Apostol p.139-140 no.33.a

Suppose that we have $f:[a,b]\to\mathbb{R}, |f(u)-f(v)|\leq |u-v|$.

Claim. f is continuous on [a, b].

Proof. For any $c \in [a, b]$, f must be continuous: consider that for any $\epsilon > 0$, we take $\delta = \epsilon$ and then have that $0 < |x - c| < \epsilon \implies |f(x) - f(c)| < |x - c| < \epsilon$. Thus, $\lim_{x \to c} f(x) = f(c)$. \square

Apostol p.139-140 no.33.b

Claim.

$$\left| \int_{a}^{b} f(x)dx - (b-a)f(a) \right| \le \frac{(b-a)^2}{2}$$

Proof. Note that $\int_a^b f(a)dx = (b-a)f(a)$, as f(a) is just a step function with partition $\{a,b\}$. Then, the claim becomes

$$\left| \int_{a}^{b} f(x)dx - \int_{a}^{b} f(a)dx \right| = \left| \int_{a}^{b} (f(x) - f(a))dx \right|$$

$$\leq \int_{a}^{b} |(f(x) - f(a))|$$

$$\leq \int_{a}^{b} |x - a|dx$$

$$= \int_{a}^{b} (x - a)dx$$

$$= \int_{a}^{b} xdx - \int_{a}^{b} adx$$

$$= \int_{a}^{b} xdx - (b - a)a$$

$$= \frac{b^{2}}{2} - \frac{a^{2}}{2} - (b - a)a$$

$$= \frac{b^{2} + a^{2} - 2ab}{2}$$

$$= \frac{(b - a)^{2}}{2}$$

Note that the value of $\int_a^b x dx$ was shown earlier in the Apostol readings.

Apostol p.139-140 no.33.c

Claim.

$$\left| \int_a^b f(x)dx - (b-a)f(c) \right| \le \frac{(b-a)^2}{2}$$

Proof.

$$\left| \int_{a}^{b} f(x)dx - \int_{a}^{b} f(c)dx \right| = \left| \int_{a}^{b} (f(x) - f(c))dx \right|$$

$$\leq \int_{a}^{b} |(f(x) - f(c))|$$

$$\leq \int_{a}^{b} |x - c|dx$$

$$= \int_{a}^{c} (x - c)dx + \int_{c}^{b} -(x - c)dx$$

This last step is justified by the fact that if $x \in (a, c) \implies x < c \implies |x - c| = -(x - c)$.

$$= -\int_{a}^{c} (x - c)dx + \int_{c}^{b} (x - c)dx$$

$$= -(\int_{a}^{c} xdx - \int_{a}^{c} cdx) + (\int_{c}^{b} xdx - \int_{c}^{b} cdx)$$

$$= -(\int_{a}^{c} xdx - (c - a)c) + (\int_{c}^{b} xdx - (b - c)c)$$

$$= -\int_{a}^{c} xdx + \int_{c}^{b} xdx - (a + b)c + 2c^{2}$$

$$= -(\frac{c^{2}}{2} - \frac{a^{2}}{2}) + (\frac{b^{2}}{2} - \frac{c^{2}}{2}) - (a + b)c + 2c^{2}$$

$$= \frac{a^{2} + b^{2} - 2c^{2}}{2} - (a + b)c + 2c^{2}$$

$$= \frac{a^{2} + b^{2}}{2} + c^{2} - (a + b)c$$

$$\leq \frac{a^{2} + b^{2}}{2} + b^{2} - (a + b)b$$

$$= \frac{a^{2} + b^{2}}{2} - ab$$

$$= \frac{(b - a)^{2}}{2}$$

The last inequality holds, as we have that $(b^2 - (a+b)b) - (c^2 - (a+b)c) = b^2 - c^2 - (a+b)(b-c) = (b-c)(b+c-(a+b)) = (b-c)(c-a) > 0$, as a < c < b.

