

- Database Schema
- Keys
- Schema Diagrams
- Relational Query Languages
- The Relational Algebra

Chapter 2: Intro to Relational Model

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Example of a Instructor Relation

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Attribute

= attributes

- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value **null** is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations

Outline

2.3

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary
- Example: instructor relation with unordered tuples

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	00006
32343	El Said	History	00009
15565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
99/9/	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000
)		

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Let $K \subseteq R$

- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
- Example: {ID} and {ID,name} are both superkeys of instructor.
- Example: {ID} is a candidate key for Instructor Superkey K is a candidate key if K is minimal
- One of the candidate keys is selected to be the primary key.
- which one?

Foreign key constraint: Value in one relation must appear in another

Referenced relation

Referencing relation

Example – dept_name in instructor is a foreign key from instructor referencing department

Database Schema

- Database schema -- is the logical structure of the database.
- Database instance -- is a snapshot of the data in the database at a given instant in time.
- Example:
- schema: instructor (ID, name, dept_name, salary)
 - Instance:

salary salary	92000	00006	00009	i. 75000	80000	72000	i. 65000	62000	i. 92000	40000	87000	80000
dept_name	Physics	Finance	History	Comp. Sci.	Elec. Eng.	Biology	Comp. Sci	History	Comp. Sci	Music	Physics	Finance
пате	Einstein	Wu	El Said	Katz	Kim	Crick	Srinivasan	Califieri	Brandt	Mozart	Gold	Singh
ID	22222	12121	32343	45565	98345	99/9/	10101	58583	83821	15151	33456	76543

Database System Concepts - 7th Edition

2.6

©Silberschatz, Korth and Sudarshan

Schema Diagram for University Database

Relational Query Languages

- Procedural versus non-procedural, or declarative
- "Pure" languages:
- Relational algebra
- Tuple relational calculus
- Domain relational calculus
- The above 3 pure languages are equivalent in computing power
- We will concentrate in this chapter on relational algebra
- Not turning-machine equivalent
- Consists of 6 basic operations

Relational Algebra

- A procedural language consisting of a set of operations that take one or two relations as input and produce a new relation as their result
- Six basic operators
- select: σ
- project: ∏
- union: \bigcirc
- set difference: –
- Cartesian product: x
- ullet rename: ho

©Silberschatz, Korth and Sudarshan Database System Concepts - 7th Edition

2.10

©Silberschatz, Korth and Sudarshan

Select Operation

- The select operation selects tuples that satisfy a given predicate.
 - Notation: $\sigma_{\rho}(r)$
- p is called the selection predicate
- Example: select those tuples of the instructor relation where the instructor is in the "Physics" department.
- ָט ט

 σ dept_name= "Physics" (instructor)

• Result

D	name	dept_name	salary
22222	Einstein	Physics	00056
33456	Gold	Physics	87000

Select Operation (Cont.)

We allow comparisons using

in the selection predicate.

Example: Find the instructors in Physics with a salary greater \$90,000,

$$\sigma$$
 dept_name= "Physics " \wedge salary > 90,000 (instructor)

- Then select predicate may include comparisons between two attributes.
- Example, find all departments whose name is the same as their building name:
- ullet of dept_name=building (department)

Project Operation

- A unary operation that returns its argument relation, with certain attributes left out.
- Notation:

$$\prod_{A_1,A_2,A_3\ldots A_k} (r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are

Project Operation (Cont.)

- Example: eliminate the dept_name attribute of instructor

∏ID, name, salary (instructor)

Result:

65000	Ιĕ	\sim									_
9	00006	40000	00056	00009	87000	75000	62000	80000	72000	92000	80000
Srinivasan	Wu	Mozart	Einstein	El Said	Gold	Katz	Califieri	Singh	Crick	Brandt	Kim
10101	12121	15151	22222	32343	33456	45565	58583	76543	99191	83821	98345

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

Composition of Relational Operations

Database System Concepts - 7th Edition

Cartesian-Product Operation

- The Cartesian-product operation (denoted by X) allows us to combine information from any two relations.
- Example: the Cartesian product of the relations instructor and teaches is written as:

instructor X teaches

Consider the query -- Find the names of all instructors in the

Physics department.

therefore of relational-algebra operations can be composed The result of a relational-algebra operation is relation and

together into a relational-algebra expression.

