In [2]: #imports:
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
%matplotlib inline

In [3]: titanic = pd.read_csv("titanic.csv")
 titanic.head()

Out[3]:

	ļ	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0)	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	1 2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	3 4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	ŀ	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [4]: #distribution of numerical columns
titanic.describe()

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592		1.102743	0.806057	49.693429		
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

In [5]: titanic.Survived.unique()

Out[5]: array([0, 1], dtype=int64)

In [6]: # Survived column has two values. 0 means that the person did not survive. 1 --> Survived

In [7]: titanic.Pclass.unique()

Out[7]: array([3, 1, 2], dtype=int64)

In [8]: #Pclass is the ticket class. It has 3 classes. 1st, 2nd and 3rd.

In [9]: #SibSp --> Number of siblings/Spouses.
#Parch --> Number of parents/Children.
#fare --> Ticket price.
#cabin --> cabin number.

In [10]: titanic.Embarked.unique()

Out[10]: array(['S', 'C', 'Q', nan], dtype=object)

In [11]: #embarked --> place of boarding #C = Cherbourg, Q = Queenstown, S = Southampton

In [12]: #check missing values

In [13]: sns.heatmap(titanic.isnull(), cbar=False)

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x247549477b8>

In [14]: #we can see that cabin has mostly missing values and in age some values are missing. In [15]: titanic.shape Out[15]: (891, 12) In [16]: #it has 891 rows and 12 columns In [17]: titanic.isnull().sum() Out[17]: PassengerId Survived Pclass Name Sex Age SibSp Parch 0 Ticket 0 Fare Cabin 0 687 Embarked dtype: int64

In [18]: sns.countplot(titanic.Survived , palette = "RdBu")

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x24756834358>

In [19]: #Around 550 did not survive and around 350 survived

In [20]: sns.countplot(titanic.Sex, hue=titanic.Survived , palette = "RdBu")

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x247567e1e10>

In [21]: #we can observe that survival rate of female is higher than male.

In [22]: sns.countplot(titanic.Pclass, hue=titanic.Survived , palette = "RdBu")

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x2475671d630>

In [23]: #many people from class 3 did not survive.
#titanic[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).count().sort_values(by='Survived', ascending=False)

In [24]: sns.countplot(titanic.Parch, hue=titanic.Survived , palette = "RdBu")

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x247562f2080>

In [25]: #there were many singles/ couples without children travelling.

In [26]: sns.countplot(titanic.Embarked, hue=titanic.Survived , palette = "RdBu")

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x247561f44a8>

In [27]: #there is some slight correlation between Embarked and Survived columns. We shall keep this for training our model

In [28]: titanic.Age.plot.hist()
#pandas built in viualization

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x24755fc0710>

In [29]: #most passengers had age in the range 20 to 40

In [30]: Survived = titanic.Survived.unique()
plt.hist([titanic.loc[titanic.Survived == x, 'Fare'] for x in Survived], label=Survived)
plt.legend()

Out[30]: <matplotlib.legend.Legend at 0x2475659bfd0>

In [31]: #most people had paid less Fare. The chances of survival was high for those who paid higer fare.

In [32]: #filling out missing data

In [33]: #Age

In [34]: titanic.Age.mean()

Out[34]: 29.69911764705882

In [35]: sns.boxplot(x=titanic.Pclass,y=titanic.Age)

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x24755ca7a90>

In [36]: #titanic.loc[titanic.Pclass == 1].loc[titanic.Age.isnull()]
titanic.loc[(titanic.Pclass == 1) & (titanic.Age.isnull())]

