Mathematisches Seminar

Klimawandel

Leitung: Andreas Müller

Matthias Baumann, Oliver Dias-Lalcaca, Matthias Dunkel Flurina Hoby, Sebastian Lenhard, Silvio Marti, Michael Müller Hansruedi Patzen, Melina Staub, Martin Stypinski, Nicolas Tobler Raphael Unterer

Inhaltsverzeichnis

Vorwort

Dieses Buch entstand im Rahmen des Mathematischen Seminars im Frühjahrssemester 2018 an der Hochschule für Technik Rapperswil. Die Teilnehmer, Studierende der Abteilungen für Elektrotechnik, Informatik und Bauingenieurwesen der HSR, erarbeiteten nach einer Einführung in das Themengebiet jeweils einzelne Aspekte des Gebietes in Form einer Seminararbeit, über deren Resultate sie auch in einem Vortrag informierten.

Im Frühjahr 2018 war das Thema des Seminars der Klimawandel.

Im zweiten Teil dieses Skripts kommen dann die Teilnehmer selbst zu Wort. Ihre Arbeiten wurden jeweils als einzelne Kapitel mit meist nur typographischen Änderungen übernommen. Diese weiterführenden Kapitel sind sehr verschiedenartig. Eine Übersicht und Einführung findet sich in der Einleitung zum zweiten Teil auf Seite ??.

In einigen Arbeiten wurde auch Code zur Demonstration der besprochenen Methoden und Resultate geschrieben, soweit möglich und sinnvoll wurde dieser Code im Github-Repository dieses Kurses¹ abgelegt.

Im genannten Repository findet sich auch der Source-Code dieses Skriptes, es wird hier unter einer Creative Commons Lizenz zur Verfügung gestellt. Auf der beiliegenden DVD befinden sich die Testdaten und Programme zu zwei der simulationsintensiveren Artikel im zweiten Teil.

https://github.com/AndreasFMueller/SeminarKlima.git

Teil I Grundlagen

Kapitel 1

Wetter und Klima

US Präsident Donald Trump war schon immer ein Klimaverweigerer, wie Tweets aus der Zeit lange bevor er Präsident wurde:

It's freezing in New York—where the hell is global warming?

Original (Englisch) übersetzen

12:37 - 23. Apr. 2013

Ganz offensichtlich versteht Trump den Unterschied zwischen Wetter und Klima nicht. Ziel dieses Kapitels ist, den Unterschied zwischen Wetter und Klima zu klären. Es ist allgemein bekannt, dass auch die besten Wetterprognosen im günstigsten Fall für einige Tage zutreffen. Daher soll in diesem Kapitel auch gezeigt werden, warm trotz dieser Schwierigkeit das Klima sehr wohl langfristig modelliert und prognostiziert werden kann. Aus diesen Überlegungen wird auch klar, auf welche Aspekte des Klimasystems sich ein Klima-Modell fokusieren muss, wenn eine langfristige Prognose ermöglicht werden soll.

1.1 Klima

In der Wikipedia kann man die folgenden Definitionen für die Begriffe Wetter und Klima finden:

Definition 1.1. Als Wetter bezeichnet man den spürbaren, kurzfristigen Zustand der Atmosphäre (auch: messbarer Zustand der Troposphäre) an einem bestimmten Ort der Erdoberfläche, der unter anderem als Sonnenschein, Bewölkung, Regen, Wind, Hitze oder Kälte in Erscheinung tritt [skript:wetter].

Definition 1.2. Das Klima steht als Begriff für die Gesamtheit aller meteorologischen Vorgänge, die für die über Zeiträume von mindestens 30 Jahren regelmässig wiederkehrenden durchschnittlichen Zustände der Erdatmosphäre an einem Ort verantwortlich sind [skript:klima].

