On the Semblance Based TDOA Algorithm for Sound Source Localization:

a parametric study

Aldeia, G. S. I., Ferreira, H., Nose-Filho, K.

Universidade Federal do ABC (UFABC) Laboratório de Sinais e Sistemas (LSS)

Florianópolis/SC 22-25 de novembro de 2020

Índice

- Introdução
- Algoritmo SB-SSL
- Metodologia
- 4 Resultados e discussão
- Conclusões

Hiper-parâmetros

Muitos algoritmos possuem parâmetros que podem ser previamente definidos.

Por quê ajustá-los?

- ✓ Possibilitam um ajuste fino do algoritmo
- ✓ Podem maximizar o desempenho em tarefas específicas
 - X Custo adicional
 - X Pode não ser tarefa trivial

Como ajustar hiper-parâmetros

Maneira mais simples

Utilizar valores *ad-hoc*, que podem ser baseados em outros valores vistos na literatura ou em heurísticas.

Buscas exploratórias de melhor configuração

Processo de ajuste de parâmetros, como o *gridsearch* ou *manual search*

Algoritmo do estudo

Recentemente, estudamos um algoritmo para localização de fontes sonoras (SSL) utilizando uma função de correlação cruzada comum no processamento de sinais sísmicos, denominado *Semblance Based TDOA Algorithm for Sound Source Localization* (SB-SSL), com três parâmetros ajustáveis pelo utilizador.

Objetivos

O objetivo deste trabalho é analisar os parâmetros do algoritmo SB-SSL e:

- i) Verificar se existe um subconjunto de parâmetros que pode ter um valor fixado sem impactar na performance;
- ii) Avaliar o impacto de cada parâmetro no desempenho final;
- iii) Chamar atenção à importância e ganhos que uma análise de sensibilidade pode gerar para o uso de um método computacional.

Justificativa

Vemos essa análise como um passo natural na criação de um algoritmo - aumentar o entendimento do seu funcionamento e simplificar o processo de uso.

Índice

- Introdução
- Algoritmo SB-SSL
- Metodologia
- A Resultados e discussão
- 6 Conclusões

Algoritmo SB-SSL

Dado um arranjo de k microfones ($k \geq 2$), a determinação da direção $\mathbf{k_d} \in \mathcal{R}^3$ parametrizada por azimute $\Theta_d \in [-\pi,\pi]$ e elevação $\Phi_d \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ é feita criando-se uma grade uniformemente espaçada (com espaçamento dado por Δ) de possíveis direções.

O atraso do microfone localizado em m_i , utilizando como ponto de referência $\mathbf{0} = [\mathbf{0}, \mathbf{0}, \mathbf{0}]^T$, pode ser calculado por:

$$\tau_{d,k} = -\frac{\mathbf{k}_d \cdot \mathbf{m}_k}{v},\tag{1}$$

onde v é a velocidade do som, e \cdot denota a operação de produto interno.

Cálculo da correlação cruzada

Seja a função Semblance:

$$Z_d = \frac{\sum_n \left| \sum_k \hat{\mathbf{s}}_k(n) \right|^2}{N_r \sum_n \sum_k \left| \hat{\mathbf{s}}_k(n) \right|^2},\tag{2}$$

onde k denota os microfones, n denota as amostras temporais, N_r é o número total de sensores, $\hat{s}_k(n) = s_k(n - \tau_k)$ é o sinal no instante de tempo n do k-ésimo microfone após a correção de tempo τ_k .

Estimação da direção

- Para cada par (Θ_d, Φ_d) de direções:
 - Estimar os atraso para cada microfone;
 - Calcular a função de Coerência Semblance Z_d
- Direção estimada é a que maximiza a função Semblance;

Painel Semblance

Ao final, temos uma matriz de valores de coerência para cada direção testada, que pode ser interpretada como uma imagem.

Combinando vários painéis

Foi observado que dividir o áudio em janelas (com tamanho dado por w e sobreposição dada por δ) e combinar cada painel com o $max\ pooling$ apresenta melhores resultados.

Dessa forma, temos os seguintes parâmetros:

- Δ: Espaçamento da grade;
- w: Tamanho da janela;
- δ : Sobreposição entre janelas.

