Joint Probability Distributions Discrete case Section 6.1

STAT/MATH 395 Spring 2020

Vincent Roulet

Lecture 5, April 8th, 2020

Ask questions via chat on Zoom Answer quiz via PollEverywhere (username: vincentroulet)

Overview

Lecture note

► A lecture note reviewing MATH/STAT 394 is available

Homework

- ▶ 1st homework available tonight, due next Wednesday 11:59 pm
- ▶ No late homework accepted
- 1st homework is long, begin soon
- Provide clear and detailed answers
- One exercise chosen at random is graded to correct bad mathematical formulations
- The rest will be given points for completion

Office hours

- Answer poll to maximize availability
- For the moment, might be updated
 - ▶ Mondays 10:00 to 11:00 with T.A. Z. Yuan by Zoom
 - Fridays 11:00 to 12:00 with V. Roulet by Zoom

Overview

Previous lectures

- Probability space, probability distributions
- Probability mass function, probability density function, cumulative distribution function
- Expectation, Variance
- Various discrete and continuous random variables

This lecture

- ▶ Joint distributions discrete
- Marginal distributions
- ▶ Multinomial distribution

Answer Previous Quizzes

Exercise

If $X \sim \mathcal{N}(\mu, \sigma^2)$, how can we choose $a, b \in \mathbb{R}$ s.t. $Z = aX + b \sim \mathcal{N}(0, 1)$?

Answer

- 1. $Var(Z) = a^2 Var(X) = a^2 \sigma^2$.
- 2. So to have Var(Z) = 1, we need $a = 1/\sigma$
- 3. $\mathbb{E}(Z) = a\mathbb{E}(X) + b = a\mu + b$
- 4. So to have $\mathbb{E}(Z)=0$, we need $b=-\mu/\sigma$
- 5. Answer was 4. i.e. $Z = \frac{\chi \mu}{\sigma}$

Answer Previous Quizzes

Exercise

Waiting time of a phone call modeled by an exponential r.v.

The average waiting time is 5min.

What is the probability that the waiting time is more than 8 min?

Answer

- 1. $X \sim \text{Poisson}(\lambda)$
- 2. $\mathbb{E}(X) = \frac{1}{\lambda} = 5$ so $\lambda = 1/5$
- 3. $\mathbb{P}(X \ge 8) = \mathbb{P}(X > 8) = 1 F(8) = e^{-\lambda 8} = e^{-8/5} \approx 0.20$
- 4. **Typo in quiz**, none of the answers were correct

Multivariate Random Variable/Random Vector

Definition (Multivariate random variable/Random vector)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a **multivariate random variable** or **random vector** is a vector $X = (X_1, ..., X_n)$, whose components are real-valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

Note: Rather than speaking about the distribution of a random vector, we often speak about the joint distribution of the r.v. it is composed of

Multivariate Random Variable/Random Vector

Definition (Multivariate random variable/Random vector)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a **multivariate random variable** or **random vector** is a vector $X = (X_1, ..., X_n)$, whose components are real-valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

Note: Rather than speaking about the distribution of a random vector, we often speak about the joint distribution of the r.v. it is composed of

Example (Classic examples)

- 1. (Discrete case) Roll a die 100 times, denote X_1, \ldots, X_6 the number of 1, ..., 6 you got respectively, then $X = (X_1, \ldots, X_6)$ is a random vector
- 2. (Continuous case) Throw a dart uniformly at random on a disc, the coordinates (X,Y) of that throw form a random vector

Definition (Joint probability mass function)

Let X_1, \ldots, X_n be discrete r.v. on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, their **joint** probability mass function is defined as

$$p(k_1,\ldots,k_n) = \mathbb{P}(\{X_1 = k_1\} \cap \ldots \cap \{X_n = k_n\})$$

$$\triangleq \mathbb{P}(X_1 = k_1,\ldots,X_k = k_n)$$

for any $k_1,\ldots,k_n\in X_1(\Omega) imes\ldots imes X_n(\Omega)$ (any values taken by the random vector)

Note:

- Describe all joint values of the r.v.
- We then naturally have $p(k_1,\ldots,k_n)\geq 0$ and

$$\sum_{k_1,\ldots,k_n\in X_1(\Omega)\times\ldots\times X_n(\Omega)}p(k_1,\ldots,k_n)=1$$

