Algebraic Number Theory - Assignment 11

Matteo Durante, 2303760, Leiden University

6th December 2018

Exercise 5

We see that we are asked to find the smallest unit > 1 and of norm 1 in $\mathbb{Z}[\sqrt{61}]$.

Let's consider the number field $\mathbb{K} \cong \mathbb{Q}(\sqrt{61}) \cong \mathbb{Q}[X]/(f)$, $f = X^2 - 61$, and the number ring

Noticing that $61 \equiv 1 \mod 4$, we have by [1, thm. 3.10] that $\mathcal{O}_{\mathbb{K}} \cong \mathbb{Z}[\frac{1+\sqrt{61}}{2}] \cong \mathbb{Z}[X]/(g)$, where

 $g = X^2 - X - 15$. It is an order of rank 2 and we shall set $\alpha := \frac{1+\sqrt{61}}{2}$. Since $[\mathbb{K} : \mathbb{Q}] = 2$ and f has only real roots, $\mathcal{O}_{\mathbb{K}}$ has only two real embeddings, hence by [1, thm. 5.13] we have that $\mathcal{O}_{\mathbb{K}}^* \cong <-1>\times <\eta_0>$, where $\sigma(\eta_0)>1$ for the embedding representing the ring of integers as $\mathbb{Z}[\alpha]$. Let's fix this embedding.

We will now compute $Pic(\mathcal{O}_{\mathbb{K}})$.

Notice that $\Delta(g) = 61$, thus $M_{\mathbb{K}} = \sqrt{61}/2$. We only have to check the primes above 2 and 3.

Since g has no roots in \mathbb{F}_2 , it is irreducible in $\mathbb{F}_2[X]$ and the only prime above 2 is precisely 2. On the other hand, $g \equiv X^2 - X = X(X - 1) \mod 3$, thus 3 splits and we have $\mathfrak{p}_3 = (3, \alpha), \mathfrak{q}_3 = (3, \alpha)$ $(3, 1 - \alpha), \mathfrak{p}_3\mathfrak{q}_3 = (3).$

If we can prove that one among \mathfrak{p}_3 and \mathfrak{q}_3 is principal, then we are done showing that $\mathrm{Pic}(\mathcal{O}_{\mathbb{K}})=0$ because $[p_3] = [q_3]^{-1}$.

However, noticing that $3 + \alpha = \frac{7 + \sqrt{61}}{2} \in (3, \alpha)$ has norm 3 like \mathfrak{p}_3 , we have $\mathfrak{p}_3 = (\frac{7 + \sqrt{61}}{2})$.

In the same way, we get that $q_3 = (\frac{7-\sqrt{61}}{2})$.

It follows that, since $\mathcal{O}_{\mathbb{K}}$ is a Dedekind ring with trivial Picard group, it is a PID by [1, ex.

g(0) = -15, thus $\mathfrak{p}_3\mathfrak{p}_5 = (\alpha)$, where $\mathfrak{p}_5 = (5,\alpha) = (\frac{9-\sqrt{61}}{2})$, for $5 = \frac{9-\sqrt{61}}{2} \frac{9+\sqrt{61}}{2}$ and $\alpha = (-15,\alpha) = (-15,\alpha)$

g(6) = 15, thus $\mathfrak{p}_3\mathfrak{q}_5 = (6 - \alpha)$, where $\mathfrak{q}_5 = (5, 1 - \alpha) = (\frac{9 + \sqrt{61}}{2})$.

g(0)=13, thus $\mathfrak{p}_3\mathfrak{q}_5=(0-\alpha)$, where $\mathfrak{q}_5=(3,1-\alpha)=(\frac{-2}{2})$. g(10)=75, thus $\mathfrak{q}_3\mathfrak{p}_5^2=(10-\alpha)$. Remembering that $\mathfrak{q}_3=3\mathfrak{p}_3^{-1}$ and $\mathfrak{q}_5=5\mathfrak{p}_5^{-1}$, we have the following relations: $\mathfrak{p}_3\mathfrak{p}_5=(\alpha)$, $\mathfrak{p}_3\mathfrak{p}_5^{-1}=\frac{(6-\alpha)}{5}$, $\mathfrak{p}_3^{-1}\mathfrak{p}_5^2=\frac{(10-\alpha)}{3}$. The ideal generated by $\eta=\alpha^a(\frac{6-\alpha}{5})^b(\frac{10-\alpha}{3})^c$ will be then factorized as $\mathfrak{p}_3^{a+b-c}\mathfrak{p}_5^{a-b+2c}$. Setting the exponents =0, we consider a solution of the system of equations: (1,-3,-2). It follows that $\eta=\frac{39+5\sqrt{61}}{2}\in\mathcal{O}_{\mathbb{K}}^*$, $\eta>1$. We still need to show that it is a fundamental unit of this ring.

