GOVERNMENT COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to Anna University)

BARGUR-635104

Curriculum and Syllabus For

ELECTRONICS AND COMMUNICATION ENGINEERING

(Full Time)

I TO VIII SEMESTERS

2020

Regulation
AY 2020-2021 onwards

OFFICE OF CONTROLLER OF EXAMINATIONS
GOVERNMENT COLLEGE OF ENGINEERING

BARGUR - 635 104

Website: www.gcebargur.ac.in

	PROGRAMME SPECIFIC OUTCOMES
1.	Graduates will be able to understand and apply the concepts of Electronics and Communication Engineering in the field of Communication, Microelectronics, Signal processing, Networking, Embedded and VLSI Systems.
2.	Graduates will be able to design and utilize advanced Hardware and Software tools to analyse and implement subsystems for real time applications.
3.	Graduates will be able to apply domain knowledge to enhance research in the field of Communication Engineering, Embedded Systems and VLSI Systems.
	PROGRAM EDUCATIONAL OBJECTIVES
1.	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
2.	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
3.	Design/Development of solutions: Design solution for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the culture, societal and environmental considerations.
4.	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretations of data, and synthesis of the information to provide valid conclusions.
5.	Modern tool usage: Create, Select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6.	The engineer and society: Apply reasoning informed by the contextual knowledge to access societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7.	Environmental and sustainability: Understanding the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9.	Individual and team work: Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings
10.	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11.	Project management and finance: Demonstrate knowledge and understanding of the engineering and management and finance principles and apply these to one's own work, as a member and leader in a team, to manage projects and multidisciplinary environments.
12.	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

ELECTRONICS AND COMMUNICATION ENGINEERING (UG)

CURRICULUM DESIGN

CREDIT SUMMARY

SL. NO	SUBJECT AREA		C	REDIT	S PER	SEME	STER			CREDITS ACTUAL	CREDIT S AICTE	% OF CREDITS	TOTAL NO. OF COURSES
		I	II	III	IV	V	VI	VII	VIII				
1.	HSM	3				3		3		9	12	5.61	4
2.	BS	11.5	8.5	4	4					28	25	17.45	9
3.	ES	6	4.5	8.5		3				22	24	13.71	9
4.	PC		4	10	18	11	11	7		61	48	38.63	27
5.	PE					3	6	3	6	18	18	11.25	6
6.	OE						3	6	3	12	18	7.48	4
7.	ECP					1.5		3	6	10.5	15	6.54	3
8.	MC	0	0	0						0			3
9.	TOTAL	20.5	17	22.5	22	21.5	20	22	15	160.5	160	100	64

GOVERNMENT COLLEGE OF ENGINEERING BARGUR

CBCS-2020 REGULATIONS

Curriculum for Full Time – B.E (ECE)

From the Academic Year 2020-2021 onwards

INDUCTION PROGRAM (Mandatory)

3 Week Program
Creative arts
 Universal Human Values
Literary Activities
 Yoga/Physical Activities
 Proficiency Modules
 Lectures by Eminent People
 Familiarization to Department/Branch
& Innovations

SEMESTER - I

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	T	P	C			
THE	THEORY										
1.	20ZBS101	Engineering Mathematics - I	BSC	4	3	1	0	4			
2.	20ZBS102	Engineering Physics	BSC	3	3	0	0	3			
3.	20ZES103	Engineering Graphics	ESC	5	1	0	4	3			
4.	20ZHS104	Technical English	HSMC	2	2	0	0	2			
5.	20ZBS105	Engineering Chemistry	BSC	3	3	0	0	3			
PRA	CTICAL				•						
6.	20ZBS108	Chemistry Laboratory	BSC	3	0	0	3	1.5			
7.	20ZHS109	Communication English Laboratory	HSMC	2	0	0	2	1			
8.	20LES110	Workshop Practices	ESC	5	1	0	4	3			
		,	TOTAL	27	13	1	13	20.5			

SEMESTER - II

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	T	P	С				
THE	THEORY											
1.	20ZBS201	Engineering Mathematics - II	BSC	4	3	1	0	4				
2.	20ZBS202	Physics of Semiconductor Devices	BSC	3	3	0	0	3				
3.	20ZES203	Programming in C	ESC	3	3	0	0	3				
4.	20LPC204	Circuit Theory	PCC	3	3	0	0	3				
5.	20ZMC205	Constitution of India	MC	1	1	0	0	0				
PRA	CTICAL											
6.	20ZBS208	Physics Laboratory	BSC	3	0	0	3	1.5				
7.	20ZES209	Programming in C Laboratory	ESC	3	0	0	3	1.5				
8.	20LPC210	Circuits and Devices Laboratory	PCC	2	0	0	2	1				
		T	OTAL	22	13	1	8	17				

SEMESTER - III

SL.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	P	С
THE								
1.	20ZBS301	Transforms and Partial Differential Equations	BSC	4	3	1	0	4
2.	20LPC302	Electronic Circuits - I	PCC	3	3	0	0	3
3.	20LPC303	Electromagnetic Fields	PCC	3	3	0	0	3
4.	20LPC304	Signals and Systems	PCC	3	3	0	0	3
5.	20LES305	Data Structures and Object- Oriented Programming Language	ESC	3	3	0	0	3
6.	20ZMC306	Environmental Science and Engineering	MC	1	1	0	0	0
7.	20LES307	Basic Electrical and Instrumentation Engineering	ESC	3	3	0	0	3
PRAC	CTICAL			•				
8.	20LES308	Data Structures and Object Oriented Programming Language Laboratory	ESC	3	0	0	3	1.5
9.	20LPC309	Electronic Circuits - I Laboratory	PCC	2	0	0	2	1
10.	20LES310	Electrical Engineering Laboratory	ESC	2	0	0	2	1
		TC	TAL	27	19	1	7	22.5

SEMESTER-IV

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	P	С
THE	ORY							
1.	20ZBS401	Probability and Random Processes	BSC	4	3	1	0	4
2.	20LPC402	Electronic Circuits - II	PCC	3	3	0	0	3
3.	20LPC403	Digital Signal Processing	PCC	3	3	0	0	3
4.	20LPC404	Transmission Lines and Waveguides	PCC	3	3	0	0	3
5.	20LPC405	Analog Communication	PCC	3	3	0	0	3
6.	20LPC406	Digital Electronics	PCC	3	3	0	0	3
PRA	CTICAL	•	•					
7.	20LPC408	Electronic Circuits - II Laboratory	PCC	2	0	0	2	1
8.	20LPC409	Digital Electronics Laboratory	PCC	2	0	0	2	1
9.	20LPC410	Digital Signal Processing Laboratory	PCC	2	0	0	2	1
		7	TOTAL	25	18	1	6	22

SEMESTER- V

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	T	P	С			
THE	THEORY										
1.	20LES501	Basic Control System Engineering	ESC	3	3	0	0	3			
2.	20LPC502	Digital Communication	PCC	3	3	0	0	3			
3.	20LPC503	Antenna and Wave Propagation	PCC	3	3	0	0	3			
4.	20LHS504	Management Theory and Practice	HSMC	3	3	0	0	3			
5.	20ZPC505	Microprocessor and Microcontroller	PCC	3	3	0	0	3			
6.		Professional Elective I	PEC	3	3	0	0	3			
PRA	CTICAL		•			•					
7.	20LPC508	Analog Communication Laboratory	PCC	2	0	0	2	1			
8.	20ZPC509	Microprocessor and Microcontroller Laboratory	PCC	2	0	0	2	1			
9.	20LPR510	Project - I	PROJ	3	0	0	3	1.5			
	•		TOTAL	25	18	0	7	21.5			

SEMESTER- VI

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	T	P	С		
THE	THEORY									
1.	20LPC601	VLSI Design	PCC	3	3	0	0	3		
2.	20LPC602	RF and Microwave Systems	PCC	3	3	0	0	3		
3.	20LPC603	Communication Networks	PCC	3	3	0	0	3		
4.		Professional Elective - II	PEC	3	3	0	0	3		
5.		Professional Elective - III	PEC	3	3	0	0	3		
6.		Open Elective - I	OEC	3	3	0	0	3		
PRAC	CTICAL									
7.	20LPC608	VLSI Laboratory	PCC	2	0	0	2	1		
8.	20LPC609	Digital Communication and Networks Laboratory	PCC	2	0	0	2	1		
		TO	TAL	22	18	0	4	20		

SEMESTER-VII

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	T	P	С			
THE	THEORY										
1.	20ZHS701	Professional Ethics	HSMC	3	3	0	0	3			
2.	20LPC702	Fiber Optic Communication	PCC	3	3	0	0	3			
3.	20LPC703	Wireless Communication	PCC	3	3	0	0	3			
4.		Professional Elective - IV	PEC	3	3	0	0	3			
5.		Open Elective - II	OEC	3	3	0	0	3			
6.		Open Elective - III	OEC	3	3	0	0	3			
PRA	CTICAL										
7.	20LPC708	Microwave and Optical Laboratory	PCC	2	0	0	2	1			
8.	20LPR709	Project - II	PROJ	6	0	0	6	3			
			TOTAL	26	18	0	8	22			

SEMESTER-VIII

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	T	P	C
THE	ORY							
1.		Professional Elective - V	PEC	3	3	0	0	3
2.		Professional Elective - VI	PEC	3	3	0	0	3
3.		Open Elective - IV	OEC	3	3	0	0	3
PRAC	CTICAL							
4.	20LPR808	Project - III	PROJ	12	0	0	12	6
]	ГОТАL	21	9	0	12	15

TOTAL NUMBER OF CREDITS: 160.5

LIST OF PROFESSIONAL ELECTIVE COURSES

Sl.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
1.	20LPE001	Wireless Networks	PEC	3	3	0	0	3
2.	20LPE002	Ad-hoc Networks	PEC	3	3	0	0	3
3.	20LPE003	Network Security	PEC	3	3	0	0	3
4.	20LPE004	Internet of Things	PEC	3	2	1	0	3
5.	20LPE005	Statistical Theory of Communication	PEC	3	2	1	0	3
6.	20LPE006	Spread Spectrum Techniques	PEC	3	3	0	0	3
7.	20LPE007	Communication Electronic Circuits	PEC	3	3	0	0	3
8.	20LPE008	Telecommunication Switching Networks	PEC	3	3	0	0	3
9.	20LPE009	Software Defined Radio	PEC	3	3	0	0	3
10.	20LPE010	Automotive Electronic Systems	PEC	3	3	0	0	3
11.	20LPE011	Advanced Display Devices	PEC	3	3	0	0	3
12.	20LPE012	Digital Speech Processing	PEC	3	2	1	0	3
13.	20LPE013	Advanced Digital Signal Processing	PEC	3	2	1	0	3
14.	20LPE014	DSP Architectures and Programming	PEC	3	3	0	0	3
15.	20LPE015	Digital Image Processing	PEC	3	3	0	0	3
16.	20LPE016	MEMS	PEC	3	3	0	0	3
17.	20LPE017	Nanoelectronics	PEC	3	3	0	0	3
18.	20LPE018	Optoelectronics	PEC	3	3	0	0	3
19.	20LPE019	Radar Systems	PEC	3	3	0	0	3
20.	20LPE020	Smart Antennas	PEC	3	3	0	0	3
21.	20LPE021	Wavelet Transform and Applications	PEC	3	3	0	0	3
22.	20LPE022	VLSI Testing	PEC	3	3	0	0	3
23.	20LPE023	ARM System Design	PEC	3	3	0	0	3
24.	20LPE024	Analog Integrated Circuits Design	PEC	3	3	0	0	3
25.	20LPE025	Microwave Integrated Circuits	PEC	3	3	0	0	3

LIST OF OPEN ELECTIVES

(OFFERED TO OTHER DEPARTMENT STUDENTS)

S.NO	COURSE CODE	COURSE TITLE	CAT L		Т	P	C
1.	20LOE001	Real Time Systems	OEC	3	0	0	3
2.	20LOE002	Wireless Sensor Networks	OEC	3	0	0	3
3.	20LOE003	Industrial Automation and Robotics	OEC	3	0	0	3
4.	20LOE004	Principles of VLSI Design	OEC	3	0	0	3
5.	20LOE005	Applied Electronics	OEC	3	0	0	3
6.	20LOE006	Fundamentals of Wireless Networks	OEC	3	0	0	3
7.	20LOE007	Fundamentals of IoT	OEC	3	0	0	3
8.	20LOE008	Soft Computing	OEC	3	0	0	3

VALUE ADDED COURSES

Students can undergo "Internship" in Government/Government recognized industries/organizations for a period of $\underline{\text{four}}$ to $\underline{\text{six}}$ weeks. This will be indicated in the grade sheet as "Value Added Courses".

LIST OF MANDATORY COURSES

SL.No.	COURSE CODE	COURSE TITLE
1.		Induction Program
2.	20ZMC205	Constitution of India
3.	20ZMC306	Environmental Sciences and Engineering

LIST OF BASIC SCIENCE COURSES

S.NO	COURSE CODE	COURSE TITLE CAT		L	T	P	С
1.	20ZBS101	Engineering Mathematics I	BSC	3	1	0	4
2.	20ZBS102	Engineering Physics	BSC	3	0	0	3
3.	20ZBS103	Engineering Chemistry	BSC	3	0	0	3
4.	20ZBS108	Chemistry Laboratory	BSC	0	0	3	1.5
5.	20ZBS201	Engineering Mathematics II	BSC	3	1	0	4
6.	20ZBS202	Physics of Semiconductor Devices	BSC	3	0	0	3
7.	20ZBS209	Physics Laboratory	BSC	0	0	3	1.5
8.	20ZBS301	Transforms and Partial Differential Equations	BSC	3	1	0	4
9.	20ZBS401	Probability and Random Processes	BSC	3	1	0	4

LIST OF HUMANITIES AND MANAGEMENT SCIENCE COURSES

S.NO	COURSE CODE	COURSE TITLE	CAT	L	T	P	С
1.	20ZHS104	Technical English	HSMC	2	0	0	2
2.	20ZHS109	Communication English Laboratory	HSMC	0	0	2	1
3.	20LHS502	Management Theory and Practice	HSMC	3	0	0	3
4.	20ZHS701	Professional Ethics	HSMC	3	0	0	3

LIST OF ENGINEERING SCIENCE COURSES

S.NO	CODE	COURSE TITLE	CAT	L	T	P	C
	CODE						
1.	20ZES105	Engineering Graphics	ESC	1	0	4	3
2.	20ZES110	Workshop Practices	ESC	1	0	4	3
3.	20ZES203	Programming in C	ESC	3	0	0	3
4.	20ZES208	Programming in C Laboratory	ESC	0	0	3	1.5
5.	20LES305	Data Structures and Object-Oriented Programming Language	ESC	3	0	0	3
6.	20LES307	Basic Electrical and Instrumentation Engineering	ESC	3	0	0	3
7.	20LES308	Data Structures and Object Oriented Programming Language Laboratory	ESC	0	0	3	1.5
8.	20LES310	Electrical Engineering Laboratory	ESC	0	0	2	1
9.	20LES501	Basic Control System Engineering	ESC	3	0	0	3

LIST OF PROFESSIONAL CORE COURSES

S.NO	COURSE CODE	COURSE TITLE	CAT	L	Т	P	C
1.	20LPC204	Circuit Theory	PCC	3	0	0	3
2.	20LPC210	Circuits and Devices Laboratory	PCC	0	0	2	1
3.	20LPC302	Electronic Circuits – I	PCC	3	0	0	3
4.	20LPC303	Electromagnetic Fields	PCC	3	0	0	3
5.	20LPC304	Signals and Systems	PCC	3	0	0	3
6.	20LPC309	Electronic Circuits - I Laboratory	PCC	0	0	2	1
7.	20LPC402	Electronic Circuits – II	PCC	3	0	0	3
8.	20LPC403	Digital Signal Processing	PCC	3	0	0	3
9.	20LPC404	Transmission Lines and Waveguides	PCC	3	0	0	3
10.	20LPC405	Analog Communication	PCC	3	0	0	3
11.	20LPC406	Digital Electronics	PCC	3	0	0	3
12.	20LPC408	Electronic Circuits - II Laboratory	PCC	0	0	2	1
13.	20LPC409	Digital Electronics Laboratory	PCC	0	0	2	1
14.	20LPC410	Digital Signal Processing Laboratory	PCC	3	0	0	3
15.	20LPC503	Digital Communication	PCC	3	0	0	3
16.	20LPC504	Antenna and Wave Propagation	PCC	3	0	0	3
17.	20LPC505	Microprocessors and Microcontrollers	PCC	3	0	0	3
18.	20LPC508	Analog Communication Laboratory	PCC	0	0	2	1
19.	20LPC509	Microprocessor and Microcontroller Laboratory	PCC	0	0	2	1
20.	20LPC601	VLSI Design	PCC	3	0	0	3
21.	20LPC602	RF and Microwave system	PCC	3	0	0	3

22.	20LPC603	Communication Networks	PCC	3	0	0	3
23.	20LPC608	VLSI Laboratory	PCC	0	0	2	1
24.	20LPC609	Digital Communication and Networks Laboratory	PCC	0	0	2	1
25.	20LPC702	Fiber Optic Communication	PCC	3	0	0	3
26.	20LPC703	Wireless Communication	PCC	3	0	0	3
27.	20LPC708	Microwave and Optical Laboratory	PCC	0	0	2	1

EVALUATIONS :: 2020 REGULATIONS

Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No	Category of course	Continuous Assessment	End-Semester Examinations
1.	Theory Courses	50 Marks	50 Marks
2.	Laboratory Courses	50 Marks	50 Marks
3.	Project Work	50 Marks	50 Marks
4.	All other EEC Courses	100 Marks	-
	(non theory)		

Continuous Assessment Mark the following guidelines are to be followed.

Sl.No.	Category Details	CA Marks	Weightage
1.	Test (3 Nos.) {each test is to be conducted for 50 Marks}	30 Marks	60%
2.	Assignment (3 Nos.)	20 Marks	40%
	TOTAL	50 Marks	100%

Marks for Project Work and the Viva-Voce Examination will be distributed as indicated below.

Continuous Assessment 50 Marks				End Semester Examination 50 Marks			
Review (25 Mark		Review 1 (25 Mark		Report Evaluation (20 Marks)	viva-Voce (30 Marks)		
Review Committee (Excluding Guide)	Guide	Review Committee (Excluding Guide)	Guide	External Examiner	External Examiner	Internal Examiner **	
15	10	15	10	20	15 15		

^{**}Guide will be the internal

A student has to **secure minimum of 75% attendance** for appearing end semester examination. If a student secures **65% to 75% attendance** in the Current Semester due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International Level Sports events with prior permission from the Head of the Department concerned, the student shall apply for **condonation**. Condonation can be allowed only two semesters (i.e **only two condonations**) during the entire course of study.

Students who secure less than 65% attendance will not be permitted to write the End-Semester Examination.

<u>SPECIAL NOTE</u>: All the students should undergo Internship (4 to 6 weeks duration) as a value added course. This will be indicated in the Grade Sheet under the head, "**Value Added Courses**.

FIRST SEMESTER

20ZBS101	ENGINEERING MATHEMATICS- I	L	Т	P	C		
20205101	ENGINEERING WATHEWATICS-1						
		3	1	0	4		
OBJECTIV	ES:						
• matrix	algebra and techniques and using them in engineering application	ons					
	cept of infinite series and their convergence so that they will ons of using infinite series approximations for solutions arising ng.						
differer applica	ntial and integral calculus and their applications in various enginations	neeri	ng				
UNIT I	MATRICES			9.	+3		
eigenvalues an Diagonalizatio	nd Eigenvectors of a real matrix – Characteristic equation – d eigenvectors – Statement and applications of Cayley-Hamilt n of matrices – Reduction of a quadratic form to canonical form – Nature of quadratic forms.	on T	Theo	rem	_		
UNIT II	SEQUENCES AND SERIES			9.	+3		
terms – Tests	finition and examples – Series: Types and Convergence – Series of convergence: Comparison test, Integral test and D'Alemberries – Leibnitz's test – Series of positive and negative terms – avergence.	t's r	atio	test	_		
UNIT III	APPLICATIONS OF DIFFERENTIAL CALCUL	US		9.	+3		
	artesian co-ordinates – Centre and radius of curvature – Circle velopes - Evolute as envelope of normals.	of c	urva	ture	_		
UNIT IV	FUNCTIONS OF SEVERAL VARIABLES			9.	+3		
functions – Jac	Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions – Jacobian and properties – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers						
UNIT V	UNIT V MULTIPLE INTEGRALS 9+3						
enclosed by pla	Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals – Volume of Solids.						
	TOTAL: 60 PER	IOI	OS				

COURS	SE OUTCOMES			
1.	solve problems on matrices and to apply concepts of matrix theory whenever applicable in the field of engineering			
2.	solve problems using convergence tests on sequences and series and to apply them in engineering field appropriately			
3.	solve problems on differential and integral calculus and will be exposed to their applications in engineering			
TEXT B	BOOKS:			
1.	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.			
2.	Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.			
REFER	ENCES:			
1.	Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Ltd., 2011.			
2.	Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.			
3.	3. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.			
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.			
5.	Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume II, Second Edition, PEARSON Publishing, 2011.			

20ZBS 2	102	ENGINEERING PHYSICS	L	T	P	C		
	·	(Common to MECH, EEE, ECE & CSE)	3	0	0	3		
OBJEC	OBJECTIVES:							
•	To develop	knowledge on properties of solids						
•	To understand the properties of conducting and semiconducting materials							
•	To become proficient in magnetic and dielectric materials							
•	To apply pr	rinciples of quantum physics in the engineering field						
•	To know about the fundamentals of LASER and fibre optics and its applications							
UNIT I	UNIT I PROPERTIES OF MATTER 9							
Florticity Hacke's law Stress Types of Stresses Strein Types of Strein Volume's								

Elasticity – Hooke's law – Stress – Types of Stresses – Strain- Types of Strain - Young's Modulus – Rigidity Modulus – Bulk Modulus – Poisson's ratio – Relationship between three elastic constants and Poisson's ratio – Torsional Pendulum – Factors affecting elasticity of materials - Bending moment of a Beam – Depression of cantilever (Theory and Experiment) – Determination of Young's modulus – Uniform and non-uniform bending (Theory and Experiment).

UNIT II THERMAL PHYSICS 9

Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Forbe's and Lee's disc method: theory and experiment - conduction through compound media (series and parallel) - thermal insulation.

UNIT III QUANTUM PHYSICS 9

Blackbody radiation – Wien's displacement law – Rayleigh-Jean's law - Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh-Jean's law – Matter waves – De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wavefunction and its physical Significance – Schrodinger wave equation – Time-dependent and time-independent – Application of Schrodinger wave equation: Particle in a 1 D box.

UNIT IV LASERS 9

LASER – Interaction of light radiation with materials – Einstein's A and B coefficient derivation – Concept of LASER – Population inversion – Pumping action – Methods for pumping action – Characteristics of LASER – Principle, construction and working of Nd-YAG – Industrial and medical applications of lasers.

UNIT V FIBRE OPTICS 9

Structure of Optical Fibre – Guiding mechanism – Total internal reflection – Critical Angle – Conditions for total internal reflection – Principle and Propagation of light in Optical Fibres –

Numerical aperture and acceptance angle – Types of optical fibres (Material, refractive index and mode) – their characteristics and applications.

TOTAL:45 PERIODS

TOTAL:45 PERIODS
OMES:
To learn about three types of elastic moduli and able to calculate them for different materials
To apply concepts of thermal properties of materials and their applications in expansion joints and heat exchangers
To understand the quantum nature of materials and apply fundamental principles of quantum physics to the engineering field.
To understand the working principles of lasers and their types
To know about fibre optics and mechanism of propagation of light through them.
BOOKS:
D.K. Bhattacharya & T. Poonam. "Engineering Physics". Oxford University Press, 2015.
R.K. Gaur & S.L. Gupta. "Engineering physics". Dhanpat Rai Publishers, 2012.
A.Marikani, "Engineering Physics", PHI Learning Pvt., India 2009
B.K. Pandey & S. Chaturvedi. "Engineering Physics". Cengage Learning India, 2012.
RENCES:
D. Haliday, R. Resnick and J. Walker. "Principles of Physics". Wiley, 2015
M. N. Avadhanulu and P. G. Kshirsagar, "A textbook of engineering physics", S. Chand and Company Ltd, New Delhi, 2005.
K. Rajagopal, "Engineering Physics", PHI, New Delhi, 2011.
R.A. Serway & J.W. Jewett. "Physics for Scientist and Engineers". Cengage Learning, 2010.
M. Arumugam, "Engineering physics", Anuradha publishers
3

20ZI	BS105		ENG	SINE	EER	RI	IN(G (CH	EN	1IS	TRY	7	L	T	P	C
	(Common to ECE and CSE) 3 0 0 3									3							
OBJEC'	OBJECTIVES:																
•	To make stu	ıdents c	convers	ant wit	ith v	wat	ater	r pa	ram	nete	rs, t	oilers	, need	for w	ater		
	treatment and	nd its m	erits an	nd dem	meri	rits.	S.										
•	Students oug	Students ought to be aware of fundamental principles behind different															
	electrochemi	nical rea	actions,	, corros	osior	on o	of n	mat	eria	als a	ınd 1	netho	ds to pi	even	t		
	corrosion.																
•	To learn the	chemi	stry beh	hind po	polyi	yme	iers,	, sy	nth	esis	, me	erits, c	lemerit	s and	its		
	applications	s in vari	ious fiel	ld.													
•	To acquire b	basic kr	nowledg	ge in re	rene	iewa	vabl	le, ı	non	ren	ewa	ble ar	nd alter	nate e	energ	gy	
	resources and the chemical reactions involved in cell, batteries and its applications.																
•	To learn the working principle of various spectroscopy and its applications. To																
	acquire basic knowledge in Nano materials, synthesis, properties and uses.																

UNIT I WATER TECHNOLOGY

C

Characteristics – alkalinity and its significance – hardness (problems) - types and estimation by EDTA method – specifications of drinking water (BIS and WHO standards) – potable water treatment – boiler feed water - requirements – disadvantages of using hard water in boilers (Scales & Sludge, Boiler corrosion, Priming & Foaming, Caustic embrittlement) – water treatment – Internal treatment – external treatment – zeolite method - Demineralization process – desalination – reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

(

Electrochemistry: Electrochemical cells – reversible and irreversible cells – EMF – measurement of EMF – single electrode potential – Nernst equation (Problems) – reference electrode – standard hydrogen electrode and calomel electrode – ion selective electrode – glass electrode and measurement of pH – electrochemical series and its applications.

Corrosion: Corrosion – Pilling Bedworth rule - dry corrosion and its mechanism - electrochemical corrosion and its mechanism – types (galvanic, pitting, differential aeration) – factors influencing corrosion – corrosion control methods – sacrificial anode method – impressed current method – corrosion inhibitors – protective coatings – paints – constituents – functions – metallic coatings – electroplating (Cu) and electro less plating (Ni).

UNIT III POLYMERS AND COMPOSITES

9

Polymers: Definition – classification – functionality – polymerization – degree of polymerization – types (addition, condensation, copolymerization) – mechanism (free radical) – plastics – thermoplastics and thermosetting plastics – preparation, properties and uses of individual polymers (PVC, TEFLON, Nylon-6,6, Nylon-6, PET, epoxy resin) – rubber - vulcanization of rubber – applications - Advanced polymeric materials and electronic devices – conducting and semiconducting polymers – liquid crystal properties – dendrimers and their difference from polymers.

Composites: definition – types polymer matrix composites – Fibre Reinforced Polymers – applications – advanced composite materials – physical and chemical properties – applications.

UNIT IV | ENERGY SOURCES AND STORAGE DEVICES

Nuclear energy – fission fusion reactions – light water nuclear reactor for power generation – breeder reactor – solar energy conversion – solar cells – wind energy – batteries: alkaline batteries – lead –acid, Ni-Cd, and Li-ion batteries – fuel cells – principles and applications – advantages and disadvantages.

UNIT V ANALYTICAL TECHNIQUES AND NANOMATERIALS

9

Spectroscopy: Electromagnetic spectrum - Fundamentals of spectroscopy – Instrumentation, working principle and applications of UV-Visible spectrophotometer, Atomic Absorbance Spectrophotometer, Flame photometer.

Nanomaterials: Introduction to nanotechnology in electronics - nanomaterials – fullerernes carbon nanotubes – nanowires – Electronics and mechanical properties -synthesis of nanomaterials – top down and bottom up approach – applications of nanomaterials in electronic devices (Semiconductors, LED & OLED) – electronics and telecommunication – medicines.

TOTAL: 45 PERIODS

COURSE OUTCOMES

On completion of the course the student will be able to,

- 1. apply the knowledge of basic science in identifying, to formulate and to solve the engineering problems.
- 2. analyze water borne problems faced in boilers, need for water treatment and various methods and techniques for treating hard water.
- 3. understand polymerization reactions and electrochemical reactions and its applications.
- 4. acquire Knowledge about energy conversion and chemical reaction taking place in nuclear, solar, wind energy, Batteries, fuel cells and its applications.
- 5. obtain in-depth knowledge on various nanomaterials and its applications in electronic devices. Students get basic knowledge on advanced analytical techniques.

TEXT BOOKS:

- 1. Vairam S, Kalyani P and Suba Ramesh., "Engineering Chemistry"., Wiley India PvtLtd., New Delhi., 2011
- 2. Dara S.S,UmareS.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi, 2010

REFERENCES:

- 1. Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010.
- 2. Rao, C. N. R.; Govindaraj, A. "Nanotubes and Nanowires" United Kingdom: Royal Society of Chemistry, 2005
- 3. Advanced Polymeric Materials: From Macro- to Nano-Length Scales edited by Sabu Thomas, Nandakumar Kalarikkal, Maciej Jaroszewski, Josmine P. Jose; Apple Academic press, Canada, 2016
- 4. Jain and jain, 16th editin, "Engineering Chemistry" Dhanpat Rqai Publishing Co.
- 5. Sivasankar B, "Engineering Chemistry", Tata Mc Graw-Hill Publishing Company Ltd, New Delhi, 2008.

20ZHS10	4	TEC	HNICAL EN	GLISH	L	T	P	C
					2	0	0	2
OBJECT	IVE	ES:						
• To b	oe ab	le to acquire vocabul	ary by way of rea	ding skills.				
• To b	oe ab	le to write iterative as	s well as recursive	e programs.				
		le to represent data ir a program.	arrays, strings a	nd structures and manip	ulate	e the	em	
		le to declare pointers al structures.	of different types	and use them in defini	ng s	elf-		
		le to create, read and	write to and from	simple text files.				
UNIT I	UNIT I VOCABULARY BUILDING							6
English 1.3	Acq		es and suffixes fr	from foreign languages om foreign languages in breviations				
UNIT II	DACIC WIDTING CITI I C						6	
punctuation	2.4	-		in sentences 2.3 Impornciples of paragraphs in			-	
UNIT III	-		COMMON EF	RRORS IN WRITI	VG			6
		agreement 3.2 Noun Prepositions 3.6 Redu	-	ent 3.3 Misplaced modifichés	fiers			
UNIT IV		NATURE AND S	TYLE OF SE	NSIBLE WRITING	G			6
	_	•		ling examples or eviden	ce		1	
UNIT V		oduction and conclusi WRITING PRAC						6
5.1 Compre	hens	ion 5.2 Précis Writing	g 5.3 Essay Writin	ng			1	
				TOTAL: 30 PERI	OD	S		
COURSE	OU	UTCOMES						
1.	-	<u> </u>	•	ling reading and listening	ng			
comprehension, writing and speaking skills. 2. Participate effectively in formal and informal conversations; introduce themselve and express their opinions in English.							/es	
_		nprehend conversations and deliver short talks in English.						

4.	Write essays	Write essays and descriptions of any kind in English.						
5.	Prepare repo	Prepare reports, graph presentation and Technical writing.						
TEXT I	TEXT BOOKS:							
1.	On Writing	Well. William Zinsser. Harper Resource Book. 2001						
2.	Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.							
3.	Communicate 2011.	Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press.						
REFER	ENCES:							
1.	Richards, C.	Jack .Interchange Students' Book-2 New Delhi: CUP, 2015.						
2.	Bailey ,Stephen. Academic Writing: A Practical guide for students .New York: Rutledge, 2011.							
3.	Seely, John.	Seely, John. The Oxford guide to writing & Speaking. New York.1998.						
4.	Bhatia M.P ,A Handbook of APPLIED GRAMMAR ,M.I Publications, AGRA, Sixth Edition							

20ZES10	ENGINEERING GRAPHICS	L	T	P	C	
	(Common to MECH, ECE and CSE)	1	0	4	3	
COURSE	OBJECTIVES:					
• f	his course aims to introduce the concept of graphic communication, devor communicating concepts, ideas and designs of engineering products axisting national standards related to technical drawings	•			_	
• 7	o draw the projection of simple solids like prisms, pyramids, cyli	nder	etc.			
•	o draw the development of surfaces to estimate the sheet metal repare sectional views of solids.	l req	uirei	ment	and to	
	o develop skills in three-dimensional visualization of engineering raw isometric views of simple solids.	g cor	npoi	nents	and to	
-	of graphics in engineering applications – use of drafting instruand specifications – size, layout and folding of drawing shg. PLANE CURVES AND FREE-HAND SKETCHING					
parabola an curves. Visi	etrical constructions, curves used in engineering. Conics – cod hyperbola by eccentricity method – drawing of tangents and alization concepts and free hand sketching: visualization principles sional objects – layout of views- freehand sketching of multiple ects.	norn es –r	nal te epre	o the esenta	above ation of	
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFA	CE	S		6+9	
-Projection true inclina	c projection – Principles-principal planes- First angle projection of straight lines inclined to both the principal planes - determination ions by rotating line method - traces. Projection of planes (powlined to both the principal planes by rotating object method.	on of	true	lengt	ths and	
UNIT III	PROJECTION OF SOLIDS				6+9	
•	f simple solids like prisms, pyramids, cylinder, cone and truncated to both the principal planes by rotating object method.	ted s	solid	s, wh	nen the	
UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+9						
plane is inc	of prisms, pyramids, cylinders and cones in simple vertical positioned to the one of the principal planes and perpendicular to the otion. Development of lateral surfaces of simple and sectioned solid d cones.	ther	– ob	otaini	ng true	
UNIT V	ISOMETRIC PROJECTION AND OVERVIEW OF COMPUTER GRAPHICS 6+9					

Principles of isometric projection – isometric scale –isometric projections of simple solids and truncated solids - prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions –Introduction to CAD - The Menu System, Toolbars (Standard, Object

Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD- (CAD – evaluation during CA only)

Lectu	re: 15 Peri	ods Tutorial: 0 Periods	Practical: 60 Periods	Total: 75 Periods			
OUTCO	OMES:	On completion of this cour	se, students will be able to				
1		ze with the fundamentals, sketching of multiple views	0 0	0 1			
2	Draw orth	Draw orthographic projections of points, lines and plane surfaces.					
3	Draw pro	jections of solids, sectioned	solids and development of	surfaces.			
4	Visualize	and draw isometric views of	of simple solids.				
5	Appreciat	te the use of computers in di	rawing and modelling of sin	nple objects.			
TEXT I	BOOKS:						
1.	Natrajan Chennai,	K. V., "A text book of Er 2016.	ngineering Graphics", Dh	analakshmi Publishers,			
2.	Venugopa (P) Limite	al K. and Prabhu Raja V., 'ed, 2016.	'Engineering Graphics'',	New Age International			
3.		B. and Rana B. C. "Eng Education, 2010	gineering Drawing and (Computer Graphics",			
REFER	ENCES:						
1.		hasarathy and Vela Mura w Delhi, 2015.	li, "Engineering Graphic	s", Oxford University,			
2.		ishna K.R., "Engineerin ons, Bangalore, 2014.	g Drawing" (Vol. I&II	combined), Subhas			
3.	_	arwal and Agarwal C.M. g Company Limited, New I	0 0	", Tata McGraw Hill			
4.	an introd	Warren J. and Duff John Muction to Interactive Con Economy Edition, Prentice H	nputer Graphics for Des	ign and Production",			
5.	Bhatt N. 1 53 rd Editi	D. and Panchal V. M., "Eng on, 2014.	gineering Drawing", Char	otar Publishing House,			

20ZBS108	СНЕ	MISTRY LA	BORATO	RY	L	T	P	C
	(C	ommon to ECI	E and CSE)		0	0	3	1.5
OBJECTIV	ES:		<u> </u>					
• To mal	te students conve	sant with hands	s on water par	ameter analysis	S.			
• To mal	te the student to a	cquire practical	skills in the c	orrosion in me	tals.			
	uaint the students d viscometer.	with the determ	nination of mo	lecular weight	of a	poly	yme	r by
• To mal	te the student acq	uire practical sk	tills in analytic	cal instruments				
LIST OF E	XPERIMENT	S:						
1. Detern	ination of total ha	ardness of given	n water sample	e by EDTA me	thod			
2. Detern	ination of alkalini	ty in given wate	r sample.					
3. Detern	ination of molecu	lar weight of po	lyvinyl alcoho	l using Ostwal	d vis	com	etei	ſ.
4. Condu	ctometric titration	using mixture o	of acids and st	rong base.				
5. Detern	ination of strengt	h of in given hy	drochloric acid	d using pH met	er.			
6. Estima	tion of sodium pre	esent in water u	sing flame ph	otometer.				
7. Estima	tion of Zn present	in effluent usin	g Atomic Abs	orption Spectro	osco	ру (л	AAS	5)
8. Corros	on experiment –	weight loss met	thod					
9. Estima	tion of iron conter	nt of the given s	olution using	ootentiometer	mete	er.		
10. Estima metho	tion of iron conter l).	nt of the given s	ample using \$	Spectro photon	netei	thi (thi	осуа	anat
				,	Γota	l: 45	5 Pe	rioc
COURSE (UTCOMES							
	ents will be outfit		•	-				
	quantitative chemical analysis of water quality related parameters, corrosion studies,							
	etal analysis, etc.							
REFEREN		I C : A D.W.C	177 4 1 1 4	D 607 12 7	r 4	1 1	<u> </u>	
	S. Hannaford A. organic chemistry			K., "Vogel's	ı ext	bool	(01	
	H., Bassett J., Me			R.C. "Text boo	k of	gua	ntita	ative
-	hemical analysis'					-		
	.M., Sandell E.B.	et al. "Quantita	ative chemical	analysis", Mc	milla	ın, N	/ladi	ras

(Note: A minimum of SIX experiments shall be offered) List of equipment for a batch of 30 students

- 1. Flame photometer 5 nos
- 2. Weighing balance 5 nos
- 3. Conductivity meter; Potentiometer; pH meter- 9 nos each.
- 4. Ostwald viscometer 30 nos
- 5. Atomic Absorption Spectrophotometer 1 no.