- of tuples: one from the instructor relation and one from the We construct a tuple of the result out of each possible pair teaches relation (see next slide)
- attribute the name of the relation from which the attribute distinguish between these attribute by attaching to the Since the instructor ID appears in both relations we originally came.

projection operation, we give an expression that evaluates to a Instead of giving the name of a relation as the argument of the

 $\prod_{name}(\sigma_{dept_name} = "Physics" (instructor))$

- instructor.ID
- teaches.ID

The instructor x teaches table

year	2017	2018	2017	2018	2018	2017	:	::	2017	2018	2017	2018	2018	2017	:	::	2017	2018	2017	2018	2018	2017	:	:	2017	2018	2017	2018	2018	2017	:	
semester	Fall	Spring	Fall	Spring	Spring	Fall	::		Fall	Spring	Fall	Spring	Spring	Fall	:		Fall	Spring	Fall	Spring	Spring	Fall			Fall	Spring	Fall	Spring	Spring	Fall		
sec_id	1	1	1	1	-		:	::	ī	1	1	1	1	1	:		1	1	1	1	1	1		::	1	1	-	1	1	1		
course_id	CS-101	CS-315	CS-347	FIN-201	MU-199	PHY-101	:		CS-101	CS-315	CS-347	FIN-201	MU-199	PHY-101	:		CS-101	CS-315	CS-347	FIN-201	MU-199	PHY-101	:		CS-101	CS-315	CS-347	FIN-201	MU-199	PHY-101		
teaches.ID	10101	10101	10101	12121	15151	22222	:		10101	10101	10101	12121	15151	22222	:		10101	10101	10101	12121	15151	22222			10101	10101	10101	12121	15151	22222		
salary	00059	00059	00059	00059	00059	00059	:		90000	00006	00006	00006	00006	00006	:		40000	40000	40000	40000	40000	40000		::	00056	95000	95000	95000	95000	95000		
dept_name	Comp. Sci.	Comp. Sci.	Comp. Sci.	Comp. Sci.	Srinivasan Comp. Sci.	Comp. Sci.			Finance	Finance	Finance	Finance	Finance	Finance	:		Music	Music	Music	Music	Music	Music			Physics	Physics	Physics	Physics	Physics	Physics		
name	Srinivasan	Srinivasan	Srinivasan	Srinivasan	Srinivasan	Srinivasan	:	::	Wu	Wu	Wu	Wu	Wu	Wu	:	::	Mozart	Mozart	Mozart	Mozart	Mozart	Mozart	::		Einstein	Einstein	Einstein	Einstein	Einstein	Einstein	::	
Instructor.ID	10101	10101	10101	10101	10101	10101	:		12121	12121	12121	12121	12121	12121	:		15151	15151	15151	15151	15151	15151		:	22222	22222	22222	22222	22222	22222		

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Join Operation (Cont.)

The table corresponding to:

 σ instructor.id = teaches.id (instructor x teaches))

year	2017	2018	2017	2018	2018	2017	2018	2018	2018	2017	2018	2017	2017	2018	2017
semester	Fall	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Spring	Summer	Summer	Spring	Spring	Spring	Spring
sec_id	-	1	1	1	1	1	1	1	1	1	1	1	2	2	1
course_id	CS-101	CS-315	CS-347	FIN-201	MU-199	PHY-101	HIS-351	CS-101	CS-319	BIO-101	BIO-301	CS-190	CS-190	CS-319	EE-181
teaches.ID	10101	10101	10101	12121	15151	22222	32343	45565	45565	99191	99191	83821	83821	83821	98345
salary	00059	00059	65000	00006	40000	95000	00009	75000	75000	72000	72000	92000	92000	92000	80000
dept_name	Comp. Sci.	Comp. Sci.	Comp. Sci.	Finance	Music	Physics	History	Comp. Sci.	Comp. Sci.	Biology	Biology	Comp. Sci.	Comp. Sci.	Comp. Sci.	Elec. Eng.
name	Srinivasan	Srinivasan	Srinivasan	Wu	Mozart	Einstein	El Said	Katz	Katz	Crick	Crick	Brandt	Brandt	Brandt	Kim
Instructor.ID	10101	10101	10101	12121	15151	22222	32343	45565	45565	99/9/	99/9/	83821	83821	83821	98345

Join Operation

The Cartesian-Product

instructor X teaches

associates every tuple of instructor with every tuple of teaches.

- Most of the resulting rows have information about instructors who did NOT teach a particular course.
- To get only those tuples of "instructor X teaches" that pertain to instructors and the courses that they taught, we write:

 $\sigma_{instructor.id}$ = teaches.id (instructor x teaches))

- We get only those tuples of "instructor X teaches" that pertain to instructors and the courses that they taught.
- The result of this expression, shown in the next slide

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Join Operation (Cont.)

