Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A bacteriochlorophyll derivative containing at least one, preferably two or three, negatively charged groups and/or acidic groups that are converted to negatively charged groups at the physiological pH, or both, excluding pentacyclic bacteriochlorophyll derivatives having a free CH₂CH₂COOH or a CH₂CH₂COO group at position 17, and tetracyclic bacteriochlorophyll derivatives devoid of a central metal atom and having a -CH₂CH₂COOH group at position 17, a -CH₂COOH or -COOH group at position 15, a -COOH group at position 13, methyl groups at the positions 2, 7, 12, 18, and ethyl groups at the positions 3 and 8.
- 2. (Original) A bacteriochlorophyll derivative according to claim 1 containing two negatively charged groups.

- 3. (Original) A bacteriochlorophyll derivative according to claim 1 containing three negatively charged groups.
- 4. (Currently Amended) A bacteriochlorophyll derivative according to any one of claims 1 to 3 wherein said at least one negatively charged groups are is selected from the group consisting of COO, COS, SO3, and/or PO3 $^{2-}$.
- 5. (Currently Amended) A bacteriochlorophyll derivative according to claim 1 wherein said at least one acidic groups that are is converted to a negatively charged groups at the physiological pH are is selected from the group consisting of COOH, COSH, SO₃H, and/or PO₃H₂.
- 6. (Currently Amended) A bacteriochlorophyll derivative according to any one of claims 1 to 5 derived from a natural or synthetic derivative of bacteriochlorophyll, including compounds in which the central Mg atom has been deleted or replaced by other metal atoms.
- 7. (Currently Amended) A bacteriochlorophyll derivative according to claim 1 of the formula I or II:

$$R_{3}$$
 R_{3}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{1}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}
 R_{5}
 R_{2}
 R_{4}
 R_{5}
 R_{5

wherein

M represents 2H or a metal atom selected from the group consisting of divalent Pd, Pt, Co, Sn, Ni, Cu, Zn and Mn, and trivalent Fe, Mn and Cr;

 R_1 , R_2 , and R_4 each independently is Y- R_5 ; Y is O, S or NR_5R_6 -NR₆;

 $R_{3} \text{ is selected from } \underline{\text{the group consisting of }} - CH = CH_{2},$ $-C(=O) - CH_{3}, -C(=O) - H, -CH = NR_{7}, -C(CH_{3}) = NR_{7}, -CH_{2} - OR_{7}, -CH_{2} - SR_{7}, -CH_{2} - NR_{7}R'_{7}, -CH(CH_{3}) - OR_{7}, -CH(CH_{3}) - SR_{7}, -CH(CH_{3}) - NR_{7}R'_{7}, -CH(CH_{3}) + NR_{7}R'_{7}, -CH(CH_{3}) + CH_{2} - R_{7}, -CH = CR_{7}R'_{7}, -C(CH_{3}) = CR_{7}R'_{7}, -C(CH_{3}) = CR_{7}Hal, -C(CH_{3}) = CR_{7}Hal, and -C = CR_{7};$

 R_{5} , R_{6} , $R_{7} \; and \; R^{\prime} \, _{7} \; each \; independently is H or selected from the group consisting of:$

(a) C_1 - C_{25} hydrocarbyl optionally containing one or more heteroatoms, carbocyclic or heterocyclic moieties, and/or

optionally substituted by one or more functional groups selected from the group consisting of halogen, oxo, OH, SH, CHO, NH_2 , $CONH_2$, a negatively charged group, and an acidic group that is converted to a negatively charged group at the physiological pH;

- (b) a residue of an amino acid, a peptide or of a protein; and
- (c) when Y is O or S, R_5 may further be R_8^+ ;

m is 0 or 1; and

 R_8^+ is H^+ or a cation;

provided that:

- (i) at least one, preferably two, of R_5 , R_6 , R_7 and $R^\prime{}_7$ is a hydrocarbon chain as defined in (a) above substituted by a negatively charged group or by an acidic group that is converted to a negatively charged group at the physiological pH; or
- (ii) at least one, preferably two, of R_1 , R_2 , and R_4 is OH, SH, $\vec{OR_8}^+$ or $\vec{SR_8}^+$; or
- (iii) at least one of R_1 , R_2 , and R_4 is OH, SH, O R_8^+ or S R_8^+ and at least one of R_5 , R_6 , R_7 and R'_7 is a hydrocarbon chain substituted by a negatively charged group or by an acidic group that is converted to a negatively charged group at the physiological pH; or

(iv) at least one of R_1 , R_2 , and R_4 is OH, SH, O R_8^+ or S R_8^+ and at least one of R_5 , R_6 , R_7 and R'_7 is a residue of an amino acid, a peptide or of a protein; or

(v) at least one of R_5 , R_6 , R_7 and R'_7 is a hydrocarbon chain substituted by a negatively charged group or by an acidic group that is converted to a negatively charged group at the physiological pH and at least one of R_5 , R_6 , R_7 and R'_7 is a residue of an amino acid, a peptide or of a protein; but excluding the compounds of formula I wherein M is as defined, R_3 is -C(=O)CH₃, R_1 is OH or OR_8^+ and R_2 is $-OCH_3$, and the compound of formula II wherein M is 2H, R_3 is -C(=O)CH₃, R_1 , R_2 and R_4 are OH, and m is 0 or 1.

- 8. (Currently Amended) A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein said negatively charged groups are selected from the group consisting of COO^- , COS^- , SO_3^- , and $\frac{1}{100}$ PO $_3^{-2}$.
- 9 (Currently Amended). A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein said acidic groups that are converted to negatively charged groups at the physiological pH are selected from the group consisting of COOH, COSH, SO_3H , and $\frac{1}{O_7}PO_3H_2$.

10 (Currently Amended). A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein R_1 is Y- R_5 ; Y is O, S or NH; and R_5 is a hydrocarbon chain substituted by functional groups selected from of the group consisting of OH, SH, SO₃H, NH₂, CONH₂, COOH, COSH, and PO₃H₂.

- 11. (Original) A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein R_5 is the residue of an amino acid, a peptide or a protein.
- 12. (Currently Amended) A bacteriochlorophyll derivative of the formula I or II according to claim \pm $\frac{7}{2}$ containing a central Pd metal atom.
- 13. (Original) A bacteriochlorophyll derivative of the formula I according to claim 7 wherein:

M is Pd;

 R_1 is $-NH-(CH_2)_n-SO_3^-R_8^+$, $-NH-(CH_2)_n-COO^-R_8^+$; $-NH-(CH_2)_n-PO_3^{2^-}$ $(R_8^+)_2$;

 R_2 is methoxy;

 R_3 is $-C(=O)-CH_3$;

 R_8^+ is a monovalent cation such as K^+ , Na^+ , Li^+ , NH_4^+ ; and n is an integer from 1 to 10, preferably 2 or 3.

14. (Currently Amended) A bacteriochlorophyll derivative of the formula II according to claim 7 wherein:

M represents 2H, divalent Pd, Cu, or Zn or trivalent Mn;

 $R_1 \text{ is } -O^-R_8^+, \text{ } -NH^-(CH_2)_n - SO_3^-R_8^+, \text{ } -NH^-(CH_2)_n - COO^-R_8^+ \not \rightarrow \underline{\text{or}}$ $-NH^-(CH_2)_n - PO_3^{2^-}(R_8^+)_2 \text{ ; or } Y^-R_5 \text{ wherein } Y \text{ is O, S or NH and } R_5$ is the residue of an amino acid, a peptide or a protein;

 R_2 is C_1 - C_6 alkoxy, such as methoxy, ethoxy, propoxy, butoxy, more preferably methoxy;

