ETERNITY: Functions- F2: Tan(x)

Implementation, Testing, and Release Management following Software Engineering Principles

Jayanth Apagundi (40291184), SOEN-6011, 10th Aug 2025

Dept. of Computer Science and Engineering, Concordia University- Montreal

ABSTRACT

This project implements a Tan(x) calculator with both console and GUI interfaces. The calculator uses a Taylor series approximation for sine and cosine, adhering to strict coding standards, static analysis and semantic versioning. The development process covers design, implementation, testing, and release management using GitHub.

OBJECTIVES

- Implement a **Tan(x)** calculator using **Taylor series**.
- Provide console (D1) and GUI (D2) versions.
- Decision on Programming Style- Google Java Style
- Use **JDB Debugger** for Project Source Files
- Ensure Java Accessibility API in GUI.
- Maintain clean, standard-compliant code (Checkstyle, PMD).
- Apply semantic versioning with changelog.
- Perform unit testing with **JUnit**.
- Release and tag versions in GitHub.
- Adherence to User Design Interface Principles

DESCRIPTION

The function tan(x) is short for the tangent function, which is one of trigonometric functions (also called circular functions), which are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. And it's widely used in all sciences that are related to geometry. [7]

Domain and Co-domain of Tan(x)

- 1. **Domain:** x: all real numbers except the values where $x = \pi/2 + k\pi$, $k \in Z$ (Since $\tan(x) = \sin(x)/\cos(x)$, $\cos(x) = 0$ when $x = \pi/2 + k\pi$, $k \in Z$. If $\cos(x) = 0$, $\tan(x)$ will be undefined).
- **2. Co-domain:** *y:* all real numbers, R (In mathematics, the co-domain of a function is the set into which all of the output of the function is constrained to fall) [7]

Figure 1: Tangent Function Formula [7] Figure 2: Tangent Function Graph [7]

The graph of tan(x) has an infinite number of vertical asymptotes and is symmetric with respect to the origin. The tangent function is an odd function because tan(-x) = -tan(x) and tan(x) is not defined at values of x where cos(x) = 0. [7]

MATERIALS & METHODS

Tools & Technologies:

Java 17, Maven, JavaFX (GUI), JDB Debugger, PMD, Checkstyle, JUnit, Java Accessibility API, IntelliJ IDE, GitHub.

Figure 3: Decision making using Mind map (Google Java Style) [5]

JDB Debugger

- Used JDB to step through TAN(x) program execution and inspect variable states. [3]
- Verified correct flow and handling of edge cases- *see GitHub* repo(README.md) for details.

Java Accessibility API

- Applied Accessible Context to make GUI components screen-reader friendly. [6]
- Ensured descriptive labels and keyboard navigation support- see GitHub repo(README.md) for details.

Test	Scenario	Input	Expected	Result
TC-1	Tan in degrees	45°, d	≈ 1.0	Pass
TC-2	Tan in radians	$\pi/4$, r	≈ 1.0	Pass
TC-3	Undefined tan	90°, d	"Not Defined"	Pass
TC-4	Invalid mode	10, x	Error msg	Pass
TC-5	$\sin(\pi/2)$	$\pi/2$	≈ 1.0	Pass
TC-6	cos(0)	0	≈ 1.0	Pass
TC-7	$tan(\pi/4)$	$\pi/4$	≈ 1.0	Pass
TC-8	Undefined tan	$\pi/2$	Exception	Pass

 Table 1: Unit Test Coverage (JUnit)

RESULTS

- **D1 & D2 Outputs:** Correct TAN(x) calculations in both console and GUI implementations.
- JUnit Tests: Achieved 100% pass rate across all unit tests.
 PMD & Checkstyle: No violations; code adheres to Google Java Style.
- **GitHub Release & Tags:** Implemented Semantic Versioning with tagged releases for each milestone.
- **UI Design Principles:** GUI built following established user interface design principles for clarity and usability- *see GitHub repo(README.md) for details.*

Figure 4: Modified D1 (Console O/P)

Figure 5: Modified D2 (GUI via. JavaFX)

Version	Date	Changes
1.0.0	7 th Aug, 2025	Initial console & GUI, semantic versioning
1.0.1	10 th Aug, 2025	Updated D1 banner text

Table 2: Semantic Versioning (v1.0.0) [4]

CONCLUSION

This project successfully implemented the **TAN(x)** function with full adherence to coding, testing, debugging, and documentation best practices. From initial console-based development (D1) to enhanced modular design (D2) and comprehensive deliverables in D3, the work demonstrates strong application of **software engineering principles**.

Key Takeaways:

- Accomplished 100% JUnit test pass rate with thorough edge-case coverage.
- Enforced Google Java Style via Checkstyle and validated with PMD static analysis.
- Utilized JDB debugger to step through and verify program logic.
- Incorporated Semantic Versioning with GitHub releases and tags.
- Applied User Interface Design Principles and Java Accessibility API for inclusivity.

- Clear documentation, structured commits, and modular architecture support future enhancements.

REFERENCES

- 1. Checkstyle, "Checkstyle," *Checkstyle.org*. [Online]. Available: https://checkstyle.org/. [Accessed: Aug. 10, 2025].
- 2. Apache Maven Project, "Maven PMD Plugin," *Maven Apache*. [Online]. Available: https://maven.apache.org/plugins/maven-pmd-plugin/. [Accessed: Aug. 10, 2025].
- 3. Oracle, "The Java Debugger (JDB) Windows," *Java SE 7 Documentation*. [Online]. Available: https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.htm
 https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.htm
 https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.htm
 https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.htm
 https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.htm
 https://docs/technotes/tools/windows/jdb.htm
 <a href="https://do
- 4. T. Preston-Werner, "Semantic Versioning 2.0.0," *SemVer.org*. [Online]. Available: https://semver.org/. [Accessed: Aug. 10, 2025].
- Google, "Google Java Style Guide February 3, 2022,"
 Checkstyle.org. [Online]. Available:
 https://checkstyle.org/styleguides/google-java-style-20220203/javaguide.html. [Accessed: Aug. 10, 2025].
 Oracle, "Java Accessibility Overview," *Java SE 21 Documentation*.

Aug. 10, 2025]

- [Online]. Available: https://docs.oracle.com/en/java/javase/21/access/java-accessibility-overview.html#GUID-17F9FD40-E191-41CE-BCF9-D956F1EF5111__JAVAACCESSIBILITYAPI-98866269. [Accessed:
- 7. Cuemath, "Tangent Function," *Cuemath Trigonometry*, [Online]. Available: https://www.cuemath.com/trigonometry/tangent-function/. [Accessed: Aug. 10, 2025].

Scan the QR for GitHub Repository [Tan(x)]

GitHub Repository Link [Tan(x)]

