$12n_{0345} \ (K12n_{0345})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4.30590 \times 10^{29} u^{38} + 1.40716 \times 10^{30} u^{37} + \dots + 3.25262 \times 10^{28} b - 5.80343 \times 10^{30}, \\ &- 1.92426 \times 10^{30} u^{38} + 6.35210 \times 10^{30} u^{37} + \dots + 3.25262 \times 10^{28} a - 2.53835 \times 10^{31}, \\ &u^{39} - 3u^{38} + \dots + 36u + 4 \rangle \\ I_2^u &= \langle -au + b - 2a - 1, \ 2a^2 - au + 2a + 2u - 3, \ u^2 - 2 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.31 \times 10^{29} u^{38} + 1.41 \times 10^{30} u^{37} + \dots + 3.25 \times 10^{28} b - 5.80 \times 10^{30}, \ -1.92 \times 10^{30} u^{38} + 6.35 \times 10^{30} u^{37} + \dots + 3.25 \times 10^{28} a - 2.54 \times 10^{31}, \ u^{39} - 3 u^{38} + \dots + 36 u + 4 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 59.1604u^{38} - 195.292u^{37} + \dots + 4436.04u + 780.403 \\ 13.2382u^{38} - 43.2623u^{37} + \dots + 993.748u + 178.423 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 45.9221u^{38} - 152.030u^{37} + \dots + 993.748u + 178.423 \\ 13.2382u^{38} - 43.2623u^{37} + \dots + 993.748u + 178.423 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 45.9221u^{38} - 152.030u^{37} + \dots + 3442.29u + 601.980 \\ 13.2382u^{38} - 43.2623u^{37} + \dots + 993.748u + 178.423 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 51.1260u^{38} - 169.150u^{37} + \dots + 3814.68u + 661.729 \\ 23.7145u^{38} - 78.2230u^{37} + \dots + 1784.77u + 313.995 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.07361u^{38} + 3.79195u^{37} + \dots + 41.8527u + 1.03040 \\ 26.3378u^{38} - 87.1349u^{37} + \dots + 1988.06u + 348.765 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.07361u^{38} + 3.79195u^{37} + \dots + 1988.06u + 348.765 \\ 26.7461u^{38} - 88.2756u^{37} + \dots + 2004.32u + 351.049 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 7.08403u^{38} - 23.4120u^{37} + \dots + 528.155u + 95.4828 \\ -26.7461u^{38} + 88.2756u^{37} + \dots + 2004.32u - 351.049 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-56.2608u^{38} + 183.733u^{37} + \cdots 4395.07u 821.737$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{39} + 15u^{38} + \dots + 5679u + 81$
c_2, c_5	$u^{39} + 3u^{38} + \dots - 45u + 9$
c_3, c_7, c_8	$u^{39} - 3u^{38} + \dots + 36u + 4$
<i>c</i> ₄	$u^{39} + 9u^{38} + \dots - 12340u - 380$
c_6,c_{11}	$u^{39} - 2u^{38} + \dots - 10u + 1$
c_9, c_{10}, c_{12}	$u^{39} - 4u^{38} + \dots - 6u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{39} + 25y^{38} + \dots + 19679031y - 6561$
c_2, c_5	$y^{39} - 15y^{38} + \dots + 5679y - 81$
c_3, c_7, c_8	$y^{39} - 49y^{38} + \dots + 560y - 16$
c_4	$y^{39} - 109y^{38} + \dots + 28757360y - 144400$
c_6, c_{11}	$y^{39} - 6y^{38} + \dots + 46y - 1$
c_9, c_{10}, c_{12}	$y^{39} - 30y^{38} + \dots + 38y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.278366 + 0.955359I		
a = -0.591023 + 0.828865I	-3.35402 + 4.18126I	-7.78277 - 6.99514I
b = -0.623478 + 0.614458I		
u = -0.278366 - 0.955359I		
a = -0.591023 - 0.828865I	-3.35402 - 4.18126I	-7.78277 + 6.99514I
b = -0.623478 - 0.614458I		
u = -0.887627 + 0.471243I		
a = -1.50907 + 0.17598I	2.35149 - 5.07575I	-1.77054 + 6.40036I
b = -0.886394 - 0.797483I		
u = -0.887627 - 0.471243I		
a = -1.50907 - 0.17598I	2.35149 + 5.07575I	-1.77054 - 6.40036I
b = -0.886394 + 0.797483I		
u = -0.957964		
a = -0.302923	-8.12538	-10.0210
b = 1.25836		
u = 1.065650 + 0.085902I		
