MA108 ENDSEM 12-06-2023 10:00-12:00 Maximum Marks: 30

Name: Pink Division: Roll No: Tutorial Batch:

- 1. Write your Name, Roll No., Division, Tutorial Batch.
- 2. This is a question paper cum answer booklet. At the end of the exam, **only** this booklet will be collected for evaluation. Write the answers in the space provided against each question. Separate sheets will be provided for rough work.
- 3. There are sixteen questions.
- 4. No books, notes, calculators, mobile phones, electronic devices are permitted.
- 5. There is **no** negative marking.
 - 1. The curve in the x-y plane through the point (1,0) and having the slope 2x at each point (x,y) is given by

$$y(x) = \boxed{x^2 - 1}.$$

2. Consider the IVP: $y' = \frac{y}{x} + 2x^2 e^{-\frac{y}{x}}$, y(1) = 0. The solution of the above IVP is [2]

$$y(x) = x \ln x^2 \quad \forall x > 0.$$

3. Let x^{-2} and $x^{-2} \ln x$ be two solutions of $x^2y'' + axy' + by = 0$, for x > 0, and $a, b \in \mathbb{R}$. Then [2]

$$a = \boxed{5}$$
 and $b = \boxed{4}$.

- 4. Let $L(y)(x) = (1+x^2)y''(x) 2xy'(x) + 2y(x)$ for all x > 0.
 - a. Let ϕ_1, ϕ_2 be two linearly independent solutions of L(y)(x) = 0 for x > 0. Given that $\phi_1(x) = x$, for x > 0, find

$$\phi_2(x) = \boxed{x^2 - 1}.$$

[3]

Or
$$\phi_2(x) = C_1 x + C_2(x^2 - 1)$$
, for any $C_1, C_2 \in \mathbb{R}$ with $C_2 \neq 0$.

b. If $y_p(x) = v_1(x)\phi_1(x) + v_2(x)\phi_2(x)$ is a particular solution of $L(y)(x) = x^3 + x$, then

$$v_1(x) = \boxed{-\frac{x^2}{2} + \ln(x^2 + 1)}$$
 and $v_2(x) = \boxed{x - \tan^{-1} x}$.

Or
$$v_1(x) = -\frac{C_1}{C_2} (x - \tan^{-1} x) - \frac{x^2}{2} + \ln(x^2 + 1) + d_1$$
, and $v_2(x) = \frac{1}{C_2} (x - \tan^{-1} x) + d_2$, for any constants $d_1, d_2 \in \mathbb{R}$ and C_1, C_2 same as in $[a]$.

5. The inverse Laplace transform \mathcal{L}^{-1} of the function $F(s) = \frac{s^2 + 9}{(s^2 - 9)^2}$ for s > 3 is given by [2]

$$\mathcal{L}^{-1}(F)(t) = t \cosh 3t.$$

(i.e.,
$$\mathcal{L}^{-1}(F)(t) = t \frac{\left(e^{3t} + e^{-3t}\right)}{2}$$
.)

6. Possibly multiple correct answers. Let $\phi_1(x) = \begin{cases} 1+x^3, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $\phi_2(x) = \begin{cases} 1, & x < 0 \\ 1+x^3, & x \ge 0 \end{cases}$, and $\phi_3(x) = 3+x^3, \quad x \in \mathbb{R}$.

Write the correct option(s) here: Ans. b

- a. The Wronskian $W(\phi_1, \phi_2, \phi_3)(x) \neq 0$ for all $x \in [-1, 1]$.
- b. The functions ϕ_1, ϕ_2, ϕ_3 are linearly independent on [-1, 1].
- c. There exist functions p_1, p_2, p_3 defined and continuous on [-1, 1] such that ϕ_1, ϕ_2, ϕ_3 are solutions of

$$y'''(x) + p_1(x)y''(x) + p_2(x)y'(x) + p_3(x)y(x) = 0,$$

for all $x \in [-1, 1]$.

- 7. Possibly multiple correct answers. Every solution of the DE $y''(x) + \alpha y'(x) + \beta y(x) = 0$, where $\alpha, \beta \in \mathbb{R}$, converges to 0 as $x \to \infty$, if
 - a. $\alpha > 0$, $\beta > 0$ and $\alpha^2 4\beta > 0$.
 - b. $\alpha < 0, \beta < 0, \alpha^2 4\beta > 0.$
 - c. $\alpha > 0, \alpha^2 4\beta < 0$.

Write the correct option(s) here: Ans. (a), (c)

- 8. Possibly multiple correct answers. The function $r(x) = xe^x + xe^{-x}$ is annihilated by [1]
 - a. $D^2 2D + 1$
 - b. $D^5 + D^4 2D^3 2D^2 + D + 1$.
 - c. $D^4 2D^2 + 1$

Write the correct option(s) here: Ans. (b), (c)

9. Let p,q,r be continuous functions on \mathbb{R} and L(y)(x)=y''(x)+p(x)y'(x)+q(x)y(x). If

$$\phi_1(x) = 1 + e^{x^2}, \ \phi_2(x) = 1 + xe^{x^2}, \ \phi_3(x) = (1+x)e^{x^2} + 1$$

are solutions of $L(y)(x) = r(x), x \in \mathbb{R}$, then

a. Two linearly independent solutions of L(y)(x) = 0 on \mathbb{R} are given by

$$y_1(x) = e^{x^2}$$
 and $y_2(x) = xe^{x^2}$.

