6.11 Factorial without prime

Contents

```
factor*
                                                               factor* . . . . . . . . . . . . . . . 6.12 QuadraticResidue* . . . .
1 Basic
                                                               1.1 vimrc . . . . . . . . . . . . . . .
    6.15 Berlekamp Massey . . . .
                                                               Pragma Optimization . . .
    1.5 Debug Macro . . . . . .
                                                                6.18 Estimation . . .
                                                                6.19 Euclidean Algorithms . .
   Graph
                                                               6.20 General Purpose Numbers
6.21 Tips for Generating Func-
    2.1 BCC Vertex* . . . . . . . .
    Polynomial
    2.5
          MinimumMeanCycle* . . .
                                                               7.1 Fast Fourier Transform . .
    7.2 Number Theory Transform* 16
7.3 Fast Walsh Transform* . 16
7.4 Polynomial Operation . 17
          Dominator Tree* . . . . .
    2.9
                                                               7.5 Value Polynomial . . . . . 18 7.6 Newton's Method . . . . . 18
    2.10 Minimum Arborescence*
    2.11 Vizing's theorem* . . . . . 2.12 Minimum Clique Cover* . .

        Geometry
        18

        8.1 Default Code
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...

    2.13 NumberofMaximalClique*
3 Data Structure
                                                                     8.3
    3.1 Discrete Trick . . . . . .
                                                               8.4
    8.5
           Leftist Tree . . . . . .
                                                                      TangentPointToHull* . .
          Heavy light Decomposition*
Centroid Decomposition*
                                                               8.8 Intersection of line and
                                                               convex . . . . . . . . . . . . 19
8.9 minMaxEnclosingRectangle* 19
           3.7
                                                               8.10 VectorinPoly* . . . . . . . 19 8.11 PolyUnion* . . . . . . . 19
           KDTree . . . . . . . . . . . .
                                                               Flow/Matching
4.1 Bipartite Matching* . . . .
                                                               8.13 Polar Angle Sort* . . . . 8.14 Half plane intersection* . 8.15 HPI Alternative Form . . .
          Kuhn Munkres* . . . . . . . MincostMaxflow* . . . . .
           Maximum Simple Graph
Matching* . . . . . . . .
                                                                8.16 RotatingSweepLine .
                                                               8.17 Minimum Enclosing Circle*
8.18 Intersection of two circles*
           Maximum Weight Match-
                                                                8.19 Intersection of polygon
          and circle* . .
                                                                8.20 Intersection of line and
           BoundedFlow*(Dinic*) . .
    4.7
          Gomory Hu tree* . . . . . 10
Minimum Cost Circulation* 10
                                                                      circle*
                                                               4.10 Flow Models . . . . . . . . . 10
   String
                                                               8.25 DelaunayTriangulation* . 23
8.26 Triangulation Vonoroi* . 23
8.27 Minkowski Sum* . . . . 23
    5.1 KMP
    SAIS*....... 11
           Aho-Corasick Automatan* 11
                                                               Else
                                                               9.1 Cyclic Ternary Search*
          Smallest Rotation . . . . 11

De Bruin sequence* . . . 12
                                                               9.2 Mo's Algorithm(With modification) . . . . . 23
9.3 Mo's Algorithm On Tree . . 24
    5.7
           Extended SAM* . . . . . . 12
    Additional Mo's Algo-
                                                                     Math
    6.1 ax+by=gcd(only exgcd *) . 13
                                                               9.6
    6.2 Floor and Ceil . . . . . . 13
                                                               9.7
                                                               Floor Enumeration . . . . 13
    9.10 Matroid Intersection . . . 25
                                                               9.11 AdaptiveSimpson* . . . . 25
                                                               9.12 Simulated Annealing . . . 9.13 Tree Hash* . . . . . . . .
          6.8
                                                                9.14 Binary Search On Fraction
   6.9.1 Construction . . . . 14
6.10 chineseRemainder . . . . 14
                                                               9.15 Min Plus Convolution* . .
                                                               9.16 Bitset LCS . . . . . . . . . 26
```

1 Basic

1.1 vimrc

1.3 Black Magic [afb343]

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp> // rb_tree
#include <ext/rope> // rope
using namespace __gnu_pbds;
using namespace __gnu_cxx; // rope
typedef __gnu_pbds::priority_queue<int> heap;
int main() {
  heap h1, h2; // max heap
h1.push(1), h1.push(3), h2.push(2), h2.push(4);
  h1.join(h2); // h1 = {1, 2, 3, 4}, h2 = {};
tree<ll, null_type, less<ll>, rb_tree_tag
      , tree_order_statistics_node_update > st;
  tree<ll, ll, less<ll>, rb_tree_tag
       , tree_order_statistics_node_update > mp;
  for (int x : {0, 3, 20, 50}) st.insert(x);
  assert(st.
      order_of_key(3) == 1 && st.order_of_key(4) == 2);
  assert(*st.find_by_order
     (2) == 20 && *st.lower_bound(4) == 20);
  rope<char> *root[10]; // nsqrt(n)
  root[0] = new rope<char>();
  root[1] = new rope < char > (*root[0]);
  // root[1]->insert(pos,
                             'a');
  // root[1]->at(pos); 0-base
  // root[1]->erase(pos, size);
```

1.4 Pragma Optimization [6006f6]

```
#pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC optimize("no-math-errno,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,arch=skylake")
__builtin_ia32_ldmxcsr(__builtin_ia32_stmxcsr()|0x8040)
```

1.5 Debug Macro [ae2fe5]

2 Graph

2.1 BCC Vertex* [740acb]

```
struct BCC { // 0-base
  int n, dft, nbcc;
vector < int > low, dfn, bln, stk, is_ap, cir;
  vector<vector<int>>> G, bcc, nG;
  void make_bcc(int u) {
     bcc.emplace_back(1, u);
     for (; stk.back() != u; stk.pop_back())
       bln[stk.back()] = nbcc, bcc[nbcc].pb(stk.back());
     stk.pop_back(), bln[u] = nbcc++;
  void dfs(int u, int f) {
     int child = 0;
     low[u] = dfn[u] = ++dft, stk.pb(u);
     for (int v : G[u])
  if (!dfn[v]) {
          dfs(v, u), ++child;
low[u] = min(low[u], low[v]);
          if (dfn[u] <= low[v]) {</pre>
            is_ap[u] = 1, bln[u] = nbcc;
make_bcc(v), bcc.back().pb(u);
       } else if (dfn[v] < dfn[u] && v != f)</pre>
          low[u] = min(low[u], dfn[v]);
     if (f == -1 && child < 2) is_ap[u] = 0;
if (f == -1 && child == 0) make_bcc(u);</pre>
```

```
BCC(int _n): n(_n), dft(),
    nbcc(), low(n), dfn(n), bln(n), is_ap(n), G(n) {}
void add_edge(int u, int v) {
  G[u].pb(v), G[v].pb(u);
void solve() {
   for (int i = 0; i < n; ++i)</pre>
    if (!dfn[i]) dfs(i, -1);
void block_cut_tree() {
  cir.resize(nbcc);
  for (int i = 0; i < n; ++i)</pre>
     if (is_ap[i])
       bln[i] = nbcc++;
  cir.resize(nbcc, 1), nG.resize(nbcc);
for (int i = 0; i < nbcc && !cir[i]; ++i)</pre>
     for (int j : bcc[i])
       if (is_ap[j])
        nG[i].pb(bln[j]), nG[bln[j]].pb(i);
} // up to 2 * n - 2 nodes!! bln[i] for id
```

2.2 Bridge* [4da29a]

```
struct ECC { // 0-base
  int n, dft, ecnt, necc;
vector<int> low, dfn, bln, is_bridge, stk;
  vector<vector<pii>> G;
  void dfs(int u, int f) {
    dfn[u] = low[u] = ++dft, stk.pb(u);
    for (auto [v, e] : G[u])
       if (!dfn[v])
      dfs(v, e), low[u] = min(low[u], low[v]);
else if (e != f)
         low[u] = min(low[u], dfn[v]);
    if (low[u] == dfn[u]) {
       if (f != -1) is_bridge[f] = 1;
       for (; stk.back() != u; stk.pop_back())
         bln[stk.back()] = necc;
       bln[u] = necc++, stk.pop_back();
    }
  ECC(int _n): n(_n), dft()
  , ecnt(), necc(), low(n), dfn(n), bln(n), G(n) {}
void add_edge(int u, int v) {
    G[u].pb(pii(v, ecnt)), G[v].pb(pii(u, ecnt++));
  void solve() {
    is_bridge.resize(ecnt);
    for (int i = 0; i < n; ++i)</pre>
       if (!dfn[i]) dfs(i, -1);
}; // ecc_id(i): bln[i]
```

2.3 SCC* [4057dc]

```
struct SCC { // 0-base
  int n, dft, nscc;
  vector<int> low, dfn, bln, instack, stk;
  vector<vector<int>> G;
  void dfs(int u) {
    low[u] = dfn[u] = ++dft;
     instack[u] = 1, stk.pb(u);
    for (int v : G[u])
       if (!dfn[v])
         dfs(v), low[u] = min(low[u], low[v]);
       else if (instack[v] && dfn[v] < dfn[u])</pre>
         low[u] = min(low[u], dfn[v]);
    if (low[u] == dfn[u]) {
       for (; stk.back() != u; stk.pop_back())
         bln[stk
       .back()] = nscc, instack[stk.back()] = 0;
instack[u] = 0, bln[u] = nscc++, stk.pop_back();
    }
  SCC(int _n): n(_n), dft(), nscc
       (), low(n), dfn(n), bln(n), instack(n), G(n) {}
  void add_edge(int u, int v) {
    G[u].pb(v);
  void solve() {
   for (int i = 0; i < n; ++i)</pre>
      if (!dfn[i]) dfs(i);
}; // scc_id(i): bln[i]
```

2.4 2SAT* [f5630a]

```
struct SAT { // 0-base
  int n;
  vector<bool> istrue;
  SCC scc;
  SAT(int _n): n(_n), istrue(n + n), scc(n + n) {}
  int rv(int a) {
    return a >= n ? a - n : a + n;
  void add_clause(int a, int b) {
    scc.add_edge(rv(a), b), scc.add_edge(rv(b), a);
  bool solve() {
    scc.solve();
    for (int i = 0; i < n; ++i) {</pre>
      if (scc.bln[i] == scc.bln[i + n]) return false;
      istrue[i] = scc.bln[i] < scc.bln[i + n];</pre>
      istrue[i + n] = !istrue[i];
    return true;
};
```

2.5 MinimumMeanCycle* [3e5d2b]

```
ll road[N][N]; // input here
struct MinimumMeanCycle {
   ll dp[N + 5][N], n;
   pll solve() {
     ll a = -1, b = -1, L = n + 1;

for (int i = 2; i <= L; ++i)
        for (int k = 0; k < n; ++k)
          for (int j = 0; j < n; ++j)</pre>
             dp[i][j] =
               min(dp[i - 1][k] + road[k][j], dp[i][j]);
     for (int i = 0; i < n; ++i) {
   if (dp[L][i] >= INF) continue;
        ll ta = 0, tb = 1;
for (int j = 1; j < n; ++j)</pre>
          if (dp[j][i] < INF &&</pre>
             ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
ta = dp[L][i] - dp[j][i], tb = L - j;
        if (ta == 0) continue;
        if (a == -1 || a * tb > ta * b) a = ta, b = tb;
      if (a != -1) {
        ll g = \_gcd(a, b);
        return pll(a / g, b / g);
     return pll(-1LL, -1LL);
   void init(int _n) {
      for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;</pre>
   }
};
```

2.6 Virtual Tree* [1b641b]

```
vector<int> vG[N]:
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
  while (top >= 1 && dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
  for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
  top = -1;
  sort(ALL(v),
   [&](int a, int b) { return dfn[a] < dfn[b]; });
  for (int i : v) insert(i);
  while (top > 0) \ vG[st[top - 1]].pb(st[top]), --top;
  // do something
```

```
2.7 Maximum Clique Dyn* [d50aa9]
```

reset(v[0]):

```
struct MaxClique { // fast when N <= 100</pre>
  bitset < N > G[N], cs[N];
int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) G[i].reset();</pre>
  void add_edge(int u, int v) {
    G[u][v] = G[v][u] = 1;
  void pre_dfs(vector<int> &r, int l, bitset<N> mask) {
    if (l < 4) {
  for (int i : r) d[i] = (G[i] & mask).count();</pre>
      sort(ALL(r)
           , [&](int x, int y) { return d[x] > d[y]; });
    }
    vector<int> c(SZ(r));
    int lft = max(ans - q + 1, 1), rgt = 1, tp = 0;
    cs[1].reset(), cs[2].reset();
    for (int p : r) {
      int k = 1;
      while ((cs[k] & G[p]).any()) ++k;
      if (k > rgt) cs[++rgt + 1].reset();
      cs[k][p] = 1;
      if (k < lft) r[tp++] = p;</pre>
    for (int k = lft; k <= rgt; ++k)</pre>
      for (int p = cs[k]._Find_first
           (); p < N; p = cs[k]._Find_next(p))
        r[tp] = p, c[tp] = k, ++tp;
    dfs(r, c, l + 1, mask);
  }
  void dfs(vector<</pre>
      int> &r, vector<int> &c, int l, bitset<N> mask) {
    while (!r.empty()) {
      int p = r.back();
      r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr;
      for (int i : r) if (G[p][i]) nr.pb(i);
      if (!nr.empty()) pre_dfs(nr, l, mask & G[p]);
      else if (q > ans) ans = q, copy_n(cur, q, sol);
      c.pop_back(), --q;
    }
  int solve() {
    vector<int> r(n);
    ans = q = 0, iota(ALL(r), \theta);
    pre_dfs(r, 0, bitset<N>(string(n, '1')));
    return ans;
  }
};
```

2.8 Minimum Steiner Tree* [62d6fb]

```
struct SteinerTree { // 0-base
  int n, dst[N][N], dp[1 << T][N], tdst[N];</pre>
  int vcst[N]; // the cost of vertexs
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i) {
      fill_n(dst[i], n, INF);
       dst[i][i] = vcst[i] = 0;
    }
  void chmin(int &x, int val) {
    x = min(x, val);
  void add_edge(int ui, int vi, int wi) {
    chmin(dst[ui][vi], wi);
  void shortest_path() {
    for (int k = 0; k < n; ++k)</pre>
      for (int i = 0; i < n; ++i)
  for (int j = 0; j < n; ++j)</pre>
           chmin(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int>& ter) {
    shortest_path();
    int t = SZ(ter), full = (1 << t) - 1;
for (int i = 0; i <= full; ++i)</pre>
```

```
fill_n(dp[i], n, INF);
     copy_n(vcst, n, dp[0]);
for (int msk = 1; msk <= full; ++msk) {
  if (!(msk & (msk - 1))) {</pre>
          int who = __lg(msk);
for (int i = 0; i < n; ++i)</pre>
            dp \, [\, ms \, k \,
                 ][i] = vcst[ter[who]] + dst[ter[who]][i];
       for (int i = 0; i < n; ++i)</pre>
          for (int sub = (
               msk - 1) & msk; sub; sub = (sub - 1) & msk)
            chmin(dp[msk][i],
                 dp[sub][i] + dp[msk ^ sub][i] - vcst[i]);
       for (int i = 0; i < n; ++i) {</pre>
          tdst[i] = INF;
          for (int j = 0; j < n; ++j)</pre>
            chmin(tdst[i], dp[msk][j] + dst[j][i]);
       copy_n(tdst, n, dp[msk]);
     return *min_element(dp[full], dp[full] + n);
  }
}; // O(V 3^T + V^2 2^T)
```

2.9 Dominator Tree* [2b8b32]

```
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
  void init(int _n) {
    n = _n;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
     id[dfn[u] = ++Time] = u;
     for (auto v : G[u])
       if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
     int tmp = find(pa[y], x);
     if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
     return pa[y] = tmp;
  void tarjan(int root) {
     Time = 0;
     for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
       tree[i].clear();
       best[i] = semi[i] = i;
     dfs(root);
    for (int i = Time; i > 1; --i) {
       int u = id[i];
       for (auto v : rG[u])
         if (v = dfn[v]) {
           find(v, i);
semi[i] = min(semi[i], semi[best[v]]);
       tree[semi[i]].pb(i);
       for (auto v : tree[pa[i]]) {
         find(v, pa[i]);
idom[v] =
           semi[best[v]] == pa[i] ? pa[i] : best[v];
       tree[pa[i]].clear();
    for (int i = 2; i <= Time; ++i) {</pre>
       if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
       tree[id[idom[i]]].pb(id[i]);
  }
};
```

2.10 Minimum Arborescence* [c7338d]

```
//* TODO
DSU: disjoint set
- DSU(n), .boss(x), .Union(x, y)
```

```
min_heap<
    T, Info>: min heap for type {T, Info} with lazy tag
  .push({w, i}),
    .top(), .join(heap), .pop(), .empty(), .add_lazy(v)
struct E { int s, t; ll w; }; // 0-base
vector<int> dmst(const vector<E> &e, int n, int root) {
  vector<min_heap<ll, int>> h(n * 2);
  for (int i = 0; i < SZ(e); ++i)</pre>
   h[e[i].t].push({e[i].w, i});
 DSU dsu(n * 2);
  vector<int> v(n * 2, -1), pa(n * 2, -1), r(n * 2);
  v[root] = n + 1;
  int pc = n;
  for (int i = 0; i < n; ++i) if (v[i] == -1) {</pre>
    for (int p = i; v[p]
         == -1 || v[p] == i; p = dsu.boss(e[r[p]].s)) {
      if (v[p] == i) {
        int q = p; p = pc++;
          h[q].add_lazy(-h[q].top().X);
          pa[q] = p, dsu.Union(p, q), h[p].join(h[q]);
       } while ((q = dsu.boss(e[r[q]].s)) != p);
      v[p] = i;
      while (!h[p].
          empty() && dsu.boss(e[h[p].top().Y].s) == p)
        h[p].pop();
      if (h[p].empty()) return {}; // no solution
      r[p] = h[p].top().Y;
   }
 }
 vector<int> ans;
 for (int i = pc
       - 1; i >= 0; i--) if (i != root && v[i] != n) {
    for (int f = e[r[i]].t; ~f && v[f] != n; f = pa[f])
     v[f] = n;
    ans.pb(r[i]);
 return ans; // default minimize, returns edgeid array
\} // O(Ef(E)), f(E) from min_heap
```

2.11 Vizing's theorem* [2b5b01]

