Matthew Scoggins

Contact

github.com/mscoggs ? mscoggs.github.io

+1 (360) 325 3398 📞

mts2188@columbia.edu

About Me

I am a third-year PhD Student in the Department of Astronomy at Columbia. My research interests span most areas of computational astrophysics and cosmology. Specifically, I am interested in questions involving supermassive black holes, the early universe, and Population III stars.

Matthew T. Scoggins Education

2021 – PhD Astrophysics Columbia University, New York, NY

2015–2020 **BS** Physics, Math, **BA** Philosophy Western Washington University, Bellingham WA

Positions

2021 - Graduate Researcher

Columbia University, New York, NY

- Supermassive star formation and their role in seeding supermassive black holes
- Learning the Universe: Using machine learning to accelerate forward modeling of cosmological simulations
- Observable consequences of the heavy seed origin for supermassive black holes
- SETI: Numerical investigations of star-lifting, identifying observable features of star-lifting
- Advised by Zoltan Haiman, Greg Bryan, David Kipping

2021-2023 **Graduate Teaching Assistant**

Columbia University, New York, NY

- Spring 2023: TA for Astro I Lab
 - Fall 2022: Observational TA for Astro I Lab
 - Spring 2022: Astrophysics II for Mary Putman
 - Fall 2021: Another Earth for Caleb Scharf

2015–2021 Undergraduate Researcher

Western Washington University, Bellingham, WA

- Projects on machine learning applied to astronomy, flare cycles, quantum dynamics, and quantum foundations.
- Developed 2 open source simulators, no_wave_qm which simulates a no-wave approach to QM and qubit_simulation which applies Monte-Carlo methods to find paths which optimally prepare a desired state.

Honors & Awards

2023-2024	Explore Computing Time: 400,000 CU	ACCESS
2022-2023	Edith and Robert Fehr Fellowship	Columbia U.
2020	Magna Cum Laude in both BS & BA	WWU
2019	Material Science Undergraduate Research Grant	WWU
2018-2019	Oscar Edwin Olson Scholarship (x2)	WWU
2018	Willard A. and Anne W. Brown Astronomy Scholarship	WWU
2018	Summer Student Research Stipend	WWU

Software

star_lifting Repository

 A MESA wrapper which evolves the star with a time-depedent mass loss rate, keeping flux on a habitable planet constant.

qubit_simulationRepository

Simulating the evolution of a superconducting chip with the goal of finding patterns in the optimal protocols (values of the controls over time which evolve an initial state into a target state in the shortest possible time) over a variety of initial and target combinations.

no_wave_qm Repository

 Simulating the evolution according to a hamilton-jacobi formulation of QM which replaces the wave with a configuration space density and equations of motion. Trajectory tracking using a 4-th order Runge Kutta technique.

Outreach & Press

2022	Lazarus Stars - Extending Stellar Lifespans by Billions of Years	Youtube
2023	Could reducing the Sun's mass stop it destroying Earth in the futur at Night	e? BBC Sky
2023	Aliens Could Build Massive Megastructures to Save Dying Stars	Inverse
2022	Introduction to Computational Astronomy	Online

Teaching & Service

2023	Journal Reviewer: ApJ	
2023-	Associate Director: Science Research Mentoring Program	Columbia University
2021-2023	Graduate Teaching Assistant	Columbia University
2020-2021	Mathematics Teaching Assistant	WWU
2017-2020	Physics Teaching Assistant - Responsible for facilitating/grading a section of the weekly lab for Physics w/ Calc 161-163, 220, and Tools and Data Analysis 322	
2019	Student Faculty Hiring Committee	WWU
2018-2019	Physics Study Group Facilitator WWU - Responsible for creating content and leading a 2 hour weekly study group for Physics w/ Calc 161-163	
2018-2019	 Math Tutoring Fellow Responsible for tutoring a majority of the undergraduate malus I up to Intro. to Abstract Algebra. 	wwu ath classes, Calcu-

Mentoring

2023 Undergraduate Students

Andrea Dubbels - Abnormal Photometry in the GAIA DR3 Catalog (in prep)

