Basic Electronics

Date: 27th November, 2018 Time: 3 hours Max. Marks (Part - A): 10

Max. Marks (Part - B): 50

Instructions:

- 1. This question paper has total **6** pages, including this page.
- 2. This question paper consists of Part A (10 marks) and Part B (50 marks). There is no negative marking.
- 3. Part A has 8 multiple choice questions. All questions are compulsory.
- 4. Part B has 6 questions of 10 marks each. Attempt any 5 questions.
- 5. Start each answer on a fresh page and highlight your answers.

Part - A (Quiz 4)

NO credit will be given if answer is not correct for Part - A

MCQ 1) A logic circuit consists of two 2X4 decoders as shown below:

[2]

The outputs of the decoders are as follows:

 $D_0 = 1$ when $A_0 = 0$, $A_1 = 0$

 $D_1 = 1$ when $A_0 = 1$, $A_1 = 0$

 $D_2 = 1$ when $A_0 = 0$, $A_1 = 1$

 $= 0, A_1 = 1$ $D_3 = 1 \text{ when } A_0 = 1, A_1 = 1$

The value of f(x,y,z) is:

[A] 0

[B] z

[C] \overline{z}

[D] 1

Solution: D

MCQ 2) What is one disadvantage of an S-R flip-flop?

[1]

[A] It has no enable input.

[B] It has an invalid state.

[C] It has no clock input.

[D] Possibility of race-around condition when both inputs are high.

Solution: B

MCQ 3) A group of 4 bits is known as

[A] a nibble [B] a byte

[C] a q-bit

[D] a quad

[1]

[1]

Solution: A

MCQ 4) Let $(A2C)_{16} = (X)_8$. Then X is given by:

[A] 7054

[B] 6054

[C] 5154

[D] 5054

Solution: D

MCQ 5) How many NOR gates are required to realise a AND gate?

[A] 2

[B] 3

[C] 4

[D] 5

[1]

Solution: B

MCQ 6) How many select lines are contained in a multiplexer with 1024 inputs and one output?

[A] 512

[B] 258

[C] 64

[D] 10

[1]

[2]

Solution: D

MCQ 7) If functions W, X, Y and Z are as follows:

$$W = R + \overline{P}Q + \overline{R}S$$

 $X = PQ\overline{R}\overline{S} + \overline{P}\,\overline{Q}\,\overline{R}\overline{S} + P\overline{Q}\,\overline{R}\overline{S}$

$$Y = RS + \overline{PR + P\overline{Q}} + \overline{P}\overline{Q}$$

$$Z = R + S + \overline{PQ + \overline{P}\overline{Q}\overline{R} + P\overline{Q}\overline{S}}$$

Then

[A] W = Z, $X = \overline{Z}$

[B] W = Z, X = Y

[C] W = Y

[D] $W = Y = \overline{Z}$

Solution: A

MCQ 8) The symbols on the flip-flop shown below indicate:

[1]

- [A] triggering takes place on the negative-going edge of the CLK pulse
- [B] triggering takes place on the positive-going edge of the CLK pulse
- [C] triggering can take place anytime during the HIGH level of the CLK waveform
- [D] triggering can take place anytime during the LOW level of the CLK waveform

Solution: A

Part - B (Main Exam)

Q1) a) A series resonant circuit has L = 1mH and $C = 10\mu F$. Calculate the value of R required if the bandwidth BW = 15.9 Hz. 74/9

[2]

Solution:

$$BW = \frac{R}{L}$$

$$\Rightarrow \frac{R}{1\times10^{-3}} = 15.9\times2\pi = 0.1\Omega$$

b) Twelve 6Ω resistors are placed along each edge of a cube. Calculate the equivalent resistance between any two diagonally opposite corner points.

[2]

Solution:

From the above image, due to symmetry and all resistances being same (6 ohm), current *i* will split as shown above.

