Bronx Buildings Dataset Analysis

August 17, 2020

0.0.1 Main objective of the analysis that also specifies whether your model will be focused on clustering or dimensionality reduction and the benefits that your analysis brings to the business or stakeholders of this data.

The models created are focused in clustering buildings in Bronx borough, New York City. The idea is to find out different sizes of buildings within this area in order for NYC City Planning purposes and maintainence.

0.0.2 Brief description of the data set you chose, a summary of its attributes, and an outline of what you are trying to accomplish with this analysis.

We will use PLUTO dataset for this project.

The Primary Land Use Tax Lot Output (PLUTOTM) data file was developed by the New York City Department of City Planning's Information Technology Division (ITD)/Database and Application Development Section.

It has 20 known features and the description as below:

Field	Description
Lot	The number of the tax lot
ZipCode	The zip code that the tax lot is located in
Address	An address for the tax lot
LotArea	Total area of the tax lot, expressed in square feet rounded to the nearest integer
BldgArea	The total gross area in square feet
ResArea	An estimate of the exterior dimensions of the portion of the structure(s) allocated for residential use
OfficeArea	An estimate of the exterior dimensions of the portion of the structure(s) for office use
RetailArea	An estimate of the exterior dimensions of the portion of the structure(s) allocated for retail use
NumBldgs	The number of buildings on the tax lot.
NumFloors	The number of full and partial stories starting from the ground floor.
LotDepth	The tax lot's depth measured in feet
BldgDepth	The building's depth, which is the effective perpendicular distance, measured in feet.
YearBuilt	The year construction of the building was completed
YearAlter1	The year of the second most recent alteration

Field	Description
BuiltFAR	The Built Floor Area Ratio (FAR) is the total building floor area divided by
	the area of the tax lot
ResidFAR	The Maximum Allowable Residential Floor Area Ratio
CommFAR	The Maximum Allowable Commercial Floor Area Ratio
FacilFAR	The Maximum Allowable Community Facility Floor Area Ratio
XCoord	The X coordinate of the XY coordinate pair which depicts the approximate
	location of the lot
YCoord	The Y coordinate of the XY coordinate pair which depicts the approximate
	location of the lot

0.0.3 Brief summary of data exploration and actions taken for data cleaning or feature engineering.

The data will be loaded and explored. There will be missing data treatment and removing unwanted categorical features since this is clustering.

There will be some visualizations done to see each features and correlation.

0.0.4 Import Libraries

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
     sns.set(style='darkgrid',font_scale=1.2)
     from sklearn.preprocessing import StandardScaler
     from sklearn.cluster import AgglomerativeClustering
     from sklearn.cluster import KMeans, DBSCAN
     from sklearn.metrics import silhouette_score, adjusted_rand_score
     from sklearn.decomposition import PCA, KernelPCA
     import scipy.cluster.hierarchy as sch
     from mpl_toolkits.mplot3d import Axes3D
     pd.set_option('display.max_columns', None)
     pd.set_option('display.max_rows', 10 )
     np.random.seed(0)
```

```
[2]: df = pd.read_csv("BXMod.csv", low_memory=False)
```

df													
	Lot	ZipCo					dress	LotA		BldgA		ResAre	
0	1	10454			UCKNER				000		0		0
1	4	10454			UCKNER				770		752		0
2	10	10454			UCKNER				000		375		0
3	17	10454			UCKNER			2	500	12	500	1250	0
4	18	10454	1.0 1	48 BR	UCKNER	BOULE	EVARD	18	375	8	595	687	6
•••	•••	•••					•••		••	•••			
89849	100	N	JaN				NaN		0		0		0
89850	150	N	VaN				${\tt NaN}$		0		0		0
89851	200	N	NaN				${\tt NaN}$		0		0		0
89852	8900	N	NaN				NaN		0		0		0
89853	8900	N	NaN				NaN		0		0		0
	Office	eArea	Reta	ilAre	a Numl	Bldgs	NumF	loors	Lot	Depth	. Blo	dgDepth	. \
0		0			0	1		0.0		200.0		0.0	
1		272			0	2		1.0		100.0		16.0	
2		0			0	1		2.0		200.0		200.0	
3		0			0	1		5.0		100.0		85.0	
4		0		171	9	1		5.0		75.0		70.0	
	•		•••				•					0 0	
89849		0			0	0		0.0		0.0		0.0	
89850		0			0	0		0.0		0.0		0.0	
89851		0			0	0		0.0		0.0		0.0	
89852		0			0	0		0.0		0.0		0.0	
89853		0			0	0		0.0		0.0		0.0	
	YearBu	uilt	YearA	lter1	Buil ⁻	tFAR	Resid		CommF	AR F	acilI	FAR \	
0		0		0	(0.00	6	.02	5	5.0	6	5.5	
1		1931		1994	(0.05	6	.02	5	5.0	6	3.5	
2	1	1931		0		1.13	6	.02	5	5.0	6	5.5	
3	1	1931		2001	!	5.00	6	.02	5	5.0	6	3.5	
4	1	1920		2009	4	4.58		3.02	5	5.0	6	3.5	
 89849	•••	0	•••	0		0.00).00		0.0	(0.0	
89850		0		0		0.00		3.02		3.4		5.5	
89851		0		0		0.00		0.00		0.0		0.0	
89852		0		0		0.00		0.00		0.0		0.0	
89853		0		0		0.00		0.00		0.0		0.0	
	۷C	oord	YCo	ord									
0	10059		23216										
1	100598		23216.										
2	100607		23213										
4	100010	51.0	23203										

1006363.0 232040.0

```
89849 NaN NaN
89850 NaN NaN
89851 NaN NaN
89852 NaN NaN
89853 NaN NaN
```

[89854 rows x 20 columns]

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 89854 entries, 0 to 89853
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	Lot	89854 non-null	int64
1	ZipCode	89525 non-null	float64
2	Address	89785 non-null	object
3	LotArea	89854 non-null	int64
4	BldgArea	89854 non-null	int64
5	ResArea	89854 non-null	int64
6	OfficeArea	89854 non-null	int64
7	RetailArea	89854 non-null	int64
8	NumBldgs	89854 non-null	int64
9	NumFloors	89854 non-null	float64
10	LotDepth	89854 non-null	float64
11	BldgDepth	89854 non-null	float64
12	YearBuilt	89854 non-null	int64
13	YearAlter1	89854 non-null	int64
14	BuiltFAR	89854 non-null	float64
15	ResidFAR	89854 non-null	float64
16	CommFAR	89854 non-null	float64
17	FacilFAR	89854 non-null	float64
18	XCoord	86595 non-null	float64
19	YCoord	86595 non-null	float64
dtype	es: float64(10), int64(9), o	bject(1)
memo	ry usage: 13	.7+ MB	

[5]: df.shape

[5]: (89854, 20)

0.0.5 Data Preprocessing

Remove all categorical and string features from dataset before clustering

[6]: df.describe(include='all')

[6]:		Lot	ZipCode	Address	LotArea	BldgArea	\
	count	89854.000000	89525.000000	89785	8.985400e+04	8.985400e+04	
	unique	NaN	NaN	87017	NaN	NaN	
	top	NaN	NaN	SHORE DRIVE	NaN	NaN	
	freq	NaN	NaN	42	NaN	NaN	
	mean	111.493601	10464.280726	NaN	1.023904e+04	8.113609e+03	
	•••	•••	•••	•••		•	
	min	1.000000	10451.000000	NaN	0.000000e+00	0.000000e+00	
	25%	20.000000	10460.000000	NaN	2.188000e+03	1.598000e+03	
	50%	41.000000	10465.000000	NaN	2.508000e+03	2.226000e+03	
	75%	73.000000	10469.000000	NaN	4.250000e+03	3.288000e+03	
	max	9978.000000	11370.000000	NaN	7.425000e+07	1.354011e+07	
		ResArea	OfficeArea	RetailArea	NumBldgs	NumFloors	\
	count	8.985400e+04	8.985400e+04	89854.00000	89854.000000	89854.000000	
	unique	NaN	NaN	NaN	NaN	NaN	
	top	NaN	NaN	NaN	NaN	NaN	
	freq	NaN	NaN	NaN	NaN	NaN	
	mean	5.720876e+03	5.057144e+02	349.91691	1.184778	2.273265	
		•••	•••	•••	•••	•••	
	min	0.000000e+00	0.000000e+00	0.00000	0.000000	0.000000	
	25%	1.152000e+03	0.000000e+00	0.00000	1.000000	2.000000	
	50%	1.760000e+03	0.000000e+00	0.00000	1.000000	2.000000	
	75%	2.616000e+03	0.000000e+00	0.00000	1.000000	3.000000	
	max	1.321140e+07	1.311800e+06	598908.00000	251.000000	44.000000	
		LotDepth	BldgDepth	YearBuilt	YearAlter1	BuiltFAR	\
	count	89854.000000	89854.000000	89854.00000	89854.000000	89854.000000	•
	unique	NaN	NaN	NaN	NaN	NaN	
	top	NaN	NaN	NaN	NaN	NaN	
	freq	NaN	NaN	NaN	NaN	NaN	
	mean	105.978085	48.229342	1805.69515	176.591782	1.107134	
							
	min	0.000000	0.000000	0.00000	0.000000	0.000000	
	25%	95.000000	35.000000	1920.00000	0.000000	0.550000	
	50%	100.000000	44.670000	1931.00000	0.000000	0.860000	
	75%	102.420000	55.000000	1960.00000	0.000000	1.250000	
	max	8000.000000	1300.000000	2017.00000	2017.000000	259.800000	
		ResidFAR	CommFAR	FacilFAR	XCoord	YCoord	
	count	89854.000000	89854.000000	89854.000000	8.659500e+04	86595.000000	
	unique	NaN	NaN	NaN	NaN	Nal	
	top	NaN	NaN	NaN	NaN	Nal	
	freq	NaN	NaN	NaN	NaN	Nal	
	mean	1.674844	0.130644	2.853723	1.021686e+06	249975.67666	7