2023 High School Students

- Students took part in 2-12 month projects designed to expose them to astrophysics and research skills. Some projects have been (or will be) submitted to high school journals.
- Junhao Lei A review of dark matter (accepted, International Journal of High School Research)
- Iulia Achim Exploring the potential for habitability around a black hole (under review, Journal of Emerging Investigators)
- Estefania Olaiz A new triple star system (in prep).
- Pratham Aggarwal The origins of supermassive black holes (in prep)
- Jiarui Shi Could Earth's transit be detected by known exoplanets? (in prep)
- Hiep Duc Nguyen "missing mass" and the need for dark matter
- Jai Nair The search for biosignatures
- Weibo Qin Do astrological signs correlate with personality?
- Elenes Diana A review of black hole vs. host galaxy relations
- William Li Using ML to predict Solar Cycles

stats **Publications**

Total Pubs 9
First Author 7
Citations 46
h-index 3

- **Scoggins, M. T.**, Ho, M., Bryan, G., Modi, C., & Doeser, L., 2024, Correcting halo catalogs generated from a field-level emulator, (in prep)
- **Scoggins, M. T.**, & Kipping, D., 2024, Lazarus Stars: Searching for signs of engineered stars in the Milky Way, (in prep)
- 1 **Scoggins, M. T.**, & Haiman, Z., 2023, Diagnosing the Massive-Seed Pathway to High-Redshift Black Holes: Statistics of the Evolving Black Hole to Host Galaxy Mass Ratio, arXiv:2310.00202
- Scoggins, M. T., & Kipping, D., 2023, Lazarus Stars: Numerical Investigations of Stellar Evolution With Star-Lifting as a Life Extension Strategy, MNRAS, 523, 3251
- Roser, P., & **Scoggins, M. T.**, 2023, Non-Quantum Behaviors of Configuration-Space Density Formulations of Quantum Mechanics, arXiv:2303.04959
- **7 Scoggins, M. T.**, Haiman, Z., & Wise, J., 2023, How Long Do High Redshift Massive Black Hole Seeds Remain Outliers in Black Hole Versus Host Galaxy Relations?, MNRAS, **519**, 2155
- **Scoggins, M. T.**, & Rahmani, A., 2021, Topological and Geometric Patterns in Optimal Bang-Bang Protocols for Variational Quantum Algorithms: Application to the X X Z Model on the Square Lattice, Physical Review Research, **3**, 43165
- 34 Olney, R., Kounkel, M., Schillinger, C., **Scoggins, M. T.**, et al., 2020, APOGEE Net: Improving the Derived Spectral Parameters for Young Stars Through Deep Learning, AJ, **159**, 182
- 4 **Scoggins, M. T.**, Davenport, J., & Covey, K., 2019, Using Flare Rates to Search for Stellar Activity Cycles, Research Notes of the American Astronomical Society, **3**, 137

Selected Talks

Lazarus Stars: Numerical investigations of stellar evolution with star-lifting, Astronomy on Tap, Penn State, June 20, 2023

How long do high redshift massive black hole seeds remain outliers in black hole versus host galaxy relations?, AAS Winter 2023, Seattle, WA, January 13, 2023

Lazarus Stars, Pizza Lunch Talk, Columbia University, November 01, 2022

Lazarus Stars: Numerical investigations of stellar evolution with star-lifting, NASA's Technosignature Seminar Series, Online, October 19, 2022

- The DCBH formation mechanism for suppermassive black holes, Pizza Lunch Talk, Columbia University, December 01, 2021
- Simulating Strongly Correlated Fermions and Spins with an Optimally Controlled Superconducting Device, American Physical Society, WWU, June 01, 2019
- Simulating Strongly Correlated Fermions and Spins with an Optimally Controlled Superconducting Device, WWU Physics Symposium, WWU, May 01, 2019
- Applying Deep Learning to Improve Stellar Parameters from APOGEE spectra, WWU Physics Symposium, WWU, May 01, 2019