Was also Donald Trump in seinem Tweet beschrieben hat ist das Wetter. Selbst wenn die Temperatur in New York unter den Gefrierpunkt fällt, heisst das nicht, dass die mittlere Temperatur in New York über mehrere Jahre nicht doch ansteigen kann. Tatsächlich bedeutet "globale Erwärmung" nicht, dass die mittlere Temperatur an jedem Punkt der Erde zunehmen wird. Im Gegenteil ist es durchaus möglich, dass zwar die mittlere Temperatur der Erde ständig zunimmt, wie wir in den letzten Jahren auch messtechnisch nachweisen konnten, dass aber auch die Temperaturunterschiede stark zunehmen, so dass es am Ende an einzelnen Stelle der Erdoberfläche zu einer Abkühlung kommen kann. Um dieser Komplexität Rechnung zu tragen, spricht man nicht mehr von der "globalen Erwärmung", sondern vom Klimawandel.

Auch wenn das Wetter nur sehr eingeschränkt vorhersagen lässt, bedeutet das noch lange nicht, dass das Klima nicht doch sehr genau vorhergesagt werden kann. Eine Analogie kann den Unterschied zwischen der Vorhersagbarkeit von Wetter und Klima verdeutlichen. Wenn man in einem Kochtopf Wasser zum Kochen bringt, stellt sich eine unverrhersagbare chaotische Bewegung kleiner und grosser Gasblasen ein. Es ist unmöglich vorherzusagen, wann und wo sich die nächste Blase bilden wird und welchen Weg sie an die Oberfläche des Wasser nehmen wird. Wenn wir aber nur die mittlere Temperatur betrachten, können wir aus der Heizleistung der Kochplatte, der Masse und der spezifischen Wärmekapazität des Wassers genau berechnen, welche Temperatur zu welcher Zeit im Wasser herschen wird und wir können den Zeitpunkt exakt vorhersagen, wann das Wasser zu sieden beginnt. Die mittlere Temperatur des Wassers beschreibt das "Klima" in der Pfanne, die kleinräumigen und kurzfristigen Blasen und anderen Turbulenzen beschreiben das "Wetter".

1.2 Physikalische Eigenschaften des Klimasystems

In diesem Abschnitt stellen wir die physikalischen Eigenschaften aller wesentlicher Komponenten des Klimasystems zusammen. Dabei geht es zunächst nur darum, die grundlegende Physik in Erinnerung zu rufen und die Naturgesetze, die die Wechselwirkungen zwischen den Komponenten beschreiben. Auf die Details der mathematischen Modellierung der zukünftigen Veränderung dieser Grössen werden wir erst später eingehen.

1.2.1 Wärme, Konvektion, Kondensation

Die wohl wichtigste Klima-Grösse ist die Temperatur. Sie drückt aus, wieviel Energie in Form von Wärme ein Körper enthält.

Wärmekapazität

Die spezifische Wärme C gibt an, wie die innere Energie sich bei einer Temperaturänderung ΔT verändert:

$$\Delta E = C \cdot \Delta T.$$

Der Körper speichert Energie in Form der thermischen Bewegung der einzelnen Atome. Schwerere Atome können bei gleicher Bewegungsgeschwindigkeit mehr Energie speichern. Stoffe mit grösserer Dichte können mehr Atome und damit auch mehr Wärmeenergie in einem kleineren Volumen unterbringen. Die spezifische Wärmekapazität c gibt an, welche Wärmekapazität ein Kilogramm eines Stoffes hat. Ein Körper der Masse m hat also die Wärmekapazität C = cm.

Wärmeleitung

Herrschen in einem Körper Temperaturunterschiede, ist *T* nicht mehr nur eine konstante, sondern eine Funktion der Koordinaten und auch der Zeit. Temperaturunterschiede werden sich ausgleichen, indem Energie von wärmeren zu kälteren Teilen des Körpers fliegt. Dies geschieht umso schneller, je grösser die Unterschiede sind. Die Wärmeleitungsgleichung

$$\frac{\partial T}{\partial t} = \kappa \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) T \tag{1.1}$$

beschreibt die Entwicklung der Funktion T(x, y, z, t) an jedem Ort des Raumes [**skript:waermeleitung**]. Der Koeffizient κ ist eine Materialkonstante, die beschreibt, wie schnell sich die Temperaturunterschiede ausgleichen können. Ist $\kappa = 0$, folgt $\partial T/\partial t = 0$, die Temperatur ändert sich nicht, es findet keine Wärmeleitung statt.

