This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- 'GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(1) Publication number: 0 571 124 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 93303649.3

(51) Int. Cl.⁵: **H01Q 1/22**

(22) Date of filing: 11.05.93

30) Priority: 21.05.92 US 887434

(43). Date of publication of application : 24.11.93 Bulletin 93/47

Designated Contracting States :
 DE FR GB

(1) Applicant: International Business Machines Corporation Old Orchard Road Armonk, N.Y. 10504 (US) (72) Inventor: Jenness, Robert Vincent 1499 West Royal Palm Road Boca Raton, Florida 33486 (US) Inventor: Moore, Victor Stuart 5122 Cortez Court Delray Beach, Florida 33484 (US)

(74) Representative: Burt, Roger James, Dr. IBM United Kingdom Limited Intellectual Property Department Hursley Park Winchester Hampshire SO21 2JN (GB)

(54) Mobile data terminal.

An external antenna 20 for use with a mobile battery powered data processing terminal 12 is disclosed, the terminal including a radio frequency communication device 36, such as a cellular telephone transceiver. Multiple antenna elements are mounted within a D-shaped flexible tubular member 38 having a very low dielectric constant which is then affixed to the external surface of the data processing terminal, utilizing an adhesive on the flat surface thereof. The flexible tubular member is preferably mounted along at least two edges of the data processing terminal display module such that spatial or polarization diversity for the multiple antenna elements may be provided. A coaxial connector 21 is utilized to couple the multiple antenna elements to a radio frequency communication device within the data processing terminal. In this matter, an external antenna may be added to a battery powered data processing terminal in a manner which will protect the antenna without interfering with radio frequency transmission or reception while simultaneously providing additional protection for the data processing terminal.

5

20

25

30

35

The present invention relates to mobile data terminals and in particular to improvements in an external radio frequency antenna for utilization with a mobile data terminal.

Distributed data processing systems ar increasingly common in the modern electronic work place. Such distributed data processing systems may include thousands of computers or workstations including main frame computers, so-called "personal" computers, and modern state-of-the-art portable or "laptop" computers. In modern distributed data processing systems many such computers may be linked together utilizing various topologies and different types of networks including Advanced-Peer-To-Peer-Networks (APPN), Local Area Networks (LAN) or various other types of networks. While in the past computer networks are generally coupled together utilizing existing telephone land line systems, or specialized wiring, modern distributed data processing systems often utilize more sophisticated means of communication.

For example, the increasing efficiency and decreasing cost of cellular communication equipment has resulted in the utilization of that technology to couple together multiple computers without the necessity of access to a telephone line outlet. This particular technology is particularly effective in combination with small, portable battery powered laptop or notebook computer in which the necessary modem and cellular communication circuitry are miniaturized and provided in an integral fashion with the computer itself. Often in such a computer, it is possible to remove the fixed disk drive and replace that subassembly with a combination modern and cellular communications device such that the data processing terminal may be coupled to a large network utilizing cellular communications technology. Thus, an operator utilizing such a computer may initiate communications and transfer data between his or her computer and a distributed data processing system without the necessity of access to either telephone lines or power lines.

The increasing utilization of such devices and the after market refitting of existing laptop or notebook type computers with such communications modules result in a problem in the efficiency of the radio frequency communication. That is, devices which are initially designed for utilization with cellular communication circuitry are constructed with internal antennal elements which are optimized for cellular communications; however, the after market refitting of a laptop or notebook computer with a combination modem and cellular communication device often causes a problem, since such devices were not designed initially for cellular communication network linking.

The ant nna devices typically utilized for cellular communication g n rally c mpos multiple antenna el ments, each including a radiating el ment which is equal in length to som fraction of th wavelength

generally utilized by th cellular communication d - notice. Further, in ord r to enhance the efficiency of communication, thes multiple antenna el ments must include lements which are separated by a minimum distance and preferably must be oriented normal teach oth r in space, in order to provide the necessary separation and spatial diversity.

