Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Molecular Biológica

Práctica 05

MSc. Vicente Machaca Arceda

13 de mayo de 2021

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la	Computación Molecular
	Computación	Biológica

PRÁCTICA	TEMA	DURACIÓN
05	Alineamiento de Secuencias con	3 horas
	Programación Dinámica	

1. Competencias del curso

- Aplica las bases matemáticas y la teoría de la informática en algoritmos de Bioinformática.
- Analiza, diseña y propone soluciones frente a problemas bioinformáticos.
- Sabe cómo utilizar y conoce las bases computacionales de herramientas modernas de secuenciamiento, alineamiento, árboles filogenéticos y mapeo de genomas.

2. Competencias de la práctica

 Aplica las bases matemáticas y la teoría de la informática en algoritmos de Alineamiento de Secuencias con Programación Dinámica.

3. Equipos y materiales

- Latex
- Conección a internet
- Python
- Matplotlib
- Numpy
- BioPython
- Cuenta en Github

4. Entregables

- Se debe elaborar un informe en Latex donde se responda a cada ejercicio de la Sección 5.
- En el informe se debe agregar un enlace al repositorio Github donde esta el código.
- En el informe se debe agregar el código fuente asi como capturas de pantalla de la ejecución y resultados del mismo.

5. Ejercicios

- 1. Encuentre el mejor alineamiento global entre las secuencias **AAAC** y **AGC**, con el siguiente scoring scheme: +1 for match, -1 for mismatch and -2 for an alignment with a gap. Luego, encuentre el mejor alineamiento utilizando la matriz de similitud del Cuadro 1 y costo por cada gap de -2.
- 2. Encuentre el mejor alineamiento global entre las secuencias **ATAG** y **TTCG**, con el siguiente scoring scheme: +1 for match, -1 for mismatch and -1 for an alignment with a gap. Luego, encuentre el mejor alineamiento utilizando la matriz de similitud del Cuadro 1 y costo por cada gap de -2.
- 3. Encuentre el mejor alineamiento local entre las secuencias ATACTGGG y TGACTGAG,, con el siguiente scoring scheme: +1 for match, -1 for mismatch and -2 for an alignment with a gap. Luego, encuentre el mejor alineamiento utilizando la matriz de similitud del Cuadro 1 y costo por cada gap de -2.

Cuadro 1: Matriz de similitud.

A C G T A 2 -7 -5 -7 C -7 2 -7 -5 G -5 -7 2 -7

T -7 -5 -7 2