MATHEMATICS: EXERCISE 1

Marius Grünewald

Exercise 1

We want to show that

$$W = \left\{ (x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0 \right\}$$

is a vector space on the field \mathbb{R} .

We know from the lecture slides on page 47 that the euclidean space \mathbb{R}^n with the standard operators + and * is a vector space. By applying this knowledge, we can reduce the problem into proving that W is a vector subspace of \mathbb{R}^3 . To do this, I apply the two criteria from proposition 139, 3. as given in the lecture. When 1. and 2. are holing, W is a vector subspace of \mathbb{R}^3 and therefore a vector space on the field R.

- 1. $W \neq \emptyset$ A simple calculation with the vector (1,1,3) results in 1+2-3=0, which is a true statement. We have shown that there exists at least one vector in W.
- 2. $(\forall \alpha, \beta \in \mathbb{R}) \cap (\forall x, y, z \in W)$ it needs to hold that $\alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) \in W$ We can check this condition by applying the functional form x + 2y + z = 0 on the vector $\begin{pmatrix} \alpha x_1 + \beta x_2 \\ \alpha y_1 + \beta y_2 \\ \alpha z_1 + \beta z_2 \end{pmatrix}$, which itself is an expression of two random vector of W and two random scalars from R. This yields

$$(\alpha x_1 + \beta x_2) + 2(\alpha y_1 + \beta y_2) - (\alpha z_1 + \beta z_2) = 0 \leftrightarrow \alpha (x_1 + 2y_1 - z_1) + \beta (x_1 + 2y_1 - z_1) = 0$$

 $(x_1 + 2y_1 - z_1)$ and $(x_1 + 2y_1 - z_1)$ have to be zero by definition. We are left with $\alpha 0 + \beta 0 = 0 \leftrightarrow 0 + 0 = 0$ Since the statement is true, it is, that the second requirement holds.

Since both requirements are fulfilled, it is evident that W is a vector subspace of R and thereby a vector space on the field R with respect to the standard notations of addition and multiplication.

Exercise 2

To prove that V is a vector space on F, we can apply proposition 139, 3. Let V be defined as $(v^1, ..., v^n)$ such that $m \in \mathbb{N}$. Let an arbitrary set of vectors on the vector space V be defined as W. We want to show that $(W_1 \cap W_2)$ is a vector subspace of V.

Generally, there are three possible outcomes for an intersection.

- 1. $(W_1 \cap W_2) = \emptyset$
- 2. $(W_1 \cap W_2) = W_1 = W_2$
- 3. $(W_1 \cap W_2) = \exists w \in W_i | w \in W_i \cup w \notin W_{\neq i} \ \forall i = 1, 2$

Now, we can address each case and whether it applies to our specific question.

1. $(W_1 \cap W_2) = \emptyset$

In our case this does not apply, since we W_1 and W_2 stem from the same vector space. By definition each vector space has to have a unique null element with respect to multiplication and addition, for example 0 and 1 for \mathbb{R} . Since each of them is unique in V, it has to be the same for W_1 and W_2 implying that the intersection includes at least these two null elements.

By the same argument, we have shown that the intersection is non-empty set - the first condition of it being a vector subspace. For any other of the two cases, the non-emptyness holds by definition.

Exercise 3

(i)

$$x*0=0$$

$$x*(0+0)=0 \text{ unter Zuhilfenahme des Kommutativgesetz}$$

$$x*0+x*0=x*0$$

$$x*0+x*0-x*0=x*0-(-x*0)$$

$$x*0=0$$

(ii)

$$-x = (-1) * x$$

Konkret, wir zeigen, dass -1 das additive inverse Element von erzeugt x+(-1)*x=(1)*x+(-1)*x=(1-1)*x=0*x, berücksichtige (i) x*0=0

(iii)

x*y=0,wenn x=0oder y=0muss nach (i) automatisch gelten für $x,y\neq 0$ muss es eine multiplikative Inverse geben, die x zu 0 transformiert

$$x * y * y^{-1} = 0 * y^{-1}$$

x * 1 = 0, was ein Widerspruch ist.

(iv)

$$-(x+y) = (-x) + (-y) \Leftrightarrow -(x+y) = (-1)*(x) + (-1)*(y) \text{ durch (ii)}$$

$$-(x+y) = (-1)*(x+y)$$

$$-(x+y) = -(x+y) \text{ (ii)}$$

(v)

$$y^{-1}*x^{-1}=(x*y)^{-1}$$
 1 = $(x*y)^{-1}*y*x$, wir wenden das Kommutativgesetz für Multiplikationen an 1 = $x^{-1}*y^{-1}*y*y \Leftrightarrow 1=x^{-1}*1*x$ 1 = 1 * 1 = 1

(vi)

$$(-1)*(-x) = x$$
, wende (ii) an $0 = x - x$ $x^{-1}*x = 1$ $(x^{-1})^{-1} = x$ $x = x$