ВВЕДЕНИЕ

Отличительной особенностью современных технологий производства является высокая степень автоматизации всех процессов. Поэтому разработка технологической схемы производства тесно связана с выбором методов контроля и регулирования производственных процессов. Основным регулируемым параметром технологического процесса является температура.

Для многих производственных процессов температуры продукта и процесса являются важными физическими измеряемыми величинами. Благодаря контролю температуры обеспечивается высокий уровень качества продукции производственной линии.

Точность измерения очень важна для автоматизации процессов производства. В зависимости от необходимого диапазона и точности используют различные методы измерения температуры:

- объемный;
- манометрический;
- терморезисторный (метод термосопротивлений);
- термоэлектрический;
- пирометрический.

Целью курсового проекта является разработка измерительного преобразователя для тармопреобразователя сопротивления.

Информационным сигналом преобразователь является унифицированный токовый сигнал в диапазоне от 0 до плюс 10 мА при изменении температуры от 0 до плюс 100°C.

Изм.	Лист	№ докум.	Подпись	Дата

1 АНАЛИТИЧЕСКИЙ ОБЗОР

1.1 Измерительные цепи для датчиков температуры

Схемы подключения датчиков температуры к измерительному преобразователю во многом определяется типом самого температурного датчика. В случае если первичным датчиком является термоэлектрический преобразователь с крутизной преобразования порядка десяти мкВ / °С, к входному усилителю измерительного преобразователя предъявляются повышенные требования по температурной стабильности параметров, входному сопротивлению и коэффициенту усиления.

Для параметрических температурных датчиков (ТПС, термисторы) широкое распространение получили мостовые измерительные схемы. Использование мостовой схемы в комбинации с операционным усилителем, охваченным одновременно отрицательной и положительной обратной связью, позволяет сформировать и усилить информационный сигнал, линеаризовать зависимость выходного напряжения от температуры. Подобная схема может применяться в случаях, когда температура измеряется в широком диапазоне средствами аналоговой электроники и на результат начинает оказывать заметное влияние нелинейность датчика [1].

В современных измерительных преобразователях для резистивных температурных датчиков, как правило, линеаризация характеристики производится процессорным элементом после оцифровки сигнала. В тех случаях, когда измерения проводятся в относительно узком температурном диапазоне, достаточно получить линейную зависимость напряжения от измеряемого сопротивления R_t . При этом целесообразно запитывать ТПС от источника измерительного тока I_0 (постоянного или переменного), тогда падение напряжения на ТПС, равное I_0 R_t , является информационным параметром. В этом случае нужно учитывать, что сопротивление ТПС уже будет зависеть не только от температуры окружающей среды, но и от проходящего по нему то-

Изм.	Лист	№ докум.	Подпись	Дата

ка I_0 . Измерительный ток выбирается из ряда в диапазоне от 0,1 до 50 мА. При этом перегрев медного ТПС измерительным током не должен превышать 0,4 0 C, а платинового - 0,2 0 C.

1.2 Двухпроводная схема измерения температуры при помощи ТПС с использованием источника тока

Двухпроводная схема измерения температуры при помощи ТПС с использованием источника тока показана на рисунке 1.1. Через r_1 и r_2 обозначены линии связи ТПС с измерительным преобразователем [2].

Рисунок 1.1 – Двухпроводная схема измерения температуры

Напряжение на входе ИУ при условии $r_1 = r_2 = r$ составит

$$U_{1N} = I_0(R_t + r + r) = I_0(R_t + 2r).$$
 (1.1)

Это напряжение отличается от величины $I_0\ R_t$ на величину $2I_0r$. Относительная погрешность метода измерения

$$\delta = \frac{2r}{R_{t}}. (1.2)$$

Из-за данной погрешности двухпроводная схема используется только для передачи данных о температуре на небольшие расстояния при отно-

Изм.	Лист	№ докум.	Подпись	Дата

шении $r/R_t < 0.1\%$. Еще одним недостатком двухпроводной схемы является то, что в ней помеха общего вида частично преобразуется в помеху нормального вида.

1.3 Трехпроводные схемы измерения температуры при помощи ТПС с использованием источника тока

Варианты построения трехпроводных схем измерения температуры при помощи ТПС с использованием источника тока приведены в таблице 1.1.

Таблица 1.1 – Трехпроводные схемы измерения температуры

		Напряжение на входе ИУ
№	Схема	при $r_1 = r_2 = r_3 = r$
1	R ₁	$U_{in} = I_0 \ R_t + 2r \ -2I_0 r = I_0 R_t$
2	R_{L} r_{1} r_{2} r_{3} r_{2} r_{3} r_{3}	$U_{in} = \begin{bmatrix} I_0 & R_t + 2r & -I_0r \end{bmatrix} - I_0r = I_0R_t$

Изм.	Лист	№ докум.	Подпись	Дата

Окончание таблицы 1.1

В этих схемах методическая погрешность определяется разбросом сопротивлений r_1 и r_3 . Относительная погрешность данного метода измерения при $r_3=r_1\pm \Delta r$

$$\delta = \frac{\Delta r}{R_{t}}.$$
 (1.3)

Недостатком трехпроводных схем является то, что в них помеха общего вида частично преобразуется в помеху нормального вида. Несмотря на это, в промышленности трехпроводные схемы получили широкое распространение [3].

ı					
	Изм.	Лист	№ докум.	Подпись	Дата

1.4 Четырехпроводная схема измерения температуры при помощи ТПС с использованием источника тока

Четырехпроводная схема измерения температуры при помощи ТПС с использованием источника тока показана на рисунке 1.2, где через r_1 , r_2 , r_3 , r_4 обозначены сопротивления линий связи.

