

# Graph Neural Networks

**GNN** 



| Examples                        | Nodes                     | Edges                | Example Usages      |
|---------------------------------|---------------------------|----------------------|---------------------|
| Google Knowledge<br>Graph       | People, Places,<br>Things | Connections          | SEO                 |
| Chemical Molecular<br>Structure | Atoms                     | Bonds                | Molecule Structure  |
| Document citation<br>Network    | Documents                 | Citation by a person | Cora Dataset        |
| Social Media Networks           | Person, properties        | Connections          | Virality, Influence |
| Network Design Security         | Devices                   | Connections          | Relationships       |
| Financial Transactions          | Transections              | Connectivity         | Fraud, AML          |



| Example                         | Nodes | Edges | Example                         |
|---------------------------------|-------|-------|---------------------------------|
| Chemical Molecular<br>Structure | Atoms | Bonds | Molecule Structure<br>(Glycine) |





| Example                | Nodes        | Edges        | Example Usages |
|------------------------|--------------|--------------|----------------|
| Financial Transactions | Transections | Connectivity | Fraud, AML     |



| Example               | Nodes            | Edges       | Example Usages      |
|-----------------------|------------------|-------------|---------------------|
| Social Media Networks | Person, Entities | Connections | Virality, Influence |





|      | wee     | k        |       |
|------|---------|----------|-------|
|      | home    | time     | back  |
| stay | peo     | ple      | work  |
|      | need    |          | going |
|      | Busines | s Econor | my    |

Social network centrality measures of the top 10 words on major COVID-19 themes.

| Themes                 | Degree | Betweenness | Closeness | Eigenvector |
|------------------------|--------|-------------|-----------|-------------|
| Healthcare Environment | 18     | 4.0         | 0.001885  | 0.5443      |
| Emotional Support      | 18     | 3.6         | 0.009339  | 0.5834      |
| Business Economy       | 18     | 1.3         | 0.000421  | 0.6495      |
| Social Change          | 18     | 5.0         | 0.002602  | 0.5315      |
| Psychological Stress   | 18     | 2.2         | 0.000656  | 0.5790      |



# Fundamentals of Graphs





# A Graph is a collection of vertices and edges. Node, Vertice, Point:

You Define what part of data will be used as Node, vertice or Point, It's your design.





#### Node, Vertice, Point:

You Define what part of data will be used as Node, vertice or Point, It's your design.

















- A Weighted graph is a graph with edges labeled by the numbers
  - I.e. Distance, quantity, price, value etc.
- A weight is a numerical value attached to each individual edge.
- Each branch must have some weight as defined in the weight rule





Image Source: https://medium.com/tebs-lab/types-of-graphs-7f3891303ea8



Twitter: directed edges



Facebook: undirected edges



# Complete Graph Fully Connected Graph



All nodes are connected with each other



## Why Graphs are hard to understand?



Can be represented into the Euclidean space also have the fixed form or representation.



Graphs does not have a fixed form and can NOTE be represented into the Euclidean space



# Euclidean Space - 3 Dimensional (x,y,z) Plane







Example of a giant graph: circuit netlist. Figure from J. Baehr et. al. "Machine Learning and Structural Characteristics of Reverse Engineering"



### Why we should use Graphs?

- Give intuitive representation to abstract concepts i.e. relationships and interactions.
- Intuitively visual representation of information.
- Form a Natural basis for analyzing relationships in a Social context.
- Break down complex problems into simpler representations
- Transform the complex problems into representations from different perspectives.







