

4. Special designs 4.2.- Cross-over

Medical Statistics

José Antonio González y Erik Cobo Abril 2015

Med. Stat: Cross-over

Outline

- 1. Introduction
- 2. Aliased effects
- 3. Estimating the direct effect
- 4. Estimating the period effect
- 5. Estimating the carry-over effect
- 6. Sample size and Final remarks

What is a Crossover?

Studies with repeated intervention.

Each case receives various treatments in different order (or place)

Enables examination of treatment differences "within" cases.

More than 1 sequence is required to make a 'cross-over'.

Cases are assigned to sequences, not treatments.

Favorable aspects

Very intuitive for controlling individual effect:

- Decreases the variability (removes between-units variance)
- Reduces the potential bias of non-comparable groups.

Allows estimation of the effect of A in subjects who previously received B:

- Effect of double dose if the current one is not effective?
- Interchangeability of alternative treatments?

3

Med. Stat: Cross-over

Unfavorable aspects

What about the late or delayed effects of previous treatment?

- Carry-over: persistence of an effect beyond its period.

As treatments cannot be administered in the exact or identical way, the period (or place of administration) must be balanced

Losses, drop-outs and missing data:

- Unbalanced groups
- How to analyze spontaneous cross-over?

Benefit in efficiency depends on the intra-variance case:

- If it is low, little benefit for adjusting it
- If it is too high, it may not be as efficient as expected

Conditions for designing a cross-over

- Stable chronic disease
- Palliative care, not curative: patients return to baseline
- No carry-over effect: enough washing period
- Expected losses negligible

Examples: asthma, angina, or diabetes.

Clinician should assess whether these conditions met Statistician should thoroughly analyze possible transgressions. A carry-over effect would practically invalidate the study!

NOTE: Adverse effects (eg, vomiting) may be learned and inherited Wash them with time and innocuous treatments

Med. Stat: Cross-over

2x2 cross-over design

 τ_t treatment with two levels: t = A, BEffects: π_i period with two levels: j = 1,2

 O_k order or sequence, with two levels: k = AB, BA

Sequence Case		Period 1		Period 2	
		Α	В	Α	В
1: AB	1	1			1
	2	2			2
	n	n			n
2: BA	n+1		n+1	n+1	
	n+2		n+2	n+2	
	n+m		n+m	n+m	

Table 2x2x2

8 possible combinations or boxes, but only 4 observables (shaded combinations are impossible).

Med. Stat: Cross-over Effect contrast would be: τπ τΟ πΟ τπΟ $m_{A11} \\$ + + m_{B11} $\mathbf{m}_{\mathbf{tjk}}$: mean in m_{A21} treatment **t**, m_{B21} period j and m_{A12} sequence **k** m_{B12} m_{A22} m_{B22} But means m_{B11} , m_{A21} , m_{A12} , m_{B22} cannot be observed Ο τπ τΟ πΟ τπΟ m_{A11} m_{B21} m_{B12} m_{A22} some factors are aliased fme III

Med. Stat: Cross-over

The 2x2 cross-over has some aliased effects: $\tau = \pi O$ $\pi = \tau O$ $O = \tau \pi$ $\tau \pi O = \mu$

Some have to be 0 in order to be able to estimate the others Because of randomization of sequences, any effect implying sequence 0 is known to be 0, so that $0 = 0 = \pi 0 = \tau 0 = \tau 0$

Then, τ , π , $\tau\pi$ and μ can be estimated.

But, there is a further effect: the residual, delayed treatment effect from one period to another ('carry-over'): if there are late effects, the differences in the second period also contain their carry-over effects from the first period.

Let be $Y_{tji} = \mu + \tau_t + \pi_j + O_k + \alpha_i + \epsilon_{ij}$

where:

μ is the overall mean

 τ_t is the fixed direct (instant) treatment effect t=A,B

 π_{j} is the fixed period effect j=1,2

O_k is the fixed delayed (carry-over) previous treatment effect k=A,B

 α_i is the random effect of individual or case i=1,2,...,n+m $\alpha \to N(0,\sigma^2_{\alpha})$

 $\epsilon_{ij} \qquad \text{is the random effect of individual i in period j} \qquad \epsilon \to N(0,\sigma_\epsilon^2)$

Notes 1) It is expected that $\sigma_{\alpha}^2 > \sigma_{\epsilon}^2$

2) No carry-over effect in the first period

3) Carry-over effect is indexed with sequence \boldsymbol{k}

9

Med. Stat: Cross-over

Inference for the direct treatment effect $\tau_{\scriptscriptstyle{\hspace{-0.05cm}f}}$

