P - 178 - 2022

수소 분리 및 정제를 위한 압력변환흡착(PSA) 시스템의 안전에 관한 기술지침

2022. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자: 전남대학교 화학공정안전센터 마병철 한국산업안전보건공단 오상규
- o 제·개정경과
 - 2022년 9월 화학안전분야 기준제정위원회 심의
- ㅇ 관련규격 및 자료
 - ISO/TS 19883, "Safety of pressure swing adsorption systems for hydrogen separation and purification", 2017
 - EIGA Doc 210/17 "Hydrogen pressure swing adsorber(PSA) mechanical integrity requirements"
 - KOSHA GUIDE P-173, "수소 취급설비의 안전에 관한 기술지침"
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2022년 12월 31일

제 정 자 : 한국산업안전보건공단 이사장

KOSHA GUIDE P - 178 - 2022

수소 분리 및 정제를 위한 압력변환흡착(PSA) 시스템의 안전에 관한 기술지침

1. 목적

이 지침은 수소분리 및 정제를 목적으로 하는 압력변환흡착(Pressure Swing Adsorption) 시스템(이하 "PSA시스템"이라 한다.)의 설계, 성능보장, 운전 시에 안전을 확보하기 위해 필요한 사항을 정하는데 그 목적이 있다.

2. 적용범위

이 지침은 불순물이 포함된 모든 종류의 수소를 공급하여 분리 및 정제하는 고정형 또는 스키드 위에 설치되는 PSA시스템에 적용한다.

[그림 1] 적용범위 및 PSA시스템 개략도

KOSHA GUIDE P - 178 - 2022

____ 3. 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
- (가) "PSA 방법 (Pressure swing adsorption method)"이란 높은 압력에서 더 많은 불순물을 흡수하고 낮은 압력에서 불순물을 배출하는 고형 흡착제에 의한 선택적 흡수에 장점을 가진 가스 분리 방법이다.
- (나) "진공압력변환 흡착 (Vacuum pressure swing adsorption)"이란 PSA공법 중 탈착을 진공압력(진공펌프 이용)에서 수행하는 흡착공법을 말한다.
- (다) "수소 분리 및 정제를 위한 PSA시스템 (Pressure swing adsorption system for hydrogen separation and purification)"이란 분리 및 정제를 통하여 불순물이 포함된 수소흐름에서 수소를 생산하는 시스템을 말한다.
- (라) "흡착탑 (Adsorber)"이란 수소 분리 및 정제에 사용되는 흡착제가 들어 있는 용기로, 보통 수직 원통형 용기이다.
- (마) "흡착제 (Adsorbent)"란 불순물이 포함된 수소흐름에서 불순물 가스를 흡수하는 고체 물질이다.
- (바) "공정조절밸브 (Process control valves)"란 조절시스템으로부터의 신호에 의해 유량 조절을 목적으로 열고 닫는 기능을 하는 장치이다.
- (사) "조절시스템 (Control system)"이란 조절밸브의 개폐, 시스템 문제해결, 제품 품질관리, 공정변수의 최적화와 같은 운전을 수행하는 시스템이다.
- (아) "테일 가스 (Tail gas)"란 수소혼합가스에서 PSA시스템을 통해 정제되고 남은 가스이다.
- (자) "고정형 PSA시스템 (Stationary PSA system)"이란 모든 장치 및 배관들이 영구적으로 고정된 기초 구조물 위에 설치되는 PSA시스템을 말한다.

P - 178 - 2022

- (차) "스키드장착 PSA시스템 (Skid-mounted PSA system)"이란 일부 또는 모든 장치 및 배관이 하나 또는 다수의 스키드에 설치되거나, 이동 가능한 기초에 설치되는 PSA시스템을 말한다.
- (카) "화재 이격거리 (Fire separation distance)"란 PSA시스템으로부터 인접 건물들의 화재 전파를 막기 위해 필요한 PSA시스템과 인접건물과의 거 리를 말한다.
- (타) "완충 탱크 (Buffer tank)"란 흡착탑 또는 진공펌프로부터 탈착된 가스를 저장하는 용기로, 탈착가스의 압력이나 조성의 변동을 최소화 해주는 역할을 한다.
- (파) "진공 펌프 (Vacuum pump)"란 탈착 단계에서 진공압력을 발생시켜 테일가스의 배출을 도와 흡착제의 탈착 및 재생 성능 개선 목적을 수행하는 장치이다.
- (하) "컨테이너 (Container)"란 특수한 외부환경 및 온도 상태의 영향, 또는 소형 수소 PSA시스템에서 위험한 구성 원소들에 사람 등의 우발적인 접촉을 피하기 위해 만든 밀폐된 건축물 또는 구조물을 말한다.
- (갸) "빌딩 (Building)"이란 지붕 및 벽을 가지는 구조물로 컨테이너와 유사한 기능을 수행한다.
- (냐) "수소 취성 (Hydrogen embrittlement)"이란 수소환경에서 금속의 기계적 성질이 저하되는 현상이다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정의하는 바에 따른다.

