Experimentalphysik C1 Molekülphysik und Festkörperphysik I

Markus Lippitz 7. Oktober 2021

Inhaltsverzeichnis

I	Theorie der molekularen Bindung	7
1	Die Valenzbindungstheorie und die Form von Molekülen	9
2	Molekülorbitaltheorie I – Das aller einfachste Molekül	17
3	Molekülorbitaltheorie II – Mehr Elektronen und mehr Kerne	25
Ar	nhang	33
A	Julia und Pluto	35
В	Addition von Drehimpulsen	39
С	Fourier-Transformation	45

Vorwort

Dies ist das Vorlesungsskript meiner Vorlesung 'Molekülphysik und Festkörperphysik I'.. Sie ist eine Kursvorlesung für Studierende im dritten Jahr des Bachelorstudiums. Bei der Auswahl und Gewichtung der Themen folgt sie sehr stark dem in Bayreuth Üblichen. Ich danke an dieser Stelle insbesondere Jürgen Köhler und Anna Köhler, deren Vorlesungsskripte mir eine große Hilfe waren.

Neben dem Skript gibt es zu jedem Kapitel insgesamt circa eine Stunde 'Vorlesung' auf Video, in der ich mündlich durch den Text führe und dabei an den Rand kritzle. Ich habe den Eindruck, dass es mir beim Sprechen leichter fällt, die Dinge in einen Zusammenhang zu bringen als beim Schreiben, da ich mich traue, schlampiger zu sein. Zur Vorbereitung gab es dann noch ein online multiple-choice Quiz, sowie die Möglichkeit, jederzeit anonym Fragen zu stellen.¹ Im Plenum (in Präsenz oder per Video-Konferenz) besprechen wir offene Fragen und diskutierten Aufgaben ähnlich zu Eric Mazurs ConcepTests.² Schließlich gibt es die in der Physik üblichen Übungszettel und Kleingruppen-Übungen. Manche Übungsaufgaben und Beispiele benutzen Julia³ und Pluto.⁴

Dieses Skript ist 'work in progress', und wahrscheinlich nie wirklich fertig. Ich danke allen Studierenden des 2020er Jahrgangs, die den Text und die Gleichungen aufmerksam gelesen haben, wodurch wir viele Fehler korrigieren konnten. Trotzdem wird es noch welche geben. Wenn Sie Fehler finden, sagen Sie es mir bitte. Die aktuellste Version des Vorlesungsskripts finden Sie auf github. 5 Ich habe alles unter eine CC-BY-SA-Lizenz gestellt (siehe Fußzeile). In meinen Worten: Sie können damit machen, was Sie wollen. Wenn Sie Ihre Arbeit der Öffentlichkeit zur Verfügung stellen, erwähnen Sie mich und verwenden Sie eine ähnliche Lizenz.

Der Text wurde mit der LaTeX-Klasse 'tufte-book' von Bil Kleb, Bill Wood und Kevin Godby⁶ gesetzt, die sich der Arbeit von Edward Tufte⁷ annähert. Ich habe viele der Modifikationen angewandt, die von Dirk Eddelbüttel im R-Paket 'tint' eingeführt wurden⁸. Die Quelle ist vorerst LaTeX, nicht Markdown.

Markus Lippitz Bayreuth, 7. Oktober 2021

- 1 frag.jetzt
- ² mazur.harvard.edu
- ³ julialang.org
- ⁴ Pluto.jl
- ⁵ Molekuele-und-Festkoerper
- ⁶ tufte-latex
- ⁷ edwardtufte.com
- 8 tint: tint is not Tufte

Teil I Theorie der molekularen Bindung

Kapitel 1

Die Valenzbindungstheorie und die Form von Molekülen

Markus Lippitz 5. Oktober 2021

Ziele

- · Sie können die Valenzbindungstheorie benutzen, um die Form von Molekülen vorherzusagen und zu erklären. Ein Beispiel ist das hier abgebildete Pentacen-Molekül.
- · Sie können die Grundzüge verschiedener Methoden erklären, mit denen Eigenschaften von Molekülen bestimmt werden können.
- Sie können die Begriffe Orbital, σ oder π -Bindung und Hybridisierung erklären und korrekt verwenden.

Überblick

Die Valenzbindungstheorie (engl. valence bond theory) ist die historisch erste quantenmechanische Theorie zur Molekülbindung. Sie wurde 1927 von Walter Heitler und Fritz London entwickelt. Kurz darauf entstand die komplementäre Molekülorbitaltheorie, die wir im nächsten Kapitel besprechen werden. Beide Theorien versuchen durch verschiedene Annahmen das quantenmechanische Problem zu lösen, welche Grundzustands-Energie und räumliche Anordnung die vielen Atomkerne und noch viel mehr Elektronen in einem Molekül annehmen.

Die Valenzbindungstheorie (VB) macht die Annahme, dass ein Elektron zunächst einmal zu einem einzigen Atomkern gehört und somit durch ein Atomorbital beschrieben wird. Eine Bindung zwischen Atomen entsteht durch das Paaren von Elektronen. Dies wird im Lewis-Schema dargestellt. In diesem Themenbereich sind oft Bücher aus der Chemie hilfreich, beispielsweise das Kapitel zur Molekülstruktur in Atkins, 2018. Die Molekülorbitaltheorie (MO) hingegen bildet die Gesamtwellenfunktion aufbauend auf der Annahme, dass jedes Elektron über das gesamte Molekül verteilt ist, also durch Molekülorbitale beschrieben wird. Die Valenzbindungstheorie ist einfacher, insbesondere von Hand, ohne Computer, und führt Begriffe ein, die auch darüber hinaus verwendet werden. Die Molekülorbitaltheorie ist insbesondere durch die Verwendung von Computern weiter entwickelt und 'moderner'.

Abbildung 1.1: Pentacen-Moleküle durch ein Raster-Tunnel-Mikroskop abgebildet. Bildgröße 5×5 nm. L. E. Dinca et al. / CC

Moleküle 'sehen'

Röntgenstreuung Wenn sich viele identische Moleküle zu einem Kristall anordnen lassen (was nicht trivial ist), dann kann man kurzwellige elektromagnetische Strahlung an diesem Kristall-Gitter beugen. Aus dem Beugungsbild erhält man durch Fourier-Transformation und ein paar Annahmen die Elektronendichte-Verteilung im Kristall. Es sind die Elektronen, die mit EM-Strahlung wechselwirken. Die Elektronendichte-Verteilung wird oft in Form von 'Höhenlinien' dargestellt. Damit ist klar, dass es nicht eine exakte 'Größe' eines Moleküls gibt.

Raster-Tunnel-Mikroskopie (engl. scanning tunneling microscope, STM)
Direkter, ohne Fourier-Transformation, kann man einzelne Moleküle auf einer leitenden Oberfläche in einem sehr guten Vakuum abbilden, in dem man eine sehr scharfe Metallspitze nahe an die Oberfläche bringt. Bei einem Abstand im Bereich weniger Angstrom fließt ein Tunnelstrom, wenn eine Spannung zwischen Spitze und Oberfläche angelegt wird. Eine Elektronik hält den Tunnelstrom durch Regelung des Abstands konstant währen die Spitze über die Oberfläche gerastert wird. Man erhält ein Höhen-Bild konstanten Tunnelstroms. Da Strom nur fließen kann, wenn sich die Wellenfunktion der Elektronen in der Spitze und in der Oberfläche wenigstens etwas überlappen, kann man so die Elektronen-Wellenfunktion von Molekülen auf der Oberfläche abbilden. Die beobachtete Form hängt auch von der gewählten Spannung ab.

Raster-Kraft-Mikroskopie (engl. atomic force microscope, AFM) Alternativ zum Tunnelstrom kann man die Kraft zwischen einer Spitze und der Probe bestimmen und Oberflächen konstanter Kraft abbilden. Wie wir in späteren Kapiteln sehen werden, gibt es einen anziehenden Abstands-Bereich aufgrund der van-der-Waals Wechselwirkung, und einen abstoßenden Bereich aufgrund des Pauli-Verbots. Als Sonde wird eine sehr scharfe Spitze aus beispielsweise Silizium verwendet, die an einer schwingenden Blattfeder montiert ist. Die Auslenkung dieses Arms wird gemessen und spiegelt die Wechselwirkung mit der Oberfläche wider.

Zur Selbstkontrolle

- 1. Wie groß ist ein Molekül?
- 2. Welche physikalische Eigenschaft eine Moleküls wird bei Röntgenstreuung, STM und AFM abgebildet?

Vorbereitung

Orbital oder Wellenfunktion?

Wir besprechen hier Systeme, die aus vielen Elektronen bestehen. Die Quantenmechanik und Atomphysik konzentrierte sich jedoch auf das Wasserstoff-Atom mit nur einem Elektron. Wir müssen daher vorsichtig mit der Nomenklatur sein. Die (Gesamt-)Wellenfunktion eines Systems aus n Elektronen ist im allgemeinen Fall $\Psi(\mathbf{r}_1,\mathbf{r}_2,\dots)$, wobei die \mathbf{r}_i die Position des Elektrons i

Abbildung 1.2: Beugung von Röntgenstrahlen liefert die Fourier-Transformierte der Elektronenverteilung.

Abbildung 1.3: Prinzip STM

Abbildung 1.4: Prinzip AFM

bezeichnen. In dieser Allgemeinheit hängt alles miteinander zusammen und ist viel zu komplex. Wir machen daher immer die Annahme, dass sich die Gesamt-Wellenfunktion als Produkt von Orbitalen ϕ_i schreiben lässt

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots) = \phi_1(\mathbf{r}_1) \, \phi_2(\mathbf{r}_2) \dots \tag{1.1}$$

Die Orbitale hängen also nur von der Position 'ihres' Elektrons ab, nicht von all den anderen Elektronen. Im Fall des Wasserstoff-Atoms mit nur einem Elektron gehen die beiden Begriffe ineinander über. Diese Aufteilung funktioniert immer, wenn die einzelnen Elektronen nicht miteinander wechselwirken, aber genau das ist der Fall. Diese Näherung versucht also, durch geschickte Wahl der ϕ_i diese Wechselwirkung vorweg zu nehmen. Es geht also darum, 'gute' ϕ_i zu finden.

Born-Oppenheimer Näherung

Atomkerne sind viel schwerer als Elektronen. In der Born-Oppenheimer Näherung betrachten wir die Kerne als stillstehend. Die Elektronen bewegen sich im stationären elektrischen Feld der Kerne. Diese Näherung wird quasi immer gemacht, so dass eigentlich nur erwähnt wird, wenn sie nicht eingesetzt wird. Formal bedeutet dies, dass die Wellenfunktion des Moleküls geschrieben werden kann als Produkt der Wellenfunktion aller Elektronen und der Wellenfunktion aller Kerne, also

$$\Psi_{\text{Molekül}}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{R}_1, \mathbf{R}_2, \dots) \approx \Psi_{\text{Elektronen}}(\mathbf{r}_1, \mathbf{r}_2, \dots) \Psi_{\text{Kerne}}(\mathbf{R}_1, \mathbf{R}_2, \dots)$$

$$(1.2)$$

wobei \mathbf{r}_i Elektronenkoordinaten sind und \mathbf{R}_i Kernkoordinaten.

Wir lösen also die Schrödingergleichung für freie Elektronen-Koordinaten, aber die Kern-Koordinaten werden als fix angenommen. Das Bindungspotential stellt die Gesamtenergie des Systems dar, wenn für jeden Punkt der Kurve ein anderer aber jeweils fester Kern-Kern-Abstand angenommen wird.

Zur Selbstkontrolle

3. Was ist im Bindungspotential gebunden?

Das Wasserstoff-Molekül: σ -Bindung

Wir betrachten zwei Wasserstoff-Atome A, B mit insgesamt zwei Elektronen 1, 2. Der Hamilton-Operator für ein einzelnes Atom \hat{H}_A ist¹

$$\hat{H}_{A}=-\frac{\hbar^{2}}{2m_{1}}\nabla_{1}^{2}-\frac{e^{2}}{4\pi\epsilon_{0}}\frac{1}{r_{A1}} \tag{1.3}$$

Die Wellenfunktion $\phi_A({f r_1})$ löst damit die Schrödinger-Gleichung. Zwei sehr weit voneinander entfernte Wasserstoff-Atome haben die Gesamt-Wellenfunktion

$$\Psi = \phi_A(\mathbf{r}_1) \, \phi_B(\mathbf{r}_2) \tag{1.4}$$

Wenn die beiden Atome nahe beieinander sind, kann man nicht mehr sagen, ob Elektron 1 bei Kern A oder Kern B ist. In dieser Situation ist daher die Gesamt-Wellenfunktion

$$\Psi = \phi_A(\mathbf{r}_2) \, \phi_B(\mathbf{r}_1) \tag{1.5}$$

Abbildung 1.5: Skizze Koordinaten Atom und Molekiil

genauso gut möglich. In der Quantenmechanik löst man dies auf durch die Superpostion der beiden Möglichkeiten. Die Gesamt-Wellenfunktion ist daher

$$\Psi_{\pm} = \phi_A(\mathbf{r}_1) \,\phi_B(\mathbf{r}_2) \,\pm \,\phi_A(\mathbf{r}_2) \,\phi_B(\mathbf{r}_1) \tag{1.6}$$

Dies löst die Schrödinger-Gleichung mit dem Gesamt-Hamilton-Operator

$$\hat{H}_{ges} = \hat{H}_A + \hat{H}_B + \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r_{12}} + \frac{1}{r_{AB}} - \frac{1}{r_{A2}} - \frac{1}{r_{B1}} \right) \tag{1.7}$$

wobei der Term mit r_{AB} auch zunächst weggelassen werden kann, weil die Kern-Positionen in der Born-Oppenheimer-Näherung ja als konstant angenommen werden.

