Math40002 Analysis 1

Unseen 4

1. Let $s_n = \sum_{k=1}^n \frac{1}{n+k}$. Prove s_n converges.

 $s_n = \sum_{k=1}^n \frac{1}{n+k} \le \frac{n}{n+1} < 1$, so s_n is bounded above. We will show that s_n is increasing

$$s_{n+1} - s_n = \sum_{k=1}^{n+1} \frac{1}{n+k+1} - \sum_{k=1}^{n} \frac{1}{n+k} = \sum_{k=2}^{n+2} \frac{1}{n+k} - \sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1} = \frac{(n+1)(2n+1) + (n+1)(2n+2) - (2n+1)(2n+2)}{(n+1)(2n+1)(2n+2)} = \frac{(n+1)(2n+1) + (n+1)(2n+2) - 2(n+1)(2n+1)}{(n+1)(2n+1)(2n+2)} > 0.$$

Therefore, by Theorem 3.13 in the lecture notes, s_n converges.

2. Define a sequence by $a_1 = 1$ and $a_{n+1} = (a_n + 1)^{1/2}$. Prove that $a_n \to (1 + \sqrt{5})/2$. Let $\Phi = (1 + \sqrt{5})/2$. Notice that $\Phi^2 - \Phi - 1 = 0$. So $(Phi + 1)^{1/2} = \Phi$.

First, to show that a_n converges to a non-negative real number, we will prove, by induction, that $\Phi > a_n > 0$ and $a_{n+1} > a_n$ for all $n \in \mathbb{N}$: For n = 1: $a_1 = 1, \Phi > 1 > 0$ and $a_{1+1} = (a_1 + 1)^{1/2} = (1+1)^{1/2} = \sqrt{2} > 1 = a_1$.

Assume $\Phi > a_n > 0$ and $a_{n+1} > a_n$ for n. Sor for n+1:

By the induction hypothesis, $a_n > 0$ and $a_{n+1} > a_n$. Therefore, $a_{n+1} = (a_n + 1)^{1/2}$ and $\Phi = (\Phi + 1)^{1/2} > (a_n + 1)^{1/2} > 0$ and

$$a_{n+1+1} = (a_{n+1} + 1)^{1/2} > (a_n + 1)^{1/2} = a_{n+1}.$$

So a_n is increasing and bounded above. Therefore, it converges to some limit $L \geq 0$. We will next prove $L = \Phi$.

Indeed, Since $a_n \to L$, if b_n is defined to be a_{n+1} , then also $b_n \to L$. Notice that $a_n = (b_{n+1})^2 - 1$. Therefore, $a_n \to L^2 - 1$. By uniqueness of the limit, $L = L^2 - 1$, and the only non-negative solution to this is $L = \Phi$.

3. In Unseen 2, for a sequence $(a_n)_{n=1}^{\infty}$, we defined $\limsup (a_n)_{n=1}^{\infty}$ to be $\inf_{m\geq 1} \{\sup_{n\geq m} \{a_n\}\}$. Prove:

$$\lim \sup (a_n)_{n=1}^{\infty} = \lim_{m \to \infty} \left(\sup_{n \ge m} \{ a_n \} \right)$$

in the sense that if one side of the equation exists, then so does the other and then they are equal.

In the same fashion, give two definitions for $\lim \inf$ and show that they are equivalent in the same sense as above.

Define $b_m := \sup_{n \geq m} \{ a_n \}$ for all $m \in \mathbb{N}$. Then, by definition of b_m and of \limsup , the left hand side of the equation is $\inf \{ b_m | m \in \mathbb{N} \}$ and the right hand side is $\lim_{m \to \infty} b_m$. By 3b in unseen 2, b_m is decreasing. Therefore, if $\inf \{ b_m | m \in \mathbb{N} \}$ exists, then b_m is bounded below, hence, $b_m \to \inf \{ b_m | m \in \mathbb{N} \}$. On the other hand, if $\lim_{m \to \infty} b_m$, then $(b_m)_{m=1}^{\infty}$ converges and thus is bounded above and below, as seen in class. Therefore, $\lim_{m \to \infty} b_m = \inf \{ b_m | m \in \mathbb{N} \}$.

4. Let (a_n) be a sequence. Prove that $a_n \to a$ if and only if $a_{2n} \to a$ and $a_{2n+1} \to a$. Try to generalize.

If $a_{2n} \to a$ and $a_{2n+1} \to a$, then for every ϵ , there is some N' such that for all n > N: $|a_{2n} - a|, |a_{2n+1} - a| < \epsilon$. Choose N := 2N' + 1. Then for every n > N, either n = 2k or n = 2k + 1 for some k > N' (since n is either even or odd)

If $a_n \to a$, then for every ϵ , there is some $N \in \mathbb{N}$ such that for all n > N: $|a_n - a| < \epsilon$. In particular, 2n, 2n + 1 > N.

5. The sequence b_n has b_1 and b_2 positive, and $b_{n+2} = b_n + b_{n+1}$ (note that then $b_n > 0$ for all n). Define $a_n = b_{n+1}/b_n$. Prove that (a_n) converges, and find the limit.

First, clearly b_n is increasing. Therefore, for every $n \geq 2$: $a_{n+1} = b_{n+1}/b_n = \frac{b_n + b_{n-1}}{b_n}$ and $1 \leq \frac{b_n + b_{n-1}}{b_n} \leq 2b_n/b_n = 2$. So $1 \leq a_n \leq 2$.

For all $n \in \mathbb{N}$:

$$a_{n+1} = \frac{b_{n+2}}{b_{n+1}} = \frac{b_{n+1} + b_n}{b_n} = 1 + 1/a_n.$$

So

$$a_{n+2} = 1 + \frac{1}{1 + \frac{1}{a_n}}$$

We will prove that $a_{2n} \to L$ and $a_{2n+1} \to L$ for some L, so by Question 4, $a_n \to L$.

To prove a_{2n} converges, we will prove it is monotone (either increasing or decreasing).

• If $a_4 \ge a_2$: we will prove by induction, that a_{2n} is increasing: i.e, for all $n \in \mathbb{N}$: $a_{2n+2} \ge a_{2n}$. The base case n = 1 is the assumption of this item. Assume $a_{2n+2} \ge a_{2n}$ and we want to show $a_{2n+4} \ge a_{2n+2}$:

$$a_{2n+4} = 1 + \frac{1}{1 + \frac{1}{a_{n+2}}} \ge 1 + \frac{1}{1 + \frac{1}{a_n}} = a_{2n}.$$

• If $a_4 \le a_2$: The same proof shows that a_{2n} is decreasing, replacing \ge with \le .

So a_{2n} is monotone and bounded, hence converges, to some limit $2 \ge L \ge 1$ (since $2 \ge a_{2n} \ge 1$ for all $n \in \mathbb{N}$.) Clearly $a_{2n+2} \to L$, but $a_{2n+2} = 1 + \frac{1}{1 + \frac{1}{a_{2n}}}$. So if $a_{2n} \to L$, then $L = 1 + \frac{1}{1 + \frac{1}{L}}$, which is equivalent to $L^2 - L - 1 = 0$ and the only positive solution is $L = (1 + \sqrt{5})/2 = \Phi$. A similar argument yields $a_{2n+1} \to \Phi$.