Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α , β	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n - \sum_{i=1}^{n} x_i$	$lpha-1$ successes, $eta-1$ failures $^{[ext{note 1}]}$	$p(\tilde{x} = 1) = \frac{\alpha'}{\alpha' + \beta'}$
Binomial	p (probability)	Beta	α , β	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	$lpha-1$ successes, $eta-1$ failures $^{[ext{note 1}]}$	BetaBin $(\tilde{x} \alpha',\beta')$ (beta-binomial)
Negative Binomial with known failure number r	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{[\text{note 1}]} \text{ (i.e. } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
Poisson	λ (rate)	Gamma	k, θ	$k + \sum_{i=1}^{n} x_i, \ \frac{\theta}{n\theta + 1}$	k total occurrences in $1/ heta$ intervals	$\operatorname{NB}(\tilde{x} k', \frac{\theta'}{1+\theta'})$ (negative binomial)
Poisson	λ (rate)	Gamma	α , β [note 3]	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n$	lpha total occurrences in eta intervals	$\operatorname{NB}(\tilde{x} \alpha', \frac{1}{1+\beta'})$ (negative binomial)
Categorical	p (probability vector), k(number of categories, i.e. size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \ldots, c_k),$ where c_i is the number of observations in category i	$lpha_i-1$ occurrences of category $i^{ ext{[note 1]}}$	$p(\tilde{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ $= \frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Multinomial	p (probability vector), k(number of categories, i.e. size of p)	Dirichlet	α	$oldsymbol{lpha} + \sum_{i=1}^n \mathbf{x}_i$	$lpha_i-1$ occurrences of category $i^{ ext{[note 1]}}$	$\begin{array}{c} \operatorname{DirMult}(\tilde{\mathbf{x}} \boldsymbol{\alpha}') \\ (\operatorname{Dirichlet-} \\ \operatorname{multinomial}) \end{array}$
Hypergeometric with known total population size <i>N</i>	M (number of target members)	Beta-binomial ^[4]	n=N,lpha,eta	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	lpha-1 successes, $eta-1$ failures ^[note 1]	
Geometric	p_0 (probability)	Beta	α, β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	$lpha-1$ experiments, $eta-1$ total failures $^{[ext{note 1}]}$	