

[실증적SW개발프로젝트]

RLHF기반 로봇 팔 제어 프로그램 개발

2143841 권은주

1824751 진현석

2051505 조현진

Contents

- 1. 주제 소개
- 2. 코드 분석 내용 정리
- 3. 데이터의 품질에 따른 Agent 학습 결과
- 4. Expert Agent 학습 결과
- 5. Imitation Learning
- 6. 금주 활동내역

주제: 다양한 환경에서 강화학습 알고리즘 RLIF와 RLHF의 성능 비교 연구

1. RLHF 알고리즘 구조도

2. RLIF 알고리즘 구조도

3. 알고리즘 비교

알고리즘	피드백 유형	Optimal policy	학습 효과
RLIF	Agent의 행동이 잘 못 된 경우 reward값 -1로 변경 (기본 0)	필요	복잡한 task 수행 가능 그러나, 인간이 행동에 대한 명확한 지식이 없을 때 학습 제한
RLHF	랜덤으로 주어지는 Trajectory 중 하나 선택	불필요	최적 행동을 몰라도 상대적으로 더 나은 trajectory 선택 가능 학습에 제한 X

목표: 다양한 환경에서 RLIF와 RLHF의 성능을 비교하여, 복잡한 작업 수행 시 RLHF의 상대적 이점을 증명

이유:

- 1. 알고리즘의 특성을 살펴보았을 때 **차원이 복잡**해질수록 **RLIF보다 RLHF가 더 좋은 성능**을 **나타낼 것으로 예상**
- 2. RLHF는 (RLIF 실험 환경 수준의) 복잡한 환경에서 실험 결과 부재

1학기 목표: RLIF 알고리즘 학습 파이프라인 구축

<u>실증적AI프로젝트 금주 활동내역</u>

주제: RLHF를 이용한 협동 로봇 제어 프로그램 개발

금주 활동계획	 Ardoit env expert RLIF 알고리즘 적용 학습 성공 모델 그래프, 렌더링 다양한 오프라인 강화학습, 모방학습 알고리즘으로 expert 생성 				
	팀장 (권은주)	팀원 1 (조현진)	팀원 2 (진현석)		
금주 개인별 활동내역	 expert model RLIF 알고리즘 적용 학습 성공 모델 그래프, 렌더링 	1. 오프라인 강화학습 알고리즘 정리	1. 모방학습 알고리즘 정리		
차주 활동계획	1. 실험 결과 정리 2. D4RL: Datasets for Deep Data-Driven Reinforcement Learning 리뷰				

03. Imitation Learning

1.Behavioral Cloning (행위 복제, BC)

정의

Expert의 행동을 직접 모방하는 모방학습의 기본적인 형태 Expert가 수행한 행동을 데이터로 수집하여 State-Action 쌍을 학습하

특징

- 학습 데이터: State-Action 쌍
- 정책 학습: State에 대해 적절한 행동을 예측하도록 학습

장점

- 1. 간단함: 알고리즘이 단순하고 구현이 쉬움
- 2. 빠른 학습: Expert-Data가 충분하면 빠르게 학습
- 3. 명확한 목표: Expert의 행동을 그대로 모방하는 명확한 목표를 보위

No data on how to recover

- 1. 데이터 의존성: Expert-Data 가 충분하지 않거나 불완전할 경우 성능이 저하될 우려
- 2. 오차 증폭 문제: 학습된 정책이 전문가 데이터와 다른 행동을 할 경우, 그 차이가 누적되어 큰 오차로 이어짐
- 3. 일반화 어려움: 새로운 상태에 대한 일반화가 어려울 수 있으며, 학습하지 않은 상태에서의 성능이 보장 X

03. Imitation Learning

2.Inverse Reinforcement Learning (역강화학습, IRL)

정의

Expert의 행동을 통해 Reward 함수를 추정하고, 이를 기반으로 정책을 학습하는 방법 IRL은 Expert가 어떤 Reward 함수를 최대화하려고 하는지를 학습하는 것이 목표

특징

- 학습 데이터: Expert의 State-Action 궤적
- 정책 학습: 추정된 Reward 함수를 통해 최적의 정책을 학습

그림 1 RL과 IRL 개념 비교

장점

- 1. 보상 함수 학습: Reward 함수를 직접 학습하기 때문에, 학습된 정책이 보상 함수를 최대화하도록 유도
- 2. 일반화 능력: 학습된 Reward 함수를 사용하여 다양한 환경에서 일반화된 정책 도출
- 3. 효율적 학습: Expert-Data가 적을 때도 비교적 효율적으로 학습

- 1. 복잡성: Reward 함수를 추정하는 과정이 복잡하고 계산 비용이 많이 들 수 있다
- 2. 불확실성: 추정된 Reward 함수를 Expert의 실제 의도를 정확히 반영하지 못할 수 있다
- 3. 데이터 요구: Expert의 행동 궤적 데이터가 필요하며, 부정확하거나 불완전할 경우 성능에 영향을 미칠 수 있다

