Working with Automated Reasoning Tools – HOL Syntax and Semantics –

Christoph Benzmüller and Geoff Sutcliffe

Department of Computer Science, Saarland University

TPTPSYS'08

SS08, Block Course at Saarland University, Germany

Syntax

Syntax

© Benzmüller 2006 – p.2

HOL-Syntax: Simple Types

Simple Types T:

o (truth values)

ι (individuals)

 $(\alpha \rightarrow \beta)$ (functions from α to β)

HOL-Syntax: Simply Typed λ -Terms

Typed Terms:

 X_{α} Variables (V)

c_α Constants & Parameters ($\Sigma \& P$)

 $(\mathbf{F}_{\alpha \to \beta} \, \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta}$ λ -abstraction

HOL-Syntax: Simply Typed λ -Terms

Typed Terms:

 X_{α} Variables (V)

 c_{α} Constants & Parameters ($\Sigma \& P$)

 $(\mathbf{F}_{\alpha \to \beta} \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta}$ λ -abstraction

Equality of Terms:

 α -conversion Changing bound variables

 β -reduction $((\lambda Y_{\beta} \mathbf{A}_{\alpha}) \mathbf{B}_{\beta}) \stackrel{\beta}{\longrightarrow} [\mathbf{B}/Y] \mathbf{A}$

 η -reduction $(\lambda Y_{\alpha} (\mathbf{F}_{\alpha \to \beta} Y)) \xrightarrow{\eta} \mathbf{F}$ $(Y_{\beta} \notin \mathbf{Free}(\mathbf{F}))$

HOL-Syntax: Simply Typed λ -Terms

Typed Terms:

 X_{α} Variables (V)

 \mathbf{c}_{α} Constants & Parameters ($\Sigma \& \mathcal{P}$)

 $(\mathbf{F}_{\alpha \to \beta} \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta}$ λ -abstraction

Equality of Terms:

Every term has a unique $\beta\eta$ -normal form (up to α -conversion).

HOL: Adding Logical Connectives _

- T_o true
- \perp_{\circ} false
- $\neg_{o \rightarrow o}$ negation
- V_{o→o→o} disjunction
- $\supset_{o \to o \to o}$ implication
- \Rightarrow _{o \rightarrow o \rightarrow o} equivalence
- $\forall X_{\alpha}$... universal quantification over type α (\forall types α)
- $\exists X_{\alpha}$ existential quantification over type α (\forall types α)
- $=_{\alpha \to \alpha \to o} \text{ equality at type } \alpha \qquad (\forall \text{ types } \alpha)$

One minimal choice for signature Σ :

- $\neg_{o \rightarrow o}$ negation
- V_{o→o→o} disjunction
- $\Pi_{(\alpha \to \circ) \to \circ}$ universal quantification over type α (\forall types α)

One minimal choice for signature Σ :

- $\neg_{o \to o}$ negation
- V_{o→o→o} disjunction
- $\Pi_{(\alpha \to o) \to o}$ universal quantification over type α (\forall types α)

$$\mathbf{A} \lor \mathbf{B}$$
 means $(\lor \mathbf{A} \mathbf{B})$
 $\mathbf{A} \land \mathbf{B}$ means $\neg(\neg \mathbf{A} \lor \neg \mathbf{B})$
 $\mathbf{A} \supset \mathbf{B}$ means $\neg \mathbf{A} \lor \mathbf{B}$
 $\mathbf{A} \Leftrightarrow \mathbf{B}$ means $(\mathbf{A} \supset \mathbf{B}) \land (\mathbf{B} \supset \mathbf{A})$
 $\forall \mathsf{X}_{\alpha} \mathbf{A}$ means $\Pi(\lambda \mathsf{X}_{\alpha} \mathbf{A})$

$$\exists \mathsf{X}_{\alpha} \, \mathbf{A}$$
 means $\neg \forall \mathsf{X}_{\alpha} \, \neg \mathbf{A}$

T means
$$(\forall X_o X \vee \neg X)$$

One minimal choice for signature Σ :

- $\neg_{o \to o}$ negation
- V_{o→o→o} disjunction
- $\Pi_{(\alpha \to o) \to o}$ universal quantification over type α (\forall types α)