Common apparatus: Pipette, Burette, Burette stand, Standard volumetric flask, funnel, Conical flask, porcelain tiles, dropper, reagent bottles, glass rod, beaker, wash bottle, test tube (30 nos each)

Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York

20ZHS 1	109	COMMUNICATION ENGLISH LABORATORY	L	Т	P	С		
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$							
OBJEC	TIVE	S:		ı				
•		velop their communicative competency in English with specing and listening.	ific refe	erence	to the	eir		
•	-	nance their ability to communicate effectively in interviews.						
•	To strengthen their prospects of success in competitive examinations.							
•		engthen a good command over of the language proficiency.						
•	To co	mprehend a different type of accent and use them in their con	nmuni	cation	ı			
UNIT I]	PRONUNCIATION PRACTICE				6		
Verbal A Various l		rticulation of sounds- Intonation-Stress and Rhythm-Conver	sation	practic	e-liste	ening		
UNIT I	I (COMMUNICATION AT WORK PLACE				6		
		Writing job applications - cover letter- resume- e-mails- rries- interpreting visual texts.	nemos-	report	s. W	riting		
	UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS					6		
		glish Language Testing System (IELTS)- Test of English Service (Language related part) –English for competitive exa			Lang	guage		
UNIT I	V]	INTERVIEW SKILLS				6		
Different Body lang	• •	f Interview format- answering questions- offering information	ation- 1	nock i	nterv	iews-		
UNIT V	7	SOFT SKILLS				6		
		tional intelligence-Multiple intelligences- managing change team work- career planning- creative and critical thinking	ges- tir	ne ma	nagei	nent-		
		TOTAL	30 P	eriods	}			
COURS	SE OU	TCOMES:						
1. Face interviews, group discussions and other language parameters in the job market								
2.	Write any competitive examinations which cover language part in it							
3.	Take part in any English conversations of any kind in English. Flawlessly without fear and							
4.	Write articles for newspapers and magazines or any write-up in English without grammar mistakes.							
5.	Come out with leadership qualities, team work and career planning and will also possess							

TEXT	BOOKS:
1.	Communication Skills for Engineers and Scientists, PHI Learning PVT.LTD, Delhi, 2014.
2.	Communication Skills and Soft Skills An Integrated Approach, Dorling Kindersley (INDIA) PVT.LTD, New Delhi, 2012.
3.	Soft Skills, MJP Publishers, Chennai, 2010.
REFE	RENCES:
1.	Craven, Miles. Listening Extra-A resource book of multi-level skills activities. Cambridge University Press, 2004.
2.	Seely, John. The Oxford guide to writing & Speaking. New Delhi: Oxford University Press,20
3.	Comfort, Jeremy, et al. Speaking Effectively: Developing speaking skills for Business English. Cambridge University Press, Cambridge: Reprint 2011.
4.	Dutt P. Kiranmai and RajeevanGeetha. Basic Communication Skills, Foundation Books:2013

20LES11	10 WORKSHOP PRACTICES	L	T	P	C			
		1	0	4	3			
COURSE	COURSE OBJECTIVES:							
	To make various basic prototypes in the carpentry trade such as Lap joint, Lap Tee joint, Dove tail joint, Mortise & Tenon joint and Cross-Lap joint							
To make various welding joints such as Lap joint, Lap Tee joint, Edge joint, Butt joint and Corner joint.								
LIST OF	EXPERIMENTS:							

- 1. Introduction to use of tools and equipment in Carpentry, Welding, Foundry and Sheet metal
- 2. Safety aspects in Welding, Carpentry and Foundry
- 3. Half lap Joint and Dovetail Joint in Carpentry
- 4. Welding of Lap joint, Butt joint and T-joint
- 5. Preparation of Sand mold for cube, conical bush, pipes and V pulley
- 6. Fabrication of parts like tray, frustum of cone and square box in sheet metal
- 7. Electrical wiring simple house wiring
- 8. Plumbing
- 9. CNC Machines demonstration and lecture on working principle.
- 10. Additive manufacturing demonstration and lecture on working principle.

Lecti	ure: 15 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 75 Periods		
COURSI	E OUTCOMES:	on completion of thi	s course, students will be a	able to		
1	Use tools and equipment used in Carpentry, Welding, Foundry and Sheet metal.					
2.	Make half lap join	t dovetail joint in carp	entry and welded lap joint,	, butt joint and T-joint		
3	Prepare sand mould for cube, conical bush, pipes and V pulley.					
4	Fabricate parts like tray, frustum of cone and square box in sheet metal					
5	Carry out minor w	orks/repair related to	electrical wiring and plum	bing.		

SECOND SEMESTER

20ZBS201	ENGINEERING MATHEMATICS- II	L	T	P	C
		3	1	0	4
OBJECTIV	ES:				<u>1</u>
• vector	calculus and their uses in various field theoretic subjects.				
• higher solution	order and special type of linear differential equations and methons	ds t	o fin	d	
• Laplace	e transforms and properties and their applications in engineering	3			
	ction of analytic functions and concepts of concepts of conform x integration and series solutions	nal m	app	ing,	
UNIT I	VECTOR CALCULUS			9-	+3
fields - Vecto	rgence and curl – Directional derivative – Irrotational and solution – Green's theorem in a plane, Gauss divergence m (excluding proofs) – Simple applications involving cubes at a second current of the	e the	orer	n an	d
UNIT II	ORDINARY DIFFERENTIAL EQUATIONS			9-	+3
parameters – (near differential equations with constant coefficients – Method Cauchy 's and Legendre 's linear equations – Simultaneous fir constant coefficients.				
UNIT III	LAPLACE TRANSFORMS			9.	+3

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform

of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

9+3

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V COMPLEX INTEGRATION 9+3

Complex integration – Statement and applications of Cauchy 's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

				TOTAL: 60 PERIODS	
COUR	SE OUTCO	MES			
1.	solve proble		r calculus and to	apply them in any other field theory	
2.	solve differential equations and will be exposed to their applications in various fields of engineering				
3.	_	olutions of di		will be able to use Laplace transform egral equations and other engineering	
4.	-	•	n problems and w conformal mappir	rill be exposed to various applications ng in engineering	
TEXT	BOOKS:				
1.			oyal, "A Text boo ons Pvt Ltd., 2011	ok of Engineering Mathematics", Eighth	
2.	Grewal. B.	Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.			
REFE	RENCES:				
1.		and Er. Rajn ate Ltd., 2011		er Engineering Mathematics", S.	
2.	Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.				
3.	Peter V. O'l learning, 20		ced Engineering M	Mathematics", 7th Edition, Cengage	
4.		7, "Higher Er Iew Delhi, 20	~	natics", Tata McGraw Hill Publishing	
5.			. and Rukmangado n, PEARSON Pub	achari E., "Engineering Mathematics", dishing, 2011.	

20ZBS202	PHYSICS OF SEMICONDUCTOR DEVICES	s and their properties emiconducting materials tation in semiconducting rials ductor devices grams, Kronig-Penny reliagram, direct and indirect and insulators, Density AND AND Charge carriers, Intriblectron and hole concetion, compensation and doping and high electric ICAL OR dility effect, velocity-election relation, Continuity carrier life time, diffusion and trapping, in the charge width, reverse and the concetion and trapping, in the charge width, reverse and the charge width with the charge width width	T	P	C
	COMMON TO CSE, ECE & EEE	3	0	0	3
OBJECTIV	ES:				
• To lear	n about the fundamentals of electronic materials and their prope	rties			
• To und	erstand about band gap and charge carriers in semiconducting m	nater	ials		
• To lear materia	n about transport phenomenon and optical excitation in semicon ls	duc	ting		
• To know	w about low dimensional semiconducting materials				
• To und	erstand about principle and working of semiconductor devices				
UNIT-I	ELECTRONIC MATERIALS				9
introduce origing gaps, Types of	cheory, density of states and energy band diagrams, Kronig-Pen of band gap), Energy bands in solids, E-k diagram, direct are electronic materials: metals, semiconductors, and insulators, E bability, Fermi level, effective mass, phonons.	nd i	ndire	ect b	and
UNIT-II	UNIT-II SEMICONDUCTORS: ENERGY BAND AND CHARGE CARRIERS				
extrinsic mate equilibrium, T	in semiconductors, types of semiconductors, Charge carrier rials - Carrier concentration: Fermi level, electron and hole remperature dependence of carrier concentration, compensate aductivity and mobility, effect of temperature, doping and high experiments of the concentration of t	le co	once and	entra cha	tion arge
UNIT-III	CARRIER TRANSPORT AND OPTICAL EXCITATION IN SEMICONDUCTOR				9
relations - Dif	port: Drift transport: Drift current density, mobility effect, velocifusion transport: Diffusion of carriers, Einstein relation, Contin, diffusion length.	•			
_	tion: Optical absorption, carrier generation, Carrier life time, onductivity, Direct and indirect recombination and trapped devices.				_
UNIT- IV	THE P-N JUNCTION DIODE				9
bias, capacitane characteristics	of the p-n junction and contact potential, Space charge width, revoce of p-n junction, Zener and avalanche breakdown in p-n junction and its application (Regulator). Semiconductor heterojunct Schottky barriers diode, tunnel diode, light emitting diode.	ons,	Zene	er die	ode:
UNIT-V	TRANSISTORS				9

34

BJT: Structure, basic principle of operation, input and output characteristics of CE, CB and CC configuration – FET: JFET- Principle of operation, pinch off and saturation, gate control, I-V

characteristics – MOSFET- Structure, principle of operation, input and output characteristics of CS, CD and CG configuration – SCR: Structure, principle of operation and its characteristics.

	TOTAL: 45 PERIODS			
	COUTCOMES			
At the end	of the course, the student will be able			
1.	To understand fundamentals of electronic materials and their properties.			
2.	To explain about the origin of band gap in semiconductors.			
3.	To describe about charge transport and optical excitation phenomenon.			
4.	To understand about p-n junction semiconductor diodes			
5.	To understand about the principal and working of semiconductor transistor	rs		
TEXT B	OOKS:			
1.	P.Mani, "Physics for Electronics Engineering", Shri Dhanam Publishers, 2	2020.		
2.	S. Murugavel, G. Senthil Kumar, "Physics for Electronics Engineering", V publishers, 2020	'RB		
3.	A. Marikani, "Engineering Physics", PHI Learning Pvt., India, 2009.			
4.	S. Mani Naidu, "Applied Physics", Pearson Publisher, India, 2010.			
REFER	ENCES:			
1.	M. Balkanski and R.F. Wallis, "Semiconductor Physics and Applications", University Press, First Published 2000.	Oxford		
2.	Donald A. Neamen, "Semiconductor Physics and Devices: Basic Principles McGraw-Hill Higher Education, Third Edition, 2003.	," <u>,</u>		
3.	S.M. Sze and Kwok K. Ng, "Physics of Semiconductor Devices", Wiley- Interscience, Third Edition, 2007.			
4.	V.K. Metha and Rohit Metha, "Principles of Electronics", Chand & Co, 20	14.		

20ZES20)3	PROGRAMMING IN C	L	T	P	C
ODIECT	PINES.		3	0	0	3
OBJECT		e organization of a digital computer				
•						
•		ed to the number systems.				
•		think logically and write pseudo code or draw f	low char	ts fo	r pro	blems.
•	Be expo	ed to the syntax of C.				
•	Learn to	use arrays, strings, functions, pointers, structure	es and un	ions	in C	· ·
UNIT I	INTR	DUCTION				8
Generation	and Classi	cation of Computers- Basic Organization of	a Compi	ıter	–Nu	mber
		nal – Conversion – Problems. Need for logical a				
Algorithm	-Pseudo coo	– Flow Chart.				
UNIT II	C PRO	GRAMMING BASICS				10
		Problem Solving - Introduction to 'C' program	ming -fu	ındaı	ment	
		m – compilation and linking processes – Const	_			
		ng operators in 'C' – Managing Input and Output				
Making a	nd Branchin	 Looping statements – solving simple sci 	ientific a	and	stati	stical
problems.						
UNIT II	I ARRA	YS AND STRINGS				9
Arrays – I	nitialization	Declaration – One dimensional and Two-dime	nsional a	array	s. St	ring-
String oper	rations – Stri	g Arrays. Simple programs- sorting- searching -	– matrix	oper	atior	ıs.
UNIT IV	FUNC	TIONS AND POINTERS				9
Function –	definition o	function – Declaration of function – Pass by val	ue – Pas	s by	refe	rence
		Definition – Initialization – Pointers arithmetic		•		
Example F						•
UNIT V	STRI	CTURES AND UNION				9
	l e	structure data type – structure definition – S	Structure	decl	arati	
		are - Union - Programs using structures and Un				
	sor directive		20110 20		,0 010	.5505,
			DEDIO	DC		
OUTCO	MFS.	TOTAL: 45 I On completion of this course, students will be a		DS		
-		ous number systems and their conversion.				
		programs in C.				
		as based on arrays.				
		ns using functions and pointers concepts				
TEXT B		ns using Structures and Files.				
ILAID	1	and Ajay Mittal, "Computer Fundamentals a	nd Prog	ramr	nina	in C"
1.		and Alay Millar. Communica continuation a		ı aıııı	HHII	111

2.	Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C",									
2.	First Edition, Oxford University Press, 2009.									
3.	ashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.									
REFER	ENCES:									
1.	Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata									
	McGraw-Hill,2006.									
2.	Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint,									
	2007.									
3.	Kernighan, B. W and Ritchie, D.M, "The C Programming language", Second Edition,									
	PearsonEducation, 2006.									

Cou	Course Articulation Matrix:															
	Program Outcomes													Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	1	1	2						1	1	2	3		
CO2	2	2	1	1	2						1	1	2	3		
CO3	2	2	2	2	1						1	1	2	3		
CO4	CO4 2 2 2 2 1 1 1												2	3		
CO5	CO5 2 2 2 2 1 1 1												2	3		
	(1- Low, 2- Moderate, 3-High)															

20LPC204	CIRCUIT THEORY	L	T	P	C
OBJECTIVI	ES:	3	0	0	3
To intro	duce the basic concepts of DC/ AC circuits and analyze them uns &Topology.	ısing	g net	work	ζ.
To study	y the transient response of the circuits and the concepts of resorcircuits.	nanc	e an	d	
*	about the two port networks and characterize them using para	mete	ers		
UNIT I	INTRODUCTION			9	9
and A.C. circuincidence matri	Circhhoff's laws – Mesh current and node voltage method of an its - Network terminology - Graph of a network - Incidence ces – Trees – Cutsets - Fundamental cutsets - Cutset matrix – Tie set schedules - Twig voltages and Cutset schedules, Dua	e an Γie s	d ree	duce Lin	d k
UNIT II	NETWORK THEOREMS			9	9
Reciprocity the	rems -Superposition theorem, Thevenin's theorem, Norto orem, Millman's theorem, and Maximum power transfer theore orems- Network reduction: voltage and current division, source to version.	m, a	ppli	catio	n
UNIT III	RESONANCE AND COUPLED CIRCUITS			9	9
Variation in cu factor -Selective Analysis of mu	ries resonance - Parallel resonance - Variation of impedance wi rrent through and voltage across L and C with frequency – B ity. Self-inductance - Mutual inductance - Dot rule - Coefficien ltiwinding coupled circuits - Series, Parallel connection of count and double tuned coupled circuits.	and t of	widt coup	h - (oling	Q -
UNIT IV	TRANSIENT ANALYSIS			9	9
excitation by S	se-Forced response - Transient response of RC, RL and RI tep Signal, Impulse Signal and exponential sources - Comple C Circuits to sinusoidal excitation.				
UNIT V	TWO PORT NETWORKS			9	9
_	orks, Z parameters, Y parameters, Transmission (ABCD) parameters, Interconnection of two port networks, Symmetrical properti			-	

TOTAL: 45 PERIODS

COURS	SE OUTCOMES Upon the completion of the course students will have the							
1.	ability to analyse the DC/AC circuits using network topology.							
2.	Ability to analyse the DC/AC circuits using network theorems.							
3.	an understanding of the concepts of resonance and coupled circuits.							
4.	exposure to transient and steady state response of electric circuits.							
5.	knowledge on two port networks and their parameter characterization.							
TEXT I	BOOKS:							
1.	William H. Hayt, Jr. Jack E. Kemmerly and Steven M. Durbin, —"Engineering							
	Circuit Analysis", McGraw Hill Science Engineering, Eighth Edition, 11th							
	Reprint 2016.							
2.	Joseph Edminister and Mahmood Nahvi, —"Electric Circuits", Schaum's Outline							
	Series, Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint							
	2016.							
3.	Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, 2007.							
REFER	ENCES:							
1.	Charles K. Alexander, Mathew N.O. Sadiku, —Fundamentals of Electric Circuits, Fifth Edition, McGraw Hill, 9th Reprint 2015							
2.	A.Bruce Carlson, —Cicuits: Engineering Concepts and Analysis of Linear Electric							
	Circuits", Cengage Learning, India Edition 2nd Indian Reprint 2009							
3.	Allan H.Robbins, Wilhelm C.Miller, —Circuit Analysis Theory and Practice, Cengage Learning, Fifth Edition, 1st Indian Reprint 2013.							
4.	Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО	_														
CO1	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO2	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO4	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO5	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
20LPC204	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-

	CONSTITUTION OF INDIA	L	T	P	C		
Co	Common to MECH, EEE, ECE and CSE Branches						

OBJECTIVES

To provide understanding of basic concepts of Indian Constitution and various organs created by the constitution including their functions.

UNIT - I: INTRODUCTION

Constitution' Definition and Classification - Constitutional Organs - Indian Constitution: Sources and constitutional history, Salient features of Indian Constitution - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy Rule of Law - Separation of powers Constitution - Doctrine of Basic Structure.

UNIT-II: UNION GOVERNMENT & STATE GOVERNMENT AND THEIR ADMINISTRATION

Distribution of Powers between Center and States Structure of the Indian Union: Federalism, Centre- State -relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha.

Governor: Role and Position, CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

UNIT-III: LOCAL ADMINISTRATION & ELECTION COMMISSION

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayatiraj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy Emergency Provisions - Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

COURSE OUTCOME

On completion of the course, the student will be able to understand the constitutional setting of the India and have awareness about the basic human rights in India and responsibilities as a citizen.

Recommended References:

1. V.N. Shukla, Constitution of India

2. M.P. Jain – Indian Constitutional Law.

3.H.M.Seervai: Constitution of India

4.D.D.Basu: Shorter Constitution of India

5.Kagzi: Indian Constitution

6.Pylee: The History of Indian Constitution

			0077				- ~ -						·	· -	T ~
20ZE	S209	PR	OGRA	MM.	ING	IN	[C]	<u>LAB</u>	ORA	ATOR	<u> </u>	L	T	P	C
												0	0	3	1.5
OBJI	ECTIVE	S:													
•	Be familiar with the use of Office software.														
•	Be exposed to presentation and visualization tools.														
•	Be familia	r with]	program	nming	in C.										
•	Be exposed	d to De	ecision r	naking	g, Loo	oping	g coi	nstru	cts.						
•	Learn to us	se Arra	ays, strir	ıgs, fui	nction	ns.									
•	Implement	the co	oncepts o	of struc	cture,	, Uni	ion a	and fi	le org	anizatio	on.				
LIST	OF EXI	PERI	MENT	TS:											
3. 4. 5. 6. 7. 8. 9.	Presentati Problem f C Program Scientific Simple pr Solving p Programs a. Program b. Program u	for and formul mming problem problem with unams wiam usi	d Visual lation, Progressive Sem-solving forms using user definith Pointing Recurrent	ization roblem simple ing usi or one o String ned fu ters.	n – gra n Solvi staten ing ded dimen g funct unction	raphs, ving a ment ecision sion ons — tion.	s, cha and ats and on m nal a is	narts, 2 l Flow nd exp nakin and tw	2D, 3l rchart pression g and yo-dir Parar	O ons looping nension	g. ial arra assing		<u> </u>		
								- 1		L: 45		OD	<u>S</u>		
	COMES		On comp												
1.															
3.	Write C p								ng and	d arrays	and st	rings	•		
	Develop p														
	Develop 1		ms using	g struc	ctures a	and	unic	ons.							
REF	ERENCE	ES:													

REE	ERE	'NCI	-2 5
		μ	4U•

Herbert Schildt, "C - The Complete Reference", Tata McGraw Hill Publishing Company, New Delhi, 2010.

Cou	Course Articulation Matrix:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1						1	1	2	3	
CO2	3	2	1	1	1						1	1	2	3	
CO3	2	2	2	2	1						1	1	2	3	
CO4	2	2	2	2	1						1	1	2	3	
CO5	2	2	2	2	1						1	1	2	3	
	(1- Low, 2- Moderate, 3-High)														

20ZBS2	208	PH	IYSI(CS LABORATORY	L	T	P	C			
	Į.	(Comi	mon to ECE & CSE)	0	0	3	1.5			
OBJEC	TIV	ES									
•	To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids										
LIST O EXPER			ΓS: P	HYSICS LABORATORY (A	NY 5	;					
1.	De	termination of ri	gidity	modulus: Torsion Pendulum							
2.	De	termination of Y	oung's	modulus by non-uniform bending n	netho	d					
3.	(a) Determination of wave length and particle size using LASER (b) Determination of acceptance angle in an optical fibre										
4.	De	termination of th	ermal	conductivity of a bad conductor – Le	ee's D	isc 1	meth	od			
5.		etermination of ve	elocity	of sound and compressibility of flui	d – U	ltras	onic				
6.	De	termination of w	avelen	gth of mercury spectrum – Spectrom	eter g	grati	ng				
7.	De	termination of ba	and gap	o of a semiconductor							
	1			TOTAL]: 4 :	5 Pl	ERI	ODS			
COURS	RSE OUTCOMES										
1.	1. After the course, the student will be able to apply principles of elasticity, optical and thermal properties for engineering applications										
REF	ER	ENCE:									
1.	R.	Bakkiyaraj and A	A. Ana	ndakumar, Physics Laboratory Man	ıal, 2	020					

20LPC210	CIRCUITS AND DEVICES LABORATORY	L	T	P	C
		0	0	2	1

OBJECTIVES:

- To analyze experimentally the characteristics of diodes, BJT 's and FET 's.
- To verify practically the response of various special purpose electron devices.
- To construct and simulate various electronic circuits using PSPICE/multisim.

LIST OF EXPERIMENTS

- 1. Characteristics of PN Junction Diode.
- 2. Characteristics of Zener diode & its application as regulator.
- 3. Input-output Characteristics of common emitter configuration.
- 4. Input-output Characteristics of common base configuration.
- 5. FET Characteristics.
- 6. SCR Characteristics.
- 7. Verification of Thevenin 's & Norton 's theorem.
- 8. Verification of KVL &KCL.
- 9. Verification of Super Position Theorem.
- 10. Verification of Maximum Power Transfer & Reciprocity theorem.
- 11. Determination of Resonance Frequency of Series & Parallel RLC Circuits.
- 12. Transient analysis of RL and RC circuits.
- 13. PSPICE/Multisim simulation of the above experiments.

			TOTAL: 30 PERIODS					
COURSE O	UTCOMES	Upon completion the ability to	n of the course, the students will have					
1.	Analyze the characteristic	es.						
2.	Analyze the characteristic	Analyze the characteristics of BJT and FET transistors.						
3.	Verify Thevenin, Norton, Position Theorems.	KVL, KCL, Max	kimum Power Transfer and Super					
4.	Determine and verify reso	Determine and verify resonant frequency of tuning circuits.						
5.	Analyze various electronic	ic circuits using P	SPICE/multisim simulator.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2_	1_	1	3	-		-	2	-	-	2	3	2	1
CO2	2	2	2	1	3			-	2	-	-	2	2	3	2
CO3	2	2	1	1	3	-	-	-	2	-	-	2	3	2	2
CO4	3	2	2	1	3				2	-	-	2	2	3	1
CO5	3	2	2	1	3	1	1	1	2	-	1	2	2	3	1
20LPC210	3	2	2	1	3	-	-	-	2	-	-	2	2	3	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

THIRD SEMESTER

	THIRD SEMESTER		Γ		
20ZBS301	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	L	T	P	C
		3	1	0	4
OBJECTIV	ES:		<u>l</u>		<u>,I</u>
	oduce Fourier series analysis which is central to many applicatio om its use in solving boundary value problems.	ns in	eng	inee	ring
• To acque situation	naint the student with Fourier transform techniques used in widns.	e vai	riety	of	
equatio	oduce the effective mathematical tools for the solutions of partins that model several physical processes and to develop Z transprete time systems.				
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS			9.	+3
differential eq	partial differential equations - Lagrange's linear equation uations of second and higher order with constant coeffic and non-homogeneous types.		_		
UNIT II	FOURIER SERIES			9.	+3
	ditions – General Fourier series – Odd and even functions – Fange cosine series – Complex form of Fourier series – Parsevysis.		_		
UNIT III	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	L		9.	+3
wave equation	of PDE – Method of separation of variables - Solutions of or – One dimensional equation of heat conduction – Steady state squation of heat conduction (excluding insulated edges).				
UNIT IV	FOURIER TRANSFORMS			9.	+3

identity.

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z- transforms - Elementary properties - Inverse Z - transform (using partial fraction and residues) - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform.

TOTAL: 60 PERIODS

9+3

COURSE OUTCOMES

1. The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

- 1. Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 3rd Edition, 2016
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi, 2017.
- 3. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd., 1998.

REFERENCES:

- 1. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", Laxmi Publications Pvt Ltd, 9th Edition 2016.
 - 2. Ramana. B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2018.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education, 2016.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India, 2011.
- 5. Ray Wylie C and Barrett. L.C, "Advanced Engineering Mathematics", 6th Edition, Tata McGraw Hill Education Pvt Ltd, New Delhi, 2012.
- 6. Datta K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

20LPC302	EL	LECTRONIC CIRCUITS - I	L	\mathbf{T}	P	C
			3	0	0	3
UNIT I	BIASING OF	BJT AND FET	"	<u> </u>		9
		nt, Various biasing methods for BJT-Design of biasing for JFET, Design of biasing for biasing for biasing for biasing for JFET, Design of biasing for	_		•	as
UNIT II	BJT AND FE	T AMPLIFIERS				9
collector and c	common base ampl	on Emitter- AC Load line, Voltage swing lifiers – Differential amplifiers- CMRR- I Analysis of MOSFET and JFET Commo	Darlingto	n Am	plifie	
UNIT III	FREQUENCY AMPLIFIER	Y ANALYSIS OF BJT AND MOS S	SFET			9
amplifier, Shor	rt circuit current ga	ller effect, High frequency analysis of C ain, cut off frequency – $f\alpha$ and $f\beta$ unity gamultistage amplifiers.				
UNIT IV	LARGE SIGN	NAL AMPLIFIERS				9
class A audio p – push-pull a	oower amplifier – E mplifier – Dis	Class A large signal amplifiers — Efficiency of Class A amplifiers — Class B a tortion in amplifiers — Complementary — mplifier - Class C amplifier — Class D amp	amplifier - Symme	– Eff	icien	су
UNIT V	FEEDBACK	AMPLIFIERS				9
Feedback amp	lifiers – Series – Sh	roperties of negative feedback – Basic Feaunt, Series – Series, Shunt – Shunt and Shuability Problem – Nyquist Plot – Effect of a	unt – Seri	es Fe	edba	ck
			EDIAL	20		
		TOTAL: 45 P	EKIUL	B		
COURSE O	OUTCOMES	Upon completion of the course studen			e to	
					e to	

Analyse the frequency response of transistors.

3.

4.	Design and anal	yse large signal amplifiers.
		, , ,
5.	Design and anal	yse feedback amplifiers.
TEXT	BOOKS:	
1.	Donald.A. Nean Hill, 2009.	nen, Electronic Circuit Analysis and Design –2nd Edition, Tata Mc Graw
2.	Millman.J. and I	Halkias C.C, "Integrated Electronics", Mc Graw Hill, 2001.
3.	Adel.S. Sedra, University Press	Kenneth C. Smith, "Micro Electronic Circuits", 6th Edition, Oxford , 2010.
REFE	RENCES:	
1.	David A., "Bell 5th Edition, 201	Electronic Devices and Circuits", Oxford Higher Education Press,
2.	Behzad Razavi, 2007.	"Design of Analog CMOS Integrated Circuits", Tata Mc Graw Hill,
3.	S Salivahanan, 1 Hill,2012	N Suresh Kumar, "Electronic Devices and Circuits", Third Edition Graw
4.	D.Schilling and	C.Belove, "Electronic Circuits", 3rd Edition, Mc Graw Hill, 1989.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	_	_	_	_	-	_	_	_	3	3	3	1
CO2	3	2	3	2	_	_	_	_	_	_	_	2	3	3	1
CO3	3	3	2	2	_	_	_	-	_	_	_	2	2	2	2
CO4	3	3	2	2	_	-	_	_	_	_	_	2	3	3	2
CO5	3	_	_	_	_	_	_	_	_	_	_	2	3	3	1
20LPC302	3	3	2	2	_	_	_	_	_	_	_	2	2	3	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPC303	ELECTROMAGNETIC FIELDS	L	T	P	C
		3	0	0	3
OBJECTIVES:					

- To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space.
- To understand the concepts of electric and magnetic fields among different materials and boundary conditions.
- To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations

UNIT I STATIC ELECTRIC FIELD

Vector Algebra, Coordinate Systems, Vector differential operator, Gradient, Divergence, Curl, Divergence theorem, Stokes theorem, Coulombs law, Electric field intensity, Point, Line, Surface and Volume charge distributions, Electric flux density, Gauss law and its applications, Gauss divergence theorem, Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT II CONDUCTORS AND DIELECTRICS

Conductors and dielectrics in Static Electric Field, Current and current density, Continuity equation, Polarization, Boundary conditions, Method of images, Resistance of a conductor, Capacitance, Parallel plate, Coaxial and Spherical capacitors, Boundary conditions for perfect dielectric materials, Poisson's equation, Laplace's equation, Solution of Laplace equation, Application of Poisson's and Laplace's equations.

STATIC MAGNETIC FIELDS **UNIT III**

9

Biot -Savart Law, Magnetic field Intensity, Estimation of Magnetic field Intensity for straight and circular conductors, Ampere's Circuital Law, Point form of Ampere's Circuital Law, Stokes theorem, Magnetic flux and magnetic flux density, The Scalar and Vector Magnetic potentials, Derivation of Steady magnetic field Laws.

UNIT IV MAGNETIC FORCES AND MATERIALS

9

Force on a moving charge, Force on a differential current element, Force between current elements, Force and torque on a closed circuit, The nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions involving magnetic fields, The magnetic circuit, Potential energy and forces on magnetic materials, Inductance, Basic expressions for self and mutual inductances, Inductance evaluation for solenoid, toroid, coaxial cables and transmission lines, Energy stored in Magnetic fields.

UNIT V	TIME VARYING FIELDS AND MAXWELL'S	9
	EQUATIONS	

Fundamental relations for Electrostatic and Magnetostatic fields, Faraday's law for Electromagnetic induction, Transformers, Motional Electromotive forces, Differential form of Maxwell's equations, Integral form of Maxwell's equations, Potential functions, Electromagnetic boundary conditions, Wave equations and their solutions, Poynting's theorem, Time harmonic fields, Electromagnetic Spectrum.

				TOTAL: 45 PERIODS
COURS	SE OUTCO	MES	Upon Completion	of the course, the students will have
1.	The Ability	to analyse ele	ectric fields due to	different sources.
2.	The Ability fields.	to explain th	ne properties of d	ifferent types of materials in electric
3.	The Ability	to analyse ma	agnetic fields due	to different sources.
4.	The knowled	dge on the pro	operties of differen	at types of materials in magnetic fields.
5.	An exposure	e to the charac	cteristics of electro	omagnetic fields.
TEXT I	BOOKS:			
1.		Hayt and Joll Publishing,		Engineering Electromagnetics", Tata
2.	Sadiku MH, Delhi, 2009	"Principles of	of Electromagnetic	es", Oxford University Press Inc, New
3.	David K Ch Delhi, 2004.	O,	and Wave Electro	omagnetics", Pearson Education Inc,
REFER	RENCES:			
1.	G.S.N.Raju,	"Electromag	gnetic Fields", Ped	arson Education India, 2014
2.		us and Danie Pook Co, 2005		tromagnetics with Applications", Mc
3.			va V Savov, "Fund ew Delhi, 2006.	lamentals of Electromagnetics",
4.				Prentice Hall of India, New Delhi,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	-	-	-	-	-	-	-	2	3	-	1
CO2	3	2	1	-	-	ı	-	ı	1	1	1	2	3	-	1
CO3	3	3	1	1	-	-	-	-	1	-	-	2	3	1	1
CO4	3	2	1	-	-	ı	-	ı	ı	1	-	2	3	1	1
CO5	3	3	1	1	-	-	-	-	-	-	-	2	3	-	1
20LPC303	3	3	1	1	-	1	-	-	ı	-	-	2	3	1	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPC304	SIGNALS AND SYSTEMS	L	T	P	C
		3	0	0	3
OBJECTIVI	ES:	l .	1	l .	
To learn	about the continuous/Discrete time signals/systems.				
• Exposur	re to continuous time signals/systems analysis using Fourier/La	plac	e tra	nsfo	rm
• Exposur	re to discrete time signals/systems analysis using DTFT/Z trans	forr	n		
UNIT I	CLASSIFICATION OF SIGNALS AND SYSTEM	IS			9
Impulse, Sinuso signals, Determ systems- Classif	e signals (CT signals) - Discrete time signals (DT signals) - Step sidal, Exponential, Classification of CT and DT signals - Periodi iinistic & Random signals, Energy & Power signals - CT sys- fication of systems – Static & Dynamic, Linear & Nonlinear, T Causal & Non-causal, Stable & Unstable.	c &	Ape is ar	riodi nd D'	с Г
UNIT II	ANALYSIS OF CONTINUOUS TIME SIGNALS			9	9
	analysis-spectrum of Continuous Time (CT) signals- Fourier CT Signal Analysis - Properties.	r an	d La	aplac	e
	LINEAR TIME INVARIANT- CONTINUOUS TI SYSTEMS	MI	${f E}$	9	
_	nation-Block diagram representation-impulse response, convolu- place transforms in Analysis of CT systems.	ition	inte	grals	, –
UNIT IV	ANALYSIS OF DISCRETE TIME SIGNALS			9	9
Baseband Samp	ling - DTFT – Properties of DTFT - Z Transform – Properties of	fΖΊ	rans	sforn	1.
	LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS				9
1	ations-Block diagram representation-Impulse response - Con r and Z Transform Analysis of Recursive & Non-Recursive sys			sum	l -
	TOTAL: 45 PERI	OD	S		
COURSE O	UTCOMES Upon completion of this course, students will	hav	e the		
1. Exposu propert	are to the continuous/discrete time signals/systems and their cies	lass	ifica	tion	and
2. Ability	to analyse continuous time signals using Fourier/Laplace tra	nsfo	orms	\ \	
3. Ability	to analyse continuous time systems using Fourier/Laplace tra	nsfo	orms	S	

4.	Ability to analy	yse discrete time signals using DTFT/Z transforms								
5.	Ability to analy	yse discrete time systems using DTFT/Z transforms								
TEXT	BOOKS:									
1.	Allan V.Oppo 2007.	enheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson,								
2.	Simon Hayki Pvt Ltd, 1999	ykin, Barry Van Veen., "Signals & Systems". John Wiley &Sons (ASIA 999.								
3.	B. P. Lathi, "1 2009.	Principles of Linear Systems and Signals", Second Edition, Oxford,								
REFE	ERENCES:									
1.	R.E.Zeimer, Discrete", Pe	W.H.Tranter and R.D.Fannin, "Signals & Systems - Continuous and earson, 2007.								
2.	P.Ramesh Ba Publications	bu,R.Anandanatarajan,"Signals and Systems", Fifth Edition, SciTech								
3.	HP HSU, "Si	ignals and Systems", 2 nd edition, Mc.Hill.education, 2017								
4.	M.J.Roberts, Tata McGraw	"Signals & Systems Analysis using Transform Methods & MATLAB", Hill, 2007.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2		-	-	-	-	-	-	-	3	2	-
CO2	3	2	2	2	2	-	-	-	2	-	-	2	3	1	-
CO3	3	2	2	-	2	-	-	-	2	-	-	2	3	1	-
CO4	3	2	2	-	2	ı	-	1	2	1	-	2	3	2	-
CO5	3	3	3	-	2	1	-	1	2	- 1		2	3	2	-
20LPC304	3	2	2	2	2	-	-	-	2	-	-	2	3	2	-

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

20LE	S305	DATA STRUCTURES AND OBJECT ORIENTED PROGRAMMING LANGUAGE	L	T	P	C
			3	0	0	3
OBJI	ECTIV					
•		amiliar with the object-oriented programming concepts				
•		erstand the concepts of inheritance, polymorphism and overloadi	ng			
•		art the basic concepts of data structures and algorithms				
•		amiliar with the non-Linear Data Structures concepts				
•		erstand concepts of searching and sorting techniques			1	
UNIT	ľ	BASIC CONCEPTS OF OOPS			9	
		Object-Oriented Programming - Beginning with C++ - Tokens ares – Functions in C++ - Classes and Objects – Constructors and				s,
UNIT	'II	OVERLOADING, INHERITANCE AND POLYMORPHISM			9	
		oading and function overloading - Inheritance: extending class, polymorphism – Manipulating Strings.	ses	- Po	inter	S,
UNIT	III	LINEAR DATA STRUCTURES			9	
implen	nentatio	Types (ADTs) – List ADT – array-based implementation — singly linked lists – Stack ADT – Applications: Infix to Post ressions - Queue ADT.				
UNIT	IV	NON-LINEAR DATA STRUCTURES			9	
and its	repres	Trees – Binary tree representation and traversals – Binary Searcentations – Graph Traversals – Breadth-first search – Depth apponents.			-	
UNIT	V	SORTING AND SEARCHING			9	
		Merge sort – Quick sort – Radix sort – shell sort- Bubble sort – Binary Search.	- Sel	ectio	n so	rt
		TOTAL: 45 PERI	OD	S		
	COME	'C•				
OUT	001111	1 0•				
·		plain the concepts of Object-oriented programming.				
•	Exp					

TEXT	BOOKS:
1.	E.Balagurusamy, "Programming in C++", 4th Edition. (Unit I & II)
2.	M. A. Weiss, "Datastructures using C++", 3rd Edition, Addition Wesley. (Unit III, IV, V)
REFE	RENCES:
1.	B.Trivedi, "Programming with ANSI C++:A Step-By-Step approach", Oxford University Press, 2010.
2.	Goodrich, Michael. T, R. Tamassia, D. Mount, "Data Structures and Algorithms in C++", 7th Edition, Wiley, 2004.

