HSC Worked Solutions projectmaths.com.au

06	5a	A function $f(x)$ is defined by $f(x) = 2x^2(3 - x)$.	
		(i) Find the coordinates of the turning points of $y = f(x)$ and determine their	3
		nature.	
		(ii) Find the coordinates of the point of inflexion.	1
		(iii) Hence sketch the graph of $y = f(x)$, showing the turning points, the point	3
		of inflexion and the points where the curve meets the x-axis.	
		(iv) What is the minimum value of $f(x)$ for $-1 \le x \le 4$?	1

f''(0) > 0 and f''(2) < 0 \therefore pt of inflexion at (1, 4)iii. $f(x) = 2x^2(3 - x) = 0$ x = 0, 3 $\therefore x$ intercepts at (0, 0) and (3, 0)

iv. Check x = -1 and x = 4:

At x = -1, $f(-1) = 2(-1)^2[3 - (-1)]$ $= 2 \times 4$ $= 8 \quad \therefore (-1, 8)$ At x = 4, $f(2) = 2(4)^2[3 - 4]$ $= 32 \times -1$ $= -32 \quad \therefore (4, -32)$ $\therefore \text{ minimum value of } -32$

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) Most candidates understood that $\frac{dy}{dx}$ was required and that stationary points occurred

when $\frac{dy}{dx} = 0$. Candidates who attempted the differentiation using the product rule were

more likely to make an error than those who wrote the function as a simple polynomial before differentiating. Poor factorising and substitution skills were often evident.

- (ii) This part was done well. Almost all candidates knew to equate the second derivative to zero and most successfully tested for the change in concavity.
- (iii) The graph did not pose a problem to candidates who had successfully completed parts (i) and (ii). Many did not continue their graph far enough to show the x-intercept of 3. Algebraic errors often made it impossible to draw a graph to fit the candidate's incorrect stationary points. Candidates are reminded that the graph of a cubic function is smooth and continuous.
- (iv) This part was answered well. Some candidates substituted successfully but were unsure whether the minimum value was the x- or y-coordinate of the lowest point.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/