

1 COUPLING PRODUCT BETWEEN TRYPTAMINE AND AN ALPHA-AMINO
2 ACID, PROCESS FOR ITS PREPARATION AS WELL AS ITS
3 APPLICATION IN THE NEUROCOSMETIC FIELD

4

5 The present invention relates to a pseudodipeptide
6 family, coupling products between tryptamine which is
7 an indole-primary amine, and a selection of alpha-amino
8 acids.

9

10 The purpose of the invention also concerns the process
11 for the preparation of said products as well as their
12 applications as active substances on the cutaneous
13 nervous system.

14

15 Interactions between nervous system and cutaneous
16 cells, both on anatomical and functional aspects, are
17 numerous and now well-established. Besides, this recent
18 understanding enlarged to new activity fields,
19 particularly in cosmetic so-called "neurocosmetic" that
20 describes any action aiming to act on such
21 interactions, and therefore to cure any linked
22 cutaneous cosmetic impairment or disorder.

23

24 Skin is indeed a highly innervated organ. The
25 innervation is dense and fine in the dermic layers, but

1 is also up to the most superficial ones located in
2 epidermis, except for stratum corneum. Our sensorial
3 system such as touch, pain, itching, temperature,
4 pression,etc is notably based on this innervation.
5

6 Connections between nerves and skin are thus highly
7 linked and are characterized, in addition to physical
8 contacts, by a permanent exchange of information
9 between nervous cells and cutaneous cells. The
10 mechanisms inducing this so-called "neurogenic"
11 communication are now well known.

12 These exchanges are first of all the result of
13 biologically active substances called neuromediators
14 (Lotti T. and al., J. Am. Acad. Dermatol. (1995),
15 vol.33, pp.482-496). Most of these chemical vehicles
16 of nervous information found within the derm and the
17 epidermis are from peptidic origin : substance P,
18 neuropeptide Y, calcitonin gene-related peptide or
19 CGRP, etc But others belong to catecholamine group
20 with especially adrenaline and acetylcholine.

21 Moreover these exchanges also result from the existence
22 of neuromediator-specific receptors on the surface of
23 skin cells, nervous or not. When these receptors are
24 activited by the neuromediators, they modulate the
25 properties of cutaneous cells, both epidermic ones
26 (keratinocytes, melanocytes, Langerhans cells) and
27 dermic ones (fibroblasts, endothelial cells).

28

29 Generally speaking, a strong implication of the nervous
30 system in cutaneous metabolism is now clearly
31 accepted. All main skin functions, such as immunity,
32 body defense against damaging effects from the external
33 medium, cell differentiation and proliferation,

1 pigmentation, are likely today to be modulated and even
2 controlled by the nervous system (L. Misery,
3 International Journal of Cosmetic Science (2002),
4 vol.24, pp.111-116).

5

6 At skin level and from its role within the immune
7 mechanism for instance, an impairment of cutaneous
8 nervous system after a damaging effect of a located
9 foreign body comes with an abnormal inflammatory
10 reaction. Indeed, cutaneous neuropeptides secreted by
11 the nerve endings participate to the mechanisms of this
12 inflammatory reaction by acting on the receptors
13 located on the immune cells' membranes (lymphocytes,
14 macrophages) and/or cutaneous (keratinocytes,
15 melanocytes, fibroblasts, Langerhans cells) in order to
16 liberate cytokines. These latter are necessary for the
17 induction, the maintenance or the reduction of the
18 inflammatory state. The "substance P" neuropeptide is
19 so described as being an activator of the synthesis of
20 cytokines (IL-1 or TNF-alpha) (Ansel J.C and al.,
21 Journal of Investigative Dermatology Symposium
22 Proceedings (1997), vol.2, pp.23-26).

23

24 Another neuropeptide, the CGRP or 'calcitonin gene-
25 related peptide', is considered more as a stimulator of
26 the keratinocytes' proliferation (Takahashi K. and al.,
27 J. Invest. Dermatol. (1993), vol.101, pp.646-651).

28

29 Consequently, it is today perceived all the interest to
30 intercede with nervous cells in cutaneous biology.
31 Potential applications of such an implication are
32 therefore numerous in cosmetology. New perspectives are
33 notably proposed in the treatment of certain skin

1 impairments such as the cutaneous neurodegeneration,
2 the inflammatory and irritation phenomena, problems of
3 desquamation, cutaneous ageing and dryness, healing,
4 face dermatosis, excessive sweating, etc (L. Misery,
5 International Journal of Cosmetics Science (2002),
6 vol.24, pp.111-116 and cited references).

