MODELING ORDINAL SOPHISTICATION OF PROBLEMSOLVING STRATEGIES FOR LENGTH-MEASUREMENT: THE HURDLE APPROACH

Carson Keeter

University of Wyoming — Department of Statistics

Supervised by:

Pavel Chernyavskiy, PhD; University of Virginia — School of Medicine Traci Shizu Kutaka, PhD; University of Denver — Marsico Institute

MOTIVATION

- What metrics should we use to make inferences about student learning?
- What is the **process** we use to generate these metrics?
- What evidence do we have that enable us to trust these metrics?

• Length-measurement is understudied even though it is a critical bridge between geometry and number concepts (Clements, 2021; Sarama, 2009).

- I. Do children in the Learning Trajectories group use more sophisticated strategies relative to their peers in other learning approaches?
- 2. How do we model strategy preference, given a large portion of strategies do not fall onto the existing research-based sophistication scale?
 - Detectable Strategies vs Non-Codable and Non-Detectable strategies
 - What can item, student, and classroom random effects tell us about strategy preference?

SAMPLING METHODS AND DEMOGRAPHICS

- **Sampling** (Randomized Control Trial)
 - n = 186 kindergarten students
 - 16 classes across 6 schools
 - 149 in 4 public schools, 37 in 2 private schools
 - 104 girls, 82 boys

- 53.8% Latinx, 24.7% White, 13.2% African American, 3.2% Asian, 0.7% American Indian, 0.4% Native Hawaiian or Other Pacific Islander, and 4.1% respondents who identified as having Two or More Races.
- 65% of students qualify for free-/reduced-lunch
- 36.3% are English-Language Learners

EXPERIMENTAL CONDITIONS

Three Conditions:

- Learning Trajectory (LT): 70 students
- Reverse-order (REV): 59 students
- Business-as-Usual (BAU): 57 students
- LT and REV students received one-on-one instruction using the same activities from the length LT, while the REV condition reversed the order of activities presented

BAU did not receive one-on-one instruction

https://www.learningtrajectories.org/math/learning-trajectories

• Composed of 28 items developed to assess length measurement learning (Research-Based Early Mathematics Assessment, Clements, 2008/2020)

Each item was scored for correctness and sophistication for the strategy observed

• <u>Sophistication</u> was made up of up to 10 research-based codes then collapsed into 4-point ordinal scores.

Example:

"Can you put these in order from the shortest to longest?" When the child is done, give him/her the tower made of ten white cubes, and say, "I forgot this one! Can you place it so they are all in order?"

Research Based Sophistication Codes:

- I = Plays without attempting item
- 10 = Uses trial and error repeatedly to order
- 2 = Compares only 2 towers at a time
- 3 = Separates into categorizes of length without complete ordering within them
- 4 = Attempts to order without alignment

- 5 = Attempts to order with alignment
- 6 = Systematically searches for the next long/shorter tower
- 7 = Other
- 8 = Strategy could not be observed
- 9 = NA

4-Point Ordinal Sophistication Coding (collapsed):

L0: | = Plays without attempting item

LI: 2 = Compares only 2 towers at a time; 3 = Separates into categorizes of length without complete ordering within them; 4 = Attempts to order without alignment; I 0 = Uses trial and error repeatedly to order

L2: 5 = Attempts to order with alignment

L3: 6 = Systematically searches for the next long/shorter tower

H: 7 = Other; 8 = Strategy could not be observed; 9 = NA

CODING PROCESS

- Most Detectable Strategies were coded 0, 1, 2, or 3 depending on how sophisticated the utilized strategy was
 - $0 = least sophisticated \rightarrow 3 = most sophisticated$
- Non-Codable and Non-Detectable Strategies were coded as H (to be processed in the <u>h</u>urdle model)
 - Cannot be placed on same sophistication scale as Detectable Strategies

```
L0: | = Plays without attempting item
```

L1: 2 = Compares only 2 towers at a time; 3 = Separates into categorizes of length without complete ordering within them; 4 = Attempts to order without alignment; 10 = Uses trial and error repeatedly to order

L2: 5 = Attempts to order with alignment

L3: 6 = Systematically searches for the next long/shorter tower

H: 7 = Other; 8 = Strategy could not be observed; 9 = NA

THE HURDLE MODELING APPROACH

Step I: Collect and Code Data

- 1) Detectable Strategies
- 2) Non-Codable Strategies
- Non-Detectable Strategies with Correct Responses

Step 2 (a): Filter Detectable Strategies and determine sophistication level

 0 = mean level of latent sophistication in the population of kindergarten-aged children.