P - 178 - 2022

4. 기본 사항

4.1 유체압력

- (1) 수소 재생 및 정제를 위한 PSA시스템에 공급되는 가스 압력은 0.3 MPa ~ 6.0 MPa 범위이다.
- (2) 운전압력은 흡착되는 동안의 공급가스 압력과 탈착되는 동안의 대기압 근처(0.03 MPa) 또는 진공압력(-0.09 MPa)을 반복한다.

4.2 운전온도

수소 재생 및 정제를 위한 PSA시스템의 일반적인 운전온도는 5 \sim 40 $^{\circ}$ 범위이다

4.3 설치형태

수소 분리 및 정제를 위한 PSA시스템은 수소제품의 최종사용 및 수소 처리 량을 고려하여 고정형 또는 스키드장착 형태로 할 수 있다.

4.4 재료 특성

4.4.1 공급흐름 압력

- (1) PSA시스템 내부 및 외부에 사용되는 금속 및 비금속 재료는 장치 설계수 명기간 내 시운전 및 정상운전 조건의 물리적, 화학적, 열적 상태에 적합하여야 한다.
- (2) 재료는 KOSHA Guide P-173 및 관련 국내 법규에 적합하여야 한다.

4.4.2 운전 온도

철계 금속이 PSA시스템 재료로 사용되는 경우 KOSHA Guide P-173 및 관련 국내 법규에 적합하여야 한다. 수소와 접촉하는 비금속 재료는 수소의 투과성이 고려되어야 한다.

P - 178 - 2022

5. PSA시스템의 안전 요구사항

5.1 PSA시스템과 관련된 일반 위험

5.1.1 수소 관련 일반 위험

- (1) 수소는 색이 없고, 냄새가 없으며 높은 인화성이 있다.
- (2) 낮 동안에 수소의 화염은 거의 육안으로 볼 수 없다.
- (3) 수소는 공기와 폭발성 혼합물을 형성할 수 있고, 대기 온도 및 압력 조건에 서 공기 중 폭발범위는 4 ~ 75 volume %이다.
- (4) 수소는 공기 중 산소를 대체할 수 있고, 높은 수소농도로 인하여 공기 중 산소 분압이 낮아지는 경우에 질식을 일으킬 수 있다.

5.1.2 누출 관련 일반 위험

- (1) 수소는 분자량이 낮고 크기가 작아 플랜지 및 다른 막음 표면으로부터 쉽 게 누설될 수 있다.(예: 벤트 밸브 등)
- (2) 수소는 비중이 낮아 매우 쉽게 부유될 수 있어 넓은 범위에 연소 및 폭발 가스의 형성이 가능하다.
- (3) 수소는 무색이기 때문에 누출을 쉽게 식별할 수 없다.

5.1.3 압력 관련 위험

- (1) PSA공정의 정상적인 압력 변동은 흡착탑, 공정조절밸브, 배관계통에 응력 변동의 원인으로 작동하여 용기 또는 배관계통의 균열을 유발할 수 있다.
- (2) 장치 및 배관의 손상은 설비 내부의 높은 압력으로 인해 급격한 에너지 방출의 결과를 유발할 수 있다. 충격파로 주변 장치 손상 발생이 가능하다.

5.1.4 수소 점화 관련 위험

- (1) PSA시스템에서 대기로 수소 누출에 의한 점화는 에너지/열의 방출 및 폭발을 일으킬 수 있다.
- (2) 수소연소에 의해서 열이 방출되고, 외부온도 상승에 의한 시스템 내부 가스

P - 178 - 2022

팽창이 가능하고, 재료의 성질이 저하될 수 있다.

(3) 온도/압력/재료 열화의 증가가 복합적으로 이루어지는 경우 배관 및 장치 손상의 원인이 될 수 있다.