Es zeigt sich², dass die symmetrische Superposition die niedrigere Gesamtenergie liefert. Die beiden Terme der Wellenfunktion interferieren konstruktiv und sorgen dafür, dass im Raum zwischen den beiden Kernen eine höhere Aufenthaltswahrscheinlichkeit der Elektronen zu finden ist. Diese kompensiert die Coulomb-Abstoßung der Kerne.

In der Valenzbindungstheorie entstehen Bindungen zwischen Atomen durch das Paaren von zwei Elektronen. Zwei Kerne teilen sich also zwei Elektronen, die nicht mehr einem einzelnen Kern zugeordnet sind.

Der Spin der beteiligten Elektronen muss anti-symmetrisch gegen Vertauschung sein, da die Ortswellenfunktion ja symmetrisch ist, und das Pauli-Prinzip eine insgesamt anti-symmetrische Wellenfunktion verlangt.

Die Ortswellenfunktion des Orbitals Ψ_+ ist wechselt nicht das Vorzeichen bei Rotation um die Kern-Kern-Achse. Dies ist analog zum s-Orbital im Wasserstoff-Atom bei Rotation um die (willkürlich gewählte oder durch das Magnetfeld gegebene) z-Achse. Diese Bindung wird daher als σ -Bindung bezeichnet. In beiden Fällen besitzt das Elektron keinen Drehimpuls.

Zur Selbstkontrolle

4. Was bedeutet 'symmetrisch' für das Vorzeichen in Gl. 1.6? Wle sieht die dazu passende Spin-Wellenfunktion aus?

Die π -Bindung

Die Art der Bindung hängt von der Orientierung der beteiligten Orbitale zueinander ab. Als Beispiel betrachte wir das Molekül N $_2$. Die Elektronenkonfiguration von Stickstoff ist [He]2s 2 2p 1_x 2p 1_y 2p 1_z . Wir nehmen die z-Achse als Verbindungsachse der Kerne. Hier zeigen zwei p $_z$ -Orbitale aufeinander. Eine σ -Bindung entsteht durch Paarung der beiden einzelnen Elektronen in den p $_z$ -Orbitalen, da die resultierende Wellenfunktion wieder rotationssymmetrisch um die Verbindungsachse sein wird. Sie hat die gleiche symmetrische Form wie oben.

Aus den p_x und p_y -Orbitalen erhält man je eine π -Bindung: Die hantelförmigen p-Orbitale liegen parallel zueinander und senkrecht zur Bindungsachse. Dabei überlappen im Gegensatz zur σ -Bindung der p_z -Orbitalen beide Teile der Hanteln. Das Elektron in diesem bindenden Orbital hat einen Drehimpuls von $1\hbar$ entlang der Kern-Kern-Achse, daher wird dies π -Bindung genannt.

² Haken und Wolf, 2003, Kapitel 4.4.2.

Abbildung 1.6: Molekülorbitale, die hier aus atomaren 2s oder 2p-Orbitalen aufgebaut sind. Die Farbe kodiert das Vorzeichen der Wellenfunktion. Die Symmetrie g oder u ergibt sich aus der Punktspiegelung an der Mitte des Moleküls, hier durch den kleinen Punkt markiert.

Abbildung 1.7: Atomare p-Orbitale können zu σ - und π -Bindungen kombinieren.

Insgesamt ist N_2 also aus einer σ -Bindung und zwei π -Bindungen aufgebaut.

Zur Selbstkontrolle

- 5. Decken sie die MO-Spalte in Abbildung 1.6 ab und vergewissern Sie sich, dass Sie die Art der Bindung und die Bezeichnung der Orbitale angeben können.
- 6. Schauen Sie ggf. noch einmal in der Atomphysik nach, was eigentlich [He] $2s^22p_x^12p_y^12p_z^1$ bedeutet und wo man diese Information findet.

Bindungswinkel in H₂O

Lesen Sie Kapitel 9.7.1 Das H₂O-Molekül in Demtröder, 2016. Wie kann man den Bindungswinkel von H₂O verstehen? In erster Näherung ergibt sich 90 Grad, in zweiter Näherung ein Wert, der näher am experimentell gefundenen liegt.

Schrieben und skizzieren Sie hier Ihre Erkenntnisse.

Zur Selbstkontrolle

7. Wie kommt es zur Form der Moleküle?

Hybridisierung von Kohlenstoff-Orbitalen

Insbesondere in der organischen Chemie der Kohlenwasserstoffe spielt die Hybridisierung der Kohlenstoff-Orbitale eine wichtige Rolle. Im Kohlenstoff-Atom besteht nur ein geringer Energieunterschied zwischen der energetisch 14

niedrigsten Elektronenkonfiguration [He] $2s^22p_x^12p_y^12p_z^0$ und der nächst höheren [He] $2s^12p_x^12p_x^12p_z^1$. Dies bedeutet, dass der Energieunterschied zwischen dem 2s und dem 2p-Orbital in Kohlenstoff sehr gering ist, und insbesondere

ist der Energiegewinn durch die Bindung sehr oft größer als dieser Unterschied. Es ist daher oft energetisch günstiger, die Bindung ausgehend von einer Linearkombination von 2s und 2p-Orbitalen zu betrachten. Dies nennt man Hybridisierung der Orbitale. Wenn ein s-Orbital und drei p-Orbitale beteiligt sind, dann wird dies als ${\rm sp^3-Hybridisierung}$ bezeichnet. Ohne Hybridisierung könnte Kohlenstoff nur zwei Bindungen eingehen (mit den ${\rm p}_x$ und ${\rm p}_y$ -Orbitalen), nach ${\rm sp^3-Hybridisierung}$ vier, so dass die Gesamtenergie stärker abgesenkt werden kann. 3

Die neuen Hybrid-Orbitale $h_{1..4}$ sind so gewählt, dass $\langle h_i | h_j
angle = \delta_{ij}$, also

$$h_1 = s + p_x + p_y + p_z (1.8)$$

$$h_2 = s + p_x - p_y - p_z (1.9)$$

$$h_3 = s - p_x + p_y - p_z (1.10)$$

$$h_4 = s - p_x - p_y + p_z (1.11)$$

Diese Orbitale entstehen also durch Interferenz der ursprünglichen Orbitale und haben eine Ladungsverteilung, deren Keulen einen Tetraeder aufspannen. Der Bindungswinkel ist $\arccos(-\frac{1}{3}) = 109.5^{\circ}$. Methan (CH₄) ist daher tetraederförmig.

Analog gibt es auch die sp^2 und die sp-Hybridisierung. Die sp^2 -Hybridisierung findet man beispielsweise in Ethen (C_2H_4). Die drei sp^2 -Orbitale jedes Kohlenstoff-Atoms sind an der σ -Bindung der beiden Wasserstoff-Atome beteiligt und σ -Bindung zwischen den beiden Kohlenstoff-Atomen. Die zweite C–C Bindung ist eine 'gewöhnliche' π -Bindung zwischen den verbleibenden, nicht hybridisierten p-Orbitalen, die senkrecht auf die durch die sp^2 -Orbitale gebildete Ebene stehen. Dadurch ergeben sich die Winkel in der HCH bzw. HCC-Bindung zu circa 120° .

Ein Beispiel für die sp-Hybridisierung ist Ethin (C_2H_2 , $HC \equiv CH$).

Zur Selbstkontrolle

- 8. Wie entscheidet sich, ob die 'normalen' oder die 'hybriden' Orbitale zum Einsatz kommen?
- 9. Was ist bei der Hybridisierung so besonders an Kohlenstoff?

Abbildung 1.8: Elektronische Niveaus bei der Hybridisierung von Kohlenstoff.

³ Auch ist die Idee eines s- oder p-Orbitals ein Ein-Elektron-Konzept, das in Mehrelektronen-Atomen durch die anderen Elektronen gestört wird.

Abbildung 1.9: sp3-Hybridisierung in CH₄.

Abbildung 1.10: sp^2 -Hybridisierung in C_2H_4 .

Zusammenfassung

Schreiben Sie hier ihre persönliche Zusammenfassung des Kapitels auf. Konzentrieren Sie sich auf die wichtigsten Aspekte und die am Anfang genannten Ziele des Kapitels.

Literatur

Atkins, Peter W. (2018). Atkins' physical chemistry. Eleventh edition. Oxford: Oxford University Press. ISBN: 9780198769866.

Demtröder, Wolfgang (2016). Experimentalphysik. Atome, Moleküle und Festkörper. 5., neu bearbeitete und aktualisierte Auflage. Bd. 3. Berlin [u.a.]: Springer. ISBN: 9783662490945. DOI: 10 . 1007 / 978 - 3 - 662 -

Haken, H. und H.C. Wolf (2003). Molekülphysik und Quantenchemie. Springer.

Kapitel 2

Molekülorbitaltheorie I - Das aller einfachste Molekül

Markus Lippitz 5. Oktober 2021

Ziele

- Sie können die Molekülorbitaltheorie benutzen, um die kovalente Bindung in H₂⁺ zu erklären und insbesondere die verschiedenen Beiträge diskutie-
- Sie können die Molekülorbitaltheorie von der Valenzbindungstheorie abgrenzen.

Überblick

Die Molekülorbitaltheorie (MO) baut zunächst neue (Ein-Elektron-) Orbitale, die sich über das ganze Molekül erstrecken. Dann werden in diese Orbitale nach und nach Elektronen eingefüllt, analog zu Mehr-Elektronen-Atomen in der Atomphysik. Dabei wird die Wechselwirkung zwischen den Elektronen zunächst vernachlässigt. Die MO-Theorie macht also andere Näherungen als die Valenzbindungstheorie.

Das Variationsprinzip

Die Schrödinger-Gleichung

$$\hat{H} \ket{\Phi} = E_0 \ket{\Phi} \tag{2.1}$$

ist eine Differentialgleichung und nicht immer einfach zu lösen. Hier hilft das Variationsprinzip. Für eine beliebige Wellenfunktion $|\Psi\rangle$ gilt

$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \ge E_0 \quad . \tag{2.2}$$

Die Mathematik sagt, dass E minimal wird, wenn $|\Psi\rangle$ die Schrödinger-Gleichung löst. Aber auch wenn $|\Psi
angle$ keine Lösung der Schrödinger-Gleichung ist, kann man Gl. 2.2 einfach ausrechnen. Wir probieren also verschiedene Test-Funktionen durch und versuchen, die Energie nach Gl. 2.2 zu minimieren. Dadurch nähern wir uns der echten Eigenfunktion immer mehr an, die Lösung

der Schrödinger-Gleichung ist. Leider wissen wir nicht, ob wir nicht durch noch bessere Test-Funktionen noch kleinere Werte von E erreichen würde. Sei die Testfunktion

$$|\Psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle \tag{2.3}$$

mit normierten $|\phi_i\rangle$ und reell-wertigen Koeffizienten c_i . Damit erhält man

$$\langle \Psi | \Psi \rangle = c_1^2 + c_2^2 + 2c_1c_2 \underbrace{\langle \phi_1 | \phi_2 \rangle}_{-S}$$
(2.4)

$$\langle \Psi | H | \Psi \rangle = c_1^2 \underbrace{\langle \phi_1 | H | \phi_1 \rangle}_{=H_{11}} + c_2^2 \underbrace{\langle \phi_2 | H | \phi_2 \rangle}_{=H_{22}} + 2c_1 c_2 \underbrace{\langle \phi_1 | H | \phi_2 \rangle}_{=H_{12}} \quad . (2.5)$$

Dabei bezeichnet S das Überlapp-Integral der beiden Wellenfunktionen, und H_{ij} die Matrix-Elemente des Hamilton-Operators. Die Diagonalelemente H_{11} und H_{22} geben die Coulomb-Energie an, die Außerdiagnoalelemente $H_{12}=H_{21}$ die Austausch-Energie 1 . Mit diesen Abkürzungen kann man die Eigen-Energie schreiben als

¹ mehr zu den Namen im nächsten Abschnitt

$$E = \frac{c_1^2 H_{11} + c_2^2 H_{22} + 2c_1 c_2 H_{12}}{c_1^2 + c_2^2 + 2c_1 c_2 S} {2.6}$$

Für eine minimale Eigenen-Energie E müssen die partiellen Ableitungen nach c_i beide Null sein. Nach ein paar Umformungen findet man zwei Lösungen E_\pm für die minimale Energie E als

$$\begin{vmatrix} H_{11} - E & H_{12} - E S \\ H_{12} - E S & H_{22} - E \end{vmatrix} = 0 \quad \text{oder} \quad E_{\pm} = \frac{H_{11} \pm H_{12}}{1 \pm S} \quad , \quad \ (2.7)$$

wobei wir im letzten Schritt angenommen haben, dass $H_{11} = H_{22}$.