Thus, upon reference to the foregoing it should be apparent to those skilled in the art that a need exists for an external antenna which may be rapidly and efficiently affixed to a portable data processing terminal in a manner which provides optimum radio frequency communication.

Accordingly the invention provides a mobile data terminal including a radio frequency communication device for transmitting data via a radio frequency communication network, a multi-element radio frequency antenna coupled to said radio frequency communication device, and a case having at least two substantially orthogonal sides, and characterised in that said multi-element radio frequency antenna is mountable on the exterior of said case along said at least two substantially orthogonal sides, with at least one lement of said multi-element radio frequency antenna disposed on each of said at least two sides.

The mobile data terminal with external antenna of the present invention may be implemented utilizing for example any battery powered data processing terminal which includes a radio frequency communication device, such as a cellular telephone transceiv r. Multiple antenna elements may be mounted within a D-shaped flexible tubular member having a very low dielectric constant which is then affixed to the external surface of the data processing terminal, utilizing an adhesive on the flat surface thereof. The flexible tubular member is mountable along at least two edg s of the data processing terminal display module such that spatial or polarization diversity for the multiple antenna elements may be provided. A coaxial connector may be utilized to couple the multiple antenna lements to a radio frequency communication device within the data processing terminal. In this manner. an external antenna may be added to a battery powered data processing terminal in a manner which will protect the antenna without interfering with radio frequency transmission or reception while simultaneously providing additional protection for the data proc ssing terminal. The flexible external radio frequency antenna is deformable about the housing of the mobil adata terminal, and therefore may be rapidly and efficiently affixed to it, and furthermore can actually provide some protection for the terminal.

In a preferred embodiment, the multi-element radio frequency antenna comprises a thre element radio frequency antenna, said elements being in spaced apart relationship, which is mountable on the exterior of said case along three sides thor of and wherein each of said three in ments is disposed in a separat

15

20

25

35

45

50

sid of said cas .

It is also pr ferred that the multi element radi frequincy antenna is disposed within a flexible insulating elongate member, preferably on having a Dshap d cross-section. The fl xibl insulating el ngate tube is constructed of a flexible material having a dielectric constant less than 0.001, such that radio frequency emissions from said multi-element radio frequency antenna will pass freely through said flexible insulating elongate tube. Preferably the multi-element radio frequency antenna includes means adapted to affix said flexible insulating elongate tubular member to the exterior of said case. One possible affixing means comprises an adhesive backing along at least a portion of a flat surface of said D-shaped cross-section.

Preferably the flexible insulating elongate tubular member has a length greater than the greatest side of said case.

It is also contemplated that a multi-element radio frequency antenna as described above may be sold separately from the mobile data terminal itself.

An embodiment of the invention will now be described by way of example with reference to the following drawings:-

Figure 1 is a partially schematic pictorial representation of a mobile data processing terminal in accordance with the present invention;

Figure 2 is a block diagram of the major subsystems of the portable data processing terminal of Figure 1;

Figure 3 is a sectional end view of one external antenna element of the external antenna of Figure 1: and

Figure 4 is a sectional side view of the external antenna element of the external antenna of Fig-

With reference now to the figures and in particular with reference to Figure 1, there is depicted a partially schematic pictorial representation of a distributed data processing system 10 which may include a portable data processing terminal 12 which may utilize an external antenna in accordance with the present invention. Upon reference to the foregoing those skilled in the art will appreciate that while distributed data processing system 10 is illustrated as including only two computers, typically such distributed data in the processing systems include a large number of computers distributed over a wide geographic area. As illustrated, portable data processing terminal 12 is one of the computers within distributed data processing system 10. Portable data processing terminal 12 is preferably a battery powered laptop or notebook computer which includes a low p w r display syst m 16 5 55 which preferably provides a display screen 18 which may be implemented utilizing a liquid crystal display. (LCD), a gas plasma display or any other suitable. t chn logy. K yboard 14 is provid d with portabl

data processing terminal 12 and enables the computr us r to access and modify data stored within portable data processing terminal 12 in a manner well known in the art.

