Convex Optimization Problems

Ye Shi

ShanghaiTech University

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Optimization Problems in Standard Form I

minimize
$$f_0({m x})$$
 subject to $f_i({m x}) \leq 0$ $i=1,\cdots,m$ $h_i({m x})=0$ $i=1,\cdots,p$

- $\boldsymbol{x} = (x_1, \cdots, x_n)$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $f_i: \mathbb{R}^n \to \mathbb{R} \quad i=1,\cdots,m$ are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R} \quad i = 1, \cdots, p$ are the equality constraint functions

Optimization Problems in Standard Form II

Feasibility:

- a point $x \in \text{dom } f_0$ is feasible if it satisfies all the constraints and infeasible otherwise
- a problem is feasible if it has at least one feasible point and infeasible otherwise.

Optimal value:

$$p^* = \inf\{f_0(\mathbf{x}) \mid f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

Optimal solution: x^* such that $f(x^*) = p^*$ (and x^* feasible).

Global and Local Optimality

- A feasible x is optimal if $f_0(x) = p^*$; X_{opt} is the set of optimal points.
- A feasible x is **locally optimal** if it is optimal within a ball, i.e., there is an R > 0 such that x is optimal for

minimize
$$f_0(\boldsymbol{z})$$
 subject to $f_i(\boldsymbol{z}) \leq 0$ $i=1,\cdots,m$ $h_i(\boldsymbol{z}) = 0$ $i=1,\cdots,p$ $\|\boldsymbol{z}-\boldsymbol{x}\|_2 \leq R$

Example:

- $f_0(x) = 1/x$, dom $f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- •• $f_0(x) = x^3 3x$: $p^* = -\infty$, local optimum at x = 1.

Implicit Constraints

The standard form optimization problem has an explicit constraint:

$$\boldsymbol{x} \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$$

- \mathcal{D} is the domain of the problem
- The constraints $f_i(x) \leq 0, h_i(x) = 0$ are the explicit constraints
- A problem is unconstrained if it has no explicit constraints
- Example:

$$\begin{array}{ll}
\text{minimize} & \log(b - \boldsymbol{a}^T \boldsymbol{x})
\end{array}$$

is an unconstrained problem with implicit constraint $b > a^T x$

Feasibility Problem

Sometimes, we don't really want to minimize any objective, just to find a feasible point:

find
$$\boldsymbol{x}$$
 subject to $f_i(\boldsymbol{x}) \leq 0$ $i=1,\cdots,m$ $h_i(\boldsymbol{x}) = 0$ $i=1,\cdots,p$

This feasibility problem can be considered as a special case of a general problem:

minimize
$$0$$
 subject to $f_i(\boldsymbol{x}) \leq 0 \quad i = 1, \dots, m$ $h_i(\boldsymbol{x}) = 0 \quad i = 1, \dots, p$

where $p^* = 0$ if constraints are feasible and $p^* = \infty$ otherwise.

Stationary Points

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$, a point $\boldsymbol{x} \in \mathbb{R}^n$ is called

- A stationary point, if $\nabla f(x) = 0$;
- A **local minimum**, if x is a stationary point and there exists a neighborhood $\mathcal{B} \subseteq \mathbb{R}^n$ of x such that $f(x) \leq f(y)$ for any $y \in \mathcal{B}$;
- A global minimum, if x is a stationary point and $f(x) \leq f(y)$ for any $y \in \mathbb{R}^n$;
- Saddle point, if x is a stationary point and for any neighborhood $\mathcal{B} \subseteq \mathbb{R}^n$ of x, there exist $y, z \in \mathcal{B}$ such that $f(z) \leq f(x) \leq f(y)$ and $\lambda_{\min}(\nabla^2 f(x)) \leq 0$.

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Convex Optimization Problem

Convex optimization problem in standard form:

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

where f_0, f_1, \dots, f_m are convex and equality constraints are affine.

- Local and global optima: any locally optimal point of a convex problem is globally optimal **
- Most problems are not convex when formulated
- Reformulating a problem in convex form is an art, there is no systematic way

Suppose Xª is local optimum.

Yy there exists a small $\theta > 0$ such that $f(x^*) < f(x^* + \theta(y - x^*))$ since f is convex. $f(x^* + \theta(y - x^*)) = f(\theta y + (H\theta) x^*)$ (5) $\leq \theta f(y) + (1-\theta) f(x^*)$ \Rightarrow $\theta f(x^*) < \theta f(y)$, $\forall y$ $f(x^*) < f(y)$. $\forall y$

Example

The following problem is nonconvex (why not?):

minimize
$$x_1^2 + x_2^2$$

subject to $x_1/(1+x_2^2) \le 0$
 $(x_1 + x_2)^2 = 0$

- The objective is convex.
- The equality constraint function is not affine; however, we can rewrite it as $x_1 = -x_2$ which is then a linear equality constraint.
- The inequality constraint function is not convex; however, we can rewrite it as $x_1 \le 0$ which again is linear.
- We can rewrite it as

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 = -x_2$

Global and Local Optimality

Any locally optimal point of a convex problem is globally optimal. **Proof:** Suppose x is locally optimal (around a ball of radius R) and y is optimal with $f_0(y) < f_0(x)$. We will show this cannot be.

Just take the segment from x to y: $z = \theta y + (1 - \theta)x$. Obviously the objective function is strictly decreasing along the segment since $f_0(y) < f_0(x)$:

$$\theta f_0(y) + (1 - \theta) f_0(x) < f_0(x) \qquad \theta \in (0, 1]$$

Using now the convexity of the function, we can write

$$f_0(\theta \boldsymbol{y} + (1 - \theta)\boldsymbol{x}) < f_0(\boldsymbol{x}) \qquad \theta \in (0, 1]$$

Finally, just choose θ sufficiently small such that the point z is in the ball of local optimality of x, arriving at a contradiction.

Optimality Criterion for Differentiable f_0 I

Minimum Principle: A feasible point x is optimal if and only if

$$\nabla f_0(\boldsymbol{x})^T(\boldsymbol{y}-\boldsymbol{x}) \geq 0$$
 for all feasible \boldsymbol{y}

$$\begin{array}{ll}
\text{(i)} & f_{\circ}(x) \leq f_{\circ}(y). \quad \forall y \in domf_{\circ} \\
\text{(i)} & \nabla f_{\circ}(x)(y-x) \geq 0. \quad \forall y \in domf_{\circ} \\
\text{(i)} & \nabla f_{\circ}(x)(y-x) \geq 0. \quad \forall y \in domf_{\circ} \\
\text{(i)} & \nabla f_{\circ}(x)(y-x) \leq f_{\circ}(x) + \nabla f_{\circ}(x)(y-x) \\
\text{(i)} & \nabla f_{\circ}(x) = f_{\circ}(x) + \theta(y-x) \cdot \theta \in [0,1] \\
\text{Suppose } f_{\circ}(x) \in f_{\circ}(y), \Rightarrow \nabla f_{\circ}(x)(y-x) < 0 \\
\text{(i)} & \int_{0}^{\infty} f_{\circ}(x)(y-x) \leq 0 \\
\text{(i)} & \int_{0}^{\infty} f_{\circ}(x)(y-x) = \int_{0}^{\infty} f_{\circ}(x)(y-x) = \int_{0}^{\infty} f_{\circ}(x)(y-x) \\
\text{(i)} & \int_{0}^{\infty} f_{\circ}(x)(y-x) = \int_$$

