제주 도로 교통량 예측 Al 경진대회

목차

- 1. Intro
- 2. Idea
- 3. EDA
- 4. Feature Engineering
- 5. Modeling
- 6. Outro

1. Intro

배경

- 제주도내 주민등록인구는 2022년 기준 약 68만명으로, 연평균 1.3%정도 매년 증가
- 외국인과 관광객까지 고려하면 전체 상주인구는 90만명을 넘을 것으로 추정
- 제주도민 증가와 외국인의 증가로 현재 제주도의
 교통체증이 심각한 문제

주제

- 제주도 도로 교통량 예측 AI 알고리즘 개발

설명

- 제주도의 교통 정보로부터 도로별 평균속도 회귀 예측

제공 데이터

- train.csv: 2022년 8월 이전 데이터만 존재하며 날짜, 시간, 교통 및 도로구간 등의 정보와 도로의 차량 평균 속도(target) 정보 포함
- test.csv: 2022년 8월 데이터만 존재하며 날짜, 시간, 교통 및 도로구간 등의 정보 포함

외부 데이터

- 날씨 데이터: 기상청 지상(종관, ASOS)일자료
 Open API 활용 [일시, 기온, 강수량, 풍속, 안개 계속 시간 등]
 (2022년 8월 이전 데이터만 활용,
 - 2022년 8월은 데이터의 경향성으로 추측한 값을 활용)
 - https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36&tabNo=2#
- 제주도를 크게 4개의 지역으로 나누어서 전처리 진행 [제주, 고산, 성산, 서귀포]

2. IDEA

출발-도착지 거리 피처 추가, log 정규화

날씨 외부데이터

시간대별 등급 구분

데이터 가중치 (6, 7월)

위경도 기반 clustering

연월 병합

1) 출발지에서 도착지까지 거리 정규화

2) 월별 교통량 추이

- 6,7월이 최근접 데이터
- 6,7월에 속력이 내려가는 변화 보임

연월 병합

6, 7월 데이터에 큰 가중치 부과

3) 날씨

4) 위경도 기반 Clustering

<20개 group으로 clustering>

- 도착지점 위경도를 기준으로 clustering
- clustering group 별로 평균속도 heat map

<group별 평균속도>

5) 시간대별 평균속도

- 4개의 구간으로 나누어 속도에 따른 점수로 수치화
- 0~5人:3
- 6~7, 22~23시:2
- 8~17, 17~21시:1
- 17~18人 : 0

4. Feature Engineering

- 파생변수 생성
 - base_date -> yearmonth
 - day_of_week, base_hour -> time_category

base_date	day_of_week	base_hour
20220623	목	17
20220728	목	21
20211010	일	7

year_month	time_category
202206	Θ
202207	1
202110	2
•••	•••

4. Feature Engineering

- 파생변수 생성
 - latitudes & longitudes -> distance, cluster_num

start_latitude	start_longitude	end_latitude	end_longitude
33.427747	126.662612	33.427749	126.662335
33.500730	126.529107	33.504811	126.526240
33.279145	126.368598	33.280072	126.362147

distance	cluster_num
0.000277	8
0.004987	1
0.006516	2
•••	***

4. Feature Engineering

• 최종 Feature

이름	설명	이름	설명
yearmonth	연월	start_turn_restricted	시작지점의 회전제한 유무
day_of_week	요일	end_latitude	도착지점의 위도
base_hour	시간	end_longitude	도착지점의 경도
weight_restricted	통과제한하중	end_turn_restricted	도착지점의 회전제한 유무
lane_count	차로수	distance	시작지점-도착지점간 거리
maximum_speed_limit	최고속도제한	time_category	시간에 따른 그룹
road_type	도로유형	cluster_num	위치 클러스터 번호
road_rating	도로등급	stnNm	날씨별 지역
road_name	도로명	avgTa	평균 기온
start_node_name	시작지점명	avgTca	평균 전운량
end_node_name	도착지점명	minTa	최소 기온
start_latitude	시작지점의 위도	maxTa	최고 기온
start_longitude	시작지점의 경도	maxInsWs	최대 순간 풍속

5. Modeling

- 0.8*XGBoost + 0.15*LightGBM + 0.05*ExtraTree
- 각 모델을 FLAML을 활용해 하이퍼 파라미터 튜닝
- 결과 평가지표(MAE)

19

6. Outro

김경민

Feature Engineering

- 날씨 data 추가

Modeling

- AutoML, DNN

김태종

EDA

- Visualization

Feature Engineering

- time_category
- clustering
- 출발-도착지 거리 정규화

박수진

Feature Engineering

- DBSCAN

Modeling

catboost,ExtraTree,Pycaret

조근혜

Feature Engineering

- yearmonth 피처 추가 data 가중치 추가

Modeling & Tuning

- HistGB, FLAML