New Examples

Shlok Mishra

February 3, 2024

Example 1 Let $(X_1, \ldots, X_d) \sim \mathcal{N}_d(\mathbf{0}, \mathbf{I})$, $(Y_1, \ldots, Y_d) \sim \mathcal{N}_d(\boldsymbol{\mu}_1, \mathbf{I})$, and $(Z_1, \ldots, Z_d) \sim \mathcal{N}_d(\boldsymbol{\mu}_2, \mathbf{I})$, where $\mathbf{0}$, $\boldsymbol{\mu}_1$, and $\boldsymbol{\mu}_2$ are distinct mean vectors, and \mathbf{I} denotes the identity matrix. Specifically, let $\boldsymbol{\mu}_1 = (1, 1, 1, 1, 0, \ldots, 0)^T$ and $\boldsymbol{\mu}_2 = (2, 2, 2, 2, 0, \ldots, 0)^T$. Here $\mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ denotes the d-dimensional normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

Example 2 Suppose that
$$(X_1, X_2), (X_3, X_4) \sim \mathcal{N}_2(\mathbf{0}, \Sigma_1)$$
 with $\Sigma_1 = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}, (Y_1, Y_2), (Y_3, Y_4) \sim \mathcal{N}_2(\mathbf{0}, \Sigma_2)$ with $\Sigma_2 = \begin{pmatrix} 1 & -0.9 \\ -0.9 & 1 \end{pmatrix}$, and $(Z_1, Z_2), (Z_3, Z_4) \sim \mathcal{N}_2(\mathbf{0}, \Sigma_3)$ with $\Sigma_3 = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$. For each class, $X_5, \ldots, X_d, Y_5, \ldots, Y_d$, and Z_5, \ldots, Z_d are iid $\mathcal{N}(0, 1)$. Here, $(X_1, \ldots, X_4), (X_5, \ldots, X_d), (Y_1, \ldots, Y_4), (Y_5, \ldots, Y_d), (Z_1, \ldots, Z_4),$ and (Z_5, \ldots, Z_d) are mutually independent and 'iid' stands for independent and identically distributed.