Regression Analysis

- It is a statistical tool to find the relationship between one dependent variable and one or more independent variables.
- Example: Consider a Sales Company Dataset and you are a Marketing Analyst of the company.
- Let the dataset has attributes like Adv. Cost (Rs.) and Sales Amount (Quantity)

Adv. Cost (Rs.)	Sales Amount
1	1
2	1
3	2
4	2
5	4

Regression Analysis

- Here, we may decide how much money we can spent for advertising. So, amount of money spent is the controlled variable.
- But, we can't control the Sales amount, so it is not a controlled variable. This is dependent variable depends on Advertising Cost.
- This is not only the factor, Sales amount may also dependent on some other factors like no. of persons working, etc.
- Adv. Cost : X→ Independent or Regressor Variable
- Sales Amount: Y → Dependent or Response or Random Variable

Regression Analysis

Sales Amount

 Scatter plot is a mathematical diagram to display values of two variables for a set of data.

- It is used to investigate the possible relationship between the variables.
- If it indicates the linear relation then linear regression is consider; otherwise polynomial regression, and so on are considered.

- It is a model with a single regressor variable X that has linear relationship with a response variable Y.
- The simple linear regression model is:
 - Y = a + cX + ϵ , where a \rightarrow intercept, c \rightarrow Slope, and ϵ is a random error component.
 - => For a given X, the corresponding observation Y consists of the value $a + cX + \epsilon$.
- The same model may be written as:
 - $y_i = a + cx_i + \epsilon_i$ for i = 1, 2, ..., n; n is the no. of observations.

Let the best fitted model is:

$$\hat{Y} = \hat{a} + \hat{c}X$$
 or $\hat{y}_i = \hat{a} + \hat{c}x_i$; $i=1,2,...,n$

- The line fitted by Least Square Method (LSM) which makes the sum of square of all vertical discrepancies as small as possible.
- The LSM estimates the parameters a and c using the dataset <X, Y> as â and ĉ.

- The cost function or error function of the LSM is:
 - $S = \sum_{i=1}^{\infty} (y_i \hat{y}_i)^2$
- We estimate a and c so that sum of square of all the differences between the observed y_i and the predicted ŷ_i is minimum, i.e., S is minimum.
- This S is called Sum of Square Residual, i.e., $SS_{Res} = \sum_{s=1}^{n} (y_i \hat{y}_i)^2$
- Residual = Deviation between actual and predicted value
- Error = Deviation between actual value and mean of population.

$$SS_{Res} = S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{a} - \hat{c}x_i)^2$$

 By taking the partial derivatives = 0 and solving, we get the best fitted model is:

$$\hat{Y} = \hat{a} + \hat{c}X$$
, where

$$\hat{\mathbf{a}} = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$\hat{\mathbf{c}} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

Basic Assumptions on SLR Model

- In simple LRM, $y_i = a + cx_i + \epsilon_i$ for i = 1, 2, ..., n:
- i) ϵ_i is a random variable with zero mean and variance σ^2 (Unknown), i.e., $E(\epsilon_i)=0$ and $Var(\epsilon_i)=\sigma^2$
- ii) ϵ_i and ϵ_i are uncorrelated, $i \neq j$, i.e., $COV(\epsilon_i, \epsilon_i) = 0$
- iii) ϵ_i is a normally distributed random variable with zero mean and variance σ^2 . i.e., $\epsilon_i \sim N(0, \sigma^2)$
- So, ϵ_i 's are normally distributed and uncorrelated => ϵ_i 's are independent.

Consequences in terms of y_i

```
• y_i = a + cx_i + \epsilon_i for i = 1, 2, ..., n:

i) E(y_i) = E(a + cx_i + \epsilon_i)

= E(a) + E(cx_i) + E(\epsilon_i)

= a + x_i E(c) + 0 [as x is controlled variable, and E(\epsilon_i)=0]

= a + cx_i

ii) Var(y_i) = Var(a + cx_i + \epsilon_i)

= Var(a) + Var(cx_i) + Var(\epsilon_i)

= 0 + 0 + \sigma^2 = \sigma^2
```

Since, ϵ_i follows normal distribution with zero mean and σ^2 variance, so the consequence of y_i is that y_i follows normal distribution with a + cx_i mean and σ^2 variance, i.e., $y_i \sim N(a + cx_i, \sigma^2)$

Consequences in terms of y_i

- So, we assume that, i-th observation, y_i is from normal distribution with mean = $a + cx_i$ and Var = σ^2 (Also, y_i 's are uncorrelated and independent)
- Therefore, given a set of data, the dataset must satisfy this assumptions.
- If the assumptions are not hold, then we should not apply this regression analysis. This is verify using topic modeling adequacy checking (study in your own, if interested).