Use Leibniz-equality to encode equality

$$\mathbf{A}_{\alpha} \doteq \mathbf{B}_{\alpha}$$

means

$$\forall \mathsf{P}_{\alpha \to \mathsf{o}}(\mathsf{P} \mathbf{A} \supset \mathsf{P} \mathbf{B})$$

$$\Pi(\lambda P_{\alpha \to o}(\neg PA \vee PB))$$

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

Use abbreviations for other logical operators

T means

F means

¬**A** means

 $\mathbf{A} \wedge \mathbf{B}$ means

A V B means

 $A \supset B$ means

 $\mathbf{A} \Leftrightarrow \mathbf{B}$ means

∀X **A** means

∃X A means

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T means
$$(\lambda X_o X) = (\lambda X_o X)$$

$$\mathbf{A} \wedge \mathbf{B}$$
 means

$$\mathbf{A} \vee \mathbf{B}$$
 means

$$A \supset B$$
 means

$$A \Leftrightarrow B$$
 means

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T means
$$(\lambda X_o X) = (\lambda X_o X)$$

$$\mathbf{F} \qquad \qquad \mathsf{means} \qquad (\lambda \mathsf{X_o}\,\mathsf{T}) = (\lambda \mathsf{X_o}\,\mathsf{X})$$

$$\mathbf{A} \vee \mathbf{B}$$
 means

$$A \supset B$$
 means

$$\mathbf{A} \Leftrightarrow \mathbf{B}$$
 means

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T means
$$(\lambda X_o X) = (\lambda X_o X)$$

F means
$$(\lambda X_o T) = (\lambda X_o X)$$

$$\neg \mathbf{A}$$
 means $\mathbf{A} = \mathbf{F}$

$$\mathbf{A} \wedge \mathbf{B}$$
 means

$$\mathbf{A} \vee \mathbf{B}$$
 means

$$A \supset B$$
 means

$$\mathbf{A} \Leftrightarrow \mathbf{B}$$
 means

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T means
$$(\lambda X_o X) = (\lambda X_o X)$$

F means
$$(\lambda X_o T) = (\lambda X_o X)$$

$$eg \mathbf{A}$$
 means $\mathbf{A} = \mathbf{F}$

$$\mathbf{A} \wedge \mathbf{B}$$
 means $(\lambda \mathsf{F}_{\mathsf{o} \to \mathsf{o} \to \mathsf{o}} (\mathsf{F} \mathsf{T} \mathsf{T})) = (\lambda \mathsf{F}_{\mathsf{o} \to \mathsf{o} \to \mathsf{o}} (\mathsf{F} \mathbf{A} \mathbf{B}))$

$$\mathbf{A} \vee \mathbf{B}$$
 means

$$A \supset B$$
 means

$$\mathbf{A} \Leftrightarrow \mathbf{B}$$
 means

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T means
$$(\lambda X_o X) = (\lambda X_o X)$$

F means
$$(\lambda X_o T) = (\lambda X_o X)$$

$$eg \mathbf{A}$$
 means $\mathbf{A} = \mathbf{F}$

$$\mathbf{A} \wedge \mathbf{B}$$
 means $(\lambda \mathsf{F}_{\mathsf{o} \to \mathsf{o} \to \mathsf{o}} (\mathsf{F} \mathsf{T} \mathsf{T})) = (\lambda \mathsf{F}_{\mathsf{o} \to \mathsf{o} \to \mathsf{o}} (\mathsf{F} \mathbf{A} \mathbf{B}))$

$$\mathbf{A} \vee \mathbf{B}$$
 means $\neg (\neg \mathbf{A} \wedge \neg \mathbf{B})$

$$A \supset B$$
 means

$$\mathbf{A} \Leftrightarrow \mathbf{B}$$
 means

Another minimal choice for signature Σ :

means

$$=_{\alpha \to \alpha \to o}$$
 – equality

Use abbreviations for other logical operators

T	means	$(\lambda X_{o} X) = (\lambda X_{o} X)$
F	means	$(\lambda X_o T) = (\lambda X_o X)$
$\neg \mathbf{A}$	means	${f A}={ t F}$
$\mathbf{A} \wedge \mathbf{B}$	means	$(\lambda F_{o \to o \to o} (F \mathtt{T} \mathtt{T})) = (\lambda F_{o \to o \to o} (F \mathbf{A} \mathbf{B}))$
$\mathbf{A} \vee \mathbf{B}$	means	$ eg(eg \mathbf{A} \wedge eg \mathbf{B})$
$\mathbf{A}\supset\mathbf{B}$	means	$ eg \mathbf{A} ee \mathbf{B}$
$\mathbf{A} \Leftrightarrow \mathbf{B}$	means	
$\forall X A$	means	

