Místo předmluvy

Předkládané texty nejsou učebnice a už vůbec ne učebnice pro samouky. Snažil jsem se, aby měl čtenář v ruce co nejúplnější informaci k tomu, co je obsahem přednášky, případně něco navíc. Nesnažil jsem se, aby text byl hladce čitelný. Domnívám se, že taková snaha by byla škodlivá. Je-li nějaké místo obtížnější, je jen dobře, když se na něm student zarazí. Měl by se s ním trochu potrápit, a neporozumí-li mu sám, měl by se zeptat.

Pozor: obtížné místo nemusí být viditelně komplikované. Často jsou, zvlášť pro začátečníka (prosím, aby se studenti tímto slovem necítili uraženi) obtížné především rozhodující obraty v krátkých důkazech. Snad není třeba dodávat, že jsem se také nesnažil o originalitu výkladu.

Obsah

I Reálná čísla a posloupnosti	2
I.1 Reálná čísla	2
I.2 Posloupnosti	
I.3 Cauchyovské posloupnosti	4
II Reálné funkce jedné reálné proměnné	6
II.1 Intervaly	6
II.2 Reálné funkce	
II.3 Limity funkcí	
II.4 Jednostranné limity	
II.5 Nevlastní limity a limity v nevlastních bodech	10
II.6 Spojité funkce	10
II.7 Základní věta o řešení rovnic. Obrazy intervalů	11
II.8 Chování prostých funkcí na intervalech. Spojitost inverzních funkcí	
II.9 Spojitost a limity posloupností	
II.10 Spojité funkce na kompaktních intervalech	13
II.11 Body nespojitosti prvního a druhého druhu	13
III Některé konkrétní funkce	14
III.1 Polynomy, odmocniny, racionální lomené funkce	
III.2 Odbočení do komplexních čísel	
III.3 Racionální lomená funkce s komplexními koeficienty	
III.4 Co z toho plyne pro reálné polynomy a racionální lomené funkce	
III.5 Goniometrické a cyklometrické funkce	
III.6 Logaritmy a exponenciální funkce. Obecné mocniny.	
III.7 Poznámky	21
IV Derivace	99
IV.1 Definice a jedna charakterizační věta	23 23
IV.1 Dennice a jedna charakterizachi veta	
IV.3 Derivace elementárních funkcí	
IV.4 Rolleova věta, věty o střední hodnotě	$\frac{20}{27}$
IV.5 Derivace vyšších řádů	28
IV.6 Konvexní a konkávní funkce, souvislost s druhou derivací	
IV.7 Body nespojitosti derivace	
1V.1 Dody nespolitosti derivace	29
V Jednoduché aplikace derivování	31
V.1 Tečny, rychlost	
V.2 Extrémy	
V.3 Newtonova metoda přibližného řešení rovnic	
V.4 L'Hospitalovo pravidlo	
V.5 Vyšetřování průběhu funkcí	
V.6 Věta o Taylorově polynomu a zbytku	
V.7 Oskulační kružnice	
VI Primitivní funkce (neurčitý integrál)	40
VI.1 Úloha o obrácení derivace	40
VI.2 Bezprostřední obrácení derivace u některých funkcí	40
VI.3 Metoda integrace per partes	41
VI.4 Substituční metoda	42
VI.5 Integrování racionálních lomených funkcí	43
VI 6 Některé speciální substituce	45

VII Vektorové prostory	47
VII.1 Základní pojmy	47
VII.2 Lineární zobrazení	48
VII.3 Lineární kombinace	49
VII.4 Věta o výměně. Dimenze	51
VII.5 Skalární součin. Kolmost	53
VII.6 Trochu geometrie. Lineární množiny	55
VIII Řešení soustav lineárních rovnic	57
VIII.1 Matice	57
VIII.2 Hodnost matice	58
VIII.3 Soustavy lineárních rovnic	59
VIII.4 Jeden konkrétní způsob řešení	60
IX Matice a lineární zobrazení	63
IX.1 Některé operace s maticemi	63
IX.2 Souřadné soustavy	64
IX.3 Lineární formy. Duální prostor	66
IX.4 Orthonormální matice	67 67
IA.5 Nekonk daisien geometriekyen poznamek. Darycentrieke souradince	07
X Determinanty	70
X.1 Permutace	70
X.2 Determinant a jeho výpočet	72
X.3 Minory. Výpočet inversní matice. Cramerovo pravidlo	74
X.4 Věta o násobení determinantů. Determinanty orthonormálních matic	76
X.5 Geometrický smysl determinantu	77
XI Řady, zvláště pak mocninné	79
XI 1 Součet řady jako limita a jedna potíž	79
XI.2 Absolutní konvergence a dvě kritéria	80
XI.3 Posloupnosti a řady funkcí	81
XI.4 Limes inferior	83
XI.5 Mocninné řady	84
XI.6 Opět jeden výlet do komplexních čísel	85
XI.7 Taylorovy řady	86
XI.8 Poznámka o součtech přes nekonečnou množinu	88
XII Několik základních fakt o metrických prostorech a spojitosti	89
XII.1 Základní pojmy	89
	91 93
XII.3 Podprostory XII.4 Součiny metrických prostorů	93 94
XII.5 Kompaktní metrické prostory	96
XII.6 Úplné prostory	97
Tillo Opino prossory	•
XIII Základy diferenciálního počtu více proměnných	98
XIII.1 Reálné funkce více proměnných. Vektorové funkce.	98
XIII.2 Parciální derivace a totální diferenciál	99
XIII.3 Parciální derivace složených funkcí	101
XIII.4 Parciální derivace vyšších řádů	103
XIV Věty o implicitních funkcích	105
XIV.1 Nejjednodušší úloha o implicitní funkci	105
XIV.2 Velmi snadné zobecnění	108
XIV.3 Trochu složitější — a konečné — zobecnění	108
XIV.4 Vázané extrémy	111
VIV 5 Dogulóny gobuggon	114

XV Určitý (Riemannův) integrál	115
XV.1 Obsah rovinného obrazce	115
XV.2 Definice Riemannova integrálu	116
XV.3 Základní pravidla	118
XV.4 Případ spojitých funkcí	119
XV.5 Základní věta analýzy	120
XV.6 Poznámky k výpočtu určitého integrálu	121
XV.7 Riemannův integrál a stejnoměrná konvergence	121
XVI Několik aplikací určitého integrálu	123
•	
XVI.1 Obsahy rovinných útvarů	123
XVI.1 Obsahy rovinných útvarů	123 124
XVI.1 Obsahy rovinných útvarů	123 124 124
XVI.1 Obsahy rovinných útvarů	123 124 124 125
XVI.1 Obsahy rovinných útvarů	123 124 124 125 126

Předběžné úmluvy

Smyslem těchto úmluv je jen upozornění na symboly, kterých budeme užívat. Předpokládám, že čtenář všechno potřebné buď již zná odjinud, nebo se to brzy dozví v ostatních přednáškách. Na cokoli nejasného nechť se student zeptá na přednášce, na cvičení, nebo na konsultaci.

Logické symboly: Symbolu & pro "a zároveň" budeme užívat běžně. "nebo" budeme raději vypisovat (běžný symbol ∨ se může plést se sjednocením). Implikace je samozřejmě označována ⇒, logická ekvivalence ⇔ .

 \exists znamená "existuje", tedy třeba $\exists x \in X$ čtěte "existuje prvek x v množině X" (takový, že atd.). \forall znamená "pro všechna". Nikdy nezapomínejte, že při negaci se \exists mění na \forall a naopak.

Množiny: Symboly $A \cup B$ pro sjednocení. $A \cap B$ pro průnik, $A \subseteq B$ pro podmnožinu, $x \in A$ pro vztah "býti prvkem" snad ani nemusíme připomínat. $A \setminus B$ znamená rozdíl množin, t.j. množinu všech těch prvků, které jsou v A ale nejsou v B, $A \times B$ je kartézský součin, t.j. množina všech dvojic (a, b) kde $a \in A$ a $b \in B$. Symboly $\bigcup_{i \in J} A_i$, $\bigcup_{i \in J} A_i$, $\bigcup_{j \in J} A_i$ nebo jen $\bigcup_{i \in J} A_i$ se užívají pro sjednocení systému množin přes nějakou množinu, symboly $\bigcap_{i \in J} A_i$, $\bigcap_{i \in J} A_i$, nebo jen $\bigcap_{i \in J} A_i$ se užívají pro průniky systémů.

Velmi často budeme používat výrazů typu

$$\{x \mid \mathcal{V}(x)\}$$

pro množinu všech prvků splňujících nějakou podmínku \mathcal{V} . Přesněji, obvykle se jedná o množinu všech prvků z kontextu patrné větší množiny splňující tu podmínku. Tedy, je-li zřejmé, že mluvíme o reálných číslech, píšeme třeba $\{x \mid x^2 \geq a\}$, místo podrobnějšího $\{x \mid x \in \mathbb{R} \& x^2 \geq a\}$.

Zobrazení: Napíšeme-li $f: X \to Y$, máme na mysli, že f je zobrazení množiny X do množiny Y; X se přitom nazývá $definičním \ oborem. Y \ oborem \ hodnot.$ Množina Y může být větší, než $\{f(x) \mid x \in X\}$; shoduje-li se s ní, mluvíme o zobrazení na (množinu Y).

Zobrazení je prosté, platí-li implikace

$$x \neq y \Rightarrow f(x) \neq f(y)$$
.

Je-li $f: X \to Y$ prosté a na, existuje (právě jedno) zobrazení $g: Y \to X$ takové, že pro všechna $x \in X$ je g(f(x)) = x a pro všechna $y \in Y$ je f(g(y)) = y. Naopak, samozřejmě, existuje-li takové g, je f prosté a na. Toto zobrazení se nazývá zobrazením inverzním k f a obvykle se označuje f^{-1} .

Pro $A\subseteq X$ a
 $B\subseteq Y$ označujeme dále

$$f[A] = \{ f(x) \mid x \in A \}$$

a mluvíme o obrazu (pod)množiny A při zobrazení f,

$$f^{-1}(B) = \{ x \mid f(x) \in B \}$$

a mluvíme o $vzoru\ B$. Často se i v prvním případě píše prostě f(A), nebezpečí záměny s funkční hodnotou je však o něco větší než v případě druhém.

Složené zobrazení, t.j. zobrazení dané předpisem f(g(x)), označujeme často $f \circ g$.

Předpis pro zobrazení budeme často vyznačovat zápisem $x \mapsto V(x)$, kde V je nějaká formule. Tak například zápis $x \mapsto x^2 + 1$ bude popisovat funkci f danou předpisem $f(x) = x^2 + 1$, je-li již ovšem stanoveno, co je definiční obor a co je obor hodnot.

Je-li $f:X\to Y$ zobrazení a je-li $A\subseteq X$, označíme symbolem f|A zobrazení $A\to Y$ dané týmž předpisem jako f.

Ι Reálná čísla a posloupnosti

I.1 Reálná čísla

Konstrukci reálných čísel zde nebudeme provádět. Zájemce odkazuji na Jarníkův Diferenciální počet. Pro naše účely postačí, sepíšeme-li si jejich vlastnosti, které budeme dále používat.

Především označení: Množinu reálných čísel budeme označovat $\mathbb R$ nebo též $\mathbb E_1$. Toto druhé označení budeme užívat zejména později v souvislosti s funkcemi více proměnných.

Algebraická struktura: Na $\mathbb R$ máme především operace sčítání (označené a+b) a násobení (označené $a \cdot b$ nebo prostě ab) splňující tato pravidla:

$$(a+b)+c=a+(b+c), \qquad (ab)c=a(bc)$$
 (asociativita)
$$a+b=b+a, \qquad ab=ba$$
 (komutativita)

$$a(b+c) = ab + ac$$
 (distributivita).

Jsou zde neutrální prvky vzhledem ke sčítání (nula, 0) i vzhledem k násobení (jednotka, 1) splňující

$$a + 0 = a$$
, $a \cdot 1 = a$.

Pro každé a existuje (právě jeden) prvek -a takový, že a + (-a) = 0, a pro každé $a \neq 0$ existuje (právě jeden) prvek a^{-1} (jiná označení $\frac{1}{a}$,1/a) takový, že $a \cdot a^{-1} = 1$. Píšeme a - b místo a + (-b), $\frac{a}{b}$ (nebo též a : b, a/b) místo $a \cdot b^{-1}$.

Útvaru s operacemi těchto vlastností se říká *těleso*; kromě tělesa reálných čísel se čtenář jistě setkal s dalšími, třeba tělesem racionálních čísel, nebo tělesem komplexních čísel

Uspořádání: Na \mathbb{R} je dána relace uspořádání < splňující pravidla

$$a \le a$$
 (reflexivita),
 $a \le b \& b \le c \Rightarrow a \le c$ (tranzitivita),
 $a \le b \& b \le a \Rightarrow a = b$ (antisymetrie),

a konečně

$$\forall a, b \text{ bud} \ a \leq b \text{ nebo } b \leq a$$
 (linearita).

Uspořádání se chová ve vztahu k operacím takto

$$a \le b \Rightarrow a + c \le b + c,$$

 $a < b \& 0 < c \Rightarrow ac < bc.$

Úmluva: Píšeme samozřejmě často a > b místo b < a, a < b nebo b > a jestliže $a < b \& a \neq b$.

Suprema a infima: Uspořádání reálných čísel má velmi důležitou speciální vlastnost, jejíž formulaci musíme nejprve připravit. Množinu M přirozených čísel nazveme shora (resp. zdola) omezenou, existuje-li číslo K takové, že pro všechna $x \in M$ je $x \leq K$ (resp. $K \leq x$).

Řekneme, že číslo s je supremem množiny M (označení $s = \sup M$) jestliže

- (a) pro každé $x \in M$ je x < s a
- (b) je-li y < s, existuje $x \in M$ takové, že y < x.

Podobně řekneme, že číslo i je infimem množiny M (označení $i = \inf M$) jestliže

- (a) pro každé $x \in M$ je $x \geq i$ a
- (b) je-li y > i, existuje $x \in M$ takové, že y > x.

Vlastnost systému reálných čísel, která má zcela zásadní význam je to, že

každá neprázdná shora omezená množina $M\subseteq\mathbb{R}$ má v \mathbb{R} supremum, a každá neprázdná zdola omezená množina $M\subseteq\mathbb{R}$ má v \mathbb{R} infimum.

Poznámky:

- Z těles zmíněných nahoře jen ℝ má všechny popsané vlastnosti. Na tělese komplexních čísel neexistuje vhodné uspořádání, těleso racionálních čísel nemá obecně suprema a infima omezených množin.
- 2) Je-li $a \le b$, je $-b \le -a$. Je-li $0 < a \le b$, je $0 \le b^{-1} \le a^{-1}$. Snadno si to ověříte v prvním případě přičtením (-a) + (-b) k oběma stranám nerovnosti, v druhém případě vynásobením $a^{-1} \cdot b^{-1}$.
- 3) Je-li $s = \sup M$, je $-s = \inf \{ -x \mid x \in M \}$.
- 4) Z existence suprem plyne existence infim a naopak. Formálně by tedy bylo stačilo předpokládat jedno z toho, a druhé by pak bylo možno dokázat jako větu.

Absolutní hodnota, \mathbb{R} jako přímka: Absolutní hodnotou čísla x rozumíme x je-li $x \geq 0$, a -x je-li x < 0.

Je užitečné dívat se na $\mathbb R$ jako na přímku, na jednotlivá čísla jako na body na ní, a na |x-y| jako na vzdálenost bodů x a y. Mluvíme pak o $reálné\ přímce$. Všimněte si, že platí t.zv. $trojúhelníková\ nerovnost$

$$|a+b| < |a| + |b|,$$

která se ve vzdálenostech projeví jako

$$|x-z| < |x-y| + |y-z|$$
.

Přes svou jednoduchost (ostatně, v obecnějších případech než je reálná přímka obdobné formule vždy tak snadno dokazatelné nejsou) hraje tato nerovnost zcela zásadní úlohu. Budeme ji často používat.

I.2 Posloupnosti

Pojem posloupnosti čtenář jistě zná. Připomeňme, že říkáme, že posloupnost $(a_n)_n$ je

- (a) rostoucí, jestliže $m < n \Rightarrow a_m < a_n$,
- (b) neklesajíci, jestliže $m < n \Rightarrow a_m < a_n$,
- (c) nerostoucí, jestliže $m < n \Rightarrow a_m > a_n$,
- (d) klesajíci, jestliže $m < n \Rightarrow a_m > a_n$,

Ve všech těchto případech mluvíme o posloupnosti $monot\acute{o}nn\acute{i}$, v případech (a) a (d) o posloupnosti ryze $monot\acute{o}nn\acute{i}$.

Připomeňme definici limity posloupnosti $(a_n)_n$:

Číslo x se nazývá limitou posloupnosti $(a_n)_n$ (označení $\lim a_n$) jestliže

$$\forall \varepsilon > 0 \,\exists \, n_0 \, \text{tak}, \, \check{\text{ze}} \, n \geq n_0 \Rightarrow |x - a_n| < \varepsilon.$$

O posloupnosti, která má limitu říkáme, že je konvergentní.

2.1 VĚTA:

$$lim(a_n + b_n) = \lim a_n + \lim b_n,$$

(b)
$$\lim(a_n \cdot b_n) = \lim a_n \cdot \lim b_n,$$

$$(c) \qquad \qquad \lim(\alpha a_n) = \alpha \cdot \lim a_n,$$

$$\lim \frac{1}{a_n} = \frac{1}{\lim a_n},$$

vždy, má-li pravá strana smysl.

(e) $je-li\ a_n \le b_n\ a\ konvergují-li\ příslušné\ posloupnosti,\ je\ \lim a_n \le \lim b_n$

Důkaz: Buď $x = \lim a_n$, $y = \lim b_n$.

- (a) Máme $|(x+y)-(a_n+b_n)|=|x-a_n+y-b_n|\leq |x-a_n|+|y-b_n|$. Je-li tedy n_0 dost velké, aby $n\geq n_0 \Rightarrow |x-a_n|<\frac{\varepsilon}{2}\ \&\ |y-b_n|<\frac{\varepsilon}{2}$, je $|(x+y)-(a_n+b_n)|<\varepsilon$.
- (b) Máme $|xy-a_nb_n|=|xy-xb_n+xb_n-a_nb_n|\leq |x|\cdot|y-b_n|+|b_n|\cdot|x-a_n|$. Je-li n_0 tak velké, že pro $n\geq n_0$ je $|y-b_n|<\frac{\varepsilon}{2\,|x|+1}\,\&\,|b_n|< K\,\&\,|x-a_n|<\frac{\varepsilon}{2\,K},$ je $|xy-a_nb_n|<\varepsilon$.
- (c) může být jistě ponecháno čtenáři jako jednoduché cvičení.
- (d) $\left| \frac{1}{a_n} \frac{1}{x} \right| = \left| \frac{1}{xa_n} \right| \cdot |a_n x|$, odtud již na základě v tomto důkazu nabytých zkušeností snadno.
- (e) Kdyby $x = \lim a_n > y = \lim b_n$, zvolme $\varepsilon < \frac{1}{2}(x-y)$. Pro dost velké n pak $|x-a_n|$, $|y-b_n| < \varepsilon$ což ale znamená, že $b_n < a_n$ -spor. \square

Poznámka: Všimněte si triku přičtení a odečtení stejné hodnoty v části (b). S tím se dále setkáte častěji.

$$a_{k_1}, a_{k_2}, \ldots, a_{k_n}, \ldots$$

 $a_{k_1},\ a_{k_2},\ \ldots,\ a_{k_n},\ \ldots$ kde $k_1 < k_2 < \cdots < k_n < \cdots$ říkáme, že jsou vybrané z $(a_n)_n,$ nebo, že jsou to její podposloupnosti.

2.2 Věta: Každá podposloupnost konvergentní posloupnosti je konvergentní a konverguje k téže limitě.

Důkaz: Je-li pro
$$n \ge n_0 |a_n - x| < \varepsilon$$
, je tím spíš $|a_{k_n} - x| < \varepsilon$, protože $k_n \ge n$. \square

2.3 Věta: Každá shora omezená neklesající posloupnost a každá zdola omezená nerostoucí posloupnost konverguje, a to v prvním případě k supremu, v druhém k infimu množiny jejích členů.

Důkaz: provedeme pro první případ. Buď $s = \sup\{a_n \mid n = 1, 2, \dots\}, \varepsilon > 0$. Podle definice suprema existuje n_0 takové, že $a_{n_0} > s - \varepsilon$. Potom ale pro všechna $n \ge n_0$ je $a_n > s - \varepsilon$ a tedy $|s - a_n| < \varepsilon$. \square

Cauchyovské posloupnosti I.3

DEFINICE: Řekneme, že posloupnost $(a_n)_n$ je Cauchyovská, jestliže

$$\forall \varepsilon > 0 \exists n_0 \text{ tak, } \check{\text{ze}} m, n > n_0 \Rightarrow |a_m - a_n| < \varepsilon.$$

3.1 Věta: Každá konvergentní posloupnost je Cauchyovská.

Důkaz: K $\varepsilon > 0$ vezmeme n_0 takové, že pro $n \ge n_0$ je $|a_n - x| < \frac{\varepsilon}{2}$. Potom pro $m, n \ge n_0$ je $|a_n - a_m| = n_0$ $|a_n - x + x - a_m| \le |a_n - x| + |x - a_m| < \varepsilon$. \square

3.2 Věta: Má-li Cauchyovská posloupnost konvergentní podposloupnost, je konvergentní.

Důkaz: Nechť $k_1 < k_2 < k_3 < \cdots$ a nechť příslušná vybraná posloupnost konverguje k x. Buď $\varepsilon > 0$; zvolme n_0 tak, aby pro $m, n \geq n_0$ bylo $|a_m - a_n| < \frac{\varepsilon}{2}$ a $|a_{k_n} - x| < \frac{\varepsilon}{2}$. Jelikož $k_n \geq n$, máme $|a_n - x| = n$ $|a_n - a_{k_n}| + |a_{k_n} - x| < \varepsilon. \quad \square$

3.3 $V \check{E}_{TA}$: Z každé omezené posloupnosti lze vybrat podposloupnost konvergentní. Jsou-li a_n v kompaktním $intervalu \langle a, b \rangle$, je limita takové vybrané posloupnosti v tomto intervalu.

Důkaz: Položme $M = \{x \mid x < a_n \text{ pro nekonečně mnoho indexů } n\}$ a označme $s = \sup M$. Pro libovolné $\varepsilon > 0$ musí být

$$s - \varepsilon < a_n < s + \varepsilon$$

pro nekonečně mnoho indexů n, jak snadno vidíme z definice suprema. Zvolme k_1 tak, aby $s-1 < a_{k_1} < a_{k_2}$ s+1, a máme-li již nalezena $k_1 < \cdots < k_{n_1}$ tak, že vždy $s-\frac{1}{i} < a_{k_i} < s+\frac{1}{i}$, zvolíme $k_n > k_{n-1}$ tak, aby $s-\frac{1}{n} < a_{k_n} < s+\frac{1}{n}$. Potom zřejmě vybraná posloupnost $(a_{k_n})_n$ konverguje k s

Druhé tvrzení plyne okamžitě z tvrzení 2.1(e), vezmeme-li v úvahu konstantní posloupnosti a, a, a, \ldots a b, b, b, \square

3.4 Věta: (Bolzano-Cauchyova) Každá Cauchyovská posloupnost reálných čísel konverguje.

Důkaz: Podle vět 3.2 a 3.3 stačí dokázat, že je omezená. Pro $\varepsilon=1$ existuje n_0 takové, že pro $m,n\geq n_0$ je $|a_m-a_n|<1$, tedy speciálně $a_{n_0}-1< a_n< a_{n_0}+1$. Zbývá konečně mnoho členů, a ty ovšem tvoří omezený systém. \square

Poznámka: Věty 2.3 a zejména 3.4 mají zásadní význam. Uvědomme si, že jsou to kritéria konvergence v situaci, kdy předem hodnotu limity neznáme.

II Reálné funkce jedné reálné proměnné

II.1 Intervaly

1.1 Nevlastní hodnoty: Množinu reálných čísel často rozšiřujeme o hodnoty $-\infty$ a $+\infty$. V uspořádání < se klade $-\infty$ před všechna reálná čísla a $+\infty$ za všechna reálná čísla. Označujeme

$$\mathbb{R}^* = \mathbb{R} \cup \{-\infty, +\infty\}.$$

Částečně je možno rozšířit na tyto symboly i algebraickou strukturu reálných čísel, totiž formulemi

$$\begin{array}{ll} (+\infty) + (+\infty) = +\infty, & (-\infty) + (-\infty) = -\infty, \\ \text{pro } a \in \mathbb{R}^*, a > 0 & a \cdot (\pm \infty) = (\pm \infty) \cdot a = \pm \infty, \\ \text{pro } a \in \mathbb{R}^*, a < 0 & a \cdot (\pm \infty) = (\pm \infty) \cdot a = \mp \infty. \end{array}$$

Pozor: Zbývajícím případům $(0 \cdot (\pm \infty), (+\infty) + (-\infty))$ se žádné hodnoty nepřiřazují. O chování těchto t.zv. neurčitých výrazů v limitách se něco dozvíme později.

Nevlastní limity posloupností: Řekneme, že limita posloupnosti $(a_n)_n$ je $+\infty$ (resp. $-\infty$), existuje-li pro každé číslo K přirozené n_0 takové, že pro $n \ge n_0$ je $a_n > K$ (resp. $a_n < K$).

Je užitečným cvičením dokázat, že pravidla z věty I.2.1 platí pro tyto nové hodnoty.

1.2 Suprema a infima v \mathbb{R}^* : Připomeňme si definice suprema a infima z I.1. Připomeňme si, že supremum je nejmenší horní mez dané množiny, a infimum je největší dolní mez.

Z tohoto hlediska máme nyní v \mathbb{R}^* supremum pro každou množinu M: Není-li shora omezená, je inf $M=-\infty$. Trochu překvapivé může být na první pohled zjištění, že je sup $\emptyset=-\infty$, inf $\emptyset=+\infty$.

1.3 Připomínáme terminologii a označení, které čtenář jistě zná (v následujícím jsou $a, b \in \mathbb{R}$): omezené otevřené intervaly

$$(a,b) = \{x \mid a < x < b\},\$$

neomezené otevřené intervaly

$$(-\infty, a) = \{x \mid x < a\}, (a, -\infty) = \{x \mid a < x\}, (-\infty, +\infty) = \mathbb{R},$$

neomezené uzavřené intervaly

$$(-\infty, a) = \{x \mid x \le a\}, (a, +\infty) = \{x \mid a \le x\}, (-\infty, +\infty) = \mathbb{R},$$

omezené polouzavřené intervaly

$$(a, b) = \{x \mid a < x \le b\}, (a, b) = \{x \mid a \le x < b\},\$$

a omezené uzavřené intervaly

$$\langle a, b \rangle = \{ x \mid a \le x \le b \}.$$

Poznámky:

- 1. Nejde o přepsání, $\mathbb R$ je skutečně zařazován mezi otevřené i uzavřené intervaly. Později se dozvíte proč.
- 2. Prázdná množina je také interval můžeme ji zapsat třeba ve tvaru (a, a). Nebo také ve tvaru (1, -1).
- 3. Symbol (a, b) je trochu přetížen: mohl by označovat též uspořádanou dvojici, prvek množiny $\mathbb{R} \times \mathbb{R}$.

Terminologické poznámky: Uzavřené omezené intervaly hrají velmi významnou roli. Užívá se pro ně názvu *kompaktní intervaly*. Širší souvislosti budou patrny v partii o metrických prostorech.

Jednoprvkový interval $\langle a, a \rangle$ se nazývá degenerovaný.

1.4 DEFINICE: Intervalem na $\mathbb R$ nazveme každou podmnožinu $J \subset \mathbb R$ takovou, že

$$x, y \in J, x \le z \le y \Rightarrow z \in J.$$

Věta: Intervaly na $\mathbb R$ jsou právě množiny uvedené v seznamu 1.3.

Důkaz: Zcela zřejmě jsou všechny množiny z 1.3 intervaly ve smyslu nové definice. Naopak, je-li $J \subseteq \mathbb{R}$ interval, označme $a = \inf J$, $b = \sup J$ (nyní mohou být a, b již nekonečná). Snadnou (a trochu nudnou) diskusí toho, zda a resp. b do J patří nebo ne a zda je konečné zjistíme o který z případů z 1.3 se jedná. Provedme konkrétně třeba případ $a = -\infty$, b konečné, $b \notin J$. Hned vidíme, že $J \subseteq (-\infty, b)$; na druhé straně, je-li $x \in (-\infty, b)$, je x < b a tedy existuje $y \in J$ tak, že x < y < b, a jelikož J není zdola omezená, existuje $z \in J$ tak, že z < x. Tedy z < x < y a $z, y \in J$ a musí tedy být $x \in J$. Je tedy též $(-\infty, b) \subseteq J$ a celkem $J = (-\infty, b)$. Je užitečným cvičením probrat všechny případy. \square

1.5 Větu I.3.3 můžeme v nové terminologii přepsat takto

VĚTA: Každá posloupnost na kompaktním intervalu J má podposloupnost konvergující na tomto intervalu.

II.2 Reálné funkce

2.1 Reálnou funkcí na množině X rozumíme jakékoli zobrazení $f: X \to \mathbb{R}$. Pro reálné funkce na téže množině zavádíme operace a vztahy na základě struktury soustavy reálných čísel:

Pro $f, g: X \to \mathbb{R}, \alpha \in \mathbb{R}$ definujeme $f + g, \alpha \cdot f, f \cdot g: X \to \mathbb{R}$ předpisy (f + g)(x) = f(x) + g(x), $(\alpha \cdot f)(x) = \alpha \cdot f(x), (f \cdot g)(x) = f(x) \cdot g(x),$ je-li $g(x) \neq 0$ pro všechna $x \in X$ též $\frac{f}{g}: X \to \mathbb{R}$ předpisem $\frac{f}{g}(x) = \frac{f(x)}{g(x)}.$

Poznámky:

- 1. Uvědomte si, že posloupnosti reálných čísel jsou reálné funkce na množině přirozených čísel.
- 2. Uvědomme si, že $\alpha \cdot f$ je totéž co $const_{\alpha} \cdot f$, kde $const_{\alpha}$ je konstantní funkce přiřazující každému $x \in X$ číslo α .
- 3. Píšeme samozřejmě -f místo $(-1) \cdot f$, f g místo $f + (-1) \cdot g$.
- **2.2 Reálná proměnná:** Na první pohled se nabízí definovat reálné funkce jedné reálné proměnné jako zobrazení $f: \mathbb{R} \to \mathbb{R}$, tedy reálné funkce na \mathbb{R} . Tím bychom však vyloučili velmi důležité případy. Tak např. logaritmické funkce (tak jak je znáte ze střední školy) jsou definovány jen pro čísla kladná, odmocniny znáte pro čísla nezáporná; zobrazení $x \mapsto \frac{1}{1-x}$ není definováno v bodě 1.

Na druhé straně uvažovat rovnou všechna $f: X \to \mathbb{R}$, kde X je obecná podmnožina \mathbb{R} , by byla obecnost poněkud bezbřehá. Umluvíme se tedy, že za reálné funkce jedné reálné proměnné budeme považovat zobrazení $f: X \to \mathbb{R}$, kde X je sjednocením nějaké soustavy nedegenerovaných intervalů. Takové definiční obory mají prvky dvou různých typů:

- (1) Taková x, že ještě $(x \varepsilon, x + \varepsilon) \subseteq X$ pro dostatečně malé $\varepsilon > 0$. Ty nazýváme $vnitřními\ body$ (definičního oboru).
- (2) Ostatní, které nazýváme body krajními. U krajního bodu ovšem spolu s ním leží v X pro dostatečně malé $\varepsilon > 0$ buď interval $(x \varepsilon, x)$ nebo $(x, x + \varepsilon)$.

V konkrétních případech, se kterými budeme pracovat budou definiční obory velmi jednoduché. Casto to budou prostě intervaly.

Důležité upozornění: Definiční obor funkce je to, co je za něj prohlášeno. Tedy třeba funkce daná předpisem $x\mapsto \sin x$ na intervalu $\langle -\frac{\pi}{2},\frac{\pi}{2}\rangle$ je něco jiného než ta, která je týmž předpisem definována na celém \mathbb{R} ; ostatně mají též výrazně odlišné vlastnosti: první je prostá, druhá ne.

Často se setkáte s úlohou "nalézti definiční obor funkce". Máte dán třeba předpis $\sqrt{\log x}$ a očekává se odpověď: interval $(1, +\infty)$. Samozřejmě by takový předpis mohl být definicí funkce také třeba na $(2,3) \cup (5,6\pi)$. Přesněji vzato jste v takových úlohách tázáni na maximální definiční obor, na němž má daná formule smysl.

2.3 Operace z bodu 2.1 uvažujeme u reálných funkcí jedné reálné proměnné samozřejmě pro případy stejných definičních oborů. Přibývá nám ještě jedna důležitá operace skládání, označení

$$f \circ g$$
,

definované předpisem $(f \circ g)(x) = f(g(x))$. Ta má samozřejmě smysl jen v případě $f: X \to \mathbb{R}, g: Y \to \mathbb{R}$, kde $g[Y] \subseteq X$ (Kdybychom chtěli být pedanticky přesní, bylo by lépe v tomto případě nahradit g funkcí definovanou stejným předpisem, se stejným definičním oborem, ale s oborem hodnot X místo celého \mathbb{R} . Volnější přístup však zde jistě nepovede k problémům.)

- 2.4 Reálnou funkci f nazveme
 - (a) rostoucí, jestliže $x < y \Rightarrow f(x) < f(y)$,
 - (b) neklesající, jestliže $x < y \Rightarrow f(x) < f(y)$,
 - (c) nerostoucí, jestliže $x < y \Rightarrow f(x) > f(y)$,
 - (d) klesajíci, jestliže $x < y \Rightarrow f(x) > f(y)$,

Všem takovým říkáme funkce monotónní, funkcím typu (a) a (d) pak ryze monotónní.

2.5 Inverzní funkce: Jelikož jsme se v definici skládání v 2.3 trochu odchýlili od korektní definice, musíme trochu upravit definici inverzní funkce pro funkce reálné proměnné. Ty budeme definovat pro prosté funkce $f: X \to \mathbb{R}$ (nemusí to tedy být zobrazení na) tak, že bereme funkci inverzní k funkci $X \to f[X]$ se stejným předpisem, a díváme se na ni jako na funkci $g: f[X] \to \mathbb{R}$. Je tedy opět

$$f(g(x)) = x$$
, $g(f(x)) = x$,

jenomže $f \circ g$ ani $g \circ f$ nemusí být definovány na celém \mathbb{R} .

2.6 Ještě trochu terminologie: funkce takové, že f(-x) = f(x) se nazývají sudé, funkce takové, že f(-x) = -f(x) pak liché. Je-li pro nějaké pevné p pro každé x f(x+p) = f(x), hovoříme o funkci periodické (s periodou p).

II.3 Limity funkcí

3.1 DEFINICE: Buď f reálná funkce s definičním oborem D, nechť a je buď v D nebo na kraji některého z intervalů, z nichž je D sestaveno. Řekneme, že limita funkce f v bodě a je b, označení

$$\lim_{x \to a} f(x) = b,$$

jestliže platí formule

$$\forall \varepsilon > 0 \,\exists \, \delta > 0 \, \text{tak}, \, \text{že } 0 < |x - a| < \delta, x \in D \Rightarrow |f(x) - b| < \varepsilon$$

Poznámky:

- 1. Zdůraznění toho, že $x \in D$ může čtenáři připadat jako pedanterie. Jde samozřejmě o případy krajních bodů, ve kterých by buď napravo nebo nalevo od bodu a f(x) nebyla vůbec definována a proto bychom dost dobře nemohli požadovat, aby bylo $|f(x) b| < \varepsilon$. Často se podmínka $x \in D$ explicitně neuvádí a považuje v podstatě za samozřejmou. Pro začátek snad ale trochu pedantrie neškodí.
- 2. Nenápadný moment "0 < |x a|", t.j. $x \neq a$ ve formuli nahoře je ale velmi důležitý a prosím čtenáře, aby se nad ním na chvíli zamyslel. Především, f nemusí být v a vůbec definována. Ale i když tam třeba definována je, hodnota limity na f(a) nezávisí.

3.2 VĚTA:

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$

$$\lim_{x \to a} (f \cdot g)(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x),$$

$$\lim_{x \to a} (\alpha f)(x) = \alpha \cdot \lim_{x \to a} f(x),$$

(d)
$$\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{\lim_{x \to a} f(x)},$$

vždy, má-li pravá strana smysl.

Důkaz: Zcela obdobný důkazu věty 2.1. Jen jako připomínku provedeme třeba důkaz tvrzení (b). Buď $\lim_{x\to a} f(x) = b$, $\lim_{x\to a} g(x) = c$. Máme

$$|f(x)g(x) - bc| = |f(x)g(x) - bg(x) + bg(x) - bc| < |g(x)| \cdot |f(x) - b| + |b| \cdot |g(x) - c|$$

Je-li δ_0 dost malé, máme pro $0<|x-a|<\delta_0$ jistě $|g(x)|\leq |c|+1$. Zvolme nyní $\delta>0,\ \delta\leq\delta_0$, tak, aby pro $0<|x-a|<\delta$ bylo $|f(x)-b|<\frac{1}{|c|+1}\cdot\varepsilon,\ |g(x)-c|<\frac{1}{|b|+1}\cdot\varepsilon.$ Potom výraz nahoře bude $<\varepsilon$. \square

- 3.3 VĚTA: Bud'f < g, $bud'b = \lim_{x \to a} f(x)$, $c = \lim_{x \to a} g(x)$. Potom
 - (a) $b \leq c$,
 - (b) je-li b=c a je-li pro nějakou funkci h pro nějaká $\delta_0 > 0$, $f(x) \le h(x) \le g(x)$ pro $x \in (a-\delta_0, a+\delta_0)$, existuje $\lim_{x\to a} h(x)$ a je rovna b.

Důkaz:

- (a) se dokáže zcela obdobně jako (e) v 2.1
- (b) Buď $\delta > 0$, $\delta \le \delta_0$, takové, že pro $0 < |x-a| < \delta$ je $|f(x)-b| < \varepsilon$ a $|g(x)-b| < \varepsilon$. Tedy, pro $0 < |x-a| < \delta$ je $b-\varepsilon \le f(x) \le h(x) \le g(x) \le b+\varepsilon$, t.j. $|h(x)-b| < \varepsilon$. \square
- **3.4** V následující větě především předpokládáme, že g(f(x)) má smysl v dostatečném rozsahu. To jest, že pro dost malé $\delta > 0$, pro $0 < |x a| < \delta$ a x v definičním oboru funkce f je f(x) v definičním oboru funkce g.

Věta: $Bud'\lim_{x\to a}f(x)=b$, $\lim_{x\to b}g(x)=c$. Nechť platí některé z následujících tvrzení:

- (i) g(b) = c, nebo
- (ii) pro dostatečně malé $\delta_0 > 0$, je-li $0 < |x a| < \delta_0$, je $f(x) \neq b$.

Potom $\lim_{x \to a} g(f(x)) = c$.

Důkaz: Pro $\varepsilon > 0$ zvolme $\eta > 0$ tak, aby

$$0 < |y - b| < \eta \Rightarrow |g(y) - c| < \varepsilon$$

pro η pak zvolme $\delta > 0$ (a v druhém případě při tom dbejme na to, aby bylo $\delta < \delta_0$) tak, aby

$$0 < |x - a| < \delta \Rightarrow |f(x) - b| < \eta$$
.

Je-li tedy $0 < |x - a| < \delta$, máme v případě (ii) $0 < |f(x) - b| < \eta$ a tedy $|g(f(x)) - c| < \varepsilon$; v případě (i) se sice může stát, že |f(x) - b| = 0, t.j., f(x) = b, pro takové x je ale |g(f(x)) - c| = |g(b) - c| = 0. \square

Velmi důležitá poznámka: Splnění některé z podmínek (i), (ii) je podstatné. Bez nich by věta neplatila. Je užitečné pokusit se najít protipříklad.

II.4 Jednostranné limity

4.1 DEFINICE: Buď f reálná funkce s definičním oborem D, nechť a je buď vnitřní bod oboru D, nebo leží na pravém (resp. levém) kraji některého z intervalů z nichž je D sestaveno. Řekneme, že b je limita funkce <math>f v bodě a zleva (resp. zprava), označení

$$\lim_{x \to a^{-}} f(x) = b \text{ (resp. } \lim_{x \to a^{+}} f(x) = b)$$

jestliže

$$\begin{split} \forall \varepsilon > 0 \, \exists \, \delta > 0 \ \text{tak, \'ze} \ a - \delta < x < a \Rightarrow |f(x) - b| < \varepsilon \end{split}$$
 (resp.
$$\forall \varepsilon > 0 \, \exists \, \delta > 0 \ \text{tak, \'ze} \ a < x < a + \delta \Rightarrow |f(x) - b| < \varepsilon) \end{split}$$

Poznámka: Uvědomte si, že se nejedná o nic jiného než o limitu ve smyslu definice 3.1 při které se změní definiční obor: V prvním případě se D nahradí oborem $D \cap (-\infty, a)$, v druhém oborem $D \cap (a, +\infty)$. Tedy tvrzení z vět 3.2 a 3.3 platí i pro jednostranné limity. Ale pozor na větu 3.4! Uvědomte si jaká úskalí na nás číhají: Při omezení definičního oboru funkce g již nemusí být splněno to, o čem jsme mluvili na začátku bodu 3.4 před formulací věty.

II.5 Nevlastní limity a limity v nevlastních bodech

5.1 Buď f jako v definici 3.1. Řekneme, že limita funkce f v bodě a je $+\infty$ (resp. $-\infty$), jestliže

$$\forall K \exists \delta > 0 \text{ tak, } \check{\text{ze}} \ 0 < |x - a| < \delta \Rightarrow f(x) > K \text{ (resp. } < K)$$

V těchto případech mluvíme o nevlastních limitách.

5.2 Nechť $(k, +\infty) \subseteq D$ (resp. $(-\infty, k) \subseteq D$) pro nějaké k. Řekneme, že limita funkce v $+\infty$ (resp. $-\infty$) je b, jestliže

$$\forall \varepsilon > 0 \,\exists K \, \text{tak, že } x > K \Rightarrow |f(x) - b| < \varepsilon$$
(resp. $\text{tak, že } x < K \Rightarrow |f(x) - b| < \varepsilon$).

Zde mluvíme o limitách v nevlastních bodech.

Poznámka a cvičení: Tvrzení z vět 3.2 a 3.3 platí pro limity v nevlastních bodech. Dokažte!

Cvičení ve formulaci: Pokuste se nyní uhodnout, co znamená $\lim_{x\to +\infty} f(x) = +\infty$ (nebo $-\infty$, nebo $\lim_{x\to -\infty} f(x) = +\infty$, $-\infty$). Formulujte definice.

II.6 Spojité funkce

6.1 DEFINICE: Řekneme, že funkce f s definičním oborem D je spojitá v bodě x_0 jestliže

$$\forall \varepsilon > 0 \,\exists \, \delta > 0 \, \text{tak}, \, \check{\text{ze}} \, |x - x_0| < \delta, \, x \in D \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Řekneme, že f je spojitá (resp. spojitá na $X \subseteq D$), je-li spojitá v každém bodě svého definičního oboru (resp. v každém bodě $x_0 \in X$).

6.2 Všimněte si podobnosti s definicí limity, ale též rozdílu. Tentokrát není požadováno, aby bylo $|x-x_0| > 0$. Srovnáním obou definic dostaneme okamžitě následující tvrzení:

VĚTA: Funkce f je spojitá v bodě x_0 právě kdy $\lim_{x \to x_0} f(x) = f(x_0)$.

6.3 Z právě učiněného pozorování a věty 3.2 dostáváme bezprostředně

Důsledek: Jsou-li f, g spojité (v bodě $x_0 \in \mathbb{R}$), $\alpha \in \mathbb{R}$. Potom f + g, αf , $f \cdot g$ jsou spojité (v bodě x_0) a má-li $\frac{f}{g}$ smysl, je spojitá i tato.

6.4 Z případu (i) věty 3.4 dostáváme okamžitě

Důsledek: Jsou-li f, g spojité a má-li $g \circ f$ smysl, je tato funkce spojitá. Co se týče spojitosti v bodě: je-li f spojitá v bodě x_0 a g spojitá v bodě $y_0 = f(x_0)$, je $g \circ f$ spojitá v bodě x_0 .

6.5 Z definice dostaneme okamžitě

Pozorování: Je-li f s definičním oborem D spojitá a je-li $D_1 \subseteq D$, je $f|D_1$ spojitá.

6.6 Příklady:

- 1. Konstantní funkce jsou spojité.
- 2. Funkce definovaná předpisem $x \mapsto x$ je spojitá (volme $\delta = \varepsilon$).
- 3. Z 2. a věty 6.3 dostaneme, že předpis $x \mapsto \sum_{k=0}^{n} a_k x^k$ definuje spojitou funkci, podobně pak předpis

$$x \mapsto \frac{\sum_{k=0}^{n} a_k x^k}{\sum_{k=0}^{n} b_k x^k}$$

(v kterémžto případě ovšem musíme z definičního oboru vyloučit ty body y pro které $\sum b_k y^k = 0$).

II.7 Základní věta o řešení rovnic. Obrazy intervalů

7.1 Z definice spojitosti dostáváme okamžitě jednoduché, ale důležité

Pozorování: Je-li f s definičním oborem D spojitá v bodě x_0 a je-li $f(x_0) > 0$ (resp. $f(x_0) < 0$) je pro dostatečně malé $\delta > 0$,

$$x \in (x_0 - \delta, x_0 + \delta) \cap D \Rightarrow f(x) > 0 \ (resp. \ f(x) < 0)$$

(Stačí uvážit hodnotu $\varepsilon = |f(x_0)|$.)

7.2 VĚTA: Buď f spojitá na intervalu $\langle a, b \rangle$, buď $f(a) \cdot f(b) < 0$. Potom existuje $c \in (a, b)$ takové, že f(c) = 0.

Důkaz: Nechť třeba f(a) < 0 < f(b). Položme

$$M = \{ x \mid a \le x \le b, f(x) \le 0 \}, \qquad c = \sup M.$$

Z pozorování 7.1 vidíme okamžitě, že $c \in (a, b)$.

V bodě c musí mít funkce f nějakou hodnotu f(c).

Nechť f(c) > 0. Vezměme $\delta > 0$ z 7.1 a zvolme $y \in (c - \delta, c)$. Potom ale pro $x \ge y$ je stále f(x) > 0, tedy $x \notin M$ ve sporu s definicí suprema.

Nechť f(c) < 0. Opět podle 7.1 je f(x) < 0 ještě pro $x \in (c, c + \delta)$ pro dost malé δ , takže c není ani horní mezí množiny M, natož supremem.

Zbývá tedy jen možnost f(c) = 0. \square

7.3 Věta: Buď f spojitá na intervalu J. Potom je f[J] interval.

Důkaz: Buďte $f(a), f(b) \in f[J], f(a) < d < f(b)$. Aplikujme větu 7.2 na funkci g(x) = f(x) - d: Mezi body a a b musí být c takové, že g(c) = 0 a tedy f(c) = d. Jelikož a, b jsou v J a J je interval, je i $c \in J$.

II.8 Chování prostých funkcí na intervalech. Spojitost inverzních funkcí

8.1 Věta: Spojitá prostá (reálná) funkce definovaná na intervalu je ryze monotónní.

Důkaz: Nechť monotónní není. Potom existují a < b < c takové, že buď f(a), f(c) < f(b) nebo f(a), f(c) > f(b). Nechť nastane třeba první případ. Zvolme d takové, že

$$\max(f(a), f(c)) < d < f(b).$$

Podle věty 7.3 aplikované na intervaly $\langle a,b\rangle$ a $\langle b,c\rangle$ existují $x\in(a,b),\ y\in(b,c)$ tak, že f(x)=f(y)=d. Funkce f tedy není prostá. \square

8.2 VĚTA: Ryze monotónní reálná funkce f definovaná na intervalu J je spojitá právě když f[J] je interval.

Důkaz: Je-li f spojitá, je f[J] interval podle 7.3. Naopak buď f[J] interval, buď $x_0 \in J$. Ukážeme, že f je spojitá v bodě x_0 ; provedeme to pro případ vnitřního bodu x_0 , případy krajních bodů je možno nechat čtenáři jako jednoduché cvičení.

Zvolme $\varepsilon > 0$. Jelikož f je ryze monotónní (dejme tomu rostoucí, jinak třeba pracujme s-f a odvolejme se na 6.3) a f[J] je interval, máme nějaká x_1 , x_2 taková, že $x_1 < x_0 < x_2$ a že $f(x_0) - \varepsilon \le f(x_1)$, $f(x_2) \le f(x_0) + \varepsilon$. Položme $\delta = \min(x_0 - x_1, x_2 - x_0)$. Je-li $|x - x_0| < \delta$, je $x_1 < x < x_2$ a tedy

$$f(x_0) - \varepsilon \le f(x_1) < f(x) < f(x_2) \le f(x_0) + \varepsilon,$$

t.j.
$$|f(x) - f(x_0)| < \varepsilon$$
. \square

8.3 Zcela triviální je

Pozorování: Inverzní funkce k funkci rostoucí (resp. klesající) je opět rostoucí (resp. klesající).

8.4 Věta: Buď f spojitá funkce definovaná na intervalu J, buď g funkce k ní inverzní. Potom je funkce g spojitá.

Důkaz: Věta je snadným důsledkem předchozích tvrzení:

Jelikož f je spojitá prostá (jinak by neměla inverzní funkci), je ryze monotónní (8.1) a f[J] je interval (7.2). Jelikož je f ryze monotónní, je i g taková (8.3). Jelikož g je ryze monotónní a definovaná na intervalu f[J], a jelikož g[f[J]] = J je interval, je g spojitá (8.2). \square

8.5 Poznámka: Kromě triviálního pozorování 8.3 jsou všechna tvrzení z tohoto oddílu závislá na tom, že definiční obor je interval:

Buď $D = \langle 0, 1 \rangle \cup \langle 2, 3 \rangle$, buď f(x) = x na $\langle 0, 1 \rangle$ a f(x) = x na $\langle 0, 1 \rangle$ monotónní. K ní inverzní funkce g je definována na intervalu $\langle 0, 2 \rangle$, ale není spojitá.

II.9 Spojitost a limity posloupností

9.1 VĚTA: Reálná funkce (jedné reálné proměnné) s definičním oborem D je spojitá, právě když pro každou posloupnost $(x_n)_n$ prvků z D konvergující v D platí

$$\lim f(x_n) = f(\lim x_n).$$

Důkaz:

- I. Bud f spojitá, bud $x_0 = \lim x_n$. Zvolme $\varepsilon > 0$ a nalezneme k němu $\delta > 0$ tak, že $|x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \varepsilon$. K δ pak zvolme n_0 takové, že $n \ge n_0 \Rightarrow |x_n x_0| < \delta$. Je-li tedy $n \ge n_0$, je $|f(x_n) f(x_0)| < \varepsilon$, takže vidíme, že $\lim f(x_n) = f(x_0)$.
- II. Nechť f není spojitá. Tedy existuje $x_0 \in D$ a $\varepsilon_0 > 0$ tak, že pro každé $\delta > 0$ existuje nějaké $x(\delta) \in (x_0 \delta, x_0 + \delta)$ pro které je $|f(x(d)) f(x_0)| \ge \varepsilon_0$. Speciálně pro $\delta = \frac{1}{n}$ položme $x_n = x(\frac{1}{n})$. Máme nyní $|x_n x_0| < \frac{1}{n}$ a tedy zřejmě $\lim x_n = x_0$, jelikož však je vždy $|f(x_n) f(x_0)| \ge \varepsilon_0$, nemůže být $\lim f(x_n) = f(x_0)$. \square
- 9.2 Poznámka a cvičení: Věta se dá formálně zesílit takto:

Reálná funkce f s definičním oborem D je spojitá, právě když pro každou posloupnost $(x_n)_n$ prvků z D konvergentní v D posloupnost $(f(x_n))_n$ také konverguje.

Pokuste se tuto větu dokázat. Návod: Zamyslete se nad posloupností $x_1, x_0, x_2, x_0, x_3, x_0, \ldots$

II.10 Spojité funkce na kompaktních intervalech

10.1 Věta: Spojitá funkce na kompaktním intervalu $\langle a,b\rangle$ na něm nabývá maxima i minima.

Důkaz: Provedeme třeba pro maximum. Položme

$$s = \sup\{f(x) \mid x \in \langle a, b \rangle\}$$

Je-li s konečné (resp. nekonečné), volme podle definice suprema $x_n \in \langle a, b \rangle$ tak, aby

$$f(x_n) > s - \frac{1}{n} \text{ (resp. } f(x_n) > n).$$

Podle věty I.3.3 (opakované v 1.5) můžeme z $(x_n)_n$ vybrat konvergentní $(x_{k_n})_n$. Položme $y_n = x_{k_n}$, $y_0 = \lim y_n$. Jelikož $k_n \ge n$, máme opět

$$f(y_n) > s - \frac{1}{n}$$
 (resp. $f(y_n) > n$).

Podle věty 9.1 je $\lim f(y_n) = f(y_0)$. To okamžitě vylučuje druhý případ $(f(y_0))$ by muselo být větší než každé n); v prvním případě je ale zřejmě $\lim f(y_n) = s$. Tedy $f(y_0) = s$ je horní mez $\{f(x) \mid x \in \langle a, b \rangle\}$, a tedy je to maximum této množiny. \square

10.2 Důsledek: Obraz kompaktního intervalu při spojitém zobrazení je kompaktní interval.

10.3 Důsledek: Je-li f spojitá funkce na kompaktním intervalu J a je-li f(x) > 0 pro všechna $x \in J$, existuje $\varepsilon_0 > 0$ tak, že $f(x) > \varepsilon_0$ pro všechna $x \in J$. (Uvědomte si, že pro ostatní intervaly obdobné tvrzení neplatí.)

II.11 Body nespojitosti prvního a druhého druhu

Běžná představa nespojitosti je představa náhlého skoku v jinak plynulém průběhu funkce. Takovým případům, t.j. případům, kdy f(a) je definováno a

- buď $\lim_{x \to a+} f(x)$ i $\lim_{x \to a-} f(x)$ existují, ale jsou různé,
- nebo $\lim_{x \to a} f(x)$ existuje, ale je různá od f(a),

říkáme body nespojitosti prvního druhu. Ostatní body nespojitosti se nazývají body nespojitosti druhého druhu.

Limity, ani jednostranné, ovšem vůbec nemusí existovat. Čtenáři doporučuji zamyslet se nad následujícími dvěma příklady

- 1. Triviální příklad, t.zv. Dirichletova funkce. Definujme f(x) = 0 pro iracionální čísla, f(x) = 1 pro čísla racionální. Tato funkce není spojitá v žádném bodě (a nikde ani nemá limitu).
- 2. Méně triviální příklad. Dejme tomu na (0,1) definujme f(x) = 0 pro iracionální čísla a $f(x) = \frac{1}{q}$ pro racionální $\frac{p}{q}$ zapsaná tak, že přirozená čísla p, q jsou nesoudělná. Potom f(x) je nespojitá v racionálních číslech, ale ve všech iracionálních číslech spojitá je.

III Některé konkrétní funkce

III.1 Polynomy, odmocniny, racionální lomené funkce

- **1.1** Připomeňme si, že podle II.6.6 dávají předpisy $p(x) = \sum_{k=0}^{n} a_k x^k$ spojité reálné funkce jedné reálné proměnné. Tyto funkce se nazývají polynomy. Funkce definované předpisy $\frac{p(x)}{q(x)}$, kde p, q jsou polynomy se nazývají racionální lomené funkce.
- 1.2 Speciálně si všimněme polynomů $p(x) = x^n \ (n \ge 1)$. Pro lichá n jsou to funkce rostoucí na celém $\mathbb R$ a $p[\mathbb R] = \mathbb R$ (musí to být interval a pro kladné x je $x^n \ge x$, pro záporné x je $x^n \le x$; tedy tento interval nemůže být omezen shora ani zdola). Máme zde tedy inverzní funkci definovanou na celém $\mathbb R$. Pro sudá n je p funkce rostoucí na intervalu $(0, +\infty)$ a máme $p[(0, +\infty)] = (0, +\infty)$ (jelikož p(0) = 0 a $x^n \ge n$). Máme zde tedy inverzní funkci definovanou na $(0, +\infty)$.

