Motivation for Numerical Methods

- Sometimes an ODE may not be in one of the forms discussed in this course, so it might be difficult to find the exact solution.
- Sometimes an exact solution might not even exist.
- In such cases, a numerical approximation for the solution may be obtained.
- There are many different types of numerical methods to choose from (e.g. Euler's method, Modified Euler's method, Runge's method, Runge-Kutta methods).
- We will focus on the use of Euler's method.

Existence and Uniqueness Theorem

Consider the 1st order IVP

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0.$$

If f and $\frac{\partial f}{\partial y}$ are continuous in the closed rectange

$$R = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\}$$

then \exists a unique solution y(x) of the given IVP in an interval $|x - x_0| \le h \le a$.

Example

Consider the IVP

$$\frac{dy}{dx} = \frac{2y}{x}, \qquad y(x_0) = y_0.$$

- $f(x,y) = \frac{2y}{x}$ and $\frac{\partial f}{\partial y} = \frac{2}{x}$. Both are undefined for x = 0.
- Using separation of variables, the general solution is

$$y(x) = Ax^2$$
.

- The IVP has
 - a unique solution in an open interval containing x_0 if $x_0 \neq 0$,
 - no solution if $x_0 = 0$ and $y_0 \neq 0$,
 - infinite solutions if $x_0 = 0$ and $y_0 = 0$.

MATLAB Review

Starting MATLAB

- Run MATLAB R2017a from the Desktop
- The different MATLAB windows:
 - Command Window (centre): This is where you type commands.
 - Workspace (right): All variables currently stored are displayed here.
 - Current Folder (left): Lists files stored in the current directory.
 - Command History (accessed through the Layout tab in the Home menu): Stores all commands entered.
 - Graphics Window (pop-up): Displays plots/graphs.
 - Editor Window: Used to create/edit MATLAB codes.

MATLAB as a Calculator

Arithmetic Operations

Addition	+		
Subtration	_		
Multiplication	*	*	
Division	/	./	
Exponentiation	^	.^	

- Unless otherwise specified, MATLAB assigns computed values to a variable called ans
- Variables can be assigned values using =
- ".*", "./" and ".^" are element-wise operations.

Built-In Constants and Functions

Name	MATLAB syntax	Remarks		
π	pi			
10 ^x	1ex	Powers of 10		
\sqrt{X}	sqrt(x)	Square root function		
e ^x	exp(x)	Exponential function		
$\log(x)$	log10(x)	log base 10		
$\ln(x)$	log(x)	log base <i>e</i>		
sin(x)	sin(x)	Measured in radians		
	sind(x)	Measured in degrees		
$arcsin(x)$, $sin^{-1}(x)$	asin(x)	Inverse trig functions		
sinh(x)	sinh(x)	Hyperbolic functions		

MATLAB as a Calculator - Examples

 Click in the Command Window and type each of the following commands:

>>
$$3+4*(1+6/3)$$

>> $pi^2-sqrt(ans)+cos(45)/cosh(45)$
>> $x=exp(3)*log10(3)+atan(3)/log(3)$
>> $y=20+log(csch(x-1)^2)$
>> $z=1+y/x$
>> $z*3e-2$
>> ans

Variables

- A variable name may contain only letters, digits, and underscores, and must begin with a letter.
 - Punctuation marks are not allowed!
 - Note: MATLAB is case-sensitive!
- A variable can be assigned a numerical value, an array of numerical values or a string of characters.
- Use single quotation marks ' ' around any text that is to be entered as a character string.
- A variable cannot be given the same name as a MATLAB keyword, and also should not be given any name that already exists in MATLAB.

Useful Commands and Tools

- clear x y deletes only variables x and y
- *clear* deletes all current variables in the workspace
- clc clears the Command Window
- quit ends the session and closes MATLAB
- Hold down Control + C on the keyboard this interrupts the current command execution, which is often useful for aborting commands that are taking too long to complete.
- While the Command Window is active, use the Up and Down arrow keys on the keyboard to access commands stored in the Command History.

