3. Rings

3.1 Rings

 $(R,+,\cdot)$ where

- (R,+) is a group
- Multiplicative identity: 1a = a1 = a
- a(bc) = (ab)c
- a(b+c) = ab + ac and (b+c)a = ba + ca

Properties

- a0 = 0a = 0
- a(-b) = (-a)b = -(ab)
- (-a)(-b) = ab

Integral Domain

commutative ring with unity and no zero-divizors(for $a \in R$ an element $b \in R$ s.t. ab = 0)

Characteristic of a ring ${\cal R}$

least positive integer n s.t. $nx = 0 \ \forall x \in R$ Notation: charR

Let R be a ring with unity 1.

- If $ord(1) = \infty$ under addition => charR = 0.
- If ord(1) = n under addition => charR = n.

Proof

$$n \cdot x = x + x + ... + x = 1x + 1x + ... + 1x = (n \cdot 1)x = 0x = 0 \ \forall x \in R$$

Field

A field is a commutative ring with unity in which every nonzero element is a unit

Example

 \mathbb{Z}_p for p prime

Homomorphisms

If R is a ring with unity and charR=n>0 then S< R is a subring isomorphic to \mathbb{Z}_n . If charR=0 then $S\approx \mathbb{Z}$