3A Process Analysis and Documentation

Process maps

Documentation

Process Maps

- Flow chart and process map are used interchangeably
- Process mapping is the process of creating a diagram; the diagram itself is called a flow chart.

Process Map - Elements

Process Map - Elements

Process Map - Hand drawn Example

Process Map - Hand drawn Example

Process Map - Swim Lane

Suppliers	Inputs	Process	Outputs	Customers

SIPOC

Documentation

Procedures specify what is done, when, where and why

Work Instructions specify the details such as how and who.

3B Probability And Statistics

- Basic probability concepts
- Central limit theorem

3B-1 Basic Probability Concepts

- Independent events
- Mutually exclusive events
- Multiplication rule
- Permutations & combinations

Classic Model

Number of outcomes in which the event occurs

Total Number of possible outcomes of an experiment

Relative Frequency of Occurrence

Number of times an event occurred

Total number of opportunities for an event to occur

Experiment/Trial: Some thing done with an expectation of result.

Event or Outcome: Result of experiment

❖ Sample Space: A sample space of an experiment is the set of all possible results of that random experiment.

 $\{1, 2, 3, 4, 5, 6\}$

Sample space: In roll of two dices

$$\{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \}$$

Probability

❖ Venn diagram:

Event A: Probability of getting 1 or 4 in the roll of a dice.

Probability

Venn diagram:

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event B: Probability of getting 2, 3, 5 or 6

Venn diagram:

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event B: Probability of getting 2, 3, 5 or 6

Mutually Exclusive Events: When two events cannot occur at the same time

❖ Venn diagram:

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event C: Probability of getting 1, 2, 3, 5 or 6

Probability

Union:

Probability that events A <u>or</u> B occur P(A U B)

$$\{1, 2, 3, 4, 5, 6\}$$

Intersection:

Probability that events A and B occur

$$P(A \cap B) \qquad \{1\}$$

Mutually Exclusive Events: When two events cannot occur at the same time

Independent Events: The occurrence of Event A does not change the probability of Event B

Complementary Events: The probability that Event A will <u>NOT</u> occur is denoted by P(A').

* Rule of Multiplication:

The probability that Events A <u>and</u> B both occur =

Probability that Event A occurs

X

Probability that Event B occurs, given that A has occurred

$$P(A \cap B) = P(A) P(B|A)$$

* Rule of Multiplication:

The probability that Events A <u>and</u> B both occur =

Probability that Event A occurs

X

Probability that Event B occurs, given that A has occurred

$$P(A \cap B) = P(A) P(B|A)$$

❖ In two rolls of dice what is the probability of getting 6 in both? (independent event)

* Rule of Multiplication:

The probability that Events A <u>and</u> B both occur =

Probability that Event A occurs

X

Probability that Event B occurs, given that A has occurred

$$P(A \cap B) = P(A) P(B|A)$$

❖ There are 10 candies in the plate (5 Green, 2 Yellow, 2 Orange and 1 Red). If I pick 2 random ones, what is the probability of getting both Yellow?

Rule of Addition

The probability that Event A <u>or</u> Event B occurs

=

Probability that Event A occurs

+

Probability that Event B occurs

_

Probability that both Events A and B occur

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

❖ Factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n

$$5! = 5 \times 4 \times 3 \times 2 \times 1$$

$$1! = 1$$

$$0! = 1$$

Factorial

❖ Permutation: A set of objects in which position (or order) is important.

Combination: A set of objects in which position (or order) is NOT important.

Permutations Combinations

Permutation: With repetition

- In case of the lock, total permutations are
- 4 10 x 10 x 10 x 10 = 10,000

 n^{r}

Excel Formula = PERMUTATIONA(10,4)

Permutations With repetition

Permutation: Without repetition

How many ways we can select 3 players out of 5. The first selected becomes the captain, second the vice-captain and third the treasurer.

$$n_{P_r} = \frac{n!}{(n-r)!}$$

$$\mathbf{5}_{P_3} = \frac{5!}{(5-3)!} = 5 \times 4 \times 3 = 60$$

Permutations Without repetition

Combination: Without repetition:

How many ways we can select 3 players out of 5

$$n_{C_r} = \frac{n!}{(n-r)! \, r!}$$

$$\mathbf{5}_{C_3} = \frac{5!}{(5-3)! \, 3!}$$

$$\mathbf{5}_{C_3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$

Excel Formula = COMBIN(5,3)

Combinations Without repetition

Combination: With repetition:

e.g. In the store there are 5 varieties of juice bottles. You want to buy 3 bottles. How many possible combinations you can buy?

Without repetition:
$$n_{C_r} = \frac{n!}{(n-r)! \, r!}$$

$$\underline{(r+n-1)!}$$

$$r!(n-1)!$$

$$\frac{(5+3-1)!}{3!(5-1)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

Excel Formula = COMBINA(5,3)

Combinations With repetition

With repetition

nr

Without repetition

Perr	nutation:
------	-----------

Order is important.

MS Excel Formula >> | PERN

$$n_{P_r} = \frac{n!}{(n-r)!}$$

PERMUTATIONA(n,r)

PERMUT(n,r)

Combination:

Order is NOT important.

$$\frac{(r+n-1)!}{r!(n-1)!}$$

 $n_{C_r} = \frac{n!}{(n-r)! \, r!}$

MS Excel Formula >>

COMBINA(n,r)

COMBIN(n,r)

3B Probability And Statistics

Basic probability concepts

Central limit theorem

SAMPLING

SAMPLING - CONFIDENCE INTERVAL

SAMPLING - HYPOTHESIS TEST

Xbar Control Limits	Range Control Limits		
Control limits $ar x \pm A_2 ar R$	Upper $D_4ar{R}$ control limit Lower $D_3ar{R}$ control limit		

Sample Size = m	A_2	A_3	d_2	D_3	D_4	B_3	B_4
2	1.880	2.659	1.128	0	3.267	0	3.267
3	1.023	1.954	1.693	0	2.574	0	2.568
4	0.729	1.628	2.059	0	2.282	0	2.266
5	0.577	1.427	2.326	0	2.114	0	2.089

CONTROL CHARTS

For almost all populations, the sampling distribution of the mean can be approximated closely by a normal distribution, provided the sample size is sufficiently large.

Central Limit Theorem

• If a variable has a mean of μ and the variance σ^2 , as the sample size n increases, the sample mean approaches a normal distribution with mean $\mu_{\bar{x}}$ and variance $\sigma_{\bar{x}}^2$

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\overline{x}}^2 = \frac{\sigma_x^2}{n}$$

$$\sigma_{\bar{\chi}} = \frac{\sigma_{\chi}}{\sqrt{n}}$$

Central Limit Theorem

CENTRAL LIMIT THEOREM

- Standard deviation of the sampling distribution of the sample mean
 - Called "standard error of the mean"

$$\sigma_{\bar{\chi}} = \frac{\sigma_{\chi}}{\sqrt{n}}$$

3G Statistical Distributions

Normal distribution Binominal distribution Poisson distribution Chi square distribution Student's t distribution

DISCRETE

QG

Normal distribution

Binominal distribution

Chi square distribution

Poisson distribution

Student's t distribution

F distribution

CONTINUOUS vs DISCRETE DATA

❖ If you flip a coin 2 times, what is the probability of getting 1 head?

Н	Н
Н	Т
Т	Н
Т	Т

❖ If you flip a coin 2 times, what is the probability of getting 1 head?

❖ If you flip a coin 4 times, what is the probability of getting 1 head?

Н	Н	Н	Н
Н	Н	Н	T
Н	Н	Т	Т
Н	Т	Т	Т
Т	Н	Н	Н
Т	Н	Н	T
Т	Н	Т	Т
Т	Т	Т	Т
			••

❖ If you flip a coin 4 times, what is the probability of getting 1 head?

Н	Н	Н	Н
Н	Н	Н	Т
Н	Н	Т	Т
Н	Т	T	Т
Т	Н	Н	Н
Т	Н	Н	Т
Т	Н	Т	Т
Т	Т	T	Т

- **❖ A binomial experiment** has the following properties:
 - The experiment consists of *n* repeated trials.
 - Each trial can result in just two possible outcomes. We call one of these outcomes a success and the other, a failure.
 - The probability of success, denoted by *p*, is the same on every trial.
 - The trials are independent; that is, the outcome on one trial does not affect the outcome on other trials.

$$P(x) = n_{C_x} \cdot p^x \cdot (1-p)^{n-x}$$

$$P(x) = \frac{n!}{x! (n-x)!} p^x \cdot (1-p)^{n-x}$$

- * x: The number of successes that result from the binomial experiment.
- n: The number of trials in the binomial experiment.
- p: The probability of success on an individual trial.
- ❖ P(x): Binomial probability the probability that an n-trial binomial experiment results in exactly x successes, when the probability of success on an individual trial is p.

❖ If you flip a coin 4 times, what is the probability of getting 1 head?

$$P(x) = \frac{n!}{x! (n-x)!} \cdot p^{x} \cdot (1-p)^{n-x}$$

$$P(1) = \frac{4!}{1!(4-1)!} \cdot 0.5^{1} \cdot (1-0.5)^{4-1}$$

$$P(1) = (4) \cdot (0.5)^{1} \cdot (0.5)^{3}$$

$$P(1) = (4).(0.5)^4 = 0.25$$

BINOM.DIST(1,4,0.5,FALSE) = 0.25 BINOM.DIST(2,4,0.5,FALSE) = 0.375

The mean of the distribution (μ_x) is $n \cdot p$

! The variance
$$(\sigma^2_x)$$
 is

$$n.p.(1-p)$$

 \diamondsuit The standard deviation (σ_x) is

$$\sqrt{\mathbf{n}\cdot\mathbf{p}\cdot(\mathbf{1}-\mathbf{p})}$$

 \clubsuit The mean of the distribution (μ_x) is

$$n.p = 4 \times 0.5 = 2$$

! The variance (σ_x^2) is

$$n.p.(1-p)$$

$$4 \times 0.5 \times 0.5 = 1$$

 \clubsuit The standard deviation (σ_x) is

$$\sqrt{\mathbf{n}\cdot\mathbf{p}\cdot(\mathbf{1}-\mathbf{p})}$$

$$\sqrt{4 \times 0.5 \times 0.5} = 1$$

A manufacturer has 12% defects rate in production. The buyer decides to test 20 random pieces and will accept the supplier if there are 2 or less defectives. What is the probability of getting accepted?

=BINOM.DIST(2,20,0.12,TRUE) = 0.56

$$\Rightarrow$$
 p = 0.12, n = 20, x = 0, 1, 2

$$P(x) = \frac{n!}{x! (n-x)!} \cdot p^{x} \cdot (1-p)^{n-x}$$

$$P(0) = \frac{20!}{0!(20-0)!} \cdot 0.12^{0} \cdot (1-0.12)^{20-0}$$

$$P(1) = \frac{20!}{1!(20-1)!} \cdot 0.12^{1} \cdot (1-0.12)^{20-1}$$

$$P(2) = \frac{20!}{2! (20-2)!} \cdot 0.12^2 \cdot (1-0.12)^{20-2}$$

P(0,1,2) = 0.077563 + 0.211535 + 0.274034 = 0.563132

$$\Rightarrow$$
 p = 0.12, n = 20, x = 0, 1, 2

The mean of the distribution (μ_x) is $n \cdot p = 20 \times 0.12 = 2.4$

! The variance (σ_x^2) is

$$n.p.(1-p)$$

$$20 \times 0.12 \times 0.88 = 2.112$$

 \Leftrightarrow The standard deviation (σ_x) is

$$\sqrt{\mathbf{n} \cdot \mathbf{p} \cdot (\mathbf{1} - \mathbf{p})} = 1.453$$

3G Statistical Distributions

Normal distribution Binominal distribution Poisson distribution Chi square distribution Student's t distribution

DISCRETE

QG

Normal distribution

Binominal distribution

Chi square distribution

Poisson distribution

Student's t distribution

F distribution

CONTINUOUS vs DISCRETE DATA

Binomial vs Poisson Distribution

Similarities:

- Both are for discrete distribution
- Both measure the number of successes

Differences:

❖ In Poisson distribution the possibilities of success are infinite.

