Relations as Images

Mathieu Alain

Université Laval, Québec, Canada

Jules Desharnais

Plan

- 1. Introduction: relations, black and white images, mathematical morphology
- 2. Notation
- 3. Representing an image in the plane by a relation
- 4. Dilation and erosion
- 5. Graph morphology
- 6. Conclusion

1 Introduction: relations, black and white images, mathematical morphology

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	

Relation as a Boolean matrix

RelView display of the same relation

• RelView convention (the one we use) : $\begin{cases} 0: \text{ white} \\ 1: \text{ black} \end{cases}$

Mathematical morphology

- 1960s, 1970s: mostly developed for the analysis and transformation of binary (i.e., black and white) digital images (Matheron, Serra, ...).
- Later extended in various directions: complete lattices, grey-level images, graphs, hypergraphs (Heijmans, Ronse, Nacken, Toet, Vincent, Stell, ...).
- Basic operations: dilation, erosion, opening, closing.
- In this talk:
 - Implementation of dilation and erosion under RelView for binary images, and performance comparison with Mathematica and Matlab, where these operations are primitive.
 - Implementation of dilation and erosion under RelView for graphs.

2 Notation

- I identity relation
- O empty relation
- L universal relation
- \cup union
- \cap intersection
- · normagition
- ; composition
 - 1. For $R_1: T \leftrightarrow T_1$ and $R_2: T \leftrightarrow T_2$ Tupling $\langle R_1, R_2|: T \leftrightarrow T_1 \times T_2$
 - 2. For $R_1:T_1\leftrightarrow T$ and $R_2:T_2\leftrightarrow T$
 - Cotupling $[R_1, R_2\rangle = T_1 \times T_2 \leftrightarrow T$
 - 3. For $R_1: S_1 \leftrightarrow T_1$ and $R_2: S_2 \leftrightarrow T_2$
 - Parallel product $[R_1, R_2]: S_1 \times S_2 \leftrightarrow T_1 \times T_2$

transposition/conversion

reflexive transitive closure

complementation

left residuation

right residuation

3 Representing an image in the plane by a relation

Convention We use the standard indexing orientation for matrices rather than the standard Cartesian coordinates orientation.

$$R : \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 2 & 0 & 1 & 1 & 0 \end{array}$$

Associated relations

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$S_{d} \qquad S_{c} \qquad o_{d} \qquad o_{c} \qquad O$$
 successor successor origin origin origin domain side codomain side domain side codomain side y axis y axis

Symbolic expression for a concrete relation

$$R = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \bigcup S_{\mathsf{d}}^{\mathsf{T}}; O; S_{\mathsf{c}} \cup S_{\mathsf{d}}^{\mathsf{T}}; O; S_{\mathsf{c}}^{2} \\ \cup S_{\mathsf{d}}^{\mathsf{2T}}; O; S_{\mathsf{c}} \cup S_{\mathsf{d}}^{\mathsf{2T}}; O; S_{\mathsf{c}}^{2} \end{bmatrix}$$

General form:

$$R = (\bigcup i, j \mid iRj : S_{\mathsf{d}}^{i\mathsf{T}}; O; S_{\mathsf{c}}^{j})$$

(Partial) addition relation A

Let

$$T_1 = \{0, 1, 2, 3\}$$

 $T_2 = \{0, 1, 2\}$
 $o_2 = \{0\}$ origin in T_2
 $S_1 = \{(0, 1), (1, 2), (2, 3)\}$ successor on T_1
 $S_2 = \{(0, 1), (1, 2)\}$ successor on T_2

Define $A: T_1 \times T_2 \leftrightarrow T_1$

Going through $[S_1, S_2^{\mathsf{T}}]^* : [\mathsf{I}_1, o_2 : \mathsf{L})$

$$(1,2) \rightarrow [S_1, S_2^{\mathsf{T}}] \rightarrow (2,1) \rightarrow [S_1, S_2^{\mathsf{T}}] \rightarrow (3,0) \rightarrow [\mathsf{I}_1, o_2 \,; \mathsf{L}\rangle \rightarrow 3$$

Size of
$$[S_1, S_2^T]^*$$
: $|T_1| \times |T_2| \times |T_1| \times |T_2| = |T_1|^2 \times |T_2|^2$

Size of A: $|T_1| \times |T_2| \times |T_1| = |T_1|^2 \times |T_2|$

4 Dilation and erosion

Let $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ (the image), $P: \mathbb{Z} \leftrightarrow \mathbb{Z}$ (the pattern), $A: \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{Z}$ (addition).

