

CS 362: Computer Graphics

Scan Conversion

Dr. Samit Bhattacharya Dept. of Comp. Sc. & Engg. IIT Guwahati, Assam, India

What

- The pipeline stages covered so far assumed continuous space
 - Methods considered points without any constraint on the coordinates – can be any real number
- To draw something on the screen, we need to consider pixel grid
 - Discreet space

What

- We need to map the representations from continuous to discreet space
- The mapping process is called *scan conversion*
 - Also called *rasterization*
- We will have a look at scan conversion of
 - Point
 - Line
 - Circle

Point Scan Conversion

Trivial: simply round off to the nearest pixel position

Line Scan Conversion

- A line segment is defined by the coordinate positions of the line end-points
- What happens when we try to draw this on a pixel based display?
 - How to choose the correct pixels

Line Equation

Slope-intercept line equation

$$y = m \cdot x + b$$

where

$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$
$$b = y_0 - m \cdot x_0$$

A Very Simple Solution

- Simply work out the corresponding *y* coordinate for each unit x coordinate
- Let's consider the following example

A Very Simple Solution

• First work out *m* and *b*:

$$m = \frac{5-2}{7-2} = \frac{3}{5}$$

$$b = 2 - \frac{3}{5} * 2 = \frac{4}{5}$$

• Now for each *x* value work out the *y* value

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5}$$

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5}$$

$$y(4) = \frac{3}{5} \cdot 4 + \frac{4}{5} = 3\frac{1}{5}$$

$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5}$$

$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5}$$
 $y(6) = \frac{3}{5} \cdot 6 + \frac{4}{5} = 4\frac{2}{5}$

A Very Simple Solution (cont...)

Now just round off the results and turn on these pixels to draw our line

$$y(3) = 2\frac{3}{5} \approx 3$$

$$y(3) = 2\frac{3}{5} \approx 3$$
$$y(4) = 3\frac{1}{5} \approx 3$$
$$y(5) = 3\frac{4}{5} \approx 4$$
$$y(6) = 4\frac{2}{5} \approx 4$$

$$y(5) = 3\frac{4}{5} \approx 4$$

$$y(6) = 4\frac{2}{5} \approx 4$$

A Very Simple Solution (cont...)

- However, this approach is just way too slow
- In particular,
 - The equation y = mx + b requires the multiplication of m by x
 - Rounding off the resulting y coordinates
- We need a faster solution

A Quick Note About Slopes

- In the previous example, we chose to solve the line equation to get *y* coordinate for each *x* coordinate
- What if we had done it the other way around?
- So this gives us: $x = \frac{y b}{m}$

where:
$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$
 and $b = y_0 - m \cdot x_0$

A Quick Note About Slopes (cont...)

• Leaving out the details this gives us:

$$x(3) = 3\frac{2}{3} \approx 4$$
 $x(4) = 5\frac{1}{3} \approx 5$

- We can see easily that this line doesn't look very good!
- We choose which way to work out the line pixels based on the slope of the line

A Quick Note About Slopes (cont...)

- If the slope of a line is between -1 and 1, work out y coordinates based on x coordinates
- Otherwise do the opposite -x coordinates are computed based on y coordinates

The DDA Algorithm

- The digital differential analyzer (DDA) algorithm takes an incremental approach in order to speed up scan conversion
- Consider the list of points that we determined for the line in our previous example:

$$(2, 2), (3, 2^{3}/_{5}), (4, 3^{1}/_{5}), (5, 3^{4}/_{5}), (6, 4^{2}/_{5}), (7, 5)$$

- Notice that as the x coordinates go up by one, the y coordinates simply go up by the slope of the line
 - This is the key insight in the DDA algorithm

The DDA Algorithm (cont...)

• When m is between -1 and 1, begin at the first point in the line and, by incrementing x by 1, calculate the corresponding y as follows

$$y_{k+1} = y_k + m$$

• When m is outside these limits, increment y by 1 and calculate the corresponding x as follows

$$x_{k+1} = x_k + \frac{1}{m}$$

The DDA Algorithm (cont...)

