MAT02036 - Amostragem 2

Aula 02 - Teoria Básica

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Aula passada 📀

Notação	População	Amostra
Índice (rótulo)	$U = \{1, 2, \ldots, i, \ldots, N\}$	$s=\{i_1,i_2,\ldots,i_n\}$
Característica	$Y_U = \{y_1, \; y_2, \; \dots, \; y_i, \; \dots, \; y_N \}$	$Y_s=\{y_{i_1},y_{i_2},\ldots,y_{i_n}\}$
Total	$T = \sum_{i=1}^N y_i = \sum_{i \in U} y_i$	$\widehat{T} = t(s) = t = \sum_{i \in s} y_i$
Média	$\overline{Y} = rac{T}{N} = rac{1}{N} \sum_{i \in U} y_i$	$\widehat{\overline{Y}} = \overline{y} = rac{t(s)}{n} = rac{1}{n} \sum_{i \in s} y_i$
Variância	$Var_y = rac{1}{N} \sum_{i \in U} (y_i - \overset{ extstyle -}{Y})^2$	$var_y = rac{1}{n} \sum_{i \in s} (y_i - \overline{y})^2$
Variância	$S_y^2 = rac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})^2$	$s_y^2 = rac{1}{n-1} \sum_{i \in s} (y_i - \overline{y})^2$

- Espaço amostral: $S = \{s_1, s_2, \dots, s_j, \dots, s_{
 u}\}$
- Plano amostral: p(s), em que $\sum_{s \in S} p(s) = 1$
- ullet Esperança em relação a p(s): $E_p[t(s)] = \sum_{s \in S} t(s) p(s)$
- ullet Variância em relação a p(s): $Var_p[t(s)] = \sum_{s \in S} [t(s) E_p(t)]^2 p(s)$

Aula passada 💿

- Vimos que trabalhar com a distribuição p(s) é complicado.
 - \circ O número total, $\nu = \binom{N}{n}$, tamanho do conjunto S cresce muito rapidamente com N e com n.
 - $\circ~$ Então trabalhamos com a **probabilidade de inclusão** da unidade $i,\,\pi_i$.
- Probabilidade de inclusão (de primeira ordem)

$$\pi_i = P(i \in s) = \sum_{s \ni i} p(s) > 0, orall i \in U.$$

• **Estimador linear** do total populacional (não viesado sob π):

$$\widehat{T}_w = \sum_{i \in s} w_i y_i = \sum_{i \in s} rac{1}{\pi_i} y_i = \sum_{i \in s} \pi_i^{-1} y_i.$$

Teoria Básica e AAS

- Vamos olhar um pouco mais para a ideia de trabalhar com **propabilidades de inclusão** π_i .
- π_i pode ser vista como o parâmetro da distribuição de probabilidades da variável aleatória R, para a i-ésima unidade.
- Definimos a variável indicadora R_i tal que

$$R_i = \left\{ egin{array}{ll} 1, & i \in s \ 0, & i
otin s \end{array}
ight.$$

para todo $i \in U$.

• A variável R_i é indicadora do evento 'inclusão da unidade i na amostra s'.

Exemplo: estimação do total e AAS

ullet Para N=4 e n=2, as seis amostras possíveis podem ser representadas pelas indicadoras por

Representação de cada amostra possível pelas variáveis indicadoras

Amostra	Unidades na Amostra	R_1	R_2	R_3	R_4
1	$s_1=\{1;2\}$	1	1	0	0
2	$s_2=\{1;3\}$	1	0	1	0
3	$s_3=\{1;4\}$	1	0	0	1
4	$s_4=\{2;3\}$	0	1	1	0
5	$s_5=\{2;4\}$	0	1	0	1
6	$s_6=\{3;4\}$	0	0	1	1

• Cada amostra fica univocamente determinada pelas variáveis indicadoras R_1, R_2, \ldots, R_N correspondentes.

- As variáveis indicadoras R dependem da amostra s,
 - o não indicamos explicitamente em nossa notação, mas temos que

$$\pi_i(s) = P(i \in s) = \sum_{s \ni i} p(s) = P(R_i = 1) = E_p(R_i), orall i \in U$$

- Relembre: as **probabilidades de inclusão** π_i são ditas de **primeira ordem**.
- Sob essa ótica, precisamos também definir **probabilidades de inclusão** de segunda ordem, denotadas π_{ij} , dadas por

$$\pi_{ij} = P\left[\left(i,j
ight) \in s
ight] = \sum_{s
i \left(i,j
ight)} p(s) = P\left(R_{ij} = 1
ight) = E_p\left(R_{ij}
ight), orall \left(i,j
ight) \in U,$$

em que $R_{ij} = R_i R_j$.

