数字电路

第7章 时序逻辑电路

杨旭

北京理工大学

pyro_yangxu@bit.edu.cn

主要内容

时序逻辑电路的

工作原理

分析方法

设计方法

常用中规模时序逻辑电路

本章内容

- □ 7.1 概述
- □ 7.2 时序逻辑电路的分析方法
- □ 7.3 常用中规模时序逻辑电路及其应用
- □ 7.4 时序逻辑电路的设计
- □ 7.5 综合应用
- □ 7.6 用Multisim2001分析时序逻辑电路

7.1 概述

时序逻辑电路的特点:

由组合逻辑电路和存 储电路构成,它在某一 时刻的输出状态不仅与 该时刻输入信号有关, 还与电路原来的输出状 态有关。

时序逻辑电路结构上的特点:

包含组合电路和存储

电路两部分

存储电路的输出反馈到组合电路的输入端。

时序电路的输入

时序电路的输出

存储电路的输出

存储电路的驱动

比京理工大學

$$Z(t_n) = F[X(t_n), Y(t_n)]$$
 输出方程 $W(t_n) = H[X(t_n), Y(t_n)]$ 驱动方程 $Y(t_{n+1}) = G[W(t_n), Y(t_n)]$ 状态方程

时序电路的功能描述方法

逻辑函数表达式 (3个方程)

状态转换真值表

状态转换图

时序图

时序逻辑电路分类

按照存储单元状态变化的特点 (动作特点)

同步时序逻辑电路

所有触发器状态变化受同一CP控制

异步时序逻辑电路

触发器变化不同时, 有先有后

按照输出信号的特点

Mealy (米里)型

输出信号取决于存储电路与输入变量

Moore (摩尔)型

输出仅仅取决于存储电路的状态

注:有些电路没有输入信号。

按照逻辑功能

计数器

寄存器

移位寄存器

顺序脉冲发生器

• • • • •

7.2 时序逻辑电路的分析方法

时序逻辑电路的分析

找出电路的状态和输出状态在输入变

量和时钟信号的作用下的变化规律,

即已知逻辑图说明其逻辑功能。

同步时序逻辑电路分析方法

一般步骤

1、写方程

根据逻辑电路图写出各触发器的时钟方程、驱动方程、输出方程。

2、求状态方程

将驱动方程代入相应触发器的特性方程,得到各触发器的状态方程(即次态方程)。

3、列状态转换真值表

依次设初态, 求次态, 列出状态转换真值表, 或者画出状态转换图(有效循环无效循环, 自启动) (或时序图)

4、说明逻辑功能

例6-1: 分析逻辑功能

1 写方程

时钟方程

$$CP_1 = CP_2 = CP_3 = CP$$

同步时序逻辑电 路可以省去时钟 方程

$$J_1 = K_1 = Q_1 \oplus Q_3$$

$$J_2 = K_2 = Q_1 \oplus Q_2$$

$$J_3 = K_3 = Q_2 \oplus Q_3$$

如果电路有输出, 也需 要写出输出方程

2 求出状态方程

将驱动方程带入JK触发器特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n \qquad Q^{n+1} = T \oplus Q^n$$

$$Q^{n+1} = T \oplus Q^n$$

得到状态方程

$$Q_1^{n+1} = \overline{Q_1} \oplus \overline{Q_3} \oplus \overline{Q_1} = \overline{Q_3}$$
 $Q_2^{n+1} = \overline{Q_1} \oplus \overline{Q_2} \oplus \overline{Q_2} = \overline{Q_1}$
 $Q_3^{n+1} = \overline{Q_2} \oplus \overline{Q_3} \oplus \overline{Q_3} = \overline{Q_2}$

3列状态转换表

依次设初态,代入状态方程及输出方程,

求出状态转换表。

	初态			次态	
Q_3	Q_2	Q_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	1	1	1
1	1	1	1	1	0
1	1	0	1	0	0
1	0	0	0	0	0

$$Q_1^{n+1} = \overline{Q_3}$$

$$Q_2^{n+1} = Q_1$$

$$Q_3^{n+1} = Q_2$$

	初态		次态				
Q_3	Q_2	Q_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}		
0	0	0	0	0	1		
0	0	1	0	1	1		
0	1	1	1	1	1		
1	1	1	1	1	0		
1	1	0	1	0	0		
1	0	0	0	0	0		
1	0	1	0	1	0		
0	1	0	1	0	1		

