

UCChip UHF READER

串口协议

适用范围

UCM601/2/6/8 系列模组

版本: V1.1.3 版权: © 2023 UCchip

文档密级

文档名称	密级
UCChip UHF READER 串口协议	公开
文档版本	# 55 %
V1.1.3	共 55 页

版本历史

版本	日期	变更描述	
V1.0.0	2022.09.08	初始版本	
V1.0.1	2022.10.26	修改获取固件格式,增加型号识别	
		修改天线序列号 最小从 0x01 开始	
		修改频率设置格式 增加 1 个字节作为频率间隔	
		修改射频链路选项	
		修改标签回复命令 RSSI 和 Freq 的长度	
V1.0.2	2022.12.03	修复读写协议回复格式错误	
V1.0.3	2022.12.08	修复文档中没有停止盘存命令	
V1.0.4	2022.12.14	修改读协议发送长度错误	
V1.0.5	2022.12.22	添加 SM7 相关命令	
V1.0.6	2023.02.17	添加自定义盘存命令,更改 RSSI 计算公式	
V1.0.7	2023.03.16	修改盘存命令上报格式,删除标签筛选命令	
V1.0.8	2023.04.04	单个指令解析中添加了错误码说明	
V1.0.9	2023.04.12	新增加天线切换盘存命令	
V1.1.0	2023.05.05	新增国标命令,新增复旦微国标命令,修改部分命令的	
		错误回复	
V1.1.1	2023.06.26	新增 4、8 通道读写器输出功率设置命令;优化多天线轮	
		询盘存描述	
V1.1.2	2023.07.17	修改数据包定义描述和恢复默认参数指令描述	
		更新指令集列表	
		新增天线检测指令、超温告警指令和保存参数指令	
		修改设置工作天线指令数据包描述	
		新增第8节出厂默认参数配置表	
V1.1.3	2023.11.30	文档整体重新排版	
		增加部分命令参考示例	
		修改8天线读取当前输出功率的长度	

		修改设置单天线读写器射频输出功率备注信息		
		修改数据包格式定义 checksum 备注休息		
		修改查询盘存缓存返回 cmd 命令		
		新添加 CW 相关命令		
		新添加 Session 和 Target 命令		
		新添加盘存心跳包和上报相关命令		
		新添加 TX ON 和 TX OFF 相关命令		
		新添加选择标签相关命令		
V1.1.4	2024.2.29	取消了天线检测相关命令		
V1.1.5	2024.3.11	增加设置读取工作天线-多天线		
		修改 80H 盘存标签 Data 字段备注		
		修改 89H 盘存标签(实时)Data 字段备注		
		修改 8AH 盘存标签(自定义)Data 字段备注		
		增加 8AH 盘存标签(自定义) 匹配参数相关备注命令说		
		明		
V1.1.6	2024.5.15	新添加 GPIO 设置和读取命令		
V1.1.7	2024.6.24	新添加读取 UUID 命令		
V1.1.8	2024.7.12	移除了使用 8A 命令设置不匹配时标签的 CRC 校验返回		

前言

本文档是御芯微超高频 RFID 读写器的串口通信协议定义书,主要提供给使用御芯微超高频 FRID 读写器系列产品的开发人员。协议规定了读写器与上位机或其他控制平台的通信格式,开发人员在保留读写器原有出厂固件或使用了读写器二次开发版本但保留了原有串口协议的情况下可依照本文档进行开发。

目录

1.	文档概述	3
	1.1. 名称	3
	1.2. 功能	3
	1.3. 参考文档	3
	1.4. 使用范围	3
2.	数据包格式定义	3
	2.1. 上位机发送数据包格式定义	3
	2.2. 读写器返回数据包格式定义	4
	2.3. 指令集定义	4
3.	指令解析	6
	3.1. 3EH——设置 CW 开关状态	6
	3.2. 3FH——获取 CW 开关	7
	3.3. 42H——复旦微 GB 加密通信写	8
	3.4. 43H——复旦微 GB 加密通信读	9
	3.5. 45H──读标签 GB	11
	3.6. 46H——写标签 GB	13
	3.7. 47H——锁定标签 GB	14
	3.8. 49H——灭活标签 GB	16
	3.9. 4AH——保存参数	17
	3.10. 4BH——恢复读写器默认配置	18
	3.11. 4CH——读写器应用软件升级	18
	3.12. 4DH——基带固件升级	19
	3.13. 4EH——设置盘存心跳包和上报时间	19
	3.14. 4FH——获取盘存心跳包和上报时间	20
	3.15. 5AH——获取 Session 和 Target	21
	3.16. 5BH——设置 Session 和 Target	22
	3.17. 5CH——获取 TX RF 时间	23
	3.18. 5DH——设置 TX RF 时间	24
	3.19. 5EH——设置 8 天线读写器射频输出功率	25
	3.20. 5FH——设置 4 天线读写器射频输出功率	26
	3.21. 60H——查询读写器 GPIO 状态	27
	3.22.61H——设置读写器 GPIO 状态	
	3.23.66H——设置读写器临时射频输出功率	28
	3.24. 69H——设置射频链路的通讯速率	29
	3.25. 6AH——查询射频链路的通讯速率	
	3.26. 70H——复位读写器	
	3.27. 71H——设置串口通讯波特率	
	3.28. 72H——查询读写器固件版本	33
	3.29. 73H——设置读写器地址	
	3.30. 74H——设置读写器工作天线	
	3.31. 75H——查询当前工作天线	
	3.32.76H——设置单天线读写器射频输出功率	37
	3.33. 77H——查询读写器当前输出功率	38

3.34. 78H——设置读写器工作频率范围	40
3.35. 79H——查询读写器工作频率范围	42
3.36. 7BH——查询当前设备的工作温度	44
3.37. 80H——盘存标签	45
3.38.81H——读标签 6C	46
3.39. 82H——写标签 6C	48
3.40. 83H——锁定标签 6C	51
3.41. 84H——灭活标签 6C	53
3.42. 85H——匹配 ACCESS 操作的 EPC 号	54
3.43.86H——查询匹配的 EPC 状态	55
3.44. 87H——多天线轮询盘存	56
3.45.89H——盘存标签(实时上传标签数据)	59
3.46.8AH——盘存标签(自定义读取数据)	60
3.47. 8BH——自定义 session 和 target 盘存	63
3.48. 8CH——停止盘存	65
3.49. 8DH——选择标签	66
3.50. 8EH——获取标签	67
3.51. 90H——查询盘存缓存	68
3.52. 91H——查询并重置盘存缓存	70
3.53. 92H——查询盘存缓存标签数量	70
3.54. 93H——重置盘存缓存	71
3.55. 95H——SM7 加密写(可选项)	72
3.56. 96H——SM7 解密读(可选项)	73
3.57. 97H——SM7 PK 秘钥更新(可选项)	74
3.58. 98H——复旦微 GB 双向认证	75
3.59. E1H——读写器温度过高告警	77
3.60. F3H——读取 UUID	77
4. 错误码表	78
5. 频率参数对应表	80
6. RSSI 参数计算方法(C 语言描述)	81
7. 校验和计算方法(C语言描述)	82
8. 出厂默认参数	83

1. 文档概述

1.1. 名称

UCChip UHF READER 串口协议。

1.2. 功能

本协议规定了御芯微超高频 RFID 读写器模组与上位机的通信格式。

1.3. 参考文档

无。

1.4. 使用范围

UCM60x 系列模组。

2. 数据包格式定义

2.1. 上位机发送数据包格式定义

图 1 上位机发送数据包格式

序号	字段名称	字节数 (Byte)	说明
1	Head	1	数据包头,每包数据均以 0xA0 开始
2	Len	1	数据包长,不包含包头及包长本身,若完整数据包长为 8 字节,则 Len 的值为 6
3	Address	1	读写器地址。供 RS-485 接口串联时使用。一般地址从 1~255(0xFF),0(0x00)为公用地址。读写器接收自身地址和公用地址的命令

4	Cmd	1	命令码,RFID_COMMAND 中定义的枚举值
5	Data	0~N	命令参数,可能为0字节或多个字节
6	Checksum	1	校验和,除校验和本身外所有字节的校验和(取最低两位)

2.2. 读写器返回数据包格式定义

图 2 读写器返回数据包格式

序号	字段名称	字节数 (Byte)	说明	
1	Head	1	数据包头,每包数据均以 0xA0 开始	
2	Len	1	数据包长,不包含包头及包长本身,若完整数据包长为 8 字节,则 Len 的值为 6	
3	Address	1	读写器自身地址	
4	Cmd	1	命令码,RFID_COMMAND 中定义的枚举值	
5	Data	0~N	0~N 读写器返回的数据,可能为 0 字节或多个字节	
6	Checksum	1	校验和,除校验和本身外所有字节的校验和(取最低两位)	

备注: 在未特殊说明的情况下,读写器返回数据包中的 Data 段未错误码,具体错误码请查阅第 4 章节 -- 错误码表。

2.3. 指令集定义

序号	命令 码	名称	描述
1	0x3E	cmd_set_cw	打开 cw 波
2	0x3F	cmd_get_cw	获取 cw 波状态
3	0x42	cmd_gb_seu_write	复旦微 GB 加密通信写
4	0x43	cmd_gb_seu_read	复旦微 GB 加密通信读
5	0x45	cmd_gb_read	读标签 GB
6	0x46	cmd_gb_write	写标签 GB
7	0x47	cmd_gb_lock	锁定标签 GB
8	0x49	cmd_gb_kill	灭活标签 GB
9	0x4a	cmd_reader_para_save	保存参数

10	0x4b	cmd_reader_para_reset	恢复读写器默认配置
11	0x4c	cmd_reader_app_upgrade	读写器应用软件升级
12	0x4d	cmd_baseband_firmware_upgrade	基带固件升级
13	0x4E	cmd_set_keepalive	设置心跳包和上报时间
14	0x4F	cmd_get_keepalive	获取心跳包和上报时间
15	0x5A	cmd_get_session_target	获取 session 和 target
16	0x5B	cmd_set_session_target	设置 session 和 target
			获取读写器 tx on 时间和 tx off
17	0x5C	cmd_get_tx_time	时间
10			设置读写器 tx_on 时间和 tx_off
18	0x5D	cmd_set_tx_time	时间,调整功耗使用
1.0			设置的8天线读写器射频输出功
19	0x5E	cmd_set_8_ant_power	率
00	0.55		设置的 4 天线读写器射频输出功
20	0x5F	cmd_set_4_ant_power	率
21	0x60	cmd_read_gpio_value	查询 GPIO 状态
22	0x61	cmd_set_gpio_value	设置 GPIO 状态
23	0x66	cmd_set_temporary_output_power	设置读写器临时射频输出功率
24	0x69	cmd_set_rf_link_profile	设置射频链路的通讯速率
25	0x6A	cmd_get_rf_link_profile	查询射频链路的通讯速率
26	0x70	cmd_reset	复位读写器
27	0x71	cmd_set_uart_baudrate	设置串口通讯波特率
28	0x72	cmd_get_firmware_version	查询读写器固件版本
29	0x73	cmd_set_reader_address	设置读写器地址
30	0x74	cmd_set_work_antenna	设置读写器工作天线
31	0x75	cmd_get_work_antenna	查询当前工作天线
32	0x76	6 and set output newer	设置的单天线读写器射频输出功
32	0.270	cmd_set_output_power	率
33	0x77	cmd_get_output_power	查询读写器当前输出功率
34	0x78	cmd_set_frequency_region	设置读写器工作频率范围
35	0x79	cmd_get_frequency_region	查询读写器工作频率范围
36	0x7B	cmd_get_reader_temperature	查询当前设备的工作温度
37	0x80	cmd_inventory	盘存标签
38	0x81	cmd_read	读标签
39	0x82	cmd_write	写标签
40	0x83	cmd_lock	锁定标签
41	0x84	cmd_kill	灭活标签
42	0x85	cmd_set_access_epc_match	匹配 ACCESS 操作的 EPC 号
43	0x86	cmd_get_access_epc_match	查询匹配的 EPC 状态
44	0x87	cmd_fast_switch_ant_inventory	多天线轮询盘存
45	0x89	cmd_real_time_inventory	盘存标签(实时上传标签数据)
46	0x8A	cmd_custom_inventory	盘存标签(自定义读取数据)