• Note que quando i=j, $\pi_{ij}=\pi_{ii}=\pi_i, \forall i\in U$.

• Além da propriedade de valor esperado das variáveis aleatórias indicadoras R_i , pode-se também deduzir que:

$$Var_p(R_i) = \pi_i(1-\pi_i)$$

e

$$Cov_p(R_i,R_j)=\pi_{ij}-\pi_i\pi_j.$$

- Um método geral de prova em amostragem se baseia num uso inteligente das variáveis indicadoras R_1, R_2, \ldots, R_N .
- Uma propriedade importante dessas variáveis indicadoras é que:

$$\sum_{i \in s} R_i = \sum_{i \in U} R_i.$$

• Segue também que:

$$\sum_{i \in s} y_i = \sum_{i \in s} R_i y_i = \sum_{i \in U} R_i y_i.$$

- Convertemos a soma amostral que,
 - o antes de selecionada a amostra, tem parcelas aleatórias,
 - \circ em uma soma na população, onde as parcelas são conhecidas mas dependem das R_i .

- Considere o total populacional $T = \sum_{i \in U} y_i$ como parâmetro alvo;
- Um **estimador linear** de *T* é sempre da forma

$$\widehat{T}_w = \sum_{i \in s} w_i y_i = \sum_{i \in U} R_i w_i y_i$$

onde w_i é o *peso amostral* da unidade i.

• Para que o estimador linear \hat{Y}_w de Y seja **sempre** não viciado, é preciso que:

$$E_{p}\left(\widehat{T}_{w}
ight)=T\Leftrightarrow\sum_{i\in U}E_{p}\left(R_{i}
ight)w_{i}y_{i}=\sum_{i\in U}y_{i}\Leftrightarrow\sum_{i\in U}\pi_{i}w_{i}y_{i}=\sum_{i\in U}y_{i}.$$

• Esta relação só será válida para quaisquer valores populacionais y_i da variável de pesquisa caso $\pi_i \times w_i = 1, \forall i \in U.$

Exemplo: AAS sem reposição

Considere o plano amostral AASs para estimar o total populacional T usando o estimador $\widehat{T}_w = \widehat{T}_{AASs}$.

- \triangle . Calcule as probabilidades de inclusão de primeira ordem π_i .
- B. Calcule as probabilidades de inclusão de segunda ordem π_{ij} .
- C. Mostre que \widehat{T}_{AASs} é não viesado para T
 - C.1. usando o plano amostral p(s).
 - C.2. usando a probabilidade de inclusão π .

Exemplo: AAS sem reposição

- A. Temos que para a AASs p(s) = ?, para todo $s \in S$,
 - pois o número de possíveis amostra é dado por $\nu = ?...$
 - então $\pi_i = ?$
- $\mathsf{B.}\;\pi_{ij}=?$
- C.1. Olhar Cochran... ou slides Prof. Rodrigo.
- C.2. Olhar propriedades do estimador linear acima.

Exemplo: AAS sem reposição

- Qual a distribuição amostral do estimador do total \widehat{T}_w ?
 - $\circ~$ Ou da média $\overline{y}_w=\widehat{\overline{T_w}}$?
- TCL para amostras de populações finitas?
 - $\circ \ \sqrt{n}(\widehat{T}_w T) \stackrel{d}{
 ightarrow} ?$
 - $\circ \;\;$ condições? quando $N o \infty$, $n o \infty$, $f = rac{n}{N}$ limitado menor que 1?

Ver Bolfarine e Bussab capítulo 10, Cochran , Slides do Prof. Rodrigo, ...

Quem tiver interesse em aspectos teóricos podemos revisar!