Step 2 (b): Determine probability of Non-Codable and Non-Detectable Strategies based on what's left over

STATISTICAL ANALYSIS: HURDLE MODEL

Cumulative Logit <u>Hurdle</u> Model

 Y_{ijk} denotes one of 4 detectable strategies (0, 1, 2, 3) used by ith child, on the jth item, in kth classroom

 π_{ijk} denotes the probability of recording a detectable strategy

We assume that non-codable and non-detectable strategies are not observable under the cumulative model:

$$CL(Y_{ijk} = H|x) = 0$$

$$Pr(Y_{ijk} = c|x_{ijk}) = \begin{cases} 1 - \pi_{ijk}, & c = H \\ \pi_{ijk} \times [Pr(Y_{ijk} \le c + 1|x_{ijk}) - Pr(Y_{ijk} \le c|x_{ijk})], & c \ne H \end{cases}$$

Cumulative logit model

Cumulative logit model

c = H

 $c \neq H$

STATISTICAL ANALYSIS: HURDLE MODEL

Cumulative Logit Hurdle Model

$$\begin{cases} 1 - (\pi_{ijk} | x_{ijk}), & Y_{ijk} = H \\ (\pi_{ijk} | x_{ijk}) \times CL(Y_{ijk} \le c | x_{ijk}), & Y_{ijk} \ne H \end{cases}$$

Probability of Detection

$$logit(\pi_{ijk}) = \log\left(\frac{\pi_{ijk}}{1 - \pi_{ijk}}\right) = \alpha + x'_{ijk} \mathbf{\beta}^{(d)} + u_i^{(d)} + v_j^{(d)} + w_k^{(d)}$$

$$u_{i}^{(d)} \sim N\left(0, \sigma_{u}^{(d)}\right) \quad v_{j}^{(d)} \sim N\left(0, \sigma_{v}^{(d)}\right) \quad w_{k}^{(d)} \sim N(0, \sigma_{w}^{(d)})$$

$$\left\{\sigma_{u}^{(d)}, \sigma_{v}^{(d)}, \sigma_{w}^{(d)}\right\} \sim Half N(0, 1.5)$$

$$\alpha \sim N(0, 2.0)$$

 $\boldsymbol{\beta}^{(d)} = \left\{ \beta_1^{(d)} \dots \beta_5^{(d)} \right\} \sim N(0, 2.0)$

Sophistication Given Strategy Detected

$$logit(\Pr(Y_{ijk} \le c)) = log\left(\frac{\Pr(Y_{ijk} \le c)}{\Pr(Y_{ijk} > c)}\right) = \theta_c - \left(x'_{ijk}\mathbf{\beta} + u_i + v_j + w_k\right)$$

$$u_i \sim N(0, \sigma_u) \quad v_j \sim N(0, \sigma_v) \quad w_k \sim N(0, \sigma_w)$$

$$\{\sigma_u, \sigma_v, \sigma_w\} \sim HalfN(0, 1.5)$$

$$\theta_c \sim N(0, 2.5)$$

$$\mathbf{\beta} = \{\beta_1 \dots \beta_5\} \sim N(0, 1.5)$$

STATISTICAL ANALYSIS: ESTIMATION

- Samples were drawn using No U-Turn Sampler (NUTS) [Hamiltonian Monte Carlo Method (HMC)]
 - Automatically selects an appropriate number of leapfrog steps in each iteration in order to allow the proposals to traverse the posterior
 - Maximize the expected squared jump distance at each step to avoid random-walk behavior

DATA SUMMARY

Post-assessment sophistication across **Intervention Conditions**

0 - 3 = lowest to highest post-assessment sophistication strategy

H = non-detectable (non-codable) sophistication strategy

Without the Hurdle Model?

- Losing an average of 34.43% of information within each condition

Takeaways:

- LT has the smallest proportion of noncodable & non-detectable strategies
- BAU has the largest proportion of non-codable & non-detectable strategies
- LT also has a larger proportion of more sophisticated strategies when compared to the other two conditions

Post-assessment sophistication across **Boys & Girls**

0 - 3 = lowest to highest post-assessment sophistication strategy

H = non-detectable (non-codable) sophistication strategy

Without the Hurdle Model?

- Losing an average of 35.47% of information within girls within each condition
- Losing an average of 33.33% of information within boys within each condition

Takeaways:

- Boys & girls within LT have the lowest proportion of non-codable & nondetectable strategies
- LT has a larger proportion of more sophisticated strategies for both boys & girls

Post-assessment sophistication across **School Type**

0 - 3 = lowest to highest post-assessment sophistication strategy

H = non-detectable (non-codable) sophistication strategy

Without the Hurdle Model?

