POKHARA UNIVERSITY

Faculty of Science and Technology School of Engineering

ENGINEERING DRAWING TUTORIAL SHEETS for all BE

SHEET NO: 1 TECHNICAL LETTERING AND DIMENSIONING

- 1. Write down alphabets (A to Z) of different size using drawing tools in
 - a) Vertical capital
 - b) Inclined capital
 - c) Vertical small, and
 - d) Inclined small letters
- 2. Write down vertical and inclined numerals (0 to 9) and fractions different size.
- 3. Draw the following lines with 150 mm length
 - a) Visible outline
 - b) Hidden
 - c) Center
 - d) Projection
 - e) Cutting plane
 - f) Break
- 4. Dimension the following figures. Size may be obtained by measuring the drawing.

Page No. 1

SHEET NO: 2 GEOMETRIC CONSTRUCTION

- 1. Draw a line 90 mm long and trisect it.
- Draw a line 110 mm long and divide it into 12 equal parts.
- Draw a line 80 mm long and divide it in the proportion of 1:2:3.
- 4. Draw a regular pentagon with each side 30 mm long.
- Draw a regular hexagon on a circumscribing circle of 90 mm diameter.
- 6. Draw a regular octagon inscribed on a circle of 76 mm diameter.
- Construct a regular hexagon with 68 mm distance across flats.
- Construct a regular octagon with 76 mm distance across corners.
- Draw two circles with radii 30 mm and 40 mm respectively with their centers lying on a horizontal line and 90 mm apart. Draw internal and external line tangents to the circles.
- Construct an ellipse when the distance of the focus from its Directrix is equal to 50 mm and eccentricity is 2/3.
- 11. Draw an ellipse with major and minor axes of 90 mm and 60 mm respectively by usinga) Concentric circle methodb) Four center method
- 12. Construct a parabola when the distance of the focus from the Directrix is equal to 50 mm.
- 13. Draw a parabola with axis length of 60 mm and double ordinate of 80 mm usinga) Rectangle methodb) Tangent method
- 14. Construct a hyperbola when the distance of the focus from the directrix is equal to 50 mm and eccentricity is 3/2.
- 15. Draw an involute of a hexagon of side 25 mm.
- 16. Draw an involute of a circle of 40 mm diameter. Also draw a normal and tangent to the point 100 mm from the centre of the circle.
- 17. Draw the involutes of the plane figures shown in Figure T2.17.

- 18. A circle of 50 mm diameter rolls along a straight line without slipping. Draw the curve traced out by a point P on the circumference for one complete revolution of the circle. The curve is Cycloid.
- 19. Construct an Archimedean spiral for convolution with a pitch of 40 mm.

Engineering Drawing Tutorial Sheets, Pokhara University

20. Draw a helix for one convolution on a cylinder of 50 mm diameter and 100 mm pitch.

SHEET NO: 5

MULTI-VIEW DRAWINGS

The figures for Problems **T5.1** to **T5.12** contain a number of pictorial views of various shapes. Translated them into three-view orthographic drawing.

Engineering Drawing Tutorial Sheets, Pokhara University

Engineering Drawing Tutorial Sheets, Pokhara University

Page No 4

Sheet No.6

MULTI-VIEW DRAWINGS AND SECTIONAL VIEWS

Make a complete orthographic drawing with full sectional front view (with necessary number of projections) of each model and dimension it.

Engineering Drawing Tutorial Sheets, Pokhara University

Page No. 5

SHEET NO: 7 DEVELOPMENT OF SURFACES

Make a complete orthographic drawing of a geometrical solid cut by a plane. Find the true shape of the section. Construct the development of the surface of the solid.

Engineering Drawing Tutorial Sheets, Pokhara University

SHEET NO: 9 ISOMETRIC DRAWINGS

Draw an isometric Drawing of the following orthographic drawing.

Exercise:

- 1. A cylindrical slab having 60 mm as diameter and 40 mm thickness is surmounted by a cube of edge 40 mm. On the top of the cube rests a square pyramid of altitude 40 mm and side of base 25 mm. The axes of the solids are in the same straight line. Draw the isomeric view of the combination of these solids.
- 2. A sphere of diameter 45 mm rests centrally over a frustum of cone of base diameter 60 mm, top diameter 40 mm and height 60 mm. Draw isometric projections of the combination of solids.
- 3. A cylindrical slab of 70 mm as diameter and 40 mm thickness is surmounted by a frustum of a square pyramid of base side 45 mm, top base side 25 mm and height 50 mm. The axes of the two solids are on a common straight line. A sphere hemisphere of diameter 40 mm is centrally placed on top of the frustum. Draw the isometric view of the solids.
- **4.** A cube of sides 60mm is resting on the ground. A cylinder of base diameter 50 mm and height 60mm is kept over that. On top of the cylinder, a hexagonal pyramid of side of base 20 mm and altitude 40 mm is kept. The axis of the three solids lies in the same vertical line. Draw the isometric view.

Engineering Drawing Tutorial Sheets, Pokhara University

SHEET NO: 10 OBLIQUE DRAWINGS

Draw the Oblique Drawing of the following orthographic Drawings

Page No. 9

SHEET NO: 11 PERSPECTIVES DRAWINGS

Draw the Parallel perspective projection from the given orthographic views.

