Algorithms, Design & Analysis

Lecture 27: Graph Problems, Reductions, and NP-Completeness

Afrazia Umer Farooq & Qudsia Khan

Information Technology University

May 8, 2025

About Your Fellows

- Hello, our name is Afrazia Umer Farooq and Qudsia Khan. .
- We are Associate Students at ITU.

Overview

- Recap: Key Concepts from Previous Lectures
- Understanding NP and Verification
- Hamiltonian Path Problem: Definition and Examples
- Hamiltonian Cycle Problem: Definition and NP Membership
- Reduction: Hamiltonian Path to Hamiltonian Cycle with Complete Proof
- Longest Path Problem: Definition and Reduction from Hamiltonian Path
- Traveling Salesperson Problem (TSP): Definition and Variants
- Reduction: Hamiltonian Cycle to TSP
- Exercises and Key Takeaways
- Next Steps and Resources

Recap: Previous Concepts

- Maximum Independent Set (MIS) to Minimum Vertex Cover (MVC):
 - Reduced MIS to MVC to illustrate their complexity equivalence.
- 3-SAT to 4-Colorability:
 - Utilized OR gadgets to reduce 3-SAT to 4-Colorability, proving NP-hardness.

Understanding NP - Definition

What is NP?

A problem belongs to NP if a "yes" instance can be verified in polynomial time using a certificate.

• Example: Verifying a Hamiltonian Cycle in a graph.

Understanding NP – Two-Party Model

Two-Party Model for Verification

A framework to understand NP through interaction between two entities.

- Challenger: Provides the problem instance (e.g., a graph).
- Prover: Supplies a certificate (e.g., a vertex list) claiming a "yes" answer.
- **Verification:** The Challenger validates the certificate in polynomial time.

Recap – Composite Numbers Verification

Problem: Is *X* Composite?

Determine if integer *X* is not prime.

- **Certificate:** An integer *a* that divides *X*.
- **Verification:** Confirm X/a is an integer.
- Time Complexity: Polynomial.

Composite Numbers – Example

- **Example:** X = 15, certificate a = 3.
- **Verification:** 15/3 = 5 (integer), confirming X is composite.

$$X = 15$$
 \div $a = 3$ = 5

Hamiltonian Path Problem

Hamiltonian Path Problem

(Finding a Path Visiting All Vertices Exactly Once)

Hamiltonian Path Problem - Definition

Definition

Given a graph G = (V, E) with |V| = n, find a simple path (no repeated vertices) that visits all vertices exactly once. The path length must be n - 1.

Hamiltonian Path Problem – Example Graph

- **Graph:** Vertices $\{A, B, C, D, E, F\}$.
- **Edges:** F D, D B, B A, A C, C E, E B, A E.

Hamiltonian Path Problem - Failed Attempt

- Attempt 1 (Failed): $E \rightarrow B \rightarrow A \rightarrow C \rightarrow E$.
- **Reason:** Forms a cycle and misses vertices *D* and *F*.

Fails: Cycle, misses D, F

Hamiltonian Path Problem - Successful Attempt

- Attempt 2 (Success): $F \rightarrow D \rightarrow B \rightarrow A \rightarrow C \rightarrow E$.
- Reason: Visits all 6 vertices exactly once without forming a cycle.

Success: Visits all vertices

Hamiltonian Cycle Problem

Hamiltonian Cycle Problem

(Finding a Cycle Visiting All Vertices Exactly Once)

Hamiltonian Cycle Problem - Definition

Definition

Given a graph G = (V, E) with |V| = n, find a cycle that visits every vertex exactly once and returns to the starting vertex. The cycle length must be n.

Hamiltonian Cycle Problem - Failed Attempt

- **Graph:** Vertices $\{A, B, C, D, E, F\}$.
- Attempt (Failed): $F \rightarrow D \rightarrow B \rightarrow A \rightarrow C \rightarrow E$.
- **Reason:** No edge from *E* to *F*, preventing cycle formation.

Fails: No edge $E \rightarrow F$

Hamiltonian Cycle Problem - Conclusion

- Conclusion: No Hamiltonian cycle exists in this graph.
- **Reason:** Vertex *F* lacks sufficient incoming edges to form a cycle.

