DANDONG TU

S631 HW1

 X is a random variable. S={set of all UN members} and X:S->R as a function that assigns to each country its corresponding female life expectancy in years(rounded to the nearest integer); z

 $s \in S$,Let x be a number, the sets $\{s \in S, X(s) = x\}$ another set $\{s \in S, X(s) < = x\}$ (set of all UN members whose female life expectancy in years less than or equal to x The probability for all possible sets exists, therefore, X is a random variable

- 2. a) $\{ s \in S, X(s) \le 80 \}$
 - b) { $s \in S, X(s) = 75$ }
 - c) { $s \in S$, $65 \le X(s) \le 70$ }
- 3. Let F be a function, $F:\Omega \rightarrow [0,1]$

a)
$$F(80)=P(\{s \in S, X(s) \le 80\})$$

b)
$$P(x=75)=F(75)-F(74)$$

c)
$$P(65 \le x \le 70) = F(70) - F(64)$$

4.

> library(alr4)

> head(UN11)

	region group fertility ppgdp lifeExpF pctUrban			
Afghanistan	Asia other	5.968 499.0	49.49	23
Albania	Europe other	1.525 3677.2	80.40	53
Algeria	Africa africa	2.142 4473.0	75.00	67
Angola	Africa africa	5.135 4321.9	53.17	59
Anguilla	Caribbean other	2.000 13750.1	81.10	100
Argentina	Latin Amer other	2.172 9162.1	79.89	93

> lifeexp = UN11\$lifeExpF

> head(lifeexp)

```
[1] 49.49 80.40 75.00 53.17 81.10 79.89
> lifeexp.r = round(lifeexp, 0)
> all=length(lifeexp.r)
> all
[1] 199
> p1=length(which(lifeexp.r<=80))
>p1
[1] 157
> p2=length(which(lifeexp.r==75))
> p2
[1] 12
> p3.1=length(which(lifeexp.r<=69))
> p3.1
[1] 60
> p3.2=length(which(lifeexp.r<=65))
> p3.2
[1] 49
> p3=p3.1-p3.2
> p3
[1] 11
> P1=p1/al1
> P2=p2/al1
> P3=p3/al1
> P1
[1] 0.7889447
> P2
[1] 0.06030151
> P3
[1] 0.05527638
```

5. > plot.ecdf(lifeexp)

density.default(x = lifeexp)

Based on the graphs, the variable does not seem to follow a normal distribution since the curve under density.default(x=lifeexp) does not fall as a bell-shaped curve and it is more likes a skewed left shape (left-skewed distribution).