1º Trabalho Prático de Avaliação

Nuno Veloso 42181 Steven Brito 42798 Daniela Gomes 42799

3 de Maio de 2018

Resumo

Com o intuito de realizar o 1º trabalho prático da unidade curricular Sistemas Distribuídos pretende-se implementar um sistema distribuído para suportar a troca de mensagens textuais e instantâneas entre pessoas ou grupos num cenário de uma grande área geográfica dividida por regiões. Ao longo deste trabalho iremos aplicar os conceitos aprendidos nas aulas. Iremos descrever e discutir as vantagens, os problemas e os desafios que se colocam no desenvolvimento deste sistema distribuído.

Conteúdo

1	Introdução	3
2	Descrição do Problema	4
3	Requisitos 3.1 Funcionais	5
	3.2 Não Funcionais	5
4	Arquitetura	6
	4.1 Interação entre as partes	6
	4.2 Funcionamento	6
	4.2 Funcionamento	7
	4.2.2 Funcionamento em grupo	
5	Implementação	8
	5.1 Central Manager	8
6	Tolerância a Falhas	10
7	Manual de utilização	11

Introdução

Neste trabalho irá ser desenvolvido um sistema distribuído capaz de trocar mensagens entre utilizadores dentro da mesma região ou entre regiões. Desta forma são precisos vários servidores regionais - um servidor para cada região - e um servidor central.

Descrição do Problema

O problema consiste em desenvolver um sistema distribuído capaz de trocar mensagens instantâneas, ou seja, sem haver o armazenamento das mesmas, entre utilizadores dentro da mesma região ou entre regiões. É necessário evitar sobrecarga nos servidores. É também necessário garantir que os vários acessos simultâneos aos servidores que mantenham a consistência dos dados. O sistema desenvolvido deve ter em conta tolerância a falhas.

Requisitos

Neste capitulo é descrito os requisitos funcionais do sistema, assim como os não funcionais.

3.1 Funcionais

Os requisitos funcionais deste sistema são os seguintes apresentados:

- Evitar sobrecarga no servidor central;
- O cliente comunica apenas com o servidor da sua região;
- O cliente tem um identificador único;
- O cliente conhece todos os servidores regionais;
- O cliente regista-se num servidor regional;
- O cliente pode enviar mensagens para um único cliente ou para um grupo onde este pertença;
- O cliente pode mudar de região;
- O cliente pode criar grupos;
- O grupo pode ter clientes pertencentes a várias regiões;
- Os servidores regionais e centrais devem conhecer a estrutura dos grupos;
- Os clientes que não estejam conectados não recebem as mensagens.

3.2 Não Funcionais

Os requisitos não funcionais deste sistema são os seguintes apresentados:

- A aplicação cliente realizada em WinForm;
- Transparência à concorrência no acesso dos servidores.

Arquitetura

4.1 Interação entre as partes

Um utilizador apenas interage com o servidor regional onde este está registado. O servidor regional comunica-se com o utilizador e com o servidor central. O servidor central apenas interage com os servidores regionais.

O utilizador é cliente do servidor regional. O servidor regional é servidor do utilizador e cliente do servidor central. O servidor central é servidor do servidor regional.

4.2 Funcionamento

Para poder utilizar o sistema, o utilizador deve escolher em qual região pretende-se conectar. Estando este conectado, é possível usufruir das seguintes funcionalidades:

- Enviar mensagens para o utilizador;
- Criar grupos;
- Enviar mensagens para um grupo;
- Trocar de região;
- Sair de uma região.

4.2.1 Funcionamento entre utilizadores

Para um utilizador enviar uma mensagem para outro utilizador da mesma região o processo ocorre apenas no servidor dessa região. Caso o utilizador deseje enviar uma mensagem para outro utilizador fora da sua região, o servidor da região irá comunicar-se com o servidor central dizendo para este tratar de enviar a mensagem para um determinado utilizador que o servidor regional não tem conhecimento. O servidor central irá enviar a mensagem a todos os servidores regionais que conhece e estes irão verificar se o utilizador encontra-se registado na respetiva região. Em caso afirmativo tratarão de enviar a mensagem para o utilizador pretendente. Em caso negativo, o servidor regional não comunica com nenhum utilizador.

