Markdown parsers performance measurements

overview

The benchmarking was done on a Markdown file of size 355 bytes.

parsers/Monad Transformers

OLS regression 125 μs 126 μs 128 μs R² goodness-of-fit 0.998 0.999 1.000 Mean execution time 126 μs 128 μs 131 μs Standard deviation 2.58 μs 6.95 μs 13.9 μs

parsers/Freer

parsers/Pandoc

OLS regression 1.18 ms 1.34 ms 1.59 ms R^2 goodness-of-fit 0.889 0.928 0.997 Mean execution time 1.18 ms 1.21 ms 1.30 ms Standard deviation 57.1 μ s 148 μ s 291 μ s

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This
 number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other
 constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.