MENGEN

In der Stochastik beschäftigen wir mit der Berechnung von Wahrscheinlichkeiten. Um diese präzise und eindeutig zu beschreiben, verwenden wir die Sprache der Mengenlehre.

DEFINITION

Eine Menge ist eine Zusammenfassung von einzelnen Elementen.

BEISPIELE

- Die Menge der besten Schulfächer: $S = \{Mathe, Physik\}$
- Die Menge der natürlichen Zahlen: $N = \{1, 2, 3, ...\}$
- Die Menge der erfolgreichsten Fußballmannschaft: $F = \{FC \ Bayern \ M \ddot{u}nchen\}$
- Die Menge der Würfelergebnisse: $W = \{1, 2, 3, 4, 5, 6\}$
- Die Menge der Ergebnisse eines Münzwurfs: $M = \{K; Z\}$

GRUNDBEGRIFFE

- Die Elemente einer Menge werden häufig geeignet abgekürzt.
- Die Elemente einer Menge werden immer in geschweiften Klammern {...} angegeben.
- Die **leere Menge** enthält keine Elemente und wird mit Ø bezeichnet.
- Liegen alle Elemente einer Menge A auch in einer Menge X, so ist A eine **Teilmenge** von X. Man schreibt auch $A \subset X$.
- Beispiel: Die Menge $X = \{1,3,4,6,8\}$ hat die Teilmenge $A = \{3,6\}$.
- Beispiel: Die Menge einer Spielgruppe von Kindern ist $X = \{Tobias, Jessica, Achmed, Lydia\}$. Dann ist die Teilmenge der Mädchen $A = \{Jessica, Lydia\}$.
- Ist A eine Teilmenge von X, so bilden alle Elemente von X, die nicht in A liegen, das Komplement von A. Das Komplement von A wird mit \bar{A} bezeichnet.
- Beispiel: Für $X = \{1,3,4,6,8\}$ und der Teilmenge $A = \{3,6\}$ ist das Komplement $\bar{A} = \{1,4,8\}$.
- Beispiel: Für $X = \{Tobias, Jessica, Achmed, Lydia\}$ und der Teilmenge der Mädchen $A = \{Jessica, Lydia\}$ ist das Komplement die Teilmenge der Jungen $\bar{A} = \{Tobias, Achmed\}$.

MENGENOPERATIONEN

Sind A und B Teilmengen einer Menge X, so entstehen durch Vereinigungen, Durchschnitte und Komplemente neue Teilmengen.

BEISPIEL

Es sei $X = \{1, 2, 3, 4, 5, 6\}.$

Textuelle Beschreibung	Symbol	Operation	Mengenschreibweise
Die Zahl ist durch 2 teilbar.	Α		{2; 4; 6}
Die Zahl ist durch 3 teilbar.	В		{3; 6}
Die Zahl ist durch 2 oder 3	$A \cup B$	Vereinigung von A und B	{2; 3; 4; 6}
teilbar.			
Hinweis: Das "oder" ist kein			
"entweder oder", d.h. der Satz			
bedeutet, dass die Zahl durch 2,			
durch 3 oder durch beides			
teilbar ist.			
Die Zahl ist durch 2 und 3 teilbar.	$A \cap B$	Durchschnitt von A	{6}
		und <i>B</i>	
Die Zahl ist nicht durch 2 teilbar.	$ar{A}$	Komplement von A	{1; 3; 5}
Die Zahl ist nicht durch 3 teilbar.	$ar{B}$	Komplement von B	{1; 2; 4; 5}

RECHENREGELN

Es seien A und B Teilmengen einer Menge X.

$A \cap \bar{A} = \emptyset$	Es gibt kein Element, dass in A liegt und in \bar{A} .		
$A \cup \bar{A} = X$	Jedes Element liegt in A oder in $ar{A}$.		
$ar{ar{A}}=A$	Doppelte Verneinung		
$A = (A \cap B) \cup (A \cap \bar{B})$	A wird zerlegt in einen Teil, der auch in B liegt und in einen		
	Teil der auch in $ar{B}$ liegt.		
$\bar{A} \cup \bar{B} = \overline{A \cap B}, \ \bar{A} \cap \bar{B} = \overline{A \cup B}$	Gesetze von de Morgan		

ZUFALLSEXPERIMENTE

In der Stochastik treffen wir Aussagen über (vermeintlich) zufällige Ausgänge von Vorgängen aus der alltäglichen Welt.

DEFINITIONEN

Ein **Zufallsexperiment** ist ein Vorgang, der unter genau festgelegten Bedingungen durchgeführt wird und einen (vermeintlich) zufälligen Ausgang besitzt. Die möglichen Ausgänge eines Zufallsexperiments werden **Ergebnisse** des Zufallsexperiments genannt. Die einzelnen Ergebnisse werden zu der **Ergebnismenge** zusammengefasst. Die Ergebnismenge wird häufig mit S oder Ω (lies: Omega) bezeichnet.

