

New Products

Volume 2002 • Number 1

© Analog Devices, Inc., 2002 All Rights Reserved

MON PRODUCES

Volume 2002 • Mumber 1

SAMPROS

Charles Seenved of Annual Control of the Control of

SECTION 1 Amplifiers

High-Speed Voltage Feedback
Precision, Low Power
High-Speed Comparator
Instrumentation Amplifier

www.analog.com

Current Feedback Amplifiers

High-Speed

AD8007/08 Low Distortion High Speed Amp

- Single (AD8007) and Dual (AD8008)
- High Speed
 - 600 MHz, -3 dB Bandwidth (G = +1)
 - 1000 V/μs Slew Rate
- Extremely Low Distortion
 - 2 nd Harmonic: -88dB @ 5MHz -101dB @ 5MHz
 - 3 rd Harmonic: -80dB @ 20MHz -84dB @ 20MHz
- Low Noise
 - = $2.7 \text{ nV}/\sqrt{\text{Hz}}$ and $22.5 \text{ pA}/\sqrt{\text{Hz}}$
- 8.8 mA/ Amplifier Typ Supply Current
- Wide Supply Voltage Range 5 V to 12 V
- Small Packaging SOIC-8, μSOIC-8 and SC-70

adjud 2010-8" "2010-8 suq 20-10

υνη γιμομίμου 1λό βπόρηλ Critterig

Feedback Amplifiers High-Speed & SOWHX Voltage

end with a High-Speed Amplifiers

Differential Input/Output

Rail-to-Rail Amplifiers

www.analog.com

AD8021 16-Bit Accurate 280 MHz Low Power Op Amp 8 2010 2013 8 1220614

- Noise: 2.1 nV/√Hz; 2.1 pA/√Hz Typ
- High-Speed
 - 480 MHz, 120 V/µs (-3 dB, G = +1)
 - 150 MHz, 420 V/µs (-3 dB, G = +10)
 - External compensation
- Low Power 34 mW (6 mA for ±2.5 V Supplies)
- Power-Downs de Bandwidth (G = +1)
- Low Distortion:
 - -93 dB 2ND Harmonics at 1 MHz
 - 108 dB 3RD Harmonics at 1 MHz
- Wide Supply Range 5 V to 24 V

AD8029/30/40 Single/Dual/Quad Low-power, High-Speed Rail-to-Rail Input/Output Amps

- Rail-to-Rail Input and Output
- High Speed
 - 200 MHz, -3 dB Bandwidth (G = +1)
 - 75 V/µs Slew Rate
 - 45 ns Settling Time to 0.1%
- Low Cost
- Low Noise
 - 11 nV/√Hz and 1 pA/√Hz
- Wide Supply Range 2.7 V to +12 V
- Low Power
 - 1.3 mA supply current
- Small Packaging SOIC-8, SC70, SOT23-8, TSSOP14

AD8029/30/40 Single/Dual/Quad Low-power, High-Speed Rail-to-Rail Input/Output Amps

SOIC-8 (R) and SOT23-8 (RT)

SOIC-14 (R) and TSSOP-14

AD8027/28 Single/Dual Low-Distortion, High-Speed Rail-to-rail Input/Output Amps

- High Speed
 - 180 MHz, -3 dB Bandwidth (G = +1)
 - 100 V/µs Slew Rate
- Low Distortion 20153-9 (k1) 2010-14 (k) 849 12206
 - 90 dB @ 1 MHz SFDR
 - 75 dB @ 5 MHz SFDR
- Selectable Input Cross-over Threshold
- Low Noise
 - 4.5 nV/√Hz and1.5 pA/√Hz
- Low Power 6 mA supply current
- Power Down Disable Feature
- Wide Supply Range 2.7 V to +12 V
- Small Packaging SO-8, SOT23-6, µSO-10

AD8065/66 Single/Dual High Performance High-Speed *FAST FET*^M Op Amp

- FET Input Amplifier
 - 1 pA Input Bias Current
- High Speed
 - 150 MHz, -3 dB Bandwidth (G = +1)
- 180 V/µs Slew Rate
- Fom Noise dB Bandwidth (G = +10): 500 V/µs Slew Rate
 - 7.0 nV/ $\sqrt{\text{Hz}}$ and 5 fA/ $\sqrt{\text{Hz}}$
- Wide Supply Voltage Range 5 V to 24 V
- Excellent Distortion Specs
 - SFDR -90 dB @ 1 MHz
- Low Power 6.5 mA/Amplifier Typ Supply Current
- Small Packaging SOIC-8, SOT23-5, m mSOIC
- Low Cost

AD8067 High Gain Bandwidth Product Precision FAST FET™ OP AMP

- FET Input Amplifier
- Stable for gains of ≥ 8
- Low Cost
- High Speed A HZ and 2 (AAA HZ
 - 55 MHz, -3 dB Bandwidth (G = +10): 500 V/µs Slew Rate
- Excellent Distortion Specs
 - SFDR –90dB @ 1MHz
- Low Noise
 - 7.0 nV/√ Hz: 5 fA/√ Hz
- Wide Supply Voltage Range
 - 5 V to 24 V; 6.5 mA Typ Supply Current
- Small Packaging (SOIC-8, SOT23-5)

AD8091/92 Single and Dual Low Cost High Performance Amplifiers

- High-Speed
 - 110 MHz Bandwidth b ambbit couleur
 - 145 V/µs Slew Rate
- Single Supply Operation
 - +3 V, +5 V
- Low Distortion
 - -80 dBc Total harmonic @ 1 MHz
- Good Video Specification (G=+2)
 - 0.03% Differential Gain
 - 0.03° Differential Phase
- Low Power
 - 4.4 mA/Amplifier
- Rail-to-Rail Output

AD8033/34 Very Low-Cost High-Speed FET Input Amplifiers

- FET Input Amplifier
 - Single (AD8033) and Dual (AD8034)
- 85 MHz, -3 dB Bandwidth (G = +1)
- 80 V/µs Slew Rate (G = -1)
- Low Noise: 11 nV/√Hz 5 fA/√Hz
- Rail-to-Rail Output
- Wide Supply Voltage Range: 4 V to 24 V
- Low Power says
 - 3.3 mA/amplifier typ supply current
- Small Packaging
 - SC-70 (AD8033)
 - SOT23-8 and μSOIC (AD8034)
 - SOIC-8 (AD8033/34)

AD8038/39 Low Power High-Speed Voltage Feedback Amps

- Low Power: 1.1 mA Supply Current
- Power Down Disable Feature
- High Speed
- 350 MHz, –3 dB bandwidth (G = +1)
 - 450 V/µs slew rate
 - Low Noise: 8 nV/√Hz, 600 fA/√Hz
 - Low Distortion
 - -90 dB SFDR @ 1 MHz
- -65 dB SFDR @ 5 MHz
 - Wide Supply Range: +3 V to +12 V
 - Small Packaging
 - SOIC-8, SC-70, SOT23-8
- Low Cost

AD8391 xDSL Line Driver

Ideal xDSL line driver for V_O DSL or low power applications such as USB, PCMCIA, or PCI based Customer Premise Equipment (CPE).

Thermal Coastline 8-Pin SOIC

AD8391 xDSL Line Driver

- High Speed
 - 60 MHz bandwidth (–3 dB)
 - 600 V/µs slew rate
- 250 mA Minimum Output Drive Current
- 10 V p-p Output Voltage, Differential Load of R_L = 21 Ω
- Low Power Operation
 - +3.3 V to +12 V power supply range
 - 1-pin logic controlled stand-by, shutdown
 - Low supply current of 19 mA (typical)
- Low Distortion
 - –94 dBc SFDR, 8 Vp-p into differential 21 Ω @ 100 kHz
 - 4.5 nV/√Hz input voltage noise density, 100 kHz

www.analog.com

noihotaid wo.

Low supply current of 19 mA (typical)

1-pin logic controlled stand-by, shutdown

○ Differential Amplifiers

ower Operation

600 Aitha elem tare

OD WITH DENIGHT OF C

High Speed

3391 XDSL Line Driver

► ANALOG DEVICES

www.analog.com

1-16

Differential Amps—How Do They Work?

- Behaves Like a High-Speed VF Op Amp:
 - Gain set by ratio of R_F/R_G
 - Signal gain
 - Filtering
 - Level-shifting
 - Buffering/driving
- Differential or Single-Ended Input with Differential Output
 - 2x the dynamic range of op amps

Differential Amps — How Do They Work?

- Internal CM Feedback Forces the V_{OUT, DM} to be Centered Around V_{OUT, CM}
 - Create best available balance at high frequencies
 - Improves ADC and line driving
 - The V_{OUT,CM} is set with a V_{OCM} pin
- Gain Set by Ratio of R_F/R_G
 - Mismatches between R_F/R_G on each side causes only gain errors
 - Balance is unaffected because of CM feedback

Primary Uses For Differential Amps

- Differential Signal Processing
 - Avoid ground noise
 - High dynamic range on low supplies
- High-Speed ADC Driving
- Twisted-Pair Line Driving/Receiving us on both go use
 - Simplifies circuit design
 - Balanced outputs minimize EMI
 - High CMRR reduces EMI susceptibility
- Can Be Used For:
 - SE → DIFF
 - Diff → DIFF
 - Diff → SE GUMBI 210USL BLOCG22IMO

www.analog.com

Benefits Of Differential Signal Processing

- The Benefits Become Apparent When Trying to Attain the Most Speed and/or Resolution from a Design
 - Avoid grounding/return noise problems
 - Better distortion/dynamic range
 - For the same amplitude differential signal the outputs do not swing as close to the rail
 - Lower distortion, especially the seconds
 - Analog signals in high-performance systems start and end differential
 - Almost always the signal source from the real world is differential
 - Many high-speed ADCs have differential inputs

Signals Are Inherently Differential

- Signal Reference and Return Current Path are Critical for Signal Integrity
- In A Single-Ended System the Signal Is Often Referenced to Ground
 - Ground is the return path for numerous signals
 - Ground planes and runs have high-frequency impedance that convert the return current from one signal to a noise source for other signals
 - Grounding is often a source of considerable frustration for designers in single-ended systems

Single-Ended Components Cannot Reject Ground Noise

- Each Part Of the Circuit Has a Different Reference Point
- No Matter How Careful You Are with Grounding, High-Frequency Ground Currents Will Cause Some Problems That May Be Difficult to Work Around
- Op Amp Cannot Reject this Ground Noise

www.analog.com

- Differential Signal Does Not Need a Reference
- Ground and Other Noise Sources Are Common to Both Inputs

Why Differential Signal Processing Is Not More Common

- Differential Signals Are Commonly Used Today for ADC and Line Driving
- Differential Signaling Is Not Generally Considered for Other Uses Because:
 - Discrete differential designs can be difficult to implement
 - Some applications cannot tolerate the higher cost
 - Not many differential ICs are available
 - Transformers must be used
- As Speeds and Resolution Increase, the Benefits of Differential Signaling Become More Necessary

ADCs Perform Better When Driven Differentially

Especially As Frequency Increases
 AD9240 (-6 dBFS, 5 V SPAN)

www.analog.com

Differential Amps to Help Reduce Clock Jitter

- Some ADCs Have Differential Clock Inputs to Minimize Ground Noise Effects On Jitter
 - Ground noise is only one source of jitter which decreases the performance of the fastest ADCs
- As Discussed Before, with Differential Signals the Ground Noise Becomes Common-Mode
 - Can be used to send the clock signal from its source into the ADC
 - Isolating analog and digital grounds
 - Minimizing radiated EMI

General Single-Ended to Differential Circuit

Generalized Four-Resistor Single-Ended into Diff-Out Equation

$$G = \frac{2 \times (1 - \beta_1)}{(\beta_1 + \beta_2)}$$

$$R$$

$$\beta_1 = \frac{R_{G1}}{(R_{F1} + R_{G1})} \qquad \beta_2 = \frac{R_{G2}}{(R_{F2} + R_{G2})}$$

Understanding How They Work with Alternate Circuit Configurations

- Two Feedback Loops
 - Differential feedback forces Inputs to the same voltage
 - Common-mode feedback forces
 V_{OUT} = -V_{OUT}+
- Noninverting Example:
 - For $R_F = 0$
 - $V_{OUT+} = V_{IN}$
 - Gain = 2
- Inverting Example:
 - For $R_F = R_G$
 - High input Z summing node
- $V_{OUT-} = -V_{IN}$
 - Gain = 2

ANALOGDEVICES

www.analog.com

(b) 4 b) Like A Noninverting Op Amp

Like An Inverting Op Amp

More About the Vocm Pin

- V_{OCM} Pin Separates Our Diff Amps from Other Diff Amp Separates Configurations
 - Creates best available balance at high frequencies
 - Can be used with AC signal for modulation as well as DC reference voltages
- Easy Level-Shift
 Adjustable Gain/Feedback
 Stable
 Stable
 - From ground referenced signals (±5 V supplies) to single 5 V supply signals for ADCs
 - Better distortion in signal chain for ±5 V, than +5 V
 - Connect to the ADC reference or any other reference voltage

The New High-Speed Differential Amp Family

Part#	AD8131	AD8138	AD8132	AD8129	AD8130	AD830
enbb	Diffe	rential-to-Diffe	Differential-to-Single-Ended			
Features	Fixed Gain = 2x	Adjustable Ga		10x 1x Stable Stable		1x Stable
Position	Line Driver	Highest Perf. ADC Driver	Low Cost Gen. Purp.	New Receiver		Old Receiver
Release Status	Released	Released	Released	Released		Released
Sample Status	Released	Released	Released	Released		Released
100 Price	\$2.12	\$4.25	\$1.95	\$1.83		\$3.14

AD8130/31 Low Cost Differential Driver and Receiver

The AD8130 and AD8131 are designed for analog and digital video signal distribution over twisted pair—(NTSC to SMPTE259)

AD8130 Differential Receiver Key Specifications and Features

- Differential Input to Single-Ended Output
- User-Adjustable Gain
- 350 MHz and 2000 V/µs
 - -68 dBc THD @ 5 MHz
 - -80 dB CMRR @ 10 MHz
- The V 4 V to 12 V Supply Range use to susped sug qidirsi Aigeo
 - 7.5 mA Supply Current

AD8131 Differential Driver Key Specifications and Features

- Differential or Single-Ended-to-Differential Output
- Fixed Gain-of-Two
- Separate Input Sets Common-Mode Range
- Internal Common-Mode Feedback to Improve Gain and Phase Response
- 300 MHz Bandwidth, 1500 V/µs Slew Rate
- -80 dBc THD @ 5 MHz
- 3.7 V to 5 V Supply Range
- 11 mA Quiescent Current

www.analog.com

What's Inside the AD8131/AD8132/AD8138 Differential Amps?

Internal CM Feedback forces both outputs to be balanced, Equal in amplitude 180° out of phase:

$$V_{OUT, CM} = (V_{OUT+} + V_{OUT-})/2$$

Balance is unaffected by R_F/R_G matching. Differential feedback effectively creates two summing nodes. Forces both inputs to the same voltage when the loop is closed.

High Input Z, Low Output Z

AD8131 Simple to Use; Complete Differential Driver in a Small Package

- **Target Applications**
 - Video signal distributionKVM

 - High-speed instrumentation
- Competition
 - Two op amp line drivers
- About the same price, cannot achieve the same balance, and uses considerable board space

Buffered Differential Output for 12-/16-Bit High-Speed DACs

"Virtual GND" reduces effect of DAC's nonlinear output impedance to achieve larger output power without having a large compliance voltage on the DAC output. When level-shifting is needed, use V_{OCM} .

Using the Differential Amps In Active Filters

- Op Amps Have Inverting and Noninverting Inputs Available
- AD813x Inputs are Both Inverting
 - Filter topologies must be inverting types

Filter Design

- Low Pass, High Pass, and Band-Pass are Possible
 - Butterworth, Bessel, and Chebyshev filters can be realized in multiple feedback filters
- MFB Filters are Second Order (Conjugate Pole Pairs)
 - Higher order filters may be realized by stacking sections
 - Multiple feedback filter topologies provide a DC path for the input bias current.

www.analog.com

2-Pole Low-Pass Schematic

2-Pole Low-Pass Butterworth Anti-Aliasing Filter, $f_c = 5 \text{ MHz}$

5 MHz Low-Pass Filter Actual Response

Band-Pass Filter Schematic

Actual 2-Pole Narrow Band Response

2-Pole High-Pass Filter Schematic

2-Pole High-Pass Butterworth Filter, $f_c = 2.1 \text{ MHz}$

Actual Response — 2-Pole High-Pass

REF LEVEL /DIV MARKER 2 136 930.000Hz -42.000dBV 10.000dB MAG(A) -45.095dBV

Precision Amplifiers

qmA sH V I Vnt TeasgA

ANALOG DEVICES

www.analog.com

1-45

Precision Bipolar Amplifier Roadmap Improved Performance, Lower Cost in Small Packages

Precision CMOS Amplifier Roadmap High Performance, Low Cost in Small Packages

AD8510/12/13 Single/Dual/Quad Precision Low Noise JFET Amplifiers

- Offset Voltage <400 µV (Max)
- T_oV_{os} : 1 $\mu V/^{\circ}C$ (Typ)
- Voltage Noise 8 nV/√Hz @ 1 kHz
- Bias Current 80 pA (Max)
- 20 V/µs Slew Rate
- Gain Bandwidth Product > 8 MHz
- Single (AD8510) and Dual (AD8512) and Quad (AD8513)
- ±5 V to ±15 V Supplies
- MSOP or SOIC (Single/Dual) TSSOP (Quad)

AD8625/26/27 Single/Dual/Quad Precision, Low Power, Single Supply JFET Amplifiers

- Single-Supply Operation: 5 V to 26 V
- Dual Supply Operation: ±2.5 V to ±13 V
- Very low I_B: 1 pA (max)
- Rail-to-Rail Output
- Low Supply Current: 750 μA/Amp
- Low Offset Voltage: 500 μV Max @Vs = 5 V
- 5 MHz Bandwidth 20 hA (MSX) [100 hA (MSX) B GLSqs]
- Unity Gain Stable
- No Phase Reversal
- Outputs Stable with Capacitive Loads over 500 pF
- Small Packages: Single SC-70 and SOIC-8

Dual MSOP-8

Quad TSSOP-14

AD8610/20 Single/Dual Fast, Low Noise, Ultraprecision JFET Amplifier

- Voltage Noise 6 nV/√Hz
- Current Noise 2.5 fA/√Hz
- Offset Voltage 250 μV (Max) [100 μV (Max) B Grade]
- T_cV_{os}: 3.5 μV/°C [1 μV/°C (B Grade)]
- Bias Current 10 pA (Max)
- Open-Loop Gain 100 dB (Min)
- 50 V/µs Slew Rate (Min)
- 25 MHz Bandwidth
- ±5 V to ±13 V Supplies

AD8697/98/99 Single/Dual/Quad Very Low Input Bias Current, Low Noise, High Precision, Rail-to-Rail Output, Op Amps

- 600 µA Max Supply Current
- 50 μV Max Offset Voltage
- 0.6 μV/°C Max Offset Voltage Drift
- 100 pA Max Input Bias Current
- 14 nV/√Hz Noise
- 114 dB Min Common Mode Rejection
- Wide Operating Temperature: -40° C to +125° C
- No Phase Reversal

www.analog.com

- Fits Industry Standard Precision Op Amp Sockets
- Packages: AD8697 & AD8698 SOIC & µSOIC, AD8699 SOIC & TSSOP

AD8565/66/67 Single/Dual/Quad High Current Output Amplifiers

- Rail-to-Rail Input and Output
 - Input Capability Beyond the Rails
- Output Current 35 mA Continuous 200 mA Short Circuit
- Stable with Capacitive Loads (1 µF)
- 4.5 V to 16 V Supply 700 µA/Amplifier
- Offset Voltage 10 mV (Max)
- 6 V/µs Slew Rate
- Small Package
 - AD8565 (single) SC-70
 - AD8566 (dual) MSOP
 - AD8567 (quad) TSSOP and LFCSP

AD8568/69/70 Dual/Quad/Octal High Current Output Buffer Amplifiers

- Rail-to-Rail Input and Output
 - Input capability beyond the rails
- Output Current 35 mA Continuous 200 mA Short Circuit
- Stable with Capacitive Loads (1 μF)
- 4.5 V to 16 V Supply 700 µA/Amplifier
- Offset Voltage 10 mV (Max)
- 6 V/µs Slew Rate
- Small Package
 - AD8568 (dual) SOT-23-6
 - AD8569 (quad) MSOP-10
- AD8570 (octal) LFCSP-32

OP1177/2177/4177 Single/Dual/Quad Precision Dual Supply Bipolar Amplifiers

- 60 µV Max Offset Voltage
- 2 nA Max Bias Current
- 8 nV/√Hz Noise
- 1.3 MHz Bandwidth
- Input/Output Voltages within 1/1.5 V of the Supplies
- Supply Range ±2.5 V to ±15 V
- Low Power 600 μA
- Small Packages
 - MSOP single (OP1177)/dual (OP2177)
 - TSSOP-14 quad (OP4177)

AD8671/72/74 Single/Dual/Quad Low Noise Precision Dual Supply Bipolar Amplifiers

- 75 µV Max Offset Voltage
 - 10 nA Max Bias Current
 - <3 nV/√Hz Noise
 </p>
 - 10 MHz Bandwidth, 4 V/μs Slew Rate
 - High Gain: 120 dB min
 - Supply Range ±5 V to ±15 V
 - Small Packages
 - MSOP single
 - 8/14 lead narrow SOIC dual and quad

AD8515/25 Single/Dual 1.8V Low Power CMOS Rail-to-Rail Input/Output Op Amps

- Single-Supply Operation: 1.8 to 5 Volts
- Offset Voltage: 4 mV max
- SOIC, SOT-23 and µSOP Packaging
- Slew Rate: 2.7 V/µs
- Bandwidth: 5 MHz
- Rail to Rail Input and Output Swing
- Low Input Bias Current: 5 pA max
- Low Supply Current: 450 μA/Amp max.

The AD860x Family of DigiTrim Amplifiers

- Low Cost and Precision In SOT-23 and MSOP Packages
- Trimming Is Done after the Device Is Packaged!
 - A digital code is entered into the device to adjust the offset voltage
- This Means Lower Cost Because:
 - No lasers or extra capital equipment required
 - Wafer testing not required—only final test
 - Low-cost CMOS process is used
 - As process size shrinks, trim area becomes smaller

AD8605/06/08 Single/Dual/Quad Low Noise Precision CMOS DigiTrim Amplifier

- Second-Generation DigiTrim Amplifier
- (Vos: 65 μV Max)
- First ADI Low Noise CMOS Amplifier
- (8 nV/√Hz @ 1 kHz) = 0 1 kHz
- 1 pA Bias Current (Max) busined reduced
- Rail-to-Rail Input and Output
- No Phase Reversal
- Unity Gain Stable
- 10 MHz Bandwidth
- 5 V/µs Slew Rate
- 2.7 V to 6 V Supply
- SOT-23 and WLCSP Package (AD8605)
- µSOIC and SOIC Package (AD8606)
- TSSOP and SOIC Package (AD8608)

AD8603/07/09 Single/Dual/Quad Precision Micropower Low Noise CMOS Rail-to-Rail Input/Output Op Amps

- Low Offset Voltage: 60 µV max
- Low Input Bias Current: 1 pA max
- Single-Supply Operation: 1.8 V to 5 V
- Low Noise: 28 nV/√Hz 10 15 A\18 219 A\18
- Micropower: 50 μA/Amp max.
- No Phase Reversal
- Unity Gain Stable
- Packages: AD8603 SOT-23,

AD8607 SOIC & µSOIC, AD8609 SOIC & TSSOP

AD8615/16/18 Single/Dual/Quad Precision Fast, Low Noise CMOS Rail-to-Rail Op Amps

- Low Offset Voltage: 60 µV max
- Low Input Bias Current: 1 pA max
- Single-Supply Operation: 2.7 V to 5 V
- Low Noise: 8 nV/√Hz
- 20 MHz BW (100 pF load), 12 V/μs Slew Rate
- 150 mA output current
- 1.4 mA max Isy
- Packages: AD8615 SOT-23, AD8616 SOIC & μSOIC, AD8618 SOIC & TSSOP

AD8651/52/54 Single/Dual/Quad Very Fast Low Noise Precision CMOS Rail-to-Rail Op Amps

- Low Offset Voltage: 100 μV max
- Low Input Bias Current: 10 pA max
- Single-Supply Operation: 1.8 V to 5 V
- Low Noise: 5 nV/√Hz @ 100 kHz
- 38 MHz BW (100 pF load), 22 V/μs Slew Rate
- Fast settling: 150 ns to 0.01%
- Unity Gain Stable
- Packages: AD8651 MSOP8, SOIC8

Size Is All Relative...

