HW2 Proof Method

- 1. Fill in the blanks: given n = 2k for even and n = 2k+1 for odd
 - 4 is even because 4=2(2). Here, 4 plays the role of n and 2 plays the role of k.
 - 5 is odd because 5=2(2)+1. Here, <u>5</u> plays the role of n and <u>2</u> plays the role of k.
 - -4 is even because -4=2(-2). Here, -4 plays the role of n and -2 plays the role of k.
 - -5 is odd because -5=2(-2)+1. Here, -5 plays the role of n and -2 plays the role of k.
 - 0 is even because 0=2(0). Here, 0 plays the role of n and 0 plays the role of k.
- 2. Fill in the blanks Use a direct proof to show that If n1 and n2 are even, then n1+n2 is even. Suppose that n1 and n2 are even. By definition, there exist an integer <u>n1</u> such that $n1=2(\underline{k})$ and there exists an integer $\underline{n2}$ such that $n2=2(\underline{k})$. Consider the sum of n1 and n2: n1+n2= 2k + 2k = 2(2k). Let $\underline{2k} = \underline{2(2k)}$ Thus $n1+n2=2(\underline{2k})$ for some integer \underline{k} . By definition, we know that n1+n2 is even.
- 3. Use <u>direct proof</u> to show the following theorem: If n is even, then n^2 is even.

Suppose that n is even then n = 2k for some integer k.

Consider.
$$n^2 = (2k)^2$$

= $4k^2$
= $2(2k^2)$

Thus $n^2 = 2(2k^2)$ for some integer k. By definition, we know that n is even.

4. Use **direct proof** to show the following theorem: If n is odd, then 3n²+5n+18 is even.

Suppose that n is odd then n = 2k+1 for some integer k.

Consider.
$$3n^2 + 5n + 18 = 3(2k+1)^2 + 5(2k+1) + 18$$

= $3(4k^2 + 4k + 1) + 10k + 5 + 18$
= $12k^2 + 12k + 3 + 10k + 5 + 18$
= $12k^2 + 22k + 26$
= $2(6k^2 + 11k + 13)$

Thus $3n^2 + 5n + 18 = 2(6k^2 + 11k + 13)$ is even. for some integer k. By definition, we know that n is odd.

5. Fill in the blanks. Use a **contrapositive proof** For any integer n, if 5n+3 is even, then n is odd.

Proof. To construct a proof by contrapositive, $\neg Q \rightarrow \neg P$

If n is not odd, 5n+3 is not even

Suppose that n is not odd. We know that n is <u>even</u>. By definition, there exists an integer such that n=2(<u>k</u>). Consider:

$$5n+3=5(2k)+3=10k+3=2(5k+1)+1.$$

Let 2k = 2(5k+1)+1. Thus 5n+3=2(5k+1)+1 for some integer k. By definition, we know that 5n+3 is odd. Hence 5n+3 is not even.

6. Use a **contrapositive proof** If $3n^2+5n+18$ is not even, then n is an not even.

Proof. To construct a proof by contrapositive, $\neg Q \rightarrow \neg p$

If n is even, then $3n^2+5n+18$ is even.

Suppose that n is not even. We know that n is even . By definition, there exists an integer such that n = 2k. Consider:

$$3n^2+5n+18 = 3(2k)^2+5(2k)+18$$

= $12k^2 + 10k +18$
= $2(6k^2 + 5k + 9)$

Thus $3n^2+5n+18 = 2(6k^2+5k+9)$ for some integer k. By definition, we know that $3n^2+5n+18$ is even. Hence 3n²+5n+18 is even.

7. Use a **contrapositive proof** If n² is even, then n is even.

Proof. To construct a proof by contrapositive, $\neg Q \rightarrow \neg p$

If n is not even, then n² is not even.

Suppose that n is not even. We know that n is <u>odd</u>. By definition, there exists an integer such that n=2k+1. Consider:

$$n^{2} = (2k+1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1$$

Thus $n^2 = 2(2k^2 + 2k) + 1$ for some integer k. By definition, we know that n^2 is odd. Hence n^2 is not even.

8. Fill in the blanks. **Use proof by contradiction**

Let n be an integer. If $n^2 + 5$ is odd, then n is even. assume both p and ¬q are true

Proof. Suppose, for the sake of contradiction, that n² + 5 is <u>odd</u> and n is also <u>odd</u>. By definition, then, there exists integers k and l so that $n^2 + 5 = 2k+1$ and n = 2k+1. Hence, we have

Therefore, 2k + 1 is $2(2k^2 + 2k + 3)$. This is clearly impossible, and hence we cannot have that $n^2 + 2k + 3$. 5 is odd and n is also odd.

Therefore, if that $n^2 + 5$ is odd, we must have n is even.

9. Use **proof by contradiction** to show that if n is an integer, and n³+5 is odd, then n is even

assume both p and ¬q are true

Proof. Suppose, for the sake of contradiction, that n³ + 5 is <u>odd</u> and n is also <u>odd</u>. By definition, then, there exists integers k so that $n^2 + 5 = 2k+1$ and n = 2k+1. Hence, we have

$$2k + 1 = n^{3} + 5$$

$$= (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

Therefore, 2k+1 is $2(4k^3 + 6k^2 + 3k + 3)$. This is clearly impossible, and hence we cannot have that $n^3 + 5$ is odd and n is also odd.

Therefore, if that $3n^2+5n+18$ is odd, we must have n is even.

10. Use **proof by contradiction** to show that if 3n²+5n+18 is not even, then n is not even

assume both p and $\neg q$ are true

Proof. Suppose, for the sake of contradiction, that $3n^2+5n+18$ is odd and n is even.

By definition, then, there exists integers k so that $3n^2+5n+18 = 2k+1$ and n = 2k.

Hence, we have

$$2k+1 = 3n^{2}+5n+18$$

$$= 3(2k)^{2} + 5(2k) + 18$$

$$= 3(4k^{2}) + 5(2k) + 18$$

$$= 12k^{2} + 10k + 18$$

$$= 2(6k^{2} + 5k + 9)$$

Therefore, 2k+1 is $2(6k^2 + 5k + 9)$. This is clearly impossible, and hence we cannot have that $3n^2+5n+18$ is odd and n is even.

Therefore, if that $3n^2+5n+18$ is odd, we must have n is not even.