Ein **Ereignis** besteht aus mehreren Ergebnissen. Ereignisse sind also Teilmengen des Ergebnisraums. Ein Ereignis A tritt ein, falls der Ausgang des Zufallsexperiments ein Ergebnis aus A ist.

Ergebnisse werden auch Elementarereignisse genannt.

Das **Gegenereignis** eines Ereignisses A wird mit \bar{A} bezeichnet und enthält alle Ergebnisse, die nicht in A liegen.

Das **sichere Ereignis** ist die gesamte Ergebnismenge, das **unmögliche Ereignis** ist die leere Menge.

BEISPIELE

EINMALIGER WÜRFELWURF

- Ergebnisse: {1}, {2}, {3}, {4}, {5}, {6}
- Ergebnissemenge: $S = \{1, 2, 3, 4, 5, 6\}$
- (z.B) Ereignis A: Es wird eine Zahl größer als 4 geworfen. $\rightarrow A = \{5, 6\}$
- Gegenereignis \bar{A} : Es wird eine Zahl kleiner als 5 geworfen. $\rightarrow \bar{A} = \{1; 2; 3; 4\}$

ZWEIMALIGER MÜNZWURF MIT BEACHTUNG DER REIHENFOLGE

- Ergebnisse: {*KK*}, {*KZ*}, {*ZK*}, {*ZZ*}
- Ergebnissemenge: $S = \{KK; KZ; ZK; ZZ\}$
- (z.B) Ereignis B: Es wird das Gleiche geworfen. $\rightarrow B = \{KK; ZZ\}$
- Gegenereignis \bar{B} : Es etwas Unterschiedliches geworfen. $\rightarrow \bar{B} = \{ZK; KZ\}$

ZWEIMALIGER MÜNZWURF OHNE BEACHTUNG DER REIHENFOLGE

- Ergebnisse: {*KK*}, {*KZ*}, , {*ZZ*}
- Ergebnissemenge: $S = \{KK; KZ; ZZ\}$
- (z.B) Ereignis C: Es wird mindestens einmal Kopf geworfen. $\rightarrow C = \{KK; KZ\}$
- Gegenereignis \bar{C} : Es wird niemals Kopf geworfen. $\rightarrow \bar{C} = \{ZZ\}$

WAHRSCHEINLICHKEITEN

Eine Wahrscheinlichkeitsfunktion - oder einfacher: "die Wahrscheinlichkeiten" - eines Zufallsexperiments, ordnet jedem Ereignis des Zufallsexperiments eine Zahl zwischen 0 und 1 zu.

BEISPIELE

EINMALIGER WÜRFELWURF

- $P(\{1\}) = \frac{1}{6}$, $P(\{2\}) = \frac{1}{6}$, $P(\{3\}) = \frac{1}{6}$, $P(\{4\}) = \frac{1}{6}$, $P(\{5\}) = \frac{1}{6}$, $P(\{6\}) = \frac{1}{6}$
- $A = \{5; 6\} \rightarrow P(A) = \frac{2}{6} = \frac{1}{3}$
- $\bar{A} = \{1; 2; 3; 4\} \rightarrow P(\bar{A}) = \frac{4}{6} = \frac{2}{3}$

ZWEIMALIGER MÜNZWURF MIT BEACHTUNG DER REIHENFOLGE

- $P(\{KK\}) = 0.25$, $P(\{KZ\}) = 0.25$, $P(\{ZK\}) = 0.25$, $P(\{ZZ\}) = 0.25$
- $B = \{KK; ZZ\} \rightarrow P(B) = 0.5$
- $\bar{B} = \{ZK; KZ\} \rightarrow P(\bar{B}) = 0.5$

ZWEIMALIGER MÜNZWURF OHNE BEACHTUNG DER REIHENFOLGE

- $P(\{KK\}) = 0.25$, $P(\{KZ\}) = 0.5$, $P(\{ZZ\}) = 0.25$
- $C = \{KK; KZ\} \rightarrow P(C) = 0.75$
- $\bar{C} = \{ZZ\} \rightarrow P(\bar{C}) = 0.25$

WAHRSCHEINLICHKEITEN - EINFACHE BERECHNUNGSMETHODEN

In einfachen Alltagssituationen funktioniert unser intuitiver Umgang mit Wahrscheinlichkeiten oft gut, und wir können mit einfachen Methoden die Wahrscheinlichkeiten berechnen.

RELATIVE HÄUFIGKEITEN

Relative Häufigkeiten (Aussagen über die Vergangenheit) können als Wahrscheinlichkeiten (Aussagen über die Zukunft) interpretiert werden.

BEISPIEL 1:

Aus persönlichen Beobachtungen sei bekannt, dass 50% aller Kinder am liebsten Pizza essen, 30% Pommes und 20% Nudeln mit Ketchup. Dann ist die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Kind Pommes am liebsten isst, 30%.

BEISPIEL 2:

In einer Disco tanzen um 3 Uhr noch 45 Männer und 5 Frauen. Dann ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Gast eine Frau ist, $\frac{5}{50} = 10\%$.

LAPLACE-EXPERIMENT

Ein Laplace-Experiment ist ein Zufallsexperiment, bei dem alle Ergebnisse die gleiche Wahrscheinlichkeit besitzen. Die Wahrscheinlichkeit eines Ereignisses A ist damit

$$P(A) = \frac{Anzahl\ Ergebnisse\ in\ A}{Gesamtanzahl\ der\ Ergebnisse}.$$

BEISPIEL 1

Würfelwurf: Es sei A das Ereignis "Es wird eine Primzahl geworfen." $\rightarrow A = \{2; 3; 5\}$

Dann gilt
$$P(A) = \frac{3}{6} = \frac{1}{2}$$
.

BEISPIEL 2:

Roulette: Es sei A das Ereignis "Die Kugel landet auf einem roten Feld". Dann gilt $P(A) = \frac{18}{37}$.

WAHRSCHEINLICHKEITEN - EINFACHE BERECHNUNGSMETHODEN

Schon seit Jahrhunderten haben Menschen intuitiv mit Wahrscheinlichkeiten gearbeitet, ohne sich der zugrunde liegenden mathematischen Struktur bewusst zu sein. In einfachen Fällen – etwa bei Würfeln oder Münzwürfen – konnten sie auf ihre Erfahrung zurückgreifen und Schätzungen darüber abgeben, wie wahrscheinlich bestimmte Ereignisse sind.

AXIOME VON KOLMOGOROV

Eine solide mathematische Fundierung der Stochastik wurde erst in den 1930er Jahren von Andrej Nikolajewitsch Kolmogorov (1903-1987) entwickelt. Kolmogorov formulierte die folgenden Grundsätze (*Axiome*), aus denen sich dann weitere Rechenregeln folgern lassen.

Betrachtet wird ein Zufallsexperiment mit Ergebnismenge Ω , Ereignissen A und B und Wahrscheinlichkeitsverteilung P. Dann gilt:

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. $P(A \cup B) = P(A) + P(B)$, falls $A \cap B = \emptyset$

FOLGERUNGEN

- $P(\emptyset) = 0$
- Alle Wahrscheinlichkeiten liegen immer zwischen einschließlich 0 und einschließlich 1.
- Für die Wahrscheinlichkeit des Gegenereignisses von Ereignis A gilt $P(\bar{A}) = 1 P(A)$. Beispiel: Aus P(A) = 0.3 folgt $P(\bar{A}) = 1 - 0.3 = 0.7$.
- Falls $A \cap B \neq \emptyset$, so ist im Allgemeinen $P(A \cup B) \neq P(A) + P(B)$. Man kann vielmehr zeigen, dass $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (Satz von Sylvester). Hieraus folgt, dass man, wenn drei der vier Wahrscheinlichkeiten P(A), P(B), $P(A \cap B)$ und $P(A \cup B)$ bekannt sind, die vierte berechnet werden kann. Beispiel: Aus P(A) = 0.3, P(B) = 0.4 und $P(A \cap B) = 0.2$ folgt $P(A \cup B) = 0.3 + 0.4 - 0.2 = 0.5$.
- Da $A=(A\cap B)\cup (A\cap \bar{B})$ und $(A\cap B)\cap (A\cap \bar{B})=\emptyset$ ist, folgt $P(A)=P(A\cap B)+P(A\cap \bar{B})$. Beispiel: Aus P(A)=0.7 und $P(A\cap B)=0.1$ folgt $P(A\cap \bar{B})=P(A)-P(A\cap B)=0.7-0.1=0.6$.
- "Ausschließendes Oder": Die Wahrscheinlichkeit für entweder A oder B (aber nicht A und B gleichzeitig) ist $P(A \cup B) P(A \cap B) = P(A \cap \overline{B}) + P(\overline{A} \cap B)$.

VENN DIAGRAMME

Die Axiome von Kolmogorov und die Mengenoperationen lassen sich anschaulich anhand sogenannter Venn Diagramme nachvollziehen: Ereignisse können als Teilflächen einer Fläche Ω interpretiert werden. Die Wahrscheinlichkeiten der Ereignisse entsprechen dann den Inhalten dieser Teilflächen. Der Inhalt der Fläche Ω ist nach Definition 1.

