Tugas Besar IF2220 Probabilitas dan Statistika: Penarikan Kesimpulan dan Pengujian Hipotesis

Nomor 5

Melakukan test hipotesis 2 sampel, dengan menuliskan 6 langkah testing dan menampilkan juga boxplotnya untuk kolom/bagian yang bersesuaian.

- Data kolom Sulfate dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata kedua bagian tersebut sama?
- Data kolom OrganicCarbon dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata bagian awal lebih besar dari pada bagian akhir sebesar 0.15?
- Rata-rata 100 baris pertama kolom Chloramines sama dengan 100 baris 3. terakhirnya?
- Proporsi nilai bagian awal Turbidity yang lebih dari 4, adalah lebih besar daripada, 4. proporsi nilai yang sama di bagian akhir Turbidity?
- Bagian awal kolom Sulfate memiliki variansi yang sama dengan bagian akhirnya? 5.

0 4

283.651634

```
Persiapan Data
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm, f
# Membaca data dan melihat beberapa data pertama
df = pd.read csv('water potability.csv', index col=0)
df.head()
                                          Chloramines
                                                          Sulfate
                 Hardness
                                  Solids
           Hq
id
1
     8.316766
              214.373394
                           22018.417441
                                             8.059332
                                                       356.886136
2
               181.101509
                           17978.986339
     9.092223
                                             6.546600
                                                       310.135738
3
     5.584087
               188.313324
                           28748.687739
                                             7.544869
                                                       326.678363
                                             7.513408
4
    10.223862
               248.071735
                           28749.716544
                                                       393.663396
5
              203.361523
                           13672.091764
                                             4.563009
                                                       303.309771
     8.635849
                  OrganicCarbon Trihalomethanes
    Conductivity
                                                   Turbidity
Potability
id
1
      363.266516
                      18.436524
                                       100.341674
                                                    4.628771
0
                      11.558279
2
      398.410813
                                        31.997993
                                                    4.075075
0
3
      280.467916
                       8.399735
                                        54.917862
                                                    2.559708
```

84.603556

2.672989

13.789695

```
0
5    474.607645    12.363817    62.798309    4.401425
0

def split_data_equal(df):
    half_data_len = df.count() // 2
    return df[:half data len], df[half data len:]
```

Bagian 1

Data kolom Sulfate dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah ratarata kedua bagian tersebut sama?

```
# Mempersiapkan Data
pl_df_upper, pl_df_lower = split_data_equal(df['Sulfate'])

pl_alpha = 0.05

# Gambar Boxplot Data
fig, (ax_upper, ax_lower) = plt.subplots(1, 2, figsize=(16, 8))
ax_upper.set_title("Bagian Upper Half")
ax_lower.set_title("Bagian Lower Half")
_ = ax_upper.boxplot(pl_df_upper, labels=['Sulfate'])
_ = ax_lower.boxplot(pl_df_lower, labels=['Sulfate'])
```


Penentuan Hipotesis

Pada pengujian ini, H0 adalah miu_1 == miu_2 dan H1 adalah miu_1 != miu_2 (Two-tailed test).

Nilai alpha

Nilai alpha yang digunakan adalah 0.05

Pengujian menggunakan test statistik untuk menentukan bahwa selisih dari kedua ratarata data bernilai 0 dan kedua variansi diketahui

```
# Detail Data
p1 miu 1 = p1 df upper.mean()
p1 miu 2 = p1 df lower.mean()
pl_var_1 = pl_df_upper.var()
p1 var 2 = p1 df lower.var()
p1 cnt 1 = p1 df upper.count()
p1_cnt_2 = p1_df_lower.count()
p1 details = [
    f"miu 1 = {p1_miu_1}",
    f"miu_2 = {pl_miu_2}",
f"var_1 = {pl_var_1}",
    f"var 2 = {p1 var 2}"
    f"cnt 1 = {p1 cnt 1}",
    f"cnt 2 = \{p1 cnt 2\}",
1
print("Detail Data")
for pl_s in pl_details:
    print(p1 s)
print("Uji Statistik")
p1 z = (p1 miu 1 - p1 miu 2 - 0) / ((p1 var 1 / p1 cnt 1) + (p1 var 2)
/ p1 cnt 2)) ** 0.5
print(f"Z = {p1 z}")
Detail Data
miu 1 = 331.30532950549565
miu 2 = 335.11742332488245
var 1 = 1708.3966020772502
var_2 = 1682.7330644425087
cnt 1 = 1005
cnt 2 = 1005
Uji Statistik
Z = -2.0752690696871983
```

Kesimpulan

Karena Z < -Z {alpha / 2}, maka H0 ditolak dan H1 diterima sehingga rata-rata data awal dan akhir **berbeda**.

