福建省部分达标学校 2023~2024 学年第一学期期中质量监测

高二数学试卷参考答案

一、选择题

1∼8 AAABC BDC

9. AD 10. ACD 11. AC 12. ACD

8.
$$:: 2S_n = a_n + \frac{1}{a}$$
,

$$\therefore 2S_n = (S_n - S_{n-1} + \frac{1}{S_n - S_{n-1}})$$
,得 $S_n + S_{n-1} = \frac{1}{S_n - S_{n-1}}$,整理为 $S_n^2 - S_{n-1}^2 = 1$,

当
$$n=1$$
 时, $S_1 = \frac{1}{2}(a_1 + \frac{1}{a_1}) = a_1$, 且 $a_1 > 0$,解得 $a_1 = S_1 = 1$,

:.数列 $\{S_n^2\}$ 是以1为首项,1为公差的等差数列,

$$[\![\!]\!] S_n^2 = 1 + (n-1) \times 1 = n, : S_n = \sqrt{n}, n \in \mathbb{N}^*,$$

$$\stackrel{\text{def}}{=} n \geqslant 2 \text{ BJ}, \frac{1}{S_n} = \frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}} = \frac{2}{\sqrt{n} + \sqrt{n}} < \frac{2}{\sqrt{n} + \sqrt{n-1}} = 2(\sqrt{n} - \sqrt{n-1}),$$

$$\vdots \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_{99}} < 1 + 2 \left[(\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \dots + (\sqrt{99} - \sqrt{99 - 1}) \right]$$

$$=1+2(-1+\sqrt{99})=2\sqrt{99}-1<19,$$

$$\frac{1}{S_n} = \frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}} = \frac{2}{\sqrt{n} + \sqrt{n}} > \frac{2}{\sqrt{n} + \sqrt{n+1}} = 2(\sqrt{n+1} - \sqrt{n}),$$

$$\frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_{99}} > 2 \left[(\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \dots + (\sqrt{100} - \sqrt{99}) \right]$$

$$=2(\sqrt{100}-1)=18$$
,

:.18<
$$\frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_{99}}$$
<19,: $\left[\frac{1}{S_1} + \frac{1}{S_2} + \dots + \frac{1}{S_{99}}\right] = 18$.

故选 C.

12. 曲线 C 的方程为 $\sqrt{(x+a)^2+y^2}$ • $\sqrt{(x-a)^2+y^2}=a^2$,①

若 P 是曲线 C 上一点,则满足①,于是点 P 关于原点的对称点 $M(-x_0,-y_0)$ 有

$$\sqrt{(-x_0+a)^2+y_0^2} \cdot \sqrt{(-x_0-a)^2+y_0^2} = \sqrt{(x_0-a)^2+y_0^2} \cdot \sqrt{(x_0+a)^2+y_0^2} = a^2$$

即 $M(-x_0, -y_0)$ 也在曲线 C上,故 A 正确.

对于 B,由 $a^2 = \sqrt{(x_0 - a)^2 + y_0^2} \cdot \sqrt{(x_0 + a)^2 + y_0^2} \geqslant \sqrt{(x_0 - a)^2} \cdot \sqrt{(x_0 + a)^2} = |x_0^2 - a^2|,$ 得 $0 \leqslant x_0^2 \leqslant 2a^2$,

 $\therefore -\sqrt{2}a \leqslant x_0 \leqslant \sqrt{2}a$,故 B 错误.

对于 C,若 |PA| = |PB|,则点 P 在 AB 的垂直平分线上, $\therefore x_0 = 0$,将 $P(0, y_0)$ 代人①得 $(\sqrt{a^2 + y_0^2})^2 = a^2$, $\therefore y_0 = 0$,即仅 P 是原点时满足 |PA| = |PB|,故 C 正确.

对于 D, 由 $\sqrt{(x_0-a)^2+y_0^2}$ • $\sqrt{(x_0+a)^2+y_0^2}=a^2$, 化简得 $(x_0^2+y_0^2+a^2)^2-4a^2x_0^2=a^4$,

- $\therefore (x_0^2 + y_0^2 + a^2)^2 = a^4 + 4a^2x_0^2$, ∴由 $x_0^2 \le 2a^2$ 得 $(x_0^2 + y_0^2 + a^2)^2 \le 9a^4$,
- $\therefore x_0^2 + y_0^2 \leq 2a^2$,故 D 正确. 故选 ACD.

