A.03.04 – Modelos de Propriedades Energéticas (Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-10 19h06m49s UTC

Modelos de Propriedades Energéticas Energia Interna e Entalpia U e H em Modelos de Substâncias

Tópicos de Leitura

O sistema fechado de massa *m*, ilustrado:

► Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;

O sistema fechado de massa *m*, ilustrado:

- ► Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;
- ► $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;

O sistema fechado de massa *m*, ilustrado:

- ► Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;
- ► $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;
- A temperatura experimenta uma variação de (dT)_V.

$$\delta e_{\it ent} - \delta e_{\it sai} = {\it de}_{\it sist}$$

$$\delta e_{ extit{ent}} - \delta e_{ extit{sai}} = extit{d} e_{ extit{sist}} \quad
eg \ (\delta q)_{ extit{V}} = extit{d} u.$$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 $ightharpoonup (\delta q)_{v} = du.$

Assim, o calor transferido a volume constante a um sistema fechado é a variação de sua energia interna!

Define-se o calor específico a volume constante da substância do sistema, c_v , como

$$c_{v}\equiv\left(rac{\partial u}{\partial T}
ight)_{v},$$

uma propriedade termodinâmica intensiva.

Define-se o calor específico a volume constante da substância do sistema, c_V , como

$$c_{v}\equiv\left(rac{\partial u}{\partial T}
ight)_{v},$$

uma propriedade termodinâmica intensiva.

Ainda, $C_v = (\partial U/\partial T)_v = m c_v$ é a capacidade térmical a volume constante do sistema.

Entalpia – Relação com Temperatura

O sistema fechado de massa *m*, ilustrado:

 Recebe uma diferencial de calor a pressão constante, (δq)_P;

Entalpia – Relação com Temperatura

O sistema fechado de massa *m*, ilustrado:

- Recebe uma diferencial de calor a pressão constante, (δq)_P;
- Realiza uma diferencial de trabalho a pressão constante, $(\delta w)_P = P dv$;

Entalpia – Relação com Temperatura

O sistema fechado de massa *m*, ilustrado:

- Recebe uma diferencial de calor a pressão constante, (δq)_P;
- ► Realiza uma diferencial de trabalho a pressão constante, $(\delta w)_P = P dv$;
- A temperatura experimenta uma variação de (dT)_P, possivelmente diferente de (dT)_V.

$$\delta e_{\it ent} - \delta e_{\it sai} = {\it de}_{\it sist}$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist} o (\delta q)_P - (\delta w)_P = du$$

$$egin{aligned} \delta e_{\textit{ent}} - \delta e_{\textit{sai}} &= \textit{de}_{\textit{sist}} &
ightharpoonup \ (\delta q)_P - (\delta w)_P &= \textit{du} &
ightharpoonup \ (\delta q)_P &= \textit{du} + P \, \textit{dv} &= \textit{d(u + Pv)}. \end{aligned}$$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 \rightarrow $(\delta q)_P - (\delta w)_P = du$ \rightarrow $(\delta q)_P = du + P dv = d(u + Pv).$

A quantidade (u + Pv) aparece frequentemente o suficiente para ser definida como uma nova propriedade.

Assim,

$$H \equiv U + PV$$
 [kJ], e

Assim,

$$H \equiv U + PV$$
 [kJ], e
 $h \equiv u + Pv$ [kJ/kg],

Assim,

$$H \equiv U + PV$$
 [kJ], e
 $h \equiv u + Pv$ [kJ/kg],

são a entalpia e a entalpia específica, respectivamente: novas propriedades termodinâmicas.

O termo origina do verbo grego "ενθάλπω", que significa: "(eu) aqueço", conforme a própria ilustração.

O termo origina do verbo grego " $\epsilon \nu \vartheta \acute{\alpha} \lambda \pi \omega$ ", que significa: "(eu) aqueço", conforme a própria ilustração.

Da expressão $(\delta q)_P = dh$, tem-se que o calor transferido a pressão constante a um sistema fechado é a variação de sua entalpia!