► ANALOG DEVICES

www.analog.com

Package Size Relative Comparison

0.1 in

DRAWN TO SCALE

New tiny package options: CSP Packages and Bumped Dies

Width	Height	Leads
2X3 mm	0.9 mm	8
3X3 mm	0.9 mm	8
4X4 mm	0.9 mm	20

Chip Scale
Advantages
Advantages
Smaller Footprint
Lower Thermal
Resistance
Lower Lead Parasitics

New Product Plan

SSM2211 3x3 8L LFCSP AD8567 4x4 16L LFCSP AD8605 Bumped Die WLCSP

AD8628 Low Noise Auto-Zero Amplifier

- 2x The Bandwidth At ½ x The Noise
 - 2.2 MHz bandwidth
 - 22 nV/√Hz @ 1 kHz noise
 - Lowest Noise of any Auto-Zero Amplifier
- 10 μV Offset (Max over Temperature)
 - -40° C to +125° C
- 20 nV/°C (Max) Drift
- Rail-to-Rail Input and Output
- <100 pA Bias Current</p>
- High Gain, CMRR, and PSRR: 120 dB
- Overload Recovery Time: 0.2 ms
- No External Components Required
- SOT-23 Package

Instrumentation Amplifiers

AD628 High Common-Mode Voltage, Programmable Gain, Difference Amplifier

AD628 High Common-Mode Voltage, Programmable Gain, Difference Amplifier

- EXCELLENT AC and DC PERFORMANCE
 - Offset Temperature Stability 1 μV/°C Max
 - Gain Drift 10 ppm/°C Max
 - CMRR 80 dB Min., DC to 500 Hz
- High Common Mode Input Voltage Range
 - = ±100V
- Gain Range 0.1 to 10,000
- Operating Temperature Range: –40° C to 85° C
- 8 Pin SOIC
- Supply Voltage Range:
 - Dual Supply ±5 V to ±18 V
 - Single Supply 5 V to 36 V

AD8225 Precision Gain of 5 Instrumentation Amplifier

AD8225 Precision Gain of 5 Instrumentation Amplifier

- Outstanding DC Precision
 - Low Gain Drift: 5 ppm/°C Max
 - Low Input Offset Voltage: 150 V Max
 - Low Offset Drift: 2 V/°C Max
 - Low Input Bias Current: 1.2 nA Max
- Excellent Dynamic Performance
- High CMRR
 - 86 dB Min @ DC
 - 80 dB Min to 10 kHz
- Wide Bandwidth 900 kHz
- High Slew Rate
 - 5 V/µs Min

AD8225 Precision Gain of 5 Instrumentation Amplifier

- No External Components Required
- Highly Stable, Factory Trimmed Gain of 5
- Low Power,
 - 1.2 mA Max Supply Current
- Wide Power Supply Range (1.7 V to 18 V)
 - Single and Dual Supply Operation
- -40° C to + 85° C Operation
- 8 Pin SOIC Package

Comparators Comparators

Wide Power Supply Range (1.7 V to 18 V)

ANALOG

www.analog.com

AD53519 DUAL ULTRAFAST VOLTAGE COMPARATOR

AD53519 DUAL ULTRAFAST VOLTAGE COMPARATOR

- Robust Input Protection
- 300 ps Propagation Delay Input to Output
- 75 ps Propagation Delay Variation
- Differential ECL Compatible Outputs
- Differential Latch Control
- Power Supply Rejection Greater than 70 dB
- Typical 3.0 dB Bandwidth > 2.5 GHz
- Typical Output Rise/Fall of 150 ps

SECTION 2 Analog-to-Digital Converters

High-Speed ADCs
General-Purpose ADCs
Sigma-Delta ADCs
Special-Purpose ADCs

Sigma-Delta ADCs
General-Purpose ADCs

High-Speed ADCs

Converter Trends in High Performance Signal Processing Applications

- Increased Dynamic Range
- Higher Resolution (ENOB)
- Higher Sample Rates And Wider Bandwidth
- Lower Power
- Smaller Size
- Direct IF Input Sampling
- Increased Functionality / Flexibility

www.analog.com/fastADCs

ADC Pin Compatibility

ADI Continues to Develop Pin-Compatible Product Families

6-/8-/10-Bit ADC Product Roadmap

10-BIT

AD9051 (60 MSPS)

AD9071 (100 MSPS)

AD9200 (20 MSPS)

AD9203 (40 MSPS)

AD9214 (65/80/105 MSPS)

AD9410 (210 MSPS)

AD9201 (DUAL 20 MSPS)

AD9218 (DUAL 40/65/80/105 MSPS)

8-BIT

AD9054A (135/200 MSPS)

AD9057 (40/60/80 MSPS)

AD9059 (DUAL 60 MSPS)

AD9280 (32 MSPS)

AD9281 (DUAL 28 MSPS)

AD9283 (50/80/100 MSPS)

AD9288 (DUAL 40/80/100 MSPS)

AD9483 (TRIPLE 100/140 MSPS)

6-BIT

AD9066 (DUAL 60 MSPS)

10-BIT

AD9215

3 V. 10-BIT **105 MSPS**

120 mW

8-BIT

Multichannel 3V 60+Msps

AD9480 250Msps 3.3V

3V Cores 400+Msps

Released

www.analog.com

12-/14-/16-Bit ADC Product Roadmap

16-BIT

AD9260 [20 MSPS (8x)]

14-BIT

AD9240 (10 MSPS)

AD9241 (1 MSPS)

AD9243 (3 MSPS)

AD6644 (40/65 MSPS)

AD6645 (80 MSPS)

12-BIT

AD9220 (10 MSPS)

AD9221 (1.5 MSPS)

AD9223 (3 MSPS)

AD9224 (40 MSPS)

AD9225 (25 MSPS)

AD9226 (65 MSPS)

AD9235 (20/40/65 MSPS)

AD9430 (170 MSPS)

AD9432 (80/105 MSPS)

AD9433 (105/125 MSPS)

AD9042 (41 MSPS)

AD6640 (65 MSPS)

16-BIT

14-BIT

AD6645 14-BIT, 5 V 105 MSPS

12-BIT

AD9430 12-BIT, 3 V 210 MSPS AD9244 14-BIT, CMOS 40/65 MSPS

> 3.3V Ultra Low Power

> > 20/40/60

AD9238 12-BIT, Dual 20/40/65 MSPS

AD9236 12-BIT, 3.3 V 80 MSPS

Released

www.analog.com

2-6

Low Power

80Msps

AD9480 8-Bit, 250 MSPS ADC

AD9480 8-Bit, 250 MSPS ADC

- DNL = ±0.25 LSB
- INL = ±0.5 LSB
- Single +3.3 V Supply Operation (3.0 V to 3.6 V)
- Power Dissipation of 300 mW at 250 MSPS
- 1 V p-p Analog Input Range
- Internal Reference
- Single-Ended or Differential Analog Inputs
- LVDS or Single-Ended TTL/CMOS Outputs
- Power-Down Mode
- Clock Duty Cycle Stabilizer
- Pin-Similar to AD9054A

AD9215 10-Bit, 65/80/105 MSPS, 3 V ADC

AD9215 10-Bit, 65/80/105 MSPS 3 V ADC

- SNR = 58 dB dB to Nyquist
- Low Power:
 - 75 mW @ 65 MSPS
 - 90 mW @ 80 MSPS
 - 120 mW @ 105 MSPS
- 400 MHz Analog Bandwidth
- On-Chip Reference and Track-and-Hold
- 1 Vp-p or 2 Vp-p Analog Input Range
- Single +3 V Supply Operation (2.7 V 3.6 V)
- Twos Complement or Offset Binary Data Format
- Power-Down Mode = 1 mW

AD9218 10-Bit, 40/65/80/105 MSPS 3 V Dual ADC

ANALOGDEVICES

www.analog.com

AD9218 10-Bit, 40/65/80/105 MSPS 3 V Dual ADC

- Low Power: 200 mW at 105 MSPS per Channel
- On-Chip Reference and Track-and-Hold
- 300 MHz Analog Bandwidth Each Channel
- SNR = 56 dB @ 41 MHz
- 1 V p-p or 2 V p-p Analog Input Range Each Channel
- Single 3.0 V Supply Operation (2.7 V 3.6 V)
- Power-Down Mode for Single Channel Operation
- Twos Complement or Offset Binary Output Mode
- Output Data Alignment Mode
- Pin-Compatible with 8-Bit AD9288
- -75 dBc Crosstalk between Channels

www.analog.com

AD9235/36 12-bit 20/40/65/80 MSPS 3V ADC

AD9235/36 12-bit 20/40/65/80 MSPS 3V ADC

- On-chip Track and Hold and Reference
- 200 MHz Analog Bandwidth
- 69 dB SNR with 10.3 MHz input
- 80 dB SFDR with 10.3 MHz input
- Power dissipation of 450 mW
- DNL of ±0.5 LSB typical
- 1 Vp-p to 2 Vp-p Differential Input
- Binary or Twos Complement Output
- Single +3 V Supply Operation
- 20 and 40, 65 MSPS speed grades (AD9235)
- 28 pin T-SSOP and 32 lead LFCSP
- Pin compatible to AD9215 (10-bit)

AD9215/35/36 LFCSP Package

- AD9215 and AD9235/6 Family in 32-Lead Chip Scale Package (LFCSP)
- SOIC Package:
 - 192.77 mm² area
- TSSOP Package:
 - 63.7 mm² area
 - 67% smaller than SOIC package
- LFCSP Package:
 - 5 mm x 5 mm = 25 mm² area
 - 60% smaller than TSSOP package
 - 87% smaller than SOIC package

AD9238 12-Bit 20/40/65 MSPS 3 V Dual ADC

AD9238 12-Bit 20/40/65 MSPS 3 V Dual ADC

- Differential or Single Ended Analog Inputs
 - 500 MHz bandwidth
- Variable span: 1 Vp-p to 2 Vp-p
- SNR = 70 dB (to Nyquist)
- SFDR = 90 dB (to Nyquist)
- DNL = ±0.4 LSB
- Single 3 V/5 V Operation
- Low Power
 - 600 mW @ 60 MSPS
 - 330 mW @ 40 MSPS
 - 190 mW @ 20 MSPS
- Clock Duty Stabilizer
- Binary or Twos Complement Output Data Format

AD9433 12-Bit, 105/125 MSPS IF Sampling ADC

www.analog.com

AD9433 12-Bit, 105/125 MSPS **IF Sampling ADC**

- IF Sampling up to 350 MHz
- Selectable SFDR Mode for Improved SFDR
- 1 V p-p or 2 V p-p Input Voltage Range
- Excellent Linearity:
 - -DNL: ±0.25 LSB (typ)
 - -INL: ± 0.5 LSB (typ)
- 750 MHz Full Power Analog Bandwidth ata Format
- SNR = 68 dB @ f_{IN} up to Nyquist
- SFDR = 90 dBc @ f_{IN} up to 125 MHz
- SFDR = 80 dBc @ f_{IN} up to 250 MHz

AD9433 12-Bit, 105/125 MSPS IF Sampling ADC

- On-Chip Reference and Track/Hold
- Twos Complement or Binary Output Data Format
- 5.0 V Analog Supply Operation
- 2.5 V to 3.3 V TTL/CMOS Outputs
- Power Dissipation = 1.2 W @ 105 MSPS
- Pin-Compatible to AD9432 | WDLOAGG 2EDE

www.analog.com

AD9430 12-Bit, 170/210 MSPS ADC

AD9430 12-Bit, 170/210 MSPS, 3.3 V ADC

- 65 dB SNR @ f_{IN} up to 70 MHz @ 170 MSPS
- ENOB of 10.6 @ f_{IN} up to 70 MHz @ 170 MSPS
- -80 dBc SFDR @ f_{IN} up to 70 MHz @ 170 MSPS
- Excellent Linearity
 - DNL = ±0.3 LSB
 - INL = ±0.5 LSB
- On-Chip Reference and Track-and-Hold
- 700 MHz Analog Bandwidth Per Channel
- 1.5 Vp-p Analog Input Range

AD9430 12-Bit, 170/210 MSPS, 3.3 V ADC

- Two Output Data Options
 - Demultiplexed 3.3 V CMOS Outputs Each @ 85 MSPS
 - LVDS at 170 MSPS
- Interleaved or Parallel Data Output Option in Demultiplexed Mode
- Output Data Format Options (Twos Complement/Binary)
- 3.3 V Supply Operation
- Power Dissipation = 1.1 W @ 170 MSPS
- Data Sync Input and Data Clock Output Provided
- Clock Duty Cycle Stabilizer
- 100 e-PAD TQFP

AD9244 IF Sampling, Low Power CMOS 14-Bit, 40/65 MSPS ADC

AD9244 IF Sampling, Low Power CMOS 14-Bit, 40/65 MSPS ADC

- SFDR: 83 dB up to Nyquist
- SNR = 74 dB up to Nyquist
- 750 MHz Analog Input Bandwidth
- 1 Vp-p to 2 Vp-p Differential Full Scale Analog Input Range
- DNL = ±0.6 LSB
- Twos Complement/Straight Binary Output Data Format
- Straight Binary or Twos Complement Output Data
- Out-of-Range Indicator
- Low Power: 590 mW at 65 MSPS with f_{IN} up to Nyquist
- 340 mW at 40 MSPS with f_{IN} up to Nyquist
- 48-Lead LQFP Package
- Pin-Compatible to AD9226 (12-Bit)

AD6645 14-Bit 80/105 MSPS A/D Converter

Designed for multichannel multimode receivers, the AD6645 is also useful in single-channel, wide bandwidth systems

AD6645 14-Bit, 80/105 MSPS A/D Converter

- 250 MHz Bandwidth
- Differential Inputs with 2.2 Vp-p Input Range
- SNR = 75 dB with 15 MHz f_{IN} @ 80 MSPS
- SFDR = 89 dBc with 70 MHz f_{IN} @ 80 MSPS
 - 100 dB Multitone SFDR
 - IF Sampling to 200 MHz
 - 0.1 ps Sampling Jitter
 - Single 5 V Analog Supply, 1.5 W Dissipation
 - Output Data 3.3 V or 5 V CMOS-Compatible
 - Pin-Compatible to AD6644

AD6645 14-Bit, 80/105 MSPS ADC

- Enabling Technology for SoftCell Multicarrier Receiver Platform
 - 100 dBc Multitone SFDR
 - 89 dBc FS SFDR
 - 75 dB SNR
- WB-CDMA Receiver Design
 - Wide band single carrier solution
 - Dynamic range provides flexible filtering for emerging
 3G blocking specifications

ADI's Dynamic Duos

ADI has a strong portfolio of dual A/D converters offering the best solution for sample rate, bandwidth, power, speed, and cost requirements.

DUAL A/D CONVERTERS	RESOLUTION	SAMPLE RATE (MSPS)	POWER (mW)
AD9066	6-BIT	60	400
AD9281	8-BIT	28	225
AD9059	8-BIT	80	400
AD9288	8-BIT	40/80/100	156/171/180
AD9201	10-BIT	20	215
AD9218	10-BIT	40/65/80/105	350/550
AD9238	12-BIT	20/40/65	180/330/600
AD10242	12-BIT	40	1750
AD10265	12-BIT	65	2100
AD10201	12-BIT	105	1800

High-Speed ADC FIFO Evaluation Kit

www.analog.com

High-Speed ADC FIFO Evaluation Kit

- Buffer memory board for capturing digital data
- Two 32K FIFOs
- Simplifies evaluation of high-speed ADCs
- Up to 133 MSPS clock rate on each channel
- Measure performance with ADC AnalyzerTM software
 - Real-time FFT and time domain analysis
 - Analyze SNR, SINAD, SFDR, harmonics
- Simple PC parallel port interface
- Compatible with Windows 95/98/2000/NT
- HSC-ADC-EVAL-SC for single channel ADCs
- HSC-ADC-EVAL-DC for dual or demuxed ADCs
- www.analog.com/hsc-FIFO

AD9874 IF Digitizing Subsystem

AD9874 IF Digitizing Subsystem

- 10 300 MHz Input Frequency
- Baseband (I/Q) Digital Output
- 10 270 kHz Output Signal Bandwidth
- 8.7 dB SSB NF (typ.)
- +1.1 dBm IP3 (typ.; max. bias)
- AGC Free Range up to -28 dBm
- 12 dB Continuous AGC Range
- 16 dB Front End Attenuator

AD9874 IF Digitizing Subsystem

- LO and Sampling Clock Synthesizers
- Programmable decimation factor, output format, AGC and synthesizer settings
- 370 Ω Input Impedance
- 2.7 V 3.6 V Supply Voltage
- Low Current: 22 mA (typ., max. bias)
- 48-Pin LQFP package (1.4mm thick)
- Applications:
 - Portable and Mobile Radio Products
 - Digital UHF/VHF FDMA products
- TETRA, APCO25, GSM/EDGE

AD9895 12-Bit CCD Signal Processor with Precision Timing™ Generator

AD9895 12-Bit CCD Signal Processor with Precision Timing™ Generator

- 30 MSPS Correlated Double Sampler (CDS)
- 4 dB ±6dB Pixel Gain Amplifier (PxGA®)
- 2 dB to 36 dB 10-Bit Variable Gain Amplifier (VGA)
- 12 Bit 30 MHz A/D Converter
- Black Level Clamp with Variable Level Control
- Complete On-Chip Timing Generator
- Precision Timing Core with ±1 ns Resolution
- On-Chip 5 V Horizontal and RG Drivers

AD9895 12-Bit CCD Signal Processor with Precision Timing™ Generator

- 2-Phase and 4-Phase H-Clock Modes
- 4-Phase Vertical Transfer Clocks
 - Electronic and Mechanical Shutter Modes
 - On-Chip Driver for External Crystal
 - On-Chip Sync Generator with External Sync Option
 - 64-Lead LFBGA Package
 - Applications:
 - Digital Still Cameras
 - Industrial Imaging

AD9824 14-Bit, 30 MSPS Analog Front-end for Digital Imaging Applications

www.analog.com

AD9824 14-Bit, 30 MSPS Analog Front-end for Digital Imaging Applications

- 14-bit, 30MSPS ADC with high-performance analog processing front-end (CDS, PGA)
- 48-pin LFCSP package smaller than the TQFP
- 2 36dB 10-bit Variable Gain Amplifier (VGA)
- PxGA™ function for added color gain
- Lowest noise performance in the market
- 2 Auxiliary Inputs
- Low power 153 mW @3 V
- Markets
 - High Performance Digital Still Cameras
 - Scientific / Industrial Imaging

www.snabog.com

Scientific / Industrial Imaging

High Performance Digital Still Cameras

NO.

Tow bowel - 123 W/A @3 A

aluqni yasilixuA S

General-Purpose ADCs

8-/10-Bit ADC Family Tree

AD7466/67/68 1.8 V, Micro-Power, 12-/10-/8-Bit 100 kSPS ADCs in 6-Lead SOT-23

www.analog.com

PRELIMINARY DATA

AD7466/67/68 1.8 V, Micropower, 12-/10-/8-Bit 100 kSPS ADCs in 6-Lead SOT-23

- World's Lowest Power ADCs:
 - 1 mW max at 100 kSPS with 3 V supplies
 - 0.6 mW max at 100 kSPS with 1.8 V supplies
 - Standby mode: 1 μA max
- Specified for V_{DD} of 1.8 V 3.3 V
- Fast Throughput Rate: 100 kSPS
- 500 kHZ Analog Bandwidth
- 70 dB SNR at 30 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High-Speed Serial Interface
- SPI/QSPI/µWire/DSP compatible
 - 6-Lead SOT-23 Package

New AD7476A/77A/78A Family

We have just halved the size of the worlds smallest

SOT-23 6-Lead

- ✓ High Speed SPI/QSPI/DSP Compatible Interface
- ✓ Low-Power: 3.6 mW typ @ 1MSPS with 3 V Supplies
- √ Standby Mode: 1 uA max
- √ No Pipeline Delays

- ✓ Fast Throughput Rate:1MSPS(A)/600ksps(B)
- ✓ Wide Input Bandwidth: 5 MHz typ

SC-70 6-Lead

AD7476A/77A/78A 1 MSPS, 12-/10-/8-Bit ADCs in 6-Lead SC-70 and 8-Lead SOIC

ANALOGDEVICES

www.analog.com

PRELIMINARY DATA

AD7476A/77A/78A 1 MSPS, 12-/10-/8-Bit ADCs in 6-Lead SC-70 and 8-Lead SOIC

- Fast Throughput Rate: 1 MSPS
- Specified for V_{DD} of 2.35 V 5.25 V
- Low Power:
 - 3.6 mW typ @ 1 MSPS with 3 V supplies
 - 15 mW typ @ 1 MSPS with 5 V supplies
 - Standby mode: 1 µA max
- Wide Input Bandwidth:
 - 70 dB SNR at 100 kHz input frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High-Speed Serial Interface
 - SPITM /QSPITM /MICROWIRETM /DSP compatible
- 6-Lead SC-70 Package
 - 8-Lead SOIC Package

AD7450 12-Bit 1 MSPS Differential Input 3 V/5 V ADC

www.analog.com

AD7450 12-Bit 1 MSPS Differential Input 3 V/5 V ADC

- 1 MSPS Throughput Rate
- No Pipeline Delay
- 20 MHz Input Bandwidth (70 dB SNR @ 300 kHz Input Frequency)
- Fully Differential Inputs
- No Pipeline Delays
- Low Power
 - 9 mW typ @ 1 MSPS and 5 V
 - 5 mW typ @ 1 MSPS and 3 V
- 1 µA Max Standby Current
- SPI/QSPI/µWire/DSP Compatible Serial Interface
- 8-Pin SOIC and µSOIC Packages

AD7450A/40 Differential Input, 1 MSPS, 12-/10-Bit ADCs in 8-lead SOT-23

www.analog.com

PRELIMINARY DATA

AD7450A/40 Differential Input, 1 MSPS, 12-/10-Bit ADCs in 8-lead SOT-23

- Fast Throughput Rate: 1 MSPS
- Specified for V_{DD} of 3 V and 5 V
- Low Power at max Throughput Rate:
- 3.75 mW typ at 1 MSPS with 3 V Supplies
- 9 mW typ at 1 MSPS with 5 V Supplies
- Power-Down Mode: 1 µA max
- Fully Differential Analog Input
- Wide Input Bandwidth:
 - 70 dB SINAD at 300 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface

AD7451/41 Pseudo Differential, 1 MSPS, 12-/10-Bit ADCs in 8-lead SOT-23

AD7451/41 Pseudo Differential, 1 MSPS, 12-/10-Bit ADCs in 8-lead SOT-23

- Fast Throughput Rate: 1 MSPS
- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power at Max Throughput Rate:
 - 3.75 mW typ at 1 MSPS with V_{DD} = 3 V
 - 9 mW typ at 1 MSPS with V_{DD} = 5 V
- Pseudo Differential Analog Input
- Wide Input Bandwidth:
 - 70dB SINAD at 300 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Power-Down Mode: 1µA max
- 8 Pin SOT-23 and µSOIC Packages

AD7452/42 Differential Input, 600 kSPS, 12-/10-Bit ADCs in 8-lead SOT-23

AD7452/42 Differential Input, 600 kSPS, 12-/10-Bit ADCs in 8-lead SOT-23

- Specified for V_{DD} of 3 V and 5 V
- Low Power at max Throughput Rate:
- Fully Differential Analog Input
- Wide Input Bandwidth:
 - 70 dB SINAD at 100 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Power-Down Mode: 1µA max
- 8 Lead SOT-23 and µSOIC Packages

AD7453/43 Pseudo-Differential, 600 kSPS, 12-/10-Bit ADCs in 8-lead SOT-23

AD7453/43 Pseudo-Differential, 600 kSPS, 12-/10-Bit ADCs in 8-lead SOT-23

- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power at max Throughput Rate:
 - 3.75 mW typ at 1MSPS with V_{DD} = 3 V
 - 9 mW typ at 1MSPS with V_{DD} = 5 V
- Pseudo Differential Analog Input
- Wide Input Bandwidth:
 - 70 dB SINAD at 100 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Power-Down Mode: 1 µA max
- 8 Pin SOT-23 and µSOIC Packages

AD7910/20 250 KSPS, 12- /10-Bit ADCs in 6 Lead SC70

AD7910/20 250 KSPS, 12- /10-Bit ADCs in 6 Lead SC70

- Throughput Rate: 250 KSPS
- Specified for V_{DD} of 2.35 V to 5.25 V
- Low Power:
 - 3 mW typ at 250 KSPS with 3 V Supplies
 - 12.5 mW typ at 250 KSPS with 5 V Supplies
 - Standby Mode: 1 μA max
- Wide Input Bandwidth:
 - 70 dB SNR at 100 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- 6-Lead SC70 Package or 8-Lead SOIC Package

AD7456 Differential Input, 100 kSPS, 12-Bit ADC in 8-lead SOT-23

AD7456 Differential Input, 100 kSPS, 12-Bit ADC in 8-lead SOT-23

- Specified for V_{DD} of 3 V and 5 V
- Very Low Power
- Fully Differential Analog Input
- Wide Input Bandwidth:
 - 70 dB SINAD at 20 kHz Input Frequency
- No Pipeline Delays
- Serial Interface
- Automatic Power-Down Mode
- 8 Pin SOT-23 and µSOIC Package

AD7482 3 MSPS, 12-Bit SAR ADC

- Fast Throughput Rate: 3 MSPS
- Wide Input Bandwidth: 50 MHz
- No Pipeline Delays with SAR ADC
- Excellent DC Accuracy Performance
- Low Power:
 - 90 mW (full-power) and 5 mW (NAP mode)
 - Standby mode: 1 μA max
- Single +5 V Supply Operation
- Internal +2.5 V Reference

AD7482 3 MSPS, 12-Bit SAR ADC

- Two Parallel Interface Modes
- Full-Scale Overrange Mode (using 13TH Bit)
- System Offset Removal via User Access Offset Register
- Nominal 0 V to 2.5 V Input with Shifted Range Capability
- 14-Bit Pin Compatible Upgrade (AD7484)
- VDRIVE from 2.7 V 5.25 V.
 - Set the voltage levels for the digital interface lines.
- The Part is Housed in a 48-Pin LQFP Package
- Specified over a –40° C to +85° C Temperature Range.