47	0x8B	cmd_customized_session_target_inventory	自定义 session 和 target 盘存
48	0x8C	cmd_stop_inventory	停止盘存
49	0x8D	cmd_set_select	设置 select 参数
50	0x8E	cmd_get_select	获取 select 参数
51	0x90	cmd_get_inventory_buffer	查询盘存缓存
52	0x91	cmd_get_and_reset_inventory_buffer	查询并重置盘存缓存
53	0x92	cmd_get_inventory_buffer_tag_count	查询盘存缓存标签数量
54	0x93	cmd_reset_inventory_buffer	重置盘存缓存
55	0x95	cmd_sm7_write	SM7 加密写
56	0x96	cmd_sm7_read	SM7 解密读
57	0x97	cmd_sm7_pk_update	SM7 PK 秘钥更新
58	0x98	cmd_gb_mul_Seu_Auth	复旦微 GB 双向认证
59	0xE0	cmd_check_ant	获取天线连接状态
60	0xE1	\	读写器温度过高告警
61	0xF3	cmd_get_uuid	读取 UUID

3. 指令解析

3.1. 3EH——设置 CW 开关状态

命令: cmd_set_cw 上位机发送指令数据

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x3E	
5	Data	1		0x1 打开 CW 0x0 关闭 CW
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x3E 数据包 Data: 0x01 校验码 Checksum: 0x1D

┃ 序号 字段

1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x3E	
5	Data	1		0x10 设置成功
				0x11 失败
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x3E 数据包 Data: 0x10 校验码 Checksum: 0x0E

3.2. 3FH——获取 CW 开关

命令: cmd_get_cw 上位机发送指令数据

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x3F	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x3F 校验码 Checksum: 0x1E

	5(• m) = 1 /5(4) = 1						
序号	字段	字节数	固定值	备注			
1	Head	1	0xA0				
2	Len	1	4				
3	Address	1					
4	Cmd	1	0x3F				
5	Data	1		0x1 CW 已打开			
				0x0 CW 已关闭			
6	Checksum	1					

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x3F 数据包 Data: 0x01 校验码 Checksum: 0x1C

3.3. 42H——复旦微 GB 加密通信写

命令: cmd_gb_seu_write(0x42) 执行此命令操作前必须做一次双向认证! 上位机发送指令数据:

序号	字段		字节数	固 定 值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x42	
5.1		Password	4		标签访问密码
5.2		MemBank 标签存储区域	1		0 标签信息区 1 编码区 2 安全区 3 用户区
5.3	Data	WordAdd 数据首地址	2		WORD(16 bits)地址。 写入 EPC 存储区域一般从 01 开始, 该 区域前 2 个字节存放 PC。
5.4		WordCnt 写入数据长度	2		WORD(16 bits)长度,数值请参考标签 规格
5.5		WordData	WordCnt *2		写入的数据(可变长),是写入数据长 度的 2 倍。
6	Check		1		

读写器返回数据包

返回如下数据包(多条),数量等于写入的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Address		1		
4	Cmd		1	0x42	
5.1		TagCount	2		写入的数据长度。16 bits。
5.2	Data	DataLen	1		所操作标签的 EPC 长度。(PC +EPC)。 单位是字节。

5.3		EPC	不定长	所操作标签 EPC。 PC(2 字节) + EPC (根据标签规格)
5.4		ErrCode	1	所操作标签的操作结果,即错误代码。
5.5		AntID	1	天线号。
6	Ched	cksum	1	

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x42	
5	Data	1	错误码	0x11:操作失败 0x33:写标签错误 0x58:双向认证失败 0x59:双向认证成功 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定 0x60:标签供电不足 0x61:标签权限不足 0x62:内存地址超出范围 0x63:内存被锁定 0x64:操作密码错误 0x65:标签认证读写器失败 0x66:未知错误
6	Checksum	1		

3.4. 43H——复旦微 GB 加密通信读

命令: cmd_gb_seu_read(0x43) 执行此命令操作前必须做一次双向认证! 上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	0x0C	
3	Address		1		
4	Cmd		1	0x43	
5.1	Data	MemBank 标签存储区域	1		0 标签信息区 1 编码区

				2 安全区 3 用户区
5.2		WordAdd 读取数据首地址	2	取值范围请参考标签规格
5.3		WordCnt 读取数据长度	2	字长,WORD(16 bits)长度。 取值范围请参考标签规格书。
5.4		Password	4	标签访问密码
6	6 Checksum		1	

读写器返回数据包

返回如下数据包(多条),数量等于读取的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head	Head		0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x43	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		EPCLen	1		所操作标签的 EPC 长度。(PC +EPC)。 单位是字节。
5.3	Data	EPC	不定长		所操作标签的 EPC 。(PC +EPC)。
5.4		ReadLen	2		Read 操作的数据长度。单位是字节。
5.5		ReadData	不定长		Read 操作的数据
5.6		AntID	1		天线号。
6	Check	sum	1		

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x43	
5	Data	1	错误码	0x11:操作失败 0x32:读标签错误 0x58:双向认证失败 0x59:双向认证成功 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定 0x60:标签供电不足 0x61:标签权限不足
				0x62:内存地址超出范围

			0x63:内存被锁定 0x64:操作密码错误 0x65:标签认证读写器失败 0x66:未知错误
			0x66:木知错误
6	Checksum	1	

3.5. 45H——读标签 GB

命令: cmd_gb_read(0x45)

上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	0x0C	
3	Addre	SS	1		
4	Cmd		1	0x45	
5.1		MemBank 标签存储区域	1		0 标签信息区 1 编码区 2 安全区 3 用户区
5.2	Data	WordAdd 读取数据首地址	2		取值范围请参考标签规格
5.3		WordCnt 读取数据长度	2		字长,WORD(16 bits)长度。 取值范围请参考标签规格书。
5.4	Password		4		标签访问密码
6	Check	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x0C 读写器地址 Address: 0x00 命令码 Cmd: 0x45

数据包 Data: 0x00 0002 0001 00000000

> //00 标签信息区 //0002 读取数据首地址 //0001 读取数据长度

//00000000 标签访问密码

校验码 Checksum: 0x0C

读写器返回数据包

返回如下数据包(多条),数量等于读取的标签数量(无重复数据):

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	

2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x45	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		EPCLen	1		所操作标签的 EPC 长度。(PC +EPC)。 单位是字节。
5.3	Data	EPC	不定长		所操作标签的 EPC 。(PC +EPC)。
5.4		ReadLen	2		Read 操作的数据长度。单位是字节。
5.5		ReadData	不定长		Read 操作的数据
5.6		AntID	1		天线号。
6	Checksum		1		

数据帧头 Head: 0xA0 数据包长 Len: 0x0C 读写器地址 Address: 0x00 命令码 Cmd: 0x45

数据包 Data: 0x0001 12 3000E280689400005016A9878056 0002 D578 01

//从高位到低 0001 为操作成功的总数量 1 个,

//12 为数据操作的有效数据

//3000 是读到数据的 PC,

// E280689400005016A9878056 是标签 EPC

//0002 Read 操作的数据长度

//D578 read 操作数据

//01 是天线号

校验码 Checksum: 0x0E

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x81	
5	Data	1	错误码	0x11:操作失败 0x32:读标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定 0x60:标签供电不足 0x61:标签权限不足 0x62:内存地址超出范围 0x63:内存被锁定

			0x64:操作密码错误 0x65:标签认证读写器失败
			0x66:未知错误
6	Checksum	1	

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x45 数据包 Data: 0x36 校验码 Checksum: 0xE1

3.6. 46H——写标签 GB

命令: cmd_gb_write(0x46) 上位机发送指令数据:

		日 〈 3久1/日・	今世粉	田台	夕汁
序号	字段		字节数		备注
				值	
1	Head		1	0xA0	
2	Len		1		
3	Addre	ss	1		
4	Cmd		1	0x46	
5.1		Password	4		标签访问密码
5.2		MemBank 标签存储区域	1		0 标签信息区 1 编码区 2 安全区 3 用户区
5.3	Data	WordAdd 数据首地址	2		WORD (16 bits) 地址。 写入 EPC 存储区域一般从 01 开始, 该 区域前 2 个字节存放 PC。
5.4		WordCnt 写入数据长度	2		WORD(16 bits)长度,数值请参考标签 规格
5.5		WordData	WordCnt *2		写入的数据(可变长),是写入数据长 度的 2 倍。
6	Check	sum	1		

读写器返回数据包

返回如下数据包(多条),数量等于写入的标签数量(无重复数据):

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1		
3	Address	1		

4	Cmd		1	0x46	
5.1		TagCount	2		写入的数据长度。16 bits。
5.2		DataLen	1		所操作标签的 EPC 长度。(PC +EPC)。 单位是字节。
5.3	Data	EPC	不定长		所操作标签 EPC。 PC(2 字节) + EPC (根据标签规格)
5.4		ErrCode	1		所操作标签的操作结果,即错误代码。
5.5		AntID	1		天线号。
6	Che	cksum	1		

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x46	
5	Data	1	错误码	0x11:操作失败 0x33:写标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定 0x60:标签供电不足 0x61:标签权限不足 0x62:内存地址超出范围 0x63:内存被锁定 0x64:操作密码错误 0x65:标签认证读写器失败 0x66:未知错误
6	Checksum	1		

3.7. 47H——锁定标签 GB

命令: cmd_gb_lock 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	0x09	
3	Address	1		
4	Cmd	1	0x47	

5.1		Password	4	标签词	方问密码
				0x00	标签信息区
5.2		MemBank	1	0x01	编码区
5.2		标签存储区域	1	0x02	安全区
				0x03	用户区
		a LockType 锁操作类型		0x00	可读可写
	Data		1	0x01	可读不可写
				0x02	不可读可写
5.3				0x03	不可读不可写
5.5				0x04	保留
				0x05	不需要鉴别
				0x06	需要鉴别不需要安全通信
				0x07	需要鉴别需要安全通信
6	Checksum		1		

读写器返回数据包:

返回如下数据包(多条),数量等于写入的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x47	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。
5.2		Dataten	1		(PC+CRC+EPC)。 单位是字节。
5.3	Data	LockData	不定长		所操作标签有效数据。
5.5	Data	LOCKData	小足区		PC(2 字节) + EPC (根据标签规格)
5.4		ErrCode	1		所操作标签的操作结果,即错误代码。
5.5		AD	1		高 6 位是第一次读取的频点参数,低 2
5.5		AntID	1		位是天线号。
6	Check	sum	1		

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x47	
				0x11:操作失败
5	Data	1	错误码	0x32:读标签错误
)				0x36:无可操作标签
				0x37:成功盘存但访问失败

				0x40:访问标签错误或密码错误
				0x41:无效的参数
				0x60:标签供电不足
				0x61:标签权限不足
				0x62:内存地址超出范围
				0x63:内存被锁定
				0x64:操作密码错误
				0x65:标签认证读写器失败
				0x66:未知错误
6	Checksum	1	_	

3.8. 49H——灭活标签 GB

命令: cmd_gb_kill 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	7	
3	Address	1		
4	Cmd	1	0x49	
5.1	Data Password	4		标签灭活密码
6	Checksum	1		

读写器返回数据包

返回如下数据包(多条),数量等于销毁的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head	Head		0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x49	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。(PC+EPC)。 单位是字节。
5.3	Data	KillData	不定长		所操作标签有效数据。 PC(2 字节) + EPC (根据标签规格)
5.4		ErrCode	1		所操作标签的操作结果,即错误代码。
5.5		AntID	1		高 6 位是第一次读取的频点参数, 低 2 位是天线号。
6	Check	sum	1		

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x49	
				0x11:操作失败
				0x32:读标签错误
				0x36:无可操作标签
	Data			0x37:成功盘存但访问失败
				0x40:访问标签错误或密码错误
				0x41:无效的参数
5		1	错误码	0x60:标签供电不足
				0x61:标签权限不足
				0x62:内存地址超出范围
				0x63:内存被锁定
				0x64:操作密码错误
				0x65:标签认证读写器失败
				0x66:未知错误
6	Checksum	1		

3.9. 4AH——保存参数

命令: cmd_reader_para_save

此命令会将配置的参数写进 FLASH 中,数据掉电不丢失。在所有设置参数的指令中,除设置通信带宽指令外,其他参数配置后均需使用此命令,以使参数永久保存。若需配置多个参数,则在所有参数配置完成后,再发送一条保存参数指令,所配置的参数会全部存入 FLASH中。

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x4a	
5	Checksum	1		

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x4a	
5	Data	1	错误码	0x10:操作成功

			0x11:操作失败
6	Checksum	1	

3.10. 4BH——恢复读写器默认配置

命令: cmd_reader_para_reset

此命令会将读写器除系统时间和 MAC 地址之外的所有参数恢复成默认值,包括 RFID 配置参数。

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x4b	
5	Checksum	1		

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x4b	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败
6	Checksum	1		

3.11. 4CH——读写器应用软件升级

命令: cmd_reader_app_upgrade

上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addres	SS	1		
4	Cmd		1	0x4c	
5.1		PacketSerialNu	4		升级数据包序列号,以 0x00000000 开
5.1	Data	mber	4		始 OxFFFFFFFF 结東
5.2	Data	Status	1		0,升级过程中;1,升级结束(最后一
5.2		Status	1		包)

5.3		upgradeDataLen	1	=n,upgradeData 的长度
5.4		upgradeData	不定长	升级数据内容
6	6 Checksum		1	

读写器返回数据包:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len	Len		8	
3	Address		1		
4	Cmd		1	0x4c	
5.1	Data	PacketSerialNu mber	4		上位机发送的升级包序号
5.2	5.2 Data	Status	1		0 成功 1 失败
6	Checksum		1		

3.12. 4DH——基带固件升级

命令: cmd_baseband_firmware_upgrade

同读写器应用软件升级

3.13. 4EH——设置盘存心跳包和上报时间

命令: cmd_set_keepalive 上位机发送指令数据

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	6	
3	Address		1		
4	Cmd		1	0x4E	
5.1	Data	使能	1		0x1 使能心跳包
					0x0 不使能心跳包
5.2		上报时间	2		最小步进 10ms,最小值为 100ms,最
					大 655350ms
6	Checksum		1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x4E

数据包 Data: 0x01 1388 //设置 5000ms 一次心跳包

校验码 Checksum: 0x70

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x4E	
5	Data	1	0x10	操作成功
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x4E 数据包 Data: 0x10 校验码 Checksum: 0xFE

3.14. 4FH——获取盘存心跳包和上报时间

命令: $cmd_get_keepalive$

上位机发送指令数据

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x4F	
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x4F 校验码 Checksum: 0x0E

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	6	
3	Address	1		
4	Cmd	1	0x4F	

5.1	Data	使能	1	盘存心跳包状态
5.2		上报时间	2	获取设置时间
6	Checksum		1	

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x4F 数据包 Data: 0x01 0000 校验码 Checksum: 0x0A

3.15. 5AH——获取 Session 和 Target

命令: cmd_get_session_target 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x5A	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x5A 校验码 Checksum: 0x03

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	5	
3	Address		1		
4	Cmd		1	0x5A	
5.1		Session	1		指定盘存的 session
					0 S0
					1 S1
	Data				2 S2
					3 S3
5.2		Target	1		指定盘存的 Inventoried Flag

6	Checksum	1		
			1	В
			0	A

数据帧头 Head: 0xA0 数据包长 Len: 0x05 读写器地址 Address: 0x00 命令码 Cmd: 0x5A 数据包 Data: 0x0200 校验码 Checksum: 0xFF

3.16. 5BH——设置 Session 和 Target

命令: cmd_set_session_target

上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	5	
3	Address		1		
4	Cmd		1	0x5B	
5.1	Data	Session	1		指定盘存的 session 0 S0 1 S1 2 S2 3 S3
5.2	Chacksum	Target	1		指定盘存的 Inventoried Flag 0 A 1 B
6	Checksum		1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x05 读写器地址 Address: 0x00 命令码 Cmd: 0x5B 数据包 Data: 0x0200 校验码 Checksum: 0xFE

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	

2	Len	1	4	
3	Address	1		
4	Cmd	1	0x5B	
5	Data	1	0x10	操作成功
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x5B 数据包 Data: 0x10 校验码 Checksum: 0xF1

3.17. 5CH——获取 TX RF 时间

命令: cmd_get_tx_time 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x5C	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x5C 校验码 Checksum: 0x01

读写器返回数据包:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	7	
3	Address		1		
4	Cmd		1	0x5C	
5.1	T., D.	Tx_RF_ontime	2		步进为 1ms
5.2	Tx_RF	Tx_RF_offtime	2		步进为 1ms
6	Checksui	m	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x5C

数据包 Data: 0x03E803E8

校验码 Checksum: 0x27

3.18. 5DH——设置 TX RF 时间

命令: cmd_set_tx_time

该命令主要用来改变 TX RF 占空比,调整功耗。TX 发射时间主要分为 TX RF 使能时间和 TX RF 关闭时间。时间最小刻度 10ms,步进为 1ms。

上位机发送指令数据:

序 号	字段		字 节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	7	
3	Address		1		
4	Cmd		1	0x5D	
5.1	Tx_RF	Tx_RF_ontime	2		默认值 100ms,步进为 1ms,可以两
5.2		Tx_RF_offtime	2		个字段同时设为 0,表示关闭该功能
6	Checksum	ı	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x07 读写器地址 Address: 0x00 命令码 Cmd: 0x5D

数据包 Data: 0x03E803E8

校验码 Checksum: 0x26

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x5D	
5	Data	1		0x10:设置成功
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0

数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x5D 数据包 Data: 0x10 校验码 Checksum: 0xEF

3.19. 5EH——设置 8 天线读写器射频输出功率

命令: cmd_set_8_ant_power 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	11	
3	Address	1		
4	Cmd	1	0x5E	
5	Data	8		分别对应 8 个天线 RF 输出功率,取值 范围 0-33,单位 dBm
6	Checksum	1		

说明:新的读写器配置立即生效。

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x11 读写器地址 Address: 0x00 命令码 Cmd: 0x5E

数据包 Data: 0x1112091011121110 //同上四天线设置

校验码 Checksum: 0x76

读写器返回数据包:

		X 11 111		
序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x5E	
				0x10:操作成功
5	Data	1	错误码	0x11:操作失败
				0x25:参数超范围
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x5E 数据包 Data: 0x11 校验码 Checksum: 0xEC

3.20. 5FH——设置 4 天线读写器射频输出功率

命令: cmd_set_4_ant_power

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	7	
3	Address	1		
4	Cmd	1	0x5F	
5	Data	4		分别对应 4 个天线的 RF 输出功率,取 值范围 0-33,单位 dBm
6	Checksum	1		

说明:新的读写器配置立即生效。

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x07 读写器地址 Address: 0x00 命令码 Cmd: 0x5F

数据包 Data: 0x10101010 //前两位 10 为天线 1 的 RF 输出功率

//第二个字节的两位 10 为天线 2 的 RF 功率 //第三个字节的两位 10 为天线 3 的 RF 功率 //第三个字节的两位 10 为天线 3 的 RF 功率

校验码 Checksum: 0xBA

读写器返回数据包:

		X 11 111		
序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x5F	
				0x10:操作成功
5	Data	1	错误码	0x11:操作失败
				0x25:参数超范围
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x5F 数据包 Data: 0x11 校验码 Checksum: 0xEC

3.21. 60H——查询读写器 GPIO 状态

命令: cmd_read_gpio_value

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x60	
5	Checksum	1		

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x60	
		1		GPIO1 状态
5	Data	1		GPIO2 状态
5	Dala	1		GPIO3 状态
		1		GPIO4 状态
6	Checksum	1		

3.22. 61H——设置读写器 GPIO 状态

命令: cmd_set_gpio_value

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x61	
		1		设置 GPIO1 状态
5	Data	1		设置 GPIO2 状态
		1		设置 GPIO3 状态

			1	设置 GPIO4 状态
e	5	Checksum	1	

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x61	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败
6	Checksum	1		

3.23. 66H——设置读写器临时射频输出功率

命令: cmd set temporary output power

操作成功后输出功率值将不会被保存在内部的 Flash 中,重新启动或断电后输出功率将恢复至内部 Flash 中保存的输出功率值。此命令的操作速度非常快,并且不写 Flash,从而不影响 Flash 的使用寿命,适合需要反复切换射频输出功率的应用。

上位机发送指令数据:

序号	字段	字节数	固定值	备注		
1	Head	1	0xA0			
2	Len	1	4			
3	Address	1				
4	Cmd	1	0x66			
5	Data	1		RF 临时输出功率,取值范围 20-33, 单位 dBm		
6	Checksum	1				

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x66 数据包 Data: 0x11 校验码 Checksum: 0xE5

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	

2	Len	1	4	
3	Address	1		
4	Cmd	1	0x66	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败 0x25:参数超范围
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x66 数据包 Data: 0x10 校验码 Checksum: 0xE6

