Notes on 'Adaptive Non-Parametric Regression With the K-NN Fused Lasso'

Alden Green

February 14, 2019

Let $\mathbf{X} = x_1, \dots, x_n$ be sampled i.i.d from μ with density function $p(\cdot)$ over some subset \mathcal{X} of Euclidean space, and suppose

$$y_i = f_0(x_i) + \epsilon_i, \quad \epsilon_i \stackrel{i.i.d}{\sim} SG(\sigma^2)$$

holds for some unknown f_0 . Let $\widehat{\theta}$ be the solution to the fused lasso

$$\widehat{\theta} := \operatorname*{argmin}_{\theta \in \mathbb{R}^n} \left\{ \frac{1}{2} \left\| y - \theta \right\|_2^2 + \lambda \left\| \nabla_G \theta \right\|_1 \right\}$$

where $\lambda > 0$ is a tuning parameter, and ∇_G is an oriented incidence matrix of the graph G.

The K-NN-FL estimator computes the fused lasso over the K-NN graph G_K of X. The ϵ -FL estimator computes the fused lasso over the ϵ graph G_{ϵ} .

The assumptions required for Theorems 1 and 2 are as follows.

(a) For all $x \in \mathcal{X}$

$$0 < p_{\min} \le p(x) \le p_{\max} < \infty$$

(b) The base measure μ in \mathcal{X} satisfies

$$r^d c_{1,d} \le \mu(B_r(x)) \le c_{2,d} r^d \qquad (\forall x \in \mathcal{X})$$

(c) There exists a homeomorphism (continuous bijection with continuous inverse) $h: \mathcal{X} \to [0,1]^d$ such that

$$L_{\min} d_{\mathcal{X}}(x, x') \le \|h(x) - h(x')\|_{2} \le L_{\max} d_{\mathcal{X}}(x, x') \qquad (\forall x, x' \in \mathcal{X})$$

(d) g_0 is piecewise Lipschitz¹, meaning there exists a set $\mathcal{S} \subset (0,1)^d$ such that (a) $\nu(\mathcal{S}) = 0$.

¹Technically, the requirement is slightly weaker than piecewise Lipschitz.

(b)
$$\mu(h^{-1}(S_{\epsilon} \cup ([0,1]^d \setminus \Omega_{\epsilon}))) \leq C_{\mathcal{S}} \epsilon$$

(c) There exists a positive constant L_0 such that if z and z' belong to the same connected component of $\Omega_{\epsilon} \setminus B_{\epsilon}(\mathcal{S})$, then

$$|g(z) - g(z')| \le L_0 ||z - z'||_2$$

where $\Omega_{\epsilon} = [0,1]^d \setminus B_{\epsilon}(\partial [0,1]^d)$.

Theorem 1. Let $K \approx \log^{1+2r} n$ for some r > 0, Then under Assumptions 1-3, with an appropriate choice of the tuning parameter λ , the K-NN-FL estimator $\widehat{\theta}$ satisfies

$$\left\|\widehat{\theta} - \boldsymbol{\theta^{\star}}\right\|_{n}^{2} = O_{\mathbb{P}}\left(\frac{\log^{1+2r} n}{n} + \frac{\log^{1.5+r} n}{n} \left\|\nabla_{G_{K}} \boldsymbol{\theta^{\star}}\right\|_{1}\right)$$

This upper bound also holds for ϵ -NN-FL if we replace $\|\nabla_{G_K}\theta^{\star}\|_1$ with $\|\nabla_{G_{\epsilon}}\theta^{\star}\|_1$.

Theorem 2. Under Assumptions 1-5, with an appropriate choice of the tuning parameter λ , the K-NN-FL estimator $\hat{\theta}$ satisfies

$$\left\|\widehat{\theta} - {\color{red} { heta^{\star}}} \right\|_{n}^{2} = \widetilde{O}_{\mathbb{P}}\left(\frac{1}{n^{1/d}}\right).$$

1 Proofs

To ease proofs, we will assume $\mathcal{X} = [0, 1]^d$.

