JR Seigne MP*, Clemenceau Nantes

Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key

Comparateur simple

La diode

Électronique non linéaire

JR Seigne MP*, Clemenceau
Nantes

September 1, 2024

Loi d'Ohm

Les deux formes de la loi d'Ohm

Magnétorésistance Effet Joule

Puissance

· dissairee

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key

Comparateur simple

1 Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm Magnétorésistance

- 2 Effet Joule
- 3 Puissance
- 4 Théorème de Millmann
- **5** Composants non linéaires

Multiplieur

Amplificateur opérationnel

Soustracteur

Intégrateur

Filtre de Sallen-Key

Comparateur simple

La diode

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur

Amplificateur opérationnel Soustracteur

Intégrateur

Filtre de Sallen-Key

Comparateur simple La diode

Hypothèses

On considère un électron d'un milieu conducteur. Il subit les forces :

• Poids négligé : $m\vec{g}$

• Force électrique : $-e\vec{E}$

• Force magnétique négligée : $-e \vec{v} \wedge \vec{B}$

• Force exercée par l'environnement assimilée à une force de frottement fluide : $-h\vec{v}$

L'équation différentielle du mouvement est :

$$m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -e\,\vec{E} - e\vec{v}\wedge\vec{B} - h\,\vec{v} + m\vec{g}$$

Le référentiel du conducteur est supposé galiléen.

Simplification

On néglige le poids. On fait apparaı̂tre la pulsation cyclotron $\vec{\omega}_c = \frac{e\vec{B}}{m}$. L'équation différentielle devient alors :

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{\vec{v}}{\tau} = -\frac{e}{m}\vec{E} + \vec{\omega}_c \wedge \vec{v}$$

Nous étudierons deux cas de figure : sans champ magnétique (ou en négligeant son effet) et avec prise en compte du champ magnétique (effet de magnétorésistance).

Champ électrique statique et uniforme

On pose $\tau = m/h$, l'équation différentielle est donc :

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{\vec{v}}{\tau} = -\frac{e}{m}\vec{E}$$

La solution générale est de la forme $\vec{v}_g = \vec{A} \exp{-\frac{t}{\sigma}}$, la solution particulière $\vec{v}_p = -\frac{e au}{m} \vec{E}$. Avec les conditions initiales, on trouve l'expression suivante :

$$\vec{v} = \left(\vec{v}_0 + \frac{e\tau}{m}\vec{E}\right) \exp\left(-\frac{t}{\tau}\right) - \frac{e\tau}{m}\vec{E}$$

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Kev

Comparateur simple

La diode

Champ électrique harmonique et uniforme

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{\vec{v}}{\tau} = -\frac{e}{m} \underline{\vec{E}}_0 \exp j\omega t \text{ avec } \underline{\vec{E}}_0 = \vec{E}_0 \exp j\varphi_0.$$

La solution générale est toujours de la forme $\vec{v}_g = \vec{A} \exp{-\frac{t}{-}}$, la solution particulière \vec{v}_p doit être cherchée sous forme complexe :

$$(j\omega + \frac{1}{\tau})\underline{\vec{v}}_p = -\frac{e}{m}\underline{\vec{E}}_0 \exp j\omega t$$

ce qui donne :

$$\underline{\vec{v}} = \underline{\vec{A}} \exp\left(-\frac{t}{\tau}\right) - \frac{e\tau}{m(1+j\omega\tau)}\underline{\vec{E}}$$

Effet Joule

Puissance

Théorème de Millmann

Composants

non linéaires

Amplificateur opérationnel Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple

Densité de courant

Par définition, la densité volumique de courant est :

$$\vec{j} = \rho_m \vec{v} = -ne \vec{v}$$

où ρ_m est la charge volumique mobile, n est la densité volumique de particules chargées mobiles par unité de volume du conducteur (on ne considère que des électrons). On a donc :

$$\vec{j}$$
 est en $\mathbf{A} \cdot \mathbf{m}^{-2}$ et que $i = \iint_{S} \vec{j} \cdot d\vec{S}$

loi d'Ohm Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur

Filtre de Sallen-Key

Comparateur simple

Régime permanent

Au bout de quelques $\tau \ll 10^{-10} \, \mathrm{s}$, on peut considérer que $\exp -t/\tau \simeq 0$. Le régime transitoire est terminé. La vitesse de l'électron est proportionnelle au champ électrique :

