A set $S \subseteq \mathbb{R}$ is called **dense in** \mathbb{R} whenever this property holds:

for each nonempty real interval (a,b), one has $S \cap (a,b) \neq \emptyset$.

- (a). Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ by $f(m,n) = m + n\sqrt{2}$. Prove that f is one-to-one.
- (b). Let $S = \{m + n\sqrt{2}: m, n \in \mathbb{Z}\}$. Prove that $S \cap (0,1)$ is infinite.
- (c). Prove that for each $\varepsilon > 0, S \cap (0, \varepsilon) \neq \emptyset$.
- (d). Prove that S is dense in \mathbb{R} .
- (a). Solution. Let $f(m_1, n_1) = f(m_2, n_2)$. Then $m_1 + n_1\sqrt{2} = m_2 + n_2\sqrt{2} \implies m_1 m_2 = (n_2 n_1)\sqrt{2} \implies \frac{m_1 m_2}{2} = n_1\sqrt{2}$. For the sake of contradiction, assume that $m_1 \neq m_2$ or $n_1 \neq n_2$. If $n_1 \neq n_2$, then we have $\frac{m_1 m_2}{n_2 n_1} = \sqrt{2}$. But the value on the left of the inequality is a rational number, and we know $\sqrt{2} \notin \mathbb{Q}$, thus we get a contradiction. We must have then $n_1 = n_2$. If $m_1 \neq m_2$, we have $m_1 m_2 \neq 0$, however $(n_2 n_1)\sqrt{2} = 0$, thus our equality is broken, another contradiction. Thus we must have that $m_1 = m_2$ as well. But then the original values we mapped from $\mathbb{Z} \times \mathbb{Z}$ are the same, $(m_1, n_1) = (m_2, n_2)$, showing that f is one-to-one.
- (b). Solution. Let $n \in \mathbb{Z}$ be arbitrary. Then we claim that there exists $m \in \mathbb{Z}$ such that $0 < m n\sqrt{2} < 1$. This implies $(m n\sqrt{2}) \in S \cap (0,1)$ (n is negative here, but this is fine because if $n \in \mathbb{Z}$, so is -n). Given our inequality, we can rerrange it to get

 $n\sqrt{2} < m < 1 + n\sqrt{2}$

We claim that this inequality is preserved when we choose m to be the smallest integer greater than $n\sqrt{2}$. By definition, $m > n\sqrt{2}$. Furthermore, we know that $n\sqrt{2} \notin \mathbb{Z}$ (since $\sqrt{2}$ is irrational) thus, $m-n\sqrt{2} < m-(m-1)$ (ie. $n\sqrt{2}$ is closer to m than m-1); if this were not true, m-1 would be closer to m than $n\sqrt{2}$, in otherwords $m-1>n\sqrt{2}$, but this contradicts that m is the smallest integer greater than $n\sqrt{2}$. But this inequality gives $m<1+n\sqrt{2}$. Thus, our chosen m satisfies our bounds, and so $m-n\sqrt{2}\in S\cap(0,1)$. But since this works for arbitrary n, and there are infinitely many integers, there are infinitely many n,m such that $m-n\sqrt{2}\in S\cap(0,1)$. Each m,n corresponds to a unique element in S (by part (a)), thus $S\cap(0,1)$ contains infintly many elements.

(c). Solution. Let $\varepsilon > 0$. Corollary (a) of the Archimedes property from the lecture notes states that there exists some $j \in \mathbb{N}$ such that $\frac{1}{j} < \varepsilon$. Furthermore, since $0 < j < 2^j$ for all j, we have that $0 < 2^{-j} < j^{-1}$, thus $0 < 2^{-j} < \varepsilon$.

