

Advanced Natural Language Processing & Large Language Models

Felix Neubürger

2025

Fachhochschule Südwestfalen, Ingenieurs- & Wirtschaftswissenschaften

Inhalte der Vorlesung

- Wie funktioniert Natural Language Processing
- Sprachdarstellung zum Rechnen
- Attentionmechanismus
- Transformerarchitektur
- von BERT zu DeepSeek-v3
- Wie es weitergehen kann
- Nutzungsmöglichkeiten: RAG, Agentensysteme
- Al Safety und Ethik

F. Neubürger | 2025

Ziele der Vorlesung - Welche Fragen sollen beantwortet werden?

- Was sind die Grundlagen von Natural Language Processing (NLP)?
- Wie funktionieren Attention-Mechanismen und warum sind sie wichtig?
- Was ist die Transformer-Architektur und wie unterscheidet sie sich von anderen Ansätzen?
- Wie werden Sprachmodelle wie BERT und GPT trainiert und genutzt?
- Welche Herausforderungen und ethischen Fragen gibt es bei der Nutzung von LLMs?
- Welche praktischen Anwendungen und Zukunftsperspektiven gibt es für LLMs?

DESPITE OUR GREAT RESEARCH RESULTS, SOME HAVE QUESTIONED OUR AI-BASED METHODOLOGY. BUT UE TRAINED A CLASSIFIER ON A COLLECTION OF GOOD AND BAD METHODOLOGY SECTIONS. AND IT SAYS OURS IS FINE.

[https://xkcd.com/2451/]

F. Neubürger | 2025

Format der Vorlesung - Wie sollen diese Fragen beantwortet werden?

- Theroretischer Teil mit Folien
- Praktischer Teil in Gruppen an einem Projekt
- Gruppengröße 2 oder 3 Personen
- Einzelarbeit möglich wenn eigenes Thema vorhanden
- Abgabe der Ausarbeitung einen Tag vor der Veranstaltung in der Blockwoche
- Vorstellung der Projektergebnisse in der Blockwoche
- Gewichtung der Bewertung Projektausarbeitung (50%) und Vortrag (50%)

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

[https://xkcd.com/1425/]

F. Neubürger | 2025

Wie funktioniert Natural Language Processing

- Definition und Ziele des NLP
- Herausforderungen bei der maschinellen Sprachverarbeitung
- Anwendungen von NLP in der Praxis

Definition und Ziele des NLP

- NLP steht für Natural Language Processing, die Verarbeitung natürlicher Sprache durch Computer.
- Ziel: Maschinen ermöglichen, menschliche Sprache zu verstehen, zu interpretieren und zu generieren.
- Anwendungen: Übersetzungen, Chatbots, Textanalyse, Sprachassistenten.

Herausforderungen bei der maschinellen Sprachverarbeitung

- Ambiguität: Mehrdeutigkeit in der Sprache.
- Kontextabhängigkeit: Bedeutung hängt vom Kontext ab.
- Umgang mit Synonymen und Homonymen.
- Verarbeitung großer Datenmengen und Rechenaufwand.

Anwendungen von NLP in der Praxis

- Sentiment-Analyse: Erkennung von Meinungen in Texten.
- Maschinelle Übersetzung: Automatische Übersetzung zwischen Sprachen.
- Sprachgesteuerte Assistenten: Siri, Alexa, Google Assistant.
- Textzusammenfassung: Automatische Erstellung von Textzusammenfassungen.

Text Preprocessing Pipeline

Data Cleaning

■ Definition: Entfernen oder Korrigieren von fehlerhaften, unvollständigen oder irrelevanten Daten.

Schritte:

- Entfernen von Sonderzeichen, HTML-Tags und Emojis.
- Korrektur von Rechtschreibfehlern.
- Vereinheitlichung von Groß- und Kleinschreibung.
- Ziel: Verbesserung der Datenqualität für nachfolgende Verarbeitungsschritte.

Tokenization

■ **Definition:** Zerlegung von Text in kleinere Einheiten (Tokens), z. B. Wörter oder Satzzeichen.

Arten:

- Wortbasierte Tokenization: "Das ist ein Satz." → ["Das", "ist", "ein", "Satz", ""]
- Zeichenbasierte Tokenization: "Hallo" → ["H", "a", "l", "l", "o"]
- Subwortbasierte Tokenization: "unbelievable" → ["un", "believ", "able"]
- Herausforderungen: Umgang mit zusammengesetzten Wörtern, Abkürzungen und Sonderzeichen.

