

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00 psf
g _{мім}	=	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C _s =	0.73	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Prossure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	- 2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	approa anay nom are surrado.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.07	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	<u>Rear</u>	
Tensile Load =	<u>206.57</u>	6649.22	k
Compressive Load =	3260.13	<u>5004.81</u>	k
Lateral Load =	<u>350.93</u>	4105.58	k
Moment (Weak Axis) =	0.68	0.24	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 188083.4 in-lbs Resisting Force Required = 2630.54 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4384.23 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 987.09 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2467.73 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 987.09 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

| Ballast Width | 35 in 36 in 37 in 38 in | Pftg = (145 pcf)(11.92 ft)(1.5 ft)(2.92 ft) = 7560 lbs 7776 lbs 7992 lbs 8208 lbs

ASD LC		1.0D	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1087 lbs	1087 lbs	1087 lbs	1087 lbs	1309 lbs	1309 lbs	1309 lbs	1309 lbs	1682 lbs	1682 lbs	1682 lbs	1682 lbs	-94 lbs	-94 lbs	-94 lbs	-94 lbs
F _B	1066 lbs	1066 lbs	1066 lbs	1066 lbs	2198 lbs	2198 lbs	2198 lbs	2198 lbs	2336 lbs	2336 lbs	2336 lbs	2336 lbs	-3193 lbs	-3193 lbs	-3193 lbs	-3193 lbs
F _V	142 lbs	142 lbs	142 lbs	142 lbs	1777 lbs	1777 lbs	1777 lbs	1777 lbs	1426 lbs	1426 lbs	1426 lbs	1426 lbs	-1974 lbs	-1974 lbs	-1974 lbs	-1974 lbs
P _{total}	9713 lbs	9929 lbs	10145 lbs	10361 lbs	11067 lbs	11283 lbs	11499 lbs	11715 lbs	11577 lbs	11793 lbs	12009 lbs	12225 lbs	1249 lbs	1379 lbs	1508 lbs	1638 lbs
M	2872 lbs-ft	2872 lbs-ft	2872 lbs-ft	2872 lbs-ft	3203 lbs-ft	3203 lbs-ft	3203 lbs-ft	3203 lbs-ft	4250 lbs-ft	4250 lbs-ft	4250 lbs-ft	4250 lbs-ft	5842 lbs-ft	5842 lbs-ft	5842 lbs-ft	5842 lbs-ft
е	0.30 ft	0.29 ft	0.28 ft	0.28 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.37 ft	0.36 ft	0.35 ft	0.35 ft	4.68 ft	4.24 ft	3.87 ft	3.57 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	237.8 psf	237.3 psf	236.7 psf	236.2 psf	272.0 psf	270.5 psf	269.1 psf	267.7 psf	271.5 psf	270.0 psf	268.6 psf	267.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	321.1 psf	318.2 psf	315.5 psf	312.9 psf	364.8 psf	360.7 psf	356.9 psf	353.2 psf	394.7 psf	389.7 psf	385.1 psf	380.7 psf	222.8 psf	178.0 psf	156.4 psf	144.2 psf

Maximum Bearing Pressure = 395 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in

Seismic Design

Overturning Check

 $M_0 = 2076.0 \text{ ft-lbs}$

Resisting Force Required = 1423.52 lbs S.F. = 1.67 Weight Required = 2372.53 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iE	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	304 lbs	566 lbs	173 lbs	731 lbs	1811 lbs	630 lbs	135 lbs	165 lbs	4 lbs		
F _V	197 lbs	192 lbs	201 lbs	144 lbs	142 lbs	156 lbs	198 lbs	193 lbs	199 lbs		
P _{total}	9663 lbs	9925 lbs	9532 lbs	9640 lbs	10720 lbs	9539 lbs	2872 lbs	2902 lbs	2741 lbs		
М	763 lbs-ft	750 lbs-ft	774 lbs-ft	566 lbs-ft	565 lbs-ft	605 lbs-ft	764 lbs-ft	747 lbs-ft	768 lbs-ft		
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.27 ft	0.26 ft	0.28 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	232.8 psf	241.2 psf	228.4 psf	243.8 psf	275.0 psf	238.6 psf	37.4 psf	39.3 psf	33.4 psf		
f _{max}	323.2 psf	329.9 psf	320.1 psf	310.9 psf	341.9 psf	310.3 psf	127.8 psf	127.7 psf	124.3 psf		

Maximum Bearing Pressure = 342 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 34in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.508 k 12.808 k 7.421 k <u>34%</u>	Rear Strut Maximum Axial Load = 4.475 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 60%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.775 k 12.808 k 7.421 k <u>37%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	A-4	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 60.93 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.219 in Max Drift, Δ_{MAX} = 0.7 in 0.7 ≤ 1.219, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 93 \text{ in}$$
 $J = 0.432$
 257.282

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$C_c = \left(\frac{C_c}{c} \right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))}]$$

$$\phi F_1 = 28.1 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 0t$$
 $S2 = 141.0$

$$\varphi F_L = 1.17 \varphi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

2.155 in⁴

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{\rm b} = 93$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 29.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3 Fcy}{mDbr}$$

$$=\frac{1}{mDbr}$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

x = 45.5 mm

$$Sy = 0.599 \text{ in}^3$$

$$M_{max}Wk = 1.152 \text{ k-ft}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$

$$\phi F_L = 29.0 \text{ ksi}$$

Weak Axis:

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1/01.56

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}}]$$

$$\phi F_1 = 28.9$$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$\begin{array}{ccc} \textbf{3.4.16.1} & \underline{\textbf{Used}} \\ \textbf{Rb/t} = & \textbf{18.1} \\ S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt} \right)^2 \\ \textbf{S1} = & \textbf{1.1} \\ S2 = & \textbf{C}_t \\ \textbf{S2} = & \textbf{141.0} \\ \textbf{\phiF}_{L} = & \textbf{\phib}[\textbf{Bt-Dt}^* \sqrt{(\textbf{Rb/t})}] \end{array}$$

31.1 ksi

 $\phi F_L =$

16.2

36.9

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

S1 =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ C_0 = & 40 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} Wk = & 3.904 \text{ k-ft} \\ \end{array}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = \frac{1.6Dc}{1.6Dc}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\varphi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$ $\phi F_L = 31.4$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_{0} = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$

0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$ST = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Sx =

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$b/t = 24.5$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 6.29 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14 $L_b =$ 78.35 in 0.942

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2))}}$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.35$$
 $J = 0.942$
 122.273

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

29.8

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = 1.17 \phi y F c y$ $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 28.2 \text{ ksi}$$

$$\varphi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

$$\begin{aligned} &\text{F}_{\text{L}}\text{WK} = & 28.2 \text{ KSI} \\ &\text{Iy} = & 279836 \text{ mm} \\ & & 0.672 \text{ in}^4 \\ &\text{x} = & 27.5 \text{ mm} \\ &\text{Sy} = & 0.621 \text{ in}^3 \\ &\text{M}_{\text{max}}\text{WK} = & 1.460 \text{ k-ft} \end{aligned}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L$ \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-71.679	-71.679	0	0
2	M14	٧	-71.679	-71.679	0	0
3	M15	V	-115.31	-115.31	0	0
4	M16	٧	-115.31	-115.31	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	162.058	162.058	0	0
2	M14	V	124.66	124.66	0	0
3	M15	V	68.563	68.563	0	0
4	M16	V	68 563	68 563	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	874.272	2	1258.29	2	.544	1	.002	1	0	1	0	1
2		min	-1048.667	3	-1639.294	3	-31.352	5	185	4	0	1	0	1
3	N7	max	.026	9	969.934	1	835	12	002	12	0	1	0	1
4		min	254	2	-78.934	5	-269.946	4	526	4	0	1	0	1
5	N15	max	.014	9	2507.794	1	0	12	0	11	0	1	0	1
6		min	-2.462	2	-158.899	3	-254.82	4	504	4	0	1	0	1
7	N16	max	2891.752	2	3849.857	2	0	2	0	2	0	1	0	1
8		min	-3158.137	3	-5114.786	3	-31.514	5	187	4	0	1	0	1
9	N23	max	.04	14	969.934	1	10.777	1	.021	1	0	1	0	1
10		min	254	2	-18.791	3	-261.468	5	513	4	0	1	0	1
11	N24	max	874.272	2	1258.29	2	056	12	0	12	0	1	0	1
12		min	-1048.667	3	-1639.294	3	-32.084	5	186	4	0	1	0	1
13	Totals:	max	4637.327	2	10495.775	2	0	11						
14		min	-5255.666	3	-8589.854	3	-876.031	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	67.527	4	415.259	2	-9.598	12	0	15	.182	4	0	4
2			min	5.418	12	-741.574	3	-161.537	1	014	2	.015	12	0	3
3		2	max	61.262	1	288.871	2	-7.801	12	0	15	.117	4	.544	3
4			min	5.418	12	-522.964	3	-123.389	1	014	2	.003	10	303	2
5		3	max	61.262	1	162.484	2	-6.003	12	0	15	.07	5	.901	3
6			min	5.418	12	-304.355	3	-85.24	1	014	2	041	1	497	2
7		4	max	61.262	1	36.097	2	-4.206	12	0	15	.039	5	1.069	3
8			min	5.418	12	-85.745	3	-47.092	1	014	2	098	1	583	2
9		5	max	61.262	1	132.865	3	.15	10	0	15	.011	5	1.048	3
10			min	5.418	12	-90.29	2	-34.569	4	014	2	122	1	56	2
11		6	max	61.262	1	351.475	3	29.204	1	0	15	007	12	.84	3
12			min	1.197	15	-216.678	2	-28.996	5	014	2	114	1	427	2
13		7	max	61.262	1	570.085	3	67.352	1	0	15	006	12	.443	3
14			min	-8.212	5	-343.065	2	-26.26	5	014	2	072	1	186	2
15		8	max	61.262	1	788.695	3	105.5	1	0	15	.005	2	.163	2
16			min	-18.373	5	-469.452	2	-23.524	5	014	2	062	4	142	3
17	•	9	max	61.262	1	1007.304	3	143.648	1	0	15	.11	1	.622	2
18	_		min	-28.535	5	-595.839	2	-20.788	5	014	2	08	5	915	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]							l .		
19		10	max	61.75	4	722.226	2	-6.58	12	.014	2	.25	1	1.19	2
20			min	5.418	12	-1225.914	3	-181.797	1	004	3	.004	12	-1.877	3
21		11	max	61.262	1	595.839	2	-4.782	12	.014	2	.121	4	.622	2
22		40	min	5.418	12	-1007.304	3	-143.648	1	0	15	003	3	915	3
23		12	max	61.262	1	469.452	2	-2.984	12	.014	2	.061	4	.163	2
24		1.0	min	5.418	12	-788.695	3	-105.5	1	0	15	007	3	142	3
25		13	max	61.262	1	343.065	2	-1.187	12	.014	2	.029	5	.443	3
26			min	5.418	12	-570.085	3	-67.352	1	0	15	072	1	186	2
27		14	max	61.262	1	216.678	2	1.104	3	.014	2	0	15	.84	3
28			min	4.532	15	-351.475	3	-40.004	4	0	15	114	1	427	2
29		15	max	61.262	1	90.29	2	8.944	1	.014	2	005	12	1.048	3
30		4.0	min	-3.31	5	-132.865	3	-30.283	5	0	15	122	1	56	2
31		16	max	61.262	1	85.745	3	47.092	1	.014	2	003	12	1.069	3
32			min	-13.471	5	-36.097	2	-27.547	5	0	15	098	1	583	2
33		17	max	61.262	1	304.355	3_	85.24	1	.014	2	.003	3	.901	3
34			min	-23.633	5	-162.484	2	-24.811	5	0	15	086	4	497	2
35		18	max	61.262	1	522.964	3_	123.389	1	.014	2	.049	1	.544	3
36			min	-33.794	5	-288.871	2	-22.075	5	0	15	096	5	303	2
37		19	max	61.262	1	741.574	3	161.537	1	.014	2	.171	1	0	2
38			min	-43.956	5	-415.259	2	-19.339	5	0	15	114	5	0	3
39	<u>M14</u>	1	max	42.152	4	487.109	2	-9.969	12	.014	3	.266	4	0	4
40			min	2.908	12	-611.591	3	-168.565	1	015	2	.018	12	0	3
41		2	max	39.025	1_	360.722	2	-8.172	12	.014	3	.182	4	.455	3
42			min	2.908	12	-444.507	3	-130.417	1	015	2	.006	10	365	2
43		3	max	39.025	1	234.335	2	-6.374	12	.014	3	.11	5	.766	3
44			min	2.908	12	-277.424	3	-92.269	1	015	2	017	1	621	2
45		4	max	39.025	1	107.947	2	-4.576	12	.014	3	.062	5	.932	3
46			min	1.772	15	-110.34	3	-68.297	4	015	2	08	1	769	2
47		5	max	39.025	1	56.744	3	679	10	.014	3	.016	5	.956	3
48			min	-7.541	5	-20.665	1_	-56.737	4	015	2	11	1	807	2
49		6	max	39.025	1	223.828	3	22.176	1	.014	3	006	12	.835	3
50			min	-17.703	5	-144.827	2	-49.171	5	015	2	108	1	737	2
51		7	max	39.025	1_	390.911	3	60.324	1	.014	3	006	12	.57	3
52			min	-27.864	5	-271.214	2	-46.435	5	015	2	087	4	558	2
53		8	max	39.025	1	557.995	3	98.472	1	.014	3	.003	2	.162	3
54			min	-38.026	5	-397.602	2	-43.699	5	015	2	111	4	27	2
55		9	max	39.025	1	725.079	3	136.62	1	.014	3	.097	1	.142	1
56			min	-48.187	5	-523.989	2	-40.963	5	015	2	144	5	391	3
57		10	max	72.796	4	650.376	2	-6.209	12	.015	2	.266	4	.633	2
58			min	2.908	12	-892.162	3	-174.768	1	014	3	.003	12	-1.087	3
59		11	max	62.634	4	523.989	2	-4.411	12	.015	2	.181	4	.142	1
60			min	2.908	12	-725.079	3	-136.62	1	014	3	003	3	391	3
61		12	max	52.473	4	397.602	2	-2.614	12	.015	2	.107	4	.162	3
62			min	2.908	12	-557.995	3	-98.472	1	014	3	007	3	27	2
63		13	max	42.311	4	271.214	2	816	12	.015	2	.058	5	.57	3
64			min	2.908	12	-390.911	3	-69.439	4	014	3	072	1	558	2
65		14	max	39.025	1	144.827	2	1.664	3	.015	2	.012	5	.835	3
66			min	2.908	12	-223.828	3	-57.879	4	014	3	108	1	737	2
67		15	max	39.025	1	20.665	1_	15.972	1	.015	2	004	12	.956	3
68			min	2.908	12	-56.744	3	-49.443	5	014	3	11	1	807	2
69		16	max	39.025	1	110.34	3	54.12	1	.015	2	001	12	.932	3
70			min	1.638	15	-107.947	2	-46.707	5	014	3	093	4	769	2
71		17	max	39.025	1	277.424	3	92.269	1	.015	2	.006	3	.766	3
72			min	-7.699	5	-234.335	2	-43.971	5	014	3	118	4	621	2
73		18	max	39.025	1	444.507	3	130.417	1	.015	2	.079	1	.455	3
74			min	-17.861	5	-360.722	2	-41.235	5	014	3	149	5	365	2
75		19	max	39.025	1	611.591	3	168.565	1	.015	2	.207	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