序号	Q_3	\mathbf{Q}_2	Q_1
0	0	0	0
1	0	0	1
2	0	1	1
3	1	1	1
4	1	1	0
5	1	0	0
6	0	0	0
偏离	1	0	1
状态	0	1	0

偏离状态

4 画状态转换图

	初态		次态			
Q_3	Q_2	Q_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	1	1	1	1	
1	1	1	1	1	0	
1	1	0	1	0	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
0	1	0	1	0	1	

无效循环

20

有效状态:

使用的状态

000, 001, 011, 100, 110, 111

无效状态: 未使用的状态101,010

有效循环:

在CP脉冲作用下,电路在有效状态中的循环 无效循环:

在CP脉冲作用下,电路在无效状态中的循环

电路一旦进入无效状态,在CP脉冲作用下,能自动返回到有效循环中去的电路叫能自启动,否则叫不能自启动。

显然,此电路不能自启动。

5分析电路功能

不能自启动的

同步6进制计数

器

异步时序逻辑电路分析方法

一般步骤与同步时序逻辑电路的分析步骤相同,但必须首先考虑时钟条件。

每次电路状态更新时,不是所有的触发器都有时钟条件,具备CP的触发器根据状态方程求次态,无CP的触发器保持原状态。

状态方程中需写入CP条件。

例6-2:分析图示的异步时序电路,要求写出 驱动方程、次态方程,画出状态转换图,并说 明电路的逻辑功能。

触发器的时钟不是同一时钟, 其翻转不同时发生, 为异步时序逻辑电路。

1写方程

$$J_1 = \overline{Q_3}$$
 $K_1 = 1$ $CP_1 = CP \downarrow$

$$J_2 = K_2 = 1$$
 $CP_2 = Q_1$

$$J_3 = Q_1Q_2$$
 $K_3 = 1$ $CP_3 = CP \downarrow$

2 求出状态方程

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

根据驱动方程

$$\begin{cases} J_1 = \overline{Q_3} & K_1 = 1 \quad CP_1 = CP \downarrow \\ J_2 = K_2 = 1 \quad CP_2 = Q_1 \downarrow \\ J_3 = Q_1Q_2 & K_3 = 1 \quad CP_3 = CP \downarrow \end{cases}$$

$$Q_1^{n+1} = \overline{Q_1} \overline{Q_3}$$
 $CP \downarrow$
 $Q_2^{n+1} = \overline{Q_2}$ $Q_1 \downarrow$
 $Q_3^{n+1} = Q_1 Q_2 \overline{Q_3}$ $CP \downarrow$

3 画状态转换表

$$egin{aligned} Q_1^{n+1} &= \overline{Q_1} \, \overline{Q_3} & CP \downarrow \ Q_2^{n+1} &= \overline{Q_2} & Q_1 \downarrow \ Q_3^{n+1} &= Q_1 Q_2 \, \overline{Q_3} & CP \downarrow \end{aligned}$$

	初态			次态	-
Q_3	Q_2	Q_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	0	0

有效状态

无效状态

STITUTE OF TECHNOLOGY

4 画状态转换图

	初态		次态			
Q_3	Q_2	Q_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
1	1	0	0	1	0	
1	1	1	0	0	0	

29

5 电路功能

能自启动的异步五进制加法计数器。

7.3 常用中规模时序逻辑电路及其应用

寄存器和移位寄存器

寄存器是存放二进制数码的逻辑部件,由触发器构成。

一个触发器可寄存一位二进制代码,N 个触发器构成的寄存器可寄存N位二进制数码。

寄存器、移位寄存器应用广泛,种类繁多,有四位、八位、十六位等。

采用不同类型触发器电路形式不同,但大同小异。 关键是了解功能表。

寄存器的分析

4位寄存器74LS175

CP上升沿到来时

$$Q_3 Q_2 Q_1 Q_0 = D_3 D_2 D_1 D_0$$

其它时间保持不变

CR 为异步清零端

33

74LS175 功能表

输入						输出				计此
CR	CP	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	ラJ 月ピ
0	ф	ф	ф	ф	ф	0	0	0	0	异步清零
1	↑	\mathbf{d}_3	\mathbf{d}_2	\mathbf{d}_1	$\mathbf{d_0}$	\mathbf{d}_3	\mathbf{d}_2	\mathbf{d}_1	\mathbf{d}_0	同步置数
1	0 1	ф	ф	ф	ф	Q ₃	Q ⁿ ₂	Q ₁	Q^n_0	保持

