ST720 Data Science Tree-Based Method

Seung Jun Shin (sjshin@korea.ac.kr)

Department of Statistics, Korea University

Tree Model I

(a) Partitioned Predictor Space

(b) Fitted Model

Hits < 117.5

6.74

Tree Model II

- ► A good partition yields similar response values in a same node and different values in deferent nodes.
- Impurity:
 - Regression $\Rightarrow \sum_{i} (y_i^{\ell} \bar{y}^{\ell})^2$
 - ► Classification $\Rightarrow \sum_k p_k^{\ell} (1 p_k^{\ell}) \text{ or } \sum_k p_k^{\ell} \log p_k^{\ell}$
- Sequentially detect the partition that minimizes total impurities.

Tree Model III

- Recursive binary splitting
- ex Toy Example: Regression Tree

X	1	2	3	4
y	0	2	10	12

1.
$$x \le 1$$
 vs $x > 1$:
 $(0-0)^2 + (2-8)^2 + (10-8)^2 + (12-8)^2 = 56$

2.
$$x \le 2$$
 vs $x > 2$:
 $(0-1)^2 + (2-1)^2 + (10-11)^2 + (12-11)^2 = 4$

3.
$$x \le 3$$
 vs $x > 3$:
 $(0-4)^2 + (2-4)^2 + (10-4)^2 + (12-12)^2 = 56$

Tree Model IV

ex Toy Example: Binary Classification

X	1	2	3	4
У	1	1	1	2

1.
$$x \le 1$$
 vs $x > 1$: $1 \cdot 0 + 0 \cdot 1 + \frac{2}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{3}$
2. $x \le 2$ vs $x > 2$: $1 \cdot 0 + 0 \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$
3. $x \le 3$ vs $x > 3$: $1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 0$

Tree Model V

- Size of tree is a tuning parameter.
- ▶ Where to stop?
- Pruning: Fit full tree and then cut.
- Objective function

Total Impurity of
$$T + \lambda |T|$$

tree / rpart package available in R

Random Forest I

- ► Tree is a weak leaner with large variance.
- Reduce the variance by repeated learning.
- Bootstrapping and then Fitting
- Ensemble is a popular idea in ML
 - "Combine the outputs of may "weak" classifiers to produce a powerful committee!!"

Random Forest II

- From (\mathbf{y}, \mathbf{X}) , generate bootstrap sample $(\mathbf{y}_h^*, \mathbf{X}_h^*)$, $b = 1, 2, \dots, B$.
- Fit a tree model from each of $(\mathbf{y}_b^*, \mathbf{X}_b^*)$ denoted by $T_b^*, b = 1, \dots, B$.
- ▶ Prediction Rule from $\{T_1^*, \dots, T_B^*\}$
 - Regression: Average
 - Classification: Majority Vote
- ► This is known as Bootstrap aggregating, "Bagging".

Random Forest III

- Random Forest (RF)is an improved version of Bagging.
- ► When fitting a tree model from each of bootstrap samples, randomly pick a subset of variables when splitting.
- ▶ This additional variation increases the variability of T_b^* .
- ▶ Bagging is a special case of RF. (Pick *p* variables for the splitting).
- randomForest package available.

Boosting I

- 1. Initialize the observation weights $w_i = 1/n, i = 1, \dots, n$.
- 2. For m=1 to M:
 - 2.1 Fit a classifier (eg, stump) denoted by $T_m(\mathbf{x})$ using weights w_i .
 - 2.2 Compute the error rate

$$err_m = \frac{\sum_{i=1}^{n} w_i \mathbb{1}\{y_i \neq T_m(\mathbf{x}_i)\}}{\sum_{i=1}^{n} w_i}$$

2.3 Compute the contribution of $T_m(\mathbf{x})$ for ensemble:

$$\alpha_m = \log \left\{ (1 - \operatorname{err}_m) / \operatorname{err}_m \right\}$$

- 2.4 Update weight as $w_i \leftarrow w_i \exp [\alpha_m \mathbb{1}\{y_i \neq T_m(\mathbf{x}_i)\}]$.
- 3. Output

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m T_m(\mathbf{x})$$

Boosting II

▶ Boosting can be equivalently rewritten as the ERM problem with $L(u) = \exp(-u)$:

$$\min_{f} \sum_{i=1}^{n} \exp(-y_{i}f(\mathbf{x}_{i})),$$

where

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m T_m(\mathbf{x})$$

▶ M is a tuning parameter and overfits as $M \rightarrow 0$.

Boosting III

Figure: Exponential loss

Boosting IV

- Extension to other loss function is natural.
 (ex. Logit-Boosting, L₂-Boosting)
- Gradient Decent Algorithm can be applied to the optimization.
 (AdaBoosting algorithm is a Steepest Decent Algrotithm.)
- ► We call this Gradient Boosting.
- gbm / xgboost package are available.