

An Introduction to Neuroevolution

Paul Pauls, Technical University of Munich (TUM)

Advisor: Michael Adam, Technical University of Munich (TUM)

Evolutionary, Genetic and Neuroevolution Algorithms

"A generic population-based and meta-heuristically optimized algorithmic solution to an applied problem"

(Source: [16])

"A generic population-based and meta-heuristically optimized algorithmic solution to an applied problem"

(Source: [16])

"A generic population-based and meta-heuristically optimized algorithmic solution to an applied problem"

(Source: [16])

population algorithm algorithm

population algorithm algorithm

algorithm

7

Evolutionary Algorithms – Mutation

```
1 max_number = 0
2 for number in list:
3   if number > max_number:
4      number++
5
6 return max_number
```


Evolutionary Algorithms – Mutation

```
1 max_number = 0
2 for number in list:
3   if number > max_number:
4      number++
5      max_number = number
6
7 return max_number
```


"A generic population-based and meta-heuristically optimized algorithmic solution to an applied problem"

(Source: [16])

"A generic population-based and meta-heuristically optimized algorithmic solution to an applied problem"

(Source: [16])

(a)

(b)

Genetic Algorithms

5

Genetic Algorithms

(a) (b)

[phenotype]

[genotype]

Genetic Algorithms

"A neuroevolution algorithm is a genetic algorithm, whose searchspace (genotypes) consists **only** of artificial neural networks. A genetic algorithm in turn is an evolutionary algorithm that evolves genotypes through **mutation**, **recombination** and **selection**."

[phenotype]

0010 0000 0100 1010 0011 0111

(b)

[genotype]

Source: [4]

Neuroevolution - Mutation

0010 0000 0100 1010 0011 0111

(b)

Source: [4]

Neuroevolution – Mutation

0010 1000 0100 1010 0011 0111

(b)

Source: [4], modified

Neuroevolution – Recombination

Crossovers: [A,B,A] [C,B,C] (both are missing information)

Source: [7]

Neuroevolution – Selection

Periodical **removal** of the **lowest performing algorithms** in the population

"Neuroevolution is the - possibly boundless - process in which by the means of a genetic algorithm the population of artificial neural networks is increasingly optimized in order to maximize the accuracy or fitness of the best ANN."

Neuroevolution of Augmenting Topologies (abbr. NEAT)

Neuroevolution of Augmenting Topologies

- Published in 2002 by Kenneth O.Stanley and Risto Miikkulainen [6]
- Outperformed all contemporary neuroevolution systems when introduced [8]
- Achieved performance because it solved a fundamental problem in neuroevolution, while still being elegantly simple [8, chap. 3.2]
- Still one of the most prominent neuroevolution systems today and considered a benchmark in the field [22]

NEAT – Principle of Historical Markings

Crossovers: [A,B,A] [C,B,C] (both are missing information)

Source: [7]

Source: [7]

NEAT – Principle of Historical Markings

[C,B,C]Crossovers: [A,B,A] (both are missing information)

Principle: "Enable information-preserving crossovers by keeping track of genes – and their presence in genomes – by introducing innovation numbers"

NEAT – Principle of Historical Markings

Source: [7]

NEAT – Principle of Speciation

Principle: "Protect innovation by **dividing population into niches** according to their distinctiveness and only comparing niches against one another"

NEAT – Principle of Speciation

Source: [8]

Principle: "Protect innovation by **dividing population into niches** according to their distinctiveness and only comparing niches against one another"

NEAT – Principle of Complexification

Principle: "Keep topology purposeful by providing a **minimal initial population**, which is **only expanded upon**"

NEAT – Principle of Complexification

Source: [8]

Principle: "Keep topology purposeful by providing a **minimal initial population**, which is **only expanded upon**"

Neuroevolution of Augmenting Topologies

The key aspects of NEAT as a neuroevolution system:

- Facilitates innovation through lossless recombination (Principle of Historical Markings)
- Protects innovation through speciation (Principle of Speciation)
- Keeps solutions minimal (Principle of Complexification)

Neuroevolution Performance and Practical Applications

Neuroevolution – Performance

Model	# Parameters	# Multiply-Adds	Top-1 / Top-5 Accuracy (%)
Incep-ResNet V2 [44]	55.8M	13.2B	80.4 / 95.3
ResNeXt-101 [48]	83.6M	31.5B	80.9 / 95.6
PolyNet [51]	92.0M	34.7B	81.3 / 95.8
Dual-Path-Net-131 [7]	79.5M	32.0B	81.5 / 95.8
GeNet-2 [47]*	156M	_	72.1 / 90.4
Block-QNN-B [52]*	_	_	75.7 / 92.6
Hierarchical [30]*	64M	_	79.7 / 94.8
NASNet-A [54]	88.9M	23.8B	82.7 / 96.2
PNASNet-5 [29]	86.1M	25.0B	82.9 / 96.2
AmoebaNet-A (N=6, F=190)*	86.7M	23.1B	82.8 / 96.1
AmoebaNet-A (N=6, F=448)*	469M	104B	83.9 / 96.6

