JEE EXPERT

JEE MAIN EXCLUSIVE TOPICS

(SPECIAL TEST - 02)
PHYSICS, CHEMISTRY & MATHEMATICS
Batch: 12th & 12th Pass [22.12.2019]

Answer Key

				PHYSIC	CS				
1.	(A)	2.	(D)	3.	(B)	4.	(A)	5.	(B)
6.	(B)	7.	(B)	8.	(B)	9.	(D)	10.	(B)
11		12.	(B)	13.	(D)	14.	(C)	15.	(C)
16	. (A)	17.	(B)	18.	(A)	19.	(D)	20.	(A)
21	. (A)	22.	(C)	23.	(D)	24.	(D)	25.	(C)
26	. (C)	27.	(A)	28.	(C)	29.	(C)	30.	(B)
				CHEMIS	TRY				
31	. (D)	32.	(A)	33.	(C)	34.	(A)	35.	(B)
36	. (C)	37.	(D)	38.	(A)	39.	(A)	40.	(A)
41	. (B)	42.	(C)	43.	(A)	44.	(C)	45.	(D)
46	. (D)	47.	(A & C)	48.	(B)	49.	(A)	50.	(D)
51	. (B)	52.	(A)	53.	(A)	54.	(B)	55.	(D)
56	. (B)	57.	(A)	58.	(C)	59.	(B)	60.	(B)
			N	MATHEMA	ATICS				
61	. (C)	62.	(B)	63.	(C)	64.	(B)	65.	(D)
66	. (A)	67.	(B)	68.	(D)	69.	(D)	70.	(A)
71	. (B)	72 .	(A)	73.	(A)	74.	(B)	75.	(A)
76	. (D)	77 .	(C)	78.	(D)	79.	(C)	80.	(D)
81	. (B)	82.	(B)	83.	(B)	84.	(A)	85.	(A)
86	. (C)	87.	(C)	88.	(C)	89.	(A)	90.	(C)

JEE EXPERT

JEE MAIN EXCLUSIVE TOPICS

(SPECIAL TEST - 02) PHYSICS, CHEMISTRY & MATHEMATICS Batch: 12th & 12th Pass [22.12.2019]

Solutions

PHYSICS

- 1. An audio signal
- **Sol.** Band width for both signals 15200 Hz - 200 Hz = 15000 HzBand width for human speech 2700 Hz - 200 Hz = 2500 HzThe ratio = $\frac{15000}{2500}$ = 6

- 2. In a common emitter
- **Sol.** $A_V = \beta \frac{R_{out}}{R_{in}} \Rightarrow G = 25 \frac{R_{out}}{R_1}$(i) $9_{\rm m} = \frac{\beta}{R_1} \Rightarrow R_1 = \frac{\beta}{g_{\rm m}} = \frac{25}{0.03}$ $G = 25 \frac{R_{out}}{25} \times 0.03$ (i) $G' = 20 \frac{R_{out}}{20} \times 0.02$ (ii) $G' = \frac{2}{3}G$

$$G' = -G$$

3. The output (X)

Alternate:

A	В	X
0	0	0
1	0	0
0	1	0
1	1	1

4. The given graph

Sol.

It is V - i cherecterstic curve for a solar cell, where A represent open circuit voltage of solar cell and B represent short circuit current.

- 5. Which logic gate
- Sol. Truth table

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

- A npn transistor
- **Sol.** Voltage gain = [current gain] [resistance gain]

$$[.96] \frac{800}{192} = 4$$

power gain = [current gain] [resistance gain] [.96] [4] = 3.84

- 7. A in single-slit
- **Sol.** Width of maximas $\infty \lambda$ so. ans. (2)

- **8.** If a Fraunhofer
- **Sol.** Fringe width $W = \frac{2f\lambda}{a}$

$$W \propto \frac{1}{a}$$

It means a increase and W decrease.

