Econ 270 Lecture 6

Sam Gifford

2025-02-17

Random Variables

- We've already learned how to calculate probability and defined events, but sometimes it makes sense to perform operations on an entire distribution
- A Random Variable contains all of the information about a probability distribution
 - ► Mathematically it just maps events to it's sample space
 - For this class, we care more about the operations we can perform on it than it's definition

Random Variables

- ► Toss a coin 10 times and let the random variable *X* denote the number of heads that occur
- ▶ The shorthand X = 5 denotes the event that 5 heads occurs. $P(X = 5) = \binom{10}{5} (\frac{1}{2})^{10}$
- ▶ We can similarly denote $P(X = 0), P(X = 10), P(X \ge 3)$, etc
- ▶ Generically, we use P(X = x) to denote the probability of obtaining x coin flips
 - $P(X = x) = \binom{10}{x} (\frac{1}{2})^{10}$

Random Variables: probability mass function

- For a discrete random variable we use the shorthand p(x) = P(X = x) to denote the probability that an event occurs
- When graphed, the pmf is anologous to the empirical histogram
- What is p(x) for a random variable that represents the number of heads in 10 coin flips?

pmf: 10 coin flips

Binomial Distribution

- We can fully specify a distribution by giving it's probability mass function.
- ► The binomial distribution is the distribution of getting x successes from n independent events each with probability p
- ► Coin flipping is a specific case when p=0.5:
- $p(x) = \binom{n}{x} p^x (1-p)^{(n-x)}$
 - ▶ If you're good at algebra, you can confirm $\sum_{x=0}^{x=n} p(x) = 1$

Expectation

- ▶ We can also calculate an average of a random variable. We call this the expectation and use the operator E
 - $\mu = E[X]$
- ▶ The mean is an average weighted by the probability:
 - \triangleright $E[X] = \sum_{x} xp(x)$
- ▶ We can similarly calculate $var(X) = E[(X E[X])^2)$
 - $\triangleright = \sum_{x} (x \mu)^2 p(x)$

Expectation Example

- Let X be a binomial variable with n=3, p=.5 $(X \sim Binom(3, 0.5))$
 - ▶ This is the number of heads in 3 tosses of a coin
- ► Calculate *E*[*X*]

Random Variable Operations

- We partly define random variables to introduce the concepts of pmf and expectation, but mostly we want to do operations on random variables
- Let X_1 be the toss of a fair coin, and X_2 be the toss of a second fair coin. What is $X_1 + X_2$?
 - $Y = X_1 + X_2$ is its own random variable with a pmf and expectation
 - Expectation is easy to calculate. Variance is slightly harder. The pmf is much harder.

Expectation Example

- ► Let X be a censored Poisson random variable defined by the following pmf:
- p(0) = .36, p(1) = .36, p(2) = .18, p(3) = .06, p(4) = .04
- Calculate E[X]
- ► Let $Y = (X 2)^2 + 5$. Calculate E[Y]

Expectation Example: pmf

The Bernoulli Random Variable

- First, let's define X_1 as the success of an event with probability p
 - ightharpoonup X = 1 if there is a success, X = 0 otherwise
- \blacktriangleright What is p(x)?
- \blacktriangleright What is E[X]?

Random Variable Addition: Expectation

- ▶ First, note that X_1 and X_2 are identical, so e.g. $E[X_1] = E[X_2]$
- ▶ To get $E[X_1 + X_2]$, use linearity. General formula:

$$E[\sum \alpha_i X_i] = \sum \alpha_i E[X_i]$$

$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

Random Variable Addition: Example

- Let X be a binomial variable with n=10, p=.5 $(X \sim Binom(10, 0.5))$
 - ▶ This is the number of heads in 10 tosses of a coin
- ► Calculate *E*[*X*]

Random Variable Addition: Example

- ▶ In Dungeons and Dragons, the damage of the spell meteor swarm is calculated by rolling 20 6-sided dice and adding up all of the values.
- ► Calculate the average damage dealt by meteor swarm

Random variable Variance

- ► For variance, we have $E[(X E[X])^2]$. First we can distribution the inner part, then we apply linearity of expectation:
 - $ightharpoonup var(X) = E[X^2] E[X]^2$
 - ▶ This means that $var(X + Y) \neq var(X) + var(Y)$
- General formula:

$$var(aX + bY) = a^{2}var(X) + b^{2}var(Y) + 2cov(X, Y)$$

▶ If the variables are independent, the last term is 0

Bernoulli Variance

- Let X be a Bernoulli random variable with probability p
- Calculate var(X)

Binomial Variance

- Let X be a binomial variable with n=3, p=.5 $(X \sim Binom(3, 0.5))$
- ► Calculate *var*(*x*)

Variance example

- ► What is the variance of X, where X represents the roll of a fair 6-sided die?
- ▶ What is the standard deviation of meteor swarm?

