Species sampling models

Tommaso Rigon

University of Milano-Bicocca

Lifeplan weekly meeting

The Finnish fungal dataset (Abrego et al., 2020)

- We consider S = 174 samples out of 180, i.e. excluding technically failed sequencing.
- We observed a total of K = 79,155 distinct species (OTUs), i.e. the overall richness.
- Within each sample, we dichotomize the OTU abundances, so that

$$Z_{js}=1 \qquad \Longrightarrow \qquad \text{The jth species is present in the sth sample,}$$
 and $Z_{js}=0$ otherwise, for $j=1,\ldots,K$ and $s=1,\ldots,S$.

- Samples can be of type Air, Soil, Urban and Natural, depending on the geographical location of the sample.
- We will take into account these differences at the end of the presentation.

Species frequencies (a.k.a. abundance)

- We consider a further summary of the data, i.e. we count how many times a species has been observed across samples.
- More formally, we have that for j = 1, ..., K

$$n_j = \sum_{s=1}^S Z_{js} = \sum_{s=1}^S \mathbb{1}(\text{"The } j \text{th species is present in the sth sample"}).$$

- The frequencies $n_1, ..., n_K$ will represent a sufficient statistics for our modeling.
- Obviously, each of these frequencies are such that

$$1 \leq n_j \leq S, \qquad j = 1, \ldots, K.$$

■ The integer $n = \sum_{j=1}^{K} n_j = 196,619$ is the global count of (non distinct) species.

Frequencies of frequencies

- The data can be summarized (without loss of information!) even more, using frequencies of frequencies.
- We define the integers

$$m_k = \sum_{j=1}^K \mathbb{1}(n_j = k) =$$
 "How many times species occured k times across samples",

for
$$k = 1, ..., K$$
.

- In our case, we have that for example $m_1 = 53,431$, $m_2 = 10,762$, $m_3 = 4,553$, $m_4 = 2,469$ and so on until the last terms $m_{135} = 1$ and $m_{146} = 1$.
- In this representation, by construction we have that

$$\sum_{k=1}^K m_k = K, \qquad \sum_{k=1}^K k \; m_k = n.$$

Species sampling models

■ Let $X_1, ..., X_n$ be some collection of "species" with frequencies $n_1, ..., n_K$ such that for i = 1, ..., n,

$$(X_i \mid \tilde{p}) \stackrel{\text{iid}}{\sim} \tilde{p}, \qquad \tilde{p} = \sum_{h=1}^H \pi_h \delta_{\theta_h},$$

with \tilde{p} being an unknown discrete sampling distribution.

- The weights $\sum_{h=1}^{H} \pi_h = 1$ are the species proportions, with H being the total number of species in the population.
- The values $\theta_1, \dots, \theta_H$ are instead the distinct species in the population.
- This is essentially a multinomial model and therefore the frequencies n_1, \ldots, n_K are a sufficient statistics.
- lacksquare Crucially, we have that $K \leq H$, i.e. the number of discovered species is smaller than the true number.

Goal I: Sample coverage

Sample coverage

- The sample coverage is the sum of the proportions of species that has been observed.
- More precisely, it is defined as

$$C_n = \sum_{b \in \mathcal{U}} \pi_b, \qquad \mathcal{H} = \{\text{"Indexes of the observed species among } n \text{ data"}\}.$$

■ A very old method by Turing (Good 1953) for "estimating" C_n is:

$$\hat{C}_n = 1 - \frac{m_1}{n},$$

which is based on the number of species observed only once.

■ In the Lifeplan global data one has that $\hat{C}_n = 1 - 53,431/196,619 = 0.728$, a fairly high (?) number.

Goal II: Accumulation curves and rarefaction

Accumulation curve

Suppose the species X_1, \ldots, X_n are observed sequentially. An accumulation curve is the number of distinct species K_n observed as the sample size n increases.

Rarefaction

- Several times data are not observed sequentially. The rarefaction is the average accumulation curve over the space of permutations.
- Combinatorial calculus leads to the following formula

$$\mathbb{E}(K_i) = K - \binom{n}{i}^{-1} \sum_{i=1}^{K} \binom{n-n_i}{i}.$$

■ Note that such a formula only depends on the frequencies n_1, \ldots, n_K .

Goal II: Accumulation curves and rarefaction

Goal III: Species diversity

Gini heterogeneity index

- The Gini heterogeneity index is a measure for quantifying biodiversity.
- The Gini index G is the probability that two randomly taken species from the population are different, namely

$$G = 1 - \sum_{h=1}^{H} \pi_h^2.$$

- A simple way for estimating G is setting $\hat{G} = 1 1/n^2 \sum_{i=1}^{K} n_i^2 = 0.9999369$.
- Other heterogeneity indexes might be considered, e.g. the Shannon entropy.
- Note: the Simpson index is simply $S = 1 G = \sum_{h=1}^{H} \pi_h^2$.

