Analyse — CM: 4

Par Lorenzo

26 septembre 2024

0.1 Majorants et minorants

Définition 0.1. Soit A une partie non vide de \mathbb{R} , un réel M est dit majorant de A si il vérifie $\forall x \in A, M \geq x$

Définition 0.2. Soit A une partie non vide de \mathbb{R} , un réel m est dit minorant de A si il vérifie $\forall x \in A, m \leq x$

Remarques 0.1. Le majorant et minorant n'appartiennent pas forcément à l'ensemble A.

Définition 0.3. Si un majorant (resp. minorant) de A existe, on dit que A est majorée (resp. minorée). On dit que A est bornée si A est majorée et minorée.

0.2 Bornes supérieures et bornes inférieures

Définition 0.4. Soit A un partie non vide de \mathbb{R} .

- 1. On dit que M est la borne supérieure de A, si M est un majorant de A et que M est le plus petit des majorants. Si il existe on note $M = \sup A$.
- **2.** On dit que m est la borne inférieure de A, si m est un minorant de A et que m est le plus grand des minorant. Si il existe on note $m = \inf A$.

Remarques 0.2. $sup\ A$ et $inf\ A$ n'appartiennent pas forcément à A. Mais si ils appartiennent à l'ensemble ils deviennent $max\ A$ et $min\ A$ respectivement.

```
Example 0.1. Posons A := [0, 1[, minA = 0 et maxA n'existe pas. les minorants de A sont ]-\infty,0] et les majorants de A sont [1,+\infty[ infA = 0 et supA = 1
```

Proposition 0.1.

Soit A une partie non vide de $\mathbb R$ et majorée. La borne supérieure est l'unique réel sup A, tel que

(i)
$$\forall x \in A, \ x \leq \sup A \ et$$

(ii) $\forall y \in \mathbb{R}, \ y < \sup A \implies (\exists x \in A, y < x)$

Démonstration 0.1.

Montrons que sup A vérifie (i) et (ii).

Comme sup A est un majorant, elle vérifie (i)

Posons $y < \sup A$, comme sup A est le plus petit des majorants, y ne peut pas être un majorant de A.

Donc $\exists x \in A, \ y < x$

Soit M un réel qui vérifie (i) et (ii), supposons que M n'est pas le plus petit des majorants. Il existe un autre majorant y, tel que y < M.

Mais d'après (ii) $\exists x \in A, y < x, donc y n'est pas un majorant de A.$

Théorème 0.1. Toute partie non vide de \mathbb{R} majorée admet une borne supérieure.

Théorème 0.2. Toute partie non vide de \mathbb{R} minorée admet une borne inférieure.

Proposition 0.2.

Soit A une partie non vide majorée de \mathbb{R} . La borne supérieure est l'unique réel sup A, tel que

- (i) sup A est un majorant de A
- (ii) il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers sup A.

1 Les suites

1.1 Définition d'une suite

Définition 1.1. Une suite est l'application

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$

$$n \longmapsto u(n)$$

Pour $n \in \mathbb{N}$, on note u(n), ou plus souvent u_n , le n-ième terme de la suite. On écrit $(u_n)_{n \in \mathbb{N}}$