# Transferencia de Energía en NP de Polímeros Conjugados

Modelización y validación con datos experimetales CONICET Rodrigo A. Ponzio<sup>1,2,\*</sup>, Franco N. Bellomo<sup>1,†</sup>, Lucas E. Bellomo<sup>1,‡</sup>,

Daniel A. Bellomo<sup>3</sup>, Carlos A. Chesta<sup>2</sup>, Rodrigo E. Palacios<sup>2</sup>, Dolores Rexachs<sup>4</sup>



1 Dpto. Física, FCEFQyN, UNRC. 2 Dpto. Química, FCEFQyN, UNRC. 3 UTI, UNRC, 4 HPC4EAS, UAB \*rponzio@exa.unrc.edu.ar, †fnbellomo@gmail.com, ‡lbellomo@gmail.com

11º Encuentro Regional de Probabilidades y Estadística Matemática - Departamento de Matemáticas - FCEFQyN - UNRC - diciembre 2015



AGENCIA

#### 1 Introducción

Los polímeros conjugados son macromoléculas compuestas por monómeros que presentan enlaces simples y múltiples alternados. Dentro de la cadena existen segmentos (cromóforos) de longitud variable en donde los electrones π se encuentran deslocalizados. Debido a la heterogeneidad estructural de estos materiales, los procesos de transferencia de energía (TE) entre cromóforos y dopantes son altamente complejos. El mejor entendimiento de estos procesos es de importancia para el desarrollo de dispositivos orgánicos-electrónicos. Se presenta una combinación de estrategias experimentales y modelización teórica (basado en simulaciones de Monte Carlo) para estudiar los procesos de TE en nanopartículas (NPs) de polímeros conjugados dopadas con colorantes. La simulación ha sido validada mediante una comparación de valores obtenidos directamente mediante la simulación<sup>4</sup>, y calculados analíticamente observando resultados concuerdan.

#### 2 Caminante Aleatorio Tridimencional



Generación de dopantes (círculos azules) y excitón (círculos rojos) en la NP.

1- Se generan X dopantes en la NP, donde X viene dado por la densidad de dopaje de la NP. El excitón se genera con la misma probabilidad en cualquier punto de la NP (Fig. 1).

2- Para determinar si el exitón decae, se compara su probabilidad de decaimiento (p) con una Variable Aleatoria  $\Lambda \sim U(0,1)$ . Si p >  $\Lambda$ , el exitón decae. p se calcula como:

$$p = 1 - e^{-(k_D + k'_{ET})\Delta_t}$$
 (1)

Donde  $k_D$  es la constante de decaimineto natural del exitón (en ausencia de dopantes) y  $k_{ET}^{\prime}$  es la constante de decaimiento debido a la TE hacia los dopantes.

$$k_D = \tau_D^{-1}$$
 (2)  $k'_{ET} = \sum_{j=1}^{\#dye} \left(\frac{R_0}{R_j}\right)^6$  (3)

Donde R<sub>o</sub> es el radio de Förster y R<sub>i</sub> es la distancia del exitón a cada dopante (Fig. 2).

**3-**Para determinar la via de decaimiento, se genera una segunda VA B~U(0,1) que se compara con la probabilidad de TE (Eq. 4). Si B <  $P_{TE}$  el exitón decae por TE a algún dopante. Caso contrario, decae naturalmente.



Distancia del excitón a los dopantes.



Fig. 3 Paso aleatorio del excitón.

$$P_{TE} = \frac{k_{TE}}{k_{TE} + k_D} \qquad (4) \qquad P_D = \frac{k_D}{k_{TE} + k_D} \qquad (5)$$

4- Si el exitón no decae, realiza un paso en una dirección aleatoria (con igual probabilidad en todas las direcciones) de longitud  $\epsilon$  (Fig. 3). Una vez realizado dicho paso, se vuelve al punto 2 hasta que eventualmente, termina decayendo.

Este procedimiento se reitera M-veces para asegurar la convergencia estadística.

## 3 Validación L D

La distancia cuadrática media (denominada exiton diffusion length  $L_D$ ) entre los puntos donde nace y muere el exitón en ausencia de dopantes se calcula  $L_D = \sqrt{N}\epsilon = \sqrt{D\epsilon} \qquad (6)$ analiticamente<sup>3</sup> como:

En esta definición el caminante no esta confinado. Por lo tanto, para extraer  $L_D$ correctamente de la simulación, elegimos r >> D y generamos los exitónes en el centro de la NP. Calculamos las distancia cuadrática media simulada según Eq. 7

$$L_{D_{simulado}} = \sqrt{rac{\sum_{i=1}^{j} d_i^2}{j}}$$

Donde d; es la distancia entre los puntos donde nace y muere el excitón. De los resultados se observa que concuerdan para todos los valores de D y  $\epsilon$ , validando la simulación.



Suma de los errores cuadráticos medios normalizados (por el número de mediciones experimentales) del excitón a los dopantes calculado según la Eq. 8

$$E = \sum_{j=1}^{3} \frac{1}{n_j} \sum_{i=1}^{n_j} (Q_{e_i} - Q_{s_i})^2$$
 (8)



Fig. 5 Eficiencias de Quenching simuladas (rojo) y experimentales² (azul) para una misma NP con 3 dopantes con R<sub>0</sub> distintos. Resultados obtenidos con 5000 exitaciones de cada punto, con D = 40 nm,  $\epsilon$  = 1.5 nm y  $r_{NP}$  = 15 nm.

### 6 Conclusiones y Trabajos Futuros

- Los resultados reproducen satisfactoriamente los datos experimentales utilizando valores de  $L_D$  y  $\epsilon$  iguales para tres sistemas con distintos dopantes, consistentes con los valores encontrados en la bibliografía.
- Resaltar la importancia de la formación de especialistas de la ciencia básica en programación científica.
- Es necesario el acceso a recursos de computo avanzado (GPU, cluster, etc) para profundizar con la investigación.
- El grupo de Fotoquímica de la UNRC posee experiencia en la síntesis de NPs dopadas superficialmente y se dispone de los resultados experimentales necesarios para realizar comparaciones con simulaciones de NPs dopadas superficialmente.
- TEN contempla distribuciones de radios de la NP. Se realizaran simulaciones y validaciones experimentales.

#### 7 Agradecimientos y Bibliografia

- Rodrigo A. Ponzio posee una beca interna doctoral de CONICET.
- Rodrigo E. Palacios es miembro de la carrera de investigador científico (CIC) del CONICET.
- Este trabajo fue financiado por: ANPCyT (PRH23 PICT 140/08, PME), ANPCyT-CONICyT (PICT 2691/11), SECyT UNRC (PPI/10) MINCyT Córdoba (PID 033/2010)
- Al Dr. Manuel Ujaldon por brindarnos acceso a equipos de computación de alto desempeño.
- ¹Lupton J. M., Adv. Mater; Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up; 2010, 22, 1689.
- <sup>2</sup>Changfeng Wu, Yueli Zheng, Craig Szymanski, and Jason McNeill; Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles; J. Phys. Chem. C 2008, 112, 1772-1781
- <sup>3</sup>Toshihiro Kawakatsu; Stadistical Physics of Polymers, An introduction; Springer. ISBN: 978-3-642-07786-9
  - <sup>4</sup>El código esta disponible en: https://github.com/pewen/ten