Programming Languages & Translators

PARSING

Baishakhi Ray

- <id, x> <op, *> <op, %>
 - Is it a valid token stream in C language?
 - Is it a valid statement in C language?

Input: if(x==y) 1 else 2;

Parser Input (Lexical Input):

KEY(IF) '(' ID(x) OP('==') ')' INT(1) KEY(ELSE) INT(2) ';'

Parser Output

A CFG consists of

- A set of terminal T
- A set of non-terminal N
- A start symbol S (S ϵ N)
- A set of production rules
 - $X \rightarrow Y_1 \dots Y_N$
 - $\mathbf{X} \in \mathbb{N}$
 - $Y_i \in \{N, T, \varepsilon\}$
- Ex: S -> (S) | ε
 - $N = \{S\}$
 - $T = \{ (,), \varepsilon \}$

- 1. Begin with a string with only the start symbol S
- 2. Replace a non-terminal X with in the string by the RHS of some production rule:

$$X \rightarrow Y_1 \dots Y_n$$

3. Repeat 2 again and again until there are no non-terminals

$$X_1, \dots, X_i \times X_{i+1}, \dots, X_n \rightarrow X_1, \dots, X_i \times Y_1, \dots, Y_k \times X_{i+1}, \dots, X_n$$

For the production rule $X \rightarrow Y_1 \dots Y_k$

$$\alpha_0 \to \alpha_1 \to \alpha_2 \to \alpha_3 \dots \to \alpha_n$$

$$\alpha_0 \stackrel{*}{\to} \alpha_n, n \ge 0$$

■ Let G be a CFG with start symbol S. Then the language L(G) of G is:

$$\{a_1 \dots a_i \dots a_n \mid \forall i a_i \in T \land S \xrightarrow{*} a_1 \dots a_i \dots a_n\}$$

- There are no rules to replace terminals.
- Once generated, terminals are permanent
- Terminals ought to be tokens of programming languages
- Context-free grammars are a natural notation for this recursive structure

Languages and Automata

- Formal languages are very important in programming languages
- Regular Languages
 - Weakest formal languages that are widely used
 - Many applications
- Many Languages are not regular

Automata that accept odd numbers of 1

How many 1s it has accepted?

- Only solution is duplicate state

Automata do not have any memory

- Regular Languages
 - Weakest formal languages that are widely used
 - Many applications
- Consider the language $\{(i)^i \mid i \ge 0\}$
 - **(**), (()), ((()))
 - **(**(1 + 2) * 3)
- Nesting structures
 - if .. if.. else.. else..

Regular languages cannot handle well

CFG: Simple Arithmetic expression

```
E → E + E

I E * E

I (E)

I id
```

Languages can be generated: id, (id), (id + id) * id, ...

CFG: Exercise

$$S \to aXa$$

$$X \to \varepsilon \mid bY$$

$$Y \to \varepsilon \mid cXc$$

Some Valid Strings are: aba, abcca, ...

Derivation

- A derivation is a sequence of production
 - S -> ... -> ... ->
- A derivation can be drawn as a tree
 - Start symbol is tree's root
 - For a production $X \rightarrow Y_1 \dots Y_n$, add children $Y_1 \dots Y_n$ to node X

Grammar

String

■ id * id + id

Derivation

$$E \rightarrow E + E$$

$$\rightarrow$$
 id * id + E

Parse Tree

- A parse tree has
 - Terminals at the leaves
 - Non-terminals at the interior nodes
- An in-order traversal of the leaves is the original input

■ The parse tree shows the association of operations, the input string does not

Parse Tree

- Left-most derivation
 - At each step, replace the left-most nonterminal

$$E \rightarrow E + E$$

- Right-most derivation
 - At each step, replace the right-most nonterminal

$$E \rightarrow E + E$$

$$-> E + id$$

$$-> E * E + id$$

Note that, right-most and left-most derivations have the same parse tree

Ambiguity

- Grammar
 - E -> E + E | E * E | (E) | id
- String
 - id * id + id

Ambiguity

- A grammar is ambiguous if it has more than one parse tree for a string
 - There are more than one right-most or left-most derivation for some string
- Ambiguity is bad
 - Leaves meaning for some programs ill-defined

