

Relasi dan Fungsi

Deasy Sandhya Elya Ikawati, S. Si, M. Si

Politeknik Negeri Malang 2020

Definisi

Matriks

Susunan skalar elemen-elemen dalam bentuk baris dan kolom.

Relasi

Merupakan hubungan anatara elemen himpunan satu dengan lainnya

Fungsi

Jenis khusus relasi yang biasaya digunakan dalam penyelesaian masalah tententu

Relasi

Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$

Notasi: $R \subseteq (A \times B)$

a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R

 $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan oleh b oleh relasi R

Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R.

Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$.

Jika kita definisikan relasi R dari P ke Q dengan $(p, q) \in R$ jika p habis membagi q

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

Representasi Relasi

 $P = \{2, 3, 4\} \text{ dan } Q = \{2, 4, 8, 9, 15\}.(p, q) \in R \text{ jika } p \text{ habis membagi } q$

Menggunakan Tabel Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil.

	Р	Q	
	2	2	
	2	4	
	4	4	Γ
	2	8	
	4	8	(
	3	9	
1			

Menggunakan Matriks

1	1	1	0	0
0	0	0	1	1
0	1	1	0	0

Pengisian elemen matriks dengan nilai 1 jika saling terhubung dan 0 jika tidak terhubung

Menggunakan Graf Berarah

Misalkan $R = \{(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)\}$ adalah relasi pada himpunan $\{a, b, c, d\}$.

Relasi Inversi

Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari relasi R, dilambangkan dengan R^{-1} , adalah relasi dari B ke A yang didefinisikan oleh

$$R^{-1} = \{(b, a) \mid (a, b) \in R \}$$

 $P = \{2, 3, 4\} \text{ dan } Q = \{2, 4, 8, 9, 15\}.$

Jika kita definisikan relasi R dari P ke Q dengan $(p, q) \in R$ jika p habis membagi q maka, $R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15) \}$

 R^{-1} adalah *invers* dari relasi R, yaitu relasi dari Q ke P dengan $(q, p) \in R^{-1}$ jika q adalah kelipatan dari p.

Kombinasi Relasi

Jika R_1 dan R_2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 - R_2$, dan $R_1 \oplus R_2$ juga adalah relasi dari A ke B

$$A = \{a, b, c\} \text{ dan } B = \{a, b, c, d\}.$$

Relasi $R_1 = \{(a, a), (b, b), (c, c)\}$
Relasi $R_2 = \{(a, a), (a, b), (a, c), (a, d)\}$

$$R_1 \cap R_2 = \{(a, a)\}\$$

 $R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (a, c), (a, d)\}\$
 $R_1 - R_2 = \{(b, b), (c, c)\}\$
 $R_2 - R_1 = \{(a, b), (a, c), (a, d)\}\$
 $R_1 \oplus R_2 = \{(b, b), (c, c), (a, b), (a, c), (a, d)\}\$

Komposisi Relasi

Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C. Komposisi R dan S, dinotasikan dengan S o R, adalah relasi dari A ke C yang didefinisikan oleh

 $S \circ R = \{(a, c) \mid a \in A, c \in C, \text{ dan untuk beberapa } b \in B, (a, b) \in R \text{ dan } (b, c) \in S \}$

$$R = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\},$$

$$A=\{1, 2, 3\}, B=\{2, 4, 6, 8\}$$

$$S = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

B= {2, 4, 6, 8}, C={s, t, u}

$$S \circ R = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}$$

Fungsi

Misalkan A dan B himpunan.

Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B.

Jika f adalah fungsi dari A ke B kita menuliskan $f:A \to B$ yang artinya f memetakan A ke B.

Contoh Fungsi

$$f = \{(1, u), (2, u), (3, v)\}$$

 $A = \{1, 2, 3\} \text{ ke } B = \{u, v, w\}$

Fungsi dari A ke B, meskipun u merupakan bayangan dari dua elemen A. Daerah asal fungsi adalah A, daerah hasilnya adalah B, dan jelajah fungsi adalah $\{u, v\}$.

$$f = \{(1, u), (2, v), (3, w)\}$$

$$A = \{1, 2, 3, 4\} \text{ ke } B = \{u, v, w\}$$

Komposisi dari Dua Buah Fungsi

Misalkan g adalah fungsi dari himpunan A ke himpunan B, dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi f dan g, dinotasikan dengan f o g, adalah fungsi dari A ke C yang didefinisikan oleh

$$(f \circ g)(a) = f(g(a))$$

Contoh

$$g = \{(1, u), (2, u), (3, v)\}$$

$$A = \{1, 2, 3\} \text{ ke } B = \{u, v, w\}$$

$$f = \{(u, y), (v, x), (w, z)\}$$

$$B = \{u, v, w\} \text{ ke } C = \{x, y, z\}$$

Contoh Komposisi Fungsi

Diberikan fungsi f(x) = x - 1 dan $g(x) = x^2 + 1$. Tentukan $f \circ g$ dan $g \circ f$.

Jawab:

(i)
$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1) = x^2 + 1 - 1 = x^2$$
.

(ii)
$$(g \circ f)(x) = g(f(x)) = g(x-1) = (x-1)^2 + 1 = x^2 - 2x + 2$$
.

Post Test

- 1. Tulislah pasangan terurut pada relasi R dari $A = \{0,1,2,3,4\}, B = \{0,1,2,3\}$ yang dalam hal ini pasangan terurut $(a,b) \in R$ jika dan hanya jika a > b.
- 2. Nyatakan relasi $R = \{(1,2), (2,1), (3,3), (1,1), (2,2)\}$ pada $X = \{1,2,3\}$ dalam bentuk tabel, matriks, dan graf berarah

Post Test

4. Misalkan R relasi $\{(1,2), (1,3), (2,3), (2,4), (3,1)\}$ dan S relasi $\{(2,1), (3,1), (3,2), (4,2)\}$. Tentukan SoR dan RoS.

- 5. Misalkan $R = \{(1,2), (2,3), (3,4)\}$ dan $S = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (3,2), (3,4)\}$ adalah relasi dari $\{1,2,3\}$ ke $\{1,2,3,4\}$. Tentukan:
- a. $R \cup S$

d. S-R

b. $R \cap S$

- e. $R \oplus S$
 - 6. Tentukan dan beri alasan apakah relasi berikut sebuah fungsi atau bukan. Beri alasan.
 - a. $\{(1,1),(2,1),(2,3),(3,1),(3,2),(3,4)\}$
 - $b. \{(1,2),(2,3),(3,1)\}$
 - 7. Apabila f = 2x + 3 dan g = 6x, maka tentukan $f \circ g$ dan $g \circ f$.

REFRENSI

- Munir, Rinaldi, "Matematika Diskrit Ed. Revisi Ke-3", Informatika Bandung, 2012
- Yan Watequlis S., ST, "Diktat Kuliah Matematika Diskrit", Program Studi Manajemen Informatika, Politeknik Negeri Malang.

