2022-2023 MP2I

À chercher pour lundi 28/11/2022, corrigé

TD 10:

Exercice 1.

1) Soient $a, b \in \mathbb{R}_+^*$. Notons $A_1 = \{a + \frac{b}{n}, n \in \mathbb{N}^*\}$. Puisque $\forall n \in \mathbb{N}^*, 0 \le \frac{1}{n} \le 1$, on en déduit que a minore A_1 et a + b le majore. Puisque A_1 est non vide, on en déduit qu'il admet une borne inférieure et une borne supérieure. On a de plus $a + b \in A_1$ (on prend n = 1) donc la borne supérieure est atteinte et vaut a + b.

atteinte et vaut a + b.

On a enfin $a + \frac{b}{n} \to a$ donc on a une suite d'éléments de A_1 qui converge vers a qui est un minorant de A_1 . Par caractérisation séquentielle de la borne inférieure, on en déduit que $a = \inf(A_1)$.

2) Posons $A_2 = \{\frac{\ln(n)}{n}, n \in \mathbb{N}^*\}$. On étudie alors la fonction $x \mapsto \frac{\ln(x)}{x}$ sur $[1, +\infty[$. Cette fonction est dérivable (quotient de fonctions dérivables) et pour tout $x \ge 1$, $f'(x) = \frac{1 - \ln(x)}{x^2}$. On en déduit que f est croissante sur [1, e] et décroissante sur $[e, +\infty[$. On a de plus f(1) = 0 et par croissances comparées, on a $\lim_{x \to +\infty} f(x) = 0$.

D'après l'étude des variations de f, on en déduit que A_2 admet comme maximum soit $\frac{\ln(2)}{2}$, soit $\frac{\ln(3)}{3}$. À l'aide de la calculatrice, on trouve que le maximum est $\frac{\ln(2)}{2}$.

De plus, on a A_2 minoré par 0 (car la fonction f est positive sur $[1, +\infty[$ donc sur \mathbb{N}^*) et puisque f(1) = 0, on a $0 \in A_2$. On en déduit que A_2 admet 0 comme minimum.

4) Notons A_4 l'ensemble étudié. Pour les entiers pairs, on remarque que $\frac{(-1)^n}{n}$ est positif et inférieur à $\frac{1}{n}$. Pour les entiers impairs, on a $\frac{(-1)^n}{n}$ négatif et supérieur à $-\frac{1}{n}$. Par décroissance de la fonction $x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^* , on en déduit que A_4 admet comme minimum $\frac{(-1)^1}{1} = -1$ et admet comme maximum $\frac{(-1)^2}{2} = \frac{1}{2}$ (ce sont bien des minorants/majorants et ils appartiennent à l'ensemble).

Exercice 10. Soit $\lambda \in [0,1[$ et $n \ge 1$. Posons $f(n) = \frac{n-1}{n}$. On veut montrer qu'il existe un unique $n \in \mathbb{N}^*$ tel que $f(n) \le \lambda < f(n+1)$. On va ici étudier la fonction f:

On a pour $x \ge 1$, $f(x) = \frac{x-1}{x} = 1 - \frac{1}{x}$. f est continue sur $[1, +\infty[$, dérivable et $f'(x) = \frac{1}{x^2} > 0$. La fonction f est donc strictement croissante. On a f(1) = 0 et $\lim_{x \to +\infty} f(x) = 0$. On en déduit que f est bijective de $[1, +\infty[$ dans [0, 1[d'apr \tilde{A} "s le théorème de la bijection continue. On a alors f^{-1} strictement croissante (car f est strictement croissante). On a donc :

$$f(n) \le \lambda < f(n+1) \Leftrightarrow n \le f^{-1}(\lambda) < n+1$$

 $\Leftrightarrow n = \lfloor f^{-1}(\lambda) \rfloor.$

Puisque $f^{-1}(\lambda) \in [1, +\infty[$, on a alors l'existence et l'unicité du $n \in \mathbb{N}^*$ vérifiant la propriété voulue.

