Cálculo de Programas

Lic. C. Computação (2º ano) Lic./Mest. em Engenharia Informática (3º ano) UNIVERSIDADE DO MINHO

2021/22 - Ficha nr.º 1

1. A composição de funções define-se, em Haskell, tal como na matemática:

$$(f \cdot g) \ x = f \ (g \ x)$$

(a) Calcule $(f \cdot g)$ x para os casos seguintes:

$$\left\{ \begin{array}{l} f \; x = 2 * x \\ g \; x = x + 1 \end{array} \right. \; \left\{ \begin{array}{l} f = \mathsf{succ} \\ g \; x = 2 * x \end{array} \right. \; \left\{ \begin{array}{l} f = \mathsf{succ} \\ g = \mathsf{length} \end{array} \right. \; \left\{ \begin{array}{l} g \; (x,y) = x + y \\ f = \mathsf{succ} \cdot (2*) \end{array} \right.$$

Anime as composições funcionais acima num interpretador de Haskell.

- (b) Mostre que $(f \cdot g) \cdot h = f \cdot (g \cdot h)$, quaisquer que sejam $f, g \in h$.
- (c) A função $id :: a \to a$ é tal que $id \ x = x$. Mostre que $f \cdot id = id \cdot f = f$ qualquer que seja f.
- 2. O diagrama de blocos

$$x \in A \longrightarrow f \longrightarrow (f x) \in C$$

$$y \in B \longrightarrow g \longrightarrow (g y) \in D$$

descreve o combinador funcional produto

$$f \times g = \langle f \cdot \pi_1, g \cdot \pi_2 \rangle \tag{F1}$$

$$\begin{array}{ccc}
A & B & A \times B \\
f \downarrow & g \downarrow & \downarrow f \times g \\
C & D & C \times D
\end{array}$$

- (a) Mostre que $(f \times g)$ $(x, y) = (f \ x, g \ y)$.
- (b) Mostre ainda que

$$\pi_1 \cdot (f \times g) = f \cdot \pi_1 \tag{F2}$$

$$\pi_2 \cdot (f \times g) = g \cdot \pi_2 \tag{F3}$$

$$id \times id = id$$
 (F4)

$$(f \times g) \cdot (h \times k) = f \cdot h \times g \cdot k \tag{F5}$$

Desenhe os diagramas destas igualdades e anime-as em Haskell, para f, g, h e k à sua escolha.

3. Preencha da forma mais genérica possível os "?" do diagrama $? \underbrace{\langle \pi_2, \pi_1 \rangle}_{id} ? \underbrace{\langle \pi_2, \pi_1 \rangle}_{id} ?$

$$aa ? \underbrace{\langle \pi_2, \pi_1 \rangle}_{id} ? \underbrace{\langle \pi_2, \pi_1 \rangle}_{id} ?$$

4. Considere as funções seguintes:

$$f = \langle \pi_1 \cdot \pi_1, \pi_2 \times id \rangle$$
$$g = \langle id \times \pi_1, \pi_2 \cdot \pi_2 \rangle$$

Identifique os tipos de f e g. Acompanhe a sua resolução com a construção dos respectivos diagra-

5. Sabe-se que uma dada função g satisfaz a propriedade:

$$(id \times \pi_2) \cdot \langle id \times \pi_2, id \times \pi_1 \rangle \cdot g = id$$
 (F6)

Sem calcular ou conjecturar a sua definição, determine o tipo mais geral de q completando o diagrama:

$$A \times (C \times B) \stackrel{g}{\longleftarrow} \cdots$$

$$\downarrow id$$

$$\downarrow id$$

$$\downarrow id$$

$$\downarrow id$$

$$\downarrow id$$

6. Apresente definições em Haskell das seguintes funções que estudou em PF:

uncurry ::
$$(a \to b \to c) \to (a,b) \to c$$
 (que emparelha os argumentos de uma função) curry :: $((a,b) \to c) \to a \to b \to c$ (que faz o efeito inverso da anterior) $flip :: (a \to b \to c) \to b \to a \to c$ (que troca a ordem dos argumentos de uma função)

7. Considere o circuito booleano

que calcula a função $f((a, b), c) = (a \land b) \oplus c$, onde \oplus é a operação "exclusive-or".

- Escreva uma definição dessa função $(\mathbb{B} \times \mathbb{B}) \times \mathbb{B} \xrightarrow{f} \mathbb{B}$ que não recorra às variáveis a, bou c^1 e desenhe o respectivo diagrama.
- Qual é o tipo da função $g = \langle \pi_1, f \rangle$?

¹Definições de funções que recorrem a variáveis dizem-se "pointwise"; as correspondentes versões sem variáveis dizem-se "point-