Prénom: Yawisk.

Maths spécifiques II — HEIA 2017–2018

Test 1 Cryptologie

mercredi 25 avril 2018

Exercice	1	2	3	4	5	6	Total
Points	4	1.5	3	6.5	3	2	20
Obtenus	4	15	2,5	6	15	2	AT

Note	
5,4	

Consignes et Indications

- Temps à disposition: 90 minutes.
- Matériel autorisé: formulaires et tables, calculatrice et 4 pages A4 recto-verso de résumé.
- Toutes les solutions et les développements sont à écrire sur les feuilles distribuées.
- Soigner et détailler les résolutions. Des points peuvent être retirés en cas de résolutions mal présentées ou insuffisamment détaillées.
- ...bon test!

4/4

- a) Chiffrer le message "On réfléchit" avec la méthode de Vigenère standard et le mot-clé COLOMBIE.
- b) Déchiffrer le message "YI KFUWWIZRR" avec la méthode de Vigenère autoclave et le mot-clé PÉROU.

Aidez-vous du carré de Vigenère ci-contre.

	3	2	3	9	5	6	7	8	9	3 a	21	12	13	19	15	16	17	18	91	100	14	12	93	29	25.	2
	ŗ١.	ů,	Ġ	1	Ē	Ē				Ŋ.							0		7		U					Ž
Ä	Α	В	С	D	Е	F	G	н	Ì	3	ĸ	L	М	N	O	P	Q	R	s	T	u	٧	W	X	Y	Z
В	В	С	D	E	F	G	н	I	3	K	L	М	N	0	P	Q	R	s	Т	U	٧	W	X	Y	z	A
Ċ	С	D	E	F	G	Н	I	J	K	L	_	N	_	\rightarrow	_	-	_	_	$\overline{}$	_	W	X	Y	z	Α	E
D	D	E	F	G	н	1	3	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	X	Y	z	A	В	C
E	E	F	G	н	1	3	K	L	М	N	0	Р	Q	R	s	T	U	٧	W	X	Y	Z	A	В	С	C
F	F	G	Н	I	3	ĸ	L	М	N	0	P	Q	R	s	7	U	V	W	X	Y	Z	Α	В	С	D	Ε
G	G	н	ī	3	K	L	M	N	0	P	Q	R	s	T	U	٧	W	X	Υ	Z	A	В	c	D	E	F
H	Н	I	J	K	L	М	N	0	Р	Q	R	s	Т	u	V	W	X	Y	z	A	В	С	D	E	F	0
I	I	J	K	L	М	N	0	P	Q	R	s	T	υ	V	W	X	Y	Z	A	В	C	D	E	F	G	F
3	J	ĸ	L	M	N	0	P	Q	R	s	T	U	٧	W	×	Y	Z	A	В	C	D	E	F	G	Н	
K	K	L	М	N	0	P	Q	R	s	T	U	V	W	X	Y	z	A	В	C	D	E	F	G	Н	I	[
L	L	М	N	0	P	Q	R	s	T	u	V	W	x	Y	Z	A	В	è	D	E	F	G	H	I	3	1
М	М	N	0	P	Q	R	s	Т	U	٧	W	X	Y	Z	A	В	c	D	E	F	G	Н	I	J	K	Ī
Ń	N	0	P	Q	R	s	T	U	٧	W	×	Y	z	A	В	С	D	E	F	G	H	I	J	K	L	ľ
0	0	P	Q	R	s	T	U	٧	W	X	Y	Z	Α	В	c	D	E	F	G	Н	I	3	K	L	М	ı
P	Р	Q	R	s	T	u	٧	W	X	Y	z	A	В	c	D	E	F	G	н	I	3	K	L	М	N	0
Q	Q	R	s	T	υ	٧	W	X	Y	Z	A	В	c	D	E	F	G	Н	I	1	K	L	M	N	0	Ī
R	R	s	T	u	٧	W	X	Y	Z	Α	В	С	D	E	Ę	G	Н	I	3	K	L	M	N	0	P	[
S	· Lames	T	U	٧	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	3	K	L	M	N	0	P	Q	Ţ
Т	Т	U	٧	W	X	Y	z	A	В	С	D	E	F	G	н	I	2	K	L	М	N	0	P	Q	R	
U		٧	W	X	Y	z	Α	В	C	D	E	F	G	н	I	3	K	L	М	N	0	P	Q	R	5	F
٧	٧	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	3	K	L	М	N	0	Р	Q	R	s	T	Ī
W	W	X	Y	Z	A	В	С	D	E	F	G	н	I	3	K	L	M	N	0	P	Q	R	s	T	U	1
X	X	Y	z	A	В	C	D	E	F	G	Н	1	3	K	L	M	N	0	P	Q	R	S	T	U	٧	1
Y	Y	Z	A	В	С	D	E	F	G	Н	I	3	K	Ľ	М	N	0	P	Q	R	s	T	U	٧	W	
Z	Z	Α	В	С	D	E	F	G	Н	I	3	K	L	М	N	0	P	Q	R	s	Т	U	٧	W	X	Ī