a = -0.718491 + 0.083392I	2.77568 - 0.03264I	0
b = -0.515563 + 0.600875I		
u = 1.065650 - 0.085902I		
a = -0.718491 - 0.083392I	2.77568 + 0.03264I	0
b = -0.515563 - 0.600875I		
u = -0.796295 + 0.736026I		
a = 1.42339 + 0.01369I	-1.74573 - 9.69427I	0. + 8.10788I
b = 0.950413 + 0.884348I		
u = -0.796295 - 0.736026I		
a = 1.42339 - 0.01369I	-1.74573 + 9.69427I	0 8.10788I
b = 0.950413 - 0.884348I		
u = 0.851097 + 0.768811I		
a = 0.636558 - 0.270946I	0.64343 + 2.93674I	0
b = 0.379215 - 0.675835I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.851097 - 0.768811I		
a = 0.636558 + 0.270946I	0.64343 - 2.93674I	0
b = 0.379215 + 0.675835I		
u = 0.756459 + 0.321115I		
a = 0.848073 + 0.323450I	-1.16384 + 3.37058I	-4.85431 - 4.93903I
b = 0.687338 + 0.927457I		
u = 0.756459 - 0.321115I		
a = 0.848073 - 0.323450I	-1.16384 - 3.37058I	-4.85431 + 4.93903I
b = 0.687338 - 0.927457I		
u = -0.729654 + 0.114009I		
a = 1.94616 - 0.30625I	-0.720527 - 0.677496I	-4.45492 + 3.52872I
b = 0.877049 + 0.529169I		
u = -0.729654 - 0.114009I		
a = 1.94616 + 0.30625I	-0.720527 + 0.677496I	-4.45492 - 3.52872I
b = 0.877049 - 0.529169I		
u = 1.36027		
a = -1.02723	3.15342	0
b = -0.392618		
u = 0.025858 + 0.596227I		
a = 1.28935 - 0.78910I	-0.39053 + 1.36769I	-3.78544 - 4.37417I
b = 0.476410 - 0.516668I		
u = 0.025858 - 0.596227I		
a = 1.28935 + 0.78910I	-0.39053 - 1.36769I	-3.78544 + 4.37417I
b = 0.476410 + 0.516668I		
u = -1.42742		
a = -10.9292	1.67196	0
b = -0.157920		
u = 1.47236		
a = 0.751761	-4.21706	0
b = 1.74885		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.111960 + 0.411759I		
a = -4.18092 - 0.61496I	-3.05808 - 0.73206I	-13.3386 - 6.5570I
b = -0.394904 + 0.488828I		
u = 0.111960 - 0.411759I		
a = -4.18092 + 0.61496I	-3.05808 + 0.73206I	-13.3386 + 6.5570I
b = -0.394904 - 0.488828I		
u = 1.64569 + 0.02330I		
a = -0.940304 - 0.261465I	7.65877 + 1.14141I	0
b = -1.33024 + 0.90609I		
u = 1.64569 - 0.02330I		
a = -0.940304 + 0.261465I	7.65877 - 1.14141I	0
b = -1.33024 - 0.90609I		
u = -1.64517 + 0.08077I		
a = -0.403452 - 0.032549I	7.20723 - 4.84674I	0
b = -0.98617 + 1.32010I		
u = -1.64517 - 0.08077I		
a = -0.403452 + 0.032549I	7.20723 + 4.84674I	0
b = -0.98617 - 1.32010I		
u = 1.65274 + 0.23220I		
a = -1.008000 - 0.471693I	6.4748 + 13.4066I	0
b = -1.18235 + 1.09377I		
u = 1.65274 - 0.23220I		
a = -1.008000 + 0.471693I	6.4748 - 13.4066I	0
b = -1.18235 - 1.09377I		
u = 1.66262 + 0.24913I		
a = -0.241455 - 0.016965I	2.81425 + 0.97653I	0
b = -0.136254 + 0.574075I		
u = 1.66262 - 0.24913I		
a = -0.241455 + 0.016965I	2.81425 - 0.97653I	0
b = -0.136254 - 0.574075I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.315278		
a = 4.23572	-2.39339	9.22220
b = -0.575388		
u = 1.67924 + 0.13585I		
a = 0.987276 + 0.371552I	11.24360 + 7.46891I	0
b = 1.25098 - 1.02158I		
u = 1.67924 - 0.13585I		
a = 0.987276 - 0.371552I	11.24360 - 7.46891I	0
b = 1.25098 + 1.02158I		
u = -0.301204		
a = -2.36999	-10.3072	10.7730
b = -1.68053		
u = -1.69258 + 0.19776I		
a = -0.675700 + 0.148591I	9.38751 - 6.54529I	0
b = -0.787702 - 1.170530I		
u = -1.69258 - 0.19776I		
a = -0.675700 - 0.148591I	9.38751 + 6.54529I	0
b = -0.787702 + 1.170530I		
u = -1.70589 + 0.04672I		
a = 0.538540 - 0.089371I	12.52260 - 0.71174I	0
b = 0.85440 + 1.24646I		
u = -1.70589 - 0.04672I		
a = 0.538540 + 0.089371I	12.52260 + 0.71174I	0
b = 0.85440 - 1.24646I		
u = -0.262239		
a = 2.84003	-1.18388	-7.92960
b = 0.533756		

II.