AD7866 Dual 2-Channel 12-Bit ADC

www.analog.com

2-64

AD7866 Dual 2-Channel 12-Bit ADC

- 1 MSPS Throughput Rate
- 70 dB SNR @ 500 kHz Input Frequency
- No Pipeline Delays
- Simultaneous Conversion/Read
- Flexible Power/Throughput Rate Management
- 3 V or 5 V Supply
- Low Power
 - 9 mW (max) @ 1 MSPS with 3 V supply
 - 30 mW (max) @ 1 MSPS with 5 V supply
- Shutdown mode 1 μA (typ)

AD7940 3 V, 3 mW, 100 kSPS, 14-Bit ADC in 6-lead SOT-23

- Fast Throughput Rate: 100 kSPS
- Specified for V_{DD} of 2.5 V to 5.25 V
- Low Power:
 - 2.5 mW typ at 100 kSPS with 3 V Supplies
 - 15 mW typ at 100 kSPS with 5 V Supplies
 - Standby Mode: 0.5 µA max
- Wide Input Bandwidth:
 - 80 dB SNR at 10 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- 6-Lead SOT-23, and 8-Lead µSOIC Packages

AD7485 14-Bit, 1 MSPS Serial, SAR ADC

ANALOG DEVICES

AD7485 14-Bit, 1 MSPS Serial, SAR ADC

- Fast Throughput Rate: 1MSPS
- Wide Input Bandwidth: 10MHz
- Excellent DC Accuracy Performance
- Flexible Serial Interface
- Low Power:
 - 90mW (Full-Power) and 5mW (NAP Mode)
- Standby Mode: 1µA max
- Internal +2.5V Reference
- Full-Scale Overrange Indication

AD7484 3 MSPS, 14-Bit SAR ADC

- Fast Throughput Rate: 3 MSPS
- Wide Input Bandwidth: 40 MHz
- No Pipeline Delays with SAR ADC
- Excellent DC Accuracy Performance
- Two Parallel Interface Modes
- Low Power:
 - 90 mW (Full Power) and 2.5 mW (NAP Mode)
 - Standby Mode: 2 μA Max
- Single 5 V Supply Operation
- Internal 2.5 V Reference
- Full-Scale Overrange Mode (using 15th Bit)
- System Offset Removal via User Access Offset Register
- Nominal 0 V to 2.5 V Input with Shifted Range Capability
- Pin-Compatible Upgrade of 12-Bit AD7482

AD7680 3 V, 3 mW, 100 kSPS, 16-Bit ADC in 6-lead SOT-23

AD7680 3 V, 3 mW, 100 kSPS, 16-Bit ADC in 6-lead SOT-23

- Fast Throughput Rate: 100 kSPS
- Specified for V_{DD} of 2.5 V to 5.25 V
- Low Power:
 - 1.5 mW typ @ 100 kSPS with 3 V supplies
- 10 mW typ @ 100 kSPS with 5 V supplies
- Wide Input Bandwidth:
 - 85 dB SNR, 10 kHz input frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Standby Mode 0.5 uW Max
- 6-Lead SOT-23 Package, uSOIC Package

AD7661 16-Bit 100 kSPS SAR Unipolar ADC

AD7661 16-Bit 100 kSPS SAR Unipolar ADC

- Throughput: 100 kSPS
- INL: ±2.5 LSB Max. (±0.0038 of Full Scale)
- 16 Bit Resolution with No Missing Codes
- Input Range: 0 V to 2.5 V
- No Pipeline Delay
- Parallel and Serial 5 V/ 3 V Interface
 - SPI[™], QSPI[™], MICROWIRE[™], DSP Compatible
- Single +5 V Supply
 - 26 mW (with Ref)
 - 18 mW (without Ref)
 - 15 μW @ 100 SPS
 - 7 μW in Power Down Mode
- Pin-to-Pin Compatible with PulSAR ADCs

AD7651 16-Bit 100 kSPS SAR Unipolar ADC with Ref

- Throughput: 100 kSPS
- 16-Bits Resolution
- Analog Input Voltage Range: 0 V to 2.5 V
- No Pipeline Delay
- Parallel and Serial 5 V/ 3 V Interface
- Single 5 V Supply Operation
- Power Dissipation
 - 15 mW Typ without REF, 25 mW Typ with REF
 - 15 μW @100 SPS
 - Power-Down Mode:7 μW Max
- Package:48-Lead Quad Flat Pack (LQFP); 48-Lead Chip Scale Package (LFCSP)
- Pin-to-Pin Compatible with PulSAR ADCs

AD7685 Low Cost 100 kSPS 16-Bit ADC in µSOIC-10

AD7685 Low Cost 100 kSPS 16-Bit ADC in µSOIC-10

- 16-Bits Resolution with No Missing Codes
- Throughput: 100 kSPS
- INL: 2.5 LSB Max (0.0038 % of Full-Scale)
- S/(N+D): 92 dB Typ @ 20 kHz
- THD: -100 dB Typ @ 20 kHz
- Analog Input Range 0 V to V_{REF} with V_{REF} up to V_{DD}
- No Pipeline Delay
- Single 5 V Supply Operation with 3 V/ 5 V Logic Interface
- Serial Interface SPI/QSPI/Wire/DSP Compatible
- 10 mW Typical Power Dissipation, 10 μW @ 100 SPS
 - Stand by current: 1 μA max
- 10-Pin µSOIC Package
- Pin-to-Pin Compatible with the AD7686

AD7675 16-Bit, 100 kSPS Differential ADC

ANALOGDEVICES

www.analog.com

AD7675 16-Bit, 100 kSPS Differential ADC

- Differential Input Range: 2.5 V
- Throughput: 100 kSPS
- INL: 1.5 LSB Max (0.0023 % of Full-Scale)
- 16-Bits Resolution with No Missing Codes
- S/(N+D): 94 dB Typ @ 10 kHz, THD: -110 dB Typ @ 10 kHz
- Both AC and DC Specifications
- No Pipeline Delay
- Parallel (8-/16-Bits) and Serial 5 V/ 3 V Interface
- Single 5 V Supply Operation
- 15 mW Typical Power Dissipation, 15 μW @ 100 SPS
- Power-Down Mode: 7 μW Max
- Package: 48-Lead Quad Flat Pack (LQFP)
- Pin-to-Pin Compatible with the AD7660

AD7686 Low Cost 420 kSPS 16-Bit ADC in µSOIC-10

AD7686 Low Cost 420 kSPS 16-Bit ADC in µSOIC-10

- 16-Bits Resolution with No Missing Codes
- Throughput: 420 kSPS
- INL: 2.5 LSB Max (0.0038 % of Full-Scale)
- S/(N+D): 92 dB Typ @ 20 kHz
- THD: -100 dB Typ @ 20 kHz
- Analog Input Range 0 V to V_{REF} with V_{REF} up to V_{DD}
- No Pipeline Delay
- Single 5 V Supply Operation with 3 V/ 5 V Logic Interface
- Serial Interface SPI/QSPI/Microwire/DSP Compatible
- 10 mW Typical Power Dissipation, 10 μW @ 100 SPS
- Stand by current: 1 µA Max
- 10-Pin µSOIC Package
- Pin-to-Pin Compatible Upgrade of the AD7685

AD7666 16-Bit 500 kSPS POLOSE SAR Unipolar ADC with Ref

AD7666 16-Bit 500 kSPS SAR Unipolar ADC with Ref

- Throughput:500 kSPS
- INL: ±2.5 LSB Max (±0.0038 % of Full Scale)
- 16-Bits Resolution with No Missing Codes
- Analog Input Voltage Range: 0 V to 2.5 V
- No Pipeline Delay
- Parallel and Serial 5 V/ 3 V Interface
- Single 5 V Supply Operation
- Power Dissipation
 - 67 mW Typ without REF, 77 mW Typ with REF
 - 15 μW @100 SPS
 - Power-Down Mode:7 µW Max
- Package:48-Lead Quad Flat Pack (LQFP); 48-Lead Chip Scale Package (LFCSP)
- Pin-to-Pin Compatible with PulSAR ADCs

AD7652 16-Bit 500 kSPS SAR Unipolar ADC

AD7652 16-Bit 500 kSPS SAR Unipolar ADC

- Throughput: 500 kSPS
- 16 Bit Resolution with No Missing Codes
- Input Range: 0 V to 2.5 V
- No Pipeline Delay
- Parallel and Serial 5 V/ 3 V Interface
 - SPI™, QSPI™, MICROWIRE™, DSP Compatible
- Single +5 V Supply
 - 77 mW (with Ref)
 - 67 mW (without Ref)
 - 15 μW @ 100 SPS
 - 7 μW in Power Down Mode
- Pin-to-Pin Compatible with PulSAR ADCs

AD7676 16-Bit, 500 kSPS, 1 LSB INL, Differential ADC PROPERTY ADCS

www.analog.com

AD7676 16-Bit, 500 kSPS, 1 LSB INL, Differential ADC

- Differential Input Range: 2.5 V
- Throughput: 500 kSPS
- 16-Bits Resolution with No Missing Codes
 - S/(N+D): 94 dB typ @ 20 kHz
 - THD: -110 dB typ @ 20 kHz
 - INL: 1 LSB max (0.0015 % of full-scale)
- Both AC and DC Specifications
- No Pipeline Delay
- Parallel (8-/16-bits) and Serial 5 V/ 3 V Interface
- Single 5 V Supply Operation
- 60 mW typical power dissipation, 12 μW @ 100 SPS
 - Power-down mode: 7 μW max
 - Package: 48-Lead Quad Flat Pack (LQFP)
 - Pin-to-Pin Compatible Upgrade of the AD7675

AD7677 16-Bit, 1 MSPS, 1 LSB INL, Differential ADC

■Pin-to-Pin Compatible Upgrade of the AD7674/AD7675/AD7676

Package: 48-Lead Quad Flat Pack (LQFP)

AD7677 16-Bit, 1 MSPS, 1 LSB INL, Differential ADC

- Throughput: 1 MSPS (Warp Mode); 800 kSPS (Normal Mode)
- Differential Analog Input Range: 2.5 V
- Both AC and DC Specifications
 - INL: 1 LSB max (0.0015 % of full-scale)
 - 16-Bit resolution with no missing codes
 - S/(N+D): 94 dB typ @ 45 kHz
 - THD: -110 dB typ @ 45 kHz
- No Pipeline Delay
- Parallel (8-/16-Bits) and Serial 5 V/ 3 V Interface
- Single 5 V Supply Operation
 - 120 mW typical, 15 μW @ 100 SPS
 - Power-down mode: 7 µW max

AD7667 16-Bit 1 MSPS SAR Unipolar ADC

AD7667 16-Bit 1 MSPS SAR Unipolar ADC

- Throughput: 1MSPS (Warp Mode) 800 kSPS (Normal Mode)
- INL: ±2.5 LSB Max. (±0.0038 % of Full Scale)
- 16-Bit Resolution with No Missing Codes
- Input Range: 0 V to 2.5 V
- No Pipeline Delay
- Parallel and Serial 5 V/3 V Interface
 - SPITM, QSPITM, MICROWIRETM, DSP Compatible
- Single +5 V Supply
 - 122 mW (with Ref)
 - 112 mW (without Ref)
 - 15 μW @ 100 SPS
 - 7 µW in Power Down Mode
- Pin-to-Pin Compatible with PulSAR ADCs

AD7653 16-Bit 1 MSPS SAR Unipolar ADC

AD7653 16-Bit 1 MSPS SAR Unipolar ADC

- Throughput: 1MSPS (Warp Mode) 800 kSPS (Normal Mode)
- 16-Bit Resolution with No Missing Codes
- Input Range: 0 V to 2.5 V
- No Pipeline Delay
- Parallel and Serial 5 V/ 3 V Interface
 - SPI[™], QSPI[™], MICROWIRE[™], DSP Compatible
- Single +5 V Supply
 - 122 mW (with Ref)
 - 112 mW (without Ref)
 - 15 μW @ 100 SPS
 - 7 μW in Power Down Mode
- Pin-to-Pin Compatible with PulSAR ADCs

AD7671 16-Bit, 1 MSPS/1.33 MSPS ADC

AD7671 16-Bit, 1 MSPS/1.33 MSPS ADC

- 1 MSPS Throughput (1.33 MSPS in Warp Mode) (No Pipeline Delay)
- 16-Bit Resolution with No Missing Codes
 - SNR 90 dB @ 100 kHz
 - THD 96 dB @ 100 kHz
 - INL: 1.5 LSB
- Input Voltage Ranges:
 - ±10 V, ±5 V, ±2.5 V
 - 0 V to 10 V, 0 V to 5 V, 0 V to 2.5 V
- Single 5 V Supply
 - 150 mW (typ) power dissipation
 - Reduced power in impulse mode (15 μW (typ) @ 100 kSPS)
 - Power-down mode (<10 μA)
- Parallel and Serial (3 V/ 5 V) Interfaces (Separate Output Power Pin)
- 48-Lead Thin Quad Flat Pack (TQFP)

AD7662 Dual 2-Channel 500 kSPS Simultaneous Sampling SAR 16-Bit ADC

AD7662 Dual 2-Channel 500 kSPS Simultaneous Sampling SAR 16-Bit ADC

- Dual 16-Bit 2-channel Simultaneous Sampling ADC
- Throughput: 500 kSPS (Warp Mode) 444 kSPS (Normal Mode)
- INL: 6 LSB Max (±0.0092 % of Full-Scale)
- 16-Bits Resolution with No Missing Codes
- SNR: 90 dB Typ @ 100 kHz
- THD: -92 dB Typ @ 100 kHz
- Analog Input Voltage Range: 0 V to 5 V
- Choice of Internal or External Reference
- No Pipeline Delay

AD7662 Dual 2-Channel 500 kSPS Simultaneous Sampling SAR 16-Bit ADC

- Parallel and Serial 5 V/ 3 V Interface
 - SPI™/ QSPI™/ MICROWIRE™/ DSP Compatible
- Single 5 V Supply Operation
- Power Dissipation Augustud Codes
 - 120 mW Typical,
 - 15 W @ 100 SPS 0005 & 01 Enii-209(e)
 - 7 W Max Power-Down Mode Mode) 444 K252 (Motus) Mode)
- Pin-to-Pin compatible with the AD7668
- Low Cost

AD7668 Dual 2-Channel 16-Bit 500 kSPS Simultaneous Sampling SAR ADC

■Package: 48-Lead Quad Flat Pack (LQFP)

AD7668 Dual 2-Channel 16-Bit 500 kSPS Simultaneous Sampling SAR ADC

- Dual 16-Bit, 2-Channel Simultaneous Sampling ADC
- Throughput:
 - 500 kSPS (warp mode), 444 kSPS (normal mode)
- 16-Bits Resolution with No Missing Codes
 - INL: 2.5 LSB max (±0.0038 % of full-scale)
 - SNR: 90 dB typ @ 100 kHz
 - THD: -96 dB typ @ 100 kHz
- Pin-to-Pin Compatible Upgrade of the AD7662
- Analog Input Voltage Range: 0 V 5 V
- No Pipeline Delay
- Single 5 V Supply Operation;
 - Parallel and Serial 5 V/ 3 V Interface
- Power Dissipation
 - 120 mW typical, 15 μW @ 100 SPS
 - Power-down mode: 7 µW max

AD7654 Dual 2-Channel Simultaneous Sampling 500 kSPS 16-Bit SAR ADC

AD7654 Dual 2-Channel Simultaneous Sampling 500 kSPS 16-Bit SAR ADC

- Dual 16-bit 2-channel Simultaneous Sampling ADC
- Throughput:
 - 500 kSPS (Warp Mode)
 - 444 kSPS (Normal Mode)
- INL: 6 LSB Max (±0.0092 % of Full-Scale)
- 16 Bits Resolution with No Missing Codes
 - SNR: 90 dB Typ @ 100 kHz
 - THD: -92 dB Typ @ 100 kHz
- Analog Input Voltage Range: 0 to 5 V
- Choice of Internal or External Reference
- No Pipeline Delay

AD7654 Dual 2-Channel Simultaneous Sampling 500 kSPS 16-Bit SAR ADC

- Parallel and Serial 5 V/3 V Interface
- Single 5 V Supply Operation
- Power Dissipation
 - 120 mW Typical,
 - 15 W @ 100 SPS
 - Power-Down Mode: 7 W Max
- Package: 48-Lead Quad Flat Pack (LQFP) or 48-Lead Frame Chip Scale Pack (LCSP)
- Pin-to-Pin compatible with the AD7668
- Low Cost

AD7928/18/08 8-Channel, 12-/10-/8-Bit 1 MSPS, ADCs with Sequencer

ANALOG DEVICES

AD7928/18/08 8-Channel, 12-/10-/8-Bit 1 MSPS, ADCs with Sequencer

- Fast Throughput Rate: 1 MSPS
- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power:
 - 5.4 mW max at 1 MSPS with 3 V Supplies
 - 12.5 mW max at 1 MSPS with 5 V Supplies
- Eight (Single Ended) Inputs with Sequencer
- Wide Input Bandwidth:
 - AD7928, 69.5 dB SNR at 50 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Shutdown Mode: 0.5 µA max
- 20-Pin TSSOP Package

AD7924/14/04 4-Channel, 12-/10-/8-Bit 1 MSPS, ADCs with Sequencer

AD7924/14/04 4-Channel, 12-/10-/8-Bit 1 MSPS, ADCs with Sequencer

- Fast Throughput Rate: 1MSPS
- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power:
 - 5.4 mW max at 1 MSPS with 3 V Supplies
 - 12.5 mW max at 1 MSPS with 5 V Supplies
- Four (Single Ended) Inputs with Sequencer
- Wide Input Bandwidth:
 - AD7924, 69.5 dB SNR at 50 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Shutdown Mode: 0.5 µA max
- 16-Pin TSSOP Package

AD7490 16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP

ANALOG DEVICES

AD7490 16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP

- Fast Throughput Rate: 1 MSPS
- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power:
 - 3.6 mW max @ 1 MSPS with 3 V supplies (normal mode)
 - 10 mW max @ 1 MSPS with 5 V supplies (normal mode)
 - Shutdown mode: 1 μA max
- Sixteen (Single Ended) Inputs with Sequencer
- Wide Input Bandwidth
 - 70 dB SNR at 50 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface SPI/QSPI/µWire/DSPCompatible
- 28-Pin TSSOP and 32-Pin LFCSP Packages

AD7927 8-Channel, 200 kSPS, 12-Bit ADC with Sequencer in 20-Lead TSSOP

AD7927 8-Channel, 200 kSPS, 12-Bit ADC with Sequencer in 20-Lead TSSOP

- Fast Throughput Rate: 200 kSPS
- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power:
 - 1.95 mW max at 200 kSPS with 3 V Supplies
 - 5 mW max at 200 kSPS with 5 V Supplies
 - Shutdown Mode: 0.5 μA max
- Eight (Single Ended) Inputs with Sequencer
- Wide Input Bandwidth:
 - 69.5 dB SNR at 50 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- 20-Pin TSSOP Package

AD7923 4-Channel, 200 kSPS, 12-Bit ADC with Sequencer in 16-Lead TSSOP

AD7923 4-Channel, 200 kSPS, 12-Bit ADC with Sequencer in 16-Lead TSSOP

- Fast Throughput Rate: 200 kSPS
- Specified for V_{DD} of 2.7 V to 5.25 V
- Low Power:
 - 1.95 mW max at 200 kSPS with 3 V Supplies
 - 5 mW max at 200 kSPS with 5 V Supplies
- Four (Single Ended) Inputs with Sequencer
- Wide Input Bandwidth:
 - 69.5 dB SNR at 50 kHz Input Frequency
- Flexible Power/Serial Clock Speed Management
- No Pipeline Delays
- High Speed Serial Interface
- Shutdown Mode: 0.5 μA max
- 16-Pin TSSOP Package

PRELIMINARY DATA

wew.anslog.com

INGOME MODE: 0.9 HV WAX

east sensit hierarch

Pipeline Delays

Sigma-Delta ADCs

ow bowel:

decilled (of Are of S.1.A. to 2.52.A. sat Lutondubrit Kstet. Soo K25.2.A.

ANALOG DEVICES

www.analog.com

2-116

AD7708/18 16-/24-Bit Sigma Delta ADC

AD7708/18 16-/24-Bit Sigma Delta ADC

- AD7718: 24-Bit No Missing Codes
- AD7708: 16-Bit No Missing Codes
- Flexible Inputs:
 - Four or five fully differential
 - Eight or ten single-ended (with respect to AIN COM)
 - Any combination in between
- 3 V or 5 V Operation; <10 mW Power Consumption
- Reference Input from 1.2 V to V_{DD}; Rail-to-Rail Input Buffer
- Choice of Two Differential Reference Inputs (8-Channel Mode)
- Low Offset and Gain Drift No Calibration Cycle Required
- 32 kHz Master Clock
- 2-Pin I/O Port
- Register and Pin Compatible

AD7709 16-Bit Sigma-Delta ADC

AD7709 16-Bit Sigma-Delta ADC

- 14-Bit Accurate 16-Bit No Missing Code
- Four Analog Inputs (Two Fully Differential or Four Single-Ended, or One Differential and Two Single-Ended)
- Switchable Reference Inputs
- Operates on References from 1 V to V_{DD}
- Three Ratio-Matched Current Sources
- 32 kHz Master Clock
- Low Operation and Standby Power Consumption
- SPI-Compatible Interface
- Two Digital Inputs and Two Digital Outputs: Two Low Side Power Switches

AD7719 Dual 16-/24-Bit Sigma-Delta ADC

AD7719 Dual 16-/24-Bit Sigma-Delta ADC

- Main Channel 24-Bits No Missing Codes
 - Eight unipolar and eight bipolar input ranges
 - One or two differential inputs or three pseudo-differential inputs
 - Gain ranges 1 to 128
 - Rail-to-rail input buffer
- Secondary Channel 16-Bits No Missing Codes
 - Two unipolar and two bipolar input ranges
 - Gain ranges 1 to 2
 - Three single-ended or two single-ended, one pseudo-differential or two single-ended and one differential inputs
- Simultaneous Sampling on Main and Secondary Channels

AD7719 Dual 16-/24-Bit Sigma-Delta ADC

- Single 2.7 V to 5 V Operation
- Operates with References from 1 V to V_{DD}
- Two Matched, Selectable 200 mA Current Sources
- Low Offset and Gain Drift
- No Calibration Cycles Required
- Power Consumption <10 mW
- 32 kHz Master Clock
- 4-Pin I/O
- 28-Lead SOIC and TSSOP Packages

AD7732 2-Channel, ±10V Input Range, High Throughput, 24-Bit Sigma Delta ADC

AD7732 2-Channel, ±10V Input Range, High Throughput, 24-Bit Sigma Delta ADC

- Dual Differential Channel 16 bits No Missing Codes ADC
- FS Input Voltage Ranges are S/W Programmable and Include:
 - ±10 V, ±5 V, 0 V to +10 V and 0 V to +5 V
- Over-Voltage-Tolerant Input Structure
- 0.0015% INL
- 16-Bit p-p Resolution @ 2000 Hz Output Update Rate
- Programmable Output Rates to 6.4 kHz
- 3-Wire Serial Interface
- Schmitt Trigger Inputs on SCLK and DIN
- 2-Pin Digital I/O Port
- +4.75 V to +5.25 V Operation
- 4.9152 MHz Operation Allowing Low Cost SM Crystals
- Operates with Reference Voltage of +2.5 V
- Either Channel Can Be Externally Trimmed to Improve CMR

AD7734 4-Channel, ±10 V Input Range, High Throughput, 24-Bit Sigma Delta ADC

AD7734 4-Channel, ±10 V Input Range, High Throughput, 24-Bit Sigma Delta ADC

- 4-Channel 24-Bits No Missing Codes ADC
- High Level Single-Ended Input Channels Accept ±10, ±5,
 0 V to +5 V and 0 V to +10 V (Software Selectable)
- Over-Voltage-Tolerant Input Structure
- 0.0015 % INL
- 16-Bitp-p Resolution @ 2000 Hz Channel Switching Speed
- Programmable Output Rates to 6.4 kHz
- 3-Wire Serial Interface
- Schmitt Trigger Inputs on SCLK and DIN
- 2-Pin Digital I/O Port
- +4.75 V to +5.25 V Operation
- 4.9152 MHz Operation Allowing Low Cost SM Crystals
- Operates with Reference Voltage of +2.5 V

AD7738 8-Channel, High Throughput, 24-Bit Sigma-Delta ADC

AD7738 8-Channel, High Throughput, 24-Bit Sigma-Delta ADC

- 24-Bits No Missing Codes ADC
- Eight Analog Inputs which Can Be Configured as Follows:
 - Four Fully differential inputs of a of a part of a
 - Eight Single-ended I/Ps with respect to AIN COM
 - Or any combination in between a pow coal all cultures
- Bipolar/Unipolar 1.25 V and 0.625 V Inputs
- 0.0015 % INL
- 16-Bitp-p Resolution @ 2000 Hz Channel Switching Speed with 500µs Settling Time
- Programmable Output Rates to 6.4 kHz
- Input Voltage Range of ±V_{REF}/2