5.2 현장에서의 안전

5.2.1 일반적 위험

- (1) PSA시스템 공급가스로는 천연가스로부터의 합성가스, 암모니아 분해가스, 석탄가스, 코크오븐가스, 암모니아 테일가스, 메탄올 폐가스, 정유 폐가스 등이 있으며, 수소 함량은 대략 25 % 이상이다.
- (2) 공급 흐름의 산소 함량은 수소 등 인화성 가스 연소범위 밖에 있도록 반드 시 제한되어야 한다.
- (3) PSA시스템은 수소 분압을 고려한 관련 안전 규격, 건설 및 재료 요구 사항을 따라야 한다.
- (4) PSA시스템은 운전 기간 동안 발생가능한 모든 환경을 고려하여 설계하여 야 한다.
- (5) PSA 제어시스템은 제어시스템을 통해 이상을 감지하고 안전한 상태로 가 도록 설계되어야 한다.
- (6) PSA시스템은 화재 감지 및 소화설비 설치를 검토한다.
- (7) 화재 감지 설비는 PSA 시스템의 신속한 가동중지(자동 또는 수동)를 위해 연동되어야 한다.
- (8) 소화설비는 스프링클러 설비, 물분무 설비(Deluge 설비), 건식소화설비 등이 있다.
- (9) 초기 화재진압을 위해 건식소화기, 이산화탄소 소화기를 비치한다.

5.2.2 설비배치 고려사항

(1) PSA시스템과 관련된 장치 및 건물의 배치는 화재 이격거리 만족하기 위해 관련 국내 법규에 따라야 한다.

P - 178 - 2022

- (2) 배관 및 밸브들이 다층으로 배열되고, 넓은 수평지역을 덮도록 밸브 스키드 가 설계되는 경우, 발판은 밀폐되는 공간에서 수소의 가연분위기 형성을 막기 위해 스틸 그레이팅으로 제작되어야 한다.
- (3) PSA시스템이 컨테이너 내부에 설치되는 경우, 시스템 자체/공급가스/제품 가스/테일가스에서 발생되는 모든 예측 가능한 화재나 폭발 위험을 피하기 위해 설계되고 건설되어야 한다.
- (4) 컨테이너는 모든 PSA시스템 구성요소 및 배관의 지지와 보호를 위해 강도, 안전성, 내구성, 부식저항성, 다른 물리적 특성을 가져야 한다.
- (5) 실내에 사용하는 컨테이너는 KS C IEC 60529에 따라 최소 보호 성능 IP20을 만족하도록 설계 및 시험하여야 한다.
- (6) 옥외에 사용하는 컨테이너는 KS C IEC 60529에 따라 최소 보호 성능 IP44 를 만족하도록 설계 및 시험하여야 한다.

5.2.3 건물 및 환기

5.2.3.1 일반

- (1) 소규모 PSA시스템은 건물내부에 설치할 수 있다.
- (2) PSA시스템과 관련된 다른 장치는 하나 또는 다른 독립된 건물 안에 설치하는 것이 가능하다.(예: 밸브 스키드, 가스 탈착을 위한 진공펌프, 조절시스템, 분석기)

5.2.3.2 건물

- (1) 건물은 누출이나 다른 파손에 의한 수소 누출을 고려하여 적절한 폭발 위험지역 구분을 하여야 한다.(KS C IEC 60079-10-1에 따른 구분)
- (2) 건물, 구조물 및 장치 사이 거리는 화재예방을 위한 국내 기준을 준수해야 한다.
- (3) 밀폐된 건물은 폭발 방호형으로 설계되어야 한다. 대신에 비 폭발 방호형으로 설치하는 경우에는 압력방출 면적과 건물 부피 비율은 관련 국내 규격을 준수해야 한다. 압력 방출에 필요한 면적은 경량 지붕, 벽, 문, 창문으로 가능하다.

P - 178 - 2022

5.2.3.3 건물의 환기

- (1) 건물은 인화성 또는 독성가스 감지기와 환기장치가 연동되도록 설계하여야 한다.
- (2) 설치된 환기가 지역 구분 형태에 영향을 미치는 경우, 해당 지역은 장치에 전기를 공급하기에 앞서 최소 5회 공기 치환의 방법으로 퍼지를 하여야 한다. 가스의 성분측정을 통해 폭발하한의 25 % 이하 농도로 퍼지량의 조절이 가능한 경우에는 대체가 가능하다.
- (3) 지역 및 관련 덕트가 비위험장소로 설계된 경우 퍼지는 필요하지 않다.
- (4) 관계없는 직원의 건물 출입 및 장치 접근을 막기 위한 적절한 방법이 적용되어야 한다.
- (5) 소화설비는 쉽게 접근할 수 있어야 한다.
- (6) 출입가능한 모든 건물은 외부로 열리는 비상구를 설치하여야 한다.