The dilation $R \oplus P$ of R by P is the pointwise addition (also called the Minkowski addition) of R and P:

$$R \oplus P = \{(x_R + x_P, y_R + y_P) \mid (x_R, y_R) \in R \land (x_P, y_P) \in P\}.$$

Using the addition function A, this can be expressed as

$$R \oplus P = A^{\mathsf{T}}; [R, P]; A.$$

Dilation in the integer grid: example

Image R (black) and dilation $R \oplus P$ (grey)

Structuring element P (Pattern)

In the integer grid,

$$R \oplus P = P \oplus R$$
,

hence the symmetric symbol for dilation. However, this is not the case for finite grids:

- The size of the image grid is normally much larger than that of the structuring element and the size of the result is that of the image;
- There are border effects.

This is why we write the dilation of R by P as $R \triangleright P$.

Dilation in finite grids: border effects

P

The partial addition gives the correct result in both cases

$$R \triangleright P = A_{\mathsf{d}}^{\mathsf{T}}; [R, P]; A_{\mathsf{c}}$$

Implementation under RelView

- Straigthforward: for fixed size grids, compute $A_{\sf d}$ and $A_{\sf c}$ once, and apply to various R and P.
- But: For large R and P, relations A_d , A_c and especially [R, P] are huge.

Size (type) of $R \triangleright P =$ size of R

Computing dilation using less space

 $R_1 \triangleright R_2$

$$= \langle \text{ Definition of } \rangle \rangle$$

$$A_{d1}^{\mathsf{T}}; [R_{1}, R_{2}]; A_{c1}$$

$$= \langle \text{ Definition of } A_{d1} \text{ and } A_{c1} \rangle$$

$$\langle \mathsf{I}_{d1}, \mathsf{L}; o_{d2}^{\mathsf{T}}]; [S_{d1}^{\mathsf{T}}, S_{d2}]^{*}; [R_{1}, R_{2}]; [S_{c1}, S_{c2}^{\mathsf{T}}]^{*}; [\mathsf{I}_{c1}, o_{c2}; \mathsf{L} \rangle$$

$$= \langle \text{ Proof in the paper } \rangle$$

$$(\bigcup i, j : \mathbb{N} \mid iR_{2}j : S_{d1}^{i\mathsf{T}}; R_{1}; S_{c1}^{j}) \qquad (*)$$

$$= \langle \text{ Proof in the paper } \rangle$$

$$(\bigcup i, j : \mathbb{N} \mid o_{d2}^{\mathsf{T}}; S_{d2}^{i}; R_{2}; S_{c2}^{j\mathsf{T}}; o_{c2} \neq \mathsf{O} : S_{d1}^{i\mathsf{T}}; R_{1}; S_{c1}^{j}) \qquad (**)$$

- (**) is readily implemented under Relview. The expression $o_{d2}^{\mathsf{T}}: S_{d2}^i: R_2: S_{c2}^{j\mathsf{T}}: o_{c2}$ is a 1×1 matrix and can be evaluated efficiently. No parallel product or tupling is involved.
- (*) is compact and easily interpreted.

RelView program for dilation

$$R_1 \triangleright R_2 \ = \ (\bigcup i,j \colon \mathbb{N} \mid o_{\mathsf{d}2}^\mathsf{T} \, ; \, S_{\mathsf{d}2}^i \, ; \, R_2 \, ; \, S_{\mathsf{c}2}^{j\mathsf{T}} \, ; \, o_{\mathsf{c}2} \neq \mathsf{O} \, : \, S_{\mathsf{d}1}^{i\mathsf{T}} \, ; \, R_1 \, ; \, S_{\mathsf{c}1}^j)$$

BEG

Sd1 = succ(R1);

 $Sc1 = succ(R1^{\circ});$ Sd2 = succ(R2):

 $Sc2 = succ(R2^{\circ});$

od2 = init(On1(R2));

oc2 = init(On1(R2^));

i1 = I(Sd1); j1 = I(Sc1);

i2 = I(Sd2);

j2 = I(Sc2);

res = O(R1);

WHILE -empty(i2) DO
WHILE -empty(j2) DO

cond = od2^*i2*R2*j2^*oc2
IF -empty(cond) THEN

res = res|i1^*R1*j1 FI j1 = j1*Sc1; j2 = j2*Sc2 OD

j1 = I(Sc1);
j2 = I(Sc2);

i1 = i1*Sd1; i2 = i2*Sd2 OD

RETURN res

Left erosion is related to dilation by a Galois connection

$$R_1 \triangleright R_2 \subseteq R_3 \Leftrightarrow R_1 \subseteq R_3 \not\triangleright R_2$$