 $\exists X A$

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T	means	$(\lambda X_o X) = (\lambda X_o X)$
F	means	$(\lambda X_o T) = (\lambda X_o X)$
$\neg \mathbf{A}$	means	${f A}={ t F}$
$\mathbf{A} \wedge \mathbf{B}$	means	$(\lambda F_{o \to o \to o} (F T T)) = (\lambda F_{o \to o \to o} (F \mathbf{A} \mathbf{B}))$
$\mathbf{A} \vee \mathbf{B}$	means	$ eg(eg \mathbf{A} \wedge eg \mathbf{B})$
$\mathbf{A}\supset\mathbf{B}$	means	$ eg \mathbf{A} ee \mathbf{B}$
$\mathbf{A} \Leftrightarrow \mathbf{B}$	means	$\mathbf{A} = \mathbf{B}$
$\forall X A$	means	
$\exists X A$	means	

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T	means	$(\lambda X_o X) = (\lambda X_o X)$
F	means	$(\lambda X_{o} T) = (\lambda X_{o} X)$
$\neg \mathbf{A}$	means	${f A}={ t F}$
$\mathbf{A} \wedge \mathbf{B}$	means	$(\lambda F_{o \to o \to o} (F T T)) = (\lambda F_{o \to o \to o} (F \mathbf{A} \mathbf{B}))$
$\mathbf{A} \vee \mathbf{B}$	means	$\neg(\neg \mathbf{A} \wedge \neg \mathbf{B})$
$\mathbf{A}\supset\mathbf{B}$	means	$ eg \mathbf{A} ee \mathbf{B}$
$\mathbf{A} \Leftrightarrow \mathbf{B}$	means	$\mathbf{A} = \mathbf{B}$
$\forall X A$	means	$(\lambda X_o \mathbf{A}) = (\lambda X_o \mathbf{T})$
$\exists X A$	means	

Another minimal choice for signature Σ :

$$=_{\alpha \to \alpha \to o}$$
 – equality

T	means	$(\lambda X_o X) = (\lambda X_o X)$
F	means	$(\lambda X_{o} T) = (\lambda X_{o} X)$
$\neg \mathbf{A}$	means	${f A}={ t F}$
$\mathbf{A} \wedge \mathbf{B}$	means	$(\lambda F_{o \to o \to o} (F T T)) = (\lambda F_{o \to o \to o} (F \mathbf{A} \mathbf{B}))$
$\mathbf{A} \vee \mathbf{B}$	means	$\neg(\neg \mathbf{A} \wedge \neg \mathbf{B})$
$\mathbf{A}\supset\mathbf{B}$	means	$ eg \mathbf{A} ee \mathbf{B}$
$\mathbf{A} \Leftrightarrow \mathbf{B}$	means	$\mathbf{A} = \mathbf{B}$
$\forall X A$	means	$(\lambda X_o \mathbf{A}) = (\lambda X_o \mathbf{T})$
$\exists X A$	means	$ eg(orall X_{lpha} eg \mathbf{A})$

Semantics

Semantics: Model Classes (different extensionality properties)

Idea of Standard Semantics:

$$\iota \longrightarrow \mathcal{D}_{\iota}$$
 (choose)
o $\longrightarrow \mathcal{D}_{o} = \{\mathtt{T},\mathtt{F}\}$ (fixed)
 $(\alpha \to \beta) \longrightarrow$
 $\mathcal{D}_{\alpha \to \beta} = \mathcal{F}(\mathcal{D}_{\alpha},\mathcal{D}_{\beta})$ (fixed)
(undecidable)

Standard Models $\mathfrak{ST}(\Sigma)$

Standard Models $\mathfrak{ST}(\Sigma)$

Idea of Standard Semantics:

$$\iota \longrightarrow \mathcal{D}_{\iota}$$
 (choose)
 $o \longrightarrow \mathcal{D}_{o} = \{\mathtt{T},\mathtt{F}\}$ (fixed)
 $(\alpha \to \beta) \longrightarrow$
 $\mathcal{D}_{\alpha \to \beta} = \mathcal{F}(\mathcal{D}_{\alpha},\mathcal{D}_{\beta})$ (fixed)
(undecidable)

Henkin's Generalization:

$$\mathcal{D}_{\alpha \to \beta} \subseteq \mathcal{F}(\mathcal{D}_{\alpha}, \mathcal{D}_{\beta})$$
 (choose) but elements are still functions and Denotatspflicht holds (semi-decidable)

[Henkin-50]

Standard Models $\mathfrak{ST}(\Sigma)$

choose: \mathcal{D}_{ι}

fixed: \mathcal{D}_{o} , $\mathcal{D}_{\alpha \to \beta}$, functions

Standard Models $\mathfrak{SI}(\Sigma)$

choose: \mathcal{D}_{ι}

fixed: \mathcal{D}_{o} , $\mathcal{D}_{\alpha \to \beta}$, functions

Formulas valid in $\mathfrak{ST}(\Sigma)$

Henkin Models $\mathfrak{H}(\Sigma) = \mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$

fixed: \mathcal{D}_o , functions

Formulas valid in $\mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$?