$$I_2^u = \langle -au + b - 2a - 1, \ 2a^2 - au + 2a + 2u - 3, \ u^2 - 2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ au + 2a + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -au - a - 1 \\ au + 2a + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u \\ -au - 2a - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u \\ -au - 2a + u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -au - 2a - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au + 2a + \frac{1}{2}u \\ -au - 2a - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_7 c_8	$(u^2-2)^2$
c_6, c_{12}	$(u^2 - u - 1)^2$
c_9, c_{10}, c_{11}	$(u^2+u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5	$(y-1)^4$		
c_3, c_4, c_7 c_8	$(y-2)^4$		
c_6, c_9, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.473911	2.30291	-8.00000
b = -0.618034		
u = 1.41421		
a = 0.181018	-5.59278	-8.00000
b = 1.61803		
u = -1.41421		
a = 1.05505	-5.59278	-8.00000
b = 1.61803		
u = -1.41421		
a = -2.76216	2.30291	-8.00000
b = -0.618034		

III.
$$I_1^v = \langle a, \ b+v+2, \ v^2+3v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -v - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v+2 \\ -v-2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -v - 3 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v - 1 \\ v + 3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ v+3 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -v - 2 \\ v + 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -26

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_2	$(u-1)^2$		
c_3, c_4, c_7 c_8	u^2		
<i>C</i> ₅	$(u+1)^2$		
c_6, c_9, c_{10}	$u^2 + u - 1$		
c_{11}, c_{12}	$u^2 - u - 1$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_7 c_8	y^2
c_6, c_9, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.381966		
a = 0	-10.5276	-26.0000
b = -1.61803		
v = -2.61803		
a = 0	-2.63189	-26.0000
b = 0.618034		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{39} + 15u^{38} + \dots + 5679u + 81)$
c_2	$((u-1)^2)(u+1)^4(u^{39}+3u^{38}+\cdots-45u+9)$
c_3, c_7, c_8	$u^{2}(u^{2}-2)^{2}(u^{39}-3u^{38}+\cdots+36u+4)$
c_4	$u^{2}(u^{2}-2)^{2}(u^{39}+9u^{38}+\cdots-12340u-380)$
<i>C</i> ₅	$((u-1)^4)(u+1)^2(u^{39}+3u^{38}+\cdots-45u+9)$
<i>C</i> ₆	$((u^2 - u - 1)^2)(u^2 + u - 1)(u^{39} - 2u^{38} + \dots - 10u + 1)$
c_9, c_{10}	$((u^2 + u - 1)^3)(u^{39} - 4u^{38} + \dots - 6u - 1)$
c_{11}	$(u^2 - u - 1)(u^2 + u - 1)^2(u^{39} - 2u^{38} + \dots - 10u + 1)$
c_{12}	$((u^2 - u - 1)^3)(u^{39} - 4u^{38} + \dots - 6u - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{39} + 25y^{38} + \dots + 19679031y - 6561)$
c_{2}, c_{5}	$((y-1)^6)(y^{39} - 15y^{38} + \dots + 5679y - 81)$
c_3, c_7, c_8	$y^{2}(y-2)^{4}(y^{39}-49y^{38}+\cdots+560y-16)$
c_4	$y^{2}(y-2)^{4}(y^{39}-109y^{38}+\cdots+2.87574\times10^{7}y-144400)$
c_6, c_{11}	$((y^2 - 3y + 1)^3)(y^{39} - 6y^{38} + \dots + 46y - 1)$
c_9, c_{10}, c_{12}	$((y^2 - 3y + 1)^3)(y^{39} - 30y^{38} + \dots + 38y - 1)$