19 Population Principal Components Analysis

Suppose we have m random variables $X_1, X_2, ..., X_m$. We wish to identify a set of weights $w_1, w_2, ..., w_m$ that maximizes

$$Var(w_1X_1 + w_2X_2 + \cdots + w_mX_m)$$
.

However, this is unbounded, so we need to constrain the weights. It turns out that constraining the weights so that

$$\|m{w}\|_2^2 = \sum_{i=1}^m w_i^2 = 1$$

is both interpretable and mathematically tractable.

Therefore we wish to maximize

$$Var (w_1X_1 + w_2X_2 + \cdots + w_mX_m)$$

subject to $\|w\|_2^2 = 1$. Let Σ be the $m \times m$ population covariance matrix of the random variables X_1, X_2, \dots, X_m . It follows that

$$\operatorname{Var}\left(w_{1}X_{1}+w_{2}X_{2}+\cdots+w_{m}X_{m}\right)=\boldsymbol{w}^{T}\boldsymbol{\Sigma}\boldsymbol{w}.$$

Using a Lagrange multiplier, we wish to maximize

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} + \lambda (\mathbf{w}^T \mathbf{w} - 1).$$

Differentiating with respect to w and setting to 0, we get $\Sigma w - \lambda w = 0$ or

$$\Sigma w = \lambda w$$
.

For any such w and λ where this holds, note that

$$Var (w_1X_1 + w_2X_2 + \cdots + w_mX_m) = \boldsymbol{w}^T\boldsymbol{\Sigma}\boldsymbol{w} = \lambda$$

so the variance is λ .

1 of 2

19 Population Principal Components Analysis | Foundations of Applie...

The eigendecompositon of a matrix identifies all such solutions to $\Sigma w = \lambda w$. Specifically, it calculates the decompositon

$$\Sigma = W \Lambda W^T$$

where W is an $m \times m$ orthogonal matrix and Λ is a diagonal matrix with entries $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$.

The fact that \boldsymbol{W} is orthogonal means $\boldsymbol{W}\boldsymbol{W}^T = \boldsymbol{W}^T\boldsymbol{W} = \boldsymbol{I}$.

The following therefore hold:

- ullet For each column j of $oldsymbol{W}$, say $oldsymbol{w}_j$, it follows that $oldsymbol{\Sigma} oldsymbol{w}_j = \lambda_j oldsymbol{w}_j$
- $ullet \ \|oldsymbol{w}_j\|_2^2 = 1 \ ext{and} \ oldsymbol{w}_j^Toldsymbol{w}_k = oldsymbol{0} \ ext{for} \ \lambda_j
 eq \lambda_k$
- $Var(\boldsymbol{w}_{j}^{T}\boldsymbol{X}) = \lambda_{j}$
- $Var(\boldsymbol{w}_1^T\boldsymbol{X}) \ge Var(\boldsymbol{w}_2^T\boldsymbol{X}) \ge \cdots \ge Var(\boldsymbol{w}_m^T\boldsymbol{X})$
- $\Sigma = \sum_{j=1}^{m} \lambda_j w_j w_j^T$
- For $\lambda_j \neq \lambda_k$,

$$\operatorname{Cov}(\boldsymbol{w}_{j}^{T}\boldsymbol{X}, \boldsymbol{w}_{k}^{T}\boldsymbol{X}) = \boldsymbol{w}_{j}^{T}\boldsymbol{\Sigma}\boldsymbol{w}_{k} = \lambda_{k}\boldsymbol{w}_{j}^{T}\boldsymbol{w}_{k} = \boldsymbol{0}$$

The jth population principal component (PC) of X_1, X_2, \ldots, X_m is

$$oldsymbol{w}_j^Toldsymbol{X} = w_{1j}X_1 + w_{2j}X_2 + \cdots + w_{mj}X_m$$

where $m{w}_j = (w_{1j}, w_{2j}, \dots, w_{mj})^T$ is column j of $m{W}$ from the eigendecomposition

$$\Sigma = W\Lambda W^T$$
.

The column w_j are called the **loadings** of the jth principal component. The **variance** explained by the jth PC is λ_j , which is diagonal element j of Λ .

2 of 2