Bagian 2

Data kolom OrganicCarbon dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata bagian awal lebih besar dari pada bagian akhir sebesar 0.15?

```
# Mempersiapkan data
p2 df upper, p2 df lower = split data equal(df['OrganicCarbon'])
p2_alpha = 0.05
# Gambar Boxplot Data
fig, (ax_upper, ax_lower) = plt.subplots(1, 2, figsize=(16, 8))
ax_upper.set_title("Bagian Upper Half")
ax lower.set title("Bagian Lower Half")
_ = ax_upper.boxplot(p2_df_upper, labels=['OrganicCarbon'])
  = ax lower.boxplot(p2 df lower, labels=['OrganicCarbon'])
              Bagian Upper Half
                                                  Bagian Lower Half
  25
  20
  15
```


Penentuan Hipotesis

Pada uji ini, H0 adalah miu 1 - miu 2 == 0.15 dan H1 adalah miu 1 - miu 2 != 0.15 (Two-tailed test).

Nilai alpha

Nilai alpha yang digunakan adalah 0.05

```
Daerah Kritis # z < -z_{alpha/2} \mid \mid z > z_{alpha/2} print(f"Z < {norm.ppf(p2_alpha / 2)} or Z > {norm.ppf(1 - p2_alpha/2)}")    Z < -1.9599639845400545 or Z > 1.959963984540054
```

Pengujian menggunakan test statistik untuk menentukan bahwa rata-rata pertama data bernilai 0.15 lebih besar dari rata-rata data kedua dan kedua variansi diketahui

```
# Detail Data
p2 miu 1 = p2 df upper.mean()
p2 miu 2 = p2 df lower.mean()
p2_var_1 = p2_df_upper.var()
p2 var 2 = p2 df lower.var()
p2 cnt 1 = p2 df upper.count()
p2_cnt_2 = p2_df_lower.count()
p2 details = [
    f"miu 1 = {p2_miu_1}",
    f"miu_2 = {p2_miu_2}",
f"var_1 = {p2_var_1}",
    f"var 2 = \{p2 \ var 2\}"
    f"cnt 1 = \{p2 cnt 1\}",
    f"cnt 2 = {p2 cnt 2}",
1
print("Detail Data")
for p2_s in p2_details:
    print(p2 s)
print("Uji Statistik")
p2 z = (p2 miu 1 - p2 miu 2 - 0.15) / ((p2 var 1 / p2 cnt 1) +
(p2_var_2 / p2_cnt_2)) ** 0.5
print(f"Z = \{p2 z\}")
Detail Data
miu 1 = 14.253972723723393
miu 2 = 14.461907080372756
var 1 = 11.230287224380323
var_2 = 10.880581782847479
cnt 1 = 1005
cnt 2 = 1005
Uji Statistik
Z = -2.413145517798807
```

Kesimpulan

Karena Z < -Z_{alpha / 2}, maka H0 ditolak dan H1 diterima sehingga rata-rata data pertama **tidak** lebih besar sebanyak 0.15 dari data kedua.

Bagian 3

Rata-rata 100 baris pertama kolom Chloramines sama dengan 100 baris terakhirnya?

```
# Mempersiapkan data
p3_df_upper = df['Chloramines'][:100]
p3_df_lower = df['Chloramines'][-100:]
p3_alpha = 0.05

# Gambar Boxplot Data
fig, (ax_upper, ax_lower) = plt.subplots(1, 2, figsize=(16, 8))
ax_upper.set_title("Bagian Upper Half")
ax_lower.set_title("Bagian Lower Half")
_ = ax_upper.boxplot(p3_df_upper, labels=['Chloramines'])
_ = ax_lower.boxplot(p3_df_lower, labels=['Chloramines'])

Bagian Upper Half
Bagian Lower Half
```


Penentuan Hipotesis

Pada uji ini, H0 adalah miu_1 - miu_2 == 0 dan H1 adalah miu_1 - miu_2 != 0 ($Twotailed\ test$).