Define-se o calor específico a pressão constante da substância do sistema, c_P , como

$$c_P \equiv \left(\frac{\partial h}{\partial T}\right)_P,$$

uma propriedade termodinâmica intensiva.

Define-se o calor específico a pressão constante da substância do sistema, c_P , como

$$c_P \equiv \left(\frac{\partial h}{\partial T}\right)_P,$$

uma propriedade termodinâmica intensiva.

Ainda, $C_P = (\partial H/\partial T)_P = m c_P$ é a capacidade térmical a pressão constante do sistema.

$$\delta q - \delta w = du$$

$$\delta q - \delta w = du$$
 \rightarrow $(\delta q)_T - (\delta w)_T = (du)_T = 0$

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_{v}(T) = \frac{du}{dT}$$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_{ν} simplifica para

$$c_{v}(T) = \frac{du}{dT}$$
 \rightarrow $u(T) = \int c_{v}(T) dT.$

Experimentos mostraram que u: u(T), assim, Ainda,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_{ν} simplifica para

$$c_{v}(T) = \frac{du}{dT}$$
 \rightarrow $u(T) = \int c_{v}(T) dT.$

Experimentos mostraram que u: u(T), assim, Ainda,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_{v}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{v}(T) dT.$$

 $h \equiv \mu + Pv$

Experimentos mostraram que u: u(T), assim, Ainda,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

$$h \equiv u + Pv \quad \rightarrow \\ h = u + RT,$$

A definição de c_v simplifica para

$$c_{\nu}(T) = \frac{du}{dT}$$
 \rightarrow $u(T) = \int c_{\nu}(T) dT.$

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_{ν} simplifica para

$$c_{\nu}(T) = \frac{du}{dT}$$
 \rightarrow $u(T) = \int c_{\nu}(T) dT.$

Ainda,

$$h \equiv u + Pv \quad \rightarrow \\ h = u + RT,$$

fazendo com que h: h(T), e ainda

$$c_P(T) = \frac{dh}{dT} = \frac{du + R dT}{dT}$$

Gás Ideal — Substância com Pv = RT

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_{\nu}(T) = \frac{du}{dT} \rightarrow u(T) = \int c_{\nu}(T) dT.$$

Ainda,

$$h \equiv u + Pv \quad \rightarrow \\ h = u + RT,$$

fazendo com que h: h(T), e ainda

$$c_P(T) = \frac{dh}{dT} = \frac{du + R dT}{dT}$$
 \rightarrow
 $h(T) = \int c_P(T) dT$

Gás Ideal — Substância com Pv = RT

Experimentos mostraram que u: u(T), assim,

$$\delta q - \delta w = du \quad \neg$$

$$(\delta q)_T - (\delta w)_T = (du)_T = 0 \quad \neg$$

$$(\delta q)_T = (\delta w)_T.$$

A definição de c_v simplifica para

$$c_{v}(T) = \frac{du}{dT}$$
 \rightarrow $u(T) = \int c_{v}(T) dT.$

Ainda,

$$h \equiv u + Pv \quad \rightarrow \\ h = u + RT,$$

fazendo com que h:h(T), e ainda

$$c_P(T) = \frac{dh}{dT} = \frac{du + R dT}{dT}$$
 \rightarrow
 $h(T) = \int c_P(T) dT$ and
 $c_P(T) = c_V(T) + R$.

$$c_P(T) = c_V(T) + R \tag{kJ/kg}$$

$$c_P(T) = c_V(T) + R$$
 (kJ/kg) \rightarrow $\bar{c}_P(T) = \bar{c}_V(T) + \bar{R}$ (kJ/kmol)

$$c_P(T) = c_V(T) + R$$
 (kJ/kg) \rightarrow

$$\bar{c}_P(T) = \bar{c}_V(T) + \bar{R}$$
 (kJ/kmol)
$$\gamma(T) \equiv \frac{c_P(T)}{c_V(T)} = 1 + \frac{R}{c_V(T)}$$
 (—)