Variance example

- Suppose that your total grade is the sum of your quiz scores and an exam score
- ► Aggregate quiz scores have variance of 340 while exam scores have variance of 3100
- ▶ The correlation between quiz and exam scores is .4
- Calculate the variance of total grade

Variance Example

- ➤ Your quiz subtotal is made up of 4 quizzes, each having variance of 30
- ▶ The variance of your aggregate quiz score is 340
- ▶ The pairwise correlation between all quizzes is identical
- What is the correlation between quizzes (e.g. cor(quiz1, quiz2))?

Summary of Expectation rules

- General formula: $E[X] = \mu_X = \sum_x xp(x)$
- ▶ Linearity: E[aX + bY] = aE[X] + bE[Y]
- ▶ Variance: $var(x) = \sigma_X^2 = E[X^2] E[X]^2$
- ► Variance Linear Combinations:

$$var(aX + bY) = a^{2}var(X) + b^{2}var(Y) + 2ab cov(X, Y)$$

- $cov(X, Y) = \sigma_{XY} = E[XY] E[X]E[Y]$
- ▶ If Independent, cov(X, Y) = 0
- $\rho_{xy} = \frac{cov(X,Y)}{\sigma_x \sigma_y}$

CDF

- ▶ The pmf gives us all of the information we need to calculate probabilities, but what if we need to calculate $P(3 \le X \le 7)$?
 - Need p(3) + p(4) + p(5) + p(6) + p(7)
- One convenient tool is the cumulative distribution function (CDF): $F(x) = P(X \le x)$
 - ▶ The above is then F(7) F(2)

Uniform CDF

- The continuous uniform distribution has CDF $F(X) = x, 0 \le x \le 1$
- ▶ Calculate $P(.3 \le x \le .7)$

CDF

- ► The geometric distribution gives us the time until the first success for an event with independent draws of probability p
- The geometric distribution has CDF $P(X \le x) = 1 (1 p)^x, x \ge 1$
- How would we get the median?

CDF

Continuous random variables

- We previously had a uniform distribution defined by $F(x) = x, 0 \le x \le 1$
- ► Calculate $P(0.499 \le x \le 0.501)$
- ▶ What is P(X = 0.5)?

Continuous Random Variables

- The uniform distribution is tricker than it appears. We can calculate $P(X = x) = F(x) F(x^{-}) = 0$ for every possible value of x
- There is 0 probability that any event happens. We say that this almost certaintly does not happen. A probability of 0 does not mean impossible!
- ► The trick is that there are an uncountably infinite number of points between 0 and 1, each of which is equally likely.

Continuous Random Variables

- We need calculus to add these up
 - ► $F(x) = \int_{-\infty}^{x} f(y) dy$ rather than $F(x) = \sum_{k=-\infty}^{x} p(k)$
- ▶ We call f(x) the probability **density** function rather than the probability mass function
 - The values integrate to 1 rather than add to 1
 - ► These are not probabilities! They are **likelihoods**. They only give relative probabilities of occurring.

Continuous Random Variables: Uniform Graph

Continuous Random Variables: Exponential Graph

Continuous Random Variables: Gamma Graph

Continuous Random Variables: Normal Graph

Normal Probability

Normal Probability

The (standard) normal distribution

- ► The standard normal distribution has a distinct bell shape
- ► For now the formula just comes out of left field:
 - $f(x) = \frac{1}{\sqrt{2}} e^{-\frac{x^2}{2}}$
 - Some neat integration tricks confirms $\int_{-\infty}^{\infty} f(x) dx = 1$
- $F(x) = \int_{-\infty}^{x} f(x) dx = \Phi(x)$
 - No closed form solution. We look up the values in a table or using software.
- $\mu = 0$ and $\sigma^2 = 1$

Calculating Standard Normal Probabilities

$$P(-0.5 \le x \le 1)$$

	X	F(x)	X	F(x)
1:	-3.0	0.00	0.0	0.50
2:	-2.5	0.01	0.5	0.69
3:	-2.0	0.02	1.0	0.84
4:	-1.5	0.07	1.5	0.93
5:	-1.0	0.16	2.0	0.98
6:	-0.5	0.31	2.5	0.99
7:	0.0	0.50	3.0	1.00

Calculating Standard Normal Probabilities

►
$$P(-.25 \le x \le 1.25)$$

	X	F(x)	X	F(x)
1:	0.00	0.50	1.00	0.84
2:	0.25	0.60	1.25	0.89
3:	0.50	0.69	1.50	0.93
4:	0.75	0.77	1.75	0.96
5:	1.00	0.84	2.00	0.98

Quantiles

▶ What is the 99th percentile of a standard normal distribution?

	x	F(x)	x	F(x)
1:	2.0	0.977	2.5	0.994
2:	2.1	0.982	2.6	0.995
3:	2.2	0.986	2.7	0.997
4:	2.3	0.989	2.8	0.997
5:	2.4	0.992	2.9	0.998
6:	2.5	0.994	3.0	0.999

