

An Optimization Approach for Solving Reachability in Cyber-Physical Systems

Umang Mathur Atul Sandur

Department of Computer Science
University of Illinois, Urbana Champaign

December 7, 2015

Outline

Introduction

Verification and Testing of Hybrid Automata Example

Singular Hybrid Automata: Syntax and Semantics

Reachability Concolic walk

Our approach

Future Work

Cyber-Physical Systems (CPS)

- Cyber-Physical systems are engineered systems that depend upon the integration of
 - computational algorithms, and
 - physical components
- Diverse applications:
 - Healthcare
 - Aerospace, Aeronautics
 - Chemical processes
 - Transportation
 - Energy sector

Cyber-Physical Systems (CPS)

Automobile

Energy

Hybrid Automata: Modelling, Analysis and Synthesis of CPS

- Introduced by Alur et al. to model hybrid systems
- Quite expressive, but undecidable verification (reachability) problems
- Decidable subclasses exists, e.g.
 - Timed Automata (Alur, and Dill),
 - Initialized Rectangular Hybrid automata (Henzinger et al.),
- Most verification techniques rely on exhaustive exploration of state space using finite hisimulations

Hybrid Automata: Modelling, Analysis and Synthesis of CPS

- Introduced by Alur et al. to model hybrid systems
- Quite expressive, but undecidable verification (reachability) problems
- Decidable subclasses exists, e.g.
 - Timed Automata (Alur, and Dill),
 - Initialized Rectangular Hybrid automata (Henzinger et al.),
- Most verification techniques rely on exhaustive exploration of state space using finite hisimulations

Figure: Modelling a smart heater as a Hybrid Automata

Introduction

Verification and Testing of Hybrid Automata Example

Singular Hybrid Automata: Syntax and Semantics

Concolic walk

Our approach

Future Wor

Reachability in Hybrid Systems

Safety Critical Systems:

- Nuclear reactors
- Chemical plants
- Aeronautics/Automobiles

It is therefore important to have certain safety guarantees for such systems

Checking reachability of certain states, thus, is a natural question to ask

- Can reach some error state ?
- How to reach?
 - input ?
 - path ? (non-determinism)

Other interesting applications:

- Motion planning

Robotic Motion Planning

Figure: Robotic motion planning problem modelled as a reachability question

- Can a bot enter o4 starting from some point in region o1

Syntax of SHA

Syntax : Singular Hybrid Automata (SHA)

A singular hybrid automaton is a tuple $\mathcal{H} = (M, M_0, \Sigma, X, \Delta, I, F)$ where

- M is a finite set of control modes and $M_0 \subseteq M$,
- Σ is a finite set of actions,
- X is an (ordered) set of variables,
- $-\Delta\subseteq M imes \mathrm{poly}(X) imes \Sigma imes 2^X imes M$ is the transition relation,
- $-I: M \to \operatorname{poly}(X)$ is the mode-invariant function, and
- $-\ F:M\to \mathbb{Q}^{|X|}$ is the mode-dependent flow function characterizing the rate of each variable in each mode.

Figure: Example SHA

- Configuration (m, ν) , $m \in M$, $\nu \in \mathbb{R}^{|X|}$
- Timed action (t,a), $t \in \mathbb{R}^{\geq 0}$ and $a \in \Sigma$
- Transition $((m, \nu)(t, a)(m', \nu'))$
- A run is a sequence of transitions $(m_0, \nu_0)(t_1, a_1)(m_1, \nu_1)(t_2, a_2)\cdots$

Figure: Example run in a SHA

- Configuration (m, ν) , $m \in M$, $\nu \in \mathbb{R}^{|X|}$
- Timed action $(t, a), t \in \mathbb{R}^{\geq 0}$ and $a \in \Sigma$
- Transition $((m, \nu)(t, a)(m', \nu'))$
- A run is a sequence of transitions $(m_0, \nu_0)(t_1, a_1)(m_1, \nu_1)(t_2, a_2)\cdots$