Example of Ambiguous Grammar

■ S->SSlalb

Resolving Ambiguity

Most direct way to rewrite the grammar unambiguously

$$id*id+id$$

$$E = E' + E | E'$$
 $E' = id * E' | id | (E) * E' | (E)$

Resolving Ambiguity

Impossible to convert ambiguous to unambiguous grammar automatically

- Instead of rewriting
 - Use ambiguous grammar
 - Along with disambiguating rules
 - Eg, precedence and associativity rules
 - Enforces precedence of * over +
 - associativity: %left +

Abstract Syntax Trees

A parser traces the derivation of a sequence of tokens

 But the rest of the compiler needs a structural representation of the program

- Abstract Syntax Trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees

- Grammar
 - E -> int I (E) I E + E
- String
 - -5 + (2 + 3)
- After lexical analysis
 - Int<5> '+' '(' Int<2> '+' Int<3> ')'

Abstract Syntax Trees: 5 + (2 + 3)

Parse Trees

Abstract Syntax Trees: 5 + (2 + 3)

Parse Trees

- Have too much information
 - Parentheses
 - Single-successor nodes

Abstract Syntax Trees: 5 + (2 + 3)

- Have too much information
 - Parentheses
 - Single-successor nodes

- ASTs capture the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use

Error Handling

- Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones
- Many kinds of possible errors (e.g., in C)

Error Kind		Example	Detected by
Lexical	Misspelling of identifiers, keywords, or operators.	\$	Lexer
Syntax	Misplaced operators, semicolons, braces, switch-case statements, etc.	x*%	Parser
Semantic	Type mismatches between operators and operands	int x; $y = x(3);$	Type Checker
Correctness	Incorrect reasoning	Using = instead of ==	tester/user

Error Handling

Error Handler should

- Discover errors accurately and quickly
- Recover from an error quickly
- Not slow down compilation of valid code

Types of Error Handling

- Panic mode
- Error productions
- Automatic local or global correction

Panic Mode Error Handling

Panic mode is simplest and most popular method

- When an error is detected
 - Discard tokens until one with a clear role is found
 - Typically looks for "synchronizing" tokens
 - Typically the statement of expression terminators
 - Example: delimiters (; }, etc.)
 - Continue from there

Panic Mode Error Handling

- Example:
 - (1++2)+3
- Panic-mode recovery:
 - Skip ahead to the next integer and then continue
- Bison: use the special terminal error to describe how much input to skip
 - E -> int I E + E I (E) I error int I (error)

Error Productions

- Specify known common mistakes in the grammar
- Example:
 - Write 5x instead of 5 * x
 - Add production rule E -> .. I E E
- Disadvantages
 - complicates the grammar

Error Corrections

- Idea: find a correct "nearby" program
 - Try token insertions and deletions (goal: minimize edit distance)
 - Exhaustive search

- Disadvantages
 - Hard to implement
 - Slows down parsing of correct programs
 - "Nearby" is not necessarily "the intended" program

Error Corrections

Past

- Slow recompilation cycle (even once a day)
- Find as many errors in once cycle as possible

Disadvantages

- Quick recompilation cycle
- Users tend to correct one error/cycle
- Complex error recovery is less compelling

Parsing algorithm: Recursive Descent Parsing

- The parse tree is constructed
 - From the top
 - From left to right

Terminals are seen in order of appearance in the token stream

Parsing algorithm: Recursive Descent Parsing

- Grammar:
 - E -> T | T + E
 - T -> int I int * T I (E)
- Token Stream: (int<5>)

- Start with top level non-terminal E
 - Try the rules for E in order

```
E -> TIT + E

T -> int I int * TI (E)

E

T

mismatch: int does not match arrowhead (backtrack
```

int

```
( int<5> ) ↑
```

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

backtrack

```
( int<5> )
```

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

Match! Advance input

```
( int<5> )
```

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

(int<5>)

Match! Advance input

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

(int<5>)