5.2.3.4 컨테이너 내부에 설치되는 PSA시스템

- (1) 컨테이너 내부의 PSA시스템은 강제환기를 적용하여야 한다.
- (2) 환기 실패는 유량, 압력, 또는 환기장치의 전류 측정 등을 통해 확인할 수 있어야 하고, 음향 또는 눈으로 확인 가능한 알람 및 PSA시스템 가동중지를 기동시켜야 한다.
- (3) 옥외 사용을 목적으로 한 시스템에서 컨테이너는 KS C 60079-2에 따른 양압 환기가 가능하다. 시스템 환기가스 내의 모든 인화성 가스 최대 농도는 전체 운전기간 동안 폭발하한의 25 % 이하여야 한다.

5.2.4 폭발위험장소 및 폭발위험 등급

- (1) PSA시스템의 폭발위험지역장소 구분은 KS C IEC 60079-10-1에 따라야 한다.
- (2) PSA시스템의 장치 근처 옥외 및 환기가 양호한 건물 내부는 누출 및 파손에 따른 수소 누출을 고려하여 폭발위험장소를 구분하여야 한다.(예: KS C IEC 60079-10-1에 따른 Zone 2)
- (3) 전기기계기구의 방폭 등급은 폭발성 수소혼합물의 등급(ⅡC) 및 그룹(T1) 보다 높게 선정되어야 한다.

P - 178 - 2022

(4) 폭발위험지역내의 전기장치 및 배선은 KS C IEC 60079-0 및 60079-14에 따라 선정 및 구성되어야 한다.

5.2.5 정전기 접지

5.2.5.1 일반

- (1) PSA시스템은 정전기를 발생시키고 축적할 수 있기 때문에 정전기 위험을 초래할 수 있는 물체에 정전기 제거를 위해 접지하여야 한다.
- (2) 전용 정전기 접지 연결구는 KS C IEC 60204-1, 60364-4의 규정에 따른 접지 저항을 가져야 한다. 다른 접지 장치가 정전기 접지를 위해 사용될 때, 그 접지 저항은 관련 국내 기준에 적합하여야 한다.

5.2.5.2 흡착탑 및 완충 탱크

- (1) 흡착탑, 완충탱크 및 다른 고정 압력용기에는 정전기 접지를 하여야 한다.
- (2) 직경이 2.5 m 보다 크거나, 부피가 50 m³ 보다 큰 장치에는 최소 2개소에 접지를 해야 하고, 접지 위치는 장치의 주변을 따라 균등하게 분배되어 30 m 이내의 간격으로 설치하여야 한다.

5.2.5.3 배관 계통

- (1) 정전기 접지는 공정의 입구 및 출구, 다른 폭발 위험을 가지는 경계 지역, 배관 분기점, 직선파이프에서 80 ~ 100 m 마다 설치하여야 한다.
- (2) 평행한 배관사이의 거리가 100 mm 보다 작은 경우, 하나의 배관에서 다른 배관으로 불꽃의 이동을 예방하기 위해 매 20 m 마다 등전위 본딩을 설치하여야 한다.
- (3) 교차하는 두 파이프 사이의 거리가 100 mm 미만일 경우 파이프가 교차하는 곳에 점퍼를 설치하여야 한다.
- (4) 금속 볼트 또는 클램프로 조여진 금속 플랜지에는 추가적인 정전기 본딩의 설치가 필요하지 않다. 그러나 좋은 전도성을 확보하기 위해 최소 4개의 볼 트 또는 클램프의 접촉이 요구된다.

P - 178 - 2022

5.2.6 인화성 및 독성가스의 경보 알람

- (1) 인화성가스 감지기는 공정지역 내에 설치되어야 한다.
- (2) 독성가스가 존재하여 누설로 근로자 부상이 가능한 경우에는 독성가스 감지기도 설치하여야 한다.
- (3) 감지기는 가스의 물리화학적 특성, 누출원의 형상, 생산지역의 배치, 지리학적 상태, 환경 및 기온, 운전 및 점검 동선에 따라 가스 축적이 용이하고, 감지가 쉽게 될 수 있는 장소에 설치하여야 한다. 인화성 또는 유독성 가스가 누출되거나 축적될 수 있는 장소의 예는 다음과 같다.
 - 진공펌프 또는 압축기의 실 부위
 - 가스 샘플 포트 및 관련 분석기
 - 드레인 및 벤트
 - 장치 또는 배관 플랜지
 - 밸브 패킹
 - PSA 시스템과 관련된 건물 및 컨테이너
- (4) 공기중 가스가 KOSHA Guide P-166(가스누출감지경보기 설치 및 유지보수에 관한 기술지침)에 따른 설정농도(인화성가스 : 폭발하한계 25 %이하, 독성가스 : ERPG-2이하 등)에 도달하는 경우 현장에 청각 및 시각 감지 경보를 작동하여야 한다. 또한 경보 신호를 조종 또는 운전실에 전송하여야 한다.
- (5) 인화성 및 독성가스 감지기 설치 수는 가능한 누출원의 위치 및 환기 상태를 고려하여 KOSHA Guide P-166에 따라 설치하여야 한다.