Cou	Course Articulation Matrix:														
	Program Outcomes												Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO3	
CO1	3	3	1	1	1	1					1	1	3	2	
CO2	3	3	2	2							1	1	2	2 3	
CO3	2	2	2	2	2						1	1	2		
						(1- I	Low,	2- Mo	oderat	e, 3-H	igh)				

20ZMC306	ENVIRONMENTAL SCIENCE AND L	T	P	C
	ENGINEERING	Λ	Λ	Λ
OBJECTIVES:		0	0	0
	l implementing scientific, technological, economic and political solutions to			
environmental		,		
	nterrelationship between living organism and environment.			
	ntegrated themes and biodiversity, natural resources, pollution control and v	vaste	<u>,</u>	
management.	g, - , - ,			
	IRONMENT, ECOSYSTEMS AND BIODIVERSITY			7
types of ecosystem (streams, lakes, rivers, types – Introduction classification of India option values – India loss, poaching of wild of biodiversity: In-sit Field study of simple UNIT II EN Definition – causes, of (d) Marine pollution of causes, effects and co Field study of local UNIT III NA Forest resources: Us surface and ground w using mineral resources	bolluted site – Urban / Rural / Industrial / Agricultural. FURAL RESOURCES e and over-exploitation, deforestation – Water resources: Use and overurater– Mineral resources: Use and exploitation, environmental effects of extrees – Food resources: World food problems, changes caused by agricultural.	ems proogeoggeogthesthy: consessects oil p nana ttilizatracticulti	(pool) (p	nds, es – ical and obitat tion rds. 3 tion of and
	of modern agriculture, fertilizer-pesticide problems- Energy resources: rer	1611/9	1 1	and
				and
	y sources, use of alternate energy sources. Land resources- land degra	datio	on, 1	and nan
	il erosion and desertification - role of an individual in conservation of natura	datio	on, 1	and nan
	il erosion and desertification – role of an individual in conservation of naturarea to document environmental assets – river / forest / grassland / hill	dational re	on, 1 sour	and man ces.
Field study of local a	il erosion and desertification – role of an individual in conservation of naturarea to document environmental assets – river / forest / grassland / hill TOTAL: 15	dational re	on, 1 sour	and man ces.
COURSE OUTCO Environmental Pollumportant aspect where the following after comparison of the comparison	ill erosion and desertification – role of an individual in conservation of naturate to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is tich serves the environmental Protection. One will obtain knowledge on eleting the course. Ity the knowledge of environmental science in identifying, to formulate and	dational resident data data data data data data data da	on, 1 sour	and man ces.
COURSE OUTCO Environmental Pollo important aspect where the second of th	ill erosion and desertification – role of an individual in conservation of naturate to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is tich serves the environmental Protection. One will obtain knowledge on eleting the course. Ity the knowledge of environmental science in identifying, to formulate and	dational resident data data data data data data data da	on, 1 sour	and man ces.
COURSE OUTCO Environmental Pollo important aspect whe following after componental and a property of the course and recourses and courses are courses and courses and courses are courses a	ill erosion and desertification – role of an individual in conservation of natural rea to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is ich serves the environmental Protection. One will obtain knowledge on oleting the course. Ly the knowledge of environmental science in identifying, to formulate and problems.	PEI s an the to s	on, isour	and man ces.
COURSE OUTCO Environmental Polla important aspect wh following after comp 1. Ability to app environmental 2. Public awaren 3. Ignorance and recourses and TEXT BOOKS:	idl erosion and desertification – role of an individual in conservation of natural rea to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is the serves the environmental Protection. One will obtain knowledge on obleting the course. If the knowledge of environmental science in identifying, to formulate and problems. Less of environmental function is at infant stage. Incomplete knowledge has led to misconceptions. Obtaining knowledge at their functions will create awareness in conserving various natural resource	PEI s an the to s bout	RIO olve	the
COURSE OUTCO Environmental Polla important aspect whe following after componential Ability to apponentionmental Public awaren Ignorance and recourses and TEXT BOOKS: 1. Gilbert M.Ma., Education, 20	ill erosion and desertification – role of an individual in conservation of natural rea to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is the serves the environmental Protection. One will obtain knowledge on obleting the course. Ly the knowledge of environmental science in identifying, to formulate and problems. Less of environmental function is at infant stage. Incomplete knowledge has led to misconceptions. Obtaining knowledge at their functions will create awareness in conserving various natural resource sters, 'Introduction to Environmental Engineering and Science', 2nd edition 104.	PEI s an the to s bouts.	RIO olve	the
COURSE OUTCO Environmental Pollumportant aspect with following after comparison environmental 2. Public awaren 3. Ignorance and recourses and TEXT BOOKS: 1. Gilbert M.Ma. Education, 20 2. Benny Joseph,	idl erosion and desertification – role of an individual in conservation of natural rea to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is inch serves the environmental Protection. One will obtain knowledge on oleting the course. Ity the knowledge of environmental science in identifying, to formulate and problems. Less of environmental function is at infant stage. Incomplete knowledge has led to misconceptions. Obtaining knowledge at their functions will create awareness in conserving various natural resource enters, 'Introduction to Environmental Engineering and Science', 2nd edition	PEI s an the to s bouts.	RIO olve	the
COURSE OUTCO Environmental Pollumportant aspect with following after composition of the control of the course and a special of the course and the course are course are course and the course are course are course and the course are course are course are course are course are course and the course are course	idl erosion and desertification – role of an individual in conservation of natural rea to document environmental assets – river / forest / grassland / hill TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is inch serves the environmental Protection. One will obtain knowledge on bleting the course. Ity the knowledge of environmental science in identifying, to formulate and problems. Less of environmental function is at infant stage. Incomplete knowledge has led to misconceptions. Obtaining knowledge at their functions will create awareness in conserving various natural resource sters, 'Introduction to Environmental Engineering and Science', 2nd edition 104. 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 104.	PEI s an the to s bouts.	RIO olve	the
COURSE OUTCO Environmental Pollumportant aspect with following after composition of the control of the course and a special of the courses and the course and the course of the course o	TOTAL: 15 MES Ition or problems cannot be solved by mere laws. Public participation is tich serves the environmental Protection. One will obtain knowledge on pleting the course. Ity the knowledge of environmental science in identifying, to formulate and problems. ess of environmental function is at infant stage. Incomplete knowledge has led to misconceptions. Obtaining knowledge at their functions will create awareness in conserving various natural resource sters, 'Introduction to Environmental Engineering and Science', 2nd edition of the Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ.,	PEI s an the to s bouts.	RIO olve	the

20LES	307	BASIC ELECTRICAL AND INSTRUMENTATION ENGINEERING	L	T	P	C						
			3	0	0	3						
OBJE	CTIV	ES										
•	To in	troduce DC Machines										
•	To st	udy the Basics of Transformer										
•	To introduce Induction Machines											
•	To understand the concepts of Alternators and Special machines											
•	To introduce different Electrical Measuring Instruments.											
UNIT	Į.	DC MACHINES				9						
and Cha Applicat	racteri ions.	haracteristics of DC generators –DC motors - Principle of Opstics of DC motors –Starting and Speed Control – Losses and			ncy	_						
equation	tion - S -No 1 Efficie	TRANSFORMERS Single phase transformer construction and principle of operation oad and Load characteristics – Equivalent Circuit –Voltage acy –OC and SC tests –Autotransformers –Three Phase T	Reg	gulat	EM	_						
UNIT 1	III	INDUCTION MACHINES			9	9						
Characte	eristics	eration of three-phase induction motors — Construction —Types —Equivalent circuit— Starting and Speed Control—Single phruction—Double revolving field theory —Types— Applications.		-		-						
UNIT 1	IV	SYNCHRONOUS AND SPECIAL MACHINES			9	9						
Alternator-Constructional details—working principle—EMF Equation — Voltage regulation EMF and MMF methods. Synchronous motor: Working principle - Starting methods Torque equation — Characteristics. Special Machines: Stepper Motor — Brushless DC Mo - Reluctance Motor — Universal Motor.												

UNIT V ELECTRICAL INSTRUMENTS AND 9 MEASUREMENTS

Absolute and Secondary Instruments-Electrical Principle of operation-Standards and errors-Essentials of indicating instruments- Moving Coil and Moving Iron Ammeters and Voltmeters— Wattmeter and Energy meter—Measurement of R, L and C parameters: Wheatstone, Anderson, Schering and Wien bridges—Transducers— Classification of Transducers: Resistive, Inductive, Capacitive, piezoelectric, photoelectric and Hall effect.

		ering and Wien bridges –Tran	
Transdu	cers: Resistive, Induc	tive, Capacitive, piezoelectric, ph	notoelectric and Hall effect.
			TOTAL: 45 PERIODS
COUR	SE OUTCOMES	At the end of the course, stude	ents able to
1.	Choose the approp characteristics.	riate DC motor and generator	based on their performance
2.	Understand the fund	tions and operations of transform	ner
3.	Choose an appropria	ate induction motor based on their	r performance characteristics.
4.	Select appropriately	a special machine for an Industr	ial application.
5.	Choose an appropri	ate measuring instruments for a eter.	given application to measure
TEXT	BOOKS:		
1.		J.Nagarath, —"Basic Electrical a tion (India) Private Limited, Thir	o ,
2.	B.L.Theraja and A.I II, S. Chand &Co. 2	K.Theraja,"A Text Book of Elect 014.	trical Technology", Vol-I and
3.	Toro,"Electrical Eng	gineering Fundamental", Pearson	Education, New Delhi, 2015.
REFE	RENCES:		
1.	Rajendra Prasad ,". India,2006	Fundamentals of Electrical engin	eering", Prentice Hall of
2.	•	-"Basic Electrical and Electronic	cs Engineering", Pearson India,
3.	I .	cal and Electronics Technology"	, Pearson, 2010.
4.	_	Course in Electrical & Electronic Phanpat Rai and Co, 2010.	Measurements &

20LES308	DATA STRUCTURES AND OBJECT ORIENTED PROGRAMMING LANGUAGE LABORATORY	L	T	P	C
		0	0	2	1
OBJECTIV	YES:		•	•	
• Unde	rstand the fundamentals of object-oriented concepts.				
Be ab	le to write a C++ program to solve various problems.				
Be all	le to choose appropriate data structures to solve the problems.				
• To de	velop skills to design and analyse simple linear and nonlinear data	a stru	ctur	es	
• To G	nin knowledge in practical applications of data structures				
LIST OF E	XPERIMENTS				
1. Progra	ms on C++ basic concepts.				
2. Progra	m constructors, constructor overloading, destructors				
3. Progra	ms on Function overloading, Operator overloading.				
4. Progra	m to implement single, multiple, multilevel, hybrid and hierarchic	cal in	herit	ance	
5. Progra	ms on pointers.				
6. Progra	ms on string manipulation				
7. Progra	m on singly linked list using array-based implementation and list	imple	emei	ntatio	n
8. Progra	m for Doubly linked list using array-based implementa	ation	an	d li	st
implei	nentation				
9. Progra	m to convert infix to postfix notation				
10. Progra	m to evaluate arithmetic expression.				
11. Progra	m for Linear queue using array and list-based implementation				
12. Progra	m to implement binary search tree.				
13. Progra	m to implement merge sort, quick sort, insertion sort, shell sort	, sele	ectio	n sor	t,
radix s	ort.				
14. Progra	m to implement linear search and binary search.				
	TOTAL: 30 PERIODS				
OUTCOM	E S:				
	now the concept of C++ and pointers.				
2. In	plement Arrays, Linked list and searching algorithm.				
REFEREN	CES:				
1. S.	Arora, "Practical world of C++", Dhanpat Rai & CO (Pvt)Ltd.				
1.	1. C. a., 1. wowen worth of C , Duniput Ital a Co (1 W) Little				

2.

Spoken-tutorial.org.

Cou	Course Articulation Matrix:															
	Program Outcomes												Program Specific Outcomes			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1										PO12	PSO1	PSO2	PSO3		
CO1	2	2	1	1							1	1	2			
CO2	3	3	2	2	2	2					1	1	2 3			
	(1- Low, 2- Moderate, 3-High)															

20LPC309	ELECTRONIC CIRCUITS - I LABORATORY	L	T	P	C
		0	0	2	1

OBJECTIVES:

To analyse experimentally the characteristics of amplifiers.

To verify practically the frequency response of various BJT and FET amplifiers.

To construct and simulate various electronic circuits using PSPICE/Multisim.

LIST OF EXPERIMENTS

Design, Simulation & implementation of the below

USING DISCRETE COMPONENTS

- 1. Half Wave and Full Wave Rectifiers.
- 2. Filters and Power supplies.
- 3. Differential Amplifiers- Transfer characteristic, CMRR Measurement
- 4. Darlington Amplifier
- 5. Frequency Response of CE amplifier
- 6. Frequency Response of CS amplifiers.
- 7. Class A Power Amplifiers
- 8. Class B Power Amplifiers
- 9. Class AB Power Amplifiers.
- 10. Feedback amplifiers

			TOTAL :30 PERIODS
COURSE	OUTCOMES	Upon completion to	of the course students will be able
1.	Design power supply circ	cuits.	
2.	Analyze the transfer char	racteristics in differ	ential amplifier.
3.	Analyze the limitation in	bandwidth in ampl	lifiers.
4.	Design power and feedba	ack amplifiers	
5.	Simulate amplifiers using	g SPICE	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	-	-	-	3	2	_	3	3	1	3
CO2	3	2	3	2	2	-	-	-	3	2	-	3	3	1	2
CO3	3	3	3	2	2	ı	-	ı	3	2	-	3	3	1	2
CO4	3	3	3	2	2	1	-	1	3	2	_	3	3	1	3
CO5	2	2	3	3	2	1	_	1	3	2	_	3	3	1	2
	3	2	3	2	2		_	ı	3	2	_	3	3	1	2

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LES31	0 ELECTRICAL ENGINEERING LABORATORY	L	Т	P	C
		0	0	2	1
OBJECT	CIVES				
•	To conduct experiment and evaluate the performance of DC machi	nes			
•	To conduct experiment and evaluate the performance of Transform	ners			
•	To conduct experiment and evaluate the performance of Induction	mote	ors		
•	To conduct experiment and measure the values of passive circuit e	leme	ents		
•	To understand theactive and passive transducers.				

LIST OF EXPERIMENTS

- 1. Characteristics of Separately excited DC generator
- 2. Characteristics of Self excited DC generator (shunt and series)
- 3. Speed control of DC Shunt motors
- 4. Load test on DC motors
- 5. OC and SC test of Single-phase Transformers
- 6. Load test on transformer (Single Phase and three phase)
- 7. Load test of Induction motor (single phase and three phase)
- 8. Regulation of three phase alternator (EMF and MMF Methods)
- 9. Measurements of R, L and C using Bridges
- 10. Study of DC and Induction Motor starters.
- 11. Study of Transducers.

			TOTAL: 30PERIODS	
COURS	SE OUTCOMES	At the end of the c	ourse, students able to	
1.	Conduct the experiment characteristics	ts on DC machin	nes to analyse the performance	
2.	Conduct the experiments on transformer and get the equivalent circuits and Performance characteristics			
3.	Conduct the experiment characteristics	ts on Induction	motor and get its Performance	
4.	Measure the values given	passive component	with the use of bridge circuit.	
5.	Identify and characterize t	he active and passi	ve transducers.	

FOURTH SEMESTER

	PRO	DBABILITY	AND RANDO	M PROCESSES	L	T	P	C
					3	1	0	4
OBJECT	VES:							
	•	•		bability and rando	-			
UNIT I	RAN	DOM VARI	ABLES				9-	+3
				Moment generati amma and Normal di	_			_
UNIT II	TWO	- DIMENS	ONAL RANDO	OM VARIABLE	S		9-	+3
		_	nditional distribution frandom variables.	ons – Covariance – C	Corre	latio	n an	d
UNIT III	RAN	DOM PROC	CESSES				9.	+3
Classification process.	n – Statio	nary process –	Markov process - Po	oisson process – Rai	ndom	tele	grap	h
UNIT IV CORRELATION AND SPECTRAL DENSITIES								
UNIT IV	COR	RELATION	AND SPECTR	AL DENSITIES			9-	+3
Auto correla	tion funct			AL DENSITIES - Properties – Power		ral d		
Auto correla	tion funct	ons – Cross con y – Properties.	relation functions –			ral d	ensit	
Auto correla – Cross spec UNIT V Linear time	tion function tral densite LINE	ons – Cross con y – Properties. CAR SYSTE ystem – System	relation functions –	Properties – Power some some some some some some some some	spect		ensit	y +3
Auto correla – Cross spec UNIT V Linear time	tion function tral densite LINE	ons – Cross con y – Properties. CAR SYSTE ystem – System	ms with ransfer function – on functions of input	Properties – Power some some some some some some some some	rand	lom	ensit	y +3
Auto correla – Cross spec UNIT V Linear time	tion function function function density LINE	ons – Cross con y – Properties. CAR SYSTE ystem – System Cross correlat	ms with ransfer function – on functions of input	Properties – Power s NDOM INPUTS Linear systems with ut and output.	rand	lom	ensit	y +3
Auto correla - Cross spec UNIT V Linear time - Auto corre	LINE Invariant solution and OUTCO The student cquiring so	ons – Cross con y – Properties. CAR SYSTE ystem – System Cross correlat OMES ts will have an kills in handling	relation functions — MS WITH RAN transfer function — on functions of input T exposure of variou g situations involving	Properties – Power s NDOM INPUTS Linear systems with ut and output.	rance IOD ons a riable	os nd h	9- input	y +3 :s
Auto correla - Cross spec UNIT V Linear time - Auto corre	LINE Invariant selation and OUTCO The student cquiring senalyse the	ons – Cross con y – Properties. CAR SYSTE ystem – System Cross correlat OMES ts will have an kills in handling	relation functions — MS WITH RAN transfer function — on functions of input T exposure of variou g situations involving	Properties – Power some some some some some some some some	rance IOD ons a riable	os nd h	9- input	y +3 :s

2.	Peebles. P.Z., "Probability, Random Variables and Random Signal Principles", Tata Mc Graw Hill, 4th Edition, New Delhi, 2002.				
REFER	ENCES:				
1.	Yates. R.D. and Goodman. D.J., "Probability and Stochastic Processes", 3 rd				
	Edition, Wiley India Pvt. Ltd., Bangalore, 2014.				
2.	Stark. H., and Woods. J.W., "Probability and Random Processes with Applications				
	to Signal Processing", 4th Edition, Pearson Education, Asia, 2014.				
3.	Miller. S.L. and Childers. D.G., "Probability and Random Processes with				
	Applications to Signal Processing and Communications", 2 nd Edition, Academic				
	Press, 2012.				
4.	Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random				
	Variables and Random Processes", 3 rd Edition, Tata Mc Graw Hill Edition, New				
	Delhi, 2014.				
5.	Cooper. G.R., Mc Gillem. C.D., "Probabilistic Methods of Signal and System				
	Analysis", 3 rd Indian Edition, Oxford University Press, New Delhi, 2012.				

20LPC402	ELECTRONIC CIRCUITS - II	L	T	P	C
		3	0	0	3

OBJECTIVES:

- To design oscillators and tuned amplifiers.
- To design wave shaping circuits and different multivibrator circuits.
- To understand the linear and non-linear applications of operational amplifiers.

UNIT I OSCILLATORS

9

Classification, Barkhausen Criterion - Mechanism for start of oscillation and stabilization of amplitude, General form of an Oscillator, Analysis of LC oscillators-Hartley, Colpitts, Clapp, Franklin, Armstrong, Tuned collector oscillators, RC oscillators - phase shift – Wienbridge-Twin-T Oscillators, Frequency range of RC and LC Oscillators, Quartz Crystal Construction, Electrical equivalent circuit of Crystal, Miller and Pierce Crystal oscillators, frequency stability of oscillators.

UNIT II TUNED AMPLIFIERS

9

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers - Analysis of capacitor coupled single tuned amplifier - double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth–Stagger tuned amplifiers–large signal tuned amplifiers - Class C tuned amplifier - Efficiency and applications of Class C tuned amplifier - Stability of tuned amplifiers - Neutralization - Hazeltine neutralization method.

UNIT III WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

9

RC &RL Integrator and Differentiator circuits – Storage, Delay and Calculation of Transistor Switching Times–Speed-up Capacitor-Diode clippers, Diode Comparator-Clampers. Collector coupled and Emitter coupled Astable multivibrator – monostable multivibrator - Bistable multivibrator - Triggering methods for bistable multivibrator - Schmitt trigger circuit.

UNIT IV OPERATIONAL AMPLIFIER

9

Ideal and Practical Op-Amp, Op-Amp Characteristics, DC and AC Characteristics, Features of 741 Op-Amp, Modes of Operation - Inverting, Non-Inverting, Differential, Instrumentation Amplifier, AC Amplifier, Differentiators and Integrators, Comparators, Schmitt Trigger, Introduction to Voltage Regulators, Features of 723 Regulator, Three Terminal Voltage Regulators.

UNIT V OP-AMP, IC-555 & IC 565 APPLICATIONS

Introduction to Active Filters, Characteristics of Band pass, Band reject and All Pass Filters, Analysis of 1st order LPF & HPF Butterworth Filters, waveform Generators - Triangular, Sawtooth, Square wave, IC555 Timer - Functional Diagram, Monostable and Astable Operations, Applications, IC565 PLL-Block Schematic, Description of Individual locks, Applications. Voltage Controlled Oscillator, PLL and its Applications.

9

				TOTAL :45PERIODS
CC	COURSEOUTCOMES		Upon the course of have the ability to	completion, the student will
1.	Design RC and	LC oscillators		
2.	Design and ana	lyse tuned amplif	fiers	
3.	Design Wave s	haping circuits ar	nd multivibrators.	
4.	Design linear as	nd nonlinear appl	lications of OP –AN	MPS
5.	Design applicat	ions using analog	g multiplier and PL	L.
TE	EXTBOOKS:			
1.	Sedra and Smith 2011.	, —Micro Electro	onic Circuits#; Sixth	n Edition, Oxford University Press,
2.		stad and Louis Na son Education / P		ronic Devices and Circuit Theoryl,
3.	D.RoyChoudhar	y, SheilB.Jani, Li	inear Integrated Cir	cuits, II edition, New Age, 2003.
RE	EFERENCES:			
1.	Millman J. and	Taub H., "Pulse I	Digital and Switchi	ng Waveforms", TMH, 2000.
2.	David A. Bell, — Press, 2008.	-Electronic Devi	ces and Circuits , F	ifth Edition, Oxford University
3.	Millman and Ha	lkias. C., Integra	ted Electronics, TM	ИН, 2007.
4.	Allen mottershed	d., "Electronic de	vices and circuits".	, <i>PHI-1989</i> .
5.	M. Morris Mano	o, Digital Logic an	nd Computer Desig	n, Prentice Hall of India, 2002.
6.	RamakantA.Gay Education, 2003		s and Linear Integr	ated Circuits, IV edition, Pearson

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1	1	1	-	1	2	-	1	1	1	2
CO2	2	2	2	2	1	1	1	-	1	2	-	2	2	1	2
CO3	2	2	2	2	1	1	1	-	1	2	-	2	2	1	2
CO4	2	2	2	2	1	1	1	-	1	2	-	2	2	1	2
CO5	2	2	2	2	1	1	1	-	1	2	-	2	2	1	2
20LPC402	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2

20LPC403	DIGITAL SIGNAL PROCESSING	L	T	P	C	
		3	0	0	3	
Objectives						
To learn discrete Fourier transform and its properties						
	characteristics of IIR and FIR filters and learn the design of infe e filters for filtering undesired signals	fini	te aı	nd fi	nite	

• To understand Finite word length effects and study the concept of Multirate and adaptive filters

UNIT I DISCRETE FOURIER TRANSFORM

9

Discrete Signals and Systems- A Review – Introduction to DFT – Properties of DFT – Circular Convolution - Filtering methods based on DFT – FFT Algorithms –Decimation in time Algorithms, Decimation in frequency Algorithms

UNIT II IIR FILTER DESIGN

9

Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation.

UNIT III FIR FILTER DESIGN

9

Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window, Bartlett Window, Blackmann Window), Frequency sampling techniques – Finite word length effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum.

UNIT IV FINITE WORDLENGTH EFFECTS

9

Fixed point and floating-point number representations – ADC –Quantization- Truncation and Rounding errors - Quantization noise – coefficient quantization error – Product quantization error - Overflow error – Roundoff noise power - limit cycle oscillations due to product round off and overflow errors – Principle of scaling

UNIT V DSP APPLICATIONS

9

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor – Adaptive Filters: Introduction, Applications of adaptive filtering to equalization.

TOTAL: 45 PERIODS

COUI	RSE OUTCOMES	Upon the course completion, the student will have the ability to				
1.	Apply DFT for the analysis of digital signals & systems					
2.	Design IIR and FIR fi	Design IIR and FIR filters				
3.	Characterize finite Wo	ord length effect on filters				
4.	Design the Multirate I	Filter				
5.	Apply Adaptive Filter	s to equalization				
TEXT	BOOKS:					
1.	John G. Proakis & I Algorithms & Applica	Dimitris G.Manolakis, "Digital Signal Processing – Principles, tions", Fourth Edition, Pearson Education / Prentice Hall, 2007.				
2.	A.V.Oppenheim, R.W Indian Reprint, Pearso	Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8th n, 2004.				
REFE	ERENCES:					
1.	Sanjit K. Mitra, "Digi McGraw Hill, 2007.	tal Signal Processing – A Computer Based Approach", Tata				
2.	Andreas Antoniou, "D	igital Signal Processing", Tata McGraw Hill, 2006.				
3.	Li Tan, Jean Jiang, "L Edition, Academic Pre	Digital Signal Processing Fundamentals and Applications", 2nd ess, 2013.				
4.	Steven W.Smith, "Digital Signal Processing: A Practical Guide for Engineers and Scientists" Demystifying Technology Series, Nownes.					
5.	A. Nagoorkani, "Digti	al Signal Processing ", Second Edition, Tata Mcgraw Hill				

20LPC404	TRANSMISSION LINES AND WAVE GUIDES	L	T	P	C
		3	0	0	3

OBJECTIVES:

- Understand the various types of transmission lines and discuss the losses association.
- Realize the impedance transformation, matching of transmission lines and to use the Smith Chart in problem solving.
- To impart the knowledge on filter theories and propagation of electromagnetic waves in waveguides.

UNIT I TRANSMISSION LINE THEORY

9

General theory of Transmission lines - the transmission line - general solution - The infinite line - Wavelength, velocity of propagation - Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in Z_0 - Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short-circuited lines - reflection factor and reflection loss.

UNIT II HIGH FREQUENCY TRANSMISSION LINES

q

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short-circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength.

UNIT III IMPEDANCE MATCHING IN HIGH FREQUENCY LINES

9

Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.

UNIT IV PASSIVE FILTERS

9

Characteristic impedance of symmetrical networks - filter fundamentals, Design of filters: Constant K - Low Pass, High Pass, Band Pass, Band Elimination, m- derived sections - low pass, high pass composite filters

VAVEGUIDES	9
١	AVEGUIDES

Waves between the parallel planes: Transverse Electromagnetic waves, Transverse Magnetic waves, Transverse Electric waves, Characteristics of TM, TE and TEM waves – Attenuation in parallel plane guides – Wave Impedance.

Rectangular waveguide: TM, TE and TEM waves, Dominant mode-cut-off frequency in waveguides – Impossibility of TEM Waves in waveguide, Characteristics of TM, TE and TEM waves – Attenuation of TE and TM modes in rectangular guides – Wave Impedance.

		TOTAL: 45 PERIODS		
COURS	E OUTCOMES	Upon the course completion, the student will have the ability.		
1.	1. To discuss the propagation of signals through transmission lines and wavegu			
2.	To analyze signal	propagation at Radio frequencies.		
3.	The knowledge of calculations.	on utilization of smith chart for line parameter and impedance		
4.	To analyze and de	sign a filter in various network.		
5.	To explain the rad of wave guides.	to propagation in guided systems and to evaluate the characteristics		
TEXT B	BOOKS:			
1.	John D Ryder, "N	Tetworks, lines and fields", 2nd Edition, Prentice Hall India, 2010.		
2.	E.C.Jordan and I Prentice Hall of I	X.G. Balmain, "Electromagnetic Waves and Radiating Systems", ndia, 2006.		
3.	A. Sudhakar, Si Synthesis", McG	nyammohan S. Palli, "Circuits and Networks: Analysis and raw Hill Education (India) Private Limited; 5th edition, 2015.		
REFER	ENCES:			
1.	Umesh Sinha, "Tr	ansmission Lines and Networks", Satya Prakashan, 2010.		
2.		Whinnery, "Fields and Waves in Communication Electronics", Wiley and Sons, 1994.		
3.	Gottapu Sashibhu Wiley series.	sana Rao, "Electromagnetic field theory and transmission lines",		
4.	G.S.N Raju "Elec Education, First e	ctromagnetic Field Theory and Transmission Lines", Pearson dition 2005.		
5.	Philip C. Magnus	son, Gerald C. Alexander, Vijai K. Tripathi, Andreas Weisshaar, nes and Wave Propagation", CRC Press.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	-	-	-	-	1	3	2	2	2
CO2	3	3	3	3	2	2	-	-	-	-	1	3	2	2	2
CO3	3	3	3	3	3	3	-	ı	ı	-	2	3	2	2	2
CO4	3	3	3	3	3	3	-	ı	ı	-	2	3	2	2	2
CO5	3	3	3	2	3	3	-	ı	ı	-	2	3	2	2	2
20LPC404	3	3	3	3	3	3	-	-	-	-	2	3	2	2	2

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

20LPC405	ANALO	OG COMMUNI	ICATION	L	T	P	C	
				3	0	0	3	
OBJECTIV	ES:							
	croduce the concepteristics.	s of various an	alog modulations a	and th	neir	spec	ctral	
• To und	erstand the properties	of random proces	s					
• To kno	w the effect of noise	on communication	systems					
UNIT I	AMPLITUDE N	ODULATION	1				9	
Generation and detection of AM wave-spectra-DSBSC, Hilbert Transform, Pre-envelope & complex envelope - SSB and VSB –comparison -Super heterodyne Receiver.								
UNIT II	ANGLE MODU	LATION					9	
Phase and frequency modulation-Narrow Band and Wide band FM - Spectrum - FM modulation and demodulation - FM Discriminator- PLL as FM Demodulator - Transmission bandwidth.								
bandwidth.	Ī					1		
UNIT III	RANDOM PRO	CESS				9		
UNIT III Random varial Correlation& 0	RANDOM PRObles, Central limit Tovariance functions mission of a Random	heorem, Random , Power Spectral I	Process, Stationary Foensity, Ergodic Pro	rocess		Mear		
UNIT III Random varial Correlation& 0	bles, Central limit T Covariance functions	heorem, Random , Power Spectral I Process Through	Process, Stationary I Density, Ergodic Pro a LTI filter.	rocess		Mean ussia		
UNIT III Random varial Correlation& O Process, Trans UNIT IV Noise sources Narrow band	bles, Central limit T Covariance functions mission of a Random NOISE CHARA and types – Noise fig noise – PSD of in-p ise performance in F	heorem, Random, Power Spectral I Process Through a CTERIZATIO gure and noise temphase and quadrature	Process, Stationary For Density, Ergodic Proa LTI filter. N perature – Noise in care noise –Noise perf	Process cesses ascade	d sy	Meanussia ussia stem	n 9 s. М	
UNIT III Random varial Correlation& O Process, Trans UNIT IV Noise sources Narrow band systems – Noi	bles, Central limit T Covariance functions mission of a Random NOISE CHARA and types – Noise fig noise – PSD of in-p ise performance in F	heorem, Random , Power Spectral I Process Through a CTERIZATIO gure and noise temphase and quadratu M systems – Pre-	Process, Stationary For Density, Ergodic Proa LTI filter. N perature – Noise in care noise –Noise perf	Process cesses ascade	d sy	Mearussia stem n AM	n 9 s. М	
UNIT III Random varial Correlation& O Process, Trans UNIT IV Noise sources Narrow band a systems — Noi effect, threshol UNIT V Entropy - Disc	bles, Central limit T Covariance functions mission of a Random NOISE CHARA and types – Noise fig noise – PSD of in-p ise performance in F ld effect.	heorem, Random , Power Spectral I Process Through a CTERIZATIO gure and noise tem hase and quadratu M systems – Pre- N THEORY anels - Channel Cap	Process, Stationary I Density, Ergodic Pro a LTI filter. ON perature – Noise in care noise –Noise perfemphasis and de-emp	Process cesses ascade Forman	d synce i	Meanussia ussia stem n AM	9 ss. M	
UNIT III Random varial Correlation& O Process, Trans UNIT IV Noise sources Narrow band a systems — Noi effect, threshol UNIT V Entropy - Disc	bles, Central limit T Covariance functions mission of a Random NOISE CHARA and types – Noise fig noise – PSD of in-p tse performance in F ld effect. INFORMATIO rete Memoryless char	heorem, Random , Power Spectral I Process Through a CTERIZATIO gure and noise tem hase and quadratu M systems – Pre- N THEORY anels - Channel Cap	Process, Stationary I Density, Ergodic Pro a LTI filter. ON perature – Noise in care noise –Noise perfemphasis and de-emp	Process cesses ascade forman bhasis	d syde ace i - C	Meanussia ussia stem n AM	9 ss. M	
UNIT III Random varial Correlation& O Process, Trans UNIT IV Noise sources Narrow band systems — Noi effect, threshol UNIT V Entropy - Disc coding theorem	bles, Central limit T Covariance functions mission of a Random NOISE CHARA and types – Noise fig noise – PSD of in-p tse performance in F ld effect. INFORMATIO rete Memoryless char	heorem, Random , Power Spectral I Process Through a CTERIZATIC gure and noise tem hase and quadratu M systems – Pre-c N THEORY nnels - Channel Cap non - Fano codes.	Process, Stationary In Density, Ergodic Process and LTI filter. ON Perature — Noise in care noise —Noise perfemphasis and de-emphasis and de	Process cesses ascade formar phasis	d synce i - C	Meanussian stem	99 ss. Mare 99 eee	

2.	Design Angle modulated communication systems								
3.	Apply the concepts of Random Process to the design of Communication systems								
4.	Analyse the noise performance of AM and FM systems								
5.	Explain different source coding methods								
TEXT	BOOKS:								
1.	S. Haykin, "Communication Systems", 4 th edition, John Wiley, 2005.								
2.	Kennedy G., Bernard Davis "Electronic Communication Systems", McGraw Hill 3rd Edition reprint,2008.								
3.	B.P.Lathi, "Modern Digital and Analog Communication Systems", 3rd Edition,Oxford University Press 2007.								
REFE	CRENCES:								
1.	Taub and Schilling.,"Principles of Communication Systems", 2nd edition Mcgraw Hill, 1994.								
2.	J.G.Proakis, M.Salehi, "Fundamentals of Communication Systems", Pearson Education 2006.								
3.	Couch.L., "Modern Communication Systems", Pearson, 2001.								
4.	Roddy and Coolen.," Electronic Communication ", 4th Edition PHI,2007.								
5.	H P Hsu, Schaum Outline Series - "Analog and Digital Communications" TMH 2006.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	2	-	-	1	1	-	-	3	3	3	1	3
CO2	1	3	3	2	3	-	-	-	-	3	3	3	3	1	1
CO3	3	1	1	2	3	-	-	-	-	3	3	3	3	3	1
CO4	3	3	3	2	3	-	1	ı	1	3	3	3	2	3	3
CO5	2	2	1	3	1	-	1	ı	1	1	-	3	3	1	3
20LPC405	3	2	3	2	3	-	-	-	-	3	3	3	3	3	3

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

20LPC406	DIGITAL ELCTRONICS	L	T	P	C
		3	0	0	3

OBJECTIVES:

- To understand the basic postulates of Boolean algebra, methods for simplifying Boolean expressions and shows the correlation between Boolean expressions.
- To analysis and design of combinational circuits and sequential circuits.
- To instantiate basic digital circuits using Verilog HDL

UNIT I DIGITAL FUNDAMENTALS

9

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1=s and 2=s complements, Codes –Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization and Quine- McCluskey method of minimization.

