Physique Générale: Petite classe nº3

EFFET TUNNEL

A la suite de cet exercice, il est conseillé de lire l'article ci-joint (tiré du Courrier du CNRS) sur le microscope à effet tunnel. La mise au point de cet appareil par G. Binnig et A. Röhrer (laboratoires IBM de Zurich) leur a valu le prix Nobel 1986.

Fig. 1 – Barrière de potentiel

- 1. On veut étudier le mouvement à une dimension d'une particule soumise au potentiel de la figure ci-dessus, venant du côté gauche et d'énergie E inférieure à la hauteur de la "barrière" de potentiel V_1 . Décrire le mouvement classique.
- 2. On cherche les fonctions propres du hamiltonien de la particule pour $V_2 < E < V_1$. On s'intéresse aux solutions de la forme:

$$\Psi(x) = e^{ik_1x} + \rho e^{-ik_1x} \quad si \ x < 0 \ ;$$

$$\Psi(x) = \tau e^{ik_2x} \quad si \ x > a \ ;$$

Quel est l'intérêt physique de cette solution (qui n'est pas normalisable)? Que représentent les coefficients complexes ρ et τ ? Exprimer les probabilités respectives de réflexion et de transmission de la particule en fonction de ρ , τ et des vecteurs d'onde k_1 et k_2 .

- 3. Exprimer les vecteurs d'onde k_1 et k_2 en fonction de l'énergie E, de V_2 et de la masse m de la particule. Quelle est la forme de $\Psi(x)$ dans l'intervalle 0 < x < a? On posera $\alpha = \frac{1}{\hbar} \sqrt{2m(V_1 E)}$.
- 4. Montrer que la solution considérée en (2) est unique et calculer la probabilité de transmission de la particule venant de la gauche en fonction de k_1 , k_2 , α et a. On se placera dans le cas fréquent en pratique où $e^{\alpha a}$ est grand devant l'unité.