Statique
$$\vec{v} = -\frac{e\tau}{m}\vec{E}$$

$$\vec{j} = \frac{ne^2\tau}{m}\vec{E} = \gamma_0\vec{E}$$

Harmonique
$$\underline{\vec{v}} = -\frac{e\tau}{m(1+i\omega\tau)}\underline{\vec{E}} = \underline{\gamma}\underline{\vec{E}}$$

$$\underline{\vec{j}} = \frac{\gamma_0}{1 + i\omega\tau}\underline{\vec{E}}$$

Filtre de Sallen-Key Comparateur simple La diode Statique ou ARQS

La densité de courant \vec{j} est proportionnelle au champ électrique \vec{E} :

Loi d'Ohm locale :
$$\vec{j} = \gamma \vec{E} = \frac{ne^2\tau}{m}\vec{E}$$

où γ en $\,\Omega^{-1}\cdot {\bf m}^{-1}$ est la conductivité électrique du conducteur.

À cette loi locale, valable en tout point du conducteur, correspond une loi globale pour la totalité du conducteur :

Loi d'Ohm globale : u = Ri

avec $R=\frac{1}{\gamma}\frac{\ell}{S}$ pour un conducteur de section S et de longueur ℓ . R en Ω est la résistance électrique du conducteur.

Filtre de Sallen-Key Comparateur simple

La diode

L'équation différentielle avec présence d'un champ magnétique est pour la densité de courant :

$$au rac{\mathrm{d} ec{j}}{\mathrm{d} t} + ec{j} = \gamma \left(ec{E} - rac{1}{ne} ec{j} \wedge ec{B}
ight)$$

En statique, on obtient :

$$\vec{j} = \gamma \left(\vec{E} + R_{H} \vec{j} \wedge \vec{B} \right)$$

Avec $\vec{B} = B_{\theta}\vec{e}_{\theta}$ et $\vec{E} = E_z\vec{e}_z$, on arrive à :

$$ec{j} = -\gamma R_{H} j_{z} B_{ heta} \, ec{e}_{r} + \gamma (E_{z} + R_{H} j_{r} B_{ heta}) \, ec{e}_{z}$$

La densité de courant \vec{j} n'est plus colinéaire au champ électrique \vec{E} .

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key Comparateur simple La diode

Diminution de la conductivité

En identifiant les composantes de \vec{j} , on a :

$$\begin{cases} j_r = -\gamma R_H B_\theta j_z \\ \\ j_z = \gamma (E_z + R_H B_\theta j_r) \end{cases}$$

$$j_z = \frac{\gamma}{1 + \gamma^2 R_H^2 B_\theta^2} E_z$$

Tout se passe comme si la conductivité était diminuée par rapport à la situation où le champ magnétique est nul $B_{\theta}=0$ et où la conductivité était γ .

Calcul de la résistance

L'intensité est donnée par :

$$i = \iint \vec{j} \cdot \mathrm{d}\vec{S} = \iint \vec{j} \cdot \mathrm{d}S \vec{e}_z = \iint j_z(r) r \mathrm{d}r \mathrm{d}\theta$$

L'invariance par rotation d'angle θ et la relation $u=E_z\ell$ permet d'écrire :

$$i = u \frac{\gamma \pi}{\ell} \int_0^a \frac{2r}{1 + \frac{\gamma^2 B_0^2 r^2}{n^2 e^2 a^2}} dr$$

On pose $x = \frac{\gamma B_0 r}{nea}$, l'intégrale devient :

$$i = u \frac{\gamma \pi a^2}{\ell} \frac{n^2 e^2}{\gamma^2 B_0^2} \int_0^{\frac{\gamma B_0}{ne}} \frac{2x}{1 + x^2} dx = u \frac{\gamma \pi a^2}{\ell} \frac{n^2 e^2}{\gamma^2 B_0^2} \ln(1 + \frac{\gamma^2 B_0^2}{n^2 e^2})$$

Comparateur simple

Magnétorésistance

En l'absence de champ magnétique : $R = \frac{u}{i} = \frac{1}{\gamma} \frac{\ell}{\pi a^2}$.

En présence du champ magnétique proposé ici, on trouve :

$$R = \frac{1}{\gamma} \frac{\ell}{\pi a^2} \frac{\frac{\gamma^2 B_0^2}{n^2 e^2}}{\ln(1 + \frac{\gamma^2 B_0^2}{n^2 e^2})}$$

 $y^2 \ge \ln(1+y^2)$, la résistance est plus élevée. On retrouve le cas sans champ magnétique $B_0 = 0$ en effectuant un développement limité de $\ln(1+y^2) \simeq y^2$.