As thos skill d in the art will appreciate it is increasingly common for computers such as portable computer 12 to include therein a miniature cellular telephone system (not shown) which is provided in conjunction with a modem. For example, it is possible to remove the fixed disk drive module typically provided with portable computer 12 and substitute therefore a module which includes a cellular transceiver and associated modern device. Those skilled in the art will appreciate that a modern is a device which may b utilized to convert digital data from a computer to an analog signal which may be transmitted via a telecommunications system. Additionally, such devices convert received analog signals from the telecommunications line to digital data which may be utilized by a computer. As is typical in such systems, a cellular telephone transmits a radio frequency signal via an external antenna 20 which is coupled to a cellular transceiver (not shown) via coaxial cable 21 and which may be implemented utilizing the antenna system disclosed herein. As illustrated, external antenna 20 preferably includes multiple antenna elements 30, depicted in phantom line within external antenna 20.

As is typical in such systems, a cellular telephone communications device transmits a radio frequency signal via an external antenna: 20 which may be received and relayed via multiple cellular system antenna 22. Thus, digital data within portable data processing terminal 12 may be converted into a series of analog signals and transmitted, via a cellular telephon system and multiple intervening repeaters to a telephone system 24, in a manner well known to thos skilled in the art.

Analog signals thus transmitted may be received by the telephone system and transmitted, via an ordinary telephone land line 26 to a computer 28 within distributed data processing system 10. While computer 28 is depicted as a personal computer, those skilled in the art will appreciate that computer 28 may be implemented utilizing a workstation, terminal or main frame computer, as desired. Typically, computer 28 will also include a modern device permitting data from portable data processing terminal 12 to be transmitted to and received by computer 28 and computer 28 may be linked to portable data processing terminal 12 and utilizing cellular technology, rather than telephon land lines.

Referring now to Figure 2, there is depicted a block diagram of the major subsystem components of portable data proc ssing terminal 12 of Figure 1. As illustrat d, keyboard 14 and display 16 are coupled to a processor 32. Processor 32 is coupled via bus 33 to m d m d vice 34 which serv s to conv rt digital data from processor 32 int analog data which may b

transmitted via cellular transc iv r 36. As depicted, cellular transceiver 26 is coupled via coaxial cable 21 t external antenna 20, which includes a plurality of antenna 1 ments 30.

With r f rence now to Figure 3, there is depict d a sectional end view of one antenna element 30 within the external antenna of Figure 1. As illustrated, external antenna 20 preferably includes a flexible insulative elongate tubular member 38 which is preferably constructed of a foamed plastic, such as polyurethane, or any other suitable flexible insulative material having a dielectric constant of .001 or lower. As illustrated, the flat surface of flexible insulative elongate tubular member 38 preferably includes a strip of contact adhesive 42 which, in the depicted embodiment of the present invention, may be utilized to rapidly and efficiency mount external antenna 20 to the outer perimeter of display 16, as illustrated in Figure 1. Disposed within flexible insulative elongate tubular member 38 is a ground plane 44, preferably constructed of copper or other highly conductive material, above which is mounted antenna element 48, at a fixed distance from copper ground plane 44, utilizing radio frequency insulator 46. Thus, as those skilled in the art will appreciate upon reference to the foregoing, by disposing multiple antenna elements within flexible insulative elongate tubular member 38 and providing an adhesive backing strip 42, in the manner depicted, a multi-element external radio frequency antenna, may be simply and efficiently mounted to multiple sides of portable data processing terminal 12, providing the necessary spatial diversity required to optimize communications efficiency utilizing a cel-Iular communication system antenna.

Referring now to Figure 4, there is depicted a sectional side view of one antenna element 20 of external antenna 20 of Figure 1. As illustrated, antenna element 30 is disposed within a flexible insulative elongate tubular member 38, which is preferably D- 1 40 shaped in the manner depicted herein. Each antenna element portion 48A and 48B may comprise a one-fourth wavelength antenna element which are coupled together, via coaxial connector 50, and mounted in fixed spatial relationship above copper ground plane 44 utilizing radio frequency insulators 46 in the manner depicted.

Upon reference to the foregoing those skilled in the art will appreciate that herein provided is a new multi-element radio frequency external antenna which is mountable within a flexible tubular member and which may be wrapped around multiple edges of a portable battery powered data processing terminal in a manner which efficiently provides the necessary separation and spatial div rsity for ptimum radio frequency communications. Thos skilled in the radio frequency art will appreciat that multiple antenna

I ments must be separated by approximat ly ten incholes (25cm) in this frequincy range or oriented at nin ty degrees to ach other in a manner easily provided utilizing the external antenna described herein.

Claims

5

10

15

20

25

30 ·

35

A mobile data terminal (12), including a radio frequency communication device (36) for transmitting data via a radio frequency communication network, a multi-element radio frequency antenna (20) coupled to said radio frequency communication device, and a case having at least tw substantially orthogonal sides,

and characterised in that said multi-element radio frequency antenna is mountable on the exterior of said case along said at least two substantially orthogonal sides, with at least one element of said multi-element radio frequency antenna disposed on each of said at least two sides.

- The mobile data terminal according to Claim 1, wherein said multi-element radio frequency antenna comprises a three element radio frequency antenna.
- The mobile data terminal according to Claim 2, wherein said multi-element radio frequency antenna is mountable on the exterior of said case along three sides thereof and wherein each of said three elements is disposed on a separate side of said case.
- The mobile data terminal according to any preceding claim wherein said multi-element radio frequency antenna is disposed within a flexible insulating elongate member (38).
- 5. The mobile data terminal according to Claim 4, wherein said flexible insulating elongate member comprises a flexible insulating elongate tube having a D-shaped cross-section.

والمعالم أحدا

- 6. The mobile data terminal according to Claim 4 or 5, wherein said flexible insulating elongate tub is constructed of a flexible material having a dielectric constant less than 0.001, such that radio frequency emissions from said multi-element radio frequency antenna will pass freely through said flexible insulating elongate tube.
- 7. The mobile data terminal according to claim 4, 5 or 6, wherein the multi-element radio frequency antenna includes means (42) adapted to affix said fl xibl insulating elongate tubular member to the exterior of said case.

BORDS - LEMMA B

10 July 31 -

8... The mobil data terminal according to Claim 7, as d pendent on claim 5 or 6, wherein said means

. . . 4

adapted t affix said flexibl insulating elongate tubular m mber to said case comprises an adhesiv backing along at least a portion of a flat surface of said D-shaped cross-s ction.

- The mobile data terminal according to any preceding claim, wherein said flexible insulating elongate tubular member has a length greater than the greatest side of said case.
- 10. A multi-element radio frequency antenna for use in the mobile data terminal of any preceding claim.

Fig. 4

EUROPEÄN SEARCH REPORT

APPRICATION IN HIS DAIL

EP 93 30 3649

Megory	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
	WO-A-9 104 461 (INTELLIGENCE TECHNOLOGY CORP.) * page 3, line 22 - page 5, line 8 * * figures 1-3 *	1	H01Q1/22
	WO-A-8 500 480 (MOTOROLA) * abstract * * page 7, line 20 - page 8, line 27 * * figure 1 *	1	
	DE-A-3 712 956 (FRIEMUTH, B.)		
			·
		;	
			TECINICAL FIELDS
			SEARCHED (Int. Cl.5)
			H01Q
	· · ·		
2:		-	
	The present search report has been drawn up for all claims Place of search Date of search Date of search		Exember
	THE HAGUE 20 JULY 1993		JEPSEN J.
x • •	CATEGORY OF CITED DOCUMENTS T: theory or print E: cavities parent articularly relevant if taken alone	document, bút a	the invention ublished on, or
Y: j	articularly relevant if combined with another D : document citi	ed in the applica ed for other reast	