

Como um programa é executado internamente no computador?

Quando um programa é executado em um computador, ele passa por uma série de etapas complexas envolvendo o processador, memória e outros componentes. Essa jornada interna revela como os computadores transformam instruções em ações concretas.

Grupo: Angelo Rodrigues-824139676

Cauã de Cerqueira Ferreira-824110637 Erick Domingues Soares-82414486

Wallington de Oliveira Cauca 924144E91

Entendendo a arquitetura do computador

Processador (CPU)

O cérebro do computador, responsável por executar instruções e realizar cálculos.

Memória

Armazena temporariamente dados e instruções necessários para o processamento.

Barramentos

Vias de comunicação que permitem a transferência de informações entre os componentes.

O papel do processador (CPU)

Fetch

Busca as instruções na memória.

Decode

Decodifica as instruções para entender o que deve ser feito.

Execute

Realiza os cálculos e operações lógicas necessárias.

Store

Armazena os resultados na memória para uso futuro.

Memória RAM: armazenando instruções e dados

Carregamento

As instruções do programa e os dados necessários são carregados da memória de armazenamento para a RAM.

Volatilidade

A RAM é volátil, ou seja, perde seu conteúdo quando o computador é desligado.

1 2 3

Acesso Rápido

A CPU pode acessar rapidamente os dados e instruções armazenados na memória RAM.

O ciclo de execução de instruções

Busca

A CPU busca a próxima instrução a ser executada na memória.

Decodificação

A instrução é decodificada para que a CPU entenda o que deve ser feito.

Execução

A CPU executa a instrução, realizando cálculos ou operações lógicas.

Gerenciamento de memória e alocação de espaço

Paginação

O sistema operacional divide a memória em páginas para gerenciar o uso eficiente do espaço.

Swap

Quando a memória RAM está cheia, o sistema move páginas menos usadas para o disco rígido.

Virtualização

Permite que vários programas utilizem a memória de forma isolada e segura.

Proteção

O gerenciamento de memória evita que programas acessem áreas proibidas e danifiquem o sistema.

Processamento de entrada e saída

Dispositivos de Entrada

Teclado, mouse, câmera e outros dispositivos fornecem dados de entrada para o computador.

Processamento

A CPU recebe os dados de entrada, processa-os e gera resultados.

Dispositivos de Saída

Monitor, impressora e alto-falantes exibem ou reproduzem os resultados processados.

Compartilhamento de recursos e multitarefa

Recursos Compartilhados	Processador, memória, dispositivos de entrada/saída
Multitarefa	Permite que vários programas sejam executados simultaneamente
Alternância de Contexto	O sistema operacional alterna entre as tarefas, dando a ilusão de execução paralela
Eficiência	O compartilhamento de recursos e a multitarefa aumentam a utilização do computador

Conclusão e considerações finais

Complexidade Interna

A execução de um

programa envolve uma

dentro do computador.

série de etapas complexas

Gerenciamento Eficiente

O sistema operacional desempenha um papel crucial no gerenciamento da memória e dos recursos.

Avanços Tecnológicos 3

> A arquitetura e o desempenho dos computadores têm evoluído rapidamente ao longo do tempo.