Hamiltonian Cycle Problem – Proving NP-Hardness

Goal

Establish that the Hamiltonian Cycle problem is NP-Hard.

- **Approach:** Reduce a known NP-Hard problem, such as 3-SAT, to Hamiltonian Cycle.
- Reduction Overview: Construct a graph where a Hamiltonian cycle exists if and only if the 3-SAT instance is satisfiable.
- **Note:** This reduction will be explored in future lectures.

Reduction: Hamiltonian Path to Hamiltonian Cycle

Reduction: Hamiltonian Path to Hamiltonian Cycle

(Proving NP-Hardness of Hamiltonian Cycle)

Reduction – Hamiltonian Path to Hamiltonian Cycle

Objective

Reduce the Hamiltonian Path problem to the Hamiltonian Cycle problem to prove the latter's NP-Hardness.

- **Input:** Graph G with a potential Hamiltonian Path.
- **Output:** Graph *H* with a Hamiltonian Cycle if *G* has a Hamiltonian Path.
- Construction:
 - Copy graph G to create H.
 - Introduce a new vertex Z.
 - Add two-way edges between Z and all vertices in G.

Example Graphs – G_1 (Yes Instance)

- **Graph** G₁: Contains a Hamiltonian Path.
- Path: $A \rightarrow B$.

Hamiltonian Path: $A \rightarrow B$

Example Graphs – H_1 (Yes Instance)

- **Graph** H_1 : Add vertex Z, connect to all vertices.
- Cycle: $A \rightarrow B \rightarrow Z \rightarrow A$.

Hamiltonian Cycle: $A \rightarrow B \rightarrow Z \rightarrow A$

Example Graph – G_2 (No Hamiltonian Path)

- **Graph** G_2 : Directed acyclic graph with 4 nodes.
- Reason: No path can visit all vertices exactly once due to isolated node.

No Hamiltonian Path (D is unreachable)

Example Graph $-H_2$ (No Hamiltonian Cycle)

- **Graph** H_2 : Extend G_2 by adding node Z, connect it to all others.
- Reason: Z is a source (no incoming edge), making a return impossible —
 cycle breaks.

No Hamiltonian Cycle: no return to Z

Example Graph $-G_3$ (No Hamiltonian Path)

- **Graph** G_3 : Undirected, disconnected components.
- Reason: No path covers all vertices due to disconnection.

No Hamiltonian Path (graph disconnected)

Example Graph $-H_3$ (No Hamiltonian Cycle)

- **Graph** H_3 : Central node Z connects all, but still no valid cycle.
- **Reason:** Star structure prevents a cycle visiting all nodes once.

No Hamiltonian Cycle (star graph)

Proof of Reduction - Forward Direction

If G Has a Hamiltonian Path

Then H has a Hamiltonian Cycle.

- Start with a Hamiltonian Path in G: Consider a path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n$, visiting all vertices exactly once.
- Build a Hamiltonian Cycle in H:
 - In H, use the path and add two new edges: $v_n \to Z$ and $Z \to v_0$, where Z is a new auxiliary vertex.
 - This forms a cycle: $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n \rightarrow Z \rightarrow v_0$.
- Why it works: The edges $v_n \to Z$ and $Z \to v_0$ exist in H, completing the cycle.

Conclusion: A Hamiltonian Path in G can be transformed into a Hamiltonian Cycle in H.

Proof of Reduction – Forward Direction (Visualization)

Cycle in $H: v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n \rightarrow Z \rightarrow v_0$

Proof of Reduction – Reverse Direction (Using Contraposition)

Objective

Prove that if H has a Hamiltonian Cycle, then G has a Hamiltonian Path.

- **Approach:** Use contraposition to simplify the proof.
- Original Statement: If G has no Hamiltonian Path $(\neg P)$, then H has no Hamiltonian Cycle $(\neg Q)$.
- Contrapositive: If H has a Hamiltonian Cycle (Q), then G has a Hamiltonian Path (P).