3.24. 69H——设置射频链路的通讯速率

命令: cmd_set_rf_link_profile

操作成功后读写器会重新启动,配置将直接保存在内部的 Flash 中,断电后不丢失,配置此参数之前若配置了其他参数,则之前配置的参数也会被写进 Flash 中。

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x69	
				ProfileID
				OxDO Miller 40KHz tari 25us
				0xD1 FMO 200KHz tari 6.25us
				OxD2 FMO 200KHz tari 12.5us
				OxD3 FMO 200KHz tari 25us
				OxD4 Miller4 200KHz tari 6.25us
5	Data	1		OxD5 Miller4 200KHz tari 12.5us
5	Data	I		OxD6 Miller4 200KHz tari 25us
				0xD7 Miller_4 250KHz tari 6.25us
				0xD8 FM0 640KHz tari 6.25us
				OxD9 FMO 40KHz tari 25us
				OxDA GB FMO 64KHz
				OxDB GB Miller 128KHz
				OxDC GB FMO 128KHz
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x69 数据包 Data: 0xD6 校验码 Checksum: 0x1D

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x69	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x69 数据包 Data: 0x10 校验码 Checksum: 0xE3

3.25. 6AH——查询射频链路的通讯速率

命令: cmd_get_rf_link_profile

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x6a	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x6a 校验码 Checksum: 0xF3

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x6a	
				成功返回,ProfileID
				OxDO Miller 40KHz tari 25us
				0xD1 FMO 200KHz tari 6.25us
				0xD2 FMO 200KHz tari 12.5us
				0xD3 FMO 200KHz tari 25us
				OxD4 Miller4 200KHz tari 6.25us
5	Data	1		OxD5 Miller4 200KHz tari 12.5us
3	Data	1		OxD6 Miller4 200KHz tari 25us
				0xD7 Miller_4 250KHz tari 6.25us
				0xD8 FM0 640KHz tari 6.25us
				OxD9 FMO 40KHz tari 25us
				OxDA GB FMO 64KHz
				OxDB GB Miller 128KHz
				OxDC GB FMO 128KHz
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x6a 数据包 Data: 0xD6 校验码 Checksum: 0x1C

3.26. 70H——复位读写器

命令: cmd_reset 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x70	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x70 校验码 Checksum: 0xED

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x70	
				0x10:操作成功
5	Data	1	错误码	0x11:操作失败
				0x20:MCU 复位失败
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x70 数据包 Data: 0x10 校验码 Checksum: 0xDC

3.27. 71H——设置串口通讯波特率

命令: cmd_set_uart_baudrate

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x71	
				0x00:1200
				0x01:2400
				0x02:4800
				0x03:9600
				0x04:14400
				0x05:19200
5	Data	1		0x06:38400
5				0x07:57600
				0x08:76800
				0x09:115200
				0x0a:128000
				0x0b:230400
				0x0c:256000
				0x0d:460800

6 Checksum 1	1	
--------------	---	--

说明: 读写器成功收到此命令帧后,命令立即生效,将读写器波特率更新。

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x71 数据包 Data: 0x09 校验码 Checksum: 0xE3

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x71	
5	Data	1	操作码	0x10:操作成功 0x11:操作失败
				0x4a:波特率超范围
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x71 数据包 Data: 0x10 校验码 Checksum: 0xDC

3.28. 72H——查询读写器固件版本

命令: cmd_get_firmware_version

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x72	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x72 校验码 Checksum: 0xEB

读写器返回数据包

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	6	
3	Addres	SS	1		
4	Cmd		1	0x72	
5.1		Major	1		固件主版本号
5.2		Minor	1		固件次版本号
5.3	Data	Model	1		0x01:UCM601 0x02:UCM602 0x06:UCM606 0x08:UCM608
6	Checks	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x72

数据包 Data: 0x020201 //前两位 02 为固件主版本号,中间两位 02 为

//固件次版本号:最后两位 01 是对应模组型

//号,故当前版本号为: UCM601-2.2

校验码 Checksum: 0xE3

3.29. 73H——设置读写器地址

命令: cmd_set_reader_address

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x73	
5	Data	1		配置读写器地址,配置范围 0-255
6	Checksum	1		

说明:新的读写器地址立即生效。

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x73 数据包 Data: 0x02 校验码 Checksum: 0xE7

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x73	
5	Data	1	错误码	0x10:操作成功 0x41:不支持该配置参数
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x73 数据包 Data: 0x10 校验码 Checksum: 0xD9

3.30. 74H——设置读写器工作天线

命令: cmd_set_work_antenna 上位机发送指令数据--单天线:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	田江
2	Len	1	4	
3	Address	1	•	
4	Cmd	1	0x74	
5	Data	1		天线号 AntennalD 天线 1,0x01 天线 2,0x02 天线 3,0x03 天线 4,0x04 天线 5,0x05 天线 6,0x06 天线 7,0x07 天线 8,0x08
6	Checksum	1		7,000

说明:新的读写器配置立即生效。

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x74 数据包 Data: 0x01 校验码 Checksum: 0xE7

上位机发送指令数据 -- 多天线 (仅 UCM608-4 和 UCM608-8 有效):

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x74	
		1	0x00	固定值
5	Data	8		1~8 字节对应 1~8 号天线使能位,打开 天线对应字节设置为 1,关闭设置为 0, 4 天线模组仅前面 4 字节有效
6	Checksum	1		

例: 将 1 号天线和 2 号天线打开, 发送的数据包为{}A0 0C 00 74 00 01 01 00 00 00 00 00 00 DE}

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x74	
5	Data	1	错误码	0x10:操作成功 0x41:不支持该配置参数
6	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x74 数据包 Data: 0x10 校验码 Checksum: 0xD8

3.31. 75H——查询当前工作天线

命令: cmd_get_work_antenna 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x75	
5	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x75 校验码 Checksum: 0xE8

读写器返回数据包

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x75	
5.1	Data	1		天线号 AntennalD 天线 1,0x01 天线 2,0x02 天线 3,0x03 天线 4,0x04
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x75 数据包 Data: 0x01 校验码 Checksum: 0xE6

3.32. 76H——设置单天线读写器射频输出功率

命令: cmd_set_output_power

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x76	

5	Data	1	RF 输出功率,取值范围 0-33,单位 dBm (601 系列支持 20dbm, 606 30dbm,
			608 33dbm, 四天线, 八天线设置相同)
6	Checksum	1	

说明:新的读写器配置立即生效。

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x76

数据包 Data: 0x10 //RF 输出功率为 16dBm

校验码 Checksum: 0xD6

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x76	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败 0x25:参数超范围
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x76 数据包 Data: 0x10 校验码 Checksum: 0xD6

3.33. 77H——查询读写器当前输出功率

命令: cmd_get_output_power

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x77	
5	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x77 校验码 Checksum: 0xE6

读写器返回数据包:

情况一: 所有天线的功率设置相同

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x77	
5	Data	1		所有天线功率,范围 0-33,单位 dBm
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x77 数据包 Data: 0x10 校验码 Checksum: 0xD5

情况二: 天线的功率设置不完全相同(4天线)

同见一: 八线的为千块直升九至相同(4 八线)						
序号	字段		字节数	固定值	备注	
1	Head		1	0xA0		
2	Len	Len		7		
3	Addres	SS	1			
4	Cmd		1	0x77		
5.1		Power1	1		天线 1 功率,范围 0-33,单位 dBm	
5.2	Doto	Power2	1		天线 2 功率,范围 0-33,单位 dBm	
5.3	Data	Power3	1		天线 3 功率,范围 0-33,单位 dBm	
5.4		Power4	1		天线 4 功率,范围 0-33,单位 dBm	
6	Checksum		1			

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x07 读写器地址 Address: 0x00 命令码 Cmd: 0x77

数据包 Data: 0x10101112 //从高到底每个字节两个

//位对应天线 1~4 的功率

校验码 Checksum: 0x9F

情况三: 天线的功率设置不完全相同(8天线)

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	11	
3	Addres	SS	1		
4	Cmd		1	0x77	
5.1		Power1	1		天线 1 功率,范围 0-33,单位 dBm
5.2		Power2	1		天线 2 功率,范围 0-33,单位 dBm
5.3		Power3	1		天线 3 功率,范围 0-33,单位 dBm
5.4	Doto	Power4	1		天线 4 功率,范围 0-33,单位 dBm
5.5	Data	Power5	1		天线 5 功率,范围 0-33,单位 dBm
5.6		Power6	1		天线 6 功率,范围 0-33,单位 dBm
5.7		Power7	1		天线 7 功率,范围 0-33,单位 dBm
5.8		Power8	1		天线 8 功率,范围 0-33,单位 dBm
6	Checks	sum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x11 读写器地址 Address: 0x00 命令码 Cmd: 0x77

数据包 Data: 0x1010111209131112 //高到低天线 1~8 的功率

校验码 Checksum: 0x5C

3.34. 78H——设置读写器工作频率范围

命令: cmd_set_frequency_region

上位机发送指令数据:

射频频谱的定义有两种方法。

方法一: 使用系统默认的频点(参见频率参数对应表)

序号	字段		字节数	固定值	备注	
1	Head		1	0xA0		
2	Len		1	6		
3	Addre	SS	1			
4	Cmd		1	0x78		
		Pogion			0x01	FCC
5.1	5.1 Data Region 射频规范	1		0x02	ETSI	
		711 20K130F1G			0x03	CHN

5.3	EndFreq 频率结束点	1	频规范的范围。 2. 起始频率必须低于结束频率。 3. 起始频率等于结束频率则定频发射。
5.2	StartFreq 频率起始点	1	可以在射频规范的频率范围内再设置 跳频的范围。参数所对应的频率请参 见频率参数对应表。参数的设置规则 为: 1. 起始频率与结束频率不能超过射

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x78

数据包 Data: 0x01073B //前两位射频规范 01 为 FCC,中间两位 02 为频率

//起始点 902.250MHz, 后两位 3B 为频率结束点

// 928.250MHz

校验码 Checksum: 0x9F

方法二: 用户自定义频谱

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	10	
3	Addre	SS	1		
4	Cmd		1	0x78	
5.1		Region 射频规范	1	4	固定值
5.2	Doto	FreqSpace 频点间隔	2		频点间隔 = 最小频点间隔为 25KHz
5.3	Data	FreqQuantity 频率数量	1		包含起始频率的频点数量,1为以起始 频率定频发射。此参数必须大于0
5.4		StartFreq 频率起始点	3		单位为 KHz。16 进制数高位在前。例 如 915000KHz 则发送 0D F6 38
6	Check	sum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x10 读写器地址 Address: 0x00 命令码 Cmd: 0x78

数据包 Data: 0x040019010DBBA0 //04 是固定值,0019是频点间隔25KHz,01

//是频率数量1(该参数必须大于0),0DBBA0

//是频率起始点 900000KHz

校验码 Checksum: 0x58

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x78	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败
6	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x78 数据包 Data: 0x10 校验码 Checksum: 0xD4

3.35. 79H——查询读写器工作频率范围

命令: $cmd_get_frequency_region$

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x79	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x79 校验码 Checksum: 0xE4

读写器返回数据根据射频规范主要分两类:

系统默认频点返回数据

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	6	
3	Address	1		

4	Cmd		1	0x79	
5.1		Region 射频规范	1		0x01 FCC 0x02 ETSI 0x03 CHN
5.2	Data	StartFreq 频率起始点	1		跳频频率范围的低点
5.3		EndFreq 频率结束点	1		跳频频率范围的高点
6	Check	sum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x79

数据包 Data: 0x01073B //读出来的值和上设置命令相同

校验码 Checksum: 0x9E

自定义频点返回数据

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	10	
3	Addre	ss	1		
4	Cmd		1	0x79	
5.1		Region 射频规范	1	4	固定值
5.2	Doto	FreqSpace 频点间隔	2		频点间隔 = 最小频点间隔为 25KHz
5.3	Data	FreqQuantity 频率数量	1		包含起始频率的频点数量,1为以起始 频率定频发射。此参数必须大于0
5.4		StartFreq 频率起始点	3		单位为 KHz。16 进制数高位在前。例 如 915000KHz 则发送 0D F6 38
6	Check	sum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x10 读写器地址 Address: 0x00 命令码 Cmd: 0x79

数据包 Data: 0x040019010DBBA0

校验码 Checksum: 0x57

3.36. 7BH——查询当前设备的工作温度

命令: cmd_get_reader_temperature

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x7b	
5	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x7b 校验码 Checksum: 0xE2

读写器返回数据包:

成功返回:

序号	字段		字节数	固定值	备注
1	Head	Head		0xA0	
2	Len		1	5	
3	Address		1		
4	Cmd		1	0x7b	
5.1	Data	PlusMinus	1		0 零下 1 零上
5.2	_	Temperature	1		摄氏度
6	Checksum		1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x05 读写器地址 Address: 0x00 命令码 Cmd: 0x7b

数据包 Data: 0x0129 //01 为温度的零上, 29 为温度, 故温度值为+41

校验码 Checksum: 0xB6

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x7b	

5	Data	1	错误码	0x11:操作失败
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x7b 数据包 Data: 0x11 校验码 Checksum: 0xD0

3.37. 80H——盘存标签

命令: cmd_inventory

缓存模式:读写器收到此命令后,进行多标签识别操作。标签数据存入读写器缓存区,使用提取缓存指令可获得标签数据,详见:缓存操作命令。在收到停止命令前,读写器将持续盘存。

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x80	
5	Data	1		单天线模式: 天线号(0x01~0x08); 多天线模式: 固定位 0x00
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x80 数据包 Data: 0x01 校验码 Checksum: 0xDB

读写器返回数据包

成功返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	5	
3	Address	1		
4	Cmd	1	0x80	
5	Data	2		识别标签的总数量,根据 EPC 号来区分

			标签,相同 EPC 号的标签将被视为同一 张标签。若未清空缓存,标签数量为多
			次盘存操作的数量累加。
6	Checksum	1	

数据帧头 Head: 0xA0 数据包长 Len: 0x05 读写器地址 Address: 0x00 命令码 Cmd: 0x80

数据包 Data: 0x000B //识别标签的总数量,目前数量为 11

校验码 Checksum: 0xD0

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x80	
5	Data	1	错误码	0x11:操作失败 0x36:无可操作标签
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x80 数据包 Data: 0x36 校验码 Checksum: 0xA6

3.38. 81H——读标签 6C

命令: cmd_read 上位机发送指令数据:

	= 1 0/2. C11 \ / // VI						
序号	字段		字节数	固定值	备注		
1	Head		1	0xA0			
2	Len		1	0x0E			
3	Addre	SS	1				
4	Cmd		1	0x81			
5.1	Data	MemBank 标签存储区域	1		0 RESERVED 1 EPC 2 TID		

				3 USER
5.2		WordAdd 读取数据首地址	4	取值范围请参考标签规格
5.3		WordCnt 读取数据长度	2	字长,WORD(16 bits)长度。 取值范围请参考标签规格书。
5.4		Password	4	标签访问密码
6	6 Checksum		1	

数据帧头 Head: 0xA0 数据包长 Len: 0x0E 读写器地址 Address: 0x00 命令码 Cmd: 0x81

数据包 Data: 0x01 00000002 0006 00000000

//存储器区 01(EPC),

//读取数据首地址 00000002 (起始地址 2, 单位 byte),

//读取数据长度 0006 (长度为 6,单位 word),

//访问密码 00000000

校验码 Checksum: 0xC8

读写器返回数据包

返回如下数据包(多条),数量等于读取的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre:	ss	1		
4	Cmd		1	0x81	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。 (PC+CRC+EPC+读取的标签数据)。单 位是字节。
5.3	Data	ReadData	不定长		所操作标签的有效数据。 PC (2 字节) + EPC (根据标签规格) + CRC (2 字节) + 读取的数据。(如果 epc 起始从 0 开始读取的话顺序是crc+pc+epc) //(PC(2 字节) + EPC + CRC(2 字节)即 EPC 存储区域中的全部内容。)
5.4		ReadLen	2		Read 操作的数据长度。单位是字节。
5.5		AntID	1		高 6 位是第一次读取的频点参数, 低 2 位是天线号。
5.6		ReadCount	1		该标签被成功操作的次数。
6	Check	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0

数据包长 Len: 0x1C //长度不一定,根据所操作标签的有效数据不一样

读写器地址 Address: 0x00 命令码 Cmd: 0x81

数据包 Data: 0x0001 12 3000 E280689400005016A9878056 D578 D578 0002 01 01

//从高位到低 0001 为操作成功的总数量 1 个,

//12 为数据操作的有效数据 //3000 是读到数据的 PC,

// E280689400005016A9878056 是标签 EPC

//D578 是 CRC

//D578 是读取的数据

//0002 Read 操作的数据长度

//01 是天线号

//最后一个 01 是操作成功次数 1 次

校验码 Checksum: 0x18

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x81	
5	Data	1	错误码	0x11:操作失败 0x32:读标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定
6	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x81 数据包 Data: 0x40 校验码 Checksum: 0x9B

3.39. 82H——写标签 6C

命令: cmd_write(0x82) 上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x82	
5.1		Password	4		标签访问密码
5.2		MemBank 标签存储区域	1		0 RESERVED 1 EPC 2 TID 3 USER
5.3	Data	WordAdd 数据首地址	4		WORD(16 bits)地址。 写入 EPC 存储区域一般从 02 开始, 该区域前四个字节存放 PC+CRC。
5.4		WordCnt 写入数据长度	2		WORD(16 bits)长度,数值请参考标 签规格
5.5		WordData	WordCnt *2		写入的数据(可变长),是写入数据 长度的2倍。
6	Checks	sum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x16 读写器地址 Address: 0x00 命令码 Cmd: 0x82

数据包 Data: 0x 00000000 01 00000002 0004 8888888800000000

// 00000000 是密码

//01 是标签存储区域(EPC) //00000002 是数据首地址

//0004 是写入数据长度 (单位为 word)

//888888800000000 此部分数据由用户填写,实际写入的数据长

度需要和 WordCnt 填写长度对应

校验码 Checksum: 0xCA

读写器返回数据包

返回如下数据包(多条),数量等于写入的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Address		1		
4	Cmd		1	0x82	
5.1		TagCount	2	0x0004	
5.2	Data	DataLen	1		所操作标签的有效数据长度。 (PC+CRC+EPC)。单位是字节。
5.3		WriteData	不定长		所操作标签有效数据。

				PC(2 字节) + EPC (根据标签规格) + CRC (2 字节) (PC(2 字节) + EPC + CRC (2 字节) 即 EPC 存储区域中的全部内容。)
5.4		ErrCode	1	所操作标签的操作结果,即错误代码。
5.5		AntID	1	天线号。
6	Checl	ksum	1	

数据帧头 Head: 0xA0 数据包长 Len: 0x10 读写器地址 Address: 0x00 命令码 Cmd: 0x82

数据包 Data: 0x0001 10 3000E200689400004016A98750565371 10 01

//0001 操作成功的标签数, //10 标签有效数据长度

//3000 E200689400004016A9875056 5371 操作标签有效数据

//10 操作结果成功 //01 天线号 1

校验码 Checksum: 0xA6

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x82	
5	Data	1	错误码	0x11:操作失败 0x33:写标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定
6	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x82 数据包 Data: 0x41 校验码 Checksum: 0x99

3.40. 83H——锁定标签 6C

命令: cmd_lock 上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	9	
3	Addre	SS	1		
4	Cmd		1	0x83	
5.1		Password	4		标签访问密码
5.2		MemBank 标签存储区域	1		0x01 User Memory 0x02 TID Memory 0x03 EPC Memory 0x04 Access Password 0x05 Kill Password
5.3	Data	LockType 锁操作类型	1		0x00 开放 0x01 锁定(标签锁定前提为访问密码,码不为全 0,需提前修改访问密码,注: NXP U9 标签无访问密码所以无法执行锁定操作) 0x02 永久开放 0x03 永久锁定
6	Check	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x09 读写器地址 Address: 0x00 命令码 Cmd: 0x83

数据包 Data: 0x00000001 03 00

// 00000001 是密码, 03 是标签存储区域 EPC Memory, 00 是操

//作类型为开放

校验码 Checksum: 0xD0

读写器返回数据包:

返回如下数据包(多条),数量等于写入的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Address		1		
4	Cmd		1	0x83	
5.1	Data	TagCount	2		成功操作的标签总数。16 bits。
5.2	Dala	DataLen	1		所操作标签的有效数据长度。

				(PC+CRC+EPC)。 单位是字节。
5.3		LockData	不定长	所操作标签有效数据。 PC(2 字节) + EPC (根据标签规格) + CRC (2 字节) (PC(2 字节) + EPC + CRC (2 字节) 即 EPC 存储区域中的全部内容。)
5.4		ErrCode	1	所操作标签的操作结果,即错误代码。
5.5		AntID	1	高 6 位是第一次读取的频点参数, 低 2 位是天线号。
5.6		LockCount	1	该标签被操作的次数
6	Checksum		1	

数据帧头 Head: 0xA0 数据包长 Len: 0x18 读写器地址 Address: 0x00 命令码 Cmd: 0x83

数据包 Data: 0x0100 10 3000E20000000004016A9875056228E 10 01

//0100 操作成功的标签数, //10 标签有效数据长度

//3000 E200000000004016A9875056 228E 操作标签有效数据

//10 操作结果成功 //01 天线号 1

校验码 Checksum: 0xB5

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x83	
5	Data	1	错误码	0x11:操作失败 0x32:读标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x83 数据包 Data: 0x36 校验码 Checksum: 0xA3

3.41. 84H——灭活标签 6C

命令: cmd_kill

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	7	
3	Address	1		
4	Cmd	1	0x84	
5.1	Data Password	4		标签灭活密码
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x07 读写器地址 Address: 0x00 命令码 Cmd: 0x84

