Seaborn Assignment

January 8, 2024

- 0.0.1 Que 1: Name any five plots that we can plot using the Seaborn library. Also, state the uses of each plot.
- 0.0.2 Seaborn is a popular Python library for data visualization. Here are five types of plots that can be created using Seaborn:
 - Line plot: This plot is used to visualize the relationship between two continuous variables. It is useful for showing trends over time or space. For example, you can use a line plot to show how the temperature changes over the course of a day.
 - Scatter plot: This plot is used to visualize the relationship between two continuous variables. It is useful for identifying patterns and outliers in the data. For example, you can use a scatter plot to show the relationship between a person's height and weight.
 - Bar plot: This plot is used to visualize the relationship between a categorical variable and a continuous variable. It is useful for comparing values across different categories. For example, you can use a bar plot to show the average salary of employees in different departments.
 - Histogram: This plot is used to visualize the distribution of a continuous variable. It is useful for identifying the shape of the data and detecting outliers. For example, you can use a histogram to show the distribution of ages in a population.
 - Heatmap: This plot is used to visualize the relationship between two categorical variables. It is useful for identifying patterns and trends in the data. For example, you can use a heatmap to show the number of sales of different products in different regions.

[]:

- 0.0.3 Que 2: Load the "fmri" dataset using the load_dataset function of seaborn. Plot a line plot using x = "timepoint" and y = "signal" for different events and regions.
 - Note: timepoint, signal, event, and region are columns in the fmri dataset.
- [1]: import seaborn as sns
 [4]: fmri=sns.load_dataset('fmri')
- [5]: fmri

```
[5]:
          subject timepoint event
                                       region
                                                  signal
     0
              s13
                               stim parietal -0.017552
                           18
     1
               s5
                           14
                               stim
                                     parietal -0.080883
     2
              s12
                           18
                               stim
                                     parietal -0.081033
     3
                           18
                               stim
                                     parietal -0.046134
              s11
     4
              s10
                           18
                               stim
                                     parietal -0.037970
     1059
               s0
                            8
                                cue
                                      frontal 0.018165
     1060
              s13
                            7
                                      frontal -0.029130
                                cue
     1061
                            7
                                      frontal -0.004939
              s12
                                cue
     1062
              s11
                            7
                                      frontal -0.025367
                                cue
     1063
               s0
                                cue parietal -0.006899
```

[1064 rows x 5 columns]

```
[13]: sns.lineplot(x = 'timepoint', y = composition of the state of th
```

[13]: <AxesSubplot: xlabel='timepoint', ylabel='signal'>

[]:

- 0.0.4 Que 3: Load the "titanic" dataset using the load_dataset function of seaborn. Plot two box plots using x = `pclass', y = `age' and y = `fare'.
 - Note: pclass, age, and fare are columns in the titanic dataset.

```
[14]: import seaborn as sns
      titanic=sns.load_dataset('titanic')
[15]: titanic
[15]:
            survived
                      pclass
                                   sex
                                         age
                                               sibsp
                                                      parch
                                                                 fare embarked
                                                                                   class
                                                               7.2500
      0
                   0
                            3
                                 male
                                        22.0
                                                   1
                                                                               S
                                                                                   Third
      1
                   1
                               female
                                        38.0
                                                   1
                                                              71.2833
                                                                               С
                                                                                   First
                            1
                                                           0
      2
                   1
                            3
                               female
                                        26.0
                                                   0
                                                           0
                                                               7.9250
                                                                               S
                                                                                   Third
      3
                   1
                            1
                               female
                                        35.0
                                                   1
                                                           0
                                                              53.1000
                                                                               S
                                                                                   First
      4
                   0
                            3
                                        35.0
                                                   0
                                                               8.0500
                                                                               S
                                                                                   Third
                                  male
                                                           0
      . .
                   0
                            2
                                 male
                                        27.0
                                                             13.0000
                                                                               S
                                                                                  Second
      886
                                                   0
                                        19.0
                                                                                   First
      887
                   1
                            1
                               female
                                                   0
                                                              30.0000
                                                                               S
      888
                   0
                            3
                               female
                                         NaN
                                                   1
                                                           2
                                                              23.4500
                                                                               S
                                                                                   Third
      889
                                 male
                                        26.0
                                                                               С
                                                                                   First
                   1
                            1
                                                   0
                                                              30.0000
      890
                   0
                            3
                                 male
                                       32.0
                                                   0
                                                           0
                                                               7.7500
                                                                               Q
                                                                                   Third
                   adult_male deck
                                      embark_town alive
                                                           alone
              who
                          True
                                      Southampton
      0
              man
                                {\tt NaN}
                                                      no
                                                           False
      1
                         False
                                   С
                                        Cherbourg
            woman
                                                     yes
                                                           False
      2
                         False
                                {\tt NaN}
                                      Southampton
                                                            True
            woman
                                                     yes
      3
            woman
                         False
                                   С
                                      Southampton
                                                     yes
                                                           False
      4
                          True
                                      Southampton
                                                            True
                                NaN
                                                      no
              man
      886
                                                            True
                          True
                                {\tt NaN}
                                      Southampton
                                                      no
              man
                                      Southampton
                                                            True
      887
           woman
                         False
                                   В
                                                     yes
      888
                                      Southampton
                                                           False
            woman
                         False
                                NaN
                                                      no
      889
                          True
                                   C
                                        Cherbourg
                                                     yes
                                                            True
              man
      890
              man
                          True NaN
                                       Queenstown
                                                      no
                                                            True
      [891 rows x 15 columns]
[25]: sns.boxplot(x = 'pclass', y = 'age', data=titanic)
      sns.boxplot( x = 'pclass', y = 'fare',data=titanic)
```


