

11장. 뉴스 피드 시스템 설계

뉴스 피드란?

- 사용자의 상태 정보 업데이트, 사진, 비디오, 링크, 앱 활동
- 팔로우하는 사람들, 페이지, 좋아요
- 페이스북 뉴스 피드 설계 , 인스타그램 피드 설계 , 트위터 타임라인 설계

1단계. 문제 이해 및 설계 범위 확정

요구사항

- 사용자는 뉴스 피드 페이지에 새로운 스토리를 올릴 수고, 친구들이 올린 스토리를 볼 수 있어야 한다.
- 시간 흐름 역순으로 스토리가 표시되어야 한다.
- 한 명의 사용자는 최대 5000명의 팔로워를 가질 수 있다.
- 하루에 천만명이 방문할 수 있다.
- 피드에는 이미지나 비디오 등의 미디어 파일이 포함될 수 있다.

2단계. 개략적 설계안 제시 및 동의 구하기

피드 발행과 뉴스 피드 생성

- 피드 발행: 사용자가 스토리를 포스팅하면 해당 데이터를 캐시와 데이터베이스에 기록한다. 새 포스팅은 친구의 뉴스 피드에도 전송된다.
- 뉴스 피드 생성: 모든 친구의 포스팅을 시간 흐름의 역순으로 모아서 만든다.

뉴스 피드 API

- 피드 발생 API
- 피드 읽기 API

피드 발생 API

POST /v1/me/feed

• body: 포스팅 내용

• Authorization header: API 호출 인증 값

- 1. 사용자는 피드 발생 API를 사용하여 새 포스팅을 올린다.
- 2. 로드밸런서가 트래픽을 웹 서버들로 분산한다.

- 3. 웹서버는 HTTP 요청을 내부 서비스로 중계한다.
- 4. 포스팅 저장 서비스는 새 포스팅을 데이터베이스와 캐시에 저장한다.
- 5. 포스팅 전송 서비스는 새 포스팅을 친구의 뉴스 피드에 푸시한다. 캐시에 보관하여 빠르게 읽을 수 있도록 한다.
- 6. 알림 서비스는 친구들에게 새 포스팅에 대한 알림을 보낸다.

피드 읽기 API

GET /v1/me/feed

• Authorization header: API 호출 인증 값

- 1. 사용자는 피드 읽기 API를 호출한다.
- 2. 로드밸런서는 트래픽을 웹 서버들로 분산한다.
- 3. 웹서버는 트래픽을 뉴스 피드 서비스로 보낸다.
- 4. 뉴스 피드 서비스는 캐시에서 뉴스 피드를 가져온다.
- 5. 뉴스 피드 캐시는 뉴스 피드를 렌더링할 때 필요한 피드 ID를 보관한다.

3단계. 상세 설계

웹 서버의 역할

- 클라이언트와 통신
- 인증이나 처리율 제한 기능

포스팅 전송(팬아웃) 서비스

- 어떤 사용자의 새 포스팅을 그 사용자와 친구 관계에 있는 모든 사용자에게 전달하는 과정
- 두 가지 모델이 있는데 하나는 쓰기 시점에 포스팅을 전송하는 모델(push 모델)이고, 다른 하나는 읽기 시점에 포스팅 전송하는 모델(pull 모델)이다.

쓰기 시점에 포스팅 전송하는 Push 모델

새로운 포스팅을 기록하는 시점에 뉴스피드 갱신

장점

- 뉴스 피드가 실시간으로 갱신되며 친구 목록에 있는 사용자에게 즉시 전송된다.
- 포스팅이 쓰이는 시점에 전송되므로 뉴스 피드를 읽는 데 드는 시간이 짧아진다.

단점

- 친구가 많은 사용자의 경우 뉴스 피드 갱신에 많은 시간이 소요될 수 있다.(핫키 이슈)
- 사용자의 친구 목록에 있는 사용자의 피드를 모두 갱신하므로 서비스를 자주 이용하지 않는 사용자의 피드까지 갱신된다. 따라서 컴퓨팅 자원이 낭비된다.

읽기 시점에 포스팅 전송하는 Pull 모델

피드를 읽어야 하는 시점에 뉴스 피드를 갱신한다.

장점

- 로그인하지 않은(비활성화된 사용자) 또는 서비스를 자주 이용하지 않는 사용자에게 피드 가 갱신되지 않으므로 컴퓨팅 자원을 아낄 수 있다.
- 데이터를 친구 목록의 사용자 모두에게 푸시하는 작업이 필요 없으므로 핫키 문제도 발생하지 않는다.

단점

• 뉴스 피드를 읽는데 많은 시간이 소요될 수 있다.

개선안 : 두가지 모델 결합

뉴스 피드를 가져오는 작업에는 대부분의 사용자에게 **Push 모델**을 적용 핫키 발생 가능성 있는 유명인은 Pull 모델 적용 또한, 안정 해시를 통해 요청과 데이터를 보다 고르게 분산시켜 핫키 이슈 줄이기

피드 읽기 흐름 상세 설계

1. 사용자는 피드 읽기 API를 호출한다.

- 2. 로드밸런서는 트래픽을 웹 서버들로 분산한다.
- 3. 웹서버는 트래픽을 뉴스 피드 서비스로 보낸다.
- 4. 뉴스 피드 서비스는 캐시에서 포스팅 ID 목록을 가져온다.
- 5. 뉴스 피드에 표시할 사용자 이름, 사진, 콘텐츠 등을 캐시에서 가져온다.
- 6. 생성된 뉴스피드를 JSON 형태로 클라이언트에게 보내고, 클라이언트는 해당 피드를 렌더링한다.

캐시 구조

캐시는 뉴스 피드의 핵심 컴포넌트

- 뉴스 피드
 - 。 뉴스피드의 ID를 보관한다.
- 콘텐츠
 - 포스팅 데이터를 보관하고 인기 콘텐츠는 따로 보관한다.
- 소셜 그래프
 - 사용자 간 관계 정보를 보관한다. (팔로워, 팔로잉)

- 행동
 - o '좋아요'나 댓글 같은 사용자 행위에 관한 정보를 보관한다.
- 횟수
 - '좋아요' 횟수, 응답 수, 팔로워 수, 팔로잉 수 등의 정보를 보관한다.

4단계. 마무리

논의하면 좋을 만한 주제

- 1. 데이터베이스 규모 확장
- 수직적 규모 확장 vs 수평적 규모 확장
- SQL vs NoSQL
- 주-부 데이터베이스 다중화
- 복제본에 대한 읽기 연산
- 일관성 모델
- 데이터베이스 샤딩
- 2. 이 외 주제
- 웹 계층을 무상태로 운영하기
- 가능한 한 많은 데이터를 캐시할 방법
- 여러 데이터 센터를 지원할 방법
- 메시지 큐를 사용하여 컴포넌트 사이의 결합도 낮추기
- 핵심 메트릭에 대한 모니터링.
 - 。 트래픽이 몰리는 시간대의 QPS, 사용자 피드를 새로고침할 때의 지연시간

References

• https://velog.io/@haron/가상-면접-사례로-배우는-대규모-시스템-설계-기초-11장-뉴스-피드-시스템-설계-i6re3cjt