

Bab 4. Fungsi, Limit dan Kontinu

- ☑ 4.1 Definisi dan Notasi Fungsi
- ✓ 4.2 Operasi Pada Fungsi
- ☑ 4.3 Grafik Fungsi
- - 4.5 Limit Suatu Nilai Pendekatan
 - 4.6. Teknik Penghitungan Limit
 - 4.7 Limit Tak Hingga
 - 4.8 Limit Fungsi Trigonometri
 - 4.9 Kontinu
 - 4.10 Kontinu Yang Dapat Dihapuskan

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

4.1 Definisi dan Notasi Fungsi

MATEMATIKA ITS

Definisi Fungsi

Diberikan dua himpunan A dan B yang tidak kosong.

Suatu fungsi dari A ke B, ditulis $f: A \rightarrow B$ adalah aturan yang memasangkan setiap anggota A dengan tepat satu anggota B dan dinyatakan oleh y = f(x).

A disebut daerah asal (domain) dinotasikan D_f , B disebut daerah hasil (range) dinotasikan R_f . x disebut peubah (variabel) bebas, y disebut peubah (variabel) tak bebas (terikat)

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

3

Contoh 1.

Jika $f(x) = 3x^2 - 1$, maka

$$f(-4) = 3.(-4)^2 - 1 = 47, f(0) = 3.0^2 - 1 = 1, f(5) = 3.5^2 - 1 = 74,$$

Domain: x = -4, 0, 5Range: y = 47, -1, 74

Domain yang ditentukan pertimbangan Fisis dan Geometri

Perhatikan ilustrasi berikut:

Bangun persegi dari karton dengan sisi 10 cm, pada masing-masing pojoknya dipotong persegi dengan sisi x cm. Misalkan L adalah luas (dalam cm2) lembaran karton yang tersisa

$$L = 100 - 4x^2, \ 0 \le x \le 5$$

- Nilai $x \ge 0$ karena x menyatakan panjang potongan karton
- Nilai x tidak bisa melebihi lima, karena panjang karton maksimum 10, jika x > 5 tidak mungkin
- Domain dari L terbatas oleh kondisi Fisis

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Domain Alami/Natural

Domain natural adalah nilai x berupa bilangan real yang dijjinkan/diperbolehkan

Contoh 2.

- 1. Domain $f(x) = 3x^2 5$, $D_f = (-\infty, +\infty)$ artinya semua bilangan real
- 2. Domain $f(x) = \sqrt{2-x}$, Nilai dalam akar $\geq 0 \rightarrow 2 - x \geq 0 \leftrightarrow x \leq 2$, $D_f = (-\infty, -2]$
- 3. Domain $f(x) = \sqrt{x^2 x 6}$, Nilai dalam akar $\geq 0 \rightarrow x^2 - x - 6 \geq 0 \leftrightarrow (x - 3)(x + 2) \geq 0 \leftrightarrow x \leq -2 \cup x \geq 3$ $D_f = (-\infty, -2] \cup [3, +\infty)$
- 4. Domain $f(x) = \frac{2x}{x-5}$, $x \neq 5$; $D_f = (-\infty, 5) \cup (5, +\infty)$
- 5. Domain $f(x) = \frac{1}{(x-2)(x+3)}, x \neq -3; x \neq 2, D_f = (-\infty, -3) \cup (-3, 2) \cup (2, +\infty)$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Domain Yang Ditentukan Dengan Pembatasan Khusus

Untuk membatasi pengamatan pada percobaan, misal percobaan dengan waktu tertentu sering diperlukan pembatasan domain, pembatasan yang demikian disebut domain yang dibatasi secara khusus

Contoh 3.

Fungsi $f(t)=3t^2+1$ merupakan hasil percobaan yang diperoleh dari waktu 1 menit sampai dengan 10 menit berarti: $D_f=\{t\mid 1\leq t\leq 10\}$ menit, walaupun secara alami domain f semua nilai bilangan real

Teknik Mendapatkan Range

Kadang kala range fungsi telah jelas sehingga mudah ditentukan akan tetapi ada kalanya sulit ditentukan nilai range dari suatu fungsi.

Jika nilai range suatu fungsi y = f(x) sulit ditentukan, ubahlah menjadi x = g(y)

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

6

Contoh 4.