Normalization

■ **Definition:** Vereinheitlichung von Textdaten, um Konsistenz zu gewährleisten.

Schritte:

- Umwandlung in Kleinbuchstaben: "Haus" → "haus".
- Entfernen von Akzenten: "café" → "cafe".
- Stemming: Reduktion auf Wortstamm, z. B. "running" → "run".
- Lemmatization: Rückführung auf Grundform, z. B. "better" → "good".
- Ziel: Reduktion der Variabilität in den Daten.

Stopword Removal

■ Definition: Entfernen von häufig vorkommenden Wörtern, die wenig Bedeutung tragen (z. B. "der", "und", "ist").

Vorgehen:

- Verwendung einer vordefinierten Stopword-Liste (z. B. "der", "die", "und", "ist", "ein", "zu").
- Anpassung der Liste an den spezifischen Anwendungsfall.

■ Vorteile:

- Reduktion der Datenmenge.
- Verbesserung der Modellleistung durch Fokus auf relevante Wörter.
- **Herausforderung:** Manche Stopwords können je nach Kontext wichtig sein.

Sprachdarstellung zum Rechnen

- Wortvektoren und Einbettungen (Embeddings)
- One-Hot-Encoding vs. verteilte Repräsentationen
- Word2Vec, GloVe und andere Einbettungsmethoden

Wortvektoren und Einbettungen (Embeddings)

- Ziel: Repräsentation von Wörtern in einem kontinuierlichen Vektorraum.
- Mathematische Definition:
 - Gegeben eine Menge von Wörtern $W = \{w_1, w_2, ..., w_n\}$.
 - Eine Einbettung ist eine Funktion $f: W \to \mathbb{R}^d$, wobei d die Dimension des Vektorraums ist.
 - Beispiel: $f(w_i) = v_i \in \mathbb{R}^d$.
- Vorteile:
 - Semantische Ähnlichkeit wird durch Nähe im Vektorraum dargestellt.
 - Reduktion der Dimensionalität im Vergleich zu One-Hot-Encoding.

One-Hot-Encoding vs. Verteilte Repräsentationen

One-Hot-Encoding:

- Jedes Wort wird als Vektor mit einer einzigen Eins und sonst Nullen dargestellt.
- Beispiel: Für $W = \{w_1, w_2, w_3\}$, w_2 wird als [0, 1, 0] kodiert.
- Nachteile: Hohe Dimensionalität, keine semantische Information.

■ Verteilte Repräsentationen:

- Nutzen kontinuierliche Vektorräume, um semantische Beziehungen darzustellen¹..
- Ermöglichen die Nutzung von Modellen wie Word2Vec und GloVe ².
- Wörter werden als dichte Vektoren in einem "niedrig" dimensionalen Raum dargestellt.
- Semantisch ähnliche Wörter haben ähnliche Vektoren.
- Beispiel: $f(w_1) = [0.2, 0.8], f(w_2) = [0.3, 0.7].$

¹Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.

²Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Word2Vec, GloVe und andere Einbettungsmethoden

Word2Vec:

- Skip-Gram-Modell: Vorhersage des Kontexts basierend auf einem Zielwort³.
- CBOW-Modell: Vorhersage des Zielworts basierend auf dem Kontext⁴.

■ GloVe (Global Vectors for Word Representation):

- Nutzt globale Wort-Kooccurenz-Matrizen⁵.
- Optimiert eine Zielfunktion, die Wortpaare und ihre Häufigkeiten berücksichtigt⁶.

Andere Methoden:

- FastText: Berücksichtigt Subwortinformationen.
- BERT-Embeddings: Kontextabhängige Einbettungen.

³Das Skip-Gram-Modell versucht, für ein gegebenes Zielwort die umgebenden Kontextwörter vorherzusagen.

⁴Das Continuous Bag of Words (CBOW)-Modell sagt ein Zielwort basierend auf den umgebenden Kontextwörtern vorher. Es ist effizienter als das Skip-Gram-Modell, aber weniger präzise bei seltenen Wörtern.

⁵GloVe basiert auf der Idee, dass die globale Häufigkeit von Wortpaaren in einem Korpus genutzt werden kann, um semantische Beziehungen zwischen Wörtern zu modellieren.

⁶Die Zielfunktion von GloVe minimiert den Unterschied zwischen der inneren Produktdarstellung von Wortvektoren und der logarithmierten Häufigkeit von Wortpaaren.

