TÍTULOS PÚBLICOS FEDERAIS

Metodologia de Cálculo dos Títulos Públicos Federais Ofertados nos Leilões Primários

O objetivo deste guia é facilitar o entendimento dos investidores sobre algumas peculiaridades pertencentes aos títulos da Dívida Pública Mobiliária Federal Interna (DPMFi). Mostramos abaixo como são calculados os juros e o principal dos títulos públicos federais ofertados no leilão primário. Seguem algumas tabelas com as principais características dos títulos e as regras de arredondamento e truncamento que permitirão calcular de forma precisa o preço, a taxa ou a cotação do papel. Além disso, para cada título público será apresentado um exemplo hipotético demonstrando todos os passos e detalhes que devem ser observados.

A Tabela 1 (abaixo) apresenta as características dos títulos públicos federais ofertados no leilão primário.

TABELA 1 Características Gerais dos Títulos Públicos Federais

Título	Índice	Cupom de Juros	Vencimento mais longo	Tipo	Valor de Face no Vencimento
LTN (Letra do Tesouro Nacional)	-	-	Aprox. 24 meses		
NTN-F (Nota do Tesouro Nacional – Série F)	-	10% a.a. pago semestralmente	Aprox. 10 anos	Prefixado	R\$ 1.000,00
NTN-B (Nota do Tesouro Nacional – Série B)	IPCA Índice de preços Fonte: IBGE (www.ibge.gov.br)	6% a.a. pago semestralmente	Aprox. 40 anos	Indexado à	-
NTN-C (Nota do Tesouro Nacional – Série C)	IGP-M Índice de preços Fonte: FGV (www.fgv.br)	6 ou 12% a.a. pago semestralmente	Aprox. 25 anos	inflação	-
LFT (Letra Financeira do Tesouro)	Selic Taxa de juros Fonte: Banco Central (www.bcb.gov.br)	-	Aprox. 5 anos	Flutuante	-

Fonte: STN.

Obs: Modalidade dos títulos => escriturais, nominativos e negociáveis.

Além das características, é importante mencionar as fórmulas utilizadas no cálculo de preços, taxas e cotações. Como alguns papéis pagam juros semestrais ao longo de suas vidas e outros não, algumas particularidades na precificação devem ser observadas. Ademais, é importante notar que, no caso de títulos com taxas pós-fixadas, a cotação precisa ser obtida antes do cálculo do preço do título em si.

A Tabela 2 mostra as principais fórmulas utilizadas para o cálculo do preço e da cotação de cada papel.

TABELA 2
Fórmulas Utilizadas para o Cálculo de Preço e
Cotação dos Títulos Públicos Federais

Título	Preço	Valor Nominal Atualizado (VNA)	Cotação
LTN (Letra do Tesouro Nacional)	$\frac{1.000,00}{(1+taxa)^{\frac{du}{252}}}$	-	-
NTN-F (Nota do Tesouro Nacional – Série F)	$ \left[\frac{1000 \times \left(1,10^{0.5} - 1\right)}{\left(1 + taxa\right)^{du} \frac{1}{252}}\right] + \left[\frac{1000 \times \left(1,10^{0.5} - 1\right)}{\left(1 + taxa\right)^{du} \frac{2}{252}}\right] + \dots + \left[\frac{1000 \times \left(1,10^{0.5}\right)}{\left(1 + taxa\right)^{du} \frac{1}{252}}\right] $	-	-
NTN-B (Nota do Tesouro Nacional – Série B)	Cotação (%) * VNA	Fator de atualização do IPCA entre a data base (15/07/2000) e a data da liquidação do negócio.	$ \left[\frac{100 \times (1,06^{0.5} - 1)}{(1 + taxa)^{du1/252}} \right] + \left[\frac{100 \times (1,06^{0.5} - 1)}{(1 + taxa)^{du2/252}} \right] + $
¹ NTN-C (Nota do Tesouro Nacional – Série C)	Cotação (%) * VNA	Fator de atualização do IGP-M entre a data base (01/07/2000) e a data da liquidação do negócio.	+ $ \frac{100 \times (1,06^{0.5})}{(1+taxa)^{dun/252}} $
LFT (Letra Financeira do Tesouro)	Cotação (%) * VNA	Fator de atualização da Selic entre a data base (01/07/2000) e a data da liquidação do negócio	$\frac{100}{(1+taxa)^{\frac{du}{252}}}$

Cotação => valor presente do fluxo de caixa descontado dos cupons remanescentes e do principal.

O investidor deve seguir algumas regras de truncamento e arredondamento que serão fundamentais para se evitar pequenas diferenças de preço, bem como para calcular de forma precisa taxas e a cotações.