```
namespace vizing { // returns
  edge coloring in adjacent matrix G. 1 - based
const int N = 105;
int C[N][N], G[N][N], X[N], vst[N], n;
void init(int _n) { n = _n;
  for (int i = 0; i <= n; ++i)
  for (int j = 0; j <= n; ++j)</pre>
      C[i][j] = G[i][j] = 0;
void solve(vector<pii> &E) {
 auto update = [&](int u)
  { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
  auto color = [&](int u, int v, int c) {
    int p = G[u][v];
    G[u][v] = G[v][u] = c;
    C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
  };
  auto flip = [&](int u, int c1, int c2) {
    int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  fill_n(X + 1, n, 1);
  for (int t = 0; t < SZ(E); ++t) {</pre>
    int u = E[t
        ].X, v0 = E[t].Y, v = v0, c0 = X[u], c = c0, d;
    vector<pii> L;
    fill_n(vst + 1, n,
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
      if (!C[v][c]) for (int a = SZ(
          L) - 1; a >= 0; --a) c = color(u, L[a].X, c);
      else if (!C[u][d]) for (int a = SZ(L
          ) - 1; a >= 0; --a) color(u, L[a].X, L[a].Y);
      else if (vst[d]) break;
      else vst[d] = 1, v = C[u][d];
```

2.12 Minimum Clique Cover* [879472]

```
struct Clique_Cover { // 0-base, 0(n2^n)
  int co[1 << N], n, E[N];
int dp[1 << N];</pre>
  void init(int _n) {
     n = _n, fill_n(dp, 1 << n, 0);
     fill_n(E, n, \theta), fill_n(co, 1 << n, \theta);
  void add_edge(int u, int v) {
     E[u] \mid = 1 << v, E[v] \mid = 1 << u;
  int solve() {
     for (int i = 0; i < n; ++i)</pre>
      co[1 << i] = E[i] | (1 << i);
     co[0] = (1 << n) - 1;

dp[0] = (n & 1) * 2 - 1;
     for (int i = 1; i < (1 << n); ++i) {</pre>
       int t = i & -i;
       dp[i] = -dp[i ^ t];
       co[i] = co[i ^ t] & co[t];
     for (int i = 0; i < (1 << n); ++i)</pre>
       co[i] = (co[i] & i) == i;
     fwt(co, 1 << n, 1);
     for (int ans = 1; ans < n; ++ans) {
  int sum = 0; // probabilistic</pre>
       for (int i = 0; i < (1 << n); ++i)</pre>
         sum += (dp[i] *= co[i]);
       if (sum) return ans;
     }
     return n;
};
```

2.13 NumberofMaximalClique* [11fa26]

```
struct BronKerbosch { // 1-base
   int n, a[N], g[N][N];
   int S, all[N][N], some[N][N], none[N][N];
   void init(int _n) {
     for (int i = 1; i <= n; ++i)</pre>
       for (int j = 1; j <= n; ++j) g[i][j] = 0;</pre>
   void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
   void dfs(int d, int an, int sn, int nn) {
     if (S > 1000) return; // pruning
     if (sn == 0 && nn == 0) ++S;
     int u = some[d][0];
     for (int i = 0; i < sn; ++i) {
  int v = some[d][i];</pre>
       if (g[u][v]) continue;
       int tsn = 0, tnn = 0;
       copy_n(all[d], an, all[d + 1]);
       all[d + 1][an] = v;
for (int j = 0; j < sn; ++j)
         if (g[v][some[d][j]])
            some[d + 1][tsn++] = some[d][j];
       for (int j = 0; j < nn; ++j)</pre>
         if (g[v][none[d][j]])
            none[d + 1][tnn++] = none[d][j];
       dfs(d + 1, an + 1, tsn, tnn);
some[d][i] = 0, none[d][nn++] = v;
     }
   int solve() {
     iota(some[0], some[0] + n, 1);
     S = 0, dfs(0, 0, n, 0);
     return S;
  }
};
```

3 Data Structure

3.1 Discrete Trick

```
vector<int> val;
// build
sort(ALL
    (val)), val.resize(unique(ALL(val)) - val.begin());
// index of x
upper_bound(ALL(val), x) - val.begin();
// max idx <= x
upper_bound(ALL(val), x) - val.begin();
// max idx < x
lower_bound(ALL(val), x) - val.begin();
3.2 BIT kth* [e39485]
int bit[N + 1]; // N = 2 ^ k
int query_kth(int k) {
    int res = 0;
    for (int i = N >> 1; i >= 1; i >>= 1)
        if (bit[res + i] < k)
           k -= bit[res += i];
    return res + 1;
```

3.3 Interval Container* [c54d29]

```
/* Add and
     remove intervals from a set of disjoint intervals.
 * Will merge the added interval with
      any overlapping intervals in the set when adding.
 * Intervals are [inclusive, exclusive). */
set<pii>::
    iterator addInterval(set<pii>% is, int L, int R) {
  if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
while (it != is.end() && it->X <= R) {</pre>
    R = max(R, it->Y);
    before = it = is.erase(it);
  if (it != is.begin() && (--it)->Y >= L) {
    L = min(L, it->X);
    R = max(R, it->Y);
    is.erase(it);
  }
  return is.insert(before, pii(L, R));
void removeInterval(set<pii>& is, int L, int R) {
  if (L == R) return;
  auto it = addInterval(is, L, R);
  auto r2 = it->Y;
  if (it->X == L) is.erase(it);
  else (int&)it->Y = L;
  if (R != r2) is.emplace(R, r2);
```

3.4 Leftist Tree [e91538]

```
struct node {
  ll v, data, sz, sum;
  node *1, *r;
  node(ll k)
     : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
ll sz(node *p) { return p ? p->sz : 0;
ll V(node *p) { return p ? p->v : -1; }
ll sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (V(a->r) > V(a->l)) swap(a->r, a->l);
  a->v = V(a->r) + 1, a->sz = sz(a->l) + sz(a->r) + 1;
  a \rightarrow sum = sum(a \rightarrow l) + sum(a \rightarrow r) + a \rightarrow data;
  return a:
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->l, o->r);
  delete tmp:
```

3.5 Heavy light Decomposition* [b004ae]

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[N], deep[N], mxson[N], w[N], pa[N];
  int t, pl[N], data[N], val[N]; // val: vertex data
```

```
vector<int> G[N]:
   void init(int _n) {
     n = _n;
for (int i = 1; i <= n; ++i)</pre>
       G[i].clear(), mxson[i] = 0;
   void add_edge(int a, int b) {
     G[a].pb(b), G[b].pb(a);
   void dfs(int u, int f, int d) {
  w[u] = 1, pa[u] = f, deep[u] = d++;
     for (int &i : G[u])
       if (i != f) {
         dfs(i, u, d), w[u] += w[i];
          if (w[mxson[u]] < w[i]) mxson[u] = i;</pre>
       }
   void cut(int u, int link) {
     data[pl[u] = ++t] = val[u], ulink[u] = link;
     if (!mxson[u]) return;
     cut(mxson[u], link);
     for (int i : G[u])
       if (i != pa[u] && i != mxson[u])
         cut(i, i);
   void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
int query(int a, int b) {
     int ta = ulink[a], tb = ulink[b], res = 0;
     while (ta != tb) {
       if (deep
            [ta] > deep[tb]) swap(ta, tb), swap(a, b);
        // query(pl[tb], pl[b])
       tb = ulink[b = pa[tb]];
     if (pl[a] > pl[b]) swap(a, b);
     // query(pl[a], pl[b])
  }
};
```

3.6 Centroid Decomposition* [5a24da]

```
struct Cent_Dec { // 1-base
  vector<pll> G[N];
  pll info[N]; // store info. of itself
pll upinfo[N]; // store info. of climbing up
int n, pa[N], layer[N], sz[N], done[N];
ll dis[__lg(N) + 1][N];
  void init(int _n) {
     n = _n, layer[0] =
                               -1;
     fill_n(pa + 1, n, 0), fill_n(done + 1, n, 0);
for (int i = 1; i <= n; ++i) G[i].clear();
  void add_edge(int a, int b, int w) {
     G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
  void get_cent(
  int u, int f, int &mx, int &c, int num) {
     int mxsz = 0;
     sz[u] = 1;
     for (pll e : G[u])
       if (!done[e.X] && e.X != f) {
          get_cent(e.X, u, mx, c, num);
          sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
     if (mx > max(mxsz, num - sz[u]))
       mx = max(mxsz, num - sz[u]), c = u;
  void dfs(int u, int f, ll d, int org) {
    // if required, add self info or climbing info
     dis[layer[org]][u] = d;
for (pll e : G[u])
   if (!done[e.X] && e.X != f)
          dfs(e.X, u, d + e.Y, org);
  int cut(int u, int f, int num) {
     int mx = 1e9, c = 0, lc;
get_cent(u, f, mx, c, num);
     done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
for (pll e : G[c])
       if (!done[e.X]) {
          if (sz[e.X] > sz[c])
             lc = cut(e.X, c, num - sz[c]);
           else lc = cut(e.X, c, sz[e.X]);
          upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
     return done[c] = 0, c;
```

void pull() {

// take care of the nil!

size = ch[0]->size + ch[1]->size + 1;

```
void build() { cut(1, 0, n); }
                                                                   sum = ch[0] -> sum ^ ch[1] -> sum ^ val;
                                                                   if (ch[0] != &nil) ch[0]->f = this;
  void modify(int u) {
    for (int a = u, ly = layer[a]; a;
    a = pa[a], --ly) {
                                                                  if (ch[1] != &nil) ch[1]->f = this;
      info[a].X += dis[ly][u], ++info[a].Y;
                                                              } Splay::nil;
                                                              Splay *nil = &Splay::nil;
      if (pa[a])
        upinfo[a].X += dis[ly - 1][u], ++upinfo[a].Y;
                                                              void rotate(Splay *x) {
    }
                                                                Splay *p = x - > f;
                                                                int d = x->dir();
  ll query(int u) {
                                                                if (!p->isr()) p->f->setCh(x, p->dir());
    ll rt = 0;
                                                                else x - > f = p - > f;
    for (int a = u, ly = layer[a]; a;
                                                                p->setCh(x->ch[!d], d);
        a = pa[a], --ly) {
                                                                x->setCh(p, !d);
      rt += info[a].X + info[a].Y * dis[ly][u];
                                                                p->pull(), x->pull();
      if (pa[a])
                                                              void splay(Splay *x) {
        rt -=
          upinfo[a].X + upinfo[a].Y * dis[ly - 1][u];
                                                                vector < Splay*> splayVec;
                                                                for (Splay *q = x;; q = q->f) {
                                                                   splayVec.pb(q);
    return rt;
 }
                                                                   if (q->isr()) break;
};
                                                                reverse(ALL(splayVec));
3.7 LiChaoST* [4a4bee]
                                                                for (auto it : splayVec) it->push();
                                                                while (!x->isr()) {
struct L {
                                                                   if (x->f->isr()) rotate(x);
  ll m, k, id;
                                                                   else if (x->dir() == x->f->dir())
  L() : id(-1) {}
                                                                     rotate(x->f), rotate(x);
  L(ll a, ll b, ll c) : m(a), k(b), id(c) {}
                                                                   else rotate(x), rotate(x);
  ll at(ll x) { return m * x + k; }
class LiChao { // maintain max
                                                              Splay* access(Splay *x) {
private:
                                                                Splay *q = nil;
  int n; vector<L> nodes;
                                                                for (; x != nil; x = x->f)
  void insert(int l, int r, int rt, L ln) {
  int m = (l + r) >> 1;
                                                                  splay(x), x -> setCh(q, 1), q = x;
                                                                return q;
    if (nodes[rt].id == -1)
      return nodes[rt] = ln, void();
                                                              void root_path(Splay *x) { access(x), splay(x); }
    bool atLeft = nodes[rt].at(l) < ln.at(l);</pre>
                                                              void chroot(Splay *x){
    if (nodes[rt].at(m) < ln.at(m))</pre>
                                                                root_path(x), x->give_tag(1);
    atLeft ^= 1, swap(nodes[rt], ln);
if (r - l == 1) return;
                                                                x->push(), x->pull();
                                                              }
    if (atLeft) insert(l, m, rt << 1, ln);</pre>
                                                              void split(Splay *x, Splay *y) {
    else insert(m, r, rt << 1 | 1, ln);</pre>
                                                                chroot(x), root_path(y);
  ll query(int l, int r, int rt, ll x) {
                                                              void link(Splay *x, Splay *y) {
    int m = (l + r) >> 1; ll ret = -INF;
                                                                root_path(x), chroot(y);
    if (nodes[rt].id != -1) ret = nodes[rt].at(x);
                                                                x->setCh(y, 1);
    if (r - l == 1) return ret;
                                                              void cut(Splay *x, Splay *y) {
    < m) return max(ret, query(l, m, rt << 1, x));
return max(ret, query(m, r, rt << 1 | 1, x));</pre>
                                                                split(x, y);
                                                                if (y->size != 5) return;
                                                                y->push();
public:
                                                                y - ch[0] = y - ch[0] - f = nil;
  LiChao(int n_) : n(n_), nodes(n * 4) {}
  void insert(L ln) { insert(0, n, 1, ln); }
                                                              Splay* get_root(Splay *x) {
  ll query(ll x) { return query(0, n, 1, x); }
                                                                for (root_path(x); x->ch[0] != nil; x = x->ch[0])
                                                                  x->push();
                                                                splay(x);
3.8 Link cut tree* [a35b5d]
                                                                return x;
struct Splay { // xor-sum
                                                              bool conn(Splay *x, Splay *y) {
  static Splay nil;
                                                                return get_root(x) == get_root(y);
  Splay *ch[2], *f;
  int val, sum, rev, size;
                                                              Splay* lca(Splay *x, Splay *y) {
  Splay (int
                                                                access(x), root_path(y);
  _val = 0) : val(_val), sum(_val), rev(0), size(1) { f = ch[0] = ch[1] = &nil; }
                                                                if (y->f == nil) return y;
                                                                return y->f;
  bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
                                                              void change(Splay *x, int val) {
  int dir()
                                                                splay(x), x->val = val, x->pull();
  { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
                                                              int query(Splay *x, Splay *y) {
    ch[d] = c;
                                                                split(x, y);
    if (c != &nil) c->f = this;
                                                                return y->sum;
    pull();
                                                              }
                                                              3.9 KDTree [375ca2]
  void give_tag(int r) {
    if (r) swap(ch[0], ch[1]), rev ^= 1;
                                                              namespace kdt {
  void push() {
                                                              int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
    if (ch[0] != &nil) ch[0]->give_tag(rev);
                                                                yl[maxn], yr[maxn];
    if (ch[1] != &nil) ch[1]->give_tag(rev);
                                                              point p[maxn];
                                                              int build(int l, int r, int dep = 0) {
    rev = 0;
                                                                if (l == r) return -1;
```

function < bool(const point &, const point &) > f =
 [dep](const point &a, const point &b) {

if (dep & 1) return a.x < b.x;</pre>

```
else return a.y < b.y;</pre>
    };
  int m = (l + r) >> 1;
  nth_element(p + l, p + m, p + r, f);
  xl[m] = xr[m] = p[m].x;
  yl[m] = yr[m] = p[m].y;
lc[m] = build(l, m, dep + 1);
  if (~lc[m]) {
    xl[m] = min(xl[m], xl[lc[m]]);
    xr[m] = max(xr[m], xr[lc[m]]);
    yl[m] = min(yl[m], yl[lc[m]]);
yr[m] = max(yr[m], yr[lc[m]]);
  rc[m] = build(m + 1, r, dep + 1);
  if (~rc[m]) {
    xl[m] = min(xl[m], xl[rc[m]]);
    xr[m] = max(xr[m], xr[rc[m]]);
    yl[m] = min(yl[m], yl[rc[m]]);
    yr[m] = max(yr[m], yr[rc[m]]);
  return m;
bool bound(const point &q, int o, long long d) {
  double ds = sqrt(d + 1.0);
  if (q.x < xl[o] - ds || q.x > xr[o] + ds ||
    q.y < yl[o] - ds || q.y > yr[o] + ds)
    return false;
  return true;
const point &q, long long &d, int o, int dep = 0) {
  if (!bound(q, o, d)) return;
long long cd = dist(p[o], q);
  if (cd != 0) d = min(d, cd);
  if ((dep & 1) && q.x < p[o].x ||</pre>
    !(dep & 1) && q.y < p[o].y) {
if (~lc[o]) dfs(q, d, lc[o], dep + 1);
if (~rc[o]) dfs(q, d, rc[o], dep + 1);
  } else {
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
  }
void init(const vector<point> &v) {
  for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
  root = build(0, v.size());
long long nearest(const point &q) {
  long long res = 1e18;
  dfs(q, res, root);
  return res;
} // namespace kdt
```

4 Flow/Matching

4.1 Bipartite Matching* [784535]

```
struct Bipartite_Matching { // 0-base
  int mp[N], mq[N], dis[N + 1], cur[N], l, r;
  vector<int> G[N + 1];
  bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      int e = G[u][i];
      if (mq[e] ==
           || (dis[mq[e]] == dis[u] + 1 && dfs(mq[e])))
        return mp[mq[e] = u] = e, 1;
    return dis[u] = -1, 0;
  bool bfs() {
    queue < int > q;
    fill_n(dis, l + 1, -1);
    for (int i = 0; i < l; ++i)</pre>
      if (!~mp[i])
        q.push(i), dis[i] = \theta;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (int e : G[u])
        if (!~dis[mq[e]])
          q.push(mq[e]), dis[mq[e]] = dis[u] + 1;
    }
```

```
return dis[l] != -1;
}
int matching() {
   int res = 0;
   fill_n(mp, l, -1), fill_n(mq, r, l);
   while (bfs()) {
     fill_n(cur, l, 0);
     for (int i = 0; i < l; ++i)
        res += (!~mp[i] && dfs(i));
   }
   return res; // (i, mp[i] != -1)
}
void add_edge(int s, int t) { G[s].pb(t); }
void init(int _l, int _r) {
   l = _l, r = _r;
   for (int i = 0; i <= l; ++i)
     G[i].clear();
}
};</pre>
```