Právě popsané inverzní funkce se nazývají odmocniny a předpisy pro ně se obvykle označují

$$\sqrt[n]{x}$$
.

Místo $\sqrt[2]{x}$ se obvykle píše prostě \sqrt{x} .

Podle II.8.4 jsou odmocniny spojité funkce.

III.2 Odbočení do komplexních čísel

2.1 Předpokládám, že čtenář byl na střední škole seznámen s tělesem komplexních čísel natolik, že ví, jak se komplexní čísla sčítají, odčítají, násobí a dělí, a že zná pojem komplexního čísla sdruženého k danému (připomínám: k číslu z = x + iy je přiřazeno $\overline{z} = x - iy$). Zejména si osvěžme následující fakta:

ripominam: k cislu
$$z=x+iy$$
 je prirazeno $z=x-iy$). Zejmena si osvezme nasledujíci tak
$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2},$$

$$\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2},$$
 je-li $z=x+iy$, je $z\overline{z}=x^2+y^2$, tedy je to vždy číslo reálné,
$$z+\overline{z}=2x \text{ je také vždy reálné}.$$
 Číslo $|z|=\sqrt{z\overline{z}}=\sqrt{x^2+y^2}$ se nazývá $absolutní\ hodnotou\ komplexního\ čísla\ $z=x+iy$.$

2.2 Budeme se nyní chvíli zabývat polynomy $p(z) = \sum_{k=0}^{n} a_k z^k$ s komplexními koeficienty a_k a komplexními argumenty z. Je-li při tom $a_n \neq 0$, hovoříme o polynomu stupně n. Tedy pozor, je-li p(z) identicky rovno nule, nespadá p pod žádný z těchto případů. Této konstantní nulové funkci budeme (jen pro účely tohoto paragrafu) přiřazovat stupeň -1. Stupeň polynomu p budeme označovat

$$\operatorname{St} p$$

Číslo α nazveme kořenem polynomu p jestliže $p(\alpha) = 0$. Velmi důležitý fakt, který zde přijmeme bez důkazu (zatím; v jedné z pozdějších kapitol se důkaz dozvíte) je t.zv.

"Základní věta algebry": Každý polynom stupně aspoň 1 má v množině komplexních čísel kořen.

2.3 Rozklady polynomů: Připomeňte si, že pro $n \ge 1$ je

$$z^{n} - \alpha^{n} = (z - \alpha)(z^{n-1} + z^{n-2}\alpha + z^{n-3}\alpha^{2} + \dots + z\alpha^{n-2} + \alpha^{n-1}).$$

Mějme nyní polynom $p(z) = \sum_{k=0}^{n} a_k z^k$, buď α_1 nějaký jeho kořen. Potom máme

$$p(z) = p(z) - p(\alpha_1) = \sum_{k=0}^{n} a_k (z^k - \alpha_1^k) = (z - \alpha_1) \cdot \sum_{k=1}^{n} a_k (z^{k-1} + z^{k-2}\alpha_1 + \dots + \alpha_1^{k-1}) = (z - \alpha_1) \cdot p_1(z),$$

14

kde $p_1(z)$ je polynom stupně n-1 s koeficientem a_n u mocniny z^{n-1} . Proceduru opakujme. Nakonec dostaneme

$$(*) p(z) = a_n(z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)$$

Kromě toho, že rozklad (*) má sám o sobě základní důležitost, má okamžitě významné důsledky, které budeme dále hojně používat.

2.4 Důsledek: Polynom stupně n > 1 má nejvýš n různých kořenů. (Skutečně, není-li α žádné z čísel $\alpha_1, \ldots, \alpha_n \text{ je } p(\alpha) = a_n(\alpha - \alpha_1) \cdots (\alpha - \alpha_n) \neq 0.$

Polynom stupně n může mít ovšem méně než n kořenů: Některé z čísel $\alpha_1, \ldots, \alpha_n$ se mohou mezi sebou rovnat. Počet opakování kořene α_i v rozkladu (*) se nazývá jeho násobnosti

2.5 Důsledek: Definují-li polynomy $p(z) = \sum_{n=0}^{n} a_k z^k$ a $q(z) = \sum_{k=0}^{m} b_k z^k$, $a_n \neq 0 \neq b_m$, totéž zobrazení na nekonečné podmnožině množiny komplexních čísel, je m=n a $a_k=b_k$ pro všechna k. (Skutečně, rozdíl p(z)-q(z) má nekonečně mnoho kořenů a nemůže to tedy být polynom kladného stupně. Stupně nula ovšem také být nemůže, to by neměl kořen vůbec žádný.)

2.6 Dělení polynomů polynomy se zbytkem:

VĚTA: Budte p(z), q(z) polynomy, $q(z) \not\equiv 0$. Potom existují polynomy q(z), q(z) tak, že

(1)
$$p(z) = u(z) \cdot q(z) + r(z)$$
,

(2) St r < St q.

Přitom měli-li polynomy p, q všechny koeficienty reálné, mají i u a r všechny koeficienty reálné.

Důkaz: Buď
$$p(z) = \sum_{k=0}^{n} a_k z^k$$
, $q(z) = \sum_{k=0}^{m} b_k z^k$. Platí tvrzení

(*) je-li n > m, existuje c tak, že $p(z) = c \cdot z^{n-m} \cdot q(z) + p_1(z)$ a St $p_1 < \operatorname{St} p$.

Stačí totiž volit $c=\frac{a_n}{b_m}$. Ve výrazu $p(z)-\frac{a_n}{b_m}z^{n-m}q(z)$ se pak koeficient u stupně n anuluje. Pokud St $p_1 \geq$ Stq, můžeme (*) znovu použít na p_1 , a proceduru opakujeme až do chvíle, kdy v j-tém

kroku je St $p_i < \text{St}q$. Pak máme

$$p(z) = c_1 z^{n_1} q(z) + c_2 z^{n_2} q(z) + \dots + c_j z^{n_j} q(z) + p_j(z).$$

Stačí nyní položit $u(z) = c_1 z^{n_1} + \cdots + c_j z^{n_j}$, $r(z) = p_j(z)$. Vzhledem k tomu, že v kroku (*) se s koeficienty provádějí jen aritmetické operace, platí i druhé tvrzení. 🗆

2.7 Věta: Vyjádření z věty 2.6 je jednoznačně určeno.

Důkaz: Je-li
$$p(z) = u_j(z) \cdot q(z) + r_j(z)$$
, $j = 1, 2$, máme $u_1(z)q(z) + r_1(z) = u_2(z)q(z) + r_2(z)$ a tedy

$$q(z)(u_1(z) - u_2(z)) = r_2(z) - r_1(z).$$

Kdyby stupeň polynomu $u_1(z) - u_2(z)$ byl nezáporný, byl by na levé straně polynom stupně $\geq \operatorname{St} q$, na pravé straně však polynom stupně menšího ve sporu s 2.5. Tedy $u_1(z) = u_2(z)$ a odtud hned $r_2(z) - r_1(z) = 0$.

Důsledek: Je-li $p(x) = u(x) \cdot q(x)$ a mají-li p, q všechny koeficienty reálné, má též u všechny koeficienty reálné.

Racionální lomená funkce s komplexními koeficienty III.3

3.1 Lemma: Budte α , β dvě různá komplexní čísla, $k \geq 1$. Potom existují polynomy u(z), v(z) takové, že

$$u(z)(z-\alpha) + v(z)(z-\beta)^k \equiv 1.$$

Důkaz: Stačí samozřejmě dokázat, že pro vhodné u, v je ten součet roven nenulové konstantě. Zvolme u(z), v(z) takové, aby s nimi měl výraz

$$p(z) = u(z)(z - \alpha) + v(z)(z - \beta)^{k}$$

nejmenší možný nezáporný stupeň.

Podle 2.6 máme $(z - \alpha) = u_1(z)p(z) + r_1(z)$, St $r_1 <$ St p a tedy $(z - \alpha) = u_1(z)u(z)(z - \alpha) + v(z)(z - \beta)^k + r_1(z)$, $(1 - u_1(z)u(z))(x - \alpha) - v(z)(z - \beta) = r_1(z)$.

Jelikož p mělo nejmenší možný nezáporný stupeň v součtu takového typu, musí být $r_1 \equiv 0$ a tedy

$$(z - \alpha) = u_1(z)p(z).$$

Podobně máme $(z-\beta)^k=u_2(z)\cdot p(z)+r_2(z),$ St $r_2<$ St p a tedy $(1-u_2(z)v(z))(x-\beta)^k-u(z)(x-\alpha)=z_2(z),$ odkud $r_2=0$ a

$$(z - \beta)^k = u_2(z)p(z).$$

Pokud by Stp(z) > 1, měl by p kořen γ , ten by ale podle (*) musel být roven α i β . Tedy je p nenulová konstanta. \square

3.2 VĚTA: Racionální lomená funkce $\frac{p(z)}{q(z)}$ se dá napsat jako součet

$$P(z) + \sum_{j \in J} V_j(z),$$

 $kde\ P\ je\ polynom\ a\ každý\ z\ výrazů\ V_i(z)\ je\ tvaru$

$$\frac{A}{(z-\alpha)^k},$$

 $kde\ A\ je\ \check{c}$ íslo a $lpha\ ko\check{r}$ en polynomu $q(z)\ n$ ásobnosti nejméně k.

Důkaz: Indukcí podle stupně polynomu q(z). Je-li Stq=0, je tvrzení triviální, je-li Stq=1, plyne okamžitě z věty 2.6: je-li $q(z)=c(x-\alpha)$, máme $p(z)=c\cdot u(z)(x-\alpha)+B$, B je číslo a tedy

$$\frac{p(z)}{q(z)} = u(z) + \frac{B}{c(x-\alpha)}.$$

Nechť nyní tvrzení platí pro St $q \leq s$, ukážeme, že platí pro racionální lomené funkce tvaru $\frac{p(z)}{(z-\alpha)q(z)}$. Taková funkce se podle indukčního předpokladu dá napsat jako

$$\frac{P(z)}{z-\alpha} + \sum_{j \in J} \frac{V_j(z)}{z-\alpha}.$$

Podle tvrzení o stupni 1 si nemusíme dělat starosti s prvním sčítancem a stačí dokázat, že každý ze sčítanců $\frac{V_j(z)}{z-\alpha} \text{ se dá napsat zase jako součet sčítanců předpokládaného typu. Buď } V_j(z) = \frac{A}{(z-\beta)^k}. \text{ Je-li } \alpha = \beta,$

máme hned sčítanec $V_j(z) = \frac{A}{(z-\beta)^k}$, je-li $\alpha \neq \beta$, vezměme

$$1 = u(z)(z - \alpha) + v(z)(z - \beta)^{k}$$

z lemmatu 3.1 a dostaneme

$$\frac{A}{(z-\alpha)(z-\beta)^k} = \frac{Au(z)(z-\alpha) + Av(z)(z-\beta)^k}{(z-\alpha)(z-\beta)^k} = \frac{Au(z)}{(z-\beta)^k} + \frac{Av(z)}{z-\alpha}$$

a každý z těchto sčítanců již můžeme přepsat do žádaného tvaru podle indukčního předpokladu. 🗆

III.4 Co z toho plyne pro reálné polynomy a racionální lomené funkce

4.1 VĚTA: Má-li polynom s reálnými koeficienty komplexní kořen α , je jeho kořenem též $\overline{\alpha}$ Násobnosti obou těchto kořenů jsou stejné.

Důkaz: Máme $0 = \sum_{k=0}^{n} a_k z^k$ a tedy podle pravidel o počítání s komplexně sdruženými čísly dostáváme

$$0 = \overline{0} = \sum_{k=0}^{n} a_k \alpha^k = \sum_{k=0}^{n} \overline{a_k} \overline{\alpha}^k = \sum_{k=0}^{n} a_k \overline{\alpha}^k.$$

Tedy je $\overline{\alpha}$ též kořenem a můžeme rozkládat (viz 2.3)

$$p(z) = (z - \alpha)(z - \overline{\alpha})p_2(z) = (z^2 - (\alpha + \overline{\alpha})z + \alpha\overline{\alpha})p_2(z)$$

Připomeňte si, že $\alpha + \overline{\alpha}$ i $\alpha \overline{\alpha}$ jsou reálná čísla a tedy podle důsledku v 2.7 je $p_2(z)$ opět polynom s reálnými koeficienty. Má-li tedy $p_2(z)$ opět kořen α , situace se opakuje. V proceduře pokračujeme tak dlouho, až se již v polynomu $p_{2j}(z)$ z rozkladu

$$p(z) = (z^{2} - (\alpha + \overline{\alpha})z + \alpha \overline{\alpha})^{j} \cdot p_{2j}(z)$$

kořen α neobjeví. \square

4.2 Důsledek: Polynom q s reálnými koeficienty se dá napsat ve tvaru

$$q(z) = a(x - \alpha_1)^{k_1} \cdots (x - \alpha_r)^{k_r} (x^2 + a_1 x + b_1)^{l_1} \cdots (x^2 + a_s x + b_s)^{l_s}$$

kde polynomy $x^2 + a_j x + b_j$ již reálné kořeny nemají, a čísla $a, \alpha_1, \ldots, \alpha_r, a_1, \ldots, a_s$ a b_1, \ldots, b_s jsou reálná.

Poznámka: Polynomy $x^2 + ax + b$, které nemají reálné kořeny (vzpomenete-li si na to, co znáte o kvadratických rovnicích, uvědomíte si, že jsou to takové, pro které je $a^2 - 4b < 0$) se nazývají *ireducibilní* polynomy.

4.3 Věta: V tomto tvrzení se již všechno děje v reálném oboru. Racionální lomená funkce $\frac{p(x)}{q(x)}$ se dá napsat ve tvaru

$$P(x) + \sum_{j \in J} V_j(x)$$

 $kde\ P(x)\ je\ polynom\ a\ každý\ z\ výrazů\ V_i\ má\ tvar$

$$\frac{A}{(x-\alpha_j)^k} \ (k \le k_j) \ nebo \ \frac{Ax+B}{(x^2+a_jx+b_j)^k} \ (k \le l_j)$$

a symboly α_i , a_i , b_i , k_i , l_i jsou čísla z rozkladu 4.2.

Důkaz: Nebudeme provádět podrobně, je zcela analogický důkazu věty 3.2, pouze komplikovanější o to, že je třeba probrat více případů. Především se zcela stejně jako v lemmatu 3.1 dokáže, že existují polynomy u(x), v(x) také takové, aby

$$u(x)(x-\alpha) + v(x)(x^2 + ax + b)^k \equiv 1,$$

aby

$$u(x)(x^{2} + ax + b) + v(x)(x^{2} + cx + d)^{k} \equiv 1,$$

a aby

$$u(x)(x^2 + ax + b) + v(x)(x - \alpha)^k \equiv 1$$

(samozřejmě v každém z uvedených případů se jedná o polynomy jiné). Pomocí těchto identit se pak provede indukční krok stejně jako v 3.2. \square

Obr. 1:

III.5 Goniometrické a cyklometrické funkce

5.1 Předpokládáme, že studenti mají jakési základní znalosti o funkcích sin x, $\cos x$, tg x, $\cot x$ ze střední školy. Argumenty x budeme chápat v tzv. obloukové míře. I když zatím naše představa o délce oblouku kružnice může být trochu nejasná, myslím, že z ní můžeme vycházet. Zejména tedy pro $0 < x < \frac{\pi}{2}$ nám o vztazích může mnoho říci obrázek 1.

Připomeňme si některá základní fakta:

$$\sin^{2} x + \cos^{2} x = 1$$

$$|\sin x|, |\cos x| \le 1,$$

$$\sin(x + 2\pi) = \sin x, \cos(x + 2\pi) = \cos x,$$

$$\sin(x + \pi) = -\sin x, \cos(x + \pi) = -\cos x,$$

$$\cos x = \sin(\frac{\pi}{2} - x),$$

$$\sin(-x) = -\sin x, \cos(-x) = \cos x.$$

Velmi důležitou roli hrají součtové vzorce:

$$\sin(x + y) = \sin x \cos y + \cos x \sin y,$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y,$$

a často používáme též z nich odvozené formule

$$\sin x \cos y = \frac{1}{2}(\sin(x+y) - \sin(x-y)),$$

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)),$$

$$\cos x \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y)).$$

Asi nemusíme připomínat, že

$$\operatorname{tg} x = \frac{\sin x}{\cos x}, \, \operatorname{cotg} x = \frac{\cos x}{\sin x}$$

Připomeňme ještě, že

- $\sin x$, $\cos x$ jsou definovány na celém \mathbb{R} , $\sin x$ roste na $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ a $\cos x$ klesá na $\langle 0, \pi \rangle$
- tg x je definována na $\mathbb{R}\setminus\{k\pi+\frac{\pi}{2}\mid k\}$ a na každém intervalu $(k\pi+\frac{\pi}{2},(k+1)\pi+\frac{\pi}{2})$ roste.
- 5.2 Důležitá limita: Následující fakt hraje zásadní roli:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Objasnění: (důkazem to radši nenazýváme, vycházíme zde z názoru a nestaráme se příliš o korektnost pojmu "délky oblouku":) Všimněme si do sebe vložených útvarů na obrázku 1. Plocha trojúhelníku o odvěsnách $\sin x$, $\cos x$ je menší nebo rovna ploše kruhové výseče pod obloukem x a ta je menší nebo rovna ploše trojúhelníku o odvěsnách tgx a 1. Máme tedy

$$\frac{1}{2}\sin x \cos x \le \frac{1}{2}x \le \frac{1}{2}\operatorname{tg} x = \frac{1}{2}\frac{\sin x}{\cos x}$$

odkud dostaneme

$$\cos x \le \frac{\sin x}{x} \le \frac{1}{\cos x}$$

Tedy s odvoláním na II.3.3(b) a v důvěře, že $\lim_{x\to 0}\cos x=1$ (což je jistě velmi názorný fakt) dostáváme naši formuli

V dalším budeme tuto formuli považovat za "axiom" a budeme dbát na to, abychom všechna tvrzení týkající se limit související s goniometrickými funkcemi z ní již korektně odvodili.

5.3 Tvrzení:

- $1. \lim_{x \to 0} \sin x = 0,$
- $2. \lim_{x \to 0} \cos x = 1,$
- 3. $\lim_{x \to 0} \frac{\cos x 1}{x} = 0$

(Jsem si vědom toho, že formuli 2 jsme užívali při objasnění limity z 5.2. Opakuji, že tu považujeme nadále za axiom a ukazujeme jen, že ostatní fakta, tedy také toto z ní plynou.)

Důkaz:

- 1. $\lim \sin x = \lim x \cdot \frac{\sin x}{x} = \lim x \cdot \lim \sin \frac{\sin x}{x} = 0$.
- 2. Máme $\sin x \cos x = \frac{1}{2\sin 2x}$. Tedy

$$\lim \cos x = \lim \frac{1}{2} \frac{\sin 2x}{\sin x} = \lim \frac{\sin 2x}{2x} \cdot \frac{x}{\sin x} = \lim \frac{\sin 2x}{2x} \cdot \lim \frac{x}{\sin x} = 1$$

(použili jsme, velmi triviálním způsobem, též větu II.3.4).

3. Máme $\sin^2 x = 1 - \cos^2 x = (1 - \cos x)(1 + \cos x)$ a tedy

$$\frac{1-\cos x}{r} = \frac{1}{1+\cos r} \cdot \sin x \cdot \frac{\sin x}{r}.$$

Odtud již snadno. 🗆

5.4 Věta: $Funkce \sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{cotg} x$ $\operatorname{jsou} \operatorname{spojit\acute{e}}$.

Důkaz: Stačí provést pro sin, ostatní již potom plyne z nahoře uvedených formulí a vět II.6.3 a II.6.4. Budeme užívat větu II.6.2 (a ovšem též II.3.4; uvědomte si kde a jak)

Máme

$$\sin x = \sin(x_0 + (x - x_0)) = \sin x_0 \cdot \cos(x - x_0) + \cos x_0 \cdot \sin(x - x_0).$$

Tedy

$$\lim_{x \to x_0} \sin x = \sin x_0 \cdot \lim_{x \to x_0} \cos(x - x_0) + \cos x_0 \cdot \lim_{x \to x_0} \sin(x - x_0) = \sin x_0.$$

5.5 Množina hodnot funkcí sin x a cos x je interval $\langle -1, 1 \rangle$. Tutéž množinu hodnot má ovšem funkce sin (resp. funkce cos) již na intervalu $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ (resp. $\langle 0, \pi \rangle$), kde je ryze monotónní. Inverzní funkce k takto vymezeným funkcím definované na $\langle -1, 1 \rangle$ se nazývají arcussinus a arcuscosinus a označují

Vzhledem k tomu, že $\lim_{x \to \frac{\pi}{2}-} \sin x = 1$ a $\lim_{x \to \frac{\pi}{2}-} \cos x = 0$ (a cos je v $(0, \frac{\pi}{2})$ kladný), snadno vidíme, že, $\lim_{x \to \frac{\pi}{2}-} \operatorname{tg} x = +\infty$, a obdobně snadno zjistíme, že $\lim_{x \to -\frac{\pi}{2}+} \operatorname{tg} x = -\infty$. Jelikož tg je funkce spojitá na $(-\frac{\pi}{2}, \frac{\pi}{2})$, musí být její obraz interval a vzhledem k právě zmíněným limitám to musí být celé \mathbb{R} . Nadto tg na $(-\frac{\pi}{2}, \frac{\pi}{2})$ roste a tedy k takto vymezené funkci máme funkci inverzní. Ta se nazývá arcustangens a označuje

Podle věty II.8.4 vidíme, že funkce arcsin, arccos, arctg jsou spojité. Tyto funkce a ovšem též arccotg x, inverzní k cotg x omezené na interval $(0, \pi)$, se nazývají funkce cyklometrické.

III.6 Logaritmy a exponenciální funkce. Obecné mocniny.

6.1 Funkci (*přirozený*) logaritmus zavedeme "axiomaticky", t.j. vypíšeme ty její vlastnosti, z nichž budeme všechno další odvozovat. V jedné z dalších kapitol se přesvědčíme, že taková funkce skutečně existuje. Označíme ji

 $\lg x$

a vlastnosti jsou tyto:

- (1) lg x je definována a roste na intervalu $(0, +\infty)$,
- $(2) \lg xy = \lg x + \lg y,$
- (3) $\lim_{x \to 1} \frac{\lg x}{x 1} = 1.$

6.2 VĚTA:

- 1. lg 1 = 0
- 2. $\lg \frac{x}{y} = \lg x \lg y$

Důkaz:

- 1. $\lg 1 = \lg(1 \cdot 1) = \lg 1 + \lg 1$
- 2. $\lg \frac{x}{y} + \lg y = \lg x$. \square

Pozorování: Podle věty II.3.4 můžeme vlastnost (3) přepsat na

$$\lim_{x \to 0} \frac{\lg(1+x)}{x} = 1.$$

6.3 VĚTA: lg je spojitá funkce zobrazující $(0, +\infty)$ na celé \mathbb{R} .

Důkaz: Především máme $\lim_{x\to 1} \lg x = \lim_{x\to 1} \frac{\lg x}{x-1} \cdot \lim(x-1) = 0$. Podle pravidel počítání s limitami (II.3.2, II.3.4) máme $\lim_{x\to x_0} \lg x = \lim_{x\to x_0} (\lg x_0 + \lg \frac{x}{x_0}) = \lg x_0 + \lim_{x\to x_0} \lg \frac{x}{x_0} = \lg x_0$, takže je lg podle věty z II.6.1 spojitá.

Jelikož roste, musí být $a=\log 2>0$, takže l
g $2^n=n\cdot a$ nabývá při rostoucím n libovolně velkých hodnot, l
g $2^{-n}=-n\cdot a$ pak libovolně velkých záporných hodnot. Jelikož l
g[$(0,+\infty)$] musí být interval, je to nutně \mathbb{R} . \square

6.4 Funkci inverzní k lg (která je definovaná na celém \mathbb{R} a je podle II.8.4 spojitá) označme prozatím exp (za chvíli přejdeme k jinému označení, to by ale zatím bylo nevhodně sugestivní). Z pravidel pro lg dostáváme okamžitě formule

(6.4.1)
$$\begin{aligned} \exp 0 &= 1, \\ \exp(x+y) &= \exp x \cdot \exp y, \\ \exp(x-y) &= \frac{\exp x}{\exp y}. \end{aligned}$$

Položme

$$e = \exp 1$$
.

Pro celá čísla k dostaneme z pravidel 6.4.1 rovnici

$$\exp k = e^k$$

v běžném smyslu mocniny. Na střední škole jste se kromě celočíselných naučili používat též racionálních mocnin $(a^{\frac{p}{q}} = \sqrt[q]{a^p})$. I zde dostáváme

$$\exp\frac{p}{q} = e^{\frac{p}{q}};$$

podle 6.4.1 je totiž $\exp \frac{p}{q}$ ono (jediné) kladné číslo, které umocněno na q dává e^p . Když ještě vezmeme v úvahu, že exp je funkce spojitá, vede nás to k pohledu na expx jako na číslo e umocněné na x-tou, a budeme nadále psát místo $\exp x$ prostě

$$e^x$$
.

Obecněji buď a libovolné kladné číslo. Podle předchozího máme

$$e^{\lg a} = \exp \lg a = a.$$

Definujeme

$$a^x = e^{x \lg a}$$

a snadno se opět přesvědčíme, že i zde se na a^x můžeme dívat jako na "a umocněné na x-tou" (t.j. že to není ve sporu s dosavadním užíváním tohoto symbolu, že pro k celé kladné je $a^k = a \cdot \cdots \cdot a$ (k-krát), pro kzáporné $a^k=\frac{1}{a^{|k|}}$ a pro racionální $\frac{p}{q},$ že je $a^{\frac{p}{q}}=\sqrt[q]{a^p}\big).$

Dále budeme obecně pracovat s mocninou a^b (je-li ovšem a>0) jako s $e^{b\lg a}$. Máme tedy definovány též spojité funkce

$$x \mapsto x'$$

s obecným pevným a (v tomto novém smyslu ovšem jen pro $x \in (0, +\infty)$)

Konečně, pro $a \neq 1$ je a^x inverzní k funkci

$$\log_a x = \frac{\lg x}{\lg a}$$

Tuto funkci nazýváme logaritmem při základu a.

III.7Poznámky

7.1 Funkce získané postupným prováděním aritmetických operací a operace skládání z funkcí probíraných v této kapitole se nazývají elementární funkce.

Uveďme několik příkladů: Funkce (pokaždé na vhodném definičním oboru) definované předpisy

$$\sin x + \cos 2x$$
, $e^{x^2 + 2x + \lg x}$, $\sqrt{\log_3(\sin x + 1)}$,

nebo třeba

$$\frac{\sqrt{\sin e^x(\cos(\operatorname{arctg} 3x) + 5)}}{6^{\operatorname{tg}(\lg\sqrt{x})}}.$$

- 7.2 Podobně jako byl logaritmus zaveden axiomaticky, je též ke goniometrickým funkcím možno přistupovat tímto způsobem. Běžný postup je předpokládat o funkci φ a jakémsi kladném (ale blíže nedefinovaném) čísle π , že
 - (1) φ je definována na celém \mathbb{R} ,
 - (2) $\varphi(0) = 0$,
 - (3) $\varphi(x+y) + \varphi(x-y) = 2\varphi(x)\varphi(\frac{\pi}{2} y),$
 - (4) φ roste v intervalu $(0, \frac{\pi}{2})$, a
 - (5) $\lim_{x \to 0} \frac{\varphi(x)}{x} = 1.$

Dosazením $x = \frac{\pi}{2}$, y = 0 do (3) dostaneme $2\varphi(\frac{\pi}{2}) = 2\varphi^2(\frac{\pi}{2})$, odtud pak $\varphi(\frac{\pi}{2}) = 1$ (podle (2) a (4) to totiž není 0).

Podle (3) dosazením x=0 dostaneme $\varphi(y)+\varphi(-y)=0$, takže víme, že φ je lichá funkce.

Dále,
$$\varphi(x+\pi) = \varphi(\frac{\pi}{2} - (-x - \frac{\pi}{2})) = \varphi(\frac{\pi}{2} + (-x - \frac{\pi}{2})) = \varphi(-x) = -\varphi(x)$$
 a odtud $\varphi(x+2\pi) = \varphi(x)$

Dosazením $x = \frac{\pi}{2}$ dostaneme $\varphi(\frac{\pi}{2} + y) + \varphi(\frac{\pi}{2} - y) = 2\varphi(\frac{\pi}{2} - y)$, tedy $\varphi(\frac{\pi}{2} + y) = \varphi(\frac{\pi}{2} - y)$. Dále, $\varphi(x + \pi) = \varphi(\frac{\pi}{2} - (-x - \frac{\pi}{2})) = \varphi(\frac{\pi}{2} + (-x - \frac{\pi}{2})) = \varphi(-x) = -\varphi(x)$ a odtud $\varphi(x + 2\pi) = \varphi(x)$. A tak postupně, po označení sin $x = \varphi(x)$, cos $x = \varphi(\frac{\pi}{2} - x)$ postupně všechna pravidla, jichž jsme ... užívali.

Také o funkci sin x se později přesvědčíme, že opravdu existuje. V paragrafu III.5 jsme dali názoru přednost před "axiomatickým zavedením" proto, že názorná představa byla asi na střední škole dostatečně vybudována.

7.3 Věta 4.3 (resp. 3.2) má velmi praktické užití (viz kapitolu o neurčitém integrálu). Jak se rozklad konkrétně provede, ukážeme na názorném příkladě:

Snažíme se napsat

$$\frac{3x^3 + 2x^2 + 2x + 1}{(x^2 + 1)x^2}$$

jako

$$\frac{Ax+B}{x^2+1} + \frac{C}{x^2} + \frac{D}{x}.$$

Po převedení této sumy na společného jmenovatele dostaneme

$$\frac{(A+D)x^3 + (B+C)x^2 + Dx + C}{(x^2+1)x^2}$$

tedy chceme najít A, B, C, D tak, aby

$$A + D = 3$$
, $B + C = 2$, $D = 2$ a $C = 1$

Věta 4.3 říká vlastně to, že takovým způsobem sestavené rovnice mají vždy řešení (jako zde A=1, B=1, D=2 a C=1).

IV Derivace

IV.1 Definice a jedna charakterizační věta

1.1 Nechť x_0 je vnitřní bod definičního oboru funkce f. Derivací funkce f v bodě x_0 rozumíme číslo

(1.1.1)
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Samozřejmě, pokud tato limita existuje — jinak řekneme, že f v bodě x_0 derivaci nemá. Ve světle věty II.3.4 můžeme formuli (1.1.1) přepsat na

(1.1.2)
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

1.2 Poznámky:

- 1. Zde se setkáváte s přirozeným případem limity funkce, která v kritickém bodě není definována: měli bychom tam nulu ve jmenovateli.
- 2. Pojem je velmi názorný. Představme si křivku, která je grafem funkce f. Podíl

$$\frac{f(x_0+h)-f(x)}{h}$$

je směrnice sečny procházející body $(x_0, f(x_0)), (x_0 + h, f(x_0 + h))$. Derivace je tedy výrazem představy o tečně v bodě $(x_0, f(x_0)),$ k níž se sečny neomezeně blíží.

Jiná představa s tím spojená je představa okamžité rychlosti v bodě x_0 , znamená-li f(x) dráhu uraženou v čase x. Zde se hodí spíš formule (1.1.2). Podíl $\frac{f(x) - f(x_0)}{x - x_0}$ je průměrná rychlost na intervalu mezi x a x_0 .

1.3 Jednostranné derivace: Nahradíme-li limity v definici derivace limitami zprava (resp. zleva), dostáváme definici derivace zprava (resp. derivace zleva). Ty ovšem mohou být definovány též v krajních bodech definičního oboru.

Pozorování: Funkce f má v bodě x_0 derivaci, právě když tam má derivace zleva i zprava a když se tyto hodnoty rovnají.

- 1.4 Triviální příklad: f(x) = |x| má v kladném x derivaci 1 (neboť $\frac{|x+h|-|x|}{h} = \frac{x+h-x}{h} = 1$ pro dost malé h), v záporném x pak derivaci -1. V bodě 0 derivaci nemá, má tam však derivaci zprava 1 a derivaci zleva -1.
- 1.5 Derivace funkce v bodě je (reálné) číslo. Funkce ovšem může mít derivaci ve všech bodech nějakého definičního oboru D. Potom předpis

$$x \mapsto f'(x)$$

definuje novou reálnou funkci na D. Této funkci říkáme derivace funkce f (na D). Funkci, která má derivaci, často říkáme funkce hladká (geometrická motivace tohoto termínu je zřejmá).

Kromě již zavedeného označení f se užívají též označení jiná, např.

$$\frac{df}{dx}$$
, $\frac{d}{dx}f$, $\frac{df(x)}{dx}$.

Tato jsou velmi výhodná zvláště v situacích, kde chceme zdůraznit, které písmeno v dané formuli znamená proměnnou.

23

1.6 VĚTA: Funkce f má derivaci A v bodě x_0 právě když existuje funkce μ definovaná na $(-\varepsilon, \varepsilon) - \{0\}$ pro nějaké $\varepsilon > 0$ takové, že

(a)
$$f(x+h) - f(x) = Ah + h\mu(h)$$
,

(b)
$$\lim_{h\to 0} \mu(h) = 0$$
.

Důkaz: Platí-li požadavek, je

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} (A + \mu(h)) = A.$$

Naopak, existuje-li limita (1.1.1), definujeme

$$\mu(h) = \frac{f(x+h) - f(x)}{h} - A$$

Poznámka: Zde dostáváme další představu o smyslu derivace: souvisí s nahrazením funkce f v dost malém okolí bodu x_0 lineární funkcí (t.j. polynomem prvního řádu)

$$p(x) = f(x_0) + A(x - x_0),$$

tak, aby chyba byla podstatně menší než změna argumentu.

1.7 Důsledek: $M\acute{a}$ - $li\ f\ v\ bod\check{e}\ x_0\ derivaci,\ je\ tam\ spojit\acute{a}$.

IV.2 Základní pravidla pro derivování

2.1 VĚTA:

(1)
$$(f+g)'(x) = f'(x) + g'(x)$$
,

(2) pro a reálné,
$$(af)'(x) = a \cdot f'(x)$$
,

(3)
$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$
,

(4)
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

pokaždé, má-li pravá strana smysl.

Důkaz: Používáme vždy bez dalšího odkazu pravidla o limitách a II.3.

$$(1) \frac{(f+g)(x+h) - (f+g)(x)}{h} = \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h} = \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}.$$

(2) je ještě triviálnější než (1).

(3)
$$\frac{(f \cdot g)(x+h) - (f \cdot g)(x)}{h} = \frac{1}{h} (f(x+h)g(x+h) - f(x)g(x)) =$$

$$= \frac{1}{h} (f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)) =$$

$$= f(x+h)\frac{g(x+h) - g(x)}{h} + g(x)\frac{f(x+h) - f(x)}{h}$$

(použili jsme opět přičtení a odečtení téhož čísla!)

(4) stačí odvodit formuli pro $\frac{1}{a}$, potom použít (3).

$$\frac{\frac{1}{g}(x+h) - \frac{1}{g}(x)}{h} = \frac{1}{h} \left(\frac{1}{g(x+h)} - \frac{1}{g(x)} \right) = \frac{g(x) - g(x+h)}{hg(x+h)g(x)} =$$
$$-\frac{1}{g(x+h)} \frac{1}{g(x)} \frac{g(x+h) - g(x)}{h}, \text{ takže } \left(\frac{1}{g} \right)'(x) = -\frac{g'(x)}{(g(x))^2}.$$

2.2 VĚTA: Nechť má funkce f derivaci v bodě $g(x_0)$ a nechť má funkce g derivaci v bodě x_0 , potom má $f \circ g$ derivaci v bodě x_0 , a sice

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

Důkaz: Použijeme věty 1.6. Máme čísla A a B a funkce μ , ν takové, že

$$f(g(x_0) + k) - f(g(x_0)) = A \cdot k + k\mu(k),$$

$$g(x_0 + h) - g(x_0) = B \cdot h + h\nu(h)$$

a $\mu(k)$, $\nu(h)$ jdou k nule při h, k jdoucí k nule. Následkem toho je $f\left(g(x_0+h)\right) - f\left(g(x_0)\right) = f\left(g(x_0) + (g(x_0+h) - g(x_0))\right) - f\left(g(x_0)\right) = A\left(g(x_0+h) - g(x_0)\right) + (g(x_0+h) - g(x_0)) + \mu\left(g(x_0+h) - g(x_0)\right) = A\left(Bh + h\nu(h)\right) + \left(Bh + h\nu(h)\right) \cdot \mu\left(Bh + h\nu(h)\right) = ABh + h\left(A\nu(h) + B + \nu(h)\right) \cdot \mu\left(Bh + h\nu(h)\right).$ Položme $\overline{\mu}(h) = (A\nu(h) + B + \nu(h))\mu\left(Bh + h\nu(h)\right).$ Z vět v II.3 snadno vidíme, že $\lim_{h\to 0} \overline{\mu}(h) = 0$ a tvrzení dostaneme z věty 1.6. \square

Poznámka: Je svůdné pokusit se dokazovat větu takto: Položíme $y = g(x), y_0 = g(x_0)$. Máme

$$\frac{(f \circ g)(x) - (f \circ g)(x_0)}{x - x_0} = \frac{f(y) - f(y_0)}{y - y_0} \cdot \frac{g(x) - g(x_0)}{x - x_0}.$$

Rozhodně to dává dobrou představu o tom, co se děje. S přímým použitím věty II.3.4 bychom zde však měli potíže.

2.3 VĚTA: Nechť f je funkce inverzní k funkci g a nechť g má nenulovou derivaci v bodě x_0 . Potom má f derivaci v bodě $g(x_0)$, a sice

$$f'\left(g(x_0)\right) = \frac{1}{g'(x_0)}.$$

Důkaz: Položme $y_0 = g(x_0)$, takže $f(y_0) = x_0$. Funkce

$$F(x) = \frac{x - x_0}{g(x) - g(x_0)} = \frac{x - f(y_0)}{g(x) - y_0}$$

má limitu $\frac{1}{g'(x_0)}$ v bodě x. Funkce f je spojitá (1.7,II.8.4) a, což je důležité, pro $y \neq y_0$ je $f(y) \neq f(y_0)$ (Má inverzní funkci, a tedy je prostá). Můžeme použít větu II.3.4 k tvrzení, že

$$\lim_{y \to y_0} F(f(y)) = \frac{1}{g'(x_0)}$$

Přitom máme

$$F(f(y)) = \frac{f(y) - f(y_0)}{g(f(y)) - y_0} = \frac{f(y) - f(y_0)}{y - y_0}.$$

Poznámka: Obsahem věty 2.3 je především to, že f vůbec derivaci má. Kdybychom toto věděli předem, stačilo by odvolat se na větu 2.2 a zřejmý fakt, že h(x) = x má derivaci 1. Máme totiž x = fg(x) a tedy podle věty 2.2 $1 = f'(g(x)) \cdot g'(x)$.

IV.3 Derivace elementárních funkcí

3.1 VĚTA: $(x^n)' = nx^{n-1}$.

Důkaz: Máme

$$(x+h)^n - x^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} h^k - x^n =$$

$$nx^{n-1}h + h\left(h\sum_{k=2}^{n} \binom{n}{k}x^{n-k}h^{k-2}\right).$$

Použijte 1.6. □

3.2 VĚTA:

- $(1) (\sin x)' = \cos x,$
- (2) $(\cos x)' = -\sin x$,
- $(3) (\operatorname{tg} x)' = \frac{1}{\cos^2 x},$

Důkaz:

- (1) Máme $\frac{\sin(x+h)-\sin x}{h} = \frac{\sin x \cos h + \cos x \sin h \sin x}{h} = \sin x \frac{\cos h 1}{h} + \cos x \frac{\sin h}{h}$. Použijte limit z III.5.2 a III.5.3.
- (2) $(\cos x)' = (\sin(\frac{\pi}{2} x))' = \sin'(\frac{\pi}{2} x) \cdot (-x)' = -\sin x$ podle 2.2.
- (3) Podle 2.1 (4) a právě zjištěných derivací sinu a cosinu máme $\left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$.

3.3 **V**ĚTA:

- (1) $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$
- (2) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$

Důkaz:

(1) Připomeňme si známou trigonometrickou identitu $\cos^2 y = \frac{1}{\lg^2 y + 1}$ (viz obrázek 2)

Podle 2.3 a 3.2 máme (položme x = tg y) (arctg x)' = $\frac{1}{\text{tg'} y} = \cos^2 y = \frac{1}{\text{tg}^2 y + 1} = \frac{1}{x^2 + 1}$.

(2) Podle 2.3 a 3.2 máme (při označení $x = \sin y$) $(\arcsin x)' = \frac{1}{\sin^{\prime} y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^{2} y}} = \frac{1}{\sqrt{1-x^{2}}}$ (odmocnina je nezáporná vzhledem k volbě intervalu $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ na němž se funkce $\sin x$ invertuje: zde je $\cos y \geq 0$). \square

3.4 VĚTA:

- (1) $(\lg x)' = \frac{1}{x}$,
- (2) $(e^x)' = e^x$,

(3) $(x^a)' = a \cdot x^{a-1}$ též pro necelá a.

Důkaz:

(1) Použijeme limity z pozorování v III.6.3 (a ovšem věty II.3.4). Máme

$$\lim_{h \to 0} \frac{\lg(x+h) - \lg x}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \lg\left(\frac{x+h}{x}\right) = \lim_{h \to 0} \frac{\lg\left(1 + \frac{h}{x}\right)}{h} =$$

$$= \lim_{h \to 0} \frac{1}{x} \cdot \frac{\lg\left(1 + \frac{h}{x}\right)}{\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{\lg\left(1 + \frac{h}{x}\right)}{\frac{h}{x}} = \frac{1}{x}.$$

- (2) Pro $y = e^x$ máme podle 2.3 a (1) $(e^x)' = \frac{1}{\lg'(y)} = \frac{1}{\frac{1}{y}} = y = e^x$.
- $(3) \ (x^a)' = (e^{a \cdot \lg x})' = e^{a \lg x} \cdot a \cdot \frac{1}{x} = x^a \cdot a \cdot \frac{1}{x} = a \cdot x^{a-1} \ (\text{použili jsme 2.2, (2) i (1)}). \ \Box$
- **3.5** Uvědomte si, že na základě vět 2.1, 2.2 a 2.3, a pravidel z tohoto odstavce již umíte derivovat všechny t.zv. elementární funkce (III.7.1).

IV.4 Rolleova věta, věty o střední hodnotě

4.1 Lemma: Bud' $f'(x_0) > 0$ (resp. < 0). Potom pro dostatečně malé $\varepsilon > 0$ platí $x \in (x_0, x_0 + \varepsilon) \Rightarrow f(x) > f(x_0)$ (resp. $f(x) < f(x_0)$), $x \in (x_0 - \varepsilon, x_0) \Rightarrow f(x) < f(x_0)$ (resp. $f(x) > f(x_0)$).

Důkaz: Výraz z věty 1.6 přepišme na $f(x_0+h)-f(x_0)=(A+\mu(h))\cdot h$. Vzhledem k tomu, že $\lim_{h\to 0}\mu(h)=0$ má pro dostatečně malé $\varepsilon>0$ při $0<|h|<\varepsilon$ číslo $A+\mu(h)$ stejné znaménko jako A. Je-li tedy A kladné, má $f(x_0+h)-f(x_0)$ stejné znaménko jako h, je-li A záporné, má znaménko opačné. \square

4.2 VĚTA: (Věta Rolleova) Nechť f je spojitá na kompaktním intervalu $\langle a, b \rangle$, nechť má na (a, b) derivaci a nechť f(a) = f(b). Potom existuje $c \in (a, b)$ takové, že f'(c) = 0.

Důkaz: Podle věty II.10.1 nabývá funkce f na $\langle a, b \rangle$ maxima i minima.

- I. Jsou-li tyto hodnoty stejné, je f konstantní a tedy f'(c) = 0 všude.
- II. Jsou-li různé, musí se vzhledem k tomu, že f(a) = f(b), nabývat aspoň jedné z nich v nějakém $c \in (a,b)$. Podle Lemmatu 4.1 tam musí být f'(c) = 0, jinak by toto nebylo maximum ani minimum.
- **4.3** VĚTA: (V. Lagrangeova, V. o střední hodnotě, V. o přírůstku funkce) : Nechť f je spojitá na kompaktním intervalu $\langle a,b\rangle$ a nechť má na (a,b) derivaci. Potom existuje $c\in(a,b)$ takové, že

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Důkaz: Funkce $F(x) = (f(x) - f(a)) \cdot (b - a) - (f(b) - f(a))(x - a)$ splňuje podmínky Rolleovy věty a máme

$$F'(x) = f'(x) \cdot (b - a) - (f(b) - f(a))$$

Tedy existuje $c \in (a, b)$ takové, že

$$0 = f'(c)(b - a) - (f(b) - f(a)).$$

4.4 Poznámky:

1. Tato věta několika jmen je jedna z nejdůležitějších vět základů diferenciálního počtu. S jejím užitím se budete setkávat znovu a znovu.

- 2. Často je formuli z věty 4.3 výhodné nahlížet ve tvaru $f(x+h) f(x) = f'(x+\vartheta h) \cdot h$, kde $0 < \vartheta < 1$. (zde je též motivace názvu "věta o přírůstku funkce".)
- 3. Věta má velmi názorný geometrický smysl. Říká, že na grafu hladké funkce najdeme mezi každými dvěma body tečnu rovnoběžnou se sečnou, která těmito body prochází. Viz obrázek 3.

4.5 VĚTA: (zobecněná věta o střední hodnotě) Budte f, g spojité funkce na intervalu $\langle a, b \rangle$, s derivacemi na (a,b). Nechť $g(a) \neq g(b)$ a g'(x) je nenulová na (a,b). Potom existuje $c \in (a,b)$ takové, že

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Důkaz: Je zcela obdobný důkazu věty 4.3. Tentokrát volíme F(x) = (f(x) - f(a))(g(b) - g(a)) - (f(b) - f(a))(g(x) - g(a)). Tato funkce opět vyhovuje Rolleově větě a má derivaci F'(x) = f'(x)(g(b) - g(a)) - g'(x)(f(b) - f(a)). \square

4.6 Věta: Nechť má spojitá funkce na vnitřku nějakého intervalu J kladnou (zápornou) derivaci. Potom na celém intervalu roste (klesá).

Důkaz: Buďte $x, y \in J, x < y$. Podle 4.3 máme f(y) - f(x) = f'(z)(y - x) pro nějaké $z \in (x, y)$ a tedy má rozdíl f(y) - f(x) stejné znaménko jako f'(z). \square

- **4.7** Důsledek: Nechť má spojitá funkce na nějakém intervalu kladnou (zápornou) derivaci ve všech bodech kromě konečně mnoha. Potom na tomto intervalu roste (klesá).
- **4.8 Poznámka:** Není-li definiční obor interval, nedá se samozřejmě ze znaménka derivace na celém oboru na růst či klesání usuzovat. Např. funkce $f(x) = \frac{1}{x}$ definovaná na $\mathbb{R} \setminus \{0\}$ má derivaci $-\frac{1}{x^2}$, tedy stále zápornou, třebaže f(-1) < f(1). Na intervalech $(-\infty, 0)$, $(0, +\infty)$ ovšem opravdu klesá.

IV.5 Derivace vyšších řádů

Nechť má funkce f na nějakém oboru derivaci f'. O této nové funkci můžeme opět položit otázku, má-li derivaci nebo ne. Má-li ji, mluvíme o $druhé\ derivaci$ funkce f, a otázku můžeme klást znovu. Tak můžeme (a nemusíme) dostat třetí, čtvrtou, ..., k-tou derivaci funkce f. Běžné označení je f'', f''', pro obecné k pak $f^{(k)}$.

Též se užívá značení

$$\frac{d^2f}{dx^2}, \frac{d^3f}{dx^3}, \dots, \frac{d^kf}{dx^k}.$$

Místo "k-tá derivace" se někdy říká derivace řádu k. Později se v předpokladech vět setkáte s požadavky typu: "...nechť f má derivace až do řádu k...", "...nechť f má derivace všech řádů ...".

IV.6 Konvexní a konkávní funkce, souvislost s druhou derivací

6.1 DEFINICE: Řekneme, že spojitá funkce f je na intervalu J konvexní (resp. ryze konvexní, resp. konkávní, resp. ryze konkávní), platí-li pro všechny trojice bodů $a, b, c \in J$ takové, že a < b < c nerovnost

$$\frac{f(c) - f(a)}{c - a} - \frac{f(b) - f(a)}{b - a} \ge 0 \text{ (resp. } > 0, \text{ resp. } \le 0, \text{ resp. } < 0)$$

Vysvětlení: To že funkce je (ryze) konvexní znamená, že její graf je vyboulen směrem dolů, u (ryze) konkávní pak směrem nahoru. To jest, vedeme-li libovolnými dvěma body (a, f(a)), (c, f(c)), kde a < c, přímku, leží hodnoty v bodech $b \in (a, c)$ v prvním případě vždy pod touto přímkou, v druhém případě vždy nad ní. Skutečně, rovnice přímky procházející body (a, f(a)), (c, f(c)) je jak snadno zjistíte,

(*)
$$y = f(a) + \frac{f(c) - f(a)}{c - a}(x - a),$$

takže nad b máme na této přímce hodnotu

$$f(a) + \frac{f(c) - f(a)}{c - a}(b - a).$$

Tedy třeba požadavek, aby (b, f(b)) ležel pod přímkou (*) dává

$$f(a) + \frac{f(c) - f(a)}{c - a}(b - a) > f(b),$$

odkud jednoduchou úpravou získáme

$$\frac{f(c) - f(a)}{c - a} - \frac{f(b) - f(a)}{b - a} > 0.$$

6.2 VĚTA: Nechť f je spojitá na intervalu J, nechť má na vnitřku tohoto intervalu druhou derivaci a nechť platí, že pro všechny vnitřní body J je $f'' \ge 0$ (f'' > 0, $f'' \le 0$, f'' < 0). Potom je f na J konvexní (ryze konvexní, konkávní, ryze konkávní).

Důkaz: Buďte $a, b, c \in J$, a < b < c. Podle 4.3 máme

$$V = \frac{f(c) - f(a)}{c - a} - \frac{f(b) - f(a)}{b - a} = f'(\xi) - f'(\eta),$$

kde $a < \eta < b < \xi < c$. Znovu podle 4.3 dostaneme

$$V = f'(\xi) - f'(\eta) = f''(\zeta)(\xi - \eta),$$

kde ζ je někde v intervalu (η, ξ) . Tedy má V totéž znaménko jako $f''(\zeta)$. \square

- **6.3** Řekneme, že bod x_0 je inflexním bodem funkce f, jestliže pro nějaké $\varepsilon > 0$ platí
 - buď, že f je na $(x_0 \varepsilon, x_0)$ konvexní a na $(x_0, x_0 + \varepsilon)$ konkávní,
 - nebo, že f je na $(x_0 \varepsilon, x_0)$ konkávní a na $(x_0, x_0 + \varepsilon)$ konvexní.

Z 6.2 okamžitě vidíme, že má-li f na nějakém intervalu spojitou druhou derivaci, musí být v každém inflexním bodě druhé derivace nulové.

IV.7 Body nespojitosti derivace

7.1 Věta: Buď f funkce spojitá na intervalu $(a, a + \Delta)$, $\Delta > 0$ s derivací v intervalu $(a, a + \Delta)$. Nechť existuje $\lim_{x\to a+} f'(x) = L$. Potom existuje derivace zprava v bodě a a je rovna L. Obdobně je tomu s limitou zleva derivace funkce a derivací zleva.

Důkaz: Pro $x \in (a, a + \Delta)$ máme podle 4.3

$$\left| \frac{f(x) - f(a)}{x - a} - L \right| = |f'(\xi) - L|$$

pro nějaké ξ , $a < \xi < x$. Je-li tedy $\delta > 0$ takové, že pro $a < x < a + \delta$ je $|f'(x) - L| < \varepsilon$, je tím spíš

$$\left| \frac{f(x) - f(a)}{x - a} - L \right| < \varepsilon.$$

7.2 Důsledek: Funkce, která je derivací nějaké funkce, nemá nespojitost prvního druhu.

7.3 Nespojitost však mít může. Buď třeba

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{pro } x \neq 0\\ 0 & \text{pro } x = 0 \end{cases}$$

Pro $x \neq 0$ máme $f'(x) = 2x \sin \frac{1}{x} + x^2 \cdot \sin \frac{1}{x} \cdot (-\frac{1}{x^2}) = 2x \sin \frac{1}{x} - \sin \frac{1}{x}$, kterážto funkce zřejmě nemá limitu v 0: V bodech $\frac{1}{2k\pi + \frac{\pi}{2}}$ má hodnoty $-1 + \frac{2}{2k\pi + \frac{\pi}{2}}$, v bodech $\frac{1}{2k\pi}$ má hodnotu 0. Ale derivace f'(0) existuje a je rovna 0, neboť

$$\left| \frac{f(h) - f(0)}{h} \right| = \left| h \sin \frac{1}{h} \right| \le h.$$

\mathbf{V} Jednoduché aplikace derivování

V.1Tečny, rychlost

To, že definice derivace je přímo motivována představami tečny a okamžité rychlosti bylo již zmíněno v IV.1.2.

1.1 Mějme dánu křivku popsanou jako graf funkce f. Chtěli bychom zjistit rovnici tečny v bodě $(x_0, f(x_0))$. Derivace dává její směrnici, takže vidíme, že může být vyjádřena rovnicí

$$y = f(x_0) + f'(x_0)(x - x_0).$$

1.2 Poloha nějakého předmětu v čase t buď dána souřadnicemi (x(t),y(t)) (děje-li se pohyb v rovině, v prostoru bychom přidali ještě třetí souřadnici z(t)). Okamžitá rychlost je dána vektorem $\left(\frac{dx}{dt}(t_0), \frac{dy}{dt}(t_0)\right)$ (na vektory se zatím dívejte tak, jak je znáte ze střední školy). Zrychlení je dáno druhou derivací $\left(\frac{d^2x}{dt^2}(t_0), \frac{d^2y}{dt^2}(t_0)\right)$. Tedy např. při rovnoměrném kruhovém pohybu daném rovnicemi

$$x(t) = a + r\cos(vt)$$

$$y(t) = b + r\sin(vt)$$

 $y(t) = b + r \sin(vt)$ dostáváme pro zrychlení $(-rv^2\cos vt, -rv^2\sin vt)$ a vidíme, že ve smyslu klasické mechaniky jej musí udržovat síla úměrná kvadrátu rychlosti směřující ke středu, kolem kterého se těleso pohybuje.

V.2Extrémy

2.1 Řekneme, že f definovaná na D nabývá v bodě x_0 lokálního maxima (minima), platí-li pro nějaké $\varepsilon > 0$

$$x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap D \Rightarrow f(x) \le f(x_0) \quad (f(x) \ge x_0)$$

Je-li navíc pro $x \neq x_0$ $f(x) < f(x_0)$ $(f(x) > f(x_0))$, mluvíme o ostrém lokálním maximu (minimu). Společný název pro maximum a minimum je extrém. Mluvíme tedy o lokálních extrémech a ostrých lokálních extrémech.

2.2 Lemma IV.4.1 ukazuje, kdy funkce lokálního extrému nenabývá: totiž ve vnitřních bodech v nichž je kladná nebo záporná derivace. Platí tedy

Tvrzení: Všechny lokální extrémy funkce f najdeme mezi

- (a) těmi body x, kde f'(x) = 0, a
- (b) těmi body x, kde f vůbec derivaci nemá.

(Uvědomte si, že případ (b) zahrnuje též všechny krajní body.)