Trans M15		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
Tell	76			min	-28.022	5	-487.109	2	-38.499	5	014	3	183	5	0	3
Toggraphy	77	M15	1	max	82.561	5	690.092	2	-9.795	12	.016	2	.334	4	0	2
80	78			min	-41.131	1	-351.569	3	-168.549	1	012	3	.017	12	0	3
81	79		2	max	72.399	5	503.591	2	-7.997	12	.016	2	.235	4	.264	3
B2	80			min	-41.131	1	-261.775	3	-130.401	1	012	3	.006	10	514	2
83	81		3	max	62.238	5	317.09	2	-6.199	12	.016	2	.148	5	.451	3
B86	82			min	-41.131	1	-171.98	3	-96.866	4	012	3	017	1	867	2
84	83		4	max	52.076	5	130.589	2	-4.402	12	.016	2	.085	5	.56	3
86	84			min	-41.131	1	-82.186	3	-85.306	4	012	3	08	1	-1.06	2
86	85		5	max	41.914	5	7.609	3	761	10	.016	2	.025	5	.592	3
88				min		1				4		3		1		
88	87		6	max	31.753	5	97.403	3	22.192	1	.016	2	006	12	.547	3
89				min				2		5		3		1		
90			7	max	21.591	5		3		1	.016	2		12	.425	3
91										5	012					
92			8			5								2		3
94										5						
94			9											1		
96														5		
96			10													
98																
98			11													
99																
100			12					_								
101			12													
102			13			_										
103			13													
104			1/			_										
105			14													
106			15													
107			13													
108			16											-		
109			10													
110			17													
111 18 max -3.717 12 261.775 3 130.401 1 .012 3 .078 1 .264 3 112 min -89.561 4 -503.591 2 -58.192 5 016 2 202 5 514 2 113 19 max -3.717 12 351.569 3 168.549 1 .012 3 .207 1 0 2 114 min -99.723 4 -690.092 2 -55.456 5 016 2 251 5 0 5 115 M16 1 max 76.996 5 621.99 2 -9.053 12 .008 1 .239 4 0 2 116 min -69.389 1 -291.627 3 -162.137 1 013 3 .013 12 0 1 162 4 .212 3			17							-						
112 min -89.561 4 -503.591 2 -58.192 5 016 2 202 5 514 2 113 19 max -3.717 12 351.569 3 168.549 1 .012 3 .207 1 0 2 114 min -99.723 4 -690.092 2 -55.456 5 016 2 251 5 0 5 115 M16 1 max 76.996 5 621.99 2 -9.053 12 .008 1 .239 4 0 2 116 min -69.389 1 -291.627 3 -162.137 1 013 3 .013 12 0 117 2 max 66.834 5 435.489 2 -7.255 12 .008 1 .162 4 .212 3 118 min -69.389 1 <td></td> <td></td> <td>40</td> <td></td> <td>-</td> <td></td> <td></td>			40											-		
113 19 max -3.717 12 351.569 3 168.549 1 .012 3 .207 1 0 2 114 min -99.723 4 -690.092 2 -55.456 5 016 2 251 5 0 5 115 M16 1 max 76.996 5 621.99 2 -9.053 12 .008 1 .239 4 0 2 116 min -69.389 1 -291.627 3 -162.137 1 013 3 .013 12 0 3 117 2 max 66.834 5 435.489 2 -7.255 12 .008 1 .162 4 .212 3 118 min -69.389 1 -201.833 3 -123.989 1 013 3 .004 10 455 2 119 3 max			18													
114 min -99.723 4 -690.092 2 -55.456 5 016 2 251 5 0 5 115 M16 1 max 76.996 5 621.99 2 -9.053 12 .008 1 .239 4 0 2 116 min -69.389 1 -291.627 3 -162.137 1 013 3 .013 12 0 3 117 2 max 66.834 5 435.489 2 -7.255 12 .008 1 .162 4 .212 3 118 min -69.389 1 -201.833 3 -123.989 1 013 3 .004 10 455 2 119 3 max 56.673 5 248.988 2 -5.458 12 .008 1 .103 5 .348 3 120 min -69.389<	-		40													_
115 M16 1 max 76.996 5 621.99 2 -9.053 12 .008 1 .239 4 0 2 116 min -69.389 1 -291.627 3 -162.137 1 013 3 .013 12 0 3 117 2 max 66.834 5 435.489 2 -7.255 12 .008 1 .162 4 .212 3 118 min -69.389 1 -201.833 3 -123.989 1 013 3 .004 10 455 2 119 3 max 56.673 5 248.988 2 -5.458 12 .008 1 .103 5 .348 3 120 min -69.389 1 -112.039 3 -85.84 1 013 3 04 1 75 2 121 4 max			19													
116 min -69.389 1 -291.627 3 -162.137 1 013 3 .013 12 0 3 117 2 max 66.834 5 435.489 2 -7.255 12 .008 1 .162 4 .212 3 118 min -69.389 1 -201.833 3 -123.989 1 013 3 .004 10 455 2 119 3 max 56.673 5 248.988 2 -5.458 12 .008 1 .103 5 .348 3 120 min -69.389 1 -112.039 3 -85.84 1 013 3 04 1 75 2 121 4 max 46.511 5 62.487 2 -3.66 12 .008 1 .06 5 .405 3 122 min -69.389 1<		1440												_		
117 2 max 66.834 5 435.489 2 -7.255 12 .008 1 .162 4 .212 3 118 min -69.389 1 -201.833 3 -123.989 1 013 3 .004 10 455 2 119 3 max 56.673 5 248.988 2 -5.458 12 .008 1 .103 5 .348 3 120 min -69.389 1 -112.039 3 -85.84 1 013 3 04 1 75 2 121 4 max 46.511 5 62.487 2 -3.66 12 .008 1 .06 5 .405 3 122 min -69.389 1 -22.244 3 -60.313 4 013 3 097 1 884 2 123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 <td></td> <td><u>M16</u></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.008</td> <td></td> <td></td> <td></td> <td></td> <td></td>		<u>M16</u>	1								.008					
118 min -69.389 1 -201.833 3 -123.989 1 013 3 .004 10 455 2 119 3 max 56.673 5 248.988 2 -5.458 12 .008 1 .103 5 .348 3 120 min -69.389 1 -112.039 3 -85.84 1 013 3 04 1 75 2 121 4 max 46.511 5 62.487 2 -3.66 12 .008 1 .06 5 .405 3 122 min -69.389 1 -22.244 3 -60.313 4 013 3 097 1 884 2 123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 .386 3 124 min -69.389 1 </td <td></td>																
119 3 max 56.673 5 248.988 2 -5.458 12 .008 1 .103 5 .348 3 120 min -69.389 1 -112.039 3 -85.84 1 013 3 04 1 75 2 121 4 max 46.511 5 62.487 2 -3.66 12 .008 1 .06 5 .405 3 122 min -69.389 1 -22.244 3 -60.313 4 013 3 097 1 884 2 123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 .386 3 124 min -69.389 1 -124.014 2 -48.753 4 013 3 122 1 858 2 125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 <td></td> <td></td> <td> 2</td> <td></td>			2													
120 min -69.389 1 -112.039 3 -85.84 1 013 3 04 1 75 2 121 4 max 46.511 5 62.487 2 -3.66 12 .008 1 .06 5 .405 3 122 min -69.389 1 -22.244 3 -60.313 4 013 3 097 1 884 2 123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 .386 3 124 min -69.389 1 -124.014 2 -48.753 4 013 3 122 1 858 2 125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 .289 3 126 min -69.389 1 </td <td></td>																
121 4 max 46.511 5 62.487 2 -3.66 12 .008 1 .06 5 .405 3 122 min -69.389 1 -22.244 3 -60.313 4 013 3 097 1 884 2 123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 .386 3 124 min -69.389 1 -124.014 2 -48.753 4 013 3 122 1 858 2 125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 .289 3 126 min -69.389 1 -310.515 2 -42.967 5 013 3 114 1 671 2 127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12			3													
122 min -69.389 1 -22.244 3 -60.313 4 013 3 097 1 884 2 123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 .386 3 124 min -69.389 1 -124.014 2 -48.753 4 013 3 122 1 858 2 125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 .289 3 126 min -69.389 1 -310.515 2 -42.967 5 013 3 114 1 671 2 127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12 .115 3 128 min -69.389						_										
123 5 max 36.349 5 67.55 3 198 10 .008 1 .019 5 .386 3 124 min -69.389 1 -124.014 2 -48.753 4 013 3 122 1 858 2 125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 .289 3 126 min -69.389 1 -310.515 2 -42.967 5 013 3 114 1 671 2 127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12 .115 3 128 min -69.389 1 -497.016 2 -40.231 5 013 3 073 4 323 2 129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2			4													
124 min -69.389 1 -124.014 2 -48.753 4 013 3 122 1 858 2 125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 .289 3 126 min -69.389 1 -310.515 2 -42.967 5 013 3 114 1 671 2 127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12 .115 3 128 min -69.389 1 -497.016 2 -40.231 5 013 3 073 4 323 2 129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2	-															
125 6 max 26.188 5 157.345 3 28.604 1 .008 1 006 12 .289 3 126 min -69.389 1 -310.515 2 -42.967 5 013 3 114 1 671 2 127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12 .115 3 128 min -69.389 1 -497.016 2 -40.231 5 013 3 073 4 323 2 129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2			5											_		
126 min -69.389 1 -310.515 2 -42.967 5 013 3 114 1 671 2 127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12 .115 3 128 min -69.389 1 -497.016 2 -40.231 5 013 3 073 4 323 2 129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2				min						4						
127 7 max 16.026 5 247.139 3 66.752 1 .008 1 006 12 .115 3 128 min -69.389 1 -497.016 2 -40.231 5 013 3 073 4 323 2 129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2			6													
128 min -69.389 1 -497.016 2 -40.231 5 013 3 073 4 323 2 129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2																
129 8 max 5.865 5 336.934 3 104.9 1 .008 1 .004 2 .185 2			7	max	16.026	5				1	.008			12		
				min		1				5	013	3	073	_		
130 min -69.389 1 -683.518 2 -37.495 5 013 3 09 4 137 3			8	max		5		3		1		1		2		2
	130			min	-69.389	1	-683.518	2	-37.495	5	013	3	09	4	137	3
131 9 max -2.812 15 426.728 3 143.049 1 .008 1 .108 1 .854 2			9	max		15		3		1				1	.854	
132 min -69.389 1 -870.019 2 -34.759 5013 3119 5465 3	132			min	-69.389	1	-870.019	2	-34.759	5	013	3	119	5	465	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
133		10	max	-5.388	12	1056.52	2	-7.125	12	.013	3	.248	1	1.684	2
134			min	-69.389	1	-516.523	3	-181.197	1	008	1	.006	12	871	3
135		11	max	-3.741	<u>15</u>	870.019	2	-5.327	12	.013	3	.161	4	.854	2
136			min	-69.389	1	-426.728	3	-143.049	1	008	1	0	3	465	3
