Optimization Methods in ML Spring 2022/23 - HW 1

Lecturer: Dan Garber

Due date: 2.6.2022

Guidelines:

- you may submit in pairs
- you may consult with your fellow classmates ("high-level" discussions) but you may not copy answers!
- programming is allowed in whatever environment you prefer

Question 1. Prove that given a real-valued function f differentiable over a convex and closed set $\mathcal{K} \subseteq \mathbb{R}^d$, f is convex on \mathcal{K} if and only if f satisfies the gradient inequality over \mathcal{K} . Hint: recall the definition of the directional derivative of a function.

Question 2. Let f be twice differentiable over $\mathcal{K} \subseteq \mathbb{R}^d$ closed and convex. Prove the following 2nd-order sufficient conditions:

- 1. If $\forall \mathbf{x} \in \mathcal{K} : \nabla^2 f(\mathbf{x}) \succeq 0$ then $f(\mathbf{x})$ is convex over \mathcal{K}
- 2. If $\forall \mathbf{x} \in \mathcal{K} : \nabla^2 f(\mathbf{x}) \leq \beta \mathbf{I}$ then $f(\mathbf{x})$ is β -smooth over \mathcal{K} (smoothness ineq. holds)
- 3. If $\forall \mathbf{x} \in \mathcal{K} : \nabla^2 f(\mathbf{x}) \succeq \alpha \mathbf{I}$ then $f(\mathbf{x})$ is α -strongly convex over \mathcal{K} (stronger gradient-ineq. holds)

Question 3. Let $f(\mathbf{x}) := \max_{1 \leq i \leq n} g_i(\mathbf{x})$ such that each $g_i : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable. Prove that for any $\mathbf{x} \in \mathbb{R}^d$, $\nabla g_{i^*}(\mathbf{x})$, where $i^* \in \arg \max_{1 \leq j \leq n} g_j(\mathbf{x})$, is a subgradient of f at \mathbf{x} .

Question 4. In class we have established the convergence of the subgradient descent method with a fixed step-size $\eta = \frac{D}{G\sqrt{T}}$, where T is a pre-fixed number of iterations. However, in practice many times a decaying step-size is preferred which does not require to pre-fix the number of iterations. Prove that our convergence theorem for subgradient descent still holds (potentially with a slightly worse universal constant) in case we choose the step-size on iteration t to be $\eta_t = \frac{D}{G\sqrt{t}}$.

Question 5 (Beyond the black-box first-order model). Consider the following composite optimization problem

$$\min_{\mathbf{x} \in \mathcal{K}} \{ f(\mathbf{x}) := g(\mathbf{x}) + h(\mathbf{x}) \},$$

where $K \subset \mathbb{R}^d$ is convex and compact, $g : \mathbb{R}^d \to \mathbb{R}$ is convex and β -smooth, and $h : \mathbb{R}^d \to \mathbb{R}$ is convex but **nonsmooth**.

For instance, a famous problem that matches this model is LASSO Regression:

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

Consider the following modified projected gradient method for composite optimization, which applies the following updates:

$$\mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x} \in \mathcal{K}} \left\| \mathbf{x} - \left(\mathbf{x}_t - \frac{1}{\beta} \nabla g(\mathbf{x}_t) \right) \right\|_2^2 + \frac{2}{\beta} h(\mathbf{x})$$

Answer the following questions:

- Prove this method converges with rate $O(\beta D^2/t)$.
- Prove that if $h(\mathbf{x})$ is α -strongly convex (though still not smooth) this method converges with rate $O\left(\exp\left(-\Theta\left(\frac{\alpha}{\beta}t\right)\right)\right)$.
- Contrast the above results with the lower-bounds we know for nonsmooth minmization with first-order methods. Explain why they do not contradict each other.

Question 6 (Conditional Gradient method for nonconvex optimization). Consider the optimization problem:

$$\min_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}),$$

where $K \subset \mathbb{R}^d$ is convex and compact, and $f : \mathbb{R}^d \to \mathbb{R}$ is β smooth over K but **not** convex.

