MATH500 Big Data and Social Network Visualization

Julian Stander and Luciana Dalla Valle

Some Statistical Tests: *t*-tests and ANOVA Wednesday, 8th November, 2017

Comparing the Underlying Means of Two Groups

Comparing the Underlying Means of More Than Two Groups

Comparing the Underlying Means of Two

Groups

Comparing the Underlying Means of Two Groups

Comparing the Underlying Means of Two Groups, continued

We can ask:

Is there an underlying difference in mean height between females and males?

This is a **profound question**. We are not asking whether there is a difference between the mean height of females and the mean height of males in the data collected.

We are asking, *more generally*, whether there is a difference between the mean height of females and the mean height of males in a much bigger *population*.

t-test: Underlying Difference in Mean

#

To answer this question, we can use a *t*-test:

```
t.test(Height ~ Sex, data = qd, var.equal = TRUE)
#
#
   Two Sample t-test
#
# data: Height by Sex
\# t = -4.5075, df = 16, p-value = 0.0003579
# alternative hypothesis: true difference in means is not
# 95 percent confidence interval:
# -20.374200 -7.340085
# sample estimates:
# mean in group Female mean in group Male
              165.1429
```

179,0000

p-value: Underlying Difference in Mean

We need to focus on the p-value

[1] 0.0003579246

In general, if the *p*-value is less that 0.05, there is an underlying difference in mean height between females and males.

In this case, the p-value is considerably less than 0.05. Therefore, we conclude that

the data supply evidence that there is an underlying difference in mean height between females and males.

Obtaining the *p*-value using the 1m Function

We can obtain the above p-value 0.0003579246 in a different way

using the 1m function for linear modelling:

```
m <- lm(Height ~ Sex, data = qd)
summary(m)</pre>
```

```
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 165.14286 2.403229 68.71707 3.326021e-21
# SexMale 13.85714 3.074221 4.50753 3.579246e-04
```

Comparing the Underlying Means of Two Groups

We can also ask:

Is the mean height of females less than the mean height of males in a wider population of students?

Again, we are not asking whether the mean height of females is less than the mean height of males in the data collected.

We are asking, *more generally*, whether the mean height of females is less than the mean height of males in a much bigger *population*.

t-test: Is the Mean Height of Females Less Than the Mean Height of Males in the Population?

To answer this question, we can use a t-test, with

```
alternative = "less":
```

```
#
    Two Sample t-test
#
# data: Height by Sex
# t = -4.5075, df = 16, p-value = 0.000179
# alternative hypothesis: true difference in means is less than 0
# 95 percent confidence interval:
# -Inf -8.489911
# sample estimates:
# mean in group Female mean in group Male
# 165.1429 179.0000
```

p-value: Is the Mean Height of Females Less Than the Mean Height of Males in the Population?

We need to focus on the p-value

[1] 0.0001789623

If the p-value is less that 0.05, we conclude that

the mean height of females is less than the mean height of males in a wider population of students.

p-value: Is the Mean Height of Females Less Than the Mean Height of Males in the Population?

We need to focus on the p-value

[1] 0.0001789623

If the p-value is less that 0.05, we conclude that

- the mean height of females is less than the mean height of males in a wider population of students.
- What do you conclude?

Comparing the Underlying Means of More Than

Two Groups

Comparing the Underlying Means of More Than Two Groups: Some Data

Consider these data on the number of hours worked in a week by randomly selected accountants, GPs, lecturers and plumbers:

Accountants	45	38	40	42	48	37	44	40	39	42	41
	40	36	40	48							
GPs	60	57	44	52	57	45	42	56	53	42	44
	54	51	58								
Lecturers	52	45	40	48	36	50	56	42	37	43	47
Plumbers	44	39	50	37	45	39	52	45	39	48	44
	43	53									

Comparing the Underlying Means of More Than Two Groups: Some Data, continued

A good way of storing these data in **R** is to use a data frame with one variable for the hours worked and another for the corresponding employment group (accountants, GPs, lecturers or plumbers)

Here are some selected rows:

```
hw_g[c(1, 4, 17, 22, 33, 39, 42, 48),]
```

#	hours_worked	group
# 1	45	Accountants
# 4	42	Accountants
# 17	57	GPS
# 22	42	GPS
# 33	48	Lecturers
# 39	43	Lecturers
# 42	39	Plumbers
# 48	45	Plumbers

Comparing the Underlying Means of More Than Two Groups: Plotting the Data

► The plot displays the weekly hours worked by accountants, GPs, lecturers and plumbers.