137		12	max	-5.388	12	683.518	2	-3.53	12	.013	3	.089	4	.185	2
138			min	-69.389	1_	-336.934	3	-104.9	1_	008	1	005	3	137	3
139		13	max	-5.388	12	497.016	2	-1.732	12	.013	3	.044	5	.115	3
140			min	-69.389	1_	-247.139		-66.752	1_	008	1	073	1_	323	2
141		14	max	-5.388	12	310.515	2	.231	3	.013	3	.003	5	.289	3
142		4.5	min	-69.389	1_	-157.345	3	<u>-53.991</u>	4	008	1	114	1	671	2
143		15	max	-5.388	12	124.014	2	9.544	1	.013	3	005	12	.386	3
144		40	min	-69.389	1_	-67.55	3	-44.222	5	008	1	122	1	858	2
145		16	max		12	22.244	3	47.692	1	.013	3	003	12	.405	3
146		47	min	-73.668	4_	-62.487	2	-41.486	5	008	1	097	1	884	2
147		17	max	-5.388	12	112.039	3	85.84	1	.013	3	.002	3	.348	3
148		10	min	-83.83	4	-248.988	2	-38.75	5	008	1	118	4	75	2
149		18	max	-5.388	12	201.833	3	123.989	1	.013	3	.051	1	.212	2
150 151		19	min	-93.992 -5.388	<u>4</u> 12	<u>-435.489</u> 291.627	3	-36.014 162.137	<u>5</u> 1	008 .013	3	14 .174	<u>5</u> 1	4 <u>55</u> 0	2
152		19	max	-104.153		-621.99	2	-33.278	5	008	1	17	5	0	5
153	M2	1		1055.368	<u>4</u> 2	2.06	4	.34	1	008 0	3	0	3	0	1
154	IVIZ			-1432.838	3	.5	15	-25.399	4	0	4	0	2	0	1
155		2		1055.898	2	1.989	4	.34	1	0	3	0	1	0	15
156				-1432.441	3	.483	15	-25.86	4	0	4	009	4	0	4
157		3		1056.427	2	1.918	4	.34	1	0	3	0	1	0	15
158				-1432.044	3	.466	15	-26.321	4	0	4	019	4	001	4
159		4	_	1056.956	2	1.847	4	.34	1	0	3	0	1	0	15
160		•		-1431.647	3	.449	15	-26.782	4	0	4	028	4	002	4
161		5		1057.486	2	1.775	4	.34	1	0	3	0	1	0	15
162				-1431.25	3	.433	15	-27.243	4	0	4	038	4	003	4
163		6		1058.015	2	1.704	4	.34	1	0	3	0	1	0	15
164				-1430.853	3	.416	15	-27.705	4	0	4	048	4	003	4
165		7	max	1058.544	2	1.633	4	.34	1	0	3	0	1	0	15
166			min	-1430.456	3	.399	15	-28.166	4	0	4	058	4	004	4
167		8	max	1059.073	2	1.562	4	.34	1	0	3	0	1	001	15
168			min	-1430.059	3	.383	15	-28.627	4	0	4	068	4	005	4
169		9		1059.603	2	1.491	4	.34	1	0	3	0	1	001	15
170			min	-1429.662	3	.366	15	-29.088	4	0	4	078	4	005	4
171		10		1060.132	2	1.42	4	.34	1	0	3	.001	1_	001	15
172			min	-1429.265	3	.349	15	-29.55	4	0	4	089	4	006	4
173		11		1060.661	2	1.349	4	.34	1	0	3	.001	1_	001	15
174				-1428.868	3	.328	12	-30.011	4	0	4	099	4	006	4
175		12		1061.191	2	1.278	4	.34	1	0	3	.001	1	002	15
176				-1428.472	3	.301	12	-30.472	4	0	4	11	4	007	4
177		13		1061.72	2_	1.207	4	.34	1	0	3	.001	1	002	15
178				-1428.075	3_	.273	12	-30.933	4	0	4	121	4	007	4
179		14		1062.249	2	1.136	4	.34	1	0	3	.002	1	002	15
180				-1427.678	3_	.245	12	-31.394	4	0	4	132	4	007	4
181		15		1062.778	2	1.065	4	.34	1	0	3	.002	1	002	15
182		40		-1427.281	3	.218	12	-31.856	4	0	4	144	4	008	4
183		16		1063.308	2	.994	4	.34	1	0	3	.002	1	002	15
184		4-		-1426.884	3	.19	12	-32.317	4	0	4	1 <u>55</u>	4	008	4
185		17		1063.837	2	.923	4	.34	1	0	3	.002	1	002	15
186		4.0		-1426.487	3	.162	12	-32.778	4	0	4	167	4	009	4
187		18		1064.366	2	.852	4	.34	1	0	3	.002	1	002	15
188		40		-1426.09	3	.135	12	-33.239	4	0	4	179	4	009	4
189		19	max	1064.896	2	.795	2	.34	1	0	3	.002	1	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]			LC	z-z Mome	LC
190			min	-1425.693	3	.107	12	-33.701	4	0	4	191	4	009	4
191	<u>M3</u>	1	max	788.434	2	8.903	4	1.468	4	0	12	0	1	.009	4
192		_	min	-927.01	3	2.104	15	.022	12	0	4	02	4	.002	15
193		2	max	788.264	2	8.034	4	2.073	4	0	12	0	1	.005	4
194			min	-927.138	3	1.9	15	.022	12	0	4	02	4	0	12
195		3	max	788.093	2	7.165	4	2.678	4	0	12	0	1	.002	2
196			min	-927.266	3	1.696	15	.022	12	0	4	019	4	0	3
197		4	max	787.923	2	6.296	4	3.284	4	0	12	0	1	0	2
198			min	-927.394	3	1.492	15	.022	12	0	4	017	4	003	3
199		5	max	787.752	2	5.427	4	3.889	4	0	12	0	1	0	15
200			min	-927.522	3	1.287	15	.022	12	0	4	015	5	004	6
201		6	max	787.582	2	4.558	4	4.494	4	0	12	0	1	001	15
202			min	-927.649	3	1.083	15	.022	12	0	4	014	5	007	6
203		7	max	787.412	2	3.689	4	5.099	4	0	12	.001	1_	002	15
204			min	-927.777	3	.879	15	.022	12	0	4	011	5	009	6
205		8	max	787.241	2	2.82	4	5.704	4	0	12	.001	1	002	15
206			min	-927.905	3	.675	15	.022	12	0	4	009	5	01	6
207		9	max	787.071	2	1.952	4	6.309	4	0	12	.001	1_	003	15
208			min	-928.033	3	.47	15	.022	12	0	4	006	5	011	6
209		10	max	786.901	2	1.083	4	6.914	4	0	12	.001	1	003	15
210			min	-928.16	3	.266	15	.022	12	0	4	003	5	012	6
211		11	max	786.73	2	.309	2	7.519	4	0	12	.002	1_	003	15
212			min	-928.288	3	115	3	.022	12	0	4	0	12	012	6
213		12	max	786.56	2	142	15	8.124	4	0	12	.004	4	003	15
214			min	-928.416	3	656	6	.022	12	0	4	0	12	012	6
215		13	max	786.39	2	347	15	8.729	4	0	12	.008	4	003	15
216			min	-928.544	3	-1.525	6	.022	12	0	4	0	12	012	6
217		14	max	786.219	2	551	15	9.334	4	0	12	.013	4	002	15
218			min	-928.671	3	-2.394	6	.022	12	0	4	0	12	011	6
219		15	max	786.049	2	755	15	9.939	4	0	12	.017	4	002	15
220			min	-928.799	3	-3.263	6	.022	12	0	4	0	12	009	6
221		16	max	785.879	2	959	15	10.544	4	0	12	.022	4	002	15
222			min	-928.927	3	-4.132	6	.022	12	0	4	0	12	008	6
223		17	max	785.708	2	-1.164	15	11.149	4	0	12	.027	4	001	15
224			min	-929.055	3	-5.001	6	.022	12	0	4	0	12	006	6
225		18	max	785.538	2	-1.368	15	11.755	4	0	12	.032	4	0	15
226			min	-929.182	3	-5.87	6	.022	12	0	4	0	12	003	6
227		19	max	785.368	2	-1.572	15	12.36	4	0	12	.038	4	0	1
228			min	-929.31	3	-6.738	6	.022	12	0	4	0	12	0	1
229	M4	1	max		1	0	1	835	12	0	1	.031	4	0	1
230			1	-80.365	5	0	1	-268.022		0	1	0	12	0	1
231		2	max		1	0	1	835	12	0	1	0	1	0	1
232			min	-80.286	5	0	1	-268.17	4	0	1	0	5	0	1
233		3		967.209	1	0	1	835	12	0	1	0	12	0	1
234			min	-80.206	5	0	1	-268.318		0	1	031	4	0	1
235		4		967.379	1	0	1	835	12	0	1	0	12	0	1
236			min	-80.127	5	0	1	-268.465		0	1	062	4	0	1
237		5	max		1	0	1	835	12	0	1	0	12	0	1
238			min		5	0	1	-268.613		0	1	093	4	0	1
239		6	max		1	0	1	835	12	0	1	0	12	0	1
240			min		5	0	1	-268.76	4	0	1	123	4	0	1
241		7	max		1	0	1	835	12	0	1	0	12	0	1
242			min	-79.888	5	0	1	-268.908		0	1	154	4	0	1
243		8		968.061	1	0	1	835	12	0	1	0	12	0	1
244			min	-79.809	5	0	1	-269.056		0	1	185	4	0	1
245		9		968.231	1	0	1	835	12	0	1	0	12	0	1
246			min	-79.729	5	0	1	-269.203		0	1	216	4	0	1
270			111111	10.120				200.200	т.			.210			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	968.401	1	0	1	835	12	0	1	0	12	0	1
248			min	-79.65	5	0	1	-269.351	4	0	1	247	4	0	1
249		11	max	968.572	1	0	1	835	12	0	1	0	12	0	1
250			min	-79.57	5	0	1	-269.499	4	0	1	278	4	0	1
251		12	max	968.742	1	0	1	835	12	0	1	0	12	0	1
252			min	-79.491	5	0	1	-269.646	4	0	1	309	4	0	1
253		13	max	968.912	1	0	1	835	12	0	1	0	12	0	1
254			min	-79.411	5	0	1	-269.794	4	0	1	34	4	0	1
255		14	max	969.083	1	0	1	835	12	0	1	001	12	0	1
256			min	-79.332	5	0	1	-269.941	4	0	1	371	4	0	1
257		15	max	969.253	1	0	1	835	12	0	1	001	12	0	1
258			min	-79.252	5	0	1	-270.089	4	0	1	402	4	0	1
259		16	max	969.423	1	0	1	835	12	0	1	001	12	0	1
260			min	-79.173	5	0	1	-270.237	4	0	1	433	4	0	1
261		17	max	969.594	1	0	1	835	12	0	1	001	12	0	1
262			min	-79.093	5	0	1	-270.384	4	0	1	464	4	0	1
263		18	max		1	0	1	835	12	0	1	001	12	0	1
264			min	-79.014	5	0	1	-270.532	4	0	1	495	4	0	1
265		19	max		1	0	1	835	12	0	1	002	12	0	1
266			min	-78.934	5	0	1	-270.68	4	0	1	526	4	0	1
267	M6	1		3206.584	2	2.275	2	0	1	0	1	0	4	0	1
268			min	-4474.54	3	.23	12	-25.687	4	0	4	0	1	0	1
269		2		3207.114	2	2.219	2	0	1	0	1	0	1	0	12
270			min	-4474.143	3	.203	12	-26.148	4	0	4	009	4	0	2
271		3		3207.643	2	2.164	2	0	1	0	1	0	1	0	12
272			min	-4473.747	3	.175	12	-26.609	4	0	4	019	4	002	2
273		4		3208.172	2	2.108	2	0	1	0	1	0	1	0	12
274			min		3	.147	12	-27.071	4	0	4	028	4	002	2
275		5		3208.702	2	2.053	2	0	1	0	1	0	1	0	12
276			min	-4472.953	3	.119	12	-27.532	4	0	4	038	4	003	2
277		6		3209.231	2	1.998	2	0	1	0	1	0	1	0	12
278			min	-4472.556	3	.082	3	-27.993	4	0	4	048	4	004	2
279		7	max	3209.76	2	1.942	2	0	1	0	1	0	1	0	12
280			min	-4472.159	3	.041	3	-28.454	4	0	4	058	4	005	2
281		8	max		2	1.887	2	0	1	0	1	0	1	0	12
282		-	min	-4471.762	3	0	3	-28.915	4	0	4	069	4	005	2
283		9		3210.819	2	1.832	2	0	1	0	1	0	1	0	12
284		9	min	-4471.365	3	042	3	-29.377	4	0	4	079	4	006	2
285		10			2	1.776	2	0	1	0	1	0	1	0	3
286		10	min	-4470.968	3	084	3	-29.838	4	0	4	09	4	007	2
287		11		3211.877	2	1.721	2	0	1	0	1	0	1	0	3
		11	min		3	126	3	-30.299	4		4	1	4	007	2
288		12		3212.407		1.666	2	_	1	0	_ 4 _		1		3
289		12	min		3	167	3	-30.76	4	0	4	111	4	008	2
290		12		3212.936	2	1.61	2	-30.76	1	0	_ <u>4_</u> 1	111	1	008 0	3
292		13	min		3	209	3	-31.222	4	0	4	122	4	008	2
		11								_			_		
293 294		14		3213.465	2	1.555	2	0	1	0	1_1	134	1	0	3
		4.5		-4469.38	3	25	3	-31.683	4	0	4		4	009	2
295		15		3213.995	2	1.5	2	0	1	0	1_1	0	1	0	3
296		10	min		3	292	3	-32.144	4	0	4	145	4	009	2
297		16		3214.524	2	1.444	2	0	1	0	1_1	0	1	0	3
298		4-		-4468.586	3	333	3	-32.605	4	0	4	157	4	01	2
299		17		3215.053	2	1.389	2	0	1	0	1	0	1	0	3
300		4.0	min		3	375	3	-33.066	4	0	4	169	4	011	2
301		18		3215.582	2	1.334	2	0	1	0	1_	0	1	0	3
302		4.0		-4467.792	3	416	3	-33.528	4	0	4	181	4	011	2
303		19	max	3216.112	2	1.278	2	0	1	0	1	0	1	0	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

