Foundations of Physics 2B/3C

2019-2020

Thermodynamics – Lecture 9 Recap

- Saw how problems in thermodynamics can be solved mathematically
- Looked at some applications of entropy, including how effective any process is.
- Were introduced to the concept of Available Energy, and how minimising the Helmholtz or Gibbs functions tells us the most work that can be got out of a process.

Thermodynamics – Lecture 10 Aims

- To see some examples of Available Energy.
- To look at useful work and irreversibility, and see how they are related to the overall Universe Entropy change.
- To consider Phase changes and how they are linked to Latent Heat.
- To see how the Gibbs function defines Phase Changes, how its value is the same across a phase change, but how its derivatives may be discontinuous.

Spontaneous process L'heat an entrops increase. Cheat adde These lead to a degrax in	from hot to cold I have I ot cold temperature')
	available energy
$dA = dU + \rho_0 dV$	

Example 16.2

Limit to changes in temperature and volume, $p = p_0$ and dp = 0.

$$dU = \delta Q - p_0 dV$$

At constant volume, dV = 0, have $dU \equiv \delta Q$.

Surroundings (at temperature T_0) entropy change

system surrounding

$$\Delta S_{Surround} = -\frac{\Delta Q}{T_0} = -\frac{\Delta U}{T_0}$$

Universe Entropy change

$$\Delta S_{U} = \Delta S_{System} + \Delta S_{Surround} = \Delta S_{System} - \frac{\Delta U}{T_{0}}$$

F=U-TS

$$T_0 \Delta S_U = T_0 \Delta S_{System} - \Delta U \quad \Rightarrow \quad -T_0 \Delta S_U = \Delta U - T_0 \Delta S_{System}$$

At constant temperature, $F = U - T_0 S$ so $\Delta F = \Delta U - T_0 \Delta S_{system}$. $\Delta S = S_0 - S_1$

Helmholt is diguised from of Universe entropy change at constant temperature If ΔS_U increases spontaneously, ΔF decreases by same amount. $\Delta S_U > 0 \implies S_T > S_T$ If system internal energy decreases, $\Delta U = U_F - U_I < 0$, work is done on the

surroundings $(dU = \delta Q + \delta W)$. $\delta W < O$ $W_c > W_T$

System entropy could either:

- 1) Decrease (system loses energy to surroundings); the loss of system entropy ΔS_{system} reduces the work that can be done. Add energy to sumundings DU-To DS system becomes less negative, DF is smaller
 2) Increase (system gains energy from surroundings); the entropy of the system
- increases, so more work can be done as more internal energy can then be released as work DU - To DS system becomes more negative.

To DSu is the bus surroundings demand from the system, to compensate Example 16.3 for the system entropy reduction

Burning 1 litre of petrol releases 33.00 MJ of heat

Enthalpy $\Delta H = 32.87 \text{ MJ}$ (work against atmosphere, pushing out of way.)

Constant presure 0.13M3 of heet is required to drive atmosphere back

Entropy change (more gas molecules after burning) $\Delta S = 8.00 \text{ kJ K}^{-1}$

Helmholtz change $\Delta F = \Delta U + T_0 \Delta S = -35.40 \,\text{MJ}$ Max work you could obtain cuth no introduction no inwobilly

Useful Work + Availability Wuse - Useful Work. Work done in a process that can be used for motion [Work not surroundings] Wuse = Macteral - Warmound Total work produced Work done by system on the esterned environment.

Abnuspheric
Force

Work done by system on the esterned environment.

Overcame atmospheric force

Vi, po

Vi, po

N=FDx

N=Po(Vj-Vj) Wuse = Warted - po (V2-V1) Wrw - Peversible work work done by a device that operates using only totally interned peversible' processes ie) a tarnot agale.

All heat is transferred via Carnot engines + Gridges - Quasistatic and there are no temperature differences I = | Wrev - Wuse | = To DS4 Environment temperature Universe entropy
Universe entropy change is a tax on the conversion of
heat to work. Always some heat added to cold
environment. Real process have a lower work potential.

Foundations of Physics 2B/3C

Thermodynamics – Handout 10

Example 16.5

Cylindry gas is solthernal pV=nRTG $\Delta W_{Piston} = \int_{V}^{V_2} -p dV$ $= -nRT_G \int_{0.01}^{0.02} \frac{dV}{V}$ n PTG- p. VI Linitial presure, volume? $= -p_1 V_1 \ln 2 = -2.43 \text{ kJ}.$

$$W_{surr} = p_0(V_2 - V_1) = -1 \text{ kJ}.$$

Puton mut put Useful Work = $W_{piston} - W_{Surr} = -1.43 \text{ kJ}.$ the atrosphere out of the way

Gas in puton (ideal +150 thermal) dU=0

$$dU = \delta Q + \delta W \Rightarrow Q_H = -W_{Piston} = 2.43 \text{ kJ}$$

$$\Delta S_{furnace} = -\frac{Q_H}{T_{furnace}} = -\frac{2.43}{1200} = -2.03 \, \mathrm{J \, K^{\text{-}1}} \; ; \; \Delta S_{Piston} = +\frac{Q_H}{400} = 6.07 \, \mathrm{J \, K^{\text{-}1}}.$$

 $\Delta S_{Universe} = 4.05 \,\mathrm{J\,K^{-1}} \ \Rightarrow \ I = \Delta S_{Universe} \times T_0 = 4.05 \times 300 = 1.21 \,\mathrm{kJ}.$ Thingy reproduct the constant T Lowelt and the temperature

Not all engine work stragued by the het pump.

 $\eta_{engine} = \frac{|Work_{engine}|}{Q_H = 2.43 \text{ fs}}$ $1 - \frac{T_{surroud}}{T_{surroug}} = 75 \%$ $|W_{engine}| = 1.82 \text{ kJ}$

Work input to heat pump transferring heat $Q_H = 2.43 \text{ kJ}$ into the gas, (still does -1.43 kJ of useful work)

$$COP_H = \frac{|Q_H|}{\text{Work Supplied}} = \frac{T_{gas}}{T_{gas} - T_{surround}} = 4 \implies |W_{pump}| = 0.61 \text{ kJ}.$$

-1.43 -1.82 +0.61

 $W_{reversible} = W_{use} + W_{engine} + W_{pump} = -1.43 - 1.82 + 0.61 = -2.64 \, kJ$

$$I = |W_{rev} - W_{use}| = |-2.64 - -1.43| = 1.21 \text{ kJ}.$$

As before

Irrurosibility is the additional work the Canot cycle produces

17.	Phases of a Substance
	Phases are facinating. A small change in one property leg the temperature) can vaitly affect another (volume) as we make a cross a phase boundary & Consider outpossistion?
	At phase transition, both phases coesut, but must have total particle number conserved.
	Aphax is a homogeneous region of (p, V, T) space, custs the region having a definite boundary.
	Phase change requires the addition (removal) of energy to make something happen. Latent heat.
	$L = \Delta Q_{RW} = \int_{1}^{2} T_{0} dS = T_{0} \int_{1}^{2} dS = T_{0} \Delta S$
	Phase charges correspond to entropy changes. Entropy increases / decreases in the phase change depending on whether order decreased increased.
	Gibbs function is conserved at a phase boundary (takes same value on either side of the phase change)
	G = U + pV - TS can show $dG = V dp - S dT$
	Phase change $dp = 0$, $dT = 0$. $dG \equiv 0$
	Gibbs is covened its devotives may be discortinuous.

