Decision Tree

INSTRUCTIONS:

Goal of the Project:

In Class 119 we learned about the Decision Tree and we wrote our own algorithm.

*This is just for your reference. We expect you to apply your own creativity in the project.

Getting Started:

- 1. Open a new Google Colab notebook.
- 2. Download the data from: https://raw.githubusercontent.com/whitehatjr/datasets/master/C119/titanic.csv

Specific Tasks to complete the Project:

- 1. Upload the data in the colab notebook.
- 2. Create data frames for the model.
- 3. Split the data to train, test and fit in the model.
- 4. Store the data as a text.
- 5. Visualize the data using pydotplus.
- 6. Limit the max depth of the chart
- 7. Visualize the data again.

PRO

Decision Tree

- 8. Make your conclusion based on the visualization.
- 9. Test the model

Submitting the Project:

- 1. Run and test your code.
- 2. Click on the share button to generate the shareable link.
- 3. Submit the link for the project to us.

PRO

Decision Tree

Hints:

1. Code to split the data.

2. Code for accuracy prediction.

```
15] results_pred = classifier.predict(score_test)
    from sklearn.metrics import accuracy_score
    print ("Accuracy : ", accuracy_score(results_test, results_pred))
```

3. Code to train the prediction model.

```
from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression(random_state = 0)
classifier.fit(score_train, results_train)
```

PRO

Decision Tree

REMEMBER Try your best, that's more important than being correct.
After submitting your project your teacher will send you feedback on your work.
xxx xxx xxx xxx xxx