

Where's your money going?

The Beginners Guide To Measuring Kubernetes Costs

Erik Sommer

Sr. Software Engineer

What you can expect

- The Problem: When the bill doesn't match your metrics
- Mental model to attributes costs in k8s
- How to compose PromQL queries
- Shortcomings / Where to go next

Elastic Compute Cloud		\$553.92
US East (N. Virginia)		\$553.92
Amazon Elastic Compute Cloud NatGateway		\$90.32
\$0.045 per GB Data Processed by NAT Gateways	1,263.028 GB	\$56.84
\$0.045 per NAT Gateway Hour	744 Hrs	\$33.48
Amazon Elastic Compute Cloud running Linux/UNIX		\$342.15
\$0.0052 per On Demand Linux t3.nano Instance Hour	1,488 Hrs	\$7.74
\$0.0116 per On Demand Linux t2.micro Instance Hour	2,976 Hrs	\$34.52
\$0.0464 per On Demand Linux t2.medium Instance Hour	4,923.783 Hrs	\$228.46
\$0.096 per On Demand Linux m5.large Instance Hour	744 Hrs	\$71.42
EBS		\$79.25
\$0.00 for 480 Mbps per m5.large instance-hour (or partial hour)	744 Hrs	\$0.00
\$0.05 per GB-Month of snapshot data stored - US East (Northern Virginia)	254.756 GB-Mo	\$12.74
\$0.10 per GB-month of General Purpose SSD (gp2) provisioned storage - US East (Northern Virginia)	665.162 GB-Mo	\$66.52
Elastic Load Balancing - Classic		\$42.21
\$0.008 per GB Data Processed by the LoadBalancer	625.658 GB	\$5.01
\$0.025 per LoadBalancer-hour (or partial hour)	1,488 Hrs	\$37.20

Problems

- Disconnect between billing statement and metrics
- Need to attribute costs of workloads running in Kubernetes
- Difficult to accurately measure Total Cost of Ownership (TCO) of our services

Spend = Usage × Rate

Spend = Usage × Rate

How to measure usage

cpu|memory of nodes

cpu|memory requests of workloads

How to measure usage

cpu|memory of nodes

kube_node_status_capacity{cluster, resource, node}

cpu|memory requests of workloads

kube_pod_container_resource_requests{cluster, resource, node, namespace}


```
sum (
    usage
    *
    rate
)
```



```
sum (
   kube_node_status_capacity(resource="cpu")
   *
   rate
)
```



```
sum (
  kube_node_status_capacity(resource="cpu")
  *
  (0.031611 / 60)
)
```



```
- record: cluster:cost_per_minute:sum
expr: |
    sum by (cluster) (
        kube_node_status_capacity(resource="cpu")
    *
        (0.031611 / 60)
    )
    labels:
    resource: "cpu"
```


What drives k8s costs (or who)


```
sum by (namespace) (
  requests
  *
  rate
)
```



```
sum by (namespace) (
  kube_pod_container_resource_requests{resource="cpu"}
  *
  rate
)
```



```
sum by (namespace) (
  kube_pod_container_resource_requests{resource="cpu"}
  *
  (0.031611 / 60)
)
```



```
- record: cluster_namespace:cost_per_minute:sum
expr: |
    sum by (cluster, namespace) (
        kube_pod_container_resource_requests{resource="cpu"}
    *
        (0.031611 / 60)
    )
    labels:
    resource: "cpu"
```


What drives k8s costs (realistic)

How to measure idle resources

How to measure idle resources

```
sum (
   sum by (node) (
     kube_node_status_capacity{resource="cpu"}
    sum by (node) (
     kube_pod_container_resource_requests{resource="cpu"}
  (0.031611 / 60)
```


How to measure idle resources

```
- record: cluster_namespace:cost_per_minute:sum
  expr:
    sum by (cluster) (
        sum by (cluster, node) (
          kube_node_status_capacity{resource="cpu"}
        sum by (cluster, node) (
          kube_pod_container_resource_requests{resource="cpu"}
      (0.031611 / 60)
 labels:
    resource: "cpu"
    namespace: "__idle__"
```


Shortcomings

- This approach only works for homogeneous clusters
- Takes only compute resources into account
- Not all CSPs will give you the breakdown on compute resources costs
- Doesn't reflect savings plans

What comes next

Projects like OpenCost can help you getting these cost metrics per node

What comes next

```
- record: cluster_namespace:cost_per_minute:sum
expr: |
    sum by (cluster, namespace) (
        kube_pod_container_resource_requests{resource="cpu"}
    *
        rate
    )
    labels:
    resource: "cpu"
```


What comes next

```
- record: cluster_namespace:cost_per_minute:sum
expr: |
    sum by (cluster, namespace) (
        kube_pod_container_resource_requests{resource="cpu"}
    *
        on (node) group_left node_cpu_hourly_cost / 60
    )
    labels:
    resource: "cpu"
```


Thank you

Core Concepts

- What drives the costs
- How to measure this
- There is overhead

Rough Solid Plan

- 25 minutes:
- 2 Intro slide
- 1 intro matrix for usage and rate-just explore the formular rate x usage
- 2 explanation of utilization, usage and allocation
- 2 Where does the cost of a cluster comes from
 - Magic -> boils down to "It's the nodes
 - Sum of the requests is driving the number of nodes'
- 1 Establish k8s context
- 2 How to measure nodes -> KSM
- 2 How to measure your workloads impact -> KSM
- 2 Idle resources
 - Benefit: reduce idle resources
- 2 Simple step estimate memory/cpu for a node
- 2 combine everything together
 - Benefit: show costs for all workloads
- 2 OpenCost or alternatives

