SCRUM Domain Optimization Model

Generated Assistant

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	3
4	4. Conditions	4
5	5. DecisionVariables	5

Introduction

This document formulates a mathematical optimization model over a SCRUM-oriented soft-ware development domain. It instantiates Sets (Entities), Indices, Goals (objectives), Conditions (constraints), and Decision Variables, using the previously provided CSVs: Entities.csv, Relationships.csv, Goals.csv, Conditions.csv, and DecisionVariables.csv. Attributes from entities are represented as parameters; selections and planning choices are represented as decision variables.

1 1. Sets (Entities)

- P (P): Projects (Project)
- \mathcal{T} (T): Teams (Team)
- W (W): Workers (Worker)
- \mathcal{F} (F): Features (Feature)
- S (S): Skills (Skill)
- \mathcal{R} (R): Roles (Role)
- \mathcal{PO} (PO): Product Owners (ProductOwner)
- \mathcal{SM} (SM): Scrum Masters (ScrumMaster)
- \mathcal{PB} (PB): Product Backlogs (ProductBacklog)
- SP (SP): Sprints (Sprint)
- \mathcal{SPP} (SPP): Sprint Plannings (SprintPlanning)
- \mathcal{DS} (DS): Daily Scrums (DailyScrum)
- \mathcal{SR} (SR): Sprint Reviews (SprintReview)
- \mathcal{SRE} (SRE): Sprint Retrospectives (SprintRetrospective)
- \mathcal{SBL} (SBL): Sprint Backlogs (SprintBacklog)
- SG (SG): Sprint Goals (SprintGoal)
- \mathcal{E} (E): Epics (Epic)
- \mathcal{US} (US): User Stories (UserStory)
- TSK (TSK): Tasks (Task)
- \mathcal{DEV} (DEV): Development Snapshots (DevelopmentSnapshot)
- \mathcal{BL} (BL): Blockers (Blocker)
- \mathcal{SH} (SH): Stakeholders (Stakeholder)
- VEL (VEL): Velocities (Velocity)
- \mathcal{REP} (REP): Release Plans (ReleasePlan)
- \mathcal{RM} (RM): Roadmaps (Roadmap)
- SCB (SCB): Scrum Boards (ScrumBoard)
- \mathcal{FED} (FED): Feature Documentations (FeatureDocumentation)

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R},$
- $po \in \mathcal{PO}$, $sm \in \mathcal{SM}$, $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$,
- $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$, $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$, $e \in \mathcal{E}$, $us \in \mathcal{US}$,
- $tsk \in TSK$, $dev \in DEV$, $bl \in BL$, $sh \in SH$, $vel \in VEL$,
- $rep \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fed \in \mathcal{FED}$.

3 3. Goals

Objective aggregation. We scalarize multiple goals using a weighted max–min formulation. Let w_i be the weight of goal i and $g_i(\cdot)$ its expression. Define:

$$\max Z = \sum_{i \in \mathcal{G}_{\text{max}}} w_i g_i - \sum_{i \in \mathcal{G}_{\text{min}}} w_i g_i,$$

where \mathcal{G}_{max} collects "max" goals and \mathcal{G}_{min} collects "min" goals. Below each goal lists its ID, name, and mathematical expression (the w_i correspond to the CSV Weight column).

Parameters (from entity attributes). For brevity we denote attributes as parameters:

 $\begin{aligned} & \texttt{max_velocity}[vel], \ \texttt{severity}[bl], \ \texttt{effort}[tsk], \ \texttt{achievement_of_goal}[sp], \ \texttt{number_of_entries}[pb], \\ & \texttt{budget}[p], \ \texttt{estimated_effort}[f], \ \texttt{story_points}[us], \ \texttt{relevance_to_feature}[sh], \ \texttt{attendees_count}[sr], \\ & \texttt{availability}[w], \ \texttt{benefit}[sg], \ \texttt{status}[\cdot], \ \texttt{acceptance_criteria}[us], \ \texttt{experience}[sm], \\ & \texttt{planned_date}[rep], \ \texttt{objectives}[rm], \ \texttt{linked_requirements}[fed], \ \texttt{last_updated}[pb]. \end{aligned}$

Decision variables (used by goals). Binary/real/integer variables are defined in Section 5; we reference: $x_F[f]$, $x_{US}[us]$, $x_{TSK}[tsk]$, $\alpha_W[w]$, $r_{SR}[sr]$, $b_P[p]$, $y_{SG}[sg]$, etc.

