Symbolic Logic Optimization and Encoding

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Outline

- Symbolic minimization:
 - **▲** Simplification of interconnected logic blocks
 - **▲**Encoding of *finite-state machines*
- Encoding problems:
 - **▲**Input encoding
 - **▲**Output encoding

Symbolic minimization

- Minimize tables of symbols rather than binary tables
- Extension to byi and myi function minimization
- Applications:
 - **▲**Encoding of *op-codes*
 - **▲** State encoding of *finite-state machines*
- Problems:
 - **▲**Input encoding
 - **▲**Output encoding
 - **▲** Mixed encoding

Example (input encoding)

_ad-mode	op-code	control
INDEX	AND	CNTA
INDEX	OR	CNTA
INDEX	JMP	CNTA
INDEX	ADD	CNTA
DIR	AND	CNTB
DIR	OR	CNTB
DIR	JMP	CNTC
DIR	ADD	CNTC
IND	AND	CNTB
IND	OR	CNTD
IND	JMP	CNTD
IND	ADD	CNTC

Definitions

6

- Symbolic cover:
 - **▲** List of symbolic implicants
 - ▲ List of rows of a table
- Symbolic implicant:
 - **▲**Conjunction of symbolic literals
- Symbolic literals:
 - **▲**Simple: one symbol
 - **▲**Compound: the disjunction of some symbols

Input encoding problem Rationale

- Degrees of freedom in encoding the symbols
- Goal:
 - **▲** Reduce size of the representation
- Approach:
 - **▲** Encode to minimize number of rows
 - **▲** Encode to minimize number of bits

Input encoding problem

- Represent each string by 1-hot codes
- Table with positional cube notation
- Minimize table with mvi minimizer
- Interpret minimized table:
 - **▲** Compound mvi-literals
 - **▲** Groups of symbols

Encoded cover:

100	1000	1000
100	0100	1000
100	0010	1000
100	0001	1000
010	1000	0100
010	0100	0100
010	0010	0010
010	0001	0010
001	1000	0100
001	0100	0001
001	0010	0001
001	0001	0010

Minimum cover:

100	1111	1000
010	1100	0100
001	1000	0100
100	0011	0010
001	0010	0010
001	0110	0001

Minimum symbolic cover:

```
INDEX
       AND,OR, JMP, ADD
                         CNTA
                         CNTB
DIR
       AND, OR
IND
       AND
                         CNTB
                         CNTC
DIR
       JMP, ADD
IND
       ADD
                         CNTC
       OR, JMP
                         CNTD
IND
```

Examples of:

▲ Simple literal: AND

▲ Compound literal: AND, OR

Input encoding problem

- Transform minimum symbolic cover into minimum bv-cover
- Map symbolic implicants into bv implicants (one to one)
- Compound literals:
 - ▲ Encode corresponding symbols so that their supercube does not include other symbol codes
- Replace encoded literals into cover

Compound literals:

- ▲ AND, OR, JMP, ADD
- ▲ AND, OR
- ▲ JMP, ADD
- ▲ OR, JMP

Valide codes:

```
AND 00
OR 01
JMP 11
ADD 10
```

Replacement in cover:

```
\begin{array}{ccccc}
1111 & \longrightarrow & ** \\
1100 & \longrightarrow & 0* \\
1000 & \longrightarrow & 00 \\
0011 & \longrightarrow & 1* \\
0010 & \longrightarrow & 10 \\
0110 & \longrightarrow & *1
\end{array}
```

Input encoding algorithms

- Problem specification:
 - **▲**Constraint matrix **A**:
 - $\triangle a_{ij} = 1$ iff symbol j belongs to literal i
- **Solution sought for:**
 - **▲**Encoding matrix **E**:
 - **▼** As many rows as the symbols
 - **▼** Encoding length n_b

Constraint matrix:

$$A = \begin{bmatrix} 1100 \\ 0011 \\ 0110 \end{bmatrix}$$

Encoding matrix:

$$\mathbf{E} = \left[\begin{array}{c} 0 \ 0 \ 1 \\ 1 \ 1 \\ 1 \ 0 \end{array} \right]$$

Input encoding problem

- Given constraint matrix A:
 - ▲ Find encoding matix E satisfying all input encoding constraints (due to compound literals)
 - With minimum number of columns (bits)