Dostáváme tedy jakýsi seznam všech možných kandidátů na extrém. Některé z nich se nakonec extrémy být neukáží, zaručeně však na žádný lokální extrém nezapomeneme. Viz obrázek 4.

V odstavci o průběhu funkcí bude patrno, jak vyloučit neextrémní body a jak zjistit, zda jde o maximum nebo minimum.

V.3Newtonova metoda přibližného řešení rovnic

3.1 Mějme dánu funkci f(x). Stojíme-li před úlohou najít řešení rovnice

$$f(x) = 0$$
,

může nám pomoci následující metoda. O funkci f budeme předpokládat, že ve vyšetřovaném oboru má druhou derivaci. Viz obrázek 5.

Dejme tomu, že jsme ve snaze přiblížit se bodu a dosáhli bodu a_n . Pokusíme se najít lepší přiblížení tak, že vedeme ke grafu tečnu bodem $(a_n, f(a_n))$ a protneme ji s x-ovou osou. Jinak řečeno, místo rovnice f(x) = 0 řešíme rovnici p(x) = 0, kde p je lineární polynom nejlépe v okolí bodu $(a_n, f(a_n))$ přibližující funkci f. Ta tečna má, jak již víme, rovnici

$$y = f(a_n) + f'(a_n)(x - a_n),$$

takže po dosazení y = 0 dostaneme

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}.$$

3.2 Někdy to moc nepomůže, jak je vidět na dvou případech zobrazených na obrázku 6.

Příklad: Hledejme třeba $\sqrt{3}$, tedy řešení rovnice $x^2-3=0$. Formule dává $a_{n+1}=a_n-\frac{a_n^2-3}{2a_n}=\frac{a_n^2+3}{2a_n}$. Začneme-li s odhadem $a_1=2$, dostaneme $a_2=\frac{4+3}{4}=1.75$, $a_3=\frac{1.75-0.0625}{3.5}=1.7321429$, $a_4=\cdots=1.7320508$, což se už od $\sqrt{3}$ na uvedených místech neliší.

V.4 L'Hospitalovo pravidlo

Jde o neocenitelného pomocníka při hledání limit t.zv. neurčitých výrazů. Nejprve nejjednodušší případ:

4.1 Věta: Nechť f, g mají derivace v x takových, že $0 < |x - a| < \Delta$, nechť $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. Existuje-li $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ (konečná nebo nekonečná), má limitu i podíl $\frac{f(x)}{g(x)}$ a platí

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

33

Důkaz: Buď $L = \lim \frac{f'(x)}{g'(x)}$. Máme (po doplnění hodnot v a limitami) $\left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f(x) - f(a)}{g(x) - g(a)} - L \right| = \left| \frac{f'(\xi)}{g'(\xi)} - L \right|$ pro nějaké ξ mezi a a x. Je-li tedy $\delta > 0$ takové, že pro $|a - \xi| < \delta$ je $\left| \frac{f'(\xi)}{g'(\xi)} - L \right| < \varepsilon$, je pro $|a - x| < \delta$ tím spíš $\left| \frac{f(x)}{g(x)} - L \right| < \varepsilon$. Případ nekonečné limity můžeme nechat čtenáři jako jednoduché cvičení. \square

- **4.2 Poznámka:** V důkazu je ξ mezi a a x, tedy na téže straně od a jako x. Uvědomte si, že proto věta platí i pro limity zleva a zprava.
- **4.3** Věta: Nechť f, g mají derivace v x takových, že $0 < |x-a| < \Delta$, $nechť \lim_{x \to a} |g(x)| = +\infty$. Existuje-li $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ (konečná nebo nekonečná), má limitu i podíl $\frac{f(x)}{g(x)}$ a platí

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Důkaz: Teď ovšem nemůžeme použít jednoduchého obratu $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)}$. Princip, na kterém je fakt založen je však v zásadě stejný: Jestliže f a g neomezeně rostou při argumentu blížícím se k a, potom, je-li x o mnoho blíže k a než y, liší se $\frac{f(x) - f(y)}{g(x) - g(y)}$ o málo od $\frac{f(x)}{g(x)}$. Technické provedení důkazu bude ale trochu méně průhledné.

Zřejmě platí

$$\frac{f(x)}{g(x)} = \left(\frac{f(x) - f(y)}{g(x) - g(y)} + \frac{f(y)}{g(x) - g(y)}\right) \cdot \frac{g(x) - g(y)}{g(x)}$$

Tedy je pro vhodné ξ mezi x a y

$$\frac{f(x)}{g(x)} = \left(\frac{f'(\xi)}{g'(\xi)} + \frac{f(y)}{g(x) - g(y)}\right) \left(1 - \frac{g(y)}{g(x)}\right)$$

Pro jednoduchost rozlišíme tři případy

I. Nechť $\lim_{x\to a} \frac{f'(x)}{g'(x)} = 0$. Zvolme $\varepsilon > 0$ a k němu δ_1 takové, aby pro $0 < |x-a| < \delta_1$ bylo $\left| \frac{f'(x)}{g'(x)} \right| < \frac{\varepsilon}{4}$. Nyní zvolme $pevn\check{e}\ y$ takové, že $0 < |y-a| < \delta_1$, a $0 < \delta < \delta_2$ takové, aby

$$0 < |x - a| < \delta \Rightarrow \left| \frac{f(y)}{g(x) - g(y)} \right| < \frac{\varepsilon}{4}, \quad \left| \frac{g(y)}{g(x)} \right| < 1.$$

Potom pro $0 < |x - a| < \delta$ máme podle (*)

$$\left| \frac{f(x)}{g(x)} \right| < \left(\frac{\varepsilon}{4} + \frac{\varepsilon}{4} \right) \cdot 2 = \varepsilon.$$

- II. Nechť $\lim \frac{f'(x)}{g'(x)} = K$ konečné. Položme h(x) = f(x) Kg(x). Potom je h'(x) = f'(x) Kg'(x) a máme $\frac{h(x)}{g(x)} = \frac{f(x)}{g(x)} K$ a $\frac{h'(x)}{g'(x)} = \frac{f'(x)}{g'(x)} K$. Tvrzení tedy získáme aplikací I na podíl $\frac{h(x)}{g(x)}$.
- III. Nechť $\lim \frac{f'(x)}{g'(x)} = +\infty$ (při $-\infty$ zcela obdobně). Zvolíme K a δ_1 takové, aby pro $0 < |x a| < \delta_1$ bylo $\frac{f'(x)}{g'(x)} > 4K$, dále pevné y takové, že $0 < |y a| < \delta_1$ a $0 < \delta < \delta_2$ tak, aby

$$0 < |x - a| < \delta \Rightarrow \left| \frac{f(y)}{g(x) - g(y)} \right| < 2K, \quad \left| \frac{g(y)}{g(x)} \right| < \frac{1}{2}$$

Potom pro $0 < |x - a| < \delta$ máme

$$\frac{f(x)}{g(x)} > (4K - 2K) \cdot \frac{1}{2} = K.$$

4.4 Zavedeme následující úmluvy:

 \square znamená kterýkoli ze symbolů: $a,\ a+,\ a-,\ +\infty,\ -\infty.$ Výraz "blízko \square " znamená v prvním případě "pro $0<|x-a|<\varepsilon$ pro nějaké ε ", ve druhém případě "pro $a< x< a+\varepsilon$ pro nějaké ε ", ve třetím případě "pro $a-\varepsilon< x< a$ pro nějaké ε ", ve čtvrtém případě "pro x>K pro nějaké K", a konečně v posledním "pro x< K pro nějaké K".

Věta: (L'Hospitalovo pravidlo) Nechť buď $\lim_{x\to\Box} f(x) = \lim_{x\to\Box} g(x) = 0$ nebo $\lim_{x\to\Box} |g(x)| = +\infty$. Nechť f, g mají blízko \Box derivace a nechť existuje $\lim_{x\to\Box} \frac{f'(x)}{g'(x)} = L$ (konečná nebo nekonečná). Potom $\lim_{x\to\Box} \frac{f(x)}{g(x)} = L$.

Důkaz: Až na případ $\square=\pm\infty$ je tvrzení obsaženo v předchozích větách. Buď $\square=\infty$ (resp. $-\infty$). Snadno vidíme, že $\lim_{x\to\pm\infty} H(x)=\lim_{x\to0\pm} H\left(\frac{1}{x}\right)$. Tedy, položíme-li $F(x)=f\left(\frac{1}{x}\right)$, $G(x)=g\left(\frac{1}{x}\right)$ máme $F'(x)=f'\left(\frac{1}{x}\right)\cdot\frac{1}{x}$, $G'(x)=g'\left(\frac{1}{x}\right)\cdot\frac{1}{x}$ a tedy

$$\lim_{x \to 0+} \frac{F'(x)}{G'(x)} = \lim_{x \to 0+} \frac{f'\left(\frac{1}{x}\right) \cdot \frac{1}{x^2}}{g'\left(\frac{1}{x}\right) \cdot \frac{1}{x^2}} = \lim_{x \to 0+} \frac{f'\left(\frac{1}{x}\right)}{g'\left(\frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = L$$

a tedy podle předchozích vět

$$L = \lim_{x \to 0+} \frac{F(x)}{G(x)} = \lim_{x \to +\infty} \frac{f(x)}{g(x)}.$$

4.5 Další neurčité výrazy:

- (1) Typ $0 \cdot \infty$ Je-li $\lim f(x) = 0$ a $\lim g(x) = \pm \infty$, počítáme $\lim f(x) \cdot g(x)$ jako $\lim \frac{f(x)}{\frac{1}{g(x)}}$ nebo $\lim \frac{f(x)}{g(x)}$ podle toho, co je výhodnější.
- (2) Typ $\infty \infty$ f(x) g(x) se můžeme pokusit převést na předchozí případy třeba úpravou

$$f(x) - g(x) = \frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}}.$$

- (3) Typy 0^0 , 1^∞ , ∞^0 Máme $(f(x))^{g(x)} = e^{g(x) \cdot \lg f(x)}$. Jelikož e^x je spojitá funkce, stačí zjistit $\lim g(x) \cdot \lg f(x)$. V prvním případě je to typ $0 \cdot (-\infty)$, v druhém $\infty \cdot 0$, ve třetím $0 \cdot (+\infty)$.
- **4.6 Rychlosti růstu některých funkcí:** Máme $\lim \frac{x^n}{a^x} = \lim \frac{nx^{n-1}}{\lg a \cdot a^x} = \lim \frac{n(n-1)x^{n-1}}{(\lg a)^2 \cdot a^x} = \cdots = \lim \frac{0}{(\lg n)^{n+1} \cdot a^x} = 0$. Tedy pro a > 1 roste a^x do nekonečna rychleji než kterýkoli polynom. Nebo máme $\lim \frac{x^{\alpha}}{\lg x} = \lim \frac{\alpha \cdot x^{\alpha-1}}{\frac{1}{x}} = \lim \alpha \cdot x^{\alpha}$. Tedy pro $\alpha > 0$ roste x^{α} při $x \to +\infty$ do nekonečna rychleji než logaritmus, pro $\alpha < 0$ roste x^{α} při $x \to 0+$ do nekonečna rychleji než logaritmus.

V.5 Vyšetřování průběhu funkcí

- **5.1** Často máme dánu formuli pro nějakou funkci a rádi bychom si udělali představu o jejím průběhu. K tomu nám mohou posloužit věty IV.4.6,IV.4.7,IV.6.2 a ovšem též silnější aparát pro výpočet limit, který máme po předchozím paragrafu. Je možno doporučit následující postup.
 - 0. Předpis pro f(x) sám může poskytnout údaje o limitách v krajních bodech. Případně se dají zjistit i nulové hodnoty.
 - 1. Z formule pro f'(x) zjišťujeme kde f roste (totiž kde f'(x) > 0) a kde klesá (totiž kde f'(x) < 0). Při tom vyjdou najevo též lokální maxima a minima. Též limity derivace v krajních bodech mohou být zajímavé: určí nám "tečny na krajích" (viz IV.7.1).
 - 2. Z formule pro f''(x) zjišťujeme kde je f ryze konvexní (kde f''(x) > 0) a kde ryze konkávní (kde f''(x) < 0). Při tom vyjdou najevo též inflexní body.

Pro snazší kreslení pomůže opřeme-li se o některé tečny navíc. Zejména jsou významné tečny v inflexních bodech.

- 5.2 Příklad: $f(x) = e^{-\frac{1}{x}} \ (x \in \mathbb{R} \setminus \{0\}).$
 - 0. $\lim_{x\to -\infty} f(x) = e^0 = 1$, $\lim_{x\to 0^-} f(x) = +\infty$, $\lim_{x\to 0^+} f(x) = 0$ a $\lim_{x\to +\infty} f(x) = e^0 = 1$

Obr. 7:

- 1. $f'(x) = \frac{1}{x^2}e^{-\frac{1}{x}} > 0$. Funkce tedy roste v $(-\infty, 0)$ i v $(0, +\infty)$. Jelikož $\lim_{x\to 0+} f'(x) = 0$, blíží se zde f k ose x-ové jako k tečně
- 2. $f''(x) = e^{-\frac{1}{x}} \frac{1-2x}{x^4}$, což je kladné pro $x < \frac{1}{2}$ a záporné pro $x > \frac{1}{2}$. Tedy je f ryze konvexní v intervalech $(-\infty,0)$ a $(0,\frac{1}{2})$ ryze konkávní v $(\frac{1}{2},+\infty)$. V bodě $\frac{1}{2}$ tedy má inflexi. Hodnota je tam $e^{-\frac{1}{2}}$ a tečna tam má směrnici $4 \cdot e^{-2}$. Tedy graf vypadá přibližně jako na obrázku 7.

5.3 Příklad: $f(x) = \frac{4x}{1+x^2}$.

- 0. $\lim_{x\to\pm\infty}f(x)=0$, f(x)=0 právě v x=0, v záporných x je f(x) záporná, v kladných kladná.
- 1. $f'(x) = 4 \cdot \frac{1-x^2}{(1+x^2)^2}$. Tedy funkce klesá v $(-\infty, -1)$ a v $(1, +\infty)$ a roste v (-1, 1). Má tedy maximum (a sice 2) v bodě 1 a minimum (-2) v bodě -1.
- 2. $f''(x) = \frac{8x(x^2-3)}{(1+x^2)^3}$. Tedy je f ryze konkávní v $(-\infty,-\sqrt{3})$ a v $(0,+\sqrt{3})$ a ryze konvexní v $(-\sqrt{3},0)$ a v $(\sqrt{3},+\infty)$. Inflexe má v bodech $-\sqrt{3},\ 0,\ \sqrt{3}$, nabývá v nich hodnot $-\sqrt{3},\ 0,\ +\sqrt{3}$ a směrnice tečen jsou tam $-\frac{1}{2},\ 4,\ -\frac{1}{2}$. Tedy graf vypadá přibližně jako na obrázku 8.

Obr. 8:

V.6 Věta o Taylorově polynomu a zbytku

6.1 Na funkci se dívejme jako na její nultou derivaci, $f^{(0)} = f$. Řekli jsme si již (Poznámka v IV.1.6), že derivace souvisí s přiblížením funkce f v okolí bodu a lineárním polynomem

(*)
$$p(x) = f(a) + f'(a) \cdot (x - a),$$

který má tu vlastnost, že zbytek f(x) - p(x) jde k nule podstatně rychleji než x - a. Polynom (*) je jednoznačně určen podmínkami

$$p^{(0)}(a) = f^{(0)}(a), \quad p^{(1)}(a) = f^{(1)}(a)$$

To navádí k myšlence, že by třeba bylo možno dosahovat stále lepšího přiblížení pomocí polynomů vyšších stupňů, které by se shodovaly ve stále více derivacích. Mějme tedy f s derivacemi do řádu n v okolí bodu a a položme si otázku, který polynom n-tého řádu by pro takové přiblížení připadal v úvahu. Buď tedy

$$p(x) = \sum_{j=0}^{n} b_j (x-a)^j$$

takový, že se shoduje sfv co možná nejvíce derivacích. Snadno spočteme, že

$$p^{(k)}(x) = \sum_{j=k}^{n} b_j \cdot j(j-1) \cdot \cdot \cdot (j-k+1)(x-a)^{j-k}$$

a tedy

$$p^{(k)}(a) = b \cdot k!$$

Našemu požadavku tedy vyhovuje polynom

$$\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Ten se nazývá Taylorův polynom stupně n příslušný k funkci f. Dokážeme, že často je takto opravdu možno získat libovolně dobrá přiblížení.

6.2 Věta: Nechť má funkce f v nějakém intervalu $J = (a - \Delta, a + \Delta)$ derivace až do řádu n + 1. Potom pro $x \in J$ platí

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1},$$

kde ξ je nějaké číslo mezi a a x.

Poznámka: Výraz $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$ se nazývá Taylorův zbytek v Lagrangeově tvaru. Taylorův zbytek se dá vyjádřit také jinými formulemi, tato se však dobře pamatuje: Jako bychom přidali ještě jeden člen obdobný předchozím, jen místo a dáme do $f^{(n+1)}$ jakousi hodnotu posunutou k x.

Důkaz: Vezměme $x \in J$. Studujme funkci

$$F(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x - t)^{k}$$

proměnné t (pozor, x teď bude na chvíli konstanta!). Je tedy F(x) = 0 a

$$F(a) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k},$$

t.j., chyba při nahrazení f jejím Taylorovým polynomem. Podle již jistě zvládnutých pravidel pro derivování máme

$$\frac{dF(t)}{dt} = -\sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!} (x-t)^{k} + \sum_{k=1}^{n} \frac{f^{(k)}(t)}{(k-1)!} (x-t)^{k-1}$$

(změna znaménka u druhého součtu je dána tím, že jsme sčítance museli násobit ještě $\frac{d}{dt}(x-t) = 1$). V prvním součtu přejmenujeme k na r, v druhém k-1 na r. Dostáváme

$$\frac{dF(t)}{dt} = -\sum_{r=0}^{n} \frac{f^{(r+1)}(t)}{r!} (x-t)^{r} + \sum_{r=0}^{n-1} \frac{f^{(r+1)}(t)}{r!} (x-t)^{r} = -\frac{f^{(n+1)}(t)}{n!} (x-t)^{n}.$$

Vezměme nyní libovolnou funkci g vyhovující podmínce z věty IV.4.5. Dostaneme

$$\frac{F(a)}{g(a) - g(x)} = \frac{F(a) - F(x)}{g(a) - g(x)} = -\frac{f^{(n+1)}(\xi)}{n!g'(\xi)}(x - \xi)^n$$

a tedy

$$F(a) = \frac{f^{(n+1)}(\xi) \cdot (g(x) - g(a)) \cdot (x - \xi)^n}{n!g'(\xi)}$$

pro nějaké ξ mezi a a x.

Nyní položme speciálně $g(t) = (x-t)^{n+1}$ (to je chytrý Lagrangeův trik a musí se zapamatovat) a jelikož $g'(t) = -(n+1)(x-t)^n$ a g(x) = 0, dostaneme

$$F(a) = \frac{f^{(n+1)}(\xi) \cdot (x-a)^{n+1} \cdot (x-\xi)^n}{n!(n+1) \cdot (x-\xi)^n} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

6.3 Tedy například dostáváme formule

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + e^{\xi} \cdot \frac{x^{n+1}}{(n+1)!}$$

nebo

$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \pm \frac{x^{2n+1}}{(2n+1)!} \pm \cos \xi \cdot \frac{x^{2n+2}}{(2n+2)!}$$

a vidíme, že v těchto případech se chyba dost rychle zmenšuje.

Později se budeme zabývat součty nekonečných řad $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ a zjistíme, že v mnoha důležitých případech dávají přímo hodnotu funkce f.

6.4 Taylorův polynom nemusí být vždy dobrým přiblížením. Vezměme funkci $f(x) = e^{-\frac{1}{x}}$, f(0) = 0. Zde je $f^{(k)}(0) = 0$ pro každé k a celá hodnota zůstává stále ve zbytku. Ale ani zde není situace beznadějná. Lepšího výsledku dosáhneme volbou vhodného $a \neq 0$.

V.7 Oskulační kružnice

7.1 Úvahy z předchozího odstavce naznačují, že funkce se v okolí bodu *a* navzájem tím lépe aproximují, čím více derivací mají v tomto bodě stejných. Zjistíme nyní, která kružnice co možná nejlépe aproximuje danou funkci.

Mějme dánu funkci f(x) a bod x_0 , v němž má f aspoň dvě derivace a nechť $f''(x_0) \neq 0$. Označme

$$y_0 = f(x_0), y'_0 = f'(x_0), y''_0 = f''(x_0).$$

Rovnice kružnice se středem v(a,b) a poloměrem r je

$$(x-a)^2 + (y-b)^2 = r^2$$

Je-li tedy část této kružnice grafem funkce k(x), platí

(0)
$$(x-a)^2 + (k(x)-b)^2 = r^2$$

a derivováním obou stran rovnice dostaneme

(1)
$$2(x-a) + 2(k(x)-b)k'(x) = 0$$
,

(2)
$$1 + (k'(x))^2 + (k(x) - b)k''(x) = 0$$

Má-li tedy být $k^{(j)}(x_0) = f^{(j)}(x_0)$ pro j = 0, 1, 2, musí a, b, r splňovat soustavu rovnic

$$(0_0) (x_0 - a)^2 + (y_0 - b)^2 = r^2,$$

$$(1_0)$$
 $x_0 - a + y_0'(y_0 - b) = 0,$

$$(2_0) 1 + (y_0')^2 + y_0''(y_0 - b) = 0.$$

Z rovnice (1₀) dostaneme

(3)
$$(x_0 - a) = -y'_0(y_0 - b)$$
 a tedy, po dosazení do (0_0) ,

(4)
$$(y_0 - b)^2 (1 + (y_0')^2) = r^2$$
 a tedy

(5)
$$r = |y_0 - b| \sqrt{1 + (y_0')^2}$$
. Z (2₀) dostaneme

(6)
$$y_0 - b = -\frac{1 + (y_0')^2}{y_0''}$$

Tedy po dosazení (6) do (5) a do (3) dostaneme

$$r = \frac{(1 + (y_0')^2)^{3/2}}{|y_0''|}, \quad b = y_0 + \frac{1 + (y_0')^2}{y_0''}, \quad a = x_0 - \frac{y_0'(1 + (y_0')^2)}{y_0''}.$$

7.2 Čím je menší poloměr oskulační kružnice, tím se graf funkce v příslušném bodě jeví jako zakřivenější. Zavádí se proto pojem $k\check{r}ivosti$ (grafu) funkce f v bodě x_0 (přesněji, v bodě $(x_0, f(x_0))$) jako převrácená hodnota poloměru oskulační kružnice, t.j. jako číslo

$$\frac{|y_0''|}{(1+(y_0')^2)^{3/2}}.$$

Tedy je křivost přímo úměrná absolutní hodnotě druhé derivace. Závisí ovšem též netriviálním způsobem na první derivaci.

7.3 **Příklad:** Ukažme, jak dobře tečna v inflexním bodě a oskulační kružnice aproximuje funkci sinus. V bodě $x_0 = \frac{\pi}{2}$ máme $y_0 = 1$, $y_0' = 0$, $y_0'' = -1$ a tedy r = 1, b = 0 a $a = \frac{\pi}{2}$. Viz obrázek 9.

Obr. 9:

VI Primitivní funkce (neurčitý integrál)

VI.1 Úloha o obrácení derivace

1.1 Pro elementární funkce jsme se naučili vypočítat derivace. V této kapitole se pro některé případy naučíme řešit obrácenou úlohu: Je dána funkce f(x) a hledáme k ní funkci F(x) takovou, že F'(x) = f(x). Taková funkce F se nazývá primitivní funkcí k funkci f, nebo neurčitý integrál funkce f. Motivace druhého pojmenování, a též praktické užití této úlohy budou patrny v pozdějších kapitolách.

Primitivní funkce není určena jednoznačně: Třeba funkce x^2 i $x^2 + 5$ jsou obě primitivní k 2x. Za chvíli ukážeme, že se ale v podstatě nic horšího než posunutí o konstantu stát nemůže.

1.2 Poznámka: Úloha najít primitivní funkci je naše první setkání s jednoduchým případem diferenciální rovnice, totiž s rovnicí

$$y' = f(x)$$

pro neznámou funkci y

1.3 Věta: Hladké funkce F a G definované na intervalu jsou primitivní k téže funkci f právě když F-G je konstantní.

Důkaz: Je-li c konstanta, je (F+c)'=F'+c'=F'. Na druhé straně je-li F'=f=G', je (F-G)'=0. Označíme-li H=F-G, máme podle věty o střední hodnotě $H(x)-H(y)=H'(z)\cdot(x-y)=0$. Nezapomeňte ale, že zde používáme faktu, že definiční obor je interval. \square

1.4 Označení a úmluvy: Primitivní funkci k funkci f budeme označovat

$$\int f(x) dx$$
 nebo prostě $\int f$.

První z výrazů se jeví jako značně redundantní; nejde však jen o to vyznačit, které písmeno je v daném případě znakem pro proměnnou. V odstavci o substituci toto značení velice oceníte.

Budeme-li psát

$$F(x) = \int f(x) \, dx,$$

půjde o zkratku za tvrzení "F je primitivní funkce k funkci f". S takovými výrazy není možno nakládat volně jako s rovnostmi. Tak např. jistě nebudeme usuzovat z "rovnic" $\int 2x \, dx = x^2$ a $\int 2x \, dx = x^2 + 2$ na $x^2 = x^2 + 2$ a tedy 0 = 2. V literatuře se běžně raději píše

$$\int f(x) \, dx = F(x) + C,$$

kde C je neurčená konstanta. Ale i zde je třeba opatrnosti. Není-li definiční obor interval, je i toto připomenutí nejednoznačnosti nedostatečné.

VI.2 Bezprostřední obrácení derivace u některých funkcí

2.1 Podle IV.2.1 platí pro funkce f, g a reálná čísla α , β

Věta: $\int (\alpha f + \beta g) = \alpha \int f + \beta \int g \ jakmile \ m\'a \ prav\'a \ strana \ smysl.$

2.2 Z IV.3.4.(3) a IV.3.1 plyne okamžitě

Věta: Je- $li \ a \neq -1$, je

$$\int x^a \, dx = \frac{1}{a+1} x^{a+1}$$

(pro a necelé chápáno na $(0, +\infty)$, jinak na celém \mathbb{R}).

2.3 Z IV.3.4.(1) plyne

VĚTA: $\int \frac{1}{x} dx = \lg |x|$. (Pro x > 0 bezprostředně, pro x < 0 je podle IV.2.2 $(\lg |x|)' = (\lg(-x))' = \frac{1}{-x} \cdot (-1)$.)

Poznámka: Zde je vidět ošidnost značení $\int f = F + c$. Funkce

$$F(x) = \begin{cases} \lg|x| + 2 \text{ pro } x > 0\\ \lg|x| + 7 \text{ pro } x < 0 \end{cases}$$

je také primitivní k $\frac{1}{x}$. Definiční obor zde ovšem není interval.

2.4 Z IV.3.2 plyne

VĚTA: $\int \sin x \, dx = -\cos x$, $\int \cos x \, dx = \sin x$.

2.5 Z IV.3.4 a jednoduchého použití IV.2.2 plyne

Věta: $\int e^x \ dx = e^x \ a \ obecněji \ pro \ a > 0, \ a \neq 1, \int a^x \ dx = \frac{1}{\lg a} a^x$

2.6 Z IV.3.3 plyne

VĚTA: $\int \frac{dx}{1+x^2} = \operatorname{arctg} x$, $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x$.

2.7 Poznámka: Marně nyní čekáte, že se dozvíte pravidla na integrování násobku, podílu a složení funkcí. Taková obecná pravidla nejsou. V následujících dvou odstavcích probereme dvě metody, kterými si v některých případech můžeme pomoci.

Uvědomte si, že fakta $\int \frac{dx}{x} = \lg |x|$ nebo $\int \frac{dx}{1+x^2} = \operatorname{arctg} x$ ukazují, že těžko může být nějaké průhledné pravidlo na integrování podílu. Prozradím vám, že např. $\frac{\sin x}{x} dx$ nenalezneme mezi elementárními funkcemi. Nebo třeba primitivní funkce k funkci e^{x^2} , tak důležitá ve statistice, není mezi nimi.

VI.3Metoda integrace per partes

3.1 Z věty o derivaci násobku dostáváme pro hladké funkce f, g okamžitě formuli

$$\int f' \cdot g = f \cdot g - \int f \cdot g'.$$

Na první pohled se může zdát, že jsme si nijak nepomohli. Funkce $f \cdot g'$ však může být podstatně jednodušší než $f' \cdot q$. Nebo tímto způsobem můžeme pro hledanou funkci získat rovnici, z níž ji již aritmeticky vypočteme. Nebo můžeme dostat rekurzivní formuli, která vede k cíli.

Při použití formule (*) k výpočtu primitivní funkce se mluví o integraci per partes.

3.2 Příklad: Počítejme

$$J = \int x^a \lg x \qquad (a \neq -1)$$

Položme $f(x) = \frac{1}{a+1}x^{a+1}$, $g(x) = \lg x$. Potom $f'(x) = x^a$, $g'(x) = \frac{1}{x}$ a podle (*) dostaneme

$$J = \frac{1}{a+1} x^{a+1} \cdot \lg x - \frac{1}{a+1} \int x^{a+1} \cdot \frac{1}{x} = \frac{1}{a+1} \left(x^{a+1} \lg x - \int x^a \right) =$$

$$= \frac{1}{a+1} \left(x^{a+1} \lg x - \frac{1}{a+1} x^{a+1} \right) = \frac{x^{a+1}}{a+1} \left(\lg x - \frac{1}{a+1} \right).$$

Všimněte si, že a=0 dává speciálně

$$\int \lg x \, dx = x(\lg x - 1).$$

3.3 Příklad: Počítejme

$$J = \int e^x \sin x \, dx.$$

41

Položme $f(x) = f'(x) = e^x$, $g(x) = \sin x$. Z (*) dostaneme

$$J = e^x \sin x - \int e^x \cos x$$

Opakujeme proceduru pro $\int e^x \cos x$ (tentokrát s $g(x) = \cos x$):

$$J = e^x \sin x - \left(e^x \cos x - \int e^x (-\sin x)\right),\,$$

takže

$$J = e^x \sin x - e^x \cos x - J$$

a odtud

$$J = \frac{e^x}{2} (\sin x - \cos x).$$

3.4 Příklad: Počítejme

$$J_n = \int x^n e^x \, dx \qquad \text{pro cel\'e} \qquad n \ge 0$$

Položíme $f(x)=x^n,\,g(x)=g'(x)=e^x.$ Dostaneme

$$J_n = x^n e^x - \int nx^{n-1} e^x = x^n - nJ_{n-1}.$$

Iterováním tedy dostaneme

$$J_n = x^n e^x - nx^{n-1} e^x + n(n-1)J_{n-2} = \dots =$$

= $x^n e^x - nx^{n-1} e^x + \dots \pm n(n-1) \dots 2 \cdot 1J_0$.

Tedy, jelikož $J_0 = \int e^x = e^x$ dostáváme

$$J_n = e^x \cdot \sum_{k=0}^n \frac{n!}{(n-k)!} (-1)^k \cdot x^{n-k}.$$

VI.4 Substituční metoda

4.1 Z věty IV.2.2 dostaneme okamžitě

TVRZENÍ: Je-li $\int f = F$ a je-li φ hladká funkce (a má-li $F(\varphi(x))$ smysl), je

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(x)).$$

4.2 Toto pravidlo se obvykle zapisuje jako

$$\int f(\varphi(x)) \varphi'(x) dx = \int f(y) dy,$$

kde $y=\varphi(x)$ a při jeho použití (kterému se říká substituce $\varphi(x)$ za y) stačí dbát na to, abychom po vypočtení $\int f(y)\,dy$ jakožto funkce proměnné y nakonec nezapomněli dosadit $\varphi(x)$ za y. V tom nám je výpočet velmi usnadněn konvencí zápisu

$$\int f(x) dx$$
 místo prostého $\int f(x) dx$

Vzpomeneme-li si totiž na označení

$$\frac{dy}{dx} = y'$$

a díváme-li se na levou stranu jako by to byl skutečný podíl, a přepíšeme-li tuto poslední "rovnici" na

$$(**) dy = y' dx,$$

můžeme formuli (*) používat zcela mechanicky. Jakoby nalevo bylo

$$\int f(y)y'\ dx,$$

což je "totéž" jako to, co je po užití výrazu (**) napravo.

Je nutné si stále uvědomovat, že výraz (**) je pro nás jen početní pomůcka a nic jiného. Jestliže ale nezapomeneme nakonec řádně dosadit tak, abychom měli formuli v původní proměnné, neuděláme chybu.

4.3 Příklad: V 3.2 nám scházel případ a = -1, t.j.

$$\int \frac{\lg x}{x} \, dx.$$

Zaveďme substituci $y=\lg x$. Potom je $\frac{dy}{dx}=\frac{1}{x}$ a tedy v naší konvenci $dy=\frac{dx}{x}$ a máme

$$\int \frac{\lg x}{x} \, dx = \int y \, dy = \frac{1}{2} y^2.$$

Ale pozor, ještě nejsme hotovi, musíme dosadit za y. Konečně dostaneme

$$\int \frac{\lg x}{x} \, dx = \frac{1}{2} (\lg x)^2.$$

4.4 Příklad:

$$J = \int \frac{dx}{ax + b}.$$

Zavedeme substituciy=ax+b,tedy $dy=a\cdot dx,\, dx=\frac{1}{a}dy$ a počítáme

$$J = \frac{1}{a} \int \frac{dy}{y} = \frac{1}{a} \lg |y| = \frac{1}{a} \lg |ax + b|.$$

4.5 Příklad:

$$J = \int \frac{1}{4x^2 + x + 1} \, dx.$$

Máme

$$4x^{2} + x + 1 = \left(2x + \frac{1}{4}\right)^{2} - \frac{1}{16} + 1 = \left(2x + \frac{1}{4}\right)^{2} + \frac{15}{16} = \frac{15}{16} \left(\left(\sqrt{\frac{16}{15}}\left(2x + \frac{1}{4}\right)\right)^{2} + 1\right) = \frac{15}{16} \left(\left(\frac{8}{\sqrt{15}}x + \frac{1}{\sqrt{15}}\right)^{2} + 1\right)$$

Zavedeme substituci $y = \frac{8}{\sqrt{15}}x + \frac{1}{\sqrt{15}}$ a dostáváme

$$J = \frac{16}{15} \int \frac{1}{y^2 + 1} \cdot \frac{\sqrt{15}}{8} \, dy = \frac{2}{\sqrt{15}} \operatorname{arctg} y = \frac{2}{\sqrt{15}} \operatorname{arctg} \left(\frac{8}{\sqrt{15}} x + \frac{1}{\sqrt{15}} \right).$$

VI.5 Integrování racionálních lomených funkcí

5.1 Z pravidel 2.1 a 2.3 dostaneme okamžitě

TVRZENÍ:

$$\int \frac{dx}{(x-a)^k} = \left\{ \begin{array}{l} \frac{1}{1-k} \cdot \frac{1}{(x-k)^{k-1}} \ pro \ k \neq 1 \\ \lg |x-a| \ pro \ k = 1 \end{array} \right..$$

 $(P\check{r}i\ substituci\ y = x - a\ je\ dx = dy.)$

5.2 TVRZENÍ:

$$\int \frac{x \, dx}{(x^2 + q)^k} = \left\{ \begin{array}{l} \frac{1}{2(1-k)} \cdot \frac{1}{(x^2 + q)^{k-1}} \ pro \ k \neq 1 \\ \frac{1}{2} \lg |x^2 + q| \ pro \ k = 1 \end{array} \right.$$

Důkaz: Zaveďme substituci $y = x^2 + q$. Potom dy = 2x dx a tedy hledaný integrál dostaneme jako

$$\frac{1}{2} \int \frac{dy}{y^k}$$

(kde nakonec samozřejmě zase dosadíme x^2+q za y). \square

5.3 Tvrzení: $Bud'x^2 + px + q$ ireducibilní polynom. Potom zjištění integrálu

$$\int \frac{dx}{(x^2 + px + q)^k}$$

je možno převést na zjištění integrálu typu

$$\int \frac{dx}{(x^2+1)^k}$$

Důkaz: Přepišme $x^2 + px + q$ jako

$$\left(x + \frac{1}{2}p\right)^2 + \left(q - \frac{p^2}{4}\right)$$

Jelikož je náš polynom ireducibilní, je $q - \frac{p^2}{4} > 0$ (jinak by měl reálný kořen). Označme $q - \frac{p^2}{4} = a^2$ a přepišme (1) do tvaru

$$a^2\left(\left(\frac{x+\frac{1}{2}p}{a}\right)^2+1\right).$$

Ve zkoumaném integrálu dá substituce $y = \frac{x + \frac{1}{2}p}{a}$ (vedoucí k $a \cdot dy = dx$) výraz

$$\frac{1}{a} \int \frac{dy}{(y^2+1)^k}$$

5.4 TVRZENÍ: Integrál

$$J_k = \int \frac{dx}{(x^2 + 1)^k}$$

je možno vypočítat z rekurentní formule

$$J_{k+1} = \frac{1}{2k} \frac{x}{x^2 + 1} + \frac{2k - 1}{2k} J_k$$

Důkaz: Položme $f(x) = \frac{1}{(x^2+1)^k}$, g(x) = x. Potom je $f'(x) = -k \frac{2x}{(x^2+1)^{k+1}}$, g'(x) = 1 a upravíme-li J_k per partes, dostaneme

$$J_k = \frac{x}{(x^2+1)^k} + 2k \int \frac{x^2}{(x^2+1)^{k+1}} =$$

$$= \frac{x}{(x^2+1)^k} + 2k \left(\int \frac{x^2+1}{(x^2+1)^{k+1}} - \int \frac{1}{(x^2+1)^{k+1}} \right) =$$

$$= \frac{x}{x^2+1} + 2kJ_k - 2kJ_{k+1},$$

odkud $J_{k+1} = \frac{1}{2k} \frac{x}{x^2+1} + \frac{2k-1}{2k} J_k$. Jelikož J_1 již známe, (je to podle 2.6 arctg x), vede rekurzivní postup k cíli. \square

5.5 Nyní máme již vše připraveno k tomu, abychom ukázali, jak se nalezne primitivní funkce k funkci racionální lomené. Konkrétní postup je často velmi pracný, zde jde jen o to ukázat, že je obecně použitelný. Podle věty III.4.3 se dá racionální lomená funkce napsat jako součet polynomu, výrazů tvaru

$$\frac{A}{(x-a)^k}$$

a výrazů tvaru

$$\frac{Ax+B}{(x^2+px+q)^k},$$

kde $x^2 + px + q$ je ireducibilní. Podle 2.1 tedy stačí umět integrovat každý takový sčítanec. Polynom zintegrujeme podle 2.1 a 2.2. Výrazy typu (2) podle 5.1. Výraz typu (3) rozepíšeme na

$$A \cdot \frac{x}{(x^2 + px + q)^k} + B \cdot \frac{1}{(x^2 + px + q)^k}$$

a na první sčítanec použijeme 5.2, na druhý 5.3 a 5.4.

VI.6 Některé speciální substituce

6.1 Polynom ve dvou proměnných x, y je výraz tvaru

$$\sum_{r,s < n} a_{rs} x^r y^s,$$

racionální lomená funkce v proměnných x, y je

$$R(x,y) = \frac{p(x,y)}{q(x,y)},$$

kde p, q jsou polynomy v proměnných x, y.

Uvědomte si, že je-li R(x,y) racionální funkce v proměnných x, y, je pro racionální lomené funkce P(z), Q(z) výraz R(P(z),Q(z)) racionální lomená funkce.

6.2 Úmluva: V celém tomto odstavci bude R(x, y) vždy označovat racionální funkci dvou proměnných x, y.

6.3 Případ $\int R\left(x,\sqrt{\frac{ax+b}{\alpha x+\beta}}\right) dx$.: V tomto případě zavedeme substituci $y=\sqrt{\frac{ax+b}{\alpha x+\beta}}$. Potom máme $y^2=\frac{ax+b}{\alpha x+\beta}$, odkud snadno vypočteme

$$(1) x = \frac{b - \beta y^2}{\alpha y^2 + a},$$

z čehož vidíme, že

$$\frac{dx}{dy} = S(y),$$

kde S(y) je racionální lomená funkce. Naše substituce tedy transformuje $\int R\left(x,\sqrt{\frac{ax+b}{\alpha x+\beta}}\right)\,dx$ na

$$\int R\left(\frac{b-\beta y^2}{\alpha y^2+a},y\right)\cdot S(y)\,dy$$

a s tím si poradíme podle odstavce 5.

6.4 Případ $\int R(x, \sqrt{ax^2 + bx + c})$: (Eulerova substituce). V případě, že $a \leq 0$ plyne z toho, že na definičním oboru je $ax^2 + bx + c \geq 0$ (aby odmocnina dávala smysl), že $ax^2 + bx + c$ má reálné kořeny, dejme tomu α , β . Potom

$$R\left(x, \sqrt{ax^2 + bx + c}\right) = R\left(x, \sqrt{-a}\sqrt{(x - \alpha)(\beta - x)}\right) =$$

$$= R\left(x, \sqrt{-a}(x - \alpha) \cdot \sqrt{\frac{\beta - x}{x - \alpha}}\right),$$

čímž je výraz převeden na případ 6.3

Něco nového dostaneme v případě a > 0. Potom substituujeme t z výrazu

$$\sqrt{ax^2 + bx + c} = \sqrt{ax} + t.$$

Po umocnění obou stran rovnice dostaneme

$$ax^2 + bx + c = ax^2 + 2\sqrt{a}xt + t^2$$

a snadnou úpravou získáme

$$(3) x = \frac{t^2 - c}{b - 2t\sqrt{a}}$$

Z toho vidíme, že $\frac{dx}{dt} = S(t)$, kde S(t) je racionální lomená funkce. Integrál $\int R(x, \sqrt{ax^2 + bx + c}) dx$ tedy můžeme počítat přes

$$\int R\left(\frac{t^2-c}{b-2t\sqrt{a}}, \sqrt{a}\frac{t^2-c}{b-2t\sqrt{a}}+t\right) \cdot S(t) dt$$

6.5 Případ $\int R(\sin x, \cos x) dx$: Připomeňme si formuli

$$\cos^2 \alpha = \frac{1}{1 + \lg^2 \alpha}.$$

Při řešení naší úlohy budeme užívat substituce

$$y = \operatorname{tg} \frac{x}{2}$$

Máme

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = 2\operatorname{tg}\frac{x}{2}\cos^{2}\frac{x}{2} = \frac{2\operatorname{tg}\frac{x}{2}}{1 + \operatorname{tg}^{2}\frac{x}{2}} = 2\frac{y}{1 + y^{2}},$$

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = \frac{2}{1 + y^2} - 1 = \frac{1 - y^2}{1 + y^2}$$

Dále,

$$\frac{dy}{dx} = \frac{1}{2} \frac{1}{\cos^2 \frac{x}{2}} = \frac{1}{2} \left(1 + \operatorname{tg}^2 \frac{x}{2} \right) = \frac{1}{2} (1 + y^2)$$

a tedy

$$dx = \frac{2\,dy}{1+y^2}.$$

Naši úlohu můžeme tedy řešit přes

$$\int R\left(2\frac{y}{1+y^2}, \frac{1-y^2}{1+y^2}\right) \cdot \frac{2}{1+y^2} \, dy.$$

6.6 Poznámka: V konkrétních případech můžeme často řešit úlohy z tohoto odstavce jednodušeji. Tak třeba $\int \operatorname{tg} x \, dx = \int \frac{\sin x}{\cos x} \, dx$ nebudeme počítat obecným postupem z 6.5 protože hned vidíme, že při zavedení substituce $y = \cos x$ máme $dy = -\sin x \, dx$, takže počítáme

$$\int \operatorname{tg} x \, dx = -\int \frac{dy}{y} = -\operatorname{lg}|y| = -\operatorname{lg}|\cos x|.$$

VII Vektorové prostory

VII.1 Základní pojmy

1.1 DEFINICE: $Vektorový prostor V = (V, +, \mathbf{o}, .)$ je množina, na které je definováno sčítání (obvykle označované x + y) a násobení reálnými čísly (obvykle označované, pro $\alpha \in \mathbb{R}$, $\alpha.x$ nebo prostě αx) splňující následující požadavky

```
(i) (x + y) + z = x + (y + z)
(ii) x + y = y + x
```

(iii)
$$0.x = \mathbf{o}$$

(iv)
$$\alpha(\beta x) = (\alpha \beta)x$$

(v)
$$1.x = x$$

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$

(vii)
$$\alpha(x+y) = \alpha x + \alpha y$$
.

Prvky vektorového prostoru obvykle nazýváme vektory, prvek o z podmínky (iii) nazýváme nulovým vektorem. O podmínce (i) se hovoří jako o asociativitě, o (ii) jako o komutativitě, o podmínkách (vi) a (vii) jako o distributivních zákonech.

1.2 Poznámky:

- 1. Přesněji, definovali jsme zde vektorový~prostor~nad~tělesem~reálných~čísel. Časem se setkáte též s vektorovými prostory, kde vnější násobení αx se děje prvky α z jiného tělesa, zejména z tělesa komplexních čísel.
- 2. Je dobré se na chvíli zamyslet nad požadavky (iv) až (vii). Na př. podmínka (iv) je vazba mezi odlišnými operacemi : nalevo je dvakrát provedeno vnější násobení reálným číslem ; to je napravo jen jednou, $\alpha\beta$ v závorce je obvyklé násobení reálných čísel. Podobně v podmínce (vi) je nalevo v závorce sčítání v \mathbb{R} , napravo součet vektorů.

Vnější násobení vlastně znamená, že

 $ke\ každ\acute{e}mu\ re\'{a}ln\'{e}mu\ \check{c}\'{i}slu\ je\ p\'{r}i\check{r}azeno\ zobrazen\'{i}\ x\mapsto \alpha x.$

Z tohoto pohledu znamená (iv), že součinu v $\mathbb R$ odpovídá skládání příslušných zobrazení, podmínka (iii), že číslu 0 je přiřazeno konstantní zobrazení, podmínka (v) říká, že číslu 1 je přiřazeno identické zobrazení, podmínka (vi) pak to, že součtu čísel v $\mathbb R$ odpovídá součet příslušných zobrazení (v obdoném smyslu jako jsme sčítali funkce předpisem (f+g)(x)=f(x)+g(x)), podmínka (vii) konečně říká, že naše zobrazení přiřazovaná reálným číslům zachovávají součet ve V. Distributivní zákony (vi) a (vii) představují tedy značně odlišná fakta.

3. Místo "vektorový prostor" se často říká též "(vektorový) modul".

Příklady:

- 1. R s obvyklým sčítáním a násobením.
- 2. n-rozměrný aritmetický vektorový prostor V_n : Prvky jsou n-tice (x_1, \ldots, x_n) reálných čísel. Sčítání je dáno předpisem

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$

násobení předpisem

$$\alpha(x_1,\ldots,x_n)=(\alpha x_1,\ldots,\alpha x_n).$$

Toto je velmi důležitý případ. V podstatě se budeme převážně zabývat těmito prostory (viz 4.12).

3. **Prostory reálných funkcí :** Připomeňte si definice z II.2.1. Množina F(M) reálných funkcí na množině M s obvyklým sčítáním a s násobením reálnými čísly je zřejmě vektorový prostor.

Buď J (dejme tomu) otevřený interval. Množina C(J) všech spojitých reálných funkcí na J s obvyklými operacemi je vektorový prostor (viz II.6.3). Podle IV.2.1 je podobně množina $C_1(J)$ všech hladkých funkcí na J vektorový prostor.

- 1.3 TVRZENÍ:
 - (1) Platí $x + \mathbf{o} = x \operatorname{pro} každé x$.
 - (2) Ke každému vektoru x existuje právě jeden vektor y takový, že $x + y = \mathbf{o}$, totiž y = (-1)x.

Poznámka a označení: Vektor $y \neq (2)$ nazýváme vektorem opačným k vektoru x. Označujeme ho -x.

Důkaz:

- (1) x + o = 1.x + O.x podle (v), (iii) a (vi).
- (2) Mějme dva takové prvky, y a z. Potom

$$y = y + (x + z) = (y + x) + z = z$$
.

Máme
$$x + (-1)x = 1x + (-1)x = (1 + (-1))x = 0x = \mathbf{o}$$
.

- **1.4** Podprostorem vektorového prostoru V rozumíme podmnožinu W, která při zachování operací z V je sama vektorovým prostorem. Zřejmě tedy k tomu, aby $W\subseteq V$ byl podprostor je nutné a stačí, aby pro původní operace ve V platilo
 - (a) $\mathbf{o} \in W$,
 - (b) $x, y \in W \implies x + y \in W$,
 - (c) $\alpha \in \mathbb{R}, x \in W \implies \alpha x \in W$.

Místo "podprostor" se často říká podmodul.

Kontrolní otázka: Proč jsme museli požadovat (a), když podle (c) je $o = 0.x \in W$?

1.5 Zcela bezprostředně vidíme, že platí

Věta: Průnik libovolného systému podprostorů je podprostor.

- 1.6 Příklady:
 - 1. C(J) a $C_1(J)$ jsou podprostory F(J). $C_1(J)$ je podprostor C(J).
 - 2. $\{(x,x) \mid x \in \mathbb{R}\}$ a $\{(x,0) \mid x \in \mathbb{R}\}$ jsou podprostory V_2 .
- 1.7 Definice a označení: Buď M libovolná podmnožina vektorového prostoru V. Definujme

$$\mathcal{L}(M)$$

jako průnik všech podprostorů $W \subset V$ takových, že $M \subset W$. Tedy,

 $\mathcal{L}(M)$ je nejmenší podprostor prostoru \overline{V} obsahující množinu M

Mluvíme o něm též jako o podprostoru (podmodulu) generovaném množinou M.

Je-li $\mathcal{L}(M) = V$, říkáme, že M je soustava generátorů prostoru V.

Má-li V konečnou soustavu generátorů, mluvíme o něm jako o konečně generovaném (vektorovém) prostoru.

Poznámka: Všimněte si, že $\mathcal{L}(\emptyset) = \{\mathbf{o}\}.$

1.8 Spojení dvou podprostorů: Jedná se o podprostor

$$W_1 \oplus W_2 = \mathcal{L}(W_1 \cup W_2).$$

VII.2 Lineární zobrazení

2.1 Buďte V,W vektorové prostory. Řekneme, že zobrazení $f:V\to W$ je lineární jestliže pro libovolná $x,y\in V$ a $\alpha,\beta\in\mathbb{R}$ platí

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

Příklady: (označení z 3.1)

1. Identické zobrazení V na V je lineární.

- 2. Zobrazení $V_2 \to \mathbb{R}$ dané předpisem $(x, y) \mapsto x$.
- 3. Buď α pevné reálné číslo. Zobrazení $V \to V$ dané předpisem $x \mapsto \alpha x$ je lineární.
- 4. Buď W podprostor vektorového prostoru V. Zobrazení vložení $j:W\to V$ (dané předpisem j(x)=x) je lineární.
- 5. Derivace je lineární zobrazení $C_1(J) \to F(J)$.
- **2.2** Lineární zobrazení $f: V \to W$ se nazývá isomorfismus, existuje-li k němu inversní zobrazení $g: W \to V$, které je také lineární. Existuje-li isomorfismus $V \to W$, říkáme, že $prostory\ V$ a W $jsou\ isomorfní$.
- **2.3** Věta: Je-li lineární zobrazení $f: V \to W$ prosté a na, je to isomorfismus.

Důkaz: Buď g zobrazení inversní k f. Jde o to, dokázat, že je také lineární. Máme

$$g(\alpha x + \beta y) = g(\alpha f(g(x)) + \beta f(g(x))) = g(f(\alpha g(x) + \beta g(y))) = \alpha g(x) + \beta g(y).$$

VII.3 Lineární kombinace

3.1 Lineární kombinací vektorů x_1, \ldots, x_n rozumíme každý výraz tvaru

$$(*) \alpha_1 x_1 + \ldots + \alpha_n x_n.$$

Při práci s lineárními kombinacemi je **zásadně důležité** naučit se stále sledovat, zda jde u toho kterého výrazu typu (*) o konkrétní zápis (t.j. o informaci obsahující konkrétní hodnoty koeficientů α_i), nebo zda jde o konečný výsledek po provedení naznačených operací.

Řekneme, že lineární kombinace (*) je netriviální je-li aspoň jeden z koeficientů α_i nenulový.

3.2 Řekneme, že systém vektorů x_1, \ldots, x_n je lineárně závislý, existuje-li netriviální lineární kombinace těchto vektorů, která dá výsledek o. V opačném případě mluvíme o systému lineárně nezávislém.

Poznámka: Hovoříme-li o lineární závislosti nebo nezávislosti systému x_1, \ldots, x_n , máme na mysli tuto (konečnou) posloupnost, nikoli jen množinu těchto vektorů. Na případném opakování prvků tedy záleží; na konkrétním pořadí nám zatím záleží méně. Řekneme-li ale, že nějaká (konečná) množina vektorů je lineárně závislá nebo nezávislá, máme na mysli systém vzniklý seřazením této množiny do posloupnosti bez opakování. Dodejme ještě, že u nekonečných množin se mluví o lineární nezávislosti, je-li lineárně nezávislá každá konečná podmnožina. Nám zde ale půjde o systémy a množiny konečné.

3.3 VĚTA:

- 1. Podsystém lineárně nezávislého systému je lineárně nezávislý.
- 2. Obsahuje-li systém x_1, \ldots, x_n nulový vektor, je závislý.
- 3. Obsahuje-li systém x_1, \ldots, x_n dva stejné vektory, je závislý.
- 4. Buď x_1, \ldots, x_n posloupnost vektorů, β_2, \ldots, β_n libovolná reálná čísla. Potom je systém x_1, \ldots, x_n lineárně závislý právě když je systém $x_1 + \sum_{i=2}^n \beta_i x_i, x_2, \ldots, x_n$ lineárně závislý.

Důkaz:

- 1. Lineární kombinaci svědčící o závislosti by stačilo doplnit zbývajícími prvky s koeficienty 0.
- 2. $1.\mathbf{o} = \mathbf{o}$; dále použijme 1.
- 3. $1.u + (-1).u \mathbf{o}$.

4. Stačí dokázat, že ze závislosti systému $x_1 + \sum_{i=2}^n \beta_i x_i, x_2, \ldots, x_n$ plyne závislost systému x_1, \ldots, x_n . Tento je totiž také možno získat z předchozího přičtením lineární kombinace ostatních vektorů (a sice $\sum_{i=2}^n (-\beta)_i x_i$) k prvnímu prvku.

Buď

$$\alpha_1(x_1 + \sum_{i=2}^n \beta_i x_i) + \alpha_2 x_2 + \ldots + \alpha_n x_n = \mathbf{o}, \quad \alpha_k \neq 0.$$

Máme tedy

$$\alpha_1 x_1 + (\alpha_2 + \alpha_1 \beta_2) x_2 + (\alpha_n + \alpha_1 \beta_n) x_n = \mathbf{o}.$$

Bylo-li k=1, tedy $\alpha_1\neq 0$, je tento výraz netriviální lineární kombinace. Ale i kdyby bylo $\alpha_1=0$, měli bychom $k\neq 1$ a $\alpha_k+\alpha_1\beta_k=\alpha_k\neq 0$, takže i nyní jde o netriviální lineární kombinaci. \square

3.4 Generující systémy se chovají opačně než systémy lineárně nezávislé. Máme triviální

Pozorování: Nadsystém systému generátorů je systém generátorů.

3.5 VĚTA: (označení z 1.7) $\mathcal{L}(M)$ je množina všech (výsledků) lineárních kombinací prvků z M.

Důkaz: Jestliže podprostor W obsahuje M, obsahuje zřejmě též výsledky všech lineárních kombinací prvků z M. Na druhé straně je tato množina výsledků lineárních kombinací zřejmě podprostor. \square

- 3.6 DEFINICE: Lineárně nezávislý systém generátorů nazveme $b\acute{az}i$ vektorového prostoru V.
- **3.7** VĚTA: Systém x_1, \ldots, x_n prvků z V je
 - (a) systémem generátorů právě když lze každý vektor z V napsat jako lineární kombinaci tohoto systému,
 - (b) nezávislý právě když je každý vektor z V možno napsat nejvýš jedním způsobem jako lineární kombinaci prvků tohoto systému,
 - (c) báze právě když je každý vektor z V možno napsat právě jedním způsobem jako lineární kombinaci tohoto systému.

