Notas sobre Frank Jones, Lebesgue Integration on Euclidean Spaces

Pedro Henrique Antunes de Oliveira

Sumário

1	Capítulo 9 - Problema 28	3
2	Capítulo 9 - Problema 31	3
3	Capítulo 10 - Problema 3	3
4	Capítulo 10 - Problema 4	5
5	Capítulo 10 - Problema 18	5
6	Capítulo 10 - Problema 21	5
7	Capítulo 10 - Problema 25	6
8	Capítulo 10 - Problema 28	6
9	Capítulo 10 - Problema 29	10
10	Capítulo 10 - Problema 30	12
11	Capítulo 10 - Problema 31	12
12	Capítulo 10 - Problema 32	14
13	Capítulo 10 - Problema 33	18
14	Capítulo 10 - Problema 34	19
15	Capítulo 10 - Problema 35	19
16	Capítulo 10 - Comentário Pós Problema 35	20
17	Capítulo 10 - Exercício 38	21
18	Capítulo 11 - Exercício 8	30

1 Capítulo 9 - Problema 28

Ponha $\phi(\alpha)=1/\Gamma(\alpha)$ para $\alpha\notin(\mathbb{R}\setminus-\mathbb{N}_0)$ e $\phi(\alpha)=0$ caso $\alpha\in\mathbb{N}_0$. Perceba que para $k\in\mathbb{N}$ e para $\alpha\in(-k-1,+\infty)$, tem-se $\alpha+k+1>0$ e logo pode-se afirmar

$$\phi(\alpha) = \frac{\alpha(\alpha+1)(\alpha+2)...(\alpha+k)}{\Gamma(\alpha+k+1)}.$$

Assim, ϕ é C^{∞} em todo $(-k-1,+\infty)$. Sendo $k \in \mathbb{N}$ qualquer, ϕ é C^{∞} .

2 Capítulo 9 - Problema 31

Seguem as principais observações sobre a resolução do problema (o que falta é, essencialmente, detalhe técnico). Para $n\in\mathbb{N}$ e $\alpha\in(-n-1,1)$, tem-se $\alpha+n+1>0$ e

$$\phi(\alpha) = \Gamma(\alpha + n + 1)\Gamma(1 - \alpha) \frac{\sin(\pi \alpha)}{\alpha(\alpha + 1)...(\alpha + n)}$$

para cada $\alpha \notin \{0,-1,...,-n\}$ e, $\varphi(\alpha)=\pi$ caso $\alpha \in \{0,-1,...,-n\}$. Pondo $\psi_i(\alpha)=\frac{\sin(\pi\alpha)}{\alpha+i}$ para $\alpha \neq -i$ e $\psi_i(\alpha)=(-1)^i\pi$ para $\alpha=-i$, é fácil ver que $\psi_i(\alpha)=(-1)^i\psi_0(\alpha+i)$. Fazendo a expansão de sin em série de potências, é fácil ver também que $\psi_0(t)=\sum_{i=0}^{\infty}\frac{(-i)^i(\pi)^{2i+1}t^{2i}}{(2i+1)!}$ para todo $t\in\mathbb{R}$. Daí ψ_0 é C^∞ .

3 Capítulo 10 - Problema 3

O que importa aqui é que a função exp é estritamente convexa. Assim, para todo $t \in [0,1]$ e para todo par $x,y \in \mathbb{R}$, $\exp(tx+(1-t)y) \le te^x+(1-t)e^y$, sendo que a igualdade vale se, e somente se, t=0, t=1 ou x=y.

Isso nos dá uma outra forma de provar $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$, sendo $p \in [1, \infty)$, q = p', $a, b \in [0, \infty)$. Trate o caso a = 0 ou b = 0 separadamente. Para tratar o caso em que a > 0 e b > 0, ponha $a^p = e^x$, $b^q = e^y$ e $t = \frac{1}{p}$. Use a convexidade de exp. Destaca-se que pode-se concluir, usando a convexidade estrita de exp, que a igualdade em $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$, dentro das condições acima, vale se, e somente se,

a > 0, b > 0 e p log $a = q \log b$, ou seja, $a^p = b^q$ (note que como p, q > 1, $0^p = 0^q = 1$ e, por isso, não se tem a igualdade quando a = 0 ou b = 0).

A resolução do problema então é motivada pela prova da desigualdade de Hölder, tendo em mente as observações acima. O caso em que $\|f\|_p = 0$ ou $\|g\|_q = 0$ é trivial pois neste caso uma das funções é zero para μ -quase todo ponto de seu domínio e logo vale $f(t)^p = g(t)^q$ para μ -quase todo $t \in X$ a menos de uma constante multiplicativa pois pode-se escolher esta constante igual a zero. Suponha daqui pra frente que $\|f\|_p \neq 0$ ou $\|g\|_q \neq 0$. Ponha $A(t) = \frac{f(t)g(t)}{\|f\|_p \|g\|_q}$ e $B(t) = \frac{f(t)^p}{p\|f\|_p} + \frac{g(t)^q}{q\|g\|_q}$. Usando o que foi feito acima, concluímos que $A(t) \leq B(t)$ para todo $t \in X$ (use $\alpha = \frac{f(t)}{\|f\|_p}$, $b = \frac{g(t)}{\|g\|_q}$ e $\frac{1}{p}$ como o coeficiente da combinação convexa) sendo que temos a igualdade para um certo $t \in X$ se, e somente se, $\frac{f(t)^p}{\|f\|_p^p} = \frac{g(t)^q}{\|g\|_q^q}$. Assim, para resolver o problema, basta ver que $\int_X fg d\mu = \|f\|_p \|g\|_q$ implica em A(t) = B(t) para μ -quase todo $t \in X$.

Seja $M=\{t\in X: A(t)< B(t)\}$. Ponha, para $n\in \mathbb{N},\ D_n=\{t\in X: B(t)-A(t)\geq 1/n\}$. Temos $M=\bigcup_{n\in \mathbb{N}}D_n$. Caso M não seja de medida nula, certamente há $n\in \mathbb{N}$ tal que $\mu(D_n)>0$. Assim $\int_X (B-A)d\mu\geq \frac{1}{n}\mu(D_n)>0$. Isso implica em $\int_X fgd\mu<\|f\|_p\|g\|_q$, uma contradição. Logo $\mu(M)=0$ e fica resolvido o problema.

Note que o desenvolvimento aqui mostra que (ainda assumindo f, $g \ge 0$):

- 1. Se f(t)=0 para μ -quase todo $t\in X$, tem-se $\int fg d\mu=\|f\|_p\,\|g\|_q.$
- 2. Se g(t)=0 para μ -quase todo $t\in X$, tem-se $\int fgd\mu=\|f\|_p\,\|g\|_q.$
- 3. Se $\|f\|_p \neq 0$ e $\|g\|_q \neq 0$, e $\frac{f(t)^p}{\|f\|_p^p} = \frac{g(t)^q}{\|g\|_q^q}$ para μ -quase todo $t \in X$, então $\int fg d\mu = \|f\|_p \|g\|_q$.

Assim, fica provado que, para o caso em que f, $g \ge 0$, $\|f\|_p \ne 0$ e $\|g\|_q \ne 0$, tem-se $\int fg d\mu = \|f\|_p \|g\|_q$ se, e somente se, $\frac{f(t)^p}{\|f\|_p^p} = \frac{g(t)^q}{\|g\|_q^q}$ para μ -quase todo $t \in X$.

4 Capítulo 10 - Problema 4

Ponha $g=\frac{f^{p/p'}}{\|f\|_p^{p/p'}}$ no caso em que $\|f\|_p\neq 0$. No caso em que $\|f\|_p=0$, qualquer função de norma $L^{p'}$ 1 serve. Note que talvez não haja uma tal função dessas, o que pode ocorrer em espaços triviais como μ leva todo conjunto mensurável em 0 ou μ leva todo conjunto mensurável em ∞ . Caso haja $A\in \mathcal{M}$ com $\mu(A)\in (0,\infty)$, então $\chi_A\in L^{p'}$ e pode-se tomar uma versão g normalizada de χ_A de modo ter $g\in L^{p'}$ e $\|g\|_{p'}=1$

5 Capítulo 10 - Problema 18

A ideia é a seguinte. Defina $r_n=1-2^{-n},\ c_n=4^{-n}\ e\ s_n=1+2^{-n}.$ Ponha $f(x)=(\sum_{n=1}^\infty c_n x^{-r_n})\chi_{(0,1)}(x)\ e\ g(x)=(\sum_{n=1}^\infty c_n x^{-s_n})\chi_{(1,\infty)}(x).$ Seja $p_0\in[1,\infty).$ Mostre que $f^{1/p_0}\in L^p(\mathbb{R})$ para todo $p\in[1,p_0]$ e $g^{1/p_0}\in L^p(\mathbb{R})$ para todo $p\in[p_0,\infty)$ ($g^{1/p_0}\in L^\infty(\mathbb{R})$ também, mas isso não nos é interessante). Seja $h=f^{1/p_0}+g^{1/p_0}.$ Mostre que, dado $p\in[1,\infty)$, tem-se $h\in L^p(\mathbb{R})$ se, e somente se, $p=p_0.$ Como em (0,1), h coincide com $f^{1/p_0},$ tem-se h fora de $L^\infty(\mathbb{R}).$ Para $p_0=\infty,$ ponha $h\equiv 1.$

Retirada de https://math.stackexchange.com/questions/1039064/f-in-l1-but-f-not-in-lp-for-all-p-1

6 Capítulo 10 - Problema 21

O caso em que $f \notin L^1([0,1])$ é trivial, assim como o caso em que $\frac{1}{f} \notin L^1([0,1])$. Supondo que $f, \frac{1}{f} \in L^1([0,1])$, ponha $g = \sqrt{f}$ e $h = \sqrt{\frac{1}{f}}$. Temos $g, h \in L^2([0,1])$. Aplique o teorema da desigualdade de Hölder.

Perceba que, o resultado pode ser "generalizado" (com a mesma ideia de prova) para o intervalo de integração de 0 até $\alpha \in \mathbb{R}$ qualquer. O que obtemos é que o produto das integrais é mair ou igual do que α^2 .

7 Capítulo 10 - Problema 25

Aplique Hölder em $h_k = f_k \chi_{A_M^k}$, sendo $A_M^k = \{x \in X : |f_k(x)| > M\}$, e obtenha $\|h_k\|_1 \leq \|f_k\|_p \left\|\chi_{A_M^k}\right\|_q$, $1 = \frac{1}{p} + \frac{1}{q}$. Temos $g_k \xrightarrow{qtp} 0$, $|g_k(x)| \leq M$ para todo $x \in X$ e $\mu(X) < \infty$. Aplique o teorema da convergência dominada de Lebesgue sobre g_k .