- Losing an average of 35.23% of information within *public schools* within each condition
- Losing an average of 31.4% of information within *private schools* within each condition

Takeaways:

- Same story, different setting: LT has a larger proportion of more sophisticated strategies when compared to the other conditions with public & private schools

Post-assessment sophistication across Intervention Conditions by <u>Item</u>

0 - 3 = lowest to highest post-assessment sophistication strategy

H = non-detectable (non-codable) sophistication strategy

Without the Hurdle Model?

- Massive loss of information within most items
 - Item 33:
 - 83.63% information loss
 - Item 31.3:
 - 83.26% information loss
 - Item Z:
 - 79.3% information loss

Takeaways:

- Large variability of sophistication strategies within each item regardless of codability

Post-assessment sophistication across Intervention Conditions by <u>Classroom</u>

0 - 3 = lowest to highest post-assessment sophistication strategy

H = non-detectable (non-codable) sophistication strategy

Without the Hurdle Model?

34.32% mean information loss across all classes

Takeaways:

- Students in the LT condition within the varying classes follow previous trends when compared to the other strategies:
 - LT produces more codable strategies
 - LT produces more sophisticated strategies

RESULTS

MODEL SELECTION

Model* (fixed effects)	WAIC	LOOIC
I) Pre-Soph	8969.35	8970.36
2) Pre-soph + Intervention	8943.37	8944.16
3) Pre-soph x Intervention	8945.03	8945.84
4) Pre-soph + Intervention + Sex	8943.96	8944.74
5) Pre-soph x Intervention + Sex	8947.53	8948.32
6) Pre-soph + Intervention+ Sex + Private	8941.59	8942.36
7) Pre-soph x Intervention + Sex + Private	8943.37	8944.18
8) Pre-soph + Intervention + Sex + Private + Private x Intervention	8944.4	8945.23

- The lowest _IC indicates the "best" model
 - Widely Applicable Information
 Criteria (WAIC): mean log likelihood
 function over the posterior
 distribution + correction

$$WAIC = -2\sum_{i=1}^n \log\Biggl(rac{1}{S}\sum_{j=1}^S p(x_i| heta_j)\Biggr) + 2\sum_{i=1}^n \left(V_{j=1}^S \log p(x_i| heta_j)
ight)$$

Leave-One-Out Information
 Criteria (LOOIC): mean fit of the model per data point over posterior draws

$$LOOIC = \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{j=1}^{S} p(x_i|x_{-i}, \theta_j) \right)$$

n = sample size, S = number of draws

DETECTING CODABLE STRATEGIES

	Mean	SD	2.5%	97.5%
Pre-sophistication	0.25	0.11	0.04	0.46
LT (w.r.t BAU)	0.79	0.16	0.48	1.09
REV (w.r.t BAU)	0.40	0.16	0.09	0.73
Sex $(M = 1, F = 0)$	0.12	0.14	-0.15	0.39
School Type (Private = 1, Public = 0)	0.17	0.28	-0.37	0.75

- For each SD increase in pre-sophistication Rasch score, the odds of detecting a strategy increase by $\sim 1.3 x$ (exp(0.25))
- LT group had ~2.2x (exp(0.79)) greater odds of detecting a strategy when compared to BAU groups
- LT children are more likely to use a conceptually meaningful and relevant strategy at post-assessment relative to BAU

FIXED EFFECTS WHEN A STRATEGY IS DETECTED

	Mean	SD	2.5%	97.5%
Pre-sophistication	0.38	0.13	0.17	0.67
LT (w.r.t BAU)	0.89	0.25	0.46	1.42
REV (w.r.t BAU)	<mark>0.59</mark>	0.20	0.25	1.04
Sex (M = I, F = 0)	0.04	0.13	-0.21	0.30
School Type (Private = 1, Public = 0)	0.51	0.21	0.15	0.99

- Students in the LT & REV group have significantly higher odds of utilizing more sophisticated strategies than BAU
- Boys and girls do not differ significantly in the sophistication of their strategies when a strategy is detected.
- Students in *private schools* have significantly higher odds of utilizing more sophisticated strategies than *public schools*

SOPHISTICATION THRESHOLDS WHEN A STRATEGY IS DETECTED

- Average LT students were more likely to deploy a more sophisticated strategy relative to the average BAU or REV students.
- For example, the average LT student was making the transition from Y=1 to Y=2 (T2). Whereas, the average student in the BAU condition was likely still in Y=1.

		LT)	
I) Pre-Soph			- Given a strategy was detected, there is
2) Pre-soph + Intervention	97.73	99.28	97.85% posterior probability that the LT students deploys a more
3) Pre-soph x Intervention	97.80	99.29	sophisticated strategy relative to REV
4) Pre-soph + Intervention + Sex	97.57	99.15	peers.
5) Pre-soph x Intervention + Sex	97.87	99.32	- There is 99.33% posterior probability that LT students will have a higher chance of using detectable strategies
6) Pre-soph + Intervention +Sex + Private	97.85	99.33	relative to REV peers
7) Pre-soph x Intervention+ Sex + Private	98.23	99.5	- Take Home. Regardless of the model
8) Pre-soph + Intervention +Sex + Private + Private x Intervention	96.45	98.47	specified, the posterior probability that LT students use more sophisticated strategy relative to their REV peers is above 96%.

