<u>Nom:</u> <u>Correcteur:</u> <u>Note:</u>

Soit E et F deux \mathbb{K} -ev de dimensions respectives p et n, et de bases respectives \mathscr{B} et \mathscr{C} . Soit $u \in \mathscr{L}(E, F)$. Définir $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(u)$. Quelles sont ses dimensions?

Soit E et F deux \mathbb{K} -ev de dimensions respectives n et p. Soit \mathscr{B} et \mathscr{B}' deux bases de E, soit \mathscr{C} et \mathscr{C}' deux bases de F. Soit $u \in \mathscr{L}(E, F)$.

Exprimer $\operatorname{Mat}_{\mathscr{B}',\mathscr{C}'}(u)$ en fonction de $\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(u)$ et de matrices de passage. Justifier le résultat énoncé. Un schéma sera vivement apprécié. Définir ce qu'est une matrice de passage d'une base à une autre. Exprimer une telle matrice de passage comme la matrice d'un endomorphisme de l'espace considéré.

Soit $n \in \mathbb{N}$ et $\alpha \in \mathbb{R}$. Donner les DL suivants (DL_n(0) pour DL à l'ordre n en 0).

 $DL_n(0)$ de e^x :

$$\mathrm{DL}_n(0)$$
 de $\frac{1}{1+x}$:

 $DL_n(0)$ de ln(1+x):

 $DL_3(0) de (1+x)^{\alpha}$:

 $DL_5(0)$ de sin(x):