Perbaikan Kualitas Citra (Image Enhancement)

Operasi – operasi yang termasuk dalam perbaikan kualitas citra :

1. Operasi Titik

Pengubahan kecerahan citra (Image brightness)

, Peregangan Kontras, Pengubahan Histogram Citra, operasi Aritmetika

2. Filtering

Filter linier, Filter non linier

3. Operasi Geometri

Translasi, rotasi, Penskalaan

Image Brightness: Transformasi Log

• Transformasi ini meningkatkan nilai citra yang gelap dan mengkompres nilai citra yang sangat tinggi $s = c \log(1+r)$

c merupakan konstanta dan $r \geq 0$

Citra Asli Hasil Trans Log

Image Brighness: Power low Transf (Gamma Correction)

Bentuk umum transformasi gamma

$$U' = U^{\overline{\delta}}$$

- δ adalah faktor koreksi gamma dengan kisaran $0 < \delta < 1$
- Semakin kecil faktor koreksi maka citra output akan semakin terang dan semakin tinggi faktor koreksi maka citra output akan mendekati citra asli

Hasil Gamma Correction

Contrast Stretching

- Kontras menyatakan sebaran terang dan gelap di dalam sebuah gambar.
- Citra kontras rendah dicirikan dengan sebagian komposisi citranya adalah terang atau sebagian besar gelap.
- Citra kontras bagus mempunyai jangkauan nilai keabuan yang lebar tanpa ada suatu nilai yang mendominasi.
- Citra kontras tinggi memiki jangkauan nilai keabuan yang lebar, tetapi terdapat area yang lebar yang didominasi oleh warna gelap dan area yang lebar yang didominasi oleh warna terang

Algoritma Contrast Stretching

- Cari batas bawah pengelompokan piksel dengan cara scan histogram dari nilai keabuan terkecil ke nilai keabuan terbesar (0 sampai 255) untuk menemukan piksel pertama yang melebihi nilai ambang pertama yang telah dispesifikasikan
- 2. Cari batas atas pengelompokan piksel dengan cara scan histogram dari nilai keabuan tertinggi ke nilai keabuan terendah (255 sampai 0) untuk menemukan piksel pertama yang lebih kecil dari nilai ambang kedua yang telah dispesifikasikan
- 3. Piksel yang berada dibawah nilai ambang pertama diset sama dengan 0, sedangkan piksel2 yang berada diatas nilai ambang kedua diset sama dengan 255
- 4. Piksel-piksel yang berada diantara nilai ambang pertama dan nilai ambang kedua diskalakan untuk memenuhi rentang nilai-nilai keabuan yang lengkap (0 sampai 255) dengan persamaan :

$$s = \frac{r - r_{max}}{r_{min} - r_{max}} \times 255$$

Citra asli

Citra hasil Contast Stretching

Histogram Citra asli

Histogram Citra hasil

Perataan Histogram (Histogram Equalization)

- Tujuannya adalah untuk memperoleh penyebaran histogram yang merata, sedemikian sehingga setiap derajat keabuan memiliki jumlah pixel yang relatif sama.
- Prosedur adalah mengubah derajat keabuan suatu pixel (r) dengan derajat keabuan yang baru (s) dengan suatu fungsi transformasi T

Dalam bentuk diskrit, nilai-nilai s diperoleh dengan persamaan :

$$S_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n} = \sum_{j=0}^k P_r(r_j)$$

yang dalam hal ini, $0 \le r_k \le 1$, k = 0,1,2,...,L-1

Citra asal

Histogram

Citra Hasil Perataan Histogram

Histogram

Adaptif histogram Equalization

- Ekualisasi histogram dilakukan pada subimage
- Ukuran sub image dapat bervariasi
- Setiap sub image dapat saling tumpang tindih dg sub image lain

