ECE 405 Assignment 2

Ryan Mah 20814200

Question 1

a.

 $|\psi\rangle$ is already normalized:

$$\langle \psi | \psi \rangle = \left(\frac{1}{\sqrt{2}} \langle \phi_1 | - \frac{i}{\sqrt{2}} \langle \phi_2 | \right) \left(\frac{1}{\sqrt{2}} | \phi_1 \rangle + \frac{i}{\sqrt{2}} | \phi_2 \rangle \right)$$
$$= \frac{1}{2} \langle \phi_1 | \phi_1 \rangle + \frac{i}{2} \langle \phi_2 | \phi_1 \rangle - \frac{i}{2} \langle \phi_1 | \phi_2 \rangle + \frac{1}{2} \langle \phi_2 | \phi_2 \rangle$$

Since $|\phi_1\rangle$ and $|\phi_2\rangle$ are eigenstates of a Hermitian operator, they are orthogonal to each other.

Thus, $\langle\phi_1|\phi_2\rangle=\langle\phi_2|\phi_1\rangle=0$, and $\langle\phi_1|\phi_1\rangle=\langle\phi_2|\phi_2\rangle=1$, meaning:

$$\langle\psi|\psi\rangle=1$$

b.

A measurement made on $|\psi\rangle$ with respect to Φ can only yield either ϕ_1 or ϕ_2 , since they are the eigenvales of Φ .

The probability of measuring ϕ_1 is given by $P(\phi_1) = |\langle \phi_1 | \psi \rangle|^2$.

$$\langle \phi_1 | \psi \rangle = \langle \phi_1 | \left(\frac{1}{\sqrt{2}} | \phi_1 \rangle + \frac{i}{\sqrt{2}} | \phi_2 \rangle \right)$$
$$= \frac{1}{\sqrt{2}} \langle \phi_1 | \phi_1 \rangle + \frac{i}{\sqrt{2}} \langle \phi_1 | \phi_2 \rangle$$
$$= \frac{1}{\sqrt{2}}$$

Thus,

$$P(\phi_1) = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

Similarly, for ϕ_2 , $P(\phi_2) = |\langle \phi_2 | \psi \rangle|^2$.

$$\langle \phi_2 | \psi \rangle = \langle \phi_2 | \left(\frac{1}{\sqrt{2}} | \phi_1 \rangle + \frac{i}{\sqrt{2}} | \phi_2 \rangle \right)$$

$$= \frac{1}{\sqrt{2}} \langle \phi_2 | \phi_1 \rangle + \frac{i}{\sqrt{2}} \langle \phi_2 | \phi_2 \rangle$$

$$= \frac{i}{\sqrt{2}}$$

Thus,

$$P(\phi_2) = \left| \frac{i}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

C.

To find another quantum state that is orthogonal to $|\Psi\rangle$, we can set the inner product of the two states to 0.

Let $|\Psi_2\rangle = \alpha |\phi_1\rangle + \beta |\phi_2\rangle$, $\alpha, \beta \in \mathbb{C}$,

$$\langle \Psi | \Psi_2 \rangle = 0 = \left(\frac{1}{\sqrt{2}} \langle \phi_1 | - \frac{i}{\sqrt{2}} \langle \phi_2 | \right) (\alpha | \phi_1 \rangle + \beta | \phi_2 \rangle)$$

$$= \frac{\alpha}{\sqrt{2}} \langle \phi_1 | \phi_1 \rangle + \frac{\beta}{\sqrt{2}} \langle \phi_2 | \phi_1 \rangle - \frac{i\alpha}{\sqrt{2}} \langle \phi_1 | \phi_2 \rangle - \frac{i\beta}{\sqrt{2}} \langle \phi_2 | \phi_2 \rangle$$

$$= \frac{\alpha}{\sqrt{2}} - \frac{i\beta}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} (\alpha - i\beta)$$

Thus, we get that $0=\alpha-i\beta$. Let $\alpha=x_{\alpha}+iy_{\alpha}$ and $\beta=x_{\beta}+iy_{\beta}$, where $x_{\alpha},y_{\alpha},x_{\beta},y_{\beta}\in\mathbb{R}$.

Then,

$$0 = \alpha - i\beta$$

$$0 = (x_{\alpha} + iy_{\alpha}) - i(x_{\beta} + iy_{\beta})$$

$$0 = x_{\alpha} + iy_{\alpha} - ix_{\beta} + y_{\beta}$$

$$0 = (x_{\alpha} + y_{\beta}) + i(y_{\alpha} - x_{\beta})$$

So,
$$x_{\alpha}=-y_{\beta}$$
 and $x_{\beta}=y_{\alpha}$. Let $\alpha=\frac{1}{2}(1+i)$ and $\beta=\frac{1}{2}(1-i)$.

Thus, another quantum state that is orthogonal to $|\Psi\rangle$ is:

$$|\Psi_2\rangle = \frac{1}{2}(1+i)|\phi_1\rangle + \frac{1}{2}(1-i)|\phi_2\rangle$$

d.

The probability of finding the system in the state $|\psi_2\rangle$ if a if a measurement is made is given by $P(\psi_2) = |\langle \psi_2 | \psi \rangle|^2$.

Since $|\psi_2\rangle$ is orthogonal to $|\psi\rangle$, $\langle\psi_2|\psi\rangle=0$, meaning that the probability of finding the system in the state $|\psi_2\rangle$ is 0.

Question 2

a.

The probability of measuring $|\psi_0\rangle$ in the +x state is given by $P(+x) = |\langle +x|\psi_0\rangle|^2$.

$$\langle +x \mid \psi_0 \rangle = \langle +x \mid \left(\frac{i}{\sqrt{10}} \mid +x \rangle - \frac{3}{\sqrt{10}} \mid -x \rangle \right)$$

$$= \frac{i}{\sqrt{10}} \langle +x \mid +x \rangle - \frac{3}{\sqrt{10}} \langle +x \mid -x \rangle$$

$$= \frac{i}{\sqrt{10}}$$

Thus, the probability of finding $|\psi_0\rangle$ in the +x state is 10%, and the probability of finding $|\psi_0\rangle$ in the -x state is 90%.

Knowing this, we can now draw the SG-experiment.

b.

The possble outcomes of the S_z measurement are $|+z\rangle$ and $|-z\rangle$. This is because the eigenvalues of S_z are $\pm \frac{\hbar}{2}$.

C.

The probability of finding the system in $\left|-z\right>$ after the last analyzer is given by:

$$P(-z) = \left| \left\langle -z \mid -x \right\rangle \right|^2 \left| \left\langle -x \mid \psi_0 \right\rangle \right|^2 \iff \left| \left\langle -x \mid \psi_0 \right\rangle \right|^2 = 0.9$$

So,

$$\begin{aligned} \langle -z \mid -x \rangle &= \langle -z \mid \left(\frac{1}{\sqrt{2}} \mid +z \rangle - \frac{1}{\sqrt{2}} \mid -z \rangle \right) \\ &= \frac{1}{\sqrt{2}} \langle -z \mid +z \rangle - \frac{1}{\sqrt{2}} \langle -z \mid -z \rangle \\ &= -\frac{1}{\sqrt{2}} \end{aligned}$$

Thus, the probability of finding the system in $|-z\rangle$ after the last analyzer is:

$$P(-z) = \left| -\frac{1}{\sqrt{2}} \right|^2 \left| \langle -x \mid \psi_0 \rangle \right|^2$$
$$= \frac{1}{2} \cdot 0.9$$
$$= 0.45$$

Similarly, for the +z state, we have $P(+z) = \left| \langle +z \mid -x \rangle \right|^2 \left| \langle -x \mid \psi_0 \rangle \right|^2$.

$$\langle +z \mid -x \rangle = \langle +z \mid \left(\frac{1}{\sqrt{2}} \mid +z \rangle - \frac{1}{\sqrt{2}} \mid -z \rangle \right)$$

$$= \frac{1}{\sqrt{2}} \langle +z \mid +z \rangle - \frac{1}{\sqrt{2}} \langle +z \mid -z \rangle$$

$$= \frac{1}{\sqrt{2}}$$

So,

$$P(+z) = \left| \frac{1}{\sqrt{2}} \right|^2 \left| \langle -x \mid \psi_0 \rangle \right|^2$$
$$= \frac{1}{2} \cdot 0.9$$
$$= 0.45$$

Question 3

a.

$$\langle \psi_1 | \psi_1 \rangle = 1 = \left(a | \phi_1 \rangle + b | \phi_2 \rangle - \frac{1}{2} | \phi_3 \rangle \right)^* \left(a | \phi_1 \rangle + b | \phi_2 \rangle - \frac{1}{2} | \phi_3 \rangle \right)$$

$$= \left(a^* \langle \phi_1 | + b^* \langle \phi_2 | - \frac{1}{2} \langle \phi_3 | \right) \left(a | \phi_1 \rangle + b | \phi_2 \rangle - \frac{1}{2} | \phi_3 \rangle \right)$$

$$= |a|^2 \langle \phi_1 | \phi_1 \rangle + |b|^2 \langle \phi_2 | \phi_2 \rangle + \frac{1}{4} \langle \phi_3 | \phi_3 \rangle$$

$$= |a|^2 + |b|^2 + \frac{1}{4}$$

Thus, we have a circle:

$$\frac{3}{4} = |a|^2 + |b|^2$$

Any a and b that satisfy the above equation will normalize $|\psi_1\rangle$.

However, given that a and b are not unique, a=b, meaning

$$\frac{3}{4} = 2|a|^2$$

$$\frac{3}{8} = |a|^2$$

$$|a| = |b| = \frac{\sqrt{3}}{2\sqrt{2}}$$

Picking a and b to have the zero phase (the most simple case), we get:

$$a = b = \frac{\sqrt{3}}{2\sqrt{2}}$$

b.

$$\begin{split} \langle \psi_2 | \psi_1 \rangle &= 0 = \left(-i \left\langle \phi_2 \right| + c^* \left\langle \phi_3 \right| \right) \left(a \left| \phi_1 \right\rangle + b \left| \phi_2 \right\rangle + \frac{1}{2} \left| \phi_3 \right\rangle \right) \\ &= -ib \left\langle \phi_2 | \phi_2 \right\rangle + \frac{c^*}{2} \left\langle \phi_3 | \phi_3 \right\rangle \\ &= -ib + \frac{c^*}{2} \end{split}$$

Thus,

$$c = 2ib = \frac{\sqrt{3}i}{\sqrt{2}}$$

The above value of c will make psi_1 and psi_2 orthogonal to each other. However, psi_2 must be normalized. Skipping steps, since we have done this many times before, we get:

$$|\psi_2\rangle = \sqrt{\frac{2}{5}} \left(i |\phi_2\rangle + \sqrt{\frac{3}{2}} i |\phi_3\rangle \right) = \sqrt{\frac{2}{5}} i |\phi_2\rangle + \sqrt{\frac{3}{5}} i |\phi_3\rangle$$

C.

$$\langle \phi_1 | \psi_1 \rangle = \langle \phi_1 | \left(a | \phi_1 \rangle + b | \phi_2 \rangle - \frac{1}{2} | \phi_3 \rangle \right) = a = \frac{\sqrt{3}}{2\sqrt{2}}$$

$$\langle \phi_2 | \psi_1 \rangle = \langle \phi_2 | \left(a | \phi_1 \rangle + b | \phi_2 \rangle - \frac{1}{2} | \phi_3 \rangle \right) = b = \frac{\sqrt{3}}{2\sqrt{2}}$$

$$\langle \phi_3 | \psi_1 \rangle = \langle \phi_3 | \left(a | \phi_1 \rangle + b | \phi_2 \rangle - \frac{1}{2} | \phi_3 \rangle \right) = -\frac{1}{2}$$

Thus, the probabilities are as such:

$$P(\phi_1) = |\langle \phi_1 | \psi_1 \rangle|^2 = \frac{3}{8}$$

$$P(\phi_2) = |\langle \phi_2 | \psi_1 \rangle|^2 = \frac{3}{8}$$

$$P(\phi_3) = |\langle \phi_3 | \psi_1 \rangle|^2 = \frac{1}{4}$$

Hence, if a measurement on $|\psi_1\rangle$ is made, the most likely outcome is $|\phi_1\rangle$ or $|\phi_2\rangle$, with a probability of $\frac{3}{8}$ each.

d.

$$\langle \phi_1 | \psi_2 \rangle = \langle \phi_1 | \left(\sqrt{\frac{2}{5}} i | \phi_2 \rangle + \sqrt{\frac{3}{5}} i | \phi_3 \rangle \right) = 0$$

$$\langle \phi_2 | \psi_2 \rangle = \langle \phi_2 | \left(\sqrt{\frac{2}{5}} i | \phi_2 \rangle + \sqrt{\frac{3}{5}} i | \phi_3 \rangle \right) = \sqrt{\frac{2}{5}} i$$

$$\langle \phi_3 | \psi_2 \rangle = \langle \phi_3 | \left(\sqrt{\frac{2}{5}} i | \phi_2 \rangle + \sqrt{\frac{3}{5}} i | \phi_3 \rangle \right) = \sqrt{\frac{3}{5}} i$$

Thus, the probabilities are as such:

$$P(\phi_1) = |\langle \phi_1 | \psi_2 \rangle|^2 = 0$$

$$P(\phi_2) = |\langle \phi_2 | \psi_2 \rangle|^2 = \frac{2}{5}$$

$$P(\phi_3) = |\langle \phi_3 | \psi_2 \rangle|^2 = \frac{3}{5}$$

Hence, if a measurement on $|\psi_2\rangle$ is made, the most likely outcome is $|\phi_3\rangle$.

e.

The probability of finding the system in state $|\psi_2\rangle$ after a measurement is made on $|\psi_1\rangle$ is given by:

$$P(\psi_2) = |\langle \psi_2 | \psi_1 \rangle|^2$$

Since $|\psi_1\rangle$ and $|\psi_2\rangle$ are orthogonal to each other, $\langle\psi_2|\psi_1\rangle=0$, meaning that the probability is 0.

Question 4

First, we normalize $|\psi\rangle$. Skipping steps, we get:

$$|\psi\rangle = \sqrt{\frac{3}{5}} \left(\frac{i}{\sqrt{3}} |+z\rangle - \frac{2}{\sqrt{3}} |-z\rangle \right) = \frac{i}{\sqrt{5}} |+z\rangle - \frac{2}{\sqrt{5}} |-z\rangle$$

Now,

$$\begin{split} \langle \chi | \psi \rangle &= \left(\frac{1}{\sqrt{2}} \left| +z \right\rangle + \frac{1}{\sqrt{2}} \left| -z \right\rangle \right)^* \left(\frac{i}{\sqrt{5}} \left| +z \right\rangle - \frac{2}{\sqrt{5}} \left| -z \right\rangle \right) \\ &= \frac{i}{\sqrt{10}} \left\langle +z \right| + z \right\rangle - \frac{2}{\sqrt{10}} \left\langle -z \right| - z \right\rangle \\ &= \frac{i}{\sqrt{10}} - \frac{2}{\sqrt{10}} \end{split}$$

Thus,

$$P(\chi) = |\langle \chi | \psi \rangle|^2 = \frac{1}{10} + \frac{4}{10} = \frac{1}{2}$$