- 1. Domain $f(x) = 3x^2 5$, $D_f(-\infty, +\infty)$, untuk nilai x negatif hasil f selalu positif, nilai f yang terkecil adalah -5 sehingga $R_f = [-5, +\infty)$
- 2. Domain $f(x) = \sqrt{2-x}$, Nilai dalam akar $\geq 0 \rightarrow 2-x \geq 0 \leftrightarrow x \leq 2$, $D_f = (-\infty, -2]$, $R_f = [0, +\infty)$
- 3. Domain $f(x) = \sqrt{x^2 x 6}$, Nilai dalam akar $\geq 0 \to x^2 x 6 \geq 0 \leftrightarrow (x 3)(x + 2) \geq 0 \leftrightarrow x \leq -2 \cup x \geq 3$ $D_f(-\infty, -2] \cup [3, +\infty)$, $R_f = [0, +\infty)$
- 4. Domain $f(x) = \frac{2x}{x-5}$, $x \neq 5$; $D_f = (-\infty, 5) \cup (5, +\infty)$ Untuk mencari range

$$f(x) = \frac{2x}{x-5} \leftrightarrow y = \frac{2x}{x-5} \leftrightarrow xy - 5y = 2x \leftrightarrow xy - 2x = 5y \leftrightarrow x(y-2) = 5y$$
$$\rightarrow x = \frac{5y}{y-2}, R_f = \{y \mid y < 2 \cup y > 2, y \in Real\}, R_f = (-\infty, 2) \cup (2, +\infty)$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

7

Fungsi Yang Didefinisikan Sepotong-Sepotong

Ada kalanya suatu fungsi didefinisikan sepotong sepotong, sebagai ilustrasi perhatikan contoh berikut

Ongkos taksi berdasarkan jarak yang ditempuh kurang dari 5 km Rp. 5000,- selebihnya ada biaya tambahan mengikuti aturan:

$$f(x) = \begin{cases} 5000; & 0 < x \le 5 \\ 5000 + 200(x - 1); & x > 5 \end{cases}$$

Untuk x = 4.2 maka nilai f(x) = 5000

x = -2 maka nilai f(x) tidak ada

x = 7.4 maka nilai f(x) = 5000 + (7.4 - 1) = 5000 - 200(6.4) = 6800

Nilai Mutlak

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

4.2 Operasi Pada Fungsi

Fungsi f dan g dapat djumlahkan, dikurangkan, dikalikan dan dibagi

Definisi

Diberikan fungsi f dan g rumus untuk jumlah, kurang, hasil kali dan hasil bagi fungsi didefinisikan dengan:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f . g)(x) = f(x) . g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Domain f+g, f-g, f.g dan $\frac{f}{g}$ didefinisika irisan dari domain f dan g atau dinyatakan dengan: $D_{f+g}=D_{f-g}=D_{f.g}=D_f\cap D_g$. Untuk Domain hasil bagi adalah: $D_{\frac{f}{g}}=D_f\cap D_g$ kecuali di titik titik yang membuat g(x)=0

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

q

Contoh 5.

Diberikan $f(x) = 1 + \sqrt{x-2} \, \text{dan } g(x) = x-3$; $D_f = [2, +\infty)$; $D_g = (-\infty, +\infty)$

•
$$(f+g)(x) = 1 + \sqrt{x-2} + x - 3 = x + \sqrt{x-2} - 2$$

•
$$(f-g)(x) = 1 + \sqrt{x-2} - (x-3) = 4 - x + \sqrt{x-2}$$

•
$$(f \cdot g)(x) = (1 + \sqrt{x-2}) \cdot (x-3) = x-3 + x\sqrt{x-2} - 3\sqrt{x-2}$$

$$D_{f+g}=D_{f-g}=D_{f.g}=D_f\cap D_g=\left[2,+\infty\right)\,\cap\left(-\infty,+\infty\right)=\left[2,+\infty\right)$$

•
$$\left(\frac{f}{g}\right)(x) = \frac{1+\sqrt{x-2}}{x-3}$$
, $D_{\frac{f}{g}} = [2, +\infty)$, kecuali di $x = 3$, sehingga:

$$D_{\frac{f}{g}} = [2,3) \cup (3,+\infty)$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Komposisi Fungsi

Komposisi fungsi merupakan suatu penggabungan dari operasi pada dua jenis **fungsi** f(x) dan g(x) sehingga menghasilkan **fungsi** baru.

Contoh 6.

- 1. Diberikan $f(x) = x^2 2$; g(x) = x 1
 - $(f \circ g)(x) = f(g(x)) = f(x-1) = (x-1)^2 2 = x^2 2x + 1 2 = x^2 2x 1$
 - $(gof)(x) = g(f(x)) = g(x^2 2) = x^2 2 1 = x^2 3$
 - $(f \circ g)(x) \neq (g \circ f)(x)$
- 2. Diberikan $f(x) = \frac{x+3}{x-1}$; g(x) = x + 5; $(g \circ f)(3) = ?$
 - $(gof)(x) = g(f(x)) = g(\frac{x+3}{x-1}) = \frac{x+3}{x-1} + 5 = \frac{x+3}{x-1} + \frac{5(x-1)}{(x-1)} = \frac{6x-2}{x-1}$ $(gof)(3) = \frac{6.3-2}{3-1} = \frac{16}{2} = 8$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

11

Definisi

Diberikan fungsi – fungsi f dan g , komposisi f dengan g ditulis dengan $f \circ g$ adalah fungsi yang didefinisikan dengan

$$(fog)(x) = f(g(x))$$

Domain $f \circ g$ terdiri dari semua x dalam domain g dimana g(x) dalam domain f, atau $D_{f \circ g} = \{x \in D_g : g(x) \in D_f\}$

