Monte Carlo Methods and Stochastic Approximation: Theory and Applications to Machine Learning

Rémi LELUC, *PhD defense* LTCI. Télécom Paris. France

Jury:

BACH Francis Examiner BIANCHI Pascal co-Supervisor CARPENTIER Alexandra **Examiner** CHOPIN Nicolas President GADAT Sébastien Reviewer MERTIKOPOULOS Panayotis Examiner PORTIER François Supervisor ROBERT Christian Reviewer

Motivation: Machine Learning recent advances

AlphaGo (2016)

AlphaFold (2018)

GPT-3/4(2020/2023)

Machine Learning goal

Learn (integrate/optimize) a prediction function

Motivation: need for integral and gradient estimators

Central Question 1: Integration

Computation of an integral through probabilistic objective ${\mathcal F}$

$$\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(x)}[f(x)] = \int_{\mathcal{X}} f(x) \pi_{\theta}(x) dx. \tag{1}$$

Cost function f and input distribution $\pi_{\theta}(\cdot)$

Central Question 2: Optimization

Learn the optimal parameter $\theta^\star \in \arg\min_{\theta} \mathcal{F}(\theta)$ with the gradient

$$\mathcal{G} = \nabla_{\theta} \mathcal{F}(\theta) = \nabla_{\theta} \mathbb{E}_{\pi_{\theta}(x)}[f(x)]. \tag{2}$$

Main issue: intractability and computational cost

Motivation: Key example

Reinforcement Learning¹.

Trajectory $\tau = (s_0, a_0, \dots, s_{T-1}, a_{T-1})$ with policy π_θ and cumulative return $\mathcal{R}(\tau) = \sum_{t=0}^{T-1} \gamma^t r(s_t, a_t)$. Objective \mathcal{F} is an expectation

$$\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(\tau)}[\mathcal{R}(\tau)]$$

Optimal strategy π_{θ^*} with $\theta^* \in \operatorname{arg\,max} \mathcal{F}(\theta)$

(2016) AlphaGo A.I. beats champion Lee Sedol in Go.

Rely on gradient-based optimization techniques with gradient

$$\mathcal{G} = \mathbb{E}_{\pi_{\theta}(\tau)}[\mathcal{R}(\tau)\nabla_{\theta}\log \pi_{\theta}(\tau)].$$

¹(Sutton and Barto, 2018): Reinforcement Learning: An introduction

Advantages of Random estimates

Easy and Practical

 \rightarrow Requires only three steps: sampling, evaluating, averaging

Randomness as a Strength

- \rightarrow Naturally escape local optima²
- ightarrow Complete exploration of the search space

Large-Scale learning

- → simple, scalable, parallelizable
- \rightarrow in supervised learning, deterministic gradient scales as O(nd), stochastic version reduces to O(d) operations

Theoretical justifications³

- \rightarrow deterministic methods $O(n^{-s/d})$
- \rightarrow optimal random procedure $O(n^{-1/2}n^{-s/d})$

²(Gadat et al., 2018): Stochastic heavy ball

 $^{^{3}(}Novak,\ 2016)$: Some results on the complexity of numerical integration

Outline for today

Integrate
$$\mathcal{F}(\theta) = \int_{\mathcal{X}} f(x) \pi_{\theta}(\mathrm{d}x) \to \text{Optimize } \mathcal{F} \text{ with } \nabla \mathcal{F}$$

Part I: Monte Carlo Integration (approximate $\mathcal{F}(\theta)$)

Part II: Stochastic Optimization Methods (optimize \mathcal{F})

Part I: Integration \mathcal{F} Monte Carlo Integration, Variance Reduction

- 1. R. Leluc, F. Portier and J. Segers. *Control Variate Selection for Monte Carlo Integration*. (Leluc et al., 2021) In *Statistics and Computing 31, 50*, pages1-27, 2021.
- 2. R. Leluc, F. Portier, J. Segers and A. Zhuman. A Quadrature Rule combining Control Variates and Adaptive Importance Sampling. (Leluc et al., 2022)
 In Advances in Neural Information Processing Systems (NeurIPS), 2022.
- 3. R. Leluc, F. Portier, J. Segers and A. Zhuman. *Speeding up Monte Carlo Integration: Nearest Neighbors as Control Variates. arXiv preprint*, 2023.