84 Characters



### **Relation & Correlation**









2. Radiology

test result

3. Rheumatologist

report

Relationship Graph

https://www.researchgate.net/figure/Interaction-graph-and-relationship-graph\_fig1\_221158679

Rheumatology Unit

1. Orthopaedic

report

Orthopaedic

Unit

Interaction Graph

Ultrasound

Unit



# Traditional Graph Analysis Methods

- Searching algorithms, e.g. BFS, DFS
- Shortest path algorithms, e.g. Dijkstra's algorithm, Nearest Neighbour
- Spanning-tree algorithms, e.g. Prim's algorithm
- Clustering methods, e.g. Highly Connected Components, k-mean

Limited based on their use cases



# Mathematics of Graph



## Mathematical Representation of Graph



#### Set of Vertices

- 
$$V = \{A, B, C, D, E, F\} ->$$

### Set of Edges

- E = {AB, AC, BD, CE, CF, DF, EF}
- E = {(A,B), (A,C), (B,D), (C,E), (C,F), (D,F), (E,F)}

Graph G = (V, E)



#### Set of Vertices







### Neighbors:

 Two nodes that are connected with an edge are called neighbors.

### Given Example:

- B and C are neighbors for A
- E and F are neighbors for C
- D is neighbor for B
- F is neighbor for C, D and E



# Edge List



| A | В | 12 |
|---|---|----|
| Α | С | 10 |
| В | D | 8  |
| С | Е | 15 |
| С | F | 1  |
| D | F | 7  |
| E | F | 12 |



# Edge List - Directed



| Α | В | 12 |
|---|---|----|
| Α | С | 10 |
| В | D | 8  |
| С | Е | 15 |
| С | F | 1  |
| D | F | 7  |
| Е | F | 12 |
| E | A | 23 |
| В | A | 34 |







| Α | В |
|---|---|
| Α | С |
| В | D |
| С | E |
| С | F |
| D | F |
| E | F |
| E | Α |
| В | Α |

# Adjacency Matrix





- Adjacency matrix a 2D square matrix
- Each node in the graph has an entry in both dimensions.
- Unweighted graph as T/F or 1/0 values
- Weighted graph as weights, no weights means -1

### Representation:

- 
$$A = N x N$$



# Adjacency Matrix - Weighted & Undirected



|   | Α  | В  | С  | D  | Е  | F  |
|---|----|----|----|----|----|----|
| Α | -1 | 12 | 10 | -1 | -1 | -1 |
| В | -1 | -1 | -1 | 8  | -1 | -1 |
| С | -1 | -1 | -1 | -1 | 15 | 1  |
| D | -1 | -1 | -1 | -1 | -1 | 7  |
| E | -1 | -1 | -1 | -1 | -1 | 12 |
| F | -1 | -1 | -1 | -1 | -1 | -1 |



# Adjacency Matrix - Weighted & Directed



|   | Α  | В  | С  | D  | Е  | F  |
|---|----|----|----|----|----|----|
| Α | -1 | 12 | 10 | -1 | -1 | -1 |
| В | 34 | -1 | -1 | 8  | -1 | -1 |
| С | -1 | -1 | -1 | -1 | 15 | 1  |
| D | -1 | -1 | -1 | -1 | -1 | 7  |
| E | 23 | -1 | -1 | -1 | -1 | 12 |
| F | -1 | -1 | -1 | -1 | -1 | -1 |



# Adjacency Matrix - Un-Weighted & Directed



|   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|
| Α | F | Т | Т | F | F | F |
| В | Т | F | F | Т | F | F |
| С | F | F | F | F | Т | Т |
| D | F | F | F | F | F | Т |
| E | Т | F | F | F | F | Т |
| F | F | F | F | F | F | F |



# Adjacency Matrix - Unweighted & Undirected



|   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|
| Α | F | Т | Т | F | F | F |
| В | F | F | F | Т | F | F |
| С | F | F | F | F | Т | Т |
| D | F | F | F | F | F | Т |
| E | F | F | F | F | F | Т |
| F | F | F | F | F | F | F |



