Prior to VPN technology, the only way to provide private remote network connections was through direct-dial lines or dedicated private lines, which were (and still are) very expensive. For example, to set up a remote office, you could lease a private T1 line from the phone company to connect the two offices. This private T1 line provided excellent security because it physically connected the two offices and could be accessed only from the two endpoints.

VPN provides the same point-to-point connection as a private leased line, but does it over the Internet instead of through expensive dedicated lines. To create the tunnel that guarantees privacy of the data as it travels from one end of the VPN to the other, the data is encrypted using special security protocols.

The most important of the VPN security protocols is *Internet Protocol Security* (IPSec), which is a collection of standards for encrypting and authenticating packets that travel on the Internet. In other words, it provides a way to encrypt the contents of a data packet so that only a person who knows the secret encryption keys can decode the data. And it provides a way to reliably identify the source of a packet so that the parties at either end of the VPN tunnel can trust that the packets are authentic.

Another commonly used VPN protocol is Layer 2 Tunneling Protocol (L2TP). This protocol doesn't provide data encryption. Instead, it's designed to create end-to-end connections — *tunnels* — through which data can travel. L2TP is actually a combination of two older protocols: Layer 2 Forwarding Protocol (L2FP, from Cisco), and Point-to-Point Tunneling Protocol (PPTP, from Microsoft).

Many VPNs today use a combination of L2TP and IPSec: L2TP over IPSec. This type of VPN combines the best features of L2TP and IPSec to provide a high degree of security and reliability.

Understanding VPN servers and clients

A VPN connection requires a VPN server — the gatekeeper at one end of the tunnel — and a VPN client at the other end. The main difference between the server and the client is that the client initiates the connection with the server, and a VPN client can establish a connection with just one server at a time. However, a server can accept connections from many clients.

Typically, the VPN server is a separate hardware device, most often a security appliance such as a Cisco ASA security appliance. VPN servers can also be implemented in software. For example, Windows Server includes built-in VPN capabilities even though they're not easy to configure. And a VPN server can be implemented in Linux and macOS as well.