Chapter 1

Basic Notions

1.1 Vector Spaces

Exercise 1.1. Let $\mathbf{x} = (1,2,3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$ and $\mathbf{z} = (4,2,1)^{\mathrm{T}}$. Compute $2\mathbf{x}$, $3\mathbf{y}$, $\mathbf{x} + 2\mathbf{y} - 3\mathbf{z}$.

Proof. Little calculation reveals that

$$2\mathbf{x} = \begin{pmatrix} 2\\4\\6 \end{pmatrix}, \quad 3\mathbf{y} = \begin{pmatrix} 3y_1\\3y_2\\3y_3 \end{pmatrix}, \quad \mathbf{x} + 2\mathbf{y} - 3\mathbf{z} = \begin{pmatrix} 2y_1 - 11\\2y_2 - 4\\2y_3 \end{pmatrix}$$

Exercise 1.2. Which of the following sets (with natural addition and multiplication by a scalar) are vector spaces? Justify your answers.

1. The set of all continuous functions on the interval [0,1];

2. The set of all non-negative functions on the interval [0,1];

3. The set of all polynomials of degree *exactly n*;

4. The set of all symmetric $n \times n$ matrices, i.e. the set of matrices $A = \{a_{j,k}\}_{j,k=1}^n$ such that $A^T = A$.

Proof.

1. Let C[0,1] be the set of all continuous functions on [0,1]. For any $f,g\in C[0,1]$ and $\alpha\in\mathbb{R}$, we define

$$(f+g)(x) := f(x) + g(x)$$
 and $(\alpha f)(x) := \alpha \cdot f(x)$

for each $x \in [0,1]$. Therefore, $(\mathcal{C}[0,1],+,\cdot)$ is closed under addition and scalar multiplication. It's immediate to see that all the eight properties of vector space are all satisfied, that is

$$\circ f + g = g + f$$

$$\circ f + (g + h) = (f + g) + h$$

$$\circ f + 0 = f$$

$$\circ f + (-f) = 0$$

$$\circ 1f = f$$

$$\circ \alpha(\beta f) = (\alpha \beta)f$$

$$\circ (\alpha + \beta)f = \alpha f + \beta f$$

$$\circ \alpha(f + g) = \alpha f + \beta g$$

Note that the function $0 \in C[0,1]$ such that 0(x) = 0 for each $x \in [0,1]$.

2. Let \mathcal{B} is the set of all non-negative functions on [0,1]. Then $(\mathcal{B},+\cdot)$ is not a vector space because it's not closed under scalar multiplication, i.e. if $f \in \mathcal{B}$, hence f > 0 yet

$$-f = (-1) \cdot f < 0.$$

(Even if we restrict the scalar be to positive real numbers, this set still won't be a vector space, because it fails to have an inverse.)

- 3. Let \mathcal{P} be the set of all polynomials of degree exactly n, then $(\mathcal{P}, +, \cdot)$ is *not* a vector space, because the additive indentity is the polynomial 0. However, $0 \notin \mathcal{P}$.
- 4. Let $\operatorname{sym}(n)$ be the set of all symmetric $n \times n$ matrices. The addition and scalar multiplication are defined as an *entrywise* operations. Hence, $\operatorname{sym}(n)$ is closed under (+) and (\cdot) . The additive indentity is the matrix

$$\mathbf{0} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & 0 \end{pmatrix} \in \operatorname{sym}(n).$$

We could easily see that all the eight properties of vector spaces are all satisfied.

Exercise 1.3. True or false:

- 1. Every vector space contains a zero vector; (**True.**)
- 2. A vector space can have more than one zero vector; (**False.** The zero vector is unique.)
- 3. An $m \times n$ matrix has m rows and n columns; (**True.**)
- 4. If f and g are polynomials of degree n, then f + g is also a polynomial of degree n. (**False.** consider t^n and $t t^n$.)
- 5. If f and g are polynomials of degree atmost n, the f+g is also a polynomial of degree atmost n. (**True.**)

3

Exercise 1.4. Prove that a zero vector **0** of a vector space *V* is unique.

Proof. Suppose that **a** and **b** are the zero vectors of *V* . From the *Axioms of Vector Space*, we obtain that

$$\mathbf{a} = \mathbf{a} + \mathbf{b}$$
 (b is the zero vector)
= $\mathbf{b} + \mathbf{a}$ (commutitativity)
= \mathbf{b} (a is the zero vector)

Hence, a zero vector of a vector space is unique, and we usually denote it by $\mathbf{0}$.

Exercise 1.5. What is the zero matrix of the space $M_{2\times 3}$?

Answer. In the space $M_{2\times 3}$, the zero matrix is

$$\mathbf{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercise 1.6. Prove that the additive inverse of a vector space is unique.

Proof. Let \mathbf{a} be an arbitrary vector. Assume the \mathbf{a} has two inverses, namely \mathbf{x} and \mathbf{y} . Hence

$$\begin{aligned} x &= x + 0 \\ &= x + (a + y) & (y \text{ is an inverse}) \\ &= (x + a) + y & (associativity) \\ &= 0 + y & (x \text{ is an inverse}) \\ &= y. \end{aligned}$$

Therefore, the inverse of any vector $\mathbf{a} \in V$ is unique, and is usually denoted by $-\mathbf{a}$.

Exercise 1.7. Prove that $0\mathbf{v} = \mathbf{0}$ for any vector $\mathbf{v} \in V$.

Proof. Let $\mathbf{v} \in V$ and \mathbf{b} is an inverse of $0\mathbf{v}$. Therefore,

$$0 = 0\mathbf{v} + b$$

$$= (0+0)\mathbf{v} + b$$

$$= (0\mathbf{v} + 0\mathbf{v}) + b \qquad \text{(distributivity)}$$

$$= 0\mathbf{v} + (0\mathbf{v} + b) \qquad \text{(associativity)}$$

$$= 0\mathbf{v} + \mathbf{0} \qquad \text{(b is an inverse of } 0\mathbf{v})$$

$$= 0\mathbf{v}$$

for any $\mathbf{v} \in V$.

Exercise 1.8. Prove that for any vector \mathbf{v} its additive inverse $-\mathbf{v}$ is given by $(-1)\mathbf{v}$.

Proof. As proved in the above exercise for any $\mathbf{v} \in V$,

$$\mathbf{0} = 0\mathbf{v} = (1-1)\mathbf{v} = \mathbf{v} + (-1)\mathbf{v}$$

where the last equallity derives from the distributive property. Because $-\boldsymbol{v}$ is the inverse of $\boldsymbol{v},$ then

$$-\mathbf{v} = -\mathbf{v} + \mathbf{0}$$

$$= -\mathbf{v} + [\mathbf{v} + (-1)\mathbf{v}]$$

$$= (-\mathbf{v} + \mathbf{v}) + (-1)\mathbf{v}$$

$$= (-1)\mathbf{v}$$

as desired. \Box