Proses komposisi fungsi $(f \circ g)(x) = f(g(x))$ D_g dipetakan oleh fungsi g menghasilkan R_g , selanjutnya R_g menjadi domain dari fungsi f, namun perlu diperhatikan apakah elemen dari R_g berada pada D_f

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 7

1.a Diberikan
$$f(x) = x^2 + 3$$
; $D_f = (-\infty, +\infty)$; $R_f = [3, +\infty)$

$$g(x) = \sqrt{x}$$
; $D_q = [0, +\infty)$; $R_q = [0, +\infty)$

•
$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 + 3 = x + 3$$

•
$$D_{fog} = ?$$

$$\begin{split} D_g &= [0, +\infty) \quad R_g = [0, +\infty) \\ D_f &= (-\infty, +\infty) \\ R_g \cap D_f &= [0, +\infty) \end{split}$$

Pemetaan g; $D_g = [0, +\infty)$ menghasilkan $R_g = [0, +\infty)$ dilanjutkan lagi dengan pemetaan f; $D_f = (-\infty, +\infty)$ Pemetaan f dengan domainnya tidak bisa dilakukan karena tergantung dari R_g , dengan demikian $R_g \cap D_f = [0, +\infty)$ yag merupakan D_f yang baru (pada Gambar warna kuning) Hasil dari $R_g \cap D_f = [0, +\infty)$ harus berasal dari domain g yaitu $D_g = [0, +\infty)$ yang merupakan $D_{f \circ g} = [0, +\infty)$

Pemetaan f; $D_f = (-\infty, +\infty)$ menghasilkan $R_f = [3, +\infty)$ dilanjutkan lagi dengan pemetaan g; $D_g = [0, +\infty)$

Pemetaan g dengan domainnya tidak bisa dilakukan karena tergantung dari R_f , dengan demikian $R_g \cap D_f = [3, +\infty)$ yag merupakan D_g yang baru (pada Gambar warna hijau) Hasil dari $R_f \cap D_g = [3, +\infty)$ harus berasal dari domain f yaitu $D_f = (-\infty, +\infty)$ yang merupakan $D_{f\circ g} = (-\infty, +\infty)$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

13

1.b Diberikan
$$f(x) = x^2 + 3$$
; $D_f = (-\infty, +\infty)$; $R_f = [3, +\infty)$

$$g(x) = \sqrt{x}$$
; $D_q = [0, +\infty)$; $R_q = [0, +\infty)$

•
$$(gof)(x) = g(f(x)) = g(x^2 + 3) = \sqrt{x^2 + 3}$$

$$D_{gof} = ?$$

$$D_f = (-\infty, +\infty)$$
 $R_f = [3, +\infty)$
 $D_q = [0, +\infty)$

$$R_f \cap D_g = [3, +\infty)$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

1.1

2 Diberikan
$$f(x) = \sqrt{x-2}$$
; $D_f = [2, +\infty)$; $R_f = [0, +\infty)$
$$g(x) = \sqrt{x-3}$$
; $D_g = [3, +\infty)$; $R_g = [0, +\infty)$

- $(f \circ g)(x) = f(g(x)) = f(\sqrt{x-3}) = \sqrt{\sqrt{x-3}-2}$
- $\quad D_{fog} = ?$

$$D_g = [3, +\infty)$$
 $R_g = [0, +\infty)$
 $D_f = [2, +\infty)$

$$R_g\cap D_f=[2,+\infty)$$

Pemetaan g; $D_g = [3, +\infty)$ menghasilkan $R_g = [0, +\infty)$ dilanjutkan lagi dengan pemetaan f; $D_f = [2, +\infty)$ Pemetaan f dengan domainnya tidak bisa dilakukan karena tergantung dari R_g , dengan demikian $R_g \cap D_f = [2, +\infty)$ yag merupakan D_f yang baru (pada Gambar warna kuning) Hasil dari $R_g \cap D_f = [2, +\infty)$ harus berasal dari domain g yaitu $[7, +\infty)$ yang merupakan $D_{fog} = [7, +\infty)$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

15

Fungsi Komposisi f(x) dan g(x)

Jika diketahui komposisi fungsi $h(x) = (f \circ g)(x) = 3x^2 + 4$; fungsi f(x) dan g(x) tidak tunggal artinya f(x) dan g(x) dapat ditemukan lebih dari satu yaitu:

1.
$$g(x) = 3x^2$$
; $f(x) = x + 4$

2.
$$g(x) = x$$
; $f(x) = 3x^2 + 4$

3.
$$g(x) = x - 2$$
; $f(x) = 3x^2 + 12x - 8$

4. ...

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 8

Suatu pemetaan $f: R \to R$ dengan $(gof)(x) = 2x^2 + 4x + 6$ dan g(x) = 2x + 3 maka $f(x) = \dots$

Jawab

Menentukan
$$f(x)$$

 $(gof)(x) = 2x^2 + 4x + 5$
 $g(f(x)) = 2x^2 + 4x + 5$
 $2(f(x)) + 3 = 2x^2 + 4x + 5$
 $2f(x) = 2x^2 + 4x + 2$
 $f(x) = x^2 + 2x + 1$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

17

Contoh 9.

