Digital Image Processing (CSE/ECE 478)

Lecture-10: Image Enhancement in Frequency Domain – FFT, Filtering in Frequency Domain

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Discrete Fourier Transform (DFT) – 1D

$$F[u] = rac{1}{M} \sum_{x=0}^{M-1} f[x] e^{-j2\pi u x/M}$$

$$f[x]=\sum_{x=0}^{M-1}F[u]e^{j2\pi ux/M}$$

2D DFT

$$F(u,v) = \sum_{\gamma=0}^{N-1} \sum_{x=0}^{M-1} f(x,y) e^{-2\pi i \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

DFT for simple 'spatial' patterns

Discrete Fourier Transform

1-D, Discrete Case:

Fourier Transform:
$$F(u) = \frac{1}{M} \sum_{n=0}^{M-1} f(x) e^{-j2\pi ux/M}$$
 $u = 0,...,M-1$

Inverse Fourier
$$f(x) = \sum_{i=0}^{M-1} F(u)e^{j2\pi ux/M} \qquad x = 0,...,M-1$$
 Transform:

F(u) can be written as:

$$F(u) = R(u) + jI(u) \quad \Longrightarrow \quad F(u) = |F(u)|e^{-j\phi(u)}$$

Polar coordinate:

where

$$|F(u)| = \sqrt{R(u)^2 + I(u)^2}$$
 $\phi(u) = \tan^{-1}\left(\frac{I(u)}{R(u)}\right)$ magnitude $\phi(u) = \tan^{-1}\left(\frac{I(u)}{R(u)}\right)$

Magnitude and Phase Spectra

Figure 4a
Original

Figure 4b $log(|A(\Omega, \Psi)|)$

Figure 4c $\varphi(\Omega, \Psi)$

Separability of 2D DFT

$$F(u,v) = \sum_{N=1}^{N-1} f(x,y) e^{-2\pi i \left(\frac{ux}{M} + \frac{vy}{N}\right)} = \sum_{N=1}^{N-1} \frac{e^{-2\pi i \left(\frac{ux}{M}\right)}}{e^{-2\pi i \left(\frac{ux}{M}\right)}} = \frac{e^{-2\pi i \left(\frac{ux}{M}\right)}}{e^{-2\pi i \left(\frac{ux}{M}\right)}}$$

Figure 3.7 Computation of the 2-D Fourier transform as a series of 1-D transforms.

Centered FT Magnitude Images

Shifting origin

1-D

$$f[x]e^{\frac{j2\pi u_o x}{M}} \leftrightarrow F(u - u_o)$$

Shifting origin

1-D

2-D

$$f[x,y]e^{j2\pi(\frac{u_ox}{M}+\frac{v_oy}{M})} \leftrightarrow F(u-u_o,v-v_0)$$

$$f[x,y](-1)^{x+y}$$

Shifting origin

Complexity

$$F[u] = rac{1}{M} \sum_{x=0}^{M-1} f[x] e^{-j2\pi ux/M} \hspace{0.5cm} o(extstyle) \ ag{N=0,1,2\cdots(N-1)}$$

$$f[x] = \sum_{n=0}^{M-1} F[u]e^{j2\pi ux/M}$$

FFT: Motivation

$$X_k=\sum_{n=0}^{N-1}x_ne^{-rac{2\pi i}{N}nk}$$

$$X_k = \sum_{m=0}^{N/2-1} x_{2m} e^{-rac{2\pi i}{N}(2m)k} + \sum_{m=0}^{N/2-1} x_{2m+1} e^{-rac{2\pi i}{N}(2m+1)k}$$

$$X_k = \underbrace{\sum_{m=0}^{N/2-1} x_{2m} e^{-rac{2\pi i}{N/2} mk}}_{ ext{DFT of even-indexed part of } x_n} + e^{-rac{2\pi i}{N} k} \underbrace{\sum_{m=0}^{N/2-1} x_{2m+1} e^{-rac{2\pi i}{N/2} mk}}_{ ext{DFT of odd-indexed part of } x_n} = E_k + e^{-rac{2\pi i}{N} k} O_k$$

FFT: Motivation

DFT of odd-indexed part of x_n

$$X_k = \sum_{m=0}^{N/2-1} x_{2m} e^{-rac{2\pi i}{N/2}mk} + e^{-rac{2\pi i}{N}k} \sum_{m=0}^{N/2-1} x_{2m+1} e^{-rac{2\pi i}{N/2}mk} = E_k + e^{-rac{2\pi i}{N}k} O_k$$

$$X_{k+\frac{N}{2}} =$$

DFT of even-indexed part of x_n

FFT(n, [a_0, a_1, ..., a_{n-1}]): if n=1: return
$$a_0$$
 $F_{\text{even}} = \text{FFT}(n/2, [a_0, a_2, ..., a_{n-2}]) \leftarrow K$
 $F_{\text{odd}} = \text{FFT}(n/2, [a_1, a_3, ..., a_{n-1}]) \leftarrow O_K$

for $k = 0$ to $n/2 - 1$:

 $\omega^k = e^{2\pi i k/n}$
 $y^k = F_{\text{even } k} + \omega^k F_{\text{odd } k}$
 $y^{k+n/2} = F_{\text{even } k} - \omega^k F_{\text{odd } k}$

return $[y_0, y_1, ..., y_{n-1}]$

Fast Fourier Transform

 $X_k = E_k + e^{-\frac{2\pi i}{N}k}O_k$
 $X_k = E_k + e^{-\frac{2\pi i}{N}k}O_k$

DFT vs FFT computation times

n	$N=2^n$	N^2	N log N
10	1 024	1 048 576	10 240
12	4 096	16 777 216	49 152
14	16 384	268 435 456	229 376
16	65 536	4 294 967 296	1 048 576

 Fourier Transform → Projection onto a linear orthonormal basis of complex sinusoids

$$x=\sum_{k}(x,e_k)e_k$$

$$F[u] = rac{1}{M} \sum_{x=0}^{M-1} f[x] e^{-j2\pi u x/M}$$

DFT matrix

$$x = \sum_k (x, e_k) e_k$$

X = Wx

The transformation matrix W can be defined as $W=\left(rac{\omega^{jk}}{\sqrt{N}}
ight)_{j,k=0,\dots,N-1}$, or equivalently

$$\begin{array}{c} \chi \left[0\right] \\ \chi \left[1\right] \\ W = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix}, \end{array}$$

$$F[u]=rac{1}{M}\sum_{x=0}^{M-1}f[x]e^{-j2\pi ux/M}$$

$$\omega = e^{-2\pi i/N}$$
 is a primitive N th root of unity

$$W = \begin{bmatrix} \omega^0 & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ \omega^0 & \omega^2 & \omega^4 & \omega^6 & \omega^8 & \omega^{10} & \omega^{12} & \omega^{14} \\ \omega^0 & \omega^3 & \omega^6 & \omega^9 & \omega^{12} & \omega^{15} & \omega^{18} & \omega^{21} \\ \omega^0 & \omega^4 & \omega^8 & \omega^{12} & \omega^{16} & \omega^{20} & \omega^{24} & \omega^{28} \\ \omega^0 & \omega^5 & \omega^{10} & \omega^{15} & \omega^{20} & \omega^{25} & \omega^{30} & \omega^{35} \\ \omega^0 & \omega^6 & \omega^{12} & \omega^{18} & \omega^{24} & \omega^{30} & \omega^{36} & \omega^{42} \\ \omega^0 & \omega^7 & \omega^{14} & \omega^{21} & \omega^{28} & \omega^{35} & \omega^{42} & \omega^{49} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & -i & -i\omega & -1 & -i\omega & -1 & -i\omega \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & -i\omega & i & \omega & -1 & i\omega & -i & -i\omega \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\omega & -i & i\omega & -1 & \omega & i & -i\omega \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & i\omega & i & -\omega & -1 & -i\omega & -i & \omega \end{bmatrix}$$

where

$$\omega = e^{-\frac{2\pi i}{8}} = \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$$

Correspondence to spatial filtering

f = rgb2gray(imread('boy.jpg'));

-1	0	1
-2	0	2
-1	0	1

 $h = [-1 \ 0 \ 1; \ -2 \ 0 \ 2; \ -1 \ 0 \ 1];$

F = fft2(double(f), 402, 402);

F_fH = fftshift(H).*fftshift(F);
ffi = ifft2(ifftshift(F fH));

H = fft2(double(h), 402, 402);

Correspondence to spatial filtering

```
%Sobel filter in frequency domain
f = rgb2gray(imread('boy.jpg'));
h = [-1 0 1; -2 0 2; -1 0 1];
F = fft2(double(f), 402, 402);
H = fft2(double(h), 402, 402);
F_fH = fftshift(H).*fftshift(F);
ffi = ifft2(ifftshift(F_fH));
```

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

where
$$D(u, v) = [(u - M/2)^2 + (v - N/2)^2]^{1/2}$$

 $D_0 \rightarrow cut off frequency$

Radii 10,30,60,160 and 460 \rightarrow power 87, 93.1, 95.7, 97.8 and 99..2

ILPF radius 160

ILPF radius 30

ILPF radius 460

ILPF radius 10

ILPF radius 60

ILPF radius 30

Butterworth Low Pass Filters

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}} \quad \text{where } D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

Butterworth Low Pass Filters (BLPF)

Order two, i.e. n=2

BLPF cut off frequency 10

BLPF cut off frequency 30

BLPF cut off frequency 60

BLPF cut off frequency 160

BLPF cut off frequency 460

Gaussian Low Pass Filters

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

Gaussian Low Pass Filters (GLPF)

GLPF cut off frequency 10

GLPF cut off frequency 30

GLPF cut off frequency 160

GLPF cut off frequency 60

GLPF cut off frequency 460

Comparison (ILPF, BLPF, GLPF)

Low pass filtering application

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Image Sharpening in Frequency Domain

High Pass filter can be obtained from a given low pass filter:

$$H_{hp}(u, v) = 1 - H_{lp}(u, v)$$

Ideal High Pass Filters

$$H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \le D_0 \\ 1 & \text{if } D(u,v) > D_0 \end{cases}$$

Ideal High Pass Filters

IHPF with $D_0 = 60$

IHPF with $D_0 = 160$

Gaussian High Pass Filters

$$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

Gaussian High Pass Filters

GHPF with $D_0 = 60$

GHPF with $D_o = 160$

Laplacian in frequency domain

$$\Im\left[\frac{d^n f(x)}{dx^n}\right] = (ju)^n F(u)$$

$$\Im\left[\frac{\partial^2(f(x,y))}{\partial x^2} + \frac{\partial^2(f(x,y))}{\partial y^2}\right] = (ju)^2 F(u,v) + (jv)^2 F(u,v)$$
$$= -(u^2 + v^2) F(u,v)$$

Notch Reject filter (Notch pass filter)

Filtering in frequency domain

- Band reject (Band pass filters)
- Unsharp Masking and High boost filtering
- Homomorphic filtering

$$\begin{aligned} & \left[n \left[i \left[x, y \right] \right] = \left[n \left[I \left[x, y \right] R \left[x, y \right] \right] \\ & = \left[n \left[I \left[x, y \right] \right] + \left[n \left[R \left[x, y \right] \right] \right] \end{aligned} \end{aligned}$$

Additional considerations

- - Zero padding
- Windowing the transform (apodizing)

Frequency Domain vs Spatial Domain Filtering

- Any linear spatial filter
- Guide the process of spatial filter design

Related Topics

- Gabor filters
- Wavelets
- Shape descriptors

References

• G & W (4.5.1, 4.5.2, 4.5.5, 4.6 – 4.11)