Graphical interpretation of Assumptions in SLR Model

Multiple Linear Regression (MLR) Model

- Consider the same Company Sales Dataset.
- In case of SLR, we assume that the response variable "Sales Amount" is fully explained by the regressor variable "Adv. Cost"
- But in reality, it may be say, 80% explained by "Adv. Cost". Remaining 20% may be explained by other factor, say "No. of sales person" employed.
- In practice, there are more than one regressor variables, in that case, we consider MLR.

say K-1 var	ne regression variable, 1, X1, X2, XK-1 - BotB, X, + B2 ×2-+ BK-1 X-1
Here we have more than I regressor variable so called multiple regression	12 + + /5 K-1 X K-1 + Ei for [= 1,2,
cu terms of anknown regresserial	
mportant: The model is called & MLR	FEBRUARY 2019 MARCH 2019 WK S M T W T F S WK S M T W T F S 5 1 2 9 31 1 2 1 2 2 9 31 1 2 1 2 1 3 14 15 16 11 10 11 12 13 14 15 16 8 17 18 19 20 21 22 23 12 17 18 19 20 21 22 23

ANUARY		
ZO	4th Week + 023-342 NOO, 6	
A89	sumptions: error El	
	fine moutrices. Bo 1 2 60	
Y	= 1 B= Bi	
	he ber signal	
4/20	In Just Kal	
100	vector of vector of errors	
photo	Datase	
MX	= 1 ×11 ×12 ×1 ×1 ×1 ×2	
f DA	1 ×21 ×22 - 15 ×2 K-1 ×11 ×12 ×1K+ 71	
113/2:	180 ×n, ×n2 ×n, K-1 n x K ;	
VI ALMO !	180 × 11 × 12 × 11 × 12 × 11, 16-1 ×	7

04.00 1-X2 1-X2 1 X 1 X 2 X 1 X 2 X 1 X 1 X 1 X 1 X 1
This model can be expressed as;
× = XB+E in matrien form. X', NXK, 15:KX
3+ was 1-x61 f 1-+ eix 20 + 13x 101+ 06 2=) XB: NX10
of the have to fet this model means (E', nx)
he have to estimate the pareameters Y: nx1
than I have been manifold of the test of
Estimation of model parameters (MLR)
Like Simple linear Regression (SLR), we will estimate
wing least square & wethod, where
the pareameters are estimated determined by DECEMBER 2018 JANUARY 2019 Important:
WK S M T W T F S WK S M T W T F S Important: WK S M T W T F S WK S M T W T F S
48 30 31 49 2 3 4 5 6 7 8 2 6 7 8 9 10 11 12 SS Residual Sum of sanare
48 30 31 49 2 3 4 5 6 7 8 2 6 7 8 9 10 11 12 50 9 10 11 12 13 14 15 3 13 14 15 16 17 18 19 51 16 17 18 19 20 21 22 4 20 21 22 23 24 25 26 SS Revaidual (Sum of senane)
52 23 24 25 26 27 28 29 5 27 28 29 30 31

2018
Least square method (LSM) THURSDAY 24 10 thousand Nineteen detercivines tell parameters by Wilnimizing 35 Res alure
10 thousand Nineteen Letercuieres tele parameters by
minimizing 35 pes alure
$SS_{ReS} = \sum_{i \ge 1} e_i^2 = \sum_{i = 1}^{n} (Y_i - \hat{Y}_i)^2$
SSRes = $\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^$
Let the fitted model is: Y = 130 + B1 x1+122
1, SSRES = \(\tau \) \(\tau \) - \(\beta \) - \(\beta \) - \(\beta \) - \(\beta \) \(\beta \) - \(\beta \)
We now represent SSRes in matrice formy for that
we now respresent SSRes in matrice formy for that we consider veridual vector e os
cue counder veridual vector e os ei=yi-yi +i=1,2 e=ez li=i+h residual e=ez-en ! e= Y-Y
1 come with 1/25; 6= 1-21 del ed. 1010
vector of observations
vector of observations vector of observations observations observations

