Probability and Statistics Problems Individual

Please solve 5 out of the following 6 problems.

Problem 1. Let (X_n) be a sequence of random variables.

- (1) Assume that $\sum_{n=0}^{\infty} P(|X_n| > n) < \infty$. Prove that $\limsup_{n \to \infty} \frac{|X_n|}{n} \le 1$.
- (2) Prove that (X_n) converges in probability to 0 if and only if for certain r > 0, $E\left[\frac{|X_n|^r}{1+|X_n|^r}\right] \to 0$.

Problem 2. Let X and Y be independent N(0,1) random variables.

- (1) Find $E[X + Y | X \ge 0, Y \ge 0]$;
- (2) Find the distribution function of X + Y given that $X \ge 0$ and $Y \ge 0$.

(Hint: For b) using the fact that $U=(X+Y)/\sqrt{2}$ and $V=(X-Y)/\sqrt{2}$ are independent and N(0,1) distributed.)

Problem 3. Let $\{X_n\}$ be a sequence of independent and identically distributed continuous real valued random variables, and regard n as time. Let A_n be the following event:

$$A_n = \{X_n = \max\{X_1, X_2, \cdots, X_n\}\}.$$

We say that a maximum record occurs at n in such an event.

- (1) Evaluate the probability $P(A_n)$.
- (2) Denote by Y_n the number of maximum records occurred until time n, i.e.,

$$Y_n = \text{the number of } \{1 \le k \le n : X_k = \max\{X_1, X_2, \cdots, X_k\}\}.$$

Evaluate the expectation EY_n and the variance DY_n .

Problem 4. Let $X = (X_1, \dots, X_n)$ be an iid sample from an exponential density with mean θ . Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$. Let P(X) = your p-value for an appropriate test.

- (a) What is $E_{\theta_0}(P(X))$? Derive your answer explicitly.
- (b) Derive $E_{\theta}(P(X))$ for $\theta \neq \theta_0$. Specifically, assuming only one sample, i.e. n = 1, calculate $E_{\theta}(P(X))$ as explicitly as possible for $\theta \neq \theta_0$.
- (c) When there is only one sample, is $E_{\theta}(P(X))$ a decreasing function of θ ? In general, can you prove your result for an arbitrary MLR family?

Problem 5. Let X_1 , X_2 be iid uniform on $\theta - \frac{1}{2}$ to $\theta + \frac{1}{2}$.

(a) Show that for any given $0 < \alpha < 1$, you can find c > 0 such that

$$P_{\theta}\{\bar{X} - c < \theta < \bar{X} + c\} = 1 - \alpha,$$

where \bar{X} is the sample mean.

(b) Show that for ϵ positive and sufficiently small

$$P_{\theta}\{\bar{X} - c < \theta < \bar{X} + c \mid |X_2 - X_1| \ge 1 - \epsilon\} = 1$$

(c) The statement in (a) is used to assert that $\bar{X} \pm c$ is a $100(1-\alpha)\%$ confidence interval for θ . Does the assertion in (b) contradict this? If your sample observations are $X_1 = 1, X_2 = 2$, would you use the confidence interval in (a)?

Problem 6. Suppose you want to estimate the total number of enemy tanks in a war on the basis of the captured tanks. Assume without loss of generality that the tank serial numbers are $1, 2, \dots, N$, where N is the unknown total number of enemy tanks. Also assume the serial numbers of the n captured tanks are iid uniform on $1, 2, \dots, N$. (This is a simplified assumption which provides a good approximation if n << N).

- (a) Find the complete sufficient statistic.
- (b) Suggest how you may find the minimum variance unbiased estimate of N.