FISIKA

1

Kompus Merdeko Indonesia Jaya

Dinamika 1

(Gaya)

Damar Wicaksono, S.T., M.Eng

Learning Objective

Mampu memahami dan menjelaskan konsep Hukum 1,2,3 Newton

Mampu memahami dan menjelaskan gaya yang terdapat pada suatu benda

Mampu menyelesaikan persoalan dinamika terkait gaya

Course Material

Hukum Newton

Gaya

Diagram Gaya

Aplikasi Hukum Newton

Hukum Newton

Membahas konsep dasar hukum 1,2, dan 3 Newton pada gerak benda

#Fisika1

Pendahuluan

Hukum 1 Newton

Bagaimana jika tidak ada gaya yang bekerja pada benda $(\sum \vec{F} = 0)$:

- \Box Benda yang awalnya diam $(\vec{v}_i = 0)$ akan tetap diam $(\vec{v}_f = 0)$.
- ☐ Benda yang awalnya bergerak dengan kecepatan tertentu maka kecepatannya tidak berubah.

Benda tidak akan mengalami perubahan kecepatan*

*Hanya berlaku pada kerangka yang inersia

Hukum 1 Newton:

"Dalam kerangka yang inersia, jika gaya total yang bekerja pada suatu benda sama dengan nol, maka benda tersebut akan selalu diam atau selalu bergerak dengan kecepatan tetap"

Hukum 2 Newton

2m

Untuk massa tetap:

Semakin besar gaya, maka percepatan semakin besar

Untuk gaya tetap:

Semakin besar massa, maka $a \propto \frac{1}{a}$ percepatan semakin kecil

Maka, Hukum 2 Newton dapat dinyatakan:

$$a = \frac{\sum F}{m} \Rightarrow$$

$$\sum \vec{F} = m\vec{a}$$

2m

Hukum 3 Newton

Hukum 3 Newton:

Menyatakan mengenai gaya Aksi-Reaksi

$$\overrightarrow{F}_{aksi} \leftrightarrow \overrightarrow{F}_{reaksi}$$
.

Syarat terjadi gaya Aksi-Reaksi:

☐ Besar kedua gaya sama

$$|\overrightarrow{F}_{aksi}| = |\overrightarrow{F}_{reaksi}|$$

☐ Arah kedua gaya berlawanan

$$\vec{F}_{aksi} = -\vec{F}_{reaksi}$$

Masing-masing gaya bekerja pada dua objek (benda) yang berbeda (saling berinterkasi)

Konsep Gaya

Membahas konsep gaya pada dinamika gerak

#Fisika1

Konsep Gaya

- Gaya merupakan tarikan/dorongan
- Gaya merupakan interaksi antara dua benda atau antara suatu benda dengan lingkungannya

03 Gaya Berat

Gaya berat (\overrightarrow{W}) suatu benda merupakan interaksi antara benda tersebut dengan bumi, maka arahnya selalu menuju pusat bumi.

$$\overrightarrow{F}_{mM} = mg = \overrightarrow{W}$$

☐ Acuan arah pusat bumi adalah <u>arah ke bawah</u> (sumbu y negative)

04 Gaya Normal

- \square Ketika benda menekan (\vec{F}) suatu permukaan, maka permukaan tersebut memberikan dorongan pada benda yang dinamakan sebagai gaya normal (\vec{N})
- \square Arah gaya normal (\overrightarrow{N}) selalu **tegak lurus** menjauhi bidang kontak

Gaya Tegangan Tali

- Jika benda terhubung tali, kemudian benda diberi gaya (\vec{F}) (misal ditarik oleh tali), maka tali akan menegang dan benda dikenai gaya tegangan tali (\vec{T}) .
- Arah gaya tegangan tali (\vec{T}) akan selalu menjauhi benda benda yang ditinjau.

06 Gaya Gesek

- Benda tepat akan bergerak
- Gaya gesek statik maksimum $(f_{s_{max}})$ bekerja pada benda.