Now, see that $0 < \sqrt{2} - 1 < 2^{-1}$, since $1.5^2 > 2$. Furthermore, since these are both positive values, exponentiating them to some natural number will preserve the inequality. Thus if we exponentiate them by j, we see $0 < (\sqrt{2} - 1)^j < 2^{-j} < \varepsilon$. By binomial theorem, we have

$$0 < \sum_{k=0}^{j} {j \choose k} (\sqrt{2})^k (-1)^{j-k} < \varepsilon$$

Note that if k is even, $(\sqrt{2})^k = 2^{k/2}$ which is an integer, and if j is odd, $(\sqrt{2})^k = 2^{(k-1)/2}\sqrt{2}$ which is a multiple of $\sqrt{2}$. Regardless then, since $\binom{j}{k}$ is always an integer, we have that our summation is just the sum of an integer and a multiple of $\sqrt{2}$. Specifically, if

$$m = \sum_{\substack{k=0\\k \text{ even}}}^{j} {j \choose k} 2^{k/2} (-1)^{j-k}, \quad n = \sum_{\substack{k=0\\k \text{ odd}}}^{j} {j \choose k} 2^{(k-1)/2} (-1)^{j-k}$$

Then $m, n \in \mathbb{Z}$, and $0 < m + n\sqrt{2} < \varepsilon$. Thus $m + n\sqrt{2} \in S \cap (0, \varepsilon)$ and so the set is not empty.

(d). Solution. Let a, b be given, such that $a, b \in \mathbb{R}$, a < b (WLOG). We know that there exists $m, n \in \mathbb{Z}$ such that $0 < m + n\sqrt{2} < (b-a)/2$ since (b-a)/2 > 0 (by part (c)). Let $k = \lceil a/(m+n\sqrt{2}) \rceil$. Then $k(m+n\sqrt{2})$ is of size ff and at least, of size ff. But since k is an integer, km, kn are integers, and ff inequalities, thus $km + kn\sqrt{2} \in S \cap (a,b)$, so the intersection is nonempty. This confirms that S is dnese in \mathbb{R} .

Let $a, b \in \mathbb{R}$ be given and b > a (WLOG). We let $x, y \in \mathbb{R}$ be arbitrary such that x < y. Note that by the density of the rationals (proven in class), we have that $m \in \mathbb{Z}$ and $k \in \mathbb{N}$ such that

$$x < \frac{m}{k} < y \implies kx < m < yx$$

$$\implies \sqrt{2}kx < m < \sqrt{2}ky$$

$$\implies \sqrt{2}kx + m < m + n\sqrt{2} < \sqrt{2}ky + n$$

Let a, b be given, such that $a, b \in \mathbb{R}$, 0 < a < b (WLOG). Let $\varepsilon = \frac{b-a}{3}$, then by part (c), there exists $s \in S$ such that $0 < s < \varepsilon$. By the Archimedian property, there exists a natural number k such that ks > a. By the well-ordering property, we can choose k that is the smallest element that satisfies the inequality. If $ks < a + \frac{b-a}{3}$, then we are done. Otherwise, $ks > a + \frac{b-a}{3}$. We can subtract a smaller value on the left side of the inequality than the right and preserve the inequality, so we get ks - s = (k-1)s > a, but this contradicts that k is the smallest such integer, thus we cannot have $ks > a + \frac{b-a}{3}$. Thus we have shown that when a, b positive, we have that $S \cap (a, b) \neq \emptyset$.

We consider now the cases when a, b are not both positive. If $a \leq 0$ and $b \geq 0$ (where $b \neq a$), then we let $\varepsilon = b$, and then by part (c), we have $S \cap (a, b) \neq \emptyset$. Now let a, b be both negative. From the first part of this proof, we know that there is an $s \in S$ such that $s \in (-a, -b)$ (since both values are now positive), thus $-s \in (a, b)$, and obviously $-s \in S$ for any $s \in S$. Thus, $S \cap (a, b) \neq \emptyset$ for all cases.

For each $x \in \mathbb{R}$, evaluate

$$f(x) := \lim_{n \to \infty} \frac{1}{1 + nx}$$

Use the ε , N definition of a limit to prove your answer.