4.2 Kuhn Munkres* [4b3863]

```
struct KM { // O-base, maximum matching
  ll w[N][N], hl[N], hr[N], slk[N];
int fl[N], fr[N], pre[N], qu[N], ql, qr, n;
   bool vl[N], vr[N];
   void init(int _n) {
     n = _n;
for (int i = 0; i < n; ++i)</pre>
       fill_n(w[i], n, -INF);
   void add_edge(int a, int b, ll wei) {
     w[a][b] = wei;
   bool Check(int x) {
     if (vl[x] = 1, \sim fl[x])
       return vr[qu[qr++] = fl[x]] = 1;
     while (\sim x) swap(x, fr[fl[x] = pre[x]]);
     return 0;
   void bfs(int s) {
     fill_n(slk
          , n, INF), fill_n(vl, n, \theta), fill_n(vr, n, \theta);
     ql = qr = 0, qu[qr++] = s, vr[s] = 1;
     for (ll d;;) {
       while (ql < qr)</pre>
         for (int x = 0, y = qu[ql++]; x < n; ++x)
           if (!vl[x] && slk
                [x] >= (d = hl[x] + hr[y] - w[x][y])) {
              if (pre[x] = y, d) slk[x] = d;
else if (!Check(x)) return;
       d = INF;
       for (int x = 0; x < n; ++x)
         if (!vl[x] && d > slk[x]) d = slk[x];
       for (int x = 0; x < n; ++x) {</pre>
         if (vl[x]) hl[x] += d;
          else slk[x] -= d;
         if (vr[x]) hr[x] -= d;
       for (int x = 0; x < n; ++x)
         if (!vl[x] && !slk[x] && !Check(x)) return;
   ll solve() {
     fill_n(fl
           n, -1), fill_n(fr, n, -1), fill_n(hr, n, 0);
     for (int i = 0; i < n; ++i)</pre>
       hl[i] = *max_element(w[i], w[i] + n);
     for (int i = 0; i < n; ++i) bfs(i);</pre>
     ll res = 0;
     for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
     return res;
};
```

4.3 MincostMaxflow* [1c78db]

```
struct MinCostMaxFlow { // 0-base
    struct Edge {
        ll from, to, cap, flow, cost, rev;
    } *past[N];
    vector < Edge > G[N];
    int inq[N], n, s, t;
    ll dis[N], up[N], pot[N];
    bool BellmanFord() {
        fill_n(dis, n, INF), fill_n(inq, n, 0);
}
```

```
queue<int> q;
     auto relax = [&](int u, ll d, ll cap, Edge *e) {
       if (cap > 0 && dis[u] > d) {
         dis[u] = d, up[u] = cap, past[u] = e;
         if (!inq[u]) inq[u] = 1, q.push(u);
      }
    }:
    relax(s, 0, INF, 0);
     while (!q.empty()) {
       int u = q.front();
       q.pop(), inq[u] = 0;
       for (auto &e : G[u]) {
         ll d2 = dis[u] + e.cost + pot[u] - pot[e.to];
              (e.to, d2, min(up[u], e.cap - e.flow), &e);
      }
    }
     return dis[t] != INF;
  void solve(int
       , int _t, ll &flow, ll &cost, bool neg = true) {
= _s, t = _t, flow = 0, cost = 0;
    if (neg) BellmanFord(), copy_n(dis, n, pot);
     for (; BellmanFord(); copy_n(dis, n, pot)) {
       for (int
       \dot{i} = 0; i < n; ++i) dis[i] += pot[i] - pot[s]; flow += up[t], cost += up[t] * dis[t];
       for (int i = t; past[i]; i = past[i]->from) {
         auto &e = *past[i];
         e.flow += up[t], G[e.to][e.rev].flow -= up[t];
       }
    }
  void init(int _n) {
    n = _n, fill_n(pot, n, 0);
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(Edge{a, b, cap, 0, cost, SZ(G[b])});
G[b].pb(Edge{b, a, 0, 0, -cost, SZ(G[a]) - 1});
  }
};
```

4.4 Maximum Simple Graph Matching* [0fe1c3]

```
struct Matching { // 0-base
  queue < int > q; int n;
  vector<int> fa, s, vis, pre, match;
  vector<vector<int>> G;
  int Find(int u)
  { return u == fa[u] ? u : fa[u] = Find(fa[u]); }
  int LCA(int x, int y) {
    static int tk = 0; tk++; x = Find(x); y = Find(y);
    for (;; swap(x, y)) if (x != n) {
      if (vis[x] == tk) return x;
      vis[x] = tk;
      x = Find(pre[match[x]]);
    }
  void Blossom(int x, int y, int l) {
    for (; Find(x) != l; x = pre[y]) {
      pre[x] = y, y = match[x];
      if (s[y] == 1) q.push(y), s[y] = 0;
      for (int z: {x, y}) if (fa[z] == z) fa[z] = l;
    }
  bool Bfs(int r) {
    iota(ALL(fa), 0); fill(ALL(s), -1);
    q = queue < int >(); q.push(r); s[r] = 0;
    for (; !q.empty(); q.pop()) {
      for (int x = q.front(); int u : G[x])
  if (s[u] == -1) {
          if (pre[u] = x, s[u] = 1, match[u] == n) {
            for (int a = u, b = x, last;
                 b != n; a = last, b = pre[a])
               last =
                  match[b], match[b] = a, match[a] = b;
            return true;
          q.push(match[u]); s[match[u]] = 0;
        } else if (!s[u] && Find(u) != Find(x)) {
          int l = LCA(u, x);
          Blossom(x, u, l); Blossom(u, x, l);
    return false;
```

4.5 Maximum Weight Matching* [9ffb94]

```
#define REP(i, l, r) for (int i=(l); i<=(r); ++i)</pre>
struct WeightGraph { // 1-based
  struct edge { int u, v, w; }; int n, nx;
  vector<int> lab; vector<vector<edge>> g;
  vector<int> slk, match, st, pa, S, vis;
  vector<vector<int>> flo, flo_from; queue<int> q;
  WeightGraph(int n_1): n(n_1), nx(n * 2), lab(nx + 1),
    g(nx + 1, vector < edge > (nx + 1)), slk(nx + 1),
    flo(nx + 1), flo_from(nx + 1, vector(n + 1, 0)) {
    match = st = pa = S = vis = slk;
    REP(u, 1, n) REP(v, 1, n) g[u][v] = \{u, v, \theta\};
  int E(edge e)
  { return lab[e.u] + lab[e.v] - g[e.u][e.v].w * 2; }
  void update_slk(int u, int x, int &s)
  { if (!s || E(g[u][x]) < E(g[s][x])) s = u; }
  void set_slk(int x) {
    slk[x] = 0;
    REP(u, 1, n)
      if (g[u][x].w > 0 && st[u] != x && S[st[u]] == 0)
        update_slk(u, x, slk[x]);
  void q_push(int x) {
    if (x <= n) q.push(x);</pre>
    else for (int y : flo[x]) q_push(y);
  void set_st(int x, int b) {
    st[x] = b;
    if (x > n) for (int y : flo[x]) set_st(y, b);
  vector<int> split_flo(auto &f, int xr) {
    auto it = find(ALL(f), xr);
    if (auto pr = it - f.begin(); pr % 2 == 1)
      reverse(1 + ALL(f)), it = f.end() - pr;
    auto res = vector(f.begin(), it);
    return f.erase(f.begin(), it), res;
  void set_match(int u, int v) {
    match[u] = g[u][v].v;
    if (u <= n) return;</pre>
    int xr = flo_from[u][g[u][v].u];
    auto &f = flo[u], z = split_flo(f, xr);
REP(i, 0, SZ(z) - 1) set_match(z[i], z[i ^ 1]);
    set_match(xr, v); f.insert(f.end(), ALL(z));
  void augment(int u, int v) {
    for (;;) {
     int xnv = st[match[u]]; set_match(u, v);
      if (!xnv) return;
      set_match(v = xnv, u = st[pa[xnv]]);
  int lca(int u, int v) {
    static int t = 0; ++t;
    for (++t; u || v; swap(u, v)) if (u) {
      if (vis[u] == t) return u;
      vis[u] = t, u = st[match[u]];
      if (u) u = st[pa[u]];
    }
    return 0;
  void add_blossom(int u, int o, int v) {
    int b = find(n + 1 + ALL(st), \theta) - begin(st);
    lab[b] = 0, S[b] = 0, match[b] = match[o];
    vector<int> f = {o};
    for (int t : {u, v}) {
      reverse(1 + ALL(f));
      for (int x = t, y; x != o; x = st[pa[y]])
        f.pb(x), f.pb(y = st[match[x]]), q_push(y);
    flo[b] = f; set st(b, b);
    REP(x, 1, nx) g[b][x].w = g[x][b].w = 0;
    fill(ALL(flo_from[b]), 0);
```

```
for (int xs : flo[b]) {
    REP(x, 1, nx)
      if (g[b][x].w == 0 \mid \mid E(g[xs][x]) < E(g[b][x]))
        g[b][x] = g[xs][x], g[x][b] = g[x][xs];
    REP(x, 1, n)
      if (flo_from[xs][x]) flo_from[b][x] = xs;
  set_slk(b);
void expand_blossom(int b) {
  for (int x : flo[b]) set_st(x, x);
  int xr = flo_from[b][g[b][pa[b]].u], xs = -1;
  for (int x : split_flo(flo[b], xr)) {
    if (xs == -1) { xs = x; continue;
    pa[xs] = g[x][xs].u, S[xs] = 1, S[x] = 0;
    slk[xs] = 0, set_slk(x), q_push(x), xs = -1;
  for (int x : flo[b])
    if (x == xr) S[x] = 1, pa[x] = pa[b];
    else S[x] = -1, set_slk(x);
  st[b] = 0;
bool on_found_edge(const edge &e) {
  if (int u = st[e.u], v = st[e.v]; S[v] == -1) {
    int nu = st[match[v]]; pa[v] = e.u; S[v] = 1;
    slk[v] = slk[nu] = S[nu] = 0; q_push(nu);
   else if (S[v] == 0) {
    if (int o = lca(u, v)) add_blossom(u, o, v);
    else return augment(u, v), augment(v, u), true;
  return false:
bool matching() {
  fill(ALL(S), -1), fill(ALL(slk), 0);
  q = queue < int > ();
  REP(x, 1, nx) if (st[x] == x && !match[x])
pa[x] = S[x] = 0, q_push(x);
  if (q.empty()) return false;
  for (;;) {
    while (SZ(q)) {
      int u = q.front(); q.pop();
      if (S[st[u]] == 1) continue;
      REP(v, 1, n)
        if (g[u][v].w > 0 && st[u] != st[v]) {
          if (E(g[u][v]) != 0)
            update_slk(u, st[v], slk[st[v]]);
                (on_found_edge(g[u][v])) return true;
        }
    int d = INF;
    REP(b, n + 1, nx) if (st[b] == b \&\& S[b] == 1)
      d = min(d, lab[b] / 2);
    REP(x, 1, nx)
      if (int
           s = slk[x]; st[x] == x && s && s[x] <= 0)
        d = min(d, E(g[s][x]) / (S[x] + 2));
    REP(u, 1, n)
      if (S[st[u]] == 1) lab[u] += d;
      else if (S[st[u]] == 0) {
        if (lab[u] <= d) return false;</pre>
        lab[u] -= d;
    REP(b, n + 1, nx) if (st[b] == b \&\& S[b] >= 0)
      lab[b] += d * (2 - 4 * S[b]);
    REP(x, 1, nx)
      if (int s = slk[x]; st[x] == x &&
          s \&\& st[s] != x \&\& E(g[s][x]) == 0)
        if (on_found_edge(g[s][x])) return true;
    REP(b, n + 1, nx)
      if (st[b] == b && S[b] == 1 && lab[b] == 0)
        expand_blossom(b);
  return false;
pair<ll, int> solve() {
  fill(ALL(match), 0);
  REP(u, 0, n) st[u] = u, flo[u].clear();
  int w_max = 0;
  REP(u, 1, n) REP(v, 1, n) {
    flo_from[u][v] = (u == v ? u : 0);
    w_{max} = max(w_{max}, g[u][v].w);
  fill(ALL(lab), w_max);
int n_matches = 0; ll tot_weight = 0;
  while (matching()) ++n_matches;
```

```
 \begin{aligned} & \mathsf{REP}(\mathsf{u},\ 1,\ \mathsf{n}) \ \ \mathbf{if} \ \ (\mathsf{match}[\mathsf{u}] \ \&\& \ \mathsf{match}[\mathsf{u}] \ < \ \mathsf{u}) \\ & \mathsf{tot\_weight} \ += \ \mathsf{g}[\mathsf{u}][\mathsf{match}[\mathsf{u}]].w; \end{aligned} 
      return make_pair(tot_weight, n_matches);
   void add_edge(int u, int v, int w)
   \{ g[u][v].w = g[v][u].w = w; \}
4.6 SW-mincut [c705f5]
struct SW{ // global min cut, O(V^3)
   #define REP for (int i = 0; i < n; ++i)
static const int MXN = 514, INF = 2147483647;
   int vst[MXN], edge[MXN][MXN], wei[MXN];
   void init(int n) {
     REP fill_n(edge[i], n, 0);
   void addEdge(int u, int v, int w){
      edge[u][v] += w; edge[v][u] += w;
   int search(int &s, int &t, int n){
     fill_n(vst, n, 0), fill_n(wei, n, 0);
      s = t = -1
      int mx, cur;
      for (int j = 0; j < n; ++j) {</pre>
       mx = -1, cur = 0;
        REP if (wei[i] > mx) cur = i, mx = wei[i];
       vst[cur] = 1, wei[cur] = -1;
        s = t; t = cur;
        REP if (!vst[i]) wei[i] += edge[cur][i];
      return mx:
   int solve(int n) {
      int res = INF;
      for (int x, y; n > 1; n--){
        res = min(res, search(x, y, n));
        REP edge[i][x] = (edge[x][i] += edge[y][i]);
          edge[y][i] = edge[n - 1][i];
          edge[i][y] = edge[i][n - 1];
        return res;
   }
} sw;
4.7 BoundedFlow*(Dinic*) [4a793f]
struct BoundedFlow { // 0-base
   struct edge {
     int to, cap, flow, rev;
   vector<edge> G[N];
   int n, s, t, dis[N], cur[N], cnt[N];
   void init(int _n) {
     n = n:
      for (int i = 0; i < n + 2; ++i)</pre>
        G[i].clear(), cnt[i] = 0;
   void add_edge(int u, int v, int lcap, int rcap) {
  cnt[u] -= lcap, cnt[v] += lcap;
     G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
   void add_edge(int u, int v, int cap) {
     G[u].pb(edge{v, cap, 0, SZ(G[v])});
     G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
   int dfs(int u, int cap) {
      if (u == t || !cap) return cap;
      for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
        edge &e = G[u][i];
```

if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {

int df = dfs(e.to, min(e.cap - e.flow, cap));

e.flow += df, G[e.to][e.rev].flow -= df;

if (df) {

}

bool bfs() {

dis[u] = -1;

queue<int> q;

}

return df;

 $fill_n(dis, n + 3, -1);$

```
q.push(s), dis[s] = 0;
     while (!q.empty()) {
       int u = q.front();
       q.pop();
       for (edge &e : G[u])
         if (!~dis[e.to] && e.flow != e.cap)
            q.push(e.to), dis[e.to] = dis[u] + 1;
     return dis[t] != -1;
   int maxflow(int _s, int _t) {
     s = _s, t = _t;
     int flow = 0, df;
     while (bfs()) {
       fill_n(cur, n + 3, 0);
       while ((df = dfs(s, INF))) flow += df;
     return flow;
   bool solve() {
     int sum = 0;
for (int i = 0; i < n; ++i)</pre>
       if (cnt[i] > 0)
         add_edge(n + 1, i, cnt[i]), sum += cnt[i];
       else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);</pre>
     if (sum != maxflow(n + 1, n + 2)) sum = -1;
     for (int i = 0; i < n; ++i)</pre>
       if (cnt[i] > 0)
       G[n + 1].pop_back(), G[i].pop_back();
else if (cnt[i] < 0)</pre>
         G[i].pop_back(), G[n + 2].pop_back();
     return sum != -1;
   int solve(int _s, int _t) {
     add_edge(_t, _s, INF);
if (!solve()) return -1; // invalid flow
int x = G[_t].back().flow;
     return G[_t].pop_back(), G[_s].pop_back(), x;
|};
```

4.8 Gomory Hu tree* [11be99]

```
MaxFlow Dinic;
int g[MAXN];
void GomoryHu(int n) { // 0-base
  fill_n(g, n, 0);
  for (int i = 1; i < n; ++i) {
    Dinic.reset();
    add_edge(i, g[i], Dinic.maxflow(i, g[i]));
    for (int j = i + 1; j <= n; ++j)
        if (g[j] == g[i] && ~Dinic.dis[j])
        g[j] = i;
  }
}</pre>
```

