1) { multiple linear regression}

MIR u used when there are multiple input features and a single output feature. (more than I predictors)

Suppose we have n input features. Let them be X_1, \ldots, X_n and let the output feature be y. Then MLR is:

$$\hat{y} = \beta_0 + \beta_1 \times_1 + \dots + \beta_n \times_n$$

The objective is to find $(\beta_0, \dots, \beta_n)$ \ni we have minimum loss

2 2 Mathematical formulation)

het us suppose we have m input features $(X_1, ..., X_m)$ and n such data points. Let y be the output feature. So our dataset looks like this.

et looks	(i K	e th		m predic	ctors		> output
		X_1	×2		Xm	8	feature
ndata points		X ₁₁	Χ _{ι2}		X _{1m}	y ₁	
		X21	Х,2		χ ^{τω}	ya	_
						•	
		X _{n2}			Xnm	y n	

Then
$$\hat{y_1} = \beta_0 + \beta_1 \times_{11} + \dots + \beta_m \times_{2m} - C$$

$$y_n = \beta_0 + \beta_1 \times_{n_1} + \cdots + \beta_m \times_{n_m} - \hat{m}$$

These n equations can then be written as:

Thus,

(3) { Mathematical formulation of error function } het
$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
 and $\hat{y} = \begin{bmatrix} \hat{y_2} \\ \vdots \\ \hat{y_n} \end{bmatrix}$

We define
$$E = d_1^2 + d_2^2 + ... + d_n^2$$

$$= (y_1 - \hat{y}_1)^2 + ... + (y_n - \hat{y}_n)^2$$

$$= \begin{bmatrix} y_1 - \hat{y}_1 & \dots & y_n - \hat{y}_n \end{bmatrix}_{x_n} \begin{bmatrix} y_1 - \hat{y}_1 \\ y_n - \hat{y}_n \end{bmatrix}_{n \times 1}$$

$$= e^T e , e = \begin{bmatrix} y_2 - \hat{y}_2 \\ y_n - \hat{y}_n \end{bmatrix}_{n \times 1}$$

$$= \|e\|^2$$

$$= \|e\|^2$$
Thus, error function E can also be represented as a

product of two matrices, namely et and e.

We may also write e as y-y Then $\mathcal{E} = e^{\mathsf{T}}e = (y - \hat{y})'(y - \hat{y})$ $= \left(y^{\mathsf{T}} - \left(\hat{y} \right)^{\mathsf{T}} \right) \left(y - \hat{y} \right)$ $= y^{\dagger}y - y^{\dagger}\hat{y} - (\hat{y})^{\dagger}y + (\hat{y})^{\dagger}\hat{y}$ These two are equal.

Claim: $-y^T\hat{y} = (\hat{y})^Ty$ i, e $y^T\hat{y}$ is a symmetric matrix

Proof: - yT has shape Ixn and g has shape nxI.

Thus, y^Ty has shape 1×1 . Hence, we have shown that it is a scalar matrix. We know that every scalar matrix is symmetric. Thus $y^T\hat{y} = (y^T\hat{y})^T = (\hat{y})^T (y^T)^T$ $= (\hat{y})^T y$

$$y^{\mathsf{T}}\hat{y} = (y^{\mathsf{T}}\hat{y})^{\mathsf{T}} = (\hat{y})^{\mathsf{T}} (y^{\mathsf{T}})^{\mathsf{T}}$$
$$= (\hat{y})^{\mathsf{T}}y$$

Thus,
$$E = yTy - ayT\hat{y} + (\hat{y})^T\hat{y}$$

(4) { final devivation}

$$\hat{y} = X\beta$$

putting this in the equation of E, we get $E = y^{\mathsf{T}}y - 2y^{\mathsf{T}} \times \beta + (\chi \beta)^{\mathsf{T}} (\chi \beta)$

$$E = y^Ty - 2y^TX\beta + \beta^Tx^TX\beta$$

main equation

Thus, E is a function of B as X and y are already fixed.

$$E(\beta) = y^{T}y - 2y^{T}x\beta + \beta^{T}x^{T}x\beta$$

We need to find $\beta \rightarrow E(\beta)$ has minimum value.

Here
$$y = (y_1, \dots, y_n)^T$$

$$\beta = (\beta_0, \dots, \beta_m)^T$$

$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ 2 & x_{n1} & \dots & x_{nm} \end{bmatrix} x_x(mti)$$

find such value of β matrix for which E is min-for minimum, we should have.

$$\frac{\partial \beta}{\partial \epsilon} = 0$$

$$\frac{\partial E}{\partial \beta} = \frac{\partial}{\partial \beta} \left(y^{T}y - \lambda y^{T}x\beta + \beta^{T}x^{T}x\beta \right)$$

$$= 0 - 2y^{T}X + \frac{\partial}{\partial \beta} \left(\beta^{T}X^{T}X\beta \right)$$

For this we need to study matrix calculus which is not feasible as of now. However, we have a special result in matrix calculus which says that y. A is a symmematrix and $x = x^T A x$, then

$$\frac{\partial d}{\partial x} = 2x^T A$$
, where x is

a (nx1) vector.

$$= -2y^{T}x + 2\beta^{T}x^{T}x$$

Thus,
$$\frac{\partial E}{\partial \beta} = 2 \beta^{T} \times^{T} \times - 2 y^{T} \times$$

Equating this to 0, we get
$$\beta^{T}x^{T}x = y^{T}X$$
Assuming that $x^{T}x$ is invertible, we have
$$\beta^{T}x^{T}x = y^{T}x (x^{T}x)^{-1} = y^{T}x (x^{T}x)^{-1}$$

$$\Rightarrow \qquad \beta^{T} = y^{T}x x^{-1}(x^{T})^{-1}$$

$$\Rightarrow \qquad \beta^{T} = y^{T}x x^{-1}(x^{T})^{-1}$$

$$\Rightarrow \qquad \beta^{T} = [(x^{T})^{-1}]^{T}(x^{T})^{T}x^{T}y^{T}$$

$$\Rightarrow \qquad \beta = [(x^{T})^{-1}]^{T}(x^{T})^{T}x^{T}y$$

$$\Rightarrow \qquad \beta = x^{T}(x^{T})^{-1}x^{T}y$$

$$\Rightarrow \qquad \beta = x^{T}(x^{T})^{-1}x^{T}y$$

$$\Rightarrow \qquad \beta = [x^{T}x]^{-1}x^{T}y$$

$$\Rightarrow \qquad \beta = (x^{T}x)^{-1}x^{T}y$$

$$\Rightarrow \qquad \beta = (x^{T}x)^{-1}x^{T}y$$

$$\Rightarrow \qquad \gamma = [x^{T}x]^{-1}x^{T}y$$

$$\Rightarrow \qquad \gamma = [x^{T}x]^{-1}x^{T}y$$

$$\Rightarrow \qquad \gamma = [x^{T}x]^{-1}x^{T}y$$

Now $[X^TX]^{-1}X^T$ has shape $(m+1) \times n$. Also, since y has shape $n \times 1$. Thus, $B = [X^TX]^{-1}X^Ty$ has shape $(m+1) \times 1$.

 $\Im \xi$ Problem with OLS solution $\Im \xi$ We have $\Im \xi = (X^T X)^{-1} X^T y$

Matrix multiplication is a computationally expansive operation. In higher dimension, this is a slow procedure. Thus in higher dimension, we prefer to use non-closed approximation techniques like gradient descent which is computationally less expansive.