Hence $f(x) = \ln(1+x)$ Canbe expanded in an infinite series.

By Machanins theorem $f(x) = f(0) + xf'(0) + \frac{x^{1}}{2!} f''(0) + \dots$ $\ln(1+x) = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + \dots$

[Indeterminate lorms]

The form (0) :- suppose that two functions of a possibility the conditions of couchys M. v. T on Same interval. Di f(a) = 10(a) = 0

Then the expression f(a) is meaningless. But lim f(x) may exist.

The Calculation of limits of this type is known as evaluating the indeterminate form

(0). e.g.

Sinx is meaningless at x = 0

But max -> 1 as x -> 0

L' Mospitals Rule

Statement ...

(i) tel the functions of a place continues on (a, b)

(3) [4:18 are derivable m] n, b[

(3) $f(a) = 0 = p(a) + p'(x) \neq 0$ $\forall x \in J_a, b$

 $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$

Then lin $\frac{f(x)}{g(x)} = f$

Consider
$$\int \frac{f(\alpha)}{\beta(\alpha)} = \int \frac{f(\alpha) - f(\alpha)}{\psi(\alpha) - \beta(\alpha)} = \phi(\alpha) = 0$$
Since $f(\alpha) = \phi(\alpha) = 0$

sice par d'éles aire. Continues on [a, h] de derivable in) 4, 1 (.

Mence applying cauchys MVT. we get $\frac{f(x)}{\phi(x)} = \frac{f(x)}{\phi'(x)}$ for some CE) a, x (

of x-na then c-na also because accex Hence if $\lim_{x \to a} \frac{f(x)}{g'(x)} = P$, Then $\lim_{x \to a} \frac{f(x)}{g'(x)} = P$, $\lim_{x \to a} \frac{f(x)}{g'(x)} = P$.

Se lin fice) = lin 1'(c) And $\frac{f'(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ as sequired

> Available at www.mathcity.org

Exercise 110.33

Evaluate the given limit (peab 1-48).

(1) lun (" 10")

Let let P to the required limit. Then

P. Pin (- (5m)

Cosa. By on 11. Rule

 $\int_{0}^{\infty} \frac{1+1}{1} = 2.$

(a) Let $l = \lim_{x \to \infty} \frac{e^{x^2}}{e^{x^2}}$ (b) $\frac{1}{e^{x^2}}$

ling 2xex 1

15 (12.22 4 e)

= = 2(1)

Q = -2

(3) $\lim_{x \to \infty} \frac{x - \tan x}{x - 8.x}$

Sol- let I be the required limit, Then

 $l = \lim_{x \to 0} \frac{x - \tan x}{x - \sin x} \qquad \left(\frac{0}{0} \int_{0}^{0} \sin x dx\right)$

 $= l = \frac{l_{ii}}{\alpha_{-i}}, \quad \frac{1 - 3ec^{2}x}{1 - \cos x} \qquad \left(\frac{\partial}{\partial x} - \frac{1}{2}\cos x\right)$

$$l = \lim_{x \to 0} \frac{-2 \operatorname{Sec} x \cdot \operatorname{Sec} x \cdot \operatorname{Inn} x}{\operatorname{Sh}_{x}}$$

$$= \lim_{x \to 0} \frac{-2 \operatorname{Sec} x \cdot \operatorname{Inn} x}{\operatorname{Sh}_{x}} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to 0} \frac{-2 \operatorname{Sec} x \cdot \operatorname{Sec} x + \operatorname{Inn} x \cdot 2 \operatorname{Sec} x \cdot \operatorname{Sec} x \cdot \operatorname{Inn} x}{\operatorname{Sec} x \cdot \operatorname{Sec} x \cdot \operatorname{Inn} x}$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Cos}_{x} + 1}$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Cos}_{x} + 1}$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Cos}_{x} + 1} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Cos}_{x} + \operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{fotm}\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{Inn} x\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{Inn} x\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{Inn} x\right)$$

$$= \lim_{x \to \infty} \frac{\operatorname{Inn} x}{\operatorname{Inn} x} \qquad \left(\frac{\circ}{\circ} \operatorname{Inn} x\right)$$

(C)

(7)

30P :-

l .

In
$$e^{\chi} = 2 \cos \chi + e^{-\chi}$$

Asin χ

Asin

So l= lin cosha - cosa

= lim
302 Suha + Sun
X (01x + Six

2 line (ashx 4 (agx).
71-70 -71 hix. 4 (asx. 4 (asx.