数据包 Data: 0x00000001

校验码 Checksum: 0xA3

读写器返回数据包

返回如下数据包(多条),数量等于销毁的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x84	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。
					(PC+CRC+EPC)。 单位是字节。
5.3	Data	KillData	不定长		所操作标签有效数据。 PC(2 字节) + EPC (根据标签规格) + CRC (2 字节) (PC(2 字节) + EPC + CRC (2 字节) 即 EPC 存储区域中的全部内容。)
5.4		ErrCode	1		所操作标签的操作结果,即错误代码。
5.5		AntID	1		高 6 位是第一次读取的频点参数,低 2 位是天线号。
5.6		KillCount	1		销毁标签操作只能为1
6	Check	sum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x19 读写器地址 Address: 0x00 命令码 Cmd: 0x84

数据包 Data: 0x0100 10 3000E20000000004016A9875056228E 10 01 01

//0100 操作成功的标签数, //10 标签有效数据长度

//3000 E200000000004016A9875056 228E 操作标签有效数据

//10 操作结果成功 //01 天线号 1 //01 销毁操作

校验码 Checksum: 0xB4 // (仅供参考)

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x84	
5	Data	1	错误码	0x11:操作失败 0x32:读标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x84 数据包 Data: 0x36 校验码 Checksum: 0xA2

3.42. 85H——匹配 ACCESS 操作的 EPC 号

命令: cmd_set_access_epc_match

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1		

3	Address		1		
4	Cmd		1	0x85	
5.1	Data	Mode	1		0 EPC 匹配一直有效,直到下一次刷新 1 清除 EPC 匹配
5.2		EpcLen	1		Epc 长度
5.3		Ерс	不定长		EPC 号,由 EpcLen 个字节组成
6	Checksum		1		

数据帧头 Head: 0xA0 数据包长 Len: 0x11 读写器地址 Address: 0x00 命令码 Cmd: 0x85

数据包 Data: 0x00 0B E20000000004016A9875056

//00 mode 模式为 EPC 匹配有效

//OB EPC 的长度

//E200000000004016A9875056 EPC 号

校验码 Checksum: 0xB1

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x85	
5	Data	1	错误码	0x10:设置成功 0x4c:epc 长度超长 0x4d:epc 长度错误 0x4e:模式错误
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x85 数据包 Data: 0x10 校验码 Checksum: 0xC7

3.43. 86H——查询匹配的 EPC 状态

命令: cmd_get_access_epc_match

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x86	
5	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x86 校验码 Checksum: 0xD7

读写器返回数据包:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	ss	1		
4	Cmd		1	0x86	
5.1		Status	1		0 有匹配 1 无匹配
5.2	Data	EpcLen	1		匹配的 Epc 长度,无匹配时不返回此数据
5.3		Ерс	不定长		匹配的 EPC 号,无匹配时不返回此数据
6	Check	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x11 读写器地址 Address: 0x00 命令码 Cmd: 0x86

数据包 Data: 0x00 0B E20000000004016A9875056

//00 status 为 EPC 有匹配

//OB EPC 的长度

//E200000000004016A9875056 EPC 号

校验码 Checksum: 0x06

3.44. 87H——多天线轮询盘存

命令: cmd_fast_switch_ant_inventory 上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	ss	1		
4	Cmd		1	0x87	
5.1		Ant num	1		轮询的天线数量
5.2		Ant1	1		首先轮询的天线,设置为0可跳过。
5.3		Stay1	1		天线重复轮询的次数。每个天线可单独配置。
5.4		Ant2	1		第二个轮询的天线,设置为0可跳过。
5.5		Stay2	1		天线重复轮询的次数。每个天线可单独配置。
5.6		Antn	1		第 n 个轮询的天线,设置为 0 可跳过。
5.7	Data	Stayn	1		天线重复轮询的次数。每个天线可单独配置。
5.8	Data	Interval	1		天线间的休息时间。单位是 mS。休息时无射频 输出,可降低功耗。
5.9		Session	1		指定盘存的 session, 00 为 S0, 01 为 S1, 02 为 S2, 03 为 S3。
5.10		Flag	1		指定盘存的 Inventoried Flag,00 为 A,01 为 B
5.11		Repeat	1		重复以上天线切换顺序次数。最大 0xFF
6	Check	sum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x0A 读写器地址 Address: 0x00 命令码 Cmd: 0x87

数据包 Data: 0x 01 01 01 00 00 00 0A

//01 天线轮询数量 1 根

//01 为 1 号天线

//01 天线 1 轮询次数 1

//00/00/00

校验码 Checksum: 0xC2

读写器返回数据包:

如有标签应答,返回如下数据包(多条):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Address		1		
4	Cmd		1	0x87	
5.1		Ant	1		当前工作的天线号
5.2	Data	PC	2		标签的 PC,固定两个字节。
5.3		EPC	不定长		标签的 EPC 号,长度可变化。

57

5.4		RSSI	4	标签的实时 RSSI
5.5		Freq	3	读取标签的频点参数
6	Checksum		1	

数据帧头 Head: 0xA0 数据包长 Len: 0x18 读写器地址 Address: 0x00 命令码 Cmd: 0x87

数据包 Data: 0x01 3000 E20000000004016A9875056 E60DF4B2 0DBBA0

//01 天线 1 //3000 标签的 PC

// E200000000004016A9875056 标签的 EPC 号

//E60DF4B2 标签的实时 RSSI //ODBBAO 标签的频点参数

校验码 Checksum: 0xE7

盘存自动结束:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x87	
5	Data	1		0x13:盘存轮数到达,自动结束
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x87 数据包 Data: 0x13 校验码 Checksum: 0xC2

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x87	
				0x11:操作失败
5	Data	1	错误码	0x22:未连接天线
				0x36:无可操作标签
6	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x87 数据包 Data: 0x22 校验码 Checksum: 0xB4

3.45. 89H——盘存标签(实时上传标签数据)

命令: cmd real time inventory

实时模式(Auto): 读写器收到此命令后,进行多标签识别操作。标签数据实时上传,不存入读写器缓存区。此命令一轮盘存耗时较长,适用于大批量标签读取。在收到停止命令前,读写器将持续盘存。

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x89	
5	Data	1		单天线模式: 天线号(0x01~0x08); 多天线模式: 固定位 0x00
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x89 数据包 Data: 0x01 校验码 Checksum: 0xD2

读写器返回数据包

如有标签应答,返回如下数据包(多条):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x89	
5.1		Ant	1		天线号
5.2	Data	PC	2		标签的 PC
5.3		EPC	不定长		标签的 EPC 号,长度可变

5.4		RSSI	4	标签的实时 RSSI
5.5		Freq	3	读回标签的频率
6	Checksı	um	1	

数据帧头 Head: 0xA0 数据包长 Len: 0x19 读写器地址 Address: 0x00 命令码 Cmd: 0x89

数据包 Data: 0x01 3000 E20000000004016A9875056 E60DF4B2 0DBBA0

//01 天线 1 //3000 标签的 PC

// E200000000004016A9875056 标签的 EPC 号

//E60DF4B2 标签的实时 RSSI //ODBBA0 标签的频点参数

校验码 Checksum: 0xE6

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x89	
				0x11:操作失败
5	Data	1	错误码	0x22:未连接天线
				0x36:无可操作标签
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x89 数据包 Data: 0x11 校验码 Checksum: 0xC2

3.46. 8AH——盘存标签(自定义读取数据)

命令: cmd custom inventory

自定义读取模式(custom):读写器收到此命令后,进行多标签识别并进行自定义数据读取操作。标签数据实时上传,不存入读写器缓存区。此命令可自定义盘存轮数盘,并且可自定义读取标签内容。

上位机发送指令数据:

序号 字段	字带数	固定值	名注
/J J J I X	1 17 35		田1上

1	Head	1	0xA0	
2	Len	1	7	
3	Address	1		
4	Cmd	1	0x8A	
5	盘存天线	1		单天线模式: 天线号 (0x01~0x08);
				多天线模式: 固定位 0x00
6	盘存次数	1		选择读写器需要盘存的轮数,0xFF 表示
				一直盘存
				选择读写器需要匹配的 membank
				0x00:不匹配
				0x01:匹配 TID
				0x02:匹配 EPC
7	匹配参数	1		0x03:匹配 USERDATA
				0x04:读 Magnus 温度标签
				0x05:国标匹配标签信息区
				0x06:国标匹配编码区
				0x0a:匹配凯路威标签
8	匹配长度	1		表示匹配 membank 的数据长度
9	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x07 读写器地址 Address: 0x00 命令码 Cmd: 0x8A 盘存天线: 0x01 盘存次数: 0x0A 匹配参数: 0x00 匹配长度: 0x06 校验码 Checksum: 0xBE

读写器返回数据包

如有标签应答,返回如下数据包(多条):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4					根据读写器选择 membank 返回命名头:
					不匹配: 0x8A
					匹配 TID: 0x53
	Cmd		1		匹配 EPC: 0x54
					匹配 USERDATA:0x55
					读 Magnus 温度标签: 0x52
5.1	Data	Ant	1		当前盘存的天线号

61

		PC	2		标签的 PC
		EPC			标签的 EPC 号,长度可变
					根据读写器选择的 membank 返回数据:
					不匹配: length = 0
E 2	5.2 Data	不定长		匹配 TID: length = 1(len)+12	
J.2		Data	小足区		匹配 EPC: length = 1(len)+12
					匹配 USERDATA: length = 1(len)+2
				读 Magnus 温度标签: length = 4	
5.3		RSSI	4		标签的实时 RSSI
5.4		Freq	3		读回标签的频率
6	Check	sum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x19 读写器地址 Address: 0x00

命令码 Cmd: 0x8A //不匹配

数据包 Data: 0x01 3000 E20000000004016A9875056 E621609A 0DBBA0

//01 天线 1 //3000 标签的 PC

// E200000000004016A9875056 标签的 EPC 号

//E621609A 标签的实时 RSSI //0DBBAO 标签的频点参数

校验码 Checksum: 0x15

盘存自动结束:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x8A	
5	Data	1		0x12:设置轮数到达,自动退出盘存
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x8A 数据包 Data: 0x12 校验码 Checksum: 0xC0

失败返回:

序号 与	字段	字节数	固定值	备注
1 ⊦	Head	1	0xA0	

2	Len	1	4	
3	Address	1		
4	Cmd	1	0x8A	
5	Data	1	错误码	0x11:操作失败 0x22:未连接天线 0x32:读标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数
				0x43:wordcnt 参数超过规定
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x8A 数据包 Data: 0x36 校验码 Checksum: 0x9C

3.47. 8BH——自定义 session 和 target 盘存

命令: cmd_customized_session_target_inventory

推荐使用的盘存指令

实时模式 (Session): 读写器收到此命令后,按照指定的 session 和 inventoried flag 进行多标签识别操作。标签数据实时上传,不存入读写器缓存区。普通盘存推荐使用此命令 S1 模式。在收到停止命令前,读写器将持续盘存。

关于 SO~S1 模式, 详见: EPC RFID Protocols_Class1_Gen2_V1. 1. 0->6. 3. 2. 2 Sessions and inventoried flags

上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1	5	
3	Addre	SS	1		
4	Cmd		1	0x8b	
5.1	Data	Session	1		指定盘存的 session 0 S0 1 S1 2 S2 3 S3
5.2		Target	1		指定盘存的 Inventoried Flag O A I B

