Let $\Sigma=\{0,1\}$. For each language L described below, write down a regular expresion r such that L(r)=L. That is the strings of Σ^* that match r are exactly the strings of L. Be careful to make sure that nothing else matches the regular expression you write down! Justification is not required.

(a)
$$L = \{w \in \Sigma^* | w ext{ starts with a 1} \}$$

 $r=1(1|0)^*$

(b)
$$L=\{w\in$$

 $\Sigma^*|w$ any ones in w are next to each other in a single block}

$$r = (0)^*(1)^*(0)^*$$

(c)
$$L=\{w\in$$

 $\Sigma^*|w$ contains an even number of zeroes}

$$r = ((01^*0)|1)^*$$

(2)

Let $\Sigma=\{a,b,c\}$. For each regular expression r written below, describe in words the language L(r). Justification not required.

(a)
$$r=(\epsilon|bc|c)(abc)^*(\epsilon|a|ab)$$

 $L = \{w \in$

 Σ^* every letter in w is always followed by the next letter in the order of Σ

(b)
$$r=((b|c|\epsilon)^*a(b|c|\epsilon)^*a(b|c|\epsilon)^*)^*$$

 $L = \{w \in$

 $\Sigma^*|$ every non-a letter in w is always followed by a unless it is the final letter}

Let $\Sigma=\{0,1\}$ and L be the language

L=w| the number of occurences of 01 in w is equal to the number of occurences of 10

For example, the word 010 is in L because it has one occurences of 01 and one of 10. The word 01101 is not in L because it has 2 occurences of 01 but only one of 10. Does there exist a regular expression r such that L=L(r)? If yes, find one. If not, explain why not.

 $r = (10(0^*)1|01(1^*)0)^*$

Let $L\subseteq \Sigma^*$ be a language. The compliment of L, denoted L^c , is the compliment of L in Σ^* . That is, for every $w\in \Sigma^*$, we have $w\in L^c$ if and only if $w\notin L$

(a)

Given a DFA M recognising a language L=L(M), explain how to construct a DFA M^\prime such that $L(M^\prime)=L^c$

Let M have:

- ullet states Q
- ullet start state $q_0 \in Q$
- ullet accept states $A\subseteq Q$ and,
- ullet transition function $\delta:Q imes\Sigma o Q$

then M^\prime must have:

- ullet states Q
- ullet start state q_0
- ullet accept states $Q\setminus A$ and,
- ullet transition function δ

Construct a DFA recognising the following language:

$$L = \{w \in \Sigma^* | \text{ every odd position of } w \text{ is } 1\}$$

Justification not required.

Let DFA M recognise L=L(M), M has:

- ullet states $Q=\{q_0,q_1,q_2,q_3\}$
- ullet start state $q_0\in Q$
- ullet accept states $A=\{q_0,q_1,q_2\}$ and,
- ullet transition function δ :

Input State	Letter	Output State
q_0	1	q_1
q_0	$a\in \Sigma, a\neq 1$	q_3
q_1	$a\in \Sigma$	q_2
q_2	1	q_1
q_2	$a\in \Sigma, a eq 1$	q_3
q_3	$a\in \Sigma$	q_3

Now use your method from the first part to draw a DFA for the complement of the language L above. Justification not required.

