Математика для Data Science. Теория вероятностей. Шпаргалка

Содержание

Первая неделя. Вероятностное пространство	2
Вероятностное пространство	2
Равновероятные исходы	2
Условная вероятность и независимые события	
Независимые события	
Совместная независимость	
Вторая неделя. Комбинаторика и случайные величины	4
Теорема Байеса	4
Правило суммы	4
Комбинаторика	
Биномиальные коэффициенты	4
Случайная величина и математическое ожидание	5
Третья неделя. Распределения, дисперсия и счётное пространство исходов	6
Распределения случайных величин	6
Независимые случайные величины	6
Дисперсия	6
Биномиальное распределение и стандартное отклонение	
Ряды	7
Абсолютно сходящиеся ряды	
Счётное пространство исходов	8
Четвёртая неделя. Непрерывный случай	8
Определённый интеграл	ç
Неопределённый интеграл	
Функция распределения	
Плотность вероятности	11
Математическое ожидание	11
Дисперсия	11
Пятая неделя. Статистика	12
Арифметика случайных величин и нормальное распределение	12
Нормальное распределение	
Статистический тест	13
DDII IIII	10

Первая неделя. Вероятностное пространство

Вероятностное пространство

Вероятностное пространство это тройка (Ω, F, P) , где

- 1. Ω это любое множество. Оно называется *множеством элементарных исходов*, а его элементы *элементарными исходами*. Мы пока будем заниматься только случаем, когда Ω это конечное множество. Оставшаяся часть определения написана только для этого случая.
- 2. Все подмножества Ω называются coбыmusmu. Множество событий обозначается F и называется ane bpo u coбыmuu.

Обозначение. Для обозначения событий мы будем использовать заглавные буквы из начала латинского алфавита: A, B, C, и так далее.

3. Вероятность P это функция из F в [0,1]. Другими словами, P каждому событию сопоставляет число от 0 до 1. Это число называется вероятностью соответствующего события. Вероятность каждого события должна быть равна сумме вероятностей элементарных исходов, из которых состоит это событие. Сумма вероятностей всех элементарных исходов должна быть равна 1.

Обозначение. Если A это конечное множество, то мы обозначаем число элементов A через |A|. Если число исходов в Ω равно k, то число событий равно 2^k , то есть $|\Omega| = k, k \in \mathbb{N} \implies |F| = 2^k$.

Пусть дано событие A. Тогда событием \bar{A} называется событие, состоящие из всех элементарных исходов, которые не входят в A. Можно произносить \bar{A} как "не A."Верно следующее равенство: $P(\bar{A}) = 1 - P(A)$.

Равновероятные исходы

Если вероятности всех элементарных исходов равны, то есть P(a) = P(b) для всех $a, b \in \Omega$, то в этом случае мы говорим, что все элементарные исходы равновероятны.

Если все исходы равновероятны, то для любого события A выполнено $P(A) = \frac{|A|}{|\Omega|}$. В частности, вероятность каждого элементарного исхода равна $\frac{1}{L}$.

Условная вероятность и независимые события

Так как события являются множествами (состоящими из элементарных исходов), к ним можно применять все стандартные операции над множествами. В частности, события можно пересекать (символ \cap) и объединять (символ \cup).

Если $P(B) \neq 0$, то условной вероятностью события A при условии события B называется дробь $\frac{P(A \cap B)}{P(B)}$. Обозначение:

$$P(A|B) := \frac{P(A \cap B)}{P(B)}.$$

Формула полной вероятности для двух событий:

$$P(B)=P(B\cap A)+P(B\cap ar{A})$$
 или, равносильно,
$$P(B)=P(B|A)\cdot P(A)+P(B|ar{A})\cdot P(ar{A})$$

Независимые события

Пусть $P(B) \neq 0$. Событие A называется независимым от события B, если и только если P(A) = P(A|B). Пусть $P(A) \neq 0$ и $P(B) \neq 0$. Тогда верна следующая цепочка эквивалентных утверждений:

События
$$A$$
 и B независимы $\Leftrightarrow P(A) = P(A|B) \Leftrightarrow P(B) = P(B|A) \Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$

Два события, которые не являются независимыми, называют зависимыми.

Совместная независимость

События A_1, \dots, A_n называются совместно независимыми, если для любого k и любого набора индексов $1 \le i_1 < i_2 < \dots < i_k \le n$ выполнено

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \dots \cdot P(A_{i_k}).$$

События называются попарно независимыми, если любые два из них независимы.

Из совместной независимости событий следует их попарная независимость. Но в общем случае из попарной независимости событий не следует совместная независимость.

Вторая неделя. Комбинаторика и случайные величины

Теорема Байеса

Теорема Байеса. Для любых событий A и B, таких что $P(B) \neq 0$ выполнено

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.$$

Формула полной вероятности.

Даны события A_1, A_2, \dots, A_n , такие что каждый элементарный исход из Ω лежит ровно в одном из этих событий. Другими словами,

- ullet эти события не пересекаются друг с другом, то есть $A_i \cap A_j = \emptyset$ для любых $i \neq j$
- и их объединение равно Ω , то есть $\bigcup_{i=1}^{n} A_i = \Omega$.

Тогда выполнено:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i)$$
 или, эквивалентно,

$$P(B) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i).$$

Правило суммы

События $A, B \in F$ называются несовместными, если $A \cap B = \emptyset$.

Правило суммы. Если события A и B несовместны, то $P(A \cup B) = P(A) + P(B)$.

Утверждение. Пусть $A, B \in F$ — события. Тогда

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Комбинаторика

Перестановка чисел от 1 до n — это некоторая упорядоченная последовательность чисел от 1 до n, где каждое число встречается ровно один раз.

Ещё одно определение перестановки — функция из множества $\{1, 2, ..., n\}$ в множество $\{1, 2, ..., n\}$, такая, что значение функции для двух различных чисел не может совпадать.

 $n! := 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n$. Читается "n факториал". При этом 0! := 1.

Различных перестановок чисел от 1 до n всего n!

Биномиальные коэффициенты

Число $\frac{n!}{k!(n-k)!}$ обозначается $\binom{n}{k}$ и читается "n по k". Определено для целых неотрицательных n и k таких, что $n\geqslant k$. Все числа такого вида называются биномиальными коэффициентами. В русскоязычной литературе также используется обозначение C_n^k (цэ из n по k).

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ равно числу подмножеств размера k у n-элементного множества S.

Поскольку 0! := 1, то $\binom{n}{k} = 1$.

Бином Ньютона. Для любых $a,b\in\mathbb{R}$ и $n\in\mathbb{N}$ выполнено $(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^kb^{n-k}.$

Свойства биномиальных коэффициентов

- 1. Для любых n и k таких, что $k\leqslant n$ выполнено соотношение $\binom{n}{k}=\binom{n}{n-k}$
- 2. Для всех n выполнено

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{n} + \binom{n}{n-1} + \binom{n}{n-2} + \dots + \binom{n}{k} + \dots + \binom{n}{n-1} + \binom{n}{0} = 2^{n}$$

Скачано с сайта - SuperSliv.Biz - Присоединяйся!

3. Для всех n и k таких, что $k \leq n$ выполнено $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$

Биномиальные коэффициенты можно визуализировать с помощью треугольника Паскаля, который получается так

- Первая строка состоит из одной 1
- Каждая следующая получается из предыдущей строки сложением её с самой собой со сдвигом 1

0							1						
1						1		1					
2					1		2		1				
3				1		3		3		1			
4			1		4		6		4		1		
5		1		5		10		10		5		1	
6	1		6		15		20		15		6		1

Случайная величина и математическое ожидание

Как и раньше, рассматриваем случай, когда пространство исходов Ω конечно, и алгебра событий F состоит из всевозможных подмножеств Ω .

Cлучайная величина это функция из пространства исходов Ω в \mathbb{R} .

Пусть дано вероятностное пространство Ω , состоящее из n элементарных исходов, и случайная величина X. Обозначим через P_i вероятность i-ого исхода, и через x_i значение случайной величины X на i-ом исходе.

Тогда математическим ожиданием случайной величины X называется число $E[X]:=\sum_{i=1}^n x_i P_i.$ Более коротко определение математического ожидания можно записать так: $E[X]:=\sum_{i=1}^n X(\omega)P(\omega).$

Операции со случайными величинами

Случайные величины, определённые на одном вероятностном пространстве, можно складывать друг с другом, умножать друг на друга, как и любые функции. Например, сумма случайных величин X и Y обозначается X+Y и определяется так: для любого исхода $\omega \in \Omega$ мы говорим $(X+Y)(\omega) := X(\omega) + Y(\omega)$.

Пусть дано число $c \in \mathbb{R}$ и пространство исходов Ω . Будем считать, что случайная величина, которая любому элементарному исходу сопоставляет число c, обозначается так же, как и число c. Тогда мы можем определить случайную величину, равную многочлену от случайных величин.

В дальнейшем, когда мы будем складывать или перемножать случайные величины, мы всегда будем предполагать, что они определены на одном и том же вероятностном пространстве.

Свойства математического ожидания

Пусть X и Y — случайные величины. Тогда

- 1. если $c \in \mathbb{R}$, то $E[cX] = c \cdot E[X]$;
- 2. E[X + Y] = E[X] + E[Y];
- 3. $E[X \cdot Y]$ не всегда равно $E[X] \cdot E[Y]$

Третья неделя. Распределения, дисперсия и счётное пространство исходов

Распределения случайных величин

Функция $p_X : \mathbb{R} \to [0,1]$, заданная условием $p_X(a) := P(X=a)$ для любого $a \in R$, называется функцией вероятности случайной величины X.

Мы говорим, что функция вероятности случайной величины X задаёт распределение X.

Две случайные величины с совпадающими функциями вероятности называются *одинаково распределёнными*.

Независимые случайные величины

Случайные величины X и Y nesaeucumu, если для любых $a \in \mathbb{R}, b \in \mathbb{R}$ события X = a и Y = b независимы. То есть:

$$\forall a, b \in \mathbb{R} : P(X = a \cap Y = b) = P(X = a) \cdot P(X = b).$$

Если случайные величины X и Y независимы, то $E[X \cdot Y] = E[X]E[Y]$.

Если случайные величины совместно независимы и одинаково распределены, то слово "совместно" часто опускают, и говорят просто "независимые и одинаково распределённые". В английском это звучит как "independent and identically distributed", что сокращают до i.i.d.

Пусть даны два вероятностных пространства с пространствами исходов Ω_1 и Ω_2 , и функциями вероятности P_1 и P_2 соответственно. Тогда их *произведение* это вероятностное пространство $\Omega_1 \times \Omega_2$, определённое так:

- исходы в этом вероятностном пространстве это всевозможные пары (ω_1, ω_2) с $\omega_1 \in \Omega_1, \omega_2 \in \Omega_2,$
- вероятности соответствующих исходов равны $P(\omega_1, \omega_2) := P_1(\omega_1) \cdot P_2(\omega_2)$

Аналогично можно построить произведение любого числа вероятностных пространств.

Дисперсия

Дисперсия случайной величины X это число $E[(X-E[X])^2]$, обозначаемое Var[X]. Эквивалентная формула дисперсии такая: $Var[X]=E[X^2]-E[X]^2$.

Свойства дисперсии

- 1. Для любой случайной величины X выполнено $Var[X] \geq 0$
- $2. \ Var[X] = 0$ если и только если X это постоянная случайная величина
- 3. Если X и Y это <u>независимые</u> случайные величины, то Var[X+Y] = Var[X] + Var[Y].
- 4. Если $c \in \mathbb{R}$ и X случайная величина, то $Var[cX] = c^2 Var[X]$.

Биномиальное распределение и стандартное отклонение

Cтандартным отклонением случайной величины X называется $\sqrt{Var[X]}$.

Пусть X = 1 с вероятностью p и X = 0 с вероятностью 1 - p. Такое распределение случайной величины называется распределением Бернулли с вероятностью успеха p.

Пусть X_1, \ldots, X_n независимы и имеют распределение Бернулли с вероятностью успеха p. Тогда распределение случайной величины $S := X_1 + \cdots + X_n$ называется биномиальным распределением c n cmeneнями cвободы.

Биномиальное распределение обозначается Bin(n,p). Фразу "S имеет биномиальное распределение с n степенями свободы" записывают так: $S \sim Bin(n,p)$.

Ряды

Pядом называется выражение вида $a_1 + a_2 + a_3 + \dots$, где $\{a_n\}$ это последовательность вещественных чисел.

Также используется запись $\sum\limits_{n=1}^{\infty}a_{n}:=a_{1}+a_{2}+a_{3}+\ldots$

Числа a_n называются *членами* ряда.

Частичными суммами ряда называются такие выражения:

- $S_1 := a_1$
- $S_2 := a_1 + a_2$
- $S_3 := a_1 + a_2 + a_3$

• $S_n = a_1 + a_2 + a_3 + \dots + a_n$

Cуммой pядa называется предел частичных сумм, то есть $\lim_{n\to\infty} S_n$. Ряд называется cходящимся, если предел $\lim_{n\to\infty} S_n$ существует, и pасходящимся в противном случае.

Например, ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится. Этот ряд называют *гармоническим*.

Если ряд состоит из неотрицательных чисел и при этом все частичные суммы меньше некоторого числа B, то ряд сходится.

Свойства сходящихся рядов

- 1. Необходимое условие сходимости ряда. Пусть $\sum_{n=1}^{\infty} a_n$ сходится. Тогда $\lim_{n\to\infty} a_n = 0$.
- 2. Пусть $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ два сходящихся ряда. Тогда
 - ряд $\sum_{n=0}^{\infty} (a_n + b_n)$ сходится
 - ряд $\sum_{n=1}^{\infty} (a_n b_n)$ сходится
 - ряд $\sum_{n=0}^{\infty} (ca_n)$ сходится для любого $c \in \mathbb{R}$
- 3. Если $0 \le a_n \le b_n$ для всех n, то говорят, что ряд $\sum\limits_{n=1}^{\infty} b_n$ мажорирует ряд $\sum\limits_{n=1}^{\infty} a_n$. Если, кроме того
 - $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится
 - $\sum_{n=1}^{\infty} a_n$ расходится, то $\sum_{n=1}^{\infty} b_n$ расходится

Абсолютно сходящиеся ряды

Ряд $\sum_{n=1}^{\infty} a_n$ назвается абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Теорема. Любой абсолютно сходящийся ряд является сходящимся.

Ряд, который сходится, но не сходится абсолютно, называют условно сходящимся.

Теорема. Если ряд абсолютно сходится к сумме S, то любой ряд, полученный из него перестановкой слагаемых, тоже абсолютно сходится к той же сумме S.

Теорема Римана. Если ряд сходится условно, то его слагаемые можно переставить так, чтобы полученный ряд сходился к любому заранее заданному числу $c \in \mathbb{R}$.

Счётное пространство исходов

Множество A называется cчётным, если существует функция $f: \mathbb{N} \to A$, такая что для любого $a \in A$ найдётся ровно одно $n \in N$, что f(n) = a.

Примеры счётных множеств: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$

Примеры несчётных множеств: \mathbb{R} , [0,1], \mathbb{R}^n , \mathbb{C}

Когда говорят "множество несчётно", имеют в виду, что множество не является счётным или конечным.

Пусть есть счётное пространство исходов $\Omega = \{\omega_1, \omega_2, \omega_3, \dots\}$. Как и в случае с конечным пространством исходов, будем называть событием любое подмножество Ω .

Пусть P_n — вероятность события, состоящего ровно из одного исхода ω_n . Потребуем, чтобы $P_n \geq 0$ и ряд $\sum_{n=1}^{\infty} P_n$ сходился к 1. Вероятность каждого события как сумму вероятностей исходов, из которых это событие состоит. Эта сумма может быть бесконечной, то есть суммой ряда. Как и в случае конечного числа исходов, случайная величина X это функция из пространства исходов в \mathbb{R} , то есть $X: \Omega \to \mathbb{R}$.

Пусть дано вероятностное пространство Ω , состоящее из счётного количества элементарных исходов, и случайная величина X. Обозначим через P_i вероятность i-ого исхода, и через x_i значение случайной величины X на i-ом исходе. Если ряд $\sum_{i=1}^{\infty} x_i P_i$ абсолютно сходится, его сумма называется математическим ожиданием случайной величины X и обозначается E[X]. Если ряд не сходится абсолютно, то математическое ожидание не определено.

Пусть дано вероятностное пространство Ω , состоящее из счётного количества элементарных исходов, и случайная величина X. Предположим, что E[X] определено. Тогда $\partial ucnepcue \check{u}$ называется математическое ожидание случайной величины $(X-E[X])^2$, если это математическое ожидание определено. Если E[X] или $E[(X-E[X])^2]$ не определено, то Var(X) не определена.

Вероятностные пространства с конечным или счётным количеством исходов называются *дискретными*. Аналогично, случайная величина, которая принимает конечное или счётное количество разных значений, называется *дискретной*.

Четвёртая неделя. Непрерывный случай

Определённый интеграл

Пусть дана неотрицательная функция f со значениями в \mathbb{R} , определённая на отрезке [a,b].

Давайте строго определим площадь фигуры, заключённой между графиком функции f, осью OX и вертикальными линиями x = a, x = b:

Выберем на отрезке [a,b] несколько точек: $a=x_0 < x_1 < x_2 < \cdots < x_k = b$. Будем называть это разбиением

Для каждого i на отрезке $[x_i, x_{i+1}]$ выберем произвольную точку c_i .

Интегральной суммой для такого разбиения и выбора точек c_i называется сумма $\sum_{i=0}^{i=k-1} f(c_i)(x_{i+1}-x_i)$. Рангом разбиения называется длина самого длинного из отрезков $[x_i, x_{i+1}]$, то есть $\max_{0 \le i < k} (x_{i+1}-x_i)$. Пусть для любой последовательности разбисний и руборат $\sum_{i=0}^{n} f(c_i)(x_{i+1}-x_i)$.

Пусть для любой последовательности разбиений и выборов точек, такой что соответствующая последовательность рангов стремится к нулю, соответствующая последовательность интегральных сумм тоже имеет предел равный l.

Тогда l называется onpedeлённым интегралом функции f на отрезке [a,b] и обозначается так: $\int\limits_{a}^{b}f(x)\,dx$.

Если определённый интеграл $\int\limits_a^b f(x)\,dx$ существует, то говорят, что f интегрируема по Риману на отрезке [a,b].

Если же функция f не является неотрицательной, то определение интеграла никак не отличается. Но определённый интеграл функции f на отрезке [a,b] будет равен площади фигуры, заключённой между графиком функции f, осью OX и вертикальными линиями x = a, x = b, где площадь фигур, расположенных ниже оси OX, считается со знаком минус:

Теорема. Для любой непрерывной функции f и любых [a,b] определённый интеграл $\int\limits_{a}^{b} f(x) \, dx$ существует.

Следствие. Пусть у нас есть непрерывная функция f, определённая на отрезке [a,b], и какая-то последовательность разбиений (и выборов c_i) с рангом, стремящемся к нулю. Тогда предел интегральных сумм этой последовательности существует и равен $\int f(x) dx$.

Неопределённый интеграл

Heonpedeлённым интегралом функции f(x) называется любая функция F(x), такая что производная F(x)равна f(x). То есть F'(x) = f(x).

Эта функция F(x) ещё называется первообразной функции f(x).

Теорема (формула **Ньютона-Лейбница).** Пусть f – непрерывная функция, определённая на отрезке [a, b]. Пусть F – какая-то первообразная функции f. Тогда выполнено:

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Обозначение. Часто выражение F(b)-F(a) обозначают так: F(x)

Линейность интеграла:

1.
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
 для любого $c \in \mathbb{R}$.

2.
$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx = \int_{a}^{b} f(x) + g(x) dx$$
.

Несобственные итегралы первого рода

Если f это непрерывная функция на луче $[a,+\infty)$, то $\int\limits_a^{+\infty} f(x)\,dx:=\lim\limits_{b\to +\infty}\int\limits_a^b f(x)\,dx.$ Запись $\lim\limits_{b\to +\infty}$ в правой части означает, что мы берём пределы для всевозможных последовательностей . . . $b_0, b_1, b_2 \dots$, стремящихся к $+\infty$, и все эти пределы совпадают. Если пределы не совпадают или их нет, то $\int_{0}^{\infty} f(x) dx$ не определён. В этом случае мы говорим, что интеграл расходится.

Если f это непрерывная функция на луче $(-\infty,b]$, то $\int\limits_{-\infty}^b f(x)\,dx:=\lim\limits_{a\to -\infty}\int\limits_a^b f(x)\,dx.$ Если f это непрерывная функция на прямой $(-\infty,+\infty)$, то $\int\limits_{-\infty}^{+\infty} f(x)\,dx:=\int\limits_{-\infty}^c f(x)\,dx+\int\limits_{-c}^{+\infty} f(x)\,dx$, где cэто любое число.

Функция распределения

Для случайной величины ξ функция $F_{\xi}(x) := P(\xi \leqslant x)$ называется функцией распределения. Функция F_{ξ} называется функцией распределения, если выполнены такие свойства:

- F_{ξ} не убывает, то есть для любых $a_1 < a_2$ выполнено $F_{\xi}(a_1) \le F_{\xi}(a_2)$
- $\lim_{a \to +\infty} F_{\xi}(a) = 1$
- $\bullet \lim_{a \to -\infty} F_{\xi}(a) = 0$

Случайная величина называется nenpepusnoù, если её функция распределения непрерывна в каждой точке.

Плотность вероятности

Гистограмма строится так:

- 1. Промежуток значений, которое может принимать измеряемая величина, разбивается на несколько интервалов по-английски их называют bins, по-русски карманы / корзины. Чаще всего эти интервалы берут одинаковыми.
- 2. Отложим полученные интервалы на горизонтальной оси. Над каждым карманом изобразим прямоугольник с высотой равной количеству участников, чей рост попал в данный карман.

Случайная величина ξ с функцией распределения F_{ξ} называется абсолютно непрерывной, если существует функция $p_{\xi}: \mathbb{R} \to \mathbb{R}_{\geqslant 0}$ такая, что для всех $x \in \mathbb{R}$ выполнено $F_{\xi}(x) = \int\limits_{-\infty}^{x} p_{\xi}(x) dx$. В этом случае функция p_{ξ} называется плотностью вероятности.

Кроме того верны формулы

- $F'_{\xi}(a) = p_{\xi}(a)$
- $P(\xi \in [a,b]) = \int_a^b p_{\xi}(x)dx$.

Математическое ожидание

Пусть ξ — абсолютно непрерывная случайная величина с плотностью $p(\xi)$. Если интеграл $\int_{-\infty}^{+\infty} x p_{\xi}(x) dx$ сходится, то его значение называют математическим ожиданием ξ . В противном случае говорят, что математическое ожидание не определено.

В случае абсолютно непрерывной случайной величины свойство линейности математического ожидания сохраняется, то есть соотношение $\forall a,b \in \mathbb{R}: E[a\xi+b\eta] = aE[\xi]+bE[\eta]$ выполнено, с оговоркой, что математическое ожидание случайных величин ξ и η должно быть определено.

Дисперсия

Пусть ξ — абсолютно непрерывная случайная величина с плотностью p_{ξ} . Если определено математическое ожидание ξ и интеграл $\int\limits_{-\infty}^{+\infty} x^2 \ p_{\xi}(x) dx$ сходится, то дисперсия $Var(\xi)$ определена и равняется $\int\limits_{-\infty}^{+\infty} x^2 \ p_{\xi}(x) dx$ — $(E\xi)^2$.

Пятая неделя. Статистика

Арифметика случайных величин и нормальное распределение

Следующие формулы выполнены как для дискретных, так и для непрерывных случайных величин:

Математическое ожидание суммы. Математическое ожидание суммы двух случайных величин это сумма их математических ожиданий. То есть

$$E[X+Y] = E[X] + E[Y].$$

Дисперсия суммы. Если две случайных величины независимы, то дисперсия их суммы это сумма дисперсий. То есть

$$Var(X + Y) = Var(X) + Var(Y).$$

Сложение с константой. Для любой случайной величины X и любого числа $c \in \mathbb{R}$ выполнено

$$E[X+c] = E[X] + c$$

И

$$Var(X+c) = Var(X).$$

Умножение на константу. Для любой случайной величины X и любого числа $c \in \mathbb{R}$ выполнено

$$E[cX] = cE[X]$$

И

$$Var(cX) = c^2 Var(X).$$

Нормальное распределение

Нормальное распределение с математическим ожиданием 0 и дисперсией 1 обозначается N(0,1). Оно имеет такую функцию плотности распределения:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2} x^2\right)}$$

Нормальное распределение с математическим ожиданием μ и дисперсией σ^2 обозначается $N(\mu, \sigma^2)$. У него такая функция плотности распределения:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Случайная величина, имеющая распределение $N(\mu, \sigma^2)$ для каких-то μ и σ , называется нормально распределенией.

Правило двух и трех сигм. Пусть случайная величина ξ имеет нормальное распределение со средним μ и дисперсией σ^2 . Тогда:

- $P(\mu \sigma < \xi < \mu + \sigma) = 0.682 \dots \approx 0.68$
- $P(\mu 2\sigma < \xi < \mu + 2\sigma) = 0.954 \cdots \approx 0.95$. Другими словами, вероятность получить результат, отклоняющийся от μ хотя бы на 2σ , меньше 0.05.
- $P(\mu 3\sigma < \xi < \mu + 3\sigma) = 0.997 \cdots \approx 0.99$. Другими словами, вероятность получить результат, отклоняющийся от μ хотя бы на 3σ , меньше 0.01.