Důkaz:

- (a) plyne okamžitě z 3.5
- (b) Nechť je systém nezávislý, nechť $x=\sum_{i=1}^n\alpha_ix_i=\sum_{i=1}^n\beta_ix_i$. Potom $\mathbf{o}=(\alpha_1-\beta_1)x_1+\ldots+(\alpha_n-\beta_n)x_n$ a tedy musí být $\alpha_i-\beta_i=0$, t.j. $\alpha_i=\beta_i$. Nechť je závislý, nechť o tom svědčí netriviální lineární kombinace $\mathbf{o}=\sum\alpha_jx_j$. Prvek \mathbf{o} je ovšem možno zapsat též jako $0.x_1+\ldots+0.x_n$.
- (c) dostaneme spojením (a) a (b). □
- **3.8** Věta: $Bud'f:V\to W$ lineární zobrazení. Je-li prosté, zachovává lineární nezávislost; je-li na, zachovává vlastnost být systémem generátorů.

Důkaz: Buď f prosté, buď x_1, \ldots, x_n nezávislý systém ve V. Je-li $\sum \alpha_j f(x_j) = \mathbf{o}$, je $f(\sum \alpha_j x_j) = \mathbf{o} = f(\mathbf{o})$ a tedy $\sum \alpha_j x_j = \mathbf{o}$ a všechna α_j musí být nuly.

Buď $M \subseteq V, \mathcal{L}(M) = V, y \in W$. Je-li f na, je y = f(x) pro nějaké $x \in V$. Toto x se dá napsat jako $\sum \alpha_j x_j$ pro nějaká $x_j \in M$, a tedy $y = \sum \alpha_j f(x_j)$. Tedy f[M] generuje W. \square

3.9 DÜSLEDEK: Bud' $f: V \to W$ isomorfismus, x_1, \ldots, x_n báze v. Potom $f(x_1), \ldots, f(x_n)$ je báze W.

VII.4 Věta o výměně. Dimenze

4.1 VĚTA: $\mathcal{L}(u_1,\ldots,u_n)\subseteq\mathcal{L}(v_1,\ldots,v_k)$ právě když je každý prvek u_j možno napsat jako lineární kombinaci prvků v_1,\ldots,v_k .

Důkaz: Plyne bezprostředně z 3.5 a definice \mathcal{L} . \square

4.2 VĚTA: (Steinitzova, Věta o výměně) $Bud'u_1, \ldots, u_n$ systém generátorů vektorového prostoru V, $bud'v_1, \ldots, v_k$ nezávislý systém ve V. Potom

(1)
$$k < n$$
,

(2) po vhodném přečíslování prvků u; generuje

$$v_1,\ldots,v_k,u_{k+1},\ldots,u_n$$

prostor V.

 $\mathbf{D}\mathbf{\hat{u}kaz}$: Indukcí podle k.

 $k=1: v_1=\sum_{i=1}^n \alpha_i u_i$ jelikož u_i generují V. Při tom musí být některý koeficient $\alpha_j\neq 0$, neboť jinak by v_1 byl ${\bf o}$ a ten netvoří nezávislý systém. Přečíslováním můžeme dosáhnout toho, že $\alpha_1\neq 0$ a máme $\frac{1}{\alpha_1}v_1=u_1+\sum_{j=2}^n \frac{\alpha_j}{\alpha_1}u_j$ a tedy $u_1=\frac{1}{\alpha_1}v_1-\sum_{j=2}^n \frac{\alpha_j}{\alpha_1}u_j$. Máme tedy $\mathcal{L}(v_1,u_2,\ldots,u_n)=\mathcal{L}(u_1,\ldots,u_n)=V$ podle 4.1.

Indukční krok : Nechť tvrzení platí pro k a nechť v_1,\ldots,v_k,v_{k+1} je nezávislý systém. Podle indukčního předpokladu máme generující systém

$$v_1,\ldots,v_k,u_{k+1},\ldots,u_n.$$

Je tedy možno psát

$$v_{k+1} = \sum_{i=1}^k \alpha_i v_i + \sum_{i=k+1}^n \alpha_i u_i.$$

Jelikož v_1,\ldots,v_{k+1} je nezávislý systém a tedy nemůže být $v_{k+1}-\sum_{i=1}^k\alpha_iv_i=\mathbf{o}$, musí být druhý součet napravo netriviální a tedy především $n\geq k+1$, a za druhé $\alpha_j\neq 0$ pro nějaké $j\geq k+1$. Přečíslujeme tak, aby $\alpha_{k+1}\neq 0$ a dostaneme

$$u_{k+1} = -\sum_{j=1}^{k} \frac{\alpha_j}{\alpha_{k+1}} v_j + \frac{1}{\alpha_{k+1}} v_{k+1} - \sum_{j=k+2}^{n} \frac{\alpha_j}{\alpha_{k+1}} u_j$$

Podle 4.1 tedy

$$\mathcal{L}(v_1,\ldots,v_{k+1},u_{k+2},\ldots,u_n) = \mathcal{L}(v_1,\ldots,v_k,u_{k+1},\ldots,u_n) = V.$$

4.3 Pozorování: Systém u_1, \ldots, u_n je lineárně závislý právě když některý z jeho prvků je lineární kombinací ostatních.

(Skutečně, $u_1 - \sum_{i=2}^n \alpha_i u_i$ je netriviální lineární kombinace ; na druhé straně, je-li $\sum_{i=1}^n \alpha_i u_i = \mathbf{o}$ a $\alpha_k \neq 0$, máme $u_k = -\sum_{j \neq k} \frac{\alpha_j}{\alpha_k} u_j$.)

4.4 Věta: Z každého konečného systému generátorů lze vybrat bázi. Každý konečně generovaný vektorový prostor tedy má bázi.

Důkaz: Buď u_1, \ldots, u_n systém generátorů. Je-li nezávislý, je už bází sám. Je-li závislý, je podle 4.3 a 4.1 po vhodném přečíslování u_1, \ldots, u_{n-1} systém generátorů. Proceduru opakujeme tak dlouho, až dostaneme systém generátorů u_1, \ldots, u_k , který už nezávislý je. Může být ovšem prázdný, totiž tehdy, jedná-li se o prostor $\{\mathbf{o}\}$. \square

- **4.5 Poznámka:** Ve skutečnosti každý, i nekonečně generovaný, vektorový prostor má bázi (za předpokladu axiomu výběru).
- 4.6 Věta: Každý nezávislý systém v konečně generovaném prostoru lze rozšířit na bázi.

Důkaz: Buď v_1, \ldots, v_k nezávislý systém, u_1, \ldots, u_n báze (o té již podle 4.4 víme, že existuje). Podle věty 4.2 po vhodném přečíslování prvků u_j systém $v_1, \ldots, v_k, u_{k+1}, \ldots, u_n$ generuje V. Kdyby to nebyla báze, mohli bychom z něj vybrat menší generující systém v rozporu s (1) v 4.2 : u_1, \ldots, u_n je přece nezávislý systém a tedy každý systém generátorů musí mít aspoň n prvků. \square

4.7 Věta a definice. Všechny báze konečně generovaného vektorového prostoru V mají stejnou mohutnost. Tu nazýváme dimenzí prostoru V a označujeme

 $\dim V$

Důkaz: Buďte u_1, \ldots, u_n a v_1, \ldots, v_k báze. Podle 4.2 je $n \leq k$ i $k \leq n$. \square

4.8 Věta: Buď dim V = n. Je-li u_1, \ldots, u_n generující systém, je to báze.

Důkaz: Plyne z 4.7 a 4.4. \square

4.9 VĚTA: $Bud'\dim V = n$. Je- $li u_1, ..., u_n$ nezávislý systém, je to báze.

Důkaz: Plyne z 4.7 a 4.6. \square

4.10 Věta: Podprostor konečně generovaného prostoru je konečně generovaný.

Důkaz: Buď dim V=n, buď W podprostor V. Kdyby nebyl konečně generovaný, mohli bychom v něm podle 4.3 najít libovolně velké nezávislé systémy, tedy také nějaký s více než n prvky, což je ve sporu s 4.2. \square

4.11 VĚTA: Buď dim V = n, buď W podprostor V, Potom je dim W < n a je-li dim W = n, je W = V.

Důkaz: První tvrzení plyne z toho, že báze podprostoru W je nezávislý systém ve V. Druhé pak dostaneme z 4.6: V případě, že dim W=n a $W\subset V, W\neq V$ by rozšíření báze W na bázi V mělo příliš mnoho prvků. \square

4.12 VĚTA: $Bud' \dim V = n$. Potom je V isomorfní s V_n .

Důkaz: Buď u_1, \ldots, u_n báze V. Zobrazení $f: V_n \to V$ dané předpisem

$$f((x_1,\ldots,x_n))=\sum_{i=1}^n x_i u_i$$

je podle 3.7.(c) prosté a na, a zcela zřejmě lineární. Tedy je to isomorfismus podle 2.3. □

Důležitá úmluva o označení: Zatím jsme většinou graficky odlišovali reálná čísla řeckými písmeny a prvky vektorových prostorů latinkou. To by v dalším mohlo být nepohodlné : Především, v ostatních kapitolách jsou reálná čísla označována většinou latinkou; dále, právě dokázaná věta ukazuje zvláštní důležitost vektorových prostorů V_n . Při práci s prostory V_n budeme označovat vektory tučně, a reálná čísla prostě latinkou. Často také budeme užívat pro souřadnice týchž písmen jako pro celé vektory, budeme tedy, pokud nám to kontext dovolí, psát třeba

$$\mathbf{a} = (a_1, \dots, a_n), \quad \mathbf{x} = (x_1, \dots, x_n), \quad \mathbf{u} = (u_1, \dots, u_n).$$

Později budeme tuto konvenci užívat též pro n—tice reálných funkcí, t.j., máme-li dány reálné funkce $f_i: X \to \mathbb{R}, j = 1, ..., n$, budeme někdy užívat symbolu

$$\mathbf{f}=(f_1,\ldots,f_n)$$

a dívat se na ${\bf f}$ jako na zobrazení X do V_n , případně do n-rozměrného euklidovského prostoru (viz dále), definované předpisem

$$\mathbf{f}(x) = (f_1(x), \dots, f_n(x)).$$

4.13 Věta: Buďte W_1, W_2 konečně generované podprostory vektorového prostoru V. Potom

$$\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 \oplus W_2).$$

Důkaz: $W_1 \cap W_2$ je konečně generovaný podle 4.11. Vyberme nějakou jeho bázi u_1, \dots, u_k a rozšiřme ji na

bázi
$$W_1:u_1,\ldots,u_n,v_{k+1},\ldots,v_r$$
 , a

bázi $W_2: u_1, ..., u_n, w_{k+1}, ..., w_s$.

Potom zřejmě (ujasněte si proč!)

$$(*)$$
 $u_1, \ldots, u_n, v_{k+1}, \ldots, v_r, w_{k+1}, \ldots, w_s$

generuje $W_1 \oplus W_2$. Tvrzení tedy bude dokázáno ukážeme-li, že systém (*) je nezávislý (a tedy báze $W_1 \oplus W_2$). Nechť

$$\sum_{i=1}^k \alpha_i u_i + \sum_{i=k+1}^r \beta_i v_i + \sum_{i=k+1}^s \gamma_i w_i = \mathbf{o}.$$

Nechť je některé β_j nenulové. Potom vzhledem k nezávislosti v_{k+1},\ldots,v_r není $\sum \beta_j v_j = \mathbf{o}$. Ale

$$\sum \beta_j v_j = -\sum \alpha_j u_j - \sum \gamma_j w_j \in W_1 \cap W_2$$

a tedy by tento vektor roven o být měl.

Tedy jsou všechna β_i nulová a máme

$$\sum \alpha_j u_j + \sum \gamma_j w_j = \mathbf{o}.$$

Vzhledem k nezávislosti systému $u_1,\ldots,u_k,w_{k+1},\ldots,w_s$ vidíme, že i všechna α_j a γ_j jsou nuly. \square

VII.5 Skalární součin. Kolmost

 ${\bf 5.1~Definice:}~Skal{\'a}rn{\'i}m~sou{\'c}{\it inem}$ na vektorovém prostoruVrozumíme zobrazení

$$((u,v)\mapsto u.v):V\times V\to\mathbb{R},$$

splňující následující podmínky :

- (i) $v.v \ge 0$ a $v^2 = v.v = 0$ jen pro v = 0,
- (ii) u.v = v.u,
- (iii) $(\alpha u).v = \alpha(u.v),$
- (iv) u.(v + w) = u.v + u.w.

Místo u.v píšeme často prostě uv, u^2 samozřejmě znamená uu. Zavedeme ještě označení

$$||u|| = \sqrt{u \cdot u}$$

Číslo ||u|| se nazývá norma vektoru u.

5.2 Příklad a úmluva: Ve V_n se obvykle zavádí skalární součin

$$(x_i,\ldots,x_n)\cdot(y_i,\ldots,y_n)=\sum_{i=1}^nx_iy_i.$$

 ${\bf V}$ dalším budeme V_n vždy považovat za opatřený tímto skalárním součinem.

5.3 Věta: (Cauchy - Schwarzova nerovnost)

$$|u.v| \le ||u||.||v||$$

Důkaz: Zkoumejme výraz $(tu+v)^2$ pro reálná čísla t. Máme

$$0 \le (tu + v)^2 = t^2 ||u||^2 + 2t(uv) + ||v||^2.$$

Kvadratická rovnice $t^2||u||^2 + 2t(uv) + ||v||^2 = 0$ tedy nemá dva reálné kořeny a její diskriminant

$$4(uv)^2 - 4||u||.||v||$$

je tedy ≤ 0 . \square

5.4 Věta: (Trojúhelníková nerovnost pro normu)

$$||u+v|| < ||u|| + ||v||$$
.

Důkaz: Podle 5.3 máme

$$||u + v||^2 = (u + v)(u + v) = ||u||^2 + 2uv + ||v||^2 \le$$

 $\le ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 = (||u|| + ||v||)^2.$

5.5 Řekneme, že vektory u, v jsou navzájem $kolm\acute{e}$ (nebo $orthogon\acute{a}ln\acute{i}$ jestliže u.v=0. Zřejmě je o kolmý ke každému vektoru, na druhé straně je to jediný vektor, který je kolmý sám k sobě.

Poznámka: Tato terminologie zasluhuje vysvětlení. Postupně se budeme dívat na vektorové prostory geometričtěji. Připomeňte si základy analytické geometrie ze střední školy a dívejte se chvíli na V_n jako na analytické vyjádření euklidovského prostoru v souřadnicích (můžete si zatím představovat, že n je 1,2 nebo 3). Potom se $\|\mathbf{x}\|$ jeví jako "vzdálenost bodu \mathbf{x} od počátku" a vzdálenost dvou bodů \mathbf{x} , \mathbf{y} je vyjádřena formulí $\|\mathbf{x} - \mathbf{y}\|$. Soustředte se na trojúhelník o vrcholech \mathbf{o} , \mathbf{x} , \mathbf{y} . Jeho strany mají délky $a = \|\mathbf{x}\|$, $b = \|\mathbf{y}\|$ a $c = \|\mathbf{x} - \mathbf{y}\|$. Tedy je

(*)
$$c^{2} = ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} - 2\mathbf{x}\mathbf{y} = a^{2} + b^{2} - 2\mathbf{x}\mathbf{y},$$

takže podmínka $\mathbf{xy} = 0$ znamená, že chceme, aby v našem trojúhelníku platila Pythagorova věta - a to je totéž jako požadavek, aby strana \mathbf{ox} (vyjádřená vektorem \mathbf{x}) byla kolmá na stranu \mathbf{oy} (vyjádřenou vektorem \mathbf{y}).

Mimochodem, rovnice (*) je zachycením známé cosinové věty v řeči skalárního součinu.

5.6 Soustava vektorů v_1, \ldots, v_n se nazývá orthogonální jestliže

$$v_i.v_i = 0$$
 pro $i \neq j$.

Platí-li navíc $v_i v_i = 1$, mluvíme o soustavě orthonormální.

5.7 VĚTA: Každá orthogonální soustava nenulových vektorů (tedy speciálně každá orthonormální soustava) je lineárně nezávislá.

Důkaz: Buď v_1, \ldots, v_n orthogonální, $v_i \neq \mathbf{o}$, buď $\mathbf{o} = \sum \alpha_i v_i$. Po vynásobení obou stran v_j dostáváme

$$0 = \sum_{i} \alpha_i v_i v_j = \alpha_j ||v_j||^2$$

a tedy $\alpha_j = 0$. \square

5.8 VĚTA: $Bud'u_1, \ldots, u_n$ báze vektorového prostoru se skalárním součinem. Potom existuje orthonormální báze v_1, \ldots, v_n taková, že pro všechna $k \leq n$ platí

$$\mathcal{L}(u_1,\ldots,u_k)=\mathcal{L}(v_1,\ldots,v_k)$$

Byla-li přitom u_1, \ldots, u_r orthonormální soustava, můžeme pro $j \leq r$ volit $v_j = u_j$.

Důkaz: Popíšeme proceduru, podle které bázi v_1, \ldots, v_n zkonstruujeme. Především položme $v_1 = \frac{1}{\|u_1\|} u_1$. Máme-li již $v_1, \ldots, v_k \quad (k < n)$ nalezeny, položme

$$w = u_{k+1} - \sum_{i=1}^{k} \frac{v_i u_{k+1}}{\|v_i\|^2} \cdot v_i.$$

Jak snadno zjistíme vynásobením v_j $(j \le k)$, je w kolmý ke všem dosavadním v_j . Nemůže být w=0, protože pak by bylo podle indukčního předpokladu

$$u_{k+1} = \sum_{i=1}^{k} \alpha_i v_i \in \mathcal{L}(u_1, \dots, u_k)$$

ve sporu s nezávislostí soustavy u_1, \ldots, u_n . Položíme

$$v_{k+1} = \frac{1}{||w||} \cdot w.$$

Potom

$$\mathcal{L}(v_1,\ldots,v_{k+1})\subset\mathcal{L}(u_1,\ldots,u_{k+1})$$
;

jelikož je ale v_1,\dots,v_{k+1} orthonormální soustava, je nezávislá, oba podprostory mají stejnou dimenzi a tedy nastává rovnost podle 4.11. \square

 ${f 5.9}~{
m Bud}~V$ vektorový prostor se skalárním součinem, W podprostor V.~Orthogonálním~doplňkem~ podprostoru W, označení

$$W^{\perp}$$

rozumíme podmnožinu

$$\{v \mid \text{pro v} \text{ v} \text{ sechna } u \in W \text{ je } v.u = 0\}.$$

Z požadavků na skalární součin okamžitě dostáváme

Pozorování: W^{\perp} je podprostor a platí $W \cap W^{\perp} = \{\mathbf{o}\}$. Je-li $W_1 \subseteq W_2$, je $W_1^{\perp} \supseteq W_2^{\perp}$.

 $\mathbf{5.10}\ \mathrm{V\'{E}TA}$: Nechť V je vektorový prostor konečné dimenze se skalárním součinem. Potom pro jeho podprostory W,W_i platí

- 1. $W \oplus W^{\perp} = V$,
- $2. \dim W^{\perp} = \dim V \dim W$
- 3. $(W^{\perp})^{\perp} = W$,

4.
$$(W_1 \cap W_2)^{\perp} = W_1^{\perp} \oplus W_2^{\perp}, (W_1 \oplus W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}.$$

Důkaz: 1-2. Buď u_1, \ldots, u_k orthonormální báze W. Podle 4.6 a 5.8 ji můžeme rozšířit na orthonormální bázi $u_1, \ldots, u_k, u_{k+1}, \ldots, u_n$ prostoru V. Ukážeme, že $W^{\perp} = \mathcal{L}(u_{k+1}, \ldots, u_n)$. Zřejmě je $W_1 = \mathcal{L}(u_{k+1}, \ldots, u_n) \subseteq W^{\perp}$. Kdyby $W_1 \neq W^{\perp}$, byla by $\dim W^{\perp} > n - k$ a tedy $\dim W + \dim W^{\perp} > n = \dim V + 0 \ge \dim (W \oplus W^{\perp}) + \dim (W \cap W^{\perp})$ ve sporu s 4.13.

- 3. Zřejmě $W\subseteq (W^\perp)^\perp$. Podle 2 mají tyto dva prostory stejnou dimenzi. Tedy nastává rovnost podle 4.11.
- 4. Zřejmě $W_i^{\perp} \subseteq (W_1 \cap W_2)^{\perp}$ a tedy $W_1^{\perp} \oplus W_2^{\perp} \subseteq (W_1 \cap W_2)^{\perp}$ a podobně $W_1^{\perp} \cap W_2^{\perp} \supseteq (W_1 \oplus W_2)^{\perp}$. S pomocí 3 a Pozorování v 5.9 dostaneme

$$(W_1 \cap W_2)^{\perp} = ((W_1^{\perp})^{\perp} \cap (W_2^{\perp})^{\perp})^{\perp} \subseteq ((W_1^{\perp} \oplus W_2^{\perp})^{\perp})^{\perp} = W_1^{\perp} \oplus W_2^{\perp},$$

$$(W_1 \oplus W_2)^{\perp} = ((W_1^{\perp})^{\perp} \oplus (W_2^{\perp})^{\perp})^{\perp} \supseteq ((W_1^{\perp} \cap W_2^{\perp})^{\perp})^{\perp} = W_1^{\perp} \cap W_2^{\perp}.$$

5.11 K tomu, abychom zjistili, že je $w \in W^{\perp}$ stačí ujistit se, že $w.a = \mathbf{o}$ pro všechny vektory a z nějaké soustavy generátorů prostoru W. Je-li totiž $w.a_j = 0$ pro $j = 1, \ldots, k$, je $w.(\sum \alpha_j a_j) = \sum \alpha_j w a_j = 0$. Speciálně dostáváme

Pozorování: $(\mathcal{L}(a_1,\ldots,a_n))^{\perp} = \{v \mid \forall j=1,\ldots n, v.a_j = 0\}.$

VII.6 Trochu geometrie. Lineární množiny

V tomto odstavci má vektorový prostor vždy konečnou dimenzi.

6.1 V Poznámce v 5.5 jsme se na V_n začali dívat jako na representaci euklidovského prostoru. Nyní si tento pohled trochu rozšíříme. Na vektorové podprostory W prostoru V_n je možné se dívat jako na přímky (je-li dim W=1), roviny (je-li dim W=2) a obecněji vícerozměrné "rovné" euklidovské podprostory. (Mimochodem, v případě dim $W=\dim V-1$ se často mluví o nadrovinách.) Ale dostáváme tak jen takové, které procházejí počátkem. Od toho se osvobodíme následující definicí:

 $Line\acute{a}rn\acute{i}$ pod $mno\check{z}inou$ dimenze k>0 ve vektorovém prostoru rozumíme každou množinu tvaru

$$x_0 + W = \{x_0 + w \mid w \in W\},\$$

kde W je podprostor dimenze k. Navíc budeme ještě považovat $prázdnou\ množinu\ za\ lineární\ podmnožinu\ dimenze\ -1.$

6.2 Věta: $Bud'L = x_0 + W$ lineární podmnožina. Potom pro libovolný prvek $x_1 \in L$ je $L = x_1 + W$.

Důkaz: Buď $x_1 = x_0 + x$, $x \in W$. Je-li $u = x_0 + w$, máme $u = x_1 + (w - x)$; je-li $u = x_1 + w$, je $u = x_0 + (w + x)$. \square

6.3 VĚTA: Průnik libovolného systému lineárních podmnožin je lineární podmnožina.

Důkaz: Buďte $L_j = x_j + W_j$ $(j \in J)$ lineární podmnožiny. Buď $\bigcap L_j \neq \emptyset$, vyberme v něm vektor x_0 . Potom podle 6.2 máme $L_j = x_0 + W_j$. Označme $W = \bigcap W_j$. Ukážeme, že

$$\bigcap L_j = x_0 + W.$$

Skutečně, je-li $u \in \bigcap L_j$, je $u = x_0 + w_j$, $w_j \in W_j$, ale to znamená, že $u - x_0 = w_j \in W_j$ pro všechna j a tedy $u = x_0 + (u - x_0) \in x_0 + W$. Inkluse $x_0 + W \subseteq L_j$ pro všechna j je triviální. \square

6.4 Věta: Budte a_1, \ldots, a_k prvky vektorového prostoru se skalárním součinem, β_1, \ldots, β_k reálná čísla. Potom

$$M = \{x \mid a_j x = \beta_j, \ j = 1, \dots, k\}$$

je lineární množina.

Důkaz: Buď M neprázdná, $x_0 \in M$. Ukážeme, že potom $M = x_0 + \mathcal{L}(a_1, \ldots, a_k)^{\perp}$. Skutečně, buď $x \in M$. Potom $a_j x = \beta_j$ pro všechna j a tedy $a_j (x - x_0) = a_j x - a_j x_0 = \beta_j - \beta_j = 0$ a tedy $x - x_0 \in \mathcal{L}(a_1, \ldots, a_k)^{\perp}$ podle 5.11, takže $x = x_0 + (x - x_0) \in x_0 + \mathcal{L}(a_1, \ldots, a_k)^{\perp}$. Naopak buď $v \in \mathcal{L}(a_1, \ldots, a_k)^{\perp}$. Potom $a_j (x_0 + v) = a_j x_0 + a_j v = \beta_j$ a tedy $x_0 + v \in M$. \square

- **6.5** Důsledek: $x_0 + W = \{x \mid a_j x = \beta_j, \ j = 1, \dots, k\}, \ kde \ a_1, \dots, a_k \ generují \ W^\perp \ a \ \beta_j = a_j x_0.$ (Použili jsme toho, že $(W^\perp)^\perp = W$.)
- **6.6** Tvrzení z 6.4 a 6.5 obsahuje speciálně to, co znáte ze základů analytické geometrie jako přechod od t.zv. parametrického popisu přímky či roviny k popisu rovnicí či rovnicemi, a naopak.

VIII Řešení soustav lineárních rovnic

VIII.1 Matice

1.1 (Reálnou) $matici typu m \times n$ rozumíme schéma

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

kde a_{ij} jsou reálná čísla. Obvykle ovšem nemusíme popisovat matice takto podrobně, Čtenář jistě pochopí, co máme na mysli, mluvíme-li třeba o matici

$$(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$$

nebo, je-li m a n patrno z kontextu, o matici

$$(a_{ij})_{i,j}$$
, nebo jen (a_{ij}) .

Maticím typu $n \times n$ se říká čtvercové.

 ${f 1.2}$ Na ${f r}{f a}dky$ resp. ${\it sloupce}$ matice ${\cal A}$ (totiž v prvním případě na

$$(a_{11}, a_{12}, \ldots, a_{1n}), \ldots, (a_{m1}, a_{m2}, \ldots, a_{mn}),$$

v druhém případě na

$$(a_{11}, a_{21}, \ldots, a_{m1}), \ldots, (a_{1n}, a_{2n}, \ldots, a_{mn})$$

se budeme dívat jako na aritmetické vektory, prvky V_n v prvním a prvky V_m v druhém případě. Podprostor generovaný ve V_n řádky nazýváme řádkový modul matice A, podprostor generovaný ve V_m sloupci pak sloupcový modul.

- 1.3 Připomeňte si termín, který znáte ze střední školy. Permutací nějaké množiny se rozumí prosté zobrazení této množiny na sebe. V běžné řeči, jsou-li prvky té množiny zapsány v nějakém pořadí, hovoříme volně o permutaci když máme na mysli přeskupení tohoto pořadí (dejme tomu x_1, \ldots, x_n) podle dané permutace p (tedy na $x_{p(1)}, \ldots, x_{p(n)}$.) To jistě nepovede k nedorozumění.
- 1.4 Řádkové a sloupcové úpravy matice: \mathring{R} ádkovou úpravou matice $A=(a_{ij})$ rozumíme kteroukoli z následujících :
 - (a) přeskupení řádků podle nějaké permutace (tedy, máme-li dánu permutaci p množiny $\{1, \ldots, m\}$, dostaneme matici (b_{ij}) kde $b_{ij} = a_{p(i)j}$),
 - (b) vynásobení některého z řádků nenulovým číslem,
 - (c) přičtení lineární kombinace ostatních řádků k danému.

Obdobně definujeme sloupcové úpravy (v bodech (a), (b), (c) nahraďte všude slovo "řádek" slovem "sloupec").

VIII.2 Hodnost matice

2.1 Tři užitečné isomorfismy V_n na sebe:

1. Bud' p permutace množiny $\{1, \ldots, n\}$. Definujme

$$\widetilde{p}: V_n \to V_n$$

předpisem
$$\widetilde{p}(x_1,\ldots,x_n)=(x_{p(1)},\ldots,x_{p(n)})$$

2. Buď α nenulové číslo, k přirozené číslo mezi 1 a n. Definujme

$$\nu: V_n \to V_n$$

předpisem
$$\nu(x_1, ..., x_n) = (x_1, ..., x_{k-1}, \alpha x_k, x_{k+1}, ..., x_n)$$
.

3. Buď kpřirozené číslo mezi 1 a $n_{,,}$ buďte $\alpha_{j}~(j\neq k)$ libovolná reálná čísla. Definujme

$$\varphi: V_n \to V_n$$

předpisem

$$\varphi(x_1, ..., x_n) = (x_1, ..., x_{k-1}, x_n + \sum_{j \neq k} \alpha_j x_j, x_{k+1}, ..., x_n).$$

Ve všech třech případech je ověření, že se jedná o isomorfismus zcela bezprostřední (linearita se ověří dosazením, u prvních dvou je rovněž okamžitě vidět, že jsou to zobrazení vzájemně jednoznačná ; u třetího se tento fakt nahlédne z toho, že obdobně definované zobrazení s koeficienty $-\alpha_i$ místo α_i je k danému inversní.

2.2 Věta: Řádkové (resp. sloupcové) úpravy nemění řádkový modul. Řádkové (resp. sloupcové) úpravy nemění dimenzi sloupcového (resp. řádkového) modulu.

Důkaz: První tvrzení plyne bezprostředně z VII.4.1. Druhé (s připomenutím toho, že isomorfní obraz vektorového prostoru má stejnou dimenzi) dostaneme pomocí isomorfismů z 2.1. Provedeme-li sloupcovou úpravu typu (a) (resp.(b), resp.(c)), transformuje se řádkový modul isomorfismem typu \tilde{p} (resp. ν , resp. φ). \square

2.3 Věta: Dimenze řádkového a sloupcového modulu jsou stejné.

Důkaz: Provedeme na základě věty 2.2 tak, že opakovaným prováděním řádkových a sloupcových úprav dosáhneme matice takového tvaru, že pro ni tvrzení věty bude zřejmé.

Jsou-li v matici samé nuly, nemusíme nic dělat, obě dimenze jsou nula.

Jinak pomocí sloupcové a řádkové úpravy typu (a) snadno dosáhneme toho, že v levém horním rohu je nenulové číslo, pomocí úpravy typu (b) pak toho, že je tam číslo 1. Tedy máme matici upravenu na tvar

$$\begin{pmatrix} 1 & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}.$$

Nyní budeme užívat úprav typu (c):

od k-tého řádku (k>1) odečteme b_{k1} -násobek prvního, a když jsme se všemi těmito úpravami hotovi, odečítáme podobně od k-tých sloupců b_{1k} -násobky prvního sloupce.

Tím matici upravíme na tvar

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & c_{22} & c_{23} & \dots & c_{2n} \\ 0 & c_{32} & c_{33} & \dots & c_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & c_{m2} & c_{m3} & \dots & c_{mn} \end{pmatrix}.$$

Jsou-li všechna čísla c_{ij} $(i, j \ge 2)$ nulová, skončíme proceduru. Jinak permutacemi řádků a sloupců, při nichž již nehýbáme s prvními, a obdobně jako v předchozím použitím úpravy typu (b), dosáhneme jednotky

58

na místě (2,2). A opět úpravami typu (c) dosáhneme nul v druhém řádku a sloupci, takže matice získá tvar

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & d_{33} & \dots & d_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & d_{m3} & \dots & d_{mn} \end{pmatrix}.$$

Proceduru zřejmým způsobem opakujeme (je důležité si uvědomit, že úpravy v novém kroku nic nemění na nulovosti prvků v dosud upravených řádcích a sloupcích). Po jejím zastavení dostaneme matici tvaru

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \end{pmatrix},$$

u níž je rovnost dimenze řádkového a sloupcového modulu zřejmá. 🗆

2.4 Definice: Společnou dimenzi řádkového a sloupcového modulu matice A nazýváme hodností této matice.

VIII.3 Soustavy lineárních rovnic

3.1 Buď dána matice $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ a čísla b_1, \ldots, b_m . Soustavou lineárních rovnic s maticí A a rozšířenou maticí

$$\begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

rozumíme úlohu najít aritmetické vektory (x_1, \ldots, x_n) takové, že platí

Vektory (x_1, \ldots, x_n) , které vyhovují této úloze nazýváme řešeními dané soustavy. O vektoru (b_1, \ldots, b_m) někdy mluvíme jako o pravé straně soustavy.

Soustavu lineárních rovnic tvaru

nazýváme soustavou homogenni. Je-li dána soustava (*), mluvíme o (**) jako o homogenni soustavě k ni příslušné.

3.2 Věta: (Frobeniova) Soustava lineárních rovnic má řešení právě když hodnost její matice a hodnost matice rozšířené jsou stejné.

Důkaz: Označme $\mathbf{s}_1, \dots, \mathbf{s}_n$ sloupce matice A, \mathbf{b} pravou stranu. Hodnost matice A a matice rozšířené je podle VII.4.1 a VII.4.11 stejná právě když existují reálná čísla x_1, \dots, x_n taková, že

$$\mathbf{b} = x_1 \mathbf{s}_1 + \ldots + x_n \mathbf{s}_n.$$

Ale poslední rovnost znamená totéž jako že (x_1, \ldots, x_n) je řešení dané soustavy. \square

3.3 Věta: Systém všech řešení homogenní soustavy je podprostor prostoru V_n . Jeho dimenze je n-h, kde h je hodnost matice soustavy. Systém všech řešení obecné soustavy je lineární množina. Je-li neprázdný, má tvar $\mathbf{x} + W$, kde \mathbf{x} je libovolné řešení a W je systém všech řešení příslušné homogenní soustavy.

Důkaz: Označme $\mathbf{r}_1, \dots, \mathbf{r}_m$ řádky matice soustavy. V řeči skalárního součinu z VII.5.2 můžeme naší soustavu přepsat na podmínku

$$\mathbf{r}_j \cdot \mathbf{x} = b_j \quad (j = 1, \dots, m)$$

a příslušnou homogenní soustavu na

$$\mathbf{r}_j.\mathbf{x} = 0 \quad (j = 1, \dots, m).$$

Tedy je soustava všech řešení této poslední soustavy rovna (viz VII.5.11 a VII.5.10)

$$W = \mathcal{L}(|\mathbf{r}_1, \dots, \mathbf{r}_m|)^{\perp}$$

a existuje-li řešení ${\bf x}$ původní (nehomogenní) soustavy, je celá soustava řešení rovna, podle VII.6.4, ${\bf x}+W$.

3.4 Poznámky:

1. Viděli jsme již dvě interpretace řešení soustavy lineárních rovnic : První v důkazu Frobeniovy věty, kde šlo o

nalezení koeficientů do lineární kombinace, kterou x daných generátorů $\mathbf{s}_1, \dots, \mathbf{s}_n$ dostaneme prvek $\mathbf{b} \in \mathcal{L}(\mathbf{s}_1, \dots, \mathbf{s}_n)$.

Druhou pak v důkazu věty 3.3, kde je vidět souvislost s orthogonálním doplňkem modulu $\mathcal{L}(\mathbf{r}_1,\ldots,\mathbf{r}_m)$ (připomeňte si též poznámku VII.6.6!).

Přidejme si ještě třetí : Matice (a_{ij}) definuje lineární zobrazení $L:V_n\to V_m$ předpisem

$$L(x_1,\ldots,x_n)=(y_1,\ldots,y_m),$$

kde

$$y_k = \sum a_{kj} x_j.$$

Soustava řešení je při tom vzor daného prvku b,

$$L^{-1}(\{(b_1,\ldots,b_m)\}).$$

2. To, že pracujeme s reálnými čísly je nepodstatné. Vše co zde bylo řečeno je možno použít též v případě jiných těles, zejména tělesa komplexních čísel.

VIII.4 Jeden konkrétní způsob řešení

4.1 Věta: Soustava řešení se nezmění, provedeme-li na rozšířenou matici řádkové úpravy.

Důkaz: Bezprostředně se ověří, že dané řešení bude též řešením soustavy vzniklé kteroukoli ze řádkových úprav. Navíc si uvědomme, že řádkové úpravy jsou reverzibilní, takže nemůže ani nové řešení přibýt. □

4.2 Postup řešení: Řádkovými úpravami (**POZOR :** Budeme dělat jen řádkové úpravy, sloupcové úpravy by systém řešení měnily!) typu (a) a (c) snadno dosáhneme tvaru matice

$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	 0	a'_{1k_1}	 0	a'_{2k_2}	 		 	$\left. egin{array}{c} b_1' \ b_2' \end{array} ight)$
0						a'_{hk_h}		b'_h
0							 	$\begin{bmatrix} o_{h+1} \\ 0 \end{bmatrix}$
\int_{0}^{0}							 	

kde $k_1 < k_2 < \ldots < k_h$, a'_{k_j} jsou nenulová čísla, a před nimi jsou v každém řádku samé nuly (řádek, který má první nenulovou souřadnici posuneme na nejvyšší číslo, odečítáním jeho vhodných násobků dosáhneme muly pod tímto místem, do druhého řádku posuneme řádek s první další nenulovou souřadnicí, a proceduru opakujeme. Samozřejmě může být - a často bývá - $k_1 = 1$, $k_2 = 2$ atd.

Je-li $b'_{h+1} \neq 0$, nemá soustava, podle Frobeniovy věty, řešení. Buď tedy $b'_{h+1} = 0$. Podle 4.1 jde o to, najít řešení soustavy

$$\sum_{j=k_1}^{n} a'_{1j} x_j = b'_1$$

 $\sum_{j=k_h}^n a'_{hj} x_j = b'_h.$

Nejprve jedno pevné řešení této soustavy : Položíme $x_j = 0$ pro $j \neq k_i$ (i = 1, ..., h). Potom z poslední rovnice dostaneme $x_{k_h} = b'_h \cdot (a'_{hk_h})^{-1}$. V předposlední rovnici je jediná dosud neurčená neznámá $x_{k_{h-1}}$ a snadno ji tedy vypočteme převedením ostatních výrazů na pravou stranu a vydělením číslem $a'_{h-1,k_{h-1}}$. Zjištěné číslo dosadíme do rovnice před ní a z této pak zjistíme $x_{k_{h-2}}$. Tak pokračujeme až do určení x_{k_1} .

Zbývá vyřešit příslušnou homogenní rovnici, t.j., najít bázi příslušného vektorového podprostoru. Jde tedy o to, najít n-h nezávislých řešení soustavy

$$\sum_{j=k_1}^n a'_{1j} x_j = 0$$

.

$$\sum_{j=k_h}^n a'_{hj} x_j = 0.$$

Pro $q \neq k_i$ (i = 1, ..., h) položme $x_q^q = 1$, $x_j^q = 0$ pro $j \neq q, k_i$ (i = 1, ..., h) a vypočteme zbývající x_i^q z takto vzniklé (nyní již nehomogenní) soustavy stejným postupem, jakého jsme použili při hledání pevného řešení nahoře.

4.3 Příklad: Řešme soustavu

Budeme tedy především upravovat matici

$$\begin{pmatrix} 1 & 1 & 2 & 3 & 1 & -1 & 1 \\ 2 & 4 & 5 & 6 & 5 & -1 & 4 \\ -2 & 2 & -2 & -5 & 5 & 6 & 3 \end{pmatrix}.$$

Po odečtení prvního řádku dvakrát od druhého, a přičtení prvního řádku dvakrát k třetímu dostaneme

$$\begin{pmatrix}
1 & 1 & 2 & 3 & 1 & -1 & 1 \\
0 & 2 & 1 & 0 & 3 & 1 & 2 \\
0 & 4 & 2 & 1 & 7 & 4 & 5
\end{pmatrix}.$$

Nyní odečteme dvakrát druhý řádek od třetího a dostáváme

$$\begin{pmatrix}
1 & 1 & 2 & 3 & 1 & -1 & 1 \\
0 & 2 & 1 & 0 & 3 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 2 & 1
\end{pmatrix}.$$

Naši původní soustavu jsme tím převedli na

Jedno řešení soustavy : Klademe $x_3=x_5=x_6=0$ a máme řešit soustavu

Z toho $x_4 = 1$, $x_2 = 1$, $x_1 + 1 + 3 = 1$, tedy $x_1 = -3$ a máme řešení (-3, 1, 0, 1, 0, 0).

Base řešení příslušné homogenní rovnice : Ta má tvar

q=3 : Volíme $x_3 = 1$, $x_5 = x_6 = 0$. Máme soustavu

ke které snadno nacházíme řešení $\left(-\frac{3}{2}, -\frac{1}{2}, 1, 0, 0, 0\right)$.

 $\mathbf{q=5}$: Volíme $x_3=0,\ x_5=1,\ x_6=0.$ Máme soustavu

a dostáváme řešení $(\frac{7}{2}, -\frac{3}{2}, 0, -1, 1, 0)$.

q=6: Volíme $x_3 = x_5 = 0$, $x_6 = 1$. Máme soustavu

a dostáváme řešení $(\frac{15}{2},-\frac{1}{2},0,-2,0,1).$

Shrnutí: Úplná soustava řešení dané rovnice sestává z aritmetických vektorů

$$(-3, 1, 0, 1, 0, 0) + \alpha(-\frac{3}{2}, -\frac{1}{2}, 1, 0, 0, 0) +$$

$$+\beta(\frac{7}{2}, -\frac{3}{2}, 0, -1, 1, 0) + \gamma(-\frac{15}{2}, -\frac{1}{2}, 0, -2, 0, 1) =$$

$$= (-3 - \frac{3}{2}\alpha + \frac{7}{2}\beta - \frac{15}{2}\gamma, 1 - \frac{1}{2}\alpha - \frac{3}{2}\beta - \frac{1}{2}\gamma, \alpha, 1 - \beta - 2\gamma, \beta, \gamma).$$

 (α, β, γ) jsou libovolná reálná čísla)

4.4 Poznámka: V X. kapitole se dozvíme též "vzorec" pro řešení n rovnic o n neznámých, t.zv. Cramerovo pravidlo. Ten má ale spíš teoretický význam, počítalo by se podle něho špatně. Postup, který jsme zde uvedli, je celkem pohodlný a v konkrétních případech vede rychle k cíli.

IX Matice a lineární zobrazení

IX.1 Některé operace s maticemi

1.1 Buď $A=(a_{ij})$ matice typu $m\times n$. Matici (b_{ij}) typu $n\times m$ kde $b_{ij}=a_{ji}$ nazýváme maticí transponovanou k A a označujeme

 A^T .

1.2 Buďte $A = (a_{ij}), B = (b_{ij})$ matice typu $m \times n$ resp. $n \times p$. Jejich součinem, označení

$$A.B$$
 (nebo jen AB),

nazýváme matici (c_{ij}) typu $m \times p$, kde

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Zřejmě platí

Pozorování: $(A.B)^T = B^T.A^T$

1.3 Jednotkovou maticí (typu $n \times n$) rozumíme matici (δ_{ij}) , kde $\delta_{ij} = 0$ pro $i \neq j$ a $\delta_{ii} = 1$.

Poznámka: Takto definovanému δ_{ij} se někdy říká $Kroneckerův\ symbol.$ Budeme ho dále běžně používat. Připomeňme, že třeba orthonormalitu systému $\mathbf{u}_1,\ldots,\mathbf{u}_n$ můžeme nyní vyjádřit formulí $\mathbf{u}_i.\mathbf{u}_j=\delta_{ij}.$ Jednotkovou matici budeme označovat

$$E$$
, nebo E_n ,

chceme-li vyznačit typ $n \times n$.

Pozorování: Buď A matice typu $m \times n$. Potom

$$E_m.A = A.E_n = A.$$

1.4 Věta: Násobení matic je asociativní. T.j., platí

$$(A.B).C = A.(B.C)$$

má-li kterákoli strana smysl.

Důkaz: Označme M_{ij} (i,j)-tý prvek matice M. Máme

$$\begin{array}{rclcrcl} ((AB)C)_{ij} & = & \sum_{k} (AB)_{ik} C_{kj} & = & \sum_{k} (\sum_{l} A_{il} B_{lk}) C_{kj} & = \\ & = & \sum_{k} \sum_{l} (A_{il} B_{lk}) C_{kj} & = & \sum_{l} \sum_{k} A_{il} (B_{lk} C_{kj}) & = \\ & = & \sum_{l} A_{il} (\sum_{k} B_{lk} C_{kj}) & = & \sum_{l} A_{il} (BC)_{lj} & = & (A(BC))_{ij}. \end{array}$$

Ujasněte si, kterých vlastností operací s čísly - distributivity, asociativity, komutativity - jsme užili a kde to bylo. \square

Poznámka: Uvědomte si, že násobení matic není komutativní. Najděte příklad.

1.5 Buď A čtvercová matice. Matici B nazveme maticí k A inversní, označení

$$A^{-1}$$

platí-li

$$AB = BA = E$$
.

Matici typu $n \times n$ nazýváme regulární, je-li její hodnost rovna n.

V následující větě je A vždy čtvercová matice

VĚTA:

- 1. K matici A existuje nejvýš jedna inversní matice.
- 2. K matici A existuje inversní matice právě když je regulární,
- 3. Je-li BA = E nebo AB = E, je $B = A^{-1}$.

Důkaz: Zabývejme se nejprve úlohou nalézt $B = (b_{ij})$ takovou, aby A.B = E. Chceme tedy, aby pro j = 1, ..., n platilo

$$\sum_{k} a_{ik} b_{kj} = \delta_{ij}.$$

Díváme-li se na j jako na pevně zvolené (i když libovolné), máme soustavu N rovnic o n neznámých. Je-li A regulární, má tato soustava podle VIII.3.2 řešení pro každou pravou stranu. Naopak, opět podle VIII.3.2, má-li každá (R_j) řešení, jsou všechny sloupce

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

ve sloupcovém modulu matice A a tedy má tento modul dimenzi n. Dokázali jsme tedy, že (pro čtvercovou matici A)

existuje B tak, že AB = E právě když A je regulární.

Zcela obdobně zjistíme, že

(2) existuje B tak, že BA = E právě když A je regulární.

Speciálně tedy, není-li A regulární, nemůže mít inversní matici, což je jedna z implikací v tvrzení 2. Buď nyní A regulární a buď $B_1A=E$, $AB_2=E$. Podle 1.4 a 1.3 máme

(3)
$$B_1 = B_1(AB_2) = (B_1A)B_2 = B_2$$

takže $B_1 = B_2$ a je to tedy inversní matice k A, čímž je především dokázán zbytek tvrzení 2. Zároveň však výpočet (3) ukazuje jednoznačnost inversní matice (tvrzení 1) a konečně, je-li třeba BA = E, je podle (2) A regulární a podle (1) tedy existuje B_2 tak, že $AB_2 = E$, takže výpočet (3) opět ukazuje, že B je inversní k A. \square

1.6 Z věty 1.5 dostáváme zcela bezprostředně

Pozorování:

1.
$$(A^{-1})^{-1} = A$$
 (protože $A.A^{-1} = E$).

2.
$$(AB)^{-1} = B^{-1}A^{-1}$$
 (protože $B^{-1}A^{-1}AB = E$).

IX.2 Souřadné soustavy

2.1 Souřadnou soustavou v (konečně generovaném) vektorovém prostoru V rozumíme

$$\mathcal{U} = (\mathbf{u}_1, \dots, \mathbf{u}_n),$$

bázi seřazenou do posloupnosti.

Vektor $\mathbf{x} \in V$ se podle VII.3.7 dá napsat právě jedním způsobem ve tvaru

$$\mathbf{x} = x_1 \mathbf{u}_1 + \ldots + x_n \mathbf{u}_n$$

Aritmetický vektor

$$\mathbf{x}_{\mathcal{U}} = (x_1, \dots, x_n)$$

nazveme zápisem vektoru \mathbf{x} v soustavě \mathcal{U} , jednotlivá čísla x_i jeho souřadnicemi (vzhledem k \mathcal{U} .)

Poznámky:

- 1. Zatím jsme se při práci s bázemi nestarali o to, považujeme-li je prostě za (neuspořádané) množiny vektorů to je mimochodem správnější nebo bereme-li je v pevném pořadí. U souřadných systémů je seřazení podstatné.
- 2. Všimněte si, že v případě orthonormálního souřadného systému $\mathbf{u}_1, \dots, \mathbf{u}_n$ se souřadnice zjistí velmi snadno : Vynásobme $\mathbf{x} = x_1 \mathbf{u}_1 + \dots + x_n \mathbf{u}_n$ skalárně vektorem \mathbf{u}_j . Dostaneme

$$\mathbf{x}.\mathbf{u}_j = x_j$$

2.2 Matice lineárního zobrazení vzhledem k souřadným soustavám: Buďte $\mathcal{V} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$, $\mathcal{W} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$ souřadné soustavy ve V resp. W. Buď $f: V \to W$ lineární zobrazení. Vektory $f(\mathbf{v}_i)$ se dají napsat v souřadné soustavě \mathcal{W} ,

$$f(\mathbf{v}_i) = \sum_{j=1}^m a_{ij} \mathbf{w}_j \quad (i = 1, \dots, m).$$

Matici

$$A = A(f, \mathcal{V}, \mathcal{W}) = (a_{ij})$$

(typu $m \times n$) nazýváme maticí zobrazení f vzhledem k soustavám \mathcal{V}, \mathcal{W}

2.3 Věta: Budte V, W, $Y = (\mathbf{y}_1, \dots, \mathbf{y}_p)$ souřadné soustavy ve V resp. W resp. Y, $f: V \to W$, $g: W \to Y$ lineární zobrazení. Potom

$$A(g \circ f, \mathcal{V}, \mathcal{Y}) = A(f, \mathcal{V}, \mathcal{W}).A(g, \mathcal{W}, \mathcal{Y}).$$

Důkaz: Buď $f(\mathbf{v}_i) = \sum_j a_{ij} \mathbf{w}_j$, $g(\mathbf{w}_j) = \sum_k b_{jk} \mathbf{y}_k$. Potom

$$gf(\mathbf{v}_i) = \sum_j a_{ij}g(\mathbf{w}_j) = \sum_j a_{ij} \sum_k b_{jk}\mathbf{y}_k = \sum_k (\sum_j a_{ij}b_{jk})\mathbf{y}_k.$$

Pozor: Všimněte si změny pořadí f a g ve formuli!

2.4 Pro identické zobrazení id : $V \rightarrow V$ zřejmě platí

$$A(\mathrm{id}, \mathcal{V}, \mathcal{V}) = E.$$

Následkem toho plyne z věty 2.3 v případě isomorfismu f

$$A(f^{-1}, W, V) = A(f, V, W)^{-1}$$
.

2.5 Věta: Buď $A = A(f, \mathcal{V}, \mathcal{W})$. Potom pro zápisy vektorů v soustavách \mathcal{V}, \mathcal{W} (chápané jako matice typu $1 \times k$) platí

$$f(\mathbf{x})_{\mathcal{W}} = \mathbf{x}_{\mathcal{V}}.A.$$

Důkaz: Buď $\mathbf{x}_{\mathcal{V}} = (x_1, \dots, x_n)$. Máme

$$f(\mathbf{x}) = \sum_{i} x_i f(\mathbf{v}_i) = \sum_{i} x_i \sum_{j} a_{ij} \mathbf{w}_j = \sum_{j} (\sum_{i} x_i a_{ij}) \mathbf{w}_j.$$

Tedy je $f(\mathbf{x})_{\mathcal{W}} = (\sum_i v_i a_{i1}, \dots, \sum_i v_i a_{in}) = \mathbf{x}_{\mathcal{V}}.A.$

2.6 Transformace souřadnic: Mějme souřadnou soustavu $\mathcal{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ v prostoru V. Ujasníme si, co se stane se souřadnicemi, přejdeme-li k nové soustavě $\mathcal{W} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$, kde

$$\mathbf{w}_i = \sum a_{ij} \mathbf{v}_j.$$

V tom případě je $A = (a_{ij}) = A(\mathrm{id}, \mathcal{W}, \mathcal{V})$ a tedy podle 2.5 je

$$\mathbf{x}_{\mathcal{V}} = \mathbf{x}_{\mathcal{W}}.A.$$

Nás ovšem obvykle zajímá, jaké jsou souřadnice v nové soustavě, když známe staré. Podle 2.4 dostáváme formuli

$$\mathbf{x}_{\mathcal{W}} = \mathbf{x}_{\mathcal{V}} . A^{-1}$$
.

IX.3 Lineární formy. Duální prostor

3.1 Množina všech lineárních zobrazení

$$\alpha: V \to \mathbb{R}$$

(nebo $V \to \mathbb{C}$, jde-li nám o vektorové prostory nad tělesem komplexních čísel) tvoří opět vektorový prostor při běžném chápání operací $\alpha + \beta$ a $c.\alpha$ (c reálné nebo komplexní). Ověřte si jako cvičení, že skutečně součty a číselné násobky lineárních zobrazení jsou lineární.

Tento prostor označíme

$$V^*$$

Obvykle se o něm mluví jako o prostoru lineárních forem na V, nebo o prostoru duálním k V.

3.2 Buď $f: V \to W$ lineární zobrazení. Definujme

$$f^*:W^*\to V^*$$

(pozor na změnu pořadí!) předpisem

$$f^*(\alpha) = \alpha \circ f$$
.

Snadno se ověří, že f^* je lineární zobrazení (ověření ale opravdu provedte). Mluvíme o něm jako o lineárním zobrazení duálním k f.

Pozorování: Zřejmě platí $(f \circ g)^* = g^* \circ f^*$.

3.3 Buď nyní V konečně generovaný, $V = \mathbf{v}_1, \dots, \mathbf{v}_n$) souřadná soustava v něm. Zápisem lineární formy v této soustavě budeme mínit sloupcový vektor (matici typu $n \times 1$)

$$\alpha^{\mathcal{V}} = \begin{pmatrix} \alpha(\mathbf{v}_1) \\ \alpha(\mathbf{v}_2) \\ \vdots \\ \alpha(\mathbf{v}_n) \end{pmatrix}.$$

VĚTA: Zobrazení dané předpisem $\alpha \mapsto (\alpha^{\mathcal{V}})^T$ je isomorfismus V^* na n-rozměrný aritmetický prostor V_n . V případě konečné dimenze je tedy V^* isomorfní s V.

Důkaz: Popsané zobrazení je zřejmě lineární.

Je prosté : Je-li $\alpha(\mathbf{v}_i) = \beta(\mathbf{v}_i)$ pro všechna i = 1, ..., n, je pro obecné $\mathbf{x} = \sum x_j \mathbf{v}_j$ též $\alpha(\mathbf{x}) = \beta(\mathbf{x})$ a máme tedy $\alpha = \beta$.

Konečně ukážeme, že zobrazuje V^* na V_n . Buď (a_1, \ldots, a_n) libovolný element V_n . Definujme $\alpha(\mathbf{x}) = \mathbf{x}_{\mathcal{V}}.(a_1, \ldots, a_n)$ (skalární násobek). Potom je zřejmě α lineární forma, a jelikož

$$(\mathbf{v}_i)_{\mathcal{V}} = (0, \dots, 0, 1, 0, \dots, 0)$$

(1 na i-tém místě), je $\alpha(\mathbf{v}_i) = a_i$ a tedy $(\alpha^{\mathcal{V}})^T = (a_1, \ldots, a_n)$. \square

3.4 VĚTA: $Bud'A = A(f, \mathcal{V}, \mathcal{W})$. Plati

$$f^*(\alpha)^{\mathcal{V}} = A.\alpha^{\mathcal{W}}.$$

(Srovneite s 2.5!)