Zur Selbstkontrolle

1. Vollziehen Sie Gl. 2.3 bis 2.6 nach.

Das Wasserstoff-Molekül-Ion H₂⁺

Als Beispiel für das Variationsprinzip in der Molekülorbitaltheorie betrachten wir das Wasserstoff-Molekül-lon 2 H_2^+ . Es gibt also nur ein Elektron, was das Problem der Elektron-Elektron-Wechselwirkung umgeht.

Wir benutzen wie immer die Born-Oppenheimer-Näherung. Die Kerne bewegen sich also nicht und tragen somit auch nicht zur kinetischen Energie bei. Der Abstand des einzigen Elektrons zu den beiden Kernen sei r_1 und r_2 . Der Hamilton-Operator des Gesamtsystems ist

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r_1} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r_2} = \hat{H}_1 - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r_2} \quad , \qquad \text{(2.8)}$$

wobei \hat{H}_1 der Hamilton-Operator des Wasserstoff-Atoms ist. Die Coulomb-Energie der beiden Kerne untereinander hängt nur vom Kern-Kern-Anstand ab und ist somit eine Konstante, die später zur Gesamtenergie addiert werden wird.

² Dies wäre auch exakt möglich, mittels elliptischer Koordinaten, siehe z.B. Demtröder, Molekülphysik Kap. 2.4.1

Wir suchen Molekül-Orbitale $|\Psi\rangle$, die mit \hat{H} die Schrödinger-Gleichung lösen, und kennen bereits die Lösungen für \hat{H}_1 :

$$\hat{H} |\Psi\rangle = E |\Psi\rangle \quad \text{und} \quad \hat{H}_1 |\phi\rangle = E_1 |\phi\rangle \quad . \tag{2.9}$$

Da die beiden Kerne identisch sind, gibt es solche Lösungen $|\phi_2\rangle$ in der gleichen Form aber zentriert um eine andere Kernposition auch für den zweiten Kern. Linearkombinationen von diesen $|\phi_{1,2}\rangle$ nehmen wir jetzt als Testfunktion $|\Psi\rangle$. Dies nennt man linear combination of atomic orbitals (LCAO).

Wir folgen dem oben dargestellten Variationsprinzip und müssen nur die drei Integrale S, H_{11} und H_{12} diskutieren.

Überlappintegral S Das Integral S beschreibt den räumlichen Überlapp der beiden Atom-Wellenfunktionen, wenn die einen um Kern 1, die andere um Kern 2 zentriert ist:

$$S = \langle \phi_1 | \phi_2 \rangle = \int \phi_1^{\star}(\mathbf{r}) \, \phi_2(\mathbf{r}) \, d\mathbf{r}$$
 (2.10)

Dabei bezeichnet ${\bf r}$ die Position des Elektrons. Die Wellenfunktion ϕ_i ist um den Kern an Position ${\bf r}_i$ zentriert. Da die $|\phi\rangle$ normiert sind, liegt der Wert von S zwischen 0 und 1.

Coulomb-Wechselwirkung H_{11} Dieser Term beschreibt die Coulomb-Energie des Elektrons in der atomaren Wellenfunktion ϕ_1 , aber in Gegenwart beider Kerne:

$$H_{11} = \langle \phi_1 | \hat{H} | \phi_1 \rangle = \langle \phi_1 | \hat{H}_1 | \phi_1 \rangle - \langle \phi_1 | \frac{e^2}{4\pi\epsilon_0} \frac{1}{r_2} | \phi_1 \rangle \tag{2.11}$$

$$= E_1 - \frac{e^2}{4\pi\epsilon_0} \int \frac{|\phi_1(\mathbf{r})|^2}{|\mathbf{r} - \mathbf{r}_2|} d\mathbf{r} = E_1 + C \quad . \tag{2.12}$$

Das Ergebnis ist die Eigen-Energie des Elektrons im Wasserstoff-Atom, korrigiert im ein Überlappintegral der Ladungsdichte $|\phi_1(\mathbf{r})|^2$ um den einen Kern im Coulomb-Potential des anderen Kerns. Der Korrekturterm C ist negativ.

Austausch-Wechselwirkung H_{12} Die Austausch-Wechselwirkung ist ein rein quantenmechanischer Effekt.

$$H_{12} = \langle \phi_1 | \hat{H} | \phi_2 \rangle = \langle \phi_1 | \hat{H}_1 | \phi_2 \rangle - \langle \phi_1 | \frac{e^2}{4\pi\epsilon_0} \frac{1}{r_2} | \phi_2 \rangle \tag{2.13}$$

$$= E_1 S - \frac{e^2}{4\pi\epsilon_0} \int \frac{\phi_1^{\star}(\mathbf{r}) \,\phi_2(\mathbf{r})}{|\mathbf{r} - \mathbf{r}_2|} \,d\mathbf{r} = E_1 \,S + A \quad . \tag{2.14}$$

Die Austausch-Dichte $\phi_1^{\star}(\mathbf{r})$ $\phi_2(\mathbf{r})$ ist ähnlich einer Ladungsdichte $|\phi(\mathbf{r})|^2$, nur dass zwei verschiedenen Wellenfunktionen eingehen. Das Elektron wechselt sozusagen zwischen der Zugehörigkeit zu Kern 1 und 2. Der Korrekturterm A ist ebenfalls negativ.

Mit diesen Integralen wird die Gesamtenergie

$$E_{\pm} = \frac{H_{11} \pm H_{12}}{1 \pm S} = E_1 + \frac{C \pm A}{1 \pm S} \quad . \tag{2.15}$$

Die zugehörigen Molekül-Orbitale sind die symmetrische und die antisymmetrische Kombination der Atom-Orbitale

$$|\Psi_{\pm}\rangle = \frac{1}{\sqrt{2(1\pm S)}} \left(|\phi_1\rangle \pm |\phi_2\rangle \right) \quad . \eqno(2.16)$$

Abbildung 2.1: Skizze Überlappintegral S.

³ Wasserstoff-Wellenfunktionen sind reellwertig.

Abbildung 2.2: Skizze Coulomb-Integral C

Abbildung 2.3: Skizze Austausch-Integral ${\cal A}.$

Zur Berechnung der Bindungsenergie nehmen wir jetzt die nur vom Kern-Kern-Abstand ${\cal R}$ abhängende Coulomb-Energie der Kerne wieder hinzu.

$$E_{\mathsf{Bindung}} = E_{\mathsf{Molek\"{iil}}} - E_{\mathsf{Atom}}$$
 (2.17)

$$= E_1 + \frac{C \pm A}{1 \pm S} + \frac{e^2}{4\pi\epsilon_0} \frac{1}{R} - E_1 \tag{2.18}$$

$$= \frac{C}{1 \pm S} + \frac{e^2}{4\pi\epsilon_0} \frac{1+S}{R} \pm \frac{A}{1 \pm S} \quad . \tag{2.19}$$

Numerische Rechnungen zeigen, dass das Überlapp-Integral S keinen Entscheidenden Einfluss auf das Ergebnis hat, wir es hier also nicht weiter betrachten müssen. 4

Das Coulomb-Integral C ist für einen großen Kern-Kern-Abstand R quasi die Energie einer Punkt-Ladung im Potential des anderen Kerns, da die Ausdehnung der Wellenfunktion ϕ_1 vernachlässigt werden kann. Da C negativ ist, kompensieren sich dann die ersten beiden Summanden in Gl. 2.19. Für kleine Kern-Kern-Abstände R bleibt C negativ und endlich, da die potentielle Energie eines Elektrons im Wasserstoff-Atom endlich ist. Der zweite Summand strebt aber mit 1/R gegen positiv unendlich. Die Summe der ersten beiden Terme ist also entweder Null oder positiv, so dass keine Bindung zustande kommt.

Den entschiedenen Beitrag liefert der dritte Summand mit dem Austausch-Integral A. Für große R ist das Austausch-Integral wieder Null. Für kleine Abstände R ist das Austausch-Integral sehr ähnlich dem Coulomb-Integral und endlich negativ. Dazwischen ist es in einem gewissen Bereich von R negativ genug, dass bei positivem Vorzeichen in Gl. 2.19 die Bindungsenergie negativ wird, eine Bindung also zustande kommt.

Damit ist also Ψ_+ das bindende Orbital. Da es aus Wasserstoff-1s-Orbitalen zusammengesetzt ist, ist es ein σ -Orbital. Ψ_- ist ein anti-bindendes σ^* -Orbital. Die Skizze zeigt die Gesamt-Energie als Funktion des Kern-Kern-Abstands R. Dies wird als Bindungspotential bezeichnet. Für das bindende Orbital sind sehr kleine R durch das Pauli-Verbot ausgeschlossen. Der Bindungsabstand R_0 ist der Abstand minimaler Energie. Das Potential kann in seiner Umgebung durch eine harmonisches Parabel-Potential genähert werden. Die Energie $E(R_0)$ bestimmt die Stärke de Bindung, also wieviel Energie aufgebracht werden muss, um die beiden Atome zu trennen. Der zweite Block der Vorlesung zur Spektroskopie von Molekülen beschäftigt sich eigentlich nur mit Methoden, wie die verschiedenen Parameter dieses Bindungspotentials experimentell bestimmt werden können.

Zur Selbstkontrolle

- 2. Die drei Integrale S, C und A sind von zentraler Bedeutung. Sie sollten sie sowohl als Gleichung als auch als Skizze darstellen können.
- Warum sagt man 'Die Austausch-Wechselwirkung ist ein rein quantenmechanischer Effekt'?

⁴ Für H₂⁺ lassen sich relativ einfache geschlossene Formen für die Integrale angeben, siehe McQuarrie, 2008

Abbildung 2.4: Abhängigkeit der Integrale vom Kern-Kern-Abstand R. Dargestellt ist $C'=C+rac{e^2}{4\pi\epsilon_0}rac{1}{R}$ bzw. $A'=A+rac{e^2}{4\pi\epsilon_0}rac{S}{R}$

Abbildung 2.5: Skizze des Bindungspotentials $E_{\rm Bindung,\pm}$ vom Kern-Kern-Abstand R. Das bindende Potential E_+ zeigt ein Minimum bei R_0 , das anti-bindende Potential E_- hat nur ein Minimum im Unendlichen.

Das Austausch-Integral für verschiedene Atom-Orbitale

Wir haben bisher nicht diskutiert, welche Form die Atom-Orbitale $|\phi\rangle$ denn eigentlich haben. Im Wasserstoff-Molekül-Ion H₂⁺ werden es sicherlich s-Orbitale sein (was auch bei der Diskussion der Beiträge angenommen wurde). Bei anderen Orbitalen kann es zum Verschwinden des Austausch-Integrals A kommen, und somit keine Bindung geben.

Ein Beispiel ist das Austausch-Integrals zwischen einem s-Orbital und einem p_x -Orbital, wenn z die Kern-Kern-Achse ist. Die beiden Keulen des p_x -Orbitals tragen mit unterschiedlichem Vorzeichen zum Austausch-Integral bei und kompensieren sich so. In diesem Fall wäre A Null. Wenn hingehen ein p_z-Orbital mit einem s-Orbital überlappt, dann verschwindet das Austausch-Integral A nicht.

Abbildung 2.6: Je nach Art und Orientierung der beteiligten Orbitale kann das Austausch-Integral A auch verschwinden. Die Farben kodieren das Vorzeichen der Wellenfunktion.

Anschauliche Argumente für eine chemische Bindung

Kann man anschaulich verstehen, warum das Wasserstoff-Molekül-Ion H₂⁺existiert, also energetisch günstiger ist als ein Wasserstoff-Atom und ein freies Proton? Aus meiner Sicht gibt es zwei bis drei Wege.

Elektronen-Dichte-Verteilung $\,$ Im symmetrischen Molekülorbital $\Psi_+ \propto$ $\phi_1+\phi_2$ ergibt sich ein deutlich von Null verschiedener Wert der Elektronendichte $|\Psi_+|^2$ in der Mitte zwischen den beiden Kernen. Diese negative Ladungsdichte schirmt den positiven Kern vom anderen positiven Kern ab. Die Coulomb-Abstoßung der Kerne ist also geringer, als wenn das Elektron in einem s-Orbital um einen Kern alleine wäre. Im Ψ_- -Orbital ist dies nicht mehr der Fall. Hier ist die Elektronen-Dichte zwischen den Kernen geringer, in der Mitte der Strecke sogar exakt Null.

