Introduction to DNA Sequencing

(Relevant) Trivia

How many base pairs (bp) are there in a human genome?

How much did it cost to sequence the first human genome?

How long did it take to sequence the first human genome?

When was the first human genome sequence complete?

Whose genome was it?

(Relevant) Trivia

How many base pairs (bp) are there in a human genome?

~3 billion (haploid)

How much did it cost to sequence the first human genome?

~\$2.7 billion

How long did it take to sequence the first human genome?

~13 years

When was the first human genome sequence complete?

2000-2003

Whose genome was it?

Several people's, but actually mostly a dude from Buffalo

Overview

- Prologue: Assembly
- The Past: Sanger
- The Present: Next-Gen (454, Illumina, ...)
- The Future: ? (Nanopore, MinION, Single-molecule)

Overview

- Prologue: Assembly
- The Past: Sanger
- The Present: Next-Gen (454, Illumina, ...)
- The Future: ? (Nanopore, MinION, Single-molecule)

Method	Read Length
Sanger	
454	
Illumina	
Ion Torrent	

Method	Read Length
Sanger	600-1000 bp
454	
Illumina	
Ion Torrent	

Method	Read Length
Sanger	600-1000 bp
454	300-500 bp
Illumina	
Ion Torrent	

Method	Read Length
Sanger	600-1000 bp
454	300-500 bp
Illumina	~100 bp
Ion Torrent	

Method	Read Length
Sanger	600-1000 bp
454	300-500 bp
Illumina	~100 bp
Ion Torrent	~200 bp

But...

Phage Genome: 30,000 to 500,000 bp

Bacteria: Several million bp

Human: 3 billion bp

Shotgun Genome Sequencing

Eragnpherteeglegemone copies ks

Shotgun Genome Sequencing

Fragmented genome chunks

NOT REALLY DONE BY DUCK HUNTERS Hydroshearing, sonication, enzymatic shearing

17 bp

ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC

66 bp

Consensus:

ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC

Consensus:

ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC

Consensus:

ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC

6x coverage 100% identity

Consensus:

ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC

5x coverage 80% identity

Consensus:

```
ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC
```

2x coverage 50% identity

Consensus:

```
ATTGTTCCCACAGACCG

CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG

AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC

ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT

TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC
```

1x coverage

Overview

- Prologue: Assembly
- The Past: Sanger
- The Present: Next-Gen (454, Illumina, ...)
- The Future: ? (Nanopore, MinION, Single-molecule)

Fragments were cloned:

Sanger Sequencing Reactions

For given template DNA, it's like PCR except:

Uses only a single primer and polymerase to make new ssDNA pieces.

Includes regular nucleotides (A, C, G, T) for extension, but also includes dideoxy nucleotides.

Regular Nucleotides

$$\begin{matrix}G&A&T\\C&T&C&A\\C&G&A&T\\A&T&T&A\\C&A&C&C&A\\C&A&C&C&A\end{matrix}$$

Dideoxy Nucleotides

- I. Labeled
- 2. Terminators

```
Primer

TGCGCGGCCAGTCTTGGGCT

ACGCGCGGGTCAGAACCCGATCG
```



```
5' T G C G C G G C C C A G T C T T G G G C T A

3' T G C G C G G C C C A G T C T T G G G C T

5' T G C G C G G C C C A G T C T T G G G C T

5' T G C G C G G C C C A G T C T T G G G C T A G C G C

21 bp
```

5' -					Pri	mer	•																			
•	_	G	C	G	C	G	G	C	C	C	Α	G														
2,-	Α	С	G	С	G	С	С	G	G	G	Т	С	Α	G	Α	Α	С	С	С	G	Α	Т	C G	C G	- 5'	
J -																									5	
5'-					_			_		_		_			_		_	_	_		_					21 hr
	Т	G	C	G	C	G	G	C	C	C	Α	G	Т	C	Т	Т	G	G	G	C	Т					21 bp
5'-																									_	
_		G	C	G	C	G	G	C	C	C	Α	G	Т	C	Т	Т	G	G	G	C	Т	Α	G C	G C		26 bp
5' -	Т	G	C	G	C	G	G	<u> </u>	C	C	Α	G	т	C	Т	Т	G	G	G	C	Т					22 bp

