Serial port control servo

Serial port control servo

- 1.learning target
- 2.Preparation before class
- 3. Run the program
- 4.Experimental phenomena

1.learning target

In this course, we mainly learn to use the Raspberry Pi 5 and the 16-channel servo drive module to realize serial port control of the servo.

2.Preparation before class

• In this example, the 16-channel servo drive module uses serial communication. Connect the TXD and RXD of the module to the IO15 and IO14 pins of the Raspberry Pi 5 board respectively. VCC and GND are connected to the 3.3V and GND of the Raspberry Pi respectively.

引脚定义

Raspberry Pi GPIO Header + PoE Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, FC)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(PC ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40
01	TR01	00	TR:00	02
03	TR03	00	TR02	04

The Raspberry Pi needs to assign the ttyAMA0 port to the GPIO serial ports TXD0 and RXD0. The specific method is as follows.

Enter sudo raspi-config to enter the Raspberry Pi system configuration interface and select the third Interfacing Options:

Enter the I5 Serial Port option

```
Raspberry Pi Software Configuration Tool (raspi-config)

I1 SSH Enable/disable remote command line access using SSH
I2 VNC Enable/disable graphical remote desktop access
I3 SPI Enable/disable automatic loading of SPI kernel module
I4 I2C Enable/disable automatic loading of I2C kernel module
I5 Sertal Port Enable/disable shell massages on the sertal connection
I6 1-Wire Enable/disable one-wire interface
I7 Remote GPIO Enable/disable remote access to GPIO pins

<Select> <Back>
```

Select to turn off the serial port login function and turn on the hardware serial port debugging function.

After completion, the following interface will appear, press OK

Exit the raspi-config settings and restart the Raspberry Pi according to the prompts.

3. Run the program

Please refer to the source code file for the program of this course. (16CServo-uart.py)

Configure serial port

```
ser = serial.Serial("/dev/ttyAMA0", 9600)
```

The serial port controls the servo function. According to the protocol, 36 and 35 are the header and tail of the data packet respectively.

```
def UARTServo(servonum, angle):
    servonum = 64 + servonum
    datel = int(angle/100 + 48)
    date2 = int((angle%100)/10 + 48)
    date3 = int(angle%10 + 48)
    cmd=bytearray([36,servonum,datel,date2,date3,35])
    ser.write(cmd)
    time.sleep(0.05)
```

Set servo S1 to 0 degrees

```
UARTServo(1,0)
```

Enter python 16CServo-uart.py in the Raspberry Pi 5 terminal to run the program.

4.Experimental phenomena

After the program is run, the servo S1 first turns to 0 degrees, and then turns to 180 degrees after 2 seconds.