# MATH 241

# Chapter 4

SECTION 4.2: DEFINITE INTEGRAL

# Contents

| General Definition                  | 2 |
|-------------------------------------|---|
| Properties of The Definite Integral | 5 |
| Playing with Lower and Upper Bounds | 5 |
| Algebraic operations                | 5 |
| Useful Formulas                     |   |
| Cutting the domain                  | 7 |
| Comparison Properties               |   |

CREATED BY: PIERRE-OLIVIER PARISÉ

 $Fall\ 2022$ 

Suppose we have a region S under the graph of a function y = f(x) from x = a to x = b.



• Divide the interval [a, b] in n subintervals of equal length  $\Delta x = (b - a)/n$ .



- Select some number  $x_i^*$  in each  $[x_{i-1}, x_i]$  (can be any number within the subinterval).
- Form the sum:  $S_n = \sum_{i=1}^n f(x_i^*) \Delta x = f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x$ .

Area(S) = 
$$\int_0^1 x^2 dx = \frac{1}{3}$$

Definite Integral: For a continuous function f, the definite integral of f is defined by

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( \sum_{i=1}^{n} f(x_i^*) \Delta x \right).$$

#### Important Remarks:

- Description of the terminology:
  - Symbol  $\int$ : means a "continuous" oum a: lower bound.

  - b: upper bound
  - -f(x): integrand (what we integrate)
  - dx: variable of integration (Similar role ous in dx)
- The definite integral is a **number!** It does not depend on x! This means that

$$\int_{a}^{b} f(\underline{x}) d\underline{x} = \int_{a}^{b} f(r) dr = \int_{a}^{b} f(t) dt = \dots$$

$$\int_{a}^{b} f(\underline{x}) d\underline{x} = \int_{a}^{b} f(r) dr = \int_{a}^{b} f(t) dt = \dots$$

- The expression  $S_n$  are called **Riemann Sums**.
- When  $f(x) \ge 0$ , then  $\int_a^b f(x) dx$  is the area of the region S:

$$Area(S) = \int_{a}^{b} f(x) \, dx.$$

• If f(x) is negative somewhere, then  $\int_a^b f(x) dx$  is the **net area** between the graph of y = f(x) and the horizontal line y = 0 (the x-axis)



$$\int_a^b f(x) dx = B + C - A$$

**EXAMPLE 1.** Find the value of the following integrals.

(a) 
$$\int_0^1 x dx.$$

**(b)** 
$$\int_{-1}^{1} x \, dx$$
.

**(b)** 
$$\int_{1}^{1} x \, dx$$
. **(c)**  $\int_{0}^{2} |x - 1| \, dx$ .

(a) 
$$f(x) = \infty$$
  
van. of int = x

Since 
$$f(x) \ge 0$$
  

$$\int_0^1 x dx = Area(s)$$

$$= 1.1 = 1$$

$$\int_{a}^{b} x dx = \frac{b^{2} - a^{2}}{2} \quad (in general).$$



f is negative ... [ xdx = Net Area  $= A(\Delta) - A(P)$  $=\frac{1}{2}-\frac{1}{2}=0$ 

(c) 
$$f(x) = |x-1|$$
  
 $a = 0$   
 $b = 2$ 



$$\int_0^2 |x-1| dx = Area(|x|) + Area(|x|)$$

$$= \frac{1}{2} + \frac{1}{2} = \boxed{1}$$

<u>Useful Trick:</u> Try to interest the integral geometrically!

### Properties of The Definite Integral

### Playing with Lower and Upper Bounds

• If we change the order of the lower and upper bounds, then

$$(a < b)$$

$$\int_{2}^{0} |x-1| dx = -\int_{0}^{2} |x-1| dx$$

 $\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx.$ 

• If the lower and upper bounds are equal, the definite integral is zero, that is

$$\int_a^a f(x) \, dx = 0.$$

#### Illustration:



# Algebraic operations

For two continuous functions f(x) and g(x) on the interval [a, b],

- Addition:  $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$
- Substraction:  $\int_a^b (f(x) g(x)) dx = \int_a^b f(x) dx \int_a^b g(x) dx.$
- Multiplication by constant:  $\int_a^b cf(x) dx = c \int_a^b f(x) dx$ .

#### **Useful Formulas**

Go to Desmos: https://www.desmos.com/calculator/mr9ba23hpz.

$$\int_a^b x^n dx = \frac{b^{n+1} - a^{n+1}}{n+1}$$

**EXAMPLE 2.** Using the properties of the integral and the formulas, find the value of the following integrals.

(a) 
$$\int_0^1 2x^2 - x^4 dx$$
.

(a) 
$$\int_{0}^{2} 4x^{4} - 3x^{2} dx$$
.  
(a)  $\int_{0}^{1} 2\pi^{2} - x^{4} dx = \int_{0}^{1} 2\pi dx - \int_{0}^{1} x^{4} dx$ 

$$= 2 \int_{0}^{1} x^{2} d\pi - \int_{0}^{1} x^{4} dx$$

$$= 2 \left( \frac{1^{3} - 0^{3}}{3} \right) - \left( \frac{1^{5} - 0^{5}}{5} \right)$$

$$= \frac{2}{3} - \frac{1}{5} = \boxed{\frac{7}{15}}$$

(b) 
$$\int_{-2}^{2} 4x^{4} - 3x^{2} dx = \int_{-2}^{2} 4x^{4} dx - \int_{-2}^{2} 3x^{2} dx$$
  

$$= 4 \int_{-2}^{2} x^{4} dx - 3 \int_{-2}^{2} x^{2} dx$$

$$= 4 \left( \frac{2 - (-2)^{5}}{5} \right) - 3 \left( \frac{2^{3} - (-2)^{3}}{3} \right)$$

$$= \sqrt{176}$$

#### Cutting the domain

Let a < c < b and f(x) be a continuous function on [a, b]. Then

$$\underbrace{\int_{a}^{b} f(x) dx} = \underbrace{\int_{a}^{c} f(x) dx} + \underbrace{\int_{c}^{b} f(x) dx}.$$

<u>Illustration:</u>



**EXAMPLE 3.** If it is known that  $\int_0^{10} f(x) dx = 17$  and  $\int_0^{8} f(x) dx = 12$ , then find  $\int_0^{10} f(x) dx$ .

$$\int_{0}^{10} f(x) dx = \int_{0}^{8} f(x) dx + \int_{8}^{10} f(x) dx$$

$$17 = 12 + \int_{8}^{10} f(x) dx$$

$$\Rightarrow$$
 17 = 12 +  $\int_{8}^{10} f(x) dx$ 

$$\Rightarrow \int_{8}^{10} f(x) dx = \boxed{5}$$

## **Comparison Properties**

- If  $f(x) \ge 0$  for  $a \le x \le b$ , then  $\int_a^b f(x) dx \ge 0$ .
- If  $f(x) \ge g(x)$  for  $a \le x \le b$ , then  $\int_a^b f(x) dx \ge \int_a^b g(x) dx$ .
- If  $m \le f(x) \le M$  for  $a \le x \le b$ , then

$$m(b-a) \le \int_a^b f(x) \, dx \le \underline{M(b-a)}.$$

**EXAMPLE 4.** Use the last comparison property to estimate  $\int_{1}^{4} \sqrt{x} \, dx$ .

Average: 
$$\int_{1}^{4} \sqrt{x} \, dx \approx \frac{6+3}{2} = 4.5$$

Remark:
$$\int_{1}^{4} x^{1/2} dx = \frac{4^{1/2+1} - 1^{1/2+1}}{1/2+1} = \frac{4^{3/2} - 1}{3/2}$$

$$= \frac{14}{3}$$