7

8 The applicant has therefore considered an approach
9 aiming to act on some biological functions of the skin
10 which involve the nervous system, but exclusively in a
11 local way. As a matter of fact, nerve endings of skin
12 are exclusively targeted and not the central nervous
13 system like numerous therapeutic applications. Also an
14 action on cerebral level accompanied by a cutaneous
15 impact is not considered at all.

16

17 For that purpose, the applicant decided on the use of
18 an active ingredient type, suitable in cosmetic, with a
19 structure close to natural neurogenic substances which
20 are identified for governing the interactions between
21 nerve endings and cutaneous cells, and are able to
22 interfere with these cutaneous nervous communications.
23 The applicant has also considered a cosmetic disorder
24 induced by a situation of stress or growth factors'
25 deprivation, displayed and detailed hereafter in the
26 specification of the invention.

27

28 The applicant thus chose a structure with peptidic
29 nature or similar to it by analogy with neuromediators
30 found in the skin, and more specifically with
31 neuropeptides. For this, a panel of natural alpha-amino
32 acids peculiar to constitute a neuropeptide has been
33 chosen. Among this panel, the applicant selected a type

1 of amino acids with polar or apolar side chain, as well
2 as with metal-chelating behaviour and antioxidant
3 activity (Ahmad M. M. and al., JAOCS (1993), vol. 80,
4 pp.837-840), (Gopala Krishna A. G. and al. , JAOCS
5 (1994), vol.71, pp.645-647), Popov I. and al.,
6 Luminescence (1999), vol.14, pp.169-174), because of
7 the oxidative nature of numerous stresses which are
8 responsible for cutaneous impairment and because of
9 obtained results by the applicant with some selected
10 amino acids after displaying neurocosmetic properties.
11 At last, in order to target the active ingredient
12 towards the nervous cell, the applicant has also
13 selected the presence of an indole group since there
14 are some membrane receptors present to the nervous
15 cells' surface whose affinity for this type of
16 molecular group is today known

18 The purpose of the present invention is therefore a
19 family of pseudodipeptides resulting from the coupling
20 between tryptamine which is a primary amine with an
21 indole core, and a selection of alpha-amino acids, the
22 said pseudodipeptides having the following general
23 formula (I) :

30 in which :

31

- R₁ represents a hydrogen atom, an acyl or acyloxy radical.

1 - R₂ represents the side chain of an alpha-amino
2 acid chosen among L-glutamic acid, L-arginine, L-
3 cysteine, L-methionine, L-histidine, L-
4 tryptophan, L-tyrosine.
5

6 It has to note that when R₁ represents an acyl or
7 acyloxy radical which are biodegradable substituents
8 that can be hydrolyzed *in vivo*, the corresponding
9 derivatives constitute precursor forms of the targeted
10 pseudodipeptides, with a lipophilic character peculiar
11 to promote their cutaneous penetration, and thus to
12 improve their bio-availability after topical
13 application of said pseudopeptide.
14

15 According to an embodiment of the invention, the
16 applicant quotes the alpha-L-glutamyltryptamine, L-
17 methionyltryptamine and L-tryptophantryptamine
18 pseudodipeptides, the prefered example being the alpha-
19 L-glutamyltryptamine.
20

21 In the case of the alpha-L-glutamyltryptamine
22 pseudodipeptide, the invention also concerns an analog
23 with the same properties than this latter, and
24 resulting from the conversion of the glutamic radical
25 in a pyroglutamic radical according to an
26 intramolecular cyclisation well-known by the state of
27 the art (Burstein Y. and al., Proc. Natl. Acad Sci. USA
28 (1976), vol.73, pp.2604-2608) and the person skilled in
29 the art.
30

31 Another prefered embodiment of the invention is the
32 pseudodipeptide having the general formula (I) in which
33 R₁ represents an acetyl or ter-butyloxycarbonyl

1 radical, and R₂ represents the side chain of an alpha-
2 amino acid chosen among L-glutamic acid, L-methionine
3 and L-tryptophan.

4

5 As far as we know to date, structures targeted by the
6 applicant are new since they have never been disclosed.
7 The prior state of the art however discloses similar
8 structures, but never for the hereabove purposes nor
9 considered approach.

