Zadatak 1 (VIS-R; ZI 2022/2023).

(a) Nepoznato očekivanje a populacije X želimo procijeniti na temelju uzorka duljine tri (X_1, X_2, X_3) . Na raspolaganju imamo dvije statistike

$$N_1 = \frac{X_1 + 2X_2 + 3X_3}{6}, \qquad N_2 = \frac{X_1 + X_2 + X_3}{3}.$$

Dokažite da su i statistika N_1 i statistika N_2 nepristrani procjenitelji parametra a. Koja od tih dviju statistika je efikasnija? Dokažite svoju tvrdnju.

(b) Neka je X diskretna slučajna varijabla zadana slijedećom razdiobom koja ovisi o parametru ϑ :

$$X \sim \left(\begin{array}{ccc} 0 & 1 & 2 \\ \frac{\vartheta}{3} & \frac{2\vartheta}{3} & 1 - \vartheta \end{array} \right).$$

Uzet je uzorak od 9 nezavisnih mjerenja slučajne varijable X i dobivene su vrijednosti 2,1,2,2,1,0,2,2,1. Koristeći kriterij najveće izglednosti, odredite procjenu za parametar ϑ na temelju dobivenog uzorka.

Rješenje.

Zadatak 2 (ZIR 2020/2021). Pretpostavimo da je X_1, \ldots, X_n slučajan uzorak iz uniformne distribucije na intervalu $(\vartheta, \vartheta+1)$, gdje je parametar ϑ nepoznat. Pokažite da procjenitelj najveće izglednosti za parametar ϑ nije jedinstven i navedite sve procjenitelje najveće izglednosti za ϑ .

Rješenje.

Zadatak 3 (LJIR 2021/2022). Uzorak X_1, \ldots, X_n izvučen je iz populacije s Rayleighovom razdiobom s gustoćom

$$f(x) = 2\lambda^2 x e^{-\lambda^2 x^2}, \quad x > 0.$$

- (a) Pomoću kriterija najveće izglednosti odredite procjenu za parametar λ .
- (b) Je li statistika

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2$$

nepristrani procjenitelj za $\frac{1}{\lambda^2}$?

Rješenje.

Zadatak 4 (JIR 2020/2021).

(a) Neka je $\widehat{\Theta}_1$ nepristrani procjenitelj za parametar θ te neka je W slučajna varijabla s očekivanjem nula. Dokažite da je tada

$$\widehat{\Theta}_2 = \widehat{\Theta}_1 + W$$

također nepristrani procjenitelj za parametar θ .

(b) Neka je $\widehat{\Theta}_1$ procjenitelj za parametar θ takav da vrijedi $E\left[\widehat{\Theta}_1\right] = a\theta + b$, pri čemu je $a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}$. Dokažite da je tada

$$\widehat{\Theta}_2 = \frac{\widehat{\Theta}_1 - b}{a}$$

 $nepristrani\ procjenitelj\ za\ parametar\ \theta.$

Rješenje.

Zadatak 5 (VIS-R; ZI 2020/2021). Paretova distribucija koristi se u ekonomiji kao model za distribuciju s teškim repom i njena gustoća dana je s

$$f(x \mid a, \theta) = \theta a^{\theta} x^{-\theta - 1}, \quad x \ge a, \ \theta > 1.$$

Pretpostavimo da je parametar a > 0 poznat i neka je dan uzorak x_1, x_2, \ldots, x_n . Pronadite procjenitelj najveće izglednosti za parametar θ .

Rješenje.

Zadatak 6 (VIS-R; ZI 2021/2022). Slučajna varijabla X ima normalnu razdiobu s poznatom varijancom σ^2 i nepoznatim očekivanjem μ .

- (a) Pomoću kriterija najveće izglednosti odredite procjenu nepoznatog parametra.
- (b) Ispitajte nepristranost dobivenog procjenitelja.
- (c) Ispitajte valjanost dobivenog procjenitelja. Objasnite koji ste kriterij za valjanost procjenitelja koristili.
- (d) Koji je procjenitelj najveće izglednosti za μ^2 ? Je li on nepristran? Rješenje.

Zadatak 7 (JIR 2021/2022). Neka je X_1, \ldots, X_n uzorak iz populacije s normalnom razdiobom s poznatom disperzijom σ^2 i napoznatim očekivanjem a.

- $(a) \ \textit{Izvedite formulu za dvostrani interval pouzdanosti reda p za očekivanje a.}$
- (b) Koliko velik uzorak iz normalne populacije s disperzijom $\sigma^2 = 0.0025$ treba uzeti da duljina intervala pouzdanosti reda 0.95 ne bude veća od 0.02?
- (c) Ukoliko u b) dijelu zadatka iz podataka izračunamo $\overline{x} = 0.5$, možemo li na razini značajnosti $\alpha = 0.05$ odbaciti hipotezu H_0 : a = 0.55 u korist H_1 : $a \neq 0.55$. Zašto?

Rješenje.