Formulas 2018

Waveforms Calculations and Power Quality (a) 1-phase ac supply harmonics and power quality

Power Factor:
$$PF = \frac{P}{S} = \frac{I_1}{I} \cos \phi_1 = CDF \times DPF$$

Real Power Flow:
$$P = V_s I_{s1r} = V_s I_1 \cos \phi_1$$

Apparent Power:
$$S = V_s I_s$$

$$\mathbf{I_s} = \sqrt{\mathbf{I_1^2 + I_2^2 + I_3^2 + I_4^2 + I_5^2 + ...}} \; , \; \; \mathbf{I_s} = \sqrt{\mathbf{I_1^2 + I_H^2}} \; , \; \; \mathbf{I_H} = \sqrt{\mathbf{I_2^2 + I_3^2 + I_4^2 + ...}}$$

Current Distortion Factor:
$$CDF = \frac{I_1}{I_2}$$

ac supply current:
$$THD_{R}=100\frac{I_{H}}{I_{S}}~\%$$
 , $THD_{F}=100\frac{I_{H}}{I_{1}}~\%$

$$THD_R = \frac{THD_F}{\sqrt{1 + THD_F^2}}$$
, $THD_F = \frac{THD_R}{\sqrt{1 - THD_R^2}}$

$$CDF = \frac{1}{\sqrt{1 + THD_{E}^{2}}}, CDF = \sqrt{1 - THD_{R}^{2}}$$

(b) Basic Waveform Calculation

Harmonics of a square-wave of voltage magnitude Vo:

$$V_{n,pk} = V_o \frac{4}{n\pi}$$
, n = 1,3,5,7,9,11,13 etc..., $V_{n,rms} = V_o \frac{2\sqrt{2}}{n\pi}$

Power drawn from a dc source V_{dc} : $P = V_{dc} \times I_{dc}$

Power drawn from an ac source V_1 : $P = V_1 \times I_1 \times \cos \phi_1$

Power dissipated in a resistor V_1 : $P_R = I_{rms}^2 \times R$

RMS of a voltage with 2 components V1(t), V2(t):

$$V_{\text{rms}} = \sqrt{V_{1 \text{ rms}}^2 + V_{2 \text{ rms}}^2} = \sqrt{V_1^2 + V_2^2}$$

In general:
$$I_{ms} = \sqrt{I_{dc}^2 + I_{1,rms}^2 + I_{2,rms}^2 + I_{3,rms}^2 + ...}$$

$$\mathbf{I}_{\text{rms}} = \sqrt{\mathbf{I}_{\text{dc}}^2 + \mathbf{I}_{1}^2 + \mathbf{I}_{2}^2 + \mathbf{I}_{3}^2 + \dots} = \sqrt{\mathbf{I}_{\text{dc}}^2 + \mathbf{I}_{1}^2 + \mathbf{I}_{H}^2}$$

$$I_{_{\rm H}} = \sqrt{I_2^2 + I_3^2 + I_4^2 + \dots} \ , \ I_{_{\rm ac}} = \sqrt{I_1^2 + I_2^2 + I_3^2 + \dots} = \sqrt{I_{_{\rm rms}}^2 - I_{_{\rm dc}}^2}$$

A current ramping between Ip and Im has an rms/dc/ac:

$$I_{ms} = \sqrt{\frac{1}{3} \Big(I_p^2 + I_p I_m + I_m^2 \Big)} \ , \ I_{dc} = \frac{I_p + I_m}{2} \ , \ I_{ac} = \sqrt{I_{ms}^2 - I_{dc}^2}$$

A current lasting for δ of a cycle has an rms/dc/ac of:

$$I_{ms} = \sqrt{\frac{\delta}{3} \Big(I_p^2 + I_p I_m + I_m^2\Big)} \; , \; \; I_{dc} = \delta \bigg(\frac{I_p + I_m}{2}\bigg) \; , \; \; I_{ac} = \sqrt{I_{ms}^2 - I_{dc}^2}$$

1-phase diode rectifier: R and R-E load

(a) Including the effect of θ_c and α Full-wave R/E load (R-load)

$$\alpha = a \sin \left(\frac{E + 2V_{Don}}{\sqrt{2}V_s}\right), \theta_c = \pi - 2\alpha, \theta_c^\circ = (180 - 2\alpha)^\circ$$

$$I_{_{o,mis}} = \frac{1}{R + 2r_{_{D}}}\sqrt{\frac{V_{_{s}}^{2}}{\pi}}\sin2\alpha - \frac{4\sqrt{2}}{\pi}V_{_{s}}\left(E + 2V_{_{Don}}\right)\cos\alpha + \left[V_{_{s}}^{2} + \left(E + 2V_{_{Don}}\right)^{2}\right]\left(1 - \frac{2\alpha}{\pi}\right)$$

$$I_{_{o,dc}} = \frac{1}{R+2r_{_{D}}} \left[\frac{2\sqrt{2}}{\pi} V_{_{s}} \cos \alpha - \left[E+2V_{_{Don}}\right] \left(1-\frac{2\alpha}{\pi}\right) \right]$$

(b)

$$I_{o,rms} = \frac{V_{o,rms}}{R}, I_{o,dc} = \frac{V_{o,dc}}{R}$$

(i) Half-Wave R-Load:
$$V_{o,dc} \approx \frac{\sqrt{2}}{\pi} V_s - 0.5 V_{Don}$$
, $V_{o,rms} \approx \frac{V_s - V_{Don}}{\sqrt{2}}$

(ii) Full-Wave R-Load:
$$V_{o,dc} \approx \frac{2\sqrt{2}}{\pi} V_s - 2V_{Don} = 0.9 V_s - 2V_{Don}$$
, $V_{o,ms} \approx V_s - 2V_{Don}$

1-Phase diode rectifier continuous conduction For simplicity, the equations given neglect V_{Don}

$$Z = \sqrt{R^2 + (\omega L)^2}$$
, $\tan \phi = \frac{\omega L}{R}$

(a) Full-Wave R/L Load continuous conduction

$$V_{O,dc} = \frac{2\sqrt{2}}{\pi} V_S = 0.9 V_S$$
 , $V_{O,rms} = V_S$,

$$V_{On} = \frac{4}{(n^2 - 1)\pi} V_S$$
 $n = 2, 4, 6, 8...$ $I_{On} = \frac{V_{On}}{\sqrt{R^2 + (\omega L)^2}}$ $n = 2, 4, 6, 8...$

$$I_{O,ac} \approx \frac{V_{O2}}{\sqrt{R^2 + (2\omega L)^2}}$$

(b) Full-Wave LC filter, R load, continuous conduction

$$V_{O,dc} = \frac{2\sqrt{2}}{\pi}V_S = 0.9V_S$$
, $V_{O,ms} = V_S$, $V_{On} = \frac{4}{(n^2 - 1)\pi}V_S$, $n = 2,4,6,8...$,

$$I_{On} = \frac{V_{On}}{noI}$$
, $n = 2, 4, 6, 8...$, $V_{O2} = \frac{4}{3\pi}V_S \approx 0.424V_S$, $I_{O,ac} \approx I_{O2} = \frac{V_{O2}}{2oI}$

(c) Full-Wave R./L Load, cont. cond., ripple free

 $FPF = \cos \Phi_1 = \cos \phi$

$$P_{in} = \frac{2\sqrt{2}}{\pi} V_S I_{DC}, I_S = I_{DC}, S = V_S I_{DC}$$

$$PF = \frac{P_{in}}{S} = \frac{2\sqrt{2}}{\pi}, CDF = \frac{2\sqrt{2}}{\pi}, DPF = 1$$

$$I_{S1} = \frac{2\sqrt{2}}{\pi}I_{DC}, \ I_{H} = I_{DC}\sqrt{1 - \frac{8}{\pi^{2}}}$$

THDF = 0.48, THDR = 0.44

(d) Full-Wave Capacitor Smoothed

$$V_{\text{R}} = \frac{I_{\text{DC}}}{2f_{\text{S}}C} \bigg(1 - \frac{\theta_{\text{c}}}{\pi} \bigg), \ \ V_{\text{R,rms}} = \frac{V_{\text{R}}}{2\sqrt{3}} \ , \quad \text{If V}_{\text{R}} = \text{r.V}_{\text{DC}} : V_{\text{DC}} = \frac{V_{\text{pk}}}{1 + \frac{r}{2}}$$

$$\theta_{c}\approx 2\times a\cos\!\left(1-\frac{V_{R}}{\sqrt{2}V_{S}}\right) \text{ or } V_{R}\approx \sqrt{2}V_{S}\!\left(1-\cos\frac{\theta_{c}}{2}\right)$$

$$V_{DC} = V_{pk} - \frac{V_R}{2}$$
, $V_m = \sqrt{2}V_S$, $V_{pk} = \sqrt{2}V_S - 2V_{Don}$

$$I_{_{m}}=1.57\bigg(\frac{180}{\theta_{_{c}}^{^{o}}}\bigg)I_{_{DC}}\text{, }I_{_{O,dc}}=\frac{2\theta_{_{c}}}{\pi^{2}}I_{_{m}}\text{, }I_{_{O,dc}}=I_{_{DC}}\text{, }I_{_{DC}}=av.load\,current$$

$$I_{O,rms} = I_S = I_{DC} \sqrt{1.234 \left(\frac{180}{\theta_c^o}\right)}, I_C = I_S = I_{DC} \sqrt{1.234 \left(\frac{180}{\theta_c^o}\right) - 1}$$

3-phase diode rectifier

(a) Performance when the output current is ripple-free

$$S = \sqrt{2}V_{LL}I_{DC}$$
, $PF = \frac{3}{\pi}$, $V_{o,dc} = 1.35V_{LL} - 2V_{Don}$

$$\boldsymbol{I}_{_{\boldsymbol{n}}} = \frac{\sqrt{6}}{n}\boldsymbol{I}_{_{\mathrm{DC}}}$$
 , $\boldsymbol{I}_{_{\mathrm{H}}} = 0.24\boldsymbol{I}_{_{\mathrm{DC}}}$, $\boldsymbol{I}_{_{\boldsymbol{S}}} = \sqrt{\frac{2}{3}}\boldsymbol{I}_{_{\mathrm{DC}}}$

$$THD_{E} = 31\%$$
, $THD_{R} = 31\%$

(b) Continuous Conduction Operation

$$V_{_{o,dc}} = \frac{3\sqrt{2}}{\pi} V_{_{LL}} - 2V_{_{Don}} \text{ , } V_{_{o,rms}} = V_{_{LL}} \sqrt{1 + \frac{3\sqrt{3}}{2\pi}} \ - 2V_{_{Don}}$$

$$V_{on} = \frac{6}{(n^2 - 1)\pi} V_{LL}$$
, $n = 6, 12, 18, ...$, $V_{o6} = \frac{6}{35\pi} V_{LL} \approx \frac{5.5}{100} V_{LL}$

(c) half-wave

$$V_{o,dc} = \frac{3}{\sqrt{2\pi}} V_{LL} - V_{Don}$$

(d) definition of base values for using per-unit $V_{\text{base}} = V_{\text{LL}}$, $f_{\text{base}} = 60\,\text{Hz}$, $P_{\text{base}} = \text{rectifier input power}$

$$I_{\text{base}} = \frac{P_{\text{base}}}{\sqrt{3}V_{\text{LL}}}, \ X_{\text{base}} = R_{\text{base}} = \frac{V_{\text{LL}}}{\sqrt{3}I_{\text{Lun}}} = \frac{V_{\text{LL}}^2}{P_{\text{base}}}$$

$$L_{\text{base}} = \frac{V_{\text{LL}}^2}{2\pi f \, P_{\text{con}}}, \ L_{\text{pu}} = \frac{L}{L_{\text{con}}}$$

(e) Commutation Overlap

$$\mu = a \cos \left(1 - \frac{\sqrt{2} I_{DC} X_s}{V_{LL:}} \right), V_{O,dc} = 1.35 V_{LL} - 0.955 I_{DC} X_S$$

$$DPF = \frac{1 + \cos \mu}{2}, PF \approx 0.955 \times DPF$$

Performance of the 3-phase diode rectifier: L_{dc} = ∞

Performance of the 3-phase diode rectifier: $L_{dc} = 0$

Performance of the 1-phase ac regulator with an R-Load

I, V in p.u.

1-phase full-wave regulator

R-load:
$$V_{o,ms} = V_S \sqrt{\frac{\pi - \alpha + \frac{\sin 2\alpha}{2}}{\pi}}$$

$$I_{nr} = \frac{I_b}{\pi} \left(\frac{\sin(n+1)\alpha}{n+1} + \frac{\sin(n-1)\alpha}{n-1} \right) n = 3, 5, 7,...$$

$$I_{ni} = \frac{I_b}{\pi} \Biggl(\frac{1-\cos\left(n-1\right)\alpha}{n-1} - \frac{1-\cos\left(n+1\right)\alpha}{n+1} \Biggr) \ n = 3, 5, 7, ... \label{eq:Ini}$$

$$I_{lr} = \frac{I_b}{\pi} \left(\pi - \alpha + \frac{\sin 2\alpha}{2} \right), \ I_{li} = \frac{I_b}{\pi} \left(\frac{\cos 2\alpha - 1}{2} \right), \ I_b = \frac{V_S}{R}$$

R-L Load: solve for β where: $\sin(\beta - \phi) - \sin(\alpha - \phi)e^{\frac{(\alpha - \beta)}{\tan \phi}} = 0$

$$\phi = a \tan \left(\frac{\omega L}{R} \right)$$

3-phase ac regulators: Y connected R-load
$$V_{\rm O,rms}^{pu} = \sqrt{1-\frac{3\alpha}{2\pi}+\frac{3}{4\pi}\sin2\alpha}, 0 \le \alpha \le 60^{\circ}$$

$$V_{0,\text{rms}}^{\text{pu}} = \sqrt{\frac{1}{2} + \frac{9}{8\pi} \sin 2\alpha + \frac{3\sqrt{3}}{8\pi} \cos 2\alpha}, 60^{\circ} \le \alpha \le 90^{\circ}$$

$$V_{0,\text{rms}}^{\text{pu}} = \sqrt{\frac{5}{4} - \frac{3\alpha}{2\pi} + \frac{3}{8\pi} \sin 2\alpha + \frac{3\sqrt{3}}{8\pi} \cos 2\alpha}, 90^{\circ} \le \alpha \le 150^{\circ}$$

Heatsinks

$$t_{j} - t_{a} = P_{D} \times \left[R_{jc} + R_{ca} / / \left(R_{ch} + R_{ha} \right) \right]$$

 t_j = junction temperature: °C, t_c = case temperature: °C t_h = heatsink temperature: °C, t_a = ambient temperature: R_{ic} = junction to case thermal resistance °C/W

R_{ca} = case to ambient thermal resistance °C/W

R_{ch} = case to heatsink thermal resistance °C/W

Rha = heatsink to ambient thermal resistance °C/W

P_D = power semiconductor power loss - W

Performance of 1-phase AC regulator with an R-L Load

Power Semiconductor Losses

$$I_{\mathrm{p}} = I_{\mathrm{o}} + \frac{\Delta I_{\mathrm{o}}}{2}, I_{\mathrm{m}} = I_{\mathrm{o}} - \frac{\Delta I_{\mathrm{o}}}{2}$$

switching losses: $I_p = I_o + \frac{\Delta I_o}{2}$, $I_m = I_o - \frac{\Delta I_o}{2}$

$$P_{1} = \frac{E \times I_{m}}{2} \times t_{1} \times f_{c} \text{ watts, } P_{2} = \frac{E \times I_{p}}{2} \times t_{2} \times f_{c} \text{ watts}$$

$$P_{sw} = \frac{E \times I_O}{2} f_c (t_1 + t_2)$$
 watts, if $I_p = I_m = I_O$

conduction losses

$$P_{on} = V_{on} \times I_{device,dc}, I_{device,dc} = \delta \frac{I_p + I_m}{2}$$

$$P_{on} = I_{device,ms}^2 \times R_{on} \,, \,\, I_{device,ms} = \sqrt{\frac{\delta}{3} \Big(I_p^2 + I_p I_m + I_m^2\Big)} \,$$

