Хакване на някаква математика в УНСС

24 юли 2022 г.

1 Теми и коментари. Теория

1.1 Основни вероятностни понятия

Дефиниция 1 вероятност, събитие, благоприятно събитие:

Събитие, благоприятно събитие

Ако вариантите за нещо да се случи са n, то всеки набор от тези n изхода се нарича събитие. Благоприятно събитие може да наречем съвкупността от "желани" изходи.

 ${\it Beposmhocm}$ за едно събитие наричаме отношението благоприятни изходи/всички изходи на събитието

Дефиниция 2 пермутации, комбинации, вариации:

Пермутация

Вариация - редът има значение

Комбинация - редът няма значение

Дефиниция 3 случайна величина (непрекъсната и дискретна), разпределение, плътност Дискретна случайна величина се задава с изходи x_i , които са с вероятности p_i , като і може да е крайно, $i=1,2\ldots n$, или безкарйно, но "изброимо" (може да броиш). Задава се с таблица (вж. по-долу) Непрекъснато разпределение имаме когато множеството от изходи "е интервал", например (0,1)

Дефиниция 4 Очакване, вариация ,стандартно отклонение За случайна величина X със стойности x_i и вероятности p_i , дефинираме очакване като

$$E(X) = \sum_{i} p_i x_i$$

Вариация (Дисперсия) на X дефинираме c:

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

2 Решавани задачи и техни подобни

Задача 1 Пермутация на баби на пейка. Пенка, Зинка, Любка ПЗЛ, ПЛЗ, ЗЛП, ЗПЛ, ЛПЗ, ПЗП

Задача 2 Вариация телефонен номер

Задача 3 Комбинация избиране на топки от урна.

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Нека имаме 2 сини и 3 червени топки. $Om\ 1$ теглене, вероятността за синя е 2/5. От 2 тегления, да изтеглим синя и червена.

Може първо да теглим синя, после червена, с вероятност $\frac{2}{5}\cdot\frac{3}{4}=\frac{3}{10}$ или първо червена, после синя, с вероятност $\frac{3}{5}\cdot\frac{2}{4}=\frac{3}{10}$

Тогава при теглене на 2 топки, събираме вероятностите и получаваме $\frac{6}{10}$.

Hека начините на избира на k топки от n топки означим(временно) 10 C_n^k . Тогава за начини на избиране на 1 синя топка имаме C_2^1 и за C_3^1 . Да решим отново задачата с C-та и формулата благопрятни изходи върху всички изходи. Всички изходи за теглене на 2 топки от 5 са C_5^2 . Умножаваме вариантите са теглене на 1 синя и 1 червена и делим на всички изходи, за да получим отговора.

$$\frac{C_3^1.C_2^1}{C_5^2} = \frac{3.2}{10}.$$

$$C_3^1 = \frac{3!}{2!1!} = 3, C_2^1 = \frac{2!}{1!1!} = 2, C_5^2 = \frac{5!}{3!2!} = \frac{5.4}{2} = 10$$

 $C_3^1=rac{3!}{2!1!}=3,~C_2^1=rac{2!}{1!1!}=2,~C_5^2=rac{5!}{3!2!}=rac{5.4}{2}=10.$ Този начин на решаване важи за всяка бройка червени и сини топки. Например, ако вместо погоре, теглим 5 топки, искаме 2 сини, 3 червени от 30 топки(10 сини и 20 червени), то отговорът става:

$$\frac{C_{10}^2.C_{20}^3}{C_{32}^5}.$$

Задача 4 Очакване на хвърляне на зар

n	X	1	2	3	4	5	6	
Ρ	P	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

$$\mathbb{E}(X) = \frac{1}{6}(1+2+3+4+5+6) = \frac{7}{2} = 3,5$$

 $\mathbb{E}(X) = \frac{1}{6}(1+2+3+4+5+6) = \frac{7}{2} = 3,5$ $Cmandapmno omknonenue: \boxed{ \begin{array}{c|cccc} X^2 & 1 & 4 & 9 & 16 & 25 & 36 \\ \hline P & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \hline Var(X) = E(X^2) - (E(X))^2 = \frac{91}{6} - (3,5)^2 = 15,166(6) - 12,25 \approx 2,92. \end{array}}$

$$\mathbb{E}(X^2) = \frac{1}{6}(1+4+9+16+25+36) = \frac{1}{6}(91) = \frac{91}{6}$$

Задача 5 Задача

P	0	2	50	200	1000	
W	x	100	20	5	1	

Задача 6 Задача за хвърляне на два зара

			Z			Э	U
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
a	3	2 3 4 5 6	5	6	γ	8	9
	4	5	6	γ	8	g	10
		1 ()	γ	8	g	10	11
	6	7	8	g	10	11	12
		$\left egin{array}{c} 6 \\ 7 \end{array} \right $	7 8	O	J		11 12

$$(1,1), (1,2), (1,3)$$

 $x = 20000 - 1 - 5 - 20 - 100 = 19874$

Очаквана печалба = (2.100 + 50.20 + 200.5 + 1.1000) / 20000

Задача 7 (Задача за белот) Да се добави задача с карти - белот $\frac{4}{32}\frac{3}{31}\frac{4}{30}\frac{3}{29}$

ДПДП

Задача 8 Гаусова елиминация(test)

$$\begin{cases} 3x + 7z = 20 \\ y - 17z = -3 \\ 24x + 15y = 7 \end{cases}$$

$$\begin{bmatrix} 4 & -8 & 5 & 1 & 0 & 0 \\ 4 & -7 & 4 & 0 & 1 & 0 \\ 3 & -4 & 2 & 0 & 0 & 1 \end{bmatrix} -R_1 \sim \begin{bmatrix} 4 & -8 & 5 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 2 & -\frac{7}{4} & -\frac{3}{4} & 0 & 1 \end{bmatrix} -2R_2$$

$$\sim \begin{bmatrix} 4 & -8 & 5 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{5}{4} & -2 & 1 \end{bmatrix} +2R_2$$

Матрични уравнения:

$$AX = B$$
$$X = A^{-1}B$$

3 Въпроси и отговори

Задачата за линейно оптимиране само тази ли е? -Да.

Какво трябва да правим по линейна алгебра? Само детерминанти и линейни системи? - Засега нищо. Детерминанти 2x2 или 3x3? - Може само да направим тренировъчен пример за пълнота.