L-19 Graphs			
Monday, March 21, 2022 10:06 AM	Sink	S	nucle
2	t has only Indegral outdegree = 0 d(v)=0	e Indegee	=0
75		0 +4 2	
7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Intdessee = 0	$d^{\dagger}(v) =$	δ ,
·	d(v)=0		
(Various and a second	0.3	and the beauti	
Even or odd (Pa)	rity) of a Vertex: The vert	ex V is said to be ev	en or odd
according as deg.(V) is ev	en or odd. Even	- Parity Vertex	_ degre = Even No
according as a section	ا. ا. ا	Too too	e e od d numbe
	000	vares = org	Ree = odd numbe
Pendent vertex (End verte			
		1	Δ
For evenuel . I do a	gree in a graph is one is called	pendent vertex.	leg(v)=1
d	C		
	a de	p(a)=1	
	an	p(a)=1 is pendent ver	tex
e	b	- 1	
_			
Isolate Verter	V is Isolate Va	extex d(v)=	= 0
	QN 14 0		· e
Kegerler (Traph (-)	The degree of	Every Vertex	is Some.
V P-0 1 -0 11		0	4 6 Sau 1124
x-regular graps	, · · · · · · · · · · · · · · · · · · ·	7 h	ghelton
·			
Definition Regular Graph	a: A graph in which all the v	ertices are of same degr	ee is
called a regular graph.			
	ph : A graph in which all the	vertices have the same de	egree
equal to k, is called a k-Reg	ular graph.		
0			
1-Regular			
0	d-Reguler	3-Roge.	
K2	K ₃	1	4-Reg.
' Z	<u>~3</u>	Ky	Ks
Note - Kn (Complete opeply with	h n-vertros) is	a (n-1)-Reguler gref
	/ ()		- , 0 , 0
degree	of Every Verter in	$v k_n = (n-1)$	
0	U /	(–	

Theorem 1. First Theorem on Graph Theory (Handshaking Theorem)

The sum of the degrees of all the vertices in a graph G is equal to twice the number of edges in G.

The sum of the degrees of all the vertices in a graph G is equal to twice the number of edges in G. The Sum of degree of all the Vertices in a graph G is Even. $d(v_1) = 1$ $d(v_2) = 1$ $d(v_1) + d(v_2) = |+| = 2 = 2 \cdot |$ e, is counted 2 time [one with v) ez n n n n [___ v_1 & ___ v_3] degree of loop = 2 **Proof**: Let e be any edge in graph between two vertices V_1 and V_2 . Now, when we count degree of all vertices e is counted twice, once in degree of V_1 and again in degree of V2. Also, if V₁ and V₂ are identical, again e will be counted twice. (: e is self-loop) Hence every edge is counted twice. So total degree is twice number of edges. $\sum_{i=1}^{n} deg(v_i) = 2e,$ Sum of degree of all Vertices = 2 No. of Edges Even No.Theorem 2. Prove that in a graph the number of vertices of odd degree is even. w Number deg(a) = 1 deg(b) = 3∑d(v) = 2e = Even No. Ed(v) = 1+3=4 $\left(\sum_{\text{Even}} d(v) + \sum_{\text{odd}} d(v)\right) = E_{\text{Ven}}$ = $\frac{\text{Even No.}}{\text{odd}} + \frac{\text{Zd(v)}}{\text{odd}} = \frac{\text{Even (No)}}{\text{No.}}$ (2+8+2+4)+(3+7)=- $\sum d(v) = Even No.$ 4-2=27 Sum of odd Number = (Even.) (3+1)= 4

3+3+1=7

3+3+1+1)= 8V

$$3+3+1=7$$
 $3+3+1+1=8$
 $1+3+3+1+5=13$