UNIT-IV Assignment-Cum-Tutorial Questions SECTION-A

1.	Objective Questions A direct edge P _i >R _j is called a			[]
	A) Assignment edge	C) Request edge			
	B) Claim edge	D) Release edge			
2.	A direct edge R _j > P _i is called a			[]
	A) Assignment edge	C) Request edge			
	B) Claim edge	D) Release edge			
3.	Deadlocks can be described in te	rms of a directed	graph	called	
a	A) Directed Acyclic Graph			[]
	B) Resource allocation graph				
	C) Resource request graph				
	D) Resource release graph				
4.	If each resource type has exactly	one instance, the	n a cy	cle imp	lies
	that a deadlock has occurred.				
	[T/F]				
5.	If each resource type has exactly	several instances	, then	a cycle)
	does not imply that a deadlock h	as occurred.			
	[T/F]				
6.	The surface of a platter is logical	ly divided into circ	ular_	[]
	A) Sectors B) Tracks	C) platters	D) sı	ırfaces	
7.	C-SCAN refers to			[]
	A) Coding SCAN	C) Ceil SCAN			
	B) Circular SCAN	D) City SCAN			
8.	SCAN algorithm is also called as			[]
	A) Circular SCAN B) elevator	C) LOOK	D)		
	B) C-LOOK				
9.	The time to move from the disk a	rm to the desired	cylind	er is	
	called				

A) Rotational la	tency	[]
B) Seek time	C) Transfer rate	D) Random-acce	ess
time			
10. The time for th	e desired sector to rotate	to the disk head is	
called			
A) Rotational la	tency	[]
B) Seek time	C) Transfer rate	D) Random-acce	ess
time			
11. Which one of the	ne following statement abo	out WAIT-FOR graph	is
true?			
A) An edge F	Pi->Pj exists in a wait for	graph if and only	if the
correspon	ding resource allocation g	raph contains two eds	ges P _i -
$>R_q$ and R	$_{q}$ -> P_{j} for some resource R	q• []
B) An edge F	i->Rj exists in a wait for	graph if and only	if the
correspon	ding resource allocation	graph contains two	edges
P_{i} -> R_{q} and	R_q -> P_j for some resource	R_q .	
C) An edge F	Pi->Pj exists in a wait for	graph if and only	if the
correspon	ding resource allocation g	raph contains two edg	ges P _i -
> P _j and R	$_{q}$ -> P_{j} for someresource R_{q} .		
D)An edge P	i->Pj exists in a wait for	graph if and only	if the
correspon	ding resource allocation g	raph contains two edg	ges P _i -
$>R_q$ and P_i	$->P_j$ for some resource R	q•	
12. Which of the fo	llowing approaches are us	sed to recover from de	ead
lock			
A) Process term	ination C)Reso	urce preemption	
B) Both of the a	bove methods D) Non	e of the above []
13. Which one of the	ne following wait-for graph	n is equivalent to the	given
Resource Alloc	ation graph?	[]

- D) No wait-for graph for the given RAG
- 14. Consider a system having 'm' resources of the same type.

 These resources are shared by 3 processes A, B, C, which have peak time demands of 3, 4, 6 respectively. The minimum value of 'm' that ensures that deadlock will never occur is []

