Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(color_codes = True)
import warnings
warnings.filterwarnings('ignore')
from google.colab import files
```

uploaded = files.upload()

Choose Files diabetes.csv

• diabetes.csv(application/vnd.ms-excel) - 23875 bytes, last modified: 10/3/2021 - 100% done Saving diabetes.csv to diabetes (3).csv

```
import io
db = pd.read_csv(io.BytesIO(uploaded['diabetes.csv']))
```

Data Collection

#Extracting data db.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigre
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

#Our dataset dimesnions db.shape

(768, 9)

db.dtypes

Pregnancies

int64

Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 DiabetesPedigreeFunction float64 Age int64 Outcome int64

dtype: object

#measuring the statistical values of the dataset range of each column
db.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000

→ Data Representation

```
#Counting values of outcomes having 0 or 1, 0 means non diabetic and 1 means diabetic
plt.figure(figsize=(10,7))
sns.set(font_scale = 1.5)
sns.countplot(x='Outcome',data=db,palette="Set2")
plt.ylabel('Number of People')
```

Text(0, 0.5, 'Number of People')

db['Outcome'].value_counts()

0 5001 268

Name: Outcome, dtype: int64

2

db.groupby('Outcome').mean()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
Outcome						
0	3.298000	109.980000	68.184000	19.664000	68.792000	30.304200
1	4.865672	141.257463	70.824627	22.164179	100.335821	35.142537

db.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

db.isnull().sum()

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0

Outcome dtype: int64

ome

db.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insul
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.0735
Glucose	0.129459	1.000000	0.152590	0.057328	0.3313
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.0889
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.4367
Insulin	-0.073535	0.331357	0.088933	0.436783	1.0000
ВМІ	0.017683	0.221071	0.281805	0.392573	0.1978
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.1850
Age	0.544341	0.263514	0.239528	-0.113970	-0.0421
Outcome	0.221898	0.466581	0.065068	0.074752	0.1305

Co-relation Matrix

#Ex: correlation between Glucose and Outcome is 47% that means output depends majorly on G
db_copy = db.copy(deep = True)

C

.≚

.⊐

 \subseteq

#check for zero values in data
for i in db.columns:
 print(i,len(db[db[i]==0]))

Pregnancies 111
Glucose 5
BloodPressure 35
SkinThickness 227
Insulin 374
BMI 11
DiabetesPedigreeFunction 0
Age 0
Outcome 500

#replace these zero values with NAN and later replace NAN with median
db_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] = db_copy[['Glucose',
print(db_copy.isnull().sum())

Pregnancies 0 5 Glucose BloodPressure 35 SkinThickness 227 Insulin 374 BMI 11 DiabetesPedigreeFunction 0 0 Age Outcome 0 dtype: int64

Data Cleaning

```
#Check if any null or empty data is present in dataset
db.isnull().sum()
     Pregnancies
                                 0
     Glucose
                                 0
     BloodPressure
                                 0
     SkinThickness
                                 0
     Insulin
                                 0
     BMT
                                 0
     DiabetesPedigreeFunction
                                 0
                                 0
     Age
     Outcome
                                 0
     dtype: int64
#Feature matrix - Taking all our independent columns into single array and dependent value
x=db.iloc[:,:-1].values #Independent matrix
y=db.iloc[:,-1].values
db['Outcome'].value_counts()
     0
          500
     1
          268
     Name: Outcome, dtype: int64
x.shape
     (768, 8)
#refering to column 1 in dataset i.e pregnancies
x[0]
     array([ 6.
                   , 148.
                              72.
                                        35.
                                                  0.
                                                          33.6 ,
                                                                    0.627,
             50.
                   1)
     array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
            1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
            1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
            1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
            1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
            0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
            1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
```

0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,

```
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,
0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0,
                                          0, 0, 1, 0, 0,
1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                                          0, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1,
                                          0, 1, 0, 1, 0,
     0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
```

Exploratory Data Analysis

```
#glucose for diabetic

fig = plt.figure(figsize =(16,6))
sns.distplot(db["Glucose"][db["Outcome"] == 1])
plt.xticks([i for i in range(0,201,15)],rotation = 45)
plt.ylabel("Glucose count")
plt.title("Glucose",fontsize = 20)
```



```
#insulin for diabetic

fig = plt.figure(figsize = (16,6))
sns.distplot(db["Insulin"][db["Outcome"]==1])
plt.xticks()
plt.title("Insulin",fontsize = 20)
```

Text(0.5, 1.0, 'Insulin')