Binomial distribution is one in which the probability of repeated number of trials are studied.

Poisson Distribution gives the count of independent events occur randomly with a given period of time.

A **Poisson experiment** has the following properties:

- The experiment results in outcomes that can be classified as successes or failures.
- The average number of successes (μ) that occurs in a specified region is known.
- Outcomes are random. Occurrence of one outcome does not influence the chance of another outcome of interest.
- The outcomes of interest are rare relative to the possible outcomes.
 - Example: Road accidents, queue at the counter

$$P(x, \mu) = e^{-\mu} \cdot \frac{\mu^{x}}{x!}$$

- e: A constant equal to approximately 2.71828. (Actually, e is the base of the natural logarithm system)
- μ: The mean number of successes that occur in a specified region.
- x: The actual number of successes that occur in a specified region.
- $P(x; \mu)$: The **Poisson probability** that <u>exactly</u> x successes occur in a Poisson experiment, when the mean number of successes is μ .

$$P(x, \mu) = e^{-\mu} \cdot \frac{\mu^{x}}{x!}$$

- On a booking counter on the average 3.6
 people come every 10 minute on weekends.
 What is the probability of getting 7 people in 10 minutes?
- μ = 3.6, x=7
- $P(x; \mu) = (e^{-\mu}) (\mu^{x}) / x! = (e^{-3.6}) (3.6^{7}) / 7!$
- =0.02732 x 7836.41 / 5040 = 0.0424

- On a booking counter on the average 3.6
 people come every 10 minute on weekends.
 What is the probability of getting 7 people in 10 minutes?
- P(7; 3.6) = 0.0424

- The Poisson distribution has the following properties:
- The mean of the distribution is equal to μ .
- The variance is also equal to μ .

3G Statistical Distributions

Normal distribution Binominal distribution Poisson distribution Chi square distribution Student's t distribution

DISCRETE

QG

Normal distribution

Binominal distribution

Chi square distribution

Poisson distribution

Student's t distribution

F distribution

CONTINUOUS vs DISCRETE DATA

Symmetrically distributed

Long Tails / Bell Shaped

Mean/ Mode and Median are same

- Two factors define the shape of the curve:
 - Mean
 - Standard Deviation

• About 68% of the area under the curve falls within **1 standard deviation** of the mean.

 About 95% of the area under the curve falls within <u>2 standard deviations</u> of the mean.

 About 99.7% of the area under the curve falls within <u>3 standard deviations</u> of the mean.

- The total area under the normal curve = 1.
- The probability of any particular value is 0.
- The probability that X is greater than or less than a value = area under the normal curve in that direction

$$P(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}$$

- where x is a normal random variable,
- μ = mean,
- σ = standard deviation,
- π is approximately 3.14159,
- e is approximately 2.71828.

Z Value / Standard Score

- How many standard deviations an element is from the mean.
- \Rightarrow z = (x μ) / σ

- ❖ z is the z-score,
- x is the value of the element,
- \clubsuit μ is the population mean,
- \bullet σ is the standard deviation.

Hundredth place for Z-valu

Z-Value	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0 1 4 0 0 7	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551

Z Value / Standard Score

- ❖ Perfume bottles are filled with the average volume of 150 cc and the standard deviation of 2 cc.
- ❖ What percent of bottles will have the volume more than 153 cc?

$$\mu = 150 \text{ cc}$$
 $\sigma = 2 \text{ cc}$
 $z = (x - \mu) / \sigma = (153 - 150)/2 = 1.5$

Hundredth place for Z-value

Z-Value	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0 1 4 0 0 7	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551

Z Value / Standard Score

- ❖ Perfume bottles are filled with the average volume of 150 cc and the standard deviation of 2 cc.
- ❖ What percent of bottles will have the volume more than 153 cc?

$$\mu = 150 \text{ cc}$$
 $\sigma = 2 \text{ cc}$
 $z = (x - \mu) / \sigma = (153 - 150)/2 = 1.5$
 $P(x) = 0.06681 \text{ or } 6.681\%$

Normal Distribution

Z Value / Standard Score

- ❖ Perfume bottles are filled with the average volume of 150 cc and the standard deviation of 2 cc.
- ❖ What percent of bottles will have the volume between 148 and 152 cc?

$$\mu = 150 \text{ cc}$$
 $\sigma = 2 \text{ cc}$

$$z1 = (x - \mu) / \sigma = (148 - 150)/2 = -1$$

$$z2 = (x - \mu) / \sigma = (152 - 150)/2 = 1$$

$$P(x) = 1 - 0.15866 - 0.15866 = 0.68268$$

Hun dre dth	

Z-Value	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0 1 4 0 0 7	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551

Normal Distribution

Z Value / Standard Score

- ❖ Perfume bottles are filled with the average volume of 150 cc and the standard deviation of 2 cc.
- ❖ Four bottles are selected from it. What is the probability that the average of 4 bottles will be more than 153 cc?

$$\mu = 150 \text{ cc}$$
 $\sigma_{\bar{x}} = 2 / \sqrt{4}$
 $z = (\bar{x} - \mu) / \sigma_{\bar{x}} = (153 - 150)/1 = 3$
 $P(x) = 0.00135 \text{ or } 0.135\%$

Normal Distribution

3G Statistical Distributions

Normal distribution Binominal distribution Poisson distribution Chi square distribution Student's t distribution

DISCRETE

QG

Normal distribution

Binominal distribution

Chi square distribution

Poisson distribution

Student's t distribution

F distribution

CONTINUOUS vs DISCRETE DATA

If a random variable Z has the Standard Normal Distribution, then Z^2 has a χ^2 distribution with 1 degree of freedom.

♣ If a random variables Z₁, Z₂, Z₃ ... Z_k are the Standard Normal Distributions, then

$$Z_1^2 + Z_2^2 + Z_3^2 + ... + Z_k^2$$

 \Leftrightarrow has a χ^2 distribution with k degree of freedom.