- 3-Wire Serial Interface
- MUXOUT/ADCIN Facility Allows External Preamp
- +4.75 V to +5.25 V Operation
- 4.9152 MHz Operation Allowing Low Cost SM Crystals
- Operates with Reference Voltage of +2.5 V
- 28-Lead TSSOP
- Schmitt Trigger Inputs on SCLK and DIN

AD7725 16-Bit Sigma-Delta ADC with PulseDSP™ Post Processor

AD7725 16-Bit Sigma-Delta ADC with PulseDSP™ Post Processor

- 19.2 MHz Master Clock Frequency
- 460 kHz Input Bandwidth
- 0 V to 4 V or ±2 V Input Ranges
- 1.2 MHz Output Word Rate
- Programmable Signal Conditioning:
 - Low-pass, high-pass, bandpass, bandstop
- Programmable Decimation, Interpolation, and Word Rate
- Flexible Programming Modes
 - BootRom, External EEPROM, Parallel/Serial Interface
- Power Supplies: AV_{DD}, DV_{DD}: +5 V ±5%
- On-Chip 2.5 V Voltage Reference
- 44-Pin PQFP

PulseDSP is a trademark of Systolix

2 - 132

AD7782/83 Nonwriteable Sigma-Delta ADC

ANALOG DEVICES

AD7782/83 Nonwriteable Sigma-Delta ADC

- AD7782: Two Differential Input Channels
- AD7783: One Differential Input and Two Matched-Current Sources
- INL: 15 ppm
- 24-Bit No Missing Codes
- Differential Reference Inputs
- Pin-Selectable Input Ranges
- High Input Z
- Input Common-Mode Voltage Includes Either Rail
- Output Settles in One Update Rate
- Simultaneous 50 Hz and 60 Hz Common-Mode Rejection
- Read Only Operation

Special-Purpose ADCs

Rodin rent a sens rent control control

▼ ANALOG DEVICES

AD5520 Parametric Measurement Unit

www.analog.com

PRELIMINARY DATA

AD5520 Parametric Measurement Unit

- Force Voltage, Measure Current and Force Current, Measure Voltage Functions
- Output Voltage Range ±9 V
- Measured Voltage Range ±9 V
- Four Programmable Force/Measure Current Ranges
 - ±4 μA, ±40 μA, ±400 μA, ±4 mA
- Extended Current Ranges
 - ±40 mA and ±160 mA with external driver
- 64-Pin LQFP

ADE7752 3-Phase Energy Metering IC with Pulse Output

ADE7752 3-Phase Energy Metering IC with Pulse Output

- High Accuracy, Supports 50 Hz/60 Hz IEC 687/1036
- Less than 0.1% Error Over a Dynamic Range of 500 to 1
- Compatible with 3-Phase / 3-Wire and 3-Phase / 4-Wire Configurations
- The ADE7752 Supplies Average Real Power on the Frequency Outputs F1 and F2
- The High Frequency Output CF Is Intended for Calibration and Supplies Instantaneous Real Power
- The Logic Output REVP indicates a Potential Miswiring or Negative Power for Each Phase
- Direct Drive for Electromechanical Counters and 2-Phase Stepper Motors (F1 and F2)

hase Energy Metering

ADE7752 3-Phase Energy Metering IC with Pulse Output

- Proprietary ADCs and DSP Provide High Accuracy over Large Variations in Environmental Conditions and Time
- On-Chip Power Supply Monitoring
- On-Chip Creep Protection (No Load Threshold)
- On-Chip Reference 2.5 V ± 8 % (30 ppm/°C Typical) with External Overdrive Capability
- Single 5 V Supply, Low Power (15 mW Typical)
- 24-Lead SOIC Package

ADE7753 Single Phase Energy Metering IC with Serial Port Interface

ADE7753 Single Phase Energy Metering IC with Serial Port Interface

- High Accuracy Supports IEC61036 and IEC61268
- On-Chip Digital Integrator enables Direct Interface with Current Sensors with di/dt Outputs (Differentiating Current with Respect to Time) such as a Rogowski Coil
- Supplies Active, Reactive, and Apparent, Sampled Waveform, Current and Voltage RMS,
- Less than 0.1% Error Over a Dynamic Range of 1000:1
- Positive only energy accumulation mode available
- An On-Chip User Programmable Threshold for the Line Voltage surge and SAG, and PSU supervisory
- Digital Power, Phase & Input Offset Calibration

ADE7753 Single Phase Energy Metering IC with Serial Port Interface

- On-Chip Temperature Sensor (±3° C (Typ) after Calibration)
- A SPI-Compatible Serial Interface
- A Pulse Output with Programmable Frequency
- An Interrupt Request pin (IRQ) and Status Register
- Proprietary ADCs and DSP Provide High Accuracy Over Large Variations in Environmental Conditions and Time
- On-Chip Reference 2.4 V ±8 % (30 ppm/°C Typical) with External Overdrive Capability
- Single 5 V Supply, Low Power 25 mW (Typ)
- 20-Lead SSOP Package

ADE7754 3-Phase Energy Metering IC with Serial Port Interface

ADE7754 3-Phase Energy Metering IC with Serial Port Interface

- High Accuracy Supports IEC 687/1036
- Compatible with 3-Phase / 3-Wire or 3-Phase / 4-Wire Configurations and any Type of 3-Phase Services
- < 0.1 % Error Over a 500:1 Dynamic Range</p>
- Supplies Active Energy, Apparent Energy, Voltage RMS,
 Current RMS, Sign of Reactive Energy, Sampled Waveform
 Data
- On-Chip Programmable Threshold for the Line Voltage SAG and Overvdrive (PEAK) Detections
- Line Period
- Digital Power, Phase, and Input Offset Calibration

ADE7754 3-Phase Energy Metering IC with Serial Port Interface

- Pulse Output with Programmable Frequency
- On-Chip Temperature Sensor (±3° C (Typ) after Calibration)
- SPI-Compatible Serial Interface Euerdy, 23mpled Waveform
- IRQ and Status Register Provide Early Warning of Register Overflow
- Proprietary ADCs and DSP Provide High Accuracy Over Large Variations in Environmental Conditions and Time
- Single 5 V Supply, Low Power 15 mW (Typ)
- 24-Lead SOIC Package

ADE7759 Active Energy Metering IC

www.analog.com

ADE7759 Active Energy Metering IC

- High Accuracy, Supports IEC 687/1036
- On-Chip Digital Integrator for Direct Interface with Current Sensors with di/dt Outputs (Differentiating Current with Respect to Time) such as a Rogowski Coil
- Less than 0.1% Error over a Dynamic Range of 1000 to 1
- On-Chip User Programmable Threshold for Line Voltage SAG Detection and PSU Supervisory
- Supplies Sampled Waveform Data and Active Energy (40-Bits)
- Digital Power, Phase and Input Offset Calibration.
- On-Chip Temperature Sensor (±3° C Typical after Calibration)

ADE7759 Active Energy Metering IC

- SPI Compatible Serial Interface
- Pulse Output with Programmable Frequency
- Interrupt Request Pin (IRQ) and Status Register
- Proprietary ADCs and DSP Provide High Accuracy over Large Variations in Environmental Conditions and Time
- Reference 2.5 V ±8 % (30 ppm/°C Typical) with External Overdrive Capability
- Single 5 V Supply, Low Power (15 mW Typical)
- 20-Lead SSOP Package

ADE7757 Energy Metering IC with Integrated Oscillator

ADE7757 Energy Metering IC with Integrated Oscillator

- On Chip Oscillator as clock source
- High Accuracy, Supports 50 Hz/ 60 Hz IEC 521/1036
- Less than 0.1 % Error Over a Dynamic Range of 500:1
- The ADE7757 Supplies Average Real Power on the Frequency Outputs F1 and F2
- The High Frequency Output CF Is Intended for Calibration and Supplies Instantaneous Real Power
- Direct Drive for Electromechanical Counters and Two Phase Stepper Motors (F1 and F2)
- Proprietary ADCs and DSP Provide High Accuracy over Large Variations in Environmental Conditions and Time

ADE7757 Energy Metering IC with Integrated Oscillator

- On-Chip Power Supply Monitoring
- On-Chip Creep Protection (No Load Threshold)
- On-Chip Reference 2.5 V 8 % (30 ppm Typical) with External Overdrive Capability
- Single 5 V Supply, Low Power
- Low Cost CMOS Process
- AC Input only ago clock source
- Pin Reduction Version of the ADE7755
- With Clock Oscillator Enhansement

Energy Metering Products Selection Guide

		Analog F	ront End an	d Fixed Fund	ction ICs		
	Applications	Analog Calibration Analog Cal + Anti-tamper		Analog Cal + Internal Oscillator	Digital Calibration	Digital Cal + di/dt Integrator	Digital Cal + Power Quality
3-Phase	Programmable processor-based meter						ADE7754
3-Pł	Single Chip with Stepper Counter Display	ADE7752					
1-Phase	Programmable processor-based meter				ADE7756 ADE7759	ADE7759	ADE7753
-	Single Chip with Stepper Counter Display	ADE7755	ADE7751	ADE7757	ADE7735		

Products available today

New Products sampling or available in 2002

www.analog.com

2-153

www.analog.com

SECTION 3 Digital-to-Analog Converters

High-Speed DACs
General-Purpose DACs
Digital Potentiometers

High-Speed DACs

www.analog.com

TxDAC® Family

www.analog.com

TxDAC® Family Key Attributes

- Industry-Standard Pinout
 - 165/125/50 MSPS families
 - Pin-compatible 8-Bit to 14-Bit
- Optimized for Communications Applications
 - TxDAC ("Transmit DAC") registered trademark
- Superior Dynamic Performance: Up to 85 dBc SFDR
- Single 3 V/ 5 V Operation
- Low Power: <135 mW with 3.3 V Supply (AD974X)
 - Power-down mode: <15 mW (AD974X)</p>
- Small 28-Lead SOIC/TSSOP Packaging

The "Transmit DAC" Family at a Glance...

Product	Bits	Update Rate	Power Supply	Power	Comment	
		(MSPS)	(V) STATED	(mW)		
AD 9708	8	125	+3 to +5	175	1st Generation	
AD 9760	10	125	+3 to +5	175	1st Generation	
AD 9762	12	125	+3 to +5	175	1st Generation	
AD 9764	14	125	+3 to +5	190	1st Generation	
AD 9750	10	125	+5	185	2nd Generation	
AD 9752	12	125	A +5	185	2nd Generation	
AD 9754	14	125	+5	185	2nd Generation	
AD 9740	10	165	+3.3	135	Newest! 3rd Generation	
AD 9742	12	165	+3.3	135	Newest! 3rd Generation	
AD 9744	14	165	+3.3	135	Newest! 3rd Generation	

www.analog.com

AD9740/42/44 10-/12-/14-Bit 165 MSPS TxDAC DAC

ANALOGDEVICES

AD9740/42/44 10-/12-/14-Bit 165 MSPS TxDAC DAC

- SFDR Up to 40 MHz:
 - 67 dBc (AD9740)
 - 70 dBc (AD9742)
- 73 dBc (AD9744)
 - Single-Ended Clock Input
 - 3 V-Compatible CMOS Inputs
 - Two's Complement or Straight Binary Format
 - Single 3.3 V Supply
 - 135 mW Power Dissipation
 - 28-Lead SOIC or TSSOP Packages
 - Coming Soon: 32-Lead Chip-Scale Package!

TxDAC Family in 32-Lead Chip-Scale Package (LFCSP)

- SOIC 5 mW Power Dissipation
 - 192.77 mm² / 2000)
- L220b a Complement or Straig
 - 63.7 mm² beaple civios jubra
 - 67% Smaller than SOIC
- FLCSb73 dBc (AD9744)
 - 5.00 mm x 5.00 mm = 25 mm²
 - 60% Smaller than TSSOP!
 - 87% Smaller than SOIC!!

www.analog.com

In the above example, Four = 0.29 3 F.

Interpolating D/A Converters High-Speed

C Images

▼ ANALOG DEVICES

www.analog.com

The output of a reconstruction DAC contains "images" (similar to "aliasing" in an ADC ... remember Nyquist Theory?) that are multiples of the clock or sampling frequency ± the DAC output, F_{OUT}.

In the above example, $F_{OUT} = 0.29 \ 3 \ F_{s}$

DAC Images (continued)

As the DAC output (F_{OUT}) approaches Nyquist frequency, the images come closer together, making it extremely difficult to filter the image from the signal.

In the above example, $F_{OUT} = 0.45 \ 3 \ F_{s}$

- Maximum Output Frequency of Standard DAC is typically f_{CLOCK} /2 (Nyquist Rate).
- In an Interpolating D/A Converter, Digital Interpolation Filters and a PLL Clock Multiplier are Used to Multiply the Input Data Rate to the DAC by a Factor of K Times the Clock Rate. This Produces an Image at K Times f_{SIGNAL}, Smoothing the Sine Function and Simplifying the Filter Requirements.

3-12

Interpolating DAC

Increasing the DAC Throughput Rate by "K" Using a PLL
 (Phase Locked Loop) and a Digital Interpolation Filter

AD9773/75/77 12-/14-/16-Bit 160 MSPS 2x/4x/8x Interpolating Dual TxDAC+ DAC

AD9773/75/77 12-/14-/16-Bit 160 MSPS 2x/4x/8x Interpolating Dual TxDAC+ DAC

- Digital Complex Modulation Capability
 - F_s/8, F_s/4, F_s/2
 - Enables single sideband "Direct to RF" architectures
- 160 MSPS Input Data Rate, 400 MSPS DAC Update Rate
- Selectable Interpolation Rates (2X, 4X, 8X)
- Programmable Channel Gain and Offset Adjustment
- Direct IF Transmission Mode for 70 MHz + IFs
- Internal PLL Clock Multiplier
- Selectable Internal Clock Divider
- Versatile Clock Input
 - Differential/single-ended
 - Sine wave or CMOS/LVPECL-compatible

AD9773/75/77 12-/14-/16-Bit 165/400 MSPS 2x/4x/8x Interpolating Dual TxDAC+ DAC

- Excellent AC Performance
 - IMD: 80 dB @ 2 MHz-30 MHz
 - WCDMA ACPR: 71 dB @ IF = 71 MHz
- Fully Compatible SPI Port
- Versatile Data Interfaces
 - Two's complement/straight binary data coding
 - Dual-port or single-port interleaved data
- Single 3.3 V Supply
- 1.2 W Typical Power Dissipation
- 80-Lead TQFP Package

AD9782/84/86 12-/14-/16-Bit 160 MSPS TxDAC+® with 2x/4x/8x Interpolation and Signal Processing

www.analog.com

PRELIMINARY DATA

AD9782/84/86 12-/14-/16-Bit 160 MSPS TxDAC+® with 2x/4x/8x Interpolation and Signal Processing

- 12-/14-/16-Bit Resolution
- 160 MSPS Input Data Rate 400 MSPS DAC Update Rate
 - Selectable 2x /4x /8x Interpolating Filters
 - Selectable f_{DAC}/2, f_{DAC}/4, f_{DAC}/8 Modulation Modes
 - Single or Dual Channel Signal Processing
 - Selectable Image Rejection Hilbert Transform
 - Flexible Calibration Engine
 - Direct IF Transmission Features
 - SFDR 90 dBc @10 MHz
 - W-CDMA ACLR = 75 dB
 - DNL < ±1 LSBs

AD9782/84/86 12-/14-/16-Bit 160 MSPS TxDAC+® with 2x/4x/8x Interpolation and Signal Processing

- Power Dissipation ~ 1 W
- 3.3 V Analog, 2.5 V Digital Supply
- 3.3 V Compatible Digital Interface
- On-Chip 1.2 V Reference
- Serial Control Interface
- Versatile Clock and Data Interface
- 80-Lead LQFP

ATAO YSAMMILLESS

General-Purpose DACs

3.3 V Compatible Digital Interface

Owen Prophance

CONTROP SECONDS

www.analog.com

N ANALOG DEVICES

3-20

AD53xx Family MicroPower DAC

Features of the AD53xx Family Include...

- Over 30 models from which to choose
- 8-, 10-, or 12-bit resolution
- Single, dual, and quad versions
- Versatile 3-wire, high-speed serial interface:
- 30 MHz clock rates, <u>Schmitt-Triggered</u>
 - SPI, QSPI, and MICROWIRE-compatible
- 2-wire I2C interface: 400 kHz
- Parallel interface

AD53xx Family Features (continued)

- True Rail-to-Rail Output Performance:
 - 0 V to V_{REF} or 0 V to 2 X V_{REF}
- Low Power, Single 3 V/5 V Operation
- Power-On Reset to Zero
- Software-Selectable Output Loads During Power-Down
- –40° C to +105° C Temperature Range
- Pin-to-Pin Compatibility (Serial-Serial or Parallel-Parallel)

AD53xx String DAC Technology

The AD5300 family is based on an innovative DAC architecture that has been patented by ADI. This new architecture, combined with leading-edge design, allows low-power, low-voltage DAC functions to be implemented in very small packages.

ANALOGDEVICES

www.analog.com

U.S. Patent: 5,969,657

AD5308/18/28 2.5 V to 5.5 V 8-/10-/12-Bit Voltage Output Octal DACs

www.analog.com

PRELIMINARY DATA

AD5308/18/28 2.5 V to 5.5 V 8-/10-/12-Bit Voltage Output Octal DACs

- AD5308: Eight Buffered 8-Bit DACs in 16-Lead TSSOP
- AD5318: Eight Buffered 10-Bit DACs in 16-Lead TSSOP
- AD5328: Eight Buffered 12-Bit DACs in 16-Lead TSSOP
- Guaranteed Monotonic By Design over All Codes
- Buffered/ Unbuffered/ V_{DD} Reference Input Options
- Output Range: 0 − V_{REF} or 0 − 2 V_{REF}
- Power-On-Reset to Zero Volts
- On-Chip Rail-to-Rail Output Buffer Amplifiers
- Temperature Range –40° C to +105° C

AD5308/18/28 2.5 V to 5.5 V 8-/10-/12-Bit Voltage Output Octal DACs

- Low Power Operation: 1.4 mA (Max) @ 3 V
- 2.5 V to 5.5 V Power Supply
- Power-Down to 120 nA @ 3 V, 400 nA @ 5 V
- Double-Buffered Input Logic
- Programmability
- Individual-Channel Powerdown
- Simultaneous Update of Outputs (LDAC Pin)
- Low Power, SPI™, QSPI™, MICROWIRE™, and DSP-Compatible 3-Wire Serial Interface

www.analog.com

PRELIMINARY DATA

AD5346/47/48 Octal 8-/10-/12-Bit 2.5 V - 5.5 V Parallel Interface, Voltage Output DACs

AD5346/47/48 Octal 8-/10-/12-Bit 2.5 V - 5.5 V, Parallel Interface, Voltage Output DACs

- Low Power Operation: 1.4 mA (max) @ 3 V
- Power-Down to 100 nA @ 3 V, 240 nA @ 5 V
- Guaranteed Monotonic by Design Over All Codes
- Rail-to-Rail Output Range: 0 VREF or 0 2xVREF
- Power-On Reset to Zero Volts
- Simultaneous Update of DAC Outputs via LDAC Pin
- Asynchronous CLR Facility
- Readback Capability
- Buffered/Unbuffered Reference Inputs
- 20 ns write time
- 38-lead TSSOP/6 mm x 6 mm 40-lead CSP Packaging
- Temperature Range: –40° C to +105° C

AD53xx Selector

AD54xx New Product Family

Single 8/10/12bit 2.5-5.5Vdd +/-10Vref DAC

with Serial & Parallel interface

in 8-lead uSOIC & 16-lead TSSOP

AD54xx Current Output DACs

- FAST 10MHz Multiplying Bandwidth
- ■25MHz Update rate 12205 50
- ■Pin & Software compatible 8-/10-/12-Bit
- ■SMALL 8-lead uSOIC, 16-lead TSSOP
- **SERIAL & PARALLEL**
- PINNED-OUT Internal Nodes/ Resistors
- Low Voltage / Single Supply with ±10 V Vref

AD54xx Current Ouput DAC Selector

Generic	# bits	Interface	package, leads	comment
AD5426	8	Serial	MSOP, 10	
AD5425	8	Serial	MSOP, 10	fast 8 bit load
AD5432	10	Serial	MSOP, 10	
AD5443	12	Serial	MSOP, 10	
AD5424	8	Parallel	TSSOP, 16	
AD5433	10	Parallel	TSSOP, 20	
AD5445	12	Parallel	TSSOP, 20	

AD5424/33/45 High Bandwidth Parallel Interface 8-/10-/12-Bit CMOS Multiplying DACs

AD5424/33/45 High Bandwidth Parallel Interface 8-/10-/12-Bit CMOS Multiplying DACs

- +2.5 V to +5.5 V Supply Operation
- Fast Parallel Interface
- 10 MHz Multiplying Bandwidth
- ±10 V Reference Input
- Guaranteed Monotonic
- Four Quadrant Multiplying, Current Output DACs
- Power On Reset
- Daisy Chaining Function
- Readback Function
- 5 μA typical Supply Current
- 20-Lead TSSOP and Chip Scale (4 x 4 mm) Packages

AD5426/32/43 High Bandwidth 8-/10-/12-Bit Serial Interface CMOS Multiplying DACs

AD5426/32/43 High Bandwidth 8-/10-/12-Bit Serial Interface CMOS Multiplying DACs

- +2.5 V to +5.5 V Supply Operation
- 50 MHz Serial Interface
- 10 MHz Multiplying Bandwidth
- ±10 V Reference Input
- 10-Lead µSOIC Package
- Guaranteed Monotonic
- Four Quadrant Multiplying Current Output DACs
- Power On Reset
- Daisy Chain Mode
- Readback Function
- 5 μA typical Supply Current

AD5425 High Bandwidth, CMOS 8-Bit Serial Interface Multiplying DAC

3 - 37

AD5425 High Bandwidth, CMOS 8-Bit Serial Interface Multiplying DAC

- +2.5 V to +5.5 V Supply Operation
- 50 MHz Serial Interface
- 10 MHz Multiplying Bandwidth
- ±10 V Reference Input
- Guaranteed Monotonic
- Four Quadrant Multiplying Current Output DAC
- Power On Reset
- Daisy Chain Mode
- Readback Function
- 5 μA typical Supply Current
- Automotive Temperature Range: –40° C to +125° C
- 10-Lead µSOIC Package

AD5582/83 Quad, Parallel-Input, Voltage Output, 12-/10-Bit DAC

AD5582/83 Quad, Parallel-Input, Voltage Output, 12-/10-Bit DAC

- 12-Bit Linearity and Monotonic –40° C to +125° C
- Single +5 V to +12 V or Dual ±5 V Supply
- Unipolar or Bipolar Operation
- Double Buffered Registers Enable Simultaneous Multi-Channels Update
- Four Separate Rail-to Rail Reference Inputs
- Parallel Interface
- Data Readback Capability
- 5 μs Settling Time

AD5399 Dual 12-Bit DAC Bipolar Output

AD5399 Dual 12-Bit DAC Bipolar Output

- Bipolar Output Referenced to V_{BZ}
 - V_{BZ} is used as the system ground reference
 - Output swing 4 x V_{p-p} re: V_{BZ}
- < ±1 LSB DNL</p>
- Improved Accuracy @ Zero-Scale
- Fast 1 µs Settling Time
- Power-On Reset
- 3-Wire Serial Data Input with 28 MHz Data Rate
- +4.5 V to +5.5 V Single Supply Operation
- Internal REF
 Internal REF
 Internal Ref

AD5516 16-Channel 12-Bit Voltage Output DAC

www.analog.com

PRELIMINARY DATA

AD5516 16-Channel 12-Bit Voltage Output DAC

- Guaranteed Monotonic
- Output Voltage Range
 - ±2.5 V (AD5516-1)
 - ±5 V (AD5516-2)
 - ±10 V (AD5516-3)
- Output Impedance < 0.5 Ω
- 20 MHz 3-Wire Serial Input (SPI/MICROWIRE/DSP-Compatiable)
- Daisy Chain Option
- Asynchronous Reset
- Separate Analog and Digital Supplies

AD5530/31 Serial Input Voltage Output, 12-/14-Bit DACs

AD5530/31 Serial Input Voltage Output, 12-/14-Bit DACs

- Pin Compatible 12- and 14-Bit DACs
- Serial Input, Voltage Output
- Maximum Output Voltage Range of ±10V
- Data Readback
- 3 Wire Serial Interface
- Clear Function to a User Defined Voltage
- Power Down Function
- Serial Data Output for Daisy Chaining
- 16 Lead TSSOP Packages

AD5532HS 32-Channel 14-Bit DAC

AD5532HS 32-Channel 14-Bit DAC

- Guaranteed Monotonic
- Selectable Output Voltage
 - 0 V to 5 V or ±2.5 V
 - Z_{OUT}: 0.5Ω
- Asynchronous Reset Function
- 30 MHz DSP-/ Microcontroller-Compatible Serial Interface
- 1.1 MHz Channel Update Rate
- Separate Analog and Digital Supplies
- Asynchronous RESET Facility
- Temperature Range –40° C to +85° C
- High Integration: 32-Channel DAC in 12 x 12 mm LFBGA

