COMPUTER VISION 1

Homework 6

姓名 : 蘇宛琳

系所 : 電信所碩一

學號 : R05942060

指導教授 : 傅楸善老師

Computer Vision Report – Homework 6

R05942060 蘇宛琳

Question:

Write a program to generate Yokoi connectivity number. Down sample lena.bmp from 512*512 to 64*64 first. Sample pixels positions at each 8*8 top-left corner, so everyone will get the same answer .

用 h function比較中心點 x0 與四個角 x1,x2,x3,x4 後得到四個值 a1,a2,a3,a4。 最後在利用 f function 對這四個值 a1,a2,a3,a4 做運算,得到該中心點 x0 的 Yokoi Connectivity Number。

Example.

* Yokoi Connectivity Number Concept*

```
Step1. 先將灰階的 512*512 每 8 點取 1 點降取到 64*64,並以 128 為門檻值做 二元化。
Step2. 利用hfunction比較中心點x_0與四個角x_1,x_2,x_3,x_4 後得到四個值a_1,a_2,a_3,a_4。
Step3. 利用 f function 對這四個值 a_1, a_2, a_3, a_4 做運算,得到該中心點 x_0 的 Yokoi Connectivity Number。
```

Source code (Main code)

```
clear;
close;
```

Grayscale LENA image

```
LENA = imread('lena.bmp');
INFO = imfinfo('lena.bmp');
```

Down Sample from 512x512 to 64x64

```
for x = 1 : INFO.Height/8,
  for y = 1 : INFO.Width/8,
     NEWLENA(x,y) = LENA(x*8-7,y*8-7);
  end;
end;
```

Sample pixels positions at each 8*8 top-left corner

```
imwrite(NEWLENA, 'DownsampleLENA.bmp')
```

Binarize LENA image

```
for x = 1 : INFO.Height/8,
  for y = 1 : INFO.Width/8,
```

```
T = 128;
       if NEWLENA(x,y) > T,
         NEWLENA(x,y) = 255;
       else
         NEWLENA(x,y) = 0;
       end;
   end;
end;
imwrite(NEWLENA, 'binarizelena.bmp')
Call Yokoi Connectivity function
output = YokoiConnectivity(NEWLENA);
Print Result Label & Write Result to txt file
fid = fopen('Yokoi Connectivity Number.txt','w');
for k = 1 : size(output, 1)
   fprintf(fid,'%c',output(k,:));
   fprintf(fid, '\r\n');
end
fclose(fid);
```


* Yokoi Connectivity function Concept*

先將灰階的 512*512 每 8 點取 1 點降取到 64*64·並以 128 為門檻 值做二元化。

利用hfunction比較中心點x0與匹 個角x1,x2,x3,x4 後得到四個值 a1,a2,a3,a4。

利用 f function 對這凹個值 a1 , a2 , a3 , a4 做運算·得到該中心點 x0 的 Yokoi Connectivity Number。

Connectivity number (0~5)把 border 的情况分類成 6 大類:

[0 Isolated (周圍都屬背景,沒有鄰居)

1 Edge (周圍1個鄰居)

2 Connecting (周圍2個鄰居,恰在線上)

3 Branching (周圍3個鄰居) 4 Crossing (周圍4個鄰居)

5 Interior

function output = YokoiConnectivity(NEWLENA)

```
Tb = zeros(size(NEWLENA,1)+2,size(NEWLENA,1)+2);
Tb(2:end-1,2:end-1) = NEWLENA;
[r,c] = find(Ib);
output = char(size(NEWLENA));

for i = 1 : length(r)
    mask=Ib(r(i)-1:r(i)+1,c(i)-1:c(i)+1);
    a=zeros(1,4);
    a(1)=h(mask(5),mask(8),mask(7),mask(4)); % x0,x1,x6,x2
    a(2)=h(mask(5),mask(4),mask(1),mask(2)); % x0,x2,x7,x3
    a(3)=h(mask(5),mask(2),mask(3),mask(6)); % x0,x3,x8,x4
    a(4)=h(mask(5),mask(6),mask(9),mask(8)); % x0,x4,x5,x1
    output(r(i)-1,c(i)-1)=f(a);
```

 $\quad \text{end} \quad$

end

* h function Concept*

```
h(x_0, c, d, e) = \begin{cases} q & x_0 = c; x_0 \neq d \text{ or } x_0 \neq e & (x_0 \text{是在邊界}) \\ r & x_0 = c = d = e & (x_0 \text{是在內部}) \\ s & x_0 \neq c & (沒 甚麼意義) \end{cases}
```

```
function output = h(b,c,d,e)

if b == c,
   if d == b && e == b,
     output = 'r';
   else
     output = 'q';
   end

else
   output = 's';
end
end
```

