Binary Search : Pre-requisite : Sorted Array : Follows divide and conquer technique

on April 2024 20:09

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Key = 77	11	22	33	44	55	66	77	88	99
	left				mid				right
	ieit	Left sub array				Right sub array			

- 1) Get the key from the user
- 2) Calculate left index, right index and mid index
 - a. Left = 0
 - b. Right = 8
 - c. Mid = (left + right)/2

i. = (0+8)/2 = 4

Mid = 4

- 3) Compare the key with the element at mid
 - a. 77 == arr[mid]

77 == 55 ?

If yes, return the index

If no, got to step 4

- 4) Check if the key is smaller to mid element or greater
 - a. If the key is smaller to mid element, continue the search in left subarray
 - b. If the key is greater to the mid element, continue the search in the right sub array

[5] [6] [7] [8] 66 77 88 99 Left mid right

As the key is Greater, consider the right sub array Right sub array starts from mid+1 to right index

Start from step 2:

Left = mid+1 = 5

Right = 8

Mid = (left + right)/2

= (5+8)/2

= 6

3) Compare the key with the element at mid77 == arr[mid]

77 == 77

I found the element at index 6