Mobile Communications

Wireless Transmission Path Loss, Shadowing, Multipath, Capacity

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

- ◆ How does an EM wave propagate in a wireless channel?
- What is antenna and its gain?
- What is shadowing, reflection, refraction, scattering, and diffraction?
- ♦ What is path loss? How to model it?
- ♦ How to model shadowing?
- ♦ What is multipath? How to model it?
- ◆ What is the maximum theoretical capacity of a wireless channel?

Electromagnetic Wave

 $c = 3 \times 10^8$ m/s, speed of light

$$f_c = 300 \text{ MHz}$$
 $\Rightarrow \lambda = 1m$
 $f_c = 1 \text{ GHz}$ $\Rightarrow \lambda = 30 \text{ cm}$
 $f_c = 3 \text{ GHz}$ $\Rightarrow \lambda = 10 \text{ cm}$
 $f_c = 30 \text{ GHz}$ $\Rightarrow \lambda = 10 \text{ mm}$

$$f_c = 300 \text{ GHz} \implies \lambda = 1 \text{ mm}$$

Frequencies for Radio Transmission

Frequency bands defined by ITU-R Radio Regulations

 $band_i \in [0.3 \times 10^i Hz, 3 \times 10^i Hz].$

Very Low Frequency VLF

LF Low Frequency

MF Medium Frequency

HF **High Frequency**

VHF Very High Frequency

UHF Ultra High Frequency

SHF Super High Frequency

EHF Extremely High Frequency

Band Number	Symbol	Frequency Range	
4	4 VLF 3-30 kHz		
5 LF		30-300 kHz	
6	MF	3000-3000 kHz	
7	HF	$3-30~\mathrm{MHz}$	
8 VHF		$30\text{-}300~\mathrm{MHz}$	
9	9 UHF 300		
10	SHF	3-30 GHz	
11	EHF	30-300 GHz	
12		300-3000 GHz	

 $f_c = 300 \text{ MHz}$ $\Rightarrow \lambda = 1m$ $f_c = 3 \text{ GHz}$ $\Rightarrow \lambda = 10 \text{ cm}$

 $f_c = 30 \text{ GHz}$ $\rightarrow \lambda = 10 \text{ mm}$

 $f_c = 300 \text{ GHz} \implies \lambda = 1 \text{ mm}$

Frequency Allocation to Radio Services in Portugal

ANACOM manages the electromagnetic spectrum, in Portugal

Space Operation (satellite

Space Research Service

Space Research Service (deep space)

Standard Frequency and Time Signal-Satellite Service

identification)

www.anacom.pt, Quadro Nacional de Atribuição de Frequências (QNAF)

Space Operation Service

Space Research Service (active)

Space Sesearch Service (passive)

Antenna – The Isotropic Radiator

- Antenna
 couples wires to space, for electromagnetic wave transmission or reception
- Radiation pattern
 pattern of electomagnetic radiation around an antenna
- Isotropic radiator
 - \rightarrow equal radiation in 3 directions ($\mathbf{x}, \mathbf{y}, \mathbf{z}$)
 - » theoretical reference antenna

Isotropic radiator

Antennas - Simple Dipoles

- Real antennas are not isotropic radiators
- Simple antenna dipole
 - » Length $\lambda/2 \rightarrow$ Hertzian dipole

- Shape (length) of antenna is proportional to λ
- Radiation pattern of a simple Hertzian dipole

Antennas - Directed and Sectorized

Used for microwave connections or base stations for mobile phones

More on Antennas...

How does the power of a received signal depend on the distance to the transmitter and on the wavelength (λ) ? Why?

Antenna Gain, EIRP

• Antenna Gain,
$$G = \frac{P_{main_lobe}}{P_{iso}}$$

a) Symmetric radiation pattern of an isotropic radiator

b) Directive radiation pattern.

