categorical_picture

(1) Injection \rightarrow (2) Push-out/Synthesis \rightarrow (3) Semantic realisation

I first show the abstract categorical picture, then walk a concrete mini-example ("Birds fly / Penguins don't") all the way through.

1 Injection: turning $\alpha \wedge \neg \alpha$ into a morphism

Let

- To the base theory (a set of sentences closed under entailment)
- α a new assertion
- ¬α its negation

Both arrows are *injections* (monos) in **Th**, the paraconsistent-theory category.

Together they realise the formal contradiction; nothing collapses because homsets are enriched over Belnap's 4-value lattice.

2 Push-out (synthesis): the universal "glue" object T_2

In **Th** every span $T_1 \leftarrow T_0 \rightarrow T_0'$ has a colimit:

Concrete construction (your Prop. 4.2 idea).

Introduce a fresh symbol *p* that "re-threads" the conflict:

```
T_2 := T_0
 \cup \{\alpha \to p,
 \neg \alpha \to \neg p,
 p \lor \neg p\} \qquad \text{(minimal, adds just one atom)}
```

p is the **new emergent concept**; T_2 is initial among theories receiving both injections while preserving entailment relations.

Mathematically: for any theory **S** and maps $f_1:T_1\to S$, $f_2:T_0'\to S$ that agree on T_0 , there exists a **unique** $h:T_2\to S$ with $h\circ i_1=f_1$ and $h\circ i_2=f_2$.

3 Semantic realisation via a functor

F: Th → Sem

Choose **Sem** to be a suitable model category (sets, Kripke frames, graphs...).

Below, I use **Set** of *two-world Kripke models* for clarity.

Minimal two-world model that realises T_2

World	p	α	-α
W ₁	Т	Т	F
W ₂	F	F	Т

- The link p ∨ ¬p ensures every world lands in exactly one context.
- No explosion: both worlds coexist; $\alpha \wedge \neg \alpha$ holds globally in four-valued sense, yet each world is classically consistent.

Walk-through with a tangible KB fragment

Thesis:

Antithesis:

1 Injection

 T_o = taxonomy facts (penguin(x) \rightarrow bird(x)).

Add α on one branch, $\neg \alpha$ on the other.

2 Push-out

Introduce context(penguin) $\equiv p$.

Add rules

```
\alpha \rightarrow p (flying rule applies only in p-world)

\neg \alpha \rightarrow \neg p (non-flying rule in \neg p-world)

p \lor \neg p (each individual tagged)
```

Result: the KB now **contains a fresh attribute** "penguin-context" that reconciles both flight rules.

3 Semantic image

A data store instantiates two labelled sub-graphs or two rows in a truth-table. Query engines can now answer:

- "Do birds fly (generically)?" Yes in pworld.
- "Do penguins fly?" No in ¬pworld.

Explainability: system says "Conflict resolved by creating a context dimension 'penguin'."

Visual summary (one slide-style)

Key play-out: contradiction **injects**, system **pushes-out** to minimal extension, functor **realises** it as a concrete, queryable structure.

That's the life-cycle your framework formalises—and why we can mirror it in option portfolios, KB repair, or neural concept-splitting.