Apostol p.142 no.11

$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4} = \lim_{x \to -2} \left(\frac{x + 2}{x + 2}\right) \left(\frac{x^2 - 2x + 4}{x - 2}\right)$$

$$= \left(\lim_{x \to -2} \frac{x + 2}{x + 2}\right) \left(\lim_{x \to -2} \frac{x^2 - 2x + 4}{x - 2}\right)$$

$$= \lim_{x \to -2} \frac{x^2 - 2x + 4}{x - 2}$$

We have proved $\lim_{h\to 0} \frac{h}{h} = 1$ on a past homework (for any $\epsilon > 0$, $\delta = 1231231231231$ works), so we know that $\lim_{x\to -2} \frac{x+2}{x+2} = 1$ as well (take h = x+2, and it follows).

Since we have that polynomials are continuous, and that x-2 at x=-2 is nonzero, we have that $\frac{x^2-2x+4}{x-2}$ is continuous, and so $\lim_{x\to-2}\frac{x^2-2x+4}{x-2}=\frac{4+4+4}{-4}=-3$.

Apostol p.142 no.12

We have that $\lim_{x\to 4} \sqrt{1+\sqrt{x}}$. We have that $f: x \mapsto \sqrt{x}$ is continuous, as is $g: x \mapsto 1+x$, and thus $\sqrt{1+\sqrt{x}}=(f\circ g\circ f)$ is also continuous as the composition of continuous functions. Thus, $\lim_{x\to 4} = \sqrt{1+\sqrt{4}} = \sqrt{3}$.

To see that \sqrt{x} is continuous for x > 0, consider that for any $\epsilon > 0$, take $\delta = \epsilon^2$, such that $0 < |x-c| < \delta, y = |x-c| \implies |\sqrt{x+y} - \sqrt{x}| < |\sqrt{x+2\sqrt{xy}+y} - \sqrt{x}| = |\sqrt{x} + \sqrt{y} - \sqrt{x}| = |\sqrt{y}| < \sqrt{\epsilon^2} < \epsilon$. Thus, $\lim_{y \to x} \sqrt{y} = \sqrt{x}$.

Apostol p.142 no.19

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$$

$$= \lim_{x \to 0} \frac{1+x - (1-x)}{x\sqrt{1+x} + \sqrt{1-x}}$$

$$= \lim_{x \to 0} \frac{2x}{x\sqrt{1+x} + \sqrt{1-x}}$$

$$= \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$

Note that we can cancel $\frac{x}{x}$ in the limit since we have that limits are multiplicative and that again, $\lim_{h\to 0} \frac{h}{h} = 1$.

Given that the quotient, sum, and composition of continuous functions is continuous, we have that $\frac{2}{\sqrt{1+x}+\sqrt{1-x}}$ is then also continuous, and so $\lim_{x\to 0} \frac{2}{\sqrt{1+x}+\sqrt{1-x}} = \frac{2}{\sqrt{1}+\sqrt{1}} = 1$.

Apostol p.155 no.7

Claim. Let f be integrable and nonnegative. Then $\int_a^b f(x)dx = 0 \implies f(x) = 0$ at every point of continuity.

Proof. Suppose that $f(x) \neq 0$ and f is continuous at x. Then we have that for $\epsilon = \frac{f(x)}{2}$, $\exists \delta \mid 0 < |y - x| < \delta \Longrightarrow \frac{f(x)}{2} < f(y) < \frac{3f(x)}{2}$, meaning that for $y \in (x - \delta, x + \delta)$, f(y) > 0. Put $\gamma_1 = \max(a, x - \delta)$, $\gamma_2 = \min(b, x + \delta)$. Importantly, we would then have that $\int_{\gamma_1}^{\gamma_2} f(y) dy > \int_{\gamma_1}^{\gamma_2} 0 dy = 0$. Thus, we would then have that $\int_a^{\gamma_1} f(y) dy + \int_{\gamma_1}^{\gamma_2} f(y) dy + \int_{\gamma_2}^b f(y) dy = \int_a^b f(y) dy > 0$, as f being nonegative means that $\int_a^{\gamma_1} f(y) dy$, $\int_{\gamma_2}^b f(y) dy \geq 0$. $\Rightarrow \Leftarrow$, so f(x) = 0.