Let d_i be the difference between the first and the second period:

In group 1, with AB order: $d_{i1} = Y_{iA1k} - Y_{iB2k}$ In group 2, with BA order: $d_{i2} = Y_{iB1k} - Y_{iA2k}$

With expected values:

E(
$$d_{i1}$$
) = E (Y_{iA1k} - Y_{iB2k}) = E (Y_{iA1k}) - E(Y_{iB2k}) = [μ + τ_A + π_1] - [μ + τ_B + π_2 + O_A] = (τ_A - τ_B) + (π_1 - π_2) - O_A

$$\begin{split} &E(~d_{12}) = E~(Y_{i~B1k} - Y_{iA2k}) = ~E~(Y_{i~B1k}) - E(Y_{iA2k}) ~= [\mu + \tau_B + \pi_1~] - [~\mu + \tau_A + \pi_2 + \mathrm{O}_B~] \\ &= (\tau_B - \tau_A) + (\pi_1 - \pi_2) - \mathrm{O}_B \end{split}$$

$$E(d_{i1} - d_{i2}) = E(d_{i1}) - E(d_{i2}) = 2(\tau_A - \tau_B) - (O_A - O_B)$$

We test $H: \tau_A = \tau_B$

with difference di

Since $\mathbf{d_i}$ already accounts for matching, we may test \mathbf{H} : $\tau_{\mathbf{A}} = \tau_{\mathbf{B}}$ with and **independent** t-test to compare $\mathbf{d_i}$ in both sequences formed by different individuals.

To estimate $\tau_A = \tau_B$ effect, results are **divided by 2**:

Since each case provides information on both treatments, \mathbf{d}_{i} expectancy doubles

We must assume that $O_A = O_B$ (or both are null)

This is a prior premise: null or equal residual effect. Wash-out periods between treatments would improve assumption credibility.

11

Med. Stat: Cross-over

Example: Effect of two anti-inflammatory drugs (A, B) in gastric bleeding, quantified by radioactive methods. Two groups of 8 patients received both in different sequences (AB or BA) with an intermediate wash-out period.

The table shows the means and standard deviations of the variable $d_{i.} = Y_{i\tau 1k} - Y_{i\tau 2k}$

Order	n	m_d	S_d	
AB	8	1.4875	1.4904	
ВА	8	-0.3625	1.3575	

Assuming normality and homoscedasticity of the differences $\mathbf{d}_{\mathbf{i},\mathbf{i}}$ test the direct treatment effect by the Student (independent) t-test:

$$S^2 = (7\times1.4904^2 + 7\times1.3575^2)/14] = 1.4255^2 \\ \text{Pooled variance estimation} \\ t = [1.4875 - (-0.3625)] / [1.4255 \sqrt{(1/8 + 1/8)}] = 2.6 > t_{14,0'975} = 2.145 \text{ and H is rejected}$$

And the treatment effect $\,$ 95% confidence interval $\,_{95\%}\text{CI}\,$ is:

$$\begin{split} \text{$\frac{1.4875\text{-}(-0.3625)]}{\pm}$} & \pm \text{$\frac{1}{2}\cdot} 2.145[1.4255\sqrt{(1/8+1/8)]} \rightarrow 0.161 \text{ , } 1.689 \\ & \Rightarrow IC_{0.95}\left(\tau_{A} - \tau_{B}\right) = [0.161 \text{ , } 1.689] \end{split}$$

Inference for the period effect π_i

Sum of both d_i has expectation:

$$E(d_{i1} + d_{i2}) = E(d_{i1}) + E(d_{i2}) = 2(\pi_1 - \pi_2) - (O_A + O_B)$$

So, assuming no (or equal) carry-over effects $[O_A = O_B = 0]$, equality of period effects $\pi_1 = \pi_2$ can again be tested

by Student's (independent) t-test,

but only by previously changing the sign of one of the two sequences [Or adding means instead of subtracting.]