Min zero, max infinity

X² Chi Square Distribution

- ❖ Mean = df
- ❖ Variance = 2. df
- \clubsuit Mode = df 2 (for min 2 df)

$$f(x;\,k) = \begin{cases} \frac{x^{\frac{k}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}, & x>0; \\ 0, & \text{otherwise.} \end{cases}$$
 Gamma Function
$$k = \text{degrees of freedom}$$

Percentage Points of the Chi-Square Distribution

Degrees of		Probability of a larger value of x ²												
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01					
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63					
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21					
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34					
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28					
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09					
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81					
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48					
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09					
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67					
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21					
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72					
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22					
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69					
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14					
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58					
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00					
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41					
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80					
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19					
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57					
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29					
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98					
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64					
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28					
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89					
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69					
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15					
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38					

X² Chi Square Distribution

3G Statistical Distributions

Normal distribution Binominal distribution Poisson distribution Chi square distribution Student's t distribution

DISCRETE

QG

Normal distribution

Binominal distribution

Chi square distribution

Poisson distribution

Student's t distribution

F distribution

CONTINUOUS vs DISCRETE DATA

- Student's t distribution is formed by combining the Standard Normal Distribution and the Chi Square Distribution.
 - Suppose Z has Standard Normal distribution
 - \clubsuit U has a Chi square distribution with ν degrees of freedom as
 - and Z and U are independent

$$T = \frac{Z}{\sqrt{U}}$$
 Has t distribution with ν degrees of freedom

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-rac{
u+1}{2}}$$

 ν is the number of degrees of freedom Γ is the gamma function

$$z = (\bar{x} - \mu) / \sigma_{\bar{x}}$$

$$z = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}}$$

We used the above equation in the Normal distribution example.

 \clubsuit What if we do not know the population standard deviation σ

$$t = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$$

- ❖ This has a t distribution with n-1 degrees of freedom.
- s is the sample standard deviation.

Reference: Wikipedia

TABLE B t Distribution Critical Values

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2,878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2,147	2,457	2.750	3.030	3.385	3,646

TABLE B t Distribution Critical Values

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.01
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2,878	3.197	3.611	3.92
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.79
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.76
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.72
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.65
30	.683	.854	1.055	1.310	1.697	2.042	2,147	2,457	2.750	3.030	3.385	3.64

3G Statistical Distributions

Normal distribution Binominal distribution Poisson distribution Chi square distribution Student's t distribution

DISCRETE

QG

Normal distribution

Binominal distribution

Chi square distribution

Poisson distribution

Student's t distribution

F distribution

CONTINUOUS vs DISCRETE DATA

❖ F Distribution is the ratio of two chi square distributions divided by their respective degrees of freedom.

- \clubsuit U1 has a χ^2 distribution with ν 1 degrees of freedom
- \checkmark U2 has a $χ^2$ distribution with ν2 degrees of freedom
- U1 and U2 are independent

$$X = \frac{U_1/\nu_1}{U_2/\nu_2} \sim F(\nu_1, \nu_2)$$

F Distribution

$$egin{split} f(x;d_1,d_2) &= rac{\sqrt{rac{(d_1\,x)^{d_1}\,d_2^{d_2}}{(d_1\,x+d_2)^{d_1+d_2}}}}{x\,\mathrm{B}\Big(rac{d_1}{2},rac{d_2}{2}\Big)} \ &= rac{1}{\mathrm{B}\Big(rac{d_1}{2},rac{d_2}{2}\Big)}\Big(rac{d_1}{d_2}\Big)^{rac{d_1}{2}}\,x^{rac{d_1}{2}-1}\Big(1+rac{d_1}{d_2}\,x\Big)^{-rac{d_1+d_2}{2}} \end{split}$$

Source: Wikipedia

F Distribution

$$F(\nu_1, \nu_2) \neq F(\nu_2, \nu_1)$$

$$F(6,20) \neq F(20,6)$$

F Distribution is used in ANOVA to test the equality or two or more means.

3D Collecting and Summarizing Data

- Types of data & measurement scales
- Sampling and data collection methods
- Descriptive statistics
- Graphical methods

- Continuous Data: (variable)
 - Measurements: Length, height, time
 - More information with less samples
 - More sensitive
 - Provide more information
 - More expensive to collect
- Discrete Data: (attribute)
 - Count: Number of students, Number of heads

Types of Data

Example:

Color: Blue, Green, Red

Example:

Temperature: Celsius

Example: Height, mass, volume

	Nominal	Ordinal	Interval	Ratio
Ordered	N	Υ	Υ	Υ
Difference	N	N	Υ	Υ
Absolute Zero	N	N	N	Υ
Example	Red, Blue	Good, Bad, Worst	Temperature: Degree C	Length, Weight
Central Tendency Measurement	Mode	Mode, Median	Mode, Median, Mean	Mode, Median, Mean

3D Collecting and Summarizing Data

- Types of data & measurement scales
- Sampling and data collection methods
- Descriptive statistics
- Graphical methods

❖ Because of the <u>cost and time</u> involved in studying the entire population.

Why Sampling?

- Probability Samples
 - Everyone in the population has an equal chance of being selected
- Non-Probability Samples
 - Where the probability of selection can't be accurately determined.
 - Sample may not be (generally isn't) representative of the general population

Types of Sampling

Simple Random Sampling

Systematic Random Sampling

Stratified Random Sampling

Cluster Sampling

Probability

Von Probability

Sampling

Accidental / Convenience Sampling

Judgemental Sampling

Quota Sampling

Types of Sampling

Simple Random Sampling

- Each item in the population has an equal chance of being selected.
- Examples: Using random tables, Random draw of lot (lottery)

Systematic Random Sampling

- Select elements at regular intervals through that ordered list.
- Example: Checking every 6th piece produced by the machine.

Types of Sampling

Stratified Random Sampling

- Used to ensure that sub-groups within a population are represented proportionally in the sample.
- Example: If 10 people are drawn to represent a country, 5 of them are male and 5 females to avoid the sex bias.

Simple Random Sampling

Systematic Random Sampling

Stratified Random Sampling

Cluster Sampling

Cluster Sampling

- Sometimes it is more cost-effective to select respondents in groups ('clusters'). Sampling is often clustered by geography, or by time periods.
- Example: Survey all customers visiting particular stores on particular days.