Problem 1

a

$$f(x) = \begin{cases} x - 1 & x < 0 \\ x & x \ge 0 \end{cases}$$

This is monotonic: consider that for any $a, b \in \mathbb{R}$, suppose that b > a. If a, b < 0, then f(b) - f(a) = (b-1) - (a-1) = b-a > 0. If $a < 0, b \ge 0$, then f(b) - f(a) = (b) - (a-1) = b-a+1 > 0. If a, b > 0, then f(b) - f(a) = (b) - (a) = b-a > 0. Thus, the function is monotonic.

However, it is not continuous: consider that $\lim_{x\to 0} f(x)$ does not exist. Suppose that $\lim_{x\to 0} f(x) = K$. Then, for any $\epsilon > 0$, we must have $\delta > 0 \mid 0 < |x| < \delta \implies |f(x) - K| = |f(x)| < \epsilon$. However, we have that for $x \in (-\delta, 0)$, $f(x) = x - 1 < -1 \implies |f(x)| > 1$. Thus, for $\epsilon < 1$, no such δ exists, and f is discontinuous at x = 0.

b

Claim. Any monotonic surjective function $f: \mathbb{R} \to \mathbb{R}$ is continuous.

Proof. We will show that f must be continuous at any $c \in \mathbb{R}$. Consider that for any $\epsilon > 0$, $f(c) + \frac{\epsilon}{2}$ must be achieved by some $b \in \mathbb{R}$, as f is surjective and also as f is monotonic,

 $f(b) > f(c) \implies b > c$. Similarly, $f(c) - \frac{\epsilon}{2}$ must be achieved by some a < c. Take $\delta = \min(|b-c|, |a-c|)$.

Since f is monotonic, we have that $a < d < c < e < b \implies f(a) \le f(d) \le f(c) \le f(e) \le f(b) \implies f(a) - f(c) \le f(d) - f(c) \le 0 \le f(e) - f(c) \le f(b) - f(c) \implies -\frac{\epsilon}{2} \le f(d) - f(c) < f(e) - f(c) \le \frac{\epsilon}{2} \implies |f(d) - f(c)|, |f(e) - f(c)| \le \frac{\epsilon}{2} < \epsilon$. Thus, $0 < |x - c| < \delta \implies a < x < b \implies |f(x) - f(c)| < \epsilon$. Thus, we have that $\lim_{x \to c} f(x) = f(c)$, and f is then continuous at c.

Problem 2

Claim. For $f, g : [a, b] \to \mathbb{R}$, both continuous, if f(x) = g(x) whenever $x \in \mathbb{Q}$, then f = g.

Proof. Suppose that for some x, $f(x) \neq g(x)$. Without loss of generality, take g(x) > f(x). Then, x must be irrational. However, we have that since f is continuous, for any $\epsilon > 0$, we have δ_f such that $0 < |y - x| < \delta_f \implies |f(x) - f(y)| < \frac{\epsilon}{2}$. Similarly, we have that $0 < |y - x| < \delta_g \implies |g(x) - g(y)| < \frac{\epsilon}{2}$. Taking $\delta = \min(\delta_f, \delta_g)$, we have that $|g(x) - g(y)|, |f(x) - f(y)| < \frac{\epsilon}{2}$.

Then, we have that $|g(x) - g(y) - f(x) + f(y)| < |g(x) - g(y)| + |f(x) - f(y)| < \epsilon$ by the triangle inequality, but since \mathbb{Q} is dense, we can always find $y \in \mathbb{Q} \mid 0 < |x - y| < \delta$. In that case, we have that f(y) = g(y), so $|g(x) - g(y) - f(x) + f(y)| = |g(x) - f(x)| < \epsilon$ for any ϵ , especially for $\epsilon = g(x) - f(x) > 0$. $\Rightarrow \leftarrow$, so f(x) = g(x) everywhere.