MCV4U Unit 8 Practice Test MC

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which three points are on the line L: $\overrightarrow{r} = (2,-5) + s(2,1), s \in \mathbb{R}$?

a.
$$P(2,-5)$$
, $Q(2,1)$, $R(0,-6)$

c.
$$P(1,7)$$
, $Q(2,-5)$, $R(6,-3)$

b.
$$Q(2,1)$$
, $Q(6,-3)$, $R(2,-5)$

c.
$$P(1,7)$$
, $Q(2,-5)$, $R(6,-3)$
d. $P(2,-5)$, $Q(6,-3)$, $R(0,-6)$

2. Which of the following equations determines a line with normal vector $\overrightarrow{n} = (4,3)$ going through the point P(1,-1)?

a.
$$4x + 3y - 1 = 0$$

c.
$$3x + 4y - 1 = 0$$

b.
$$4x + 3y + 1 = 0$$

d.
$$3x + 4v + 1 = 0$$

3. Which pair of lines are parallel?

a.
$$2x + 2y + 2 = 0$$
, $\overrightarrow{r} = (1, 2) + s(1, -1)$, $s \in \mathbb{R}$

b.
$$x + 7y - 2 = 0$$
, $\overrightarrow{r} = (2, 5) + s(1, 7)$, $s \in \mathbb{R}$

c.
$$3x - 4y - 2 = 0$$
, $\overrightarrow{r} = (1,4) + s(-3,4)$, $s \in \mathbb{R}$

d. none of the above

4. Determine which line is the same as the line with vector equation $\overrightarrow{r} = (2, 3, 5) + s(1, 2, 1), s \in \mathbf{R}$.

a.
$$\overrightarrow{t} = (1, 1, 4) + s(-2, -1, -2), s \in \mathbb{R}$$

a.
$$\overrightarrow{t} = (1,1,4) + s(-2,-1,-2), s \in \mathbf{R}$$
 c. $\overrightarrow{t} = (0,-1,3) + s(2,4,2), s \in \mathbf{R}$

b.
$$\overrightarrow{t} = (1,0,3) + s(2,4,2), s \in \mathbf{R}$$

d.
$$\overrightarrow{t} = (1, 1, 1) + s(1, 2, 1), s \in \mathbf{R}$$

5. Which of the following is not an equation for the line passing through the points P(1,4,-3) and Q(3,2,1)?

a.
$$\overrightarrow{r} = (1,4,-3) + s(2,-2,4), s \in \mathbb{R}$$
 c. $\frac{x-3}{2} = \frac{y-2}{-2} = \frac{z+1}{4}$

c.
$$\frac{x-3}{2} = \frac{y-2}{-2} = \frac{z+1}{4}$$

b.
$$x = -t + 3$$
, $y = t + 2$, $z = -2t + 1$, $t \in \mathbb{R}$

b.
$$x = -t + 3$$
, $y = t + 2$, $z = -2t + 1$, $t \in \mathbb{R}$ d. $\overrightarrow{r} = (3, 2, 1) + s(1, -1, 2)$, $s \in \mathbb{R}$

6. Determine the value of k that makes the lines $\frac{x+2}{4} = \frac{y+1}{5} = \frac{z-3}{3}$ and r = (1,3,6) + s(-2k,2,k), $s \in$

R, perpendicular.

 7.	Determine the parametric equation of the plane $P(2,5,3)$.	e tha	t contains the line $\frac{x+2}{5} = \frac{y-3}{3} = \frac{z-2}{2}$ and the point
	a. $x = 2 + 5s + 4t$, $y = 5 + 3s + 2t$, $z = 3 + 2s + 2t$ b. $x = 2 + 5s + 3t$, $y = 5 + 3s + 2t$, $z = 4 + 2s + 2t$ c. $x = -2 + 5s + 2t$, $y = 3 + 3s + 5t$, $z = 2 + 2s + 2t$ d. $x = 5 + 2s + 2t$, $y = 3 - 3s + 5t$, $z = 2 - 2s + 2t$	+ <i>t</i> , <i>s</i> + 3.	$s, t \in \mathbf{R}$ $t, s, t \in \mathbf{R}$
 8.	Which line does not lie on the plane $\overrightarrow{r} = (1, 5)$	5,0)	$+ s(2,-3,1) + t(1,-1,4), s,t \in \mathbb{R}$?
	a. $\overrightarrow{v} = (1,5,0) + s(2,-3,1), s \in \mathbf{R}$	c.	$\overrightarrow{v} = (3, 2, 1) + s(3, -4, 5), s \in \mathbf{R}$
	b. $\overrightarrow{v} = (2, -3, 1) + s(1, -1, 4), s \in \mathbf{R}$	d.	$\overrightarrow{v} = (1, 5, 0) + s(1, -2, -3), s \in \mathbf{R}$
 9.	origin?		12) + $s(2, 2, 3) + t(-1, 1, 3)$, $s, t \in \mathbf{R}$, pass through the
	a. 2 b. 1	c. d.	0 -1
 10.	The two planes $3x - 2y - 4z + 1 = 0$ and $2x - 5z = 0$. perpendicular b. coincident	c.	3 = 0 are: parallel and distinct none of the above
 11.	What value of k will make the planes π_1 : $2x$	- ky	$x + 3z - 1 = 0$ and π_2 : $2kx + 3y - 2z = 4$ perpendicular?
	a. 2 b. 4	c. d.	
 12.	Which of the following is the normal vector to		
	a. $\overrightarrow{n} = (1, 1, 0)$		$\overrightarrow{n} = (0, 1, 0)$
	b. $\overrightarrow{n} = (1,0,0)$	d.	$\overrightarrow{n} = (0, 0, 1)$
 13.	Determine the value of k such that the planes 2 value of k such that the planes are parallel.	2x –	3y + kz = 4 and $ky - z + 3 = 0$ are perpendicular and the
	 a. no such value, k = 2 b. k = 2, no such value 		k = 0, no such value no such value, $k = 0$
 14.	Determine the value of k for which the planes		2y + kz + 7 = 0 and x - 2y - 2 = 0 have an angle of
	intersection of 60°? a. 3	c.	$\sqrt{10}$
	b4	d.	$-\sqrt{15}$
 15.	On which of the following planes could the po	int I	P(2,3,-4) lie?
	a. $x = 3$ b. $y = 3$	c. d.	z = 3 none of the above
	U. y - J	u.	none of the above