Types of Sampling

Convenience Sampling

- The researcher selects whomever is convenient. The samples are being drawn from that part of the population which is close to hand
- Example: A researcher at the mall selects the first five people who walk by to get their opinion of a product.

Accidental / Convenience Sampling

Suildurg

Suildurg

Quota Sampling

Quota Sampling

Judgmental Sampling

- The researcher chooses the sample based on who they think would be appropriate for the study.
- Example: Auditor selects a sample based on the concerns he/she had in the earlier audit

Types of Sampling

Quota Sampling

- A quota is established and auditor are free to choose any sample they wish as long as the quota is met.
- **Example:** 2% of the calibration records.

Accidental / Convenience Sampling

Building

Quota Sampling

Quota Sampling

Types of Sampling

Defect	Count
Excess glue	
Weak joint	
Abrasion marks	
Asymmetry	
Nail / sharp points	

Check sheets

Adding, Subtracting

- **Example:** -95, -97, -98, -90
- Add 100 to each: 5, 3, 2, 10
- Coded mean: 5
- ❖ Un-coded mean: 5-100 = -95
- Standard deviation remains same and is not affected by addition and subtraction.
- s = 3.559

Data Coding

- Multiplying or dividing
 - **Example:** 1.05, 1.03, 1.02, 1.10
 - Multiply 100 to each: 105, 103, 102, 110
 - Coded mean: 105
 - Un-coded mean: 105 / 100 = 1.05
 - Standard deviation need to divided by you multiplied for coding.
 - ightharpoonup For coded data s = 3.559
 - For original data s = 3.559/100 = 0.03559

Data Coding

- By truncation of repetitive terms
 - **Example:** 0.555, 0.553, 0.552, 0.550
 - Truncate 0.55 from all: 5,3,2,0
 - This means we multiplied it by 1000 and subtracted 550
 - Coded mean: 2.5
 - Un-coded mean: (2.5+550)/ 1000 = .5525
 - Standard deviation need to divided by you multiplied for coding.
 - \Leftrightarrow For coded data s = 2.0816
 - For original data s = 2.0816/1000 = 0.0020816

Data Coding

3D Collecting and Summarizing Data

- Types of data & measurement scales
- Sampling and data collection methods
- Descriptive statistics
- Graphical methods

Mean

- Also known as Average
- Affected by extreme values
- **Example:** 10, 11, 14, 9, 6
- \triangle Mean = (10+11+14+9+6)/5 = 50/5 = 10

Mode

- Most occurring item
- **Example:** 10, 11, 14, 9, 6, 10
- **❖** Mode = 10

Median

- Middle value when put in ascending or descending order.
- **Example 1: 10, 11, 14, 9, 6**
- In ascending order 6,9,10,11,14
- ❖ Median = 10
- **Example 2: 10, 11, 14, 9, 6, 11**
- ❖ In order 6,9,10,11, 11,14
- ♦ Median = 10.5

 Central
 Tendency

 Mean

 Mode

 Median

 Quantile

 Quartile

Quartile

- Arrange in ascending or descending order
- Divide the data into 4 parts (just like we divided it into 2 parts for median)
- **Example:** 6,9,10,11, 11,14
- **❖** Q1=9, Q2=10.5, Q3=11

Percentile

- Arrange in ascending or descending order
- Calculate location(i) = P.(n)/100
- P=percentile, n=numbers in data set
- ❖ If i is whole number Percentile is average of (i)th and (i+1)th location
- ❖ If i is "not" a whole number Percentile is located at (i+1)th whole-num.
- **Example:** 6,9,10,11, 11,14
- **❖** Q1=9, Q2=10.5, Q3=11

Quantile

- Quantiles can go from anything to anything.
- Percentile divides data in 100 parts
- Quartile divides data in 4 parts
- Percentiles and quartiles are examples of quantiles.

Range

- Difference between lowest and the highest value.
- **Example:** 6,9,10,11, 11,14
- **Range** = 14-6 = 8

Interquartile Range

- Range of middle 50% data
- **❖** IQR = Q3-Q1
- **Example:** 6,9,10,11, 11,14
- ❖ Q1=9, Q2=10.5, Q3=11
- **❖** IQR = 11-9 = 2
- Box-and-Whisker Plot

Standard Deviation

- ❖ Variance = average of squared deviation about the arithmetic mean.
- Square root of variance is standard deviation

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}} \qquad s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

X	x- x	(x- x) ²
100	0	0
101	1	1
99	-1	1
102	2	4
98	-2	4
100	0	0
x =100	∑(x- <u>x</u>)=0	$\sum (x-\overline{x})^2=10$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$s = \sqrt{\frac{10}{(6-1)}} \qquad \qquad s = \sqrt{2} = 1.414$$

Volume

150.270

150.552

148.448

145.241

147.832

152.614

149.804

149.920

153.426

153.780

• • • • •

• • • •

Frequency Distribution

3D Collecting and Summarizing Data

- Types of data & measurement scales
- Sampling and data collection methods
- Descriptive statistics
- Graphical methods

3D-4 Graphical Methods

- Scatter diagrams
- Histograms
- Box-and-whisker plots
- Stem-and-leaf plots
- Normal probability plots

- One of seven basic quality tools
- To see relationship between two variables
- Relationship should make practical sense
- Temperature(X) vs Ice cream sale (Y)
- Some times relationship between two variables is because of a third variable. (ice cream sale vs heat stroke cases)
- Correlation/Regression is covered in the Analyze Phase

Minitab: Graph > Scatter plot ...