```
0.000000
                                               0.000000
                                                         1.002677e+06
                                                                        227527.000000
                 0.000000
     min
     25%
                 0.900000
                                0.000000
                                               2.000000
                                                         1.014310e+06
                                                                        241918.000000
     50%
                 1.100000
                                0.000000
                                               2.000000
                                                         1.023321e+06
                                                                        248586.000000
     75%
                 2.430000
                                0.000000
                                               4.800000
                                                         1.027126e+06
                                                                        258036.500000
     max
                10.000000
                                9.000000
                                              10.000000
                                                         1.047777e+06
                                                                        272275.000000
     [11 rows x 20 columns]
[7]: df.columns
[7]: Index(['Lot', 'ZipCode', 'Address', 'LotArea', 'BldgArea', 'ResArea',
            'OfficeArea', 'RetailArea', 'NumBldgs', 'NumFloors', 'LotDepth',
            'BldgDepth', 'YearBuilt', 'YearAlter1', 'BuiltFAR', 'ResidFAR',
            'CommFAR', 'FacilFAR', 'XCoord', 'YCoord'],
           dtype='object')
[8]: df.drop(columns=['Lot', 'ZipCode', 'Address', 'YearBuilt', L
      [9]: df
            LotArea
                     BldgArea ResArea
                                         OfficeArea
                                                      RetailArea
                                                                  NumBldgs
              15000
                             0
                                                   0
                                                                0
                                                                          1
     1
                           752
                                      0
                                                 272
                                                               0
                                                                          2
              13770
     2
              35000
                         39375
                                      0
                                                   0
                                                                0
                                                                          1
     3
               2500
                         12500
                                  12500
                                                   0
                                                                0
                                                                          1
     4
               1875
                          8595
                                   6876
                                                   0
                                                            1719
                                                                          1
     89849
                  0
                             0
                                                   0
                                                                0
                                                                          0
                                      0
                             0
                                                               0
                                                                          0
     89850
                  0
                                      0
                                                   0
     89851
                  0
                             0
                                      0
                                                   0
                                                                0
                                                                          0
     89852
                  0
                             0
                                      0
                                                   0
                                                                0
                                                                          0
     89853
                  0
                             0
                                      0
                                                   0
                                                                0
                                                                          0
            NumFloors
                       LotDepth
                                  BldgDepth
                                            BuiltFAR
                                                        ResidFAR
                                                                   CommFAR FacilFAR
     0
                  0.0
                           200.0
                                        0.0
                                                  0.00
                                                            6.02
                                                                       5.0
                                                                                 6.5
     1
                  1.0
                           100.0
                                       16.0
                                                  0.05
                                                            6.02
                                                                       5.0
                                                                                 6.5
     2
                  2.0
                           200.0
                                      200.0
                                                  1.13
                                                            6.02
                                                                       5.0
                                                                                 6.5
     3
                  5.0
                           100.0
                                                  5.00
                                                            6.02
                                                                       5.0
                                       85.0
                                                                                 6.5
     4
                  5.0
                            75.0
                                       70.0
                                                  4.58
                                                            6.02
                                                                       5.0
                                                                                 6.5
                                                   •••
                  0.0
                             0.0
                                        0.0
                                                  0.00
                                                            0.00
                                                                       0.0
                                                                                 0.0
     89849
                                                                       3.4
     89850
                  0.0
                             0.0
                                        0.0
                                                  0.00
                                                            6.02
                                                                                 6.5
                  0.0
                             0.0
                                        0.0
                                                  0.00
                                                            0.00
                                                                       0.0
                                                                                 0.0
     89851
```

[9]:

89852

89853

0.0

0.0

0.0

0.0

0.00

0.00

0.00

0.00

0.0

0.0

0.0

0.0

0.0

0.0

[89854 rows x 13 columns]

[10]: #Replace all zeros with NaNs since zero figure means data not available df = df.replace(to_replace=0, value=np.nan)

[11]: df

[11]:		LotArea	BldgArea	ResArea	OfficeArea	RetailArea	NumBldgs	\	
	0	15000.0	NaN	NaN	NaN	NaN	1.0		
	1	13770.0	752.0	NaN	272.0	NaN	2.0		
	2	35000.0	39375.0	NaN	NaN	NaN	1.0		
	3	2500.0	12500.0	12500.0	NaN	NaN	1.0		
	4	1875.0	8595.0	6876.0	NaN	1719.0	1.0		
	•••	•••				•••			
	89849	NaN	NaN	NaN	NaN	NaN	NaN		
	89850	NaN	NaN	NaN	NaN	NaN	NaN		
	89851	NaN	NaN	NaN	NaN	NaN	NaN		
	89852	NaN	NaN	NaN	NaN	NaN	NaN		
	89853	NaN	NaN	NaN	NaN	NaN	NaN		
	_		_	_	-	AR ResidFAR			
	0	NaN)		aN 6.02	5.0	6.5	
	1	1.0				05 6.02	5.0	6.5	
	2	2.0				13 6.02	5.0	6.5	
	3	5.0				00 6.02	5.0	6.5	
	4	5.0	75.0) 7	0.0 4.	58 6.02	5.0	6.5	
			•••	•••			•••		
	89849	NaN				aN NaN	NaN	NaN	
	89850	NaN				aN 6.02	3.4	6.5	
	89851	NaN				aN NaN	NaN	NaN	
	89852	NaN				aN NaN	NaN	NaN	
	89853	NaN	Nal	V	NaN N	aN NaN	NaN	NaN	

[89854 rows x 13 columns]

0.0.6 Treat Missing Values

[12]: df.isnull().sum()

[12]: LotArea 301
BldgArea 6423
ResArea 14487
OfficeArea 87319
RetailArea 83962
...
BldgDepth 6687

BuiltFAR 6521 ResidFAR 4358 CommFAR 83828 FacilFAR 1104

Length: 13, dtype: int64