Total current between 2 diagonally opposite edges will be -

$$i_{eq} = i/3 + i/6 + i/3 = 5i/6$$

$$V = i_{eq}R = 5i/6 \times 6 = 5i$$

$$Veq = Req x I$$

$$Req = 5\Omega$$

NO partial credit

Note: Students who have correctly and fully solved the problem assuming Req for face diagonal instead of body diagonal, will get full credit.

c) For the circuit given below, find i_1 :

Figure 1.c

Solution:

$$v_x = 500i_1$$

$$v_y = 400(i_1 - 0.001v_x) = 400(i_1 - 0.5i_1) = 200i_1$$

$$180 = 500i_1 + 100(i_1 - 0.6) + 200i_1 + 100(i_1 + 0.005v_y)$$

$$180 = 900i_1 - 60 + 100 \times 0.005 \times 200i_1$$

$$i_1 = 0.12 \text{ A}$$

d) For the circuit given below, find i(t):

Figure 1.d

Solution:

$$V_a = \frac{\frac{10 \angle 0}{1}}{\frac{1}{1} + \frac{1}{-j2} + \frac{1}{4+j8}} = \frac{10 \angle 0}{1.05 + j0.4} \text{ V}$$

$$I = \frac{V_a}{4+j8} = \frac{10\angle 0}{1+j10} = 1\angle -84.23 \text{ A}$$

$$i(t) = \cos(2t - 84.23^{\circ}) \text{ A}$$

[3]

Q2) a) Calculate the Thevenin's equivalent resistance R_{Th} for the following circuit:

[3]

Figure 2.a

Solution:

Writing currents into $100\,\Omega$ and $300\,\Omega$ resistors by using KCL as shown in figure.

$$I_x = 1 \text{ A}, V_x = V_{test}$$

Writing mesh equation for bottom right mesh.

$$V_{test} = 100 (1 - 2I_x) + 300 (1 - 2I_x - 0.01 V_x) + 800 = 100 \text{ V}$$

$$R_{Th} = \frac{V_{test}}{1} = 100 \Omega$$
1.5

b) For the network shown below:

[2]

R_L	10 kΩ	30 kΩ		
P	3.6 mW	4.8 mW		

Figure 2.b

Table 2.b

The power absorbed by load resistor R_L is shown in the table 2.b above. At what value of R_L would the power absorbed be maximum?

Solution:

For
$$R_L = 10 \text{ k}\Omega$$
, $V_{ab1} = \sqrt{10 \text{k} \times 3.6 \text{m}} = 6 \text{ V}$
For $R_L = 30 \text{ k}\Omega$, $V_{ab2} = \sqrt{30 \text{k} \times 4.8 \text{m}} = 12 \text{ V}$

$$V_{ab1} = \frac{10}{10 + R_{Th}} V_{Th} = 6 \qquad \dots (i)$$

$$V_{ab2} = \frac{30}{30 + R_{Th}} V_{Th} = 12 \qquad ...(ii)$$

Dividing equation (i) and (ii), we get $R_{Th} = 30 \,\mathrm{k}\Omega$. Maximum power will be transferred when $R_L = R_{Th} = 30 \,\mathrm{k}\Omega$.

c) In the following second order circuit, the switch is moved from position a to b at t = 0. Find $i_t(t)$ for t > 0.

Solution:

$$\begin{split} v_C(0) &= 0, \qquad i_L(0) = \frac{4 \times 6}{6 + 2} = 3 \\ 0.02 \, \frac{dv_C(0)}{dt} &= i_L(0) = 3 \quad \Rightarrow \quad \frac{dv_C(0)}{dt} = 150 \\ \alpha &= \frac{6 + 14}{2 \times 2} = 5, \qquad \omega_o = \frac{1}{\sqrt{2 \times 0.02}} = 5 \qquad \boxed{1} \\ \alpha &= \omega_o \quad \text{critically damped} \qquad \boxed{1} \\ v(t) &= 12 + (A + Bt)e^{-5t} \\ 0 &= 12 + A, \quad 150 = -5A + B \quad \Rightarrow \quad A = -12, \quad B = 90 \\ v(t) &= 12 + (90t - 12)e^{-5t} \\ i_L(t) &= 0.02(-5) \, e^{-5t}(90t - 12) + 0.02(90)e^{-5t} = (3 - 9t)e^{-5t} \ \boxed{1} \end{split}$$

The LNM Institute of Information Technology

[2]

Solution:

Converting Delta to Star -

$$R_1 = 24/12 = 2$$

$$R_2 = 8/12 = 2/3$$

$$R_3 = 12/12 = 1$$

which equals to:

which equals to:

[2]

NO partial credit

Q3) a) For the following circuit, derive the expression for transfer function $H(\omega)$:

Figure 3.a

Solution:

Applying Superposition theorem:

$$v_0 = \frac{v_1 \frac{1}{j\omega c}}{R + \frac{1}{j\omega c}} \left[1 + \frac{R_1}{R_1} \right] + v_2 [-1]$$

But, $v_2 = v_1$

$$v_0 = v_1 [\frac{2}{1 + j\omega RC} - 1]$$

$$\frac{v_0}{v_1} = \frac{2 - 1 - j\omega RC}{1 + j\omega RC}$$

$$\frac{v_0}{v_1} = \frac{1 - j\omega RC}{1 + j\omega RC}$$
$$= H(\omega)$$

b) Draw the Gain plot for $H(\omega)$ obtained in Q3 a.

[2]

Solution:

$$\frac{v_o}{v_i} = H(j\omega) = \frac{1-j\omega RC}{1+j\omega RC} \; , \quad \left|H(j\omega)\right| = \frac{\sqrt{1+(\omega RC)^2}}{\sqrt{1+(\omega RC)^2}} = 1 \qquad \qquad \boxed{1} \label{eq:volume}$$

c) For the opamp circuit given below, derive the expression for differential gain, $G = \frac{V_0}{V_2 - V_1}$. [3]

Figure 3.c

Solution: Derivation of Instrumentation Amplifier.

$$\frac{R_4}{R_3} \left[1 + \frac{2R_1}{R_2} \right]$$

2

1 mark will be given based on attempt

[3]

d) For the circuit given below:

Figure 3.d.i

Figure 3.d.ii

Draw the output $v_o(t)$ waveform for the input $v_i(t)$ given above, if ${\it R}$ = 4 ${\it M}\Omega$ and ${\it C}$ = 2 ${\it \mu}{\it F}$.

Solution:

Stage 1

Stage 2

Stage 2 is unity gain Inverting amplifier.

Let,
$$V_a = V_b = V$$

At node a,
$$\frac{0-V}{R} = \frac{V-V_0}{R}$$

$$V = V_0/2$$
 ----- (i)

Stage 1: At node b,

$$\frac{V_i - V}{R} = \frac{V - V_0}{R} + C\frac{dV}{dt}$$

$$V_i = 2V - V_0 + RC \frac{dV}{dt}$$
 ----- (ii)

Combining (i) and (ii)

$$V_i = V_0 - V_0 + \frac{RC}{2} \frac{dV_0}{dt}$$

Or,
$$V_0 = \frac{2}{RC} \int V_i dt$$

Thus, Stage 1 is functioning like a non-inverting integrator.

Stage 1 is cascaded with Stage 2, thus, the complete circuit functions as an inverting integrator.

Therefore,
$$V_0 = -\frac{2}{RC} \int V_i dt$$

1

Waveform representation:

$$V_0 = -\frac{2}{RC} \int V_i dt = -\frac{1}{4} \int V_i dt$$

For
$$0 < t < 1$$
, $V_i = 20$, $V_0 = -\frac{1}{4} \int_0^t 20 dt = -5t \ mV$

For
$$1 < t < 2$$
, $V_i = 10$, $V_0 = -\frac{1}{4} \int_1^t 10 dt + V(1) = -2.5t - 2.5 \, mV$

Similarly, continue for other timestamps.