Henkin Models $\mathfrak{H}(\Sigma) = \overline{\mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)}$

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$

fixed: \mathcal{D}_o , functions

Formulas valid in $\mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$

Non-Extensional Models $\mathfrak{M}_{\beta}(\Sigma)$

Formulas valid in $\mathfrak{M}_{\!eta}(\Sigma)$?

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$, also non–functions, \mathcal{D}_{o} fixed:

Non-Extensional Models $\mathfrak{M}_{\beta}(\Sigma)$

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$, also non–functions, \mathcal{D}_{o} fixed:

Formulas valid in $\mathfrak{M}_{\beta}(\Sigma)$?

Ex.: $\forall X_{\bullet} \forall Y_{\bullet} X \lor Y \Leftrightarrow Y \lor X$ vs. $\lor \doteq \lambda X_{\bullet} \lambda Y_{\bullet} Y \lor X$

We additionally studied different model classes with 'varying degrees of extensionality'

$$\forall X . \forall Y . X \lor Y \Leftrightarrow Y \lor X$$

$$\forall X \forall Y X \lor Y \doteq Y \lor X$$

$$\lambda X_{\bullet} \lambda Y_{\bullet} X \vee Y \doteq \lambda X_{\bullet} \lambda Y_{\bullet} Y \vee X \qquad \qquad \vee \doteq \lambda X_{\bullet} \lambda Y_{\bullet} Y \vee X$$

$$\vee \doteq \lambda X.\lambda Y.Y \vee X$$

 $\mathfrak{M}_{\beta}(\Sigma)$ non-extensional Σ -models

 \mathfrak{b} : Boolean extensionality, $\mathcal{D}_{o} = \{\mathtt{T},\mathtt{F}\}$

 $\mathfrak{f}(=\eta+\xi)$: functional extensionality

 η : η -functional

 ξ : ξ -functionality

 $\mathfrak{M}_{\!eta\mathfrak{fb}}(\Sigma)\simeq\mathfrak{H}(\Sigma)$ Henkin models

Motivation for Models without Functional Extensionality

- modeling programs: $p_1 \neq p_2 \text{ even if } p_1@a = p_2@a \text{ for }$ every $a \in \mathcal{D}_{\alpha}$
- consider, e.g., run-time complexity: $p_1 \leftarrow \lambda X \mathbf{1}$ and $p_2 \leftarrow \lambda X \mathbf{1} + (\mathsf{X}+1)^2 (\mathsf{X}^2+2\mathsf{X}+1)$

Motivation for Models without Boolean Extensionality?

- modeling of intensional concepts like 'knowledge', 'believe', etc.
- example:

$$\mathbf{O} := 2 + 2 = 4$$

$$\mathbf{F} := \forall x, y, z, n > 2 \mathbf{x}^n + y^n = z^n \Rightarrow x = y = z = 0$$

We want to model:

$$\mathbf{O} \Leftrightarrow \mathbf{F} \text{ but}$$
 $\mathsf{john_knows}(\mathbf{F}) \not\Leftrightarrow \mathsf{john_knows}(\mathbf{O})$

if we have $\mathcal{D}_o = \{T, F\}$ then $\mathbf{O} \Leftrightarrow \mathbf{F}$ implies $\mathbf{O} = \mathbf{F}$ which also enforces $\mathsf{John_knows}(\mathbf{F}) \Leftrightarrow \mathsf{John_knows}(\mathbf{O})$

Models without η

$$\mathcal{E}_{\varphi}(\mathsf{A}) = \mathcal{E}_{\varphi}(\mathsf{A}\downarrow_{\eta})$$

Models without η

$$\mathcal{E}_{\varphi}(\mathsf{A}) = \mathcal{E}_{\varphi}(\mathsf{A}\downarrow_{\eta})$$