Citra Asli Retina

Hasil Eq.Hist

Hasil Eq. Hist Adaptif

Operasi Aritmetika

Jenis Operasi

Penjumlahan atau pengurangan dua buah citra A dan B

$$C(x,y)=A(x,y)\pm B(x,y)$$

- Perkalian dua buah citra
 C(x,y)=A(x,y)B(x,y)
- Penjumlahan/pengurangan citra dengan skalar C(x,y)=A(x,y) ±c
- Perkalian/pembagian citra dengan skalar C(x,y)=c. A(x,y)

Penjumlahan Dua Buah Citra

Persamaan yang digunakan:

$$C(x,y)=A(x,y)+B(x,y)$$

- Dengan C(x,y) adalah citra baru yang setiap pikselnya adalah jumlah dari intensitas tiap piksel pada A dan B
- Jika hasil penjumlahan lebih besar dari 255, maka intensitas dapat dibulatkan menjadi 255

Penjumlahan Dua Buah Citra

 Sering digunakan untuk penggabungan dua buah citra dan watermarking tampak (visible watermarking)

Penjumlahan Dua Buah Citra

Pengurangan Dua Buah Citra

- Persamaan yang digunakan:
 - C(x,y)=A(x,y)-B(x,y)
- Dengan piksel citra C adalah hasil pengurangan intensitas piksel citra A dengan citra B

Pengurangan Dua Buah Citra

Perkalian Citra

- Persamaan yang digunakan adalah
 C(x,y)=A(x,y)B(x,y)
- Perkalian citra sering digunakan untuk mengoreksi ketidaklinearan sensor dengan mengalikan matriks citra dengan matriks koreksi

Hasil perkalian dua buah citra

Penjumlahan/pengurangan Citra dengan Skalar

Persamaan yang digunakan:

$$C(x,y)=A(x,y)\pm c$$

 Penjumlahan/pengurangan citra A dengan skalar c adalah menambah setiap piksel di dalam citra dengan sebuah skalar c, dan menghasilkan citra baru C yang intensitasnya lebih terang/gelap dibandingkan dengan citra A

Penjumlahan/pengurangan Citra dengan Skalar

 Hasil penjumlahan atau pengurangan citra dengan skalar mungkin menghasilkan nilai dengan intensitas negatif atau lebih dari 255, sehingga diperlukan proses clipping

Penjumlahan/pengurangan Citra dengan Skalar

Citra asli

Citra dengan brightness ditambah 50

Citra dengan brightness dikurangi 50

Perkalian/pembagian dengan Skalar

- Persamaan yang digunakan adalah
 C(x,y)=c.A(x,y) atau C(x,y)=A(x,y)/c
- Perkalian citra A dengan c akan menghasilkan citra baru C dengan intensitas yang lebih terang dibandingkan dengan citra A
- Kenaikan sebanding dengan operasi perkalian citra dengan skalar

Perkalian/pembagian dengan Skalar

- Pembagian citra A dengan c akan menghasilkan citra baru C dengan intensitas yang lebih gelap dibandingkan dengan citra A
- Operasi pembagian citra dengan skalar digunakan untuk normalisasi kecerahan

Perkalian/pembagian dengan Skalar

Citra asli

Citra dengan brightness dikalikan 1,5

Citra dengan brightness dibagi 1,5

Operasi Boolean pada Citra

Operasi Boolean pada Citra

Operasi Boolean and

$$C(x,y)=A(x,y) \wedge B(x,y)$$

Operasi Boolean or

$$C(x,y)=A(x,y) \vee B(x,y)$$

Operasi Boolean not

$$C(x,y)=^{\sim}A(x,y)$$

Operasi AND dan NAND

Operasi Boolean NOT

PS2 TEUGM Yogya

Citra Asli

Citra Hasil Operasi NOT

Filtering

- Pada proses filtering, nilai pixel baru dihitung berdasarkan pixel tetangga.
- Perhitungan nilai pixel baru dikelompokkan menjadi 2 :
 - 1. pixel baru diperoleh melalui kombinasi linier pixel tetangga (filter linier)
 - 2. Pixel baru diperoleh langsung dari salah satu nilai pixel tetangga (filter non linier)

Filter linier

- Mean filter
- Gaussian filter
- Low pass filter
- High pass filter

Mean filter

- Berguna untuk mengurangi variasi nilai variasi suatu pixel dengan pixel berikutnya.
- Mean filter menghitung nilai pixel baru dengan nilai rata-rata dari pixel tetangga dan pixel bersangkutan.

