

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Yasuhiro Tani, et al.

Attorney Docket No.: NMCIP027

Application No.: 10/006,977

Examiner: T.V. Eley

Filed: December 4, 2001

Group: 3724

Title: METHOD OF POLISHING USING A
POLISHING AGENT

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the
United States Postal Service as First Class Mail to: Commissioner for
Patents, Alexandria, Virginia 22313 on July 12, 2006.

Signed: Deborah Neill
Deborah Neill

TRANSMITTAL OF CERTIFIED COPIES OF PRIORITY DOCUMENTS

Commissioner for Patents
Alexandria, Virginia 22313

Sir:

Enclosed herewith are certified copies of priority documents Japan patent application No. 2000-120398 filed on April 21, 2000, and PCT patent application No. PCT/JP01/02364 filed on March 23, 2003. Please file these documents in the subject application.

Respectfully submitted,
BEYER WEAVER & THOMAS, LLP

Keiichi Nishimura
Registration No. 29,093

P.O. Box 70250
Oakland, CA 94612-0250
(510) 663-1100

BEST AVAILABLE COPY

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2000年 4月21日
Date of Application:

出願番号 特願2000-120398
Application Number:

国際条約による外国への出願
用いる優先権の主張の基礎
なる出願の国コードと出願
号
The country code and number
of your priority application,
to be used for filing abroad
under the Paris Convention, is

願人 谷 泰弘
Applicant(s): 日本ミクロコーティング株式会社

CERTIFIED COPY OF
PRIORITY DOCUMENT

2006年 6月19日

特許長官
Commissioner,
Japan Patent Office

中嶋

【書類名】 特許願
【整理番号】 P00806
【提出日】 平成12年 4月21日
【あて先】 特許庁長官 近藤 隆彦 殿
【国際特許分類】 B24B 37/00

【発明者】

【住所又は居所】 東京都世田谷区宮坂3丁目47番12号
【氏名】 谷 泰弘

【発明者】

【住所又は居所】 東京都港区六本木7丁目22番1号 東京大学生産技術
研究所内

【氏名】 盧 肖申

【特許出願人】

【識別番号】 000209278
【氏名又は名称】 谷 泰弘

【特許出願人】

【識別番号】 390037165
【氏名又は名称】 日本ミクロコーティング株式会社

【代理人】

【識別番号】 100069899

【弁理士】

【氏名又は名称】 竹内澄夫
【電話番号】 03-3503-5460

【代理人】

【識別番号】 100096725

【弁理士】

【氏名又は名称】 堀 明▲ひこ▼

【手数料の表示】**【予納台帳番号】** 053062**【納付金額】** 21,000円**【提出物件の目録】****【物件名】** 明細書 1**【物件名】** 図面 1**【物件名】** 要約書 1**【包括委任状番号】** 9401043**【プルーフの要否】** 要

【書類名】明細書

【発明の名称】研磨剤及び製造方法並びに研磨方法

【特許請求の範囲】

【請求項1】被研磨体の表面を研磨するための研磨剤であって、

母粒子とその表面に保持される超微細砥粒とから成る、研磨剤。

【請求項2】請求項1に記載の研磨剤であって、研磨中に前記母粒子に前記超微細砥粒が保持される、ところの研磨剤。

【請求項3】請求項1に記載の研磨剤であって、前記母粒子に対する前記超微細粒子の粒径の比は1/500から1/5である、ところの研磨剤。

【請求項4】請求項1に記載の研磨剤を製造するための方法であって、

前記超微細砥粒を分散した研磨液に前記母粒子を添加し、攪拌する工程から成るところの方法。

【請求項5】請求項1に記載の研磨剤を用いて研磨手段によって研磨する方法であって、

前記被研磨体と前記研磨手段との間に前記研磨剤を所定の量で供給する工程と

前記研磨手段を前記被研磨体に対して接觸しながら相対運動させる工程と、
から成る方法。

【請求項6】請求項5に記載の方法であって、

前記研磨手段として平滑かつ平面性が良好なテープを使用する、ところの方法

【請求項7】請求項6に記載の方法であって、

前記接觸しながら相対運動させる工程は、前記テープを所定の回転速度で回転させながら前記被研磨体を研磨する工程から成る、ところの方法。

【請求項8】請求項5に記載の方法であって、

前記研磨手段として定盤を使用する、ところの方法。

【請求項9】請求項8に記載の方法であって、

前記接觸しながら相対運動させる工程は、前記定盤を所定の回転速度で回転させながら前記被研磨体をラップ加工する工程から成る、

ところの方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本願発明は、母粒子と超微細砥粒から成る研磨剤及び研磨方法に関し、特に母粒子表面に超微細砥粒が保持される研磨剤研磨材及び研磨方法に関する。

