МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра микро- и наноэлектроники

ОТЧЕТ по лабораторной работе № 5

по дисциплине «Магнитные материалы и приборы»

ТЕМА: Определение температурной зависимости магнитной проницаемости ферритов.

Студенты гр.3282	
Преподаватель	

Санкт-Петербург

Цель работы – изучение влияния температуры на начальную магнитную проницаемость магнитомягких ферритов различных марок.

Основные положения

Согласно теории ферромагнетизма Вейсса температура Кюри (ТК) ферромагнетиков определяется значением энергии обменного взаимодействия A: ТК $\sim A/k$, где k — постоянная Больцмана. В отличие от ферромагнетиков, в ферритах магнитные катионы отделены друг от друга ионами кислорода, что приводит к взаимодействию между их магнитными моментами через орбитали кислорода (косвенный обмен), который значительно слабее прямого обмена. Поэтому ТК ферритов ниже, чем у металлических ферромагнетиков и для высокопроницаемых ферритов лежит в пределах ТК = 70...300 °C.

Высокую магнитную проницаемость в Mn-Zn и Ni-Zn- ферритах получают с помощью варьирования состава (например, MnO/ZnO = 1...4) и повышения температуры синтеза. Увеличение содержания цинка (немагнитный ион), который занимает тетраэдрические позиции в решетке шпинели, приводит к уменьшению энергии обменного взаимодействия и, соответственно, ТК. Магнитная проницаемость за счет процессов смещения доменных границ в зависимости от механизма смещения может быть представлена как

 μ см $\sim MSm/Kn$, а за счет вращения вектора намагниченности μ вр $\sim MS2/K$,

где MS — намагниченность насыщения, K — константа анизотропии. Как MS, так и K имеют максимальные значения при 0 K и уменьшаются с ростом температуры. При TK MS и K равны 0 из-за температурного разрушения спонтанной упорядоченности магнитных моментов. Как правило, с ростом температуры K уменьшается более резко, чем MS, что приводит к температурной дисперсии магнитной проницаемости (рис. 3.1). При достаточно низких TK магнитомягких ферритов температурные изменения μ н в рабочем диапазоне температур могут сильно влиять на

характеристики электронных приборов с ферритовыми сердечниками. Поэтому одним из важнейших параметров ферритов является температурный коэффициент µн:

 $TK\mu = 1/\mu \cdot \Delta \mu / \Delta T.$

Для возможности сравнения температурной стабильности µн ферритов с различной магнитной проницаемостью чаще используется относительный температурный коэффициент µн

 $\alpha\mu = 1/\mu 2 \cdot \Delta\mu/\Delta T.$

Из теории смещения доменных границ следует, что

µн может быть определена выражением $\mu_H = cMS2/\alpha d$,

где c – коэффициент, определяющий тип доменной границы; α – коэффициент возвращающей силы; d - ширина домена.

Из сравнения вышеприведенных выражений и рисунка следует, что с увеличением температуры α уменьшается, что приводит к уменьшению собственных частот колебаний доменной границы. Таким образом, с ростом температуры область дисперсии магнитной проницаемости смещается в сторону низких частот. Поэтому при измерении на различных частотах, особенно при $T \sim T$ К, дисперсия μ н может накладываться на температурный рост μ н, что приводит к различному виду зависимости μ н(T) на разных частотах.

