Additional Figures and Tables

Table 1 list the names and applied concentrations of all 63 chemicals in the data set. The experiment began by applying highest concentration chosen by the researchers to a cell culture. This was then diluted by 1/3 for the subsequent culture continuing for 10 dilutions to achieve the 11 original concentration levels. The maximal concentration was intended to be chosen to be just large enough to kill off all of the cells in the culture. The chemicals in this table are separated into MOA groups indicating the cell structure or function targeted by that class of chemicals.

Table 1: A list of chemicals in MOA groups I - X and maximal/minimal concentrations.

	Group I: DNA/RNA-Nucleic	Concentration(1:3)	
	Acid Targets		
1	5-Fluorouracil (5-FU)	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$	
2	Gemcitabine HCl	$1650~\mu\mathrm{M}$ to $27.94~\mathrm{nM}$	
3	Etoposide phosphate	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$	
4	Doxorubicin	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$	
5	Merbarone	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$	
6	Clofarabine	25 μ M to 0.42 nM	
7	Hydroxyurea	$10~\mu\mathrm{M}$ to $169~\mathrm{nM}$	
8	SN-38	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$	
9	Topotecan	95 μ M to 1.61 nM	
10	Irinotecan	$160~\mu\mathrm{M}$ to $2.71~\mathrm{nM}$	
11	Cytosine	8950 μ M to 151.57 nM	

12	ABT-888	308 μ M to 5.22 nM	
13	Mitoxantrone dihydrochloride 150 μ M to 2.54 nl		
14	CRT0044876 194 μ M to 3.29 r		
15	NU7026	$20~\mu\mathrm{M}$ to $0.34~\mathrm{nM}$	
16	Mitomycin C	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$	
17	Cordycepin	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$	
18	Actinomycin D	$2~\mu\mathrm{M}$ to 0.0339 nM	
19	Cisplatin H2O	$\mu \mathrm{M}$ to 2.54 nM	
20	Ochratoxin A	$10~\mu\mathrm{M}$ to $0.17~\mathrm{nM}$	
	Group II: Transport Protein-Primary	Concentration(1:3)	
	Active transporter Targets		
21	Brefeldin A	$40~\mu\mathrm{M}$ to 0.68 nM	
22	Exo 1	$300~\mu\mathrm{M}$ to $5.08~\mathrm{nM}$	
23	Leptomycin B	20 nM to 0.000339 nM	
24	Concanamycin A	$0.2~\mu\mathrm{M}$ to $0.003~\mathrm{nM}$	
25	Thapsigargin	$2~\mu\mathrm{M}$ to 0.0339 nM	
26	BHQ	$400~\mu\mathrm{M}$ to $7~\mathrm{nM}$	
	Group III: Protein-Actin Targets	Concentration(1:3)	
27	Bafilomycin A1	$0.3212~\mu\mathrm{M}$ to $0.01~\mathrm{nM}$	
28	Cytochalasin D	$20~\mu\mathrm{M}$ to 0.339 nM	
29	Cytochalasin B	$20~\mu\mathrm{M}$ to 0.339 nM	
30	Latrunculin A	$2~\mu\mathrm{M}$ to 0.0339 nM	
31	Latrunculin B	$2~\mu\mathrm{M}$ to 0.0339 nM	
	Group IV: Protein-Tubulin Targets	Concentration(1:3)	
32	Docetaxel	$1~\mu\mathrm{M}$ to $0.02~\mathrm{nM}$	
33	Paclitaxel	$20~\mu\mathrm{M}$ to $0.339~\mathrm{nM}$	
34	Vincristine Sulfate	250 μ M to 4.23 nM	

35	Vinblastine sulfate	$40~\mu\mathrm{M}$ to 0.68 nM
	Group V: Ribosome-50S Subunit Targets	Concentration(1:3)
36	Emetine	$50~\mu\mathrm{M}$ to $0.847~\mathrm{nM}$
37	Puromycin	$1000~\mu\mathrm{M}$ to $17~\mathrm{nM}$
38	Anisomycin	$10~\mu\mathrm{M}$ to $0.17~\mathrm{nM}$
	Group VI: Transport Proteins-Electrochemical	Concentration(1:3)
	Potential-driven Transporters	
39	Oligomycin	$20~\mu\mathrm{M}$ to 0.339 nM
40	Antimycin A	200 $\mu\mathrm{M}$ to 3.387 nM
41	Rotenone	200 $\mu\mathrm{M}$ to 3.387 nM
42	CCCP	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
	Group VII: Ion Channel Targets	Concentration(1:3)
43	Valproic acid	50 mM to 847 nM
44	BAPT-am	$60 \mu\mathrm{M}$ to 1 nM
	Group VIII: Enzyme Targets	Concentration(1:3)
45	Cyclosporin A	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
46	FK-506	$50~\mu\mathrm{M}$ to $1~\mathrm{nM}$
47	(S)-HDAC-42	128 $\mu\mathrm{M}$ to 2.17 nM
48	SAHA	151 μ M to 2.56 nM
49	W7 HCl	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$
	Group IX: Receptors	Concentration(1:3)
50	benzo[a]pyrene	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
	Group X: Protein- Motor Targets	Concentration(1:3)
51	Monastrol	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
52	S-trityl-cysteine	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
53	Dimethylenastron	$40~\mu\mathrm{M}$ to $0.68~\mathrm{nM}$
54	Y-27632	188 $\mu\mathrm{M}$ to 3.18 nM

