Business Intelligence

Introduction to databases

Lecture outline

- Database fundamentals
- Relational model and other data models
- Incomplete information
- Keys and constraints
- Query languages
- Examples

Warning

 If you already took a database course, this lecture will be very easy for you

Database fundamentals

Data and information

- Data:
 - elementary information unit
- Information:
 - processed data matching specific corporate needs

Data and information

• Data:

```
< J. Smith,</p>
Business intelligence,
spring semester >
```

- Information:
 - Who teaches BI? J. Smith
 - When does the course take place? In the spring semester

Comparing databases and file systems

Main features of DataBase Management Systems (DBMSs)

- Data sharing:
 - no replication in files
 - concurrency
- Data quality
 - integrity constraints
- Efficiency
 - loading, querying, sorting
- Access control
 - privacy
- Robustness

Data integration

- All data, independently of the applications that use them, appear only once
 - (useless redundancies are introduced by design)
 - memory waste is reduced
 - data integrity is improved (the same data cannot have two different values at the same time)

How to use a DBMS?

- Define the general structure of data
- Define the specific operations on data

DATA STRUCTURE FOR BANK ACCOUNTS John Smith's bank account Paul White's bank account instance

Example: university students

Student

STUDNO	NAME	CITY	DEPTCODE
123	Jack	Lugano	Inf
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

The languages of a DBMS

- Data Definition Language (DDL)
 - examples: CREATE, DROP, ALTER
- Data Manipulation Language (DML)
 - examples: SELECT, INSERT, UPDATE, DELETE

 SQL (Structured Query Language) is a standardized language commonly used for both DDL and DML

DML: Query Language

```
SELECT *
FROM Student
WHERE City = 'Lugano'
```

STUDNO	NAME	CITY	DEPTCODE
123	Jack	Lugano	Inf

The relational model

Data models

 Models offer a simplified structure Real world of reality that emphasizes certain Conceptual model aspects and helps to better Relational understand it Network Hierarchical **LOGICAL MODELS**

Timeline of models for data representation

- Hierarchical model (1960s)
- Network model (1970s)
- Relational model (1980s)
- Object-oriented model (1990s)
- XML model (2000s)
- NoSQL model (2010s)

Logical data models

- Hierarchical
 - Data are represented as records
 - Relationships between data are represented with pointers in a tree structure

Logical data models

- Network (CODASYL consortium)
 - Data are represented as records
 - Relationships between data are represented with pointers in a complex graph structure

Logical data models

- Relational
 - Data are represented as tables
 - Relationships between data are obtained by associating attribute values in different tables

History of the relational model

- Invented by Edgar F. Codd in 1969, published 1970 (IBM Research)
 - E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13(6): 377-387 (1970)
- First projects: System R (IBM), Ingres (Berkeley University)
- Main technological findings: 1978-1980
- First commercial systems: start of 1980s (Oracle, IBM SQL/DS and DB2, Ingres, Informix, Sybase)
- Commercial success since 1985

Popularity of the models

	Rank				S	core	
Sep 2023	Aug 2023	Sep 2022	DBMS	Database Model	Sep 2023	Aug 2023	Sep 2022
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🚺	1240.88	-1.22	+2.62
2.	2.	2.	MySQL 🔠	Relational, Multi-model 🔃	1111.49	-18.97	-100.98
3.	3.	3.	Microsoft SQL Server 🔠	Relational, Multi-model 🔃	902.22	-18.60	-24.08
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🚺	620.75	+0.37	+0.29
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🔟	439.42	+4.93	-50.21
6.	6.	6.	Redis 🚹	Key-value, Multi-model 🔃	163.68	+0.72	-17.79
7.	7.	7.	Elasticsearch	Search engine, Multi-model 🚺	138.98	-0.94	-12.46
8.	8.	8.	IBM Db2	Relational, Multi-model 🚺	136.72	-2.52	-14.67
9.	1 0.	1 0.	SQLite Grant SQLite SQLite	Relational	129.20	-0.72	-9.62
10.	4 9.	4 9.	Microsoft Access	Relational	128.56	-1.78	-11.47
11.	11.	1 3.	Snowflake 🚦	Relational	120.89	+0.27	+17.39
12.	12.	4 11.	Cassandra 🚦	Wide column, Multi-model 🚺	110.06	+2.67	-9.06
13.	13.	4 12.	MariaDB 🚦	Relational, Multi-model 🚺	100.45	+1.80	-9.70
14.	14.	14.	Splunk	Search engine	91.40	+2.42	-2.65
15.	1 6.	1 6.	Microsoft Azure SQL Database	Relational, Multi-model 🚺	82.73	+3.22	-1.69
16.	4 15.	4 15.	Amazon DynamoDB 🔠	Multi-model 🚺	80.91	-2.64	-6.51
17.	1 8.	1 20.	Databricks	Multi-model 🔃	75.18	+3.84	+19.56
18.	4 17.	4 17.	Hive	Relational	71.83	-1.52	-6.60
19.	19.	4 18.	Teradata	Relational, Multi-model 🚺	60.33	-0.98	-6.25
20.	20.	1 24.	Google BigQuery 🚹	Relational	56.46	+2.56	+6.34