DC Choppers

Motoring: $V_{O,dc} = E_a + I_a R_a$

Regenerating: $V_{O,dc} = E_a - I_a R_a$

 $E_a = K \times \Phi_f \times \omega_r$ if the field flux Φ_f varies

 $E_a = K_1 \times \omega_r$ if the field flux Φ_f is constant

Motor output torque: $T_e = K_1 \times I_a$

Motor output power: $P_e = E_a \times I_a = T_e \times \omega_r$

Unipolar PWM:
$$V_{O,dc} = \delta V_{dc}$$
, $\Delta I_a = \frac{V_{dc}}{f_c L_a} \times \delta (1 - \delta)$

$$\text{Bipolar PWM: } V_{o,\text{dc}} = \left(2\delta - 1\right)V_{\text{dc}}, \ \Delta I_{a} = \frac{V_{\text{dc}}}{f_{o}L_{o}} \times 2\delta \left(1 - \delta\right)$$

Discontinuous conduction with unipolar pwm

critical conduction has: $\Delta I_a = 2I_{O,dc} \Longrightarrow \Delta I_a = \delta(1-\delta)\frac{V_{dc}}{f_cL_a}$

condition for always continuous conduction; $2\frac{I_af_cL_a}{V_{dc}}\!\ge\!0.25$

range of δ for disc. cond., solve for δ in: $\delta^2 - \delta + 2 \frac{I_a f_c L_a}{V_{\rm do}} = 0$

load current: $I_{O,ac} = \frac{\Delta I_a}{2\sqrt{3}}$

switch currents:

$$I_{ms} = \sqrt{\frac{\delta}{3} \Big(I_p^2 + I_p I_m + I_m^2 \Big)} \ , I_{dc} = \frac{I_p + I_m}{2} \ , \ I_{ac} = \sqrt{I_{ms}^2 - I_{dc}^2}$$

Assume: I_a = Imotor,dc = I_{O,dc}

$$\boldsymbol{I_{p}} = \boldsymbol{I_{a}} + \frac{\Delta \boldsymbol{I_{a}}}{2} \; , \; \boldsymbol{I_{m}} = \boldsymbol{I_{a}} - \frac{\Delta \boldsymbol{I_{a}}}{2}$$

(a) motor

$$P_{Ra} = I_{motor,rms}^2 R_a$$
, $P_{Ea} = P_e = E_a \times I_a$

$$E_{a} = V_{O,dc} - I_{a}R_{a} = \delta V_{dc} - I_{a}R_{a}, T_{e} = \frac{P_{e}}{\omega_{r}}, P_{in} = P_{Ra} + P_{Ea}$$

(b) mosfet:
$$P_{mos} = I_{switch,rms}^2 R_{DSon}$$
 BJT: $P_{BJT} = I_{switch,dc} \times V_{CE,on}$

(c) diode:
$$P_D = I_{diode.rms}^2 r_D + I_{diode.dc} V_{Don}$$

1-phase H-bridge PWM Inverter

 m_a = maximum amplitude modulation depth = $v_{s,pk}/v_{c,pk}$ m_a = maximum amplitude modulation depth = $v_{s,pk}$ / $v_{c,pk}$