Teilchen im Kasten Man kann das Molekül-Orbital Ψ_+ als Kasten für das Elektron sehen, auch wenn die Wände nicht senkrecht und unendlich hoch sind. Die Energie des niedrigsten Zustands in einem eindimensionalen Kasten-Potential ist proportional zu 1/L, mit der Kastenlänge L. Das Molekül bildet einen größeren Kasten als das Atom, darum sinkt die Energie für das Elektron und es kommt zur Bindung.

Quantenmechanische Interferenz Die Ladungsdichte in einem Molekül-Orbital ist $|\phi_1+\phi_2|^2$, wenn das Orbital aus den beiden Atom-Orbitalen ϕ_1 und ϕ_2 aufgebaut ist. Die Ladungsdichte ist damit *nicht* die Summe der Ladungsdichten der beiden Atom-Orbitale, also nicht $|\phi_1|^2 + |\phi_2|^2$. Quantenmechanische Wellenfunktionen interferieren, werden also addiert bevor das Betrags-Quadrat gebildet wird. Dies ermöglicht Auslöschung (im Fall von Ψ_-) und konstruktive Interferenz (im Fall von Ψ_+), wodurch obiges Elektronendichte-Argument zum Tragen kommt und die chemische Bindung ermöglicht wird.

Abbildung 2.7: Wellenfunktion (dünne Linie) und Ladungsdichte (dicke Linie) der bindenden Wellenfunktion Ψ_+ und der anti-bindenden Wellenfunktion Ψ_- .

Abbildung 2.8: Teilchen im Kasten

Vergleich unserer Rechnung mit der Wirklichkeit

Unsere Rechnung ergibt ein qualitativ korrektes Bindungspotential für das Wasserstoff-Molekül-Ion H₂⁺. Quantitativ stimmt sie aber nicht. Experimentell ist der Bindungsabstand $R_0\,=\,106$ pm, die Rechnung liefert 132 pm. Experimentell ist die Bindungsenergie 2.5 eV die Rechnung liefert 1.7 eV.

Auch erfüllt unser Modell den Virialsatz nicht. Für ein Coulomb-Potential müsste der Mittelwert der potentiellen Energie $\langle \hat{U} \rangle$ genau -2 mal dem Mittelwert der kinetischen Energie $\langle \hat{T} \rangle$ sein. In unserem Modell ist der Faktor⁵ aber nur ca. -1.6.

Die Ursache für beides ist, dass unsere Testfunktion $c_1\ket{\phi_1}+c_2\ket{\phi_2}$ zwar die Schrödinger-Gleichung löst, aber nicht die geringste Energie in Gl. 2.2 liefert. Die Testfunktion ist zu einfach und muss weitere Terme enthalten.

Lesen Sie in Demtröder, 2018 den Abschnitt '9.1.3 Improvements to the LCAO ansatz'. Welche Anpassung an der Testfunktion verbessert das Ergebnis? Wie kann man das verstehen? Machen Sie sich hier Notizen dazu.

⁵ McQuarrie, 2008.

Zusammenfassung

Schreiben Sie hier ihre persönliche Zusammenfassung des Kapitels auf. Konzentrieren Sie sich auf die wichtigsten Aspekte und die am Anfang genannten Ziele des Kapitels.

Literatur

Demtröder, Wolfgang (2018). Atoms, molecules and photons. an introduction to atomic-, molecular- and quantum physics. Third edition. Berlin: Springer.

ISBN: 3662555212. DOI: 10.1007/978-3-662-55523-1.

McQuarrie, Donald A. (2008). Quantum chemistry. 2. ed. Sausalito, Calif.: Univ. Science Books, XIII, 690 S. ISBN: 9781891389504.

Kapitel 3

Molekülorbitaltheorie II – Mehr Elektronen und mehr Kerne

Markus Lippitz 5. Oktober 2021

Ziele

- · Sie können für di-atomare Moleküle Orbital-Diagramme erstellen, Elektronen einfüllen und die spektroskopischen Termsymbole bestimmen.
- · Sie können die Hückel-Methode benutzen, um Molekülorbitale in großen π -Systemen zu berechnen und deren Eigenschaften zu bestimmen.
- Sie k\u00f6nnen die Molek\u00fclorbitaltheorie von der Valenzbindungstheorie abgrenzen.

Überblick

Wie benutzen die Molekülorbitaltheorie um Moleküle jenseits von H₂⁺ zu beschreiben, die also mehr als ein Elektron besitzen und aus mehr als zwei Kernen aufgebaut sind.

Bezeichnung von Molekülzuständen

Bevor wir beginnen, weitere Elektronen in die Molekülorbitale einzufüllen, müssen wir kurz die Nomenklatur der Zustände diskutieren. Diese ist analog zu Mehrelektronen-Atomen. Ausführlich dargestellt ist sie beispielsweise in Demtröder, 2013 oder Demtröder, 2018.

In der Atomphysik gibt es für jedes Elektron die Quantenzahlen n, l, m_l , s, m_s , j, m_j , die (bis auf n) die Länge und die Orientierung eines Drehimpulsartigen Vektors anzeigen. Die Größe des Bahndrehimpulses, also die Quantenzahl l wird als s,p,d,f, ... angegeben. In Mehrelektronen-Atomen bildet man vektorielle Summen über die einzelnen Vektoren der Elektronen. Je nach Kopplungsschema addiert¹ man zunächst alle Bahndrehimpulse \vec{l} und Spins $\vec{s_i}$ oder alle Gesamtdrehimpulse \vec{j} . Das Ergebnis wird dann wieder als Längenund Orientierungsquantenzahl angegeben, also L, M_L , S, M_S , J und M_J .

¹ Zur Addition von Drehimpulses siehe Anhang ??

Der wichtigste Unterschied in Molekülen ist, dass die Vorzugsrichtung oder z-Achse durch die Kern-Kern-Achse immer gegeben ist. Da Drehimpulserhaltung Rotationssymmetrie voraussetzt, ist in Molekülen nur noch die Drehimpuls-Komponenten entlang der Kern-Kern-Achse eine gute Quantenzahl. m_l übernimmt also die Rolle von l in der Atomphysik. Manchmal werden noch n und l angegeben, was dann aber nur noch aussagt, in welchen Quantenzahlen n, l das Elektron landen würde, wenn das Molekül zu einzelnen Atomen auseinandergezogen würde. Manchmal sind stattdessen auch die Orbitale eines Typs nach aufsteigender Energie durchnummeriert.

Weiterhin hängt die Gesamtenergie nicht vom Vorzeichen von m_l ab, so dass $\lambda=|m_l|$ eingeführt wird. Analog zu l in der Atomphysik wird der Wert von λ als $\sigma,\pi,\delta,\phi,\ldots$ dargestellt, wie wir es bei der Klassifizierung der Bindungen schon gesehen hatten. Man beachte jedoch, dass somit alle Zustände außer $\lambda=0$ zweifach entartet sind, da ja $m_l=\pm\lambda$.

Analog zum Mehrelektronen-Atom können im Molekül auch Gesamt-Quantenzahlen definiert werden. Wie im Atom auch sind die Projektionen auf die Achse einfach per Addition zu gewinnen:

$$M_S = \sum m_{si} \quad {\rm und} \quad M_L = \sum m_{l_i}$$
 (3.1)

Wie beim einzelnen Elektron ist auch wieder $\Lambda=|M_L|$ die interessantere Größe, die ebenfalls wieder als $\Sigma,\Pi,\Delta,\Phi,\dots$ dargestellt wird. Wenn die Länge des Gesamt-Spin-Vektors $|\vec{S}|=\hbar\sqrt{S(S+1)}$ ist, dann muss M_S ist zwischen -S und S liegen, kann also 2S+1 verschiedene Werte annehmen. Dies wird als Multiplizität bezeichnet. Für den Gesamt-Drehimpuls \vec{J} ist analog auch nur der Betrag der Projektions-Komponenten interessant, die Ω genannt wird

$$\Omega = |M_J| = |\Lambda + M_S| \tag{3.2}$$

Dies alles wird zum spektroskopischen Termsymbol zusammengefasst:

$$^{2S+1}\Lambda_{\Omega}$$
 (3.3)

In den Termsymbolen wird häufig auch noch die Symmetrie der Wellenfunktion angegeben. Ein g bzw. u als Index bezeichnet eine Wellenfunktion, die gerade bzw. ungerade bei Inversion, also Punktspiegelung ist. Bei Σ -Zuständen wird zusätzlich noch die Symmetrie bei Spiegelung an einer Ebene angegeben, die die Kern-Kern-Achse enthält. Dies stellt man als hochgestelltes + oder - dar. Alles zusammen

$$2S+1\Lambda_{\Omega,(g,u)}^{\pm}$$
 (3.4)

So wie es hier dargestellt ist, gilt dies für di-atomare Moleküle. Bei größeren Molekülen wird auf die Symmetrie-Gruppe zurückgegriffen⁴ Häufig wird dann nur noch die Multiplizität des Zustands als Singulett (S) oder Triplett (T) angegeben und die Zustände in energetisch aufsteigender Reihenfolge nummeriert.

Zur Selbstkontrolle

 Gehen Sie noch einmal zurück zu Abbildung 1.6 ab und vergewissern Sie sich, dass Sie die Art der Bindung und die Bezeichnung der Molekül-Orbitale angeben können.

 $^{^2}$ Anti-bindenden Orbitale werden dabei mit einem hochgestellten Stern gekennzeichnet, beispielsweise $\pi^\star.$

 $^{^{\}rm 3}$ Daher Triplett für S=1 und Singulett für S=0.

⁴ Etwas mehr dazu zu Beginn der Festkörperphysik, ansonsten Kristallographie.

Beispiel: Sauerstoff

Als Beispiel betrachten wir das Sauerstoff-Molekül 0_2 . Atomarer Sauerstoff hat die Elektronenkonfiguration [He]2s $^22p_x^22p_y^12p_z^1$. Die beiden ungepaarten p-Elektronen tragen zur Bindung bei. Im Molekül entstehen volle Orbitale, sowie zwei Elektronen in einem $2\pi_g^\star$ -Orbital. Nur diese beiden Elektronen müssen wir betrachten, da volle Schalen bzw. volle Orbitale in Summe nicht beitragen. Die Orientierung der Bahndrehimpulse ist $\lambda=1$ bzw. $m_l=\pm 1$, so dass die Orientierung des Gesamt-Bahndrehimpulses $M_L=0$ oder ± 2 sein kann (Σ oder Δ). Analog für den Spin $m_s=\pm 1/2$ und $M_S=0$ oder ± 1 . Dies ergibt zunächst vier Kombinationen. Es können die beiden Elektronen aber nicht sowohl im m_l als auch in m_s übereinstimmen. Dies schließt den Zustand $M_L=\pm 2$; $M_s=\pm 1$ aus.

$$^{1}\Sigma$$
 $^{3}\Sigma$ $^{1}\Delta$ Pauli-verboten: $^{3}\Delta$ (3.5)

Die Symmetrie ist bei allen drei Zuständen gerade, da alle aus Elektronen in einem geraden $2\pi_g$ -Orbital aufgebaut sind. Die Symmetrie der Σ -Zustände kann man sich aus den jeweiligen Spin-Funktionen herleiten: ein Triplett-Zustand ist symmetrisch im Spin, und muss daher anti-symmetrisch im Raum sein, also $^3\Sigma^-$ und andersrum. 6 Zusammen also

$$^{1}\Sigma_{g}^{+} \quad ^{3}\Sigma_{g}^{-} \quad ^{1}\Delta_{g} \tag{3.6}$$

Genau wie in der Atomphysik kann man mit den Hund'schen Regel den energetisch niedrigsten Zustand finden. Maximales S gewinnt, also ist $^3\Sigma_g^-$ der Grundzustand. Es ist selten, dass der Grundzustand ein Triplett-Zustand ist. Quasi immer ist der Singulett-Zustand energetisch niedriger. Dies hängt davon ab, in welchem Orbital die letzten, energetisch höchsten Elektronen laden, die eingefüllt werden, wie wir im nächsten Abschnitt sehen.

Zur Selbstkontrolle

2. Warum ist der Zustand $^3\Delta$ Pauli-verboten?

Mehr als ein Elektron: Hund-Mulliken-Bloch-Methode

Um Moleküle mit mehr als einem Elektron zu beschreiben verfahren wir genauso wie in der Atomphysik bei dem Übergang von Wasserstoff-Atom zu Mehr-Elektronen-Atomen: wir ignorieren die Wechselwirkung der Elektronen untereinander und füllen nach und nach Elektronen in Ein-Elektronen-Molekül-Orbitale und multiplizieren mit einer passenden Spin-Wellenfunktion. Diese Idee ist mit den Namen Hund, Mulliken und Bloch verknüpft.

