Structures

I. Loi de composition interne

Définition. Soit E un ensemble, on appelle loi de composition interne sur E une application \star de $E \times E$ dans E. L'image du couple (x, y) est notée $x \star y$ au lieu de $\star (x, y)$.

Exemple.

- L'union et l'intersection sont des lois de composition internes sur l'ensemble $\mathcal{P}(E)$.
- Les opérations usuelles +, et \times sont des lois de composition interne sur \mathbb{R} .
- La composition d'applications est une loi de composition interne sur l'ensemble $\mathcal{F}(E,E)$.

Définition. Soit \star une loi de composition interne sur un ensemble E.

On dit que la loi \star est associative si $\forall (x, y, z) \in E^3$, $(x \star y) \star z = x \star (y \star z)$

On dit que la loi \star est commutative si $\forall (x,y) \in E^2$, $x \star y = y \star x$

On dit que la loi \star admet $e \in E$ comme élément neutre si $\forall x \in E, x \star e = e \star x = x$

Exemple. L'union et l'intersection sont associatives et commutatives. Elles admettent un élément neutre qui est \emptyset pour l'union et E pour l'intersection.

La composition de deux applications de E dans E est associative, mais pas commutative. Elle admet Id_E comme élément neutre.

Proposition. $Si \star est$ une loi de composition interne sur E admettant un élément neutre, alors celui-ci est unique.

Définition. Soit \star une loi de composition interne sur un ensemble E admettant e comme élément neutre.

On dit qu'un élément $x \in E$ admet un inverse pour la loi \star s'il existe un élément $y \in E$ tel que $x \star y = y \star x = e$.

Exemple. Seul \emptyset est inversible pour la loi \cup sur $\mathcal{P}(E)$. De même, seul E est inversible pour la loi \cap . Dans l'ensemble $\mathcal{F}(E,E)$ muni de la composition, les éléments inversibles sont exactement les fonctions bijectives.

Proposition. (*)

Soit \star une loi de composition interne associative sur un ensemble E admettant un élément neutre. Soit $x \in E$. Si x admet un inverse pour la loi \star , alors cet inverse est unique. On le note x^{-1} .

Remarque: L'hypothèse d'associativité est primordiale.

Proposition. (*) Soit * une loi de composition interne associative sur un ensemble E admettant un élément neutre. Si x et y sont deux éléments de E inversibles, alors $x \star y$ est également inversible et $(x \star y)^{-1} = y^{-1} \star x^{-1}$.

Remarque: L'hypothèse d'associativité est primordiale.

II. Groupes

1. Définitions et premiers exemples

Définition. Soit G un ensemble et \star une loi de composition interne sur G.

On dit que (G,\star) est un groupe (ou que l'ensemble G est un groupe pour la loi \star) si :

- $la\ loi \star est\ associative$;
- la loi ★ admet un élément neutre ;
- tout élément de G admet un inverse pour la loi ⋆.

De plus, on dit que le groupe (G, \star) est commutatif ou abélien si la loi \star est commutative.

Exemple. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, (\mathbb{Q}^*, \times) , $(\mathbb{R}, +)$, (\mathbb{R}^*, \times) , (\mathbb{U}, \times) , (\mathbb{U}_n, \times) sont des groupes commutatifs.

Le groupe $(Bij(E), \circ)$ n'est pas commutatif dès que E contient trois éléments.

Proposition. Dans un groupe, tout élément est simplifiable.

Plus précisément si (G,\star) est un groupe, alors pour tout $(x,y,z) \in E^3$, on a :

$$x \star y = x \star z \Rightarrow y = z$$
 et $y \star x = z \star x \Rightarrow y = z$

Définition. Soit (G, \star) un groupe et H une partie de G.

On dit que H est un sous-groupe de G si

- la partie H est stable pour la loi \star i.e. $\forall (x,y) \in H^2$, $x \star y \in H$.
- H est un groupe pour la loi induite par \star .

Proposition. (*) Soit (G, \star) un groupe.

Un ensemble H est un sous-groupe de G si, et seulement si, :

- H est une partie de G i.e. $H \subset G$;
- $-e_G \in H$;
- H est stable par \star i.e. $\forall (h, h') \in H^2$, $h \star h' \in H$;
- H est stable par passage à l'inverse i.e. $\forall h \in H, h^{-1} \in H$.

Remarque. La condition $e_G \in H$ peut être remplacée par $H \neq \emptyset$.

Remarque. En pratique, on montre qu'un ensemble est un groupe en prouvant qu'il s'agit d'un sous-groupe d'un groupe classique.

Remarque : Si H est un sous-groupe de G, alors ils ont le même élément neutre i.e. $e_H = e_G$ et pour tout $x \in H$, l'inverse de x dans H est égal à l'inverse de x dans G.

Proposition. (*) Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On définit sur l'ensemble $G_1 \times G_2$ la loi produit \star par :

$$\forall (x_1, y_1, x_2, y_2) \in G_1^2 \times G_2^2, \quad (x_1, x_2) \star (y_1, y_2) = (x_1 \star_1 y_1, x_2 \star_2 y_2)$$

Muni de cette loi, l'ensemble $G_1 \times G_2$ est un groupe. On l'appelle groupe produit.

Exemple. Muni de l'addition usuelle \mathbb{R}^n a une structure de groupe.

Proposition. (*) Soit (G, \star) un groupe et D un ensemble quelconque. À tout $(f,g) \in G^D \times G^D$, on associe $f \circledast g : D \to G$, $x \mapsto f(x) \star g(x)$ Muni de la loi \circledast , G^D est un groupe.

Proposition. (*) Soit (G, \star) un groupe et $(H_i)_{i \in I}$ une famille quelconque de sous-groupes de G, alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

Remarque: En particulier, l'intersection de deux sous-groupes est un sous-groupe.

Proposition. (*) L'union de deux sous-groupes n'est un sous-groupe que si l'un des sous groupes est inclus dans l'autre.

Corollaire. (*) Pour toute partie A de G, il existe un plus petit sous-groupe au sens de l'inclusion contenant A. Il est appelé sous-groupe engendré par A.

Proposition. (*) Le sous-groupe de G engendré par un élément $g \in G$ se note $\langle g \rangle$ et on a

$$\langle g \rangle = \{g^n, n \in \mathbb{Z}\}$$

$$où \ g^0 = e_G \ et \ pour \ tout \ n \in \mathbb{N}^*, \ on \ a \ g^n = \underbrace{g \star \ldots \star g}_{n \ fois} \ et \ g^{-n} = \underbrace{g^{-1} \star \ldots \star g^{-1}}_{n \ fois}$$

2. Morphismes de groupes

Définition. Soit (G_1, \star_1) et (G_2, \star_2) deux groupes et f une application de G_1 dans G_2 . On dit que f est un morphisme de groupes si

$$\forall (x,y) \in G_1^2, \quad f(x \star_1 y) = f(x) \star_2 f(y)$$

On dit que f est un isomorphisme de groupes si f est un morphisme de groupes et si f est bijective.

On dit que f est un automorphisme de (G_1, \star_1) si f est un isomorphisme de (G_1, \star_1) dans lui $m \hat{e} m e$.

Exemple. Les applications suivantes sont des morphismes de groupes :

$$-\exp: (\mathbb{R}, +) \to (\mathbb{R}^{*+}, \times), \ x \mapsto e^x, \qquad -(\mathbb{R}, +) \to (\mathbb{U}, \times), \ x \mapsto e^{ix}.$$
$$-\ln: (\mathbb{R}^{*+}, \times) \to (\mathbb{R}, +), \ x \mapsto \ln(x), \qquad -(\mathbb{C}, +) \to (\mathbb{C}^*, \times), \ x \mapsto e^x.$$

Proposition. (*) Soient (G_1, \star_1) et (G_2, \star_2) deux groupes et e_1 et e_2 leur éléments neutres. Si f un morphisme de (G_1, \star_1) dans (G_2, \star_2) , alors on a

$$f(e_1) = e_2$$
 et $\forall x \in G_1, f(x^{-1}) = f(x)^{-1}$

Proposition. (*) Soit (G_1, \star_1) , (G_2, \star_2) et (G_3, \star_3) trois groupes.

Si f et g sont des morphismes de groupes respectivement de G_1 dans G_2 et de G_2 dans G_3 , alors $g \circ f$ est un morphisme de groupes de G_1 dans G_3 .

Proposition. (*) Soit f un isomorphisme de (G_1, \star_1) dans (G_2, \star_2) alors son inverse f^{-1} est un isomorphisme de (G_2, \star_2) dans (G_1, \star_1)

Proposition. (*) L'ensemble Aut(G) des automorphismes d'un groupe G est un groupe pour la composition.

Proposition. (*) Soit f un morphisme de (G_1, \star_1) dans (G_2, \star_2) alors

- L'image par f de tout sous-groupe de (G_1, \star_1) est un sous-groupe de (G_2, \star_2) , c'est-à-dire que si H_1 est un sous-groupe de G_1 , alors $f(H_1) = \{f(x), x \in H_1\}$ est un sous-groupe de G_2 .
- L'image réciproque par f de tout sous-groupe de (G_2, \star_2) est un sous-groupe de (G_1, \star_1) , c'està-dire que si H_2 est un sous-groupe de G_2 , alors $f^{-1}(H_2) = \{x \in G_1 : f(x) \in H_2\}$ est un sous-groupe de G_1 .

Définition. Soit f un morphisme de (G_1, \star_1) dans (G_2, \star_2) . On appelle image de f l'ensemble

$$\operatorname{Im} f = \{ f(x), x \in G_1 \} = f(G_1)$$

et noyau de f l'ensemble $\operatorname{Ker} f = \{x \in G_1 : f(x) = e_{G_2}\} = f^{-1}(\{e_{G_2}\})$ D'après la proposition précédente, ce sont des groupes.

Proposition. (*) Soit f un morphisme de groupes de (G_1, \star_1) dans (G_2, \star_2) alors :

- f est surjective si et seulement si Im $f = G_2$
- f est injective si et seulement si Ker $f = \{e_{G_1}\}$

Remarque : La première propriété n'ait qu'une traduction de la définition.

III. Anneaux

1. Définitions et premiers exemples

Définition. On dit que $(A, +, \times)$ est un anneau $si + et \times sont$ deux lois de composition interne sur A telles que

- -(A, +) est un groupe commutatif
- $\times est \ associative$
- $\times est \ distributive \ par \ rapport \ \grave{a} + .$
- × admet un élément neutre.

On note 0_A l'élément neutre de la loi + et 1_A celui de la loi \times .

A est dit commutatif si la loi \times est commutative.

Exemples: $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{R}^{\mathbb{R}}, +, \times)$ sont des anneaux.

Proposition. Soit $(A, +, \times)$ un anneau et A^* l'ensemble des éléments de A admettant un inverse alors (A^*, \cdot) est un groupe appelé groupe unité.

Remarque : Le groupe unité de $(\mathbb{Z}, +, \cdot)$ est $\{-1, 1\}$, celui de $(\mathbb{R}, +, \cdot)$ est $\mathbb{R} \setminus \{0\}$ et celui de $(\mathbb{R}^{\mathbb{R}}, +, \times)$ est $\{f \in \mathbb{R}^{\mathbb{R}} : \forall x \in \mathbb{R}, f(x) \neq 0\}$.

Définition. Soit $(A, +, \times)$ un anneau et $B \subset A$. On dit que B est un sous-anneau de A si

- la partie B est stable pour les lois + $et \times$
- B est un anneau pour les lois induites.
- $-1_B = 1_A$.

Proposition. (*) Soit $(A, +, \times)$ un anneau. B est un sous-anneau de A si, et seulement si :

- $-B \subset A$
- $-1_A \in B$
- B est stable par + et \times i.e. $\forall (b,b') \in B^2$, $b+b' \in B$ et $b \times b' \in B$
- B est stable par passage à l'inverse pour la loi + i.e. $\forall b \in B, -b \in B$

Remarque. En pratique, on montre qu'un ensemble est un anneau en prouvant qu'il s'agit d'un sous-anneau d'un anneau classique.

Proposition. (*) Soit $(A_1, +_1, \times_1)$ et $(A_2, +_2, \times_2)$ deux anneaux. On définit sur l'ensemble $A_1 \times A_2$ les lois + et \times par :

$$\forall (x_1,y_1,x_2,y_2) \in A_1^2 \times A_2^2, \ (x_1,x_2) + (y_1,y_2) = (x_1 + y_1, x_2 + y_2) \ et \ (x_1,x_2) \times (y_1,y_2) = (x_1 \times y_1, x_2 \times y_2)$$

Muni de ces lois, l'ensemble $A_1 \times A_2$ est un anneau. On l'appelle anneau produit.

Proposition. (*) Soit (A, +, X) un anneau et D un ensemble quelconque. À tout $(f, g) \in A^D \times G^D$, on associe

$$f \oplus g : D \to G, x \mapsto f(x) + g(x) \text{ et } f \otimes g : D \to A, x \mapsto f(x) \times g(x)$$

Muni des lois \bigoplus et \bigotimes , A^D est un groupe.

Proposition. (*) Soit $(A, +, \star)$ un anneau et $((A_i, +, \star))_{i \in I}$ une famille de sous-anneaux de A alors $\bigcap_{i \in I} A_i$ est un sous-anneau de A.

Corollaire. (*) Soit $(A, +, \star)$ un anneau et B une partie de A. Il existe un plus petit sous-anneau au sens de l'inclusion contenant B. Il est appelé sous-anneau engendré par B.

