CPSC 359 Assignment 1: Binary to Seven Segment Decoder

Kell Larson 30056026

1. The Problem:

Using a 4-bit input number, produce 7 outputs, each connected to part of a seven segment display. This seven-segment display will show the 1-digit hexadecimal value of the 4-bit input number.

2. Input and Output Variables:

Input Variables:

 $(x * 2^{0})$, $(x * 2^{1})$, $(x * 2^{2})$, $(x * 2^{3})$, which combine into a 4-bit binary number where x = 0 or x = 1.

Output Variables:

7 outputs, each connected to a unique part of one seven-segment display.

3. Variable Symbolization:

Input Variables:

Let the 4-digit binary number be represented by $I_0,I_1I_2I_3$, with the numbering being to what 2^x that digit displays as part of a binary number.

Output Variables:

Let the output variables be represented as A,B,C,D,E,F,G with the lettering corresponding to the seven-segment display on the assignment sheet, which is also here ---->

4. Truth Table:

4. Truch Table:											
Decimal Input #	Inputs				Outputs						
	l ₃	l ₂	I ₁	I ₀	Α	В	С	D	E	F	G
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	1	1	1	0	1	1	1
11	1	0	1	1	0	0	1	1	1	1	1
12	1	1	0	0	1	0	0	1	1	1	0
13	1	1	0	1	0	1	1	1	1	0	1
14	1	1	1	0	1	0	0	1	1	1	1
15	1	1	1	1	1	0	0	0	1	1	1

CPSC 359 Assignment 1: Binary to Seven Segment Decoder

Kell Larson 30056026

5. Output Simplification via Map Function:

Please see the next page of the report for simplification via map method.

6. Implementation:

Please see the last page of the report for implemented logic diagrams.