# Adjacency Matrix - Weighted & Directed



|   | Α  | В  | С  | D  | E  | F  |
|---|----|----|----|----|----|----|
| Α | -1 | 12 | 10 | -1 | -1 | -1 |
| В | 34 | -1 | -1 | 8  | -1 | -1 |
| С | -1 | -1 | -1 | -1 | 15 | 1  |
| D | -1 | -1 | -1 | -1 | -1 | 7  |
| Е | 23 | -1 | -1 | -1 | -1 | 12 |
| F | -1 | -1 | -1 | -1 | -1 | -1 |

| $A_{AB}$           | А-В       |
|--------------------|-----------|
| $oxed{A_{AC}}$     | A-C       |
| $oxed{A_{\!A\!F}}$ | A-C-E-F   |
| $A_{CD}$           | C-E-A-B-D |
| $A_{BC}$           | X         |



### Complete Graph

- All elements of adjacency matrix **A** are 1/T, except along the diagonal
- Path exists for each and every node

# Sparse Graph

- Not all elements of adjacency matrix **A** are 1/T, lots of values are -1 or F/O
- Not every node is connected to each other

### Extended Reading:

- https://medium.com/@TebbaVonMathenstien/implementations-of-graphs-92eb7f121793



# Node Attribute Matrix / Feature Matrix (X)

- The features or attributes of each node
- A Graph with N nodes with the size of node attributes as F,
  - Matrix Shape = NxF

#### Example:

Document 1: I travelled to Himalaya.

Document 2: I travelled to Las Vegas Nevada

Corpus: {I, travelled, to, Himalaya, Las, Vegas, Nevada} Size of Corpus (F) = 7

|           | Document 1 | Document 2 |  |  |
|-----------|------------|------------|--|--|
| I         | 1          | 1          |  |  |
| Travelled | 1          | 1          |  |  |
| to        | 1          | 1          |  |  |
| Himalaya  | 1          | 0          |  |  |
| Las       | 0          | 1          |  |  |
| Vegas     | 0          | 1          |  |  |
| Nevada    | 0          | 1          |  |  |

The shape of node attributes matrix X = NxF = 2x7 = 14



### **Trick Question**

### All Diagonals are values are 1

|   | Α | В | С | D | Е | F |
|---|---|---|---|---|---|---|
| Α | Т | Т | Т | F | F | F |
| В | F | Т | F | Т | F | F |
| С | F | F | Т | F | Т | Т |
| D | F | F | F | Т | F | Т |
| Е | F | F | F | F | Т | Т |
| F | F | F | F | F | F | Т |



# Trick Question - Self Loop

### All Diagonals are values are 1

|   | А | В | С | D | E | F |
|---|---|---|---|---|---|---|
| Α | Т | Т | Т | F | F | F |
| В | F | Т | F | Т | F | F |
| С | F | F | Т | F | Т | Т |
| D | F | F | F | Т | F | Т |
| Е | F | F | F | F | Т | Т |
| F | F | F | F | F | F | Т |



# **Graph Representation**



### **Graph Representation**

#### Adjacency Matrix (A)

Square Matrix (A = NxN)

Incidence (Relation Matrix) Matrix (I)

Nodes n with edges m will have (I = nxm)

Degree Matrix (D)

Diagonal Matrix (D)

Laplacian Matrix:

- L = D - A

#### Bag of Nodes

- Aggregate node level features using some mathematical approach i.e. taking the mean of the node degrees or histogram of the edge connections

# Adjacency Matrix





- Adjacency matrix a 2D square matrix
- Each node in the graph has an entry in both dimensions.
- Unweighted graph as T/F or 1/0 values (Binary Value Adjacency Matrix)
- Weighted graph as weights, no weights means -1 (Weighted Adjacency Matrix)

#### Representation:

- 
$$A = N x N$$



# Adjacency Matrix - Weighted & Undirected



|   | Α  | В  | С  | D  | Е  | F  |
|---|----|----|----|----|----|----|
| Α | -1 | 12 | 10 | -1 | -1 | -1 |
| В | -1 | -1 | -1 | 8  | -1 | -1 |
| С | -1 | -1 | -1 | -1 | 15 | 1  |
| D | -1 | -1 | -1 | -1 | -1 | 7  |
| E | -1 | -1 | -1 | -1 | -1 | 12 |
| F | -1 | -1 | -1 | -1 | -1 | -1 |