Construct $G_{lat} = (V_{lat}, E_{lat})$ a lattice graph with equal side lengths in $[0, 1]^d$,

$$V_{lat} = P_{lat}(N) := \left\{ \left(\frac{i_1}{N} - \frac{1}{2N}, \dots, \frac{i_d}{N} - \frac{1}{2N} \right) : i_1, \dots, i_d \in \{1, \dots, N\} \right\}$$

$$(z, z') \in E_{lat} \text{ if and only if } ||z - z'|| \le \frac{1}{N}$$

where z and $z' \in P_{lat}(N)$.

Denoting $I = P_{lat}$, we define

$$P_I(x) = \operatorname{argmin} \{ \|x - z'\|_{\infty}, z' \in P_{lat}(N) \}$$

Then, let $C(z) = \{x \in [0,1]^d : z = P_I(x)\}$ be the collection of cells associated with the mesh $P_{lat}(N)$, noting that $\{C(z) : z \in P_{lat}(N)\}$ defines a partition over $[0,1]^d$.

Quantization. For a given $\theta \in \mathbb{R}^n$, the quantization $\theta_I \in \mathbb{R}^n$

$$(\theta_I)_i := \theta_j$$
, where $x_j = \underset{x_l, l \in [n]}{\operatorname{argmin}} \|P_I(x_i) - x_l\|_{\infty}$

is constant over every cell C(z). We now induce a signal in \mathbb{R}^{N^d} corresponding to the elements in I. Let $\{z_1, \ldots, z_{N^d}\} = I$. Then we write

$$I_k = \{i \in [n] : P_I(x_i) = z_k\}$$

for $k = 1, ..., N^d$. Define $\theta^I \in \mathbb{R}^{N^d}$ by

$$(\theta^I)_k := \begin{cases} (\theta_I)_i, x_i \in I_k \\ 0, I_k = \emptyset \end{cases}$$

where we note that (θ^I) is well-defined since $(\theta_I)_i = (\theta_I)_j$ if x_i and x_j are both in I_k .

1.1 Controlling counts of mesh

Define the event Ω as: "If $x_i \in C(z_k)$ and $x_i \in C(z_l)$ for $z_k, z_l \in I$ with $\|z_k - z_l\|_2 \leq \frac{1}{N}$, then x_i and x_j are connected in the K-NN graph." Then,

Lemma 1. Take Assumptions 1-3, and additionally assume that N in the construction of $G_{lat}(N)$ is chosen as

$$N \ge \left\lceil \frac{3\sqrt{d}(2c_{2,d}p_{\max})^{1/d}n^{1/d}}{L_{\min}K^{1/d}} \right\rceil. \tag{1}$$

Then,

$$\mathbb{P}(\Omega) \ge 1 - n \exp(-K/3).$$

1.2 Bounding Empirical Process

Lemma 2.

1.3 Mesh embedding for K-NN graph

Lemma 3. Fix N to satisfy (1), and let us assume that the event Ω from Lemma 1 holds. Denote $I = P_{lat}(N)$ to be the mesh. Then, for all $e \in \mathbb{R}^n$, it holds that

$$\left| e^T (\theta - \theta_I) \right| \le 2 \left\| e \right\|_{\infty} \left\| \nabla_{G_K} \theta \right\|_1, \qquad (\forall \theta \in \mathbb{R}^n)$$

Moreover,

$$\left\|D\theta^I\right\|_1 \leq \left\|\nabla_{G_K}\theta\right\|_1, \qquad (\forall \theta \in \mathbb{R}^n)$$

where D is the incidence matrix of G_{lat} .

Proof. Clearly

$$\langle \epsilon^T, \theta - \theta_I \rangle \leq \|\epsilon\|_{\infty} \cdot \|\theta - \theta_I\|_{1}$$

Then, for every $i=1,\ldots,n$, the event Ω implies that there exists a $j\in[n]$ such that

$$(\theta_I)_i = \theta_j, \ (x_i, x_j) \in E_{G_K}$$

and therefore

$$\|\theta - \theta_I\|_1 \le \|\nabla_{G_K} \theta\|_1$$

1.4 Bounding empirical process

Lemma 4. Conditional on the event Ω , we have that

$$\langle \epsilon, \widehat{\theta}_I - \widehat{\theta}_I^\star \rangle \leq \max_{u \in I} \sqrt{|C(u)|} \left(\left\| \Pi \widehat{\epsilon} \right\|_2 \left\| \widehat{\theta} - \theta^\star \right\|_2 + \left\| (D^\dagger)^T \widehat{\epsilon} \right\|_\infty \left[\left\| \nabla_{G_K} \widehat{\theta} \right\|_1 + \left\| \nabla_{G_K} \theta^\star \right\|_1 \right] \right)$$

where $\widetilde{\epsilon}$ is an independent, mean-zero vector of subgaussian random variables, $|C(u)| := \sum_{i \in [n]} \mathbb{I}(x_i \in C(u))$, and D^{\dagger} is the pseudoinverse of the incidence matrix D of G_{lat} .

