Formulae Sheet

Transformation matrices

$$Rotx(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Roty (
$$\theta$$
) =
$$\begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rotz(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Trans (a,b,c) =
$$\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DH parameters (standard DH)

ai is the distance between z_{i-1} and z_i w.r.t. x_i

 α_i is the angle between $z_{i\text{--}1}$ and zi w.r.t. clockwise rotation around x_i

di is the distance between x_{i-1} and xi w.r.t. z_{i-1}

 θ_i is the angle between x_{i-1} and xi w.r.t. clockwise rotation around z_{i-1}

Dista

$$_{i}^{i-1}T = \begin{pmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

UFMF4X-15-M

DH parameters (modified DH)

 a_i is the distance between z_i and z_{i+1} w.r.t. x_i

 α_i is the angle between z_i and z_{i+1} w.r.t. clockwise rotation around x_i

d_i is the distance between x_{i-1} and xi w.r.t. z_i

 θ_i is the angle between x_{i-1} and x_i w.r.t. clockwise rotation around z_i

Proximal

$$i^{i-1}\mathbf{T} = \begin{pmatrix} \cos\theta_i & -\sin\theta_i & 0 & a_{i-1} \\ \sin\theta_i\cos\alpha_{i-1} & \cos\theta_i\cos\alpha_{i-1} & -\sin\alpha_{i-1} & -\sin\alpha_{i-1}d_i \\ \sin\theta_i\sin\alpha_{i-1} & \cos\theta_i\sin\alpha_{i-1} & \cos\alpha_{i-1} & \cos\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Euler Angles

ZYZ Euler angles

$$\beta = A \tan 2(\sqrt{r_{31}^2 + r_{32}^2}, r_{33})$$

$$\alpha = A \tan 2(\frac{r_{23}}{s\beta}, \frac{r_{13}}{s\beta})$$

$$\gamma = A \tan 2(\frac{r_{32}}{s\beta}, -\frac{r_{31}}{s\beta})$$

RPY Euler angles

$$\beta = A \tan 2(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$$

$$\alpha = A \tan 2(\frac{r_{21}}{c\beta}, \frac{r_{11}}{c\beta})$$

$$\gamma = A \tan 2(\frac{r_{32}}{c\beta}, \frac{r_{33}}{c\beta})$$

Chain mobility formulae extended version

$$M = d(n - g - 1) + \sum_{i=1}^{g} f_i + R_c - R_M$$

d-3 for planar/6 for spatial manipulators, n- number of moving links, g- number of joints, f_i - degrees of freedom

UFMF4X-15-M Page 9 of 9