README.md 9/14/2022

Image processing

Repository del tema d'anno di image processing

Guida all'uso

Prerequisiti

Per poter utilizzare il sistema è necessario disporre di una macchina con Python 3.8 installato nel PATH di sistema e pip per installare le dipendenze.

Installazione dipendenze

Le dipendenze sono listate in requirements.txt (requirements-win.txt per i sistemi operativi windows). Si può avviare l'installazione con:

```
$: pip install -r requirements.txt
```

(sostituire requirements.txt con la versione windows se necessario)

Avvio del progetto

Una volta installate le librerie, il programma può essere avviato eseguendo main.py. Per ottenere la lista degli argomenti a linea di comando con cui può essere avviato è sufficente avviare lo script con il flag -h:

```
$: python3 main.py -h
```

Walkthrough demo

Per poter avviare una demo è necessario dapprima scegliere una sorgente video con inquadratura fissa. Si può specificare una (e solo una) delle seguenti sorgenti:

- 1. --directory DIRECTORY: utilizza come sorgente video le immaigini contenute nella directory specificata (path specificato in DIRECTORY)
- 2. --camera CAMERA: utilizza come sorgente video una delle videocamere collegate al computer(CAMERA è un indice numerico che le identifica in cv2);
- 3. --image IMAGE: utilizza una singola immagine come sorgente video (IMAGE è il suo path);
- 4. --video VIDEO: utilizza un video come sorgente (VIDEO è il suo path);

Nel repository è presente una directory di test a scopo dimostrativo. All'interno ci sono 7 immagini, una per la taratura e 6 con soggetti posti a uno o due metri di distanza (come descritto nella relazione). Sebbene le proporzioni dei soggetti non siano accurte, le misure vengono prese dalla posizione dei piedi e quindi sono invarianti rispetto alla altezza del soggetto.

README.md 9/14/2022

Inoltre è necessario fornire al sistema una rete neurale addestrata basata su YOLO in formato compatibile con pytorch. Si possono ottenere delle versioni pre-addestrate a sul repository ufficiale (https://github.com/ultralytics/yolov5)[https://github.com/ultralytics/yolov5]. Il repository ne include una versione di piccole dimensioni a scopo dimostrativo nella cartella checkpoints.

Per avviare il setup (taratura) bisogna richiamare l'azione specificando le dimensioni della scacchiera presente nell'immagine di calibrazione:

```
$: python3 main.py setup --checkerboard-cols 9 --checkerboard-rows 6 --
checkerboard-size 25 --directory "test/"
```

I parametri --checkerboard-cols 9 --checkerboard-rows 6 e --checkerboard-size 25 devono rappresentare le dimensioni della scacchiera in termini di colonne e righe e dimensione lato della singola cella (in mm).

Si può sostituire --directory "test/" con la sorgente video che si desidera (comprese immagini, camera e video). Ad esempio, se il PC è predisposto di una webcam, si può utilizzare come sorgente --camera 0.

Verrà visualizzata una finestra che mostra la posizione della scacchiera rilevata. Il setup generà i dati per la correzione prospettica e li salverà in homography.bin. Una volta generati questi dati, si può eseguire il task di rilevamento distanza:

```
$: python3 main.py detect --model 'checkpoints/pretrained.pt --directory 'test/'
```

```
Output:
| 1 | 2 |
|------|
| 3 | 4 |
```

In output verrà mostrata una finestra con quattro immagini: (1) l'originale, (2) l'immagine con la prospettiva corretta, (3) una immagine che indica le persone rilevate e (4) una immagine con le distanze rilevate dall software.

Anche in questo caso, si può selezionare qualsiasi sorgente si desidera a scelta tra --camera, --image, --directory, --video.

Le finestre possono essere chiuse premendo il tasto q.

Setupless walkthrough demo

Un metodo di funzionamento alternativo, usato principalmente a scopo di test, è quello di saltare la fase di setup ed avviare il software con:

README.md 9/14/2022

```
$: python3 main.py detect --model 'checkpoints/pretrained.pt --directory 'test/' -
-pixel-unit 0.75
```

Il software tenterà comunque di caricare homography.bin, ma se questa non è presente, utilizzerà la -pixel-unit e una trasformazione identitaria (quindi nessuna correzione prospettica). Questo metodo può
essere utilizzato per valutare le performance di object detection del sistema, ma non restituisce misure
accurate.

Note macchina virtuale

Insieme al progetto è fornita una macchina virtuale in formato .ova con le dipendenze già installate.

Sono presenti due script setup.sh e detect.sh che eseguono le relative operazioni descritte in **Walkthrough demo**. Pertanto è sufficente avviare questi due script in ordine per eseguire la demo.

Inoltre, è incluso il dataset KORTE, che nell'ambito del progetto, è stato usato per calcolare la confusion matrix e le metriche di accuratezza della rete neurale. Per avviare l'evaluation:

```
$: python3 evaluation_main.py
```

Il dataset non è incluso nel repository originale per motivi di spazio.