Banc Balafre ★

B2-10

Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- ► On note $\overrightarrow{BM} = z\overrightarrow{z_0} + R_I\overrightarrow{u}(\theta)$ où R_I est le rayon du joint avec $R_I = 175$ mm;
- ▶ la longueur du joint est $L_J = 150$ mm. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425$ mm;
- ► Le coeur de butée a une masse $M_{CB} = 40 \text{ kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \overrightarrow{z_0}$ avec $L_{CB} = 193 \text{ mm}$;
- ► L'ensemble $JR = \{ \text{Joint(rotor)} + \text{Butée double} \}$ a une masse $M_{JR} = 100 \text{ kg et la}$ position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0}$ avec $L_{JR} = 390 \text{ mm}$. On notera $I_{G_{JR}} (JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} \end{pmatrix}$ la matrice d'inertie de $\begin{pmatrix} A_{JR} & -F_{JR} & C_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathcal{B}_{JR}}$

l'ensemble JR au point G_{JR} exprimée dans une base $\mathcal{B}_{JR} = \left(\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0}\right)$ liée à JR;

Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280$ mm et $R_{CB} = 150$ mm.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overrightarrow{z_0})$, simplifier la matrice d'inertie $I_{G_{JR}}(JR)$.

Corrigé voir.