O resultado não vale apenas para convergência em L¹. Pode-se mostrar que a convergência acontece em todo Lq com q \in [1, p). $f \in L^p$ por causa do problema 22 (como sugerido na dica) e logo está em todo Lq para $q \in$ [1, p) (por $\mu(X) < \infty$). Isso permite reduzir o caso geral para o caso em que $f \equiv 0$. Assim como acontece com f, vale que para todo $k \in \mathbb{N}$, tem-se $f_k, h_k, g_k \in L^q$ qualquer que seja $q \in$ [1, p). De resto, faz-se o mesmo que sugerido acima e na dica dada no livro. Trata-se g_k do mesmo modo (g_k limitada, $\mu(X) < \infty$ e convergência dominada de Lebesgue). Seguindo a dica do livro, no caso do h_k , faz-se essencialmente a mesma coisa, porém aplica-se Hölder para $|h_k|^q$ e obtem-se que $||h_k|^q|_1 = ||h_k||_q^q \le a^p M^{q-p}$. Sendo $g_k \xrightarrow{L^q} 0$ e $||f_k||_q^q = ||g_k||_q^q + ||h_k||_q^q \le ||g_k||_q^q + a^p M^{q-p}$, para todo $k \in \mathbb{N}$ e $M \in (0, \infty)$, segue-se que $f_k \xrightarrow{L^q} 0$.

8 Capítulo 10 - Problema 28

Suponha $p \in (1,\infty)$. Seguindo a dica do livro, se $f \notin L^p$, então $\nu(X) = \infty$. Ponha $X = \cup_{i \in \mathbb{N}} A_i$ com $\mu(A_i) < \infty$. Mostre que |f| é finito para μ -quase todo $x \in X$ (tome para cada $i \in \mathbb{N}$, aplique a hipótese sobre f com g sendo χ_{A_i}) – isso só é relevante para o caso $f: X \to \overline{\mathbb{R}}$. Ponha $B_i^\infty = A_i \cap \{x \in X : |f(x)| = \infty\}$ para cada $i \in \mathbb{N}$ (caso $f: X \to \mathbb{C}$, ignore B_i^∞) e ponha $B_i^n = A_i \cap \{x \in X : |f(x)| \le n\}$ para cada $i, n \in \mathbb{N}$. Para $i, n \in \mathbb{N}$, $\nu(B_i^n) \le \mu(A_i) n^p$ e $\nu(B_i^\infty) = 0$. Isso dá que $(X, (M), \nu)$ é σ -finito com $\nu(X) = \infty$. Faz sentido então usar o resultado do problema 14. Sejam Γ_i 's os conjuntos que no problema 14 são chamados de B_i 's. A função h da dica pode ser a seguinte: $h = \sum_{i=1}^\infty \frac{\chi_{\Gamma_i}}{i\nu(\Gamma_i)}$. Assim, a g da dica fica sendo $g = h|f|^{p-1} = \sum_{i=1}^\infty \frac{|f|^{p-1}\chi_{\Gamma_i}}{i\nu(\Gamma_i)}$. Para ver que $g \in L^{p'}$, faça as contas. Use

que $\nu(\Gamma_i) \geq 1$ (ver problema 14), o que dá $\frac{\nu(\Gamma_i)}{\nu(\Gamma_i)^{p'}} \leq 1$ e use também que os Γ_i 's são dois-a-dois disjuntos. No final das contas, pode-se mostrar que $\int_X |g|^{p'} d\mu \leq \sum_{i=1}^\infty \left(\frac{1}{i}\right)^{p'} < \infty$. Além disso, fazendo as contas também, temos $\int_X |gf| d\mu = \sum_{i=1}^\infty \frac{1}{i} = +\infty$.

No caso p=1, não faz sentido tomar potências com expoente p' como em $\nu(\Gamma_i)^{p'}$, mas o argumento segue de modo análogo. Neste caso, simplesmente faça g=h. Sendo $g\in L^{p'}=L^\infty$ (para todo $x\in X$, $h(x)\le 1$), deveríamos ter $fg\in L^1$, porém, $gf\in L^1$ implica em $\int_X |fg| d\mu = \sum_{i=1}^\infty \frac{1}{i} < \infty$ (é só fazer as contas).

Resta tratar o caso $p=\infty$. Aqui p'=1. Para o caso em que $\mu(X)<\infty$, pode-se provar que $f\in L^q$ para todo $q\in [1,\infty)$. Isso é feito tomando primeiro $g\equiv 1$ e concluindo que $f\in L^1$. Depois tome g=f e conclua que $f^2\in L^1$. Siga este processo, indutivamente, e conclua que $f^n\in L^1$ para todo $n\in \mathbb{N}$. Isso implica em $f\in L^n$ para todo $n\in \mathbb{N}$. Sendo $\mu(X)<\infty$, concluimos que $f\in L^q$ para todo $f\in L^q$ para todo q

O que fazer no caso $p=\infty$ é o seguinte (sugestão de um tal de Gilly em ##math @ irc.freenode.com).

Rascunho

```
<Gilly> phao: if f is not in L^{\infty}, you can pick a sequence
of measurable sets A_n such that 1 > \mu(A_n) > 0 and f(x) \ge n for
x \in A_n
<Gilly> now consider g(x) = \sum_{n=1}^{\infty} \frac{\chi_{A_n}}{n^2 \mu(A_n)}
<Gilly> well, your f was complex so maybe instead choose so
that |f(x)| \ge n
<Gilly> and add \frac{f(x)}{|f(x)|} to the definition of g
```

Primeiro temos o problema de encontrar esses tais A_n 's. Segundo é mostrar que essa $g \in L^1$. A ideia é fazer essa dica para o caso $\overline{\mathbb{R}}$ e depois tentar adaptá-la para o caso \mathbb{C} . A ideia do Gilly não será usada exatamente. O que será usado é uma adaptação dela.

Vamos tentar resolver (nesta caixa de rascunho) primeiro o problema de mostrar que $g \in L^1$. Primeiro, para o caso $f: X \to \overline{\mathbb{R}}$. Defina $g: X \to \overline{\mathbb{R}}$ como na sugestão, ou seja, $g = \sum_{n=1}^{\infty} \frac{\chi_{A_n}}{n^2 \mu(A_n)}$. Que g é mensurável é verdade pois é limite de funções mensuráveis. Que $g \in L^1$ é consequência do teorema da convergência monótona. Temos

$$\int\limits_X |g| d\mu = \int\limits_X \sum_{n=1}^\infty \frac{\chi_{A_n}}{n^2 \mu(A_n)} d\mu = \lim_{n \to \infty} \int\limits_X \frac{\chi_{A_n}}{n^2 \mu(A_n)} d\mu = \sum_{n=1}^\infty \frac{1}{n^2} < \infty$$

Note que g, então, é finito para μ -quase todo $x \in X$. Poderíamos então definir $g^*: X \to \mathbb{R}$ como sendo igual a g nos pontos em que g é finita e $g^*(x) = 0$ para os valores de $x \in X$ tais que $g(x) = \infty$. Esta observação final talvez seja importante para tratar o caso $f: X \to \mathbb{C}$.

Uma pergunta é sobre a importância dos A_n 's terem medida entre 0 e 1. Não é claro o motivo do Gilly ter pedido tal propriedade.

Fim do Rascunho

Temos X σ -finito. Primeiro vamos tratar o caso $f \geq 0$. Ponha $X = \bigcup_{i=1}^{\infty} B_i$ sendo $\mu(B_i) < \infty$ com os B_i 's dois-a-dois disjuntos. Suponha $f \notin L^{\infty}$.

Primeiramente, para cada $n \in \mathbb{N}$, defina $C_n = \{x \in X : f(x) \geq n\}$. Como $f \notin L^\infty$, temos $\mu(C_n) > 0$ para todo $n \in \mathbb{N}$. Usaremos a notação B[i:j] para nos referirmos ao conjunto $\cup_{k=1}^j B_k$, sendo $i,j \in \mathbb{N}$ e $i \leq j$. Para cada $k \in \mathbb{N}$, seja $r_k \in \mathbb{N}$ tal que $\mu(B[1:n_k] \cap C_k) > 0$. Ponha $A_k = B[1:r_k] \cap C_k$. Temos então $0 < \mu(A_k) < \infty$. Defina $g = \sum_{k=1}^\infty \frac{\chi_{A_k}}{k^2 \mu(A_k)}$. Pelo teorema da convergência

monótona, $g \in L^1$ e $\|g\|_1 = \sum_{k=1}^{\infty} \frac{1}{k^2}$. Deveríamos ter $gf \in L^1$, porém:

$$\begin{split} \int_X |gf| d\mu &= \int_X \left| \sum_{k=1}^\infty \frac{f \chi_{A_k}}{k^2 \mu(A_k)} \right| d\mu \\ &= \int_X \sum_{k=1}^\infty \frac{f \chi_{A_k}}{k^2 \mu(A_k)} d\mu \\ &= \sum_{k=1}^\infty \int_X \frac{f \chi_{A_k}}{k^2 \mu(A_k)} d\mu \\ &= \sum_{k=1}^\infty \frac{1}{k^2 \mu(A_k)} \int_{A_k} f d\mu \\ &\geq \sum_{k=1}^\infty \frac{1}{k^2 \mu(A_k)} \int_{A_k} k d\mu \\ &= \sum_{k=1}^\infty \frac{1}{k^2 \mu(A_k)} k \mu(A_k) d\mu \\ &= \sum_{k=1}^\infty \frac{1}{k} = \infty. \end{split}$$

Assim, é um absurdo ter $f \ge 0$, $f \notin L^{\infty}$ concomitantemente com as hipóteses do problema sobre f. Logo, se valem as hipóteses sobre f, segue-se que $f \in L^{\infty}$ no caso em que $f \ge 0$. A ideia agora é reduzir o caso geral para o caso em que $f \ge 0$. Percebe que a argumentação feita acima serve tanto para o caso em que se estuda L^1 de funções reais extendidas quanto para o caso em que se estuda o L^1 de funções complexas. Daqui pra frente, trataremos os dois espaços separadamente.

Dado $f: X \to \overline{\mathbb{R}}$ mensurável, temos $f \in L^\infty$ se, e somente se, f^+ e f^- são elementos em L^∞ . Além disso, supondo que vale a hipótese do problema sobre f, tem-se que para todo $g \in L^1$, $g: X \to \overline{\mathbb{R}}$, tem-se $gf \in L^1$ e, logo, $\int_X |gf| d\mu < \infty$. Sendo $\int_X |gf^+| d\mu \le \int_X |gf| d\mu$ e $\int_X |gf^-| d\mu \le \int_X |gf| d\mu$, segue-se que gf^+ , $gf^- \in L^1$. A arbitrariedade de $g \in L^1$ dá que as hipóteses também valem, então para f^+ e f^- , o que implica em ambas estarem em L^∞ e, logo, $f \in L^\infty$.

