53 CHEMISTRY SUMMARY NOTES

1. Can detect a chemical reaction when one or more of the following occur:

Exothermic reaction: Heat given out

Endothermic reaction: Heat taken in

- 2. Compound: is formed when 2 or more elements chemically join. e.g. sodium chloride
- 3. Naming compounds

e.g. sodium chloride contains sodium + chlorine

e.g. potassium nitrate contains potassium, nitrogen + oxygen

4. WORD EQUATIONS

These are used to represent a chemical reaction.

Eg. When magnesium metal reacts with oxygen a white powder called magnesium oxide forms.

magnesium + oxygen → magnesium oxide

Magnesium and oxygen are the REACTANTS and magnesium oxide is the PRODUCT.

5. **SOLUTIONS**

A solution is formed when a **SOLUTE** (substance getting dissolved) dissolves in a **SOLVENT** (liquid in which substance dissolves).

DILUTE SOLUTION - contains a little solute

CONCENTRATED SOLUTION - contains a lot of solute

SATURATED SOLUTION - no more solute will dissolve

6. REACTION RATES

The following can affect the **speed** of a reaction:

- PARTICLE SIZE (SMALLER PARTICLES → FASTER)
- TEMPERATURE (HIGHER TEMP → FASTER)
- **CONCENTRATION** (MORE CONCENTRATED → FASTER)

A CATALYST is a substance which speeds up a reaction but remains unchanged at the end (not used up!).

Presenting results on RATES of reactions:

e.g. Lump of chalk + acid A

Powdered chalk + acid B

Reaction Over

Time

Average Rate of Reaction

CHANGE IN MASS/VOLUME/CONCENTRATION

Average rate = TIME INTERVAL

Eg.

(a) The graph shows the results of an experiment carried out to measure the volume of oxygen gas released.

Calculate the average rate of reaction between 0 and 20 seconds.

2	- 1
O 100 P	_
cm ⁻ s	

7. Elements are listed in the Periodic Table

Electrical conductivity distinguishes between metals and non metals.

8. Atomic structure

Elements are made up of tiny identical particles called <u>ATOMS</u>.

Atomic Number = number of protons

Mass Number = number of protons + number of neutrons

In a NEUTRAL atom,

NUMBER OF PROTONS = NUMBER OF ELECTRONS

Nuclide Notation

No Protons = 17 No Electrons = 17 No Neutrons = 35 -17 = 18

Outside the nucleus, the electrons fill shells, (or energy levels)

e.g. sodium, Na \rightarrow 11 electrons, arranged 2, 8, 1

9. Chemical Bonding (Part 1)

Atoms join together by forming BONDS.

Written as F-F or F_2 , fluorine is a DIATOMIC MOLECULE

4. Compounds with covalent bonding

e.g. hydrogen oxide (water)

Shapes of Molecules Molecule Hydrog

Molecule Hydrogen Water Ammonia Methane

Fluoride

HF

<u>Shape</u> H-F

Linear Bent

Pyramidal

Tetrahedral

10. Chemical Formulae

(a) Valency Rules (to work out formula)

e.g. Copper(II) oxide

- a. symbols
- b. valency
- c. cross-over
- d. divide
- e. formula

Cu O

2 2

2 2

2 12

1 1

Cu O

***RULE BREAKERS

Names contain a PREFIX

Eg. nitrogen dioxide NO_2

(b) Writing formula for compounds with COMPLEX IONS

eg. magnesium nitrate

USE PG.8 DATABOOK

11. Formulae Equations

magnesium + oxygen \rightarrow magnesium oxide WORD EQUATION

 $Mg + O_2 \rightarrow MgO$ FORMULAE EQUATION

- (a) formula of an element is its SYMBOL
- (b) formula of a diatomic element is X_2
- (c) USE RULES to write formula of a COMPOUND

STATE SYMBOLS: (s) solid

- (l) liquid
- (g) gas
- (aq) aqueous

12. Chemical Bonding (Part 2)

IONIC BONDING is formed between METALS and NONMETALS.

Metal atom transfers outer electrons to the non-metal atom.

IONS are formed. The oppositely charged ions attract each other strongly. This attraction is an **IONIC BOND**.

In an ionic compound the ions arrange themselves in a regular pattern.