1. SSRes = Tei = ee e'e = [e, e, en] [e]
$= (Y - \hat{Y})(Y - \hat{Y})$ $= (Y - \hat{Y})(Y - $
and $AY = \beta_0 + \beta_1 x_1$ $+ \cdots + \beta_{K-1} x_{K-1} = (Y - \beta_1 x_1) (Y - x_1 x_2)$ $+ \cdots + \beta_{K-1} x_{K-1} = (Y - \beta_1 x_1) (Y - x_2 x_3)$
= x\bar{\bar{\bar{\bar{\bar{\bar{\bar{
scalar Scalar (Kr) Scalar Scalar (Kr) Scal
Scalar 16 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 10 11 12 13 14 15 16 11 10 11 12 13 14 15 16 11 17 18 19 20 21 22 23 12 17 18 19 20 21 22 23 12 17 18 19 20 21 22 23 12 17 18 19 20 21 22 23 13 24 25 26 27 28 29 30

$\gamma' \times \hat{\beta} = (x' + y)' \hat{\beta} = (\hat{\beta}' (x' + y))'$
1×1 matrix = (2 0 1 8
1×1 matrix = (B'x'Y)=B'x'Y
TRIDAY A A A
L J 4th Week - 025-340
SSRes = Y'Y-Y'XB-B'XY+BXXB
$= Y'Y - \hat{\beta}'X'Y - \hat{\beta}'X'Y + \hat{\beta}'X'X\hat{\beta}$
= Y'Y-2 B'Y'Y+B'XXB
= Y'Y-2B'X'Y+B'XXB
Tor estimation of R-unknown Bo, B1, BR-1
For estimation of R-unknown 150, 131, 1013k-1
we get, 8 sses/ = 0 } so we have K normal
233011 equations evits
R-unknowns s
estimated values of
035 Res B B B B B B K-1'
BK-1 B& B, 5 BK-1

4. matrix form SSON 2 YY - 2 A MAY A A A A A A A A A A A A A A A A A
85 20 => 2nd Perm 2nd Perm 2nd Perm 2spes = 2(Y; - B - B; Xi - Xi k-1) 2(YY - B X X X B) 20 (2) (2) (2) (3) (4)
23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

two thousand Nineteen The string will give all The contraction of the unknown o	d (xTb) = B dx JANUARY d (xTb) = 28 SATURDAY dx (xTbx) = 28 SATURDAY Ax (xTbx) = 26 SATURDA
$(x_{\beta}+\epsilon)$	X (XX E) E; Xi, K-1 =0 (XX XX E) Ei Xi, K-1 =0 (XX XX E) Ei Xi, K-1 =0 (XX X
ity matrix N (0,000)	Zeixi, zeixi, zeixi, x-1 20
0400 behaldren 40 di-	All are independent which gives the soly of k-unknowns Bo, B, BK-1

Degree of Freedom (DF) of SS_{Res}

Degree of Freedom (DF) of SS_{Res}

00 : To compute ssres, w	e don't have freedom SUNDAY 10
to choose all ei for i=1, we can choose n-k of	2,, no undependently.
is, we have the degree n-k of n eis and t	of freeding to coose
have to be chosen in I they satisfy above K-E	such a way thou
in are wosing Ralgy	WK SMTWTFS WK SMTWTFS
of freedom for k-constr on the residuals.	11 10 11 12 13 14 15 16 16 14 15 16 17 18 19 20 12 17 18 19 20 21 22 23 17 21 22 23 24 25 26 27 13 24 25 26 27 28 29 30 18 28 29 30
i. Df(SSres) = n-K.	

Degree of Freedom (DF) of SS_⊤

Degree of Freedom (DF) of SS_T

Degree of Freedom (DF) of SS_{Reg}

```
35 regresser is, ssreg defines how
much of the variability in response variable
Y is explained by the regressore model.
Total variability Variability in response variable variability
                            788 ponse variable
                            explained by prody
 i matrix form of Ssreg is
             = 200 Y/Y-nY-Y/Y+BXY
              = 8 31x1x-n=2
  1, SST = SSreg + SSres
  · DF(SST) = ODF(SSreg) + DF(SSres)
    n-1 = Df(SSrag) + n-K
      DF(SSreg) = K-1
```

Thank you