Scientific Computing (a.k.a Numerical Analysis)

Feb – June 2015

Lecturer:

T. Basaruddin, Heru Suhartanto, Meganingrum Arista J.

Course Outline

- Scientific Computing & Computer
 Arithmetic
- System of linear equations
- Least Square Problems
- Nonlinear equations
- Optimization
- Interpolation
- Numerical Differentiation and Integration
- Initial Value Problems (IVP)

Scientific Computing

- Aims at solving real world problems
- By solving related mathematical models
- Using computer (esp. numerically)
- Major issues:
 - Accuracy
 - Efficiency (speed, space)
- Source of error:
 - Data error
 - Computational error

Classification of errors

Computational errors

- Truncation error: approximation using truncated formula
- Rounding error: limitation on machine capacity to store numbers
- The two can occur simultaneously: e.g. Taylor Approximation

Two ways of measuring error

- Absolute error
- Relative error

Two basic approaches in error analysis

- Forward error analysis: directly measure the difference between the computed and the actual
- Backward error analysis: use proxy representation of error
 - E.g. 1.9 is used as solution to $\sqrt{4}$

Computer Arithmetic

Floating point number

S

exponent

Mantissa

$$x = sm\beta^e$$

L≤e≤U

$$m = \left(\sum_{j=0}^{p-1} d_j \beta^{-j}\right); \quad 0 \le d_i \le \beta - 1$$

β base or radixp precision[L;U] exponent range

Normalization

- Floating-point system normalized if leading digit d₀ always nonzero unless number represented is zero
- In normalized system, mantissa m of nonzero floating-point number always satisfies

$$1 \le m \le \beta$$

- Reasons for normalization
 - no digits wasted on leading zeros
 - leading bit need not be stored (in binary system)

Computer Arithmetic-2

System	β	p	L	U
IEEE Single Precision	2	24	-126	127
IEEE Double Precision	2	53	-1022	1023
Cray	2	48	-16383	16384
HP Calculator	10	12	-4 99	499
IBM Mainframe	16	6	-64	63

Properties of Floating-Point Systems

- Floating-point number system is finite and discrete
- Number of normalized floating-point numbers:

$$2(\beta -1) \beta^{p-1}(U -L+1)+1$$

- Smallest positive normalized number: underflow level = UFL = β^L
- Largest floating-point number: overflow level = OFL = $\beta^{U+1}(1 - \beta^{-p})$

Example: $\beta = 2$, p=3, L=-1, U=1

Thus there will be 25 numbers that can be represented;

- \rightarrow OFL = 3.5
- VIFL = 0.5

Rounding Rules & Precision

- ▶ Chopping: simply ignoring the extra digit
- Rounding to nearest: use the nearest floating point number
- Accuracy of floating-point system characterized by unit round-off, machine precision, or machine epsilon, denoted by ε-mach
- With rounding by chopping, ε-mach = $β^{1-p}$
- With rounding to nearest, ε-mach = $0.5 β^{1-p}$
- Alternative definition is smallest number ε such that $(1+\varepsilon) > 1$
- In all practical floating-point systems, 0 < UFL < ε-mach < OFL
- The general representation of a floating point $fl(x) = x(1+\delta) \ 0 \le \delta \le \epsilon$

Stability & Conditioning

Condition number
$$\kappa = \frac{|f(\widehat{x}) - f(x)|/|f(x)|}{|\widehat{x} - x|/|x|}$$

$$\approx \left| \frac{xf'(x)}{f(x)} \right|$$

Absolute condition number $\kappa_{abs} = \frac{|f(x) - f(x)|}{|\hat{x} - x|}$

$$\kappa_{abs} = \frac{|f(\hat{x}) - f(\hat{x})|}{|\hat{x} - \hat{x}|}$$

Ill condition if K is large

Issues on FP arithmetic

- Error propagation
 - A lengthy arithmetic operation
 - E.g. $fl(x)=x(1+\delta) \rightarrow fl(x^2)=x^2(1+2\delta)$
- Lost of significant digit (due to cancellation)
 - E.g. x = 0.21232145 (8 significant) y = 0.21232236 (8 significant) $y - x = 0.91 \times 10^{-6}$ (2 significant)

Sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2; \quad \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$s_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right)$$

$$s_n^2 = Q_n / (n-1)$$

$$Q_1 = 0; Q_k = Q_{k-1} + \frac{(k-1)(x_k - M_{k-1})^2}{k}$$

$$M_1 = x_1; M_k = M_{k-1} + \frac{x_k - M_{k-1}}{k}$$