Důkaz:
$$(f^*(\alpha))(\mathbf{v}_i) = (\alpha \circ f)(\mathbf{v}_i) = \alpha(f(\mathbf{v}_i)) = \alpha(\sum a_{ij}\mathbf{w}_j) = \sum a_{ij}\alpha(\mathbf{w}_j)$$
.

3.5 Poznámky:

- 1. V případě nekonečné dimenze V^* s V isomorfní není.
- 2. Isomorfismus mezi V a V^* (jsme zase v konečné dimenzi) byl konstruován na základě pevně vybrané souřadné soustavy (a to v podstatě ani jinak nejde). Není snad bez zajímavosti, že isomorfismus mezi V a V^{**} již tuto pomoc nepotřebuje. Můžeme ho popsat jako

$$\mathbf{x} \mapsto \widetilde{\mathbf{x}}$$
,

kde $\widetilde{\mathbf{x}}(\alpha) = \alpha(\mathbf{x})$. Je užitečným cvičením dokázat, že je to opravdu isomorfismus (vzhledem k Větě 3.3 a VII.4.11 stačí ukázat, že je to prosté lineární zobrazení. Pokuste se též ukázat, že

$$f^{**}(\widetilde{\mathbf{x}}) = \widetilde{f(\mathbf{x})}$$
.

66

IX.4 Orthonormální matice

- 4.1 Řekneme, že čtvercová matice je orthonormální, tvoří-li její řádky orthonormální soustavu.
- 4.2 VĚTA: Následující tvrzení jsou ekvivalentní :

A je orthonormální,

 A^{-1} existuje a je rovna A^{T} ,

sloupce matice A tvoří orthonormální soustavu.

Důkaz: (1) \Rightarrow (2) : Definice orthonormality říká, že $AA^T = E$, to ale podle věty 1.5 znamená, že $A^T = A^{-1}$

- $(2) \Rightarrow (3):$ Je-li $A^T=A^{-1}$, je též $A^T.A=E$ a tedy i sloupce tvoří orthonormální soustavu.
- $(3) \Rightarrow (1)$ dostaneme užitím implikace $(1) \Rightarrow (3)$, kterou už dokázánu máme, na matici transponovanou.
- **4.3** VĚTA: Budte $V = (\mathbf{v}_1, \dots, \mathbf{v}_n)$, $W = (\mathbf{w}_1, \dots, \mathbf{w}_n)$ souřadné soustavy vytvořené z orthonormálních bází, buď

$$\mathbf{w}_i = \sum a_{ij} \mathbf{v}_j.$$

Potom je (a_{ij}) orthonormální matice.

Důkaz: Máme

$$\delta_{ij} = \mathbf{w}_i \cdot \mathbf{w}_j = \left(\sum_j a_{ij} \mathbf{v}_j\right) \left(\sum_l a_{kl} \mathbf{v}_l\right) =$$

$$= \sum_j \sum_k a_{ij} a_{kl} \mathbf{v}_j \mathbf{v}_l = \sum_{j,l} a_{ij} a_{kl} \delta_{jl} = \sum_j a_{ij} a_{kj}.$$

 $\textbf{4.4} \ \ \texttt{D} \r u \texttt{SLEDEK:} \ \ \textit{V p\'r\'ipad\'e orthogon\'aln\'ich sou\'radn\'ych soustav plat\'i pro transformaci sou\'radnic z 2.6 formule$

$$\mathbf{x}_{\mathcal{W}} = \mathbf{x}_{\mathcal{V}}.A^{T}.$$

IX.5 Několik dalších geometrických poznámek. Barycentrické souřadnice

5.1 Připomeňte si VII.5.5 a VII.6. Zase se budeme chvíli dívat na V_n jako na "analytické vyjádření euklidovského prostoru". Při tomto pohledu ztrácí nulový vektor své výsadní postavení. Bod $(0,0,\ldots,0)$ je nyní z geometrického hlediska bod jako každý jiný a souřadná soustava může mít počátek v kterémkoli bodě

Obvykle se postupuje takto : n—tice (x_1, \ldots, x_n) dostává dva různé významy

- (1) jako označení bodu ; pro rozlišení se zde obvykle užívá pozměněné symboliky $X = [x_1, \dots, x_n]$,
- (2) jako označení "geometrických vektorů", chápaných jako "rozdíly bodů" X-Y. Přesněji: nejprve můžeme zavést pojem "umístěného vektorů" jako dvojice (X,Y) bodů, a potom pojem "volného vektorů" jako třídy umístěných vektorů v ekvivalenci definované takto : je-li $X=[x_1,\ldots,x_n],\ y=[y_1,\ldots,y_n],\ X'=[x'_1,\ldots,x'_n]$ a $Y'=[y'_1,\ldots,y'_n]$, řekneme, že (X,Y) a (X',Y') jsou ekvivalentní a píšeme

$$(X,Y) \sim (X',Y')$$

jestliže $y_i - x_i = y'_i - x'_i$ pro všechna i.

Volný vektor určený dvojicí (X,Y) pak označujeme jako n-tici (y_1-x_1,\ldots,y_n-x_n) . Tím dostaneme volné vektory do vzájemně jednoznačného vztahu s prvky V_n , a nulový vektor $(0,0,\ldots,0)$ má na rozdíl od bodu $[0,0,\ldots,0]$ opět výsadní postavení. Je to totiž třída sestávající z umístěných vektorů (X,X).

S body a (volnými) vektory se počítá takto:

- (a) Vektory je možno sčítat a násobit reálným číslem jako dříve.
- (b) K bodu je možno přičíst vektor podle pravidla

$$[x_1, \ldots, x_n] + (v_1, \ldots, v_n) = [x_1 + v_1, \ldots, x_n + v_n]$$

(píšeme $X + \mathbf{v}$). Geometrická interpretace této operace je tato : Nalezneme umístění vektoru \mathbf{v} takové, že první bod v něm je X, tedy (X, Y), a součet $X + \mathbf{v}$ je pak bod Y.

(c) Je možno tvořit rozdíly bodů Y-X. Těmi jsou volné vektory určené příslušnými dvojicemi (X,Y). Uvědomte si, že platí

$$\mathbf{v} = Y - X$$
 právě když $X + \mathbf{v} = Y$.

5.2 Souřadná soustava v takto popisovaném euklidovském prostoru je

$$P, \mathbf{v}_1, \ldots, \mathbf{v}_n$$

kde P je pevně zvolený bod a $\mathcal{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ je souřadná soustava v dosud užívaném smyslu. Geometricky ji interpretujeme tak, že P je to, co znáte jako t.zv. počátek, \mathbf{v}_i určují směry t.zv. os souřadnic a délky zvolených jednotek na těchto osách. Bod X je v soustavě P, \mathcal{V} vyjádřen n—ticí

$$[x_1,\ldots,x_n]_{P,\mathcal{V}}$$
,

platí-li

$$X = P + \sum x_j \mathbf{v}_j$$
 (a tedy, $(x_1, ..., x_n) = (X - P_{\mathcal{V}})$.)

Transformace souřadnic se dějí podle pravidel tvaru

$$X_{Q,W} = X_{P,V}.A + \mathbf{b}.$$

Jako cvičení zjistěte, která matice se objeví jako A a jaký význam má vektor \mathbf{b} . (Návod : Srovnejte $(X-P)_{\mathcal{V}}$ a $(X-Q)_{\mathcal{W}}$ použijte pravidla z 2.6.)

5.3 Přirozeně vzniká otázka, nebylo-li by možno počítat přímo s body, bez neustálého rozlišování bodů a vektorů. Podívejme se, jaké "lineární kombinace bodů" mají smysl nezávislý na volbě souřadného systému (fakticky jde o nezávislost na volbě počátku - ostatní se neprojeví). Vektory sčítat a násobit umíme. Pokusíme se tedy interpretovat $a_1X_1 + \ldots + a_nX_n$ jako $P + \sum a_i(X_i - P)$. Všimněme si dvou jednoduchých příkladů na obrázku 10.

V prvním případě vidíme, že výsledek na volbě počátku závisí, v druhém se zdá, že by tomu tak nemuselo být. Skutečně, chceme-li aby bylo

$$P + \sum a_i(X_i - P) = Q + \sum a_i(X_i - Q)$$

ať už zvolíme P a Q jakkoli, vidíme, že musí být

$$P - Q = \sum a_i (P - Q),$$

a tedy, je-li P-Q nenulový, nutně $\sum a_i=1$ (jak tomu bylo v druhém případě), a ovšem, že tato podmínka také postačuje.

Lineárním kombinacím bodů

$$\sum a_i X_i \text{ kde } \sum a_i = 1$$

je tedy možno dávat geometrický smysl a analytickou geometrii je možno založit na počítání s nimi (někdy se mluví o afinní algebře).

Soustava bodů X_0, \ldots, X_k se nazývá nezávislou, jestliže rovnost

$$\sum a_i X_i = \sum b_i X_i$$
 při $\sum a_i = \sum b_i$

implikuje $a_i = b_i$ pro všechna i. To je ekvivalentní s požadavkem, aby vektory $X_1 - X_0, \dots, X_k - X_0$ tvořily lineárně nezávislou soustavu (tento požadavek je nezávislý na tom, který z bodů byl na nultém místě ; pokuste se to dokázat) a geometricky to znamená, že body jsou v t.zv. obecné poloze, t.j. u dvou že jsou různé, u tří že neleží na přímce, u čtyř že neleží v jedné rovině atd.

Obr. 10:

Máme-li n+1 nezávislých bodů A_0,\dots,A_n v n-rozměrném euklidovském prostoru, dá se každý bod napsat právě jedním způsobem ve tvaru

$$X = \sum_{i=0}^{n} x_i A_i \text{ při } \sum x_i = 1.$$

Čísla x_0,\ldots,x_n se nazývají barycentrické souřadnice vzhledem k soustavě A_0,\ldots,A_n . ("Barycentr" je těžiště ; název souvisí s tím, že kdyby bylo $x_i \geq 0$ a v bodech A_i byly rozloženy váhy v poměrech x_i , bylo by těžiště soustavy právě v bodě X.)

X Determinanty

X.1 Permutace

1.1 Grupy: Grupou rozumíme množinu G s binární operací (označíme ji třeba x.y, nebo jenxy) takovou, že

$$x(yz) = (xy)z,$$

existuje prvek $e \in G$ (jednotka dané grupy) takový, že xe = ex = x po všechna x,

ke každému prvku $x \in G$ existuje $y \in G$ (t.zv. inversni prvek) takový, že xy = yx = e. Obvykle se označuje x^{-1} .

- 1.2 Pozorování: Jednotkový prvek je podmínkou v (1) jednoznačně určen. (Skutečně, platí-li formule pro e a e', je speciálně e=e.e'=e'.) Ke každému x existuje jen jeden inversní prvek. (Skutečně, splňují-li y a z podmínku z (3), máme y=y.e=y.x.z=e.z=z.)
- **1.3** Důsledek: $(x^{-1})^{-1}$. Následkem toho je zobrazení $G \to G$ dané předpisem $x \mapsto x^{-1}$ vzájemně jednoznačné.
- **1.4** Další fakt: Buď a libovolný prvek grupy G. Zobrazení $x \mapsto ax$ je vzájemně jednoznačné. (Má totiž zřejmě inversní zobrazení, $x \mapsto a^{-1}x$.)
- 1.5 Důležitý důsledek: Bud'G konečná grupa, $f:G\to\mathbb{R}$ zobrazení. Potom

$$\sum_{x \in G} f(x) = \sum_{x \in G} f(x^{-1}) = \sum_{x \in G} f(ax).$$

(Jedná se totiž o tytéž součty, jenom zpřeházené.)

1.6 Příklady grup:

- (a) Kladná racionální čísla s násobením.
- (b) Celá čísla se sčítáním.
- (c) Množina $\{1, -1\}$ s násobením.
- (d) Množina všech regulárních matic typu $n \times n$ s násobením.
- (e) Množina všech vzájemně jednoznačných zobrazení $X \to X$ se skládáním.

Příklady (a), (b), (c) jsou komutativní, platí v nich navíc xy = yx, příklady (d),(e) ne.

1.7 Grupy permutací: Speciálně nás bude zajímat grupa všech vzájemně jednoznačných zobrazení (permutaci) množiny $\{1, \ldots, n\}$ na sebe (s operací skládání). Budeme ji označovat

$$P(n)$$
.

Její prvky p budeme často vyznačovat "tabulkami"

$$(p(1), p(2), \ldots, p(n))$$

(o těch budeme mluvit jako o pořadí). Tedy např.

označuje zobrazení množiny {1, 2, 3, 4} na sebe posílající 1 do 3, 2 do 1, 3 do 4 a 4 do 2.

Permutace vyměňující mezi sebou dva prvky a ponechávající všechny ostatní prvky na místě nazýváme transpozice.

1.8 Věta: Každá permutace se dá napsat jako složení dostatečně mnoha transpozic (složením nulového počtu transpozic rozumíme identické zobrazení).

Důkaz: Indukcí podle n. Pro n = 1, 2 zřejmé,

Nechť platí pro n, buď $p \in P(n+1)$. Označme τ transpozici, vyměňující p(n+1) s n+1. Potom

$$q=\tau\circ p$$

ponechává n+1 na místě a permutuje $\{1,\ldots,n\}$ podle pravidla, které označíme q'. Podle indukčního předpokladu je $q'=\tau_1'\circ\ldots\circ\tau_r'$ a označíme-li $\tau_i\in P(n+1)$ transpozice vyměňující tytéž prvky jako τ_i' a ponechávající n+1 na místě, máme

$$q = \tau_1 \circ \ldots \circ \tau_r$$

a konečně, jelikož $\tau \circ \tau = \mathrm{id}, \quad p = \tau \circ q = \tau \circ \tau_1 \circ \ldots \tau_r$. \square

1.9 Počet transpozic ve vyjádření z 1.8 není jednoznačně určen : pro každou transpozici τ máme např. id = $\tau \circ \tau = \tau \circ \tau \circ \tau \circ \tau$. Platí však

Věta: Dá-li se p napsat jako složení sudého (resp. lichého) počtu transpozic, jsou počty transpozic v každém vyjádření p sudé (resp. liché).

 \mathbf{D} ůkaz: Zapišme P jako pořadí

$$(*) (k_1, \ldots, k_n).$$

Zavedeme pomocný pojem inverze v pořadí jako dvojice (i, j) takové, že i < j a $k_i > k_j$. Ukážeme, že počet transpozic ve vyjádření permutace p je sudý (lichý) právě když je počet inverzí v pořadí (*) sudý (lichý). K tomu stačí ukázat, že

provedeme-li na dané pořadí jednu transpozici, změní se počet inverzí o liché číslo.

Vyměňme tedy v pořadí (*) čísla na α -tém a β -tém místě. Tedy místo

$$p = (k_1, \ldots, k_{\alpha-1}, k_{\alpha}, k_{\alpha+1}, \ldots, k_{\beta-1}, k_{\beta}, k_{\beta+1}, \ldots, k_n)$$

dostáváme

$$q = (k_1, \ldots, k_{\alpha-1}, k_{\beta}, k_{\alpha+1}, \ldots, k_{\beta-1}, k_{\alpha}, k_{\beta+1}, \ldots, k_n).$$

Jsou-li $i, j \neq \alpha, \beta$, je (i, j) v inverzi v q právě když bylo v inverzi v p. Totéž platí pro (i, α) a (i, β) v případě, že $i < \alpha$, a pro (α, j) , (β, j) v případě, že $j > \beta$. Nové zařazení tedy můžeme dostat u

- (i) (α, j) kde $\alpha < j < \beta$,
- (ii) (j, β) kde $\alpha < j < \beta$, a u
- (iii) (α, β) .

Změn u typů (i) a (ii) je sudý počet : Byla-li (α,j) inverze v p, není (j,β) inverze v Q a naopak; byla-li (j,β) inverze v p, není (α,j) inverze v q a naopak. Je-li tedy v p s inverzí typu (α,j) a t inverzí typu (j,β) a je-li $u=\beta-\alpha-1$ (počet j mezi α a β), má P počet inverzí typu (i) a (ii) s+t a q má těchto inverzí u-s+u-t, rozdíl je tedy 2(u-s-t). Zbývá jediný případ (α,β) a ten zaručeně znamená jednu změnu. \square

1.10 Pro $p \in P(n)$ definujeme sgn p = +1, dá-li se p napsat jako složení sudého počtu transpozic, sgn p = -1, dá-li se p napsat jako složení lichého počtu transpozic.

Věta:
$$\operatorname{sgn} p^{-1} = \operatorname{sgn} p$$
,
 $\operatorname{sgn}(p \circ q) = \operatorname{sgn} p \cdot \operatorname{sgn} q$.

Důkaz: Zřejmě jsou-li τ_i transpozice a $p = \tau_1 \circ \tau_2 \circ \ldots \circ \tau_{n-1} \circ \tau_n$, je $p_{-1} = \tau_n \circ \tau_{n-1} \circ \ldots \circ \tau_2 \circ \tau_1$. Druhé tvrzení je ještě triviálnější. \square

X.2 Determinant a jeho výpočet

2.1 Definice: Determinant matice $A = (a_{ij})$ typu $n \times n$ je definován jako číslo

$$\det A = \sum_{p \in P(n)} \operatorname{sgn} p. a_{1p(1)} a_{2p(2)} \dots a_{np(n)}.$$

Determinant z matice

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

se obvykle označuje takto:

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

2.2 Poznámka: Tedy např.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

To je prakticky jediný případ, kdy se determinant počítá přímo z definice. V literatuře sice ještě občas najdete též návody jak "snadno" víceméně z definice počítat determinanty typu 3×3 , ale již to je nepřehledné, o větších maticích ani nemluvě. Naučíme se mnohem snadnější a přehlednější metody výpočtu.

2.3 VĚTA:

- 1. $\det A^T = \det A$
- 2. Získáme-li matici B permutací p řádků nebo sloupců z matice A, je

$$\det B = \operatorname{sgn} p \cdot \det A$$
.

Důkaz:

1. Přeskupením součinitelů dostáváme okamžitě formuli

$$a_{1p(1)} \dots a_{np(n)} = a_{p^{-1}(1)1} \dots a_{p^{-1}(n)n}$$

Jelikož sgn $p = \operatorname{sgn} p^{-1}$ (1.10), máme

$$\det A = \sum_{p \in P(n)} \operatorname{sgn} p^{-1} a_{p-1}(1)_1 \dots a_{p-1}(n)_n$$

a tento součet je podle 1.5 roven

$$\sum_{p \in P(n)} \operatorname{sgn} p. a_{p(1)1} \dots a_{p(n)n} = \det A^{T}.$$

2. Na základě bodu 1 stačí dokazovat pro řádky. Máme $B=(a_{p(i)j})_{ij}$ a tedy

$$\det B = \sum_{q} \operatorname{sgn} q. a_{p(1)q(1)} \dots a_{p(n)q(n)}.$$

Přeskupením součinitelů a užitím 1.10 dostaneme

$$\det B = \sum_{q} \operatorname{sgn} q. a_{1,qp^{-1}(1)} \dots a_{n,qp^{-1}(n)} = \operatorname{sgn} p. \sum_{q} \operatorname{sgn} qp^{-1}. a_{1,qp^{-1}(1)} \dots a_{n,qp^{-1}(n)}.$$

Podle 1.5 tedy konečně

$$\dots = \operatorname{sgn} p \cdot \sum_{q} \operatorname{sgn} q \cdot a_{1q(1)} \dots a_{nq(n)} = \operatorname{sgn} p \cdot \det A.$$

Důsledek: Shodují-li se v matici A dva řádky (nebo dva sloupce), je det A=0. (Výměnou těchto řádků se matice nezmění, ale determinant má změnit znaměnko.)

2.4 VĚTA: Determinant je lineární funkcí každého svého řádku. Přesněji : Nechť matici $A_i(\mathbf{x})$ dostaneme z matice A zachováním všech řádků až na i-tý, kam budeme dosazovat proměnný aritmetický vektor \mathbf{x} . Potom $\det A_i(\mathbf{x})$ je lineární zobrazení $V_n \to \mathbb{R}$. Podobně pro sloupce.

Důkaz: Bezprostředně dosazením do formule v definici. \square

2.5 VĚTA: Přičteme-li k některému řádku (sloupci) matice lineární kombinaci ostatních řádků (sloupců), hodnota determinantu se nezmění.

Důkaz: Užijme označení z předchozí věty. Nechť $\mathbf{a}_1, \dots, \mathbf{a}_n$ jsou řádky původní matice. Tedy máme

$$\det A_i(\mathbf{a}_i) = \det A$$
, a $\det A_i(\mathbf{a}_j) = 0 \operatorname{pro} i \neq j$

a podle 2.4 tedy dostáváme

$$\det A_i(\mathbf{a}_i + \sum_{j \neq i} \alpha_j \mathbf{a}_j) = \det A_i(\mathbf{a}_i) + \sum_{j \neq i} \alpha_j \det A_i(\mathbf{a}_j) = \det A$$

2.6 Bezprostředně z definice vidíme, že

$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}.$$

Indukcí tedy snadno dostáváme

Fakt Nechť $a_{ij} = 0$ pro i > j. Potom

$$\det(a_{ij}) = a_{11}a_{22}\dots a_{nn}.$$

Názorněji :

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2,n-1} & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3,n-1} & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22}\dots a_{nn}.$$

Poznámky:

- 1. Tento fakt můžeme ovšem také, bez indukce, dokázat přímo z definice. Ukažte jak.
- 2. Samozřejmě že totéž platí též pro matice se samými nulami nad diagonálou. O těchto dvou typech matic se někdy mluví jako o maticích trojúhelníkových.
- 2.7 Výpočet determinantu matice typu $n \times n$ pro n > 2 zpravidla provádíme úpravou na trojúhelníkový tvar na základě pravidel 2.3 a 2.5 a konečně výpočtem z 2.6. Proveďme si příklad : Hodnotu

$$\begin{vmatrix} 1 & 2 & 0 & 3 \\ 2 & 1 & 3 & 1 \\ 1 & 4 & 4 & 2 \\ 1 & 3 & -1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & 3 \\ 0 & -3 & 3 & -5 \\ 0 & 2 & 4 & -1 \\ 0 & 1 & -1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & -3 \\ 0 & 2 & 4 & -1 \\ 0 & -3 & 3 & -5 \end{vmatrix} =$$

$$= - \begin{vmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & -14 \end{vmatrix} = -1.1.6.(-14) = 84$$

získáme nejprve odečítáním vhodných násobků prvního řádku od dalších, potom výměnou druhého a čtvrtého řádku a konečně odečtením vhodných násobků druhého řádku od řádků třetího a čtvrtého. Představte si, že byste místo toho museli sčítat 24 sčítanců z nichž každý má čtyři součinitele a ještě u každého z nich musíte pracně určovat znaménko.

73

Poznámka: Jistě jste nepřehlédli podobnost úprav determinantů a úprav matic při řešení soustav lineárních rovnic. Je ale též dobře vidět rozdíly : V prvním případě se při přeskupování řádků něco děje (může se měnit znaménko), v druhém případě přeskupení řádků (a ostatně ani vynásobení řádku nenulovým číslem) na situaci nic nemění. Na druhé straně v prvním případě můžeme pracovat se sloupci stejně jako s řádky, v druhém případě by se při manipulaci se sloupci soustava změnila.

2.8 Ještě jeden příklad: (Vandermondův determinant) Jedná se o

$$V = V(a_1, \dots, a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix}.$$

Odečtením prvního řádku od ostatních dostáváme

$$V = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 0 & a_2 - a_1 & a_2^2 - a_1^2 & \dots & a_2^{n-1} - a_1^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & a_n - a_1 & a_n^2 - a_1^2 & \dots & a_n^{n-1} - a_1^{n-1} \end{vmatrix}$$

a po vytknutí $(a_j - a_1)$ z j-tého řádku (užíváme opět linearity) a užití první formule z 2.6 dostáváme

$$V = (a_2 - a_1) \dots (a_n - a_1). \begin{vmatrix} 1 & P_1(a_1, a_2) & P_2(a_1, a_2) & \dots & P_{n-2}(a_1, a_2) \\ 1 & P_1(a_1, a_3) & P_2(a_1, a_3) & \dots & P_{n-2}(a_1, a_3) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & P_1(a_1, a_n) & P_2(a_1, a_n) & \dots & P_{n-2}(a_1, a_n) \end{vmatrix}$$

kde $P_k(a_1, x) = a_1^k + a_1^{k-1}x + a_1^{k-2} + \ldots + a_1x^{k-1} + x^k$. Jelikož zřejmě

$$P_{k+1}(a_1, x) = a_1 P_k(a_1, x) + x^{k+1},$$

dostaneme postupně odečtením a_1 -násobku předposledního sloupce od posledního, a_1 -násobku předposledního sloupce od předposledního,atd.,

$$V = (a_2 - a_1) \dots (a_n - a_1) \begin{vmatrix} 1 & a_2 & a_2^2 & \dots & a_2^{n-2} \\ 1 & a_3 & a_3^2 & \dots & a_3^{n-2} \\ \dots & \dots & \dots & \dots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-2} \end{vmatrix} = (a_2 - a_1) \dots (a_n - a_1) V(a_2, \dots, a_n)$$

Z této rekurentní formule již snadno dostaneme vzorec

$$V(a_1,\ldots,a_n)=\prod_{j>i}(a_j-a_i).$$

Speciálně odtud plyne, že

 $V(a_1,\ldots,a_n)=0$ právě když se některá dvě z čísel a_1,\ldots,a_n rovnají.

X.3 Minory. Výpočet inversní matice. Cramerovo pravidlo

3.1 Označme $A^{(i,j)}$ matici získanou z matice A vyškrtnutím i-tého řádku a j-tého sloupce. Číslo

$$\alpha_{ij} - (-1)^{i+j} \cdot \det A^{(i,j)}$$

nazýváme (i, j)-tým algebraickým doplňkem nebo minorem matice A

3.2 Označme (jako ve větě 2.4) $A_i(\mathbf{x})$ matici získanou nahrazením i-tého řádku vektorem $\mathbf{x} = (x_1, \dots, x_n)$ a podobně $A^j(\mathbf{x})$ matici získanou nahrazením j-tého sloupce sloupcem \mathbf{x}^T . Platí

Věta: $\det A_i(\mathbf{x}) = \sum_{j=1}^n x_j \alpha_{ij}$, $\det A^j(\mathbf{x}) = \sum_{i=1}^n x_i \alpha_{ij}$.

Důkaz: Provedeme třeba pro řádky. Označme \mathbf{e}_j aritmetický vektor, který má na j-tém místě 1 a jinde nuly. Tedy je

$$\mathbf{x} = (x_1, \dots, x_n) = \sum_{i=1}^n x_i \mathbf{e}_i$$

a z linearity funkce $\det A_i(-)$ (viz 2.4) dostáváme

$$\det A_i(\mathbf{x}) = \sum_{j=1}^n x_j \cdot \det A_i(\mathbf{e}_j).$$

Máme

$$\det A_i(\mathbf{e}_j) = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & a_{1j} & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1j} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{n,j-1} & a_{nj} & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}$$

Postupnými výměnami i—tého řádku s (i-1)—ním, toho pak s (i-2)—hým atd. dostaneme pomocí i-1 transpozic i— tý řádek na první místo tak, že se pořadí ostatních řádků zachová. Podobně dostaneme j—tý sloupec na první místo j-1 transpozicemi.

Tak získáme formuli

$$\det A_i(\mathbf{e}_j) = (-1)^{i+j} \cdot \begin{vmatrix} 1 & \mathbf{o} \\ \mathbf{y}^T & A^{(i,j)} \end{vmatrix} = (-1)^{i+j} \cdot \det A^{(i,j)}$$

s použitím formule z 2.6. □

3.3 Speciálně dostáváme dosazením j-tého řádku (sloupce) za \mathbf{x} (δ_{ij} je Kroneckerův symbol : 0 pro $i \neq j$ a 1 pro i = j)

Düsledek: $\sum_{j=1}^n a_{kj} \alpha_{ij} = \sum_{j=1}^n a_{jk} \alpha_{ji} = \delta_{ki}$. det A

3.4 Důsledek: Bud'A regulární matice, α_{ij} její minory. Potom pro inversní matici platí vzorec

$$A^{-1} = \left(\frac{\alpha_{ij}}{\det A}\right)^T$$

3.5 Cramerovo pravidlo Na soustavu rovnic

se můžeme dívat jako na úlohu nalézt matici

$$\hat{\mathbf{x}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

typu $n \times 1$ takovou, že

$$(**) A\hat{\mathbf{x}} = \hat{\mathbf{b}},$$

kde, samozřejmě,

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} , \quad \hat{\mathbf{b}} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Je-li A regulární, získáme řešení vynásobením obou stran rovnice (**) maticí A^{-1} zleva, tedy

$$\hat{\mathbf{x}} = A^{-1}A\hat{\mathbf{x}} = A^{-1}\hat{\mathbf{b}}.$$

Podle 3.4 je tedy

$$x_i = \frac{1}{\det A} \sum_j \alpha_{ji} b_j.$$

Podle 3.2 je ale suma na pravé straně rovna hodnotě determinantu matice získané z A nahrazením i—tého sloupce sloupcem $\hat{\mathbf{b}}$. Zjistili jsme tedy, že platí

VĚTA: (Cramerovo pravidlo) Bud' $A = (a_{ij})$ regulární matice, $\hat{\mathbf{b}} = (b_1, \dots, b_n)^T$, označme A(i) matici získanou nahrazením i-tého sloupce matice A sloupcem $\hat{\mathbf{b}}$. Potom pro řešení soustavy (*) platí formule

$$x_i = \frac{\det A(i)}{\det A}$$
.

Poznámka: Cramerovo pravidlo se pro konkretní výpočty řešení příliš nehodí. Někdy však potřebujeme pokud možno explicitní formuli místo procedury; potom přijde vhod.

X.4 Věta o násobení determinantů. Determinanty orthonormálních matic

4.1 Lemma: Budte A, B čtvercové matice, nechť C je sestavena podle schématu

$$\begin{pmatrix} A & M \\ \mathbf{O} & B \end{pmatrix} \quad nebo \quad \begin{pmatrix} A & \mathbf{O} \\ M & B \end{pmatrix},$$

kde na místě označeném M jsou libovolná čísla a na místě označeném O jsou samé nuly. Potom

$$\det C = \det A \cdot \det B$$
.

Důkaz: Provedeme pro první případ. Upravíme matici C pomocí pravidel z 2.5 na trojúhelníkový tvar tak, že nejprve upravíme řádky z horní poloviny, aniž bychom užívali dalších, a potom upravíme zbývající bez užívání předchozích. Tím dostaneme

$$\begin{pmatrix} a'_{11} & a'_{12} & a'_{13} & \dots & a'_{1m} \\ 0 & a'_{22} & a'_{23} & \dots & a'_{2m} \\ 0 & 0 & a'_{33} & \dots & a'_{3m} & & M' \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a'_{mm} & & & & \\ & & & & b'_{11} & b'_{12} & b'_{13} & \dots & b'_{1n} \\ & & & & 0 & b'_{22} & b'_{23} & \dots & b'_{2n} \\ & & & & 0 & 0 & b'_{33} & \dots & b_{1n} \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

v níž levá horní část je úpravou A na trojúhelníkový tvar a pravá dolní část je takovou úpravou matice B. Podle 2.6 je tedy

$$\det C = a'_{11}a'_{22} \dots a'_{mm}b'_{11}b'_{22} \dots b'_{nn},$$

$$\det A = a'_{11}a'_{22} \dots a'_{mm}, \quad \det B = b'_{11}b'_{22} \dots b'_{nn}.$$

4.2 VĚTA: (Věta o násobení determinantů) Budte A, B matice typu n × n. Potom

$$\det(AB) = \det A \cdot \det B .$$

Důkaz: Vezměme matici

$$C = \begin{pmatrix} a_{11} & \dots & a_{1n} & -1 & 0 & \dots & 0 \\ a_{21} & \dots & a_{2n} & 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} & 0 & 0 & \dots & -1 \\ 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}.$$

K i-tému sloupci přičtěme a_{1i} -násobek (n+1)-ho sloupce, a_{2i} -násobek (n+2)-ho sloupce, atd., až a_{ni} -násobek posledního sloupce. To provedeme se všemi sloupci až do n-tého. Tím se levá horní část anuluje a v levé dolní části se objeví matice AB. Schematicky tedy dostáváme

$$\begin{pmatrix} \mathbf{O} & -E_n \\ AB & B \end{pmatrix}$$
.

Nyní mezi sebou vyměníme vždy i-tý a (n+i)-tý sloupec. Při tom by hodnota determinantu změnila znaménko. Abychom to vyrovnali, vynásobíme ještě vždy nový i-tý řádek číslem -1. Dostaneme matici

$$D = \begin{pmatrix} E_n & \mathbf{O} \\ -B & AB \end{pmatrix}.$$

Vzhledem k typu úprav, které jsme provedli je det $C = \det D$. Podle lemmatu 4.1 je det $C = \det A$. det B a det $D = \det(AB)$. \square

4.3 Düsledek: Bud'A orthonormální matice. Potom

$$|\det A| = 1.$$

Důkaz: Jelikož $A^{-1} = A^T$ (viz IX.4.2), máme podle 2.3.1 a 4.2

$$1 = \det E = \det(A.A^T) = \det A. \det A^T = (\det A)^2.$$

X.5 Geometrický smysl determinantu

- **5.1** Jako ve všech těch dosavadních odstavcích, které se týkaly geometrické interpretace budeme opět trochu užívat představivosti. Zejména bude potřeba důvěřovat následujícím dvěma faktům:
 - (1) Jestliže zobrazení $f: V_n \to V_n$ (na V_n se opět díváme jako na representaci euklidovského prostoru) zachovává vzdálenost bodů (t.j., jestliže zachovává metrické vztahy tak jak je známe z klasické geometrie ; viz VII.5.5, odtud také označení $||\mathbf{x} \mathbf{y}||$ užívané dále), je objem útvaru f[M] roven objemu útvaru M. Volněji (a názorněji) řečeno : posuvy a otáčení na objemu nic nezmění.
 - (2) Známe-li (n-1)-rozměrný objem z základny Z rovnoběžnostěnu R a je-li v příslušná výška, je (n-rozměrný) objem rovnoběžnostěnu R roven součinu z.v.
- **5.2** Lemma: Bud'U orthonormální matice. Potom zobrazení $V_n \to V_n$ dané předpisem

$$\mathbf{x}\mapsto\mathbf{x}.U$$

zachovává vzdálenost bodů.

Důkaz: Máme $\|\mathbf{x} - \mathbf{y}\|^2 = \sum (x_i - y_i)^2 = (\mathbf{x} - \mathbf{y})(\mathbf{x} - \mathbf{y})$ (skalárně) = $(\mathbf{x} - \mathbf{y}).(\mathbf{x} - \mathbf{y})^T$ (maticově). Jelikož zřejmě $\mathbf{x}.U - \mathbf{y}.U = (\mathbf{x} - \mathbf{y}).U$, dostáváme

$$\|\mathbf{x}U - \mathbf{y}U\|^2 = ((\mathbf{x} - \mathbf{y})U) \cdot ((\mathbf{x} - \mathbf{y})U)^T =$$

$$= (\mathbf{x} - \mathbf{y}).U.U^T.(\mathbf{x} - \mathbf{y})^T = (\mathbf{x} - \mathbf{y}).(\mathbf{x} - \mathbf{y})^T = ||\mathbf{x} - \mathbf{y}||^2.$$

5.3 Lemma: Bud' A regulární matice. Potom existuje orthonormální matice U taková, že

$$A.U = \begin{pmatrix} b_{11} & 0 & 0 & \dots & 0 \\ b_{21} & b_{22} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nn} \end{pmatrix}$$

je trojúhelníková matice.

Důkaz: Řádky $\mathbf{a}_1, \dots, \mathbf{a}_n$ matice A tvoří bázi a tedy podle věty VII.5.8 existuje orthonormální báze $\mathbf{v}_1, \dots, \mathbf{v}_n$ taková, že pro každé k < n je

$$\mathcal{L}(\mathbf{a}_1,\ldots,\mathbf{a}_k) = \mathcal{L}(\mathbf{v}_1,\ldots,\mathbf{v}_k).$$

Existují tedy čísla b_{ij} taková, že

$$\mathbf{a}_i = \sum_{j=1}^i b_{ij} \mathbf{v}_j.$$

Tedy, položíme-li

$$B = \begin{pmatrix} b_{11} & 0 & 0 & \dots & 0 \\ b_{21} & b_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nn} \end{pmatrix},$$

platí pro (orthonormální) matici V se řádky $\mathbf{v}_1, \ldots, \mathbf{v}_n$

$$A = B.V.$$

Položíme $U=V^T$. \square

5.4 VĚTA: $|\det A|$ je objem rovnoběžnostěnu určeného řádky matice A.

Důkaz: Není-li A regulární, jsou řádky lineárně závislé a tedy je objem příslušného (degenerovaného) rovnoběžnostěnu roven $0 = \det A$. Můžeme tedy předpokládat, že A regulární je. Označme $\mathbf{a}_1, \ldots, \mathbf{a}_n$ její řádky. Vezměme U a b_{ij} z lemmatu 5.3. Máme

$$\mathbf{a}_{i}U = (b_{ij}, \dots, b_{ii}, 0, \dots, 0) = \mathbf{b}_{i}$$

Podle lemmatu 5.2 a předpokladu 5.1.(1) je objem rovnoběžnostěnu určeného vektory $\mathbf{a}_1, \dots, \mathbf{a}_n$ roven objemu rovnoběžnostěnu určeného vektory $\mathbf{b}_1, \dots, \mathbf{b}_n$. Podle 4.2 a 4.3 je

$$|\det A| = |\det B|.$$

Stačí tedy ukázat, že objem rovnoběžnostěnu určeného vektory $\mathbf{b}_1, \dots, \mathbf{b}_n$ je roven absolutní hodnotě determinantu

$$\begin{vmatrix} b_{11} & 0 & 0 & \dots & 0 \\ b_{21} & b_{22} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nn} \end{vmatrix},$$

t.j. číslu $|b_{11}.b_{22}....b_{nn}| = |b_{11}|.|b_{22}|.....|b_{nn}|$. To konečně snadno zjistíme indukcí na základě pravidla 5.1.(2) : $|b_{11}|$ je obsah první (jednorozměrné) základny, a $|b_{kk}|$ je vždy výška rovnoběžnostěnu určeného vektory $\mathbf{b}_1,...,\mathbf{b}_k$ v podprostoru

$$V'_k = \{(x_1, \dots, x_k, 0, \dots, 0) \mid (x_1, \dots, x_k) \in V_k\}$$

nad základnou, kterou je rovnoběžnostěn určený vektory $\mathbf{b}_1,\dots,\mathbf{b}_{k-1}$ v podprostoru V'_{k-1} . \square

XI Řady, zvláště pak mocninné

XI.1 Součet řady jako limita a jedna potíž

1.1 Mějme dánu posloupnost a_1, a_2, \ldots Na její součet (mluví se o součtu řady) je celkem přirozené se dívat jako na limitu

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

Existuje-li tato limita a je-li konečná, říkáme, že řada $\sum a_k$ konverguje. Ze střední školy asi znáte jeden významný případ, t.zv. geometrickou řadu. Jelikož

$$q(1+q+\cdots+q^n)=q+q^2+\cdots+q^{n+1}=(1+q+\cdots+q^n)-1+q^{n+1},$$

máme

$$1 + q + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

a tedy, je-li |q| < 1, je v nahoře zmíněném smyslu

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}.$$

1.2 Podíváme se nyní na jednoduchý případ řady, kde takovýto součet je nekonečný, t. zv. harmonickou řadu

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Že je součet opravdu nekonečný vidíme takto:

$$\frac{1}{10^k + 1} + \frac{1}{10^k + 2} + \dots + \frac{1}{10^{k+1}} > \frac{10^{k+1} - 10^k}{10^{k+1}} = \frac{9}{10},$$

takže

$$\sum_{n=1}^{10^k} \frac{1}{n} > \frac{9k}{10}.$$

Z toho ovšem ihned vidíme (viz I.2.1), že

$$\sum_{n=1}^{\infty} \frac{1}{Kn} = +\infty$$

pro libovolné K>0. Na tomto příkladě je podstatný ten fakt, že sama posloupnost $(\frac{1}{n})_n$ konverguje k nule. To že lim $a_n=0$ je zřejmě nutná podmínka k tomu, aby řada $\sum a_n$ ve smyslu 1.1 konvergovala.

Příklad ukazuje, že to není podmínka postačující. Mimoto je to příklad dost krajní: dá se ukázat (uvidíme to v jedné z dalších kapitol), že pro libovolně malé $\varepsilon > 0$ již $\sum_{n=1+\varepsilon} \frac{1}{n^{1+\varepsilon}}$ konverguje.

1.3 Alternující řada: Řada

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

konverguje ve smyslu 1.1 k nějakému konečnému číslu. Označíme-li zde s_n součet prvních n členů, vidíme snadno, že posloupnost s_n je cauchyovská. (Přesvědčte se, že tomu tak opravdu je. Stačí si uvědomit, že platí následující inkluze pro intervaly

$$(s_{2k}, s_{2k-1}) \supseteq (s_{2k}, s_{2k+1}) \supseteq (s_{2k+2}, s_{2k+1}).)$$

1.4 Příklad alternující řady ukazuje ošidnost pojmu součtu jako limity. Řada (2) konverguje (zřejmě k nějakému číslu mezi $\frac{1}{2}$ a 1) a podle (1) na druhé straně snadno vidíme, že

$$(3) 1 + \frac{1}{3} + \frac{1}{5} + \cdots$$

roste nade všechny meze, a že

$$-\frac{1}{2} - \frac{1}{4} - \frac{1}{6} - \cdots$$

klesá pode všechny meze. Ukážeme, že řadu (2) můžeme přerovnat tak, abychom dostali libovolný předem daný součet a (představujte si třeba a=1000005). Sčítejme kladné členy z (3) tak dlouho, až součet poprvé překročí a. Poznamenejme si, které sčítance jsme již použili a pokračujme zápornými sčítanci z řady (4) tak dlouho, až se dostaneme k součtu < a. Dále pokračujme dosud nepoužitými sčítanci z (3) tak dlouho, až zase dostaneme součet > a, vrátíme se k nepoužitým sčítancům z (4) a tak pokračujeme. Procedura nikdy neskončí (číslo a vždy překračujeme), takže v limitě se všechny sčítance spotřebují (a každý je použit právě jednou). Z toho,že obracíme směr vždy po prvním překročení, a že kroky se libovolně zmenšují, konečně vidíme, že limita částečných součtů je a.

XI.2 Absolutní konvergence a dvě kritéria

2.1 Řekneme, že řada $\sum_{n=0}^{\infty} a_n \ konverguje \ absolutně, konverguje-li ve smyslu 1.1 řada <math>\sum_{n=0}^{\infty} |a_n|$.

Věta: Každá absolutně konvergující řada konverguje.

Důkaz: Označme $s_n = \sum^n a_k$, $\overline{s}_n = \sum^n |a_k|$. Podle trojúhelníkové nerovnosti máme

(1)
$$|s_{n+r} - s_n| = |\sum_{k=n+1}^{n+r} a_k| \le \sum_{k=n+1}^{n+r} |a_k| = |\overline{s}_{n+r} - \overline{s}_n|.$$

Jelikož $\sum |a_n|$ konverguje, je $(\overline{s}_n)_n$ cauchyovská a tedy konvergentní. \square

2.2 S absolutně konvergentní řadou se nám nemůže stát to, co se stalo s alternující řadou v 1.3. Platí VĚTA: $Necht \sum a_n \ konverguje \ absolutně. Potom její součet nezávisí na přerovnání sčítanců.$

Důkaz: Buď

$$j_1,j_2,j_3,\cdots,j_n,\cdots$$

libovolná posloupnost čísel 1, 2, · · · v níž se každé z nich objeví právě jednou. Máme dokázat, že

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_{j_k} = \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

Označme $s = \sum a_k$, $\overline{s} = \sum |a_k|$. Zvolme $\varepsilon > 0$ a nalezněme n_0 takové, aby $|\sum_0^n |a_k| - \overline{s}| < \frac{\varepsilon}{2}$. Jelikož sčítance jsou nezáporné, musí pak nutně pro každé r být

(2)
$$\sum_{r=1}^{n_0+r} |a_k| < \frac{\varepsilon}{2}$$

Buď $n_1 \geq n_0$ takové, že

$$\left|\sum_{k=1}^{n_1} (a_k - s)\right| < \frac{\varepsilon}{2}$$

a $n_2 \geq n_0$ takové, že

$$\{1, \dots, n_1\} \subset \{j_1, \dots, j_{n_2}\}.$$

Buď nyní $n \geq n_2$. Položme $K = \{j_1, \cdots, j_n\} \setminus \{1, \cdots, n_1\}$. Potom z (2) a (3) dostaneme

$$|\sum_{k=1}^{n} a_{j_k} - s| = |\sum_{k=1}^{n_1} a_k + \sum_{K} a_k - s| \le |\sum_{k=1}^{n_1} a_k - s| + \sum_{K} |a_k| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

2.3 Věta: Nechť $|a_n| \leq b_n$ a nechť $\sum b_n$ konverguje. Potom $\sum a_n$ konverguje absolutně.

Důkaz: $\left(\sum^{n}|a_{k}|\right)_{n}$ je neklesající posloupnost a je zřejmě shora omezená číslem $\sum^{\infty}b_{k}$. Užijte I.2.3. \square

2.4 Věta: Buď q < 1. Nechť buď existuje n_0 takové, že pro $n \ge n_0$

$$\left| \frac{a_{n+1}}{a_n} \right| \le q$$

(kritérium D'Alambertovo), nebo takové, že pro $n \ge n_0$

$$\sqrt[n]{|a_n|} \le q$$

(kritérium Cauchyovo). Potom $\sum a_n$ absolutně konverguje.

Důkaz: Nechť platí první podmínka. Indukcí snadno zjistíme, že

$$|a_{n_0+k}| \le |a_{n_0}| \cdot q^k = \frac{|a_{n_0}|}{q^{n_0}} \cdot q^{n_0+k}.$$

Platí-li druhá podmínka, dostáváme hned

$$n > n_0 \Rightarrow |a_n| < q^n$$
.

Volíme nyní K dost velké tak, aby $|a_k| \leq Kq^k$ též pro $k = 1, \dots, n_0 - 1$. Potom máme pro všechna n

$$|a_n| < Kq^n$$

a tvrzení platí podle 2.3 a 1.1. □

2.5 Poznámka: Tato kritéria často nepomohou. Např. sečtením vždy dvou po sobě následujících členů alternující řady zjistíme, že

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{20} + \dots + \frac{1}{2n(2n+1)} + \dots$$

konverguje, není to však vidět z žádného z obou kritérií. V jedné z dalších kapitol uvedeme mnohem silnější tzv. integrální kritérium.

XI.3 Posloupnosti a řady funkcí

3.1 Mějme dánu posloupnost funkcí $(f_n)_n$ se stejným definičním oborem D. Řekneme, že konverguje k funkci f, označení

$$f_n \to f$$

jestliže

$$\forall x \in D \lim_{n \to \infty} f_n(x) = f(x).$$

Podobně máme-li posloupnost funkcí $(a_n)_n$, řekneme, že řada $\sum^{\infty} a_k(x)$ konverguje, jestliže konverguje posloupnost funkcí $(\sum^n a_k(x))_n$. Ve zřejmém smyslu užíváme výrazu, že $\sum a_k(x)$ konverguje absolutně.

3.2 Prostý pojem konvergence z 3.1 pro nás nebude příliš zajímavý. Limity funkcí v tomto smyslu nemají příliš dobré vlastnosti (z hlediska těch záležitostí, které studujeme — pro jiné účely to může být naopak užitečné). Např. se nezachovává spojitost: Vezměme třeba funkce $f_n(x) = x^n$ na (0, 1). Mají limitu f(x) = 0 pro x < 1, f(1) = 1.

Zavedeme nyní velmi důležitý pojem stejnoměrné konvergence.

DEFINICE: Řekneme, že posloupnost funkcí $(f_n)_n$ s definičním oborem D stejnoměrně konverguje k funkci f, označení

$$f_n \rightrightarrows f$$

jestliže $\forall \varepsilon > 0 \exists n_0$ tak, že $n \geq n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon$ pro všechna $x \in D$. (Zamyslete se nad tím, v čem se stejnoměrná konvergence od konvergence z 3.1 liší!)

3.3 Věta: Nechť $f_n \Rightarrow f$ a nechť f_n jsou spojité funkce. Potom i f je spojitá.

Důkaz: Zvolme x v definičním oboru a $\varepsilon > 0$. Buď n takové, že $|f_n(y) - f(y)| < \frac{\varepsilon}{3}$ pro každé y. Zvolme nyní $\delta > 0$ tak, aby

$$|x-y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \frac{\varepsilon}{3}.$$

Potom pro $|x-y| < \delta$ máme $|f(x) - f(y)| = |f(x) - f_n(x) + f_n(x) - f_n(y) + f_n(y) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$. \square

3.4 Věta: Nechť f_n mají spojité derivace f'_n , nechť $f'_n \rightrightarrows g$ a $f_n \to f$. Potom f má derivaci a sice g.

Důkaz: Máme

$$\left| \frac{f(x+h) - f(x)}{h} - g(x) \right| = \left| \frac{f(x+h) - f_n(x+h)}{h} - \frac{f(x) - f_n(x)}{h} + \frac{f_n(x+h) - f_n(x)}{h} - g(x) \right|.$$

S použitím věty o střední hodnotě dále upravíme na $\cdots = |\frac{f(x+h)f_n(x+h)}{h} - \frac{f(x)-f_n(x)}{h} + f'_n(x+\vartheta h) - g(x+\vartheta h) + g(x+\vartheta h) - g(x)| \le \frac{1}{|h|} \cdot |f(x+h)-f_n(x+h)| + \frac{1}{|h|} \cdot |f(x)-f_n(x)| + |f'_n(x+\vartheta h)-g(x+\vartheta h)| + |g(x+\vartheta h)-g(x)|$. Zvolme $\delta > 0$ tak, aby pro $|y-x| < \delta$ bylo $|g(y)-g(x)| < \frac{\varepsilon}{4}$ (podle 3.3 je g spojitá). Tedy pro $|h| < \delta$ je poslední sčítance menší než $\frac{\varepsilon}{4}$ (ϑ je mezi 0 a 1). Zvolme nyní $|h| < \delta$ libovolně ale pevně. Nalezněme nyní n tak, aby $|f'_n(y)-g(y)| < \frac{\varepsilon}{4}, |f(x+h)-f_n(x+h)| < \frac{\varepsilon}{4}|h|, |f(x)-f_n(x)| < \frac{\varepsilon}{4}|h|$. (Stejnoměrnou konvergenci potřebujeme jen u f'_n , tam nevíme, kde $x+\vartheta h$ přesně je, u f_n se jedná o konvergenci ve dvou určitých bodech.) Dostáváme

$$\left|\frac{f(x+h)-f(x)}{h}-g(x)\right|<\varepsilon.$$

Poznámka: Jen $f_n \rightrightarrows f$ a existence derivací by nestačily. K čemu konverguje $(f_n)_n$ kde $f_n(x) = \sqrt[2n]{x^{2n} + \frac{1}{n}}$?

3.5 Jelikož se spojitost zachovává pro konečné součty, dostáváme z 3.3

Důsledek: Nechť $a_n(x)$ jsou spojité funkce a nechť $s(x) = \sum_{n=0}^{\infty} a_n(x)$ konverguje absolutně. Potom je s(x) spojitá.

3.6 Jelikož derivace konečného součtu je součet derivací, dostáváme z 3.4

Důsledek: Nechť $a_n(x)$ mají spojité derivace $a'_n(x)$, nechť $\sum a_n(x)$ konverguje a nechť $\sum a'_n(x)$ konverguje stejnoměrně. Potom $\sum a_n(x)$ má derivaci, a sice

$$\left(\sum a_n(x)\right)' = \sum a'_n(x).$$

(Jinými slovy, za daných okolností můžeme řadu $\sum a_n(x)$ derivovat "člen po členu")

3.7 Nechť f_n jsou funkce definované na oboru D bez krajních bodů. Řekneme, že funkce f_n konvergují k f lokálně stejnoměrně, jestliže pro každý bod $x \in D$ existuje otevřený interval $J \ni x$ takový, že $f_n | J \rightrightarrows f | J$. Zřejmě f je spojitá v bodě x právě když je pro nějaký otevřený interval $J \ni x$ funkce f | J spojitá v bodě x, a f má derivaci A v bodě x právě když pro nějaký otevřený interval $J \ni x$ má f | J derivaci A v bodě x. Proto všechna tvrzení z odstavců 3.3-3.6 platí, nahradíme-li stejnoměrnou konvergenci lokálně stejnoměrnou konvergencí.

3.8 VĚTA: Nechť řada reálných čísel $\sum b_n$ konverguje a nechť pro funkce $a_n(x)$ s definičním oborem D platí

$$x \in D \Rightarrow |a_n(x)| < b_n$$
.

 $Potom \sum a_n(x) \ konverguje \ absolutně \ i \ stejnoměrně.$

Důkaz: Je možno nechat čtenáři jako jednoduché cvičení. Návod:

$$\left| \sum_{k=n}^{n+r} a_k(x) \right| \le \sum_{n=0}^{n+r} |a_k(x)| \le \sum_{n=0}^{n+r} b_k.$$

XI.4 Limes inferior

4.1 Buď (a_n) posloupnost reálných čísel. Limes inferior této posloupnosti, označení

$$\lim_{n} \inf a_n$$

je číslo (konečné nebo nekonečné)

$$\sup_{n} \inf_{k \geq n} a_k.$$

4.2 VĚTA:

- 1 Existuje-li konečná $\lim_n a_n$ je $\lim_n a_n = \lim_n a_n$.
- 2 Platí-li $\liminf_n a_n = \infty \ právě \ když \lim_n a_n = \infty.$
- 3 $\liminf_n a_{n+n_0} = \liminf_n a_n \ pro \ libovoln\'e \ pevn\'e \ n_0.$

Důkaz:

1 Nechť $\lim_n a_n = A$, zvolme libovolné $\varepsilon > 0$. Zvolme $\varepsilon > 0$ takové, že pro $n \ge n_0$ je $A - \varepsilon < a_n < A\varepsilon$. Tedy pro $n \ge n_0$ je $A - \varepsilon \le \inf_{k \ge n} a_n < A + \varepsilon$. Jelikož posloupnost $(\inf_{k \ge n} a_k)_n$ neklesá, plyne odtud

$$A - \varepsilon \le \sup_{n} \inf_{k \ge n} a_k \le A + \varepsilon.$$

Jelikož ε bylo libovolně malé, plyne odtud sup_n inf_{k>n} $a_k = A$.

2 Zvolme K libovolně. Je-li lim inf $a_n = \infty$, je pro nějaké n

$$\inf_{k \ge n} a_k > K,$$

takže $\forall k>n$ je $a_k>K$. Je tedy $\lim a_n=\infty$. Naopak nechť $\lim a_n=\infty$. Pro dostatečně velké n platí, že $k\geq n\Rightarrow a_k>K$, tedy $\inf_{k\geq n}a_k\geq K$. Tedy $\sup_n\inf_{k\geq n}a_k\geq K$. Jelikož K bylo libovolné, je $\sup_n\inf_{k\geq n}a_k=\infty$.