Estimador Horvitz-Thompson

• Com pesos básicos d_i , o estimador não viciado de total fica dado pelo conhecido estimador de Horvitz-Thompson ou estimador HT:

$$\widehat{T}_{HT} = \sum_{i \in s} d_i y_i = \sum_{i \in s} {\pi_i}^{-1} y_i = \sum_{i \in s} y_i / \pi_i$$

• Assim, o estimador linear do total $\widehat{T}_w = \sum_{i \in s} w_i y_i$ será **sempre** não viciado se:

$$\circ \ \ w_i={\pi_i}^{-1}=1/\pi_i=d_i, orall i\in U.$$

- \circ os pesos amostrais d_i são chamados de **pesos básicos** do plano amostral.
- \circ outros pesos além dos definidos pelo delineamento, d_i , podem ser úteis na prática.
- A notação w_i é reservada para designar pesos genéricos que podem ser aplicados para a obtenção de estimadores (viciados ou não).

Estimador Horvitz-Thompson

- Este estimador está definido para qualquer
 - \circ variável de pesquisa y e
 - $\circ~$ para qualquer plano~amostral~probabilístico~p, ou $\pi_i>0, orall i\in U.$
- **Amostragem probabilística** de populações finitas nos garante certa confiança de sempre dispor de estimadores não viciados como o *HT*.
- Lembrando: o estimador HT faz uso das probabilidades de inclusão π (implicadas pelo plano amostral p(s)),
 - mas depende através das probabilidades de inclusão de primeira ordem π_i ,
 - uma condição geralmente simples de satisfazer na prática da pesquisa.

Estimador Horvitz-Thompson

Propriedades do estimador de Horvitz-Thompson

O estimador de Horvitz-Thompson é não viciado para estimar o total, ou seja, $E_p(\widehat{T}_{HT}) = Y$.

Prova:

$$E_p(\widehat{T}_{HT}) = E_p\left[\sum_{i \in U} R_i y_i/\pi_i
ight] = \sum_{i \in U} \left[E_p(R_i) y_i/\pi_i
ight] = \sum_{i \in U} y_i = Y$$

Esta propriedade vale para qualquer população U, variável de interesse y e plano amostral p, desde que $\pi_i > 0, \forall i \in U$.

Estimador Horvitz-Thompson

Propriedades do estimador de Horvitz-Thompson

A variância do estimador Horvitz-Thompson para o total é dada por:

$$egin{aligned} Var_{HT}(\widehat{T}_{HT}) &= \sum_{i \in U} \sum_{j \in U} \left(rac{\pi_{ij}}{\pi_i \pi_j} - 1
ight) y_i y_j \ &= \sum_{i \in U} \sum_{j \in U} \left(rac{d_i d_j}{d_{ij}} - 1
ight) y_i y_j \end{aligned}$$

onde $d_{ij}=\pi_{ij}^{-1}$.

Esta é a chamada forma de Horvitz-Thompson da variância. Existe uma outra forma para esta variância, que vamos conhecer mais adiante.

Estimador Horvitz-Thompson

Propriedades do estimador de Horvitz-Thompson

Prova:

$$egin{aligned} Var_{HT}(\widehat{T}_{HT}) &= Var_p\left(\sum_{i \in U} R_i rac{1}{\pi_i} y_i
ight) \ &= \sum_{i \in U} \sum_{j \in U} Cov_p(R_i, R_j) \left(rac{y_i}{\pi_i}
ight) \left(rac{y_j}{\pi_j}
ight) \ &= \sum_{i \in U} \sum_{j \in U} \left(\pi_{ij} - \pi_i \pi_j
ight) \left(rac{y_i}{\pi_i} rac{y_j}{\pi_j}
ight) \ &= \sum_{i \in U} \sum_{j \in U} \left(rac{\pi_{ij}}{\pi_i \pi_j} - 1
ight) y_i y_j \ &= \sum_{i \in U} \sum_{j \in U} \left(rac{d_i d_j}{d_{ij}} - 1
ight) y_i y_j \end{aligned}$$

Estimador Horvitz-Thompson

Propriedades do estimador de Horvitz-Thompson

Um estimador não viciado da variância do estimador HT do total é dado por:

$$egin{aligned} \widehat{V}ar_{HT}(\widehat{T}_{HT}) &= \sum_{i \in s} \sum_{j \in s} rac{(\pi_{ij} - \pi_i \pi_j)}{\pi_{ij}} igg(rac{y_i}{\pi_i} rac{y_j}{\pi_j}igg) \ &= \sum_{i \in s} \sum_{j \in s} igg(d_i d_j - d_{ij}igg) y_i y_j \end{aligned}$$

- Este estimador da variância foi obtido usando o princípio dos estimadores tipo Horvitz-Thompson do total.
 - Agora, como estimamos uma soma dupla na população, os pesos das parcelas nessa soma dependem das probabilidades de inclusão de **segunda ordem** π_{ij} .
 - Para ser viável, p(s) tem que satisfazer a condição adicional de que $\pi_{ij} > 0 \forall i \neq j \in U$ (estritamente positivas).

