Primer on Semiconductors

Unit 3: Equilibrium Carrier Concentrations

Lecture 3.6: Unit 3 Recap

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Lundstrom: 2018

Fermi function

The Fermi function gives the probability that a state (if it exists) is occupied in equilibrium.

$$f_0(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}}$$
(Fermi function)

The two key parameters in the Fermi function are the Fermi level and the temperature.

Fermi level and temperature

Lundstrom: 2018

Distribution of carriers in the bands

Electrons and holes are very near the band edges.

Fermi-Dirac integrals

$$n_0 = \int_{E_C}^{\infty} n_0(E) dE = \int_{E_C}^{\infty} f_0(E) D_C(E) dE$$

$$n_0 = N_C \mathcal{F}_{1/2} \left[\left(E_F - E_C \right) / k_B T \right] \text{cm}^{-3}$$

$$N_C = \frac{1}{4} \left(\frac{2m^* k_B T}{\pi \hbar^2} \right)^{3/2}$$

FD integrals and exponentials

(nondegenerate semiconductor)

Lundstrom: 2018

Nondegenerate semiconductors

In a nondegenerate semiconductor, the Fermi level is well below the bottom of the conduction band and well above the top of the valence band.

Carrier densities for nondegenerate semiconductors

$$n_0 = N_C e^{(E_F - E_C)/k_B T}$$

$$p_0 = N_V e^{(E_V - E_F)/k_B T}$$

Nondegenerate semiconductor

Lundstrom: 2018

np product

$$n_0 p_0 = n_i^2$$

$$n_i = \sqrt{N_C N_V} e^{-E_G/2k_BT}$$

- Independent of Fermi level (for nondegenerate semiconductor)
- Depends exponentially on band gap
- Depends exponentially on temperature
- For Si at 300 K

$$n_i = 1.0 \times 10^{10} \text{ cm}^{-3}$$

The intrinsic Fermi level

$$E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{k_{B}T}{2} \ln \left(\frac{N_{V}}{N_{C}}\right)$$

$$E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{k_{B}T}{2} \ln \left(\frac{N_{V}}{N_{C}}\right)$$

$$E_{C}$$

$$E_{C}$$

$$E_{C}$$

$$E_{C}$$

Carrier concentration relations (nondegenerate)

$$oldsymbol{n}_0 = N_C e^{(E_F - E_C)/k_B T}$$
 $oldsymbol{p}_0 = N_V e^{(E_V - E_F)/k_B T}$

$$n_0 = n_i e^{(E_F - E_i)/k_B T}$$

$$p_0 = n_i e^{(E_i - E_F)/k_B T}$$

$$p_0 = N_{\nu} e^{(E_{\nu} - E_F)/k_B T}$$

$$p_0 = n_i e^{(E_i - E_F)/k_B T}$$

$$N_C = \frac{1}{4} \left(\frac{2m_n^* k_B T}{\pi \hbar^2} \right)^{3/2}$$

$$n_i = \sqrt{N_C N_V} e^{-E_G/2k_BT}$$

$$N_V = \frac{1}{4} \left(\frac{2m_p^* k_B T}{\pi \hbar^2} \right)^{3/2}$$

$$n_0 p = n_i^2$$

Reading an e-band diagram

$$n_0 = n_i e^{(E_F - E_i)/k_B T}$$

$$p_0 = n_i e^{(E_i - E_F)/k_B T}$$

- Fermi level above E_i, n-type
- Fermi level below E_i , p-type

Carrier concentration vs. doping

$$p_0 - n_0 + N_D - N_A = 0$$
 (SCN) $n_0 p_0 = n_i^2$

$$n_{0} = \frac{N_{D} - N_{A}}{2} + \left[\left(\frac{N_{D} - N_{A}}{2} \right)^{2} + n_{i}^{2} \right]^{1/2}$$

$$p_{0} = \frac{N_{A} - N_{D}}{2} + \left[\left(\frac{N_{A} - N_{D}}{2} \right)^{2} + n_{i}^{2} \right]^{1/2}$$

$$p_{0} = \frac{n_{i}^{2}}{n_{0}}$$

$$n_{0} = \frac{n_{i}^{2}}{p_{0}}$$

$$p_0 = \frac{n_i^2}{n_0}$$

$$p_0 = \frac{N_A - N_D}{2} + \left[\left(\frac{N_A - N_D}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$n_0 = \frac{n_i^2}{p_0}$$

Extrinsic region

When the net doping density is much greater than the intrinsic carrier concentration and the dopants are fully ionized, then

$$n_0 = N_D - N_A$$
 $p_0 = n_i^2 / (N_D - N_A)$ N-type $N_D > N_A$

$$p_0 = N_A - N_D$$
 $n_0 = n_i^2 / (N_A - N_D)$ P-type $N_A > N_D$

The intrinsic region

The freeze out region

Fermi level vs. temperature

Unit summary

You should understand this quantitatively and E_F vs. T qualitatively.

Vocabulary

- Fermi level
- 2) Fermi function
- 3) Nondegenerate
- 4) Fermi-Dirac integral
- 5) Effective DOS
- 6) np product
- 7) Intrinsic concentration
- 8) Intrinsic Fermi level
- 9) Majority carrier
- 10) Minority carrier
- 11) Freeze-out
- 12) Extrinsic semiconductor

- 13) Intrinsic semiconductor
- 14) Donor degeneracy factor
- 15) Acceptor degeneracy factor
- 16) Metal-insulator transition