【0002】

【従来技術】

近年、半導体基板や磁気ディスク基板のような先端電子機器部品やその基板の仕上げ工程では、種々の研磨布を使った遊離砥粒研磨が採用されている。この工程においては、鏡面を実現するために織布、不織布、発泡体などの弾性のある研磨布が工具として使用されている。30年程度前には織布が多用されていたが、織り目が粗さやうねりに対して悪影響を与えるために、次第に使用されなくなり、不織布がこれに変わって多用されるようになった。しかし、不織布でも密度にむらがあるために、それがやはり微小うねりに影響を与えることが指摘され、最近では発泡体の使用が増加している。

【0003】

しかも最近の精密研磨においては、形状精度の高い加工が要求されるようになり、より硬質の研磨布が好まれるようになってきているが、硬質の研磨布を使用すると、粗さが出にくい、スクラッチが発生しやすいなどの問題があり、硬質樹脂層と軟質樹脂層を重ね合わせた二層研磨布などが提案されている。

【0004】

【発明が解決しようとする課題】

しかし、これら従来の研磨剤及び研磨方法には以下のようなさまざまな問題がある。たとえば、従来の研磨技術では研磨時間とともに研磨布表面の凹凸が少くなり、また切り屑や研磨材が堆積して研磨能率を低下させる現象がある。このため、コンディショニングと称してダイヤモンド砥石で研磨布表面を削り直す作業が行われている。これは研磨布の寿命を短くし、またダイヤモンド砥石からの砥粒の脱落がスクラッチを生じさせるなど問題視されている。

【0005】

また研磨布は通常2～3mm程度の厚みを有しているため、弾性による変形が大きく時として研磨布自体が被研磨体に接触し摩擦抵抗を増加させ研磨機の所要動力を増加させている。

【0006】

しかもシリコンウェーハや液晶ガラスなど最近の一部の被研磨体の口径が大きくなっている、これに比例して研磨機も大きくなり、それに使用される研磨布もそれに追従して大きくなっている。こうした大きな研磨布を均一に研磨機定盤上に貼りつけるには非常に高い熟練が必要となっている。

【0007】

そこで、本発明の目的は研磨特性の長期安定を実現し、研磨に直接関係しない不要な摩擦抵抗を軽減し、さらに研磨布の張替えの必要のない研磨剤および研磨方法を与えることである。

【0008】**【課題を解決するための手段】**

上記目的を達成するために本願発明は以下の構成から成る。

【0009】

被研磨体の表面を研磨するための研磨剤は、母粒子とその表面に保持される超微細砥粒とから成る。超微細砥粒は研磨中に母粒子に保持される。また超微細砥粒は研磨中に母粒子の表面の一部から剥離しても再び母粒子の表面に付着することを特徴とする。

【0010】

具体的には、母粒子に対する超微細粒子の粒径の比は1/500から1/5である。

【0011】

一方、研磨剤を製造するための方法は、超微細砥粒を分散した研磨液に母粒子を添加し、攪拌する工程から成る。

【0012】

一方、研磨剤を用いて研磨手段によって研磨する方法は、被研磨体と研磨手段との間に前記研磨材を所定の量で供給する工程と、研磨手段を被研磨体に対して

接触しながら相対運動させる工程と、から成る。

【0013】

好適には、研磨手段として平滑かつ平面性が良好なテープを使用することができる。

【0014】

また、好適には、接触しながら相対運動させる工程は、テープを所定の回転速度で回転させながら前記被研磨体を研磨する工程から成る。

【0015】

さらに好適には、研磨手段として定盤を使用してもよい。

【0016】

また好適には、接触しながら相対運動させる工程は、定盤を所定の回転速度で回転させながら被研磨体をラップ加工する工程から成る。

【0017】

【発明の実施の態様】

以下、図面を参照しながら本願を説明する。図1は、本発明に係る研磨剤を用いて被研磨体を研磨する様子を示す断面図である。

【0018】

被研磨体1の表面を研磨するための研磨剤は、母粒子3と、該母粒子3の表面に保持される超微細砥粒4から成る。研磨中に研磨剤内の母粒子3に超微細砥粒4が保持される。研磨中に研磨剤内の超微細砥粒4が母粒子3の表面の一部から剥離しても、再び母粒子3の剥離した部分に当該超微細砥粒4が付着し補われることを特徴とする。

