

회귀 분석

학습 내용

- 1. 회귀분석
- 2. FastAPI 파일 다운로드

인공지능 실습

_선형회귀 분석

🕥 회귀분석 (Regression Test)

- 회귀분석은 **독립변인이 종속변인에 영향을 미치는지 알아보고자 할 때** 실시하는 분석방법
- 단순 선형 회귀분석은 **독립변수 X(설명변수)에 대하여 종속변수 Y(반응변수)들 사이의 관계**를 수학적 모형을 이용하여 규명하는 것
- 규명된 함수식을 이용하여 설명변수들의 변화로부터 종속변수의 변화를 예측하는 분석
- 선형 회귀 모델은 가장 단순하고 학습 속도가 빠르며 인간이 이해하기 쉬워 분류하는 요인의 수가 적을 때는 활용하기가 용이

_선형회귀 분석

'키(Height)에 따른 몸무게(Weight)' 를 예로 들면,

Weight = a + b*Height

가 되며, 결국 Height에 따라 Weight가 결정되므로, Height는 독립변수, Weight는 종속변수.

키(height) inch	몸무게(weight) pound
50	120
58	130
61	145
69	145
70	165
75	155
78	165

X-axis: Height (inches)

_파이썬 회귀 분석 프로그래밍

1. 라이브러리 불러오기

import statsmodels.formula.api as smf

2. 데이터 읽기 및 선별

 $w = pd.read_csv('ch5-1.csv')$ $w_n = w.iloc[:,1:5]$

3. 회귀모델 알고리즘 설정

model_Im = smf.ols(formula = 'weight ~ egg_weight', data = w_n)

- * 파라미터 formula는 '예측하고자 하는 칼럼 이름 ~ 원인이 되는 칼럼 이름'을 설정
- * data 에는 분석할 DataFrame을 넣어주면 된다.

4. 모델링 수행(학습)

result_lm = model_lm.fit()

5. 결과 확인

result_lm.summary()

6. 예측값 계산

predicted_values = result_lm.predict()

_회귀분석 프로그래밍 실습 : 회귀 분석

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
w = pd.read_csv('ch5-1.csv')
w_n = w_i loc[:,1:5]
model_lm = smf.ols(formula = 'weight ~ egg_weight', data = w_n)
result_lm = model_lm.fit()
result_lm.summary()
print(result_lm.summary())
```


_회귀분석 결과해석

Dep. Variable:		weight		R-squa	red:		0.916
Model:		OLS		Adj. R	Adj. R-squared:		0.913
Method:		Least Squares		F-statistic:			306.0
Date:	Saf	t, 21 Oct 2	023	Prob (F-statistic)	:	1.32e-16 1
Time:		15:16	:04	Log-Li	kelihood:		-63.148
No. Observations	:		30	AIC:			130.3
Df Residuals:			28	BIC:			133.1
Df Model:			1				
Covariance Type:		nonrob	ust				
	coef	std err		t	P> t	[0.025	0.975]
Intercept -14	.5475	8.705	 -1	 671	0.106	-32.380	3.285
egg_weight 2	.3371	0.134	17	.493	0.000	2.063	2.611
 Omnibus:		15.	===== 078	Durbin	 -Watson:		1.998
Prob(Omnibus):		0.	001	Jarque	-Bera (JB):		2.750
Skew:		0.		Prob(J			0.253
Kurtosis:		1.	518	Cond.	No.		1.51e+03

strong multicollinearity or other numerical problems.

_회귀분석 결과해석

- 1. F통계량 Prob(F-statistic) : 만들어진 결과가 의미가 있는 가 (유의미 한 가) 유의수준 (보통 95%) 이하 경우 유의미 한 것으로 판단
- 2. 개별 독립변수의 p값 P〉[t] : 독립변수가 미치는 영향력은 얼마나 되는 가 유의수준 (보통 95%) 이하 경우 유의미 한 것으로 판단
- 3. 결정 계수 R-squared : 회귀식의 판단, 예측 능력이 좋은 가? 0.7 이상이면 우수한 편으로 판단
- 4. 독립변수의 계수 coef : 결과(변수)에 미치는 영향력 선형 모델에서는 기울기로 나타 남 Intercept는 상수 임 (y절편)

[결과] = [coef값] x [독립변수값] + [Intercept]

_회귀분석 프로그래밍 실습: 시각화

plt.show()

```
plt.figure(figsize = (10,7))
plt.scatter(w.egg_weight, w.weight, alpha = .5)
plt.plot(w.egg_weight, w.egg_weight*2.3371 - 14.5475, color = 'red')
plt.text(66, 132, 'weight = 2.3371egg_weight - 14.5475', fontsize = 12)
plt.title('Scatter Plot')
plt.xlabel('egg_weight')
plt.ylabel('weight')
```


_실습

실습: 실습 1에서 독립변수 중 food 에 대한 회귀분석을 실시하기 (종속변수는 weight)

RPA 실습

_FastAPI

Fast API 파일 다운로딩

- 클라이언트 코딩(Front)
- 서버 코딩 (Back)
- 1. 클라이언트 코딩
- : static 폴더안에 html 파일 생성

<h2>Download File</h2>

<input type="text" id="filename" placeholder="Enter filename">

⟨button onclick="downloadFile()"⟩Download File⟨/button⟩

Download File

Enter filename

Download File

```
<script>
  function downloadFile() {
    const filename = document.getElementByld('filename').value;
    if (filename.length > 0) {
       const url = `/files/${filename}`;
       const a = document.createElement('a');
       a href = url;
       a download = filename;
       document.body.appendChild(a);
       a.click();
       document.body.removeChild(a);
    } else {
       alert('Please enter a filename');
</script>
```


_FastAPI

2. 서버 코딩: Form 요청에 대응하는 API from fastapi import File, UploadFile import shutil from pathlib import Path from fastapi, responses import FileResponse @app.get("/files/{filename}") async def get_file(filename: str): file path = Path("static/uploads") / filename if file_path.is_file(): return FileResponse(path=file_path, filename=filename) else: raise HTTPException(status_code=404, detail="File not found")

_FastAPI

3. 업로드 파일 확인

http://127.0.0.1:8000/filedownload.html