Optimality Criterion for Differentiable f_0 II

Unconstrained problem: *x* is optimal iff

$$x \in \text{dom } f_0, \qquad \nabla f_0(x) = 0$$

Equality constrained problem: $\min f_0(x)$ s.t. Ax = b $L(x, v) = f_0(x) + v^{\mathsf{T}}(Ax - b)$ x is optimal iff

$$x \in \text{dom } f_0$$
, $Ax = b$, $\nabla f_0(x) + A^T \nu = 0$
 $\Rightarrow x = \nabla f_0(x) + A^T \nu = 0$, $\Rightarrow x = 0$
Minimization over nonnegative orthant: $\min_x f_0(x)$ s.t. $x \succeq 0$ x

is optimal iff

$$x \in \text{dom } f_0,$$
 $x \succeq 0,$
$$\begin{cases} \nabla_i f_0(x) \geq 0 & x_i = 0 \\ \nabla_i f_0(x) = 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \geq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \geq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i = 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i > 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i f_0(x) \leq 0 & x_i < 0 \end{cases}$$

$$\begin{cases} \nabla_i$$

$$\min_{X} \left| \int_{0}^{\infty} (x) + \frac{\lambda}{2} \|Ax - b\|^{2} \right|$$

$$\lambda \rightarrow \infty$$
 , $Ax-b=0$, $f_0(x)$ \uparrow $Ax-b=0$

Equivalent Reformulations I

Eliminating/introducing equality constraints:

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

is equivalent to

minimize
$$f_0(\mathbf{F}\mathbf{z} + \mathbf{x}_0)$$

subject to $f_i(\mathbf{F}\mathbf{z} + \mathbf{x}_0) \le 0$ $i = 1, \dots, m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some z.

Equivalent Reformulations II

Introducing slack variables for linear inequalities:

minimize
$$f_0(\boldsymbol{x})$$
 subject to $\boldsymbol{a}_i^T \boldsymbol{x} \leq b_i \quad i = 1, \cdots, m$

is equivalent to

minimize
$$f_0(\boldsymbol{x})$$
 subject to $\boldsymbol{a}_i^T \boldsymbol{x} + s_i = b_i$ $i = 1, \cdots, m$ $s_i \geq 0$

Equivalent Reformulations III

Epigraph form: a standard form convex problem is equivalent to

minimize
$$t$$
 ($\chi^{\!\!\!\!\!/}, t^{\!\!\!\!\!\!/}$) subject to $f_0({m x}) - t \le 0$ $f_i({m x}) \le 0$ $i = 1, \cdots, m$ ${m A}{m x} = {m b}$

min
$$f_o(x)$$

$$f_o(x) = t^A$$
s.t. $f_i(x) \le 0$ $i = 1 \cdots m$

$$Ax = b$$
17

Equivalent Reformulations IV

Minimizing over some variables:

ver some variables:
$$f_0(\boldsymbol{x}, \boldsymbol{y}) = f_0(\boldsymbol{x}, \boldsymbol{y})$$
 subject to
$$f_i(\boldsymbol{x}) \leq 0 \quad i = 1, \cdots, m$$

is equivalent to

minimize
$$ilde{f}_0(m{x})$$
 subject to $f_i(m{x}) \leq 0 \quad i=1,\cdots,m$

where
$$\tilde{f}_0(\boldsymbol{x}) = \inf_{\boldsymbol{y}} f_0(\boldsymbol{x}, \boldsymbol{y})$$

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Quasiconvex Optimization

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

where $f_0: \mathbb{R}^n \longrightarrow \mathbb{R}$ is quasiconvex and f_1, \cdots, f_m are convex

Observe that it can have locally optimal points that are not (globally) optimal:

Quasiconvex Optimization

Convex representation of sublevel sets of a quasiconvex function f_0 : there exists a family of convex functions $\phi_t(x)$ for fixed t such that

$$f_0(\boldsymbol{x}) \le t \iff \phi_t(\boldsymbol{x}) \le 0$$

Example:

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on dom f_0 . We can choose:

$$\phi_t(\boldsymbol{x}) = p(\boldsymbol{x}) - tq(\boldsymbol{x})$$

- for $t \geq 0$, $\phi_t(\boldsymbol{x})$ is convex in \boldsymbol{x}
- $p(\boldsymbol{x})/q(\boldsymbol{x}) \leq t$ if and only if $\phi_t(\boldsymbol{x}) \leq 0$

