REZULTATE PRELIMINARE

1 Spaţiul de coordonate \mathbb{R}^n

Fie \mathbb{R}^n multimea tuturor n-uplelor de forma $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$.

Dacă $x\in\mathbb{R}^n$, $x=(x_1,x_2,\dots,x_n)$, unde $x_1,x_2,\dots,x_n\in\mathbb{R}$ se numesc componentele lui x.

Două n-uple $x=(x_1,\ldots,x_n)$ și $y=(y_1,\ldots,y_n)$ sunt egale dacă: $x_1=y_1,\;x_2=y_2,\ldots,\;x_n=y_n.$

2 Coordonate carteziene în \mathcal{E}_1

Fie \mathcal{E}_1 spaţiul euclidian 1-dimensional.

Fie O şi A, două puncte fixe pe o dreaptă astfel ca OA = 1.

Obţinem o orientare a dreptei d (de la O spre A) şi definim funcţia

$$f: \mathcal{E}_1 \to \mathbb{R}, \qquad f_1(P) = x_P$$

unde $|x_P| = OP$ și

$$\begin{cases} x_P \ge 0, P \in [OA \\ x_P < 0, P \not\in [OA \end{cases}$$

 f_1 este o funcție bijectivă și asociază pentru orice punct $P \in \mathcal{E}_1$ un număr real unic x_P .

Definiție. Spunem că Ox este un sistem de coordonate în \mathcal{E}_1 cu originea în punctul O și axa Ox, iar x_P se numește coordonata lui P.

3 Sistem rectangular de coordonate $\, \hat{\,} n \,$ $\,$ ${\cal E}_2$

Fie \mathcal{E}_2 spaţiul euclidian 2-dimensional. Fie $O \in \mathcal{E}_2$ un punct fix şi d, d' două drepte perpendiculare care trec prin O. Pe fiecare din cele 2 drepte d şi d' putem alege un sistem de coordonate în mod analog cu procedeul prezentat în secţiunea precedentă.

Obţinem astfel axele Ox şi Oy.

Fie $P \in \mathcal{E}_2$. Acestui punct îi putem asocia o pereche unică $(x_P, y_P) \in \mathbb{R}^2$ astfel ca

$$f_2: \mathcal{E}_2 \to \mathbb{R}^2$$
, $f_2(P) = (x_P, y_P)$.

Definiție. Originea O împreună cu cele 2 axe formează un nou sistem de coordonate xOy în \mathcal{E}_2 , iar (x_P, y_P) se numesc coordonate ortogonale (rectangulare) ale punctului P.

Cele 2 axe Ox , Oy împart planul \mathcal{E}_2 în 4 regiuni numite cadrane.

Cadran	Ι	II	III	IV
x_P	+	_	_	+
y_P	+	+	_	_

Putem caracteriza un punct $P(x_P, y_P)$, după semnul pe care îl are într-unul din cele 4 cadrane:

Lungimea unui segment $[P_1P_2]$ unde $P_1(x_{P_1},y_{P_1})$, $P_2(x_{P_2},y_{P_2})$ se poate găsi astfel:

$$P_1 P_2^2 = (x_{P_2} - x_{P_1})^2 + (y_{P_2} - y_{P_1})^2$$

pentru că dacă ducem prin punctul P_1 o paralelă la axa Ox, obţinem triunghiul P_1MP_2 care este dreptunghic.

