

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده مهندسی کامپیوتر

بهینه سازی خطی

(بهار ۱۴۰۲)

تمرین ۵

محمد چوپان ۹۸۳۱۱۲۵

سوال اول :

سوال اول: LP زیر را با روش دوفازی حل کنید.

$$max z = 2x_1 - x_2$$
s.t.
$$4x_1 + x_2 - 2x_3 \ge 4$$

$$2x_1 + 2x_2 - x_3 = 6$$

$$x_1 - x_2 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

پاسخ:

ابتدا مساله اصلی را استاندارد میکنیم.

$$4x_{1} + x_{2} - 2x_{3} - e_{1} = 4$$

$$2x_{1} + 2x_{2} - x_{3} = 6$$

$$x_{1} - x_{2} + s_{3} = 1$$

$$x_{1}, x_{2}, x_{3}, e_{1}, s_{3} \ge 0$$

حال مساله را به مساله فاز ۱ تبدیل می کنیم :

$$\begin{aligned} \min w &= a_1 + a_2 \\ \text{s.t.} \\ 4x_1 + x_2 - 2x_3 - e_1 + a_1 &= 4 \\ 2x_1 + 2x_2 - x_3 + a_2 &= 6 \\ x_1 - x_2 + s_3 &= 1 \\ x_1, x_2, x_3, e_1, s_3, a_1, a_2 &\geq 0 \end{aligned}$$

سپس مساله فاز ۱ را با روش سیمپلکس حل میکنیم:

نمايش سطر صفر مساله:

$$w - a_1 - a_2 = 0$$

جدول سیمپلکس متناظر:

BV	W	x_1	x_2	x_3	s_3	$e_{_{1}}$	a_1	a_2	RHS
W	1	0	0	0	0	0	-1	-1	0
a_1	0	4	1	-2	0	-1	1	0	4
a_2	0	2	2	-1	0	0	0	1	6
<i>s</i> ₃	0	1	-1	0	1	0	0	0	1

ابتدا جدول را اصلاح میکنیم

BV	w	x_1	x_2	x_3	<i>s</i> ₃	$e_{_1}$	a_1	a_2	RHS
W	1	6	3	-3	0	-1	0	0	10
a_1	0	4	1	-2	0	-1	1	0	4
a_2	0	2	2	-1	0	0	0	1	6
<i>s</i> ₃	0	1	-1	0	1	0	0	0	1

ار میشویم. و از $a_{_1}$ خارج میشویم.

BV	W	x_1	x_2	<i>x</i> ₃	<i>s</i> ₃	$e_{_{1}}$	a_1	a_2	RHS
W	1	0	1.5	0	0	0.5	-1.5	0	4
x_{1}	0	1	0.25	-0.5	0	-0.25	0.25	0	1
a_2	0	0	1.5	0	0	0.5	-0.5	1	4
<i>s</i> ₃	0	0	-1.25	0.5	1	0.25	-0.25	0	0

. وارد شده و از $a_{_2}$ خارج میشویم عال حال

BV	W	x_1	x_2	x_3	<i>s</i> ₃	e_{1}	a_1	a_2	RHS
W	1	0	0	0	0	0	-1	-1	4
x_1	0	1	0	-0.5	0	-0.33	0.33	-0.16	0.33
x_2	0	0	1	0	0	0.33	-0.33	0.66	2.66
<i>s</i> ₃	0	0	0	0.5	1	0.66	-0.66	0.833	3.33

همه متغیر های مصنوعی صفر اند پس وارد فاز دوم میشویم

یک جواب با توجه به فاز اول

$$BV = \{x_1, x_2, s_3\}, NBV = \{x_3, e_1\}$$

 $\{x_1, x_2, x_3, s_3, e_1\} = \{0.33, 2.66, 0, 3.33, 0\}$

فاز دو ستون های متغیر های مصنوعی را حذف و سطر صفر اصلی را در جدول جایگزین میکنیم

BV	Z	<i>x</i> ₁	<i>x</i> ₂	x_3	s_3	$e_{_1}$	RHS
Z	1	-2	1	0	0	0	0
<i>x</i> ₁	0	1	0	-0.5	0	-0.33	0.33
x_2	0	0	1	0	0	0.33	2.66
<i>s</i> ₃	0	0	0	0.5	1	0.66	3.33

اصلاح جدول :

BV	Z	<i>x</i> ₁	x_2	<i>x</i> ₃	s_3	<i>e</i> ₁	RHS
Z	1	0	0	-1	0	-1	-2
x_1	0	1	0	-0.5	0	-0.33	0.33
x_2	0	0	1	0	0	0.33	2.66
<i>s</i> ₃	0	0	0	0.5	1	0.66	3.33

از $x_{_{3}}$ وارد شده و از $s_{_{3}}$ خارج می شویم.