So $\ell = \frac{1+1}{1+1} = 1$ or $\ell = 1$

(i) $\lim_{x\to 1} \frac{1-x+\ln x}{1-\sqrt{2}x-x}$

Sol:- let l'he required limit, so $l = \lim_{x \to 1} \frac{1 - x + \ln x}{1 - x}$

 $= \frac{\lim_{x \to 1} \frac{-1 + \frac{1}{x}}{\frac{1}{2} (2x - x^{2})^{-\frac{1}{2}} (2x - 2x)}$

 $\frac{1}{x}$ $\frac{1}{x}$

50 [l--1]

Pet l' be the rea limit. Then

Casx + hinx - 1-2 2x secre + 2 tanx + 6x tan'x secx + 2 tanx + 2tan - Caga - Sux - (1-1-)3 2. Becze + 4x Beczelanx + 2 Becze + 6 tanta Be 12 secztanz + 12 ztanz srez + 6 lanzsec If lim mizz+alinx be finite find the a 4 Dimet. Soli. Lat 1 rear limit. Then s Cossx + a Cossx Now as 3x2 -> 0 as x -> 0 But l_s a finita number (quen) conclude that =) 2 (a) 2(a) + a (a)(0)8=0

Available at oro

So Given Rint becomes

$$=\lim_{x\to\infty} 2\cos 2x - 2\cos x \cdot \left(\frac{0}{0}\right)$$

$$=\lim_{\alpha \to 0} \frac{-4 \ln 2 \times + 2 \ln x}{6 \times 2} \left(\frac{0}{0}\right)$$

$$= \lim_{N \to a} - \frac{\chi \ln \chi + \cos \chi - \frac{1}{1 + \chi}}{2\chi} \left(\frac{0}{0} \right)$$

(1)
$$\lim_{x \to \infty} \frac{(1+x)^{1/x} - e}{x}$$

sol: let l be the leap limit, Then $l = \frac{(1+x)^{1/x} - e}{x}$

```
The Join 00
                                                                                                               f(x) = \omega = \lim_{x \to a} \phi(x)
            Then
                                                        \frac{f(x)}{\phi(x)} = \lim_{x \to \infty} \frac{f(x)}{\phi'(x)} 
= \lim_{x \to \infty} \frac{f(x)}{\phi'(x)} 
= \lim_{x \to \infty} \frac{f(x)}{\phi(x)} 
               Evaluate the following limits
                       \lim_{n\to\infty} \frac{\ln(\ln 3\pi)}{2\ln(\sin x)}
   sol . let l
                                                                 he the sear limit. Then
                                                                  In ( his 3 x)
                                                                          ln(kix) (00)
                                                                        3 Cas' 32 hix
Casx his 3x
                                lin.

3 [-32:3x2:x+(0:3x (0:5x)
                                                                     - lix lisx + (ux. (3(05.3x)
                                                                 - 9 hi32 liz + 3 Cos 32 Cosx
                                                                             - Rix hi3x+3 Casx Cos3x
                                                        \frac{3}{3} = 
Roll ...
                         lat I be the day limit, Then
                           l= lin lnx2 cotix
```

$$= \lim_{n \to 0} \frac{h^3 x}{n \cos x} \cdot \frac{\left(\frac{0}{n}\right)^{n}}{n \cos x}$$

$$= -\frac{0}{0+1} = 0 \Rightarrow 2$$

(3)
$$\lim_{x\to a} \frac{\ln(x-a)}{\ln(x^2-a)}$$

$$Q = \lim_{x \to a} \frac{\int_{n(x-a)}^{n(x-a)} \left(\frac{\omega}{\infty}\right)}{\ln\left(e^{x}-e^{x}\right)}$$

$$\ell = \lim_{n \to \infty} \frac{1}{x-a}$$

=
$$\frac{\sin \alpha}{\pi - \alpha}$$
 $e^{\pi} - e^{\alpha}$ $e^{\pi}(\pi - \alpha)$