Worksheet column **Description** Vehicle The model identifier The body type: SUV, Sedan, Hatchback, Wagon, Type or Minivan The type of fuel used: Gas or Hybrid Fuel City MPG Fuel economy for city driving in miles per gallon **Hwy MPG** Fuel economy for highway driving in miles per gallon Combined MPG Overall fuel economy in miles per gallon Retail (\$1000) Retail price in units of \$1000 Safety (0-5) Safety rating (0 to 5), where 0 is poor and 5 is excellent Interior Volume Passenger volume in cubic feet Cargo Volume Cargo volume in cubic feet **Total Volume** Total volume in cubic feet

With Linear Regression Line

Worksheet column **Description** The model identifier Vehicle The body type: SUV, Sedan, Hatchback, Wagon, Type or Minivan **Fuel** The type of fuel used: Gas or Hybrid City MPG Fuel economy for city driving in miles per gallon **Hwy MPG** Fuel economy for highway driving in miles per gallon Combined MPG Overall fuel economy in miles per gallon Retail (\$1000) Retail price in units of \$1000 Safety (0-5) Safety rating (0 to 5), where 0 is poor and 5 is excellent Interior Volume Passenger volume in cubic feet Cargo Volume Cargo volume in cubic feet **Total Volume** Total volume in cubic feet

Volume

150.270

150.552

148.448

145.241

147.832

152.614

149.804

149.920

153.426

153.780

Minitab: Graph > Histogram... (Simple)

Histogram

Volume

150.270

150.552

148.448

145.241

147.832

152.614

149.804

149.920

153.426

153.780

• • • •

• • • •

Minitab: Graph > Histogram... (with fit)

Histogram

- Also known as Box Plot
- Shows the median
- ❖ Shows Q1, Q3 and IQR

Box-and-Whisker Plot

❖ Outlier – A data point which is more than 1.5 times IQR from the box.

4 11, 22, 55, 13, 45, 14, 19, 10, 33, 52, 13

Stem	Leaf
1	013349
2	2
3	3
4	5
5	25

Stem-and-leaf
Plot


```
Volume
              Stem-and-Leaf Display: Volume
150.270
150.552
                Stem-and-leaf of Volume N = 200
148.448
                     145
                         266
                     146
                         0333488899
145.241
                         012223555667778899
                31
147.832
                         0011122333334444555555677799999
152.614
                (43)
                         00000111111122223333444455666677788888888999
                     149
                95
                         00011122333344444445555566667788999
149.804
                         0111222223334444455788899
149.920
                35
                         00000000111222234446677
                         002446777
                     153
153.426
                     154
                         456
153.780
                 Leaf Unit = 0.1
```

Minitab: Graph > Stem-and-Leaf...

Stem-and-Leaf
Plot

Normal Probability Plots

Minitab: Graph > Probability Plot ...

Normal Probability Plots

❖ The p value > 0.05 and hence data is normal with 95% confidence level.

Normal Probability Plots

2022 – Changes in the BoK – 3D

2014 BoK	2022 BoK Details	Notes		
III.D	D. Collecting and summarizing data			
	Types of data and measurement scales			
III.D.1	III.D.1 Identify and classify continuous (variables) and discrete (attributes) data. Describe and define nominal, ordinal, interval, and ratio measurement scales. (Analyze)			
III.D.2	 Sampling and data collection plans and methods Define and apply various sampling methods (random and stratified) and data collection methods (check sheets and data coding). Prepare data collection plans that include gathering data and performing quality checks (e.g., minimum/maximum values, erroneous data, null values). (Apply) 	Revised subtopic name and added data collection plans and quality checks		
III.D.3	Descriptive statistics Define, calculate, and interpret measures of dispersion and central tendency. Develop and interpret frequency distributions and cumulative frequency distributions. (Evaluate)			
III.D.4	 Graphical methods Construct and interpret diagrams and charts that are designed to communicate numerical analysis efficiently, including scatter diagrams, normal probability plots, histograms, stemand-leaf plots, box-and-whisker plots. (Create) 			

Data Collection Plan

- Why you need to collect data?
 - Goal and Objective
- Operational Definition
 - How much? How? Where? When? Etc.
 - ❖Type of data NOIR
 - Manual or Automatic
 - Past data vs Future
- ♦ Is data reliable?

Data Collection Plan

Measurement	Operational Definition	How is it measured?	Type of Data	Sample size	Who?	Data Recording Form	Comments
Time to assemble	Time from picking up the first piece to placing the assembled item in tray	Using a stop watch	Continuous Ratio	Every 10 th piece	Operator	Assembly Record F-0156	

Quality Checks on Data

- Minimum/maximum values
 - Range Check (e.g. Employee age between 18 to 65)
- Erroneous data
 - List of Options (e.g. US, CA, IN for country codes)
- Null values or Missing value (discussed on the next slide)*
- Duplicate check (e.g. Employee ID)

Data Cleaning - Missing Data

- In statistics, imputation is the process of replacing missing data with substituted values.
- Missing data can introduce bias.
 - Missing randomly
 - Reason for missing
- Options in case the data is missing
 - Delete the row
 - Replace with the average value

3E Measurement System Analysis (MSA)

Definitions

Gage R & R studies

Precision to Tolerance Ratio

- You need measurement to see how the process is performing.
- Process has variation.
- What about measurement error / variation?

- Measurement System :
 - Operator
 - Measuring instrument
 - Procedure

- True Value Actual value, which is unknown
- ❖ Reference Value Accepted value or substitute of true value.

- Resolution/ Discrimination
 - Smallest readable unit of the measuring instrument.
 - 10 to 1 Rule of Thumb:
 - "Rule of Ten" or "one to ten" is that the discrimination (resolution) of the measuring instrument should divide the tolerance of the characteristic to be measured into ten parts.

- ❖ 10 to 1 Rule of Thumb:
 - ♦ Which of these two would you use if the part tolerance is 52.00 +/- 0.05 (51.95 52.05)

- ❖ 10 to 1 Rule of Thumb:
 - ❖ Which of these two would you use if the part tolerance is 52.00 +/- 0.05 (51.95 − 52.05)
 - **❖** Tolerance Range = 0.10
 - Minimum Reading of Digital Vernier = 0.01
 - Digital Vernier divides the tolerance into 10 parts, hence acceptable.

- Accuracy
 - Bias
 - Linearity
 - Stability

- Precision
 - Repeatability
 - Reproducibility

Accuracy

- "Closeness" to the true value, or to an accepted reference value.
 - ❖ Bias
 - Linearity
 - Stability

Precision

- "Closeness" of repeated readings to each other
 - Repeatability
 - Reproducibility

Bias

❖ Bias is the difference between the observed average of measurements and the reference value.

