

Redes Neuronales

Trabajo práctico 2

Resumen

Entrenamiento de Redes Neuronales

Integrante	LU	Correo electrónico
Negri, Franco	893/13	franconegri2004@hotmail.com
?, ?	?/?	?@?.com

Palabras claves:

ÍNDICE 2 DESARROLLO

Índice

1.	. Introduccion			
2.	2. Desarrollo			
	2.1. PCA	2		
	2.1.1. Implementación	2		
	2.1.2. Experimentación	3		
	2.2. Mapeo de Características	3		
3.	Concluciones	3		

1. Introduccion

En este trabajo, nos disponesmos a utilizar diferentes tecnicas de aprendisaje no supervisado para clasificar textos con ciertas caracteristicas. Los mismos consisten en descripciones de diversas companías y nuestro objetivo será lograr clasificar cada una en una categoria correspondiente. Contamos, ademas, con las verdaderas categorias de cada companía para realizar una validación de los datos.

2. Desarrollo

2.1. PCA

EL primer modelo utilizado para intentar clasificar los datos será el de Analisis de Componentes Principales. Para ello utilizamremos dos algoritmos basados en aprendisaje Hebbiano y reduciremos las instancias de entrenamiento a 3 dimenciones. Lo que esperamos observar es que aquellas instancias que pertenecen a una misma clase de empresa se encuentran cercas unas de otras, pudiendo observar nuvesde puntos bien definidas.

2.1.1. Implementación

En particular los algoritmos utilizados serán los de Oja y Sanger. Teniendo una complegidad computacional identica y siendo los algoritmos muy similares, lo distintivo entre estos dos metodos es que Sanger ordenará las componentes prinsipales de mayor a menor de acuerdo a sus autovalores mientras que Oja no.

El pseodocodigo utilizado para aprendisaje del algoritmo Oja será:

- 1: Para toda instancia de entrenamiento, x
- $2: \quad y = x.W$
- 3: $\tilde{x} = y.W^T$
- 4: $\Delta W = learning_rate((x \tilde{x})^T.y)$

Algorithm 1: Algoritmo De Oja

Mientras que el de Sanger

- 1: U = Matriz Triangular Superior Con 1s
- 2: Para toda instancia de entrenamiento, x
- 3: y = x.W
- 4: $\tilde{x} = W(y^T.U)$
- 5: $\Delta W = learning_rate((x^T \tilde{x}).y)$

Algorithm 2: Algoritmo De Sanger

Utilizando el paquete numpy de python es posible traducir este codigo de manera casi exacta y de esa manera aprovechar las optimizaciones matriciales que se realizan sobre los datos.

2.1.2. Experimentación

Para la experimentación entrenamos la red con parte del set de datos que nos fue entregado

2.2. Mapeo de Características

En este apartado construiremos un modelo de mapeo de caracteristicas auto-organizado con la intención de clasificar los documentos en un arreglo de dos dimenciones. Para ello utilizaremos el algoritmo de Kohonen sobre los datos de entrenamiento y una vez que la red haya convergido, graficaremos los las respuestas obtenidas en el plano.

3. Concluciones