Рисунок 1.2 – Четырехпроводная схема измерения температуры

Напряжение на входе ИУ при условии $r_1 = r_2 = r$ составит

$$U_{IN} = I_0(R_t + r_4) - I_0 r_4 = I_0 R_t.$$
 (1.4)

В данной схеме отсутствует методическая погрешность от влияния сопротивлений линий связи r и их разброса Δr [4].

Изм.	Лист	№ докум.	Подпись	Дата

2 РАЗРАБОТКА ЭЛЕКТРИЧЕСКОЙ ФУНКЦИОНАЛЬНОЙ СХЕМЫ

Используем трехпроводную схеме включения термопреобреозователя сопротивления измерения с использованием источника тока.

Функциональная схема измерительного преобразователя разработана исходя из схемы подключения термопреобразователя сопротивления и исходных данных на курсовой проект:

 $R_0 = 50 \text{ Ом} - \text{сопротивление термопреобразователя при 0 °C};$

 $I_0 = 3 \text{ мA} - \text{измерительного тока датчика;}$

 $\Delta T = 0...100 \, ^{\circ}\text{C} - диапазон измеряемых температур;}$

 $R_{\rm H3} = 50 \ {\rm кOm} - {\rm сопротивление}$ изоляции

 $C_{\text{ПАР}} = 1 \text{ н}\Phi - \text{паразитная емкость};$

 $E_{OB} = 10 \; B - действующее значение помехи общего вида частотой 50 Гц, приложенной между землями ТПС и ИП;$

 $E_{HB} = 1 \; B$ — действующее значение помехи нормального вида частотой 50 Гц, приложенной между входами ИУ;

 $I_{\rm BMX} = 0...+10~{\rm MA}$ — диапазон выходного информационного сигнала;

 $\Delta~I_{Bыx}~/I_{Bыx.max}=0,1\%$ — относительная доля пульсаций выходного тока;

 $\delta = 0.2\%$ — основная приведенная погрешность преобразования;

 $\delta_T = 0.2 \% / 10 ^{\circ} \text{C}$ — дополнительная температурная погрешность;

 $\Delta T = 0...70$ °C – рабочий температурный диапазон;

20°С – нормальная температура;

 $\alpha = 4,2 \cdot 10^{-3} \ 1/\text{C}^{\circ}$ — температурный коэффициент термопреобразователя сопротивления.

Рассмотрим влияние помех общего и нормального вида в данной схеме на состав входного сигнала измерительного усилителя ИУ. Для этого рас-

Изм.	Лист	№ докум.	Подпись	Дата

смотрим эквивалентную схему влияния помех, представленную на рисунке 2.1 и 2.2.

Рисунок 2.1 – Эквивалентная схема влияния помех в трехпроводной схеме

Для схемы представленной на рисунке 2.1 имеем:

- 1) E_{OB} действующее значение помехи общего вида частотой 50 Гц, приложенной между землями ТПС и ИП;
- 2) $R_{\text{ИЗ}}$, $C_{\text{ПАР}}$ сопротивление изоляции и паразитная емкость чувствительного элемента ТПС относительно его корпуса;
 - 3) $R_{\rm BX}$ входное сопротивление усилителя;
- 4) Z_{AC} , Z_{BC} эквивалентные комплексные сопротивления изоляции и паразитные емкости точек A и B относительно заземленного корпуса ИП. Как правило $R_{AC} \approx R_{BC} \approx (0,1 \div 10)$ ГОм, $C_{AC} \approx C_{BC} \approx (1 \div 10)$ пФ.

Эквивалентная схема действия помехи общего вида представлена на рисунке 2.2а. Из рисунка видно, что с учетом того, что

$$r, R_t \ll Z_{H3}, Z_{AC}, Z_{BC}, R_{BX},$$
 (2.1)

влияние помехи E_{OB} будет наибольшим (U_{AB} – максимально), если точка D займет положение между R_t и r (см. рисунок 2.2 б).

Изм.	Лист	№ докум.	Подпись	Дата

C учетом отмеченных неравенств можно перейти к схеме, представленной на рисунке 2.2 в, по которой оценим влияние помехи E_{OB} . В данном случае напряжение U_{AB} – это напряжение на сопротивлении R_{t} , тогда

$$U_{AB} = E_{OB} \frac{R_t}{R_t + Z_{M3}} \approx E_{OB} \frac{R_t}{Z_{M3}}.$$
 (2.2)

Рисунок 2.2 - Эквивалентные схемы для оценки влияния помехи E_{ob}

$$C$$
 учетом того, что $Z_{_{\mathrm{H3}}} = \frac{1}{j\omega C_{_{\Pi\mathrm{AP}}}} \|\, R_{_{\mathrm{H3}}} = \frac{R_{_{\mathrm{H3}}}}{1+j\omega C_{_{\Pi\mathrm{AP}}} R_{_{\mathrm{H3}}}}$ можно записать

$$U_{AB} = E_{OB} \frac{R_{t}}{R_{\mu_{3}}} (1 + j\omega C_{\Pi AP} R_{\mu_{3}}). \tag{2.3}$$

Так как с учетом исходных данных

$$\omega \cdot C_{_{\Pi AP}} \cdot R_{_{\mathcal{U} 3}} = 2\pi \cdot f \cdot C_{_{\Pi AP}} \cdot R_{_{\mathcal{U} 3}} = 2\pi \cdot 50 \cdot 1 \cdot 10^{^{-9}} \cdot 50 \cdot 10^{^{3}} = 0,0157 <<1,$$

TO

$$U_{AB} \approx E_{OB} \frac{R_t}{R_{M3}} = 10 \cdot \frac{50}{50 \cdot 10^3} = 0.01 \text{ B},$$
 (2.4)

где $f = 50 \Gamma \mu - \text{частота питающей сети};$

 $R_t = R_0 = 50 \text{ Om} - \text{сопротивление термопреобразователя при 0 °C}.$

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Доля этого напряжения от полезного напряжения, на входе дифференциального усилителя (ДУ)

$$U_{A} - U_{B} = I_{0}R_{0}\alpha\Delta t = 3 \cdot 10^{-3} \cdot 50 \cdot 4, 2 \cdot 10^{-3} \cdot 100 = 0,063 \text{ B}$$
 (2.5)

составляет 0.01/0.063 = 0.159 или 15.9% — это недопустимо, т.к. заданная погрешность $\delta < 0.2\%$.