Neuartige Embeddings (Teil 1)

Kontextabhängige Embeddings:

- Modelle wie BERT⁷, GPT⁸ und T5⁹ generieren Embeddings, die den Kontext eines Wortes berücksichtigen.
- Beispiel: Das Wort "Bank" hat unterschiedliche Embeddings in den Sätzen "Ich sitze auf der Bank" und "Ich gehe zur Bank".

Sentence Embeddings:

- Repräsentieren ganze Sätze statt einzelner Wörter.
- Modelle wie Sentence-BERT (SBERT)¹⁰ ermöglichen semantische Suche und Textähnlichkeitsbewertung.

⁷Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/abs/1810.04805

Brown, T. et al. (2020), Language Models are Few-Shot Learners. https://arxiv.org/abs/2005.14165

⁹Raffel, C. et al. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. https://arxiv.org/abs/1910.10683

¹⁰ Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. https://arxiv.org/abs/1908.10084

Neuartige Embeddings (Teil 2)

■ Multimodale Embeddings:

- Kombinieren Informationen aus verschiedenen Modalitäten wie Text, Bild und Audio.
- Beispiel: CLIP (Contrastive Language-Image Pretraining)¹¹ von OpenAl.

■ Graphbasierte Embeddings:

- Repräsentieren Wörter als Knoten in einem Graphen, wobei Kanten Beziehungen zwischen Wörtern darstellen.
- Beispiel: Node2Vec¹² und GraphSAGE¹³.

Adapter-basierte Embeddings:

- Ermöglichen die Anpassung vortrainierter Modelle an spezifische Aufgaben durch leichte Modifikationen.
- Reduzieren den Speicherbedarf im Vergleich zu vollständigem Fine-Tuning¹⁴.

¹¹Radford, A. et al. (2021). Learning Transferable Visual Models From Natural Language Supervision. https://arxiv.org/abs/2103.00020

¹²Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. https://arxiv.org/abs/1607.00653

¹³Hamilton, W. et al. (2017). Inductive Representation Learning on Large Graphs. https://arxiv.org/abs/1706.02216

¹⁴Houlsby, N. et al. (2019). Parameter-Efficient Transfer Learning for NLP. https://arxiv.org/abs/1902.00751

Text Preprocessing Pipeline

Attention-Mechanismus

- Motivation für Attention in Sequenzmodellen
- Funktionsweise des Attention-Mechanismus
- Unterschied zwischen Self-Attention und Cross-Attention

Motivation für Attention in Sequenzmodellen

- Problem: In langen Sequenzen verlieren Modelle wie RNNs und LSTMs den Überblick über frühere Informationen.
- Lösung: Der Attention-Mechanismus ermöglicht es, gezielt auf relevante Teile der Eingabesequenz zu fokussieren.
- Beispiel: Bei der Übersetzung eines Satzes kann Attention bestimmen, welches Wort im Quelltext für ein bestimmtes Wort im Zieltext wichtig ist.

Funktionsweise des Attention-Mechanismus

- **Gegeben:** Eine Eingabesequenz mit n Elementen $\{x_1, x_2, ..., x_n\}$.
- Ziel: Berechnung einer gewichteten Summe der Eingaben, wobei die Gewichte die Relevanz jedes Elements darstellen.
- Schritte:
 - 1. Berechnung der Scores:

$$e_{ii}$$
 = score(h_i , h_i), wobei h_i und h_i die Hidden States sind.

2. Normalisierung der Scores:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{n} \exp(e_{ik})}$$
 (Softmax).

3. Gewichtete Summe:

$$z_i = \sum_{i=1}^n \alpha_{ij} h_j.$$

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}}\right)V$$
 (1)

Hierbei sind Q (Query), K (Key) und V (Value) Matrizen, und d_{h} ist die Dimension der Keys.

F. Neubürger | 2025 Attention-Mechanismus 23

Funktionsweise des Attention-Mechanismus

Self-Attention vs. Cross-Attention

Self-Attention:

- Jeder Token in der Sequenz bezieht sich auf alle anderen Tokens in derselben Sequenz.
- Beispiel: Kontextualisierung eines Wortes in einem Satz.

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}}\right)V$$
, $Q = K = V$

Cross-Attention:

- Tokens in einer Sequenz beziehen sich auf Tokens in einer anderen Sequenz.
- Beispiel: Übersetzung, bei der der Zieltext auf den Quelltext achtet.