 Again the values calculated by the equations used by the DDA algorithm must be rounded

The DDA Algorithm Summary

- The DDA algorithm is much faster than our previous attempt
 - In particular, there are no longer any multiplications involved
- However, there are still two big issues
 - Accumulation of round-off errors can make the pixelated line drift away from what was intended
 - The rounding operations and floating point arithmetic involved are time consuming

The Bresenham Line Algorithm

• Move across the *x* axis in unit intervals and at each step choose between two different *y* coordinates

- For example, from position (2, 3) we have to choose between (3, 3) and (3, 4)
- We would like the point that is closer to the original line

Derivation

• At sample position x_k+1 the vertical separations from the mathematical line are labelled d_{upper} and d_{lower}

• The *y* coordinate on the mathematical line at x_k+1 is:

$$y = m(x_k + 1) + b$$

Derivation

■ So, d_{upper} and d_{lower} are given as follows:

and
$$d_{lower} = y - y_k$$
$$= m(x_k + 1) + b - y_k$$
$$d_{upper} = (y_k + 1) - y$$

$$a_{upper} = (y_k + 1) - y$$

= $y_k + 1 - m(x_k + 1) - b$

• We can use these to make a simple decision about which pixel is closer to the mathematical line

Derivation

•This simple decision is based on the difference between the two pixel positions:

$$d_{lower} - d_{upper} = 2 m (x_k + 1) - 2 y_k + 2 b - 1$$

• Let's substitute m with $\Delta y/\Delta x$ where Δx and Δy are the differences between the end-points:

$$\Delta x (d_{lower} - d_{upper}) = \Delta x (2 \frac{\Delta y}{\Delta x} (x_k + 1) - 2 y_k + 2b - 1)$$

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + 2\Delta y + \Delta x (2b - 1)$$

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

Derivation

• So, a decision parameter p_k for the kth step along a line is given by:

$$p_k = \Delta x (d_{lower} - d_{upper})$$
$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

- The sign of the decision parameter p_k is the same as that of $d_{lower} d_{upper}$
- If p_k is negative, then choose the lower pixel, otherwise choose the upper pixel

Derivation

- Remember coordinate changes occur along the *x* axis in unit steps, so we can do everything with integer calculations
- At step k+1 the decision parameter is given as:

$$p_{k+1} = 2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c$$

• Subtracting p_k from this we get:

$$p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$

Derivation

• But, x_{k+1} is the same as x_k+1 so:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x(y_{k+1} - y_k)$$

- where y_{k+1} y_k is either 0 or 1 depending on the sign of p_k
- The first decision parameter p0, evaluated at (x0, y0), is given as:

$$p_0 = 2\Delta y - \Delta x$$

4

The Bresenham Line Algorithm

BRESENHAM'S LINE DRAWING ALGORITHM

- 1. Input the two line end-points, storing the left end-point in (x_0, y_0)
- 2. Plot the point (x_0, y_0)
- 3. Calculate the constants Δx , Δy , $2\Delta y$, and $(2\Delta y 2\Delta x)$ and get the first value for the decision parameter as:

$$p_0 = 2\Delta y - \Delta x$$

4. At each x_k along the line, starting at k = 0, perform the following test. If $p_k < 0$, the next point to plot is $(x_k + I, y_k)$ and: $p_{k+1} = p_k + 2\Delta y$

Otherwise, the next point to plot is (x_k+1, y_k+1) and:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

- 5. Repeat step 4 ($\Delta x 1$) times
- The algorithm and derivation above assumes slopes are less than 1 (|m| < 1.0), for other slopes we need to adjust the algorithm slightly

Circle Scan Conversion

• The equation for a circle is:

$$x^2 + y^2 = r^2$$

where r is the radius of the circle

■ So, we can write a simple circle drawing algorithm by solving the equation for *y* at unit *x* intervals using:

$$y = \pm \sqrt{r^2 - x^2}$$

Circle Scan Conversion

- Unsurprisingly this is not a brilliant solution
- Firstly, the resulting circle has large gaps where the slope approaches the vertical
- Secondly, the calculations are not very efficient
 - The square (multiply) operations
 - The square root operation try really hard to avoid these!
- We need a more efficient, more accurate solution

Eight-Way Symmetry

- Circles centred at (0, 0) have eight-way symmetry
- this fact can be exploited to design an efficient algorithm

Mid-Point Circle Algorithm

- An incremental algorithm for drawing circles
- Algorithm calculates pixels only for the top right eighth of the circle
- Other points are derived using the eight-way symmetry

4

Mid-Point Circle Algorithm (cont...)