5 '.					Prii	mer	GCCAGTCTTGGGC																					
3'·	Α	С	G	С	G	С	С	G	G	G	Т	С	Α	G	Α	Α	С	С	С	G	Α	T	С	G	C G	- 5'		
Ū																										Ü		
5'	Т	G	С	G	С	G	G	C	C	C	A	G	Т	С	T	Т	G	G	G	С	Т						21	bp
5'	Т	G	С	G	С	G	G	С	С	С	Α	G	Т	С	Т	Т	G	G	G	С	Т	Α	G	С	G C	-	26	bp
5'	Т	G	С	G	C	G	G	C	C	C	A	G	Т	C	T	Т	G	G	G	С	Т	A					22	bp
5'		G		G		G	G		<u> </u>	<u> </u>																	12	bp

5,					Pri	mer	•																						
J										C							_	_	_	_	•	_	_	_	_	_			
3'	<u> </u>		G	_	G	_	_	<u> </u>	<u> </u>	G	ı	_	<u> </u>	G	<u> </u>	<u> </u>	_	_	_	G				G		G	5'		
5'																						_							
	Т	G	C	G	C	G	G	C	C	C	Α	G	Т	C	Т	T	G	G	G	C	Т	•						21	bp
5'												_																2.0	1.
	Т	G	С	G	С	G	G	С	С	С	Α	G	T	С	Т	T	G	G	G	С	Т	Α	G	С	G	С		26	bp
5'	_												_		_	_					_	· _	_					22	br
	ı	G											ı	C	•	ı	G	G	G	C	ı	Α						22	υţ
5'	Т	G								C																		12	b
5 '		_	_	-	-	_	_			-	•										_								
5	Т	G	С	G	С	G	G	С	С	С	Α	G	Т	C	Т	Т	G	G	G	C	_							20	bp

3'	Α	<u>C</u>	G	<u>C</u>	G	<u>C</u>	<u>C</u>	G	G	G	Т	<u>C</u>	<u>A</u>	G	<u>A</u>	<u>A</u>	<u>C</u>	<u>C</u>	<u>C</u>	G	<u>A</u>	Т	С	G	<u>C (</u>	. — 5	5'		
5'	Т	G	С	G	С	G	G	С	С	С	Α	G	Т	С	Т	Т	G	G	G	С	Т							21	bŗ
5'	Т	G	С	G	С	G	G	С	С	С	A	G	Т	С	Т	Т	G	G	G	С	Т	A	G	С	G (<u> </u>		26	bp
5'	Т	G	С	G	С	G	G	С	С	С	A	G	Т	С	Т	Т	G	G	G	С	Т	A						22	bp
	Т											G																12	b
5'	Τ	G	С	G	С	G	G	С	С	С	A	G	Т	С	Т	Т	G	G	G	С	•							20	bp
S	Т	G	C	G	C	G	G	C	C	C	Α	G	T	C	Т	Т												16	br

```
T G C G C G G C C C A ? ? ? ? ? ? ? ? T
                                        21 bp
T G C G C G C C C A ? ? ? ? ? ? ? ? ? ? ? ? ? C
                                        26 bp
T G C G C G G C C C A ? ? ? ? ? ? ? ? A
                                        22 bp
TGCGCGGCCAG
                                        12 bp
T G C G C G G C C C A ? ? ? ? ? ? ? ? C
                                        20 bp
TGCGCGGCCA???T
                                        16 bp
```


Sanger Sequencing Output

Each sequencing reaction gives us a **chromatogram**, usually ~600-1000 bp:

Sanger Throughput Limitations

- Must have I colony picked for every 2 reactions
- Must do I DNA prep for every 2 reactions
- Must have I PCR tube for each reaction
- Must have I gel lane for each reaction

from The Economist

Overview

- Prologue: Assembly
- The Past: Sanger
- The Present: Next-Gen (454, Illumina, ...)
- The Future: ? (Nanopore, MinION, Single-molecule)

Shotgun sequencing by Ion Torrent Personal Genome Machine and 454

The idea is that each bead should be amplified all over with a SINGLE library fragment.

