Dokumentation

RGS-Projekt: High Level Band Preselector

Von Nick Göller (Matr. Nr.: 943059) und David Rölleke (Matr. Nr.: 966758)

Betreuer: Prof. Dr. Ing. Dirk Fischer

Inhaltsverzeichnis

1	Funktionsweise	-3-
2	Hinweise zur Inbetriebnahme	-5-
3	Hinweise zur Layoutenwicklung	-6-
4	Verbesserung für die nächste Version	-6-
5	Abbildungen	-6-
6	Stückliste (Hauptplatine rechts und Dämpfungsgliederauswahl	
	links und rechts)	-15-
7	Stückliste (Hauptplatine links, Antennenauswahl und	
	Bandpassauswahl)	-17-

1 Funktionsweise

Rückplatte:

An der Rückseite des Preselectors gibt es zehn SMA-Buchsen. Die Funktionen sind wie folgt, von rechts nach links, zu beschreiben:

Die ersten zwei Buchsen (RX1 und RX2) auf der rechten Platine sind für den Anschluss von bis zu zwei Empfängern an den Preselector vorgesehen. An die dritte Buchse (TRX) kann ein Sender angeschlossen werden. Über zwei EB2-9 Relais (RE19, RE20) kann man steuern, ob das Signal auf RX1, auf RX1 und RX2 oder TRX geführt wird. Einstellen kann man dies über einen DIL-Mehrfachschalter (S4) (s. Abb. 8).

Die sieben Buchsen auf der linken Platine dienen für den Anschluss von Antennen. Vier Antennenanschlüsse sind für Sendeantennen und drei sind für Empfangsantennen konfiguriert.

Neben den SMA-Buchsen befinden sich auf der Rückplatte noch die Anschlüsse für die 12V Spannungsversorgung sowie für PTT (Push To Talk) und einen externen Power Amplifier.

Frontplatte:

Auf der Frontplatte des Preselectors befinden sich drei Kippschalter sowie fünf Drehschalter.

Die Kippschalter schalten (von links nach rechts) die Spannungsversorgung des gesamten Gerätes, den Vorverstärker auf der linken Platine (PreAmp I) und den Vorverstärker auf der rechten Platine (PreAmp II). Wird ein Vorverstärker aktiviert, so wird auch automatisch das zu gehörige Relais (z.B. RE17 für PreAmp II) (s. Abb. 8) so geschaltet, dass das Signal durch den Verstärker fließt. Die Vorverstärker sind Huntington-Verstärker.

Die zwei Drehschalter ganz links sind für die Antennenauswahl zuständig. Der obere Schalter schaltet die AP30112 Power-Relais auf der linken Platine (TX1 – TX4), welche die jeweils ausgewählte Sendeantenne mit der Signalbahn verbinden. Der untere Schalter schaltet drei EB2-9 Relais (RX1 – RX3), welche die drei Empfangsantennen mit der Signalbahn verbinden. Die vierte Schalterstellung des unteren Schalters verbindet keine der Empfangsantennen mit der Signalbahn (s. Abb. 1, Abb. 7).

Der Drehschalter rechts neben der Antennenauswahl und der Drehschalter ganz rechts auf der Frontplatte schalten die Dämpfungsglieder. Es gibt jeweils ein Glied mit 3dB (RE16), eines mit 6dB (RE15) und eines mit 12dB Dämpfung (RE14) (s. Abb. 2). Der linke Schalter schaltet drei Dämpfungsglieder auf der linken Platine. Der rechte schaltet drei identische Glieder auf der rechten Platine. Hierbei kann man jeweils zwischen 0dB und 21dB Dämpfung wählen. Die eingestellte Dämpfung wird durch Leuchtdioden rechts neben den Schaltern repräsentiert. Man erreicht die unterschiedlichen Stufen im Abstand von 3dB durch gezieltes Zu- bzw. Wegschalten der Dämpfungsglieder. Die kombinierte Dämpfung wird dann durch eine Reihenschaltung der jeweils nötigen Glieder erzeugt. Dies wurde durch eine Diodenlogik auf der Platine der Drehschalter realisiert (s. Abb. 3).