Useful Commands and tools

- A semicolon (;) is used to suppress the output the output is still stored in the Workspace, but it is not displayed in the Command Window.
- An ellipsis (...) is used to enter input on an additional line
 this is useful when typing long lines of MATLAB code.
- % is used for commenting. MATLAB does not run any commands appearing after a % in a line this is useful for documenting and explaining what your code does.
- help lists all the help topics
- help xyz provides help on topic xyz
- Note: Online support for MATLAB can be found at: www.mathworks.com/help/matlab/

Formatting the Command Window Display

- MATLAB uses double-precision floating point arithmetic values are stored accurate to 15 decimal places.
- However, MATLAB displays only 4 decimal places by default.
 - To display 15 decimal places, type format long
 - To display only 4 decimal places, type format short (default)
 - To display numbers as fractions, type format rat
- By default, MATLAB displays a blank line between each line of text in the Command Window.
 - To disable this feature, type format compact
 - To enable it, type format loose

Inputting Arrays

- Row vector $>> x=[0 \ 1 \ 2 \ 3]$ or x=[0,1,2,3]
- Column vector >> y=[0;1;2;3]
- Matrix >> Z=[0 1 2 3; 4 5 6 7]
- Other ways of entering row vectors
 - >> x=1:2:6
 - >> x=linspace(1,6,3)
- Special Matrices
 - >> zeros(m,n) zero matrix
 - >> ones (m,n) matrix of ones
 - >> eye(m,n) ones on leading diagonal; zeros elsewhere

Indexing

- You can ask MATLAB for the number stored in row 2, column 3 of a matrix
 >> Z(2,3)
- Or for all the elements stored in row 2
 >> Z(2,:)
- Or for all the elements stored in column 3>> Z(:,3)
- Or change the value stored in a position
 >> Z(2,3)=2

Matrix Operations

 Elementwise addition or subtraction (must be of the same dimensions)

$$>> A+B$$
 or $A-B$

- Multiplication (must have the same inner dimensions)
 >> A*B
- Element-wise multiplication or division
 >> A.*B or A./B
- Element-wise powers> A. ^ m

Matrix Operations

- Transpose of a matrix Z (denoted Z^T)
 >> Z'
- Dimensions of a matrix Z>> size(Z)
- Number of elements in a matrix Z>> numel(Z)
- Length of a vector x>> length(x)

Function Handles - Self Reading

- A function handle is a data class that stores an association to a function.
- It allows you to indirectly call a function by using its associated handle rather than the actual function name.
- Function handles are entered in the format fun_handle=@fun_name
 >> f=@sqrt
 >> f(9)
 >> g=@cos
- Function handles are treated as scalars (or 1×1 arrays).

Anonymous Functions - Self Reading

- MATLAB has several built-in functions (e.g. cosine, square root, etc.)
- We can also program user-defined functions using
 - Function files (discussed later)
 - Anonymous function definitions using function handles
- An anonymous function is one that does not explicitly exist in MATLAB, but is associated with a function handle.
 - >> dotsquare=@(x) x.^2
 - >> dotsquare(1:5)
 - $>> z=0(x,y) x.^2+y.^2$
 - >> z(1:5,[2 3 5 7 11])

2D Plots

- Plotting a curve of y versus x>> plot(x,y)
- Adding an x- or y-axis label>> xlabel('text'); ylabel('text')
- Inserting a title
 >> title('text')
- Example:

```
>> t=linspace(-pi,pi); u=t.^2;
>> plot(t,u)
>> xlabel('t'); ylabel('u')
>> title('Plot of u versus t')
```

2D Plots

You can change the line color, line style or marker style
 >> plot(x,y,'m+-') produces a solid magenta curve with plus sign markers

Line Co	lor	Line Style		Marker S	Style
yellow	у	solid (default)	_	plus	+
magenta	m	dashed		circle	0
cyan	С	dotted	:	asterisk	*
red	r	dash-dot		point	
green	g			cross	Х
blue	b			square	S
black	k			diamond	d

2D Plots

- You can plot in different figures by calling a figure before plotting
 - >> figure(2)
- You can overlay multiple plots on the same graph by using the hold command
 - >> plot(x,y)
 - >> hold on
 - >> plot(x,z,'g')
 - >> hold off
- Or by using the plot command>> plot(x,y,x,z,'g')

Script Files

- A script is a file containing a valid set of MATLAB commands.
- Scripts are used to type multiple command lines which can then all be run at once.
- A script can be run by
 - typing its name in the Command Window and pressing enter, or
 - clicking the Run icon in the Editor window.
- The script must be saved, and the folder in which the file is saved must be displayed in the "Current Folder" window for the script to run.
- Variables created when a script is run are saved in the Workspace (referred to as gobal variables).

