

Data Analytics for Data Scientists

Design of Experiments (DoE)

Suggested solutions for Exercise 04: Properties of DoE

2025

Prof. Dr. Jürg Schwarz MSc Adrian Bieri

Suggested solution 01	2
Types of DoE	2
Suggested solution 02	3
Quality aspects of DoE	3

Suggested solution 01

Types of DoE

Compare the descriptions and the advantages and disadvantages of the following DoE types

Trial and error

Description		
Unsystematic change of many factors at different times.		
In principle, this method is not thought of being among the DoE methods.		
In practice, however, trial and error is applied in the sense of "quick-and-dirty".		
Advantages	Disadvantages	
Quick and easy to implement	Reproducible, scientific knowledge cannot be	
Quick and easy to implement	obtained.	

One-factor-at-a-time (OFAT)

Description		
Systematic change of one factor at a time while keeping all other factors constant.		
Advantages	Disadvantages	
Simple application and interpretation	Interactions between factors not recognized	
	Inefficient: High number of trials needed	

Full factorial designs - e.g. 2^k factorial designs

Description Factor levels are determined before the experiment. All possible factor combinations are systematically varied and investigated.		
Advantages	Disadvantages	
All main effects and all interactions can be	Effort involved increases rapidly as the	
determined.	number of factors increases.	

Fractional factorial design – e.g. 2^{k-1} factorial design

Description Factor levels are determined before the experiment. Only a selected (balanced) number of factor combinations are varied and investigated.	
Advantages	Disadvantages
Experiment involves significantly less effort compared to full factorial designs.	Interactions cannot be captured and modeled by this type of experiment.
	In general, it is not possible to determine in advance whether interactions exist.

Suggested solution 02

Quality aspects of DoE

Develop two experiments, A and B, with these features

- \circ Experiment A \rightarrow External and internal validity are both minimal
- \circ Experiment B \rightarrow External and internal validity are both maximal

Explain your choice.

Experiment A

Description

Research question: How much do the ingredients influence the taste of cookies?

Research design: Study of type «trial and error» or worse.

Dependent variable: «Taste», surveyed by number of pronounced "Oh!" by randomly present family members.

Independent variables: The quantity and number of ingredients added freehand. Different baking temperatures.

Experiment conditions: No conditions are specified. Simply what happens during baking.

Sampling: The presence of family members may not be entirely random but subject to some unknown factors, like the children's schedule.

Sample size: Very small

Statistical analysis: Perceived majority of family members with a high proportion of "Oh!"

Explanation

All elements that help to increase external and internal validity are almost completely at the minimal level – see above under «Description».

Experiment B

Description

The "Polio" experiment carried out in the US in 1954 (→ Lecture 01) in principle has very high external and internal validity. Only a few restrictions had to be taken into account during implementation.

Justification internal validity

Primary variance: The two versions of the independent variable (vaccinated / not vaccinated) «automatically» maximize the primary variance as much as possible because they are prescribed.

Secondary variance: Randomized double-blind experiments in principle meet the highest standard for controlling secondary variance.

Error variance: Is low because administering the treatment (vaccination / no vaccination) and measuring the dependent variables (health / sickness) is not very susceptible to random fluctuations and errors.

All the "usual" sources of errors are also present (noise, etc.)

Justification external validity

Population validity: The aim was to carry out a census, which was not possible in full only because of administrative and technical restraints. However, sample size was large.

Situation validity: The procedure of (mass) vaccination of children developed in this experiment has since become the standard.

Variable validity: Transferability to other forms of operationalization of IV & DV is possible without restriction in the case of vaccination (IV) with «Vaccinated / Not Vaccinated» and in the measurement of disease (DV) with «Sick / Not Sick».