1 \		
1)		
-,	 	 _

2) _____

3) _____

<u>Primeira Prova - F 228 A (Diurno) - 16/04/2012</u>

4)	1		
7			

Nota: _____

Nome:	RA:

Questão 1 (2,5 pts): Uma escada uniforme tem 10 m de comprimento e pesa 200 N. A escada está apoiada em uma parede vertical <u>sem atrito</u> e uma altura h = 8,0 m acima do piso. Uma força horizontal \mathbf{F} é aplicada à escada a uma distância d = 2,0 m da base (medida ao longo da escada).

- a) Se F = 50 N, qual é a força que o piso exerce sobr e a escada, em termos dos vetores unitários?
- b) Se F = 150 N, qual é a força que o piso exerce sobre a escada, também em termos dos vetores unitários?
- c) O coeficiente de atrito estático entre a escada e o chão é 0,4. Para que valor de F a base da escada está na iminência de se mover em direção à parede?

Questão 2 (2,5 pts): Uma esfera de chumbo de raio R=10 cm possui uma cavidade esférica cuja superfície passa pelo centro da esfera e "toca" o lado direito da esfera. A massa da esfera, antes de a cavidade ser aberta, era M=4 kg. Com que força gravitacional a esfera de chumbo com a cavidade atrai uma pequena esfera de massa m=0.5 kg que se encontra a uma distância d=20 cm do centro da esfera de chumbo, sobre a reta que liga os centros da esfera e da cavidade?

 $G = 6.7 \times 10^{-11} \text{ N m}^2/\text{kg}^2.$

Questão 3 (2,5 pts): Uma partícula (partícula A, de massa M) pode ser deslocada ao longo de um eixo y desde uma distância infinita até a origem. A origem está localizada no ponto médio entre as partículas B e C, que têm massas iguais (m), e o eixo y é perpendicular à linha que liga essas duas partículas. A distância D é 3,0 m. O gráfico mostra a energia potencial U do sistema de três partículas em função da posição da partícula A no eixo y, sendo que para a direita a curva tende assintoticamente ao valor de -4,4 x 10^{-11} J quando $y \rightarrow \infty$. Quais são os valores de m e M?

 $G = 6.7 \times 10^{-11} \text{ N m}^2/\text{kg}^2.$

Questão 4 (2,5 pts): A figura mostra um sifão, que é um tubo usado para transferir líquidos de um recipiente para outro. O tubo ABC deve estar inicialmente cheio, e se esta condição é satisfeita o líquido escoa pelo tubo até que a superfície do líquido no recipiente esteja no mesmo nível que a extremidade A. O líquido tem densidade igual a 1000 kg/m^3 e viscosidade desprezível. As distâncias mostradas na figura são $h_1 = 25 \text{ cm}$,

 $d = 12 \text{ cm e } h_2 = 40 \text{ cm}.$

- a) Com que velocidade o líquido sai do tubo no ponto C?
- b) Se a pressão atmosférica é 1.0×10^5 Pa, qual é a pressão do líquido no ponto B, o ponto mais alto do tubo?
- c) Qual é o máximo valor de h_1 , mantidos d e h_2 , para que o líquido continue escoando?

 $g = 9.8 \text{ m/s}^2$.