Рисунок 2.3 – Схема, поясняющая действие помехи нормального вида

Помеха нормального вида E_{HB} прикладывается непосредственно на вход ИП, между точками A и B, согласно рисунка 2.3.

Исходя из задания на курсовой проект E_{HB} = 1 B, так как она больше, чем часть, прошедшая от помехи E_{OB} , то ориентироваться необходимо на нее.

Функциональная схема измерительного преобразователя имеет вид представленный на рисунке 2.4.

Рисунок 2.4 – Функциональная схема измерительного преобразователя

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Назначение блоков функциональной схемы:

ИП – измерительный преобразователь сопротивление-ток;

ТПС – медный термопреобразователь сопротивления, соединенный с измерительным преобразователем трехпроводной линией связи;

R – сопротивление одного провода линии связи;

1,2,3 – зажимы ТПС;

A,B,C – зажимы ИП;

 ${
m UT}$ — источник тока ${
m I}_0$, используемого для питания термопреобразователя сопротивления;

 R_{t} – электрическое сопротивление термопреобразователя сопротивления;

 I_0 – ток питания ТПС;

ДУ – дифференциальный усилитель с коэффициентом усиления K_{VC} ;

ВУ – вспомогательный усилитель, используемый для компенсации падения напряжения в проводах линии связи;

 $E_{\rm O\Pi}$ – источник опорного напряжения, используемый для формирования напряжений $E_{\rm CM.1},\,E_{\rm CM.2}$ и для задания тока $I_0;$

ФНЧ – фильтр нижних частот, предназначенный для ослабления помех общего и нормального видов сетевой частоты;

ПНТ – преобразователь напряжение-ток, предназначенный для формирования унифицированного выходного сигнала в виде тока;

 I_{BMX} – выходной ток ИП;

 $E_{CM.1}$ — напряжение смещения, необходимое для компенсации выходного напряжения ДУ при низшей t_2 температуре ТПС;

 $E_{CM.2}$ — напряжение смещения, необходимое для согласования масштаба выходного напряжения ФНЧ и выходного тока $I_{Bыx}$;

ИП – источник питания, предназначенный для питания схемы ИП

Изм.	Лист	№ докум.	Подпись	Дата

З РАЗРАБОТКА ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ СХЕМЫ

3.1 Расчет схемы источника тока

Согласно требованиям ГОСТ 13384-93 (СНГ) коэффициент высших гармоник питающего напряжения ИП не должен превышать 5 %. Для того, чтобы снизить возможное влияние пульсаций питающего напряжения на точность ИП, необходимо применение источника опорного напряжения.

Лучшим решением в плане точности и температурной стабильности в данном случае будет применение ИМС прецизионного термостатированного ИОН.

Выбираем [5] трехвыводной интегральный ИОН AD581U, имеющий следующие параметры представленные в таблице 3.1.

Таблица 3.1 – Технические параметры AD581U

U _{CT.HOM} , B	$\Delta U_{CT.MAX}$, м B	U_{BX} , B	I _{вых.мах} , мА	αU _{CT} , 1/°C
10	15	1230	10	5·10 ⁻⁶

Принципиальная схема преобразователя напряжение-ток представлена на рисунке 3.8. В качестве DA₂, DA₃ используем микросхему К544УД2А. [6] Технические параметры представлены в таблице 3.2.

Таблица 3.2 – Технические параметры К544УД2А

U _{ИП} , В	V _{ВЫХ,} В/мкс	U _{вых} , В	R _{H∙min} , кОм	I _{ПОТ} , мА	I _{ВХ} , нА	U _{СМ} , мВ	$\Delta~\mathrm{U}_{\mathrm{CM}}/\Delta\mathrm{T},$ мк $\mathrm{B}/\mathrm{град}$	f ₁ , МГц	K_{U}
±15	20	±10	2	7	0,1	±30	±50	15	\geq 20000

Ток питания датчика равен

$$I_{0} = \frac{U_{2} - U_{1}}{R_{0}}, \tag{3.1}$$

где
$$U_1 = 0 B;$$

$$I_0 = 3 \text{ MA};$$

Изм.	Лист	№ докум.	Подпись	Дата

$$U_2 = +10 \text{ B}.$$

$$R_0 = \frac{U_2 - U_1}{I_0} = \frac{10 - 0}{0,003} = 3333,3.$$

Рисунок 3.1 – Принципиальная схема преобразователя напряжение-ток

Мощность, выделяемая на резисторе, равна

$$P = I_0^2 \cdot R_0 = 0.003^2 \cdot 3333.3 = 0.03 \text{ Bt.}$$
 (3.2)

Сопротивление резисторов R выбираем исходя из величины минимальной нагрузки ОУ К544УД2А

$$R > R_{H.MIN} = 2 \kappa O_{M}. \tag{3.3}$$

Принимаем R = 10 кОм, R_0 = 3,32 кОм. Выбираем резисторы [7] R-C2-29B-0,062-10 кОм $\pm 0,1$ %, $R_0-C2-29B-0,125-3,32$ кОм $\pm 0,1$ %.