61 Y I K F U W W I Z R R
P E R O U N M B T O

M M B T O

Road v P I

YIKFUWWIZRR - PEROUJETRAN

Rowald

KDS-S

TETRANSPIRE

(can il fait doub! or can c'est difficile.

Exercice 2 (1.5 pts)

1.5/1.5

Voici la sortie donnée par MatLab du calcul de l'indice de coïncidence κ		
effectué sur un texte chiffré et le même texte décalé de k lettres, pour k entre	$\frac{k}{-1}$	$\kappa(X,X_k)$
	1	0.0385
1 et 18.	2	0.0371
	74	0.0371
	5	0.0359
To the to the county (cooking lo(log) honno(g) cose(g)):	6	0.0379
a) Le texte a été crypté (cochez la(les) bonne(s) case(s)):	7	0.0769
par une méthode de subtitution monoalphabétique	. 8	0.0403
□ par une méthode de transposition	9	0.0331
	10	0.0420
🛮 par une méthode de subtitution polyalphabétique	11	0.0391
☐ impossible de déterminer la méthode de chiffrement avec cette sortie	12 13	0.0374
	14	0.0379
	15	0.0391
at polydamieting an les pour tentes a est poo	16	0.0367
b) Justifiez votre réponse!	17	0.0349
Lous la neine indice V	18	0.0378
b) Justifiez votre réponse! A polystylobetique con les sous tentes n'ent pos Lous le nême indice v c) Déterminer la longueur probable de la clé utilisée.		
	1	/ 1
Songueur de 7 con l'indice se rapporbe d'un indice de coincidence	9	are longue.
C'est égolanoit le cos pour 14 mais c'est ponce que la dé de 7 est.	épéte	, t
Con adjunction to the bone 14 ways and 14 was been as as as as as	(

-> la dé 'OISEAUX' et "OISEAUX OISEAUX" tendront vero un récultat civillale.

Dans cet exercice, l'utilisation de la calculatrice sert simplement à faire de petites opérations et/ou à vérifier des calculs. En aucun cas elle ne peut servir à donner directement la solution. Mentionnez toutes les étapes de votre calcul, lequel, hormis 54804, ne doit comporter aucun nombre de plus de 4 chiffres!

Quels sont les trois derniers chiffres de 33⁵⁴⁸⁰⁴?

Zed Book Milly

$$1000 = 2^3 \cdot 5^3$$

$$-)$$
 $P(1000) = (2^2 \cdot 1) \cdot (5^2 \cdot 4) = 4 \cdot 100 = 400$

Pour trouver les 3 deviers diffres on deube le modulo 1000;

Or
$$33^{54804} = (33^{400})^{137}, 33^{4} = 1000 \times 5^{100} \text{ pgdc}(a_1n) = 1$$

Pon le Klévnine d'Eulide: (2 P(n) = 1) -> 33400 = 10001

Done:
$$(33400)^{137}$$
, $33^4 = 1000$ $(33400 \text{ mod } 1000)^{137}$, $(334 \text{ mod } 1000)$

= 1000 1 137 (33 mod 1000)

Exercice 4

(6.5 pts)

Dans cet exercice, l'utilisation de la calculatrice est autorisée pour calculer sauf pour le point b) où elle peut uniquement servir à vérifier.