(or, $y_1(x) = c_1e^{x^2} + c_2$), for some constants c_1, c_2 , with $c_1 \neq 0$ and $y_2(x) = d_3xe^{x^2} + d_2e^{x^2} + d_3$ for some constants d_1, d_2, d_3 , with $d_3 \neq 0$.)

[4]

b. The functions p and r are given by

$$p(x) = \boxed{-4x} \text{ and } r(x) = \boxed{4x^2 - 2}.$$

10. The solution set of

$$(\sin x)y'''(x) + xy''(x) + x^2y'(x) + x^3y(x) = 0$$

for $\frac{\pi}{4} < x < \frac{\pi}{2}$ is a vector space of dimension d, where

on d, where [1]

$$d = \boxed{3}$$

.

11. The least possible n for which $y(x) = \sin^2 x$ is a solution of some n^{th} -order linear differential equation [2]

$$y^{(n)}(x) + a_1 y^{(n-1)}(x) + \ldots + a_n y(x) = 0$$

for $a_1, \ldots, a_n \in \mathbb{R}$ is

Ans: 3.

12. Let
$$L(y)(x) = y'''(x) - 5y''(x) + 6y'(x)$$
. [3+1]

a. A basis of solutions of L(y)(x) = 0 is given by

$$y_1(x) = \boxed{1},$$

$$y_2(x) = \boxed{e^{2x}},$$
and
$$y_3(x) = \boxed{e^{3x}}.$$

b. The solution of the IVP: L(y)(x) = 12x, y(0) = 0, $y'(0) = \frac{5}{3}$, y''(0) = 2 is given by

$$y(x) = x^2 + \frac{5}{3}x.$$

- 13. Possibly multiple correct answers. Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function of exponential order. Let $F(s)=\mathcal{L}(f)(s)$, for s>0, denote the Laplace transform of f. [1]
 - a. If f is differentiable on $[0,\infty)$, then f' is also of exponential order.
 - b. If F(s) = 0 for all s > 0, then f(t) = 0, for all $t \ge 0$.
 - c. $\lim_{s \to \infty} F(s)e^{\frac{-s^2}{2}} = 1$.

Write the correct option(s) here: Ans. (b)

14. Let $g(t) = \int_0^t (t-x) \cos x \, dx$ and $f(t) = \begin{cases} 0 & t < 1 \\ g(t-1) & t \ge 1 \end{cases}$. Then the Laplace transform $\mathcal{L}(f)$ of f is given by

$$\mathcal{L}(f)(s) = \boxed{\frac{e^{-s}}{s(s^2+1)}}.$$

15. Consider the IVP: $y''(x) + 4y'(x) + 4y(x) = x^2e^{-2x}$, y(0) = 1, y'(0) = 2. The Laplace transform $\mathcal{L}(y)$ of the solution y of the IVP is given by

$$\mathcal{L}(y)(s) = \boxed{\frac{1}{s+2} + \frac{4}{(s+2)^2} + \frac{2}{(s+2)^5}}.$$

The solution y of the IVP is given by

$$y(x) = e^{-2x} \left(1 + 4x + \frac{x^4}{12} \right).$$

16. Do there exist functions p, q continuous on \mathbb{R} such that $y(x) = e^{x^2} \sin(x^2) + x^3 \cos x$ is a solution of y''(x) + p(x)y'(x) + q(x)y(x) = 0 on \mathbb{R} ? Justify your answer. [2]

Ans. No, there cannot exist p, q continuous functions on \mathbb{R} such that $y(x) = e^{x^2} \sin(x^2) + x^3 \cos x$ is a solution of y''(x) + p(x)y'(x) + q(x)y(x) = 0 on \mathbb{R} .

Reason: Let $y(x) = e^{x^2} \sin(x^2) + x^3 \cos x$ for all $x \in \mathbb{R}$. Note that y(0) = 0 and y'(0) = 0. If there exist p, q continuous functions on \mathbb{R} such that y(x) is a solution of y''(x) + p(x)y'(x) + q(x)y(x) = 0 on \mathbb{R} , then y(x) satisfies the IVP

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$
, $y(0) = 0$, $y'(0) = 0$.

But then the uniqueness of solution of the second order linear ODE with continuous coefficients implies that y(x) = 0 for all $x \in \mathbb{R}$ which is not the case since $y(x) = e^{x^2} \sin(x^2) + x^3 \cos x$.

So, y(x) cannot be a solution of y''(x) + p(x)y'(x) + q(x)y(x) = 0 on \mathbb{R} , for any continuous functions p, q defined on \mathbb{R} .