Instituto Politécnico Nacional Ingeniería en Sistemas Computacionales

Laboratorio de Instrumentación

Practica N° 1 Determinación de errores en instrumentos

Alumno:	Δ	ΛI	
Boleta:	Grupo:	<u>IV</u>	
Profesor:	_		
Fecha de elaboración:	/	/	•

Determinación de errores

Objetivo

Al término de la práctica el alumno aprenderá a manejar los errores en los instrumentos de medición, para de esta manera encontrar el valor más exacto posible de la variable en cuestión.

Equipo empleado

- ✓ 1 Multimetro analógico
- √ 1 Multimetro digital
- √ 1 Osciloscopio
- √ 1 Fuente de VCD variable
- √ 1 Generador de funciones
- √ 4 Puntas Banana Banana
- ✓ 2 Puntas Banana Caimán
- ✓ 2 Puntas de Osciloscopio
- ✓ 1 Punta BNC BNC

- ✓ Protoboard
- ✓ Resistencias

Desarrollo de la práctica

1.- Calculo del valor más exacto

Tome un resistor de cualquier valor y utilizando un ohmetro digital y uno analógico realice las mediciones que se piden en la tabla 1, participando todos los miembros del equipo.

Tabla 1

Participantes	Ohmetro Analógico	Ohmetro Digital
Medición 1		
Medición 2		
Medición 3		
Medición 4		
Medición 5		
Medición 6		
Medición 7		
Medición 8		
Medición 9		
Medición 10		
Medición 11		
Medición 12		

En este caso la variable a medir es la resistencia, que denominaremos como una variable X, para cada tipo de ohmetro se realizaron Xi medidas, proceda ahora a calcular el promedio X_{PROM} para cada instrumento utilizando la expresión matemática siguiente:

$$X_{PROM} = \frac{\sum X_i}{n}$$

XPROM Ohmetro Analógico =

X_{PROM} Ohmetro Digital =

Proceda ahora a calcular los residuos (Ri), tomando en cuenta la expresión siguiente, observe que como los resultados pueden ser < 0 tome el valor absoluto de la siguiente manera:

$$\Delta Xi = Ri = |Xi - X_{PROM}|$$

ΔXi = Ri = Xi – X _{PROM} (Ohmetro Analógico)	ΔXi = Ri = Xi – X _{PROM} (Ohmetro Digital)
Σ Ri =	Σ Ri =

Calcule el promedio del valor absoluto de los residuos (r), utilizando la expresión siguiente: $r=\frac{1}{n}\ \Sigma\ Ri$

r = (Ohmetro Analógico)	r = (Ohmetro Digital)
r =	r =

Ahora suponga que el conjunto de medidas $X_1,\ X_2,\ \dots\ ,\ X_n$ tienen una distribución gaussiana, por lo que se puede obtener una formula sencilla para el error típico (σ_m) de la siguiente forma.

$$\sigma_m = 1.25 \frac{r}{(n-1)^{-1/2}}$$

σ _m = (Ohmetro Analógico)	σ _m = (Ohmetro Digital)
σ_{m} =	σ _m =

Es el error típico y es llamada fórmula de Peters, por último el resultado lo expresara como:

$$Y = X_{PROM} \pm \sigma_m$$

Y Ohmetro Analógico =

Y Ohmetro Digital =

2.- Mediciones indirectas

Arme el circuito de la figura 1, fijar los resistores variables a cualquier valor de resistencia, utilizando un ohmetro patrón (puede utilizar también resistencias de valor fijo, de cualquier valor).

A partir del voltaje de referencia que entrega la fuente de alimentación, medir el voltaje y corriente en cada una de las resistencias y llenar la tabla 2.

Tabla 2

Voltaje de la fuente (V)	E _{R1} (medido)	E _{R2} (medido)	I _{R1} (medido)	I _{R2} (medido)
2				
4				
6				
8				
10				

Figura 1

A continuación, con los valores de los resistores R1 y R2, y los diferentes valores de voltaje de la fuente E, calcule los voltajes ER1, ER2, IR1 e IR2, y llene la tabla 3.

Tabla 3

Voltaje de la fuente (V)	E _{R1} (calculado)	E _{R2} (calculado)	I _{R1} (calculado)	I _{R2} (calculado)
2				
4				
6				
8				
10				

Por último calcule los valores de resistencia, empleando la ley de ohm, dividiendo voltaje/corriente, para cada voltaje de la fuente E. Realizar esta operación para los valores medidos y calculados, con los resultados llene la tabla 4.

Tabla 4

Voltaje de la fuente (V)	R1 (medido)	R2 (medido)	R1 (calculado)	R2 (calculado)	% Error R1	% Error R2
2						
4						
6						
8						
10						

3.- Medida patrón

Con el osciloscopio fije en el generador de funciones una señal senoidal con una amplitud de 10 Vp-p a una frecuencia de 60 Hz.

Considere al osciloscopio como un instrumento patrón, a continuación determine el porcentaje de error del voltmetro llenando la Tabla 4.

Tabla 5

V _{p-p} del osciloscopio	V _{RMS} del osciloscopio calculado	V _{p-p} del voltmetro calculado	% Error (V _{RMS})	% Error (V _{p-p})
10				

Cuestionario

1. Se obtuvieron las siguientes medidas para la resistencia de una bobina de alambre dada en Ohms (Ω) . Calcule el error típico y el valor más exacto de la resistencia.

- 2. ¿Por qué es importante determinar el error de los instrumentos de medición?
- 3. ¿Qué tipos de errores conoce? Y diga de que manera se pueden evitar.

Conclusiones

Anote las conclusiones a las que llego con el desarrollo de esta práctica.