5.3 장치 및 배관의 안전

5.3.1 일반 사항

- (1) 흡착탑은 PSA시스템의 주요 구성요소이며, 흡착탑 성능이 PSA시스템 성능을 결정한다.
- (2) 용기의 크기, 내부 구성요소 설계, 흡착제의 선정 및 용량은 수소 회수율 및 제조단가의 최적화, 흡착제의 누설 및 분체 유동화 방지, 설계수명주기 내의 기계적 강도를 확보하기 위해 선택되어야 한다.

P - 178 - 2022

5.3.2 흡착탑의 안전

5.3.2.1 일반

- (1) PSA시스템 개별 흡착탑은 주기적으로 운전되며, 일반적으로 10 ~ 20년 운전에 약 백 만회의 순환을 견뎌야 한다. 그래서 피로는 고려하여야 할 가장 중요한 손상기구이며, 수소에 의해 더 악화될 수 있다.
- (2) 흡착탑은 압력 및 순환 횟수에 따라 설계되며, 특히 모든 부품들은 S-N 커 브를 고려하여 설계한다. 용접부는 피로에 의해 균열이 개시되는 주요한 위 치이다.
- (3) 피로설계는 ASME Section Ⅷ, Division2, EN 13445, or PD 5500 [1, 2, 5] 와 같은 코드 및 규격 등에 따라야 한다.
- (4) 집중적인 응력 변동을 제외하고 흡착탑의 피로 저항성에 영향을 미치는 주요 변수는 수소 노출에 의한 영향(수소 취성), 용접 품질, 제조 품질(부식피로, 불일치, 피킹 등)이다.

5.3.2.2 수소 취성

- (1) 수소 취성 감수성은 재료의 강도 및 수소 환경에 크게 의존한다.
- (2) 가스 상태의 수소에 의한 취성은 상온부근 탄소강에서 일반적으로 발생한다. PSA시스템 내의 변동적인 굽힘응력(또는 압력)에 의한 반복적인 피로기구와 원자 수소 존재에 의한 전위가 복합적으로 작용하여 균열의 성장을 가속시키는 원인이 된다.
- (3) 수소 순도가 높아질수록 취성효과가 더 발생하기 쉽다.
- (4) 불순물(산소 또는 수증기)은 취성 효과를 억제하는 성질을 가지고 있다. 이 산화황 및 일산화탄소 또한 억제효과를 가지고 있다. 메탄, 질소는 별다른 영향을 미치지 않는다. 그러나 일부 불순물(이산화탄소, 특히 황화수소)은 수소 취성을 가속시키는 효과를 가지고 있다.
- (5) 수소 취성과 관련하여 고려되어야 할 변수에는 환경(운전상태), 설계, 표면 상태, 재질이 있다.
- (6) 수소 취성은 응력 크기가 가장 중요하여 응력부식균열과 유사하다. 모든 형 태의 응력(열, 압력, 기계적 등)을 PSA시스템에서는 검토하여야 한다.

KOSHA GUIDE P - 178 - 2022

5.3.2.3 기하학적 불연속

- (1) 기하학적 불연속은 국부적으로 높은 응력을 유발하여 용기의 피로 수명을 현저하게 감소시킬 수 있어 중요하다.
- (2) 기하학적 불연속은 제작 공차(정열불일치, 피킹, 원형도 이탈 등)에 의해 발생되는 것을 포함하는 것으로 고정 장치에 아주 중요하다.
- (3) 피킹은 동체의 길이방향 이음을 따라 위치하는 진원형태로부터의 이탈이다.
- (4) 피킹을 계산하기 위해서는 이론적인 원에서부터 거리 델타를 측정해야 한다. 허용 가능한 최대 피킹 크기는 압력용기 제작기준에 따라야 한다.