【0019】

母粒子に対する超微細砥粒の粒径の比は、1/500から1/5であり、好適には1/200から1/20である。

【0020】

図1に示した好適実施例において、母粒子3は真球状微粒子ポリマーである。該真球状微粒子ポリマーの平均粒径6に対する超微細粒子4の平均粒径8の比は1/500～1/5であり、好適には1/200～1/20である。該真球状微粒子ポリマーは弾性を

有するためラップ加工において被研磨体1の表面に傷痕を残すことはない。また、真球状微粒子ポリマーは200Å～1000Åの細孔を有する多孔質であってもよい。

【0021】

具体的には該真球状微粒子ポリマーは、少なくとも一種類のウレタン、ナイロン、ポリイミドまたはポリエステルから形成される。一方、超微細砥粒4は、少なくとも一種類のコロイダルシリカ、アルミナまたは酸化セリウムから形成される。

【0022】

スペーシング5は実質的に母粒子3の粒径6とほぼ等しい。研磨剤と研磨剤の間の空間7はチップポケットとして作用し、これによりスクラッチが防止される。本発明に係る研磨剤は磁気ディスク基板、半導体ウエハ、または液晶パネルなどを精密研磨するのに使用される。

【0023】

母粒子3として上記微粒子ポリマー以外のマイクロビーズを使用することもできる。マイクロビーズの平均粒径は0.1μm～100μmであり、好適には1μm～20μmである。また、マイクロビーズは200Å～1000Åの細孔を有してもよい。具体的にはマイクロビーズは少なくとも一種類のカーボンマイクロビーズ、ガラスビーズ、アクリルビーズ、メソカーボンビーズから形成される。いずれも大阪ガス(株)、シミコン・コンポジット社等から市販され、入手可能なものである。

【0024】

本願発明に従う母粒子の他の実施例が図2に示されている。

【0025】

図2(a)～(c)は、好適実施例の母粒子である真球状ポリマーを表面改質したものである。(a)の母粒子は表面にシリカなどの微粒子21を保持する構造を有する。(b)の母粒子は表面に単分子層22を保持する構造を有する。(c)の母粒子は表面に微小な凹部23を設けた構造を有する。

【0026】

図2(d)は外殻24及び芯コア若しくは中空部25からなる母粒子を示したもので

ある。具体的には、外殻24はポリマー若しくは金属から成る。一方、芯コア25は金属等の固体若しくはポリマーから成り、中空部25には気体若しくは液体が充填されていてもよい。

【0027】

図2(e)は複合粒子から成る母粒子を示したものである。該母粒子は中空ポリマー26の内部にひとつ若しくはそれ以上のマイクロカプセル27を包含する構造を有する。

【0028】

さらに、本発明に従う母粒子の形態が図3に示されている。

【0029】

本発明に従う母粒子の形態は、球体(a)のような二軸回転体、(b)～(d)のような一軸回転体、または(e)のような球体の複合体であってもよい。

【0030】

次に、上記研磨剤を製造する方法について説明する。

【0031】

本発明に係る研磨剤は、超微細砥粒に母粒子を添加し、攪拌することによって製造することができる。

【0032】

最後に、本発明の研磨剤を使用して被研磨体1を研磨する方法を説明する。

【0033】

本願発明に係る研磨剤の研磨剤を用いて研磨する方法は、被研磨体と研磨手段との間に該研磨剤を所定の量で供給し、研磨手段を被研磨体に対して接触させながら相対運動させることから成る。ここで、超微細砥粒は静電気力、ファンデルワールス力または機械的な力によって母粒子表面に保持されるものと考えられる。研磨手段として好適には、テープまたは定盤が使用される。