5.3	Antid	1	盘存天线
6	Checksum	1	

数据帧头 Head: 0xA0 数据包长 Len: 0x06 读写器地址 Address: 0x00 命令码 Cmd: 0x8B

数据包 Data: 0x020001 //指定盘存的 seesion S2,指定盘存的 Inv flag A,天

线1

校验码 Checksum: 0xCE

读写器返回数据包:

如有标签应答,返回如下数据包(多条):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x89	
5.1		Ant	1		天线号
5.2		PC	2		标签的 PC
5.3	Data	EPC	不定长		标签的 EPC 号
5.4		RSSI	4		标签的实时 RSSI
5.5		Freq	3		读回标签的频率
6	Check	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x19 读写器地址 Address: 0x00 命令码 Cmd: 0x89

数据包 Data: 0x01 3000 E280689400005016A9874C56 E60AD18D 0DBBA0

//01 天线 1 //3000 标签的 PC

// E200000000004016A9875056 标签的 EPC 号

//E621609A 标签的实时 RSSI //ODBBAO 标签的频点参数

校验码 Checksum: 0xD2

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x89	

5	Data	1	错误码	0x11:操作失败 0x22:未连接天线 0x32:读标签错误 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x43:wordcnt 参数超过规定
6	Checksum	1		

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x89 数据包 Data: 0x36 校验码 Checksum: 0x9D

3.48. 8CH——停止盘存

命令: cmd_stop_inventory 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x8C	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x8C 校验码 Checksum: 0xD1

读写器成功执行不返回命令

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x8C	
5	Data	1	错误码	0x11:操作失败

65

6 Checksum	1		
------------	---	--	--

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x8C 数据包 Data: 0x11 校验码 Checksum: 0xD2

3.49. 8DH——选择标签

命令: cmd_set_select 上位机发送指令数据:

ا/ خدر حد	儿及达10个多	< 1/ II •			
序	字段		字 节	固定值	备注
号			数		
1	Head		1	0xA0	
2	Len		1		
3	Address		1		
4	Cmd		1	0x8D	
5.1		Enable	1		0:不使能 select; 1:使能 select
5.2		SelParam	1		[7:5]Target,[4:2]Action,[1:0]MemBank
	Select				即由
					target(3bits)+Action(3bits)+MemBank(2bits)
					组合而成,例如 target 为
					S2(010),Action 是 000,MemBank 是 EPC(01)
					组合 0100 0001 即 41(Hex)
5.3		Pointer	4		掩码开始地址 bit
5.4		MaskLen	1		掩码长度
5.5		Truncate	1		0:不使能 Truncate; 1:使能 Truncate
5.6		Mask		不定长	掩码
5	Checksum		1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x17 读写器地址 Address: 0x00 命令码 Cmd: 0x8D

数据包 Data: 0x01 41 00000020 60 01 E20000000004016A9875056

//01 使能; //41 SelParam;

//00000020 掩码开始地址

//60 掩码长度 //01 使能 Truncate

//E200000000004016A9875056 EPC 码

校验码 Checksum: 0xEB

读写器返回数据包:

	:	:	В	:
序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x8D	
5	Data	1		0x10:操作成功
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x8D 数据包 Data: 0x10 校验码 Checksum: 0xBF

3.50. 8EH——获取标签

命令: cmd_get_select 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x8E	
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x8E 校验码 Checksum: 0xCF

读写器返回数据包:

序 号	字段	字 节数	固定值	备注
1	Head	1	0xA0	
2	Len	1		
3	Address	1		
4	Cmd	1	0x8E	

5.1		Enable	1		0:不使能 select; 1:使能 select
5.2		SelParam	1		[7:5]Target,[4:2]Action,[1:0]MemBank
	Select				即由
					target(3bits)+Action(3bits)+MemBank(2bits)
					组合而成,例如 target 为
					S2(010),Action 是 000,MemBank 是 EPC(01)
					组合 0100 0001 即 41(Hex)
5.3		Pointer	4		掩码开始地址 bit
5.4		MaskLen	1		掩码长度
5.5		Truncate	1		0:不使能 Truncate; 1:使能 Truncate
5.6		Mask		不定长	掩码
5	Checksum		1		

数据帧头 Head: 0xA0 数据包长 Len: 0x17 读写器地址 Address: 0x00 命令码 Cmd: 0x8E

数据包 Data: 0x01 41 00000020 60 01 E20000000004016A9875056

//01 使能; //41 SelParam;

//00000020 掩码开始地址

//60 掩码长度 //01 使能 Truncate

//E200000000004016A9875056 EPC 码

校验码 Checksum: 0xEA

3.51. 90H——查询盘存缓存

命令: cmd_get_inventory_buffer

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x90	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x90 校验码 Checksum: 0xCD

读写器返回数据包:

成功返回: 此数据可能返回多条。数量等于缓存中的标签数量(无重复数据)。

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addres	SS	1		
4	Cmd		1	0x90	
5.1		InvDataLen	1		所操作标签的有效数据长度。 (PC+CRC+EPC)。单位是字节。 如果是国标的标签只返回(PC+EPC)
5.2	Data	InvData	不定长		所操作标签有效数据。 PC(2 字节) + EPC (根据标签规格) + CRC (2 字节) 即 EPC 存储区域中的全部内容。) 如果是国标的标签只返回(PC(2 字节) + EPC
5.3		RSSI	4		第一次读到该标签时的信号强度。
5.4		Freq	3		第一次读到该标签时的频率。
5.5		Ant	1		第一次读取的天线号。
5.6		InvCount	1		该标签成功读取的次数,如果该值为 0xFF,则说明成功读取次数 >= 255 次。
6	Checks	sum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x1D 读写器地址 Address: 0x00 命令码 Cmd: 0x90

数据包 Data: 0x10 3000 E280689400005016A9878056 D578 E605353A

0DBBA0 01 02

//从高位到低 10 为数据操作的有效数据

//3000E280689400005016A9878056D578 是所操作标签的有效数据

//E605353A 第一次读到该标签时的信号强度

//ODBBAO 第一次读到该标签时的频率

//01 是天线号

//最后一个02是操作成功次数2次

校验码 Checksum: 0x97

注意:

★命令完成后,缓存中的数据并不丢失,可以多次提取。

★若再次运行 cmd inventory 命令,则盘存到的标签将累计存入缓存。

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x90	
5	Data	1	错误码	0x38:无 epc 数据
6	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x8C 数据包 Data: 0x38 校验码 Checksum: 0x94

3.52. 91H——查询并重置盘存缓存

命令: cmd_get_and_reset_inventory_buffer 数据格式请参考<u>查询盘存缓存</u>命令。 命令成功完成后,缓存中的数据将被全部清空。

3.53. 92H——查询盘存缓存标签数量

命令: cmd_get_inventory_buffer_tag_count 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x92	
5	Checksum	1		

参考示例(仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x92 校验码 Checksum: 0xCB

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	5	
3	Address	1		
4	Cmd	1	0x92	
5	Data	2		缓存中标签数据数量。无重复数据
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x05 读写器地址 Address: 0x00 命令码 Cmd: 0x92 数据包 Data: 0x0002 校验码 Checksum: 0xC7

3.54. 93H——重置盘存缓存

命令: cmd_reset_inventory_buffer

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0x93	
5	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0x93 校验码 Checksum: 0xCA

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x93	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败

6 Checksum	1		
------------	---	--	--

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x93 数据包 Data: 0x10 校验码 Checksum: 0xB9

3.55. 95H——SM7 加密写(可选项)

命令: cmd_sm7_write 上位机发送指令数据:

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	ss	1		
4	Cmd		1	0x95	
5.1		Password	4		标签访问密码
5.2	Data	WordCnt 写入数据长度	2		WORD(16 bits)长度,数值请参考标签 规格
5.3		WordData	WordCnt *2		写入的数据(可变长),是写入数据长 度的2倍。
6	Checksum		1		

读写器返回数据包

返回如下数据包(多条),数量等于写入的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x95	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。 (PC+CRC+EPC)。单位是字节。
5.3	Data	WriteData	不定长		所操作标签有效数据。 PC(2 字节) + EPC (根据标签规格) + CRC (2 字节) (PC(2 字节) + EPC + CRC (2 字节) 即 EPC 存储区域中的全部内容。)

5.4		ErrCode	1	所操作标签的操作结果,即错误代码。
5.5		AntID	1	高 6 位是第一次读取的频点参数, 低 2 位是天线号。
5.6		WriteCount	1	写入标签的数据长度
6	6 Checksum		1	

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x95	
5	Data	1	错误码	0x11:操作失败
6	Checksum	1		

3.56. 96H——SM7 解密读(可选项)

命令: cmd_sm7_read 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	0x04	
3	Address	1		
4	Cmd	1	0x96	
5.	Data	1		读取的数据长度。单位是字节。
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x04 读写器地址 Address: 0x00 命令码 Cmd: 0x8C 数据包 Data: 0x11 校验码 Checksum: 0xD2

读写器返回数据包

返回如下数据包(多条),数量等于读取的标签数量(无重复数据):

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1		
3	Address	1		

4	Cmd		1	0x96	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。 (PC+CRC+EPC+读取的标签数据)。单 位是字节。
5.3	Data	ReadData	不定长		所操作标签的有效数据。 PC (2 字节) + EPC (根据标签规格) + CRC (2 字节) + 读取的数据。 (PC(2 字节) + EPC + CRC(2 字节) 即 EPC 存储区域中的全部内容。)
5.4		ReadLen	2		Read 操作的数据长度。单位是字节。
5.5		AntID	1	_	高 6 位是第一次读取的频点参数, 低 2 位是天线号。
5.6		ReadCount	1		该标签被成功操作的次数。
6	Check	sum	1		

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		
4	Cmd	1	0x96	
5	Data	1	错误码	0x11:操作失败
6	Checksum	1		

3.57. 97H——SM7 PK 秘钥更新(可选项)

命令: cmd_sm7_pk_update 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	0x13	
3	Address	1		
4	Cmd	1	0x97	
5.1	Data	16		SM7 加密密匙 128bit
6	Checksum	1		

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	

3	Address	1		
4	Cmd	1	0x97	
5	Data	1	错误码	0x10:操作成功 0x11:操作失败
6	Checksum	1		

3.58. 98H——复旦微 GB 双向认证

命令: cmd_gb_mul_Seu_Auth

上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	0x13	
3	Address	1		
4	Cmd	1	0x98	
5.1	Data Password	16		双向认证密钥
6	Checksum	1		

读写器返回数据包

返回如下数据包(多条),数量等于销毁的标签数量(无重复数据):

序号	字段		字节数	固定值	备注
1	Head		1	0xA0	
2	Len		1		
3	Addre	SS	1		
4	Cmd		1	0x49	
5.1		TagCount	2		成功操作的标签总数。16 bits。
5.2		DataLen	1		所操作标签的有效数据长度。(PC+EPC)。单位是字节。
5.3	Data	EPC	不定长		所操作标签有效数据。 PC(2 字节) + EPC (根据标签规格)
5.4		ErrCode	1		所操作标签的操作结果,即错误代码。
5.5		AntID	1		高 6 位是第一次读取的频点参数, 低 2 位是天线号。
6	Check	sum	1		