[그림 2] 피킹의 종류

5.3.2.4 부식

- (1) 흡착탑은 하부 헤드에 응축수가 있는 경우 내부 부식 발생이 가능하다.
- (2) 부식과 압력이 변동되는 상태에서 균열은 부식 구멍(Corrosion pit)에서 시작될 수 있고, 피로에 의해 진전될 수 있다.

5.3.2.5 설계 및 제작

- (1) 흡착탑의 설계 및 제작은 국내 압력용기 제작기준에 따라야 하며, 반복되는 응력에 의한 충격을 고려하여야 한다. 그렇지 않은 경우 소성변형의 축적으로 인해 용기의 손상 및 파손이 발생할 수 있다.
- (2) 흡착탑의 모든 용접은 최소화되어야 하며, 용접부는 반복되는 응력에 의한 영향을 평가하여야 한다.

P - 178 - 2022

(3) 가스켓은 누출을 예방하기 위해 정상운전, 가동개시 및 중지 동안의 상태 변화에도 견딜 수 있도록 선정하여야 한다.

5.3.3 완충탱크의 안전

- (1) 완충탱크 제작은 관련 국내 제작기준의 요구에 따라야 한다.
- (2) 완충탱크들이 운전압력이 다른 장치에 연결되는 경우, 가장 낮은 운전압력의 완충탱크는 어떠한 상태에서도 과압이 발생하도록 운전하면 안 된다.
- (3) 완충탱크들은 탱크에서 누설이 발생한 경우 인접 탱크에 직접적인 충격을 주지 않도록 배치하여야 한다.
- (4) 버퍼탱크의 격리가 가능하거나, 설계압력이 다른 경우 각각의 완충탱크에 분리된 안전시스템을 설치하여야 한다.
- (5) 각각의 탱크가 고립될 가능성이 없다면 단독의 안전시스템 사용이 가능하다. 이러한 경우 용기의 설계압력이 동일하거나 또는 안전시스템은 가장 낮은 완충탱크의 설계압력 이하로 압력을 유지하도록 설계하여야 한다.

5.3.4 공정조절밸브의 안전

- (1) 공정조절밸브는 빈번하게 작동한다.
- (2) 공정조절밸브의 작동실패는 전체 시스템의 기능상실, 흡착제 손상, 또는 장치의 과압을 유발할 수 있다.
- (3) PSA를 설계하는 단계에서 밸브의 작동기간동안 최소의 누설을 가지는 조절밸브를 선정하도록 고려하여야 한다.

5.3.5 배관의 안전

5.3.5.1 일반 사항

PSA시스템의 배관 및 배관부속품 재질은 관련 국내 또는 국제 압력배관 사양 기준에 따라 선정하여야 한다.

5.3.5.2 배관 설계

- (1) 흡착탑에 직접 연결되는 배관(흡착탑과 공정조절밸브 사이 배관)은 배관에 반복되는 응력(빈번한 압력변동 원인)으로 인한 충격을 강도계산에 고려하여야 한다.
- (2) 열 수축 및 팽창 구간의 배관은 유연성 계산 및 열 보상 요구를 기반으로 설계하여야 한다.
- (3) 배관계에는 질소 퍼지 설비를 설치하여야 한다.
- (4) 배관 지지대는 관련 국내 또는 국제 압력배관 규격에서 제시한 바를 따르 도록 설계하고 위치하여야 한다.

5.3.5.3 압력방출 장치

- (1) PSA시스템의 배관 및 장치의 설계압력이 업스트림 및 다운스트림의 설계 압력보다 낮거나, 화재 또는 다른 열 방출 상황이 있다면 PSA시스템 장치를 보호하기 위해 압력방출장치가 필요하다.
- (2) 압력방출장치의 일반적인 위치는 공급흐름의 입구 측 차단밸브 및 완충탱크의 하류이다.([그림 3] 참조)
- (3) 모든 압력방출장치는 국내 기준을 준수해야 한다.