Considerações

Comentários sobre estimação de totais e respectivas variâncias em **amostragem probabilística**:

- É possível sempre estimar sem vício um total populacional usando uma soma amostral π -ponderada, o estimador HT do total.
- Expressões de variância para **avaliar a qualidade do estimador de total** sob distintas situações (população, variável) para qualquer plano amostral.
- Estimar muitos **outros parâmetros populacionais** (tais como médias, proporções e razões) com os resultados vistos na estimação de totais.
- Derivar estimadores não viciados do total populacional e da variância do estimador HT de total para distintos planos amostrais como casos especiais da teoria geral apresentada.
 - conveniente para a estimação de variâncias, cujas expressões gerais dependem de somas duplas difíceis de calcular para n grande.
 - expressões para cada um dos planos amostrais específicos são úteis porque permitem simplificar os cálculos da estimação de variâncias.

- Em **planos amostrais equiponderados** (em que as probabilidades de inclusão π_i são todas iguais);
 - \circ os pesos w_i para estimação de médias ficam todos iguais a 1/n;
 - o uma vantagem pois a tarefa de estimação fica simplificada.
- Estimadores *HT* do total, média e respectivas variâncias (\$N\$ conhecido):

Estimadores HT	Variâncias dos Estimadores HT
$\widehat{T}_{HT} = \sum_{i \in s} d_i y_i = \sum_{i \in s} y_i / \pi_i$	$\widehat{Var}_{HT}(\widehat{T}_{HT}) = \sum_{i \in s} \sum_{j \in s} rac{(\pi_{ij} - \pi_i \pi_j)}{\pi_{ij}} \Big(rac{y_i}{\pi_i} rac{y_j}{\pi_j}\Big)$
$\overline{y}_{HT} = \widehat{T}_{HT}/N = \sum_{i \in s} d_i y_i/N$	$\widehat{Var}_{HT}(ar{y}_{HT}) = \widehat{Var}_{HT}(\widehat{T}_{HT})/N^2$

Quando N **não for conhecido**, podemos usar o **estimador de razão**

$$\overline{y}^R = rac{\sum_{i \in s} d_i y_i}{\sum_{i \in s} d_i} = \sum_{i \in s} w_i^R y_i \; ext{e} \; \widehat{Var}_{HT}(\overline{y}^R) = rac{1}{\widehat{N}_{HT}^2} \sum_{i \in s} \sum_{j \in s} rac{(\pi_{ij} - \pi_i \pi_j)}{\pi_{ij}} igg(rac{y_i - \overline{y}^R}{\pi_i}igg) igg(rac{y_j - \overline{y}^R}{\pi_j}igg)$$

Expressão alternativa para a variância - Sen-Yates-Grundy

$$\widehat{Var}_{SYG}(\widehat{Y}_{HT}) = \sum_{i \in s} \sum_{j > i} \left(rac{\pi_i \pi_j - \pi_{ij}}{\pi_{ij}}
ight) \left(rac{y_i}{\pi_i} - rac{y_j}{\pi_j}
ight)^2$$

Laboratório de 😱

Considere a população com N=6 domicílios listada com os respectivos valores de variáveis de interesse.

Valores de variáveis de interesse para cada domicílio da população

Domicílio	Renda (R\$)	NO. de Moradores	No. de Trabalhadores
1	800	2	2
2	4.200	4	3
3	1.600	2	1
4	500	2	1
5	900	4	2
6	2.000	1	1
Total	10.000	15	10

Exercício 🏂

- 1. Para cada variável de interesse (Renda, Número de Moradores e Número de Trabalhadores), calcule os seguintes parâmetros populacionais: total, média e variância.
- 2. Liste o conjunto S de todas as amostras possíveis de tamanho n=2 da população, considerando apenas **amostras de unidades distintas**.
- **3**. Supondo que todas as amostras listadas no conjunto *S* são **equiprováveis** (Plano A), calcule:
 - As probabilidades de inclusão das unidades.
 - As probabilidades de inclusão dos pares de unidade.
 - Os valores possíveis para o estimador Horvitz-Thompson do total populacional para a variável Renda.
 - O valor esperado e a variância para o estimador Horvitz-Thompson do total populacional para a variável Renda.