4.9 Minimum Cost Circulation* [ba97cf]

```
struct MinCostCirculation { // 0-base
 struct Edge {
 ll from, to, cap, fcap, flow, cost, rev;
} *past[N];
  vector < Edge > G[N];
  ll dis[N], inq[N], n;
  void BellmanFord(int s) {
    fill_n(dis, n, INF), fill_n(inq, n, 0);
    queue<int> q;
    auto relax = [&](int u, ll d, Edge *e) {
      if (dis[u] > d) {
        dis[u] = d, past[u] = e;
        if (!inq[u]) inq[u] = 1, q.push(u);
      }
    };
    relax(s, 0, 0);
    while (!q.empty()) {
      int u = q.front();
      q.pop(), inq[u] = 0;
      for (auto &e : G[u])
        if (e.cap > e.flow)
          relax(e.to, dis[u] + e.cost, &e);
   }
  void try_edge(Edge &cur) {
    if (cur.cap > cur.flow) return ++cur.cap, void();
    BellmanFord(cur.to);
    if (dis[cur.from] + cur.cost < 0) {</pre>
      ++cur.flow, --G[cur.to][cur.rev].flow;
```

```
for (int
             i = cur.from; past[i]; i = past[i]->from) {
          auto &e = *past[i];
         ++e.flow, --G[e.to][e.rev].flow;
     }
     ++cur.cap;
   void solve(int mxlg) {
     for (int b = mxlg; b >= 0; --b) {
       for (int i = 0; i < n; ++i)
for (auto &e : G[i])</pre>
       e.cap *= 2, e.flow *= 2;
for (int i = 0; i < n; ++i)
         for (auto &e : G[i])
           if (e.fcap >> b & 1)
              try_edge(e);
    }
   void init(int _n) { n = _n;
     for (int i = 0; i < n; ++i) G[i].clear();</pre>
   void add_edge(ll a, ll b, ll cap, ll cost) {
     G[a].pb(Edge
          {a, b, 0, cap, 0, cost, SZ(G[b]) + (a == b)});
     G[b].pb(Edge{b, a, 0, 0, 0, -cost, SZ(G[a]) - 1});
} mcmf; // O(VE * ElogC)
```

4.10 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \rightarrow y$ with capacity u-l.
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v\to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.
 - To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching M on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \rightarrow x$ if $(x,y) \in M$, $x \rightarrow y$ otherwise.
 - 2. DFS from unmatched vertices in X.
 - 3. $x \in X$ is chosen iff x is unvisited.
- 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x \to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y \to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c < 0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v)>0, connect $S\to v$ with (cost,cap)=(0,d(v))
 - 5. For each vertex v with d(v) < 0, connect $v \rightarrow T$ with (cost, cap) = (0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \rightarrow v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect $u \rightarrow v$ and $v \rightarrow u$ with capacity w
 - 5. For $v\in G$, connect it with sink $v\to t$ with capacity $K+2T-(\sum_{e\in E(v)}w(e))-2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v' , and connect $u' \to v'$ with weight w(u,v) .
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.
 - 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.
- · Dual of minimum cost maximum flow

- 1. Capacity c_{uv} , Flow f_{uv} , Cost w_{uv} , Required Flow difference for vertex b_u .
- 2. If all w_{uv} are integers, then optimal solution can happen when all p_u are integers.

```
\begin{aligned} \min \sum_{uv} & w_{uv} f_{uv} \\ -f_{uv} & \geq -c_{uv} \Leftrightarrow \min \sum_{u} b_{u} p_{u} + \sum_{uv} c_{uv} \max(0, p_{v} - p_{u} - w_{uv}) \\ -\int_{v} & f_{vu} - \sum_{v} f_{uv} = -b_{u} \end{aligned}
```

5 String

5.1 KMP [5a0728]

```
int F[MAXN];
vector<int> match(string A, string B) {
  vector<int> ans;
  F[0] = -1, F[1] = 0;
  for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
    if (B[i] == B[j]) F[i] = F[j]; // optimize
    while (j != -1 && B[i] != B[j]) j = F[j];
  }
  for (int i = 0, j = 0; i < SZ(A); ++i) {
    while (j != -1 && A[i] != B[j]) j = F[j];
    if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
  }
  return ans;
}</pre>
```

5.2 Z-value* [b47c17]

```
int z[MAXn];
void make_z(const string &s) {
  int l = 0, r = 0;
  for (int i = 1; i < SZ(s); ++i) {
    for (z[i] = max(0, min(r - i + 1, z[i - l]));
        i + z[i] < SZ(s) && s[i + z[i]] == s[z[i]];
        ++z[i])
    ;
  if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
  }
}
```

5.3 Manacher* [1ad8ef]

5.4 SAIS* [6f26bc]

```
auto sais(const auto &s) {
 const int n = SZ(s), z = ranges::max(s) + 1;
  if (n == 1) return vector{0};
 vector<int> c(z); for (int x : s) ++c[x];
 partial_sum(ALL(c), begin(c));
  vector<int> sa(n); auto I = views::iota(0, n);
  vector<bool> t(n, true);
 for (int i = n - 2; i >= 0; --i)
   t[i] = (
       s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
  auto is_lms = views::filter([&t](int x) {
   return x && t[x] && !t[x - 1];
  });
  auto induce = [&] {
   for (auto x = c; int y : sa)
     if (y--) if (!t[y]) sa[x[s[y] - 1]++] = y;
    for (auto x = c; int y : sa | views::reverse)
      if (y--) if (t[y]) sa[--x[s[y]]] = y;
  vector<int> lms, q(n); lms.reserve(n);
  for (auto x = c; int i : I | is_lms)
   q[i] = SZ(lms), lms.pb(sa[--x[s[i]]] = i);
  induce(); vector<int> ns(SZ(lms));
  for (int j = -1, nz = 0; int i : sa | is_lms) {
```

```
if (j >= 0) {
       int len = min({n - i, n - j, lms[q[i] + 1] - i});
       ns[q[i]] = nz += lexicographical_compare(
            begin(s) + j, begin(s) + j + len
            begin(s) + i, begin(s) + i + len);
  fill(ALL(sa), 0); auto nsa = sais(ns);
  for (auto x = c; int y : nsa | views::reverse)
    y = lms[y], sa[--x[s[y]]] = y;
  return induce(), sa;
// sa[i]: sa[i]-th suffix
      is the i-th lexicographically smallest suffix.
// hi[i]: LCP of suffix sa[i] and suffix sa[i - 1].
struct Suffix {
  int n; vector<int> sa, hi, ra;
  Suffix
    (const auto &_s, int _n) : n(_n), hi(n), ra(n) {
vector < int > s(n + 1); // s[n] = 0;
copy_n(_s, n, begin(s)); // _s shouldn't contain 0
     sa = sais(s); sa.erase(sa.begin());
    for (int i = 0; i < n; ++i) ra[sa[i]] = i;
for (int i = 0, h = 0; i < n; ++i) {</pre>
       if (!ra[i]) { h = 0; continue; }
       for (int j = sa[ra[i] - 1]; max
            (i, j) + h < n && s[i + h] == s[j + h];) ++h;
       hi[ra[i]] = h ? h-- : 0;
  }
};
```

5.5 Aho-Corasick Automatan* [794a77]

```
struct AC_Automatan {
  int nx[len][sigma], fl[len], cnt[len], ord[len], top;
  int rnx[len][sigma]; // node actually be reached
  int newnode() {
    fill_n(nx[top], sigma, -1);
    return top++;
  void init() { top = 1, newnode(); }
  int input(string &s) {
    int X = 1;
    for (char c : s) {
   if (!~nx[X][c - 'A']) nx[X][c - 'A'] = newnode();
   X = nx[X][c - 'A'];
    return X; // return the end node of string
  void make_fl() {
    queue < int > q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty(); ) {
      int R = q.front();
      q.pop(), ord[t++] = R;
      for (int i = 0; i < sigma; ++i)</pre>
        if (~nx[R][i]) {
           int X = rnx[R][i] = nx[R][i], Z = fl[R];
           for (; Z && !~nx[Z][i]; ) Z = fl[Z];
          fl[X] = Z ? nx[Z][i] : 1, q.push(X);
        else rnx[R][i] = R > 1 ? rnx[fl[R]][i] : 1;
    }
  void solve() {
    for (int i = top - 2; i > 0; --i)
      cnt[fl[ord[i]]] += cnt[ord[i]];
} ac;
```

5.6 Smallest Rotation [4f469f]

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

5.7 De Bruijn sequence* [a09470]

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L, buf[MAXC * MAXN]; // K <= C^N
void dfs(int *out, int t, int p, int &ptr) {</pre>
     if (ptr >= L) return;
     if (t > N) {
       if (N % p) return;
       for (int i = 1; i <= p && ptr < L; ++i)</pre>
         out[ptr++] = buf[i];
      else
       buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
       for (int j = buf[t - p] + 1; j < C; ++j)</pre>
         buf[t] = j, dfs(out, t + 1, t, ptr);
    }
  void solve(int _c, int _n, int _k, int *out) {
     int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
     if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
```

```
5.8 Extended SAM* [64c3b7]
struct exSAM {
 int len[N * 2], link[N * 2]; // maxlength, suflink
int next[N * 2][CNUM], tot; // [0, tot), root = 0
int lenSorted[N * 2]; // topo. order
  int cnt[N * 2]; // occurence
  int newnode() {
    fill_n(next[tot], CNUM,
    len[tot] = cnt[tot] = link[tot] = 0;
    return tot++;
  void init() { tot = 0, newnode(), link[0] = -1; }
  int insertSAM(int last, int c) {
    int cur = next[last][c];
    len[cur] = len[last] + 1;
    int p = link[last];
    while (p != -1 && !next[p][c])
    next[p][c] = cur, p = link[p];
if (p == -1) return link[cur] = 0, cur;
    int q = next[p][c];
    if (len
        [p] + 1 == len[q]) return link[cur] = q, cur;
    int clone = newnode();
    for (int i = 0; i < CNUM; ++i)</pre>
      next[
           clone][i] = len[next[q][i]] ? next[q][i] : 0;
    len[clone] = len[p] + 1;
    while (p != -1 && next[p][c] == q)
      next[p][c] = clone, p = link[p];
    link[link[cur] = clone] = link[q];
    link[q] = clone;
    return cur;
  void insert(const string &s) {
    int cur = 0;
    for (auto ch : s) {
      int &nxt = next[cur][int(ch - 'a')];
      if (!nxt) nxt = newnode();
      cnt[cur = nxt] += 1;
    }
  void build() {
    queue < int > q;
    q.push(0);
    while (!q.empty()) {
      int cur = q.front();
      q.pop();
      for (int i = 0; i < CNUM; ++i)</pre>
        if (next[cur][i])
           q.push(insertSAM(cur, i));
    vector<int> lc(tot);
    for (int i = 1; i < tot; ++i) ++lc[len[i]];</pre>
    partial_sum(ALL(lc), lc.begin());
    for (int i
         = 1; i < tot; ++i) lenSorted[--lc[len[i]]] = i;
    for (int i = tot - 2; i >= 0; --i)
      cnt[link[lenSorted[i]]] += cnt[lenSorted[i]];
  }
```

5.9 PalTree* [d7d2cf]

| };

```
struct palindromic_tree {
 struct node {
    int next[26], fail, len;
    node(int l = 0) : fail(0), len(l), cnt(0), num(0) {
     for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
  };
  vector<node> St;
  vector < char > s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
    St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
    while (s[n - St[x].len - 1] != s[n])
     x = St[x].fail;
    return x;
  inline void add(int c) {
  s.push_back(c -= 'a'), ++n;
    int cur = get_fail(last);
    if (!St[cur].next[c]) {
      int now = SZ(St);
      St.pb(St[cur].len + 2);
      St[now].fail =
        St[get_fail(St[cur].fail)].next[c];
      St[cur].next[c] = now;
      St[now].num = St[St[now].fail].num + 1;
    last = St[cur].next[c], ++St[last].cnt;
  inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
     St[i->fail].cnt += i->cnt;
  inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
```

5.10 Main Lorentz [615b8f]

```
vector<pair<int, int>> rep[kN]; // 0-base [l, r]
void main_lorentz(const string &s, int sft = 0) {
  const int n = s.size();
  if (n == 1) return;
  const int nu = n / 2, nv = n - nu;
  const string u = s.substr(0, nu), v = s.substr(nu),
         ru(u.rbegin
              (), u.rend()), rv(v.rbegin(), v.rend());
  main_lorentz(u, sft), main_lorentz(v, sft + nu);
  const auto z1 = Zalgo(ru), z2 = Zalgo(v + '#' + u),
    z3 = Zalgo(ru + '#' + rv), z4 = Zalgo(v);
auto get_z = [](const vector<int> &z, int i) {
    return
          (0 <= i and i < (int)z.size()) ? z[i] : 0; };
  auto add_rep
        = [&](bool left, int c, int l, int k1, int k2) {
          int L = max(1, l - k2), R = min(l - left, k1);
    if (L > R) return;
    if (left)
          rep[l].emplace\_back(sft + c - R, sft + c - L);
    else rep[l].emplace_back
    (sft + c - R - l + 1, sft + c - L - l + 1);
  for (int cntr = 0; cntr < n; cntr++) {</pre>
    int l, k1, k2;
    if (cntr < nu) {</pre>
      l = nu - cntr;
       k1 = get_z(z1, nu - cntr);
      k2 = get_z(z2, nv + 1 + cntr);
    } else {
       l = cntr - nu + 1;
```

```
k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu));
k2 = get_z(z4, (cntr - nu) + 1);
}
if (k1 + k2 >= l)
   add_rep(cntr < nu, cntr, l, k1, k2);
}
} // p \in [l, r] => s[p, p + i) = s[p + i, p + 2i)
```

6 Math

6.1 ax+by=gcd(only exgcd *) [7b833d]

```
pll exgcd(ll a, ll b) {
   if (b == 0) return pll(1, 0);
   ll p = a / b;
   pll q = exgcd(b, a % b);
   return pll(q.Y, q.X - q.Y * p);
}
/* ax+by=res, let x be minimum non-negative
g, p = gcd(a, b), exgcd(a, b) * res / g
   if p.X < 0: t = (abs(p.X) + b / g - 1) / (b / g)
   else: t = -(p.X / (b / g))
   p += (b / g, -a / g) * t */</pre>
```

6.2 Floor and Ceil [692c04]

```
int floor(int a, int b)
{ return a / b - (a % b && (a < 0) ^ (b < 0)); }
int ceil(int a, int b)
{ return a / b + (a % b && (a < 0) ^ (b > 0)); }
```

6.3 Floor Enumeration [7cbcdf]

```
// enumerating x = floor(n / i), [l, r]
for (int l = 1, r; l <= n; l = r + 1) {
  int x = n / l;
  r = n / x;
}</pre>
```

6.4 Mod Min [9118e1]

```
// min{k | l <= ((ak) mod m) <= r}, no solution -> -1
ll mod_min(ll a, ll m, ll l, ll r) {
  if (a == 0) return l ? -1 : 0;
  if (ll k = (l + a - 1) / a; k * a <= r)
    return k;
  ll b = m / a, c = m % a;
  if (ll y = mod_min(c, a, a - r % a, a - l % a))
    return (l + y * c + a - 1) / a + y * b;
  return -1;
}</pre>
```

6.5 Gaussian integer qcd [0e7740]

```
cpx gaussian_gcd(cpx a, cpx b) {
#define rnd
    (a, b) ((a >= 0 ? a * 2 + b : a * 2 - b) / (b * 2))
    ll c = a.real() * b.real() + a.imag() * b.imag();
    ll d = a.imag() * b.real() - a.real() * b.imag();
    ll r = b.real() * b.real() + b.imag() * b.imag();
    if (c % r == 0 && d % r == 0) return b;
    return gaussian_gcd
        (b, a - cpx(rnd(c, r), rnd(d, r)) * b);
}
```

6.6 Miller Rabin* [06308c]

6.7 Simultaneous Equations [a231be]

```
struct matrix { //m variables, n equations
   int n, m;
   fraction M[MAXN][MAXN + 1], sol[MAXN];
   int solve() { //-1: inconsistent, >= 0: rank
     for (int i = 0; i < n; ++i) {</pre>
       int piv = 0;
       while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m) continue;
       for (int j = 0; j < n; ++j) {</pre>
         if (i == j) continue;
          fraction tmp = -M[j][piv] / M[i][piv];
         for (int k = 0; k <=</pre>
               m; ++k) M[j][k] = tmp * M[i][k] + M[j][k];
      }
     int rank = 0;
     for (int i = 0; i < n; ++i) {</pre>
       int piv = 0;
       while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m && M[i][m].n) return -1;
       else if (piv
             < m) ++rank, sol[piv] = M[i][m] / M[i][piv];</pre>
     return rank;
| };
```

6.8 Pollard Rho* [cfe72f]

6.9 Simplex Algorithm [6b4566]

d[i][s] *= d[r][s];

```
const int MAXN = 11000, MAXM = 405;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM];
double d[MAXN][MAXM], x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
^{\prime\prime}// x[] is the optimal solution vector // usage :
// value = simplex(a, b, c, N, M);
double simplex(int n, int m){
  ++m:
  fill_n(d[n], m + 1, 0);
fill_n(d[n + 1], m + 1, 0);
  iota(ix, ix + n + m, 0);
  int r = n, s = m - 1;
  for (int i = 0; i < n; ++i) {</pre>
     for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
d[i][m - 1] = 1;</pre>
     d[i][m] = b[i];
     if (d[r][m] > d[i][m]) r = i;
  copy_n(c, m - 1, d[n]);
d[n + 1][m - 1] = -1;
  for (double dd;; ) {
     if (r < n) {
       swap(ix[s], ix[r + m]);
       d[r][s] = 1.0 / d[r][s];
for (int j = 0; j <= m; ++j)
  if (j != s) d[r][j] *= -d[r][s];</pre>
        for (int i = 0; i <= n + 1; ++i) if (i != r) {
   for (int j = 0; j <= m; ++j) if (j != s)</pre>
             d[i][j] += d[r][j] * d[i][s];
```

```
}
  \Gamma = S = -1;
  for (int j = 0; j < m; ++j)
    if (s < 0 || ix[s] > ix[j]) {
      if (d[n + 1][j] > eps ||
           (d[n + 1][j] > -eps && d[n][j] > eps))
  if (s < 0) break;</pre>
  for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {</pre>
    if (r < 0 ||
         (dd = d[r][m]
               / d[r][s] - d[i][m] / d[i][s]) < -eps ||
         (dd < eps && ix[r + m] > ix[i + m]))
      r = i;
  if (r < 0) return -1; // not bounded</pre>
if (d[n + 1][m] < -eps) return -1; // not executable</pre>
double ans = 0;
fill_n(x, m, 0);
for (int i = m; i <
  n + m; ++i) { // the missing enumerated x[i] = 0
if (ix[i] < m - 1){
  ans += d[i - m][m] * c[ix[i]];</pre>
    x[ix[i]] = d[i-m][m];
  }
return ans;
```

6.9.1 Construction

Primal	Dual
Maximize $c^{T}x$ s.t. $Ax \leq b$, $x \geq 0$	Minimize $b^{\intercal}y$ s.t. $A^{\intercal}y \ge c$, $y \ge 0$
Maximize $c^{T}x$ s.t. $Ax \leq b$	Minimize $b^{T}y$ s.t. $A^{T}y = c$, $y \ge 0$
Maximize $c^{T}x$ s.t. $Ax = b$, $x \ge 0$	Minimize $b^{\intercal}y$ s.t. $A^{\intercal}y \ge c$

 $ar{\mathbf{x}}$ and $ar{\mathbf{y}}$ are optimal if and only if for all $i\in[1,n]$, either $\bar{x}_i=0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j=c_i$ holds and for all $i\in[1,m]$ either $\bar{y}_i=0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j=b_j$ holds.