[그림 3] 안전밸브 설치 위치 예시

5.3.6 운전 및 설비유지관리의 안전

P - 178 - 2022

- (1) PSA시스템은 정상운전동안 인화성 및 독성 가스를 포함하고 있어 설비정 비작업 및 가동개시 전 철저한 퍼지가 필수적이다. 이와 같은 이유로 PSA 시스템은 퍼지 가능한 충분한 벤트를 가지도록 설계하여야 한다.
- (2) 정체구간(Dead legs)은 정체된 가스의 제거가 어렵기 때문에 최소화되도록 하여야 한다.
- (3) 퍼지는 가스가 흐르는 방향을 고려하여야 한다. 퍼지는 일반적으로 하부층 흡착제의 물이 상부층으로 이동하는 것을 막기 위하여 상부에서 하부 방향으로 수행한다.
- (4) PSA시스템은 일반적으로 질소로 퍼지하며, 배관 및 용기 안으로 질소 공급이 가능한 연결부를 포함하여 설계하여야 한다. 또한 흡착제 제거 동안에 질소 퍼지를 용이하게 수행하기 위해 적절한 위치에 연결부를 설계하여야한다.
- (5) PSA시스템의 퍼지가 실내에서 이루어지는 부분이 있는 경우 퍼지 동안 주의를 기울여야 한다. 인화성 가스의 축적 및 산소결핍 상태를 막기 위해 건물 및 밀폐공간내의 산소농도 또는 인화성가스 농도를 측정해야 한다.
- (6) 설비정비작업을 수행하기 전에 인화성가스의 농도는 폭발하한의 25 % 이 하로 감소시켜야 한다.
- (7) PSA시스템의 운전 전에 산소 농도를 최소산소농도(Minimum oxygen concentration, MOC)의 60 % 이하로 감소시켜야 한다.
- (8) 진공압력으로 PSA시스템이 운전될 때에는 공급유체 내로 공기 유입에 따른 위험이 존재한다.
- (9) 운전 중 밸브교체 등의 정비 작업을 위해 맹판 설치가 필요한 경우에는 배 관의 규격 및 압력등급에 맞는 맹판을 사용하고, 모든 볼트를 규격에 맞게 체결하여 플랜지 접합면으로부터 인화성가스가 누출되지 않도록 하여야 한 다.

5.3.7 점검 및 시험 안전

5.3.7.1 비파괴 검사

흡착탑에 연결된 배관 용접부는 반복응력을 받기 때문에 100 % 비파괴 시험 이 적용되어야 한다. 시험 방법은 관련 국내 요구사항에 따라야 한다. 용접 등

P - 178 - 2022

급은 관련 국내 기준에 따라야 한다.

5.3.7.2 압력시험의 원칙

- (1) 배관의 압력시험에는 수압시험을 권장한다.
- (2) 압력시험에 공압을 사용하는 경우의 시험 절차 및 적합한 안전 사항은 국내 기준에 따라야 한다.
- (3) 계기를 포함한 배관 부분을 시험할 때의 시험 압력은 계기가 제거되지 않는 한 계기의 최대허용 시험압력을 초과하여서는 안 된다.
- (4) 설계온도가 시험온도보다 높은 경우 적용 가능한 국내 규격에 근거하여 시험압력을 계산하여야 한다.

5.3.7.3 압력시험

5.3.7.3.1 시험전의 준비

- (1) 흡수탑 및 완충탱크에 대한 다양한 적합성 인증서 및 기술도면, 모든 시험 기록 및 증명서, 도면, 검사 성적서가 적정한지 압력시험 전에 확인하여야 한다.
- (2) 시험은 앞에서 언급한 인증서 및 서류가 적정한 것으로 확인된 이후에 수행하여야 한다.
- (3) 육안검사는 PSA시스템 조립 후 관련 시스템의 치수 확인, 배관 및 전기회 로의 정확한 연결 확인, 시스템의 일반적인 외형 평가가 완료된 후에 수행하여야 한다.

5.3.7.3.2 강도시험

- (1) PSA시스템은 국내 용기 및 배관 규격에 따라 시험하여야 한다.
- (2) 개별 구성요소의 시험은 적합해야 하고, 연결부는 관련 압력용기 규격의 요구를 따라야 한다.

5.3.7.3.3 진공시험

P - 178 - 2022

- (1) 강도시험 후에 진공시스템은 24시간 동안 진공을 유지하여야 한다.
- (2) 기밀성과 진공도는 관련 규정에 따라야 한다.

5.3.7.3.4 컨테이너 환기시험

- (1) PSA시스템이 설치된 컨테이너 또는 건물의 환기 시스템은 국내 관련 법규 또는 규정을 준수하는지 확인하기 위한 시험을 수행하여야 한다.
- (2) 배기팬이 가동된 상태에서 시간당 공기 치환율을 확인하여야 한다.
- (3) 환기의 효율성을 확인하기 위해 가스가 축적되는 위치를 기준으로 인화성 또는 독성 가스 센서를 배치해야 한다.

