0.1 Balance the following reactions:

(a)
$$FeS(s) + O_2(g) \longrightarrow Fe_2O_3(s) + SO_2(g)$$

(b)
$$NH_3(g) + O_2(g) \longrightarrow NO(g) + H_2O(g)$$

0.5 Calculate the molar weight of the following molecules: (a) NH_3 (b) O_2

0.2 Balance the following reactions:

(a)
$$P_4(s) + O_2(g) \longrightarrow P_4O_{10}(s)$$

(b)
$$Al(s) + O_2(g) \longrightarrow Al_2O_3(s)$$

0.3 Balance the following reactions:

(a)
$$H_{2(g)} + Br_{2(g)} \longrightarrow HBr_{(g)}$$

$$(b) \ C_{(g)} + O_{2(g)} \longrightarrow CO_{(g)}$$

(c)
$$O_{3(g)} \longrightarrow O_{2(g)}$$

(d)
$$NH_4NO_{2(aq)} \longrightarrow N_{2(g)} + H_2O_{(l)}$$

$$(e) \ \ Na_3PO_{4(aq)} + MgCl_{2(aq)} \longrightarrow Mg_3(PO_4)_{2(aq)} + NaCl_{(aq)}$$

0.6 Calculate the molar weight of the following molecules: (a) CO (b) H_2 (c) $Fe_2(CO_3)_3$

0.7 Fill the conversion factor that calculates the final property:

$$10 \text{ g of NO} \times \frac{\text{moles of NO}}{\text{g of NO}}$$

$$= \text{moles of NO}.$$

0.4 Classify next reaction as combination, decomposition, single replacement, double replacement, or combustion:

$$(a) \ Pb_{(s)} + FeSO_{4(s)} \longrightarrow PbSO_{4(s)} + Fe_{(s)}$$

$$\text{(b)} \ \ C_6 H_{12(g)} + 9 \, O_{2(g)} \longrightarrow 6 \, CO_{2(g)} + 6 \, H_2 O_{(g)}$$

(c)
$$2 \text{RbNO}_{3(aq)} + \text{BeF}_{2(aq)}$$

$$\longrightarrow$$
 Be(NO₃)_{2(aq)} + 2 RbF_(aq)

0.8 Fill the conversion factor that calculates the final property:

4 moles of
$$CO_2 \times \frac{g \text{ of } CO_2}{\text{moles of } CO_2}$$

$$= g \text{ of } CO_2.$$

0.12	Fill	the	(

conversion factor that calculates the final property:

$$10^{26} \text{ molecules of NO}_2 \times \frac{\text{atoms of O}}{\text{molecules of NO}_2}$$

$$= \text{atoms of O}.$$

0.9 Fill the conversion factor that calculates the final property:

$$7 g \text{ of } CH_4N_2O \times$$
= moles of CH_4N_2O .

0.13 Fill the conversion factor that calculates the final property:

$$10^{21} \underline{\text{atoms of N}} \times \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}} \text{molecules of CH_4N_2O.}$$

0.10 Fill the conversion factor that calculates the final property:

0.14 Fill the conversion factor that calculates the final property:

6 molecules of
$$C_6H_{12}O_6 \times$$
 atoms of C .

0.11 Fill the conversion factor that calculates the final property:

$$10^{22} \underline{\text{atoms of O}} \times \frac{\text{molecules of } H_2O}{\underline{\text{atoms of O}}}$$

$$= \frac{\text{molecules of } H_2O}{\underline{\text{molecules of } H_2O}}$$

0.15 Answer the following questions: (a) How many grams are there in 4 moles of C₆H₁₂O₆? (b) How many C atoms are there in 3 moles of C₆H₁₂O₆?(c) How many O atoms are there in 3 moles of $C_6H_{12}O_6$?

0.16 Answer the following questions: (a) Calculate the number of C atoms in 3 moles of $C_{10}H_{14}N_2$? (b) Calculate the number of H atoms in 3 moles of $C_{10}H_{14}N_2$? (c) Calculate the number of N atoms in 3 moles of $C_{10}H_{14}N_2$

0.20 Fill the conversion factor that calculates the final property, given that the molar mass of C_2H_6 is 30g/mol:

$$7 \times 10^{21}$$
 atoms of $C \times$ _____ \times ____ moles of C_2H_6

0.17 Calculate the molar weight of the following molecules: (a) Sulfur dioxide, SO_2 (b) Unsymmetrical dimethyl hydrazine, $(CH_3)_2NNH_2$ (c) Dimethyl sulfide, $(CH_3)_2S$

0.21 Six moles of nitrogen gas react to produce two moles of ammonia according to the following reaction:

0.18 Calculate the molar weight of the following molecules: (a) benzene, C_6H_6 (b) Carbon disulfide, CS_2 (c) Nitrogen tetroxide, N_2O_4

0.22 Six moles of nitrogen gas react to produce three moles of ammonia according to the following reaction:

$$\begin{array}{c} 3\,H_2(g) + N_2(g) \longrightarrow 2\,NH_3(g) \\ \text{6 moles} \end{array}$$

0.19 Fill the conversion factor that calculates the final property, given that the molar mass of C_2H_6 is 30g/mol:

$$5\times 10^{25}$$
 atoms of H \times $\hfill \times$ \hf

0.23 We mix three moles of hydrogen gas with half a mole of nitrogen gas.

$$\begin{array}{ccc} 3\,H_2(g) + & N_2(g) & \longrightarrow 2\,NH_3(g) \\ 3 \text{ moles} & 0.5 \text{ moles} \end{array}$$

Calculate the limiting reagent.