二、填空题

13.8 14.2023 15.
$$x^2 + (y-2)^2 = 1$$
 16. $a_n = 3^{n-1} - 1$

16. 直线
$$l$$
 的倾斜角为 60° ,则圆心 $C_i(a_i,b_i)$ 在直线 $y = \frac{\sqrt{3}}{3}(x+1)$ 上, $\therefore b_i = \frac{\sqrt{3}}{3}(a_i+1)$,

设圆 C_i , C_{i+1} 分别切x轴于点P, Q, 过点 C_i 作 $C_iM \perp QC_{i+1}$, 垂足为M(图略). 在 $Rt \triangle C_iC_{i+1}M$ 中, $\angle C_{i+1}C_iM$ =30°, $\therefore \frac{MC_{i+1}}{C_iC_{i+1}} = \frac{1}{2}$,

- $\therefore \{a_n+1\}$ 是以 $a_1+1=1$ 为首项,3 为公比的等比数列.
- $a_n+1=3^{n-1}=3^{n-1}, a_n=3^{n-1}-1.$

- :.直线 l_1 的方程是 y=-4(x-1)+1,即 4x+y-5=0,
- \therefore BC 的高所在直线 l_1 的方程是 4x+y-5=0. 4 分
- (2):直线 l_2 过 C 点,且 A,B 到直线 l_2 的距离相等,

①当直线 l_2 与 AB 平行时,

②当直线 l_2 过 AB 的中点 M 时, :AB 的中点 M 的坐标为(0,2),

$$: k_{\text{CM}} = \frac{4-2}{3-0} = \frac{2}{3}$$
, : 直线 l_2 的方程是 $y = \frac{2}{3}(x-3)+4$, 即 $2x-3y+6=0$ 9 分

18. 解:(1)设等差数列 $\{a_n\}$ 的公差为 d.

由
$$a_2, a_3 + 2, a_6$$
 成等比数列及 $a_1 = 2, 4(a_3 + 2)^2 = a_2 a_6$, …… 2 分

当
$$d=6$$
 时, $a_2=8$, $a_3+2=16$, $a_6=32$ 构成等比数列,符合条件; ……………… 4 分

所以
$$T_n = 1 \times 2^1 + 4 \times 2^2 + 7 \times 2^3 + \dots + (3n-2) \cdot 2^n$$
,① ………………… 8 分

则
$$2T_n = 1 \times 2^2 + 4 \times 2^3 + 7 \times 2^4 + \dots + (3n-5) \cdot 2^n + (3n-2) \cdot 2^{n+1}$$
,② ······· 9 分

	①一②得一 $T_n = 2 + 3(2^2 + 2^3 + \dots + 2^n) - (3n - 2) \cdot 2^{n+1}$
	$=2+3\frac{4(1-2^{n-1})}{1-2}-(3n-2)\cdot 2^{n+1}$
	$=(5-3n)2^{n+1}-10,$
	所以 $T_n = (6n-10)2^n + 10$.
19.	解:(1)因为 $ OA = OC $, $\angle COA = \frac{\pi}{3}$,所以 $\triangle OAC$ 为正三角形,
	由 $ OA = OC = \sqrt{1+3} = 2$,得 $A(2,0)$,
	所以 $\triangle OAC$ 的外接圆圆心为 $M(1,\frac{\sqrt{3}}{3})$,
	又半径 $R = MO = \frac{2\sqrt{3}}{3}$,
	所以圆 M 的方程为 $(x-1)^2 + (y-\frac{\sqrt{3}}{3})^2 = \frac{4}{3}$ 6 分
	(2)由题意得 $B(3,\sqrt{3})$, $D(\frac{5}{2},\frac{\sqrt{3}}{2})$, 直线 CD 的斜率 $k = \frac{\sqrt{3} - \frac{\sqrt{3}}{2}}{1 - \frac{5}{2}} = -\frac{\sqrt{3}}{3}$,
	直线 CD 的方程为 $y-\sqrt{3}=-\frac{\sqrt{3}}{3}(x-1)$,即 $x+\sqrt{3}y-4=0$, 9 分
	M 到 CD 的距离 $d = \frac{ 1+\sqrt{3}\times\frac{\sqrt{3}}{3}-4 }{2} = 1,$ 10 分
	所以 CD 被圆 M 截得的弦长为 $2\sqrt{R^2-d^2}=2\sqrt{\frac{4}{3}-1}=\frac{2\sqrt{3}}{3}$
20.	$ \mathbf{m}: (1) \pm \frac{a_1 - 2}{a_1} \cdot \frac{a_2 - 2}{a_2} \cdot \cdots \cdot \frac{a_n - 2}{a_n} = \frac{1}{a_n}, $
	当 $n=1$ 时, $\frac{a_1-2}{a_1} = \frac{1}{a_1}$,解得 $a_1=3$,
	$\therefore \frac{a_n - 2}{a_n} = \frac{a_{n-1}}{a_n}, a_n - 2 = a_{n-1}, \text{ [I] } a_n - a_{n-1} = 2, \qquad 4 \text{ (2)}$
	$\therefore \{a_n\}$ 是以 3 为首项,2 为公差的等差数列, 5 分
	$\therefore \{a_n\}$ 的通项公式为 $a_n=2n+1$. 6 分
	$(2)\frac{1}{a_n^2-1} = \frac{1}{4n^2+4n} = \frac{1}{4}\left(\frac{1}{n} - \frac{1}{n+1}\right), \qquad 7 $
	$: S_n = \frac{1}{4} \left[(1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1}) \right] = \frac{1}{4} (1 - \frac{1}{n+1}), \dots $ 8 %
	$\therefore S_n < \frac{1}{4}. \qquad \qquad 9 \%$

