DIGITAL CIRCUITS

Week-1, Lecture-1 Introduction

Sneh Saurabh 1st August, 2018

About the Course

Digital Circuits: Objectives

Learning Digital Logic Design

- ➤ Get introduced to Signal Representation, Boolean Algebra, Logic Gates and Design with Logic Gates.
- ➤ Be familiar with designing Combinational and Sequential Circuits
- > Get introduced to the concept of Pipelining

Digital Circuits: Expected Outcome

- > Translate a decision-making process into digital logic
- Understand Number System and circuits realizing Arithmetic operations
- Design simple digital circuits based on combinational logic and sequential logic
- ➤ Design Asynchronous and Synchronous counters and Shift Registers.
- ➤ Understand the concept of State Machines.
- ➤ Understand the concept of Pipelining

Digital Circuits: Where to apply the learning?

Programming
Machine Learning
Computer Organization
Networks
Artificial Intelligence
Verification
Quantum Computing
Compilers

VLSI Embedded Logic Design Signal and Systems Communications

••••

Digital Circuit: Course Content

Week No.	Topic
	Analog and Digital Representation of Information, Data vs. Signal, Information Processing Steps: Logic and Arithmetic (2hrs)
Week 1-2	Binary variables; Basic logic operations – AND, OR, NOT; Basic gates; Essentials of Boolean algebra; De Morgan's laws; Truth Table; Boolean functions; (4hrs)Transforming a logical problem statement into a Boolean expression.(4 hrs)
	Positional number systems – Binary, Decimal, Octal, Hexadecimal; Signed number representations; Arithmetic operations.(4 hrs)
Week 4, 5,	Realisation of Boolean functions using gates; Karnaugh map; Minimisation of Boolean functions; Multiplexer-based realisation of K-maps; Combinational circuit design using multiplexers and gates. ALU (11 hrs)
9 and 10	Latches and Flip-flops; Ripple counters; Sequence generator using flip-flops; State Table and State Diagram; Synchronous counters; Shift Registers; Ring and MLS counters.(10 hrs)
	Pipelining: Pipelining with Edge Triggered Flip Flop, Pulse Triggered Flip Flop and Latches. Introduce the concepts of Skew and Jitter (9 hrs)

Digital Circuits: Evaluation Criteria

Type of Evaluation	Contribution in Grade
Mid-semester Exam	20 %
Final Exam	40 %
Assignments	10 %
Labs	15 %
Quiz (Best (N-1) out of N)	15 %

Responsibilities

➤ Lecture: Instructor

➤ Tutorial: Instructor+Teaching Assistants (TAs)

➤ Quizzes/Theory Exams: Instructor

➤ Assignments: TAs

➤ Labs: Teaching Fellows (TFs)

Plagiarism !!!

- Plagiarism: offence of taking undue credit for someone else's work.
- We follow Zero tolerance policy against plagiarism!
- https://www.iiitd.ac.in/sites/default/files/docs/education/Aca demicDishonesty.pdf
 - One grade reduction for first instance and report to academic department
 - 2) F grade for second instance

Exam

Open Book

- Only Book and notes written in their own handwriting (no XEROX, printouts)
- No sharing of book/notes allowed
- No laptop/mobiles/communication/storage devices allowed.

- ✓ Tutorials are for solving problems
- ✓ New problems with application of concepts are expected in exams

Evaluation

Assignments: 10%

Quiz: 15% (Best N-1 out of N)

- If there is a large disparity in the marks obtained by a student in an Assignment and the Quiz following the Assignment submission, steps will be taken to check the understanding of the student with respect to the submitted assignment.
 - This may be done through a viva or another quiz (announced with a notice of less than a day) for students with large disparity in the marks obtained in an Assignment and the Quiz following the Assignment submission.
 - If such students continue to perform below par in the exploratory test, the marks in both the Assignment and the Quiz following will be made zero.
- Students with two such zeros in Assignment and Quiz will not be permitted to sit for the end-sem examination.

Digital Circuits: Books

- Digital Design with an Introduction to the Verilog HDL M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).
- Fundamentals of Digital Logic with Verilog Design S. Brown, Z. Vranesic, Ed-3, McGraw-Hill
- References will be provided during lectures also.

Online Resources

- 1. https://www.youtube.com/playlist?list=PLDFF5A99731ECFC6C
- 2. https://www.youtube.com/playlist?list=PLB52B8F4E464CEEF7
- 3. https://www.youtube.com/playlist?list=PL803563859BF7ED8C
- 4. https://www.youtube.com/channel/UCbl7mdq1mJidoe8pcRAnTbw/videos.

Usebackpack

Register yourself on https://www.usebackpack.com/

- Lecture will be shared
- Homework/Tutorials/Grade
- Announcements

- . . .

Policies

Digital Circuits: Policies (1)

- Be punctual to class
- Come to the class before the scheduled time
- Up to 5 minutes late is tolerated, beyond that please do not come

 Food, Cell phones, Laptops, IPODs, MP3 players or other portable electronic devices of any kind NOT allowed in classroom

Digital Circuits: Expectations

- Revise last day lecture before coming
 - Revision will be done at the start of every lecture for 5 minutes
 - One student at random will be asked to revise the topics covered in the last lecture
 - You are allowed to use your own notes in the revision
 - A good review (preferably without notes)
 from the student will be AWARDED !!!

- Ask questions and be active participants
- Give feedback

Digital Circuits: Attendance Policy

Lectures: Attendance not mandatory

• Tutorials:

- If attendance before mid-sem is less than 75%, you will get zero marks in one of the quizzes and it will be considered as compulsory quiz.
- If attendance after mid-sem is less than 75%, you will get zero marks in one of the quizzes and it will be considered as compulsory quiz.
- Labs: All experiments must be completed before each labexam. Otherwise, you will not be allowed to appear for lab exams.

Digital Circuits: Questions/Doubt/Office Hours

- Class: Many may have the same questions
- Just After Class
 - Will be available for some time after the class
- Before the start of the next lecture
- Office-hours
 - Monday 2:30-3:30 pm, B-608 (New Academic Building)

Digital Circuits: Why grades are important?

- For branch change
- For good internship, placements in "good" companies, good research project, scholarship/TA'ship during BTech
- For recommendation letters: admission and scholarship for MS/PhD

Information

What is *information*?

- Data that has been processed and made meaningful or useful
- Information can be used to take decision
- Information is related to data

What is *data*?

Data are simply raw facts

DATA	INFORMATION
Temperature all over the world for last 100 years	Global Temperature is rising
{4, 6, 10, 5}	Runs given in 4 different overs by some player: {4, 6, 10, 5}