WiSe 21/22 Logik

Hausarbeit 1 Aufgabe 3

 $\textbf{Gruppe:}\ 402355,\ 392210,\ 413316,\ 457146$

Lösungen

(i)	(ii)	(iii)	Form	Σ

Aufgabe 3

- (i) Sei c eine k-Nachbarschaftsfärbung von G. Für den endlichen Teilgraphen H beschränken wir c lediglich auf die Knoten V(H) von H und wir erhalten eine k-Nachbarschaftsfärbung von H, da $E(H) \subseteq E(G)$.
- (ii) Wir definieren die Formel $\varphi_{H,k}$ wie folgt:

$$\varphi_{H,\leq k}\coloneqq \bigwedge_{\{u,v\}\in E(H)} (\bigwedge_{x\in (N_H(u)\cap N_H(v))} (\bigvee_{i=1}^k (C_{x,i} \wedge (\bigwedge_{y\in (N_H(u)\cap N_H(v))} \neg C_{y,i})) \wedge \bigwedge_{\substack{1\leq j\leq k\\ i\neq j}} (\neg C_{x,j})))$$

$$\varphi_{H,=k} \coloneqq \bigvee_{\{u,v\} \in E(H)} (\bigwedge_{i=1}^k (\bigvee_{x \in (N_H(u) \cap N_H(v))} (C_{x,i} \land (\bigwedge_{y \in (N_H(u) \cap N_H(v))} \neg C_{y,i})) \land \bigwedge_{\substack{1 \le j \le k \\ i \ne j}} (\neg C_{x,j})))$$

$$\varphi_{H,k} := \varphi_{H,\leq k} \wedge \varphi_{H,=k}$$

 $C_{x,i}$ wird mit 1 belegt, wenn $x \in (N_H(u) \cap N_H(v))$ mit i gefärbt wird.

 $\varphi_{H,\leq k}$ prüft für jede Kante $\{u,v\}\in E(H)$, ob dessen Nachbarschaft $\leq k$ -nachbarschaftsfärbbar ist, mit mindestens k=1. Die erste große Verundung iteriert über alle Kanten $\{u,v\}\in E(H)$. Die zweite große Verundung iteriert über die Nachbarschaft der betrachteten Kante und die große Veroderung iteriert über unser i. Dann prüfen wir, ob es ein $1\leq i\leq k$ gibt, sodass ein Knoten x aus der Nachbarschaft mit i gefärbt ist, wenn gilt, dass kein weiterer Knoten y aus der Nachbarschaft mit i gefärbt ist, und x nur eine Farbe besitzt.

 $\varphi_{H,=k}$ prüft, ob es mindestens eine Nachbarschaft gibt, die genau k-nachbarschaftsfärbbar ist. Dazu iterieren wir diesmal mit einer großen Veroderung über alle Kanten $\{u,v\} \in E(H)$. Danach iterieren wir von 1 bis k und iterieren über alle Knoten x aus der Nachbarschaft und prüfen für jedes k, ob es einen Knoten x aus der Nachbarschaft gibt, der mit dem betrachteten i gefärbt ist und kein weiterer Knoten y aus der Nachbarschaft mit i gefärbt ist, und x nur eine Farbe besitzt.

In $\varphi_{H,k}$ verunden wir $\varphi_{H,\leq k}$ und $\varphi_{H,=k}$. Somit prüft $\varphi_{H,k}$ für jede Kante, ob deren Nachbarschaft $\leq k$ -nachbarschaftsfärbbar ist, und es mindestens eine Kante gibt, deren Nachbarschaft genau k-nachbarschaftsfärbbar ist. Somit wird $\varphi_{H,k}$ erfüllt, wenn H k-nachbarschaftsfärbbar ist.

Sei β eine Belegung, die $\varphi_{H,k}$ erfüllt. Dann definieren wir folgende k-Nachbarschaftsfärbung c:

Wir setzen c(x) := i, wenn $\varphi_{H,k}$ erfüllt wird und wenn in $\varphi_{H,\leq k}$ im Schritt für x in der zweiten großen Verundung die große Veroderung für i mit 1 ausgewertet wird.

Sei c eine k- Nachbarschaftsfärbung auf H. Wir definieren eine erfüllende Belegung β für $\varphi_{H,k}$ wie folgt

$$\beta(\bigvee_{i=1}^{k} (C_{x,i} \land (\bigwedge_{y \in (N_H(u) \cap N_H(v))} \neg C_{y,i})) \land \bigwedge_{\substack{1 \le j \le k \\ i \ne j}} (\neg C_{x,j})) = 1 \text{ aus } \varphi_{H,\le k},$$

wenn $c(x) = i$, sonst 0, für alle $\{u, v\} \in E(H)$ und $x \in (N_H(u) \cap N_H(v))$

und

$$\beta(\bigwedge_{i=1}^k(\bigvee_{x\in(N_H(u)\cap N_H(v))}(C_{x,i}\wedge(\bigwedge_{y\in(N_H(u)\cap N_H(v))}\neg C_{y,i}))\wedge\bigwedge_{\substack{1\leq j\leq k\\i\neq j}}(\neg C_{x,j})))=1 \text{ aus } \varphi_{H,=k},$$
 wenn $|N_G(u)\cap N_G(v)|=|\{c(w)|w\in N_G(u)\cap N_G(v)\}|=k, \text{ sonst } 0,$ für alle $\{u,v\}\in E(H) \text{ und } x\in(N_H(u)\cap N_H(v))$ Wenn das für mindestens eine Nachbarschaft gilt, so wird $\varphi_{H,=k}$ erfüllt.

Somit erfüllt eine k-Nachbarschaftsfärbung c auf H $\varphi_{H,k}$.

(iii) Zu zeigen:

Wenn jeder endliche Teilgraph G' von G eine k-Nachbarschaftsfärbung besitzt (B), dann ist G k-nachbarschaftsfärbbar (A).

(B) => (A):
Sei
$$\Phi := \{\varphi_{G',k} | G' \subseteq G, \text{ wobei } G' \text{ endlich ist} \}$$
.
Außerdem sei $\Phi' \subseteq \Phi$ eine endliche Teilmenge von Φ .
Sei $U := \bigcup_{\varphi_{G',k} \in \Phi'} V(G)$

Da U endlich ist, können wir hiermit den endlichen Graphen $L := G[U] = (U, \{\{v, w\} | u, v \in U \text{ und } v, w \in E(G)\})$ definieren.

Laut (B) besitzt L eine k-Nachbarschaftsfärbung \mathbf{c}_L . Diese können wir in eine Belegung β' übersetzten, die $\varphi_{L,k}$ erfüllt. Da jedes G' mit $\varphi_{G'} \in \Phi'$ auch ein Teilgraph von L ist, folgt daraus, dass $\beta' \models \Phi'$. Also ist Φ' erfüllbar. Laut dem KHS ist also Φ erfüllbar.