 $R_{3} \text{ is } -C \text{ (=O)} - CH_{3}, -CH=N-(CH_{2})_{n} - SO_{3}^{-} R_{8}^{+} \text{ ; } -CH=N-(CH_{2})_{n} - COO_{n}^{-} R_{8}^{+} \text{ ; } -CH=N-(CH_{2})_{n} - COO_{n}^{-} R_{8}^{+} \text{ ; } -CH=N-(CH_{2})_{n} - SO_{3}^{-} R_{8}^{+} \text{ ; } -CH_{2} - NH-(CH_{2})_{n} - SO_{3}^{-} R_{8}^{+} \text{ ; } -CH_{2} - NH-(CH_{2})_{n} - COO_{n}^{-} R_{8}^{+} \text{ ; } -CH_{2} - NH-(CH_{2})_{n} - PO_{3}^{2} - (R_{8}^{+})_{2} \text{ ; }$

 $R_4 \text{ is-NH-} (CH_2)_n - SO_3^- R_8^+; -NH- (CH_2)_n - COO^- R_8^+; \underline{\text{ or }} -NH- (CH_2)_n - PO_3^{2-} (R_8^+)_2;$

 $\rm R_8^+$ is a monovalent cation, such as $\rm K^+,~Na^+,~Li^+,~NH_4^+,~$ more—preferably $\rm K^+;~and$

m is 1, and n is an integer from 1 to 10; preferably 2 or 3.

15. (Currently Amended) A bacteriochlorophyll derivative of formula II in claim 7 wherein:

M is divalent Pd;

 R_1 is $-\text{O}^-\,{R_8}^+,\ -\text{NH}-\left(\text{CH}_2\right){}_{n}-\text{SO}_3^-\,{R_8}^+,\ \text{or}\ \text{Y}-R_5}$ wherein Y is O, S

or NH and R_5 is the residue of an amino acid, a peptide or a protein;

 R_2 is C_1 - C_6 alkoxy, preferably methoxy;

 $R_{3} \text{ is } -C \text{ (=O)} -CH_{3}\text{, } -CH= \text{ N- (CH}_{2}\text{)}_{n} -SO_{3}^{-} \text{ } R_{8}^{+} \text{ ; or } -CH_{2} -NH- \\ (CH_{2}\text{)}_{n} -SO_{3}^{-} \text{ } R_{8}^{+} \text{ ; }$

 $R_4 \text{ is-NH-} (CH_2)_n - SO_3^- R_8^+ ; \text{ NH-} (CH_2)_n - COO^- R_8^+ ; \underline{\text{ or }} \text{NH-} (CH_2)_n - PO_3^{2-} (R_8^+)_2 ;$

 R_8^+ is a monovalent cation, preferably K^+ ; m is 1, and n is 2 or 3.

- 16. (Original) A bacteriochlorophyll derivative of the formula I according to claim 13, consisting of the compound Palladium bacteriopheophorbide a 17^3 -(3-sulfopropyl)amide potassium salt.
- derivative of the formula II according to claim 15, selected from the group consisting of the compounds:

 Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt;

 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt;

 Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹, 17³-di(3-sulfopropyl) amide dipotassium salt;

Palladium 3¹-(3-sulfopropylimino)-15-methoxycarbonylmethyl- ${\tt rhodobacterio-chlorin} \ 13^1, 17^3-{\tt di} \, (3-{\tt sulfopropyl}) \, {\tt amide}$ tripotassium salt; Copper(II) 31-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt; Zinc 3^{1} -oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13^{1} -(2-sulfoethyl) amide dipotassium salt; Manganese (III) 3^{1} -oxo-15-methoxycarbonylmethylrhodobacteriochlorin 13^{1} -(2-sulfoethyl) amide dipotassium salt; Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13^{1} -(2-sulfoethyl) amide, 17^{3} -(N-immunoglobulin G) amide potassium salt; Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-carboxy-ethyl)amide dipotassium salt; Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13^{1} -(3-phosphopropyl) amide tripotassium salt; and Palladium 3^{1} -(3-sulfopropylamino)-15-methoxycarbonylmethylrhodobacte-riochlorin 13¹,17³-di(3-sulfopropyl)amide tripotassium salt.

18. (Original) Palladium 3^1 -oxo-15- methoxycarbonylmethyl-rhodobacteriochlorin 13^1 -(2-sulfoethyl) amide dipotassium salt.