```
[13]: df.hist(bins=30, figsize=(20,20))
   plt.suptitle("Histogram of features", y=1.04)
   plt.tight_layout()
   plt.show()
```


Some of the features are right skewed

```
[14]: Index(['LotArea', 'BldgArea', 'ResArea', 'OfficeArea', 'RetailArea',
              'NumBldgs', 'NumFloors', 'LotDepth', 'BldgDepth', 'BuiltFAR',
              'ResidFAR', 'CommFAR', 'FacilFAR'],
            dtype='object')
[15]:
      df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 89854 entries, 0 to 89853
     Data columns (total 13 columns):
           Column
                       Non-Null Count
                                        Dtype
           _____
      0
                       89553 non-null
           LotArea
                                        float64
      1
           BldgArea
                       83431 non-null
                                        float64
      2
           ResArea
                       75367 non-null
                                        float64
      3
           OfficeArea
                       2535 non-null
                                        float64
      4
           RetailArea 5892 non-null
                                        float64
      5
          NumBldgs
                       83783 non-null
                                        float64
      6
          NumFloors
                       83305 non-null
                                        float64
      7
          LotDepth
                       89595 non-null
                                        float64
      8
          BldgDepth
                       83167 non-null
                                        float64
      9
           BuiltFAR
                       83333 non-null
                                        float64
      10
          ResidFAR
                       85496 non-null
                                        float64
      11
          CommFAR
                       6026 non-null
                                        float64
          FacilFAR
                       88750 non-null
                                        float64
     dtypes: float64(13)
     memory usage: 8.9 MB
     We need to drop OfficeArea, RetailArea and CommFAR since there are too many missing values
[16]: df.drop(columns=['OfficeArea', 'RetailArea', 'CommFAR'],inplace=True)
[17]: df
                                           NumBldgs
[17]:
             LotArea
                       BldgArea
                                 ResArea
                                                      NumFloors
                                                                 LotDepth
                                                                            BldgDepth
                                                 1.0
      0
             15000.0
                            NaN
                                      NaN
                                                            NaN
                                                                     200.0
                                                                                   NaN
      1
             13770.0
                          752.0
                                      NaN
                                                2.0
                                                            1.0
                                                                     100.0
                                                                                  16.0
      2
             35000.0
                        39375.0
                                      NaN
                                                1.0
                                                            2.0
                                                                     200.0
                                                                                200.0
      3
              2500.0
                        12500.0
                                  12500.0
                                                1.0
                                                            5.0
                                                                     100.0
                                                                                 85.0
      4
               1875.0
                         8595.0
                                   6876.0
                                                1.0
                                                            5.0
                                                                      75.0
                                                                                  70.0
                                                  •••
      89849
                 NaN
                            NaN
                                      NaN
                                                NaN
                                                            NaN
                                                                       NaN
                                                                                   NaN
      89850
                 NaN
                            NaN
                                      NaN
                                                NaN
                                                            NaN
                                                                       NaN
                                                                                   NaN
      89851
                 NaN
                            NaN
                                      NaN
                                                NaN
                                                            NaN
                                                                       NaN
                                                                                   NaN
      89852
                 NaN
                            NaN
                                      NaN
                                                NaN
                                                            NaN
                                                                       NaN
                                                                                   NaN
      89853
                            NaN
                                      NaN
                                                                       NaN
                 NaN
                                                NaN
                                                            NaN
                                                                                   NaN
```

[14]: df.columns

		BuiltFAR	ResidFAR	EngilEAD				
	0		6.02	FacilFAR 6.5				
	0	NaN 0.05	6.02	6.5				
	1							
	2	1.13	6.02	6.5				
	3	5.00	6.02	6.5				
	4	4.58	6.02	6.5				
		•••		••				
	89849	NaN	NaN	NaN				
	89850	NaN	6.02	6.5				
	89851	NaN	NaN	NaN				
	89852	NaN	NaN	NaN				
	89853	NaN	NaN	NaN				
	[89854	rows x 10	columns]					
[18]:	df.isn	ull().sum(()					
[18]:	LotAre		801					
	BldgAr	ea 64	23					
	ResAre	a 144	:87					
	NumBld	gs 60	71					
	NumFlo	ors 65	49					
	LotDep	th 2	259					
	BldgDe	pth 66	87					
	BuiltF	_	21					
	ResidF		558					
	FacilF		.04					
		int64	.01					
	acjpo.	111001						
[19]:	# Drop	all NaNs						
	_	pna(inplac	e=True)					
[20]:	df							
[20]:		LotArea	BldgArea	ResArea	NumBldgs	NumFloors	LotDepth	\
	3	2500.0	12500.0	12500.0	1.0	5.0	100.00	
	4	1875.0	8595.0	6876.0	1.0	5.0	75.00	
	25	2500.0	6784.0	6784.0	1.0	4.0	100.00	
	28	2500.0	11500.0	9176.0	1.0	5.0	100.00	
	37	204540.0	1306230.0	1306230.0	4.0	16.0	487.58	
					•••	•••	· - -	
	89836	4244.0	1336.0	1336.0	2.0	2.0	119.00	
	89837	4122.0	1432.0	1432.0	2.0	2.0	115.58	
	89838	8400.0	1720.0	1720.0	2.0	2.0	112.00	
	00000	0-100.0	1720.0	1120.0	2.0	2.0	112.00	

2.0

1.0

2.0

2.0

109.08

76.00

1512.0

1044.0

89839

89840

3891.0

1900.0

1512.0

1044.0

	${ t BldgDepth}$	BuiltFAR	${\tt ResidFAR}$	${ t FacilFAR}$
3	85.0	5.00	6.02	6.5
4	70.0	4.58	6.02	6.5
25	75.0	2.71	3.00	3.0
28	96.0	4.60	3.00	3.0
37	48.0	6.39	2.43	4.8
•••	•••	•••		
89836	28.0	0.31	0.50	1.0
89837	28.0	0.35	0.50	1.0
89838	30.0	0.20	0.50	1.0
89839	28.0	0.39	0.50	1.0
89840	29.0	0.55	0.90	2.0

[74193 rows x 10 columns]

[21]: df.reset_index(drop=True, inplace=True)

[22]: df

[22]:		LotArea	BldgArea	ResArea	NumBldgs	NumFloors	LotDepth	\
	0	2500.0	12500.0	12500.0	1.0	5.0	100.00	
	1	1875.0	8595.0	6876.0	1.0	5.0	75.00	
	2	2500.0	6784.0	6784.0	1.0	4.0	100.00	
	3	2500.0	11500.0	9176.0	1.0	5.0	100.00	
	4	204540.0	1306230.0	1306230.0	4.0	16.0	487.58	
		•••	•••		•••	•••		
	74188	4244.0	1336.0	1336.0	2.0	2.0	119.00	
	74189	4122.0	1432.0	1432.0	2.0	2.0	115.58	
	74190	8400.0	1720.0	1720.0	2.0	2.0	112.00	
	74191	3891.0	1512.0	1512.0	2.0	2.0	109.08	
	74192	1900.0	1044.0	1044.0	1.0	2.0	76.00	
		${ t BldgDepth}$	${ t BuiltFAR}$					
	0	85.0	5.00	6.02	6.5			
	1	70.0	4.58		6.5			
	2	75.0	2.71	3.00	3.0			
	3	96.0	4.60	3.00	3.0			
	4	48.0	6.39	2.43	4.8			
	•••	•••	***					
	74188	28.0	0.31	0.50	1.0			
	74189	28.0	0.35	0.50	1.0			
	74190	30.0	0.20	0.50	1.0			
	74191	28.0	0.39	0.50	1.0			
	74192	29.0	0.55	0.90	2.0			

[74193 rows x 10 columns]

0.0.7 Save a copy as csv file

plt.show()

```
[23]: #df.to_csv('bronxusa.csv', index=False)