Dado $f: X \to \mathbb{C}$, temos f = v + iu, sendo $v, u: X \to \mathbb{R}$ mensuráveis. Valendo

a hipótese do problema para f, queremos mostrar que elas também valem para ν e $\mathfrak u.$ Seja $g:X\to\overline{\mathbb R}$ em $L^1.$ Ponha $\varphi:X\to\mathbb C$ definida para coincidir com g onde g não se anula e ponha φ nula nos demais pontos. É claro que φ é mensurável e L^1 , o que dá $\varphi f\in L^1$, e, daí $\varphi \nu, \varphi u\in L^1$, o que implica $g\nu, gu\in L^1$. Sendo $g:X\to\overline{\mathbb R}$ arbitrário, valem as hipóteses para ν e u dentro do caso real extendido. Assim ν e u são L^∞ e, logo, $f\in L^\infty.$

9 Capítulo 10 - Problema 29

Primeiro considere o caso f, g funções reais (como f, g ∈ L^p, temos f, g finitas para μ -quase todo ponto e, assim, consideraremos f, g reais de uma vez). Revise a prova da desigualdade de Minkowski do livro e use o resultado do problema 3 do capítulo 10 (ele está resolvido neste documento) para concluir que $\frac{|f|}{\|f\|_p} = \frac{|g|}{\|g\|_p}$ para μ -quase todo ponto de X. Seja Y o conjunto de medida total que a igualdade acima ocorre. Ponha $\alpha = \|f\|_p$ e $b = \|g\|_p$. Ponha $A = \left\{x \in Y : \frac{f(x)}{\alpha} = \frac{g(x)}{b}\right\}$. Ponha $B = Y \setminus A$. Queremos mostrar que $\mu(B) = 0$. Suponha que $\mu(B) > 0$. Calcule $\|f + g\|_p$. Use que para todo $t \in (0, \infty)$, tem-se |1 - t| < 1 + t para concluir que, caso $\mu(B) > 0$, tem-se $\|f + g\|_p < \alpha + b$. A conta que chega no absurdo fica como segue:

$$\begin{split} \|f+g\|_{p} &= \left(\int_{X} |f+g|^{p} d\mu\right)^{1/p} \\ &= \left(\int_{A} |f+g|^{p} d\mu + \int_{B} |f+g|^{p} d\mu\right)^{1/p} \\ &= \left(\int_{A} \left|f + \frac{b}{a} f\right|^{p} d\mu + \int_{B} \left|f - \frac{b}{a} f\right|^{p} d\mu\right)^{1/p} \\ &= \left((1+b/a)^{p} \int_{A} |f|^{p} d\mu + |1-b/a|^{p} \int_{B} |f|^{p} d\mu\right)^{1/p} \\ &< \left((1+b/a)^{p} \int_{A} |f|^{p} d\mu + (1+b/a)^{p} \int_{B} |f|^{p} d\mu\right)^{1/p} \\ &= (1+b/a)^{a} = a + b. \end{split}$$

No caso f, g complexas, B é mais complicado. Na verdade, existe $\theta(x) \in [0,2\pi)$ para cada $x \in Y$ tal que $g(x) = e^{i\theta(x)}f(x)$, sendo que $\theta(x) = 0$ para $x \in A$ e $\theta(x) \neq 0$ para $x \in B$. A ideia, no entanto, de modo geral, é a mesma. Prove que para todo t > 0 e para todo $\theta \in (0,2\pi)$, tem-se $|1+te^{i\theta}| < 1+t$. Assim, pode-se fazer essencialmente as mesmas contas:

$$\begin{split} \|f+g\|_p &= \left(\int_X |f+g|^p d\mu\right)^{1/p} \\ &= \left(\int_A |f+g|^p d\mu + \int_B |f+g|^p d\mu\right)^{1/p} \\ &= \left(\int_A \left|f+\frac{b}{a}f\right|^p d\mu + \int_B \left|f+e^{i\theta(x)}\frac{b}{a}f\right|^p d\mu\right)^{1/p} \\ &= \left(\int_A \left(1+\frac{b}{a}\right)^p |f|^p d\mu + \int_B \left|1+e^{i\theta(x)}\frac{b}{a}\right|^p |f|^p d\mu\right)^{1/p} \\ &= \left((1+b/a)^p \int_A |f|^p d\mu + (1+b/a)^p \int_B |f|^p d\mu\right)^{1/p} \\ &= (1+b/a)a = a+b. \end{split}$$

Note que essas contas precisam de mais justificativas. Estamos usando que para todo $x \in B$, $\left|1+e^{i\theta(x)}\frac{b}{a}\right||f(x)|<\left|1+\frac{b}{a}\right||f(x)|$. O fato de $\mu(B)>0$ implica então que há desigualdade estrita ao "passar a integral"(prove isso considerando, para cada $n \in \mathbb{N}$, $B_n \subset B$ conjuntos dos pontos em que a diferença do maior termo da desigualdade menos o menor termo da desigualdade acima ganha de 1/n – algum dos B_n tem medida positiva). Além disso, a desigualdade acima para os $x \in B$ vale pois para $x \in B$, $f(x) \neq 0$. Resta ver que, de fato, para todo t > 0 e para todo $\theta \in (0, 2\pi)$, tem-se $|1+e^{i\theta}t|<1+t$. Isso vem do resultado análogo ao deste problema, mas para o caso mais simples de \mathbb{C} . Sabemos que |z+w|=|z|+|w| se, e somente se, $w=\lambda z$ com $\lambda>0$ no caso de $z,w\in\mathbb{C}\setminus\{0\}$. Pela desigualdade triangular em \mathbb{C} , temos $|1+e^{i\theta}t|\leq 1+t$. A igualdade ocorre se, e somente se, $e^{i\theta}t=\lambda 1$ para algum $\lambda>0$. Isso é impossível para $\theta\in(0,2\pi)$.

10 Capítulo 10 - Problema 30

Primeiro, seja $f \in L^q$ para $q \in [1,\infty)$. Queremos mostrar que $f \in L^\infty$ e $\|f\|_\infty \le \|f\|_q$. Defina $A_n = \{x \in X : |f(x)| \in [n-1,n)\}$. Como $f \in L^q$, temos |f| finito para μ -quase todo $x \in X$ (apenas relevante para o caso $f : X \to \overline{\mathbb{R}}$). Caso $f \notin L^\infty$, existiriam infinitos $n \in \mathbb{N}$ tais que $\mu(A_n) > 0$ e, logo, $\mu(A_n) \ge 1$. Neste caso, teríamos

$$\int_X |f|^q d\mu = \sum_{n=1}^\infty \int_{A_n} |f|^q d\mu \ge \sum_{n=1}^\infty \mu(A_n)(n-1)^q = \infty.$$

Assim, $f \in L^{\infty}$. Caso $\|f\|_{\infty} > \|f\|_{q}$, seja $\alpha \in (0,\infty)$ tal que $\|f\|_{\infty} = \|f\|_{q} + \alpha$. Seja $d \in (0,\alpha)$. Ponha $B_{d} = \{x \in X : |f(x)| \in [\|f\|_{\infty} - d, \|f\|_{\infty}]\}$. Temos $\mu(B_{d}) > 0$, ou se não $\|f\|_{\infty} \le \|f\|_{\infty} - d$, um absurdo. Assim $\mu(B_{d}) \ge 1$ e

$$\|f\|_q^q \ge \int_{\mathbb{R}^d} |f|^q d\mu \ge (\|f\|_{\infty} - d)^q \ge (\|f\|_q + \alpha - d)^q > \|f\|_q^q,$$

um absurdo. Logo, de fato, $\left\Vert f\right\Vert _{\infty}\leq\left\Vert f\right\Vert _{q}.$

Segundo, para $p \in [1, \infty)$, queremos mostrar que para todo $f \in L^p$ e para todo $q \in (p, \infty)$, temos $f \in L^q$ e $\|f\|_q \le \|f\|_p$. Já vimos que $f \in L^\infty$. Ponha $g = \frac{f}{\|f\|_\infty}$. Seja A de medida total tal que $|g(x)| \le 1$ para todo $x \in A$. É claro que $g \in L^p$ pois $f \in L^p$. Sendo $0 e <math>|g(x)| \le 1$ para todo $x \in A$, temos $|g(x)|^q \le |g(x)|^p$. Assim:

$$\int_X |g(x)|^q d\mu \le \int_X |g(x)|^p d\mu,$$

o que implica na tese.

11 Capítulo 10 - Problema 31

O que é bom ter em mente na hora de resolver este problema é que $\alpha > 1$ e que o domínio de F é $I_{\alpha} = \left(\frac{-\pi}{2\alpha}, \frac{\pi}{2\alpha}\right)$.

Em (a), usa-se que a > 1 para mostrar que $F(\theta)$ existe de fato para todo $\theta \in$

$$\begin{split} &I_{\alpha}. \text{ Seja K} = \cos(\alpha\theta) > 0, \text{por } \theta \in I_{\alpha}. \text{ Dado } x \in (0, \infty), \text{temos } |f(x, \theta)| = e^{-x^{\alpha}K}. \\ &\text{Existe } x_{0} \in (0, \infty) \text{ tal que } e^{-x^{\alpha}K} \leq e^{-Kx} \text{ para todo } x \in [x_{0}, \infty) \text{ pois} \end{split}$$

$$\lim_{x\to\infty}\frac{e^{-x^{\alpha}K}}{e^{-Kx}}=\lim_{x\to\infty}e^{-Kx(x^{\alpha-1}-1)}=0.$$

Isso resolve (a).

Em (b), faça as contas. Expanda $f = f_1 + if_2$. Use

$$f_1(x, \theta) = \exp(-x^{\alpha} \cos(\alpha \theta)) \cos(-x^{\alpha} \sin(\alpha \theta))$$

e use também que

$$f_2(x, \theta) = \exp(-x^{\alpha} \cos(\alpha \theta)) \sin(-x^{\alpha} \sin(\alpha \theta)).$$

Calcule $D_1f = D_1f_1 + iD_1f_2$ e $D_2f = D_2f_1 + iD_2f_2$. Compare e conclua que $D_2f = ixD_1f$.

Em (c), faça diferenciação sobre o sinal da integral. O que precisa ser feito aqui é o seguinte. Tome $\theta_0 \in I_a$. Existe $\alpha, \beta \in \mathbb{R}$ tais que $\alpha < \beta, \theta_0 \in (\alpha, \beta)$ e $\alpha, \beta \in I_a$. Considere a restrição de F ao intervalo (α, β) . Use que $\theta \mapsto \cos(\alpha\theta)$ atinge seu mínimo m>0 em $[\alpha, \beta]$. Use este fato para obter a função h da proposição da diferenciação sobre o sinal da integral (o corolário última prosição do capítulo 6). Conclua que $F'(\theta) = -iF(\theta)$ para todo $\theta \in (\alpha, \beta)$, o que inclui valer para θ_0 . A arbitrariedade de θ_0 resolve este item.

Em (d). Ponha $F(\theta) = y(\theta) + iz(\theta)$. Temos então que

$$y' + iz' = -i(y + iz).$$

Conclua que existe $R \in (0,\infty)$ tal que $y^2 + z^2$ é a função constante igual a R^2 . Use a relação de equação diferencial acima para concluir também que $-y'z + z'y = -R^2$. Use o teorema da função ângulo, ou seja, existe $\varphi: I_\alpha \to \mathbb{R}$ (sendo φ com a mesma classe de diferenciabilidade de $\theta \mapsto (y(\theta), z(\theta))$ – veja "Elão", volume 2, capítulo 2) tal que $y(\theta) = R\cos(\varphi(\theta))$ e $z(\theta) = R\sin(\varphi(\theta))$. De $-y'z + z'y = -R^2$, conclua que existe $A \in \mathbb{R}$ tal que $\varphi(\theta) = A - \theta$ para todo

 $\theta\in I_{\alpha}.$ Isso te dá que $F(\theta)=R\exp((A-\theta)i).$ Calcule F(0) e conclua que $A=2k\pi$ para algum $k\in\mathbb{Z}.$ Logo $F(\theta)=R\exp((2k\pi-\theta)i)=R\exp(-i\theta).$ No cálculo de F(0), conclua também que $R=\int_{0}^{\infty}e^{-x^{\alpha}}dx.$ Faça uma substituição de variáveis $t=x^{\alpha}$ e conclua que $R=\int_{0}^{\infty}\frac{1}{\alpha}x^{\frac{1}{\alpha}-1}e^{-x}dx=\frac{1}{\alpha}\Gamma\left(\frac{1}{\alpha}\right)=\Gamma\left(1+\frac{1}{\alpha}\right).$

12 Capítulo 10 - Problema 32

A maior sacada do exercício é esta primeira conta que faremos. O resto é detalhe técnico (estes detalhes técnicos dão trabalho, mas é um trabalho padrão comum dos exercícios de integração e não involve nenhuma ideia esperta). O único "truque" deste exercício está na seguinte conta, que começa logo abaixo e termina exatamente na, e incluindo a, parte em que fazemos uso de integração por partes. Esta conta foi uma adaptação de uma dica dada para mim por um tal de Padawanno ##math @ irc.freenode.com.