Monte Carlo integration

Underlying integration problem

Let $(\mathcal{X}, \mathcal{A}, \pi)$ be a probability space, $f : \mathcal{X} \to \mathbb{R}$ with $f \in L_2(\pi)$.

• Goal:

$$\pi(f) := \int_{\mathcal{X}} f(x)\pi(\mathrm{d}x) = \mathbb{E}_{\pi}[f(X)].$$

• Constraints: f is unknown (black-box) or no approximation is sufficiently accurate, sampling from π may be hard.

Let $X_1,...,X_n \overset{\text{i.i.d.}}{\sim} \pi$, naive Monte Carlo estimator $\hat{\alpha}_n^{\text{mc}}(f)$ of $\pi(f)$ is

$$\hat{\alpha}_n^{\mathrm{mc}}(f) := \frac{1}{n} \sum_{i=1}^n f(X_i) \tag{3}$$

Research Questions (Part I)

- How to reduce the variance of Monte Carlo estimates?
- How to sample from π ? How to achieve optimal convergence rates?

Ref: Metropolis and Ulam (1949); Robert and Casella (1999); Evans and Swartz (2000); Glasserman (2004); Owen (2013); Novak (2016); Chopin and Gerber (2022)

Variance Reduction with Control Variates

Definition: Control Variates

Functions $h_1, \ldots, h_m \in L_2(\pi)$ with known integrals:

$$\forall 1 \leq j \leq m, \quad \mathbb{E}_{\pi}[h_j] = 0$$

- → Stein control variates, families of orthogonal polynomials
- Let $h = (h_1, \dots, h_m)^{\top}$, for any $\beta \in \mathbb{R}^m$, we have $\mathbb{E}_{\pi}[f \beta^{\top}h] = \mathbb{E}_{\pi}[f]$ leading to the CV estimate of α , parameterized by β

CV-Monte Carlo

$$\alpha_n^{(\text{cv})}(f,\beta) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - \beta^\top h(X_i)), \quad X_1, \dots, X_n \sim \pi.$$

• What optimal choice for β^* ? Look at variance and define

$$\mathbf{eta}^* = \operatorname*{arg\,min}_{\mathbf{eta} \in \mathbb{R}^m} \mathbb{E}_{\pi} \left[(f - \pi(f) - \mathbf{eta}^{ op} h)^2 \right]$$

Integration with Linear regression

From integration to linear regression

The integral $\pi(f)$ appears as the intercept of a linear regression model with response f and explanatory variables h_1, \ldots, h_m ,

• The integral and oracle coefficient satisfy

$$(\pi(f), \boldsymbol{\beta}^{\star}(f)) \in \operatorname*{arg\,min}_{(\alpha, \boldsymbol{\beta}) \in \mathbb{R} \times \mathbb{R}^{m}} \pi[(f - \alpha - \boldsymbol{\beta}^{\top} h)^{2}] \tag{4}$$

• Replacing the distribution π by the sample measure $\hat{\pi}_n$ gives the **Ordinary**

Least Squares (OLS) estimate, $X_1, \ldots, X_n \sim \pi$

$$\left(\hat{\alpha}_n^{(\text{cv})}, \hat{\beta}_n^{(\text{cv})}\right) \in \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\arg \min} \frac{1}{n} \sum_{i=1}^n \left(f(X_i) - \alpha - \beta^\top h(X_i) \right)^2 \tag{5}$$

From Ordinary Least Squares Monte Carlo...

Limitations of OLSMC.

- (Overfitting) Too many variables or/and few samples (case m >> n)
- \bullet (Collinearity) Dependence among variables \to very large coefficients How to avoid those problems ?

From Ordinary Least Squares Monte Carlo...

Limitations of OLSMC.

- (Overfitting) Too many variables or/and few samples (case m >> n)
- \bullet (Collinearity) Dependence among variables \to very large coefficients How to avoid those problems ?

