

HippoTrainer

Gradient-Based Hyperparameter Optimization for PyTorch

Daniil Dorin, Igor Ignashin, Nikita Kiselev, Andrey Veprikov

Intelligent Systems, MIPT, 2025

Project description

HippoTrainer — Hyperparameter Optimization

Motivation

Hyperparameter tuning is time-consuming and computationally expensive, often requiring extensive trial and error to find optimal configurations.

Used algorithms

- 1. T1 T2
- 2. Implicit Function Theorem (IFT)
- 3. Hyperparameter optimization with approximate gradient (HOAG)
- 4. Distilling Reverse-Mode Automatic Differentiation (DrMAD)

Solution

HippoTrainer is a flexible and scalable library for gradient-based hyperparameter optimization built on PyTorch.

Brief algorithms description

Hyperparameter Optimization Problem

Given a vector of model parameters $\mathbf{w} \in \mathbb{R}^P$ and a vector of hyperparameters $\lambda \in \mathbb{R}^H$. One aim to find optimal hyperparameters λ^* :

$$\begin{split} \boldsymbol{\lambda}^* &= \operatorname*{arg\,min}_{\boldsymbol{\lambda}} \mathcal{L}_{\mathsf{val}}(\mathbf{w}^*, \boldsymbol{\lambda}), \\ \text{s.t. } \mathbf{w}^* &= \operatorname*{arg\,min}_{\mathbf{w}} \mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}) \end{split}$$

Often ${\bf w}$ are optimized with gradient descent, so unrolled optimization is typically used:

$$\mathbf{w}_{t+1} = \mathbf{\Phi}(\mathbf{w}_t, \boldsymbol{\lambda}), \quad t = 0, \dots, T-1.$$

Hypergradient Calculation

Chain rule gives us a hypergradient $d_{\lambda}\mathcal{L}_{val}(\mathbf{w}_{T}, \lambda)$, viewing \mathbf{w}_{T} as a function of λ :

$$\frac{d_{\lambda}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \lambda)}{\text{hypergradient}} = \underbrace{\nabla_{\lambda}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \lambda)}_{\text{hyperparam direct grad.}} + \underbrace{\nabla_{\mathbf{w}}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \lambda)}_{\text{parameter direct grad.}} \times \underbrace{\frac{d\mathbf{w}_{T}}{d\lambda}}_{\text{best-response Jacobian}}$$

Here best-response Jacobian is hard to compute!

Typical Solution — **Implicit Function Theorem**

$$\frac{d\mathbf{w}_T}{d\lambda} = -\underbrace{\left[\nabla_{\mathbf{w}}^2 \mathcal{L}_{\mathsf{train}}(\mathbf{w}_T, \lambda)\right]^{-1}}_{\mathsf{inversed training Hessian}} \times \underbrace{\nabla_{\mathbf{w}} \nabla_{\lambda} \mathcal{L}_{\mathsf{train}}(\mathbf{w}_T, \lambda)}_{\mathsf{training mixed partials}}.$$

• Hessian inversion is a cornerstone of many algorithms.

Leveraging Neumann series

To exactly invert a $P \times P$ Hessian, we require $\mathcal{O}(P^3)$ operations, which is intractable for modern NNs. We can efficiently approximate the inverse with the Neumann series:

$$\left[
abla_{f w}^2 \mathcal{L}_{\sf train}(f w_{\mathcal{T}}, m{\lambda})
ight]^{-1} = \lim_{i o \infty} \sum_{j=0}^i \left[f I -
abla_{f w}^2 \mathcal{L}_{\sf train}(f w_{\mathcal{T}}, m{\lambda})
ight]^j.$$

T1 - T2 (Igor)

$$\left[
abla_{f w}^2 \mathcal{L}_{\sf train}({f w}_T, {m \lambda})
ight]^{-1} pprox {f I}, \qquad i=0,\, T=1$$

IFT (Nikita)

$$\left[
abla_{\mathbf{w}}^2 \mathcal{L}_{\mathsf{train}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\lambda})\right]^{-1} pprox \sum_{i=0}^{i} \left[\mathbf{I} -
abla_{\mathbf{w}}^2 \mathcal{L}_{\mathsf{train}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\lambda})\right]^{j}$$

+ Efficiently compute $\nabla_{\lambda} \mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \lambda) \times \left[\nabla_{\mathbf{w}}^{2} \mathcal{L}_{\mathsf{train}}(\mathbf{w}_{\mathcal{T}}, \lambda)\right]^{-1}$

Approximate Gradient

HOAG (Daniil)

Use conjugate gradient (CG) to invert the Hessian approximately: solve system

$$abla_{\mathbf{w}}^2 \mathcal{L}_{\mathsf{train}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\lambda}) \cdot \mathbf{z} =
abla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\lambda}).$$

Linear Trajectory Approximation

DrMAD (Andrey)

Instead of storing all intermediate weights $\mathbf{w}_0, \dots, \mathbf{w}_T$, DrMAD approximates the training trajectory as a linear combination of the initial \mathbf{w}_0 and final \mathbf{w}_T weights:

$$\mathbf{w}(\beta) = (1 - \beta)\mathbf{w}_0 + \beta\mathbf{w}_T, \quad 0 < \beta < 1.$$

Algorithm 1 DrMAD Algorithm

- 1: Initialize w₀
- 2: Train model to obtain w_T
- 3: Approximate trajectory using $\mathbf{w}(\beta)$
- 4: Compute hypergradients using the approximated trajectory

Elementary parameter 1

Scheme of the project

Project scheme

Proof of concept

Proof of concept idea

- Optimize regularization hyperparameters (L2)
- Implement Random Search as the simplest method