Proof of Reduction – Reverse Direction (Step-by-Step)

If H Has a Hamiltonian Cycle

Then G has a Hamiltonian Path.

- Assumption: H contains a Hamiltonian Cycle, visiting all vertices including Z.
- **Step 1:** Since it's a cycle, it must traverse Z, with edges $u \to Z \to v$.
- **Step 2:** Remove Z and its edges $(u \rightarrow Z \text{ and } Z \rightarrow v)$.
- **Step 3:** The remaining path $v \to \cdots \to u$ in H consists of edges from G.
- **Step 4:** This path visits all vertices of *G* (since the cycle in *H* covered all vertices except *Z*).
- Conclusion: The resulting path in G is a Hamiltonian Path.

Proof of Reduction – Reverse Direction (Visualization)

Remove $Z: v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n$

Proof of Reduction - Conclusion

Summary of the Reduction

The reduction is complete and correct.

- Forward Direction: If G has a Hamiltonian Path, H has a Hamiltonian Cycle.
- Reverse Direction: If H has a Hamiltonian Cycle, G has a Hamiltonian Path.
- Implication: Hamiltonian Path reduces to Hamiltonian Cycle, proving the latter is NP-Hard.
- NP-Completeness: Since Hamiltonian Cycle is in NP, it is NP-Complete.

Longest Path Problem

Longest Path Problem

(Maximizing Path Weight Without Vertex Repeats)

Longest Path Problem – Definition

Definition

Given a graph G = (V, E) with edge weights and a number K, determine if there exists a simple path (no repeated vertices) with total weight $\geq K$.

- Applicable to both directed and undirected graphs.
- Focuses on maximizing weight, unlike Hamiltonian Path which requires visiting all vertices.

Longest Path Problem – Pirate Adventure

- **Scenario:** A pirate is on a journey to find a hidden treasure. He starts at the Island and can take different routes to the Treasure.
- **Graph:** Vertices: {Island, Cave, Forest, Mountain, River, Treasure}
- Edges:

Island \rightarrow Cave (weight 5), Cave \rightarrow Forest (weight 4), Forest \rightarrow Mountain (v River \rightarrow Treasure (weight 6), Island \rightarrow Forest (weight 9), Cave \rightarrow Treasure

• **Goal:** Find the longest path the pirate can take to reach the treasure.

Longest Path Problem – Pirate Adventure (Solution)

• Longest Path: After evaluating all possible paths, the longest path is:

 $\mathsf{Island} \to \mathsf{Cave} \to \mathsf{Forest} \to \mathsf{Mountain} \to \mathsf{River} \to \mathsf{Treasure}$ with a total weight of:

$$5+4+7+3+6=25$$

- Another possible path: Island \rightarrow Forest \rightarrow Mountain \rightarrow River \rightarrow Treasure, total weight = 25.
- The pirate has multiple options, but the total weight for both the paths is 25.

Longest Path Problem – Proving NP-Completeness

Objective

Establish that the Longest Path problem is NP-Complete.

- In NP: Given a path (certificate), verify its weight $\geq K$ in polynomial time.
- NP-Hard: Demonstrate via a reduction from the Hamiltonian Path problem.

Reduction: Hamiltonian Path to Longest Path

Reduction: Hamiltonian Path to Longest Path

(Using Weights to Verify Hamiltonian Paths)

Reduction: Hamiltonian Path to Longest Path

Goal: Convert an instance of Hamiltonian Path (HP) to an instance of Longest Path (LP)

Given (Input)

- An unweighted graph G = (V, E)
- n = |V| (number of vertices)

Construct (Output)

- Let H = G (same structure)
- Assign weight w = 1 to every edge in H
- Set threshold $K = w \cdot (n-1) = n-1$

Why This Works

- A Hamiltonian Path visits all n nodes \rightarrow uses n-1 edges
- ullet All weights are 1 o total weight of such a path is n-1
- So: HP exists in G Longest Path in H has weight K

Reduction Setup - Visualization

$$\begin{array}{c|c}
\hline
v_1 & 1 & v_2 & 1 \\
\hline
K = 1 \cdot (3-1) = 2 & v_3
\end{array}$$

- Each edge in H has weight 1.
- K is set to match the weight of a path with n-1 edges.