[]:

0.0.5 Que 4: Use the "diamonds" dataset from seaborn to plot a histogram for the 'price' column. Use the hue parameter for the 'cut' column of the diamonds dataset.

```
[26]: import seaborn as sns
      diamonds=sns.load_dataset('diamonds')
      diamonds
[27]:
[27]:
                            cut color clarity
                                                 depth table
                                                               price
              carat
                                                                           X
                                                                                  у
               0.23
                                                                               3.98
      0
                          Ideal
                                     Ε
                                           SI2
                                                  61.5
                                                          55.0
                                                                  326
                                                                        3.95
                                                                                     2.43
      1
               0.21
                        Premium
                                     Ε
                                                                        3.89
                                                                               3.84
                                                                                     2.31
                                           SI1
                                                  59.8
                                                          61.0
                                                                   326
      2
               0.23
                           Good
                                     Ε
                                           VS1
                                                  56.9
                                                          65.0
                                                                  327
                                                                        4.05
                                                                               4.07
                                                                                     2.31
                                     Ι
                                                          58.0
      3
               0.29
                        Premium
                                           VS2
                                                  62.4
                                                                  334
                                                                        4.20
                                                                               4.23
                                                                                     2.63
      4
               0.31
                           Good
                                     J
                                           SI2
                                                  63.3
                                                          58.0
                                                                  335
                                                                        4.34
                                                                               4.35
                                                                                     2.75
               0.72
                          Ideal
                                     D
                                           SI1
                                                  60.8
                                                          57.0
                                                                  2757
      53935
                                                                        5.75
                                                                               5.76
                                                                                     3.50
```

SI1

SI1

53936

53937

0.72

0.70

Good

Very Good

D

D

63.1

62.8

55.0

60.0

2757

2757

5.69

5.66

5.75

5.68

3.61

3.56

```
53938
       0.86
               Premium
                           Η
                                 SI2
                                       61.0
                                              58.0
                                                     2757 6.15 6.12 3.74
53939
       0.75
                 Ideal
                                 SI2
                                       62.2
                                              55.0
                                                     2757 5.83 5.87
                                                                       3.64
                           D
```

[53940 rows x 10 columns]

```
[29]: sns.histplot(x='price',hue='cut',data=diamonds)
```

[29]: <AxesSubplot: xlabel='price', ylabel='Count'>


```
[]:
```

0.0.6 Que 5: Use the "iris" dataset from seaborn to plot a pair plot. Use the hue parameter for the "species" column of the iris dataset.

```
[30]: import seaborn as sns iris=sns.load_dataset('iris')
```

[31]: iris

[31]:	sepal_length	${\tt sepal_width}$	petal_length	${\tt petal_width}$	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
		•••	•••		
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

[32]: sns.pairplot(hue='species',data=iris)

[32]: <seaborn.axisgrid.PairGrid at 0x7f001a81b2b0>


```
0.0.7 Que 6: Use the "flights" dataset from seaborn to plot a heatmap.
[39]: import seaborn as sns
      flights=sns.load_dataset('flights')
[40]: flights
[40]:
           year month passengers
           1949
                  Jan
           1949
      1
                  Feb
                              118
      2
           1949
                  Mar
                              132
      3
           1949
                              129
                  Apr
      4
           1949
                  May
                              121
      . .
           •••
      139
          1960
                              606
                  Aug
                              508
      140 1960
                  Sep
      141 1960
                  Oct
                              461
      142 1960
                  Nov
                              390
      143 1960
                  Dec
                              432
      [144 rows x 3 columns]
[45]: flights = flights.pivot("month", "year", "passengers")
      sns.heatmap(flights)
     /tmp/ipykernel_2201/3798779447.py:1: FutureWarning: In a future version of
     pandas all arguments of DataFrame.pivot will be keyword-only.
       flights = flights.pivot("month", "year", "passengers")
[45]: <AxesSubplot: xlabel='year', ylabel='month'>
```

[]:

