Oppgaver for kapittel 0

??

 $\triangle EFC \sim \triangle DFB$ fordi begge er rettvinklede, og $\angle CFE = \angle BFD$ (de er toppvinkler). Dermed har vi at

$$\frac{EF}{CE} = \frac{FD}{BC} \tag{1}$$

Videre er

$$EF + FD = AD - AE \tag{2}$$

Ved å løse likningssettet vi får av (1) og (2), med hensyn på EF og ED, får vi at

$$EF = \frac{AD - AE}{CE + BC}CE \qquad , \qquad ED = \frac{AD - AE}{CE + BC}BC$$

Det doble arealet til $\triangle ABC$ er gitt som

$$(AE + EF)CE + (AD - FD)BC$$

$$= \left(AE + \frac{AD - AE}{CE + BC}CE\right)CE + \left(AD - \frac{AD - AE}{CE + BC}BC\right)BC$$

$$= \frac{1}{CE + BC}\left[(AE \cdot BC + AD \cdot CE)CE + (AD \cdot CE + AE \cdot BC)BC\right]$$

$$= AD \cdot CE + AE \cdot BC$$

Gruble??

a)

b) $A_{\triangle DBC} = A_{\triangle ADC}$ fordi med henholdsvis DB og AD som grunnlinje har de lik høgde, og DB = AD. Altså er $AF \cdot DC = EB \cdot DC$, og da er AF = EB.

Videre er $\triangle DAF \cong \triangle DBE$ fordi begge er rettvinklede $\angle ADF = \angle BDE$ (de er toppvinkler), og AD = DB. Vi setter x = DE, a = EB og b = AC. Da $\triangle BCE$ er en 30°, 60°, 90° trekant, er $EC = \sqrt{3}a$ og BC = 2a. Da $\triangle BGC$ er en 45°, 45°, 90° trekant, er $GB = \frac{2}{\sqrt{2}}a$. Da $A_{\triangle ABC} = 2A_{\triangle DBC}$, har vi at

$$b \cdot \frac{2}{\sqrt{2}}a = 2(\sqrt{3}a + x) \cdot a$$
$$b = \sqrt{2}(\sqrt{3}a + x)$$

Av løsningen i oppgave a) har vi at $AC = (\sqrt{2} + \sqrt{6})AF$, og dermed er $b = a\sqrt{2}(\sqrt{3} + 1)$. Altså er x = a, som betyr at $\triangle AFD$ er en 45° , 45° , 90° trekant. Ved å betrakte vinkelsummen i $\triangle CAF$, finner vi da at

$$\angle DAC = 180^{\circ} - 15^{\circ} - 90^{\circ} - 45^{\circ}$$

= 30°

Alternativ metode for å vise at x = a

Av Pytagoras' setning på $\triangle ACD$ har vi at

$$AC^{2} = FC^{2} + AF$$

 $2(\sqrt{3}a + x)^{2} = (\sqrt{3}a + 2x)^{2} + a^{2}$
 $x^{2} = a^{2}$