- » maximum power in direction of the main lobe (P_{main_lobe}), compared to power of an isotropic radiator (P_{iso}) transmitting the same average power
- » similar to an incompressible balloon
- A_e Antenna aperture (area of antenna), $A_e = G \frac{\lambda^2}{4\pi}$ [m^2]
 - » Depends on physical antenna characteristics
 - » The longer the wavelength λ , the larger A_e
- ◆ Effective Isotropic Radiate Power (EIRP)
 - \Rightarrow EIRP= $P_t G_t$
 - » Maximum radiated power in the direction of maximum antenna gain

Received Power at Distance $d - P_r(d)$

• Power flow density P_d (W/m²)

$$P_{d} = \frac{EIRP}{4\pi d^{2}} = \frac{P_{t}G_{t}}{4\pi d^{2}} \left[\frac{W}{m^{2}} \right]$$
sphere's area

• Received Power at distance d, $P_r(d)$

$$P_{r}(d) = P_{d}A_{e} = \frac{P_{t}G_{t}}{4\pi d^{2}} \frac{G_{r}\lambda^{2}}{4\pi} = G_{t}G_{r} \left(\frac{\lambda}{4\pi d}\right)^{2} P_{t} \quad [W]$$
Aperture (area) of **receiving** antenna

» Also known as the *Friis transmission equation*

Propagation Modes

- Ground-wave propagation
 - » Follows contour of the earth
 - » Can propagate considerable distances
 - » Frequencies up to 2 MHz
- Sky-wave propagation
 - » Signal reflected from ionized layer of atmosphere
 - » Frequencies between 2 MHz and 30 MHz
- Line-of-sight propagation
 - » Transmitting/receiving antennas in line of sight
 - » Signal above 30 MHz not reflected by ionosphere

Radio Horizon

- Maximum distance between two antennas for LOS propagation
 - » Considering earth curvature and atmosphere refraction

$$d = 3570 * \left(\sqrt{Kh_1} + \sqrt{Kh_2}\right)$$

- $-h_1$ = height of first antenna (m)
- h_2 = height of second antenna (m)
- d = distance (m)
- K = 4/3

What other factors,
besides frequency and distance,
may affect the **power received** by a mobile phone?

Signal Propagation – Key Concepts

- Propagation often modeled as rays (light)
- ◆ Line-of-Sight (LOS) direct ray the receiver gets from transmitter
- Relevant concepts
 - » Shadowing, Reflection → caused by objects much larger than the wavelength
 - » Refraction → caused by different media densities
 - » Scattering → caused by surfaces in the order of wavelengths
 - » Diffraction → similar to scattering; deflection at the edges

Real World Examples

Signal Propagation and Wireless Channels

Received Power can be *modelled* by 3 factors

Path loss

- Caused by **dispersion of radiated power in all directions**, as discussed previous slides
- Depends mainly on the sender-receiver distance

Shadowing

- Caused by obstacles between the transmitter and the receiver
- Depends on the obstruction of large objects

Multipath

Constructive and destructive addition of multiple signal components (rays) at the receiver. Fast fading

Path Loss Models

Free space path loss model (Friis)

Too simple; far from reality

Two-Ray model

Considering 2 rays: LOS-direct and ground-reflected

Empirical models

Based on measurements; do not generalize to other environments

Simplified model

Good for high-level analysis

W, dBW, dBm, dB, Gain

$$P_{r_w}$$
, $\left(Power = \frac{Energy}{Time}\right)$, $1W = \frac{1J}{1s}$

$$P_{r_{dBW}} = 10.\log\left(\frac{P_{r_{W}}}{1W}\right) = 10.\log P_{r_{W}}$$

$$P_{r_{dBm}} = 10.\log\left(\frac{P_{rW}}{1mW}\right) = P_{r_{dBW}} + 30dB$$

$$Gain_{dB} = 10.\log\left(\frac{P_{r_{W}}}{P_{s_{W}}}\right) = 10.\log P_{r_{W}} - 10.\log P_{s_{W}} = P_{r_{dBW}} - P_{s_{dBW}} = P_{r_{dBm}} - P_{s_{dBm}}$$

$$Loss_{dB} = Atenuation_{dB} = 10.\log\left(\frac{P_S}{P_r}\right) = P_{s_{dBW}} - P_{r_{dBW}} = P_{s_{dBm}} - P_{r_{dBm}} = -Gain_{dB}$$

$$Free Space Loss_{dB} = 10 \log \left(\frac{P_t}{P_r}\right) = 10 \log \left(\frac{(4\pi d)^2}{G_t G_r \lambda^2}\right) = 20 \log(4\pi) + 20 \log d - 20 \log\left(\sqrt{G_t G_r}\right) - 20 \log \lambda$$

