Spice S-parameter Measurement with MicroSim AppNote Method

KSKelvin Kelvin Leung Created on 12-9-2023

S-Parameters Measurement Circuit

- S-Parameters Measurement Circuit
 - Reference : MicroSim Application Notes Version 8 June-1997
 - Section : Create S-Parameter Subcircuits for Microwave and RF Applications
- Definition of S11 and S21

•
$$S_{11} = \frac{v_{rev,port1}}{v_{fwd,port1}} = \sqrt{\frac{P_{rev,port1}}{P_{fwd,port1}}}$$

• Given $v_{rev,port2} = 0V$ ($p_{rev,port2} = 0W$)

•
$$S_{21} = \frac{v_{fwd,port2}}{v_{fwd,port1}} = \sqrt{\frac{P_{fwd,port2}}{P_{fwd,port1}}}$$

- Given $v_{rev,port2} = 0V$ ($p_{rev,port2} = 0W$)
- Measurable voltage (v_{rf}) is summation of forward and reverse voltage
 - $v_{rf} = v_{fwd} + v_{rev}$

S-Parameters Measurement Circuit

Explanation of S21

- Forward voltage @ Port1
 - To measure forward voltage @ Port1, break connection and connect a terminal impedance equal characteristic impedance (Zo)
 - $v_{rev,port1} = 0$
 - Kirchhoff's voltage law

$$v_{fwd,port1} = \frac{Z_o}{Z_o + Z_o} (1+1) = 1$$

- Forward voltage @ Port2
 - As Port2 is terminated with Zo, $v_{rev,port2} = 0$
 - $v_{rf,port2} = v_{fwd,port2} + v_{rev,port2} = v_{fwd,port2}$
 - $v_{fwd,port2} = v_{rf,port2} = v_{rf,@S21}$
- By $S_{21} = \frac{v_{fwd,port2}}{v_{fwd,port1}} = \frac{v_{rf,@S21}}{1} = v_{rf,@S21}$
 - Therefore, S21 = V(S21)

Explanation of S11

- Forward voltage @ Port1
 To measure forward voltage @ Port1, break connection and connect a terminal impedance equal characteristic impedance (Zo)
 - $v_{rev,port1} = 0$
 - $v_{fwd,port1} = \frac{Z_0}{Z_0 + Z_0} (1 + 1) = 1$
 - Kirchhoff's voltage law

$$v_{fwd,@S11} = -1 + v_{fwd,port1} = 0$$

- Reverse voltage @ Port1
 - $v_{rf,port1} = v_{fwd,port1} + v_{rev,port1}$ $v_{rf,port1} = 1 + v_{rev,port1}$ Kirchhoff's voltage law

$$v_{rf,@S11} = -1 + v_{rf,port1}$$

 $v_{rf,@S11} = -1 + 1 + v_{rev,port1} = v_{rev,port1}$

- By $S_{11}=\frac{v_{rev,port1}}{v_{fwd,port1}}=\frac{v_{rev,port1}}{1}=v_{rf,@S11}$ Therefore, S11=V(S11)

 - ** The beauty of this method is that, V(S11) measure 0V forward voltage and only measure reverse voltage.

QSpice Simulation for S_{11} and S_{21} : QSpice Sparam Simulation MicroSim.qsch

Schematic

Simulation Results

Plot S11 into SmithChart Range

Plot S11 into SmithChart Range

- Method
 - Plot S11 with y-axis as imag(S11) and x-axis as real(S11), and plot have to be Cartesian representation
- Y-Axis (Left)
 - Change Y expression to : im(S11())
 - Change Representation from Polar to Catesian
 - Change Range from -1 (bottom) to +1 (top)
- Y-Axis (Right)
 - Select "No Imaginary"
- X-Axis
 - Change Quantity Plotted to : re(S11())
 - Change Range from -1 to 1
 - Disable "Logarithmic"

