2 Алгебраїчні структури

Поняття алгебраїчної структури включає визначену множину об'єктів та операцій над цими об'єктами. Оскільки практично в будь-якій задачі обробки даних за допомогою комп'ютера виділяється множина самих даних і операції, які застосовні до цих даних, очевидно, що при цьому формуються визначені алгебраїчні структури. Ми вже знайомі з алгебраїчними структурами на множині натуральних, цілих і дійсних чисел, на множинах та відношеннях. Розглянемо такі алгебраїчні моноїди структури, як півгрупи, групи, використовуються для перетворення рядків символів і беруть участь у формуванні більш складних структур — кілець і полів. Ці поняття ϵ базовими для загальної та лінійної алгебри, використовуються під час роботи з матрицями, при кодуванні інформації та обробці даних.

2.1 Алгебраїчні операції та їх властивості

Операцією на множині S називається функція f, яка є відображенням виду $S^n \to S$, $n \in \mathbb{N}$, де S^n — декартів добуток $S \times S \times ... \times S$.

У цьому визначенні ϵ два важливих моменти. По-перше, оскільки операція ϵ функцією, то результат застосування операції визначено однозначно. Тому даний упорядкований набір з n елементів множини S функція f переводить тільки в один елемент із S. По-друге, операція замкнена на S у тому розумінні, що область визначення та область значень операції лежать у S^n і S відповідно.

Стверджують, що операція $S^n \to S$ має *порядок* n або є n-арною операцією. Частіше зустрічається ситуація, коли порядок дорівнює 1 або 2. Операції виду $S \to S$ називають унарними, а операції $S^2 \to S$ називають бінарними. Елементи упорядкованого набору з n елементів в області визначення S^n називають операндами. Операції зазвичай позначають символами, що називають операторами. У випадку унарних операцій символ оператора ставлять перед або над операндом.

Приклад. Операція нульового степеня — це константа. Прикладами унарних операцій ϵ операція зміни знаку (-) на множині дійсних чисел R(-2,678; -56), операція піднесення до степеня (наприклад, до квадрату) на множині $R: 56^2, 7^2$. В алгебрі множин прикладом унарної операції ϵ операція доповнення множин. Бінарними операціями на множині дійсних чисел R ϵ арифметичні операції — додавання, віднімання, множення, ділення (+, -, *, /). В алгебрі множин бінарними ϵ операції — об'єднання (\cup), перетин (\cap), різниця (\setminus).

Операції записують одним з трьох способів. У першому випадку оператор ставиться між операндами (*infix*), у другому — перед операндами (*prefix*) і у третьому — після операндів (*postfix*). Отже, існують три форми запису виразів — *інфіксна*, *префіксна* та *постфіксна*.

Загальноприйнятий запис арифметичних виразів являє приклад інфіксного запису. Запис математичних функцій і функцій у мовах програмування є префіксним (інші приклади префіксного запису – команди ассемблера, тріади і тетради). Постфіксний запис у повсякденному житті зустрічається рідко. З ним зіштовхуються тільки користувачі стекових калькуляторів і програмісти мовою Forth.

Префіксна нотація також відома як *польська нотація*. Польську нотацію запропонував у 1924 році польський логік Ян Лукашевич з метою спрощення логіки висловлень. Постфіксну нотацію називають ще *зворотний польський запис* (зворотний бездужковий запис, польський інверсний запис (ПОЛІЗ).

Розглянемо три варіанти запису бінарної операції арифметичного виразу a+b.

infix: a + b, prefix: +ab, postfix: ab+.

Відповідно до більшості математичних текстів ми будемо використовувати позначення *infix*. Форми запису *postfix* і *prefix* мають ту перевагу, що не потребують дужок при визначенні порядку обчислень складних виразів, і це робить їх особливо зручними для автоматичної обробки. Вони часто використовуються для представлення виразів у пам'яті комп'ютера. Розглянемо їх докладніше на прикладі *postfix*.