305 M7 1 max 2639.106 2 8.9 6 1.056 4 0 1 306 min -2772.7 3 2.09 15 0 1 0 4 307 2 max 2638.935 2 8.031 6 1.661 4 0 1	193 4 0 1 021 4 0 1 02 4 0 1 019 4 0 1	.011 2 0 3 .008 2 003 3 .005 2	2 2 3 2
306 min -2772.7 3 2.09 15 0 1 0 4 307 2 max 2638.935 2 8.031 6 1.661 4 0 1 308 min -2772.828 3 1.886 15 0 1 0 4 -	021 4 0 1 02 4 0 1 019 4	0 .008 003 .005	3
307 2 max 2638.935 2 8.031 6 1.661 4 0 1 308 min -2772.828 3 1.886 15 0 1 0 4 -	0 1 02 4 0 1 019 4	.008 2 003 3 .005 2	
308 min -2772.828 3 1.886 15 0 1 0 4 -	02 4 0 1 019 4	003 .005	2
	0 1 019 4	.005 2	
309 $ 3 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	019 4		3
			2
	0 1		3
311 4 max 2638.595 2 6.293 6 2.871 4 0 1			2
	018 4		3
313 5 max 2638.424 2 5.424 6 3.476 4 0 1	0 1		2
	016 4		3
315 6 max 2638.254 2 4.555 6 4.081 4 0 1	0 1		15
5.5	015 4		3
317 7 max 2638.084 2 3.686 6 4.686 4 0 1	0 1		15
	013 4		3
319 8 max 2637.913 2 2.818 6 5.291 4 0 1	0 1		15
	01 4		4
321 9 max 2637.743 2 2.031 2 5.896 4 0 1	0 1		15
	008 4		4
323	0 1		15
	005 5		4
325	0 1		15
	002 5		4
	002 4		15
328 min -2774.106 3 -1.08 3 0 1 0 4	0 1		4
	006 4	003 1	15
330 min -2774.233 3 -1.587 3 0 1 0 4	0 1		4
33	01 4	003 1	15
332 min -2774.361 3 -2.396 4 0 1 0 4	0 1		4
)14 4	002 1	15
334 min -2774.489 3 -3.265 4 0 1 0 4	0 1		4
	19 4		15
336 min -2774.617 3 -4.134 4 0 1 0 4	0 1		4
)24 4	001 1	15
338 min -2774.744 3 -5.002 4 0 1 0 4	0 1		4
	29 4	0 1	15
340 min -2774.872 3 -5.871 4 0 1 0 4	0 1	003	4
	34 4	0 '	1
342 min -2775 3 -6.74 4 0 1 0 4	0 1	0 '	1
343 M8 1 max 2504.728 1 0 1 0 1 0 1	28 4	0 '	1
344 min -161.199 3 0 1 -256.072 4 0 1	0 1	0 '	1
345 2 max 2504.898 1 0 1 0 1 0 1	0 1	0 '	1
	002 4	0 '	1
347 3 max 2505.069 1 0 1 0 1 0 1	0 1	0 '	1
348 min -160.943 3 0 1 -256.368 4 0 1	031 4	0 '	1
349 4 max 2505.239 1 0 1 0 1 0 1	0 1	0 '	1
350 min -160.815 3 0 1 -256.515 4 0 1	061 4	0 '	1
351 5 max 2505.41 1 0 1 0 1 0 1	0 1	0 '	1
352 min -160.688 3 0 1 -256.663 4 0 1 -	09 4	0 '	1
353 6 max 2505.58 1 0 1 0 1 0 1	0 1	0 '	1
	12 4	0 '	1
355 7 max 2505.75 1 0 1 0 1 0 1	0 1	0 '	1
	149 4		1
357 8 max 2505.921 1 0 1 0 1 0 1	0 1		1
	179 4		1
359 9 max 2506.091 1 0 1 0 1	0 1		1
	208 4		1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		J* *	LC	_	1 1
361		10		2506.261	1_	0	1	0	1_1	0	1	0	1	0	1
362		44	min	-160.049	3	0	1_	-257.401	4	0	1_	238	4	0	1
363		11		2506.432	1	0	1	0	1_1	0	<u>1</u> 1	0	1	0	1
364		12		-159.921	<u>3</u>	0	1	-257.549 0	<u>4</u> 1	0	1	267 0	1	0	1
365 366		12		2506.602 -159.793	3	0	1	-257.696	4	0	1	297	4	0	1
		12					1		<u>4</u> 1	_	1		1	0	1
367 368		13		2506.772	<u>1</u> 3	0	1	0 -257.844	4	0	1	326	4	0	1
		1.1		-159.666	<u>ა</u> 1	0	1	0	_ 4 _	0	1	320 0	1	0	1
369		14		2506.943			1	-257.992	4	-	1			0	1
370 371		15		-159.538	<u>3</u> 1	0	1	0	<u>4</u> 1	0	1	356 0	1	0	1
372		13	min	2507.113 -159.41	3	0	1	-258.139	4	0	1	386	4	0	1
373		16		2507.283	1	0	1	0	1	0	+	300	1	0	1
374		10		-159.282	3	0	1	-258.287	4	0	1	415	4	0	1
375		17		2507.454	<u> </u>	0	1	0	1	0	1	0	1	0	1
376		17		-159.155	3	0	1	-258.435	4	0	1	445	4	0	1
377		18		2507.624	<u> </u>	0	1	0	1	0	1	0	1	0	1
378		10		-159.027	3	0	1	-258.582	4	0	1	475	4	0	1
379		19		2507.794	<u> </u>	0	1	0	1	0	1	0	1	0	1
380		19		-158.899	3	0	1	-258.73	4	0	1	504	4	0	1
381	M10	1		1055.368	2	1.99	6	029	12	0	1	0	4	0	1
382	IVITO		min	-1432.838	3	.452	15	-25.61	4	0	5	0	3	0	1
383		2		1055.898	2	1.919	6	029	12	0	1	0	10	0	15
384				-1432.441	3	.436	15	-26.071	4	0	5	009	4	0	6
385		3		1056.427	2	1.848	6	029	12	0	1	0	10	0	15
386			min	-1432.044	3	.419	15	-26.532	4	0	5	019	4	001	6
387		4		1056.956	2	1.777	6	029	12	0	1	0	10	0	15
388		_	min		3	.402	15	-26.993	4	0	5	028	4	002	6
389		5		1057.486	2	1.705	6	029	12	0	1	0	10	0	15
390			min	-1431.25	3	.385	15	-27.454	4	0	5	038	4	003	6
391		6		1058.015	2	1.634	6	029	12	0	1	0	10	0	15
392			min	-1430.853	3	.369	15	-27.916	4	0	5	048	4	003	6
393		7		1058.544	2	1.563	6	029	12	0	1	0	10	0	15
394				-1430.456	3	.352	15	-28.377	4	0	5	058	4	004	6
395		8		1059.073	2	1.492	6	029	12	0	1	0	12	0	15
396			min	-1430.059	3	.335	15	-28.838	4	0	5	068	4	004	6
397		9		1059.603	2	1.421	6	029	12	0	1	0	12	001	15
398			min	-1429.662	3	.319	15	-29.299	4	0	5	079	4	005	6
399		10		1060.132	2	1.35	6	029	12	0	1	0	12	001	15
400				-1429.265	3	.302	15	-29.761	4	0	5	089	4	005	6
401		11		1060.661	2	1.279	6	029	12	0	1	0	12	001	15
402			min		3	.285	15	-30.222	4	0	5	1	4	006	6
403		12	max	1061.191	2	1.208	6	029	12	0	1	0	12	001	15
404				-1428.472	3	.269	15	-30.683	4	0	5	111	4	006	6
405		13	max	1061.72	2	1.137	6	029	12	0	1	0	12	002	15
406			min		3	.252	15	-31.144	4	0	5	122	4	007	6
407		14	max	1062.249	2	1.072	2	029	12	0	1	0	12	002	15
408				-1427.678	3	.235	15	-31.605	4	0	5	133	4	007	6
409		15	max	1062.778	2	1.016	2	029	12	0	1	0	12	002	15
410				-1427.281	3	.218	12	-32.067	4	0	5	145	4	007	6
411		16	max	1063.308	2	.961	2	029	12	0	1	0	12	002	15
412			min	-1426.884	3	.19	12	-32.528	4	0	5	156	4	008	6
413		17		1063.837	2	.906	2	029	12	0	1	0	12	002	15
414			min	-1426.487	3	.162	12	-32.989	4	0	5	168	4	008	6
415		18	max	1064.366	2	.85	2	029	12	0	1	0	12	002	15
416			min	-1426.09	3	.135	12	-33.45	4	0	5	18	4	008	6
417		19	max	1064.896	2	.795	2	029	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1425.693	3	.107	12	-33.912	4	0	5	192	4	009	6
419	M11	1	max	788.434	2	8.849	6	1.294	4	0	1	0	12	.009	6
420			min	-927.01	3	2.068	15	282	1	0	4	021	4	.002	15
421		2	max	788.264	2	7.98	6	1.899	4	0	1	0	12	.005	2
422			min	-927.138	3	1.864	15	282	1	0	4	02	4	0	12
423		3	max	788.093	2	7.112	6	2.504	4	0	1	0	12	.002	2
424			min	-927.266	3	1.66	15	282	1	0	4	019	4	0	3
425		4	max	787.923	2	6.243	6	3.109	4	0	1	0	12	0	2
426			min	-927.394	3	1.456	15	282	1	0	4	017	4	003	3
427		5	max	787.752	2	5.374	6	3.714	4	0	1	0	12	001	15
428		-	min	-927.522	3	1.251	15	282	1	0	4	016	4	005	4
429		6	max	787.582	2	4.505	6	4.319	4	0	1	0	12	002	15
430		-	min	-927.649	3	1.047	15	282	1	0	4	014	4	002	4
431		7		787.412	2	3.636	6	4.925	4	0	1	014	12	007	15
432			max						1				4		
		0	min	-927.777	3	.843	15	282		0	<u>4</u> 1	012	12	009	4
433		8	max	787.241	2	2.767	6	5.53	4	0	-	0		003	15
434			min	-927.905	3	.639	15	282	1	0	4	009	4	01	4
435		9	max	787.071	2	1.898	6	6.135	4	0	1	0	12	003	15
436		1.0	min	-928.033	3	.434	15	282	1	0	4	007	4	012	4
437		10	max	786.901	2	1.029	6	6.74	4	0	1	0	12	003	15
438			min	-928.16	3	.23	15	282	1	0	4	004	4	012	4
439		11	max	786.73	2	.309	2	7.345	4	0	1	0	5	003	15
440			min	-928.288	3	115	3	282	1	0	4	002	1_	012	4
441		12	max	786.56	2	178	15	7.95	4	0	_1_	.004	5	003	15
442			min	-928.416	3	71	4	282	1	0	4	002	1	012	4
443		13	max	786.39	2	383	15	8.555	4	0	_1_	.007	5	003	15
444			min	-928.544	3	-1.578	4	282	1	0	4	002	1	012	4
445		14	max	786.219	2	587	15	9.16	4	0	1	.012	5	003	15
446			min	-928.671	3	-2.447	4	282	1	0	4	002	1	011	4
447		15	max	786.049	2	791	15	9.765	4	0	1	.016	5	002	15
448			min	-928.799	3	-3.316	4	282	1	0	4	002	1	01	4
449		16	max	785.879	2	995	15	10.37	4	0	1	.021	5	002	15
450			min	-928.927	3	-4.185	4	282	1	0	4	002	1	008	4
451		17	max	785.708	2	-1.2	15	10.975	4	0	1	.026	5	001	15
452			min	-929.055	3	-5.054	4	282	1	0	4	002	1	006	4
453		18	max	785.538	2	-1.404	15	11.58	4	0	1	.031	5	0	15
454			min	-929.182	3	-5.923	4	282	1	0	4	002	1	003	4
455		19	max	785.368	2	-1.608	15	12.185	4	0	1	.037	5	0	1
456			min	-929.31	3	-6.792	4	282	1	0	4	003	1	0	1
457	M12	1	max	966.868	1	0	1	11.069	1	0	1	.03	5	0	1
458			min	-21.091	3	0	1	-261.149	4	0	1	002	1	0	1
459		2	max	967.039	1	0	1	11.069	1	0	1	0	12	0	1
460			min	-20.963	3	0	1	-261.297		0	1	0	1	0	1
461		3		967.209	1	0	1	11.069	1	0	1	0	1	0	1
462			min	-20.835	3	0	1	-261.445		0	1	031	4	0	1
463		4		967.379	1	0	1	11.069	1	0	1	.002	1	0	1
464			min	-20.707	3	0	1	-261.592	4	0	1	061	4	0	1
465		5	max		1	0	1	11.069	1	0	1	.003	1	0	1
466			min	-20.58	3	0	1	-261.74	4	0	1	091	4	0	1
467		6	max		1	0	1	11.069	1	0	1	.004	1	0	1
468			min		3	0	1	-261.887		0	1	121	4	0	1
469		7	max		1	0	1	11.069	1	0	1	.006	1	0	1
470			min	-20.324	3	0	1	-262.035		0	1	151	4	0	1
471		8		968.061	1	0	1	11.069	1	0	1	.007	1	0	1
471		0	min	-20.196	3	0	1	-262.183		0	1	181	4	0	1
473		9		968.231	1	0	1	11.069	1	0	1	.008	1	0	1
474		9	min	-20.069	3	0	1	-262.33	4	0	1	211	4	0	1
4/4			1111111	-20.009	J	U		-202.33	+	U		411	+	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	968.401	1	0	1	11.069	1	0	1	.009	1	0	1
476			min	-19.941	3	0	1	-262.478	4	0	1	241	4	0	1
477		11	max	968.572	1	0	1	11.069	1	0	1	.011	1	0	1
478			min	-19.813	3	0	1	-262.626	4	0	1	271	4	0	1
479		12	max	968.742	1	0	1	11.069	1	0	1	.012	1	0	1
480			min	-19.685	3	0	1	-262.773	4	0	1	302	4	0	1
481		13	max	968.912	1	0	1	11.069	1	0	1	.013	1	0	1
482		10	min	-19.558	3	0	1	-262.921	4	0	1	332	4	0	1
483		14	max	969.083	1	0	1	11.069	1	0	1	.014	1	0	1
484		17	min	-19.43	3	0	1	-263.069	4	0	1	362	4	0	1
485		15	max	969.253	1	0	1	11.069	1	0	1	.016	1	0	1
486		13		-19.302	3	0	1	-263.216	4	0	1	392	4	0	1
487		16	min		1		1				1	.017			_
		10	max	969.423	_	0	1	11.069	1	0	1		1	0	1
488		47	min	-19.174	3	0		-263.364	4	0		422	4	0	
489		17	max	969.594	1	0	1	11.069	1	0	1	.018	1	0	1
490		10	min	-19.047	3	0	1	-263.511	4	0	1	453	4	0	1
491		18	max	969.764	1	0	1	11.069	1	0	1	.02	1	0	1
492			min	-18.919	3	0	1	-263.659	4	0	1	483	4	0	1
493		19	max	969.934	1	0	1	11.069	1	0	1	.021	1	0	1
494			min	-18.791	3	0	1	-263.807	4	0	1	513	4	0	1
495	M1	1	max	161.543	1	741.491	3	43.901	5	0	2	.171	1	0	15
496			min	-19.339	5	-414.302	2	-61.169	1	0	3	114	5	014	2
497		2	max	162.385	1	740.397	3	45.362	5	0	2	.133	1	.243	2
498			min	-18.946	5	-415.761	2	-61.169	1	0	3	086	5	464	3
499		3	max	599.842	3	540.916	2	22.086	5	0	3	.095	1	.491	2
500			min	-360.862	2	-575.26	3	-60.975	1	0	2	058	5	909	3
501		4	max	600.474	3	539.457	2	23.546	5	0	3	.057	1	.157	1
502			min	-360.019	2	-576.355	3	-60.975	1	0	2	044	5	551	3
503		5	max		3	537.998	2	25.006	5	0	3	.02	1	005	15
504		Ť	min	-359.177	2	-577.449	3	-60.975	1	0	2	029	5	193	3
505		6	max	601.737	3	536.538	2	26.466	5	0	3	001	12	.165	3
506		T .	min	-358.334	2	-578.543	3	-60.975	1	0	2	018	1	512	2
507		7	max	602.369	3	535.079	2	27.926	5	0	3	.004	5	.525	3
508		+ ′	min	-357.492	2	-579.637	3	-60.975	1	0	2	056	1	844	2
509		0				533.62			_		3	.022		.885	3
		8	max	603.001	3		2	29.386	<u>5</u>	0			<u>5</u>		2
510			min	-356.65	2	-580.732	3	-60.975		0	2	094		-1.176	
511		9	max	618.777	3	50.633	2	58.685	5	0	9	.061	1	1.03	3
512		40	min	-287.249	2	.437	15	-100.046	1	0	3	132	5	-1.343	2
513		10	max		3	49.174	2	60.145	5	0	9	0	10	1.008	3
514		4.4	min	-286.407	2	007	5	-100.046	1	0	3	096	4	-1.374	2
515		11		620.041	3	47.715	2	61.605	5	0	9	005	12		3
516			min	-285.564	2	-1.833	4	-100.046	1	0	3	073	4	-1.404	2
517		12	max		3	391.196	3	151.993	5	0	2	.092	1_	.865	3
518				-216.057	2	-640.705		-58.938	1	0	3	247	5	-1.246	2
519		13		636.172	3	390.102	3	153.453	5	0	2	.056	1	.623	3
520				-215.215	2	-642.165		-58.938	1	0	3	153	5	848	2
521		14		636.804	3	389.008	3	154.913	5	0	2	.019	1	.381	3
522			min	-214.372	2	-643.624	2	-58.938	1	0	3	057	5	449	2
523		15	max	637.436	3	387.913	3	156.373	5	0	2	.04	5	.14	3
524			min	-213.53	2	-645.083	2	-58.938	1	0	3	018	1	07	1
525		16		638.068	3	386.819	3	157.834	5	0	2	.137	5	.352	2
526			min	-212.687	2	-646.542	2	-58.938	1	0	3	054	1	1	3
527		17		638.699	3	385.725	3	159.294	5	0	2	.236	5	.753	2
528				-211.845	2	-648.001	2	-58.938	1	0	3	091	1	34	3
529		18			5	624.287	2	-5.389	12	0	5	.224	5	.379	2
530		'			1	-290.676		-105.635		0	2	131	1	167	3
531		19			5	622.828	2	-5.389	12	0	5	.17	5	.013	3
UUI		10	παλ	00.211		JEE.020		0.000	14			1 11		.010	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

