Soluzione esercizi

21 ottobre 2011

3.1. Esercizio. Sia $\lambda \in \mathbb{R}$ e sia $\{a_1, a_2, \dots\}$ la successione

$$a_n = (1 + \lambda)^n$$

- determinare per quali λ é limitata,
- determinare per quali λ é convergente,
- determinare per quali λ é monotona.

SOLUZIONE:

I numeri

$$|a_n| = |1 + \lambda|^n, \quad n = 1, 2, 3, \dots$$

hanno due comportamenti diversi

$$|1 + \lambda| \le 1$$
 \rightarrow $\forall n : |a_n| \le 1$
 $|1 + \lambda| > 1$ \rightarrow $|a_n| \ge 1 + n(|1 + \lambda| - 1)$

Pertanto la successione $\{a_1, a_2, \dots\}$ é limitata se e solo se

$$|1 + \lambda| \le 1 \quad \Leftrightarrow \quad \lambda \in [-2, 0]$$

La successione $\{(1+\lambda)^n\}$ é convergente

- a zero se $|1 + \lambda| < 1$ \Leftrightarrow $\lambda \in (-2, 0)$ a 1 se $1 + \lambda = 1$ \Leftrightarrow $\lambda = 0$
- non é convergente negli altri casi.

La successione $\{(1+\lambda)^n\}$ é monotona quando $1+\lambda \geq 0 \quad \Leftrightarrow \quad \lambda \geq -1$

3.2. Esercizio. Sia $\{a_1.a_2,\ldots\}$ la successione

$$a_n = \frac{(-1)^n n}{1 + n^2}$$

- calcolare i primi cinque termini,
- determinare gli estremi inferiore e superiore,
- verificare che riesce

$$\lim_{n \to \infty} a_n = 0$$

• determinare una sottosuccessione monotona.

FIGURA 1.
$$a_n = \frac{(-1)^n n}{1+n^2}$$
, $n = 1,...,5$

I primi cinque termini sono

$$a_1 = -\frac{1}{2}$$
 $a_2 = \frac{2}{5}$ $a_3 - \frac{3}{10}$ $a_4 = \frac{4}{17}$ $a_5 = -\frac{5}{26}$

Gli estremi sono, vedi quanto suggerito dalla figura 1

$$\inf\{a_1.a_2,\dots\} = a_1 = \min\{a_1.a_2,\dots\}, \quad \sup\{a_1.a_2,\dots\} = a_2 = \max\{a_1.a_2,\dots\}$$

Verificare che

$$\lim_{n\to\infty}\frac{(-1)^nn}{1+n^2}=0$$

significa provare che comunque si assegni una quantitá positiva ε esiste una soglia n_ε oltre la quale riesce

$$\left|\frac{(-1)^n n}{1+n^2} - 0\right| \le \varepsilon$$

La disuguaglianza da verificare é quindi

$$\frac{n}{1+n^2} = \frac{1}{1/n+n} \le \varepsilon$$

Tenuto conto che

$$\frac{1}{1/n+n} \leq \frac{1}{n}$$

basta che

$$\frac{1}{n} \le \varepsilon \quad \Leftrightarrow \quad \frac{1}{\varepsilon} \le n$$

La soglia n_{ε} é pertanto il primo naturale che superi $1/\varepsilon$.

Una sottosuccessione monotona crescente é fornita, ad esempio dalla successione

$$\{a_1, a_3, a_5, \dots\}$$

dei termini di indice dispari.

Un'altra successione monotona, questa vola decrescente, é fornita, ad esempio dalla successione

$$\{a_2, a_4, a_6, \dots\}$$

dai termini di indice pari.

Ogni sottosuccessione della successione di quella dei termini di indice dispari, come anche ogni sottosuccessione di quella dei termini di posto pari, sará monotona.

3.3. Esercizio. Calcolare i seguenti limiti:

$$\lim_{n \to +\infty} \frac{2n + \sin(n)\log(n)}{n} \quad \lim_{n \to +\infty} \cos(n) \left(\log(\sqrt{n} + 1) - \log(\sqrt{n} + 1)\right)$$

$$\lim_{n \to +\infty} (n^n - 2^n) \qquad \lim_{n \to +\infty} \frac{n^2 + 1}{2^n - 5^n}$$

$$\lim_{n \to +\infty} \frac{n 2^n}{3^n} \qquad \lim_{n \to +\infty} \frac{n! + 2^n}{(n+1)!}$$

$$\lim_{n \to +\infty} \frac{\arctan(n^2)}{n}$$

SOLUZIONE:

$$\lim_{n \to +\infty} \frac{2n + \sin(n)\log(n)}{n}$$

$$\frac{2n + \sin(n)\log(n)}{n} = 2 + \frac{\sin(n)\log(n)}{n}$$

Tenuto conto che

$$\frac{\log(n)}{n} = \frac{\log(n)}{e^{\log(n)}}$$

si riconosce che il denominatore cresce anche più del quadrato $(\log(n))^2$ e quindi

$$\lim_{n \to \infty} \frac{\log(n)}{n} = 0$$

segue che

$$\lim_{n \to \infty} \frac{\sin(n)\log(n)}{n} = 0$$

da cui

$$\lim_{n \to +\infty} \frac{2n + \sin(n)\log(n)}{n} = 2$$

$$\lim_{n \to +\infty} \cos(n) \left(\log(\sqrt{n} + 1) - \log(\sqrt{n} + 1) \right)$$

$$\log(\sqrt{n}+1) - \log(\sqrt{n+1}) = \log\left(\frac{\sqrt{n}+1}{\sqrt{n+1}}\right) = \log\left(\frac{1+\frac{1}{\sqrt{n}}}{\sqrt{1+\frac{1}{n}}}\right)$$

Tenuto conto che

$$\lim_{n \to \infty} 1 + \frac{1}{\sqrt{n}} = 1, \quad \lim_{n \to \infty} \sqrt{1 + \frac{1}{n}} = 1$$

si riconosce (supponendo di conoscere la regolaritá della funzione logaritmo) che

$$\lim_{n \to \infty} \left(\log(\sqrt{n} + 1) - \log(\sqrt{n+1}) \right) = \log(1) = 0$$

e quindi

$$\lim_{n \to +\infty} \cos(n) \left(\log(\sqrt{n} + 1) - \log(\sqrt{n} + 1) \right) = 0$$

$$\lim_{n \to +\infty} \left(n^n - 2^n \right)$$

Tenuto conto che

$$\lim_{n \to \infty} \frac{2^n}{n^n} = \lim_{n \to \infty} \left(\frac{2}{n}\right)^n = 0$$

si ha

$$n^n - 2^n = n^n \left(1 - \frac{2^n}{n^n} \right) = +\infty$$

$$\lim_{n \to +\infty} \frac{n^2 + 1}{2^n - 5^n}$$

$$\left| \frac{n^2 + 1}{2^n - 5^n} \right| \le \frac{n^2 + 1}{5^n}$$

Tenuto conto della formula dello sviluppo del binomio si ha, per $n \geq 3$,

$$5^{n} \ge 2^{n} = \sum_{k=0}^{n} \binom{n}{k} \ge \binom{n}{3} = \frac{1}{6}n(n-1)(n-2)$$

da cui

$$\frac{n^2+1}{5^n} \le 6 \frac{n^2+1}{n(n-1)(n-2)}$$

Il confronto dei gradi, secondo grado il numeratore, terzo il denominatore implica

$$\lim_{n \to \infty} 6 \frac{n^2 + 1}{n(n-1)(n-2)} = 0$$

da cui

$$\lim_{n \to +\infty} \frac{n^2 + 1}{2^n - 5^n} = 0$$

$$\lim_{n \to +\infty} \frac{n \, 2^n}{3^n}$$

$$\frac{n\,2^n}{3^n} = \frac{n}{\left(1 + \frac{1}{2}\right)^n}$$

Tenuto conto che

$$\left(1 + \frac{1}{2}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{2}\right)^k \ge \binom{n}{2} \left(\frac{1}{2}\right)^2$$

si ha

$$\frac{n}{\left(1+\frac{1}{2}\right)^n} \le \frac{n}{\binom{n}{2}\left(\frac{1}{2}\right)^2}$$

quantitá che tende a zero come si riconosce dal confronto dei gradi, primo il numeratore, secondo il denominatore. Si ha pertanto

$$\lim_{n \to +\infty} \frac{n \, 2^n}{3^n} = 0$$

$$\lim_{n \to +\infty} \frac{n! + 2^n}{(n+1)!}$$

$$\frac{n! + 2^n}{(n+1)!} = \frac{1}{n+1} + \frac{2^n}{(n+1)!}$$

Il primo addendo ha limite zero, il secondo anche come si puó riconoscere ad esempio valutando i rapporti

$$\frac{\frac{2^{n+1}}{(n+2)!}}{\frac{2^n}{(n+1)!}} = \frac{2}{n+2} \le \frac{1}{2}, \quad \forall n \ge 2$$

da cui segue che

$$\left| \frac{2^n}{(n+1)!} \right| \le \left(\frac{1}{2} \right)^n$$

$$\lim_{n \to +\infty} \frac{\arctan(n^2)}{n}$$

Tenuto conto che

$$\forall x \in \mathbb{R} : |\arctan(x)| \le \frac{\pi}{2}$$

riesce

$$\left| \frac{\arctan(n^2)}{n} \right| \le \frac{\pi}{2n} \quad \to \quad \lim_{n \to +\infty} \frac{\arctan(n^2)}{n} = 0$$

3.4. Esercizio. Calcolare i limiti seguenti al variare di a > 0:

$$\lim_{n \to +\infty} \left(a^n - \frac{1}{n} \right) \qquad \lim_{n \to +\infty} \sqrt{n} \sin(n^{-a}) \qquad \lim_{n \to +\infty} \left(a^n - n^a \right).$$

SOLUZIONE:

$$\lim_{n \to +\infty} \left(a^n - \frac{1}{n} \right)$$

Tenuto conto che $\lim_{n\to\infty} \frac{1}{n} = 0$ resta da studiare il $\lim_{n\to\infty} a^n$.

- se a = 1 allora ovviamente $\lim_{n \to \infty} a^n = 1$ se a > 1 allora $a^n = (1 + (a 1))^n \ge 1 + n(a 1)$ implica $\lim_{n \to \infty} a^n = +\infty$ • se 0 < a < 1 allora

$$\lim_{n \to \infty} \left(\frac{1}{a}\right)^n = +\infty \quad \to \quad \lim_{n \to \infty} a^n = 0$$

$$\lim_{n \to +\infty} \sqrt{n} \sin(n^{-a})$$

Tenuto presente che

$$\forall x \in [0, \pi/2]: \ \frac{1}{2}x \le \sin(x) \le x$$

si ha, di conseguenza,

$$\frac{1}{2} \frac{\sqrt{n}}{n^a} \le \sqrt{n} \sin(n^{-a}) \le \frac{\sqrt{n}}{n^a}$$

Ne segue che

• se a < 1/2 riesce $\lim_{n \to +\infty} \sqrt{n} \sin(n^{-a}) = +\infty$ • se a > 1/2 riesce $\lim_{n \to +\infty} \sqrt{n} \sin(n^{-a}) = 0$

• se
$$a > 1/2$$
 riesce $\lim_{n \to +\infty} \sqrt{n} \sin(n^{-a}) = 0$

Il caso a = 1/2 non é coperto dalle stime precedenti ma discende direttamente dalla proprietá di limite della funzione seno

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

che implica, quindi,

$$\lim_{n \to +\infty} \sqrt{n} \sin \left(\frac{1}{\sqrt{n}}\right) = \lim_{n \to +\infty} \frac{\sin \left(\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}} = 1$$

$$\lim_{n \to +\infty} \left(a^n - n^a \right)$$

$$a^n - n^a = n^a \left(\frac{a^n}{n^a} - 1\right)$$

- Se a=1 allora $\lim_{n\to+\infty} (1-n)=-\infty$ se a>1 allora $\lim_{n\to+\infty} \frac{a^n}{n^a}=+\infty$ da cui segue

$$\lim_{n \to +\infty} \left(a^n - n^a \right) = +\infty$$

 \bullet se a<1allora $\lim_{n\rightarrow +\infty}\frac{a^n}{n^a}=0$ e quindi

$$\lim_{n \to +\infty} \left(a^n - n^a \right) = -\infty$$

3.5. Esercizio. Sia $(a_n)_n$ la successione definita come

$$a_n = n^2 + An + B$$
 per ogni $n \in \mathbb{N}$,

con A e B numeri reali.

- Per quali valori di A e B la successione é strettamente monotona?
- Per quali é definitivamente monotona?

La successione non é mai monotona decrescente, infatti

$$a_{n+1} \le a_n \quad \to \quad 2n+1+A \le 0$$

disuguaglianza che non puó essere soddisfatta per ogni n quale che sia la scelta di A.

La successione é monotona crescente se

$$a_{n+1} \ge a_n \to (n+1)^2 + A(n+1) + B \ge n^2 + An + B \to 2n + 1 + A \ge 2 + 1 + A \ge 0$$

La successione é pertanto monotona crescente per

$$3 + A > 0$$

La successione $\{a_n\}$ é definitivamente monotona crescente qualunque siano A e B: basta infatti considerare la sottosuccessione dei termini di indice n tale che

$$2n + A + 1 > 0$$

- **3.6.** Esercizio. Facendo uso del Teorema dei due carabinieri,
 - Verificare che

$$\lim_{n \to +\infty} \sqrt[n]{1 + \frac{1}{2^n}} = 1.$$

- Calcolare $\lim_{n \to +\infty} \sqrt[n]{2^n + 3^n}$.
- Dimostrare che se $\{a_n\}$ é una successione limitata di numeri positivi, allora

$$\lim_{n \to +\infty} \sqrt[n]{1 + a_n} = 1.$$

SOLUZIONE:

$$\lim_{n \to +\infty} \sqrt[n]{1 + \frac{1}{2^n}} = 1$$

Riesce infatti

$$1 \le 1 + \frac{1}{2^n} \le 1 + \frac{1}{2} \quad \to \quad \sqrt[n]{1} \le \sqrt[n]{1 + \frac{1}{2^n}} \le \sqrt[n]{1 + \frac{1}{2}}$$

Da cui, tenuto conto che la prima e la terza espressione hanno limite 1 ne segue che anche quella intermedia ha tale limite.

$$\lim_{n \to +\infty} \sqrt[n]{2^n + 3^n}$$

Il ragionamento precedente si adatta anche al nuovo limite proposto

$$\sqrt[n]{2^n + 3^n} = 3\sqrt[n]{1 + \left(\frac{2}{3}\right)^n} \quad \to \quad \lim_{n \to +\infty} \sqrt[n]{2^n + 3^n} = 3$$

$$\lim_{n \to +\infty} \sqrt[n]{1 + a_n} = 1, \ 0 \le a_n \le M$$

Il ragionamento si applica ancora in questo caso

$$1 \le 1 + a_n \le 1 + M \quad \to \quad \sqrt[n]{1} \le \sqrt[n]{1 + a_n} \le \sqrt[n]{1 + M}$$

Da cui, tenuto conto che la prima e la terza espressione hanno limite 1 ne segue che anche quella intermedia ha tale limite.

3.7. Esercizio. Siano

$$S_n = 1 + \frac{1}{100} + \left(\frac{1}{100}\right)^2 + \dots + \left(\frac{1}{100}\right)^n$$

- \bullet calcolare i numeri S_n esplicitamente,
- determinare il limite

$$\lim_{n\to\infty} S_n$$

• determinare il limite

$$\lim_{n \to \infty} \frac{S_n}{1 + S_n^2}$$

SOLUZIONE:

La formula da usare é la seguente

$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

che, per q = 1/100 produce

$$S_n = \frac{1 - \left(\frac{1}{100}\right)^{n+1}}{1 - \frac{1}{100}} = \frac{100}{99} - \frac{1}{99} \left(\frac{1}{100}\right)^n$$

Ne deriva che

$$\lim_{n \to \infty} S_n = \frac{100}{99} = 1 + \frac{1}{99}$$

$$\lim_{n \to \infty} \frac{S_n}{1 + S_n^2} = \frac{\lim_{n \to \infty} S_n}{1 + \left(\lim_{n \to \infty} S_n\right)^2} = \frac{\frac{100}{99}}{1 + \left(\frac{100}{99}\right)^2}$$

3.8. Esercizio. Assegnati $p, q \in \mathbb{N}$ sia $\{a_1, a_2, \dots\}$ la successione

$$a_n = \frac{1 + n^p}{1 + n^q}$$

- determinare per quali p, q la successione é limitata,
- determinare per quali p, q la successione é convergente,
- per quali p, q la successione ha limite $\ell = 1$

SOLUZIONE:

Le frazioni positive

$$a_n = \frac{1 + n^p}{1 + n^q}$$

hanno numeratore e denominatore illimitati: riesce infatti per p,q non nulli

$$\lim_{n \to \infty} (1 + n^p) = +\infty, \quad \lim_{n \to \infty} (1 + n^q) = +\infty$$

Tenuto presente $1 + n^q \le 2n^q$ si riconosce che

$$\frac{1+n^p}{1+n^q} \ge \frac{1}{2}n^{p-q}$$

Quindi se p-q>0 la successione $\{a_1,a_2,\dots\}$ assegnata non é limitata. Se $p\leq q$ allora la successione é limitata.

Se $p \leq q$ la successione é convergente:

$$p = q \rightarrow \forall n: a_n = 1 \rightarrow \lim_{n \to \infty} a_n = 1$$

 $p < q \rightarrow \forall n: a_n < 1 \rightarrow \lim_{n \to \infty} a_n = 0$

3.9. Esercizio. $Sia\ x > 0\ e\ siano$

$$a_n = \sqrt[n]{x}, \quad b_n = \sqrt[n^2]{x^2}, \quad c_n = \sqrt[n^3]{x}$$

- esaminare se le successioni $\{a_1, a_2, ...\}, \{b_1, b_2, ...\}, \{c_1, c_2, ...\},$ sono limitate,
- in caso positivo determinare gli estremi inferiore e superiore,
- esaminare per quali x siano monotone crescenti, per quali decrescenti, per quali non monotone,
- esaminare se sono convergenti.

$$a_n = \sqrt[n]{x}$$

Se x = 1 allora $\forall n : a_n = 1 \rightarrow \lim_{n \to \infty} a_n = 1$.

Se x>1 allora $a_n>1 \quad \rightarrow \quad a_n=1+h_n, \ h_n>0,$ e quindi, elevando ad n

$$x = (1 + h_n)^n \ge 1 + nh_n \quad \to \quad 0 \le h_n \le \frac{x - 1}{n}$$

Ne segue quindi (teorema dei carabinieri)

$$\lim_{n \to \infty} h_n = 0 \quad \to \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} (1 + h_n) = 1$$

Se $0 \le x < 1$ allora

$$\frac{1}{a_n} = \sqrt[n]{\frac{1}{x}}$$

Tenuto conto che 1/x > 1 ne segue che

$$\lim_{n \to \infty} \frac{1}{a_n} = 1 \quad \to \quad \lim_{n \to \infty} a_n = 1$$

$$b_n = \sqrt[n^2]{x^2}$$

Il numero x^2 é un numero positivo come qualunque altro: ma allora in base al precedente risultato si ha

$$\forall x \in \mathbb{R} : \lim_{n \to \infty} \sqrt[n]{x^2} = 1$$

La successione $\{b_1, b_2, \dots\}$ assegnata é una sottosuccessione della $\{\sqrt[n]{x^2}\}$, quella costituita dai termini di indici quadrati: quindi tenuto conto che

tutte le sottosuccessioni di una successione convergenti sono convergenti e hanno lo stesso limite

si riconosce che

$$\lim_{n\to\infty} b_n = 1$$

$$c_n = \sqrt[n^3]{x}$$

La successione $\{c_n\}$ é sottosuccessione della $\{a_n\}$: quindi converge allo stesso limite della $\{a_n\}$.

Le tre successioni sono tutte e tre monotone:

- decrescenti se $x \ge 1$
- crescenti se x < 1

Nel primo caso, x > 1 l'estremo superiore é il primo termine, che é anche il massimo. L'estremo inferiore é il limite, 1.

Viceversa nel caso x < 1 l'estremo inferiore é x che é anche il minimo, l'estremo superiore é il limite 1.

3.10. Esercizio. Il numero periodico

$$x = 0.3434343434...$$

puó essere letto come il limite della successione

$$S_n = \frac{34}{100} + \frac{34}{100^2} + \dots + \frac{34}{100^n}$$

- determinare esplicitamente i numeri razionali S_n ,
- determinare il

$$\lim_{n\to\infty} S_n$$

• detto y = 0.3535353535... determinare l'espressione razionale del prodotto x.y

SOLUZIONE:

$$S_n = \frac{34}{100} \left\{ 1 + \frac{1}{100} + \dots + \frac{1}{100^{n-1}} \right\}$$

da cui, sfruttando la stessa formula usata precedentemente si ha

$$S_n = \frac{34}{100} \frac{1 - \left(\frac{1}{100}\right)^n}{1 - \frac{1}{100}}$$

Ne segue

$$\lim_{n \to \infty} S_n = \frac{34}{100} \frac{1}{1 - \frac{1}{100}}$$

ovvero la rappresentazione razionale del numero periodico assegnato

$$x = 0.3434343434... = \frac{34}{100} \frac{1}{1 - \frac{1}{100}}$$

Un ragionamento analogo offre la rappresentazione dell'altro numero

$$y = 0.3535353535... = \frac{35}{100} \frac{1}{1 - \frac{1}{100}}$$

da cui, ovviamente,

$$x.y = \frac{34}{100} \frac{35}{100} \left(\frac{1}{1 - \frac{1}{100}} \right)^2$$

3.11. Esercizio. $Sia\ h > 0\ posto$

$$a_n = (1+h)^n$$

posto

$$b_n = \frac{n^2}{a_n}$$

provare che la successione $\{b_1, b_2, \dots\}$ é convergente.

SOLUZIONE:

Tenuto presente che dalla formula del binomio di Newton si ha

$$a_n = (1+h)^n = \sum_{k=0}^n \binom{n}{k} h^k \ge \binom{n}{3} h^3$$

si ha

$$0 \le \frac{n^2}{a_n} \le \frac{n^2}{\binom{n}{3}h^3}$$

Dal confronto dei gradi, secondo grado il numeratore, terzo il denominatore, si riconosce che la prima e la terza espressione hanno limite zero e quindi anche quella intermedia, $\{b_n\}$ ha tale limite.

Osservazione 3.1. Tenuto presente che, sempre dalla formula del binomio, riesce anche

$$a_n = (1+h)^n \ge \binom{n}{4} h^4$$

si ha

$$\frac{(1+h)^n}{n^4} \ge \frac{\binom{n}{4}h^4}{n^4}$$

e, tenuto conto che le frazioni a secondo membro tendono a

$$\frac{h^4}{4!}$$

riesce, da un certo indice n* in poi

$$(1+h)^n \ge \frac{1}{2} \frac{h^4}{4!} n^4 \longrightarrow \frac{n^2}{a_n} \le 2 \frac{4!}{h^4} \frac{1}{n^2}$$

Stima quest'ultima che

- tenuto conto che la serie armonica generalizzata $\sum \frac{1}{n^2}$ é convergente,
- tenuto conto che

$$b_n \le \left(2\frac{4!}{h^4}\right) \frac{1}{n^2}$$

implica, per confronto che anche la serie

$$\sum_{n=1}^{\infty} b_n$$

é convergente.

