Introduction to
Assignment Project Exam Help
Informa
https://eduassistpro.github.io/

Add WeChat edu_assist_pro

This lecture

- How do we know if our results are any good?
 - Evaluating a search engine
 - Benchaskignment Project Exam Help
 - Precision a

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

EVALUATING SEARCH ENGINES

Measures for a search engine

- How fast does it index
 - Number of documents/hour
 - (Average doesnment Project Exam Help
- How fast doe https://eduassistpro.github.io/
 - Latency as a function of inde Add WeChat edu_assist_pro
- Expressiveness of query lan
 - Ability to express complex information needs
 - Speed on complex queries
- Uncluttered UI
- Is it free?

Measures for a search engine

- All of the preceding criteria are measurable: we can quantify speed/size
 - we can make express Vereisch Exam Help
- The key meas https://eduassistpro.github.io/
 - What is this?
 - Add WeChat edu_assist_pro
 Speed of response/size of in
 - But blindingly fast, useless answers won't make a user happy
- Need a way of quantifying user happiness

Measuring user happiness

- Issue: who is the user we are trying to make happy?
 - Depends on the setting
- Web enginesignment Project Exam Help
 - User finds w - Can measur https://eduassistpro.github.io/
 - User completes the weak assisted not end
 - See Russell http://dmrussell.
 June-2007-short.pdf
- <u>eCommerce site</u>: user finds what they want and buy
 - Is it the end-user, or the eCommerce site, whose happiness we measure?
 - Measure time to purchase, or fraction of searchers who become buyers?

Measuring user happiness

- Enterprise (company/govt/academic): Care about "user productivity"
 - How much site wenty Puseis state when Holding for
 - information? https://eduassistpro.github.io/ readth of access, Many other secure access Actd. We Chat edu_assist_pro

Happiness: elusive to measure

- Most common proxy: relevance of search results
- But how do you measure relevance?
- We will det its issues https://eduassistpro.github.io/
- Relevance meds Westedu_assistements:
 - 1. A benchmark document collection
 - 2. A benchmark suite of queries
 - A usually binary assessment of either <u>Relevant</u> or <u>Nonrelevant</u> for each query and each document
 - Some work on more-than-binary, but not the standard

Evaluating an IR system

- Note: the information need is translated into a query
- Relevance is assessed relative to the information need not the https://eduassistpro.github.io/
- E.g., Information need: I'm information on Add WeChat edu_assist_pro whether drinking red wine i ective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- You evaluate whether the doc addresses the information need, not whether it has these words

Standard relevance benchmarks

- TREC National Institute of Standards and Technology (NIST) has run a large IR test bed for many yearssignment Project Exam Help
- Reuters and ohttps://eduassistpro.gRHestigns used
- "Retrieval tasks" specified Add WeChat edu_assist_pro
 - sometimes as queries
- Human experts mark, for each query and for each doc, <u>Relevant</u> or <u>Nonrelevant</u>
 - or at least for subset of docs that some system returned for that query

Unranked retrieval evaluation: Precision and Recall

- Precision: fraction of retrieved docs that are relevant= P(relevant | retrieved)
- Recall: fraction of relevant docs that are retrieved =
 P(retrieved | r https://eduassistpro.github.io/

Add	Wedevant edu_	assis e l eyeo nt
Retrieved	tp	fp
Not Retrieved	fn	tn

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Should we instead use the accuracy measure for evaluation?

- Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"
- The accuracy of an engine: the fraction of these classifications https://eduassistpro.github.io/
- (tp + tn) / (tp + fp + fn + tn)
 Add WeChat edu_assist_pro
 Accuracy is a commonly us on me
- Accuracy is a commonly us
 on measure in
 machine learning classification work
- Why is this not a very useful evaluation measure in IR?

Why not just use accuracy?

How to build a 99.9999% accurate search engine on a low budget....

```
Assignment Project Exam Help

https://eduassistpro.github.io/

search WeChat edu_assist_pro

0 matching results found.
```

 People doing information retrieval want to find something and have a certain tolerance for junk.