Der dritte Schalter von links ist für die Auswahl der Bandpässe des Preselectors zuständig. Er hat zwölf Schalterstellungen, welche die elf Bandpässe und einen Bypass repräsentieren. Auch hier wird der eingestellte Bandpass/Bypass durch eine Leuchtdiode repräsentiert. Auf der Platine dieses Drehschalters sind drei 14-polige Stiftleisten (K5, K6 und K7) vorhanden (s. Abb. 4). Zwei dieser Leisten werden mithilfe 14-poliger Flachbandkabel auf die beiden Hauptplatinen geführt. Dort befindet sich wiederum jeweils eine 14 polige Stiftleiste (K3 rechts, K1 links), welche die Signale auf 12 symmetrisch angeordnete EB2-9 Relais leitet (RE B1-RE B12 rechts, BP1 – BP12 links)(s. Abb. 7,

Abb. 8). Die dritte Stiftleiste ist für eine zukünftige Bandpassauswahl durch einen Mikroprozessor vorgesehen. Sie dient als Eingang und muss mit Dioden auf der angeschlossenen Platine gesperrt werden.

Wählt man nun einen Bandpass am Schalter aus, so werden auf beiden Platinenseiten diejenigen Relais geschaltet zwischen denen der ausgewählte Bandpass liegt und das zu filternde Signal wird durch den Bandpass geleitet. Wird keine Filterung gewünscht, so wählt man am Schalter den Bypass aus und das Signal wird durch ein Koaxialkabel vorbei an den Bandpässen geführt.

An dieser Stelle ist wichtig zu erwähnen, dass jedes Relais parallel zum Steuersignaleingang einen 100nF Kondensator und eine 1N4148 Diode, gegen Masse geschaltet, besitzt. Die Diode wird als Freilaufdiode eingesetzt um einer Überspannung beim Abschalten eines Relais vorzubeugen.

Um leichter zu erkennen in welchem Modus sich der Preselector befindet, gibt es drei Leuchtdioden auf der Frontplatte. Sie werden über die rechte Platine der Dämpfungsgliederauswahl verbunden (s. Abb. 10). Die Leuchtdioden repräsentieren, von links nach rechts auf der Frontplatte gesehen, folgende Signale: +TX PA (rot), RX/TX (grün) und SDR-Mode (grün).

μC-Schaltung:

Auf der rechten Platine befindet sich in einem Weißblechgehäuse der Größe 55mmx74mm ein PIC16F676-Mikrocontroller. Dieser hat mehrere Aufgaben, welche ich hier näher beschreiben werde.

Zuallererst die Spannungsversorgung: es werden die +12V DC Versorgungsspannung von der Bandpassauswahl-Stiftleiste auf einen 78L05 Linearregler (IC3) geführt. Dieser regelt die +12V auf +5V herunter. Zur Kompensation der Schwingungsneigung des Reglers werden zwei Tanthal-Kondensatoren (C43, C44) parallel zum Ausgang und Eingang eingesetzt (s. Abb. 9).

Von der TRX-Signalbahn wird ein Pfad abgezweigt und führt das Sendesignals auf den nicht-invertierenden Eingang eines LM358N-Operationsverstärkers (IC2). Dies ist die VOX-Steuerung. Die Schaltung überwacht, ob das Sendesignal einen bestimmten Pegel überschreitet und sendet ein Signal an den μ C, falls dies der Fall ist. Der Ausgang dieses OpAmps wird über einen Duko zum Mikrocontroller geführt. Die Schwelle, ab der ein Signal an den μ C gesendet wird, kann man mit dem Potentiometer (R22) am invertierenden Eingang des OpAmps einstellen (s. Abb. 5). Aus diesem VOX-Signal wird dann im μ C ein PTT-Signal erzeugt.

Für die Spannungsversorgung des OpAmps wird das gleiche Setup verwendet wie für den Mikrocontroller selbst. Hier wird der 78L05 (IC4) jedoch durch einen Duko direkt von der Verteilung mit +12V versorgt.