Ax =b Il fixed f

tixed f

to (+ixed

to (X) \le t # Steps of bi-sertion: by Luck 1

Quasiconvex Optimization

Solving a quasiconvex problem via convex feasibility problems: the idea is to solve the epigraph form of the problem with a sandwich technique in t:

for fixed t the epigraph form of the original problem reduces to a feasibility convex problem

feasibility convex problem for
$$\phi_t(x) \leq 0$$
, $\phi_t(x) \leq 0$, $\phi_t(x) \leq 0$

- if t is too small, the feasibility problem will be infeasible
- \star if t is too large, the feasibility problem will be feasible
- start with upper and lower bounds on t (termed u and l, resp.) and use a sandwich technique (bisection method): at each iteration use t = (l + u)/2 and update the bounds according to the feasibility or infeasibility of the problem.

Outline

- 1 Optimization Problems
- 2 Convex Optimization
- 3 Quasi-Convex Optimization
- 4 Classes of Convex Problems: LP, QP, SOCP, SDP

Linear Programming (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

- Convex problem: affine objective and constraint functions.
- Feasible set is a polyhedron:

ℓ_1 - and ℓ_∞ - Norm Problems as LPs I

ℓ_{∞} -norm minimization:

ℓ_1 - and ℓ_∞ - Norm Problems as LPs II

ℓ_1 -norm minimization:

minimize
$$\|x\|_1$$
 $\|x\|_1$ subject to $\|x\|_1$ $\|x\|_1$

is equivalent to the LP

Examples: Chebyshev Center of a Polyhedron I

Chebyshev center of a polyhedron

$$\mathcal{P} = \{ \boldsymbol{x} \mid \boldsymbol{a}_i^T \boldsymbol{x} \leq b_i, \ i = 1, \cdots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ \boldsymbol{x}_c + \boldsymbol{u} \mid \|\boldsymbol{u}\| \leq r \}$$
 Let's solve the problem

maximize
$$r$$
 subject to r for all r r with $||u|| \leq r$

Observe that $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup_{\boldsymbol{u}} \{\boldsymbol{a}_{i}^{T}(\boldsymbol{x}_{c} + \boldsymbol{u}) \mid ||\boldsymbol{u}|| \leq r\} \leq b_{i}$$

$$\alpha_{i}^{T} \chi_{c} + \alpha_{i}^{T} \chi_{i} \leq \alpha_{i}^{T} \chi_{c}^{T} + \gamma_{i}^{T} ||\alpha_{i}|| \leq \alpha_{i}^{T} ||\alpha_{i}|| \leq \alpha_{i}^$$

Examples: Chebyshev Center of a Polyhedron II

Using Schwartz inequality, the supremum condition can be rewritten as

$$\|\boldsymbol{a}_i^T \boldsymbol{x}_c + r \|\boldsymbol{a}_i\|_2 \le b_i$$

Hence, the Chebyshev center can be obtained by solving:

maximize
$$r$$
 subject to $\|\boldsymbol{a}_i^T\boldsymbol{x}_c + r\|\boldsymbol{a}_i\|_2 \leq b_i, \quad i=1,\cdots,m$

which is an LP.

Quadratic Programming (QP)

minimize
$$(1/2) \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} + r$$
 subject to $\mathbf{G} \mathbf{x} \leq \mathbf{h}$ $\mathbf{A} \mathbf{x} = \mathbf{b}$

- Convex problem (assuming $P \in \mathbb{S}^n_+ \succeq \mathbf{0}$): convex quadratic objective and affine constraint functions.
- Minimization of a convex quadratic function over a polyhedron:

Quadratically Constrained QP (QCQP)

minimize
$$(1/2) \mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$

subject to $(1/2) \mathbf{x}^T \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0$ $i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Convex problem (assuming $P_i \in \mathbb{S}^n_+ \succeq \mathbf{0}$): convex quadratic objective and constraint functions.

monomer: $\chi^T P \chi \leq 0$, $P \in S^n$ Strave $(PM) \leq 0$ wonver in MYanh $(M) \leq 1$ non conver

Second-Order Cone Programming (SOCP)

- Convex problem: linear objective and second-order cone constraints
- For A_i row vector, it reduces to an LP
- For $oldsymbol{c}_i=oldsymbol{0}$, it reduces to a QCQP
- More general than QCQP and LP