Nilai alpha

Nilai alpha yang digunakan adalah 0.05

Daerah Kritis

```
# z < -z_{alpha/2} \mid z > z_{alpha/2} print(f"Z < {norm.ppf(p3_alpha / 2)} or Z > {norm.ppf(1 - p3_alpha/2)}")
```

Pengujian menggunakan test statistik untuk menentukan bahwa rata-rata pertama data bernilai sama dengan rata-rata data kedua dan kedua variansi diketahui.

```
# Detail Data
p3 miu 1 = p3 df upper.mean()
p3 miu 2 = p3 df lower.mean()
p3\_var\_1 = p3\_df\_upper.var()
p3 \text{ var } 2 = p3 \text{ df lower.var()}
p3 cnt 1 = p3 df upper.count()
p3 cnt 2 = p3 df lower.count()
p3 details = [
    f''miu 1 = \{p3 miu 1\}'',
    f"miu_2 = {p3_miu_2}"
    f"var 1 = {p3 var 1}"
    f"var 2 = {p3 var 2}"
    f"cnt_1 = {p3\_cnt_1}"
    f"cnt_2 = {p3_cnt_2}",
1
print("Detail Data")
for p3_s in p3_details:
    print(p3_s)
print("Uji Statistik")
p3_z = (p3_miu_1 - p3_miu_2 - 0) / ((p3_var_1 / p3_cnt_1) + (p3_var_2)
/ p3 cnt 2)) ** 0.5
print(f''\overline{Z} = \{p3 z\}'')
Detail Data
miu 1 = 7.007771140423921
miu 2 = 7.147197636249925
var 1 = 2.193041986248721
var_2 = 1.7077427735538262
cnt 1 = 100
cnt 2 = 100
Uji Statistik
Z = -0.7059424842236872
```

Kesimpulan

Karena $-Z_{alpha/2} < Z < Z_{alpha} / 2$, maka Hipotesis H0 "rata-rata data pertama sama dengan data kedua" diterima.

Bagian 4

Proporsi nilai bagian awal Turbidity yang lebih dari 4, adalah lebih besar daripada, proporsi nilai yang sama di bagian akhir Turbidity?

Interpretasi Soal

Bagi nilai Turbidity menjadi dua, apakah proporsi nilai diatas 4 di bagian awal sama dengan proporsi nilai diatas 4 di bagian akhir?

```
# Bagi ke dua yang sama besar
p4_df_upper, p4_df_lower = split_data_equal(df['Turbidity'])
p4_alpha = 0.05

# Gambar Boxplot Data
fig, (ax_upper, ax_lower) = plt.subplots(1, 2, figsize=(16, 8))
ax_upper.set_title("Bagian Upper Half")
ax_lower.set_title("Bagian Lower Half")
_ = ax_upper.boxplot(p4_df_upper, labels=['Turbidity'])
= ax lower.boxplot(p4 df lower, labels=['Turbidity'])
```


Penentuan Hipotesis

Pada uji ini, H0 adalah p1 == p2 dan H1 adalah p1!= p2 (Two-tailed test).

Nilai alpha

Nilai alpha yang digunakan adalah 0.05

Daerah Kritis

```
# z < -z_{alpha/2} \mid | z > z_{alpha/2}
print(f"Z < {norm.ppf(p4_alpha / 2)} or Z > {norm.ppf(1 - p4 alpha/2)}")
```

