CLIPPEDIMAGE= JP404017579A

PAT-NO: JP404017579A

DOCUMENT-IDENTIFIER: JP 04017579 A

TITLE: PIEZOELECTRIC DEVICE FOR ULTRASONIC MOTOR

PUBN-DATE: January 22, 1992

INVENTOR-INFORMATION:

NAME

TODA, MASAYUKI ICHIKAWA, SATOSHI YOSHIOKA, SHIGEKI SHIBUYA, HIDEYUKI

ASSIGNEE-INFORMATION:

NAME

NISSAN MOTOR CO LTD

COUNTRY

N/A

APPL-NO: JP02115835 APPL-DATE: May 7, 1990

INT-CL\_(IPC): H02N002/00
US-CL-CURRENT: 310/365

## **ABSTRACT:**

PURPOSE: To compensate the temperature characteristics of a piezoelectric device for an ultrasonic motor by a method wherein a laminated type capacitor having a temperature coefficient opposite to the temperature coefficient of the bound capacitance of the piezoelectric device is formed on the inactive electrode part of the piezoelectric device so as to cancel the temperature variation of the bound capacitance of the piezoelectric device for the ultrasonic motor.

CONSTITUTION: A first section electrode 7 and a second section electrode 8 are extended beneath an inactive part electrode 9a and laminated capacitors 24 are composed of the electrodes 7 and 8, laminated capacitor members 22 and 23 and

an earth electrode 20. The laminated capacitor members 22 and 23 are made of material having a temperature coefficient opposite to the temperature coefficient of the capacitance of a piezoelectric device 21. If the piezoelectric device 21 is bonded to a conductive elastic element 12, an apparent bound capacitance can be made to be constant.

COPYRIGHT: (C) 1992, JPO&Japio

## ⑲ 日本国特許庁(JP)

⑩特許出願公開

#### 平4-17579 ② 公開特許公報(A)

®Int. CI. 5

識別記号

庁内整理番号

❸公開 平成 4年(1992) 1月22日

H 02 N 2/00 C 6821-5H

審査請求 未請求 請求項の数 1 (全7頁)

69発明の名称 超音波モータ用圧電素子

> ②特 願 平2-115835

願 平2(1990)5月7日

⑫発 明 者 任 田 正之 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社 @発 明 市 111 者 聡 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社 内

@発 明 圀 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社 者 吉 茂 樹

@発 明 渋 秀 幸

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社

切出 願 人 日産自動車株式会社

神奈川県横浜市神奈川区宝町2番地

個代 理 弁理士 中村 純之助 外1名

> 即月 船

1. 発明の名称

超音波モータ用圧観素子

2. 特許請求の範囲

1. 交流電圧を印加する複数個の電極と、セン サ電極と、不活性部電極をリング状に配列してな る超音波モータ用圧電素子において

この圧電素子の束縛容量と逆の温度係数を有す る積層コンデンサを前記束縛容量と並列に前記圧 電素子上に形成し、前記束縛容量と前記コンデン サの容量の和が超音波モータの使用温度範囲にお いて概ね一定となるように構成されていることを 特徴とする超音波モータ用圧電素子。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、圧電素子と導電性弾性体を一体に形 成し、交流電圧を印加することにより圧電振動子 に発生する超音波進行波を利用する超音波モータ の圧電素子に関する。

〔従来の技術〕

超音波モータは、例えば第7回に示す圧電振動 子11と、その上面に第8図に示すロータ15を 対向して載置した構造を有している。

圧電振動子11は、第7図に示すように、例え ば銅合金を用いて成形加工したリング状の上部に、 半径方向に沿って多数のスリット13を狭い間隔 で櫛歯状に形成した導電性弾性板12と、導電性 弾性板11の下面にエポキシ系接着剤14等を用 いて圧電素子1を貼付けることにより形成したも のである。

圧電素子1は第5図(上面斜視図)、第6図 (下面斜視図)に示すように、扁平なリング状に 成形・焼成した圧電板2と、この圧電板2を挟む 上下両面に対向して設けた電極層からなり、圧電 素子1の上面は第5図のように、所定の間隔を置 いて円周方向に配列した複数個の小電極るからな る第1の区間電極4と、第1の区間電極4と同様 に複数個の小電極5からなる第2の区間電極6と、 第1の区間電極4と第2の区間電極6との間に設

けた、超音波振動波長 A の 3 / 4 に相当する間隔を有する不活性部電極 9 a 及び、センサ電極 1 0 a を挟んで互いに円周上の対称位置に形成されている。

. . .