Naming Script Files

- A script name
 - must begin with a letter
 - can contain only letters, digits, and underscores
 - punctuation marks are not allowed!
 - should be no longer than 63 characters
- Never give a script file the same name as
 - one of the variables it computes, or
 - a built-in function.
- The exist command can be used to check if a name, say "xyx", can be used for a script.
 - Type exist('xyz') in the Command Window.
 - If MATLAB returns 0 then you can use the name.

Function Files

- A function file takes user-defined inputs each time it is run.
- The first line in a function file must be of the form:
 function [out1,out2,...] = fun_name(in1,in2,...)
- out1,out2,... are the names of the output variables. The square brackets can be omitted if there is only one output variable.
- in1,in2,... are the names of the input variables. The values of these variables must be specified each time the function is run.
- The same rules for naming script files also apply to function files. Additionally, the file must be saved with the same name as the function, i.e. fun_name.m, or else it will not run.

Function Files

- Variables used within a function file are not stored in the Workspace; only the output variables are stored.
- A function can be called with a command of the form

```
>> [ out1,out2,... ] = fun_name( in1val,in2val,... )
```

- in1val,in2val,... are the values specified for the input variables.
- If "[out1,out2,...]" is omitted, then only the first output is stored in the variable ans.
- The feval command is another way to evaluate functions
 >> feval(fun,x1,x2,...,xn) evaluates the function fun with input arguments x1, x2, ..., xn. This is equivalent to fun(x1,x2,...,xn)

Control Structures

- Loops are used to perform a series of commands as many times as necessary.
 - A stopping criterion determines when a loop stops.
- Some other control structures perform conditional checks and execute only the commands associated with certain conditions.

for Loop

- Used to execute a series of commands a fixed number of times.
- Basic format:

```
for i=a:k:b

commands to be executed in each loop
end
```

• Example:

while Loop

- Execute a series of commands while a specified condition is true.
- Basic format:

```
while expression
commands to be executed in each loop
end
```

Example:

```
function [S,n]=sums2(x)
S=0; n=0;
while S<x
    S=S+rand(1);
    n=n+1;
end
end</pre>
```

if Statements (if-elseif-else)

- An **if** statement evaluates logical expressions and executes the specified commands when the answer is true.
- Basic format:

Relational and Logical Operators

Relational Operators		Logical Operators	
equal to	==	and	&
greater than	>	or	
less than	<	not	~
greater than or equal to	>=		
less than or equal to	<=		
not equal to	~=		

if Statements (if-elseif-else)

• Example:

```
x=-3:0.1:3;
y=zeros(1,length(x));
for i=1:length(x)
      if x(i) > -1 & x(i) < 1
            y(i)=x(i)^2+1;
      else
            y(i)=2;
      end
end
plot(x,y)
```

Euler's Method

Derivation of Euler's Method

Consider a general IVP

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0, \qquad x \in [a, b]$$

that satisfies the existence and uniqueness criteria.

• We can approximate $\frac{dy}{dx}$ using

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{y(x+h) - y(x)}{h} \approx \frac{y(x+h) - y(x)}{h}.$$

Therefore

$$y(x+h) \approx y(x) + h \cdot f(x,y)$$
 (1)

Derivation of Euler's Method

- Let's discretize the interval [a, b] into N subintervals.
- The total number of points is N+1
- The size of each subinterval is $h = \frac{b-a}{N}$
- Denote the points $x_j=a+h\cdot j$, for $j=0,1,2,\ldots,N$ $x_0=a,$ $x_1=a+h,$ $x_2=a+2h,$ \vdots $x_{N-1}=a+(N-1)\cdot h,$ $x_N=b$