- 1. Roll two dice with 4 faces, denote
 - (i) S the sum of the two dice
 - (ii) Y the indicator variable that you get a pair
- 2. Record which outcomes lead to different values of S, Y

- 1. Roll two dice with 4 faces, denote
 - (i) S the sum of the two dice
 - (ii) Y the indicator variable that you get a pair
- 2. Record which outcomes lead to different values of S, Y

		Y	
		0	1
	2		(1,1)
	3	(1, 2) (2, 1)	
	4	(1, 3) (3, 1)	(2, 2)
S	5	(1, 4) (2, 3) (3, 2) (4, 1)	
	6	(2, 4) (4, 2)	(3, 3)
	7	(3, 4) (4, 3)	
	8		(4, 4)

- 1. Roll two dice with 4 faces, denote
 - (i) S the sum of the two dice
 - (ii) Y the indicator variable that you get a pair
- 2. Record which outcomes lead to different values of S, Y
- 3. Compute the corresponding joint probability mass function of S, Y

		Y	
		0	1
	2		(1,1)
	3	(1, 2) (2, 1)	
	4	(1, 3) (3, 1)	(2, 2)
S	5	(1, 4) (2, 3) (3, 2) (4, 1)	
	6	(2, 4) (4, 2)	(3, 3)
	7	(3, 4) (4, 3)	
	8		(4, 4)

- 1. Roll two dice with 4 faces, denote
 - (i) S the sum of the two dice
 - (ii) Y the indicator variable that you get a pair
- 2. Record which outcomes lead to different values of S, Y
- 3. Compute the corresponding joint probability mass function of S, Y

		Y	
		0	1
	2		(1,1)
	3	(1, 2) (2, 1)	
	4	(1, 3) (3, 1)	(2, 2)
S	5	(1, 4) (2, 3) (3, 2) (4, 1)	
	6	(2, 4) (4, 2)	(3, 3)
	7	(3, 4) (4, 3)	
	8		(4, 4)

		Υ	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

- 1. Roll two dice with 4 faces, denote
 - (i) S the sum of the two dice
 - (ii) Y the indicator variable that you get a pair
- 2. Record which outcomes lead to different values of S, Y
- 3. Compute the corresponding joint probability mass function of S, Y
- 4. Read e.g. $\mathbb{P}(S = 4, Y = 1) = 1/16$

		Y	
		0	1
	2		(1,1)
	3	(1, 2) (2, 1)	
	4	(1, 3) (3, 1)	(2, 2)
S	5	(1, 4) (2, 3) (3, 2) (4, 1)	
	6	(2, 4) (4, 2)	(3, 3)
	7	(3, 4) (4, 3)	
	8		(4, 4)

		Υ	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

Lemma

Let $g: \mathbb{R}^n \to \mathbb{R}$ and let X_1, \dots, X_n be discrete r.v. on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with joint probability mass function p, then

$$\mathbb{E}[g(X_1,\ldots,X_n)] = \sum_{k_1,\ldots k_n \in X_1(\Omega) \times \ldots \times X_n(\Omega)} g(k_1,\ldots,k_n) p(k_1,\ldots k_n)$$

Note: Extends naturally previous property for univariate r.v.

Example: Take $g : \mathbb{R}^n \to \mathbb{R}$ such that $g(x_1, \dots x_n) = \max_{i \in \{1, \dots, n\}} x_i$

Example

- 1. Roll two dices with 4 faces, denote
 - (i) S the sum of the two dices
 - (ii) Y the indicator variable that you get a pair
- 2. Score is the sum of the dice, doubled if it is a pair

What is the average score?

		Υ	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

Example

- 1. Roll two dices with 4 faces, denote
 - (i) S the sum of the two dices
 - (ii) Y the indicator variable that you get a pair
- 2. Score is the sum of the dice, doubled if it is a pair

What is the average score?