Match! Advance input

$$E \rightarrow E' \mid E' + E$$

 $E' \rightarrow -E' \mid id \mid (E)$

Input: id + id

A Recursive Descent Parser. Preliminaries

- TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

The global next point to the next token

A Top Down Parsing Algorithm

```
void A() {
 Choose an A-production: A -> S_1 S_2 \dots S_k;
 for (i=1 or k) {
    if (S_i \text{ is a nonterminal})
          Call S_i();
     else if (X_i == current input TOKEN tok). /*terminal*/
            next++;
     else
          /* Error */
```

Recursion without backtracking

A (Limited) Recursive Descent Parser

- Define boolean functions that check the token string for a match of
 - A given token terminal

```
bool term (TOKEN tok) { return *next++ == tok; }
```

■ The nth production of S:

```
bool S_n() \{ ... \}
```

Try all productions of S:

```
bool S() { ... }
```

A (Limited) Recursive Descent Parser

```
Grammar:
■ For production E → T
                                                               E \rightarrow TIT + E
  bool E<sub>1</sub>() { return T(); }
                                                               T \rightarrow int I int * TI(E)
For production E → T + E
 bool E2() { return T() && term(PLUS) && E(); }
For all productions of E (with backtracking)
 bool E() {
   TOKEN *save = next;
   return (next = save, E_1()) || (next = save, E_2());
```

A (Limited) Recursive Descent Parser (4)

```
Grammar:
Functions for non-terminal T
                                                                   E \rightarrow TIT + E
 bool T<sub>1</sub>() { return term(INT); }
                                                                   T \rightarrow int I int * TI(E)
 bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
 bool T_3() { return term(OPEN) && E() && term(CLOSE); }
 bool T() {
        TOKEN *save = next;
        return (next = save, T_1()) || (next = save, T_2()) || (next = save, T_3());
```

Recursive Descent Parsing

- To start the parser
 - Initialize next to point to first token
 - Invoke E() (start symbol)

Example

```
Grammar:
E \rightarrow TIT + E
T \rightarrow int \mid int * T \mid (E)
Input: (int)
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E_1()) || (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
     return (next = save, T_1())
         \parallel (next = save, T_2())
         || (next = save, T_3()); \}
```


Example

```
Grammar:
E \rightarrow TIT + E
T \rightarrow int \mid int * T \mid (E)
Input: int
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E_1()) || (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
     return (next = save, T_1())
         \parallel (next = save, T_2())
         \| (\text{next} = \text{save}, T_3()); \}
```

When Recursive Descent Does Not Work

```
Grammar:
E \rightarrow TIT + E
T \rightarrow int I int * T I (E)
Input: int * int
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E<sub>2</sub>() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
           return (next = save, E_1()) | (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
      return (next = save, T_1())
           | | (next = save, T<sub>2</sub>())
              (next = save, T_3()); }
```

Recursive Descent Parsing: Limitation

- If production for non-terminal X succeeds
 - Cannot backtrack to try different production for X later
- General recursive descent algorithms support such full backtracking
 - Can implement any grammar
- Presented RDA is not general
 - But easy to implement
- Sufficient for grammars where for any non-terminal at most one production can succeed
- The grammar can be rewritten to work with the presented algorithm
 - By left factoring

Left Factoring

A ->
$$\alpha\beta1$$
 | $\alpha\beta2$

- The input begins with a nonempty string derived from α , we do not know whether to expand A to $\alpha\beta1$ or $\alpha\beta2$.
- We can defer the decision by expanding A to α A'.
- Then, after seeing the input derived from α , we expand A' to $\beta 1$ or $\beta 2$ (left-factored)
- The original productions become:

$$A \rightarrow \alpha A', A' \rightarrow \beta 1 \mid \beta 2$$

When Recursive Descent Does Not Work

- Consider a production S → S a bool S₁() { return S() && term(a); } bool S() { return S₁(); }
- S() goes into an infinite loop
- A left-recursive grammar has a non-terminal S

```
S \rightarrow + Sa for some a
```

Recursive descent does not work for left recursive grammar

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha I \beta$$

- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

$$S' \rightarrow \alpha S' \mid \epsilon$$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 | \dots | S \alpha_n | \beta_1 | \dots | \beta_m$$

- All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' I \dots I \beta_m S'$$

 $S' \rightarrow \alpha_1 S' I \dots I \alpha_n S' I \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha I \delta$$

 $A \rightarrow S \beta$
is also left-recursive because
 $S \rightarrow + S \beta \alpha$

This left-recursion can also be eliminated

Announcement

- Midterm Next Wednesday (October 21)
- Lexical and Syntactic Analysis

Break Out Session

- S-> Aa I b
- \blacksquare A -> A c | S d | ϵ S -> Aa = A c a = A cca
- Remove Recursion.