UNIT II | COMBINATIONAL CIRCUITS

9

Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder / Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer / Demultiplexer – decoder - encoder – parity checker – parity generators – code converters - Magnitude Comparator.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

9

Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF, Analysis and design of clocked sequential circuits – Design - Moore/Mealy models, state minimization, state assignment, circuit implementation – Design of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND 9 DIGITAL INTEGRATED CIRCUITS

Stable and Unstable states, output specifications, cycles and races, state reduction, race free assignments, Hazards, Essential Hazards, Pulse mode sequential circuits, Design of Hazard free circuits.

Digital integrated circuits: Logic levels, propagation delay, power dissipation, fan-out and fan in, Noise margin, logic families and their characteristics-RTL, TTL, ECL, CMOS

UNIT V MEMORY DEVICES AND VERILOG INTRODUCTION 9

Basic memory structure – ROM – PROM – EPROM – EEPROM – EAPROM, RAM – Static and dynamic RAM – Programmable Logic Devices – Programmable Logic Array (PLA) – Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA)-Verilog HDL: fundamentals, full adder, D flip flop and ALU design using Verilog HDL

TOTAL: 45 PERIODS

COUR	RSE COMES:	Upon the course completion, the student will have the ability to					
1.	Analyse different m	ethods used for simplification of Boolean expressions.					
2.	Design and impleme	ent of Combinational circuits.					
3.	Design and impleme	ent of Sequential circuits.					
4.	Understand the men	nory architecture					
5.	Understand and inst	antiate basic digital circuits using Verilog					
TEXT	BOOKS:						
1.	M. Morris Mano, "I 2008.	Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd.,					
2.	Charles H.Roth. "Fu 2013.	ndamentals of Logic Design", 6th Edition, Thomson Learning,					
3.	Samir Palnitkar." Ve Edition, Prentice Hal	erilog HDL: A Guide to Digital Design and Synthesis" 2nd 1,2003.					
REFE	RENCES:						
1.	John F. Wakerly, "Di	gital Design", Fourth Edition, Pearson / PHI, 2008					
2.	John.M Yarbrough, 2006	"Digital Logic Applications and Design", Thomson Learning,					
3.	Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.						
4.	Jayaram Bhasker, "A	4 Verilog HDL primer", Star Galaxy Press ,2018.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	3	-	1	-	1	3	3	3	3	3	3
CO2	2	2	3	2	3	-	1	-	1	3	3	3	3	3	3
CO3	2	2	3	2	3	-	1	-	1	3	3	3	3	3	3
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
20LPC406	1	2	3	2	2	1	1	-	1	3	3	3	3	3	3

20LPC408	ELECTRONIC CIRCUITS - II LABAROTORY	L	T	P	С
		0	0	2	1

Objectives:

- To design and construct practical oscillators and tuned amplifier circuits.
- To design and construct different multivibrator circuits
- To construct various application oriented electronic circuits using operational amplifiers

LIST OF EXPERIMENTS

Design, Simulation & implementation as follows

USING DISCRETE COMPONENTS

- 1. RC phase shift and colpitt's Oscillators
- 2. Class C Single Tuned Amplifier
- 3. Collector Coupled Astable Multivibrator
- 4. Collector Coupled Monostable Multivibrator
- 5. Fixed Bias Bistable Multivibrator

USING OP-AMP

- 1. Inverting and Non-Inverting Amplifiers and Voltage follower
- 2. Adder, Subtractor, Difference amplifier, Integrator, Differentiator
- 3. Instrumentation Amplifier
- 4. Active 2nd Order Butterworth Filters
- 5. Multivibrators and Schmitt Trigger using Op-Amp
- 6. Multivibrators using 555 timers.

			TOTAL:30 PERIODS
COURS	E OUTCOMES:		
1.	Construct and troubleshoot oscillator test equipment.	or circuits i	in the laboratory with proper use of
2.	Carry out the performance evaluation	ons of diffe	erent multivibrator circuits.
3.	Understand linear and nonlinear app	olications o	of OP-AMPS.
4.	Understand the characteristics of Ins	strumentati	ion Amplifier.
5.	Design and construct application ori	ented elec	tronic circuits using OP-AMPS.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	-	2	2	-	2	2	2	2
CO2	2	2	2	2	2	2	2	-	2	2	-	2	2	2	2
соз	2	2	2	2	2	2	2	-	2	2	-	2	2	2	2
CO4	3	2	2	2	2	2	2	-	2	2	-	2	2	2	2
CO5	3	2	2	2	2	2	2	-	2	2	-	2	2	2	2
20LPC408	3	2	2	2	2	2	2	-	2	2	-	2	2	2	2

20LPC409	DIGITAL ELCTRONICS LABORATORY	L	T	P	C
		0	0	2	1

OBJECTIVES:

- To understand the Minimization of Boolean Expressions and Logic Gates.
- To familiarize with the design of various combinational digital circuits.
- To familiarize with the design of various sequential digital circuits.
- 1. Design and implementation of code converters using logic gates
 - (i) BCD to excess-3 code and vice versa
- (ii) Binary to gray and vice-versa
- 2. Design and implementation of 4-bit binary Adder / Subtractor and BCD adder using IC7483.
- 3. Design and implementation of Multiplexer and De-multiplexer using logic gates.
- 4. Design and Implementation of encoder and decoder using logic gates.
- 5. Design and Implementation of Parity Generator and Parity checker.
- 6. Construction and verification of 4-bit ripple counter and Mod-10 / Mod-12 Ripple counters.
- 7. Design and implementation of 3-bit synchronous up/down counter.
- 8. Implementation of SISO, SIPO, PISO and PIPO shift registers using Flip- flops.
- 9. Implementation of full adder and full subtractor using Verilog HDL.
- 10. Implementation of flip flop using Verilog HDL.

			TOTAL: 30 PERIODS				
COURS	SE OUTCOMES:	Upon the course completion, the student will have the ability to					
1.	Design and Testing of	code convertors and Adder / Sub	tractor.				
2.	Design and Testing of	encoder / decoder and parity gene	erator / checker				
3.	Design and Testing of	Multiplexer / Demultiplexer.					
4.	Design and Testing of	counters					
5.	Design and Testing of	shift registers.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3
CO2	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3
CO3	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3
CO4	2	2	2	2	3	-	1	-	1	-	3	3	3	3	3
CO5	2	2	2	2	3	-	1	-	1	-	3	3	3	3	3
20LPC409	3	3	3	2	3	-	1	ı	1	ı	3	3	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPC	410	DIGIT	AL SIGNAL PRO LABORATORY		L	T	P	C
					0	0	2	1
OBJE	CTIVE	S						
• T	o implei	ment Linear and (Circular Convolution					
• T	o impler	nent FIR and IIR	filter					
• T	o demor	nstrate finite word	l length effects					
LIST PACK		XPERIMENT	CS: MATLAB /	EQUIVALENT	SO	FTV	WA]	RI
1.Genera	ation of s	equences (function	onal & random) & corre	lation				
2.Linear	and Circ	cular Convolution	as .					
3.Spectr	um Anal	ysis using DFT						
4.FIR fil	ter desig	n						
5.IIR filt	ter design	1						
6.Multir	ate Filter	S						
7.Equali	zation							
DSP P	ROCE	SSOR BASEI) IMPLEMENTAT	CION				
8.Study	of archite	ecture of Digital S	Signal Processor					
9.IIR and	d FIR Im	plementation						
10.Finite	e Word L	ength Effect						
			,	TOTAL: 30 PER	IOD	S		
COUR	SE OU	TCOMES	Upon the course comp to	letion, the student w	ill hav	e th	e abi	lit
1.	carry out	simulation of D	SP systems					
2.	Analyse	Finite word lengt	h effect on DSP system	as .				
3.	Demonst	trate the applicati	ons of FFT to DSP					
4. 1	Demonst systems	trate their abilitie	s towards DSP processo	or-based implementar	tion o	f DS	P	

Implement adaptive filters for various applications of DSP

5.

LAB EQUIPMENTFORA BATCH OF 30 STUDENTS (2 STUDENTS PER SYSTEM)

PCs with Fixed / Floating point DSP Processors (Kit / Add-on Cards) 15 Units

LIST OF SOFTWARE REQUIRED: MATLAB with Simulink and Signal Processing Tool Box or Equivalent Software in desktop systems -15 Nos

Signal Generators (1MHz) –15 Nos

CRO (20MHz) -15 Nos

COURSE ARTICULATION MATRIX

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	1	-	2	-	1	-	-	2	2	3	2
CO2	2	2	-	2	1	-	2	-	1	-	-	2	2	2	2
CO3	2	2	1	2	1	-	1	1	1	1	-	2	2	2	2
CO4	2	2	ı	2	2	-	1	ı	1	1	-	2	2	2	2
CO5	2	2	1	2	2	-	1	1	1	-	-	2	2	1	2
20LPC410	2	2	ı	2	1	-	1	ı	1	ı	-	2	2	2	2

1-Low 2—Moderate (Medium) 3-High

FIFTH SEMESTER

20LES501	BASIC CONTROL SYSTEMS ENGINEERING	L	T	P	C
		3	0	0	3
OBJECTIV	ES:				

- To model electrical and non-electrical system, and determine transfer function for stability analysis
- To analyze the stability of the system in time domain and design compensators.
- To analyze the stability of the system in frequency domain and design compensators.
- To design a compensator to the system.
- To model a system in a state space and analyze response.

UNIT I INTRODUCTION 9

Transfer Function of Electrical systems - Mathematical modelling of Non-electrical System: mechanical, thermal, and hydraulic systems - Electrical Analogy of mechanical system - Block diagram reduction technique - Signal flow graph analysis

UNIT II TIME DOMAIN ANALYSIS

9

Time response of First and second-order systems – Time domain Specifications - Steady-state errors and error constants – PID controllers – Stability analysis in time domain - Routh stability criterion – Root Locus Method.

UNIT III FREQUENCY DOMAIN ANALYSIS 9

Correlation between time & frequency response – Frequency domain specifications – Bode Plot and Polar plots – M and N Circles – Stability in frequency domain – Nyquist plot – Nyquist stability criterion.

UNIT IV COMPENSATOR DESIGN 9

Introduction to compensators—Lead, Lag and Lead—Lag compensators—Design of lead, lag and lead—lag compensators using root locus—Design of lead, lag and lead—lag compensators using bode plot.

UNIT V STATE SPACE ANALYSIS 9

Concepts of State space analysis – State models for linear continuous time functions – Diagonalization of transfer function – State equations and solution – controllability & observability – State space representation for Discrete time systems.

		TOTAL: 45 PERIODS
COURS	SE OUTCOMES	Upon completion the course, the students will have the ability to
1.	Simplify the large compeled Electrical system.	onent system into single block for Electrical and non-
2.	Design the controllers for stability in time domain.	or compensating steady state errors and improve their
3.	Design the controllers for	improving their stability in frequency domain.
4.	Design different types of	compensators.
5.	Design state controller an	nd observer in state space model.
TEXT B	BOOKS:	
1.	J.Nagrath and M.Gopal," Publishers, 5th Edition, 2	Control System Engineering", New Age International 007.
2.	M.Gopal, "Control Syste Edition, 2002.	em – Principles and Design", Tata McGraw Hill, 2nd
REFER	ENCES:	
1.	Ogata, K., "Modern Con	trol Engineering", Prentice Hall, second edition, 1991.
2.	Benjamin.C.Kuo, "Auton Edition, 1995.	natic control systems", Prentice Hall of India, 7th
3.	M.Gopal, Digital Control	l and State Variable Methods, 2nd Edition, TMH, 2007.
4.	Schaum's Outline Series, 2007.	'Feedback and Control Systems' Tata McGraw-Hill,
5.	Richard C. Dorf & Rober Wesley, 1999.	rt H. Bishop, "Modern Control Systems", Addidon –

20LPC502	DIGITAL COMMUNICATION	L	T	P	C					
		3	0	0	3					
OBJECTIV	ES:									
• To une	derstand the building blocks of digital communication	n sys	tem	•						
• To pre	pare mathematical background for communication si	gnal	ana	lysis	S.					
• To un system	derstand and analyze the signal flow in a digital n.	com	mun	icat	ion					
UNIT I	SAMPLING & QUANTIZATION				9					
_	npling – Aliasing- Signal Reconstruction-Quantization - quantization noise - Logarithmic Companding of speech sign exers.									
UNIT II	WAVEFORM CODING				9					
Prediction filte Predictive Cod	ering and DPCM - Delta Modulation - ADPCM & ADMing.	princ	ciple	s-Lir	near					
UNIT III	BASEBAND TRANSMISSION				9					
- Manchester-	ine codes- Power Spectral Density of Unipolar / Polar RZ & N ISI — Nyquist criterion for distortion less transmission — ling — M-ary schemes — Eye pattern — Equalization.		-							
UNIT IV	DIGITAL MODULATION SCHEME				9					
Geometric Representation of signals - Generation, detection, PSD & BER of Coherent BPSK, BFSK, MSK& QPSK - QAM - Carrier Synchronization - Structure of Non-coherent Receivers - Principle of DPSK.										
UNIT V	ERROR CONTROL CODING				9					
	g theorem - Linear Block codes - Hamming codes - Cyclic co codes - Viterbi Decoder.	des –	Γurb	o co	des-					

TOTAL: 45 PERIODS

COU	RSE OUTCOMES
1.	Design PCM systems
2.	Design and implement base band transmission schemes
3.	Design and implement band pass signalling schemes
4.	Analyse the spectral characteristics of band pass signalling schemes and their noise performance
5.	Design error control coding schemes
TEXT	T BOOKS:
1.	S. Haykin, "Digital Communications", John Wiley, 2005
2.	J.G Proakis, "Digital Communication", 4th Edition, Tata Mc Graw Hill Company, 2001.
3.	B. Sklar, "Digital Communication Fundamentals and Applications", 2nd Edition Pearson Education, 2009
REFE	ERENCES:
1.	B.P.Lathi, "Modern Digital and Analog Communication Systems" 3rd Edition,Oxford University Press 2007.
2.	H P Hsu, Schaum Outline Series - "Analog and Digital Communications", TMH 2006
3.	Robert G. Gallager, "Principles of Digital Communication", Cambridge.
4.	Andrew J. Viterbi, Jim K. Omura, "Principles of Digital Communication".

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	2	-	-	-	-	-	-	3	3	3	1	3
CO2	1	3	3	2	3	-	-	-	-	3	3	3	3	1	1
CO3	3	1	1	2	3	-	-	-	-	3	3	3	3	3	1
CO4	3	3	3	2	3	-	-	-	-	3	3	3	2	3	3
CO5	2	2	1	3	1	1	-	1	-	1	-	3	3	1	3
20LPC502	3	2	2	2	3	-	-	-	-	3	3	3	3	2	2

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

20LPC503	ANTENNA AND WAVE PROPAGATION	L	T	P	C
		3	0	0	3
COURSE O	BJECTIVES:				1
• Realize	a insight of the radiation phenomena				
• Unders	tand the various types of antennas radiation and its characteristic	es			
• To lear	n about the awareness of radio waves propagation at different fre	eque	ncie	S	
UNIT I	FUNDAMENTALS OF ANTENNA			9	
Band width, E	ntenna parameters – Gain, Directivity, Effective aperture, Radiation Beam width, Input Impedance. Matching – Baluns, Polarization temperature, Radiation from oscillating dipole, Half wave or ray.	ion 1	misn	natcł	1,
UNIT II	APERTURE AND SLOT ANTENNAS			9	
antenna, Aper	rectangular apertures, Uniform and Tapered aperture, Horn ante ture blockage, Feeding structures, Slot antennas, Microstri hanism – Application, Numerical tool for antenna analysis.				
UNIT III	ANTENNA ARRAYS			9	
	ear array, Pattern multiplication, Broadside and End fire array Adaptive array, Basic principle of antenna Synthesis-Binomial a			ept c	of
UNIT IV	SPECIAL ANTENNAS			9	
Modern antenni band gap struc	equency independent antennas –Spiral antenna, Helical antenna, nas- Reconfigurable antenna, Active antenna, Dielectric antenna ture and applications, Antenna Measurements-Test Ranges, Mon pattern, Polarization, VSWR.	as, I	Elec	troni	c
UNIT V	PROPAGATION OF RADIO WAVES			9	
propagation, D Sky wave prop	pagation, Structure of atmosphere, Ground wave propagation, uct propagation, Troposcatter propagation, Flat earth and Curved agation – Virtual height, critical frequency, Maximum usable freg, Multi hop propagation.	l ear	th co	ncep	ot

TOTAL: 45 PERIODS

COURS	E OUTCO	MES:	Upon the course completion, the student will have the ability to						
1.	Explain the	fundamen	tals of antenna and radiation from a current element.						
2.	Analyse the	aperture a	intennas, slot antennas.						
3.	Analyse the	antenna a	rrays.						
4.	Analyse the measurement	-	tennas such as frequency independent antennas and antenna						
5.	Explain the	various ty	pes of wave propagation.						
TEXT B	BOOKS:								
1.	John D Kra	ohn D Kraus," Antennas for all Applications", 3rd Edition, Mc Graw Hill, 2005.							
2.	Constantine Edition, 200		s, "Antenna Theory Analysis and Design", Wiley Student						
3.	R.E.Collin,	"Antenna	s and Radiowave Propagation", Mc Graw Hill 1985.						
REFER	ENCES:								
1.			Keith G.Balmain" Electromagnetic Waves and Radiating lof India, 2006						
2.	v	U	"Antenna Theory and Practice" Revised Second Edition New lishers, 2006.						
3.	S. Drabowite	ch, "Mode	rn Antennas" Second Edition, Springer Publications, 2007.						
4.	Robert S.Ell	iott "Anter	nna Theory and Design'' Wiley Student Edition, 2006.						
5.			Propagation for Telecommunication Applications", First er Publications, 2007.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2	-	-	-	-	1	1	3	1	2
CO2	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3
CO3	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3
CO4	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3
CO5	3	3	2	2	1	2	1	ı	-	-	2	3	3	3	3
20LPC503	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3

20LHS504	MANAGEMENT THEORY AND PRACTICE	L	T	P	C
		3	0	0	3
UNIT I	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS			9	9

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

9

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

9

Nature and purpose – Formal and informal organization – organization chart – organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

9

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – communication – process of communication – barrier in communication – effective communication – communication and IT.

UNIT V | CONTROLLING

9

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

COU	RSE OUTCOMES
1.	To have clear understanding of managerial skills, roles and have same basic knowledge on international aspect of management
2.	Identify environmental issues as they impact management and develop strategies to adapt to these environments.
3.	Prepare organization structure and design the job.
4.	Identify, discuss and/or describe various theories related to the development of leadership skills, motivation techniques, teamwork and effective communication.
5.	To Work effectively as a team member through group projects, case studies and problem analysis
TEXT	T BOOKS:
1.	Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.
2.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
REFI	ERENCES:
1.	Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
2.	Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
3.	Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.
4.	Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999.

20ZPC505		MICROPROCESSOR AND	L	T	P	C	
		MICROCONTROLLER					
	·		3	0	0	3	
OBJECTIVI	ES:					<u> </u>	
To unde	erstai	nd the Architecture of 8086 microprocessor					
To learn	ı the	design aspects of I/O and Memory Interfacing circuits					
To design	gn a	microcontroller-based system					
UNIT I	TH	E 8086 MICROPROCESSOR				9	
assembler direc	tives - St	6 – Microprocessor architecture – Addressing modes - Instructions – Assembly language programming – Modular Programmacks - Procedures – Macros – Interrupts and interrupt services inipulation.	ning	- Li	nkin	g	
UNIT II	808	86 SYSTEM BUS STRUCTURE			9	9	
configurations	- (oduction to Multiprogramming – System Bus Structure – No Coprocessor, closely coupled and loosely Coupled cornaced processors.		_			
UNIT III	I/O	INTERFACING			1	2	
communication Interrupt contro	inte oller	g and I/O interfacing - Parallel communication interestrace - D/A and A/D Interface - Timer - Keyboard /displace - DMA controller - Programming and applications Case s display, LCD display, Keyboard display interface and Alace	ay co tudi	ontro es: T	oller `raffi	c	
UNIT IV	MI	CROCONTROLLER			9	9	
		51 – Special Function Registers (SFRs) - I/O Pins Ports dressing modes - Assembly language programming.	and	Circ	cuits	-	
UNIT V INTERFACING MICROCONTROLLER							
Keyboard Inter	rfacinand `	Timers - Serial Port Programming - Interrupts Programming - ADC, DAC & Sensor Interfacing - External Mem Waveform generation - Comparison of Microprocessor, Messors	ory	Inte	rface) -	
		TOTAL: 45 PERI	OD	S			

COUI	RSE OUTCOMES										
1.	Understand and execute programs based on 8086 microprocessor										
2.	Design Memory Interfacing circuits										
3.	Design and interface, I/O circuits.										
4.	Understanding the 8051 microcontroller										
5.	Design Interfacing circuits for 8051 and programming.										
TEXT	Γ BOOKS:										
1.	Muhammad Ali Mazidi and Janice Gillispie Mazidi, "The 8051 – Microcontroller and Embedded systems", 7 th Edition, Pearson Education, 2004										
2.	Yu-Cheng Liu, Glenn A.Gibson, —Microcomputer Systems: The 8086 / 8088 Family - Architecture, Programming and Design®, Second Edition, Prentice Hall of India, 2007.										
3.	Doughlas V.Hall, —Microprocessors and Interfacing, Programming and Hardwarell, TMH, 2012										
REFE	ERENCES:										
1.	A.K.Ray,K.M.Bhurchandi, "Advanced Microprocessors and Peripherals" 3rd edition, TataMcGrawHill, 2012										
2.	Kenneth.J.Ayala, "8051 Microcontroller Architecture, Programming and Applications", 3rd edition, Thomson, 2007.										
3.	N. Senthil Kumar, M Saravanan & S Jeevananthan, "Microprocessors and Microcontrollers" Second Edition, Oxford University Press.										
4.	Barry B. Brey, "8086/8088 Microprocessors: Architecture, Interfacing and Programming", Longman Higher Education										

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	1	-	1	-	1	2	-	1	1	1	2
CO2	2	2	2	2	1	1	1	-	1	2	-	2	2	1	2
CO3	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
CO4	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
CO5	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
20ZPC505	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

20LPC508	ANALOG COMMUNICATION LABORATORY	L	T	P	C
		0	0	2	1

OBJECTIVES:

- To visualize the effects of sampling and TDM
- To Implement AM, FM, PCM & DM modulation and demodulation
- To simulate Digital Modulation and Error control coding schemes

LIST OF EXPERIMENTS:

Using Hardware:

- 1. Frequency division multiplexing and de-multiplexing
- 2. Amplitude modulation and demodulation: DSB, SSB
- 3. Frequency modulation and demodulation
- 4. Phase modulation and demodulation
- 5. Pre-emphasis and De-emphasis
- 6. AM Deduction with AGC
- 7. Balanced Modulator

Using MATLAB:

- 8. Amplitude modulation and demodulation
- 9. Frequency modulation and demodulation
- 10. Time division multiplexing and de-multiplexing

			TOTAL: 30 PERIODS								
COUI	RSE OUTCOMES	Upon the course completion, to	the student will have the ability								
1.	Simulate end-to-end Co	ommunication Link									
2.	Simulate & validate the various functional modules of a communication system										
3.	Generate the analog con	Generate the analog communication system waveforms using hardware									
4.		Demonstrate their knowledge in base band signalling schemes through mplementation of Digital modulation Scheme.									
5.	11 0	coding schemes & demonstrate se performance of communica	e their capabilities towards the tion system.								

LAB Requirements for a Batch of 30 students (3 students per experiment):

- i) Kits for Signal Sampling, TDM, AM, FM, PM, PCM, DM and Line Coding Schemes
- ii) CROs/DSOs 15 No's, Function Generators 15 No's
- iii) MATLAB or equivalent software package for simulation experiments
- iv) PCs 15 No's

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	-	-	-	-	2	2	3	3	3
CO2	2	2	2	2	2	2	-	-	-	-	2	2	2	2	2
CO3	2	2	2	2	2	2	-	-	-	-	1	2	2	2	2
CO4	3	2	2	2	2	2	-	-	-	-	2	2	3	3	3
CO5	3	2	2	2	2	2	-	-	-	-	2	3	3	3	3
20LPC508	3	2	2	2	2	2	-	-	-	-	2	2	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20ZPC509	MICROPROCESSOR AND MICROCONTROLLER LABORATORY	L	Т	P	C
		0	0	2	1
OBJECTIV	E:	•	•		

- To understand the working of micro controller. 1.
- 2. To understand the programming and debugging
- 3. To design simple circuits using 8051

LIST OF RECOMMENDED EXPERIMENTS

8086 Programs using kits and MASM

- 1. Basic arithmetic and Logical operations
- 2. Move a data block without overlap
- 3. Code conversion, decimal arithmetic and Matrix operations.
- 4. Interfacing of Stepper motor
- 5. Interfacing of Key board and Display

8051 Experiments using kits and MASM

- 1. Basic arithmetic and Logical operations
- 2. Counters and Timers
- 3. PWM generation
- 4. A/D and D/A interface
- 5. Interfacing of Switch and Relay

			TOTAL:30 PERIODS					
COURS	SE OUTCOMES:	Upon the course completion, the student will have the ability to						
1.	Execute Programs in 8086							
2.	Interface different I/Os with processor							
3.	Execute Programs in 8051							
4.	Interface different I/Os with control	ller						
5.	Generate waveforms using Microco	ontrollers						

20LPR	2510	PROJECT - I	L	T	P	C			
			0	0	3	1.5			
OBJEC	TIVI	ES							
		ovide opportunity to explore a problem or issue of particular p sional interest.	ersor	nal or	•				
	To address the problem or issue through focused study and applied research under the direction of a faculty member.								
	To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.								
•	To im	prove ability to think critically and creatively, to solve practic	al pro	obler	ns,				
•	To ma	ke reasoned and ethical decisions, and to communicate effect	ively	•					

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

(or)

A Minimum of 2 weeks internship in reputed organization during summer vacation

			TOTAL: 45 PERIODS									
OU'.	FCOMES:	On completion of this course, student	ts will be able to									
1	1 Identify the real time Engineering problems in their day to day life.											
2	Apply the knowledge and skills acquired in their courses to a specific problem or issue											
3	Think critically and creatively to address and help solve these professional or social issues and to further development.											
4		Refine research skills and demonstrate their proficiency in written and oral communication skills.										
5		allenges of teamwork, prepare a preser all aspects of design work.	ntation in a professional manner,									

						P	Os						PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2
Average	2.8	2.8	2.6	2.6	1.6	1.6	2.2	3	3	2.4	3	2	3	3	2
20LPR510	3	3	3	3	2	2	2	3	3	2	3	2	3	3	2

SIXTH SEMESTER

P	T	\mathbf{L}		VLSI DESIGN	01	20LPC6
0 3	0	3				
	L	I			ΓIV	OBJEC'
		OS	ne CM	ctrical properties of MOS and analyse the	Ex tec	•
			rcuits	cept of combinational and sequential ci	Pro	•
cuits	ic ci	ogi	erent	the basic of VHDL and Verilog for diff	Un	•
9				RANSISTOR PRINCIPLE		UNIT I
				stors, Process parameters for MOS and CMOS vice modelling, Scaling principles and fundarion delays, Stick diagram, Layout diagrams	circu	of CMOS
9				NATIONAL LOGIC CIRCUITS		UNIT II
gic,				onal Logic Design, Elmore's constant, Pa and dynamic CMOS design, Power dissipation	of	Examples
gic,				onal Logic Design, Elmore's constant, Pa	of ion g	Examples Transmiss
gic, sign 9 nory	ver d	gies	– Low	onal Logic Design, Elmore's constant, Pa and dynamic CMOS design, Power dissipation	of ion g I Dyna re an	Examples Transmissi principles UNIT II Static and
gic, sign 9 nory	ver d	gies	k strate	onal Logic Design, Elmore's constant, Pa and dynamic CMOS design, Power dissipation NTIAL LOGIC CIRCUITS es and Registers, Timing issues, pipelines, cloc	of ion g I Dyna re an nous	Examples Transmissiprinciples UNIT II Static and architecture
gic, sign 9 ory and	, Me	gies chro	k strate ts, Syn	onal Logic Design, Elmore's constant, Pa and dynamic CMOS design, Power dissipation NTIAL LOGIC CIRCUITS es and Registers, Timing issues, pipelines, clocar control circuits, Low power memory circuit	of ion g I Dyna re an nous	Examples Transmissiprinciples UNIT II Static and architectur Asynchror UNIT IV Data path
gic, sign 9 ory and	, Me	gies chro	k strate ts, Syn	onal Logic Design, Elmore's constant, Parand dynamic CMOS design, Power dissipation and dynamic CMOS design, Power dissipation and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits, Low power memory circuits and Registers and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits and Registers and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits and Registers and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits and Registers and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits and Registers and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits and Registers and Registers, Timing issues, pipelines, cloc control circuits, Low power memory circuits and Registers an	of ion g I Dyna re an nous circu cumu	Examples Transmissiprinciples UNIT II Static and architectur Asynchror UNIT IV Data path
gic, sign 9 erry and 9 ered 9	, Me	gies chro	k strate ts, Syn LOCK d adder ea trade	onal Logic Design, Elmore's constant, Parand dynamic CMOS design, Power dissipation INTIAL LOGIC CIRCUITS es and Registers, Timing issues, pipelines, clocal control circuits, Low power memory circuits NING ARITHMETIC BUILDING Building and Control circuits, and Control circuits, and Control circuits, and Control circuits, Low power memory circuits and Control circuits, and Control Control circuits, and Control Control circuits, and Control circuits, and Control Control circuits, and Control Contr	of ion g I Dyna re an nous circu cumu on to	Examples Transmissi principles UNIT II Static and architectur Asynchror UNIT IV Data path adders, acc UNIT V Introduction Breaks and

COUI	RSE OUTCOME	S Upon the course completion, the student will have the ability to									
1.	Explain the basic C	MOS circuits and the CMOS process technology.									
2.	Explain the basic of	f combinational and sequential circuits									
3.	Discuss the techniq	ues of chip design using programmable devices.									
4.	Describe the difference	escribe the different arithmetic building blocks									
5.	Explain different fa	ault identification methods									
TEXT	T BOOKS:										
1.	Jan Rabaey, Ar Design Perspect	nantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A ive", Second Edition, Prentice Hall of India, 2003.									
2.	J.Bhasker: Veril	og HDL primer, BS publication,2001									
3.	M.J. Smith, "Ap	oplication Specific Integrated Circuits", Addisson Wesley, 1997.									
REFE	ERENCES:										
1.	R.Jacob Baker,	Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and entice Hall of India 2005									
2.		raghian, "Principles of CMOS VLSI Design", Second Edition,									
3.		nran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice									
4.	•	John Michael,"Digital VLSI Design with Verilog", Springer.									
5.	P.K. Lala, "Dig	ital Circuit Testing and Testability", Academic Press, 2002.									
6.		nnell and Vishwani D. Agarwal, "Essentials of Electronic Testing nory & Mixed-Signal VLSI Circuits", Springer, 2006.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	1	3	3	3	1	2	2	1	1	3	2	2	2	3	2
20LPC601	1	3	3	3	1	2	2	-	-	3	2	2	2	3	2

20LPC602	RF AND MICROWAVE SYSTEMS	L	T	P	\mathbf{C}
	·	3	0	0	3
OBJECTIV	ES:		·		
•	To inculcate understanding of the basics required for circuit re RF networks.	epres	enta	tion	of
•	To instil knowledge on the properties of various microwave co	ompo	onen	ts.	
•	To deal with the microwave generation and microwave measu techniques	ireme	ent		
UNIT I	TWO PORT NETWORK THEORY			9	•
parameters, D parameters, Fo	ow frequency parameters: Impedance, Admittance, Hybric ifferent types of interconnection of Two port networks, Hirmulation of S parameters, Properties of S parameters, Reciproc smission matrix	gh I	Freq	uenc	y
UNIT II	RF AMPLIFIERS AND MATCHING NETWOR	KS		9)
VSWR, Broad	is, Stability considerations, Stabilization Methods, Noise Fig Iband, High power and Multistage Amplifiers, Impedance in	gure, natch	Co	usin	t g
VSWR, Broad discrete compo	•	gure, natch	Co	nstan usin	t g
VSWR, Broad discrete compo	band, High power and Multistage Amplifiers, Impedance monents, Two component matching Networks, Frequency response	gure, natch nse ar	Co	nstan usin	t g
VSWR, Broad discrete composition factor, T and P UNIT III Terminations, dividers, Circu wave transform	band, High power and Multistage Amplifiers, Impedance monents, Two component matching Networks, Frequency responsis Matching Networks	gure, natch nse an ES nction ub an	Coning and quantity of the control o	usin ualit	t g y r r
VSWR, Broad discrete composition factor, T and P UNIT III Terminations, dividers, Circu wave transform	band, High power and Multistage Amplifiers, Impedance monents, Two component matching Networks, Frequency responsis Matching Networks PASSIVE AND ACTIVE MICROWAVE DEVICE Attenuators, Phase shifters, Directional couplers, Hybrid Jurillator, Isolator, Impedance matching devices: Tuning screw, Strucers. Crystal and Schottky diode detector and mixers, PIN diode	gure, natch nse an ES nction ub an	Coning and quantity of the control o	usin ualit 9 Powe uarte	t g y r r
VSWR, Broad discrete composition factor, T and P UNIT III Terminations, dividers, Circu wave transform diode oscillato UNIT IV High frequenc Amplifier, Ref	band, High power and Multistage Amplifiers, Impedance monents, Two component matching Networks, Frequency responsis Matching Networks PASSIVE AND ACTIVE MICROWAVE DEVICE Attenuators, Phase shifters, Directional couplers, Hybrid Jurdator, Isolator, Impedance matching devices: Tuning screw, Streers. Crystal and Schottky diode detector and mixers, PIN dioder, IMPATT diode oscillator and amplifier MICROWAVE GENERATION y effects in vacuum Tubes, Theory and application of Two collex Klystron oscillator, traveling wave tube amplifier, Magnetal, Linear, Coaxial Voltage tunable Magnetrons, Backward	ES nction ub an e swity	Conting ond quantity of the continuous of the co	ystroi	r r r n
VSWR, Broad discrete composition factor, T and P UNIT III Terminations, dividers, Circular wave transform diode oscillato UNIT IV High frequency Amplifier, Refusing Cylindri	band, High power and Multistage Amplifiers, Impedance monents, Two component matching Networks, Frequency responsis Matching Networks PASSIVE AND ACTIVE MICROWAVE DEVICE Attenuators, Phase shifters, Directional couplers, Hybrid Jurdator, Isolator, Impedance matching devices: Tuning screw, Streers. Crystal and Schottky diode detector and mixers, PIN dioder, IMPATT diode oscillator and amplifier MICROWAVE GENERATION y effects in vacuum Tubes, Theory and application of Two collex Klystron oscillator, traveling wave tube amplifier, Magnetal, Linear, Coaxial Voltage tunable Magnetrons, Backward	ES nction ub an e swity	Conting ond quantity of the continuous of the co	ystroiillato	r r r n
VSWR, Broad discrete composition factor, T and P UNIT III Terminations, dividers, Circular wave transform diode oscillato UNIT IV High frequency Amplifier, Reflusing Cylindrifield amplifier UNIT V Measuring Inst Spectrum analysis	Iband, High power and Multistage Amplifiers, Impedance monents, Two component matching Networks, Frequency responsis Matching Networks PASSIVE AND ACTIVE MICROWAVE DEVICE Attenuators, Phase shifters, Directional couplers, Hybrid Juraliator, Isolator, Impedance matching devices: Tuning screw, Strucers. Crystal and Schottky diode detector and mixers, PIN dioder, IMPATT diode oscillator and amplifier MICROWAVE GENERATION y effects in vacuum Tubes, Theory and application of Two collex Klystron oscillator, traveling wave tube amplifier, Magnetical, Linear, Coaxial Voltage tunable Magnetrons, Backward and oscillator.	ES nction ub an e swity etron wave	Conting ond quantity of Kly osc e Cr	ystroiillatorosse	r r r n d