2

 $^{^{1}}$ No caso da NTN-C com vencimento em 01/01/2031, os termos $(1,06)^{0.5}$ devem ser substituídos por $(1,12)^{0.5}$.

TABELA 3 Regras para o Cálculo Preciso do Preço, Cotação e Taxa dos Títulos Públicos Federais

		Cálcu	ılo em Bas	se 100	Base 1000	
Critério*	Variável	LTN	LFT	NTN-B	NTN-C	NTN-F
Α	Juros Semestrais	-	-	6	6	5
Α	Projeções	-	-	2	2	-
Α	Fator Acumulado Taxa Selic	-	16	-	-	-
Α	Fluxo de Pagamento Descontados	-	-	10	10	9
Т	Fator Pro Rata (projeções)	-	-	14	14	-
Т	Fator Acumulado Índice de Preços	-	-	16	16	-
Т	Taxa de Retorno (% aa)	4	4	4	4	4
Т	VNA / VNA projetado	-	6	6	6	-
Т	PU	6	6	6	6	6
Т	Exponencial de Dias	14	14	14	14	14
Т	Cotação (%)	-	4	4	4	-
Т	Valor Financeiro	2	2	2	2	2

^{*} Legenda: A - arredondar; T - truncar

Fonte: STN.

Com propósitos ilustrativos, um exemplo hipotético para cada título será apresentado ressaltando todos os detalhes e cuidados necessários para a aplicação da metodologia apropriada de precificação do papel.

Letras do Tesouro Nacional - LTN

• Cálculo do preço

Preço =
$$\frac{1.000}{\left(1 + \underbrace{taxa}_{T-4}\right)^{\left(\frac{du}{252}\right)}}$$
; truncar na 6ª casa decimal

Onde:

taxa = taxa de juros anual (Padrão du/252 % a.a. => truncar na 4ª casa decimal); du = número de dias úteis entre a data de liquidação (inclusive) e a data de vencimento (exclusive).

Exemplo:

Data de Vencimento: 01/07/2010

Data de Compra: 20/05/2008

Data de Liquidação: 21/05/2008

Taxa: 14,3600% a.a.

Dias úteis entre 21/05/2008 e 01/07/2010: 532

Preço =
$$\frac{1.000}{\left(1 + \underbrace{14,3600\%}_{T-4}\right)^{\left(\frac{532}{252}\right)}} = \underbrace{753,315323}_{T-6}$$

• Cálculo da taxa de juros anual

De forma análoga, a taxa pode ser obtida com base no preço:

$$Taxa = \left[\frac{1.000}{753,315323}\right]^{\left(\frac{252}{532}\right)} - 1 = \underbrace{14,3600\%}_{T-4} \ a.a.$$

Letras Financeiras do Tesouro Nacional - LFT

Cálculo da cotação

$$Cotação(\%) = \frac{100}{\left(1 + \underbrace{taxa}_{T-4}\right)^{\left(\frac{du}{252}\right)}}; truncar na 4^a casa decimal$$

Onde:

taxa (ágio ou deságio) = Taxa padrão du/252 % a.a. => truncar na 4ª casa decimal; du = número de dias úteis entre a data de liquidação (inclusive) e a data de vencimento (exclusive).

• Cálculo do preço

$$Preço = \underbrace{Cotação\left(\%\right)}_{T-4} * \underbrace{VNA\ projetado}^{T-6} ; truncar\ na\ 6^a\ casa\ decimal$$

Onde:

VNA projetado = valor nominal atualizado até a data de liquidação

Exemplo:

Data de Vencimento: 07/03/2014

Data de Compra: 20/05/2008

Data de Liquidação: 21/05/2008

Valor Nominal na data base (01/07/2000): R\$ 1.000,00

Taxa: -0,0200% (Taxa padrão du/252 % a.a. => truncar na 4ª casa decimal)

Número de dias úteis entre 21/05/2008 e 07/03/2014: 1459

$$Cotação (\%) = \frac{100}{\left(1 + (-0.02\%)\right)^{\frac{1459}{T-14}}} = \underbrace{100.1158\%}_{T-4}$$

VNA em 20/05/2008 = R\$ 1.000 x Índice Selic Acumulado entre 01/07/2000 e 20/05/2008= R\$ 1.000 * $\underbrace{3,4496942158456}_{A-16} = R$ \$ $\underbrace{3.449,694215}_{T-6}$

Meta Selic (% a.a.) em 20/05/2008 = 11,75 % a.a.