55	HA1100 hydrochloride	$1000~\mu\mathrm{M}$ to $16.94~\mathrm{nM}$
56	Ro32-3555	200 $\mu\mathrm{M}$ to 3.39 nM
57	Batimastat	$200~\mu\mathrm{M}$ to $3.39~\mathrm{nM}$
58	MLCKInhibPep18	94.5 μ M to 1.6 nM
59	Blebbistatin	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
60	ML7 hydrochloride	$100~\mu\mathrm{M}$ to $1.69~\mathrm{nM}$
61	FAKInhibitor14	2500 $\mu\mathrm{M}$ to 42.34 nM
62	PF573228	$40~\mu\mathrm{M}$ to $0.68~\mathrm{nM}$
63	PF431396	5 μ M to 0.08 nM

Table 2 displays all of the fitted coefficients from the B-spline model of Section ??. Of note for the cytotoxicity data is the second half of the table, which details the differences in B-spline coefficients between MOA group 10 and group 1. For each of the $\hat{\beta}$'s, the first index corresponds to the concentration level with 1 = high, 2 = medium, and 3 = low. The second index is for MOA group 1 or 10. The third indicates the specific cubic B-spline, which are temporally ordered meaning that 1 is for the beginning of the experiment whereas 4 is for the end. Glancing at the p-values, we see that B-spline 1 does not yield significant differences between the MOA groups mainly because all cell cultures began from the same starting point. Meanwhile, B-splines 3 and 4 at high and medium concentration yield significant differences. At low concentration, MOA group differences are not noticeable.

Table 2: All of the estimated coefficients from the functional mixed effects model using B-splines.

fixed effects:	Estimate	Std. Error	t value	$\Pr(> t)$
$\hat{\mu}$	3.75	0.28	13.19	<2e-16
$\hat{eta}_{1,1,1}$	-2.79	0.29	-9.80	3.35e-16
$\hat{\beta}_{2,1,1}$	-2.88	0.29	-10.09	< 2e-16
$\hat{eta}_{3,1,1}$	-2.89	0.29	-10.11	< 2e-16
$\hat{eta}_{1,1,2}$	-0.88	0.35	-2.56	0.011

Table 2: All of the estimated coefficients from the functional mixed effects model using B-splines.

fixed effects:	Estimate	Std. Error	t value	Pr(> t)
$\hat{eta}_{2,1,2}$	-0.40	0.35	-1.16	0.250
$\hat{eta}_{3,1,2}$	-0.80	0.35	-2.32	0.022
$\hat{eta}_{1,1,3}$	-2.29	0.50	-4.60	8.09e-06
$\hat{\beta}_{2,1,3}$	-0.24	0.50	-0.49	0.626
$\hat{eta}_{3,1,3}$	1.36	0.50	2.73	0.007
$\hat{eta}_{1,1,4}$	-2.12	0.40	-5.28	8.18e-07
$\hat{\beta}_{2,1,4}$	-1.04	0.40	-2.60	0.011
$\hat{\beta}_{1,10,1} - \hat{\beta}_{1,1,1}$	-0.04	0.04	-0.98	0.330
$\hat{\beta}_{2,10,1} - \hat{\beta}_{2,1,1}$	0.05	0.04	1.08	0.284
$\hat{\beta}_{3,10,1} - \hat{\beta}_{3,1,1}$	0.04	0.05	0.85	0.399
$\hat{\beta}_{1,10,2} - \hat{\beta}_{1,1,2}$	-1.20	0.32	-3.75	0.0003
$\hat{\beta}_{2,10,2} - \hat{\beta}_{2,1,2}$	-0.84	0.32	-2.65	0.009
$\hat{\beta}_{3,10,2} - \hat{\beta}_{3,1,2}$	-0.27	0.32	-0.85	0.399
$\hat{\beta}_{1,10,3} - \hat{\beta}_{1,1,3}$	2.85	0.66	4.31	4.03e-05
$\hat{\beta}_{2,10,3} - \hat{\beta}_{2,1,3}$	2.64	0.66	3.98	0.00014
$\hat{\beta}_{3,10,3} - \hat{\beta}_{3,1,3}$	1.39	0.66	2.10	0.0386
$\hat{\beta}_{1,10,4} - \hat{\beta}_{1,1,4}$	1.74	0.46	3.79	0.00026
$\hat{\beta}_{2,10,4} - \hat{\beta}_{2,1,4}$	1.61	0.46	3.50	0.00071
$\hat{\beta}_{3,10,4} - \hat{\beta}_{3,1,4}$	0.67	0.46	1.47	0.145

Table 3: The performance of SOMs on the fPCA coefficients under different parameter settings for the SOMs algorithm.

neigh_func	topology	structure	grid	accuracy rate
		Dlaman	6×5	79.41%
	havaganal	Planar	4×3	88.24%
	hexagonal			

Table 3: The performance of SOMs on the fPCA coefficients under different parameter settings for the SOMs algorithm.

neigh_func	topology	structure	grid	accuracy rate
			6×5	88.24%
	Toroidal	4×3	88.24%	
	rectangular —	Planar	6×5	64.71%
			4×3	88.24%
		Toroidal	6×5	88.24%
		Toroidai	4×3	88.24%
	hexagonal	Planar	6×5	88.24%
			4×3	82.35%
		Toroidal	6×5	85.29%
Gaussian			4×3	82.35%
Gaussian	DI	6×5	67.65%	
		Planar	4×3	82.35%
	rectangular —	Toroidal -	6×5	82.35%
			4×3	82.35%

Figure 1: The first three estimated functional principal components for MOA group 1 (top left), MOA group 10 (top right), and for all the chemicals (bottom) for concentration levels high, medium, low, and for the smooth errors.