

IIT Madras ONLINE DEGREE

Why is $\sqrt{2}$ irrational?

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Irrational numbers

- The discovery of irrational numbers is attributed to the ancient Greeks
- Since Pythagoras, it was known that the diagonal of a unit square has length $\sqrt{2}$
- His followers spent many years trying to prove it was rational
- Hippasus is attributed with proving that $\sqrt{2}$ is irrational, around 500 BCE
- The followers of Pythagoras were shocked by the discovery
- Allegedly, they drowned Hippasus at sea to suppress this fact from the public

The proof of Hippasus that $\sqrt{2}$ is not a rational number

- If $\sqrt{2}$ is rational, it can be written as a reduced fraction p/q, where gcd(p,q)=1
- From $\sqrt{2} = p/q$, squaring both sides, $2 = p^2/q^2$
- Cross multiplying, $p^2 = 2q^2$, so $p^2 = p \cdot p$ is even
- The product of two odd numbers is odd and the product of two even numbers is even, so p is even, say p = 2a
- So $p^2 = (2a)^2 = 4a^2 = 2q^2$
- Therefore $q^2 = 2a^2$, so q^2 is also even
- By the same reasoning, q is even, say q = 2b.
- So p = 2a and q = 2b, which means $gcd(p, q) \ge 2$, which contradicts our assumption that p/q was in reduced form.

Hippasus Engraving by Girolamo Olgiati, 1580

Summary

- The proof of Hippasus follows a pattern commonly used in mathematical reasoning
- To show that a fact P holds, assume not(P) and derive a contradiction
- Using a similar strategy, can show that for any natural number n that is not a perfect square, \sqrt{n} is irrational

Hippasus Engraving by Girolamo Olgiati, 1580