```
#BMI for diabetic

fig = plt.figure(figsize =(16,6))
sns.distplot(db["BMI"][db["Outcome"]==1])
plt.xticks()
plt.title("BMI",fontsize = 20)
```

```
Text(0.5, 1.0, 'BMI')
```


#diabeticpedigreefunction for diabetic

```
fig = plt.figure(figsize = (16,5))
sns.distplot(db["DiabetesPedigreeFunction"][db["Outcome"] == 1])
plt.xticks([i*0.15 for i in range(1,12)])
plt.title("diabetespedigreefunction")
```

Text(0.5, 1.0, 'diabetespedigreefunction')


```
#Age for diabetic

fig = plt.figure(figsize = (16,6))
sns.distplot(db["Age"][db["Outcome"] == 1])
plt.xticks([i*0.15 for i in range(1,12)])
plt.title("Age")
```


Data pre-processing

```
x = db.drop(["Pregnancies","BloodPressure","SkinThickness","Outcome"],axis = 1)
y = db.iloc[:,-1]
#splitting dataset into training set and test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
#test_size 0.2 means for testing data 20% and training data 80%
x_train.shape #80% of original dataset (769,9) after removing unnecceasry data
     (614, 5)
x_test.shape
               #20% of original dataset (769,9) after removing unnecceasry data
     (154, 5)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x train = sc.fit transform(x train)
x test = sc.transform(x test)
x_train
     array([[ 0.91569367, 0.3736349 , 0.37852648, 0.67740401, 1.69955804],
            [-0.75182191, -0.69965674, -0.50667229, -0.07049698, -0.96569189],
            [ 1.38763205, 5.09271083, 2.54094063, -0.11855487, -0.88240283],
            [-0.84620959, -0.69965674, -0.94927168, -0.95656442, -1.04898095],
            [-1.12937261, -0.69965674, -0.26640405, -0.50001442, 0.11706589],
            [ 0.47521786, -0.69965674, -4.07275877, 0.52121586, 2.94889395]])
x_test
```

array([[2.45735903e+00, -6.99656737e-01, 1.35224513e+00,

2.78594417e+00, -9.65691892e-01],

```
[-4.37196330e-01, 1.52162022e-01, 1.76195335e-01,
-1.87638099e-01, -8.82402831e-01],
[-1.41253563e+00, -6.99656737e-01, 2.26778122e-01,
-2.26685139e-01, -7.15824710e-01],
[ 1.41909460e+00, 7.91026091e-01, -8.10169011e-01,
 3.62024077e-01, 1.44969086e+00],
[-3.11346097e-01, -6.99656737e-01, -9.61917372e-01,
 5.81288224e-01, -2.16090348e-01],
[-1.25522284e+00, -3.58929234e-01, -7.09003437e-01,
 -5.51075932e-01, -7.99113771e-01],
[ 9.78618790e-01, 7.56953341e-01, 2.52069515e-01,
 1.28113132e+00, -4.95122265e-02],
[ 1.73372019e+00, 6.29180527e-01, 1.38258245e-01,
 2.06507574e+00, 1.53297992e+00],
[ 1.92054834e-01, 1.64284485e+00, -5.69900773e-01,
 3.40468957e+00, -7.15824710e-01],
[-5.63046563e-01, 9.18798905e-01, 6.94668901e-01,
 -4.27927575e-01, 1.78284710e+00],
[ 1.16739414e+00, 1.38729922e+00, -7.67185999e-02,
 1.15497935e+00, -4.65957529e-01],
[ 2.07980833e+00, 1.06360809e+00, 1.44076501e+00,
 1.70464153e+00, 1.61626898e+00],
[-2.16958423e-01, -6.99656737e-01, -9.23980282e-01,
 8.33592174e-01, 1.94942523e+00],
[-1.22376029e+00, 2.79934836e-01, -4.68735199e-01,
 3.70204780e+00, -7.15824710e-01],
[-1.75862378e+00, -6.99656737e-01, -2.61358130e-02,
 4.01071117e-01, 7.00089318e-01],
[-4.05733772e-01, -6.99656737e-01, -6.20483560e-01,
 9.62747768e-01, -1.32801287e-01],
[ 1.82810786e+00, 4.07707650e-01, 6.23840642e-02,
 7.58501713e-01, 2.00354955e-01],
[-1.50692331e+00, -6.99656737e-01, -1.16424852e+00,
 -6.56202578e-01, -1.04898095e+00],
[ 3.49367625e-01, -6.99656737e-01, -5.31963683e-01,
 -1.42583822e-01, 2.44915959e+00],
[-6.88896796e-01, 7.35283294e-03, 2.26778122e-01,
 9.77056536e-02, -2.99379408e-01],
[ 7.26918324e-01, -6.99656737e-01, 7.95834475e-01,
 2.62904668e-01, 2.83644015e-01],
[-9.11081898e-02, -6.99656737e-01, 1.35224513e+00,
 6.80407633e-01, -1.04898095e+00],
[-1.06644749e+00, -6.99656737e-01, -4.18152412e-01,
 9.20697109e-01, -7.15824710e-01],
[-1.88447401e+00, -6.99656737e-01, 2.77360909e-01,
-6.71220670e-01, 1.03324556e+00],
[-7.51821912e-01, 4.92889526e-01, -1.13895713e+00,
 6.16622322e-02, -9.65691892e-01],
[ 9.76671596e-02, -6.99656737e-01, 4.54400663e-01,
 1.42759930e-01, -1.04898095e+00],
[-5.31584005e-01, -6.99656737e-01, -1.74595057e+00,
 3.47005985e-01, -5.49246589e-01],
[ 1.01008135e+00, 4.92889526e-01, 1.06139411e+00,
 2.12514811e+00, 4.50222136e-01],
[-2.79883539e-01, -6.99656737e-01, -9.11334585e-01,
 -4.78989089e-01, -7.99113771e-01],
[-3.42808656e-01, -6.99656737e-01, -7.84877618e-01,
```

Model Building - K Nearset Neighbor

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 25, metric = 'minkowski')
knn.fit(x_train, y_train)
```

```
#Predicting the data
knn_y_pred = knn.predict(x_test)
```

