Undergrad Complexity Theory: Notes 4

Ben Chaplin

Contents

1 Co:		omplexity		
	1.1	Complexity classes	1	
		Halting problem	1	

1 Complexity

1.1 Complexity classes

Definition. Let $t: \mathbb{N} \to \mathbb{R}^+$. The complexity class TIME is defined:

 $TIME(t(n)) = \{L : L \text{ is a language decided by some TM in } O(t(n)) \text{ time}\}.$

Example. PALINDROMES \in TIME (n^2) . Because there is a Turing Machine which decides PALINDROMES in $O(n^2)$ time.

An interesting fact: if there exists a TM deciding some language L in $5n^3$ time, then there also exists a TM deciding L in n^3 time, and $\frac{1}{1000}n^3$ time... etc. Basically, we can make constants arbitrarily small with Turing Machines by adding states and tape symbols. However the big-O classes remain the same.

Definition. The **complexity class P** is defined $P = \bigcup_{k \in \mathbb{N}} TIME(n^k)$. In other words, P is the class of languages decidable in polynomial time.

Note that the previous definition is model-agnostic. Even multitape Turing Machines are just a polynomial factor faster than single-tape Turing Machines. So P is the same no matter which model we choose.

1.2 Halting problem

Definition. ACCEPTS = $\{\langle M, w \rangle : M \text{ is a TM with input alphabet } \Sigma, w \in \Sigma^*, M(w) \text{accepts} \}.$

Theorem 1. There exists a Universal TM \mathcal{U} that takes as an input $\langle M, w \rangle$ and simulates M(w).

Theorem 2 (Turing's Theorem). There exists no TM H that decides ACCEPTS.

Proof. Assume to the contrary that H exists. We define another TM D that takes an input encoding of a Turing machine. D prepares the input $\langle M, \langle M \rangle \rangle$ and runs H on it. Then, if H accepts, D rejects, and if H rejects, D accepts.

Note that D is a decider, because H is a decider. But now, take $D(\langle D \rangle)$. The computation will run:

$$H(\langle D, \langle D \rangle \rangle)$$

Say D accepts $\langle D \rangle$. That means H rejects $\langle D, \langle D \rangle \rangle$, which means that D rejects $\langle D \rangle$. We have a contradiction.

This argument is known as a diagonalization argument.