

Nome: Murilo Sanches Santos - 39467_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

Peças										
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	50.97	51.38	51.47	52.14	51.38	51.96	51.72	51.52	51.19
A	Medição 2	51.3	51.4	51.84	51.2	51.37	50.47	51.24	51.79	51.2
	Medição 3	51.59	51.33	52.22	51.21	51.75	51.46	51.73	51.74	51.2
	Medição 1	52	52.07	51.85	51.21	51.52	51.92	51.17	51.69	51.15
В	Medição 2	51.81	51.21	51.23	51.19	51.22	51.69	51.83	51.37	51.62
	Medição 3	51.5	51.49	52.09	51.4	51.23	51.7	51.2	51.43	51.72
	Medição 1	51.2	50.73	51.78	51.88	51.64	51.71	51.3	51.29	51.11
С	Medição 2	51.53	51.62	51.04	51.61	52.05	51.8	51.22	51.95	51.98
	Medição 3	51.14	51.71	51.93	51.44	50.84	51.39	52.2	51.75	52.68

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

1	D /	200	200	100	F00	000	700	000	000
	Peso m (gramas)	200	300	400	500	600	700	800	900
	Comprimento l (cm)	4.26	4.62	6.62	6.89	7.2	8.47	10.1	10.97

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 18°C e 27°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	8.35	10.55	9.5	9.65	9.83	11.49	11.78	10.75
$I_a (mA)$	83.26	105.598	95.719	97.245	98.696	114.006	117.768	106.645

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.