Financial Contagion and CDOs

We value synthetic sCDO spreads using a graph theory parametrization of the Markov default process transition matrix.

by Graham Crowell

Outline

- 1. Price Model for Credit Default Swap
- 2. Price Model for Collateralized Debt Obligation
- 3. Markose Market Graph
- 4. Herbertsson Loss Distribution
- 5. Future Study

Insurance and Arrival Time

Insurance is protection against an event with a random ${\bf arrival}$ time τ

Poisson Model for Single Default

Define a Poisson process $X_t \sim \mathsf{POI}(\lambda t)$ on t > 0 such that

$$\begin{split} \Pr(X_t = 1) := & \mathsf{default\ probability} \\ &= \Pr(t \leq \tau) \\ &= \mathsf{e}^{-\lambda t} \\ &= \mathsf{E}\left[\mathbbm{1}_{\{t \leq \tau\}}\right] \end{split}$$

where

$$\mathbb{1}_{\{t \le \tau\}} = \left\{ \begin{array}{ll} 1 & \text{if } t \le \tau \\ 0 & \text{if } t < \tau \end{array} \right.$$

Survival Probability

The probability of survival is given by

$$\Pr(\mathsf{survival}) := 1 - \mathsf{e}^{-\lambda t}$$

Protection buyer pays periodic fee to protection seller. Each future payment must be discounted to it's present value:

$$PV = e^{-r\Delta t} FV$$

where r := risk-free interest rate,

PV := present value and

Protection buyer pays periodic fee to protection seller. Each future payment must be discounted to it's present value:

$$PV = e^{-r2\Delta t}FV$$

where r := risk-free interest rate,

PV := present value and

Protection buyer pays periodic fee to protection seller. Each future payment must be discounted to it's present value:

$$PV = e^{-r3\Delta t}FV$$

where r := risk-free interest rate,

PV := present value and

Protection buyer pays periodic fee to protection seller. Each future payment must be discounted to it's present value:

where r := risk-free interest rate,

PV := present value and

Credit Default Swap (CDS)

A CDS is a bilateral insurance contract between two counter parties: f_1 and f_2 .

insurance against 1 default

- contract references some defaultable entity/cash-flow ref.
- f_1 sells insurance to f_2 against **ref** defaulting.
- f_2 pays insurance premiums to f_1 .
- if **ref** defaults during lifetime of CDS then f_1 pays f_2 an insurance payout.

if
$$0 < t < \tau < T$$

Credit Default Swap (CDS)

A CDS is a bilateral insurance contract between two *counter parties*: f_1 and f_2 .

insurance against 1 default

- contract references some defaultable entity/cash-flow ref.
- $ightharpoonup f_1$ sells insurance to f_2 against **ref** defaulting.
- f_2 pays insurance premiums to f_1 .
- if **ref** defaults during lifetime of CDS then f_1 pays f_2 an insurance payout.

if
$$0 < t > \tau < T$$

Components of CDS

reference entity $\operatorname{ref} := \operatorname{risky}$ asset to which protection refers maturity $T := \operatorname{time}$ length of protection = 5 years notional $N := \operatorname{nominal}$ value of protection = \$1 credit event $X_t := \operatorname{random}$ variable that triggers payout recovery rate $\phi := \operatorname{value}$ of ref asset after credit event = 40%

Credit Loss for a CDS

$$egin{aligned} L_t := & \mathsf{payout} \ &= \left\{ egin{aligned} N(1-\phi) & \mathsf{if} \ au \leq t \ 0 & \mathsf{if} \ au > t \end{aligned}
ight. \ &= N(1-\phi) \mathbb{1}_{\{ au \leq t\}} \end{aligned}$$

CDS Contingent Leg

Contingent Leg

The expected present value of the insurance payout from f_1 to f_2 is given by

$$\begin{split} V_{\mathsf{Cont}}(t) &= \mathsf{E}\left[\int\limits_0^t \mathsf{e}^{-rs} N(1-\phi) \mathbbm{1}_{\{\tau < s\}} \mathsf{d}s\right] \\ &= \mathsf{e}^{-rt} \mathsf{E}\left[L_t\right] \end{split}$$

CDS Par Value

Premium Leg

The expected present value of insurance premiums fee x from f_2 to f_1 subject to $t < \tau$ is given by

$$V_{\mathsf{Fee}}(t) = x \mathsf{E}\left[\sum_{i=1}^{n_T} \mathsf{e}^{-rt_i} N \Delta_i \mathbb{1}_{\{t_i < \tau\}}\right]$$

where

$$\Delta_i = t_i - t_{i-1}$$

Par Value

At initiation time t = 0 choose x so that

$$V_{\mathsf{Fee}} + V_{\mathsf{Acc}} = V_{\mathsf{Cont}}$$

Portfolio of CDSs

Consider a basket of m=4 underlying reference assets and associated default times $\tau_1,\tau_2,\ldots,\tau_m$ with ordering $0 < T_1 < T_2 < \ldots < T_k < \infty.$