0.0.8 Data Visualization

[24]: df = pd.read_csv('bronxusa.csv')

[25]: df.shape

[25]: (74193, 10)

[26]: df.hist(bins=30, figsize=(20,20))
    plt.suptitle("Histogram of features", y=1.04)
    plt.tight_layout()
```

Histogram of features

This graph was redone to exclude those dropped features. Still right skewed for some features

[27]: df.corr()

[27]:		LotArea	${\tt BldgArea}$	ResArea	NumBldgs	NumFloors	LotDepth	\
	LotArea	1.000000	0.716683	0.697126	0.569469	0.226378	0.420397	
	${ t BldgArea}$	0.716683	1.000000	0.996520	0.637119	0.401753	0.351594	
	ResArea	0.697126	0.996520	1.000000	0.634960	0.402663	0.348293	
	NumBldgs	0.569469	0.637119	0.634960	1.000000	0.053902	0.272675	
	NumFloors	0.226378	0.401753	0.402663	0.053902	1.000000	0.290620	
	${ t LotDepth}$	0.420397	0.351594	0.348293	0.272675	0.290620	1.000000	
	BldgDepth	0.167923	0.274446	0.274174	0.048424	0.549174	0.299683	

```
BuiltFAR
              0.039064 0.251014 0.225913 0.013802
                                                  0.577994 0.013681
              0.030626 0.110594 0.111445 -0.042254
     ResidFAR
                                                  0.440021 0.014560
     FacilFAR
              0.031475 0.104173 0.104661 -0.037867
                                                  0.408788 0.014024
              BldgDepth BuiltFAR ResidFAR FacilFAR
               LotArea
    BldgArea
               0.274446 0.251014 0.110594 0.104173
    ResArea
               0.274174 0.225913 0.111445 0.104661
     NumBldgs
               NumFloors
               0.549174 0.577994 0.440021 0.408788
    LotDepth
               0.299683 0.013681 0.014560 0.014024
     BldgDepth
               1.000000 0.520624 0.417760 0.407543
     BuiltFAR
               0.520624 1.000000 0.420006 0.397036
     ResidFAR
               0.417760 0.420006 1.000000 0.917245
     FacilFAR
               0.407543 0.397036 0.917245 1.000000
[28]: plt.figure(figsize=(20,16))
     plt.title("Heatmap of features correlation")
     sns.heatmap(df.corr(),cmap="coolwarm",annot=True,fmt='.2f',linewidths=2)
     plt.show()
```


BldgArea vs ResArea, ResidFAR vs FacilFAR are highly correlated to each other.

```
[29]: sns.pairplot(df.sample(500))
plt.suptitle("Pairplot of features", y=1.05, va='top', size=20)
plt.show()
```

Pairplot of features

We will use a small sample out from the dataset to save time and faster computation

[30]:	<pre>df = df.copy()</pre>										
[31]:	: df1 = df.sample(frac=0.05, random_state=0)										
[32]:	df1										
[32]:		LotArea	BldgArea	ResArea	NumBldgs	NumFloors	LotDepth	BldgDepth	\		
	64589	4000.0	1692.0	1692.0	2.0	2.0	100.00	30.0			
	6125	2500.0	4095.0	4095.0	1.0	3.0	100.00	65.0			
	19575	2400.0	1200.0	1200.0	1.0	2.0	60.00	25.0			

4627	3822.0	1920.0	1280.0	2.0	3.0	101.00	32.0
73108	2052.0	1600.0	1200.0	1.0	2.0	54.00	20.0
	•••		•••	•••	•••	•••	
1041	2311.0	3960.0	3960.0	1.0	3.0	92.59	50.0
62226	4750.0	2112.0	2112.0	1.0	2.0	95.00	48.0
50126	1692.0	1674.0	1116.0	1.0	2.0	94.00	31.0
64293	2358.0	1944.0	1296.0	1.0	2.0	100.00	36.0
53670	4892.0	2128.0	1064.0	2.0	1.5	97.83	38.0
	BuiltFAR	${\tt ResidFAR}$	${ t FacilFAR}$				
64589	0.42	0.60	1.0				
6125	1.64	3.44	4.8				
19575	0.50	0.90	2.0				
4627	0.50	2.43	4.8				
73108	0.78	0.60	1.0				
•••		•••	•••				
1041	1.71	2.43	4.8				
62226	0.44	0.90	2.0				
50126	0.99	0.90	2.0				
64293	0.82	0.60	1.0				
53670	0.43	1.25	2.0				

[3710 rows x 10 columns]

[33]: df1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3710 entries, 64589 to 53670
Data columns (total 10 columns):

Dava	COTAMILE (C.	JUAN TO COTAMINE,	•
#	Column	Non-Null Count	Dtype
0	LotArea	3710 non-null	float64
1	${\tt BldgArea}$	3710 non-null	float64
2	ResArea	3710 non-null	float64
3	NumBldgs	3710 non-null	float64
4	NumFloors	3710 non-null	float64
5	${ t LotDepth}$	3710 non-null	float64
6	${\tt BldgDepth}$	3710 non-null	float64
7	BuiltFAR	3710 non-null	float64
8	ResidFAR	3710 non-null	float64
9	FacilFAR	3710 non-null	float64

dtypes: float64(10)
memory usage: 318.8 KB

[34]: df1.shape

[34]: (3710, 10)

df1.describe() [35]: [35]: BldgArea LotArea ResArea NumBldgs NumFloors 3710.000000 3710.000000 3710.000000 3710.000000 3710.000000 count mean 3912.093261 5867.001887 5518.797305 1.254987 2.458170 std 10344.737538 17985.009647 17795.169652 1.160692 1.167185 min 765.000000 450.000000 1.000000 0.500000 450.000000 25% 2136.500000 1704.250000 1368.000000 1.000000 2.000000 50% 2500.000000 2247.000000 2000.000000 1.000000 2.000000 75% 3435.000000 3140.750000 2774.250000 1.000000 3.000000 519774.000000 332298.000000 332298.000000 max64.000000 29.000000 LotDepth BldgDepth BuiltFAR ResidFAR FacilFAR count 3710.000000 3710.000000 3710.000000 3710.00000 3710.000000 mean 100.438235 47.968871 1.143394 1.60886 2.689650 std 26.627235 19.320822 0.940854 1.16742 1.482658 min 15.080000 13.000000 0.050000 0.50000 1.000000 25% 95.000000 36.000000 0.630000 0.90000 2.000000 50% 100.000000 45.000000 0.890000 1.10000 2.000000 75% 100.182500 54.000000 1.290000 2.43000 4.800000 max 700.000000 300.000000 11.630000 6.02000 6.500000 [36]: df1.reset_index(drop=True, inplace=True) [37]: df1 BldgDepth [37]: LotArea ResArea NumBldgs NumFloors LotDepth BldgArea 1692.0 2.0 30.0 0 4000.0 1692.0 2.0 100.00 1 1.0 65.0 2500.0 4095.0 4095.0 3.0 100.00 2 2400.0 1200.0 1200.0 1.0 2.0 60.00 25.0 3 3822.0 1920.0 1280.0 2.0 3.0 101.00 32.0 4 2052.0 1600.0 1200.0 1.0 2.0 54.00 20.0 3705 2311.0 3960.0 3960.0 1.0 3.0 92.59 50.0 1.0 2.0 48.0 3706 4750.0 2112.0 2112.0 95.00 1.0 2.0 3707 1692.0 1674.0 1116.0 94.00 31.0 3708 2358.0 1944.0 1296.0 1.0 2.0 100.00 36.0 3709 4892.0 2128.0 1064.0 2.0 1.5 97.83 38.0 BuiltFAR ResidFAR FacilFAR 0 0.42 0.60 1.0 1 1.64 3.44 4.8 2 0.50 0.90 2.0 3 0.50 2.43 4.8 4 0.78 0.60 1.0 3705 1.71 2.43 4.8