Models without ξ

$$\begin{split} \mathcal{E}_{\varphi}(\lambda \mathsf{X}_{\alpha}.\mathsf{M}_{\beta}) &= \mathcal{E}_{\varphi}(\lambda \mathsf{X}_{\alpha}.\mathsf{N}_{\beta}) \text{ iff} \\ \mathcal{E}_{\varphi,[\mathsf{a}/\mathsf{X}]}(\mathsf{M}) &= \mathcal{E}_{\varphi,[\mathsf{a}/\mathsf{X}]}(\mathsf{N}) \ (\forall \mathsf{a} \in \mathcal{D}_{\alpha}) \end{split}$$

valid for all model classes

 $\forall X.\forall Y.X \lor Y \Leftrightarrow Y \lor X$

 $\forall X. \forall Y. X \lor Y \doteq Y \lor X$

validity requires **b**

 $\forall X.\forall Y.X \lor Y \Leftrightarrow Y \lor X$

 $\forall X. \forall Y. X \lor Y \doteq Y \lor X$

 $\lambda X_{\bullet} \lambda Y_{\bullet} X \vee Y \doteq \lambda X_{\bullet} \lambda Y_{\bullet} Y \vee X$

validity requires $\mathfrak b$ and ξ

- $\forall X.\forall Y.X \lor Y \Leftrightarrow Y \lor X$
- $\forall X.\forall Y.X \lor Y \doteq Y \lor X$
- $\lambda X_{\bullet} \lambda Y_{\bullet} X \vee Y \doteq \lambda X_{\bullet} \lambda Y_{\bullet} Y \vee X$
- $\vee \doteq \lambda X.\lambda Y.Y \vee X$

validity requires $\mathfrak b$ and $\mathfrak f$

Useful: Test Problems for TPs

Examples requiring property b

$$(p a_o) \wedge (p b_o) \Rightarrow (p (a \wedge b))$$

$$(h_{o \to \iota}((h \top) \doteq (h \bot))) \doteq (h \bot)$$

Semantics - Calculi - Abstract Consistency

Semantics:

Semantics - Calculi - Abstract Consistency

Semantics:

Model Classes (Extensionality)

Reference Calculi: ND (and others)

Semantics - Calculi - Abstract Consistency

Semantics:

Model Classes (Extensionality)

Reference Calculi: ND (and others)

Abstract Consistency / Unifying Principle: Extensions of Smullyan-63 and Andrews-71

Automated Theorem Proving

Extensional Resolution

Extensional HO Resolution \mathcal{ER}

[Andrews-71] Higher-order resolution (without unification)

ext. axioms

proof search & blind variable instantiation

[Huet-73/75] Higher-order constrained resolution

ext. axioms

proof search & eager unification

delayed pre-unification

■ [Benzmüller-99] Extensional higher-order resolution

interleaved proof search & unification

Some Basic Devices

$$i1$$
 0

$$i1$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

$$NOT(i, o) = (o = \neg i)$$

$$\begin{array}{l} \mathsf{AND}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) = \\ (\mathsf{o} = (\mathsf{i}_1 \wedge \mathsf{i}_2)) \end{array}$$

$$OR(i_1, i_2, o) =$$

 $(o = (i_1 \lor i_2))$

$$NOT'(i, o) =
(\forall t o(t) = \neg i(t))$$

$$\begin{split} \mathsf{AND'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) &= & \mathsf{OR'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) = \\ (\forall \mathsf{t} \ldotp \mathsf{o}(\mathsf{t}) = (\mathsf{i}_1(\mathsf{t}) \land \mathsf{i}_2(\mathsf{t}))) & (\forall \mathsf{t} \ldotp \mathsf{o}(\mathsf{t}) = (\mathsf{i}_1(\mathsf{t}) \lor \mathsf{i}_2(\mathsf{t}))) \end{split}$$

$$\begin{aligned}
\mathsf{OR'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) &= \\
(\forall \mathsf{t}_\bullet\mathsf{o}(\mathsf{t}) &= (\mathsf{i}_1(\mathsf{t}) \vee \mathsf{i}_2(\mathsf{t})))
\end{aligned}$$

Specification of NAND Device

$$\begin{aligned} \mathsf{NAND-SPEC}(i_1,i_2,o) &= \\ (o &= \neg(i_1 \wedge i_2)) \end{aligned}$$

$$\begin{aligned} &\mathsf{NAND} - \mathsf{SPEC'}(\mathsf{i}_1, \mathsf{i}_2, \mathsf{o}) = \\ &(\forall \mathsf{t} \bullet \mathsf{o}(\mathsf{t}) = \neg (\mathsf{i}_1(\mathsf{t}) \wedge \mathsf{i}_2(\mathsf{t}))) \end{aligned}$$

