

Variabel dan Tipe Data

Tim Olimpiade Komputer Indonesia

Pendahuluan

Melalui dokumen ini, kalian akan:

- Mengenal konsep variabel.
- Mempelajari berbagai tipe data.
- Mempelajari cara deklarasi variabel.
- Mengenal operasi assignment.

Kilas Balik

Mari kita lihat kembali program halo.cpp.

```
#include <cstdio>
int main() {
   printf("halo dunia\n");
}
```

- Pada program tersebut, terdapat kata kunci "int main() {" dan "}".
- Kedua kata kunci tersebut blok program utama.
- Ketika halo.cpp dieksekusi, seluruh perintah di blok program utama akan dieksekusi secara berurutan.

Baris Perintah Program

- Pada halo.cpp, satu-satunya perintah yang ada adalah printf("halo dunia\n");
- Pada C++, printf(x) merupakan fungsi untuk mencetak x ke layar.
- Dalam program ini, x ='halo dunia \n' .
- '\n' merupakan karakter "baris baru" atau "enter".

Konsep Variabel

Bagian 1

Perkenalan Variabel

Variabel

Merupakan istilah yang diadopsi dari dunia matematika, yang memetakan sebuah nama ke suatu nilai.

Perkenalan Variabel (lanj.)

- Setiap kali suatu variabel digunakan dalam ekspresi matematika, yang diacu sebenarnya adalah nilai yang dipetakan oleh nama variabel tersebut.
- Contoh: jika kita menyatakan x = 5, maka hasil dari $3x^2 + x$ adalah 80.
- Dalam pemrograman, kita bisa membuat variabel, mengisikan nilai pada variabel, dan mengacu nilai yang dipetakan variabel tersebut.

Aturan Penamaan Variabel

- Variabel bebas diberi nama apapun, tetapi terbatas pada beberapa aturan berikut:
 - Terdiri dari kombinasi karakter huruf, angka, dan underscore
 (_).
 - Tidak boleh dimulai dengan angka.
 - Huruf kapital dan huruf kecil dianggap berbeda. Artinya "a1" dan "A1" dianggap merupakan dua variabel yang berbeda.
 - Tidak boleh merupakan reserved word. Contoh reserved word pada C++: int, if, while, for, atau switch.
- Contoh penulisan variabel yang tepat: nilai, xKecil, y1, tambahan_string.
- Contoh penulisan variabel yang salah: 2kar, wow!?, while.

Aturan Penamaan Variabel (lanj.)

 Lebih jauh lagi, aturan ini berlaku pada seluruh penamaan identifier, yaitu nama variabel dan fungsi yang akan dipelajari selanjutnya.

Assignment

Assignment

Pengisian nilai yang diacu oleh variabel dengan suatu nilai disebut assignment.

- Operator untuk assignment adalah =
- Isikan ruas kiri dengan nama suatu variabel, dan ruas kanan dengan nilai yang ingin diisikan ke variabel tersebut.
- Tipe data dari variabel dan nilai yang diacu harus sesuai.

Contoh Program: assign.cpp

• Perhatikan contoh program assign.cpp berikut. Tuliskan, lalu jalankan program ini.

```
#include <cstdio>
int x;
int main() {
  x = 12;
 printf("Nilai = %d\n", x);
```


Penjelasan Program: assign.cpp

 Keluaran yang dihasilkan dari program itu adalah sebuah baris berisikan:

```
Nilai = 12
```

- Pada program tersebut, x merupakan suatu variabel.
- Variabel x didaftarkan terlebih dahulu dengan menuliskan int x di luar blok program utama.
- Pada blok program utama, x diisi dengan nilai 12, lalu perintah printf dieksekusi.

Sekilas Tentang printf

- Untuk pencetakan, digunakan perintah berikut: printf("Nilai = %d\n", x);
- Untuk mencetak nilai dari variabel, diperlukan simbol sementara yang akan digantikan dengan nilai variabel.
- Simbol sementara untuk variabel bertipe bilangan bulat seperti x adalah "%d".
- Variabel-variabel untuk menggantikan simbol sementara perlu dituliskan sesudah pola cetakan.

Contoh Program: assign2.cpp

 Berikut adalah contoh program yang melibatkan beberapa variabel.

```
#include <cstdio>
int x;
int y;
int main() {
  x = 12:
  y = 123456;
  printf("Nilai x = %d n", x);
  printf("Nilai y = %d\n", y);
  x = 15;
  printf("Sekarang nilai x = \frac{d}{n}, x);
```


Penjelasan Program: assign2.cpp

Keluaran yang dihasilkan dari program itu adalah:

```
Nilai x = 12
Nilai y = 123456
Sekarang nilai x = 15
```

 Apa maksud dari kata kunci int? Dijelaskan pada bagian selanjutnya.