500	Member	Sec		Axial[lb]						Torque[k-ft]					
532	N.45	4		-162.132	1_	-291.77	3	-104.175	4_	0	2	174	1	008	1
533	M5	1	max		_1_	2451.741	3_	86.261	5	0	1	0	1	.029	2
534			min	13.161	12	-1440.277	2	0	_1_	0	4_	231	4	0	15
535		2	max	364.424	_1_	2450.647	3	87.721	5_	0	_1_	0	1	.923	2
536			min	13.582	12	-1441.736	2	0	<u>1</u>	0	4	178	4	-1.513	3
537		3	max	1840.244	_3_	1443.917	2	67.061	_4_	0	_4_	0	1	1.787	2
538			min	-1147.73	2	-1682.312	3	0	_1_	0	1_	123	4	-2.989	3
539		4		1840.875	3	1442.458	2	68.521	4	0	4_	0	1	.891	2
540			min	-1146.888	2	-1683.406	3	0	1	0	1	081	4	-1.944	3
541		5	max	1841.507	3	1440.999	2	69.981	4	0	4	0	1	.043	1
542			min	-1146.046	2	-1684.501	3	0	1	0	1	038	4	899	3
543		6	max	1842.139	3	1439.539	2	71.441	4	0	4	.006	4	.147	3
544			min	-1145.203	2	-1685.595	3	0	1	0	1	0	1	898	2
545		7	max	1842.771	3	1438.08	2	72.901	4	0	4	.051	4	1.193	3
546			min	-1144.361	2	-1686.689	3	0	1	0	1	0	1	-1.791	2
547		8			3	1436.621	2	74.361	4	Ö	4	.096	4	2.24	3
548			min	-1143.518	2	-1687.783	3	0	1	0	1	0	1	-2.683	2
549		9	_	1862.279	3	171.992	2	198.342	4	0	1	0	1	2.581	3
550		3		-992.658	2	.44	15	0	1	0	1	206	4	-3.073	2
551		10		1862.911	3	170.532	2	199.802	4	0	1	200	1	2.496	3
552		10		-991.816	2	0	15	0	1	0	1	083	4	-3.18	2
		11				-			-		•		_		_
553				1863.543	3	169.073	2	201.262	4_	0	1	.042	4	2.411	3
554		40	min	-990.973	2	-1.649	6	0	1_	0	1_	0	1	-3.285	2
555		12		1882.972	3	1097.277	3	213.288	4	0	1	0	1	2.111	3
556			min	-840.326	2	-1781.036	2	0	_1_	0	4_	354	4	-2.937	2
557		13		1883.603	3	1096.183	3	214.748	4	0	1	0	1	1.431	3
558			min	-839.484	2	-1782.495	2	0	<u>1</u>	0	4_	221	4	-1.831	2
559		14		1884.235	3	1095.089	3	216.208	_4_	0	_1_	0	1_	.751	3
560				-838.642	2	-1783.954	2	0	1_	0	4	087	4	724	2
561		15	max	1884.867	3_	1093.994	3	217.668	4	0	_1_	.047	4	.383	2
562			min	-837.799	2	-1785.413	2	0	1	0	4	0	1	0	15
563		16	max	1885.499	3	1092.9	3	219.128	4	0	1	.183	4	1.492	2
564			min	-836.957	2	-1786.873	2	0	1	0	4	0	1	607	3
565		17	max	1886.13	3	1091.806	3	220.589	4	0	1	.319	4	2.601	2
566			min	-836.115	2	-1788.332	2	0	1	0	4	0	1	-1.285	3
567		18	max	-14.67	12	2117.688	2	0	1	0	4	.348	4	1.329	2
568			min	-363.246	1	-1032.437	3	-20.364	5	0	1	0	1	668	3
569		19	max		12	2116.229	2	0	1	0	4	.336	4	.016	1
570				-362.403	1	-1033.531	3	-18.903	5	0	1	0	1	027	3
571	M9	1		161.543	1	741.491	3	67.749	4	0	3	015	12	0	15
572	IVIO		min	0 -0-	12	-414.302		5.418	12	0	4	182	4	014	2
573		2	max		1	740.397	3	69.209	4	0	3	012	12	.243	2
574				10.019	12	-415.761	2	5.418	12	0	4	139	4	464	3
575		3		599.842	3	540.916	2	60.975	1	0	2	009	12	.491	2
576		3		-360.862	2	-575.26	3	5.388	12	0	3	096	4	909	3
577		1					2	60.975		0	2	096	12		1
		4		600.474	3	539.457			1					.157	_
578		_		-360.019	2	-576.355	3	5.388	12	0	3	067	4	551	3
579		5		601.106	3	537.998	2	60.975	1	0	2	002	12	005	15
580				-359.177	2	-577.449	3	5.388	12	0	3	036	4	193	3
581		6		601.737	3_	536.538	2	60.975	1_	0	2	.018	1_	.165	3
582				-358.334	2	-578.543	3	5.388	12	0	3	01	5	512	2
583		7		602.369	3_	535.079	2	60.975	_1_	0	2	.056	1_	.525	3
584				-357.492	2	-579.637	3	5.388	12	0	3	.005	12	844	2
585		8	max	603.001	3	533.62	2	60.975	_1_	0	2	.094	1	.885	3
586			min	-356.65	2	-580.732	3	5.388	12	0	3	.008	12	-1.176	2
587		9	max	618.777	3	50.633	2	100.046	1_	0	3	005	12	1.03	3
588			min	-287.249	2	.454	15	8.289	12	0	9	157	4	-1.343	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	619.409	3	49.174	2	100.046	1	0	3	.001	1	1.008	3
590			min	-286.407	2	.014	15	8.289	12	0	9	096	4	-1.374	2
591		11	max	620.041	3	47.715	2	100.801	4	0	3	.063	1	.987	3
592			min	-285.564	2	-1.712	6	8.289	12	0	9	048	5	-1.404	2
593		12	max	635.54	3	391.196	3	176.602	4	0	3	007	12	.865	3
594			min	-216.057	2	-640.705	2	4.578	12	0	2	286	4	-1.246	2
595		13	max	636.172	3	390.102	3	178.062	4	0	3	004	12	.623	3
596			min	-215.215	2	-642.165	2	4.578	12	0	2	176	4	848	2
597		14	max	636.804	3	389.008	3	179.523	4	0	3	002	12	.381	3
598			min	-214.372	2	-643.624	2	4.578	12	0	2	065	4	449	2
599		15	max	637.436	3	387.913	3	180.983	4	0	3	.047	4	.14	3
600			min	-213.53	2	-645.083	2	4.578	12	0	2	.001	12	07	1
601		16	max	638.068	3	386.819	3	182.443	4	0	3	.16	4	.352	2
602			min	-212.687	2	-646.542	2	4.578	12	0	2	.004	12	1	3
603		17	max	638.699	3	385.725	3	183.903	4	0	3	.274	4	.753	2
604			min	-211.845	2	-648.001	2	4.578	12	0	2	.007	12	34	3
605		18	max	-9.475	12	624.287	2	69.477	1	0	2	.278	4	.379	2
606			min	-162.974	1	-290.676	3	-78.699	5	0	3	.01	12	167	3
607		19	max	-9.053	12	622.828	2	69.477	1	0	2	.239	4	.013	3
608			min	-162.132	1	-291.77	3	-77.239	5	0	3	.013	12	008	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.209	2	.011	3	1.441e-2	2	NC	1	NC	1
2			min	727	4	06	3	007	2	-4.177e-3	3	NC	1	NC	1
3		2	max	0	1	.138	2	.019	1	1.55e-2	2	NC	4	NC	2
4			min	727	4	.004	15	014	5	-3.872e-3	3	1096.525	3	9544.322	1
5		3	max	0	1	.248	3	.044	1	1.658e-2	2	NC	5	NC	2
6			min	728	4	.003	15	018	5	-3.567e-3	3	603.622	3	4129.548	1
7		4	max	0	1	.335	3	.065	1	1.767e-2	2	NC	5	NC	3
8			min	728	4	.002	15	014	5	-3.262e-3	3	471.388	3	2816.51	1
9		5	max	0	1	.359	3	.075	1	1.875e-2	2	NC	5	NC	3
10			min	728	4	.002	15	005	5	-2.957e-3	3	443.848	3	2455.599	1
11		6	max	0	1	.323	3	.071	1	1.984e-2	2	NC	5	NC	5
12			min	728	4	.003	15	002	10	-2.652e-3	3	485.916	3	2608.443	1
13		7	max	0	1	.238	3	.053	1	2.093e-2	2	NC	4	NC	2
14			min	728	4	.004	15	005	10	-2.347e-3	3	624.141	3	3460.115	1
15		8	max	0	1	.255	2	.034	3	2.201e-2	2	NC	4	NC	2
16			min	728	4	.006	15	01	10	-2.042e-3	3	988.874	3	6641.392	1
17		9	max	0	1	.321	2	.034	3	2.31e-2	2	NC	4	NC	1
18			min	728	4	.007	15	019	2	-1.737e-3	3	1651.362	2	8145.239	3
19		10	max	0	1	.351	2	.034	3	2.419e-2	2	NC	4	NC	1
20			min	728	4	018	3	024	2	-1.432e-3	3	1308.632	2	8186.074	3
21		11	max	0	12	.321	2	.034	3	2.31e-2	2	NC	4	NC	1
22			min	728	4	.007	15	019	2	-1.737e-3	3	1651.362	2	8145.239	3
23		12	max	0	12	.255	2	.034	3	2.201e-2	2	NC	4	NC	2
24			min	728	4	.005	15	011	5	-2.042e-3	3	988.874	3	6641.392	1
25		13	max	0	12	.238	3	.053	1	2.093e-2	2	NC	4	NC	2
26			min	728	4	.004	15	005	10	-2.347e-3	3	624.141	3	3460.115	1
27		14	max	0	12	.323	3	.071	1	1.984e-2	2	NC	5	NC	5
28			min	728	4	.002	15	002	10	-2.652e-3	3	485.916	3	2608.443	1
29		15	max	0	12	.359	3	.075	1	1.875e-2	2	NC	5	NC	3
30			min	728	4	.001	15	0	10	-2.957e-3	3	443.848	3	2455.599	1
31		16	max	0	12	.335	3	.065	1	1.767e-2	2	NC	5	NC	3
32			min	728	4	0	15	0	10	-3.262e-3	3	471.388	3	2816.51	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.248	3	.044	1	1.658e-2	2	NC	5	NC	2
34			min	728	4	.002	15	0	10	-3.567e-3	3	603.622	3_	4129.548	
35		18	max	0	12	.138	2	.023	4	1.55e-2	2	NC	4_	NC NC	2
36		40	min	728	4	.003	15	003	10	-3.872e-3	3	1096.525	3	7647.549	
37		19	max	0	12	.209	2	.011	3	1.441e-2	2	NC NC	1_	NC NC	1
38	N44.4	1	min	728	1	06	3	007	3	-4.177e-3 7.981e-3	3	NC NC	1	NC NC	1
39	M14	1	max	0	4	.434	3	.01	2		3	NC NC	<u>1</u> 1	NC NC	1
40		2	min	<u>54</u> 0	1	<u>624</u> .655	3	006 .012	3	-6.44e-3 9.142e-3	2	NC NC	5	NC NC	1
42			max min	54	4	842	2	022	5	-7.5e-3	3	840.444	3	7675.083	
43		3	max	34 0	1	<u>042</u> .851	3	.033	1	1.03e-2	2	NC	<u>5</u>	NC	2
44		3	min	54	4	-1.038	2	027	5	-8.56e-3	3	446.501	3	5510.276	
45		4	max	0	1	1.001	3	.053	1	1.147e-2	2	NC	15	NC	3
46		_	min	54	4	-1.199	2	02	5	-9.62e-3	3	323.717	2	3461.99	1
47		5	max	<u>.5</u> -	1	1.098	3	.064	1	1.263e-2	2	NC	15	NC	3
48		T -	min	54	4	-1.315	2	005	5	-1.068e-2	3	269.404	2	2882.416	
49		6	max	0	1	1.139	3	.062	1	1.379e-2	2	NC	15	NC	3
50			min	54	4	-1.384	2	001		-1.174e-2	3	244.967	2	2971.457	1
51		7	max	0	1	1.132	3	.048	1	1.495e-2	2	NC	15	NC	2
52			min	54	4	-1.41	2	005	10	-1.28e-2	3	236.841	2	3855.625	
53		8	max	0	1	1.092	3	.04	4	1.611e-2	2	NC	15	NC	2
54			min	54	4	-1.404	2	009	10	-1.386e-2	3	238.737	2	4502.738	4
55		9	max	0	1	1.043	3	.03	3	1.727e-2	2	NC	15	NC	1
56			min	54	4	-1.382	2	017	2	-1.492e-2	3	245.536	2	6399.868	4
57		10	max	0	1	1.018	3	.03	3	1.843e-2	2	NC	15	NC	1
58			min	54	4	-1.368	2	022	2	-1.598e-2	3	250.013		9260.255	3
59		11	max	0	12	1.043	3	.03	3	1.727e-2	2	NC	<u>15</u>	NC	1
60			min	54	4	-1.382	2	022	5	-1.492e-2	3	245.536		8349.404	5
61		12	max	0	12	1.092	3	.03	3	1.611e-2	2	NC	15	NC	2
62			min	54	4	-1.404	2	026	5	-1.386e-2	3	238.737	2	7172.378	
63		13	max	0	12	1.132	3	.048	1	1.495e-2	2	NC	<u>15</u>	NC	2
64			min	<u>54</u>	4	<u>-1.41</u>	2	<u>017</u>	5	-1.28e-2	3	236.841	2	3855.625	
65		14	max	0	12	1.139	3	.062	1	1.379e-2	2	NC	<u>15</u>	NC	3
66		4.5	min	<u>54</u>	4	-1.384	2	002	5	-1.174e-2	3	244.967	2	2971.457	1
67		15	max	0	12	1.098	3	.064	1	1.263e-2	2	NC OCO 404	<u>15</u>	NC 0000 440	3
68		4.0	min	<u>54</u>	4	-1.315	2	0 0 0 0 0 0	10		3	269.404	2	2882.416	
69		16	max	0	12	1.001	3	.053	1	1.147e-2	2	NC	<u>15</u>	NC	3
70		17	min	<u>54</u>	12	-1.199 051	2	0	10		3	323.717	2	3461.99	2
71 72		17	max min	0 54	4	.851 -1.038	3	.042 001	10	1.03e-2 -8.56e-3	3	NC 446.501	<u>5</u>	NC 4277.389	
73		18	max	- <u>54</u> 0	12	.655	3	.028				NC	5		1
74		10	min	54	4	842	2	003	10	-7.5e-3	3	840.444	3	6298.136	
75		19		0	12	.434	3	.003	3	7.981e-3	2	NC	1	NC	1
76		10	min	54	4	624	2	006	2	-6.44e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.443	3	.009	3	5.527e-3	3	NC	1	NC	1
78	IWITO	•	min	436	4	623	2	006	2	-8.317e-3	2	NC	1	NC	1
79		2	max	0	12	.609	3	.012	1	6.427e-3	3	NC	5	NC	1
80			min	436	4	885	2	031	5	-9.536e-3	2	709.316	2	5631.788	5
81		3	max	0	12	.759	3	.034	1	7.328e-3	3	NC	5	NC	2
82			min	436	4	-1.118	2	039	5	-1.076e-2	2	375.762	2	4560.066	
83		4	max	0	12	.884	3	.054	1	8.229e-3	3	NC	15	NC	3
84			min	436	4	-1.3	2	029	5	-1.198e-2	2	274.531	2	3442.273	
85		5	max	0	12	.976	3	.065	1	9.13e-3	3	NC	15	NC	3
86			min	437	4	-1.421	2	01	5	-1.319e-2	2	232.95	2	2865.824	
87		6	max	0	12	1.033	3	.063	1	1.003e-2	3	NC	15	NC	3
88			min	437	4	-1.479	2	0		-1.441e-2	2	217.312	2	2951.473	
89		7	max	0	12	1.059	3	.048	1	1.093e-2	3	NC	15	NC	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

