Interpretable Machine Learning

Local Interpretable Model-agnostic Explanations (LIME)

Learning goals

- Understand motivation for LIME
- Develop a mathematical intuition

LIME

- Locality assumption: \hat{f} behaves similarly simple in small neighborhood of \mathbf{x} \leadsto Approximate \hat{f} near \mathbf{x} using an interpretable surrogate model \hat{g}
- Interpretation strategy: Use \hat{g} 's simple internal structure to explain $\hat{f}(\mathbf{x})$ locally \sim Common surrogates: Sparse linear models, shallow decision trees
- Applicability: Model-agnostic; supports tabular, image, and text data
- In practice: Generate samples near \mathbf{x} , predict with \hat{f} , and fit \hat{g} to these samples using \hat{f} 's outputs as targets, weighting samples by their proximity/closeness to \mathbf{x}

LIME: CHARACTERISTICS

Definition: LIME provides a local explanation for a black-box model \hat{f} in form of a surrogate model $\hat{g} \in \mathcal{G}$, where \mathcal{G} is a class of interpretable models

Surrogate model \hat{g} should satisfy two characteristics:

- Interpretable: Provide human-understandable insights into the relationship between input features and prediction (e.g. via coefficients, model structure)
- 2 Local fidelity / faithfulness: \hat{g} closely approximates \hat{f} in the vicinity of the input \mathbf{x} being explained

Goal: Find \hat{g} with minimal complexity and maximal local fidelity

MODEL COMPLEXITY

We can measure the complexity of $\hat{g} \in \mathcal{G}$ using a complexity measure $J: \mathcal{G} \to \mathbb{R}_0$

Example: (Sparse) Linear Models

- ullet Let $\mathcal{G} = ig\{g: \mathcal{X} o \mathbb{R} \mid g(\mathbf{x}) = s(heta^ op \mathbf{x})ig\}$ be the class of linear models
- ullet $s(\cdot)$ is identity (linear model) or logistic sigmoid function (logistic regression)

$$\rightarrow$$
 $J(g) = \sum_{j=1}^{\rho} \mathcal{I}_{\{\theta_j \neq 0\}}$: Count number of non-zero coefficients (via L₀-norm of θ)

MODEL COMPLEXITY

We can measure the complexity of $\hat{g} \in \mathcal{G}$ using a complexity measure $J: \mathcal{G} \to \mathbb{R}_0$

Example: (Sparse) Linear Models

- ullet Let $\mathcal{G} = ig\{g: \mathcal{X} o \mathbb{R} \mid g(\mathbf{x}) = s(m{ heta}^ op \mathbf{x})ig\}$ be the class of linear models
- \bullet $s(\cdot)$ is identity (linear model) or logistic sigmoid function (logistic regression)

$$ightarrow J(g) = \sum_{j=1}^{\rho} \mathcal{I}_{\{\theta_j \neq 0\}}$$
: Count number of non-zero coefficients (via L₀-norm of θ)

- ullet Let $\mathcal{G}=\left\{g:\mathcal{X} o\mathbb{R}\mid g(\mathbf{x})=\sum_{m=1}^{M}c_{m}\mathcal{I}_{\left\{\mathbf{x}\in\mathcal{Q}_{m}
 ight\}}
 ight\}$ be the class of trees
- ullet Q_m are disjoint axis parallel regions (leaves) and $c_m \in \mathbb{R}$ constant predictions
- $\rightsquigarrow J(g) = M$: Count number of terminal/leaf nodes

• Surrogate \hat{g} is **locally faithful** to a black-box model \hat{f} around an input \mathbf{x} if

 $\hat{g}(\mathbf{z}) pprox \hat{f}(\mathbf{z})$ for synthetic samples $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ generated around \mathbf{x}

• Surrogate \hat{g} is **locally faithful** to a black-box model \hat{f} around an input \mathbf{x} if

$$\hat{g}(\mathbf{z}) pprox \hat{f}(\mathbf{z})$$
 for synthetic samples $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ generated around \mathbf{x}

ullet Optimization principle: The closer ${f z}$ is to ${f x}$, the more $\hat{g}({f z})$ should match $\hat{f}({f z})$

• Surrogate \hat{g} is **locally faithful** to a black-box model \hat{f} around an input \mathbf{x} if

$$\hat{g}(\mathbf{z}) pprox \hat{f}(\mathbf{z})$$
 for synthetic samples $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ generated around \mathbf{x}

- Optimization principle: The closer \mathbf{z} is to \mathbf{x} , the more $\hat{g}(\mathbf{z})$ should match $\hat{f}(\mathbf{z})$
- To operationalize this optimization, we need:
 - **1** A proximity (similarity) measure $\phi_x(z)$ between z and x, e.g.:

$$\phi_{\mathbf{x}}(\mathbf{z}) = \exp(-d(\mathbf{x},\mathbf{z})^2/\sigma^2)$$
 (exponential kernel), where

- d is a distance metric (e.g., Euclidean or Gower for mixed types)
- \bullet σ is the kernel width that controls locality

• Surrogate \hat{g} is **locally faithful** to a black-box model \hat{f} around an input \mathbf{x} if

$$\hat{g}(\mathbf{z}) pprox \hat{f}(\mathbf{z})$$
 for synthetic samples $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ generated around \mathbf{x}