Path Loss - Free Space Model (LOS, Friis)

- Path loss (PL) for unobstructed LOS path
- d=vt

- Power falls off
 - Proportional to $1/d^2$
 - Proportional to λ^2 (inversely proportional to f^2)

$$P_r/P_s = \left[rac{\lambda \sqrt{G_l}}{4\pi d}
ight]^2 \qquad G_l = \sqrt{G_s G_r} \qquad rac{ extbf{\textit{PG}}_{dB}}{ ext{\textit{(dB)}}}$$

$$G_l = \sqrt{G_s G_r}$$

$$PG_{dB} = 20.\log\left(\frac{\lambda\sqrt{G_l}}{4\pi}\right) - 20.\log(d)$$

Path Loss – Two-Ray Model

- ◆ One LOS ray + one ray reflected by ground
- Ground ray cancels LOS path above critical distance $d_c = 4h_t h_r / \lambda$
- Power falls off
 - » Proportional to d^2 ($h_t < d < d_c$)
 - » Proportional to d^4 ($d>d_c$)

 $P_r dBm = P_t dBm + 10 \log_{10}(G_l) + 20 \log_{10}(h_t h_r) - 40 \log_{10}(d)$

Path Loss – Empirical Models

- Okumura model
 - » Empirically based (site/freq specific); 150-1500 MHz, Tokyo
 - » Empirical plots
- Hata model

Analytical approximation to Okumura model

Cost 231 Model

Extension Hata model to higher frequency (1.5 GHz < f_c < 2 GHz)

Walfish/Bertoni

Extends Cost 231 include diffraction from rooftops

• There are others ...

Path Loss - Simplified Model

Used when path loss is dominated by reflections

$$P_r = P_s K \left(\frac{d_0}{d}\right)^{\gamma}, \qquad 2 \le \gamma \le 8$$

$$P_{r_{dBm}} = P_{s_{dBm}} + K_{dB} - 10 \ \gamma \ log \left[\frac{d}{d_0} \right]$$

$$d_0 \approx 10\lambda$$

Environment	γ	
Urban macrocells	3.7 - 6.5	
Urban microcells	2.7 - 3.5	
Office building	1.6 - 3.5	
Store	1.8 - 2.2	
Factory	1.6 - 3.3	
Home	3	

♦ K

- » determined by measurement of power at $d = d_0 \Rightarrow K_{dB} = P_{r_{dBm}} P_{s_{dBm}}$
- » Or assuming Friis for $d = d_0$ \rightarrow $K_{dB} = 10 \log \left[\frac{\lambda}{4\pi d_0}\right]^2$
- Path loss exponent γ is determined empirically

Path Loss – Indoor Factors

- Walls, floors, layout of rooms, location and type of objects
 - » Increase the path loss with deterministic (well-known) values
 - » These losses introduced **must be added** to the free space losses

Partition	Loss (dB)	
hollow brick	8	
concrete wall	13	
aluminum siding	20	
window	6	
floor	10	

Shadowing

- Models attenuation introduced by obstructions
- Random due to random number and type of obstructions $\rightarrow \psi$

$$\left(\frac{P_r}{P_s}\right)_{dB} = 10 \log K - 10\gamma \log \frac{d}{d_0} \left(-\psi_{dB}\right)$$

where ψ_{dB} is a Gaussian distributed random variable

characterized by $\mu_{\psi_{dB}} = 0$ and $\sigma_{\psi_{dB}}$

Combined Path Loss and Shadowing

$$\frac{P_r}{P_s}(dB) = 10\log_{10}K - 10\gamma\log_{10}\left(\frac{d}{d_0}\right) - \psi_{dB},$$

$$\psi_{dB} \sim N(0, \sigma_{\psi}^2)$$

Outage Probability and Cell Coverage Area

- ◆ Path loss model → circular cells
- ◆ Path loss + shadowing → amoeba cells

- Outage probability
 - » Probability received power below given minimum
 - » Assuming a circular cell

