SECTION-A

Answer all questions. Each question carries one Mark

 $(5 \times 1 = 5M)$

Note: Write the answers in orderly at one place

1. $10.^{n}C_2 = 3.^{(n+1)}C_3$ then n=?

A)3

B) 11

(C)9

D) 8

2. The number of ways in which 13 gold coins can be distributed among 3 persons such that each one gets at least two gold coins each.

A)36

B)24

C)12

D)6

The term independent of x in the expansion of $(2x^2 - \frac{3}{x^3})^{15}$ is....

A)¹⁵C₉ .2⁸.3⁷ B) $-^{15}$ C₉ .2¹⁰.3⁵ C)¹⁵C₉ .2¹⁵ D)¹⁵C₉ .2⁹.3⁶

Observe the statements I and II

I) The second term in $(1 + x^2)^{-n}$ is $-nx^2$.

II) $n \in \mathbb{Z}^+$, $2^{3n} - 7n - 1$ is divisible by 49^2 .

1 & II are true A)

| & || are true B)

I is true & II is false C)

I is false & II is true D)

5. Fair dice are rolled. The probability of sum of their faces are to be greater than or equals to 10.

A)1/5

B) 1/2

C)1/12

D)1/6

SECTION-B

Answer any two of the following questions.

 $(2 \times 5 = 10M)$

- a) A class contains 4 boys and g girls. Every Sunday, 5 students with at least 3 boys go to a 6. picnic. A different group is being sent every week. During the picnic the class teacher gives each girl in the group a doll. If the total number of dolls distributed is 85, find g.
 - b) Resolve $\frac{x^2+5x+7}{(x-3)^3}$ into partial fractions.
- a) Find the sum of $2.C_0+5.C_1+8.C_2+...+(3n+2).C_n=(3n+4)2^{n-1}$. 7.
 - b) Find the coefficient of x^6 in the expansion of $(1 3x)^{\frac{-2}{5}}$.
- a) Give two examples of events that are neither mutually exclusive nor exhaustive. 8.
 - b) Find the probability of drawing an Ace or a spade from a well shuffled pack of 52 cards.

End of the Question paper