Implementation of NAND Device

$$\begin{aligned} &\mathsf{NAND-IMP}(i_1,i_2,o) = \\ &\exists h_{o} \mathsf{AND}(i_1,i_2,h) \land \mathsf{NOT}(h,o) \end{aligned}$$

$$\begin{split} &\mathsf{NAND-IMP'}(i_1,i_2,o) = \\ &\exists h_{\iota \to o} \text{_AND}(i_1,i_2,h) \land \mathsf{NOT}(h,o) \end{split}$$

Implementation is correct

$$\begin{aligned} &\mathsf{NAND-IMP}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \\ &\mathsf{NAND-IMP}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \end{aligned}$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_o AND(i_1, i_2, h) \land NOT(h, o))$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_{o} \land AND(i_1, i_2, h) \land NOT(h, o))$$
$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_{o} \land (h = (i_1 \land i_2)) \land (o = \neg h))$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_o \cdot AND(i_1, i_2, h) \land NOT(h, o))$$

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_o \cdot (h = (i_1 \land i_2)) \land (o = \neg h))$$

$$(out = \neg(i_1 \land i_2)) \Rightarrow (\exists h_{\iota \to o} \cdot AND(i_1, i_2, h) \land NOT(h, o))$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$\begin{split} &(o = \neg(i_1 \wedge i_2)) \Rightarrow (\exists h_o \text{_AND}(i_1, i_2, h) \wedge \text{NOT}(h, o)) \\ &(o = \neg(i_1 \wedge i_2)) \Rightarrow (\exists h_o \text{_}(h = (i_1 \wedge i_2)) \wedge (o = \neg h)) \\ &(\text{out} = \neg(i_1 \wedge i_2)) \Rightarrow (\exists h_{\iota \rightarrow o} \text{_AND}(i_1, i_2, h) \wedge \text{NOT}(h, o)) \\ &(\text{out} = \neg(i_1 \wedge i_2)) \Rightarrow \\ &(\exists h_{\iota \rightarrow o} \text{_}(\forall t_i \text{_}(h(t) = (i_1(t) \wedge i_2(t)))) \wedge (\forall t_i \text{_}(o(t) = \neg h(t)))) \end{split}$$

Implementation is correct

$$\begin{aligned} &\mathsf{NAND-IMP}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \\ &\mathsf{NAND-IMP}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \end{aligned}$$

Definition expansion

$$\begin{split} &(\mathsf{o} = \neg(\mathsf{i}_1 \wedge \mathsf{i}_2)) \Rightarrow (\exists \mathsf{h}_{\mathsf{o}^{\blacksquare}}\mathsf{AND}(\mathsf{i}_1, \mathsf{i}_2, \mathsf{h}) \wedge \mathsf{NOT}(\mathsf{h}, \mathsf{o})) \\ &(\mathsf{o} = \neg(\mathsf{i}_1 \wedge \mathsf{i}_2)) \Rightarrow (\exists \mathsf{h}_{\mathsf{o}^{\blacksquare}}(\mathsf{h} = (\mathsf{i}_1 \wedge \mathsf{i}_2)) \wedge (\mathsf{o} = \neg \mathsf{h})) \\ &(\mathsf{out} = \neg(\mathsf{i}_1 \wedge \mathsf{i}_2)) \Rightarrow (\exists \mathsf{h}_{\iota \to \mathsf{o}^{\blacksquare}}\mathsf{AND}(\mathsf{i}_1, \mathsf{i}_2, \mathsf{h}) \wedge \mathsf{NOT}(\mathsf{h}, \mathsf{o})) \\ &(\mathsf{out} = \neg(\mathsf{i}_1 \wedge \mathsf{i}_2)) \Rightarrow \\ &(\exists \mathsf{h}_{\iota \to \mathsf{o}^{\blacksquare}}(\forall \mathsf{t}_{\mathsf{i}^{\blacksquare}}(\mathsf{h}(\mathsf{t}) = (\mathsf{i}_1(\mathsf{t}) \wedge \mathsf{i}_2(\mathsf{t})))) \wedge (\forall \mathsf{t}_{\mathsf{i}^{\blacksquare}}(\mathsf{o}(\mathsf{t}) = \neg \mathsf{h}(\mathsf{t})))) \end{split}$$

LEO-II's proofs: approx. 240ms