Shown in the paper

$$R_{1} \not\triangleright R_{2} = (\bigcap i, j : \mathbb{N} \mid iR_{2}j : S_{d1}^{i\mathsf{T}} \backslash R_{1}/S_{c1}^{j})$$

$$= (\bigcap i, j : \mathbb{N} \mid o_{d2}^{\mathsf{T}} : S_{d2}^{i} : R_{2} : S_{c2}^{j\mathsf{T}} : o_{c2} \neq \mathsf{O} : S_{d1}^{i\mathsf{T}} \backslash R_{1}/S_{c1}^{j})$$

Compare with dilation

$$R_{1} \triangleright R_{2} = (\bigcup i, j : \mathbb{N} \mid iR_{2}j : S_{\mathsf{d}1}^{i\mathsf{T}}; R_{1} ; S_{\mathsf{c}1}^{j})$$

$$= (\bigcup i, j : \mathbb{N} \mid o_{\mathsf{d}2}^{\mathsf{T}}; S_{\mathsf{d}2}^{i} ; R_{2} ; S_{\mathsf{c}2}^{j\mathsf{T}}; o_{\mathsf{c}2} \neq \mathsf{O} : S_{\mathsf{d}1}^{i\mathsf{T}}; R_{1} ; S_{\mathsf{c}1}^{j})$$

Size (type) of
$$R_1 \not\triangleright R_2 =$$
size of R_1

Erosion in finite grids: example

$$R_1 \not\triangleright R_2 = (\bigcap i, j : \mathbb{N} \mid iR_2j : S_{\mathsf{d1}}^{i\mathsf{T}} \backslash R_1 / S_{\mathsf{c1}}^j)$$

RelView program for erosion

$$R_1 \not\triangleright R_2 = (\bigcap i, j : \mathbb{N} \mid o_{d2}^\mathsf{T}; S_{d2}^i ; R_2 ; S_{c2}^{j\mathsf{T}}; o_{c2} \neq \mathsf{O} : S_{d1}^{i\mathsf{T}} \backslash R_1 / S_{c1}^j)$$

Erosion(R1, R2)
DECL Sd1, Sc1, Sd2, Sc2, od2, oc2,
i1, i1, i2, i2, res, cond

Sd1 = succ(R1);

BF.G

 $Sc1 = succ(R1^{\circ});$

 $c1 = succ(R1^{\circ});$

Sd2 = succ(R2); $Sc2 = succ(R2^{\circ});$

od2 = init(On1(R2));

od2 = init(Uni(R2)); oc2 = init(Oni(R2^));

i1 = I(Sd1); j1 = I(Sc1);

i2 = I(Sd2);j2 = I(Sc2);

res = L(R1);

WHILE -empty(i2) DO

WHILE -empty(j2) DO

cond = od2^*i2*R2*j2^*oc2
IF -empty(cond) THEN

res = res & (i1 $^R1/j1$) FI j1 = j1*Sc1;

 $j2 = j2*Sc2 ext{ OD}$ j1 = I(Sc1);

j2 = I(Sc2); i1 = i1*Sd1; i2 = i2*Sd2 OD

RETURN res

END.

 ${\bf Matlab} \ {\bf and} \ {\bf Mathematica} \ {\bf have} \ {\bf primitive} \ {\bf operations} \ {\bf for} \ {\bf computing} \ {\bf dilation} \ {\bf and} \ {\bf erosion}.$

Matlab: imdilate(R,P), imerode(R,P)

Mathematica: Dilation(R,P), Erosion(R,P)

Performance comparisons: CPU times, small structuring element P

Size of $R: n \times n$. Time in seconds.

		Size of $P: 3 \times 3$							
		I	Dilation R	$\triangleright P$	Erosion $R \not\triangleright P$				
ſ	n	RelView	Matlab	Mathematica	RelView	Matlab	Mathematica		
	1000	2	.01	21	5	.01	20		
	2000	11	.02	81	25	.02	81		
	3000	26	.05	183	59	.05	182		
	4000	50	.09	327	119	.09	332		
	5000	85	.12	509	201	.12	509		
	6000	134	.20	731	315	.20	733		
	7000	197	.25	1007	418	.26	990		
	8000	246	.34	1310	545	.34	1314		
	9000	322	.42	1739	558	.44	1765		
	10000	469	.49	2180	1024	.53	2177		

Performance comparisons: CPU times, larger structuring element P

Size of $R: n \times n$. Time in seconds.