Robust LP as an SOCP

- Sometimes, the parameters of an optimization problem are imperfect
- Consider the robust LP:

$$\begin{array}{ll} & \underset{\boldsymbol{x}}{\text{minimize}} & \boldsymbol{c}^T\boldsymbol{x} \\ & \text{subject to} & \boldsymbol{a}_i^T\boldsymbol{x} \leq b_i & \forall \boldsymbol{a}_i \in \mathcal{E}_i, \ i=1,\cdots,m \\ \\ & \text{where } \mathcal{E}_i = \{\bar{\boldsymbol{a}}_i + \boldsymbol{P}_i\boldsymbol{u} \mid \|\boldsymbol{u}\| \leq 1\} & \text{where } \mathcal{E}_i \neq \boldsymbol{a}_i \neq \boldsymbol{e}_i \neq \boldsymbol{e$$

It can be rewritten as the SOCP:

Generalized Inequality Constraints

Convex problem with generalized inequality constraints:

minimize
$$f_0(m{x})$$
 subject to $m{f}_i(m{x}) \preceq_{K_i} m{0}$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

where f_0 is convex and f_i are K_i -convex w.r.t. proper cone K_i

- It has the same properties as a standard convex problem
- Conic form problem: special case with affine objective and constraints:

minimize
$$oldsymbol{c}^T oldsymbol{x}$$
 subject to $oldsymbol{F} oldsymbol{x} + oldsymbol{g} \preceq_K oldsymbol{0}$ $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$

Di minimiel CTX subject to AXAb, XEK Conic from X Conic optimization tractable conic offimization O the non negative orthant, Rt => 29 @ the second-order cone, $Q^n = \{(x, t) \in \mathbb{R}^{n+1}, ||x||_2 \le t\}$ => Soct 3 the semidefinite lone, Sx= {X | X=XT70} «) SPP minimite to (x) Subject to $f: (X) \leq 0$, AX = b/
Horm Po CVX P. SCS - ADMM Solution Point Scs - ADMM Solution KKI Rudition

Semidefinite Programming (SDP)

minimize
$$m{c}^Tm{x}$$
 subject to $x_1m{F}_1+x_2m{F}_2+\cdots+x_nm{F}_n\preceq m{G}$ $m{A}m{x}=m{b}$

- Inequality constraint is called linear matrix inequality (LMI)
- Convex problem: linear objective and linear matrix inequality (LMI) constraints
- Observe that multiple LMI constraints can always be written as a single one

SDPI

LP and equivalent SDP:

minimize $m{c}^T m{x}$ minimize $m{c}^T m{x}$ subject to $m{A} m{x} \preceq m{b}$ subject to $\dim_{m{x}} (m{A} m{x} - m{b}) \preceq m{0}$

SOCP and equivalent SDP:

minimize
$$f^T x$$
 subject to $\| A_i x + b_i \| \le c_i^T x + d_i, \quad i = 1, \cdots, m$

minimize
$$m{f}^T m{x}$$
 subject to
$$\begin{bmatrix} (m{c}_i^T m{x} + d_i) m{I} & m{A}_i m{x} + m{b}_i \\ m{A}_i m{x} + m{b}_i & m{c}_i^T m{x} + d_i \end{bmatrix} \succeq m{0}, \quad i = 1, \cdots, m$$

SDP II

Eigenvalue minimization:

$$\min_{\boldsymbol{x}} \sum_{\boldsymbol{x}} \lambda_{\max}(\boldsymbol{A}(\boldsymbol{x}))$$

where $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + x_1 \mathbf{A}_1 + \cdots + x_n \mathbf{A}_n$, is equivalent to SDP

subject to
$$A(x) \leq tI$$

It follows from

$$\lambda_{\max}(\boldsymbol{A}(\boldsymbol{x})) \leq t \iff \boldsymbol{A}(\boldsymbol{x}) \leq t\boldsymbol{I}$$

Reference

Chapter 4 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.