Calculating $Cov(\overline{\log \lambda_{it}}, \overline{\tau_{it}})$

January 14, 2022

- 1. Calculate individual log lambdas for every farmer i in every year t: $\log \lambda_{it}$
 - (a) Create dataframe of expenditures exp indexed by j: unique ID given by ID + state + year, m = 1, t = year
 - (b) For household composition dataframe hh, use log of household size
 - (c) cfe.Result(y=exp, z=hh)
- 2. Merge payments data with ARMS data for farmer i in year t based on zip code z
 - (a) Sum payments τ_{iztp} from all programs p for each farmer i living in zip code z in year t to get τ_{izt}
 - Note that τ_{izt} could be the total payments to farmer i living in zip code z in year t, or it could be $(\tau_{iztp_1}, ..., \tau_{iztp_n})$ for n different payment categories
 - (b) Calculate the mean $\overline{\tau_{zt}}$ and add it to ARMS observations in zip code z in year t (since we have little individual information to use for matching beyond zip code)
 - (c) Use self-reported payments data already in ARMS for farmer i in year t and each zip code z to get τ_{it}
- 3. Calculate $Cov(\overline{\log \lambda_{it}}, \tilde{\tau_{it}})$ where $\tilde{\tau_{it}}$ is self-reported payments (τ_{it}) instrumented by administrative payment means $(\overline{\tau_{zt}})$

Indices of the dataframe df_analysis:

- j: unique ID given by ID + state + year
- t: year
- Zip: zip code

Columns of the dataframe df_analysis:

- loglambda
- constant = 1
- YEAR: year dummies
- PLC_self: self-reported Price Loss Coverage payments
- DCP_ACRE_self: self-reported Direct and Counter-cyclical/Average Crop Revenue Election payments
- ARC_self: self-reported Agriculture Risk Coverage payments
- MFP_self: self-reported Market Facilitation Program payments
- PLC_admin_mean: mean of administrative payments to farmers in a given zip code for Price Loss Coverage payments
- DCP_ACRE_admin_mean: mean of administrative payments to farmers in a given zip code for Direct and Counter-cyclical/Average Crop Revenue Election payments

- ARC_admin_mean: mean of administrative payments to farmers in a given zip code for Agriculture Risk Coverage payments
- MFP_admin_mean: mean of administrative payments to farmers in a given zip code for Market Facilitation Program payments
- (a) Use the administrative payments data as instruments

```
• Y = df_analysis['loglambda']
```

- X = df_analysis[['PLC_self', 'DCP_ACRE_self', 'ARC_self', 'MFP_self']]
- Z = df_analysis[['constant', YEAR, 'PLC_admin_mean', 'DCP_ACRE_admin_mean', 'ARC_admin_mean', 'MFP_admin_mean']]
- from statsmodels.sandbox.regression.gmm import IV2SLS
- results_iv = IV2SLS(Y,X,Z).fit()
- results_iv.params

*Note that these preliminary results do not include the year 2012 yet (waiting for the correct 2012 file to be uploaded to the Data Enclave)

```
\begin{array}{l} {\tt ARC\_self:} \ -2.273460*10^{-6}(5.991604*10^{-7}) \\ {\tt DCP\_ACRE\_self:} \ -3.880741*10^{-6}(4.257992*10^{-7}) \\ {\tt MFP\_self:} \ -8.506738*10^{-7}(4.066743*10^{-7}) \\ {\tt PLC\_self:} \ -6.625808*10^{-6}(9.641586*10^{-7}) \end{array}
```

(b) Correlation between individual self-reported payments and means of administrative payments at the zip code level (using np.corrcoef)

*Note that these preliminary results do not include the year 2012 yet (waiting for the correct 2012 file to be uploaded to the Data Enclave)

• ARC: 0.3433

 \bullet DCP_ACRE: 0.3068

MFP: 0.3751PLC: 0.2792