VNA projetado em 21/05/2008 = VNA em 20/05/2008 x [(1 + Meta Selic) $^{(1/252)}$]

$$= R \underbrace{3.449,694215}_{T-6} * \underbrace{\left(1 + \underbrace{11,75\%}_{T-4}\right)^{\left(\frac{1}{252}\right)}}_{T-14}$$

$$= R \underbrace{3.451,215345}_{T-6}$$
VNA projetado *em* 21/05/2008 Cotação (%)

Preço = R\$
$$\underbrace{\frac{3.451,215345}{T-6}}^{\text{VNA projetado}} = \underbrace{\frac{100,1158\%}{T-4}}^{\text{Cotação}(\%)} = R$ \underbrace{\frac{3.455,211852}{T-6}}^{\text{NA projetado}}$$

Notas do Tesouro Nacional – NTN-B

• Cálculo da cotação

$$Cotação (\%) = \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5} - 1) \\ \underbrace{(1 + \underbrace{taxa}_{T-4})^{T-14}} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5} - 1) \\ \underbrace{(1 + \underbrace{taxa}_{T-4})^{T-14}} \end{bmatrix}}_{A-10} + \dots + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}) \\ \underbrace{(1 + \underbrace{taxa}_{T-4})^{T-14}} \end{bmatrix}}_{A-10}$$

Onde:

taxa = taxa interna de retorno (Padrão du/252 % a.a. => truncar na 4ª casa decimal); du = número de dias úteis entre a data de liquidação (inclusive) e a data de vencimento (exclusive).

• Cálculo do preço

$$Preço = \underbrace{Cotação\left(\%\right)}_{T-A} * \underbrace{VNA\ projetado}^{T-6} ; truncar na 6^a casa decimal$$

Onde:

VNA projetado = valor nominal atualizado (índice de inflação – IPCA acumulado desde a data base 15/07/00 até a data de liquidação) projetado para a data de liquidação.

Exemplo:

Data de Vencimento: 15/08/2010

Data de Compra: 20/05/2008

Data de Liquidação: 21/05/2008

Valor na data base (15/07/2000): R\$ 1.000,00

Taxa: 8,2900% (Padrão du/252 % aa => truncar na 4ª casa decimal);

Projeção para o IPCA abr/2008: 0,46%

VNA em 15/05/2008 = R\$ 1.000 x índice do IPCA acumulado entre 15/07/2000 e o 15º dia do mês subseqüente

= R\$ 1.000 *
$$\underbrace{1,72692645947653}_{A-16}$$
 = $\underbrace{1.726,926459}_{T-6}$

 $VNA\ em\ 21/05/2008 = VNA\ em\ 15/05/2008\ x\ (1+IPCA_{projeção})^{pr1}$

Onde:

$$pr1 = \frac{n^{\circ} \ dias \ corridos \ (data \ de \ liquidação - 15^{\circ} \ dia \ do \ mês \ atual \ ou \ anterior)}{n^{\circ} \ dias \ corridos \ (15^{\circ} \ dia \ do \ mês \ posterior \ ou \ atual \ - 15^{\circ} \ dia \ do \ mês \ atual \ ou \ anterior)}$$

$$pr1 = \frac{\left(21/05/2008 - 15/05/2008\right)}{\left(15/06/2008 - 15/05/2008\right)} = \frac{6}{31}$$

VNA em 21/05/2008 = R\$
$$\underbrace{1.726,926459}_{T-6}$$
 * $\left(1 + \underbrace{0,46\%}_{A-2}\right)^{\frac{\left(\frac{6}{31}\right)}{T-14}}$ = R\$ $\underbrace{1.728,461136}_{T-6}$

Data Pgto	Fluxo de Caixa	Valor Presente	Dias Úteis
	A-6	A-10	
15/08/2008	2,956301	2,8998535976	61
15/02/2009	2,956301	2,7840057610	190
15/08/2009	2,956301	2,6770128972	314
15/02/2010	2,956301	2,5733184988	439
15/08/2010	102,956301	86,1471473965	564
	Cotação em % (T-4) =>	97,0813	

$$Cotação\left(\%\right) = \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(\frac{61}{252}\right)}_{T-14} \\ \underbrace{A-6} \\ \underbrace{\left(1+8,2900\%\right)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(\frac{190}{252}\right)}_{T-14} \\ \underbrace{\left(1+8,2900\%\right)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(\frac{314}{252}\right)}_{T-14} \\ \underbrace{\left(1+8,2900\%\right)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{A-10} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{A-10} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{A-10} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{A-10} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times \left[1,06^{0,5} - 1\right) \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{\left(1+8,290\%\right)}_{T-14} \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{\left(1+8,2900\%\right)}_{T-14} \\ \underbrace{\left$$

$$+ \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5} - 1) \\ \underbrace{(\frac{439}{252})}_{T-14} \\ \underbrace{(1+8,2900\%)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}) \\ \underbrace{(\frac{564}{252})}_{T-14} \\ \underbrace{(1+8,2900\%)}_{T-4} \end{bmatrix}}_{A-10} = \underbrace{97,0813\%}_{T-4}$$