Ketika benda masih tetap diam:

$$\sum F_{x} = 0 \qquad \leftrightarrow \mathbf{F} - \mathbf{f}_{s} = 0 \qquad \leftrightarrow \mathbf{f}_{s} = \mathbf{F}$$
Gaya gesek statik

Benda Diam:

- Gaya gesek statik (f_s)
 bekerja pada benda.
- Besarnya f_s sama dengan gaya F yang diberikan

Benda Bergerak:

- Gaya gesek kinetik
 (f_k) bekerja pada
 benda.
- $f_k = \mu_k \overrightarrow{N}$

Gaya Gesek

 μ_s dan μ_k : koefisien gesek statik dan kinetik

- ✓ Tidak berdimensi (tanpa satuan)
- ✓ Nilainya diperoleh berdasarkan eksperimen
- ✓ Nilainya bergantung jenis material yang berkontak

Arah gaya gesek melawan arah kecenderungan gerak benda relatif terhadap bidang kontak

Benda masih diam*:

- Gaya gesek statik (f_s)
- $f_s = F$

Benda tepat akan bergerak*:

- Gaya gesek statik maksimum $(f_{s_{max}})$.

Benda telah bergerak*:

- Gaya gesek kinetik (f_k)
- $f_k = \mu_k \vec{N}$
- * Gerak benda relative terhadap bidang kontak

Diagram Gaya (Benda-Bebas)

Membahas konsep diagram gaya pada dinamika gerak

Diagram Gaya (Benda-Bebas)

- Diagram gaya (benda-bebas) atau free-body diagram adalah gambar yang menunjukkan gaya-gaya yang bekerja pada benda.
- Daftar gaya yang perlu digambar:

Gaya	Simbol	Keterangan
Gaya Tarik/Dorong	$\overrightarrow{\pmb{F}}$	Dorongan atau tarikan
Gaya Berat	\overrightarrow{W}	Selalu ada untuk benda bermassa
Gaya Normal	\overrightarrow{N}	Ada, jika benda kontak dengan permukaan benda lain, misal lantai
Gaya Tegangan Tali	$\overrightarrow{m{T}}$	Ada, jika benda terhubung dengan benda lain melalui seutas tali
Gaya Gesek	\vec{f}	Ada, jika benda kontak dengan permukaan benda lain yang permukaannya kasar

Diagram Gaya pada Bidang Datar (Kasus 1)

Gaya	Simbol	Ada
Gaya Tarik/Dorong	$\overrightarrow{\pmb{F}}$	Ya
Gaya Berat	\overrightarrow{W}	Ya
Gaya Normal	\overrightarrow{N}	Ya
Gaya Tegangan Tali	$\overrightarrow{\pmb{T}}$	Tidak
Gaya Gesek	$ec{f}$	Ya

Diagram Gaya pada Bidang Datar (Kasus 1)

Diagram Gaya pada Bidang Datar (Kasus 2)

Gaya	Simbol	Ada
Gaya Tarik/Dorong	$\overrightarrow{\pmb{F}}$	Tidak
Gaya Berat	\overrightarrow{W}	Ya
Gaya Normal	\overrightarrow{N}	Ya
Gaya Tegangan Tali	\overrightarrow{T}	Ya
Gaya Gesek	$ec{f}$	Tidak

Diagram Gaya pada Bidang Datar (Kasus 2)

Diagram Gaya pada Bidang Miring (Kasus 1)

Gaya	Simbol	Ada
Gaya Tarik/Dorong	$\overrightarrow{\pmb{F}}$	Tidak
Gaya Berat	\overrightarrow{W}	Ya
Gaya Normal	\overrightarrow{N}	Ya
Gaya Tegangan Tali	$\overrightarrow{m{T}}$	Tidak
Gaya Gesek	\vec{f}	Ya

Diagram Gaya pada Bidang Miring (Kasus 1)

