CSE488: Ontologies and the Semantic web Project Report

Ahmed Emad Anwer, Ahmed Salah, Kareem Elsawah, Emad Mostafa, Mohamed Kotb

${\bf Contents}$

1	Desc	cription	2
2	Scre	enshots	2
	2.1	Protege	2
	2.2	Web App	3
	2.3	Extra: Natural Language to SPARQL	4
3	SPA	RQL Queries	5
	3.1	Query 1	5
	3.2	Query 2	5
	3.3	Query 3	5
	3.4	Query 4	6
	3.5	Query 5	6
	3.6	Query 6	7
	3.7	Query 7	7
	3.8	Query 8	7
	3.9	Query 9	8
	3.10	Query 10	8
		Query 11	8
		Ouerv 12	9

1 Description

The provided RDF represents a food ontology that describes various food items and their nutritional properties. The ontology defines different classes such as Grain, Seafood, Dessert, Beverage, Condiment, and Nut, which serve as categories for the food items. Each food item is represented as an individual and has specific properties associated with it, such as protein content, sodium content, and calorie count.

The RDF provides a structured representation of the food ontology, allowing for the organization and categorization of food items based on their nutritional characteristics. It enables linking different food items to their respective classes and provides a standardized format for expressing their properties. By using RDF, it becomes possible to query and reason about the nutritional information of food items in a machine-readable manner, facilitating tasks such as dietary analysis, recipe generation, or food recommendation systems.

2 Screenshots

2.1 Protege

2.2 Web App

2.3 Extra: Natural Language to SPARQL

3 SPARQL Queries

Note: all outputs where generated using the Web App.

3.1 Query 1

Retrieve all individuals of the class "Food" along with their calories and protein content:

```
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#> SELECT ?food ?calories ?protein WHERE { ?food rdf:type foodOnto:Food. ?food foodOnto:hasCalories ?calories. ?food foodOnto:hasProtein ?protein. }
```

Output:

food	calories	protein
ApplePie	"237" integer	"1.9" float
ChickenSoup	"36" integer	"2.5" float

3.2 Query 2

Get all the ingredients of a specific food individual, along with their calories and protein content:

```
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#> SELECT ?ingredient ?calories ?protein WHERE {
foodOnto:ApplePie foodOnto:hasIngredient ?ingredient.
?ingredient foodOnto:hasCalories ?calories.
?ingredient foodOnto:hasProtein ?protein.
}
```

Output:

food	calories	protein
Apple	"52" integer	"0.3" float

3.3 Query 3

Retrieve all subclasses of the class "Food":

```
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto">
SELECT ?subclass
WHERE {
?subclass rdfs:subClassOf foodOnto:Food.
}
```

1	o arpar.		
	subclass		
	Dairy		
	Fruit		
	Meat		
	Vegetable		
I	Grain		
I	Seafood		
I	Dessert		
I	Beverage		
	Condiment		
	Nut		
	Nut		

3.4 Query 4

Find the total number of calories for a specific food individual and its ingredients:

Output:

```
totalCalories
"289" integer
```

3.5 Query 5

Find all individuals that are ingredients of a specific food individual, along with their types:

```
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#>PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#>SELECT ?ingredient ?type WHERE {
foodOnto:ApplePie foodOnto:hasIngredient ?ingredient.
?ingredient rdf:type ?type.
}
```

ingredient	type
Apple	NamedIndividual
Apple	Fruit

3.6 Query 6

Retrieve all individuals that belong to the classes "Fruit" and "Vegetable":

Output:

food
Apple
Carrot

3.7 Query 7

Find all food individuals that have a protein content greater than 20 grams:

Output:

```
food protein
```

3.8 Query 8

Retrieve the average calories and protein content of all food individuals:

```
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#>SELECT (AVG(?calories) AS ?avgCalories) (AVG(?protein) AS ?avgProtein) WHERE {
```

```
?food rdf:type foodOnto:Food.
?food foodOnto:hasCalories ?calories.
?food foodOnto:hasProtein ?protein.
}
```

avgCalories	avgProtein	
"136.5" decimal	"2.2" double	

3.9 Query 9

Count the total number of ingredients for a specific food individual:

```
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#>SELECT (COUNT(?ingredient) AS ?ingredientCount)
WHERE {
foodOnto:ApplePie foodOnto:hasIngredient ?ingredient.
}
```

Output:

```
ingredientCount
"1" integer
```

3.10 Query 10

Retrieve all food individuals along with their calorie and protein content:

```
PREFIX foodOnto: <a href="http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#> SELECT ?food ?calories ?protein WHERE { ?food rdf:type foodOnto:Food. ?food foodOnto:hasCalories ?calories. ?food foodOnto:hasProtein ?protein. }
```

Output:

ſ	food	calories	protein
ſ	ApplePie	"237" integer	"1.9" float
	ChickenSoup	"36" integer	"2.5" float

3.11 Query 11

Find all food individuals that have a specific ingredient:

food ApplePie

3.12 Query 12

Get the maximum calorie content among all food individuals:

```
PREFIX foodOnto: <http://www.semanticweb.org/emnug/ontologies/2023/4/foodOnto#>
SELECT (MAX(?calories) AS ?maxCalories)
WHERE {
    ?food rdf:type foodOnto:Food.
    ?food foodOnto:hasCalories ?calories.
}
```

Output:

maxCalories
"237" integer