Die rechte Seite von (1.1) kann mit dem sogenannten Laplace-Operator gemäss der folgenden Definition geschrieben werden.

Definition 1.3. Der Operator

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

heisst der Laplace-Operator.

Die Wärmeleitungsgleichung erhält damit die Form

$$\frac{\partial T}{\partial t} = \kappa \Delta T. \tag{1.2}$$

Konvektion

Wärmeleitung kann Wärmeenergie nur vergleichsweise langsam transportieren. Das einleitende Beispiel des Kochtopfs zeigt auch, wie ein effizienterer Energietransport funktionieren kann. In der Atmosphäre dehnt sich warme Luft aus. Dank der geringeren Dichte können warme Luftblasen aufsteigen und damit Wärme viel effizienter in die obere Atmosphäre transportieren als dies mit Wärmeleitung möglich wäre. Dieser Prozess heisst *Konvektion* [skript:konvektion].

Wir wollen den Fall eines strömenden Mediums mathematisch etwas genauer ausarbeiten. Bewegt sich das Medium mit der Geschwindigkeit \vec{v} , dann ändert sich die Temperatur des Mediums, welches sich über dem Punkt P=(x,y,z) befindet. Nach der Zeit Δt befindet sich derjenige Teil des Mediums über dem Punkt P, der sich vorher über dem Punkt $P-\Delta t \cdot \vec{v}$ befand. Die Temperatur zur Zeit $t+\Delta t$ ist daher $T(P,t+\Delta t)=T(P-\Delta t,t)$. Die Temperaturänderung

$$\begin{split} T(P,t+\Delta t) &= T(P,t) + (T(P,t+\Delta t) - T(P,t)) = T(P,t) + T(P-\vec{v}\Delta t,t) - T(P,t) \\ \frac{T(P,t+\Delta t) - T(P,t)}{\Delta t} &= \frac{T(P-\vec{v}\Delta t,t) - T(P,t)}{\Delta t}. \end{split}$$

Beim Grenzübergang $\Delta t \to 0$ wird aus der linken Seite die partielle Ableitung nach t. Die rechte Seite kann mit Hilfe der Kettenregel berechnet weren. Es wird

$$\frac{\partial T}{\partial t} = -\frac{\partial T}{\partial x}v_x - \frac{\partial T}{\partial y}v_y - \frac{\partial T}{\partial z}v_z. \tag{1.3}$$

Der Ausdruck auf der rechten Seite kann vektoriell mit der folgenden Definition etwas eleganter geschrieben werden.

Definition 1.4. Der vektorielle Operator

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

heisst der Nabla-Operator. Der Vektor

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \operatorname{grad} f$$

heisst der Gradient von f.

Die Temperaturänderung in Folge der Strämung (1.3) wird

$$\frac{\partial T}{\partial t} = -\vec{v} \cdot \nabla T. \tag{1.4}$$

Man nennt diese Temperaturänderung durch die Strömung auch *Advektion*. Die Wärmeleitungsgleichung kann damit zu einem umfassenderen Modell

$$\frac{\partial T}{\partial t} = -\vec{v} \cdot \nabla T + \kappa \Delta T \tag{1.5}$$

zusammengefasst werden. Es ist geeignet für die Beschreibung sowohl der Atmosphäre wie auch des Wärmeaustausches in den Ozeanen.

Phasenübergänge

Um ein Kilogramm Wasser bei 20°C zu verdunsten, ist eine latente Wärme von 2480 kJ nötig. Um ein Kilogramm Luft um ein Grad zu erwärmen, sind dagegen nur 1.005 kJ notwendig. Anders herum bedeutet dies, dass eine mit Wasserdampf angereicherte Atmosphäre sehr viel mehr Energie in Form von latenter Wärme speichern kann, als allein durch die Wärmekapazität trockener Luft möglich wäre.

