M-DG Seminar: Multinomial Processing Tree Modeling

Introduction

Summer semester 2020

Prof. Dr. Daniel Heck

M-DG: Multinomial Processing Tree Modeling

Part	Date	Торіс	Literature			
(A) Theory	Self study	A1) Introduction	Erdfelder et al. (2009)			
		A2) Basics of MPT modeling	Batchelder & Riefer (1999)			
		A3) The software multiTree	Moshagen (2010)			
		A4) Hierarchical MPT modeling	Lee (2011) Heck et al. (2018)			
(B) Application	15.5.*	B1) Questions & Practice with multiTree	Batchelder & Riefer (1986)			
	20.5.*	B2) Workflow: Developing an MPT model	Jung et al. (2019)			

^{*} Web-Conference, 12:00 – 15:00, https://webconf.hrz.uni-marburg.de/b/dan-fvk-ha6

Introduction & Examples

Overview:

- 1. Introduction: Measuring recognition memory
- 2. Example: Source memory
- 3. Example: Automatic use of stereotypes
- 4. Summary & Outlook
- 5. Appendix: More applications

Introduction to MPT Models

- Required type of data: Multinomial models are tailored to discrete, categorical data
 - yes/no responses
 - correct/incorrect judgments
 - multiple choice tasks
 - number or type of recalled words
 - •
- Psychological data are typically discrete in nature
 - If not, they can often be transformed into discrete data
 - Response time bins, rankings of numerical judgments, ...
- → many psychological paradigms generate frequency data appropriate for MPT modeling.

Example: Recognition Memory

- Paradigm:
 - Old-new recognition memory test
- Two Conditions:
 - Old items (targets)
 - New items (lures)
- Categorical (dichotomous) dependent variable:
 - "old" vs. "new" judgment

Measurement of Cognitive Processes

MPT models...

- ... provide explanations of observed frequency data in terms of basic parameters with clear-cut psychological interpretations;
- ... these parameters represent probabilities of latent psychological processes (or latent psychological states) underlying human behavior;
- ... in other words, these models disentangle and measure the contributions of different psychological processes to frequencies of observable behaviors.

1-High Threshold Model (Blackwell, 1963)

Model equations:

$$P(\text{"old"} \mid \text{old item}) = r + (1 - r) \cdot g$$

 $P(\text{"old"} \mid \text{new item}) = g$

2-High Threshold Model

$$P(\text{"old"} \mid \text{old item}) = d_o + (1 - d_o) \cdot g$$

 $P(\text{"old"} \mid \text{new item}) = (1 - d_n) \cdot g$

Terminology

"Multinomial"

- MPT models assume that observations are sampled independently from one or more multinomial distributions
- The frequency data structure can be univariate or multivariate

"Processing"

- Assumption that a finite number of latent processes generate the observed responses
- Goal: Drawing inferences about these processes (e.g., via parameter estimation or hypothesis testing)

• "Tree"

Models can be depicted as probability trees

Introduction & Examples

Overview:

- 1. Introduction: Measuring recognition memory
- 2. Example: Source memory
- 3. Example: Automatic use of stereotypes
- 4. Summary & Outlook
- 5. Appendix: More applications

Source Memory

Paradigm:

 Source-monitoring task with two Sources A & B (e.g., A = Zeit, B = Bild)

Conditions:

- Test items from Source A or B, and New items
- Dependent variable:
 - Participants' responses whether an item is:
 - a) "old" or "new"
 - b) from Source "A" or "B"

Source-Monitoring Model: Part I

Parameters:

- *D* = item memory
- *d* = source memory

- b = guessing "old" (vs. "new")
- a, g = guessing Source "A"

Source-Monitoring Model: Part II

Relevance: Reality monitoring

Reality monitoring:

- Can a person differentiate between memories of perceived and imagined events?
- Thought disorders associated with schizophrenia may be a result of reality-monitoring failures
- Reality-monitoring task
 - Source A = say written words out loud
 - Source B = think of the written words for themselves
- Harvey (1985) compared five groups:
 - Manic & schizophrenic patients that are either thought-disordered or non-thought-disordered (TD vs. NTD)
 - Healthy controls

Schizophrenic Patients: Data

- For each group, 3 x 3 frequencies were observed
 - Sources: Say, Think, New
 - Responses: "say", "think", "new"

Table 3
Group 3 × 3 Data Tables Constructed From Harvey (1985)

ltem	Manic subjects						Schizophrenic subjects					,	. •		
	NTD			TD		NTD		TD			Normal subjects				
	S	T	N	S	T	N	S	T	N	S	T	N	S	T	N
Say Think New	22 7 4	27 54 26	31 19 50	43 20 5	6 15 9	31 45 66	13 4 6	21 42 20	46 34 54	44 32 24	10 8 7	26 40 49	23 9 7	22 45 10	35 26 63

Note. NTD = non-thought disordered; TD = thought disordered; responses are as follows: S = say; T = think; N = new.