Fixe $\theta \in \left(\frac{-\pi}{2\alpha}, \frac{\pi}{2\alpha}\right)$. Para cada $y \in [1, \infty)$, temos:

$$\int_{1/y}^{y} \frac{-x^{-\alpha+1}}{\alpha e^{i\alpha\theta}} \frac{\partial f}{\partial x}(x,\theta) dx = \int_{1/y}^{y} \frac{ix^{-\alpha}}{\alpha e^{i\alpha\theta}} ix \frac{\partial f}{\partial x}(x,\theta) dx$$

$$= \int_{1/y}^{y} \frac{ix^{-\alpha}}{\alpha e^{i\alpha\theta}} \frac{\partial f}{\partial \theta}(x,\theta) dx$$

$$= \int_{1/y}^{y} \frac{ix^{-\alpha}}{\alpha e^{i\alpha\theta}} e^{-e^{i\alpha\theta}x^{\alpha}} (-x^{\alpha}) e^{i\alpha\theta} i\alpha dx$$

$$= \int_{1/y}^{y} \frac{x^{-\alpha}}{\alpha e^{i\alpha\theta}} e^{-e^{i\alpha\theta}x^{\alpha}} (x^{\alpha}) e^{i\alpha\theta} \alpha dx$$

$$= \int_{1/y}^{y} \frac{1}{\alpha e^{i\alpha\theta}} e^{-e^{i\alpha\theta}x^{\alpha}} e^{i\alpha\theta} \alpha dx$$

$$= \int_{1/y}^{y} e^{-e^{i\alpha\theta}x^{\alpha}} dx$$

$$= \int_{1/y}^{y} f(x,\theta) dx.$$

Além disso, sendo $x \in (0, \infty) \mapsto f(x, \theta) - 1$ tal que sua derivada coincide com

 $\frac{\partial f}{\partial x}(x,\theta)$ para todo $x \in (0,\infty)$, temos (fazendo integração por partes):

$$\begin{split} \int_{1/y}^{y} \frac{-x^{-\alpha+1}}{\alpha e^{i\alpha\theta}} \frac{\partial f}{\partial x}(x,\theta) dx &= \left[\frac{-y^{-\alpha+1}}{\alpha e^{i\alpha\theta}} (f(y,\theta)-1) \right] - \left[\frac{-\left(1/y\right)^{-\alpha+1}}{\alpha e^{i\alpha\theta}} (f(1/y,\theta)-1) \right] \\ &- \int_{1/y}^{y} \frac{-(-\alpha+1)}{\alpha x^{\alpha} e^{i\alpha\theta}} (f(x,\theta)-1) dx \\ &= \left(\left[\frac{y^{\alpha-1}}{\alpha e^{i\theta\alpha}} (e^{-e^{i\theta\alpha}y^{-\alpha}}-1) \right] - \left[\frac{y^{1-\alpha}}{\alpha e^{i\alpha\theta}} (e^{-e^{i\theta\alpha}y^{\alpha}}-1) \right] \right) \\ &+ \int_{1/y}^{y} \frac{1-\alpha}{\alpha x^{\alpha} e^{i\alpha\theta}} (f(x,\theta)-1) dx \end{split}$$

De certa forma, o resto da demonstração é uma sequência de detalhes técnicos para concluir o que queremos. Primeiro, queremos mostrar que:

$$\lim_{y \ge 1; y \to \infty} y^{-\alpha+1} (e^{-e^{i\theta\alpha}y^{\alpha}} - 1) = 0$$

e

$$\lim_{y \ge 1; y \to \infty} y^{\alpha - 1} (e^{-e^{i\theta \alpha}y^{-\alpha}} - 1) = 0.$$

Não farei esta conta em detalhe aqui, mas o procedimento é o seguinte. No primeiro limite mostre que o valor absoluto da expressão vai para 0. Use que, para todo y > 0, tem-se:

$$|y^{-\alpha+1}(e^{-e^{i\theta\alpha}y^{\alpha}}-1)| \leq \frac{|e^{-y^{\alpha}\cos(\theta\alpha)}e^{-iy^{\alpha}\sin(\theta\alpha)}|}{y^{\alpha-1}} + \frac{1}{y^{\alpha-1}} = \frac{1}{e^{y^{\alpha}\cos(\theta\alpha)}y^{\alpha-1}} + \frac{1}{y^{\alpha-1}}$$

O segundo limite é mais enjoado. Trate separadamente as partes real e imaginária da expressão. Faça uma mudança de variáveis $h = y^{1-\alpha}$ (de fato é $h = y^{1-\alpha}$ e $n\tilde{a}o$ $h = y^{\alpha-1}$). Aplique o teorema da regra de L'Hospital em cada caso (veja Rudin, Principles of Mathematical Analysis, 3^{α} edição, Capítulo 5, Teorema 5.13). Isso resolve o problema de tratar os dois limites acima.

Agora, o que faremos é estudar as funções, para $\theta \in \left(-\frac{\pi}{2\alpha}, \frac{\pi}{2\alpha}\right)$, $h_{\theta}, g_{\theta}: (0,+\infty) \to \mathbb{C}$ dadas por $g_{\theta}(x) = \frac{1-\alpha}{\alpha e^{i\theta \alpha}} h_{\theta}(x)$ e $h_{\theta}(x) = x^{-\alpha} (f(x,\theta)-1)$. É claro que $g_{\theta} \in L^1$ se, e somente se, $h_{\theta} \in L^1$. Ponha $h_{\theta}^1 = Re(h_{\theta})$ e $h_{\theta}^2 = Im(h_{\theta})$.

Temos

$$h^1_{\theta}(x) = \frac{e^{-x^{\alpha}\cos(\theta\alpha)}\cos(-x^{\alpha}\sin(\theta\alpha)) - 1}{x^{\alpha}}$$

e

$$h_{\theta}^{2}(x) = \frac{e^{-x^{\alpha}\cos(\theta\alpha)}\sin(-x^{\alpha}\sin(\theta\alpha))}{x^{\alpha}}.$$

Queremos mostrar que $h^1_{\theta}, h^2_{\theta} \in L^1$ para, daí, concluir que $h_{\theta} \in L^1$. Para isso, basta mostrar que $h^j_{\theta}\chi_{(0,1]} \in L^1$ e $h^j_{\theta}\chi_{(1,\infty)} \in L^1$ para $j \in \{1,2\}$. Para mostrar que $h^j_{\theta}\chi_{(0,1]} \in L^1$, basta mostrar que $\lim_{x \to 0^+} h^j_{\theta}(x)$ existe e é um número real, para j=1,2. Isso de fato é verdade. Para fazer esta conta, use a mudança de variável $z=x^{\alpha}$ e use o teorema de regra de L'Hospital. Agora, para ver que $h^j_{\theta}\chi_{(1,\infty)} \in L^1$, $j \in \{1,2\}$, considere o seguinte. Como $\alpha>0, x\in (0,\infty)\mapsto \chi_{(1,\infty)}x^{-\alpha}\in L^1$. Além disso, para $x\geq 1$, temos

$$|e^{-x^{\alpha}\cos(\theta\alpha)}\cos(-x^{\alpha}\sin(\theta\alpha))-1|\leq 1+|\cos(-x^{\alpha}\sin(\theta\alpha))||e^{-x^{\alpha}\cos(\theta\alpha)}|\leq 2$$

e

$$|e^{-x^{\alpha}\cos(\theta\alpha)}\sin(-x^{\alpha}\sin(\theta\alpha))| \leq |\sin(-x^{\alpha}\sin(\theta\alpha))||e^{-x^{\alpha}\cos(\theta\alpha)}| \leq 1.$$

Assim, fica provado que g_{θ} , $h_{\theta} \in L^1$.

Com isso, é uma aplicação usual do teorema da convergência dominada de Lebesgue para mostrar que

$$\lim_{y\to +\infty,y\geq 1}\int_{1/y}^y\frac{1-\alpha}{\alpha x^\alpha e^{i\alpha\theta}}(f(x,\theta)-1)dx=\int_0^\infty g_\theta(x)dx.$$

e que

$$\lim_{y\to +\infty,y\geq 1}\int_{1/y}^y f(x,\theta)dx = \int_0^\infty f(x,\theta)dx = F(\theta).$$

Com o que já foi feito acima, isso nos dá

$$F(\theta) = \int_0^\infty g_{\theta}(x) dx = \int_0^\infty \frac{1-a}{ae^{i\theta a}} x^{-a} (f(x,\theta) - 1) dx.$$

Para terminar a questão, a segunda parte é resolvida mostrando que pode-se "passar o limite para dentro da integral". Isso é o que justificaremos aqui. Con-

sidere $G:(0,\infty)\to\mathbb{C}$ dada por $G(x)=\frac{1-\alpha}{i\alpha x^\alpha}(e^{-ix^\alpha}-1)$. Seja $\{\theta_n\}_{n=1}^\infty$ com $\theta_n\in\left(-\frac{\pi}{2\alpha},\frac{\pi}{2\alpha}\right)$ e $\lim_{n\in\mathbb{N}}\theta_n=\frac{\pi}{2\alpha}$, seja $g_n^*=g_{\theta_n}$. É claro que $g_n^*\to G$ pontualmente. Queremos aplicar o teorema da convergência dominada de Lebesgue em $\{g_n^*\}_{n=1}^\infty$ de modo a concluir que $\int_0^\infty g_n^*(x)dx\to \int_0^\infty G(x)dx$. A arbitrariedade de $\{\theta_n\}_{n=1}^\infty$ implica na tese.