			·	
Изм.	Лист	№ докум.	Подпись	Дата

3.2 Расчет схемы дифференциального усилителя

При питании ТПС током І0 потенциал зажимов А и В будет имеет вид

$$\phi_{A} = I_{0}(R_{t} + 2r); \ \phi_{B} = I_{0}r.$$
(3.4)

Для компенсации влияния сопротивления проводов линий связи необходимо реализовать во входной цепи следующее выражение

$$U_{BX,JJY} = \phi_A - 2\phi_B = I_0(R_t + 2r) - 2I_0r = I_0R_t.$$
 (3.5)

Выходное напряжение дифференциального усилителя (ДУ) $U_{\text{ду}}$ равно:

$$U_{XY} = (\phi_A - 2\phi_B)K_{YC} = I_0R_tK_{YC}.$$
 (3.6)

С учетом напряжения смещения Е_{СМ.1}, можно записать

$$U_{JY} = (I_0 R_t - E_{CM.1}) K_{YC}. (3.7)$$

Учитывая, что $R_t = R_0(1+\alpha t)$ для двух заданных температур t_1 и t_2 (t_1 – низшая, t_2 – высшая) можно записать

$$U_{Jy.t.1} = [I_0 R_0 (1 + \alpha t_1) - E_{CM.1}] K_{yC},$$

$$U_{Jy.t.2} = [I_0 R_0 (1 + \alpha t_2) - E_{CM.1}] K_{yC}.$$
(3.7)

Диапазон изменения выходного напряжения $U_{\text{ДУ.t.2}} - U_{\text{ДУ.t.1}}$ равен

Изм.	Лист	№ докум.	Подпись	Дата

$$U_{yy,t,2} - U_{yy,t,1} = I_0 R_0 \alpha (t_2 - t_1) K_{yc}.$$
 (3.8)

Необходимо, чтобы выходной сигнал был равен нулю при $t_1 = 0$ °C температуре, т.е.

$$U_{\text{JIV},t,1} = [I_0 R_0 (1 + \alpha \cdot t_1) - E_{\text{CM},1}] K_{\text{VC}} = 0.$$
 (3.9)

Из уравнения (3.9) находим Е_{СМ.1}

$$I_0 R_0 (1 + \alpha \cdot t_1) - E_{CM..1} = 0,$$

$$E_{CM..1} = I_0 R_0 (1 + \alpha t_1) - E_{CM..1} = 0,003 \cdot 50 \cdot (1 + 4,2 \cdot 10^{-3} \cdot 0) = 0,15 \text{ B.} \quad (3.10)$$

Зададимся размахом выходного напряжением ДУ $\Delta U_{\text{ЛУ.МАХ}} = 8,4$ B, тогда из уравнения (3.8) находим

$$K_{yc} = \frac{\Delta U_{JIY.MAX}}{I_0 R_0 \alpha (t_2 - t_1)} = \frac{8.4}{3 \cdot 10^{-3} \cdot 50 \cdot 4.2 \cdot 10^{-3} \cdot (100 - 0)} = 133.3 \quad (3.11)$$

В качестве ДУ выбираем AD620A [5], см. таблицу 3.3.

Таблица 3.3 – Технические параметры AD620A

$\mathrm{U}_{\mathrm{И\Pi}},\mathrm{B}$	U_{BLIX} , B	$I_{\Pi O T}$, м A	I _{вх} , нА	U _{СМ} , мВ	K_{U}
±2.3 ±18	±10	1,0	1,0	0,05	1-10000

Согласно технического описания [5] коэффициент усиления данного усилителя задается одним резистором $R_{\rm yC}$, который можно найти из следующего соотношения

$$R_{yC} = \frac{49.4 \cdot 10^3}{K_{yC} - 1} = \frac{49.4 \cdot 10^3}{133.3 - 1} = 373.4 \text{ Om}.$$
 (3.12)

Изм.	Лист	№ докум.	Подпись	Дата

Выбираем R_{yC} [7] R_{yC} — C2-29B-0,062-374 Ом $\pm 0,1$ %. С учетом выбранных номиналов

$$K_{yC} = \frac{49.4 \cdot 10^3}{R_{yC}} + 1 = \frac{49.4 \cdot 10^3}{374} + 1 = 133,09.$$

Согласно (3.7) на выходе ДУ получаем

$$\begin{split} \mathbf{U}_{\text{JJY.MAX.}\mathbf{t}2} &= \mathbf{K}_{\text{yC}} \cdot [\mathbf{I}_0 \mathbf{R}_0 (1 + \alpha \mathbf{t}_2) - \mathbf{E}_{\text{CM.}1}] = \\ &= 133,09 \cdot [3 \cdot 10^{-3} \cdot 50 \cdot (1 + 4,2 \cdot 10^{-3} \cdot 100) - 0,15] = 8,38 \text{ B}, \\ \mathbf{U}_{\text{JJY.MIN.}\mathbf{t}.1} &= \mathbf{K}_{\text{yC}} \cdot [\mathbf{I}_0 \mathbf{R}_0 (1 + \alpha \mathbf{t}_2) - \mathbf{E}_{\text{CM.}1}] = \\ &= 133,09 \cdot [3 \cdot 10^{-3} \cdot 50 \cdot (1 + 4,2 \cdot 10^{-3} \cdot 0) - 0,15] = 0 \text{ B}. \end{split}$$

Принципиальная схема дифференциального усилителя DA_1 и вспомогательного усилителя (ВУ) представлена на рисунке 3.2.