Neben der VOX-Steuerung kann man auch direkt ein PTT-Signal (s. Abb. 6) an den μ C anschließen. Beide Signale werden im μ C so verarbeitet, dass dieser den Preselector in den Sendemodus schaltet sobald sie aktiv sind. Konkret bedeutet das, dass ein Signal von 0V an den RX/TX-Intern Ausgang des μ C gelegt wird. Der Empfangsmodus wird durch +5V am RX/TX-Intern Ausgang des μ C eingeschaltet. Durch die Verschaltung des BC846 (T6) mit dem BCX53 (T5) wird es auf die 12V hochgestuft, welche nötig sind um die entsprechenden Relais zu schalten (s. Abb. 6). Um zwischen Sende- und Empfangsmodus zu wechseln wird mit dem RX/TX Signal jeweils ein AP30112 Power-Relais (RE 18 rechts, RE 9 links) auf jeder Platine geschaltet (s. Abb. 7, Abb. 8). Liegt an den Relais keine Spannung an, so überbrücken sie den gesamten Schaltungsteil mit den Bandpässen etc. und verbinden den Sender direkt mit einer der Sendeantennen. Liegt nun 12V an den Relais, so verbinden sie die Antennen mit den Bandpässen und von da aus mit dem Sender bzw. Empfänger.

An den Pins 10, 11 und 12 hängt eine 3x2 Stiftleiste. Man kann über diese Stiftleiste mit Jumpern jeden der genannten Pins auf Masse ziehen. Dies wird als 3 Bit Steuerung für das Sequenzer Timing des μ C benutzt. Ist der Pin mit Masse verbunden wird es als logisch 0 interpretiert, ansonsten als logisch 1.

Zuletzt gibt es noch die TX PA Schaltung. Sie dient dazu, dass ein externer PA (Power Amplifier) beim Senden hinzugeschaltet werden kann. Die Steuerung geschieht dabei durch zwei MOSFETs. Ein SI4425 p-Channel MOSFET (T4) schaltet dabei den positiven Anschluss und ein SI4450 n-Channel MOSFET (T3) schaltet den Masseanschluss für den externen PA. Der PA wird auf der Rückplatte angeschlossen und über Dukos mit der Schaltung verbunden (s. Abb. 6).

Software-Defined-Radio:

Da dieser Preselector in Zukunft auch mit SDR (Software-Defined-Radio) kompatibel sein soll, gibt es einen DIL-Mehrfachschalter (S2), der zwischen zwei Modi hin und her schalten kann (s. Abb. 6). Ganz wichtig! - es dürfen niemals beide Schalter gleichzeitig geschlossen sein sonst kann es zu Kurzschlüssen kommen, da RX/TX auf OV abfallen kann und in diesem Fall direkt mit +12V verbunden wäre!!!

Die erste Einstellung ist gegeben wenn nur der rechte Schalter aktiv ist. Dann befindet sich der Preselector im Normalzustand und schaltet in den Sendemodus wie es oben beschrieben wurde.

Die zweite Einstellung ist für SDR zu wählen. Man kann sie mit dem zweiten Schalter von rechts einschalten. In dieser Konfiguration wird der Preselector in den Empfangsmodus versetzt – zwischen Sender bzw. Empfänger und Antennen werden also die Bandpässe, Dämpfungsglieder und PreAmps geschaltet. Diese Konfiguration ist eigentlich nur für das Empfangen von Signalen gedacht, da die PreAmps nur in eine Richtung betrieben werden können, nämlich von den Antennen zum Empfänger.

Für den SDR-Modus möchte man jedoch die Möglichkeit haben die Bandpässe zwischen Sender und Antennen zu schalten. Um einer Zerstörung der Verstärker vorzubeugen wird über das SDR-Mode Signal, welches am DIL-Mehrfachschalter (S2) abgegriffen wird, die Spannungsversorgung der PreAmps und Dämpfungsglieder abgeschaltet. Dies geschieht über das Relais TX6 welches sich an der Spannungsverteilung auf der Platine der Antennenauswahl befindet (s. Abb. 1, Abb. 12). Die Antennen- und Bandpassauswahl behalten jedoch ihre Versorgungsspannung im SDR-Modus. Da der Mikrocontroller seine Versorgungsspannung von der Bandpassauswahl bezieht, bleibt dieser ebenfalls aktiv.

In dieser Konfiguration ist es möglich das SDR-Signal durch die Bandpässe zu leiten ohne eine Zerstörung der Verstärker zu riskieren.

2 Hinweise zur Inbetriebnahme

Vor der Inbetriebnahme sollte vor allem darauf geachtet werden, dass nicht beide DIL-Schalter vom SDR-Mode auf der rechten Platine (mit Mikroprozessor) gleichzeitig eingeschaltet sind. Es kann sonst zu Kurzschlüssen kommen.

