Trig Identities Packet

$$\sin\theta = \frac{1}{\cos\theta}$$

$$csc \theta = \frac{1}{\sin \theta}$$

$$\cos \theta = \frac{1}{\sec \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\tan\theta = \frac{1}{\cot\theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\sin^2\theta = 1 - \cos^2\theta$$

$$\cos^2\theta = 1 - \sin^2\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\tan^2\theta = \sec^2\theta - 1$$

$$-\tan^2\theta = 1 - \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot^2\theta = \csc^2\theta - 1$$

$$-\cot^2\theta = 1 - \csc^2\theta$$

Advanced Math - March 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
4	5 Quiz 6.6	6 Trig Identities [D1] HW: Worksheet	7 Trig Identities [D2] HW: Worksheet	8 Trig Identities [D3] HW: Worksheet	9 Review Trig Identities: Odds	10
11	Review Trig Identities: Evens	Quiz Trig	14 Next Concept: Sine & Cosine Graphs	15	16	17

$$\tan \theta =$$

$$\cot \theta =$$

$$\csc \theta =$$

$$\sec \theta =$$

Pythagorean Identity

Solve the Pythagorean Identity for $\cos^2 \theta$

Solve the Pythagorean Identity for $\sin^2 \theta$

Take the Pythagorean Identity and divide every single term by $\cos^2 \theta$

$$\cos^2\theta + \sin^2\theta = 1$$

Solve the above equation for $\, an^2 heta$

Take the Pythagorean Identity and divide every single term by $\sin^2\!\theta$

$$\cos^2\theta + \sin^2\theta = 1$$

Solve the above equation for $\cot^2 \theta$

Some other identities:

$$\sin \theta =$$

$$\cos \theta =$$

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\tan\theta = \frac{1}{\cot\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\sin^2\theta = 1 - \cos^2\theta$$

$$\cos^2\theta = 1 - \sin^2\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\tan^2\theta = \sec^2\theta - 1$$

$$-\tan^2\theta = 1 - \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot^2\theta = \csc^2\theta - 1$$

$$-\cot^2\theta = 1 - \csc^2\theta$$

Example 1: Use Trigonometric Identities to write each expression in terms of a single trigonometric identity or a constant.

a.
$$\tan \theta \cos \theta$$

b.
$$\frac{1-\cos^2\theta}{\cos^2\theta}$$

c.
$$\cos\theta \csc\theta$$

d.
$$\frac{\sin\theta\sec\theta}{\tan\theta}$$

Example 2: Simplify the complex fraction.

a.
$$\frac{\frac{2}{3}}{\frac{4}{15}}$$

b.
$$\frac{\frac{4}{5}}{\frac{4}{35}}$$

c.
$$\frac{\frac{2}{5}}{\frac{3}{5}}$$

d.
$$\frac{\frac{1}{2}}{2}$$

$$\sin \theta = \frac{1}{\csc \theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\cos \theta = \frac{1}{\sec \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\tan\theta = \frac{1}{\cot\theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\sin^2\theta = 1 - \cos^2\theta$$

$$\cos^2\theta = 1 - \sin^2\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\tan^2\theta = \sec^2\theta - 1$$

$$-\tan^2\theta = 1 - \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot^2\theta = \csc^2\theta - 1$$

$$-\cot^2\theta = 1 - \csc^2\theta$$

Example 3: Simplify the complex fraction.

$$\mathbf{a.} \ \frac{\csc \theta}{\cot \theta}$$

$$\mathbf{b}.\,\frac{1-\cos^2\theta}{\tan^2\theta}$$

$$\mathbf{c.} \ \frac{\cos\theta \sec\theta}{\tan\theta}$$

d.
$$\frac{\sin \theta}{\csc \theta}$$

Use Trigonometric Identities to write each expression in terms of a single trigonometric identity or a constant.

1.
$$\cot \theta \sin \theta$$

$$2. \ \frac{1-\sin^2\theta}{\sin^2\theta}$$

3.
$$\sin \theta \sec \theta$$

$$4. \ \frac{\cos\theta \csc\theta}{\cot\theta}$$

Simplify the complex fraction.

$$5. \ \frac{\sec \theta}{\tan \theta}$$

$$\mathbf{6.}\,\frac{1-\sin^2\theta}{\cot^2\theta}$$

7.
$$\frac{\sin\theta\csc\theta}{\cot\theta}$$

8.
$$\frac{\cos\theta}{\sec\theta}$$

Example 1: Simplify

$$\mathbf{a.} \ \frac{\tan \theta + \cot \theta}{\tan \theta}$$

b.
$$\frac{\cos^2\theta}{1-\sin\theta}$$

$$\mathbf{c.} \ \frac{\sec^2\theta - 1}{\sec^2\theta}$$

d.
$$\tan \theta \csc \theta \cos \theta$$

To <u>VERIFY</u> AN IDENTITY: Work on each side separately and make sure you don't move things from one side to the other! You can work on both sides at the same time – but you just can't move things from one side to the other.