移位寄存器的分析

功能:

存储代码,移位。

移位一寄存器中的代码在CP脉冲作用下,逐位左 移或右移。

用途:

存数 数据串行--并行转换 数值运算 数据处理

分类:

单向移位寄存器双向移位寄存器

单向移位寄存器 CC4015

$$D_0 = D_s = D_s, D_1 = Q_0^n, D_2 = Q_1^n, D_3 = Q_2^n$$

求状态方程

$$Q_0^{n+1} = D_s, Q_1^{n+1} = Q_0, Q_2^{n+1} = Q_1, Q_3^{n+1} = Q_2$$

串行输入数据1011的时序图

串行输入-串行输出

串行输入-并行输出

问题:来一个CP沿能否移两位或多位?

答:不能。

因为触发器从CP¹到达时接收数据,到输出端建 立新状态,需要传输时间。

当输出端新状态建立后该CP[↑]已过去,待下一个CP[↑]到来时才能移到下一位。

双向移位寄存器 74LS194

功能:

左移、右移;

并行送数;

保持;

异步清0

74LS194功能表

功	輸入							输出						
能	CR	\mathbf{M}_1	\mathbf{M}_{0}	CP	$\mathbf{D}_{\mathbf{SR}}$	\mathbf{D}_{SL}	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	Q_0^{n+1}	\mathbf{Q}_{1}^{n+1}	Q_2^{n+1}	Q_3^{n+1}
清零	0)	ф	ф	(d)	ф	ф	ф	ф	ф	φ(0	0	0	0
保持	1	•	ф	0	ф	ф	ф	ф	ф	ф	Q_0^n	Q_1^n	Q_2^n	Q_3^n
置数	1 (1	1	\uparrow	ф	ф	$\mathbf{d_0}$	$\mathbf{d_1}$	\mathbf{d}_2	\mathbf{d}_3	\mathbf{d}_0	$\mathbf{d_1}$	$\mathbf{d_2}$	\mathbf{d}_3
右移	1	0	\leq	\uparrow		ф	ф	ф	ф	ф		Q_0^n	Q_1^n	Q_2^n
	1	0	1	\uparrow	0	ф	ф	ф	ф	ф		Q_0^n	Q_1^n	Q_2^n
左移	1	1	0	\uparrow	ф		ф	ф	ф	ф	Q_1^n	Q_2^n	Q_3^n	T
	1	1	0	\uparrow	ф	0	ф	ф	ф	ф	Q_1^n	Q_2^n	Q_3^n	0
保持	1(0	0)	\uparrow	ф	ф	ф	ф	ф	ф	Q_0^n	Q_1^n	Q_2^n	Q_3^n
と京理工大学 IJING INSTITUTE OF TECHNOLOGY 45														

计数器

数字系统中使用最多的时序电路。

功能:

计算输入脉冲CP的个数。

应用:

计数、分频、定时、产生脉冲序列及节拍脉冲,进行数字运算等。

计数器分类

按计数增减分为

加法计数器 河进计数器 耳他计数器

按动作特点分为

同步计数器 异步计数器

按进制分为

二进制计数器 二-十进制计数器 任意计数器

同步计数器

同步二进制加法计数器 特点:

最低位每来一个CP改变一次状态,

第i位在第0~(i-1)全为1时,改变状态。

1写方程

时钟方程

$$CP_0 = CP_1 = CP_2 = CP_3 = CP$$

驱动方程

$$T_0 = 1$$

$$T_1 = \mathbf{Q}_0^n$$

$$T_2 = \mathbf{Q}_1^n \mathbf{Q}_0^n$$

$$T_3 = \mathbf{Q}_2^n \mathbf{Q}_1^n \mathbf{Q}_0^n$$

输出方程

$$CO = \mathbf{Q}_3^n \mathbf{Q}_2^n \mathbf{Q}_1^n \mathbf{Q}_0^n$$

2 求状态方程

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

$$T_0 = 1$$

$$T_1 = \mathbf{Q}_0^n$$

$$T_2 = \mathbf{Q}_1^n \mathbf{Q}_0^n$$

$$T_3 = \mathbf{Q}_2^n \mathbf{Q}_1^n \mathbf{Q}_0^n$$

$$Q_0^{n+1} = T_0 \oplus Q_0^n = \overline{Q}_0^n$$

$$Q_1^{n+1} = T_1 \oplus Q_1^n = Q_0^n \oplus Q_1^n$$

$$Q_2^{n+1} = T_2 \oplus Q_2^n = (Q_0^n Q_1^n) \oplus Q_2^n$$

$$Q_3^{n+1} = T_3 \oplus Q_3^n = (Q_2^n Q_1^n Q_0^n) \oplus Q_3^n$$

3 画状态转换图

带进位输出 的同步十六进 /co (四位二进 加法计数 器。

时序图

计数器又称为分频器

由时序图可以看出, CP的频率为f₀, 则Q₀、Q₁、Q₂和Q₃输出脉冲的频率依次为

$$\frac{1}{2}f_0, \frac{1}{4}f_0, \frac{1}{8}f_0, \frac{1}{16}f_0$$

小结

若用T触发器构成加法计数器,则第i位触发器输入端Ti的逻辑式应为:

$$T_0 = 1$$
 $T_i = Q_{i-1}Q_{i-2}\cdots Q_1Q_0 = \prod_{j=0}^{i-1} Q_j$
 $(i = 1, 2, \dots, n-1)$

同步十进制加法计数器

驱动方程

$$\begin{cases} T_0 = 1 \\ T_1 = \overline{Q_3^n} Q_0^n \\ T_2 = Q_1^n Q_0^n \\ T_3 = Q_2^n Q_1^n Q_0^n + Q_3^n Q_0^n \end{cases}$$

输出方程

$$CO = Q_3^n Q_0^n$$

状态方程
$$\begin{array}{c}
Q_0^{n+1} = \overline{Q_0^n} \\
Q_1^{n+1} = (\overline{Q_3^n} Q_0^n) \oplus Q_1^n \\
Q_2^{n+1} = (Q_1^n Q_0^n) \oplus Q_2^n \\
Q_3^{n+1} = (Q_2^n Q_1^n Q_0^n + Q_3^n Q_0^n) \oplus Q_3^n \\
\hline
Q_3^{n+1} = (Q_2^n Q_1^n Q_0^n + Q_3^n Q_0^n) \oplus Q_3^n \\
\hline
Q_3^{n+1} = (Q_2^n Q_1^n Q_0^n + Q_3^n Q_0^n) \oplus Q_3^n \\
\hline
Q_3^{n+1} = (Q_2^n Q_1^n Q_0^n + Q_3^n Q_0^n) \oplus Q_3^n \\
\hline
Q_3^{n+1} = (Q_3^n Q_0^n) \oplus Q$$

CP 时序图 $Q_0 \blacktriangle$ $Q_1 \blacktriangle$ $Q_2 \blacktriangle$ $Q_3 \blacktriangle$ CO

减法计数器

用T触发器实现的二进制减法计数器:

$$T_0 = 1$$
 $T_i = \overline{Q_{i-1}} \overline{Q_{i-2}} \cdots \overline{Q_1} \overline{Q_0} = \prod_{j=0}^{i-1} \overline{Q_j}$

$$(i = 1, 2, \dots n-1)$$

同步二进制减法计数器

在多位二进制数末位减1,若第i位以下皆为0时,则第i位应翻转。

同步二进制减法计数器

比京理工大學

十进制减法计数器

基本原理:

对二进制减法计数器进行修改,在0000时减"1"后跳变为1001,然后按二进制减法计数就行了。

63

异步计数器

特点:

各触发器的CP脉冲不同,触发器状态刷新不同步。 分类:

- (1) 异步二进制计数器
- (2) 异步十进制计数器

异步二进制加法计数器

在末位+1时,从低位到高位逐位进位方式工作。

原则:每位从"1"变"0"时,向高位发出进位, 使高位翻转。

时序逻辑电路小测验

实现的是什么功能?

要求: 1) 写时钟方程、驱动方向、状态方程;

- 2) 画出状态转换真值表/状态转换图
- 3) 描述它的功能

异步二进制减法计数器

在末位-1时,从低位到高位逐位借位方式工作。

原则:每位从"0"变"1"时,向高位发出借位, 使高位翻转。

异步二进制计数器如由T'触发器组成, 其各级触发器的的时钟选择规律为: CP₀=CP

	→触发	个触发			
加法	$Q_{i-1} \rightarrow CP_i$	$\overline{\overline{Q}}_{i-1} \to CP_i$			
减法	$\bar{\mathbf{Q}}_{i-1} \to \mathbf{CP}_i$	$Q_{i-1} \rightarrow CP_i$			