Рисунок 3.2 – Принципиальная схема дифференциального усилителя

Изм.	Лист	№ докум.	Подпись	Дата

Вспомогательный усилитель выполнен на основе инвертирующего усилителя DA_2 с коэффициентом передачи $K_{U.1}$ = -1, где R_1 = R_2 . В качестве DA_2 используем микросхему К544УД2А. [6] Сопротивление резисторов R_1 , R_2 выбираем исходя из величины минимальной нагрузки ОУ

$$R_{1}, R_{2} > R_{H.MIN} = 2 \kappa O M.$$
 (3.13)

Выбираем [7] R_1 , $R_2 - C2-29B-0,062-10$ кОм $\pm 0,1$ %.

Для формирования напряжения $E_{\text{см.1}} = 0,15 \text{ B}$ используем схему на основе ОУ К544УД2А [6], представленную на рисунке 3.3.

Рисунок 3.3 – Принципиальная схема формирователя напряжения смещения

Для получения фиксированного напряжения на входе повторителя DA_1 используем делитель напряжения $R_1,\,R_2.$ Коэффициент передачи делителя

$$K_{\text{ДЕЛ}} = \frac{R_2}{R_1 + R_2}.$$
 (3.14)

Коэффициент передачи делителя равен

$$K_{\text{ДЕЛ}} = \frac{U_{.\text{CM.1}}}{U_{+10B}} = \frac{0,15}{10} = 0,015.$$
 (3.15)

Изм.	Лист	№ докум.	Подпись	Дата

Принимая $R_1 = 100 \text{ кOm}$, из выражения (3.15) находим

$$\mathbf{R}_2 = \frac{\mathbf{K}_{\text{ДЕЛ}}}{1 - \mathbf{K}_{\text{ЛЕЛ}}} \cdot \mathbf{R}_1 = \frac{0,015}{1 - 0,015} \cdot 100 = 1,52 \text{ кОм.}$$

Для точной подстройки используем переменное сопротивление с номинальным значением $R_2 = 2$ кОм.

Выбираем [6] $R_1 - C2-33H-0,125-100$ кОм ± 5 %, $R_2 - P\Pi 1-63BM-0,125-100$ кОм ± 5 %, $R_3 - P\Pi 1-63BM-0,125-10$ $2 \text{ кОм} \pm 10 \%$.

Оценим влияния помехи общего и нормального вида на выходное напряжение дифференциального усилителя. Для помехи общего вида при наивысшей температуре t_2 , согласно (2.2) получим

$$U_{\text{BMX},\text{JY},\text{OB},\text{t},2} = K_{\text{yC}} \cdot E_{\text{OB},\text{MAX}} \frac{R_{\text{t},2}}{R_{\text{M3}}} = K_{\text{yC}} \cdot E_{\text{OB}} \cdot \sqrt{2} \cdot \frac{R_0 \cdot (1 + \alpha \cdot t_2)}{R_{\text{M3}}}, \quad (3.16)$$

Еов.мах – максимальное средне квадратичное значение помехи общего вида.

$$U_{\text{BbIX},\text{JY.OB.t.2}} = 133,09 \cdot 10 \cdot \sqrt{2} \cdot \frac{50 \cdot (1 + 4,2 \cdot 10^{-3} \cdot 100)}{50 \cdot 10^{3}} = 2,67 \text{ B},$$

при этом погрешность составила

$$\delta_{\text{OB}} = \frac{U_{\text{вых ду.ов.t.2}}}{U_{\text{ду.мах.t.2}}} = \frac{2,67}{8,38} = 0,319$$
 или 31,9%. (3.17)

Для помехи нормального вида (см. рисунок 2.3) получим

Изм.	Лист	№ докум.	Подпись	Дата

$$U_{\text{BbIX},\text{JY.HB}} = K_{\text{yC}} \cdot E_{\text{HB.MAX}} = K_{\text{yC}} \cdot E_{\text{HB}} \cdot \sqrt{2} = 133,09 \cdot 1 \cdot \sqrt{2} = 188,22B$$
 (3.18)

где $E_{HB.MAX}$ — максимальное средне квадратичное значение помехи нормального вида.

Следовательно, ДУ будет находиться в режиме насыщения

$$U_{BbIX JIY,HB} = U_{BbIX JIY,MAX} = 10B,$$

Так как помехи являются переменным сигналом частотой 50 Гц, то для их ослабления используем фильтр нижних частот.

3.3 Расчет схемы фильтра низкой частоты

Для расчета фильтра нижних частот необходимо определить его коэффициент подавления на частоте помехи

$$ω = 2πf = 2π \cdot 50 = 314 \text{ pag/c},$$
(3.19)

где $f = 50 \Gamma \mu -$ частота питающей сети.

Необходимо обеспечить, чтобы доля пульсации выходного напряжения от максимального полезного была меньше, чем основная приведенная погрешность $\delta = 0.2~\%~(2\cdot10^{-3})$.

Т.к. влияния помех нормального вида больше, чем помехи общего, в пересчёте к входному напряжению можно записать

$$K_{\Pi} \ge \frac{E_{\text{H.B.MAX}}}{I_0 R_0 \alpha (t_2 - t_1) \delta},$$

$$K_{\Pi} \ge \frac{1 \cdot \sqrt{2}}{3 \cdot 10^{-3} \cdot 50 \cdot 4, 2 \cdot 10^{-3} \cdot (100 - 0) \cdot 2 \cdot 10^{-3}} \approx 1,12 \cdot 10^4,$$
(3.20)

Изм.	Лист	№ докум.	Подпись	Дата

 K_{Π} – коэффициент подавления; где

Ен.в.мах – максимальное средне квадратичное значение помехи нормального вида.

