

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1-12 (Cancelled)

13. (New) A system for producing asymmetric cryptographic keys, said keys comprising $m \geq 1$ private values Q_1, Q_2, \dots, Q_m and m respective public values G_1, G_2, \dots, G_m , the system comprising:

a processor; and

a memory unit coupled to the processor, the memory unit storing a set of instructions, which when executed cause the processor to execute the following acts:

selecting a security parameter k , wherein k is an integer greater than 1;

selecting m base numbers g_1, g_2, \dots, g_m , wherein each base number g_i (for $i = 1, \dots, m$) is an integer greater than 1;

determining a modulus n , wherein n is a public integer equal to the product of at least two prime factors p_1, \dots, p_f , at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \pmod{4}$, $p_2 \equiv 3 \pmod{4}$, and such that p_2 is complementary to p_1 with respect to one of the base numbers;

calculating the public values G_i for $i = 1, \dots, m$ through $G_i \equiv g_i^2 \pmod{n}$; and

calculating the private values Q_i for $i = 1, \dots, m$ by solving either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein the public exponent v is such that $v = 2^k$.

14. (New) The system according to claim 13, wherein the number $(f - e)$ (where $e \geq 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \leq j \leq m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile_j(g_j) of g_j with respect to the prime factors p_1, p_2, \dots, p_j is computed, and

if profile_j(g_j) is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the $(j - 1)$ base numbers g_1, g_2, \dots, g_{j-1} and all of their multiplicative combinations, such that profile_j(g) = profile_j(g_j), then p_{j+1} is chosen such that profile_{j+1}(g_j) ≠ profile_{j+1}(g),

wherein the last prime factor p_{f-e} congruent to 3 mod 4 is, in the case that $f - e \leq m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f - e \leq i \leq m$ and whose profile profile_{f-e-1}(g_i) is flat.

15. (New) The system according to claim 13, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for $i = 1, \dots, m$) with respect to p is equal to +1,

the integer t is computed such that $(p - 1)$ is divisible by 2^t , but not by 2^{t+1} ,

the integer $s = (p - 1 + 2^t)/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2} \pmod{p}$, where h is a non-quadratic residue of the body of integers modulo p , is computed,

the m integers $r_i \equiv g_i^{2^s} \pmod{p}$ for $i = 1, \dots, m$ are computed,

an integer u is initialized to $u = 0$,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if $i < m$, whereas the candidate prime number p is accepted as a factor of the modulus n if $i = m$,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

$x \equiv w^2 / g_i^2 \pmod{p}$ is computed,

$y \equiv x^{2^{i-ii-1}} \pmod{p}$ is computed, and

if $y = +1$, the sequence is terminated at the current value of ii ,

if $y = -1$, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p , and

for $ii < t - 2$, the value of ii is incremented and a new iteration is proceeded to with the new value of ii ,

for $ii = t - 2$, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if $t - u < k$, the candidate prime number p is rejected as a factor of the modulus n ,

if $t - u > k$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if $i < m$, whereas the candidate prime number p is accepted as a factor of the modulus n if $i = m$.

16. (New) The system according to claim 13, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values Q_1, Q_2, \dots, Q_m , the following steps are implemented for each couple (i, j) :

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \pmod{p_j}$ is computed, where $s = (p - 1 + 2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if $u = 0$, are such that $zz = z$ or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k, t)$,

if $u > 0$, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz , a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^v \pmod{n}$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ is used for this value of i .

17. (New) A computer-readable storage medium storing instructions for producing asymmetric cryptographic keys, said keys comprising $m \geq 1$ private values Q_1, Q_2, \dots, Q_m and m respective public values G_1, G_2, \dots, G_m , the medium storing instructions, which when executed cause a processor to carry out the following acts:

selecting a security parameter k , wherein k is an integer greater than 1;

selecting m base numbers g_1, g_2, \dots, g_m , wherein each base number g_i (for $i = 1, \dots, m$) is an integer greater than 1;

determining a modulus n , wherein n is a public integer equal to the product of at least two prime factors p_1, \dots, p_f , at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \pmod{4}$, $p_2 \equiv 3 \pmod{4}$, and such that p_2 is complementary to p_1 with respect to one of the base numbers;

calculating the public values G_i for $i = 1, \dots, m$ through $G_i \equiv g_i^2 \pmod{n}$; and

calculating the private values Q_i for $i = 1, \dots, m$ by solving either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein the public exponent v is such that $v = 2^k$.

18. (New) The computer-readable storage medium storing instructions according to claim 17, wherein the number $(f - e)$ (where $e \geq 0$) of prime factors of the modulus n which are congruent to $3 \pmod{4}$ is larger than 2, and those prime factors p_{j+1} for $2 \leq j \leq m$ which are congruent to $3 \pmod{4}$ are determined iteratively as follows:

the profile $\text{profile}_j(g_j)$ of g_j with respect to the prime factors p_1, p_2, \dots, p_j is computed, and

if $\text{profile}_j(g_j)$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the $(j - 1)$ base numbers g_1, g_2, \dots, g_{j-1} and all of their multiplicative combinations, such that $\text{profile}_j(g) = \text{profile}_j(g_j)$, then p_{j+1} is chosen such that $\text{profile}_{j+1}(g_j) \neq \text{profile}_{j+1}(g)$,

wherein the last prime factor p_{f-e} congruent to $3 \pmod{4}$ is, in the case that $f - e \leq m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f - e \leq i \leq m$ and whose profile $\text{profile}_{f-e-1}(g_i)$ is flat.