- 3 Je triviální. □
- **4.3** VĚTA: Nechť $\lim_n b_n = B$ je konečná kladná. Potom pro libovolnou zdola omezenou posloupnost $(a_n)_n$ platí

$$\lim\inf(b_na_n)=B\lim\inf a_n.$$

Důkaz: Je-li liminf $a_n = \infty$ plyne tvrzení bezprostředně z 4.2 a věty o limitě násobků. Nechť tedy liminf $a_n = A$ je konečné číslo. Zvolme $\varepsilon > 0$ takové, aby $A - \varepsilon > 0$ a dále n_0 tak, aby pro $n \ge n_0$ bylo

$$B - \varepsilon < a_n < B + \varepsilon.$$

Potom pro $n \geq n_0$ zřejmě platí

$$\inf_{k \ge n} b_k a_k \ge \inf_{k \ge n} (B - \varepsilon) a_k = (B - \varepsilon) \inf_{k \ge n} a_k$$

a tedy tím spíš

$$S = \sup_{n} \inf_{k \ge n} b_k a_k \ge (B - \varepsilon) \inf_{k \ge n} a_k$$

a odtud

(1)
$$\frac{S}{B-\varepsilon} \ge \inf_{k \ge n} a_k \quad \text{pro} \quad n \ge n_0.$$

Jelikož však posloupnost ($\inf_{k\geq n}a_k)_n$ neklesá, platí tato nerovnost pro každé na máme

$$\frac{S}{B-\varepsilon} \ge \sup_{n} \inf_{k \ge n} a_k + A$$

a konečně

$$(2) S \ge (B - \varepsilon)A.$$

Na druhé straně je pro $n \geq n_0$

$$\inf_{k \ge n} b_k a_k \le \inf_{k \ge n} (B + \varepsilon) b_k = (B + \varepsilon) \inf_{k \ge n} b_k \le (B + \varepsilon) A.$$

Tedy

$$(B - \varepsilon)A \le S \le (B + \varepsilon)A$$

a jelikož ε bylo libovolně malé, $S = B \cdot A$. \square

XI.5 Mocninné řady

5.1 DEFINICE: Mocninnou řadou s koeficienty a_n a středem c rozumíme výraz

$$(*) \qquad \sum_{n=0}^{\infty} a_n (x-c)^n$$

(Zatím formálně, hned si ale ukážeme, kde taková řada konverguje.)

5.2 Věta: $Bud'(a_n)_n$ posloupnost reálných čísel, označme

$$r = \lim \inf \frac{1}{\sqrt[n]{|a_n|}}.$$

V oboru (c-r,c+r) řada (*) konverguje absolutně a lokálně stejnoměrně. Je-li |x-c|>r, řada (*) nekonverguje.

Poznámka: O případu |x-c|=r netvrdíme nic.

Důkaz:

I. Zvolme $0<\rho< r$. Ukážeme, že na intervalu $J=(c-\rho,c+\rho)$ řada konverguje absolutně a stejnoměrně. Pro $x\in J$ a K konečné, $\rho< K\leq r$ máme

$$|x - c| < \rho \le \frac{\rho}{K} \cdot \sup \inf \frac{1}{\sqrt[k]{|a_k|}}$$

takže položíme-li $q = \frac{\rho}{K}$ (tedy 0 < q < 1), máme

$$\frac{1}{q}|x-c| < \sup_{n} \inf_{k \ge n} \frac{1}{\sqrt[k]{|a_k|}}$$

a tedy

$$\forall k \ge n \frac{1}{q} |x - c| < \frac{1}{\sqrt[k]{|a_k|}}$$

a po umocnění a dalších zřejmých úpravách

$$\forall k \ge n |a_k(x-c)^k| < q^k.$$

Zvolme C dost velké tak, aby

$$|a_k(x-c)^k| < C \cdot q^k$$

platilo i pro k < n a první tvrzení dostaneme z 3.8.

II. Bud' $|x - c| > \sup_n \inf_{k \ge n} \frac{1}{\sqrt{|a_k|}}$. Tedy

$$\forall n |x - c| > \inf_{k \ge n} \frac{1}{\sqrt[k]{|a_k|}}$$

To znamená, že pro každé n existuje k(n) takové, že

$$|x-c| > \frac{1}{\sqrt[k(n)]{|a_{k(n)}|}},$$

tedy takové, že

$$\left| a_{k(n)} \left(x - c \right)^{k(n)} \right| > 1.$$

V tomto případě tedy sčítance řady (*) ani nekonvergují k nule (a tedy posloupnost součtů není cauchyovská). □

Úmluva: Číslo r z této věty se nazývá poloměrem konvergence a interval (c-r, c+r) kruhem konvergence řady (*).

5.3 Věta: Řada $\sum_{n=0}^{\infty} na_n(x-c)^{n-1}$ má tentýž poloměr konvergence jako řada $\sum_{n=0}^{\infty} a_n(x-c)^n$.

Důkaz: Máme lim $\sqrt[n]{n} = \lim_{n \to \infty} \frac{1}{n} \log n = e^0 = 1$ jak snadno zjistíme užitím L'Hospitalova pravidla. Tedy podle 4.3(a 4.2.3) platí pro poloměr konvergence řady $\sum na_n(x-c)^{n-1}$

$$\lim\inf\frac{1}{\sqrt[n]{|na_n|}}=\lim\frac{1}{\sqrt[n]{n}}\cdot\liminf\frac{1}{\sqrt[n]{|a_n|}}=\lim\inf\frac{1}{\sqrt[n]{|a_n|}}.$$

5.4 Z vět 5.3, 5.2 a 3.6 (viz poznámku v 3.7) dostáváme okamžitě

Důsledek: Mocninou řadu můžeme v jejím kruhu konvergence derivovat (a ovšem též integrovat) člen po členu.

XI.6 Opět jeden výlet do komplexních čísel

6.1 Připomeňme si, že pro komplexní číslo z = x + iy je absolutní hodnota definována jako

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$$

Zcela bezprostředně je vidět, že pro tuto absolutní hodnotu platí, jako v případě reálných čísel

$$|z_1 z_2| = |z_1||z_2|.$$

Jako v případě reálných čísel platí též trojúhelníková nerovnost

$$|z_1 + z_2| < |z_1| + |z_2|,$$

tentokrát je to ale na rozdíl od zcela triviální trojúhelníkové nerovnosti v $\mathbb R$ mnohem hlubší fakt. (Použijeme třeba nerovnosti o skalárním součinu, kterou znáte z :

$$|x_1x_2 + y_1y_2| \le \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}$$

Dostaneme

$$|z_1 + z_2|^2 = (x_1 + x_2)^2 + (y_1 + y_2)^2 = x_1^2 + 2x_1x_2 + x_2^2 + y_1^2 + 2y_1y_2 + y_2^2 =$$

$$= x_1^2 + y_1^2 + 2(x_1x_2 + y_1y_2) + x_2^2 + y_2^2 \le (x_1^2 + y_1^2) + 2\sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2} + (x_2^2 + y_2^2) =$$

$$(|z_1| + |z_2|)^2.)$$

6.2 Definici limity posloupnosti komplexních čísel a definici cauchyovské posloupnosti je možno vyslovit formálně úplně stejně jako v reálném případě. Totiž u limity formulí $\forall \varepsilon > 0 \exists n_0$ tak, že $n \geq n_0 \Rightarrow |z_n - L| < \varepsilon$, a u cauchyovské posloupnosti formulí $\forall \varepsilon > 0 \exists n_0$ tak, že $m, n \geq n_0 \Rightarrow |z_m - z_n| < \varepsilon$ (i když absolutní hodnota teď znamená něco jiného). Opět platí věta, že posloupnost komplexních čísel konverguje právě když je cauchyovská. Stačí si uvědomit, že je-li z = x + iy, je

$$|x|, |y| \le |z| \le |x| + |y|$$

Z této nerovnosti vidíme, že $(x_n + iy_n)_n$ je cauchyovská v právě zavedeném smyslu právě když $(x_n)_n$ a $(y_n)_n$ jsou cauchyovské v tom smyslu, který známe. Tedy budou mít reálné limity x a y, a z (*) snadno vidíme, že

$$x + iy = \lim_{n} (x_n + iy_n)$$

v nyní zavedeném smyslu.

- 6.3 Definici konvergence a absolutní konvergence řady můžeme rozšířit na případ komplexních posloupností a věty 2.1, 2.2 a 2.3 platí i v novém smyslu. Důkaz je možno doslova opakovat rozdíl je jen v tom, že za trojúhelníkovou nerovností je nyní hlubší fakt. Stejně tak můžeme doslova opakovat důkaz věty 5.2. Jelikož však v komplexním oboru zatím nemáme definovánu stejnoměrnou konvergenci, budeme zatím to, co se dozvídáme formulovat opatrněji. Třeba takto: $Pro\ číslo\ r = \liminf \frac{1}{\sqrt[n]{|a_n|}}\ platí,\ že\ je-li\ |z-c| < r$, řada $\sum a_n z^n\ absolutně\ konverguje,\ je-li\ |z-c| > r$, řada nekonverguje vůbec. Nyní je obor v němž řada konverguje skutečný kruh se středem c a poloměrem r. O mocninných řadách v komplexním oboru se dozvíme více v jedné z dalších kapitol. Tam také uvidíme, že platí i fakta odpovídající větám z 3.6, 5.3 a 5.4
- **6.4** Poloměr a kruh konvergence z úmluvy v bodě 5.2 tedy skutečně souvisí s jakýmsi kruhem v rovině. To je dobré mít na mysli, když hledáme vysvětlení toho, proč ta která řada přestává fungovat jako vyjádření nějaké funkce. Např. nás jistě nepřekvapí, že při zápisu

$$\frac{1}{1-x} = 1 + x + x^2 + \cdots$$

se obor fungování omezí na interval (-1,1). Při x blížícím se k 1 totiž sama funkce $\frac{1}{1-x}$ utíká do nekonečna. Vezmeme-li ale funkci $\frac{1}{1+x^2}$ a rozepíšeme ji na

$$1 - x^2 + x^4 - x^6 + \cdots$$

(jako geometrickou řadu pro $q=-x^2$), máme zase řadu, která konverguje jen v (-1,1), což již trochu překvapit může, protože u funkce $\frac{1}{1+x^2}$ hodnoty při dalším vzdalování od nuly klesají. Ale my již víme, že oblast konvergence je kruh v komplexní rovině a může se zarazit o bod mimo \mathbb{R} , v tomto případě o i, kde funkce do nekonečna opět utíká. Tento důvod zastavení nemůžeme ovšem na reálné ose pozorovat.

XI.7 Taylorovy řady

7.1 Připomeňme si větu V.6.2. Označme na okamžik Taylorův zbytek symbolem

$$R(n+1)(f,x)\left(=f(x)-\sum_{k}=0^{n}\frac{f^{(k)}(c)}{k!}(x-c)^{k}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}\right).$$

Mějme nyní funkci f takovou, že

- (a) má derivace všech řádů v nějakém intervalu $J=(c-\Delta,c+\Delta)$, a
- (b) pro $x \in J$ je $\lim_{n \to \infty} R_n(f, x) = 0$.

Potom pro $x \in J$ máme

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k = \lim_{n \to \infty} \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k = \lim_{n \to \infty} (f(x) - R_{n+1}(f,x)) = f(x).$$

Mocninnou řadu

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$

nazýváme Taylorovou řadou (o středu c) příslušnou k funkci f (nebo Taylorovým rozvojem funkce f).

7.2 Několik příkladů: Připomeňme si V.6.3. Jelikož zřejmě při pevném x je $\lim_{n\to\infty} \frac{e^{\xi}}{(n+1)!}x^{n+1}$ (ξ se pohybuje mezi 0 a x) rovna 0, máme Taylorův rozvoj

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

platný v celém R. Podobně máme Taylorovy rozvoje

$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

Nebo třeba snadno zjistíme indukcí, že

$$(\lg x)^{(k)} = (-1)^{k+1} \cdot (k-1)! x^k$$

a tedy rozvineme funkci $\lg x$ kolem bodu 1 takto:

$$\lg x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots$$

(Zjistěte sami zda a kde zbytek konverguje a jaký je poloměr konvergence této řady.) Ještě rozvineme funkci

$$f(x) = (1+x)^{\alpha}$$

v okolí nuly. Máme $f'(x) = \alpha(1+x)^{\alpha-1}$, $f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$, a indukcí snadno ověříme

$$f^{(k)}(x) = \alpha(\alpha - 1) \cdots (\alpha - k + 1)(1 + x)^{\alpha - k}$$

Tedy (opět proberte konvergenci zbytku sami) pro $x \in (-1, 1)$ je

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k}.$$

Uvědomte si, že pro celé kladné α je

$$\frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} = \binom{\alpha}{k}.$$

Podržíme-li toto značení i pro ostatní α , dostaneme

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

což nám jistě nápadně (a také správně) připomíná binomickou větu. Samozřejmě nenajdeme explicitní formuli pro $f^{(k)}(c)$ tak snadno jako v těchto případech. Někdy mohou pomoci i jiné obraty, jak se hned přesvědčíme.

7.3 Věta: Mocninná řada $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ je svou vlastní Taylorovou řadou o středu c.

Důkaz: Podle 5.4 je

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1) \cdots (n-k+1) \cdot (x-c)^{n-k},$$

takže $f^{(k)}(c) = a_k \cdot k!$ a tedy $a_k = \frac{f^{(k)}(c)}{k!}$. Jelikož řada konverguje, zbytek $R_{n+1}(f,x)$, který je nyní $\sum_{k=n+1}^{\infty} a_n(x-c)^n$, konverguje k nule. \square

7.4 Důsledek: Shodují-li se funkce $\sum_{n=0}^{\infty} a_n (x-c)^n$ a $\sum_{n=0}^{\infty} b_n (x-c)^n$ pro $x \in (c-\delta, c+\delta)$, kde δ je nějaké kladné číslo, je $a_n = b_n$ pro všechna n. Tedy dokážeme-li nějakou funkci jakýmkoli postupem napsat jako mocninnou řadu, nalezli jsme tím její Taylorovu řadu.

7.5 Dva příklady:

1. Rozvineme si lg x (viz 7.2) tentokrát bez počítání derivací. Podle vzorce pro součet geometrické řady máme

$$(\lg x)' = \frac{1}{x} = \frac{1}{1 - (1 - x)} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + \cdots$$

Podle 5.4 můžeme řadu zintegrovat a dostaneme

$$\lg x = C + x - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots$$

Jelikož lg 1 = 0, musí být C + 1 = 0 a tedy C = -1.

2. Rozvineme arctg x. Máme

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 - \cdots$$

a tedy zintegrováním dostaneme

$$\operatorname{arctg} x = C + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$$

Jelikož arct
g0=0, musí být C=0. Tady by postup přes zjišťování všech derivací v nule byl velmi pracný. Mimochodem, dostáváme zde též hezkou formuli pro číslo π . Máme arct
g $1=\frac{\pi}{4}$ a usoudíme, že

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

To sice konverguje velmi pomalu, ale má to jistou estetickou hodnotu. Pozor: dopustili jsme se zde opovážlivosti, totiž dosadili jsme x=1, což je již na kraji kruhu konvergence. Správně bychom měli dokázat, že

$$\lim_{x \to 1^{-}} \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \right) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Zkuste to!

XI.8 Poznámka o součtech přes nekonečnou množinu.

Na počátku této kapitoly, v 1.1, možná někoho zarazila formulace "je $celkem\ přirozené$ dívat se na součet jako na limitu atd.". Kritický čtenář si možná položil otázku: Jak jinak bychom se na ten součet měli dívat? Takto: Je-li M libovolná množina, konečná nebo nekonečná, a jsou-li a_m definovány pro $m\in M$, řekneme, že tento systém má součet s (označovaný s0 existuje konečná existuje konečná s0 existu

- nezávisí na pořadí, ostatně je definován bez seřazení množiny M (komutativita),
- je-li M disjunktní sjednocení množin $M_j (j \in J)$ a $\sum_M a_m$ existuje, pak existují $s_j = \sum_{M_j} a_m$ a též $\sum_J s_j$, a platí $\sum_M a_m = \sum_j s_j$ (asociativita),
- existují-li $\sum_{M} a_m = a$ a $\sum_{N} b_n = b$, existuje též $\sum_{M \times N} a_m b_n$ a je roven $a \cdot b$ (distributivita).

Ještě bych zapomněl dodat, že pro reálná čísla, ale i pro mnohem obecnější případy, platí, že součet $\sum_{M} a_{m}$ je zajímavý jen pro spočetné M: Má-li totiž smysl, je $a_{m}=0$ až na spočetně mnoho m.

88

XII Několik základních fakt o metrických prostorech a spojitosti

XII.1 Základní pojmy

1.1 DEFINICE: Metrikou na množině X rozumíme zobrazení $\rho: X \times X \to \mathbb{R}$ splňující následující požadavky:

- (1) $\rho(x,y) > 0$ a $\rho(x,y) = 0$ právě když x = y,
- (2) $\rho(x, y) = \rho(y, x),$
- (3) $\rho(x,y) + \rho(y,z) > \rho(x,z)$ (tzv. trojúhelníková nerovnost).

Množina spolu s metrikou na ní se nazývá $metrick\acute{y}$ prostor, o prvcích metrického prostoru mluvíme jako o bodech.

Poznámka: Pojem metriky zachycuje intuitivní představu vzdálenosti (ostatně se někdy říká vzdálenost místo metrika). Všimněte si zejména názorného pravidla(3): nejkratší cesta z bodu x do bodu z není jistě delší než taková cesta, při níž ještě předepisujeme, že musíme jít přes y.

1.2 Příklady:

- 1. $\mathbb R$ se vzdáleností |x-y|. Zcela obdobně, vzpomeneme-li si na XI.6.1, množina $\mathbb C$ komplexních čísel se vzdáleností |x-y|.
- 2. Velmi triviální případ: Na množině X položme $\rho(x,y)=1$ pro $x\neq y,\ \rho(x,x)=0$
- 3. Euklidovský prostor dimenze n (n-rozměrný euklidovský prostor). Na množině

$$\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R}\}$$

zavedme metriku předpisem

$$\rho((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{\sum (x_j-y_j)^2}.$$

Splnění podmínek (1) a (2) je zřejmé. K ověření trojúhelníkové nerovnosti si připomeneme nerovnost

$$\left| \sum a_j b_j \right| \le \sqrt{\sum a_j} \cdot \sqrt{\sum b_j}$$

z . Máme

$$\rho(x,z)^{2} = \sum (x_{j} - z_{j})^{2} = \sum ((x_{j} - y_{j}) + (y_{j} - z_{j}))^{2} =$$

$$\sum (x_{j} - y_{j})^{2} + 2\sum (x_{j} - y_{j})(y_{j} - z_{j}) + \sum (y_{j} - z_{j})^{2} \leq$$

$$\sum (x_{j} - y_{j})^{2} + 2\sqrt{\sum (x_{j} - y_{j})^{2}} \sqrt{\sum (y_{j} - z_{j})^{2}} + \sum (y_{j} - z_{j})^{2} =$$

$$\rho(x,y)^{2} + 2\rho(x,y) \cdot \rho(y,z)^{2} = (\rho(x,y) + \rho(y,z))^{2}.$$

Popsaný prostor se obvykle označuje \mathbb{E}_n . Uvědomte si, že v tomto značení $je \ \mathbb{E}_1 \ totéž \ co \ \mathbb{R}$.

4. Buď X libovolná množina. Označme

množinu všech omezených reálných funkcí na X opatřenou metrikou

$$\rho(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

Ověření podmínek je jednoduché cvičení.

1.3 Pro bod x metrického prostoru (X, ρ) a $\varepsilon > 0$ definujeme

$$\Omega(x,\varepsilon) = \{ y \in X \mid \rho(x,y) < \varepsilon \}.$$

O této množině se mluví jako o ε -ovém okolí bodu x nebo o ε -ové kouli se středem x. Chceme-li mít jasno, o který prostor se jedná píšeme $\Omega_{(X,\rho)}$ nebo Ω_X místo Ω . Podmnožina $U\subseteq X$ se nazývá okolím bodu x, existuje-li $\varepsilon>0$ takové, že $\Omega(x,\varepsilon)\subseteq U$. Uvědomte si, že jde o velmi názornou záležitost: zachycuje to situaci, kdy bod je množinou U obklopen a není jen někde na kraji. Řekneme, že $U\subseteq X$ je otevřená, je-li okolím každého svého bodu.

1.4 VĚTA: $\Omega(x,\varepsilon)$ je otevřená množina.

Důkaz: Je-li $y \in \Omega(x, \varepsilon)$, je $\rho(x, y) < \varepsilon$. Zvolme $\eta > 0$ tak, aby $\rho(x, y) + \eta < \varepsilon$. Potom $\Omega(y, \eta) \subseteq \Omega(x, \varepsilon)$: skutečně, je-li $\rho(y, z) < \eta$, máme $\rho(x, z) \le \rho(x, y) + \rho(y, z) + \eta < \varepsilon$. \square

1.5 VĚTA: \emptyset a X jsou otevřené podmnožiny (X, ρ) . Jsou-li U_1 , U_2 otevřené, je $U_1 \cap U_2$ otevřená. Jsou-li U_j , $j \in J$, otevřené, je $\bigcup U_j$ otevřená.

Důkaz: První tvrzení je triviální. Buďte U_1, U_2 otevřené, $x \in U_1 \cap U_2$. Potom pro nějaké $\varepsilon_j > 0$ platí $\Omega(x, \varepsilon_j) \subseteq U_j$. Zvolíme-li tedy $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$, máme $\Omega(x, \varepsilon) \subseteq U_1 \cap U_2$. Buďte U_j otevřené, $x \in \bigcup U_j$. Potom je $x \in U_k$ pro nějaké k a tedy pro vhodné $\varepsilon > 0$ je $\Omega(x, \varepsilon) \subseteq U_k \subseteq \bigcup U_j$. \square

1.6 Řekneme, že posloupnost bodů $(x_n)_n$ metrického prostoru (X,ρ) konverguje k bodu x, nebo že limita posloupnosti x_n je x, označení

$$x = \lim_{n} x_n,$$

jestliže

$$\forall \varepsilon > 0 \exists n_0 \text{ tak, } \check{\text{ze}} \ n \geq n_0 \Rightarrow \rho(x_n, x) < \varepsilon.$$

Zcela triviální je

Pozorování: Je-li $\lim_n x_n = x$, je pro každou podposloupnost $(x_{k_n})_n$ také $\lim_n x_{k_n} = x$.

- **1.7** Řekneme, že $M \subseteq (X, \rho)$ je uzavřená, jestliže pro každou posloupnost $(x_n)_n$, která leží v M a konverguje v X, je též $\lim x_n \in M$.
- **1.8** VĚTA: $Podmnožina\ M\subseteq (X,\rho)\ je\ uzavřená\ právě\ když\ X\setminus M\ je\ otevřená.$

Důkaz: Buď M uzavřená, $x \in X \setminus M$. Kdyby pro žádné $\varepsilon > 0$ nebylo $\Omega(x, \varepsilon) \in X \setminus M$, mohli bychom speciálně pro každé n najít $x_n \in \Omega(x, \frac{1}{n}) \cap M$. Potom by ale $(x_n)_n$ ležela v M a $\lim x_n = x \notin M$ — spor. Nechť M není uzavřená. Zvolme posloupnost $(x_n)_n$ bodů z M takovou, že $x = \lim x_n \in X \setminus M$. Pro $\varepsilon > 0$ zvolme n tak, aby $\rho(x, x_n) < \varepsilon$. Potom $\Omega(x, \varepsilon)$ obsahuje $x_n \in M$ a neleží tedy v $X \setminus M$. \square

1.9 Z 1.8 a 1.5 (a známých DeMorganových formulí) dostaneme okamžitě

Důsledek: \emptyset a X jsou uzavřené. Jsou-li M_1 , M_2 uzavřené, je i $M_1 \cup M_2$ uzavřená. Jsou-li M_j , $j \in J$ uzavřené, je i $\bigcap_J M_j$ uzavřená.

1.10 Vzdáleností bodu $x \in (X, \rho)$ od množiny $A \subset X$ rozumíme číslo

$$\rho(x, A) = \inf \{ \rho(x, y) \mid y \in A \}.$$

Uzávěrem množiny A rozumíme množinu

$$\overline{A} = \{x \mid \rho(x, A) = 0\}.$$

Je-li nebezpečí nedorozumění, píšeme $\overline{A}^{(X,\rho)}$ nebo \overline{A}^X . Zcela bezprostřední je

Pozorování: $x \in \overline{A}$ právě když pro každé okolí U bodu x je $U \cap A \neq \emptyset$.

- 1.11 VĚTA:
 - (a) $\overline{\emptyset} = \emptyset$
 - (b) $A \subset \overline{A}$
- (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Následkem toho $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$.

(d) $\overline{\overline{A}} = \overline{A}$.

Důkaz: (a) a (b) jsou triviální.

- (c) Jelikož zřejmě $\overline{A} \subseteq \overline{A \cup B}$ a $\overline{B} \subseteq \overline{A \cup B}$, je $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Buď $x \in \overline{A \cup B}$ a nechť $x \notin \overline{A}$. Potom existuje $\varepsilon > 0$ takové, že $\Omega(x,\varepsilon) \cap A = \emptyset$. Tedy musí všechny ty body z $A \cup B$, k nimž je x blíže než ε , ležet v B a tedy $x \in \overline{B}$.
- (d) Víme již, že $\overline{A} \subseteq \overline{\overline{A}}$. Buď $x \in \overline{\overline{A}}$. Zvolme libovolné $\varepsilon > 0$. Existuje $y \in \overline{A}$ takové, že $\rho(y,z) < \frac{\varepsilon}{2}$. Jelikož je ale $y \in \overline{A}$, existuje $z \in A$ takové, že $\rho(y,z) < \frac{\varepsilon}{2}$. Tedy $\rho(x,z) \le \rho(x,y) + \rho(y,z) < \varepsilon$. Vidíme, že $\rho(x,A) = 0$ a tedy $x \in \overline{A}$. \square

1.12 Věta: \overline{A} je nejmenší uzavřená množina obsahující \overline{A} . Následkem toho je A uzavřená právě když $A = \overline{A}$.

Důkaz: Především, že je uzavřená : Podle 1.11(d) a Pozorování z 1.10 můžeme k $x \notin \overline{A}$ (a tedy $x \notin \overline{\overline{A}}$) zvolit $\varepsilon(x) > 0$ tak, že $\Omega(x, \varepsilon(x)) \subset X \setminus \overline{A}$. Tedy

$$X\setminus \overline{A}=\bigcup_{x\in X\setminus \overline{A}}\Omega\big(x,\varepsilon(x)\big),$$

což je otevřená množina podle 1.4 a 1.5. Buď nyní $A\subseteq B$ a buď B uzavřená, buď $x\in \overline{A}$. Pro každé n zvolme $x_n\in\Omega(x,\frac{1}{n})\cap A\subseteq B$. Potom $x=\lim x_n$ a tedy leží v B. \square

1.13 Úmluva: Pokud nebude nebezpečí nedorozumění, budeme vynechávat označení metriky v symbolu pro metrický prostor. Budeme tedy mluvit třeba o metrickém prostoru X a pokud nebude znak pro metriku kvůli kontextu jiný, budeme pro ni užívat symbolu ρ . Často není nutné ani vyhýbat se užití jednoho symbolu pro dvě různé metriky je-li z kontextu dostatečně jasné o co jde.

XII.2 Spojitost a stejnoměrná spojitost

Poznámka: Uvědomte si, že spojitost reálných funkcí, jak ji již znáte, je speciálním případem tohoto pojmu. Role definičního oboru bude zřejmá v následujícím odstavci o podprostorech.

2.2 Následující věta je o vztahu spojitosti k pojmům, které jsme se naučili v předchozím odstavci. Bod (vi) je velmi názorný: říká, že zobrazení je spojité právě když neodtrhne nic, co bylo přilepeno. Body (iv) a (v) jsou názorné méně, ale zato technicky velmi užitečné.

Věta: Následující tvrzení jsou ekvivalentní:

- (i) $f: X \to Y$ je spojité,
- (ii) pro každou konvergentní posloupnost $(x_n)_n$ v X platí $f(\lim x_n) = \lim f(x_n)$,
- (iii) pro každé x a každé okolí U bodu f(x) existuje okolí V bodu x takové, že $f[V] \subseteq U$,
- (iv) pro každou U otevřenou v Y je $f^{-1}(U)$ otevřená v X,
- (v) pro každou M uzavřenou v Y je $f^{-1}(M)$ uzavřená v X,
- (vi) pro každou $M \subseteq X$ je $f[\overline{M}] \subseteq \overline{f[M]}$.

Důkaz: (i) \Rightarrow (ii): Nechť f je spojité a $\lim x_n = x$. Zvolme $\varepsilon > 0$ a k němu $\delta > 0$ takové, že pro $\rho(x, y) < \delta$ je $\sigma(f(x), f(y)) < \varepsilon$. K δ pak zvolíme n_0 takové, že pro $n \ge n_0$ je $\rho(x, x_n) < \delta$. Tedy pro $n \ge n_0$ máme $\sigma(f(x), f(x_n)) < \varepsilon$.

- (ii) \Rightarrow (iii): Nechť (iii) neplatí. Potom existují x a U takové, že $\Omega \big(f(x), \varepsilon \big) \subseteq U$, ale pro každé n je $f\left[\Omega(x,\frac{1}{n})\right] \not\subseteq U$. Můžeme tedy volit x_n takové, že $\rho(x,x_n) < \frac{1}{n}$ a $f(x_n) \not\in \Omega(f(x),\varepsilon)$, tedy $\rho(f(x), f(x_n)) \ge \varepsilon$. Tedy $\lim x_n = x$ ale $\lim f(x_n) \ne f(x)$, pokud vůbec existuje. Neplatí tedy ani (ii).
- (iii) \Rightarrow (iv): $\overline{\operatorname{Bud}}'U$ otevřená v Y, $x\in f^{-1}(U)$. Tedy je U okolím bodu f(x) a máme V okolí bodu xtakové, že $f[V] \subseteq U$ a tedy $V \subseteq f^{-1}(U)$. Tedy je $f^{-1}(U)$ okolím každého svého bodu. (iv) \Leftrightarrow (v): Plyne okamžitě z věty 1.7 a toho, že vzor doplňku je doplněk vzoru.
- $(v) \Rightarrow (vi)$: Jelikož $f^{-1}(\overline{f[M]}) \supseteq f^{-1}(f[M]) \supseteq M$, je podle (v) a 1.12 $f^{-1}(\overline{f[M]}) \supseteq \overline{M}$ a tedy
- $\overline{f[M]} \supseteq f[\overline{M}].$ (vi) \Rightarrow (i): Nechť (i) neplatí. Potom existuje x a $\varepsilon_0 > 0$ tak, že $\forall \delta > 0$ máme $y \in \Omega(x, \delta)$ takové, že $\sigma(f(x), f(y)) \ge \varepsilon_0$. Označme $M = \{y \mid \sigma(f(x), f(y)) \ge \varepsilon_0\}$. Potom $x \in \overline{M}$, ale $f(x) \notin \overline{f[M]}$. \square
- **2.3** Definice: : Řekneme, že zobrazení $f:(X,\rho)\longrightarrow (Y,\sigma)$ je stejnoměrně spojité, jestliže $\forall\,\varepsilon>0\,\exists\,\delta>0$ takové, že $\forall x, y$ platí $\rho(x, y) < \delta \Rightarrow \sigma(f(x), f(y)) < \varepsilon$. (Zamyslete se nad tím, oč je tento požadavek silnější než požadavek spojitosti!)
- 2.4 Věta: Složení dvou spojitých (resp. stejnoměrně spojitých) zobrazení je spojité (resp. stejnoměrně spojité).

Důkaz: Je to zcela bezprostřední důsledek definic a může být ponechán čtenáři jako jednoduché cvičení.

2.5 Existuje-li ke spojitému zobrazení $f: X \longrightarrow Y$ inverzní spojité zobrazení $g: Y \longrightarrow X$, nazýváme fhomeomorfismem a o prostorech X a Y řekneme, že jsou homeomorfní. Jsou-li f a g stejnoměrně spojité, mluvíme o stejnoměrném homeomorfismu a stejnoměrně homeomorfních prostorech. Zejména nás bude zajímat případ, kdy máme na množině X dány dvě metriky ρ_1 a ρ_2 . Je-li identické zobrazení (X, ρ_1) na (X, ρ_2) (stejnoměrný) homeomorfismus, řekneme, že ρ_1 a ρ_2 jsou (stejnoměrně) ekvivalentní. Velmi zřejmý případ stejnoměrné ekvivalence metrik je ten, kde existují kladná čísla α , β taková, že

$$\alpha \cdot \rho_1(x,y) < \rho_2(x,y) < \beta \cdot \rho_1(x,y).$$

(Jaké $\delta>0$ volíme k $\varepsilon>0$ při ověření podmínek?) Z vět 2.3 a 2.4 vidíme, že nahrazení metriky jinou ekvivalentní nic nezmění na pojmech okolí, otevřenosti, uzavřenosti, uzávěru a konvergence, ani na tom, zda je zobrazení vzhledem k daným metrikám spojité nebo ne. Při stejnoměrně ekvivalentních metrikách se nezmění ani otázka stejnoměrné spojitosti zobrazení (a ani některé další záležitosti, jako cauchyova vlastnost a úplnost, o nichž budeme mluvit později).

2.6 Důležité stejnoměrně ekvivalentní metriky na \mathbb{E}_n . Místo metriky ρ z 1.2.3 můžeme na \mathbb{E}_n používat také třeba metriky

$$\rho_1(x,y) = \sum_{j=1}^n (|x_j - y_j|),$$

nebo

$$\sigma(x, y) = \max_{j} |x_j - y_j|.$$

Metriky ρ , ρ_1 , σ jsou stejnoměrně ekvivalentní, neboť

$$\sigma(x, y) < \rho_1(x, y) < n \cdot \sigma(x, y),$$

$$\sigma(x, y) \le \rho(x, y) \le \sqrt{n} \cdot \sigma(x, y).$$

(nerovnosti nalevo plynou z toho, že hodnotu $\sigma(x,y)$ obdržíme jakmile ve formulích pro ρ_1 nebo ρ vyškrtneme všechny sčítance kromě jednoho maximálního. Nerovnosti napravo se dostanou naopak nahrazením každého jednotlivého sčítance ve formulích pro ρ_1 a ρ maximálním.)

2.7 Reálné funkce na metrickém prostoru: Připomeňme si definice z II.2.1. Věta II.6.3 má následující zobecnění:

Věta: Jsou-li f, g spojité reálné funkce na metrickém prostoru X (případně spojité jen v bodě x_0) a $\alpha \in \mathbb{R}$, jsou i f+g, $\alpha \cdot f$, $f \cdot g$ spojité (případně spojité v bodě x_0). Má-li $\frac{f}{g}$ smysl, je spojitá i tato.

Důkaz: Nic nového zde nepředvedeme: podstata je zcela stejná jako v II.6.3 (a II.3.2). Jelikož zde ale nevycházíme z pozorování o limitě funkce v bodě, provedeme na ukázku alespoň jeden případ, třeba násobek $f \cdot g$. Máme

$$|fg(x_0) - fg(x)| = |f(x_0)g(x_0) - f(x_0)g(x) + f(x_0)g(x) - f(x)g(x)| \le |f(x_0)| \cdot |g(x_0) - g(x)| + |g(x)| \cdot |f(x_0) - f(x)|.$$

Pro $\varepsilon > 0$ zvolme $\delta > 0$ tak, aby pro $\rho(x_0, x) < \delta$ bylo $|g(x_0) - g(x)| < \frac{\varepsilon}{2|f(x_0)|}, |g(x)| < |g(x_0)| + 1,$ $|f(x_0) - f(x)| < \frac{\varepsilon}{2|g(x_0)| + 2}. \text{ Potom je pro } \rho(x_0, x) < \delta, |fg(x_0) - fg(x)| < \varepsilon. \quad \Box$

2.8 Řekneme, že posloupnost $(f_n)_n$ zobrazení (X, ρ) do (Y, σ) konverguje stejnoměrně k $f: X \longrightarrow Y$ jestliže $\forall \varepsilon > 0 \exists n_0$ takové, že pro $n \geq n_0$ je $\forall x \sigma(f_n(x), f(x)) < \varepsilon$. Označení

$$f_n \rightrightarrows f$$
.

Věta: Jsou-li f_n spojité a $f_n \Longrightarrow f$, je i f spojitá.

Důkaz: Je možno opakovat důkaz věty XI.3.3 s tím rozdílem, že vždy místo |a-b| píšeme $\rho(a,b)$ resp. $\sigma(a,b)$, podle toho, jsme-li v definičním oboru nebo oboru hodnot. \square

2.9 Poznámka: Připomeňme si příklad 1.2.4. Uvědomte si, že konvergence v prostoru F(X) je totéž, co stejnoměrná konvergence příslušných funkcí a že podle věty 2.8, je-li X metrický prostor je podmnožina $C(X) \subset F(X)$, tvořená všemi spojitými funkcemi, uzavřená.

XII.3 Podprostory

- **3.1** Buď (X, ρ) metrický prostor, X_1 podmnožina X. Funkce $\rho_1 = \rho | X_1 \times X_1$ je zřejmě metrika na X_1 . O prostoru (X_1, ρ_1) mluvíme jako o podprostoru prostoru X (indukovaném podmnožinou X_1).
- **3.2** Pozorování: $Bud'(X_1, \rho_1)$ podprostor (X, ρ) . Potom zobrazení vložení (X_1, ρ) do (X, ρ) , totiž $f: X_1 \to X$ definované předpisem f(x) = x, je stejnoměrně spojité.
- 3.3 Věta: Buď Y podprostor prostoru X. Potom
 - (1) $\Omega(x,\varepsilon) = \Omega_x(x,\varepsilon) \cap Y$,
 - (2) U je otevřená (uzavřená) v Y právě když existuje V otevřená (uzavřená) v X taková, že $U = Y \cap V$,
- (3) pro $A \subseteq Y$ je $\overline{A}^Y = \overline{A}^X \cap Y$.

Důkaz: (1) plyne triviálně z definice. (2) dokážeme třeba pro otevřené množiny (potom můžeme použít věty 1.8): Buď U otevřená v Y. Pro $x \in U$ zvolme $\varepsilon(x)$ tak, aby $\Omega_Y(x,\varepsilon(x)) \subseteq U$. Položíme $V = \bigcup \Omega_X(x,\varepsilon(x))$. V je otevřená v X podle 1.4 a 1.5 a $V \cap Y = U$ podle (1). Naopak je-li V otevřená, je $V \cap Y = f^{-1}(V)$, kde f je vnoření Y do X otevřené podle 2.2. (3) Je-li $A \subseteq Y$, je pro $X \in Y$ zřejmě $\rho_1(x,A) = \rho(x,A)$. Odtud bezprostředně. \square

3.4 Z definic dostáváme okamžitě:

Pozorování: Buď $f: X \longrightarrow Y$ (stejnoměrně) spojité zobrazení, buďte $X_1 \subseteq X$, $Y_1 \subseteq Y$ podprostory takové, že $f[X_1] \subseteq Y_1$. Potom $f_1: X_1 \longrightarrow Y_1$ definované předpisem $f_1(x) = f(x)$ je (stejnoměrně) spojité.

3.5 Úmluva: V dalším, nebude-li řečeno jinak, bude na podmnožiny pohlíženo jako na příslušné podprostory a naopak u podprostorů budeme užívat terminologii patřící k příslušným podmnožinám. Tak budeme třeba mluvit o průniku či sjednocení podprostorů nebo o otevřeném či uzavřeném podprostoru (zde je zvlášť důležité uvědomit si smysl úmluvy: v sobě samém je ovšem každý podprostor otevřený i uzavřený, otevřenost či uzavřenost se zde ale vztahuje k onomu základnímu prostoru). Naopak budeme u podmnožin užívat atributů příslušných podprostorů, takže budeme mluvit třeba o kompaktní podmnožině (o smyslu pojmu "kompaktní" viz dále).

XII.4 Součiny metrických prostorů

4.1 DEFINICE: :Buďte $(X_1, \rho_1), ..., (X_n, \rho_n)$ metrické prostory. Na kartézském součinu $X = \prod_{j=1}^n (X_j)$ zaveďme metriku předpisem

$$\rho((x_1,\ldots,x_n),(y_1,\ldots,y_n))=\sqrt{\sum \rho_j(x_j,y_j)^2}.$$

Získaný prostor (X_j, ρ_j) nazýváme součinem (nebo produktem) prostorů (X_j, ρ_j) . Označení

$$\prod_{j=1}^{n} (X_j, \rho_j)$$

nebo

$$(X_1, \rho_1) \times \cdots \times (X_n, \rho_n).$$

V případě n stejných součinitelů (X, ρ) mluvíme někdy o n-té mocnině a píšeme $(X, \rho)^n$.

4.2 Několik bezprostředních pozorování:

1. Místo ρ zavedené v 4.1 můžeme užívat metriky

$$\rho'\big((x_1,\ldots,x_n)(y_1,\ldots,y_n)\big)=\sum\rho_j(x_j,y_j)$$

nebo

$$\sigmaig((x_1,\ldots,x_n)(y_1,\ldots,y_n)ig) = \max_j
ho_j(x_j,y_j).$$

Ze zcela stejných důvodů jako v 2.6 (platí opět $\sigma \leq \rho' \leq n \cdot \sigma$, $\sigma \leq \rho' \leq \sqrt{n} \cdot \sigma$) jsou tyto metriky stejnoměrně ekvivalentní s ρ a tedy je pro všechny naše účely jedno se kterou pracujeme.

- 2. Zřejmě $\mathbb{E}_n = \mathbb{R} \times \cdots \times \mathbb{R} \ (= \mathbb{R}^n)$
- 3. Zcela přísně vzato není $(X_1, \rho_1) \times (X_2, \rho_2) \times (X_3, \rho_3) = ((X_1, \rho_1) \times (X_2, \rho_2)) \times (X_3, \rho_3)$, zcela přísně vzato není ani $X_1 \times X_2 \times X_3 = (X_1 \times X_2) \times X_3$: první je množina trojic (x_1, x_2, x_3) , druhá je množina dvojic $((x_1, x_2), x_3)$. Ale tyto prostory jsou zcela zřejmě stejnoměrně homeomorfní $((x_1, x_2, x_3) \mapsto ((x_1, x_2), x_3))$ dokonce zachovává vzdálenost). Proto se můžeme na součiny více prostorů dívat jako na vícekrát provedené součiny vždy dvou prostorů.
- 4.3 Zobrazení

$$p_k: \prod (X_j, \rho_j) \to (X_k, \rho_k)$$

definované předpisem $p_k(x_1, \ldots, x_n) = x_k$ nazýváme obvykle projekcemi.

VĚTA:

- 1. Projekce jsou stejnoměrně spojité.
- 2. Buď (Y, σ) metrický prostor, buďte $f_j: Y \to X_j$ (stejnoměrně) spojitá zobrazení. Potom existuje právě jedno zobrazení

$$f: Y \to X_1 \times \cdots \times X_n$$

takové, že pro všechna j je $p_i \circ f = f_i$, a toto zobrazení je (stejnoměrně) spojité.

Důkaz:

1 Plyne ze zřejmé nerovnosti

$$\rho_j(x_j,y_j) \leq \rho((x_1,\ldots,x_n)(y_1,\ldots,y_n)).$$

2 Především k existenci a jednoznačnosti zobrazení f. Má-li být $p_j f = f_j$ a je-li $f(y) = (x_1, \ldots, x_n)$, musí být $p_j f(y) = x_j = f_j(y)$ a tedy má f jednoznačně určené hodnoty

$$(*) f(y) = (f_1(y), \dots, f_n(y)).$$

Na druhé straně zobrazení definované předpisem (*) zřejmě splňuje rovnice $p_j \circ f = f_j$.

Ve věci (stejnoměrné) spojitosti se nám bude dobře pracovat s metrikou ρ' . Máme totiž formuli

$$\rho'\big(f(y),f(z)\big) = \sum \rho_j\big(f_j(y),f_j(z)\big),\,$$

z níž spojitost (resp. stejnoměrnou spojitost) za předpokladu spojitých (stejnoměrně spojitých) f_j dostaneme okamžitě. \Box

4.4 Poznámky:

- 1 Jelikož pro diagonální zobrazení $\delta:(X,\rho)\to (X,\rho)^2$ platí $p_j\circ\delta=identita$, je diagonála δ stejnoměrně spojitá.
- 2 Budte $f_j: X_j \to Y_j$ (stejnoměrně) spojitá zobrazení. Potom $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ definované předpisem $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ je (stejnoměrně) spojité. Platí pro něj totiž $p_j^Y \circ (f_1 \times f_2) = f_j \circ p_i^X$.
- 3 Tvrzení z věty 2.7 je možno dostat také takto: především se dokáže, že operace součtu, součinu či podílu nahlížené jako zobrazení

$$\alpha: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

jsou spojité. Potom dostaneme tvrzení z toho, že se vlastně jedná o zobrazení $\alpha \circ (f \times g) \circ \delta$.

4.5 VĚTA: Posloupnost $((x_{1,n}, x_{2,n}))$ konverguje $k(x_1, x_2)$ v $X_1 \times X_2$ právě když každá $z(x_{j,n})_n$ konverguje $k(x_j)$ v X_j .

Důkaz: Je sice možno snadno provést přímo, ale jako cvičení větu vyvodíme z 4.3. Konvergujeli $((x_{1,n},x_{2,n}))_n$ k (x_1,x_2) plyne tvrzení o konvergenci $(x_{j,n})_n$ ze spojitosti projekcí. Naopak nechť lim $x_{j,n}=x_j$. Vezměme

$$Y = \left\{ \frac{1}{n} \mid n = 1, 2, \ldots \right\} \cup \{0\}$$

jako podprostor \mathbb{R} . Definujme $f_j:Y\to X_j$ předpisem $f_j(\frac{1}{n})=x_{j,n},\,f_j(0)=x_j$. Potom jsou f_j spojité (viz 2.2(ii)) a tedy podle 4.3 je f definované předpisem $f(\frac{1}{n})=(x_{1,n},x_{2,n}),\,f(0)=(x_1,x_2)$ také spojité. Tedy, opět podle 2.2(ii), $(x_1,x_2)=\lim(x_{1,n},x_{2,n})$. \square

4.6 VĚTA: $Bud'(X, \rho)$ metrický prostor. Potom

$$\rho: X \times X \to \mathbb{R}$$

je stejnoměrně spojitá funkce.

Důkaz: Jelikož $\rho(x_1, x_2) \le \rho(x_1, y_1) + \rho(y_1, y_2) + \rho(y_2, x_2)$, máme

$$\rho(x_1, x_2) - \rho(y_1, y_2) \le \rho'((x_1, x_2), (y_1, y_2))$$

a záměnou pořadí (x_1, x_2) a (y_1, y_2) zesílíme na

$$|\rho(x_1, x_2) - \rho(y_1, y_2)| < \rho'((x_1, x_2), (y_1, y_2)).$$

Odtud bezprostředně. 🗆

XII.5 Kompaktní metrické prostory

5.1 DEFINICE: Řekneme, že metrický prostor je *kompaktní*, lze-li v něm z každé posloupnosti vybrat podposloupnost konvergentní.

5.2 Příklady:

- 1 Každý konečný prostor je kompaktní.
- 2 Každý omezený uzavřený interval je kompaktní ve smyslu definice 5.1 (I.3.3, II.1.5) a naopak je-li interval kompaktní ve smyslu 5.1 musí být uzavřený a omezený (toto druhé tvrzení bude plynout z následujících vět, je však užitečné cvičení pokusit se dokázat je teď hned přímo). Tedy termín "kompaktní" z (II.1.3) není v rozporu s nyní zavedenou obecnou definicí.
- **5.3** VĚTA: Kompaktní podprostor Y libovolného prostoru X je uzavřený. Je-li X kompaktní, je též naopak každý uzavřený podprostor Y kompaktní.

Důkaz: Nechť Y je kompaktní, nechť $x_n \in Y$, $\lim x_n = x$. Vybereme z $(x_n)_n$ podposloupnost konvergující v Y. Ta ale může konvergovat zase jen k x. Tedy je $x \in Y$. Nechť X je kompaktní a $Y \subseteq X$ uzavřené. Buď $(x_n)_n$ posloupnost v Y. V prostoru X z ní lze vybrat konvergentní podposloupnost v Y. V prostoru X z ní lze vybrat konvergentní podposloupnost $(x_k)_n$ s limitou x. Z uzavřenosti plyne, že $x \in Y$. \square

5.4 Věta: Součin kompaktních prostorů je kompaktní.

Důkaz: Plyne bezprostředně z věty 4.5. □

 ${f 5.5}$ Řekneme, že podmnožina M prostoru (X, ρ) je omezená, existuje-li konečné K takové, že

$$x, y \in M \Rightarrow \rho(x, y) < K$$
.

Uvědomte si, že tato podmínka znamená totéž jako že

- existuje $x_0 \in X$ tak, že $M \subseteq \Omega(x_0, K_1)$ pro dost velké K_1 , a také totéž že
- pro každé $x \in X$ existuje K(x) tak, že $M \subseteq \Omega(x, K(x))$.

Je to triviální cvičení na práci s trojúhelníkovou nerovností.

5.6 VĚTA: Podprostor $X \subset \mathbb{E}_n$ je kompaktní právě když je v \mathbb{E}_n uzavřený a omezený.

Důkaz: Je-li kompaktní, je uzavřený podle 5.3. Nechť není omezený. Potom můžeme zvolit body x_n tak, že $\rho(x_1,x_n) \geq n-1$. Posloupnost $(x_n)_n$ nemá žádnou omezenou podposloupnost a konvergentní posloupnost je vždy omezená (proč?) — spor. Naopak nechť je X omezená. Zvolme intervaly $\langle a_j,b_j\rangle$ dost velké tak, aby

$$X \subset Y = \langle a_1, b_1 \rangle \times \cdots \times \langle a_n, b_n \rangle.$$

Y je kompaktní podle 5.4 (a 5.2.2). Tedy, je-li X navíc uzavřený v \mathbb{E}_n je tím spíš uzavřený v Y a tedy kompaktní podle 5.3. \square

5.7 Věta: Kompaktní podprostor $X \subseteq \mathbb{R} (\equiv \mathbb{E}_1)$ má největší a nejmenší prvek.

Důkaz: Podle 5.5 je to omezená množina a musí tedy mít (základní vlastnost reálných čísel !) konečné supremum i infimum. Soustředme se třeba na supremum s. Podle definice suprema, pro každé n existuje $x_n \in X$ takové, že $s - \frac{1}{n} < x_n \le s$. Je tedy $\lim x_n = s$ a z uzavřenosti množiny X plyne, že $s \in X$. \square

5.8 Věta: Bud'X kompaktní a $f: X \to Y$ spojité. Potom f[X] je kompaktní.

Důkaz: Nechť $y_n \in f[X]$. Existují tedy $x_n \in X$ takové, že $f(x_n) = y_n$. Z $(x_n)_n$ vybereme konvergentní podposloupnost $(x_{k_n})_n$. Podle 2.2(ii) je $(y_{k_n})_n = (f(x_{k_n}))_n$ konvergentní v f[X]. \square

5.9 Z 5.8 a 5.6 dostáváme okamžitě

Důsledek: Spojitá reálná funkce nabývá na každém kompaktním prostoru maxima i minima.

5.10 VĚTA: $Bud'f: X \to Y$ spojité zobrazení, X kompaktní. Potom f je stejnoměrně spojité.

Důkaz: Sporem. Kdyby nebylo, existovalo by $\varepsilon_0 > 0$ takové, že

 $\forall \, \delta \exists \, x(\delta), y(\delta) \text{ pro které } \rho \big(x(\delta), y(\delta) \big) < \delta \text{ ale } \sigma \Big(f \big(x(\delta) \big), f \big(y(\delta) \big) \Big) \geq \varepsilon_0. \text{ Položme } x_n = x(\frac{1}{n}), y_n = y(\frac{1}{n}). \text{ Z posloupnosti } (x_n)_n, \ (y_n)_n \text{ můžeme vybrat konvergentní podposloupnosti; vybereme napřed } (x_{k_{(n)}})_n \text{ a potom } (y_{l(k(n))})_n \text{ (aby při výběru z } (y_n)_n \text{ příslušná stejně indexovaná podposloupnost } (x_n)_n \text{ také konvergovala}. \text{ Položme } x_n' = x_{l(k(n))}, \ y_n' = y_{l(k(n))}. \text{ Zřejmě lim } x_n' = \lim y_n' \text{ (je přece } \rho(x_n', y_n') < \frac{1}{n}) \text{ ale jelikož } \sigma \big(f(x_n'), f(y_n') \big) \geq \varepsilon_0, \text{ nemůže být lim } f(x_n') = \lim f(y_n') \text{ ve sporu s } 2.2(\text{ii}). \quad \Box$

5.11 Spojité zobrazení prostoru (X, ρ) na prostor (Y, σ) nemusí být homeomorfismus: inverzní zobrazení sice existuje, ale nemusí být spojité. Vezměme třeba

$$f: \langle 0, 1 \rangle \cup (2, 3) \rightarrow \langle 0, 2 \rangle$$

definované předpisem f(x) = x pro $x \le 1$, f(x) = x - 1 pro x > 2. Nebo třeba ještě drastičtější příklad, kde z $\mathbb R$ uděláme prostor X zavedením metriky $\rho(x,y) = 1$ pro $x \ne y$ a vezmeme identické zobrazení X na $\mathbb R$ s obvyklou metrikou. V kompaktním případě je však situace zcela jiná. Platí

Věta: Buď X kompaktní a f prosté spojité zobrazení X na Y. Potom je f stejnoměrný homeomorfismus.

Důkaz: Podle 5.8 je i Y kompaktní a tedy podle 5.10 stačí dokázat, že inverzní zobrazení g je spojité. Použijeme znovu 5.8. Je-li M uzavřené v X, je kompaktní podle 5.3 a tedy $g^{-1}(M) = f[M]$ je kompaktní a tedy uzavřená podle 5.3. Spojitost g tedy plyne z 2.2(iv). \square

XII.6 Úplné prostory

6.1 DEFINICE: Řekneme, že posloupnost $(x_n)_n$ bodů metrického prostoru (X, ρ) je cauchyovská, jestliže

$$\forall \varepsilon > 0 \exists n_0 \text{ takové, } \check{z}e \ m, n \geq n_0 \Rightarrow \rho(x_m, x_n) < \varepsilon.$$

Zřejmě platí: každá~konvergentní~posloupnost~je~cauchyovská. Prostor se nazývá $\acute{u}pln\acute{y}$ jestliže v něm každá cauchyovská posloupnost konverguje.

6.2 Věta: Má-li cauchyovská posloupnost konvergentní podposloupnost, konverguje celá.

Důkaz: Můžeme opakovat důkaz věty I.3.2 s tím, že místo |x-y| píšeme $\rho(x,y)$. \square

6.3 Příklady:

- 1. R je úplný prostor (Věta I.3.4)
- 2. Podle 6.2 je každý kompaktní prostor úplný.
- **6.4** VĚTA: Obraz cauchyovské posloupnosti při stejnoměrně spojitém zobrazení je cauchyovská posloupnost. Následkem toho stejnoměrný homeomorfismus, zejména pak nahrazení metriky metrikou stejnoměrně ekvivalentní, zachovává úplnost.

Důkaz: Stačí samozřejmě dokázat první tvrzení. Buď $f: X \to Y$ stejnoměrně spojité, $(x_n)_n$ cauchyovská, $\varepsilon > 0$. Zvolme $\delta > 0$ tak, aby $\rho(x,y) < \delta \Rightarrow \sigma(f(x),f(y)) < \varepsilon$ a n_0 tak, aby pro $m,n \geq n_0$ bylo $\rho(x_m,x_n) < \delta$. Potom je pro $m,n \geq n_0$ také $\sigma(f(x_m),f(x_m)) < \varepsilon$. \square

Poznámka: Nic z toho neplatí při pouhé spojitosti. Instruktivní příklad je homeomorfismus tg $x:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$.

6.5 VĚTA: Podprostor X úplného prostoru Y je úplný právě když je v Y uzavřený.

Důkaz: Je-li X uzavřený a $(x_n)_n$ cauchyovská v X, je cauchyovská i v Y a tedy konverguje k nějakému $x \in Y$. Z uzavřenosti plyne, že $x \in X$.