Graph G_1 – Yes Instance

- Nodes: v_1, v_2, v_3
- Edges: $v_1 \rightarrow v_2 \rightarrow v_3$
- Edge weights = 1
- K = 2, Path weight $= 1 + 1 = 2 \ge K$
- Yes Instance

Graph G_2 – Yes Instance

- Nodes: $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4$
- Edge weights = 1
- K = 3, Path weight = 1 + 1 + 1 = 3 = K
- Yes Instance

Graph G_3 – No Instance

- Nodes: $v_1 \rightarrow v_2$, v_3 is isolated
- Edge weights = 1
- K = 2, longest path = 1 i K
- No instance

Graph G_4 – No Instance

- Disconnected components: $v_1 \rightarrow v_2$, $v_3 \rightarrow v_4$
- Edge weights = 1
- K = 3, longest path in any component = 1 j K
- No instance

Proof of Reduction – Forward Direction

Claim: If G has a Hamiltonian Path, then H has a Longest Path of weight $\geq K$

Why?

- A Hamiltonian Path in G visits all n vertices exactly once
- This path must use n-1 edges
- In H, all edges have weight w = 1
- So the path's total weight is:

Weight =
$$(n-1) \cdot 1 = n-1$$

- But K = n 1 by construction
- Therefore, the path in H has weight $\geq K$

Conclusion: Hamiltonian Path \Rightarrow Longest Path (weight $\geq K$)

Proof of Reduction – Reverse Direction (Contraposition)

If H Has a Longest Path with Weight $\geq K$

Then G has a Hamiltonian Path.

- **Assumption:** Assume H has a path with weight $\geq K = n 1$.
- Weight and Edges: Since all edges in H have weight 1, the path must have at least n-1 edges.
- Forming the Hamiltonian Path in G: A path with n-1 edges necessarily visits n distinct vertices, making it a Hamiltonian Path in G.

Conclusion: A Longest Path in H with weight $\geq n-1$ corresponds to a Hamiltonian Path in G.

Proof of Reduction - Conclusion

What We've Shown

We reduced the Hamiltonian Path problem to the Longest Path problem. This proves that Longest Path is **NP-Hard**.

Forward Direction:

- If G has a Hamiltonian Path
- Then H has a path of weight $\geq K$

Reverse Direction:

- If H has a path with weight ≥ K
- Then that path must visit n nodes, i.e., a Hamiltonian Path in G

Conclusion:

- Longest Path is NP-Hard
- Since it's also in NP → Longest Path is NP-Complete

Final Result: Longest Path is NP-Complete

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP)

(Finding a Tour with Minimum Weight)

TSP – Definition

Definition

Given a weighted graph G = (V, E, w) and a bound m, find a tour that starts at any vertex, visits all vertices at least once, returns to the start, with total weight $\leq m$.

• Allows revisiting vertices or edges unless specified otherwise.

TSP – Tour Structure and Example

Key Rules

Start at any vertex, visit all vertices, return to the starting vertex. The total weight is the sum of edge weights in the tour.

- **Example:** Vertices $\{A, B, C\}$; Edges: $A \rightarrow B$ (1), $B \rightarrow C$ (2), $C \rightarrow A$ (3).
- Tour: $A \rightarrow B \rightarrow C \rightarrow A$, weight = 1 + 2 + 3 = 6.

Tour: $A \rightarrow B \rightarrow C \rightarrow A$, Weight = 6

TSP – Revisiting Vertices

- **Revisiting Example:** Same graph with vertices $\{A, B, C\}$.
- Tour with Revisits: $A \rightarrow B \rightarrow A \rightarrow C \rightarrow A$.
- Weight: $A \to B$ (1) + $B \to A$ (1) + $A \to C$ (2) + $C \to A$ (3) = 7.
- Observation: Revisiting increases the tour's weight.

TSP – Larger Example

Complex Graph

Graph with 6 vertices $\{A, B, C, D, E, F\}$.