Basta então encontrar uma função $f:(0,\infty)\to\mathbb{R}$ em L^1 tal que $|g_n^*(x)|\le f(x)$ para quase todo $x\in(0,\infty)$ de acordo com a medida de Lebesgue. Vamos encontrar f de modo que isso valha para todo $x\in(0,\infty)$. Primeiro, perceba que para $x\in[1,\infty)$, temos

$$|g_n^*(x)| \leq \frac{\alpha - 1}{\alpha} \frac{1}{x^{\alpha}} \left(|e^{-e^{i\theta_n a_{\chi^{\alpha}}}}| + 1 \right) \leq \frac{\alpha - 1}{\alpha} \frac{2}{x^{\alpha}}.$$

Temos

$$g_n^*(x) = \frac{1-\alpha}{x^\alpha \alpha e^{i\theta_n \alpha}} \left(e^{-e^{i\theta_n \alpha} x^\alpha} - 1 \right).$$

Ponha

$$g_n^{**}(x) = \frac{1-\alpha}{x^{\alpha}\alpha} \left(e^{-e^{i\theta_n \alpha_{\chi^{\alpha}}}} - 1 \right).$$

Temos $|g_n^*(x)| = |g_n^{**}(x)|$ para todo $x \in (0, \infty)$. Além disso, temos

$$\operatorname{Re}(g_n^{**}(x)) = \frac{1 - \alpha}{\alpha} \frac{1}{x^{\alpha}} \left(e^{-x^{\alpha} \cos(\alpha \theta_n)} \cos(-x^{\alpha} \sin(\alpha \theta_n)) - 1 \right)$$

e

$$\operatorname{Im}(g_n^{**}(x)) = \frac{1-\alpha}{\alpha} \frac{1}{x^{\alpha}} e^{-x^{\alpha} \cos(\alpha \theta_n)} \sin(-x^{\alpha} \sin(\alpha \theta_n)).$$

Para $x \in (0,1]$, temos $y = x^{\alpha} \in (0,1]$. Daí, pelo teorema do valor médio, para um certo $\xi \in (0,y) \subset (0,1)$, temos, pondo $K_n = \cos(\alpha \theta_n)$ e $K'_n = \sin(\alpha \theta_n)$:

$$\begin{aligned} |\text{Re}(g_n^{**}(x))| &= \left| \frac{1 - \alpha}{\alpha} \frac{e^{-yK_n} \cos(-yK'_n) - 1}{y} \right| \\ &= \frac{\alpha - 1}{\alpha} \left| K'_n e^{-\xi K_n} \sin(-\xi K'_n) - K_n e^{-\xi K_n} \cos(-\xi K'_n) \right| \\ &\leq \frac{\alpha - 1}{\alpha} 2e \end{aligned}$$

e, também pelo teorema do valor médio, para um certo outro $\xi \in (0,1)$, temos:

$$\begin{split} |\mathrm{Im}(g_n^{**}(x))| &= \frac{\alpha - 1}{\alpha} \left| \frac{e^{-yK_n} \sin(-yK_n')}{y} \right| \\ &= \frac{\alpha - 1}{\alpha} \left| -K_n e^{-\xi K_n} \sin(-\xi K_n') - K_n' e^{-\xi K_n} \cos(-\xi K_n') \right| \\ &\leq \frac{\alpha - 1}{\alpha} 2e \end{split}$$

Daí $|g_n^*(x)|=|g_n^{**}(x)|\leq \frac{\alpha-1}{\alpha}2\sqrt{2}e$. Ponha então $f(x)=\frac{\alpha-1}{\alpha}2\sqrt{2}e$ para $x\in(0,1]$ e $f(x)=\frac{\alpha-1}{\alpha}\frac{2}{x^\alpha}$ para x>1. Temos $f\in L^1$ e $f(x)\geq |g_n^*(x)|$ para todo $x\in(0,\infty)$ e para todo $n\in\mathbb{N}$.

Isso nos permite aplicar o teorema da convergência dominada de Lebesgue e concluir a resolução.

13 Capítulo 10 - Problema 33

Segue o rascunho da resolução. O esqueleto da integração por partes é o seguinte.

$$u = \frac{x^{-\alpha+1}}{i\alpha}$$

$$du = \frac{1-\alpha}{i\alpha}x^{-\alpha}$$

$$v = e^{-ix^{\alpha}} - 1$$

$$dv = e^{-ix^{\alpha}}(-i)x^{\alpha-1}\alpha$$

Fazendo a integração por partes, temos:

$$\lim_{b\to\infty;b\geq 1}\int_{\frac{1}{b}}^{b}\frac{1-a}{iax^{a}}(e^{-ix^{a}}-1)dx = \lim_{b\to\infty;b\geq 1}\left[uv|_{\frac{1}{b}}^{b}+\int_{\frac{1}{b}}^{b}e^{-ix^{a}}dx\right]$$

Mostre agora que $\mathfrak{u}\nu|_{\frac{1}{b}}^b\to 0$ para $b\to\infty$. Mostre primeiro que $\mathfrak{u}(b)\nu(b)\to 0$ quando $b\to +\infty$. Para ver que $\mathfrak{u}\left(\frac{1}{b}\right)\nu\left(\frac{1}{b}\right)\to 0$ quando $b\to +\infty$, faça a mudança de variáveis $y=\frac{1}{b^\alpha}$ e note que $\frac{e^{-iy}-1}{y}$ é limitada (use o teorema do valor médio nas partes real e imaginária).

Observe que $\int_0^{\frac{1}{b}} e^{-ix^a} dx \to 0$ para $b \to +\infty$, pois

$$\left| \int_0^{\frac{1}{b}} e^{-ix^{\alpha}} dx \right| \leq \int_0^{\frac{1}{b}} |e^{-ix^{\alpha}}| dx = \frac{1}{b}.$$

14 Capítulo 10 - Problema 34

Achei que houvesse um erro de digitação aqui, mas não tem. Antes de provar a primeira igualdade, pode-se provar que.

$$\int_0^\infty x^{\alpha-1} e^{-ix^{\beta}} dx = \frac{1}{\beta} \Gamma\left(\frac{\alpha}{\beta}\right) e^{\frac{-i\pi\alpha}{2\beta}}.$$

A igualdade logo acima, consegui fazer. Use o resultado do problema anterior com $\alpha = \frac{\beta}{\alpha}$. Abra a integral imprópria no limite e faça a substituição $y^{\alpha} = x$. Agora, para provar a igualdade do problema, observe que para todo $k \in \mathbb{R}$, $e^{-ik} = e^{i\pi}e^{ik}$. Daí, temos

$$e^{i\pi}\int_0^\infty x^{\alpha-1}e^{ix^{\beta}}dx = \frac{1}{\beta}\Gamma\left(\frac{\alpha}{\beta}\right)e^{\frac{i\pi\alpha}{2\beta}}e^{i\pi}.$$

Na segunda parte do problema, trate primeiro o caso $\xi>0$ (use a primeira igualdade acima com $\beta=1$ e depois faça a substituição na integral $y\xi=x$). Temos então:

$$\int_0^\infty x^{\alpha-1} e^{-ix\xi} dx = \frac{\Gamma(\alpha) e^{-\frac{-i\pi\alpha}{2} \operatorname{sgn}(\xi)}}{|\xi|^{\alpha}}.$$

No caso $\xi < 0$, use a igualdade principal da primeira parte (a que o livro de fato pede para ser provada) com $\beta = 1$ e depois faça a mudança, na integral, $|\xi|y = x$ (observe que $-\xi = |\xi|$). Isso dará a igualdade desejada.

15 Capítulo 10 - Problema 35

Aqui a motivação vem do exemplo padrão pro \mathbb{R}^2 . Ponha x=(0,1) e y=(1,0). Por $2^{\frac{1}{p}}>2$ (usa-se aqui $p\in(0,1)$), temos $\|x+y\|_p=2^{\frac{1}{p}}>2=\|x\|_p+\|y\|_p$. Isso motiva o seguinte contra-exemplo. No caso em que o espaço de medida admita A,B conjuntos mensuráveis com $\mu(A)>0$, $\mu(B)>0$ e $A\cap B=\emptyset$, ponha

 $x = \mu(A)^{-1} \chi_A \ e \ y = \mu(B)^{-1} \chi_B. \ \text{Temos} \ \|x + y\|_p = 2^{\frac{1}{p}} > 2 = \|x\|_p + \|y\|_p.$

É claro que, em casos "degenerados" $\|.\|_p$ é de fato uma norma. Por exemplo, em \mathbb{R} , a norma-p para $p \in (0,1)$ coincide com o valor absoluto e é uma norma.

16 Capítulo 10 - Comentário Pós Problema 35

Logo depois do problema 35, o livro menciona que em casos triviais, existe uma norma que coincide com a distância dada por $d(f,g) = \|f-g\|_p^p$ (0 \mathbb{R}^n, a topologia dada pela distância acima coincide com a da norma euclidiana $\|.\|_2$.

Primeiro, defina $\phi_p(x) = \|x\|_p^p$. Temos $\lim_{x\to 0} \phi_p(x) = 0$. Assim, para todo r > 0, existe s > 0 tal que $B_2(0, s) \subset B_p^p(0, r)$ (B_2 : bola de acordo com a norma euclidiana; B_p^p : bola de acordo com a distância d acima).

Seja agora r>0 e seja r'>0 tal que $B_{\infty}(0,r')\subset B_2(0,r)$ (B_{∞} : bola de acordo com a norma do máximo). Seja $s=(r')^p$. Seja $x\in B_p^p(0,s)$. Temos então $\sum_{i=1}^n |x_i|^p < s$ e, logo, cada $|x_i| < s^{1/p} = r'$. Isso implica em $x\in B_2(0,r)$.

A partir do que foi feito acima, é um argumento simples mostrar que a topologia dada por d e a pela norma $\|.\|_2$ coincidem. O roteiro é o que segue:

- 1. Mostre que para todo $x\in\mathbb{R}^n$ e para todo r>0, existe s>0 tal que $B_2(x,s)\subset B_p^p(x,r).$
- 2. Mostre que para todo $x \in \mathbb{R}^n$ e para todo r > 0, existe s > 0 tal que $B_p^p(x,s) \subset B_2(x,r)$.
- 3. Tome um aberto A de acordo com a norma ||.||₂. Este é a união de bolas. Para cada uma dessas bola, existe um aberto (que também é uma bola B^p_p) de acordo com a topologia da distância d subconjunto desta bola. Logo, A é a união destes abertos de acordo com a topologia da distância d.

4. Faça de modo análogo para mostrar que todo aberto da topologia de d é também um aberto da topologia de ||.||₂.

Logo, existe uma norma cuja topologia coincide com a topologia da função distância d. Perceba que o caso X finito e μ medida de contagem com a σ -álgebra $\mathcal{M}=2^X$, se reduz ao que foi feito acima. Ponha $\alpha:\{1,2,...,\#X\}\to X$ bijeção e use o isomorfismo $\psi:\mathbb{R}^X\to\mathbb{R}^{\#X}$ dado por $\psi(f)=(f(\alpha_i))_{i=1}^{\#X}$ (ψ é isomorfismo linear e preserva tanto a distância d quanto a norma euclidiana de cada um dos respectivos espaços).

17 Capítulo 10 - Exercício 38

Primeiro, vejamos que $f \in L^p(X, \mathcal{M}, \mu)$ para todo $p \in (0, p_0)$, assumingo que $f \in L^{p_0}$.

Daqui pra frente, fixe $A = \{x \in X : 0 < |f(x)| \le 1\}$ e $B = \{x \in X : 1 < |f(x)| < \infty\}$.

Suponha primeiro que $p_0 = +\infty$. Existe então M > 0 tal que |f(x)| < M para μ -quase todo $x \in X$. Assim, dado $p \in (0,\infty)$, temos $\int |f|^p d\mu \le \int M^p d\mu = M^p < \infty$ (lembrando que $\mu(X) = 1$). Logo $f \in L^p$.

Suponha agora que $p_0 \in (0,\infty)$ e seja $p \in (0,p_0)$. Temos $\int_A |f|^p d\mu \le \int_A 1 d\mu = \mu(A) < \infty$. Temos $\int_B |f|^p d\mu \le \int_B |f|^{p_0} d\mu < \infty$ (para todo $\alpha \in (1,\infty)$, temos que $\alpha^q < \alpha^{q'}$ se $0 < q < q' < \infty$). Como $f \in L^{p_0}$, tem-se que $|f(x)| < \infty$ para μ -quase todo $x \in X$ (o que é relevante apenas caso f assuma valores em $\overline{\mathbb{R}}$). Assim $\int |f|^p d\mu = \int_A |f|^p d\mu + \int_B |f|^p d\mu < \infty$. Logo $f \in L^p$.