- G0 maximize_team_velocity (max). $g_0 = \sum_{vel \in \mathcal{VEL}} \max_{velocity[vel]} [vel].$
- G1 minimize_blocker_severity (min). $g_1 = \sum_{bl \in \mathcal{BL}} \text{severity}[bl] (1 \text{fix_BL}[bl]).$
- $\begin{array}{ll} \bullet \ \, \mathbf{G2} & \mathbf{minimize_task_effort\ (min)}. \\ g_2 & = \sum_{tsk \in \mathcal{TSK}} \mathsf{effort}[tsk]\ x_{TSK}[tsk]. \end{array}$
- $\begin{array}{ll} \bullet \ \mathbf{G3} & \mathbf{maximize_sprint_goal_achievement} \ (\mathbf{max}). \\ g_3 & = \sum_{sp \in \mathcal{SP}} \mathtt{achievement_of_goal}[sp]. \end{array}$
- $\begin{array}{l} \bullet \ \, \mathbf{G4} \quad & \mathbf{minimize_backlog_size} \ \, (\mathbf{min}). \\ g_4 \ = \ \sum_{pb \in \mathcal{PB}} \mathtt{number_of_entries}[pb] \ \ \sum_{pb \in \mathcal{PB}} \mathtt{limit_PB}[pb]. \end{array}$
- G5 minimize_project_budget (min). $g_5 = \sum_{p \in \mathcal{P}} b_P[p].$

• G6 minimize_feature_effort (min).
$$g_6 = \sum_{f \in \mathcal{F}} \text{estimated_effort}[f] \ x_F[f].$$

$$\begin{array}{ll} \bullet \ \ \mathbf{G7} & \mathbf{maximize_user_story_points_done} \ \ (\mathbf{max}). \\ g_7 & = \sum_{us \in \mathcal{US}} \mathtt{story_points}[us] \ x_{US}[us]. \end{array}$$

• G8 maximize_stakeholder_relevance (max).

$$g_8 = \sum_{sh \in SH} \frac{-}{\text{relevance_to_feature}[sh]}.$$

• G9 maximize review attendance (max).

$$g_9 \ = \ \sum_{sr \in \mathcal{SR}} \overline{r_{SR}[sr]} \quad \text{(with } 0 \le r_{SR}[sr] \le \mathtt{attendees_count}[sr]).$$

• G10 maximize team availability (max).

$$g_{10} \ = \ \sum_{w \in \mathcal{W}} \alpha_W[w] \cdot \text{availability}[w].$$

• G11 maximize_benefit_of_sprint_goal (max).

$$g_{11} = \sum_{sg \in \mathcal{SG}} \mathtt{benefit}[sg] \, \mathbb{I}[y_{SG}[sg] \, \mathtt{selected}].$$

• G12 minimize_cycle_instability (min).
$$g_{12} \ = \ \sum_{sp \in \mathcal{SP}} \left(1 - \mathbb{I}[\mathsf{status}[sp] \ \mathsf{stable}]\right).$$

4 4. Conditions

Each condition C_j appears as a logical rule and its mathematical constraint.

• C0 capacity respected. (Must-Match)

Logical: Total selected task effort must not exceed reserved team capacity.

$$\text{Mathematical: } \sum_{tsk \in \mathcal{TSK}} \texttt{effort}[tsk] \; x_{TSK}[tsk] \; \leq \; \sum_{t \in \mathcal{T}} \texttt{cap_T}[t].$$

• C1 mandatory high severity blockers addressed. (Must-Match)

Logical: All high-severity blockers must be fixed.

Mathematical: For all $bl \in \mathcal{BL}$ with severity $[bl] \geq \theta^{\text{sev}}$: fix_BL[bl] = 1.

• C2 stories have acceptance criteria. (Must-Match)

Logical: Only stories with acceptance criteria can be selected.

Mathematical: $\forall us \in \mathcal{US}: x_{US}[us] \leq \mathbb{I}[\text{acceptance_criteria}[us] \text{ present}].$

• C3 team is active. (Must-Match)

Logical: Inactive teams cannot carry capacity.

Mathematical: $\forall t \in \mathcal{T} : \text{cap_T}[t] \leq M \cdot \mathbb{I}[\text{team_status}[t] = \text{active}].$

• C4 po available for planning. (Must-Match)

Logical: If PO is unavailable, no new user stories are selected.

Mathematical: $\sum_{us \in \mathcal{US}} x_{US}[us] \leq M \cdot \mathbb{I}[\text{availability}[po] \geq \theta^{po}].$

• C5 sm experienced threshold. (May-Match)

Logical: Prefer sprints moderated by sufficiently experienced SM.

Mathematical: $\mathbb{I}[\mathsf{experience}[sm] \geq \theta^{sm}] = 1 \text{ (soft; can be enforced or rewarded)}.$

- C6 feature status ready. (Must-Match)
 - Logical: Only "ready" features can be selected for release.

Mathematical: $\forall f \in \mathcal{F} : x_F[f] \leq \mathbb{I}[\mathtt{status}[f] = \mathrm{ready}].$

- C7 sprint dates valid. (Must-Match)
 - Logical: Each sprint must have end date > start date.