COUI	RSE OUTCOM	ES	Upon the course completion, the student will have the ability to								
1.	Discuss about the	two port	t networks and scattering parameters.								
2.	Analyse the mult	Analyse the multi- port RF networks and RF transistor amplifiers.									
3.		Explain the active & passive microwave devices & components used in Microwave communication systems.									
4.	Generate Microw	ave signa	als and design microwave amplifiers.								
5.	Measure and ana	lyse Micr	rowave signal and parameters.								
TEXT	BOOKS:										
1.	Samuel Y Lia	o, "Micro	owave Devices & Circuits", Prentice Hall of India, 2006.								
2.	Reinhold.Lud Inc.,2006	wig and	Pavel Bretshko 'RF Circuit Design", Pearson Education,								
3.	Annapurna D Publishing Co	as and Si mpany L	sir K Das, "Microwave Engineering", Tata Mc Graw Hill td, New Delhi, 2005.								
REFE	ERENCES:										
1.	David M. Poz 2008.	ar, "Mici	rowave Engineering", Wiley India (P) Ltd, New Delhi,								
2.	Robert E Coli Inc, 2005	n, "Found	dations for Microwave Engineering", John Wiley & Sons								
3.		ıdmanesh	, "RF and Microwave Electronics", Prentice Hall, 2000.								
4.			r Microwave Engineering: A Practical Guide to Theory, cuits", Cambridge University Press, 2004.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	_	-		-			-	3	3	3	1
CO2	3	3	2	2	-	-	-	-	-	-	-	2	2	2	2
CO3	3	2	2	1	-	-	-	-	-	-	-	3	3	3	1
CO4	3	2	3	2	-	-	-	-	-	-	-	2	3	3	1
CO5	3	3	2	2	-	-	-	-	-	-	-	2	2	2	2
20LPC602	3	2	2	2	-	-	-	-	-	_	-	2	3	3	1

1-Low 2-Moderate (Medium) 3-High

20LPC603	COMMUNICATION NETWORKS	L	T	P	C						
		3	0	0	3						
OBJECTIV	ES:										
•	Understand the division of network functionalities into layers										
•	Be familiar with the components required to build different type	oes o	of ne	twor	ks						
•	Be exposed to the required functionality at each layer										
UNIT I	FUNDAMENTALS & LINK LAYER			9	9						
of Internet - Pro	ata Communications- Networks – Building Network and its typotocol Layering - OSI Mode – Physical Layer – Overview of Data Link Layer - Link layer Addressing- Error Detection and	ıta aı	nd S	ignal							
UNIT II MEDIA ACCESS & INTERNETWORKING											
Network layer ICMP, Mobile		prote	ocol	<u> </u>	,						
UNIT III	ROUTING			9							
_	ast Routing – Algorithms – Protocols – Multicast Routing ar ntradomain and interdomain protocols – Overview of IPv6 IPv4 to IPv6.										
UNIT IV	TRANSPORT LAYER			9	9						
Introduction to Transport layer –Protocols- User Datagram Protocols (UDP) and Transmission Control Protocols (TCP) –Services – Features – TCP Connection – State Transition Diagram – Flow, Error and Congestion Control - Congestion avoidance (DECbit RED) – QoS – Application requirements.											
UNIT V	APPLICATION LAYER			9	9						
DNSElectro	yer Paradigms – Client Server Programming – World Wide Wenic Mail (SMTP, POP3, IMAP, MIME) – Introduction to ed for Cryptography and Network Security – Firewalls.										
	TOTAL: 45 PERI	ΩD	S								

COUI	RSE OUTCO	MES	Upon the course completion, the student will have the ability to							
1.	Discuss about	the two po	ort networks and scattering parameters.							
2.	Analyse the mu	ılti- port F	RF networks and RF transistor amplifiers.							
3.	-	Explain the active & passive microwave devices & components used in Microwave communication systems.								
4.	Generate Micro	owave sign	nals and design microwave amplifiers.							
5.	Measure and an	nalyse Mi	crowave signal and parameters.							
TEXT	BOOKS:									
1.			uce S. Davie, —Computer Networks: A Systems Approach, Kaufmann Publishers, 2011							
2.	Behrouz A. McGraw –		, —Data communication and Networking®, Fifth Edition, Tata							
REFE	ERENCES:									
1.			ith W. Ross, —Computer Networking - A Top-Down the Internet, Seventh Edition, Pearson Education, 2016.							
2.			mputer and Communication Networks , Pearson Prentice Edition, 2014							
3.	_		ung Hwang, Fred Baker, —Computer Networks: An Open Co Graw Hill Publisher, 2011.							

20LPC608	VLSI LABORATORY	L	T	P	C
		0	0	2	1
OBJECTIV	ES:				

- To learn Hardware Descriptive Language (Verilog/VHDL)
- To learn the fundamental principles of VLSI circuit design in digital and analog domain
- To provide hands on design experience with professional design (EDA) platforms.

LIST OF EXPERIMENTS

FPGA BASED EXPERIMENTS.

- 1. HDL based design entry and simulation of simple counters, state machines, adders (min 8 bit) and multipliers (4-bit min).
- 2. Synthesis, P&R and post P&R simulation of the components simulated in (I) above. Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.
- 3. Hardware fusing and testing of each of the blocks simulated in (I). Use of either chip scope feature (Xilinx) or the signal tap feature (Altera) is a must. Invoke the PLL and demonstrate the use of the PLL module for clock generation in FPGAs.

IC DESIGN EXPERIMENTS: (BASED ON CADENCE / MENTOR GRAPHICS / EQUIVALENT)

- 4. Design and simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR, and CMRR
- 5. Layout generation, parasitic extraction and resimulation of the circuit designed in (I)
- 6. Synthesis and Standard cell-based design of a circuits simulated in 1(I) above. Identification of critical paths, power consumption.
- 7. For expt (c) above, P&R, power and clock routing, and post P&R simulation.
- 8. Analysis of results of static timing analysis.

			TOTAL: 30 PERIODS
COUI	RSE OUTCOMES	Upon the course conto	npletion, the student will have the ability
1.	Write HDL code for bas	sic as well as advanced	l digital integrated circuits.
2.	Import the logic module	es into FPGA Boards.	

3.	Synthesize Place and Route the digital IPs.
4.	Fuse the logical modules on FPGAs
5.	Design, Simulate and Extract the layouts of Analog IC Blocks using EDA tools.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	3	_	-	_	2	-	-	2	3	2	1
CO2	2	2	2	1	3	_	_	_	2	_	_	2	2	3	2
CO3	2	2	1	1	3	_	-	_	2	_	_	2	3	2	2
CO4	3	2	2	1	3	_	_	_	2	_	_	2	2	3	1
CO5	3	2	2	1	3	_	_	_	2	_	_	2	2	3	1
20LPC608	3	2	2	1	3	ı	_	1	2	1	1	2	2	3	1

1-Low 2—Moderate (Medium) 3-High

20LPC609	DIGITAL COMMUNICATION AND NETWORKS LABORATORY	L	T	P	С
		0	0	2	1

OBJECTIVES:

- To demonstrate different digital communication techniques.
- To analyze different topologies
- To demonstrate and explain different routing techniques.

LIST OF EXPERIMENTS

DIGITAL COMMUNICATION:

- 1. Pulse Code Modulation and Demodulation
- 2. Line Coding
- 3. PAM, PPM, PWM
- 4. Delta Modulation and Demodulation
- 5. ASK, FSK and PSK
- 6. Sampling and Time Division Multiplexing
- 7. QPSK Modulation and Demodulation

NETWORKING:

- 1. Network Topology Star, Bus and Ring
- 2. Implementation of Link State Routing.
- 3. Implementation of Distance Vector Routing.
- 4. Study of Network Simulator (NS) and simulation of congestion control algorithm using NS.

		TOTAL: 30 PERIODS				
COURSE OUTCOMES		Upon completion of the course, the students will have the ability to				
1.	Demonstrate their knowledge in base band signaling schemes through implementation of ASK, FSK, PSK					
2.	Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of communication system					
3.	Implement different topologies.					
4.	Implement different routing protocols using simulator					
5.	Perform communicate between two desktop computers.					

SEVENTH SEMESTER

20ZHS701			PROFESSIONAL ETHICS			P	C
				3	0	0	3
OBJECT	rive	S:				I.	<u>4</u>
• T	o enabl	e the	students to create an awareness on Engineering Ethics				
• T	o study	the e	engineering as social experimentation				
• T	o impa	rt kno	owledge on engineer's responsibility for safety				
• T	o impa	rt kno	owledge on engineer's responsibility and rights				
• T	o study	the g	global issues on business				
UNIT I		EN	GINEERING ETHICS			9	•
Moral A	utonor	ny–K	g Ethics'-Variety of moral issues-Types of inquiry-Mohlberg's theory-Gilligan's theory-Consensus and ssionalism-Professional Ideals and Virtues-Uses of Ethical	C	ontro	over	
UNIT II	F	ENG	INEERING AS SOCIAL EXPERIMENTATION	ON		9	•
Codes of E	Ethics—	Indus	imentation–Engineers as responsible Experimenters–Re trial Standards- A Balanced Outlook on Law–The Challer	nger		Stu	dy.
UNIT III ENG		EN	GINEER'S RESPONSIBILITY FOR SAFETY			9	
•			essment of Safety and Risk–Risk Benefit Analysis–Red r's Approach to Risk- Chernobyl Case Studies and Bhopa		g Ri	sk–7	Γhe
UNIT IV			SPONSIBILITIES AND RIGHTS				•
Conflicts	of Inte	l Lo	yalty–Respect for Authority–Collective Bargaining–Cocupational Crime–Professional Rights–Employee Rig-Discrimination.			tiali	ty–
UNIT V		GL	OBAL ISSUES			Ģ	•
Technolog	gical [-Engin	Devel	tions— Business Ethics-Environmental Ethics—Compute opment— Weapons Development—Engineers as Mana as Expert Witnesses and Advisors—Honesty—Moral Lea	gers-	-Cor	ısult	ing
		I	TOTAL: 45 PERI				
OUTCO	MES	•	Upon the course completion, the student will have the abi	lity t	0		
•	Apply	the o	ethical theories in engineering environment.				
•	Analy	se th	e risks and improve their responsibility for safety.				
	<u> </u>						

•	Utilize their rights and improve responsibilities.
•	Utilize their rights and improve rights.
•	Propose remedies for global issues.
TEXT	BOOKS:
1.	Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York(2005).
2.	Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics—Concepts and Cases", Thompson Learning, (2000).
3.	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003)
REFER	RENCES:
1.	Charles D Fleddermann, "Engineering Ethics", Prentice Hall, NewMexico,1999.
2.	John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003.
3.	Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
4.	Prof. (Col) P S Bajaj and Dr.Raj Agrawal, "Business Ethics—An Indian Perspective", Biztantra, NewDelhi, 2004.
5.	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003.

20LPC702	FIBER OPTIC COMMUNICATION	L	T	P	C
		3	0	0	3

OBJECTIVES:

- To understand optical fibers and signal transmission properties of optical fibers.
- To familiarize with optical sources and detectors
- To introduce optical networks and networking components.

UNIT I INTRODUCTION TO OPTICAL FIBERS

9

Evolution of fiber optic system- Element of an Optical Fiber Transmission link-- Total internal reflection-Acceptance angle –Numerical aperture – Skew rays Ray Optics-Optical Fiber Modes and Configurations -Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes -Single Mode Fibers-Graded Index fiber structure

UNIT II SIGNAL DEGRADATION OPTICAL FIBERS

9

Attenuation - Absorption losses, scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave Guides-Information Capacity determination - Group Delay-Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling -Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT III FIBER OPTIC SOURCES AND COUPLING

9

9

Direct and indirect Band gap materials-LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition -Rate equations -External Quantum efficiency -Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing.

UNIT IV FIBER OPTIC RECEIVER AND MEASUREMENTS

Detectors- Detector response time, Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration-Signal to noise ratio—Probability of Error – Quantum limit, Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.

UNIT V OPTICAL NETWORKS AND SYSTEM TRANSMISSION 9

Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –Wavelength Routed Networks – Nonlinear effects on Network performance –-Link Power budget -Rise time budget- Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA system – Solutions – Optical CDMA – Ultra High Capacity Networks.

Capacit	y Networks.		
			TOTAL: 45 PERIODS
COUR	RSE OUTCOM	ES Upon the ability to	e course completion, the student will have the
1.	Describe the wo	rking of transmis	sion through optical fiber.
2.	Explain differen	t properties of op	otical fiber links.
3.	Explain the world	king of different	optical sources and detectors.
4.	Define the operatechniques.	tion of optical re	ceiver and compare different measurement
5.	Discuss about no	etworking of syst	ems using optical fiber links.
TEXT	BOOKS:		
1.	Gerd Keiser, " Edition., 2010	Optical Fiber Co	mmunication" Mc Graw -Hill International, 4th
2.	John M. Senio Education, 200	r, "Optical Fiber)7.	Communication", Second Edition, Pearson
3.	J.Gower, "Opt	ical Communicat	ion System", Prentice Hall of India, 2001.
REFE	RENCES:		
1.	Ramaswami, S 2009.	Sivarajan and Sa	saki "Optical Networks", Morgan Kaufmann,
2.			tion, Principles and Practice", Prentice Hall of
3.		awal, "Fiber-opt	tic communication systems", John Wiley & Sons,
4.		M. Jamal Deen, ons", John Wiley	"Fiber Optic Communications: Fundamentals & Sons, 2013.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO2	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO3	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO4	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO5	3	1	2	1	-	-	-	-	-	-	-	2	3	1	2
20LPC702	3	1	2	1	ı	-	ı	-	ı	ı	-	2	2	1	2

1-Low 2—Moderate (Medium) 3-High

	03	WIRELESS COMMUNICATION	L	T	P	C
		<u></u>	3	0	0	3
OBJECT	IVE!	S:				
-	•	se the students to understand mobile radio communication pri e recent trends adopted in cellular systems and wireless standa	-		and to)
algo • To	orithn appre	rstand the various terminology, principles, devices, schemes, ms and different methodologies used in Wireless Communicated the contribution of Wireless Communication networks agical growth	tion	Net	work	S.
UNIT I	V	VIRELESS CHANNELS			9	•
parameters- Multipath ti	Cohei me de	scale fading- Parameters of mobile multipath channels – Ti rence bandwidth – Doppler spread & Coherence time, Felay spread – flat fading – frequency selective fading – Fading ong – slow fading.	Fadiı	ng d	lue t	o
UNIT II	C	CELLULAR ARCHITECTURE			9	9
concept- Fro	equen	techniques - FDMA, TDMA, CDMA - Capacity calcular new reuse - channel assignment- hand off- interference & system of service - Coverage and capacity improvement.				
		NOTAL CIONALING FOR EARING CHANNE	TC		9	
UNIT III	l D	DIGITAL SIGNALING FOR FADING CHANNE	LS			
Structure of Minimum S	f a v	wireless communication link, Principles of Offset-QPSK, Keying, Gaussian Minimum Shift Keying, Error performa principle – Cyclic prefix	, p/2		_	
Structure o Minimum S channels, O	f a v Shift I	wireless communication link, Principles of Offset-QPSK, Keying, Gaussian Minimum Shift Keying, Error performa	, p/2		fadin	
Structure of Minimum Structure of Minimum Structure Structure of Minimum	f a v Shift FDM M 1 – Ac ithms	wireless communication link, Principles of Offset-QPSK, Keying, Gaussian Minimum Shift Keying, Error performa principle – Cyclic prefix	, p/2 ance	in 1	fadin	g 9 d
Structure o Minimum S channels, O UNIT IV Equalisation LMS Algor Error probal	f a v Shift FDM N A - Ac Sithms Soility	wireless communication link, Principles of Offset-QPSK, Keying, Gaussian Minimum Shift Keying, Error performation principle – Cyclic prefix MULTIPATH MITIGATION TECHNIQUES daptive equalization, Linear and Non-Linear equalization, Zec. Diversity – Micro and Macrodiversity, Diversity combining	, p/2 ance	in 1	fadin ng an iques	g 9 d
Minimum Schannels, Ochannels, Och	f a version of a v	wireless communication link, Principles of Offset-QPSK, Keying, Gaussian Minimum Shift Keying, Error performate principle – Cyclic prefix MULTIPATH MITIGATION TECHNIQUES daptive equalization, Linear and Non-Linear equalization, Zeta. Diversity – Micro and Macrodiversity, Diversity combining in fading channels with diversity reception, Rake receiver MULTIPLE ANTENNA TECHNIQUES – spatial multiplexing -System model -Pre-coding - Beausity, receiver diversity- Channel state information-capacity	ero fo	in 1	ag an iques	g d d, s,

COUR	SE OUTCOMES	Upon the course completion, the student will have the ability to								
1.	Characterize wireles challenges	s channels and discuss the cellular system design and technical								
2.	Analyse Multiuser S Concepts	ystems, CDMA, WCDMA network planning and OFDM								
3.	Design and impleme	ent various signalling schemes for fading channels								
4.	Compare multipath mitigation techniques and Analyze their performance									
5.	Design and impleme and Analyze their pe	ent systems with transmit/receive diversity and MIMO systems erformance								
TEXT	BOOKS:									
1.	Rappaport, T.S., "V	Wireless communications", Second Edition, Pearson Education,								
2.	Andreas.F. Molisc	h, "Wireless Communications", John Wiley – India, 2006.								
3.	David Tse and Pra Cambridge Univer	amod Viswanath, "Fundamentals of Wireless Communication", sity Press, 2005.								
REFEI	RENCES:									
1.		amji Prasad, "OFDM for wireless multimedia Artech House, 2000.								
2.		reless Communication", Oxford University Press, 2009.								
3.	2007.	less Communications and networking", First Edition, Elsevier								
4.	Jochen Schiller," I 2012.	Mobile Communications", Second Edition, Pearson Education								
5.	udhir Dixit and Ra Artech House, 200	mjee Prasad, "Wireless IP and Building the Mobile Internet", 3.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	-	-	-	-	-	-	-	-	2	2	-
CO2	3	2	2	2	-	-	-	-	-	-	-	-	2	2	1
CO3	3	2	2	-	2	-	-	-	-	-	-	-	2	2	2
CO4	3	2	3	-	2	-	-	-	-	-	-	-	2	2	2
CO5	3	2	2	3	3	2	1	2	-	2	2	2	3	3	3
20LPC703	3	2	2	1	1	1	1	1	1	1	1	1	2	2	2

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPC708	MICROWAVE AND OPTICAL LABORATORY	L	T	P	C
		0	0	2	1

OBJECTIVES:

- To learn about the working of microwave equipment.
- To familiarize with the working of different types of antennas.
- To understand the working optical sources and detectors.

LIST OF EXPERIMENTS

- 1. Characteristics of Gunn diode Oscillator.
- 2. Characteristics of Reflex Klystron.
- 3. Microwave Power Measurement.
- 4. Characteristics of Directional Coupler and Magic Tee.
- 5. Guide wavelength and frequency measurement.
- 6. VSWR and impedance measurements.
- 7. Dielectric constant measurement.
- 8. Radiation Patten of Horns, Parabolic and Helical antenna.
- 9. Measurement of Numerical aperture of optical fiber.
- 10. Measurement of losses in optical fiber.
- 11. Digital Transmission through fiber optic link.
- 12. Characteristics of LED and LASER Diode.
- 13. Characteristics of Photo Diode
- 14. Study of Satellite Communication System.
- 15. Study of Doppler shift using Doppler radar trainer.

		TOTAL: 30 PERIODS
COURS	E OUTCOMES:	Upon the course completion, the student will have the ability to
1.	Analyse the characteris	stics of different microwave equipments.
2.	Compare different mic	crowave devices and choose the required device.
3.	Analyse and compare	radiation patterns of different antennas.
4.	Analyse and explain th	ne properties of fiber optical links and devices.
5.	Explain the working of	f satellite communication systems and Doppler effect.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO2	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO3	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO4	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO5	3	1	2	1	2	1	-	-	3	-	-	2	3	1	2
20LPC708	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2

1 - Low 2 - Moderate (Medium) 3 - High

20LPI	R709	PROJECT - II	L	T	P	C					
		0	0	6	3						
OBJE	CTIVI	ES									
•	• To provide opportunity to explore a problem or issue of particular personal or professional interest.										
•		dress the problem or issue through focused study and applied on of a faculty member.	resea	rch u	nder t	he					
•	To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.										
•	To improve ability to think critically and creatively, to solve practical problems,										
•	To make reasoned and ethical decisions, and to communicate effectively.										

It is intended to start the project work early in the seventh semester and carry out both design and simulation of a device or system whose working can be demonstrated. The design is expected to be completed in the seventh semester and the simulation and its other application, demonstration will be carried out in the eighth semester.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

				TOTAL: 90 PERIODS							
OU'	TCOMES:	On comple	etion	of this course	, stude	nts will be ab	le to				
1	Identify the real time Engineering problems in their day to day life.										
2	Apply the knowledge and skills acquired in their courses to a specific problem or issue										
3		Think critically and creatively to address and help solve these professional or social issues and to further development.									
4		Refine research skills and demonstrate their proficiency in written and oral communication skills.									
5	Take on the ch				a pres	entation in a _l	profes	ssional n	nanne	r,	

	POs										PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2
Average	2.8	2.8	2.6	2.6	1.6	1.6	2.2	3	3	2.4	3	2	3	3	2
20LPR709	3	3	3	3	2	2	2	3	3	2	3	2	3	3	2

EIGHTH SEMESTER

20LPI	R808	PROJECT - III	L	T	P	C		
			0	0	12	6		
OBJE	CTIVI	ES						
•	To provide opportunity to explore a problem or issue of particular personal or professional interest.							
•		dress the problem or issue through focused study and applied on of a faculty member.	resea	rch u	nder t	he		
•	_	nthesize and apply the knowledge and skills acquired in his/he am to real-world issues and problems.	r aca	demi	ic			
•	To improve ability to think critically and creatively, to solve practical problems,							
•	To make reasoned and ethical decisions, and to communicate effectively.							

It is intended to start the project work early in the seventh semester and carry out both design and simulation of a device or system whose working can be demonstrated. The design is expected to be completed in the seventh semester and the simulation and its other application, demonstration will be carried out in the eighth semester.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

						TOTA	L: 15	50PER	ODS	5
OU	TCOMES:	On comple	etion	of this cou	se, stude	ents will be a	ole to			
1	Identify the rea	al time Engi	time Engineering problems in their day to day life.							
2	Apply the know	wledge and	skill	s acquired in	their co	ourses to a sp	ecific	problem	or iss	sue
3	Think critically and creatively to address and help solve these professional or so issues and to further development.						social			
4	Refine research communication		and	demonstra	e their	proficiency	in	written	and	oral
5	Take on the ch	_			re a pres	entation in a	profe	essional n	nanne	r,

		PO s										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2
Average	2.8	2.8	2.6	2.6	1.6	1.6	2.2	3	3	2.4	3	2	3	3	2
20LPR808	3	3	3	3	2	2	2	3	3	2	3	2	3	3	2

PROFESSIONAL ELECTIVES

20LPE001 WIRELESS NETWORKS L T P								
	I		3	0	0	3		
OBJEC	TIVES:							
•	To study	about Wireless networks, protocol stack and standards.						
•	To study	about fundamentals of 3G Services, its protocols and applie	cat	ions	•			
•	To study	about evolution of 4G Networks, its architecture and applic	cati	ons.				
UNIT I	WI	RELESS LAN				9		
Introduction	on-WLAN	N technologies: Infrared, UHF narrowband, spread	sp	ectru	ım	_		
IEEE802.1	1: System	n architecture, protocol architecture, physical layer, MAC lay	yer	, 802	2.11t),		
802.11a –	Hiper LA	N: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, l	Rac	dio I	Laye	•,		
Baseband	Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical la							
MAC, Spe	ctrum allo	ocation for WIMAX						
UNIT II MOBILE NETWORK LAYER								
Introduction	on - Mobil	le IP: IP packet delivery, Agent discovery, tunnelling and er	nca	psul	atior	 l,		
IPV6-Netv	work laye	r in the internet- Mobile IP session initiation protocol - m	obi	ile a	d-ho	c		
network: F	Routing, D	Destination Sequence distance vector, Dynamic source routing	ng.					
UNIT II	I MC	DBILE TRANSPORT LAYER				9		
TCP enha	ncements	for wireless protocols - Traditional TCP: Congestion	COI	ntrol	, fas	t		
retransmit	fast recov	very, Implications of mobility - Classical TCP improveme	ents	: In	direc	:t		
TCP, Snoo	ping TCF	P, Mobile TCP, Time out freezing, Selective retransmission,	, Tı	ansa	actio	n		
oriented T	CP - TCP	over 3G wireless networks.						
UNIT IV	WI	RELESS WIDE AREA NETWORK				9		
Overview	of UTMS	S Terrestrial Radio access network-UMTS Core network	Arc	hite	cture			
3G-MSC,	3G-SGSN	N, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/	/DI	ICP	-Hig	h		
speed Dov	vnlink pac	cket access (HSDPA)- LTE network architecture and protoco	ol.					
UNIT V	4G	NETWORKS				9		
Introduction	on – 4G	vision – 4G features and challenges - Applications o	of 4	4G	<u> </u>			
		icarrier Modulation, Smart antenna techniques, OFDM-MIN						
_		on and coding with time slot scheduler, Cognitive Radio.		•				
Adaptive I	viouuiaiio							

OUT	COMES	Upon the course completion, the student will have the ability to
1.	Acquires knowledge about its architecture.	out various WLAN technologies and WiMAX networks and
2.	Discuss about various tu	nnelling, encapsulation and routing methods.
3.	Design and implement w latest wireless protocols	vireless network environment for any application using and standards.
4.	Implement different type latest network strategies.	es of applications for smart phones and mobile devices with
5.	Acquires knowledge abo	out the latest 4G networks and cognitive radio.
TEXT	г воокs:	
1.	Jochen Schiller," Mobile	Communications", Second Edition, Pearson Education 2012.
2.	Vijay Garg, "Wireless Co	ommunications and networking", First Edition, Elsevier 2007.
REFE	ERENCES:	
1.		arkvall, Johan Skold and Per Beming, "3G Evolution HSPA adband", Second Edition, Academic Press, 2008.
2.		nath, Joy kuri, "Wireless Networking", First Edition, Elsevier
3.	· ·	ael Moher, David Koi lpillai, "Modern Wireless Edition, Pearson Education 2013

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	_	_	_	_	_	_	_	3	2	2	1
CO2	2	2	2	1	-	1	-	-	1	-	-	2	2	2	1
CO3	3	2	3	2	_	_	-	-	-	_	-	2	3	3	1
CO4	3	2	3	2	ı	I	ı	ı	I	ı	ı	2	3	3	1
CO5	3	2	2	2								2	2	2	1
20LPE001	3	2	2	2	-	_		-	-	_	_	2	2	2	1

1-Low 2—Moderate (Medium) 3-High

20LPE002	Ad-hoc NETWORKS	L	T	P	C
		3	0	0	3

OBJECTIVES

- Understand the design issues in ad -hoc mobile networks.
- Be familiar with different types of ad-hoc routing protocols.
- Be expose to the TCP issues in ad-hoc networks

UNIT I FUNDAMENTALS

9

Introduction – Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum – Radio Propagation Mechanisms – Characteristics of the Wireless Channel – IEEE 802.11a–b Standard – Origin of Ad hoc Packet Radio Networks – Technical Challenges – Architecture of PRNETs – Components of Packet Radios – Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks – Ad hoc wireless Internet.

UNIT II AD-HOC ROUTING PROTOCOLS

9

Introduction – Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks – Classifications of Routing Protocols – Table–Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV) – Wireless Routing Protocol (WRP) – Cluster Switch Gateway Routing (CSGR) – Source–Initiated On–Demand Approaches – Ad hoc On–Demand Distance Vector Routing (AODV) – Dynamic Source Routing (DSR) –Temporally Ordered Routing Algorithm (TORA) – Signal Stability Routing (SSR) –Location–Aided Routing (LAR) – Power–Aware Routing (PAR) – Zone Routing Protocol (ZRP).

UNIT III MULTICAST ROUTING IN AD-HOC NETWORKS

9

Introduction – Issues in Designing a Multicast Routing Protocol – Operation of Multicast Routing Protocols – An Architecture Reference Model for Multicast Routing Protocols – Classifications of Multicast Routing Protocols – Tree–Based Multicast Routing Protocols – Mesh–Based Multicast Routing Protocols – Summary of Tree and Mesh based Protocols – Energy–Efficient Multicasting – Multicasting with Quality of Service Guarantees – Application – Dependent Multicast Routing – Comparisons of Multicast Routing Protocols.

UNIT IV TRANSPORT LAYER SECURITY PROTOCOLS

Introduction – Issues in Designing a Transport Layer Protocol for Ad hoc Wireless Networks – Design Goals of a Transport Layer Protocol for Ad hoc Wireless Networks – Classification of Transport Layer Solutions – TCP over Ad hoc Wireless Networks – Other Transport Layer Protocols for Ad hoc Wireless Networks – Security in Ad Hoc Wireless Networks – Network Security Requirements – Issues and Challenges in Security Provisioning – Network Security Attacks – Key Management – Secure Routing in Ad hoc Wireless Networks.

UNIT V QOS AND ENERGY MANAGEMENT

9

Introduction – Issues and Challenges in Providing QoS in Ad hoc Wireless Networks – Classifications of QoS Solutions – MAC Layer Solutions – Network Layer Solutions – QoS Frameworks for Ad hoc Wireless Networks Energy Management in Ad hoc Wireless Networks—Introduction – Need for Energy Management in Ad hoc Wireless Networks – Classification of Energy Management Schemes – Battery Management Schemes – Transmission Power Management Schemes – System Power Management Schemes.

OUTCOMES

Upon the course completion, the student will have the ability to

- 1. Explain the concepts, network architectures and applications of ad hoc networks
- 2. Gain knowledge about Ad hoc routing protocols
- 3. Analyse the protocol design issues of ad hoc and networks
- 4. Design routing protocols for ad hoc networks with respect to some protocol design issues
- 5. Evaluate the QoS related performance measurements of ad hoc networks

TEXT BOOKS:

- 1. C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols", Prentice Hall, PTR, 2004.
- 2. Subir Kumar Sarkar, T.G. Basavaraju, C. Puttamadappa, "Ad Hoc Mobile Wireless Networks Principles, Protocols and Applications" Second Edition CRC Press.

REFERENCES:

- 1. C. K. Toh, "Ad Hoc Mobile Wireless Networks Protocols and Systems", Prentice Hall, PTR, 2001.
- 2. Charles E. Perkins, "Ad Hoc Networking", Addison Wesley, 2000
- 3. Mohapatra, Prasant, Krishnamurthy, Srikanth," Ad Hoc Networks Technologies and Protocols" Springer Publications.
- 4. NabenduChaki, ShilbhadraDasgupta, Soumitra Banerjee "Mobile Adhoc Network and Wireless Communication" Alpha Science International Limited.
- 5. Carlos De MoraisCordeiro, Dharma PrakashAgrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	3	1	-	3
CO2	3	3	2	1	-	-	-	-	-	-	-	3	2	-	3
CO3	3	3	2	1	-	-	-	-	-	-	-	3	2	-	3
CO4	3	2	-	-	-	-	-	-	-	-	-	3	1	-	3
CO5	3	3	2	1	1	3	1	1	1	i	1	3	2	2	3
20LPE002	3	3	2	1	1	-	-	-	-	-	-	3	2	2	3

)3	N	ETWORK SECURITY		L	T	P	C
					3	0	0	3
OBJECT	'IV	ES:			l	l		1
		to explain secur for its security pr	ity principles, and be able to	analyze and e	valu	ate	softw	are
		to explain how valisms with security	arious security mechanisms w y principles.	ork, and correla	ate tl	nese	secu	rity
		•	rious security mechanisms, oply security principles to sol		adv	anta	ges	anc
UNIT I		INTRODUCT	TION TO NETWORK S	SECURITY				9
=			and attacks – Network Securit ta Encryption Standard (DES	-	cal E	Encry	yptio	n
UNIT II		ADVANCED	BLOCK CIPHERS					9
-		-	-IDEA, Blow Fish, RC5, ers-Key Distribution.	CAST-128-Cha	racte	eristi	cs c	of
UNIT III			Y CRYPTOSYSTEMS	& MESSAGE	C			9
		AUTHENTIC	CATION					
-		algorithm-Diffie	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC	_				
MAC-HAS	H ft	algorithm-Diffie	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC	_				
MAC-HAS algorithm. UNIT IV	H ft	algorithm-Diffie unction-Principle	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC	C algorithms-Dig				e
MAC-HAS algorithm. UNIT IV	H ft	algorithm-Diffie unction-Principle	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC SECURITY cate format-PGP-IPSec-SSL-	C algorithms-Dig				g 9
MAC-HAS algorithm. UNIT IV Kerbros-X.: UNIT V Intrusion	509 D	algorithm-Diffie unction-Principle NETWORK S Public key certifi SYSTEM SEC etection-Password	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC SECURITY cate format-PGP-IPSec-SSL-	C algorithms-Dig	gital	Sign		9 9
MAC-HAS algorithm. UNIT IV Kerbros-X.: UNIT V Intrusion	509 D	algorithm-Diffie unction-Principle NETWORK S Public key certifi SYSTEM SEC etection-Password	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC SECURITY cate format-PGP-IPSec-SSL- CURITY d Management-Malicious	C algorithms-Dig	zital Zirus	Sign	an	9 d
MAC-HAS algorithm. UNIT IV Kerbros-X.: UNIT V Intrusion	Dossure	algorithm-Diffie unction-Principle NETWORK S Public key certifi SYSTEM SEC etection-Password es-Firewall Types	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC SECURITY cate format-PGP-IPSec-SSL- CURITY d Management-Malicious	Set. Software-V	gital 'irus	es	an	d S
MAC-HAS algorithm. UNIT IV Kerbros-X.: UNIT V Intrusion countermea	Do Do Do ME	algorithm-Diffie unction-Principle NETWORK S Public key certifi SYSTEM SEC etection-Password es-Firewall Types	Hellmen Key Exchange-M of MD5, SHA-1 and HMAC SECURITY Cate format-PGP-IPSec-SSL- CURITY d Management-Malicious and Configurations. Upon the course completion to	Set. Software-V	gital 'irus	es	an	9 dd

3.	Describe the public key cryptosystems and message authentication schemes.								
4.	Explain the different types of network security schemes.								
5.	Explain the requirements of real-time communication security and issues related to the security of web services.								
TEXT I	BOOKS:								
1.	William Stallings, "Cryptography and Network Security", 3rd Edition, Pearson Education, New Delhi, 2003.								
2.	Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw Hill.								
REFER	ENCES:								
1.	P. W. Singer, Allan Friedmanm, "Cyber security and Cyber war what everyone needs to know", Oxford University Press.								
2.	Othmar Kyas, "Internet Security", International Thomson Publishing Inc.1997.								
3.	Joseph Migga Kissa, "Guide to Computer Network Security", Springer series.								
4.	Richard Bejtlich, "The Practice of Network Security Monitoring: Understanding Incident", no starch press.								
5.	Incident ", no starch press. 5. Charlie Kaufman, Radio Perlman and Mike Speciner, "Network Security", 2nd Edition, Prentice Hall of India, New Delhi, 2003.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	-	-	1	2	-	-	-	-	1	-	2	-	-
CO2	2	2	2	-	1	2	-	-	2	-	2	-	2	-	-
CO3	3	1	1	-	3	3	-	-	1	-	2	-	2	-	-
CO4	3	2	-	-	2	2	-	1	2	i	3	ı	2	1	-
CO5	2	-	2	-	2	3	-	2	2	1	2		2	-	-
20LPE003	2	2	2	-	2	2	-	-	2	-	2	-	2	-	-

20LPE004	INTERNET OF THINGS	L	T	P	C
		3	0	0	3

OBJECTIVES:

- To understand the requirement and fundamentals of Internet of Things.
- To understand the working of each sub-block of Internet of Things
- To learn IoT based access networks and Protocols

UNIT I IOT FUNDAMENTALS

9

IoT –Definition, Types, Applications, Merits and challenges. IoT components: Sensors, frontend electronics (amplifiers, filtering, digitization), digital signal processing, data transmission, choice of channel (wired/wireless), back-end data analysis - understanding packaging and power constraints for IoT implementation.

