

Klaszterezés

2024.09.16.

Huszti Dorottya data scientist

Klaszterező algoritmusok

ALGORITMUSOK FAJTÁI

Sűrűség alapú

DBSCAN, Mean-shift clustering

K-közép (Kmeans)

Klaszterező algoritmusok

 Klaszterközéppontok (centroid) véletlenszerű kiválasztása

 Klaszterközéppontok (centroid) véletlenszerű kiválasztása

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás (klaszterek súlypontja)

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás (klaszterek súlypontja)

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás
- 2-3. Pontok ismétlése, míg nem változik

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás
- 2-3. ismétlése, míg nem változik

K-MEANS KIHÍVÁSAI

Hiányzó értékek • Kiugró értékek • Eltérő skálák Nem tudunk távolságot • Torzítják a centroidok • Nagyobb skálájú változók dominálnak számolni pozícióját Kategorikus Bemenet K meghatározása változók meghatározása ' Irreleváns változók zajt Nem tudunk távolságot Releváns és nem triviális számolni visznek a rendszerbe csoportok megtalálása

K MEGHATÁROZÁSA

Könyökpont keresés

- Amíg az SSE dinamikusan csökken
- SSE: (sum of squared errors) Klaszteren belüli négyzetes távolság a klaszterközépponttól

$$SSE = \sum_{i=1}^{k} \sum_{i=1}^{n} (xi^{(j)} - c_j)$$

K MEGHATÁROZÁSA

K MEGHATÁROZÁSA

Hierarchikus klaszterezés

Klaszterező algoritmusok

KÉT KLASZTER TÁVOLSÁGÁT TÖBB MÓDON IS SZÁMOLHATJUK:

1. SINGLE – LEGKÖZELEBBI PONTOK TÁVOLSÁGA (UBORKASZERŰ KLASZTEREK)

KÉT KLASZTER TÁVOLSÁGÁT TÖBB MÓDON IS SZÁMOLHATJUK:

- 1. SINGLE LEGKÖZELEBBI PONTOK TÁVOLSÁGA (UBORKASZERŰ KLASZTEREK)
- 2. COMPLETE LEGTÁVOLABBI PONTOK TÁVOLSÁGA (SZFÉRIKUS KLASZTEREK, KIUGRÓ ÉRTÉKEKRE ÉRZÉKENY)

KÉT KLASZTER TÁVOLSÁGÁT TÖBB MÓDON IS SZÁMOLHATJUK:

- SINGLE LEGKÖZELEBBI PONTOK TÁVOLSÁGA (UBORKASZERŰ KLASZTEREK)
- 2. COMPLETE LEGTÁVOLABBI PONTOK TÁVOLSÁGA (SZFÉRIKUS KLASZTEREK, KIUGRÓ ÉRTÉKEKRE ÉRZÉKENY)
- **3. AVERAGE** KÉT KLASZTER ÖSSZES ELEMÉN VETT ÁTLAGOS TÁVOLSÁGA

DBSCAN

Density-based spatial clustering of applications with noise

Klaszterező algoritmusok

DBSCAN

- Válasszunk ki véletlenszerűen egy pontot, ahol még nem jártunk,
 - a. ha van kellő számú pont ennek környezetében, akkor kezdjük a klaszterezést,
 - b. Ha nincs, zajnak minősítjük

DBSCAN

Előnyök

- 1. Érzéketlen a zajra
- Kiugró adatokat automatikusan kezeli (figyelmen kívül hagyja)
- 3. Eltérő méretű és formájú klasztereket jól kezel
- 4. Nem kell előre meghatároznunk a klaszterek számát

Hátrányok

- Nem minden adatpont kerül besorolásra
- 2. Hiperparaméterekre érzékeny
- Hasonló sűrűségű klaszterekre működik jól
- 4. Valós adatokon ritkán alkalmazható

DBSCAN vs. K-MEANS

HA KÉRDÉSED VAN, BÁTRAN KERESS MINKET!

HUSZTI DOROTTYA
DATA SCIENTIST
huszti.dorottya@dmlab.hu