异步十进制加法计数器

原理:

在4位二进制异步加法计数器上修改而成,要跳过1010~1111这六个状态。

异步N进制计数器

分析方法与之前介绍方法完全相同。 异步六进制计数器 (自己分析一下)

异步计数器由于触发器逐级翻转,工作速度低; 将某些状态译码时,译码器输出端会有竞争冒险产 生的尖峰脉冲;但其结构简单,可自启动。

同步计数器工作频率较高,传输延迟短,但结构 复杂。

加减可逆计数器

同步十六进制加/减计数器74191

<u>U/D:</u> 加减控制

0加,1减。

S: 使能控制

0计数,1保持。

C/B: 进位/借位输出。

74LS191功能表

CP_1	S	LD	U/D	工作状态
ф	1	1	ф	保持
ф	ф	0	ф	预置数
\uparrow	0	1	_0_	加法计数
↑	0	1	1	减法计数

双时钟方式

74LS193

双时钟同步十六 进制加/减计数器

采用T'触发器。

移位计数器

移位计数器是一种特殊形式的计数器。

它是在移位寄存器的基础上增加反馈电路构成的。

常用的移位计数器有环形计数器和扭环形计数器。

环形计数器

原理: 直观法分析

不能自启动。

用电路的不同状态表示CP的数目。

有效循环

无效循环

解决自启动的方法

方法1:

修改输出与输入之间的反馈逻辑,使电路具有自启动能力。

方法2:

当电路进入无效状态时,利用触发器的异步置位、复位端,把电路置成有效状态。

能自启动的环形计数器

80

七京理工大學

扭环形计数器

将末级的反相输出端反馈到第一级的输入端。

一方面保持移位寄存器的特点,另一方面又能提高触发器的利用率。

直观分析法可得其状态转换图

不能自启动。

有效循环

无效循环

能自启动的扭环形计数器

修改反馈逻辑 $\Leftrightarrow D_0 = \overline{Q_1}\overline{Q_2} \cdot Q_3 = Q_1 \cdot \overline{Q_2} + \overline{Q_3}$

常用中规模集成计数器

同步十进制加法计数器74160

同步四位二进制加法计数器74161

异步二-五-十进制加法计数器74290

同步四位二进制加减法计数器CC4516

同步十进制计数器74160

ル京理工大学 ELJING INSTITUTE OF TECHNOLOGY 要求根据功能表,看出电路的逻辑功能、功能端的有效电平、异步/同步作用端。

74160 功能表

CP	CR	LD	CT_{P}	CT_T	工作状态
ф	0	ф	ф	ф	异步清零
↑	1	0	ф	ф	同步预置
ф	1	1	0	1	保持
ф	1	1	ф	0	保持 (CO=0)
↑	1	1	1	1	计数

 $CO = CT_TQ_3Q_0$

74160 状态转换图

同步四位二进制计数器74161

74161(16进制)除了进制与74160(10进制)不同之外,其他功能与74160相同。

74161 功能表

CP	CR	LD	CT _P	CT_T	工作状态
ф	0	ф	ф	ф	异步清零
↑	1	0	ф	ф	同步预置
ф	1	1	0	1	保持
ф	1	1	ф	0	保持 (CO=0)
†	1	1	1	1	计数

16进制

异步二-五-十进制加法计数器74290

FF₀构成二进制计数器

FF₁、FF₂、FF₃构成五进制计数器

74290功能表

$R_{0(1)}$	$R_{0(2)}$	S ₉₍₁₎	S ₉₍₂₎	Q_3	Q_2	Q_1	Q_0	
1	1	0	ф	0	0	0	0	
1	1	ф	0	0	0	0	0	
0	ф	1	1	1	0	0	1	
ф	0	1	1	1	0	0	1	
ф	0	ф	0					
0	ф	0	ф	计粉				
0	ф	ф	0	计数				
ф	0	0	ф					

具有异步置9与异步清0的功能。

Q₀与CP₁相连

8421码十进制计数器

 $Q_3Q_2Q_1Q_0$

CP	Q_3	\mathbf{Q}_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	0	0	0	0

Q3与CP0相连

5421码十进制计数器

 $Q_0Q_3Q_2Q_1$

CP	\mathbf{Q}_0	Q_3	\mathbf{Q}_2	Q_1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0
10	0	0	0	0