	Reference Value (psi)	Measured Value (psi)
	100	100
	100	101
	100	102
	100	102
	100	101
	100	100
Average		101
Bias = 101 psi -100 psi = 1 psi		

	Reference Value (psi)	Measured Value (psi)
	100	100
	100	101
	100	102
	100	102
	100	101
	100	100
Average		101

Bias = 101 psi -100 psi = 1 psi

Bias

- Bias is the systematic error.
- Bias is addressed by calibration.

Linearity

Linearity measures the bias across the operating range of a tool or instrument.

Reference Value (psi)	Average Measured Value (psi)	Bias
0	0	0
50	50.5	0.5
100	101	1
150	151.5	1.5
200	202	2

Reference Value (psi)	Average Measured Value (psi)	Bias
0	0	0
50	50.5	0.5
100	101	1
150	151.5	1.5
200	202	2

Stability

Stability measures the bias over time. Also known as drift.

Accuracy

- "Closeness" to the true value, or to an accepted reference value.
 - ❖ Bias
 - Linearity
 - Stability

Precision

- "Closeness" of repeated readings to each other
 - Repeatability
 - Reproducibility

Accuracy

- "Closeness" to the true value, or to an accepted reference value.
 - ❖ Bias
 - Linearity
 - Stability

Precision

- "Closeness" of repeated readings to each other
 - Repeatability
 - Reproducibility

Repeatability

- Variation in measurements obtained with one measuring instrument when used several times by an appraiser.
- Also called Equipment Variation (EV)
- ❖ It's the capability of the **gauge** to produce consistent results.

Reproducibility

- Variation in the average of the measurements made by different appraisers using the same gage
- Also called Appraiser Variation (AV)
- It's the capability of the **appraiser** to produce consistent results.

Gage R&R (GRR)

Combined estimate of repeatability and reproducibility.

Gage R&R (GRR)

Combined estimate of repeatability and reproducibility.

Precision to Tolerance Ratio

- How capable your measurement system is?
- ❖ Precision/Tolerance (P/T) is the ratio between the estimated measurement error (precision) and the tolerance of the characteristic being measured.

Precision to Tolerance Ratio

P/T ratio is the most common estimate of measurement system precision
Measurement

Measurement
System
Analysis

Precision to Tolerance Ratio

PTR

$$PTR = 6 \sigma_{ms}$$

$$USL-LSL$$

Instead of $6\sigma_{ms}$ some use 5.15 σ_{ms} 6 sigma includes 99.73% area 5.15 sigma includes 99% area

Measurement
System
Analysis

3F Process and Performance Capability

- Process performance vs process specification
- Process capability studies
- Process capability and process performance
- Short-term vs long-term capability and sigma shift

Natural process limits

Specification: 140 to 160

Specification: 148 to 152

Rejections: 1-0.6827 = 0.3173

Specification: 145 to 155

Rejections: 1-0.9876 = 0.0124

Specification: 148 to 152

Rejections: 1-0.9759 = 0.0241

Specification: 145 to 155

Rejections: 1-0.9875 = 0.0124

Process sd = 2

Specification: 145 to 155

Rejections: 1-0.9875 = 0.0124

Process sd = 1

Rejections: 1-1 = almost zero

Process sd = 3

Rejections: 1-0.9044 = 0.0956

Capable Process

Is this process capable? .. No

Process Performance Matrices

- Percent Defectives
- **❖** PPM
- DPMO
- ❖ DPU
- Rolled Throughput Yield

(already covered in 2E-1)

3F Process and Performance Capability

- Process performance vs process specification
- Process capability studies
- Process capability and process performance
- Short-term vs long-term capability and sigma shift

Process Capability Studies

- Select the process
- Data Collection Plan
- Measurement System Analysis
- Gather data
- Confirm normality of data
- Confirm that the process is in control
- Estimate the process capability (Cp, Cpk)
- Continually improve process

3F Process and Performance Capability

- Process performance vs process specification
- Process capability studies
- Process capability and process performance
- Short-term vs long-term capability and sigma shift

Process Capability Indices

Ratio of the spread between the process specifications to the spread of the process values, (6 process standard deviations).

❖ Voice of customer / Voice of process > 1

Process Capability Indices

- Voice of Customer:
 - LSL Lower Specification Limit
 - USL Upper Specification Limit

- ❖ Voice of Process:
 - ❖ LCL Lower Control Limit
 - UCL Upper Control Limit

Cp

$$C_p = \frac{(USL - LSL)}{6 \times \sigma_{within}}$$

Cpk

$$C_{pL} = rac{(ext{Process Mean} - LSL)}{3 imes \sigma_{within}}$$
 $C_{pU} = rac{(ext{USL} - ext{Process Mean})}{3 imes \sigma_{within}}$
 $C_{pk} = ext{Min} \left(C_{pU}, C_{pL} \right)$

σ_{within}

- Short term standard deviation
- It is an estimate of the variation within the subgroups.
- It should not be influenced by changes to process inputs, such as tool wear or different lots of material.

σ overall

Long term standard deviation

piston ring diameter are 74.0 mm ± 0.05 mm.

QG

Every 5 rows represent a subgroup.

Total 25 subgroups

Diameter

74.030

74.002

74.019

73.992

74.008

73.995

73.992

74.001

74.011

74.004

73.988

Cp, Cpk

- Conditions to be met:
 - Sample to represent the population
 - Normal distribution of data *
 - The process must be in statistical control *
 - Sample size must be sufficient

piston ring diameter are $74.0 \text{ mm} \pm 0.05 \text{ mm}$.

Every 5 rows represent a subgroup.

Cp, Cpk

PistonRingDiameter

Diameter

74.030

74.002

74.019

73.992

74.008

73.995

73.992

74.001

74.011

74.004

73.988

Stat > Quality Tools > Capability Sixpack > Normal ...

Piston ring diameter are 74.0 mm ± 0.05 mm.

$$C_p = \frac{(USL - LSL)}{6 \times \sigma_{within}}$$

$$C_p = \frac{(74.05 - 73.95)}{6 \times 0.0100509}$$

$$C_p = \frac{(74.5 - 73.5)}{6 \times 0.0100509} = 1.658$$

Stat > Quality Tools > Capability Analysis > Normal ...