Comparateur simp La diode

Puissance mécanique

La puissance de la force électrique est :

$$P_{1\mathrm{e}^-} = -e\, \vec{E} \cdot \vec{v}$$

En régime permanent, nous avons vu que $\vec{v}=-\frac{e\tau}{m}\vec{E}$. La puissance fournie à un électron est donc proportionnelle au carré du champ électrique :

$$P_{1e^-} = \frac{e^2 \tau}{m} \vec{E}^2$$

Si l'on raisonne par unité de volume :

$$p_{vol} = \frac{ne^2\tau}{m} \vec{E}^2 = \gamma \vec{E}^2 = \vec{j} \cdot \vec{E} = \frac{\vec{j}^2}{\gamma}$$

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key

Comparateur simple La diode

Puissance électrique

Comme pour la loi d'Ohm, il y a une forme locale et une forme globale pour la loi de Joule :

Loi de Joule locale :
$$p_{vol} = \vec{j} \cdot \vec{E} = \gamma \vec{E}^2 = \frac{\vec{j}^2}{\gamma}$$

En calculant la puissance globale pour le conducteur de volume $S \, \ell$, on a :

$$p_{\mathrm{Joule}} = (\vec{j} \cdot \vec{E})S\ell = (E\ell)(jS)$$

Loi de Joule globale : $p_{\text{Joule}} = u i$

Filtre de Sallen-Key

Comparateur simple

Puissance moyenne

La puissance instantanée est p(t) = u(t)i(t), très souvent seule la puissance moyenne est significative :

Évolution quelconque :
$$P_{moy} = \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} u(t) i(t) dt$$

Évolution périodique :
$$P_{moy} = \frac{1}{T} \int_{t_0}^{t_0+T} u(t) i(t) \, \mathrm{d}t$$

La puissance dans un conducteur ohmique en continu est :

$$P = P_{moy} = RI^2 = \frac{U^2}{R}$$

puisque i(t) = I et $u(t) = U = RI \ \forall t$.

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple

La diode

Résistance en régime sinusoïdal

On considère la résistance R = 1/G alimentée par l'intensité $i(t) = I_m \cos \omega t$, la puissance instantanée est $p(t) = RI_m^2 \cos^2 \omega t$. La puissance moyenne est donnée par :

$$P_{moy} = \frac{1}{T} \int_{t_0}^{t_0+T} p(t) dt = RI_m^2 \frac{1}{T} \int_{t_0}^{t_0+T} \cos^2 \omega t dt$$

Nous savons que la moyenne de la fonction $\cos^2 \omega t$ est 1/2:

$$\frac{1}{T} \int_{t_0}^{t_0+T} \cos^2 \omega t \, \mathrm{d}t = \frac{1}{2\pi} \int_{\alpha_0}^{\alpha_0+2\pi} \cos^2(\omega t) (\omega \mathrm{d}t) = \frac{1}{2}$$

$$P_{moy} = R \frac{I_m^2}{2} = \frac{U_m^2}{2R} = G \frac{U_m^2}{2} = R I_{eff}^2 = G U_{eff}^2$$

Effet Joule

Théorème de

Théorème d Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key Comparateur simple

Comparateur simpl La diode

Valeur efficace

Son carré $S_{\it eff}^2$ est la moyenne du carré de la grandeur instantanée $s^2(t)$:

$$S_{ ext{eff}}^2 = \langle s^2(t)
angle = rac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} s^2(t) \, \mathrm{d}t$$

$$u(t)=U_0+U_m\cos{(\omega t+arphi)}$$
 Tension efficace : $U_{eff}=\sqrt{U_0^2+rac{U_1^2}{2}}$

Utile pour les calculs des valeurs moyennes $\langle \frac{1}{2}m\vec{v}^2 \rangle$, $\langle \frac{1}{2}kx^2 \rangle$, $\langle \frac{1}{2}Cu^2 \rangle$, $\langle \frac{1}{2}Li^2 \rangle$...