Dichotomy theory

- Dichotomy:
 - \triangle Tow sets (*L*,*R*)
 - ▲ Bipartition of a subset of the symbol set
- Encoding:
 - ▲ Set of columns of E
 - **▲** Set of bipartitions of symbols set
- Rationale:
 - ▲ Each row of the constraint matrix implies some choice on the codes

Dichotomies

- ◆ Dichotomy associated with row a^T of A:
 - ▲A set pair (L, R)
 - \blacksquare L has the symbols with the 1s in a^T
 - ightharpoonup R has the symbols with the Os in a^{τ}
- **◆** Seed dichotomy associated with row a⁷ of A:
 - ▲A set pair (L, R)
 - \blacksquare L has the symbols with the 1s in a^T
 - ightharpoonup R has one symbol with the O in a^{τ}

• Dichotomy associated with constraint $a^{\tau} = 1100$:

```
▲({AND, OR}; {JMP, ADD})
```

The corresponding seed dichotomies are:

```
▲({AND, OR}; {JMP})
```

▲({AND, OR}; {ADD})

Definitions

Compatibility:

```
\triangle (L_1; R_1) and (L_2; R_2) are compatible if:
```

```
▼ L_1 \cap R_2 = \emptyset and R_1 \cap L_2 = \emptyset
or
```

- Covering:
 - \triangle Dichotomy (L_1 ; R_1) covers (L_2 ; R_2) if:

```
 L<sub>1</sub> ⊇ L<sub>2</sub> and R<sub>1</sub> ⊇ R<sub>2</sub>
or

 L<sub>1</sub> ⊇ R<sub>2</sub> and R<sub>1</sub> ⊇ L<sub>2</sub>
```

- Prime dichotomy:
 - **▲** Dichotomy that is not covered by any compatible dichotomy of a given set

Exact input encoding

- Compute all prime dichotomies
- Form a prime/seed table
- Find minimum cover of seeds by primes

Seed dichotomies:

```
s_1 | (\{AND, OR\}; \{JMP\}) 

s_2 | (\{AND, OR\}; \{ADD\}) 

s_3 | (\{JMP, ADD\}; \{AND\}) 

s_4 | (\{JMP, ADD\}; \{OR\}) 

s_5 | (\{OR, JMP\}; \{AND\}) 

s_6 | (\{OR, JMP\}; \{ADD\})
```

Primes dichotomies :

```
p_1 ({AND, OR} ; {JMP,ADD})

p_2 ({OR,JMP} ; {AND,ADD})

p_3 ({OR, JMP, ADD} ; {AND})

p_4 ({AND, OR, JMP} ; {ADD})
```

Table:

• Minimum cover : p_1 and p_2

Encoding:

$$\mathbf{E} = \begin{bmatrix} 10 \\ 11 \\ 01 \\ 00 \end{bmatrix}$$

Heuristic encoding

- Determine dichotomies of rows of A
- Column-based encoding:
 - **▲** Construct **E** column by column
- Iterate:
 - **▲** Determine maximum compatible set
 - ▲ Find a compatible encoding
 - **▲**Use it as column of **E**

(c) Giovanni De Micheli

24

Dichotomies

```
 \begin{array}{c|cccc} d_1 & (\{\text{AND, OR}\} & ; & \{\text{JMP,ADD}\}) \\ d_2 & (\{\text{JMP,ADD}\} & ; & \{\text{AND,OR}\}) \\ d_3 & (\{\text{OR, JMP}\} & ; & \{\text{AND,ADD}\}) \\ \end{array}
```

- First two dichotomies are compatible
- Encoding column [1100] T satisfies d_1 , d_2
- ◆ Need to satisfy d₃
- ◆ Second encoding column [0110]⁷

Output and mixed encoding

- Output encoding:
 - **▲** Determine encoding of output symbols
- Mixed encoding:
 - **▲** Determine both input and output encoding
 - **▲** Examples
 - **▼** Interconnected circuits
 - **▼** Circuits with feedback

Symbolic minimization

- Extension to mvi-minimization
- Accounts for:
 - **▲** Covering relations
 - **▲** *Disjunctive* relations
- Exact and heuristic minimizers

• Minimum symbolic cover computed before:

```
INDEX
      AND,OR, JMP, ADD
                        CNTA
DIR
                        CNTB
      AND, OR
                        CNTB
IND
      AND
                        CNTC
DIR
      JMP, ADD
IND
                        CNTC
      ADD
IND
      OR, JMP
                        CNTD
```

- Can we use fewer implicants?
- Can we merge implicants?

