1

Assignment 15

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment15

1 Problem

(hoffman/page213/3):

Find a projection **E** which projects \mathbb{R}^2 onto the subspace spanned by (1,-1) along the subspace spanned by (1,2).

2 Solution

Given	Let $\mathbf{x} \in \mathbb{R}^2$	
	$\mathbf{x} = a \begin{pmatrix} 1 \\ -1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	(2.0.1)
	where $\begin{pmatrix} a \\ b \end{pmatrix}$ is representation of x in new basis.	
To find		
	$\mathbf{E}\left(\mathbf{x}\right) = a \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	(2.0.2)
Finding a Projection E	As, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ are linearly independent.	
	Therefore, $\{\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}\}$ is a basis of \mathbb{R}^2	
	As $\mathbf{x} \in \mathbb{R}^2$	
	$\implies \mathbf{x} = a \begin{pmatrix} 1 \\ -1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	(2.0.3)

$$\implies \mathbf{x} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \tag{2.0.4}$$

$$\implies \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}^{-1} \mathbf{x} \tag{2.0.5}$$

$$\implies \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \mathbf{x}$$
 (2.0.6)

Therefore,

$$\mathbf{a} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \end{pmatrix} \mathbf{x} \tag{2.0.7}$$

Projection of **x** on subspace spanned by $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$;

$$\mathbf{E}\left(\mathbf{x}\right) = a \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{2.0.8}$$

$$\mathbf{E}(\mathbf{x}) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \end{pmatrix} \mathbf{x}$$
 (2.0.9)

$$\mathbf{E}(\mathbf{x}) = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \mathbf{x}$$
 (2.0.10)

$$\Longrightarrow \mathbf{E} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \tag{2.0.11}$$

Verification If $n \times n$ matrix **E** is projection matrix, then

$$\mathbf{E}^2 = \mathbf{E}$$

$$\mathbf{E}^{2} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \implies \mathbf{E} = \mathbf{E}^{2} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$$
(2.0.12)

Hence, Verified.

TABLE 1: Finding Projection Matrix