Linear Regression with Multiple Variables

Multiple features

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• Gradient descent for multiple variables

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Cost function:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat {

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

$$= \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

}

• Feature scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean.

Learning rate

How to choose learning rate α : Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.