Problem: How do I do PCR to amplify the fragments without having to use 1 tube for each reaction?

Only give polymerase one nucleotide at a time:

Only give polymerase one nucleotide at a time:

If that nucleotide is incorporated, enzymes turn by-products into light:

The real power of this method is that it can take place in millions of tiny wells in a single plate at once.

Raw 454 data

Ion Torrent Sequencing

Ion Torrent Sequencing

Illumina Sequencing

1. PREPARE GENOMIC DNA SAMPLE

Randomly fragment genomic DNA and ligate adapters to both ends of the

4. FRAGMENTS BECOME DOUBLE STRANDED

The enzyme incorporates nucleotides to build double-stranded bridges on the solidphase substrate.

2. ATTACH DNA TO SURFACE

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

5. DENATURE THE DOUBLE-STRANDED

Denaturation leaves single-stranded templates anchored to the substrate.

3. BRIDGE AMPLIFICATION

Add unlabeled nudeotides and enzyme to initiate solid-phase bridge amplification.

6. COMPLETE AMPLIFICATION

Several million dense dusters of doublestranded DNA are generated in each channel of the flow cell.

7. DETERMINE FIRST BASE

First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.

10. IMAGE SECOND CHEMISTRY CYCLE

After laser excitation, collect the image data as before. Record the identity of the second base for each duster.

8. IMAGE FIRST BASE

After laser excitation, capture the image of emitted fluorescence from each duster on the flow cell. Record the identity of the first base for each duster.

11. SEQUENCE READS OVER MULTIPLE 12. ALIGN DATA

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

9. DETERMINE SECOND BASE

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

Align data, compare to a reference, and identify sequence differences.

Next-Gen Sequencing

Take home message: Massively Parallel 1,000 monkeys at 1,000 typewriters is nothing We're talking 100,000 to 100 million concurrent reads

Overview

- Prologue: Assembly
- The Past: Sanger
- The Present: Next-Gen (454, Illumina, ...)
- The Future: ? (Nanopore, MinION, Single-molecule)

DNA Sequencing over Time

from The Economist

Cost per Megabase of DNA Sequence

Single Molecule Sequencing

"The MinION has been used to successfully read the genome of a lambda bacteriophage, which has 48,500-ish base pairs, twice during one pass. That's impressive, because reading 100,000 base pairs during a single DNA capture has never been managed before using traditional sequencing techniques.

The operational life of the MinION is only about six hours, but during that time it can read more than 150 million base pairs. That's somewhat short of the larger human chromosomes (which contain up to 250 million base pairs), but Oxford Nanopore has also introduced GridION -- a platform where multiple cartridges can be clustered together. The company reckon that a 20-node GridION setup can sequence a complete human genome in just 15 minutes."

(Relevant) Trivia

How many base pairs (bp) are there in a human genome?

~3 billion (haploid)

How much did it cost to sequence the first human genome?

~\$2.7 billion

How long did it take to sequence the first human genome?

~13 years

When was the first human genome sequence complete?

2000-2003

Whose genome was it?