- Assume that we have just plotted point (x_k, y_k)
- The next point is a choice between (x_k+1, y_k) and (x_k+1, y_k-1)
- •We would like to choose the point that is nearest to the actual circle
 - So how do we make this choice?

4

Mid-Point Circle Algorithm (cont...)

• Let's re-jig the equation of the circle slightly to give us:

 $f_{circ}(x, y) = x^2 + y^2 - r^2$

■ The equation evaluates as follows:

 $f_{circ}(x, y) \begin{cases} < 0, & \text{if } (x, y) \text{ is inside the circle boundary} \\ = 0, & \text{if } (x, y) \text{ is on the circle boundary} \\ > 0, & \text{if } (x, y) \text{ is outside the circle boundary} \end{cases}$

 By evaluating this function at the midpoint between the candidate pixels we can make our decision

Mid-Point Circle Algorithm (cont...)

- Assuming we have just plotted the pixel at (x_k, y_k) so we need to choose between (x_k+1, y_k) and (x_k+1, y_k-1)
- Our decision variable can be defined as:

$$p_k = f_{circ}(x_k + 1, y_k - \frac{1}{2})$$
$$= (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

- If $p_k < 0$ the midpoint is inside the circle and the pixel at y_k is closer to the circle
- Otherwise the midpoint is outside and y_k -1 is closer

Mid-Point Circle Algorithm (cont...)

- To ensure things are as efficient as possible we can do all of our calculations incrementally
- First consider: $p_{k+1} = f_{circ} \left(x_{k+1} + 1, y_{k+1} \frac{1}{2} \right)$

$$= [(x_k + 1) + 1]^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$$

or

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

where y_{k+1} is either y_k or y_k -1 depending on the sign of p_k

Mid-Point Circle Algorithm (cont...)

• The first decision variable is given as

$$p_{0} = f_{circ} (1, r - \frac{1}{2})$$

$$= 1 + (r - \frac{1}{2})^{2} - r^{2}$$

$$= \frac{5}{4} - r$$

- Then if $p_k < 0$ then the next decision variable is given as: $p_{k+1} = p_k + 2x_{k+1} + 1$
- If $p_k > 0$ then the decision variable is $p_{k+1} = p_k + 2x_{k+1} + 1 2y_k + 1$

Mid-Point Circle Algorithm

MID-POINT CIRCLE ALGORITHM

Input radius r and circle centre (x_c, y_c) , then set the coordinates for the first point on the circumference of a circle centred on the origin as:

$$(x_0, y_0) = (0, r)$$

- Calculate the initial value of the decision parameter as: $p_0 = \frac{5}{4} r$
- Starting with k = 0 at each position x_k , perform the following test. If $p_k < 0$, the next point along the circle centred on (0, 0) is (x_k+1, y_k) and:

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

Mid-Point Circle Algorithm (cont...)

- Otherwise the next point along the circle is (x_k+1, y_k-1) and $p_{k+1} = p_k + 2x_{k+1} + 1 2y_{k+1}$
- Determine symmetry points in the other seven octants
- Move each calculated pixel position (x, y) onto the circular path centred at (x_c, y_c) to plot the coordinate values:

$$x = x + x_c \qquad y = y + y_c$$

• Repeat steps 3 to 5 until x >= y

Fill-Area Scan Conversion

- Region filling: "coloring in" a definite image area or region
- Definition at pixel or geometric level
- Pixel level definitions
 - Boundary defined: region defined in terms of boundary pixels
 - Interior defined: region defined in terms of all the pixels within the interior
- Geometric region (usually for polygons):
 region defined in terms of edges and vertices

Region Definitions

- Pixel level mostly used in
 - Applications having complex boundaries
 - Interactive painting systems
- The second mostly used in general graphics packages