10

11 The literature discloses a certain number of aminoacyl
12 derivatives of an amine called "biogenic" with an
13 indole characteristic : the serotonin or 5-
14 hydroxytryptamine, which is synthetized in the
15 organism. This primary amine issued from hydroxylation
16 and decarboxylation steps of tryptophan essential amino
17 acid is both a chemical mediator in the central nervous
18 system and a neurohormone secreted into blood and
19 urinary circulations (Vigy M., Conc. Med. (1969),
20 vol.14, pp.2865-2868). This amine is involved in
21 several fields (Hindle A.T., Br. J. Anaesth (1994),
22 vol.73, pp.395-407) and more specifically in the
23 mechanism of various psychiatric troubles (nervous
24 breakdown, schizophrenia, anxiety,etc) as well as in
25 some neurologic pathologies such as Alzheimer disease
26 or migraine.

27

28 In order to decrease the neurotoxicity associated to
29 its pharmacological use but also the multiplicity of
30 its effects, some amino acids residues have been
31 conjugated to the serotonin or its methoxylated analog.
32 It is thus described the synthesis of L-Gly-5-
33 hydroxytryptamine, beta-L-Ala-5-hydroxytryptamine,

1 gamma-L-aminobutyryl-5-hydroxytryptamine, L-Met-5-
2 hydroxytryptamine, alpha-L-Glu-5-hydroxytryptamine, L-
3 Cyst-5-hydroxytryptamine (Suvorov N.N. and al., Bioorg.
4 Khim. (1976), vol.2, pp.729-736), the synthesis of L-
5 Gly-5-methoxytryptamine, alpha-L-Ala-5-
6 methoxytryptamine, beta-L-Ala-5-methoxytryptamine,
7 gamma-L-Glu-5-methoxytryptamine, L-Arg-5-
8 methoxytryptamine, L-Val-5-methoxytryptamine, L-Meth-5-
9 methoxytryptamine, L-Trp-5-methoxytryptamine, L-Cyst-5-
10 methoxytryptamine (Popova G. V. and al., Tr. Mosk.
11 Khim. Tekhnol. Inst. im D I Mendeleeva (1977), vol.94,
12 pp.84-98), the synthesis of alpha-L-Glu-5-
13 methoxytryptamine (Popova G.V. and al., Zh. Obshch.
14 Khim. (1979), vol.49, pp.1418-1424). In the above
15 compounds, and also later on, the amino acid residues
16 involved in the bond with the primary amine are
17 represented by their three letter code according to the
18 hereafter nomenclature :

19

20	Gly	glycine
21	Ala	alanine
22	Met	methionine
23	Glu	glutamic acid
24	Arg	arginine
25	Val	valine
26	Trp	tryptophan
27	Cyst	cysteine

28

29 The SU 296409 patent is related to the preparation of
30 serotonin and 5-methoxytryptamine peptidic derivatives.
31 The document reports some radioprotecting properties
32 for all those structures.

33

1 The alpha-methyltryptamine is another serotonin analog
2 also known for a long time. Medically studied as a
3 potential anti-depressant (Mashkovskii M.D. and al.,
4 Psichiatr. (1963), n°1, pp.72), it was marketed in the
5 sixties in USSR under the name of Indopan®. It was
6 claiming, in addition to an anti-depressive activity, a
7 stimulating action on the central nervous system with
8 notably a stimulation of the motor activity as well as
9 the excitability of reflexes. But always with the aim
10 to modulate the undesirable properties of alpha-
11 methyltryptamine, it has then been introduced an amino
12 acid residue on the side chain of the amine,
13 specifically the glutamic acid (Vigdorchik M. M. ands
14 al., Pharm. Chem. J. (1977), vol.11, pp.305-309). The
15 pharmacological properties of alpha-L-glutamyl-DL-
16 alpha-methyltryptamine have been then compared to the
17 ones with Indopan®.

18

19 The alpha-ethylated glutamic homolog was also
20 synthetized (Bulatova N.N. and al., Khim. Farm. Zh.
21 (1968), vol.2, pp.6-9), and its action on the central
22 nervous sytem was compared to the one of the alpha-L-
23 glutamyl-DL-alpha-methyltryptamine.