Jika
$$g(x-2) = 2x - 3 \operatorname{dan} (f \circ g)(x-2) = 4x^2 - 8x + 3 \operatorname{maka} f(-3) = \cdots$$
.

Jawab.

$$g(x-2) = 2x - 3$$

$$(f \circ g)(x-2) = 4x^2 - 8x + 3$$

$$f(g(x-2)) = 4x^2 - 8x + 3$$

$$f(x-2) = 4x^2 - 8x + 3$$

Menentukan
$$f(-3)$$

Jika
$$-3 = 2x - 3 \rightarrow 2x = 0$$
; $x = 0$

Sehingga

$$f(-3) = 4(0^20 - 8(0) + 3 = 3$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 10.

Diberikan f(g(x)) = g(f(x)). Jika $f(x) = 2x + p \operatorname{dan} g(x) = 3x + 120$ maka nilai dari p =

Jawab.

Menentukan nilai p

$$f(g(x)) = g(f(x))$$

$$f(3x + 120) = g(2x + p)$$

$$2(3x + 120) + p = 3(2x + p) + 120$$

$$6x + 240 + p = 6x + 3p + 120$$

$$-2p = -120$$

$$p = 60$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

19

Contoh 11.

Misalkan $f: R \to R$ dan $g: R \to R$; f(x) = x + 2 dan $(g \circ f)(x) = 2x^2 + 4x - 6$. Misalkan x_1 dan x_2 akar-akar dari g(x) = 0 maka $x_1 + 2x_2 = \dots$

Jawab.

Menentukan
$$g(x)$$

 $(gof)(x) = 2x^2 + 4x - 6$
 $g(f(x)) = 2x^2 + 4x - 6$
 $g(x+2) = 2x^2 + 4x - 6$
 $g(x) = 2(x-2)^2 + 4(x-2) - 6$
 $g(x) = 2(x^2 - 4x + 4) + 4x - 8 - 6$
 $g(x) = 2x^2 - 8x + 8 + 4x - 14$
 $g(x) = 2x^2 - 4x - 6$

Menentukan
$$x_1$$
 dan x_2
 $g(x) = 0$
 $0 = 2x^2 - 4x - 6$
 $(x - 3)(x + 1) = 0$

$$(x-3)(x+1) = 0$$

 $x_1 = 3 \operatorname{dan} x_2 = -1$

Jadi:

$$x_1 + 2x_2 = 3 + 2(-1) = 1$$

Atau:

$$x_1 = -1 \operatorname{dan} x_2 = 3$$

 $x_1 + 2x_2 = -1 + 2(3) = 5$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Klasifikasi Fungsi

Berdasarkan letak dari peubah

- 1. Fungsi Implisit F(x, y) = 0 peubah x dan y menjadi satu Contoh: $3x^2y + 4y 7 = 0$
- 2. Fungsi Eksplisit y = f(x) peubah x dan y terpisah, x dan konstanta di sisi kanan dan y di sisi kiri
 - y = c, c = konstanta, fungsi konstan
 - y = ax + b fungsi Polinomial Linier
 - $y = ax^2 + bx + c$ fungsi Polinomial Kuadratik
 - $y = ax^3 + bx^2 + cx + d$ fungsi Polinomial Kubik
 - $y = \frac{a_0 + a_1 x + a_2 x^2 + ... + a_n x^n}{b_0 + b_1 x + b_2 x^2 + ... + b_n x^n}$ fungsi Rasional

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

21

4.3 Grafik Fungsi

Dalam menggambar grafik fungsi yang perlu diperhatikan:

- Domain dan range fungsi
- Titik potong sumbu x, y = 0 dan titik potong sumbu y, x = 0, hal ini dilakukan apabila mudah mencarinya
- Ciri dari fungsi, y = ax + b fungsi linier grafiknya berupa garis cukup diambil 2 titik, selain itu kurva lengkung
- Ambil beberapa nilai x dalam domain kemudia tentukan nilai y yang merupakan range fungsi dalam bentuk tabel

 Ingat bahwa domain fungsi adalah bilangan real maka hubungkan pasangan titik yang mudah dicari

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 8

- 1. Sket grafik fungsi: f(x) = 2x 6
 - Merupakan fungsi dari garis dengan $D_f = (-\infty, +\infty)$; $R_f = (-\infty, +\infty)$
 - Titik potong sumbu x; $y = 0 \rightarrow x = 3$; Titik potong sumbu y; $x = 0 \rightarrow y = -6$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

- 2. Sket grafik fungsi: $f(x) = \frac{x^2 9}{x 3}$ $f(x) = \frac{x^2 9}{x 3} \rightarrow y = \frac{x^2 9}{x 3} = \frac{(x 3)(x + 3)}{x 3} = x + 3; x \neq 3$
 - Fungsi dari garis dengan $D_f = (-\infty, 3) \cup (3, +\infty)$
 - Titik potong sumbu $x ; y = 0 \rightarrow x = -3$; Titik potong sumbu y; $x = 0 \rightarrow y = 3$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

- 3. Sket grafik fungsi: $f(x) = x^2 + 3$
 - Fungsi dari parabola terbuka keatas dengan $D_f = (-\infty, +\infty)$; $R_f = [3, +\infty)$
 - Titik potong sumbu $x : y = 0 \rightarrow x^2 + 3 = 0$; tidaka ada titik potong sumbu x; Titik potong sumbu y; $x = 0 \rightarrow y = 3$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh

- 4. Sket grafik fungsi: $f(x) = \sqrt{3+x}$
 - $D_f = [-3, +\infty)$; $R_f = [0, +\infty)$
 - Titik potong sumbu x; $y = 0 \rightarrow \sqrt{3 + x} = 0$ Kedua ruas dikuadratkan didapat: $3 + x = 0 \rightarrow x = -3$; (-3, 0)Titik potong sumbu y; $x = 0 \rightarrow y = \sqrt{3+0} = \sqrt{3}$
 - Ambil beberapa titik dalam domai

x	-3	-2	-1	0	1
у	0	1	$\sqrt{2}$	$\sqrt{3}$	2
		$y \int \sqrt{3}$			

$$\frac{y}{\sqrt{3}}$$
 $-\sqrt{3}$

Jika $f(x) = \sqrt{3+x} \leftrightarrow y = \sqrt{x+3}$ Kedua ruas dikuadratkan didapat: $y^2 = x + 3 \leftrightarrow x = y^2 - 3$ Merupakan grafik parabola terbuka kekanan, karena range > 0 maka grafik yang dibawah sumbu *x* dihilangkan

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

- 5. Sket grafik fungsi: $f(x) = \sqrt{9 x^2}$
 - $D_f: 9 x^2 \ge 0 \rightarrow D_f[-3, 3]; R_f = [0, 3]$
 - Titik potong sumbu x; $y = 0 \rightarrow \sqrt{9 x^2} = 0$ Kedua ruas dikuadratkan didapat: $9 - x^2 = 0 \rightarrow x = 3$ dan x = -3; (3, 0); (-3, 0)Titik potong sumbu y; $x = 0 \rightarrow y = 3$
 - Ambil beberapa titik dalam domain

x	-3	-2	-1	0	1	2	3
уY	0	√5	√8	3	$\sqrt{8}$	√5	0

Jika $f(x) = \sqrt{9 - x^2} \leftrightarrow y = \sqrt{9 - x^2}$ Kedua ruas dikuadratkan didapat: $y^2 = 9 - x^2 \leftrightarrow x^2 + y^2 = 9$

Merupakan grafik lingkaran dengan P(0,0) dan r=3, karena range >0 maka grafik yang dibawah sumbu x dihilangkan

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

27

Contoh Grafik Fungsi Mutlak

- 6. Sket grafik fungsi: f(x) = |x 3|
 - $D_f = (-\infty, +\infty); R_f = [0, +\infty)$
 - Berdasarkan defini nilai mutlak:

$$y = |x - 3|$$

$$y = \begin{cases} x - 3, & x - 3 \ge 0 \\ -(x - 3), & x - 3 < 0 \end{cases} \rightarrow y = f(x) = \begin{cases} x - 3, & x \ge 3 \\ -(x - 3), & x < 3 \end{cases}$$

• Ada dua garis yaitu y = x - 3; $x \ge 3$ dan y = -x + 3; x < 3

<i>x</i> -	$x-3$; $x \ge 3$								
	x	3	4	5	6				
	у	0	1	2	3				

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh Grafik Fungsi Mutlak

- 7. Sket grafik fungsi: f(x) = |x 1| + |2x + 6|
 - Berdasarkan defini nilai mutlak:

$$y = |x - 1| + |2x + 6|$$

$$y = \begin{cases} x - 1, & x - 1 \ge 0 \\ -(x - 1), & x - 1 < 0 \end{cases} + \begin{cases} 2x + 6, & 2x + 6 \ge 0 \\ -(2x + 6), & 2x + 6 < 0 \end{cases}$$

$$y = \begin{cases} x - 1, & x \ge 1 \\ -x + 1, & x < 1 \end{cases} + \begin{cases} 2x + 6, & x \ge -3 \\ -2x - 6, & x < -3 \end{cases}$$

Ada 4 persamaan

1.
$$y = x - 1 + (2x + 6) \rightarrow y = 3x + 5$$
 ; Domain: $[1, +\infty) \cap [-3, +\infty) = [1, +\infty)$

2.
$$y = x - 1 + (-2x - 6) \rightarrow y = -x - 7$$
; Domain: $[1, +\infty) \cap (-\infty, -3) = \emptyset$