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}}\right)V$$
, $Q \neq K = V$

Self-Attention vs. Cross-Attention

Visualisierung der Attention-Matrix

- Die Attention-Matrix zeigt die Gewichte α_{ii} , die die Relevanz von Token j für Token i darstellen.
- Beispiel: Bei der Übersetzung eines Satzes zeigt die Matrix, welche Wörter im Quelltext für ein bestimmtes Wort im Zieltext wichtig sind.

Abbildung: Beispiel einer Attention-Matrix. Kim, Yanghoon & Hwanhee, Lee & Shin, Joongbo & Jung, Kyomin. (2018). Improving Neural Question Generation using Answer Separation. 10.48550/arXiv:1809.02393.

Transformer-Architektur

- Überblick über die Transformer-Architektur
- Encoder-Decoder-Struktur
- Vorteile gegenüber rekurrenten Netzwerken

F. Neubürger | 2025 Transformer-Architektur 28

Von BERT zu DeepSeek-v3

- Einführung in BERT und seine Architektur
- Weiterentwicklungen: GPT, RoBERTa, T5
- Überblick über DeepSeek-v3 und seine Besonderheiten

Abbildung: DeepSeek Janus Pro 7B-Interpretation von BERT und DeepSeek-v3 als KI-Modell.

Wie es weitergehen kann

- Aktuelle Forschungstrends im NLP
- Herausforderungen und offene Fragen
- Ethische Überlegungen und gesellschaftliche Auswirkungen

F. Neubürger | 2025 Wie es weitergehen kann 30

Nutzungsmöglichkeiten: RAG, Agentensysteme

- Retrieval-Augmented Generation (RAG) und seine Anwendungen
- Entwicklung und Einsatz von Agentensystemen im NLP
- Kombination von LLMs mit externem Wissen

Al Safety und Ethik

- Bedeutung von Sicherheit und Ethik in der KI-Entwicklung
- Risiken und Herausforderungen bei der Nutzung von LLMs
- Ansätze zur Förderung von verantwortungsvoller KI

Bedeutung von Sicherheit und Ethik

- Sicherheit: Verhindern von Fehlverhalten oder schädlichem Verhalten durch KI-Systeme.
- Ethik: Sicherstellen, dass KI-Systeme fair, transparent und respektvoll gegenüber menschlichen Werten sind.
- Gesellschaftliche Auswirkungen: Einfluss von KI auf Arbeitsplätze, Privatsphäre und soziale Gerechtigkeit.

Risiken und Herausforderungen

- Bias und Diskriminierung: LLMs können Vorurteile aus Trainingsdaten übernehmen.
- **Desinformation:** Generierung von falschen oder irreführenden Inhalten.
- Missbrauch: Einsatz von LLMs für schädliche Zwecke wie Phishing oder Propaganda.
- Black-Box-Problem: Mangel an Transparenz und Nachvollziehbarkeit in KI-Modellen.

Ansätze zur Förderung von verantwortungsvoller KI

- Regulierung und Richtlinien: Entwicklung von Standards und Gesetzen für den Einsatz von KI.
- Technische Lösungen:
 - Bias-Detektion und -Korrektur.
 - Explainable AI (XAI) zur Verbesserung der Transparenz.
- Bildung und Bewusstsein: Förderung von Wissen über KI-Sicherheit und Ethik in der Gesellschaft.
- **Zusammenarbeit:** Interdisziplinäre Ansätze zwischen Technik, Recht und Philosophie.

LLM Standardwerke

- Build LLMs from Scratch (Raschka)
 - https://github.com/rasbt/LLMs-from-scratch
 - Praktische Implementierung in PyTorch
- Transformers for NLP (Rothman)
 - ISBN 978-1803247335
 - BERT/GPT Anwendungen

LLM Forschungsarbeiten

- Attention Is All You Need (2017)
 - https://arxiv.org/abs/1706.03762
 - Transformer-Architektur
- BERT Paper (Devlin 2019)
 - https://arxiv.org/abs/1810.04805
 - Bidirektionale Pretraining
- GPT-3 Paper (Brown 2020)
 - https://arxiv.org/abs/2005.14165
 - Few-Shot Learning

LLM Praktische Ressourcen

- Hugging Face Transformers
 - https://github.com/huggingface/transformers
- LangChain
 - https://python.langchain.com/
 - LLM Orchestrierung
- LLaMA & LlamaIndex
 - https://github.com/facebookresearch/llama
 - Open-Weight Modelle

References I