

DIGITAL IC DESIGN LAB (EC1062)

LAB ASSIGNMENT - 3

Submitted By:

ANKIT KUMAR

24EC4224

Department: Microelectronics and VLSI

Submitted To:

Dr. Hemanta Kumar Mondal

Assistant Professor, Department of ECE, NIT Durgapur
Submitted on-

Sign-____ ANKIT KUMAR 24EC4224

Experiment No.:3

Objective:

To design and plot the static Voltage Transfer Characteristics (VTC) of CMOS inverters and implement 2-input NAND and NOR gates using Cadence Virtuoso.

Specification:

- 1. CMOS Inverter:
 - Technology: 90 nm CMOS technology.
 - Supply Voltage (VDD): 1.2 V.
 - Threshold Voltage (Vth): NMOS = 0.3 V, PMOS = -0.3 V.
 - Load Capacitance: 5 fF.
 - Design Constraints:
 - The PMOS transistor size (W/L) should be larger than the NMOS to balance drive strength due to differences in mobility.
 - Symmetry in switching thresholds should be maintained for optimal noise margin.
 - Expected VTC Behavior:
 - The plot should exhibit distinct low-to-high and high-to-low transitions.
 - The transition region should be analyzed for the switching threshold (VM), defined as the input voltage at which the output is at half of VDD.

2. 2-input NAND Gate:

- Transistor Count: 4 (2 NMOS in series, 2 PMOS in parallel).
- Supply Voltage (VDD): 1.2 V.
- Logical Expression: Y = (A * B)'
- 3. 2-input NOR Gate:
 - Transistor Count: 4 (2 PMOS in series, 2 NMOS in parallel).
 - Supply Voltage (VDD): 1.2 V.
 - Logical Expression: Y = (A + B)'

Schematic Entry:

 CMOS Inverter Schematic: Designed using Cadence Virtuoso with properly sized PMOS and NMOS transistors. Connections made to input, output, power supply, and ground.

Figure 1 cmos inverter

• **2-input NAND Gate Schematic:** Transistor-level design using two NMOS transistors in series and two PMOS transistors in parallel, based on CMOS logic design.

Figure 2 cmos nand

 2-input NOR Gate Schematic: Similar to the NAND gate but with a parallel NMOS configuration and series PMOS configuration.

Figure 3 cmos nor

Simulation Setup:

- Cadence Virtuoso ADE L Window: Set up transient analysis and DC sweep in ADE L
 window to measure the VTC of the CMOS inverter and verify logic gate functionality.
- Voltage Sweep: A DC sweep is used for the CMOS inverter to generate the VTC by varying the input voltage from 0 to 1.2 V.
- Transient Analysis: Logic gates (NAND, NOR) are tested by applying combinations of logical 0 and 1 to the inputs (A, B) and observing the outputs in the transient window.

CMOS INVETER

CMOS_NAND

CMOS NOR

Experimental Results:

 CMOS Inverter: The VTC graph was plotted, showing a clear transition at the switching threshold, approximately at half of the supply voltage (~0.6 V). Noise margins were verified from the VTC plot.

5 | P a g e ANKIT KUMAR 24EC4224

DURGAPUR ERITI: Yevera GROUP

 NAND Gate Output: The output was high for all combinations except when both inputs were high (A = 1, B = 1). The truth table was verified.

NOR Gate Output: The output was high only when both inputs were low (A = 0, B = 0). The truth table was verified.

Observations:

- The static VTC for the CMOS inverter showed expected behavior, with a sharp transition in the middle of the voltage range.
- Both the 2-input NAND and NOR gates functioned correctly, with logical behavior corresponding to their truth tables. The transistor-level implementation adhered to CMOS logic design rules, and power consumption was within acceptable limits.