16. Which of the following is the vector equation of the line of intersection between the plane 5x - 2y + 3z + 2 = 0and the xz-plane?

a.
$$\overrightarrow{r} = (-1, 0, 1) + s(3, 0, -5), s \in \mathbb{R}$$

a.
$$\overrightarrow{r} = (-1, 0, 1) + s(3, 0, -5), s \in \mathbf{R}$$

 c. $\overrightarrow{r} = (-1, 0, 1) + s(1, 1, -1), s \in \mathbf{R}$

b.
$$\overrightarrow{r} = (-1, 0, 1) + s(5, 0, 3), s \in \mathbf{R}$$

d. none of the above

17. Which of the following best describes the intersection of the three planes π_1 : x = 2, π_2 : y = 6, and π_3 :

$$z = -3?$$
a. $\overrightarrow{v} = (2, 0, -3) + s(0, 6, 0), s \in \mathbb{R}$

c. There is no intersection.

b.
$$P(2, 6, -3)$$

d. none of the above

18. Which of the following would describe the sketch of the expression xy + 2y - 3x - 6 = 0?

a. the planes
$$x = -2$$
 and $y = 3$

c. the planes
$$x = 6$$
 and $y = 2$

b. the planes
$$x = 3$$
 and $y = -2$

d. the planes
$$x = 3$$
 and $y = 6$

19. Which of the following planes is the equation for the plane with an x-intercept at P(2, 0, 0), a y-intercept at Q(0,-3,0), and is parallel to the z-axis?

a.
$$3x - 2y - 6 = 0$$

c.
$$3y - 2z - 6 = 0$$

b.
$$2x - 3y + z - 6 = 0$$

d.
$$z = -6$$

20. Which three points are on the plane 2x - 7y + 3z - 5 = 0?

a.
$$P(1,0,1)$$
, $Q(3,1,2)$, and $R(4,3,6)$

c.
$$P(3,1,2)$$
, $Q(4,3,6)$, and $R(5,0,-2)$

a.
$$P(1,0,1)$$
, $Q(3,1,2)$, and $R(4,3,6)$ c. $P(3,1,2)$, $Q(4,3,6)$, and $R(5,0,-2)$ b. $P(1,0,1)$, $Q(2,2,3)$, and $R(3,1,2)$ d. $P(4,3,6)$, $Q(0,0,0)$, and $R(3,1,2)$

d.
$$P(4,3,6)$$
, $Q(0,0,0)$, and $R(3,1,2)$

MCV4U Unit 8 Practice Test MC Answer Section

MULTIPLE CHOICE

1.	ANS:	
_		8.1 - Vector and Parametric Equations of a Line in R^2
	ANS:	
3.	ANS:	
		8.2 - Cartesian Equation of a Line
4.	ANS:	\mathcal{U}
		8.3 - Vector, Parametric, and Symmetric Equations of a Line in R^3
5.	ANS:	
	OBJ:	8.3 - Vector, Parametric, and Symmetric Equations of a Line in R^3
6.	ANS:	\mathcal{C}
	OBJ:	8.3 - Vector, Parametric, and Symmetric Equations of a Line in R^3
7.	ANS:	A.A.
	OBJ:	8.4 - Vector and Parametric Equations of a Plane
8.	ANS:	B PTS: 1 REF: Knowledge and Understanding
	OBJ:	8.4 - Vector and Parametric Equations of a Plane
9.	ANS:	A PTS: 1 REF: Knowledge and Understanding
	OBJ:	8.4 - Vector and Parametric Equations of a Plane
10.	ANS:	\mathcal{C}
	OBJ:	8.5 - The Cartesian Equation of a Plane
11.	ANS:	C PTS: 1 REF: Thinking
	OBJ:	8.5 - The Cartesian Equation of a Plane
12.	ANS:	D PTS: 1 REF: Knowledge and Understanding
	OBJ:	8.5 - The Cartesian Equation of a Plane
13.	ANS:	C PTS: 1 REF: Knowledge and Understanding
	OBJ:	8.5 - The Cartesian Equation of a Plane
14.	ANS:	D PTS: 1 REF: Thinking
	OBJ:	8.5 - The Cartesian Equation of a Plane
15.	ANS:	B PTS: 1 REF: Knowledge and Understanding
	OBJ:	8.6 - Sketching Planes in R^3
16.	ANS:	A PTS: 1 REF: Thinking OBJ: 8.6 - Sketching Planes in R^3
17.	ANS:	B PTS: 1 REF: Knowledge and Understanding
	OBJ:	8.6 - Sketching Planes in R ³
18.	ANS:	· · · · · · · · · · · · · · · · · · ·
19.	ANS:	A PTS: 1 REF: Thinking OBJ: 8.6 - Sketching Planes in R^3
	ANS:	
_~.	~.	