Figure: Example run in a SHA

- Configuration (m, ν) , $m \in M$, $\nu \in \mathbb{R}^{|X|}$
- Timed action (t,a), $t \in \mathbb{R}^{\geq 0}$ and $a \in \Sigma$
- Transition $((m, \nu)(t, a)(m', \nu'))$
- A run is a sequence of transitions $(m_0, \nu_0)(t_1, a_1)(m_1, \nu_1)(t_2, a_2)\cdots$

Figure: Example run in a SHA

- Configuration (m, ν) , $m \in M$, $\nu \in \mathbb{R}^{|X|}$
- Timed action $(t, a), t \in \mathbb{R}^{\geq 0}$ and $a \in \Sigma$
- Transition $((m, \nu)(t, a)(m', \nu'))$
- A run is a sequence of transitions $(m_0, \nu_0)(t_1, a_1)(m_1, \nu_1)(t_2, a_2)\cdots$

Figure: Example run in a SHA

- Configuration (m, ν) , $m \in M$, $\nu \in \mathbb{R}^{|X|}$
- Timed action (t,a), $t \in \mathbb{R}^{\geq 0}$ and $a \in \Sigma$
- Transition $((m, \nu)(t, a)(m', \nu'))$
- A run is a sequence of transitions $(m_0, \nu_0)(t_1, a_1)(m_1, \nu_1)(t_2, a_2)\cdots$

Figure: Example run in a SHA

- Configuration (m, ν) , $m \in M$, $\nu \in \mathbb{R}^{|X|}$
- Timed action (t,a), $t \in \mathbb{R}^{\geq 0}$ and $a \in \Sigma$
- Transition $((m, \nu)(t, a)(m', \nu'))$
- A run is a sequence of transitions $(m_0, \nu_0)(t_1, a_1)(m_1, \nu_1)(t_2, a_2)\cdots$

Figure: Example run in a SHA

Modelling Robot Motion Planning Using SHA

Figure: Robotic motion planning problem: Modelling as a SHA

Modelling Robot Motion Planning Using SHA

Figure: Robotic motion planning problem: Modelling as a SHA

Modelling Robot Motion Planning Using SHA

Figure: Singular Hybrid Automaton for robotic motion planning example

Reachability in SHA

Configuration Reachability Problem

Given a singular hybrid automaton \mathcal{A} , a set of starting configurations \mathcal{S} , and a set of target configurations \mathcal{T} , decide whether there exists a

- finite run
- starting from some starting from some $(m, \nu) \in \mathcal{S}$, and
- ending in some $(m', \nu') \in \mathcal{T}$

Reachability in SHA

Configuration Reachability Problem

Given a singular hybrid automaton \mathcal{A} , a set of starting configurations \mathcal{S} , and a set of target configurations \mathcal{T} , decide whether there exists a

- finite run
- starting from some starting from some $(m, \nu) \in \mathcal{S}$, and
- ending in some $(m', \nu') \in \mathcal{T}$

Theorem (Henzinger et. al., '98)

Configuration reachability problem is undecidable for 3 or more continuous variables.

Concolic walk

Concepts

- Combination of symbolic reasoning, concrete evaluation and heuristic search
- Use fitness function to measure how close a point in half-space (obtained from linear constraints) is to global solutions for whole path condition
- Search heuristic uses fitness function to guide random walk towards promising regions in valuation space
- Not complete, but sound approach to handle non-linear constraints in path condition

Our approach

Concepts

- Combination of symbolic reasoning, concrete evaluation and heuristic search
- Use fitness function to measure how close a point in half-space (obtained from linear constraints) is to global solutions for whole path condition
- Search heuristic uses fitness function to guide random walk towards promising regions in valuation space
- Not complete, but sound approach to handle non-linear constraints in path condition

Summary and Future Work

- Future work

Thank You!