9. In an experiment

Sol.
$$P = \frac{a^{3}b^{2}}{cd}$$

$$\frac{\Delta P}{P} \times 100 \% = 3\frac{\Delta a}{a} \times 100\% + 2\frac{\Delta b}{b} 100\% + \frac{\Delta c}{c} 100$$

$$\% + \frac{\Delta d}{d} \times 100\%$$

$$= 3.1 + 2.2 + 3 + 4 = 3 + 4 + 3 + 4$$

$$= 14 \%$$

- **10.** Two carnot engines
- **Sol.** Say input is 100 J Net loss = $100 \times 0.5 \times 0.6 = 30$ J efficiency = $\frac{100-30}{100} = 70\%$
- 11. Consider an
- **Sol.** If wave is propagating in x direction, $\vec{E} \& \vec{B}$ must be functions of (x, t) & must be in y-z plane.
- **12.** Two stars are

Sol.
$$\theta = \frac{1.22\lambda}{D}$$

$$\frac{x}{10 \text{ light year}} = \frac{1.22 \times 600 \times 10^{-9}}{30 \times 10^{-2}}$$

$$\frac{x}{10 \text{ light year}} = 2.44 \times 10^{-6}$$

$$x = 2.44 \times 10^{-5} \times 9.46 \times 10^{15} \text{ m}$$

$$= 23.08 \times 10^{7} \text{ km}$$

13. If it takes 5

$$\begin{aligned} \textbf{Sol.} \quad & \frac{dm}{dt} = \rho A v \\ & \frac{15}{5 \times 60} = 10^3 \times \pi \bigg(\frac{1}{\sqrt{\pi}} \bigg)^2 \times 10^{-4} \, V \\ & V = 0.5 \, \, \text{m/s} \\ & R_e = \frac{\rho v d}{\eta} \end{aligned}$$

$$= \frac{10^{3} \times 0.5 \times \frac{2}{\sqrt{\pi}} 10^{-2}}{10^{-3}}$$

$$\approx 5500 \text{ Ans.}$$

14. The radius of

Sol. % error =
$$\frac{3\Delta r}{r}$$

 $\frac{3\Delta r}{r} = \frac{3 \times 0.01 \times 100}{3.75} = 0.8\%$

15. Diameter of a steel

Sol. Least count = 0.01 cm

$$d_1 = 0.5 + 8 \times 0.01 + 0.03 = 0.61 \text{ cm}$$

$$d_2 = 0.5 + 4 \times 0.01 + 0.03 = 0.57 \text{ cm}$$

$$d_3 = 0.5 + 6 \times 0.01 + 0.03 = 0.59 \text{ cm}$$
Mean diameter = $\frac{0.61 + 0.57 + 0.59}{3} = 0.59 \text{ cm}$

- **16.** Unpolarized light
- Sol. When unpolarised light is incident at Brewster's angle then the intensity of the reflected light is less than half of the incident light.
- **17.** A transmitting

Sol.
$$d_m = \sqrt{2 \times 64 \times 10^5 \times 32} + \sqrt{2 \times 64 \times 10^5 \times 50} \text{ m}$$

= $64 \times 10^2 \times \sqrt{10} + 8 \times 10^3 \times \sqrt{10} \text{ m}$
= $144 \times 10^2 \times \sqrt{10} \text{ m} = 45.5 \text{ km}$

- **18.** A long capillary
- Sol. $\frac{4T}{r} = h\rho g$ 2T/r $\frac{4 \times 72}{0.0288} = h \times 1 \times 1000$ h = 10 cm

- A large number of **19.**
- **Sol.** Energy released = $[n \times 4\pi a^2 4\pi b^2]\sigma$

Now
$$n \times \frac{4}{3}\pi r^3 = \frac{4}{3}\pi b^3$$
 or $n = \frac{b^3}{a^3}$

∴ Energy released

$$\left[\frac{b^3}{a^3} \times 4\pi a^2 - 4\pi b^2\right] \sigma = 4\pi b^2 \left[\frac{b}{a} - 1\right] \sigma$$

Now,
$$\frac{1}{2} \left(\frac{4}{3} \pi b^3 \right) \rho v^2 = 4\pi b^2 \left[\frac{b}{a} - 1 \right] \sigma$$

or
$$v = \left[\frac{6\sigma}{\rho} \left(\frac{1}{a} - \frac{1}{b}\right)\right]^{1/2}$$

- **20.** A metal wire
- **Sol.** $\sigma \times 2\ell = \ell \times \pi r^2 \times d \times g$

$$r = \sqrt{\frac{2\sigma}{\pi dg}}$$

- A block of mass
- **Sol.** For under damping, $b^2 4m K < 0$

$$\Rightarrow K > \frac{b^2}{4m} \Rightarrow K > \frac{20^2}{4(1)} \Rightarrow K > 100$$

