

SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM3404A is high performance single supply dual operational amplifier. The NJM3404A is a half type of the NJM3403A, quad operational amplifier.

The NJM3404A is improved version of the NJM2904 on slew rate & cross-over distortion.

■ FEATURES

- Single Supply
- Operating Voltage

(+4V~+36V)

- Low Operating Current
- (2.0mA typ.) (1.2V/ μs typ.)
- Slew RatePackage Outline
- DIP8, DMP8, SIP8, SSOP8
- Bipolar Technology

■ PACKAGE OUTLINE

NJM3404AD

NJM3404AM

NJM3404AV

*S-Type (SIP-9) available

■ PIN CONFIGURATION

PIN FUNCTION

- 1. A OUTPUT
- 2 . A-INPUT
- 3 . A+INPUT
- 5. B+INPUT
- 6. B-INPUT
- 7. B OUTPUT
- 0 1/-

■ EQUIVALENT CIRCUIT (1/2 Shown)

4

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*(V*/V-)	36V(or ±18)		
Differential Input Voltage	V _{ID}	36	v	
Input Voltage	VI	-0.3~36	v	
Power Dissipation		(DIP8) 500	mW	
	P _D	(DMP8) 300	mW	
		(SSOP8) 250	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	r	

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{\dagger}/V^{-}=\pm 15V)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S = 0\Omega$		2	5	mV
Input Offset Current	IIO			5	50	nA
Input Bias Current	I _B			70	200	nA
Large Signal Voltage Gain	Αv	$R_L > 2K\Omega$	88	100		dB
Maximum Output Voltage Swing	V _{OM}	$R_L = 2k\Omega$	±13	±14	_	v
Input Common Mode Voltage Range	V _{ICM}		-15~+13	_	_	v
Common Mode Rejuction Ratio	CMR	DC	70	90	· —	dB
Supply Voltage Rejuction Ratio	SVR		80	94	_	dB
Operating Current	I _{CC}	$R_L = \infty$	-	2.0	3.5	mA
Output Source Current	I _{SOURCE}	$V_{1N}^{+}=1V, V_{1N}^{-}=0V$	20	30	_	mA
Output Sink Current	Isink	$V_{IN}^{+}=0V, \ V_{IN}^{-}=1V$	10	20	_	mA
Slew Rate	SR			1.2		v/µS
Unity Gain Bandwidth	f _T		<u> </u>	1.2	_	MHz

4

■ TYPICAL CHARACTERISTICS

Voltage Gain vs. Frequency

Maximum Output Voltage Swing vs. Load Resistance

Load Resistance, R_L (Ω)

Operating Current vs. Temperature

Output Source Current vs. Temperature

Input Offset Voltage vs. Temperature

Input Bias Current vs. Temperature

■ TYPICAL CHARACTERISTICS

Output Source Current Output Sink Current vs. Output Voltage Swing

Output Voltage Swing vs. Operating Voltage

Maximum Output Voltage vs. Frequency

Operating Current vs. Operating Voltage

Pulse Response

Maximum Output Voltage vs. Temperature

4

■ TYPICAL APPLICATIONS

Square Wave Oscillator