	Size of $P: 100 \times 100$							
	I	Dilation R	$C \triangleright P$	Erosion $R \not\triangleright P$				
n	RelView	Matlab	Mathematica	RelView	Matlab	Mathematica		
100	3	.10	6	2	.10	6		
150	5	.10	8	4	.10	8		
200	10	.10	10	6	.10	10		
250	19	.14	13	11	.13	13		
300	35	.18	16	19	.17	16		
350	58	.23	19	36	.23	19		
400	84	.22	23	60	.22	23		
450	107	.27	26	112	.27	26		
500	150	.34	30	199	.34	30		
550	213	.38	34	365	.38	34		

5 Graph morphology

Our starting point

- Heijmans, H. J. A. M., Nacken, P., Toet, A., Vincent, L. Graph morphology. Journal of Visual Communication and Image Representation 3(1), 24–38 (1992).
- Heijmans, H. J. A. M., Vincent, L. Graph morphology in image analysis. In Mathematical Morphology in Image Processing, Dougherty, E. (ed.), Marcel-Dekker, 171–203 (1992).

They deal with nondirected graphs with nodes weighted by grey-level values.

Our RelView implementation

Directed binary graphs (i.e., relations).

Same procedure as for images

- Embed P in R, with a root of P on a bud of R.
- The buds of $R \triangleright P$ are the embeddings of the buds of P.

(Root, bud: Heijmans et al. terminology)

Differences with the case of images

1. Origin/roots

- Images: the structuring image has a single origin.
- Graphs: the structuring graph may have many roots.

2. Embeddings

- Images: there is exactly one embedding (due to the regular grid and the fixed orientation of axes), except possibly none close to a border.
- Graphs: there may be zero to many anywhere in the source graph.

Definitions

• Predicate ih:

$$\mathsf{ih}(\sigma,Q,R) \; \Leftrightarrow \; \sigma\,; \sigma^\mathsf{T} = \mathsf{I} \, \wedge \, \sigma^\mathsf{T}\,; \sigma \subseteq \mathsf{I} \, \wedge \, \sigma^\mathsf{T}\,; Q\,; \sigma \subseteq R$$

i.e., $\mathsf{ih}(\sigma,Q,R)$ means that σ is an injective mapping that homomorphically maps Q inside R.

- Graph G: 4-tuple (V, R, r, b), where
 - -V is the set of vertices,
 - $-R: V \leftrightarrow V$ is a homogenous relation,
 - -r:V is a vector representing the **roots** of G (irrelevant for the source graph),
 - -b:V is a vector representing the buds of G.

Dilation $G_1 \triangleright G_2$ of graph G_1 by graph G_2

$$G_1 \triangleright G_2 = (V_1, R_1, r_1, (\bigcup \sigma \mid \mathsf{ih}(\sigma, R_2, R_1) \land \sigma^\mathsf{T}; r_2 \cap b_1 \neq \mathsf{O} : \sigma^\mathsf{T}; b_2))$$

Thus

- $G_1 \triangleright G_2$ is the same graph as G_1 , except for the buds;
- $ih(\sigma, R_2, R_1)$ means that the relation of the structuring graph G_2 is embedded in the relation of the source graph G_2 by the injective homomorphism σ ;
- σ^{T} ; $r_2 \cap b_1 \neq \mathsf{O}$ means that at least one root of G_2 is mapped to at least one bud of G_1 ;
- the buds of the dilated graph is the union of sets σ^{T} ; b_2 which are the mappings by σ of the buds of G_2 .

```
RelView program for graph dilation
Prev(p)
Returns the predecessor of point p.
}
REG
  RETURN succ(p)*p
END
Simulation(P.rP.R.rR)
Returns the largest simulation such that R simulates P
  and R^T simulates P^T. rP and rR are vectors giving
  the roots of P and R
DECL sim, temp
BF.G
  sim = L(Ln1(P)*L1n(R)):
  temp = O(sim);
  WHILE -eq(sim,temp)
    DΠ
      temp = sim;
      sim = (rP^{\ } \ rR^{\ }) \& (P \setminus (sim * R)) \& (P^{\ } \setminus (sim * R^{\ }))
    OD
  RETURN sim
FND.
```

```
DilGr(P.rP.bP.R.bR)
{Returns the dilation of graph R by graph P.
 Column vectors:
   rP: roots of P.
    bP : buds of P.
   bR · buds of R
}
DECL inj. sim. simcop. i. Ln1R. LP. Lsim. res. pbR.
 plignesim, lignesim, bRcop, at, rPcop, prP
REG
 LP = L(P):
 Ln1R = Ln1(R):
 Lsim = L(Ln1(P)*L1n(R)):
 rPcop = rP;
  res = O(bR);
  WHILE -empty(rPcop) { Loop on the roots of P }
    חת
   prP = point(rPcop);
    rPcop = rPcop & -prP:
    bRcop = bR;
    WHILE -empty(bRcop) { Loop on the buds of R }
      DO
      pbR = point(bRcop);
      bRcop = bRcop & -pbR;
      sim = Simulation(P,prP,R,pbR);
      simcop = sim;
```

```
ini = O(sim):
IF eq(sim*Ln1R.Ln1(P))
 THEN {sim total: if not total, no homomorphism
        can be extracted from it}
   plignesim = init(Lsim):
   fnext loop: combinatorial extraction of injective
    homomorphisms from sim}
   WHILE -empty(plignesim)
     חת
        lignesim = simcop & plignesim & -(LP * inj):
        IF empty(lignesim)
          THEN
            simcop = simcop | (sim & plignesim);
            plignesim = Prev(plignesim);
            ini = ini & -plignesim
          ELSE.
            at = atom(lignesim);
            simcop = simcop & -at;
            inj = inj | at;
            IF empty(next(plignesim))
              THEN
                IF incl(inj^ * P * inj, R)
                  THEN res = res | inj^*bP FI;
                inj = inj & -plignesim
              ELSE plignesim = next(plignesim)
            FΤ
        FΙ
      OD
```

OD
RETURN res
END.

FI; OD

Dilation of G_1 by G_2 : CPU times with RelView

Size of
$$G_2 = |V_2| = 3$$

Size of $R_1 = |V_1|$ 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400
Time 0.3 | 2.7 | 12 | 31 | 66 | 105 | 195 | 244

Size of
$$R_1 = |V_1|$$
 10 20 30 35 40 45 50 55
Time 0.03 4.1 44 71 106 306 504 1085

Left erosion $G_1 \not\triangleright G_2$ of graph G_1 by graph G_2

As for images, left erosion is related to dilation by a Galois connection

$$R_1 \triangleright R_2 \subseteq R_3 \Leftrightarrow R_1 \subseteq R_3 \not\triangleright R_2$$

Shown in the paper

$$G_1 \not\triangleright G_2 = (G_1^- \triangleright G_2^{\leftrightarrow})^- \tag{1}$$

where for G = (V, R, r, b),

- $G^- = (V, R, r, \bar{b})$ complements the bud vector b;
- $G^{\leftrightarrow} = (V, R, b, r)$ exchanges the roots and the buds.

Notice the similarity of (1) with the relational law of the left residual

$$Q/R = \overline{\overline{Q} \, ; R^\mathsf{T}}.$$

Also

$$G_3 \not \triangleright G_2 = (V_3, R_3, r_3, (\bigcap \sigma \mid \mathsf{ih}(\sigma, R_2, R_1) : \overline{\sigma^\mathsf{T}; r_2; b_2^\mathsf{T}; \sigma; \overline{b_3}})).$$

Intuitive way to get the result when there is a single root (as here)

- Embed P in R, with buds of P included in buds of R.
- \bullet The node where the root of P is mapped becomes a bud of the eroded graph.
- If there is no embedding mapping the root to a given node (e.g., node 5), that node is a bud of the eroded graph.

6 Conclusion

Exploiting the flexibility of RelView: other geometries

First quadrant of Cartesian coordinates

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$S_{\mathsf{d}} \qquad S_{\mathsf{c}} \qquad o_{\mathsf{d}} \qquad o_{\mathsf{c}} \qquad O_{\mathsf{c}}$$
successor successor origin origin origin
domain side codomain side codomain side codomain side

Exploiting the flexibility of RelView: higher dimensions

Recall the general form for a symbolic expression for a concrete relation

$$R = (\bigcup i, j \mid iRj : S_{\mathsf{d}}^{\mathsf{iT}}; O; S_{\mathsf{c}}^{\mathsf{j}})$$

There is also a vectorised form

$$\operatorname{vec}(R) = (\bigcup i, j \mid iRj : [S_{d}^{iT}, S_{c}^{jT}]) ; [o_{d}, o_{c})$$

This is a nice form that is easily extended to n-ary relations, to which morphological operations can be applied.

Same procedure as for graphs (dilation illustrated above), except that the embedding must also preserve labels

- Given the languages of R and P, what is the language of $R \triangleright P$.
- \bullet This is easy when R and P are total and have no unreachable nodes. What about the general case?