Observăm că

$$\begin{cases} P_1 M = x_{P_2} - x_{P_1} \\ P_2 M = y_{P_2} - y_{P_1} \end{cases}$$

deci folosind teorema lui Pitagora obţinem: $P_1P_2^2 = P_1M^2 + P_2M^2$

$$P_1 P_2^2 = (x_{P_2} - x_{P_1})^2 + (y_{P_2} - y_{P_1})^2$$

$$P_1 P_2 = \sqrt{(x_{P_2} - x_{P_1})^2 + (y_{P_2} - y_{P_1})^2}$$

Dacă punctul P împarte segmentul $[P_1P_2]$ în proporția k, adică $\frac{PP_1}{PP_2}=k$

atunci coordonatele lui P vor fi:

$$P\left(\frac{x_{P_1}+kx_{P_2}}{k+1}, \frac{y_{P_1}+ky_{P_2}}{k+1}\right).$$

4 Coordonate rectangulare în \mathcal{E}_3

Fie \mathcal{E}_3 spaţiul euclidian 3-dimensional. Fie O un punct fix iar d, d' şi d'', 3 drepte perpendiculare care se intersectează în O. Alegem cele 3 drepte ca axe de coordonate: Ox, Oy şi Oz.

Pentru un punct $P(x_P, y_P, z_P)$ oarecare, putem defini

$$f_3: \mathcal{E}_3 \to \mathbb{R}^3, \qquad f_3(P) = (x_P, y_P, z_P)$$

Definiție Reperul rectangular de coordonate Oxyz are elementele:

- originea reperului *O*
- axe de coordonate: Ox, Oy, Oz
- planele de coordonate: xOy, yOz, xOz.

Teoremă Distanța între punctele $P_1(x_{P_1}, y_{P_1}, z_{P_1})$, $P_2(x_{P_2}, y_{P_2}, z_{P_2})$ este dată de:

$$P_1 P_2 = \sqrt{(x_{P_2} - x_{P_1})^2 + (y_{P_2} - y_{P_1})^2 + (z_{P_2} - z_{P_1})^2}.$$

Demonstrație. Construim paralelipipedul care are P_1 și P_2 puncte pe diagonala principală.

$$P_1(x_{P_1}, y_{P_1}, z_{P_1})$$

$$P_1 A = |y_{P_2} - y_{P_1}|
 AB = |x_{P_2} - x_{P_1}|
 BP_2 = |z_{P_2} - z_{P_1}|
 \Rightarrow P_1 B^2 = P_1 A^2 + A B^2$$

$$P_1 P_2^2 = (x_{P_2} - x_{P_1})^2 + (y_{P_2} - y_{P_1})^2 + (z_{P_2} - z_{P_1})^2$$

 $P_{1}P_{2}^{2}=(x_{P_{2}}-x_{P_{1}})^{2}+(y_{P_{2}}-y_{P_{1}})^{2}+(z_{P_{2}}-z_{P_{1}})^{2}$ **Teoremă** Dacă punctul P împarte segmentul $[P_{1}P_{2}]$, unde $P_{1}(x_{P_{1}},y_{P_{1}},z_{P_{1}})$ și $P_2(x_{P_2},y_{P_2},z_{P_2})$, în raportul k (astfel ca $\frac{PP_1}{PP_2}=k$) atunci coordonatele punctului P sunt:

$$P\left(\frac{x_{P_1} + kx_{P_2}}{k+1}, \frac{y_{P_1} + ky_{P_2}}{k+1}, \frac{z_{P_1} + kz_{P_2}}{k+1}\right).$$

Sistemul de coordonate polare (SP) 5

Ca o alternativă la sistemul rectangular de coordonate, considerăm în plan, un punct O fix numit pol și o semidreaptă direcționată spre dreapta față de *O* numită axă polară.

Dacă specificăm distanța de la polul O la punctul P și o notăm ρ și considerăm unghiul θ dintre axa polară și OP, atunci coordonatele polare ale lui P sunt (ρ, θ) .