```
1. In case of minimization, let c_i' = -c_i
```

```
2. \sum_{1 \le i \le n} A_{ji} x_i \ge b_j \to \sum_{1 \le i \le n} -A_{ji} x_i \le -b_j
```

- 3. $\sum_{1 \le i \le n} A_{ji} x_i = b_j$
 - $\sum_{1 \le i \le n}^{-} A_{ji} x_i \le b_j$
 - $\sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.10 chineseRemainder [a53b6d]

```
ll solve(ll x1, ll m1, ll x2, ll m2) {
    ll g = gcd(m1, m2);
    if ((x2 - x1) % g) return -1; // no sol
    m1 /= g; m2 /= g;
    pll p = exgcd(m1, m2);
    ll lcm = m1 * m2 * g;
    ll res = p.first * (x2 - x1) * m1 + x1;
    // be careful with overflow
    return (res % lcm + lcm) % lcm;
}
```

6.11 Factorial without prime factor* [c324f3]

```
// O(p^k + log^2 n), pk = p^k
ll prod[MAXP];
ll fac_no_p(ll n, ll p, ll pk) {
  prod[0] = 1;
  for (int i = 1; i <= pk; ++i)
    if (i % p) prod[i] = prod[i - 1] * i % pk;
    else prod[i] = prod[i - 1];
ll rt = 1;
  for (; n; n /= p) {
    rt = rt * mpow(prod[pk], n / pk, pk) % pk;
    rt = rt * prod[n % pk] % pk;
  }
  return rt;
} // (n! without factor p) % p^k</pre>
```

6.12 QuadraticResidue* [e0bf30]

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r & 1) && ((m + 2) & 4)) s = -s;
    a >>= r;
```

```
if (a & m & 2) s = -s;
    swap(a, m);
  }
  return s;
}
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (; ; ) {
    b = rand() % p;
    d = (1LL * b * b + p - a) \% p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL *
         g0 * f0 + 1LL * d * (1LL * g1 * f1 % p)) % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      q0 = tmp;
    tmp = (1LL)
        * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) % p;
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  return a0:
```

6.13 PiCount* [cad6d4]

```
ll PrimeCount(ll n) { // n \sim 10^13 => < 2s
   if (n <= 1) return 0;</pre>
   int v = sqrt(n), s = (v + 1) / 2, pc = 0;
   vector<int> smalls(v + 1), skip(v + 1), roughs(s);
   vector<ll> larges(s);
   for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;</pre>
   for (int i = 0; i < s; ++i) {</pre>
     roughs[i] = 2 * i + 1;
     larges[i] = (n / (2 * i + 1) + 1) / 2;
   for (int p = 3; p <= v; ++p) {
     if (smalls[p] > smalls[p - 1]) {
       int q = p * p;
       ++pc;
       if (1LL * q * q > n) break;
       skip[p] = 1;
       for (int i = q; i <= v; i += 2 * p) skip[i] = 1;</pre>
       int ns = 0;
       for (int k = 0; k < s; ++k) {</pre>
         int i = roughs[k];
         if (skip[i]) continue;
ll d = 1LL * i * p;
          larges[ns] = larges[k] - (d \ll v ? larges
              [smalls[d] - pc] : smalls[n / d]) + pc;
         roughs[ns++] = i;
       }
       s = ns;
       for (int j = v / p; j >= p; --j) {
         int c =
         smalls[j] - pc, e = min(j * p + p, v + 1); \\ \mbox{for (int } i = j * p; i < e; ++i) smalls[i] -= c; \\ \label{eq:smalls}
       }
     }
   for (int k = 1; k < s; ++k) {</pre>
     const ll m = n / roughs[k];
     ll t = larges[k] - (pc + k - 1);
     for (int l = 1; l < k; ++l) {</pre>
       int p = roughs[l];
       if (1LL * p * p > m) break;
t -= smalls[m / p] - (pc + l - 1);
     larges[0] -= t;
   return larges[0];
}
```

6.14 Discrete Log* [da27bf]

```
int DiscreteLog(int s, int x, int y, int m) {
  constexpr int kStep = 32000;
  unordered_map<int, int> p;
```

```
int b = 1:
  for (int i = 0; i < kStep; ++i) {</pre>
    p[y] = i;
y = 1LL * y * x % m;
      = 1LL * b * x % m;
  for (int i = 0; i < m + 10; i += kStep) {
   s = 1LL * s * b % m;</pre>
    if (p.find(s) != p.end()) return i + kStep - p[s];
  return -1;
int DiscreteLog(int x, int y, int m) {
  if (m == 1) return 0;
  int s = 1;
  for (int i = 0; i < 100; ++i) {</pre>
    if (s == y) return i;
s = 1LL * s * x % m;
  if (s == y) return 100;
  int p = 100 + DiscreteLog(s, x, y, m);
  if (fpow(x, p, m) != y) return -1;
  return p;
```

6.15 Berlekamp Massey [3eb6fa]

```
template <typename T>
vector<T> BerlekampMassey(const vector<T> &output) {
   vector<T> d(SZ(output) + 1), me, he;
   for (int f = 0, i = 1; i <= SZ(output); ++i) {
  for (int j = 0; j < SZ(me); ++j)
    d[i] += output[i - j - 2] * me[j];
  if ((d[i] -= output[i - 1]) == 0) continue;
  if (me output[i]);</pre>
      if (me.empty()) {
         me.resize(f = i);
         continue:
      vector<T> o(i - f - 1);
T k = -d[i] / d[f]; o.pb(-k);
      for (T x : he) o.pb(x * k);
      o.resize(max(SZ(o), SZ(me)));
      for (int j = 0; j < SZ(me); ++j) o[j] += me[j];</pre>
      if (i - f + SZ(he)) = SZ(me) he = me, f = i;
   return me;
}
```

6.16 Primes

```
/* 12721 13331 14341 75577 123457 222557
     556679 999983 1097774749 1076767633 100102021
    999997771 1001010013 1000512343 987654361 999991231
     999888733 98789101 987777733 999991921 1010101333
     1010102101 1000000000039 100000000000037
     2305843009213693951 4611686018427387847
     9223372036854775783 18446744073709551557 */
```

6.17 Theorem

Cramer's rule

$$\begin{array}{l} ax\!+\!by\!=\!e \\ cx\!+\!dy\!=\!f \\ \Rightarrow y\!=\!\frac{ed\!-\!bf}{ad\!-\!bc} \\ y\!=\!\frac{af\!-\!ec}{ad\!-\!bc} \end{array}$$

· Vandermonde's Identity

$$C(n+m,k) = \sum_{i=0}^{k} C(n,i)C(m,k-i)$$

· Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where • Rotation Matrix $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

Let D be a n imes n matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

- Cayley's Formula
 - Given a degree sequence $d_1, d_2, ..., d_n$ for each $\emph{labeled}$ vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
 - Let $T_{n,k}$ be the number of *labeled* forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k} = kn^{n-k-1}$.

• Erdős–Gallai theorem

A sequence of nonnegative integers $d_1 \geq \cdots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if

Gale–Ryser theorem

A pair of sequences of nonnegative integers $a_1 \ge \cdots \ge a_n$ and b_1, \dots, b_n A pair or sequences of is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \leq \sum_{i=1}^n \min(b_i,k)$ holds for every $1 \le k \le n$.

• Fulkerson–Chen–Anstee theorem

A sequence $(a_1,\ b_1),\ ...\ ,\ (a_n,\ b_n)$ of nonnegative integer pairs with $a_1 \geq \cdots \geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and

$$\sum_{i=1}^k a_i \leq \sum_{i=1}^k \! \min(b_i, k-1) + \sum_{i=k+1}^n \! \min(b_i, k) \text{ holds for every } 1 \leq k \leq n.$$

For simple polygon, when points are all integer, we have $A = \#\{\text{lattice points in the interior}\} + \frac{\#\{\text{lattice points on the boundary}\}}{2} - 1.$

- · Möbius inversion formula
 - $f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$
 - $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$
- · Spherical cap
 - A portion of a sphere cut off by a plane.
 - r: sphere radius, a: radius of the base of the cap, h: height of the cap, θ : arcsin(a/r).
 - Volume = $\pi h^2 (3r h)/3 = \pi h (3a^2 + h^2)/6 = \pi r^3 (2 + \cos \theta)(1 \theta)$
 - Area $= 2\pi rh = \pi(a^2 + h^2) = 2\pi r^2(1 \cos\theta)$.
- Lagrange multiplier
 - Optimize $f(x_1,...,x_n)$ when k constraints $g_i(x_1,...,x_n)=0$.
 - Lagrangian function $\mathcal{L}(x_1,\,\ldots\,,\,x_n,\,\lambda_1,\,\ldots\,,\,\lambda_k) = f(x_1,\,\ldots\,,\,x_n)$ –
 - $\sum_{i=1}^k \lambda_i g_i(x_1,...,x_n)$. The solution corresponding to the original constrained optimization is always a saddle point of the Lagrangian function.
- Nearest points of two skew lines
 - Line 1: $v_1 = p_1 + t_1 d_1$
 - Line 2: $v_2 = p_2 + t_2 d_2$
 - $\boldsymbol{n} = \boldsymbol{d}_1 \times \boldsymbol{d}_2$
 - $n_1 = d_1 \times n$
 - $n_2 = d_2 \times n$

 - $-\begin{array}{l} c_1\!=\!p_1\!+\!\frac{(p_2\!-\!p_1)\!\cdot\! n_2}{d_1\!\cdot\! n_2}d_1\\ -c_2\!=\!p_2\!+\!\frac{(p_1\!-\!p_2)\!\cdot\! n_1}{d_2\!\cdot\! n_1}d_2\end{array}$
- · Derivatives/Integrals

Integration by parts:
$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx \\ \left| \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^{2}}} \right| \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^{2}}} \left| \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^{2}} \right| \\ \frac{d}{dx}\tan x = 1 + \tan^{2}x \quad \int \tan x = -\frac{\ln|\cos x|}{a} \\ \int e^{-x^{2}} = \frac{\sqrt{\pi}}{2} \text{erf}(x) \quad \int xe^{ax}dx = \frac{e^{ax}}{a^{2}}(ax-1) \\ \int \sqrt{a^{2}+x^{2}} = \frac{1}{2} \left(x\sqrt{a^{2}+x^{2}} + a^{2} \sinh(x/a) \right)$$

Spherical Coordinate

$$(x,y,z) = (r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta)$$

$$(r,\theta,\phi) = (\sqrt{x^2 + y^2 + z^2}, a\cos(z/\sqrt{x^2 + y^2 + z^2}), a\tan(y,x))$$

$$M(\theta)\!=\!\begin{bmatrix} \cos\!\theta & -\!\sin\!\theta \\ \sin\!\theta & \cos\!\theta \end{bmatrix}\!, \!R_x(\theta_x)\!=\!\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\!\theta_x & -\!\sin\!\theta_x \\ 0 & \sin\!\theta & \cos\!\theta \end{bmatrix}$$

6.18 Estimation

n | 2345678920304050100 p(n) 2 3 5 7 11 15 22 30 627 5604 4e4 2e5 2e8 n |100 1e3 1e6 1e9 1e12 1e15 1e18 $\overline{d(i)}$ 12 32 240 1344 6720 26880 103680 n 1234567 11 12 13 14 15 8 10 $\binom{2n}{n}$ 2 6 20 70 252 924 3432 12870 48620 184756 7e5 2e6 1e7 4e7 1.5e8 n |2 3 4 5 6 7 8 9 10 11 12 13 B_n 2 5 15 52 203 877 4140 21147 115975 7e5 4e6 3e7

6.19 Euclidean Algorithms

- $m = |\frac{an+b}{a}|$
- Time complexity: $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ + f(a \operatorname{mod} c, b \operatorname{mod} c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c - b - 1, a, m - 1), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \operatorname{mod} c, b \operatorname{mod} c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c - b - 1, a, m - 1) \\ -h(c, c - b - 1, a, m - 1)), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c - b - 1, a, m - 1) \\ - 2f(c, c - b - 1, a, m - 1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.20 General Purpose Numbers

• Bernoulli numbers

$$\begin{split} &B_0-1, B_1^{\pm}=\pm\frac{1}{2}, B_2=\frac{1}{6}, B_3=0\\ &\sum_{j=0}^m \binom{m+1}{j} B_j=0, \text{EGF is } B(x)=\frac{x}{e^x-1}=\sum_{n=0}^\infty B_n \frac{x^n}{n!}.\\ &S_m(n)=\sum_{k=1}^n k^m=\frac{1}{m+1}\sum_{k=0}^m \binom{m+1}{k} B_k^+ n^{m+1-k} \end{split}$$

• Stirling numbers of the second kind Partitions of n distinct elements into $\bar{\text{exactly}}\,k\,\text{groups.}$

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} {k \choose i} i^n$$

$$x^n = \sum_{i=0}^n S(n,i)(x)_i$$
 • Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

n=1• Catalan numbers

$$C_n^{(k)} = \frac{1}{(k-1)n+1} {kn \choose n}$$

$$C^{(k)}(x) = 1 + x[C^{(k)}(x)]^k$$

Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \ge j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} {n+1 \choose j} (k+1-j)^{n}$$

Tips for Generating Functions

- Ordinary Generating Function $A(x) = \sum_{i>0} a_i x^i$
 - $A(rx) \Rightarrow r^n a_n$

 - $A(x)+B(x)\Rightarrow a_n+b_n$ $A(x)B(x)\Rightarrow \sum_{i=0}^n a_ib_{n-i}$
 - $A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n} a_{i_1} a_{i_2} \dots a_{i_k}$
 - $xA(x)' \Rightarrow na_n$
 - $\frac{A(x)}{1-x} \Rightarrow \sum_{i=0}^{n} a_i$
- Exponential Generating Function $A(x) = \sum_{i>0} \frac{a_i}{i!} x_i$
 - $A(x)+B(x) \Rightarrow a_n+b_n$
 - $A^{(k)}(x) \Rightarrow a_{n+k}$
 - $A(x)B(x) \Rightarrow \sum_{i=0}^{n} {n \choose i} a_i b_{n-i}$
 - $A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n} \binom{n}{i_1,i_2,\dots,i_k} a_{i_1}a_{i_2}\dots a_{i_k}$
 - $xA(x) \Rightarrow na_n$
- · Special Generating Function
 - $(1+x)^n = \sum_{i\geq 0} \binom{n}{i} x^i$
 - $-\frac{1}{(1-x)^n} = \sum_{i>0} {i \choose n-1} x^i$

Polynomial

7.1 Fast Fourier Transform [56bdd7]

```
template < int MAXN >
struct FFT {
  using val_t = complex < double >;
  const double PI = acos(-1);
  val_t w[MAXN];
  FFT() {
    for (int i = 0; i < MAXN; ++i) {
  double arg = 2 * PI * i / MAXN;</pre>
       w[i] = val_t(cos(arg), sin(arg));
  void bitrev(val_t *a, int n); // see NTT
  void trans
       (val_t *a, int n, bool inv = false); // see NTT;
  // remember to replace LL with val_t
```

7.2 Number Theory Transform* [f68103]

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template < int MAXN, ll P, ll RT > //MAXN must be 2^k
struct NTT {
  ll w[MAXN];
  ll mpow(ll a, ll n);
  ll minv(ll a) { return mpow(a, P - 2); }
  NTT() {
    ll'dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int
         i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw % P;
  void bitrev(ll *a, int n) {
    int i = 0;
    for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; (i ^= k) < k; k >>= 1);
       if (j < i) swap(a[i], a[j]);</pre>
    }
  void operator()(
       ll *a, int n, bool inv = false) { //0 <= a[i] < P
     bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
       int dx = MAXN / L, dl = L >> 1;
       for (int i = 0; i < n; i += L) {</pre>
         for (int
           j = i, x = 0; j < i + dl; ++j, x += dx) { ll tmp = a[j + dl] * w[x] % P;
           if ((a[j
                 + dl] = a[j] - tmp) < 0) a[j + dl] += P;
           if ((a[j] += tmp) >= P) a[j] -= P;
        }
      }
     if (inv) {
       reverse(a + 1, a + n);
       ll invn = minv(n);
       for (int
            i = 0; i < n; ++i) a[i] = a[i] * invn % P;
  }
};
```

Fast Walsh Transform* [c9cdb6]

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
for (int L = 2; L <= n; L <<= 1)</pre>
     for (int i = 0; i < n; i += L)</pre>
        for (int j = i; j < i + (L >> 1); ++j)
a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[
     N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N];
     subset_convolution(int *a, int *b, int *c, int L) {
   // c_k = \sum_{i=0}^{n} a_i + b_j
```

```
int n = 1 << L;
for (int i = 1; i < n; ++i)
   ct[i] = ct[i & (i - 1)] + 1;
for (int i = 0; i < n; ++i)
   f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
for (int i = 0; i <= L; ++i)
   fwt(f[i], n, 1), fwt(g[i], n, 1);
for (int i = 0; i <= L; ++i)
   for (int j = 0; j <= i; ++j)
     for (int x = 0; x < n; ++x)
      h[i][x] += f[j][x] * g[i - j][x];
for (int i = 0; i <= L; ++i)
   fwt(h[i], n, -1);
for (int i = 0; i < n; ++i)
   c[i] = h[ct[i]][i];
}</pre>
```