- S->Aalb.
- A -> b d A' l A'
- A'-> cA' la d A' la l €

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

LL(1) vs. Recursive Descent

- In recursive-descent
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- In LL(1)
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - The next input symbol is t
 - There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)
- LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T
T \rightarrow int \left| int * T \right| (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring Example

Grammar

$$E \rightarrow T + E I T$$

T \rightarrow int I int * T I (E)

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E I \epsilon$
 $T \rightarrow (E) I int Y$
 $Y \rightarrow * T I \epsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$
 $Y \rightarrow * T \mid \varepsilon$

■ The LL(1) parsing table:

		next input tokens					
Left-most		int	*	+	()	\$
	Е	TX			TX		
non- terminals	X			+E		3	3
	Т	int Y			(E)		
	Υ		*T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E → T X"
 - This can generate an int in the first position
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if $Y \rightarrow \varepsilon$

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at [S,a]
- A stack records frontier of parse tree
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to match against the input
 - Top of stack = leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input & empty stack

First & Follow

- During top down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α), α is any string of grammar symbols
 - A set of terminals that begin strings derived from α .
 - If $\alpha \stackrel{*}{\rightarrow} \epsilon$, then ϵ is in FIRST(α).
 - if $\alpha \stackrel{*}{\to} cY$, the c is in FIRST(α).

- FOLLOW(A), A is a nonterminal
 - the set of terminals that can appear immediately to the right of A.
 - A set of terminals "a" such that S $\stackrel{*}{\rightarrow} \alpha A a \beta$ for some α and β .

Constructing Parsing Tables: The Intuition

- Consider non-terminal A, production A \rightarrow a, & token t
- $T[A,t] = \alpha$ in two cases:
- If $\alpha \rightarrow^* t \beta$
 - α can derive a t in the first position
 - We say that t ∈ First(a)
- If A \rightarrow α and α \rightarrow * ε and S \rightarrow * β A t δ
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - We say t ∈ Follow(A)

First Sets. Example

grammar

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \epsilon$

• First sets : Breakout room

Computing Follow Sets

Definition:

```
Follow(X) = { t | S \rightarrow* \beta X t \delta }
```

- Intuition:
 - If X → A B then First(B) ⊆ Follow(A) and Follow(X) ⊆ Follow(B)
 - If B →* ε then Follow(X) ⊆ Follow(A)
 - If S is the start symbol then \$ ∈ Follow(S)

Follow Sets. Example

Recall the grammar

```
E \rightarrow TX X \rightarrow + E I \epsilon

T \rightarrow (E) I int Y Y \rightarrow * T I \epsilon
```

Follow sets

```
Follow( + ) = { int, ( }
Follow( ( ) = { int, ( }
Follow( * ) = { int, ( }
Follow( T ) = {+, ), $}
Follow( ) ) = {+, ), $}
Follow( int) = {*, +, ), $}.
Follow( X ) = {$, ) }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow a$ in G do:
 - For each terminal t ∈ First(α) do
 - T[A, t] = a
 - If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - $T[A, \$] = \alpha$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \epsilon$

■ The LL(1) parsing table:

Rules: For each production $A \rightarrow \alpha$ in G do: For each terminal $t \in First(\alpha)$ do $T[A, t] = \alpha$ If $\epsilon \in First(\alpha)$, for each $t \in Follow(A)$ do

If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do

 $T[A, t] = \alpha$

 $T[A, \$] = \alpha$

		next input tokens					
Left-most		int	*	+	()	\$
	Е	TX			TX		
non- terminals	X			+E		3	3
	Т	int Y			(E)		
	Υ		*T	3		3	3

Notes on LL(1) Parsing Tables

- If any entry is multiple defined then G is not LL(1) [Eg: S->Salb]
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - other: e.g., LL(2)
- Most programming language CFGs are not LL(1)
 - too weak
 - However they build on these basic ideas

Bottom-Up Parsing

- Bottom-up parsing is more general than (deterministic) top-down parsing
 - just as efficient
 - Builds on ideas in top-down parsing
- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:

```
E \rightarrow T + E \mid T
T \rightarrow int * T \rightarrow int | (E) •
```

Consider the string: int * int + int

Bottom-Up Parsing

• Revert to the "natural" grammar for our example:

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E) \cdot
```

- Consider the string: int * int + int
- Bottom-up parsing reduces a string to the start symbol by inverting productions:

```
int * int + int T \rightarrow int

int * T + int T \rightarrow int * T

T + int T \rightarrow int

T + T

T + T

E \rightarrow T

T + E
```

Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

int * int + int	$T \rightarrow int$
int * T + int	T → int * 7
T + int	T → int
T + T	$\mathbf{E} \rightarrow \mathbf{T}$
T + E	$E \rightarrow T + E$
E	

Bottom-Up Parsing

A bottom-up parser traces a rightmost derivation in reverse

$$T \rightarrow int$$
 $T \rightarrow int * T$
 $T \rightarrow int$
 $E \rightarrow T$
 $E \rightarrow T + E$

A trivial Bottom-Up Parsing Algorithm

```
Let I = input string repeat pick a non-empty substring \beta of I where X \rightarrow \beta is a production if no such \beta, backtrack replace one \beta by X in I until I = "S" (the start symbol) or all possibilities are exhausted
```

Bottom-Up Parsing

$$E \rightarrow T \mid T + E$$
 $T \rightarrow int \mid int * T$

Expand Here

Terminals Only

- Split string into two substrings
 - Right substring is not examined yet by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a l
 - The I is not part of the string
- Initially, all input is unexamined I x₁x₂ . . . x_n

Where Do Reductions Happen?

- Right-most derivation has an interesting consequence:
 - Let αβω be a step of a bottom-up parse
 - Assume the next reduction is by $X \rightarrow \beta$
 - Then ω is a string of terminals
- Why? Because $\alpha X \omega \rightarrow \alpha \beta \omega$ is a step in a rightmost derivation

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:
 - Shift
 - Reduce
- Shift: Move I one place to the right
 - Shifts a terminal to the left string ABClxyz ⇒ ABCxlyz
- Reduce: Apply an inverse production at the right end of the left string
 - If A → xy is a production, then Cbxylijk ⇒ CbAlijk

The Example with Reductions Only

An Example with Shift-Reduce Parsing

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the I
- Shift pushes a terminal on the stack
- Reduce
 - pops 0 or more symbols off of the stack (production rhs)
 - pushes a nonterminal on the stack (production lhs)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- If it is legal to shift or reduce, there is a shift-reduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict.

Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

```
E \rightarrow T + E \mid T
T \rightarrow int * T \rightarrow int | (E)
```

- Consider step int I * int + int
 - We could reduce by T → int giving T I * int + int
 - A fatal mistake!
 - No way to reduce to the start symbol E

Handles

- Intuition: Want to reduce only if the result can still be reduced to the start symbol.
- Assume a rightmost derivation

$$S \rightarrow^* \alpha X \omega \rightarrow \alpha \beta \omega$$

- Then $X \rightarrow \beta$ in the position after α is a handle of $\alpha\beta\omega$
 - αβ is a handle of αβω

Handles

- A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
- We only want to reduce at handles
- In shift-reduce parsing, handles appear only at the top of the stack, never inside
- Informal induction on # of reduce moves:
- True initially, stack is empty
- Immediately after reducing a handle
 - right-most non-terminal on top of the stack
 - next handle must be to right of right-most nonterminal, because this is a right-most derivation
 - Sequence of shift moves reaches next handle

Summary of Handles

- In shift-reduce parsing, handles always appear at the top of the stack
- Handles are never to the left of the rightmost non-terminal
 - Therefore, shift-reduce moves are sufficient; the I need never move left
- Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

- There are no known efficient algorithms to recognize handles
- Solution: use heuristics to guess which stacks are handles
- On some CFGs, the heuristics always guess correctly
 - For the heuristics we use here, these are the SLR grammars
 - Other heuristics work for other grammars