Mathematical: $\forall sp \in \mathcal{SP}$: end_date[sp] - start_date[sp] ≥ 1 .

• C8 backlog is current. (May-Match)

Logical: Prefer backlogs updated recently; visibility cap cannot exceed entries.

Mathematical: $\forall pb \in \mathcal{PB}$: $limit_PB[pb] \leq number_of_entries[pb]$.

- C9 release has planned date. (Must-Match)
 - Logical: Release batch size is defined only if a planned date exists.

Mathematical: $\forall rep \in \mathcal{REP}$: batch_REP[rep] $\leq M \cdot \mathbb{I}[planned_date[rep]]$ set].

• C10 roadmap has objectives. (May-Match)

Logical: Roadmap should specify objectives if release plans are scheduled.

Mathematical: $\sum_{ren \in \mathcal{REP}} \text{batch_REP}[rep] \leq M \cdot \mathbb{I}[\text{objectives}[rm] \text{ present}].$

• C11 doc linked to feature. (Must-Match)

Logical: Selected features must have linked documentation.

Mathematical: $\forall f \in \mathcal{F} : x_F[f] \leq \mathbb{I}[\exists fed \in \mathcal{FED} : linked_requirements[fed] \ni f].$

• C12 team size within bounds. (May-Match)

Logical: Capacity per team proportional to team size (through velocity-per-person ν).

Mathematical: $\forall t \in \mathcal{T} : \mathsf{cap_T}[t] \leq \nu \cdot \mathsf{team_size}[t]$.

5 5. DecisionVariables

Let M be a sufficiently large constant, \mathbb{Z} integers, \mathbb{Z}_+ nonnegative integers, and [a,b] a real interval.

- DV0 select feature for release: $x_F[f] \in \{0,1\} \ \forall f \in \mathcal{F}$.
- DV1 assign user story to sprint: $x_{US}[us] \in \{0,1\} \ \forall us \in \mathcal{US}$.
- DV2 activate task: $x_{TSK}[tsk] \in \{0,1\} \ \forall tsk \in \mathcal{TSK}$.
- DV3 allocate_budget project: $b_P[p] \in [0, 10^8] \subset \mathbb{R} \ \forall p \in \mathcal{P}$.
- DV4 set story priority adjustment: $\Delta \pi_{US}[us] \in \{-5, ..., 5\} \subset \mathbb{Z} \ \forall us \in \mathcal{US}.$
- DV5 team capacity reserved points: $cap_T[t] \in \mathbb{Z}_+$, $0 \le cap_T[t] \le 500 \ \forall t \in \mathcal{T}$.
- DV6 set sprint goal focus: $y_{SG}[sg] \in \{0, 1, 2, 3\} \subset \mathbb{Z} \ \forall sg \in \mathcal{SG}$.
- DV7 staff availability override: $\alpha_W[w] \in [0,1] \subset \mathbb{R} \ \forall w \in \mathcal{W}$.
- DV8 select blocker fix now: fix_BL[bl] $\in \{0,1\} \ \forall bl \in \mathcal{BL}$.
- DV9 enable ci stage deploy: deploy_DEV[dev] $\in \{0,1\} \ \forall dev \in \mathcal{DEV}$.
- DV10 number_of_review_attendees_target: $r_{SR}[sr] \in \mathbb{Z}_+, \ 0 \le r_{SR}[sr] \le 200 \ \forall sr \in \mathcal{SR}.$
- DV11 set_release_batch_size: batch_REP[rep] $\in \mathbb{Z}_+$, $0 \le batch_REP[rep] \le 200 \ \forall rep \in \mathcal{REP}$.

• DV12 limit_backlog_entries_visible: limit_PB[pb] $\in \mathbb{Z}_+, \ 0 \le \text{limit}_PB[pb] \le 1000 \ \forall pb \in \mathcal{PB}.$

Full scalarized objective (with weights). Let W_i be the CSV weights of G_i (e.g., $W_0=1.0$, $W_1=1.0$, $W_2=1.0$, $W_3=1.2$, $W_4=0.6$, $W_5=1.5$, $W_6=1.0$, $W_7=0.9$, $W_8=0.7$, $W_9=0.5$, $W_{10}=1.1$, $W_{11}=0.8$, $W_{12}=0.3$). Then:

 $\max Z \ = \ W_0 \, g_0 \ - \ W_1 \, g_1 \ - \ W_2 \, g_2 \ + \ W_3 \, g_3 \ - \ W_4 \, g_4 \ - \ W_5 \, g_5 \ - \ W_6 \, g_6 \ + \ W_7 \, g_7 \ + \ W_8 \, g_8 \ + \ W_9 \, g_9 \ + \ W_$