# DNN Accelerator Architectures

# **Highly-Parallel Compute Paradigms**

#### Temporal Architecture(SIMD/SIMT)



Mostly in CPU & GPU

Centralized control for many ALUs (cannot communicate directly with each other directly

# **Spatial Architecture (Dataflow Processing)**



Data are passed from one ALU to another ALU Mostly in ASIC or FPGA





Worst Case: all memory R/W are **DRAM** accesses

• Example: AlexNet [NIPS 2012] has **724M** MACs

→2896M DRAM accesses required





Opportunities: 1 data reuse





## Types of Data Reuse in DNN

#### **Convolutional Reuse**

In CONV layers only (sliding window)



Reuse Both Activations and Filter weights

#### **Fmap Reuse**

In both CONV and FC layers



**Reuse Activations** 

#### Filter Reuse

In both CONV and FC layers (batch size > 1)



Reuse Filter weights



Opportunities: 1 data reuse

Can reduce DRAM reads of filter/fmap by up to 500×\*\*

\*\* AlexNet CONV layers



#### Opportunities: 1 data reuse 2 local accumulation

- 1) Can reduce DRAM reads of filter/fmap by up to 500×
- Partial sum accumulation does NOT have to access DRAM

Example: DRAM access in AlexNet can be reduced from **2896M** to **61M** (best case)

#### **Spatial Architecture for DNN**



#### **Low-Cost Local Data Access**



# Normalized Energy Cost\* ALU 1× (Reference) 1× NoC: 200 – 1000 PEs PE ALU 2× 100 – 500 kB Global Buffer DRAM ALU 200×

<sup>\*</sup> measured from a commercial 65nm proces\$6

#### **Low-Cost Local Data Access**

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

specialized **processing dataflow** required!



<sup>\*</sup> measured from a commercial 65nm proces\$7

# Dataflow Taxonomy

- Weight Stationary (WS)
- Output Stationary (OS)
- No Local Reuse (NLR)
- Row Stationary

# Weight Stationary (WS)



- Minimize weight read energy consumption
  - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate psums spatially across the PE array.

# WS Example: nn-X (NeuFlow)

#### A 3×3 2D Convolution Engine



# **Output Stationary (OS)**



- Minimize partial sum R/W energy consumption
  - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

## No Local Reuse (NLR)



- Use a large global buffer as shared storage
  - Reduce **DRAM** access energy consumption
- Multicast activations, single-cast weights, and accumulate psums spatially across the PE array

## **NLR Example: TPU**

#### **Top-Level Architecture**

#### **Matrix Multiply Unit**



# **Energy Efficiency Comparison**

Same total area

- 256 PEs
- AlexNet CONV layers Batch size = 16



# **Energy Efficiency Comparison**

Same total area

- 256 PEs
- AlexNet CONV layers Batch size = 16



# Energy-Efficient Dataflow: Row Stationary (RS)

- Maximize reuse and accumulation at RF
- Optimize for overall energy efficiency instead for only a certain data type

#### Row Stationary: Energy-efficient Dataflow

















- Maximize row convolutional reuse in RF
  - Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF











#### **Convolutional Reuse Maximized**



Filter rows are reused across PEs horizontally

#### **Convolutional Reuse Maximized**



Fmap rows are reused across PEs diagonally

## Maximize 2D Accumulation in PE Array



Partial sums accumulate across PEs vertically

## **DNN Processing – The Full Picture**



Map rows from multiple fmaps, filters and channels to same PE to exploit other forms of reuse and local accumulation

52

# **Optimal Mapping in Row Stationary**



# **Computer Architecture Analogy**



# Hardware Architecture for RS Dataflow

#### **Eyeriss DNN Accelerator**



# **Data Delivery with On-Chip Network**



# Data Delivery with On-Chip Network

14×12 PE Array **Data Delivery Patterns** Filt Img <u>Psum</u> **Filter Image** Psum | **Delivery Delivery** 

Compared to Broadcast, Multicast saves >80% of NoC energy

## **Chip Spec & Measurement Results**

| Technology         | TSMC 65nm LP 1P9M       |
|--------------------|-------------------------|
| On-Chip Buffer     | 108 KB                  |
| # of PEs           | 168                     |
| Scratch Pad / PE   | 0.5 KB                  |
| Core Frequency     | 100-250 MHz             |
| Peak Performance   | 33.6-84.0 GOPS          |
| Word Bit-width     | 16-bit Fixed-Point      |
|                    | Filter Width: 1 – 32    |
|                    | Filter Height: 1 – 12   |
| Natively Supported | Num. Filters: 1 – 1024  |
| DNN Shapes         | Num. Channels: 1 – 1024 |
|                    | Horz. Stride: 1–12      |
|                    | Vert. Stride: 1, 2, 4   |



To support 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

#### **Summary of DNN Dataflows**

#### Weight Stationary

- Minimize movement of filter weights
- Popular with processing-in-memory architectures

#### Output Stationary

- Minimize movement of partial sums
- Different variants optimized for CONV or FC layers

#### No Local Reuse

No PE local storage → maximize global buffer size

#### Row Stationary

Adapt to the NN shape and hardware constraints –
 Optimized for overall system energy efficiency

# Backup Slides