Утверждение. Сумма нескольких совместно независимых нормально распределённых случайных величин – это тоже нормально распределенная случайная величина.

Статистический тест

Реализация случайной величины — это конкретное число, которым стала эта случайная величина после измерения.

Шаблон статистических тестов

- 1. **Выборка.** Выборка это реализация набора случайных величин x_1, \ldots, x_n , то есть это n чисел. Обычно предполагают, что случайные величины x_1, \ldots, x_n совместно независимы и имеют одинаковое распределение.
- 2. **Гипотезы и предположения.** Выбор гипотез H_0 и H_1 , то есть сформулировать свой вопрос на языке теории вероятностей.
- 3. Статистика. Нам нужно как-то объединить величины x_1, \ldots, x_n , в одну случайную величину $T(x_1, \ldots, x_n)$. Эту величину называют *статистикой*. При условии что H_0 выполнена, нужно найти распределение случайной величины $T(x_1, \ldots, x_n)$.
- 4. **Уровень значимости.** Уровень значимости это число α отвечающее за вероятность ошибки первого рода. То есть за вероятность отвергнуть H_0 в случае, когда H_0 выполнена. Обычно берут $\alpha = 0.05$.
- 5. **Критическое множество.** Случайная величина $T(x_1, ..., x_n)$ принимает значения в \mathbb{R} . Нужно выделить подмножество $C_{\alpha} \subset \mathbb{R}$, по которому мы будем решать, принимать или отвергать H_0 . Вероятность попадания T в множество C_{α} должна быть равна α . Обычно в качестве C_{α} берут множества вида:
 - $[a, +\infty)$ если отклонение статистики T вверх свидетельствует в пользу H_1 .
 - $(-\infty, b]$ если отклонение статистики T вниз свидетельствует в пользу H_1 .
 - $(-\infty, b] \cup [a, +\infty)$ если отклонение статистики T от какого-то значения в любую сторону свидетельствует в пользу H_1 .
- 6. Статистический критерий. Если реализация T не попала в множество C_{α} , то мы принимаем H_0 . Если T попала в множество C_{α} , то мы отвергаем H_0 и принимаем H_1 .

Ошибка первого рода (принять H_1 при верной H_0). Вероятность допустить ошибку первого рода всегда равна уровню значимости α . Это следует из нашего построения множества C_{α} .

Ошибка второго рода (принять H_0 при верной H_1). Найдём распределение T при условии, что выполнена H_1 . Вероятность того, что так распределённая T не попала в критическое множество, это и есть вероятность ошибки второго рода. Другими словами $\beta = P(T \notin C_\alpha | H_1)$. Действительно, условие $T \notin C_\alpha$ как раз соответствует тому, что мы приняли H_0 и отвергли H_1 .

Число $(1-\beta)$ называют *мощностью* статистического критерия.

ЗБЧ и ЦПТ

Теорема [ЗБЧ]. Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ — бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное мат.ожидание μ . Обозначим среднее арифметическое первых n случайных величин $\xi_1, \xi_2, \dots, \xi_n$ так:

$$\bar{\xi}_n = \frac{1}{n} \sum_{i=1}^n \xi_i.$$

Тогда

$$\bar{\xi}_n \xrightarrow{\text{по вероятности}} \mu.$$

То есть $\forall \varepsilon > 0$ выполнено

$$\lim_{n \to +\infty} P(|\bar{\xi}_n - \mu| > \varepsilon) = 0$$

Теорема [ЦПТ]. Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ — бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное мат.ожидание μ и дисперсию σ^2 .

Тогда

$$\frac{\bar{\xi}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow[n \to +\infty]{\text{по распределению}} N(0,1)$$

где $N\left(0,1\right)$ — нормальное распределение со средним 0 и дисперсией 1.

Обозначение. (неформально) Стрелка

$$\eta_n \xrightarrow{\text{по распределению}} F$$

означает, что при n стремящемся к плюс бесконечности распределение случайной величины η_n близко к распределению F.

Неформально ЦПТ можно сформулировать так:

$$\bar{\xi}_n$$
 в неформальном смысле $N\left(\mu, \frac{\sigma^2}{n}\right)$.