3.12. Esercizio. Assegnata la successione $\{a_1, a_2, \dots\}$ con

$$a_n = \sqrt[n]{n}$$

- calcolare i primi cinque termini,
- posto $a_n = 1 + h_n$ determinare maggioranti di h_n
- riconoscere che riesce

$$\lim_{n\to\infty} h_n = 0$$

SOLUZIONE:

$$a_1=1,\ a_2=1.41421,\ a_3=1.44225,\ a_4=1.41421,\ a_5=1.37973$$

Le maggiorazioni per h_n si ricavano dalla

$$1 + h_n = \sqrt[n]{n} \quad \to \quad (1 + h_n)^n = n$$

da cui

$$1 + nh_n \le (1 + h_n)^n = n \quad \to \quad h_n \le \frac{n-1}{n} = 1 - \frac{1}{n}$$

Come pure

$$1 + \binom{n}{k} h_n^k \le (1 + h_n)^n = n \quad \to \quad h_n^k \le \frac{n-1}{\binom{n}{k}} \le \frac{k!}{(n-1)\dots(n-k+1)}$$

- **3.13.** Esercizio. Assegnata la successione $\{a_1, a_2, ...\}$ di numeri positivi
 - provare che la successione $\{b_1, b_2, \dots\}$ con

$$b_n = \max\{a_1, a_2, \dots, a_n\}$$

é monotona crescente,

• provare che la successione $\{c_1, c_2, \dots\}$

$$c_n = \frac{1}{1 + b_n}$$

é convergente.

SOLUZIONE:

La successione dei massimi

$$b_n = \max\{a_1, a_2, \dots a_n\}$$

é certamente monotona crescente: al crescere di n si amplia l'insieme di cui determinare il massimo, che, quindi, non puó che aumentare o restare uguale.

La successione

$$c_n = \frac{1}{1 + b_n}$$

che ha denominatori crescenti, non puó che essere monotona decrescente.

Tenuto presente che

$$a_k \ge 0 \quad \to \quad b_n \ge 0 \quad \to \quad c_n \ge 0$$

si riconosce che la successione $\{c_n\}$ é:

- monotona decrescente,
- limitata inferiormente

quindi é convergente.

- **3.14. Esercizio.** Siano $\{a_1, a_2, ...\}$ e $\{b_1, b_2, ...\}$ due successioni convergenti
 - esaminare in quali casi le successioni

$$m_n = \min\{a_n, b_n\}, \quad M_n = \max\{a_n, b_n\}$$

sono convergenti,

- in quali casi almeno una di esse é convergente,
- cosa puó dirsi della successione $\{c_1, c_2, \dots\}$

$$c_n = \frac{m_n + M_n}{2}$$

Indicati con A e con B rispettivamente i limiti delle due successioni:

 \bullet se A < B esisterá un \overline{n} tale che

$$\forall n \geq \overline{n}: a_n \geq b_n \rightarrow m_n = a_n, M_n = b_n$$

• se A > B accade il viceversa

$$\forall n \ge \overline{n}: a_n \ge b_n \longrightarrow m_n = b_n, M_n = a_n$$

• se $A = B = \ell$ esisterá un \overline{n} tale che

$$\forall n \geq \overline{n}: \quad \to \quad a_n, b_n \in [\ell - \varepsilon, \ell + \varepsilon] \quad \to \quad m_n, M_n \in [\ell - \varepsilon, \ell + \varepsilon]$$

In ogni caso le due successioni $\{m_n\}$ e $\{M_n\}$ sono convergenti e riesce

$$\lim_{n \to \infty} m_n = \min(A, B), \quad \lim_{n \to \infty} M_n = \max(A, B)$$

La successione

$$c_n = \frac{m_n + M_n}{2} = \frac{a_n + b_n}{2}$$

e quindi, in ogni caso

$$\lim_{n \to \infty} c_n = \frac{A+B}{2}$$