Dazu sollte noch erwähnt werden, dass durch den eingeschalteten SDR-Mode die PreAmps und Dämpfungsglieder auf beiden Platinen ausgeschaltet werden.

Außerdem muss unbedingt drauf geachtet werden, dass die Flachbandkabel richtig herum reingesteckt wurden, da z.B. bei der Bandpassauswahl die mittlere Steckerleiste um 180° gedreht wurde (s. Abb. 4).

3 Hinweise zur Layoutentwicklung

Beide Platinen müssen an manchen Stellen mit Leiterbrücken versehen werden (z.B. neben der Bandpass-Steckerleiste). Außerdem sollte vor der Montierung beider Platinen an den Stellen der Steckerleisten Löcher in die Aluminiumplatte, auf der die Platine montiert wird, gefräst werden, damit kein leitender Kontakt zwischen Steckerleiste und Ground entsteht. Die beiden Transistoren in der PreAmp-Schaltung sollten mit einem Kühlkörper versehen werden.

Die Spannungsversorgung von dem Mikroprozessor und der VOX-Steuerung auf der rechten Platine wurden nicht im Schaltplan angeben, werden aber im Layout durch einen 78L05 Linearregler und zwei Tanthal-Elkos umgesetzt.

4 Verbesserungen für die nächste Version

Problematik mit dem DIL-Schalter bei der Umschaltung zwischen Normalbetrieb und SDR-Mode beheben. Ursprünglich war statt dem Schalter nämlich ein Jumper geplant, den man umsteckt. Da somit jeweils nur ein Kontakt verbunden wurde, hätte der Kurzschlussfall nicht auftreten können.

Die Beschriftung des Drehschalters für die Bandpasswahl entspricht nicht der tatsächlichen Verkabelung auf der Platine. Muss unbedingt geändert werden in der nächsten Version, da eine sinnvolle Bedienung des Gerätes sonst nicht möglich ist.

5 Abbildungen

Abbildung 1: Schaltplan der Antennenauswahl

Abbildung 2: Schaltplan der Dämpfungsglieder

Abbildung 3: Schaltplan der Dämpfungsgliederauswahl rechts und links

Stiftleistenbelegung:

Schalterbelegung:

Pin 3&4 – 3dB; Pin 3 – 6dB; Pin 4 – 9dB;