Isso resolve uma parte do problema. Antes de seguirmos com a prova do limite, mostraremos que a parte positiva de $\log |f|$ é sempre integrável de acordo com as hipóteses do problema (este comentário é feito no enunciado do problema).

Primeiro, seja $p \in (0,p_0)$ arbitrário. Temos $\int_B |f|^p d\mu < \infty$. Sabemos que $\log(|f(x)|^p) < |f(x)|^p$ para todo $x \in B$ (isso é uma propriedade geral de log: $\forall \alpha \in (0,\infty), \log(\alpha) < \alpha$). Assim $\log|f(x)| < \frac{1}{p}|f(x)|^p$, o que dá $\int_B \log|f| d\mu \le \frac{1}{p} \int_B |f|^p d\mu < \infty$. Note que a integral em X da parte positiva de $\log|f|$ é exatamente $\int_B \log|f| d\mu$. Isso explica o motivo da parte positiva de $\log|f|$ ser sempre

integrável. Assim, se $\log |f|$ não for integrável, então é pela parte negativa de $\log |f|$ não ser integrável, ou seja, a integral da parte negativa de $\log |f|$ é $+\infty$. Assim, faz sentido dizer que, no caso de $\log |f|$ não estar em L¹, então $\int_X \log |f| d\mu = -\infty$.

Vamos aqui seguir o roteiro dado pelo livro. Assuma então, primeiro, que |f(x)|>0 para μ -quase todo $x\in X$. Escolha $p_1\in (0,p_0)$. Defina $\varphi:[0,p_1]\to \mathbb{R}$ dada por $\varphi(p)=\int_X|f|^pd\mu$ para $p\in (0,p_1]$ e $\varphi(0)=1$.

Afirmamos que φ é contínua. Primeiro, de acordo com o problema 37 (que se resolve utilizando os conjuntos A e B sem maiores problemas usando a dica do livro), temos $\lim_{p\to 0^+} \varphi(p) = 1$ pois $\mu(X) = 1$ e $0 < |f(x)| < +\infty$ para μ -quase todo $x \in X$. Isso mostra que φ é contínua em φ 0. Seja φ 0. Queremos mostrar que convergindo para φ 1 convergindo para φ 2 com φ 3. Queremos mostrar que φ 4 (φ 4). Temos $|f|^{p_n} \to |f|^p$ 5 simplesmente para todo φ 5. Queremos mostrar que φ 6 (φ 7). Temos $|f|^{p_n} \to |f|^p$ 6 simplesmente para todo φ 8. Queremos mostrar que φ 9 ou $|f(x)| = +\infty$ 9. Como φ 9, existem φ

$$0 < |f(x)|^{p_n} = e^{p_n \log |f(x)|} < e^{r \log |f(x)|} = |f(x)|^r$$

e, para $x \in B$, $|f(x)| \in (1, \infty)$, donde

$$0 < |f(x)|^{p_n} = e^{p_n \log |f(x)|} < e^{s \log |f(x)|} = |f(x)|^s.$$

Ou seja, tanto $F_n=|F_n|\leq |f|^r\chi_A$ e $G_n=|G_n|\leq |f|^s\chi_B$. Sendo $s,r\in(0,p_0)$, temos $|f|^s,|f|^r\in L^1$ e, com maior motivo, $|f|^s\chi_B,|f|^r\chi_A\in L^1$. Aplicando o Teorema da Convergência Dominada de Lebesgue, obtemos $\lim_{n\to\infty}\int_A |f|^{p_n}d\mu=\int_B |f|^{p_n}d\mu=\int_B |f|^pd\mu$ (acima, $n>n_0$ é arbitráriio), o que mostra $\lim_{n\to\infty}\varphi(p_n)=\varphi(p)$. A arbitrariedade de $p\in(0,p_1]$ e $\{p_n\}_{n=1}^\infty\to p$ com $p_n\in[0,p_1]$ para todo $n\in\mathbb{N}$ dá que φ é contínua em todo $\{0,p_1\}$. Como já foi mostrado que φ é contínua em 0, temos φ contínua.

Queremos agora mostrar que ϕ é diferenciável em $(0, p_1)$ para aplicar então o

Teorema do Valor Médio. Seja $p \in (0, p_1)$ e r > 0 tal que para todo $h \in (-r, r)$, tem-se $p + h \in (0, p_1)$. Queremos mostrar o seguinte.

$$\lim_{h\to 0} \frac{\varphi(p+h) - \varphi(p)}{h} = \int_X |f|^p \log |f| d\mu.$$

Do jeito que faremos esta demonstração, mostrar o limite acima envolve também mostrar que Além disso, queremos mostrar que $|f|^p \log |f| \in L^1$. Vamos fazer isso primeiro.

Para ver que $|f|^p \log |f| \in L^1$ considere A e B, de novo. Que $|f|^p \log |f| \chi_B$ está em L^1 é mais simples (esta é a parte positiva de $|f|^p \log |f|$). Seja $h \in (-r,r)$. Temos $|f|^{p+h} \in L^1$. Seja $x \in B$. Temos $0 < \log |f(x)|^h < |f(x)|^h$, o que dá $0 < |f(x)|^p \log |f(x)| < \frac{1}{h} |f(x)|^{p+h}$. Isso mostra $\int_X |f|^p \log |f| \chi_B < \infty$, ou seja, a parte positiva de $|f|^p \log |f|$ tem integral finita. Para parte negativa, considere a função auxiliar $\gamma:[0,1] \to \mathbb{R}$ definita como $\gamma(\alpha)=0$ para $\alpha=0$ e $\gamma(\alpha)=\alpha^p \log \alpha$ para $\alpha\in(0,1]$. Usando a Regra de L'Hospital, temos $\lim_{\alpha\to 0^+} \gamma(\alpha)=0$, o que dá γ contínua. Sendo [0,1] compacto, existe K>0 tal que para todo $\alpha\in[0,1]$, temos $|\gamma(\alpha)| \le K$. Assim a parte negativa de $|f|^p \log |f|$ tem integral finita pois

$$\int_A -|f|^p \log |f| d\mu \le \int_A K \le K \mu(X) = K < \infty.$$

Isso termina a prova de que $|f|^p \log |f| \in L^1$ (que é mensurável é claro pois f é).

Seguiremos agora para a prova de que φ é diferenciável em p. Primeiro, note que, para $h \in (-r,r) \setminus \{0\}$, temos

$$\begin{split} \frac{\varphi(p+h)-\varphi(p)}{h} &= \int_X |f|^p \left(\frac{|f|^h-1}{h}\right) d\mu \\ &= \int_X |f|^p \left(\frac{|f|^h-1}{h}\right) \chi_A d\mu + \int_X |f|^p \left(\frac{|f|^h-1}{h}\right) \chi_B d\mu. \end{split}$$

Defina as funções $\alpha, \beta: (-r,0) \cup (0,r) \to \mathbb{R}$ dadas por

$$\alpha(h) = \int_X |f|^p \left(\frac{|f|^h - 1}{h}\right) \chi_A d\mu$$

e

$$\beta(h) = \int_X |f|^p \left(\frac{|f|^h - 1}{h}\right) \chi_B d\mu.$$

O que segue é a conta de quatro limites: $\lim_{h\to 0^+} F(h)$ e $\lim_{h\to 0^-} F(h)$, para $F\in\{\alpha,\beta\}$. A estratégia é sempre a mesma. Primeiro vamos ver que α (ou β dependendo do caso) possui uma certa monotonicidade, o que garante a existência do limite para $h\to 0^+$ (ou 0^-). A partir daí, basta calcular o limite para uma certa sequência $\{h_n\}_{n=1}^\infty$ convergindo para 0 de acordo com o tipo de limite. Esta segunda parte, fazemos usando o Teorema da Convergência Monótona ou então o Teorema da Convergência Dominada de Lebesgue (dependendo do caso em que estamos). O que resta para mostrar que φ é diferenciável em φ é, essencialmente, quatro aplicações desta estratégia.

Defina, para $\alpha \in (0,\infty)$, a função $g_\alpha: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dada por $g_\alpha(h) = \frac{\alpha^h - 1}{h}$ e também defina $q_\alpha: \mathbb{R} \to \mathbb{R}$ dada por $q_\alpha(h) = \log(\alpha^h) + \frac{1}{\alpha^h} - 1$.

Seja a > 0 e $h \in \mathbb{R} \setminus \{0\}$. Temos

$$g_{\alpha}'(h) = \frac{\alpha^{h} \log(\alpha^{h}) + 1 - \alpha^{h}}{h^{2}}$$

e também $sgn(g'_{\alpha}(h)) = sgn(q_{\alpha}(h))$. Além disso,

$$q'_{\alpha}(h) = (\log \alpha) \left(1 - \frac{1}{\alpha^h}\right).$$

Assim, temos a seguinte análise de casos:

- 1. $\alpha \in (0,1)$ e h>0. Aqui $q'_{\alpha}(h)>0$ pois $\log \alpha<0$ e $\alpha^h\in (0,1)$, o que dá $1-\frac{1}{\alpha^h}<0$. Isso implica em q_{α} ser crescente estritamente em $[0,\infty)$. Daí $q_{\alpha}(h)>q_{\alpha}(0)=0$. Daí $g'_{\alpha}(h)>0$. Então g_{α} é crescente em $(0,\infty)$. Isso implica em α ser monótona não decrescente em (0,r).
- 2. $\alpha \in (1,\infty)$ e h>0. Aqui $q'_{\alpha}(h)>0$ pois $\log \alpha>0$ e $\alpha^h>1$, o que dá $1-\frac{1}{\alpha^h}>0$. Isso dá q_{α} crescente em $[0,\infty)$ e daí $q_{\alpha}(h)>q_{\alpha}(0)=0$. Isso dá $\operatorname{sgn}(g'_{\alpha}(h))=1$ e g_{α} crescente em $(0,\infty)$. Sendo assim, β é monótona não decrescente em (0,r).

- 3. $\alpha \in (0,1)$ e h < 0. Aqui $q_\alpha'(h)$ < 0 pois $\log \alpha$ < 0 e α^h > 1, o que dá $1-\frac{1}{\alpha^h}$ > 0. Isso implica em q_α ser decrescente em $(-\infty,0]$, o que dá $q_\alpha(h)>q_\alpha(0)=0$. Daí g_α é crescente em $(-\infty,0)$. Isso implica em α ser monótona não decrescente (-r,0).
- 4. $\alpha \in (1,\infty)$ e h < 0. Aqui $q_\alpha'(h) < 0$ pois $\log \alpha > 0$ e $\alpha^h \in (0,1)$ o que dá $1-\frac{1}{\alpha^h} < 0$. Assim q_α é decrescente em $(-\infty,0]$ e, $\log o$, $q_\alpha(h) > q_\alpha(0) = 0$. Daí g_α é crescente em $(-\infty,0)$. Isso implica em β ser monótona não decrescente em (-r,0).