Example (cont):

To test the period effect:

$$t = [1.4875 + (-0.3625)]/1.4255\sqrt{(1/8 + 1/8)} =$$

$$= 1.58 < t_{14,0.975} = 2.145$$
No significant

13

13

Med. Stat: Cross-over

Inference for previous treatment carry-over effect O_k

Let s_i be the sum of first and second period outcome :

In group 1, with AB order: $s_{i1} = Y_{iA1k} + Y_{iB2k}$ In group 2, with BA order: $s_{i2} = Y_{iB1k} + Y_{iA2k}$

And expectations:

$$E(s_{11}) = E(Y_{1A1k} + Y_{1B2k}) = E(Y_{1A1k}) + E(Y_{1B2k}) = [\mu + \tau_A + \pi_1] + [\mu + \tau_B + \pi_2 + O_A]$$

$$= 2\mu + \tau_A + \tau_B + \pi_1 + \pi_2 + O_A$$

$$\begin{split} E(~s_{i2}) &= E~(Y_{iB1k} + Y_{iA2k}) = ~E(Y_{iB1k}) + E(Y_{iA2k}) = \left[\mu + \tau_B + \pi_1~\right] + \left[\mu + \tau_A + \pi_2 + \mathrm{O}_B~\right] \\ &= 2\mu + \tau_A + \tau_B + \pi_1 + \pi_2 + \mathrm{O}_B \end{split}$$

$$\mathsf{E(}\ \mathsf{S_{i1}} - \mathsf{S_{i2}}) \ = \ \mathsf{E(}\ \mathsf{S_{i1}}) \ - \ \mathsf{E(}\ \mathsf{S_{i2}}) \ = \ (\mathsf{O_A} \ - \ \mathsf{O_B})$$

The equality of both carry-over effects $[O_A=O_B]$ can be tested with the (independent Student) t-test of s_i in both sequences

14

Example (cont)

The table shows means and standard deviations of s_i in both sequences :

Order	n	ms	Ss
AB	8	7.2625	3.1645
BA	8	6.1375	2.5309

The t-test is: $t = (7.2625-6.1375)]/2.8653\sqrt{(1/8+1/8)} = 0.79$ [being $2.8653^2 = (3.1645^2 + 2.5309^2)/2$]

Non significant, since $0.79 < < t_{14.0975} = 2.145$

Note the variance values for \mathbf{d} (1.42552) and \mathbf{s} (2.86532). Standard deviation of \mathbf{s} doubles SD of \mathbf{d} :

less power to test the assumption O_A = O_B than $H\colon \tau_A$ = τ_B

15

Med. Stat: Cross-over

Comments on the carry-over test:

Let's compute variances of **d**_i and **s**_i:

$$\begin{split} & d_i \!=\! Y_{t1i} - Y_{t'2i} \!=\! \left[\mu + \tau_t + \pi_1 + \alpha_i + \epsilon_{i1}\right] \!-\! \left[\mu + \tau_{t'} + \pi_2 + O_k + \alpha_i + \epsilon_{i2}\right] \\ & = \! \left[\tau_t - \tau_{t'}\right] \!+\! \left[\pi_1 \!-\! \pi_2\right] \!+\! O_k \!+\! \left[\epsilon_{i1} \!-\! \epsilon_{i2}\right] & \text{where } \tau_t \text{, } \tau_t \text{, } \pi_1 \text{, } \pi_2 \text{ and } O_k \text{ are fixed effects: var=0,} \\ & \text{but } \epsilon_{i1} \text{ and } \epsilon_{i2} \text{ are random variables} \end{split}$$

$$V(d_{i}) = V([\tau_{t} - \tau_{t'}] + [\pi_{1} - \pi_{2}] + O_{k} + [\epsilon_{i1} - \epsilon_{i2}]) = V [\epsilon_{i1} - \epsilon_{i2}] = 2 \sigma^{2}_{\epsilon}$$

$$\begin{split} S_i &= Y_{t1i} + Y_{t'2i} &= [\mu + \tau_t + \pi_1 + \alpha_i + \epsilon_{i1}] + [\mu + \tau_{t'} + \pi_2 + O_k + \alpha_i + \epsilon_{i2}] \\ &= 2\mu + [\tau_t + \tau_{t'}] + [\pi_1 + \pi_2] + O_k + 2\alpha_i + [\epsilon_{i1} + \epsilon_{i2}] \end{split}$$

$$\begin{split} \textbf{V(s_i)} &= \textbf{V}(2\mu + [\tau_t + \tau_{t'}] + [\pi_1 + \pi_2] + O_k + 2\alpha_i + [\epsilon_{i1} + \epsilon_{i2}]) = \\ &= \textbf{V} \left[2_{\alpha i} + \epsilon_{i1} + \epsilon_{i2} \right] = \textbf{4} \ \boldsymbol{\sigma^2}_{\alpha} + \textbf{2} \boldsymbol{\sigma^2}_{\epsilon} \end{split}$$

$$V(s_i) = 4 \sigma_{\alpha}^2 + 2\sigma_{\epsilon}^2 >> 2 \sigma_{\epsilon}^2 = V(d_i)$$

Higher variance and less power to test the assumption $\,P\colon O_A=O_B\,$ than the hypothesis $\,H\colon \tau_A=\tau_B$

Wrong strategy.