•
$$\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$$
 $\begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$ $\begin{bmatrix} 0 & 1/8 & 0 \\ 1/8 & 1/4 & 1/8 \\ 0 & 1/8 & 0 \end{bmatrix}$

Gaussian filter

• Bentuk fungsi gaussian 2D adalah:

$$G(x,y) = \frac{1}{2\pi\sigma} exp(-(x^2 + y^2)/2\sigma^2)$$

- Penghalusan citra dapat dilakukan dengan konvolusi citra input dengan kernel gaussian
- Derajat kehalusan citra dapat diatur dengan mengubah-ubah nilai σ

Kernel Gaussian 5 x 5 dengan σ = 1

0,0029	0,0131		
0,0131			
		0,1592	

Low pass filter

 bertujuan menekan komponen yang berfrekuensi tinggi (misalnya pixel gangguan, pixel tepi) dan meloloskan komponen yang berfrekuensi rendah.

Low-Pass Filter

Aturan:

- 1. Semua koefisien penapis harus positif
- 2. Jumlah semua koefisien harus sama dengan 1 Jika jumlah semua koefisien lebih besar dari 1, mk konvolusi menghasilkan penguatan (tidak didinginkan). Jika jumlah semua koefisien kurang dari 1, mk yang dihasilkan adalah penurunan. Akibatnya, citra hasil pelembutan tampak lebih gelap.

Contoh Penapis Lolos Rendah

(ii)

(i)

(iii)

Contoh Hasil Operasi Image Smooting

Contoh Hasil Operasi Image Smooting

High pass filter (Image Sharpening)

- Bertujuan memperjelas tepi pada objek di dalam citra.
- Operasi penajaman dilakukan dengan melewatkan citra pada penapis lolos tinggi (highpass filter).
- Penapis lolos tinggi akan meloloskan (atau memperkuat) komponen yang berfrekuensi tinggi (misalnya tepi atau pinggiran objek) dan akan menurunkan komponen berfrekuensi rendah. Akibatnya, pinggiran objek terlihat lebih tajam dibandingkan sekitarnya.

Filter Lolos Tinggi

Aturan filter lolos tinggi:

- Koefisien penapis boleh positif, negatif atau nol
- Jumlah semua koefisien adalah 0 atau 1
 Jika jumlah koefisien = 0 maka komponen berfrekuensi rendah akan turun nilainya, sedangkan jika jumlah koefisien sama dengan 1 maka komponen berfrekuensi rendah akan tetap sama dengan nilai semula.

Contoh Filter Lolos Tinggi

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\sum = 0 \qquad \sum = 1$$

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\sum = 0$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\sum = 1$$

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$
$$\sum_{=0}^{\infty} = 0 \qquad \qquad \sum_{=1}^{\infty} = 1$$

Contoh Hasil penajaman dengan Filter Lolos Tinggi

Contoh Hasil penajaman dengan filter Lolos Tinggi

Filter non linier

- Median filter
- Konservatif filter
- Kuwahara filter

Median Filter

- Window digeser titik demi titik pada seluruh daerah citra.
- Pada setiap pergeseran dibuat window baru
- Titik tengah dari window tsb diubah dengan nilai median dari window tersebut

Contoh penghilangan noise dengan median filter 3x3

13	10	15	14	18
12	10	10	10	15
11	11	35	10	10
13	9	12	10	12
13	12	9	8	10

Contoh Hasil Filtering dengan median filter

Konservatif filter

- Window digeser titik demi titik pada seluruh daerah citra.
- Pada setiap pergeseran dibuat window baru
- Titik tengah dari window tsb diubah dengan nilai minimum dan maksimum dari window tersebut

Filter Kuwahara

- Filter mampu menghaluskan citra dengan tetap menjaga ketajaman tepi
- Filter bekerja dengan membagi sliding window menjadi 4 area
- Nilai pixel keluaran yaitu nilai pixel pada pusat koordinat sliding window diganti dengan nilai rata-rata dari area yang memiliki nilai varian terkecil.

