Step-1

If A is positive definite then,

$$\Rightarrow x^T A x > 0$$
 for any $x \neq 0$ $\hat{a} \in \hat{a} \in [\hat{a} \in [1]]$

If B is positive definite then,

$$\Rightarrow x^T B x > 0$$
 for any $x \neq 0$ $\hat{a} \in \hat{a} \in (2)$

Step-2

Now for $x \neq 0$,

$$x^{T}(A+B)x = x^{T}Ax + x^{T}Bx$$

> 0 (using (1) and (2))

Thus
$$x^T (A+B)x > 0$$
 for $x \neq 0$.

Therefore, A + B is also positive definite.