圧電板2の下面側は、第6図に示すように対称に形成された細長い第1区間電極7及び第2区間電極8とからなり、下面の第2区間電極8は上面の第2の区間電極6(小電極5からなる)と圧電板2を挟んで対向し、下面の第1区間電極7は上面の第1の区間電極4と圧電板2を挟んで対向している。各電極3、5、7、8は圧電板2に導電性金属材料を蒸着・印刷することによって形成される。

圧電板2の離合う小電極3および小電極5の領域では交互に厚み方向に対して分極が施され、また互いに隣り合う小電極3の間、及び互いに隣合う小電極5の間に導電材料19を塗布することによって、それぞれ小電極3、5の幅より狭い幅で短絡接続され、これにより第1、第2の区間電極4、6はそれぞれ1個の電極を構成するようにな

第10図は超音波モータ50を駆動する電源回路図で、図中、超音波モータ50の圧電素子のA相(第5図の電極3と第6図の電極7とで構成)と、B相(第5図の電極5と第6図の電極8とで構成)に対し、トランスを介して高周波交流電圧を印加している。

超音波モータ用圧電素子1の共振点近傍での等表の出態に発生して、機械的共振点近傍での等表のする。に、し、の直列回路と束縛容量C。との並列回路で表わされる。なお、束縛容量C。とは、圧電素子の形状から定まる静電容量に、超音と、超音に、ない、ないないないないないない。この無効電流を打ち消すか、できるがは、この無効電流を打ち消すか、できるがいないは、この無効電流を打ち消すか、できるがいないは、この無効電流を打ち消すか、できるがいたさくする必要がある。この無効電流を打ち消すた。との並列共振周波数が超音波モータの駆動周波数数ω。と一致するようにトランスのインダクタン

っている。

このような圧電振動子11を用いて、超音波モ ータとして作動させるには、第8図に示すように、 下面の第1区間電極7と導電性弾性体12との間 に、圧電振動子11の固有振動数に等しい周波数 の、交流電圧Aを印加し、下面の第2区間電極8 と導電性弾性体12との間に、前記交流電圧Aと 周波数が等しく、位相が交流電圧Aと90°ずれ ている交流電圧Bを印加する。これによって圧電 素子1の圧電板2が、その上面のすべての小電極 3、5毎に交互に矢印P、Qのように水平方向に 伸縮する。すると圧電素子1に貼付けた導盤性弾 性板12には、90°位相のずれた2つの定在波 が発生し、これら双方の定在波が干渉して、第9 図に示すような円周方向のf.,f., …,f.の 位置に波頭を有する9次の進行波が発生する。よ って第8図に示すように、導電性弾性体12の上 に回転子であるロータ15を載置すれば、第9図 の進行波に基づいてロータ15が回転しモータと して機能する。

スしを選定する方法が開示されている。

実開昭60-47400号公報に開示されている発明は、周囲温度の変化による圧電セラミッサを配設した超音波振動子に関するもので、振動により発生する超音波エネルギーは小さく、ケースを開コンデンサを設置しておけば、の圧電をがほぼ等しくなるもので、を開コンデンサの温度がほぼ等しくなるものである。

## [発明が解決しようとする課題]

一方、例えば自動車用などのように、大きな振動エネルギーを利用して回転力を取り出す超音波モータの場合は、発熱量が大であり100℃内外に達する雰囲気温度と振動子の発熱量の和によって決まる温度により圧電素子の共振周波数がが原されるが、圧電素子とケースとを接着するのが原理的に不可能であり、金属性のステータに貼り付けたとしても、圧電素子の発熱のため圧電素子の

# 特開平4-17579(3)

部分の温度がどうしても高くなる。従って、温度の上昇と共に圧電素子1の容量が大きく変化してしまい、超音波モータとしての効率の低下、圧電素子1の発熱、多大の電流による回路部品の損傷という種々の問題発生の原因となっていた。