Several people's, but actually mostly a dude from Buffalo

Final Thoughts

- DNA sequencing is becoming vastly faster and more affordable
- Generating data is no longer the bottleneck, understanding it is
- Bioinformatics types should be in high demand in the near future

Sanger Sequencing

Advantages	Disadvantages
Lowest error rate	High cost per base
Long read length (~750 bp)	Long time to generate data
Can target a primer	Need for cloning
	Amount of data per run

454 Sequencing

Disadvantages
Relatively high cost per base
Must run at large scale Medium/high startup costs

Ion Torrent Sequencing

Advantages	Disadvantages
Low startup costs	New, developing technology
Scalable (10 – 1000 Mb of data per run) Medium/low cost per base Low error rate Fast runs (<3 hours)	Cost not as low as Illumina Read lengths only ~100-200 bp so far

Illumina Sequencing

Advantages	Disadvantages
Low error rate	Must run at very large scale
Lowest cost per base Tons of data	Short read length (50-75 bp)
	Runs take multiple days High startup costs
	De Novo assembly difficult

PacBio Sequencing

Advantages	Disadvantages
Can use single molecule as template Potential for very long reads (several kb+)	High error rate (~10-15%) Medium/high cost per base High startup costs

Sequencing illumına

Reads per run

Platform

MiniSeq System Up to 7.5 Gb

NextSeq Series O Up to 120 Gb

MiSeq Series O Up to 15 Gb

HiSeq Series O Up to 750 Gb

HiSeq X Series†

Up to 800 Gb

Read length (mode

Bases per run

NovaSeq Series O

Up to 2 Tb

Sequencing

Platform	Reads per run	Read length (mode or average)	Bases per run (gigabases)
ABI Sanger	96	800	0.0000768
454	1 millions	700	0.7
IonTorrent	75 millions	200	15
SOLiD	3 billions	75	320
Illumina	600 millions to 6 milliards	100 to 300	7.5 to 2 000

Single molecule Long Read Sequencing

Platform	Year	Reads per run	Read length (mode or average)	Bases per run (gigabases)
ABI Sanger	2002	96	800	0.0000768
454	2011	1 millions	700	0.7
SOLID	2013	3 milliards	75	320
IonTorrent	2015	75000000	200	15
Illumina	2016	600 millions to 6 milliards	100 to 300	7.5 to 2 000
PacBio	2014	660000	13500	20

RSII 700,000 \$

Robotics

Sequencing

Sequel 350,000 \$

Single molecule Long Read Sequencing

MinION 1,000 \$

Sequencing Technologies are getting Faster and Cheaper

The use of nucleic acid sequencing has increased exponentially as the ability to sequence has become accessible to research and clinical labs all over the world

Several Sequencing Technologies Applications "-Seq": RNA-Seq, Chip-Seq, SingleCell-Seq, etc.

This demand has driven the development of High Troughput Sequencing (HTS), that are becoming exponentially cheaper.

The exponential growth of genomic data unfortunately is not followed by an exponential growth of storage

A new Human Genome every 6 min

Segui

The sequencing lab just rang in its biggest month of sequence data generation EVER! 663 Terabases in the month of July. Equivalent to a human genome every 6 minutes.

#NewBenchmark #QualityandQuantity #CantStopWontStop

What is the output of HTS

- In many applications compression is required to reduce space and improve throughput. e.g. The most popular reads mapper (BWA) can operate directly on the compressed FastQ.
- The DNA sequence exposes a high redundancy, especially on large reads collections with high coverage, and thus it is highly compressible
- Quality values have much higher entrophy than a genomic sequence because their alphabeth usually span a much larger range of values (e.g. [1 - 40]), and they are not repetitive.
- When FASTQ files are compressed quality values account for 70% of the total space.

Background on Quality Values

Probability of incorrect base call	Base call accuracy
1 in 10	90%
1 in 100	99%
1 in 1000	99.9%
1 in 10,000	99.99%
	of incorrect base call 1 in 10 1 in 100 1 in 1000

Applications:

- SNP/Mutation Detection
- Removal of low-quality reads
- Reads Mapping
- Detection of Overlapping reads
- Error Correction
- Compression
- etc.

- Q(i): Phred-scaled probability that the i-th base of the read being wrong
- $Q(i) = -10 \log_{10} \text{Prob}\{\text{the base } i \text{ of read is wrong}\}\$