Pin 5&6 – 6dB Pin5 – 12dB; Pin6 – 15dB; Pin7 – 18dB; Pin8 – 21dB

Pin 7&8 - 12dB

Abbildung 4: Schaltplan der Bandpassauswahl

Abbildung 5: Schaltplan der VOX-Steuerung

Abbildung 6: Schaltplan des Mikroprozessors

Abbildung 7: Schaltplan der linken Hauptplatine

Abbildung 8: Schaltplan der rechten Hauptplatine

Abbildung 9: Layout der Spannungsversorgung von μC und VOX-Steuerung

Abbildung 10: Layout der Dämpfungsgliederauswahl-Platine rechts

Abbildung 11: Layout der Dämpfungsgliederauswahl-Platine links

Abbildung 12: Layout der Bandpassauswahl-Platine

Abbildung 13: Layout der Antennenauswahl-Platine

Abbildung 14: Layout der linken Hauptplatine

Abbildung 15: Layout der rechten Hauptplatine

6 Stückliste (Hauptplatine rechts und Dämpfungsgliederauswahl links und rechts)

Anzahl	Name	Wert	Gehäuse
25	C1, C5, C6, C8, C10, C11, C15 - C30, C40, C41, C42	100nF	1206
9	C2, C3, C4, C31, C32, C35 - C38	1nF	1206
5	C7,C43,C44,C45,C46	10μF	2817_ELKO
1	C9	22nF	1206
1	C12	6,8pF	1206
4	C13,C33,C34,C39	10nF	1206
1	C14	4,7nF	1206
1	D1	BAT45	DO35
2	D2,D12	BAV99	SOT23/3
48	D3 - D11, D13, D18, D23 - D44, D46 - D48, D59 - D70	1N4148W	SOD123
18	D14 - D17, D19, D20, D21, D22, D45, D50 - D58	L-934_12V_3MM_GRUEN	LED_3MM_GRÜN
1	D49	L-934_12V_3MM_ROT	LED_3MM_ROT
1	IC1	PIC16F676(DIL14)	DIL14
1	IC2	LM358N	DIL8
2	IC3,IC4	78L05	SOT89
3	K1, K2, K5	Dämpfungsgliederauswah	l Stiftleiste_2x05_G_2,54
1	К3	Bandfilter-Umschaltung	Stiftleiste_2x07_G_2,54
1	К9	Sequenzer Timing	Stiftleiste_2x03_G_2,54
4	L1,L2,L4,L5	10μΗ	1206 (im Layout größer)
1	L3	680nH	1206 (im Layout größer)
5	R1, R6, R45, R46, R47	100	1206
4	R2,R3,R4,R5	470	1206
1	R7	4,7K	1206
2	R8,R9	300	1206
1	R10	18	1206
2	R11,R12	150	1206

Anzahl	Name	Wert	Gehäuse
1	R13	39	1206
2	R14,R15	82	1206
1	R16	91	1206
3	R17,R21,R39	1K	1206
2	R18,R44	100K	1206
1	R19	6,8	1206
7	R20,R23,R24,R38,R40,R41,R43	10K	1206
1	R22	10K	POTI_TYP357
21	R25 - R32, R34, R37, R42, R48 - R57	2,2K	1206
1	R33	56	1206
1	R35	560	1206
1	R36	680	1206
20	RE14, RE15, RE16, RE17, RE19, RE20, RE B1 RE B12	- EB2-9	Relais_10pins
1	RE18	APE30112	APE30112
2	S1,S3	CK-1049	Lorlin_CK-1Pol
1	S2	DIL- MEHRFACHSCHALTER_4	DIL8-SCHALTER
1	S4	DIL- MEHRFACHSCHALTER_2	DIL4-SCHALTER
1	T1	2N5109	TO39
2	T2,T6	BC846	SOT23/3
1	Т3	SI4450	SO8
1	T4	SI4425	SO8
1	T5	BCX53	SOT89

7 Stückliste (Hauptplatine links, Antennenauswahl und Bandpassauswahl)

Anzahl	Name	Wert	Gehäuse
20	BP1 - BP12, RX1 - RX3, RE8, RE10 - RE13	Relais_10pins (EB2-9)	Relais_10pins
1	C1	10nF	1206
1	C2	6p8	1206
29	C3, C5, C8 - C28, C32 - C37	100n	1206
1	C4	4n7	1206
1	C6	22n	1206
1	C38	10μF	2412_ELKO
20	D1 - D8, D34, D35 - D45	L-934_12V_3MM_GRUEN	LED_3MM_GRÜN
26	D9 - D33, D48	BAV103	SOD80
2	D46, D47	UF4007	DO41
4	K1, K5, K6, K7	Stiftleiste_2x07_G_2,54	Stiftleiste_2x07_G_2,54
1	K2	Stiftleiste_2x05_G_2,54	Stiftleiste_2x05_G_2,54
2	K3, K4	Stiftleiste_2x10_G_2,54	Stiftleiste_2x10_G_2,54
1	L1	0.68u	WE-PMI 74479887210
4	R1, R3, R26, R29	100	0204
1	R2	2,2K	1206
1	R5	39	1206
2	R6, R7	150	1206
1	R11	560	1206
1	R12	680	1206
1	R13	6R8	1206
1	R14	56	1206
20	R15 - R22, R30 - R41	1K	1206
5	R23, R24, R25, R27, R28	100	2195.0001 SMD BRÜCKE
1	R42	1,8K	0204
2	R43, R45	82	1206
1	R44	91	1206
1	R46	18	1206
2	R47, R48	270	1206

1	RE9	34.51.7.024.4010	34.51.7.024.4010
2	S1, S2	CK-1050	Lorlin_CK-2Pol
1	S3	CK-1049	Lorlin_CK-1Pol
1	T1	2N5109	TO39
1	TR2	Trafo_4pins	Trafo_4pins
1	TR3	Trafo_3pins	Trafo_3pins
5	TX1, TX2, TX3, TX4, TX6	34.51.7.024.4010 (APE30112)	34.51.7.024.4010