HW6 due May 20 Thursday before recitation

- 0- Suppose M' is a TM that semidecides a language L. Construct a TM M making use of M' that semidecides the language L*.
- 1- Prove the *transitivity* of the polynomial reduction operator α :
- i.e., $L_1 \alpha L_2$ and $L_2 \alpha L_3$ implies that $L_1 \alpha L_3$
- 2 Given a SAT problem define a set of literals in SAT a consistent set if a literal x_j and its complement literal x_j^c are NOT both members of this set.

Prove that SAT has a solution if and only if there exists a consistent set of literals, whose members are selected, one from each clause C_j .

- 3 Prove the following : IS α CLIQUE, IS α NC, SAT α MAXSAT, HC α UHC where IS= Independent Set, NC = Node Cover and UHC = HC for undirected graphs.
- 4- (a) Formulate the 2SAT problem where each vertex corresponds to a Boolean literal and there is a directed edge from vertex x to vertex y corresponding to x implies y ($x \Rightarrow y$ or $\neg x \lor y$ or $(\neg x, y)$ is a clause)
- (b) Show that $2SAT \in \mathcal{P}$
- 5 Given an EC problem with $U = \{u_0, u_1, u_2, u_3, u_4\}$; $\mathcal{F} = \{\{u_0, u_3, u_4\}, \{u_2, u_4\}, \{u_0, u_1, u_2\}, \{u_0, u_2, u_4\}, \{u_1, u_2\}\}$

State the **KS** and the **HC** problems obtained from the above **EC** problem by the **polynomial reduction** methods discussed in class. State solution(s) of the three problems **EC**, **KS** and **HC** if one exists for each case.