Зададимся коэффициентом подавления равным $K_{\Pi} = 2 \cdot 10^4$, тогда оптимальное число звеньев пассивного фильтра низкой частоты (ФНЧ) можно определить следующим образом

$$n = 0.5 \ln K_{II} = 0.5 \ln 20000 = 4.95 \approx 5.$$
 (3.21)

Так как

$$\left(\frac{1}{\omega RC}\right)^{n} = \frac{1}{K_{r}}, \qquad (3.22)$$

TO

$$\left(\frac{1}{\omega RC}\right)^5 = \frac{1}{20000},$$

следовательно

$$RC = \sqrt[5]{20000}/\omega = \sqrt[5]{20000}/314 = 0,0231 \approx 0,023 \text{ c.}$$

Принимая C = 1 мк Φ , определяем

$$R = \frac{0.023}{10^{-6}} = 23 \cdot 10^3 \text{ Om.}$$

Целесообразно ФНЧ разбить на два. Несколько каскадов расположить на входе, перед ДУ и ВУ, а оставшиеся после ДУ. Для определения числа каскадов, располагаемых на входе, руководствуются тем, что ДУ не должен насыщаться от помехи $E_{H.B.}$ Задаваясь превышением напряжения $U_{\rm JY,MAX}$ относительно $U_{\rm JV.t.2}$ на $\Delta U = 3$ В, можно записать

$$K_{II} \ge \frac{E_{HB.MAX} \cdot K_{yC}}{U_{IIY.MAX} - U_{IIV.f.2}} = \frac{E_{HB} \cdot \sqrt{2} \cdot K_{yC}}{\Delta U} = \frac{1 \cdot \sqrt{2} \cdot 133,09}{3} = 62,7.$$
 (3.23)

Изм.	Лист	№ докум.	Подпись	Дата

Используя выражение (3.22) находим

$$(\omega RC)^{n} \ge 62,7,$$

$$n \ge \frac{\ln 62,7}{\ln \omega RC} = \frac{\ln 62,7}{\ln(314 \cdot 0,023)} = 2,09 \approx 3.$$

Т.е. во входном каскаде располагаем 3 звена фильтра, а после ДУ еще 2 звена. Схема расположения каскадов фильтра представлена на рисунке 3.4.

Рисунок 3.4 – Принципиальная схема фильтра нижних частот

Выбираем усилитель DA3 K544УД2A. [6] Принимаем R=24 кОм, из [7] R_1 , R_2 , R_3 , R_4 , $R_5-C2-33H-0,125-24$ кОм ± 5 %, C_1 , C_2 , C_3 , C_4 , $C_5-K73-24в-100В-1$ мк $\Phi\pm 10$ %.

Для минимизации влияния входных токов ОУ выбираем резистор R_7

$$R_6 = R_4 + R_5 = 24 + 24 = 48 \text{ kOm}.$$
 (3.24)

Принимаем $R_6 = 47$ кОм, из [7] $R_7 - C2-33H-0,125-47$ кОм ± 5 %.

			·	
Изм.	Лист	№ докум.	Подпись	Дата

3.4 Расчет схемы преобразователя напряжение-ток ПНТ

Принципиальная схема преобразователя напряжение-ток представлена на рисунке 3.5. В качестве DA_2 используем микросхему K544УД2A. [6].

В качестве DA₁ используем микросхему К157УД1 – универсальный ОУ средней мощности с выходным током до 300 мА. Имеет ограничители пиковых значений выходного тока, предотвращающие выход усилителя из строя при переходных процессах иди кратковременных коротких замыканиях на выходе, разработан для работы в аппаратуре с рабочей частотой до 100 кГц. [8], технические параметры представлены в таблице 3.4.

Таблица 3.4 – Технические параметры К157УД1

U _{ИП} ,	$V_{\rm BMX,}$	U _{вых} ,	R _{H·min} ,	$I_{\Pi O T}$,	I_{BX} ,	U _{CM} ,	$\Delta U_{CM}/\Delta T$,	f_1 ,	P _{PAC.} ,	Кп
В	В/мкс	В	кОм	мА	нА	мВ	мкВ/град	МΓц	Вт	10
±15	0,5	±12	0,2	9	< 500	±5	±50	>0,5	0,5	≥ 50000

Рисунок 3.5 – Принципиальная схема преобразователя напряжение-ток

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Ток нагрузки данной схемы равен

$$I_{H} = \frac{U_{2} - U_{1}}{R_{0}}.$$
 (3.25)

Составим систему уравнений

$$\begin{cases}
0 = \frac{0 - U_1}{R_0} \\
+ 0.01 = \frac{8.38 - U_1}{R_0}
\end{cases} (3.26)$$

где $I_{\text{H}} = 0$ мA, $U_2 = U_{\text{ДУ.МІN.t.1}} \cdot \mathbf{K}_{\Phi} = 0 \cdot 1 = 0$ В; $I_{\text{H}} = +10$ мA, $U_2 = U_{\text{ДУ.МАХ.t.2}} \cdot \mathbf{K}_{\Phi} = +8,38 \cdot 1 = +8,38$ В.

$$\begin{cases}
U_1 = 0 \\
R_0 = 838 - 100U_1
\end{cases}$$

Из второго уравнения

$$R_0 = 838 - 100 \cdot U_1 = 838 - 100 \cdot 0 = 838 \text{ Om}.$$
 (3.27)

Мощность, выделяемая на резисторе, равна

$$P = I_{H}^{2} \cdot R_{0} = 0.01^{2} \cdot 838 \approx 0.084 \text{ Bt.}$$
 (3.28)

Сопротивление резисторов R выбираем исходя из величины минимальной нагрузки ОУ

$$R > R_{\text{H.MIN}} = 2 \kappa O_{\text{M}}. \tag{3.29}$$

Изм.	Лист	№ докум.	Подпись	Дата

Принимаем R = 10 кОм, R_0 = 835 Ом. Выбираем [7] R – C2-29В-0,062-10кОм $\pm 0,1$ %, R_0 – C2-29В-0,5-8,35 кОм $\pm 0,1$ %. Согласно [7] выбираем соединитель XP_1 типа ШР16П2ЭГ5-К.

