## Projekt zum Fortgeschrittenen-Praktikum - Rasterkraftmikroskopie

Guilherme Stein & Ulrich Müller

Betreuer: Dr. Paolo Sessi Versuchsdurchführung: 04. Oktober 2013

## 0 Expose

The III-V semiconductor system based on GaSb is commonly used for optical semiconductor devices with wavelengths beyond 2.3 μm [1]. In Würzburg especially the interband cascade lasers, which are grown by MBE on GaSb substrate, made significant progress during the last years [2]. In order to grow devices with high performance it is inevitable to use high quality substrates with a minimum of defects. Despite the use of 'epiready' substrates the wafers suffer from native oxide like Ga<sub>2</sub>O<sub>3</sub> and Sb<sub>2</sub>O<sub>3</sub> [3]. The growth of devices on top of this oxide would lead to non-monocrystal layers. To remove this oxide a commonly used technique in Würzburg is to heat the substrate to about 580° for a short time. At this temperature the most of the oxide desorbes from the surface but leaving holes in the surface with about 10 nm in size [4]. Hereupon a 200 nm GaSb buffer layer is grown at  $485^{\circ}$  to flatten the surface.

This method has been established during the last years although it is not clear whether a different technique would lead to smoother surfaces. Therefore one of the goals of this experiment is to determine a method of reducing the roughness on the wafer we want to grow on optical structures. This is important on the behalf of the optical quality the device can operate at.

From an intuitive point of view it is clear what roughness is. However, quantifying roughness in a mathematical way is not trivial. Common definitions use the standard deviation of the surface's mean height as  $S_a = \frac{1}{A} \iint_A |z(x,y)| dxdy$  and are suitable in many applications. Problems arise when applying this definition

to non-flat surfaces. A soup bowl which appears flat and smooth when we are very close to the surface, shows a curvature when we look at the object as a whole. This example shows, that roughness is not independent of the scale. In our scope roughness will be a way of measuring the quality of a surface with respect to certain properties of the material. We think that in general the concept of a surface energy is a better approach to address the optical properties arising from surface irregularities. The more the size of the surface differs from a perfect flat surface the rougher the surface is. We want to model the surface as polygons connecting the mean heights of a discrete lattice. The lattice size represents the scaling parameter mentioned above. Here we make the arbitrary choice of the AFM's resolution which will be the scale on which we measure the roughness of the samples.

The Atomic Force Microscope (AFM) is the perfect instrument to characterize this roughness of the wafers as it determines the height of the surface very precisely. The expected differences in height on the surface is about 10 nm which is within the resolution of the AFM. As the AFM doesn't work in situ we have to produce and investigate the surface at each step of the growth process to understand the mechanisms of oxide desorbtion and flattening of the surface. We are going to characterize the single steps of the standard process which are: an untreated GaSb wafer, the wafer after the oxide desorbtion and after the growth of 200 nm GaSb buffer. To vary this process we want to test two aspects: first the increase of the GaSb buffer's growth temperature up to 500° and 515° and second the growth of a 30 nm GaSb/AlAsSb superlattice directly after oxide desorbtion. Recent research showed that the growth of



**Abb. 1:** At the sample's surface after several micrometer growth small pyramidal defects are visible. The image was taken by an optical microscope at a magnification of 50.

AlAsSb shutting down the step-flow growth mode. This step-flow growth mode is dominant during the growth of GaSb layers and is not very successful in flattening bigger defects like defects in pyramidal shape [4]. The growth of a superlattice instead of a bulk layer is nevertheless necessary to maintain the electrical conductivity of the sample. It would be helpful to understand how these defects can be removed from the surface and how the process can be improved. If the smoothing is not successful theses pyramidal defects tend to grow bigger as the growth progresses. After the growth of structures with a thickness of several microns these defects can even be observed by a optical microscope as shown in Abb. 1.

After sample production exposure to air can not be avoided. To reduce surface corrosion the samples will be produced tight before the experiment and stored in a nitrogen-flooded cabinet.

## Literatur

- Shamsul Arafin (2012): Electrically-Pumped GaSb-Based Vertical-Cavity Surface-Emitting Lasers. München.
- [2] Weih, Robert; Kamp, Martin; Höfling, Sven (2013): Interband cascade lasers with room temperature threshold current densities below 100 A/cm2. In: Appl. Phys. Lett. 102 (23), S. 231123. DOI: 10.1063/1.4811133.

- [3] C.J. Vineis; C.A. Wang; K.F. Jensen (2001): Insitu reflectance monitoring of GaSb substrate oxide desorption 2001.
- [4] Murray, Lee M.; Yildirim, Asli; Provence, Sydney R.; Norton, Dennis T.; Boggess, Thomas F.; Prineas, John P. (2013): Causes and elimination of pyramidal defects in GaSb-based epitaxial layers. In: J. Vac. Sci. Technol. B 31 (3), S. 03C108. DOI: 10.1116/1.4792515.