UNIT II SENSORS

9

General Input/Output Configuration- Static Characteristics of Measurement Systems- Dynamic Characteristics.

Sensor Classification: **-Resistive Sensors**- Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs)- Thermistors, Magnetoresistors, Light-Dependent Resistors (LDRs), Gas Sensors.

Capacitive Sensors- Variable capacitor-level and touch sensors

Inductive Sensors- Variable reluctance sensors, Eddy current sensors, Linear variable differential transformers (LVDTs).

Electromagnetic Sensors- Sensors based on Faraday's law, Hall effect sensors.

Self-Generating Sensors- Thermocouples, Piezoelectric Sensors, Pyroelectric Sensors, Photovoltaic Sensors.

UNIT III ACTUATORS AND SENSOR INTERFACING CIRUITS

9

Actuators: Relays, driving/switching circuits: MOSFET, BJT, Bridge (motor drive). DC, Stepper and Servo motor interfacing.

Signal Conditioning: Resistive Sensors- Measurement of Resistance, Voltage Dividers, Wheatstone Bridge: Balance Measurements and Deflection Measurements. Differential and Instrumentation Amplifiers, Interference.

Variable Reactance sensors- ac Bridges, Carrier Amplifiers and Coherent Detection. **Self-Generating Sensors** - Chopper and Low-Drift Amplifiers, Electrometer and Transimpedance Amplifiers, Charge Amplifiers. Noise in Amplifiers- Noise and Drift in Resistors.

UNIT IV | IOT NETWORKS

9

Review -OSI Model, Layering and protocols, IPV4 and IPV6.

Non-IP Based WPAN: IEEE 802.15 Standards, Bluetooth (version 4 and 5), IEEE 802.15.4, Zigbee, Z-wave, Wireless HART, DASH 7.

IP Based WPAN and LAN: 6LoWPAN, IEEE 802.11, Ethernet (IEEE 802.3).

WAN: 4G-LTE, LoRa and LoRaWAN, Sigfox, NB-IOT, INGENU-RPMA

UNIT	V	PRO	rocols	<u> </u>			9
Session	Proto		ST-HTTP,			: RPL, CORPL, CARP. P, AMQP, DDS, XMPP.	
						TOTAL: 45 PERIODS	
COUF	RSE O	UTCO	MES	Upon the cou ability to	rse co	mpletion, the student will have	the
1.	Sum	marize th	ne requiren	nents and fund	ament	s of Internet of Things	
2.	Diffe	erentiate	different se	ensors/actuator	rs base	d on the working principle	
3.	Anal	yse vario	ous interfac	cing circuits fo	r sens	ors and actuators.	
4.	Expl	ain diffe	rent access	network techr	nologie	es for Internet of Things	
5.	Disc	uss vario	us protoco	ls for Internet	of Thi	ngs	
TEXT	BOO	KS:					
1.	Ram Editi	an Pallas on, John	s-Areny, Jo Wiley and	ohn.G.Webster Sons, 2001	; "Ser	sors and Signal Conditioning	', Second
2.	Perry	Lea, "Ir	nternet of T	Things for Arcl	hitects	", Packt Publishing Ltd,2018.	
3.				arco Zennaro, " Academic Pres		AN Technologies for IoT and No.	/I2M
REFE	REN	CES:					
1.	Robe	ert.H.Bish	hop,"The N	1echatronics H	Iandbe	pok", CRC Press,2002	
2.			-	ok of Modern S s Springer, 200		s- Physics, Designs and Applic	rations",
3.	_			lisra, Josh Rob Bridgera LLC,		n, Tom Snyder,"A Reference Gu 2017	uide to
4.		•		Networking T er Newness, 20		logy- From Principles to Succe	essful
5.		_	0			"Fundamentals of Wireless Sen and Sons,2010.	isor

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	1	-	2	-	-	-	1	-	1	1	1	1
CO2	1	-	-	-	-	-	-	-	-	1	-	1	2	2	1
CO3	2	1	2	1	2	-	-	-	-	-	-	2	2	2	1
CO4	1	1	1	1	2	-	-	-	-	-	-	2	2	2	2
CO5	2	2	1	1	2	-	-	-	-	1	-	2	1	1	2
20LPE004	1	1	1	2	2	-	-	-	-	1	-	2	2	2	1

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

20LPE005	STATISTICAL THEORY OF COMMUNICATION	L	T	P	C
OD IE CEIV	EC.	2	1	0	3
OBJECTIV					
modula	arse presents a unified approach to the problem of detection, extion theory, which are common tools used in many application inication systems, signal processing and system theory.			ı and	
how the	al is to develop decision, estimation and modulation theories to ey can be used to solve a wealth of practical problems in many all situations.			strate	2
	ea is to develop a qualitative understanding of these three areas are of interest.	s by	exar	ninir	ıg
UNIT I	CLASSICAL DETECTION AND ESTIMATION THEORY			6	5 +3
	Simple binary hypothesis tests – M Hypothesis – Estima ypothesis – General Gaussian problem – Performance s.			•	
UNIT II	REPRESENTATIONS OF RANDOM PROCESS	ES		6	5+3
Homogeneous	functions: Orthogonal representations – Random process characteristics – Random process characteristics – Periodic processes – ral decomposition – Vector Random processes.				
UNIT III	DETECTION OF SIGNALS – ESTIMATION OF SIGNAL PARAMETERS	1		6	5 +3
	Estimation in White Gaussian and Non-White Gaussian noise meters: The Composite hypothesis problem – Multiple chann nation.				
UNIT IV	ESTIMATION OF CONTINUOUS WAVEFORM	IS		6	5+3
	Estimator equations $-$ A Lower bound on the mean square estinal waveform estimation $-$ Non-random waveform estimation.	mati	on e	rror	_
UNIT V	LINEAR ESTIMATION			•	5+3
Properties of (Optimum processors – Realizable Linear filters: Stationary proc	20000	o Ir	finit	<u> </u>

TOTAL: 45 PERIODS

OUTCO	OMES	Upon the course completion, the student will have the ability to							
1.	Develop decision and es	timation theories.							
2.	Analyze different repres	entations of random processes.							
3.	Describe the detection a	nd estimation of signals.							
4.	Analyze the estimation of	of continuous waveforms.							
5.	Design linear estimation	methods.							
TEXT B	OOKS:								
1.	P. Eugene Xavier, "Sta Ltd. Publishers, New D	tistical theory of Communication", New Age International elhi, 2007							
2.	Yuk-Wing Lee "Statisti	cal theory of communication", Literary Licensing LLC,2013.							
REFER	ENCES:								
1.	Prof. B.R. Levin, "State Publishers, Moscow, 19	tistical communication theory and its applications", MIR							
2.		istical theory of signal detection", Second edition, Elsevier.							
3.	Robert M.Fano, "Tr communication", IT, Pr	cansmission of information a statistical theory of ess.							
4.		Detection, Estimation and Modulation theory"— Part I/ Sons, NY, USA, 2013.							
5.		tatistical theory of Communication" Paperback – 2007.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	-	-	-	1	-	-	-	2	-	3	2	-
CO2	3	2	-	-	1	-	-	ı	1	-	-	-	2	-
CO3	2	1	-	-	2	-	-	-	-	1	1	3	2	-
CO4	2	2	1	-	1	2	1	ı	ı	ı	ı	1	2	-
CO5	1	2	2	-	1	1	2	1	ı	2	-	2	2	-
20LPE005	3	2	1	-	2	2	1	-	-	-	1	1	1	-

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPE0	006	SPREAD SPECTRUM TECHNIQUES	L	T	P	C
			3	0	0	3
OBJEC'	TIV	ES				
• 5	Γo in	troduce the spread spectrum and its basic applications in com	nunic	atio	n.	
	comn	the years, the most successful implementation of spread spect nunication in commercial world lies in CDMA 2000, WCDMA N, Ultra-Wideband Communications (UWB)		UM	ITS,	
• [Го ех	pose the students about the fundamental of optical communic	ation			
UNIT I		2.5G EVOLUTION& 3G OVERVIEW				9
TD-CDM	A, T	on path to UMTS, UMTS Basics, Air Interface, 3GPP Netword D-SCDMA, IS-95, IMT-2000: Third generation Mobile OMA, CDMA-2000.				
UNIT II	[SPREAD SPECTRUM CONCEPTS				9
sequence Dimension	spre nality	m Modulation- Pseudo- noise sequences—a notion of spread sp ad spectrum with coherent binary phase shift keying — and processing gain — Probability of error — Frequency —hop s gth and Gold codes.	Sig	nal	spac	e
UNIT II	Ι	OPTICAL CDMA				9
Performar Incoheren	nce A	Optical CDMA codes - Construction of Coherent and Incoherent Conalysis and Comparison of Coherent and Incoherent Codes, Information Capacity of Fiber-Optical CDMA Systems, Ac Performance Improvement.	des,	Adv	ance	d
UNIT IV	V	COHERENT AND INCOHERENT OPTICAL C SYSTEMS	DM	A		9
Introduction	on, C	oherent OCDMA Approaches, Subsystem Technologies, Coo	le Sel	ectio	on fo	r

SPC-OCDMA, OCDMA Network Architectures for SPC-OCDMA - WHTS System

Architecture, Technologies for WHTS OCDMA.

UNIT V 9 OPTICAL CDMA ARCHITECTURES Hybrid Multiplexing Transmission System, Photonic Gateway: Multiplexing Format Conversion, OCDMA/WDM Virtual Optical Path Cross Connect, Optical CDMA network architectures and applications-Local Area Networks. **TOTAL: 45 PERIODS** Upon the course completion, the student will have the ability **OUTCOMES** 1. Interpret the Spread Spectrum Concepts 2. Describe the 3G technology Acquaint with the concepts of Optical CDMA and its architecture. 3. 4. Describe the basic concept of wireless communication system. 5. OCDMA is a promising technology for next generation ultra-high speed, cost effective broadband access network. **TEXT BOOKS:** 1. S. Haykin, "Digital Communications", John Wiley, 2005 2. Clint Smith. P.E., and Daniel Collins, "3G Wireless Networks", 2nd Edition, Tata McGraw Hill, 2007. 3. Paul R. Prucnal, "Optical Code Division Multiple Access- Fundamentals and Applications", Taylor & Francis Ltd; Har/Cdr edition, 2005. **REFERENCES:** 1. Guu-Chang Yang & Wing C. Kwong, "Prime Codes with Applications to CDMA Optical and Wireless Networks", Artech House, 2002. Vijay. K. Garg, "Wireless Communication and Networking", Morgan Kaufmann 2. Publishers, http://books.elsevier.com/9780123735805:, 2007 Don Torrieri," Principles of Spread-Spectrum Communication Systems", Springer, 3. 2004 RajPandya, "Mobile and Personal Communication systems and services", PHI, 4.

ShlomiArnon, John R. Barry, George K. Karagiannidis, Robert Schober, Murat

Uysal"Advanced Optical Wireless Communication Systems" Cambridge University

New Delhi, 2003.

Press 2012

5.

	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	-	-	-	-	-	1	2	2	3	-	-	3	-	-
CO2	3	2	2	3	3	-	-	-	-	-	2	2	1	1	
CO3	2		3	3	1	1	-	-	1	2	2	1	2	3	3
CO4	3	3	2	-	-	-	2	2	3	1	1		3	-	-
CO5		2	2	3	1	3	2		3	3	1	1	-	-	3
20LPE006	2	1	2	2	1	-	1	-	1	1	1	1	1	-	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPE007	COMMUNICATION ELECTRONIC CIRCUITS	L	Т	P	C
		3	0	0	3
OBJECTIV	ES:	I			<u> </u>
• To und	erstand the operation of different blocks in communication sy	ystem			
• Famili	arize with different oscillators, modulators, filters, amplifiers	s, synth	esiz	ers.	
• To stud	ly about link characteristics and microwave components.				
UNIT I	OSCILLATORS AND MODULATION SYSTE	MS			9
	rinciple, types-RC, LC, crystal oscillator, frequency stabil gital modulation techniques.	ity. M	odul	ation	1:
UNIT II	FILTERS AND TUNED AMPLIFIER				9
	tive filter, First order and second order low pass and high pass d capacitor filter, Notch filter, Selecting components for filted ed circuits			•	
UNIT III	POWER AMPLIFIER				9
	racteristics, small signal voltage amplifier, power amplifier tulation, integrated circuit power amplifier, radio frequency	• • • •			
UNIT IV	PHASE LOCKED LOOPS AND SYNTHESIZE	ERS			9
	pop elements, compensation, Integrated phase locked loops, I equency synthesis.	PLL de	sign	usin	g
UNIT V	MICROWAVE DEVICES AND COMPONENT	T S			9
line distortion microwave par probes, circula	ropagation velocity, propagation constant, secondary constant, wave reflection, reflection coefficient, SWR, wave guidessive components-directional coupler, waveguide junction, tors and isolators, microwave active devices- solid state devity magnetrons.	e chara	acter reso	istics nato	s, r,

OUT	COMES	Upon the course completion, the student will have the ability to
1.	Explain the ope	ration of different oscillators and modulation techniques.
2.	Compare differ	ent filters and amplifiers.
3.	Discuss about	ne design of power amplifiers.
4.	Explain the ope	ration of phase locked loops and frequency synthesizers.
5.	Describe about	the properties of links and microwave components.
TEXT	T BOOKS:	
1.	Andrew Leven Heinemann	'Telecommunication Circuits and Technology", Butterworth
2.		son, Kartikeya Mayaram, "Analog Integrated Circuits for Principles, Simulation and Design" Second Edition, Springer, 2010.
REFE	ERENCES:	
1.	Cornell Drentte Artech House,2	, "Modern Communications Receiver Design and Technology", 010
2.	Sedra and Smit 2011.	n, "Micro Electronic Circuits", Sixth Edition, Oxford University Press,
3.	B.S. Sonde, "Sy Pub,2001.	stem Design using Integrated Circuits", 2nd Edition, New Age
4.		, "Transceiver and system design for digital communication" 3rd Publishing.
5.		nanesh, "RF and Microwave Electronics", Prentice Hall, 2000.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO2	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO3	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
CO4	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO5	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
20LPE007	3	2	3	1	1	-	-	-	-	-	-	2	2	2	2

1-Low 2—Moderate (Medium) 3-High

20LPE008	TELECOMMUNICATION SWITCHING NETWORKS	L	T	P	C					
		3	0	0	3					
OBJECTIV	TES:									
•	Student can understand the concept of switching, signalling and traffic in the telecommunications network's environment.									
•	To acknowledge the facilities, multiplexing, and modulation t in long-distance backbone networks,	echn	ique	es use	ed					
•	To understand the ISDN architecture, high data rate digital su	bscri	ber	loop	S					
UNIT I	MULTIPLEXING				9					

Transmission Systems, FDM Multiplexing and modulation, Time Division Multiplexing, Digital Transmission and Multiplexing: Pulse Transmission, Line Coding, Binary N-Zero Substitution, Digital Biphase, Differential Encoding, Time Division Multiplexing, Time Division Multiplex Loops and Rings, SONET/SDH: SONET Multiplexing Overview, SONET Frame Formats, SONET Operations, Administration and Maintenance, Payload Framing and Frequency Justification, Virtual Tributaries, DS3 Payload Mapping, E4 Payload Mapping, SONET Optical Standards, SONET Networks. SONET Rings: Unidirectional Path-Switched Ring, Bidirectional Line-Switched Ring.

UNIT II DIGITAL SWITCHING

9

9

Switching Functions, Space Division Switching, Time Division Switching, two-dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environment. Elements of SS7 signalling.

UNIT III NETWORK SYNCHRONIZATION CONTROL AND **MANAGEMENT**

Timing: Timing Recovery: Phase-Locked Loop, Clock Instability, Jitter Measurements, Systematic Jitter. Timing Inaccuracies: Slips, Asynchronous Multiplexing, Network Synchronization, U.S. Network Synchronization, Network Control, Network Management.

UNIT IV DIGITAL SUBSCRIBER ACCESS

9

ISDN: ISDN Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscriber Loops: Asymmetric Digital Subscriber Line, VDSL. Digital Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fiber Coax Systems, Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satellite Services.

UNIT V TRAFFIC ANALYSIS

9

Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blocking Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Constant Service Times, Finite Queues.

		TOTAL:45PERIODS
OUT	COMES	Upon the course completion, the student will have the ability to
1.	Analyze the different	ent multiplexing methods.
2.	Summarize the co	ncepts associated with telecommunication digital switching
3.	Describe the netwo	ork synchronization control and management schemes.
4.	Explain the differe	nt types of digital subscriber access.
5.	Analyze the traffic	management in telecommunication networks.
ГЕХТ	BOOKS:	
1.	J. Bellamy, "Digita	al Telephony", John Wiley, 2003, 3rd Edition.
2.	Viswanathan. T., Hall of India Ltd.,	"Telecommunication Switching System and Networks", Prentice 1994.
3.	J.E Flood, "Teleco	ommunications Switching, Traffic and Networks", Pearson.
REFE	ERENCES:	
1.	R.A.Thomson, "To	elephone switching Systems", Artech House Publishers, 2000
2.	W. Stalling, "Date	a and Computer Communications", Prentice Hall, 1993.
3.		H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Interscience, 1994.
4.	W.D. Reeve, "Sub	Andbook Series), 1995.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	1	2	2	-	3	3	2	2	3	3	3
CO2	2	2	2	2	1	2	1	-	2	3	2	3	3	2	2
CO3	3	3	1	2	3	3	1	-	3	3	2	3	3	2	3
CO4	3	2	2	3	2	2	2	-	2	3	3	3	3	2	2
CO5	2	2	3	2	2	3	1	-	3	3	2	2	3	3	3
20LPE008	2	2	2	2	1	2	1	-	2	3	2	2	3	2	2

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

	SOFTWARE DEFINED RADIO L T P							
		3	0	0	3			
OBJECTIV	ES:	1						
•	Know the basics of the software defined radios.							
•	Learn the design of the wireless networks based on the cognit	tive 1	adio	S				
•	Understand the concepts of wireless networks and next generation	ation	net	work	S			
UNIT I	INTRODUCTION TO SOFTWARE DEFINED R	RAD	OIO		9			
	d potential benefits, software radio architecture evolution, tec ecture implications.	hnol	ogy	trade	>-			
UNIT II	UNIT II SDR ARCHITECTURE							
processing res	tions of the software radio, basic SDR, hardware architecture,		-		al			
topologies amo	sources, software architecture, top level component interfong plug and play modules	aces,	, int	erfac	e			
topologies amo	-	aces,	, int	erfac	9			
UNIT III Marking radio	ong plug and play modules	nent	awa	renes	9			
UNIT III Marking radio	INTRODUCTION TO COGNITIVE RADIOS self-aware, cognitive techniques – position awareness, environment	nent	awa	renes	9			
UNIT III Marking radio in cognitive ra UNIT IV Cognitive Rad decide and act	INTRODUCTION TO COGNITIVE RADIOS self-aware, cognitive techniques – position awareness, environt dios, optimization of radio resources, Artificial Intelligence Techniques	ment chnic	awa ques.	renes	9 ss 9			
UNIT III Marking radio in cognitive ra UNIT IV Cognitive Rad decide and act	INTRODUCTION TO COGNITIVE RADIOS self-aware, cognitive techniques – position awareness, environt dios, optimization of radio resources, Artificial Intelligence Techniques – functions, components and design rules, Cognition cycle phases, Inference Hierarchy, Architecture maps, Building the Components and Cognition of the Cognit	ment chnic	awa ques.	renes	9 ss 9			
UNIT III Marking radio in cognitive ra UNIT IV Cognitive Rad decide and act Architecture of UNIT V The XG Network	INTRODUCTION TO COGNITIVE RADIOS self-aware, cognitive techniques – position awareness, environmentation of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation, optimization of radio resources, Artificial Intelligence Techniques – position awareness, environmentation of radio resources, Artificial Intelligence Techniques – position awareness, environmentation of radio resources, Artificial Intelligence Techniques – position awareness, environmentation of radio resources, Artificial Intelligence Techniques – position awareness, environmentation of radio resources, Artificial Intelligence Techniques – position awareness, environmentation of radio resources, available	nent chnic e - oi	awa ques. rient	renes , plai Radi	9 9 11, 0			

OUTC	OMES	Upon the course completion, the student will have the ability to
1.	Describe the basic	cs of the software defined radios.
2.	Analyze the archit	tecture of SDR
3.	Design the wirele	ss networks based on the cognitive radios
4.	Analyze the archi	tecture of Cognitive radio
5.	Explain the conce	epts behind the wireless networks and next generation networks
TEXT	BOOKS:	
1.		'Software Radio Architecture: Object-Oriented Approaches to Wireless ng", John Wiley & Sons Ltd. 2000.
2.		eau, Charles W. Bostain, "Artificial Intelligence in Wireless ARTECH HOUSE .2009.
3.	Bruce A. Fette, "C	Cognitive Radio Technology", Elsevier, 2009.
4.	generation / dynai	Von – Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next mic spectrum access / cognitive radio wireless networks: A Survey" or Networks, May 2006.
REFER	RENCES:	
1.		'Cognitive Radio: Brain –Empowered Wireless's", IEEE Journal on selected areas in communications, Feb 2005.
2.		Huseyin Arslan, "Enabling Location and Environment Awareness dios", Elsevier Computer Communications, Jan 2008.
3.		r, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio",
4.		"Cognitive Radio, SDR and Adaptive System", Springer, 2007.
5.	-	yglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio and Networks", Elsevier, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	-	-	-	2	1	-	-	-	-	3	-	-
CO2	1	-	-	3	1	1	2	2	2	-	-	-	3	2	-
CO3	2	-	1	2	1	1	1	-	-	-	-	1	1	-	2
CO4	-	3	2	1	-	3		1	1	1	-	-	1	-	3
CO5	3	3	1	1	3	-	-	-	-	-	2	-	-	-	3
20LPE009	1	1	1	1	1	1	1	-	-	-	-	-	1	-	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

20LPE01	0 AUTOMO	TIVE ELECTRONIC SYSTEMS	L	T	P	C		
			3	0	0	3		
UNIT I	FUNDAMEN ELECTRONI	TAL OF AUTOMOTIVE				9		
		obiles- Open loop and closed loop systems Electronic management of chassis system		-				
UNIT II	SENSORS AN	ND ACTUATORS				9		
position ser	nsors - Fuel metering /	ement types of sensors such as - oxygen sensor vehicle speed sensor and detonation sensor - a sors, solenoids, stepper motors, relays.			_			
UNIT III ELECTRONIC FUEL INJECTION AND IGNITION SYSTEMS								
		or systems (FBC) Throttle body injection an systems, injection system controls	d mı	ılti-p	ort o	or		
UNIT IV	ELECTRONI	IC IGNITION SYSTEMS				9		
	•	onic ignition systems. Types of solid-state ignit less electronic ignition system, Electronic spark t				d		
UNIT V	DIGITAL EN	IGINE CONTROL SYSTEM				9		
enrichment ·	-	ol systems Engine cranking and warm up cont nd idle speed control Distributor less ignition - I ntrol engineering.						
		TOTAL: 45 PER	RIOI	OS				
OUTCO	MES	Upon the course completion, the stud ability to	ent v	vill l	have	the		
1.	Apply the fundamentals	s of automotive electronics.						
2.	rippry the randamental							
	Design sensors and act	tuators.						
3.	Design sensors and act	tuators. el injection and ignition system.						
3.	Design sensors and act	el injection and ignition system.						

TEXT B	OOKS:								
1.	1. William B.Riddens, "Understanding Automotive Electronics", 5th Edition, Butterworth, Heinemann Woburn, 1998.								
2.	Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control System ". Prentice Hall Inc., New Jersey.								
3.	T.Mellard, " Automotive Electronics ".								
REFER	ENCES:								
1.	Crouse. W.H., "Automobile Electrical equipment", McGraw Hill Book Co Inc., New York, 1955.								
2.	Robert N Brady, "Automotive Computers and Digital Instrumentation". A reston Book. Prentice Hall, Eagle Wood Cliffs, New Jersey, 1988.								
3.	Bechtold., " Understanding Automotive Electronic ", SAE, 1998.								
4.	Young. A.P. and Griffths.L. " Automobile Electrical Equipment ", English Language Book Society and New Press.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	-	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO3			2	3	-	-	2	-	-	-	-	-	-	3	
CO4	2	2	2	3	3	2	-	-	-	-	-	-	-	3	3
CO5	1	3	3	2	3	2	2	2	2	2	2	-	-	2	3
20LPE010	1	1	1	1	1	-	-	-	-	-	-	-	-	1	1

20LPE01	1	ADV	ANCI	ED DISPLAY I	DEVICES	L	T	P	C
						3	0	0	3
OBJECT	IVES:						•		•
•		_		to the basics of the of the display syst		s and to ill	ustra	ate th	ie
•	To ga	in exposur	re in the	basics of the displ	ay systems.				
•	To ill	ustrate the	current	design practices o	f the display sy	ystems.			
UNIT I	INT	INTRODUCTION 9							
	ntroduction to displays-Requirements of displays-Display technologies, CRT, Flat panel and dvanced display technologies-Technical issues in displays.								
UNIT II	UNIT II HEAD MOUNTED DISPLAY 9								
Head moun	-	•	ays less	than and greater th	nan 0.5 m diag	onal. Low	pow	er an	nd
	S dispid	ys.							
UNIT III		уs. Г, МІМ S	S, LCD)					9
UNIT III	TF'	Γ, MIMS		Brightness. Types	of LCD displa	ys.			9
UNIT III	TFTs a	Γ, MIMS	LCDs,	Brightness. Types	of LCD displa	ys.			9
UNIT III Operation o UNIT IV	TFTs a EM splays, A	F, MIMS and MIMS.	LCDs,	Brightness. Types			ting	princ	9
UNIT III Operation o UNIT IV Emissive di	TFTs a EM splays, A ance.	F, MIMS and MIMS.	LCDs, DISPI Plasma	EAYS display and Field			ting	princ	9
UNIT III Operation o UNIT IV Emissive di and perform UNIT V	TFTs a EM splays, A ance.	F, MIMS and MIMS. HISSIVE ACTFEL, 1	LCDs, DISPI Plasma DISPI	EAYS display and Field			ting	princ	9 ciple
UNIT III Operation o UNIT IV Emissive di and perform UNIT V	TFTs a EM splays, A ance.	F, MIMS and MIMS. HISSIVE ACTFEL, 1	LCDs, DISPI Plasma DISPI	EAYS display and Field LAYS Fouchscreen.		ays, opera		princ	9 ciple
UNIT III Operation o UNIT IV Emissive di and perform UNIT V	TF's a EM splays, A lance.	F, MIMS and MIMS. HISSIVE ACTFEL, 1	LCDs, DISPI Plasma DISPI	EAYS display and Field LAYS Fouchscreen.	emission displ	ays, opera	os		9 ciple
UNIT III Operation o UNIT IV Emissive di and perform UNIT V Types of Di OUTCOM	TFTs a EM splays, A ance. TY splays: 3	F, MIMS and MIMS. HISSIVE ACTFEL, 1 PES OF BD, HDTV	LCDs, DISPI Plasma DISPI , LED, 7	EAYS display and Field LAYS Fouchscreen.	emission displemant of the completion, the completion, the completion of the complet	PERIOD e student	PS will		9 ciple
UNIT III Operation o UNIT IV Emissive di and perform UNIT V Types of Di OUTCON	TF's a EM splays, A ance. TY splays: 3	r, MIMS and MIMS. IISSIVE ACTFEL, PES OF BD, HDTV owledge of	LCDs, DISPI Plasma DISPI , LED, 1	EAYS display and Field LAYS Touchscreen. Upon the course ability to	emission displemant of the completion, the completion, the completion of the complet	PERIOD e student	PS will		9 eiple

4.	Analyse the various kinds of emissive displays.							
5.	Describe the types of displays.							
TEXT B	OOKS:							
1.	L.W. Mackonald & A.C. Lowe, Display Systems, Design and Applications, Wiley, 2003.							
2.	E.H. Stupp &M. S. Brennesholtz, Projection Displays, Wiley,1999.							
3.	Peter A. Keller, Electronic Display Measurement: Concepts, Techniques, and Instrumentation, Wiley-Interscience, 1997.							
REFER	ENCES:							
1.	YoshimosoA.Ono, "Electroluminescent Displays" World Scientific Publishers.							
2.	Shoichimatsumoto, "Electronic display devices "Wiley publications.							
3.	Deng Keyang ,ShinTson Wu, "Fundamentals of liquid crystal devices" ,John Wiley &Sons ,2006.							
4.	J. Pankove, "Display Devices", Springer.							
5.	Janglin Chen, Wayne Cranton, Mark Fihn, "Handbook of Visual Display Technology", Springer Publication.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	-	-	-	2	1	-	-	-	-	3	-	-
CO2	1	3	1	1	2	2	2	1	-	-	-	-	3	2	-
СОЗ	1	1	-	2	2	-		2	2	1	1	1	1	-	2
CO4	3	3	2	1	1	-	1	1	-	-	2	-	1	-	3
CO5	3	2	2	-	-	2	3	3	2	3	1	-	-	-	3
20LPE011	1	1	1	-	1	-	1	1	-	-	-	-	1	-	1

20LPE	012]	DIG	ITAL	L SPI	EEC	CH P	R(OCESSIN	[G	L	Т	P	C
											2	1	0	3
OBJE	CTIV	ES									I	l .		
• T	o intro	oduce spe	eech p	roducti	ion ar	nd re	lated p	ar	ameters of s	speech.				
			-					-	es such as s				ansfo	orm,
• T	o und	erstand di	liffere	nt types	s of sp	speecl	n codi	ng	and synthes	sis method	S			
UNIT I INTRODUCTION								6	5+3					
-	The Speech Chain, Applications of Digital Speech Processing, Phonetic Representation of Speech, Models for Speech Production, Hearing and Auditory Perception													
UNIT II SPEECH ANALYSIS								5+3						
Short-Ti	me An	alysis of S	Speed	h, Hon	nomo	orphic	Spee	ch	Analysis, L	inear Predi	ctive	Ana	alysis	3
UNIT I	III	DIGIT	TAL S	SPEE	СН	CO	DIN	J					6	5+3
- '	_	Quantizat Frequency		-		_	-		Coding, Cl f Coders	osed-Loop	Cod	ers,	Open	1-
UNIT I	IV	TEXT	OT	SPEE	ECH	SY	NTH	ES	SIS METI	HODS			6	5+3
	•	Evolution TS Future		-	ch Sy	ynthe	esis S	yst	ems, Unit	Selection	Meth	ods,	TT	S
UNIT	V	AUTO)MA	ΓIC S	SPEE	ECH	REC	CC	OGNITIO	N			6	5+3
U		eech Reco	U	•					on Processes	s in ASR,	Repi	eser	itativ	e
									TOTAL	: 45 PER	IOD	S		
OUTC	OME	S	Upo	n the c	course	e com	pletio	n,	the student	will have t	he ab	ility	to	
1.	To und	derstand t	the ro	le of D	SP in	n spe	ech co	m	munication					
2.	To und	derstand t	the m	ethods	of re	eprese	enting	th	e speech in	digital for	m			
3.	3. To understand the different types of coding techniques used for digital speech processing													

4. Acquire knowledge about different types of speech synthesis methods 5. Acquire knowledge about automatic synthesis and recognition of speech **TEXT BOOKS:** 1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003. 2. Thomas F Quatieri, "Discrete-Time Speech Signal Processing – Principles and Practice", Pearson Education, 2004. **REFERENCES:** 1. Daniel Jurafsky and James H Martin, "Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education, 2002. 2. Frederick Jelinek, "Statistical Methods of Speech Recognition", MIT Press, 1997 3. Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing, 1997. 4. Claudio Becchetti and LucioPrinaRicotti, "Speech Recognition", John Wiley and Sons, 1999. 5. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing, Processing and Perception of Speech and Music", Wiley- India Edition, 2006.

COURSE ARTICULATION MATRIX

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	1	1	3	1	2	2	1	2	2
CO2	2	2	2	2	2	3	1	1	3	1	2	2	2	2	2
CO3	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2
CO4	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2
CO5	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2
20LPE012	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2

20LPE013	ADVANCED DIGITAL SIGNAL PROCESSING	L	T	P	C
		2	1	0	3
OBJECTIV	ES:				<u>. </u>
• Exposu	are to concepts of random processes and spectrum estimation				
• To fam	iliarize the concepts of linear estimation and prediction				
To intro	oduce adaptive filters and wavelet transforms				
UNIT I	DISCRETE-TIME RANDOM SIGNALS			6	5+3
Density, Spect	n and Autocovariance properties and matrices, White noise, P ral Factorization, Innovations Representation and Process, File MA, AR and MA processes.		-	ndor	n
UNIT II	SPECTRUM ESTIMATION			6	5+3
	sistency, Periodogram, Modified periodogram, Blackman-To , Parametric methods of spectral estimation, Levinson-Durbin re	-			1,
UNIT III	LINEAR ESTIMATION AND PREDICTION			6	5+3
	Backward linear prediction, Filtering - FIR Wiener filter- Filter a-causal and causal IIR Wiener filters, Discrete Kalman filter.	ing	and	linea	ır
UNIT IV	ADAPTIVE FILTERS			6	5+3
-	daptive filter – FIR adaptive filter – Newton's Steepest descern – Adaptive noise cancellation, Adaptive equalizer, Adaptive ec		_		
UNIT V	WAVELET TRANSFORM			6	5+3
	n analysis, Continuous and discrete wavelet transform, Short plication of wavelet transform, Cepstrum and Homomorphic fil			ourie	r
	TOTAL: 45 PER	OI)S		

OUT	COMES	Upon the course completion, the student will have the ability to							
1.	Understand the	concepts of random processes							
2.	Compare differ	rent methods of spectrum estimation.							
3.	Gain knowledg	Gain knowledge on linear estimation and prediction							
4.	Understand diffiltering.	ferent adaptive filtering techniques and the applications of adaptive							
5.	Learn about wa	avelet transform							
TEXT	Γ BOOKS:								
1.		Hayes, "Statistical Digital Signal Processing and Modelling", John Wiley and ew York, Indian Reprint, 2007.							
2.	John G.Pro Fourth 200	pakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson,							
REFE	ERENCES:								
1.	Sophocles J Graw Hill,	I. Orfanidis, "Optimum Signal Processing, An Introduction", Mc							
2.	Oppenheim	, A. V., R. W. Schafer, and J. R. Buck. "Discrete-Time Signal", 2nd ed. Prentice Hall							
3.	Dwight F. I	Mix, "Random Signal Processing", Prentice Hall, 1995.							
4.	McClellan, J. H., et al. Computer-Based Exercises for Signal Processing Using MATLAB® 5. Prentice Hall, 1998								
5.	Crocmere,	Ronald E., and Lawrence R. Rabiner. Multirate Digital Signal Prentice Hall, 1983							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	1	-	-	-	-	-	-	2	2	-	1
CO2	3	2	1	1	1	-	-	-	-	-	-	2	2	1	2
CO3	2	1	2	1	2	-	-	-	-	-	-	2	2	1	1
CO4	2	2	2	1	2	-	-	-	-	-	-	2	2	2	2
CO5	2	2	1	2	ı	ì	ì	-	i	-	-	2	1	-	2
20LPE013	2	2	1	1	1	1	1	1	1	1	-	2	-	1	2

1-Low 2—Moderate (Medium) 3-High

20LPE014	DSP ARCHITECTURES AND PROGRAMMING	L	T	P	C			
		3	0	0	3			
COURSE O	DBJECTIVES:							
	tand the basics of Programmable DSP's Architecture, On-chip Ption set.	erip	hera	ls an	d			
• To gair	the knowledge of programming for signal processing application	ons.						
• Learn t	he concepts of adaptive filter.							
UNIT I	INTRODUCTION TO DSP PROCESSOR				9			
(VLIW) - CPU	a popular DSP from Texas Instruments TMS320C6XXX-CPU Data Paths and Control - Timers - Internal Data/ Program Memace, Difference between fixed- and floating-point processors.							
UNIT II	DSP DEVICES				9			
	eyond the core, TI C6xxx EVM memory configuration, wait stare interfacing and I/O control, System management and control		gene	eratoi	ſ,			
UNIT III	PROGRAMMING				9			
Instructions,	- Linear and Circular Addressing Modes, Assembly code for Assembler directives Code Composer Studio - Code Genesembler, Linker) - Code Composer Studio Debug Tools – Simul	erati	on					
UNIT IV	ADAPTIVE FILTERING				9			
-	ing Introduction to adaptive filters, adaptive filter structures an adaptive filters, Applications, Adaptive filtering in C using		_					
UNIT V SHARC DIGITAL SIGNAL PROCESSOR								
Blackfin (one	Signal Processor: A popular DSP from Analog Devices - Share of them) - Architecture - IOP Registers - Peripherals - Synchrone Internal/External/Multiprocessor Memory Space - Multiprocess Ports.	ous S	Seria	ıl Poı	rt			
	TOTAL :45 PERI	OD	S					

COURS	SE OUTCOMES:	Upon the course completion, the student will have the ability to							
1.	Describe about DSP Pro	ocessor.							
2.	Analyse the different D	SP devices.							
3.	Write DSP programs for	r different applications.							
4.	Explain the adaptive file	Explain the adaptive filtering and its applications.							
5.	Utilize Sharc DSP proce	essor.							
TEXT I	BOOKS:								
1.	Naim Dahnoun, "Digital Platform, 1st Edition, 20	Signal Processing Implementation" Using the TMS320C6000DSP 000.							
2.	Sen M Kuo, W Architectures,Impleme	Voon- Seng S Gan, "Digital Signal Processors entations and Applications", Pearson Education.							
3.	David J Defatta J, Processing: A System I	Lucas Joseph G & Hodkiss William S, Digital Signal Design Approach, 1st Edition, John Wiley							
REFER	RENCES:								
1.		Bhaskar, " Digital Signal Processors Architectures, Applications", 2nd Edition, Tata McGraw-Hill.							
2.	Rulph Chassaing, "De Edition, 2002.	SP Applications using 'C' and the TMS320C6X DSK", 1st							
3.		Phil Lapsley, Jeff Bier, Amit Shoham, Edward A.Lee"DSP Processor Fundamentals: Architectures and Features", A Volume in the IEEE Press Series							
4.	T.J. Terrel and Lik-Kwan Shark, "Digital Signal Processing" - A Student Guide,1st Edition; Macmillan Press Ltd.								
5.		n Paterson-Stephens, "The DSP Handbook – Algorithms, ign Techniques", Pearson Education.							

