If a = 2 + 3i, b = 4 + 5i, then find Re a, Im a, a + b, 5a, ab, \overline{a} , $a\overline{a}$, |a|, 1/a, b/a.

ANS. Re a=2 Im a=3 a+b=6+8i, 5a=10+i15 ab=-7+i22 $\overline{a}=2-3i$, $a\overline{a}=13$, $|a|=\sqrt{13}$, $1/a=\frac{1}{13}(2-3i)$ $b/a=\frac{1}{13}(2-3i)(4+5i)=\frac{1}{13}(23-2i)$

2. Check the identity arg(ab) = arg a + arg b for a and b in Problem 1. What does this identity say when a = b = -i? Perhaps it would be more correct to write $arg(ab) \mod (2\pi) = arg a \mod (2\pi) + arg b \mod (2\pi)$.

ANS. $\arg a = \arctan(1.5) \approx .98279$

 $\arg b = \arctan(1.25) \approx .89606$

 $\arg ab = 2$ nd quadrant angle whose tangent is -22/7

 $arg ab = \pi - arctan(22/7) \approx 1.8788$

If a = b = -i, then $\arg a = \arg b = 3\pi/2$ and $\arg(ab) = \arg(-1) = \pi$. It is hard to see how 3π can be equal to π unless one is allowed to add a multiple of 2π whenever it is convenient to do so.

3. Express the following complex numbers in the form $\alpha + i\beta$: $b = e^{\ln 2 + i(2\pi/3)}$.

ANS. According to the defintion of complex exponential

$$e^{\ln 2 + i(2\pi/3)} = e^{\ln 2} e^i(2\pi/3) = 2(\cos(2\pi/3) + i\sin(2\pi/3)) = 2(\frac{-1}{2} + i\frac{\sqrt{3}}{2})$$

NOTE: The number $\frac{a}{|a|}$ must have the same argument as a and that the argument of the number $\frac{a}{|a|}$ is $\frac{2\pi}{3}$. Looking back at b we now see that a and b and that the argument of $e^i(2\pi/3)$ is the same as that of b and hence it is also $\frac{2\pi}{3}$.

4. What is the derivative of the complex valued function $h(t) = e^{(1+2i)t}$? What are the real and imaginary parts of h(t)? Find the derivatives of the real and imaginary parts of h(t). How are they related to the derivative of h(t)?

ANS. If we use the standard formula for differentiating an exponential to find the derivative of $h(t) = e^{(1+2i)t}$ then we get $h'(t) = (1+2i)e^{(1+2i)t}$.

To find the real and imaginary parts, we write

 $h(t) = e^{(1+2i)t} = e^t e^{2it} = e^t (\cos 2t + i \sin 2t) = e^t \cos 2t + i e^t \sin 2t$. The derivative of the real part of h(t) is $e^t \cos 2t - 2e^t \sin 2t$ and the derivative of the imaginary part of h(t) is $e^t \sin 2t + 2e^t \cos 2t$. These two derivatives agree with the real and imaginary parts of the expression for h'(t) given above.

5. a. Find a complex number $\gamma = \alpha + i\beta$ such that $e^{\gamma} = 17(\frac{1}{2} - i\frac{\sqrt{3}}{2})$

ANS. Recall the definition $e^{\gamma} = e^{\alpha}(\cos \beta + i \sin \beta)$. So we need to choose α so that $e^{\alpha} = 17$. ie, $\alpha = \ln 17$. We also need to choose β subject to two conditions; $\cos \beta = 1/2$ and $\sin \beta = -\sqrt{3}/2$. Thus β needs to be a 4th quadrant angle with reference angle equal to $\pi/3$. ie, $\beta = 5\pi/3$.

b. Find a complex-valued function g(t) whose real part is $e^{2t}\cos(3t)$.

ANS. $q(t) = \text{Re}e^{(2+3i)t}$

c. Find a complex-valued function h(t) whose imaginary part is $e^{4t}\sin(5t)$.

ANS. $h(t) = \text{Im}e^{(4+5i)t}$

d. Find a complex-valued function f(t) whose imaginary part is $e^{6t}\sin(7t)$.

ANS. Since $e^{(6+7i)t} = e^{6t}(\cos(7t) + i\sin(7t))$, we see that $e^{6t}\sin(7t) = \text{Im}(e^{(6+7i)t})$.

©2009 by Moses Glasner