Bet on sparsity with variable selection!

Image generated by text-to-image A.I. midjourney with the command: "super-hero cowboy twirling his lasso in the air, comic-book style".

... to Lasso Monte-Carlo (LASSOMC/LSLASSO)

Control Variates estimates: OLS, LASSO, LSLASSO

$$(\hat{\alpha}_{n}^{\text{ols}}(f), \hat{\beta}_{n}^{\text{ols}}(f)) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{m}}{\arg \min} \|f^{(n)} - \alpha \mathbb{1}_{n} - H\beta\|_{2}^{2}$$

$$(\hat{\alpha}_{n}^{\text{lasso}}(f), \hat{\beta}_{n}^{\text{lasso}}(f)) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{m}}{\arg \min} \frac{1}{2n} \|f^{(n)} - \alpha \mathbb{1}_{n} - H\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

$$(\hat{\alpha}_{n}^{\text{lslasso}}(f), \hat{\beta}_{n}^{\text{lslasso}}(f)) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{\ell}}{\arg \min} \|f^{(n)} - \alpha \mathbb{1}_{n} - H_{\hat{S}}\beta\|_{2}^{2}$$

- Active set $S^* = \{k : \beta_k^* \neq 0\}$ and sparsity level $\ell^* = Card(S^*)$
- LSLASSOMC:
- (1) $\hat{S} = \{k : \hat{\beta}_{N,k}^{lasso}(f) \neq 0\}$ estimated **active set** with **LASSO**
- (2) Solve subproblem **OLS** with selected control variates

Non-asymptotic Error Analysis

Assumptions: sub-gaussian residuals $\varepsilon = f - \pi(f) - \beta^{\star \top} h$ with factor τ .

Concentration inequalities

For $\delta \in (0,1)$ with probability at least $1-\delta$, for OLS, LASSO, LSLASSO

$$|\hat{\alpha}_n^{\text{ols}}(f) - \pi(f)| \le \sqrt{2\log(8/\delta)} \frac{\tau}{\sqrt{n}} + C_1 \sqrt{Bm \log(8m/\delta)} \frac{\tau}{n}$$

$$|\hat{\alpha}_n^{\text{lasso}}(f) - \pi(f)| \leq \sqrt{2\log(8/\delta)} \frac{\tau}{\sqrt{n}} + C_2(U_h^2/\gamma^*)\ell^* \log(8m/\delta) \frac{\tau}{n}$$

$$|\hat{\alpha}_n^{\text{Islasso}}(f) - \pi(f)| \leq \sqrt{2\log(16/\delta)} \frac{\tau}{\sqrt{n}} + C_3 \sqrt{B^*\ell^* \log(16\ell^*/\delta)} \frac{\tau}{n}$$

$$\begin{split} &U_h = \max_{j=1,\dots,m} \|h_j\|_{\infty} \\ &G = \mathbb{E}_{\pi}[hh^\top], \gamma = \lambda_{\min}(G), \hbar = G^{-1/2}h; B = \sup_x \|\hbar(x)\|_2^2 \\ &G^\star, \gamma^\star, B^\star \text{ restricted on active set} \end{split}$$

Evidence Estimation in Bayesian Models

ullet Model likelihood $\ell(x| heta)$ and prior distribution $\pi(heta)$, compute evidence

$$Z = \int_{\Theta} \ell(x|\theta) \pi(\theta) d\theta$$

Boxplots of Error Distribution for Capture (d=12) and Sonar (d=61) datasets⁴, n=5000; N=1000, obtained over 100 replications.

⁴(Marzolin, 1988; Gorman and Sejnowski, 1988)

Monte Carlo Integration and Importance Sampling

GOAL:

$$\pi(f) = \int_{\mathbb{R}^d} f(x) \pi(x) \, \mathrm{d}x$$

Can we sample from target distribution π ?

Monte Carlo Integration and Importance Sampling

GOAL:

$$\pi(f) = \int_{\mathbb{R}^d} f(x)\pi(x) \, \mathrm{d}x$$

Can we sample from target distribution π ?