Accumulated Credit Loss

The accumulated credit loss at time t is given by

$$L_t = \sum_{i=1}^{m} N(1 - \phi_i) \mathbb{1}_{\{\tau_i \le t\}}$$

CDS
CDS
CDS
CDS

$$t < T_1 \Longrightarrow k = 0$$
$$\therefore L_t = 0$$

Portfolio of CDSs

Consider a basket of m=4 underlying reference assets and associated default times $\tau_1,\tau_2,\ldots,\tau_m$ with ordering $0 < T_1 < T_2 < \ldots < T_k < \infty.$

Accumulated Credit Loss

The accumulated credit loss at time t is given by

$$L_t = \sum_{i=1}^{m} N(1 - \phi_i) \mathbb{1}_{\{\tau_i \le t\}}$$

$$T_1 < t < T_2 \Longrightarrow k = 1$$

$$\therefore L_t = N(1 - \phi)$$

Portfolio of CDSs

Consider a basket of m=4 underlying reference assets and associated default times $\tau_1,\tau_2,\ldots,\tau_m$ with ordering $0 < T_1 < T_2 < \ldots < T_k < \infty.$

Accumulated Credit Loss

The accumulated credit loss at time t is given by

$$L_t = \sum_{i=1}^{m} N(1 - \phi_i) \mathbb{1}_{\{\tau_i \le t\}}$$

$$T_2 < t < T_3 \Longrightarrow k = 2$$

$$\therefore L_t = 2N(1 - \phi)$$

Synthetic Collateralized Debt Obligation (sCDO)

A sCDO offers exposure to a portion of a CDS portfolio defined in terms L_t and attachment points $0 = k_0 < k_1 < \ldots < k_{\kappa} = mN$.

Tranche (slice)

A tranche is an interval of portfolio losses $[k_{\gamma-1},k_{\gamma}]$ and the accumulated tranche losses is given by,

$$L_t^{(\gamma)} = \left\{ \begin{array}{ll} L_t - k_{\gamma - 1} & \text{if } L_t \in [k_{\gamma - 1}, k_{\gamma}] \\ k_{\gamma} - k_{\gamma - 1} & \text{if } L_t > k_{\gamma} \end{array} \right.$$

$$L_t = \sum_{i=1}^{m} N(1 - \phi_i) \mathbb{1}_{\{\tau_i \le t\}}$$

Synthetic Collateralized Debt Obligation (sCDO)

A sCDO offers exposure to a portion of a CDS portfolio defined in terms L_t and attachment points $0 = k_0 < k_1 < ... < k_r = mN$.

Tranche (slice)

A tranche is an interval of portfolio losses $[k_{\gamma-1},k_{\gamma}]$ and the accumulated tranche losses is given by,

$$L_{t}^{(\gamma)} = \begin{cases} L_{t} - k_{\gamma-1} & \text{if } L_{t} \in [k_{\gamma-1}, k_{\gamma}] \\ k_{\gamma} - k_{\gamma-1} & \text{if } L_{t} > k_{\gamma} \end{cases}$$
$$= (L_{t} - k_{\gamma-1}) \mathbb{1}_{\{L_{t} \in [k_{\gamma-1}, k_{\gamma}]\}} + (k_{\gamma} - k_{\gamma-1}) \mathbb{1}_{\{L_{t} > k_{\gamma}\}}$$

$$L_t = \sum_{i=1}^{m} N(1 - \phi_i) \mathbb{1}_{\{\tau_i \le t\}}$$

sCDO Contingent Leg

Contingent Leg

$$\begin{split} V_{\mathsf{Cont}}^{(\gamma)}(t) &= \mathsf{E}\left[\int\limits_0^t \mathsf{e}^{-rs} \mathsf{d} L_t^{(\gamma)}\right] \\ &= \int\limits_0^t \mathsf{e}^{-rs} \mathsf{d} s \mathsf{E}\left[L_T^{(\gamma)}\right] + \int\limits_0^t r \mathsf{e}^{-rs} \mathsf{E}\left[L_s^{(\gamma)}\right] \mathsf{d} s \end{split}$$

$$L_t^{(\gamma)} = (L_t - k_{\gamma - 1}) \mathbb{1}_{\{L_t \in [k_{\gamma - 1}, k_{\gamma}]\}} + (k_{\gamma} - k_{\gamma - 1}) \mathbb{1}_{\{L_t > k_{\gamma}\}}$$

$$L_t = \sum_{i=1}^m N(1 - \phi_i) \mathbb{1}_{\{\tau_i \le t\}}$$

sCDO Fee Leg

Premium Leg

$$V_{\mathsf{Fee}}^{(\gamma)}(t) = x \mathsf{E}\left[\sum_{i=1}^{n_T} \mathsf{e}^{-rt_i} \left(\Delta k_{\gamma} - \mathsf{E}\left[L_t^{(\gamma)}\right]\right) \Delta_i\right]$$

$$L_t^{(\gamma)} = (L_t - k_{\gamma-1}) \mathbb{1}_{\{L_t \in [k_{\gamma-1}, k_{\gamma}]\}} + (k_{\gamma} - k_{\gamma-1}) \mathbb{1}_{\{L_t > k_{\gamma}\}}$$

$$\Delta k_{\gamma} = k_{\gamma-1} - k_{\gamma}$$

$$\Delta_i = t_i - t_{i-1}$$

Contagion

Contagion is the propagation of a disease in a system or population.

Ecology

There is a non-zero probability that a transferable infection will become an epidemic iff the average number of secondary infections $\mathcal{R}_0 > 1$.

Random Graph Theory

A phase transition occurs when the average second neighbours of a randomly chosen vertex equals 1.

If the average secondary neighbours is greater than 1 a graph contains a connected component of infinite size.

Market Graph

Figure: Markose 2010 type graph of Q4-2004 credit derivatives market

Markose Counter Party Exposures

Let x_{ij} be the amount of gross derivative obligations from counter party f_i to f_j .

Figure: Markose 2012 bilateral derivatives.

Markose Net Bilateral Exposures

Let $x_{ij} - x_{ji}$ be the net amount of gross derivative obligations between counter parties f_i and f_j .

Figure: Markose bilateral derivatives.

Markose Derivative Capital Ratio

Let Θ_{ij} be the initial derivative capital ratio of counter party of f_i due losses from default of f_j .

$$\Theta_{ij} = \frac{\left(x_{ij} - x_{ji}\right)^+}{C_i}$$

Note that Θ_{ij} is a capital buffer that provides a measure of counter party risk.

Default Condition

We assume that counter party f_i defaults if $\Theta_{ij} > \rho$. Markose assumes $\rho = 6\%$.

Furfine Iteration

Furfine 2002 provides a frame work to model the affect counter party default.

Furfine trigger default

Let $f^* \in \{f_i\}$ be a counter party who has defaulted.

Furfine iteration

Each Furfine iteration measures affect on counter parties due to the default of f^* .

For
$$q=1$$
,

$$\frac{\left(x_{if^*} - x_{f^*i}\right)^+}{C_i} > \rho \Longrightarrow f_i \text{ defaults}$$

Herbertsson State Space

Herbertsson Point Process

Let $\boldsymbol{f} = \{f_1, f_2, \dots, f_k\}$ be a state with $0 \le k \le m$, let $\boldsymbol{S}_k = \{\boldsymbol{f} = \{f_1, f_2, \dots, f_k\} : 1 \le j_i \le m, i = 1, \dots, k\}$, let $\boldsymbol{S} = \bigcup \boldsymbol{S}_k$ be the state space with $|\boldsymbol{S}| = 2^m$.

Markov Intensity Matrix

The elements of the Markov point process intensity matrix Q specify the transition between states in S. If $j = \{f, f_k\}$ then

$$\boldsymbol{Q_{fj}} = a_k + \sum_{i=1}^{k-1} b_{\boldsymbol{f}_k, \boldsymbol{f}_i}$$

Herbertsson Intensity Matrix Q

-4a-3b-3b-3bbb -2c-2c-2c-2c-2c $-2c \ 0$ $0 - d \ 0$ 0 - dd

Herbertsson Loss Distribution

Let $\boldsymbol{f} = \{f_1, f_2, \dots, f_k\}$ be a state with $0 \le k \le m$, let $\boldsymbol{S}_k = \{\boldsymbol{f} = \{f_1, f_2, \dots, f_k\} : 1 \le j_i \le m, i = 1, \dots, k\}$, let $\boldsymbol{S} = \bigcup \boldsymbol{S}_k$ be the state space with $|\boldsymbol{S}| = 2^m$.

Loss Distribution

$$\mathsf{E}\left[L_t^{(\gamma)}\right] = \alpha \mathrm{e}^{\mathbf{Q}t} \mathbf{l}^{(\gamma)}$$

$$\begin{aligned} \boldsymbol{l_f}^{(\gamma)} &= \begin{cases} 0 & \text{if } L(\boldsymbol{f}) < k_{\gamma-1} \\ L(\boldsymbol{f}) - k_{\gamma-1} & \text{if } L(\boldsymbol{f}) \in [k_{\gamma-1}, k_{\gamma}] \\ k_{\gamma} - k_{\gamma-1} & \text{if } L(\boldsymbol{f}) > k_{\gamma} \end{cases} \\ L(\boldsymbol{f}) &= \sum_{i=1}^{|\boldsymbol{f}|} N(1 - \phi) \end{aligned}$$

Idea

Use Furfine iteration and Markose capital ratio as a parametrization for Herbertsson intensity matrix. If $\boldsymbol{j} = \{\boldsymbol{f}, f_k\}$ consider a trigger default $f^* \in \boldsymbol{f}$ then

$$Q_{fj} \propto \frac{\left(x_{f^*k} - x_{kf^*}\right)^+ + \sum_{i \in f} \left(x_{ik} - x_{ki}\right)^+}{C_k}$$

Conclusion

- Industry standard models for the spread of a sCDO ignore the affect of counter party risk.
- Furfine provides a frame work to model the affect counter party default.
- Markose provides a data based measure of counter party exposures.
- ► Herbertsson provides a frame work to price the affect counter party default contagion.
- Markose and Furfine provide a parametrization for Herbertsson's model.