Lecture 6

Instructor: Amit Kumar Das

Senior Lecturer,
Department of Computer Science & Engineering,
East West University
Dhaka, Bangladesh.

- Most constrained variable:
 - Choose the variable with the fewest legal values
 - A.k.a. minimum remaining values (MRV) heuristic

Most constrained variable:

- Choose the variable with the fewest legal values
- A.k.a. minimum remaining values (MRV) heuristic

Most constraining variable:

- Choose the variable that imposes the most constraints on the remaining variables
- Tie-breaker among most constrained variables

Most constraining variable:

- Choose the variable that imposes the most constraints on the remaining variables
- Tie-breaker among most constrained variables

Given a variable, in which order should its values be tried?

- Choose the least constraining value:
 - The value that rules out the fewest values in the remaining variables

Given a variable, in which order should its values be tried?

- Choose the least constraining value:
 - The value that rules out the fewest values in the remaining variables

Which assignment for Q should we choose?

Early detection of failure

```
function Recursive-Backtracking(assignment, csp)
  if assignment is complete then return assignment
   var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(\text{VARIABLES}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp)
       if value is consistent with assignment given CONSTRAINTS[csp]
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
            if result \neq failure then return result
            remove \{var = value\} from assignment
   return failure
```

Apply *inference* to reduce the space of possible assignments and detect failure early

Early detection of failure

Apply *inference* to reduce the space of possible assignments and detect failure early

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y
 - When checking X → Y, throw out any values of X for which there isn't an allowed value of Y

If X loses a value, all pairs Z → X need to be rechecked

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y
 - When checking X → Y, throw out any values of X for which there isn't an allowed value of Y

If X loses a value, all pairs Z → X need to be rechecked

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y
 - When checking X → Y, throw out any values of X for which there isn't an allowed value of Y

If X loses a value, all pairs Z → X need to be rechecked

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y
 - When checking X → Y, throw out any values of X for which there isn't an allowed value of Y

- Simplest form of propagation makes each pair of variables consistent:
 - X → Y is consistent iff for every value of X there is some allowed value of Y
 - When checking X → Y, throw out any values of X for which there isn't an allowed value of Y

- Arc consistency detects failure earlier than forward checking
- Can be run before or after each assignment

Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$

then delete x from Domain[X_i]; removed $\leftarrow true$

return removed

```
local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values (X_i, X_j) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i]
      if no value y in DOMAIN[X<sub>j</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
```

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Does arc consistency always detect the lack of a solution?

 There exist stronger notions of consistency (path consistency, k-consistency), but we won't worry about them

K-Consistency

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)

Structure

Activate Windows
Go to Settings to activate Windows.

Tree-structured CSPs

 Certain kinds of CSPs can be solved without resorting to backtracking search!

 Tree-structured CSP: constraint graph does not have any loops

 Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- Backward removal phase: check arc consistency starting from the rightmost node and going backwards

- Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- Backward removal phase: check arc consistency starting from the rightmost node and going backwards
- Forward assignment phase: select an element from the domain of each variable going left to right. We are guaranteed that there will be a valid assignment because each arc is consistent

- If n is the numebr of variables and m is the domain size, what is the running time of this algorithm?
 - O(nm²): we have to check arc consistency once for every node in the graph (every node has one parent), which involves looking at pairs of domain values

Nearly tree-structured CSPs

- Cutset conditioning: find a subset of variables whose removal makes the graph a tree, instantiate that set in all possible ways, prune the domains of the remaining variables and try to solve the resulting treestructured CSP
- Cutset size c gives runtime O(m^c (n − c)m²)

- Running time is O(nm²)
 (n is the number of variables, m is the domain size)
 - We have to check arc consistency once for every node in the graph (every node has one parent), which involves looking at pairs of domain values
- What about backtracking search for general CSPs?
 - Worst case $O(m^n)$
- Can we do better?

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Cutset Quiz

Find the smallest cutset for the graph below.

Activate Windows
Go to Settings to activate Windows.

Cutset Quiz

Find the smallest cutset for the graph below.

Activate Windows
Go to Settings to activate Windows

Thank You