

Pripreme za IOI 2008 4. avgust 2008. godine predavač: Aleksandar Ilić e-mail: aleksandari@gmail.com

Razni zadaci

Zadatak 1. Dat je graf G sa n čvorova i m grana, gde je m paran broj. Odrediti da li je moguće upariti grane, tako da se svaka grana nalazi u tačno jednom paru i grane iz para imaju zajednički čvor. Dizajnirati algoritam u koji radi u O(n+m).

Ulaz	\mathbf{Izlaz}
6 12	23-24
3: 1 2 5	25-02
5: 0 2 3 4 5	45-05
5: 0 1 3 4 5	3 4 - 1 3
3: 1 2 4	12-14
4: 1 2 3 5	15-01
4: 0 1 2 4	

Zadatak 2. Neka je X racionalan broj sa najviše 10.000 cifara. Na raspolaganju su nam n predmeta sa zapreminama oblika 2^k , gde je k ceo broj i cenom w_k . Treba tačno popuniti ranac zapremine X i pritom minimizariti ukupnu cenu uzetih predmeta. Konstruisati algoritam složenosti $O(m \cdot log(m) + log(X))$.

\mathbf{Ulaz}	`	0 ()	Izlaz
5 8			23
0.3			
1 7			
2 5			
0.8			
1 19			

Zadatak 3. "Graceful labeling of a tree" je otvorena hipoteza o obeležavanju čvorova i grana stabla. Naime, treba dodeliti čvorovima stabla brojeve od 0 do n-1, tako da labele na granama budu različite. Labela grane je jednaka apsolutnoj vrednosti brojeva njenih krajeva. Konstruisati heuristiku koja za $n \leq 100$ i dato stablo nalazi odgovarajuću numeraciju čvorova.

Graceful labeling of a graph

Zadatak 4. Dat je težinski graf G sa n čvorova i m grana. Dijameter grafa je najveće najkraće rastojanje izmedju svih čvorova. Odrediti razapinjajuće stablo sa minimalnim dijametrom u vremenu $O(n \cdot m)$.

\mathbf{Ulaz}	Izlaz
4 4	1 2
1 2 1	2 3
1 3 4	$1\ 4$
1 4 1	
2 3 2	

Zadatak 5. Dat je niz A dužine $n \leq 1.000.000$, čiji je svaki element manji ili jednak od n. Treba odrediti najduži podniz uzastopnih elemenata, koji predstavlja permutaciju brojeva od 1 do k (k je dužina podniza).

Ulaz	Izlaz
5	3
$4\ 1\ 3\ 1\ 2$	

Zadatak 6. Segment [A, B] je prekriven sa n segmenata $[a_i, b_i]$. Odrediti da li je moguće izdvojiti i obojiti neke segmenate, tako da ukupna dužina delova sa jednim obojenim segmentom bude veća od 2/3. Dizajnirati algoritam u $O(n \cdot log(n))$.

Ulaz	Izlaz
0.0 20.0	3
7	257
1.0 1.5	
0.0 10.0	
9.0 10.0	
18.0 20.0	
9.0 18.0	
2.72 3.14	
19.0 20.0	

Zadatak 7. Neki klub ima $N \leq 100.000$ članova, gde i-ti član ima vrednost snage S_i i vrednost lepote B_i . Članovi i i j se mrze ako važi $(S_i \leq S_j \text{ i } B_i \geq B_j)$ ili $(S_i \geq S_j \text{ i } B_i \leq B_j)$. Treba odabrati maksimalnu grupu članova ovog kluba medju kojima se nikoja dva ne mrze.

\mathbf{Ulaz}	Izlaz
4	2
1 1	1 4
1 2	
2 1	
2 2	

Zadatak 8. Dato je stablo sa N čvorova. Potrebno je markirati neke čvorove tako da važi: za svaki čvor postoji markiran čvor koji je od njega udaljen ne više od K grana. Odrediti koliko je minimalno čvorova potrebno markirati i gde? Složenost je O $(N \cdot K)$.

Ulaz	Izlaz
4 1	1
1 2	2
2 3	
4.2	

Zadatak 9. Prodavnica ima $N \leq 1000$ bombona od kojih se svaka nalazi u jednoj od K kutija. i-ta bombona košta A_i evra. Uz to, potrebno je platiti B_j evra za otvaranje j-te kutije ako je iz te kutije kupljena bar jedna bombona. Koliko se najviše bombona može kupiti sa $P \leq 1.000.000$ evra?

Ulaz	Izlaz
4 2 10	3
1 2	3 4 1
1 2	
5 2	
3 1	
3 2	

Zadatak 10. U jednoj zemlji postoji $N \leq 100.000$ aerodroma i ukupno N-1 dvosmernih letova izmedju nekih od njih. Iz svakog aerodroma (sa presedanjima) može se stići u bilo koji drugi. Dvojica terorista igraju sledeću igru: Na početku se nalaze na aerodromu broj K. Zatim prvi minira taj aerodorom, izabere neki aerodrom koji je direktno povezan sa ovim, odleti sa kolegom tamo i aktivira eksploziv, što za posledicu ima da aerodrom na kojem su bili i svi letovi koji vode do njega nestaju. Na isti način zatim igra drugi i igru gubi terorista koji ne može da odigra potez. Odrediti ko pobedjuje i ukoliko pobedjuje prvi, štampati na koji aerodorm u prvom potezu treba da odleti.

Ulaz	Izlaz
4 3	1
3 2	2
3 1	
1 4	

Zadatak 11. Dat je alfabet sa $N \leq 50$ slova. Reč je zabranjena, ako kao podreč sadrži neku od $K \leq 20$ datih reči, čija je dužina manja od 20. Odrediti broj reči dužine $M \leq 50$ koje nisu zabranjene.

\mathbf{Ulaz}	Izlaz
3 3 3	7
QWE	
QQ	
WEE	
Q	