Bagian 2

Tipe Data Variabel

- Setiap variabel pada C++ memiliki tipe data.
- Jenis tipe data dasar dari suatu variabel pada:
 - Bilangan bulat.
 - Bilangan riil (bilangan bulat dan pecahan).
 - Karakter (merepresentasikan karakter, seperti 'a', 'b', '3', atau '?').
 - Nilai kebenaran, yaitu benar (TRUE) atau salah (FALSE).

Tipe Data: Bilangan Bulat

Nama	Jangkauan	Ukuran
short	$-2^{15}2^{15}-1$	2 byte
unsigned short	$02^{16} - 1$	2 byte
int	$-2^{31}2^{31}-1$	4 byte
unsigned int	$02^{32} - 1$	4 byte
long long	$-2^{63}2^{63}-1$	8 byte
unsigned long long	$02^{64} - 1$	8 byte

- C++ menawarkan beberapa tipe data bilangan bulat yang variasinya terletak pada jangkauan nilai yang bisa direpresentasikan dan ukurannya pada memori.
- Dalam memprogram, yang umum digunakan adalah int dan long long.

Tipe Data: Bilangan Riil

Nama	Jangkauan (magnitudo)	Akurasi	Ukuran
float	$1.5 \times 10^{-45}3.4 \times 10^{38}$	7-8 digit	4 byte
double	$5.0 \times 10^{-324}1.7 \times 10^{308}$	15-16 digit	8 byte

- Biasa disebut dengan floating point.
- Tipe data floating point bisa merepresentasikan negatif atau positif dari magnitudonya.
- Pada pemrograman, umumnya tipe data floating point dihindari karena kurang akurat. Representasi 3 pada floating point bisa jadi 2.9999999999999 atau 3.00000000000001 karena keterbatasan pada struktur penyimpanan bilangan pecahan pada komputer.
- Tipe yang umum digunakan adalah double.

Tipe Data: Karakter

- Merupakan tipe data untuk merepresentasikan karakter menurut ASCII (American Standart Code for Information Interchange).
- Dalam ASCII, terdapat 128 karakter yang direpresentasikan dengan angka dari 0 sampai 127.
- Misalnya, kode ASCII untuk karakter spasi (' ') adalah 32, huruf 'A' adalah 65, 'B' adalah 66, huruf 'a' adalah 97, dan huruf 'b' adalah 98.
- Pada C++, tipe data ini dinyatakan sebagai char, dengan ukuran 1 byte.

Tipe Data: Boolean

- Merupakan tipe data yang menyimpan nilai kebenaran, yaitu hanya TRUE atau FALSE.
- Tipe data ini akan lebih terasa kebermanfaatannya ketika kita sudah mempelajari struktur percabangan dan array.
- Pada C++, kalian dapat menggunakan tipe data boolean.

Deklarasi Variabel

- Deklarasi variabel adakah aktivitas mendaftarkan nama-nama dan tipe variabel yang akan digunakan.
- Pada saat dideklarasi, setiap variabel perlu disertakan tipe datanya.

Deklarasi Variabel (lanj.)

- Pada C++, variabel dapat dideklarasikan di luar atau di dalam blok program.
- Apabila variabel dideklarasikan di luar blok program, artinya variabel tersebut bersifat global.
- Tipe data dituliskan sebelum nama variabel, dipisahkan oleh spasi.
 - Contoh: "int nilai" atau "double rerata".
- Beberapa variabel juga bisa dideklarasikan secara bersamaan jika memiliki tipe data yang sama. Contoh: "double x, y".

Contoh Program: tipedasar.cpp

Pahami program berikut ini dan coba jalankan!

```
#include <cstdio>
int p1, p2;
double x, y;
int main() {
  p1 = 100;
  p2 = p1;
  printf("p1: %d, p2: %d\n", p1, p2);
  x = 3.1418;
  y = 234.432;
  printf("x %lf\n", x);
 printf("y %lf\n", y);
```


Penjelasan Program: tipedasar.cpp

Berikut adalah keluaran dari program tipedasar.cpp:

```
p1: 100, p2: 100
x 3.141800
y 234.432000
```

- Perhatikan bahwa perintah p2 = p1 sama artinya dengan p2 = 100, karena p1 sendiri mengacu pada nilai 100.
- Untuk mencetak variabel bertipe double, gunakan simbol "%lf" (seperti "long float").