# Adjacency Matrix - Weighted & Directed



|   | Α  | В  | С  | D  | Е  | F  |
|---|----|----|----|----|----|----|
| Α | -1 | 12 | 10 | -1 | -1 | -1 |
| В | 34 | -1 | -1 | 8  | -1 | -1 |
| С | -1 | -1 | -1 | -1 | 15 | 1  |
| D | -1 | -1 | -1 | -1 | -1 | 7  |
| E | 23 | -1 | -1 | -1 | -1 | 12 |
| F | -1 | -1 | -1 | -1 | -1 | -1 |



# Adjacency Matrix - Un-Weighted & Directed



|   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|
| Α | F | Т | Т | F | F | F |
| В | Т | F | F | Т | F | F |
| С | F | F | F | F | Т | Т |
| D | F | F | F | F | F | Т |
| E | Т | F | F | F | F | Т |
| F | F | F | F | F | F | F |



# Adjacency Matrix - Unweighted & Undirected



|   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|
| Α | F | Т | Т | F | F | F |
| В | F | F | F | Т | F | F |
| С | F | F | F | F | Т | Т |
| D | F | F | F | F | F | Т |
| E | F | F | F | F | F | Т |
| F | F | F | F | F | F | F |



# Adjacency Matrix - Weighted & Directed



|   | Α  | В  | С  | D  | E  | F  |
|---|----|----|----|----|----|----|
| Α | -1 | 12 | 10 | -1 | -1 | -1 |
| В | 34 | -1 | -1 | 8  | -1 | -1 |
| С | -1 | -1 | -1 | -1 | 15 | 1  |
| D | -1 | -1 | -1 | -1 | -1 | 7  |
| Е | 23 | -1 | -1 | -1 | -1 | 12 |
| F | -1 | -1 | -1 | -1 | -1 | -1 |

| $A_{AB}$           | А-В       |
|--------------------|-----------|
| $oxed{A_{AC}}$     | A-C       |
| $oxed{A_{\!A\!F}}$ | A-C-E-F   |
| $A_{CD}$           | C-E-A-B-D |
| $A_{BC}$           | X         |

# Incidence Matrix - Nodes N/Edge M - Undirected Graph



|   | e1 | e2 | еЗ | e4 | e5 | e6 | e7 |
|---|----|----|----|----|----|----|----|
| Α | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| В | 1  | 0  | 0  | 0  | 0  | 1  | 0  |
| С | 0  | 1  | 1  | 0  | 1  | 0  | 0  |
| D | 0  | 0  | 0  | 0  | 0  | 1  | 1  |
| Е | 0  | 0  | 1  | 1  | 0  | 0  | 0  |
| F | 0  | 0  | 0  | 1  | 1  | 0  | 1  |

If Node and Edge are connected then value is 1 otherwise the value is 0. Nodes are represented as **ROWS** and edges are as **COLUMNS** 



# Incidence Matrix - Nodes N/Edge M - Directed Graph



| I | = | 6 | $\chi$ | 7 |
|---|---|---|--------|---|
|   |   |   |        |   |

|   | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
|---|----|----|----|----|----|----|----|
| Α | -1 | -1 | 0  | 0  | 0  | 0  | 0  |
| В | 1  | 0  | 0  | 0  | 0  | -1 | 0  |
| С | 0  | 1  | -1 | 0  | -1 | 0  | 0  |
| D | 0  | 0  | 0  | 0  | 0  | 1  | -1 |
| E | 0  | 0  | 1  | -1 | 0  | 0  | 0  |
| F | 0  | 0  | 0  | 1  | 1  | 0  | 1  |

If Node and Edge are connected then value -1/1, otherwise the value is 0.