Алгоритм обчислення значень виразу, що записаний у формі postfix, виглядає наступним чином:

- 1) при перегляді запису зліва направо виконується перша знайдена операція, якій безпосередньо передує достатня для неї кількість операндів;
- 2) на місці виконаної операції і використаних для цього операндів у рядок записується результат виконання операції;
 - 3) повертаємося до кроку 1.

Приклад. Нехай ϵ вираз, який у стандартній звичній для нас *infix*-формі вигляда ϵ так:

$$1 + 2*3 + (4 + 5*(6 + 7)).$$

Результат переведення його до postfix буде таким:

$$123*+4567+*++$$
.

Обчислимо тепер значення виразу, використовуючи наведений алгоритм:

$$1 \ \underline{2} \ 3^* + 4 \ 5 \ 6 \ 7 + ^* + + = \underline{1} \ 6 + 4 \ 5 \ 6 \ 7 + ^* + + =$$
 $= 7 \ 4 \ 5 \ \underline{6} \ 7 + ^* + + = 7 \ 4 \ \underline{5} \ \underline{13} \ ^* + + = 7 \ \underline{4} \ \underline{65} \ + + =$
 $= 7 \ 69 \ + = 76.$

Крім стандартних відомих нам операцій (наприклад, +, -, *), існує багато інших. Будемо використовувати символи \otimes і \oplus для позначення абстрактних

бінарних операцій. Інакше кажучи, символи \otimes і \oplus використовуються як змінні для позначення будь-яких операцій.

Бінарні операції, визначені на скінченних множинах, зручніше задавати за допомогою таблиць. Таблиця, що задає деяку бінарну операцію \otimes на деякій множині A, називається **таблицею Келі**, її рядки та стовпці нумеруються елементами множини A, а елементом таблиці, що стоїть на перетині рядку a_i і стовпця a_j є елемент $a_k = a_i \otimes a_j$.

Приклад. Нехай операція \otimes визначена на множині $\{a, b, c\}$ за допомогою таблиці

\otimes	а	b	c
a	a	а	b
b	b	а	c
С	а	b	b

Отже, $a \otimes b = a$, $b \otimes b = a$, $c \otimes b = b$, ...

Очевидно, що використання таблиць має велике значення, оскільки деякі операції, з якими доводиться мати справу в комп'ютерній математиці, не придатні для словесного завдання.

Наведемо важливі властивості, які можуть мати операції.

Нехай дано множину A, на якій визначено деяку бінарну операцію \otimes .

Якщо $a \otimes b = b \otimes a$ для всіх $a, b \in A$, то стверджують, що бінарна операція \otimes на множині A має властивість — *комутативність*.

Якщо $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ для всіх $a, b, c \in A$, то стверджують, що бінарна операція \otimes на множині A має властивість — *асоціативність*.

Нехай на множині A визначено дві бінарні операції \otimes і \oplus .

Якщо для всіх $a, b, c \in A$ виконується $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$, то стверджують, що операція \otimes має властивість — *дистрибутивність* відносно операції \oplus .

Зауважимо, що у визначенні асоціативності порядок операндів a, b і c збережено (операція може бути некомутативною) і використано круглі дужки, щоб вказати порядок виконання операцій. Таким чином, вираз $(a \otimes b) \otimes c$ потребує, щоб спочатку обчислювалося $a \otimes b$ і потім результат цього (скажімо, x) брав участь в операції $x \otimes c$ як перший операнд. Якщо операція асоціативна, то порядок обчислень несуттєвий і, отже, дужки не потребуються.

Приклад. Звичайна бінарна операція додавання (+) на множині дійсних чисел R комутативна і асоціативна, а операція віднімання (-) — некомутативна і неасоціативна, тобто

$$a + b = b + a$$
, але $a - b \neq b - a$; $(a + b) + c = a + (b + c)$, але $(a - b) - c \neq a - (b - c)$.