First test the carry-over effect and

- a) If not significant: test direct effect with di
- b) If significant: test direct effect with first period data (and discard second period 'contaminated' data by carry-over)

Wrong because:

- 1) you should then design C-O with power to test with unpaired first period data (loosing mean C-O advantage)
- 2) The sum $S_i = Y_{t1i} + Y_{t'2i}$ and the first period data Y_{t1i} are correlated: a significant carry-over effect increases the likelihood of a significant direct effect

See section 3.14 of Senn S., 1993, Cross-over Trials in Clinical Research, Wiley.

17

Med. Stat: Cross-over

Sample size to compare 2 means (independent samples)

Reminder

$$\begin{cases} H0: & \mu A - \mu B = 0 \\ H1: & \mu A - \mu B = \Delta \end{cases}$$

Let be: alpha risk, one or two-sided (usually $\alpha = 0'05$, two-sided),

some desired power (usually $1-\beta=0'8$),

some given standard deviation (σ) , and

some expected effect size Δ to be tested

$$V(YA - YB) = V(YA) + V(YB) = \sigma^2/n1 + \sigma^2/n2 = 2\sigma^2/n$$
 (given n1 = n2)

 $\Delta = Z\alpha/2 \, \sigma\sqrt{(2/n)} + Z1-\beta \, \sigma\sqrt{(2/n)}$

And so, each sample size should be: $n = [2 \sigma^2 (Z\alpha/2 + Z1 - \beta)^2] / \Delta^2$

Now, same α , β and effect Δ . If, for simplicity, $n_1=n_2=N/2$ for each sequence, then:

$$\begin{split} &d_{ik} = Y_{it1k} \cdot Y_{it'2k} \ \, \Rightarrow \ \, V\left(d_{ik}\right) = 2\sigma^{2}_{\,\epsilon} \\ &E\left[\underline{d}_{i1} - \underline{d}_{i2}\right] = 2(\tau_{A} - \tau_{B}) \ \, \Rightarrow \underline{(\tau_{A} - \tau_{B})} = \frac{1}{2}\left(\underline{d}_{i1} - \underline{d}_{i2}\right) \\ &V\left[\frac{1}{2}\left(\underline{d}_{i1} - \underline{d}_{i2}\right)\right] = \frac{1}{4}\left[V(\underline{d}_{i1}) + V(\underline{d}_{i2})\right] = \frac{1}{4} \cdot 2\left[2\sigma^{2}_{\,\epsilon}/\left(N/2\right)\right] = \frac{1}{4}\left[8\sigma^{2}_{\,\epsilon}/\left(N\right) = 2\sigma^{2}_{\,\epsilon}/\left(N\right)\right] \\ &\Delta = Z_{\alpha/2} \, \sigma_{\epsilon}\sqrt{(2/N)} + Z_{\,\beta} \, \sigma_{\epsilon}\sqrt{(2/N)} \, \Rightarrow \, N = \left[2\,\sigma_{\epsilon}^{\,\epsilon}\left(Z_{\alpha/2} + Z_{\,\beta}\right)^{2}\right]/\Delta^{\,2} \end{split}$$

Note that the formula is identical to the previous, but:

- The error refers to the within-subject variability
- 'N' is now the total 'N' (each observation brings the two values)

Example: How many cases need a parallel and a cross-over design if $\Delta = 5u, \ \sigma_{\alpha}{}^2 = (9u)^2, \ \sigma_{\epsilon}{}^2 = (4u)^2, \ \alpha = 0'05 \ \text{two-sided} \ \text{and} \ \beta = 0'2?$ $n = [2 \cdot (9^2 + 4^2)(1'96 + 0'84)^2] \ / \ 5^2 \approx 60'84 \to 61 \ \text{cases per group}$ $N = [2 \cdot (4^2)(1'96 + 0'84)^2] \ / \ 5^2 \approx 10'04 \to 11 \ \text{total cases} \to 6 \ \text{per sequence}$