3.
$$y = -x + 1 + (2x + 6) \rightarrow y = x + 7$$
 ; Domain: $(-\infty, 1) \cap [-3, +\infty) = [-3, +1)$

4.
$$y = -x + 1 + (-2x - 6) \rightarrow y = -3x - 5$$
; Domain: $(-\infty, 1) \cap (-\infty, -3) = (-\infty, -3)$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

29

Ada 4 persamaan

1.
$$y = 3x + 5$$
 ; Domain: $[1, +\infty)$

2.
$$y = -x - 7$$
 ; Domain: \emptyset (tidak ada grafiknya)

3.
$$y = x + 7$$
 ; Domain: $[-3, +1)$

4.
$$y = -3x - 5$$
 ; Domain: $(-\infty, -3)$

$$y = 3x + 5$$
; Domain: $[1, +\infty)$

x	1	2	3	4
у	8	11	14	19

$$y = x + 7$$
; Domain: $[-3, +1)$

	,		-	•	_
x	-3	-2	0	1	
у	4	5	7	8	

$$y = -3x - 5$$
; Domain: $(-\infty, -3)$

<i>-</i>	30 0 (20mann () 0)						
x	-6	-5	-4	- 3			
ν	13	10	7	4			

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh Grafik Fungsi Mutlak

- 8. Sket grafik fungsi: $f(x) = |x^2 4x 5|$
 - Berdasarkan defini nilai mutlak:

$$y = |x^{2} - 4x - 5|$$

$$y = \begin{cases} x^{2} - 4x - 5, & x^{2} - 4x - 5 \ge 0 \\ -(x^{2} - 4x - 5), x^{2} - 4x - 5 < 0 \end{cases}$$

$$y = \begin{cases} x^{2} - 4x - 5, & (x+1)(x-5) \ge 0 \\ -x^{2} + 4x + 5, (x+1)(x-5) < 0 \end{cases}$$

$$y = \begin{cases} x^{2} - 4x - 5, & x \le -1 \cup x \ge 5 \\ -x^{2} + 4x + 5, -1 < x < 5 \end{cases}$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

31

1.
$$y = x^2 - 4x - 5$$
, $x \le -1 \cup x \ge 5$

x	-3	-2	-1	5	6	7
у	16	7	0	0	7	16

2.
$$y = -x^2 + 4x + 5$$
, $-1 < x < 5$

x	-1	0	1	2	3	4	5
у	0	5	8	9	8	5	0

Grafik fungsi: $f(x) = |x^2 - 4x - 5|$ Sebenarnya adalah grafik dari parabola $f(x) = x^2 - 4x - 5$, hanya saja karena $y \ge 0$ maka nilai y < 0 dicerminkan terhadap sumbu x

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Fungsi f(x) mempunyai dua fungsi:

1.
$$f(x) = x^2 - 1$$
; $x \ge 2$ (Parabola)

Ī	x	2	3	4	
	у	3	8	15	

$$2. f(x) = 2x - 1; x \ge 2$$

x	0	1	2	•••
у	-1	1	3	

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

33

Contoh Grafik Fungsi Sepotong-Sepotong

9. Sket grafik fungsi: $f(x) = \begin{cases} 3x & ; x > 1 \\ 2 & ; x = 1 \\ 2x - 1; x < 1 \end{cases}$

Fungsi f(x) mempunyai dua fungsi:

1.
$$v = 3x : x > 1$$

y = 3x, x > 1						
x	1	2	3			
у	3	6	9			

2.
$$y = 2$$
; $x = 1$

$$3. f(x) = 2x - 1; x < 1$$

` ′				
x	1	0	-1	•••
у	1	-1	-1	

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

3/

Menggambar Fungsi Dengan Pergeseran

y = f(x)	y = f(x) + c	y = f(x) - c
Grafik asal	Menggeser grafik $y = f(x)$	Menggeser grafik $y = f(x)$
	keatas sejauh c	kebawah sejauh c
Contoh: $y = x^2$	$y = x^2 + 3$	$y = x^2 + 3$ $y \uparrow$
\overrightarrow{x}	3	$\frac{1}{2}$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

35

Menggambar Fungsi Dengan Pergeseran

y = f(x)	y = f(x + c)	y = f(x - c)	
Grafik asal	Menggeser grafik $y = f(x)$ kekiri sejauh c	Menggeser grafik $y = f(x)$ kekanan sejauh c	
Contoh: $y = x^2$	$y = (x+3)^2$ $y \uparrow$ -3 x	$y = (x - 2)^2$ $y \uparrow$ $2 \qquad x$	

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 9.

