Limbaje Formale, Automate și Compilatoare

Curs 2

2018-19

Curs 2

lacktriangle Proprietăți de închidere pentru \mathcal{L}_3

2 Automate finite deterministe

3 Automate finite nedeterministe

Fie L, L_1, L_2 limbaje regulate: există gramaticile G, G_1, G_2 de tip 3 astfel ca $L = L(G), L_1 = L(G_1)$ și $L_2 = L(G_2)$.

Atunci, următoarele limbaje sunt de asemenea regulate:

- 0 $L_1 \cup L_2$
- $2 L_1 \cdot L_2$

- $L_1 \setminus L_2$

Închiderea la reununiune

Fie L, L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1), L_2 = L(G_2)$.

Presupunem $N_1 \cap N_2 = \emptyset$

Închiderea la reuniune: se arata ca $L_1 \cup L_2 \in \mathcal{L}_3$:

Gramatica
$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$$

este de tip 3 si genereaza limbajul $L_1 \cup L_2$

Închiderea la operația de produs

Fie L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1), L_2 = L(G_2)$.

Presupunem $N_1 \cap N2 = \emptyset$

Gramatica $G = (N_1 \cup N_2, T_1 \cup T_2, S_1, P)$ unde P consta din:

- regulile de forma $A \rightarrow uB$ din P_1 ($B \in N_1$)
- reguli $A o uS_2$ pentru orice regula de forma A o u ($u \in T_1^*$) din P_1
- toate regulile din P₂

este de tip 3 si genereaza limbajul L_1L_2 .

Exemplu

$$L = \{uc^n, u \in \{a, b\}^+, n \ge 2\}$$

$$L = L_1 \cdot L_2$$
, unde: $L_1 = \{a, b\}^+, L_2 = \{c^n, n \ge 2\}$

G1:

G2:

G

 $(\{S_1, S_2\}, \{a, b, c\}, S_1, P),$

P:

- $S_2 \rightarrow cc$

Închiderea la operația de iterație

Fie *L* limbaj de tip 3 (regulat).

Fie G = (N, T, S, P) de tip 3 care genereaza L(L = L(G)).

Presupunem ca simbolul de start S nu apare in partea dreapta a vreunei reguli.

Gramatica G' = (N, T, S, P') unde P' consta din

- reguli $A \rightarrow uB \dim P (B \in N)$
- reguli $A \to uS$, pentru orice regula $A \to u$ din P ($u \in T^*$), diferită de $S \to \epsilon$
- ullet regula ${\cal S}
 ightarrow \epsilon$

este de tip 3 si generează L*

Exemplu

$$L = \{a^{n_1}b^{m_1}a^{n_2}b^{m_2}\dots a^{n_k}b^{m_k}, n_i, m_i \ge 1 \forall i \in \{1, k\}, k \ge 0\}$$

$$L = \{a^nb^m, n \ge 1, m \ge 1\}^*$$

G:

G':

- $\mathbf{O} S \rightarrow \mathbf{X}$
- $\mathbf{O} S \rightarrow \mathbf{X}$
- 2 $x \rightarrow ax$ 2 $x \rightarrow ax$
- $y \rightarrow by$

 $\Psi \rightarrow bV$

- $v \rightarrow bS$
- $\mathbf{S} \rightarrow \epsilon$

Închiderea la intersecție

Fie L_1 , L_2 limbaje de tip 3 (regulate).

Fie $G_1 = (N_1, T_1, S_1, P_1)$ si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3, **în** formă normală, cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Gramatica $G = (N_1 \times N_2, T_1 \cap T_2, (S_1, S_2), P)$, unde P constă din:

- $(S_1, S_2) \rightarrow \epsilon$, dacă $S_1 \rightarrow \epsilon \in P_1$ și $S_2 \rightarrow \epsilon \in P_2$
- ullet $(A_1,B_1)
 ightarrow a(A_2,B_2)$, dacă $A_1
 ightarrow aA_2 \in P_1$ și $B_1
 ightarrow aB_2 \in P_2$
- ullet $(A_1,A_2) o a$, dacă $A_1 o a\in P_1$ și $A_2 o a\in P_2$

este de tip 3 şi generează limbajul $L_1 \cap L_2$

Exemplu

$$L(G1) = \{a^n b^k, n \ge 0, k \ge 2\}, L(G2) = \{b^n v^k, n \ge 1, k \ge 0\}$$

$$L(G) = \{b^n, n \ge 2\}$$

 $S_1 \rightarrow aS_1$

 $A \rightarrow bA$

 $\mathbf{A} \rightarrow \mathbf{b}$

 $S_1 \rightarrow bA$

G1 :

