Course Name:Linear Algebra (MT 104)

Topic:Matrix Equation (Exercise 1.4)

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

September 19, 2020

Discuss Exercise 1.3

1.4 The Matrix Equation $\mathbf{A}\mathbf{x} = \mathbf{b}$

- Matrix-Vector Multiplication
 - Linear Combination of the Columns
- Matrix Equation
 - Three Equivalent Ways of Viewing a Linear System
- Existence of Solution
 - Matrix Equation Equivalent Theorem
- Another method for computing Ax
 - Row-Vector Rule

Matrix-Vector Multiplication

Key Concepts to Master

Linear combinations can be viewed as a matrix-vector multiplication.

Matrix-Vector Multiplication

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbf{R}^n , then the product of A and \mathbf{x} , denoted by $A\mathbf{x}$, is the linear combination of the columns of \mathbf{A} using the corresponding entries in \mathbf{x} as weights. i.e.,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

Matrix-Vector Multiplication: Examples

Example
$$\begin{bmatrix} 1 & -4 \\ 3 & 2 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ -6 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + -6 \begin{bmatrix} -4 \\ 2 \\ 5 \end{bmatrix} =$$

$$\begin{bmatrix} 7 \\ 21 \\ 0 \end{bmatrix} + \begin{bmatrix} 24 \\ -12 \\ -30 \end{bmatrix} = \begin{bmatrix} 31 \\ 9 \\ -30 \end{bmatrix}$$

Matrix-Vector Multiplication: Examples

Example

Write down the system of equations corresponding to the augmented matrix below and then express the system of equations in vector form and finally in the form $A\mathbf{x} = \mathbf{b}$ where \mathbf{b} is a 3×1 vector.

$$\left[\begin{array}{ccccc}
2 & 3 & 4 & 9 \\
-3 & 1 & 0 & -2
\end{array}\right]$$

Solution: Corresponding system of equations (fill-in)

Vector Equation:

$$\left[\begin{array}{c}2\\-3\end{array}\right]+ \qquad \left[\begin{array}{c}3\\1\end{array}\right]+ \qquad \left[\begin{array}{c}4\\0\end{array}\right]= \left[\begin{array}{c}9\\-2\end{array}\right].$$

Matrix equation (fill-in):

Matrix Equation

Three Equivalent Ways of Viewing a Linear System

- as a system of linear equations;
- ② as a vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$; or
- **3** as a matrix equation $A\mathbf{x} = \mathbf{b}$.

Useful Fact

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a

---- of the columns of A.

Matrix Equation: Theorem

Theorem

If A is a $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if \mathbf{b} is in \mathbf{R}^m , then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

Matrix Equation: Example

Example

Let
$$A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all \mathbf{b} ?

Solution: Augmented matrix corresponding to $A\mathbf{x} = \mathbf{b}$:

$$\begin{bmatrix} 1 & 4 & 5 & b_1 \\ -3 & -11 & -14 & b_2 \\ 2 & 8 & 10 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 5 & b_1 \\ 0 & 1 & 1 & 3b_1 + b_2 \\ 0 & 0 & 0 & -2b_1 + b_3 \end{bmatrix}$$

A**x** = **b** is _____ consistent for all **b** since some choices of **b** make $-2b_1 + b_3$ nonzero.

40 8 400 8 42 8 42 8 8

Matrix Equation: Example (cont)

$$A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix}$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3$$

The equation $A\mathbf{x} = \mathbf{b}$ is consistent if

$$-2b_1 + b_3 = 0$$
.
(equation of a plane in \mathbf{R}^3)
 $x_1\mathbf{a}_1 + x_2\mathbf{a}_3 + x_3\mathbf{a}_3 = \mathbf{b}$
if and only if $b_3 - 2b_1 = 0$.

Columns of A span a plane in \mathbb{R}^3 through $\mathbf{0}$

Instead, if any **b** in \mathbb{R}^3 (not just those lying on a particular line or in a plane) can be expressed as a linear combination of the columns of A, then we say that the columns of A span \mathbb{R}^3 .

Matrix Equation: Span R^n

Definition

We say that **the columns of** $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_p]$ **span** \mathbf{R}^m if every vector \mathbf{b} in \mathbf{R}^m is a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_p$ (i.e. $\mathrm{Span}\{\mathbf{a}_1, \ldots, \mathbf{a}_p\} = \mathbf{R}^m$).

Theorem (4)

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent:

- **1** For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- **2** Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3 The columns of A span \mathbb{R}^m .
- A has a pivot position in every row.

Matrix Equation: Example

Solution: A has only ____ columns and therefore has at most ____ pivots. Since A does not have a pivot in every ____, $A\mathbf{x} = \mathbf{b}$ is ____ for all possible \mathbf{b} , according to Theorem 4.

Matrix Equation: Example

Example

Do the columns of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 3 & 9 \end{bmatrix}$$
 span \mathbb{R}^3 ?

Solution:

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 3 & 9 \end{array}\right] \sim$$

(no pivot in row 2)

By Theorem 4, the columns of A