```
0.90
3706
           0.44
                                   2.0
3707
           0.99
                      0.90
                                   2.0
3708
           0.82
                      0.60
                                   1.0
3709
           0.43
                                   2.0
                      1.25
```

[3710 rows x 10 columns]

```
[38]: #Save a copy of subset data #df1.to_csv("bronxtraining.csv", index=False)
```

0.0.9 Summary of training at least three variations of the unsupervised model you selected. For example, you can use different clustering techniques or different hyperparameters.

We will be using 3 models of clustering: Hierarchical, K-Means and DBScan. Plots will be generated to make comparisons and results before chossing the final model.

0.0.10 Scaling the data for training

```
[39]: X = df1.iloc[:,0:11]
[40]: X
[40]:
             LotArea
                       BldgArea
                                  ResArea
                                            NumBldgs
                                                       NumFloors
                                                                   LotDepth
                                                                               BldgDepth \
      0
              4000.0
                         1692.0
                                                  2.0
                                                              2.0
                                                                      100.00
                                                                                    30.0
                                   1692.0
      1
              2500.0
                         4095.0
                                   4095.0
                                                  1.0
                                                              3.0
                                                                      100.00
                                                                                    65.0
      2
              2400.0
                         1200.0
                                   1200.0
                                                  1.0
                                                              2.0
                                                                       60.00
                                                                                    25.0
      3
              3822.0
                         1920.0
                                   1280.0
                                                  2.0
                                                              3.0
                                                                      101.00
                                                                                    32.0
      4
              2052.0
                         1600.0
                                   1200.0
                                                  1.0
                                                              2.0
                                                                       54.00
                                                                                    20.0
                                                   •••
      3705
              2311.0
                         3960.0
                                   3960.0
                                                  1.0
                                                              3.0
                                                                       92.59
                                                                                    50.0
      3706
              4750.0
                         2112.0
                                   2112.0
                                                  1.0
                                                                                    48.0
                                                              2.0
                                                                       95.00
      3707
              1692.0
                         1674.0
                                   1116.0
                                                  1.0
                                                              2.0
                                                                       94.00
                                                                                    31.0
      3708
              2358.0
                         1944.0
                                   1296.0
                                                  1.0
                                                              2.0
                                                                      100.00
                                                                                    36.0
      3709
              4892.0
                         2128.0
                                   1064.0
                                                  2.0
                                                              1.5
                                                                       97.83
                                                                                    38.0
             BuiltFAR
                        ResidFAR
                                   FacilFAR
      0
                 0.42
                             0.60
                                         1.0
      1
                 1.64
                             3.44
                                         4.8
      2
                 0.50
                             0.90
                                         2.0
      3
                 0.50
                             2.43
                                         4.8
      4
                 0.78
                             0.60
                                         1.0
                                         4.8
      3705
                 1.71
                             2.43
                 0.44
                             0.90
                                         2.0
      3706
                                         2.0
      3707
                 0.99
                             0.90
      3708
                 0.82
                             0.60
                                         1.0
```

3709 0.43 1.25 2.0

[3710 rows x 10 columns]

```
[41]: X.values
[41]: array([[4.000e+03, 1.692e+03, 1.692e+03, ..., 4.200e-01, 6.000e-01,
              1.000e+00],
             [2.500e+03, 4.095e+03, 4.095e+03, ..., 1.640e+00, 3.440e+00,
              4.800e+00],
             [2.400e+03, 1.200e+03, 1.200e+03, ..., 5.000e-01, 9.000e-01,
              2.000e+00],
             [1.692e+03, 1.674e+03, 1.116e+03, ..., 9.900e-01, 9.000e-01,
              2.000e+00],
             [2.358e+03, 1.944e+03, 1.296e+03, ..., 8.200e-01, 6.000e-01,
              1.000e+00],
             [4.892e+03, 2.128e+03, 1.064e+03, ..., 4.300e-01, 1.250e+00,
              2.000e+00]])
[42]: scaler = StandardScaler()
[43]: X_transform = scaler.fit_transform(X)
[44]: X transform
[44]: array([[ 0.00849887, -0.23216916, -0.21507596, ..., -0.76897308,
              -0.86429556, -1.13976197],
             [-0.13652194, -0.09853988, -0.08002111, ..., 0.52789663,
               1.56874747, 1.4235479],
             [-0.14618999, -0.25952897, -0.24272764, ..., -0.68393244,
              -0.60728397, -0.46520674],
             [-0.21463981, -0.23317013, -0.24744865, ..., -0.16305854,
              -0.60728397, -0.46520674],
             [-0.15025057, -0.21815561, -0.23733219, ..., -0.3437699]
             -0.86429556, -1.13976197],
             [0.09473791, -0.20792349, -0.25037119, ..., -0.758343]
              -0.30743712, -0.46520674]])
```

0.1 Hierarchical Clustering Method

0.1.1 Plot Dendogram to find optimal number of clusters

We choose nclusters = 3 since highest difference height

0.1.2 Fitting hierarchical cluster

```
[46]: hc = AgglomerativeClustering(n_clusters=3,affinity='euclidean',linkage='ward')
[47]: y_hc = hc.fit_predict(X_transform)
[48]: y_hc
[48]: array([2, 1, 2, ..., 2, 2, 2], dtype=int64)
[49]: | y = pd.DataFrame(y_hc,columns=['Cluster'])
[50]: y
[50]:
            Cluster
                  2
      0
      1
                  1
                  2
      2
      3
                  1
      4
                  2
      3705
                  1
      3706
                  2
                  2
      3707
                  2
      3708
                  2
      3709
      [3710 rows x 1 columns]
[51]: y['Cluster'].unique()
[51]: array([2, 1, 0], dtype=int64)
[52]: y['Cluster'].value_counts()
[52]: 2
           2596
      1
           1016
      0
             98
      Name: Cluster, dtype: int64
[53]: np.where(y_hc == 0)
[53]: (array([ 42,
                     100,
                           132, 142, 425,
                                             486, 515, 560, 582,
                                                                      598,
                           797, 823, 829,
                                             837, 896, 903, 907, 919,
               997, 1024, 1027, 1053, 1070, 1078, 1121, 1192, 1263, 1421, 1475,
              1507, 1537, 1550, 1555, 1597, 1598, 1638, 1663, 1737, 1769, 1771,
              1776, 1791, 1794, 1806, 1813, 1962, 1997, 2011, 2030, 2059, 2078,
```