Simbol Variabel pada printf

- Sejauh ini, kita mengenal bahwa "%d" digunakan untuk mencetak int, dan "%lf" untuk double.
- Berikut tabel variabel beserta simbolnya:

Variabel	Simbol	
short	%d	
unsigned short	%u	
int	%d	
unsigned int	%u	
long long	%11d atau %I64d	
unsigned long long	%llu atau %I64u	
float	%f	
double	%lf	
char	%с	

Simbol Variabel pada printf (lanj.)

- Untuk boolean, Anda dapat menggunakan %d yang akan mencetak 1 apabila TRUE atau 0 apabila FALSE.
- Khusus untuk long long, simbolnya bergantung pada sistem operasi yang digunakan.
- Untuk sistem operasi berbasis UNIX (Linux dan Mac), gunakan %11d dan %11u.
- Untuk sistem operasi Windows, gunakan %I64d dan %I64u.

Tipe Data Komposit: Struct

- Kadang-kadang, kita membutuhkan suatu tipe data yang sifatnya komposit; terdiri dari beberapa data lainnya.
- Contoh kasusnya adalah ketika kita butuh suatu representasi dari titik. Setiap titik pada bidang memiliki dua komponen, yaitu x dan y.

Tipe Data Komposit: Struct (lanj.)

- Memang bisa saja kita mendeklarasi dua variabel, yaitu x dan y. Namun bagaimana jika kita hendak membuat beberapa titik? Apakah kita harus membuat x1, y1, x2, y2, ...? Sungguh melelahkan!
- Karena itulah C++ menyajikan suatu tipe data komposit, yaitu struct.

Tipe Data Komposit: Struct (lanj.)

• Struct dapat dideklarasikan di luar blok program utama.

```
struct <nama_struct> {
    <tipe_1> <variabel_1>;
    <tipe_2> <variabel_2>;
    ...
};
```

- Setelah dideklarasikan, sebuah tipe data <nama_struct> sudah bisa digunakan.
- Untuk mengakses nilai dari <variabel 1> dari suatu variabel bertipe struct, gunakan tanda titik (.).

Tipe Data Komposit: Struct (lanj.)

 Sebagai contoh, perhatikan contoh program titik.cpp berikut: #include <cstdio>

```
struct titik {
 int x, y;
};
titik a, b;
int main() {
 a.x = 5;
  a.y = 3;
  b.x = 1:
  b.y = 2;
  printf("%d %d\n", a.x, a.y);
 printf("%d %d\n", b.x, b.y);
```


Konsumsi Memori Struct

- Memori yang dibutuhkan bagi sebuah tipe data struct bisa dianggap sama dengan jumlah memori variabel-variabel yang menyusunnya.
- Artinya, struct bernama titik pada contoh titik.cpp mengkonsumsi memori yang sama dengan dua buah longint, yaitu 8 byte.
- Perhitungan ini hanya perkiraan saja, sebab konsumsi memori yang sesungguhnya sulit dilakukan.

Ordinalitas

- Menurut keberurutannya, tipe data dapat dibedakan menjadi tipe data ordinal atau non-ordinal.
- Suatu tipe data memiliki sifat ordinal jika untuk suatu elemennya, kita bisa mengetahui secara pasti apa elemen sebelum atau selanjutnya. Contoh:
 - Diberikan bilangan bulat 6, kita tahu pasti sebelumnya adalah angka 5 dan sesudahnya adalah angka 7.
 - Diberikan karakter 'y', kita tahu pasti sebelumnya adalah karakter 'x' dan sesudahnya adalah karakter 'z'.
- Dengan demikian, seluruh tipe data bilangan bulat dan karakter adalah tipe data ordinal.

Ordinalitas (lanj.)

- Kebalikannya, suatu tipe data dinyatakan memiliki sifat non-ordinal jika kita tidak bisa menentukan elemen sebelum dan sesudahnya. Contohnya:
 - Diberikan bilangan riil 6, apakah elemen sesudahnya 7, atau 6.1, atau 6.01, atau 6.001, atau 6.000000000001?
- Bilangan floating point termasuk dalam tipe data non-ordinal.

Yang Sudah Kita Pelajari...

- Mengenal konsep variabel.
- Mempelajari berbagai tipe data.
- Mempelajari cara deklarasi variabel.
- Mengenal operasi assignment.