【0034】

テープは平滑かつ平面性の良好なものが好適である。例えば、PET製テープなどがある。

【0035】

定盤は銅(Cu)若しくは錫(Sn)などの金属、セラミックまたはプラスチックから製造される平面性の良好なものが好適である。該定盤の形状は平面に限定されず、曲面、球面または凹凸面などでもよい。このような定盤を使用することによつて、従来のウレタン系のポリッシングパッド若しくはテープが不要となり、平面度や微小なうねりなどが改善される。

【0036】

具体的に、上記研磨剤の定盤2上への供給における一定量とは1cc/min～100cc/minであり、好適には20cc/min～50cc/minである。また、該定盤2を所定の回転速度で回転させながら、被研磨体1をラップ加工する場合において、所定の回転速度とは10rpm～10000rpmであり、好適には100rpm～1000rpmである。

【0037】

【実施例】

以下、本発明に従う好適実施例について説明する。尚、好適実施例においてマイクロビーズとして微粒子ポリマーを選択した。

【0038】

(1)超微細砥粒

本発明に従う超微細砥粒として、日産化学株式会社製のコロイダルシリカ（スノーテックス30）を試用した。表1はスノーテックス30の仕様を示したものである。

【0039】

【表1】

日産化学(株)製 スノーテックス30 (pH 10.5)	
無水珪酸(SiO ₂)含有量 wt%	30～31
酸化ナトリウム(NaO ₂)含有量 wt%	0.6以下
水素イオン濃度 (pH)	9.0～10.5
粒子径 nm	10～20
粘度 (25°C) mP	6以下
比重 (20°C)	1.20～1.22

(2)母粒子

本発明に従う母粒子（微粒子ポリマー）として、日本触媒株式会社製の二種類のベンゾクアナミン樹脂（エポスターL15及びエポスターMS）を試用した。表2

及び表3はそれぞれの仕様を示したものである。

【0040】

【表2】

**日本触媒(株)製 エポスターL15/エポスターMS
エポスターL15(ベンゾクアナミン樹脂)**

化学名	ベンゾクアナミン-ホルムアルデヒド樹脂	シリカ	ノニオン系界面活性剤
成分・含有量	84%	5%	1%
化学式	(C ₉ H ₉ N ₃ ·CH ₂ O) _x	SiO ₂	企業秘密
官報公示整理番号	(7)-555	(1)-548	7-559
粒径 真球形状	平均粒径 10~20μm 最大 30μm	最小 8μm	

【0041】

【表3】

エポスターMS(ベンゾクアナミン樹脂)

化学名	ベンゾクアナミン-ホルムアルデヒド樹脂	シリカ	ノニオン系界面活性剤
成分・含有量	89.6%	10%	1%
化学式	(C ₉ H ₉ N ₃ ·CH ₂ O) _x	SiO ₂	企業秘密
官報公示整理番号	(7)-555	(1)-548	
粒径 真球形状	平均粒径 1~3μm 最大 10μm	最小 0.5μm	

図4(a)はエポスターL15原粉のSEM写真であり、(b)はその拡大写真である。微粒子ポリマーの表面にわずかに残留シリカが確認できる。

【0042】

(3)研磨剤の製造

上記コロイダルシリカ内に攪拌しながら上記微粒子ポリマーを添加した。表4は本発明に従う研磨剤の組成を示したものである。

【0043】

【表4】

微粒子ポリマー	0.5~5%重量比
コロイダルシリカ	5~10%重量比
純水	85~94.5%

図4(c)は乾燥後の研磨剤(エポスターL15+コロイダルシリカ)のSEM写真であり、(d)はその拡大写真である。エポスターL15の表面にはほぼ均等にコロイダルシリカが付着しているのがわかる。

【0044】

(4)平面ポリッキング

本発明に従う平面ポリッキングは以下の条件で行われた。

【0045】

被研磨体： 4インチシリコンウエハ

加工機： 岡本機械製 平面ポリッシュ盤

加工面圧： 300gf/cm²

定盤径： 260mm φ

定盤回転数： 64rpm

研磨剤供給量： 25cc/min

加工時間： 20min

(5)結果

図4(e)は研磨後の微粒子ポリマースラリーのSEM写真であり、図4(f)はその拡大写真である。研磨によって微粒子ポリマーの表面の一部からコロイダルシリカが剥離しているのがわかる。