U11	u12	u13	u14	u15
u21	u22	u23	u24	u25
u31	u32	u33	u34	u35
u41	u42	u43	u44	u45
u51	u52	u53	u54	u55

- Area 1 = (u11, u12,u13, u21, u22, u23, u31,u32,u33)
- Area 2 =
- Area 3 =
- Area 4 =

Operasi Geometri

- Koordinat piksel berubah akibat transformasi, sedangkan intensitasnya tetap
- Contoh: operasi translasi, rotasi, penskalaan, dan pencerminan citra (flipping)

Operasi Geometri Citra - Translasi

Translasi dilakukan berdasar rumus:

 m adalah besarnya pergeseran dalam arah x, sedangkan n adalah besarnya pergeseran dalam arah y

Operasi Geometri Citra - Translasi

- Jika citra semula adalah A, dan citra hasil translasi adalah B, maka translasi dapat dilakukan sbb:
- B(x,y)=A(x+m,y+n)

Operasi Geometri Citra - Translasi

Operasi Geometri Citra - Rotasi

Rotasi dilakukan dengan persamaan:

$$x'=x cos(\theta) - y sin(\theta)$$

 $y'=x sin(\theta) + y cos(\theta)$

 Dalam hal ini, e adalah sudut rotasi berlawanan dengan arah jarum jam

Operasi Geometri Citra - Rotasi

 Jika citra semula adalah A, dan citra hasil rotasi adalah B, maka rotasi citra dari A ke B:

 $A(x,y)=B(x\cos(\theta)-y\sin(\theta),x\sin(\theta)+y\cos(\theta))$

Operasi Geometri Citra - Rotasi

Operasi Geometri Citra – Penskalaan Citra

- Penskalaan citra/image zooming: pengubahan ukuran citra (pembesaran/zoom out atau pengecilan /zoom in)
- Rumus penskalaan citra:

$$x'=s_x.x$$

Operasi Geometri Citra – Penskalaan Citra

- s_x dan s_y adalah faktor penyekalaan, masingmasing dalam arah x dan y
- Jika citra semula adalah A dan citra hasil penyekalaan adalah B, maka penyekalaan citra dinyatan sebagai:
- $B(x',y')=B(s_x.x, s_y.y)=A(x,y)$

- Operasi zoom out (membesar) dengan faktor skala 2 (sx=sy=2) diimplementasikan dengan menyalin setiap pixel sebanyak 4 kali
- Operasi zoom in (mengecil) dengan faktor skala ½ dilakukan dengan mengambil rata-rata dari 4 pixel yang bertetangga dengan 1 pixel

Operasi Geometri Citra – Penskalaan Citra

Operasi Geometri Citra – Flipping

- Adalah operasi geometri yang sama dengan pencerminan
- Dua macam flipping:
 - Horisontal
 - Adalah pencerminan terhadap sumbu Y
 - B(x,y)=A(N-x,y)
 - Vertikal
 - Adalah pencerminan terhadap sumbu X
 - B(x,y)=A(x,M-y)

Operasi Geometri Citra – Flip Horisontal

Citra Asli

Citra setelah Proses Flip Horisontal

Operasi Geometri Citra – Flip Horisontal

Operasi Geometri Citra – Flip Vertikal

Citra Asli

Citra setelah Proses Flip Vertikal

Operasi Geometri Citra – Flip Vertikal

Operasi Geometri Citra – Pencerminan Terhadap Titik Asal

- Persamaan yang digunakan adalah
 B(x,y)=A(N-x, M-y)
- Dengan N adalah jumlah kolom citra, dan M adalah jumlah baris citra