Remember that $\eta_0 = t + u\alpha \in \mathcal{O}_{\mathbb{K}}^*$, $\eta_0 > 1$, is a fundamental unit. Then, $\eta_0^n = \eta$ for some $n \geq 1$, where t, u > 0 because η has positive coefficients w.r.t. the basis $\{1, \alpha\}$.

Now, $N(\eta_0) = t^2 + tu - 15u^2 = 1$. If u = 1, $t^2 + t - 16 = 0$ has no natural solutions, thus u > 1.

It follows that $\eta > 2\alpha$, thus, since $1 \le n = \frac{\log(\eta)}{\log(\eta_0)} < \frac{\log(\eta)}{\log(2\alpha)} < 2$, n = 1 and η is a fundamental unit.

Now, to find the fundamental unit of this ring, we still have to find out which is the lowest n > 0 s.t. $\eta^n \in \mathbb{Z}[\sqrt{61}]$, for $\mathcal{O}_{\mathbb{K}}$ is integral over $\mathbb{Z}[\sqrt{61}]$ and, by [1, ex. 5.20], $\mathbb{Z}[\sqrt{61}]^* = \mathbb{Z}[\sqrt{61}] \cap \mathcal{O}_{\mathbb{K}}^*$.

First of all, notice that n > 1 because η doesn't lie in $\mathbb{Z}[\sqrt{61}] = \mathbb{Z} + 2\mathcal{O}_{\mathbb{K}}$. However, by [1, 5.16], the index of $\mathbb{Z}[\sqrt{61}]^*$ in $\mathcal{O}_{\mathbb{K}}^*$ divides the order of $(\mathcal{O}_{\mathbb{K}}/2\mathcal{O}_{\mathbb{K}})^* \cong \mathbb{F}_4^*$. From this we get that n = 3, thus $\mathbb{Z}[\sqrt{61}]^* \cong \langle -1 \rangle \times \langle \eta^3 \rangle$, where $\eta^3 = 29718 + 3805\sqrt{61}$.

We only have to check which ones are the elements of norm 1 in this latest unit group and s.t. $\sqrt{61}$ has a positive coefficient. Since $N(\eta^3) = -1$ and the norm is multiplicative, these are precisely the even powers of η^3 , thus the smallest integral solution of our Pell equation s.t. y > 0 is given by the coefficients of $\eta^6 = 1766319049 + 226153980\sqrt{61}$.

Exercise 6

We see that we are asked to find the smallest unit > 1 and of norm 1 in $\mathbb{Z}[\sqrt{109}]$.

Let's consider the number field $\mathbb{K} \cong \mathbb{Q}(\sqrt{109}) \cong \mathbb{Q}[X]/(f)$, $f = X^2 - 109$, and remember the number ring $R = \mathbb{Z}[\sqrt{109}]$.

Noticing that $109 \equiv 1 \mod 4$, we have by [1, thm. 3.10] that $\mathcal{O}_{\mathbb{K}} \cong \mathbb{Z}[\frac{1+\sqrt{109}}{2}] \cong \mathbb{Z}[X]/(g)$, where $g = X^2 - X - 27$. It is an order of rank 2 and we shall set $\alpha := \frac{1+\sqrt{109}}{2}$.

Since $[\mathbb{K} : \mathbb{Q}] = 2$ and f has only 2 real roots, $\mathcal{O}_{\mathbb{K}}$ has only two real embeddings, hence by [1, thm. 5.13] we have that $\mathcal{O}_{\mathbb{K}}^* \cong <-1>\times <\eta>$, where $\sigma(\eta)>1$ for the embedding representing the ring of integers as $\mathbb{Z}[\alpha]$. Let's fix this embedding.

We will now compute $Pic(\mathcal{O}_{\mathbb{K}})$.

Notice that $\Delta_{\mathbb{K}} = 109$, thus $M_{\mathbb{K}} = \sqrt{109}/2$. We only have to check the primes above 2, 3 and 5. Since g has no root in \mathbb{F}_2 , it is irreducible in $\mathbb{F}_2[X]$ and the only prime above 2 is precisely (2). Furthermore, $g \equiv X^2 - X = X(X - 1) \mod 3$, thus 3 splits and we have $\mathfrak{p}_3 = (3, \alpha), \mathfrak{q}_3 = (3, 1 - \alpha)$.

In the same way, $g \equiv X^2 - 6X + 8 = (X - 4)(X - 2) \mod 5$, thus 5 splits and we have $\mathfrak{p}_5 = (5, 4 - \alpha), \mathfrak{q}_5 = (5, 2 - \alpha)$.

If we can show that one ideal above 3 and one above 5 is principal, then we are done showing that $\operatorname{Pic}(\mathcal{O}_{\mathbb{K}}) = 0$ because $[\mathfrak{p}_p] = [\mathfrak{q}_p]^{-1}$.

