

GEOMETRÍA

Capítulo 3

CUADRILÁTEROS

MOTIVATING | STRATEGY

Veamos algunas aplicaciones de los cuadriláteros

CUADRILÁTEROS

<u>Definición</u>: Es aquella figura geométrica que tiene cuatro lados.

- VÉRTICES: A; B; C y D
- LADOS: AB; BC; CD y DA

TEOREMAS

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$\omega + \gamma + \varphi + \delta = 360^{\circ}$$

HELICO | THEORY

Teorema

$$x = \frac{a+b}{2}$$

Teorema

$$x = \frac{\mathsf{a} - \mathsf{b}}{2}$$

1. TRAPEZOIDE

Es aquel cuadrilátero convexo que no tiene lados opuestos paralelos.

2. TRAPECIO

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos, llamados bases.

2.1.-Clasificación de trapecios

Los trapecios se clasifican de acuerdo a la longitud de sus lados no paralelos o laterales

TRAPECIO ISÓSCELES

Es aquel trapecio cuyos lados laterales son de igual longitud.

TRAPECIO ESCALENO

Es aquel trapecio cuyos lados laterales tienen diferente longitud.

$$\theta + \emptyset = 180^{\circ}$$

Trapecio rectángulo

2.2.- Teoremas Si ABCD: Trapecio

MN: Base media

AM = BM

CN = DN

$$MN = \frac{a+b}{2}$$

$$\overline{AD} // \overline{BC} // \overline{MN}$$

$$BQ = DQ$$

$$\mathbf{PQ} = \frac{\mathbf{a} - \mathbf{b}}{2}$$

$$\overline{AD} / \overline{BC} / \overline{PQ}$$

3. PARALELOGRAMO

Es aquel cuadrilátero que tiene sus lados opuestos paralelos.

CLASIFICACIÓN DE PARALELOGRAMOS

a

a

1. En la figura mostrada, halle el valor de x.

2. En un trapecio ABCD (\overline{BC} // \overline{AD}), AB = 7, BC = 3, m $\not<$ BAD = 40° y m $\not<$ BCD = 110°. Halle AD.

- Piden: AD = x
- Se traza $\overline{BP} /\!/ \overline{CD}$
- PD = BC = 3
- △ ABP: Isósceles

$$x = 7 + 3$$

$$\therefore x = 10$$

3. En el trapecio ABCD, (\overline{BC} // \overline{AD}). Halle la longitud de la base media.

4. En el trapecio ABCD,(\overline{BC} // \overline{AD}). Halle la longitud del segmento que une los puntos medios de sus diagonales.

5. En un rombo ABCD, en AC se ubica el punto E, tal que m₄BEC= 45° AE = 1 y EC = 7. Halle AB.

6. En la figura se muestra una mayólica cuyo contorno tiene forma de un cuadrado, el cual se ha dividido en tres regiones rectangulares de igual

Resolución

- Piden: $\frac{a}{b}$
- Como los perímetros son iguales:

$$2p_1 = 2p_2$$

$$2(a+a+b) = 2(b+\frac{a+b}{2})$$

$$2a+b = b + \frac{a+b}{2}$$

$$4a = a + b$$

$$3a = b$$

$$\therefore \frac{a}{b} = \frac{1}{3}$$

7. Se tiene una hoja en forma de región rectangular ABCD. Luego se unen los extremos A y C tal que la línea del doblez interseca a BC en P y a AD en Q. Si m∢PCQ = 80°, halle m∢PQC.

 Piden: m∢PQC = x ∠CDQ ~ ∠CB'P A-L-A QC = PC = ▲ PQC: Isósceles $80^{\circ} + x + x = 180^{\circ}$ $2x = 100^{\circ}$