Lecture 15: Shortest Paths I: Intro

Lecture Overview

- Weighted Graphs
- General Approach
- Negative Edges
- Optimal Substructure

Readings

CLRS, Sections 24 (Intro)

Motivation:

Shortest way to drive from A to B Google maps "get directions"

Formulation: Problem on a weighted graph G(V, E) $W: E \to \Re$

Two algorithms: Dijkstra $O(V \lg V + E)$ assumes non-negative edge weights

Bellman Ford O(VE) is a general algorithm Floyd Warshall - From all nodes to all nodes

완전 그래프(Complete Graph)에서 $E = V(V-1)/2 \Rightarrow Dijkstra O(V^2) / Bellman Ford O(V^3)$

Application

- Find shortest path from CalTech to MIT
 - See "CalTech Cannon Hack" photos web.mit.edu
 - See Google Maps from CalTech to MIT
- Model as a weighted graph $G(V, E), W : E \to \Re$
 - -V = vertices (street intersections)
 - -E = edges (street, roads); directed edges (one way roads)
 - -W(U,V) = weight of edge from u to v (distance, toll)

path
$$p = \langle v_0, v_1, \dots v_k \rangle$$

 $(v_i, v_{i+1}) \in E \text{ for } 0 \le i < k$
 $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$

Weighted Graphs:

Notation:

 $v_0 \xrightarrow{v_0} v_k$ means p is a path from v_0 to v_k . (v_0) is a path from v_0 to v_0 of weight v_0 .

Definition:

Shortest path weight from u to v as

$$\delta(u,v) = \left\{ \begin{array}{ccc} \min \ \left\{ w(p) : & p & \\ & u & \longrightarrow & v \end{array} \right\} \ \text{if \exists any such path} \\ \infty & \text{otherwise} \quad (v \text{ unreachable from } u) \end{array} \right.$$

Single Source Shortest Paths:

Given G = (V, E), w and a source vertex S, find $\delta(S, V)$ [and the best path] from S to each $v \in V$.

Data structures:

$$d[v] = \text{value inside circle}$$

$$= \begin{cases} 0 & \text{if } v = s \\ \infty & \text{otherwise} \end{cases} \iff \text{initially}$$

$$= \delta(s, v) \iff \text{at end}$$

$$d[v] \geq \delta(s, v) \text{ at all times}$$

d[v] decreases as we find better paths to v, see Figure 1.

 $\Pi[v]$ = predecessor on best path to v, $\Pi[s]$ = NIL

Example:

Figure 1: Shortest Path Example: Bold edges give predecessor Π relationships

Negative-Weight Edges:

- Natural in some applications (e.g., logarithms used for weights)
- Some algorithms disallow negative weight edges (e.g., Dijkstra)
- If you have negative weight edges, you might also have negative weight cycles may make certain shortest paths undefined!

Example:

See Figure 2

$$B \to D \to C \to B$$
 (origin) has weight $-6+2+3=-1<0!$
Shortest path $S \longrightarrow C$ (or B,D,E) is undefined. Can go around $B \to D \to C$ as

Figure 2: Negative-weight Edges.

many times as you like

Shortest path $S \longrightarrow A$ is defined and has weight 2

If negative weight edges are present, s.p. algorithm should find negative weight cycles (e.g., Bellman Ford)

General structure of S.P. Algorithms (no negative cycles)

$$\begin{array}{lll} \text{Initialize:} & \text{for } v \in V \colon \frac{d\left[v\right]}{\Pi\left[v\right]} \leftarrow \infty \\ & \text{II}\left[v\right] \leftarrow \mathsf{NIL} \\ & d[S] \leftarrow 0 \\ \\ \text{Main:} & \text{repeat} \\ & \text{select edge } (u,v) \quad [\mathsf{somehow}] \\ & \left[\begin{array}{l} \text{if } d[v] > d[u] + w(u,v) : \\ d[v] \leftarrow d[u] + w(u,v) : \\ & \pi[v] \leftarrow u \\ & \text{until all edges have } d[v] \leq d[u] + w(u,v) \end{array} \right. \end{array}$$

Complexity:

Termination? (needs to be shown even without negative cycles) Could be exponential time with poor choice of edges.

Figure 3: Running Generic Algorithm. The outgoing edges from v_0 and v_1 have weight 4, the outgoing edges from v_2 and v_3 have weight 2, the outgoing edges from v_4 and v_5 have weight 1.

In a generalized example based on Figure 3, we have n nodes, and the weights of edges in the first 3-tuple of nodes are $2^{\frac{n}{2}}$. The weights on the second set are $2^{\frac{n}{2}-1}$, and so on. A pathological selection of edges will result in the initial value of $d(v_{n-1})$ to be $2 \times (2^{\frac{n}{2}} + 2^{\frac{n}{2}-1} + \cdots + 4 + 2 + 1)$. In this ordering, we may then relax the edge of weight 1 that connects v_{n-3} to v_{n-1} . This will reduce $d(v_{n-1})$ by 1. After we relax the edge between v_{n-5} and v_{n-3} of weight 2, $d(v_{n-2})$ reduces by 2. We then might relax the edges (v_{n-3}, v_{n-2}) and (v_{n-2}, v_{n-1}) to reduce $d(v_{n-1})$ by 1. Then, we relax the edge from v_{n-3} to v_{n-1} again. In this manner, we might reduce $d(v_{n-1})$ by 1 at each relaxation all the way down to $2^{\frac{n}{2}} + 2^{\frac{n}{2}-1} + \cdots + 4 + 2 + 1$. This will take $O(2^{\frac{n}{2}})$ time.

Optimal Substructure:

Theorem: Subpaths of shortest paths are shortest paths

Let
$$p=< v_0, v_1, \ldots v_k>$$
 be a shortest path O -> k 경로 Let $p_{ij}=< v_i, v_{i+1}, \ldots v_j>$ $0 \le i \le j \le k$ i -> j 경로

Then p_{ij} is a shortest path.

Proof:
$$p = \begin{pmatrix} p_{0,i} & p_{ij} & p_{jk} \\ v_0 & \rightarrow & v_i & \rightarrow & v_j & \rightarrow & v_k \\ & & & \rightarrow & \\ & & p'_{ij} & \end{pmatrix}$$

 p'_{ij} If p'_{ij} is shorter than p_{ij} , cut out p_{ij} and replace with p'_{ij} ; result is shorter than p. Contradiction.

Triangle Inequality:

Theorem: For all $u, v, x \in X$, we have

$$\delta(u, v) \le \delta(u, x) + \delta(x, v)$$

Proof:

Figure 4: Triangle inequality

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.