- a) Alain souhaite envoyer le message 10 11 01 01 11 11 chiffré par le cryptosystème de Merkle-Hellman. Il choisit comme clé privée la suite supercroissante (1, 2, 4, 10, 20, 40) et les paramètres p = 53 et m = 120. Déterminer sa clé publique et le message chiffré.
- b) Calculer p^{-1} mod 120 via l'algorithme d'Euclide étendu. Mentionner toutes les étapes.
- c) Alain reçoit le message chiffré (251, 286). Déchiffrer ce message à l'aide de sa clé privé.

a)
$$P_1 = (1.53) \text{ mod } 120 = 53$$

$$P_2 = (2.53) \text{ mod } 120 = 106$$

$$P_3 = (4.53) \text{ mod } 120 = 92$$

$$P_6 = (4.53) \text{ mod } 120 = 80$$

Olé publique : (53, 106, 92, 50, 100, 80)

Chiffment:
$$101101 \rightarrow 53 + 92 + 50 + 80 = 275$$

$$011111 \rightarrow 106 + 92 + 50 + 100 + 80 = 427$$

Message diffé: (275,427)

6)
$$120 = 1.120 + 0.53$$

 $53 = 0.120 + 1.53$
 $14 = 1.120 - 2.53$
 $11 = 1.63 - 3.14$
 $3 = 1.14. - 1.11$
 $2 = 1.11 - 3.13$
 $1 = 1.3 - 1.2 = (1.14 - 1.11) - (1.11 - 3.13)$
 $= (1.120 - 2.53 - 1.53 + 3.14) - (1.53 - 3.14) - 3.14 + 3.171$

$$= 19.120 - 43.63 = 1 \sqrt{-43} = 120 = 77 = 35^{-1} = 53^{-1} \mod 120$$

C) $251 \rightarrow 251.77 \equiv_{120} 7 =_{1244} \rightarrow "111000"$ $286 \rightarrow 286.77 \equiv_{120} 62 = 40+20+2 \rightarrow "01001"$

15/3

Dans cet exercice, tous les calculs peuvent se faire avec la calculatrice. Veillez cependant à mentionner toutes les étapes de calcul.

- a) Achim se crée un code RSA avec les nombres premiers p=89 et q=41, ainsi que l'exposant e=101. Déterminer quelles sont les clés publique resp. privé de Achim.
- b) Blanche envoie le message suivant à Achim (chiffré avec sa clé publique): "2585-3244-3359-1662". Déchiffrez ce message (A=1, B=2, ...) via la clé privée d'Achim et donnez votre réponse sous la forme d'un texte/mot.

$$3 = 1(11 - 2/4)$$

```
2585 941
m= 3649
 nétable des foctours de 2 can modulo est income à ma calculative ;
  2585^2 \equiv 3649 906
  25854 = 3649 9062 = 1008 3460
 2585 = 3649 9362 = 3649 336
 2585 = 3649 3460° = 3649 2880 /
                                             Idia de
 2585 16 = 3649 28802 = 3649 223 V
2585^{32} = _{3649} 223^2 = _{3649} 2292
 2585 64 = 3649 2292 = 3649 2353
 11 128 = 0 23522 = 2 2
  11 256 = 0 400
 512 = 400<sup>2</sup> = 3093
                                        941=512+256+128+32+8+4+1
 2585 = 3093 · 400.20 · 2292 · 2880 · 3960 · 2585
                189 . 2052
                                      3030, 2585
                   1034
        = 0 3372 ( il y a are oven de calcul qui troine à quelque ponte
3244 2= 3469
                       11 STE = 631
 11 4 En 3208
 118 =0 1084
                         3249 941 = 631,2620,3093,2436,1084,3208,3241
 11 16 = 78
                                                   3629 1 3241
                               s, 223 , 3568
 11 32 = 2435
                                                         2902
 11 69 = 3249
```

11 128= 3093

11 258 = 0 2620

= 0 2708 (paraser à imagine que à de

encore édoné et que ou que

mon of est force.

Exercice 6 (2 pts)

mot-clé JE SUIS TON PROF.

Crypter le message "Le plastique est partout" par la méthode de l'alphabet désordonné avec le

ABCDEFGHIDKLMNOPQRSTUVWXYZ DESUITON PREABCOGH SKLQVWXYZ KLMQVWXYZ

Le plastique et portont

- ILM GREMDQM GADLMPHQI