- Edges: $A \rightarrow B$ (1), $B \rightarrow C$ (5), $C \rightarrow D$ (6), $D \rightarrow E$ (4), $E \rightarrow F$ (2), $F \rightarrow A$ (10).
- Tour: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow A$.
- Weight: 1+5+6+4+2+10=28.
- Check: Fails if m = 20.

Reduction: Hamiltonian Cycle to TSP

Reduction: Hamiltonian Cycle to TSP

(Proving NP-Hardness of TSP)

Reduction: Hamiltonian Cycle to TSP (Setup)

Goal

Convert a Hamiltonian Cycle problem into a Traveling Salesman Problem (TSP) instance.

Step-by-Step Transformation:

- Start with a graph G = (V, E) where you want to check if a Hamiltonian Cycle exists.
- Create a new graph H that is a complete graph with the same set of vertices V.
- Assign edge weights in *H*:
 - If an edge exists in G, set weight = 1
 - If an edge does not exist in G, set weight = 2
- Set the TSP cost bound m = n, where n = number of vertices.

This ensures: TSP tour of weight n exists if and only if G has a Hamiltonian Cycle.

May 8, 2025

Reduction Setup - Visualization

- Original edges from G have weight 1.
- Added edges to complete the graph have weight 2.

Reduction Logic – Connecting Hamiltonian Cycle to TSP

Core Idea

A TSP tour in H with a cost $\leq n$ can only use the edges from the original graph G.

- To complete a tour, we need at least *n* edges (one for each vertex) and then return to the start.
- If the tour's total cost is $\leq n$, each edge must have weight 1, because any edge with weight 2 would make the cost exceed n.
- Therefore, a tour with total cost $\leq n$ must only use the edges that exist in G, which means the tour forms a Hamiltonian Cycle in G.

Conclusion: A valid TSP tour with cost n directly corresponds to a Hamiltonian Cycle in G.

Proof – Forward Direction

If G Has a Hamiltonian Cycle

Then H has a TSP tour with cost $\leq n$.

- A Hamiltonian Cycle in G uses n edges, all with weight 1 in H.
- This cycle becomes a TSP tour in H with cost n.
- Since m = n, the tour satisfies the TSP condition.

Proof – Reverse Direction

If G Has No Hamiltonian Cycle

Then H has no TSP tour with cost < n.

- Without a Hamiltonian Cycle in G, any tour in H must use at least one edge with weight 2.
- A tour with at least one weight-2 edge has cost $\geq (n-1) \cdot 1 + 2 = n+1 > n$.
- Thus, no tour in H can have cost $\leq n$.

TSP Example – Graph G_1

Graph G₁

Vertices: $\{A, B\}$; Edge: $A \rightarrow B$ (weight 1 in H).

- **H.P.:** $A \rightarrow B$ (yes).
- **H.C.:** None (no return edge).
- H_1 : Complete graph, $A \rightarrow B$ (1), $B \rightarrow A$ (2).
- **TSP Tour:** $A \to B \to A$, cost = 1 + 2 = 3 > 2 (n = 2).

H.P. Yes, H.C. No, TSP Cost = 3

TSP Example – Graph G_2

Graph G₂

Vertices: $\{A, B, C\}$; Edges: $A \rightarrow B$ (1), $B \rightarrow C$ (1).

- **H.P.:** $A \rightarrow B \rightarrow C$ (yes).
- **H.C.:** None (no $C \rightarrow A$ edge).
- H_2 : Complete graph with $C \rightarrow A$ added (2).
- **TSP Tour:** $A \to B \to C \to A$, cost = 1 + 1 + 2 = 4 > 3 (n = 3).

H.P. Yes, H.C. No, TSP Cost = 4

TSP Example – Graph G_3

Graph G₃

Vertices: $\{A, B, C\}$; Edges: $A \rightarrow B$ (1), $A \rightarrow C$ (1).

- H.P.: None (cannot visit all vertices in one path).
- **H.C.:** None (no cycle exists).
- H_3 : Complete graph with $B \to C$ (2), $C \to A$ (2).
- **TSP Tour:** $A \to B \to C \to A$, cost = 1 + 2 + 2 = 5 > 3 (n = 3).

