

Universidad Tecnológica Nacional

Curso 3R2

MEDIOS DE ENLACE (Ing. Contreras, Luis Candelario)

Practico de Laboratorio N°2: Adaptación en lineas de transmisión con un stub

Autores:	Legajo:
Bianchini, Bruno	63070
Fichetti P. Tomás	62281
Guizzo, José	62165
Bosse, Esteban A.	62930

${\rm \acute{I}ndice}$

1.	Marco Teórico
2.	Materiales Requeridos
3.	Procedimiento
	3.1. Actividad N°1
	3.2. Actividad N°2
	3.3. Actividad N°3
	3.4. Actividad N°4
	3.5. Actividad N°5
	3.6. Actividad N°6
	3.7. Actividad N°7
	3.8. Actividad N°8
	3.9. Actividad N°9
	3.10. Actividad N°10
	3.11. Actividad N°11
4.	Cuestionario

1. Marco Teórico

Se tiene una fuente de señal conectada a una línea de transmisión de impedancia característica $Z_O = 50\Omega$ la que está terminada en una impedancia de carga Z_L .

Se desea adaptar la impedancia de carga Z_L a la impedancia característica de la línea $Z_O = 50\Omega$, con un **stub paralelo** terminado en circuito abierto.

La frecuencia del generador es: f = 410MHz. Considerar que la velocidad de propagación en el cable coaxil es $v_P = 0.66 * C$ Por lo tanto, la longitud de onda será: $\lambda = \frac{v_P}{f}\lambda = \frac{v_P}{f}$

Las impedancias de carga Z_L valen:

- $Z_{L1} = 17 j5, 3\Omega$
- $Z_{L2} = 50\Omega$

2. Materiales Requeridos

Los elementos utilizados en siguiente práctico son:

- Generador de onda cuadrada $(f = 100KHz; V = 3V_{pp})$
- Vatímetro marca BIRD.
- Tapón de medición para vatímetro BIRD: f = 200 500MHz; P = 50W
- Fuente de alimentación 12V.
- Línea de transmisión $Z_O = 50\Omega$.
- Conectores varios: BNC hembra-hembra, BNC triple hembra (T), UHF hembra
 N macho.
- Impedancias de carga $(Z_{L1} \ y \ Z_{L2})$.
- Cables varios (numerados 10, 11, 12) para interconexión (va instalados).

3. Procedimiento

3.1. Actividad $N^{\circ}1$

Identificar el esquema del punto 4.3 (ya está armado en el LdC).

3.2. Actividad $N^{\circ}2$

Conectar la impedancia de carga Z_{L1} al vatímetro.

3.3. Actividad N°3

Conectar el generador de señal a la frecuencia de trabajo f = 410MHz.

3.4. Actividad N°4

Con el vatímetro, verificar la existencia de potencia P_i entregada por el transmisor (debe indicar LOW) a la impedancia de carga Z_L .

3.5. Actividad N°5

Medir la potencia incidente P_i y la potencia reflejada P_r . Para ello se debe girar el tapón de medición del Vatímetro BIRD hacia la carga (P_i) o hacia el generador (P_r) , según indique la flecha en la parte superior del tapón de medición.

En Z_{L1} :

 $P_i: 4 P_r: 0.6$

En Z_{L2} :

 $P_i: 3.2 P_r: 0.6$

3.6. Actividad $N^{\circ}6$

Calcular el coeficiente de reflexión $\Gamma 1$ y la Relación de Onda Estacionaria sin ningún stub (ROE1ss) conectado a la línea de transmisión.

En Z_{L1} :

 $\Gamma1_{ss}:0,194\ ROE1ss:1,48$

En Z_{L2} :

 $\Gamma 1_{ss} : 0,2421$

ROE1ss: 1,64

3.7. Actividad $N^{\circ}7$

Conectar el adaptador BNC tipo T luego del vatímetro.

3.8. Actividad N°8

Conectar la impedancia de carga mediante el segmento de línea calculado y en el extremo libre, conectar el stub adecuado de longitud L.

3.9. Actividad N°9

Medir la potencia incidente P_i y la potencia reflejada P_r .

En Z_{L1} :

 $P_i: 4,4 P_r: 0,1$

En Z_{L2} :

 $P_i: 3,2 P_r: 0$

3.10. Actividad $N^{\circ}10$

Calcular el coeficiente de reflexión $\Gamma 1$ y la Relación de Onda Estacionaria con el stub (ROE1cs) conectado a la línea de transmisión. En Z_{L1} :

 $\Gamma 1_{cs} : 0 \ ROE1ss : 1$

En Z_{L2} :

 $\Gamma 2_{cs}: 0\ ROE2ss: 1$

3.11. Actividad N°11

Repetir desde el punto 2) para la carga Z_{L2} .

Están resueltos al final de cada actividad.

4. Cuestionario

- ¿Qué implica que la línea de transmisión esté adaptada?
 - Implica que no va a existir onda reflejada en la linea de transmisión, esto hace que la carga pueda aprovechar toda la potencia del generador.
- ¿Qué resultado se obtendría si el stub para Z_{L1} fuera más largo?
 - Existiría una onda estacionaria reflejada, dejando la linea de transmisión no adaptada y produce un movimiento en sentido horario en el ábaco de smith en el largo del stub.
- ¿Qué resultado se obtendría si el stub para Z_{L1} fuera más corto?
 - Produce el mismo fenómeno que la linea mas corta pero esta hace que nos movamos en el ábaco en sentido anti-horario.
- ¿Por qué para ZL2 resulta $\Gamma 2 = 0$ y ROE2 = 1?
 - Esto sucede porque la linea se encuentra perfectamente adaptada, no habiendo onda reflejada y por ende siendo el ROE2 = 1.