A) 11	B) 12	C) 13	D) 14	
15. Which a	algorithm of disk scheduling sel	ects the request w	ith the	
least se	ek time from the current head p	oositions?]
A) SSTF	scheduling	C)FCFS scheduli	ng	
B) SCAN	I scheduling	D) LOOK schedu	ling	
16. The circ	cular wait condition can be prev	ented by	[]
A) Defini	ng a linear ordering of resource types	C) Using thread		
B) Using	g pipes	D) All of the men	tioned	
17. For non	sharable resources like a print	er, mutual exclus	ion[]
A) Must	t exist	C) Must not exist		
B) May e	exist	D) None of these		
18. The disa	advantage of a process being all	ocated all its reso	urces	
before b	peginning its execution is :		[]
A) Low (CPU utilization	C) Low resource	utilizati	on
B) Very	high resource utilization	D) None of these		
19. To ensu	are no preemption, if a process	s is holding some	resoui	rces
and re	quests another resource tha	at cannot be ir	nmedia	tely
allocate	d to it:		[]
A) Then	the process waits for the resou	rces be allocated	to it	
B) The	process keeps sending requ	ests until the r	esource	e is
alloc	ated to it			
C) The	process resumes execution v	vithout the resou	arce be	eing
alloc	ated to it			
D) Then	all resources currently being he	eld are preempted		
20. A system	m has 12 magnetic tape drive	s and 3 processes	s : P0,	P1,
and P2.	Process P0 requires 10 tape of	drives, P1 requires	s 4 and	l P2
requires	s 9 tape drives.		[]
	Process Maximum C	`urrently		

Process	Maximum	Currently
	needs	allocated
P0	10	5
P1	4	2
P2	9	2

	Which of the following sequence:	is a safe sequence?			
	A) P0, P1, P2	C) P1, P2, P	O		
	B) P2, P0, P1	D) P1, P0, P	22		
21	. The content of the matrix Need i	s:	[]	
	A) Allocation – Available	C) Max – Av	ailable		
	B) Max – Allocation	D) Allocatio	n – Max		
22	. An edge from process Pi to Pj in	a wait for graph inc	licates tl	nat :	
	A) Pi is waiting for Pj to release	a resource that Pi n	eeds. []	
	B) Pj is waiting for Pi to release a	resource that Pj ne	eds.		
	C) Pi is waiting for Pj to leave the	system.			
	D) Pj is waiting for Pi to leave the	system.			
23	. A computer system has 6 tape of	lrives, with 'n' proc	esses co	mpeting	3
	for them. Each process may r	eed 3 tape drives.	The ma	aximum	1
	value of 'n' for which the system	n is guaranteed to	be deadl	ock free	,
	is:		[]	
	A) 2 B) 3	C) 4	D) 1		
24	. A system has 3 processes sha	ring 4 resources.	If each	process	3
	needs a maximum of 2 units the	en, deadlock :]]	
	A) Can never occur.	C) any occu	r.		

SECTION-B

D) None of these.

Descriptive Questions

B) Has to occur.

- 1. Define deadlock and classify the necessary conditions for deadlock?
- 2. List and explain different methods used for handling deadlocks?
- 3. Describe in detail about BANKER'S algorithm?
- 4. With a neat sketch explain the overview of mass storage structure.
- 5. Differentiate SCAN, C-SCAN and LOOK, C-LOOK disk scheduling algorithms with an example?
- 6. What is sector sparing? Explain how it is useful in identifying bad blocks in mass storage?
- 7. Demonstrate in detail about swap-space management?

Problems:

- Consider the snapshot of a system processes p1, p2, p3, p4, p5, Resources A, B, C, D
 Allocation[0 0 1 2, 1 0 0 0, 1 3 5 4, 0 6 3 2, 0 0 1 4]
 Max[0 0 1 2, 1 7 5 0, 2 3 5 6, 0 6 5 2, 0 6 5 6]
 Available[1 5 2 0] .
 - i. What will be the content of the Need matrix?
- ii. Is the system in safe state? If Yes, then what is the safe sequence?
- 2. Consider the following and find out the possible resource allocation sequence with the help of deadlock detection algorithm processes p0, p1, p2, p3, p4, Resources A, B, C
 Allocation [0 1 0, 2 0 0 , 3 0 3, 2 1 1, 0 0 2]
 Max[0 0 0, 2 0 2, 0 0 0, 1 0 0, 0 0 2]
 Available[0 0 0].
 - i. What will be the content of the Need matrix?
- ii. Is the system in safe state? If Yes, then what is the safe sequence?
- 3. A computer system uses the Banker's Algorithm to deal with deadlocks. Its current state is shown in the table below, where P0, P1, P2 are processes, and R0, R1, R2 are resources types.

