stlutils

Release 0.0.1

Christian Mueller

CONTENTS:

1	cmutils			
	1.1 stlutils module	1		
2	Indices and tables	5		
Ру	thon Module Index	7		
In	dex	9		

CHAPTER

ONE

CMUTILS

1.1 stlutils module

1.1.1 STL file generation

This is a simple "brute force" conversion resulting in large files. Each rectangle in the rastered data is simply converted to two triangles.

The resulting stl file therefore includes: - vertices: x-,y- and z-coordinates of all points in the original surface - faces: triangles represented by the indices of their corner points - vectors: normals of triangle faces

You can reduce the size of the file afterwards in MeshLab using "Filters -> Simplification: Quadratic Edge Collapse Decimation", where "Percentage reduction" is the target mesh size relative to original.

stlutils.add_border(array, border, flip)

add border around 2D height array assuming uniform lattice spacing.

Parameters

- array (np.ndarray) array of shape (nx,ny) containing z coordinates.
- **border** (*int*) width of the border in 'pixels'.
- **flip** (*bool*) whether or not to flip the topography upside-down.

Returns updated 2D array of shape (nx+2*border, ny+2*border).

Return type np.ndarray

stlutils.add_foundation(vertex_list)

add to vertex list the vertices representing the bottom foundation of the 3D model.

Parameters vertex_list (np.ndarray) – array of shape (nx*ny, 3).

Returns updated vertex list of shape ((nx+2)*(ny+2), 3).

Return type np.ndarray

stlutils.convertArray(array, outpath, Lx=1, Ly=0, norm=1, flip=False, foundation=True, border=0) create stl file from 2D numpy array

Parameters

- **array** (np.ndarray) array of shape (nx,ny) containing z coordinates.
- **outpath** (*str*) filepath to the stl output file.
- Lx (float) physical dimension of the topography in x direction.
- Ly (float) physical dimension of the topography in y direction.

- **norm** (*float*) factor, by which to multiply z coordinates.
- **flip** (*bool*) whether or not to flip the topography upside-down.
- foundation (bool) whether or not to add 2 triangles representing the bottom of the 3D model
- **border** (*int*) width of the border in 'pixels'.

stlutils.convertFile(inpath, outpath=", norm=1, flip=True, foundation=True) create stl file from config file

Parameters

- **inpath** (*str*) filepath to a contMech config file containing nx*ny points.
- **outpath** (*str*) filepath to the stl output file.
- **norm** (*float*) factor, by which to multiply z coordinates.
- **flip** (*bool*) whether or not to flip the topography upside-down.
- **foundation** (*bool*) whether or not to add 2 triangles representing the bottom of the 3D model

stlutils.create_faces(foundation=True)

calculate the 2*(nx-1)*(ny-1) triangles contained in a nx*ny surface

Parameters foundation (*bool*) – whether or not to add 2 triangles representing the bottom of the 3D model

Returns array of shape (2*(nx-1)*(ny-1) + foundation*2, 3) containing the indices of the 3 vertices of each triangle.

Return type np.ndarray

stlutils.from_array(array, Lx=1, Ly=1, norm=1, flip=False)

convert 2D height topography to a 3D vertex list assuming uniform lattice spacing.

Parameters

- array (np.ndarray) array of shape (nx,ny) containing z coordinates.
- Lx (float) physical dimension of the topography in x direction.
- **Ly** (*float*) physical dimension of the topography in y direction.
- **flip** (*bool*) whether or not to flip the topography upside-down.

Returns 3D vertex positions as an array of shape (nx*ny, 3).

Return type np.ndarray

stlutils.**from_file**(inpath, norm=1, flip=True)

convert 2D height topography to a 3D vertex list assuming uniform lattice spacing.

Parameters

- **inpath** (*str*) filepath to a contMech config file containing nx*ny points.
- **norm** (*float*) factor, by which to multiply z coordinates.
- **flip** (*bool*) whether or not to flip the topography upside-down.

Returns 3D vertex positions as an array of shape (nx*ny, 3).

Return type np.ndarray

2 Chapter 1. cmutils

Warning: These files assume that the surface is periodically repeatable!

Warning: flip=True is default since these files store the surface upside down!

stlutils.save_mesh(vertex_list, faces_list, outpath)

create mesh from vertices and faces and save it to an stl file

Parameters

- **vertex_list** (*np.ndarray*) array of shape (nx*ny, 3).
- **faces_list** (*np.ndarray*) array of 3-tuples of indices, where each of those 3-tuples forms a triangle in vertex_list.
- **outpath** (*str*) filepath to the stl output file.

1.1. stlutils module 3

Chapter 1. cmutils

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

S stlutils, 1

8 Python Module Index

INDEX

```
Α
add_border() (in module stlutils), 1
add_foundation() (in module stlutils), 1
C
convertArray() (in module stlutils), 1
convertFile() (in module stlutils), 2
create_faces() (in module stlutils), 2
from_array() (in module stlutils), 2
from_file() (in module stlutils), 2
M
module
    stlutils, 1
S
save_mesh() (in module stlutils), 3
stlutils
    module, 1
```