Precision/Recall

- You can get high recall (but low precision) by retrieving all docs for all queries! Assignment Project Exam Help
- Recall is a n of the number of docs retri https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- In a good system, precision decreases as either the number of docs retrieved or recall increases
 - This is not a theorem, but a result with strong empirical confirmation

Difficulties in using precision/recall

- Should average over large document collection/ query ensembles
- Need human relevance assessments
 - People aren' https://eduassistpro.github.io/
- Assessments have to be bin Add WeChat edu_assist_pro
 - Nuanced assessments?
- Heavily skewed by collection/authorship
 - Results may not translate from one domain to another

A combined measure: F

 Combined measure that assesses precision/recall tradeoff is F.measure (weighted harmonic mean): Assignment Project Exam Help

$$F = \frac{\frac{1}{R} \frac{1}{R} \frac{1}{R$$

- People usually use balanced F₁ measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$
- Harmonic mean is a conservative average
 - See CJ van Rijsbergen, Information Retrieval

F_1 and other averages

Evaluating ranked results

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of received https://eduassistpro.github.io/

Add WeChat edu_assist_pro

A precision-recall curve

Averaging over queries

- A precision-recall graph for one query isn't a very sensible thing to look at
- You need to average performance over a whole bunch of querhttps://eduassistpro.github.io/
- But there's a technical issu Add WeChat edu_assist_pro
 - Precision-recall calculations oints on the graph
 - How do you determine a value (interpolate) between the points?

Interpolated precision

- Idea: If locally precision increases with increasing recall, then you should get to count that...
- So you max of precisions to right of value

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Evaluation

- Graphs are good, but people want summary measures!
 - Precision at fixed retrieval level
 - Assignment Project Exam Help
 Precision et -k: Precision of top k results
 - Perhaps good mat https://eduassistpro.github.io/ good mat https://eduassistpro.github.io/ good mat https://eduassistpro.github.io/
 - But: averaged have welchast edu assistameter of k
 - 11-point interpolated aver n
 - The standard measure in the early TREC competitions: you take the precision at 11 levels of recall varying from 0 to 1 by tenths of the documents, using interpolation (the value for 0 is always interpolated!), and average them
 - Evaluates performance at all recall levels

Typical (good) 11 point precisions

SabIR/Cornell 8A1 11pt precision from TREC 8 (1999)

Yet more evaluation measures...

- Mean average precision (MAP)
 - Average of the precision value obtained for the top k
 documents significant Brejecant Month Prevent
 - Avoids interp https://eduassistpro.github.io/
 - MAP for que ave.
 - Macro-averagidal el Mequale transitatore du assist pro

R-precision

- If have known (though perhaps incomplete) set of relevant documents of size Rel, then calculate precision of top Rel docs returned
- Perfect system could score 1.0.

Variance

- For a test collection, it is usual that a system does crummily on some information needs (e.g., MAP = 0.1) and excelently or Projects (e.g., MAP = 0.7)
- Indeed, it is u https://eduassistpro.ght/abjao.ce in performance ross queries is much greater than the vari edu_assist_pro erent systems on the same query.
- That is, there are easy information needs and hard ones!

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

CREATING TEST COLLECTIONS FOR IR EVALUATION

Test Collections

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

From document collections to test collections

- Still need
 - Test queries
 - Relevan Assignment Project Exam Help
- Test queries https://eduassistpro.github.io/
 - Must be germane to docs av Add WeChat edu_assist_pro
 Best designed by domain ex

 - Random query terms generally not a good idea
- Relevance assessments
 - Human judges, time-consuming
 - Are human panels perfect?

Unit of Evaluation

- We can compute precision, recall, F, and ROC curve for different units.
- Possible unitsignment Project Exam Help
 - Documents (https://eduassistpro.github.io/
 - Facts (used in some TREC ev Add WeChat edu_assist_pro Entities (e.g., car companies)
- May produce different results. Why?

Kappa measure for inter-judge (dis)agreement

- Kappa measure
 - Agreement measure a project exam Help
 - Designed fo
 - Corrects for https://eduassistpro.github.io/
- Kappa = $[P(A)] A C C hat edu_assist_pro$
- P(A) proportion of time judg
- P(E) what agreement would be by chance
- Kappa = 0 for chance agreement, 1 for total agreement.

Kappa Measure: Example

P(A)? P(E)?

	Judge 2: Relevant	Judge 2: Nonrelevant
Relevant	ment Project Exa	
Judge 1: Nonrelevant Ac	10	o.github.io/ 70 assist_pro

Total assessment:400

- P(A) = 370/400 = 0.9250
- P(nonrelevant) = (10+20+70+70)/800 = 0.2125
- P(relevant) = (10+20+300+300)/800 = 0.7875
- $P(E) = 0.2125^2 + 0.7875^2 = 0.6653$
- Kappa = (0.9250 0.6653)/(1-0.6653) = 0.7759

