

' dipartimento di SCIENZE STATISTICHE "PAOLO FORTUNATI"

8 - Clustering for Text Similarity

Giovanni Della Lunga

Halloween Conference in Quantitative Finance

Bologna - October 26-28, 2021

Subsection 1

Similarity
Sorting documents

Similarity

 At its core, any sorting task relies on our ability to compare two documents and determine their SIMILARITY.

Introduction

 Documents that are similar to each other are grouped together and the resulting groups broadly describe the overall themes, topics, and patterns inside the corpus.

Introduction

 While most document sorting is currently done manually, it is possible to achieve these tasks in a fraction of the time with the effective integration of unsupervised learning, as we will see in this lesson

Introduction

- In many situations, corpora do not arrive *pretagged* with labels ready for classification.
- In these cases, the only choice, or at least a necessary precursor for many natural language processing tasks, is an unsupervised approach.
- Clustering algorithms aim to discover latent structure or themes in unlabeled data using features to organize instances into meaningfully dissimilar groups.
- With text data, each **instance** is a single document or sentence, and the **features** are its tokens, vocabulary, structure, metadata, etc.

Unsupervised Learning on Text

- Comparison between Clustering and Classification
- The behavior of unsupervised learning methods is fundamentally different from that of supervised algorithm we have seen in the previous section;
- Instead of learning a predefined pattern, the model attempts to find relevant patterns a priori.
- A clustering algorithm is usually employed to create groups or topic clusters, using a <u>distance metric</u> such that documents that are closer together in feature space are more similar.
- New incoming documents can then be vectorized and assigned to the nearest cluster.

Unsupervised Learning on Text

- A corpus is transformed into feature vectors and a clustering algorithm is employed to create groups or topic clusters, using a distance metric such that documents that are closer together in feature space are more similar.
- New incoming documents can then be vectorized and assigned to the nearest cluster.

Unsupervised Learning on Text

- As we have seen in section 3.1, there are a number of different measures that can be used to determine document similarity;
- Remember that, fundamentally, each relies on our ability to imagine documents as points in space, where the relative closeness of any two documents is a measure of their similarity.
- We have discussed the **cosine similarity** but there are others measure of distance we can use in clustering documents.

Unsupervised Learning on Text : Similarity

String Matching	Distance Metrics	Relational Matching	Other Matching
Edit Distance - Levenstein - Smith-Waterman - Affine	- Euclidean - Manhattan - Minkowski	Set Based - Dice - Tanimoto (Jaccard) - Common	Numeric distance Boolean equality Fuzzy matching Domain specific
Alignment - Jaro-Winkler - Soft-TFIDF - Monge-Elkan	- Jaccard - TFIDF - Cosine similarity	Neighbors - Adar Weighted Aggregates - Average values	Gazettes - Lexical matching - Named Entities (NER)
Phonetic - Soundex - Translation		- Max/Min values - Medians - Frequency (Mode)	

Document Similarity

- We can measure vector similarity with cosine distance, using the cosine of the angle between the two vectors to assess the degree to which they share the same orientation.
- In effect, the more parallel any two vectors are, the more similar the documents will be (regardless of their magnitude).

Subsection 2

- Now that we can quantify the similarity between any two documents, we can begin exploring unsupervised methods for finding similar groups of documents.
- Partitive clustering and agglomerative clustering are our two main approaches, and both separate documents into groups whose members share maximum similarity as defined by some distance metric.
- We will focus on partitive methods, which partition instances into groups that are represented by a central vector (the centroid) or described by a density of documents per cluster.
- Centroids represent an aggregated value (e.g., mean or median) of all member documents and are a convenient way to describe documents in that cluster.

- As we have seen in the first part, clustering can be considered one of the most important unsupervised learning problem; so, as every other problem of this kind, it deals with finding a structure in a collection of unlabeled data.
- A loose definition of clustering could be the process of organizing objects into groups whose members are similar in some way.
- A cluster is therefore a collection of objects which are coherent internally, but clearly dissimilar to the objects belonging to other clusters.

source: https://www.codeproject.com/Articles/439890/Text-Documents-Clustering-using-K-Means-Algorithm

Document Representation

- Each document is represented as a vector using the vector space model.
- The vector space model also called term vector model is an algebraic model for representing text document (or any object, in general) as vectors of identifiers. For example, TF-IDF weight.
- Finding Similarity Score
- We will use cosine similarity to identify the similarity score of a document.

- A Practical Example: Clustering Movie Reviews
- We are going to use data collected by Brandon Rose;
- here the link to the original post: http://brandonrose.org/top100
- And the GitHub Repository in which you can find all the data files necessary for this example:
 - https://github.com/brandomr/document_cluster

5 Steps

- Prepare data
- Tokenizing and stemming each synopsis
- Transforming the corpus into vector space using tf-idf
- Calculating cosine distance between each document as a measure of similarity
- Clustering the documents using the k-means algorithm

- Working Example
- Using 08-clustering-for-textsimilarity.ipynb
 Notebook
- Clustering Film Reviews
- Clustering Wikipedia

- In the previous section, we explored partitive methods, which divide points into clusters.
- By contrast, hierarchical clustering involves creating clusters that have a predetermined ordering from top to bottom.
- Hierarchical models can be either agglomerative, where clusters begin as single instances that iteratively aggregate by similarity until all belong to a single group, or divisive, where the data are gradually divided, beginning with all instances and finishing as single instances.

Hierarchical clustering

Hierarchical clustering

- Agglomerative clustering iteratively combines the closest instances into clusters until all the instances belong to a single group.
- In the context of text data, the result is a hierarchy of variable-sized groups that describe document similarities at different levels or granularities.
- Just as there are multiple ways of quantifying the difference between any two documents, there are also multiple criteria for establishing the linkages between them.
- Agglomerative clustering requires both a distance function and a linkage criterion.
- Scikit-Learn implementation defaults to the Ward criterion, which minimizes the within-cluster variance as each are successively merged.
- At each aggregation step, the algorithm finds the pair of clusters that contributes the least increase in total within-cluster variance after merging.