Planning developmental studies: A Bayesian Perspective

Mike Frank

How many children do I (have to) run?!?

Should this study be done?

- An alternative way to think about sample size planning: will this study be informative?
- Will your reviewers say:
 - "Likely wouldn't have been able to reject the null no matter what"?
 - "Not precise enough to constrain future work"?
 - "Wasted participants' time"?

Outline

- 1. The (flawed) classic approach: Power analysis
- 2. General alternative strategies
- 3. How Bayesian methods can help: Sequential testing

Outline

- 1. The (flawed) classic approach: Power analysis
- 2. General alternative strategies
- 3. How Bayesian methods can help: Sequential testing

Classic NHST

Truth

Null is true

Type I error
False positive

Correct
Type II error
False negative

Remember: p val is the probability of the data (or any more extreme) under the null

Power under classic NHST

- α is the significance value
 - Also the false-positive rate!
 - Generally α < .05
- β is probability of not rejecting null
 - False negative rate
 - Power is 1- β
- Power: The conditional probability
 - that one will reject the null hypothesis
 - given that the null is really false
 - And given
 - Effect size
 - Sample size

Quick illustration

Quick illustration

The big problem

We don't know the real effect size!

The (other) big problem

The real effect size may be 0

(and if so, we want to accept the null)

- 1. Meta-analysis of previous literature
- 2. Previous finding you're trying to replicate
- 3. General sense of the effect size you care about
- 4. Pilot data

1. Meta-analysis of previous literature

- Great if you have it
- But rare to have this and still be planning a study
- Still subject to potential publication bias
- 2. Previous finding you're trying to replicate
- 3. General sense of the effect size you care about
- 4. Pilot data

1. Meta-analysis of previous literature

2. Previous finding you're trying to replicate

- Very likely to be an inflated effect
- Can adjust for inflation (e.g. <u>Biesanz & Shrager</u> ms)
- Still very unlikely to be a precise estimate
- 3. General sense of the effect size you care about
- 4. Pilot data

- 1. Meta-analysis of previous literature
- 2. Previous finding you're trying to replicate
- 3. General sense of the effect size you care about
 - Average effect is often small (d=.5)
 - Might want to do a "smallest effect size of interest" (SESOI) analysis
 - Planning for an average effect just ends up a recipe for relatively underpowered studies
- 4. Pilot data

- 1. Meta-analysis of previous literature
- 2. Previous finding you're trying to replicate
- 3. General sense of the effect size you care about

4. Pilot data

- DON'T DO THIS!
- Estimates of effect size for pilots are so noisy that they will do more harm than good!
- Cf http://datacolada.org/20

Outline

- 1. The (flawed) classic approach: Power analysis
- 2. General alternative strategies
- 3. How Bayesian methods can help: Sequential testing

Planning a sample

- What's the goal of the study?
 - To test the existence of an effect
 - To replicate prior work
 - To measure a particular effect for comparison to a model
- What are the resources available for completing the study?
 - How long will it take?
 - How much does each data point cost?
 - And what's the opportunity cost?
- Answers to these questions determine the right sample size planning method!

Example 1

- RCT of educational intervention to raise math grades
 - High cost
 - High potential return on investment
 - Long timescale
- Want to know about efficacy of intervention
- Prior knowledge state:
 - 1. Lots of prior knowledge about interventions of this type
 - 2. Limited knowledge about effective size
- 1. Prior knowledge -> classic power analysis
- Less knowledge -> consider power on range of effect sizes up to some smallest effect size of interest (SESOI)

Example 2

- Student project with convenience population
 - Low cost, mostly opportunity cost in terms of time
 - Limited prior knowledge
- Cost-based sample planning probably most appropriate
 - Can analyze expected power under these costs
- Consider sequential analysis to minimize costs

Example 3

- Test of judgment/decision-making model using neural data
 - High cost of data collection
 - No obvious null hypothesis to reject
- Consider precision analysis: calculate expected measurement precision as a function of spending on data collection

Outline

- 1. The (flawed) classic approach: Power analysis
- 2. General alternative strategies
- 3. How Bayesian methods can help: Sequential testing