P(Higher Chance of

Detectable Strategy in

Practical Conclusions:

*Random Effects: Child ID + Item + Class
Hyper-parameters: chains = 3, warmup = 1000, iter = 5000

Model* (fixed effects)

P(LT > REV |

Detection)

RESULTS SUMMARY

RESULTS SUMMARY

Research Question 1: Given a strategy was detected, do children in the Learning Trajectories group use more sophisticated strategies relative to their peers in two counterfactual conditions?

A: <u>Yes</u>. Given a strategy was detected, there is 97.85% probability that the LT students used a more sophisticated strategy relative to their REV peers.

RANDOM INTERCEPTS

- Random intercepts measure how different items, classrooms, and students deviate from the population mean latent sophistication
 - **Negative R.I.** → Lower sophistication than population mean
 - **Positive R.I.** → Higher sophistication than population mean
 - ~ 0 R.I. → ~ Around population mean sophistication
 - "Typical" population item, classroom, or student
 - Random effects = 0
 - Interpretations of <u>fixed effects</u> (e.g., intervention effects) are <u>conditional</u> on all random effects being 0
 - Typical student from a typical classroom evaluating a typical item

Research Question 2a: What can <u>item</u> random effects tell us about strategy preference?

Item	Random Intercept	ltem	Random Intercept
32	-7.32	<mark>33</mark>	<mark>0.19</mark>
Q	-4.76	l l	<mark>0.23</mark>
Z	-4.46	Χ	0.35
50	-4.43	L	0.62
U	-2.56	Ε	1.06
Db	-1.68	Da	1.37
V	-1.23	М	1.39
31.1	-0.68	15	2.15
37	-0.64	C	2.19
Ν	-0.58	G	2.55
J	<mark>-0.20</mark>	K	2.62
B	<mark>-0.12</mark>	Н	2.87
-	-	21	3.42
-	-	Р	5.00

- Highlighted items are within 0.25 of the mean (0)
 - "Typical" items in terms of length measurement strategy sophistication

- "Typical" items cover LQR, LDC, EE, & LURR thinking
- High sophistication items address EE thinking
- Low sophistication items address LURR+ thinking
- Notably, there is large deviation between items

Research Question 2b: What can <u>classroom</u> random effects tell us about strategy preference?

Class	Random Intercept	Class	Random Intercept
15	-0.12	10	0.01
11	-0.06	6	0.02
5	-0.03	7	0.02
12	-0.03	8	0.03
9	-0.02	16	0.03
3	-0.01	14	0.05
4	-0.01	1	0.05
2	-0.01	13	0.08

- There is very little deviation in latent sophistication between classes
- Classrooms likely don't play a major roll in latent sophistication

Research Question 2b: What can <u>student</u> random effects tell us about strategy preference?

Research Question 2c: What can **student** random effects tell us about strategy preference?

Below Popi Mean La Sophistica	tent	Around Population Mean Latent Sophistication		Above Population Mean Latent Sophistication	
Student #	R.I.	Student #	R.I.	Student #	R.I.
161	-0.49	176	-0.01	12	0.29
85	-0.44	114	0.00	79	0.34
19	-0.38	97	0.00	38	0.35
157	-0.36	8	0.00	144	0.36
159	-0.34	24	0.00	80	0.38
148	-0.34	40	0.00	57	0.38
103	-0.34	117	0.00	150	0.41
138	-0.34	64	0.01	163	0.45
77	-0.3 I	99	0.01	118	0.53
53	-0.3 I	127	0.01	140	0.61

Bottom 10 Students

Middle 10 Students "Typical Students"

Top 10 Students

Research Question 2c: What can **student** random effects tell us about strategy preference?

Practical Conclusions:

- It is possible to score every student in terms of their sophistication and use these scores like Rasch scores in correctness-based assessments.

Research Question 3: How do we best model strategy preference, given a large portion of strategies do not fall onto the existing research-based sophistication scale?

AI: When a strategy can be detected, Pre-sophistication level, Experimental Condition (LT, REV, BAU), & School Type (Public, Private) contribute the most to sophistication.

A2: Regardless of the model specified, the posterior probability that children in the LT condition use more sophisticated strategy vs. REV condition is above 96%.

A3: There is a methodological advantage to using the hurdle model due to the differential probabilities of a detectable strategy by Experimental Condition, Pre-Sophistication, and School Type (less information loss, more power)

QUESTIONS?