Exercise:

- 1. A cube of side base 30 mm rests with it base on the ground and one of the faces inclined at 45 degree to the picture plane. The nearest vertical edges touches the PP. The station point is 50 mm in front of the PP, 60 mm above the ground an opposite to the nearest vertical edge that touches the PP. Draw the perspective view.
- 2. Draw the perspective view of a cube of 25 mm edge, resting on ground with one of its faces. It has one of its nearest vertical edges is 10 mm behind the picture plane and all its vertical faces are equally inclined to the picture plane. The station point is 55 mm in front of the picture plane, 40 mm above the ground and lies in the central plane, which is 10 mm right of the center of the cube.
- 3. A model of steps has 3 steps of 15 mm tread and rise 10 mm. The steps measure 50 mm wide. The vertical edge of bottom steps, which is nearer to the picture plane, is 25 mm behind PP and the width of steps recede to the left at an angle of 30 degree to PP. The station point is 100 mm in front of PP and 60 mm above the ground plane and 30 mm to the right of the vertical edge, which is nearest to PP. Draw the perspective view of the model.

SHEET NO: 13 GRAPHICAL SYMBOLS

Sketch freehand the graphical symbols for the following welding items.

Lap Weld	Fillet	
Square Butt	Single V-Butt	
Double V-Butt	Single U-Butt	
Double U- Butt	Single J-Butt	
Single Bevel Butt	Double Bevel Butt	
Double J-Butt	Spot Weld	
Bead or Edge Weld	Seam Weld	
Field Weld	Weld all around	
Fillet Weld on own side of joints	Fillet weld on opposite side of joint	
Fillet weld on both sides of joint		

Engineering Drawing Tutorial Sheets, Pokhara University

Sketch free hand the graphical symbols for the following Engineering items.

Electronics and Electrical

Amplifier	Antenna	Arrester	Battery
Circuit Breaker	Capacitor	Coil	Connector
Electric Contact	Core	Fuse	Directional Coupler
Ground	Handset	Rectifier	Visual Signaling device
Receiver	Repeater	Ground	Handset
Thermocouple	Inductor Winding	Incandescent Lamp	Ballast Lamp
Transformer	Switch	Resistor	Transmission Path
Generator	Motor	Solenoid	Thermostat
Thermistor	Variable Resistor	Voltmeter	NPN-type Transistor
PNP-type Transistor	Direct Current	Alternating Current	Power Frequency
Apparatus & Machine suitable for DC or AC	Half-wave Rectifier	Line or Cable existing	Line or Cable planned
Controlled Rectifier	Power Line	Underground Cable	Overhead Line

Page No.13

Electronics and Electrical

Conductors or a group of Conductors	Flexible Conductors	Two	Three Conductors
Four Conductors	Junction of Conductors	Crossing without Electrical Connection	Crossing and Connecting Conductors
Frame and Chassis Connection	Fault	Fault to Frame	Earth Fault
Mechanically Coupled Machine	DC Generator	AC Generator	DC Motor
AC Motor Single Phase	Three Phase Motor	Three Phase Motor in Delta Connection	One Way Switch (Single Pole Switch)
Two Pole Switch	Three Pole Switch	Two Way Switch	Intermediate Switch
Push Button Switch	Socket Outlets	Socket Outlets, 5A	Socket Outlets, 5A with Switch
Socket Outlets, 15A with Switch	Lamp mounted on ceiling	Group of 3, 40 Watt Lamp	Lamp mounted on wall
Fluorescent Lamp	Ceiling Fan	Wall mounted Fan	Exhaust Fan
Fan Regulator	Bell	Pickup	Buzzer
Siren	Public addressing System	Diode with Filament	Telephone- Telegraph Line

Structural Item	1S		
Plate	Angle	Channel	I-beam
H-beam Tee	Round Solid Bar	Square Bar	Flat Bar
Circular Tube	Square Tube	Rectangular Tube	Unequal Angle
Equal Angle			
Other Engineer	ring – Architecture, Ci	vil, Agriculture, Topo	graphic, etc.
School	Church	House	City or Town
Cemetery	Building any kind	Temple	Gumba
Mosque	Unimproved Highway	Improved Highway	Trail
Single Track	Double Track	Electrical Railroad	Ferry
Highway Bridge	Railroad Bridge	Ford	Dam
State Line	Country Line	Township Line	City or Village Line
Mine Quarry	Oil or Gas wells	Tanks	Embankment
Cut	Levees	Tunnel	Fence (any kind)

Engineering Drawing Tutorial Sheets, Pokhara University

Rail Fence	Barbed Wire Fence	Smooth Wire Fence	Stone Fence
Hedge Fence	Contours	Depression Contours	Hill Contours
Hachures	Bluffs	Sand	Sand Dunes
Glaciers	Stream	River	Lake
Rapids	Tidal Swamp	Cypress Swamp	Fresh Water Swamp
Salt Water Swamp	Trees Deciduous	Trees Coniferous	Willows
Orchard	Meadow	Cultivated	Corn
Cotton			

SHEET NO: 14 COMPUTER AIDED DRAWINGS

- Introduction to AutoCAD,
- Basic commands for 2D drawing like: Line, Circle, Polyline, Rectangle, Hatch, Fillet, Chamfer, Trim, Extend, Offset, Dim style, etc.
- Basics of 3D drawings