		<u>Sec</u>		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	437	4	-1.48	2	004	10 -1.563e-2	2	216.923	2	3819.203	_
91		8	max	0	12	1.06	3	.049	4 1.183e-2	3	NC	15	NC	2
92			min	437	4	-1.443	2	008	10 -1.685e-2	2	226.811	2	3721.148	4
93		9	max	0	12	1.048	3	.035	4 1.273e-2	3	NC	15	NC	1
94			min	437	4	-1.393	2	016	2 -1.807e-2	2	241.486	2	5124.388	4
95		10	max	0	1	1.039	3	.028	3 1.363e-2	3	NC	15	NC	1
96			min	437	4	-1.367	2	021	2 -1.929e-2	2	250.051	2	NC	1
97		11	max	0	1	1.048	3	.028	3 1.273e-2	3	NC	15	NC	1
98			min	437	4	-1.393	2	03	5 -1.807e-2	2	241.486	2	6286.802	5
99		12	max	0	1	1.06	3	.028	3 1.183e-2	3	NC	15	NC	2
100			min	437	4	-1.443	2	035	5 -1.685e-2	2	226.811	2	5360,402	5
101		13	max	0	1	1.059	3	.048	1 1.093e-2	3	NC	15	NC	2
102			min	437	4	-1.48	2	023	5 -1.563e-2	2	216.923	2	3819.203	
103		14	max	0	1	1.033	3	.063	1 1.003e-2	3	NC	15	NC	3
104			min	436	4	-1.479	2	003	5 -1.441e-2	2	217.312	2	2951.473	1
105		15	max	0	1	.976	3	.065	1 9.13e-3	3	NC	15	NC	3
106			min	436	4	-1.421	2	0	10 -1.319e-2	2	232.95	2	2865.824	1
107		16	max	0	1	.884	3	.054	1 8.229e-3	3	NC	15	NC	3
108		10	min	436	4	-1.3	2	0	10 -1.198e-2	2	274.531	2	3442.273	
109		17	max	0	1	.759	3	.054	4 7.328e-3	3	NC	5	NC	2
110		17	min	436	4	-1.118	2	0	10 -1.076e-2	2	375.762	2	3383.6	4
111		18	max	0	1	.609	3	.037	4 6.427e-3	3	NC	5	NC	1
112		10	min	436	4	885	2	003	10 -9.536e-3	2	709.316	2	4842.101	4
113		19		430 0	1	<u>865</u> .443	3	.009	3 5.527e-3	3	NC	1	NC	1
		19	max		4		2		2 -8.317e-3	2	NC NC	1	NC NC	1
114	MAG	4	min	436		623		006				1		
115	M16	1_	max	0	12	.185	2	.008	3 1.049e-2	3	NC NC		NC NC	1
116			min	127	4	1 <u>55</u>	3	005	2 -1.208e-2	2	NC NC	1_	NC NC	1
117		2	max	0	12	.073	1	.019	1 1.151e-2	3	NC	4	NC	2
118			min	127	4	112	3	022	5 -1.266e-2	2	1513.48	2	7762.862	5
119		3	max	0	12	.017	9	.044	1 1.253e-2	3	NC 040.074	5_	NC	2
120		4	min	127	4	081	3	029	5 -1.323e-2	2	846.271	2	4141.665	
121		4	max	0	12	.008	4	.066	1 1.355e-2	3	NC 000 400	5	NC	3
122		_	min	127	4	088	2	023	5 -1.381e-2	2	680.482	2	2811.467	1
123		5	max	0	12	.009	14	.076	1 1.457e-2	3	NC OT A TTT	5	NC	3
124			min	127	4	<u>091</u>	2	011	5 -1.439e-2	2	674.775	2	2439.561	1
125		6	max	0	12	.022	9	.072	1 1.559e-2	3	NC NC	4	NC	3
126			min	127	4	118	3	0	10 -1.497e-2	2	814.781	2	2574.302	1
127		7	max	0	12	.074	1	.055	1 1.66e-2	3	NC	3	NC	2
128			min	127	4	169	3	002	10 -1.554e-2	2	1307.567	2	3372.254	
129		8	max	0	12	.157	1	.032	4 1.762e-2	3	NC	1_	NC	2
130			min	127	4	227	3	006	10 -1.612e-2	2	2592.459	3	5630.816	
131		9	max	0	12	.24	2	.024	3 1.864e-2	3	NC	4_	NC	1
132			min	127	4	277	3	014	2 -1.67e-2	2	1534.393	3	8056.906	4
133		10	max	0	1	.281	2	.024	3 1.966e-2	3	NC	5	NC	1
134			min	127	4	298	3	019	2 -1.728e-2	2	1301.309	3	NC	1
135		11	max	0	1	.24	2	.024	3 1.864e-2	3	NC	4	NC	1
136			min	127	4	277	3	016	5 -1.67e-2	2	1534.393	3	NC	1
137		12	max	0	1	.157	1	.029	1 1.762e-2	3	NC	1_	NC	2
138			min	127	4	227	3	017	5 -1.612e-2	2	2592.459	3	6240.011	1
139		13	max	0	1	.074	1	.055	1 1.66e-2	3	NC	3	NC	2
140			min	127	4	169	3	008	5 -1.554e-2	2	1307.567	2	3372.254	1
141		14	max	0	1	.022	9	.072	1 1.559e-2	3	NC	4	NC	3
142			min	126	4	118	3	0	10 -1.497e-2	2	814.781	2	2574.302	
143		15	max	0	1	.009	9	.076	1 1.457e-2	3	NC	5	NC	3
144			min	126	4	091	2	.003	10 -1.439e-2	2	674.775	2	2439.561	1
145		16	max	0	1	.007	6	.066	1 1.355e-2	3	NC	5	NC	3
146			min	126	4	088	2	.003	10 -1.381e-2	2	680.482	2	2811.467	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.017	9	.048	4	1.253e-2	3_	NC	5	NC	2
148			min	126	4	081	3	0	10	-1.323e-2	2	846.271	2	3832.886	4
149		18	max	0	1	.073	1	.031	4	1.151e-2	3_	NC	4_	NC	2
150			min	126	4	112	3	002	10	-1.266e-2	2	1513.48	2	5832.056	4
151		19	max	0	1	.185	2	.008	3	1.049e-2	3_	NC	_1_	NC	1_
152			min	126	4	1 <u>55</u>	3	005	2	-1.208e-2	2	NC	1	NC	1
153	M2	1	max	.008	2	.011	2	.008	1	2.185e-3	5_	NC	_1_	NC	2
154			min	011	3	017	3	682	4	-1.797e-4	1_	6929.631	2	113.545	4
155		2	max	.007	2	.01	2	.007	1	2.213e-3	5	NC	1_	NC	1
156			min	01	3	017	3	627	4	-1.708e-4	1_	8086.292	2	123.567	4
157		3	max	.007	2	.008	2	.007	1	2.241e-3	5	NC	_1_	NC	1_
158			min	009	3	016	3	572	4	-1.619e-4	1_	9681.299	2	135.458	4
159		4	max	.007	2	.006	2	.006	1	2.269e-3	5_	NC	_1_	NC	1
160			min	009	3	016	3	518	4	-1.53e-4	1	NC	1	149.705	4
161		5	max	.006	2	.005	2	.005	1	2.297e-3	5	NC	1_	NC	1
162			min	008	3	015	3	464	4	-1.441e-4	1	NC	1	166.968	4
163		6	max	.006	2	.004	2	.005	1	2.326e-3	5	NC	1	NC	1
164			min	008	3	015	3	412	4	-1.352e-4	1_	NC	1_	188.163	4
165		7	max	.005	2	.002	2	.004	1	2.354e-3	5	NC	1	NC	1
166			min	007	3	014	3	361	4	-1.263e-4	1	NC	1	214.587	4
167		8	max	.005	2	.001	2	.004	1	2.382e-3	5	NC	1	NC	1
168			min	007	3	013	3	312	4	-1.174e-4	1	NC	1	248.13	4
169		9	max	.004	2	0	2	.003	1	2.41e-3	5	NC	1	NC	1
170			min	006	3	012	3	266	4	-1.085e-4	1	NC	1	291.634	4
171		10	max	.004	2	0	2	.003	1	2.44e-3	4	NC	1	NC	1
172			min	005	3	012	3	222	4	-9.961e-5	1	NC	1	349.538	4
173		11	max	.004	2	001	15	.002	1	2.471e-3	4	NC	1	NC	1
174			min	005	3	011	3	181	4	-9.072e-5	1	NC	1	429.091	4
175		12	max	.003	2	001	15	.002	1	2.502e-3	4	NC	1	NC	1
176			min	004	3	01	3	143	4	-8.183e-5	1	NC	1	542.816	4
177		13	max	.003	2	001	15	.001	1	2.533e-3	4	NC	1	NC	1
178			min	004	3	009	3	109	4	-7.293e-5	1	NC	1	713.91	4
179		14	max	.002	2	001	15	0	1	2.563e-3	4	NC	1	NC	1
180			min	003	3	007	3	078	4	-6.404e-5	1	NC	1	989.459	4
181		15	max	.002	2	001	15	0	1	2.594e-3	4	NC	1	NC	1
182		10	min	002	3	006	3	052	4	-5.515e-5	1	NC	1	1477.683	4
183		16	max	.001	2	0	15	0	1	2.625e-3	4	NC	1	NC	1
184		10	min	002	3	005	3	031	4	-4.625e-5	1	NC	1	2476.51	4
185		17	max	0	2	0	15	0	1	2.656e-3	4	NC	1	NC NC	1
186		11	min	001	3	003	3	015	4	-3.736e-5	1	NC	1	5083.584	4
187		18	max	0	2	0	15	0	1	2.687e-3	4	NC	1	NC	1
188		10	min	0	3	002	6	005	4	-2.847e-5		NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.718e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	-1.957e-5		NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	3.906e-6	1	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-5.886e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.015	4	4.036e-5	4	NC	1	NC	1
194			min	0	2	003	6	0	1	1.909e-6		NC	1	NC	1
195		3		.001	3	003 001	15	.028	4	6.693e-4	4	NC	1	NC	1
196		3	max	0	2	006			1	3.414e-6	12	NC NC	1	7159.399	
		4	min	.002	3	000 002	15	<u> </u>	4	1.298e-3		NC NC	1	NC	
197 198		4	max	002 001	2	002 009	6	04 0	1	4.92e-6	<u>4</u> 12	NC NC	1	4959.508	14
		5	min									NC NC	1		
199))	max	.002	3	003	15	.052	4	1.927e-3	4			NC	1
200		_	min	002	2	012	6	000	1	6.426e-6		8536.588	6	3862.696	
201		6	max	.003	3	003	15	.062	4	2.556e-3	4	NC	5	NC	1
202		7	min	002	2	015	6	0 070	1	7.932e-6		6916.436	6	3205.629	
203		7	max	.003	3	004	15	.072	4	3.185e-3	<u>4</u>	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
204			min	003	2	017	6	0	1	9.438e-6	12	5940.713	6	2766.857	
205		8	max	.004	3	004	15	.081	4	3.814e-3	4	NC 5000.00	5	NC 0.454.400	1
206			min	003	2	019	6	0	3	1.094e-5	12		6	2451.166	
207		9	max	.004	3	004	15	.09	4	4.443e-3	4	NC	5	NC 0040.670	1
208		40	min	003	2	02	6	0	3	1.245e-5	12	4983.736	6	2210.679	
209		10	max	.005	3	005	15	.098	4	5.072e-3	4	NC 4040 40	5	NC 2010 FOC	1
210		44	min	004	2	021	6	0	12	1.395e-5	12	4813.43	6	2018.586	
211		11	max	.005	3	005	15	.107	4	5.701e-3	4	NC 4802.959	<u>5</u>	NC 1858.659	1
212		12	min	004	3	021	6	0	12	1.546e-5	12	NC		NC	14
213 214		12	max	.006 005	2	004 02	15	<u>.115</u>	12	6.33e-3 1.697e-5	<u>4</u> 12	4954.369	<u>5</u>	1720.514	
215		13	min max	.006	3	02 004	15	.123	4	6.959e-3	4	NC	5	NC	1
216		13	min	005	2	004 019	6	0	12	1.847e-5	12	5298.82	6	1597.273	
217		14	max	.003	3	019 004	15	.132	4	7.588e-3	4	NC	5	NC	1
218		14	min	006	2	004 017	6	0	12	1.998e-5	12	5912.674	6	1484.312	14
219		15	max	.007	3	003	15	.142	4	8.216e-3	4	NC	3	NC	1
220		13	min	006	2	015	6	0	12	2.148e-5	12	6964.953	6	1378.565	
221		16	max	.008	3	002	15	.153	4	8.845e-3	4	NC	1	NC	1
222		10	min	006	2	011	6	0	12	2.299e-5	12	8864.841	6	1278.09	14
223		17	max	.008	3	001	15	.164	4	9.474e-3	4	NC	1	NC	1
224		1 '	min	007	2	008	6	0	12	2.45e-5	12	NC	1	1181.777	14
225		18	max	.009	3	0	15	.178	4	1.01e-2	4	NC	1	NC	1
226		1.0	min	007	2	005	3	0	12	2.6e-5	12	NC	1	1089.133	
227		19	max	.009	3	0	5	.193	4	1.073e-2	4	NC	1	NC	1
228		1.0	min	008	2	002	3	0	12	2.751e-5	12	NC	1	1000.093	14
229	M4	1	max	.002	1	.007	2	0	12	1.771e-4	4	NC	1	NC	3
230			min	0	5	009	3	193	4	1.121e-5	12	NC	1	128.484	4
231		2	max	.002	1	.007	2	0	12	1.771e-4	4	NC	1	NC	3
232			min	0	5	009	3	178	4	1.121e-5	12	NC	1	139.654	4
233		3	max	.002	1	.007	2	0	12	1.771e-4	4	NC	1	NC	2
234			min	0	5	008	3	162	4	1.121e-5	12	NC	1	152.95	4
235		4	max	.002	1	.006	2	0	12	1.771e-4	4	NC	1	NC	2
236			min	0	5	008	3	147	4	1.121e-5	12	NC	1	168.925	4
237		5	max	.002	1	.006	2	0	12	1.771e-4	4	NC	1	NC	2
238			min	0	5	007	3	132	4	1.121e-5	12	NC	1	188.328	4
239		6	max	.002	1	.005	2	0	12	1.771e-4	4	NC	1_	NC	2
240			min	0	5	007	3	<u>117</u>	4	1.121e-5	12	NC	1_	212.199	4
241		7	max	.002	1	.005	2	0	12	1.771e-4	4	NC	_1_	NC	2
242			min	0	5	006	3	102	4	1.121e-5	12	NC	1_	242.015	4
243		8	max	.001	1	.005	2	00	12	1.771e-4	_4_	NC	_1_	NC	2
244			min		5	006	3	089		1.121e-5		NC	1_	279.928	
245		9	max	.001	1	.004	2	0	12	1.771e-4	4_	NC	_1_	NC	2
246			min	0	5	005	3	075	4	1.121e-5	12	NC	_1_	329.178	4
247		10	max	.001	1	.004	2	0	12	1.771e-4	4_	NC		NC	1
248		44	min	0	5	005	3	063	4	1.121e-5	12	NC NC	1_	394.832	4
249		11	max	.001	1	.003	2	0	12	1.771e-4	4	NC	1_	NC 105.171	1
250		10	min	0	5	004	3	<u>051</u>	4	1.121e-5	12	NC	1_	485.174	4
251		12	max	0	1	.003	2	0	12	1.771e-4	4	NC	1	NC 044.507	1
252		40	min	0	5	004	3	04	4	1.121e-5	12	NC NC	1_1	614.537	4
253		13	max	0	5	.002	2	0	12	1.771e-4	4	NC NC	1_1	NC 900 516	1
254		1.4	min	0		003	3	031	4	1.121e-5	12	NC NC	1	809.516	4
255		14	max	0	5	.002	3	0 022	12	1.771e-4	4	NC NC	1	NC 1124.211	1
256		1.5	min		1	003	2		12	1.121e-5	<u>12</u>	NC NC	<u>1</u> 1		1
257 258		15	max min	0	5	.002 002	3	0 015	12	1.771e-4 1.121e-5	12	NC NC	1	NC 1683.307	
259		16	max	0	1	002 .001	2	015 0	12	1.121e-5 1.771e-4	4	NC NC	1	NC	1
260		10	min	0	5	002	3	009	4	1.77 Te-4 1.121e-5	12	NC NC	1	2831.394	
200			HIIII	U	J	002	J	009	4	1.1216-3	12	INC		2031.394	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	1.771e-4	_4_	NC	_1_	NC	1
262			min	0	5	001	3	004	4	1.121e-5	12	NC	<u>1</u>	5845.674	4
263		18	max	0	1	0	2	0	12	1.771e-4	4_	NC	_1_	NC	1
264			min	0	5	0	3	001	4	1.121e-5	12	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.771e-4	4	NC	1	NC	1
266			min	0	1	0	1	0	1	1.121e-5	12	NC	1	NC	1
267	M6	1	max	.024	2	.037	2	0	1	2.287e-3	4	NC	3	NC	1
268			min	033	3	052	3	689	4	0	1	2076.654	2	112.383	4
269		2	max	.023	2	.034	2	0	1	2.314e-3	4	NC	3	NC	1
270			min	031	3	049	3	634	4	0	1	2282.02	2	122.303	4
271		3	max	.021	2	.031	2	0	1	2.34e-3	4	NC	3	NC	1
272			min	03	3	047	3	578	4	0	1	2530.275	2	134.073	4
273		4	max	.02	2	.027	2	0	1	2.367e-3	4	NC	3	NC	1
274		•	min	028	3	044	3	523	4	0	1	2833.711	2	148.174	4
275		5	max	.019	2	.024	2	0	1	2.394e-3	4	NC	3	NC	1
276		+ -	min	026	3	041	3	469	4	0	1	3209.512	2	165.261	4
277		6	max	.020	2	.021	2	0	1	2.42e-3	4	NC	3	NC	1
278		10	min	024	3	038	3	416	4	0	1	3682.296	2	186.24	4
279		7		024 .016	2	036 .018	2	416 0	1	2.447e-3	4	NC	3		1
		+-	max		3						<u>4</u> 1			NC 242,202	_
280		0	min	022		035	3	365	4	0 470 0		4288.351	2	212.393	4
281		8	max	.015	2	.015	2	0	1	2.473e-3	4	NC F000 004	1	NC 245 502	1
282		_	min	02	3	032	3	316	4	0	1_1	5083.004	2	245.593	4
283		9	max	.013	2	.013	2	0	1	2.5e-3	4	NC 0454 004	1_	NC 200 054	1
284		1.0	min	019	3	029	3	268	4	0	1	6154.091	2	288.651	4
285		10	max	.012	2	.01	2	0	1	2.527e-3	4_	NC TO 100	1_	NC	1
286			min	017	3	026	3	224	4	0	_1_	7648.109	2	345.96	4
287		11	max	.011	2	.008	2	0	1_	2.553e-3	_4_	NC	_1_	NC	1
288			min	015	3	024	3	182	4	0	1_	9824.948	2	424.692	4
289		12	max	.009	2	.006	2	0	1	2.58e-3	4	NC	1_	NC	1
290			min	013	3	021	3	144	4	0	1_	NC	1_	537.238	4
291		13	max	.008	2	.004	2	0	1	2.606e-3	_4_	NC	_1_	NC	1
292			min	011	3	018	3	11	4	0	1	NC	1	706.546	4
293		14	max	.007	2	.003	2	0	1	2.633e-3	4	NC	1	NC	1
294			min	009	3	015	3	079	4	0	1	NC	1	979.194	4
295		15	max	.005	2	.001	2	0	1	2.66e-3	4	NC	1	NC	1
296			min	007	3	012	3	053	4	0	1	NC	1	1462.21	4
297		16	max	.004	2	0	2	0	1	2.686e-3	4	NC	1	NC	1
298			min	006	3	009	3	032	4	0	1	NC	1	2450.169	4
299		17	max	.003	2	0	2	0	1	2.713e-3	4	NC	1	NC	1
300			min	004	3	006	3	015	4	0	1	NC	1	5027.91	4
301		18	max	.001	2	0	2	0	1	2.739e-3	4	NC	1	NC	1
302			min	002	3	003	3	005	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.766e-3	4	NC	1	NC	1
304		1.0	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717	<u> </u>	min	0	1	0	1	0	1	-5.996e-4	4	NC	1	NC	1
307		2	max	.002	3	0	15	.015	4	9.955e-6	4	NC		NC	1
308			min	001	2	004	3	0	1	0	1	NC	1	NC	1
309		3	max	.003	3	004 001	15	.028	4	6.195e-4	4	NC	1	NC	1
310			min	003	2	007	3	0	1	0.1956-4	1	NC NC	1	NC NC	1
311		4		003 .005	3	007 002	15	.041	4	1.229e-3	4	NC NC	1	NC NC	1
		4	max												_
312		-	min	004	2	011	3	0.53	1 1	0	1_1	NC NC	1_1	9984.883	
313		5	max	.006	3	003	15	.053	4	1.839e-3	4_	NC	1	NC	1
314		_	min	006	2	014	3	0	1	0	1_1	8136.622	3	8864.422	4
315		6	max	.008	3	004	15	.063	4	2.448e-3	4	NC coco oco	1	NC 0504 004	1
316		-	min	007	2	017	3	0	1	0	1_1	6862.833	3	8594.001	4
317		7	max	.009	3	004	15	.073	4	3.058e-3	4	NC	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