Wir haben damit zwei Mechanismen identifiziert, wie eingestrahlte und in der Erdkruste als Wärme gespeicherte Energie in die Atmosphäre transportiert werden kann. Einerseits kann Luft über aufgewärmten Landmassen oder dem Meer erwärmt werden und als Konvektionsströmung aufsteigen. Andererseits kann Wasser an der Oberfläche verdampft werden damit die latente Wärme in die Atmosphäre übergehen. Man nennt diese Mechanismen auch turbulente Flüsse [skript:wiefunktioniertdas].

Der Wassergehalt der Luft kann höchstens einige wenige Prozente betragen. Zwar ist die Wärmespeicherung durch Verdunstung über 2000 mal effizienter, aber weil nur wenig Wasser dafür zur Verfügung steht, übernimmt die Verdunstung doch nicht einen derart grossen Teil des Energietransports von der Oberfläche in die Atmosphäre. In der Tat finden etwa 30% des Energietransports von der Erdkruste in die Atmosphäre durch turbulente Flüsse statt, davon etwa 7% durch Konvektion und 23% durch latente Wärme [skript:wiefunktioniertdas]. Höhere Temperaturen begünstigen die Verdunstung und verschieben diesen Anteil zugunsten der latenten Wärme. Man darf also davon ausgehen, dass höhere Oberflächentemperaturen zu einem überproportional höheren Energietransport in die Atmosphäre führen.

In der Atmosphäre kann die Energie über grosse Distanzen transportiert und später wieder freigesetzt werden, wie Hurricanes und Tornadoes eindrücklich demonstrieren können. Damit ein Klimamodell Aussagen machen kann über das Auftreten von extremen Wetterphänomenen muss es also den Wassergehalt der Atmosphäre modellieren.

1.2.2 Strahlung

Der bedeutendste Energietransportmechanismus in der Atmosphäre ist die Strahlung. In diesem Abschnitt stellen wir die Strahlungsgesetze zusammen und studieren die Strahlungsbilanz der Atmosphären.

Schwarzkörperstrahlung

Die Strahlung der Sonne wie auch der Erde kann als Strahlung eines schwarzen Körpers modelliert werden. Ein schwarzer Körper ist ein idealisierter Körper, der alle auftretende Strahlung absorbieren kann. Er befindet sich im thermischen Gleichgewicht mit dem Strahlungsfeld, seine Strahlung hängt daher nur von der Temperatur ab.

Stefan-Boltzmann-Gesetz

Das Stefan-Bolzmann-Gesetz gibt Auskunft darüber, wieviel Energie insgesamt von einem schwarzen Körper abgestrahlt wird. Die gesamte Strahlung hängt natürlich von der Oberfläche A des Strahlers ab, aber die Strahlungsleistung pro Flächeneinheit hängtnur noch von der Temperatur ist. Die gesamte Strahlungsleistung ist

$$P = \sigma A T^4$$
 mit $\sigma = 5.670367 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$. (1.6)

Die Strahlung der Sonne nimmt dem Quadrat der Entfernung ab. Von der Strahlungsleistung σT^4 pro Flächeneinheit der Sonnenoberfläche bleibt in der Entfernung der Erde die Leistung

$$P_{\dot{\Box}} = \sigma T^4 \cdot \left(\frac{R_{\odot}}{a_{\dot{\Box}}}\right)^2 \tag{1.7}$$

übrig, wobei $R_{\odot} = 6.957 \cdot 10^8 \text{m}$ der Radius der Sonne ist und $a_{\circ} = 1.496 \cdot 10^{11} \text{m}$ die mittlere Entfernung der Erde von der Sonne. Setzt man diese Werte und die Temperatur T = 5778 K in die Gleichung (1.7) ein, erhält man

$$P_{\pm} = 1366.8 \text{W/m}^2$$
,

auch bekannt als die Solarkonstante.