Today's Agenda

- 1. Review the components of time series data
- 2. Evaluate four forecasting tools:
 - Naïve
 - Moving Average
 - Weighted Moving Average
 - Exponential Smoothing

Source: U.S. Census Bureau

Decomposition of additive time series

Random Variation

Random Variation Models

- Naïve Forecast
- Moving Average
- Weighted Moving Average
- Exponential Smoothing

Rate of Change in GDP (Missouri)

Forecast 1: Naive Forecast

Set forecast to the last observation

• Forecast $_{time+1} = \mathsf{Actual}_{time}$

Forecast 1: Naive Forecast

		A	
	1	Time	
	2	1998	
	3	1999	
	4	2000	
Calculate the forecast			

Forecast Accuracy: Mean Squared Error (MSE)

- Calculate the forecast error
 - Forecast Error = Actual Value Forecast Value
- Square each forecast error
- Calculate the mean of the squared errors

$$MSE = \frac{\sum (Error)^2}{n}$$

$$\mathsf{MSE} = \frac{\Sigma(\mathit{Error})^2}{n}$$

	A	В
1	Time	Actual
2	1998	× ₁₉₉₈
3	1999	× ₁₉₉₉
4	2000	× ₂₀₀₀

MSE = AVERAGE(D3:D4)

Forecast 2: Moving

Forecast 2: Moving
$$F_{t+1} = \frac{Y_t - Y_t}{T_t}$$

$$F_{t+1} = \frac{Y_t - Y_t}{T}$$

 $F_{t+1} = \text{forecas}$

 $Y_t = \text{actual } \mathbf{v}$

n = number

Forecast 2: Moving

		В
1	Time	Actual
2	1998	× ₁₉₉₈
3	1999	× ₁₉₉₉
4	2000	× ₂₀₀₀
5	2001	× ₂₀₀₁
6	2002	× ₂₀₀₂

2003

Forecast 3: Weighted Moving Average Forecast

$$F_{t+1} = rac{\Sigma({ ext{Weight in period i}})({ ext{Actual value in period i}})}{\Sigma({ ext{Weights}})}$$

Forecast 3: Weighted Moving Average Forecast

$$F_{t+1} = rac{\Sigma({\sf Weight \ in \ period \ i})({\sf Actual \ value \ in \ period \ i})}{\Sigma({\sf Weights})}$$

$$\mathsf{Forecast}_t = \frac{(\mathsf{Actual}_{t-1} \times 3 + \mathsf{Actual}_{t-2} \times 2 + \mathsf{Actual}_{t-3} \times 1)}{6}$$

Forecast 3: Weighted

	A	В
1	Time	Actual
2	1998	× ₁₉₉₈
3	1999	× ₁₉₉₉
4	2000	× ₂₀₀₀
5	2001	× ₂₀₀₁
6	2002	× ₂₀₀₂
7	2003	× ₂₀₀₃

Forecast 4: Expone

Forecast 4: Expone
$$F_{t+1} =$$

$$F_{t+1} =$$

 $F_{t+1} = \text{new forec}$

 $F_r = \text{previous } f$

 $\alpha = \text{smoothing}$

 $Y_{i} = \text{previous}$

Forecast 4: Expone					
		A	В		
	1	Time	Actual		
	2	1998	X ₁₉₉₈		
	3	1999	× ₁₉₉₉		

×2000

Forecast 4: Expone					
		A	В		
	1	Time	Actual		
	2	1998	× ₁₉₉₈		
	3	1999	× ₁₉₉₉		

_	111116	Actual
2	1998	× ₁₉₉₈
3	1999	X ₁₉₉₉

2	1998	X ₁₉₉₈
3	1999	× ₁₉₉₉
4	2000	× ₂₀₀₀

2	1998	X ₁₉₉₈
3	1999	× ₁₉₉₉
л I	3000	\

×₂₀₀₁

Forecast Tool	MSE	Prediction
Naive Forecast	0.00045	-2%
MA-3	0.00038	2%
Weighted MA-3	0.00038	1%
Exp Smoothing (.2)	0.00029	2%

State	year	GDP_Rate	Naive	MA3	WMA3	ExpSmth
Missouri	1997	NA	NA	NA	NA	NA
Missouri	1998	0.04	NA	NA	NA	0.04
Missouri	1999	0.05	0.04	NA	NA	0.04
Missouri	2000	0.05	0.05	NA	NA	0.04
Missouri	2001	0.02	0.05	0.05	0.05	0.04
Missouri	2002	0.03	0.02	0.04	0.04	0.04
Missouri	2003	0.04	0.03	0.03	0.03	0.04

To compare forecasts ONLY calculate the MSE on the rows with no missing data!

e.g. starting at row 2001.

Forecast Tool	MSE	Prediction
Naive Forecast	0.00049	-2%
MA-3	0.00038	2%
Weighted MA-3	0.00038	1%
Exp Smoothing (.2)	0.00032	2%

Assignment for Tuesday

What is the best forecast model of homeownership rates in MO?

- Naïve
- MA (3)
- Weighted MA (3), or
- Exponential Smoothing (0.2)

Predict 2021 and calculate the MSE!