As quatro análises de casos acima nos dão que existem os quatro limites abaixo:

$$\lim_{h\to 0^+}\alpha(h), \lim_{h\to 0^-}\alpha(h), \lim_{h\to 0^+}\beta(h), \lim_{h\to 0^-}\beta(h).$$

Vamos calcular $\lim_{h\to 0^+}\alpha(h)$. Considere $\{h_n\}_{n=1}^\infty$ decrescente tal que $0< h_n<\frac{r}{2}$ para todo $n\in\mathbb{N}$ e também tal que $\lim_{n\to\infty}h_n=0$. Defina $F_n=|f|^p\left(\frac{|f|^{h_n}-1}{h_n}\right)\chi_A$. Dado $x\in A$ e $n_1,n_2\in\mathbb{N}$ com $n_1< n_2$, temos $F_{n_2}(x)\leq F_{n_1}(x)<0$ (use a análise feita no caso 1 acima). Além disso, $\lim_{n\in\mathbb{N}}F_n=|f|^p\log|f|\chi_A$ pontualmente. Assim, temos $\{-F_n\}_{n=1}^\infty$ monótona não decrescente pontualmente convergindo para $-|f|^p\log|f|\chi_A$. Pelo Teorema da Convergência Monótona, temos $\lim_{n\in\mathbb{N}}\int_X -F_n d\mu = \int -|f|^p\log|f|\chi_A$ e, logo, $\lim_{n\in\mathbb{N}}\alpha(h_n)=\int |f|^p\log|f|\chi_A$. Isso nos dá $\lim_{n\in\mathbb{N}}\alpha(h)=\int |f|^p\log|f|\chi_A$.

dá $\lim_{h\to 0^+} \alpha(h) = \int |f|^p \log |f| \chi_A$. Vamos calcular $\lim_{h\to 0^+} \beta(h)$. De novo, já sabemos da existência do limite. Considere $\{h_n\}_{n=1}^\infty$ decrescente tal que $0 < h_n < \frac{r}{2}$ para todo $n \in \mathbb{N}$ e também tal que $\lim_{n\to\infty} h_n = 0$. Defina $F_n = |f|^p \left(\frac{|f|^{h_n}-1}{h_n}\right) \chi_B$. Dado $x \in B$, temos $0 < F_n(x) < |f(x)|^p \left(\frac{|f(x)|^{r/2}-1}{r/2}\right)$ (considere a análise de caso 2 feita acima). Sabemos que $\lim_{n\in\mathbb{N}} F_n = |f|^p \log |f| \chi_B$ pontualmente. Sendo $|f|^p \left(\frac{|f|^{r/2}-1}{r/2}\right) \in L^1$ não negativa e F_n não negativa também, então temos, pelo Teorema da Convergência Dominada de Lebesgue, $\lim_{h\to 0^+} \beta(h) = \int_X |f|^p \log |f| \chi_B d\mu$.

 $\begin{array}{l} \text{Vamos calcular } \lim_{h \to 0^-} \overset{n \to 0^+}{\alpha(h)}. \text{ Considere } \{h_n\}_{n=1}^\infty \text{ crescente tal que } -\frac{r}{2} < h_n < 0 \\ \text{para todo } n \in \mathbb{N} \text{ e tamb\'em tal que } \lim_{n \to \infty} h_n = 0. \text{ Defina } F_n = |f|^p \left(\frac{|f|^{h_n}-1}{h_n}\right) \chi_A. \end{array}$

Aqui, dados $n_1, n_2 \in \mathbb{N}$ com $n_1 < n_2$, temos $0 \le F_{n_1} \le F_{n_2}$. O Teorema da Convergência Monótona, agora, implica em $\lim_{h \to 0^-} \alpha(h) = \int_X |f|^p \log |f| \chi_A d\mu$.

Finalmente, vamos calcular $\lim_{h\to 0^-}\beta(h)$. Considere $\{h_n\}_{n=1}^\infty$ crescente tal que $-\frac{r}{2} < h_n < 0$ para todo $n \in \mathbb{N}$ e também tal que $\lim_{n\to\infty}h_n = 0$. Defina $F_n = |f|^p \left(\frac{|f|^{h_n}-1}{h_n}\right)\chi_B$. Dado $n \in \mathbb{N}$, temos $|F_n| \leq |f|^p \left|\frac{|f|^{-r/2}-1}{-r/2}\right|$ (veja análise caso 4 acima). O Teorema da Convergência Dominada de Lebesgue nos dá $\lim_{h\to 0^-}\beta(h) = \int_X |f|^p \log |f|\chi_B d\mu$.

Com isso, $\lim_{h\to 0} \frac{\varphi(p+h)-\varphi(p)}{h}$ existe (no sentido tradicional de ser um número real) e é igual a $\int_X |f|^p \log |f| d\mu$. Assim, sendo $p \in (0,p_1)$ qualquer, temos φ diferenciável em $(0,p_1)$ e contínua em $[0,p_1]$ sendo que para todo $p \in (0,p_1)$, $\varphi'(p) = \int_X |f|^p \log |f| d\mu$.

Defina agora $\psi: [0, p_1] \to \mathbb{R}$ dada por $\psi(p) = \log \varphi(p)$. Assim, ψ é contínua em $[0, p_1]$ e diferenciável em $(0, p_1)$ com

$$\psi'(p) = \frac{1}{\|f\|_p^p} \int_X |f|^p \log |f| d\mu,$$

para $p \in (0, p_1)$. O Teorema do valor médio nos dá que para todo $p \in (0, p_1)$, existe $q \in (0, p)$ tal que $\psi(p) - \psi(0) = \psi'(q)p$, ou seja,

$$\log \|f\|_{p} = \|f\|_{q}^{-q} \int_{X} |f|^{q} \log |f| d\mu.$$

Já sabemos que $\lim_{q\to 0^+}\|f\|_q^q=1$. Resta ver que $\lim_{q\to 0^+}\int_X|f|^q\log|f|d\mu=\int_x\log|f|d\mu$. É claro que para todo $x\in A\cup B$, temos

$$\lim_{q \to 0^+} |f(x)|^q \log |f(x)| = \log |f(x)|.$$

Para concluir que podemos passar o limite para dentro da integral, usaremos, de novo, os conjuntos A e B junto dos teoremas de convergência (monótona e dominada).

Primeiro considere o caso em B. Dado $x \in B$ e $q_1, q_2 \in (0, \infty)$ com $q_1 < q_2$, temos $|f(x)|^{q_1} \log |f(x)| < |f(x)|^{q_2} \log |f(x)|$. Logo $q \in (0, p_1) \mapsto \int_B |f|^q \log |f| d\mu$

é monótona, o que implica na existência do limite $\lim_{q\to 0^+}\int_B |f|^q \log |f| d\mu$. Considere então uma sequência $\{q_n\}_{n=1}^\infty$ estritamente decrescente, de termos positivos, convergindo para 0. A sequência de funções $F_n = |f|^{q_n} \log |f| \chi_B$ converge pontualmente para a função $\log |f| \chi_B$. Além disso $0 \le |F_n| = F_n \le F_1 = |F_1| \in L^1$. O Teorema da Convergência Dominada de Lebesgue nos dá então que $\lim_{n\to 0^+} \int_B |f|^q \log |f| d\mu = \int_B \log |f| d\mu$.

O caso em A se dá pelo Teorema da Convergência Monótona. Dados $x \in A$, $q_1, q_2 \in (0, p_1)$ com $q_1 < q_2$, temos $|f(x)|^{q_1} \log |f(x)| \le |f(x)|^{q_2} \log |f(x)|$. Isso implica na monotonicidade de $q \in (0, p_1) \mapsto \int_A |f|^q \log |f| d\mu$ e logo na existência do limite $\lim_{q \to 0^+} \int_A |f|^q \log |f| d\mu$. Considere agora uma sequência $\{q_n\}_{n=1}^\infty$ estritamente decrescente, de termos positivos e convergindo para 0. Considere a sequência de funções $F_n = -|f|^{q_n} \log |f| \chi_A$. Esta converge pontualmente para $-\log |f| \chi_A$. Além disso, a análise acima nos dá que $F_n \le F_{n+1}$ para todo $n \in \mathbb{N}$. O Teorema da Convergência Monótona nos dá então que $\lim_{q \to 0^+} \int_A -|f|^q \log |f| d\mu = \int_A -\log |f| d\mu$.

Daqui para frente, precisaremos separar os dois seguintes casos: $\log |f| \in L^1$; $\log |f| \notin L^1$. No caso em que $\log |f| \in L^1$, temos $\lim_{q \to 0^+} \int_A |f|^q \log |f| d\mu = \int_A \log |f| d\mu$, e assim, $\lim_{q \to 0^+} \int_X |f|^q \log |f| d\mu = \int_X \log |f| d\mu$. Isso implica em

$$\lim_{p\to 0^+}\log\left\|f\right\|_p=\int_X\log|f|d\mu.$$

A continuidade da exponencial nos dá $\lim_{p\to 0^+}\|f\|_p=e^{\int_X\log|f|d\mu}$ (isso resolve o caso em que |f|>0 μ -quase sempre e $\log|f|\in L^1$). Caso $\log|f|\notin L^1$, temos $\lim_{q\to 0^+}\int_A|f|^q\log|f|d\mu=-\infty.$ Assim,

$$\begin{split} \lim_{q \to 0^+} \|f\|_q^{-q} \int_X |f|^q \log |f| d\mu &= \lim_{q \to 0^+} \|f\|_q^{-q} \left(\int_A |f|^q \log |f| d\mu + \int_B |f|^q \log |f| d\mu \right) \\ &= -\infty. \end{split}$$

Isso implica em $\lim_{p\to 0^+}\log\|f\|_p=-\infty$, o que dá $\lim_{p\to 0^+}\|f\|_p=0$ (note que isso é exatamente como o caso $\log|f|\notin L^1$ deve ser interpretado como dito no enunciado

do exercício pois o que temos aqui é algo como $\int_X \log |f| d\mu = -\infty$, o que dá $e^{\int_X \log |f| d\mu} = 0$).

Isso termina o tratamento do caso |f(x)| > 0 para μ -quase todo $x \in X$. Trataremos, de agora em diante, o outro caso.

Ponha $C=\{x\in X: |f(x)|\neq 0\}$ e assuma $\mu(C)>0$. Note que este caso é uma forma na qual $\log |f|\notin L^1$, o que significa que precisamos mostrar que $\lim_{p\to 0^+}\|f\|_p=0$.

Caso $\mu(C)=1$, $\|f\|_p=0$ para todo p>0 e não há nada a fazer. Suponha então que $\mu(C)\in(0,1)$.

O que faremos aqui (seguindo de novo a dica do livro) é trabalhar com um outro espaço de medida adicional: (Y, \mathcal{N}, ν) , sendo $Y = X \setminus C$, $\mathcal{N} = \{W \setminus C : W \in \mathcal{M}\}$ e $\nu(W) = \frac{\mu(W)}{\mu(X \setminus C)}$ (note que $\mu(C) < 1$ dá que $\mu(X \setminus C) > 0$). Esta tripla nos dá um espaço de medida. \mathcal{N} é uma σ -álgebra de subconjuntos de Y pois: primeiro, todo elemento em \mathcal{N} é um subconjunto de Y; segundo, dado $W \in \mathcal{N}$ com $W \in \mathcal{M}$, temos $Y \setminus (W \setminus C) = (X \setminus W) \setminus C \in \mathcal{N}$; e, terceiro, \mathcal{N} é claramente fechado por uniões enumeráveis. Que ν é medida é claro. Assim, temos (Y, \mathcal{N}, ν) é um espaço de medida com $\nu(Y) = 1$.

