1 Úvod

Poznámka (Domluva)

 $\mathbb N$ jsou přirozená čísla s 0. n značí přirozené číslo.

Dále se probírali základy značení a teorie množin.

Definice 1.1 (Základy)

Základem výrokové logiky je 5 symbolů (2 hodnoty + 3 logické spojky): $\top \bot \neg \land \lor = \text{pravda}$, lež, negace, a, nebo.

Dále jsou to výrokové atomy z nějaké abecedy. Libovolný výrok je pak konečným aplikováním logických spojek.

Definice 1.2 (Pravdivostní ohodnocení)

Pravděpodobnostní ohodnocení je zobrazení t z prvovýroků do $\{0,1\}$. Toto zobrazení lze jednoznačně rozšířit na t' na všechny výroky:

$$t'(\top) = 1, t'(\bot) = 0, t'(\neg a) = 1 - t'(a), t'(a \lor b) = \max\{t'(a), t'(b)\}, t'(a \land b) = \min\{t'(a), t'(b)\}$$

Definice 1.3

Pomocí pravdivostního ohodnocení můžeme zavést implikaci (spojka mezi premisou (antecedent) a závěrem (konsekvent)).

Definice 1.4 (Tautologie)

p je tautologie (notace $\models p) \equiv t(p)=1$ pro všechna $t:A \to \{0,1\}.$ p je splnitelné \equiv existuje $t:A \to \{0,1\}$ takové, že t(p)=1.

Lemma, 1 de (Zákony inempotence, komutativity, asociativity, distributivity, absorbce, 1 de Morganovy)

Viz skripta.

Definice 1.5 (Model)

Model (koho, čeho) Σ (výrokové teorie) je každé pravděpodobnostní ohodnocení t, které přiřazuje 1 všem výrokům ze Σ . Říkáme, že p je tautologický důsledek Σ (píšeme $\Sigma \models p$, říkáme p vyplývá ze Σ) $\equiv t(p) = 1$ pro všechny modely t (koho čeho) Σ .

Poznámka

 $\models p$ je totéž, co $\emptyset \models p$.

Lemma 1.2

 $Vlastnosti \models . Viz skripta.$

Definice 1.6 (Arita)

Mějme množinu symbolů F a zobrazení $a:F\to\mathbb{N}$. Říkáme, že symbol $f\in F$ má aritu $n\equiv a(f)=n$.

Řekněme, že slovo je přijatelné \equiv TODO.

Definice 1.7 (Arita logických symbolů)

Aritu symbolů ar definujeme pro $F = A \cup \{\top, \bot, \neq, \lor, \land\}$ jako $ar(x) = 0, x \in A \cup \{\top, \bot\}, ar(\neq) = 1, ar(\lor, \land) = 2.$

Lemma 1.3

Buďte t_1, \ldots, t_m a u_1, \ldots, u_n jsou přijatelná slova a w libovolné slovo tak, že $t_1 \ldots t_m w = u_1 - u_n$. Potom $m \leq n$, $t_i = u_i$ pro $i \in [m]$ a $w = u_{m+1} \ldots u_n$.

 $D\mathring{u}kaz$

Indukcí podle velikosti $u_1 \dots u_n$.

Definice 1.8 (Modus Ponens (= MP = odvozovací pravidla))

 $Z p a p \implies q$, odvodíme q.

Definice 1.9 (Důkaz)

Formální důkaz (či důkaz) $p \ge \Sigma$ je sekvence p_1, \ldots, p_n , kde $n \ge 1$ a $p_n = p$ tak, že $\forall k \in [n]$: buď $p_k \in Sigma$, nebo p_k je výrokový axiom (viz skripta), nebo $\exists i, j \in [k-1]$ tak, že p_k lze odvodit pravidlem MP z p_i a p_j .

Říkáme, že p je dokazatelné ze Σ , a značíme $\Sigma \vdash p$

Tvrzení 1.4

 $Pokud \Sigma \vdash p, pak \Sigma \models p.$

 $D\mathring{u}kaz$

Jednoduchý.

Věta 1.5 (O úplnosti (1. znění))

$$\Sigma \vdash p \Leftrightarrow \Sigma \models p.$$

Věta 1.6 (Kompaktnost logiky)

Pokud $\Sigma \models p$, pak existuje konečná podmnožina $\Sigma_0 \subseteq \Sigma$ tak, že $\Sigma_0 \models p$.

 $D\mathring{u}kaz$

Vyplývá z předchozí věty

Definice 1.10 (Konzistentnost)

Říkáme, že Σ je nekonzistentní, pokud $\Sigma \vdash \bot$, jinak (pokud $\Sigma \nvdash \bot$) je konzistentní.

Věta 1.7 (O úplnosti (2. znění))

 Σ je konzistentní právě tehdy, když má model.

Dusledek

 Σ má model \Leftrightarrow každá konečná podmnožina Σ má model.

Lemma 1.8 (Dedukce)

 $P\check{r}edpokl\acute{a}dejme\ \Sigma \cup \{p\} \vdash q.\ Potom\ \Sigma \vdash p \implies q.$

Důkaz (Indukcí)

Pokud je q výrokový axiom, pak $\Sigma \vdash q$ a jelikož $q \Longrightarrow (p \Longrightarrow q)$ je výrokový axiom, MP říká $\Sigma \vdash p \Longrightarrow q$. Pokud $q \in \Sigma \cup \{p\}$, pak buď TODO

Důsledek

 $\Sigma \vdash p$ tehdy a pouze tehdy, když $\Sigma \cup \{\neg\}$ je nekonzistentní.

 $D\mathring{u}kaz$

 \Longrightarrow : Předpokládejme, že $\Sigma \vdash p$. Jelikož $p \implies (\neg p \implies \bot)$ je výrokový axiom, můžeme 2krát použít MP a získat $\Sigma \cup \{p\}$ TODO

Z druhého znění věty o úplnosti vyplývá první znění.

Definice 1.11

Říkáme, že Σ je kompletní (úplná, ale s větou o úplnosti nemá nic společného), pokud Σ je konzistentní a pro všechna p je buď $\Sigma \vdash p$ nebo $\Sigma \vdash \neg p$.

Lemma 1.9 (Lindenbaum)

Nechť Σ je konzistentní. Pak existuje kompletní Σ' tak, že $\Sigma \subseteq \Sigma'$.

Důkaz

Zornovo lemma. TODO. Pokud je axiomů konečně, tak můžeme udělat důkaz bez Zornova lemmatu. $\hfill\Box$

Definice 1.12 (Pravdivostní ohodnocení v závislosti na Σ)

 $t_{\Sigma}: A \to \{0,1\}, \ t_{\Sigma}(a) = 1$, pokud $\Sigma \vdash a$, jinak $t_{\Sigma}(a) = 0$.

Lemma 1.10

Předpokládejme, že Σ je kompletní, potom pro každé p máme

$$\Sigma \vdash p \Leftrightarrow t_{\Sigma}(p) = 1.$$

Nevoli t_{Σ} je model Σ .

 $D\mathring{u}kaz$

Indukcí podle počtu spojek. TODO.