Derivation of Euler's Method

• Taking $x = x_i$ in equation (1) gives

$$y(x_j + h) \approx y(x_j) + h \cdot f(x_j, y(x_j))$$

• Since $x_i = a + h \cdot j$ we have

$$y(a + hj + h) \approx y(x_i) + h \cdot f(x_i, y(x_i))$$

$$\therefore y(a+h(j+1)) \approx y(x_j) + h \cdot f(x_j, y(x_j))$$

$$\therefore y(x_{j+1}) \approx y(x_j) + h \cdot f(x_j, y(x_j))$$

Algorithm for Euler's Method

$$y\left(x_{j+1}\right)\approx y\left(x_{j}\right)+h\cdot f\left(x_{j},y\left(x_{j}\right)\right),\quad j=0,1,\ldots N-1$$
 (2)

- h is the step-size
- N+1 is the number of discretized points in the interval [a,b]
- $x_0 = a$, $x_1 = a + h$, $x_2 = a + 2h$, ... $x_{N-1} = a + (N-1) \cdot h$ and $x_N = b$
- Since we have $y(x_0) = y_0$, we can solve for $y(x_1)$, then use this to solve for $y(x_2)$ and so on.
- Thus, we obtain approximate values for *y* at the discretized values of *x*.
- This method is sometimes too slow (if h is small) or too inaccurate (if h is large).

Example

Consider the IVP

$$\frac{dy}{dx} = x + y - 1,$$
 $y(0) = 2,$ $x \in [0, 0.75]$

The exact solution is

$$y_{\text{exact}} = 2e^{x} - x.$$

- Let's apply Euler's Method to find an approximate solution.
- Take N=3 subintervals.
- There are 4 points; the step-size is $h = \frac{0.75-0}{3} = 0.25$
- The points are $x_0 = 0$, $x_1 = 0.25$, $x_2 = 0.5$ and $x_3 = 0.75$

Example

Apply Euler's method:

$$y(x_{j+1}) \approx y(x_j) + h \cdot (x_j + y(x_j))$$

- $y(x_1) \approx y(x_0) + h \cdot (x_0 + y(x_0) 1)$
- $y(0.25) \approx 2 + 0.25 \times (0 + 2 1) = 2.25$
- $y(0.5) \approx 2.25 + 0.25 \times (0.25 + 2.25 1) = 2.625$
- $y(0.75) \approx 2.625 + 0.25 \times (0.5 + 2.625 1) = 3.15625$
- The exact value of y(0.75) is given by

$$y_{exact}(0.75) = 2e^{0.75} - 0.75 \approx 3.484$$

• The error is significant because h is too large.

MATLAB Code for Euler's Method

```
function [x,y] = Euler(a, b, N, y0, f)
□% MATLAB code for using Euler's Method to solve the general 1st order IVP
-% dy/dx=f(x,y) on the interval [a,b] with y(a)=y0
 % Inputs: a and b define the interval [a,b]
        N is the number of subintervals
            y0 is the value of y(a)
             f is the function f(x,y) which must be defined separately
 % Outputs: x stores the discretized values of x in the interval [a,b]
             y stores the corresponding approximate values of the solution
 h=(b-a)/N; % determines the step-size needed
 x=linspace(a,b,N+1); % discretizes the interval for x
 y=zeros(1,N+1); % initializes y as a vector of zeros
 y(1)=y0; % stores the value of y(a) as the first entry in the y vector
for i=1:N % using a for loop to compute the remaining y values
     y(i+1)=y(i)+h*feval(f,x(i),y(i)); % Algorithm for Euler's Method
 end
 plot(x,y) % displays a plot of y versus x
 -end
```

Underestimates/Overestimates

- Euler's Method will normally produce either an underestimate or an overestimate of the actual solution.
- An underestimate can be identified by
 - a graph that is concave upward (the gradient increases as x increases), or
 - an increase in the approximate solution as the step-size is decreased (as *h* tends to zero, the approximate solution increases towards the actual solution).
- An overestimate can be identified by
 - a graph that is concave downward (the gradient decreases as x increases), or
 - a decrease in the approximate solution as the step-size is decreased (as h tends to zero, the approximate solution decreases towards the actual solution).