» Increases as shadowing variance (σ_{ψ}) decreases

Multipath

- Multipath → multiple rays received
 - » multiple delays from transmitter to receiver $\rightarrow \tau_i$
 - » time delay spread $T_m = max_n |\tau_n \tau_0|$
- Multipath channel has a time-varying gain, caused by
 - » transmitter / receiver movements
 - » location of reflectors which originate the multipaths

Transmit and Receive Signal Models

Transmitted signal modeled as

$$s(t) = \Re \left\{ u(t)e^{j2\pi f_c t} \right\}$$

$$= \Re \left\{ u(t) \right\} \cos(2\pi f_c t) - \Im \left\{ u(t) \right\} \sin(2\pi f_c t)$$

$$= s_I(t) \cos(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t)$$

The received signal

$$r(t) = \Re \left\{ v(t)e^{j2\pi f_c t} \right\},\,$$

• If s(t) is transmitted through a time-invariant channel c then

$$v(t) = u(t) * c(t), \qquad V(f) = H_l(f)U(f).$$

where

- $c(t)=h_l(t)$ is the equivalent lowpass impulse response of the channel
- » $H_l(f)$ is the equivalent lowpass frequency response of the channel

Doppler Shift

• The received signal may have a phase Doppler shift ϕ_D

$$\phi_D = 2\pi \frac{\Delta d}{\lambda}$$

$$\Delta d = v \Delta t \cos \theta$$

$$\phi_D = 2\pi \frac{v \Delta t \cos \theta}{\lambda}$$

• Doppler frequency, f_D

$$\phi_D = 2\pi f_D \Delta t$$

$$f_D = \frac{1}{2\pi} \frac{\phi_D}{\Delta t} = \frac{v \cos \theta}{\lambda}$$

Multipath Model

- Random number N(t) of multipath components received, each with
 - » random amplitude, $\alpha_n(t)u(.)$
 - » random delay, $\tau_n(t)$
 - » random phase, $2\pi f_c \tau_n(t)$
 - » random Doppler shift, ϕ_{Dn}

Received signal

$$r(t) = \Re \left\{ \left[\sum_{n=0}^{N(t)} \alpha_n(t) e^{-\underline{j\phi_n(t)}} u(t - \underline{\tau_n(t)}) \right] e^{j2\pi f_c t} \right\} \qquad \phi_n(t) = 2\pi f_c \underline{\tau_n(t)} - \underline{\phi_{D_n}}$$

Leads to channel characterized by time-varying impulse response

Multipath – Narrowband Channel

- In a narrowband channel
 - $low B (Hz) \rightarrow low symbol rate (B symbol/s) \rightarrow large time/symbol (1/B)$
 - → multipath components arrive in the time interval of their symbol

$$T_m = \max_n |\tau_n - \tau_0| \qquad \qquad T_m << B^{-1}$$

- In this case we may assume $u(t-\tau_i) \approx u(t)$ (same symbol)
- Received signal given by $r(t) = \Re \left\{ u(t)e^{j2\pi f_c t} \left[\sum_{n=0}^{N(t)} \alpha_n(t)e^{-j\phi_n(t)} \right] \right\}$
 - » No spreading in time (no distortion)
 - » Multipath affects complex scale factor in brackets
 - » Doppler effect (velocity) may be important

Multipath – Narrowband Channel

- Let us assume an Uniform Angle of arrival in $[0,2\pi]$
- Power received, considering no path loss nor shadowing

Multipath, Narrowband Channel – Rayleigh Fading

- If there is no Line-of-Sight (LOS) component
 - » Power received (in Watts) may be modeled by an exponential probability density function

$$p_{Z^2}(x) = \frac{1}{P_r} e^{-x/P_r}$$
 statistical characterization of a signal like this

- » The random variable Z is the $P_{received}$
- » P_r average received power (path loss + shadowing)
- If there is LOS
 - » Power received may be modelled by a Ricean distribution

Suppose you are the receiver.

