Insupervised POS Induction for Bengali

Joydeep Nath, Monojit Choudhury, Animesh Mukherjee, Chris Biemann and Niloy Ganguly नास

শान्त्रीय

দৃঢ

Contact: monojitc@microsoft.com Objective Comparison of unsupervised tagset শ্রেণীর induction techniques for Bengali Bengali tagset design Analysis of the word networks বিশেষ to understand the syntactic structure of Bengali আখ্যান

श्रानीय

পরিচিত

1 acquire a raw text corpus

সাহত্যের থাকে, মাহাত্য-কীৰ্তন করা মঙ্গল হয় এবং বিপরীতে হয় অমঙ্গল; যে মঙ্গলাধার, এমন কি, যে হয় মঙ্গলকাব্য বিশেষ হিন্দু দেবতা যারা "নিম্নকোটি" পরিচিত ছিল তাদের মাহাত্ম ইতিহাসবিদেরা ক্রেন এগুলো শাস্ত্রীয় হিন্দু সাহিত্য যেমন বেদ ও পুরাণে অনুল্লেখ্য ছিল।

Target word Feature word Feature word, but

Function word, but not feature word

not function word

The most frequent *m* words are defined as feature words.

3 generate context vectors

কাব্য	যে	হ্য	PU (1,;)	এই	3	বলা	• • •	যার
-2	0	0	3	0	0	0	• • •	0
-1	3	0	0	0	0	0	• • •	0
1	0	0	0	0	0	0	• • •	1
2	0	0	1	0	0	0	• • •	0

Measures the goodness of a cluster against a gold standard tagset.

শ্রবণে ও

দেখা

6 compute tag-entropy

সাহিত্য

দ্বতারা

আরাধনা

দ্বতা

 $TE(c) = -\sum [p_i \log p_i + (1-p_i) \log (1-p_i)]$ p_i = fraction of words for which tagi is 1 $\mathsf{MTE} = 1/r \sum \mathsf{TE}(c_i)$ WMTE = $1/N \sum |c_i| TE(c_i)$

r = number of clusters N = number of nodes in the network

5 cluster the network

মঙ্গল

কাব্য

मञ्जल

অমঙ্গল

Chinese Whispers Algorithm: nonparameterized, random walk based

Agglomerative Hierarchical Clustering: Number of clusters can be decided a priori

4 construct word network

Words are nodes. The weight of the edge between nodes (words) u and v is:

> $sim_b(u,v) = (1 - cos(\vec{u}, \vec{v}))^{-1}$ $sim_c(u,v) = cos(\overrightarrow{u},\overrightarrow{v})$

I. Topological properties of word networks

Property	Nature	Conclusion		
Degree distribution	Power-law with exponent -1	Hierarchical organization of ambiguity classes		
Clustering coefficient	0.53 (high positive correlation with degree)	Frequent words are ambiguous; existence of large clusters		
Cluster size	Power-law with exponent -1.02	The fractal nature of the networks		

III. Linguistic Analysis

সাহিত্যের

মানুষের

কাব্য

বাংলা

কাব্যে

বেদ

ঘটে

We observe no distinctions between the distributions of singular and plural nouns.

Example clusters are available at http://banglaposclusters.googlepages.com/home

Example Clusters: Cluster 1:

Proper Nouns buddhabAbu

saurabha rAkesha

Cluster 2:

Noun-genitive golamAlera

(of problem) dAbira (of right)

phalera (of result) Cluster 3:

Quantifiers *sAtaTi* (seven) anekaguli (many)

3Ti (three)

Cluster 4:

Noun-locative

adhibeshane (during the session) dalei (in party)

baktritAYe (in speech) bhAShaNe (in speech)

Cluster 5:

Infinitives

bhAbte (to think) khete (to eat)

jitate (to win)

II. Tag-entropy based analysis

Baseline: All the words in same cluster %8ain ir 15 10 Metric: % gain in MTE or WMTE Baseline entropy – (W)MTE Baseline entropy 10 20 100 corpus size (in Million) 80 60 MTE 40 Not corrected WMTE 20 Corrected for unknown words c,fr b,m c,m %gain in MTE & WMTE for various graph construction & Tag entropies for n = 17M, m = 50, agglomerative hierarchical clust. using sim_b & CW algorithm