7.4 Polynomial Operation [105808]

```
#define
     fi(s, n) for (int i = (int)(s); i < (int)(n); ++i)
template < int MAXN, ll P, ll RT> // MAXN = 2<sup>k</sup>
struct Poly : vector < ll> { // coefficients in [0, P)
  using vector<ll>::vector;
  static NTT<MAXN, P, RT> ntt;
  int n() const { return (int)size(); } // n() >= 1
  Poly(const Poly &p, int m) : vector<ll>(m) {
    copy_n(p.data(), min(p.n(), m), data());
  Poly& irev()
       { return reverse(data(), data() + n()), *this; }
  Poly& isz(int m) { return resize(m), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n()) if
          (((*this)[i] += rhs[i]) >= P) (*this)[i] -= P;
    return *this;
  Poly& imul(ll k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this:
  Poly Mul(const Poly &rhs) const {
    int m = 1;
    while (m < n() + rhs.n() - 1) m <<= 1;</pre>
    Poly X(*this, m), Y(rhs, m);
ntt(X.data(), m), ntt(Y.data(), m);
    fi(0, m) X[i] = X[i] * Y[i] % P;
    ntt(X.data(), m, true);
    return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
    if (n() == 1) return {ntt.minv((*this)[0])};
    int m = 1;
    while (m < n() * 2) m <<= 1;</pre>
    Poly Xi = Poly(*this, (n() + 1) / 2). Inv().isz(m);
    Poly Y(*this, m);
    ntt(Xi.data(), m), ntt(Y.data(), m);
    fi(0, m) {
    Xi[i] *= (2 - Xi[i] * Y[i]) % P;
      if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
    ntt(Xi.data(), m, true);
    return Xi.isz(n());
  Polv Sart()
        const { // Jacobi((*this)[0], P) = 1, 1e5/235ms
    if (n()
         == 1) return {QuadraticResidue((*this)[0], P)};
    Poly
         X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n());
    return
         X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 + 1);
  pair < Poly , Poly > DivMod
    (const Poly &rhs) const \{ \ // \ (rhs.)back() \ != \theta  if (n() < rhs.n()) return \{ \{ 0 \}, \ *this \};
    const int m = n() - rhs.n() + 1;
    Poly X(rhs); X.irev().isz(m);
    Poly Y(*this); Y.irev().isz(m);
    Poly Q = Y.Mul(X.Inv()).isz(m).irev();
    X = rhs.Mul(Q), Y = *this;
    fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
    return {Q, Y.isz(max(1, rhs.n() - 1))};
  Poly Dx() const {
    Poly ret(n() - 1);
```

```
fi(0,
      ret.n()) ret[i] = (i + 1) * (*this)[i + 1] % P;
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n())
       ret[i + 1] = ntt.minv(i + 1) * (*this)[i] % P;
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
  Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const
  vector<ll> &x, const vector<Poly> &up) const {
const int m = (int)x.size();
  if (!m) return {};
  vector<Poly> down(m * 2);
  // down[1] = DivMod(up[1]).second;
  // fi(2, m *
       2) down[i] = down[i / 2].DivMod(up[i]).second;
  down[1] = Poly(up[1])
       .irev().isz(n()).Inv().irev()._tmul(m, *this);
  fi(2, m * 2) down[i]
       = up[i ^ 1]._tmul(up[i].n() - 1, down[i / 2]);
  vector<ll> y(m);
  fi(0, m) y[i] = down[m + i][0];
static vector<Poly> _tree1(const vector<ll> &x) {
  const int m = (int)x.size();
  vector<Poly> up(m * 2);
  fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
  for (int i = m - 1; i
      > 0; --i) up[i] = up[i * 2].Mul(up[i * 2 + 1]);
  return up;
}
    <ll> Eval(const vector<ll> &x) const { // 1e5, 1s
  auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector
    <ll> &x, const vector<ll> &y) { // 1e5, 1.4s
  const int m = (int)x.size();
  vector<Poly> up = _tree1(x), down(m * 2);
vector<ll> z = up[1].Dx()._eval(x, up);
  fi(\theta, m) z[i] = y[i] * ntt.minv(z[i]) % P;
  fi(0, m) down[m + i] = {z[i]};
  for (int i = m
       `1; i > 0; --i) down[i] = down[i * 2].Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(up[i * 2]));
  return down[1];
Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
  return Dx().Mul(Inv()).Sx().isz(n());
Poly Exp() const \{ // (*this)[0] == 0, 1e5/360ms \}
  if (n() == 1) return {1};
Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
  Poly Y = X.Ln(); Y[0] = P - 1;
  fi(0, n())
       if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i] += P;</pre>
  return X.Mul(Y).isz(n());
^{\prime}// M := P(P - 1). If k >= M, k := k \% M + M.
Poly Pow(ll k) const {
  int nz = 0;
  while (nz < n() && !(*this)[nz]) ++nz;</pre>
  if (nz * min(k, (ll)n()) >= n()) return Poly(n());
if (!k) return Poly(Poly {1}, n());
  Poly X(data() + nz, data() + nz + n() - nz * k);
  const ll c = ntt.mpow(X[0], k % (P - 1));
  return X.Ln().imul
       (k % P).Exp().imul(c).irev().isz(n()).irev();
static ll
    LinearRecursion(const vector<ll> &a, const vector
  <ll> &coef, ll n) { // a_n = |sum c_j| a_n (n-j)
const int k = (int)a.size();
  assert((int)coef.size() == k + 1);
  Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
  fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
  C[k] = 1;
  while (n) {
    if (n % 2) W = W.Mul(M).DivMod(C).second;
```

```
n /= 2, M = M.Mul(M).DivMod(C).second;
}
ll ret = 0;
fi(0, k) ret = (ret + W[i] * a[i]) % P;
return ret;
}
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<>> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

7.5 Value Polynomial [96cde9]

```
struct Poly {
  mint base; // f(x) = poly[x - base]
  vector<mint> poly;
  Poly(mint b = 0, mint x = 0): base(b), poly(1, x) {}
  mint get_val(const mint &x) {
    if (x >= base && x < base + SZ(poly))
       return poly[x - base];
    mint rt = 0;
     vector<mint> lmul(SZ(poly), 1), rmul(SZ(poly), 1);
     for (int i = 1; i < SZ(poly); ++i)</pre>
       lmul[i] = lmul[i - 1] * (x - (base + i - 1));
    for (int i = SZ(poly) - 2; i >= 0; --i)
  rmul[i] = rmul[i + 1] * (x - (base + i + 1));
    for (int i = 0; i < SZ(poly); ++i)
  rt += poly[i] * ifac[i] * inegfac</pre>
           [SZ(poly) - 1 - i] * lmul[i] * rmul[i];
    return rt:
  }
  void raise() { // g(x) = sigma\{base:x\} f(x)
    if (SZ(poly) == 1 && poly[0] == 0)
       return;
    mint nw = get_val(base + SZ(poly));
     poly.pb(nw);
     for (int i = 1; i < SZ(poly); ++i)</pre>
       poly[i] += poly[i - 1];
};
```

7.6 Newton's Method

Given F(x) where

$$F(x) = \sum_{i=0}^{\infty} \alpha_i (x - \beta)^i$$

for β being some constant. Polynomial P such that F(P)=0 can be found iteratively. Denote by Q_k the polynomial such that $F(Q_k)=0$ (mod x^{2^k}), then

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

8 Geometry

8.1 Default Code [7002f8]

```
typedef pair < double , double > pdd;
typedef pair<pdd, pdd> Line;
struct Cir{ pdd 0; double R; };
const double eps = 1e-8;
pdd operator+(pdd a, pdd b)
{ return pdd(a.X + b.X, a.Y + b.Y); }
pdd operator - (pdd a, pdd b)
{ return pdd(a.X - b.X, a.Y - b.Y); }
pdd operator*(pdd a, double b)
{ return pdd(a.X * b, a.Y * b); }
pdd operator/(pdd a, double b)
{ return pdd(a.X / b, a.Y / b); }
double dot(pdd a, pdd b)
{ return a.X * b.X + a.Y * b.Y; }
double cross(pdd a, pdd b)
{ return a.X * b.Y - a.Y * b.X; }
double abs2(pdd a)
{ return dot(a, a); }
double abs(pdd a)
{ return sqrt(dot(a, a)); }
int sign(double a)
{ return fabs(a) < eps ? 0 : a > 0 ? 1 : -1; }
int ori(pdd a, pdd b, pdd c)
{ return sign(cross(b - a, c - a)); }
bool collinearity(pdd p1, pdd p2, pdd p3)
{ return sign(cross(p1 - p3, p2 - p3)) == 0; }
bool btw(pdd p1, pdd p2, pdd p3) {
  if (!collinearity(p1, p2, p3)) return 0;
  return sign(dot(p1 - p3, p2 - p3)) <= 0;</pre>
```

```
bool seg_intersect(pdd p1, pdd p2, pdd p3, pdd p4) {
  int a123 = ori(p1, p2, p3);
  int a124 = ori(p1, p2, p4);
  int a341 = ori(p3, p4, p1);
  int a342 = ori(p3, p4, p2);
  if (a123 == 0 && a124 == 0)
     return btw(p1, p2, p3) || btw(p1, p2, p4) ||
      btw(p3, p4, p1) || btw(p3, p4, p2);
  return a123 * a124 <= 0 && a341 * a342 <= 0;
pdd intersect(pdd p1, pdd p2, pdd p3, pdd p4) \{
  double a123 = cross(p2 - p1, p3 - p1);
  double a124 = cross(p2 - p1, p4 - p1);
  return (p4
       * a123 - p3 * a124) / (a123 - a124); // C^3 / C^2
pdd perp(pdd p1)
{ return pdd(-p1.Y, p1.X); }
pdd projection(pdd p1, pdd p2, pdd p3)
{ return p1 + (
    p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(p2 - p1); }
pdd reflection(pdd p1, pdd p2, pdd p3)
{ return p3 + perp(p2 - p1
      ) * cross(p3 - p1, p2 - p1) / abs2(p2 - p1) * 2; }
pdd linearTransformation
     (pdd p0, pdd p1, pdd q0, pdd q1, pdd r) {
  pdd dp = p1 - p0
       , dq = q1 - q0, num(cross(dp, dq), dot(dp, dq));
  return q0 + pdd(
cross(r - p0, num), dot(r - p0, num)) / abs2(dp);
} // from line p0--p1 to q0--q1, apply to r
8.2 PointSeqDist* [57b6de]
double PointSegDist(pdd q0, pdd q1, pdd p) {
```

8.3 Heart [8bc0b7]

```
pdd circenter
    (pdd p0, pdd p1, pdd p2) { // radius = abs(center)
  p1 = p1 - p0, p2 = p2 - p0;

double x1 = p1.X, y1 = p1.Y, x2 = p2.X, y2 = p2.Y;
  double m = 2. * (x1 * y2 - y1 * x2);
  center.X = (x1 * x1
       * y2 - x2 * x2 * y1 + y1 * y2 * (y1 - y2)) / m;
  center.\dot{Y} = (x1 * x2)
       * (x2 - x1) - y1 * y1 * x2 + x1 * y2 * y2) / m;
  return center + p0;
pdd incenter
    (pdd p1, pdd p2, pdd p3) { // radius = area / s * 2
  double a =
      abs(p2 - p3), b = abs(p1 - p3), c = abs(p1 - p2);
  double s = a + b + c;
  return (a * p1 + b * p2 + c * p3) / s;
pdd masscenter(pdd p1, pdd p2, pdd p3)
{ return (p1 + p2 + p3) / 3; }
pdd orthcenter(pdd p1, pdd p2, pdd p3)
{ return masscenter
    (p1, p2, p3) * 3 - circenter(p1, p2, p3) * 2; }
```

if (sign(abs(q0 - q1)) == 0) return abs(q0 - p);
if (sign(dot(q1 - q0,

p - q0)) >= 0 && sign(dot(q0 - q1, p - q1)) >= 0)
return fabs(cross(q1 - q0, p - q0) / abs(q0 - q1));
return min(abs(p - q0), abs(p - q1));

8.4 point in circle [ecf954]

```
// return q'
    s relation with circumcircle of tri(p[0],p[1],p[2])
bool in_cc(const array<pll, 3> &p, pll q) {
    __int128 det = 0;
    for (int i = 0; i < 3; ++i)
        det += __int128(abs2(p[i]) - abs2(q)) *
            cross(p[(i + 1) % 3] - q, p[(i + 2) % 3] - q);
    return det > 0; // in: >0, on: =0, out: <0
}</pre>
```

8.5 Convex hull* [c7eb5d]

```
vector < int > hull(vector < pdd > &dots){ // n=1 => ans = {}
  if(dots.size()==1)return vector < int > (1, 0);
  if(dots.size()==2) return vector < int > ({0, 1});
  vector < pair < pdd, int >> tmp;
  for(int i=0; i < dots.size(); i++)tmp.pb({dots[i], i});</pre>
```

8.6 PointInConvex* [f86640]

8.7 TangentPointToHull* [523bc1]

```
/* The point should be strictly out of hull
  return arbitrary point on the tangent line */
pii get_tangent(vector<pll> &C, pll p) {
  auto gao = [&](int s) {
    return cyc_tsearch(SZ(C), [&](int x, int y)
    { return ori(p, C[x], C[y]) == s; });
};
return pii(gao(1), gao(-1));
} // return (a, b), ori(p, C[a], C[b]) >= 0
```

8.8 Intersection of line and convex [157258]

```
int TangentDir(vector<pll> &C, pll dir) {
  return cyc_tsearch(SZ(C), [&](int a, int b) {
    return cross(dir, C[a]) > cross(dir, C[b]);
  });
#define cmpL(i) sign(cross(C[i] - a, b - a))
pii lineHull(pll a, pll b, vector<pll> &C) {
  int A = TangentDir(C, a - b);
  int B = TangentDir(C, b - a);
  int n = SZ(C);
  if (cmpL(A) < 0 \mid | cmpL(B) > 0)
  return pii(-1, -1); // no collision
auto gao = [&](int l, int r) {
    for (int t = l; (l + 1) % n != r; ) {
       int m = ((l + r + (l < r ? 0 : n)) / 2) % n;
       (cmpL(m) == cmpL(t) ? l : r) = m;
    return (l + !cmpL(r)) % n;
  };
  pii res = pii(gao(B, A), gao(A, B)); // (i, j)
if (res.X == res.Y) // touching the corner i
    return pii(res.X, -1);
  if (!
       cmpL(res.X) && !cmpL(res.Y)) // along side i, i+1
    switch ((res.X - res.Y + n + 1) % n) {
       case 0: return pii(res.X, res.X);
       case 2: return pii(res.Y, res.Y);
  /* crossing sides (i, i+1) and (j, j+1)
  crossing corner i is treated as side (i, i+1)
  returned
        in the same order as the line hits the convex */
  return res;
} // convex cut: (r, l]
```

8.9 minMaxEnclosingRectangle* [180fb8]

```
const double INF = 1e18, qi = acos(-1) / 2 * 3;
pdd solve(vector<pll> &dots) {
#define diff(u, v) (dots[u] - dots[v])
#define vec(v) (dots[v] - dots[i])
hull(dots);
```

```
double Max = 0. Min = INF. dea:
int n = SZ(dots);
dots.pb(dots[0]);
for (int i = 0, u = 1, r = 1, l = 1; i < n; ++i) {
  pll nw = vec(i + 1);
  while (cross(nw, vec(u + 1)) > cross(nw, vec(u)))
    u = (u + 1) \% n;
  while (dot(nw, vec(r + 1)) > dot(nw, vec(r)))
    r = (r + 1) \% n;
  if (!i) l = (r + 1) % n;
  while (dot(nw, vec(l + 1)) < dot(nw, vec(l)))</pre>
    l = (l + 1) \% n;
  Min = min(Min, (double)(dot(nw, vec(r)) - dot
      (nw, vec(l))) * cross(nw, vec(u)) / abs2(nw));
  deg = acos(dot(diff(r
  , l), vec(u)) / abs(diff(r, l)) / abs(vec(u)));
deg = (qi - deg) / 2;
  Max = max(Max, abs(diff))
      (r, l)) * abs(vec(u)) * sin(deg) * sin(deg));
return pdd(Min, Max);
```

8.10 VectorInPoly* [c6d0fa]

8.11 **PolyUnion*** [3c9b0b]

```
double rat(pll a, pll b) {
   return sign
       (b.X) ? (double)a.X / b.X : (double)a.Y / b.Y;
} // all poly. should be ccw
double polyUnion(vector<vector<pll>>> &poly) {
   double res = 0;
   for (auto &p : poly)
     for (int a = 0; a < SZ(p); ++a) {</pre>
       pll A = p[a], B = p[(a + 1) % SZ(p)];
       vector
           <pair < double , int >> segs = {{0, 0}, {1, 0}};
       for (auto &q : poly) {
         if (&p == &q) continue;
         for (int b = 0; b < SZ(q); ++b) {</pre>
           pll C = q[b], D = q[(b + 1) \% SZ(q)];
           int sc = ori(A, B, C), sd = ori(A, B, D);
           if (sc != sd && min(sc, sd) < 0) {</pre>
             double sa = cross(D
                   - C, A - C), sb = cross(D - C, B - C);
             seas.emplace back
                  (sa / (sa - sb), sign(sc - sd));
           if (!sc && !sd &&
               &q < &p && sign(dot(B - A, D - C)) > 0) {
             segs.emplace_back(rat(C - A, B - A), 1);
segs.emplace_back(rat(D - A, B - A), -1);
           }
         }
       }
       sort(ALL(segs));
       for (auto &s : segs) s.X = clamp(s.X, 0.0, 1.0);
       double sum = 0;
       int cnt = segs[0].second;
       for (int j = 1; j < SZ(segs); ++j) {</pre>
         if (!cnt) sum += segs[j].X - segs[j - 1].X;
         cnt += segs[j].Y;
       res += cross(A, B) * sum;
     }
  return res / 2;
| }
```

8.12 Trapezoidalization [4d3bca]

```
| template < class T >
```

```
idx %= SZ(base);
struct SweepLine {
                                                                      if (abs(et - t) <= eps && s == 2 && !ers) break;</pre>
  struct cmp {
    cmp(const SweepLine &_swp): swp(_swp) {}
                                                                      curTime = et:
    bool operator()(int a, int b) const {
  if (abs(swp.get_y(a) - swp.get_y(b)) <= swp.eps)</pre>
                                                                      event.erase(event.begin());
                                                                      if (s == 2) erase(idx);
        return swp.slope_cmp(a, b);
                                                                      else if (s == 1) swp(idx);
      return swp.get_y(a) + swp.eps < swp.get_y(b);</pre>
                                                                      else insert(idx);
    const SweepLine &swp;
                                                                    curTime = t;
  } _cmp;
  T curTime, eps, curQ;
                                                                 T nextEvent() {
  vector<Line> base;
                                                                    if (event.empty()) return INF;
  multiset < int , cmp > sweep;
                                                                    return event.begin()->X;
  multiset<pair<T, int>> event;
  vector<typename multiset<int, cmp>::iterator> its;
                                                                 int lower_bound(T y) {
                                                                   curQ = y;
  vector
                                                                    auto p = sweep.lower_bound(-1);
      <typename multiset<pair<T, int>>::iterator> eits;
  bool slope_cmp(int a, int b) const {
                                                                    if (p == sweep.end()) return -1;
    assert(a != -1);
if (b == -1) return 0;
                                                                 }
    return sign(cross(base
                                                               };
        [a].Y - base[a].X, base[b].Y - base[b].X)) < 0;
                                                               8.13 Polar Angle Sort* [b20533]
  T get_y(int idx) const {
                                                               int cmp(pll a, pll b, bool same = true) {
    if (idx == -1) return curQ;
    Line l = base[idx];
                                                               #define is_neg(k) (
                                                                    sign(k.Y) < 0 \mid \mid (sign(k.Y) == 0 \&\& sign(k.X) < 0))
    if (l.X.X == l.Y.X) return l.Y.Y;
                                                                 int A = is_neg(a), B = is_neg(b);
    return ((curTime - l.X.X) * l.Y.Y
                                                                 if (A != B)
        + (l.Y.X - curTime) * l.X.Y) / (l.Y.X - l.X.X);
                                                                    return A < B:
                                                                 if (sign(cross(a, b)) == 0)
  void insert(int idx) {
                                                                   return same ? abs2(a) < abs2(b) : -1;</pre>
    its[idx] = sweep.insert(idx);
                                                                 return sign(cross(a, b)) > 0;
    if (its[idx] != sweep.begin())
      update_event(*prev(its[idx]));
    update_event(idx);
                                                               8.14 Half plane intersection* [3753a5]
    event.emplace(base[idx].Y.X, idx + 2 * SZ(base));
                                                               pll area_pair(Line a, Line b)
  void erase(int idx) {
                                                               { return pll(cross(a.Y
    assert(eits[idx] == event.end());
                                                                      a.X, b.X - a.X), cross(a.Y - a.X, b.Y - a.X)); }
    auto p = sweep.erase(its[idx]);
                                                               bool isin(Line l0, Line l1, Line l2) {
    its[idx] = sweep.end();
                                                                 // Check inter(l1, l2) strictly in l0
    if (p != sweep.begin())
                                                                 auto [a02X, a02Y] = area_pair(l0, l2);
      update_event(*prev(p));
                                                                 auto [a12X, a12Y] = area_pair(l1, l2);
                                                                 if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;
return (__int128</pre>
  void update_event(int idx) {
    if (eits[idx] != event.end())
                                                                      ) a02Y * a12X - (__int128) a02X * a12Y > 0;
      event.erase(eits[idx]);
    eits[idx] = event.end();
                                                               /* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
    auto nxt = next(its[idx]);
    if (nxt ==
                                                               vector<Line> halfPlaneInter(vector<Line> arr) {
          sweep.end() || !slope_cmp(idx, *nxt)) return;
                                                                 sort(ALL(arr), [&](Line a, Line b) -> int {
  if (cmp(a.Y - a.X, b.Y - b.X, 0) != -1)
    auto t = intersect(base[idx].
        X, base[idx].Y, base[*nxt].X, base[*nxt].Y).X;
                                                                      return cmp(a.Y - a.X, b.Y - b.X, 0);
    if (t + eps < curTime || t
>= min(base[idx].Y.X, base[*nxt].Y.X)) return;
                                                                    return ori(a.X, a.Y, b.Y) < 0;</pre>
                                                                 }):
    eits[idx] = event.emplace(t, idx + SZ(base));
                                                                 deque<Line> dq(1, arr[0]);
auto pop_back = [&](int t, Line p) {
  void swp(int idx) {
  assert(eits[idx] != event.end());
                                                                    while (SZ(dq
                                                                        ) >= t && !isin(p, dq[SZ(dq) - 2], dq.back()))
    eits[idx] = event.end();
                                                                      dq.pop_back();
    int nxt = *next(its[idx]);
    swap((int&)*its[idx], (int&)*its[nxt]);
                                                                 auto pop_front = [&](int t, Line p) {
    swap(its[idx], its[nxt]);
                                                                    while (SZ(dq) >= t \&\& !isin(p, dq[0], dq[1]))
    if (its[nxt] != sweep.begin())
                                                                     dq.pop_front();
      update_event(*prev(its[nxt]));
    update_event(idx);
                                                                 for (auto p : arr)
                                                                   if (cmp(
  // only expected to call the functions below
                                                                        dq.back().Y - dq.back().X, p.Y - p.X, 0) != -1)
  SweepLine(T t, T e, vector
                                                                 pop_back(2, p), pop_front(2, p), dq.pb(p);
pop_back(3, dq[0]), pop_front(3, dq.back());
      <Line> vec): _cmp(*this), curTime(t), eps(e)
        curQ(), base(vec), sweep(_cmp), event(), its(SZ
                                                                 return vector<Line>(ALL(dq));
      (vec), sweep.end()), eits(SZ(vec), event.end()) {
    for (int i = 0; i < SZ(base); ++i) {</pre>
      auto &[p, q] = base[i];
                                                               8.15 HPI Alternative Form [043534]
      if (p > q) swap(p, q);
      if (p.X <= curTime && curTime <= q.X)</pre>
                                                               using i128 = __int128;
        insert(i);
                                                               struct LN {
      else if (curTime < p.X)</pre>
                                                                 ll a, b, c; // ax + by + c
        event.emplace(p.X, i);
                                                                 pll dir() const { return pll(a, b); }
   }
                                                                 LN(ll ta, ll tb, ll tc) : a(ta), b(tb), c(tc) {}
                                                                 LN(pll S
  void setTime(T t, bool ers = false) {
                                                                      pll T): a((T-S).Y), b(-(T-S).X), c(cross(T,S)) {}
    assert(t >= curTime);
    while (!event.empty() && event.begin()->X <= t) {</pre>
                                                               pdd intersect(LN A, LN B) {
      auto [et, idx] = *event.begin();
                                                                 double c = cross(A.dir(), B.dir());
      int s = idx / SZ(base);
                                                                 i128 a = i128(A.c) * B.a - i128(B.c) * A.a;
```

8.16 RotatingSweepLine [af0be4]

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps), m = 0;
  vector < int > id(n), pos(n);
vector < pii > line(n * (n - 1));
  for (int i = 0; i < n; ++i)</pre>
    for (int j = 0; j < n; ++j)</pre>
      if (i != j) line[m++] = pii(i, j);
  sort(ALL(line), [&](pii a, pii b) {
    return cmp(ps[a.Y] - ps[a.X], ps[b.Y] - ps[b.X]);
  }); // cmp(): polar angle compare
  iota(ALL(id), 0);
  sort(ALL(id), [&](int a, int b) {
    if (ps[a].Y != ps[b].Y) return ps[a].Y < ps[b].Y;</pre>
    return ps[a] < ps[b];</pre>
  }); // initial order, since (1, 0) is the smallest
   or (int i = 0; i < n; ++i) pos[id[i]] = i;
  for (int i = 0; i < m; ++i) {</pre>
    auto l = line[i];
    // do something
    tie(pos[l.X], pos[l.Y], id[pos[l.X]], id[pos[l.Y
         ]]) = make_tuple(pos[l.Y], pos[l.X], l.Y, l.X);
  }
}
```

8.17 Minimum Enclosing Circle* [c4b2d8]

8.18 Intersection of two circles* [f7a2fe]

8.19 Intersection of polygon and circle* [d4d295]

```
// Divides into multiple triangle, and sum up
const double PI=acos(-1);
```

```
double _area(pdd pa, pdd pb, double r){
  if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
  if(abs(pb)<eps) return 0;</pre>
  double S, h, theta;
  double a=abs(pb),b=abs(pa),c=abs(pb-pa);
  double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
  double cosC = dot(pa,pb) / a / b, C = acos(cosC);
  if(a > r){
    S = (C/2)*r*r;
    h = a*b*sin(C)/c;
    if (h < r && B
        < PI/2) S -= (acos(h/r)*r*r - h*sqrt(r*r-h*h));
  else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
    S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
  return S;
double area_poly_circle(const
     vector<pdd> poly,const pdd &0,const double r){
  double S=0;
  for(int i=0;i<SZ(poly);++i)</pre>
    S+=_area(poly[i]-0,poly[(i+1)%SZ(poly
        )]-0,r)*ori(0,poly[i],poly[(i+1)%SZ(poly)]);
  return fabs(S);
```

8.20 Intersection of line and circle* [7a7c59]

8.21 Tangent line of two circles [2f476e]

```
vector<Line
    > go( const Cir& c1 , const Cir& c2 , int sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret:
  double d_sq = abs2(c1.0 - c2.0);
  if (sign(d_sq) == 0) return ret;
  double d = sqrt(d_sq);
  pdd v = (c2.0 - c1.0) / d;
  double c = (c1.R - sign1 * c2.R) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
  pdd n = pdd(v.X * c - sign2 * h * v.Y,
      v.Y * c + sign2 * h * v.X);
    pdd p1 = c1.0 + n * c1.R;
    pdd p2 = c2.0 + n * (c2.R * sign1);
    if (sign(p1.X - p2.X) == 0 and
        sign(p1.Y - p2.Y) == 0)
      p2 = p1 + perp(c2.0 - c1.0);
    ret.pb(Line(p1, p2));
  return ret;
```

8.22 CircleCover* [b8ba2d]

```
bool disjuct(Cir &a, Cir &b, int x)
{return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
     return (sign
         (c[i].R - c[j].R) > 0 \mid | (sign(c[i].R - c[j].
         R) == 0 \&\& i < j)) \&\& contain(c[i], c[j], -1);
  void solve(){
    fill_n(Area, C + 2, 0);
     for(int i = 0; i < C; ++i)</pre>
       for(int j = 0; j < C; ++j)</pre>
         overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)
  for(int j = 0; j < C; ++j)</pre>
         g[i][j] = !(overlap[i][j] || overlap[j][i] ||
              disjuct(c[i], c[j], -1));
     for(int i = 0; i < C; ++i){</pre>
       int E = 0, cnt = 1;
       for(int j = 0; j < C; ++j)</pre>
         if(j != i && overlap[j][i])
            ++cnt;
       for(int j = 0; j < C; ++j)</pre>
         if(i != j && g[i][j]) {
            pdd aa, bb;
            CCinter(c[i], c[j], aa, bb);
            double A =
                 atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X);
            double B =
                 atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X);
            eve[E++] = Teve
                 (bb, B, 1), eve[E++] = Teve(aa, A, -1);
            if(B > A) ++cnt;
       if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
         sort(eve, eve + E);
         eve[E] = eve[0];
         for(int j = 0; j < E; ++j){</pre>
            cnt += eve[j].add;
            Area[cnt
                 ] += cross(eve[j].p, eve[j + 1].p) * .5;
            double theta = eve[j + 1].ang - eve[j].ang;
           if (theta < 0) theta += 2. * pi;
Area[cnt] += (theta</pre>
                  - sin(theta)) * c[i].R * c[i].R * .5;
         }
       }
    }
  }
};
```

8.23 3Dpoint* [badbbd]

```
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x(_x), y(_y), z(_z){}
  Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator - (Point p1, Point p2)
{ return
     Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
Point operator+(Point p1, Point p2)
{ return
     Point(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); }
Point operator*(Point p1, double v)
{ return Point(p1.x * v, p1.y * v, p1.z * v); }
Point operator/(Point p1, double v)
{ return Point(p1.x / v, p1.y / v, p1.z / v); }
Point cross(Point p1, Point p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z
    * p2.x - p1.x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(Point p1, Point p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(Point a)
{ return sqrt(dot(a, a));
Point cross3(Point a, Point b, Point c)
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
//Azimuthal
     angle (longitude) to x-axis in interval [-pi, pi]
```

```
double phi(Point p) { return atan2(p.y, p.x); }
//Zenith
     angle (latitude) to the z-axis in interval [0, pi]
double theta(Point p)
    { return atan2(sqrt(p.x * p.x + p.y * p.y), p.z); }
Point masscenter(Point a, Point b, Point c, Point d)
{ return (a + b + c + d) / 4; }
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
  Point e1 = b - a;
  Point e2 = c - a;
  e1 = e1 / abs(e1);
  e2 = e2 - e1 * dot(e2, e1);
  e2 = e2 / abs(e2);
  Point p = u - a;
  return pdd(dot(p, e1), dot(p, e2));
Point
     rotate_around(Point p, double angle, Point axis) {
  double s = sin(angle), c = cos(angle);
  Point u = axis / abs(axis);
  return u
       * dot(u, p) * (1 - c) + p * c + cross(u, p) * s;
}
```

8.24 Convexhull3D* [875f37]

```
struct convex_hull_3D {
struct Face {
  int a, b, c;
  Face(int ta, int tb, int tc): a(ta), b(tb), c(tc) {}
}; // return the faces with pt indexes
vector<Face> res;
vector<Point> P;
convex_hull_3D(const vector<Point> &_P): res(), P(_P) {
// all points coplanar case will WA, O(n^2)
  int n = SZ(P);
  if (n <= 2) return; // be careful about edge case</pre>
  // ensure first 4 points are not coplanar
  swap(P[1], *find_if(ALL(P), [&](
      auto p) { return sign(abs2(P[0] - p)) != 0; }));
  swap(P[2], *find_if(ALL(P), [&](auto p) { return
       sign(abs2(cross3(p, P[0], P[1]))) != 0; }));
  swap(P[3], *find_if(ALL(P), [&](auto p) { return
       sign(volume(P[0], P[1], P[2], p)) != 0; }));
  vector<vector<int>> flag(n, vector<int>(n));
  res.emplace_back(0, 1, 2); res.emplace_back(2, 1, 0);
  for (int i = 3; i < n; ++i) {</pre>
    vector<Face> next;
    for (auto f : res) {
      int d
          = sign(volume(P[f.a], P[f.b], P[f.c], P[i]));
      if (d <= 0) next.pb(f);</pre>
      int ff = (d > 0) - (d < 0);
      flag[f.a][
          f.b] = flag[f.b][f.c] = flag[f.c][f.a] = ff;
    for (auto f : res) {
      auto F = [&](int x, int y) {
        if (flag[x][y] > 0 && flag[y][x] <= 0)</pre>
          next.emplace_back(x, y, i);
      F(f.a, f.b); F(f.b, f.c); F(f.c, f.a);
    }
    res = next:
 }
bool same(Face s, Face t) {
  if (sign(volume
      (P[s.a], P[s.b], P[s.c], P[t.a])) != 0) return 0;
  if (sign(volume
      (P[s.a], P[s.b], P[s.c], P[t.b])) != 0) return 0;
  if (sign(volume
      (P[s.a], P[s.b], P[s.c], P[t.c])) != 0) return 0;
  return 1;
int polygon_face_num() {
  int ans = 0:
  for (int i = 0; i < SZ(res); ++i)</pre>
    ans += none_of(res.begin(), res.begin()
        + i, [&](Face g) { return same(res[i], g); });
  return ans;
double get volume() {
  double ans = 0;
  for (auto f : res)
```

nw[sd] = ch, addEdge(nw[0], nw[1]);