Effet Joule

Puissance

Théorème de Millmann

Composants

non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Kev

mode AC

Comparateur simple La diode

Grandeurs mesurées

RMS mode AC

Contrôleur numérique Oscilloscope numérique mode DC U_0 average mode DC average mode AC $\mathsf{mode}\ AC + DC$ RMS mode DC

Un

Composants non linéaires

Multiplieur Amplificateur opérationnel Soustracteur

Intégrateur Filtre de Sallen-Key

Comparateur simple

Cas général en régime sinusoïdal

Une impédance $\underline{Z}=R+jX=1/\underline{Y}$, dont le module est $|\underline{Z}|=\sqrt{R^2+X^2}$, est traversée par l'intensité $i(t)=I_m\cos\omega t$. La tension à ses bornes est :

$$u(t) = |\underline{Z}|I_m \cos(\omega t + \varphi) \operatorname{avec} \varphi = \arg \frac{\underline{u}}{\underline{i}} = \arg \underline{Z} = \arctan \frac{X}{R}$$

Avec $U_m = |\underline{Z}|I_m$, la puissance moyenne dissipée est :

$$P_{moy} = \frac{1}{T} \int_{t_0}^{t_0+T} p(t) dt = \frac{U_m I_m}{T} \int_{t_0}^{t_0+T} cos\omega t \cos(\omega t + \varphi) dt$$

$$P_{moy} = U_{eff} I_{eff} \cos \varphi = \Re(\underline{Z}) I_{eff}^2 = \Re(\underline{Y}) U_{eff}^2$$

Effet Joule Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur

opérationnel Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple

La diode

Utilisation des complexes

On peut utiliser les complexes pour obtenir la puissance moyenne mais il ne faut pas les utiliser pour la puissance instantanée :

$$\begin{cases} \underline{i}(t) = I_m \exp j\omega t \\ \\ \underline{u}(t) = U_m \exp j(\omega t + \varphi) \end{cases}$$

$$\langle p(t) \rangle = \langle i(t)u(t) \rangle = \frac{1}{2} \Re \left[\underline{i}(t)\underline{u}^*(t) \right]$$

$$P_{moy} = \langle p(t) \rangle = \frac{1}{2} \Re \left[U_m I_m \exp -j\varphi \right] = \frac{1}{2} U_m I_m \cos \varphi$$

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Kev

Comparateur simple

La diode

Loi des noeuds en terme de potentiel...

On travaille sur l'exemple du nœud suivant :

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur

opérationnel Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple

Comparateur simple La diode

. . . encore appelée théorème de Millmann

La loi des noeuds donne :

$$i_0 + \frac{V_1 - V_N}{Z_1} + \frac{V_2 - V_N}{Z_2} + \frac{V_3 - V_N}{Z_3} = 0$$

Appliquer le théorème de Millmann consiste à exprimer le potentiel au nœud ${\it N}$:

$$V_{N} = \frac{i_{0} + \frac{V_{1}}{\underline{Z}_{1}} + \frac{V_{2}}{\underline{Z}_{2}} + \frac{V_{3}}{\underline{Z}_{3}}}{\frac{1}{\underline{Z}_{1}} + \frac{1}{\underline{Z}_{2}} + \frac{1}{\underline{Z}_{3}}} = \frac{i_{0} + \underline{Y_{1}}V_{1} + \underline{Y_{2}}V_{2} + \underline{Y_{3}}V_{3}}{\underline{Y_{1}} + \underline{Y_{2}} + \underline{Y_{3}}}$$

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur

Amplificateur

opérationnel Soustracteur

Intégrateur

Filtre de Sallen-Kev

Comparateur simple

La diode

Il fournit en sortie une tension image du produit des deux tensions d'entrée :

$$u_s(t) = k u_{e1}(t) \times u_{e2}(t) = \frac{u_{e1}(t) \times u_{e2}(t)}{V_0}$$

Le coefficient k - inverse d'une tension - correspond à une tension $V_0 = 10 \,\mathrm{V}$ pour le multiplieur très courant AD534.

Modèle de Drude Les deux formes de la

Magnétorésistance Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur

Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Kev

Comparateur simple La diode

On multiplie $u_{e1}(t) = U_{m1} \cos \omega_1 t$ et $u_{e2}(t) = U_{m2} \cos \omega_2 t$:

$$u_s(t) = \frac{U_{m1}U_{m2}}{V_0}\cos\omega_1 t \cos\omega_2 t$$

$$u_s(t) = \frac{U_{m1}U_{m2}}{2V_0} \left[\cos(\omega_1 + \omega_2)t + \cos(\omega_1 - \omega_2)t\right]$$

Loi d'Ohm Modèle de Drude

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur

Amplificateur opérationnel

Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple La diode

On constate sur le graphique que la tension $u_s(t)$ issue du produit de signaux de pulsations ω_1 et ω_2 est bien la superposition d'un signal haute fréquence correspondant à $\omega_1 + \omega_2$ et d'un signal basse fréquence $\omega_1 - \omega_2$:

Effet Joule

Puissance

Théorème de Millmann

Composants

non linéaires Multiplieur

Amplificateur opérationnel

Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple La diode

Conçu pour réaliser des opérations mathématiques courantes.