Example covering relations

Assume the code of CNTD covers the codes of CNTB and CNTC:

Possible codes:

△ CNTA = 00, CNTB = 01, CNTC = 10 and CNTD = 11

Output encoding algorithms

- Often solved in conjunction with input encoding
- Exact algorithms:
 - **▲** Prime dichotomies compatible with output constraints
 - **▲** Construct prime / seed table
 - **▲** Solve covering problem
- Heuristic algorithms:
 - **▲** Construct **E** column by column

Input constraint matrix of second stage:

$$\mathbf{A} = \begin{bmatrix} 1100 \\ 0101 \end{bmatrix}$$

Output constraint matrix of first stage:

$$\mathbf{B} = \left[\begin{array}{c} 0000 \\ 0000 \\ 0000 \\ 0110 \end{array} \right]$$

 Assume the code of CTND covers the codes of CTNB and CTNC

Seed dichotomies associated with A:

```
s_1 ({CNTA, CNTB} ; {CNTC})

s_2 ({CNTA, CNTB} ; {CNTD})

s_3 ({CNTC} ; {CNTA, CNTB})

s_4 ({CNTD} ; {CNTA, CNTB})

s_5 ({CNTB, CNTD} ; {CNTA})

s_6 ({CNTB, CNTD} ; {CNTC})

s_7 ({CNTA} ; {CNTB, CNTD})

s_8 ({CNTC} ; {CNTB, CNTD})
```

• Seed dichotomies s_2 , s_7 and s_8 are not compatible with B

Example (2)

Prime dichotomies compatible with B:

```
p_1 \mid (\{\text{CNTC}, \text{CNTD}\} \ ; \{\text{CNTA}, \text{CNTB}\})
p_2 \mid (\{\text{CNTB}, \text{CNTD}\} \ ; \{\text{CNTA}, \text{CNTC}\})
p_3 \mid (\{\text{CNTA}, \text{CNTB}, \text{CNTD}\} \ ; \{\text{CNTC}\})
```

- **◆** Cover: *p*1 and *p*2
- Encoding matrix

$$\mathbf{E} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

State encoding of *finite-state machines*

- Given a state table of a finite-state machine:
 - **▲**With symbols representing
 - **▼** present-states
 - **▼** next-states
- Find a consistent encoding of the states:
 - **▲**That minimizes the size of the cover
 - **▲With minimum number of bits**

INPUT	P-STATE	N-STATE	OUTPUT
0	s ₁	83	0
1	s_1	83	0
0	82	83	0
1	82	81	1
0	83	85	0
1	83	84	1
0	84	82	1
1	84	83	0
0	s ₅	82	1
1	s ₅	85	0

Minimum symbolic cover:

*
$$S_1 S_2 S_4$$
 S_3 0
1 S_2 S_1 1
0 $S_4 S_5$ S_2 1
1 S_3 S_4 1

- Covering constraints:
 - \triangle s₁ and s₂ cover s₃
 - \triangle s₅ is covered by all other states
- Encoding constraint matrices:

$$A = \begin{bmatrix} 11010 \\ 00011 \end{bmatrix} \qquad B = \begin{bmatrix} 00101 \\ 00101 \\ 00001 \\ 00000 \end{bmatrix}$$

Encoding matrix (one row per state):

$$\mathbf{E} = \begin{pmatrix} 111 \\ 101 \\ 001 \\ 100 \\ 000 \end{pmatrix}$$

Encoded cover of combinational component:

*	1**	001	0
1	101	111	1
0	*00	101	1
1	001	100	1

Summary

- Symbolic minimization:
 - ▲ Reduce size of tabular representations where symbols in table can be encoded
- Requires solving encoding problems:
 - ▲ Find minimum-length encoding that is valid for a minimum symbolic cover
- Applicable to optimizing:
 - **▲**Interconnected combinational blocks
 - **▲** Combinational part of *finite-state machines*