- The plane of the 22.
- **Sol.** $\tan \theta_1 = \frac{\tan \theta}{\cos \alpha}$

and
$$\tan \theta_2 = \frac{\tan \theta}{\cos(90^\circ - \alpha)} = \frac{\tan \theta}{\sin \alpha}$$

$$\Rightarrow \cos \alpha = \frac{\tan \theta}{\tan \theta_1} \qquad .$$

.....(1) and
$$\sin \alpha = \frac{\tan \theta}{\tan \theta 2}$$

dividing (2) by (1), we have

$$\tan \alpha = \frac{\tan \theta_1}{\tan \theta_2}$$

- An iron rod of
- **Sol.** we have, $B = \mu_0 H + \mu_0 I$

or
$$I = \frac{B - \mu_0 H}{\mu_0}$$

or
$$I = \frac{\mu H - \mu_0 H}{\mu_0} = \left(\frac{\mu}{\mu_0} - 1\right) H$$

$$I = (\mu_r - 1)H$$

For a solenoid of n-turns per unit length and current i H = ni

$$\therefore$$
 I = $(\mu_r - 1)$ ni

$$I = (1000 - 1) \times 500 \times 0.5$$

$$i = 2.5 \times 10^5 \text{ Am}^{-1}$$

 \therefore Magnetic moment M = IV

$$M = 2.5 \times 10^5 \times 10^{-4}$$

$$M = 25 \text{ Am}^2$$

- A bar magnet has 24.
- **Sol.** The bar magnet has coercivity 4×10^3 Am⁻¹ i.e It requires a magnetic intensity $H = 4 \times 10^3$ Am⁻¹ to get demagnetised. Let i be the current carried by solenoid having n number of turns per metre length, then by definition

$$H = n$$

Here $H = 4 \times 10^3$ Amp turn metre⁻¹

$$n = \frac{N}{\ell} = \frac{60}{0.12} = 500 \text{ turn metre}^{-1}$$

$$\Rightarrow i = \frac{H}{n} = \frac{4 \times 10^3}{500} = 8.0A$$

- Two identical spherical
- **Sol.** When two drops of radius r each combine to form a big drop, the radius of big drop will be

$$\begin{split} \frac{4}{3}\pi R^3 &= \frac{4\pi}{3}r^2 + \frac{4\pi}{3}r^3 \\ or & R^3 = 2r^3 \quad or \quad R = 2^{1/3}r \\ Now & \frac{V_R}{V_r} = \left(\frac{R}{r}\right)^2 \quad = 2^{\frac{2}{3}} = 4^{\frac{1}{3}} \\ V_R &= 5 \times 4^{1/3} \text{ cm/s} \end{split}$$

- **26.** A uniform solid ball
- **Sol.** $Vdg V\rho g 6\pi \eta r v = Vd \frac{g}{2}$ $\Rightarrow v = \frac{2}{9} \frac{r^2 g}{n} \left(\frac{d}{2} - \rho \right)$ $=\frac{2}{27}\frac{r^2gd}{r}$

27. The vernier of a

Sol. Least count
$$= \left(1 - \frac{49}{50}\right)0.5^{\circ} = \frac{1^{\circ}}{100} = 0.6^{\circ}$$

- **28.** The pitch of a
- **Sol.** p = 1mm, N = 100

Least count,
$$C = \frac{P}{N} = \frac{1mm}{100} = 0.01mm$$

The instrument has a positive zero error e = +NC

$$= +4 \times 0.01 = +0.04 \text{ mm}$$

$$= + 0.04 \text{ mm}$$

Main scale reading is $2 \times (1 \text{ mm}) = 2 \text{ mm}$ Circular scale reading is 67(0.01) = 0.67 mm

 \therefore observed reading is $R_0 = 2 + 0.67 = 2.67$ mm

So true reading = $R_0 - e = 2.63 \text{ mm}$

29. One centimetre

Least count =
$$1MSD - 1VSD$$

$$1MSD = \frac{1cm}{10} = 1mm$$

$$8MSD = 10 VSD$$

$$L.C = 1MSD - \frac{8}{10}MSD$$

$$=\frac{1}{5}MSD = \frac{1}{5}mm = 0 2mm = 0 02cm$$

30. The length of

Sol.
$$v = \pi r^2 \ell$$

$$\% \frac{\Delta v}{v} = \left(\frac{2\Delta r}{r} + \frac{\Delta \ell}{\ell}\right) \times 100$$

$$= \left(2 \times \frac{0.1}{20} + \frac{1}{50}\right) \times 100$$

CHEMISTRY

- 31. $SnO_2 + 2KOH \rightarrow K_2SnO_3 + H_2O$ SnO_3^{2-} ion would be preferentially adsorbed by SnO_2 particles.
- 32. Total no. of surface sites = $1000 \times 6.023 \times 10^{14}$ = 6.023×10^{17}

Total no. of sites occupied = $\frac{1}{5} \times 6.023 \times 10^{17}$

$$= 2 \times 6.023 \times 10^{16}$$

Amount of nitrogen desorbed = n

$$= \frac{PV}{RT} = \frac{0.001 \times 2.46 \times 10^{-3}}{0.082 \times 300}$$

so, no. of nitrogen molecules

$$=\frac{2.46\times10^{-6}}{24.6}\times6.023\times10^{23}=6.023\times10^{16}$$

no. of sites per molecule of

$$N_2 = \frac{2 \times 6.023 \times 10^{16}}{6.023 \times 10^{16}} = 2$$

- 33. Haemoglobin is positively charged sol whereas blood is negatively charged sol.
 There sols having negatively charge will precipitate haemoglobin sol.
 Starch, Clay, As₂S₃, CdS, Gelatin
- **35.** (2) Aluminium hydroxide is a +ve sol, so ve ions are effective in coagulation.
 - (3) Cellulose solution is an example of macromolecular colloid.
- **36.** Freundlich equation $\frac{X}{m} = Kp^{1/n} = Kp^{1/n}$
- **37.** (1) Gold sol (negatively charged) : colloidal particles move towards anode (positive terminal) during electrophoresis.
 - (4) Polarity of dispersion medium increases : CMC decreases.

- 38. (1) $2\text{AuCl}_3 + 3\text{HCHO} + 3\text{H}_2\text{O} \xrightarrow{\text{Reduction}}$ 2Au + 3HCOOH + 6HCl(sol)
 - (2) It is also called Bredig's Arc method
 - (3) It is dialysis process
 - (4) Peptization need small amount of electrolyte.

MATHEMATICS

- **61.** Consider the
- **Sol.** $\sim q \rightarrow \sim p$ (Given statement) \Rightarrow then $p \rightarrow q$
- **62.** Let q : you have
- Sol. $\sim p \rightarrow q$ $\sim (\sim p) \lor q) \land ((\sim p) \lor \sim q)$ $(p \lor q) \land (\sim p \land \sim q)$ $(p \lor q) \land (\sim (p \land q))$
- **63.** Let p : you
- **Sol.** We know $\sim (p \rightarrow q) \equiv p \land \sim q$ Given statement is $p \land q$ $= p \land \sim (\sim q) \equiv \sim (p \rightarrow \sim q)$
- **64.** The proposition $(p \rightarrow \sim p) \land (\sim p \rightarrow p)$
- **Sol.** $(p \rightarrow q) \land (q \rightarrow p) \equiv (p \leftrightarrow q)$ $\therefore \qquad (p \rightarrow \sim p) \land (\sim p \rightarrow p) \equiv (p \leftrightarrow \sim p) \equiv$ Fallacy/ contradiction
- **65.** Negation of the
- **Sol.** $(p \wedge r) \wedge (\sim r \wedge \sim q) = p \wedge (r \wedge \sim r) \wedge \sim q = p \wedge f$ $\wedge \sim q = f$
- **66.** The contrapositive
- Sol. $\sim (\sim q \rightarrow \sim r) \rightarrow \sim p \equiv (\sim q \land q) \rightarrow \sim p$
- **67.** Which of the following

Sol.

-										
	A	В	$A \rightarrow B \mid A \land (A \rightarrow B)$		$[A \land (A \to B)] \to B$					
	Т	F	F	F	Т					
	F	T	T	F	T					
	T	T	Т	T	T					
	F	F	T	F	F					

- **68.** Which of the
- Sol. Obviously
- **69.** The statement
- Sol.

