NGS QC

An introduction

Goals:

- Raw NGS Data Formats
- Evaluating Raw Data
- Cleaning Raw Data
- K-mer Counting

The Big Picture

The FASTA format

>sequence 1
CATCGATCGCATGCTACTGACTG
CATGCTCGCGCCCCCCGATG

>sequence 2
ACTGACTCGCGCGCGCGGGG
GAGCTGATGTG

>sequence 3
CATCGATCGCATGCTACTGACTG
CATGCTCGCGCCCCCCGATG
ACTGACTCGCGCGCGCGGGGG

GAGCTGATGTG

Sequence ID

Sequence

+ description (or empty)

+ description (or empty)

@ILLUMINA-F6C19_0048_FC:5:1:12440:1460#0/1 GTAGAACTGGTACGGACAAGGGGAATCTGACTGTAG

+

Quality score of each base

Illumina Sequence ID Lines: A Decoder

@M01137:30:000000000-AA299:1:1101:10929:1966			
M01137	the unique instrument name		
30	the run id		
00000000-AA29	the flowcell id		
1	flowcell lane		
1101	tile number within the flowcell lane		
10929	'x'-coordinate of the cluster within the tile		
1966	'y'-coordinate of the cluster within the tile		
1 or 2 (not shown, optional)	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)		
ATCACG (not shown, optional)	index sequence		

Quality Scores

- Phred Score
- $Q = -10*log_{10}P$ P = probability the base call is incorrect
- ASCII (character) 33

Phred Quality Score	Probability of incorrect base call	Base call accuracy
0	1	0 %
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %
93	1 in 200000000	99.9999995 %

Why is trimming important?

OPEN & ACCESS Freely available online

An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis

Cristian Del Fabbro^{1©}, Simone Scalabrin^{2©}, Michele Morgante¹, Federico M. Giorgi^{1,3*}

"Trimming is shown to increase the quality and reliability of the analysis, with concurrent gains in terms of execution time and computational resources needed"

Low Quality Sequences Before Trimming (Puma 454 sequences)

Same Sequences After Trimming (Puma 454 sequences)

- Low quality

Sequence read

Low quality

- Low quality

Sliding Window Trimming

Sequence read

- Low quality

Sliding Window Trimming

Sequence read

High Quality

- Low quality

Sliding Window Trimming

Sequence read

Bob Fitak: GDW 2019

Sliding Window Trimming

Sequence read

Adapter Contamination

Adapter Contamination

Sequence	Count	Percentage	Possible Source
GACTAAGCAGTGGTATCAACGCAGAGTACATGGGGACACTTGTTTCTGAC	19391	5.415739186535921	No Hit
${\tt GACTAAGCAGTGGTATCAACGCAGAGTACATGGGGACACTTGCTTCTGAC}$	11325	3.162974900083508	No Hit
GACTAAGCAGTGGTATCAACGCAGAGTACATGGGACACTTGTTTCTGACA	9229	2.5775801636088915	No Hit
aramaraanaanaanaanaanaanaanaanaanaanaanaanaa	(112	1 70010500000777475	No mil

Error Correction

GAGE: A critical evaluation of genome assemblies and assembly algorithms

Steven L. Salzberg,^{1,7} Adam M. Phillippy,² Aleksey Zimin,³ Daniela Puiu,¹ Tanja Magoc,¹ Sergey Koren,^{2,4} Todd J. Treangen,¹ Michael C. Schatz,⁵ Arthur L. Delcher,⁶ Michael Roberts,³ Guillaume Marçais,³ Mihai Pop,⁴ and James A. Yorke³

"For all four genomes and for all eight assemblers used in GAGE, the best assemblies were created from reads that had been processed through extensive error correction routines"

Illumina Sequencing Errors: ~1%, Substitution errors

k = 4

AGCTGTGG

k = 4

AGCT

GCTG

AGCTGTGG

AGCT

GCTG

CTGT

AGCTGTGG

AGCT

AGCT

GCTG

CTGT

TGTG

AGCTGTGG

AGCT

AGCT

GCTG

CTGT

TGTG

GTGG

k = 6 AGCTGTGG

k = 6

AGCTGT GCTGTG

k = 6

AGCTGT GCTGTG CTGTGG

Expected Distribution of k-mer frequency

DSK; Rizk et al. 2013

Expected Distribution of k-mer frequency

Corrected

DSK; Rizk et al. 2013

Expected Distribution of k-mer frequency

Estimate genome size

DSK; Rizk et al. 2013

Expected Distribution of k-mer frequency

Estimate genome size

DSK; Rizk et al. 2013

G = C / P

G = genome size

C = total count of

true k-mers

P = peak coverage

Expected Distribution of k-mer frequency

Estimate repetitive content

Recap: NGS QC

- Remove low quality bases and reads
- Identify and remove adapter contamination
- Optional: Correct substitution sequencing errors
- Optional: De-duplication

To your MacBookPro Terminal!