IONIC LATTICE STRUCTURE

13. <u>Differences between Ionic/Covalent Compounds</u>

	Covalent Compounds	Ionic Compounds
How to	Non-Metal + Non-Metal(s)	Metal + Non-Metal(s)
Recognise	↓	↓
e.g.	hydrogen oxide	Sodium chloride
Particles	Molecules	Ions
	(which are NEUTRAL)	(charged particles + or -)
Forces of	Weak forces between	Ions attract strongly
attraction	molecules	(held in a rigid IONIC
between		LATTICE)
particles		
Melting +	*Low	*High
Boiling Points	LOVALENT	HIONIC
Solubility	Dissolve in NON-	Dissolve in WATER
	AQUEOUS SOLVENTS	
	e.g. ethanol	
Conductivity	NEVER	Only when dissolved in
		WATER or MOLTEN →
		Ions Are Free To Move

*** <u>EXCEPTION:</u> COVALENT NETWORK SUBSTANCES

e.g. silicon dioxide (sand)

14. Writing IONIC FORMULA

SHOWS CHARGES OF BOTH IONS PRESENT!

eg. magnesium nitride

eg. calcium nitr<u>ate</u>

USE pg.8 DATABOOK

15. Metallic Bonding

As the name suggests, this type of bonding is between metals. In this type of bonding many positive metal ions occupy a fixed position in a lattice (a bit like ionic). Its outer electron energy level become **delocalised**, creating what is known as a **sea of electrons** since they are not fixed and are free to move throughout the lattice.

The presence of these delocalised electrons explains why metals are very good conductors of electricity.

16. Hydrocarbons

Hydrocarbons are compounds formed between HYDROGEN and CARBON.

Full → Shortened Structural Formula

e.g.

CH₃CH₂CH₂CH₃

FULL STRUCTURAL FORMULA

SHORTENED STRUCTURAL FORMULA

C₄H₁₀ MOLECULAR FORMULA

Homologous Series

Alkanes, alkenes, and cycloalkanes are examples of HOMOLOGOUS SERIES. In a homologous series:

- (a) members represented by GENERAL FORMULA
- (b) as the molecules get bigger, the melting and boiling points increase
- (c) members have similar chemical properties

 ${\bf Isomers-compounds\ which\ have\ same\ molecular\ formula\ but\ different\ structural\ formula\ }$

Naming Branched Alkanes

- name longest carbon chain -> hexane
- number longest carbon chain to give lowest numbers to carbons with branches attached
- name branches
 - -CH₃ methyl
 - -CH2CH3 ethyl
- -if more than one of same branch use prefix

di (if two)

tri (if three)

- name branched alkane

2,3-dimethylhexane

Naming Branched Alkenes

$$CH_3$$
- CH - CH - CH_3
 CH_3

- find longest carbon chain containing double bond
- number this carbon chain to give lowest number to where double bond starts -> pent-2-ene
- indentify branches and indicate position with number in front of branch name

4-methylpent-2-ene

Addition Reactions

Alkenes undergo ADDITION REACTIONS with hydrogen, halogens, and water

Alcohols are used as SOLVENTS and FUELS.

18. Carboxylic Acids (alkanoic acids)

Vinegar is a solution of ethanoic acid. It is used as a food preservative and in household cleaning products.

19. Plastics

Plastics are SYNTHETIC materials and are made from chemicals obtained from OIL.

2 Types of Plastics

Thermoplastic	Thermosetting Plastics
Can be heated and reshaped again and again	Do not melt on reheating
e.g. polythene	e.g. formica

Monomers and Polymers

Plastics are made of large molecules called POLYMERS.

Polymers are made from small molecules called MONOMERS (need to be ${\sf UNSATURATED}$)

Making Polymers by ADDITION POLYMERISATION

In ADDITION POLYMERISATION, the monomers ADD to each other by the opening of the double bond in the monomer.

Naming Plastics: place 'Poly' in front of monomer it is made from.

20. FUELS

A Fuel is a substance which burns well giving out energy.

Combustion is another name for burning.

Oxygen is needed for anything to burn.

Alkanes and alcohols can be used as fuels since they burn well.

Combustion is an EXOTHERMIC reaction.

In an exothermic reaction the products have less energy than the reactants.

HYDROCARBON + OXYGEN → CARBON DIOXIDE + WATER

ALCOHOL + OXYGEN → CARBON DIOXIDE + WATER

The amount of energy released by a fuel when it burns can be worked out using:

c = 4.18 (specific heat capacity of water)

m = mass of water (in kg) **1cm³=0.001kg

 ΔT = change in temperature (°C)