Piston ring diameter are 74.0 mm ± 0.05 mm.

$$C_{pL} = \frac{(\text{Process Mean} - LSL)}{3 \times \sigma_{within}}$$

$$C_{pL} = \frac{(74.0012 - 73.95)}{3 \times 0.0100509} = 1.698$$

$$C_{pU} = \frac{(USL - Process Mean)}{3 \times \sigma_{within}}$$

$$C_{pU} = \frac{(74.05 - 74.0012)}{3 \times 0.0100509} = 1.618$$

$$C_{pk} = Min (C_{pU_{r}} C_{pL}) = 1.618$$

Process Capability Report for Diameter LSL USL **Process Data** Overall LSL 73.95 ___ Within Target **Overall Capability** USL 74.05 1.63 Sample Mean 74.0012 1.67 Sample N StDev(Overall) 0.0101989 Ppk 1.60 StDev(Within) 0.0100509 Potential (Within) Capability Cp 1.66 CPL 1.70 CPU 1.62 Cpk 1.62 73.950 73.965 73.980 73.995 74.010 74.025 74.040 Performance Observed Expected Overall Expected Within PPM < LSL 0.59 0.00 PPM Total 0.00 0.77

Stat > Quality Tools > Capability Analysis > Normal ...

piston ring diameter are 74.0 mm ± 0.05 mm. Every 5 rows represent a subgroup.

The film thickness must be 50 ± 3 microns Subgroup size of 3.

The film thickness must be 50 ± 3 microns Subgroup size of 3.

Cp, Cpk, Pp, Ppk

QG

FilmThickness

Coating Roll

50.3175 1

50.1432 1

50.4081 1

49.5077 2

50.2715 2

49.4091 2

49.3587 3

49.1436 3

49.5229 3

$$S = \frac{\bar{R}}{d_2}$$

For Cp, Cpk use Short-term sd

$$s = \sqrt{\frac{(x - \bar{x})^2}{n - 1}}$$

For Pp, Ppk use Long-term sd

The film thickness must be 50 ± 3 microns Subgroup size of 3.

Cp, Cpk, Pp, Ppk

FilmThickness

Coating Roll 50.3175 1

50.1432 1

50.4081 1

49.5077 2

50.2715 2

49.4091 2

49.3587 3

49.1436 3

49.5229 3

$$S = \frac{\bar{R}}{d_2}$$

For Cp, Cpk use Short-term sd

$$s = \sqrt{\frac{(x - \bar{x})^2}{n - 1}}$$

For Pp, Ppk use Long-term sd

$$C_p = \frac{(USL - LSL)}{6 \times \sigma_{within}}$$

$$C_{pL} = \frac{(Process Mean - LSL)}{3 \times \sigma_{within}}$$

$$C_{pU} = \frac{(USL - Process Mean)}{3 \times \sigma_{within}}$$

$$C_{pk} = Min (C_{pU}, C_{pL})$$

PPM < LSL

PPM > USL

PPM Total

0.00

0.00

0.00

292.72

100.61

393.34

Process capability

Potential capability

Process Capability Report for Coating LSL USL **Process Data** Overall LSL _ _ _ . Within Target Overall Capability 53 1.19 Sample Mean 49.8829 1.15 Sample N 75 1.24 0.838488 StDev(Overall) 1.15 StDev(Within) 0.40608 Cpm Potential (Within) Capability Cp 2.46 CPL 2.37 CPU 2.56 Cpk 2.37 51 52 47 48 49 50 53 Performance Observed Expected Overall **Expected Within**

0.00

0.00

0.00

Stat > Quality Tools > Capability Analysis > Normal ...

$$\boldsymbol{P}_p = \frac{(\boldsymbol{U}\boldsymbol{S}\boldsymbol{L} - \boldsymbol{L}\boldsymbol{S}\boldsymbol{L})}{6 \times \sigma_{overall}}$$

$$P_{pL} = \frac{(Process Mean - LSL)}{3 \times \sigma_{overall}}$$

$$\mathbf{P}_{pU} = \frac{(USL - \text{Process Mean})}{3 \times \sigma_{overall}}$$

$$P_{pk} = Min (P_{pU_r} P_{pL})$$

Process Performance
Overall capability

$$P_p = \frac{(USL - LSL)}{6 \times \sigma_{overall}}$$

$$C_{pm} = \frac{(USL - LSL)}{6\sqrt{\sigma^2 + (\mu - T)^2}}$$

Process Capability Report for Coating

USL				
	—— Overall			
	Within			
	Overall Capability			
	Pp 1.19			
	PPL 1.15			
	PPU 1.24			
	Ppk 1.15			
	Cpm 0.55			
	Potential (Within) Capability			
	Cp 2.46			
	CPL 2.37			
	CPU 2.56			
	Cpk 2.37			

Performance				
	Observed	Expected Overall	Expected Within	
PPM < LSL	0.00	292.72	0.00	
PPM > USL	0.00	100.61	0.00	
PPM Total	0.00	393.34	0.00	

3F Process and Performance Capability

- Process performance vs process specification
- Process capability studies
- Process capability and process performance
- Short-term vs long-term capability and sigma shift

6 Sigma = 3.4 DPMO ... Why?

- SPC required processes to be controlled within plus minus 3 sigma.
- This results in 2.7 defects per thousand or 2700 DPMO. (with no long-term shift)

Long-term Sigma Shift

6 Sigma = 3.4 DPMO ... Why?

❖ Instead of plus minus 3 sigma, if the process is controlled in plus minus 6 sigma, what will be the DPMO?

Long-term Sigma Shift

- **❖** 2 x 9.86 x 10 ⁻¹⁰
- ❖ 2 x 9.86 x 10 ⁻⁴ per million
- ❖ 0.001972 DPMO
- ❖ But this should have been 3.4 DPMO .. Why it is so low?
- The difference is because of 1.5 sigma shift allowed on long-term

Long-term Sigma Shift

- ❖ After 1.5 sigma shift, one side will be in 4.5 sigma and other side in 7.5 sigma.
- Rejections will be sum of
 - ❖ 3.397 DPMO
 - ❖ 3.186 x 10⁻⁸ DPMO
- Hence 3.4 DPMO

Long-term Sigma Shift