Preço = R\$
$$\underbrace{1.728,461136}_{T-6} * \underbrace{97,0813\%}_{T-6} = R$ \underbrace{1.678,012540}_{T-6}$$

• Cálculo do Cupom de Juros (na data de pagamento ou vencimento)

Cupom de Juros = VNA * fator de juros

Onde:

fator de juros: pagamento de juros com periodicidade semestral

Exemplo:

Data de Vencimento: 15/05/2045

Data de Pagamento de Cupom de Juros: 15/05/2008

Valor nominal na data base (15/07/2000): R\$ 1.000,00

Valor Nominal Atualizado em 15/05/2008: R\$ 1.726,926459

$$Juros = R \$ \overbrace{1.726,926459}^{T-6} * \underbrace{0,02956301}_{(1,06^{0.5}-1)=>A-8} = R \$ \overbrace{51,053144}^{T-6}$$

Notas do Tesouro Nacional - NTN-C

• Cálculo da cotação²

$$Cotação (\%) = \underbrace{\begin{bmatrix} \frac{A-6}{100 \times (1,06^{0.5} - 1)} \\ 1 + taxa \\ \frac{A-10}{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \frac{A-6}{100 \times (1,06^{0.5} - 1)} \\ 1 + taxa \\ \frac{A-10}{T-14} \end{bmatrix}}_{A-10} + ... + \underbrace{\begin{bmatrix} \frac{A-6}{100 \times (1,06^{0.5})} \\ 1 + taxa \\ \frac{A-10}{T-14} \end{bmatrix}}_{A-10} + ... + \underbrace{\begin{bmatrix} \frac{A-6}{100 \times (1,06^{0.5})} \\ 1 + taxa \\ \frac{A-10}{T-14} \end{bmatrix}}_{A-10}$$

Onde:

taxa = taxa interna de retorno (Padrão du/252 % aa => truncar na 4ª casa decimal); du = número de dias úteis entre a data de liquidação (inclusive) e a data de vencimento (exclusive).

• Cálculo do preço

$$Preço = \underbrace{Cotação(\%)}_{T-4} * \underbrace{VNA \ projetado}^{T-6} ; \ truncar \ na \ 6^a \ casa \ decimal$$

Onde:

VNA projetado = valor nominal atualizado (índice do IGP-M acumulado desde a data base 01/07/2000 até a data de liquidação) estimado para a data de liquidação

Exemplo:

Data de Vencimento: 01/03/2011

Data de Compra: 20/05/2008

Data de Liquidação: 21/05/2008

Valor nominal na data base (01/07/2000): R\$ 1.000,00

Taxa: 6,9000% (Padrão du/252 % aa => truncar na 4ª casa decimal);

 2 No caso da NTN-C com vencimento em 01/01/2031, os termos $(1,06)^{0.5}$ devem ser substituídos por $(1,12)^{0.5}$.

Projeção do IGP-M mai/2008: 1,75%

VNA em 01/05/2008 = R\$ 1.000 x índice do IGP-M acumulado desde a data base (01/07/2000) até o 1° dia do mês atual

$$= R\$1.000 * \underbrace{2,10280551851751}_{T-16} = \underbrace{2.102,805518}_{T-6}$$

 $VNA\ em\ 21/05/2008 = VNA\ em\ 01/05/2008\ x\ (1+IGP-M_{projeção})^{pr}$

Onde:

$$pr = \frac{n^{\circ} \text{ dias corridos (data de liquidação} - 1^{\circ} \text{ dia do mês atual)}}{n^{\circ} \text{ dias corridos (1^{\circ} dia do mês posterior} - 1^{\circ} \text{ dia do mês atual)}}$$

$$pr = \frac{\left(21/05/2008 - 01/05/2008\right)}{\left(01/06/2008 - 01/05/2008\right)} = \frac{20}{31}$$

VNA em 21/05/2008 = R\$
$$\underbrace{2.102,805518}_{T-6}$$
 * $\underbrace{\left(1 + \underbrace{1,75\%}_{A-2}\right)^{\frac{20}{31}}_{T-14}}_{T-6}$ = R\$ $\underbrace{2.126,473734}_{T-6}$