【0046】

本発明に従う平面ポリッキングによると面粗さRa=2.0~2.5nmが達成できた。これは通常のIC1000ポリッキングパッド/コロイダルシリカによる加工結果に匹敵する。したがって、従来と比較した場合本発明は加工能率が20~50%向上しているのがわかった。また、従来と比較した場合、加工時の定盤トルク(微粒子ポリマースラリーを介在させたときの定盤に対する被研磨体の移動抵抗)が20~30%減少していた。したがって、駆動系をさらに小さくし装置の小型化を図ることも可能である。

【0047】

【効果】

本発明に係る研磨剤及び研磨方法によれば、ポリシングパッド等を使用せずに、研磨に寄与しない材料を一切使用することなく、無駄なく、繰り返し研磨することができる。

【0048】

また、定盤を使用する研磨においては、被研磨体の研磨面全体に均等に圧力が

かかるため一様に研磨することができる。

【0049】

さらに、本発明に係る研磨剤及び研磨方法によれば、加工能率を20～50%向上させることができ、スループットを改善することが可能である。

【0050】

さらにまた、本発明に係る研磨剤及び研磨方法によれば、装置を小型化することができ期待でき、省スペース化を実現することが可能である。

【図面の簡単な説明】

【図1】

図1は、本発明に係る研磨剤を用いて研磨する様子を示す断面図である。

【図2】

図2は、本発明に従う母粒子の他の実施例を示したものである。

【図3】

図3は、本発明に従う母粒子の形態を示したものである。

【図4】

図4は、本発明の好適実施例の電子顕微鏡写真である。

【符号の説明】

1	被研磨体
2	定盤
3	母粒子
4	超微細砥粒
5	スペーシング
6	母粒子粒径
7	空間
8	超微細砥粒粒径

【書類名】図面

【図1】

【図2】

【図3】

【図4】

(a)

(b)

(c)

(d)

(e)

(f)

【書類名】要約書

【要約】

【課題】研磨表面に傷をつけることなく研磨する研磨剤及び研磨方法を与える。

【解決手段】被研磨体の表面を研磨するための研磨剤は、母粒子とその表面に保持される超微細砥粒とから成る。超微細砥粒は研磨中に母粒子に保持される。また研磨中に超微細砥粒が母粒子の表面の一部から剥離しても再び母粒子の表面に付着することを特徴とする。

研磨剤を製造するための方法は、超微細砥粒に母粒子を添加し、攪拌する工程から成る。さらに研磨剤を用いて研磨する方法は、研磨剤を定盤上に一定量で供給する工程と、定盤を所定の回転速度で回転させながら被研磨体をラップ加工する工程とから成る。

【選択図】図 1

認定・付加情報

特許出願の番号	特願 2000-120398
受付番号	50000505335
書類名	特許願
担当官	鈴木 ふさゑ 1608
作成日	平成12年 4月28日

<認定情報・付加情報>

【特許出願人】

【識別番号】	000209278
【住所又は居所】	東京都世田谷区宮坂3丁目47番12号
【氏名又は名称】	谷 泰弘

【特許出願人】

【識別番号】	390037165
【住所又は居所】	東京都昭島市武蔵野3丁目4番1号
【氏名又は名称】	日本ミクロコーティング株式会社

【代理人】

【識別番号】	100069899
【住所又は居所】	東京都港区西新橋1-6-21 大和銀行虎ノ門 ビル6階 竹内澄夫法律特許事務所
【氏名又は名称】	竹内 澄夫

【代理人】

【識別番号】	100096725
【住所又は居所】	東京都港区西新橋1-6-21 大和銀行虎ノ門 ビル6階 竹内澄夫法律特許事務所
【氏名又は名称】	堀 明▲ひこ▼

次頁無

特願 2000-120398

出 願 人 履 歷 情 報

識別番号 [000209278]

1. 変更年月日 1990年 8月13日

[変更理由] 新規登録

住 所 東京都世田谷区宮坂3丁目47番12号

氏 名 谷 泰弘

特願 2000-120398

出願人履歴情報

識別番号 [390037165]

1. 変更年月日 1990年12月10日

[変更理由] 新規登録

住所 東京都昭島市武藏野3丁目4番1号
氏名 日本ミクロコーティング株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.