Problem 1. Consider the merging problem in our PRAM discussion. Let A_1 be the array (1, 17, 28, 29, 55, 61, 69, 80) and A_2 be the array (10, 13, 25, 33, 38, 56, 72, 75). Give the content of array B_1 .

Solution. $B_1 = (1, 4, 6, 7, 10, 12, 13, 16).$

Problem 2. Consider the sorting problem in EM. Let A be the input file of n integers (which is stored in O(n/B) blocks). Give an algorithm to produce O(n/M) files satisfying all the following requirements:

- Each file stores at most M integers of A in ascending order using O(M/B) blocks.
- All the files are mutually disjoint.
- The union of all the files is the set of integers in A.

Your algorithm must terminate in O(n/B) I/Os.

Solution. Load the first M numbers of A into memory, sort them, and then write the sorted list into a file of O(M/B) blocks. Then, do the same to the next M numbers of A. Repeat until having exhausted A.

Problem 3. This question concerns the PRAM model. Suppose that we have already obtained a sorting algorithm \mathcal{A} finishing in f(n) steps when the number p of CPUs equals n (recall that n is the number of integers to sort). Consider now the scenario where p < n. Describe how to use \mathcal{A} to design an algorithm that finishes in $O(\frac{n}{p} \cdot f(n))$ steps.

Solution. The key is to simulate a step of \mathcal{A} , which runs on n CPUs, by performing O(n/p) steps with p CPUs. I suggest giving a full mark as long as the student manages to make the above observation.

For a complete answer, however, we must clarify the details of the reduction. Let $\Upsilon_1, \Upsilon_2, ..., \Upsilon_n$ be the n CPUs of \mathcal{A} ; call them the \mathcal{A} -CPUs. Define the state of each Υ_i $(i \in [1, n])$ as the current set of register values in Υ_i . To simulate \mathcal{A} , we preserve the state of every Υ_i in O(1) special memory words.

We simulate every step of \mathcal{A} — call this an \mathcal{A} -step — in O(n/p) steps through $\lceil n/p \rceil$ phases. The i-th $(i \in [1, n])$ phase executes the atomic operations performed by $\Upsilon_{i \cdot p+1}, \Upsilon_{i \cdot p+2}, ..., \Upsilon_{(i+1) \cdot p}$ during the \mathcal{A} -step. For this purpose, we first perform O(1) steps to load the state of Υ_j , for each $j \in [i \cdot p+1, (i+1) \cdot p]$, into the $(j \mod p)$ -th CPU. The atomic operations of the p CPUs can then be carried out in another step. Because \mathcal{A} is a CREW algorithm, no two CPUs can have a conflict in memory accesses during an \mathcal{A} -step. Therefore, we guarantee that the states of all \mathcal{A} -CPUs after the $\lceil n/p \rceil$ phases are identical to those after the \mathcal{A} -step.

Problem 4. Give a PRAM algorithm that settles the sorting problem in $O(\frac{n}{p}\log^2 n)$ steps.

Solution. Apply the reduction in Problem 3 to our discussion in the seminar.