Exercício 💪

- **4.** Considere agora que o conjunto S é formado somente pelas amostras (1;2),(2;3),(2;4),(2;5)e(2;6), tendo cada uma delas probabilidade 1/5 de ser a amostra selecionada (Plano B). Repita os cálculos do item 3 para o novo plano amostral.
- 5. Faça gráficos dos valores possíveis do estimador de total sob os dois planos amostrais para comparar as respectivas distribuições.
- **6**. Use os resultados obtidos em 3 e 4 para comparar os dois planos amostrais e indique qual deles seria preferível usar, caso fosse necessário amostrar duas unidades distintas da população (n=2) para estimar o total da Renda. Justifique.

Exercício 🚏

Para casa 🏠

- Continuar o Exemplo
- Continuar o Exercício
- Rever os slides.
- Ler seção 11.1 a 11.3 do livro 'Amostragem: Teoria e Prática Usando R'.

Próxima aula | | | |

- Amostragem Estratificada
 - Características
 - Parâmetros
 - Estimadores

Muito obrigado!

Fonte: imagem do livro *Combined Survey Sampling Inference: Weighing of Basu's Elephants: Weighing Basu's Elephants.*

Amostragem aleatória simples

• Na **Amostragem Aleatória Simples com reposição** (AASc) as unidades da população têm a mesma chance de ser incluídas na amostra em cada sorteio, e essa probabilidade é igual a 1/N.

Plano amostral

 \circ Existem N^n amostras distintas em S, então

$$p(s)=1/N^n, orall\, s\in S.$$

Probabilidades de inclusão:

$$\circ \hspace{0.1cm} \pi_{i} \hspace{0.1cm} = \hspace{0.1cm} P \hspace{0.05cm} (i \in s) \hspace{0.1cm} = \hspace{0.1cm} 1 - P \hspace{0.05cm} (i
otin s) \hspace{0.1cm} = \hspace{0.1cm} 1 - \left(1 - rac{1}{N}
ight)^{n}.$$

$$\circ \ \pi_{ij} = 1 - 2\Big(1 - rac{1}{N}\Big)^n + \Big(1 - rac{2}{N}\Big)^n$$
, para $i,j = 1, \dots, N$.

• A variável Q_i denota a 'qtd. de vezes a unidade i aparece na amostra s',

$$Q_i \sim Binomial(n, 1/N)$$

$$\circ \ E_{AAS}[Q_i] = n rac{1}{N}$$

$$\circ \ Var_{AAS}[Q_i] = nrac{1}{N}\Big(1-rac{1}{N}\Big)$$

 $\circ \ \ Cov_{AAS}[Q_i,Q_j] = -rac{n}{N^2}$ (propriedade da multinomial)

Estimador não viciado (ENV) para:

- o **total** populacional T: $\widehat{T}_{AASc} = N\overline{y} = N \sum_{i \in s} \frac{y_i}{n}$
- a **média** populacional \overline{Y} : $\widehat{\overline{Y}}_{AASc} = \frac{1}{n} \sum_{i \in s} y_i = \overline{y}$
- a **variância** populacional Var_y : $\widehat{Var}_{y,AASc} = rac{1}{n-1} \sum_{i \in s} (y_i ar{y})^2 = \widehat{S}_y^2$

• Variância dos Estimadores

$$\circ \ Var_{AASC}(\widehat{T}_{AASC}) = N^2 Var_y/n$$

$$\circ \ Var_{AASc}(\overline{y}) = Var_y/n$$

em que
$$Var_y = rac{1}{N} \sum_{i \in U} (y_i - \overline{Y})^2 = rac{N-1}{N} S^2$$

• ENV da Variância dos Estimadores

$$\circ \ \widehat{Var}_{AASc}(\widehat{T}_{AASC}) = N^2 {\widehat S}_y^2/n$$

$$\circ \ \widehat{Var}_{AASc}(\overline{y}) = \widehat{S}_{y}^{2}/n$$

em que
$$\widehat{S}_y^2 = rac{1}{n-1} \sum_{i \in s} (y_i - \overline{y})^2 = s_y^2$$
.