H.P. No, H.C. No, TSP Cost = 5

TSP Variant – No Edge Reuse

Variant 1: No Edge Reuse

A TSP variant where edges cannot be used more than once in the tour.

- The tour must be a simple cycle, akin to a Hamiltonian Cycle.
- NP-Completeness: Directly reducible from the Hamiltonian Cycle problem.

TSP Variant – Euclidean Distances

Variant 2: Euclidean Distances

Vertices are points in a 2D plane, with edge weights as Euclidean distances.

- **Example:** Points A(0,0), B(2,2), distance = $\sqrt{8}$.
- NP-Completeness: Reducible from the Hamiltonian Cycle problem.

NP-Completeness of TSP

Why NP-Complete?

TSP is both in NP and NP-Hard, making it NP-Complete.

- In NP: Verify a tour's weight $\leq m$ in O(n) time.
- NP-Hard: Proven via reduction from Hamiltonian Cycle.
- Variants: Both "No Edge Reuse" and "Euclidean Distances" variants are also NP-Complete.

Exercise – 3-SAT to 2-Colorability

- Task: Reduce 3-SAT to 2-Colorability.
- **2-Colorability:** Color a graph with 2 colors such that no adjacent vertices share the same color.
- **Objective:** Construct a graph where a 2-coloring exists if the 3-SAT formula is satisfiable.
- Example Graph:

Exercise – 3-SAT to 4-Colorability

- Task: Summarize the reduction from 3-SAT to 4-Colorability.
- Formula: $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$.
- Objective: Explain how OR gadgets ensure a 4-coloring reflects a satisfying assignment.
- **Details:** OR gadgets create subgraphs where colorings correspond to true literals in the 3-SAT formula.

Exercise – Hamiltonian Path to TSP

- Task: Reduce Hamiltonian Path to TSP.
- Approach:
 - Construct a complete graph H from G.
 - Set weights: w(e) = 1 if $e \in G$, otherwise w(e) = 2.
 - Set bound m = n 1.
- Challenge: Ensure the TSP tour corresponds to a Hamiltonian Path in G.

Exercise - Longest Path Reduction Verification

- Task: Verify the Hamiltonian Path to Longest Path reduction with a new graph.
- **Graph:** Choose a graph with 5 vertices, some with a Hamiltonian Path and some without.
- **Objective:** Apply the reduction, compute K, and check the Longest Path outcome.

Key Takeaways

- NP-Completeness: Problems like Hamiltonian Cycle, Longest Path, and TSP are in NP and NP-Hard.
- Hamiltonian Path and Cycle: Reduction involves adding vertex Z, with a complete proof using contraposition.
- Longest Path: Reduced from Hamiltonian Path using uniform weights and K = n 1.
- **TSP:** Reduced from Hamiltonian Cycle with weights 1 and 2, m = n, variants are NP-Complete.
- **Verification:** Polynomial-time verification using certificates (e.g., vertex lists, divisors).

Key Concepts – NP-Completeness Diagram

- NP-Completeness Recap:
 - In NP: Verifiable in polynomial time.
 - NP-Hard: At least as hard as the hardest NP problems.
 - NP-Complete: Both in NP and NP-Hard.

Summary

- **Hamiltonian Path:** Successfully identified $F \rightarrow D \rightarrow B \rightarrow A \rightarrow C \rightarrow E$.
- Hamiltonian Cycle: Proved NP-Complete via reductions from 3-SAT and Hamiltonian Path.
- Longest Path: Established NP-Completeness through reduction from Hamiltonian Path.
- **TSP:** Reduced from Hamiltonian Cycle, explored variants, confirmed NP-Completeness.
- Verification: Demonstrated polynomial-time verification for NP problems.

Next Steps

- Explore detailed reductions, e.g., 3-SAT to Hamiltonian Cycle.
- Practice additional reductions, such as Hamiltonian Path to Longest Path on new graphs.
- Investigate optimization techniques for TSP.
- Implement algorithms for Hamiltonian Path and TSP in Python.
- Questions or topics for further exploration?