# Agricultural Futures



Alex Mack
Joe Reiff
Mark Campbell
Antonio Guerrero

#### **Loaded In and Cleaned the Data**

- CME DataMine
- HE lean hogs
- ZC corn
- ZM soybean meal
- LE live cattle
- GF feeder cattle
- Built the project in Jupyter Lab
- Joined the data into a single Data Frame

# **Project Goals**

- Predict hog prices
  - Feed is 95% of the cost
  - Farmers need to determine quantity of corn to purchase
  - What are farmers margins?
  - What is GFM?
  - How does all this correlate?
- Predict and create a profitable algo for trading the hog crush
  - Assess and visualize results





# **Understanding Gross Feeding Margin (GFM)**

- The difference between the purchased inputs value and the sold finished hog value is known as the gross feeding margin (GFM).
- GFM t= 2.05 \* LH t WP t-5-(10 \* C t-5)-(0.a \* SM t-5)
- **LH t**: Lean Hog at placement, **WP t-5**: Weaned Hog 5 months from placement, **C t-5**: Corn 5 months from placement, **SM t-5**: Soybean meal 5 months from placement.
- Corn and soybean meal correlate positively with the price of actual hog.



## **Data Preparation**

- Created a correlation matrix
- Used the window\_data function to generate the X and y values for the model
- Experimented with window sizes to see how the model performance changed
- Split the data into 70% training and 30% testing
- Applied the MinMaxScaler to the X and y values to scale the data between 0 and 1
- Reshaped the X\_train and X\_test data for the model

#### **Correlation Matrix**



## Assess the Value of the Hog Crush

- Traders subtract the combined values of the corn and soymeal inputs from the value of the lean hogs.
- Hogs are priced per hundred pounds in eight futures contracts (40,000 lbs per contract)
- Corn is priced per bushel in three contracts (5,000 bushels per contract)
- Soymeal is priced for short ton in a single contract (100 short tons per contract)
- Creating a 8-3-1 Hog Crush
- Expressed as a positive value of price per cwt. (hundredweight) of lean hogs

## Trading Algo on Hog Crush

- Visualized correlations
- Confirmed the hog crush ratio through historical OLS
- Due to mean-reverting nature of spread, created z-score based algo-
- Used feature engineering to enhance model using a z-score over MACD (Chose 5 and 60)
- Plot the equity curve and analyze the performance on a risk adjusted basis

|              | coef      | std err  |  |  |  |  |  |  |  |  |
|--------------|-----------|----------|--|--|--|--|--|--|--|--|
|              |           |          |  |  |  |  |  |  |  |  |
| const        | 1.144e+05 | 1462.935 |  |  |  |  |  |  |  |  |
| corn         | 3.1219    | 0.106    |  |  |  |  |  |  |  |  |
| soybean_meal | 1.2026    | 0.087    |  |  |  |  |  |  |  |  |
|              |           |          |  |  |  |  |  |  |  |  |

## **Built and Trained the LSTM RNN Model**

- Defined the model architecture
- Compiled the model
- Fit the model
- Ran two different models to exemplify our process

|            | corn   | feeder_cattle | live_cattle | soybean_meal | hog    | hog_delta_5 | corn_delta_5 | soybean_meal_delta_5 | GFM      |
|------------|--------|---------------|-------------|--------------|--------|-------------|--------------|----------------------|----------|
| Date       |        |               |             |              |        |             |              |                      |          |
| 2001-06-04 | 2.1500 | 91.450        | 76.200      | 151.9        | 52.075 | 47.500      | 2.6175       | 176.3                | 43.60625 |
| 2001-06-05 | 2.1425 | 91.500        | 76.275      | 152.2        | 51.575 | 47.800      | 2.5825       | 176.4                | 42.77375 |
| 2001-06-06 | 2.1725 | 91.350        | 75.975      | 154.1        | 51.425 | 47.150      | 2.6100       | 175.2                | 42.60625 |
| 2001-06-07 | 2.1700 | 91.150        | 75.750      | 153.8        | 51.600 | 48.000      | 2.6100       | 173.8                | 42.64500 |
| 2001-06-08 | 2.1550 | 91.475        | 75.950      | 155.7        | 52.675 | 48.000      | 2.5800       | 171.7                | 45.30625 |
| 2001-06-11 | 2.1725 | 91.475        | 75.925      | 156.8        | 53.375 | 48.300      | 2.5800       | 172.3                | 46.54625 |
| 2001-06-12 | 2.1575 | 91.250        | 75.550      | 158.6        | 53.525 | 48.275      | 2.5925       | 174.2                | 46.59875 |
| 2001-06-13 | 2.1525 | 91.125        | 75.575      | 157.7        | 53.600 | 47.800      | 2.6150       | 172.9                | 46.86250 |
| 2001-06-14 | 2.1350 | 90.850        | 75.175      | 156.9        | 52.925 | 47.875      | 2.5625       | 170.0                | 46.18375 |
| 2001-06-15 | 2.0925 | 91.100        | 75.075      | 154.1        | 53.450 | 47.850      | 2.5425       | 169.9                | 47.48000 |





#### **Conclusions and Predictions**

- We need to add more data to the model to train.
- We would need more time or an extremely powerful machine for us to play around with an LSTM model and move inputs and variables around.
- Consider risk-adjusted metrics to better ascertain algo robustness
- Optimize MA variables and z-score entry levels
- Calculate and implement cost of trading (commissions, slippage, etc.)
- Assess seasonality and remove outlier data like (PED in 2014, COVID, etc.)

#### **Future Considerations**

- Add Weather Data Api
- - Add Oil Prices Api
- - <u>Perform Livestock Disease Analysis</u>
- Factor In Land, Storage and Fertilizer Costs
- <u>Take more time to analyze more models and understand more the capabilities and inputs</u>
   of Deep Learning Models

Thank You!



#### Resources

- <a href="https://jakevdp.github.io/PythonDataScienceHandbook/04.01-simple-line-plots.html">https://jakevdp.github.io/PythonDataScienceHandbook/04.01-simple-line-plots.html</a>
- https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
- https://towardsdatascience.com/how-to-build-your-first-machine-learning-model-in-python-e70fd1907
   cdd
- https://www.investopedia.com/terms/c/costofcarry.asp
- <a href="https://www.cmegroup.com/education/whitepapers/trading-opportunities-in-lean-hogs.html">https://www.cmegroup.com/education/whitepapers/trading-opportunities-in-lean-hogs.html</a>
- https://www.cmegroup.com/trading/agricultural/files/AC-379 HogFeedingWhitePaper r2.pdf
- <a href="https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2334&context=ans\_air">https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2334&context=ans\_air</a>
- <a href="https://www.iowapork.org/wp-content/uploads/2015/06/Hog-Crush-Margin-IPPA-John-Lawrence.pdf">https://www.iowapork.org/wp-content/uploads/2015/06/Hog-Crush-Margin-IPPA-John-Lawrence.pdf</a>
- <a href="https://neptune.ai/blog/keras-metrics">https://neptune.ai/blog/keras-metrics</a>
- https://analyticsindiamag.com/how-to-do-multivariate-time-series-forecasting-using-lstm/