Out[36]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
31	32	1	1	Spencer, Mrs. William Augustus (Marie Eugenie)	female	NaN	1	0	PC 17569	146.5208	B78	С
55	56	1	1	Woolner, Mr. Hugh	male	NaN	0	0	19947	35.5000	C52	S
64	65	0	1	Stewart, Mr. Albert A	male	NaN	0	0	PC 17605	27.7208	NaN	С
166	167	1	1	Chibnall, Mrs. (Edith Martha Bowerman)	female	NaN	0	1	113505	55.0000	E33	S
168	169	0	1	Baumann, Mr. John D	male	NaN	0	0	PC 17318	25.9250	NaN	S
185	186	0	1	Rood, Mr. Hugh Roscoe	male	NaN	0	0	113767	50.0000	A32	S
256	257	1	1	Thorne, Mrs. Gertrude Maybelle	female	NaN	0	0	PC 17585	79.2000	NaN	С
270	271	0	1	Cairns, Mr. Alexander	male	NaN	0	0	113798	31.0000	NaN	S
284	285	0	1	Smith, Mr. Richard William	male	NaN	0	0	113056	26.0000	A19	S
295	296	0	1	Lewy, Mr. Ervin G	male	NaN	0	0	PC 17612	27.7208	NaN	С
298	299	1	1	Saalfeld, Mr. Adolphe	male	NaN	0	0	19988	30.5000	C106	S
306	307	1	1	Fleming, Miss. Margaret	female	NaN	0	0	17421	110.8833	NaN	С
334	335	1	1	Frauenthal, Mrs. Henry William (Clara Heinshei	female	NaN	1	0	PC 17611	133.6500	NaN	S
351	352	0	1	Williams-Lambert, Mr. Fletcher Fellows	male	NaN	0	0	113510	35.0000	C128	S
375	376	1	1	Meyer, Mrs. Edgar Joseph (Leila Saks)	female	NaN	1	0	PC 17604	82.1708	NaN	С
457	458	1	1	Kenyon, Mrs. Frederick R (Marion)	female	NaN	1	0	17464	51.8625	D21	s
475	476	0	1	Clifford, Mr. George Quincy	male	NaN	0	0	110465	52.0000	A14	S
507	508	1	1	Bradley, Mr. George ("George Arthur Brayton")	male	NaN	0	0	111427	26.5500	NaN	s
527	528	0	1	Farthing, Mr. John	male	NaN	0	0	PC 17483	221.7792	C95	S
557	558	0	1	Robbins, Mr. Victor	male	NaN	0	0	PC 17757	227.5250	NaN	С
602	603	0	1	Harrington, Mr. Charles H	male	NaN	0	0	113796	42.4000	NaN	S
633	634	0	1	Parr, Mr. William Henry Marsh	male	NaN	0	0	112052	0.0000	NaN	S
669	670	1	1	Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)	female	NaN	1	0	19996	52.0000	C126	S
711	712	0	1	Klaber, Mr. Herman	male	NaN	0	0	113028	26.5500	C124	S
740	741	1	1	Hawksford, Mr. Walter James	male	NaN	0	0	16988	30.0000	D45	S
766	767	0	1	Brewe, Dr. Arthur Jackson	male	NaN	0	0	112379	39.6000	NaN	С
793	794	0	1	Hoyt, Mr. William Fisher	male	NaN	0	0	PC 17600	30.6958	NaN	С
815	816	0	1	Fry, Mr. Richard	male	NaN	0	0	112058	0.0000	B102	s
839	840	1	1	Marechal, Mr. Pierre	male	NaN	0	0	11774	29.7000	C47	С
849	850	1	1	Goldenberg, Mrs. Samuel L (Edwiga Grabowska)	female	NaN	1	0	17453	89.1042	C92	С

In [37]: titanic.loc[(titanic.Pclass == 1) & (titanic.Age.isnull())] .shape

Out[37]: (30, 12)

In [38]: #So we have around 30 rows with missing age and PClass 1
#We shall fill them with age = 38

In [39]: titanic.loc[(titanic.Pclass == 1) & (titanic.Age.isnull()) , 'Age'] = 38

In [40]: titanic.loc[(titanic.Pclass == 1) & (titanic.Age.isnull())]

Out[40]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

In [41]: titanic.loc[(titanic.Pclass == 2) & (titanic.Age.isnull())]

