

Cellular Therapy in the Hematopoietic Transplant Setting

Andrea Nadas, MLS(ASCP)

Hematopoiesis

- Process of formation and development of cells of the blood and immune system from a common hematopoietic stem cell
- Hematopoietic progenitor cells (HPCs):
 - Divide into RBCs, WBCs, platelets
 - Have CD34 surface protein
 - Transplanted to replace or regenerate bone marrow

Transplantation of HPCs

- Transplant centers collect, process, store, and infuse HPCs
- Two types of Transplantation:
 - Autologous HPC Transplantation
 - Allogeneic HPC Transplantation

Autologous HPC Transplantation

- Use of own HPCs for transplant
- Reasons for autologous transplant:
 - Adults with lymphoproliferative or plasma cell disorders
 - Children with solid tumors
 - Rescue bone marrow after highdose chemotherapy

Allogeneic HPC Transplantation

- HPCs from another individual used for transplant
- Reasons for Allogeneic transplant:
 - Malignant myeloproliferative processes
 - Sickle Cell Anemia
 - Congenital immune deficiencies
- Allogeneic transplants can lead to graft-vs-host-disease
 - Donor cells recognize recipient as foreign and attack
 - Need HLA matching
 - Graft-vs-leukemia (GVL)

Graft-vs-Host Disease (GVHD)

- Incidence of GVHD is 30-50% with high mortality rate
- Acute GVHD
 - Symptoms: skin rash, transaminitis, gastroenteritis
 - Occurs within 100 days of HPC Transplant

Chronic GVHD

 Symptoms: Dry eyes and mouth, joint contractures and reduced mobility, scleroderma-like changes in skin, lung damage

Sources of HPC Products

- Umbilical Cord Blood (HPC-C)
- Bone Marrow (HPC-M)
- Peripheral blood stem cells collected by apheresis (HPC-A)

HPC-C

- Collected from placenta and umbilical cord at delivery
- Collected with anticoagulant CPD
- Wash before use remove RBCs/Plasma
- Freeze with 10% DMSO (dimethyl sulfoxide cryoprotectant)
- Greater tolerance of HLA disparity
- Lower risk of GVHD
- Longer time until engraftment

Umbilical Cord

Baby is born with the umbilical cord attached. The cord is clamped and cut so that the baby can be cleaned and taken care of.

Storage

The cord blood stem cells will be kept in liquid nitrogen storage tanks at -190 degrees Celsius inside a secured facility.

Blood Collected & Analyzed

Cord blood will be drawn from the clamped cord into a special collection bag by the doctor.

The blood is sent to a laboratory for analysis and the red blood cells are separated.

HPC-M

- HPCs collected from bone marrow under anesthesia
- Done using needle to access posterior iliac crest
- Placed into sterile container with anti-coagulant and electrolyte solution
- Lower risk of GVHD than HPC-A
- Higher risk for donor

HPC-A

- Most common product used
- Collected through apheresis
- Growth factors administered before – increase # of HPCs in peripheral blood before collection
- Number of HPCs collected monitored by flow cytometry
- Faster engraftment of neutrophils and platelets than HPC-M
- Better graft-vs-leukemia effect than HPC-M

Requirements for HPC Donors

- Pass screening questionnaire
- Physical exam
- Review of medical records
- Infectious disease testing
 - HIV, Hepatitis B and C, HTLV-I, II, Syphilis, CMV
- HLA testing
 - HLA-A, HLA-B, HLA-C, HLA-DRB1

HPC Processing and Storage

- Initial testing: CBC, WBC Differential, CD34 enumeration, viability studies
- Require 2 x 10⁶ 6 x 10⁶ CD34+ cells/kg of recipient body weight
- Long term storage:
 - Cryopreservation with addition of cryoprotectant DMSO
 - Store in liquid nitrogen freezer (-196°C)

Cryoprotectant

- Macromolecules, like Glycerol, are used to protect tissues from freezing
- As ice forms outside the cell, water leaves the cell to dilute the higher concentrations of solutes
- Cryoprotectants prevent all the water from leaving by increasing the concentration of solutes inside the cell

HPC Infusion

- Thaw in 37°C waterbath
- May be washed to remove DMSO
- Infusion through central venous catheter
- Circulating HPCs enter bone marrow through CD34+ cells reacting with bone marrow stroma
- Most common complication: DMSO toxicity
 - Coughing, flushing, rash, nausea, vomiting, cardiovascular instability, wheezing

Special Transfusion Requirements for HPC Transplantation

- Transfusion Associated Graft-vs-Host Disease
- ABO Incompatible HPC Transplantation
- Rh Transplant Incompatibility
- Passenger Lymphocyte Syndrome (PLS)
- Platelet Refractoriness

Transfusion-Associated Graft-vs-Host Disease

- Recipient's immune system unable to destroy donor lymphocytes
- Lymphocytes divide and attack recipient tissues
- Symptoms: skin rash, fever, increased liver enzymes, pancytopenia, diarrhea
- Reduce risk with irradiation
- BMT patients always get irradiated products

ABO Incompatible HPC Transplantation

- HPCs lack ABO antigens
- Three different ABO mismatches possible:
 - Major ABO Mismatch Recipient is O, Donor is A, B, or AB
 - Minor ABO Mismatch Recipient is A, B, or AB, Donor is O
 - Bidirectional ABO Mismatch Recipient is A, Donor is B

Major ABO Mismatch

- Recipient: O, Donor: A, B, or AB
- Recipient: A or B, Donor: AB
- 20-25% of transplants

- Potential Complications:
 - Acute Hemolysis of RBCs in HPC product
 - Delayed RBC production after transplant
 - Delayed granulocyte and platelet production
 - Pure red cell aplasia

Selecting Blood for Transfusion

	RBCs	FFP	Platelets
Pre-transplant	Recipient ABO	Recipient ABO	Recipient ABO
During Transplant	Recipient ABO	Donor ABO	Donor ABO
Post-transplant*	Donor ABO	Donor ABO	Donor ABO

Minor ABO Mismatch

- Recipient: A or B, Donor: O
 Recipient: AB Donor: A, B, or O
- 20-25% of transplants

- Potential Complications:
 - Acute hemolysis if donor plasma in HPC product has high ABO titer
 - Hemolysis of recipient RBCs due to passenger lymphocyte syndrome

Selecting Blood for Transfusion

	RBCs	FFP	Platelets
Pre-transplant	Donor ABO	Recipient ABO	Recipient ABO
During Transplant	Donor ABO	Recipient ABO	Recipient ABO
Post-transplant*	Donor ABO	Donor ABO	Donor ABO

^{*}The patient should receive FFP and Platelets compatible to the recipient until the recipient's RBCs are no longer detected in forward type

Bidirectional ABO Mismatch

- Recipient: A, Donor: B
- Recipient: B, Donor: A
- 1-5% of transplants

- Potential Complications:
 - Hemolysis of RBCs in HPC product
 - Acute hemolysis if donor plasma in HPC product has high ABO titer
 - Hemolysis of recipient RBCs due to passenger lymphocyte syndrome

Selecting Blood for Transfusion

	RBCs	FFP	Platelets
Pre-transplant	Group O	Group AB	Group AB
During Transplant	Group O	Group AB	Group AB
Post-transplant*	Donor ABO	Donor ABO	Donor ABO

^{*}The patient can receive the Donor ABO after transplant when both the recipient's antibodies and antigens are no longer present

Rh Transplant Incompatibility

- Major Rh Mismatch:
 - Recipient = Rh negative
 - Donor = Rh positive
 - Complication Recipient could be sensitized and form anti-D
- Minor Rh Mismatch:
 - Recipient = Rh positive
 - Donor = Rh negative
 - Complication donor may have anti-D which is passively transferred to patient
- Both cases should receive Rh negative RBCs and platelets

Passenger Lymphocyte Syndrome (PLS)

- Donor lymphocytes infused recognize foreign RBC antigens in recipient
- Donor lymphocytes manufacture antibodies against recipient RBCs
- Result is hemolysis of recipient RBCs
- 9-16 days post transplant
- DAT is positive
- Eluate will be positive for antibody
- Provide RBCs negative for target of PLS

Platelet Refractoriness

- Immune mediated platelet refractoriness
 - Recipient makes antibodies against HLA antigens
 - Platelets positive from antigen removed from circulation
 - Post transfusion platelet counts don't increase
 - Transfuse HLA matched platelets
- Non-immune platelet refractoriness
 - Due to splenomegaly, sepsis, fever, DIC, medications, or GVHD
 - Difficult to overcome

Cleveland Clinic

Every life deserves world class care.