knn_y_pred

```
# Confusion matrix - To check how many are correct or wrong
from sklearn.metrics import confusion_matrix
knn_cm = confusion_matrix(y_test, knn_y_pred)
sns.heatmap(knn_cm, annot=True)
```



```
# The above heatmap says 0,0 means true negative and 1,1 means true positive
# and 0,1 means even person is negative but showing result positive
# and 1,0 means person is positive but shows negative so its danger so we need to accurate
```

```
print("Correct:",sum(knn_y_pred==y_test))
print("Incorrect : ",sum(knn_y_pred != y_test))
print("Accuracy:",sum(knn_y_pred ==y_test)/len(knn_y_pred))
```

Correct: 125

Incorrect: 29

Accuracy: 0.8116883116883117

```
#Verfying accuracy using inbuilt methods
from sklearn.metrics import accuracy_score
accuracy_score(y_test,knn_y_pred)
```

0.8116883116883117

Simple Vector Machine

```
from sklearn.svm import SVC
svc=SVC(kernel="linear",random_state=0)
svc.fit(x_train,y_train)
     SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
         max_iter=-1, probability=False, random_state=0, shrinking=True, tol=0.001,
         verbose=False)
svc_y_pred = svc.predict(x_test)
svc_cm = confusion_matrix(y_test,svc_y_pred)
print(svc_cm)
     [[96 11]
      [18 29]]
print("Correct:",sum(svc_y_pred == y_test))
print("Incorrect : ",sum(svc_y_pred != y_test))
print("Accuracy:",sum(svc_y_pred ==y_test)/len(knn_y_pred))
     Correct: 125
     Incorrect: 29
```

Accuracy: 0.8116883116883117

Naive Bias

```
from sklearn.naive_bayes import GaussianNB
nb_classifier = GaussianNB()
nb_classifier.fit(x_train,y_train)

GaussianNB(priors=None, var_smoothing=1e-09)

nb_y_pred =nb_classifier.predict(x_test)
```

```
nb_cm = confusion_matrix(nb_y_pred,y_test)
print(nb_cm)

[[94 21]
       [13 26]]
```

```
print("Correct:",sum(nb_y_pred == y_test))
print("Incorrect : ",sum(nb_y_pred != y_test))
print("Accuracy:",sum(nb_y_pred ==y_test)/len(nb_y_pred))
```

Correct: 120 Incorrect: 34

Accuracy: 0.7792207792207793

Random Forest Classifier

```
rf_y_pred = rf_classifier.predict(x_test)

rf_cm = confusion_matrix(rf_y_pred, y_test)
print(rf_cm)
```

[[91 17] [16 30]]

```
print("Correct: ",sum(rf_y_pred == y_test))
print("Incorrect: ",sum(rf_y_pred != y_test))
print("Accuracy: ",sum(rf_y_pred == y_test)/len(rf_y_pred))
```

Correct: 121 Incorrect: 33

Accuracy: 0.7857142857142857

✓ 10s completed at 17:23

×