3.5 Расчет блока питания

Номинальное напряжение источника питания равно ± 15 В. Номинальный ток оценим на основании данных таблицы 3.5.

Таблица 3.5 – Ток потребления элементов цепи

Элемент	Кол-во	$I_{\Pi O T, И M C}$, м A	Итого І _{пот,имс} , мА
		±15B	±15B
AD581U	1	10	10
К544УД2А	6	5	30
AD620A	1	1	1
К157УД1	1	9	9
Итого			50

С учетом тока через нагрузку ток потребления равен

$$I_{\text{пот}} = I_{\text{пот.имс}} + I_{\text{H}} = 50 + 10 = 60 \text{ MA}.$$
 (3.30)

В качестве схемы стабилизатора выбираем ИМС типа КР1180ЕН15. Технические параметры ИМС приведены в таблице 3.9 [9].

Схема подключения ИМС изображена на рисунке 3.6. ИМС является регулируемым стабилизатором напряжения повышенной защиты от перегрева и перегрузки по току, технические параметры представлены в таблице 3.6.

Таблица 3.6 – Электрические параметры ИМС КР1180ЕН15

Тип	U _{BЫX.CT} , B	U _{BX.MIN} , B	Іпот.ст, мА	U _{BX.CT} , B	I _{вых.ст} , А
KP1180EH15	15±0,3	2,5	≤ 8	≤ 35	1,5

Изм.	Лист	№ докум.	Подпись	Дата

Типовые значения [9] $C_3 = C_4 = 0.33$ мкФ, $C_5 = C_6 = 1$ мкФ. Выбираем [7] C_3 , C_4 – K53-30-16 B-0.33 мкФ ±20 %, C_5 , C_6 – K53-30-16 B-1 мкФ ±20 %.

Рисунок 3.6 – Принципиальная схема блока питания

Входное выпрямленное напряжение равно

$$U_B = (U_{BbIX.CT} + U_{BX.MIN}) \cdot (1 + K_H + K_\Pi) = (15 + 2.5) \cdot (1 + 0.1 + 0.1) = 21 \text{ B}, (3.31)$$

где $U_{BX.MIN} = 2,5 \ B$ — минимальное напряжение на входе стабилизатора;

 $K_{\rm H} = 0.1$ – коэффициент нестабильности сети;

 $K_{\Pi} = 0,1 - коэффициент пульсаций.$

Выбираем мостовую схему выпрямителя (см. рисунок 3.7), для которой диоды выбираем из условия

$$I_{\Pi P.CP} > 0.5 \cdot I_{\Pi OT} = 0.5 \cdot 0.06 = 0.03 \text{ A},$$

$$U_{OBP.MAX} > U_{B} \cdot (1 + K_{H} + K_{\Pi}) + U_{\Pi P} = 21 \cdot (1 + 0.1 + 0.1) + 1 = 26.2 \text{ B}. \quad (3.32)$$

где $U_{\Pi P}=1~B-$ прямое падение напряжения на диодах выпрямителя. Выбираем диод типа КД222В-5 [9], см. таблицу 3.7.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 3.7 – Технические параметры диода КД222В-5

$U_{\Pi P}, B$	$I_{\Pi P}, A$	І _{ОБР} , мкА	U _{OБP} , B
1	2	2	40

Величину емкости фильтра C_1 и C_2 на выходе выпрямителя

$$C_{\Phi} = t_P / (2 \cdot K_{\Pi} \cdot R_0) = 7 \cdot 10^{-3} / (2 \cdot 0.1 \cdot 350) \approx 0.1 \cdot 10^{-3} \Phi,$$
 (3.33)

где $t_{p} \approx 7 \text{ мс} - \text{время разряда емкости при } f = 50 \ \Gamma$ ц;

 R_0 = U_B / $I_{\Pi O T}$ = 21/0,06 pprox 350 Ом — эквивалентная нагрузка.

Выбираем емкость $C_{\phi} = C_1 = C_2 = 100$ мк Φ .

Выбираем [6] K50-22-25B-100 мк $\Phi \pm 30$ %.