19. (New) The computer-readable storage medium storing instructions according to claim 17, wherein the number e of prime factors of the modulus n which are congruent to $1 \pmod{4}$ is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for $i = 1, \dots, m$) with respect to p is equal to +1,

the integer t is computed such that $(p - 1)$ is divisible by 2^t , but not by 2^{t+1} ,

the integer $s = (p - 1 + 2^t) / 2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2^t} \pmod{p}$, where h is a non-quadratic residue of the body of integers modulo p , is computed,

the m integers $r_i \equiv g_i^{2^s} \pmod{p}$ for $i = 1, \dots, m$ are computed,

an integer u is initialized to $u = 0$,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if $i < m$, whereas the candidate prime number p is accepted as a factor of the modulus n if $i = m$,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

$x \equiv w^2 / g_i^2 \pmod{p}$ is computed,

$y \equiv x^{2^{t-ii-1}} \pmod{p}$ is computed, and

if $y = +1$, the sequence is terminated at the current value of ii ,

if $y = -1$, jj is assigned the value $jj = 2^u$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p , and

for $ii < t - 2$, the value of ii is incremented and a new iteration is proceeded to with the new value of ii ,

for $ii = t - 2$, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if $t - u < k$, the candidate prime number p is rejected as a factor of the modulus n ,

if $t - u > k$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if $i < m$, whereas the candidate prime number p is accepted as a factor of the modulus n if $i = m$.

20. (New) The computer-readable storage medium storing instructions according to claim 17, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values Q_1, Q_2, \dots, Q_m , the following steps are implemented for each couple (i, j) :

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \pmod{p_j}$ is computed, where $s = (p - 1 + 2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if $u = 0$, are such that $zz = z$ or such that zz is equal to the product modulo p_j of z by each of the $2^{ii-1} 2^{ii}$ -th primitive roots of unity, for ii ranging from 1 to $\min(k, t)$,

if $u > 0$, are such that zz is equal to the product modulo p_j of za by each of the $2^k 2^k$ -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz , a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^v \pmod{n}$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ is used for this value of i .

21. (New) A computer-implemented process for producing asymmetric cryptographic keys, said keys comprising $m \geq 1$ private values Q_1, Q_2, \dots, Q_m and m respective public values G_1, G_2, \dots, G_m , the computer-implemented process comprising:

selecting a security parameter k , wherein k is an integer greater than 1;

selecting m base numbers g_1, g_2, \dots, g_m , wherein each base number g_i (for $i = 1, \dots, m$) is an integer greater than 1;

determining a modulus n , wherein n is a public integer equal to the product of at least two prime factors p_1, \dots, p_f , at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \pmod{4}$, $p_2 \equiv 3 \pmod{4}$, and such that p_2 is complementary to p_1 with respect to one of the base numbers;

calculating the public values G_i for $i = 1, \dots, m$ through $G_i \equiv g_i^2 \pmod{n}$; and

calculating the private values Q_i for $i = 1, \dots, m$ by solving either the equation

$G_i \cdot Q_i^\nu \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^\nu \pmod{n}$, wherein the public exponent ν is such that $\nu = 2^k$.

22. (New) The computer-implemented process according to claim 21, wherein the number $(f - e)$ (where $e \geq 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \leq j \leq m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $\text{profile}_j(g_j)$ of g_j with respect to the prime factors p_1, p_2, \dots, p_j is computed, and

if $\text{profile}_j(g_j)$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the $(j - 1)$ base numbers g_1, g_2, \dots, g_{j-1} and all of their multiplicative combinations, such that $\text{profile}_j(g) = \text{profile}_j(g_j)$, then p_{j+1} is chosen such that $\text{profile}_{j+1}(g_j) \neq \text{profile}_{j+1}(g)$,

wherein the last prime factor p_{f-e} congruent to 3 mod 4 is, in the case that $f - e \leq m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f - e \leq i \leq m$ and whose profile $\text{profile}_{f-e-1}(g_i)$ is flat.

23. (New) The computer-implemented process according to claim 21, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for $i = 1, \dots, m$) with respect to p is equal to +1,

the integer t is computed such that $(p - 1)$ is divisible by 2^t , but not by 2^{t+1} ,

the integer $s = (p - 1 + 2^t)/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2^t} \pmod{p}$, where h is a non-quadratic residue of the body of integers modulo p , is computed,

the m integers $r_i \equiv g_i^{2^s} \pmod{p}$ for $i = 1, \dots, m$ are computed,

an integer u is initialized to $u = 0$,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if $i < m$, whereas the candidate prime number p is accepted as a factor of the modulus n if $i = m$,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

$x \equiv w^2 / g_i^2 \pmod{p}$ is computed,

$y \equiv x^{2^{t-i-1}} \pmod{p}$ is computed, and

if $y = +1$, the sequence is terminated at the current value of ii ,

if $y = -1$, jj is assigned the value $jj = 2^i$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p , and

for $ii < t - 2$, the value of ii is incremented and a new iteration is proceeded to with the new value of ii ,

for $ii = t - 2$, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if $t - u < k$, the candidate prime number p is rejected as a factor of the modulus n ,

if $t - u > k$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if $i < m$, whereas the candidate prime number p is accepted as a factor of the modulus n if $i = m$.

24. (New) The computer-implemented process according to claim 21, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values Q_1, Q_2, \dots, Q_m , the following steps are implemented for each couple (i, j) :

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \pmod{p_j}$ is computed, where $s = (p - 1 + 2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if $u = 0$, are such that $zz = z$ or such that zz is equal to the product modulo p_j of z by each of the $2^{ii-1} \cdot 2^i$ -th primitive roots of unity, for ii ranging from 1 to $\min(k, t)$,

if $u > 0$, are such that zz is equal to the product modulo p_j of za by each of the $2^k \cdot 2^k$ -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz , a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^v \pmod{n}$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ is used for this value of i .