1. Sket grafik fungsi: f(x) = |x + 3| - 2

- Grafik awal adalah y = |x| (Garis biru)
- Grafik y = |x + 3| grafik y = |x| digeser kekiri sejauh 3 (Garis merah)
- Grafik y = |x + 3| 2 grafik y = |x + 3| digeser kebawah sejauh 2 (Garis hijau)

2. Sket grafik fungsi: $f(x) = 2 + \sqrt{x-3}$

- Grafik awal adalah $y = \sqrt{x}$ (Garis biru)
- Grafik $y = \sqrt{x-3}$ grafik $y = \sqrt{x}$ digeser kekanan sejauh 3 (Garis merah)
- Grafik $y = 2 + \sqrt{x 3}$ grafik $y = \sqrt{x 3}$ digeser keatas sejauh 2 (Garis hijau)

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

37

4.4 Fungsi Invers

Fungsi invers dari fungsi f merupakan kebalikan dari f, artinya jika pemetaan fungsi f dari A ke B maka pemetaan fungsi invers f, ditulis f^{-1} dari B ke A.

$$f: A \to B$$
$$f^{-1}: B \to A$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Syarat Fungsi mempunyai Invers

MATEMATIKA ITS

Perhatikan relasi himpunan A ke B

Gambar 1: $= f_1 : A \to B$ adalah fungsi karena untuk setiap $x \in A$ dipetakan tepat satu $y \in B$ $= R_1 : B \to A$ bukan fungsi karena ada satu $x \in A$ mempunyai dua peta di $y \in B$

Gambar 2: $f_2: A \to B$ adalah fungsi karena untuk setiap $x \in A$ dipetakan tepat satu $y \in B$ $R_2: B \to A$ adalah fungsi karena untuk setiap $y \in B$ dipetakan tepat satu $x \in A$ Pemetaaan R_2 merupakan pemetaan kebalikan dari f_2 , maka dikatakan R_2 adalah invers dari f_2 dinyatakan dengan f_2^{-1}

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

20

Berdasarkan Gambar 1 dan 2

- Syarat suatu fungsi f mempunyai invers adalah fungsi f harus fungsi satu-satu
- f: 1-1 jika setiap $x \in A$ berpasangan satu-satu ke $y \in B$

Bagaimana mengetahui f: 1-1

Untuk mengetahui bahwa f: 1-1 dari grafik f jika dibuat garis yang sejajar dengan sumbu x maka garis hanya memotong di satu titik.

Contoh 10.

fungsi: 1-1

Bukan fungsi: 1-1

fungsi: 1-1

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Mencari fungsi invers f: f^{-1}

Diberikan y = f(x) fungsi satu – satu, untuk mendapatkan f^{-1} dengan cara:

- 1. Ubah y = f(x) menjadi x = f(y)
- 2. Ganti x dengan y dan f(y) diganti dengan $f^{-1}(x)$ yang merupakan fungsi invers dari y = f(x)

Contoh 11.

1.
$$f(x) = 2x + 1 \leftrightarrow y = 2x + 1$$

 $x = y - 1 \leftrightarrow x = \frac{y - 1}{2} \to f^{-1}(x) = \frac{x - 1}{2}$

2.
$$f(x) = x^3 \leftrightarrow y = x^3$$

 $x = y^{\frac{1}{3}} \leftrightarrow f^{-1}(x) = x^{\frac{1}{3}}$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

. .

Hubungan f dengan f^{-1}

Diberikan $f(x) = x^3 \to f^{-1}(x) = x^{\frac{1}{3}}$

1. Grafik $f(x) = x^3 \operatorname{dan} f^{-1}(x) = x^{\frac{1}{3}}$

Grafik $f(x) = x^3 \operatorname{dan} f^{-1}(x) = x^{\frac{1}{3}}$ Simetri terhadap garis y = x

2. Domain dan Range $f(x) = x^3 \operatorname{dan} f^{-1}(x) = x^{\frac{1}{3}}$

$$f(2) = 2^3 = 8 \rightarrow f^{-1}(8) = 2$$

$$f(-2) = (-2)^3 = -8 \rightarrow f^{-1}(-8) = -2$$

Berlaku untuk nilai x lainnya,

Jadi:

Domain
$$f$$
 = Range f^{-1} ($D_f = R_{f^{-1}}$)

Range
$$f$$
 = Domain f^{-1} ($R_f = D_{f^{-1}}$)

3. Komposisi fungsi $f(x) = x^3 \operatorname{dan} f^{-1}(x) = x^{\frac{1}{3}}$

$$(f \circ f^{-1})(x) = f(x^{\frac{1}{3}}) = (x^{\frac{1}{3}})^3 = x$$

$$(f^{-1}of)(x) = f^{-1}(x^3) = (x^3)^{\frac{1}{3}} = x$$

$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 12.