```
2137, 2247, 2265, 2375, 2394, 2401, 2412, 2428, 2459, 2485, 2511,
              2541, 2544, 2569, 2586, 2664, 2689, 2696, 2712, 2723, 2755, 2771,
              2787, 2818, 2900, 2958, 3052, 3126, 3158, 3169, 3198, 3220, 3237,
               3262, 3307, 3311, 3363, 3387, 3420, 3455, 3595, 3612, 3636],
             dtype=int64),)
[54]: np.where(y_hc == 1)
[54]: (array([
                             13, ..., 3689, 3690, 3705], dtype=int64),)
                  1,
                        3,
[55]: np.where(y hc == 2)
                               4, ..., 3707, 3708, 3709], dtype=int64),)
[55]: (array([
                  Ο,
                        2,
[56]: newdf = pd.concat([df1,y],axis=1)
[57]: newdf
[57]:
                                          NumBldgs
                                                     NumFloors
                                                                 LotDepth BldgDepth \
            LotArea
                      BldgArea
                                 ResArea
      0
             4000.0
                        1692.0
                                  1692.0
                                                2.0
                                                            2.0
                                                                   100.00
                                                                                 30.0
      1
              2500.0
                        4095.0
                                  4095.0
                                                1.0
                                                           3.0
                                                                   100.00
                                                                                 65.0
      2
              2400.0
                        1200.0
                                  1200.0
                                                1.0
                                                           2.0
                                                                    60.00
                                                                                 25.0
      3
              3822.0
                        1920.0
                                  1280.0
                                                2.0
                                                           3.0
                                                                   101.00
                                                                                 32.0
      4
              2052.0
                        1600.0
                                  1200.0
                                                1.0
                                                           2.0
                                                                    54.00
                                                                                 20.0
              •••
                                                 •••
                                                           3.0
                                                                    92.59
                                                                                 50.0
      3705
              2311.0
                        3960.0
                                  3960.0
                                                1.0
      3706
             4750.0
                                  2112.0
                                                1.0
                                                           2.0
                                                                    95.00
                                                                                 48.0
                        2112.0
      3707
              1692.0
                        1674.0
                                  1116.0
                                                1.0
                                                           2.0
                                                                    94.00
                                                                                 31.0
      3708
              2358.0
                        1944.0
                                  1296.0
                                                1.0
                                                           2.0
                                                                   100.00
                                                                                 36.0
      3709
             4892.0
                        2128.0
                                  1064.0
                                                2.0
                                                            1.5
                                                                    97.83
                                                                                 38.0
            BuiltFAR
                       ResidFAR FacilFAR
                                            Cluster
      0
                 0.42
                           0.60
                                       1.0
                                                   2
      1
                 1.64
                           3.44
                                       4.8
                                                   1
      2
                                                   2
                 0.50
                           0.90
                                       2.0
      3
                 0.50
                           2.43
                                       4.8
                                                   1
      4
                 0.78
                           0.60
                                       1.0
                                                   2
                           2.43
      3705
                 1.71
                                       4.8
                                                   1
      3706
                 0.44
                           0.90
                                       2.0
                                                   2
      3707
                                       2.0
                                                   2
                 0.99
                           0.90
                                                   2
      3708
                 0.82
                           0.60
                                       1.0
      3709
                 0.43
                           1.25
                                       2.0
                                                   2
      [3710 rows x 11 columns]
```

[58]: newdf["Cluster"].value_counts()

```
[58]: 2
          2596
          1016
     1
     0
            98
     Name: Cluster, dtype: int64
[59]: meandf = newdf.groupby(by='Cluster').mean()
[60]: meandf
[60]:
                   LotArea
                                BldgArea
                                               ResArea NumBldgs NumFloors \
     Cluster
              32548.540816 94210.234694 92732.285714 2.071429
     0
                                                                   6.438776
               3174.352362
                             6598.432087
                                           6248.693898 1.134843
                                                                   2.936270
     1
     2
               3119.786980
                             2245.750000
                                           1940.793914 1.271186
                                                                   2.120786
                           BldgDepth BuiltFAR ResidFAR FacilFAR
                LotDepth
     Cluster
              151.512857
                          105.316939 3.911122 3.753265 4.953061
               97.545423
                           56.014951 1.703701 3.093996 4.784646
     1
     2
               99.642311
                           42.654954 0.819622 0.946668 1.784284
[61]: x_axis = newdf['BldgArea']
     y_axis = newdf['BuiltFAR']
     plt.figure(figsize=(10,8))
     sns.scatterplot(x_axis,y_axis,hue=newdf['Cluster'],palette='viridis')
     plt.title('Hierachical Cluster Plot')
     plt.show()
```



```
[62]: sns.clustermap(df.corr())
  plt.title("Cluster Map of Correlations")
  plt.show()
```


Analysis: Based on cluster plot, there are 3 clusters found.

Cluster 0: Largest Sized Buildings based on high values of area

Cluster 1: Medium Sized Buildings based on BldgArea value

Cluster 2: Small Sized Buildings based on BldgArea value

0.2 K-Means Clustering Method

0.2.1 Using Elbow Method to find optimal number of clusters

```
[63]: wcss = []

for i in range(1,11):
    kmeans = KMeans(n_clusters=i,init='k-means++',random_state=0, n_init=10)
    kmeans.fit(X_transform)
```

```
wcss.append(kmeans.inertia_)
```

```
[64]: wcss
```

```
[64]: [37099.999999999876,

25584.590147780338,

20428.26509162942,

15841.129949552638,

13407.952781423644,

11326.132619965483,

10614.038214797878,

9397.209301852517,

8876.393122036905,

8461.425393352614]
```

```
[65]: plt.figure(figsize=(10,8))
   plt.plot(range(1,11),wcss,linewidth=2)
   plt.title("Elbow Plot")
   plt.xlabel("Number of Clusters")
   plt.ylabel("WCSS/Inertia")
   plt.show()
```


Choose number of clusters = 4

0.2.2 Execute K-Means after determining the suitable cluster

```
[66]: kmeans = KMeans(n_clusters=4,init='k-means++',random_state=0, n_init=10)
[67]: kmeans.fit(X_transform)
[67]: KMeans(n_clusters=4, random_state=0)
     0.2.3 Results
[68]:
     df_segm_kmeans = df1.copy()
[69]: df_segm_kmeans
[69]:
            LotArea
                      BldgArea
                                 ResArea
                                           NumBldgs
                                                      NumFloors
                                                                  LotDepth
                                                                             BldgDepth \
      0
              4000.0
                         1692.0
                                  1692.0
                                                 2.0
                                                            2.0
                                                                    100.00
                                                                                  30.0
      1
              2500.0
                         4095.0
                                  4095.0
                                                 1.0
                                                            3.0
                                                                    100.00
                                                                                  65.0
      2
              2400.0
                         1200.0
                                                                                  25.0
                                  1200.0
                                                 1.0
                                                            2.0
                                                                     60.00
      3
              3822.0
                         1920.0
                                  1280.0
                                                2.0
                                                            3.0
                                                                    101.00
                                                                                  32.0
      4
              2052.0
                         1600.0
                                  1200.0
                                                 1.0
                                                            2.0
                                                                     54.00
                                                                                  20.0
                                                 •••
                        3960.0
                                  3960.0
      3705
              2311.0
                                                 1.0
                                                            3.0
                                                                     92.59
                                                                                  50.0
      3706
              4750.0
                         2112.0
                                  2112.0
                                                 1.0
                                                            2.0
                                                                     95.00
                                                                                  48.0
      3707
              1692.0
                         1674.0
                                  1116.0
                                                 1.0
                                                            2.0
                                                                     94.00
                                                                                  31.0
      3708
              2358.0
                         1944.0
                                  1296.0
                                                            2.0
                                                                                  36.0
                                                 1.0
                                                                    100.00
      3709
              4892.0
                         2128.0
                                  1064.0
                                                2.0
                                                             1.5
                                                                     97.83
                                                                                  38.0
             BuiltFAR
                       ResidFAR
                                  FacilFAR
      0
                 0.42
                            0.60
                                        1.0
      1
                 1.64
                            3.44
                                        4.8
      2
                 0.50
                            0.90
                                        2.0
      3
                 0.50
                            2.43
                                        4.8
      4
                 0.78
                            0.60
                                        1.0
      3705
                 1.71
                            2.43
                                        4.8
                                        2.0
      3706
                 0.44
                            0.90
      3707
                 0.99
                                        2.0
                            0.90
      3708
                                        1.0
                 0.82
                            0.60
      3709
                 0.43
                            1.25
                                        2.0
      [3710 rows x 10 columns]
```

[70]: df_segm_kmeans['Segment K-Means'] = kmeans.labels_