• YES, use naive Monte Carlo estimate (+ control variates)

$$\hat{\alpha}_n^{(\mathrm{mc})}(f) = \frac{1}{n} \sum_{i=1}^n f(X_i), \quad X_1, \dots, X_n \sim \pi$$

• NO, use Adaptive Importance Sampling with sampling policy $(q_i)_{i\geq 0}$

$$X_1 \sim q_0, \dots, X_i \sim q_{i-1}$$

$$\hat{\alpha}_n^{(ais)}(f) = \frac{\sum_{i=1}^n w_i f(X_i)}{\sum_{i=1}^n w_i}$$

Evolution of sampling policy is AIS.

where the sequence $(w_i)_{i=1,...,n}$ of **importance weights** is defined by

$$w_i = \pi(X_i)/q_{i-1}(X_i).$$

Adaptive Importance Sampling with Control Variates

AISCV estimate: Weighted Least Squares

Particles $X_i \sim q_{i-1}$ and weights $w_i = \pi(X_i)/q_{i-1}(X_i)$,

$$(\hat{\alpha}_n, \hat{\beta}_n) = \underset{a \in \mathbb{R}, b \in \mathbb{R}^m}{\min} \sum_{i=1}^n \frac{\mathbf{w}_i}{\mathbf{v}_i} [f(X_i) - a - b^\top h(X_i)]^2.$$

- (a) (Exact integration) whenever f is of the form $\alpha + \beta^{\top} h$ for some $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}^m$, the **error is zero**, i.e., $\hat{\alpha}_n = \pi(f) = \int f \pi \, d\lambda$.
- (b) (Quadrature Rule) $\hat{\alpha}_n = \sum_{i=1}^n v_{n,i} f(X_i)$, for quadrature weights $v_{n,i}$ that do not depend on the function f and that can be computed by a single weighted least squares procedure.
- (c) (Bayesian) it can be computed even when π is known only up to a multiplicative constant.
- (d) (<u>post-hoc</u>) CV can be brought into play in a **post-hoc** scheme, after generation of the particles and importance weights, and **this for any AIS** algorithm

Non-asymptotic error analysis

Residuals $\varepsilon = f - \alpha - \beta^{\top} h$ with $(\alpha, \beta) = \arg \min_{a,b} \int (f - a - b^{\top} h)^2 \pi d\lambda$.

Assumptions

- (A1) $\exists c \geq 1 : \forall x \in \mathbb{R}^d, \quad \pi(x) \leq c \cdot q_i(x).$
- (A2) $\sup_{x:\pi(x)>0} |h_j(x)| < \infty$ and $G = \mathbb{E}_{\pi}[hh^{\top}]$ invertible.
- (A3) $\exists \tau > 0 : \forall t > 0, i \ge 1, \ \mathbb{P}[|w_i \varepsilon(X_i)| > t \mid \mathcal{F}_{i-1}] \le 2 \exp(-t^2/(2\tau^2))$

Concentration inequality for AISCV estimate

Under assumptions, for any $\delta \in (0,1)$ and for all $n \geq C_1 c^2 B \log(10m/\delta)$, we have, with probability at least $1 - \delta$, that

$$\left|\hat{\alpha}_n^{(\mathrm{aiscv})}(f) - \pi(f)\right| \leq C_2 \sqrt{\log(10/\delta)} \frac{\tau}{\sqrt{n}} + C_3 c B \log(10m/\delta) \frac{\tau}{n},$$

where C_1 , C_2 , C_3 are some constants and $B = \sup_{x:\pi(x)>0} \|\hbar(x)\|_2^2$, $\hbar = G^{-1/2}h$.

Synthetic examples: Gaussian Mixtures

Similar framework as Cappé et al. (2008).

Integrand and Target: f(x) = x, $\pi_{\Sigma}(x) = 0.5\Phi_{\Sigma}(x - \mu) + 0.5\Phi_{\Sigma}(x + \mu)$ where $\mu = (1, ..., 1)^{\top}/2\sqrt{d}$, $\Sigma = I_d/d$ and Φ_{Σ} is pdf $\mathcal{N}(0, \Sigma)$.

