# FE – 620 Pricing and Hedging

# Anantha Balineni, Moksh Ajmera, Saboura Salari Rad, Riley Heiman

# Overview

For our project, we will be using the Black-Scholes model to price American Options. This will involve using R to collect data, develop an algorithmic model, and finally comparing the results of our model to real option prices. The data will be exported from Yahoo Finance using the quantmod library in R. The steps below are specifics tasks and assignments with an expected timeline.

### **Step 1: Data Collection**

Team Lead = Anantha

Deadline October 20th

Three datasets will be collected.

- 1.) Daily Stock prices for Tesla over the past three years
- 2.) Call and Put option prices (three years)
- 3.) T-Bill Rate

The T-Bill rate will be important to analyze the risk-free rate.

#### **Step 2: Data Preparation**

Team Lead = Anantha

Deadline October 20th

- 1.) Calculate the Log Returns & Volatility.
- 2.) Generate QQ Plot

## **Step 3: Model Development**

Team Lead = Riley

Deadline = October 20<sup>th</sup>

- 1.) Write R code to calculate the price of call and options
- 2.) Write R code to calculate option Greeks

# Step 4 Sensitivity Analysis – Moksh & Riley

Team Lead = Moksh & Riley

Deadline October 27<sup>th</sup>

1.) Create an analysis to show the relationship between the variable inputs (time to duration, volatility, .. etc.), and option price.

The sensitivity analysis will be especially helpful to discuss the risk of the option in relationship to many different factors.

# **Step 5: Model Deployment**

Team Lead = Saboura

Deadline October 27th

1.) Apply the developed model by using the data collected. A new column will be created which will be the "predicted" price for call and put options.

# **Step 6: Model Validation - Saboura**

Team Lead = Saboura

Deadline November 3<sup>rd</sup>

1.) How does this model perform? Compare the predicted values to the actual option prices. This can be completed by using a scatter plot. Additionally, a simple linear regression can be used to generate an  $R^2$ .

# **Step 7: Hedging example**

Team Lead = Moksh & Riley

Deadline November 3<sup>rd</sup>

1.) Use the model develop to creating a hedging strategy.

#### **Step 8: Create a final Report**

Team Lead = Anantha & Saboura

# Deadline November 19th

1.) Using the analysis provided, and graphs write a final report. Although we have dedicated team leaders, this will also be a team effort!

Final Due Date = 12/8/2021



|                                                                  | Due    | Days to  |
|------------------------------------------------------------------|--------|----------|
| Task                                                             | Date   | Complete |
| Step1: Data Collection - Anantha                                 | 20-Oct | 5        |
| Step2: Data Preparation- Anantha                                 | 20-Oct | 5        |
| Step3: Model Development- Riley                                  | 20-Oct | 5        |
| Step4: Sensitivity Analysis- Moksh & Riley                       | 27-Oct | 7        |
| Step5: Model Deployment- Saboura                                 | 27-Oct | 7        |
| Step6: Model Validation- Saboura                                 | 03-Nov | 6        |
| Step7: Hedging example- Moksh & Riley                            | 03-Nov | 6        |
| Step8: Final Report/Presentation- Anantha, Riley, Moksh, Saboura | 19-Nov | 16       |