Source: [23]

Neuroevolution – Performance

Source: [23]

Neuroevolution – Performance

Source: [23]

Neuroevolution – Practical Example

An Introduction to Neuroevolution

Paul Pauls, Technical University of Munich (TUM)

Advisor: Michael Adam, Technical University of Munich (TUM)

References

- Turing Computing Machinery and Intelligence; Oct. 1950; https://academic.oup.com/mind/article/LIX/236/433/986238
- [2] Anderson Learning to control an inverted pendulum using neural networks; 1989; https://ieeexplore.ieee.org/document/24809
- [3] Gruau, Bernard-lyon, et al Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm; 1994; https://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.29.5939
- [4] Yao Evolving Artificial Neural Networks; 1999; http://avellano.fis.usal.es/~lalonso/compt_soft/articulos/yao99evolving.pdf
- [5] Gomez, Miikkulainen Solving Non-Markovian Control Tasks with Neuroevolution; 1999; http://nn.cs.utexas.edu/downloads/papers/gomez. ijcai99.pdf
- [6] Stanley, Miikkulainen Evolving Neural Networks through Augmented Topologies; 2002; http://nn.cs.utexas.edu/downloads/papers/stanley.ec02. pdf
- [7] Stanley, Miikkulainen Efficient Evolution of Neural Network Topologies; 2002; http://nn.cs.utexas.edu/downloads/papers/stanley.cec02.pdf
- [8] Stanley Efficient Evolution of Neural Networks through Complexification; Aug 2004; http://nn.cs.utexas.edu/downloads/papers/stanley.phd04. pdf
- [9] Stanley, D'Ambrosio, et al A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks; 2009; http://axon.cs.byu.edu/ ~dan/778/papers/NeuroEvolution/stanley3**.pdf
- [10] Aaltonen, Adelman, et al Measurement of the top-quark mass with dilepton events selected using neuroevolution at CDF; Apr 2009; https://www.ncbi.nlm.nih.gov/pubmed/19518620
- [11] Risi, Stanley Enhancing ES-HyperNEAT to Evolve More Complex Regular Neural Networks; Jul 2011; http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.365.4332
- [12] Lehman, Stanley Novelty Search and the Problem with Objectives; Oct 2011; https://www.cs.ucf.edu/eplex/papers/lehman_gptp11.pdf
- [13] Hausknecht A Neuroevolution Approach to General Atari Game Playing; 2012; https://www.cs.utexas.edu/~mhauskn/projects/atari/movies.html
- [14] Ciresan, Giusti, et al Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images; 2012; http://people.idsia.ch/ ~juergen/nips2012.pdf

- [15] Krizhevsky, Sutskever, et al ImageNet Classification with Deep Convolutional Neural Networks; 2012; https://papers.nips.cc/paper/ 4824-imagenet-classification-with-deep-convolutional-neural-networks.
- [16] Holland Scholarpedia Article on 'Genetic Algorithms'; Oct 2012; http://www.scholarpedia.org/article/Genetic_algorithms
- [17] Mnih, Kavukcuoglu, et al Playing Atari with Deep Reinforcement Learning; Dec 2013; https://arxiv.org/abs/1312.5602
- [18] Schmidhuber Deep Learning in Neural Networks; Apr 2014; https://arxiv.org/abs/1404.7828
- [19] Cully, Clune, et al Robots that can adapt like animals; May 2015; https://www.nature.com/articles/nature14422
- [20] Miikkulainen, Liang, et al Evolving Deep Neural Networks; Mar 2017; https://arxiv.org/abs/1703.00548
- [21] Franca Neuroevolution of Augmenting Topologies Applied to the Detection of Cancer in Medical Images; Feb 2018; http://www.bcc.ufrpe.br/sites/www.bcc.ufrpe.br/files/Luiz%20Fran%C3%A7a.pdf
- [22] Frolov Neuroevolution: A Primer on Evolving Artificial Neural Networks; Oct 2018; https://www.inovex.de/blog/neuroevolution/
- [23] Real, Aggarwal, et al Regularized Evolution for Image Classifier Architecture Search; Feb 2019; https://arxiv.org/abs/1802.01548
- [24] CodeReclaimers NEAT Python; Jun 2019; https://github.com/codereclaimers/neat-python
- [25] NEAT Software Catalog; Jun 2019; http://eplex.cs.ucf.edu/neat_software/
- [26] Pauls SuperMario World NEAT Agent; Jun 2019; https://github.com/ PaulPauls/SuperMarioWorld-NEAT-Agent
- [27] Tensorflow 2.0 Beta; Jun 2019; https://www.tensorflow.org/beta
- [28] Tensorflow addons; Jun 2019; https://github.com/tensorflow/addons
- [29] Pauls Tensorflow Neuroevolution; Jun 2019; https://github.com/ PaulPauls/Tensorflow-Neuroevolution