AD5532B 32-Channel, 14-Bit DAC with Precision Infinite Sample and Hold Mode

AD5532B 32-Channel, 14-Bit DAC with Precision Infinite Sample and Hold Mode

- Improved Version of the AD5532
- High Integration: 32-Channel DAC in 12 x 12 mm LFBGA
- Guaranteed Monotonic to 14 Bits
- Infinite Sample-and-Hold Capability to ±0.018% Accuracy
- Improved offset & gain specs vsd AD5532
- Addition of TUE spec of ±12 mV (not spec'd on AD5532)
- Adjustable Voltage Output Range
- Readback Capability
- DSP-/ Microcontroller-Compatible Serial Interface
- Output Impedance: 0.5 Ω
- Output Voltage Span 10 V
- Temperature Range –40° C to +85° C

High Density DACs (Bipolar Output)

12-Bit, 13-Bit, and 14-Bit Resolution 8-, 16-, 32-, 40-Channel

Part	Res	Channel	Ontbrit 16 OR 14	Type
AD7839 AD7841 AD5516	13 14 12	8/Par 8/Par 16/Ser	V _{OUT} (±10 V) V _{OUT} (±10 V) V _{OUT} (±2.5/5/10 V)	R-2R trimmed R-2R trimmed String+Gain(I-SHA) Front-end DAC on-chip
AD5532 AD5533 AD5532HS	14 14 5 14		V _{оит} (10 V & 20 V span) V _{оит} (10 V & 20 V Span) V _{оит} (±2.5 V, +5 V)	String+GainDAC or Inf-SHA Infinite SHA only Simplified AD5532, DAC only, 30Hz t'put
AD5532B	14	32/Ser/Par	V _{OUT}	Better offsets, TUE,gain specs
AD5379 AD5380	13 14		V _{оит} (±10 V max) V _{оит} (0–5 V)	Calibrated string DAC Calibrated string DAC

AD5543/53 Current-Output Serial-Input, 16-/14-Bit DAC

AD5543/53 Current-Output Serial-Input, 16-/14-Bit DAC

- 16-Bit Resolution: AD5543
- 14-Bit Resolution: AD5553
- ±1 LSB DNL
- ±1, ±2 or ±4 LSB INL (Depending on Grade)
- 2 mA Full Scale Current (±20 %, with V REF = 10 V)
- 0.5 µs Settling Time
- 4 Quadrant Multiplying Reference Input
- 3-Wire Interface
- Ultra Compact µSOIC-8 Package

AD5545/55 Dual, Current-Output Serial-Input 16-/14-Bit DAC

www.analog.com

PRELIMINARY DATA

AD5545/55 Dual, Current-Output Serial-Input, 16-/14-Bit DAC

- 16-bit Resolution AD5545
- 14-bit Resolution AD5555
- ±2 LSB INL AD5545
- ±1, ±1.5 LSB DNL AD5545
- 2 mA Full Scale Current (±20 %, with V_{REF} = 10 V)
- 0.5 µs Settling Time
- 2 Quadrant Multiplying Reference Input (4 MHz BW)
- 3-Wire Interface
- Compact TSSOP-16 Package

AD5570 12 V/ 15 V, 16-Bit DAC Serial Input, Voltage Output,

AD5570 12 V/ 15 V, 16-Bit DAC Serial Input, Voltage Output,

- Full 16-Bit Performance
- 1 LSB Max INL and DNL
- Maximum Output Voltage Range of ±10 V
- Settling Time of 10 µs max at 16 bits
- Clear Function to a User Defined Voltage
- Asynchronous Update of Outputs (LDAC pin)
- Power On Reset to 0 Volts
- Serial Data Output for Daisy Chaining
- Data Readback Facility
- Temperature Range: -40° C to +125° C

Digital Potentiometers

Digital Potentiometer Roadmap

AD5262 Dual 8-Bit Serial RDAC

AD5260/62 Single/Dual 8-Bit Serial RDAC

- 20 kΩ, 50 kΩ, 200 kΩ Resistances
- 50 ppm/°C Temperature Coefficient
- Power-On Reset to Midscale
- 5 V to 12 V Single Supply or ±5 V Dual Supply
- 0.6 mW Dissipation
- 3-Wire SPI Interface
- Industrial Temperature Range
 - -40° C to +125° C

AD5282 Dual 8-Bit I2C RDAC

AD5280/82 Single/Dual 8-Bit I2C RDAC

- 20 kΩ, 50 kΩ, 200 kΩ Resistances
- 30 ppm/° C (Typ) Temperature Coefficient
- Power-On Reset to Midscale
- 5 V to 12 V Single Supply or ±5 V Dual Supply
- 0.6 mW Dissipation
- I²C Interface
- Industrial Temperature Range
 - -40° C to +125° C

AD5263 Quad +15V 256-Step Digital Pot with Selectable Digital Interface

AD5263 Quad +15V 256-Step Digital Pot with Selectable Digital Interface

- 256 Position
- 4-Channel (Independently Programmable)
- 20 kΩ, 50 kΩ, 200 kΩ End to End Resistance
- Low Temperature Coefficient 50 ppm/°C
- Digital Interface Selectable (3-Wire SPI Compatible or 2-Wire I²C Compatible Serial Data Input)
- Operating temperature range: -40° C to 125° C
- +5 V to +15 V Single-Supply; ±5.5 V Dual-Supply Operation

AD5235 Dual 10-Bit SPI Digital Potentiometer

AD5235 Dual 10-Bit SPI Digital Potentiometer

- 25 kΩ and 250 kΩ Resistance
- 50 ppm/°C Temperature Coefficient
- Nonvolatile Memory Preset
- 30 Bytes of General-Purpose Nonvolatile Memory
- SPI-Compatible Serial Interface with Readback
- Increment/Decrement Push-Button Commands
- 0.10 mW Dissipation

AD5231 10-Bit Digital Potentiometer with Nonvolatile Memory

AD5232 8-Bit Dual Digital Potentiometerwith Nonvolatile Memory

AD5233 Quad 6-Bit Digital Potentiometer with Nonvolatile Memory

AD5231/32/33 Single/Dual/Quad Digital Pot with Nonvolatile Memory

- AD5231 Single 1024-Position Resolution
- AD5232 Dual 256-Position Resolution
- AD5233 Quad 64-Position Resolution
- 10 k Ω , 50 k Ω , and 100 k Ω Terminal Resistance
- 500 ppm/°C Temperature Coefficient
- Linear or Log Taper

AD5231/32/33 Single/Dual/Quad Digital Pot with Nonvolatile Memory

- Nonvolatile Memory Preset
- 28 Bytes of General-Purpose Nonvolatile Memory
- SPI-Compatible Serial Interface with Readback
- Increment/Decrement Commands
- 3 V to 5 V Single Supply or ±2.5 V Dual Supply
- 0.10 mW Dissipation

AD5255 Dual 10-Bit I²C RDAC with Nonvolatile Memory

AD5255 Dual 10-Bit I2C RDAC with Nonvolatile Memory

- 10 kΩ, 50 kΩ Terminal Resistance
- Linear or Log Taper
- Nonvolatile Memory Preset
- 14 Bytes of General-Purpose Nonvolatile Memory
- I²C Interface
- Increment/Decrement Push-Button Commands
- 3 V to 5 V Single Supply or ±2.5 V Dual Supply
- 0.05 mW Dissipation

Codecs and Analog Front Ends

SECTION 4

▼ ANALOG DEVICES

AD9875/76 Mixed-Signal Front End (MxFE™)

AD9875/76 Mixed-Signal Front End (MxFE™)

- AD9875: 10-Bit, 50 MSPS ADC and 128 MSPS DAC
- AD9876: 12-Bit, 50 MSPS ADC and 128 MSPS DAC
- 64/32 MSPS Input Word Rate
- 2x/4x Interpolation LP or BP Transmit Filter
- 26 MHz Transmit Bandwidth
- 4TH Order 12 MHz or 29 MHz Low-Pass Filter (with Bypass)
- -6 dB to +36 dB PGA on Receive Channel
- Internal 34 Clock Multiplier PLL
- Power-Down Mode

AD9877 Mixed-Signal Front End (MxFE™)

AD9877 Mixed-Signal Front End (MxFE™)

- Low Cost 3.3 V-CMOS MxFE for Set-Top Box and Cable Modem Applications
- 232 MHz Quadrature Digital Upconverter
- 12-Bit, 33 MSPS Direct IF ADC
- Dual 8-Bit, 33 MSPS Direct IF ADCs
- 12-Bit Direct IF TxDAC
- Dual 12-Bit Sigma-Delta Auxiliary DACs
- Up to 70 MHz Carrier Frequency DDS
- Selectable Interpolation LPF
- Single Tone Frequency Synthesis
- Analog Tx Output Level Adjust

AD9860/62 MxFE™ for Broadband Communications

AD9860/62 MxFE™ for Broadband Communications (3) (835) (835) (835)

- A Versatile Mixed-Signal Front End Processor with Dual Receive and Dual Transmit Channels
- Dual 10-/12-Bit, 64 MSPS Sampling A/D Converters
- PGAs, Low-Pass Decimation Filters, and Digital Hilbert Block
- Dual 12-/14-Bit, 128 MSPS D/A Converters
- Programmable Full-Scale Output Current, Interpolation Filters,
 and Digital Hilbert Block
- Bypassable Digital Upconverters, Digital I/Q or Real Signal
- Internal Clock Distribution Block Including a Phase-locked
 Loop and Timing Generation Circuitry
- Programmable Output Clocks
- SPI Compliant Port, Two Programmable Sigma-Delta Outputs,
 Two Auxiliary DAC Outputs, Two Auxiliary ADC Inputs

Cable Modem MxFE™ Matrix IXIII any ADC Inputs

Function and Timing	AD9873	AD9877	Next Gen	Next Gen
DDS (Bits)	26	28	28 28	26
Interpolation LPF	x12/x16	x12/x16	x12/x16	x16
Tx Sinc Function	Block	N	Υ	Υ
Tx Gain Adjustment	I-ScaN Ou	put Aurer	t, IntArpola	tion Alitera
IF ADC 1	12b	12b/US	12b/US	12b/US
IF ADC 2	10b	None	Dual 10b	10b
IF ADC 3 0-\45-B4 9	//28b	8b / [None	6b
Video Clamp	ran Anii C	hanris	Υ	Υ
Profiles A MANAGE	Signa Froi	t End Prod	asso4 with	Dua 5
Auxiliary DACs	2	2	2	2
Cable Driver Interface	8321/3	8321/2/3/7	8321/2/3/7	8321/2/3/7

SPI Compliant Port, Two Programmable Sigma-Delta Outputs,

ADSP Mixed-Signal Front End Roadmap

AD1835 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1835 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports up to 96 kHz Sample Rates
- 192 kHz Sample Rate Available on One DAC
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data-Directed Scrambling DACs Least Sensitive to Jitter
- Differential Output for Optimum Performance
- ADCs: -95 dB THD + N, 105 dB SNR, and Dynamic Range
- DACs: -95 dB THD + N, 108 dB SNR, and Dynamic Range

AD1835 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-Chip Volume Controls Per Channel with 1024-Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing Supports 256x F_s, 512x F_s, and 768x F_s Master Mode Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using Single SHARC SPORT
- 52-Lead MQFP Plastic Package

AD1837 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1837 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports up to 96 kHz Sample Rates
- 192 kHz Sample Rate Available on One DAC
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data-Directed Scrambling DACs Least Sensitive to Jitter
- Single-Ended Outputs
- ADCs: -95 dB THD + N, 105 dB SNR, and Dynamic Range
- DACs: –92 dB THD + N, 108 dB SNR, and Dynamic Range

AD1837 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-Chip Volume Controls Per Channel with 1024-Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing
- Supports 256x F_s, 512x F_s, and 768x F_s Master Mode Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using Single SHARC SPORT
- 52-Lead MQFP Plastic Package

AD1838 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1838 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports 96 kHz Sample Rates
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data-Directed Scrambling DACs Least Sensitive to Jitter
- Differential Output for Optimum Performance
- ADCs: -95 dB THD + N, 105 dB SNR, and Dynamic Range
- DACs: -95 dB THD + N, 108 dB SNR, and Dynamic Range

AD1838 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec 108 98 SNK and Dynamic Range

- On-Chip Volume Controls Per Channel with 1024-Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing
- Supports 256x F_s, 512x F_s and 768x F_s, Master Mode Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified,
 I²S-Compatible and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using a Single SHARC SPORT
- 52-Lead MQFP Plastic Package

AD1839 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1839 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports 96 kHz Sample Rates
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data-Directed Scrambling DACs Least Sensitive to Jitter
- Differential ADC Inputs
- Single-Ended DAC Outputs
- ADCs: –95 dB THD + N, 105 dB SNR, and Dynamic Range
- DACs: –92 dB THD + N, 105 dB SNR, and Dynamic Range

AD1839 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-Chip Volume Controls Per Channel with 1024-Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
 - Digital De-Emphasis Processing
 - Supports 256x F_s, 512x F_s, and 768x F_s Master Mode Clocks
 - Power-Down Mode Plus Soft Power-Down Mode
 - Flexible Serial Data Port with Right-Justified, Left-Justified,
 I²S-Compatible and DSP Serial Port Modes
 - TDM Interface Mode Supports Eight In/Eight Out Using a Single SHARC SPORT
 - 52-Lead MQFP Plastic Package

AD74322 Low-Cost Audio Analog Front End

AD74322 Low-Cost Audio Analog Front End

- 2.5 V Stereo Audio Codec with 3.3 V Tolerant Digital Interface
- Supports 96 kHz Sample Rates

- Supports 16-/18-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data-Directed Scrambling DAC Least Sensitive to Jitter
- Differential Output for Optimum Performance
- Programmable Automatic Level Control on Input Channel
- Performance (20 Hz to 20 kHz): 90 dB ADC and DAC SNR
- Digitally Programmable Input/Output Gain On-Chip
 Volume Control

AD74322 Low-Cost Audio Analog Front End

- Software Controllable Clickless Mute
- Digital De-Emphasis Processing
- Supports 256x F_s, 512x F_s, and 768x F_s Master Mode Clocks
- Master Clock Prescaler for Use with DSP Master Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible and DSP Serial Port Modes
- Supports Packed Data Mode ("TDM") for Cascading Devices
- Ou-Chib Beterence odec with 3.3 V Tolerant Digital Interface

www.analog.com

20-Lead SOIC and TSSOP Packages

AD74111 Low Cost, Low Power Audio Analog Front End

AD74111 Low Cost, Low Power Audio Analog Front End

- 2.5V Stereo Audio Codec with 3.3 V Tolerant Digital Interface
- Supports 96 kHz Sample Rates
- Supports 16/20/24-Bit Word Lengths
- Multibit Sigma Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DACs Least Sensitive to Jitter
- Performance (20 Hz to 20 kHz)
 - 80 dB ADC SNR
 - 80 dB DAC SNR
- Digitally Programmable Input/Output Gain
- On-chip Volume Control for Output Channel

AD74111 Low Cost, Low Power Audio Analog Front End

- Software Controllable Clickless Mute
- Master Clock Pre-Scaler for use with DSP master clocks
- On-Chip Reference
- 16-Lead TSSOP Package options.
- Applications:
 - Digital Video Camcorders (DVC)
 - Portable Audio Devices (Dictaphones etc)
 - AudioProcessing
 - Voice Processing
 - Conference Phones
 - General Purpose Analog I/O

www.analog.com

▼ ANALOG DEVICES

SECTION 5 CONVERTER SUPPORT

SWITCHES

MULTIPLEXERS

REFERENCES

SWITCHES

ADG601/02 2.2 Ω CMOS ±5 V/+5 V SPST Switches

- Lowest Resistance ±5 V Switches (3 Ω Max)
- <0.6 Ω ON-Resistance Flatness</p>
- Dual ±2.7 V to ±5.5 V or Single +2.7 V to +5.5 V Supplies
- Rail-to-Rail Input Signal Range
- 40 ns Switching Times
- Tiny 6-Lead SOT-23 and 8-Lead µSOIC Packages
- Low Power Consumption
- Ideal Instrumentation, Medical, and Communication Applications

ADG601 In	ADG602 In	Switch Condition
0	0 =1c= = = = = = =	OFF
10 10	0	ON

ADG604 1.5 pC Charge Injection, Low Leakage CMOS 4-Channel Multiplexer

- ±1.5 pC Charge Injection Across Voltage Range
- ±2.7 V to ±5.5 V Dual Supply and communication
- +2.7 V to +5.5 V Single Supply
- 100 pA max Leakage Current @ 25° C
- 85 Ω Typ ON Resistance
- Fully Specified at 125° C
- Rail-to-Rail Operation | Public 4574 A 10 49 9
- Fast Switching Times
- Typical Power Consumption (<0.1 μW)
- Ideal for Automotive and Industrial Applications
- 14-Lead TSSOP Package

ADG611/12/13 1 pC Charge Injection, 100 pA Leakage, Quad SPST Switches

- ±1.5 pC Charge Injection Across the Entire Voltage Range
- ±2.7 V to ±5.5 V Dual Supply
- +2.7 V to +5.5 V Single Supply
- Extended Temperature Range –40° C to +125° C
- 100 pA max. Leakage Current @ 25° C
- 85 Ω ON Resistance
- Rail-to-Rail Switching Operation
- Fast Switching Times
- 16-Lead TSSOP Packages
- Typical Power Consumption (<0.1 μW)
- Ideal for Automotive and Instrumentation

ADG619/20 CMOS ± 5 V/ ± 5 V 4 Ω Single SPDT Switches/ 2:1 MUX

- +2.7 V to +5.5 V Single Supply
- ±2.7 V to ±5.5 V Dual Supply
- 6 Ω (Max) ON Resistance
- 0.8 Ω (Max) ON-Resistance Flatness
- Rail-to-Rail Operation
- 8-Lead SOT-23 Package, 8-Lead µSOIC Package
- Fast Switching Times
- Typical Power Consumption (<0.1 μW)
- Ideal for Industrial, Medical, and Communications Apps
- ADG619 Break before Make
- ADG620 Make before Break

ADG621/22/23 CMOS ± 5 V/ 5 V 4 Ω Dual SPST Switches

- +2.7 V to +5.5 V Single Supply
- ±2.7 V to ±5.5 V Dual Supply
- 5.5 Ω (Max) ON Resistance
- 0.9 Ω (Max) ON-Resistance Flatness
- Rail-to-Rail Operation
- 10-Lead µSOIC Package
- Fast Switching Times
- Typical Power Consumption (<0.01 μW)
- ADG621 NO, ADG622 NC
- ADG623 NO/NC Configuration

ADG636 1 pC Charge Injection, ±5 V Low Leakage CMOS Dual SPDT Switch

- ±1 pC Charge Injection Across the Entire Voltage Range
- ±2.7 V to ±5.5 V Dual Supply
- +2.7 V to +5.5 V Single Supply
- 100 pA max Leakage Current @ 25° C
- 85 Ω Typ ON Resistance
- Fully Specified at 125° C
- Rail-to-Rail Operation
- Fast Switching Times
- Typical Power Consumption (<0.1 μW)
- Ideal for Automotive and Instrumentation Apps
- 14-Lead TSSOP Package

ADG731/25 16-/32-Channel, Serially Controlled 2.5 Ω Analog Mux

- 3-Wire SPI Serial Interface
- 1.8 V to 5.5 V Single Supply
- ±2.5 V Dual Supply Operation
- 2.5 Ω ON Resistance
- 0.5 Ω ON-Resistance Flatness
- Rail-to-Rail Operation
- Power-On Reset
- Single 32- to 1-Channel Multiplexer (ADG731)
- Dual/Differential 16- to 1-Channel Multiplexer (ADG725)
- Available in 48-Lead CSP and TQFP
- Ideal for Optical Networking

ADG732/26 32-Channel Low Voltage Analog Multiplexer

- +3 V, +5 V Supplies
- 2.5 Ω ON Resistance
- Low Ron Flatness
- Rail-to-Rail Operation
- Fast Switching Times
- Enable Input
- Low Power Consumption
- Available in 48-Lead CSP and TQFP
- Dual (Differential) 16- to 1-Channel Multiplexer (ADG726)
- Single 32- to 1-Channel Multiplexer (ADG732)
- Ideal for Optical Networking

ADG779 CMOS Low Voltage 2.5 Ω SPDT Switch/ 2:1 Mux

- +1.8 V to +5.5 V Single Supply
- 5 Ω (Max) ON Resistance
- 0.75 Ω (Typ) ON-Resistance Flatness
- -3 dB Bandwidth > 200 MHz
- Rail-to-Rail Operation
- Tiny 6-Lead SC-70 Package
- Fast Switching Times
- $t_{ON} = 20 \text{ ns}, t_{OFF} = 6 \text{ ns}$
- Typical Power Consumption (<0.01 μW)
- Low Cost Switch for Communications Applications

ADG78x Tiny CSP Switch/MUX Family

- R_{ON} 2.5 Ω (typ)
- +2.7 V to +5.5 V Operation
 (Some Dual ±2.5 V Operation)
- Quad SPST: ADG781/ADG782/ADG783
- Triple SPDT: ADG786
- Quad SPDT: ADG788
 - Independent control
- Quad SPDT: ADG784
 - Common control
- 50% Smaller than Equivalent Traditional Package

ADG786/88 CMOS, 2.5 Ω Low Voltage, Triple/Quad SPDT Switches in Chip Scale

- +1.8 V to +5.5 V Single Supply
- ±2.5 V Dual Supply
- 2.5 Ω ON Resistance
- 0.5 Ω ON-Resistance Flatness
- 100 pA Leakage Currents
- 19 ns Switching Times
- Triple SPDT: ADG786
- Quad SPDT: ADG788
- 4 mm x 4 mm Chip Scale Package
- Low Power Consumption
- ADG733/34 Equivalent in Traditional Package

ADG785/59 8-Ch/ Diff 4-Ch Multiplexers in Chip Scale Package

8-Ch/Diff 4-Channel MUX

- 1.8 V to 5.5 V single supply
- ±3V dual supply
- 3Ω on resistance
- 0.75Ω on-resistance flatness
- 100 pA leakage typical
- 14 ns switching time
- <0.01 mW power consumption</p>
- ADG758 8:1 MUX
- ADG759 Diff 4:1 MUX

ADG8xx Family — Ultralow Resistance

- Lowest ON-Resistance Switches
 - (SPST <0.5 Ω , SPDT <1.0 Ω)
- Low Voltage Single and Dual Supply
- Operating Temperature to 125° C Ideal for Automotive Applications
- Small µSOIC and SOT-23 Packages
- Entire Family Specified to 125° C
- Ultra-Low Resistance Makes ADG8xx Ideal for Low Voltage Handheld Battery-Powered Applications such as PDA etc.

