Hardware Security

Homework 2 - Solution

Student Number: Name:

Problem 1. (25pt) Register renaming

Reschedule the loop in the following code to minimize stalls with renaming registers to temporary registers (Tx) to enable parallel execution.

Loop:	L.D	F4,	0 (R1)
	<stall></stall>		
	MULT.D	F6,	F4, F2
	<stall></stall>		
	<stall></stall>		
	<stall></stall>		
	L.D	F4,	0 (R2)
	<stall></stall>		
	MULT.D	F8,	F4, F2
	<stall></stall>		
	<stall></stall>		
	<stall></stall>		
	S.D	F6,	0 (R3)
	S.D	F8,	-8 (R3)
	DADDUI	R1,	R1, #8
	<stall></stall>		
	DADDUI	R2,	R2, #8
	<i><stall></stall></i>		
	DADDUI	R3,	R3, #-16
	<stall></stall>		
	BNE	R1,	R4, Loop

Loop:	L.D	F4, 0(R1)	
поор.			
	L.D	T2, 0(R2)	
	MULT.D	F6, F4, F2	
	MULT.D	F8, T2, F2	
	DADDUI	R1, R1, #8	
	DADDUI	R2, R2, #8	
	S.D	F6, 0(R3)	
	S.D	F8, -8 (R3)	
	DADDUI	R3, R3, #-16	
	<stall></stall>		
	BNE	R1, R4, Loop	

Problem 2. (25pt) Branch predictor

Consider a 2-bit saturating counter predictor that starts in the strongly not taken state (0 value). For the following branch outcome sequence, show the prediction result, and the state of the predictor.

Outcome	State after branch resolution	Prediction of the next
	0	Not taken
Taken	1	Not taken
Taken	2	Taken
Taken	3	Taken
Not taken	2	Taken
Taken	3	Taken
Taken	3	Taken
Not taken	2	Taken
Not taken	1	Not taken
Not taken	0	Not taken
Not taken	0	Not taken
Taken	1	Not taken
Not taken	0	Not taken

Problem 3. (25pt) Tomasulo algorithm

The following table shows how the Tomasulo algorithms works when there is only one adder, assuming every stage (issue, execute, and write) is done in one cycle. Fill the table below that shows the process when there are two adders.

[Ins: Instruction, Iss: Issue, Ex: Execute, Wr: Write]

[Na: Name, Bs: Busy, L1: Load1, A1: Adder1, A2: Adder2]

(1) L.D F2, 0(R1) (2) ADD.D F4, F2, F0 (3) ADD.D F6, F4, F0

				F	Reser	Register												
		Sta	itus					Stat	ion				Status					
1	Ins	Iss	Ex	Wr	Na	Bs	Op	Vj	Vk	Qj	Qk	A	F	F0	F2	F4	F6	
	(1)				L1	Y	L					R1	Qi		L1			
	(2)				A 1													
	(3)																	
2	Ins	Iss	Ex	Wr	Na	Bs	Op	Vj	Vk	Qj	Qk	A	F	F0	F2	F4	F6	
	(1)				L1	Y	L					R1	Qi		L1	A1		
	(2)				A 1	Y	Α		F0	L1								
	(3)																	
3	Ins	Iss	Ex	Wr	Na	Bs	Op	Vj	Vk	Qj	Qk	A	F	F0	F2	F4	F6	
	(1)				L1								Qi			A 1		
	(2)				A1	Y	Α	F2	F0					•				
	(3)																	
4	Ins	Iss	Ex	Wr	Na	Bs	Op	Vj	Vk	Qj	Qk	A	F	F0	F2	F4	F6	
	(1)				L1								Qi				A1	
	(2)				A 1	Y	Α	F4	F0									
	(3)																	
5	Ins	Iss	Ex	Wr	Na	Bs	Op	Vj	Vk	Qj	Qk	Α	F	F0	F2	F4	F6	
	(1)				L1								Qi				A1	
	(2)				A 1	Y	Α	F4	F0									
	(3)																	
6	Ins	Iss	Ex	Wr	Na	Bs	Op	Vj	Vk	Qj	Qk	Α	F	F0	F2	F4	F6	
	(1)				L1								Qi					
	(2)				A 1													
	(3)		$\sqrt{}$															

	Instruction						Reservation										Register				
	-1	Sta	itus			Station										Status					
1	Ins	Iss	Ex	Wr		Na	Bs	Op	Vj	Vk	Qj	Qk	A		F	F0	F2	F4	F6		
	(1)					L1	Y	L					R1		Qi		L1				
	(2)					A 1															
	(3)					A2															
2	Ins	Iss	Ex	Wr		Na	Bs	Op	Vj	Vk	Qj	Qk	A		F	F0	F2	F4	F6		
	(1)	√	√			L1	Y	L					R1		Qi		L1	A 1			
	(2)	√				A1	Y	A		F0	L1										
	(3)					A2															
3	Ins	Iss	Ex	Wr		Na	Bs	Op	Vj	Vk	Qj	Qk	A		F	F0	F2	F4	F6		
	(1)	$\sqrt{}$	√			L1									Qi			A 1	A2		
	(2)	√	$\sqrt{}$			A 1	Y	Α	F2	F0											
	(3)					A2	Y	A		F0	A 1										
4	Ins	Iss	Ex	Wr		Na	Bs	Op	Vj	Vk	Qj	Qk	Α		F	F0	F2	F4	F6		
	(1)					L1									Qi				A2		
	(2)					A 1															
	(3)					A2	Y	A	F4	F0											
5	Ins	Iss	Ex	Wr		Na	Bs	Op	Vj	Vk	Qj	Qk	A		F	F0	F2	F4	F6		
	(1)					L1									Qi	·					
	(2)					A1											•				
	(3)					A2															

Problem 4. (25pt) Loop-level parallelism

In the following loop, find all the true dependences, output dependences, and antidependences. Eliminate the output dependences and antidependences by renaming.

```
for (i=0;i<100;i++) {
    A[i] = A[i] * B[i]; /* S1 */
    B[i] = A[i] + c; /* S2 */
    A[i] = C[i] * c; /* S3 */
    C[i] = D[i] * A[i]; /* S4 */
}</pre>
```

```
for (i=0;i<100;i++) {
   T[i] = A[i] * B[i]; /* S1 */
   B1[i] = T[i] + c; /* S2 */
   A1[i] = C[i] * c; /* S3 */
   C1[i] = D[i] * A1[i]; /* S4 */
}</pre>
```