	Maximum Need		Current Allocation			Available				
	RO	R1	R2		RO	R1	R2	RO	R1	R2
PO	4	1	2	PO	1	0	2	2	2	0
P1	1	5	1	P1	0	3	1			
P2	1	2	3	P2	1	0	2			

i. Show that the system can be in safe state?

- ii. What will the system do on a request by process P0 for one unit of resource type R1?
- 4. Four resources ABCD. A has 6 instances, B has 3 instances, C has instances and D has 2 instances.

Process	Allocation	Max
	ABCD	ABCD
P1	3011	4111
P2	0100	0212
P3	1110	4210
P4	1101	1101
P5	0000	2110

- i. Is the current state safe?
- ii. If P5 requests for (1,0,1,0), can this be granted?
- 5. Why disk scheduling is needed? Schedule the given requests **98**, **183**, **37**, **122**, **14**, **124**, **65**, **67**, **10**, **150** with the following disk scheduling algorithms and calculate seek time?
 - a. FCFS disk scheduling
 - b. SSTF disk scheduling
 - c. SCAN disk scheduling
 - d. C-SCAN disk scheduling
 - e. LOOK disk scheduling
 - f. C-LOOK disk scheduling

SECTION-C

Previous GATE/NET questions

1. A system contains three programs and each requires three tape units for its operation. The minimum number of tape units which the system must have such that deadlocks never arise is ______

GATE-CS-2014			[]
A) 6	B) 7	C) 8	D) 9	

- 2. A system has 6 identical resources and N processes competing for them. Each process can request atmost 2 resources. Which one of the following values of N could lead to a deadlock? **GATE-CS-2015**[]

 A) 1 B) 2 C) 3 D) 4
- 3. Considering a system with five processes P0 through P4 and three resources types A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t0 following snapshot of the system has been taken:

 GATE-CS-2014

Process	Allocation	Max	Available
	АВС	АВС	АВС
P ₀	0 1 0	7 5 3	3 3 2
P ₁	2 0 0	3 2 2	
P ₂	3 0 2	9 0 2	
P ₃	2 1 1	2 2 2	
P ₄	0 0 2	4 3 3	

- i. What will be the content of the Need matrix?
- ii. Is the system in safe state? If Yes, then what is the safe sequence?
- 4. An operating system uses the Banker's algorithm for deadlock avoidance when managing the allocation of three resource types X, Y, and Z to three processes P0, P1, and P2. The table given below presents the current system state. Here, the Allocation matrix shows the current number of resources of each type allocated to each process and the Max matrix shows the maximum number of resources of each type required by each process during its execution.

	Allocation			Max		
	X	Y	Z	X	Y	Z
P0	0	0	1	8	4	3
P1	3	2	0	6	2	0
P2	2	1	1	3	3	3

There are 3 units of type X, 2 units of type Y and 2 units of type Z still available. The system is currently in a safe state. Consider the following independent requests for additional resources in the current state:

REQ1: P0 requests 0 units of X, 0 units of Y and 2 units of Z REQ2: P1 requests 2 units of X, 0 units of Y and 0 units of Z Which one of the following is TRUE? **GATE-CS-2014**

- A) Only REQ1 can be permitted.
- B) Only REQ2 can be permitted.
- C) Both REQ1 and REQ2 can be permitted.
- D) Neither REQ1 nor REQ2 can be permitted
- 5. Which of the following is NOT a valid deadlock prevention scheme?

GATE CS 2000

- A) Release all resources before requesting a new resource
- B) Number the resources uniquely and never request a lower numbered resource than the last one requested.
- C) Never request a resource after releasing any resource
- D) Request and all required resources be allocated before execution