Pengujian menggunakan test statistik untuk menentukan bahwa proporsi data awal bernilai sama dengan proporsi data kedua.

```
# Detail Data
p4 \times 1 = p4 df upper[p4 df upper > 4].count()
p4 \times 2 = p4 \text{ df lower}[p4 \text{ df lower} > 4].count()
p4 var_1 = p4_df_upper.var()
p4 var 2 = p4 df lower.var()
p4 n 1 = p4 df upper.count()
p4 n 2 = p4 df lower.count()
p4 details = [
    f"p 1 = \{p4 \times 1 / p4 \ n \ 1\}",
    f''p_2 = \{p4_x_2 / p4_n_2\}'',
    f"var 1 = \{p4 var 1\}",
    f"var 2 = \{p4 \ var 2\}",
    f''x 1 = \{p4 x 1\}'',
    f"x_2 = \{p4_x_2\}", f"n_1 = \{p4_n_1\}",
    f"n 2 = {p4_n_2}",
1
print("Detail Data")
for p4 s in p4 details:
    print(p4 s)
print("Uji Statistik")
p4_p = (p4_x_1 + p4_x_2) / (p4_n_1 + p4_n_2)
p4_z = (p4_x_1 / p4_n_1 - p4_x_2 / p4_n_2) / (p4_p * (1 - p4_p) *
(1/p4 n 1 + 1/p4 n 2)) ** 0.5
print(f''Z = \{p4 \overline{z}\}'')
Detail Data
p 1 = 0.4835820895522388
p 2 = 0.48656716417910445
var 1 = 0.618511247092035
var_2 = 0.5989470818840628
x_1 = 486
x_2 = 489
n 1 = 1005
n = 1005
Uii Statistik
Z = -0.13388958661778735
```

Kesimpulan

Karena - $Z_{alpha/2} < Z < Z_{alpha/2}$, maka Hipotesis H0 "proporsi Turbidity diatas 4 dari bagian atas dan bawah sama" diterima.

Bagian 5

Bagian awal kolom Sulfate memiliki variansi yang sama dengan bagian akhirnya?

```
# Bagi ke dua yang sama besar
p5_df_upper, p5_df_lower = split_data_equal(df['Sulfate'])
p5_alpha = 0.05

# Gambar Boxplot Data
fig, (ax_upper, ax_lower) = plt.subplots(1, 2, figsize=(16, 8))
ax_upper.set_title("Bagian Upper Half")
ax_lower.set_title("Bagian Lower Half")
_ = ax_upper.boxplot(p5_df_upper, labels=['Sulfate'])
= ax_lower.boxplot(p5_df_lower, labels=['Sulfate'])
```


Penentuan Hipotesis

Pada uji ini, H0 adalah var 1 == var 2 dan H1 adalah var 1 != var 2 (Two-tailed test).

Nilai alpha

Nilai alpha yang digunakan adalah 0.05

Daerah Kritis

```
# z < -z_{alpha/2} \mid \mid z > z_{alpha/2}
print(f"F < {f.ppf(p5_alpha / 2, p5_df_upper.count() - 1, p5_df_lower.count() - 1)} or F > {f.ppf(1 - p5_alpha/2, p5_df_upper.count() - 1, p5_df_lower.count() - 1)}")
```

Pengujian menggunakan test statistik untuk menentukan bahwa variansi kedua data bernilai sama.

```
f.ppf(0.05, 11, 9)
0.3452773085573657
p5 \text{ var } 1 = p5 \text{ df upper.var()}
p5_var_2 = p5_df_lower.var()
p5 n 1 = p5 df upper.count()
p5 n 2 = p5 df upper.count()
p5 details = [
    f"var 1 = \{p5 var 1\}",
    f"var 2 = {p5 var 2}",
    f"n_1 = \{p5_n_1\}",
    f"n 2 = \{p5 \ n \ 2\}",
1
print("Detail Data")
for p5 s in p5 details:
    print(p5 s)
print("Uji Statistik")
p5_f = p5_var_1 / p5_var_2
print(f"F = {p5 f}")
Detail Data
var 1 = 1708.3966020772502
var 2 = 1682.7330644425087
n 1 = 1005
n = 1005
Uji Statistik
F = 1.0152511043950063
```

Kesimpulan

Karena - $F_{alpha/2}$, dk1, dk2} < F < F_{alpha} / 2, dk1, dk2}, maka Hipotesis H0 "Variansi data bagian atas dan bawah dari kolom Sulfate sama" diterima.