- Na **Amostragem Aleatória Simples sem reposição** (**AASs**) cada unidade da população pode aparecer na amostra no máximo uma única vez.
- Plano amostral sob AASs
 - Existem $\binom{N}{n} = \frac{N!}{n!(N-n)!}$ amostras distintas em S, então

$$p(s) = 1/inom{N}{n}, orall \, s \in S.$$

- Probabilidades de inclusão sob AASs
 - $\circ \ \pi_i = n/N > 0$, $\forall \, i \in U$, desde que n > 0.
 - $\circ f = n/N$ é chamada de **fração amostral** ou **taxa de amostragem**.
 - $\circ~$ Estimação de variância sem vício requer $\pi_{ij}>0$, $orall~i,j\in U$.

$$\pi_{ij} = rac{n(n-1)}{N(N-1)} > 0, orall i
eq j \in U.$$

• Sob **AASs**, as probabilidades de inclusão π_i e π_{ij} não dependem de i ou j, e essa é a razão da simplicidade desse plano amostral.

• A variável R_i , indicadora do evento 'inclusão da unidade i na amostra s', sob **AASs**

$$\circ \ E_{AAS}[R_i] = rac{n}{N}$$

$$\circ \ Var_{AAS}[R_i] = rac{n}{N} \Big(1 - rac{n}{N} \Big)$$

$$\circ \ Cov_{AAS}[R_i,R_j] = rac{n(n-1)}{N(N-1)} - \left(rac{n}{N}
ight)^2 = rac{n}{N}\Big(1-rac{n}{N}\Big)\left(-rac{1}{N-1}
ight)$$

Estimador não viciado (ENV) para:

• o **total** populacional T: $\widehat{T}_{HT} = \sum_{i \in s} \frac{y_i}{n/N} = \frac{N}{n} \sum_{i \in s} y_i = N\overline{y} = \widehat{T}_{AAS}$

• a **média** populacional \overline{Y} : $\widehat{\overline{Y}}_{AAS} = \frac{1}{n} \sum_{i \in s} y_i = \overline{y}$

ullet a **variância** populacional Var_y : $\widehat{Var}_{y,AAS} = rac{N-1}{N} {\widehat S}_y^2$,

pois \widehat{S}_{y}^{2} é **ENV** de S_{y}^{2} na AASs.

• Variância dos Estimadores

$$\circ \ Var_{AAS}(\widehat{T}_{AASs}) = N^2 \left(1 - rac{n}{N}
ight) rac{S^2}{n} = N^2 \left(rac{1}{n} - rac{1}{N}
ight) S^2$$

$$\circ \ Var_{AAS}(\overline{y}) = \left(1 - rac{n}{N}
ight) rac{S^2}{n} = \left(rac{1}{n} - rac{1}{N}
ight) S^2$$

onde $S_y^2 = rac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})^2$, como já definido.

• ENV da Variância dos Estimadores

$$\circ \ \widehat{Var}_{AAS}(\widehat{T}_{AAS}) = N^2 \left(1 - rac{n}{N}
ight) rac{\widehat{S}_y^2}{n} = N^2 \left(rac{1}{n} - rac{1}{N}
ight) \widehat{S}_y^2$$

$$\circ \ \widehat{Var}_{AAS}(ar{y}) = \left(rac{1}{n} - rac{1}{N}
ight) {\widehat{S}}_y^2$$

onde ${\widehat S}_y^2=rac{1}{n-1}\sum_{i\in s}(y_i-ar y)^2$, como já definido.

Considerações

- 1. O termo (1 n/N) = (1 f) é chamado de **fator de correção para** população finita.
 - \circ Quando $n/N \to 1$, o tamanho da amostra se aproximando do tamanho da população, então $(1-n/N) \to 0$.
 - Ou seja: com amostras grandes as variâncias das estimativas tendem a ser pequenas.
- 2. Se a fração amostral f = n/N for pequena (da ordem de 1% ou 2%), então a **correção de população finita** pode ser ignorada, pois $(1-f) \doteq 1$.
 - Quando $f \doteq 0$, a AASse AASc (com reposição) tem comportamento semelhante em relação à precisão das estimativas.
 - \circ Intuitivamente, sempre que n for muito **pequeno** em relação ao N a probabilidade de uma unidade i da população ser selecionada mais de uma vez é pequena.