Grammars

Viable Prefixes

- α is a viable prefix if there is an ω such that $\alpha I \omega$ is a state of a shift-reduce parser
 - α is stack
 - ω is rest of the inputs
- A viable prefix does not extend past the right end of the handle
- It's a viable prefix because it is a prefix of the handle
- As long as a parser has viable prefixes on the stack no parsing error has been detected
- For any grammar, the set of variable prefixes is a regular language
 - we can compute an automata that accepts variable prefixes

Viable Prefixes

$$E \rightarrow T \mid T + E$$
 $T \rightarrow int \mid int * T$

viable prefixes

Terminals

Items

- An item is a production with a "." somewhere on the rhs
- The items for $T \rightarrow (E)$ are

```
T \rightarrow .(E)
T \rightarrow (.E)
T \rightarrow (E.)
T \rightarrow (E).
```

- The only item for $X \to \epsilon$ is $X \to .$
- Items are often called "LR(0) items"

Intuition

- The problem of recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
- If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions

Example

- Consider the input (int)
 - Then (E) is a state of a shift-reduce parse
 - (E is a prefix of the rhs of $T \rightarrow (E)$
 - Will be reduced after the next shift
 - Item T → (E.) says that so far we have seen (E of this production and hope to see)

Generalization

- The stack may have many prefixes of rhs's
 - Prefix₁ Prefix₂ . . . Prefix_{n-1} Prefix_n
- Let Prefix_i be a prefix of rhs of $X_i \rightarrow \alpha_i$
 - Prefix_i will eventually reduce to X_i
 - The missing part of α_{i-1} starts with X_i
 - i.e. there is a $X_{i-1} \rightarrow \text{Prefix}_{i-1} X_i \beta$ for some β
- Recursively, $Prefix_{k+1}$... $Prefix_n$ eventually reduces to the missing part of α_k

An Example

- Consider the string (int * int):
 - (int *lint) is a state of a shift-reduce parse
 - "(" is a prefix of the rhs of $T \rightarrow (E)$
 - " ϵ " is a prefix of the rhs of E \rightarrow T
 - "int *" is a prefix of the rhs of T → int * T
- The "stack of items"
 - T → (.E)
 - E → .T
 - T → int * .T
- Says
 - We've seen "(" of $T \rightarrow (E)$
 - We've seen ε of $E \to T$
 - We've seen int * of T → int * T

Recognizing Viable Prefixes

- Idea: To recognize viable prefixes, we must
 - Recognize a sequence of partial rhs's of productions, where
 - Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

- 1. Add a dummy production $S' \rightarrow S$ to G
- 2. The NFA states are the items of G
 - Including the extra production
 - NFA takes the stack as input
 - NFA(stack) -> acceptlreject
- 3. For item $E \rightarrow \alpha.X\beta$ add transition $E \rightarrow \alpha.X\beta \rightarrow X E \rightarrow \alpha X.\beta$
- 4. For item $E \to \alpha.X\beta$ and production $X \to \gamma$ add $E \to \alpha.X\beta \to \epsilon X \to .\gamma$
- 5. Every state is an accepting state
- 6. Start state is $S' \rightarrow .S$

Recognizing VP

S'->E

E ->T+EIT

T->int*Tlintl(E)

NFA of Viable Prefixes

DFA of Viable Prefixes

DFA of Viable Prefixes

The states of the DFA are

"canonical collections of items"

or

"canonical collections of LR(0) items"

Valid Items

- Item $X \to \beta.\gamma$ is valid for a viable prefix $\alpha\beta$ if
 - S' \rightarrow * $\alpha X \omega \rightarrow \alpha \beta \gamma \omega$ by a right-most derivation
- After parsing αβ, the valid items are the possible tops of the stack of items
- An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I
- The items in s describe what the top of the item stack might be after reading input α
- An item is often valid for many prefixes

LR(o) Parsing

Assume

- stack contains a
- next input is t
- DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$
 - equivalent to saying s has a transition labeled t

LR(o) Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega$.

- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega.t\delta$

LR(o) Conflicts: Two shift-reduce conflicts

SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"

- SLR improves on LR(0) shift/reduce heuristics
 - Fewer states have conflicts

SLR Parsing

- Assume
 - stack contains a
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
 - t ∈ Follow(X)
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$

- If there are conflicts under these rules, the grammar is not SLR
- The rules amount to a heuristic for detecting handles
 - The SLR grammars are those where the heuristics detect exactly the handles

SLR Conflicts

Naïve SLR Parsing Algorithm

- 1. Let M be DFA for viable prefixes of G
- 2. Let $lx_1...x_n$ \$ be initial configuration
- 3. Repeat until configuration is SI\$
 - Let αlω be current configuration
 - Run M on current stack α
 - If M rejects α, report parsing error
 - Stack α is not a viable prefix
 - If M accepts α with items I, let a be next input
 - Shift if $X \to \beta$. a $\gamma \in I$
 - Reduce if $X \to \beta$. ∈ I and a ∈ Follow(X)
 - Report parsing error if neither applies

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$		

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$		

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int I \$		

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int I \$	3 (\$ Follow (T))	reduce T->int

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int I \$	3 (\$ Follow (T))	reduce T->int
int * T I \$		

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int I \$	3 (\$ Follow (T))	reduce T->int
int * T I \$	4 (\$ Follow (T))	reduce T-> int * T

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int \$	3 (\$ Follow (T))	reduce T->int
int * T I \$	4 (\$ Follow (T))	reduce T-> int * T
TI\$		

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int I \$	3 (\$ Follow (T))	reduce T->int
int * T I \$	4 (\$ Follow (T))	reduce T-> int * T
TI\$	5 (\$ Follow (E))	reduce E-> T

Configuration	DFA Halt State	Action
lint * int\$	1	shift
int I * int\$	3 (* not in Follow(T))	shift
int * I int\$	11	shift
int * int \$	3 (\$ Follow (T))	reduce T->int
int * T I \$	4 (\$ Follow (T))	reduce T-> int * T
TI\$	5 (\$ Follow (E))	reduce E-> T
EI\$		accept

An Improvement

- Rerunning the automaton at each step is wasteful
 - Most of the work is repeated
- Change stack to contain pairs (Symbol, DFA State)
 - DFA State is the state of the automaton on each prefix of the stack
- For a stack ⟨ sym₁, state₁ ⟩ . . . ⟨ sym_n, state_n ⟩
 - state_n is the final state of the DFA on sym₁ ... sym_n
- The bottom of the stack is 〈any, start〉 where
 - any is any dummy symbol
 - start is the start state of the DFA

Goto Table

- Define goto[i,A] = j if state_i \rightarrow A state_j
- goto is the transition function of the DFA

Refined Parser Moves

- Shift x
 - Push 〈a, x〉 on the stack
 - a is current input
 - x is a DFA state
- Reduce $X \rightarrow a$
 - As before
- Accept
- Error

Action Table

- For each state s_i and terminal a
 - If s_i has item $X \to \alpha.a\beta$ and goto[i,a] = j then action[i,a] = shift j
 - If s_i has item $X \to \alpha$. and $a \in Follow(X)$ and $X \neq S'$ then action[i,a] = reduce $X \to \alpha$
 - If s_i has item $S' \rightarrow S$. then action[i,\$] = accept
 - Otherwise, action[i,a] = error

SLR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 1 have item S' \rightarrow .S
Let stack = \langle dummy, 1 \rangle
         repeat
                   case action[top_state(stack),I[j]] of
                            shift k: push \langle I[j++], k \rangle
                             reduce X \rightarrow A:
                                      pop IAI pairs,
                                       push <X, goto[top_state(stack),X]>
                             accept: halt normally
                             error: halt and report error
```

Notes on SLR Parsing Algorithm

- Note that the algorithm uses only the DFA states and the input
 - The stack symbols are never used! •
 - However, we still need the symbols for semantic actions

L, R, and all that

- LR parser: "Bottom-up parser"
- L = Left-to-right scan, R = Rightmost derivation
- RR parser: R = Right-to-left scan (from end)
 - nobody uses these
- LL parser: "Top-down parser":
- L = Left-to-right scan: L = Leftmost derivation
- LR(1): LR parser that considers next token (lookahead of 1)
- LR(0): Only considers stack to decide shift/reduce
- SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton
- LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)