CNOS SPST Switches

ADG801/02 <0.25 Ω Low Voltage CMOS SPST Switches

- 0.4 Ω Max Ron @ 5 V Supply & 125° C
- 0.08 Ω ON-Resistance Flatness
- +1.8 V to +5.5 V Single Supply
- 35 ns Switching Times
- Operates to 125° C
- 400 mA Current Carrying Capability
- Low Power Consumption
- TTL/CMOS Compatible Inputs
- Tiny 6-Lead SOT-23 and 8-Lead μSOIC Packages

ADG819/20 1 Ω SPDT Low Voltage CMOS Switch

- +1.8 V to +5.5 V Single Supply
- 0.8 Ω (Max) ON Resistance
- 0.2 Ω (Max) ON-Resistance Flatness
- Rail-to-Rail Operation
- Operates to 125° C
- Fast Switching Times
- Typical Power Consumption (<0.01 μW)
- TTL/CMOS Compatible Inputs
- ADG819 Break before Make
- ADG820 Make before Break
- Ideal for Handsets and PDAs
- 6-Lead SOT-23 Package, 8-Lead µSOIC Package

ADG821/22/23 1 Ω Dual SPST Low Voltage CMOS Switches

- +1.8 V to +5.5 V Single Supply
- 0.8 Ω (Max) ON Resistance
- 0.2 Ω (Max) ON-Resistance Flatness
- Rail-to-Rail Operation
- 8-Lead and 10-Lead µSOIC Package
- Fast Switching Times
- Operates to 125° C
- Typical Power Consumption (<0.01 μW)
- TTL/CMOS Compatible Inputs

ADG919 Wideband, 30 dB Isolation @ 1GHz, 1.65 V to 2.7 V, 2:1 Mux/SPDT CMOS Switch

- Wideband DC to 2 GHz
- High Off Isolation (30 dB @ 1 GHz)
- Low Insertion Loss:
 (0.65 dB DC to 500 MHz)
- Single 1.65 V to 2.7 V power supply
- CMOS/LVTTL Control Logic
- Tiny 6 lead SC70 Package
- Low Power Consumption (5 μA)

IN	ON SWITCH
0	RF1
1	RF2

5-20

www.analog.com

BUS SWITCHES

N ANALOG DEVICES

ADG3245 2.5 V/ 3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch

ADG3245 2.5 V/ 3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch

- 175 ps Propagation Delay through the switch
- 3.5 Ω Switch Connection between Ports
- 2.5 V/ 3.3 V Supply Operation
- Selectable Level Shifting/Translation
- Level Translation
 - 3.3 V to 2.5 V
 - 3.3 V to 1.8 V
 - 2.5 V to 1.8 V
- 20 Lead TSSOP & CSP Packages

ADG3246 2.5 V/ 3.3 V, 10 Bit, 2 Port Level Translator, Bus Switch

ADG3246 2.5 V/ 3.3 V, 10 Bit, 2 Port Level Translator, Bus Switch

- 175 ps Propagation Delay through the switch
- 3.5 Ω Switch Connection between Ports
- 2.5 V/ 3.3 V Supply Operation
- Selectable Level Shifting/Translation
- Level Translation:
 - 3.3 V to 2.5 V
 - 3.3 V to 1.8 V
 - 2.5 V to 1.8 V
- 24 Lead TSSOP and CSP Packages

ADG3247 2.5 V/ 3.3 V, 16 Bit, 2 Port Level Translator, Bus Switch

ADG3247 2.5 V/ 3.3 V, 16 Bit, 2 Port Level Translator, Bus Switch

- 175 ps Propagation Delay through the switch
- 3.5 Ω Switch Connection between Ports
- 2.5 V/3.3 V Supply Operation
- Selectable Level Shifting/Translation
- Level Translation
 - 3.3 V to 2.5 V
 - 3.3 V to 1.8 V
 - 2.5 V to 1.8 V
- 40 Lead 6 x 6 mm Chip Scale and 38 Lead TSSOP Packages

ADG3233 Low Voltage, Uni-Directional (Up/Down) Level Translation, Bypass Switch

ADG3233 Low Voltage, Uni-Directional (Up/Down) Level Translation, Bypass Switch

- Operates from 1.65 V to 3.6 V Supply Rails
- Up/Down Level Translation
- 8 lead SOT-23 and µSOIC Packages
- Bypass or Normal Operation
- LVTTL/CMOS-Compatible Inputs
- APPLICATIONS
 - JTAG Chain Bypassing
 - Daisychain Bypassing
 - Digital Switching

ADG3257 3.3 V/ 5 V, Quad 2:1 Mux/Demux Bus Switch

ADG3257 3.3 V/ 5 V, Quad 2:1 Mux/Demux Bus Switch

- 110 ps Propagation Delay through the switch
- 2.2 Ω Switches Connect Inputs to Outputs
- Single 3.3 V/ 5 V Supply Operation
- Level Translation Operation
- Ultra Low Quiescent Supply Current (1 nA Typical)
- Rapid 3 ns Switching
- Standard '3257 Type' Pinout
- 16 pin QSOP

AD8186/87 480 MHz Single Supply Triple 2:1 Multiplexers

AD8186/87 600 MHz Single Supply Triple 2:1 Multiplexers

- Fully Buffered Inputs and Outputs
- High Speed:
 - 480 MHz Bandwidth (-3dB) 2 Vp-p
 - >1400 V/µs Slew Rate G = +1/ +2
- Fast Settling time of <8 ns to 0.1%</p>
- Excellent Video Specifications (RL= 150Ω):
 - 0.01 % Differential Gain Error
 - 0.01° Differential Phase Error
- "All Hostile" Crosstalk: -80 dB @ 5 MHz
 - -50 dB @ 100 MHz
- High "OFF" Isolation of 90 dB @ 5 MHz

AD8186/87 600 MHz Single Supply Triple 2:1 Multiplexers

- Low Voltage Noise: <10nV/√Hz</p>
- Single Supply Operation (+5 V)
- Low Power: <20 mA
- Low Cost
- Fast Output Disable Feature for Connecting Multiple Outputs
- 24 Lead TSSOP package
- -40° C to +85° C Operating Range

High-Speed Buffered Multiplexer Road Map

AD8152 Xstream[™] 34 x 34, 3.2 Gb/s Digital Crosspoint Switch

AD8152 Xstream[™] 34 x 34, 3.2 Gb/s Digital Crosspoint Switch

- Low Cost
- 34 x 34, Fully Differential, Non-Blocking Array
- 3.2 Gbps per Port NRZ Data Rate
- Low Jitter
- Wide Power Supply Range: +2.5 V to +3.3 V
- Low Power: < 2 W, @ +2.5 V (Outputs Enabled)

AD8152 Xstream 34 x 34, 3.2 Gb/s Digital Crosspoint Switch

- PECL Compatible LVTTL CMOS/TTL- Level Control Inputs
 - Drives a Backplane Directly
 - Programmable Output Swing: 200 mV -1V Differential
 - Optimize Termination Impedance
 - User-Controlled Voltage at the Load Minimize Power Dissipation
- Individual Output Disable for Busing and Building Larger Arrays
- Double Row Latch
- Available in 256-Lead BGA

Individual Onton REFERENCES Iding Factor

ADR01/02 Ultra Compact Precision 10.0 V/ 5.0 V Reference

- Ultra Compact SC70-5/ SOT23-5 Package
- Low Temperature Coefficient: 3 ppm/°C
- Long Term Stability: 50 ppm/ 1000 hr
- Line Regulation: 30 ppm/V
- Load Regulation: 50 ppm/mA
- Low Noise: 25 μVp-p (0.1 Hz to 10 Hz)
- Low Hysteresis: 70 ppm Typical
- Wide Operating Range
 - ADR01: 12 V to 40 V
 - ADR02: 7 V to 40 V
- Quiescent Current: 1 mA Max
- High Output Current: 10 mA
- Wide Temperature Range: -40° C to +125° C

ADR280 1.20 V Low Power Voltage Reference

- 1.20 V Precision Output Voltage
- 80dB Ripple Rejection
- Low Noise
- Low Power 2 MAD-b (011 HX 10 10 HX)
- Compact 3-lead SOT-23 package

ADR318/390/391/393/395 References in Automotive Temp Range (-40 °C to +125 °C)

- 1.800 V, 2.048 V, 2.500 V, 4.096 V & 5.000 V Outputs
- Compact SOT23-5, 3x3mm Package
- Shutdown Pin (Vo + 0.3 V) to + 15 V
- 25 ppm/°C Tempco
- Applications : Automotive, Fault Protection Critical Applications

ADR392/95 Precision Low Drift Reference +4.096 V / +5.0 V with Shutdown

- Initial Accuracy: ±6 mV max
- Low T_{cvo}: 25 ppm/°C max
- Load regulation: 80 ppm/ mA III BLOGGROU CLISICS
- Line regulation: 25 ppm/ V
- Wide operating range: (V_O + 0.3 V) to +15 V
- Low power: 160 μA max
 - Shutdown to less than 3 μA max
- High output current: 5 mA
- Wide temperature range: -40° C to +125° C
- Tiny SOT23-5 package

ADR42x Low Noise Precision 2.048 V/ 2.5V/ 3.0V/ 5.0V Reference

- XFET2 Technology
- 2.048 V/ 2.500 V/ 3.0 V/ 5.0 V
- Lowest Noise for "Sub-5V" Operation REF,
 - $e_n = 1.75 \text{ mVp-p}$
- Very Low Drift 3 & 8 ppm/°C max Grades
- 0.04 % and 0.2 % initial accuracy Grades
- Compact µSOIC-8 Package
- Applications: Precision Converters

ADR510 1.0 V Ultra Precision Low Noise Shunt Voltage Reference

- Wide Operating Range: 100 µA 10 mA
- Initial Accuracy: 0.1% max
- Temperature Coefficient: 20 ppm/°C max
- Output Impedance: 0.1Ω max
- Wide temperature range: -40° C to +85° C
- Ultra Compact 2 x 2 mm SC-70 or SOT-23 Package

Voltage Reference Road Map

▲ Precision

Lowest Noise at Low Power 3ppm/°C to 10ppm/°C 0.04% to 0.15% ACC 1.75µV p-p Noise

XFET2 ADR42x 8-Lead µSOIC 2.048V/2.5V

ADR01/ADR02/ADR03 SOT-23 & SC-70

Improved REF01/02 ADR38x/ADR39x

10ppm/°C in SOT23 **Improved Accuracies**

Lower ppm in SOT

25 ppm/°C

0.24% ACC

5µV p-p Noise

With SHDN & Kelvin

ADR380/ADR381 5-Lead SOT23 2.048V/2.5V

AD1582/3/4/5 Redesign 3Lead SOT23

High Vol **GP** Application in SOT23 0.08% to 1.0% ACC

XFET3 ADR43x 8-Lead µSOIC 2.048V/2.5V

Sink/Source

Good Precision

For High Volume **GP** Applications

> **ADR280** 1.2V SOT Low Noise

Sink/Source Current

For Precision ADC

Low Noise

Negative REF

Positive/

Negative REF

In Single Pkg

Cell phone

Comms Mkt

Embedded REF

CMOS 15ppm

High Volume

ADR52x ADR51x 2V - 5V SHUNT 1.0V SHUN SC-70 & SOT-23 SC-70 & SOT-23

> High Vol **GP** Application In Small Footprint

20-C

SECTION 6 Audio Products

Analog Audio Digital Audio

Didital Andio

Analog Audio

SSM2019 Self-Contained 2005013 Audio Preamplifier Range - 40. C to +82. C

SSM2019 Self-Contained Audio Preamplifier

- Excellent Noise Performance: 950 pV/√Hz or 1.5 dB Noise Figure; Subaudio 1/f Noise Corner
- Ultralow THD: <0.01 % @ G = 100 Over the Full Audio Band</p>
- Wide Bandwidth: 1 MHz @ G = 100
- High Slew Rate: 20 V/ µs (Typical)
- Unity Gain Stable
- True Differential Inputs
- 8-Pin Mini-DIP or 16-Pin SOIC
- Only One External Component Required
- Very Low Cost
- Extended Temperature Range: -40° C to +85° C
- Pin-for-Pin Replacement for the SSM2017

SSM2167 Microphone Preamplifier

SSM2167 Microphone Preamplifier

The SSM2167 is a complete microphone conditioner in an 10-pin package.

- Single 3 V Operation
- Low Shutdown Current < 10 μA
- Preset Noise Gate Threshold
- Adjustable Compression Ratio and Noise Gate
- Adjustable Release Time
- Low Noise and Distortion: 0.25 %
- 20 kHz Bandwidth at G = 60 dB
- Automatic Limiting Feature Prevents ADC Overload

www.analog.com

SSM2167 Microphone Preamplifier Transfer Function

www.analog.com

SSM2167 Microphone Preamplifier

Real-World Improvements

Features	=	Real Benefit
Noise Gate	=	No Annoying Background Noise when You are Not Speaking
Expansion	of co	Quiet Voices or Signals are Amplified to a Useable Level
Compression	-	Loud Voices All Stay about the Same
Limiting	= 11	No Matter How Loud the Sound the Part Won't Overload

SSM2211CP Low Distortion 1.5 Watt Audio Power Amplifier in 3mm x 3mm LFCSP

www.analog.com

PRELIMINARY DATA

SSM2211CP Low Distortion 1.5 Watt Audio Power Amplifier in 3mm x 3mm LFCSP

- Re-Release of the SSM2211 in a 3 mm x3 mm LFCSP Package
- 1.5 Watt Output 1
- Differential (BTL 2) Output
- Single-Supply Operation: 2.7 V to 5.5 V
- Functions Down to 1.75 V
- Wide Bandwidth: 4 MHz
- Highly Stable, Phase Margin: > 80°
- Low Distortion: 0.2 % THD @ 1 W Output
- Excellent Power Supply Rejection

Digital Audio

Analog Output

Digital Effect Rack

ital Recording Studio

► ANALOG DEVICES

www.analog.com

Digital Recording Studio

AD1871 Stereo 24-Bit ADC 96 kSPS 105 dB Dynamic Range

AD1871 Stereo 24-Bit ADC 105 dB Dynamic Range, 96kHz

- 16-/18-/20-/24-Bit Output Word Length
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration"
- 105 dB Dynamic Range: -97 dB S/(THD + N)
- Up to 96 kHz Sampling Frequency
- Supports 256x, 512x, and 768x Master Clocks
- Flexible Data Output Format
- TDM interface Allows Daisy-Chaining of Multiple AD1871
- 5 V Supply with 3.3 V Tolerant Interface

ADC Roadmap

TIME

www.analog.com

www.analog.com

PRELIMINARY DATA

- 5 V Power Supply Stereo Audio DAC System
- Accepts 16/ 18-/20-/24-Bit Data
- Supports 24-Bits, 192 kHz Sample Rate PCM Audio Data
- Supports SACD Bit-Stream and External Digital Filter Interface
- Accepts a Wide Range of PCM Sample Rates Including:
 - 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, and 192 kHz
- Multibit Sigma Delta Modulator with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DAC Least Sensitive to Jitter
- Supports SACD Playback with "Bit Expansion" Filter
- Differential Current Output for Optimum Performance

- 8.64 mA p-p Output Current with +3 dB Headroom in SACD Mode
- 120 dB SNR/DNR (Not Muted) at 48 kHz Sample Rate (A-Weighted Stereo)
- 123 dB SNR/DNR (Mono) 8 5 KHZ 30 KHZ SUQ 185 KHZ
- -110 qB LHD + Nge of PCM Sample Rates Including:
- 110 dB Stopband Attenuation with ±0.0002 dB
 Passband Ripple
- 8x Oversampling Digital Filter
- On-Chip Clickless Volume Control
- Supports SACD-Mute Pattern Detection
- Supports 64 f_S/128 f_S DSD SACD with Phase Modulation

- Internal Digital Filter Pass-Through for External Filter
- Master Clock: 256 x F_s, 384 x F_s, 512 x F_s, 768 x F_s
- Hardware and Software Controllable Clickless Mute
- Serial (SPI) Control for: Serial Mode, Number of Bits,
- Sample Rate, Volume, Mute, De-emphasis, Mono Mode
- Digital De-Emphasis for 32, 44.1, and 48 kHz Sample Rates
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible, and DSP Serial Port
- 28-Lead SSOP Plastic Package

www.analog.com

PRELIMINARY DATA

AD1957 High Performance Multibit ΣΔ DAC with SACD Playback

- 5V Power Supply Stereo Audio DAC System.
- Supports 24-Bits, 192 kHz Sample Rate PCM Audio Data
- Supports SACD bit-stream and External Digital Filter Interface
- PCM Sample Rates Including: 32 kHz, 44.1 kHz. 48 kHz, 88.2 kHz, 96 kHz, and 192 kHz
- Multibit Sigma Delta Modulator with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DAC Least Sensitive to Jitter

AD1957 High Performance Multibit ΣΔ DAC with SACD Playback

- Supports SACD-Mute pattern detection
- Supports 64 fs/128 fs DSD SACD with phase modulation
- SACD PCM output level matching
- Selectable SACD digital filter cutoff frequency
- Bypass-able SACD digital volume control
- Master clock: 256 fs, 384 fs, 512 fs, 768 fs
- Hardware and Software Controllable Clickless Mute
- Serial (SPI) Control for: Serial Mode, Wordwidths (16/20/22/24),
 Sample Rate, Volume, Mute, De-emphasis, Mono Mode
- Digital De-emphasis for 32, 44.1, 48 KHz Sample Rates
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible and DSP Serial Port

AD1957 High Performance Multibit ΣΔ DAC with SACD Playback

- Differential Current Output for Optimum Performance
- 8.64 mA p-p Output Current with +3 dB headroom in SACD mode
- 123 dB SNR/DNR (not muted) at 48 KHz Sample Rate (A-Weighted Stereo)
- 123 dB SNR/DNR (Mono)
- -110 dB THD+N
- 110 dB Stopband Attenuation with +/-0.0002dB Passband Ripple
- 8x Oversampling PCM Digital Filter
- On-chip Clickless Volume Control
- 28 Lead SSOP Plastic Package

AD1850 24-bit 192kHz Stereo Low-Power ΣΔ DAC

AD1850 24-bit 192kHz Stereo Low-Power ΣΔ DAC

- 3.3V Single Power Supply Stereo Audio DAC System
- Accepts 16-/20-/24-Bit data
- Supports Sample Rates to 192 kHz
- 106dB SNR & DNR at 48kHz Sample Rate (A-weighted stereo, not muted)
- -94 dB THD+N
- Finear Interbolator
 Port with Left-Justified, Right-Justified
- 70 dB Stopband Attenuation, ±0.01 dB Passband Ripple
- Single-Ended Output for Ease of Use
- Full-Scale Output: 2.8 Vp-p

AD1850 24-bit 192kHz Stereo Low-Power ΣΔ DAC

- All Modes & Features are SPI-Controllable
- Flexible Serial Data Port with Left-Justified, Right-Justified,
 I²S-Compatable Serial Port Modes
- Supports 256/ 384/ 512/ 768 x Fs Master Clocks
- Zero-Input Flag Hardware Output
- Digital De-Emphasis Processing
- On-Chip Volume Control 96dB range with 0.375dB/step
- Clickless Mute Control
- 16-pin SSOP package

Audio DAC Family

 SACD Players · High End **DVD-Audio Players** · High End Professional Audio **DVD-Audio Players** DVD Players AD1955/57 Professional Audio · A/V Amps AD1853 · 125dB SNR/DNR - Mono Price · High End TV's AD1852 • 117dB SNR/DNR 123dB SNR/DNR – Stereo · 107dB THD+N AD1855 115dB SNR/DNR ·-110dB THD+N Current Out AD1854K · 104dB THD+N AD1854J Current Out 113dB SNR/DNR 108dB SNR/DNR • 97/101dB THD+N Pin Compatible • 97dB THD+N AD1850 · 108dB SNR/DNR · 95dB THD+N

Performance

www.analog.com

6-27

AD1958/59 PLL Multibit Sigma-Delta DAC

AD1958/59 PLL Multibit Sigma-Delta DAC

- Accepts 16-/18-/20-/24-Bit Data
- Supports up to 24-Bit 192 kSPS Sample Rate
- Multibit Sigma-Delta Modulator with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling for Reduced Jitter Sensitivity
- 108 dB (A-Weighted) SNR at 48 kSPS (Not Muted)
- 75 dB Stopband Attenuation
- Flexible Serial Data Port (Left Justified, Right Justified, I²S, and DSP Modes)
- Programmable Fractional-N PLL (<100 pS RMS Clock Jitter)
- Single +5 V Supply

Why PLL DAC?

- DVD/MPEG2 System is Running at 27 MHz System Clock.
 This Clock is also Used for Video Master Clock
- Audio Master Clock Needs to Synchronize with Video Master Clock
- Audio Clock Frequency is Multiple of Sampling Frequency (f_S)
 Such As 256 f_S/ 384 f_S (16.9344 MHz, etc.), But this Frequency
 Cannot Be Generated By Simple Divider from 27 MHz Master
 Clock
- PLL Generate Audio Master Clock Synchronized with 27 MHz System Clock with Very Low Jitter Performance for High Sound Quality
- Integration of DAC and PLL Is the BEST Solution for System Performance and Price Point of View

DVD System Clock Distribution Block

www.analog.com

AD1954 26-Bit Audio DSP with On-Board DACs

www.analog.com

PRELIMINARY DATA

AD1954 26-Bit Audio DSP with On-Board DACs

- On Board 3-Channel DAC
 - 2-channel left/right
 - 1-channel subwoofer
- 112 dB Signal-to-Noise (Not Muted) at 48 kHz Sample Rate (A-Weighted Stereo)
- Differential Output for Optimum Performance
- 75 dB Stopband Attenuation
- On-Chip Clickless Volume Control
- Hardware and Software Controllable Clickless Mute
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S Compatible, and DSP Serial Port Modes
- 44-Pin MQFP or 48-Pin TQFP Plastic Package

AD1954 26-Bit Audio DSP with On-Board DACs

- Configuration is Optimized for 2.0 and 2.1 Systems
- Applications are:
 - Home stereo minisystems
 - PC multimedia speakers
- Car audio systems
 - DTV

AD1954 Graphical User Interface (GUI)

- ADI Graphical User Interface Gives Total Control over AD1954
- AD1954 is a Fully Configurable Audio Solution
- Design Implementation is as Easy as an Analog Audio Solution
- Parameter RAM Allows Complete Control of More Than 200 Parameters via SPI Port
- Featured Algorithms:
 - Seven biquad filter sections per channel
 - Dual-band dynamic processor with arbitrary input/output curve and adjustable time constants
 - 0 ms 6 ms variable delay/channel for speaker alignment
 - Stereo spreading algorithm for "Wide Stereo" effect
- SPI Port Features "Safe-Upload" Mode for Transparent Filter Updates

ADI SigmaDSP™ Technology

- Technological Breakthrough:
 - SigmaDSP™ offers the first integration of
 - a DSP engine specialized for audio processing with
 - audio converter cores at a level of > 110dB SNR.
- SigmaDSP Features:
 - Professional-quality digital sound processing
 - ZERO programming overhead
 - Intuitive Graphical Configuration Tool
 - A price point that makes digital technology affordable

SigmaDSP™ Graphical Compiler

- The SigmaDSP™ Graphical Compiler enables full customization of the signal flow
- Graphical entry is based on Orcad™
 - ADI provides the compiler which accepts a netlist generated by the Orcad™ schematic entry tool
- The newly generated program file can be easily downloaded to the SigmaDSPTM by the GUI
- If only filters are programmed (Sea of Biquads), about 50 biquads are possible in the AD1954
 - The next generation of SigmaDSP™ will double the MIPS

www.analog.com

AD1953 Three channel, 24-Bit Signal Processing DAC Oppose More

- 5 V 3-channel Audio DAC System
- 7 Biquad Filter sections per channel COULD OF MODES SUG
- Dual Dynamic Processor with arbitrary input/output curve and adjustable time constants
- "PHAT™ Stereo" Spreading Algorithm for wide stereo effect
- 0 6 ms variable delay/channel for speaker alignment
- Differential Output for Optimum Performance
- 112 dB Signal-to-Noise (not muted) at 48 kHz Sample Rate (A-Weighted Stereo)
- 75 dB Stopband Attenuation

AD1953 Three channel, 24-Bit Signal Processing DAC

- Program RAM allows complete new program download via SPI port
 - SPI port features "Safe-Upload" mode for transparent filter updates
- 256-word Parameter RAM
- 512-word Program Memory
- 512 instructions per audio sample and jubration cause sug
- Two control registers allow complete control of modes and memory transfers
- On-chip Clickless Volume Control (8 total)
- Hardware and Software Controllable Clickless Mute

AD1953 Three channel, 24-Bit Signal Processing DAC

- Digital De-emphasis Processing for 32, 44.1, 48 kHz Sample Rates
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible and DSP Serial Port Modes
- MCLK select Multiplexer
- Digital Audio Input with source select multiplexer (2:1) Auxiliary
 Digital Input
- Digital Audio Output (I²S 2 channel or Packed Mode-6 channel)
- 48-Lead LQFP Plastic Package

AD1953 + AD1836 Audio System 4 Analog In, (up to) 9 Analog Out, 25 SDSP-MIPS

www.analog.com

2nd Gen: Fully integrated Audio System 4 Analog In, 6 Analog Out, 50 SDSP-MIPS

SigmaDSP™ Roadmap

ANALOGDEVICES

www.analog.com

6-46

AD1835 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

www.analog.com

AD1835 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports up to 96 kHz Sample Rates
- 192 kHz Sample Rate Available on One DAC
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DACs Least Sensitive to Jitter
- Differential Output DACs for Optimum Performance
- ADCs: –95 dB THD + N, 105 dB SNR and Dynamic Range
- DACs: –95 dB THD + N, 108 dB SNR and Dynamic Range

www.analog.com

AD1835 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-Chip Volume Controls Per Channel with 1024 Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing Supports 256 x f_s, 512 x f_s, and 768 x f_s Master Mode Clocks
- Single Ended Output DACs
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible, and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using Single SHARC SPORT
- 52-Lead MQFP Plastic Package

AD1837 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1837 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports up to 96 kHz Sample Rates
- 192 kHz Sample Rate Available on one DAC
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma-Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DACs Least Sensitive to Jitter
- Single Ended Outputs
- ADCs: –95 dB THD + N, 105 dB SNR and 105 dB Dynamic Range
- DACs: –92 dB THD + N, 108 dB SNR and 107 dB Dynamic Range

AD1837 Two ADC, Eight DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-Chip Volume Controls Per Channel with 1024 Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing
- Supports 256 x f_s, 512 x f_s, and 768 x f_s Master Mode Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified,
 I²S-Compatible and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using Single SHARC SPORT
- 52-Lead MQFP Plastic Package

AD1838 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1838 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports 96 kHz Sample Rates
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DACs Least Sensitive to Jitter
- Differential Output for Optimum Performance
- ADCs: –95 dB THD + N, 105 dB SNR and Dynamic Range
- DACs: –95 dB THD + N, 108 dB SNR and Dynamic Range

AD1838 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-Chip Volume Controls Per Channel with 1024 Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing
- Supports 256 x f_s, 512 x f_s, and 768 x f_s Master Mode Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified, I²S-Compatible and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using a Single SHARC SPORT
- 52-Lead MQFP Plastic Package