Действующие значения напряжений и токов вторичных обмоток трансформатора

$$U_{2} = \frac{U_{B} \cdot (1 + K_{\Pi}) + 2 \cdot U_{\Pi P}}{\sqrt{2}} = \frac{21 \cdot (1 + 0.1) + 2 \cdot 1}{\sqrt{2}} = 17.7 \,\text{B}.$$
 (3.34)

где $U_{\Pi P} = 1,0 \ B$ – прямое падение напряжения на диодах выпрямителя.

$$I_2 = \sqrt{2} \cdot I_{\text{HOT}} = \sqrt{2} \cdot 0.06 \approx 0.084 \text{ A}.$$
 (3.35)

Полная габаритная мощность трансформатор для двух каналов питания

$$S_T = 2 \cdot U_2 \cdot I_2 = 2 \cdot 17,7 \cdot 0,084 \approx 3 \text{ BA}.$$
 (3.36)

Выбираем стандартный трансформатор из условия

$$S_T > 3 \text{ BA}; U_2 > 17.7 \text{ B}; I_2 > 0.084 \text{ A}.$$
 (3.37)

Изм.	Лист	№ докум.	Подпись	Дата

Выбираем трансформатор типа ТПП 224-127/220-50. [6]

Таблица 3.8 – Технические параметры ТПП 224-127/220-50

U _{1.HOM}	S _{HOM} ,	I _{1.HOM} A		U _{2.НОМ} В/Выводы обмоток					I _{2.HOM}
В	BA		11-12	13-14	15-16	17-18	19-20	21-22	A
127/220	5,5	0,071/0,041	5	5	10	10	2,62	2,62	0,156

Выбираем [7] однополюсную с фиксацией кнопку SB_1 типа KMA2-IV, соединитель XP_1 типа $IIIP16\Pi2\Im\Gamma5$ -К .

Предохранитель выбираем по номинальному напряжению и току первичной обмотки трансформатора из условия

$$U_{\text{НОМ.ПРЕД.}} > U_{\text{H1}} = 220 \text{ B},$$
 $I_{\text{НОМ.ПРЕД.}} > I_{\text{H1}} = 0,071 \text{ A},$
(3.38)

где $U_{\text{НОМ.ПРЕД}}$, $I_{\text{НОМ.ПРЕД}}$ - номинальное напряжение и ток предохранителя;

 $U_{\rm H1},~I_{\rm H1}$ — номинальное напряжение и ток первичной обмотки трансформатора.

Выбираем плавкий предохранитель типа S1014-0,1A, имеющий параметры [11]: $U_{\text{НОМ.ПРЕД}} = 250 \text{ B}, I_{\text{НОМ.ПРЕД}} = 0,1 \text{ A}.$

Изм.	Лист	№ докум.	Подпись	Дата

ЗАКЛЮЧЕНИЕ

В настоящее время огромное значение придается измерениям температуры в промышленности. Температура является наиболее распространенным и важным фактором, характеризующим различные процессы металлургической, химической, энергетической промышленности и др. В связи с этим большое значение приобретает разработка устройств контроля и измерения температуры как промышленных, так и специализированных, обладающих высокой и не очень высокой точностью и стабильными параметрами.

В данной работе был разработан измерительный преобразователь для термопреобразователя сопротивления. Преобразователь предназначен для измерения температуры термопреобразователя сопротивления в диапазоне от 0 до плюс 100 °C.

Датчик включен по трехпроводной схеме и питается током 3 мА. Информационный сигнал преобразователя имеет унифицированный токовый сигнал в диапазоне от 0 до плюс 10 мА.

При вычислении коэффициента подавления фильтра низкой частоты (ФНЧ) учитывалась заданная приведенная погрешность преобразования, которая согласно методических указаний не превышает 0,2 %.

ı	Изм.	Лист	№ докум.	Подпись	Дата

Список использованных источников

- 1. ЭлектроТехИнфо [Электронный ресурс] / Термопреобразователь сопротивления. 2021. Режим доступа: http://www.eti.su/articles/izmeritelna-ya-tehnika/izmeritelnaya-tehnika_1517.html. Дата доступа: 08.01.2021.
- 2. Электромеханические аппараты автоматики / Б. К. Буль [и др.]; под общ. ред. Б. К. Буль. М.: Высшая школа, 1988.
- 3. Келим, Ю. М. Электромеханические и магнитные элементы систем автоматики : учебник / Ю. М. Келим. М. : Высшая школа, 2004.
- 4. Низэ, В. Э. Справочник по средствам автоматики / В. Э. Низэ, И. В. Антика. М.: Энергоатомиздат, 1983.
- 5. ANALOG DEVICES [Электронный ресурс] / Каталог продукции. 2021. Режим доступа : http://eleka.info/. Дата доступа : 08.01.2021.
- 6. Нефедов, А. В. Интегральные микросхемы и их зарубежные аналоги : справочник. В 12 т. Т. 5. Серии К544 К564 / А. В. Нефедов. М. : КУбК-а, 1997.
- 7. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА / Н. Н. Акимов [и др.]. Минск : Беларусь, 1994.
- 8. Нефедов, А. В. Интегральные микросхемы и их зарубежные аналоги : справочник. В 12 т. Т. 2. Серии К143 К174 / А. В. Нефедов. М. : Радиософт, 2000.
- 9. Нефедов, А. В. Интегральные микросхемыи их зарубежные аналоги : справочник. В 12 т. Т. 9. Серии К1144 К1500 / А. В. Нефедов. М. : ИП РадиоСофт, 2001.
- 10. Аксенов, А. И. Отечественные полупроводниковые приборы / А. И. Аксенов, А. В. Нефедов. М.: СОЛОН-Пресс, 2005.
- 11. АС ЭНЕРГИЯ [Электронный ресурс] / Вставки плавкие стеклянные цилиндрические. 2021. Режим доступа: http://asenergi.com/ catalog/predohraniteli/vstavki-plavkie-steklyannye-cilindricheskie.html. Дата доступа: 05.01.2021.

Изм.	Лист	№ докум.	Подпись	Дата

приложение а

Измерительный преобразователь. Схема электрическая структурная

Рисунок А.1 – Схема электрическая функциональная

Изм.	Лист	№ докум.	Подпись	Дата

приложение Б

Измерительный преобразователь. Схема электрическая принципиальная

Рисунок Б.1 – Схема электрическая принципиальная

			·	
Изм.	Лист	№ докум.	Подпись	Дата