Pour avoir l'expression de n, il suffit de trouver la fonction réciproque de f. On a pour $x \in [1, +\infty[$ et $y \in [0, 1[$:

$$f(x) = y \Leftrightarrow 1 - \frac{1}{x} = y$$
$$\Leftrightarrow 1 - y = \frac{1}{x}$$
$$\Leftrightarrow x = \frac{1}{1 - y}.$$

On en déduit que $n = \lfloor \frac{1}{1-\lambda} \rfloor$.

TD 9:

Exercice.

1) Soient $A, B, C \subset E$. On a alors:

$$\begin{array}{rcl} (A \setminus B) \setminus (A \setminus C) & = & (A \cap \overline{B}) \cap \overline{A \cap \overline{C}} \\ & = & (A \cap \overline{B}) \cap (\overline{A} \cup C) \\ & = & (A \cap \overline{B} \cap \overline{A}) \cup (A \cap \overline{B} \cap C) \\ & = & \emptyset \cup (A \cap C) \cap \overline{B} \\ & = & (A \cap C) \setminus B. \end{array}$$

- 2) On va montrer par double implication que $A \cap B = \emptyset \Leftrightarrow \exists X \subset E \ / \ (A \subset X \text{ et } B \subset \overline{X}.$
 - (\Rightarrow) Si $A \cap B = \emptyset$, alors on a $B \subset \overline{A}$. En prenant X = A, on a donc bien $A \subset X$ et $B \subset \overline{X}$.
- (\Leftarrow) Supposons par l'absurde qu'il existe $x \in A \cap B$. Alors, puisque $A \subset X$, on a $x \in X$ et puisque $B \subset \overline{X}$, on a $x \in \overline{X}$, soit $x \notin X$. C'est absurde! On en déduit qu'il n'y a pas d'éléments dans $A \cap B$, soit que $A \cap B = \emptyset$.

Exercice 7.

1) Déjà fait (f est bien définie à valeurs dans \mathbb{C}^* car l'exponentielle ne s'annule pas et elle est non injective (car par exemple $e^0=e^{2i\pi}=1$ et surjective de \mathbb{C} dans \mathbb{C}^* (on avait résolu l'équation $e^z=z_0$ dans le cours sur les complexes. En étudiant z=x+iy sous forme algébrique et $z_0=\rho e^{i\theta}\in\mathbb{C}^*$ sous forme exponentielle, on a en identifiant module et argument :

$$e^z = z_0 \Leftrightarrow e^x e^{iy} = \rho e^{i\theta} \Leftrightarrow x = \ln(\rho) \text{ et } y \equiv \theta \text{ } [2\pi].$$

La fonction exponentielle est donc bien surjective de \mathbb{C} dans \mathbb{C}^* .

2) On a $f(R_1) = \{e^{x+iy}, x \in \mathbb{R}_-, y \in [0, 2\pi[\} = \{e^x \times e^{iy}, x \in \mathbb{R}_-, y \in [0, 2\pi[\}\}$. Puisque l'exponentielle (réelle) est bijective de \mathbb{R}_- dans]0,1] (par le théorème de la bijection continue) et que tous les arguments sont atteints par y, on en déduit que $f(R_1) = \{z \in \mathbb{C} \mid |z| \le 1 \text{ et } z \ne 0\}$. Autrement dit $f(R_1)$ est le disque unité privé de O.

De la même manière, puisque l'exponentielle est bijective de \mathbb{R} dans \mathbb{R}_+^* , et que l'on atteint tous les arguments entre 0 et $\frac{\pi}{2}$, on a $f(R_2)$ qui vaut le quart de plan supérieur privé de l'origine (donc les $z \in \mathbb{C}$ tels que $\operatorname{Re}(z) \geq 0$ et $\operatorname{Im}(z) \geq 0$ avec $z \neq 0$.