2. Morphisme d'anneaux

Définition. Soit $(A_1, +_1, \star_1)$ et $(A_2, +_2, \star_2)$ deux anneaux et $f \in A_2^{A_1}$.

On dit que f est un morphisme d'anneaux si

- $\forall (x, y) \in A_1^2, \quad f(x +_1 y) = f(x) +_2 f(y)$ $\forall (x, y) \in A_1^2, \quad f(x \star_1 y) = f(x) \star_2 f(y)$
- $-f(1_{A_1})=1_{A_2}$

On dit que f est un isomorphisme d'anneaux si f est un morphisme d'anneaux et si f est bijective. On dit que f est un automorphisme d'un anneau A si f est un morphisme d'anneaux de A dans A.

Proposition. (*) Soit $(A_1, +_1, \star_1)$, $(A_2, +_2, \star_2)$ et $(A_3, +_3, \star_3)$ trois anneaux. Si f et g sont des morphismes d'anneaux respectivement de $(A_1, +_1, \star_1)$ dans $(A_2, +_2, \star_2)$ et $de(A_2, +_2, \star_2) \ dans(A_3, +_3, \star_3) \ alors \ g \circ f \ est \ un \ morphisme \ d'anneaux \ de(A_1, +_1, \star_1) \ dans$ $(A_3, +_3, \star_3)$.

Proposition. (*) Soit f un isomorphisme d'anneaux de $(A_1, +_1, \star_1)$ dans $(A_2, +_2, \star_2)$ alors f^{-1} est un isomorphisme d'anneaux de $(A_2, +_2, \star_2)$ dans $(A_1, +_1, \star_1)$

Corollaire. (*) Soit $(A, +, \star)$ un anneau alors l'ensemble des automorphismes d'anneaux de A est un groupe pour le loi o.

Proposition. (*) Soit f un morphisme d'anneaux de $(A_1, +_1, \star_1)$ dans $(A_2, +_2, \star_2)$. Alors:

- l'image par f de tout sous-anneau de $(A_1, +_1, \star_1)$ est un sous-anneau de $(A_2, +_2, \star_2)$;
- l'image réciproque par f de tout sous-anneau de $(A_2, +_2, \star_2)$ est un sous-anneau de $(A_1, +_1, \star_1)$.

3. Calculs dans un anneau

Proposition. Soit $(A, +, \star)$ un anneau, alors

- $\forall x \in A \quad x \star 0_A = 0_A \star x = 0_A$
- $-\forall (x,y) \in A^2, \quad -(x \star y) = (-x) \star y = x \star (-y)$

Définition. Soit $(A, +, \star)$ un anneau, on définit la suite $(n \, a)_{n \in \mathbb{N}}$ par

- $-0a = 0_A$
- $\forall n \in \mathbb{N}, \quad (n+1) a = n a + a$

et la suite $(a^n)_{n\in\mathbb{N}}$ par

- $-a^0 = 1_A$
- $\forall n \in \mathbb{N}, \quad a^{n+1} = a^n \cdot a$

Pour tout entier n, on note (-n) a = -(n a) et, si a est inversible, $a^{-n} = (a^n)^{-1} = (a^{-1})^n$.

Proposition. (Binôme de Newton) (*)

Soit $(A, +, \times)$ un anneau et $(a, b) \in A^2$ tels que $a \times b = b \times a$ alors pour tout entier n,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \times b^{n-k}$$

Proposition. (Égalité de Bernoulli) (*)

Soit $(A, +, \times)$ un anneau et $(a, b) \in A^2$ tels que $a \times b = b \times a$ alors pour tout entier n,

$$a^{n} - b^{n} = (a - b) \times \left(\sum_{k=0}^{n-1} a^{k} \times b^{n-1-k}\right)$$

4. Corps

Définition. On dit que $(K,+,\times)$ est un corps si $(K,+,\times)$ est un anneau commutatif tel que tout élément de K distinct de 0_A admet un inverse pour la loi \times .

Proposition. $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ et $(\mathbb{C}, +, \times)$ sont des corps.

Définition. Soit $(K, +, \times)$ un corps. On dit que K' est un sous-corps de $(K, +, \times)$ si K' est un sous-anneau de K et si K' est un corps pour les lois induites.

Proposition. Soit $(K, +, \times)$ un corps et $K' \subset K$ alors K' est un sous-corps de $(K, +, \times)$ si, et $seulement\ si,$

- K' est un sous-anneau de $(K,+,\cdot)$ $\forall x \in K' \setminus \{0\}, x^{-1} \in K'$