Крім того, на множині дійсних чисел R множення дистрибутивне відносно додавання, а додавання не дистрибутивне відносно множення, тобто

$$a^*(b+c) = a^*b + a^*c$$
, $(a+b)^*c = a^*c + b^*c$, ane $a + (b^*c) \neq (a+b)^*(a+c)$.

Для розв'язання рівнянь відносно кожної операції у множині-носії алгебраїчної структури виділяється особливий елемент, що називається одиничним елементом.

Якщо для бінарної операції \otimes на множині A існує елемент $e \in A$ такий, що для всіх $a \in A$ $e \otimes a = a \otimes e = a$, тоді e називається одиницею (нейтральним елементом) відносно до операції \otimes .

Нехай \otimes — операція на A з одиницею e і елементи $x, y \in A$ задовольняють рівності $x \otimes y = e = y \otimes x$.

Тоді y називається *оберненим* (*симетричним*) *елементом* до x відносно операції \otimes , і x називається *оберненим елементом* до y відносно операції \otimes .

Іноді розрізняють ліві та праві одиниці ($e_{\text{лів}}$. \otimes a = a або $a \otimes e_{\text{прав}} = a$ для будь-якого $a \in A$) і ліві та праві обернені елементи, однак, у більшості випадків одиниці ϵ двосторонніми, як у нашому визначені.

У випадках, коли бінарна операція вважається аналогічною множенню (*), одиничний елемент позначається 1, а обернений до елемента x елемент записується у вигляді x^{-1} . Коли бінарна операція вважається аналогічною додаванню (+), одиничний елемент позначається 0, а обернений до елемента x елемент записується у вигляді -x. Будемо також позначати обернений елемент до x як x'.

Приклади одиниць і обернених елементів. На множині дійсних чисел R правою одиницею відносно віднімання та одиницею відносно додавання ϵ 0, оскільки

$$a - 0 = a$$
, але $0 - a \neq a$, якщо $a \neq 0$; $a + 0 = a$ і $0 + a = a$ для всіх a .

В алгебрі множин для операції об'єднання \cup одиничним елементом є порожня множина \varnothing , для операції перетину \cap одиницею є універсальна множина U.

Для подальшого необхідно визначити операції додавання та множення за модулем n на множині цілих чисел.

Нехай n — довільне натуральне число.

Додаванням за модулем n цілих чисел a і b називається алгебраїчна операція, результатом якої ϵ залишок від ділення суми a+b на n.

Множенням за модулем n чисел a і b називається алгебраїчна операція, результатом якої є залишок від ділення добутку a*b на n.

Ці операції (позначимо їх \otimes_n і \oplus_n) визначені на множині цілих невід'ємних чисел \mathbb{Z}^+ :

$$a \oplus_{n} b = c$$
, так, що $a + b = k * n + c$, $0 \le c < n$; $a, b, k \in \mathbb{Z}^{+}$

$$a \otimes_n b = d$$
, так, що $a * b = f * n + d$, $0 \le d < n$; $a, b, f \in \mathbb{Z}^+$

Областю значень цих операцій є множина цілих невід'ємних чисел, менших за n, позначимо її Z_n , $Z_n = \{0, 1, ..., n-1\}$. Часто використовується позначення $a+b \equiv c \pmod n$, $a \times b \equiv d \pmod n$

для додавання та множення за модулем n.

Приклад. Наведемо приклади додавання та множення за модулем n.

$$2 \oplus_3 2 = 3$$
ал. $(4/3) = 1$, $2 \otimes_3 2 = 3$ ал. $(4/3) = 1$,

$$2 \oplus_4 2 = 3a\pi$$
. $(4/4) = 0$, $2 \otimes_4 2 = 3a\pi$. $(4/4) = 0$,

$$7 \oplus_{10} 8 = 3$$
ал. $(15/10) = 5$, $7 \otimes_{10} 8 = 3$ ал. $(56/10) = 6$,

$$7 \oplus_{12} 8 = 3$$
ал. $(15/12) = 3$, $7 \otimes_{12} 8 = 3$ ал. $(56/12) = 8$.