* f function Concept*

```
f\left(a_{1},a_{2},a_{3},a_{4}\right) = \begin{cases} 5 & \text{if } a_{1}=a_{2}=a_{3}=a_{4}=r \\ n & n=\#\left\{a_{k}\mid a_{k}=q\right\} \end{cases} (如此便知道border的種類)
```

```
function n = f(a)

if all(a == 'r')
   n = num2str(5);

else
   n=num2str(sum(a == 'q'));
end
end
```

* 直接貼過來的結果數據 *

111	11111	121 11	1111122322	221 1	111111	11111	0
155	55551	121 15	555511 2 1	1 1 1	155555	555511	
155	55551	1 22215	55112 211	1222	155555	555551	0
155	55551	1 2 155	112 1 115	11	1555555	555511	0
155	55551	1 211	2 1 121	. 0 1	555555	555511	
155	55551	1 2	1 1 1	11	555555	55551	
155	55551	1 1	121111	11 0	1555555	5555511	
15111551		1 12	125555111	1 1	155555	5555555	1
111	1551	0 0	15555555	.1 1	555555	55555511	<u> </u>
11	1551		211555555	11 15	5511155	555511	
21	1551		2 1555555	5111 1	551 115	55511	
1	1551		2 1555555	55511 1	551 11	5551	1
	1551	11	211555555	55551 1	551 1	5511	12
	1551	15	111555555	555511 1	151 1	111	111
	1551	1 22	21 1555555	5555511	151	11	1151
	1551	2 12	1 11555555	55555511	151 1	1111	1551
	1551	2	115555555	5555551	151 11	5551	11551
	1551	2 1	155555555	55555511	1151115	5511	115551
	1551	12 1	155555555	55555555	555555	551	155551
	1551	11 0 22	155555555	55555555	5555555	5112	1155551
	1551	111 22	155555555	55555555	5555555	51 1	1555551
	1551	1511 1 1	251121111	121115555	555551	11 :	11555551
	1551	1112 1	121 1 11	1 15555!	555111	0 1	5555551
	1551	12 2 132	2 2	1155555	111 0	115	555551
	1551	222 0 3	22	11555511	1 121	155!	555551
	1551	12 0 1	1	555551	131	12555	55551
	1551	2 0	11	5555511	1	15555	5551
	1551	2 0	115	5555551	0	1 1555	55551
	1551	2	1155	5555551		211555	55551
1551		1 0	1155	5555551		155555	55551
	1551		115111	15555521	. 1	1155555	55551
	1551	1 0	11111	1155511	2	1555555	555551
	1551	131	111	15111	2	1555555	55551

1551 121 1121 1 111 1 2 1155555555112			
1551 11 111 1 221 11 1 2 1555555555 2	2 1555555555 2		
1551 12 0 1 21 121 11 1111 2 1555555555112			
1551 1 12 22 151111111551 2 115555555555			
1551 1 2 1555551115511 1 1555555555551			
1551 2 0 0 22 12555551 15551 1 15555555555			
1551 1 1 1555511 11511 2 1155555555555			
1551 0 0 21 155551 1 151 2 1555555555555			
1551 2 15555112 151 2 15555555555551			
1551 1 1 1 1255555511111 2 155555555555			
1551 2 22 11511111212 211555555555555			
1551 0 1 12 111 2 1 15555555111555551			
1551 0 0 0 111 121 155555551 1555551			
1551 0 11111111 155555551 1555551			
1551 0 115551 15555551 1555511			
1551 15551 21111111 155511			
11521 1 12 0 1155511 2 11 115511			
151 0 1 1 155555111 2111 15511			
12 1511 1 15555555111 155111 1511			
22 1511 1 15555555551 155551 1151			
2 151 0 115555555511 155511 1511			
2 1521 0 0 11555555555511 15551 12151			
2 151 121 15555555555551 155511 1551			
2 1511 0 1555555555551 115551 1511			
21 1511 11 155555555555 1111111151			
11 151 0 1155555555555511 111511			
11 151 15555555555555 151			
11 151 1155555555555555 211			
11 151 11555555555555511 1			
11 151 0 155555555555555			
11 111 0 1211111111111111			

* 整理過後得到的結果圖 *

```
11111111
15555551
                                                                                                                                                           0
                                                                                                                                                                  0
                                                                                                                                                                0
21
1
                                                                                                                                                        0
          1551
1551
1551
11
21
          1551
1551
1551
1551
1551
                                                                                                                                                           12
111
1151
1551
                                1
2
2
12
11
11
151
15521
1551
151
1221
2
0
2
1
          1551
1551
1551
1551
                                                                                                                        1551
          1551
1551
1551
1551
1551
1551
1551
          1551
1551
1551
          1551
1551
1551
1551
1551
                                    131
121
11
          1551
1551
1551
1551
          1551
                            1
2
1
          1551
1551
1551
1551
1551
1551
1551
                                    0
          1551
1551
1551
1551
1551
1551
1511
                                      0
                                       1
                       0
22
22
22
22
21
11
11
11
11
             1511
151
1521
                                  0
             151
             1511
1511
1511
151
151
151
151
151
```