24

25 The applicant is not at all in the situation of this
26 prior art, namely a direct action on the central
27 nervous system, nor in the situation of an improvement
28 of pharmacological properties of serotonin or alpha-
29 methyltryptamine indoleamines by a better tolerance and
30 a longer effect. With a totally different approach, the
31 applicant considered the synthesis of an active
32 substance able, with regard to its structural analogy
33 with cutaneous neuromediators, to display an affinity

1 for receptors of nervous and cutaneous cells in order
 2 to induce the neurocosmetic properties described
 3 hereafter with the presentation of tests.

4

5 In the state of the art, the identification of
 6 glutamylamines including the glutamyltryptamine has
 7 also been noted in the *Aplysia californica* marine
 8 mollusc. In all cases, it has only been isolated then
 9 chemically reproduced glutamic derivatives conjugated
 10 in gamma position with tryptamine, hydroxytryptamine,
 11 dopamine, octopamine, tyramine and phenylethylamine
 12 amines (Mc Caman M.W. and al., J. Neurochem. (1985),
 13 vol.45, 1828-1835). The gamma-glutamylation step of
 14 said amines is supposed to inactivate these amines.

15

16 Among products having the general formula (I), examples
 17 hereafter constitute a non-restrictive list of
 18 pseudodipeptides according to the invention :

19

20

27 alpha-L-glutamyltryptamine
 28 (alpha-L-Glu-Tryp)

L-methionyltryptamine
 (L-Met-Tryp)

29

30

31

32

33

1

2

3

7 L-tryptophantryptamine
8 (L-Trp-Tryp)

9

10

11

12

13

14

15

16

N-acetyl-alpha-L-glutamyltryptamine
(N-Ac-alpha-L-Glu-Tryp)

17

18

19

20

21

22

23

24

25

26

27

The present invention also concerns a chemical process developed for the preparation of pseudodipeptides which are purposes of the invention. It has successively the following steps :

32

1 The first step consists in protecting the alpha-amino
2 function of the L-aminoacid with an acyl or acyloxy
3 radical, preferentially with acetyl or ter-
4 butyloxycarbonyl radicals.
5
6 In the case of glutamic acid, the protection step of
7 the alpha-amino function is immediately followed by an
8 esterification step of the gamma-carboxylic function
9 with an alkyl radical, preferentially with ter-butyl
10 radical.
11
12 The second step of the process consists in coupling the
13 N-protected L-aminoacid and, gamma-O-esterified in the
14 case of the L-glutamic acid, with tryptamine. This
15 coupling is carried out either directly with a typical
16 coupling agent, preferentially the N,N'-
17 dicyclohexylcarbodiimide, or via the previous
18 activation or *in situ* of the alpha-carboxylic function
19 of the N-protected aminoacid by action of a typical
20 activator, preferentially the hydroxybenzotriazol. The
21 "typical" phrase means an agent well-known for the
22 person skilled in the art.
23
24 In a third step, optional according to the sought
25 pseudodipeptide, the N-protecting group of the
26 pseudodipeptide resulting from the hereabove mentioned
27 step is removed, advantageously by acidolysis and
28 preferentially with an aqueous solution of
29 hydrochloride solution.
30
31 The invention has also as purpose neurocosmetic
32 compositions containing, as active substance, a
33 pseudodipeptide having the general formula (I),

1 preferentially the alpha-L-glutamyltryptamine, in
2 combination with one or several appropriated
3 cosmetically excipients.

4

5 A last purpose of the invention relates to the
6 neurocosmetic use of pseudodipeptides according to the
7 invention. This use outcomes from properties displayed
8 hereafter demonstrating the ability of said
9 pseudodipeptides to interact with cutaneous nervous
10 cells.

11

12 The applicant thus demonstrated the use of
13 pseudodipeptides according to the invention
14 successively :

15 - as neurocosmetic agent displaying a
16 cytoprotecting effect, alternatively designated
17 neuroprotecting, towards cutaneous nervous cells which
18 are submitted to an ultra-violet radiation,

19 - as neurocosmetic agent intended for slowing down
20 the neurodegeneration process,

21 - as neurocosmetic agent intended for fighting
22 against the neurogenic inflammation,

23 - and as neurocosmetic agent able to stimulate the
24 cutaneous immune cells.