What information does this exponential distribution provide to you?

$$p_{Z^2}(x) = \frac{1}{P_r} e^{-x/P_r}$$

Multipath + Shadowing + Path Loss

Multipath – Wideband Channel

$$T_m = \max_n | \tau_n - \tau_0 |, T_m >> B^{-1}$$

- Multipath components
 - » may arrive at the receiver within the time period of the next symbol
 - » causing Inter-Symbol Interference (ISI)

- Techniques used to mitigate ISI
 - » multicarrier modulation OFDM
 - » spread spectrum CDMA

Gain in a Wideband Channel caused by Fading

- H(f) is the channel gain (P_r/P_t)
- Time and frequency variable gain

Coherence Time, Coherence Bandwidth

- Coherence time, $T_c \approx \frac{1}{2\pi f_D}$
 - » Time interval during which the wireless channel roughly has a constant gain
 - f_D Doppler frequency
 - v= 5 km/h \rightarrow $T_c = 34 \text{ ms} \text{ (considering } f_c = 1 \text{ GHz)}$
 - v= 300 km/h → $T_c = 0.57 \, ms \, (f_c = 1 \, GHz)$
 - » Slow fading channel if $T_{\text{symbol}} < 0.1 * T_c$; Fast fading otherwise
- Coherence bandwidth, $B_c \approx \frac{1}{2\pi T_m}$
 - » Bandwidth for which the channel gain does not change significantly
 - $-T_m$ (rms) time delay spread
 - $T_m = 2 \mu s \implies B_c = 80 \text{ kHz} \quad (c=3,3 \mu \text{s/km})$

 $T_m = 4,7-3,3 = 1,4 \ \mu s$

» Avoidance of channel ISI demands symbol rate $B < 0.1*B_c$,

Capacity of a Wireless Channel

- ◆ Assuming Additive White Gaussian Noise (AWGN)
 - » Given by Shannon's law

$$C = B \log_2(1+\gamma)$$
 [bit/s]

$$\gamma = SNR = \frac{P_r}{N_0 B}, \quad \gamma = SNIR = \frac{P_r}{N_0 B + \sum_{i=1}^{I} P_{r_i}}$$

 N_0 - Noise power spectral density $\sum_{i=1}^{I} P_{r_i}$ - Power received from interfering nodes

- Capacity in a fading channel (multipath)
 - → <u>smaller</u> than the capacity of an AWGN channel

$$C = \int_{0}^{\infty} B \cdot \log_2 \left(1 + \frac{x}{N_0 B} \right) \cdot \frac{1}{P_r} e^{-\frac{x}{P_r}} . dx$$

Capacity of a Wireless Channel

$$P_r(d) = (d_0/d)^3 P_t$$
, for $d_0 = 10m$.

d	$\gamma = P_r(d)/(N_0B)$	$SNR = \gamma_{dB} = 10 \log \gamma$	$C = B \log_2(1+\gamma)$	Efficiency
(m)		(dB)	(kbit/s)	$(\mathrm{bit/s/Hz})$
50	267	24	242	8
100	33	15	153	5.1
500	0.27	-6	10	0.3
1000	0.033	-15	1.4	0.05

Table 2.6: Shannon capacities for wireless channels. The limiting capacities of wireless channels depend on the channel bandwidth and on the power received. The capacity C of the channel and its efficiency are given for a transmitted power $P_s = 1 W$, $d_0 = 10 m$, a narrow bandwidth of 30 kHz and a noise power spectral density $N_0 = 10^{-9} W/Hz$. The capacity decreases significantly as the distance between the sender and the receiver increases

Homework

- Review slides
 - » use them to guide you through the recommended books
- From Goldsmith
 - » Chap. 2, Chap. 3 (sections 3.1, 3.2, 3.3), Chap. 4 (section 4.1)
 - » Detailed information. Aligned with the lecture
- Read from Vijay Garg
 - » Chap. 3
 - » Very good overview. Must read
- Read from Schiller
 - » Chap. 2 (sections 2.1, 2.2, 2.3, 2,4)
 - » Descriptive, good introductory text
- Rappaport also provides an excellent description of these topics
 - » See Chap. 3 and Chap. 4
- Answer questions at moodle