	Y	
	0	1
2	0	1/16
3	1/8	0
4	1/8	1/16
5	1/4	0
6	1/8	1/16
7	1/8	0
8	0	1/16
	3 4 5 6 7	2 0 3 1/8 4 1/8 5 1/4 6 1/8 7 1/8

Solution

1. The score is g(S, Y) = S(Y + 1)

Example

- 1. Roll two dices with 4 faces, denote
 - (i) S the sum of the two dices
 - (ii) Y the indicator variable that you get a pair
- 2. Score is the sum of the dice, doubled if it is a pair

What is the average score?

	Υ	
	0	1
2	0	1/16
3	1/8	0
4	1/8	1/16
5	1/4	0
6	1/8	1/16
7	1/8	0
8	0	1/16
	3 4 5 6 7	2 0 3 1/8 4 1/8 5 1/4 6 1/8 7 1/8

Solution

- 1. The score is g(S, Y) = S(Y + 1)
- 2. The average score reads

$$\mathbb{E}[g(S,Y)] = \sum_{s=2}^{8} \sum_{y=0}^{1} s(y+1)p(s,y)$$

$$= \sum_{s=2}^{8} sp(s,0) + 2\sum_{s=2}^{8} sp(s,1)$$

$$= \frac{3+4+2\times5+6+7}{8} + 2\times\frac{2+4+6+8}{16} = 25/4 = 6.25$$

Definition

Let $p_{X,Y}$ be the joint probability mass function of two r.v. (X,Y). The probability mass function of X is given by,

$$p_X(k) \triangleq \mathbb{P}(X = k) = \sum_{\ell \in Y(\Omega)} p_{X,Y}(k,\ell)$$

The function p_X is called the marginal probability distribution of X.

Proof The events $\{B_\ell = \{Y = \ell\}\}_{\ell \in Y(\Omega)}$ form a partition of Ω y definition of a discrete random variable such that

$$\mathbb{P}(X=k) = \mathbb{P}\left(\{X=k\} \cap \bigcup_{\ell=-\infty}^{+\infty} B_{\ell}\right) = \sum_{\ell=-\infty}^{+\infty} \mathbb{P}(X=k, Y=\ell) = \sum_{\ell\in Y(\Omega)} p_{X,Y}(k,\ell)$$

Definition

Let p be the joint probability mass function of n discrete r.v. $X_1, \ldots X_n$. The probability mass function of X_j for $j \in \{1, \ldots, n\}$ is given by for any $k \in X_j(\Omega)$,

$$p_{X_{j}}(k) = \sum_{\substack{\ell_{1}, \dots, \ell_{j-1}, \ell_{j+1}, \dots, \ell_{n} \\ \in X_{1}(\Omega) \times \dots \times X_{j-1}(\Omega) \times X_{j+1}(\Omega) \times \dots \times X_{n}(\Omega)}} p(\ell_{1}, \dots, \ell_{j-1}, k, \ell_{j+1}, \dots, \ell_{n})$$

The function ρ_{X_j} is called the **marginal probability distribution** of X_j .

Proof Denote $p_{X_{i_1}, \dots, X_{i_j}}$ the joint p.m.f. of any subset X_{i_1}, \dots, X_{i_j} of r.v. with $2 \le j \le n$ and $1 \le i_1 < \dots < i_j \le i_n$, then naturally

$$p_{X_{i_1},...X_{i_{j-1}}}(k_{i_1},...,k_{i_{j-1}}) = \sum_{\ell_{i_i} \in X_{i_i}(\Omega)} p_{X_{i_1},...X_{i_j}}(k_{i_1},...,\ell_{i_j})$$

By applying recursively this fact we get the result.

Previous result generalizes to the joint probability distribution of any subset. For example the joint probability of $X_1, \dots X_m$ given m < n is

$$p_{X_1,\ldots X_m}(k_1,\ldots,k_m) = \sum_{\ell_{m+1},\ldots,\ell_n \in X_{m+1}(\Omega) \times \ldots \times X_n(\Omega)} p(k_1,\ldots,k_m,\ell_{m+1},\ldots\ell_n)$$

- 1. Roll two dices with 4 faces, denote
 - (i) S the sum of the two dices
 - (ii) Y the indicator variable that you get a pair
- 2. Compute marginal distribution of Y from the joint p.m.f.

		Υ	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

Example

- 1. Roll two dices with 4 faces, denote
 - (i) S the sum of the two dices
 - (ii) Y the indicator variable that you get a pair
- 2. Compute marginal distribution of Y from the joint p.m.f.