$$c_{P}(T) = c_{V}(T) + R$$
 (kJ/kg) \rightarrow
 $\bar{c}_{P}(T) = \bar{c}_{V}(T) + \bar{R}$ (kJ/kmol)
$$\gamma(T) \equiv \frac{c_{P}(T)}{c_{V}(T)} = 1 + \frac{R}{c_{V}(T)}$$
 (—)
$$\bar{c}_{P,monatom} = \frac{5}{2}\bar{R}$$

$$c_{P}(T) = c_{V}(T) + R$$

$$\bar{c}_{P}(T) = \bar{c}_{V}(T) + \bar{R}$$

$$\gamma(T) \equiv \frac{c_{P}(T)}{c_{V}(T)} = 1 + \frac{R}{c_{V}(T)}$$

$$\bar{c}_{P,monatom.} = \frac{5}{2}\bar{R}$$

$$\bar{c}_{P,di-atom.} = \frac{7}{2}\bar{R}$$

$$(kJ/kg) \rightarrow (kJ/kmol)$$

$$(-)$$

$$c_{P}(T) = c_{V}(T) + R$$

$$\bar{c}_{P}(T) = \bar{c}_{V}(T) + \bar{R}$$

$$\gamma(T) \equiv \frac{c_{P}(T)}{c_{V}(T)} = 1 + \frac{R}{c_{V}(T)}$$

$$\bar{c}_{P,monatom.} = \frac{5}{2}\bar{R}$$

$$\bar{c}_{P,di-atom.} = \frac{7}{2}\bar{R}$$

$$\gamma_{He} = \frac{5}{3} \approx 1,667$$

$$(kJ/kg) \rightarrow (kJ/kmol)$$

$$(-)$$

$$c_{P}(T) = c_{V}(T) + R$$

$$\bar{c}_{P}(T) = \bar{c}_{V}(T) + \bar{R}$$

$$\gamma(T) \equiv \frac{c_{P}(T)}{c_{V}(T)} = 1 + \frac{R}{c_{V}(T)}$$

$$\bar{c}_{P,monatom.} = \frac{5}{2}\bar{R}$$

$$\bar{c}_{P,di-atom.} = \frac{7}{2}\bar{R}$$

$$\gamma_{He} = \frac{5}{3} \approx 1,667$$

$$\gamma_{ar}(300 \text{ K}) \approx \frac{7}{5} = 1,4.$$

$$(kJ/kg) \rightarrow (kJ/kmol)$$

$$(-)$$

Gás Ideal — Comportamento de $\bar{c}_P(T)$

 Comportamento aproximado por sólidos e líquidos;

- Comportamento aproximado por sólidos e líquidos;
- Processos a P-const. idênticos aos a v-const.;

- Comportamento aproximado por sólidos e líquidos;
- Processos a P-const. idênticos aos a v-const.;
- Portanto: $c_P = c_V = c$ o calor específico de substância incompressível;

- Comportamento aproximado por sólidos e líquidos;
- Processos a P-const. idênticos aos a v-const.;
- Portanto: $c_P = c_V = c$ o calor específico de substância incompressível;
- Tem-se c: c(T), u: u(T), porém h: h(T, P).

- Comportamento aproximado por sólidos e líquidos;
- Processos a P-const. idênticos aos a v-const.;
- Portanto: $c_P = c_v = c$ o calor específico de substância incompressível;
- Tem-se c: c(T), u: u(T), porém h: h(T, P).

$$\Delta u = u_2 - u_1 = \int_1^2 c(T) dT,$$

- Comportamento aproximado por sólidos e líquidos;
- Processos a P-const. idênticos aos a v-const.;
- Portanto: $c_P = c_v = c$ o calor específico de substância incompressível;
- Tem-se c: c(T), u: u(T), porém h: h(T, P).

$$\Delta u = u_2 - u_1 = \int_1^2 c(T) dT,$$

$$\Delta h = \Delta u + v \Delta P$$

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7ª *Edição*. Seções 4-3 a 4-5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

root/../art/horizon-768759_1280.jpg