Régime linéaire :
$$u_s = \underline{\mu} \varepsilon = \underline{\mu} (V_+ - V_-) = \frac{\mu_0}{1 + j \frac{\omega}{\omega_0}} \varepsilon$$

Régime de saturation : $u_s = +V_{sat}$ et $u_s = -V_{sat}$ pour $\varepsilon > 0$ resp. < 0.

JR Seigne MP*. Clemenceau Nantes

Loi d'Ohm

Modèle de Drude Les deux formes de la

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants

non linéaires Multiplieur

Amplificateur opérationnel

Soustracteur

Intégrateur Filtre de Sallen-Kev

La diode

Comparateur simple

Régime linéaire : $u_s = \mu \varepsilon$ avec $|\mu| \gg 1$ autorise à considérer $\varepsilon \simeq 0$.

Régime de saturation : $u_s = +V_{sat}$ pour $\varepsilon > 0$ et $u_s = -V_{sat}$ pour $\varepsilon < 0$.

JR Seigne MP*, Clemenceau Nantes

Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur

opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key

Comparateur simple

Soustracteur

Montage soustracteur en régime linéaire :

$$u_s = \frac{R_2}{R_1} \left(u_2 - u_1 \right)$$

Comparateur simple

La diode

Calcul du soustracteur

$$V_{-} = rac{rac{u_{1}}{R_{1}} + rac{u_{s}}{R_{2}}}{rac{1}{R_{1}} + rac{1}{R_{2}}} ext{ et } V_{+} = rac{rac{u_{2}}{R_{1}} + rac{0}{R_{2}}}{rac{1}{R_{1}} + rac{1}{R_{2}}}$$

L'amplificateur opérationnel est idéal et en régime linéaire :

$$\varepsilon = V_+ - V_- = 0$$
 donc $V_+ = V_-$

On peut donc en déduire le lien entre les tensions d'entrée u_1 et u_2 et la tension de sortie :

$$u_s = \frac{R_2}{R_1} (u_2 - u_1)$$

Le montage est un véritable soustracteur pour $R_1 = R_2$.

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Key

Comparateur simple

Montage intégrateur en régime linéaire :

En notation fréquentielle :
$$\underline{u}_s = -\frac{1}{jRC\omega} \underline{u}_e$$

En notation temporelle :
$$u_s(t) = -\frac{1}{RC} \int u_e(t) dt$$

Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur

Intégrateur Filtre de Sallen-Kev Comparateur simple La diode

$$\frac{H(j\omega) = \frac{H_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

$$H_0 = \frac{R}{2(R + R_1)} \qquad \omega_0 = \frac{1}{RC}\sqrt{1 + \frac{R}{R_1}} \qquad Q = \frac{1}{2\sqrt{1 + \frac{R}{R_1}}}$$

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Kev

Comparateur simple

La diode

Absence de rétroaction entre la sortie et les entrées + et -. Régime de saturation : $\varepsilon = u_1 - u_2 \neq 0$

Montage comparateur simple en régime non linéaire :

Saturation haute 1: $u_1 > u_2$, $\varepsilon > 0$ et $u_s = +V_{sat}$

Saturation basse 0 : $u_1 < u_2$, $\varepsilon < 0$ et $u_s = -V_{sat}$

JR Seigne MP*. Clemenceau Nantes

Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur

Amplificateur opérationnel

Soustracteur Intégrateur

Filtre de Sallen-Kev

Comparateur simple

La diode

Les deux modèles initiaux

JR Seigne MP*. Clemenceau Nantes

Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants non linéaires

Multiplieur Amplificateur

opérationnel Soustracteur

Intégrateur

Filtre de Sallen-Kev

Comparateur simple

La diode

Modèle simplifié avec seuil

JR Seigne MP*. Clemenceau Nantes

Loi d'Ohm

Modèle de Drude Les deux formes de la loi d'Ohm

Magnétorésistance

Effet Joule

Puissance

Théorème de Millmann

Composants

non linéaires Multiplieur

Amplificateur opérationnel

Soustracteur

Intégrateur Filtre de Sallen-Kev

Comparateur simple

La diode