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	2	1	2	1	-	-	-	-	1	1	3	2	2
CO2	3	2	2	2	2	1	-	-	-	-	2	2	3	2	3
CO3	3	2	2	3	3	1	-	-	-	-	3	3	3	2	3
CO4	3	2	2	1	1	1	-	-	-	-	2	2	3	2	2
CO5	3	2	2	2	2	1	-	-	-	-	1	1	3	2	2
20LPE014	3	2	2	2	2	1	1	1	1	-	2	2	3	2	2

20LPE015	DIGITAL IMAGE PROCESSING	L	Т	P	C
		3	0	0	3
Objectives:					
• Unders	tand fundamental of digital image				
• Learn o	lifferent image transforms				
• Study o	concept of segmentation			•	
UNIT I	DIGITAL IMAGE FUNDAMENTALS				9
Perception -	Origin – Steps in Digital Image Processing – Components – Elem Image Sensing and Acquisition – Image Sampling and Quetween pixels - color models.				
UNIT II	IMAGE ENHANCEMENT				9
Filtering-Smo to Fourier Tr	in: Gray level transformations – Histogram processing – Base othing and Sharpening Spatial Filtering – Frequency Domain ansform – Smoothing and Sharpening frequency domain find Gaussian filters	: In	trodi	uctio	n
UNIT III	IMAGE RESTORATION AND SEGMENTATIO	N			9
pass Filters – N Segmentation	- Mean Filters – Order Statistics – Adaptive filters – Band reject Notch Filters – Optimum Notch Filtering – Inverse Filtering – W.: Detection of Discontinuities–Edge Linking and Boundary detection Morphological processing- erosion and dilation.	/iene	er fil	terin	ıg
UNIT IV	WAVELETS AND IMAGE COMPRESSION				9
Image Compre	bband coding - Multiresolution expansions - Compression: Function models – Error Free Compression – Variable Length Codingsless Predictive Coding – Lossy Compression – Lossy Predictandards.	ng –	Bit-	-Plan	ne
UNIT V	IMAGE REPRESENTATION AND RECOGNITI	ION	1		9
segments – Bo	resentation – Chain Code – Polygonal approximation, signature undary description – Shape number – Fourier Descriptor, mome oppological feature, Texture - Patterns and Pattern classes - Recommonder of the common o	ents-	- Re	giona	al

TOTAL: 45 PERIODS

OUTCO	OMES	Upon the course completion, the student will have the ability to
1.	Discuss digital image fun	damentals.
2.	Apply image enhancement	nt and restoration techniques.
3.	Use image compression as	nd segmentation Techniques.
4.	Represent features of in	nages
5.	Recognize image from	features.
TEXT E	BOOKS:	
1.	Rafael C. Gonzales, Ri Pearson Education, 2010.	chard E. Woods, "Digital Image Processing", Third Edition,
2.	Anil Jain K. "Fundamer 2011.	ntals of Digital Image Processing", PHI Learning Pvt. Ltd.,
3.	Willliam K Pratt, "Digi	ital Image Processing", John Willey, 2002.
REFER	ENCES:	
1.	v	chard E. Woods, Steven L. Eddins, "Digital Image LAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2011.
2.		gital Image Processing and Pattern Recognition", First
3.		onur/lectures/lectures.html.
4.	http://www.caen.uiowa.	.edu/~dip/LECTURE/lecture.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	ı	-	-	-	2	-	2	1	-
CO2	2	2	3	2	2	1	_	_	_	-	1	-	2	2	-
CO3	3	2	3	2	1	1	_	-	-	-	2	-	2	2	1
CO4	3	3	2	2	ı	ı	ı	ı	ı	ı	2	ı	3	2	-
CO5	3	2	2	2	2	2	1	-	_	_	2	_	2	2	2
20LPE015	3	3	2	2	1	2	-	_	_	_	2	_	2	2	2

1-Low 2—Moderate (Medium) 3-High

20LPE016	MEMS	L	T	P	C
		3	0	0	3
OBJECTIV	ES:				
•	To provide knowledge of semiconductors and solid mecha MEMS devices.	nics	to f	abric	ate
•	To educate on the rudiments of Micro fabrication technique	ies.			
•	To introduce various sensors and actuators.				
UNIT I	INTRODUCTION TO MEMS AND MICROFABRICATION				9

History of MEMS Development, Characteristics of MEMS-Miniaturization - Microelectronics integration - Mass fabrication with precision. Micro fabrication - microelectronics fabrication process- Silicon based MEMS processes- New material and fabrication processing- Points of consideration for processing.

UNIT II	ELECTRICAL AND MECHANICAL PROPERTIES	9
	OF MEMS MATERIALS	

Conductivity of semiconductors, crystal plane and orientation, stress and strain – definition – Relationship between tensile stress and strain- mechanical properties of Silicon and thin films, Flexural beam bending analysis under single loading condition- Types of beam- deflection of beam-longitudinal strain under pure bending- Spring constant, torsional deflection, intrinsic stress, resonance and quality factor.

UNIT III SENSING AND ACTUATION 9

Electrostatic sensing and actuation-Parallel plate capacitor – Application-Inertial, pressure and tactile sensor parallel plate actuator- comb drive. Thermal sensing and Actuations-Thermal Sensors-Actuators- Applications Inertial, flow and infrared sensors. Piezo resistive sensors- piezo resistive sensor material- stress in flexural cantilever and membrane-Application-Inertial, pressure, flow and tactile sensor. Piezoelectric sensing and actuation-piezoelectric material properties-quartz-PZT-PVDF –ZnO- Application-Inertial, Acoustic, tactile, flow-surface elastic waves Magnetic actuation- Micro magnetic actuation principle-Deposition of magnetic materials-Design and fabrication of magnetic coil.

UNIT IV BULK AND SURFACE MICROMACHINING 9

Anisotropic wet etching, Dry etching of silicon, Deep reactive ion etching (DRIE), Isotropic wet etching, Basic surface micromachining process- structural and sacrificial material, stiction and ant stiction methods, Foundry process.

UNIT V POLYMER AND OPTICAL MEMS 9

Polymers in MEMS- polymide-SU-8 Liquid crystal polymer (LCP)-PDMS-PMMA-Perylene-Fluorocarbon, Application-Acceleration, pressure, flow and tactile sensors. Optical MEMS-passive MEMS optical components-lenses-mirrors-Actuation for active optical MEMS.

MEMS.		
		TOTAL: 45 PERIODS
OUTC	OMES	Upon the course completion, the student will have the ability to
1.	Analyse MEMS and m	nicrofabrication.
2.	Describe the different	properties of MEMS materials.
3.	Describe the concept of	of sensing and actuation.
4.	Explain bulk and surfa	ace machining.
5.	Utilize polymer and op	otical MEMS.
TEXT	BOOKS:	
1.	Chang Liu, "Foundati	ons of MEMS", Pearson International Edition, 2006.
2.	Stephen D. Senturia,	"Microsystem Design", Kluwar Academic Publishers.
3.	Tai- Ran Hsu, "MEM Engineering", John	AS and Microsystems Design, Manufacture and Nanoscale Wiley and Sons.
REFEI	RENCES:	
1.	Gaberiel M. Rebiz, 'Sons, 2003	'RF MEMS Theory,Design and Technology'', John Wiley &
2.	,	rank J. Owens, "Introduction to Nanotechnology" John Wiley
3.		ijay K Varadhan, "Microsensors, MEMS and Smart Devices", 001.
4.	·	mas McConnell Adams, "Introductory MEMS Fabrication
5.		nd Richard A.Layton, "Introduction MEMS, Fabrication and

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	1	2	2	3	-	-	3	-	-
CO2	-	2	3	-	1	1	1	2	2	-	-	-	-	2	-
CO3	-	-	2	3	-	-	2	-	3	2	1	2	1	1	3
CO4	2	2	1	1	1	3	-	-	-	-	-	-	-	2	2
CO5	1	3	3	2	-	-	2	2	1	1	3	-	3	3	1
20LPE016	1	1	1	1	-	-	1	1	1	1	-	-	1	1	1

	NANO ELECTRONICS		L	T	P	C
	<u></u>		3	0	0	3
OBJECTI	VES:					
•	To learn and understand basic concepts of Na	no electronics.				
•	To know the techniques of fabrication and me	asurement.				
•	To gain knowledge about Nanostructure device	es and logic dev	vices	•		
UNIT I	LIMITATIONS OF CMOS					9
	s of MOSFET devices - Scaling of CMOS – Lim - Structures of MOS devices: SOI MOSFET, FI c FETs.				-	
UNIT II	MICRO AND NANO FABRICATIO	N				9
-	ography – Electron beam Lithography – Atomic I no lithography.	Lithography – M	lolec	ular	bear	n
UNIT III	CHARACTERIZATION EQUIPME	NTS				9
-	Electron Microscopes – Scanning Electron Micro Atomic Force Microscope – Scanning Tunneling	-	issio	n Ele	ectro	n
UNIT IV	NANODEVICES – I					9
Resonant tu	NANODEVICES – I nneling diodes – Single electron devices – Jose pic – Molecular electronics.	phson junction	– Si	ngle	Flu	
Resonant tur	nneling diodes – Single electron devices – Jose	phson junction	– Si	ngle	Flu	X
Resonant tur Quantum log UNIT V Quantum co CNTFET, A	nneling diodes – Single electron devices – Jose dic –Molecular electronics.	tubes (CNT): (Chara	ncter	istic	x 9
Resonant tur Quantum log UNIT V Quantum co CNTFET, A	nneling diodes – Single electron devices – Jose cic – Molecular electronics. NANO DEVICES – II Imputing: principles – Qrbits – Carbon nanot application of CNT - Spintronics: Principle, Spin FETs, MRAM.	tubes (CNT): (Chara	ncter	istic	x 9 s,
Resonant tur Quantum log UNIT V Quantum co CNTFET, A	nneling diodes – Single electron devices – Jose nic – Molecular electronics. NANO DEVICES – II Imputing: principles – Qrbits – Carbon nanot application of CNT - Spintronics: Principle, Spin FETs, MRAM. TOT.	tubes (CNT): C pin valves, Ma AL: 45 PERI	Chara gneti	ncter ic T	istic. unne	9 9 Ss,

2.	To analyse the micro and nano fabrication techniques.	
3.	To work with characterisation equipments	
4.	To be exposed to nano devices	
5.	To be exposed to principles of Quantum computing nano devices	
TEXT B	OOKS:	
1.	Mark Ratner and Daniel Ratner, "Nanotechnology: A Gent Next Big Idea", Pearson education, 2003.	tle Introduction to the
2.	Seng Ghee Tan and Mansoor B. A. Jalil, "Introduction to the Nanoelectronics", Woodhead Publishing.	Physics of
3.	Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. S. Nanoelectronics Science, Nanotechnology, Engineering and A. University press.	troscio,"Introduction to Appliances", Cambridge
REFER	ENCES:	
1.	Marc Baldo, "Introduction to Nanoelectronics".	
2.	ThomasHeinzel, "A Microscopic Electronics in Solid State I Wiley- VCH.	Vanostructure",
3.	RainerWaser (Ed.), "Nano electronics and information technology II, 2005.	", Wiley- VCH., Edition
4.	Mick Wilson, KamaliKannangara, Geoff Smith, Michelle Sin Raguse "Nanotechnology – (Basic Science and Emerging Te Overseas Press.	
5.	Nanoelectronics & Nanosystems: From Transistor to Molect Devices: Karl Goser, JanDienstuhl and others.	ular & Quantum

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	1	-	-	-	-	-	-	-	-	3	-	-
CO2	1	-	-	3	-	-	-	-	-	-	-	-	-	2	-
CO3	2	-	1	2	2	2	1	1	-	-	-	1	1	3	2
CO4	-	3	2	1	-	3		1	1	1	-	-	1	2	3
CO5	3	3	2	1	3	3	1	1	2	2	2	-	-	2	3
20LPE017	1	2	1	1	1	1	-	-	-	-	-	-	1	1	1

20LPE018	OPTOELECTRONICS	L	T	P	C
		3	0	0	3
OBJECTIV	ES:				
• To und	erstand the different properties of light and light sources				
• To kno	w the operation of optical sources and detectors.				
• To hav	e a knowledge about optical modulation and optoelectronic integ	grate	ed ci	rcuit	s.
UNIT I	ELEMENTS OF LIGHT AND SOLID-STATE PHYSICS				9
Quantum Med	of light, Polarization, Interference, Diffraction, Light Source hanical concept, Review of Solid-State Physics, Review of Semiconductor Junction Device.				
UNIT II	DISPLAY DEVICES AND LASERS				9
Luminescence Numeric Disp	Photo Luminescence, Cathode Luminescence, Electro Luminesce, Injection Luminescence, LED, Plasma Display, Liquid Crylays, Laser Emission, Absorption, Radiation, Population Inverseshold condition, Laser Modes, Classes of Lasers, Mode L	stal rsio	Dis n, O	plays ptica	, 1
UNIT III	OPTICAL DETECTION DEVICES				
	Of Heal Defection Devices				9
	, Thermal detector, Photo Devices, Photo Conductors, Photo die	odes	, De	tecto	
		odes	, De	tecto	r
Performance. UNIT IV Introduction,	, Thermal detector, Photo Devices, Photo Conductors, Photo did				9
Performance. UNIT IV Introduction,	OPTOELECTRONICMODULATOR Analog and Digital Modulation, Electro-optic modulators, Modulato	lagn			r
Performance. UNIT IV Introduction, A Devices, Acou UNIT V Introduction, h	OPTOELECTRONICMODULATOR Analog and Digital Modulation, Electro-optic modulators, Matoptic devices, Optical, Switching and Logic Devices.	Iagn	eto	Opti	r

OUTC	OMES		Upon the course completion, the student will have the ability to
1.	discuss about	t different natu	are of light
2.	Explain the o	peration of op	tical sources
3.	Explain the o	peration of op	tical detectors.
4.	Compare diff	Ferent optical n	nodulations
5.	Discuss abou	t optoelectroni	ic integrated circuits.
TEXT	BOOKS:		
1.	Pallab Bha India Pvt., l	ttacharya "Se Ltd., New De	emiconductor Opto Electronic Devices", Prentice Hall of elhi, 2006.
2.	Jasprit Sing Graw-Hill	gh, "Opto Ele International I	ectronics – As Introduction to Materials and Devices", Mc Edition, 1998
REFER	RENCES:		
1.	Kasap Safa Education.	, "Optoelectr	conics and Photonics: Principles and Practices", Pearson
2.	S C Gupta,	Opto Electro	onic Devices and Systems, Prentice Hal of India, 2005.
3.	J. Wilson at 1995	nd J.Haukes,	"Opto Electronics – An Introduction", Prentice Hall,
4.	Emmanuel . Press.	Rosencher, B	orge Vinter, "Optoelectronics", Cambridge University
5.		Parker,"Phys	sics of Optoelectronics", CRC Taylor and Francis.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-	-	-	-	2	2	1	1
CO2	1	-	-	1	-	İ	-	-	-	-	-	2	2	2	1
CO3	1	ı	ı	1	ı	İ	ı	ı	1	-	ı	2	2	2	1
CO4	2	1	1	1	1	į	1	1	1	-	1	2	2	2	1
CO5	1	ı	ı	1	ı	İ	ı	ı	1	-	ı	2	2	2	1
20LPE018	1	-	-	1	-	-	-	-	-	-	-	2	2	2	1

1-Low 2—Moderate (Medium) 3-High

20LPE	019		RADAR SYSTEMS	L	T	P	C
	•			3	0	0	3
OBJEC	TIVI	ES:					•
		ply Dopple stand track	er principle to radars and hence detect moving target ing radars	s, ch	ustei	r, als	o to
		resh princi	ples of antennas and propagation as related to radar receivers.	s, als	so st	udy	of
		derstand parts of to naviga	rinciples of navigation, in addition to approach and l	landi	ing a	ids a	ıs

UNIT I INTRODUCTION TO RADAR EQUATION

9

Introduction- Basic Radar –The simple form of the Radar Equation- Radar Block Diagram-Radar Frequencies –Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functions-Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequency- Antenna Parameters- System losses – Other Radar Equation Considerations

UNIT II MTI AND PULSE DOPPLER RADAR

9

Introduction to Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pulse Repetition Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking –Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking in Range - Other Tracking Radar Topics -Comparison of Trackers - Automatic Tracking with Surveillance Radars (ADT).

UNIT III DETECTION OF SIGNALS IN NOISE

9

Matched –Filter Receiver –Detection Criteria – Detectors –-Automatic Detector - Integrators - Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves - Atmospheric Refraction -Standard propagation - Nonstandard Propagation - The Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas – Phase Shifters - Frequency-Scan Arrays

Radar Transmitters and Receivers - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers - Other RF Power Sources – Other aspects of Radar Transmitter. - The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT IV RADIO DIRECTION AND RANGES

9

Introduction - Four methods of Navigation. - The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direction Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - VOR Receiving Equipment - Range and Accuracy of VOR - Recent Developments. **Hyperbolic Systems of Navigation (Loran and Decca) -** Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT V SATELLITENAVIGATION SYSTEM

9

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment - Instrument Landing System - Ground Controlled Approach System - Microwave Landing System (MLS) The Doppler Effect - Beam Configurations - Doppler Frequency Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation - Navigation Over the Earth - Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems-The Transit System - Navstar Global Positioning System (GPS)

		TOTAL: 45 PERIODS
OUTC	OMES	Upon the course completion, the student will have the ability to
1.	Derive and discuss the Ra	ange equation and the nature of detection.
2.	Discuss about Doppler Ra	dar and various tracking techniques
3.	Discuss about various Rad	ar antennas, transmitters and receivers.
4.	Explain principles of navi	igation, in addition to approach and landing aids as related to
5.	Describe about the naviga	ation systems using the satellite.
TEXT	BOOKS:	
1.	Merrill I. Skolnik ," Intro	duction to Radar Systems", 3rd Edition Tata Mc Graw-Hill 2003.
2.	N.S.Nagaraja, "Elemen 2000.	ts of Electronic Navigation Systems", 2nd Edition, TMH,
3.	Paul A. Lynn, "Radar S Reinhold.	systems", Macmillan New Electronic Series, Van Nostrand

REFER	ENCES:
1.	Peyton Z. Peebles: "Radar Principles", John Wiley, 2004
2.	J.C Toomay, "Principles of Radar", 2nd Edition –PHI, 2004
3.	Bassern R. Mahafza, "Radar Systems Analysis and Design using MATLAB", Chapman & Hall / CRC Press.
4.	Shan Quegan, Simon Kingsley, "Understanding Radar Systems", Scitech Publishing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	_	_	_	_	-	-	-	2	3	3	1
CO2	3	3	2	-	-	_	_	_	-	-	-	3	3	3	1
CO3	3	2	1	_	ı	ı	ı	1	ı	-	ı	3	3	3	1
CO4	3	2	2	-	ı	1	1	ı	ı	-	ı	3	2	2	1
CO5	2	3	2	-	ı	ı	ı	ı	ı	-	ı	2	2	2	1
20LPE019	3	2	2	_				-	ı	_	ı	3	3	3	1

1-Low 2—Moderate (Medium) 3-High

20LPE020	SMART ANTENNAS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To study the fundamental of Smart antennas.
- To understand the Spatial Spectrum of the antenna array and analyze the performance of smart antenna using beamforming techniques
- Gain an understanding and experience with smart antenna environments and implementation.

UNIT I INTRODUCTION TO SMART ANTENNAS

9

Need for Smart Antennas, Smart Antenna Configurations, Switched-Beam Antennas, Adaptive Antenna Approach, Space Division Multiple Access (SDMA), Architecture of a Smart Antenna System, Receiver, Transmitter, Benefits and Drawbacks, Mutual Coupling Effects

UNIT II DOA ESTIMATION FUNDAMENTALS

9

Introduction the Array Response Vector, Received Signal Model, The SubspaceBased Data Model, Signal Autocovariance Matrices, Conventional DOA Estimation Methods, Conventional Beamforming Method, Capon's Minimum Variance Method, Subspace Approach to DOA Estimation, The MUSIC Algorithm, The ESPRIT Algorithm, Uniqueness of DOA Estimates.

UNIT III BEAM FORMING FUNDAMENTALS

9

The Classical Beam former-Statistically Optimum Beam forming Weight Vectors, The Maximum SNR Beam former, The Multiple Side lobe Canceller and the Maximum, SINR Beam former- Minimum Mean Square Error (MMSE), Direct Matrix Inversion (DMI), Linearly Constrained Minimum Variance (LCMV), Adaptive Algorithms for Beam forming, The Least Mean-Square (LMS) Algorithm, The Recursive Least Squares (RLS) Algorithm.

UNIT IV | SPACE TIME PROCESSING

9

Introduction, Discrete Space—Time Channel and Signal Models, Space—Time Beam forming, Intersymbol and Co-Channel Suppression, ISI Suppression, CCI Suppression, Joint ISI and CCI Suppression, Space—Time Processing for DS-CDMA, Capacity and Data Rates in MIMO Systems, Single-User Data Rate Limits, Multiple Users Data Rate Limits, Data Rate Limits Within a Cellular System, MIMO in Wireless Local Area Networks.

UNIT V MOBILE STATIONS SMART ANTENNAS

9

Introduction -Multiple-Antenna MS Design, Combining Techniques, Selection (Switched) Diversity, Maximal Ratio Combining, Adaptive Beam forming or Optimum Combining, RAKE Receiver Size, Mutual Coupling Effects, Dual-Antenna Performance Improvements, Downlink Capacity Gains

	K Capacity Gaills							
		TO	OTAL:45PERIODS					
COUR	SE OUTCOMES:	Upon the course complet to	ion, the student will have the ability					
1.	Explain the concept	of fundamental Smart Ant	tenna System.					
2.		te the direction relative to f MUSIC and ESPRIT Alg	the array where the sound source is gorithm.					
3.	*	nt of a sensor array by me	for detect and estimate the signal of eans of optimal spatial filtering and					
4.	Analyse the concep	s of space time processing	5					
5.	Evaluate the requir systems.	ements for the design and	d implementation of smart antenna					
TEXT	BOOKS:							
1.		ılanis & Panayiotis I. I & Claypool Publishers ser	oannides, "Introduction to Smart ries-2007"					
2.	Joseph C. Liberti CommunicationsIS- publishers, 1st Editi	Jr., Theodore S Rappapo 95 and Third Generation on, 1989.	ort, "Smart Antennas for Wireless CDMA Applications", PTR – PH					
3.	Smart Antennas, By	Lal Chand Godara, CRC l	Press					
REFE	RENCES:							
1.	M.J. Bronzel, Smart	Antennas, John Wiley, 200	04					
2.	R.Janaswamy, Radio Communication, Klu		mart Antennas for Wireless					
3.	•	Aichael C. Wicks, Magdalena Salazar-Palma, Robert t Antennas'' Wiley series.						
4.	Ahmed El Zooghby,	"Smart Antenna Engineer	ing", Artech House Publisher					
5.		_	ook on Advancements in Smart Information Science Reference					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	1	1	-	-	-	-	1	2	3	1	2
CO2	3	3	3	3	2	1	-	-	-	-	2	2	3	3	3
CO3	3	3	3	3	2	1	-	-	-	-	2	2	3	3	3
CO4	3	3	3	3	1	1	-	-	-	-	2	3	3	3	3
CO5	3	2	2	2	1	1	1	1	1	1	3	3	3	2	3
20LPE020	3	3	3	3	1	2	1	-	1	1	2	2	3	3	3

20LPE021	WAVELET TRANSFORMS AND APPLICATIONS	L	T	P	С
		3	0	0	3
OBJECTI	VES:				
•	Γο study the basics of signal representation and Fourier theory				
•	Γο understand Multi Resolution Analysis and Wavelet concepts				
1	Γο understand the design of wavelets using Lifting scheme and the form	he aj	oplic	ation	ıs
UNIT I	FUNDAMENTALS				9
Orthonormali Convergence	es – Properties– Dot Product – Basis – Dimension, Orth ty – Relationship Between Vectors and Signals – Signal Spaces – Hilbert Spaces for Energy Signals- Fourier Theory: Fourier ser orm, Short time Fourier transform, Time-frequency analysis.	s – (Conc	ept o	of
UNIT II	MULTI RESOLUTION ANALYSIS				9
Orthonormal	Multi Resolution Analysis (MRA) – Haar Basis – Constructi MRA – Wavelet Basis for MRA – Continuous Time MRA Interp crete Time MRA – Basis Functions for the DTWT – PRQMF Fil	retat	ion 1	for th	
UNIT III	CONTINUOUS WAVELET TRANSFORMS				9
Frequency -	sform – Definition and Properties – Concept of Scale and its Continuous Wavelet Transform (CWT) – Scaling Function subechies Coiflet, Mexican Hat, Sinc, Gaussian, Bi Orthogonal)–for CWT.	and	l W	avele	et
UNIT IV	DISCRETE WAVELET TRANSFORM				9
by Filter Bar Coefficients MultiBand W	nd Sub Band Coding Principles – Wavelet Filters – Inverse DWA lks – Basic Properties of Filter Coefficients – Choice of Wa – Derivations of Daubechies Wavelets – Mallat's Algorithm avelet Transforms Lifting Scheme- Wavelet Transform Using Pol – Geometrical Foundations of Lifting Scheme – Lifting Scheme	vele n fo lyph	t Fu r D' ase I	nctio WT Matri	on — X

UNIT	V	APPLI	CATIO	NS		9						
Coding	g – Imago	e Denois	sing Techr	ressing- Image Compression Techniquiques: Noise Estimation – Shrinkage Reject Isolation, Image Fusion, and Object	Rules – Shrin							
				TOTAL: 45 PE	RIODS							
OUT	COME	S		Upon the course completion, the student to	will have the	ability						
1.	Use Fo	urier too	ls to analy	se signals								
2.	Gain kı	nowledge	e about M	RA and representation using wavelet bas	ses							
3.	Acquir	e knowle	edge about	various wavelet transforms and design	wavelet trans	form						
4.	Apply	Apply wavelet transform for various signal & image processing applications										
5.	To anal	•	velet meth	ods for signal processing and Image Cor	npression							
TEXT	г вооі	KS:										
1.	Applica	ations, Pe	earson Edu	ar, —Wavelet Transforms Introduction to the acation, Asia, 2000.	•							
2.	L.Prasa Press, 1	id&S.S.I 1997.	yengar, W	avelet Analysis with Applications to Ima	ige Processing	g, CRC						
REFE	ERENC	ES:										
1.				Chan, "Fundamentals of wavelets: Theo ciencePublication,John Wiley & Sons In		is and						
2.			•	"Wavelets and subband coding" Prentic		995.						
3.	Stepher Press, 2		lat, "A wa	velet tour of signal processing" 2 nd Ed	ition Academ	ic						
4.		KP and ce Hall, 2		ndran K I, Insight into Wavelets from Th	neory to pract	tice,						
5.		ad & S.S. ress, 199		Wavelet Analysis with Applications to I	mage Proces.	sing",						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	1	-	-	-	2	3	1	-	2	-	-
CO2	2	1	-	1	3	-	1	-	-	-	-	-	-	2	2
CO3	1	1	-	2	2	3	1	1	1		-	-	-	3	2
CO4	-	-	2	3	3	1	2	-	-	-	-	-	2	-	1
CO5	3	2	3	3	1	1	2	2	3	3	-	-	-	-	-
20LPE021	2	2	1	2	2	1	1	1	1	2	-	-	1	1	1

20LPE02	22		VLSI TE	ESTIN	IG		L	T	P	C
							3	0	0	3
OBJECT	IVES:						•	•		
•	To intro	oduce the mat	nematical pri	nciples	for syste	ematic test an	d vali	datio	n.	
•	To intro	oduce the scie	ntific princip	les for	systemati	ic test and va	lidatio	n.		
•	To insti	il knowledge o	on various tes	sting al	gorithms					
UNIT I	TES	STING AN	D FAULT	MOD	ELLIN	iG				9
Models –Fa	ult detec	ng — Faults in etion — Fault L models — Gate	ocation – Fa	ult don	ninance –	Logic simul	•			
UNIT II	TES	ST GENER	ATION							9
_		ombinational r sequential ci	_			_		cuit (desig	n
UNIT III	DES	SIGN FOR	TESTABI	LITY	7					9
C		ty – Ad-hoc o l DFT approac	0 0	eric sca	n-based	design – clas	sical s	scan-	base	d
UNIT IV	SEI	LF – TEST	AND TES	T AL	GORIT	HMS				9
		est pattern ger esign – Test A							ures	_
UNIT V	FAU	ULT DIAG	NOSIS							9
_	_	osis – Diagno ing design – S	•			Diagnosis fo	r Con	bina	tiona	ıl
						AL: 45PER				
OUTCOM	MES		Upon the corto	urse co	mpletion	, the student v	will ha	ve tł	ne abi	lity
1. Dis	scuss abo	out the various	s faults in VL	LSI circ	cuits.					
2. An	alyze tes	t generation o	f combination	nal and	sequenti	al circuits.				
3. Un	derstand	the principles	used in the c	constru	ction VL	SI Design for	Test	(DF	Γ) too	ols.
4. Dis	scuss abo	out test patterr	generation a	and BIS	ST archit	ectures.				
5. Dia	agnose th	ne various fau	lts in combin	ational	circuits.					