- The join operation allows us to combine a select operation and a Cartesian-Product operation into a single operation.
- Consider relations r (R) and s (S)
- Let "theta" be a predicate on attributes in the schema R "union" S. The join operation $r \bowtie_{\theta} s$ is defined as follows:

$$r\bowtie_{\theta} s = \sigma_{\theta}(r \times s)$$

Thus

 $\sigma_{instructor.id} = teaches.id$ (instructor x teaches))

Can equivalently be written as

instructor ⋈ Instructor.id = teaches.id teaches.

Union Operation

- The union operation allows us to combine two relations
- Notation: $r \cup s$
- For $r \cup s$ to be valid.
- r, s must have the same arity (same number of attributes)
- The attribute domains must be compatible (example: 2nd
- of r deals with the same type of values as does the 2^{nd} column of s)
- Example: to find all courses taught in the Fall 2017 semester or in the Spring 2018 semester, or in both

 $\Pi_{\sf course_id}$ (σ semester= "Fall " \wedge year=2017 (section)) $\,\cup\,$

 $\Pi_{ extsf{course_id}}\left(\sigma_{ extsf{semester="Spring"}} \land_{ extsf{year=2018}}\left(extsf{section}
ight)
ight)$

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Set-Intersection Operation

- The set-intersection operation allows us to find tuples that are in both the input relations.
- Notation: $r \cap s$
- Assume:
- r, s have the same arity
- attributes of r and s are compatible
- Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

 $\Pi_{ ext{course_id}}$ ($\sigma_{ ext{semester="Fall"}}$ A year=2017 (section)) \cap $\Pi_{\sf course_id}$ ($\sigma_{\sf semester}$ "Spring " \land year=2018 $({\sf section}))$

• Result

Union Operation (Cont.)

 $\Pi_{ ext{course_id}}$ (σ semester= "Fall " $_{ ext{A}}$ year=2017 (Section)) $_{ ext{C}}$

 $\Pi_{ ext{course_id}}\left(\sigma_{ ext{ semester= "Spring " } \land ext{ year=2018 (section))}
ight.$

course_id	CS-101	CS-315	CS-319	CS-347	FIN-201	HIS-351	MU-199	PHY-101
٠	_			L			_	-

Database System Concepts - 7th Edition

2.22

©Silberschatz, Korth and Sudarshan

Set Difference Operation

- The set-difference operation allows us to find tuples that are in one relation but are not in another.
- Notation r s
- Set differences must be taken between compatible relations.
- r and s must have the same arity
- attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester

 $\Pi_{ ext{course_id}}$ (σ semester= "Fall" $_{ ext{N}}$ year=2017 (Section))

 $\Pi_{ ext{course_id}}$ (σ semester= "Spring". A year=2018 (**section**))

2.23

The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary relation variables.

name that we can use to refer to them. The rename operator, The results of relational-algebra expressions do not have a

 ρ , is provided for that purpose

The expression:

 $\rho_{x}(E)$

returns the result of expression E under the name x

Another form of the rename operation:

 $\rho_{x(A1,A2,...An)}(E)$

The Rename Operation

- The assignment operation is denoted by ← and works like assignment in a programming language.
- Example: Find all instructor in the "Physics" and Music department.

Physics $\leftarrow \sigma_{\text{dept_name} = \text{"Physics"}}$ (instructor) $\mathit{Music} \leftarrow \sigma_{\mathit{dept_name}} = "\mathit{Music}" (instructor)$ Physics ∪ Music sequential program consisting of a series of assignments

followed by an expression whose value is displayed as the result With the assignment operation, a query can be written as a

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

Equivalent Queries

- There is more than one way to write a query in relational algebra.
- Example: Find information about courses taught by instructors in the Physics department with salary greater than 90,000
- Query 1

 σ dept_name="Physics" $^{\wedge}$ salary > 90,000 (instructor)

Query 2

 σ dept_name= "Physics " $(\sigma$ salary > 90.000 (instructor))

The two queries are not identical; they are, however, equivalent -they give the same result on any database.

Equivalent Queries

- There is more than one way to write a query in relational algebra.
- Example: Find information about courses taught by instructors in the Physics department
- Query 1

 $\sigma_{\mathsf{dept_name}=}$ "Physics" (instructor \bowtie instructor.ID = teaches.ID teaches)

Query 2

(Gdept_name= "Physics " (instructor)) ⋈ instructor.ID = teaches.ID teaches

The two queries are not identical; they are, however, equivalent they give the same result on any database.

2.28 Database System Concepts - 7th Edition ©Silberschatz, Korth and Sudarshan 2.27 Database System Concepts - 7th Edition

End of Chapter 2

©Silberschatz, Korth and Sudarshan

2.29

Database System Concepts - 7th Edition

