Exercises: Artificial Intelligence

A*

QUEUE:

SC

SA

SB

SA

SCD

SB

QUEUE:

SAEF

SCD

SB

SAEB

QUEUE:

SCD

SB

SAEFG

SAEFD

Exercises: Artificial Intelligence

Iterated Deepening A*

10

Children are explored depth-first!

f-bound = 10 f-new = 11

f-bound = 11 f-new = 12

f-bound = 12 f-new = 13

f-bound = 13 f-new = 19

Exercises: Artificial Intelligence

Simplified Memory-bounded A*

Exercises: Artificial Intelligence

Monotonicity 1

- Prove that:
 - IF a heuristic function h satisfies the monotonicity restriction
 - $h(x) \leq cost(x...y) + h(y)$
 - **THEN** *f* is monotonously non-decreasing
 - $f(s...x) \leq f(s...x...y)$

Monotonicity 1

- Given:
 - <u>h</u> satisfies the <u>monotonicity restriction</u>
- Proof:

```
f(S...A) = cost(S...A) + h(A)
\leq cost(S...A) + cost(A...B) + h(B)
\leq cost(S...A...B) + h(B)
\leq f(S...A...B)
```

Exercises: Artificial Intelligence

Monotonicity 2

- Prove or refute:
 - IF f is monotonously non-decreasing
 - $f(s...x) \le f(s...xy)$
 - THEN h is an admissable heuristic
 - h is an underestimate of the remaining path to the goal with the smallest cost
- Can an extra constraint on h change this?

Monotonicity 2

- Given:
 - f is mononously non-decreasing
- Proof (Counter-example):

f is monotonously non-decreasing, yet h is not an admissable heuristic.

Monotonicity 2

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G) 

f(S...A) \le f(S...G) 

cost(S...A) + h(A) \le cost(S...G) + h(G) 

cost(S...A) + h(A) \le cost(S...A) + cost(A...G) + h(G) 

h(A) \le cost(A...G) + h(G) 

h(A) \le cost(A...G)
```