Nechť X není uzavřený v Y. Existuje tedy $(x_n)_n$ ležící v X a konvergující k nějakému $x \in Y \setminus X$. Potom je $(x_n)_n$ cauchyovská (v X i Y, to je podle definice metriky v podprostoru totéž); v X však nekonverguje, jednu limitu, a to mimo X, už má. \square

6.6 VĚTA: Součin úplných prostorů je úplný.

Důkaz: Je-li $((x_n, y_n))_n$ cauchyovská v $X \times Y$, jsou $(x_n)_n$ a $(y_n)_n$ cauchyovské podle 6.4 a 4.3.1. Tedy konvergují k nějakým x, y. Podle 4.5 je pak $\lim(x_n, y_n) = (x, y)$. \square

6.7 Důsledek: Euklidovský prostor \mathbb{E}_n je úplný. Podprostor \mathbb{E}_n je úplný právě když je uzavřený.

XIII Základy diferenciálního počtu více proměnných

XIII.1 Reálné funkce více proměnných. Vektorové funkce.

- 1.1 Za reálnou funkci n proměnných budeme považovat zobrazení nějaké podmnožiny $D \subseteq \mathbb{E}_n$ do $\mathbb{R}(=\mathbb{E}_1)$. Ponechme si trochu volnosti v otázce, jaká by ta podmnožina měla být. Obvykle nás budou zajímat definiční obory otevřené. V jiných případech si můžeme představovat, že nás sice pro danou úlohu zajímá nějaká neotevřená množina, ale že zobrazení je definováno na nějaké větší otevřené množině. To zejména u uzavřených množin nedělá potíže : podle Tietzových vět (viz dále v kapitole [XVI]) se pro takové rozšíření nemusíme vzdávat spojitosti.
- 1.2 Máme-li reálnou funkci n proměnných s definičním oborem D, říkáme, že je spojitá, je-li spojitá na podprostoru $D \subseteq \mathbb{E}_n$. Je velmi důležité uvědomit si, že je to silnější vlastnost než spojitost podle jednotlivých proměnných, totiž, že např. to, že každé $\varphi_a(y) = f(a,y)$ a každé $\psi_b(x) = f(x,b)$ je spojitá funkce jedné proměnné, nestačí k tomu, aby f(x,y) byla spojitá funkce dvou proměnných. Proberme velmi instruktivní příklad, který se nám bude hodit i později. Definujme

$$f(x,y) = \begin{cases} \frac{(x-y)^2}{x^2 + y^2} & \text{pro } (x,y) \neq (0,0) \\ 1 & \text{pro } (x,y) = (0,0) \end{cases}.$$

Při označení nahoře máme tedy

$$\varphi_0(x) = 1 = \psi_0(x),$$

a pro $a \neq 0$

$$\varphi_a(x) = \frac{(a-x)^2}{a^2 + x^2} = \psi_a(x),$$

tedy vesměs spojité funkce. Ale f spojitá není: Posloupnost (1,1), $(\frac{1}{2},\frac{1}{2})$, $(\frac{1}{3},\frac{1}{3})$, ...konverguje k (0,0), kde je hodnota funkce 1, zatím co $f(\frac{1}{n},\frac{1}{n})$ je vždy 0.

Představu o tom, co se děje, snad dá obrázek 11 znázorňující f(x,y) v jednom z kvadrantů:

1.3 Občas bude výhodné pracovat s $vektorovými\ funkcemi\vec{f}:D\to\mathbb{E}_k\quad (D\subseteq\mathbb{E}_n)$. Na takové zobrazení je možno se dívat jako na k-tici (f_1,\ldots,f_k) , kde f_j jsou určeny formulí

$$\vec{f}(\vec{x}) = (f_1(\vec{x}), \dots, f_n(\vec{x})) \quad (\vec{x} = (x_1, \dots, x_n)).$$

(Tedy $f_j = p_j \circ \vec{f}$, kde p_j jsou projekce při chápaní \mathbb{E}_k jako součinu $\mathbb{E}_1 \times \cdots \times \mathbb{E}_1$.)

Zatímco, jak jsme viděli, spojitost v definičním oboru nelze směšovat se spojitostí po jednotlivých souřadnicích, s oborem hodnot u některých funkcí žádnou takovou potíž nemáme: podle XII.4.3 je \vec{f} : $D \to \mathbb{E}_k$ spojitá právě když jsou všechny funkce $f_j = p_j \vec{f}$ spojité.

Tedy je vektorová funkce $\vec{f}:D\to\mathbb{E}_k(D\subseteq\mathbb{E}_n)$ v podstatě totéž jako k-tice reálných funkcí n proměnných.

1.4 Při skládání vektorových funkcí $\vec{f}: D \to \mathbb{E}_k(D \subseteq \mathbb{E}_n)$ a $\vec{g}: D' \to \mathbb{E}_k(D' \subseteq \mathbb{E}_n)$ budeme užívat obdobné konvence jako v II.2.3: $\vec{g} \circ \vec{f}$ bude mít smysl jakmile $\vec{f}[D] \subseteq D'$; nebudeme značení komplikovat tím, že bychom za účelem skládání pedantsky nejprve nahrazovali zobrazení \vec{f} zobrazením $\vec{f}^0: D \to D'$ definovaným stejným předpisem.

XIII.2 Parciální derivace a totální diferenciál

2.1 Buď $f(x_1,\ldots,x_n)$ reálná funkce n proměnných. Parciální derivací reálné funkce podle k-té proměnné v bodě (x_1^0,\ldots,x_n^0) rozumíme derivaci funkce $\varphi(x)=f(x_1^0,\ldots,x_{k-1}^0,x,x_{k+1}^0,\ldots,x_n^0)$ v bodě x_k^0 . Označení

$$\frac{\partial f(x_1^0,\ldots,x_n^0)}{\partial x_h}, \frac{\partial}{\partial x_h} f(x_1^0,\ldots,x_n^0).$$

Stejně jako u derivace funkce jedné proměnné (připomeňte si [IV-1.5]), má-li f derivace podle x_k ve všech bodech nějakého oboru D, díváme se na $\frac{\partial f}{\partial x_k}$ (případně označenou též $\frac{\partial}{\partial x_k}f$) jako na reálnou funkci na D. (Poznámka: V literatuře se někdy užívá též jiných označení, např. f'_x nebo jen f_x pro $\frac{\partial f}{\partial x}$.)

2.2 Příklady Třeba pro funkci $f(x,y) = x^2 \cos y$ je $\frac{\partial f}{\partial x} = 2x \cos y$, $\frac{\partial f}{\partial y} = -x^2 \sin y$. Zvykejme si též na to, že proměnné nemusí být označovány písmeny z konce abecedy, a že to, co považujeme za konstantu, byť neurčitou, se může stát proměnnou. Tedy máme třeba

$$\frac{\partial}{\partial x}(ax^n) = nax^{n-1}, \quad \frac{\partial}{\partial a}(ax^n) = x^n.$$

a podobně.

2.3 Na rozdíl od případu jedné proměnné, parciální derivace samy o sobě neříkají mnoho o lokálním chování celé funkce. Definujme třeba

$$f(x,y) = \begin{cases} 0, \text{ pro } y \neq 0 \\ x, \text{ pro } y = 0 \end{cases}.$$

Potom $\frac{\partial f(0,0)}{\partial x} = 1$, $\frac{\partial f(0,0)}{\partial y} = 0$. Představa derivace jako vyjádření tečny by zde při rozšíření na představu tečné roviny (Pozor: tuto představu vám nevymlouvám, držte se jí; zde jde o to ukázat, že budeme za tím účelem muset pojmy vylepšit) napovídala tečnou rovinu určenou v \mathbb{E}_3 přímkami (0,t,0) a (t,0,t), která se v žádném rozumném smyslu grafu naší funkce nepřibližuje.

Tento příklad je ovšem schválnost a mohlo by se zdát, že potíž souvisí s tím, že funkce sice má parciální derivace v bodě (0,0), libovolně blízko k tomuto bodu (v bodech (0,t)) však jednu z nich nemá. Ale příklad z 1.2 nás snadno vyvede i z tohoto pokusu o vysvětlení. Věc je ve skutečnosti v tom, že u parciálních derivací sledujeme jen to, co se děje v "hlavních směrech". O ostatních směrech neříkají nic.

Všimněte si, že z existence parciálních derivací neplyne spojitost.

2.4 Záchranu geometrické představy tečné (nad)roviny, případně představy dobrého přiblížení dané funkce funkcí lineární (v dost malém okolí) dává následující definice. V ní budeme užívat označení $||\vec{h}||$ pro vzdálenost "bodu" $\vec{h} = (h_1, \ldots, h_n)$ od $(0, \ldots, 0)$. Jelikož pro vyjádření pojmu "libovolně blízko" nezáleží na tom, kterou z ekvivalentních metrik si vybereme XII.2.6, můžeme s $||\vec{h}||$ pracovat jako s

$$\sqrt{h_1^2+\cdots+h_n^2}$$
, nebo $\sum_{i=1}^n |h_i|$, nebo $\max_{i=1,\ldots,n} |h_i|$.

Nejpohodlnější asi bude pracovat s poslední z nich.

DEFINICE: Řekněme, že f má v bodě (x_1, \ldots, x_n) totální diferenciál, existují-li reálná čísla A_1, \ldots, A_n a funkce μ definovaná v nějakém okolí bodu $\vec{o} = (0, \ldots, 0)$ taková, že $\lim_{\vec{b} \to \vec{\sigma}} \mu(\vec{b}) = \vec{o}$ a že v tomto okolí platí

$$f(x_1 + h_1, ..., x_n + h_n) - f(x_1, ..., x_n) = \sum_{j=1}^n A_j h_j + ||\vec{h}|| \cdot \mu(\vec{h}).$$

2.5 Poznámky:

- Srovnejte s větou IV.1.6. Ta v nové terminologii říká, že funkce jedné proměnné má totální diferenciál právě když má derivaci. Jak ukázali příklady nahoře, pro funkce více proměnných něco takového neplatí.
- 2. Použili jsme výrazu $\lim_{\vec{h}\to\vec{\sigma}}\mu(\vec{h})$. O limitách funkcí více proměnných v bodě jsme vlastně nemluvili, i když by si čtenář jistě snadno sám vymyslel definice, rozšiřující to, co zná z odstavce II.3. Není to však potřeba. Pro naše účely stačí podmínku s limitou brát jako požadavek, aby $\mu(\vec{o})=0$ a μ byla v bodě \vec{o} spojitá.
- 3. Uvědomte si, že "míti totální diferenciál" znamená, že při pevném (x_1, \ldots, x_n) je v dost malém okolí tohoto bodu funkce

$$f(x_1+h_1,\ldots,x_n+h_n)$$

dobře přiblížena lineární funkcí (proměnných h_1,\ldots,h_n vyjadřujících odchylku od bodu x_1,\ldots,x_n)

$$f(x_1,\ldots,x_n)+\sum A_jk_j.$$

Dobře v tom smyslu, že (a v tom je role funkce μ) je chyba podstatně menší než odchylka (h_1, \ldots, h_n) sama.

- 4. Všimněte si, že jsme neřekli co je totální diferenciál. Definujeme vlastnost "míti totální diferenciál".
- 5. Ve vektorovém značení je formuli možno přepsat do tvaru

$$f(\vec{x} + \vec{h}) - f(\vec{x}) = \vec{A} \cdot \vec{h} + ||\vec{h}|| \cdot \mu(\vec{h}),$$

kde první součin napravo je skalární součin vektorů.

 ${f 2.6}\ {
m V\'eta}$: Má-li $f\ v\ bod\ (x_1,\ldots,x_n)\ tot$ ální diferenciál, má tam derivace podle všech proměnných. Platí

$$\frac{\partial f}{\partial x_i}(x_1,\ldots,x_n) = A_j.$$

Důkaz: Třeba pro j=1. Máme

$$\frac{1}{h}(f(x_1+h,x_2,\ldots,x_n)-f(x_1,\ldots,x_n)) =$$

$$=\frac{1}{h}(A_1\cdot h+|h|\mu(h,0,\ldots,0)) = A_1 \pm \mu(h,0,\ldots,0).$$

2.7 Teď přijde, možná, příjemné překvapení. Po odstavci 2.2 má čtenář asi obavy, že se bude těžko ověřovat, zda funkce totální diferenciál má nebo nemá. Platí však

Věta: Má-li f v nějakém bodě (x_1, \ldots, x_n) spojité parciální derivace, má tam totální diferenciál.

Důkaz: Máme

$$f(x_1 + h_1, x_2 + h_2, \dots, x_n + h_n) - f(x_1, \dots, x_n) =$$

$$= f(x_1 + h_1, x_2 + h_2, \dots, x_n + h_n) - f(x_1, x_2 + h_2, \dots, x_n + h_n) +$$

$$+ f(x_1, x_2 + h_2, x_3 + h_3, \dots, x_n + h_n) - f(x_1, x_2, x_3 + h_3, \dots, x_n + h_n) + \dots +$$

$$+f(x_{1},...,x_{n-1},x_{n}+h_{n})-f(x_{1},...,x_{n}) =$$

$$= \frac{\partial f(x_{1}+\vartheta h_{1},x_{2}+h_{2},...,x_{n}+h_{n})}{\partial x_{1}} \cdot h_{1} + \frac{\partial f(x_{1},x_{2}+\vartheta h_{2},x_{3}+h_{3},...,x_{n}+h_{n})}{\partial x_{2}} h_{2} +$$

$$+\cdots + \frac{\partial f(x_{1},...,x_{n-1},x_{n}+\vartheta h_{n})}{\partial x_{n}} \cdot h_{n}$$

pro nějaké $0 < \vartheta_i < 1$ (podle věty o střední hodnotě). Počítejme dále:

$$\cdots = \sum_{j=1}^{n} \frac{\partial f(x_1, \dots, x_n)}{\partial x_j} \cdot h_j +$$

$$+ \sum_{j=1}^{n} \left(\frac{\partial f(x_1, \dots, x_{j-1}, x_j + \vartheta_j h_j, x_{j+1} + h_{j+1}, \dots)}{\partial x_j} - \frac{\partial f(x_1, \dots, x_n)}{\partial x_j} \right) \cdot h_j =$$

$$= \sum_{j=1}^{n} \frac{\partial f(\vec{x})}{\partial x_j} h_j + ||h|| \cdot \sum_{j=1}^{n} \frac{h_j}{||h||} \left(\frac{\partial f(x_1, \dots, x_j + \vartheta_j h_j, \dots)}{\partial x_j} - \frac{\partial f(\vec{x})}{\partial x_j} \right).$$

Vzhledem k tomu, že $\left|\frac{h_j}{||h||}\right| \leq 1$ a že $\frac{\partial f}{\partial x_j}$ jsou spojité, je poslední suma spojitá v bodě $\vec{h} = \vec{o}$ a má tam hodnotu 0. \square

- 2.8 Platí tedy následující implikace: f má spojité parciální derivace $\Rightarrow f$ má totální diferenciál $\Rightarrow f$ má parciální derivace. Ani jednu z těchto implikací nelze obrátit: první proto, že v případě jedné proměnné je existence totálního diferenciálu totéž co existence derivace a ta nemusí být spojitá (viz IV.1.6, IV.7.3), k druhé viz příklady v 2.3.
- 2.9 Zřejmá je následující

Věta: Má-li f v bodě x totální diferenciál, je tam spojitá.

XIII.3 Parciální derivace složených funkcí

3.1 Lemma: Nechť má f totální diferenciál v bodě (x_1^0, \ldots, x_n^0) . Nechť jsou $\varphi_1(t), \ldots, \varphi_n(t)$ reálné funkce jedné proměnné, nechť $\varphi_j(t_0) = x_j^0$ a nechť mají φ_j v bodě t_0 derivace. Definujme

$$F(t) = f(\varphi_1(t), \dots, \varphi_n(t)).$$

Potom má F v bodě t₀ derivaci a platí

 $F'(t) = \sum_{j=1}^{n} \frac{\partial f(x_1^0, \dots, x_n^0)}{\partial x_j} \cdot \varphi_j'(t_0).$

Důkaz: Máme

$$\frac{1}{h} (F(t_0 + h) - F(t_0)) =$$

$$= \frac{1}{h} (f (\varphi_1(t_0 + h), \dots, \varphi_n(t_0 + h)) - f (\varphi_1(t_0), \dots, \varphi_n(t_0))) =$$

$$= \frac{1}{h} (f (\varphi_1(t_0) + (\varphi_1(t_0 + h) - \varphi_1(t_0)), \dots) - f (\varphi_1(t_0), \dots)) =$$

$$= \frac{1}{h} \left(\sum \frac{\partial f(\vec{x^0})}{\partial x_j} \cdot (\varphi_j(t_0 + h) - \varphi_j(t_0)) +$$

$$+ \|(\varphi_1(t_0 + h) - \varphi_1(t_0), \dots)\| \cdot \mu (\varphi_1(t_0 + h) - \varphi_1(t_0), \dots) \right) =$$

$$= \sum \frac{\partial f(\vec{x^0})}{\partial x_j} \cdot \frac{\varphi_j(t_0 + h) - \varphi_j(t_0)}{h} + \frac{\|(\varphi_1(t_0 + h) - \varphi_1(t_0), \dots)\|}{h} \cdot \mu(\dots).$$

Abychom nyní naše tvrzení dokázali, stačí ukázat, že poslední výraz jde k nule pro h jdoucí k nule. Jelikož φ_j mají derivace

- (1) je první součinitel, totiž $\left| \frac{\varphi_j(t_0+h)-\varphi_j(t_0)}{h} \right|$ s vhodným j, omezený pro dost malé h; j v tomto výrazu sice může záviset na h, ale to na věci nic nemění: omezené jsou všechny.
- (2) φ_i jsou spojité v bodě t a tedy

$$\lim_{h\to 0} \mu\left(\varphi_1(t_0+h)-\varphi_1(t_0),\ldots,\varphi_n(t_0+h)-\varphi_n(t_0)\right)=0.$$

Zřejmě součin funkce omezené a funkce konvergující k nule konverguje k nule.

3.2 Düsledek

Nechť má f totální diferenciál v bodě $\vec{x} = (x_1, \dots, x_n) = (\varphi_1(t_1, \dots, t_k), \dots, \varphi_n(t_1, \dots, t_k))$, nechť φ_j mají parciální derivace v bodě $\vec{t} = (t_1, \dots, t_k)$. Potom má $f \circ \vec{\varphi}$ parciální derivace v bodě \vec{t} a platí

$$\frac{\partial}{\partial t_j}(f \circ \vec{\varphi}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \cdot \frac{\partial \varphi_i}{\partial t_j}.$$

3.3 Poznámky

1. K vektorové funkci \vec{f} přiřaďme matici funkcí

$$\partial \vec{f} = \left(\frac{\partial f_i}{\partial x_j}\right)_{i,j}$$

Podle formule z 3.2 máme

$$\partial(\vec{f} \circ \vec{\varphi}) = \left(\sum_{r} \frac{\partial f_{i}}{\partial x_{r}} \cdot \frac{\partial \varphi_{r}}{\partial t_{j}}\right)_{i,j} = \partial \vec{f} \cdot \partial \vec{\varphi},$$

kde tečka ve výrazu napravo znamená násobení matic. To má následující geometrický význam: Řekli jsme si již, že formule o totálním diferenciálu má význam aproximace funkce funkcí lineární. V případě vektorové funkce $\vec{f}:D\to\mathbb{E}_r,D\subseteq\mathbb{E}_n$ tato jednotlivá lineární zobrazení vytvářejí lineární zobrazení $V_n\to V_r$ a matice (*) je jeho matici (vzhledem k "základním" bázím $(1,0,\ldots,0),$ $(0,1,0,\ldots,0),\ldots,$ $(0,\ldots,0,1)$). Formule (**) tedy říká toto:

Složíme-li hladké vektorové funkce \vec{f} a $\vec{\varphi}$, je lineární zobrazení aproximující $\vec{f} \circ \vec{\varphi}$ složením lineárních zobrazení aproximujících \vec{f} a $\vec{\varphi}$. Nyní nám možná připadají formule z tohoto odstavce trochu jasnější.

- 2. Při derivovaní složených funkcí více proměnných je předpoklad, že vnější funkce má totální diferenciál, podstatný. Bez něj formule 3.2 obecně neplatí. Není ovšem divu: Když se pohybujeme ve vnitřních funkcích φ_j po "hlavních směrech" v \mathbb{E}_n , nemusí se hodnoty $\vec{\varphi}$ pohybovat po "hlavních směrech" v \mathbb{E}_n . A nebýt existence totálního diferenciálu, nevíme o pohybu f v ostatních směrech nic
- 3. Je užitečným cvičením dokázat, že má-li f totální diferenciál a funkce $\varphi_1, \ldots, \varphi_n$ též, má totální diferenciál i funkce $f \circ \vec{\varphi}$.
- 4. Pravidla o derivaci součinu a podílu funkcí jsou speciálním případem formule v 3.1: Položme $f(x,y)=x\cdot y$. Potom máme $\frac{\partial f}{\partial x}=y, \ \frac{\partial f}{\partial y}=x$ a tedy

$$(u \cdot v)' = \frac{\partial f(u, v)}{\partial x} \cdot u' + \frac{\partial f(u, v)}{\partial y} \cdot v' = v \cdot u' + u \cdot v'.$$

Položme $f(x,y)=\frac{x}{y}$ Potom máme $\frac{\partial f}{\partial x}=\frac{1}{y}, \ \frac{\partial f}{\partial y}=-\frac{x}{y^2}$ a tedy

$$\left(\frac{u}{v}\right)' = \frac{1}{v} \cdot u' - \frac{u}{v^2}v' = \frac{u'v - uv'}{v^2}.$$

3.4 Jednoduchá aplikace: (Věta o přírůstku funkce pro funkce více proměnných) Nechť $f(x_1, \ldots, x_n)$ je definována pro všechny body tvaru $\vec{a} + t(\vec{b} - \vec{a})$ $(t \in \langle 0, 1 \rangle)$, nechť má totální diferenciál. Potom pro vhodné $\vartheta \in (0, 1)$ platí

$$f(b_1,\ldots,b_n)-f(a_1,\ldots,a_n)=\sum \frac{\partial f(\vec{a}+\vartheta(\vec{b}-\vec{a}))}{\partial x_j}(b_j-a_j).$$

(Skutečně, položme $\varphi_j(t) = a_j + t(b_j - a_j), F = f \circ \vec{\varphi}$. Máme

$$f(b_1,\ldots,b_n)-f(a_1,\ldots,a_n)=F(1)-F(0)=F'(\vartheta)=\sum \frac{\partial f(\ldots)}{\partial x_j}(b_j-a_j),$$

neboť $\varphi'_j(t) = b_j - a_j$.

Vektor $\left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$ (chceme-li, v tomto případě jednořádkové, matice ∂f z 3.3) se někdy nazývá gradientem funkce f a označuje grad f. Formuli nahoře tedy můžeme psát

$$f(\vec{b}) - f(\vec{a}) = (\operatorname{grad} f) \left(\vec{a} + \vartheta(\vec{b} - \vec{a}) \right) \cdot (\vec{b} - \vec{a}).$$

XIII.4 Parciální derivace vyšších řádů

4.1 Podobně jako u obyčejných derivací, má-li funkce f derivaci $\frac{\partial f}{\partial x_j}$ v nějakém oboru D, můžeme se pokusit derivovat takto získanou funkci znovu, třeba podle proměnné x_k , a získat tak funkci

$$\frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_i} \right)$$
.

Proceduru můžeme opakovat a získávat derivace stále vyšších řádů. Derivaci nahoře obvykle označujeme

$$\frac{\partial^2 f}{\partial x_k \partial x_j},$$

a podobně dále píšeme

$$\frac{\partial^3 f}{\partial x_{k_3} \partial x_{k_2} \partial x_{k_1}}, \frac{\partial^r f}{\partial x_{k_r} \partial x_{k_{r-1}} \cdots \partial x_{k_1}}.$$

Opakujeme-li za sebou vícekrát derivaci podle jedné a téže proměnné x, píšeme ve "jmenovateli" ∂x^2 , ∂x^3 a podobně. Tedy např.

$$\frac{\partial^6 f}{\partial x \partial u^3 \partial x^2}$$

je funkce, kterou z f dostaneme tak, že nejprve dvakrát za sebou derivujeme podle x, potom třikrát podle y a konečně ještě jednou podle x. Pozor: Řád parciální derivace je dán počtem derivování celkem, tedy "exponentem v čitateli". Tedy, $\frac{\partial^3 f}{\partial x \partial y \partial z}$ je parciální derivace třetího řádu (přesněji, jedna z parciálních derivací třetího řádu), třebaže jsme podle každé z proměnných x, y, z derivovali jen jednou.

4.2 Věta: Nechť má funkce f(x,y) spojité derivace druhého řádu. Potom na pořadí derivování nezáleží. To jest

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

Důkaz: Zkoumejme funkci

$$F(h) = \frac{f(x+h, y+h) - f(x, y+h) - f(x+h, y) + f(x, y)}{h^2}$$

Položíme-li

$$\varphi_h(y) = f(x+h, y) - f(x, y),$$

 $\psi_k(x) = f(x, y+k) - f(x, y),$

vidíme, že

$$F(h) = \frac{1}{h^2} \left(\varphi_h(y+h) - \varphi_h(y) \right) = \frac{1}{h^2} \left(\psi_h(x+h) - \psi_h(x) \right).$$

Počítejme první z výrazů. Jelikož φ_h má derivaci, totiž

$$\varphi'_h(y) = \frac{\partial f(x+h,y)}{\partial y} - \frac{\partial f(x,y)}{\partial y},$$

máme podle věty o přírůstku funkce pro nějaké $\vartheta_1 \in (0,1)$

$$\begin{split} &\frac{1}{h^2} \left(\varphi_h(y+h) - \varphi_h(y) \right) = \frac{1}{h} \cdot \varphi_h'(y+\vartheta_1 h) = \\ &= \frac{1}{h} \left(\frac{\partial f(x+h,y+\vartheta_1 h)}{\partial y} - \frac{\partial f(x,y+\vartheta_1 h)}{\partial y} \right), \end{split}$$

z čehož opět použitím věty o přírůstku funkce dostaneme

$$\cdots = \frac{\partial}{\partial x} \left(\frac{\partial f(x + \vartheta_2 h, y + \vartheta_1 h)}{\partial y} \right).$$

Podobně druhý výraz upravíme na

$$\frac{1}{h^2} (\psi_h(x+h) - \psi_h(x)) = \frac{1}{h} \cdot \psi_h'(x+\vartheta_3 h) =$$

$$= \frac{1}{h} \left(\frac{\partial f(x+\vartheta_3 h, y+h)}{\partial x} - \frac{\partial f(x+\vartheta_3 h, y)}{\partial x} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f(x+\vartheta_3 h, y+\vartheta_4 h)}{\partial x} \right).$$

Tedy

$$\frac{\partial}{\partial x} \left(\frac{\partial f(x + \vartheta_2 h, y + \vartheta_1 h)}{\partial y} \right) = F(h) = \frac{\partial}{\partial y} \left(\frac{\partial f(x + \vartheta_3 h, y + \vartheta_4 h)}{\partial x} \right).$$

Jelikož $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ i $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ jsou spojité, existuje $\lim_{h \to 0} F(h)$ a je rovna $\frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial x} \right)$.

4.3 Postupným prováděním záměn dostáváme z věty 4.2 snadno

Důsledek: Nechť $f(x_1, ..., x_n)$ má spojité parciální derivace do řádu k. Potom do řádu k závisí hodnoty parciálních derivací jen na tom, kolikrát derivajeme podle které proměnné, a ne na pořadí derivování.

4.4 Za předpokladu z 4.3 se obecná parciální derivace řádu r < k obvykle zapisuje jako

$$\frac{\partial^r f}{\partial x_1^{r_1} \partial x_2^{r_2} \dots \partial x_n^{r_n}},$$

kde $r_1 + r_2 + \cdots + r_n = r$. Hodnota $r_j = 0$ při tom samozřejmě znamená absenci symbolu ∂x_j .

XIV Věty o implicitních funkcích

XIV.1 Nejjednodušší úloha o implicitní funkci

1.1 Buď F funkce dvou proměnných. Budeme hledat funkci f proměnné x takovou, aby platilo

$$F\left(x, f(x)\right) = 0.$$

Jinými slovy, jde o to řešit v y rovnici

$$F(x,y) = 0$$

při čemž výsledné y bude záviset na x.

Je zřejmé, že ani v dost jednoduchých případech nebude takové řešení definováno neomezeně, ani jednoznačně. Vezměme třeba

$$F(x,y) = x^2 + y^2 - 1.$$

Úloze

$$x^2 + y^2 - 1$$

vyhovují funkce $f(x) = \sqrt{1-x^2}$ a funkce $g(x) = -\sqrt{1-x^2}$. A v žádném okolí bodu (x,y) = (1,0) neexistuje funkce, která by rovnici x^2+y^2-1 řešila (viz. obrázek 12). Uvidíme, ale, že v rozumných případech se nikdy nestane nic horšího, než jevy ilustrované tímto případem: V některých víceméně izolovaných bodech řešit rovnici jako funkci v žádném okolí nepůjde, jinak ale vždy v dost malém okénku existuje jednoznačné řešení. Nadto, co se týče hladkosti, má takové řešení stejně dobré vlastnosti jako funkce F.

1.2 VĚTA: Bud'F funkce dvou proměnných se spojitými parciálními derivacemi do řádu $k \geq 1$. $Bud'F(x_0,y_0)=0$ a $\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$. Potom existují čísla $\delta>0$, $\Delta>0$ taková, že ke každému x v intervalu $(x_0-\delta,x_0+\delta)$ existuje v intervalu $(y_0-\Delta,y_0+\Delta)$ právě jedno y takové, že F(x,y)=0. Označíme-li toto y jako f(x), má získaná funkce f spojité derivace do řádu k.

Důkaz:

I Funkce f: Sledujte obrázek. Nechť třeba $\frac{\partial F}{\partial y}(x_0, y_0) > 0$. Vzhledem ke spojitosti existují $\delta_1, \Delta > 0$ taková, že v obdélníku $\langle x_0 - \delta_1, x_0 + \delta_1 \rangle \times \langle y_0 - \Delta, y_0 + \Delta \rangle$ je $\frac{\partial F}{\partial y}(x, y)$ stále kladná. Vzhledem ke kompaktnosti tohoto obdélníku (XII.5.6,XII.5.9) je na tomto obdélníku, pro vhodné a > 0 a nějaké další číslo A

(1)
$$\frac{\partial F}{\partial y}(x,y) > a, \quad \left| \frac{\partial F}{\partial x}(x,y) \right| < A.$$

Vezměme funkci $\varphi(y) = F(x_0, y)$. Ta má kladnou derivaci a tedy roste na intervalu $\langle y_0 - \Delta, y_0 + \Delta \rangle$. Jelikož $\varphi(y_0) = 0$, je $F(x_0, y_0 - \Delta) = \varphi(y_0 - \Delta) < 0$ a $F(x_0, y_0 + \Delta) > 0$. Jelikož funkce F je spojitá (má spojité parciální derivace a tedy i totální diferenciál — XIII.2.6, XIII.2.9), existuje $\delta > 0$ takové, že $F(x, y_0 - \Delta) < 0$ a $F(x, y_0 + \Delta) > 0$ pro všechna $x \in (x_0 - \delta, x_0 + \delta)$. Pro taková x položme $\varphi_x(y) = F(x, y)$. Máme vždy $\varphi_x'(y) > 0$ na celém $\langle y_0 - \Delta, y_0 + \Delta$ takže je tam každá z těchto funkcí rostoucí a ovšem spojitá. Jelikož $\varphi_x(y_0 - \Delta) < 0 < \varphi(y_0 + \Delta)$, nabývá $F(x, y) = \varphi_x(y)$ v intervalu $(y_0 - \Delta, y_0 + \Delta)$ nuly v právě jednom bodě y.

II První derivace funkce f: Máme (podle XIII.3.4)

$$0 = F(x+h, f(x+h)) - F(x, f(x)) =$$

$$= \frac{\partial F(x+\vartheta h, f(x)+\vartheta (f(x+h)-f(x)))}{\partial x} \cdot h +$$

$$+ \frac{\partial F(x+\vartheta h, f(x)+\vartheta (f(x+h)-f(x)))}{\partial y} \cdot (f(x+h)-f(x))$$

Obr. 12:

a tedy

(2)
$$f(x+h) - f(x) = -h \cdot \frac{\frac{\partial F(\cdots)}{\partial x}}{\frac{\partial F(\cdots)}{\partial y}}.$$

Podle (1) tedy $|f(x+h) - f(x)| < |h| \cdot \frac{A}{a}$ a f je tedy spojité v bodě x. Vrátíme se ještě jednou k formuli (2) a dostaneme

$$\frac{f(x+h) - f(x)}{h} =$$

$$= -\left(\frac{\partial F(x+\vartheta h, f(x) + \vartheta(f(x+h) - f(x)))}{\partial y}\right)^{-1} \cdot \frac{\partial F(\dots, \dots)}{\partial x}.$$

Nyní již ale víme, že f je spojitá, a spojitost $\frac{\partial F}{\partial x}$ a $\frac{\partial F}{\partial y}$ byla v předpokladech. Tedy má pravá strana limitu pro $h \to 0$ a dostáváme

$$f'(x) = -\left(\frac{\partial F(x,y)}{\partial y}\right)^{-1} \cdot \frac{\partial F(x,y)}{\partial x}.$$

III **Případné další derivace** : Tvrzení dokážeme indukcí podle k. Budeme dokazovat tvrzení o trochu silnější, totiž, že $f^{(k)}(x)$ je součet součinů výrazů tvaru

(3)
$$f^{(r)}(x) \ (r \le k - 1), \left(\frac{\partial F(x, f(x))}{\partial y}\right)^{-k}, \frac{\partial^r F(x, f(x))}{\partial^i x \partial^j y} \ (r \le k).$$

Vzhledem k tomu, že součty a součiny takových součtů součinů jsou opět téhož tvaru, a vzhledem k pravidlu o derivaci součinu stačí dokázat, že derivace výrazů typu (3) jsou takové součty součinů, ovšem s k+1 místo s k. U prvního je to triviální, u druhého a třetího užijeme pravidla XIII.3.2. Máme

$$\left(\left(\frac{\partial F\left(x,f(x)\right)}{\partial y}\right)^{-k}\right)' = -k \cdot \left(\frac{\partial F\left(x,f(x)\right)}{\partial y}\right)^{-(k+1)} \cdot \left(\frac{\partial^2 F}{\partial y \partial x} + \frac{\partial^2 F}{\partial y^2} f'(x)\right)$$

a podobně

$$\left(\frac{\partial^{r} F\left(x,f(x)\right)}{\partial^{i} x \partial^{j} y}\right)' = \frac{\partial^{r+1} F\left(x,f(x)\right)}{\partial^{i+1} x \partial^{j} y} + \frac{\partial^{r+1} F\left(x,f(x)\right)}{\partial^{i} x \partial^{j+1} y} \cdot f'(x).$$

1.3 Poznámky:

- 1 Všimněte si toho,že předpoklad existence derivací aspoň prvního řádu byl ve větě podstatný již kvůli existenci funkce f.
- 2 To, že jsme se v důkazu něco dozvěděli o tvaru derivací funkce f hrálo (a ještě bude hrát) technickou roli pro důkaz existence derivace. Jakmile ale víme, že f má derivace do nějakého řádu, zjistíme jejich hodnoty snadno postupným derivováním funkce F(x, f(x)), identicky rovné nule. Tak dostáváme

(*)
$$0 = F(x, f(x))' = \frac{\partial F}{\partial x} \cdot 1 + \frac{\partial F}{\partial y} \cdot f'$$

a tedy

$$f'(x) = -\left(\frac{\partial F}{\partial y}\right)^{-1} \cdot \frac{\partial F}{\partial x};$$

chceme-li pak třeba znát hodnotu druhé derivace, derivujeme (*) (opět funkci identicky rovnou nule) a dostaneme

$$0 = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial x \partial y} \cdot f'(x) + \left(\frac{\partial^2 F}{\partial y \partial x} + \frac{\partial^2 F}{\partial y^2} \cdot f'(x)\right) \cdot f'(x) + \frac{\partial F}{\partial y} f''(x).$$

f'(x) již známe, dosadíme jeho hodnotu a f''(x) již snadno vypočteme. A tak dále.

Situace je podobná situaci ve větě IV.2.3 (která je speciálním případem věty 1.2 — uvědomte si to). Tam také šlo především o existenci derivace inverzní funkce, její hodnotu by bylo možno, kdybychom o existenci odjinud předem věděli, snadno zjistit z pravidla o derivaci složené funkce.

XIV.2 Velmi snadné zobecnění

2.1 Věta: $Bud'F(x_1,...,x_n,y)$ funkce n+1 proměnných se spojitými parciálními derivacemi do řádu k>1. Bud'

$$F(x_1^0, \ldots, x_n^0, y_0) = 0 \ a \ \frac{\partial F}{\partial y}(x_1^0, \ldots, x_n^0, y_0) \neq 0.$$

Potom existují čísla $\delta > 0$ a $\Delta > 0$ taková, že ke každému vektoru (x_1, \ldots, x_n) takovému, že $|x_i - x_i^0| < \delta$ pro všechna i, existuje v intervalu $(y_0 - \Delta, y_0 + \Delta)$ právě jedno v takové, že $F(x_1, \ldots, x_n, y) = 0$. Označímeli toto v jako $f(x_1, \ldots, x_n)$, má získaná funkce f spojité parciální derivace do řádu k.

Důkaz: Bude v první části téměř doslovným opakováním důkazu věty 1.2, v druhé pak její téměř bezprostřední aplikací.

- I. Jelikož $\frac{\partial F}{\partial y}(x_1^0,\dots,x_n^0,y_0)\neq 0$ (dejme tomu, >0), existují $\delta_1>0$, $\Delta>0$ tak, že na množině $(x_1^0-\delta,x_1^0+\delta)\times\dots\times(x_n^0-\delta,x_n^0+\delta)\times(y_0-\Delta,y_0+\Delta)$ je $\frac{\partial F}{\partial y}(\vec{x},y)$ stále kladná. Vezměme funkci $\varphi(y)=F(\vec{x^0},y)$. Ta má kladnou derivaci a roste tedy na intervalu $(y_0-\Delta,y_0+\Delta)$. Máme $\varphi(y_0)=0$ a tedy je $F(\vec{x^0},y_0-\Delta)=\varphi(y_0-\Delta)<0< F(\vec{x^0},y+\Delta)$. Jelikož funkce F je spojitá, existuje $\delta,0<\delta<\delta$ 1 takové, že $F(\vec{x},y_0-\Delta)<0< F(\vec{x},y_0+\Delta)$ pro všechna $\vec{x}\in(x_1^0-\delta,x_1^0+\delta)\times\dots\times(x_n^0-\delta,x_n^0+\delta)$. Pro taková \vec{x} položme $\varphi_{\vec{x}}(y)=F(\vec{x},y)$. Máme vždy $\varphi_{\vec{x}}'(y)>0$ na celém intervalu $(y_0-\delta,y_0+\delta)$ a tedy každá z těchto funkcí roste. Jelikož $\varphi_{\vec{x}}(y_0-\Delta)<0<\varphi_{\vec{x}}(y_0+\Delta)$, nabývá $F(\vec{x},y)=\varphi_{\vec{x}}(y)$ v intervalu $(y_0-\Delta,y_0+\Delta)$ hodnoty nula v právě jednom bodě y.
- II. Dívejme se na parciální derivace jako na obyčejné derivace při upevnění všech proměnných až na jednu, a na řešení, které má být derivováno jako na řešení úlohy $G(x,y) = F(x_1,\ldots,x_{j-1},x,x_{j+1},\ldots,x_n,y) = 0$. Podle částí II. a III. důkazu věty 1.2 víme, že jeho derivace jsou získány pomocí aritmetických operací z parciálních derivací funkce F a jsou tedy spojité. \square

XIV.3 Trochu složitější — a konečné — zobecnění

3.1 Nejprve si probereme speciální případ, který nám snad pomůže ujasnit, o co v obecném případě jde. Řešme úlohu

(1)
$$F_1(x, y_1, y_2) = 0 F_2(x, y_1, y_2) = 0$$

v okolí nějakého bodu (x^0, y_1^0, y_2^0) , v němž obě F_i nabývají hodnoty 0. Nechť je dejme tomu

$$\frac{\partial F_2}{\partial y_0}(x^0, y_1^0, y_2^0) \neq 0.$$

Je-li tomu tak, můžeme vyjádřit v okolí bodu (x^0, y_1^0, y_2^0) řešení y_2 jako $\psi(x, y_1)$. Tím převádíme úlohu (1) na řešení rovnice

$$G(x, y_1) = F_1(x, y_1, \psi(x, y_1)) = 0.$$

Abychom směli užít větu 1.2, bude potřeba, aby

$$\frac{\partial G}{\partial y_1}(x^0, y_1^0) \neq 0.$$

Spočtěme tuto derivaci. Podle XIII.3.2 máme

(2)
$$\frac{\partial G}{\partial y_1} = \frac{\partial F_1}{\partial y_1} + \frac{\partial F_1}{\partial y_2} \cdot \frac{\partial \psi}{\partial y_1}.$$

Máme

$$0 \equiv F_2(x, y_1, \psi(x, y_1))$$

a tedy derivováním podle y_1 dostáváme

$$0 = \frac{\partial F_2}{\partial y_1} + \frac{\partial F_2}{\partial y_2} \cdot \frac{\partial \psi}{\partial y_1},$$

takže $\frac{\partial \psi}{\partial y_1}=-\left(\frac{\partial F_2}{\partial y_2}\right)^{-1}\cdot\frac{\partial F_2}{\partial y_1}$ a po dosazení do (2) dostáváme

$$\frac{\partial G_2}{\partial y_1} = -\left(\frac{\partial F_2}{\partial y_2}\right)^{-1} \cdot \left(\frac{\partial F_1}{\partial y_1} \cdot \frac{\partial F_2}{\partial y_2} - \frac{\partial F_1}{\partial y_2} \cdot \frac{\partial F_2}{\partial y_1}\right).$$

Výraz v závorce by vám měl něco připomínat. Ano, je to determinant

(3)
$$\frac{\left| \frac{\partial F_1}{\partial y_1}, \frac{\partial F_1}{\partial y_2} \right|}{\left| \frac{\partial F_2}{\partial y_1}, \frac{\partial F_2}{\partial y_2} \right|}$$

Podmínka řešitelnosti podle 1.2 je tedy aby determinant (3) byl v (x^0, y_1^0, y_2^0) různý od nuly. V tuto chvíli mi pozornější čtenář asi připomene, že kromě toho jsme na začátku požadovali nenulovost hodnoty $\frac{\partial F_2}{\partial y_2}$. Ale je-li tato nulová, nemůže být v případě nenulovosti determinantu (3) nulová hodnota $\frac{\partial F_1}{y_2}$ a můžeme řešení úlohy (1) začít řešením rovnice $F_1(x, y_1, y_2) = 0$ v y_2 a to pak dosadit do F_2 . Nenulovost determinantu (3) tedy stačí.

3.2 Mějme m funkcí

$$F_i(x_1,\ldots,x_n,y_1,\ldots,y_m), i = 1,\ldots,m,$$

derivovatelných podle y_1, \ldots, y_m . Jacobiho determinantem (krátce Jacobiánem) této soustavy rozumíme determinant

$$\frac{D(\vec{F})}{D(\vec{y})} = \frac{D(F_1, \dots, F_m)}{D(y_1, \dots, y_m)} = \det\left(\frac{\partial F_i}{\partial y_j}\right)_{i,j}$$

3.3 VĚTA: Budte

$$F_i(x_1, \ldots, x_n, y_1, \ldots, y_m), i = 1, \ldots, m,$$

funkce n + m proměnných se spojitými parciálními derivacemi do řádu <math>k. Buď

$$F_i(x_1^0,\ldots,x_n^0,y_1^0,\ldots,y_m^0)=0, i=1,\ldots,m$$

a bud

$$\frac{D(F_1, \dots, F_m)}{D(y_1, \dots, y_m)}(x_1^0, \dots, x_n^0, y_1^0, \dots, y_m^0) \neq 0.$$

Potom existují čísla $\delta > 0$, $\Delta > 0$ taková, že ke každému vektoru $\vec{x} = (x_1, \dots, x_n) \in (x_1^0 - \delta, x_1^0 + \delta) \times \dots \times (x_n^0 - \delta, x_n + \delta)$ existuje v intervalu $(y_1^0 - \Delta, y_1^0 + \Delta) \times \dots \times (y_m^0 - \Delta, y_m^0 + \Delta)$ právě jeden vektor $\vec{y} = (y_1, \dots, y_m)$ takový, že $F_i(\vec{x}, \vec{y}) = 0$ pro všechna $i = 1, \dots, m$.

Označíme-li takto získaná y_i jako $f_i(x_1, \ldots, x_n)$, mají funkce f_i spojité parciální derivace do řádu k. Abychom si zvykli na vektorové funkce, ale také proto, že se v nich věta snadno pamatuje, přepíšeme si větu ve vektorové formě:

 $Bud' \ \vec{F} : U \times V \to \mathbb{E}_m, \ kde \ U, \ V \ jsou \ otevřené \ v \ \mathbb{E}_m \ resp. \ \mathbb{E}_n, \ zobrazení \ se \ spojitými \ parciálními \ derivacemi \ do \ řádu \ k \ge 1. \ Bud' \ \vec{F}(\vec{x^0}, \vec{y^0}) = 0 \ a \ \frac{D(\vec{F})}{D(\vec{y})}(\vec{x^0}, \vec{y^0}) \ne 0. \ Potom \ existují \ čísla \ \delta > 0, \ \Delta > 0 \ taková, \ že \ ke \ každému \ \vec{x} \ v \ intervalu \ \prod_i (x_i^0 - \delta, x_i^0 + \delta) \ existuje \ v \ intervalu \ \prod_i (y_i^0 - \Delta, y_i^0 + \Delta) \ právě \ jedno \ \vec{y} \ takové, \ že \ \vec{F}(\vec{x}, \vec{y}) = 0. \ Označíme-li \ toto \ \vec{y} \ jako \ \vec{f}(\vec{x}), \ má \ získaná \ vektorová \ funkce \ \vec{f} \ spojité \ parciální \ derivace \ do \ řádu \ k.$

Důkaz: Indukcí podle m. Pro m=1 platí podle věty 2.1. Nechť platí pro m, zkoumejme soustavu

$$F_i(x_1,\ldots,x_n,y_1,\ldots,y_{m+1})=0, i=1,\ldots,m+1$$

splňující předpoklady věty. Je-li determinant nenulový, nemůže mít sloupec složený ze samých nul. Proto po případném přečíslování funkcí F_i můžeme předpokládat, že $\frac{\partial F_{m+1}}{\partial y_{m+1}}(\vec{x^0},\vec{y^0}) \neq 0$ a tedy podle 2.1 existují $\delta_1 > 0$ a $\Delta_1 > 0$ tak, že pro $(x_1,\ldots,x_n,y_1,\ldots,y_m)$ splňující $|x_i - x_i^0| < \delta_1$, $|y_i - y_i^0| < \delta_1$ existuje právě jedno $y_{m+1} = \psi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ splňující rovnici

$$F_{m+1}(x_1,\ldots,x_n,y_1,\ldots,y_m,y_{m+1})=0$$

Toto ψ má spojité parciální derivace nejméně do řádu k. Jelikož

$$G(\vec{x}, y_1, \dots, y_m) = F_{m+1}(x_1, \dots, x_n, y_1, \dots, y_m, \psi(x_1, \dots, x_n, y_1, \dots, y_m))$$

je konstantní funkce, je podle XIII.3.2

(1)
$$0 = \frac{\partial G}{\partial y_i} = \frac{\partial F_{m+1}}{\partial y_i} + \frac{\partial F_{m+1}}{\partial y_{m+1}} \cdot \frac{\partial \psi}{x_i}.$$

Položme, pro $i = 1, \ldots, m$, (2)

 $G_i(x_1,\ldots,x_n,$

$$G_i(x_1,\ldots,x_n,y_1,\ldots,y_m) = F_i(x_1,\ldots,x_n,y_1,\ldots,y_m,\psi(x_1,\ldots,x_n,y_1,\ldots,y_m))$$

V determinantu $\frac{D(\vec{F})}{D(\vec{y})}$

$$\begin{bmatrix} \frac{\partial F_1}{\partial y_1} &, \frac{\partial F_1}{\partial y_2} &, \dots, \frac{\partial F_1}{\partial y_m} &, \frac{\partial F_1}{\partial y_{m+1}} \\ \frac{\partial F_2}{\partial y_1} &, \frac{\partial F_2}{\partial y_2} &, \dots, \frac{\partial F_2}{\partial y_m} &, \frac{\partial F_2}{\partial y_{m+1}} \\ \dots & \dots & \dots & \dots \\ \frac{\partial F_m}{\partial y_1} &, \frac{\partial F_m}{\partial y_2} &, \dots, \frac{\partial F_m}{\partial y_m} &, \frac{\partial F_m}{\partial y_{m+1}} \\ \frac{\partial F_{m+1}}{\partial y_1} &, \frac{\partial F_{m+1}}{\partial y_2} &, \dots, \frac{\partial F_{m+1}}{\partial y_m} &, \frac{\partial F_{m+1}}{\partial y_{m+1}} \end{bmatrix}$$

přičtěme k *i*-tému sloupci $(i=1,\ldots,m)$ $\frac{\partial \psi}{\partial u_i}$ -násobek sloupce posledního. Z (2) dostáváme

(3)
$$\frac{\partial G_j}{\partial y_i} = \frac{\partial F_j}{\partial y_i} + \frac{\partial F_j}{\partial y_{m+1}} \cdot \frac{\partial \psi}{\partial x_i},$$

takže podle (1) a (3) dostáváme náš determinant do tvaru

$$\begin{vmatrix} \frac{\partial G_1}{\partial y_1}, \dots, \frac{\partial G_1}{\partial y_m}, \frac{\partial F_1}{\partial y_{m+1}} \\ \frac{\partial G_m'}{\partial y_1}, \dots, \frac{\partial G_m'}{\partial y_m}, \frac{\partial F_m}{\partial y_{m+1}} \\ 0, \dots, 0, \frac{\partial G_m'}{\partial y_{m+1}} \end{vmatrix} = \frac{D(G_1, \dots, G_m)}{D(y_1, \dots, y_m)} \cdot \frac{\partial F_{m+1}}{\partial y_{m+1}}$$

(připomeňte si X.2.6). Tedy je v $(x_1^0,\ldots,x_n^0,y_1^0,\ldots,y_m^0)$ determinant $\frac{D(G_1,\ldots,G_m)}{D(y_1,\ldots,y_m)}$ nenulový a podle indukčního předpokladu existují $\delta_2>0,\ \Delta_2>0$ taková, že pro $|x_i-x_i^0|<\delta_2$ existuje vždy právě jeden bod (y_1,\ldots,y_m) tak, že $|y_i-y_i^0|<\Delta_2$ a $G_i(x_1,\ldots,x_n,y_1,\ldots,y_m)=0$. Označíme-li $y_i=f_i(x_1,\ldots,x_n)$, má f_i dostatek spojitých derivací, a když konečně ještě položíme

$$f_{m+1}(x_1,\ldots,x_n) = \psi(x_1,\ldots,x_n,f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)),$$

vidíme, že f_1, \ldots, f_{m+1} řeší původní úlohu a že mají dostatečně mnoho spojitých derivací.

Ale pozor: S důkazem ještě nejsme u konce. Jak je to vlastně s jednoznačností? Podle 2.1 a indukčního předpokladu jsme měli jednoznačné ψ v jedné úloze a jednoznačné f_i v jiné úloze. Ani jedna z nich vlastně nebyla totožná s naší původní úlohou. A co budou vlastně ta čísla $\delta>0,\ \Delta>0,$ o nichž se v tvrzení mluví?

Zvolme $\Delta > 0$ tak, aby bylo menší nebo rovno δ_1 , Δ_1 i Δ_2 , a $\delta > 0$ menší nebo rovno δ_1 i δ_2 a navíc takové, aby pro $|x_i - x_i^0| < \delta$ bylo $\left| f_i(\vec{x}) - f_i(\vec{x^0}) \right| < \Delta$ (to poslední proto, abychom v daném Δ -intervalu měli pro $|x_i - x_i^0| < \delta$ alespoň jedno řešení). Buď nyní

(4)
$$F_i(x_1, \dots, x_n, y_1, \dots, y_{m+1}) = 0, |x_i - x_i^0| < \delta, |y_i - y_i^0| < \Delta.$$

Je třeba dokázat, že potom je nutně $y_i = f_i(x_1,\ldots,x_n)$. Jelikož $|x_i-x_i^0| < \delta \le \delta_1, |y_i-y_i^0| < \Delta \le \delta_1$ a $|y_{m+1}-y_{m+1}^0| < \Delta \le \Delta_1$, je nutně $y_{m+1}=\psi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ a tedy z (4) plyne, že

$$G_i(x_1,\ldots,x_n,y_1,\ldots,y_m)=0.$$

Jelikož $|x_i - x_i^0| < \delta \le \delta_2$ a $|y_i - y_i^0| < \Delta \le \Delta_2$, je $y_i = f_i(x_1, \dots, x_n)$. \square

3.4 Poznámky:

- 1. Požadavek nenulovosti Jacobiho determinantu není vlastně tak úplné překvapení. Připomeňme si, že výrazy z totálních diferenciálů dobře přibližují funkce F_i a že tedy v dostatečně malém okolí bodu je úloha $F(\vec{x}, \vec{y}) = 0$ téměř jako soustava lineárních rovnic. A Jacobiho determinant je právě příslušný determinant k této aproximující soustavě, zaručuje tedy jednoznačnost řešení aproximující soustavy.
- 2. Věta nám kromě jiného umožňuje hledat pomocí obyčejných lineárních rovnic aproximace funkcí, které řeší soustavu

(5)
$$F_i(x_1,\ldots,x_n,f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))=0, i=1,\ldots,m;$$

přesněji, můžeme zjišťovat hodnoty jejich parciálních derivací tak dlouho, jak to míra hladkosti funkcí dovolí. Takové lineární soustavy rovnic totiž získáme opakovaným derivováním identicky nulové funkce z (5).

Příklad: Podívejme se na úlohu

$$F_1(x, f_1(x), f_2(x)) = 0$$

 $F_2(x, f_1(x), f_2(x)) = 0.$

Derivováním podle x dává

(5)
$$\frac{\partial F_1}{\partial x} + \frac{\partial F_1}{\partial y_1} \cdot f_1' + \frac{\partial F_1}{\partial y_2} \cdot f_2' = 0$$
$$\frac{\partial F_2}{\partial x} + \frac{\partial F_2}{\partial y_1} \cdot f_1' + \frac{\partial F_2}{\partial y_2} \cdot f_2' = 0$$

Po dosazení hodnot x_0 , $f_1(x_0)$, $f_2(x_0)$ dostáváme lineární soustavu pro $f'_1(x_0)$, $f'_2(x_0)$. Řešit jistě jde, protože její matice je regulární: má nenulový determinant (je to ten Jacobián, jehož nenulovost se předpokládá).

Derivujme dále identicky nulové funkce z (5). Dostáváme

$$\frac{\partial^2 F_i}{\partial x^2} + \frac{\partial^2 F_i}{\partial x \partial y_1} f_1' + \frac{\partial^2 F_i}{\partial x \partial y_2} f_2' + \left(\frac{\partial^2 F_i}{\partial x \partial y_1} + \frac{\partial^2 F_i}{\partial y_1^2} \cdot f_1' + \frac{\partial^2 F_i}{\partial y_1 \partial y_2} f_2' \right) \cdot f_1' +
+ \frac{\partial F_i}{\partial y_1} \cdot f_1'' + \left(\frac{\partial^2 F_i}{\partial x \partial y_2} + \frac{\partial^2 F_i}{\partial y_1 \partial y_2} f_1' + \frac{\partial^2 F_i}{\partial y_2^2} \cdot f_2' \right) \cdot f_2'' = 0$$

Po dosazení $x_0, f_1(x_0), f_2(x_0), f'_1(x_0), f'_2(x_0)$ dostáváme

$$\frac{\partial F_1}{\partial y_1} f_1'' + \frac{\partial F_1}{\partial y_2} \cdot f_2'' = b_1,$$

$$\frac{\partial F_2}{\partial y_1} f_1'' + \frac{\partial F_2}{\partial y_2} \cdot f_2'' = b_2$$

s již známou pravou stranou a opět všudypřítomným Jacobiánem na levé straně. Tak můžeme postupovat dále, dokud mají F_i hladké derivace.

