Name:	Roll Number:	
		_

Quiz-2

Max. Time: 20 min Max. Points: 20

Note: Solve all parts. Limit your written responses to the provided space.

- Q.1. [8] Choose by putting a check mark on the most appropriate option. Note: No cutting/overwriting allowed.
- i. When two linear transformations are performed one after another, the combined effect may not always be linear.
- (A) True (B) False
- ii. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector \mathbf{x} in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
- (A) True (B) False
- iii. If **A** is 3×2 matrix, then the transformation from **x** to **Ax** cannot be one-to-one.
- (A) True (B) False
- iv. The columns of the standard matrix for a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ are the images of the columns of I_n .
- (A) True (B) False
- v. Every elementary matrix is not invertible.
- (A) True (B) False
- vi. Product of invertible matrices is invertible and is given by the product of their inverses in the same order.
- (A) True (B) False
- vii. If a matrix cannot be row reduced to identity matrix, then its inverse does not exist.
- (A) True (B) False
- viii. An $n \times n$ matrix is invertible if it has at most n pivots.
- (A) True (B) False

Q.2. [6+6]

- a) Determine the standard matrix of linear transformation for the following:
- i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 axis and then reflects points through the line $x_2 = x_1$.

Solution:
$$T(\mathbf{e_1}) = \mathbf{e_2}$$
, $T(\mathbf{e_2}) = -\mathbf{e_1}$. Therefore, $[T(\mathbf{e_1}) \ T(\mathbf{e_2})] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Name:

Roll Number:_____

ii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a horizontal shear transformation that leaves the unit vector $\mathbf{e_1}$ for horizontal axis unchanged and maps the unit vector for the vertical axis $\mathbf{e_2}$ to $\mathbf{e_2} + 3\mathbf{e_1}$

Solution:

$$T(\mathbf{e_1}) = \mathbf{e_1}; \ T(\mathbf{e_2}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$[T(\mathbf{e_1}) \ T(\mathbf{e_2})] = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$$

b) Determine if the following matrix is invertible.

$$A = \begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$

Solution: Row reduce *A* to echelon form to check the number of pivot positions, which should be 4 if the matrix is invertible.

Name: Roll Number: $\begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & -3 & 0 & 1 \\ 0 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & -3 & 0 & 1 \\ 0 & 4 & 0 & 0 \end{bmatrix}$

$$A = \begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & -3 & 0 & 1 \\ 0 & -4 & 8 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & -3 & 0 & 1 \\ 0 & -4 & 8 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since *A* has 4 pivots, it is invertible.