Índice

- Introdução
- Algoritmo SB-SSL
- Metodologia
- 4 Resultados e discussão
- Conclusões

Obtenção da performance dos parâmetros

Determinação de valores que cada parâmetro pode assumir, cobrindo o intervalo com menores valores com maior resolução (onde acredita-se que se concentrem as melhores configurações):

Parâmetro	Valores permitidos
Δ	{5, 7.5, 15, 30} (°)
W	$\{0.064, 0.128, 0.256, 0.512, 1.024\}$ (s)
δ	{10, 20, 30, 40, 50} (%)

Ao todo, existem 125 configurações

Bases de dados

Uso de duas bases de dados:

- Validação (150 áudios sintéticos) para obter resultados de cada possível configuração;
- Testes (150 áudios reais do DREGON dataset) para obter resultados em dados não artificiais.

Dados reais

- 150 áudios selecionados aleatoriamente de gravações com drone estático do *DREGON dataset*:
- Baixa variedade de direções da fonte sonora, podendo enviesar o modelo e favorecer algumas configurações específicas;
- Uso apenas para obtenção de resultados que correspondem ao desempenho em um cenário real.

Dados sintéticos

- Necessidade de dados com direções variadas;
- Uso de 3 áudios do DREGON dataset sem ruído, com voz ativa e posição conhecida, combinados com gravações de ruído puro dos rotores do drone.

Criação dos dados sintéticos

Os sinais originais disponibilizados já possuem uma direção, sendo necessário centralizá-lo antes de mudar a direção.

- Cada canal passa por um *upsample*;
- Os atrasos para cada canal são aplicados para a direção original conhecida (centralização);
- Uma direção aleatória é sorteada;
- O atraso para cada canal é aplicado para corresponder à nova direção;
- Downsample é feito em cada canal.

Criação dos dados sintéticos

É preciso adicionar ruídos para simular um cenário real.

- Velocidades aleatórias para cada rotor são sorteadas;
- Áudios de cada rotor individual na velocidade sorteada são combinados;
- Sinal e ruído são normalizados e combinados com uma SNR aleatória entre [-25, 12].

Direções reais dos dados originais e sintéticos

Medida de desempenho

Como medida de desempenho, foi utilizada a Equação *Great Circle Distance* (GCD), que retorna o menor ângulo entre dois pontos na superfície de uma esfera.

Índice

- Introdução
- Algoritmo SB-SSL
- Metodologia
- 4 Resultados e discussão
- 6 Conclusões

Mapas de calor

Melhor configuração

Na melhor configuração, os parâmetros assumem os valores $\Delta=7.5,~w=0.064,~e~\delta=0.5,~com~um~erro~médio~de~12.84°.$ Executando, para os dados de teste, o algoritmo com essa configuração, o erro médio obtido é de 15.20°.

Radar plot das melhores e piores configurações

Radar plot das melhores e piores configurações

Radar plot das melhores e piores configurações

Heatmaps

- Para Δ, é justificado um valor pequeno ter um bom desempenho, pois aumenta a resolução espacial e permite estimar a direção com um menor erro;
- para w, considerando-se que são criadas várias janelas, por conta do sinal de fala não estar ativo durante todo o tempo, podendo ser mascarado pelo ruído em janelas grandes, é justificável a dominância de valores baixos;
- Por outro lado, o δ acaba funcionando incluindo em janelas sinais que já foram processados, funcionalidade que aparentemente não justifica ser utilizada neste algoritmo.

Índice

- Introdução
- Algoritmo SB-SSL
- Metodologia
- A Resultados e discussão
- 6 Conclusões

Conclusões

- Resultados com um conjunto maior de dados que no artigo que propõe o SB-SSL, embora os achados se preservem;
- Parâmetro δ apresenta fortes indícios de ser desnecessário, simplificando o uso do algoritmo, além de simplificar o processo de ajuste fino, devido à menor quantidade de parâmetros para ajustar.

Contato

Obrigado!

Informações adicionais

Guilherme Seidyo Imai Aldeia

⊠ guilherme.aldeia@ufabc.edu.br

Henrique Ferreira

™ hfsantos@ufabc.edu.br

Kenji Nose-Filho

⋈ kenji.nose@ufabc.edu.br

Link da apresentação

☐ galdeia.github.io/presentations/SBrT_2020.pdf

Link do repositório com códigos e resultados

d https://github.com/gAldeia/ sensitivity-analysis-SEMBLANCE