同步四位二进制加减法计数器CC4516

化京理工大学

CC4516功能表

CP	CR	LD	CI	U/D	工作状态
ф	1	ф	ф	ф	异步置0
ф	0	1	ф	ф	异步 置数
ф	0	0	1	ф	保持
↑	0	0	0	1	加计数
1	0	0	0	0	减计数

任意进制计数器的设计

任意进制计数器的构成方法

为降低成本,计数器的定型产品须有足够的批量,常见的定型产品有:十进制、十六进制(4位二进制)、7位二进制、12位二进制、14位二进制等。 若需其它进制计数器,可在此基础上进行设计。

若已有N进制计数器芯片, 需M进制计数器, 分两种情况:

M<N:用一片N进制计数器即可。

M>N:视情况需用多片N进制计数器。

M<N的情况

用一片N进制计数器实现N以内任意进制计数器, 想办法跳过N-M个状态。

清零法(复位法)(反馈归零法): 适用于有清零端的计数器。

置数法(置位法):

适用于有预置数功能的计数器。

六进制计数器

$$\overline{CR} = \overline{Q_1Q_2}$$

CP	CR	LD	CT _P	CT_T	工作状态
ф	0	ф	ф	ф	异步清零
↑	1	0	ф	ф	同步预置
ф	1	1	0	1	保持
ф	1	1	ф	0	保持 (CO=0)
↑	1	1	1	1	计数

七进制计数器

$$\overline{LD} = \overline{Q_1Q_2}$$

CP	CR	LD	CT _P	CT_T	工作状态
ф	0	ф	ф	ф	异步清零
↑	1	0	ф	ф	同步预置
ф	1	1	0	1	保持
ф	1	1	ф	0	保持 (CO=0)
↑	1	1	1	1	计数

六进制计数器

$$\overline{LD} = \overline{CO}$$

CP	CR	LD	CT _P	CT_{T}	工作状态
ф	0	ф	ф	ф	异步清零
↑	1	0	ф	ф	同步预置
ф	1	1	0	1	保持
ф	1	1	ф	0	保持 (CO=0)
↑	1	1	1	1	计数

1) 反馈归零法

原理:

跳过N-M个状态直接回到0状态

分类:

异步清零

同步清零

异步清零

74160、74161、74290

特点:

从 S_0 (全0)开始,达到 S_M 状态时,立刻回到 S_0 。 S_M 为瞬态。

方法:

写出模M的二进制代码 写出反馈逻辑CR的表达式 M中所有为1的Q端相与(与非) 将与(与非)结果接到清零端

同步清零

特点:

从 S_0 (全0)开始,达到 S_{M-1} 状态时,使清零信号有效,下一状态回到 S_0 。

方法:

写出模 (M-1) 的二进制代码

写出反馈逻辑CR的表达式

(M-1) 中所有为1的Q端相与(与非)

将与(与非)结果接到清零端

清零法(异步作用端)存在问题:

缺点:

异步控制可靠性差。清零信号随着计数器被置零 立即消失,持续时间极短,易导致触发器的误动 作,该电路不可靠。

解决方法:

- 1) 采用同步预置端-置数法。
- 2) 对清零信号增加基本RS触发器,保持一段时间。(见后面74290应用设计)

2) 置数法

利用预置数端

原理:

通过给计数器重复置入某数值的方法跳越N-M个 状态,从而获得M进制计数器。

采用置数法可以从计数循环的任一状态置入适当的数值而跳越N-M个状态,获得M进制计数器。

N-M个状态

同步式预置数的计数器 (74160, 74161):

预置数信号从S_i状态译出,待下一个CP信号到来, 才将所需数据置入。

异步式预置数的计数器(74191):

预置数信号从S_{i+1}状态译出,只要预置数信号有效,立即将所需数据置入,不受CP信号控制。

常用置数方法

置最小数全零(0000)

用最大数 (CO) 置数

其他置数除去中间状态

M>N的情况

有四种设计方法:

串行进位和并行进位方式

若M可分解为 $M=N_1\times N_2$,

可用串行进位或并行进位方式,

将N1进制和N2进制的计数器连接起来。

串行进位方式:

低位片的进位输出信号作为高位片的时钟输入。并行进位方式:

低位片的进位输出信号作为高位片的工作状态控制信号(使能),两片的时钟输入端同时接输入信号。

100进制计数器

同步级联 (并行进位方式)

100进制计数器

异步级联 (串行进位方式)

当所设计计数器M不是素数时, $M=N_1\times N_2$,并且 N_1 、 N_2 都小于N时,则可采用级联法构成M进制计数器。

例:用两片74160构成M=24进制计数器

$$N_1 = 6$$
, $N_2 = 4$

或
$$N_1 = 3$$
、 $N_2 = 8$

24进制计数器

24进制计数器

如果要求 $N_1=3$, $N_2=8$, 如何设计?