O que queremos mostrar agora é que dado $g:X\to [0,\infty]$ mensurável em (X,\mathcal{M}) , então $g|_Y$ é mensurável em (Y,\mathcal{N}) e $\int_Y g|_Y d\nu = \frac{1}{\mu(X\setminus C)} \int_Y g d\mu$. Isso terminará a resolução por causa do seguinte. $|f|^{p_1}$ é (X,\mathcal{M}) mensurável e logo $|f|_Y|^{p_1}$ também é. Só que $|f|_Y(x)|>0$ para todo $x\in Y$, o que dá $\lim_{p\to 0^+} \left(\int_Y |f|_Y|^p d\nu\right)^{\frac{1}{p}}=e^{\int_Y \log|f|_Y|d\nu}$ pelo que já foi provado no caso anterior. Assim, temos o seguinte:

$$\begin{split} \lim_{p\to 0^+} \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}} &= \lim_{p\to 0^+} \left(\int_Y |f|^p d\mu \right)^{\frac{1}{p}} \\ &= \lim_{p\to 0^+} \left(\mu(X\setminus C) \int_Y |f|^p d\nu \right)^{\frac{1}{p}} \\ &= \lim_{p\to 0^+} \left[\mu(X\setminus C)^{\frac{1}{p}} \left(\int_Y |f|^p d\nu \right)^{\frac{1}{p}} \right]. \\ &= \left[\lim_{p\to 0^+} \mu(X\setminus C)^{\frac{1}{p}} \right] \left[\lim_{p\to 0^+} \left(\int_Y |f|^p d\nu \right)^{\frac{1}{p}} \right] = 0. \end{split}$$

 $\text{pois} \lim_{p\to 0^+} \left(\int_Y |f|^p d\nu \right)^{\frac{1}{p}} \in \mathbb{R} \text{ e} \lim_{p\to 0^+} \mu(X\setminus C)^{\frac{1}{p}} = 0.$

O que nos resta então é mostrar que dado $g:X\to [0,\infty]$ mensurável em (X,\mathcal{M}) , então $g|_Y$ é mensurável em (Y,\mathcal{N}) e $\int_Y g|_Y d\nu = \frac{1}{\mu(X\setminus C)} \int_Y g d\mu$. Seja P Borel mensurável de $\overline{\mathbb{R}}$. Temos $g|_Y^{-1}(P) = Y\cap g^{-1}(P) = (X\setminus C)\cap g^{-1}(P) = g^{-1}(P)\setminus C\in \mathcal{N}$ (uma argumentação análogo extende o que foi provado para funções $g:X\to F$, sendo $F=\mathbb{C},\mathbb{R}$ ou $\overline{\mathbb{R}}$). Considere agora uma sequência de funções simples $\varphi_n:Y\to [0,\infty)$ com $0\le \varphi_n(x)\le \varphi_{n+1}(x)\le g(x)$ para todo $x\in Y$ e para todo $n\in \mathbb{N}$, e também com $\varphi_n\to g$ pontualmente. Para cada $n\in \mathbb{N}$, temos $\varphi_n=\sum_{i=1}^n \alpha_{i,n}\chi_{E_{i,n}}$ sendo os $E_{i,n}$ mensuráveis em (X,\mathcal{M}) dois-a-dois disjuntos para cada $n\in \mathbb{N}$ fixado e, claro, os $\alpha_{i,n}\ge 0$ para todo $i,n\in \mathbb{N}$. Temos $\varphi_n|_Y$ também uma função simples de Y em $[0,\infty)$ dada por $\varphi_n|_Y=\sum_{i=1}^n \alpha_{i,n}\chi_{E_{i,n}\cap Y}$. Temos

$$\begin{split} \int_{Y} \varphi_{n} | Y d\nu &= \sum_{i=1}^{n} \alpha_{i,n} \nu(E_{i,n} \cap Y) \\ &= \sum_{i=1}^{n} \alpha_{i,n} \frac{\mu(E_{i,n} \cap Y)}{\mu(Y)} \\ &= \mu(X \setminus C)^{-1} \sum_{i=1}^{n} \alpha_{i,n} \int_{Y} \chi_{E_{i,n}} d\mu \\ &= \mu(X \setminus C)^{-1} \int_{Y} \varphi_{n} d\mu \end{split}$$

O Teorema da Convergência monótona (aplicado duas vezes; uma em (X, \mathcal{M}, μ) e outra em (Y, \mathcal{N}, ν)) agora implica no que queremos.

$$\begin{split} \int_{Y} g|_{Y} d\nu &= \lim_{n \to +\infty} \int_{Y} \varphi_{n}|_{Y} d\nu \\ &= \lim_{n \to +\infty} \mu(X \setminus C)^{-1} \int_{Y} \varphi_{n} d\mu \\ &= \mu(X \setminus C)^{-1} \int_{Y} g d\mu. \end{split}$$

18 Capítulo 11 - Exercício 8

O que faremos aqui é dar a prova completa do teorema.

No caso em que X é σ -finito, aplica-se a o resultado obtido logo antes do enunciado do teorema para a função $|f|^p$. Assim, obtem-se o seguinte:

$$\int_X |f|^p d\mu = \int_0^\infty \mu(\{x \in X : |f(x)|^p > y\}) dy.$$

Considere a função $F:(0,\infty)\to [0,\infty]$ dada por $F(y)=\mu(\{x\in X:|f(x)|^p>y\})$. Temos dois casos a considerar aqui. Um é o que $F(y)+\infty$ para algum $y\in (0,\infty)$. Neste caso, $|f|^p\notin L^1$ pois se $K=\{x\in X:|f(x)|^p>y\}$, então $\mu(K)=+\infty$ e $\int_X |f|^p d\mu \geq \int_K |f|^p d\mu = +\infty$. Assim, $\int_X |f|^p d\mu = +\infty$. Sendo $K=\{x\in X:|f(x)|>y^{\frac{1}{p}}\}$, temos $\int_0^\infty \mu(\{x\in X:|f(x)|>y\})ps^{p-1}ds=+\infty$. Isso nos dá

$$\int_X |f|^p d\mu = \int_0^\infty \mu(\{x \in X: |f(x)|>y\}) ps^{p-1} ds.$$

Ainda no caso X σ -finito, temos o caso em que $F(y) < \infty$ para todo $y \in (0,\infty)$. Neste caso F é contínua. Não provaremos que F é contínua em detalhe, porém a ideia da prova é a seguinte. F é monótona não crescente. Isso garante a existência dos limites laterais de F em todos os pontos de $(0,\infty)$. Use que $F(y) < \infty$ para todo $y \in (0,\infty)$ junto dos teoremas de continuidade de medida $(\mu(\cup A_n) = \lim \mu(A_n)$ para $\{A_n\}_{n=1}^{\infty}$ crescente; $\mu(\cap A_n) = \lim \mu(A_n)$ para $\{A_n\}_{n=1}^{\infty}$ decrescente com $\mu(A_1) < \infty$) para concluir então a continuidade da F (note que sabendo das existências dos limites laterais, basta mostrar que são iguais usando alguma sequência em particular convenientemente escolhida). Ponha agora $g:(0,\infty) \to \mathbb{R}$ dada por $g(s) = s^p$. Temos $g'(s) = ps^{p-1}$

$$(0$$

$$\begin{split} \int_X |f|^p d\mu &= \int_0^\infty F(y) dy \\ &= \left[\lim_{\alpha < 1; \alpha \to 0^+} \int_\alpha^1 F(y) dy\right] + \left[\lim_{\alpha > 1; \alpha \to +\infty} \int_1^\alpha F(y) dy\right] \\ &= \left[\lim_{\alpha < 1; \alpha \to 0^+} \int_{\alpha^{\frac{1}{p}}}^1 F(g(s)) g'(s) ds\right] + \left[\lim_{\alpha > 1; \alpha \to +\infty} \int_1^{\alpha^{\frac{1}{p}}} F(g(s)) g'(s) ds\right] \\ &= \int_0^\infty \mu(\{x \in X : |f(x)| > s\}) ps^{p-1} ds \end{split}$$

Note que $F(g(s)) = \mu(\{x \in X : |f(x)| > s\})$ para $s \in (0, \infty)$. Isso resolve o caso X σ -finito. A continuidade de F foi usada na aplicação do teorema da mudança de variáveis nas integrais dentro dos limites.

Considere agora X não σ -finito. Vamos mostrar que o resultado se reduz ao caso σ -finito. Ainda com $F:(0,\infty)\to [0,\infty]$ dada por $F(y)=\mu(\{x\in X:|f(x)|^p>y\})$, os dois casos de antes se repetem aqui. Primeiro suponha que para exista y>0 tal que $F(y)=+\infty$. Isso implica em $|f|^p\notin L^1$ e logo $\int_X |f|^p d\mu=+\infty$. Além disso $\{x\in X:|f(x)|^p>y\}=\{x\in X:|f(x)|>y^p\}$. Isso implica em $\mu(\{x\in X:|f(x)|>y^p\})=+\infty$. Logo, $\int_0^\infty \mu(\{x\in X:|f(x)|>s\})ps^{p-1}ds=+\infty$. Assim:

$$\int_X |f|^p d\mu = \int_0^\infty \mu(\{x \in X: |f(x)|>s\}) ps^{p-1} ds.$$

No caso em que $F(y)<\infty$ para todo $y\in(0,\infty)$, defina $A_n=\left\{x\in X:|f(x)|>\frac{1}{n}\right\}$ para cada $n\in\mathbb{N}$. Temos então $\mu(A_n)<\infty$. Ponha $A=\{x\in X:|f(x)|>0\}$. $A=\cup A_n$. Isso nos dá

$$\int_X |f|^p d\mu = \int_A |f|^p d\mu.$$

Defina agora um novo espaço de medida. Ponha $\mathcal{N}=\{E\cap A:E\in\mathcal{M}\}$ (onde \mathcal{M} é a σ -álgebra em questão sobre X) e ponha $\nu(E)=\mu(E)$, para $E\in\mathcal{N}$. É de verificação fácil que (A,\mathcal{N},ν) é um espaço de medida σ -finito. Não somente isso, dado $\varphi:X\to[0,\infty]$, $\varphi|_A$ é \mathcal{N} -mensurável e $\int_A \varphi|_A d\nu=\int_A \varphi d\mu$ (aproxime φ

por uma sequência monótona não decrescente de funções simples, positivas de imagem em $[0,\infty)$ e aplique o Teorema da Convergência Monótona). O teorema provado para o caso σ -finito junto da observação de que $\int_X |f|^p d\mu = \int_A |f|^p d\mu$ nos dá a conclusão buscada. De fato:

$$\begin{split} \int_X |f|^p d\mu &= \int_A |f|^p d\mu \\ &= \int_A |f|^p |_A d\nu \\ &= \int_A |f|_A |^p d\nu \\ &= \int_0^\infty \nu(\{x \in X : |f|_A(x)| > s\}) p s^{p-1} ds \\ &= \int_0^\infty \mu(A \cap \{x \in X : |f|_A(x)| > s\}) p s^{p-1} ds \\ &= \int_0^\infty \mu(\{x \in X : |f(x)| > s\}) p s^{p-1} ds. \end{split}$$