- ullet Optimization principle: The closer ${f z}$ is to ${f x}$, the more $\hat{g}({f z})$ should match $\hat{f}({f z})$
- To operationalize this optimization, we need:
 - A proximity (similarity) measure $\phi_{\mathbf{x}}(\mathbf{z})$ between \mathbf{z} and \mathbf{x} , e.g.:

$$\phi_{\mathbf{x}}(\mathbf{z}) = \exp(-d(\mathbf{x},\mathbf{z})^2/\sigma^2)$$
 (exponential kernel), where

- *d* is a distance metric (e.g., Euclidean or Gower for mixed types)
- ullet σ is the kernel width that controls locality
- **4** A loss function $L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z}))$, e.g. the L₂ loss/squared error:

$$L(\hat{f}(\mathbf{z}),\hat{g}(\mathbf{z})) = \left(\hat{g}(\mathbf{z}) - \hat{f}(\mathbf{z})\right)^2$$

• Surrogate \hat{g} is **locally faithful** to a black-box model \hat{f} around an input \mathbf{x} if

$$\hat{g}(\mathbf{z}) pprox \hat{f}(\mathbf{z})$$
 for synthetic samples $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ generated around \mathbf{x}

- ullet Optimization principle: The closer ${f z}$ is to ${f x}$, the more $\hat{g}({f z})$ should match $\hat{f}({f z})$
- To operationalize this optimization, we need:
 - A proximity (similarity) measure $\phi_{\mathbf{x}}(\mathbf{z})$ between \mathbf{z} and \mathbf{x} , e.g.:

$$\phi_{\mathbf{x}}(\mathbf{z}) = \exp(-d(\mathbf{x},\mathbf{z})^2/\sigma^2)$$
 (exponential kernel), where

- *d* is a distance metric (e.g., Euclidean or Gower for mixed types)
- ullet σ is the kernel width that controls locality
- **4** A loss function $L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z}))$, e.g. the L₂ loss/squared error:

$$L(\hat{f}(\mathbf{z}),\hat{g}(\mathbf{z})) = \left(\hat{g}(\mathbf{z}) - \hat{f}(\mathbf{z})\right)^2$$

The overall local fidelity objective is measured by a weighted loss:

$$L(\hat{f}, \hat{g}, \phi_{\mathbf{x}}) = \sum_{\mathbf{z} \in \mathcal{Z}} \phi_{\mathbf{x}}(\mathbf{z}) \cdot L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z}))$$

LIME OPTIMIZATION TASK

Optimization problem of LIME:

$$\operatorname*{arg\;min}_{\hat{g} \in \mathcal{G}} \textit{L}(\hat{\textit{f}}, \hat{\textit{g}}, \phi_{\textbf{x}}) + \textit{J}(\hat{\textit{g}})$$

- In practice LIME uses a two-stage approach:
 - User specifies complexity $J(\hat{g})$ beforehand (e.g., LASSO with k features)
 - ② Optimize $L(\hat{f}, \hat{g}, \phi_x)$ (model fidelity) for fixed complexity
- Goal: Build a model-agnostic explainer
 - \rightarrow Optimize $L(\hat{f}, \hat{g}, \phi_{x})$ without making any assumptions on the form of \hat{f}
 - \rightarrow Surrogate \hat{g} approximates \hat{f} locally through sampling and fitting

LIME ALGORITHM: OUTLINE > Ribeiro. 2016

Input:

- Pre-trained black-box model \hat{f}
- Observation \mathbf{x} whose prediction $\hat{f}(\mathbf{x})$ we want to explain
- ullet Interpretable model class $\mathcal G$ for local surrogate (to limit complexity)

LIME ALGORITHM: OUTLINE > Ribeiro. 2016

Input:

- Pre-trained black-box model \hat{f}
- Observation **x** whose prediction $\hat{f}(\mathbf{x})$ we want to explain
- Interpretable model class \mathcal{G} for local surrogate (to limit complexity)

- Independently sample new points $\mathbf{z} \in \mathcal{Z}$
- Retrieve predictions $\hat{f}(z)$ for obtained points z
- Weight $\mathbf{z} \in \mathcal{Z}$ by their proximity $\phi_{\mathbf{x}}(\mathbf{z})$ to quantify closeness to \mathbf{x}
- Train interpretable surrogate model \hat{g} on data points $\mathbf{z} \in \mathcal{Z}$ using weights $\phi_{\mathbf{x}}(\mathbf{z})$ \rightsquigarrow Predictions $\hat{f}(\mathbf{z})$ are used as target of this model
- Return \hat{g} as the local explanation for $\hat{f}(\mathbf{x})$

LIME ALGORITHM: EXAMPLE

Illustration of LIME based on a classification task:

- Light/dark gray background: prediction surface of a classifier
- Yellow point: **x** to be explained
- $\bullet \ \mathcal{G} \colon \text{class of logistic regression models}$

LIME ALGORITHM: EXAMPLE (STEP 1+2: SAMPLING)

Strategies for sampling:

- Uniformly sample new points from the feasible feature range
- Use the training data set with or without perturbations
- Draw samples from the estimated univariate distribution of each feature
- Create an equidistant grid over the supported feature range

Figure: Uniformly sampled

Figure: Equidistant grid

LIME ALGORITHM: EXAMPLE (STEP 3: PROXIMITY)

In this example, we use the exponential kernel defined on the Euclidean distance d

$$\phi_{\mathbf{x}}(\mathbf{z}) = exp(-d(\mathbf{x}, \mathbf{z})^2/\sigma^2).$$

LIME ALGORITHM: EXAMPLE (STEP 4: SURROGATE)

In this example, we fit a **logistic regression** model $\leadsto L(\hat{f}(\mathbf{z}),\hat{g}(\mathbf{z}))$ is the Bernoulli loss

x1