Thus, $V_0(t)$ is represented as:

1

[2]

Figure 4.a

Solution:

Using virtual short, $V_x = 0$

Applying KCL at node a,

$$\frac{V_x - V_i}{100K} = \frac{V_y - V_x}{R} = > \frac{-V_i}{100K} = \frac{V_y}{R}$$
 (i)

Nodal analysis at node b,

$$rac{V_{y}-V_{x}}{R}+rac{V_{y}}{100K}+rac{V_{y}-V_{0}}{100K}=0$$
 As $v_{x}=0$;

$$\frac{100K}{R}V_y + V_y + V_y - V_0 = 0 => V_0 = (2 + \frac{100K}{R})V_y \qquad ----- \text{(ii)}$$

Taking ratios of eq. i and ii

$$\frac{V_0}{V_i}(-100K) = \frac{(2 + \frac{100K}{R})V_y}{\frac{V_y}{R}}$$

$$\frac{V_0}{V_i}(-100K) = 2R + 100K$$

But, $V_0/V_i = -10$ (from given question)

$$\Rightarrow$$
 2R = 900 kΩ

1

b) Derive the transfer function $H(\omega)$ for the following circuit. Identify the type of filter.

[3]

Solution:

 $H(\omega) = V_0/V_i = -R_f/R_i$ as this is inverting mode

$$R_f = R_2 | | \frac{1}{j\omega C} = \frac{R_2}{j\omega C(R_2 + \frac{1}{j\omega C})} = \frac{R_2}{1 + j\omega R_2 C}$$

 $R_i = R_1 + j\omega L$

$$H(\omega) = -\frac{R_2}{(1+j\omega R_2 C)(R_1+j\omega L)} = \frac{-R_2}{R_1} \left[\frac{1}{(1+j\omega \frac{L}{R_1})(1+j\omega R_2 C)} \right]$$

At $\omega=0$, $|H(\omega)| = -R_2/R_1$ ----- passband or DC gain

At ω = infinite, $|H(\omega)| = 0$

Filter behaves as a low-pass filter

1

c) Design a 4-bit BCD to Excess – 3 (XS-3) code converter. Use sum of products (minterms) format.

[3]

Solution:

Let $A,\,B,\,C,\,and\,D$ be the bits representing the binary numbers, where D is the LSB and A is the MSB, and Let $w,\,x,\,y,\,and\,z$ be the bits representing XS-3 code of the binary numbers, where z is the LSB and w is the MSB. The truth table for the conversion is given below. The X's mark don't care conditions.

					J		
BCD(8421)				Excess-3			
A	В	С	D	W	X	У	\mathbf{z}
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	Χ	Χ	X
1	1	1	1	X	X	X	X

1

To find the corresponding digital circuit, we will use the K-Map technique for each of the Excess-3 code bits as output with all of the

1.5

Corresponding minimized Boolean expressions for Excess-3 code bits -

$$w = A + BC + BD$$

$$x = B'C + B'D + BC'D'$$

$$y = CD + C'D'$$

$$z = D'$$

The corresponding digital circuit-

0.5

d) Verify if the Boolean expression $(A + \overline{B})(\overline{A} + B) = \overline{AB} + AB$ is true, using truth tables.

[2]

Solution:

Α	В	Ā	\overline{B}	$(A + \overline{B})$	$(\overline{A} + B)$	$(A + \overline{B})(\overline{A} + B)$	AB	ĀB	AB + AB
0	0	1	1	1	1	1	0	1	1
0	1	1	0	0	1	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	1	1	1	0	1

Since, LHS ≠ RHS, the given Boolean expression is FALSE.

No partial credit

Q5) a) A lawn sprinkling system is controlled automatically by certain combinations of the following variables: 112

[3]

- Season (S = 1 if summer, S = 0 otherwise)
- Moisture content of soil (M = 1 if high, M = 0 if low)
- Outside temperature (T = 1 if high, T = 0 if low)
- Outside humidity (H = 1 if high, H = 0 if low)

The sprinkler should be turned on under any of the following conditions:

- The moisture content is low in winter.
- Temperature is high and moisture content is low in summer.
- Temperature and humidity both are high in summer.
- Temperature and moisture content both are low in summer.
- Temperature is high and humidity is low.