Zunächst formen wir Molekül-Orbitale als Linearkombination vom Atom-Orbitalen, benutzen also LCAO. Beides sind Ein-Elektronen-Orbitale, also Raum-Anteile der Wellenfunktion. Wenn in den zu bindenden Atomen viele Elektronen vorhanden sind, dann tragen auch viele Orbitale bei. Allerdings sind nicht alle Orbitale kombinierbar, sondern nur solche, die in der Gruppentheorie die gleiche Symmetrie aufweisen. Dies verallgemeinert die Diskussion in letzten Kapitel zum verschwindenden Austausch-Integral. Vereinfachend

5 wird im nächsten Abschnitt erklärt

 $^{^6}$ Man kann auch über die Symmetrie der einzelnen Orbitale gehen: $2\pi_{g,x}$ anders als $2\pi_{g,y}$, siehe z.B. McQuarrie, 2008 oder Atkins. 2018.

kann man auch sagen, dass nur Orbitale ähnlicher Energie kombiniert werden, also 1s mit 1s, 2s mit 2s usw.

Wie in der Valenzbindungstheorie gesehen, liefern Kombinationen von s-Orbitalen eine σ -Bindung. Dementsprechend entsteht also ein σ -Orbital. Bei den p-Orbitalen hängt es von der relativen Orientierung ab: p₂-Orbitale erzeugen eine molekulare σ -Orbital, atomare $\mathsf{p}_{x,y}$ -Orbitale ein molekulares π -Orbital.

Die Gesamt-Wellenfunktion ist also aufgebaut aus einzelnen Molekül-Orbitalen Ψ_i , die wiederum Linearkombination von passenden Atom-Orbitalen ϕ_i sind:

$$\Psi_i(\mathbf{r}_i) \propto \sum_j c_j \phi_j(\mathbf{r}_i)$$
 (3.7)

$$\Psi_i(\mathbf{r}_i) \propto \sum_j c_j \phi_j(\mathbf{r}_i)$$
 (3.7)
$$\Psi_{\mathsf{ges}}(\mathbf{r}_1,...,\mathsf{spin}_1,...) \propto \prod_i \Psi_i(\mathbf{r}_i) \times \mathsf{Spinfunktion}$$
 (3.8)

wobei ${f r}_i$ die Raum-Koordinaten des i-ten Elektrons ist, und die ϕ_i um die Position des jeweiligen Kerns zentriert sind. Die Spinfunktion muss so gewählt werden, dass Ψ_{ges} das Pauli-Prinzip erfüllt, also insgesamt antisymmetrisch ist. Die Slater-Determinante hilft, dies für große Systeme aufzuschreiben.

Bei nur zwei Elektronen kann man die Spin-Funktion von Hand konstruieren. Jeder Elektronenspin kann entweder up ↑ oder down ↓ sein. Bei mehr Elektronen gibt der n-te Pfeil den Spin des n-ten Elektrons an. Die möglichen Spin-Wellenfunktion sind also

anti-symmetrisch
$$\frac{1}{\sqrt{2}}\left(\left|\uparrow\downarrow\right\rangle - \left|\downarrow\uparrow\right\rangle\right) \tag{3.9}$$

symmetrisch
$$|\uparrow\uparrow\rangle$$
 (3.10)

$$\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \tag{3.10}$$

Eine symmetrische Raum-Wellenfunktion muss mit einer anti-symmetrisch Spin-Wellenfunktion verknüpft sein, für die es nur eine Möglichkeit gibt, also ein Singulett. Eine anti-symmetrische Raum-Wellenfunktion (zum Beispiel im anti-bindenden σ^* -Orbital in H₂) ist mit einer symmetrischen Spin-Wellenfunktion verknüpft, die ein Triplett-Zustand ist.

Bei mehreren Elektronen pro Molekül können auch mehrere Bindungen gleichzeitig existieren. Die effektive Anzahl der Bindungen wird Bindungsord $nung\ b$ genannt. Jedes Elektronenpaar in einem bindenden Orbital trägt +1bei, jedes Elektronenpaar in einem anti-bindenden Orbital -1, oder

$$b = \frac{1}{2} \left(n - n^{\star} \right) \tag{3.13}$$

mit $n(n^*)$ der Anzahl der Elektronen⁷ in bindenden (anti-bindenden) Orbitalen. Je größer die Bindungsordnung, desto stärker ist die Bindung und desto kürzer ist der Bindungsabstand.

In der optischen Molekül-Spektroskopie werden Übergänge zwischen verschiedenen Molekülorbitalen relevant werden. In diesem Zusammenhang bezeichnet man das niedrigste noch unbesetzte Orbital als LUMO (lowest unoccupied molecular orbital), das höchste besetzte als HOMO (highest occupied molecular orbital).

Abbildung 3.1: Nur Atom-Orbitale ähnlicher Energie und Symmetrie bilden in Linearkombination die Molekülorbitale.

7 nicht Paare!

Zur Selbstkontrolle

3. Vergewissern Sie sich, dass Sie die vier Spin-Eigenfunktionen von zwei Spin-1/2-Systemen kennen und auch deren Symmetrie.

Noch einmal Sauerstoff

Betrachten wir noch einmal als Beispiel das Sauerstoff-Molekül O_2 . Atomarer Sauerstoff hat die Elektronenkonfiguration [He] $2s^22p_x^22p_y^12p_z^1$. Die atomaren 1s und 2s-Schalen sind komplett gefüllt. Damit sind auch bei den molekularen 1s σ und 2s σ -Orbitalen sowohl das bindende als auch das anti-bindende Orbital gefüllt. Die Bindungsordung ist Null und diese Elektronen tragen nicht zur Bindung bei. Es verbleiben insgesamt 4 2p-Elektronen pro Atom, 8 pro Molekül. Entsprechend der in Abbildung 3.2 angegeben Anordnung der Orbitale ist das $2p\sigma_g$ und das $2p\pi_u$ -Orbital mit 2 bzw. 4 Elektronen vollständig gefüllt. 8 Das $2p\pi_g^{\star}$ -Orbital ist mit 2 Elektronen halb gefüllt. Damit sind 6 Elektronen bindend, 2 anti-bindend, also Bindungsordnung b=2. Das Sauerstoff-Molekül O_2 ist in einer Doppelbindung gebunden, die sich aus einer σ und einer π -Bindung zusammensetzt. Wie schon im letzten Abschnitt behandelt, sind für das spektroskopische Termsymbol nur die beiden Elektronen im $2p\pi_g^{\star}$ -Orbital relevant. Für alle anderen Elektronen findet sich immer eines, das genau den entgegengesetzten Spin und Bahndrehimpuls hat.

 8 Die π -Orbitale nehmen 2 Elektronen jeden Spins auf, da bei gegebenem λ zwei Werte von $m_l=\pm\lambda$ möglich sind (für $\lambda>0$).

Abbildung 3.2: Orbitaldiagramm von Sauerstoff. Die Molekülorbitale sind aus den Atomorbitalen aufgebaut. Die relative Lage der Orbitale $2p\sigma_g$ und $2p\pi_u$ hängt von der Kernladungszahl ab. Die hier gezeigte Lage gilt für O_2 und F_2 . N_2 und leichtere Moleküle besitzen die getauschte Anordnung.

Zur Selbstkontrolle

4. Warum sind die beiden zuletzt eingefüllten Elektronen 'ungepaart', also in zwei verschiedenen Orbitalen? Worin unterscheiden sich diese beiden Orbitale?

Mehr als zwei Atom-Kerne: Hückel-Näherung

Die Molekülorbitaltheorie ist auch auf größere Moleküle anwendbar, verlangt dann aber numerischen Lösungen. Für konjugierte Moleküle liefert die Hückel-Näherung aber gute Ergebnisse. In konjugierten Molekülen wird das mechanische Gerüst durch σ -Bindungen zwischen den Kohlenstoff-Atomen gebildet. Eine Kette von Kohlenstoff-Atomen ist darüber hinaus durch alternierende σ und π -Bindungen verbunden. Die an diesen Bindungen beteiligten Elektronen sind dann über die ganze Kette delokalisiert. Die Hückel-Näherung erlaubt es, diese ausgedehnten π -Orbitale zu berechnen.

Wir betrachten also nur eine Teilmenge aller Atom-Orbitale, nur die π -Orbitale, die auch an der π -Bindung teilnehmen. Wir nehmen an, dass

- die Atom-Orbitale nur mit sich selbst überlappen, also $S_{ij}=\delta_{ij}$
- alle Atome identisch sind, also $H_{ii}=lpha$
- Austausch nur zwischen benachbarten Orbitalen stattfinden, also $H_{ij}=\beta<0$ falls Atome i und j benachbart, sonst 0

Analog zu Gleichung 2.6 im letzten Kapitel berechnen wir die Eigen-Energie nach dem Variationsprinzip

$$E = \frac{\sum_{i,j} c_i c_j H_{i,j}}{\sum_{i,j} c_i c_j S_{i,j}}$$
(3.14)

Die minimale Eigen-Energie E ergibt sich, wenn alle partiellen Ableitungen nach den c_i Null sind, oder wenn

$$|\mathbf{H} - E\mathbf{S}| = 0 \tag{3.15}$$

Da wir $S_{ij}=\delta_{ij}$ angenommen haben, vereinfacht sich dies zu

$$|\mathbf{H} - E \, \mathbb{1}| = 0 \tag{3.16}$$

Wir müssen also die Eigenwerte und Eigenvektoren von $H_{i,j}$ bestimmen. Die Eigenwerte geben die Energie des Zustands an, die Eigenvektoren die dazugehörige Linearkombination der atomare Orbitale.

Als Beispiel betrachten wir Benzol (C_6H_6). Die 6 Kohlenstoff-Atome sind sp 2 hybridisiert. σ -Bindungen verbinden die Kohlenstoff-Atome untereinander und mit den Wasserstoff-Atomen. Je ein nicht hybridisiertes p-Orbital steht senkrecht auf dem Ring. Diese Orbitale werden in der Hückel-Näherung betrachtet. Die Hamilton-Matrix H_{ij} hat dann die Form (Nullen weggelassen)

$$\mathbf{H} = \begin{pmatrix} \alpha & \beta & & & \beta \\ \beta & \alpha & \beta & & & \\ & \beta & \alpha & \beta & & \\ & & \beta & \alpha & \beta & & \\ & & & \beta & \alpha & \beta \\ \beta & & & & \beta & \alpha \end{pmatrix}$$
(3.17)

Die β in den Ecken schließen den Ring. Wenn wir $E=\alpha+x\beta$ ansetzen, dann vereinfacht sich die Eigenwert-Gleichung zu

$$x^6 - 6x^4 + 9x^2 - 4 = 0$$
 oder $x = \pm 1, \pm 1, \pm 2$ (3.18)

Da wir insgesamt 6 Elektronen in diese Orbitale einfüllen müssen, und jedes Orbital mit 2 Elektron (spin up und down) besetzen können, sind das Orbitale mit $E = \alpha + 2\beta$ und die beiden Orbitale mit $E = \alpha + \beta$ besetzt⁹. Auch diese Orbitale tragen also zur Bindung bei, da sie die Gesamtenergie insgesamt um 8β reduzieren. Wenn man die Eigenfunktionen betrachtet¹⁰, sieht man, dass das Orbital mit $E=\alpha\pm2\beta$ über den ganzen Ring delokalisiert ist, die beiden mit $E=\alpha\pm\beta$ über zwei Atome.

Die Hückel-Näherung in der Molekülphysik entspricht der tight binding Methode zur Berechnung der Bandstruktur von Elektronen in der Festkörperphysik. In der Festkörperphysik macht man den Übergang von hier $N\,=\,6$ Atomen hin zu $N=6\cdot 10^{23}$ Atomen, wodurch dann $6\cdot 10^{23}$ eng benachbarte Zustände für Elektronen entstehen, die alle durch Wellenfunktionen ähnlich zu Abbildung 3.3 beschrieben sind.

Zur Selbstkontrolle

5. Vergleichen Sie die Elektronen-Eigenfunktionen von Benzol in der Hückel-Näherung mit denen eines (ggf. ringförmigen) Kastens.

Unterschied VB — MO

Was ist nun eigentlich der Unterschied zwischen der Valenzbindungstheorie (VB) und der Molekülorbitaltheorie (MO)? Lesen Sie eine Antwort dazu im Internet hier. Würden Sie dem zustimmen? Würden Sie andere Schwerpunkte setzen? Machen Sie sich hier Notizen dazu.

¹⁰ Atkins, 2018.

Abbildung 3.3: Molekülorbitale von Benzol in der Hückel-Näherung. Die Farben kodieren das Vorzeichen der Wellenfunktion. Die Anordnung entspricht der Eigen-Energie.

 $^{9} \beta < 0$

Zusammenfassung

Schreiben Sie hier ihre persönliche Zusammenfassung des Kapitels auf. Konzentrieren Sie sich auf die wichtigsten Aspekte und die am Anfang genannten Ziele des Kapitels.

Literatur

Atkins, Peter W. (2018). Atkins' physical chemistry. Eleventh edition. Oxford: Oxford University Press. ISBN: 9780198769866.

Demtröder, Wolfgang (2013). Molekülphysik. theoretische Grundlagen und experimentelle Methoden. 2., überarb. und erw. Aufl. München: Oldenbourg, XVI, 487 S. ISBN: 9783486714890. DOI: 10.1524/9783486714890.

- (2018). Atoms, molecules and photons. an introduction to atomic-, molecularand quantum physics. Third edition. Berlin: Springer. ISBN: 3662555212. **DOI:** 10.1007/978-3-662-55523-1.

McQuarrie, Donald A. (2008). Quantum chemistry. 2. ed. Sausalito, Calif.: Univ. Science Books, XIII, 690 S. ISBN: 9781891389504.

Anhang A

Julia und Pluto

Markus Lippitz 26. September 2021

Wir benutzen in dieser Veranstaltung die Programmiersprache Julia¹ für graphische Veranschaulichungen und numerische 'Experimente'. Ich bin überzeugt, erst wenn man einen Computer überreden kann, etwas zu tun, ein Model darzustellen, einen Wert auszurechnen, erst dann hat man es wirklich verstanden. Vorher hat man nur die ganzen Probleme noch nicht gesehen.

Man kann Julia mit verschiedenen Benutzeroberflächen verwenden. Wir benutzen Pluto.²

1 https://julialang.org

https://github.com/fonsp/ Pluto.jl

Julia

Julia ist eine Programmiersprache, die für Numerik und wissenschaftliches Rechnen entwickelt wurde. Sie ist ein Mittelding zwischen Matlab, Python und R. Aus meiner Sicht übernimmt sie jeweils das Beste aus diesen Welten und eignet sich so gerade für Einsteiger. Wir werden im Laufe des Semesters verschiedene Beispiel-Skripte zusammen besprechen, und es wird auch numerische Übungsaufgaben geben.

Ein Beispiel

Lassen Sie uns zunächst ein einfaches Beispiel betrachten.

```
using Plots
x = range(0, 2 * pi; length=100)
plot(x, sin.(x); label="ein Sinus")
```

Für manche Dinge benötigt man Bibliotheken, die man mit using laden kann. Halten sie sich bei der Auswahl der Bibliotheken zunächst an die Beispiele, die ich zeige.

Dann definieren wir eine Variable x (einfach durch benutzen) als äquidistanter 'Zahlenstrang' zwischen 0 und 2π mit 100 Werten. Funktionen wie range haben immer benötigte Parameter, die über ihre Position in der Parameterliste definiert sind (hier: Anfangs- und End-Wert), sowie weitere optionale. Diese folgen nach einem Semikolon in der Form Parameter>=<Wert>.

Schließlich zeichnen wir die Sinus-Funktion über diesen Wertebereich. Beachten sie den Punkt in sin. (x). Er bedeutet 'wende sin auf alle Elemente von \times an'. Das ist sehr praktisch.

Informationsquellen

Aktuell ist die Version 1.6.2. Mit der Version 1.0 hat sich einiges geändert. Ignorieren sie Webseiten, die älter als 2 Jahre sind, bzw. die sich auf eine Version vor 1.0 beziehen.

Offizielle Dokumentation auf der website³. Oder fragen Sie google mit 'Julia' als Stichwort oder mit der Bibliothek / Funktion und angehängter Endung '.jl' .

Beispiele Julia by example⁴, Think julia⁵, Introduction to Computational Thinking⁶

Unterschiede Vergleich⁷ mit Matlab, Python und anderen Sprachen. Und als Übersichtstabelle⁸

Cheat Sheets Allgemein⁹ und für Plots¹⁰

Benutzeroberflächen

Es gibt verschiedene Möglichkeiten, wie man kürzere oder längere Programme in Julia schreiben kann. Hier eine Auswahl

Kommandozeile und Editor Man kann Julia interaktiv an der Kommandozeile (REPL, read-eval-print loop) benutzen. In einem externen Editor könnte man wiederholende Kommandos in Skript-Dateien schreiben.

IDE Das geht komfortabler mit einer integrierten Umgebung, beispielsweise Juno¹¹, oder einer Julia-Erweiterung ¹² für Visual Studio Code. Das ist sicherlich die Herangehensweise bei größeren Projekten.

Jupyter notebook Jupyter¹³ setzt sich zusammen aus Julia, Python und R. Diese drei Sprachen kann man in einem Notebook-Format benutzen. Programmcode steht dabei in Zellen, die Ausgabe und auch beschreibender Text und Grafiken dazwischen. Das eignet sich besonders, wenn Rechnungen von Beschreibungen oder Gleichungen begleitet werden sollen, beispielsweise in (Praktikums-)Protokollen oder Übungsaufgaben.

Mathematica hat ein ähnliches Zellen-Konzept. Ein Nachteil ist, dass Zellen den Zustand des Kernels in der Reihenfolge ihrer Ausführung beeinflussen. Die Reihenfolge muss aber nicht der in der Datei entsprechen; insbesondere ändert ein Löschen der Zellen den Kernel nicht. Das kann sehr verwirrend sein, oder man muss der Kernel oft neu starten.

Pluto Man kann auch in Pluto¹⁴ Programmcode, Text und Grafik mischen. Das Zellen-Konzept von Pluto ist das aber von Excel, limitiert auf eine Excel-Spalte. Die Anordnung der Gleichungen in den Zellen spielt keine Rolle. Alles wird nach jeder Eingabe neu evaluiert. Eine Logik im Hintergrund sorgt dafür, dass nur unbedingt notwendige Berechnungen neu ausgeführt werden. Aus meiner Sicht sollte das für Anfänger intuitiv zu bedienen sein und für kleiner Projekte völlig ausreichen sein. Wir benutzen Pluto als Oberfläche in dieser Veranstaltungen.

```
3 https://docs.julialang.org/
```

```
https://juliabyexample.
helpmanual.io/
5 https://benlauwens.github.
io/ThinkJulia.jl/latest/book.
html
6 https://
computationalthinking.mit.
edu/Spring21/
https://docs.julialang.
org/en/v1/manual/
noteworthy-differences/
8 https://cheatsheets.
quantecon.org/
9 https://juliadocs.github.io/
Julia-Cheat-Sheet/
10 https://github.com/
sswatson/cheatsheets/
```

¹¹ https://junolab.org/ 12 https://www.julia-vscode. org/

¹³ https://jupyter.org/

¹⁴ https://github.com/fonsp/ Pluto.jl

Installation

Server von EP III Um Ihnen die ersten Schritte zu vereinfachen können sie den Jupyter & Pluto-Server¹⁵ von EP III benutzen. Dazu müssen Sie innerhalb der Universität sein oder via VPN verbunden sein. Zugangsdaten erhalten Sie in der ersten Semesterwoche. Melden Sie sich mit diesen am Server an. Sie gelangen auf eine Juypter-Oberfläche, auf der sie beispielsweise Dateien auf dem Server verwalten könne. Über das Pluto-Icon starten sie eine Pluto-Oberfläche im web browser.

Gehen Sie bitte rücksichtsvoll mit diesem Server um. Seine Ressourcen sind eher begrenzt.

Lokale Installation Insbesondere wenn Ihnen der EP III Server zu langsam wird sollten Sie Julia und Pluto lokal installieren. Eine gute Anleitung ist am MIT¹⁶. Kurzfassung: Julia vom website installieren, dann in Julia das Pluto-Paket installieren (import Pkg; Pkg.add("Pluto")) und aufrufen via using Pluto; Pluto.run().

15 http://jupyter.ep3. uni-bayreuth.de

16 https:// computationalthinking.mit. edu/Spring21/installation/

Benutzung von Pluto

Eine schöne Einführung in Pluto (und Julia) gibt es auf der Pluto homepage¹⁷, am MIT (hier¹⁸ bzw eigentlich die ganze site) und am WIAS.¹⁹

- · Shift-Enter führt eine Zelle aus
- Der Ausführungs-Optimierer verlangt, dass jede Zelle einen geschlossenen Block bildet. Also darf da nur ein Kommando stehe, oder mehrere müssen mit begin ... end geschachtelt werden.
- · Jede Zelle hat nur eine Ausgabe, die der letzten Zeile. Die Ausgabe steht über der Zelle selbst.
- Pluto verwaltet Bibliotheken selbständig, einfach mit using benutzen, installiert wird automatisch.
- Pluto speichert automatisch alles. Man kann aber die Datei umbenennen / bewegen.
- 17 https://github.com/fonsp/ Pluto.jl/wiki 18 https:// computationalthinking.mit. edu/Spring21/basic_syntax/ 19 https://www.wias-berlin. de/people/fuhrmann/ SciComp-WS2021/assets/ nb01-first-contact-pluto. html

Anhang B

Addition von Drehimpulsen

Markus Lippitz 5. Oktober 2021

Überblick

Der ausführliche Titel des Kapitels sollte wohl sein 'Eigenwerte und Eigenfunktionen eines Operators, der die Summe von quantenmechanischen Drehimpulsoperatoren ist'. Dieses Thema findet sich in quasi allen Büchern zur Quantenmechanik. Ich folge hier Nolting, 2006, Kap. 5.4. Mit diesem Formalismus kann man beispielsweise die möglichen Werte der Gesamtspin-Quantenzahl S bestimmen, wenn die Orientierung der Einzel-Spins bekannt ist. Oder man kann in der Atomphysik den Gesamt-Drehimpuls-Quantenzahl J aus der Spin-QZ S und der Bahndrehimpuls-QZ L bestimme. Ebenso erhält man die Eigenfunktionen eines Singulett- oder Triplett-Zustands.

Der Drehimpuls-Operator

In der Quantenmechanik definiert man einen Drehimpuls-Operator \hat{L} , der den Betrag eines Drehimpulses misst, sowie einen Operator \hat{L}_z , der eine der drei Vektor-Komponenten misst. Die Eigenwerte sind

$$\hat{L}^2 \left| l,m \right> = \hbar^2 \left| l(l+1) \left| l,m \right> \quad \text{mit} \quad l=0,1,\dots$$
 (B.1)

$$\hat{L}_z | l, m \rangle = \hbar \, m \, | l, m \rangle$$
 mit $m = -l, -l + 1, \dots, l$ (B.2)

Die Quantenzahl m nennt man auch magnetische Quantenzahl (daher das Symbol), weil die z-Achse in Atomen oft durch die Richtung eines externen Magnetfelds vorgegeben ist.

Die Kommutator-Relationen sind so, dass \hat{L} und \hat{L}_z gleichzeitig messbar sind, aber die einzelnen Vektor-Komponenten nicht. Die Unschärfe in den verbleibenden Komponenten beträgt dann

$$\Delta L_x \, \Delta L_y \ge \frac{\hbar}{2} \left| \langle \hat{L}_z \rangle \right|$$
 (B.3)

Man kann sich einen Drehimpuls-Vektor in der Quantenmechanik also als einen Vektor der Länge $\hbar\sqrt{l(l+1)}$ vorstellen, dessen z-Komponente $\hbar m$ ist. Glücklicherweise ist der Maximalwert von m, also l, immer kleiner als $\sqrt{l(l+1)}$, und l+1 immer größer als das. Die x- und y-Komponenten ist unbekannt, bis auf dass sie gerade die erforderliche Länge des Vektors liefern müssen. Mögliche Werte dieser beiden Komponenten liegen damit auf einem Kreis in der xy-Ebene.

Es gibt nicht nur Vektoren, die einem klassischen Drehimpuls entsprechen, sondern auch anderen Größen, die sich sehr ähnlich einem Drehimpuls verhalten, wie beispielsweise der Spin. Erstere haben immer ganzzahlige Quantenzahlen l,m, letztere können auch halbzahlig sein. Immer ist der Abstand zwischen benachbarten Quanten zahlen aber eins. Ich benutze das Wort Drehimpuls hier immer als Oberbegriff für beides.

Addition von Drehimpulsen

Jetzt haben wir zwei Sätze von Drehimpuls-artigen Operatoren, und kennen deren Eigenwerte und Eigenfunktionen, also

$$\hat{L}_{1}^{2}\left|l_{1},m_{1}\right\rangle = \hbar^{2}\,l_{1}(l_{1}+1)\left|l_{1},m_{1}\right\rangle \quad \hat{L}_{z,1}\left|l_{1},m_{1}\right\rangle = \hbar\,m_{1}\left|l_{1},m_{1}\right\rangle \quad \text{(B.4)}$$

Wir können dann Summen-Operatoren bilden

$$\hat{L} = \hat{L}_1 + \hat{L}_2$$
 und $\hat{L}_z = \hat{L}_{z,1} + \hat{L}_{z,2}$ (B.6)

Diese neuen Operatoren sind glücklicherweise wieder Drehimpuls-Operatoren, folgen also den üblichen Anforderungen der Quantenmechanik an solche Operatoren in Bezug auf die Kommutator-Relationen und die Form der Eigenwerte. Die Frage ist nun, wie man aus bekannten Eigenwerten l_i , m_i und dazugehörigen Eigenfunktionen auf die neuen Eigenwerten l, m der Summen-Operatoren schließen kann, und welche Werte eigentlich gleichzeitig messbar sind.

