Lloc geomètric	excentricitat	Equació	Altres
Circumferència	0	$(x - x_0)^2 + (y - y_0)^2 = r^2$	$C(x_0, y_0)$, radi r
Paràbola	1	$y^2 = 2px$	$V(0,0), F(\frac{p}{2},0), r: x = -\frac{p}{2}$
		$x^2 = 2py$	$V(0,0), F(0,\frac{p}{2}), r: y = -\frac{p}{2}$
		$(y - y_0)^2 = 2p(x - x_0)$	$V(x_0, y_0), F(x_0 + \frac{p}{2}, y_0), r : x = x_0 - \frac{p}{2}$
		$(x - x_0)^2 = 2p(y - y_0)$	$V(x_0, y_0), F(x_0, y_0 + \frac{p}{2}), r : y = y_0 - \frac{p}{2}$
El.lipse	0 < e < 1	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$F(c,0), F'(-c,0), a^2 = b^2 + c^2$
		$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$	F(0,c), F'(0,-c)
		$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$	$F(c+x_0,y_0), F'(-c+x_0,y_0)$
		$\frac{(x-x_0)^2}{b^2} + \frac{(y-y_0)^2}{a^2} = 1$	$F(x_0, c + y_0), F'(x_0, -c + y_0)$
Hipèrbola	e > 1	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$F(c,0), F'(-c,0), c^2 = a^2 + b^2$
		$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	F(0,c), F'(0,-c)
		$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$	$F(c+x_0,0), F'(-c+x_0,y_0)$
		$\frac{(y-y_0)^2}{a^2} - \frac{(x-x_0)^2}{b^2} = 1$	$F(x_0, c + y_0), F'(x_0, -c + y_0)$