Issues with these approaches

- The properties of these estimators are often based on asymptotic considerations ⇒ Bayesian inference could be helpful.
- If prior information is available, there is not a simple way to incorporate it into the modeling.
- It is even more problematic to incorporate these estimators into more complex models accounting for covariates and to borrow strength across locations.
- Unclear how to perform e.g. testing and uncertainty quantification in such complex settings.
- Solution: use Bayesian statistics to obtain model-based "estimators" within a unified setting.

Bayesian nonparametric priors

- The sampling distribution \tilde{p} encodes all the relevant information but it is unknown, so we are interested in learning it from the data X_1, \ldots, X_n .
- In the Bayesian framework, this amounts to the choice a nonparametric prior for the sampling distribution \tilde{p} .
- Then, one can study the following posterior law

$$\tilde{p} \mid X_1, \ldots, X_n$$
.

- Note: all the previous quantities of interest are functions of $\tilde{p} \implies$ this leads to natural Bayesian estimators for coverage, diversity, etc.
- \blacksquare Common nonparametric priors are the Dirichlet process (DP) and the Pitman–Yor (PY) process.

The Pitman-Yor process

Stick-breaking of the PY

$$ilde{p} = \sum_{h=1}^{\infty} \pi_h \delta_{ heta_h}, \qquad \pi_h =
u_h \prod_{\ell=1}^h (1 -
u_\ell), \quad
u_h \stackrel{\mathsf{ind}}{\sim} \operatorname{BETA}(1 - \sigma, \alpha + \sigma h),$$

with $\sigma \in [0,1)$ and $\theta > -\sigma$.

Urn-scheme

$$X_{n+1} \mid X_1, \dots, X_n \sim \frac{\alpha + \sigma K}{\alpha + n} (\text{"new species"}) + \frac{1}{\alpha + n} \sum_{j=1}^n (n_j - \sigma) \delta_{X_j^*}.$$

Posterior distribution

$$(\tilde{p} \mid X_1,\ldots,X_n) = \sum_{i=1}^K W_j \delta_{X_j^*} + W_{k+1} \tilde{q},$$

with $(W_1, \ldots, W_{k+1}) \sim \text{DIR}(n_1 - \sigma, \ldots, n_k - \sigma, \alpha + \sigma K)$ and \tilde{q} is a $\text{PY}(\alpha + \sigma K, \sigma)$.

Estimation of the parameters

- Inference on the hyperparameters (α, σ) can be conducted trough MCMC.
- However, it is common to replace them with their maximum likelihood estimate, i.e. an empirical Bayes procedure.
- In the PY model, the likelihood is the following quantity

$$\mathscr{L}(\alpha,\sigma\mid X_1,\ldots,X_n)=\frac{\prod_{j=1}^{K-1}(\alpha+j\sigma)}{(\alpha+1)_{n-1}}\prod_{j=1}^K(1-\sigma)_{n_j-1}.$$

■ The maximizer of this likelihood can be easily obtained using off-the-shelf numerical routines (i.e. optim R command) in fraction of seconds.

Goal I: Sample coverage

Lemma 1

In a PY model, the posterior distribution of the sample coverage is

$$(C_n \mid X_1 \dots, X_n) \sim \text{BETA}(n - \sigma K, \alpha + \sigma K).$$

Moreover, the posterior mean coincides with

$$\mathbb{E}(\mathit{C}_{\mathit{n}} \mid X_1, \ldots, X_{\mathit{n}}) = \mathbb{P}(X_{\mathit{n}+1} = \text{"old species"} \mid X_1, \ldots, X_{\mathit{n}}) = \frac{\mathit{n} - \sigma \mathit{K}}{\alpha + \mathit{n}}.$$

- An empirical Bayes procedure applied to the Finnish Fungal data leads $\hat{\alpha}=7080.164$, $\hat{\sigma}=0.6138$.
- Recalling that n = 196,619 and K = 79,155, we get a Bayesian estimate for the sample coverage $\mathbb{E}(C_n \mid X_1, \dots, X_n) = 0.7267$.
- This is remarkably similar to Good & Turing estimators, but uncertainty quantification can be conducted in a very simple manner.

Goal II: Accumulation curves and rarefaction

Lemma 2

In a PY model the rarefaction curve is a Markov process such that $\mathcal{K}_1=1$ and

$$K_{n+1} \mid K_n = K_n + D_n, \qquad (D_n \mid K_n) \sim \text{BER}\left(\frac{\alpha + \sigma K_n}{\alpha + n}\right).$$

Moreover, a Bayesian estimate of the rarefaction curve is

$$\mathbb{E}(K_n) = \frac{\alpha}{\sigma} \left\{ \frac{(\alpha + \sigma)_n}{(\alpha)_n} - 1 \right\}.$$

Finally, the growth rate of the curve is $K_n \sim c_\sigma n^\sigma$ a.s.