Trecerea din coordonate polare în coordonate rectangulare se face după formula:

$$\begin{cases} x_P = \rho & \cos\theta \\ y_P = \rho & \sin\theta \end{cases}$$

$$x^2 + y^2 = \rho^2$$
$$\rho = \sqrt{x^2 + y^2}$$

Caz 1. Dacă
$$x \neq 0$$
, tg $\theta = \frac{y}{x}$, $\theta = \operatorname{arctg}\left(\frac{y}{x}\right) + k\pi$, unde
$$k \in \begin{cases} 0, & P \in I \cup (Ox \\ 1, & P \in I \cup II \cup III \cup Ox' \\ 2, & P \in IV \end{cases}$$
 Caz 2. Dacă $x = 0$ și $y \neq 0$ $\theta = \begin{cases} \frac{\pi}{2}, P \in (Oy \\ \frac{3\pi}{2}, P \in (Oy') \end{cases}$

Caz 2. Dacă
$$x = 0$$
 și $y \neq 0$ $\theta = \begin{cases} \frac{\pi}{2}, P \in (Oy) \\ \frac{3\pi}{2}, P \in (Oy') \end{cases}$

Caz 3. Dacă x = 0, y = 0, $\theta = 0$

Fie $P(x,y,z) \in Oxyz$ și P' proiecția lui P în planul xOy. Putem asocia punctului P, tripletul (r, θ, z) unde (r, θ) sunt coordonatele polare ale lui P', tripletul (r, θ, z) ne dă coordonatele cilindrice

$$\begin{cases} x = r & \cos\theta \\ y = r & \sin\theta \\ z = z \end{cases}$$

Trecerea la coordonate rectangulare se face astfe

$$r = \sqrt{x^2 + y^2}, z = z$$

iar pentru unghiul θ , avem cele 3 cazuri de la sisteme de coordonate polare, adică

Caz 1. Dacă
$$x \neq 0$$
, tg $\theta = \frac{y}{x}$, $\theta = \operatorname{arctg}\left(\frac{y}{x}\right) + k\pi$, unde
$$k \in \begin{cases} 0, & P \in I \cup (Ox \\ 1, & P \in I \cup II \cup III \cup Ox' \\ 2, & P \in IV \end{cases}$$
 Caz 2. Dacă $x = 0$ și $y \neq 0$ $\theta = \begin{cases} \frac{\pi}{2}, P \in (Oy \\ \frac{3\pi}{2}, P \in (Oy') \end{cases}$

Caz 2. Dacă
$$x = 0$$
 și $y \neq 0$ $\theta = \begin{cases} \frac{\pi}{2}, P \in (Oy) \\ \frac{3\pi}{2}, P \in (Oy') \end{cases}$

Caz 3. Dacă
$$x = 0$$
, $y = 0$, $\theta = 0$.

7 Sistemul de coordonate sferice

Fie P(x,y,z) un punct din reperul Oxyz iar P' proiecţia lui pe planul xOy. Notăm $\rho = ||OP||$ şi θ unghiul dintre [Ox] şi [OP'], iar φ unghiul dintre [Oz] şi [OP]. Tripletul (ρ, θ, φ) formează coordonatele sferice ale punctului P.

Trecerea din coordonate sferice în coordonate rectangulare se realizează astfel:

$$\begin{cases} x = \rho \cos\theta \sin\varphi \\ y = \rho \sin\theta \sin\varphi \\ z = \rho \cos\varphi \end{cases}$$

$$\rho = \sqrt{x^2 + y^2 + z^2}, \varphi = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

iar θ se găsește ca și în celelalte 3 cazuri de la sistemele de coordonate prezentate la paragrafele anterioare, adică

Caz 1. Dacă
$$x \neq 0$$
, tg $\theta = \frac{y}{x}$, $\theta = \arctan\left(\frac{y}{x}\right) + k\pi$, unde

$$k \in \left\{ \begin{array}{ll} 0, & P \in I \cup (Ox \\ 1, & P \in I \cup II \cup III \cup Ox' \\ 2, & P \in IV \end{array} \right.$$
 Caz 2. Dacă $x = 0$ și $y \neq 0$ $\theta = \left\{ \frac{\pi}{2}, P \in (Oy \\ \frac{3\pi}{2}, P \in (Oy') \right.$ Caz 3. Dacă $x = 0, \ y = 0, \ \theta = 0.$