- If Node to **outward** direction connection then the value is -1
- If node has **inwards** direction connection then the value is 1 Nodes are represented as **ROWS** and edges are as **COLUMNS**



Diagonal

# Degree Matrix - Directed/Undirected Graph (Same)

#### **Diagonal Matrix**



Degree = Number of edges connected to each node

|     | Α | В | С | D | Е | F |
|-----|---|---|---|---|---|---|
| Α ( | 2 | Q | 0 | 0 | 0 | 0 |
| В   | 0 | 4 | 0 | 0 | 0 | 0 |
| С   | 0 | 0 | 3 | 0 | 0 | 0 |
| D   | 0 | 0 | 0 | 2 | 0 | 0 |
| Е   | 0 | 0 | 0 | 0 | 2 | 0 |
| F   | 0 | 0 | 0 | 0 | 0 | 5 |

If Node has connection from edge then value is 1 otherwise the value is 0. Nodes are represented as **ROWS** and **COLUMNS** 

$$D = 6 \times 6$$



# Laplacian Matrix - Graph Laplacian Matrix

- Measure of the smoothness of the matrix
- How quickly it changes between the Adjacent Vertices
- L = Diagonal Matrix Adjacency Matrix
- L = Number of Edges connected to Node Adjacency Matrix
- $\bullet \quad L = \{D A\}$



### Laplacian Matrix - Graph Laplacian Matrix



|   | А | В | С | D | Е | F |
|---|---|---|---|---|---|---|
| Α | 2 | 0 | 0 | 0 | 0 | 0 |
| В | 0 | 4 | 0 | 0 | 0 | 0 |
| С | 0 | 0 | 3 | 0 | 0 | 0 |
| D | 0 | 0 | 0 | 2 | 0 | 0 |
| Е | 0 | 0 | 0 | 0 | 2 | 0 |
| F | 0 | 0 | 0 | 0 | 0 | 5 |

|   | Α | В | С | D | Е | F |
|---|---|---|---|---|---|---|
| Α | 0 | 1 | 1 | 0 | 0 | 0 |
| В | 1 | 2 | 0 | 1 | 0 | 0 |
| С | 1 | 0 | 0 | 0 | 1 | 1 |
| D | 0 | 1 | 0 | 0 | 0 | 1 |
| E | 0 | 0 | 1 | 0 | 0 | 1 |
| F | 0 | 0 | 1 | 1 | 1 | 2 |

$$L = \{D - A\}$$

D



# Laplacian Matrix - Graph Laplacian Matrix

|   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|
| А | 2 | 0 | 0 | 0 | 0 | 0 |
| В | 0 | 4 | 0 | 0 | 0 | 0 |
| С | 0 | 0 | 3 | 0 | 0 | 0 |
| D | 0 | 0 | 0 | 2 | 0 | 0 |
| Е | 0 | 0 | 0 | 0 | 2 | 0 |
| F | 0 | 0 | 0 | 0 | 0 | 5 |

|   |   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|---|
|   | Α | 0 | 1 | 1 | 0 | 0 | 0 |
|   | В | 1 | 2 | 0 | 1 | 0 | 0 |
| - | С | 1 | 0 | 0 | 0 | 1 | 1 |
|   | D | 0 | 1 | 0 | 0 | 0 | 1 |
|   | Е | 0 | 0 | 1 | 0 | 0 | 1 |
|   | F | 0 | 0 | 1 | 1 | 1 | 2 |

|  |   | А  | В  | С  | D  | E  | F  |
|--|---|----|----|----|----|----|----|
|  | Α | 2  | -1 | -1 | 0  | 0  | 0  |
|  | В | -1 | 2  | 0  | -1 | 0  | 0  |
|  | С | -1 | 0  | 3  | 0  | -1 | -1 |
|  | D | 0  | -1 | 0  | 2  | 0  | -1 |
|  | E | 0  | 0  | -1 | 0  | 2  | -1 |
|  | F | 0  | 0  | -1 | -1 | -1 | 3  |

D

 $\boldsymbol{A}$ 

 $L = \{D - A\}$