G2:

3 C . 60

G

1 (S_1 , S_2) → $b(A, S_2)$

② (S_1, S_2) → b(A, B)

③ (A, S_2) → $b(A, S_2)$

Exemplu

$$L(G1) = \{a^n b^k, n \ge 0, k \ge 2\}, L(G2) = \{b^n v^k, n \ge 1, k \ge 0\}$$

$$L(G) = \{b^n, n \ge 2\}$$

G1 :

G2:

G

 \circ $S \rightarrow bX$

$$S_1 \rightarrow bA$$

$$S_2 \rightarrow b$$

$$A \rightarrow b$$

$$lacktriangledown$$
 $B \rightarrow c$

Curs 2

 \bigcirc Proprietăți de închidere pentru \mathcal{L}_3

Automate finite deterministe

3 Automate finite nedeterministe

Automate finite

- Mecanism de recunoaştere (acceptare) pentru limbaje
- Limbaje de tip 3
- Mulţime finită de stări

Automate finite

Definiție 1

Un automat finit determinist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q şi Σ sunt mulţimi finite, nevide, numite mulţimea stărilor respectiv alfabetul de intrare
- $q_0 \in Q$ este starea iniţială
- F ⊆ Q este mulţimea stărilor finale
- δ este o funcție , $\delta: \mathsf{Q} \times \mathsf{\Sigma} \to \mathsf{Q}$, numită funcția de tranziție

Reprezentare prin diagrame(grafuri) de tranziție

Stări:

s

Stare iniţială:

0

Stări finale:

1

Funcția de tranziție:

i <u>a</u>

Reprezentare prin matricea de tranziție

$$A = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$

Intrare	а	b
Stare δ		
q0	q0	q1
q1	q1	q1

Limbajul acceptat

- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to Q$
 - $\hat{\delta}(q,\epsilon) = q, \forall q \in \mathsf{Q};$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a)), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*$

Limbajul acceptat

Definiție 2

Limbajul acceptat (recunoscut) de automatul $A = (Q, \delta, \Sigma, q_0, F)$ este multimea :

$$L(A) = \{w | w \in \Sigma^*, \hat{\delta}(q_0, w) \in F\}.$$

- Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) ajunge într-o stare finală.
- $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$. Din acest motiv, $\hat{\delta}$ va fi notată de asemenea cu δ .
- Două automate A și A' sunt echivalente, dacă L(A) = L(A')

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

Automate deterministe pentru:

- $L = \{w \in \{0,1\}^* | w \text{ conține un număr par de } 0\}$
- $L = \{w \in \{0,1\}^* | w \text{ se termina cu } 11\}$

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- Automate finite deterministe

Automate finite nedeterministe

Automate finite nedeterministe

Definiție 3

Un automat finit nedeterminist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție, $\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observaţie:

A este automat determinist, dacă

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Intrare	а	b	С
Stare			
0	{0}	{1,3}	Φ
1	Φ	{2}	Φ
2	Φ	{4}	Φ
3	Φ	{4}	Φ
4	Φ	Φ	{4}

Extensia lui δ la cuvinte

- Fie S multime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$
 - $\hat{\delta}(q,\epsilon) = \{q\}, \forall q \in \mathsf{Q};$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

Extensia lui δ la cuvinte

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*.$

Limbajul acceptat

Definiție 4

Limbajul acceptat (recunoscut) de automatul finit nedeterminist $A = (Q, \Sigma, \delta, q_0, F)$ este mulţimea :

$$L(A) = \{ w | w \in \Sigma^*, \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

 Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) poate să ajungă într-o stare finală.

Teorema 1

Pentru orice automat nedeterminist A, există unul determinist A' echivalent.

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$
- Pentru aplicaţii se construiesc doar stările accesibile din starea iniţială

Exemplu

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

•
$$\delta'(S, w) = \bigcup_{s \in S} \delta(s, w), \forall w \in \Sigma^*$$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \bigcup_{s \in \{q_0\}} \delta(s, w) = \delta(q_0, w)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \bigcup_{s \in \{q_0\}} \delta(s, w) = \delta(q_0, w)$
- $w \in L(A') \Leftrightarrow$ $\delta'(Q_0, w) \in F' \Leftrightarrow \delta'(Q_0, w) \cap F \neq \emptyset \Leftrightarrow \delta(q_0, w) \cap F \neq \emptyset$ $\Leftrightarrow w \in L(A)$