25

26 The cell model chosen by the applicant in all its *in*
27 *vitro* experimentations was a pheochromocytomal cell
28 line with murine origin, called "PC 12" and commonly
29 accepted for neurobiological and neurochemical studies
30 on nervous cells (Greene L.A. and al., Proc. Natl.
31 Acad. Sci. USA (1976), vol.73, pp.2424-2428), in
32 particular on peripheral neurones which innervate skin

1 (Keilbaugh S.A., Biochem. Pharm. (1997), vol.53,
2 pp.1485-1492).

3

4 The PC 12 line was used after differentiation according
5 to a method described in the literature (Greene L.A. et
6 al. in Culturing Nerve Cells (1991), MIT Press,
7 Cambridge, MA, pp.207-225).

8

9 The following tests illustrate above-mentioned
10 properties or effects.

11

12 Test 1 : cytoprotecting effect of the alpha-L-
13 glutamyltryptamine, L-methionyltryptamine and L-
14 tryptophantryptamine on PC 12 cells submitted to a UV-B
15 stress. Comparison with a reference antioxidant.

16 A cytotoxic UV-B stress is applied on the nervous cell
17 model (285 nm ± 5; 500 mJ/cm²), in the absence then in
18 the presence of active ingredient, successively the
19 alpha-L-glutamyltryptamine (Glu-Tryp), L-
20 methionyltryptamine (Met-Tryp) and L-
21 tryptophantryptamine (Trp-Tryp).

22

23 The cell death is then evaluated by the measure of
24 lactico-dehydrogenase activity (LDH) in the culture
25 medium. This activity is proportional to the cell lysis
26 which follows the cell death.

27

28 The results are expressed in % of protection and are
29 given by the ratio of LDH activity according to the
30 following equation :

31

32

33

1 LDH_{treated cells} - LDH_{non treated control cells}
 2 % of protection = ----- * 100
 3 LDH_{non treated control cells}
 4

5 The results are compared to the ones obtained with a
 6 reference antioxidant which is vitamin E (vit.E).
 7

8 Validity of the test is checked by the measure of LDH
 9 activity in the culture medium of non stressed cells
 10 (negative check). Values listed in the tables hereafter
 11 are average values obtained from six measures.
 12

13 RESULTS :

	Glu-Tryp (1,72 mM)	Glu-Tryp (0,86 mM)	Glu-Tryp (0,43 mM)	Glu-Tryp (0,1 mM)	Glu-Tryp (0,05 mM)	Vit.E (2 mM)
% of protection	69	61	48	39	26	34

	Met-Tryp (1,91 mM)	Met-Tryp (0,85 mM)	Met-Tryp (0,48 mM)	Met-Tryp (0,1 mM)	Met-Tryp (0,05 mM)	Vit.E (2 mM)
% of protection	65	53	42	32	20	34

	Trp-Tryp (1,80 mM)	Trp-Tryp (0,85 mM)	Trp-Tryp (0,45 mM)	Trp-Tryp (0,1 mM)	Trp-Tryp (0,05 mM)	Vit.E (2 mM)
% of protection	66	58	45	35	22	34

- 2 Test 2 : anti-aging effect of the alpha-L-
 3 glutamyltryptamine, L-methionyltryptamine and L-
 4 tryptophantryptamine with the slowdown of the
 5 neurodegeneration process of PC 12 submitted to a
 6 deprivation of serum.
 7 A deprivation of serum is applied to PC 12 cells in
 8 order to imitate the aging effects. The

2 neurodegeneration process is followed, in the absence
 3 then in the presence of active ingredient, successively
 4 the alpha-L-glutamyltryptamine (Glu-Tryp), L-
 5 methionyltryptamine (Met-Tryp) and L-
 6 tryptophantryptamine (Trp-Tryp), by a kinetic measure
 7 of the release in the culture medium of lactico-
 8 dehydrogenase enzyme (LDH).

9

10 The results are expressed in relative survival rate
 11 given by the LDH activity ratio according to the
 12 following equation :

13

14 $\frac{\text{LDH treated aged cells} - \text{LDH non treated control cells}}{\text{LDH non treated control cells}} * 100$

15 survival rate % = ----- * 100
 16 $\text{LDH non treated control cells}$
 17 The values listed in the tables hereafter are average
 18 values obtained from six measures after a serum
 19 deprivation of nine days.

