

Homework 6:

Problem 1 (4p). Show that Morseness is stable. That is, if $F: M \times [0,1] \to \mathbf{R}$ is smooth with F_0 Morse and M compact, then there is an $\epsilon > 0$ such that F_t is Morse for all $t < \epsilon$. (Hints given in Guillemin-Pollack, exercises I.7.17 and I.7.18).

Soldin: he use the hints given on G-P: $f := F_0$.

1.7.16: Let $\nabla f = (\frac{\partial f}{\partial x_1}, -\frac{\partial f}{\partial x_m})$, g_{s} det f Morse $\Longrightarrow \forall x \text{ s.t. } (\nabla f)(x) = 0$ we have $\det(H_{L}(x)) \neq 0$.

t Morse => P(x) = det(H(x))2 + H(\(\pi\)(x)H2 > 0 \\
\text{smooth shire pol. of part.}
\text{dericatives.}

I.7.17,18: (M compact \Rightarrow \exists open U: McucRhot. $f_{t}(x) \geq 0$ on $g_{t}(x)$. When $f_{t}(x) \geq 0$ on $g_{t}(x)$ is continuous. Note that $g_{t}(x) = g_{t}(x) = g_{t}(x)$. And $g_{t}(x) = g_{t}(x)$. And $g_{t}(x) = g_{t}(x)$ is constructed as a polynomial of

partial derivatives of F => Smootn.

he have that hilds is closed and disjoint from $M \times \xi_0 3$ which is compact. Hence there exists an $\xi_{70} = 0$, $(M \times \{o_1 \xi\}) \cap hi'(0) = 0$, = 0

=> ft is Morse.

Problem 2 (3p). An *orientation* on a smooth manifold M (with boundary) is an equivalence class of atlases such that all change-of-coordinate functions $\alpha = \phi \circ \psi^{-1}$ satisfy that $\det(d\alpha_x) > 0$ for all x where α is defined.

Classify all compact oriented 1-manifolds with boundary.

Solution! WARNING! With the det. of orientable.

As given here, COID is not orientable.

Honever, it is with the dethuition from G-P:

This is because in the det. of manifold with

boundary as in lecture notes, we don't allow

Heo & IR" as charts".

Both answers are accepted.

Prop 8.2. (G-P): An ordenbable connected mulld with budy admits exactly two orientations.

thence every oriented compact 1-mulld with budy is diffeonorphic to a finite union of the without orient. Since compact UMx with each Mx being Co.17 or Since compact or in one of the two orientations.

Alternatively: Consider "up to diffeo. of ordented muflds". Then we don't see the ordentations at all...

Problem 3 (3p). Using Brouwer's fixed point theorem, show that any square matrix with nonnegative entries must have a nonnegative eigenvalue.

Solution: It 0 is an eigen. Den ne are done so ne may assume the mobylix A is invertible. Think of A as a lin. map

A: \mathbb{R}^n — \mathbb{R}^n .

Let $S_{zo}^{n-1} = \sum_{i=1}^{n} (x_{i-1} x_{i-1}) \in S_{zo}^{n-1}$: $x_i \ge 0 \ \forall i \ 3$.

Since all entries of A are non-neg, we get that $A(\mathbb{R}^n_{zo}) \subseteq \mathbb{R}^n_{zo} = \sum_{i=1}^{n} (x_{i-1} x_{i-1}) \in \mathbb{R}^n$: $x_i \ge 0 \ \forall i \ 3$.

Define $f: S_{zo}^{n-1} \longrightarrow S_{zo}^{n-1}$ $x \longrightarrow \frac{Ax}{\|Ax\|}$.

By Browner's fix. pt then, I has a fix pt. S_{zo} an eigenvector.

(n-P. 2.3.5: $X \subseteq Y$ compact submanifold butersecting a submanifold $2 \subseteq Y$ s.t. dim $X + \dim Z < \dim Y$.

Show that for every E > 0 there exists a deformation $i_b: X \longrightarrow Y$ ($i_b = i_nd: X \longrightarrow Y$)

s.t. $i_t(X) \cap Z = \emptyset$ and $|X - i_t(X)| \in E$.

Case 1: $Y = \mathbb{R}^{h}$.

Def. $F: X \times B_{\epsilon}(0) \longrightarrow Y$ $(x_{1}, s_{2}) \longrightarrow x_{+}s_{-}$.

Then since dimbelos = n we have that

FAZ and Floxibles AZ. Thus by the brans. thun, the set of pts S s.t. one of F(-15) and Floxibles (-15) is not brans. to Z has neas. O. In particular, $\exists s_0 \in B_E(0) = s.t.$ F(-15,1) and Floxibles (-15) are tr. to Z. Let $\exists s \in I$ and $\exists s \in I$ are trongles of the debine

H: XxI --- Y
(x, t) --- F(x,8(+)).

Then H(X,1) is an ϵ -small deform. of X and bransv. by Z, i.e., $H(X,1) \cap Z = \emptyset$.

meneralite bu arbibr. Y...