- lacktriangle The marginal distribution of K_n is available in closed form and can be easily simulated.
- The rarefaction curve does not depend on the ordering.
- This 2-parameter curve is virtually indistinguishable from the usual rarefaction curve.

Goal II: Accumulation curves and rarefaction

Goal II: extrapolation

Lemma III (Favaro et al., JRSS-B, 2009)

Let $K_m^{(n)}$ be the number of new species we observe in an additional sample of size m. Then

$$\mathbb{E}(\mathcal{K}_m^{(n)} \mid \mathcal{K}_n = \mathcal{K}) = \left(\mathcal{K} + \frac{\alpha}{\sigma}\right) \left\{ \frac{(\alpha + n + \sigma)_m}{(\alpha + n)_m} - 1 \right\}.$$

- Suppose we re-conduct the Finnish fungal experiment. How many new-species will we get, assuming other conditions are mostly unchanged (locations, pre-processing, etc.)?
- A Bayesian estimate is $\mathbb{E}(K_n^{(n)} \mid K_n = 79, 155) = 46,610.$
- Caution zone. Extrapolating the data is always a risky practice. The results are reliable only if the model is correctly specified which is hard to check.

Goal III: species diversity

Lemma IV

An a priori Bayesian estimate of the Gini index is

$$\mathbb{E}(G) = \mathbb{P}(X_i \neq X_j) = \frac{\alpha + \sigma}{\alpha + 1}.$$

An a posteriori Bayesian estimate of the Gini index is

$$\mathbb{E}(G \mid X_1,\ldots,X_n) = 1 - \frac{1}{(\alpha+n)_2} \left\{ (1-\sigma)(\alpha+K\sigma) + \sum_{j=1}^K (n_j-\sigma)_2 \right\}.$$

- Note. The prior and posterior distribution of *G* can be easily sampled thanks to the stick-breaking representation.
- lacksquare Both prior and posterior moments (i.e. the variance) of G are also analytically available.
- Pluggin in the estimates for $\hat{\alpha}$ and $\hat{\sigma}$, we get in the Finnish fungal data

$$\mathbb{E}(G) = 0.9999455, \qquad \mathbb{E}(G \mid X_1, \dots, X_n) = 0.9999422.$$

Air & Soil, Natural & Urban

- So far we applied the BNP modeling strategy on the whole Finnish fungal dataset.
- However, samples can be roughly divided into 4 groups: Air, Soil, Natural and Urban. We expected marked differences within these 4 groups.
- We re-conduct these analyses considering 4 groups of frequencies, one for each type of samples.
- We estimated 4 independent PY models.
- Note. To make the analyses comparable, we randomly discarded 14 samples out of 174, so that Air, Soil, Natural and Urban comprise 40 samples each.

Frequency of frequencies (m_k)

Posterior distribution of C_n (sample coverage)

Summary statistics

Туре	n	K	\hat{lpha}	$\hat{\sigma}$
Air - Natural	84,323	35,332	5,788.10	0.52
Air - Urban	50,617	23,541	4,202.82	0.54
Soil - Natural	38,155	23,716	3,257.68	0.72
Soil - Urban	23,524	15,750	2,977.10	0.72

$\mathbb{E}(\mathit{C}_{\mathit{n}} \mid data)$	$\mathbb{E}(\mathcal{K}_n^{(n)}\mid data)$	$\mathbb{E}(\textit{G} \mid data)$	m_1/K
0.731453	19,079	0.999923	0.641345
0.689426	13,378	0.999893	0.667686
0.508769	16,963	0.999901	0.786726
0.461726	11,479	0.999889	0.800127
	0.731453 0.689426 0.508769	0.731453 19,079 0.689426 13,378 0.508769 16,963	0.731453 19,079 0.999923 0.689426 13,378 0.999893 0.508769 16,963 0.999901

Accumulation curves

Comments

Ecological comments

- There are major differences in terms of all the indicators between the four groups. Differences are more marked between Air and Soil.
- Air samples have higher sample coverage and higher richness.
- Although in Soil we detect less species, the growth rate is higher than in Air.
- Growth rates of Natural vs Urban are very similar.
- Biodiversity measured by the Gini index is higher in Natural than in Urban

Statistical comments

• In order to confirm this differences, we could perform Bayesian testing e.g. through Bayes Factors.

Next directions

- With BNP modeling we can do much more than what we have shown here.
- Different biodiversity measures can be considered (Shannon entropy, Tsallis diversity, etc).
- The posterior distribution of the proportions π_h of each species is available in closed form. Hence, we can easily test for example whether a specific species / family / etc is more prevalent in Air vs Soil and quantify the associated uncertainty.
- We could consider more refined groups (core vs edge) or locations (Helsinki vs Lahti vs etc.). This calls for hierarchical specifications for the parameters α and σ , borrowing strength across samples.
- More sophisticate models (e.g. hierarchical PY) accounting for shared species can be also considered.