		Υ	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

Solution:

Sum the columns of p(s, y)So you get $\mathbb{P}(Y = 1) = 4/16$ and $\mathbb{P}(Y = 0) = 12/16$

Motivation

Consider a trial with r possible outcomes, labeled $1, \ldots, r$. Denote p_j the probability of the out come j such that $p_1 + \ldots + p_r = 1$. Perform n independent repetitions of this trial. Denote X_j the number of times the outcome j appeared among the n trials.

What is the joint probability mass function of (X_1, \ldots, X_r) ?

Motivation

Consider a trial with r possible outcomes, labeled $1, \ldots, r$. Denote p_j the probability of the out come j such that $p_1 + \ldots + p_r = 1$. Perform n independent repetitions of this trial. Denote X_j the number of times the outcome j appeared among the n trials.

What is the joint probability mass function of (X_1, \ldots, X_r) ?

Derivation

1. Let $k_1, \ldots, k_r \in \mathbb{N}$ such that $k_1 + \ldots + k_r = n$.

Motivation

Consider a trial with r possible outcomes, labeled $1,\ldots,r$. Denote p_j the probability of the out come j such that $p_1+\ldots+p_r=1$. Perform n independent repetitions of this trial. Denote X_j the number of times the outcome j appeared among the n trials.

What is the joint probability mass function of (X_1, \ldots, X_r) ?

Derivation

- 1. Let $k_1, \ldots, k_r \in \mathbb{N}$ such that $k_1 + \ldots + k_r = n$.
- 2. Any outcome that leads to $X_j = k_j$ for all $j \in \{1,...,r\}$ has proba $p_1^{k_1}...p_r^{k_r}$.

Motivation

Consider a trial with r possible outcomes, labeled $1,\ldots,r$. Denote p_j the probability of the out come j such that $p_1+\ldots+p_r=1$. Perform n independent repetitions of this trial. Denote X_j the number of times the outcome j appeared among the n trials.

What is the joint probability mass function of (X_1, \ldots, X_r) ?

Derivation

- 1. Let $k_1, \ldots, k_r \in \mathbb{N}$ such that $k_1 + \ldots + k_r = n$.
- 2. Any outcome that leads to $X_j=k_j$ for all $j{\in}\{1,...,r\}$ has proba $p_1^{k_1}...p_r^{k_r}$.
- 3. The number of such outcomes is given by (in book page 392)

$$\binom{n}{k_1,\ldots,k_r}=\frac{n!}{k_1!\ldots k_r!}$$

4. Therefore we get $\mathbb{P}(X_1=k_1,\ldots,X_r=k_r)=\binom{n}{k_1,\ldots,k_r}p_1^{k_1}...p_r^{k_r}$

Definition (Multinomial distribution)

Let $n, r \in \mathbb{N}_*$, let $p_1, \ldots, p_r \in (0,1)$ s.t. $p_1 + \ldots + p_r = 1$, then a r.v. X has a **multinomial distribution** with parameters n, r, p_1, \ldots, p_r if it is defined for any $k_1, \ldots, k_r \in \mathbb{N}$ s.t. $k_1 + \ldots + k_r = n$ with probability

$$\mathbb{P}(X_1 = k_1, \dots, X_r = k_r) = \binom{n}{k_1, \dots, k_r} p_1^{k_1} \dots p_r^{k_r}$$

We denote it $(X_1, \ldots, X_r) \sim \mathsf{Multinom}(n, r, p_1, \ldots, p_r)$.

Note: For r = 2, we necessarily have $X_2 = n - X_1$ and we retrieve the binomial

Example

Roll a fair die with 6 faces 100 times The probability that the i^{th} face appear is $p_i=1/6$, s.t. $p_1+\ldots+p_6=1$ Denote X_1,\ldots,X_6 the number of times face $1,\ldots,6$ appeared Then $(X_1,\ldots,X_6)\sim \text{Multinom}(100,6,\underbrace{1/6,\ldots,1/6})$

Exercise for next lecture

Exercise

Roll a normal die 100 times. Find the probability that among the 100 rolls, we observe exactly 22 ones, 17 fives.

Solution next lecture

Try on your own without looking at the book :)