A stationary point $\mathbf{x}_0 \in \mathcal{K}$ for the above problem can be equivalently defined as such that

$$\forall \mathbf{y} \in \mathcal{K} : (\mathbf{y} - \mathbf{x}_0)^{\top} \nabla f(\mathbf{x}_0) \ge 0.$$

That is, there are no feasible descent directions from \mathbf{x}_0 .

Naturally, a point \mathbf{x}_0 will be called ϵ -stationary if it holds that

$$\min_{u \in \mathcal{K}} (\mathbf{y} - \mathbf{x}_0)^{\top} \nabla f(\mathbf{x}_0) \ge -\epsilon.$$

Consider now the conditional gradient method with line-search for the above problem, which applies the following steps:

$$\mathbf{v}_{t} \leftarrow \arg\min_{\mathbf{v} \in \mathcal{K}} \mathbf{v}^{\top} \nabla f(\mathbf{x}_{t})$$
$$\eta_{t} \leftarrow \arg\min_{\eta \in [0,1]} f((1-\eta)\mathbf{x}_{t} + \eta \mathbf{v}_{t})$$
$$\mathbf{x}_{t+1} \leftarrow (1-\eta_{t})\mathbf{x}_{t} + \eta_{t}\mathbf{v}_{t},$$

where \mathbf{x}_1 is some arbitrary point in \mathcal{K} .

Prove that the sequence $\{\mathbf{x}_t\}_{t\geq 1}$ produced by the above updates satisfies that for all $t\geq 1$, at least one of the iterates $\mathbf{x}_1,\ldots,\mathbf{x}_t$ is a $O(\frac{\beta D^2}{\sqrt{t}})$ -stationary point, where D is the Euclidean diameter of K.

Question 7 (strong convexity and the Polyak-Lojasiewicz property). We have seen that when minimzing a function $f: \mathbb{R}^d \to \mathbb{R}$ which is α -strongly convex and β -smooth over \mathbb{R}^d (without constraints), the gradient descent method converges with rate $\exp(-\Theta(\alpha/\beta)t)$. We say a differentiable function has the **Polyak-Lojasiewicz** (PL) property with constant α if for any x it holds that $\|\nabla f(x)\|^2 \geq \frac{\alpha}{2}(f(x) - f^*)$. Answer the following questions:

- 1. Prove that if f is α -strongly convex it also has the PL property with constant α .
- 2. Prove that the least-squares function $f(x) = \frac{1}{2} ||Ax b||^2$, with A that has linearly-independent rows but is not full rank, is on one hand not strongly convex, but does satisfy the PL property. Give an expression for the PL constant.
- 3. Prove that the gradient descent method (with step size $1/\beta$) converges with rate $\exp(-\Theta(\alpha/\beta)t)$ for $f(\cdot)$ which is β -smooth and is PL with parameter α .

Question 8 (programming question). You are requested to empirically compare the performances of the (sub)gradient method for non-smooth optimization (with decaying step-sizes $\frac{D}{G\sqrt{t}}$), gradient descent for smooth convex optimization, and the accelerated gradient method on the linear regression optimization task:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2.$$

Generate the data as follows: take \mathbf{A} to be a random matrix (random as you choose) with fixed values of $\sigma_{\max}(\mathbf{A})$, $\sigma_{\min}(\mathbf{A})$ (of your choosing). Choose a solution \mathbf{x}^* and set $\mathbf{b} = \mathbf{A}\mathbf{x}^* + \boldsymbol{\xi}$, where $\boldsymbol{\xi}$ is a random noise of low magnitude. Compare the convergence rate of the algorithms (i.e., function value vs. number of iterations). Experiment both in the case in which $\mathbf{A}^{\top}\mathbf{A}$ is not positive definite and in the case in which it is (then the problem is strongly convex). You may set the parameters (D, G, β, α) based directly on the data (\mathbf{A}, \mathbf{b}) (though this is not likely in real-life). Since data is random, plot the average of several i.i.d. experiments. Briefly discuss your observations of the experiment and contrast with the theory we have developed. Submit:

- code for experiments (zip file)
- documentation how did you generate the data and how did you set the parameters for the algorithms. Conclusions from experiments.
- plot of the requested graphs