Sampling policy: Multivariate Student

Control variates: Stein method with $\varphi = \text{polynomial}$ with bounded degree

Gaussian mixture density: Logarithm of $\|\hat{\alpha}_n(f) - \pi(f)\|_2^2$ for f(x) = x with target isotropic π_{Σ} with d = 4 (left), d = 8 (right).

Complexity rates for integration error

Definition: Root Mean Squared Error (RMSE)

The error δ_n of a procedure $\hat{\alpha}_n(f)$ that approximates $\pi(f)$ is

$$\delta_n = \mathbb{E}\left[|\hat{\alpha}_n(f) - \pi(f)|^2\right]^{1/2}$$

 \rightarrow Lipschitz integrands⁵, **optimal rate** in $O(n^{-1/2}n^{-1/d})$ (Novak, 2016)

OLS control variates	$O(n^{-1/2}m^{-1/d})$
(Portier and Segers, 2019)	O(n + m + r)
Determinantal sampling	$O(n^{-1/2}n^{-1/2d})$
(Bardenet and Hardy, 2020)	O(n + n + 1)
Control Functionals	O(=7/12)
(Oates et al., 2017)	$O(n^{-7/12})$
Cubic Stratification	$O(n^{-1/2}n^{-1/d})$
(Haber, 1966; Chopin and Gerber, 2022)	$O(n^{-\gamma-n^{-\gamma-\gamma}})$

 $^{^{5}}$ for integrand with s bounded derivatives, rate in $O(n^{-1/2}n^{-s/d})$

General view of Control Variates

Control Functionals

- ullet Build surrogate function \hat{f} with known integral $\pi(\hat{f})$
- Use centered variables $\hat{f}(X_i) \pi(\hat{f})$ to derive the following enhanced Monte Carlo estimate with control variates

$$\hat{\alpha}_n^{(CV)}(f) = \frac{1}{n} \sum_{i=1}^n \left\{ f(X_i) - \left(\hat{f}(X_i) - \pi(\hat{f})\right) \right\}$$

Approximation in $L_2(\pi)$

Let $(X_1, \ldots X_n) \sim \pi$. Suppose that \hat{f} depends only on a surrogate sample $\tilde{X}_1, \ldots, \tilde{X}_N$ which is independent from $(X_1, \ldots X_n)$, then

$$\mathbb{E}\left[|\hat{\alpha}_n^{(CV)}(f) - \pi(f)|^2\right] \leq \frac{1}{n} \mathbb{E}\left[\int (f - \hat{f})^2 \mathrm{d}\pi\right].$$

Control Functionals examples

 \bullet RKHS approximation: (Oates, Girolami, and Chopin, 2017) Ridge regression in Hilbert space ${\cal H}$

$$\hat{f} \in \operatorname*{arg\,min}_{\varphi \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} (f(\tilde{X}_i) - \varphi(\tilde{X}_i))^2 + \lambda \|\varphi\|_{\mathcal{H}}^2$$

• Basis functions: (Portier and Segers, 2019; Leluc et al., 2021) Use m basis functions h_1, \ldots, h_m to fit OLS:

$$\hat{f} = \hat{\boldsymbol{\beta}}_n^{\top} h, \qquad (\hat{\alpha}_n, \hat{\boldsymbol{\beta}}_n) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\arg \min} \|f^{(n)} - \alpha \mathbb{1}_n - H\boldsymbol{\beta}\|_2^2$$

• Partitioning and Stratification: (Chopin and Gerber, 2022) $(\tilde{X}_1,\ldots,\tilde{X}_N)$ is the $(1/\ell)$ -equidistant grid of $[0,1]^d$ with $N=\ell^d$, $\ell\geq 1$ and $(R_i)_{i=1,\ldots,N}$ is the partition of $[0,1]^d$ made of the rectangles.

$$\hat{f}(x) = \sum_{i=1}^{N} f(\tilde{X}_i) \mathbb{1}_{R_i}(x)$$

Nearest Neighbors

Control Neighbors

$$\hat{\alpha}_{n}^{(CVNN)}(f) = \frac{1}{n} \sum_{i=1}^{n} \left\{ f(X_{i}) - \left(\hat{f}_{n}^{(i)}(X_{i}) - \pi(\hat{f}_{n})\right) \right\}$$

