

APS 1 — INTRODUÇÃO AOS MÉTODOS NUMÉRICOS APLICADOS A TRANSFERÊNCIA DE CALOR

OBJETIVO GERAL

O objetivo é:

- 1. Aplicar integração numérica (usando as fórmulas de Newton-Cotes) para estimar q com base nos dados de temperatura discretos e nas propriedades físicas.
- 2. Calcular a taxa total de transferência de calor (q) através da barra cilíndrica usando os dados de distribuição de temperatura obtidos de pontos discretos ao longo do comprimento da barra.

REGRAS

- O roteiro da APS 1 estará disponível no Blackboard. Para acessar o material é necessário estar inscrito em um grupo da APS 1.
- O link para inscrição estará disponível até 16/02/2024 às 23:59 em "Conteúdos>APS> APS 1>Inscrição Grupo APS 1".

OBS: Os estudantes que não estiverem inscritos em algum grupo deverão automaticamente fazer a APS 1 DELTA.

- A inscrição no grupo será feita no Blackboard. Além disso, será necessário indicar o nome de todos os alunos do grupo que **participaram da atividade** no documento contendo as respostas.
- O grupo deverá submeter um PDF com as respostas da atividade com o nome "grupoXX_APS1" via Blackboard até às 23hs59 do dia 23/02/2024.
- Entregas feitas em outros formatos ou por outras plataformas NÃO serão consideradas.

Engenharia Transferência de Calor e Mecânica dos Sólidos

CONTEXTO E APLICAÇÕES

Em sistemas térmicos como trocadores de calor, fornos industriais ou sistemas de refrigeração, a taxa de transferência de calor q(t) é uma variável fundamental que influencia diretamente a eficiência energética e a eficácia operacional do sistema. A taxa de transferência de calor pode variar ao longo do tempo em resposta a uma série de fatores dinâmicos, como:

- Variações do Gradiente de Temperatura: Diferenças na temperatura entre duas substâncias em um trocador de calor podem mudar devido ao aquecimento ou resfriamento externo, alterando a taxa de transferência.
- Taxas de Fluxo de Fluidos: Em sistemas que envolvem o movimento de fluidos, como sistemas de HVAC (Heating, Ventilating and Air Conditioning) ou processos químicos, mudanças nas taxas de fluxo podem causar flutuações na taxa de transferência de calor, devido à alteração da quantidade de massa quente ou fria sendo movida por unidade de tempo.
- Cargas Térmicas Externas: Fontes externas de calor, como radiação solar ou reações exotérmicas, podem impor cargas térmicas que alteram temporariamente a transferência de calor dentro do sistema.
- Mudanças Operacionais: O início ou a parada de máquinas, a mudança de configurações operacionais ou a intervenção de controle automático podem provocar variações na taxa de transferência de calor.

A habilidade de prever e calcular a energia térmica total Q transferida durante um período é crucial para o design de sistemas que são seguros, eficientes e capazes de atender às demandas operacionais. Nesse contexto, a interpolação de Lagrange, permite estimar a taxa de transferência de calor em momentos não observados diretamente, o que é especialmente útil em situações em que os dados são escassos ou onde medições diretas são impraticáveis devido às limitações técnicas ou custos.

TAREFAS:

OBJETIVO 1: PARA UMA FUNÇÃO "SIMPLES", COMPARAR OS RESULTADOS (TRAPÉZIO E 1/3 SIMPSON) CONSIDERANDO O MESMO № DE INTERVALOS DE INTEGRAÇÃO.

1. (3,0 pontos): Para a seguinte função, que modela a taxa de transferência de calor:

$$q(t) = q_{max} sen\left(\frac{2\pi t}{T}\right) + q_{base},$$

onde q_{max} é a máxima variação da taxa de transferência de calor, T é o período da variação, q_{base} é a cota inferior de transferência de calor e t é o tempo dado em segundos, calcule a quantidade total de energia térmica transferida em um período. Use os dados indicados na tabela considerando 10 intervalos de integração. Para cada período, calcule o erro relativo entre os dois métodos numéricos utilizados.

Período	Regra do Trapézio	Regra 1/3 de Simpson	Erro relativo
10s			
60s			
3600s			

OBJETIVO 2: PARA UMA FUNÇÃO "SIMPLES", COMPARAR OS RESULTADOS (TRAPÉZIO E 1/3 SIMPSON) QUANDO AUMENTAMOS O № DE INTERVALOS DE INTEGRAÇÃO.

2. (2,0 pontos): Repita o exercício anterior, para calcular a quantidade total de energia térmica transferida em 3600s usando os diferentes métodos numéricos indicados na tabela:

N° de intervalos de	Regra do Trapézio	Regra 1/3 de Simpson	Erro relativo
integração			
10			
20			
30			

OBJETIVO 3:PARA UMA FUNÇÃO "NÃO LINEAR", COMPARAR OS RESULTADOS (TRAPÉZIO E 1/3 SIMPSON) CONSIDERANDO O MESMO № DE INTERVALOS DE INTEGRAÇÃO.

3. (2,0 pontos): Considerando uma taxa de transferência de calor que varia de forma não-linear com o tempo, representada pela função:

$$q(t) = q_{base} + A \sin(\omega_1 t + \phi_1) + B t^2 exp(-Ct),$$

onde A,B são as amplitudes que modulam os efeitos dos termos senoidal e polinomial, $\omega_1 = \frac{2\pi}{3600}$ é a frequência angular, $\phi = \frac{\pi}{6}$ é o deslocamento de fase, C é o termo de decaimento, calcule a quantidade total de energia térmica transferida para períodos de 10s, 60s, 3600s. Indique o resultado obtido considerando 10 intervalos de integração. Para cada período, calcule o erro relativo. Compare o resultado observado para o erro relativo com os resultados obtidos no exercício 1 e indique se esse comportamento era esperado.

Período	Regra do Trapézio	Regra 1/3 de Simpson	Erro relativo
1s			
60s			
3600s			

OBJETIVO 4: USAR A INTERPOLAÇÃO DE LAGRANGE PARA AVALIAR A TAXA DE TRANSFERÊNCIA DE CALOR .

4. (3,0 pontos): Considere uma taxa de transferência de calor q(t) que varia ao longo do tempo de acordo com a tabela.

Dado três pontos que representam essa taxa em tempos distintos, realize uma interpolação quadrática de Lagrange para estimar a função q(t) e, a partir dessa função interpolada, calcular a taxa de transferência de calor para um tempo t.

$t_i(\mathbf{s})$	$q_i(\mathbf{W})$
0	1000
1800	1500
3600	500

Parâmetros por grupo:

Grupo	Exercício 1		Exercício 3			Exercício 4
•	q_max	q_base	Α	В	С	t
1	500	1000	250	150	0,0004	2000
2	502,6315789	1005,263158	252,6315789	152,6315789	0,000405263	2021,052632
3	505,2631579	1010,526316	255,2631579	155,2631579	0,000410526	2042,105263
4	507,8947368	1015,789474	257,8947368	157,8947368	0,000415789	2063,157895
5	510,5263158	1021,052632	260,5263158	160,5263158	0,000421053	2084,210526
6	513,1578947	1026,315789	263,1578947	163,1578947	0,000426316	2105,263158
7	515,7894737	1031,578947	265,7894737	165,7894737	0,000431579	2126,315789
8	518,4210526	1036,842105	268,4210526	168,4210526	0,000436842	2147,368421
9	521,0526316	1042,105263	271,0526316	171,0526316	0,000442105	2168,421053
10	523,6842105	1047,368421	273,6842105	173,6842105	0,000447368	2189,473684
11	526,3157895	1052,631579	276,3157895	176,3157895	0,000452632	2210,526316
12	528,9473684	1057,894737	278,9473684	178,9473684	0,000457895	2231,578947
13	531,5789474	1063,157895	281,5789474	181,5789474	0,000463158	2252,631579
14	534,2105263	1068,421053	284,2105263	184,2105263	0,000468421	2273,684211
15	536,8421053	1073,684211	286,8421053	186,8421053	0,000473684	2294,736842
16	539,4736842	1078,947368	289,4736842	189,4736842	0,000478947	2315,789474
17	542,1052632	1084,210526	292,1052632	192,1052632	0,000484211	2336,842105

18	544,7368421	1089,473684	294,7368421	194,7368421	0,000489474	2357,894737
19	547,3684211	1094,736842	297,3684211	197,3684211	0,000494737	2378,947368
20	550	1100	300	200	0,0005	2400

BIBLIOGRAFIA:

- •CHAPRA, STEVEN C.; CANALE, RAYMOND P. , MÉTODOS NUMÉRICOS PARA ENGENHARIA., 7º ED., AMGH, 2016, ISBN 9788580555684
- •INCROPERA, F. P.; WITT, D. P., FUNDAMENTOS DE TRANSFERÊNCIA DE CALOR E MASSA, 6º ED., LTC , 2008