In tanx sol: Let be the ray limit, so Intana la lin = Sim Beck lun 22 (0) lim 2/ 2(052x 1= (050) =-) [=1] (5) lim log (tunzx) Sof: Let I be easy limit, Then la lin log lanz lan 2x = lim to Intanza

www.mothcityorg

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{1} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times Cos_{2} \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times A \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X \to \infty} \frac{\lambda}{A \cdot 1 \times X}$$

$$= \lim_{X$$

Available at

$$= \frac{3 \cos (3 \pi)}{\cos (\pi)} = \frac{3(-1)}{(-1)}$$

$$l = \begin{cases} l_{\text{an}} & \frac{l_{\text{n}} \times l_{\text{n}}}{Cat \times l} & \frac{\omega \omega}{\omega} \end{cases}$$

$$\frac{2x}{x-x} = \frac{2x}{x}$$

$$- \operatorname{Colec}(x).2.x$$

$$= \lim_{x \to 0} \frac{Z_{x}}{\int \mathcal{U}(s) \cdot c^{2}x^{2}}$$

(B)
$$\lim_{x\to\infty} \ln\left(1+\frac{1}{x}\right)$$
 $\ln\left(1-\frac{1}{x}\right)$

$$l = \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x})}{\ln(1-\frac{1}{x})} \qquad (\frac{\infty}{\infty})$$

$$= \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x})}{(\frac{1}{x+\frac{1}{x}})} \cdot (\frac{1}{x+\frac{1}{x}})$$

$$= \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x})}{(\frac{1}{x+\frac{1}{x}})} \cdot (\frac{1}{x+\frac{1}{x}})$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{x+1} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \lim_{x \to \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$$

 $= \lim_{\chi \to 1} \frac{1-\chi}{1-\chi}$ $= \lim_{\chi \to 1} \frac{1-\chi}{1-\chi}$

 $\frac{1-x}{(-x)}$

 $=\frac{1}{2\pi}$ $=\frac{-1}{-(\operatorname{osec}'(\frac{1}{12})\cdot(\frac{1}{2})}$ $=\frac{1}{2\pi}$ $=\frac{1}{2\pi}$

l= 2

lin x ln tan(x)

let l= lin x latanx

= lin latanx

- 200 1 1 1 $\left(\frac{\infty}{\infty}\right)$

$$= \lim_{x \to 0} \frac{4x}{2(0)2x}$$

$$= \lim_{x \to 0} \frac{2x}{(0)2x}$$

(1)
$$\lim_{x\to\infty} x \tan(\frac{x}{2}-x)$$

Sol: Let
$$l = \lim_{x \to 0} x \tan(\frac{x}{2} - x)$$
 (ox ∞

$$\frac{1}{x-3} \cdot \frac{\tan(x-x)}{x}$$

$$= \lim_{n \to \infty} \frac{n!}{\cos^{1}(\frac{n}{1}-x)}$$

sol:- Let
$$l = \lim_{x \to \frac{\pi}{2}} tanx. ln hix (\infty x o)$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{ln hix}{catx} \qquad (\frac{o}{o})$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{x}{2} \frac{casx}{sinx}$$

www.matncity.org

Available at

-80R: let
$$l = \lim_{n \to \infty} x \left(\frac{a^n - 1}{n} \right) \cdot \left(\frac{a}{a} \times a \right)$$

The form $(\infty - \infty)$:

To evaluate above limit, we write $f(x) = \frac{1}{2} = \frac$

d. Canhé evaluated by previous Method

Evaluate the following limits

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^{x}} \right)$$

Sof: let $e^{x} = \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^{x}} \right)$ (on -oo)

 $= \lim_{x \to 0} \frac{e^{x} - 1 - x}{x(e^{x} - 1)}$
 $= \lim_{x \to 0} \frac{e^{x} - 1 - x}{x(e^{x} - 1)}$
 $= \lim_{x \to 0} \frac{e^{x} - 1 - x}{x(e^{x} - 1)}$

= h = 2 = x + 2. ex

$$\frac{1}{2} = \frac{1}{1}$$

$$\frac{1}{2} = \frac{1}{1}$$

$$\frac{1}{2} = \frac{1}{1}$$

$$\frac{1}{2} = \frac{1}{1}$$

$$\frac{1}{2} = \frac{1}{2}$$

$$\frac{1}$$

1 Sec. 1 + x . 2. Sec x . Sec x tring. 1 + Sec x. 1 + 1

MAN, TOTAL OF OFO

sol: - let
$$\ell = \frac{1}{x-1} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right]$$

$$= \lim_{x \to 1} \left(\frac{x \ln x - x + 1}{(x - 1) \ln x} \right) \qquad \left(\frac{0}{0} \right)$$

$$= \lim_{x \to 1} \frac{x \cdot \frac{1}{x} + \ln x - 1}{(x - 1) \cdot \frac{1}{x} + \ln x}$$