TEXT	BOOKS:											
1.		ci, M.A.Breuer and A.D. Friedman, "Digital systems and Testable o Publishing House, 2002										
2.	P. V. Lala "Digital Circuit Testing and Testability" Academic Press, 2002											
REFE	RENCES:											
1.		and V.D.Agrawal, "Essentials of Electronic Testing for Digital, Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002.										
2.	A.L.Crouch, Hall Internat	"Design Test for Digital IC's and Embedded Core Systems", Prentice ional, 2002.										
3.	T. W. William	ns, "VLSI Testing", North- Holland.										
4.		Wang, Chang-Wen Wu Xiaoqing Wen, "VLSI Test Principles and : Design for Testablity", Morgan Kaufmann series.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	-	-	2	2	2	1
CO2	3	3	2	2	-	-	-	Ī	Ī	-		2	2	2	2
CO3	3	2	2	2	-	-	-	-	-	-	-	3	2	2	1
CO4	3	2	1	1	-	-	-	_	_	-	-	2	2	2	1
CO5	3	3	2	2	-	-	-	-	-	-	-	2	2	2	2
20LPE022	3	2	2	2	_	_	_	-	-	-	-	2	2	2	1

1-Low 2—Moderate (Medium) 3-High

20LPI	E023	AF	RM SYSTEM DESIGN	L	Т	P	C				
		L		3	0	0	3				
UNIT	I	ARM MICRO	CONTROLLER ARCHITECTURI	E	l .		9				
Ports –	SRAM	, ,	on – addressing modes – I/O Memory – EE – Interrupt Structure- Serial Communication								
UNIT	II	ARM ARCHI	TECTURE AND PROGRAMMING	Ţ			9				
Program	nmer's	model -Registers – l	ctural Inheritance – Core & Architectures Pipeline - Interrupts – ARM organization - AI a set – Thumb instruction set – Instruction cy	RM	oroce	essor					
UNIT	III	ARM APPLIC	CATION DEVELOPMENT				9				
schemes	s Firmv	vare and bootloader	lter –Exception Handling – Interrupts – Inter – Example: Standalone - Embedded Operati nple- ARM Cortex M0 NUVOTON Processo	ng S		_					
UNIT	IV	MEMORY PR	ROTECTION AND MANAGEMEN	T			9				
	y-Page	_	IPU, Cache and Write Buffer-MPU to Min and Memory Access Permission-Fast Co								
UNIT	V	DESIGN WIT	H ARM MICROCONTROLLER				9				
			Simple ASM/C programs- Hamming Cootable- Block copy- subroutines.	de-]	Divis	sion-					
			TOTAL: 45 PERI	OD	S						
OUTC	COME	ES	Upon the course completion, the student will have the ability to								
1.	To lea	rn the IO periphera	als, communication and interfacing technique	ies c	of AI	RM					
2.	To un	derstand the ARM	architecture its instruction set								
3.	To de	velop application u	sing ARM cortex								
4.	To im	plement memory m	nanagement technique.								
5.	To des	sign systems and pr	rogramming using ASM and C programs								

TEXT	BOOKS:
1.	Andrew N.Sloss, Dominic Symes and Chris Wright "ARM System Developer's
	Guide: Designing and Optimizing System Software", First edition, Morgan
	Kaufmann Publishers, 2004.
2.	Steve Furber, 'ARM system on chip architecture', Addision Wesley,2010.
3.	David Seal, "ARM Architecture Reference Manual" Second Edition, Addison-
	Wesley Professional, 2001.
REFE	RENCES:
1.	Trevor Martin, 'The Insider's Guide To The Philips ARM7-Based Microcontrollers,
	An Engineer's Introduction To The LPC2100 Series' Hitex (UK) Ltd.,
2.	Dananjay V. Gadre 'Programming and Customizing the AVR microcontroller',
	McGraw Hill 2001
3.	William Hohl, 'ARM Assembly Language' Fundamentals and Techniques, 2009.
4.	Jason D. Bakos, "Embedded Systems ARM programming and optimization", Morgan
	Kaufmann Publishers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	2	2
CO2	3	2	1	-	-	-	-	-	-	-	-	-	2	3	3
CO3		2	3	3	2	2	2	2	2	2	2	-	2	3	
CO4	1	2	3	1	2	2	1	-	-	2	-	-	2	2	2
CO5		2	3	3	3	2	2	2	2	2	3	2	3	3	3
20LPE023	1	2	2	1	1	1	1			1	1	-	2	2	2

20LPI	E 024	ANALOG INTEGRATED CIRCUIT DESIGN	L	T	P	C	
			3	0	0	3	
OBJE	CTIV	ES:		l			
•		·	s, di	gita	l an	d	
•	To A	nalyse frequency response of single and two stage am	plif	iers			
•		• •	npli	fier	S		
UNIT	Ι	MOSFET METRICS				9	
metrics,	**DBJECTIVES: To understand the MOSFET theory, its second order effects, digital and analog metrics of MOS device. To Analyse frequency response of single and two stage amplifiers circuits **NIT I MOSFET METRICS** Imple long channel MOSFET theory – SPICE Models – Technology trend, need for Analog esign - Sub-micron transistor theory, Short channel effects, Narrow width effect, Drain duced barrier lowering, Sub-threshold conduction, Reliability, Digital metrics, Analog etrics, Small signal parameters, Unity Gain Frequency, Miller's approximation **NIT II SINGLE STAGE AND TWO STAGE AMPLIFIERS** Ingle Stage Amplifiers – Common source amplifier with resistive load, diode load, constant urrent load, Source degeneration Source follower, Input and output impedance, Common the amplifier - Differential Amplifiers – differential and common mode response, Input ving, gain, diode load and constant current load - Basic Two Stage Amplifier, Cut-off equency, poles and zeros **NIT III FREQUENCY RESPONSE OF SINGLE STAGE AND TWO STAGE AMPLIFIERS** Trequency Response of Single Stage Amplifiers – Noise in Single stage Amplifiers – Stability af Frequency Compensation in Single stage Amplifiers, Frequency Response of Two Stage mplifiers, – Noise in two stage Amplifiers – Stability, gain and phase margins, Frequency compensation in two stage Amplifiers, Effect of loading in feedback networks						
current gate am swing,	load, S plifier gain, d	ource degeneration Source follower, Input and output impeda - Differential Amplifiers – differential and common mode re iode load and constant current load - Basic Two Stage Amp	nce, espo	Connse,	mmo Inpu	n ıt	
UNIT	III	-	AN	D		9	
and Free	quency ers, – N	Compensation in Single stage Amplifiers, Frequency Response Noise in two stage Amplifiers – Stability, gain and phase marginal contents of the stage	of [Γwo	Stag	ge .	
UNIT	To study the operation of current mirrors and operational amplifiers circuits NIT I MOSFET METRICS mple long channel MOSFET theory – SPICE Models – Technology trend, need for Analog sign - Sub-micron transistor theory, Short channel effects, Narrow width effect, Drain blued barrier lowering, Sub-threshold conduction, Reliability, Digital metrics, Analog strics, Small signal parameters, Unity Gain Frequency, Miller's approximation NIT II SINGLE STAGE AND TWO STAGE AMPLIFIERS 9 angle Stage Amplifiers – Common source amplifier with resistive load, diode load, constant rent load, Source degeneration Source follower, Input and output impedance, Common are amplifier - Differential Amplifiers – differential and common mode response, Input ing, gain, diode load and constant current load - Basic Two Stage Amplifier, Cut-off quency, poles and zeros NIT III FREQUENCY RESPONSE OF SINGLE STAGE AND TWO STAGE AMPLIFIERS Equency Response of Single Stage Amplifiers – Noise in Single stage Amplifiers – Stability de Frequency Compensation in Single stage Amplifiers, Frequency Response of Two Stage applifiers, – Noise in two stage Amplifiers – Stability, gain and phase margins, Frequency mpensation in two stage Amplifiers, Effect of loading in feedback networks NIT IV CURRENT MIRRORS AND REFERENCE CIRCUITS 9 scode, Negative feedback, Wilson, Regulated cascode, Bandgap voltage reference,						
Cascode, Negative feedback, Wilson, Regulated cascode, Bandgap voltage re							

trimming, Effect of transistor mismatch in analog design

UNIT V
UNIT V

Gilbert cell and applications, Basic two stage OPAMP, two-pole system response, common mode and differential gain, Frequency response of OPAMP, CMFB circuits, slew rate, power supply rejection ratio, random offset, systematic offset, Noise, Output stage, OTA and OPAMP circuits - Low voltage OPAMP

OPAM	IP circuits - Low	voltage Ol	PAMP						
				TOTAL: 45 PERIODS					
OUT	COMES		Upon the course co	impletion, the student will have the ability					
1.	Ability to expl	ain the ope	peration of MOSFET	and its metrics					
2.	Ability to anal	yse the sin	ngle and two stage a	mplifiers					
3.	Ability to anal	yse the fre	equency response of	single and two stage amplifiers					
4.	Ability to unde	erstand the	e operation of current mirror and reference circuits						
5.	Ability to unde	erstand the	e operation of operat	ional amplifiers					
TEXT	Γ BOOKS:								
1.	Behzad Razavi	, "Design	of Analog CMOS In	tegrated Circuits", McGraw Hill, 2000					
2.			Meyer, "Analysis and th edition, 2009.	Design of Analog Integrated Circuits",					
3.	J. Michael Jaco Baker, PHI, 19		ications and Design v	vith Analog Integrated circuits", Second					
REFI	ERENCES:								
1.	Philip E.Allen,	"CMOS A	Analog Circuit Desig	n", Oxford University Press, 2013					
2.	David Harris, I Pearson.	Neil Weste	e, "CMOS VLSI desi	gn: A Circuits and Design Perspective",					
3.	R.Jacob Baker, Edition, 2009	"CMOS:	: Circuit Design, Lay	out , and Simulation", Wiley Student					
4.	David A. Jones Design" Wiley,		n W Martin Tony Cha	n Carusone," Analog Integrated Circuit					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
20LPE024	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

20LPE025	MICROWAVE INTEGRATED CIRCUITS	L	T	P	C			
		3	0	0	3			
OBJECTIV	ES:				1			
• To intro	oduce microwave circuits							
• To und mixer o	erstand the design of matching networks, filters, amplifiers, oscircuits.	cillate	ors a	ınd				
• To stud	ly about microwave integrated circuits.							
UNIT I	INTRODUCTION TO MICROWAVE CIRCUIT	S			9			
•	ssion lines – General Characteristics of PC Boards – Transmission wes made from Transmission Lines – Resonators - Combiners							
UNIT II	MATCHING NETWORKS AND FILTER DESIG	ΞN			9			
High Frequence	entation of two port RF/Microwave Networks: Low Frequency Parameters, Transmission Matrix, ZY Smith Chart, Design Lumped Elements, Matching Network Design using Distribu	n of	Mat	chin	g			
UNIT III AMPLIFIERS AND OSCILLATORS								
Noise Consider Design, Oscilla	ability considerations in active networks – Gain Consideration is ration in active networks – Broadband Amplifier design – Low Nators: Oscillator versus Amplifier Design – Oscillation condition derations of Microwave Transistor Oscillators.	loise	Am	plifie	er			
UNIT IV	MIXERS AND CONTROL CIRCUITS				9			

Mixers – Conversion Loss – SSB and DSB Mixers – Design of Mixers: Single Ended Mixers – Single Balanced Mixers - Sub Harmonic Diode Mixers, Microwave Diodes, Phase

Shifters – PIN Diode Attenuators

UNIT V MICROWAVE IC DESIGN AND MEASUREMENT 9 TECHNIQUES

Microwave Integrated Circuits – MIC Materials- Hybrid versus Monolithic MICs – Multichip Module Technology - Fabrication Techniques, Miniaturization techniques, Introduction to SOC, SOP, Test fixture measurements, probe station measurements, thermal and cryogenic measurements, experimental field probing techniques.

		TOTAL: 45 PERIODS
OUT	COMES	Upon the course completion, the student will have the ability to
1.	Describe microway	ve circuits and printed circuit boards.
2.	Design matching n	etworks and filters.
3.	Analyse microwav	e amplifiers and oscillators
4.	Compare different	mixer circuits.
5.	Discuss about micr	rowave integrated circuits design and measurement techniques.
TEXT	Γ BOOKS:	
1.	Thomas H.Lee, "Pl	anar Microwave Engineering", Cambridge University Press, 2004
2.	Matthew M. Radma Education, II Edition	anesh, "Radio Frequency and Microwave Electronics", Pearson on 2002
REFI	ERENCES:	
1.	"Microwave Trans New Jersy	istor Amplifiers – Analysis and Design", II Edition, Prentice Hall,
2.	-	Monolithic MIC; Technology & Design", Artech House, 1989.
3.	Gupta K.C. and An York, 1975.	narjit Singh, "Microwave Integrated Circuits", John Wiley, New
4.	· ·	ndbook of Microwave Integrated Circuits", Artech House, Boston,
5.		d David P.N., "RF / Microwave Circuit Design for Wireless m Wilev. 2000.
6.	C. Gentili, "Microv	wave Amplifiers and Oscillators", North Oxford Academic, 1986.
7.	Samuel. Y. Liao, "I Inc., 1987.	Microwave Circuit Analysis and Amplifier Design", Prentice Hall.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO2	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO3	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
CO4	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO5	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
20LPE025	3	2	3	1	1	i	-	-	i	-	-	2	2	2	2

1-Low 2—Moderate (Medium) 3-High

OPEN ELECTIVES

20LOE001	REAL TIME SYSTEMS	L	Т	P	C
		3	0	0	3
OBJECTIV	ES				
•	To understand Concept of Real time system				
•	Understand the Design and application programs on real time	syst	ems		
•	Understand the hardware and software architectures of real tin	ne S	yste	ms.	
UNIT I	INTRODUCTION				9
classes – Perfo Task Assignn	Issues in Real Time Computing – Structure of a Real Time Sormance Measures for Real Time Systems – Estimating Programment and Scheduling – Classical uniprocessor scheduling cheduling of IRIS tasks – Task assignment – Mode changes and	n Ru alg	ın Ti orith	imes	_ _
UNIT II	PROGRAMMING LANGUAGES AND TOOLS				9
Control struc (Exception) E	Languages and Tools – Desired language characteristics – latures – Facilitating Hierarchical Decomposition, Package rror handling – Overloading and Generics – Multitasking – Task Scheduling – Timing Specifications – Programming Enoport.	s, I - I	Run Low	tim	ie el
UNIT III	REAL TIME DATABASES				9
Memory Datab Disk Schedulin	abases – Basic Definition, Real time Vs General Purpose Dabases, Transaction priorities, Transaction Aborts, Concurrency on Algorithms, two – phase Approach to improve Predictability Consistency – Databases for Hard Real Time Systems.	cont	rol i	ssue	s,
UNIT IV	COMMUNICATION				9
Real – Time Co	ommunication – Communications media, Network Topologies P	roto	cols	, Fau	lt

Tolerant Routing. Fault Tolerance Techniques – Fault Types – Fault Detection. Fault Error containment Redundancy – Data Diversity – Reversal Checks – Integrated Failure handling.

UNIT V	EVALUATION TECHNIQUES	9
Reliability Ev	aluation Techniques - Obtaining parameter values, Reliability mode	ls for
Hardware Red	undancy – Software error models. Clock Synchronization – Clock, A Non	ı-fault

- Tolerant Synchronization Algorithm - Impact of faults - Fault Tolerant Synchronization in

Hardwa	are –Fault Tolerant	Synchronization in software.
		TOTAL: 45 PERIODS
OUT	COMES	Upon the course completion, the student will have the ability to
1.	Understand the so	cheduling problems and can apply them in real time system.
2.	Describe the four programming.	ndation for programming languages developed for real time
3.	Be exposed to rea	al time database.
4.	Establish real tim	ne communication between devices
5.	Analyse the situal accordingly.	tion of fault occurrence and will be able to apply solutions
TEXT	BOOKS:	
1.	C.M. Krishna, Ka Editions, 1997.	ang G. Shin, "Real – Time Systems", McGraw – Hill International
2.	Rajib Mall," Real	l-time systems: theory and practice", Pearson Education, 2007
3.	Peter D.Lawrence McGraw Hill, 19	e, "Real Time Micro Computer System Design – An Introduction", 88.
REFE	ERENCES:	
1.	ofIndia, 1998.	Real Time Computer Control – An Introduction", Prentice Hall
2.	S.T. Allworth and Macmillan,2nd E	l R.N.Zobel, "Introduction to real time software design", dition, 1987.
3.		Bailey, "An Introduction to Real – Time Systems", Prentice –
4.		e, "Real Time System Design and Analysis", Prentice Hall of India,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	1	-	3	2	3	3	3	3	3
CO2	3	3	3	2	3	-	-	-	3	3	2	3	3	3	3
CO3	2	1	1	-	-	2	1	-	-	2	2	2	3	2	3
CO4	2	1	1	-	3	2	1	-	2	2	1	3	3	2	2
CO5	3	3	3	3	3	1	2	-	3	3	1	3	3	3	3
20LOE001	2	2	2	1	2	1	1	-	1	2	1	2	3	2	2

20LOE002	WIRELESS SENSOR NETWORKS	L	T	P	C
		3	0	0	3
OBJECTIV	YES:	1	•		
•	To Understand the basic WSN technology and supporting p emphasis placed on standardization basic sensor systems an of sensor technology.				vey
•	Understand the medium access control protocols and address issues	s phy	sical	layeı	r
•	Knowledge of infrastructure establishment and sensor network provided	ork pla	atfor	m is	
UNIT I	OVERVIEW OF WIRELESS SENSOR NETWO	ORK	S		9
Challenges fo	r Wireless Sensor Networks, Enabling Technologies for	Wirel	ess S	Senso	or
1 (00) (01115)					
UNIT II	ARCHITECTURES				9
UNIT II Single-Node A Operating Sys	ARCHITECTURES Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture - timization Goals and Figures of Merit, Gateway Concepts.				s,
UNIT II Single-Node A Operating Sys	Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture -				s,
UNIT II Single-Node A Operating Sys Scenarios, Opt UNIT III Physical Layer Networks, Lov Protocol, Wak	Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture - timization Goals and Figures of Merit, Gateway Concepts.	Wirel Mediat	ess S	Senso Device	s, sk 9 or se
UNIT II Single-Node A Operating Sys Scenarios, Opt UNIT III Physical Layer Networks, Lov Protocol, Wak	Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture - Emization Goals and Figures of Merit, Gateway Concepts. NETWORKING SENSORS T and Transceiver Design Considerations, MAC Protocols for W Duty Cycle Protocols and Wakeup Concepts - S-MAC, The Meteup Radio Concepts, Address and Name Management, Assi	Wirel Mediat	ess S	Senso Device	s, sk 9 or se
UNIT II Single-Node A Operating Sys Scenarios, Opt UNIT III Physical Layer Networks, Lov Protocol, Wak Addresses, Ro UNIT IV	Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture - Emization Goals and Figures of Merit, Gateway Concepts. NETWORKING SENSORS The and Transceiver Design Considerations, MAC Protocols for the Duty Cycle Protocols and Wakeup Concepts - S-MAC, The Meteup Radio Concepts, Address and Name Management, Assituting Protocols- Energy-Efficient Routing, Geographic Routing Protocols- Energy-Efficient Routing, Geographic Routing Clustering, Time Synchronization, Localization and Potential Concepts, Time Synchronization, Localization and Potential Concepts, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering (Clustering) (Clusteri	Wirel Mediat gnmen	ess Sion I	Senso Device MA	9 or ce C
UNIT II Single-Node A Operating Sys Scenarios, Opt UNIT III Physical Layer Networks, Lov Protocol, Wak Addresses, Ro UNIT IV Topology Con	Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture - Emization Goals and Figures of Merit, Gateway Concepts. NETWORKING SENSORS The and Transceiver Design Considerations, MAC Protocols for the Duty Cycle Protocols and Wakeup Concepts - S-MAC, The Meteup Radio Concepts, Address and Name Management, Assituting Protocols- Energy-Efficient Routing, Geographic Routing Protocols- Energy-Efficient Routing, Geographic Routing Clustering, Time Synchronization, Localization and Potential Concepts, Time Synchronization, Localization and Potential Concepts, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering, Time Synchronization, Localization and Potential Clustering (Clustering) (Clusteri	Wirel Mediat gnmen ng.	ess Sion I	Senso Device MA	9 or ce C
UNIT II Single-Node A Operating Sys Scenarios, Opt UNIT III Physical Layer Networks, Lov Protocol, Wak Addresses, Ro UNIT IV Topology Con Tasking and C UNIT V Sensor Node I	Architecture - Hardware Components, Energy Consumption of tems and Execution Environments, Network Architecture - timization Goals and Figures of Merit, Gateway Concepts. NETWORKING SENSORS The and Transceiver Design Considerations, MAC Protocols for the Duty Cycle Protocols and Wakeup Concepts - S-MAC, The Material Research Concepts, Address and Name Management, Assistating Protocols- Energy-Efficient Routing, Geographic Routing Protocols- Energy-Efficient Routing, Geographic Routing, Clustering, Time Synchronization, Localization and Potentrol.	Wirel Mediat gnmen ng. Sitioni	ess Sion Int of	Senso Device MA	9 or se C 9

OUTCO	OMES	Upon the course completion, the student will have the ability to
1.	Describe enabling Technology	ologies for Wireless Sensor Networks,
2.	Analyse the architecture Service interfaces of WS	of sensor networks and design principles for WSNs, Ns, Gateway concepts
3.	Design protocols for wire design issues	eless sensor networks with respect to some protocol
4.	Describe the infrastructur	re establishment in Sensor networks.
5.	Analyse the sensor netwo	ork platforms and tools.
TEXT B	BOOKS:	
1.	Holger Karl & Andreas Networks", John Wiley,	Willig, " Protocols and Architectures for Wireless Sensor 2005.
2.	Feng Zhao & Leonidas Processing Approach", E	J. Guibas, "Wireless Sensor Networks- An Information Elsevier, 2007.
REFER	ENCES:	
1.	1	Minoli, &TaiebZnati, "Wireless Sensor Networks- And Applications", John Wiley, 2007.
2.		nsor Network Designs", John Wiley, 2003

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	1	-	-	2	-	-	1	2	1	3	3	2	3
CO2	3	3	3	2	1	2	2	1	3	2	2	3	3	3	2
CO3	3	3	3	2	2	2	-	-	3	2	2	3	3	2	3
CO4	2	1	2	-	2	2	2	1	2	2	3	2	3	3	2
CO5	3	2	3	2	3	2	1	-	3	3	2	3	3	3	3
20LOE002	2	2	2	1	1	2	1	-	2	2	2	2	3	2	2

20LOE003	INDUSTRIAL AUTOMATION AND ROBOTICS	L	T	P	C
		3	0	0	3
UNIT I	INTRODUCTION TO ROBOTICS AND AUTOMATION				9

Robotics: History of Robotics, Applications of Robotics, General Structure of Robotic Mechanical Systems, Classification of Robots based on coordinate system, Classification of Robotics, Overview of robot subsystems, Components of Robot system-Manipulator, Controller, Power conversion unit etc, Specifications of robot. Commercially available Software Packages for Robot Simulation

UNIT II KINEMATICS AND DYNAMICS

12

Kinematics: Homogeneous co-ordinate vector operations, matrix operations, co-ordinate reference frames, Homogeneous transformation and manipulator orientation relative points reference frames, Workspace, Forward Kinematics - forward solutions- Link coordinate frames, D-H matrix, Inverse Kinematics - Existence and Uniqueness of Solutions, **Dynamics**: Kane's Method in Robotics - Two DOF Planar Robot with Two Revolute Joints, Generalized Coordinates and Speeds, Velocities, Partial Velocities, Accelerations, Generalized Inertia Forces, Generalized Active Forces

UNIT III | MECHANISMS ACTUATORS AND SENSORS

9

Some Popular **Mechanisms** - Four-bar Mechanism, Slider-crank Mechanism, Rack and Pinion, Cams and Cranks, Gear and Gear Trains, Kinematics and Kinetics, Serial Robots, Parallel Robots, Mechanical Structure, Joint Mechanisms.

Actuators: Electromagnetic Actuators, Fluid Power Actuators. Different types of grippers - Compressed Air, Vacuum, Hydraulic Fluid Power, Electrical Power & other methods of gripping. DC Motors, Stepper Motors, Servo Motor, Controlling of these motors.

UNIT IV SENSORS

7

Sensors: Encoders - Rotary and Linear Incremental Encoders, Tachometer, Quadrature Encoders, Absolute Encoders. Analog Displacement Sensors, Force and Tactile Sensors, Ultrasonic Transponder, Accelerometers, Gyroscopes, proximity sensors, Infrared Sensors, touch slip sensor, laser range finder, Vision-based Sensors, Color-tracking Sensors, Sensor Mounting Arrangement.

UNIT V AUTOMATION 8

Structure of Automatic Industrial Systems, Relationship between the Robot Intelligence and the Product, Productivity of a Manufacturing Process, Kinematics and Control of Automatic Machines, Feedback Sensors, Transporting Devices, Feeding and Orientation Devices, Automatic Assembling, Inspection Systems, Welding _ Automation.

		TOTAL:45 PERIODS									
OUTC	OMES	Upon the course completion, the student will have the ability to									
1.	To learn the	he basic concepts of working of robot and its fields									
2.	To know a	about the dynamics and kinematics of robot									
3.	To unders	o understand the functions and mechanisms of actuators in the robot									
4.	To study a	about the working of sensors and its applications									
5.	To know a	about the use of Robots in industrial applications									
TEXT	BOOKS:										
1.	Bruno Si	iciliano, Oussama Khatib (Eds.), _Springer Handbook of Robotics_, 2008,									
2.	Jorge An	ngeles, _Fundamentals of Robotic Mechanical Systems Theory, Methods, orithms_ Second Edition, 2003, Springer-Verlag New York, Inc.,									
3.	Edwin V	Vise, _Robotics Demystified_, 2005, The McGraw-Hill Companies,									
REFEI	RENCES:										
1.	Thomas	R. Kurfess, _Robotics and Automation Handbook_, CRC Press, 2004,									
2.	_Robotic	cs: Appin Knowledge Solutions (Firm)_, Infinity Science Press, 2007,									
3.		rto Pires, Altino Loureiro and Gunnar Bölmsjo, _Welding Robots - ogy, System Issues and Applications_, Springer-Verlag 2006,									
4.		akis, "Digital Communication", 4th Edition, Tata Mc Graw Hill									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	-	2	-	-s
CO3	3	2	1	-	2	-	-	-	-	-	-	-	2	2	2
CO4	3	2	1	-	2	-	-	-	-	-	-		2	2	2
CO5	3	2	2	3	3	2	1	2	-	2	2	2	3	3	3
20LOE003	3	2	1	1	1	-	-	-	-	-	-	-	2	1	1

20LO	E004	PRINCIPLES OF VLSI DESIGN	L	techrological technical techrological technical	P	C
		THE TOTAL DESIGNATION OF THE PROPERTY OF THE P	3		0	3
00.75		T		U	U	<u> </u>
OBJE	CTIV	ES:				
•	Expl	ain electrical properties of MOS and analyse the CMO	S te	chr	olog	зу.
•	Prov	ide concept of combinational and sequential circuits				
•	Unde	erstand the basic of VHDL and verilog for different log	gic (circ	uits	
UNIT	Ι	CMOS TECHNOLOGY				9
effects,	DC tr	v-MOS transistor, Ideal I-V characteristics, C-V characteristics ansfer characteristics - CMOS technologies, Layout design tements, Technology related CAD issues, Manufacturing issues	Rule			
UNIT	II	CIRCUIT CHARACTERIZATION AND SIMULATION				9
Design	margin	ion, Logical effort and Transistor sizing, Power dissipation, Reliability, Scaling- SPICE tutorial, Device models, Device cherization, Interconnect simulation				
UNIT	III	COMBINATIONAL AND SEQUENTIAL CIRCU DESIGN	JIT			9
static c	ircuits,	es –Low power logic design – comparison of circuit families circuit design of latches and flip flops, Static sequences sequencing dynamic circuits – synchronizers				
UNIT	IV	CMOS TESTING				9
		g- Testers, Text fixtures and test programs- Logic verification- nufacturing test – Design for testability – Boundary scan	Silio	con	debu	g
UNIT	\mathbf{V}	SPECIFICATION USING VERILOG HDL				9
procedu switch l Structur	ral ass evel m	ignments conditional statements, Data flow and RTL, structuodelling, Design hierarchies, Behavioural and RTL modelling, level description of decoder, equality detector, comparator, pradder, Ripple carry adder, D latch and D flip flop.	ıral Tes	gate t bei	leve	el 8,
		TOTAL: 45 PERI	OD	S		

OUT	COMES	Upon the course completion, the student will have the ability to									
1.	Explain the basic	es of CMOS circuits.									
2.	To understand th	e CMOS process technology.									
3.	To understand th	e concepts of designing VLSI subsystems.									
4.	Be exposed to te	chniques of chip design using programmable devices.									
5.	Modelling of digital system using hardware description language.										
TEXT	BOOKS:										
1.	Weste and Harris	:: CMOS VLSI DESIGN (Third edition) Pearson Education, 2005									
2.	J.Bhasker: Verilo	og HDL primer, BS publication,2001									
REFE	ERENCES:										
1.	Uyemura J.P: Int	troduction to VLSI circuits and systems, Wiley 2002.									
2.	D.A Pucknell & I	K.Eshraghian Basic VLSI Design, Third edition, PHI, 2003									
3.	M.J.S.Smith: App	M.J.S.Smith: Application specific integrated circuits, Pearson Education, 1997									
4.	Ciletti Advanced	Digital Design with the Verilog HDL, Prentice Hall of India, 2003									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	1	3	3	3	1	2	2	1	1	3	2	2	2	3	2
20LOE004	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

20LOE0	05		APPLIED 1	ELECTI	RONICS		L	T	P	C		
							3	0	0	3		
OBJEC'	ΓIV	ES:					ı					
• To	lear	n and unders	nd basic conce	epts of Ap	plied electro	onics.						
			onstruction, an			_			2 00/	- 1		
	deve	•	nple application		pment with	programmir	ig 80	85 8	803			
UNIT I		ANALO	CIRCUITS	i						9		
			s, diodes, trans lers, MOSFET		•	itors, fields a	nd i	nduc	tors	_		
UNIT II		APPLIC	TION OF A	NALO	G CIRCU	ITS				9		
-		nplifiers, appers	ication of op-	amps, acti	ve filters, 5	555 timer an	d os	cilla	tors			
UNIT II	Ι	DIGITA	CIRCUITS							9		
		ogical circus – converter	s, logical oper ircuits.	rations, co	mbinationa	l and seque	ntial	circ	uits	_		
UNIT IV	7	ELECTE	ONIC COM	MUNIC	ATION S	SYSTEMS				9		
		•	- noise - tele trol systems -				issic	n, c	ptica	al		
UNIT V		MICROI	ROCESSOR	RS AND	MICRO	CONTROL	LLE	R		9		
-	-	-	cessors and pr	•	_	and interfac	eing	- Th	e PI	C		
					TOTAL	L: 45 PER	OD	S				
OUTCO	ME	S	Jpon the cours	e complet	ion, the stud	dent will hav	e the	abil	lity to)		
	cquii rcuit		for building,	testing and	d modifyin	g simple circ	uits	to co	ompl	ex		
2. A	bility	y to understa	d and analyse,	linear and	l digital ele	ectronic circu	its.					
3. A	cqui	res the basic	nowledge of e	electronics								
4. G	ains	ns knowledge about the microprocessor and microcontroller.										

TEXT	T BOOKS:									
1.	Owen Bishop,	"Electronics – Circuits and Systems", 3 rd Edition, Newnes, 2010.								
2.	Michael Tooley Edition, Newne	y B A, "Electronic Circuits: Fundamentals and Applications", 3 rd es, 2006.								
3.	3. Donald .A. Neamen, Electronic Circuit Analysis and Design –2nd Edition, Tata Mc Graw Hill, 2009.									
REFE	ERENCES:									
1.	John B.Peatma	n ," Design with PIC Microcontrollers", Prentice Hall, 1998.								
2.		, Christos C.Halkias, 'Integrated Electronics – Analog and Digital','Tata McGraw Hill, 2003.								
3.	Fiore, "Opamps Applications", 0	s & Linear Integrated Circuits Concepts & Cengage,2010.								
4.	R. Gayakwad , PHI Publicatio	Textbook of Operational Amplifiers and Linear Integrated Circuits, n.								
5.	R. Coughlin an Publications.	d Driscoll, Textbook of OpAmp & Linear Integrated Circuits, PHI								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	-	-	1	2	2	-	-	1	-	-
CO2	3	3	2	-	-	-	1	1	2	2	3	-	-	2	-
CO3	1	2	3	3	3	1	1	-	-	2	2	-	1	1	-
CO4	3	2	3	1	3		-	-	-	2	3	2	2	3	3
CO5	3	-	2	1	3	3	2	-	-	3	2	3	3	1	3
20LOE005	2	1	2	1	1	-	-	-	-	2	2	-	1	1	1

20LOE006	FUNDAMENTALS OF WIRELESS L NETWORKS	T	P	C
	3	0	0	3
OBJECTIV	ES:	1		
• To stud	ly about Wireless networks, protocol stack and standards.			
• To stud	ly about fundamentals of 3G Services, its protocols and application	ns.		
• To stud	ly about evolution of 4G Networks, its architecture and application	ns.		
UNIT I	WIRELESS LAN			9
IEEE802.11: S 802.11a – Hipe Baseband laye	VLAN technologies: Infrared, UHF narrowband, spread spystem architecture, protocol architecture, physical layer, MAC layer LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Rarr, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAX	r, 80 idio	2.11b Laye	o, r,
UNIT II	MOBILE NETWORK LAYER			9
IPV6-Network	Mobile IP: IP packet delivery, Agent discovery, tunneling and encarriage in the internet- Mobile IP session initiation protocol - mobing, Destination Sequence distance vector, Dynamic source routing	oile		
UNIT III	MOBILE TRANSPORT LAYER			9
retransmit/fast TCP, Snooping	ments for wireless protocols - Traditional TCP: Congestion correcovery, Implications of mobility - Classical TCP improvements TCP, Mobile TCP, Time out freezing, Selective retransmission, TCP over 3G wireless networks.	s: I	ndire	et
UNIT IV	WIRELESS WIDE AREA NETWORK			9
3G-MSC, 3G-	JTMS Terrestrial Radio access network-UMTS Core network Ar SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/D k packet access (HSDPA)- LTE network architecture and protocol	HCI		
UNIT V	4G NETWORKS			9
Technologies:	- 4G vision – 4G features and challenges - Applications of Multicarrier Modulation, Smart antenna techniques, OFDM-MIMulation and coding with time slot scheduler, Cognitive Radio.			

TOTAL: 45 PERIODS

OUT	COMES	Upon the course completion, the student will have the ability to									
1.	Acquires know architecture.	rledge about the latest 3G/4G and WiMAX networks and its									
2.		plement wireless network environment for any application using protocols and standards.									
3.	Implement diff	ferent types of applications for smart phones and mobile devices with strategies.									
4.	An Overview of	An Overview of UTMS and its core network Architecture									
5.	To describe the	e 4G features and challenges and its Applications of 4G									
TEXT	BOOKS:										
1.	Jochen Schiller 2012. (Unit I, I	r," Mobile Communications", Second Edition, Pearson Education II, III)									
2.	Vijay Garg, "V 2007. (Unit IV	Vireless Communications and networking", First Edition, Elsevier (, V)									
3.	William Stallin 2002.	ngs, "Wireless Communications and Networks", Pearson Education,									
REFE	ERENCES:										
1.		Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA Jobile Broadband", Second Edition, Academic Press, 2008.									
2.	Anurag Kumar Elsevier 2011.	, D.Manjunath, Joy kuri, "Wireless Networking", First Edition,									
3.	_	, Michael Moher, David Koilpillai, "Modern Wireless ns", First Edition, Pearson Education 2013									
4.		Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks",First Edition, Pearson Education, 2003.									
5.		n, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles puting", Springer, 2003.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	1	-	-	-	2	3	1	-	2	-	-
CO2	2	1	-	1	3	-	1	-	-	-	-	-	-	2	2
CO3	1	-	-	1	1	-	1	3	2	1	-	-	1	2	2
CO4	-	1	2	2	-	1	-	2	1	2	2	1	-	1	1
CO5	3	2	1	-	-	3	3	-	1	1	-	1	-	2	-
20LOE006	1	1	-	-	-	-	1	1	1	1	-	-	-	1	1

20LOE	E007		FUN	DAME	NTALS	OF IO	Γ	L	T	P	C
	<u> </u>							3	0	0	3
UNIT I	I IN	TRO	ODUCTI	ON TO	IOT						9
			stics-Physic els – Domai	Ū			Logical desig M.	;n –	Ena	ablin	g
UNIT I	II IO	T D	ESIGN N	метн(ODOLO	OGY					9
•	ems mana	_		Design	Methodo	logy – Sp	pecifications I	ntegr	ation	n an	d
UNIT I	III BU	JILI	DING IO	T WIT	H RAS	PBERRY	Z PI				9
Physical	device – F	Raspb	erry Pi Inte	erfaces –	Program	ning – AP	Is / Packages –	Wel	ser	vices	-
UNIT I	IV BU	JILI	DING IO	T WIT	H GAL	ILEO/A	RDUINO				9
Intel Gal	ileo Gen2	with	Arduino- Iı	nterfaces	- Arduin	o IDE – Pr	ogramming - A	APIs a	and I	Hack	S
UNIT	V CA	ASE	STUDIE	S and A	ADVAN	CED TO	OPICS				9
			cations of Ic		_		- Cloud Storag	e for	Iot-	- Dat	a
						TOTA	L: 45 PER	IOD	S		
OUTC	OMES	U	pon the cou	ırse comp	pletion, th	e student	will have the a	bility	/ to		
1.	Design a p	ortal	ble IoT usin	ng Ardui	no/ equiv	alent boar	ds and relevar	nt pro	otoco	ls.	
2.	Develop v	veb s	ervices to a	access/co	ntrol IoT	devices.					
3.	Deploy an	IoT	application	and con	nect to the	ne cloud.					
4.	Analyse a	pplic	ations of Ic	T in real	l time sce	nario					
TEXT	BOOKS	5:									
	Arshdeep Universitie	_		adisetti, '	"Internet	of Things	– A hands-on	appro	oach'	,	
2.				nternet of	f Things (Connecting	g objects to the	web	o", W	iley	,
3.			ternet of Th	nings Arc	chitecture	and Desig	n Principles",	Tata	McC	Graw	7

REFI	RENCES:											
1.	Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and											
	Arduino Projects for Linux Programmers", Apress, 2014.											
2.	Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.											
3.	Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publications, 2013.											
4.	Samuel Greengard, "The Internet of Things", MIT press, 2015.											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	2	2
CO2	3	2	1	-	-	-	-	-	-	-	-	-	2	3	3
CO3		2	3	3	2	2	2	2	2	2	2	-	2	3	-
CO4	1	2	3	1	2	2	1	-	-	2	-	-	2	2	2
CO5		2	3	3	3	2	2	2	2	2	3	2	3	3	3
20LOE007	1	2	2	1	1	1	1	-	-	1	1	-	2	2	2

20LOE(800	SOFT COMPUTING	L	T	P	C					
			3	0	0	3					
OBJEC	TIV	ES:									
•	Learn the various soft computing frame works										
•	Und	erstand the design of various neural networks and fuzzy logics									
•	Gair	the knowledge of advanced fuzzy logic techniques and its app	licat	ion.							
UNITI		INTRODUCTION				9					

Artificial neural network: Introduction, characteristics- learning methods – taxonomy – Evolution of neural networks- basic models - important technologies - applications. Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.

UNIT II NEURAL NETWORKS

9

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative auto associative memory network & iterative associative memory network -unsupervised learning networks: Kohonenself organizing feature maps, LVQ – CP networks, ART network.

UNIT III FUZZY LOGIC

9

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning: truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV GENETIC ALGORITHM

9

Genetic algorithm and search space - general genetic algorithm - operators - Generational cycle - stopping condition - constraints - classification - genetic programming - multilevel optimization - real life problem- advances in GA

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS 9

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing-based hybrid fuzzy controllers

		TOTAL: 45 PERIODS									
COU	RSE OUTCOMES	Upon the course completion, the student will have the ability to									
1.	Apply various soft co	mputing frame works.									
2.	Design of various neu	ral networks.									
3.	Use fuzzy logic.										
4.	Apply genetic program	nming.									
5.	Discuss hybrid soft co	emputing.									
TEXT	BOOKS:										
1.	J.S.R.Jang, C.T. Sun a Pearson Education 20	and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / 04									
2.	S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011										
3.	Neuro-Fuzzy Systems	, Chin Teng Lin, C. S. George Lee, PHI									
REFE	ERENCES:										
1.	· ·	A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and onthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.									
2.		. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and									
3.	James A. Freeman, D	avid M. Skapura, "Neural Networks Algorithms, Applications, chniques, Pearson Education India, 1991									
4.	·	al Networks Comprehensive Foundation" Second Edition,									
5.		Genetic Algorithm in Search Optimization and Machine									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	-	-	1	2	2	-	-	1	-	-
CO2	3	1	-	-	-	-	2	-	-	2	2	1	-	2	-
CO3	1	-	2	3	-	-	-	2	2	1	-	2	-	3	
CO4	-	-	2	3	3	2	-	3	1	1	2	-	-	3	3
CO5	-	3	2	2	3	2	-	3	1	1	1	-	-	2	3
20LOE008	1	1	1	1	1	-	-	1	1	1	1	-	-	1	1