1. Diberikan
$$f(x) = 2x + 1 \rightarrow f^{-1}(x) = \frac{x-1}{2}$$

1. Grafik $f(x) = 2x + 1 \rightarrow f^{-1}(x) = \frac{x - 1}{2}$ 2. Domain dan Range $f(x) = 2x + 1 \rightarrow f^{-1}(x) = \frac{x - 1}{2}$

Grafik
$$f(x) = 2x + 1 \operatorname{dan} f^{-1}(x) = \frac{x - 1}{2}$$

Simetri terhadap garis y = xDaryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

 $f(x) = 2x + 1 \to f^{-1}(x) = \frac{x-1}{2}$ $D_f = (-\infty, +\infty) \quad ; R_f = (-\infty, +\infty)$ $D_{f^{-1}} = (-\infty, +\infty) \; ; R_{f^{-1}} = (-\infty, +\infty)$ $D_f = R_{f^{-1}} \quad ; R_f = D_{f^{-1}}$

3. Komposisi fungsi $f(x) = 2x + 1 \to f^{-1}(x) = \frac{x - 1}{2}$ $(f \circ f^{-1})(x) = f\left(\frac{x - 1}{2}\right) = 2\left(\frac{x - 1}{2}\right) + 1 = x$

 $(f^{-1}of)(x) = f^{-1}(2x+1) = 2\left(\frac{x-1}{2}\right) + 1 = x$ $(fof^{-1})(x) = (f^{-1}of)(x) = x$

4

Membuat Fungsi Invers jika fungsi tidak 1-1

- Diberikan y = f(x) bukan fungsi 1-1, berarti y = f(x) tidak mempunyai fungsi invers.
- Jika y = f(x) dapat dibuat menjadi fungsi 1 1 dengan cara membatasi domainnya, maka y = f(x) mempunyai fungsi invers
- Pembatasan domain dari y = f(x) tanpa mengurangi interval range y = f(x)

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 13.

- Diberikan $f(x) = x^2 + 1$; $D_f = (-\infty, +\infty)$; $R_f = [1, +\infty)$.
- f(x) bukan fungsi 1-1, agar f(x) fungsi 1-1 domainnya dibatasi $D_f=[0,+\infty)$

Bukan fungsi: 1-1

$$D_f = (-\infty, +\infty)$$

$$R_f = [0, +\infty)$$

fungsi: 1-1

$$D_f=R_{f^{-1}}=[0,+\infty)$$

$$R_f=D_{f^{-1}}=[1,+\infty)$$

Fungsi invers

$$y = x^2 + 1 \leftrightarrow x = \sqrt{y - 1}$$
$$f^{-1}(x) = \sqrt{x - 1}$$

$$D_{f^{-1}}=[1,+\infty)$$

$$R_{f^{-1}} = [0, +\infty)$$

Komposisi Fungsi

$$(f \circ f^{-1})(x) = f(\sqrt{x-1})$$

= $(\sqrt{x-1})^2 + 1 = x$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Contoh 14.

- Diberikan $f(x) = x^2 2x 3$; $D_f = (-\infty, +\infty)$; $R_f = [-4, +\infty)$.
- f(x) bukan fungsi 1-1, agar f(x) fungsi 1-1 domain f dibatasi

Bukan fungsi: 1-1

Membuat f menjadi fungsi 1-1

- Cara membatasi domain f dengan memperhatikan garis simetri yaitu x = 1

$$f(x) = x^2 - 2x - 3$$
;
 $D_f = [1, +\infty)$; $R_f = [-4, +\infty)$.

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Mencari invers f

• Ubah y = f(x) menjadi x = g(y)

Ubah
$$y = f(x)$$
 menjadi $x = g(y)$
 $y = x^2 - 2x - 3 \leftrightarrow y = (x - 1)^2 - 4$
 $\leftrightarrow y + 4 = (x - 1)^2$
 $\leftrightarrow (x - 1) = \sqrt{y + 4}$

Ganti peubah x dengan y dan y dengan x didapat:

 $\leftrightarrow x = 1 + \sqrt{y+4}$

$$y = 1 + \sqrt{x+4} \rightarrow f^{-1}(x) = 1 + \sqrt{x+4};$$

 $D_{f^{-1}} = R_f = [1, +\infty); R_{f^{-1}} = D_f = [-4, +\infty)$

Komposisi fungsi

•
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(1 + \sqrt{x+4}) = (1 + \sqrt{x+4})^2 - 2(1 + \sqrt{x+4}) - 3 = x$$

•
$$(f^{-1}of)(x) = f^{-1}(f(x)) = f^{-1}(x^2 - 2x - 3) = (1 + \sqrt{x^2 - 2x - 3 + 4})$$

= $(1 + \sqrt{(x-1)^2} = 1 + x - 1 = x$

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Grafik fungsi

$$f(x) = x^2 - 2x - 3$$

 $D_f = [1, +\infty); R_f = [-4, +\infty)$

x	1	2	3	4	5
y	- 4	-3	0	5	12

$$f^{-1}(x) = 1 + \sqrt{x+4} \; ;$$

$$D_{f^{-1}} = [1, +\infty); R_{f^{-1}} = [-4, +\infty)$$

x	- 4	-3	0	5	12
у	1	2	3	4	5

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu

Limit Fungsi dan Kontinu

х	f(x)
1,1	3,310
1,01	3,030
1,001	3,003
1	1
1,000	?
†	1
0,999	2,997
0,99	2,970
0,9	2,710

Daryono, Matematika 1: Bab 4 Fungsi, Limit dan Kontinu