	由 $S_n < \lambda^2 - 2\lambda - 1$,对于任意的 $n \in \mathbb{N}^*$ 恒成立,有 $\lambda^2 - 2\lambda - 1 \geqslant \frac{1}{4}$, 10 分
	即 $4\lambda^2 - 8\lambda - 5 \geqslant 0$,即 $(2\lambda - 5)(2\lambda + 1) \geqslant 0$, $\lambda \geqslant \frac{5}{2}$ 或 $\lambda \leqslant -\frac{1}{2}$,
	则满足条件的最小正整数 λ 的值为 3 12 分
21.	.解:(1)依题意得
	(2)由(1)得 $B_1(0,\sqrt{3}), F_2(1,0), k_{B_1F_2} = \frac{\sqrt{3}-0}{0-1} = -\sqrt{3},$
	由于 $MN \perp B_1 F_2$, 所以直线 MN 的斜率为 $\frac{\sqrt{3}}{3}$,
	所以直线 MN 的方程为 $y = \frac{\sqrt{3}}{3}(x+1)$,
	由 $\begin{cases} y = \frac{\sqrt{3}}{3}(x+1), \\ \text{消去 } y \text{ 并化简得 } 13x^2 + 8x - 32 = 0, \Delta = 64 + 4 \times 13 \times 32 = 1728 > 0, \dots \\ \frac{x^2}{4} + \frac{y^2}{3} = 1, \end{cases}$
	6 分
	设 $M(x_1, y_1), N(x_2, y_2),$ 则 $x_1 + x_2 = -\frac{8}{13}, x_1 x_2 = -\frac{32}{13},$
	所以 $ MN = \sqrt{1 + (\frac{\sqrt{3}}{3})^2} \times \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \frac{2}{\sqrt{3}} \times \sqrt{\frac{64}{169} + 4 \times \frac{32}{13}} = \frac{48}{13}, \dots 8$ 分
	$F_2(1,0)$ 到直线 $y = \frac{\sqrt{3}}{3}(x+1)$ 即 $x - \sqrt{3}y + 1 = 0$ 的距离 $d = \frac{ 1-0+1 }{2} = 1$, 9 分
	所以三角形 F_2MN 的面积为 $\frac{1}{2} \times d \times MN = \frac{24}{13}$,
	设三角形 F_2MN 的内切圆半径为 r ,则 $\frac{1}{2} \times 4a \times r = 4r = \frac{24}{13}$, $r = \frac{6}{13}$,
	所以内切圆的面积为 $\pi r^2 = \frac{36}{169}\pi$
22.	$\mathfrak{M}:(1)$ 设边界曲线上点 P 的坐标为 (x,y) ,
	当 $x \ge 2$ 时,由题意知 $(x-4)^2 + y^2 = \frac{36}{5}$,
	当 x <2 时,由 PA + PB = $4\sqrt{5}$ 知,点 P 在以 A , B 为焦点,长轴长为 $2a$ = $4\sqrt{5}$ 的椭圆上.
	此时短半轴长 $b=\sqrt{(2\sqrt{5})^2-4^2}=2$. 因而其方程为 $\frac{x^2}{20}+\frac{y^2}{4}=1$.
	故考察区域边界曲线(如图)的方程为 C_1 : $(x-4)^2+y^2=\frac{36}{5}(x\geqslant 2)$ 和 C_2 : $\frac{x^2}{20}+\frac{y^2}{4}=1(x<$
	2)

(2)设过点 P_1 , P_2 的直线为 l_1 , 过点 P_2 , P_3 的直线为 l_2 ,

则直线 l_1 , l_2 的方程分别为 $y=\sqrt{3}x+14$, $y=6$
设直线 l 平行于直线 l_1 ,其方程为 $y=\sqrt{3}x+m$, ····································
则 $\left\{ \begin{array}{l} y = \sqrt{3}x + m, \\ \frac{x^2}{20} + \frac{y^2}{4} = 1 \end{array} \right. \Rightarrow 16x^2 + 10\sqrt{3}mx + 5(m^2 - 4) = 0.$ 7分
$\Delta = 100 \times 3m^2 - 4 \times 16 \times 5(m^2 - 4) = 0 \Rightarrow m = 8 \text{ gt } m = -8,$
当 $m=8$ 时,直线 l 与 C_2 的公共点到直线 l_1 的距离最近,
此时直线 l 的方程为 $y=\sqrt{3}x+8$, l 与 l_1 之间的距离 $d=\frac{ 14-8 }{\sqrt{1+3}}=3$ 9 分
又直线 l_2 到 C_1 和 C_2 的最短距离 $d'=6-\frac{6\sqrt{5}}{5}$,而 $d'>3$,所以考察区域边界到冰川边界线
的最短距离为 3
设冰川边界线移动到考察区域所需的时间为 n 年,则由题设及等比数列求和公式,
得 $\frac{0.2(2^n-1)}{2-1}$ \geqslant 3,所以 $n \geqslant$ 4.
故冰川边界线移动到考察区域所需的最短时间为 4 年