Informal definition

Relation and relationship

- In classical mathematics, a relation is a settheoretic notion
- A relationship, a.k.a. association, indicates a correspondence between two entities in the model
 - We will see the Entity-Relationship model
- In the relational model, a relation has a slightly different meaning

Formal definition: domain and Cartesian product

- A domain D is any set of values
- Let D₁, D₂, ..., D_n be n (possibly not distinct) domains
- The Cartesian product

$$D_1 \times D_2 \times ... \times D_n$$

is the set of all the ordered *n*-tuples

such that $d_1 \in D_1$, $d_2 \in D_2$, ..., $d_n \in D_n$

Example

- $D_1 = \{a,b\}$
- $D_2 = \{1,2,3\}$
- D₁ × D₂ = {<a,1>, <b,1>, <a,2>, <b,2>, <a,3>,<b,3>}

Formal definition: mathematical relation

 A mathematical relation over D₁, D₂, ..., D_n is a subset of the Cartesian product

$$D_1 \times D_2 \times ... \times D_n$$

- D₁, D₂, ..., D_n are the domains of the relation
- A relation over n domains has degree n
- The number of *n*-tuples is called the cardinality of the relation
- In real applications, the cardinality is always finite

Example

```
D<sub>1</sub> = {a,b}
D<sub>2</sub> = {1,2,3}
D<sub>1</sub> × D<sub>2</sub> = {<a,1>, <b,1>, <a,2>, <b,2>, <a,3>, <b,3>}
R<sub>1</sub> = {<a,1>, <b,3>}
R<sub>2</sub> = {<a,1>, <b,3>, <a,2>}
R<sub>3</sub> = Ø (the empty set)
R<sub>4</sub> = {<a,1>, <b,1>, <a,2>, <b,2>, <a,3>, <b,3>}
```

- The degree of R₄ is 2; its cardinality is 6
 - How many relations are there over $D_1 \times D_2$?

Properties

- Degree of a relation:
 - number of domains (n)
- Cardinality of a relation:
 - number of tuples
- Attribute:
 - name given to a domain in a relation
 - in a relation, the attribute names cannot be repeated

Properties

- Based on the definitions, a mathematical relation is a set of ordered n-tuples
- Therefore, a relation is a set, and thus:
 - there is no ordering between the different ntuples
 - the n-tuples of a relation are all distinct from one another
 - each single n-tuple is ordered: the i-th value of each tuple comes from the i-th domain, i.e., there is an ordering of domains

Example

Games ⊆ string × string × integer × integer

- each domain has two distinct roles, depending on their position (it is a positional structure):
 - the first and the third position regard the name and goals of the home team

 the second and fourth regard name and goals of the visiting team
 FC Basel
 FC Lugano
 3 1

FC Basel	FC Lugano	3	1
FC Lugano	Servette FC	2	0
FC Basel	AC Bellinzona	1	2
AC Bellinzona	Servette FC	0	1

Example under the relational model

- Each domain is associated with a name (attribute) describing its role in the relation
 - such a name is unique in the relation

Home	Visitor	HomeGoals	VisitorGoals
FC Basel	FC Lugano	3	1
FC Lugano	Servette FC	2	0
FC Basel	AC Bellinzona	1	2
AC Bellinzona	Servette FC	0	1

Example under the relational model

- Attributes are also column headers in a table
 - The order of attributes is immaterial (nonpositional structure)
 - These are the same:

Home	HomeGoals	VisitorGoals	Visitor
FC Basel	3	1	FC Lugano
FC Lugano	2	0	Servette FC
FC Basel	1	2	AC Bellinzona
AC Bellinzona	0	1	Servette FC

Home	Visitor	HomeGoals	VisitorGoals
FC Basel	FC Lugano	3	1
FC Lugano	Servette FC	2	0
FC Basel	AC Bellinzona	1	2
AC Bellinzona	Servette FC	0	1

Formal definitions

- Let us associate each attribute with a domain, and let dom(A) indicate the domain associated with attribute A
- An n-tuple over a set X of n attributes is a function that, for each attribute A in X, maps A to a value of the domain dom(A)
- A relation over X is a set of n-tuples over X

Formal definition

- If t is an n-tuple over X and A∈X, then t[A] (or t.A) indicates the value of t over A
- In the example, if t is the first n-tuple of the table, then

```
t[Visitor] = 'FC Lugano'
```

- The same notation is also extended to sets (actually, sequences) of attributes.
 - It then denotes a tuple:

```
t[Visitor, VisitorGoals] = <'FC Lugano', 1>
```

 (We do not care to distinguish between a value and a tuple with just one value)

Tables and relations

- A table represents a relation if
 - The values of each column are from the same domain
 - Rows are different from one another
 - Column headers are different from one another
- Moreover, in a table representing a relation
 - the order of rows is irrelevant
 - the order of columns is irrelevant

Comparing the terminology

Formal definition	Informal definition
relation	table
attribute	column
tuple, n-tuple	row
domain	data type
cardinality	number of rows
degree	number of columns

- An important difference:
 - formal definition: no duplicates
 - informal definition: duplicates are possible

The relational model is value-based

 References between data in different relations are represented by means of values of the domains used in the *n*-tuples Students

Studno	Last	First	DateOfBirth
1234	Black	Joe	12/12/1990
2345	White	John	11/11/1989
3456	Red	Paul	10/10/1991
4567	Green	Louise	08/08/1992

Exams

Student	Mark	Course
4567	Α	01
4567	D	02
3456	В	04
1234	С	04

Courses

Code	Title	Teacher
01	Databases	Doe
02	Business Intelligence	Smith
04	Business Intelligence	Jones

Students	Studno	Last	First	DateOfBirth
	1234	Black	Joe	12/12/1990
	2345	White	John	11/11/1989
/ 7	3456	Red	Paul	10/10/1991
/>	4567	Green	Louise	08/08/1992

Exams Courses

	Student	Mark	Course		Code	Title	Teacher
\	4567	Α	01		01	Databases	Doe
\	4567	D	02	→	02	Business Intelligence	Smith
1	3456	В	04		04	Business Intelligence	Jones
	1234	C	04				

Why values and not pointers?

- Independence of physical structures
- Only what is relevant from the user application viewpoint is represented
 - pointers are less understandable for the end user
- Data are more easily portable to different systems
- Pointers are directional
 - and may exist at the physical level

Cartesian product

Exam (E)

STUDNO	COURSECODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
702	2	7/9/13	С

Course (C)

COURSECODE	TITLE	TEACHER
1	ВІ	Doe
2	databases	Smith

E.STUDNO	E.COURSECODE	E.DATE	E.MARK	C.COURSECODE	C.TITLE	C.TEACHER
123	1	7/2/13	A	1	BI	Doe
123	2	8/1/13	В	1	BI	Doe
702	2	7/9/13	С	1	BI	Doe
123	1	7/2/13	А	2	databases	Smith
123	2	8/1/13	В	2	databases	Smith
702	2	7/9/13	С	2	databases	Smith

Cartesian product

Exam

STUDNO	COURSECODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
702	2	7/9/13	С

Course

COURSECODE	TITLE	TEACHER
1	ВІ	Doe
2	databases	Smith

SELECT * FROM Exam E, Course C

E.STUDNO	E.COURSECODE	E.DATE	E.MARK	C.COURSECODE	C.TITLE	C.TEACHER
123	1	7/2/13	A	1	BI	Doe
123	2	8/1/13	В	1	ВІ	Doe
702	2	7/9/13	С	1	ВІ	Doe
123	1	7/2/13	A	2	databases	Smith
123	2	8/1/13	В	2	databases	Smith
702	2	7/9/13	С	2	databases	Smith

Queries

Which professors have examined Jack?

Student

STUDNO	NAME	CITY	DEPTCODE
123	Jack	Lugano	Inf
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

Exam

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
702	2	7/9/13	С

Course

COURSE CODE	TITLE	TEACHER
1	ВІ	Doe
2	databases	Smith

SQL queries

- SQL queries have the typical select-from-where structure
- Syntax:

```
select AttrExpr {, AttrExpr}
from Table {, Table}
[ where Condition ]
```

- The three parts of the query are called:
 - select clause with the target list
 - from clause
 - where clause
- The query
 - makes the "cartesian product" of the tables in the from clause
 - considers only the rows satisfying the condition in the where clause
 - for each row, evaluates the expression in the select clause
- Complete syntax:

```
select AttrExpr[[as] Alias] {, AttrExpr[[as] Alias]}
from Table [[as] Alias] {, Table [[as] Alias]}
[where Condition]
```

SQL query

Which professors have examined Jack?

SELECT Teacher

FROM Course C, Student S, Exam E

WHERE Name = 'Jack'

AND S.StudNo = E.StudNo

AND E.CourseCode = C.CourseCode

SQL query

Which professors have examined Jack?

```
SELECT Teacher

FROM Course C, Student S, Exam E

WHERE Name = 'Jack'

AND S.StudNo = E.StudNo

AND E.CourseCode = C.CourseCode
```

Cartesian product

s.studno	S.NAME	S.CITY	S.DEPTCODE	E.STUDNO	E.COURSECODE	E.DATE	E.MARK	C.COURSECODE	C.TITLE	C.TEACHER
123	Jack	Lugano	Inf	123	1	07/02/13	А	1	BI	Doe
456	Paula	Mendrisio	Inf	123	1	07/02/13	А	1	ВІ	Doe
789	Peter	Bellinzona	Eco	123	1	07/02/13	А	1	BI	Doe
123	Jack	Lugano	Inf	123	2	08/01/13	В	1	ВІ	Doe
456	Paula	Mendrisio	Inf	123	2	08/01/13	В	1	ВІ	Doe
789	Peter	Bellinzona	Eco	123	2	08/01/13	В	1	ВІ	Doe
123	Jack	Lugano	Inf	702	2	07/09/13	С	1	BI	Doe
456	Paula	Mendrisio	Inf	702	2	07/09/13	С	1	ВІ	Doe
789	Peter	Bellinzona	Eco	702	2	07/09/13	С	1	BI	Doe
123	Jack	Lugano	Inf	123	1	07/02/13	А	2	databases	Smith
456	Paula	Mendrisio	Inf	123	1	07/02/13	A	2	databases	Smith
789	Peter	Bellinzona	Eco	123	1	07/02/13	А	2	databases	Smith
123	Jack	Lugano	Inf	123	2	08/01/13	В	2	databases	Smith
456	Paula	Mendrisio	Inf	123	2	08/01/13	В	2	databases	Smith
789	Peter	Bellinzona	Eco	123	2	08/01/13	В	2	databases	Smith
123	Jack	Lugano	Inf	702	2	07/09/13	С	2	databases	Smith
456	Paula	Mendrisio	Inf	702	2	07/09/13	С	2	databases	Smith
789	Peter	Bellinzona	Eco	702	2	07/09/13	С	2	databases	Smith

SQL query

Which professors have examined Jack?

```
SELECT Teacher

FROM Course C, Student S, Exam E

WHERE Name = 'Jack'

AND S.StudNo = E.StudNo

AND E.CourseCode = C.CourseCode
```

SQL query

Which professors have examined Jack?

```
SELECT Teacher

FROM Course C, Student S, Exam E

WHERE Name = 'Jack'

AND S.StudNo = E.StudNo

AND E.CourseCode = C.CourseCode
```

The two things together give rise to what is called a **join** in DB terms

Joins have an alternative special syntax in SQL, which we won't see in this course

Applying value equalities

s.studno	S.NAME	S.CITY	S.DEPTCODE	E.STUDNO	E.COURSECODE	E.DATE	E.MARK	C.COURSECODE	C.TITLE	C.TEACHER
123	Jack	Lugano	Inf	123	1	07/02/13	A	1	ВІ	Doe
456	Paula	Mendrisio	Inf	123	1	07/02/13	A	1	BI	Doe
789	Peter	Bellinzona	Eco	123	1	07/02/13	A	1	BI	Doe
123	Jack	Lugano	Inf	123	2	08/01/13	В	1	BI	Doe
456	Paula	Mendrisio	Inf	123	2	08/01/13	В	1	ВІ	Doe
789	Peter	Bellinzona	Eco	123	2	08/01/13	В	1	BI	Doe
123	Jack	Lugano	Inf	702	2	07/09/13	С	1	BI	Doe
456	Paula	Mendrisio	Inf	702	2	07/09/13	С	1	ВІ	Doe
789	Peter	Bellinzona	Eco	702	2	07/09/13	С	1	ВІ	Doe
123	Jack	Lugano	Inf	123	1	07/02/13	A	2	databases	Smith
456	Paula	Mendrisio	Inf	123	1	07/02/13	Α	2	databases	Smith
789	Peter	Bellinzona	Eco	123	1	07/02/13	А	2	databases	Smith
123	Jack	Lugano	Inf	123	2	08/01/13	В	2	databases	Smith
456	Paula	Mendrisio	Inf	123	2	08/01/13	В	2	databases	Smith
789	Peter	Bellinzona	Eco	123	2	08/01/13	В	2	databases	Smith
123	Jack	Lugano	Inf	702	2	07/09/13	С	2	databases	Smith
456	Paula	Mendrisio	Inf	702	2	07/09/13	С	2	databases	Smith
789	Peter	Bellinzona	Eco	702	2	07/09/13	С	2	databases	Smith

Selecting columns

s.studno	S.NAME	s.CITY	S.DEPTCODE	E.STUDNO	E.COURSECODE	E.DATE	E.MARK	C.COURSECODE	C.TITLE	C.TEACHER
123	Jack	Lugano	Inf	123	1	07/02/13	А	1	ВІ	Doe
456	Paula	Mendrisio	Inf	123	1	07/02/13	A	1	ВІ	Doe
789	Peter	Bellinzona	Eco	123	1	07/02/13	А	1	ВІ	Doe
123	Jack	Lugano	Inf	123	2	08/01/13	В	1	ВІ	Doe
456	Paula	Mendrisio	Inf	123	2	08/01/13	В	1	ВІ	Doe
789	Peter	Bellinzona	Eco	123	2	08/01/13	В	1	BI	Doe
123	Jack	Lugano	Inf	702	2	07/09/13	С	1	ВІ	Doe
456	Paula	Mendrisio	Inf	702	2	07/09/13	С	1	ВІ	Doe
789	Peter	Bellinzona	Eco	702	2	07/09/13	С	1	ВІ	Doe
123	Jack	Lugano	Inf	123	1	07/02/13	A	2	databases	Smith
456	Paula	Mendrisio	Inf	123	1	07/02/13	Α	2	databases	Smith
789	Peter	Bellinzona	Eco	123	1	07/02/13	Α	2	databases	Smith
123	Jack	Lugano	Inf	123	2	08/01/13	В	2	databases	Smith
456	Paula	Mendrisio	Inf	123	2	08/01/13	В	2	databases	Smith
789	Peter	Bellinzona	Eco	123	2	08/01/13	В	2	databases	Smith
123	Jack	Lugano	Inf	702	2	07/09/13	С	2	databases	Smith
456	Paula	Mendrisio	Inf	702	2	07/09/13	С	2	databases	Smith
789	Peter	Bellinzona	Eco	702	2	07/09/13	С	2	databases	Smith

Final result

C.TEACHER

Doe

Smith

Queries

Which students got an A in BI?

Student

STUDNO	NAME	CITY	DEPTCODE
123	Jack	Lugano	Inf
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

Exam

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
702	2	7/9/13	С

Course

COURSEC ODE	TITLE	TEACHER
1	ВІ	Doe
2	databases	Smith

SQL query

Which students got an A in BI?

SELECT Name

FROM Course C, Student S, Exam E

WHERE C. Title = 'BI'

AND E.Mark = 'A'

AND S.StudNo = E.StudNo

AND E.CourseCode = C.CourseCode

Tables occurring more than once

- Table aliases are useful
 - For readability
 - For those cases where the same table occurs more than once
- Aliases are like variables in programming languages

Who are Bo's employees?

Employee

EMPNO	NAME	SALARY	MGRNO
1	Al	100 K\$	2
2	Во	200 K\$	NULL
3	Carl	150 K\$	2

```
SELECT X.Name
```

WHERE
$$X.MgrNo = Y.EmpNo$$

Selection and projection

- The operation indicated by the SELECT clause is called a projection
 - It restricts the tuples on those attributes indicated after the SELECT keyword
 - It keeps them all if SELECT is followed by '*'
- The condition indicated in the WHERE clause performs a so-called selection:
 - Only the rows satisfying the condition are retained
- It's a bit counterintuitive, but:
 - SELECT → projection
 - WHERE → selection
 - FROM → cartesian product

Observations

- Difference between schema and instance
- Quite different activities:
 - schema design
 - instance management
- Moving from data to information (query language)

Example

Two instances of invoices

"Chez Philippe" Via Elvezia 23 9100 Somewhere					
	Invoice no. 2369 12/5/2012				
3 2 3 2	cover charge starters entrée steaks	3.15 6.22 12.60 19.00			
Total 41.98					

"Chez Philippe" Via Elvezia 23 9100 Somewhere				
Invoice no. 2456 16/5/2012				
2 1 2 2 2	cover charge starter entrée fish coffee	2.10 3.11 8.40 25.5 1.60		
Total <u>39.41</u>				

Relational representation, 1

Invoice

Number	Date	Total
2369	12/5/2012	41.98
2456	16/5/2012	39.41

Detail

Number	Quantity	Description	Amount
2369	3	cover charge	3.15
2369	2	starters	6.22
2369	3	entrée	12.60
2369	2	steak	19.00
2456	2	cover charge	2.10
2456	1	starters	3.11
2456	2	entrée	8.40
2456	2	fish	25.50
2456	2	coffee	1.60

Relational representation, 2

Invoice

Number	Date	Total
2369	12/5/2012	41.98
2456	16/5/2012	39.41

Detail

Number	Row	Quantity	Description	Amount
2369	1	3	cover charge	3.15
2369	2	2	starters	6.22
2369	3	3	entrée	12.60
2369	4	2	steak	19.00
2456	1	2	cover charge	2.10
2456	2	1	starters	3.11
2456	3	2	entrée	8.40
2456	4	2	fish	25.50
2456	5	2	coffee	1.60

- The relational model imposes a rigid data structure:
 - information represented by n-tuples
 - only some n-tuples formats are allowed:
 - those that match the relation schema
- Available data may not always match the required format exactly, for several reasons

Driver	License_no
Alice	A123456
Jim	
Bob	
Dave	

- Jim has a license but we do not know its number
- Bob does not have a license
- We do not know whether Dave has a license or not

- Albeit a rather common practice, it is better not to use values of the domain (such as 0, "", etc.) for representing incomplete information:
 - maybe there are no "unused" values in the domain
 - some "unused" values might become used later
- Such values require special care each time they are encountered

- A rough but effective technique:
 - a null value (NULL) denotes the absence of a value of the domain (NULL is not part of the domain)
 - Formally, extending the notion of n-tuple is sufficient:
 - t[A] is a value of dom(A) for every attribute A
 - or it is the null value NULL
 - Restrictions on the presence of null values are needed

Student

STUDNO	NAME	CITY	DEPT-CODE
123	Jack	Lugano	NULL
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

Exam

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
NULL	2	8/1/13	NULL
702	2	7/9/13	С

Course

COURSE CODE	TITLE	TEACHER
1	NULL	Doe
2	databases	Smith

NULL

- Three different cases of incomplete information:
 - value is unknown: a value of the domain applies, but we do not know which one
 - value is non-existent: no value of the domain applies
 - no information: it is not known whether a value of the domain applies or not
 - DBMSs do not distinguish between these kinds of null values, and therefore they implicitly adopt the "no information" semantics

Keys and constraints

Integrity constraints

 There are database instances that are syntactically correct but that do not represent feasible information for the application

Exams

Student	Grade_perc	Course
123	92	01
123	106	02
234	67	02
345	85	03

Integrity constraints

- Aim: excluding those instances that do not correspond to meaningful information in the application being represented
 - constraints on null values
 - key constraints
 - referential integrity
 - generic constraints

Integrity constraints

- Definition of integrity constraint
 - property that must always be kept satisfied by every instance of the relations
 - constraints can be regarded as logical formulas that map every database instance to either true or false

Integrity constraints

- Types of constraints:
 - intra-relation constraints.
 - domain constraints (i.e., constraints on values)
 - constraints on null values
 - tuple constraints
 - ...
 - inter-relation constraints
 - referential integrity constraints
 - •

Integrity constraints

- Useful for describing the world of interest in a more accurate way than just by the schema structure
- Data quality
- Useful design tool
- May be used by the system for query optimization

Tuple constraints

- A condition on the values of each single n-tuple, independently of the other n-tuples
- Possible syntax: Boolean expression (with AND, OR, NOT) of atoms comparing attribute values or arithmetic expressions thereof
- Example (course 1 has a higher required grade):
 (Grade_perc >= 80) OR (course != 1)
- A tuple constraint is also a domain constraint if it only regards one attribute
 - Example:

```
(Grade_perc >= 60) AND (Grade_perc <= 100)
```

Keys

- A key of a schema is a subset of the schema attributes that is unique and minimal
- Unique: no two tuples have the same key value
- Minimal: by removing any attribute from the key, uniqueness is lost
- A subset of attributes that is unique (but not necessarily minimal) is called a superkey

Keys in the example

(underlined in red)

Student

STUDNO NAME CITY DEPT-CODE

Exam

STUDNO COURSECODE DATE MARK

Course

COURSECODE TITLE TEACHER

Schemas with multiple keys

- One of them is called primary key
- The other ones are the alternate keys

CLIENT (CLIENT_CODE, ADDRESS, SSN)

Primary key: CLIENT_CODE

Alternate key: SSN

Existence of keys

- Relations are sets, therefore each relation may contain the same tuple only once
 - the set of all attributes of a relation schema is always a superkey of the relation
- Since the set of attributes is finite, every relation schema always has (at least) one key

Importance of keys

- Existence of keys guarantees accessibility of all data in the database
- Every single value is univocally accessible through:
 - the name of the relation
 - the value of the key
 - the name of the attribute
- Keys are the main means to connect data in different relations
 - "the relational model is value-based"

Keys and null values

- In the presence of null values for the attributes forming the key
 - the identification of the corresponding n-tuple is not possible
 - references to other relations are also affected
- The presence of null values in keys must be limited
- Practical solution: for every relation we choose a primary key for which null values are not allowed

Foreign keys

- Pieces of information in different relations are connected by means of common values
 - In particular, (primary) key values
- A referential integrity constraint between relations R₁ and R₂ over attributes X imposes that the values over X of every n-tuple of the instance of R₁ also occur as values of the (primary) key of the instance of R₂

Foreign keys in the example

(green arrows) Student CITY DEPT-CODE **STUDNO** NAME Exam **STUDNO** COURSECODE DATE **MARK** Course TITLE COURSECODE **TEACHER**

Table definition

- A table consists of
 - An ordered set of attributes
 - A (possibly empty) set of constraints
- SQL's create table command defines a relation's schema and creates an empty instance

```
create table Student
( StudNo char(6) primary key,
  Name varchar(30) not null,
  City varchar(20),
  Dept-code char(3))
```

Intra-relation constraints

- Constraints are conditions that must be satisfied by every instance of the database
- Intra-relation constraints regard a single relation (two cases: tuple level or table level)
 - not null (on a single attribute; tuple level)
 - primary key: defines the primary key (once per table; entails not null)
 - unique: allows the definition of alternate keys (table level)
 - check: can represent several kinds of constraint

Referential integrity

- It's a hierarchical (parent-child) relationship between tables
- Some attributes of the child table are defined as a foreign key
- The values contained in the foreign key must always be present in the parent table

An incorrect instance

Student

STUDNO	NAME	CITY	DEPT-CODE
123	Jack	Lugano	Inf
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

Course

COURSEC ODE	TITLE	TEACHER
1	ВІ	Doe
2	databases	Smith

Exam

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
789	2	7/9/13	С
123	2	1/8/14	٨
702	NULL	1/2/15	NULL
555	1	3/4/16	В

Violates primary key
Violates not null
Violates foreign key

Managing orphans

Student

STUDNO	NAME	CITY	DEPT-CODE
123	Jack	Lugano	Inf
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

Exam

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
789	2	7/9/13	С

Managing orphans

Student

STUDNO	NAME	CITY	DEPT-CODE
123	Jack	Lugano	Inf
123			
456	Paula	Mendrisio	Inf
789	Peter	Bellinzona	Eco

Orphan: tuple without parent because of deletions or updates in the parent table

Exam

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
789	2	7/9/13	С

Reacting to change

- Deleting/updating a parent's tuple may cause a violation of referential integrity
- Possible reactions:
 - cascade: propagates the change
 - set null: the foreign key is set to null
 - set default: the reference is assigned a default value
 - no action: disallows the operation

• Syntax:

Reacting to change: deletion

What happens to exams if a student is deleted?

- cascade the exams of the deleted student are deleted, too
- set null the StudNo of the the exams of the deleted student are set to null
- set default the StudNo of the the exams of the deleted student are set to a default value
- no action student deletion is disallowed if there are exams for that StudNo

Reacting to change: update

What happens to exams if a student's StudNo is changed?

- cascade
 the StudNo of the exams of the updated student are updated,
 too
- set null
 the StudNo of the exams of the updated student are set to null
- set default the StudNo of the the exams of the updated student are set a default value
- no action
 student update is disallowed if there are exams for that StudNo

Example syntax

```
create table Exam
    primary key (StudNo, CourseCode)
    foreign key (StudNo)
      references Student (StudNo)
        on delete cascade
        on update cascade
    foreign key (CourseCode)
      references Course (CourseCode)
        on delete no action
        on update no action )
```

Ordering

- It's useful to sort results by relevance
- SQL has an order by clause
- Syntax:

```
order by Attr [asc | desc] {, Attr [asc | desc]}
```

- The sorting conditions are evaluated one after the other
 - If there is a tie on the value of the first order by attribute, the second one is considered, and so on

Sorting the result

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
123	2	8/1/13	В
702	2	7/9/13	С
555	1	3/4/16	В

Select * from exam order by mark, date desc

STUDNO	COURSE CODE	DATE	MARK
123	1	7/2/13	Α
555	1	3/4/16	В
123	2	8/1/13	В
702	2	7/9/13	С

Aggregates

- Sometimes it's useful to extract statistical information from a set of values
- The easiest form is given by aggregate functions, which apply to a group of rows

```
- count (cardinality)
```

- sum
- -max
- -min
- avg (average)

The count operator

 count gives the number of rows or of distinct values; syntax:

```
count(< * | [distinct | all] AttrList >)
```

Extract the number of students:

```
select count(*)
from Student
```

• Extract the number of distinct values of attribute Name among all rows of Student:

```
select count (distinct Name) from Student
```

sum, max, min, avg

Syntax:

```
< sum | max | min | avg > ([ distinct | all ] AttrExpr )
```

- The distinct option considers each value only once
 - Useful only for sum and avg
- The all option is the default and considers all values different from null

A query with sum

select sum(amount) as tot
from Order
where ClientNo=2

Order

ORDNO	CLIENTNO	DATE	AMOUNT
1	1	7/2/12	50,000,000
3	2	8/1/13	12,000,000
5	2	7/9/13	1,500,000
4	3	8/8/16	8,000,000
6	3	9/9/17	1,500,000
2	4	1/1/18	5,500,000

Tot 13,500,000

Grouping

- Aggregates can be applied to a subset of the rows of a table thanks to the group by clause
- The groups themselves may be filtered via the having clause
- Example: extract the sum of amounts of orders placed after 8/8/12 for every client with at least 2 orders

```
select ClientNo, sum(Amount)
from Order
where Date > 8/8/12
group by ClientNo
having count(*) >= 2
```

Step 1: selection

Evaluating the where clause

ORDNO	CLIENTNO	DATE	AMOUNT
1		7/2/12	EO 000 000
1	1	7/2/12	50,000,000
3	2	8/1/13	12,000,000
5	2	7/9/13	1,500,000
4	3	8/8/16	8,000,000
6	3	9/9/17	1,500,000
2	4	1/1/18	5,500,000

Step 2: grouping

• Evaluating the group by clause

ORDNO	CLIENTNO	DATE	AMOUNT
3	2	8/1/13	12,000,000
5	2	7/9/13	1,500,000
4	3	8/8/16	8,000,000
6	3	9/9/17	1,500,000
2	4	1/1/18	5,500,000

Step 3: computing aggregates

Computing sum (amount) and count (*)
 for each group

CLIENTNO	SUM(AMOUNT)	COUNT(*)
2	13,500,000	2
3	9,500,000	2
4	5,500,000	1

Step 4: group extraction

• Evaluating having count(*) >= 2

CLIENTNO	SUM(AMOUNT)	COUNT(*)
2	13,500,000	2
3	9,500,000	2
4	5,500,000	1

Step 5: generating result

• Evaluating select clause

CLIENTNO	SUM(AMOUNT)
2	13,500,000
3	9,500,000

Coherence between group by and target list

Incorrect:

```
select Mark Which mark? For which exam in the group?
from Exam
group by StudNo
```

Incorrect:

```
select E.CourseCode, count(*), C.Teacher
from Exam E, Course C
where E.CourseCode C.CourseCode
                                      Here the teacher is univocally
group by E.CourseCode
                                      determined by the CourseCode
                                      (because of the foreign key), but this
                                      might not have been the case
```

Correct:

```
select E.CourseCode, count(*), C.Teacher
from Exam E, Course C
where E.CourseCode C.CourseCode
group by E.CourseCode, C.Teacher
```

Multiple grouping

 Extract the sum of quantities of details of orders placed by each client on each product, provided that the sum is above 50

```
Order ORDNO CLIENTNO DATE AMOUNT

Detail ORDNO PRODNO QTY

select ClientNo, ProdNo, sum(Qty)

from Order as O, Detail as D

Where O.OrdNo = D.OrdNo

group by ClientNo, ProdNo

having sum(Qty) > 50
```

A possible result after join and grouping

 Extract the sum of quantities of details of orders placed by each client, provided that the sum is above 50

O.ORDNO	CLIENTNO	D.ORDNO	PRODNO	QTY	•
3	1	3	1	30	1 1
4	1	4	1	20	1,1
3	1	3	2	30	1,2
5	1	5	2	10	
3	2	3	1	60	2,1
1	3	1	1	40	
2	3	2	1	30	3,1
6	3	6	1	25	

1,1 group

1,2 group

2,1 group

3,1 group

Final result

 Computing sum (Qty) for the groups and evaluating the having clause

CLIENTNO	PRODNO	SUM(QTY)
1	1	50
1	2	40
2	1	60
3	1	95