0.10	Member	Sec		x [in]	LC	y [in]	LC	<u>z [in]</u>		_		(n) L/y Ratio			
318			min	009	2	019	3	0	1	0	1	5934.696	4	8945.345	4
319		8	max	.011	3	005	15	.082	4	3.668e-3	4	NC	2	NC	1
320		_	min	01	2	021	3	0	1	0	1_	5333.895	<u>4</u>	9968.897	5
321		9	max	.012	3	005	15	.091	4	4.277e-3	4	NC	5	NC	1
322		10	min	011	3	022	15	0	1	1 0070 2	1_1	4979.344 NC	4_	NC NC	1
323 324		10	max	.014 013	2	005 022	3	<u>.099</u> 0	1	4.887e-3	<u>4</u> 1	4809.43	<u>5</u>	NC NC	1
325		11	min max	013 .015	3	022 005	15	<u> </u>	4	5.496e-3	4	NC	5	NC NC	1
326			min	014	2	022	3	0	1	0.4906-3	1	4799.171	4	NC NC	1
327		12	max	.017	3	005	15	.115	4	6.106e-3	4	NC	5	NC	1
328		12	min	016	2	022	3	0	1	0.1006-3	1	4950.639	4	NC	1
329		13	max	.018	3	005	15	.122	4	6.715e-3	4	NC	5	NC	1
330		10	min	017	2	021	3	0	1	0.7 100 0	1	5294.989	4	NC	1
331		14	max	.02	3	004	15	.131	4	7.325e-3	4	NC	2	NC	1
332			min	019	2	019	3	0	1	0	1	5908.547	4	NC	1
333		15	max	.021	3	004	15	.139	4	7.935e-3	4	NC	1	NC	1
334			min	02	2	017	3	0	1	0	1	6960.234	4	NC	1
335		16	max	.023	3	003	15	.149	4	8.544e-3	4	NC	1	NC	1
336			min	021	2	015	3	0	1	0	1	8858.977	4	NC	1
337		17	max	.024	3	002	15	.16	4	9.154e-3	4	NC	1	NC	1
338			min	023	2	012	3	0	1	0	1	NC	1	NC	1
339		18	max	.026	3	001	15	.172	4	9.763e-3	4	NC	1	NC	1
340			min	024	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.027	3	0	10	.185	4	1.037e-2	4	NC	1	NC	1
342			min	026	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.025	2	0	1	0	1	NC	1_	NC	1
344			min	0	3	028	3	185	4	-3.079e-5	5	NC	1	133.807	4
345		2	max	.006	1	.024	2	00	1	0	_1_	NC	1_	NC	1
346			min	0	3	026	3	171	4	-3.079e-5	5	NC	1_	145.46	4
347		3	max	.005	1	.022	2	0	1	0	_1_	NC	1_	NC	1
348			min	0	3	025	3	<u>156</u>	4	-3.079e-5	5	NC	1_	159.33	4
349		4	max	.005	1	.021	2	0	1	0	_1_	NC	1	NC	1
350		<u> </u>	min	0	3	023	3	<u>141</u>	4	-3.079e-5	5	NC NC	1_	175.993	4
351		5	max	.005	1	.02	2	0	1	0	_1_	NC	1	NC 100,001	1
352			min	0	3	022	3	126	4	-3.079e-5	5	NC NC	1_	196.231	4
353		6	max	.004	1	.018	2	0	1	0	1_	NC	1	NC 224 420	1
354		7	min	0	3	02	3	112	1	-3.079e-5	5	NC NC	1	221.129 NC	4
355			max	.004	3	.017 019	2	0	4	0 -3.079e-5	<u>1</u> 5	NC NC	1	252.226	4
356 357		8	min	<u> </u>	1	.015	2	098 0	1	0	<u>၁</u> 1	NC NC	1	NC	1
358		- 0	max min	0	3	017	3	085		-3.079e-5	_	NC	1	291.768	4
359		9	max	.003	1	.014	2	065	1	0	1	NC	1	NC	1
360		- 3	min	0	3	015	3	072	4	-3.079e-5		NC	1	343.135	4
361		10	max	.003	1	.013	2	0	1	0.07500	1	NC	1	NC	1
362		1.0	min	0	3	014	3	06	4	-3.079e-5	5	NC	1	411.61	4
363		11	max	.003	1	.011	2	0	1	0	1	NC	1	NC	1
364			min	0	3	012	3	049	4	-3.079e-5	5	NC	1	505.837	4
365		12	max	.002	1	.01	2	0	1	0	1	NC	1	NC	1
366			min	0	3	011	3	039	4	-3.079e-5	5	NC	1	640.764	4
367		13	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
368			min	0	3	009	3	029	4	-3.079e-5	5	NC	1	844.134	4
369		14	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
370			min	0	3	008	3	021	4	-3.079e-5	5	NC	1	1172.383	4
371		15	max	.001	1	.006	2	0	1	0	1	NC	1	NC	1
372			min	0	3	006	3	014	4	-3.079e-5	5	NC	1	1755.582	4
373		16	max	0	1	.004	2	0	1	0	1	NC	1	NC	1
374			min	0	3	005	3	008	4	-3.079e-5	5	NC	1	2953.223	4