5.3.8 전기장치의 안전

- (1) 수소생산지역의 전기시설은 폭발위험장소 구분에 적합하여야 한다.
- (2) 옥외지역 및 환기가 잘되는 건물 내부는 누출 및 다른 파손에 의한 수소의 잠재적 누출 가능성을 근거로 구분하여야 한다.
- (3) 폭발위험지역 내의 전기장치 및 관련 배선은 KS C IEC 60079-0 및 KC C IEC 60079-14에 따라 선정되어 구성하여야 한다.
- (4) 모든 금속 외함, 배관, 기초, 틀은 KS C IEC 60204-1 및 KS C IEC 60364-4에 따라 접지하여야 한다.

5.3.9 감시장치의 안전

5.3.9.1 일반사항

- (1) 운전기간 동안의 주요 변수들을 지속적으로 감시하여야 한다.
- (2) 작동이 실패한 경우 감시시스템은 경보 및/또는 가동중지 인터록을 개시해야 한다.
- (3) 계장 설계 및 사양은 국내 관련 기준 요구사항을 준수하여야 한다.

5.3.9.2 감시장치

P - 178 - 2022

5.3.9.2.1 압력측정 계기

- (1) 압력 감시 데이터는 제어 시스템의 운전 상태를 결정하는 주요한 근거를 제공하므로, 계기는 적절한 운전의 확인 및 장치의 손상을 확인하기 위해 흡착 및 탈착동안의 압력을 감시한다.
- (2) 압력은 공급가스, 흡착탑, 수소 공급, 완충탱크, 계장용 공기 등배관 등에서 감시가 가능하다.
- (3) PSA시스템에서 과압은 아래와 같은 경우에 발생할 수 있다.
- (가) 다른 운전압력 용기 사이의 개폐밸브의 작동실패로 인한 닫힘(Fail to close)
- (나) 조절 제어 밸브가 작동실패로 인해 열리거나, 닫히거나, 잘못된 위치로 이동
- (다) PSA시스템 토출 측 차단밸브가 닫힘
- (라) PSA 공급이 압축기에 의해 수행

5.3.9.2.2 온도측정 계기

온도 측정은 공급 가스 및 생성된 수소 유량의 계산을 보정하는 데 사용하고, 운전 중 흡착 공정을 감시 또는 제어하는 데 사용할 수 있다.

5.3.9.2.3 가스 성분 측정 계기

공급 또는 탈착 가스의 흐름에서 위험한 혼합물을 생성하기에 충분한 산소가 포함될 수 있는 경우, 산소농도가 인화성 또는 폭발성 혼합물을 만들지 않도 록 PSA 시스템의 공급 가스 및 흡착 가스 배관에 실시간 산소 분석을 수행하 여야 한다.

5.3.9.2.4 밸브 위치 센서

높은 압력 흐름에서 낮은 압력 흐름으로 누설을 예방하기 위해 공정조절밸브의 밸브 위치를 제어시스템으로 보내는 밸브 위치 센서(Valve position sensor)를 설치할 수 있다.

P - 178 - 2022

5.3.9.3 자동 가동중지 연동 시스템

- (1) PSA 시스템 감시 장치들 중에서 경보 신호를 보내는 경우 조사하여야 한다.
- (2) 경보의 원인을 확인하고, 문제를 해결하여 정상운전을 재개하여야 한다.
- (3) PSA 시스템의 안전한 운전을 위하여 다음의 상태 중 하나가 발생되는 경우 검사를 위해 가동중지할 수 있다.
- (가) 압력, 온도, 공급가스의 조성이 경보 설정치를 넘는 경우
- (나) 운전 중 공정 조절밸브가 작동 실패 또는 내부 밸브의 누설 발생하여 차 단이 불가
- (다) 공기 중 수소농도가 1 %를 초과한 경우
- (라) PSA 시스템의 전원공급 실패
- (마) 계장용공기의 압력이 인터록 값에 도달한 경우
- (바) 공급 가스 또는 진공 탈착 공정 배관의 산소 함량이 허용 가능한 범위를 초과한 경우
- (사) 완충탱크 압력이 최대 허용가능 설정압력을 초과한 경우
- (아) 장치 또는 배관에서 누설이 발생한 경우
- (자) 공기 중 독성가스 농도가 허용값을 초과한 경우
- (4) PSA시스템의 안전한 운전을 위해 필요한 경보 및 인터록을 확인하기 위한 위험성 재검토를 수행하여야 한다.
- (5) PSA시스템 또는 상부공정 또는 하부공정의 다른 작동실패들도 PSA시스템 의 가동중지와 연계될 수 있다.