Contents

1	Pot	ential Scattering	2
	1.1	ICS Curves	2
	1.2	DCS Curves	4
	1.3	DCS Curve Convergence	6
2	Der	rivation	7
3	Din	nensional Analysis	7
\mathbf{L}	\mathbf{ist}	of Figures	
	1	Electron ICS Curves	2
	2	Positron ICS Curves	3
	3	Electron DCS Curves	4
	4	Positron DCS Curves	5
	5	Convergence of DCS Curves	6

List of Tables

1 Potential Scattering

Scattering calculations have been performed for a projectile, with charge z_{proj} , scattering off a structure-less potential (equivalently - a one-state target) of the form

$$V(r) = z_{\text{proj}} \left(1 + \frac{1}{r} \right) e^{-2r}. \tag{1}$$

In these scattering calculations, the following parameters were constant: $r_{\text{max}} = 200$, dr = 0.001 and $\ell_{\text{min}} = 0$. Two sets of calculations were performed:

- 1. With $\ell_{\text{max}} = 5$; for $z_{\text{proj}} \in \{-1, +1\}$, for $E_{\text{proj}} \in \{E_k = \alpha + \beta k^2\}_{k=1}^{20}$ with α, β such that $E_1 = 0.1 \,\text{eV}$ and $E_{20} = 50.0 \,\text{eV}$, the calculation was performed, and the ICS and DCS curves extracted.
- 2. With $z_{\text{proj}} = -1$, and $E_{\text{proj}} = 25.0 \, \text{eV}$; for $\ell \in \{0, \dots, 9\}$, the calculation was performed, and the ICS and DCS curves extracted.

1.1 ICS Curves

The total and partial Integrated-Cross-Section (ICS) curves, extracted from the first set of calculations, are shown for an electron and positron projectile in Figure 1 and Figure 2 respectively.

Figure 1: The total ICS curve (shown in black) and the partial ICS curves (shown in blue-to-red) are presented, across projectile energies $0.1\,\mathrm{eV}$ to $50\,\mathrm{eV}$, for an electron projectile, with $\ell_{\mathrm{min}}=0$ and $\ell_{\mathrm{max}}=5$. Note that the y-axis is presented in log-scale.

Figure 2: The total ICS curve (shown in black) and the partial ICS curves (shown in blue-to-red) are presented, across projectile energies $0.1\,\mathrm{eV}$ to $50\,\mathrm{eV}$, for a positron projectile, with $\ell_{\mathrm{min}}=0$ and $\ell_{\mathrm{max}}=5$. Note that the y-axis is presented in log-scale.

1.2 DCS Curves

The Differential-Cross-Section (DCS) curves, extracted from the first set of calculations, are shown for an electron and positron projectile in Figure 3 and Figure 4 respectively.

Figure 3: The DCS curves (shown in blue-to-red) are presented, across scattering angles 0° to 180° , for an electron projectile, with projectile energies ranging across $0.1\,\mathrm{eV}$ to $50\,\mathrm{eV}$, and with $\ell_{\mathrm{min}}=0$ and $\ell_{\mathrm{max}}=5$. Note that the y-axis is presented in log-scale.

Figure 4: The DCS curves (shown in blue-to-red) are presented, across scattering angles 0° to 180° , for a positron projectile, with projectile energies ranging across $0.1\,\mathrm{eV}$ to $50\,\mathrm{eV}$, and with $\ell_{\mathrm{min}}=0$ and $\ell_{\mathrm{max}}=5$. Note that the y-axis is presented in log-scale.

1.3 DCS Curve Convergence

The Differential-Cross-Section (DCS) curves, extracted from the second set of calculations, are shown in Figure 5.

Figure 5: The DCS curves (shown in blue-to-red) are presented, across scattering angles 0° to 180° , for an electron projectile, with projectile energy $E=25.0\,\mathrm{eV}$, and $\ell_{\min}=0$, with ℓ_{\max} ranging across 0 to 9. Note that the y-axis is presented in log-scale.

It can be seen that the DCS converges rather quickly for this projectile energy of 25.0 eV. A point of interest is that the DCS curve, for $\ell_{\text{max}} = 0$, is constant. This is a consequence of the behaviour of the zeroth-order Legendre polynomials $P_{\ell}(\cos \theta)$, for which $P_{0}(\cos \theta) = 1$. To see this, note that the differential cross section, for this scattering calculation, is of the form

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta) = |f(\mathbf{k}_f, \mathbf{k}_i)|^2$$

where \mathbf{k}_f is such that $k_f = k_i$, and where $\cos \theta = \hat{\mathbf{k}}_f \cdot \hat{\mathbf{k}}_i$, with the scattering amplitude being of the form

$$f(\mathbf{k}_f, \mathbf{k}_i) = -\frac{\pi}{k_i^2} \sum_{\ell=\ell}^{\ell_{\text{max}}} (2\ell+1) T_{\ell}(k_i, k_i) P_{\ell}(\cos \theta).$$

Hence, where $\ell_{\min} = \ell_{\max} = 0$, we have that

$$f(\mathbf{k}_f, \mathbf{k}_i) = -\frac{\pi}{k_i^2} \sum_{\ell=0}^{0} T_0(k_i, k_i) P_0(\cos \theta) = -\frac{\pi}{k_i^2} T_0(k_i, k_i)$$

whence

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta) = \frac{\pi^2}{k_i^4} |T_0(k_i, k_i)|^2$$

demonstrating the constant behaviour of the DCS curve for $\ell_{\text{max}} = 0$.

- 2 Derivation
- 3 Dimensional Analysis