Encoder MILE 256–2048 CPT, 2 Channels, with Line Driver Integrated into motor

Direction of rotation cw (definition cw p. 68)

		birection of fotation cw (definition cw p. 66)				
Stock program Standard program		Article Numbe	rs			
Special program (on request)	V1 with connector	673024	673025	673026	673027	
	V2 with cable and connector	673028	673029	673030	673031	
Туре						
Counts per turn		256	512	1024	2048	
Number of channels		2	2	2	2	
Max. operating frequency (kHz)		1000	1000	1000	1000	
Max. speed (rpm)		10 000	10 000	10 000	10 000	

maxon Modular S	ystem									
+ Motor	Page	+ Gearhead	Page	+ Brake	Page	Overall length	[mm] / • see Ge	arhead		
EC 45 flat, 30 W, A	285					18.6	18.6	18.6	18.6	
EC 45 flat, 30 W, A	285	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 30 W, A	285	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	
EC 45 flat, 50 W, A	286					22.6	22.6	22.6	22.6	
EC 45 flat, 50 W, A	286	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 50 W, A	286	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	
EC 45 flat, 70 W, A	289					28.4	28.4	28.4	28.4	
EC 45 flat, 70 W, A	289	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 70 W, A	289	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	
EC 45 flat, 60 W, A	287					22.8	22.8	22.8	22.8	
EC 45 flat, 60 W, A	287	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 60 W, A	287	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	
EC 45 flat, 90 W, A	288					28.8	28.8	28.8	28.8	
EC 45 flat, 90 W, A	288	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 90 W, A	288	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	
EC 45 flat, 80 W, A	290					27.8	27.8	27.8	27.8	
EC 45 flat, 80 W, A	290	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 80 W, A	290	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	
EC 45 flat, 120 W, A	291					33.8	33.8	33.8	33.8	
EC 45 flat, 120 W, A	291	GP 42, 3 - 15 Nm	398			•	•	•	•	
EC 45 flat, 120 W, A	291	GS 45, 0.5 - 2.0 Nm	400			•	•	•	•	

Technical Data	Pin Allocation	Pin Allocation
Supply voltage V_{CC} 5 B \pm 10% Typical current draw 15 mA Output signal CMOS compatible State length s_n 90°e (1000 rpm) 45135°e Signal rise time (typically, at $C_L = 25$ pF, $R_L = 1$ k Ω , 25°C) 100 ns Signal fall time (typically, at $C_L = 25$ pF, $R_L = 1$ k Ω , 25°C) 100 ns Operating temperature range -40+100°C Moment of inertia of code wheel Output current per channel Open collector output of the Hall sensors with integrated pull-up resistor 10 k $\Omega \pm$ 20% Wiring diagram for Hall sensors see p. 49	Connection V1	V2 WG 24) Sensor 1 Sensor 2 Sensor 3 4.518 VDC i22) or winding 1 or winding 3 connected WG 28) Channel A nnel A nnel B nnel B nnel B nnel B one B One Channel B One Ch