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	0	1	.003	2	0	1	0	1_	NC	1_	NC	1
376			min	0	3	003	3	004	4	-3.079e-5	5	NC	1_	6097.818	4
377		18	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
378			min	0	3	002	3	001	4	-3.079e-5	5	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-3.079e-5	5	NC	1	NC	1
381	M10	1	max	.008	2	.011	2	0	12	2.274e-3	4	NC	1	NC	2
382	IVITO		min	011	3	017	3	687	4	1.733e-5		6929.631	2	112.725	4
383		2		.007	2	.01	2	<u>.007</u> O	12	2.3e-3	4	NC	1	NC	1
384			max		3	017	3	632		1.648e-5	12	8086.292	2	122.676	
		2	min	01					4	1.0466-5					4
385		3	max	.007	2	.008	2	0	12	2.325e-3	4	NC	1_	NC 404 400	1
386			min	<u>009</u>	3	016	3	<u>576</u>	4	1.563e-5		9681.299	2	134.483	4
387		4	max	.007	2	.006	2	0	12	2.35e-3	_4_	NC	_1_	NC	1
388			min	009	3	016	3	521	4	1.477e-5	12	NC	1_	148.629	4
389		5	max	.006	2	.005	2	0	12	2.375e-3	4_	NC	_1_	NC	1
390			min	008	3	015	3	467	4	1.392e-5	12	NC	1	165.77	4
391		6	max	.006	2	.004	2	0	12	2.401e-3	4	NC	1_	NC	1
392			min	008	3	015	3	415	4	1.307e-5	12	NC	1	186.816	4
393		7	max	.005	2	.002	2	0	12	2.426e-3	4	NC	1	NC	1
394			min	007	3	014	3	364	4	1.221e-5	12	NC	1	213.054	4
395		8	max	.005	2	.001	2	0	12	2.451e-3	4	NC	1	NC	1
396		Ŭ	min	007	3	013	3	315	4	1.136e-5	12	NC	1	246.362	4
397		9	max	.004	2	0	2	0	12	2.477e-3	4	NC	1	NC	1
398		- 9	min	006	3	012	3	268	4	1.05e-5	10	NC NC	1	289.563	4
		40											•		
399		10	max	.004	2	0	2	0	12	2.502e-3	4_	NC	1_	NC 0.47.004	1
400			min	005	3	012	3	223	4	9.641e-6	10	NC	1_	347.064	4
401		11	max	.004	2	002	2	0	12	2.527e-3	_4_	NC	_1_	NC	1
402			min	005	3	011	3	182	4	8.78e-6	10	NC	1_	426.066	4
403		12	max	.003	2	002	2	0	12	2.552e-3	4	NC	1_	NC	1
404			min	004	3	01	3	144	4	7.918e-6	10	NC	1	539.005	4
405		13	max	.003	2	002	15	0	12	2.578e-3	4	NC	1	NC	1
406			min	004	3	009	3	109	4	7.057e-6	10	NC	1	708.924	4
407		14	max	.002	2	002	15	0	12	2.603e-3	4	NC	1	NC	1
408			min	003	3	007	3	079	4	6.196e-6	10	NC	1	982.593	4
409		15	max	.002	2	002	15	0	12	2.628e-3	4	NC	1	NC	1
410		10	min	002	3	006	4	053	4	5.334e-6	10	NC	1	1467.514	4
411		16	max	.002	2	001	15	<u>.000</u>	12	2.654e-3	4	NC	1	NC	1
412		10	min	002	3	005	4	032	4	4.473e-6	10	NC	1	2459.671	4
		47											•		
413		17	max	0	2	0	15	0	12	2.679e-3	4	NC	1	NC 5040.700	1
414		40	min	001	3	004	4	015	4	3.611e-6	10	NC		5049.702	4
415		18	max	0	2	0	15	0		2.704e-3	4	NC		NC	1
416			min	0	3	002	4	005	4	2.75e-6	10	NC	_1_	NC	1
417		19	max	0	1	0	1	0	1	2.729e-3	_4_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	1.889e-6	10	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-3.734e-7	10	NC	1_	NC	1
420			min	0	1	0	1	0	1	-5.909e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.015	4	2.929e-5	5	NC	1	NC	1
422			min	0	2	003	4	0	10	-2.442e-5	1	NC	1	NC	1
423		3	max	.001	3	002	15	.028	4	6.421e-4	5	NC	1	NC	1
424		Ť	min	0	2	006	4	0	10	-4.493e-5	1	NC	1	NC	1
425		4	max	.002	3	002	15	.041	4	1.258e-3	4	NC	1	NC	1
426		1	min	001	2	002	4	0	10	-6.544e-5	1	NC	1	NC	1
		F			3	009 003	15	.052		1.874e-3		NC NC	1	NC NC	1
427		5	max	.002					4		4				
428			min	002	2	013	4	0	10	-8.595e-5	1_	8242.903	4_	NC NC	1
429		6	max	.003	3	004	15	.062	4	2.49e-3	4_	NC ccoo coo	5	NC NC	1
430		-	min	002	2	016	4	0	10	-1.065e-4	1_	6698.993	4_	NC	1
431		7	max	.003	3	004	15	.072	4	3.106e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	_LC_	y [in]	LC	z [in]		x Rotate [r	LC		LC		
432			min	003	2	018	4	0	10	-1.27e-4	1_	5768.32	4	NC	1
433		8	max	.004	3	005	15	.081	4	3.722e-3	4_	NC	5_	NC	1
434			min	003	2	02	4	0	10	-1.475e-4	1	5194.682	4	NC	1
435		9	max	.004	3	005	15	.09	4	4.338e-3	4	NC	5	NC	1
436			min	003	2	022	4	0	1	-1.68e-4	1	4857.441	4	NC	1
437		10	max	.005	3	006	15	.098	4	4.955e-3	4_	NC	5_	NC	1
438			min	004	2	022	4	0	1	-1.885e-4	1	4698.24	4	NC	1
439		11	max	.005	3	006	15	.106	4	5.571e-3	4_	NC	5_	NC	1
440			min	004	2	022	4	0	1	-2.09e-4	1_	4693.747	4	NC	1
441		12	max	.006	3	005	15	.114	4	6.187e-3	4	NC	5	NC	1
442			min	005	2	022	4	001	1	-2.295e-4	1_	4846.712	4	NC	1
443		13	max	.006	3	005	15	.122	4	6.803e-3	4	NC	5	NC	1
444			min	005	2	021	4	002	1	-2.5e-4	1_	5188.179	4	NC	1
445		14	max	.007	3	005	15	.131	4	7.419e-3	4	NC	5	NC	1
446			min	006	2	019	4	002	1	-2.705e-4	1_	5793.403	4	NC	1
447		15	max	.007	3	004	15	.14	4	8.036e-3	4_	NC	3	NC	1
448			min	006	2	016	4	003	1	-2.911e-4	1_	6828.485	4	NC	1
449		16	max	.008	3	003	15	.15	4	8.652e-3	4_	NC	_1_	NC	1
450			min	006	2	013	4	004	1	-3.116e-4	1	8695.189	4	NC	1
451		17	max	.008	3	002	15	.161	4	9.268e-3	4	NC	1_	NC	1
452			min	007	2	009	4	005	1	-3.321e-4	1	NC	1	NC	1
453		18	max	.009	3	002	15	.174	4	9.884e-3	4_	NC	_1_	NC	1
454			min	007	2	006	4	006	1	-3.526e-4	1_	NC	1_	NC	1
455		19	max	.009	3	0	10	.188	4	1.05e-2	4	NC	1_	NC	1
456			min	008	2	002	3	007	1	-3.731e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.007	1	1.197e-4	5	NC	1_	NC	3
458			min	0	3	009	3	188	4	-1.402e-4	1	NC	1	131.65	4
459		2	max	.002	1	.007	2	.007	1	1.197e-4	5	NC	1_	NC	3
460			min	0	3	009	3	173	4	-1.402e-4	1	NC	1	143.102	4
461		3	max	.002	1	.007	2	.006	1	1.197e-4	5	NC	1_	NC	2
462			min	0	3	008	3	158	4	-1.402e-4	1	NC	1	156.733	4
463		4	max	.002	1	.006	2	.006	1	1.197e-4	5	NC	1_	NC	2
464			min	0	3	008	3	143	4	-1.402e-4	1	NC	1	173.11	4
465		5	max	.002	1	.006	2	.005	1	1.197e-4	5	NC	1_	NC	2
466			min	0	3	007	3	129	4	-1.402e-4	1	NC	1	193	4
467		6	max	.002	1	.005	2	.005	1	1.197e-4	5_	NC	_1_	NC	2
468			min	0	3	007	3	114	4	-1.402e-4	1_	NC	1_	217.471	4
469		7	max	.002	1	.005	2	.004	1	1.197e-4	5_	NC	_1_	NC	2
470			min	0	3	006	3	1	4	-1.402e-4	1	NC	1	248.036	4
471		8	max	.001	1	.005	2	.003	1	1.197e-4	5_	NC	1_	NC	2
472			min	0	3	006	3	086	4	-1.402e-4	1	NC	1	286.901	4
473		9	max	.001	1	.004	2	.003	1	1.197e-4	5_	NC	_1_	NC	2
474			min	0	3	005	3	074	4	-1.402e-4	1_	NC	1_	337.389	4
475		10	max	.001	1	.004	2	.002	1	1.197e-4	5	NC	1	NC	1
476			min	0	3	005	3	061	4	-1.402e-4	1	NC	1	404.691	4
477		11	max	.001	1	.003	2	.002	1	1.197e-4	5_	NC	_1_	NC	1
478			min	0	3	004	3	05	4	-1.402e-4	1	NC	1	497.303	4
479		12	max	0	1	.003	2	.002	1	1.197e-4	5	NC	1	NC	1
480			min	0	3	004	3	039	4	-1.402e-4	1	NC	1	629.917	4
481		13	max	0	1	.002	2	.001	1	1.197e-4	5	NC	1_	NC	1
482			min	0	3	003	3	03	4	-1.402e-4	1	NC	1	829.796	4
483		14	max	0	1	.002	2	0	1	1.197e-4	5	NC	1_	NC	1
484			min	0	3	003	3	022	4	-1.402e-4	1	NC	1	1152.404	4
485		15	max	0	1	.002	2	0	1	1.197e-4	5	NC	1	NC	1
486			min	0	3	002	3	014	4	-1.402e-4	1	NC	1	1725.565	4
487		16	max	0	1	.001	2	0	1	1.197e-4	5	NC	1	NC	1
488			min	0	3	002	3	009	4	-1.402e-4	1	NC	1	2902.551	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	1.197e-4	5	NC	_1_	NC	1
490			min	0	3	001	3	004	4	-1.402e-4	1_	NC	1_	5992.77	4
491		18	max	0	1	00	2	00	1	1.197e-4	_5_	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-1.402e-4	_1_	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	1.197e-4	5_	NC	1_	NC	1
494	N 4 4		min	0	1	0	1	0	1	-1.402e-4	1_	NC NC	1_	NC NC	1
495	<u>M1</u>	1	max	.011	3	.209	2	.728	4	7.168e-3	2	NC	1	NC NC	1
496			min	007	2	06	3	700	12	-1.703e-2	3	NC NC	<u>1</u>	NC NC	1
497		2	max	.011	3	.101	2	.706	4	6.975e-3	4	NC 4050 oca	5	NC NC	1
498		2	min	007	2	028	3	006	4	-8.454e-3	3	1258.061 NC	<u>2</u> 5	NC NC	1
499		3	max	.011	3	.018	2	.682	1	1.26e-2 -1.508e-4	<u>4</u> 1	609.733		5868.621	5
500 501		4	min	007 .011	3	014 .086	3	008 .657	4	1.084e-2	4	NC	<u>2</u> 15	NC	1
502		4	max	007	2	14	2	007	1	-4.141e-3	3	388.444	2	4293.568	
503		5	max	.007 .011	3	<u> 14</u> .17	3	.631	4	9.074e-3	4	NC	15	NC	1
504			min	007	2	271	2	005	1	-8.179e-3	3	282.417	2	3499.332	5
505		6	max	.011	3	.258	3	.605	4	1.19e-2	2	8809.571	15	NC	1
506			min	007	2	397	2	002	1	-1.222e-2	3	223.682	2	3009.053	
507		7	max	.011	3	.343	3	.578	4	1.587e-2	2	7448.517	15	NC	1
508			min	006	2	509	2	0	3	-1.626e-2	3	188.861	2	2644.889	4
509		8	max	.01	3	.412	3	.551	4	1.985e-2	2	6641.751	15	NC	1
510			min	006	2	598	2	0	12	-2.029e-2	3	168.205	2	2356.673	4
511		9	max	.01	3	.458	3	.523	4	2.228e-2	2	6218.968	15	NC	1
512			min	006	2	653	2	0	1	-2.087e-2	3	157.419	2	2148.823	4
513		10	max	.01	3	.474	3	.492	4	2.369e-2	2	6089.544	15	NC	1
514			min	006	2	672	2	0	10	-1.912e-2	3	154.264	2	2072.724	4
515		11	max	.01	3	.463	3	.458	4	2.509e-2	2	6218.567	15	NC	1
516			min	006	2	653	2	0	12	-1.737e-2	3	158.001	2	2091.032	4
517		12	max	.009	3	.424	3	.421	4	2.403e-2	2	6640.804	15	NC	1_
518			min	006	2	595	2	0	1	-1.511e-2	3	169.912	2	2202.157	4
519		13	max	.009	3	.362	3	.379	4	1.927e-2	2	7446.684	15	NC	1
520			min	006	2	502	2	0	1	-1.209e-2	3	192.89	2	2580.311	4
521		14	max	.009	3	.282	3	.332	4	1.452e-2	2	8806.237	15	NC	1
522			min	006	2	386	2	0	12	-9.067e-3	3	232.104	2	3451.392	4
523		15	max	.009	3	.192	3	.284	4	9.763e-3	2	NC	<u>15</u>	NC	1
524		40	min	006	2	257	2	0	12	-6.046e-3	3	299.404	2	5549.012	4
525		16	max	.008	3	.098	3	.237	4	8.465e-3	4_	NC	<u>15</u>	NC	1
526		47	min	006	2	128	2	0	12	-3.025e-3	3	423.478	2	NC NC	1
527		17	max	.008	3	.006	3	.194	4	9.69e-3	4	NC CO7.440	5_	NC	1
528		10	min max	005	3	007	2	<u>0</u>	12	-3.167e-6	2	687.118	2	NC NC	1
529		18		.008	2	.094	3	.157 0				NC	5	NC NC	1
530 531		19	min max	005 .008	3	077	2	.126	1 <u>2</u>	-2.164e-3	3	1452.515 NC	<u>2</u> 1	NC NC	1
532		19	min	005	2	<u>.185</u> 155	3	0	1	1.241e-2	2	NC NC	1	NC NC	1
533	M5	1	max	.034	3	.351	2	.728	4	-4.417e-3 0	<u>3</u> 1	NC NC	1	NC NC	1
534	IVIO		min	024	2	018	3	0	1	-1.308e-5	4	NC	1	NC	1
535		2	max	.034	3	.168	2	.711	4	6.451e-3	4	NC	5	NC	1
536			min	024	2	003	3	0	1	0.4316-3	1	747.753	2	8005.991	4
537		3	max	.034	3	.053	3	.689	4	1.276e-2	4	NC	5	NC	1
538			min	024	2	041	2	<u>.009</u>	1	0	1	348.985	2	4750.785	4
539		4	max	.033	3	.186	3	.663	4	1.04e-2	4	9371.619	15	NC	1
540			min	024	2	294	2	0	1	0	1	211.627	2	3724.491	4
541		5	max	.033	3	.372	3	.635	4	8.032e-3	4	6506.28	15	NC	1
542		Ť	min	023	2	572	2	0	1	0.00200	1	147.735	2	3240.894	_
543		6	max	.032	3	.583	3	.606	4	5.668e-3	4	4980.051	15	NC	1
544		Ĭ	min	023	2	85	2	0	1	0	1	113.486	2	2939.297	4
545		7	max	.031	3	.79	3	.577	4	3.305e-3	4	4103.926	15	NC	1
									<u> </u>	,	_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio LC		
546			min	023	2	-1.103	2	0	1	0	1_	93.726 2	2679.59	4
547		8	max	.031	3	.964	3	.55	4	9.415e-4	4_	3596.944 15		1
548			min	022	2	-1.306	2	0	1	0	1_	82.25 2	2395.766	4
549		9	max	.03	3	1.077	3	.523	4	0	_1_	3337.557 15		1
550			min	022	2	-1.436	2	0	1	-8.177e-6	5	76.364 2	2140.137	4
551		10	max	.029	3	1.117	3	.491	4	0	<u>1</u>	3259.452 15	NC NC	1
552			min	021	2	-1.48	2	0	1	-7.892e-6	5	74.65 2	2091.026	4
553		11	max	.028	3	1.089	3	.457	4	0	1	3337.807 15	NC NC	1
554			min	021	2	-1.436	2	0	1	-7.607e-6	5	76.681 2	2123.73	4
555		12	max	.028	3	.993	3	.422	4	6.791e-4	4	3597.529 15		1
556			min	021	2	-1.301	2	0	1	0	1	83.298 2	2158.203	4
557		13	max	.027	3	.839	3	.38	4	2.386e-3	4	4105.086 15	NC NC	1
558			min	02	2	-1.085	2	0	1	0	1	96.479 2	2510.984	4
559		14	max	.026	3	.646	3	.332	4	4.092e-3	4	4982.27 15	NC	1
560			min	02	2	819	2	0	1	0	1	119.796 2	3519.162	4
561		15	max	.025	3	.432	3	.28	4	5.799e-3	4	6510.612 15	NC	1
562			min	02	2	532	2	0	1	0	1	161.794 2	6635.901	4
563		16	max	.025	3	.217	3	.231	4	7.505e-3	4	9380.645 15	NC	1
564			min	019	2	256	2	0	1	0	1	244.331 2	NC	1
565		17	max	.024	3	.018	3	.186	4	9.212e-3	4	NC 5	NC	1
566			min	019	2	021	2	0	1	0	1	432.426 2	NC	1
567		18	max	.024	3	.148	2	.151	4	4.658e-3	4	NC 5	NC	1
568			min	019	2	15	3	0	1	0	1	981.417 2	NC	1
569		19	max	.024	3	.281	2	.127	4	0	1	NC 1	NC	1
570		10	min	019	2	298	3	0	1	-7.683e-6	4	NC 1	NC	1
571	M9	1	max	.011	3	.209	2	.727	4	1.703e-2	3	NC 1	NC	1
572	IVIO		min	007	2	06	3	0	1	-7.168e-3	2	NC 1	NC	1
573		2	max	.011	3	.101	2	.709	4	8.454e-3	3	NC 5	NC	1
574			min	007	2	028	3	0	12	-3.512e-3	2	1258.061 2	8815.944	4
575		3	max	.011	3	.018	3	.687	4	1.271e-2	4	NC 5	NC	1
576		-	min	007	2	014	2	0	12	-1.88e-5	10	609.733 2	5100.813	
577		4	max	.011	3	.086	3	.662	4	1.004e-2	5	NC 15		1
578		+-	min	007	2	14	2	0	12	-3.961e-3	2	388.444 2	3890.464	_
579		5	max	.011	3	.17	3	.635	4	8.179e-3	3	NC 15		1
580		5	min	007	2	271	2	0	12	-7.932e-3	2	282.417 2	3297.486	
581		6	max	.011	3	.258	3	.606	4	1.222e-2	3	8765.666 15		1
582			min	007	2	397	2	0	10	-1.19e-2	2	223.682 2	2928.948	
583		7		.011	3	.343	3	.578	4	1.626e-2	3	7412.412 15		1
584		-	max	006	2	509	2	.576	1	-1.587e-2	2	188.861 2	2642.698	
585		8		006 .01	3	<u>509</u> .412	3	.55	4	2.029e-2	3	6610.169 15		1
586		0	max	006	2	598	2	.55	1	-1.985e-2		168.205 2		
587		9	min		3		3			2.087e-2				1
588		9	max	.01 006	2	.458 653	2	.523	12	-2.228e-2	3		2142.207	
		10	min					402			2			4
589		10	max	.01	3	.474	3	.492	1	1.912e-2	3	6060.926 15		1
590		4.4	min	006	2	672	2	0		-2.369e-2	2	154.264 2	2073.682	4
591		11	max	.01	3	.463	3	.457	4	1.737e-2	3	6189.232 15		1
592		10	min	006	2	<u>653</u>	2	0	1	-2.509e-2	2	158.001 2	2098.738	
593		12	max	.009	3	.424	3	.422	4	1.511e-2	3_	6609.256 15		1
594		1.0	min	006	2	595	2	0	12	-2.403e-2	2	169.912 2	2187.263	
595		13	max	.009	3	.362	3	.379	4	1.209e-2	3_	7410.946 15		1
596			min	006	2	502	2	0	10	-1.927e-2	2	192.89 2	2577.832	4
597		14	max	.009	3	.282	3	.331	4	9.067e-3	3_	8763.377 15		1
598			min	006	2	386	2	002	1	-1.452e-2	2	232.104 2	3543.399	
599		15	max	.009	3	.192	3	.281	4	6.046e-3	3	NC 15		1
600			min	006	2	257	2	005	1	-9.763e-3	2	299.404 2	6035.973	
601		16	max	.008	3	.098	3	.233	4	7.509e-3	5	NC 15		1
602			min	006	2	128	2	007	1	-5.008e-3	2	423.478 2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.008	3	.006	3	.189	4	9.401e-3	4	NC	5	NC	1
604			min	005	2	007	2	007	1	-5.009e-4	1	687.118	2	NC	1
605		18	max	.008	3	.094	2	.154	4	4.606e-3	5	NC	5	NC	1
606			min	005	2	077	3	005	1	-6.235e-3	2	1452.515	2	NC	1
607		19	max	.008	3	.185	2	.127	4	4.417e-3	3	NC	1	NC	1
608			min	005	2	155	3	0	12	-1.241e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.