3) Avec une représentation implicite de \mathbb{U} , on a $f^{-1}(\mathbb{U}) = \{z \in \mathbb{C} \mid |e^z| = 1\}$. Or, si on écrit z = x + iy avec $x, y \in \mathbb{R}$, on a $|e^z| = e^x$. On a donc $f^{-1}(\mathbb{U}) = \{z \in \mathbb{C} \mid \operatorname{Re}(z) = 0\} = i\mathbb{R}$ (les imaginaires purs).

De la même façon, on a $f^{-1}(i\mathbb{R})=\{z\in\mathbb{C}\ /\ \mathrm{Re}(f(z))=0\}.$ On a donc :

$$f^{-1}(i\mathbb{R}) = \{x + iy, x, y \in \mathbb{R} / e^x \cos(y) = 0\}.$$

Puisque l'exponentielle ne s'annule pas sur \mathbb{R} , on en déduit qu'il faut chercher quand $\cos(y)=0\Leftrightarrow y\equiv\frac{\pi}{2}[\pi]$. On en déduit que $f^{-1}(i\mathbb{R})=\{x+i\left(\frac{\pi}{2}+k\pi\right),\ x\in\mathbb{R},k\in\mathbb{Z}\}$. On obtient donc une union de droites horizontales parallèles.

Exercice 14. Notons $(z, r)\mathcal{R}(z', r')$ si $|z - z'| \le r' - r$ et montrons qu'il s'agit d'une relation d'ordre partielle sur $\mathbb{C} \times \mathbb{R}_+$.

• Réflexivité. Soit $(z,r) \in \mathbb{C} \times \mathbb{R}_+$. Alors |z-z| = 0 et r-r = 0 donc on a bien $(z,r)\mathcal{R}(z,r)$.

3

• Transitivité. Soient $(z_1, r_1)\mathcal{R}(z_2, r_2)$ et $(z_2, r_2)\mathcal{R}(z_3, r_3)$. On a alors:

$$|z_1 - z_2| \le r_2 - r_1$$
 et $|z_2 - z_3| \le r_3 - r_2$.

On a alors par inégalité triangulaire :

$$|z_1 - z_3| = |z_1 - z_2 + z_2 - z_3|$$

$$\leq |z_1 - z_2| + |z_2 - z_3|$$

$$\leq r_2 - r_1 + r_3 - r_2$$

$$\leq r_3 - r_1.$$

On a donc bien $(z_1, r_1)\mathcal{R}(z_3, r_3)$.

• Antisymétrie. Supposons $(z_1, r_1)\mathcal{R}(z_2, r_2)$ et $(z_2, r_2)\mathcal{R}(z_1, r_1)$. On a alors :

$$|z_1 - z_2| \le r_2 - r_1$$
 et $|z_2 - z_1| \le r_1 - r_2$.

Puisque $|z_1-z_2|=|z_2-z_1|,$ on en déduit par somme que :

$$2|z_1-z_2|\leq 0.$$

Un module étant positif, on en déduit que $|z_1 - z_2| = 0$, soit que $z_1 = z_2$. Ceci entraine que $0 \le r_2 - r_1$ et que $0 \le r_1 - r_2$. On a donc également $r_1 = r_2$, ce qui entraine bien $(z_1, r_1) = (z_2, r_2)$.

• La relation \mathcal{R} est donc une relation d'ordre. Cette relation n'est cependant pas totale puisque par exemple (0,1) et (1,1) ne sont en relation dans aucun sens car |0-1|=1 n'est pas inférieur à 1-1=0 et que |1-0|=1 n'est pas inférieur à 1-1=0.

Géométriquement, cette relation d'ordre s'interprète ainsi : on a $(z_1, r_1)\mathcal{R}(z_2, r_2)$ si le disque de centre z_1 et de rayon r_1 est inclus dans le disque de centre z_2 et de rayon r_2 .