The Normal Family

- In general, we can refer to a normal distribution with mean μ and standard deviation σ
 - $ightharpoonup X \sim N(\mu, \sigma)$
- ► The normal distribution has an important property: if $X \sim N(\mu, \sigma)$ and $Z = \frac{X \mu}{\sigma}$, then $Z \sim N(0, 1)$
 - ► The normal distribution is the only finite-variance distribution with this property!
- ▶ This means that we only need the standard normal CDF
 - If we calculate the z-score of a normal random variable, we will have a standard normal distribution

Normal Calculations

- ► The height for males (in inches) in the US is approximately normally distributed with mean 69 and standard deviation 3
- ► Calculate the probability that a randomly selected male is between 66 and 72 inches (5'6" and 6')

- The normal distribution was independently discovered several times
 - ▶ If X is a Poisson random variable with mean λ , as $\lambda \to \infty$, $X \to N(\lambda, \sqrt{\lambda})$
 - ▶ If $X \sim Binom(n, p)$, $X \rightarrow N(\mu_X, \sigma_X^2)$ as $n \rightarrow \infty$
 - ▶ If $X \sim \text{Gamma}(\alpha, \lambda) \ X \rightarrow N(\frac{\alpha}{\lambda}, \frac{\sqrt{\alpha}}{\lambda})$ as $r \rightarrow \infty$
 - If X is any finite variance distribution, and X_i represents independent samples from X, then $\bar{X} \sim N(\mu_x, \frac{\sigma_x}{\sqrt{n}})$ as $n \to \infty$

- Approximately normal distributions arise fairly frequently in nature, and their probabilities are easier to calculate than most other types of distributions
- We only need to know μ and σ^2 to generate probabilities using a normal random variable
- ➤ Suppose we flip a fair coin independently 1024 times. What is the probability that the we obtain between 480 and 544 heads?

Suppose we flip a fair coin independently 1024 times. What is the probability that the we obtain between 480 and 544 heads?

x	F(x)	X	F(x)
-3.0	0.00	0.0	0.50
-2.5	0.01	0.5	0.69
-2.0	0.02	1.0	0.84
-1.5	0.07	1.5	0.93
-1.0	0.16	2.0	0.98
-0.5	0.31	2.5	0.99
0.0	0.50	3.0	1.00
	-3.0 -2.5 -2.0 -1.5 -1.0 -0.5	x F(x) -3.0 0.00 -2.5 0.01 -2.0 0.02 -1.5 0.07 -1.0 0.16 -0.5 0.31 0.0 0.50	-3.0 0.00 0.0 -2.5 0.01 0.5 -2.0 0.02 1.0 -1.5 0.07 1.5 -1.0 0.16 2.0 -0.5 0.31 2.5

- ► Suppose we flip a fair coin independently 1024 times
- ▶ We become suspicious that the coin is biased if there is a less than 1 percent chance of observing at least as many heads as are obtained
- Calculate the fewest number of heads we would need to observe to become suspicious

➤ Suppose we flip a fair coin independently 1024 times. What is the 99th percentile of heads we obtain?

- Suppose we aren't concerned specifically that the coin is biased towards heads, but that the coin could be biased towards either heads or tails
- We become suspicious that the coin is biased if we observe a result outside of the middle 99 percent
- ► How many heads or tails would we need to observe in order to become suspicious that the coin is biased?

Suppose we flip a fair coin independently 1024 times. How many heads would we need to obtain to become suspicious of the coin?

A note on hypothesis testing

- Here we become suspicious of the coin if the conditional probability of obtaining a result this extreme is under 1 percent given that the coin is fair
- A coin that is slightly biased may appear to be fair
 - What is the probability that we are **not** suspicious of a biased coin that has p = .51?
 - ► This is a **false negative**

Calculating false negative for p=.51

- ▶ If our coin is biased with p=.51, we want to know the probability that we obtain at least 553 heads or less than 470 heads
- $\mu = .51 * 1024 = 522, \sigma = \sqrt{1024 * .51 * .49} = 16$
- $ightharpoonup z_1 = -3.25, z_2 = 1.9375$
- $\Phi(-3.25) + (1 \Phi(1.9375)) = 2.7\%$
 - ▶ We are very unlikely to suspect that this coin is biased!

A note on hypothesis testing

- Similarly, a coin that is truly unbiased will occasionally be suspicious
 - ► This is a **false positive**
 - ightharpoonup We designed the probability of a false positive (conditional on a fair coin) to be 1%
- To calculate the probability of making an error, we need additional information

A note on hypothesis testing

- ➤ Suppose that there is a 50% chance that the coin is fair, and a 50% chance that the coin is biased with p=.51
- What is the probability that we misclassify the coin?
 - ightharpoonup suspicious of fair coin: .01 * .5 = .005
 - ▶ not suspicous of biased coin: .973 * .5 = .4865
 - Probability of misclassification: .005 + .4865 = .4915