Solution. Let $a_n = \frac{1}{1+nx}$ where x is given (so $f(x) = \lim_{n \to \infty} a_n$). Either x > 0, x < 0 or x = 0. We deal with these cases in turn. We claim that

$$f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$$

Let x > 0. Let $\varepsilon > 0$. We let $N = \max\{\lfloor \frac{1-\varepsilon}{\varepsilon x} \rfloor, 1\}$. Then for n > N, we have $n > \frac{1-\varepsilon}{\varepsilon x} \implies nx > \frac{1}{\varepsilon} - 1$. Then $\frac{1}{1+nx} < \varepsilon$. But all of the terms on the left are positive anyway, we can just take their absolute value to get $|\frac{1}{1+nx}| < \varepsilon$, thus $\lim_{n\to\infty} \frac{1}{1+nx} = 0$ when x > 0.

 $|\frac{1}{1+nx}| < \varepsilon, \text{ thus } \lim_{n \to \infty} \frac{1}{1+nx} = 0 \text{ when } x > 0.$ Now let x < 0. Let $\varepsilon > 0$. We let $N = \max\{\lfloor \frac{1-\varepsilon}{-\varepsilon x} \rfloor, 1, \lceil \frac{1}{x} \rceil\}$. Then for n > N, we have $n > \frac{1-\varepsilon}{-\varepsilon x} \implies nx < 1 - \frac{1}{\varepsilon}$. Then $\varepsilon > \frac{1}{1-nx}$. But since 1 - nx > 0, we have that the numerator and denominator are positive, and thus $\varepsilon > \left| \frac{1}{1+nx} \right|$.

Finally, let x = 0. Let $\varepsilon > 0$. We let N = 1. Then for n > N, we have $|a_n - 1| = |1 - 1| = 0 < \varepsilon$. Thus $\lim_{n \to \infty} \frac{1}{1 + nx} = 1$ when x = 0.

Given a real sequence $(a_n)_n$ with $a_n \to A$ as $n \to \infty$, present direct ε , N-proofs that $a_n^3 \to A^3$ and $a_n^{1/3} \to A^{1/3}$ as $n \to \infty$. (Assume $A \in \mathbb{R}$.)

Solution. We know that $a_n \to A$ as $n \to \infty$, thus for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n > N we have $|a_n - A| \le \frac{\varepsilon}{|(|A|+1)^2 - |A|A + A^2|}.$

We first seek to prove that $a_n^3 \to A^3$ as $n \to \infty$. Recall that if $x_n \to x$ as $n \to \infty$, then $|x_n| \le |x| + 1$ (by the course notes), we have

$$|a_n^3 - A^3| = |a_n - A||a_n^2 - a_n A + A^2|$$

$$\leq |a_n - A||(|A| + 1)^2 - |A|A + A^2|$$

$$< |(|A| + 1)^2 - |A|A + A^2| \left(\frac{\varepsilon}{|(|A| + 1)^2 - |A|A + A^2|}\right)$$

$$= \varepsilon$$

But this is sufficient to show that $a_n^3 \to A^3$ as $n \to \infty$. We now seek to prove that $a_n^{1/3} \to A^{1/3}$ as $n \to \infty$. Let $\varepsilon > 0$. Consider first when $A \neq 0$. Since $a_n \to A$ as $n \to \infty$, for all $\varepsilon > 0$, we have $N \in \mathbb{N}$ such that for all n > N,

$$|a_n - A| < \min \left\{ \frac{A}{2}, \left(\left(\frac{A}{2} \right)^{2/3} + \left(\frac{A}{2} \right)^{1/3} A^{1/3} + A^{2/3} \right) \varepsilon \right\}$$

But when $|a_n - A| < \frac{A}{2}$, we have $\frac{A}{2} < a_n$. Thus

$$(a_n)^{2/3} + (a_n)^{1/3}A^{1/3} + A^{2/3} > \left(\frac{A}{2}\right)^{2/3} + \left(\frac{A}{2}\right)^{1/3}A^{1/3} + A^{2/3}$$

This gives us the useful inequality

$$\frac{|a_n - A|}{(a_n)^{2/3} + (a_n)^{1/3} A^{1/3} + A^{2/3}} < \frac{|a_n - A|}{\left(\frac{A}{2}\right)^{2/3} + \left(\frac{A}{2}\right)^{1/3} A^{1/3} + A^{2/3}} \tag{1}$$

Now see that, using the difference of cubes formula, we have

$$|a_n - A| = |(a_n)^{1/3} - A^{1/3}| |(a_n)^{2/3} + (a_n)^{1/3} A^{1/3} + A^{2/3}|$$

which, when combined with (1), gives

$$\begin{aligned} |a_n^{1/3} - A^{1/3}| &= \frac{|a_n - A|}{(a_n)^{2/3} + (a_n)^{1/3} A^{1/3} + A^{2/3}} \\ &< \frac{|a_n - A|}{\left(\frac{A}{2}\right)^{2/3} + \left(\frac{A}{2}\right)^{1/3} A^{1/3} + A^{2/3}} \\ &< \frac{\left(\frac{A}{2}\right)^{2/3} + \left(\frac{A}{2}\right)^{1/3} A^{1/3} + A^{2/3}}{\left(\frac{A}{2}\right)^{2/3} + \left(\frac{A}{2}\right)^{1/3} A^{1/3} + A^{2/3}} \varepsilon \\ &= \varepsilon \end{aligned}$$

which shows the convergence as desired.

When A=0, we simply pick N such that for all n>N, $|a_n|<\varepsilon^3$. But then $|a_n^{1/3}|=|a_n|^{1/3}<\varepsilon$. Thus, $a_n^{1/3} \to A^{1/3}$ as $n \to \infty$.

(a). Prove: For any real M, m and b obeying M > m, there is some real R for which

$$Mx > mx + b \qquad \forall x > R$$

(That is easy, but it sets the conceptual stage for the next part.)

(b). Suppose $(y_n)_{n\in\mathbb{N}}$ is a real sequence with the property that (y_n/n) converges to some number M. Prove that for every real $m\in(-\infty,M)$ and $b\in\mathbb{R}$, there exists $N\in\mathbb{N}$ such that

$$y_n > mn + b$$
 $\forall n > N$

(c). True or False (with proof or counterexample):

If
$$\frac{y_n}{n} \to M$$
 as $n \to \infty$, then $|y_n - Mn| \to 0$.

- (a). Solution. We give $R = \frac{b}{M-m}$. Let x > R. Then $(M-m)x > b \implies Mx > mx + b$ as desired.
- (b). Solution. We have that for all $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that for all $n > N_1$, $|y_n/n M| < M m$. From part (a), we can choose a natural $N_2 > \frac{b}{M-m}$ where $m \in (-\infty, M)$ such that for all $n > N_2$, we have that for all $b \in \mathbb{R}$, Mn > mn + b.

Now let $N = \max\{N_1, N_2\}$, then we have that for n > N, $|y_n/n| < M - m$, so

$$\frac{y_n}{n} > 2M - m > M + \frac{b}{n} > m + \frac{b}{n}$$

but multiplying by n gives us

$$y_n > mn + b$$

for all n > N, as desired.

(c). Solution. False, we provide a counterexample. Let $y_n = 1$. Then $y_n/n = 1/n \to 0$, however $|y_n - 0n| = 1$, which obviously does not go to 0.

Let α and β be positive real numbers. Prove that $\lim_{n\to\infty} (\alpha^n + \beta^n)^{1/n} = \max\{\alpha, \beta\}$.

Solution. Let $\beta < \alpha$ (WLOG) be positive real numbers. Then, $\alpha = \max\{\alpha, \beta\}$. It is true that $\alpha^n < \alpha^n + \beta^n < 2\alpha^n$, so $\alpha < (\alpha^n + \beta^n)^{1/n} < 2^{1/n}\alpha$. Clearly, $\alpha \to \alpha$ as $n \to \infty$ since there is no dependence on n. By theorem 3.3(c) of Rudin, we have $\lim_{n\to\infty} 2^{1/n}\alpha = (\lim_{n\to\infty} 2^{1/n})(\lim_{n\to\infty} \alpha)$. The left limit goes to 1 by theorem 3.20(b) of Rudin, and the right limit is again just α . Thus $\lim_{n\to\infty} = \alpha$. Thus, by squeeze theorem, we have that $\lim_{n\to\infty} (\alpha^n + \beta^n)^{1/n} = \alpha$, which is the max, so we are done.

(a). Let (x_n) be a sequence of positive real numbers obeying

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < 1$$

Show that there exist $r \in (0,1)$ and C > 0 for which $0 < x_n < Cr^n$ holds for all n sufficiently large. Use this to prove that $\lim_{n \to \infty} x_n = 0$.

(b). Prove that if $x_n \to 0$, then the sequence $y_n = 1/x_n$ cannot converge.

(c). Use (a) and (b) to test for converge:
$$\left(\frac{10^n}{n!}\right)$$
, $\left(\frac{2^n}{n}\right)$, and $\left(\frac{2^{3n}}{3^{2n}}\right)$.

[Detailed $\varepsilon - N$ arguments are expected in (a)-(b), but not in (c).]

(a). Solution. :(

(b). Solution. We are going to assume that $x_n \neq 0$ for all n so that y_n is always well-defined, but we will make some comments about this at the end.

For all $\varepsilon \in \mathbb{N}$, by the convergence of x_n to 0, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$, we have $|x_n| < \varepsilon$. Then we choose N such that for all n > N, $|x_n| < \frac{1}{k}$ where $0 < k \in \mathbb{R}$. But then taking the reciprocal, we have

$$\frac{1}{|x_n|} = |y_n| > k$$

This is true for all for any n > N, thus y_n does not converge to k. Furthermore, since k was arbitrary, y_n does not converge to any value.

If we consider when $x_n = 0$ finitely many times, we can apply a similar proof for the elements that are not 0 (if N is the greatest n such that $x_N = 0$, then we restrict our focus to n > N). However, if we will always have a next n such that $x_n = 0$ (there are infinitely many zeros), then our sequence will always have problems with well-definedness, and so we cannot make a well-formed statement about it.

(c). Solution. :(

Let (x_n) and (y_n) be real sequences. Prove: If (x_ny_n) converges, and $y_n \to +\infty$ as $n \to \infty$, then $x_n \to 0$ as $n \to \infty$.

[For " $y_n \to +\infty$," see Rudin, Definition 3.15, p. 55; note also the following paragraph.]

Solution. By the hypothesis of the question, we require that for all $\varepsilon>0$, there exists some $N_1\in\mathbb{N}$ such that for all $n_1\geq N_1,\ |y_{n_1}x_{n_1}-L|<\varepsilon$. Now, since $y_n\to+\infty$, we have that for all $M\in\mathbb{N}$, there exists some $N_2\in\mathbb{N}$ such that for all $n_2\geq N_2$, we have that $y_n\geq M$. Now let $N=\max\{N_1,N_2\}$, then for all $n\geq N$, we have both of our conditions from above, thus $|Mx_n|\leq |y_nx_n-L|<\varepsilon$. Rearranging, this means we must have $|M||x_n|<\varepsilon$ In order to preserve this inequality, we must have that $|x_n|<\frac{\varepsilon}{|M|}$. But since ε and M were both arbitrary, and $\frac{\varepsilon}{|M|}>0$ since the numerator and denominator are positive, this means $\varepsilon'=\frac{\varepsilon}{|M|}>0$ is arbitrary as well. And so for all $n>N,\ |x_n-0|<\varepsilon'$, so $x_n\to 0$ as $n\to\infty$.

Given a real-valued sequence a_1, a_2, \ldots , consider the corresponding sequence of averages.

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n}, \quad n = 1, 2, 3, \dots$$

- (a). Prove: If $a_n \to a$ as $n \to \infty$ (with $a \in \mathbb{R}$), then also $s_n \to a$ as $n \to \infty$.
- (b). Proof or Counterexample: If $s_n \to a$ as $n \to \infty$ (with $a \in \mathbb{R}$), then also $a_n \to a$ as $n \to \infty$.
- (c). Repeat parts (a)-(b), after changing "(with $a \in \mathbb{R}$)" to "(with $a = +\infty$)" in both parts.
- (a). Solution. Let $\varepsilon > 0$ be arbitrary. Let N_1 be the integer such that for all $n_1 \geq N$, we have that $|a_n a| < \frac{\varepsilon}{3}$. Now choose $N = \max\{N_1, \left\lceil \frac{3A}{\varepsilon} \right\rceil\}$ where $A = |a_1 + \cdots + a_{N_1} aN_1|$. If we let $n \geq N$, we have that

$$|s_n - a| = \left| \frac{a_1 + \dots + a_n - an}{n} \right| \tag{2}$$

$$= \left| \frac{a_1 - a + a_2 - a + \dots + a_n - a}{n} \right| \tag{3}$$

$$\leq \left| \frac{a_1 + \dots + a_{N_1} - aN_1}{n} \right| + \left| \frac{a_{N_1+1} - a + \dots + a_n - a}{n} \right|$$
 (4)

$$\leq \frac{A}{n} + \frac{|a_{N_1+1} - a| + \dots + |a_n - a|}{n} \tag{5}$$

$$\leq \frac{A}{n} + \frac{(n - N_1)\frac{\varepsilon}{3}}{n} \tag{6}$$

(7)

Note that $\frac{A}{n} \leq A/\left\lceil \frac{3A}{\varepsilon} \right\rceil \leq A/(3A/\varepsilon) = \frac{\varepsilon}{3}$. Also see that $\frac{(n-N_1)\frac{\varepsilon}{3}}{n} \leq \frac{\varepsilon}{3}$ (since $0 \leq \frac{n-N_1}{n} < 1$ because $n \geq N_1$ (always nonnegative) and $0 \leq n-N_1 < n$). Thus

$$|s_n - a| \le \frac{2\varepsilon}{3} < \varepsilon$$

as desired.

- (b). Solution. This is not true, we provide the counterexample: $a_n = (-1)^n$. Note that $s_n \to 0$ as $n \to \infty$, since if n is even, $s_n = 0$, and if n is odd, $s_n = \frac{-1}{n}$. Both of these converge to 0 as $n \to \infty$, and they encompass all the s_n , so $s_n \to \infty$ as $n \to \infty$. Now note a_n does not go to a as $n \to \infty$, since we can provide $\varepsilon = \frac{1}{2}$, and regardless of a, there are always terms two terms, say a_n, a_{n+1} , which are at least a distance of 1 apart.
- (c). Solution. Proof of (a):

We provide a counterexample for (b):

$$a_n = \begin{cases} n/2, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

Note that $s_n \to +\infty$ as $n \to \infty$, since $s_n = \frac{1+2+\cdots+n}{2n} = \frac{n+1}{4}$, which obviously goes to $+\infty$ as $n \to \infty$ (we can always find N given M, namely N = 3M). However, a_n does not go to $+\infty$ as $n \to \infty$, since it is not true for all M that we can find N such that for all n > N, $a_n > M$: take M = 1. We will always have $a_n = 0$ when n is odd, so $a_n < M$.