Distribuição da média amostral

- Repetições do plano amostral p(s) segundo AASs, \overline{y} tem uma **distribuição de probabilidades exata**, que **depende**:
 - \circ da distribuição de y na população,
 - \circ do tamanho da amostra n e
 - o do plano amostral p(s), que neste caso, é AASs.
- Isto resulta numa situação complicada, que pode ser resolvida considerando a **Distribuição Assintótica da Média Amostral**.
- Se n for **grande** e f=n/N for pequena, o *Teorema Central do Limite* (Hajeck, 1960) sugere uma aproximação

$$rac{\overline{y} - E_{AAS}(\overline{y})}{\sqrt{Var_{AAS}(\overline{y})}} = rac{\overline{y} - \overline{Y}}{\sqrt{\left(rac{1}{n} - rac{1}{N}
ight)S_y^2}} pprox Normal(0;1),$$

onde *Normal*(0;1) denota uma variável aleatória com distribuição normal padrão.

[*] Para detalhes ver Cochran(1977), Seções 2.8 e 2.15, ou Sarndal(1992), Seção 2.11.

Distribuição da média amostral

- Podemos construir intervalos de confiança(IC) para \overline{Y} .
 - \circ Um IC de nível $(1-\alpha)$ para \overline{Y} é dado por

$$IC_{AAS}(\overline{Y};1-lpha) = \left[\overline{y} \mp z_{lpha/2} \sqrt{\widehat{Var}_{AAS}(\overline{y})}
ight]$$

onde $z_{\alpha/2}$ é o quantil $1-\frac{\alpha}{2}$, que deixa área $\alpha/2$ à sua direita.

• A **semiamplitude** do *IC* fornece uma ideia da **margem de erro** que se tem ao estimar o parâmetro.

$$\widehat{ME}_{AAS}(\overline{y}) = z_{lpha/2} \sqrt{\widehat{Var}_{AAS}(\overline{y})}.$$

- A **margem de erro** pode ser **estimada** a partir da amostra selecionada e observada.
- Amostragem probabilística fornece indicativos da incerteza associada a estimativas, além de estimativas pontuais.

Resumo da notação

Estimadores AASc	Estimadores AASs
$\widehat{T}_{AASc} = rac{N}{n} \sum_{i \in s} y_i = N \overline{y}$	$\widehat{T}_{AASs} = rac{N}{n} \sum_{i \in s} y_i = N \overline{y}$
$\overline{y} = rac{1}{n} \sum_{i \in s} y_i$	$\overline{y} = rac{1}{n} \sum_{i \in s} y_i = \widehat{\overline{T}}_{AASs}$
$\widehat{Var}_{AASc}(\widehat{T}_{AASC}) = N^2 {\widehat{S}}_y^2/n$	$\widehat{Var}_{AASs}(\widehat{T}_{AASs}) = N^2 \left(rac{1}{n} - rac{1}{N} ight) {\widehat{S}}_y^2$
$\widehat{Var}_{AASc}(\overline{y}) = {\widehat{S}}_y^2/n$	$\widehat{Var}_{AASs}(\overline{y}) = \left(rac{1}{n} - rac{1}{N} ight) {\widehat S}_y^2$

em que
$${\widehat S}_y^2=rac{1}{n-1}\sum_{i\in s}(y_i-\overline{y})^2$$
 .

Estimadores HT	Variâncias dos Estimadores HT
$\widehat{T}_{HT} = \sum_{i \in s} d_i y_i = \sum_{i \in s} y_i / \pi_i$	$\widehat{Var}_{HT}(\widehat{T}_{HT}) = \sum_{i \in s} \sum_{j \in s} rac{(\pi_{ij} - \pi_i \pi_j)}{\pi_{ij}} \left(rac{y_i}{\pi_i} rac{y_j}{\pi_j} ight)$
$\overline{y}_{HT} = \widehat{T}_{HT}/N = \sum_{i \in s} d_i y_i/N$	$\widehat{Var}_{HT}(\overline{y}_{HT}) = \widehat{Var}_{HT}(\widehat{T}_{HT})/N^2$

Referências

Slides baseados nos Capítulos 3 e 4 do livro

• Amostragem: Teoria e Prática Usando o R

Citações do Capítulo

- Cochran(1977)
- Fuller(2009)
- Hajeck(1960)
- Horvitz(1952)
- Sarndal(1992)
- Sen(1953)
- Yates(1953)
- Yates e Grundy (1953)