V_{s,pk} = peak of the sinusoidal reference signal

 $\begin{array}{lll} V_{c,pk} = peak \ of \ the \ triangular \ carrier \ signal \\ E = bridge \ dc-link \ voltage & V_O = bridge \ output \ voltage \\ V_{O,1} = fundamental \ of \ V_O & I_O = bridge \ output \ current \\ \Delta I_O = pk-pk \ ripple \ current \ of \ I_O & L = bridge \ output \ inductance \\ \end{array}$

m_f = frequency modulation ratio= f₀/f₁

 f_c = freq. of the carrier f_1 = freq. of the ref. signal

(a) Unipolar pwm switching: 0,±E

fundamental output voltage: $V_{\rm OI} = \frac{m_a}{\sqrt{2}} \, E, \, V_{\rm AN,I} = \frac{m_a}{2\sqrt{2}} \, E$

output pk-pk current ripple with an L filter: $\Delta I_o = \frac{E}{8 f L}$

(b) Bipolar pwm switching: ± E

fundamental output voltage: $V_{\rm OI} = \frac{m_a}{\sqrt{2}} E, V_{\rm AN,I} = \frac{m_a}{2\sqrt{2}} E$

pk-pk current ripple with an L filter $\Delta I_{o} = \frac{V_{dc}}{2f_{c}L}$

DC DC Converters: Continuous Conduction: $I_0 > I_{OB}$

$$I_O \ge I_{OB}$$

$$f_c = \frac{1}{T_c}$$

$$I_O \ge I_{OB}$$
 $f_c = \frac{1}{T_c}$ $\delta = \frac{t_{ON}}{T_c}$

$$\delta = \frac{\mathsf{t}_{ON}}{\mathsf{T}_{c}}$$

	Buck	Boost	Buck-Boost
I _{base}	<u>۷</u> 2f _c L	$\frac{2}{27} \times \frac{V_o}{f_c L}$	V _o 2f _c L
\mathbf{I}_{OB}^{pu}	1-G _{dc}	$\frac{27}{4} \frac{\left(G_{dc} - 1\right)}{G_{dc}^3}$	$\frac{1}{\left(G_{dc}+1\right)^2}$
G _{dc}	δ	$\frac{1}{1-\delta}$	$\frac{\delta}{1-\delta}$
δ	$oldsymbol{G}_{ ext{dc}}$	$1-\frac{1}{G_{dc}}$	$\frac{G_{dc}}{G_{dc}+1}$
$\Delta \mathbf{I}_{L}$	$\frac{\left(V_{i}-V_{o}\right)}{f_{c}L}\delta$	$\frac{V_i}{f_c L} \delta$	$\frac{V_{i}}{f_{c}L}\delta$
\mathbf{I}_{p} \mathbf{I}_{m}	$I_{p} = I_{O} + \frac{\Delta I_{L}}{2}$ $I_{m} = I_{O} - \frac{\Delta I_{L}}{2}$	$I_{p} = I_{i} + \frac{\Delta I_{L}}{2}$ $I_{m} = I_{i} - \frac{\Delta I_{L}}{2}$	$I_{p} = I_{i} + I_{O} + \frac{\Delta I_{L}}{2}$ $I_{m} = I_{i} + I_{O} - \frac{\Delta I_{L}}{2}$

DC-DC Converters: Performance Curves

1-Phase H-Bridge Performance Curves with Square-Wave Switching

E = dc-link voltage

 $V_{\rm O}$ = bridge output voltage $V_{\rm O,n}$ = nth harmonic α = overlap angle in deg./rad. $V_{\rm O,1}$ = fund. harmonic of $V_{\rm O}$

$$V_{O,n} = \frac{0.9}{n} E \cos \left(n \frac{\alpha}{2} \right), n = 3, 5, 7, ...$$

$$V_{O,1} = 0.9 E \cos\left(\frac{\alpha}{2}\right)$$

harmonics of a square-wave voltage magnitude V_o assume perfect square wave, $\alpha = 0^\circ$, $V_o = E$

$$V_n = \frac{4}{\pi} V_O$$
, n = 1, 3, 5, 7, 9, 11, 13, etc..

$$\Delta I_{O,max} = \frac{E}{2f_s L} \left(1 - \frac{8}{\pi^2} \right) = 0.189 \left(\frac{E}{2f_s L} \right)$$