AD1839 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

AD1839 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- 5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
- Supports 96 kHz Sample Rates
- Supports 16-/20-/24-Bit Word Lengths
- Multibit Sigma Delta Modulators with "Perfect Differential Linearity Restoration" for Reduced Idle Tones and Noise Floor
- Data Directed Scrambling DACs Least Sensitive to Jitter
- Differential ADC Inputs
- Single-Ended DAC Outputs
- ADCs: –95 dB THD + N, 105 dB SNR and Dynamic Range
- DACs: –92 dB THD + N, 108 dB SNR and Dynamic Range

AD1839 Two ADC, Six DAC, 96 kHz, 24-Bit Sigma-Delta Codec

- On-chip Volume Controls Per Channel with 1024 Step Linear Scale
- DAC and ADC Software Controllable Clickless Mutes
- Digital De-Emphasis Processing
- Supports 256 x f_s, 512 x f_s, and 768 x f_s Master Mode Clocks
- Power-Down Mode Plus Soft Power-Down Mode
- Flexible Serial Data Port with Right-Justified, Left-Justified,
 I²S-Compatible and DSP Serial Port Modes
- TDM Interface Mode Supports Eight In/Eight Out Using a Single SHARC SPORT
- 52-Lead MQFP Plastic Package

Multi-Channel Codec Roadmap

TIME

Next Generation Codec Family

Digital Audio A Fully Synchronous Signal

- Digital Audio Signals are always Running FULLY SYNCHRONOUS on ONE Common MASTER CLOCK
- An Audio Signal Stream Has to be ABSOLUTELY CONTINUOUS
- Digital Audio Signals always Fulfill the NYQUIST CRITERIA
- The Rate of the Data points that Describe a Waveform Can be Changed
- When Changed, an Entirely New Stream of Data Has to be Calculated
- This New Stream of Data is Entirely Different Data, But Describes Exactly the Same Waveform
- If the New Sampling Rate is Lower Than the Original Sampling Rate, the Audio Waveform Has to be Bandlimited to FSnew/2 (Because of Nyquist)

Model of a Sample Rate Converter

- A SRC is a FULLY DIGITAL ENGINE !!! IO LOUGH S
- However, one way of thinking about it is:
 - It reconstructs the signal, just like a DAC would do acupe
- It resamples the signal, just like an ADC would do

AD1898 192 kHz Stereo Asynchronous Sample Rate Converter with AES3 Transceiver

AD1898 192 kHz Stereo Asynchronous Sample Rate Converter with AES3 Transceiver

- Automatically Senses Sample Frequencies
- AES3/SPDIF Receiver and Transmitter supports sample rates from 32 kHz to 192 kHz
- Less Than 125 ps of Jitter for Recovered AES3 Receiver Clock
- Phase Alignment of Word Clock to AES3 Receiver and Transmitter Preambles
- Accepts 16-/18-/20-/24-Bit Data
- Input/Output Sample Ratios from 7.75:1 to 1:8
- Multiple AD1898 TDM Daisy-Chain Mode
- Multiple AD1898 Matched-Phase Mode
- Two AES3 Differential Inputs, One S/PDIF Input
- One AES3 Differential Output

AD1898 192 kHz Stereo Asynchronous Sample Rate Converter with AES3 Transceiver

- 142 dB Signal-to-Noise and Dynamic Range (A-Weighted, 20-20kHz BW) for Sample Rate Conversion
- -120 dB THD+N for all sample rates and input frequencies
- Linear Phase FIR Filter Flexible 3-wire Serial Data I/O Ports
- Microcontroller or Pin Programmable Modes
- Flexible Channel Status and User Bit Buffering Modes
- Serial Control with either SPI or I²C
- Supports 256 x fs, 384 x fs, 512 x fs, 768 x fs Master Clock
- 52 pin MQFP package

AD1897 192 kHz Stereo Asynchronous Sample Rate Converter with AES3 Transceiver

www.analog.com

PRELIMINARY DATA

6-66

AD1897 192 kHz Stereo Asynchronous Sample Rate Converter with AES3 Transceiver

- Automatically Senses Sample Frequencies
- AES3/SPDIF Receiver and Transmitter supports sample rates from 32kHz to 192kHz
- Less Than 125 ps of Jitter for Recovered AES3 Receiver Clock
- Phase Alignment of Word Clock to AES3 Receiver and Transmitter Preambles
- Accepts 16-/18-/20-/24-Bit Data
- Input/Output Sample Ratios from 7.75:1 to 1:8
- Multiple AD1897 TDM Daisy-Chain Mode
- Multiple AD1897 Matched-Phase Mode
- Four S/PDIF Inputs (One Differential, Three Single-Ended)
- Two S/PDIF Outputs

AD1897 192 kHz Stereo Asynchronous Sample Rate Converter with AES3 Transceiver

- Flexible 3-wire Serial Data I/O Ports
- Flexible Channel Status and User Bit Buffering Modes
- Serial Control with either SPI or I²C
- 128 dB Signal-to-Noise and Dynamic Range (A-Weighted, 20-20kHz BW) for Sample Rate Conversion
- -118 dB THD+N for all Sample Rates and Input Frequencies
- Linear Phase FIR Filter up I submitted anbbotts astrole tages
- Supports 256 x fs, 384 x fs, 512 x fs, 768 x fs Master Clock
- 48 pin LQFP package

In applications where multiple channels of digital audio are being transferred from one source, such as in a studio, the sources must be synchronized. To do this, one ASRC can be used to set the $f_{\text{IN}}/f_{\text{OUT}}$ rate of several slaved ASRCs. The filter coefficient information is set over the auxiliary data of the I^2S .

PHASE-MATCH MODE CONFIGURATION

TIME

AD1991 Class-D H-Bridge

FUNCTIONAL BLOCK DIAGRAM (2-channel Mode) FUNCTIONAL BLOCK DIAGRAM (4-channel Mode) OUTA LOAD LEFT INPUT REQUIRING DC VOLTAGE SUPPLY B1 LEVEL SHIFTER AND LEVEL SHIFTER H-BRIDGE H-BRIDGE AND SWITCH CONTROL SWITCH CONTROL OUTC OUTC INC ING RIGHT INPUT OUTD LOAD IND REQUIRING DC VOLTAGE D2 SUPPLY Poweredge Control Current Overload Poweredge Control Current Overload CLK-Thermal Protection >Thermal Shutdown Thermal Protection >Thermal Shutdown RST/PWN Short Circuit Protection >Thermal Warning RST/PWN-Short Circuit Protection >Thermal Warning MUTE Mute Control > Data-Loss Mute Control > Data-Loss

Test Control

AGNDV

Test Control

AGND

- Power level (per Channel @ 10% THD + N, with Modulator)
 - $2 \times 20 \text{ W} @ 4 \Omega \text{ and } 8 \Omega$
 - 1 x 40 W @ 4 Ω and 2 Ω
 - $R_{ON} < 0.2 \Omega$
- Efficiency > 90 % @ Full Power/ 8 Ω
- Single Power Supply 12 V 20 V
- PDN/Mute Input
- Turn-On and Turn-Off Pop Suppression
- Short Circuit Warning and Protection
- Over-Temperature Warning and Protection
- 2-Channel Bridged Outputs (BTL) or 4-Channel Single Ended or 1-Channel High Current BTL

High performance Class-D solution

Integration of Modulator and H-Bridge

Class-D Product Roadmap

TIME

Relative Pricin

Sisse-D Product Roadmap

N ANALOG DEVICES

SECTION 7

Video and Display **Products**

▼ ANALOG DEVICES

Digital Video Decoders

▼ ANALOG DEVICES

What Are Digital Video Decoders?

A Digital Video Decoder converts CVBS, S-Video, and YUV analog baseband television signals into digital CCIR-656 4:2:2 component video compatible with NTSC, PALB/D/G/H/I, PAL M, or PAL N.

ADV7183/85 Digital Video Decoders

The ADV7183 and ADV7185 are integrated video decoding systems that take in Composite, S-Video, and Component (YPrPb) analog video formats and output a PROCESSED Digital Video (CCIR656) data stream.

The ADV7183 integrates two 9-bit A/D converters and provides four analog video input channels. Programmable analog input formats include Composite and S-Video.

The ADV7185 integrates two 10-bit A/D converters and provides six analog video input channels. Programmable analog input formats include Composite, S-Video, and Component (YPrPb).

ADV7183 Video Decoder Block Diagram

ADV7185 Video Decoder Block Diagram

ADV7183/85 9-/10-Bit Video Decoders

- Analog Video to Digital YUV Video Decoder
 - IN: NTSC (M/N) PAL (B/D/G/H/I/M/N)
 - automatic identification
 - Input formats: YUV, SVHS (Y/C), or Composite Video (CVBS)
 - OUT: YCrCb (4:2:2 or 4:1:1) or CCIR601/CCIR656 (8- or 10-bit)
- Differential Mode Video Input
- Six Input Channels: 0.5 to 2.0 V p-p Input Range
- Integrated AGC and Clamping
- Dual Clocking Schemes
 - Line Locked Clock (LLC) compatible
 - Fixed frequency oversampling
- Adaptive Digital Line Length Tracking
- On-Chip Video Timing Generator

ADV7183A 9-Bit Video Decoders

- Analog Video to Digital YCrCb Video Decoder
 - IN: NTSC (M/N), PAL (B/D/G/H/I/M/N), and SECAM
 - Input formats: YPrPb up to D1, (Y/C) and Composite Video
 - OUT: CCIR656 (8-Bit) up to 27 MHz pixel rate
- 3 & 5 Line Adaptive Comb Filters
- Macrovision Detection Rev 1.0
- Integrated AGC and Clamping
- Ultrawide Bandwidth (6 MHz for SD)
- Full VBI Support
- Digital Noise Reduction Block
- SNR Measurement for Efficient Compression
- RGB SCART Input Support for Europe

Digital TV Application

Professional Video Recording

Digital Video Encoders

MAA... LA

sional Video Recording

► ANALOG DEVICES

What Are Digital Video Encoders?

A Digital Video Encoder converts Digital Component Video Data (CCIR-601 4:2:2 for example) into a standard analog baseband television signal compatible with NTSC, PAL B/D/G/H/I, PAL M, or PAL N. In addition to the Composite output signal, there is often the facility to output S-VHS Y/C, RGB, or YUV Video.

Where are (Digital) Video Encoders Used?

ANALOG

Where are (Digital) Video Encoders Used?

- Anywhere a TV Connects with a Digital Source
 - Set-top boxes, integrated receiver decoders
 - Direct Broadcast Satellite (DVB)
- Cable set-top box systems
 - Web browsers/internet boxes
 - PCs with TV tuners
 - Video CD, DVD, digital camcorder
 - Professional video
 - Multimedia PC

TTXREQ TTX ADV7179 POWER 10-BIT CGMS AND WSS MANAGEMENT Q DACA(PIN 29) DAC CONTROL INSERTIO INSERTIO YUV TO VAAC 10 (SLEEP MODE **BLOCK BLOCK RBG** 10-BII MATRX O DACB(PIN 28) DAC 10 RESET 10 10-BIT Q DACC(PIN 24) COLOR PROGRAMMABLE 10 INTER-ADD LUMINANCE DATA POLATOR SYNC FILTER 4:2:2 TO **YCrCb** 4:4:4 P7-P0 TO INTER-YUV PROGRAMMABLE' POLATOR INTER-MATRX ADD CHROMINANE POLATOR BURST FILTER HSYNC C VIDEO TIMING FIELDHSYNC O REALTIME QV_{REF} GENERATOR SIN/COS VOLTAGE CONTROL PC MPU PORT RSET DDS BLOCK REFERENC CIRCUT CIRCUT COMP GND CLOCK SCLOCK SDATA ALSB SCRESET/RTC

- STANDARD VIDEO ENCODER WITH 3 10-BIT DACS
- Chip Scale 40-pin Package: 6mm by 6mm
- Advanced Power Management
- 3 Temperature Grades:
 - ADV7179JCP for 0° C to +70° C
 - ADV7179ACP for -20° C to +85° C
 - ADV7179BCP for -40° C to +85° C
- For Mobile & Industrial Applications:
 - GSM mobile phones
 - Car Infotainment
 - PDA's & DSC's

- ITU-R² BT601/656 YCrCb to PAL/NTSC Video Encoder
- High Quality 10-Bit Video DACs
- SSAF (Super Sub-Alias Filter)
- Advanced Power Management Features CGMS (Copy Generation Management System) WSS (Wide Screen Signalling)
- Simultaneous Y,U,V,C Output Format
 - NTSC-M,PAL-M/N ,PAL-B/D/G/H/I,PAL-60
- Single 27 MHz Clock Required (x2 Oversampling)
- 80 dB Video SNR
- 32-Bit Direct Digital Synthesizer for Color Subcarrier
- Macrovision 7.1 (ADV7174 only)

- Multistandard Video Output Support:
 - Composite (CVBS)
 - Component S-Video (Y/C)
- Video Input Data Port Supports:
 - CCIR-656 4:2:2 8-Bit Parallel Input Format
- Programmable Simultaneous Composite and S-Video or RGB (SCART)/YUV Video Outputs
- Programmable Luma Filters (Low-Pass [PAL/NTSC])
 Notch, Extended (SSAF, CIF, and QCIF)
- Programmable Chroma Filters (Low-Pass [0.65 MHz, 1.0 MHz, 1.2 MHz and 2.0 MHz], CIF and QCIF)
- On-Board Color Bar Generation
- On-Board Voltage Reference
- Single Supply 3.3 V Operation
- Small 40-Lead 6 mm X 6 mm LFSCP Package

- Programmable VBI (Vertical Blanking Interval)
- Programmable LUMA Delay
- Individual ON/OFF Control of Each DAC
- CCIR and Square Pixel Operation
- Integrated Subcarrier Locking to External Video Source
- Color Signal Control/Burst Signal Control
- Interlaced/ Noninterlaced Operation
- Complete On-Chip Video Timing Generator
- Programmable Multimode Master/Slave Operation
- Closed Captioning Support
- Teletext Insertion Port (PAL-WST)
- 2-Wire Serial MPU Interface (I²C[®] -Compatible and Fast I²C)

ADV7196A HDTV Video Encoder Block Diagram

ADV7196A Multiformat Video Encoder (Progressive Scan/HDTV)

- Data Input Format
 - YCrCb in 1 x 10-bit (4:2:2) or 3 x 10-bit (4:4:4)
 - Compliant to SMPTE-293M (525p), ITU-R, BT1358 (625p), SMPTE274M (1080p), SMPTE296M (720p)
 - Any other HD standard using Async timing mode
 - RGB in 3 x 10-bit 4:4:4 format
- Output Formats
 - YPrPb progressive scan (EIA-770.1, EIA-770.2)
 - YPrPb HDTV (EIA-770.3)
 - RGB-compliant to RS-170 and RS-343A
- 2 x 11-Bit DACs for Color Components and
 [1 x 11-Bit + Sync] DAC for Y Component

ADV7196A Multiformat Video Encoder (Progressive Scan/HDTV)

- Internal Test Pattern Generator with Color Control
- Y/C Delay (±)
- Gamma Correction scan (EIA-770.1, EIA-770.2)
- Sharpness Filter with Programmable Gain/Attenuation
- Programmable Adaptive Filter Control
- Undershoot Limiter
- Macrovision Rev.1.0 (525p)
- CGMS-A (525p)

ADV7300A/01A MULTI-FORMAT, STANDARD/ PROGRESSIVE SCAN/HDTV VIDEO ENCODER WITH SIX NSVTM 12-BIT DACS 3000 AND ADDRESSIVE SCAN/HDTV VIDEO ENCODER

ANALOGDEVICES

- HIGH DEFINITION INPUT FORMATS
 - YCrCb compliant to SMPTE-293M (525p), ITU-R.
 - BT1358 (625p), SMPTE274M (1080i),
 - SMPTE296M (720p)
 - and any other High Definition standard using Async Timing Mode
 - RGB in 3x10 Bit 4:4:4 format
 - BTA T-1004 EDTV2 525p
- HIGH DEFINITION OUTPUT FORMATS
 - YPrPb Progressive Scan (EIA-770.1, EIA-770.2)
 - YPrPb HDTV (EIA 770.3)
 - RGB +H/V (HDTV 5-wire format)
 - CGMS-A (720p/1080i)
 - Macrovision Rev1.0 (525p/625p) (ADV7300A only)
 - CGMS-A (525p)

- STANDARD DEFINITION INPUT FORMATS
 - CCIR-656 4:2:2 8/10-bit Parallel Input
 - CCIR-601 4:2:2 16/20-bit Parallel Input
- STANDARD DEFINITION OUTPUT FORMATS
 - Composite NTSC M, N;
 - Composite PAL M, N, B, D, G, H, I, PAL-60
 - SMPTE 170M NTSC compatible composite video
 - ITU-R BT.470 PAL compatible composite video
 - S-Video (Y/C)
 - EuroScart RGB
 - Component YUV (Betacam, MII, SMPTE/EBU N10)
 - Macrovision Rev 7.1 (ADV7300A only)
 - CGMS/WSS
 - Closed Captioning

GENERAL FEATURES

- Simultaneous SD & HD i/ps and o/ps
- Oversampling [108MHz/148.5MHz]
- On-board Voltage Reference
- Six 12-Bit Sigma-Delta DACs
- 2 Wire Serial MPU Interface
- Dual I/O Supply +2.5V/ +3.3 V Operation
- Analog & Digital Supply +2.5V
 - On-board PLL
- 64-LQFP package
- Pb free product

- High Definition Input Formats
 - YCrCb Compliant to SMPTE293M (525 p),
 - ITU-R.BT1358 (625 p),SMPTE274M (1080 i),
 - SMPTE296M (720 p), and Any Other High Definition
 - Standard Using Async Timing Mode
 - RGB in 3 8-Bit 4:4:4 Format
 - BTA T-1004 EDTV2 525 p Parallel
- High Definition Output Formats (525 p/625 p/720 p/1080 i)
 - YPrPb Progressive Scan (EIA-770.1,EIA-770.2)
 - YPrPb HDTV (EIA 770.3)
 - RGB +H/V (HDTV 5-Wire Format)
 - CGMS-A (720 p/1080 i)
 - Macrovision Rev 1.0 (525 p/625 p)1
 - CGMS-A (525 p)

- Standard Definition Input Formats
 - CCIR-656 4:2:2 8-Bit Parallel Input
 - CCIR-601 4:2:2 16-Bit Parallel Input
- Standard Definition Output Formats
 - Composite NTSC M,N;
 - PAL M,N,B,D,G,H,I,PAL-60
 - SMPTE170M NTSC-Compatible Composite Video
 - ITU-R.BT470 PAL-Compatible Composite Video
 - S-Video (Y/C)
 - EuroScart RGB
 - Component YUV (Betacam, MII, SMPTE/EBU N10)
 - Macrovision Rev 7.1 1
 - CGMS/WSS
 - Closed Captioning

■ GENERAL FEATURES WIND SWELE EBO MIO)

- Simultaneous SD and HD Inputs and Outputs
- Oversampling (108 MHz/148.5 MHz)
- On-Board Voltage Reference
- Six NSV Precision Video 11-Bit DACs
- 2-Wire Serial MPU Interface
- Dual I/O Supply 2.5 V/3.3 V Operation
- Analog and Digital Supply 2.5 V
- On-Board PLL
- 64-LQFP Package
- Lead-Free Product

7-31

- HIGH DEFINITION INPUT FORMATS
 - YCrCb compliant to SMPTE-293M (525p), ITU-R.
 - BT1358 (625p), SMPTE274M (1080i),
 - SMPTE296M (720p)
 - and any other High Definition standard using
 - Async Timing Mode
 - RGB in 3x10 Bit 4:4:4 format
 - BTA T-1004 EDTV2 525p
- HIGH DEFINITION OUTPUT FORMATS
 - YPrPb Progressive Scan (EIA-770.1, EIA-770.2)
 - YPrPb HDTV (EIA 770.3)
 - RGB +H/V (HDTV 5-wire format)
 - CGMS-A (720p/1080i)
 - Macrovision Rev1.0 (525p/625p) (ADV7304A only)
 - CGMS-A (525p)

STANDARD DEFINITION INPUT FORMATS

- CCIR-656 4:2:2 8/10-bit Parallel Input
- CCIR-601 4:2:2 16/20-bit Parallel Input
- STANDARD DEFINITION OUTPUT FORMATS
- Composite NTSC M, N;
- Composite PAL M, N, B, D, G, H, I, PAL-60
- SMPTE 170M NTSC compatible composite video
- ITU-R BT.470 PAL compatible composite video
- S-Video (Y/C)
- EuroScart RGB
- Component YUV (Betacam, MII, SMPTE/EBU N10)
- Macrovision Rev 7.1 (ADV7304A only)
- CGMS/WSS
- Closed Captioning

GENERAL FEATURES

- Simultaneous SD & HD i/ps and o/ps
- Oversampling [108MHz/148.5MHz]
- On-board Voltage Reference
- Six 14-Bit Sigma-Delta DACs
- 2 Wire Serial MPU Interface
- Dual I/O Supply +2.5V/ +3.3 V Operation
- Analog & Digital Supply +2.5V
- On-board PLL
- 64-LQFP package
- Pb free product

Digital Video Codecs

What Are Digital Video Codecs?

A Digital Video Codec comprises a video rate digitizer (12-bit ADC, 54 MHz) plus Video DACs for conversion to and from the Analog and Digital video signal domains.

Digital Video Codecs

Where are Video Codecs Used?

- Highly Integrated Front and Back End Analog Solutions
 - Digital Personal Video Recorders (PVRs)
 - Digital TVs 343 KHΣ W\D CODAettet shows sampling of
 - Picture-in-Picture video systems
 - Cable and satellite Set-Top Boxes (STBs)
 - I and Q demodulation
 - QAM/QPSK
- Professional video 10 0 24 M-X MIU 13-PIL 1920 MIOU
 - Direct IF conversion

ADV7202 Video Codec

The ADV7202 supports up to six CVBS, four S-Video(YC), and two YUV inputs, digitized at up to 54 MHz with 12-bit resolution (2-bits used for gain and offset adjustment).

Four high-performance 10-bit video DACs provide support for CVBS, S-Video, YUV, and RGB output formats.

An additional 8-bit 843 kHz A/D converter allows sampling of up to eight additional auxiliary inputs for system monitoring, etc.

Picture-in-Picture functionality is also supported through the internal three-input mux which also muxes to the output DACs.

ADV7202 Functional Block Diagram

Register Setting	Description	SHA Used
0000	CVBS in on AIN1	0
0001	CVBS in on AIN2	0
0010	CVBS in on AIN3	1
0011	Reserved	1
0100	CVBS in on AIN5	0
0101	CVBS in on AIN6	2
0110	Y/C, Y on AIN1, C on AIN4	0.1
0111	Y/C, Y on AIN2, C on AIN3	0.1
1000	YUV, Y on AIN2, U on AIN3, V on AIN6	0, 1, 2
1001	CVBS on AIN1 and 8 AUX. I/Ps AIN3-6*	0, 1, 2
1010	CVBS on AIN2 and 8 AUX. I/Ps AIN3-6*	0, 1, 2

^{*}AUX inputs are single-ended. All other inputs are differential

- DAC0-3 Can Be Used to Output CVBS, S-Video, YUV, or RGB (54 MHz)
- OSD Inputs for Each DAC, Plus Alpha Blending Scenario Using 4TH DAC
- Dual CVBS Input and Output Possible
- 8-Bit 843 kHz ADC for System Monitoring Purposes (e.g., Temperature Sensing)

ADV7202 Suggested Application: Highly Integrated PVR and bankers (e.g., 1 substante sensing)

mao,gaisns.www

Video AFEs

DEMITY TOUS SXITX JURESTON STORY

AD9875/76 Mixed-Signal Front Ends (MxFE™)

AD9875/76 Mixed-Signal Front End (MxFE™)

- AD9875: 10-Bit 50 MSPS ADC and 128 MSPS DAC
- AD9876: 12-Bit 50 MSPS ADC and 128 MSPS DAC
- 64 MSPS/32 MSPS Input Word Rate
- 2x/4x Interpolation LP or BP Transmit Filter
- 26 MHz Transmit Bandwidth
- 4TH Order 12 MHz or 29 MHz Low-Pass Filter (with Bypass)
- -6 dB to +36 dB PGA on Receive Channel
- Internal 4x Clock Multiplier PLL
- Power-Down Mode

www.analog.com

Touch Screen Digitizers

AD7843 Touch Screen Digitizer

AD7843 Touch Screen Digitizer

- Improved Second Source to BB ADS7843
- 4-Wire Touch Screen Interface
- On-Chip Reference
- 125 kSPS Throughput Rate
- Programmable 8- or 12-Bit Resolution
- High-Speed Serial Interface
- Two Auxiliary Analog Inputs
- 2.7 V to 5.0 V Power Supply
- 1 µA Shutdown Current
- 16-Lead QSOP Package

AD7873/77 Touch Screen Digitizers

AD7873/77 Touch Screen Digitizers

- 4-Wire Touch Screen Interface
- On-Chip Reference
- 125 kSPS Throughput Rate
- Programmable 8- or 12-Bit Resolution
- 12-Bit SAR ADC
- High-Speed Serial Interface

- One Auxiliary Analog Input
- Battery Monitor Input
- Internal Temperature Sensor
- Power Supplies:
 - AD7873: 2.70 V to 5.25 V
 - AD7877: 2.35 V to 2.65 V
 - 1 µA shutdown current
- 16-Lead QSOP Package

Analog Flat Panel Display Interface

► ANALOG DEVICES

www.analog.com

mics Analog interface

Display Electronics Analog Interface Product Roadmap

AD9883A 110 MSPS/140 MSPS Analog Interface for Flat Panel Displays

AD9883A 110 MSPS/140 MSPS Analog Interface for Flat Panel Displays

- 140 MSPS Maximum Conversion Rate
- 300 MHz Analog Bandwidth
- 0.5 V to 1.0 V Analog Input Range
- 500 ps p-p PLL Clock Jitter at 110 MSPS
- 3.3 V Power Supply
- Full Sync Processing
- Sync Detect for "Hot Plugging"
- Midscale Clamping
- Power-Down Mode
- Low Power: 500 mW Typical
- 4:2:2 Output Format Mode

AD9888 Analog Interface for Flat Panel Displays

AD9888 Analog Interface for Flat Panel Displays

- Supports up to UXGA (1600 x 1200 @ 75 Hz)
- 205 MSPS Max Conversion Rate
- 500 MHz Input Bandwidth
- Less than 450 pS p-p PLL at 205 MSPS
- Full Sync Processing for Composite Sync Applications
- Sync Detect for "Hot Plugging"
- 2:1 Input Mux
- Midscale Clamping for Component Video Applications
- 3.3 V Supply
- Less than 1 W (Typ) Dissipation at 205 MSPS
- Power-Down Mode

Display Electronics Dual Interface Product Roadmap

AD9882 Dual Interface for Flat Panel Displays

AD9882 Dual Interface for Flat Panel Displays

■100/140 MSPS (XGA/SXGA)

Targeted for low-cost XGA & SXGA displays

Includes High-bandwidth Digital

Content Protection (HDCP)

•Mid-scale clamp for YUV

Full Sync processing

4:2:2 output formatting

■100-pin LQFP (14x14mm)

AD9882 Dual Interface for Flat Panel Displays

- Analog Interface
 - 140 MSPS Maximum Conversion Rate
 - Programmable Analog Bandwidth
 - 0.5 V to 1.0 V Analog Input Range
 - 500 pSp-p PLL Clock Jitter at 140 MSPS
 - 3.3 V Power Supply
 - Full Sync Processing
- Midscale Clamping
 - 4:2:2 Output Format Mode
 - Digital Interface
 - DVI 1.0 Compatible Interface
 - 112 MHz Operation
 - High Skew Tolerance of 1 Full Input Clock
 - Sync Detect for "Hot Plugging"
 - Supports High-Bandwidth Digital Content Protection

www.analog.com

PRELIMINARY DATA

7-58

AD9887A Dual Interface for Flat Panel Displays

www.analog.com

PRELIMINARY DATA

AD9887A Dual Interface for Flat Panel Displays

Integrated analog and DVI compatible interface.

