DOCUMENT TITLE

James Cook University Cairns

MY NAME (STUDENT NUMBER)

September 4, 2025

Contents

1	Int	ro	2	
2	Ref	Ferences	4	
Li	ist d	of Figures		
	1 2	Circuit Diagram	2	
Li	ist (of Tables		
	1	Summary statistics read from/data/data.csv	2	

Intro

This is my cool document. I have a lot of cool things to say. note to self: Improve this introduction. These papers say something that i agree with [1,2]. Also have a look at listing 1 and figs. 1 and 2.

Fig. 1. Circuit Diagram

Listing 1: Python code

```
import numpy as np
def incmatrix(genl1,genl2):
    m = len(genl1)
    n = len(genl2)
    M = None #to become the incidence matrix
    VT = np.zeros((n*m,1), int) #dummy variable
    x = 0
              #compute the bitwise xor matrix
M1 = bitxormatrix(genl1)
              M2 = np.triu(bitxormatrix(genl2),1)
10
              for i in range(m-1):
    for j in range(i+1, m):
        [r,c] = np.where(M2 == M1[i,j])
12
13
                               for k in range(len(r)):

VT[(i)*n + r[k]] = 1;

VT[(i)*n + c[k]] = 1;

VT[(j)*n + r[k]] = 1;

VT[(j)*n + c[k]] = 1;
15
16
17
18
19
20
21
22
23
24
                                        if M is None:
                                               M = np.copy(VT)
                                                M = np.concatenate((M, VT), 1)
26
27
                                        VT = np.zeros((n*m,1), int)
           return M
```

recording	mean $\Delta \vec{p}$	final $\Delta \vec{p}$	$\max \Delta \vec{p}$
1	-0.0091	-0.0611	-0.0601
2	0.006	0.2037	-0.0651
3	0.0002	0.0018	-0.0029
4	0.0008	0.1437	0.1447
5	0.0062	0.0154	0.0139
6	0.0286	0.1566	-0.0558

Table 1: Summary statistics read from .../data/data.csv

MY NAME Page 2 of 4

Fig. 2. Sick Graphs

MY NAME Page 3 of 4

References

- [1] Wikipedia contributors, "Normal distribution Wikipedia, the free encyclopedia," 2024, [Online; accessed 12-August-2024]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Normal_distribution& oldid=1239300278
- [2] LaTeX Project, "Latex a document preparation system," [Online; accessed 12-August-2024]. [Online]. Available: https://www.latex-project.org/

MY NAME Page 4 of 4