- 19. (Currently Amended) A pharmaceutical composition comprising a bacteriochlorophyll derivative according to any one of claims 1 to 18, and a pharmaceutically acceptable carrier.
- 20. (Original) The pharmaceutical composition according to claim 19 for photodynamic therapy.
- 21. (Original) The pharmaceutical composition according to claim 20 for vascular-targeting photodynamic therapy.
- 22. (Currently Amended) The pharmaceutical composition according to claim 20 or 21 for photodynamic therapy of tumors, including metastatic tumors.
- 23. (Original) The pharmaceutical composition according to claim 22 for photodynamic therapy of melanoma, colon, breast, lung, or prostate cancer.
- 24. (Currently Amended) The pharmaceutical composition according to claim 20 or 21 for photodynamic therapy of age-related macular degeneration.

- 25. (Currently Amended) The pharmaceutical composition according to claim 20 $\frac{1}{2}$ for photodynamic therapy of benign prostate hypertrophy.
- 26. (Original) The pharmaceutical composition according to claim 19 for tumor diagnosis.
- 27. (Original) A pharmaceutical composition according to claim 19 for killing cells or infectious agents comprising bacteria and viruses.
- 28. (Original) The pharmaceutical composition according to claim 27 for *in vitro* killing of cells or infectious agents comprising bacteria and viruses in a biological product upon illumination of said product.
- 29. (Original) The pharmaceutical composition according to claim 28 wherein said biological product is blood.
 - 30.-35. (Cancelled)
- 36. (Currently Amended) A method for tumor photodynamic therapy which comprises:

- (a) administering to an individual in need a compound according to any one of claims 1 to -18; and (b) irradiating the local of the tumor.
- 37. (Currently Amended) A method for photodynamic therapy of age-related macular degeneration which comprises:

 (a) administering to an individual in need a compound according to any one of claims 1 to 18; and (b) irradiating the local of the macular degeneration.
- 38. (Currently Amended) A method for tumor diagnosis which comprises:
- (a) administering to a subject suspected of having a tumor, a compound according to $\frac{1}{2}$ and $\frac{1}{2}$ and
- (b) irradiating the subject by standard procedures and measuring the fluorescence of the suspected area, wherein a higher fluorescence indicates tumor sites.
- 39 (Currently Amended). In a method for photodynamic therapy using a photosensitizer, the improvement wherein said photosensitizer is a bacteriochlorophyll derivative according to any one of claims 1 to 18.

- 40. (Currently Amended) In a method for diagnosis of tumors using a photosensitizer, the improvement wherein said photosensitizer is a bacteriochlorophyll derivative according to any one of claims 1 to 18.
- 41. (Currently Amended) In an in vitro method for killing of cells or infectious agents comprising bacteria and viruses, using a photosensitizer, the improvement wherein said photosensitizer is a bacteriochlorophyll derivative according to any one of claims 1 to 18.
- 42. (Original) The compound Palladium bacteriopheophorbide a 17^3 -(3-sulfo-1-oxysuccinimide) ester sodium salt, as an intermediate.
- 43. (Original) A method for the preparation of compounds of formula II In claim 7 wherein R_1 is $-O^-R_8^+$; R_2 is $-OCH_3$; R_3 is acetyl; R_4 is a group $-NH-(CH_2)_n-SO_3^-R_8^+$; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
- (i) reacting the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with an aminosulfonic acid of the formula $H_2N-(CH_2)_n-SO_3H$ in a R_8^+ -buffer; and
 - (ii) isolating the desired compound of formula II.

- 44. (Original) The method according to claim 43 for preparation of palladium 3^1 -oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13^1 -(2-sulfoethyl) amide dipotassium salt which comprises: (i) reacting Pd-bacteriopheophorbide a with taurine of the formula H_2N -(CH_2)₂- SO_3H in a K^+ -buffer; and (ii) isolating the title compound.
- 45. (Original) A method for the preparation of compounds of formula II in claim 7 wherein R_1 is $-0^ R_8^+$; R_2 is $-\text{OCH}_3$; R_3 is acetyl; R_4 is a group $-\text{NH-}(\text{CH}_2)_n-\text{COO}^ R_8^+$; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises: (i) reacting the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with an aminocarboxylic acid of the formula $H_2N-(\text{CH}_2)_n-\text{COOH}$ in a R_8^+ -buffer; and (ii) isolating the desired compound of formula II.
- 46. (Original) A method for the preparation of compounds of formula II in claim 7 wherein R_1 is $-0^ R_8^+$; R_2 is $-\text{OCH}_3$; R_3 is acetyl; R_4 is a group $-\text{NH-}(\text{CH}_2)_n \text{PO}_3^{2-}$ (R_8^+)₂; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises: (i) reacting the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with an aminophosphonic acid of the formula $H_2N-(\text{CH}_2)_n \text{PO}_3H_2$ in a R_8 -buffer; and (ii) isolating the desired compound of formula II.

- 47. (Original) A method for the preparation of compounds of formula II in claim 7 wherein R_1 and R_4 contain the same negatively charged group, which comprises:
- (i) reacting the corresponding M-bacteriopheophorbide with an excess of the aminosulfonic, aminocarboxylic or aminophosphonic acid in a R_8^+ -buffer; and
- (ii) isolating the desired 13,17-disubstituted derivative of formula II.
- 48. (Original) A method for the preparation of compounds of formula II in claim 7 wherein R_1 and R_4 are each a group $-NH-(CH_2)_n-SO_3^-R_8^+$; R_2 is $-OCH_3$; R_3 is acetyl; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:

 (i) coupling the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with N-hydroxy-sulfosuccinimide (sulfo NHS) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC);
- (ii) reacting the resulting M-bacteriopheophorbide- 17^3 -N-hydroxy-sulfosuccinimide ester with an excess of an aminosulfonic acid of the formula $H_2N-(CH_2)_n-SO_3H$ in a R_8^+- buffer, thus obtaining a compound of formula I having a sole negatively charged group at position 17;

- (iii) reacting the product of step (ii) with an excess of $H_2N-(CH_2)_n-SO_3H$ in a R_8^+ -buffer; and
- (iv) isolating the desired compound of formula II.
- 49. (Original) A method for the preparation of compounds of formula II in claim 7 wherein R_1 and R_4 are each a group $-NH-(CH_2)_n-COO^-R_8^+$; R_2 is $-OCH_3$; R_3 is acetyl; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:

 (i) coupling the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with N-hydroxy-sulfosuccinimide (sulfo NHS) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC);
- (ii) reacting the resulting M-bacteriopheophorbide- 17^3 -N-hydroxy-sulfosuccinimide ester with an excess of an aminocarboxylic acid of the formula $H_2N-(CH_2)_n-COOH$ in a R_8^+- buffer, thus obtaining a compound of formula I having a sole negatively charged group at position 17;
- (iii) reacting the product of step (ii) with an excess of $H_2N-(CH_2)_n-COOH$ in a $R_8^+-buffer;$ and (iv) isolating the desired compound of formula II.
- 50. (Original) A method for the preparation of compounds of formula II in claim 7 wherein R_1 and R_4 are each a

group $-NH-(CH_2)_n-PO_3^{2-}R_8^+$; R_2 is $-OCH_3$; R_3 is acetyl; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises: (i) coupling the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with N-hydroxy-sulfosuccinimide (sulfo NHS) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC);

- (ii) reacting the resulting M-bacteriopheophorbide- 17^3 -N-hydroxy-sulfosuccinimide ester with an excess of an aminophosphonic acid of the formula $H_2N-(CH_2)_n-PO_3H_2$ in a R_8^+- buffer, thus obtaining a compound of formula I having a sole negatively charged group at position 17;
- (iii) reacting the product of step (ii) with an excess of $H_2N-(CH_2)_n-PO_3H_2$ in a R_8^+ -buffer; and (iv) isolating the desired compound of formula II.