Solving tridiagonal systems in parallel

Alan Edelman, Andreas Jensen, Eka Palamadai

Outline

- Serial problem
 - Results
- Parallel problem
 - Results
 - Algorithm
- Future work

Serial problem

Solve Ax = b, where A is a symmetric diagonally-dominant tridiagonal matrix, and b, x are column vectors.

Code snippet to solve Ax = b

```
# a and c are diagonal and sub-diagonal of A
# d is the diagonal of U
# b is the rhs and x is the solution
function solve(a, c, d, b, x)
  # factorize A = LU and solve Lx = b
  n = size(a,1); d[1] = a[1]; x[1] = b[1];
  for i = 2:n
    I = c[i - 1] / d[i - 1];
    d[i] = a[i] - c[i - 1] * I;
    x[i] = b[i] - l * x[i - 1];
  end
```

Code snippet continued...

```
# a and c are diagonal and sub-diagonal of A
# d is the diagonal of U
# b is the rhs and x is the solution
function solve(a, c, d, b, x)
  \# solve Ux = x
  x[n] = x[n] / d[n]
  for i = n - 1: -1:1
    x[i] = (x[i] - c[i] * x[i + 1]) / d[i]
  end
end
```

Serial results for a matrix of size 1 billion

solve : 32 s

lapack : 64 s

Why does solve run faster than lapack?

- solve doesn't pivot off the diagonal
- solve doesn't store the sub-diagonal of L

Parallel problem

Given p processors, solve Ax = b, where A is a symmetric diagonally-dominant tridiagonal matrix, and b, x are column vectors.

Parallel results for a matrix of size 1 billion

# of processors	Runtime, s
1	46.28
2	27.88
4	13.93
8	7.31
16	4.51

function 2-solve (A, b, x)

Trisect A into tridiagonal matrices A_1 , A_2 and a se

Trisect A into tridiagonal matrices A_1 , A_{2_1} and a separator s Trisect x into x_1 , x_2 , and x_s ; Trisect b into b_1 , b_2 , and b_s

function 2-solve (A, b, x)

```
Parallel: { Factorize A_1 = L_1U_1 and forward solve L_1x_1 = b_1;
Factorize A_2 = L_2U_2 and forward solve L_2x_2 = b_2;}
```



```
function 2-solve (A, b, x)
Solve the reduced system s'x_s = b_s'
Parallel: { Back solve U_1x_1 = x_1; Back solve U_2x_2 = x_2;}
```

function psolve (A, b, x)

- 1. n = size(A)
- 2. Partition A into p tridiagonal matrices A_1 , A_{2_n} ,..., A_p of size roughly (n-p+1)/p, and p-1 separators s_1 , s_2 , ..., s_{p-1} of size 1.
- 3. Partition b into 2p-1 subvectors b_1 , b_2 , ..., b_p , bs_1 , bs_2 , ..., bs_{p-1}
- 4. Partition x into 2p-1 subvectors x_1 , x_2 , ..., x_p , xs_1 , xs_2 , ..., x_{p-1}
- 5. Parallel: {Factorize $A_i = L_i U_i$ and forward solve $L_i x_i = b_i$ } for $i \in \{1, ..., p\}$
- 6. Update separators s_1, \ldots, s_{p-1} with the schur complements from submatrices A_1, \ldots, A_p
- 7. Solve for the unknowns xs_1 , xs_2 , ..., xs_{p-1} corresponding to the separators.
- 8. Parallel: {Back solve $U_i x_i = x_i$ } for $i \in \{1,...,p\}$

Analysis

```
1 processor :
```

Number of floating point operations: 8n

p-processors:

Number of floating point operations $\sim 17 (n-p+1)/p + 8 (p-1)$ <= 17 (n+1) / p + 8p

Future work

Higher dimensional problems

Questions?

Thank you