この発明は、このような従来の問題点に着目し 圧電素子自身の温度特性を補償する超音波用圧電 素子を提供することを目的としている。

#### [課題を解決するための手段]

上記の目的は、超音波モータ用圧電素子の束縛容量の温度変化を打ち消すように束縛容量の温度係数と反対符号の温度係数を有する積層タイプのコンデンサを束縛容量と並列になるように圧電素子の不活性電極部に形成することにより達成される。

#### [作用]

上記の構成の積層コンデンサは、超音波振動を 阻害されることなく、通常のプロセスで形成され、 リード線が取り出しやすく、室温の範囲を超える 広い温度領域において、A相、B相の束縛容量の

したものである。また第1区間電極7、第2区間電極8は不活性部電極9aの下方まで長く伸びており、それぞれ積層コンデンサ部材22、23とアース電極20とで積層コンデンサ24を形成しており、アース電極20は導帯20′で不活性部電極9a、従って導電性弾性体12と電気的に接続している。

積層コンデンサ部材22、23は、例えば自動車用として超音波モータを用いる場合ー40℃~100℃の広い使用範囲を考えるとして、例えば度PZT系材料からなる圧電素子21の容量の温度係数(一般的には誘電率の温度係数)とは反対符号の温度係数を有する材料、例えば×BaTiO。(1-×)Pb(Fe1/2Nb1/2)O。、×≦0.8のような材料を用いて形成される。積層コンデンサ部材22、23を別せに成形のよりな材料を用いて接着しては、圧電素子21と積層し、導電性接着剤を用いて接着して第3図のように形成しても良い。さらに、圧電素子21を対し、導電性接着剤を用いて接着して第3図のように形成しても良い。さらに、圧電素子21を対し、消費に形成しても良い。さらに、圧電素子21を対し、消費に形成しても良い。

温度特性が補償され、圧電素子の静電容量を概ね 一定の値を維持し、超音波モータに流れる無効電 流が著しく減少される。

#### 〔寒施例〕

以下、本発明の実施例を図面に基づいて説明す る。第1図~第3図は、この発明の一実施例を示 す図であるが、同一符号を有するものは同一機能 品であり、本実施例の圧電振動子31は、第7図 の従来技術と同様に導重性弾性体12に圧電素子 21を貼り付けてなる。第1図は導電性弾性体 12に接着する側の圧電素子21を示したもので あり、第1区間電極4、第2区間電極6、センサ 電極10a、進行波の波長入の3/4に相当する 円周方向長を持つ不活性部職極9aが形成されて いる。導電性弾性体12はアースとしての機能も 有する。第2図は導電性弾性体12と接着する反 対側の圧電素子21を示したものであり、第1図 の各電極と対向するように第1区間電極7、第2 区間電極8、センサ電極10bが形成されている。 第3図は不活性部電極9 a 近傍の拡大断面図を示

性ペーストにて第1区間電極7、第2区間電極8、 積層コンデンサ部材21、22をペースト状にしたものをスクリーン印刷にて積層コンデンサ部材 22、23を形成し、その上にアース電極20を スクリーン印刷によって形成し、導帯36′を塗 布し順次積層したたものを同時焼成することとにより形成することが好ましい。さらに積層コンデンサ部材22、23を形成する位置は、第1区間電極7、第2区間電極8上ならば、特に限定されないが、より好ましくは不活性部電極9aの反対面 近傍がよい。

次に上記本実施例の作用について説明する。

本発明の圧観素子21を導電性弾性体12に接着剤にて接着した圧電振動子31と第7図従来技術の圧電振動子11の温度変化に対する束縛容量 Caの比較特性を第4図に示す。但し、束縛容量 の値は圧電素子の1つの電極群に対応する値によって示す。

従来技術においては、温度変化に対する束縛容量は同図曲線 b のように増加する。例えば 2 5 ℃

## 特開平4-17579(4)

の束縛容量C。= 9. 7nFを用いてトランスのインダクタンスしとの並列共振周波数が、超音波モータの駆動周波数ω。= 4 0khとなるようにしを求めると1.6mHとなる。この状態で雰囲気温度を100℃にするとこの並列共振周波数は34khまで下がってしまい、超音波モータの駆動周波数から大幅にずれ、多大の無効電流が流れる。