20

21 RESULTS :

	Glu-Tryp (0,86 mM)	Glu-Tryp (0,43 mM)	Glu-Tryp (0,1 mM)
improvement of the survival time (%)	+33	+19	+19

	Met-Tryp (0,85 mM)	Met-Tryp (0,48 mM)	Met-Tryp (0,1 mM)
improvement of the survival time (%)	+28	+15	+12

	Trp-Tryp (0,85 mM)	Trp-Tryp (0,45 mM)	Trp-Tryp (0,1 mM)
improvement of the survival time (%)	+30	+20	+17

15 Test 3 : anti-inflammatory effect of the alpha-L-
16 glutamyltryptamine, L-methionyltryptamine and L-
17 tryptophantryptamine on PC 12 cells submitted to a pro-
18 inflammatory stress. Comparison with two controls (PC
19 12) : the first one is non stressed, the second one is
20 stressed but non treated
21 A UV-B pro-inflammatory stress is applied on PC 12
22 cells ($285 \text{ nm} \pm 5$; 150 mJ/cm^2), in the absence then in
23 the presence of active ingredient, successively the
24 alpha-L-glutamyltryptamine (Glu-Tryp), L-
25 methionyltryptamine (Met-Tryp) and L-
26 tryptophantryptamine (Trp-Tryp).
27 The neurogenic inflammatory response is evaluated by
28 the measure of the rate of pro-inflammatory
29 interleukine-6 (IL-6) which are produced by the PC 12
30 cells.

31

32 RESULTS :

	non irradiated control	Glu-Tryp (0,86 mM)	Glu-Tryp (0,43 mM)	Glu-Tryp (0,1 mM)	non treated irradiated control
produced IL-6 rate (pg/ml)	0	70	180	240	400

	non irradiated control	Met-Tryp (0,85 mM)	Met-Tryp (0,48 mM)	Met-Tryp (0,1 mM)	non treated irradiated control
produced IL-6 rate (pg/ml)	0	85	210	290	400

	non irradiated control	Trp-Tryp (0,85 mM)	Trp-Tryp (0,45 mM)	Trp-Tryp (0,1 mM)	non treated irradiated control
produced IL-6 rate (pg/ml)	0	100	210	305	400

- 1 Test 4 : stimulation of the neuro immuno-cutaneous
 2 system with the alpha-L-glutamyltryptamine, L-
 3 methionyltryptamine or L-tryptophantryptamine.
 4 Comparison with two controls
 5
 6 PC 12 cells are differentiated according to a special
 7 protocol to avoid artefacts. After a brief deprivation
 8 of growth and differentiation factors, PC 12 are
 9 incubated in different concentrations of
 10 pseudodipeptides, successively the alpha-L-
 11 glutamyltryptamine (Glu-Tryp), L-methionyltryptamine
 12 (Met-Tryp) and L-tryptophantryptamine (Trp-Tryp).
 13
 14 After a five days-incubation, the cellular supernatants
 15 containing neuromediators and miscellaneous secretions
 16 are sampled then introduced in the culture of immune
 17 monocyte cells, the THP-1 line.
 18
 19 The effect on the neuro immuno-cutaneous system is
 20 observed by measuring the rate of IL-1 β interleukines
 21 produced by the monocyte cells in response to the
 22 addition of supernatants coming from the culture of PC
 23 12 cells.
 24
 25 The results are compared to two controls : the first
 26 one with immune cells without supernatant, the second

1 one containing immune cells with supernatant but non
 2 treated.

3

4 RESULTS :

	THP-1 without supernat.	THP-1 + supernat. + Glu-Tryp (0,43 mM)	THP-1 + supernat. + Glu-Tryp (0,1 mM)	THP-1 + supernat. + Glu-Tryp (0,05 mM)	THP-1 + supernat. non treated
produced IL-1 β rate (pg/ml)	0	90	63	45	40

	THP-1 without supernat.	THP-1 + supernat. + Met-Tryp (0,48 mM)	THP-1 + supernat. + Met-Tryp (0,1 mM)	THP-1 + supernat. + Met-Tryp (0,05 mM)	THP-1 + supernat. non treated
produced IL-1 β rate (pg/ml)	0	85	55	42	40

	THP-1 without supernat.	THP-1 + supernat. + Trp-Tryp (0,45 mM)	THP-1 + supernat. + Trp-Tryp (0,1 mM)	THP-1 + supernat. + Trp-Tryp (0,05 mM)	THP-1 + supernat. non treated
produced IL-1 β rate (pg/ml)	0	92	60	44	40