Schizophrenic Patients: Model-Based Results

 Reanalysis with the Source Monitoring Model (Batchelder & Riefer, 1990):

Parameter Estimates and Goodness-of-Fit Tests for Harvey's (1985) Experiment

	e						
Group	D_{i}	D_2	d	b	g	Goodness-of-fit $G^2(1)$	
Manic NTD	.39	.62	.51	.37	.17	0.50	
Manic TD	.53	.29	43	.18	.69	9.94*	
Schizophrenic NTD	.11	.36	.87	.34	.21	0.25	
Schizophrenic TD	.47	.18	.03	.39	.80	0.18	
Normal	.44	.59	.42	.21	.30	1.20	

Note. D_1 = detectability of say items, D_2 = detectability of listen items, d = source discriminability; b = bias for responding "old"; g = guessing that the item is a say item; TD = thought disordered; NTD = non-thought disordered.

^{*} p < .01.

Introduction & Examples

Overview:

- 1. Introduction: Measuring recognition memory
- 2. Example: Source memory
- 3. Example: Automatic use of stereotypes
- 4. Summary & Outlook
- 5. Appendix: More applications

Weapon Identification Task (WIT)

- Paradigm (Payne, 2001):
 - Sequential priming procedure

- Conditions:
 - 2x2 within-subjects design
 - Prime: White vs. black face
 - Target: Weapon vs. tool

Figure 1. Examples of prime and target stimuli.

- Categorical dependent variable:
 - Participants' responses whether a presented item is a "weapon" or a "tool"

WIT: Process-Dissociation Model (Payne, 2001)

Parameters

- *C* = probability that control succeeds
- A = conditional probability that stereotype is automatically activated

WIT: Stroop Model (Bishara & Payne, 2009)

Parameters

- A = probability that stereotype is automatically activated
- C = conditional probability that control succeeds

WIT: Quad Model (Conrey et al., 2005)

Parameters

AC = stereotype activation
 OC = overcoming bias

- *D* = object discrimination

Weapon Identification Task (WIT)

Process Diss. Model selection: Which of the MPT Process Diss.(G) **Quad Model** models performs best empirically? Stroop Model(G) Stroop Model **Group Level:** 100 Lambert et al. (2003) Lambert et al. (2005) Payne (2005) Payne et al. (2002) Individual Level: BIC 40

M-DG - MPT modeling SoSe 2020 (Heck)

Payne (2005)

Lambert et al. (2005)

Lambert et al. (2003)

Payne et al. (2002)

Introduction & Examples

Overview:

- 1. Introduction: Measuring recognition memory
- Example: Source memory
- 3. Example: Automatic use of stereotypes
- 4. Summary & Outlook
- 5. Appendix: More applications

Summary

MPT models...

- ... explain discrete, categorical data (frequencies)
- ... are tailored to specific paradigms & theories
 - Benefit: Psychological theories are specified more precisely.
- ... can be applied in various ways
 - Measure the probability of certain psychological processes
 - Test the effect of experimental manipulations
 - Compare different groups of participants
 - Test different theoretical accounts (= different models)

Outlook: Model Development

- How are MPT models developed?
 - 1. Select a paradigm (e.g., a task)
 - Define the conditions of the paradigm
 - 3. Define the category system for each condition
 - 4. List relevant processes/parameters
 - 5. Construct theoretically reasonable processing branches ("trees") for each condition
 - 6. Derive corresponding model equations.
- How are MPT models tested?
 - Model fit: Model predictions should be in line with the data
 - Construct validity: Experimental validations should selectively influence specific, theoretically relevant parameters

Appendix

More MPT applications....

Implicit Association Test (IAT)

Compatible Block

Incompatible Block

→ simplified task

→ no simplification

(slides by Franziska Meissner)

IAT: ReaL Model (Meissner & Rothermund, 2013)

Parameters:

• *Re* = recoding

- A = evaluative association
- *L* = identification

IAT: ReaL Model (Meissner & Rothermund, 2013)

incompatible block

Parameters:

• Re = recoding

- A = evaluative association
- *L* = identification

Quad Model (Sherman et al., 2008)

Parameters:

- *AC* = stereotype association
- *D* = discrimination
- *OB* = overcoming bias

Recognition Heuristic (Goldstein & Gigerenzer, 2002)

Paradigm:

- Decision phase: "Which city is bigger: Peking or Zhengzhou?"
- Recognition phase: "Do you know Peking?"

Conditions:

- Both items recognized
- One item recognized
- None of the items recognized
- Dependent variable:
 - Participants' responses which city is bigger

Recognition Heuristic: The r-Model (Hilbig et al., 2010)

Environmental Psychology

- "Which is the greater good? A social dilemma paradigm disentangling environmentalism and cooperation"
 - Klein, Hilbig, & Heck (2017). Journal of Environmental Psychology
- Research question: How can we distinguish three types of behavior?
 - Pro-environmental behavior
 - Pro-social behavior
 - Selfish behavior

The Greater Good Game (Klein et al., 2017)

- Variant of a nested public goods game
- Participants decide whether to
 - a) keep the money for themselves
 - b) contribute it to a public goods account
 - c) contribute it to an environment account

The Greater Good Game: MPT Model (Klein et al., 2017)

- MPT model for the Greater Good Game:
 - Parameter s = probability of selfish behavior
 - Parameter e = probability of pro-environmental behavior

