The Measurement of the $W\gamma$ Cross Section at 8 TeV (PhD thesis defense)

Ekaterina Avdeeva

University of Nebraska - Lincoln

June, 2017

Talk Outline

Introduction to the Standard Model

Theory

- Electroweak interactions
- Triple and quartic gauge couplings
- $V W \gamma \rightarrow I \nu \gamma$ process

Experimental setup

- Large Hadron Collider (LHC)
- Proton-proton collisions
- Compact Muon Solenoid (CMS)
- Particle reconstruction in CMS

\blacktriangleright $W\gamma$ cross section measurement

- Measurement goal and strategy
- Data and simulation (MC) samples
- Event selection
- Background estimation
 - Methods and results
 - Challenges and cross checks
- Selected corrections
- Systematic uncertainties
- Cross section
- Conclusions

Introduction. The Standard Model

About the Standard Model

Theory. EWK Interactions

Theory. Anomalous Gauge Couplings

Theory. $W\gamma \rightarrow I\nu\gamma$

- test Standard Model;
- search for aTGC.

Large Hadron Collider (LHC)

CERN's Accelerator Complex

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

Proton-Proton Collisions

Compact Muon Solenoid (CMS). Components

Compact Muon Solenoid (CMS). Particle Reconstruction

Process to study: $W\gamma \rightarrow \mu\nu\gamma$, $W\gamma \rightarrow e\nu\gamma$.

Final state particles: muons, electrons, photons, neutrinos.

Neutrino is not detected. Described by the missing transverse energy:

$$E_T^{miss} = -|\sum \mathbf{P_T}|,\tag{1}$$

where the summation covers all visible particles in the event. For precise measurement of E_T^{miss} it is important to capture the full energy release of all visible particles.

Measurement Goal

To measure the total and the differential $(\frac{d\sigma}{dP_T^\gamma})$ cross sections of $W\gamma\to l\nu\gamma$ at $\sqrt{s}=$ 8 TeV.

Phase space definition:

- $ightharpoonup P_T^{\gamma} > 15 \text{ GeV}$
- $ightharpoonup \Delta R(\gamma, lep) > 0.7$
- $\Delta K(\gamma, lep) > 0.1$
- several more requirements related to geometric and kinematic limitations
- P_T^{γ} ranges for $\frac{d\sigma}{dP_T^{\gamma}}$: 15-20-25-30-35-45-55-65-75-85-95-120-500 GeV

Measurement Strategy

	Algebraic representation for					
Step	the measurement of					
	$d\sigma/dP_T^{\gamma}$	σ				
select events	N_{sel}^{j}	N _{sel}				
subtract background	$N_{sign}^j = N_{sel}^j - N_{bkg}^j$	$N_{sign} = N_{sel} - N_{bkg}$				
unfold	$N_{A imes\epsilon}^i = U_{ij} \cdot N_{sign}^j$	_				
correct for efficiency	$N_{true}^i = rac{N_{A imes\epsilon}^i}{(A imes\epsilon)^i}$	$N_{true} = rac{N_{sign}}{A imes \epsilon}$				
compute cross section	$\left(\frac{d\sigma}{dP_T^{\gamma}}\right)^i = \frac{N_{true}^i}{L \cdot (\Delta P_T^{\gamma})^i}$	$\sigma = N_{true}/L$				
estimate systematic uncertainties						

Data Samples and Triggering

Data: CMS experiment, 2012, pp collisions at \sqrt{s} =8 TeV Integrated luminosity: L =19.6 fb $^{-1}$

Dataset	Candidates	Purpose	Size, T
Single muon	$W\gamma ightarrow \mu u \gamma$	target process	1.2
Single electron $W\gamma \rightarrow e\nu\gamma$		target process	2.0
Double muon	$Z\gamma o \mu\mu\gamma$	background estimation	0.4
Double electron	$Z\gamma o ee\gamma$	background estimation	0.5

MC Samples and Luminosity Reweighting

Process	Туре	σ , pb	
$W\gamma ightarrow I u\gamma$	signal	554	
W +jets $\rightarrow I\nu$ +jets	background	36257	
$DY+jets \rightarrow II+jets$	background	3504	
$t\bar{t}+{\sf jets} \rightarrow 1/+{\sf X}$	background	99	
$t\overline{t}+\mathrm{jets}\rightarrow 2I+X$	background	24	
$Z\gamma o II\gamma$	background	172	

All MC samples are normalized to the data luminosity of L =19.6 fb $^{-1}$ in all studies and plots.

Requirements for Selection of $W\gamma$ Candidates

Selection requirements for candidates					
$W\gamma \rightarrow \mu\nu\gamma$ $V\gamma \rightarrow e\nu\gamma$					
Exactly one lepton -	+ at least one photon				
Photon	selection:				
Photon ID; p _T	> 15; EB or EE				
	[one change in ID]				
Muon ID	Electron ID				
$p_{T}^{\mu} > 25 \text{ GeV};$	$p_T^e > 30;$				
$ \eta^{\mu} < 2.1$	EB or EE				
Second lepton veto:					
$ ho_T^{\mu 2} > 10$ GeV; $ ho_T^{e 2} > 10;$ $ ho_T^{e 2} > 2.4$ EB or EE					
$ \eta^{\mu 2} < 2.4$	EB or EE				
	[veto] ID				
$M_T^W >$ 40 GeV					
	$110~GeV > M_{e\gamma} > 70~GeV$ excl.				
$\Delta R(\mathit{lep}, \gamma) > 0.7$					

Data vs MC. M_T^W and $M_{I\gamma}$

 $M_T^W>$ 40 **GeV** is applied in both channels $M_{l,\gamma}<$ 70 or $M_{l,\gamma}>$ 110 **GeV** is applied in the **electron channel** only

Data vs MC. P_T^{γ}

selected datasets in both channels are dominated by W+jets events

300 400 P_T, GeV

Jets $\rightarrow \gamma$ Background. Sources

 ${\sf Jets} {\to} \ \gamma \ \ {\sf background} \ \ {\sf estimation} \ \ {\sf is} \ \ {\sf the} \ \ {\sf most} \ \ {\sf challenging} \ \ {\sf part} \ \ {\sf of} \ \ {\sf this} \ \ {\sf measurement} \ \ {\sf and} \ \ \\ {\sf also} \ \ {\sf the} \ \ {\sf source} \ \ {\sf of} \ \ {\sf the} \ \ {\sf largest} \ \ {\sf systematic} \ \ {\sf uncertainties} \ \ ({\sf discussed} \ \ {\sf later}).$

${\sf Jets}{\to}\ \gamma\ {\sf Background}.\ {\sf Template}\ {\sf Method}$

Fit function: $F(V_{fit}) = N_{true} \cdot T_{true}(V_{fit}) + N_{fake} \cdot T_{fake}(V_{fit})$

Jets $ightarrow \gamma$ Background. Templates from $Z\gamma ightarrow \bar{\mu}\mu\gamma$

FSR selection: $M_{\mu\mu\gamma} < 101$ GeV and $\Delta R(\mu_1, \gamma) > 0.4$ ISR selection: $M_{\mu\mu\gamma} > 101$ GeV and $\Delta R(\mu_1, \gamma) > 1.0$

Jets $ightarrow \gamma$ Background. $V_{\it fit} = I_{\it ch}^{\gamma}$ and $V_{\it fit} = \sigma_{i\eta i\eta}$

 $e \rightarrow \gamma$ Background. Source

$e \rightarrow \gamma$ Background. Method Description

Method Description

- ▶ Get $N_{MC-Zpeak}^{e \to \gamma}$ (number of $e \to \gamma$ events under the Z-peak based on the MC prediction); done by counting
- ▶ Get $N_{data-Zpeak}^{e \to \gamma}$ (number of $e \to \gamma$ events under the Z-peak from data); done by fitting
- ▶ Get $N_{MC-nom}^{e \to \gamma}$ (number of $e \to \gamma$ events in the nominal range based on the MC prediction); done by counting
- ▶ Get $N_{ata-nom}^{e \to \gamma}$ (number of $e \to \gamma$ events in the nominal range based on the MC predictionfrom data); done by scaling $N_{data-nom}^{e \to \gamma} = N_{MC-nom}^{e \to \gamma} \cdot N_{data-Zpeak}^{e \to \gamma} / N_{MC-Zpeak}^{e \to \gamma}$

$M_{e,\gamma}$ Fit Model and Fit Plots. 15-20 GeV, barrel

 $N_{sig} \cdot (RooNDKeysPdf \times Gaussian) + N_{bkg} \cdot (RooCMSShapePdf)$

Figure: $M_{e,\gamma}$ fits, W γ , electron channel, 15-20 GeV, barrel, 4 eta bins

Real- γ Background

Main sources of true γ background are $Z\gamma$ and $W\gamma \to \tau \nu \gamma$. The MC-based estimation is used to subtract these backgrounds. MC-based background estimation.

P_T^{γ} Spectrum before and after Background Subtraction. Muon Channel, Barrel

Top: data vs fake- γ background derived from the template method + real- γ background predicted by dedicated MC samples + signal MC, with l_{ch} and $\sigma_{i\eta i\eta}$ used as fit variables. Bottom: left: data yields after full background subtraction vs signal MC. l_{ch} vs $\sigma_{i\eta i\eta}$ fit results. Right: fake- γ data driven background prediction vs MC. Plotted with the stat error only. Disagreement

P_T^{γ} Spectrum before and after Background Subtraction. Electron Channel, Barrel

Top: data vs fake- γ background derived from the template method + real- γ background predicted by dedicated MC samples + signal MC, with l_{ch} and $\sigma i\eta i\eta$ used as fit variables. Bottom: left: data yields after full background subtraction vs signal MC. l_{ch} vs $\sigma i\eta i\eta$ fit results. Right: fake- γ data driven background prediction vs MC. Plotted with the stat error only.

Cross Checks for Jets— γ Background Estimation

Simple MC closure check: MC realistic check: $Z\gamma$ check: Conclusions:

Other Corrections

Detector resolution unfolding:Important note: errors across difffent P_T^{γ} bins become correlated after the unfolding procedure.

Efficiency:

Acceptance:

Efficiency Scale Factors

POG Special SF from $W\gamma$

Systematic Uncertainties. Introduction

Relative Systematic Uncertainties [%] in the Muon Channel. Table

P_T^{γ} ,	err	syst	$Z\gamma$ MC	templ	SFs	syst	syst	syst
GéV	stat	$ N_{lch} - N_{\sigma i \eta i \eta} $	norm	stat	err	lumi	other	total
total	1	10	24	4	2	3	4	27
15-20	2	31	12	10	3	3	6	35
20-25	2	29	13	11	1	3	6	34
25-30	2	24	13	11	1	3	5	30
30-35	3	40	15	13	2	3	7	45
35-45	2	11	12	8	2	3	6	19
45-55	4	62	19	20	2	3	8	68
55-65	3	15	12	14	1	3	7	24
65-75	6	36	19	17	1	3	10	44
75-85	4	6	11	16	1	3	10	21
85-95	5	2	9	23	1	3	13	25
95-120	5	10	8	12	1	3	9	18
120-500	3	4	11	21	2	3	9	24

Relative Systematic Uncertainties [%] in the Electron Channel. Table

P_T^{γ} ,	err	syst	$Z\gamma$ MC	templ	SFs	syst	$e \rightarrow \gamma$	syst	syst
GéV	stat	$ N_{lch} - N_{\sigma i \eta i \eta} $	norm	stat	err	lumi		other	total
total	2	15	35	5	19	3	4	5	44
15-20	8	80	27	19	17	3	18	11	90
20-25	7	38	20	14	12	3	11	10	48
25-30	5	25	16	12	14	3	8	8	36
30-35	5	35	14	12	14	3	3	8	42
35-45	3	14	13	8	18	3	2	7	28
45-55	8	53	20	22	36	3	7	11	71
55-65	7	17	12	30	44	3	5	10	58
65-75	7	23	15	32	44	3	4	11	61
75-85	8	32	17	27	44	3	6	13	64
85-95	9	9	7	9	40	3	8	14	44
95-120	7	19	9	14	44	3	5	11	51
120-500	4	12	6	24	39	3	1	9	48

Major Sources of the Systematic Uncertainties

```
Bias in Template Shape and Fit Machinery: |N_{lch} - N_{\sigma i \eta i \eta}| Z\gamma MC Normalization: Statistical Power of Templates: PixelSeedVeto SFs (electron channel only):
```

Total and Differential Cross Section

Total cross section ($P_T^{\gamma} > 15$ GeV):

MC-based: $\sigma = 9101 \text{ fb}$

Measured, muon channel: $\sigma=10949\pm91\pm1463$ fb Measured, electron channel: $\sigma=9146\pm185\pm2213$ fb

ZGamma check. Differential Cross Section

- Total and differential cross section of $Z\gamma \to ll\gamma$ is measured and agrees well with the 8 TeV published CMS result as well as with the theory prediction;
- The workflows for the $Z\gamma$ and $W\gamma$ are very similar, and we used the same procedures of the jets $\rightarrow \gamma$ background estimation;
- For the muon channel, data used for preparing templates significantly overlap with the dataset, thus, the result is a closure test rather that a valid physics measurement;
- For the electron channel, templates and the dataset are independent, thus, the result is a valid physics measurement.

Acknowledgements

Before drawing conclusions...

- ► Ilya Kravchenko, Yurii Maravin, Lovedeep Saini;
- Joshua Kunkle, Senka Duric, Dmytro Kovalskyi;
- Kuo Chia-Ming, Sachiko Toda McBride, Yutaro liyama;
- whole CMS collaboration.

Conclusions

- Cross section for muon and electron channels are computed;
- ▶ This is the first measurement of the differential $W\gamma$ cross section with CMS;
- Results agree with the theory;
- Results between the two channels agree;
- Good agreement in the $Z\gamma$ check validates most parts of the measurement.