当所设计计数器M是素数时,不能分解成 $N_1 \times N_2$,的形式,并且M大于N时:

将2片N进制计数器通过级联构成N×N进制计数器,并且假定M<N×N。

通过整体清零或整体预置法,采用与M<N情况相同的方法构成M进制计数器。

例: 用两片74160接成29进制计数器

29是素数,只能采用整体清零法或整体预置法。

首先接成100进制计数器,然后采用清零或者置数方法得到29进制。

整体简化状态转换图

工作可靠, 进位信号可直接从与非门引出。

例6-4 用两片74290构成56进制计数器

整体清零法

异步作用端设计电路存在可靠性差

经译码后送 $R_{0(1)}R_{0(2)}$ 的清零信号保持半个CP周

期(低电平期间),从而可靠清零。

137

顺序脉冲发生器

在计算机和控制系统中,常常要求系统的某些操作按时间顺序分时工作,因此需要产生一个节拍控制脉冲,以协调各部分的工作。

能产生节拍脉冲的电路叫做节拍脉冲发生器,又 称顺序脉冲发生器(脉冲分配器)。

顺序脉冲发生器分类

计数器型

移位寄存器型

计数器型

该电路由计数器和译码器构成。

n个触发器构成的计数器有2ⁿ个状态。在时钟脉冲作用下,计数器不断改变状态,经译码后在2ⁿ个输出端上每一时刻只有相应的一条输出线上出现高电平(或低电平),其他输出线上均出现低电平(或高电平)。

触发器翻转时刻不可能完全一致,可能存在干扰脉冲。

移位寄存器型

采用环形计数器和扭环形计数器构成顺序脉冲发生器。

可以避免在译码过程中出现干扰脉冲。

采用环形计数器

环形计数器的每个触发 器的Q端输出就是节拍脉冲。

FF₃

不需要另加译码器。

 \mathbf{FF}_2

采用扭环形计数器

译码后不会存在干扰

脉冲

序列脉冲发生器

在数字信号的传输和数字系统的测试中,有时需要用到一组特定的串行数字信号,通常把这种串行数字信号叫做序列信号。

产生序列信号的电路称为序列信号/脉冲发生器。

序列信号发生器的构成方法 用计数器和数据选择器组成 用计数器加输出电路

计数器和数据选择器组成

四位二进制计数器161构成模8计数器;

8选1数据选择器151构成组合输出网络;

JK触发器7472起输出缓冲作用。

计数器和输出电路组成

计数器和输出电路组成

三个T'触发器构成3位二进制异步计数器。

$$F_1 = Q_0 Q_1$$

$$F_2 = \overline{Q_1} + Q_0 Q_2$$

输出序列:

10001000

11001101

\mathbf{Q}_2	Q_1	Q_0	\mathbf{F}_1	$\mathbf{F_2}$
0	0	0	1	1
0	0	1	0	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	0	1

更改输出电 路,可得到不同 序列。

小测试

利用74160设计一个必要的计数器,并实现灯光控制电路:

Q_2	Q_1	Q_0	红	绿
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

7.4 时序逻辑电路的设计

时序电路设计是时序逻辑电路分析的逆过程。 设计任务:

根据给出的逻辑问题(命题要求),设计出能实现逻辑要求的时序电路,画出逻辑图。

设计方法

- 1、经典设计方法,采用尽可能少的小规模器件(触发器和门电路);
- 2、采用标准中规模、大规模集成器件进行逻辑 设计;
 - 3、采用可编程逻辑器件进行设计。

同步时序逻辑电路——状态机的设计

逻辑抽象

确定输入变量、输出变量、及电路的状态数。

定义输入、输出状态及电路状态含义。

画原始状态转换图(表)

状态化简

合并等价状态,进行状态化简,求出最简状态转换图(表)。

等价状态:

若两个状态在输入相同时输出相同,次态也相同, 称其为等价状态。

状态分配

确定触发器数目n;

 $2^{n-1} \le M \le 2^n$

进行状态编码(状态分配);

选定触发器类型

确定触发器类型

求出:

状态方程

输出方程

驱动方程

判断能否自启动

根据方程画出逻辑电路图后,一般还要检查电路能否自启动。

可以通过修改逻辑设计解决自启动问题。

实际设计电路过程中,根据题目给定条件,某些步骤可以省略。

例6-6:设计一个带进位输出的同步六进制计数器

1、逻辑抽象

计数器,无输入,输出CO为进位信号。 本题中此步骤可省略。

- 2、画出状态转换图
- 3、状态化简 已经最简

4、状态编码

6个状态, 22<6<23

需要3个触发器。

5、做次态卡诺图 求输出方程 和驱动方程

Q_1	${f Q_0^n} \\ {f 00}$	01	11	10
Q_2	001/0	010/0	100/0	011/0
1	101/0	000/1	Φ	Φ

输出方程不变

$$CO = Q_2Q_0$$

状态方程:

驱动方程:

$$egin{aligned} Q_2^{n+1} &= Q_1 Q_0 + \overline{Q_0} Q_2 & D_2 & Q_1 Q_0 + \overline{Q_0} Q_2 \ Q_1^{n+1} &= \overline{Q_2} Q_0 \overline{Q_1} + \overline{Q_0} Q_1 & D_1 &= \overline{Q_2} Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \ Q_0^{n+1} &= \overline{Q_0} & D_0 &= \overline{Q_0} \end{aligned}$$

输出方程:

$$CO = Q_2Q_0$$

电路图省略

触 器 实

$$Q_2^{n+1} = Q_1 Q_0 \overline{Q_2} + \overline{Q_0} Q_2$$

$$Q_{0}^{n}$$
 Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n+1} Q_{0}^{n} Q_{0}^{n} Q_{0}^{n+1} Q_{0}^{n} Q_{0}^{n}

$$Q_0^{n+1} = \overline{Q_0}$$

$$Q_1^{n+1} = \overline{Q_2}Q_0\overline{Q_1} + \overline{Q_0}Q_1$$

$$CO = Q_2Q_0$$

$$\begin{cases} Q_2^{n+1} = Q_1 Q_0 \overline{Q_2} + \overline{Q_0} Q_2 \\ Q_1^{n+1} = \overline{Q_2} Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \end{cases} \qquad Q^{n+1} = \overline{JQ}^n + \overline{KQ}^n \\ Q_0^{n+1} = \overline{Q_0} \qquad Q_0^{n+1} \qquad Q_0^{n+1} = \overline{Q_0} \qquad Q_0^{n+1} = \overline{Q_0} \qquad Q_0^{n+1} = \overline{Q_0} \qquad$$

驱动方程

$$\begin{cases} J_2 = Q_1 Q_0, K_2 = Q_0 \\ J_1 = \overline{Q_2} Q_0, K_1 = Q_0 \\ J_0 = 1, K_0 = 1 \end{cases}$$

输出方程

$$CO = Q_2Q_0$$

6、画出逻辑电路图

$$\begin{cases} J_{2} = Q_{1}Q_{0}, & K_{2} = Q_{0} \\ J_{1} = \overline{Q_{2}}Q_{0}, & K_{1} = Q_{0} \\ J_{0} = 1, & K_{0} = 1 \end{cases}$$

$$CO = Q_2Q_0$$

经检查, 电路可以自启动

异步时序逻辑电路的设计

需要为每个触发器选择合适的时钟信号。

不要求,感兴趣同学自学了解。

7.5 综合应用

带显示的数字秒表电路。

计时: 计数器、显示译码

控制:单次脉冲、节拍脉冲

自学了解

7.6 用Multisim分析时序逻辑电路

课下自己完成。

基本要求

- 1、了解时序逻辑电路的特点
- 2、同步/异步时序逻辑电路的分析方法 写出时钟方程、驱动方程、状态方程及输出方程。 利用状态转换图/表和时序图说明电路的逻辑功能。 根据要求进行自启动检查。

3、常用中规模时序电路

寄存器和移位寄存器(74194)

计数器(74160/161,74290)

会读功能表、会分析

任意进制计数器的设计

分为M>N及M<N两种情况,有清零法及置数法,

级联时可采用串行进位及并行进位两种方式

4、小规模时序电路的设计方法

逻辑抽象,得到状态转换图

选择触发器的种类和个数

求出状态方程及输出方程,并进而得到驱动方程

画出电路图 (根据要求进行自启动检查)

5、时序电路与组合电路的综合应用顺序脉冲发生器

序列信号发生器