- ► The plot displays the weekly hours worked by accountants, GPs, lecturers and plumbers.
- The question of interest is: Is the underlying mean number of hours different between these **four** groups?

- ► The plot displays the weekly hours worked by accountants, GPs, lecturers and plumbers.
- The question of interest is: Is the underlying mean number of hours different between these **four** groups?
- To answer this question we perform a one-way analysis of variance.

- ► The plot displays the weekly hours worked by accountants, GPs, lecturers and plumbers.
- ► The question of interest is: Is the underlying mean number of hours different between these **four** groups?
- To answer this question we perform a one-way analysis of variance.
- ► Analysis of Variance is often abbreviated ANOVA.

One-way Analysis of Variance using the 1m Function

```
m <- lm(hours_worked ~ group, data = hw_g)
  # ANOVA is a linear model
anova(m)
# Analysis of Variance Table
#
# Response: hours worked
#
           Df Sum Sq Mean Sq F value Pr(>F)
# group 3 710.73 236.910 8.1156 0.0001731 ***
# Residuals 49 1430.40 29.192
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

p-value

Here, the p-value is

[1] 0.0001731113

If the p-value is less that 0.05, which it is here, we conclude that

there is a difference between the underlying mean number of hours worked in these four groups.

One-way Analysis of Variance using the aov Function

A **One-way Analysis of Variance** can also be performed using the aov function

```
m_2 <- aov(hours_worked ~ group, data = hw_g)
summary(m_2)</pre>
```

```
# Df Sum Sq Mean Sq F value Pr(>F)
# group 3 710.7 236.91 8.116 0.000173 ***
# Residuals 49 1430.4 29.19
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Follow-up Analysis

If we find that there is an difference between the underlying means of the groups, we should proceed by performing a **follow-up analysis** to see where the group differences are:

```
TukeyHSD(m_2) # Follow-up: pair-wise comparisons
```

```
#
   Tukey multiple comparisons of means
#
     95% family-wise confidence level
#
# Fit: aov(formula = hours worked ~ group, data = hw g)
#
 $group
#
                             diff
                                         lwr
                                                   upr
# GPS-Accountants
                        9.7380952 4.398473 15.0777170
# Lecturers-Accountants 3.7575758 -1.946245 9.4613962
# Plumbers-Accountants 3.1282051 -2.316606 8.5730167
# Lecturers-GPS
                   -5.9805195 -11.769883 -0.1911564
# Plumbers-GPS
                       -6.6098901 -12.144249 -1.0755310
                       -0.6293706 -6.515892 5.2571510
# Plumbers-Lecturers
#
                           p adj
# GPS-Accountants
                       0.0000745
# Lecturers-Accountants 0 3086324
```

Follow-up Analysis, continued

```
TukeyHSD(m_2)$group[,4]
```

```
#
        GPS-Accountants Lecturers-Accountants
#
          0.00007449852
                                 0.30863235604
#
   Plumbers-Accountants
                                 Lecturers-GPS
#
          0.42899202976
                                 0.04044799824
#
           Plumbers-GPS
                            Plumbers-Lecturers
          0.01332125052
#
                                 0.99188174801
```

▶ We should look at the *p*-values in the p adj column.

Follow-up Analysis, continued

TukeyHSD(m_2)\$group[,4]

```
#
        GPS-Accountants Lecturers-Accountants
#
                                 0.30863235604
          0.00007449852
#
   Plumbers-Accountants
                                 Lecturers-GPS
#
          0.42899202976
                                 0.04044799824
#
           Plumbers-GPS
                            Plumbers-Lecturers
          0.01332125052
#
                                 0.99188174801
```

- ▶ We should look at the *p*-values in the p adj column.
- ▶ When the *p*-value is less that 0.05, we should conclude that there is an underlying difference.

Follow-up Analysis, continued

TukeyHSD(m_2)\$group[,4]

```
#
        GPS-Accountants Lecturers-Accountants
#
                                 0.30863235604
          0.00007449852
#
   Plumbers-Accountants
                                 Lecturers-GPS
#
          0.42899202976
                                 0.04044799824
#
           Plumbers-GPS
                            Plumbers-Lecturers
          0.01332125052
#
                                 0.99188174801
```

- ▶ We should look at the p-values in the p adj column.
- ▶ When the *p*-value is less that 0.05, we should conclude that there is an underlying difference.
- So here there are differences between GPs and accountants, between lecturers and GPs and between plumbers and GPs.
 GPs work a lot!!!