4.2.2 Funcionamento em grupo

É possível ao utilizador criar grupos dentro de uma região e adicionar outros utilizadores quer estejam na mesma ou em diferentes regiões. A existência do grupo é replicada por todos os outros servidores regionais. Ao adicionar um utilizador de outra região, o servidor regional envia a informação ao servidor central, que por sua vez envia aos outros servidores regionais até que a região onde se encontra o utilizador receba a mensagem e o adiciona ao grupo. Aos utilizadores que pertençam a um grupo, estes têm permissão para adicionar outros utilizadores. Os utilizadores que pertencem a um grupo nunca podem sair desse grupo, só sairão quando o criador apagar o grupo.

Implementação

A solução encontra-se dividida em vários projetos de bibliotecas, aplicações de consola e uma aplicação WinForm.

5.1 Central Manager

Para ser implementado o servidor central, foi necessário definir a interface ICentralManager, apresentada na figura 5.1.

```
public interface ICentralManager
{
    void RegisterGroup(Group group, IBroker callerBroker);

    void AddUserToGroup(string groupName, int destNumber, IBroker callerBroker);

    void SendMessageToBrokers(int receiver, Message message, IBroker callerBroker);

    void SendMessageToGroup(string groupName, Message message, IBroker callerBroker);

    void UnregisterGroup(string groupName, IBroker callerBroker);
}
```

Figura 5.1: Interface ICentralManager

O central manager conhece todos os servidores regionais existentes, pois é injetado no construtor uma lista com todos os proxies dos servidores regionais desse sistema. Desta forma, o central manager é stateless visto que não armazena mais nenhuma informação.

Para a implementação do central manager, foi usado o padrão singleton. O padrão singleton adequa-se melhor às necessidades, pois assume-se que o servidor central estará sempre a receber e a enviar pedidos. Desta forma o padrão single call teria muito maior overhead em relação ao singleton pois teria de estar sempre a criar novas instâncias para responder a cada pedido, sendo que não se sabe o número de pedidos de antemão.

De modo a que não é possível determinar o uso deste sistema distribuído, não existe forma de saber se é usado com bastante regularidade e com espaçamento no intervalo de tempo entre as mensagens; No pior dos casos tem o objeto em memória com tempo infinito e os pedidos nunca passam pelo manager, e no melhor dos casos os pedidos são atendidos sempre pela

mesma instância, sem esta estar a ocupar recursos em memória desnecessariamente.

O lease time escolhido para a instância do central manager foi o tempo por omissão do CLR do .NET que é de 5 minutos e o tempo de renovação por cada chamada é também de 5 minutos. Foi tomada essa decisão porque não é possível prever o intervalo de tempo entre cada mensagem consecutiva. O problema com esta decisão é se o intervalo entre cada mensagem for superior a 5 minutos. Isto irá causar o overhead da criação do manager. A vantagem desta solução é que se o intervalo entre as mensagens for superior a

Tolerância a Falhas

Com esta arquitetura existem cenários em que o servidor central possa falhar e as trocas de mensagens entre regiões não aconteça, mas que dentro de cada região continue a funcionar. Se o servidor central voltar a conectar-se, irá realizar uma nova conexão com os servidores regionais que conhece. Esta solução permite a troca de mensagens entre utilizadores dentro da mesma região enquanto não estiver conectado um servidor central.

Um outro cenário seria um servidor regional a falhar. Neste caso só a região desse servidor é que não conseguiria trocar mensagens. Mensagens de outras regiões também não chegariam à região afetada. Caso o servidor central envie mensagens para este servidor regional, tal não é possível, pois este servidor foi desconectado. Esta solução tem um inconveniente. O servidor central tem guardado informação de servidores regionais que podem já não estar conectados. O servidor central não tem maneira de identificar se o servidor regional foi desconectado ou se é um problema de comunicação. Se um servidor regional falhar e ficar ativo novamente, irá conseguir conectar-se com o servidor central. O problema desta solução é perder a informação dos utilizadores e dos grupos existentes.

Se um cliente desconectar-se sem informar o servidor regional, os dados ficam guardados nesse servidor, pois não há forma de saber que o cliente tem problemas de comunicação ou se está mesmo desconectado. Uma solução alternativa passaria por contar o número de chamadas consecutivas que o servidor regional faz ao cliente e este não responde com sucesso. Teria de ser atribuído um número máximo de chamadas consecutivas falhadas, e eliminar a informação deste cliente no servidor regional após o número de chamadas ultrapassar o limite. O problema com esta solução é que o cliente poderia estar novamente disponível após o limite de tentativas, e assim o servidor regional iria apagar informação de um cliente ativo.

Manual de utilização