Leave-one-out Nearest Neighbors:

Take same sample (X_1, \ldots, X_n) and define

$$\hat{f}_n(x) = \sum_{j=1}^n f(X_j) \mathbb{1}_{S_{n,j}}(x), \qquad \hat{f}_n^{(i)}(x) = \sum_{j \neq i} f(X_j) \mathbb{1}_{S_{n,j}^{(i)}}(x)$$

where $S_{n,j}$ are **Voronoï cells**

Control Neighbors properties

Control Neighbors

$$\hat{\alpha}_n^{(CVNN)}(f) = \frac{1}{n} \sum_{i=1}^n \left\{ f(X_i) - \left(\hat{f}_n^{(i)}(X_i) - \pi(\hat{f}_n)\right) \right\}$$

- (a) (Same framework as naive MC) does not require the existence of control variates with known integrals
- (b) (Quadrature Rule) $\hat{\alpha}_n = \sum_{i=1}^n w_{n,i} f(X_i)$, for quadrature weights $w_{n,i}$ that do not depend on the function f.
- (c) (Practical tool box) The weights $w_{n,i}$ are built using efficient nearest neighbors estimates (Bentley, 1975; Pedregosa et al., 2011)
- (d) (post-hoc) CVNN can be brought into play in a **post-hoc** scheme \rightarrow include other sampling design like MCMC or AIS.

Complexity rate for integration error of Control Neighbors

$$\mathbb{E}\left[|\hat{\alpha}_{n}^{(CVNN)}(f) - \pi(f)|^{2}\right]^{1/2} \leq Cn^{-1/2}n^{-1/d}$$

Control Neighbors on synthetic integrands

- $f_1(x_1, ..., x_d) = \sin(\pi(\frac{2}{d} \sum_{i=1}^d x_i 1))$ with $\pi = \mathbb{1}_{[0,1]^d}$ $f_2(x_1, ..., x_d) = \sin(\frac{\pi}{d} \sum_{i=1}^d x_i)$ with $\pi = \mathcal{N}_d(0, I_d)$

Part II: Optimize \mathcal{F} Stochastic Optimization

- 1. **R. Leluc** and F. Portier. Asymptotic Analysis of Conditioned Stochastic Gradient Descent. arXiv preprint 2006.02745 (Leluc and Portier, 2020)
- 2. **R. Leluc** and F. Portier. *SGD with Coordinate Sampling: Theory and Practice.* In *Journal of Machine Learning Research 23 (JMLR)*, (342):1–47, 2022. (Leluc and Portier, 2022)

Stochastic Optimization

Underlying optimization problem

Let $\mathcal{F}: \Theta \to \mathbb{R}$ be a general objective function.

• Goal:

$$\min_{\theta \in \Theta} \left\{ \mathcal{F}(\theta) = \mathbb{E}_{z \sim \pi}[f(\theta, z)] \right\}$$

• Constraints: $\nabla \mathcal{F}$ is hard to compute (large-scale problems) or even intractable (black-box) !

Empirical Risk Minimization. $\hat{\mathcal{F}}(\theta) = n^{-1} \sum_{i=1}^{n} f_i(\theta)$ and true gradient, $n^{-1} \sum_{i=1}^{n} \nabla f_i(\theta)$ requires n evaluations, too heavy!

Stochastic Gradient Descent (Robbins and Monro, 1951)

(SGD)
$$\theta_{t+1} = \theta_t - \gamma_{t+1} \mathbf{g}_t$$
 with $\mathbb{E}[\mathbf{g}_t] = \nabla \mathcal{F}(\theta_t)$

Ref: Robbins and Siegmund (1971); Bertsekas and Tsitsiklis (2000); Sacks (1958); Kushner and Clark (1978); Pelletier (1998); Benaïm (1999); Gadat et al. (2018); Moulines and Bach (2011); Bottou et al. (2018)

Limitations of SGD: choice of the learning rate (γ_t)

Conditioned-SGD

(CSGD)
$$\theta_{t+1} = \theta_t - \gamma_{t+1} C_t g_t$$

Research Questions (Part II)

- What condition on C_t for convergence? Asymptotic normality?
- How to leverage structure in data?

Existing methods (motivation)

- 2nd Order methods: $C_t \approx \nabla^2 \mathcal{F}(\theta^\star)^{-1}$ or $C_t \approx \nabla^2 \mathcal{F}(\theta_t)^{-1}$ Stochastic Newton and Quasi-Newton (Byrd et al., 2016) and (L)BFGS methods (Liu and Nocedal, 1989; Moritz et al., 2016)
- Fisher information matrix: $C_t = F(\theta_t)$ Natural gradient (Amari, 1998; Kakade, 2002)
- (Diagonal) Scalings: $C_t = G_t^{-1/2}$; $G_{t+1} = G_t + g_t g_t^{\top}$ AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), Adam (Kingma and Ba, 2014) and AMSGrad (Reddi et al., 2018)

From SGD...to Conditioned-SGD

Optimization problem

For general non-convex \mathcal{F} , find $\theta^* \in \arg\min_{\theta \in \Theta} \{\mathcal{F}(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)]\}$

Central Limit Theorem CSGD

Under standard assumptions, if $C_t \to C$ almost surely then the iterates of CSGD satisfy

$$\frac{(\theta_t - \theta^\star)}{\sqrt{\gamma_t}} \rightsquigarrow \mathcal{N}(0, \Sigma_{\textit{\textbf{C}}}), \quad \text{ as } t \to +\infty.$$

- Optimal choice $C^* = H^{-1}$ with $H = \nabla^2 \mathcal{F}(\theta^*)$ in the sense: $\Sigma_{C^*} \preceq \Sigma_C$
- ullet Practical procedure to achieve optimality ${m C}_t o {m C}^\star$

SGD with Coordinate Sampling

(SCGD): Stochastic Coordinate Gradient Descent

$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1}C(\zeta_{t+1})g_{t+1}$$

with
$$C(k) = e_k e_k^T = Diag(0, ..., 0, 1, 0, ..., 0)$$
.

 ζ_{t+1} is a random variable valued in [1, d].

- → Reduction of computing cost
- ightarrow 2 sources of randomness: noisy gradient g_t + random ζ_t

Research Questions and Contributions

- How to update the selecting policy ζ_{t+1} ?
- ightarrow algorithm MUSKETEER to leverage the data structure and move along relevant directions.
- What condition on ζ_{t+1} for convergence ?
- ightarrow analysis of the properties of SCGD algorithms (convergence of the iterates, convergence of the policy, non-asymptotic bound)

Related work

- ullet CD using ${\cal F}$ or true gradient $abla {\cal F}$ (Loshchilov et al., 2011; Richtárik and Takáč, 2016; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017)
- Most related idea: **Gauss-Southwell rule** to select the largest gradient coordinate to move the iterate (Nutini et al., 2015)
 - \rightarrow Here: stochastic g_t and ζ_t
- **Sparsification methods** (Alistarh et al., 2017; Wangni et al., 2018) , unbiased importance sampling estimate of the gradient
 - → Here: no reweighting (biased) (conditioned gradient)

General framework and notation

• Only one coordinate ζ_{t+1} is selected: $\theta_{t+1} = \theta_t - \gamma_{t+1} C(\zeta_{t+1}) g_{t+1}$

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} \mathbf{g}_{t+1}^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

• The distribution of ζ_{t+1} , is the **coordinate sampling policy** and is given by the probability weights vector $p_t = (p_t^{(1)}, \dots, p_t^{(d)})$

$$p_t^{(k)} = \mathbb{P}(\zeta_{t+1} = k | \mathcal{F}_t), \quad k \in [1, d].$$

• Not the same mean field as in usual SGD. Under conditional independence between g_{t+1} and ζ_{t+1} :

$$\mathbb{E}[C(\zeta_{t+1})g_{t+1}|\mathcal{F}_t] = \mathsf{Diag}(p_t)\nabla\mathcal{F}(\theta_t)$$

Reinforcement Coordinate Sampling with MUSKETEER

MUltivariate
Stochastic
Knowledge
Extraction
Through
Exploration
Exploitation
Reinforcement

MUSKETEER

MUSKETEER may be seen as an adaptive bandit problem with

Alternate between 2 phases

- Exploration phase (one for all) (duration T)
 - 1. fix $p = p_t$, draw random coordinate $\zeta \sim p$ and noisy gradient g
 - 2. move iterate: $\theta^{(\zeta)} \leftarrow \theta^{(\zeta)} \gamma g^{(\zeta)}$
 - 3. update gains of visited coordinates: $G^{(\zeta)} \leftarrow G^{(\zeta)} + g^{(\zeta)}/p^{(\zeta)}$
- Exploitation phase (all for one)
 - 1. share knowledge of the total gains
 - 2. update probability vector p_t with mixture

$$\rho_{t+1}^{(k)} = (1 - \lambda) \frac{\exp(\eta |G_t^{(k)}|/t)}{\sum_{j=1}^d \exp(\eta |G_t^{(j)}|/t)} + \lambda \frac{1}{d}$$

Numerical Experiments: Zeroth-Order Optimization

• We apply ERM to regularized **regression** and **classification** problems.

Special covariance structure

$$X[:,k] \sim \mathcal{N}(0,\sigma_k^2 I_n)$$
 with $\sigma_k^2 = k^{-2}$ for $k \in [1,d]$

• ZO gradient estimates:

(finite differences)
$$g_h(\theta,\xi) = \sum_{k=1}^d h^{-1}[f(\theta+he_k,\xi)-f(\theta,\xi)]e_k$$

(Nesterov) $g_h(\theta,\xi) = h^{-1}[f(\theta+hU,\xi)-f(\theta,\xi)]U$ with $U \sim \mathcal{N}(0,I)$

Training Losses for Ridge regression and Logistic regression, obtained over 100 replications. Parameters $\gamma_t=1/t,\ n=10,000,\ d=250,\ T=\lfloor\sqrt{d}\rfloor=15$

Main results: MUSKETEER

Gradients might be biased

There exists constant c > 0 such that

$$\forall h > 0, \theta \in \mathbb{R}^p, \quad \|\mathbb{E}_{\xi}[\mathbf{g}_h(\theta, \xi)] - \nabla \mathcal{F}(\theta)\| \leq ch.$$

 $h \geq 0$ is a parameter controlling the bias with condition $h_t^2 = O(\gamma_t)$

Theoretical results

- The sequence of iterates $(\theta_t)_{t\geq 0}$ obtained by MUSKETEER satisfies $\nabla \mathcal{F}(\theta_t) \to 0$ almost surely as $t \to +\infty$.
- The MUSKETEER's coordinate policy $(p_t)_{t\in\mathbb{N}}$ converges weakly to the uniform distribution.
- Let $(\theta_t)_{t\in\mathbb{N}}$ obtained by MUSKETEER with $\gamma_t=\gamma/t$ then

$$\mathbb{E}\left[\mathcal{F}(heta_t) - \mathcal{F}^\star
ight] = O(1/t)$$

Conclusion

Conclusion & Perspectives

Integrate
$$\mathcal{F}(\theta) = \int_{\mathcal{X}} f(x) \pi_{\theta}(\mathrm{d}x) \to \text{Optimize } \mathcal{F} \text{ with } \nabla \mathcal{F}$$

Takeaways.

- Non-asymptotic theory and practical procedures for Monte Carlo methods with control variates; Optimal convergence rates with nearest neighbors.
- Asymptotic analysis of Conditioned SGD methods; Theoretical and practical study of SGD with coordinate sampling.

Future work.

- Control variates for Markov chains; concentration inequality for CVNN
- Federated Learning applications of adaptive sampling.

Q & A

Acknowledgements

- All jury members
- PhD supervisors: François Portier and Pascal Bianchi
- Co-authors: Johan Segers, Aigerim Zhuman, Hamid Jalalzai, Elie Kadoche, Vincent Plassier, Sébastien Gourvénec, Antoine Bertoncello