BV	Z	x_1	x_2	x_3	s_3	$e_{_1}$	RHS
Z	1	0	0	0	2	0.33	4.66
<i>x</i> ₁	0	1	0	0	0	0.33	3.66
x_2	0	0	1	0	0	0.33	2.66
<i>x</i> ₃	0	0	0	1	2	1.33	6.66

متغیری برای ورود نداریم پس جواب به صورت زیر است .

$$Z^* = 4.66$$
, $(x_1^*, x_2^*, x_3^*, e_1^*, s_3^*) = (3.66, 2.66, 6.66, 0, 0)$

سوال دوم:

سوال دوم: در حلِ یک مسألهٔ LP با هدف ماکزیممسازی، جدول بهین به صورت زیر به دست آمده است که در آن S_1 و S_2 به ترتیب متغیرهای کمبود متناظر با قیود اول و دوم هستند. آیا این مسأله دارای جواب بهین دگرین است؟ چنانچه پاسخ شما مثبت است، مجموعهٔ همهٔ جوابهای بهین را تعیین کنید.

پایه	Z	x_1	x_2	s_1	s_2	سمت راست
Z	1	0	0	5	0	60
x_2	0	-1	1	1	0	3
s_2	0	3 -2	0	$\frac{\overline{4}}{-1}$	1	2

پاسخ:

بله به دلیل اینکه ضریب کاهش متغیر غیر پایه ای ما صفر است و پس مقدار تابع هدف ثابت است و تنها یک متغیر گوشه ای دیگر پیدا میکنیم•

BV	Z	x_{1}	x_2	<i>s</i> ₁	<i>s</i> ₂	RHS
Z	1	0	0	5	0	60
x_2	0	-0.33	1	0.25	0	3
s_2	0	-2	0	-0.5	1	2

این پاسخ متناسب با نقطه گوشیه ای :

$$Z^* = 60$$
, $(x_1^*, x_2^*, s_1^*, s_2^*) = (0, 3, 0, 2,) = A$

است حال اگر از $x_1 \over x_1$ وارد شده . نمی توانیم خارج شویم . پس جواب بهین ما بی کران است و شعاع بهین داریم. پس یعنی متغیر $x_1 \over x_1$ هر مقدار دلخواهی را میتواند بگیرد بدون آنکه سایر متغیر ها داخل پایه منفی گردد . با دادن مقدار دلخواه r به متغیر $x_1 \over x_1$ به جواب بهین زیر میرسیم.همچنین S1 را صفر میگیریم.

$$-0.33x_{1} + x_{2} + 0.25s_{1} = 3 => x_{2} = 3 + 0.33x_{1}$$

$$-2x_{1} + s_{2} - 0.5s_{1} = 2 => s_{2} = 2 + 2x_{1}$$

$$Z^{*} = 60, (x_{1}^{*}, x_{2}^{*}, s_{1}^{*}, s_{2}^{*}) = (r, 3 + 0.33r, 0, 2 + 2r) = B$$

$$(r, 0.33r, 0, 2r) = AB$$

در نتیجه مجموع جواب های بهین ما برابر است با :

$$A + \lambda * (1, 0.33, 0, 2): \lambda \ge 0$$

سوال سوم:

سوال سوم: LP زیر را در نظر بگیرید با بکارگیری روابط جبرسیمپلکس، در هر قسمت، شدنی و بهینگی جواب پایهای داده شده را تعیین کنید (e_2 به ترتیب متغیرهای کمکی قیود اول و دوم هستند).

$$\max z = 4x_1 + 10x_2$$
s. t.
$$2x_1 + 7x_2 \le 140$$

$$5x_1 - x_2 \ge 20$$

$$x_1, x_2 \ge 0$$

 $\{x_2, s_1\}$ (الف $\{x_1, e_2\}$ (ب

پاسخ :

ابتدا مساله را استاندارد سازی میکنیم:

$$max z = 4x_1 + 10x_2$$

s.t.

$$2x_1 + 7x_2 + s_1 = 140$$

$$5x_1 - x_2 - e_2 = 20$$

$$x_1, x_2, s_1, e_2 \ge 0$$

الف :

باید جدول زیر را تکمیل کنیم :

BV	Z	x_{1}	x_2	<i>s</i> ₁	$e_{_2}$	RHS
Z	1	\overline{c}_{x_1}	\overline{c}_{x_2}	- c s ₁	- c _{e2}	_ Z
x_2	0	\bar{a}_{x_1}	$-\frac{1}{a_{x_2}}$	$\frac{-}{a}_{s_2}$	\overline{a}_{e_2}	\overline{b}
<i>s</i> ₁	0	\bar{a}_{x_1}	\overline{a}_{x_2}	$-\frac{1}{a_{s_2}}$	\overline{a}_{e_2}	\overline{b}