}

}

```
|} tool;
         volume(Point(\theta, \theta, \theta), P[f.a], P[f.b], P[f.c]);
                                                                 8.26 Triangulation Vonoroi* [da0c5e]
  return fabs(ans / 6);
                                                                 // all coord. is even
double get_dis(Point p, Face f) {
                                                                      , you may want to call halfPlaneInter after then
  Point p1 = P[f.a], p2 = P[f.b], p3 = P[f.c];
double a = (p2.y - p1.y)
  * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y - p1.y);
                                                                 vector<vector<Line>> vec;
                                                                 void build_voronoi_line(int n, pll *arr) {
                                                                    tool.init(n, arr); // Delaunay
  double b = (p2.z - p1.z)
                                                                   vec.clear(), vec.resize(n);
for (int i = 0; i < n; ++i)</pre>
        * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z - p1.z);
  double c = (p2.x - p1.x)
                                                                      for (auto e : tool.head[i]) {
         (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x);
                                                                        int u = tool.oidx[i], v = tool.oidx[e.id];
  double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
return fabs(a * p.x + b *
                                                                        pll m = (arr[v]
                                                                             ] + arr[u]) / 2LL, d = perp(arr[v] - arr[u]);
      p.y + c * p.z + d) / sqrt(a * a + b * b + c * c);
                                                                        vec[u].pb(Line(m, m + d));
// n^2 delaunay: facets with negative z normal of
                                                                 8.27 Minkowski Sum* [0d826a]
// convexhull of (x, y, x^2 + y^2), use a pseudo-point // (0, 0, inf) to avoid degenerate case
                                                                 void rot(vector<pdd> &P){
                                                                      int i = 0:
8.25 DelaunayTriangulation* [982e64]
                                                                      for(int i = 1; i < SZ(P); i++)
    if(P[i].Y < P[j].Y || (P</pre>
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
                                                                               [i].Y == P[j].Y && P[i].X < P[j].X)) j = i;
triangulation such that no points will strictly
                                                                      rotate(P.begin(), P.begin() + j, P.end());
inside circumcircle of any triangle. */
struct Edge {
  int id; // oidx[id]
                                                                 vector<pdd> Minkowski
                                                                      (vector<pdd> P, vector<pdd> Q){ // /P/,/Q/>=3
  list < Edge >:: iterator twin;
                                                                      rot(P), rot(Q);
  Edge(int_id = 0):id(id) {}
                                                                           P.pb(P[0]), P.pb(P[1]); Q.pb(Q[0]), Q.pb(Q[1]);
                                                                      vector<pdd> result; int i = 0, j = 0;
while(i < SZ(P) - 2 || j < SZ(Q) - 2){</pre>
struct Delaunay { // 0-base
                                                                          result.pb(P[i] + Q[j]);
  int n, oidx[N];
  list<Edge> head[N]; // result udir. graph
                                                                           auto c = cross(P[i+1] - P[i], Q[j+1] - Q[j]);
                                                                          if(c >= 0 && i < SZ(P) - 2) ++i;
  pll p[N];
                                                                          if(c \le 0 \&\& j < SZ(Q) - 2) ++j;
  void init(int _n, pll _p[]) {
    n = _n, iota(oidx, oidx + n, 0);
    for (int i = 0; i < n; ++i) head[i].clear();</pre>
                                                                      return result:
    sort(oidx, oidx + n, [&](int a, int b)
    { return _p[a] < _p[b]; });
for (int i = 0; i < n; ++i) p[i] = _p[oidx[i]];
                                                                 9
                                                                      Else
    divide(0, n - 1);
                                                                 9.1 Cyclic Ternary Search* [9017cc]
  void addEdge(int u, int v) {
                                                                 /* bool pred(int a, int b);
                                                                 f(0) \sim f(n-1) is a cyclic-shift U-function return idx s.t. pred(x, idx) is false forall x*/
    head[u].push_front(Edge(v));
    head[v].push_front(Edge(u));
    head[u].begin()->twin = head[v].begin();
                                                                 int cyc_tsearch(int n, auto pred) {
    head[v].begin()->twin = head[u].begin();
                                                                    if (n == 1) return 0;
                                                                   int l = 0, r = n; bool rv = pred(1, 0);
while (r - l > 1) {
  void divide(int l, int r) {
                                                                      int m = (l + r) / 2;
    if (l == r) return;
    if (l + 1 == r) return addEdge(l, l + 1);
int mid = (l + r) >> 1, nw[2] = {l, r};
                                                                      if (pred(0, m) ? rv: pred(m, (m + 1) % n)) r = m;
                                                                      else l = m;
    divide(l, mid), divide(mid + 1, r);
    auto gao = [&](int t) {
                                                                    return pred(l, r % n) ? l : r % n;
      pll pt[2] = {p[nw[0]], p[nw[1]]};
                                                                 }
      for (auto it : head[nw[t]]) {
                                                                 9.2 Mo's Algorithm(With modification) [f05c5b]
         int v = ori(pt[1], pt[0], p[it.id]);
         Mo's Algorithm With modification
           return nw[t] = it.id, true;
                                                                 Block: N^{2/3}, Complexity: N^{5/3}
      return false;
                                                                 struct Query {
                                                                    int L, R, LBid, RBid, T;
    while (gao(0) || gao(1));
addEdge(nw[0], nw[1]); // add tangent
                                                                    Query(int l, int r, int t):
                                                                      L(l), R(r), LBid(l / blk), RBid(r / blk), T(t) {}
    while (true) {
                                                                    bool operator <(const Query &q) const {</pre>
      pll pt[2] = {p[nw[0]], p[nw[1]]};
                                                                      if (LBid != q.LBid) return LBid < q.LBid;</pre>
      int ch = -1, sd = 0;
                                                                      if (RBid != q.RBid) return RBid < q.RBid;</pre>
      for (int t = 0; t < 2; ++t)
    for (auto it : head[nw[t]])</pre>
                                                                      return T < b.T;</pre>
                if (ori(pt[0], pt[1],
                                                                 }:
                     p[it.id]) > 0 && (ch == -1 || in_cc
                                                                 void solve(vector<Query> query) {
                    ({pt[0], pt[1], p[ch]}, p[it.id])))
                                                                   sort(ALL(query));
      ch = it.id, sd = t;
if (ch == -1) break; // upper common tangent
                                                                    int L=0, R=0, T=-1;
                                                                    for (auto q : query) {
      for (auto it = head
                                                                      while (T < q.T) addTime(L, R, ++T); // TODO
           [nw[sd]].begin(); it != head[nw[sd]].end(); )
                                                                      while (T > q.T) subTime(L, R, T--); // TODO
         if (seg_strict_intersect
                                                                      while (R < q.R) add(arr[++R]); //</pre>
                                                                                                            TODO
              (pt[sd], p[it->id], pt[sd ^ 1], p[ch]))
                                                                      while (L > q.L) add(arr[--L]); // TODO
           head[it->id].erase
                                                                      while (R > q.R) sub(arr[R--]); // TODO
                (it->twin), head[nw[sd]].erase(it++);
                                                                      while (L < q.L) sub(arr[L++]); // TODO</pre>
         else ++it;
                                                                      // answer query
```

}

9.3 Mo's Algorithm On Tree [8331c2]

```
Mo's Algorithm On Tree
Preprocess:
1) LCA
2) dfs with in[u] = dft++, out[u] = dft++
3) ord[in[u]] = ord[out[u]] = u
4) bitset < MAXN > inset
struct Query {
  int L, R, LBid, lca;
  Query(int u, int v) {
    int c = LCA(u, v);
    if (c == u || c == v)
      q.lca = -1, q.L = out[c ^ u ^ v], q.R = out[c];
    else if (out[u] < in[v])</pre>
      q.lca = c, q.L = out[u], q.R = in[v];
    else
    bool operator < (const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
    return R < a.R:
  }
void flip(int x) {
   if (inset[x]) sub(arr[x]); // TODO
    else add(arr[x]); // TODO
    inset[x] = ~inset[x];
void solve(vector<Query> query) {
  sort(ALL(query));
  int L = 0, R = 0;
  for (auto q : query) {
    while (R < q.R) flip(ord[++R]);</pre>
    while (L > q.L) flip(ord[--L]);
    while (R > q.R) flip(ord[R--]);
    while (L < q.L) flip(ord[L++]);</pre>
    if (~q.lca) add(arr[q.lca]);
    // answer query
    if (~q.lca) sub(arr[q.lca]);
  }
}
```

9.4 Additional Mo's Algorithm Trick

- · Mo's Algorithm With Addition Only
- Sort querys same as the normal Mo's algorithm.
 - For each query [l,r]:
 - If l/blk = r/blk, brute-force.
 - If $l/blk \neq curL/blk$, initialize $curL := (l/blk+1) \cdot blk$, curR := curL-1
 - If r > curR, increase curR
- decrease curL to fit l, and then undo after answering
- Mo's Algorithm With Offline Second Time
 - Require: Changing answer \equiv adding f([l,r],r+1).
 - Require: f([l,r],r+1) = f([1,r],r+1) f([1,l),r+1).

 - Part1: Answer all f([1,r],r+1) first.
 Part2: Store $curR \to R$ for curL (reduce the space to O(N)), and then answer them by the second offline algorithm.
- Note: You must do the above symmetrically for the left boundaries.

Hilbert Curve [1274a3]

```
ll hilbert(int n, int x, int y) {
  ll res = 0;
  for (int s = n / 2; s; s >>= 1) {
    int rx = (x \& s) > 0;
    int ry = (y \& s) > 0;
    res += s * 1ll * s * ((3 * rx) ^ ry);
    if (ry == 0) {
      if (rx == 1) x = s - 1 - x, y = s - 1 - y;
      swap(x, y);
  return res:
 // n = 2^k
```

9.6 DynamicConvexTrick* [673ffd]

```
// only works for integer coordinates!! maintain max
struct Line {
  mutable ll a, b, p;
  bool operator
       <(const Line &rhs) const { return a < rhs.a; }
  bool operator<(ll x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>> {
```

```
static const ll kInf = 1e18:
  ll Div(ll a,
       ll b) { return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) { x->p = kInf; return 0; }
    if (x
        ->a == y->a) x->p = x->b > y->b ? kInf : -kInf;
    else x -> p = Div(y -> b - x -> b, x -> a - y -> a);
    return x->p >= y->p;
  void addline(ll a, ll b) {
    auto z = insert({a, b, 0}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin
        () && isect(--x, y)) isect(x, y = erase(y));
    ll query(ll x) {
    auto l = *lower_bound(x);
    return l.a * x + l.b;
  }
|};
9.7 All LCS* [78a378]
```

```
void all_lcs(string s, string t) { // 0-base
   vector<int> h(SZ(t));
   iota(ALL(h), 0);
   for (int a = 0; a < SZ(s); ++a) {</pre>
     int v = -1;
      for (int c = 0; c < SZ(t); ++c)</pre>
       if (s[a] == t[c] || h[c] < v)
          swap(h[c], v);
      // LCS(s[0, a], t[b, c]) =
// c - b + 1 - sum([h[i] >= b] | i <= c)
     // h[i] might become -1 !!
   }
}
```

9.8 Date [6f1075]

```
int Date(int y, int m, int d){
   static const int md[]={0,0,31,59,90,120,151
      ,181,212,243,273,304,334,365};
   return y*365+y/4-y/100+y/400+md[m]
     -(m \le 2 \& \& ((y\%4 = 0 \& y\%100! = 0) | |y\%400 = = 0)) + d + 6;
}
```

9.9 DLX* [fbcf6c]

```
#define TRAV(i, link, start)
     for (int i = link[start]; i != start; i = link[i])
template <
    bool E> // E: Exact, NN: num of 1s, RR: num of rows
struct DLX {
  int lt[NN], rg[NN], up[NN], dn[NN
      ], rw[NN], cl[NN], bt[NN], s[NN], head, sz, ans;
  int rows, columns;
  bool vis[NN];
  bitset<RR> sol, cur; // not sure
void remove(int c) {
    if (E) lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];
    TRAV(i, dn, c) {
      if (E) {
        TRAV(j, rg, i)
          up[dn[j]]
                = up[j], dn[up[j]] = dn[j], --s[cl[j]];
        lt[rg[i]] = lt[i], rg[lt[i]] = rg[i];
      }
    }
  void restore(int c) {
    TRAV(i, up, c) {
      if (E) {
        TRAV(j, lt, i)
          ++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
        lt[rg[i]] = rg[lt[i]] = i;
      }
    if (E) lt[rg[c]] = c, rg[lt[c]] = c;
  void init(int c) {
    rows = 0, columns = c;
    for (int i = 0; i < c; ++i) {</pre>
```

```
up[i] = dn[i] = bt[i] = i;
      lt[i] = i == 0 ? c : i - 1;
      rg[i] = i == c - 1 ? c : i + 1;
      s[i] = 0;
    rg[c] = 0, lt[c] = c - 1;
    up[c] = dn[c] = -1;
    head = c, sz = c + 1;
  void insert(const vector<int> &col) {
    if (col.empty()) return;
    int f = sz;
    for (int i = 0; i < (int)col.size(); ++i) {</pre>
      int c = col[i], v = sz++;
      dn[bt[c]] = v;
      up[v] = bt[c], bt[c] = v;
      rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
      rw[v] = rows, cl[v] = c;
      ++s[c];
      if (i > 0) lt[v] = v - 1;
    ++rows, lt[f] = sz - 1;
  int h() {
    int ret = 0;
    fill_n(vis, sz, false);
TRAV(x, rg, head) {
      if (vis[x]) continue;
      vis[x] = true, ++ret;
      TRAV(i, dn, x) TRAV(j, rg, i) vis[cl[j]] = true;
    return ret;
  void dfs(int dep) {
    if (dep + (E ? 0 : h()) >= ans) return;
    if (rg[head
        ] == head) return sol = cur, ans = dep, void();
    if (dn[rg[head]] == rg[head]) return;
    int w = rg[head];
    TRAV(x, rg, head) if (s[x] < s[w]) w = x;
    if (E) remove(w);
    TRAV(i, dn, w) {
      if (!E) remove(i);
      TRAV(j, rg, i) remove(E ? cl[j] : j);
      cur.set(rw[i]), dfs(dep + 1), cur.reset(rw[i]);
      TRAV(j, lt, i) restore(E ? cl[j] : j);
      if (!E) restore(i);
    if (E) restore(w);
  int solve() {
    for (int i = 0; i < columns; ++i)</pre>
      dn[bt[i]] = i, up[i] = bt[i];
    ans = 1e9, sol.reset(), dfs(0);
    return ans;
 }
};
9.10 Matroid Intersection
```

Start from $S = \emptyset$. In each iteration, let

• $Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}$ • $Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}$

If there exists $x \in Y_1 \cap Y_2$, insert x into S. Otherwise for each $x \in S, y \notin S$, create edges

• $x \to y \text{ if } S - \{x\} \cup \{y\} \in I_1$.

• $y \rightarrow x$ if $S - \{x\} \cup \{y\} \in I_2$.

Find a *shortest* path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \notin S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

9.11 AdaptiveSimpson* [4074b3]

```
template < typename Func, typename d = double >
struct Simpson {
  using pdd = pair<d, d>;
  pdd mix(pdd l, pdd r, optional<d> fm = {}) {
   d h = (r.X - l.X) / 2, v = fm.value_or(f(l.X + h));
   return {v, h / 3 * (l.Y + 4 * v + r.Y)};
  d eval(pdd l, pdd r, d fm, d eps) {
    pdd m((l.X + r.X) / 2, fm);
     d s = mix(l, r, fm).second;
     auto [flm, sl] = mix(l, m);
```

```
auto [fmr, sr] = mix(m, r);
d delta = sl + sr - s;
    if (abs(delta
         ) <= 15 * eps) return sl + sr + delta / 15;
     return eval(l, m, flm, eps / 2) +
       eval(m, r, fmr, eps / 2);
  d eval(d l, d r, d eps) {
         ({l, f(l)}, {r, f(r)}, f((l + r) / 2), eps);
  d eval2(d l, d r, d eps, int k = 997) {
    d h = (r - l) / k, s = 0;
for (int i = 0; i < k; ++i, l += h)
      s += eval(l, l + h, eps / k);
    return s;
 }
};
template < typename Func >
Simpson<Func> make_simpson(Func f) { return {f}; }
```

9.12 Simulated Annealing [de78c6]

```
double factor = 100000;
const int base = 1e9; // remember to run ~ 10 times
for (int it = 1; it <= 1000000; ++it) {</pre>
    // ans:
         answer, nw: current value, rnd(): mt19937 rnd()
     if (exp(-(nw - ans
         ) / factor) >= (double)(rnd() % base) / base)
         ans = nw;
     factor *= 0.99995;
}
```

9.13 Tree Hash* [34aae5]

```
ull shift(ull x) {
 x ^= x << 13; x ^= x >> 7; x ^= x << 17;
  return x;
ull dfs(int u, int f) {
  ull sum = seed;
  for(int i:G[u])if(i!=f)sum+=shift(dfs(i, u));
  return sum;
```

9.14 Binary Search On Fraction [765c5a]

```
struct 0 {
  ll p, q;
  Q go(Q b, ll d) { return {p + b.p*d, q + b.q*d}; }
bool pred(0);
// returns smallest p/q in [lo, hi] such that
// pred(p/q) is true, and \theta <= p,q <= N
Q frac_bs(ll N) {
  Q lo{0, 1}, hi{1, 0};
  if (pred(lo)) return lo;
  assert(pred(hi));
  bool dir = 1, L = 1, H = 1;
  for (; L || H; dir = !dir) {
    ll len = 0, step = 1;
    for (int t = 0; t < 2 && (t ? step/=2 : step*=2);)</pre>
      if (Q mid = hi.go(lo, len + step);
          mid.p > N || mid.q > N || dir ^ pred(mid))
        t++:
      else len += step;
    swap(lo, hi = hi.go(lo, len));
    (dir ? L : H) = !!len;
  return dir ? hi : lo;
```

9.15 Min Plus Convolution* [09b5c3]

```
// a is convex a[i+1]-a[i] <= a[i+2]-a[i+1]
(vector<int> &a, vector<int> &b) {
  int n = SZ(a), m = SZ(b);
  vector<int> c(n + m - 1, INF);
  auto dc = [&](auto Y, int l, int r, int jl, int jr) {
    if (l > r) return;
int mid = (l + r) / 2, from = -1, &best = c[mid];
    for (int j = jl; j <= jr; ++j)
  if (int i = mid - j; i >= 0 && i < n)</pre>
        if (best > a[i] + b[j])
          best = a[i] + b[j], from = j;
```

9.16 Bitset LCS [330ab1]

```
cin >> n >> m;
for (int i = 1, x; i <= n; ++i)
   cin >> x, p[x].set(i);
for (int i = 1, x; i <= m; i++) {
   cin >> x, (g = f) |= p[x];
   f.shiftLeftByOne(), f.set(0);
   ((f = g - f) ^= g) &= g;
}
cout << f.count() << '\n';</pre>
```