Man findet, dass die Gesamt-Länge zusammen mit den beiden Einzel-Längen, aber nur mit der Orientierung des Gesamt-Drehimpulses gleichzeitig messbar ist. Gute¹ Quantenzahlen sind also

$$|l_1, l_2; l, m\rangle \tag{B.7}$$

Die neue Orientierungs-Quantenzahl m ist gerade die Summe der Einzeln-Orientierungs-Quantenzahlen

$$m = m_1 + m_2 \tag{B.8}$$

Für die neue Gesamt-Länge gilt

$$|l_1 - l_2| \le l \le l_1 + l_2 \tag{B.9}$$

Mehr lässt sich dazu leider nicht sagen. Es ist etwas unbefriedigend, die Summe von zwei Vektoren nicht nennen zu können, obwohl man beide Summanden kennt. Allerdings kennt man die Ausgangs-Vektoren nicht vollständig. Die unbekannte xy-Komponenten sind gerade der Ursprung dieses Spielraums im Wert von l.

Abbildung B.1: Skizze eines Drehimpulsvektors mit unbekannter xy-Komponente.

Abbildung B.2: Mögliche Orientierung von Drehimpuls-artiger Vektoren mit l=1/2 (links) und l=2 (rechts). Der Abstand der Hilfslinien beträgt $1/2\hbar$ bzw. $1\hbar$.

¹ 'Gut' ist in diesem Zusammenhang ein Fachbegriff und bedeutet 'Konstante der Bewegung', also unveränderlich.

Beispiel: $\vec{J} = \vec{S} + \vec{L}$

Was bedeutet es, dass die guten Quantenzahlen $|l_1,l_2;l,m
angle$ sind? Ich möchte das mit dem Beispiel der Addition von Bahndrehimpuls \vec{L} und Spin \vec{S} zum Gesamtdrehimpuls \vec{J} diskutieren (und passe dabei die Bezeichnungen leicht an). Gute Quantenzahlen sind also $|L,S;J,m_J\rangle$. Die großen Buchstaben sind die Quantenzahlen, die die Länge der Vektoren in der Form $\hbar\sqrt{l(l+1)}$ angeben, m_J ist die magnetische Quantenzahl zu J.

Bei der Kopplung von Spin und Bahndrehimpuls gibt es einen Energiebeitrag des Spins im Magnetfeld der Bahnbewegung. Klassisch würde dieser vom Winkel zwischen den beiden abhängen. Dieser Winkel ist aber nicht die Quantenzahl, sondern das sich aus \vec{S} , \vec{L} und \vec{J} bildende Dreieck wird vollständig durch die Längen der Seiten bestimmt. Das beinhaltet den Winkel zwischen \vec{S} und \vec{L} , aber auch deren Amplitude. Gleichzeitig ist nur m_J eine gute Quantenzahl. Bei der Wechselwirkung mit einem äußeren Feld spielt also nur die Orientierung von \vec{J} eine Rolle. Die Spitze von \vec{J} kann wieder auf einem Kreis in der xy-Ebene liegen, solange die Länge von \vec{J} erhalten bleibt. Bei \vec{S} und \vec{L} ist nun aber nur die Länge eine gute Quantenzahl, die z-Komponenten nicht mehr. Die Spitze von \vec{S} kann damit auf einem Kreis liegen, dessen Symmetrieachse durch \vec{J} gegeben ist. Alles andere ist unbekannt, kann nicht gleichzeitig gemessen werden. Insbesondere ist die Aufteilung zwischen m_S und m_L nicht fix, nur die Summe, also m_J .

Beispiel: Addition von zwei Vektoren mit Spin 1/2

Als Beispiel wollen wir die beiden kürzesten Drehimpulse addieren, was die Zeichnungen einfacher macht. Dies entspricht der Addition von zwei Elektronen-Spins zu einem Gesamtspin. Der allgemeine Formalismus folgt dann unten. Es sei

$$l_{1,2} = \frac{1}{2} \quad \text{und} \quad m_{1,2} = \pm \frac{1}{2} \tag{B.10} \label{eq:B.10}$$

Welche Werte können nun die Quantenzahlen l und m der Summe annehmen? Die magnetische Quantenzahl $m=m_1+m_2$ ist einfach und in nebenstehender Tabelle skizziert.

Falls $m_1=m_2$, also |m|=1, dann muss auch l=1 sein, da l nie kleiner als m sein kann. Dies sind die Zustände $^2|l,m\rangle=|1,-1\rangle$ und $|1,+1\rangle$.

Damit verbleiben noch die beiden Fälle $m_1=-m_2$, also die Diagonale in der Tabelle. Diese müssen die Zustände $|1,0\rangle$ und $|0,0\rangle$ bilden. Die Gesamtzahl der Zustände passt schon einmal. Wie oft in der Quantenmechanik, wenn die Zuordnung nicht einfach entschieden werden kann, werden hier wieder die symmetrische und antisymmetrische Superposition der Ausgangszustände, also der Einträge in der Matrix, gebildet. Welche davon wird $|1,0\rangle$? Die schon gefundenen Zustände $|1,\pm 1\rangle$ sind symmetrisch bei Vertauschen $1\leftrightarrow 2$, also wird auch $|1,0\rangle$ symmetrisch sein, also

$$|1,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$
 (B.11)

wobei der Pfeil an Position i das Vorzeichen von m_i anzeigt. Damit gibt es einen anti-symmetrischen Zustand mit l=0, und drei symmetrische mit

$$\begin{array}{c|cccc} & -\frac{1}{2} & +\frac{1}{2} \\ \hline +\frac{1}{2} & 0 & 1 \\ -\frac{1}{2} & -1 & 0 \end{array}$$

Abbildung B.3: Die möglichen Kombinationen von m_1 und m_2 zu $m=m_1+m_2$. $^2\,l_1$ und l_2 sind nicht angegeben, weil in diesem Abschnitt immer 1/2.

l = 1

$$|0,0\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
 (B.12)

$$|1,+1\rangle = |\uparrow\uparrow\rangle$$
 (B.13)

$$|1,0\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$
 (B.14)

$$|1,-1\rangle = |\downarrow\downarrow\rangle$$
 (B.15)

Die Vorfaktoren, mit denen man die Zustände auf der linken Seite in der Basis der Zustände auf der rechten Seite darstellen kann, nennt man *Clebsch-Gordan-Koeffizienten*.

Wie kann man sich vorstellen, dass die Addition von zwei Vektoren gleicher Länge aber unterschiedlicher Orientierungs-Quantenzahl m_i einmal zu einem Vektor der Länge Null und einmal zu einem Vektor der beinahe doppelten Länge führt? Ein Teil der Wahrheit sind die nicht gleichzeitig messbaren anderen Vektor-Komponenten. Die Spitze beider Vektoren liegt auf eine Kreis. Wenn die Position 'in Phase' ist, dann addieren sie sich zu einem Vektor mit verschwindender z-Komponente und der Länge $\hbar\sqrt{2}$, was in diesem Bild dem Zustand $|1,0\rangle$ entspricht. Wenn die beiden Ausgangs-Vektoren 'außer Phase' sind, dann addieren sie sich zu Null, ergeben also $|0,0\rangle$. Bei bekannten, aber unterschiedlichen m_i , also beispielsweise $|\uparrow\downarrow\rangle$ ist also nicht eindeutig, welcher Summenvektor sich ergibt. Die Eigenfunktionen des Summen-Operators \hat{L} sind nur Linearkombinationen aus $|\uparrow\downarrow\rangle$ und $|\downarrow\uparrow\rangle$.

Allgemeiner Fall: Clebsch-Gordan-Koeffizienten

Im allgemeinen Fall der Addition von zwei Drehimpuls-artigen Vektoren mit den Quantenzahlen l_i und m_i bleiben nur die oben schon genannten Regeln

$$m = m_1 + m_2$$
 (B.16)

$$|l_1 - l_2| \le l \le l_1 + l_2 \tag{B.17}$$

Insgesamt sind es $(2l_1+1)(2l_2+1)$ Eigenfunktionen. Die Parität ist

$$\mathcal{P} = (-1)^{l-l_1-l_2} \tag{B.18}$$

Die Clebsch-Gordan-Koeffizienten zur Darstellung der Eigenfunktionen des Summen-Operators in den Eigenfunktionen der beiden Einzel-Drehimpuls-Operatoren kann man sich mit einer Rekursionsregel herleiten. Einfacher ist es aber, diese nachzuschlagen, beispielsweise in Particle Data Group, 2020, bzw. online hier. Für unsere Zwecke reicht es aber aus, die Faktoren für das obige Spin-1/2-System zu kennen.

Als Beispiel zeigt nebenstehende Abbildung die Koeffizienten für den Fall $l_1=l_2=1$. Die QZ des Gesamt-Drehimpulses sind als J und M bezeichnet. Die Koeffizienten sind, um Platz zu sparen, ohne die Wurzel geschrieben. -1/3 ist also als $-\sqrt{1/3}$ zu verstehen, bzw.

$$|J=0,M=0\rangle = \frac{1}{\sqrt{3}} \left| +1,-1 \right\rangle - \frac{1}{\sqrt{3}} \left| 0,0 \right\rangle + \frac{1}{\sqrt{3}} \left| -1,+1 \right\rangle \tag{B.19}$$

Man muss also immer eine Linearkombination aus allen Möglichkeiten bilden, die das gewünschte $m=m_1+m_2$ ergeben.

³ Ein anderer Teil ist 'so ist die OM eben'.

Abbildung B.4: Die Addition von zwei Vektoren $|s=1/2,m_s=1/2\rangle$ und $|s=1/2,m_s=-1/2\rangle$ kann sowohl einen Vektor $|S=1,m_S=0\rangle$ ergeben (links) als auch $|S=0,m_S=0\rangle$ (rechts).

Abbildung B.5: Clebsch-Gordan-Koeffizienten für $l_1=l_2=1$. Die QZ des Gesamt-Drehimpulses sind hier als J und M bezeichnet. Aus Particle Data Group, 2020.

Literatur

Nolting, Wolfgang (2006). Grundkurs Theoretische Physik 5/2: Quantenmechanik - Methoden und Anwendungen. Springer-Lehrbuch. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN: 9783540260356. DOI: 10.1007/978-3-540-47616-0.

Particle Data Group (Aug. 2020). "Review of Particle Physics". In: Progress of Theoretical and Experimental Physics 2020.8. ISSN: 2050-3911. DOI: 10.1093/ptep/ptaa104.

Anhang C

Fourier-Transformation

Markus Lippitz 26. Februar 2021

Überblick

Der reziproke Raum in der Festkörperphysik ist die Fourier-Transformierte des Realraums. Es ist daher sinnvoll und hilfreich, einen intuitiven Zugang zur Fourier-Transformation zu haben. Im Endeffekt muss man in der Experimentalphysik nur selten eine Fourier-Transformation wirklich ausrechnen. Sehr oft reicht es, ein paar oft vorkommende Fourier-Paare zu kennen und diese mit einfachen Regeln zu kombinieren. Dies möchte ich hier kurz vorstellen. Eine sehr schöne und viel detailliertere Darstellung findet sich in Butz2011. Ich folge hier seiner Notation.

Bevor wir zu den Fourier-Paare kommen, müssen allerdings doch erst ein paar Grundlagen gelegt werden.

Fourier-Reihen: eine periodische Funktion und deren Fourier-Koeffizienten

Wir betrachten hier alles erst einmal eindimensional im Zeit- bzw. Frequenzraum mit den Variablen t und $\omega=2\pi\nu$. Die Funktion f(t) sei periodisch in der Zeit mit der Periodendauer T, also

$$f(t) = f(t+T) \tag{C.1}$$

Dann kann man diese als Fourier-Reihe schreiben

$$f(t)=\sum_{k=-\infty}^{\infty}\,C_k\,e^{i\,\omega_k\,t}\quad {
m mit}\quad \omega_k=rac{2\pi\,k}{T}$$
 (C.2)

und den Fourier-Koeffizienten

$$C_k = rac{1}{T} \int_{-T/2}^{T/2} f(t) \; e^{-i \, \omega_k \, t} \, dt$$
 (C.3)

Man beachte das negative Vorzeichen in der Exponentialfunktion im Gegensatz zur Gleichung davor. Für reelwertige Funktionen f(t) sind 'gegenüberliegende' C_k konjugiert-komplex, also $C_k = C_{-k}^\star.$ Für k < 0 sind die Frequenzen ω_k negativ, was aber kein Problem darstellt. 1 Der nullte Koeffizient C_0 ist also gerade der zeitliche Mittelwert der Funktion f(t).

¹ Man könnte alternativ k > 0 verlangen und eine \sin und \cos Reihe ansetzen.