Proof. Writing

$$\widetilde{\epsilon}_l = \left[\max_{u \in I} |C(u)| \right]^{-1/2} \sum_{x_i \in I_l} \epsilon_j$$

we have

$$\langle \epsilon, \widehat{\theta}_I - \theta_I^{\star} \rangle = \left[\max_{u \in I} |C(u)| \right]^{1/2} \langle \widetilde{\epsilon}, \widehat{\theta}^I - \theta^{\star, I} \rangle$$

Now, divide up $\tilde{\epsilon}$ into

$$\widetilde{\epsilon} = P_1(\widetilde{\epsilon}) + P_{1\perp}(\widetilde{\epsilon})$$

where P_1 is the projection onto the span of **1** the constant vector, and $P_{1^{\perp}}$ the projection onto the space orthogonal to **1**. Note that $P_{1^{\perp}}(x) = (D^{\dagger}D)^T x$. Then, we have

$$\begin{split} \langle P_{1^{\perp}}(\widetilde{\epsilon}), \widehat{\theta}^{I} - \theta^{\star,I} \rangle &= \langle (D^{\dagger}D)^{T}\widetilde{\epsilon}, \widehat{\theta}^{I} - \theta^{\star,I} \rangle \\ &= \langle (D^{\dagger})^{T}\widetilde{\epsilon}, D(\widehat{\theta}^{I} - \theta^{\star,I}) \rangle \\ &\leq \left\| (D^{\dagger})^{T}\widetilde{\epsilon} \right\|_{\infty} \left\| D(\widehat{\theta}^{I} - \theta^{\star,I}) \right\|_{1} &\leq \left\| (D^{\dagger})^{T}\widetilde{\epsilon} \right\|_{\infty} \left[\left\| \nabla_{G_{K}}\widehat{\theta} \right\|_{1} + \left\| \nabla_{G_{K}}\theta^{\star} \right\|_{1} \right] \end{split}$$

where the last inequality follows from the triangle inequality and Lemma 3.

On the other hand,

$$\left\langle P_1(\widetilde{\epsilon}), \widehat{\theta}^I - \theta^{\star,I} \right\rangle \leq \left\| P_1(\widetilde{\epsilon}) \right\|_2 \left\| \widehat{\theta}^I - \theta^{\star,I} \right\|_2$$

and so the desired result follows.

1.5 Proof of Theorem 1

We begin with a basic inequality

$$\frac{1}{2} \left\| \widehat{\theta} - \theta^* \right\|_n^2 \le \frac{1}{n} \langle \epsilon, \widehat{\theta} - \theta^* \rangle + \lambda_n \left(\left\| \nabla_G \theta^* \right\|_1 - \left\| \nabla_G \widehat{\theta} \right\|_1 \right)$$

We split up the empirical process,

$$\langle \epsilon, \widehat{\theta} - \theta^{\star} \rangle = \langle \epsilon, \widehat{\theta} - \widehat{\theta}_I \rangle + \langle \epsilon, \widehat{\theta}_I - \theta_I^{\star} \rangle + \langle \epsilon, \theta_I^{\star} - \theta^{\star} \rangle$$

Hereafter in the proof, we condition on the event Ω . Lemma 3 gives us bounds on the first and third terms

$$\langle \epsilon, \widehat{\theta} - \widehat{\theta}_I \rangle \le 2 \|\epsilon\|_{\infty} \cdot \left\| \nabla_{G_K} \widehat{\theta} \right\|_1$$
$$\langle \epsilon, \theta^* - \theta_I^* \rangle \le 2 \|\epsilon\|_{\infty} \cdot \left\| \nabla_{G_K} \theta^* \right\|_1$$