Observe now that $2 \cdot 3 - \alpha = \frac{11 - \sqrt{109}}{2} \in \mathfrak{p}_3$ has norm 3 like \mathfrak{p}_3 , hence $\mathfrak{p}_3 = (\frac{11 - \sqrt{109}}{2})$.

Furthermore, noticing that $7 \cdot 5 - 4(4 - \alpha) = 21 + 2\sqrt{109} \in \mathfrak{p}_5$ has norm 5 like \mathfrak{p}_5 , we have $\mathfrak{p}_5 = (21 + 2\sqrt{109})$.

It follows that, since $\mathcal{O}_{\mathbb{K}}$ is a Dedekind ring with trivial Picard group, it is a PID by [1, ex. 2.39].

g(4) = -15, thus $\mathfrak{q}_3\mathfrak{p}_5 = (4 - \alpha)$.

g(9) = 45, thus $\mathfrak{p}_3^2 \mathfrak{p}_5 = (9 - \alpha)$.

g(27) = 675, thus $\mathfrak{p}_3^3 \mathfrak{q}_5^2 = (27 - \alpha)$.

Remembering that $\mathfrak{q}_p = p \cdot \mathfrak{p}_p^{-1}$, we have the following relations: $\mathfrak{p}_3^{-1}\mathfrak{p}_5 = \frac{(4-\alpha)}{3}, \mathfrak{p}_3^2\mathfrak{p}_5 = (9-\alpha), \mathfrak{p}_3^3\mathfrak{p}_5^{-2} = \frac{(27-\alpha)}{25}$.

The ideal generated by $\eta = (\frac{4-\alpha}{3})^a (9-\alpha)^b (\frac{27-\alpha}{25})^c$ will be then factorized as $\mathfrak{p}_3^{-a+2b+3c} \mathfrak{p}_5^{a+b-2c}$. Setting the exponents = 0, we consider a solution of the system of equations: (-7,1,-3).

It follows that $\eta = \frac{261+25\sqrt{109}}{2} \in \mathcal{O}_{\mathbb{K}}^*$, $\eta > 1$. We still need to show that it is a fundamental unit of this ring.

Remember that $\eta_0 = t + u\alpha \in \mathcal{O}_{\mathbb{K}}^*$, $\eta_0 > 1$, is our fundamental unit. Then, $\eta_0^n = \eta$ for some $n \geq 1$, where t, u > 0 because η has positive coefficients w.r.t. the basis $\{1, \alpha\}$.

Now, $N(\eta_0) = t^2 + tu - 27u^2 = 1$ and, looking at $t^2 + tu - (27u^2 + 1)$, we shall see this as a polynomial in t.

We can check that for $u \in \{1, 2, 3, 4\}$ there are no natural t satisfying the equation by finding the roots of our polynomial.

It follows that $u \geq 5$ and therefore $\eta_0 > 5\alpha$, thus, since $1 \leq n = \frac{\log(\eta)}{\log(\eta_0)} < \frac{\log(\eta)}{\log(5\alpha)} < 2$, n = 1 and η is a fundamental unit.

Now, to find the fundamental unit of this ring, we still have to find out which is the lowest n > 0 s.t. $\eta^n \in \mathbb{Z}[\sqrt{109}]$, for $\mathcal{O}_{\mathbb{K}}$ is integral over $\mathbb{Z}[\sqrt{109}]$ and, by [1, ex. 5.20], $\mathbb{Z}[\sqrt{109}]^* = \mathbb{Z}[\sqrt{109}] \cap \mathcal{O}_{\mathbb{K}}^*$.

First of all, notice that n > 1 because η doesn't lie in $\mathbb{Z}[\sqrt{109}] = \mathbb{Z} + 2\mathcal{O}_{\mathbb{K}}$. However, by [1, 5.16], the index of $\mathbb{Z}[\sqrt{109}]^*$ in $\mathcal{O}_{\mathbb{K}}^*$ divides the order of $(\mathcal{O}_{\mathbb{K}}/2\mathcal{O}_{\mathbb{K}})^* \cong \mathbb{F}_4^*$. From this we get that n = 3, thus $\mathbb{Z}[\sqrt{109}]^* \cong \langle -1 \rangle \times \langle \eta^3 \rangle$, where $\eta^3 = 8890182 + 851525\sqrt{109}$.

We only have to check which ones are the elements of norm 1 in this latest unit group and s.t. $\sqrt{109}$ has a positive coefficient. Since $N(\eta^3) = -1$ and the norm is multiplicative, these are precisely the even powers of η^3 , thus the smallest integral solution of our Pell equation s.t. y > 0 is given by the coefficients of $\eta^6 = 158070671986249 + 15140424455100\sqrt{109}$.

References

[1] P. Stevenhagen, Number Rings, 2017.