Use a K-map to find the simplest logic expression (both sum of products [minterm] and product of sums [maxterm]) involving variables S, M, T, H for turning on the sprinkler system. Draw the logic circuit using only NAND gates.

Solution:

The given circumstances 1,2,3,4 and 5 are expressed in terms of the defined variables S,M,T and H as \overline{M} \overline{S} , $\overline{T}\overline{M}S$, $\overline{T}\overline{M}S$, $\overline{T}\overline{M}S$ and $\overline{T}\overline{H}$, respectively.

The Boolean expression is

1

The expression in terms of minterms and maxterms are

$$\Sigma$$
 m (0, 1, 2, 3, 6, 8, 9, 10, 11, 14, 15)
 Π M(4, 5, 7, 12, 13)

0.5

Both the SOP and POS forms give same minimum.

1.5

b) Implement an OR gate using NAND gates

[2]

[5]

Solution:

- c) Solve the following problems:
 - Convert (163.875)₁₀ to binary
 - Perform subtraction 100-110000 using 2's compliment method.
 - Convert (110101.101010)₂ to octal.
 - Convert (3A9E.B0D)₁₆ to binary.
 - In what radix (base) number system will $\sqrt{41} = 5$?

Solution:

• $(163.875)_{10} = (10100011.111)_2$

NO partial credit, 1 mark each

- 100-110000 = 1010100
 - Since there is no carry and MSB is 1, it's a negative number. Taking 2's compliment and putting a minus sign, we get -0101100 = -44
- $(110101.101010)_2 = (65.52)_8$
- $(3A9E.B0D)_{16} = (11101010011110.101100001101)_2$
- Radix will be 6

Q6) a) Implement a J-K latch using NAND gates. Write its truth-table and explain any issue with the J-K latch using timing diagram. Suggest any two solutions to solve the issue.

[2]

Solution: Circuit – 0.5 marks

Truth table – 0.5 marks

Race around condition using time diagram – 0.5 marks

Solutions (use edge triggered or master-slave) – 0.5 marks

b) Implement a master-slave JK flip-flop using only NAND gates. Write its truth table and draw timing diagram showing at least 6 clock pulses.

[3]

Solution: Circuit – 1 mark

Truth table - 0.5 marks

Timing diagram – 1.5 marks

c) Implement a full subtractor using only 2-input NOR gates.

Solution:

Solving further for D:-

$$D = (A\overline{B} + \overline{A}B).\overline{B_{in}} + (\overline{A}B + AB).B_{in}$$

$$= (A \oplus B).\overline{B_{in}} + (\overline{A} + B)(A + \overline{B}).B_{in}$$

$$= (A \oplus B).\overline{B_{in}} + (\overline{A}\overline{B} . \overline{A}B).B_{in}$$

$$= (A \oplus B).\overline{B_{in}} + (\overline{A}\overline{B} + \overline{A}B).B_{in}$$

$$= (A \oplus B).\overline{B_{in}} + (\overline{A} \oplus B).B_{in}$$

$$= (A \oplus B).\overline{B_{in}} + (\overline{A} \oplus B).B_{in}$$

$$= (A \oplus B).\overline{B_{in}} + (\overline{A} \oplus B).B_{in}$$

Note: Students who have cascaded 2 half subtractors will also get full credit provided only NOR gates are used.

d) For the expression $f = \Pi M(2,8,9,10,11,12,14)$, implement the minimal (reduced) expression using only NOR gates.

[2]

Solution:

The given expression in the SOP form is $f = \sum m (0,1,3,4,5,6,7,13,15)$.

K-map for SOP form, POS form, their reductions and reduced expressions are shown below:

It is more economical to implement POS form, which use 10 NOR gates, over SOP form (uses 12 NOR gates).

0.5

Reduced POS expression:

$$f_{\min} = (\overline{A} + B)(\overline{A} + D)(B + \overline{C} + D) = \overline{(\overline{A} + B) + (\overline{A} + D) + (\overline{B} + \overline{C} + D)}$$
0.5

NOR gate implementation:

END