Additional Material

Advanced Algorithms - Master DSC/MLDM

Note on Master theorems

*Simple formulation 1

Theorem 1 (Master Theorem 1). If $T(n) \le aT(n/b) + O(n^d)$ for some positive constants $a > 0, b > 0, d \ge 0$ then

- 1. $T(n) \in O(n^d)$ if $a < b^d$
- 2. $T(n) \in O(n^d \log n)$ if $a = b^d$
- 3. $T(n) \in O(n^{\log_b a}) \text{ if } a > b^d$.

*More complex formulation 2

Theorem 2 (Master theorem 2). Let $a \ge 1$ and b > 1 be constants, let f(n) be a function and let T(n) be defined on the non negative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$, then T(n) can be bounded asymptotically as follows:

- 1. if $f(n) \in O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) \in \theta(n^{\log_b a})$
- 2. if $f(n) \in \theta(n^{\log_b a} \log^k n)$ with with $k \ge 0$ a constant, then $T(n) \in \theta(n^{\log_b a} \log^{k+1} n)$
- 3. if $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) \in \theta(f(n))$.