МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики
Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки: «Прикладная математика и информатика»
Профиль подготовки: «Вычислительная математика и суперкомпьютерные
технологии»

Отчет по лабораторной работе №3 «Современные проблемы прикладной математики и информатики»

Выполнил: студент группы	ы 381903-3м
	Панов А.А.
Полпись	_

Нижний Новгород

1. Постановка задачи

Рассматривается дискретное логистическое уравнение, моделирующее размер популяции:

$$x_{n+1} = x_n(r - x_n) \quad (1)$$

x — число особей в популяции;

r — неотрицательный коэффициент увелечения особей;

 $-\mathbf{x}_n^2$ — отвечает за уменьшение численности в результате конкуренкции.

Данное дискретное уравнение может быть получено из уравнения Ферхюльста:

$$\frac{dx}{dt} = rx(1 - \frac{x}{K})$$

1.1 Цель работы:

- 1. Построить бифуркационную диаграмму (диаграмму ветвления).
- 2. Оценить точки r_1, r_2, r_3, r_∞ .
- 3. Исследовать устойчивость на аттракторе.
- 4. Построить график зависимости показателя Ляпунова от г.

2. Решение

Найдем точки равновесия системы $x_{n+1} = x_n(r - x_n)$.

По определению в точке равновесия x^* выполняется условие $x_n^* = x_{n+1}^*$.

$$x_n = x_n(r - x_n)$$

$$x_n(r - x_n - 1) = 0$$

Получаем следующие точки равновесия:

$$x = 0$$
 или $x = r - 1$

Для отображения вида $x_{n+1} = f(x_n)$ устойчивость точки можно определить из условия $|f'(x^*)| < 1$.

 $\mu = f'(x^*)$ называют мультипликатором.

Для данной системы получаем условие: |r-2x| < 1. Точка равновесия x=0 устойчива при $0 \le r < 1$, точка равновесия x=r-1 устойчива при $1 < r \le 3$.

Рассмотрим случай когда две точки равновесия «сливаются» (бифуркация). Это происходит при условии, когда r=1, тогда система принимает вид $x_{n+1}=x_n-{x_n}^2$. Точка $\mathbf{x}=0$ в таком случае «полуустойчива». Если $x_0\in[0,1]$ то x_n стремится к 0 иначе x_n стремится к $-\infty$.

Если r>3, то рассмотренные точки равновесия перестают быть устойчивыми и появляется цикл длины 2. Значения х из цикла длины п могут быть получены из формулы $x=f^{(n)}(x)$, где $f^{(n)}(x)=f(f(f(...f(x)))$...). На лекции была выведена аналитическая формула для n=2 $x_{3,4}=\frac{1+r}{2}\pm\frac{\sqrt{(r+1)(r-3)}}{2}$ (заметим, что при r=3 $x_3=x_4=2$).

При увеличении длины цикла степень уравнения увеличивается, а значит аналитическое решение будет найти гораздо сложнее (если вообще получится). Значение x можно вычислить численно. Устойчивость состояния равновесия x можно определить через показатель

Ляпунова по формуле $\lambda = \ln |f'(x^*)| = \ln |\mu|$, μ — мультипликатор. Если $\lambda < 0$, то точка устойчива, если $\lambda > 0$, то точка неустойчива. Для цикла длины n показатель Ляпунова определяется по формуле $\sum_{k=1}^n \ln |f'(x_k)|$.

Рассмотрим аттрактор системы с $x_0=0.5$ при различных r от 0 до 4.0 с шагом 0.001. Для каждого значения r вычислялость 10000 «переходных» значений x, после чего следующие 1000 значений изображались на диаграмме. В точке $r_2=3$ появляется цикл длины 2. Далее в точке $r_3\approx 3.44$ длина цикла становится равной 4. В точке $r_4\approx 3.54$ она равна 8.

Точка r_{∞} достигается там, где показатель Ляпунова становится положительным (циклический порядок в этом случае переходит в динамический хаос), $r_{\infty} \approx 3.57$. Можно заметить, что в некоторых областях, например в окрестности точки r=3.84 показатель Ляпунова меньше нуля, а на бифуркационной диаграмме видно незаполненное пространство. В этих областях динамический хаос сменяется циклическим порядком.

При r > 4 при любом $x_0 > 0$ x_n устремляется к минус бесконечности.

Те же изображения в большем масштабе:

