Capstone Project - The Battle of the Neighborhoods (Week 2)

Choosing a Minneapolis neighborhood for a family of three.

Business Problem

In this project we will try to find an optimal location that a family of three can move into, based on their preferences and requirements. Specifically, this report will be targeted to stakeholders interested in moving to Minneapolis, Minnesota.

Minneapolis is known as one of the most comfortable cities in the US. It is praised for its parks and theaters; it also reportedly has rather low crime rates. Most importantly, the Minneapolis-St.Paul metropolitan area is home to some 24 Fortune 1000 companies, and it is one of the country's top economies. Some people even like to compare this city to New York

Business Problem

In our case, a family of three is considering moving to Minneapolis since one of the parents was offered an interesting job opportunity there. They have never been to the state of Minnesota (and Minneapolis in particular), so they decided to consult a specialist on which neighborhood they should pick.

Objective

The objective is to identify a neighborhood in Minneapolis that is most suitable for the given family. This analysis would be relevant and useful for other individuals planning to move to this city.

Problem Statement

The family needs to find a neighborhood that will meet **the following criteria**:

- 1) be reasonably close to the earning parent's workplace in Downtown East
- 2) have a some grocery shops/farmers markets etc
- 3) have a selection of places to eat out
- 4) have a green zone in the vicinity
- 5) have low crime rates
- 6) offer some form of entertainment and sports facilities (movies, gyms, etc.)

Data analysis will help to find the most suitable neighborhoods that the family will consider for relocation.

Data

We will begin our analysis by identifying the neighborhoods in Minneapolis using information from OpenData

(http://opendata.minneapolismn.gov/datasets/minneapolis-neighborhoods/s/data). We will use geodata to visualize neighborhoods on the map to see which neighborhoods are closer to Downtown East.

Below is the dataframe with the geometry data that will be used to map out neighborhood borders.

As we can see, neighborhoods are not in all caps (as they are in our crime data), so we need to adjust them for consistency In [15]: df_neighb['BDNAME'] = df_neighb['BDNAME'].str.upper() df_neighb.drop(columns=['BDNLM', 'TEXT_NBR', 'NCR_LINK', 'IMAGE'],axis=1,inplace=True) In [16]: df_neighb.head() Out[16]: FID Shape STAr Shape_STLe SHAPE_Length SHAPE_Area geometry PHILLIPS WEST 1.088925e+07 14403.885934 0.045801 0.000113 MULTIPOLYGON (((-93.26258 44.96091, -93.26258 DOWNTOWN WEST 2.075513e+07 19220.502541 0.063671 0.000220 MULTIPOLYGON (((-93.26011.44.98300, -93.26010 ... DOWNTOWN EAST 1.025499e+07 13438.601368 0.045179 0.000109 MULTIPOLYGON (((-93.24499 44.97893, -93.24499 ... VENTURA VILLAGE 1.263526e+07 16988.532717 0.059590 0.000134 MULTIPOLYGON (((-93.24958 44.95530, -93.24951 ... 0.000061 MULTIPOLYGON (I/-93.28830.44.98904.-93.28830... 5 SUMNER - GLENWOOD 5.741880e+05 11085.343384 0.035535

12

The map created:

```
map minneapolis = folium.Map(location=[latitude, longitude], zoom start=10)
       #show neighborhoods on the map
       folium.GeoJson(data = df_neighb, name='Neighborhoods', tooltip-folium.features.GeoJsonTooltip(fields=['ECNAVE'], localize=True)).add_to(map_minneapolis)
       map_minneapolis
Out[19]:
                                                                                                                   Shoreview
                                                                                                                                                White Bear
                                                                                                                            Vadnais Heights.
                                       CR TOH
                                                                                                              Roseville
                                                                                                                 Saint Pauls Verranges Mariemon
                      Opin Management
                                                                                                                             West Sain
```

We also needed to extract latitude and longitude values for each neighborhood (to further work with Foursquare API)

The geojson file contained only the geometry, so we needed to first extract centroids, and then get latitude and longitude from the centroid points.

We then examined the data on crime levels

Let's make a new dataframe with only the relevant data (neighborhood name, type of crime, and lat/lng values)

```
In [7]: neighborhoods_crime = crime_2018[['Neighborhood','Description','Lat', 'Long']]
    neighborhoods_crime = neighborhoods_crime.rename(columns={'Description':'Type of Crime', 'Lat':'Latitude', 'Long': 'Longitude'})
    neighborhoods_crime.head()
```

Out[7]:

	Neighborhood	Type of Crime	Latitude	Longitude
0	REGINA	Burglary Of Business	44.919705	-93.269608
1	MARCY HOLMES	Motor Vehicle Theft	44.988351	-93.237514
2	MARCY HOLMES	Theft From Motr Veho	44.985314	-93.233748
3	NORTH LOOP	Shoplifting	44.982578	-93.268417
4	NORTHEAST PARK	Other Theft	45.003639	-93.228834

-

Prepared this data for the map

JORDAN

168

LOWRY HILL EAST

And visualized it on the choropleth map

As we would later use Matplotlib to visualize crime levels, we also prepared a dataframe for that

	Neighborhoo	d Arson	AsIt-great Bodily Hm	Asit-sgnfcnt Bdly Hm	Assit W/dngrs Weapon	Burglary Of Dwelling	Crim Sex Cond- rape	Motor Vehicle Theft	Murder (general)	Other Theft	Robbery Of Person	Theft From Motr Veho	Theft From Perso
1	MARCY HOLME	S 0	0	0	0	0	0	:1	0	0	0	0	
2	MARCY HOLME	S 0	0	0	0	0	0	0	0	0	0	1	
4	NORTHEAST PAR	K 0	0	0	0	0	0	0	0	1	0	0	
5	ST. ANTHON EAS		0	0	0	0	0	0	0	0	0	1	
6	ELLIOT PAR	K 0	0	0	0	0	0	1	0	0	0	0	
Gr crime crime		_onehot.	•	e mean of category or orhood').mean().res	•								
Gr	_grouped =crim	e_onehot	•		•	Burglary Of Dwelling	Crim Sex Cond- rape	Motor Vehicle Theft	Murder (general)	Other Theft	Robbery Of Person	Theft From Motr Veho	Theft From Perso
Gr crime crime	_grouped =crim _grouped.head(e_onehot	groupby('Neighbo	orhood').mean().res	et_index() AssltW/dngrs	Burglary Of Dwelling 0.190478							Theft From Perso
Gr crime crime	_grouped =crim _grouped.head(Neighborhood	e_onehot	groupby('Neighbo	orhood').mean().res	et_index() AssitWidngrs Weapon	Dwelling	rape	Theft	(general)	Theft	Person	Veho	
Gr crime crime	_grouped =crim _grouped.head(Neighborhood ARMATAGE AUDUBON PARK	e_onehot.	groupby('Neighbo	Asit-sgnfont Bdly Hm	Assit Widngrs Weapon	0.190478	0.000000	0.000000	(general) 0.0	Theft 0.190476	0.000000	Vehc 0.619048	0.00000
Grime crime crime	_grouped =crim _grouped.head(_Neighborhood ARMATAGE AUDUBON PARK	Arson 0.0 0.0	Aslt-great Bodily Hm 0.000000	Asit-sgnfont Bdly Hm 0.0	Assit W/dngrs Weapon 0.000000	0.190478 0.485714	0.000000 0.028571	0.000000 0.100000	(general) 0.0 0.0	Theft 0.190478 0.242857	0.000000 0.000000	Vehc 0.619048 0.128571	0.00000

Methodology

In this project we will direct our efforts on detecting neighborhoods of Minneapolis that have low crime rates, particularly those with low number of crimes that involve individuals (as opposed to businesses/establishments), as well as neighborhoods that offer infrastructure that is appealing to the stakeholder (i.e. the family).

The most suitable neighborhoods will have some green zones (parks, trails, playgrounds), grocery shops or farmers' markets, as well as a sufficient number of cafes/restaurants.

Using foursquare API we will get location and type (category) of venues in each neighborhood of Minneapolis.

There are 253 uniques categories.

]:	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
	0 PHILLIPS WEST	44.953863	-93.267343	American Swedish Institute	44.954641	-93.265787	Museum
	1 PHILLIPS WEST	44.953853	-93.267343	FIKA	44.954555	-93.265717	Scandinavian Restauran
	2 PHILLIPS WEST	44.953863	-93.267343	Minneapolis Institute of Art	44.958554	-93.273284	Art Museum
	3 PHILLIPS WEST	44.953863	-93.267343	Taqueria La Hacienda	44,948605	-93.271181	Mexican Restauran
	4 PHILLIPS WEST	44.953863	-93.267343	Children's Theatre Company	44.957949	-93.273466	Theate
	Check how m	any unique venue	categories we have	/e			73284 Art Museum 71181 Mexican Restaurant

Most common venues for every neighborhood:

```
neighborhoods_venues_sorted = pd.DataFrame(columns = columns)
neighborhoods_venues_sorted['Neighborhood'] = minneapolis_grouped['Neighborhood']

for ind in np.arange(minneapolis_grouped.shape[0]):
    neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(minneapolis_grouped.iloc[ind, :], num_top_venues)

neighborhoods_venues_sorted.head()
```

Out[91]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	ARMATAGE	Pizza Place	Trail	Restaurant	Arts & Crafts Store	Flower Shop	Mexican Restaurant	Pet Store	French Restaurant	Supermarket	Chinese Restaurant
1	AUDUBON PARK	Park	Bakery	Pharmacy	Brewery	Pizza Place	Coffee Shop	Thai Restaurant	Hotel Bar	Organic Grocery	Liquor Store
2	BANCROFT	Park	Food & Drink Shop	Coffee Shop	Pharmacy	BBQ Joint	Mexican Restaurant	Food Truck	South American Restaurant	Chinese Restaurant	Furniture / Home Store
3	BELTRAMI	Brewery	BBQ Joint	Dive Bar	Coffee Shop	Yoga Studio	Park	Cosmetics Shop	Donut Shop	Event Space	Café
4	BOTTINEAU	Dive Bar	Coffee Shop	Theme Restaurant	loe Cream Shop	American Restaurant	Café	Pet Store	Bookstore	Speakeasy	New American Restaurant

We also prepared the data for visualization with Matplotlib

```
Since we cannot display all 253 venue categories on a plot (and keep it visually appealing and easy to
           neighborhoods
       cols_to_remove = set()
[269]:
        for i in mn_venues:
            if mn venues[i].mean() < 0.01: #Let's Leave only those venue categories that have at L
                cols_to_remove.add(i)
        for i in cols to remove:
            mn_venues.drop(i, axis=1, inplace=True)
[270]: mn_venues.head() #a preview
Out[270]:
                           American
                                         Art
                                                                                             Chinese
                                                         Bakery
                                                                     Bar Brewery
                                             Restaurant
                                                                                           Restaurant
                          Restaurant
                                      Gallery
            Neighborhood
              ARMATAGE
                            0.000000 0.000000
                                               0.043478 0.
               AUDUBON
                            0.033333 0.000000
                                               0.000000 0.100000 0.000000 0.066867 0.000000
                                                                                             0.000000 0.
                   PARK
              BANCROFT
                            0.033333 0.033333
                                                       0.033333 0.033333
                                                                         0.000000 0.000000
                                                                                             0.033333 0.
              BELTRAMI
                            0.033333 0.033333
                                               0.033333 0.000000 0.000000 0.133333 0.033333
                                                                                             0.000000 0.
             BOTTINEAU
                            0.066667 0.033333
                                               0.000000 0.000000 0.033333 0.033333 0.088887
                                                                                             0.000000 0.
           5 rows × 23 columns
```

The second step in our analysis was finding the most popular venues in each neighborhood and clustering the neighborhoods based on this information (using KMeans clustering).

First we grouped rows by neighborhoods and calculated the mean of each category's occurrence frequency

Group rows by neighborhood and by taking the mean of category occurence frequency

In [88]: minneapolis_grouped = minneapolis_onehot.groupby('Neighborhood').mean().reset_index()
minneapolis_grouped.head()

Out[88]:

	Neighborhood	ATM	Accessories Store	Acupuncturist	Adult Boutique	Advertising Agency	African Restaurant	American Restaurant	Antique Shop	Arcade	111	Vegetarian / Vegan Restaurant	Video Store	Vietnamese Restaurant	Warehouse Store
) ARMATAGE	0.0	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	***	0.0	0.043478	0.000000	0.0
	AUDUBON PARK	0.0	0.000000	0.0	0.0	0.0	0.0	0.033333	0.0	0.0	111	0.0	0.033333	0.033333	0.0
3	BANCROFT	0.0	0.033333	0.0	0.0	0.0	0.0	0.033333	0.0	0.0	***	0.0	0.033333	0.000000	0.0
	BELTRAMI	0.0	0.000000	0.0	0.0	0.0	0.0	0.033333	0.0	0.0	***	0.0	0.000000	0.033333	0.0
,	BOTTINEAU	0.0	0.000000	0.0	0.0	0.0	0.0	0.066667	0.0	0.0	***	0.0	0.000000	0.033333	0.0

5 rows x 254 columns

We then clustered the neighborhoods based on most common venues

ıt[101]:		Neighborhood Lati		Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	PHILLIPS WEST	44.9539	-93.2673	3	Mexican Restaurant	Vietnamese Restaurant	American Restaurant	Performing Arts Venue	Theater	Sandwich Place	Scandinavian Restaurant	Bar	Taco Place	College Arts Building
	1	DOWNTOWN WEST	44.9778	-93.2701	4	Theater	Italian Restaurant	New American Restaurant	Music Venue	Baseball Stadium	Restaurant	Bar	Sushi Restaurant	Pedestrian Plaza	College Arts Building Donut Shop (
	2	DOWNTOWN EAST	44.9761	-93.2541	4	Bar	Hotel	Park	Japanese Restaurant	Yoga Studio	Scenic Lookout	Public Art	Non-Profit	Music Venue	Music School
	3	VENTURA VILLAGE	44.9628	-93.2579	2	Coffee Shop	Park	Grooery Store	Pharmacy	Theater	Café	Flower Shop	Bridge	Shopping Mall	Breakfast Spot
	4	SUMNER - GLENWOOD	44.984	-93.2916	4	Brewery	Thrift / Vintage Store	Farmers Market	Food Truck	Deli / Bodega	Business Service	Café	Fish Market	Bar	Clothing Store