Out[41]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
17	18	1	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000	NaN	S
181	182	0	2	Pernot, Mr. Rene	male	NaN	0	0	SC/PARIS 2131	15.0500	NaN	С
277	278	0	2	Parkes, Mr. Francis "Frank"	male	NaN	0	0	239853	0.0000	NaN	S
303	304	1	2	Keane, Miss. Nora A	female	NaN	0	0	226593	12.3500	E101	Q
413	414	0	2	Cunningham, Mr. Alfred Fleming	male	NaN	0	0	239853	0.0000	NaN	S
466	467	0	2	Campbell, Mr. William	male	NaN	0	0	239853	0.0000	NaN	S
481	482	0	2	Frost, Mr. Anthony Wood "Archie"	male	NaN	0	0	239854	0.0000	NaN	S
547	548	1	2	Padro y Manent, Mr. Julian	male	NaN	0	0	SC/PARIS 2146	13.8625	NaN	С
596	597	1	2	Leitch, Miss. Jessie Wills	female	NaN	0	0	248727	33.0000	NaN	S
674	675	0	2	Watson, Mr. Ennis Hastings	male	NaN	0	0	239856	0.0000	NaN	S
732	733	0	2	Knight, Mr. Robert J	male	NaN	0	0	239855	0.0000	NaN	S

In [42]: #We will fill the missing ages with 29 here

In [43]: titanic.loc[(titanic.Pclass == 2) & (titanic.Age.isnull()) , 'Age'] = 29

In [44]: titanic.loc[(titanic.Pclass == 1) & (titanic.Age.isnull())]

Out[44]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

In [45]: titanic.loc[(titanic.Pclass == 3) & (titanic.Age.isnull())].shape

Out[45]: (136, 12)

In [46]: #136 rows. We will fill missing age with 25 for PClass 3

In [47]: titanic.loc[(titanic.Pclass == 3) & (titanic.Age.isnull()) , 'Age'] = 25

In [48]: sns.heatmap(titanic.isnull(), cbar=False)

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x2475490b748>

In [49]: #Next we shall fill Embarked column

In [50]: titanic.loc[titanic.Embarked.isnull()].shape

Out[50]: (2, 12)

In [51]: #Since there are only 2 missing values, we will replace with value having maxmimu records.

In [52]: titanic.groupby('Embarked')['PassengerId'].nunique()