How many moles of imine (MW=43g/mol) are produced if we react 3g of nitrile (MW=41g/mol), with 2g of stannous chloride (MW=188g/mol) and 1g of hydrochloric acid (MW=36g/mol).

0.33 Fill the conversion factor that calculates the moles of AgO produced from 2 moles of Silver:

$$\begin{array}{c} 2\,Ag(s) + O_2(g) \longrightarrow 2\,AgO(s) \\ \\ 2\,\, \underline{\text{moles of Ag}} \times \\ \\ \hline \qquad \qquad \underline{\text{moles of Ag}} \\ \\ = 2\,\, \text{moles of AgO}. \end{array}$$

 $0.30\,$ The Wurtz reaction results from the reaction of bromomethane (CH₃Br) with sodium to produce ethylene (C₂H₆)

$$2\,CH_3Br_{(g)}+2\,Na_{(s)} \longrightarrow C_2H_{6(g)}+2\,NaBr_{(s)}$$

How many grams of sodium are need to produce 3g of ethylene given that the yield of the reaction is 30%.

0.34 Fill the conversion factor that calculates the moles of oxygen needed to react with 2 moles of Silver producing AgO:

$$2 \operatorname{Ag}(s) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{AgO}(s)$$

$$2 \text{ moles of } \operatorname{Ag} \times \frac{\operatorname{moles of } \operatorname{O}_2}{\operatorname{moles of } \operatorname{Ag}}$$

$$= 1 \text{ moles of } \operatorname{O}_2.$$

0.31 Fill the mole ratio for the following reaction:

$$\begin{array}{c} C_6H_{12}O_6(s) + 6\,O_2(g) \longrightarrow 6\,CO_2(g) + 6\,H_2O(g) \\ \\ \underline{\qquad \qquad \text{moles of }O_2} \\ \\ \hline \end{array}$$

0.35 Fill the conversion factor that calculates the moles of AgO produced from 5 moles of oxygen:

$$2 \operatorname{Ag}(s) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{AgO}(s)$$

$$5 \text{ moles of } \operatorname{O}_2 \times \frac{\text{moles of AgO}}{\text{moles of O}_2}$$

$$= 10 \text{ moles of AgO}.$$

$$\begin{array}{c} C_6H_{12}O_6(s) + 6\,O_2(g) \longrightarrow 6\,CO_2(g) + 6\,H_2O(g) \\ \\ \underline{ \qquad \qquad \text{moles of } C_6H_{12}O_6 } \\ \underline{ \qquad \qquad \text{moles of } O_2} \end{array}$$

$$2 \operatorname{Ag}(s) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{AgO}(s)$$

10 moles of
$$O_2 \times$$
 moles of AgO

moles of $O_2 \times$

= 20 moles of AgO .

0.40 Calculate the number of molecules in: (a) 8 moles of CO (b) 10 moles of CO_2

0.37 Calculate the number of grams of nitrogen needed to react with 4 moles of hydrogen, to produce ammonia:

0.41 Calculate the number of moles in: (a) 3.2×10^{21} molecules of H₂O (b) 2×10^{23} molecules of CO₂

0.42 Calculate the number of moles in: (a) 6×10^{23} molecules of NO (b) 5×10^{15} molecules of NaCl(c) 3×10^{27} molecules of MgO

0.38 Calculate how many moles of nitrogen are needed to react with 5 moles of hydrogen, to produce ammonia:

$$\begin{array}{ccc} 3\,H_2(g) + & N_2(g) & \longrightarrow 2\,NH_3(g) \\ 5 \text{ moles} & \text{moles} \end{array}$$

0.43 Fill the conversion factor that calculates the final property:

 $3 \underline{\text{moles of NO}} \times \underline{\frac{\text{molecules of NO}}{\text{moles of NO}}}$ $= \underline{\frac{\text{molecules of NO}}{\text{molecules of NO}}}$

0.39 Calculate the number of molecules in: (a) 4 moles of NH_3 (b) 50 moles of H_2SO_4

0.47 Calculate the number of grams of hydrogen needed to react with 5 moles of nitrogen, to produce ammonia:

$$3 \text{ H}_2(g) \atop \text{grams} + N_2(g) \longrightarrow 2 \text{ NH}_3(g)$$

0.44 Fill the conversion factor that calculates the final property:

$$10^{24} \underline{\text{molecules of NO}_2} \times \underline{\frac{\text{moles of NO}_2}{\text{molecules of NO}_2}}$$

$$= \underline{\frac{\text{moles of NO}_2}{\text{moles of NO}_2}}$$

0.48 Calculate the number of grams of hydrogen needed to react with 0.3 moles of nitrogen, to produce ammonia:

$$3 \, H_2(g) \atop \text{grams} + N_2(g) \longrightarrow 2 \, NH_3(g)$$

0.45 Fill the conversion factor that calculates the final property:

$$10^{25} \underline{\text{molecules of CH}_4 N_2 O} \times \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}} \text{moles of CH}_4 N_2 O.$$

0.46 Fill the conversion factor that calculates the final property:

$$\begin{array}{c} \text{6 moles of } C_6 H_{12} O_6 \times \\ \\ = \\ \text{molecules of } C_6 H_{12} O_6. \end{array}$$

