LCD 流量仪 MODBUS_RTU 通讯协议

- 1、数据传输格式: 1位起始位、8位数据位、1位停止位、无奇偶校验位。
- 2、 仪表数据格式: 2字节寄存器值=寄存器数高8位二进制数+寄存器低8位二进制数
- 3、仪表通讯帧格式:

读寄存器命令格式:

1	2	3	4	5	6	7~8
DE	3	起始寄存器高位	起始寄存器低位	寄存器数高位	寄存器数低位	CRC

应答:

1	2	3	4~5	6~7	•••	M*2+2~M*2+3	M*2+4~M*2+5
DE	3	字节计数 M*2	寄存器数据1	寄存器数据 2	•••	寄存器数据 M	CRC

DE: 设备地址 (1~200) 单字节

CRC: 校验字节 采用 CRC-16 循环冗余错误校验

举例说明:

MODBUS_RTU 通讯协议(十六进制格式)

发送: 01,03,00,00,00,10,44,06

00, 0E, 8A, 00, 00, 8A, 0E, 77, 00, 00, 60, 9C

(以上举例仅作参考,以实际通讯数据内容为准。)

仪表动态数据格式(MODBUS_RTU 协议)

编号	参数名称	数据格式	类型	备注
1	保留		0000	
2	E ² PROM参数修改标志	单字节定点数	0001	
3	仪表类型	单字节定点数	0002	
4	第一路采样	四字节浮点数	0003	
5	第二路采样	四字节浮点数	0005	
6	第三路采样	四字节浮点数	0007	
7	瞬时值	四字节浮点数	0009	因通讯是以秒为单位,故:
8	瞬热值	四字节浮点数	000B	仪表实际值(单位:小时)=通讯采集值×3600
9	累计流量	八字节浮点数	000D	通讯将八字节分为前四字节和后四字节,故:
10	累计热量	八字节浮点数	0011	仪表实际值=前四字节×100+后四字节
11	停电次数	单字节定点数	0015	
12	停电时间	四字节浮点数	0016	
13	报警状态	单字节定点数	0018	

注:

在MODBUS 数字通讯中,我们采用16 进制数据格式,其中的数据采用定点数和浮点数(数量范围较大)数据格式对于数量范围较大的数据,我们采用IEEE-754标准(32位)数据格式的浮点数表示,其格式如下:

- 1位符号
- 8位指数位
- 23 位尾数

符号位是最高位,尾数为最低的位,内存中按字节存贮如下:

地址 +0 +1 +2 +3

内容: MMMM MMMM B MMMM S EEE EEEE

其中: S: 符号位, 1=负, 0=正

E:: 指数 (在两个字节中), 偏移为 127

M: 23 位尾数, 最高位"1"

换算代码: $(-1)^S * 2^{(E-127)} * (1 + \frac{M}{2^{23}})$

例如: 0X00004841

其中: 指数为 0x82, 尾数为 0x480000, 数值计算如下,

 $(1+0x480000/0x800000) *2^{(0x82-127)} = 1.5625 *8 = 12.5$