P	q	q→p	$p \rightarrow (q \rightarrow p)$	pAq	p→(p∧q)	q↔p	p→(p↔q)	q→p	p→(p→p)
Т	T	T	T	Т	T	T	T	T	T
F	F	T	T	F	T	T	T	T	Т
T	F	T	T	F	F	F	F	F	F
F	T	F	T	F	T	F	T	T	Т

- **70.** Consider the
- **Sol.** "p only is q" is equivalent to "if p then q"
- **71.** Which of the
- **Sol.** Obviously
- **72.** Consider statements
- Sol. $((A \cap B) \cup C)' = (A \cap B)' \cap C' = (A' \cap C') \cup (B' \cap C')$
- **73.** Consider statement
- **Sol.** converse of $p \rightarrow q$ is $q \rightarrow p$
- **74.** Let S be a non-empty
- **Sol.** Obviously
- **75.** Consider statement
- Sol. If p, then q

 ⇒ q is necessary for p and p is sufficient for q.
- **76.** If p, q, r and s
- **Sol.** (1) $p \wedge q = T \wedge T = T$ $(p \wedge q) \rightarrow S = T \rightarrow T = T$
 - (2) $(q \lor r) = T \lor T = T, \sim s = F$ $(q \lor r) \rightarrow \sim s = T \rightarrow F = F$
 - (3) $(p \land \sim q) = T \land F = F$ $q \rightarrow s = T \rightarrow T = T$ $(p \land \sim q) \land (q \rightarrow s) = F \land T = F$
- **77.** If the compound
- **Sol.** Given that $(p \leftrightarrow q) \land r$ is true
 - \Rightarrow (p \leftrightarrow q) is true and r is true
 - \Rightarrow p and q are both true or both false

Therefore, the truth values of p, q and r are respectively T, T or F, F and T.

- **78.** Let p : Team India
- **Sol.** Contrapositive of $(p \rightarrow q)$ is $(\sim q \rightarrow \sim p)$
- **79.** The incorrect.....

Sol.

p	~ p	p ∧ ~ p	p∨ ~ p	$\sim (\sim p) \leftrightarrow p$
T	F	F	T	T
F	T	F	T	T

- **80.** Negation of the
- **Sol.** Negation of $p \leftrightarrow q$ is $p \leftrightarrow \sim q$
- **81.** "If India beats
- **Sol.** Negation of $(p \rightarrow q)$ is $(p \land \sim q)$
- **82.** S_1 : f(x) is not
- **Sol.** S_1 : f(x) is not continuous is [a, b] $\sim S_1$: f(x) is continuous in [a, b]given statement $(\sim S_1 \land S_2) \rightarrow S_3$
- **83.** p : you want
- **Sol.** $\sim (p \vee r) \equiv \sim p \wedge \sim r$
- **84.** The statement
- **Sol.** Use truth table
- **85.** Consider the
- **Sol.** Statement P is False Statement Q is True.

$$V_1 \equiv F$$

$$V_2 \equiv T$$

- **86.** Let p and q be
- Sol.

$$\sim (\sim p \land q) \land (p \lor q) \equiv [\sim (\sim p) \lor (-q)] \land (p \lor q)$$

$$\equiv [p \lor (\sim q) \land (p \lor q)]$$

$$\equiv p \vee [(\sim q) \wedge q]$$
$$\equiv p \vee F \equiv p$$

87. Negation of $(\sim p \rightarrow q)$

Sol.
$$(\sim p \rightarrow q) \equiv \sim (\sim (\sim p) \lor q)$$

 $\equiv \sim (p \lor q)$

clearly option (3) is correct

$$\sim (p \lor q) \land (p \lor (\sim p))$$

$$\equiv \sim (p \vee q) \wedge T$$

$$\equiv \sim (p \lor q)$$

p	q	$p \rightarrow q$	$\sim p \rightarrow \sim q$	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

- **88.** Statement-1: $\sim (p \leftrightarrow \sim q)$
- **Sol.** Truth table for the logical statements in statement-1

	0.4					
×	p	q	~ q	$p \leftrightarrow \sim q$	~ (p \leftrightarrow ~	$p \leftrightarrow q$
					q)	
	T	T	F	F	T	T
	T	F	T	T	F	F
	F	T	F	T	F	F
	F	F	T	F	T	F

 $\therefore \sim (p \leftrightarrow \sim q)$ and $p \leftrightarrow q$ are identical

Also $\sim (p \leftrightarrow q)$ is not a tautology as all entries in its column are not T.

: statement-1 in true but statement-2 is false

- **89. Statement-1:** The type
- Sol. Statement-2 is correct definition of inclusive Or and also the correct reason of statement-1
- **90.** Which of the following
- Sol. Obvious