Обработка результатов

Марка феррита	t,C	f,кГц	Z,OM	φ	μ'	μ''	$\alpha_{\mu'}$	$\alpha_{\mu''}$
	23		16,232	84,060	44966,81	4678,6	0,004787	0,021564
	55		18,833	81,330	51854,5	7907,07	0,002747	0,009835
20000 HM	70		19,466	80,540	53479,61	8911,04	0,003064	0,011036
	80		20,250	79,680	55488,12	10103,91	0,004645	0,021293
	90	10	21,580	77,300	58634,37	13213,83	0,00204	0,021642
	100		21,544	74,710	57880,64	15823,49	-0,005437	0,026347
	110		20,323	67,620	52340,39	21551,78	-0,042384	0,021999
	120		0,300	28,101	13512,68	25305,94	-0,192934	-0,04098
	130		0,300	13,800	199,31	811,44	-3,341432	-1,50922
	140		0,300	13,360	193,07	812,95	-0,003231	0,000185
	23		32,566	86,900	8625,76	467,15	0,003555	0,005468
	55		36,277	86,730	9607,11	548,9	0,002398	0,011758
	70		37,405	86,110	9899,13	673,12	0,002431	0,019247
	80		38,470	85,313	10170,36	833,83	0,004429	0,026219
10000 1114	90	40	40,930	84,130	10800,09	1110,37	0,007084	0,032659
10000 HM	100	40	44,500	82,410	11700,57		0,010473	0,052626
	110		51,020	78,270	13250,85		0,011861	0,079289
	120		60,250	68,250	14844,06	5922,18	-0,040225	-0,01815
	130		5,431	65,300	1308,81	601,99	-0,564678	-0,48535
	140		0,380	38,620	62,91	78,75	-1,980341	-0,66439
	23		58,418	88,080	6194,86	207,67	0,000895	
	55		60,380	84,080	6372,35	660,77	0,002113	0,002255
	70	100	62,736	84,880	6629,94		0,003149	-
	80		64,991	83,950	6863,43		0,004343	
	90		68,680	82,580	7226,15			
6000 HM	100		75,510	79,700	7882,75		0,004732	0,055421
	110		78,826	78,020	7972,2	7 10		
	120		88,280	66,980	8620,91		-0,003777	0,023315
	130		79,200	53,940	7320,89			-0,04279
	140		0,680					
	23		24,219	86,220	1678,89	110,92	0,003121	0,005857
	55	-	26,647	85,920	1846,54	131,71	0,001576	0,007231
2000 HM	70		27,056					
	80	120.000	26,732					
	90		24,180	177				1.1
	100	100	16,120	83,340				
	110		9,451	82,830			***	
	120		1,110	74,400		21	-0,408589	
	130		0,718			21,32		
	140		0,698					
2000 HH	23	200	55,025	89,270				
	55		55,705	89,060				
	70		56,073		1/200 1 000 1000			0,42576
	80		56,371	81,950				
	90		56,700					
	100		57,250			38,63		
	110		57,712	88,910				
	120		58,720	88,830				0,0053
	130		60,100					
1	130		OO, TOU	00,770				

Контрольные вопросы

- 1) Температура Кюри это точка, где материал перестаёт быть ферромагнитным и становится парамагнетиком. При подходе к T_{κ} спонтанная намагниченность исчезает, домены распадаются, μ' падает, потери меняют характер.
- 2) Т_к у разных образцов разная из-за состава и структуры. Наши данные показывают: высокопроницаемые образцы (20000 НМ, 10000 НМ, 6000 НМ) резко теряют μ' уже к 120-140 °C, а 2000 НН держит μ' почти без изменений. Значит у них разные энергии обмена и анизотропии, следовательно разные Т_к.
- 3) Как ведёт себя µ(Т) при разных частотах по нашим измерениям:

10 кГц (20000 HM): μ' растёт до 90-100 °C, затем срыв; μ'' максимум около 120 °C.

40-100 кГц (10000 HM, 6000 HM): спад начинается раньше; пики μ'' смещены ниже: 120 °C и 130 °C. С ростом температуры область дисперсии уходит к более низким частотам, поэтому при фиксированной f потери растут раньше.

200 кГц (2000 НН): стенки доменов почти не участвуют, работает вращение намагниченности; μ' почти ровная, μ'' узкий пик около 80 °C.

4) Самый термостабильный - 2000 НН. По расчетам:

Изменение μ' от 23 °C до 140 °C: +12%.

Средний $|\alpha\mu'|\approx 0.0012$ К-1- минимум среди всех. Остальные образцы теряют 97-100% μ' к 140 °C, их $|\alpha\mu'|$ на порядок больше.