0 & 0 \\ -\alpha_2 & 0 & 1 & 0 \\ -\alpha_3 & 0 & 0 & 1 \\ -\alpha_4 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} u \quad (43)$$

$$y = \mathbf{b}'\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}$$

$$y = \mathbf{b} \mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}$$

- \Rightarrow veja slide eq. (7.14) à pág. 188 do Chen.
- Neste caso, a saída y é o estado x_1 . Logo, precisam ser estimados n-1 estados.

²Agui foi usado n=4. Vale para qualquer n.

Procedimento para Estimador de Ordem Reduzida

- Procedimento 8.R1
 - **①** Escolha $\mathbf{F} \in \mathbb{R}^{n-1 \times n-1}$ com os autovalores desejados.
 - Selecione qualquer $\mathbf{L} \in \mathbb{R}^{n-1 \times 1}$ tal que (\mathbf{F}, \mathbf{L}) seja controlável.
 - **3** Encontre o único $\mathbf T$ solução de $\mathbf T\mathbf A \mathbf F\mathbf T = \mathbf L\mathbf c$. Note que $\mathbf T \in \mathbb R^{n-1 \times n}$.
 - Uma estimativa de x é gerada por

$$\dot{\mathbf{z}} = \mathbf{F}\mathbf{z} + \mathbf{T}\mathbf{b}u + \mathbf{L}y \tag{44}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{T} \end{bmatrix}^{-1} \begin{bmatrix} y \\ \mathbf{z} \end{bmatrix} \tag{45}$$

que é um sistema de dimensão n-1.

Seja o sistema em malha aberta

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{46}$$

$$y = \mathbf{c}\mathbf{x} \tag{47}$$

tal que (\mathbf{A}, \mathbf{c}) é observável e (\mathbf{A}, \mathbf{b}) é controlável.

Seja a lei de controle dada por

$$u = r - \mathbf{k}\hat{\mathbf{x}} \tag{48}$$

em que o estimador tem dinâmica dada por

$$\dot{\hat{\mathbf{x}}} = (\mathbf{A} - \mathbf{L}\mathbf{c})\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{L}y \tag{49}$$

resulta no sistema indicado na figura 6.

Observador em malha aberta

Figura: Realimentação de estados estimados.

• Levando a lei de controle (48) em (46)-(47) e (49) resulta em

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{b}\mathbf{k}\hat{\mathbf{x}} + \mathbf{b}r \tag{50}$$

$$\dot{\hat{\mathbf{x}}} = (\mathbf{A} - \mathbf{L}\mathbf{c})\hat{\mathbf{x}} + \mathbf{b}(r - \mathbf{k}\hat{\mathbf{x}}) + \mathbf{L}\mathbf{c}\mathbf{x}$$
 (51)

⇒ ou ainda

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\hat{\mathbf{x}}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{b}\mathbf{k} \\ \mathbf{L}\mathbf{c} & \mathbf{A} - \mathbf{L}\mathbf{c} - \mathbf{b}\mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix} r \tag{52}$$

$$y = \begin{bmatrix} \mathbf{c} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix} \tag{53}$$

Seja a transformação

$$\left[\begin{array}{c} \mathbf{x} \\ \mathbf{e} \end{array}\right] = \left[\begin{array}{c} \mathbf{x} \\ \mathbf{x} - \hat{\mathbf{x}} \end{array}\right] = \left[\begin{array}{c} \mathbf{I} & \mathbf{0} \\ \mathbf{I} & -\mathbf{I} \end{array}\right] \left[\begin{array}{c} \mathbf{x} \\ \hat{\mathbf{x}} \end{array}\right] = \mathbf{P} \left[\begin{array}{c} \mathbf{x} \\ \hat{\mathbf{x}} \end{array}\right]$$

• Fazendo $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ em (52)-(53):

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{b}\mathbf{k} & \mathbf{b}\mathbf{k} \\ \mathbf{0} & \mathbf{A} - \mathbf{L}\mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} + \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} r \qquad (54)$$

$$y = \begin{bmatrix} \mathbf{c} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} \tag{55}$$

V. J. S. Leite

Portanto...

- Matriz bloco triangular em (54) assegura independência de projeto para o estimador e controlador.
 - ⇒ Propriedade da separação
- \Rightarrow Sistema em malha fechada possui autovalores do controlador $(\mathbf{A} \mathbf{bk})$ e do estimador $(\mathbf{A} \mathbf{Lc})$.
 - ⇒ Equação (54) não é controlável!
 - ⇒ Função de transferência é dada por³

$$\hat{g}_f = \mathbf{c}(s\mathbf{I} - \mathbf{A} + \bar{\mathbf{b}}\mathbf{k})^{-1}\mathbf{b}$$

⇒ Não há diferença se o estimador é empregado ou não: ele é completamente cancelado

³Veja Teorema 6.6, pág. 159

V. J. S. Leite