```
[71]: df_segm_kmeans
[71]:
            LotArea BldgArea ResArea NumBldgs
                                                    NumFloors LotDepth BldgDepth \
      0
             4000.0
                        1692.0
                                 1692.0
                                               2.0
                                                          2.0
                                                                  100.00
                                                                                30.0
      1
             2500.0
                                 4095.0
                                               1.0
                                                          3.0
                                                                  100.00
                                                                                65.0
                        4095.0
      2
             2400.0
                        1200.0
                                 1200.0
                                               1.0
                                                          2.0
                                                                   60.00
                                                                                25.0
      3
             3822.0
                        1920.0
                                 1280.0
                                               2.0
                                                          3.0
                                                                  101.00
                                                                                32.0
      4
             2052.0
                        1600.0
                                 1200.0
                                               1.0
                                                          2.0
                                                                   54.00
                                                                                20.0
                                                                               50.0
      3705
             2311.0
                        3960.0
                                 3960.0
                                               1.0
                                                          3.0
                                                                   92.59
                                               1.0
                                                          2.0
                                                                   95.00
                                                                               48.0
      3706
             4750.0
                        2112.0
                                 2112.0
                                 1116.0
                                               1.0
                                                          2.0
                                                                   94.00
                                                                               31.0
      3707
             1692.0
                        1674.0
                                               1.0
      3708
             2358.0
                        1944.0
                                 1296.0
                                                          2.0
                                                                  100.00
                                                                               36.0
      3709
                        2128.0
                                 1064.0
                                               2.0
             4892.0
                                                          1.5
                                                                   97.83
                                                                                38.0
            BuiltFAR ResidFAR FacilFAR Segment K-Means
      0
                0.42
                           0.60
                                      1.0
                                                          1
                1.64
                           3.44
                                      4.8
                                                          3
      1
      2
                0.50
                           0.90
                                      2.0
                                                          1
      3
                0.50
                           2.43
                                      4.8
                                                          3
      4
                0.78
                           0.60
                                      1.0
                                                          1
      3705
                1.71
                           2.43
                                      4.8
                                                          3
      3706
                0.44
                           0.90
                                      2.0
                                                          1
      3707
                0.99
                           0.90
                                      2.0
                                                          1
                           0.60
      3708
                0.82
                                      1.0
                                                          1
      3709
                0.43
                           1.25
                                      2.0
                                                           1
      [3710 rows x 11 columns]
[72]: df_segm_analysis = df_segm_kmeans.groupby(['Segment K-Means']).mean()
[73]:
      df_segm_analysis
[73]:
                              LotArea
                                                              ResArea
                                                                        NumBldgs \
                                             BldgArea
      Segment K-Means
                        180035.833333
                                       237477.500000
                                                                       15.500000
      0
                                                       237477.500000
      1
                          3118.099037
                                          2236.654721
                                                         1933.893256
                                                                        1.271291
      2
                         12799.708502
                                         47828.773279
                                                        46730.153846
                                                                        1.093117
      3
                          2529.763341
                                          3159.960557
                                                         2887.554524
                                                                        1.153132
                        NumFloors
                                     LotDepth
                                                 BldgDepth BuiltFAR ResidFAR \
      Segment K-Means
      0
                         6.833333 426.120000
                                                146.333333
                                                             1.738333
                                                                       3.196667
      1
                         2.120062
                                    99.642173
                                                 42.637480
                                                            0.818609
                                                                       0.946686
      2
                         5.696356 113.152955
                                                 91.912915
                                                            3.990688
                                                                       3.509231
      3
                         2.517691
                                    96.924490
                                                 50.742181 1.301125
                                                                       3.046705
```

```
Segment K-Means
                        5.083333
      1
                        1.784200
      2
                        4.828340
      3
                        4.785963
      #df_segm_kmeans.groupby(['Segment K-Means', 'NumFloors']).count()
 []:
 []: #df segm kmeans.groupby(['Segment K-Means', 'NumFloors']).size()
     Analysis:
     Cluster 0 has largest areas, floors and numbers = Extra Large (XL)
     Cluster 1 has average areas values overall = Medium 1 (M1)
     Cluster 2 has large areas overall = Large (L)
     Cluster 3 has average areas values overall = Medium 2 (M2)
[74]: df_segm_analysis.rename({0: 'XL',
                                 1: 'M1',
                                 2: 'L',
                                3: 'M2',
                                },inplace=True)
     df_segm_analysis
[75]:
                                                                         NumBldgs \
                              LotArea
                                             BldgArea
                                                              ResArea
      Segment K-Means
      XL
                        180035.833333
                                        237477.500000
                                                        237477.500000
                                                                        15.500000
      M1
                          3118.099037
                                          2236.654721
                                                          1933.893256
                                                                         1.271291
      L
                         12799.708502
                                         47828.773279
                                                         46730.153846
                                                                         1.093117
      M2
                          2529.763341
                                          3159.960557
                                                          2887.554524
                                                                         1.153132
                        NumFloors
                                                 BldgDepth BuiltFAR ResidFAR
                                      LotDepth
      Segment K-Means
      XL
                         6.833333
                                   426.120000
                                                146.333333
                                                             1.738333
                                                                       3.196667
      M1
                         2.120062
                                     99.642173
                                                 42.637480
                                                             0.818609
                                                                        0.946686
      L
                         5.696356
                                   113.152955
                                                 91.912915
                                                             3.990688
                                                                        3.509231
      M2
                         2.517691
                                     96.924490
                                                 50.742181
                                                            1.301125
                                                                       3.046705
                        FacilFAR
      Segment K-Means
      XL
                        5.083333
      M1
                        1.784200
      L
                        4.828340
```

FacilFAR

M2 4.785963

```
[76]: df_segm_kmeans['Labels'] = df_segm_kmeans['Segment K-Means'].map({0: 'XL', 1: 'M1', 2: 'L', 3: 'M2'})
```

[77]:		LotArea	BldgArea	ResArea	NumBldgs	NumFloors	LotDepth	BldgDepth	\
	0	4000.0	1692.0	1692.0	2.0	2.0	100.00	30.0	
	1	2500.0	4095.0	4095.0	1.0	3.0	100.00	65.0	
	2	2400.0	1200.0	1200.0	1.0	2.0	60.00	25.0	
	3	3822.0	1920.0	1280.0	2.0	3.0	101.00	32.0	
	4	2052.0	1600.0	1200.0	1.0	2.0	54.00	20.0	
	•••	•••		•••	•••	•••	•••		
	3705	2311.0	3960.0	3960.0	1.0	3.0	92.59	50.0	
	3706	4750.0	2112.0	2112.0	1.0	2.0	95.00	48.0	
	3707	1692.0	1674.0	1116.0	1.0	2.0	94.00	31.0	
	3708	2358.0	1944.0	1296.0	1.0	2.0	100.00	36.0	
	3709	4892.0	2128.0	1064.0	2.0	1.5	97.83	38.0	

0	0.42	0.60	1.0	1	M1
1	1.64	3.44	4.8	3	M2
2	0.50	0.90	2.0	1	M1
3	0.50	2.43	4.8	3	M2
4	0.78	0.60	1.0	1	M1
		•••	•••		
3705	1.71	2.43	4.8	3	M2
3706	0.44	0.90	2.0	1	M1
3707	0.99	0.90	2.0	1	M1
3708	0.82	0.60	1.0	1	M1
3709	0.43	1.25	2.0	1	M1

BuiltFAR ResidFAR FacilFAR Segment K-Means Labels

[3710 rows x 12 columns]

0.2.4 Plot the clusters


```
[79]: # x_axis = df_segm_kmeans['BldgArea']
# y_axis = df_segm_kmeans['BuiltFAR']
# z_axis = df_segm_kmeans['BldgDepth']

# fig = plt.figure(figsize=(10,8))
# ax = fig.add_subplot(111, projection='3d')
# ax.scatter3D(x_axis,y_axis,z_axis,c=z_axis, cmap='viridis')