The first cluster:

Cluster 0

n [110]: minneapolis_merged.loc(minneapolis_merged('Cluster Labels') == 0, minneapolis_merged.columns[[0] + list(range(3, minneapolis_merged.shape[1]))]]
Out[110]:

7th Most Co	6th Most Common Venue	5th Most Common Venue	4th Most Common Venue	3rd Most Common Venue	2nd Most Common Venue	1st Most Common Venue	Cluster Labels	Neighborhood	
Bus	Brewery	History Museum	Pizza Place	Scenic Lookout	Trail	Park	0	HIAWATHA	12
Seafood Res	Shoe Store	Breakfast Spot	Liquor Store	Historic Site	Trail	Park	0	MINNEHAHA	28
Asian Res	Grocery Store	Park	Dog Run	Gas Station	Pet Store	Food Truck	0	DIAMOND LAKE	29
Thrift / Vintag	Furniture / Home Store	Asian Restaurant	Sculpture Garden	Restaurant	Farmers Market	Lake	0	HALE	33
Mexican Res	Playground	Restaurant	Grocery Store	Yoga Studio	Beach	Park	0	KEEWAYDIN	34
Во	French Restaurant	Bike Rental / Bike Share	Taco Place	Sporting Goods Shop	Park	Italian Restaurant	0	LYNNHURST	36
Fast Food Res	Asian Restaurant	Sandwich Place	Baseball Field	Dog Run	Yoga Studio	Mexican Restaurant	0	WENONAH	46
C∈	Beach	Carpet Store	Snack Place	Garden	Park	Playground	0	EAST HARRIET	55
American Res	Bookstore	Café	Trail	Park	Beach	Lake	0	KENWOOD	73

 \sim

We visualized all clusters on the map

Methodology

Final analysis

In third and final step we will focus on most promising neighborhoods in each cluster and choose the most suitable neighborhoods by visualizing crime and venue data for the most promising neighborhoods (visualization will help to decide on the final neighborhood recommendations).

Analyzing crime levels in a neighborhood chosen from a cluster:

Crime

```
[250]: kenwood = crime_grouped.loc['KENWOOD']
kenwood.plot(kind='barh', figsize = (8, 6))
plt.title('Crime levels in KENWOOD')
plt.ylabel('Type of Crime''Crime levels')
plt.xlabel('Crime frequency')
plt.show()
```


Analyzing popular venues in the same neighborhood:

Cluster analysis showed that two (2) out of six (6) formed clusters did not meet the requirements of the stakeholders, so neighborhoods from those clusters were not considered.

Out of other four (4) clusters, a total of five (5) neighborhoods were chosen as suitable options for the stakeholders.

The first cluster (cluster 0) includes relatively quiet neighborhoods with access to green zones. Two neighborhoods (Kenwood and **Keewaydin**) were identified as suitable options. These neighborhoods are generally more family-friendly and have low crime rates. However, they are both farther from Downtown East, which is the neighborhood where one of the parents in the family plans to work. So, the stakeholders will need to consider whether the commute time is acceptable.

The third cluster (cluster 2) also has neighborhoods that are close to parks and have a good selection of restaurants/shops. However, most neighborhoods in this cluster also have relatively high crime rates (because they are closer to downtown), so only one neighborhood was recommended - Harrison.

In the fifth cluster (cluster 4), two neighborhoods were identified as suitable (both have access to a park, in addition to various options to eat out); both have sufficiently low crime rates, so both were recommended - St.Anthony West and Beltrami.

Conclusion

Purpose of this project was to identify neighborhoods in Minneapolis that the stakeholder family could relocate to. Using data from Foursquare API we identified the most common venue categories in each neighborhood and were able to cluster Minneapolis neighborhoods using that information. Each cluster was analyzed to identify neighborhoods that suited the family's preferences (if such neighborhoods were present in the cluster). The chosen neighborhoods were compared using data on crime levels and the most popular venues.

The final decision on optimal neighborhood will be made by the stakeholders (i.e. the family) based on specific characteristics of the recommended neighborhoods.