Eine beliebige Funktion und deren Fourier-Transformierte

Nun heben wir die Einschränkung auf periodische Funktionen f(t) auf, indem wir die Periodendauer T gegen unendlich gehen lassen. Dadurch wird aus der Summe ein Integral und die diskreten ω_k werden kontinuierlich. Damit wird

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$
 (C.4)

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{+i\omega t} d\omega$$
 (C.5)

Die erste Gleichung ist dabei die Hintransformation (minus-Zeichen im Exponenten), die zweite die Rücktransformation (plus-Zeichen im Exponenten). Die Symmetrie wird durch das 2π gebrochen. Dies ist aber notwendig, wenn man weiterhin $F(\omega=0)$ als Mittelwert 2 behalten will. Alternativ könnte man das alles mit ν statt ω formulieren, hätte dann aber an viel mehr Stellen ein 2π , wenn auch nicht vor dem Integral.

 $^{2}F(0)=\int f(t)\,dt$ ohne 1/T davor ist hier von Butz als Mittelwert gemeint!

Mit dieser Form werden wir gleich weiterarbeiten.

Diskrete FT: eine periodische Zahlenfolge und deren Fourier-Transformierte Zahlenfolge

Zunächst noch eine Nebenbemerkung zur diskreten Fourier-Transformation. Insbesondere wenn man mit einem Computer Messwerte erfasst und auswertet, dann kennt man die gemessene Funktion f(t) weder auf einer kontinuierlichen Achse t, sondern nur zu diskreten Zeiten $t_k=k\,\Delta t$, noch kennt man die Funktion von $t=-\infty$ bis $t=+\infty$. Als Ausgangspunkt hat man also nur eine Zahlenfolge f_k endlicher Länge.

Weil wir die Zahlenfolge außerhalb des gemessenen Intervalls nicht kennen machen wir die Annahme, dass sie periodisch ist. Bei N gemessenen Werte ist die Periodendauer also $T=N\Delta t$. Der Einfachheit halber definieren wir auch $f_k=f_{k+N}$ und somit $f_{-k}=f_{N-k}$ mit $k=0,1,\ldots,N-1$. Damit wird die Fourier-Transformation

$$F_j = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-k j 2\pi i/N}$$
 (C.6)

$$f_k = \sum_{j=0}^{N-1} F_j e^{+k j 2\pi i/N}$$
 (C.7)

Die Definition ist wieder so, dass F_0 dem Mittelwert entspricht. Wegen $f_{-k}=f_{N-k}$ liegen die positiven Frequenzen mit steigender Frequenz in der ersten Hälfte von F_j . Danach kommen die negativen Frequenz, beginnend bei der 'negativsten' Frequenz steigend mit zur letzten Frequenz vor der Frequenz Null. Die maximal darstellbare Frequenz ist also die Nyquist-(Kreis-)Frequenz

$$\Omega_{\mathsf{Nyquist}} = \frac{\pi}{\Delta t}$$
 (C.8)

Nebenbemerkung: Delta-Funktion

Die Delta-Funktion kann geschrieben werden als

$$\delta(x) = \lim_{a \to 0} f_a(x) \quad \text{mit} \quad f_a(x) = \begin{cases} a & \text{falls } |x| < \frac{1}{2a} \\ 0 & \text{sonst} \end{cases} \tag{C.9}$$

oder als

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{+ixy} dy \tag{C.10}$$

Eine wichtige Eigenschaft ist, dass die delta-Funktion einen Wert selektiert, also

$$\int_{-\infty}^{+\infty} \delta(x) f(x) dx = f(0) \tag{C.11}$$

Wichtige Fourier-Paare

Es ist sehr oft ausreichend, die folgenden Paare von Funktionen und deren Fourier-Transformierten zu kennen. Ich schreibe sie hier, Butz folgend, als Paare in t und ω (nicht $\nu=\omega/(2\pi)$). Genauso hätte man auch Paare in x und k schreiben können. Wichtig ist dabei die Frage, ob ein 2π in der Exponentialfunktion der ebenen Welle auftaucht oder nicht. Also

$$e^{i\omega t}$$
 und e^{ikx} , aber $e^{i2\pi \nu t}$ (C.12)

Weiterhin folge ich hier der oben gemachten Konvention zu asymmetrischen Verteilung der 2π zwischen Hin- und Rück-Transformation. Wenn man die anders verteilt, dann ändern sich natürlich auch die Vorfaktoren. Eine gute Übersicht über noch viel mehr Fourier-Paare in diversen 2π -Konventionen findet sich in der englischen Wikipedia unter Fourier transform. In deren Nomenklatur ist die hier benutzte Konvention von Butz 'non-unitary, angular frequency'.

Konstante und Delta-Funktion Aus f(t)=a wird $F(\omega)=a\,2\pi\,\delta(\omega)$ und aus $f(t)=a\,\delta(t)$ wird $F(\omega)=a$. Das ist wieder das asymmetrische 2π .

Rechteck und sinc Aus der Rechteckfunktion der Breite b wird ein sinc, der sinus cardinalis. Also aus

$$f(t) = \mathsf{rect}_b(t) = \left\{ egin{array}{ll} 1 & \mathsf{für} & |t| < b/2 \ 0 & \mathsf{sonst} \end{array}
ight.$$
 (C.13)

wird ³

$$F(\omega) = b \frac{\sin \omega b/2}{\omega b/2} = b \operatorname{sinc}(\omega b/2) \tag{C.14}$$

Gauss Die Gauss-Funktion bleibt unter Fourier-Transformation erhalten. Ihre Breite geht in den reziproken Wert über. Also aus einer Gauss-Funktion der Fläche Eins

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t}{\sigma}\right)^2} \tag{C.15}$$

wird

$$F(\omega) = e^{-\frac{1}{2}(\sigma\,\omega)^2} \tag{C.16}$$

 3 Manchmal wird $\mathrm{sinc}(x) = \sin(\pi x)/(\pi x)$ definiert, insbesondere wenn ν und nicht ω als konjugierte Variable benutzt wird.

(beidseitiger) Exponentialzerfall und Lorentz-Kurve Aus einer sowohl zu positiven als auch zu negativen Zeiten exponentiell abfallenden Kurve

$$f(t) = e^{-|t|/\tau} \tag{C.17}$$

wird die Lorentz-Kurve

$$F(\omega) = \frac{2\tau}{1 + \omega^2 \tau^2} \tag{C.18}$$

Einseitiger Exponentialzerfall Als Nebenbemerkung hier der einseitige Exponentialzerfall, also

$$f(t) = \left\{ \begin{array}{ll} e^{-\lambda t} & \mbox{für} \quad t > 0 \\ 0 & \mbox{sonst} \end{array} \right. \eqno(C.19)$$

Der wird zu

$$F(\omega) = \frac{1}{\lambda + i\,\omega} \tag{C.20}$$

ist also komplexwertig. Sein Betrags-Quadrat ist wieder eine Lorentz-**Funktion**

$$|F(\omega)|^2 = \frac{1}{\lambda^2 + \omega^2} \tag{C.21}$$

und die Phase ist $\phi = -\omega/\lambda$.

Eindimensionales Punktgitter Eine äquidistante Kette von Punkten bzw. Delta-Funktionen geht bei Fourier-Transformation wieder in eine solche über. Die Abstände nehmen dabei den reziproken Wert an. Also aus

$$f(t) = \sum_{n} \delta(t - \Delta t \, n) \tag{C.22}$$

wird

$$F(\omega) = \frac{2\pi}{\Delta t} \sum_{n} \delta\left(\omega - n\frac{2\pi}{\Delta t}\right) \tag{C.23}$$

Dreidimensionale kubische Gitter Ein dreidimensionales primitives kubisches Gitter der Kantenlänge a geht über in primitiv-kubisches Gitter der Kantenlänge $2\pi/a$. Ein kubisch-flächenzentriertes Gitter mit der Gitterkonstante a der konventionellen Einheitszelle geht über in ein kubisch-raumzentriertes Gitter mit der Gitterkonstanten $4\pi/a$ und umgekehrt.

Sätze und Eigenschaften der Fourier-Transformation

Neben den Fourier-Paaren braucht man noch ein paar Eigenschaften der Fourier-Transformation. Im Folgende seien f(t) und $F(\omega)$ Fourier-konjugierte und ebenso q und G.

Linearität Die Fourier-Transformation ist linear

$$a f(t) + b g(t) \quad \leftrightarrow \quad a F(\omega) + b G(\omega)$$
 (C.24)

Verschiebung Eine Verschiebung in der Zeit bedeutet eine Modulation in der Frequenz und andersherum

$$f(t-a) \leftrightarrow F(\omega) e^{-i\omega a}$$
 (C.25)

$$\begin{array}{cccc} f(t-a) & \leftrightarrow & F(\omega) \, e^{-i\omega a} & & & \\ f(t) \, e^{-i\omega_0 t} & \leftrightarrow & F(\omega+\omega_0) & & & \end{array} \tag{C.25}$$

$$f(at) \quad \leftrightarrow \quad \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$
 (C.27)

Faltung und Multiplikation Die Faltung geht in ein Produkt über, und andersherum.

$$f(t)\otimes g(t)=\int f(\zeta)g(t-\zeta)d\zeta \quad \leftrightarrow \quad F(\omega)\,G(\omega)$$
 (C.28)

und

$$f(t)\,g(t) \quad \leftrightarrow \quad rac{1}{2\pi}\,F(\omega)\otimes G(\omega)$$
 (C.29)

Parsevals Theorem Die Gesamt-Leistung ist im Zeit- wie im Frequenzraum die gleiche

$$\int |f(t)|^2 dt = \frac{1}{2\pi} \int |F(\omega)|^2 d\omega \tag{C.30}$$

Zeitliche Ableitungen

$$\frac{df(t)}{dt} \quad \leftrightarrow \quad i\omega F(\omega) \tag{C.31}$$

Beispiel: Beugung am Doppelspalt

Als Beispiel betrachten wir die Fourier-Transformierte eines Doppelspalts, die gerade sein Beugungsbild beschreibt. Die Spalten haben eine Breite b und einem Mitten-Abstand d. Damit wird der Spalt beschrieben durch eine Faltung der Rechteck-Funktion mit zwei Delta-Funktionen im Abstand d

$$f(x) = \mathsf{rect}_b(x) \otimes (\delta(x - d/2) + \delta(x + d/2)) \tag{C.32}$$

Die Fourier-Transformierte der Rechteck-Funktion ist der sinc, die der delta-Funktionen eine Konstante. Die Verschiebung im Ort bewirkt allerdings eine Modulation im k-Raum. Aus der Summe der beiden Delta-Funktionen wird also

$$\mathcal{FT}\left\{\delta(x-d/2)+\delta(x+d/2)\right\}=e^{-ikd/2}+e^{+ikd/2}=2\cos(kd/2)$$
 (C.33)

Die Faltung mit der Rechteck-Funktion geht über in eine Multiplikation mit dem sinc. Zusammen erhalten wir somit

$$\mathcal{FT}\{f(x)\} = b \frac{\sin(kb/2)}{kb/2} 2\cos(kd/2) = \frac{4}{k} \sin(kb/2) \cos(kd/2) \quad \text{(C.34)}$$

Die Intensität in Richtung k ist dann das Betragsguadrat davon.

Literatur

- Atkins, Peter W. (2018). Atkins' physical chemistry. Eleventh edition. Oxford: Oxford University Press. ISBN: 9780198769866.
- Demtröder, Wolfgang (2013). Molekülphysik. theoretische Grundlagen und experimentelle Methoden. 2., überarb. und erw. Aufl. München: Oldenbourg, XVI, 487 S. ISBN: 9783486714890. DOI: 10.1524/9783486714890.
- (2016). Experimentalphysik. Atome, Moleküle und Festkörper. 5., neu bearbeitete und aktualisierte Auflage. Bd. 3. Berlin [u.a.]: Springer. ISBN: 9783662490945. DOI: 10.1007/978-3-662-49094-5.
- (2018). Atoms, molecules and photons. an introduction to atomic-, molecularand quantum physics. Third edition. Berlin: Springer. ISBN: 3662555212. DOI: 10.1007/978-3-662-55523-1.
- Haken, H. und H.C. Wolf (2003). Molekülphysik und Quantenchemie. Springer. McQuarrie, Donald A. (2008). Quantum chemistry. 2. ed. Sausalito, Calif.: Univ. Science Books, XIII, 690 S. ISBN: 9781891389504.
- Nolting, Wolfgang (2006). Grundkurs Theoretische Physik 5/2: Quantenmechanik - Methoden und Anwendungen. Springer-Lehrbuch. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN: 9783540260356. DOI: 10.1007/978-3-540-47616-0.
- Particle Data Group (Aug. 2020). "Review of Particle Physics". In: Progress of Theoretical and Experimental Physics 2020.8. ISSN: 2050-3911. DOI: 10.1093/ptep/ptaa104.