# ax.set_xlabel('BldgArea')
# ax.set_ylabel('BuiltFAR')
# ax.set_zlabel('BldgDepth')

# plt.show()
```

0.3 DBSCAN method

```
[80]: epsilon = 0.3
      minimumSamples = 50
      db = DBSCAN(eps=epsilon, min_samples=minimumSamples).fit(X_transform)
[81]: labels= db.labels_
      labels
[81]: array([-1, -1, -1, ..., 0, 1, -1], dtype=int64)
[82]: y = pd.DataFrame(labels,columns=['Cluster'])
[83]: y
[83]:
            Cluster
      0
                 -1
      1
                 -1
      2
                 -1
      3
                 -1
      4
                 -1
      3705
                 -1
      3706
                 -1
      3707
                  0
      3708
                  1
      3709
                 -1
      [3710 rows x 1 columns]
[84]: y.value_counts()
[84]: Cluster
      -1
                 2884
       0
                  662
       2
                   94
       1
                   70
      dtype: int64
[85]: dbdf = pd.concat([df1,y],axis=1)
[86]: dbdf
            LotArea BldgArea ResArea NumBldgs NumFloors LotDepth BldgDepth \
[86]:
      0
             4000.0
                       1692.0
                                 1692.0
                                              2.0
                                                          2.0
                                                                 100.00
                                                                               30.0
      1
             2500.0
                       4095.0
                                 4095.0
                                              1.0
                                                          3.0
                                                                 100.00
                                                                               65.0
             2400.0
      2
                       1200.0
                                 1200.0
                                              1.0
                                                          2.0
                                                                  60.00
                                                                               25.0
      3
             3822.0
                       1920.0
                                 1280.0
                                              2.0
                                                          3.0
                                                                 101.00
                                                                               32.0
```

4	2052.0	1600.0	1200.0	1.0	2.0	54.00	20.0
•••	•••		•••	•••	•••	•••	
3705	2311.0	3960.0	3960.0	1.0	3.0	92.59	50.0
3706	4750.0	2112.0	2112.0	1.0	2.0	95.00	48.0
3707	1692.0	1674.0	1116.0	1.0	2.0	94.00	31.0
3708	2358.0	1944.0	1296.0	1.0	2.0	100.00	36.0
3709	4892.0	2128.0	1064.0	2.0	1.5	97.83	38.0
	BuiltFAR	ResidFAR	FacilFAR	Cluster			
0	0.42	0.60	1.0	-1			
1	1.64	3.44	4.8	-1			
2	0.50	0.90	2.0	-1			
3	0.50	2.43	4.8	-1			
4	0.78	0.60	1.0	-1			
•••	•••	•••					
3705	1.71	2.43	4.8	-1			
3706	0.44	0.90	2.0	-1			
3707	0.99	0.90	2.0	0			
3708	0.82	0.60	1.0	1			
3709	0.43	1.25	2.0	-1			

[3710 rows x 11 columns]

[87]: dbdf["Cluster"].value_counts()

[87]: -1 2884 0 662 2 94 1 70

Name: Cluster, dtype: int64

 $\mbox{-}1$ are Outliers, hence need to be removed from table

[88]: dbdf

[88]:	LotArea	BldgArea	ResArea	NumBldgs	NumFloors	LotDepth	BldgDepth	\
0	4000.0	1692.0	1692.0	2.0	2.0	100.00	30.0	
1	2500.0	4095.0	4095.0	1.0	3.0	100.00	65.0	
2	2400.0	1200.0	1200.0	1.0	2.0	60.00	25.0	
3	3822.0	1920.0	1280.0	2.0	3.0	101.00	32.0	
4	2052.0	1600.0	1200.0	1.0	2.0	54.00	20.0	
•••	•••		•••	•••	•••	•••		
370	05 2311.0	3960.0	3960.0	1.0	3.0	92.59	50.0	
370	06 4750.0	2112.0	2112.0	1.0	2.0	95.00	48.0	
370	07 1692.0	1674.0	1116.0	1.0	2.0	94.00	31.0	
370	08 2358.0	1944.0	1296.0	1.0	2.0	100.00	36.0	
370	09 4892.0	2128.0	1064.0	2.0	1.5	97.83	38.0	

	BuiltFAR	${\tt ResidFAR}$	${ t FacilFAR}$	Cluster
0	0.42	0.60	1.0	-1
1	1.64	3.44	4.8	-1
2	0.50	0.90	2.0	-1
3	0.50	2.43	4.8	-1
4	0.78	0.60	1.0	-1
•••	•••	•••		
3705	1.71	2.43	4.8	-1
3706	0.44	0.90	2.0	-1
3707	0.99	0.90	2.0	0
3708	0.82	0.60	1.0	1
3709	0.43	1.25	2.0	-1

[3710 rows x 11 columns]

```
[89]: db2 = dbdf[dbdf["Cluster"] != -1]
```

[90]: db2

[90]:		LotArea	BldgArea	ResArea	NumBldgs	NumFloors	LotDepth	${\tt BldgDepth}$	\
	8	1710.0	1539.0	1188.0	1.0	2.0	95.00	33.00	
	9	1699.0	1728.0	1152.0	1.0	2.0	90.00	32.00	
	12	1900.0	1980.0	1440.0	1.0	2.0	100.00	36.00	
	14	4257.0	2484.0	2484.0	1.0	2.0	100.00	46.33	
	17	2720.0	1820.0	1280.0	1.0	2.0	109.98	35.00	
	•••	•••		•••	•••	•••			
	3696	1710.0	1849.0	1296.0	1.0	2.0	95.00	34.00	
	3699	3092.0	1782.0	1188.0	1.0	2.0	100.00	30.00	
	3700	1966.0	1975.0	1406.0	1.0	2.0	100.00	37.00	
	3707	1692.0	1674.0	1116.0	1.0	2.0	94.00	31.00	
	3708	2358.0	1944.0	1296.0	1.0	2.0	100.00	36.00	
		BuiltFAR	ResidFAR	FacilFAF	R Cluster				
	8	0.90	0.90	2.0	0				
	9	1.02	0.90	2.0) 0				

8	0.90	0.90	2.0	0
9	1.02	0.90	2.0	0
12	1.04	0.90	2.0	0
14	0.58	0.90	2.0	0
17	0.67	0.90	2.0	0
•••	•••	•••	•••	
 3696	1.08	0.90	2.0	0
				0
3696	1.08	0.90	2.0	-
3696 3699	1.08 0.58	0.90 0.90	2.0 2.0	0

[826 rows x 11 columns]

```
[91]: db2['Cluster'].value_counts()
[91]: 0
          662
      2
           94
           70
      1
      Name: Cluster, dtype: int64
[92]: meandb = db2.groupby(by='Cluster').mean()
[93]: meandb
[93]:
                                            ResArea NumBldgs
                                                               NumFloors \
                  LotArea
                              BldgArea
     Cluster
              2413.030211 1975.611782 1601.099698
                                                          1.0
                                                                1.995227
      0
              2464.071429 1662.914286
                                        1360.100000
      1
                                                          1.0
                                                                2.000000
              2483.595745 1567.340426 1414.872340
                                                          2.0
                                                                1.997340
               LotDepth BldgDepth BuiltFAR ResidFAR FacilFAR
      Cluster
              99.116526 40.402175 0.840136
                                                             2.0
                                              1.011329
      1
              98.834857 35.477429 0.684571
                                              0.598571
                                                             1.0
      2
              98.965319 37.320957 0.636277 0.944149
                                                             2.0
[94]: x_axis = db2['BldgArea']
      y_axis = db2['BuiltFAR']
      plt.figure(figsize=(10,8))
      sns.scatterplot(x_axis,y_axis,hue=db2['Cluster'],palette='viridis')
      plt.title('DBScan Plot')
      plt.show()
```


Analysis of DBSCAN Plot:

The clusters 0, 1 and 2 are totally mixed up together, hence the model is unable to differentiate the data

0.3.1 A paragraph explaining which of your Unsupervised Learning models you recommend as a final model that best fits your needs in terms.

We would recommend Hierarchical Model since there is more clearer separation of clusters and the mean values of building features are clearly seen.

0.3.2 Summary Key Findings and Insights, which walks your reader through the main findings of your modeling exercise

The summary concludes with the best clustering model to be implemented with clear separation of clusters.

0.3.3 Suggestions for next steps in analyzing this data, which may include suggesting revisiting this model or adding specific data features to achieve a better model

There are other clustering methods can be used: Mean Shift, HDBSCAN, OPTICS methods which need to be explored in future. Another method is compress the dataset using Principal Component Analysis and then use the 3 models to see any result improvements.