$$= \lim_{N \to \infty} \left(\frac{1 - \Re x}{6} \right) \qquad \left(\frac{\omega}{6} \right)$$

```
To Evaluate \lim_{x\to a} \left\{ f(x) \right\}^{\beta(x)}
  when
    It a f(x) = 0 = It \phi(x).
(2) It a f(x) = 1 + dt x = 0 (x) = 00
    it a f(x) = 0 4 1 - , a p(x) = 0
    Method for Evoluation
                     suppose y = \{f(x)\}
             Taking In on both sides
            lny = \varphi(x) ln f(x) - (A)
       (i) dt f(x)=0=\frac{dt}{x-a} \phi(x)
        The @ is of the form 0 x 00
  (2. 98 dt a f(x)=1 + dt 0(x)=00
     The one is again of the form. 00 x0
        98 dt a f(x)=00 d lt 2-10 d(x)=0
  (E)
        : Then (a) is up form 0 x a
  a Evaluate the following lints
       Sil (1+x) x
         Let y = (1+x)
            lny = + In(1+x)
      St no long = 'St- ( Pn(i+x))
```

Www.mathcity.org

$$\int_{X-2}^{1+x} \int_{X-2}^{1+x} \int_{X-2}^{1+x}$$

And:
$$y = (\frac{1}{2})^{\tan x}$$

And: $y = (\frac{1}{2})^{\tan x}$

And: $y = (\frac{1}{2})^{\tan x}$

$$\int_{X-y_0}^{x} \ln y = \int_{X-y_0}^{x} \frac{\Omega n(x)}{(\omega + x)} \left(\frac{-0}{-0} \right)$$

$$\int_{X-y_0}^{x} \frac{\Omega n(x)}{(\omega + x)} \left(\frac{-0}{-0} \right)$$

=
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{$

$$Q_{n,y} = (\sum_{x} - x) Q_{n} Conx.$$

$$\begin{array}{c|c}
-2 \cdot x \\
\hline
-3 \cdot x \\
-3 \cdot x \\
\hline
-3 \cdot x \\
-3 \cdot x \\
\hline
-3 \cdot x \\
-3$$

$$\frac{dt}{dt} = \frac{-tanx}{x}$$

$$=\frac{2(\sum_{i}-\chi_{i})(-i)}{-(\sec \chi_{i})}$$

$$\int_{-\infty}^{\infty} \frac{\int_{-\infty}^{\infty} \frac{1}{2} - \frac{1}{2} \frac{1}{2} dx}{\int_{-\infty}^{\infty} \frac{1}{2} \frac{1$$

$$y = e^{x}$$

$$x \rightarrow \sum_{x \rightarrow x} y = e^{x}$$

$$x \rightarrow \sum_{x \rightarrow x} (\cos x)^{x} = x$$

If
$$x \to \frac{K}{L}$$
 (six) tanx

Sol:

Lut $y = (six)$

Lut

lny = to ln (sinx)

St. ln =
$$\frac{1}{x}$$
 or $\left(\frac{1}{x} \ln x\right)$ $\frac{1}{x}$ or $\frac{$

ht no ony = 0 => ht y = e.

=) it (tanx) 12x = 1

Prof. Shakeel Azhar (2)
Department Of Mathematics
Govt. Shalimar College Baghbanpura
Lahore

3 At
$$9(1+8inx)$$
 (at x)

And : Let $y = (118inx)$ (at x)

Lang = Cat x lan (1+8in x)

Lang = Lit (1+8in x)

Lang = Lit (1+8in x)

Li

$$= \frac{\int_{1}^{1} \frac{x}{x^{2}} \frac{x e^{2x}}{2 \sec x} \cdot \frac{x e^{2x}}{2 \sec x} \cdot \frac{x}{2 \sec x} \cdot \frac{1}{2 \tan x}$$

$$= \frac{\int_{1}^{1} \frac{x}{x^{2}} \frac{1}{2 \tan x}}{2 \tan x}$$

$$= \frac{\int_{1}^{1} \frac{x}{x^{2}} \frac{1}{2 \tan x}}{1 + (\sin x)} = 0$$

$$= \frac{\int_{1}^{1} \frac{x}{x^{2}} \frac{1}{2 \tan x}}{1 + (\sin x)} = 0$$

$$=) \lim_{x \to K} y = e^{x} = 1$$

$$= \lim_{x \to K} (3exx) = 1$$

$$0) \qquad 11 \qquad (1-x^2) \frac{1}{m(1-x^2)}$$

Sol:- let
$$y = (1-x^{2})^{\frac{1}{2n(1-x)}}$$

$$2ny = \frac{1}{2n(1-x)} 2n(1-x^{2})$$

$$\frac{1}{x-1} \cdot \ln y = \frac{1}{x-1} \cdot \left[\frac{1}{\ln(1-t)} \ln \left(1-\frac{x^2}{x^2}\right) \right]$$

$$= \chi \rightarrow 1 \left(\frac{\ln(1-\chi^2)}{\ln(1-\chi^2)} \right) \left(\frac{\partial D}{\partial D} \right)^{\frac{1}{2}}$$

$$0 = \begin{cases} LT & -2\chi \\ \hline 1-\chi & 1-\chi \end{cases}$$

$$\frac{-1}{1-\chi}$$

$$\frac{-1}{1-\chi}$$

$$=\frac{1}{x-1} \cdot \frac{2x}{1+x}$$

$$= \frac{\lambda t}{\lambda - 1}, \ln y = 1 \Rightarrow \frac{\lambda t}{\lambda - 1}, y = e$$

Available at www.mathcity.org

89

$$(D) \frac{1}{x-3!} \left(1-x^{2}\right) \frac{1}{2\pi (1-x^{2})} = e$$

$$(D) \frac{1}{x-3!} \left[\tan \left(\frac{\pi x}{4}\right) + \tan \left(\frac{\pi x}{4}\right) + \tan \left(\frac{\pi x}{4}\right) \right]$$

$$(D) \frac{1}{x-3!} \left[\tan \left(\frac{\pi x}{4}\right) + \ln \left(\frac{\pi x}{4}\right) + \ln \left(\frac{\pi x}{4}\right) \right]$$

$$(D) \frac{1}{x-3!} \left[\tan \left(\frac{\pi x}{4}\right) + \ln \left(\frac{\pi x}{4}\right) + \ln \left(\frac{\pi x}{4}\right) \right]$$

$$(D) \frac{1}{x-3!} \left[-\frac{1}{x} + \frac{1}{x} + \frac{1}{$$

(ii)
$$x \rightarrow \frac{\pi}{L}$$
 (1- $\lambda x \times 2$)

Let $y = (1-\lambda x \times 2)$

Let $y = ($

Available at www.mathcity.org

M. -> 0. (Catx) hir.

loy = mix lo (cata)

me lay = ft (fizz la (catz)) (oxo)

 $= \chi + 0 \left[\frac{\ln \cot x}{\cot x} \right]$

= x->0 Cosecx: - Cosecx: Cot 2x.2

St Cosecial Catian Catian Catian

= &t (ax hizx. ta. 2x- (6)

secte hixtanix + tanktanix 2 Conix + tank hix. Sectaxin

Dividing num. 4 den. lus Sinx 2Cosex. Lt . Becta (1 (01x) Unzx + fecx. tanzx. Teste + seex. Liza & fecta

 $\frac{dt}{2} = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2$

It - 10 (cata) " Liz=1

Let y = xlat y = x lny = x lnxit lay = it x lax

lne 2-30

$$= \frac{1}{x-10} \frac{1}{x}$$

$$= \frac{1$$

$$2ny = \frac{1}{x-1} 2n x$$

$$3 = \frac{1}{x-1} 2n x$$

$$3 = \frac{1}{x-1} \left(\frac{2nx}{2n} \right)$$

$$3 = \frac{1}{x-1} \frac{1}{x} = \frac{1}{x}$$

Sit Sint June 2 Cos2x

Sit 2x

- St. Shizz Coszx

st, eny =0 => it o y = e = 1

St (cat.x.) = 1

Evaluate the following limits by using expansions

 $0) \qquad \text{if} \qquad \left(\frac{1}{e^2-1} - \frac{1}{2}\right)$

sol: Let $l = \frac{1}{x} \rightarrow o \left(\frac{1}{e^{x} - i \cdot x} \right)$

 $=\frac{1}{x\rightarrow 0}\left(\frac{1}{(x_1x_1+x_1)^2+\frac{x_1}{x_1}+\frac{x_2}{x_1}+\cdots)}\right)$

7-1-1- (21-21-21-1)

$$\frac{1}{x-30} = \frac{1-\left(1-\left(\frac{x^{1}}{6}-\frac{x^{1}}{120}+\dots\right)\right)^{\frac{1}{2}}}{2^{\frac{1}{2}}}$$

$$\frac{1}{x-30} = \frac{1-\left(1-\frac{1}{2}\left(\frac{x^{1}}{6}-\frac{x^{1}}{120}+\dots\right)\right)^{\frac{1}{2}}}{2^{\frac{1}{2}}}$$

$$\frac{1}{x-30} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{11}{x-26} = \frac{(1-x)^{1/x}-e}{x}$$

In
$$l$$
: let l be law limit, Then
$$l = \frac{\int t}{x} \cdot \frac{(1+x)^{1/x}}{x} = \frac{1}{x}$$

$$consider $t = \frac{1}{x} \ln(1+x)$$$

$$J_n(t) = \frac{1}{x} \left[x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \right]$$

$$J_n(t) = \frac{1}{x} \left[x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \right]$$

$$= \frac{1}{x} \left[(1 - \frac{x}{2} + \frac{x^3}{3} - \frac{x^3}{4} + \dots \right]$$

		€ p	* (2
= 1/2	x-31+31+	$x = x + \frac{x}{6} + \frac{x}{7}$	1 2 2
	71 x1-	x 3 - x4	
= dl.	$\int \frac{1}{3} $	· · · · · · · · · · · · · · · · · · ·	•
	$\frac{1}{2} \frac{-x^3}{x^3} = \frac{x^3}{3}$	\frac{1}{2}	
= 14	$\int \frac{1}{3} - \frac{x}{2} + \cdots$		•
	$\frac{1}{1}$ $\frac{2}{3}$		· · · · · · · · · · · · · · · · · · ·
-	3		•
· ;	3 /	- 2	
		• 3	
0,70	* * * * * * * * * * * * * * * * * * *		¥.

Available at www.mathcity.org

O lim
$$\frac{e}{e} - \frac{e}{e}$$

Note that I have the sung. limit ment

 $e = \lim_{x \to 0} \frac{e}{x} - \frac{e}{e}$
 $e = \lim_{x \to 0} \frac{e}{e} - \frac{e}{e}$

Available at www.mathcity.org

Sile hat I ha the rear himst. The Applying L.H. rule : (2) Again by L. H. Puls $\lim_{n \to \infty} \frac{1}{n} (n+1) \frac{1}{n-1} = \frac{1}{n} (n+1) (n-1) \frac{1}{n} \frac{1}{n}$ xi(n+1). ! ~ n(n+1)(n-1). X2. Sink Cabyl

3

		. 38	2		
= lim N→0	Tx3 Cosx	•			
lin _	Casx		(<u>-</u>)	
, 0	~ (-Sink)		(8	y (. H.	rule 1
l (2.x 2.x				
= 1 lim	Sint			(0)	
= \frac{1}{2} \limbda_{-7}, = \frac{1}{2} \limbda_{-9},	Casal			By L.H	Kule)
= 1 . (1)					
$= \frac{1}{2}(1)$ $= \frac{1}{2}$					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				*
	the the	Lag. L	timi.	then	
· lim	n Sich n	\rightarrow \rightarrow			
<u></u>	x Sin x				(0)
, Paul	(xi-1) x = t				
Hen	ו ס כ- ג ניון	t -> 0			

الانتين

42

THE RESERVE OF THE PARTY OF THE

The second second second

sint-t_ (<u>v</u>.) , **t c**.≥. **t** Cast - 1 & By (H rule) t(zsint Cot)+'sin't Cost - 1. (2) tainet + sint + (Gater) + Smit + 7 Smit Cot - Sint ztazt + Sinzt + Sinzt + - Sint ztazt + zánzt 2 (+ (- sinzt.) + Gzt 1) + 2 Gzt.2 -cst -lit Sint + 2 Cost + 4 Cost 0 + 2(1) +4(1).

l x lim (1x2+5x -x)

= lim (x/+5x - x2/)

lim (5x)

= lin (\(\sqrt{1+\frac{5}{\chi}} + 1 \)
= lin (\(\sqrt{1+\frac{5}{\chi}} + 1 \)

12 use L' Hasfield mule to from that. lim [a' + b'] = Jub . a>0, b>0 Sole let I be. he sug! limit them P = lim ((1 + b)) Let $y = \sqrt{\frac{a^x + b^x}{a^x}}$ taking In on Juth wides $\ln y = \ln \left(\frac{2^{\frac{1}{\lambda}} + b^{\frac{1}{\lambda}}}{2^{\frac{1}{\lambda}}} \right)^{\lambda}$ In; = xl. (at+b1) lim lny = lim x.lm ((1/2 + 1) 2 = lin (a = + b x) - lnz = lin (at+b1/4) (ax ha = 1 + ox lnb = 1) = lim - x [a lin a . \(\frac{1}{x^2} + b^{\frac{1}{x}} \) \(\frac{1}{x^2} \) - (a+ b'x) (a'x ena + b'x enb?)

Right St. Co.

@ 99 f is a thrice differentiable function using L'Hospital riche that

(a)
$$\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{2h} = f(x)$$

(p) -
$$\frac{\mu_{5}}{1}$$
 $\frac{\mu_{5}}{1}$ $\frac{\mu_{5}}{1}$ $\frac{\mu_{5}}{1}$ $\frac{\mu_{5}}{1}$

(c)
$$\lim_{h\to 0} \frac{f(x+h)-f(x)-hf(x)-\frac{h^2}{2}f'(x)}{h^3} = \frac{f''(x)}{f''(x)}$$

Eals.

Consider the fimit

$$\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{2h}$$

=
$$\frac{f(x+h)-f(x-h)(-1)}{h-1}$$

$$\frac{f(x+h)+f(x-h)}{2}$$

$$= \frac{\int_{1}^{2} (x) + \int_{1}^{2} (x)}{1}$$

$$= f(x)$$

 $\left(\begin{array}{c} 0 \\ 0 \end{array}\right)$

(By L. H. Lule

. (b) Consider the limit

 h_{r}

= $\lim_{h\to 0} \frac{f(x+h)+f(x-h)(-1)}{2h}$

= lin f(x+h)-f(x-h)

= -line f'(x+h) - f'(x-h)(-1)

f'(x+h) + f'(x-h)

 $= \frac{\int_{-\infty}^{\infty} (x + c)^{2} dx}{2} \int_{-\infty}^{\infty} (x - c)^{\frac{3}{2}}$

 $= \frac{f^{*}(x) + f^{*}(x)}{2}$

 $= \frac{2f''(x)}{2}$

= f"(x) ---- Any

(C). Soli- Consider the limit

 $\lim_{h \to 0} \frac{f(x+h) - f(x) - hf'(x) - \frac{h^2}{2} f''(x)}{h^3}$

 $\lim_{x \to \infty} f'(x+h) - f(x) - \frac{2h}{2} \cdot f''(x)$

 $\frac{f(x+h)-f(x)-\frac{x}{2}-f(x)}{3h^2}$

(3)

1 by L. H. Lule

: <u>२</u>)

(By L H. Aute)

Available at www.mathcity.org

By 1. H. Mule

Dim tonha - Sinha

1-30

Lat & let & lee the deg. limit to

Rechard - Sinha

Lim Secha - Cosha

2 Secha - Cosha

- Lim 2 Secha - Cosha

2 Secha tonha - Sinha

2 Secha (o) tonh (o) - Sinha

2 Secha (o) tonh (o) - Sinha

2 Secha (o) - tonh (o) - Sinha

3 Secha (o) - tonh (o) - Sinha

4 Secha (o) - tonh (o) - Sinha

5 Secha (o) - tonh (o) - Sinha

5 Secha (o) - tonh (o) - Sinha

6 Secha (o) - tonh (o) - Sinha

7 Secha (o) - tonh (o) - Sinha

8 S

Solution (
$$\frac{x+a}{x-a}$$
)

Solution let $y = \frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Let $y = \frac{x+a}{x-a}$ taking his on both sodes

lary = $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Lim any = $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Lim any = $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Lim any = $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Put $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Solution lary = $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Www.matholic = $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

Lim and $\frac{x+a}{x-a}$ ($\frac{x+a}{x-a}$)

www.mathcity.org Available at

www.mathcity.org

Available at www.mathcity.org

Available at www.mathcity.org

Available at www.mathcity.org

Available at www.mathcity.org

Available at . www.mathcity.org

2 A ship sails east from fort is at 18 mph. At the same time another ship leaves but B which is ion miles due south if port A 4 soils north it 25 mph 122 how long is the distance between the ships decreating? Ish. let at too, first ship is "air part A 4 second ship is at post B. Let & he the distance between the ships after t hours. Since vel. of first ship is romph. 30 distance travelled by first ship in 1 hour stomiles Hence distance travelled by first ship after t hours = lot miles Now distance travelled by second ships in 1 hour = 25 miles So distance travelled by second ship after them. = 25t miles Now ley Pethagoras thenen x, " (10f), + (100-52f), x = 100t2 = 10000 - Socot + 625t2 x = 725:1.2 - 5000t 4.10000 Diff, w.r.t. t 2x dx = 1450t = 5000 => dx = 725t -2500 dx Lo Juhan 725t -2500 LO 1.6., when 125t < 2500 i.e., when t < 2500 j. e., when t & 100

So the distance blu ships decreases for for for hours

Validity of Rollers thear the Value of C $f(u) = \frac{1-x^2}{1+x^2}$ on [-1,1] $f(x) = \frac{1-x^2}{1-x^2}$ on [-1,1] Now $f(-1) = \frac{1-(-1)^2}{1+(-1)^2} = \frac{1-1}{1+1} = \frac{\Omega}{2} = 0$ $f(1) = \frac{1-(1)^2}{1+(1)^2} = \frac{1-1}{1+1} = \frac{0}{2} = 0$ so f(-1) = f(1) clearly f(x) is Continuous in Since all the Conditions of Rolle's the Salisfied. Hence les Rolle's theorem f(c) = 0 for some (E]-131[$\int_{0}^{1}(x) = \frac{(1+x^{2})(-2x) - (1-x^{2})(2x)}{(1+x^{2})^{2}}$ -2x-2/2-2x+2/2 $f(x) = \frac{(1+x^2)^2}{-4x}$ ==) $f(c) = \frac{-4c}{(1+c^2)^2}$ or | C = 0 Pat (() = 0

GI4 Prime that (1+x):>1+ax where a>1, x>c(Bernaulli's ley M.V. therem)

Let f(x) = (1+x) - (1+ax)

we note that f(x) is Continuous n[0,x]

f(2) les derivable in)0,2[

Since of satisfies the Conditions of M.V. It. S.

luy: M.V. th.

$$\frac{x-o(x)}{f(x)-f(o)}=f(x)$$

fer some CE]0,x[

$$\sigma = f(x) - f(x) = x f(x) - C$$

Here f(x) = (1+x) - (1+ax)

$$f(x) = a(1+x) - a$$

$$f(c) = \alpha(1+c) - \alpha$$

Put values in a

(1+x)-(1+ax) - p = = x/(a(1+c) - a).

+1 (1+x) - (1+ax) = ax ((1+1)-1)

Since a>1, x>0 4 (1+1) 1 >0

So (1+ a) - (1+ax) > 0.

or (1+x) > 1+ax

GIIS Use M.V. theram to Show that

Also approximate 1168 lay aring M.V. theorem

Sili- Consider a function of defined as

f(x) = 0 [x on interval [25,27].

clearly f(x) is continuous on [25,27]

of f(x) is derivable on]25,27[

S. f(x) satisfies Conditions of M.V. th on [25,27] Hence ley M.V. th.

 $\frac{f(27)-f(25)}{27-25}=f(c)$ for some $c \in]25,27[$

 $\frac{\sqrt{27} - \sqrt{25}}{2} = \frac{1}{2\sqrt{C}}$ for some CE] 25,27

or $\sqrt{27} - 5 = \frac{1}{\sqrt{c}} - 0$ for some $c \in [25,27]$.

Since C €] 25,27 [

S. 254C427

m: J25 LJC L J27

 $\sigma \qquad \frac{1}{\sqrt{25}} > \frac{1}{\sqrt{27}} > \frac{1}{\sqrt{27}}$

1 1 2 1 2 5 5 Also 137 JE

6 52 5

www.nallableat

from ey (1)

or 1- 6 157-56 15.

is the req. proble ...

Again Consider the function

clearly f(x) is continuous on [168,169]

4 f(x) is derivable an] 162, 169

Have f(x) sotisfies the Conditions of H.V. th.

iso thy M.V. Hi

$$\frac{f(169) - f(168)}{169 - 168} = f(c) \quad \text{for some } c \in]168, 169[$$

Suppose C is nearly exual to 169

$$\frac{2.\sqrt{169}}{2 \times 13}$$

$$13 - \sqrt{168} = \frac{1}{20}$$

$$-\sqrt{118} = \frac{1}{26} - 13$$

$$\sqrt{168} = 13. - \frac{1}{26}$$

$$f'(x+h) - f'(x) - h f''(x)$$
= lim $f''(x+h) - f''(x)$

- lim $f''(x+h) - f''(x)$

$$= \frac{f''(x)}{f}$$

End of Ch - 3

Available at www.mathcity.org

www.matheity.org

www.mathcity.org