Verify the identity.

Example 1: $\sin \theta \cot \theta \sec \theta = 1$

Example 2: $1 - 2\sin^2\theta = 2\cos^2\theta - 1$

Example 3: Factor

$$a. \qquad a^2 - a^2b$$

b.
$$x^2 - 2x + 1$$

Example 4: *Verify the identity.*

 $\csc^2\theta - \cos^2\theta \csc^2\theta = 1$

Example 5: Simplify

a. $(\sin \theta - \cos \theta)(\sin \theta + \cos \theta)$

There are two different ways you can leave this answer! In the notes, leave it in terms of $\sin^2\theta$. In the homework, you will be "verifying" and leaving it in terms of $\cos^2\theta$

b. $(\tan \theta + 1)^2$

c. $\sin^2\theta - 2\sin\theta + 1$

Simplify the complex fraction.

$$1. \frac{\csc \theta - \sin \theta}{\csc \theta}$$

$$2.\,\frac{\sin^2\!\theta}{1+\cos\theta}$$

$$3. \ \frac{\csc^2\theta - 1}{\csc^2\theta}$$

4.
$$\tan \theta \sec \theta \sin \theta$$

Verify the identity. Both sides should end up being equal, so you will not find these on the answer key.

5.
$$\tan \theta \csc \theta \cos \theta = 1$$

6.
$$(\sin \theta - \cos \theta)(\sin \theta + \cos \theta) = 1 - 2\cos^2 \theta$$

7.
$$\frac{\sin \theta}{1 + \cos \theta}$$
 \cdot $\frac{1 - \cos \theta}{1 - \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$

$$8. \sin^2\theta (1 + \cot^2\theta) = 1$$

Verify the identity. Both sides should end up being equal, so you will not find these on the answer key.

$$9. \frac{\sec \theta - \cos \theta}{\sec \theta} = \sin^2 \theta$$

$$\mathbf{10.} \ \frac{\cot\theta\sec\theta}{\csc\theta} = 1$$

11.
$$\frac{1+\tan^2\theta}{\sec\theta} = \sec\theta$$

$$12. (1-\cos\theta)(1+\cos\theta) = \frac{1}{\csc^2\theta}$$

Example 1: Simplify

a.
$$\frac{2}{3} + \frac{1}{4}$$

b.
$$\frac{1}{\cos\theta} + \frac{1}{\sin\theta}$$

$$\mathbf{c}. \qquad \frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta}$$

d.
$$\tan \theta - \frac{\sec^2 \theta}{\tan \theta}$$

e.
$$\frac{\tan \theta}{\cot \theta} + 1$$

$$\mathbf{f.} \qquad \frac{1}{\cos\theta} + \frac{1}{\sin\theta}$$

Simplify.

1.
$$\frac{\sin\theta}{\csc\theta} + \frac{\cos\theta}{\sec\theta}$$

$$2. \qquad \frac{\csc^2\theta - 1}{\cot\theta}$$

Verify the identity. Both sides should end up being equal, so you will not find these on the answer key.

3.
$$\frac{1+\sec^2\theta}{\sec^2\theta} = 1 + \cos^2\theta$$

4.
$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{1}{\cos \theta \sin \theta}$$

5.
$$\sec^2\theta - \sin^2\theta \sec^2\theta = 1$$

6.
$$\frac{\sin^2\theta - 2\sin\theta + 1}{\sin\theta - 1} = \sin\theta - 1$$

$$7. \qquad \frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta}$$

8.
$$\cot \theta - \frac{\csc^2 \theta}{\cot \theta}$$

SOLUTIONS

D1

- **1**. $\cos \theta$ **2**. $\cot^2 \theta$
- **3**. $\tan \theta$
- **4**. 1

- **5**. $\csc \theta$ **6**. $\sin^2 \theta$
- **7**. $\tan \theta$
- 8. $\cos^2\theta$

D2

- **1**. $\cos^2 \theta$ **2**. $1 \cos \theta$ **3**. $\cos^2 \theta$
- **4**. $\tan^2 \theta$

D3

- 1.
- 1 **2**. $\cot \theta$