LLIÇÓ 11: ELS ESPAIS \mathbb{R}^n

Embolcalls lineals i bases

- L'*embolcall lineal* del conjunt S és el conjunt S de totes les combinacions lineals d'elements de S.
- Un conjunt S genera \mathbb{R}^n si $\langle S \rangle = \mathbb{R}^n$.
- Un conjunt B és base de \mathbb{R}^n si és linealment independent i genera \mathbb{R}^n .

La matriu associada a un conjunt de vectors

Si $S = {\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p}$ considerem la matriu M_S que té aquests vectors per columnes,

$$\mathbf{M}_S = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_p \end{bmatrix}$$

- *S* és linealment independent si i només si rang $M_S = p$.
- S genera \mathbb{R}^n si i només si rang $M_S = n$.
- *S* és base de \mathbb{R}^n si i només si rang $M_S = p = n$ (és a dir, si M_S és invertible).

Cardinals dels conjunts linealment independents, generadors i bases

- Si *S* és linealment independent llavors, card $S \le n$.
- Si *S* és generador llavors, card $S \ge n$.
- Si *S* és base de \mathbb{R}^n llavors, card S = n.

Coordenades respecte a una base

- Si $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ és una base de \mathbb{R}^n i $\vec{u} = x_1\vec{u}_1 + x_2\vec{u}_2 + \dots + x_n\vec{u}_n$ llavors el *vector de coordenades* de \vec{u} respecte a B és $\vec{u}_B = (x_1, x_2, \dots, x_n)$.
- $\vec{u} = M_B \vec{u}_B$
 - Si $B = \{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\}$ és una base ortonormal llavors, les coordenades d'un vector \vec{u} respecte a B són

$$(\vec{u}\cdot\vec{q}_1,\vec{u}\cdot\vec{q}_2,\ldots,\vec{u}\cdot\vec{q}_n).$$

Canvi de base

Siguen B_1 i B_2 dues bases de \mathbb{R}^n .

- La matriu de canvi de base de B_1 a B_2 és la matriu $\mathsf{M}_{B_1B_2} = \left(\mathsf{M}_{B_2}\right)^{-1} \mathsf{M}_{B_1}$
- Canvi de coordenades: $\vec{u}_{B_2} = \mathsf{M}_{B_1 B_2} \vec{u}_{B_1}$
- 🖙 Estratègia de càlcul:

$$\left[\left. \mathsf{M}_{\scriptscriptstyle{B_2}} \; \mid \; \mathsf{M}_{\scriptscriptstyle{B_1}} \right] \xrightarrow{\mathsf{Gauss\text{-}Jordan}} \left[\mathsf{I} \; \mid \; \mathsf{M}_{\scriptscriptstyle{B_1B_2}} \right] \right.$$