Interior-defined region

Boundary-defined region

A

Seed Fill (Boundary Fill) Algorithm

- Assume at least one pixel interior to a polygon or region is known – called seed
- Regions boundary defined
 - For interior defined regions flood-fill algorithm
- Two conventions
 - 4-connected: each pixel connected to four adjacent pixels (Top, Bottom, Left, Right)
 - 8-connected: each pixel connected to eight adjacent pixels (Top, Top Left, Top Right, Bottom, Bottom Left, Bottom Right, Left, Right)

Pixel Adjacency

- Boundary-Fill Algorithm
 - Starting at a point inside the figure and painting the interior in a specified color or intensity

A Simple Seed Fill Algorithm

- Push the seed pixel onto the stack
- While the stack is not empty
 - Pop a pixel from the stack
 - Set the pixel to the required value
 - For each of the 4 connected pixels adjacent to the current pixel
 - If it is a boundary pixel or if it has already been set to the required value, ignore it
 - Else push it onto the stack
- Easy to modify for 8-connected pixels
 - It also works with holes in the polygons

Scan-Line Polygon Fill

Do the following for every scan line:

- 1. Compute the intersection of the current scan line with every polygon edge
- 2. Sort the intersections in increasing order of the *x* coordinate
- 3. Draw every pixel that lies between each pair of intersections

Problem

- What will happen in case of concave polygons
 - We have pairs of intersection points (1,2), (2,3) and (3,4)
 - We should not set pixels between (2,3) it's outside
 - How can we decide?

A Simple Inside-Outside Test

- Suppose we want to know if a point P is inside
 - Determine the bounding box (max and min x and y extents)
 - Choose a point P' outside the bounding box
 - Join P and P'
 - If the line intersects the polygon edges even number of times, P is outside. Else P is inside

P1 inside, P2 outside

Determining Edge-Scanline Intersection

- If a scan line intersects an edge at (x1, y1), the next scan line will intersect the same edge at (x1+1/m, y1+1)
 - m is the slope of the edge

Determining Edge-Scanline Intersection

- We actually don't need to calculate 1/m-a floating point operation
 - Keep a counter C, initially set it to 0
 - Increment counter each time 1/m added to x by $2\Delta x$, till $C \ge \Delta y$
 - Increment x by 1 (y=current scan line), reset C to C- 2Δy
 - Till this point, keep x same, increment y
 - Continue till ymax

Character Rendering

- Letters, digits, non-alphanumeric
- Terms borrowed from typography
 - Typeface: a particular style of characters (Times New Roman, Courier, Arial)
 - Font: cast metal character form to print typeface
 - In CG, the terms are used synonymously
- Fonts
 - Two broad types: Serif, Sans-Serif
 - Can vary in appearance: Normal, bold, italic
- Rendering techniques
 - Bitmap, Outlined

About "Point"

- Font size usually denoted in point (e.g. 10-point, 12-point)
 - Denotes height of the characters in inches
- A term from typography
 - Smallest unit of measure
- We are concerned with desk-top publishing (DTP) point, also called the PostScript point
 - Not the original typographical point
- 1 DTP point = 1/72 of an inch or approx 0.0139 inch

Bitmapped Fonts

- Represents each character as the *on* pixels in a bi-level pixel grid pattern known as bitmap
- Advantages
 - Simple
 - Fast, since the characters are defined in already scan converted form, no further processing is required

Bitmapped Fonts

- Disadvantages
 - More storage: for each character, we need to store the bitmap
 - Although different style/sizes can be generated from one font, the result is not satisfactory
 - Bitmap font size dependent on resolution (e.g. a 12 pixel high bitmap will produce a 12-point character in a 72 pixels/inch resolution, while the same bitmap will produce 9-point character in a 96 pixels/inch resolution)

Outlined Fonts

- Character outline is defined using graphical primitives (e.g. line, arcs)
 - PostScript by Adobe
 - Less storage (no need to store bitmaps any more)
 - Good for styles/sizes
 - Scaling transformation to resize
 - Shearing transformation to italicize etc
 - Slower (since scan conversion is involved)