XIV.4 Vázané extrémy

4.1 Z lemmatu IV.4.1 dostáváme okamžitě

Důsledek: Má-li $f(x_1, \ldots, x_n)$ ve vnitřním bodě (a_1, \ldots, a_n) svého definičního oboru lokální extrém, a má-li v něm parciální derivace, platí

$$\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n)=0, \ i=1,\ldots,n.$$

Tohoto tvrzení můžeme užívat pro hledání extrémů podobně jako v jednorozměrném případě. Ale situace je přece jen trochu odlišná. Připomeňme si, že v typické úloze na extrém funkce f(x) na intervalu

 $\langle a,b\rangle$ bylo nutno probrat ještě krajní body. Ty byly dva, takže to nepůsobilo těžkosti. Chceme-li však najít extrém na vícerozměrném oboru, je krajních bodů obvykle nekonečně mnoho a jeden po druhém je neprobereme. Dejme tomu, že bychom chtěli najít extrémy funkce f(x,y) na jednotkovém kruhu

$$x^2 + y^2 < 1$$

Po nalezení vnitřních kandidátů zůstává otevřena úloha najít extrémy na krajní kružnici, t.j., extrém funkce f(x, y) za předpokladu, že $x^2 + y^2 = 1$.

Často také úloha na extrém funkce $f(x_1, \ldots, x_n)$ je již od začátku omezena nějakými podmínkami typu $g_i(x_1, \ldots, x_n) = C_i$ (C_i konstanty) — viz příklad 4.4 dále. V takových případech nám může pomoci

4.2 Věta o vázaných extrémech) Nechť f, g_1, \ldots, g_k mají spojité parciální derivace, nechť má matice

$$\begin{pmatrix} \frac{\partial g_1}{\partial x_1}, \dots, \frac{\partial g_1}{\partial x_n} \\ \vdots, & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1}, \dots, \frac{\partial g_k}{\partial x_n} \end{pmatrix}$$

ve zkoumaném oboru vždy maximální stupeň k. Nechť funkce $f(x_1, \ldots, x_n)$ nabývá v bodě (a_1, \ldots, a_n) lokálního extrému vzhledem k množině dané podmínkami

$$g_i(x_1, ..., x_n) = C_i, i = 1, ..., k.$$

Potom existují čísla $\lambda_1, \ldots, \lambda_k$, taková, že pro všechna $i = 1, \ldots, n$ platí

$$\frac{\partial f}{\partial x_i}(\vec{a}) + \sum_{i=1}^n \lambda_j \cdot \frac{\partial g_j}{\partial x_i}(\vec{a}) = 0 (i = 1, \dots, n)$$

(ve značení z XIII.3.4: $\operatorname{grad}(f+\sum_i g_j)(\vec{a})=0$).

Pozorování: Na první pohled se může zdát, že jsme si moc nepomohli: Objevují se nové neznámé λ_j . Ale všimněte si, že pro λ_j dostáváme přeurčenou soustavu rovnic, je zde víc rovnic než neznámých. Jde právě o to, že přesto řešení má.

Důkaz: Nechť je v bodě \vec{a} třeba

$$\begin{pmatrix} \frac{\partial g_1}{\partial x_1}, \dots, \frac{\partial g_1}{\partial x_n} \\ \vdots, & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1}, \dots, \frac{\partial g_k}{\partial x_n} \end{pmatrix}$$

regulární (podle věty VIII.2.3) musí některých k sloupců tvořit nezávislou soustavu. Potom podle 3.3 máme v nějakém okolí bodu (a_1, \ldots, a_n) jednoznačná a hladká řešení $\varphi_i(x_{k+1}, \ldots, x_n)$ úlohy

$$q_i(\varphi_1(x_{k+1},\ldots,x_n),\ldots,\varphi_k(x_{k+1},\ldots,x_n),x_{k+1},\ldots,x_n)-C_i=0,$$

a extrém funkce $f(x_1, \ldots, x_n)$ za daných podmínek je extrém funkce

$$F(x_{k+1},...,x_n) = f(\varphi_1(x_{k+1},...,x_n),...,\varphi_k(x_{k+1},...,x_n),x_{k+1},...,x_n)$$

a tato funkce má v bodě (a_{k+1}, \ldots, a_n) derivace. Musí tedy platit

$$\frac{\partial F}{\partial x_i}(a_{k+1},\dots,a_n) = 0, \ i = k+1,\dots,n,$$

a tedy, podle XIII.3.2 máme

(1)
$$\sum_{r=1}^{k} \frac{\partial f(\vec{a})}{\partial x_r} \cdot \varphi'_r(a_{k+1}, \dots, a_n) + \frac{\partial f(\vec{a})}{\partial x_i} = 0, \ i = k+1, \dots, n.$$

Derivováním konstantních funkcí $g_j\left(\varphi_1(\ldots),\ldots,\varphi_k(\ldots),\ldots\right)$ dostáváme pro $j=1,\ldots,k$

(2)
$$\sum_{r=1}^{k} \frac{\partial g_j(\vec{a})}{\partial x_r} \cdot \varphi'_r(a_{k+1}, \dots, a_n) + \frac{\partial g_j(\vec{a})}{\partial x_i} = 0, \ i = k+1, \dots, n.$$

Určeme nyní λ_j jako řešení soustavy

$$\frac{\partial f}{\partial x_i}(\vec{a}) + \sum_{j=1}^k \lambda_j \frac{\partial g_j}{\partial x_i}(\vec{a}), \ i = 1, \dots, k.$$

Pozor: Zde jsme vzali jen k z oněch n rovnic, a to tak, že matice soustavy je regulární. Takže to jakási λ_1 , ..., λ_k skutečně určuje. Půjde o to zjistit, zda takto určená λ_j vyhovují také ostatním n-k rovnicím. Ale je tomu tak: Pomocí (1) a (2) dostáváme pro i > k:

$$\frac{\partial f}{\partial x_i}(\vec{a}) + \sum_{j=1}^k \lambda_j \frac{\partial g_j}{\partial x_i}(\vec{a}) = -\sum_{r=1}^k \frac{\partial f(\vec{a})}{\partial x_r} \cdot \varphi'_r(\ldots) - \sum_{j=1}^k \lambda_j \sum_{r=1}^k \frac{\partial g_j(\vec{a})}{\partial x_r} \cdot \varphi'_r(\ldots) =$$

$$= -\sum_{r=1}^n \left(\frac{\partial f(\vec{a})}{\partial x_r} + \sum_{j=1}^k \lambda_j \frac{\partial g_j(\vec{a})}{\partial x_r} \right) \cdot \varphi'_r(\ldots) = -\sum_{j=1}^n 0 \cdot \varphi'_r(\ldots) = 0.$$

4.3 Příklad: Zjistíme extrémy funkce f(x,y)=x+2y+1 na jednotkovém kruhu $x^2+y^2\leq 1$. Jelikož $\frac{\partial f}{\partial x}=1,\,\frac{\partial f}{\partial y}=2$, uvnitř kruhu žádné extrémy nejsou. Zbývá okraj, tedy podmínka

$$q(x,y) = x^2 + y^2 = 1.$$

Máme

$$\frac{\partial g}{\partial x}=2x,\quad \frac{\partial g}{\partial y}=2y.$$

V extrémním bodě tedy musí být pro nějaké λ

$$1 + 2\lambda x = 0$$
 a $2 + 2\lambda y = 0$.

Odtud y = 2x a po dosazení do podmínky $x^2 + y^2 = 1$,

$$x^{2} + 4x^{2} = 5x^{2} = 1$$
, tedy $x = \pm \frac{1}{\sqrt{5}}$.

Extrémů se nabývá v bodech $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ a $\left(\frac{-1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)$.

4.4 Příklad Zjistíme, které kvádry mají při daném objemu nejmenší povrch. Povrch kvádru o stranách x_1, \ldots, x_n je dán vzorcem

$$P(x_1,\ldots,x_n)=2x_1\cdots x_n\left(\frac{1}{x_1}+\cdots+\frac{1}{x_n}\right),\,$$

jeho objem pak vzorcem

$$V(x_1,\ldots,x_n)=x_1\cdots x_n.$$

Máme

$$\frac{\partial V}{\partial x_i} = \frac{1}{x_i} \cdot x_1 \cdots x_n,$$

$$\frac{\partial P}{\partial x_i} = \frac{2}{x_i} (x_1 \cdots x_n) \left(\frac{1}{x_i} + \cdots + \frac{1}{x_n} \right) - 2x_1 \cdots x_n \cdot \frac{1}{x_n^2}.$$

Označme $a_i = \frac{1}{x_i}$. Rovnice z 4.2 dají, po vydělení $x_1 \cdots x_n$,

$$2a_i(a_1 + \dots + a_n) - 2a_i^2 + \lambda a_i = 0.$$

Označíme-li ještě $s = a_1 + \cdots + a_n$, dostáváme

$$2a_i(s-a_i) + \lambda a_i = 0.$$

tedy $s-a_i=-\frac{\lambda}{2}$. Všechna a_i (a tedy všechna x_i) jsou tedy stejná a zjišťujeme, že extrém se nabývá v krychli.

XIV.5 Regulární zobrazení

5.1 Buď U otevřená množina v \mathbb{E}_n . Zobrazení $\vec{f}:U\to\mathbb{E}_n$ se spojitými parciálními derivacemi se nazývá regulárni, je-li Jacobián

$$\frac{D(f_1,\ldots,f_n)}{D(x_1,\ldots,x_n)}$$

v každém bodě množiny U nenulový.

5.2 Věta: $Bud'\vec{f}: U \to \mathbb{E}_n$ regulární zobrazení. Potom

- (1) $\vec{f}[U]$ je otevřená množina, a
- (2) \vec{f} je lokální homeomorfismus; t.j., pro každý bod existuje okolí V takové, že $\vec{f}|V$ je homeomorfismus V na f[V].

Je-li navíc \vec{f} prosté, je k němu inverzní zobrazení $\vec{g}: \vec{f}[U] \to \mathbb{E}_n$ opět regulární.

Důkaz: Položme

$$F_i(x_1,\ldots,x_n,y_1,\ldots,y_n) = f_i(x_1,\ldots,x_n) - y_i = 0, i = 1,\ldots,n.$$

Hledáme-li tedy \vec{x} tak, aby $\vec{f}(\vec{x}) = \vec{y}$, řešíme úlohu

$$(*) F_i(x_1, \dots, x_n, y_1, \dots, y_n) = 0, i = \dots, n,$$

tentokrát s proměnnými y_1, \ldots, y_n a neznámými funkcemi $x_i = g_i(y_1, \ldots, y_n)$.

Nechť $\vec{f}(\vec{x_r}) = \vec{y^0}$. Potom $F(\vec{x^0}, \vec{y^0}) = 0$ a jelikož zřejmě $\frac{D(\vec{f})}{D(\vec{x})} = \frac{D(\vec{f})}{D(\vec{x})}$ a tedy je nenulový, můžeme užít věty 3.3. Podle ní existují řešení úlohy (*) ještě v nějakém okolí — a tedy je ještě v nějakém okolí bodu $\vec{y^0}$ vždy řešitelná rovnice $\vec{f}(\vec{x}) = \vec{y}$. Množina $\vec{f}[U]$ je tedy otevřená. Za druhé je v dostatečně malém okolí řešení jednoznačně určeno a má spojité parciální derivace a tedy (lokální) inverzní funkce je spojitá.

Konečně, je-li \vec{f} prosté, dává inverzní funkce \vec{g} řešení a musí tedy mít spojité parciální derivace. Podle XIII.3.3 je $\partial \vec{f} \cdot \partial \vec{g} = \partial (\vec{f} \circ \vec{g}) = \partial (id) = \mathbb{E}$ a tedy podle X.4.2 je det $\partial \vec{f} \cdot \det \partial \vec{g} = 1$ a det $\partial \vec{g}$ tedy musí být nenulový. Snadno vidíme, že je to Jacobián zobrazení \vec{g} . \square

XV Určitý (Riemannův) integrál

XV.1 Obsah rovinného obrazce

1.1 V tomto odstavci se zamyslíme nad pojmem obsahu, nebo plochy, rovinného obrazce. Nepředpokládáme ovšem, že je nutně možné každé podmnožině roviny nějaký obsah přisuzovat, a zatím si počkáme s rozhodováním, kterým z nich to jde. Napíšeme-li

$$P(A)$$
,

znamená to, že předpokládáme, že A plochu má, a sice číslo P(A). Uděláme několik přirozených předpokladů

- (P0) P(A) je vždy nezáporné číslo,
- (P1) (Uzavřený) obdélník o stranách a, b plochu má, a sice $a \cdot b$,
- (P2) Jsou-li A a B disjunktní, je $P(A \cup B) = P(A) + P(B)$, má-li pravá strana smysl,
- (P3) Mají-li A a B plochu, má ji i $A \setminus B$.

1.2 Několik jednoduchých pravidel:

- 1. $A \subset B \Rightarrow P(A) < P(B)$ (mají-li smysl).
- 2. Má-li A, B plochu, má ji i $A \cup B$ a $A \cap B$.
- 3. $P(A \cup B) + P(A \cap B) = P(A) + P(B)$, má-li pravá strana smysl. Tedy platí $P(A \cup B) = P(A) + P(B)$ jakmile $P(A \cap B) = 0$; v takovém případě říkáme, že A, B jsou skoro disjunktní.
- 4. Úsečky mají plochu, a sice nulovou.

Důkaz:

- 1. Je-li $A \subset B$, je $B = A \cup (B \setminus A)$. Užijte (P3), (P2) a (P0).
- 2. Je $A \cup B = (A \setminus B) \cup B$ disjunktně, a $A \cap B = A \setminus (A \setminus B)$.
- 3. Máme $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$ disjunktně a tedy $P(A \cup B) = P(A \setminus B) + P(A \cap B) + P(B \setminus A)$. Z (P3) dále vidíme, že $P(A) = P(A \setminus B) + P(A \cap B)$, $P(B) = P(B \setminus A) + P(A \cap B)$.
- 4. Úsečku I o délce a si představme jako průnik dvou obdélníků A_1, A_2 , o druhé délce (dejme tomu) b, které dohromady tvoří obdélník o stranách a a 2b. Máme

$$2ab + P(I) = ab + ab.$$

Pozorování: Pravidlo 4 záviselo na tom, že jsme (P1) vyslovili pro uzavřené obdélníky. Ale hraje roli jen v tom, že úsečka vůbec plochu má. Nulovost je zaručená tím, že se dá vložit do obdélníku libovolně malé plochy. Podle 3 je nyní již jedno, počítáme-li s plochami otevřeného nebo uzavřeného obdélníku: musí ji mít stejnou.

1.3 Buď A množina omezená grafem spojité kladné funkce f, osou x a vertikálami nad body a a b na této ose. Nechť je úsečka $\langle a, b \rangle$ rozdělena body $a_0 = a < a_1 < \cdots < a_n = b$. Označíme-li m_i minimum a M_i maximum funkce f na $\langle a_{i-1}, a_i \rangle$, vidíme, že platí

$$\bigcup_{i=1}^{n} \langle a_{i-1}, a_i \rangle \times \langle 0, m_i \rangle \subseteq A \subseteq \bigcup_{i=1}^{n} \langle a_{i-1}, a_i \rangle \times \langle 0, M_i \rangle.$$

Jelikož sjednocení obdélníků na obou stranách je skoro disjunktní, dostáváme pro případné P(A) podle 1.2.3 a 1.2.1 odhady

$$\sum_{i=1}^{n} m_i(a_i - a_{i-1}) \le P(A) \le \sum_{i=1}^{n} M_i(a_i - a_{i-1}).$$

Je-li supremum čísel takovýmito postupy získaných (t. j. supremum přes možná rozdělení) na levé straně rovno infimu čísel takto získaných napravo, vidíme, že tato společná hodnota je za daných předpokladů (P0) – (P3) jediná možná hodnota plochy našeho obrazce. To je motivem definic v následujícím odstavci.

XV.2 Definice Riemannova integrálu

2.1 Rozdělením intervalu $\langle a, b \rangle$ rozumíme libovolnou konečnou posloupnost

$$D: a = t_0 < t_1 < \dots < t_n = b.$$

Rozdělení $D': t'_0 < t'_1 < \dots < t'_m$ nazveme zjemněním rozdělení D, jestliže $\{t_i \mid i=1,\dots,n\} \subseteq \{t'_i \mid i=1,\dots,m\}$. V takovém případě píšeme

$$D \prec D'$$

Zcela triviální je

Pozorovaní: Každé dvě rozdělení mají společné zjemnění.

2.2 Buď f omezená funkce na intervalu $\langle a,b \rangle$, $D:t_0<\cdots< t_n$ rozdělení $\langle a,b \rangle$. Dolní (resp.horní) sumou funkce f v rozdělení D rozumíme číslo

$$s(f, D) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}), \text{ resp. } S(f, D) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}),$$

kde m_i je infimum a M_i supremum funkce f na $\langle t_{i-1}, t_i \rangle$.

2.3 Lemma: Je-li $D \prec D'$, je $s(f, D) \leq s(f, D')$ a $S(f, D) \geq S(f, D')$.

Důkaz: Podívejme se na část součtu mezi dvěma sousedními body hrubšího součtu; nechť mezi nimi leží

$$t_i = t'_j < t'_{j+1} < \dots < t'_{j+k} = t_{i+1}.$$

Je-li $m_s' = \inf\{f(x)|x \in \langle t_{s-1}', t_s' \}$, je zřejmě $m_{i+1} \leq m_s'$ pro všechna $s = j+1, \ldots, j+k$ a tedy

$$\sum_{s=j+1}^{j+k} m'_s \cdot (t'_s - t'_{s-1}) \ge \sum_{s=j+1}^{j+k} m_{i+1} \cdot (t'_s - t'_{s-1}) = m_{i+1}(t_{i+1} - t_i).$$

Podobně pro horní sumu. 🗆

2.4 Lemma: Budte D_1 , D_2 dvě libovolná rozdělení. Potom $s(f, D_1) \leq S(f, D_2)$.

Důkaz: Zvolme společné zjemnění D. Podle 2.3 máme

$$s(f, D_1) < s(f, D) < S(f, D) < S(f, D_2).$$

2.5 DEFINICE: Podle 2.4 je množina všech dolních součtů shora omezená (totiž např. libovolným horním součtem). Má tedy konečné supremum. Položíme

$$\int_{a}^{b} f(x) dx = \sup_{D} s(f, D) \text{ (krátce píšeme též } \int_{a}^{b} f)$$

a nazveme toto číslo dolním Riemannovým integrálem funkce f přes interval $\langle a,b\rangle$. Podobně definujeme horní Riemannův integrál

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \inf S(f, D).$$

Je-li $\int_{a}^{b} f = \int_{a}^{b} f$, říkáme, že f je Riemannovsky integrovatelná, společnou hodnotu nazýváme jejím Riemannovým integrálem a označujeme

$$\int_a^b f(x) \, dx \text{ (nebo krátce } \int_a^b f).$$

2.6 Věta: Funkce f je Riemannovsky integrovatelná právě když ke každému $\varepsilon>0$ existuje rozdělení D takové, že

$$S(f,D) - s(f,D) < \varepsilon$$
.

Důkaz: Je-li f integrovatelná a I hodnota jejího integrálu, existují podle definice D_1 , D_2 taková, že

$$s(f, D_1) > I - \frac{\varepsilon}{2}, \quad S(f, D_2) < I + \frac{\varepsilon}{2}$$

Vezměme za D společné zjemnění D_1 a D_2 .

Naopak nechť D s danou vlastností existují. Máme

$$\int_{a}^{b} f \le S(f, D) < \varepsilon + s(f, D) \le \int_{a}^{b} f + \varepsilon.$$

Jelikož $\varepsilon>0$ bylo libovolné, musí být $\overline{\int}=\underline{\int}.\ \ \Box$

2.7 Pozorování: Samozřejmě že ne každá funkce je Riemannovsky integrovatelná. Např. známá Dirichletova funkce na (0,1) (0 v iracionálních a 1 v racionálních bodech) má dolní integrál 0 a horní 1.

XV.3 Základní pravidla

3.1 Věta: Jsou-li f, g Riemannovsky integrovatelné na $\langle a,b\rangle$ a α , β reálná čísla, je $\alpha f + \beta g$ Riemannovsky integrovatelná a platí

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

Důkaz:

I Součet: Označme $m_i = \inf\{f(x) + g(x) \mid x \in \langle t_{i-1}, t_i \rangle\}, m'_i = \inf\{f(x) \mid \ldots\}, m''_i = \inf\{g(x) \mid \ldots\}.$ Zřejmě je $m'_i + m''_i < m_i$, takže vidíme, že

$$(1) s(f,D) + s(g,D) \le s(f+g,D).$$

Odtud podle definice suprema snadno

$$\underbrace{\int} f + \underbrace{\int} g \le \underbrace{\int} (f+g)$$

(ale provedte si tu úvahu podrobně jako cvičení!) a podobně

(3)
$$\overline{\int} f + \overline{\int} g \ge \overline{\int} (f+g).$$

Tedy máme

$$\int f + \int g = \int f + \int g \le \int (f+g) \le \overline{\int} (f+g) \le \overline{\int} f + \overline{\int} g = \int f + \int g.$$

- II Reálný násobek: Zde je situace zcela jednoduchá: Pro $\alpha \geq 0$ je $s(\alpha f, D) = \alpha s(f, D)$, $S(\alpha f, D) = \alpha S(f, D)$, pro je $\alpha \leq 0$, $s(\alpha f, D) = \alpha S(f, D)$, $S(\alpha f, D) = \alpha s(f, D)$. Za předpokladu existence $\int_a^b f$ okamžitě dostaneme přechodem k supremu a infimu $\int \alpha f = \alpha \int f$. \Box
- **3.2** Věta: Nechť a < b < c, nechť f je omezená na $\langle a, c \rangle$ a nechť existují

$$\int_a^b f \ a \ \int_b^c f.$$

Potom existuje Riemannův integrál z f přes $\langle a, c \rangle$ a platí

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

Důkaz: Buď $\varepsilon > 0$. Jelikož $\int_a^b f$ a $\int_b^c f$ existují, existují též rozdělení D_1 , D_2 taková, že

(4)
$$\int_{a}^{b} f - \frac{\varepsilon}{2} \leq s(f|\langle a, b \rangle, D_{1}) \leq S(f|\langle a, b \rangle, D_{1}) \leq \int_{a}^{b} f + \frac{\varepsilon}{2},$$
$$\int_{b}^{c} f - \frac{\varepsilon}{2} \leq s(f|\langle b, c \rangle, D_{1}) \leq S(f|\langle b, c \rangle, D_{1}) \leq \int_{b}^{c} f + \frac{\varepsilon}{2},$$

Sestavme z D_1 a D_2 zřejmým způsobem rozdělení D_{ε} intervalu (a,c). Jelikož pak

$$s(f, D_{\varepsilon}) = s(f|\langle a, b \rangle, D_1) + s(f|\langle b, c \rangle, D_2)$$

a podobně pro horní součty, dostáváme z (4)

$$\int_{a}^{b} f + \int_{b}^{c} f - \varepsilon \le s(f, D_{\varepsilon}) \le S(f, D_{\varepsilon}) \le \int_{a}^{b} f + \int_{b}^{c} f + \varepsilon.$$

Jelikož $\varepsilon > 0$ bylo libovolné, dostáváme odtud snadno naše tvrzení. \square

3.3 Konvence: Pro b < a zavedeme

$$\int_{a}^{b} f = -\int_{b}^{a} f.$$

118

Platnost formule z 3.2 potom zřejmě zůstává zachována.

3.4 Jemností rozdělení $D: t_0 < \cdots < t_n$, označení

$$\mu(D)$$
,

rozumíme číslo $\max_{i=1,\ldots,n} |t_i - t_{i-1}|$.

3.5 VĚTA: Nechť $\int_a^b f$ existuje a nechť se g liší od f v konečně mnoha bodech. Potom $\int_a^b g$ existuje a je roven $\int_a^b f$.

Důkaz: Nechť $|f(x)|, |g(x)| \leq A$, nechť se liší v p bodech. Zřejmě je

$$|s(f, D) - s(g, D)|$$

a podobně pro horní součty. Uvědomte si, že každé rozdělení můžeme zjemnit rozdělením s libovolně malou jemností. □

3.6 Triviální je

Pozorování: Buď na intervalu $\langle a, b \rangle$ $m \leq f(x) \leq M$. Potom

$$m \cdot (b-a) \le \underbrace{\int_a^b}_a f \le \underbrace{\int_a^b}_a f \le M \cdot (b-a).$$

XV.4 Případ spojitých funkcí

4.1 Věta: Spojitá funkce na intervalu (a,b) je vždy Riemannovsky integrovatelná.

Důkaz: Podle XII.5.10 je f stejnoměrně spojitá. Zvolme $\varepsilon > 0$ a k němu $\delta > 0$ tak, že

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b-a}$$

Je-li nyní $\mu(D) < \delta$, je pro $m_i, \; M_i$ z 2.2 $M_i - m_i \leq \frac{\varepsilon}{b-a}$ a tedy

$$S(f,D) - s(f,D) = \sum (M_i - m_i)(t_i - t_{i-1}) \le \varepsilon.$$

4.2 Věta o střední hodnotě pro určitý integrál) Buď f spojitá na $\langle a, b \rangle$. Potom existuje $c \in \langle a, b \rangle$ tak, že

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a).$$

Důkaz: Podle 3.6 je pro $m = \min\{f(x) \mid x \in \langle a, b \rangle\}$ a $M = \max\{f(x) \mid x \in \langle a, b \rangle\}$,

$$m \cdot (b-a) \le \int_a^b f \le M(b-a).$$

Tedy existuje $\sigma \in \langle m, M \rangle$ tak, že $\int_a^b f = \sigma \cdot (b-a)$. Jelikož f je spojitá, existuje $c \in \langle a, b \rangle$ tak, že $\sigma = f(c)$. \square

4.3 VĚTA: ("Věta o integrálu jako limitě") Buď f spojitá funkce na $\langle a,b\rangle$. Buď D_1,D_2,\ldots posloupnost rozdělení intervalu $\langle a,b\rangle$ taková, že $\lim \mu(D_i)=0$. Buď $D_i:t_0^i<\cdots< t_{n_i}^i$. Nechť $\varepsilon_i>0$ jsou takové, že $\lim \varepsilon_i=0$. Zvolme čísla $f_{i,j}$ $(j=1,\ldots,n_i)$ tak, aby

$$\left| f_{i,j} - f(t_j^i) \right| < \varepsilon_i$$

a položme

$$\sigma_i = \sum_{j=1}^{n_i} f_{i,j} (t_j^i - t_{j-1}^i).$$

Potom

$$\int_{a}^{b} f = \lim_{i \to \infty} \sigma_{i}.$$

Důkaz: Označme $m^i_j = \inf \left\{ f(x) \mid x \in \langle t^i_{j-1}, t^i_j \rangle \right\}, \ M^i_j = \sup \left\{ f(x) \mid \dots \right\}.$ Zvolme $\varepsilon > 0$. Jelikož $\lim \mu(D_i) = \lim \varepsilon_i = 0$, můžeme zvolit n takové, že pro $i \geq n$

$$f(t_j^i) - \frac{\varepsilon}{2(b-a)} \le m_j^i \le M_j^i \le f(t_j^i) + \frac{\varepsilon}{2(b-a)}$$

(opět využíváme XII.5.10 o stejnoměrné spojitosti), a

$$\left| f_{i,j} - f(t_j^i) \right| < \frac{\varepsilon}{2(b-a)}.$$

Pro $i \geq n$ je tedy vždy

$$|f_{i,j} - m_j^i|, |f_{i,j} - M_j^i| < \frac{\varepsilon}{b - a}.$$

Tedy máme

$$\begin{array}{l} |\sigma_i - s(f,D_i)| = \left| \sum_{i=1}^{n_i} f_{i,j}(t_j^i - t_{j-1}^i) - \sum_{i=1}^{n_i} m_j^i(t_j^i - t_{j-1}^i) \right| = \left| \sum (f_{i,j} - m_j^i)(t_j^i - t_{j-1}^i) \right| \leq \sum |f_{i,j} - m_j^i| \cdot (t_j^i - t_{j-1}^i) \leq \frac{\varepsilon}{b-a} \cdot \sum (t_j^i - t_{j-1}^i) = \varepsilon \end{array}$$

a podobně

$$|\sigma_i - S(f, D_i)| < \varepsilon.$$

Pro i > n je tedy

$$\int_{a}^{b} f - \varepsilon \le S(f, D_{i}) - \varepsilon \le \sigma_{i} \le s(f, D_{i}) + \varepsilon \le \int_{a}^{b} f + \varepsilon.$$

XV.5 Základní věta analýzy

5.1 Věta: (t. zv. Základní věta analýzy) Nechť f je spojitá funkce na intervalu $\langle a,b \rangle$. Pro $x \in \langle a,b \rangle$ definujeme

$$F(x) = \int_{a}^{x} f(t) dt.$$

Potom F'(x) = f(x). (Rozumějme tomu takto: o derivaci se jedná ve vnitřních bodech; v bodě a jde o derivaci zprava, v bodě b o derivaci zleva.)

Důkaz: Podle 3.2 (a 3.3) a 4.2 máme

$$\frac{1}{h} (F(x+h) - F(x)) = \frac{1}{h} \left(\int_{a}^{x+h} f - \int_{a}^{x} f \right) = \frac{1}{h} \int_{x}^{x+h} f =$$

$$= \frac{1}{h} \cdot f(\xi_{h}) \cdot h = f(\xi_{h}),$$

kde $\xi_h \in \langle x, x+h \rangle$. Tedy v limitě pro $h \to 0$ dostáváme f(x). \square

Důsledek: Spojitá funkce má vždy primitivní funkci.

5.2 Věta: Buď f spojitá funkce na $\langle a,b \rangle$, buď F funkce k ní primitivní (v krajních bodech máme ovšem na mysli opět jednostranné derivace). Potom

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Důkaz: Položme $G(x) = \int_a^x f(t) dt$. Podle 5.1 a VI.1.3 je F(x) - G(x) na $\langle a, b \rangle$ konstantní. Je tedy

$$\int_{a}^{b} f(x) dx = G(b) = G(b) - G(a) = F(b) - F(a).$$

5.3 Označení: Občas budeme užívat symbolu

$$[f(x)]_a^b = f(b) - f(a).$$

5.4 Poznámky:

1. Uvědomte si nyní příbuznost věty 4.2 a věty o přírůstku funkce (IV.4.3), které se též často říká věta o střední hodnotě: Má-li f derivaci, je podle 5.2 a 4.2

$$f(b) - f(a) = \int_a^b f'(x) dx = f'(\xi)(b - a).$$

2. Všimněte si, že existence a "vypočítatelnost" jsou u derivací a primitivních funkcí značně odlišné záležitosti:

Derivace se počítá snadno, ale pro spojité funkce často nemusí existovat; primitivní funkce ke spojité funkci existuje vždy, ale těžko se počítá (a někdy se u elementárních funkcí ani nedá napsat jako elementární funkce).

XV.6 Poznámky k výpočtu určitého integrálu

6.1 Pravidlo pro počítaní per partes dává ve světle věty 5.1 formuli

$$\int_a^b u \cdot v' = [uv]_a^b - \int_a^b u'v.$$

6.2 Připomeňme si větu o substituci VI.4.1. Buď φ hladké zobrazení $\langle a, b \rangle$ na interval s krajními body $\varphi(a)$, $\varphi(b)$. Podle 5.1 a VI.4.1 máme

$$\int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(b)) - F(\varphi(a)),$$

a podle definice F a 5.1

$$F(\varphi(b)) - F(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Tedy dostáváme tvrzení:

Je-li φ hladká funkce, je

(*)
$$\int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Tato formule má velmi názorný geometrický smysl. Nechť dejme tomu φ roste. Tedy zobrazení

$$\varphi: \langle a, b \rangle \to \langle \varphi(a), \varphi(b) \rangle$$

transformuje interval $\langle a,b\rangle$ do jiného, přičemž ho lokálně natahuje nebo smršťuje. Míra natažení nebo smrštění v bodě x je dána hodnotou $\varphi'(x)$. Podívejte se na obrázek 15. Útvary B_i a A_i mají stejné "výšky", ale jejich základy se liší, a sice v poměru přibližně $\varphi'(a_i)$. Díváme-li se na určitý integrál jako na plochu pod grafem funkce, vyrovnává faktor $\varphi'(x)$ v (*) právě naznačené lokální změny "šířek ploch".

XV.7 Riemannův integrál a stejnoměrná konvergence

7.1 Připomeňte si definici stejnoměrné konvergence z XII.3.2.

Obr. 15:

Věta: Nechť f_n jsou Riemannovsky integrovatelné na intervalu $\langle \alpha, b \rangle$ a nechť f_n stejnoměrně konvergují k funkci f. Potom je f Riemannovsky integrovatelná a platí

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

Důkaz: Zvolme $\varepsilon > 0$ a k němu n_0 tak, aby pro $n \ge n_0$ bylo $|f_n(x) - f(x)| < \frac{\varepsilon}{b-a}$. Označme, pro vhodné rozdělení $D, \ m_i$ a M_i jako obvykle pro funkci f a m_i^n , M_i^n odpovídající hodnoty pro funkci f_n . Máme tedy

$$|m_i - m_i^n|, |M_i - M_i^n| < \frac{\varepsilon}{b-a}.$$

Tedy je

$$|s(f,D) - s(f_n,D)| = \left| \sum_{i=1}^{n} (m_i - m_i^n) \cdot (t_i - t_{i-1}) \right| \le$$

$$\le \sum_{i=1}^{n} |m_i - m_i^n| \cdot (t_i - t_{i-1}) < \varepsilon$$

a obdobně i

$$|S(f, D) - S(f_n, D)| < \varepsilon.$$

Položme $L = \lim_{n \to \infty} \int f_n$ (limita existuje, protože, jak je snadno vidět, posloupnost $(\int f_n)_n$ je cauchyovská. Dokažte!) a zvolme $n \ge n_0$ dostatečně velké, aby $\left| \int f_n - L \right| < \varepsilon$. Rozdělení D nyní volme tak, aby

$$S(f_n, D) - \varepsilon < \int f_n < s(f_n, D) + \varepsilon.$$

Potom je

$$L - 3\varepsilon \le \int f_n - 2\varepsilon < s(f_n, D) - \varepsilon \le s(f, D) \le$$

$$\le S(f, D) \le S(f_n, D) + \varepsilon \le \int f_n + 2\varepsilon \le L + 3\varepsilon.$$

Jelikož $\varepsilon>0$ bylo libovolné, vidíme, že $L=\underline{\int} f=\overline{\int} f$. \square

XVI Několik aplikací určitého integrálu

XVI.1 Obsahy rovinných útvarů

To je aplikace zcela bezprostřední: Podle XV.1.3 a definic XV.2.2, XV.2.5 je $\int_a^b f(x) \, dx$, existuje-li, jediné číslo, které můžeme přiřadit jako obsah útvaru, omezeného shora grafem funkce f, zdola x-ovou osou a zleva a zprava vertikálami nad a a nad b.

1.1 Příklad: Obsah parabolické úseče: Vypočteme plochu P z obrázku (16). Máme $2a \cdot ka^2 = P + 2P_1$,

Obr. 16:

$$P_1 = \int_0^a kx^2 = \frac{k}{3} [x^3]_0^a = \frac{k}{3} a^3.$$

Tedy
$$P = a^3(2k - 2\frac{k}{3}) = \frac{4}{3}ka^3$$
.

1.2 Příklad: Obsah plochy pod sinusovkou (obrázek 17):

$$P = \int_0^{\pi} \sin x \, dx = -\cos \pi + \cos 0 = 2.$$

1.3 Příklad: Obsah jednotkového kruhu: Horní polokružnici můžeme vyjádřit grafem funkce $\sqrt{1-x^2}$ nad intervalem $\langle -1, 1 \rangle$. Tedy je

$$P = 2 \int_{-1}^{1} \sqrt{1 - x^2} \, dx..$$

Pro funkci $\varphi(x) = \sin x$ máme $\varphi(\pm \frac{\pi}{2}) = \pm 1$ a tedy podle XV.6.2

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \, dt$$

Jelikož $\cos^2 t = \frac{1}{2}(\cos 2t + 1)$, dostáváme dále

$$\cdots = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2t \, dt + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt = \frac{1}{2} \left(\left[\frac{1}{2} \sin 2t \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + [t]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \right) = \frac{1}{2} (0 + \pi) = \frac{\pi}{2}$$

a tedy $P = \pi$.

XVI.2 Objemy rotačních těles

2.1 Buď f spojitá nezáporná funkce na $\langle a, b \rangle$. Zjistíme objem V tělesa, které je omezeno rotací grafu funkce f jak je naznačeno na obrázku 18. Vezměme rozdělení $D: t_0 < t_1 < \cdots < t_n$ intervalu $\langle a, b \rangle$, nechť

Obr. 18:

 m_i , M_i mají stejný smysl jako obvykle. Objem je zřejmě zdola omezen součty objemů válců o poloměrech m_i a výškách $t_i - t_{i-1}$, shora pak součty objemů obdobných válců s poloměry M_i . Tedy máme

$$\sum \pi m_i^2(t_i - t_{i-1}) \le V \le \sum \pi M_i^2(t_i - t_{i-1}).$$

Výrazy nalevo a napravo jsou však

$$\pi \cdot s(f^2, D)$$
 resp. $\pi \cdot S(f^2, D)$

a pro objem tedy dostáváme formuli

$$V = \pi \int_a^b f^2(x) \, dx.$$

2.2 Příklad: Koule o poloměru r vznikne rotací grafu křivky $\sqrt{r^2-x^2}$ nad $\langle -r,r\rangle$. Tedy

$$V = \pi \int_{-r}^{r} (r^2 - x^2) dx = \pi \left[r^2 x - \frac{1}{3} x^3 \right]_{-r}^{r} = 2\pi \left(r^3 - \frac{1}{3} r^3 \right) = \frac{4}{3} \pi r^3.$$

XVI.3 Délka rovinné křivky

3.1 Buď křivka K dána jako graf hladké funkce f definované na intervalu $\langle a,b \rangle$. Při rozdělení $D:t_0 < t_1 < \cdots < t_n$ uvažujeme lomenou čáru sestavenou z úseček postupně mezi body $(t_0,f(t_0)), (t_1,f(t_1)), \ldots, (t_n,f(t_n)),$ a označme d_D délku této lomené čáry. Je-li D' zjemnění D, je podle trojúhelníkové nerovnosti $d_{D'} \geq d_D$ (viz obr. 20) Za rozumnou definici délky křivky K můžeme tedy považovat $d(K) = \sup_D d_D$. Máme

$$d_D = \sum_{i=1}^{n} \sqrt{(t_i - t_{i-1})^2 + (f(t_i) - f(t_{i-1}))^2},$$

Obr. 19:

Obr. 20:

což můžeme podle věty o přírůstku funkce upravit na

$$\sum \sqrt{(t_i - t_{i-1})^2 + f'(\vartheta_i)^2 (t_i - t_{i-1})^2} = \sum \sqrt{1 + f'(\vartheta_i)} \cdot (t_i - t_{i-1}).$$

Podle XV.4.3 snadno usoudíme, že

$$d(K) = \int_{a}^{b} \sqrt{1 + f'(t)^2} \, dt.$$

(Vezměte posloupnost podrozdělení D_i takovou, aby d_{D_i} konvergovaly k supremu všech d_D .)

XVI.4 Povrch rotačního tělesa

4.1 V situaci obdobné jako v odstavci XVI.2 budeme povrch daného tělesa aproximovat součtem plášťů komolých jehlanů o výškách $(t_i - t_{i-1})$ mezi základnami o poloměrech $f(t_i)$ a $f(t_{i-1})$. Podle známého vzorce dostáváme pro každý takový jednotlivý plášť hodnotu

$$\pi (f(t_i) + f(t_{i-1})) \cdot \sqrt{(t_i - t_{i-1})^2 + (f(t_i) - f(t_{i-1}))^2}$$

Jejich součet tedy po použití věty o přírůstku funkce podobně jako v 3.1 tvar

$$\pi \cdot \sum_{i=1}^{n} (f(t_i) + f(t_{i-1})) \cdot \sqrt{1 + f'(\vartheta_i)^2} \cdot (t_i - t_{i-1}).$$

Pro posloupnost rozdělení s jemnostmi konvergujícími k nule tyto hodnoty podle XV.4.3 konvergují k číslu

$$2\pi \int_a^b f \cdot \sqrt{1 + f'^2}.$$

4.2 Pojem povrchu nerovné plochy raději příliš nerozebíráme. Jsme zde na tenkém ledě. Situace není tak jednoduchá, jako u délky křivky, která byla supremem rozumných aproximací. Ale vzorec, který jsme dostali je v pořádku.

4.3 Příklad: Povrch koule: Jako v 2.2 ji získáme rotací křivky dané formulí $f(x) = \sqrt{r^2 - x^2}$. Máme

$$f'(x) = \frac{x}{\sqrt{r^2 - x^2}}$$

a tedy

$$\sqrt{1+f'(x)^2} = \sqrt{1+\frac{x^2}{r^2-x^2}} = \sqrt{\frac{r^2}{r^2-x^2}} = \frac{r}{\sqrt{r^2-x^2}}$$

takže pro povrch dostáváme

$$2\pi \int_{-r}^{r} \sqrt{r^2 - x^2} \cdot \frac{r}{\sqrt{r^2 - x^2}} dx = 2\pi r \int_{-r}^{r} 1 \cdot dx = 4\pi r^2.$$

XVI.5 Logaritmus

5.1 Nyní již máme prostředky, abychom dokázali existenci přirozeného logaritmu z III.6.1(kterou jsme zatím jen předpokládali).

Pro x > 0 položme

$$L(x) = \int_1^x \frac{1}{t} dt.$$

Jelikož $L'(x) = \frac{1}{x} > 0$ pro x > 0 (připomeňte si XV.5.1), L(x) roste na intervalu $(0, +\infty)$. Máme

(1)
$$L(x,y) = \int_{1}^{xy} \frac{1}{t} dt = \int_{1}^{x} \frac{1}{t} dt + \int_{x}^{xy} \frac{1}{t} dt.$$

Uvážíme-li substituci $\varphi(t)=xt$, máme podle XV.6.2

$$\int_{x}^{xy} \frac{1}{t} dt = \int_{1}^{y} \frac{1}{xt} \cdot \varphi'(t) = \int_{1}^{y} \frac{x}{xt} dt = \int_{1}^{y} \frac{1}{t} dt.$$

Tedy formule (1) dává

$$L(xy) = L(x) + L(y).$$

Konečně opět použitím XV.5.1,

$$\lim_{x \to 1} \frac{L(x)}{x - 1} = \lim_{x \to 1} \frac{L(x) - L(1)}{x - 1} = F'(1) = 1.$$

XVI.6 Integrální kritérium konvergence

6.1 Věta: Nechť f je nerostoucí nezáporná funkce definovaná na intervalu $(\langle 1, +\infty \rangle)$. Potom řada

$$f(1) + f(2) + f(3) + \cdots$$

konverguje právě když

$$\lim_{n \to \infty} \int_{1}^{n} f(x) \, dx$$

je konečná.

Důkaz: Podle XV.3.6 máme

$$f(n+1) \le \int_n^{n+1} f(x) \, dx \le f(n)$$

a tedy podle XV.3.2 dostáváme

$$f(2) + \dots + f(n) \le \int_1^n f(x) dx \le f(1) + \dots + f(n-1).$$

Je-li tedy limita $L = \lim_{n \to \infty} \int_1^n f(x) dx$ konečná, je

$$\sum_{k=1}^{n} f(k) \le f(1) + L$$

a tedy řada konverguje. Roste-li však $\int_1^n f(x) dx$ nade všechny meze, roste nade všechny meze i f(1) + $\cdots + f(n-1)$. \square

6.2 Všimněte si, že toto kritérium je nejen postačující, ale i nutná podmínka. Nic takového v našich dosavadních kritériích (XI.2.4) nebylo.

6.3 Příklad: Buď $\alpha > 1$ reálné číslo. Potom řada

$$\frac{1}{1^{\alpha}} + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}} + \dots$$

konverguje

Skutečně, máme $\int_1^n x^{-\alpha} = \left[\frac{1}{1-\alpha} \cdot x^{1-\alpha}\right]_1^n = \frac{1}{1-\alpha} \left(\frac{1}{n^{\alpha-1}-1}\right) \leq \frac{1}{\alpha-1}$. Všimněte si, že z kritérií XI.2.4 neplyne konvergence této řady ani pro velké α , natož pro α blízké k 1.

XVI.7 Trochu složitější aplikace: Fourrierovy řady

7.1 Řekneme, že funkce f na intervalu $\langle a,b\rangle$ je po částech spojitá, je-li spojitá až na konečně mnoho bodů a má-li v bodech nespojitosti konečné limity zleva i zprava (v krajních bodech samozřejmě jen z té strany, na níž je definována)

Podle XV.3.2, XV.3.5 a XV.4.1 je každá po částech spojitá funkce Riemannovsky integrovatelná.

Rekneme, že f je po částech hladká, je-li po částech spojitá, má-li až na konečně mnoho bodů derivace, a má-li v bodech bez derivace aspoň derivace jednostranné (šlo-li o body nespojitosti, jde o jednostranné derivace funkce s hodnotou nahrazenou v tom bodě příslušnou limitou.) U periodických funkcí s periodou p užíváme těchto termínů vzhledem k intervalu (0, p).

7.2 Lemma: Buď f funkce periodická s periodou p. Potom pro libovolné a je

$$\int_0^p f(x) dx = \int_a^{p+a} f(x) dx.$$

 $\mathbf{D}\mathbf{\hat{u}kaz} :$ Rovnost zřejmě platí, je-liaceločíselný násobek p. V obecném případě zvolme ktak, aby $a \leq$ kp < a + p. Potom máme

$$\int_{a}^{p+a} = \int_{a}^{kp} + \int_{kp}^{a+p} = \int_{a+p}^{(k+1)p} + \int_{kp}^{(k+1)p} = \int_{0}^{p}.$$

7.3 Z XV.6.2 a 7.2 dostáváme okamžitě

Düsledek: Pro libovolnou konstantu C je

$$\int_0^p f(x+C) dx = \int_0^p f(x) dx.$$

7.4 Lemma: Bud'g po částech spojitá definovaná na intervalu (a, b). Potom

$$\lim_{y \to +\infty} \int_a^b g(x) \sin yx \, dx = 0.$$

Důkaz: Vzhledem k XV.3.2 stačí dokázat pro spojitou f. Především si uvědomme, že pro libovolné meze u, v je

 $\left| \int_{u}^{v} \sin yx \, dx \right| = \left| \left[-\frac{1}{y} \cos yx \right]_{u}^{v} \right| \le \frac{2}{y}.$

Zvolme $\varepsilon > 0$. Jelikož je f spojitá na $\langle a, b \rangle$, je stejnoměrně spojitá a tedy můžeme zvolit dělení

$$a = t_0 < t_1 < \dots < t_n = b$$

takové, že pro $x \in \langle t_{i-1}, t_i \rangle$ je $|f(x) - f(t_i)| < \frac{\varepsilon}{2(b-a)}$

Ukážeme, že pro $y > (\sum_{i=1}^{n} |f(t_i)|) \cdot \frac{1}{4\varepsilon}$ je $\left| \int_a^b f(x) \sin yx \, dx \right| < \varepsilon$.

Skutečně, máme

$$\left| \int_a^b f(x) \sin yx \, dx \right| = \left| \sum_{i=0}^n \left(\int_a^b \left(f(x) - f(t_i) \right) \sin yx \, dx + f(t_i) \int \sin yx \, dx \right) \right| \le 1$$

$$\leq \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \frac{\varepsilon}{2(b-a)} dx + \sum_{i=1}^{n} |f(t_i)| \cdot \left| \int_{t_{i-1}}^{t_i} \sin yx \, dx \right| \leq \frac{\varepsilon}{2} + \sum |f(t_i)| \cdot \frac{2}{y} \leq \varepsilon.$$

7.5 Lemma: Platí

$$\frac{1}{2} + \sum_{k=1}^{n} \cos k\alpha = \frac{\sin(2n+1)\frac{\varepsilon}{2}}{2\sin\frac{\alpha}{2}}.$$

Důkaz: Připomeňme si známou formuli

$$2\sin x \cos y = \sin(x+y) - \sin(y-x).$$

Máme tedy

$$2\sin\frac{\alpha}{2}\left(\frac{1}{2} + \sum_{k=1}^{n}\cos k\alpha\right) = \sin\frac{\alpha}{2} + \sum_{k=1}^{n}2\sin\frac{\alpha}{2}\cos k\alpha =$$

$$= \sin\frac{\alpha}{2} + \sum_{k=1}^{n}\left(\sin\left(k\alpha + \frac{\alpha}{2}\right) - \sin\left((k-1)\alpha + \frac{\alpha}{2}\right)\right) = \sin(2n+1)\frac{\alpha}{2}.$$

7.6 Buď f po částech hladká funkce s periodou 2π . Položme

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt \text{ pro } k \ge 0,$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt \text{ pro } k \ge 1,$$

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx).$$

7.7 LEMMA:

$$s_n(x) = \frac{1}{\pi} \int_0^{\pi} \left(f(x+t) + f(x-t) \right) \cdot \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{1}{2}t} dt.$$

Důkaz: Po dosazení integrálů a_k , b_k do definice $s_n(x)$ dostáváme

$$s_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} + \sum_{k=1}^n (\cos kt \cdot \cos kx + \sin kt \cdot \sin kx) \right) f(t) dt =$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} + \sum_{k=1}^n \cos k(x-t) \right) f(t) dt$$

Po substituci t = x + z dostaneme s použitím 7.3 a 7.5

$$\cdots = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+z) \cdot \frac{\sin(n+\frac{1}{2})z}{2\sin\frac{1}{2}z} dz = \frac{1}{2} \left(\int_{0}^{\pi} \cdots + \int_{-\pi}^{0} \cdots \right)$$

V druhém sčítanci zavedine dále substituci y=-z. Dostáváme

$$\cdots = \frac{1}{\pi} \int_0^{\pi} f(x+z) \cdot \frac{\sin(n+\frac{1}{2})z}{2\sin\frac{1}{2}z} dz + \int_0^{\pi} f(x-y) \cdot \frac{\sin(n+\frac{1}{2})y}{2\sin\frac{1}{2}y} dy$$

a po sjednocení označení proměnných v obou integrálech

$$\cdots = \frac{1}{\pi} \int_0^{\pi} \left(f(x+t) + f(x-t) \right) \cdot \frac{\sin \left(n + \frac{1}{2} \right) t}{2 \sin \frac{1}{2} t} dt.$$

7.8 Formule 7.7 platí speciálně též pro konstantní funkci f(x) = 1, kde $a_0 = 2$ a $a_k = b_k = 0$ pro $k \ge 1$. Dostáváme

Düsledek: $\frac{1}{\pi} \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\frac{1}{2}t} dt = 1 \ pro \ všechna \ n.$

7.9 Věta: Buď f po částech hladká funkce s periodou 2π , buďte a_k , b_k čísla z definice 7.6. Označme $f(x_+) = \lim_{n \to x_+} f(n)$, $f(x_-) = \lim_{n \to x_-} f(n)$. Potom řada

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

konverguje v každém bodě x k hodnotě

$$\frac{1}{2}\left(f(x_-) + f(x_+)\right)$$

 $(co\check{z}\ je\ ov\check{s}em\ a\check{z}\ na\ konečně\ bodů\ v\ ka\check{z}d\acute{e}m\ intervalu\ \langle a,a+2\pi \rangle,\ rovno\ f(x)).$

Důkaz: Máme

$$s_n(x) = \frac{1}{\pi} \int_0^{\pi} \left(f(x_+) + f(x_-) + f(x_-) + f(x_+) - f(x_+) + f(x_-) - f(x_-) \right) \cdot \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\frac{1}{2}t} dt =$$

$$= \frac{f(x_+) + f(x_-)}{2} \cdot \frac{1}{\pi} \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\frac{1}{2}t} +$$

$$+ \frac{1}{\pi} \int_0^{\pi} \left(\frac{f(x_-) - f(x_+)}{t} + \frac{f(x_-) - f(x_-)}{t} \right) \cdot \frac{\frac{1}{2}t}{\sin\frac{1}{2}t} \cdot \sin\left(n + \frac{1}{2}\right)t dt.$$

Funkce

$$g(t) = \left(\frac{f(x+t) - f(x_{+})}{t} + \frac{f(x-t) - f(x_{-})}{t}\right) \cdot \frac{\frac{1}{2}t}{\sin\frac{1}{2}t}$$

je po částech spojitá: Jedinou potíž dělal bod t=0, ale vzhledem k definici hladké funkce, a známé limity $\frac{\sin t}{t}$ tam má g(t) konečnou limitu zprava. Tedy podle 7.4 máme

$$\lim_{n \to \infty} s_n(x) = \frac{f(x_+) + f(x_-)}{2}$$

 ${\bf 7.10}\;$ Pro funkce fs obecnou periodou ptvrzení věty 7.9 snadno transformujeme takto: Plati

$$\frac{f(x_{+}) + f(x_{-})}{2} = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi}{p} x + b_n \sin \frac{2\pi}{p} x \right),$$

kde

$$a_n = \frac{2}{p} \int_0^p f(t) \cos \frac{2\pi}{p} t \, dt, b_n = \int_0^p f(t) \sin \frac{2\pi}{p} t \, dt.$$

To konečně umožní též reprezentovat takovými řadami v kosinech a sinech též (po částech hladkou) funkci zadanou prostě jen na intervalu (a,b): Nahradíme ji periodickou funkcí s periodou b-a definovanou na intervalech (a+k(b-a),b+k(b-a)) předpisy $f(x)=f\left(x-k(b-a)\right)$ a v bodech a+k(b-a) třeba $\frac{1}{2}(f(a)+f(b))$. Popsané reprezentace funkcí se nazývají jejich Fourrierovy řady.

7.11 Poznámky:

- 1. Dokázali jsme zde jen základní fakt o Fourrierových řadách a nezabývali jsme se souvislostmi.
 - Jednou z nich je například to, že se vlastně jedná o nalezení "souřadnic" funkce f v lineárním prostoru funkcí, v nichž máme skalární součin $\langle f,g\rangle=\int_0^p f(x)g(x)\,dx$ a vhodné násobky funkcí cos nx a sin nx tvoří cosi jako orthonormální bázi. (Srovnejte s Poznámkou 2 v IX.2.1.)
 - Také fyzikální smysl věci je velmi významný: Jedná se o rozklady složitých kmitů na sumy kmitů jednoduchých. V akustice, zhruba řečeno, základní perioda znamená výšku tónu, další dvoj- tří- a vícenásobně rychlejší kmity určují jeho barvu (t. zv. vyšší harmonické).
- 2. Je-li f lichá, jsou zřejmě všechny koeficienty a_n nulové, podobně je-li f sudá, jsou nulové koeficienty b_n . V konkrétním případě je dobře si vždy napřed uvědomit nejde-li o některý z těchto případů, abychom nepočítali zbytečně.
- 3. Jako součet Fourrierovy řady dostáváme běžně i nespojité funkce, třebaže částečné součty $s_n(x)$ jsou spojité. Nejedná se tedy obecně o konvergenci stejnoměrnou. Zda v konkrétním případě Fourrierova řada stejnoměrně konverguje se pozná z rychlosti konvergence koeficientů a_n a b_n k nule. Jsou-li $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ absolutně konvergentní, Fourrierova řada konverguje absolutně a stejnoměrně.
 - Podobně není obecně možné definovat Fourrierovu řadu člen po členu, a to ani v případech, kdy konečný výsledek derivaci má. Jdou-li ale a_n , b_n zvlášť rychle k nule (jsou-li absolutně konvergentní $\sum_{n=0}^{\infty} na_n$ a $\sum_{n=0}^{\infty} nb_n$), derivovat člen po členu lze: konzultujte větu XI.3.6.