失败返回:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	4	
3	Address	1		

4	Cmd	1	0x49	
5	Data	1	错误码	0x11:操作失败 0x58:双向认证失败 0x59:双向认证成功 0x36:无可操作标签 0x37:成功盘存但访问失败 0x40:访问标签错误或密码错误 0x41:无效的参数 0x60:标签供电不足 0x61:标签权限不足 0x62:内存地址超出范围 0x63:内存被锁定 0x64:操作密码错误 0x65:标签认证读写器失败 0x66:未知错误
6	Checksum	1		

3.59. E1H——读写器温度过高告警

读写器上报数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	3	
3	Address	1		
4	Cmd	1	0xE1	
5	Checksum	1		

3.60. F3H——读取 UUID

命令: cmd_read_uuid 上位机发送指令数据:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	0x3	
3	Address	1		
4	Cmd	1	0xF3	
5	Checksum	1		

读写器返回数据包:

序号	字段	字节数	固定值	备注
1	Head	1	0xA0	
2	Len	1	0x13	
3	Address	1		
4	Cmd	1	0xF3	
5	Data	16	uuid	128bit
6	Checksum	1		

参考示例 (仅供参考):

数据帧头 Head: 0xA0 数据包长 Len: 0x03 读写器地址 Address: 0x00 命令码 Cmd: 0xE1 校验码 Checksum: 0x7C

4. 错误码表

序号	值	名称	说明
1	0x10	command_success	命令成功完成
2	0x11	command_fail	命令执行失败
3	0x12	Custom inventory complete	自定义盘存结束
4	0x13	Fast switch antenna inventory complete	多天线轮询结束
5	0x20	mcu_reset_error	CPU 复位错误
6	0x21	cw_on_error	打开 CW 错误
7	0x22	antenna_missing_error	天线未连接
8	0x23	write_flash_error	写 Flash 错误
9	0x24	read_flash_error	读 Flash 错误
10	0x25	set_output_power_error	设置发射功率错误
11	0x31	tag_inventory_error	盘存标签错误
12	0x32	tag_read_error	读标签错误
13	0x33	tag_write_error	写标签错误
14	0x34	tag_lock_error	锁定标签错误
15	0x35	tag_kill_error	灭活标签错误
16	0x36	no_tag_error	无可操作标签错误
17	0x37	inventory_ok_but_access_fail	成功盘存但访问失败
10	040	access_or_password_error	访问标签错误或访问密
18	0x40		码错误
19	0x41	parameter_invalid	无效的参数
20	0x42	parameter_invalid_wordCnt_too_long	wordCnt 参数超过规定 长度
21	0x43	parameter_invalid_membank_out_of_range	MemBank 参数超出范围
22	0x44	<pre>parameter_invalid_lock_region_out_of_rang e</pre>	Lock 数据区参数超出范 围
23	0x45	<pre>parameter_invalid_lock_action_out_of_rang e</pre>	LockType 参数超出范围
24	0x46	parameter_reader_address_invalid	读写器地址无效
25	0x47	parameter_invalid_antenna_id_out_of_range	Antenna_id 超出范围
26	0x48	<pre>parameter_invalid_output_power_out_of_ran ge</pre>	输出功率参数超出范围
27	0x49	<pre>parameter_invalid_frequency_region_out_of _range</pre>	射频规范区域参数超出 范围
28	0x4A	parameter_invalid_baudrate_out_of_range	波特率参数超出范围
29	0x4C	parameter_epc_match_len_too_long	EPC 匹配长度越界

30	0x4D	parameter_epc_match_len_error	EPC 匹配长度错误
31	0x4E	parameter_invalid_epc_match_mode	EPC 匹配参数超出范围
32	0x4F	parameter_invalid_frequency_range	频率范围设置参数错误
33	0x50	fail_to_get_RN16_from_tag	无法接收标签的 RN16
34	0x53	rf_chip_fail_to_response	射频芯片无响应
35	0x54	fail_to_achieve_desired_output_power	输出达不到指定的输出 功率
36	0x55	copyright_authentication_fail	版权认证未通过
37	0x56	spectrum_regulation_error	频谱规范设置错误
38	0x57	output_power_too_low	输出功率过低
	0x58	GB sm7 double identify failed	国标双向认证失败
	0x59	GB sm7 double identify success	国标双向认证成功
	0x60	GB tag be short of power	标签功率不足
	0x61	GB tag permission error	权限不足
	0x62	GB tag memory over limit	内存区超限
	0x63	GB tag memory has be locked	内存被锁定
	0x64	GB tag password error	密码错误
	0x65	GB identify error	认证失败
	0x66	GB unknown error	未知错误

5. 频率参数对应表

频率参数	对应频点	频率参数	对应频点
0(0x00)	865.00 MHz	30 (0x1E)	913.50 MHz
1 (0x01)	865.50 MHz	31 (0x1F)	914.00 MHz
2 (0x02)	866.00 MHz	32 (0x20)	914.50 MHz
3(0x03)	866.50 MHz	33 (0x21)	915.00 MHz
4 (0x04)	867.00 MHz	34 (0x22)	915.50 MHz
5(0x05)	867.50 MHz	35 (0x23)	916.00 MHz
6(0x06)	868.00 MHz	36 (0x24)	916.50 MHz
7(0x07)	902.00 MHz	37 (0x25)	917.00 MHz
8(0x08)	902.50 MHz	38 (0x26)	917.50 MHz
9(0x09)	903.00 MHz	39 (0x27)	918.00 MHz
10 (0x0A)	903.50 MHz	40 (0x28)	918.50 MHz
11 (0x0B)	904.00 MHz	41 (0x29)	919.00 MHz
12 (0x0C)	904.50 MHz	42 (0x2A)	919.50 MHz
13 (0x0D)	905.00 MHz	43 (0x2B)	920.00 MHz
14 (0x0E)	905.50 MHz	44 (0x2C)	920.50 MHz
15 (0x0F)	906.00 MHz	45 (0x2D)	921.00 MHz
16 (0x10)	906.50 MHz	46 (0x2E)	921.50 MHz
17 (0x11)	907.00 MHz	47 (0x2F)	922.00 MHz
18 (0x12)	907.50 MHz	48 (0x30)	922.50 MHz
19 (0x13)	908.00 MHz	49 (0x31)	923.00 MHz
20 (0x14)	908.50 MHz	50 (0x32)	923.50 MHz
21 (0x15)	909.00 MHz	51 (0x33)	924.00 MHz
22 (0x16)	909.50 MHz	52 (0x34)	924.50 MHz
23 (0x17)	910.00 MHz	53 (0x35)	925.00 MHz
24 (0x18)	910.50 MHz	54 (0x36)	925.50 MHz
25 (0x19)	911.00 MHz	55 (0x37)	926.00 MHz
26 (0x1A)	911.50 MHz	56 (0x38)	926.50 MHz
27 (0x1B)	912.00 MHz	57 (0x39)	927.00 MHz
28 (0x1C)	912.50 MHz	58 (0x3A)	927.50 MHz
29 (0x1D)	913.00 MHz	59 (0x3B)	928.00 MHz

6. RSSI 参数计算方法(C 语言描述)

```
const uint8_t para_B[5][8] = {
                                       {43,43,45,49,43,43,45,49},
                                       {43,43,45,49,43,43,45,49},
                                       {43,43,45,49,43,43,45,49},
                                       {53,53,48,43,49,45,43,43},
                                       {47,47,47,47,46,43,43,43}
};
const int para_C[5][8] = {
                                       {43,43,45,49,43,43,45,49},
                                       {43,43,45,49,43,43,45,49},
                                       {43,43,45,49,43,43,45,49},
                                       {-283,-283,-283,-283,-283,-283,-283},
                                       {-303,-283,-253,-238,-304,-313,-280,-266}
};
int Calculate_Rssi(char data[],uint8_t epc_len){
     uint8_t rssi_mode = 0, hardware_mode = 0;
     int B=0,C=0,D=0, RssiVal = 0;
    float A = 1.0f, rssi_temp = 0.0f;
  union{
    uint32_t u32;
    uint8_t chr[4];
  }UNION;
     if(epc_len == 0)epc_len = 1;
     rssi_mode
                        = (data[0]&0xE0) >> 5;
     hardware\_mode = (data[0]\&0x1E) >> 1;
     UNION.chr[3] = data[0] \& 0x01;
     UNION.chr[2] = data[1];
     UNION.chr[1] = data[2];
     UNION.chr[0] = data[3];
     B = para_B[hardware_mode][rssi_mode];
     C = para_C[hardware_mode][rssi_mode];
     rssi_temp = (UNION.u32/epc_len)*A;
     RssiVal = (B * log10(rssi\_temp)) + C + D;
     if(RssiVal > 0)RssiVal = 0;
     else if(RssiVal < -90)RssiVal = -90;
     return RssiVal;
}
```

7. 校验和计算方法(C 语言描述)

```
uint8_t CheckSum(uint8_t *uBuff, uint8_t uBuffLen)
{
   unsigned char i, uSum = 0;
   for (i = 0; i < uBuffLen; i++)
   {
      uSum = uSum + uBuff[i];
   }
   uSum = (~uSum) + 1;
   return uSum;
}</pre>
```

8. 出厂默认参数

参数名称	参数值(单位)	备注
波特率	115200 (bps)	指令通信串口的波特率可配,打印日志的串口波特率不可配(115200bps)
读写器地址	0x00	出厂时默认使用公共地址
发射功率	ucm601:20(dBm) ucm606:30(dBm) ucm608:33(dBm)	
工作天线	1	
工作模式	跳频	
工作频段	FCC	902mHz-928mHz
频点个数	53	跳频时使用此参数
频点间隔	500 (KHz)	跳频时使用此参数
起始频点	902 (MHz)	
通信带宽	Miller 200KHz 25us	
蜂鸣器	1(打开)	

注意

本手册公开了 UCM60x 系列串口协议。

免责声明

UCchip 提供技术指导文档和规格参数(包括接口定义、电气性能和结构尺寸等信息), 对本手册不做任何明示或暗示的声明或保证,并且不对特定目的适销性及适用性或者任何间接的、特殊的或连带的损失承担任何责任。

本手册不提供任何形式的保证,并可能随时对本手册或手册描述的产品进行修改或改进,恕不另行通知且不承担任何责任。

在适用的法律允许的范围内,UCchip 均不对用户因使用本手册内容和本手册中描述的产品而引起的任何特殊的、间接的、附带的或后果性的损坏、利润损失、数据丢失、声誉和预期的节省而负责。包括因使用本手册中的信息而导致的侵犯任务专有权利的责任

商标声明

Uchip 御芯微 是北京御芯微科技有限公司商标。

本手册和本手册描述的产品中出现的其他商标、产品名称、服务名称和公司名称,均为其各自所有者的财产。

进出口法规

出口、转口或进口本手册中描述的产品(包括但不限于产品软件和技术数据),用户应遵守相关进出口法律和法规。

版权所有

©北京御芯微科技有限公司保留所有权利。未经北京御芯微科技有限公司书面许可,任何单位和个人不得擅自修改、摘抄、复制、翻译、分发、存储本手册内容的部分或全部,并以任何形式传播。