Bases

2016-01-26 11:00 -0500

Definition (Base)

We say that $\mathcal{B} \subseteq P(X)$ is a base for a topology on X, if:

Definition (Base)

We say that $\mathcal{B} \subseteq P(X)$ is a base for a topology on X, if:

(B1) For all $x \in X$, there is $B \in \mathcal{B}$ such that $x \in B$.

Definition (Base)

We say that $\mathcal{B} \subseteq P(X)$ is a base for a topology on X, if:

- **(B1)** For all $x \in X$, there is $B \in \mathcal{B}$ such that $x \in B$.
- **(B2)** If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Definition (Base)

We say that $\mathcal{B} \subseteq P(X)$ is a base for a topology on X, if:

- **(B1)** For all $x \in X$, there is $B \in \mathcal{B}$ such that $x \in B$.
- **(B2)** If B_1 , $B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Theorem (Generated topology)

Let X be a set and $\mathcal B$ be a base for a topology on X. Then

$$\tau_{\mathcal{B}} = \{ U \subseteq X \mid \forall x \in U \exists B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}$$

is a topology on X.

Proof

Proof

• That $\emptyset \in \tau_{\mathcal{B}}$ is vacuously true. $X \in \tau_{\mathcal{B}}$ because of (B1).

Proof

- That $\emptyset \in \tau_{\mathcal{B}}$ is vacuously true. $X \in \tau_{\mathcal{B}}$ because of (B1).
- Let $U_{\alpha} \in \tau_{\mathcal{B}}$ for all $\alpha \in I$, and let $x \in \cup U_{\alpha}$.

Proof

- That $\emptyset \in \tau_{\mathcal{B}}$ is vacuously true. $X \in \tau_{\mathcal{B}}$ because of (B1).
- Let $U_{\alpha} \in \tau_{\mathcal{B}}$ for all $\alpha \in I$, and let $x \in \cup U_{\alpha}$.
- Assume $x \in U_{\alpha_0}$. Then there is $B \in \mathcal{B}$ such that:

$$x \in B \subseteq U_{\alpha_0} \subseteq \cup U_{\alpha}$$
,

which proves (T2).

Proof

- That $\emptyset \in \tau_{\mathcal{B}}$ is vacuously true. $X \in \tau_{\mathcal{B}}$ because of (B1).
- Let $U_{\alpha} \in \tau_{\mathcal{B}}$ for all $\alpha \in I$, and let $x \in \cup U_{\alpha}$.
- Assume $x \in U_{\alpha_0}$. Then there is $B \in \mathcal{B}$ such that:

$$x \in B \subseteq U_{\alpha_0} \subseteq \cup U_{\alpha}$$
,

which proves (T2).

• Now, let U_1 , $U_2 \in \tau_{\mathcal{B}}$, and let $x \in U_1 \cap U_2$. Let $x \in B_i \subseteq U_i$ for i = 1, 2.

Proof

- That $\emptyset \in \tau_{\mathcal{B}}$ is vacuously true. $X \in \tau_{\mathcal{B}}$ because of (B1).
- Let $U_{\alpha} \in \tau_{\mathcal{B}}$ for all $\alpha \in I$, and let $x \in \cup U_{\alpha}$.
- Assume $x \in U_{\alpha_0}$. Then there is $B \in \mathcal{B}$ such that:

$$x \in B \subseteq U_{\alpha_0} \subseteq \cup U_{\alpha}$$
,

which proves (T2).

- Now, let U_1 , $U_2 \in \tau_{\mathcal{B}}$, and let $x \in U_1 \cap U_2$. Let $x \in B_i \subset U_i$ for i = 1, 2.
- Using (B2), find $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Proof

- That $\emptyset \in \tau_{\mathcal{B}}$ is vacuously true. $X \in \tau_{\mathcal{B}}$ because of (B1).
- Let $U_{\alpha} \in \tau_{\mathcal{B}}$ for all $\alpha \in I$, and let $x \in \cup U_{\alpha}$.
- Assume $x \in U_{\alpha_0}$. Then there is $B \in \mathcal{B}$ such that:

$$x \in B \subseteq U_{\alpha_0} \subseteq \cup U_{\alpha}$$
,

which proves (T2).

- Now, let U_1 , $U_2 \in \tau_{\mathcal{B}}$, and let $x \in U_1 \cap U_2$. Let $x \in B_i \subset U_i$ for i = 1, 2.
- Using (B2), find $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.
- Then

$$x \in B_3 \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2$$

which proves (T3). \square

Remark

Note that all elements of ${\cal B}$ are open sets in $au_{\cal B}$.

Remark

Note that all elements of ${\cal B}$ are open sets in ${ au_{\cal B}}.$

Lemma (Elements of generated topology)

Let X be a set and $\mathcal B$ a base for a topology. Then $\tau_{\mathcal B}$ is equal to the collection of subsets of X that are union of elements of $\mathcal B$.

Remark

Note that all elements of ${\cal B}$ are open sets in ${ au_{\cal B}}.$

Lemma (Elements of generated topology)

Let X be a set and $\mathcal B$ a base for a topology. Then $\tau_{\mathcal B}$ is equal to the collection of subsets of X that are union of elements of $\mathcal B$.

Proof

Remark

Note that all elements of ${\cal B}$ are open sets in ${ au_{\cal B}}.$

Lemma (Elements of generated topology)

Let X be a set and $\mathcal B$ a base for a topology. Then $\tau_{\mathcal B}$ is equal to the collection of subsets of X that are union of elements of $\mathcal B$.

Proof

• If U is union of elements of \mathcal{B} , then, since $\mathcal{B} \subseteq \tau_{\mathcal{B}}$, and $\tau_{\mathcal{B}}$ is closed under arbitrary unions, then $U \in \tau_{\mathcal{B}}$.

Remark

Note that all elements of $\mathcal B$ are open sets in $au_{\mathcal B}$.

Lemma (Elements of generated topology)

Let X be a set and $\mathcal B$ a base for a topology. Then $\tau_{\mathcal B}$ is equal to the collection of subsets of X that are union of elements of $\mathcal B$.

Proof

- If U is union of elements of \mathcal{B} , then, since $\mathcal{B} \subseteq \tau_{\mathcal{B}}$, and $\tau_{\mathcal{B}}$ is closed under arbitrary unions, then $U \in \tau_{\mathcal{B}}$.
- Conversely, if $U \in \tau_{\mathcal{B}}$, let $x \in U$. By definition of $\tau_{\mathcal{B}}$, there is $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Hence $U = \bigcup_{x \in U} B_x$. \square

1. Show that if \mathcal{B} is a base for a topology on X, then $\tau_{\mathcal{B}}$ is equal to the intersection of the topologies on X that contain \mathcal{B} .

- 1. Show that if \mathcal{B} is a base for a topology on X, then $\tau_{\mathcal{B}}$ is equal to the intersection of the topologies on X that contain \mathcal{B} .
- 2. Show that

$$\{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$$

is a basis for the usual topology on ${\mathbb R}.$

- 1. Show that if \mathcal{B} is a base for a topology on X, then $\tau_{\mathcal{B}}$ is equal to the intersection of the topologies on X that contain \mathcal{B} .
- 2. Show that

$$\{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$$

is a basis for the usual topology on \mathbb{R} .

3. Show that

$$\{[a, b) \mid a, b \in \mathbb{R}, a < b\}$$

is a basis for a topology that is different from the usual topology on $\ensuremath{\mathbb{R}}.$

- 1. Show that if \mathcal{B} is a base for a topology on X, then $\tau_{\mathcal{B}}$ is equal to the intersection of the topologies on X that contain \mathcal{B} .
- 2. Show that

$$\{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$$

is a basis for the usual topology on \mathbb{R} .

3. Show that

$$\{[a, b) \mid a, b \in \mathbb{R}, a < b\}$$

is a basis for a topology that is different from the usual topology on \mathbb{R} .

4. Let \mathcal{B} be a basis for a topology, and let $\mathcal{C} \subseteq P(X)$ be such that $\mathcal{B} \subseteq \mathcal{C}$. Is \mathcal{C} a basis for a topology?

- 1. Show that if \mathcal{B} is a base for a topology on X, then $\tau_{\mathcal{B}}$ is equal to the intersection of the topologies on X that contain \mathcal{B} .
- 2. Show that

$$\{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$$

is a basis for the usual topology on \mathbb{R} .

3. Show that

$$\{[a, b) \mid a, b \in \mathbb{R}, a < b\}$$

is a basis for a topology that is different from the usual topology on \mathbb{R} .

- 4. Let \mathcal{B} be a basis for a topology, and let $\mathcal{C} \subseteq P(X)$ be such that $\mathcal{B} \subseteq \mathcal{C}$. Is \mathcal{C} a basis for a topology?
- 5. Let \mathcal{B} be a basis for a topology on X such that $\tau_{\mathcal{B}}$ is the discrete topology. If $x \in X$, show that $\{x\} \in \mathcal{B}$.

Links

• Base (topology) - Wikipedia, the free encyclopedia