TOPOLOGICAL ANALYSIS AND ML FOR BIOLOGICAL DOCKING

GLEB RUSYAEV

LETOVO

Outline

- 1. Introduction
- 2. Target
- 3. Checking techniques
- 4. Dataset review
- 5. Naive Correlation
- 6. Multi-Linear Regression
- 7. Topological analysis
- 8. Gradient Boosted Decision Trees

What is it?

Antibody

- Antibody vs Bad guys (Pathogens, Viruses, Cancer Cells, etc ...)
- Biological (and physical) systems gravitate towards lowest potential energy

Why bother?

- 1. Check if synthetic anti-cell can glue to the virus
- 2. Synthesize
- 3. Cure virus
- 4. ???
- 5. PROFIT

How to calculate potential energy?

- (i) Coulomb's law: $|F| = k_e \frac{|q_1 q_2|}{r^2}$
- (ii) Van der Waals force
- (iii) Energy of Statistic Potential

Dataset review: docking_data.csv

- (i) E_fst: Anti-Body Total Energy
- (ii) E_fst_elstat: Anti-Body Coulomb's Energy
- (iii) E_fst_VdW: Anti-Body Statistical Potential Energy
- (iv) group_size: size of group (in which it included)
- (vi) E_snd_SP: SP of individual in group

Dataset review: docking_data.csv

- (i) avg_E_fst: average energy in group
- (ii) avg_E_snd_SP: average stat. potential energy in group
- (iii) E_third: Minimal Energy Complex after optimisation
- (iv) alt_E_third: Minimal Energy Complex after optimisation (alternative method)
- (v) E_third_SP: Stat. Potential after optimisation
- (vi) avg_E_third: Avg. E_third in group

Dataset review: docking_data.csv

```
(i) avg_alt_E_third: Avg. alt_E_third in group(ii) avg_E_third_SP: Avg. E_third_SP in group(iii) is_real: Does it actually works this?
```

Naive Correlation

Naive Correlation

Multi-Linear Regression

- 1. Complex border has 4x higher chance in being real, than centroid
- 2. Group size have 0.0127 correlation with is_real (as we early noticed, it's correlated)

Topology

1337-dimensions hyper-cube clusterization

nice 2d graph

10, 20, 40 Hyper-cubes

100 Hyper-cubes

Gradient Boosted Decision Trees

- Performance on training set: 0.63 – 0.66
- Performance on validating set: 0.6503
- Can be done even better using AWS

References

Jupyter Notebook: https://rusyaew.github.io/DockingML.ipynb
Dataset: https://rusyaew.github.io/docking_data.csv
Bye!