حال داريم :

$$\begin{pmatrix} 7 & 1 \\ -1 & 0 \end{pmatrix} = B, c_{BV} = \begin{pmatrix} 10 \\ \hline 0 \end{pmatrix}$$

$$\mathsf{B^{\wedge}-1} = \begin{pmatrix} 0 & -1 \\ 1 & 7 \end{pmatrix}$$

حال باید بخش های غیر از متغیر های پایه ای را محاسبه کنیم :

$$\overline{a}_{x_1} = B^{-1} * a_{x_1} = \begin{pmatrix} 0 & -1 \\ 1 & 7 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} -5 \\ 37 \end{pmatrix}$$

$$\overline{c}_{x_1} = c_{BV}^T B^{-1} * a_{x_1} - c_{x_1} = \begin{pmatrix} -50 \end{pmatrix} - 4 = -54$$

$$\overline{a}_{e_2} = B^{-1} * a_{e_2} = \begin{bmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 7 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -7 \end{pmatrix} \\ \overline{c}_{e_2} = c_{BV}^T B^{-1} * a_{e_2} - c_{e_2} = 10 \end{bmatrix}$$

$$\bar{b} = B^{-1} * b = \begin{pmatrix} 0 & -1 \\ 1 & 7 \end{pmatrix} \begin{pmatrix} 140 \\ 20 \end{pmatrix} = \begin{pmatrix} -20 \\ 280 \end{pmatrix} \qquad \bar{z} = c_{BV}^T B^{-1} b$$
 =-200

این جواب نشدنی است به دو دلیل یک اینکه متغیر x_2 بزرگتر از صفر باید باشد ولی نیست. ۲۰ - است. از طرفی z منفی شده است و در هیچ صورتی z نمی تواند منفی شود زیرا هر دو متغیر بازه بزرگ تر از صفر دارند و جمع دو عدد مثبت هیچگاه منفی نمی شود.

ب :

BV	Z	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	$e_{_2}$	RHS
Z	1	\overline{c}_{x_1}	$-\frac{c}{c_{x_2}}$	- c s ₁	- c _{e2}	_ Z
<i>x</i> ₁	0	\bar{a}_{x_1}	\overline{a}_{x_2}	\overline{a}_{s_2}	\overline{a}_{e_2}	\overline{b}
e_{2}	0	\bar{a}_{x_1}	\overline{a}_{x_2}	\overline{a}_{s_2}	\overline{a}_{e_2}	\overline{b}

حال داريم :

,
$$\begin{pmatrix} 2 & 0 \\ 5 & \boxed{-1} \end{pmatrix}$$
 =B, $c_{BV} = \frac{\begin{pmatrix} 4 \\ \boxed{0} \end{pmatrix}}{}$

$$\begin{bmatrix}
\frac{1}{2} & 0 \\
\frac{5}{2} & -1
\end{bmatrix}$$
B^-1 =

حال باید بخش های غیر از متغیر های پایه ای را محاسبه کنیم :

$$\overline{a}_{x_{2}} = B^{-1} * a_{x_{2}} = \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{5}{2} & -1 \end{pmatrix} \begin{pmatrix} 7 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{7}{2} \\ \frac{37}{2} \end{pmatrix}$$

$$\overline{c}_{x_{2}} = c_{BV}^{T} B^{-1} * a_{x_{2}} - c_{x_{2}} = \frac{(14) - 10}{2} = 4$$

$$\overline{a}_{s_1} = B^{-1} * a_{s_1} = \begin{bmatrix} \left(\frac{1}{2} & 0 \\ \frac{5}{2} & -1 \right) \left(\frac{1}{0}\right) = \left(\frac{1}{2} \\ \frac{5}{2}\right) \\ \overline{c}_{s_1} = c_{BV}^T B^{-1} * a_{s_1} - c_{s_1} = 2 \end{bmatrix}$$

$$\bar{b} = B^{-1} * b = \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{5}{2} & -1 \end{pmatrix} \begin{pmatrix} 140 \\ 20 \end{pmatrix} = \begin{pmatrix} 70 \\ 330 \end{pmatrix} \qquad \bar{z} = c_{BV}^T B^{-1} b$$
=280

پس جدول ما به صورت زیر در می آید :

BV	Z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	$e_{_2}$	RHS
Z	1	0	4	2	0	280
x_1	0	1	3.5	0.5	0	70
$e_{_2}$	0	0	18.5	2.5	1	330

پس این جواب پایه ای شدنی و است و بهینه است. زیرا در مساله ماکزیمم ضریب کاهش هزینه صفر یا منفی نداریم.