3. Generative Adversarial Imitation Learning (적대적 모방학습)

정의

생성적 적대 신경망(GAN)의 아이디어를 모방학습에 적용

두 개의 신경망, Generator(실제 데이터와 유사한 가짜 데이터를 생성하는 모델)와 Discriminator(주어진 데이터가 진짜인지 가짜인지를 판별하는 모델)가 서로 경쟁하면서 학습

GAIL에서는 Generator가 Expert의 행동을 모방하고, Discriminator가 Expert의 행동과 Generator의 행동을 구별하며 학습

특징

- 학습 데이터: Expert의 State-Action 궤적
- 정책 학습: Generator가 Expert와 구분되지 않도록 학습

장점

- 1. 표현력: Generator는 Expert의 복잡한 행동 패턴을 학습할 수 있는 강력한 모델을 사용
- 2. 일반화 능력: 다양한 상태에서도 Expert와 유사한 행동을 생성할 수 있는 능력을 학습
- 3. 자동 구별 학습: 구분자를 통해 Expert와 생성자의 행동을 자동으로 구별하며 학습

Fig. 3 Generative adversarial imitation learning

- 1. 학습 불안정성: GAN과 마찬가지로, 생성자와 구분자의 학습이 불안정할 수 있으며, 서로 균형을 맞추는 것이 어려울 수 있다
- 2. 복잡성: 두 개의 네트워크를 동시에 학습시키는 것은 구현이 복잡하고 계산 비용이 많이 든다
- 3. 훈련 시간: 생성자와 구분자 간의 상호 학습 과정이 시간이 오래 걸릴 수 있다

03. Imitation Learning

4. Dataset Aggregation (DAgger)

정의

Expert의 시연 데이터와 Agent의 경험을 반복적으로 결합하여 학습하는 모방학습 방법 초기엔 Expert의 정책을 따라가다가, Agent가 수행한 행동을 추가로 수집하여 데이터셋을 확장하고, 점점 더 나은 정책을 학습

특징

- 학습 데이터: Expert의 State-Action 쌍과 Agent의 Action-Data를 결합
- 정책 학습: Expert 와 Agent의 혼합 데이터를 통해 점진적으로 개선되는 정책을 학습

장점

- 1. 오차 축소: 전문가와 에이전트의 행동 데이터를 결합함으로써 오차 증폭 문제를 감소
- 2. 향상된 성능: 반복적인 데이터셋 확장을 통해 에이전트의 정책이 점진적으로 개선
- 3. 데이터 효율성: 전문가 데이터만으로 학습하는 것보다 더 적은 데이터로도 효율적으로 학습

- 1. 복잡성 증가: 반복적인 데이터셋 확장 과정이 추가적인 복잡성을 가져올 수 있다
- 2. 전문가 개입 필요: 학습 과정 중 Expert의 개입이 필요할 수 있어, Expert의 노력이 많이 요구
- 3. 훈련 시간 증가: 반복적인 데이터 수집과 학습 과정이 시간을 많이 소요

Expert Train Result

expert data

Agent

02. Expert Agent 학습 결과

- 직접 만든 expert model이 코드에서 작동하지 않아 제작자에게 요청
- 새로운 expert file이 생성 불가능 하다면 기존에 제공하는 Pen, Walker2d, Hopper 환경에서 실험할 예정

How to make an expert model? #1

02. RLIF 학습 결과

- rlif, rlif_intervene random가지 알고리즘 비교
- RLIF: 실제 policy의 q값과 Exeprt Agent의 q값을 비교하여 개입 여부를 결정
- RLIF_random: random으로 정해진 random 비율에 따라 개입 (50%)

Pen Train Return: 학습 과정에서 받는 Return 값 *Return: 현재시점부터 미래보상까지 더해진 값

<u>실증적AI프로젝트 금주 활동내역</u>

주제: RLHF를 이용한 협동 로봇 제어 프로그램 개발

금주 활동계획	1. PureRL, IQL과 비교 그래프 2. D4RL: Datasets for Deep Data-Driven Reinforcement Learning 리뷰					
	팀장 (권은주)	팀원 1 (조현진)	팀원 2 (진현석)			
금주 개인별 활동내역	1. PureRL, IQL과 비교 2. 그래프, 렌더링 결과 정리	1. 프로젝트 내용 총 정리	1. D4RL 리뷰			
차주 활동계획						

Questions & Answers

Dept. of AI, Dong-A University

권은주 (kkkoj4284@donga.ac.kr)

진현석 (cpu132465@donga.ac.kr)

조현진 (gkfkgkdh@naver.com)

Github (https://github.com/eunjuyummy/AI_Project_CoRLHF)