

CS120: Computer Networks

Lecture 13. Other Topics in IP 2

Zhice Yang

Outline

- IPv6
- NAT
- MPLS
- Router Implementation

Longest Prefix Matching

 When looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

SubnetNum	NextHop	
197.168.0.0/22	R4	11000101.10101000.000000**.******
197.168.3.0/24	R7	11000101.10101000.00000011.*****
197.168.4.0/22	R9	11000101.10101000.000001**.*****

How to Accelerate Prefix Matching in Backbone Routers?

Virtual Circuit

Virtual Circuit Table

Switch1				
Incoming Interface	Incoming VCI	Outgoing Interface	Incoming VCI	
2	5	1	11	
	Swit	ch2		
Incoming Interface	Incoming VCI	Outgoing Interface	Incoming VCI	
3	11	0	7	
Switch3				
Incoming Interface	Incoming VCI	Outgoing Interface	Incoming VCI	
0	7	3	4	

Asynchronous Transfer Mode (ATM)

- Basic properties
 - Connection-oriented packet-switched network
 - Guaranteed Service: strict timing, reliability, etc.
- Packets are called cells
 - Use VPI+VCI as switching label

ATM Switch

- Packet Length is Fixed
 - Easier to switch in hardware
- VCI Length is Fixed
 - VCI looking up complexity is O(1)
 - High throughput

Multiprotocol Label Switching (MPLS)

- Original Motivation
 - Improve IP forwarding throughput
 - Leverage ATM switch for IP forwarding
- Benefit
 - Destination-Based Forwarding
 - Enable IP forwarding on devices that do not have IP forwarding ability (i.e., ATM Switches)
 - Capability (Support IP in ATM)
 - Throughput
 - Traffic Engineering
 - Tunneling
 - VPN

• IP Forwarding with Normal Routers

• IP Forwarding with Labels

IP Forwarding with Labels

• IP Forwarding with Labels

• IP Forwarding with Labels

- IP Forwarding with Labels
 - The forwarding hardware is based on label

- IP Forwarding with Labels
 - The forwarding hardware is based on label

• IP Network with ATM Backbone

- Transform ATM switches into IP routers
 - Only software changes are needed
 - IP routers connected by ATM network are able to see better network topology

- MPLS Forwarding Decisions
 - Can follow IP routing algorithm
 - Same path as IP forwarding
 - Can differ from IP routing algorithm
- Application
 - Traffic engineering
 - Use destination and source addresses to route flows to same destination differently
 - Fast reroute
 - pre-computed backup paths

- IP Routing: path to destination determined by destination address alone
 - Contains no information about the traffic of certain path

MPLS routing: path to destination can be based on source and

destination address

Dest	Interface	L_IN	L_OUT
Α	0	25	3
Α	1	12	4

Dest	Interface	L_IN	L_OUT
Α	0	/	25

Dest	Interface	L_IN	L_OUT
Α	0	/	12

MPLS routing: path to destination can be based on source and

ı				ı
\cap	lestin	ation	ado	Iress
		GCIOII	$\alpha \alpha \alpha$	

Dest	Interface	L_IN	L_OUT
Α	0	25	3
Α	1	26	4
Α	1	12	5

Dest	Interface	L_IN	L_OUT
Α	0	/	25
Α	0	/	26

MPLS: Tunneling

• IPv4 Tunneling

- IP Forwarding with Labels
 - The forwarding hardware is based on label

MPLS: Tunneling

MPLS Tunneling

Centralize or Decentralize?

That is the question

Router Architecture

- Two Key Functions:
 - Routing algorithms (e.g, RIP, OSPF, etc.)
 - Forwarding packets from input to output ports
- Performance: packet per second

Router Architecture

- Two Key Functions:
 - Routing algorithms (e.g, RIP, OSPF, etc.)
 - Forwarding packets from input to output ports
- Performance: packet per second
 - e.g.: line rate 640Gbps for a core router
 - Packets arrival order
 - Packets destination
 - Packets size

Control Processor

- Functions
 - Control and Configure Hardware
 - Ports and switch fabrics
 - Calculation
 - Routing algorithm
 - RIP, OSPF
 - Translate routing Information into forwarding table for input ports

Routing Table

SubnetNum	NextHop	
197.168.0.0/22	100.11.12.5	

Forwarding Table

Sourcaddress	Destaddress	Interface	MAC
197.168.0.0/22	100.11.12.5	1	AB.CD.EF.12.34.56

Input Port

- Function
 - Handle low level protocols
 - MAC, PHY
 - Deliver "clean" packets to switch fabric
 - Destination Port + Payload
- Processing workload: output port looking up
 - Given packet destination lookup output port
 - Ethernet
 - Using table: destination MAC ⇔ port
 - ATM
 - Using table: VCI ⇔ port
 - Goal: complete processing at "line speed"
- Buffer

Input Port

Buffer: Head-of-line Blocking

Output Port

- Function
 - Buffer packets from switch fabric
 - Deliver packets to network

Switch Fabrics

- Function
 - Transfer packet from input port buffer to appropriate output port buffer
- Switching Throughput
 - Rate at which packets can be transfer from inputs to outputs
 - N inputs: switching throughput N times line rate desirable
- Design Goal
 - Throughput
 - Scalability
- Types
 - Shared bus
 - Shared memory
 - Crossbar
 - Self-routing

Shared Bus/Memory

- Datagram from input port to output port via a shared bus
 - 2 bus crossings per datagram
 - Bus and memory bandwidth determines switch throughput

Crossbar

- Input ports are connected any output port
 - High bus rate is required for output ports

• Switching information is carried in the self-routing header:

Self-routing header is responsible for directing packets in the switching

fabric

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - Collision: two packets with same output ports

- Banyan Network
 - Collision Free
 - Input packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input packets are sorted according to routing header
 - Forwarding packets with well connected basic switching elements

- Banyan Network
 - Collision Free
 - Input packets are sorted according to routing header
 - Forwarding packets with well connected basic switching elements

- Banyan Network
 - Collision Free
 - Input packets are sorted according to routing header
 - Forwarding packets with well connected basic switching elements

- Banyan Network
 - Collision Free
 - Input packets are sorted according to routing header
 - Forwarding packets with well connected basic switching elements

Inside Routers

Inside Routers

• Freescale P1010 SoC

Inside Routers

• AR8327 Switch

Open Sourced Wireless Router

• Linksys WRT54G

Reference

- Textbook 4.1
- Textbook 4.3
- Textbook 3.4