Data Pgto	Fluxo de Caixa	Valor Presente	Dias Úteis	
	A-6	A-10		
01/09/2008	2,956301	2,9004761983	72	
01/03/2009	2,956301	2,8053073742	198	
01/09/2009	2,956301	2,7125428649	325	
01/03/2010	2,956301	2,6263204830	447	
01/09/2010	2,956301	2,5381301937	576	
01/03/2011	102,956301	85,5153966416	701	
	Cotação em % (T-4) =>	99,0981		

$$Cotação\ (\%) = \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{A-6} \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{A-6} \\ \underbrace{A-6} \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{A-6} \underbrace{\begin{bmatrix} A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{A-6} \underbrace{\begin{bmatrix} A-6} \\ 100 \times (1,06^{0,5}-1) \\ \underbrace{A-6} \underbrace{\underbrace{A-6} \underbrace{A-6} \underbrace{$$

$$+ \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5} - 1) \\ \underbrace{(1+6,9000\%)}_{T-4} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5} - 1) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} + \underbrace{\begin{bmatrix} \underbrace{A-6} \\ 100 \times (1,06^{0,5}) \\ \underbrace{(1+6,9000\%)}_{T-14} \end{bmatrix}}_{A-10} = \underbrace{99,0981\%}_{T-4}$$

$$\Pr{eço} = \mathbb{R} \$ \underbrace{2.126,473734}_{T-6} * \underbrace{99,0981\%}_{T-4} = \mathbb{R} \$ \underbrace{2.107,295067}_{truncar \text{ na } 6^{a} \text{ } casa \text{ } decimal}$$

• Cálculo do Cupom de Juros (na data de pagamento ou vencimento)

Cupom de Juros = VNA * fator de juros

Onde:

fator de juros: cupom de juros pagos semestralmente

Exemplo:

Data de Vencimento: 01/04/2021

Data de Pagamento de Cupom de Juro: 01/05/2008

Valor Nominal na data base (01/07/2000): R\$ 1.000,00

Valor Nominal Atualizado em 01/04/2008: R\$ 2.088,388799

PU de Juros = R\$
$$\overbrace{2.088,388799}^{T-6}$$
 * $\underbrace{0,02956301}_{(1,06^{0.5}-1) \Rightarrow A-8}$ = R\$ $\overbrace{61,739058}^{T-6}$

.....

Notas do Tesouro Nacional – NTN-F

Cálculo do preço

$$\operatorname{Preço} = \underbrace{\begin{bmatrix} \frac{A-5}{1000 \times \left(1,1^{0.5}-1\right)} \\ 1 + \underbrace{\frac{du1}{252}} \\ \left(1 + \underbrace{taxa}_{T-4}\right)^{T-14} \end{bmatrix}}_{A-9} + \underbrace{\begin{bmatrix} \frac{A-5}{1000 \times \left(1,1^{0.5}-1\right)} \\ 1 + \underbrace{\frac{du2}{252}} \\ \left(1 + \underbrace{taxa}_{T-4}\right)^{T-14} \end{bmatrix}}_{A-9} + \dots + \underbrace{\begin{bmatrix} \frac{A-5}{1000 \times \left(1,1^{0.5}-1\right)} \\ 1 + \underbrace{taxa}_{T-4}\right)^{T-14} \\ \left(1 + \underbrace{taxa}_{T-4}\right)^{T-14} \end{bmatrix}}_{A-9}$$

Exemplo:

Data de Vencimento: 01/01/2014

Data de Compra: 20/05/2008

Data de Liquidação: 21/05/2008

Taxa = 13,6600% (Padrão du/252 % aa => truncar na 4ª casa decimal);

Data Pgto	Fluxo de Caixa	Valor Presente	Dias Úteis
	A-5	A-9	
01/07/2008	48,80885	48,119371611	28
01/01/2009	48,80885	45,020757190	159
01/07/2009	48,80885	42,314735474	281
01/01/2010	48,80885	39,650299657	409
01/07/2010	48,80885	37,248144536	532
01/01/2011	48,80885	34,902737214	660
01/07/2011	48,80885	32,771550709	784
01/01/2012	48,80885	30,723628208	911
01/07/2012	48,80885	28,832967367	1036
01/01/2013	48,80885	27,044908383	1162
01/07/2013	48,80885	25,406432363	1285
01/01/2014	1048,80885	511,040083815	1415
•	Preço Unitário (T-6) =>	903,075616	

Pr e co = R \$903,075616

• Cálculo do Cupom de Juros (na data de pagamento ou vencimento)

PU de Juros =
$$R$$
\$ 1.000 * $\underbrace{\left(1,10^{0.5} - 1\right)}_{A-8}$ = R \$ $\underbrace{48,808850}_{T-6}$