本実施例による圧電素子21を第7図に示すような導電性弾性体12に貼りつけると、共振点近傍の圧電素子21の等価回路は第12図に示すように表わすことができる。すなわち、見掛け上の束縛容量C・'は

C a' = C a + C a で表わされる。このとき束縛容量 C a の温度係数を反対符号の温度係数をもつ積層コンデンサ部材 2 1 、 2 2 を用いると、見掛け上の束縛容量 C a' を一定にすることが可能である。

例えば見掛け上の束縛容量 C <sub>4</sub>′ が C <sub>4</sub>′ = C <sub>2</sub> + C <sub>4</sub> = 2 0 n F となるように 2 5 ℃で 1 0 n F 、 1 0 0 ℃で 7 n F となるような積層 コン

るものはコンデンサ材料としてよく用いられる。 従って本実施例のように圧電素子上に積層コンデ ンサを形成するには非常に有効でありメリットも 多い。

以上説明してきたように、本実施例の構成は、 圧電素子21の温度による束縛容量の変化を打ち 消すように束縛容量の温度係数と反対符号の温度 係数を有する積層タイプのコンデンサを束縛容量 と並列になるように、圧電素子21上に形成した 点に特徴を有し、これによって無効電流を低下さ せ超音波モータの効率の向上を図ることができる ものである。

#### (発明の効果)

本発明の実施により、簡易な構造で効率が高く、 回路部品損傷等の不具合がなく信頼性が著しく高 い超音波モータを提供することができる。

## 4. 図面の簡単な説明

第1図は本発明に係る超音波モータ用圧電素子の上面図、第2図は同下面図、第3図は本発明の圧電素子の要部拡大断面図、第4図は本発明と従

デンサ部材 2 1、 2 2 を用いて見掛け上の東縛容盤の温度変化を求めると、第 4 図の曲線 a に示すようにほぼ温度変化のない特性が得られた。さらに2 5 ℃でトランスのインダクタンス L と見掛け上の東縛容量 C e' との並列共振周波数が 4 0 k lk になるようにトランスのインダクタンスを用いて超音波と0.8 m H となる。このトランスを用いて超音波モータを駆動したところ電源電流 0.8 A、無負荷回転数 1 0 0 rpmが得られた。次に超音波モータを1 0 0 ℃の雰囲気下において駆動したところ電源電流 0.8 A、無負荷回転数 1 0 0 rpmが得られ、従来技術の 1 0 0 ℃における電源電流 3 A 以上と比べると無効電流が著しく低下したことが確認できた。

圧電素子はペロブスカイト構造を有するPb (Ti,Zr)O.系材料に添加物を入れた材料により形成されるが、このとき積層コンデンサも、これに近い材料を使用すれば、焼成条件、熱膨張係数等が圧電業子とほぼ同様であるから形成が容易であり、誘電率が大きいペロブスカイト構造を有す

来技術の圧電素子の束縛容量と温度との関係特性の比較を示す図、第5図、第6図は従来の超超数子の組視図、第7図は圧電振動子の斜視図、第6図、第7図は超音波モータの駆動電源回路を示す図、第9図は圧電振動子の動作状態を示す斜視図、第10図は従来の超音波モータの駆動である。

1 … 圧質素子

2 … 庄 電 板

3、5…小電極

4、7…第1区間電極

6、8···第2区間電極9a、9b···不活性部電極

10a、10b…センサ電極

11、31…圧電振動子12…導電性弾性体

13スリット

1 4 …接着剤

15…ロータ

2 0 … アース電極

20'…導帯

2 1 … 圧電子

22、23…積層コンデンサ部材

# 特開平4-17579(5)

・24…積層コンデンサ

中村 純之助 弁理士 代理人 和泉良彦 代理人



25 T a:本発明による 見掛け上のCd 20 15 (aF) b: 從来技術によるCd 束缚容量 10 9.7 5 0 1 200 ő 25 50 100 150 温度 (°C)

第 4 図

第 7 図





第10図



第11 図