Out[52]: Embarked C 168

Q 7

S 644

Name: PassengerId, dtype: int64

```
In [53]: | titanic.groupby('Embarked').size()
Out[53]: Embarked
                77
               644
          dtype: int64
In [54]: titanic.loc[titanic.Embarked.isnull(), 'Embarked'] = 'S'
In [55]: sns.heatmap(titanic.isnull(), cbar=False )
Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x2475890bbe0>
In [56]: titanic.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
                         891 non-null int64
          PassengerId
                         891 non-null int64
          Survived
          Pclass
                          891 non-null int64
          Name
                         891 non-null object
          Sex
                         891 non-null object
          Age
                         891 non-null float64
          SibSp
                         891 non-null int64
          Parch
                         891 non-null int64
                         891 non-null object
          Ticket
                         891 non-null float64
          Fare
          Cabin
                         204 non-null object
          Embarked
                         891 non-null object
          dtypes: float64(2), int64(5), object(5)
          memory usage: 83.6+ KB
In [57]: #We shall drop columns 'PassengerId', 'Name', 'Ticket', 'Cabin'
In [58]: titanic = titanic.drop(['PassengerId','Name','Ticket','Cabin' ],axis=1)
In [59]: titanic.head()
Out[59]:
            Survived
                      Pclass Sex
                                    Age SibSp
                                                Parch Fare
                                                               Embarked
          0 0
                                     22.0
                                                       7.2500
                              male
          1 1
2 1
                              female
                                     38.0
                                                0
                                                       71.2833
                      3
                              female
                                     26.0
                                          0
                                                       7.9250
          3 1
                                     35.0
                                                       53.1000
                              female
                              male
                                     35.0
                                                       8.0500
In [60]: #Since machine learning algorithms work with only numerical data, we will encode text to numerical
In [61]: titanic.groupby('Sex').size()
Out[61]: Sex
          female
                    314
          male
                    577
          dtype: int64
In [62]: titanic.loc[titanic.Sex == 'female', 'Sex'] = 0
titanic.loc[titanic.Sex == 'male', 'Sex'] = 1
In [63]: titanic.groupby('Sex').size()
Out[63]: Sex
               314
               577
          dtype: int64
In [64]: #We will do the same thing with Embarked column
```

```
In [65]: | titanic.groupby('Embarked').size()
Out[65]: Embarked
           Q
                 77
                646
           dtype: int64
In [66]: titanic.loc[titanic.Embarked == 'C', 'Embarked'] = 0
titanic.loc[titanic.Embarked == 'Q', 'Embarked'] = 1
titanic.loc[titanic.Embarked == 'S', 'Embarked'] = 2
In [67]: titanic.groupby('Embarked').size()
Out[67]: Embarked
                 77
                646
           dtype: int64
In [68]: titanic.head()
Out[68]:
             Survived
                        Pclass
                               Sex Age
                                          SibSp Parch Fare
                                                                 Embarked
           0 0
                                     22.0
                                                 0
                                                         7.2500
           1 1
                                0
                                     38.0
                                                 0
                                                         71.2833
           2 1
                        3
                                0
                                                 0
                                     26.0
                                                         7.9250
           3 1
                                0
                                     35.0
                                                 0
                                                         53.1000
           4 0
                        3
                                     35.0
                                                 0
                                                         8.0500
In [69]: #Declaring our input and output/target columns:
In [70]: X = titanic.drop(['Survived'],axis=1)
           X.head()
Out[70]:
             Pclass
                      Sex Age
                                SibSp Parch Fare
                                                       Embarked
           0 3
                           22.0
                                              7.2500
                                                       2
           1 1
                           38.0
                                              71.2833
           2 3
3 1
                           26.0
                                0
                                              7.9250
                                                       2
                           35.0
                                              53.1000 2
           4 3
                           35.0 0
                                              8.0500
In [71]: y = titanic.Survived
           y.head()
Out[71]: 0
           2
                1
           3
           Name: Survived, dtype: int64
In [72]: #training and testing data:
In [73]: from sklearn.model_selection import train_test_split
In [74]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
In [75]: X_train.shape
Out[75]: (623, 7)
In [76]: X_test.shape
Out[76]: (268, 7)
In [77]: from sklearn.linear_model import LogisticRegression
In [78]: logregmodel = LogisticRegression()
In [79]: logregmodel.fit(X_train,y_train)
Out[79]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                      intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
                      verbose=0, warm_start=False)
In [80]: y_pred = logregmodel.predict(X_test)
```

```
In [81]: from sklearn.metrics import accuracy_score
In [82]: accuracy_score(y_test, y_pred)
Out[82]: 0.7985074626865671
In [83]: | from sklearn.metrics import classification_report
In [84]: print(classification_report(y_test,y_pred))
                      precision
                                   recall f1-score
                                                     support
                                     0.86
                                               0.84
                           0.83
                                                          171
                                     0.69
                                               0.71
         avg / total
                           0.80
                                     0.80
                                               0.80
                                                          268
In [85]: from sklearn.tree import DecisionTreeClassifier
In [86]: dtreemodel = DecisionTreeClassifier()
In [87]: dtreemodel.fit(X_train,y_train)
Out[87]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                     max_features=None, max_leaf_nodes=None,
                     min_impurity_split=1e-07, min_samples_leaf=1,
                     min_samples_split=2, min_weight_fraction_leaf=0.0,
                     presort=False, random_state=None, splitter='best')
In [88]: y_pred = dtreemodel.predict(X_test)
In [89]: | accuracy_score(y_test, y_pred)
Out[89]: 0.7873134328358209
         A random forest classifier.
         A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to
         improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the
         samples are drawn with replacement if bootstrap=True (default).
In [90]: from sklearn.ensemble import RandomForestClassifier
In [93]: rfmodel = RandomForestClassifier()
In [94]: rfmodel.fit(X_train,y_train)
Out[94]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_split=1e-07, min_samples_leaf=1,
                     min_samples_split=2, min_weight_fraction_leaf=0.0,
                     n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
                     verbose=0, warm_start=False)
In [95]: y_pred = rfmodel.predict(X_test)
In [96]: accuracy_score(y_test, y_pred)
Out[96]: 0.8208955223880597
```

In []: