Supervised Learning

Final Project

Data: Most Streamed Spotify Songs 2023

Questions

What patterns exist among the top streamed songs?

Is there a way to predict if a song will be popular based on features on the song?

Take a look at the data

	track_name	artist(s)_name	artist_count	released_year	released_month	released_day	in_spotify_playlists	in_spotify_charts	streams	in_apple_playlists	
0	Seven (feat. Latto) (Explicit Ver.)	Latto, Jung Kook	2	2023	7	14	553	147	141381703	43	•••
1	LALA	Myke Towers	1	2023	3	23	1474	48	133716286	48	***
2	vampire	Olivia Rodrigo	1	2023	6	30	1397	113	140003974	94	
3	Cruel Summer	Taylor Swift	1	2019	8	23	7858	100	800840817	116	•••
4	WHERE SHE GOES	Bad Bunny	1	2023	5	18	3133	50	303236322	84	

Take a look at the data types

Determine if there are null values

Data	ata columns (total 24 columns):									
#	Column	Non-Null Count	Dtype							
0	track_name	953 non-null	object							
1	artist(s)_name	953 non-null	object							
2	artist_count	953 non-null	int64							
3	released_year	953 non-null	int64							
4	released_month	953 non-null	int64							
5	released_day	953 non-null	int64							
6	in_spotify_playlists	953 non-null	int64							
7	in_spotify_charts	953 non-null	int64							
8	streams	953 non-null	object							
9	in_apple_playlists	953 non-null	int64							
10	in_apple_charts	953 non-null	int64							
11	in_deezer_playlists	953 non-null	object							
12	in_deezer_charts	953 non-null	int64							
13	in_shazam_charts	903 non-null	object							
14	bpm	953 non-null	int64							
15	key	858 non-null	object							
16	mode	953 non-null	object							
17	danceability_%	953 non-null	int64							
18	valence_%	953 non-null	int64							
23	speechiness_%	953 non-null	int64							
dtypes: int64(17), object(7)										

Compare values for all songs vs top 100 songs

Take a look at the correlation matrix

-0.4

-02

- 0.0

--0.4

Linear Regression

```
y = data['streams']
X = data[['bpm',
 'key_A', 'key_A#', 'key_B',
       'key_C#', 'key_D', 'key_D#', 'key_E', 'key_F', 'key_F#', 'key_G',
      'key G#', 'mode Major', 'mode Minor',
 'danceability_%',
 'valence %',
 'energy %',
 'acoustioness %',
 'instrumentalness %'.
 'liveness_%',
 'speechiness_%' ]]
# Normalize the target
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
y_normalized = scaler.fit_transform(y.values.reshape(-1, 1))
X_train, X_test, y_train, y_test = train_test_split(X, y_normalized, test_size=0.4, random_state=20)
model = LinearRegression()
model.fit(X_train,y_train)
predictions = model.predict(X_test)
print(
  'mean_squared_error : ', mean_squared_error(y_test, predictions))
print(
  'mean_absolute_error : ', mean_absolute_error(y_test, predictions))
print(
  'r2_score :', r2_score(y_test, predictions))
```

Target variable is 'streams'

Normalize 'streams' using MinMax

Linear Regression

mean_squared_error : 0.022256678484159128 mean_absolute_error : 0.11116957026618782

r2_score : 0.021046219353758833

Linear regression does not work well here at all

This is not surprising

The features are not linearly related

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X train[['danceability %',
 'valence %',
 'energy %',
 'acousticness %',
 'instrumentalness %',
 'liveness %',
 'speechiness %']] = scaler.fit transform(X train[['danceability
 'valence %',
 'energy %',
 'acousticness %',
 'instrumentalness %',
 'liveness %',
 'speechiness %']])
X test[['danceability %',
 'valence %',
 'energy %',
 'acousticness %',
 'instrumentalness %',
 'liveness %',
 'speechiness %']] = scaler.transform(X test[['danceability %',
 'valence %',
 'energy %',
 'acousticness %',
 'instrumentalness %',
 'liveness %',
 'speechiness %']])
```

Trees

Decision Tree & Random Forest

Using sklearn

```
tree model = DecisionTreeRegressor()
rf model = RandomForestRegressor()
tree model.fit(X train, y train)
rf model.fit(X train, y train)
tree mse = mean squared error(y train, tree model.predict(X train))
tree mae = mean absolute error(y train, tree model.predict(X train))
rf mse = mean squared error(y train, rf model.predict(X train))
rf mae = mean absolute error(y train, rf model.predict(X train))
RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None,
           max features='auto', max leaf nodes=None,
           min impurity decrease=0.0,
           min samples leaf=1, min samples split=2,
           min weight fraction leaf=0.0, n estimators=10, n jobs=1,
           oob score=False, random state=None, verbose=0, warm start=False)
from math import sqrt
print("Decision Tree training mse = ",tree mse," & mae = ",tree mae," & rmse = ", sqrt(tree mse))
print("Random Forest training mse = ",rf mse," & mae = ",rf mae," & rmse = ", sqrt(rf mse))
Decision Tree training mse = 0.0 & mae = 0.0 & rmse = 0.0
Random Forest training mse = 0.0034531586946030925 & mae = 0.04291456664272159 & rmse = 0.058763583064710176
```

Trees

Results

```
tree_test_mse = mean_squared_error(y_test, tree_model.predict(X_test))
tree_test_mae = mean_absolute_error(y_test, tree_model.predict(X_test))
rf_test_mse = mean_squared_error(y_test, rf_model.predict(X_test))
rf_test_mae = mean_absolute_error(y_test, rf_model.predict(X_test))

print("Decision Tree test mse = ",tree_test_mse," & mae = ",tree_test_mae," & rmse = ", sqrt(tree_test_mse))
print("Random Forest test mse = ",rf_test_mse," & mae = ",rf_test_mae," & rmse = ", sqrt(rf_test_mse))

Decision Tree test mse = 0.049148873249189186 & mae = 0.1494445308737565 & rmse = 0.22169545157532933
Random Forest test mse = 0.023846587031924858 & mae = 0.11659426355051591 & rmse = 0.15442340182732944
```

Conclusions & Next Steps

Decision Tree overfits the training data

Random Forest improves upon this

Complex patterns & relationships among features

More feature engineering can be performed

Ensemble & Deep learning techniques could be applied