Using pooled marginals

Kappa Example

- P(A) = 370/400 = 0.9250
- P(nonrelexant)gn(10+20+70+70)/889mq12125
- P(relevant) = (7875
- P(E) = 0.2125 https://eduassistpro.github.io/
- Kappa = (0.925Ad0.₩50)Hat edu_assist7500
- Kappa > 0.8 = good agreement
- 0.67 < Kappa < 0.8 -> "tentative conclusions" (Carletta '96)
- Depends on purpose of study
- For >2 judges: average pairwise kappas

TREC

- TREC Ad Hoc task from first 8 TRECs is standard IR task
 - 50 detailed information needs a year
 - Human evaluation of pooled results returned Help
 - More recently

, HARD

A TREC query (TR https://eduassistpro.github.io/
<top>
<num> Number: 225dd WeChat edu_assist_pro
<desc> Description:
What is the main function of the Federal Emergency Management

Agency (FEMA) and the funding level provided to meet emergencies?

Also, what resources are available to FEMA such as people,
equipment, facilities?

</top>

Standard relevance benchmarks: Others

- GOV2
 - Another TREC/NIST collection
 - 25 million web pages nt Project Exam Help
 - Largest collec
 - But still 3 ord https://eduassistpro.githwhotiopogle/ Yahoo/MSN in
- NTCIR Add WeChat edu_assist_pro
 - East Asian language and cross-language information retrieval
- Cross Language Evaluation Forum (CLEF)
 - This evaluation series has concentrated on European languages and cross-language information retrieval.
- Many others

Interjudge Agreement: TREC 3

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Impact of Inter-judge Agreement

- Impact on absolute performance measure can be significant (0.32 vs 0.39).
 Assignment Project Exam Help
- Little impact o ems or relative performance https://eduassistpro.github.io/
- Suppose we want to know if a suppose we want to know it is a suppose with the suppose we want to know it is a suppose with the suppose we want to know it is a suppose with the suppose we want to know it is a suppose with the suppose we want to know it is a suppose with the suppose we want to know it is a suppose with the suppose we want to know it is a suppose with the suppose we wit is a suppose with the suppose we will be a suppose with the sup
- A standard information retrieval experiment will give us a reliable answer to this question.

Critique of pure relevance

- Relevance vs Marginal Relevance
 - A document can be redundant even if it is highly relevant
 - Duplicatessignment Project Exam Help
 - The same inf https://eduassistpro.github.io/
 - Marginal rel of utility for the user.

 Add WeChat edu_assist_pro
- Using facts/entities as evaluation units more directly measures true relevance.
- But harder to create evaluation set

$$MMR \stackrel{\text{def}}{=} Arg \max_{D_i \in R \setminus S} \left[\lambda(Sim_1(D_i, Q) - (1 - \lambda) \max_{D_j \in S} Sim_2(D_i, D_j)) \right]$$

Can we avoid human judgment?

- No
- Makes experimental work hard

 Assignment Project Exam Help

 Especially on a large scale
- In some very https://eduassistpro.gite.phoisi/es
 - E.g.: for approximate vector edu_assist pro compare the cosine distance f the closest docs to those found by an approximate retrieval algorithm
- But once we have test collections, we can reuse them (so long as we don't overtrain too badly)

Evaluation at large search engines

- Search engines have test collections of queries and hand-ranked results
- Recall is difficult to measure on the web.
 Assignment Project Exam Help
- Search engines o

.g., k = 10

- ... or measures t https://eduassistpro.githglane/1 right than for getting rank 10 right.
 - NDCG (Normalized cumulative bisco edu_assist_pro
- Search engines also use non-relevance-based measures.
 - Clickthrough on first result
 - Not very reliable if you look at a single clickthrough ... but pretty reliable in the aggregate.
 - Studies of user behavior in the lab
 - A/B testing

A/B testing

- Purpose: Test a single innovation
- Prerequisite: You have a large search engine up and running.
- Have most users use old system
 Assignment Project Exam Help
 Divert a small proportion of traffic (e.g., 1%) to the new system that incl
- https://eduassistpro.github.io/ e clickthrough on Evaluate with a first result Now we can directly see if the i es imp
- es improve user happiness.
- Probably the evaluation methodology that large search engines trust most
- In principle less powerful than doing a multivariate regression analysis, but easier to understand

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

RESULTS PRESENTATION

Result Summaries

- Having ranked the documents matching a query, we wish to present a results list
- Most commonly, a list of the document titles plus a short summar https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Resources for this lecture

- IIR 8
- MIR Chapter 3
 Assignment Project Exam Help
- MG 4.5
- Carbonell and https://eduassistpro.githubfip/MR,
 diversity-based reranking of edu_assistepplecuments and producing summaries.