100/140 MHz (XGA/SXGA)

The DVI receiver has been completely designed by ADI

Mid-scale Clamp for YUV applications (DTV, HDTV)

Includes Full Sync processing 160-pin LQFP (28 x 28mm)

AD9887 Currently in high volume production

AD9887A Dual Interface for Flat Panel Displays

- Pin-to-pin and software compatible with the AD9887
- 100/140/170 MHz (XGA/SXGA/UXGA) operation for both interfaces
- Includes High-bandwidth Digital Content Protection (HDCP)
- Mid-scale Clamp for YUV applications (DTV, HDTV)
- Includes Full Sync processing
- 160-pin LQFP (28 x 28mm)

- Analog Interface
 - 170 MSPS Maximum Conversion Rate
 - 330 MHz Analog Bandwidth
 - 0.5 V to 1.0 V Analog Input Range
 - 500 pSp-p PLL clock jitter at 170 MSPS
 - 3.3 V power supply
 - Full sync processing
 - Midscale Clamping
 - 4:2:2 Output Format Mode
- Digital (DVI Compliant) Interface
 - 170 MHz operation (2 pixels/clock mode)
 - High skew tolerance of 1 full input clock
 - Sync Detect for "Hot plug in"
 - Supports High-Bandwidth Digital Protection

AD8380 6-Channel DEC-Driver LCD Panel Driver

AD8380 6-Channel DEC-Driver LCD Panel Driver

- High Update Rates: Fast 75 MS/s 10-Bit Input Word Rate
- 26 ns Settling Time to 1% up to 150 pF Load
- High-Voltage Drive to Within 1.3 V of Supply Rails
- 24 V Supply for Fast Output Voltage Drivers Slew Rate 270 V/µs
- Low Power Dissipation 550 mW with Power-Down
 - Nominal 3.3 V logic and 15 V analog supplies
- Voltage-Controlled Video Reference and Full-Scale (Contrast) Output Levels
- INV Bit Reverses Polarity of Video Signal
- Flexible Logic
 - Addressable or sequential channel loading
 - STSQ/CS allows parallel AD8380 operation for XGA and greater resolution

ADD8501 Reference Generator for Mobile LCD Panels

ADD8501 Reference Generator for Mobile LCD Panels

- Two Programmable Sets of Five Reference Levels
- Dual 10-Bit DACs for Offset and Range Adjustment
- Integrated VCOM Switching
- Single-Supply Operation: 5.0 V
- Low Supply Current: 300 µA
- Global Power Save Mode: 1 µA Max
- Fast Settling Time for Load Change: 20 μs
- Stable with 20 nF in Series with 100 Ω Loads
- CMOS/TTL Input Levels

ADD8502 Integrated LCD Grayscale Generator

ANALOG DEVICES

- 2 Mask Programmable Sets of 5 Reference Levels
- Dual 10-Bit DACs for Flicker Offset and Range Adjustment
- Integrated VCOM Switching
- Single-Supply Operation: 5.0 V
- Low Supply Current: 300 A
- Global Power Save Mode: 1 A Max
- Fast Settling Time for Load Change: 20 μs
- Stable with 20 nF/ 100 Ω Loads
- CMOS/TTL Input Levels

ADM8831 Charge Pump Regulator for Color TFT Panels

ADM8831 Charge Pump Regulator for Color TFT Panels

- Three Voltages from One 3 V Supply
 - +5.1 V, +15.3 V, -10.2 V
- Power Efficiency Optimized for Use With TFT in Mobile Phones
- Shutdown Function
 - <1 µA shutdown current
 </p>
- Power Saving During Blanking Period
- Option to Use External LDO

COMMUNICATIONS **SECTION 8**

RF/IF

SIGNAL PROCESSORS

www.analog.com

REJE

AD8330 Low Cost DC - 200 MHz Variable Gain Amplifier

www.analog.com

PRELIMINARY DATA

AD8330 Low Cost DC - 200 MHz Variable Gain Amplifier

- Fully Differential Signal Path
 - May also be Used With Single Sided Signals
 - Accepts Inputs to 1V rms, Rail to Rail Outputs
 - Differential RIN = 1 kW; ROUT (each output) 75W
 - Automatic Offset Compensation (Optional)
- Linear-in-dB and Linear Gain Control Modes
 - 0 dB to +50 dB, for $0 < V_{DBS} < 1.5V$ (30 mV/dB)
 - Inverted Gain Mode: 50 to 0 dB at -30 mV/dB
 - ×0 to ×10 Nominal Gain for 0 < VLIN < 5 V
 - Constant Bandwidth: 250 MHz at All Gains
- Low Noise: 5 nV/√Hz typ. at Maximum Gain
- Low Distortion: < -60 dBc typ .at all Gains</p>
- Low Power: 18 mA typ. at V_S of 2.7 V to 6 V

AD8330 Low Cost DC - 200 MHz Variable Gain Amplifier Application

AD8330 Low Cost DC - 200 MHz Variable Gain Amplifier Gain Flatness

AD8331 VGA with Ultralow Noise Preamplifier and Programmable R_{IN}

AD8331 VGA with Ultralow Noise Preamplifier and Programmable R_{IN}

- Ultralow Input Noise at Maximum Gain
 - Voltage Noise = 0.75nV/√Hz typ.
 - Current Noise = 2.5 pA/ $\sqrt{\text{Hz}}$ typ.
- Active Termination Match, Selected with an External resistor.
- Ultra Low Noise LNA Pre-amp.
- Single Ended Output Gain = 13 dB.
 - Differential Output Gain = 19 dB.
 - Bandwidth: 200 MHz (-3 dB)

AD8331 VGA with Ultralow Noise Preamplifier and Programmable R_{IN}

- Wide Gain Range w/ Programmable Post-amp
 - -4 dB to +44 dB
 - +8 dB to +56 dB.
- Fully Differential Signal Path after LNA.

Preamplifier and Programmable K_{IN}

- Selectable Output Clamping Level.
- Trimmed for Gain, Offset and Clamping Levels.
- Optimized for 10-/ 12-Bit ADCs.
- Single +5 V Supply

AD8332 Dual VGA with Ultralow Noise Preamplifier and Programmable R_{IN}

AD8332 Dual VGA with Ultralow Noise Preamplifier and Programmable R_{IN}

- Ultralow Input Noise at Maximum Gain
 - Voltage Noise = 0.75nV/√Hz typ.
 - Current Noise = 2.5 pA/√Hz typ.
- Active Termination Match, Selected with an External resistor.
- Ultra Low Noise LNA Pre-amp.
- Single Ended Output Gain = 14 dB.
- Differential Output Gain = 19 dB.
- Bandwidth: 200 MHz (-3 dB)

AD8332 Dual VGA with Ultralow Noise Preamplifier and Programmable R_{IN}

- Wide Gain Range w/ Programmable Post-amp
- U-4 dB to +44 dB
 - +8 dB to +56 dB.
- Fully Differential Signal Path after LNA.
- Selectable Output Clamping Level.
- Trimmed for Gain, Offset and Clamping Levels.
- Optimized for 10-/12-Bit ADCs.
- Single +5 V Supply

AD8367 LF - 500 MHz 45 dB VGA with AGC Detector

www.analog.com

AD8367 LF – 500 MHz 45 dB VGA with AGC Detector

- Linear dB Gain Range: -2.5 dB to 42.5 dB
- Bandwidth: 500 MHz
- Linear-in-dB Precision Attenuator + Fixed Gain Amplifier
- Integrated Square Detector for AGC with RSSI Output
- Two Selectable Modes of Operation
 - VGA mode
 - AGC mode (RSSI, V_{out} = 1 V p-p)
- IP3: 29 dBm @ 50 MHz, R1 = 200 Ω
- NF: 7.3 dB @ Max Gain, $R_s = 200 \Omega$
- Single-ended I/O (200 Ω / 50 Ω Input /Output Impedance)
- Single Supply Operation 2.7 V 5.5 V
- Power-Down Capability
- 14 Lead TSSOP Package

AD8367 LF to 500 MHz VGA

SPECIFICATIONS:

- Linear-in-dB Gain Range –2.5 dB to 42.5 dB
- Gain conformance ±0.2 dB (typ)
- Gain Scaling 20 mV/ dB (typ)

	70 MHz	190 MHz
Output IP3	27.5 dBm	23.9 dBm
 Output P1dB	8.5 dBm	8.4 dBm
Noise Figure	6.2 dB	7.5 dB

Draws 26 mA typ @ 5 Volts

AD8367 IF Accuracy

AD8367 Noise Figure and Linearity

www.analog.com

AD8367 Modes of Operation

AD8369 Digital Control IF VGA

www.analog.com

PRELIMINARY DATA

AD8369 Digital Control IF VGA

- Linear dB Gain Range: -5 dB to +40 dB
- 3 dB Step Size
- Bandwidth: 500 MHz
- Two Tone IMD: 68 dBc @ 70 MHz 1 V p-p
- NF: 6.8 dB @ Max Gain
- Differential I/O (200 Ω Impedance)
- Single Supply Operation 2.7 V 5.5 V, 34 mA with Power Down
- Dual Mode Control Interface
 - 4-bit serial or parallel
 - Latch enable feature

AD8369 Digital Gain Control

www.analog.com

PRELIMINARY DATA

8-21

RF/IF Quadrature Modulators Summary

	AD8346	AD8345	AD8349
Function	RF Modulator	IF Modulator	NEW 3G-MOD
Frequency	800 MHz-2500 MHz	250 MHz-1000 MHz	800 MHz-2700 MHz
Key	Lowest Cost	Lower Noise	Lower Noise
Features	Lowest Power Consumption	Higher Output Power	Highest Output Power
Power Supply	3 V or 5 V		5 V Only
Power Is	45 mA	3 V or 5 V	75 mA
Package	16-TSSOP	65 mA	16-TSSOP
		16-TSSOP Exposed Pad	Exposed Pad
Applications	CDMA/W-CDMA WLL, QPSK 3 V Applications	IF—All STDs Direct 800/900 GSM	W-CDMA/GSM QAM Modulators SSB Mixer
	miditest assit	QAM Modulators SSB Mixer	OOD MIXO

AD8349 800 MHz – 2.7 GHz Quadrature Modulator

AD8349 800 MHz – 2.7 GHz Quadrature Modulator

- Output Frequency Range 800 MHz 2.7 GHz
- Modulation Bandwidth DC 200 MHz
- Output Level: +3 dBm (2.1 GHz)
- Noise Floor: -156 dBm/Hz
- High Accuracy
 - Phase Quadrature Error: 0.5° rms
 - Amplitude Balance: 0.2 dB
- Single Supply 4.5 5.5 V
 - 95 mA Total Current
 - 50 mA with output disabled
- Pin Compatible With AD8346 / AD8345
- 16-lead exposed paddle TSSOP package

AD8345 250 MHz – 1 GHz Quadrature Modulator

AD8345 250 MHz – 1 GHz Quadrature Modulator

- Broadband Modulator
- 250 MHz 1 GHz Operating Frequency
- Direct I/Q for 900 MHz or IF 250 MHz–1000 MHz
- –42 dBc Sideband Suppression
- –155 dBm/Hz Noise Floor
- +2.5 dBm P1 dB
- –150 dBc/Hz Noise Floor
- 0.5° RMS Phase Quadrature Error
- 0.2 dB Amplitude Balance
- 3.7 V 5.5 V Supply Range
- 16-Lead TSSOP Exposed Pad (Pin Compatible with AD8346)

AD8345 Interface with TxDAC

AD8347 Direct I/Q Demodulator

RF / IF demodulator linear gain control with base band output amplifiers

www.analog.com

PRELIMINARY DATA

AD8347 Direct I/Q Demodulator

FEATURES

- Direct I/Q Demodulator RF to base band
- Integrated multiple Linear-in-dB VGA stages
- Integrated DC offset control circuits
- Integrated base band AGC detectors
- Integrated differential base band output amplifiers with ADC common mode adjust
- Small 28 lead TSSOP package
- Ideal companion to ADI CMOS ADCs AD9201 / AD9283 / AD9218

AD8347 2.3 GHz Direct Conversion Quadrature Demodulator

www.analog.com

AD8347 2.3 GHz Direct Conversion Quadrature Demodulator

- Integrated RF and Baseband Gain Control Circuitry
 - >70 dB gain control range linear in dB
- 800 MHz 2.7 GHz RF Input
- 90 MHz Demodulation Bandwidth
- 1° Phase 0.3 dB Amplitude Balance
- 11.5 dB Noise Figure (@ Min Gain)
- 12 dBm IP3 (@ Min Gain), -10 dBm LO Drive
- -2 dBm (Min Gain), -30 dBm (Max Gain) P1 dB
- 2.7 V to 5.5 V Supply Range
 - 64 mA supply current (@ 5 V)
- Power-down to 30 µA

AD8302 Gain Phase Detector

www.analog.com

AD8302 Gain Phase Detector

- Frequency Range: LF 2.7 GHz
- Signal Range: -73 dBV to -13 dBV
 - $-60 \text{ dBm to } -0 \text{ dBm referenced to } 50 \Omega$
- Gain Range: 60 dB, 30 mV/dB, 0 V to 1.8 V
- Phase Range: 180°, 10 mV/°, 0 V to 1.8 V
- Accuracy: 0.5 dB for Gain, 1° for Phase
- Small Signal Envelop Bandwidth: 30 MHz
- Response Time: 60 ns for 30% Change
- Current Consumption: 19 mA Room Temperature
- Supply Voltage: 2.7 V to 5.5 V

www.analog.com

+ 900 mV

900 mV

Gain (dB)

Phase (°)

AD8302 Gain Phase Detector Burne Bur

Gain measurement response maintains integrity beyond 2.2 GHz with a precise slope of 30 mV/dB while maintaining <0.2 dB error over >40 dB of gain range.

www.analog.com

AD8302 Gain Phase Detector Phase Measurement Performance

Phase measurement response shows a precise slope of 10 mV/deg with a phase error <1° over the entire phase range

www.analog.com

AD8302 Gain Phase Detector Measurement Mode

AD8302 Gain Phase Detector Controller Mode

www.analog.com

8-38

AD8362 60 dB TruPwr Detector RMS-to-DC at RF

AD8362 60 dB TruPwr Detector RMS-to-DC at RF

AD8362 60 dB TruPwr Detector RMS-to-DC at RF

- True RMS to DC Conversion Uses Accurate Wide Band Square-Law Detector
- Accuracy 2.7 GHz, 60 dB Range
 - ±1 dB over temperature ±0.6 dB @ 25° C
 - Modulation independent (GSM/CDMA/AMPS/..)
- Greater Than 60 dB Input Range
- Differential Inputs, 50 Ω
- 100 mV RMS Full-Scale Output
- Flat Response from DC to 2.7 GHz
- Measurement or Control Mode
- Operation at Supply Voltages from 2.4 V 5.5 V
- Error-Integrator Output, 0 to > 3 V_p @ V = 5 V
- External Capacitor Extends T_{AVERAGE}
- Rapid Power-Down to 1 µA Max

AD8351 Low Distortion Differential Amplifier by Max

AD8351 Low Distortion Differential Amplifier

- -3dB Bandwidth of 3 GHz
- Single Resistor Programmable Gain Up to 30 dB
- Differential Interface
- Low Noise Input Stage 2.2 nV/√Hz
- Low Harmonic Distortion
 - -78 dBc 2 nd @ 70 MHz
 - -80 dBc 3 rd @ 70 MHz
- Single Supply Operation: 3 to 5.5 V
- Adjustable Output Common Mode Voltage
- Fast Settling and Overdrive Recovery
- Power Down Capability
- 10 Pin Micro SO Package

AD8351 Low Distortion Differential Amplifier

AD8353/54 Gain Blocks in CSP

- 3 x 2 mm Chip Scale Package with exposed paddle
- Excellent thermal impedance for low operating junction temperatures
- Excellent package parasitic impedances for good performance over frequency

AD8353/54 100 MHz - 2.7 GHz **RF Gain Block**

- Silicon Bipolar 50 Ω Matched Gain Blocks
- Fully Specified Over Temp: -40° C to +85° C and Frequency 100 MHz - 2.7 GHz
- Output Power Stable Over Temperature < 1 dB
- Excellent Gain Stability < 1 dB
- Package in 3 mm x 2 mm 8-Lead Chip Scale

AD8353 - 20dB P1 dB 9 dBm OIP3 23 dBm INPT NF 5 dB SUPPLY 41 mA

AD8354 - 20 dB P1 dB 5 dBm OIP3 19 dBm NF 4 dB SUPPLY 23 mA

8-47

WOUSE DANTWING BYNGE LOIS ED

SIGNAL PROCESSORS

ngle Carrier Receivers

N ANALOG DEVICES

www.analog.com

Single Carrier Receivers

Multicarrier Receivers

Multicarrier Transmitters

Multicarrier Receivers

www.analog.com

8-50

AD6623 4-Channel 104 MSPS Digital Transmit Signal Processor

www.analog.com

6623 4-Channel 104 MSPS jital Transmit Signal Processor

Supports Multicarrier IS136, GSM, EDGE, PHS; Single-Carrier IS95/UMTS

Four Independent Digital Transmitters in a Single Package

Programmable IF and Modulation for Each Channel

Programmable Interpolation Filter Coefficients

18-Bit Digital IF Output, JTAG Boundary Scan

Pin-Compatible to the AD6622

3.3 V Supply and LVCMOS and 5 V-Compatible I/O

NCO Frequency Translation with Worst Better Than -100 dBc

_OG CES

www.analog.com

8-52

AD6624A Four-Channel, 100 MSPS Digital Receive Signal Processor (RSP)

AD6624A Four-Channel, 100 MSPS Digital Receive Signal Processor (RSP)

- 100 MSPS Wideband Inputs (14 Linear Bits Plus 3 RSSI)
- Dual High-Speed Data Input Ports
- Four Independent Digital Receivers in Single Package
- Digital Resampling for Noninteger Decimation Rates
- Programmable Decimating FIR Filters
- Programmable Attenuator Control for Clip Prevention and External Gain Ranging via Level Indicator
- Flexible Control for Multicarrier and Phased Array
- 3.3 V I/O, 2.5 V CMOS Core
- User-Configurable Built-In Self-Test (BIST) Capability
- JTAG Boundary Scan

AD6634/35 Dual/Quad-Channel 80 MSPS WCDMA Receive Signal Processor (RSP)

AD6634/35 Dual/Quad-Channel 80 MSPS WCDMA Receive Signal Processor (RSP)

- Multicarrier, Multimode Digital Receivers GSM, IS136, EDGE, PHS, IS95, UMTS, CDMA2000
- 80 MSPS Wideband Inputs (14 Linear Bits Plus Three RSSI)
- Processes Two[Four] WCDMA Channels (UMTS or CDMA2000 1x) or Four[Eight] GSM/EDGE, IS136 Channels
- Four[Eight] Independent Digital Receivers in a Single Package
- Dual[Quad] 16-Bit Parallel Output Ports and Dual[Quad] 8-Bit Link Ports
- Programmable Digital AGC Loops
- Digital Resampling for Noninteger Decimation Rates

AD6634/35 Dual/Quad-Channel 80 MSPS WCDMA Receive Signal Processor (RSP)

- Programmable Digital AGC Loops
- Digital Resampling for Noninteger Decimation Rates
- Programmable Decimating FIR Filters
- Interpolating Half-Band Filters
- Programmable Attenuator Control for Clip Prevention and External Gain Ranging via Level Indicator
- Flexible Control for Multicarrier and Phased Array
- 3.3 V I/O, 2.5 V CMOS Core
- User Configurable Built-In Self-Test (BIST) Capability
- JTAG Boundary Scan

www.analog.com

PRELIMINARY DATA

- Complete Single Chip Programmable Digital Baseband Processor divided into three main subsystems:
- Control Processor Subsystem including:
 - 32-bit MCU ARM7TDMI® Control Processor
 - On-chip Zero-wait-state System SRAM
- DSP Subsystem including
 - 16-bit Fixed Point DSP Processor
 - Data and Program SRAM
 - Program Instruction Cache
 - Full Rate, Enhanced Full Rate and Half Rate
 - Speech Encoding/Decoding

- Peripheral Subsystem including
 - Shared Peripheral Bus and Interface Peripherals
 - Peripheral Functions
 - Parallel and Serial Display Interface
 - Keypad Interface
 - FLASH Memory Interface
 - 1.8 V and 3.0 V, 64 kbps SIM Interface
 - Universal System Connector Interface
 - Baseband Converter Interface
 - Data Services Interface
- Control of Radio Subsystem
- Three independent programmable backlight outputs
- Real Time Clock with Alarm

- Programmable Power Management and Clock Management
 - Supports 13 MHz and 26 MHz Input Clocks
- Slow Clocking Scheme for Low Idle Mode Current
- Power Down modes
- On-chip support for GSM Data Services up to 14.4 kbits/sec,
 Class 12 GPRS, HSCSD
- JTAG Interface for Test and In-Circuit Emulation
- 1.8V Typical Operating Voltage
- Operating Voltage Range 1.7 V 1.9 V
- Independent I/O and Memory Voltages
- 160-Ball LFBGA (mini-BGA) package

AD6652 (Cascade) IF to Baseband Diversity Receiver

- Dual 65MSPS 12-bit ADCs (AD9238)
- Quad Chan RSP
- Processes 2 WCDMA or 4 GSM/EDGE Carriers
- Parallel Input/Outputs Ports
- Embedded Digital AGC
- 3 V ADC & 2.5 V Digital Cores
- 2.5G and 3G BTS applications
- 196 lead BGA

AD6650 (Gemini)IF to Baseband Diversity Receiver

AD6650 (Gemini)IF to Baseband Diversity Receiver

- Dual Channel GSM/EDGE
- Integrated DVGA, I & Q mixers, and ADCs
- IF input range = 70 300 MHz, 250 KHz BW
- Baseband I/Q digital outputs
- NF < 11 dB, IIP3 > -30 dBm
- On board digital filtering and I & Q signal correction
- Embedded PLL, VCO, JTAG

ADF7010 High Performance ISM Band ASK/ FSK/ GFSK Transmitter IC

ADF7010 High Performance ISM Band ASK/ FSK/ GFSK Transmitter IC

- Single Chip Low Power Transmitter
- Frequency bands
 - 433-435 MHz
 - 866-870 MHz
 - 902-928 MHz
- Programmable Output Power
 - -20 to 10dBm
- On Chip VCO and Fractional-N PLL
- ±1 ppm RF output accuracy possible from low-cost 100 ppm crystal
- FSK/ASK Data rates up to 64 kbits/s

ADF7010 High Performance ISM Band ASK/ FSK/ GFSK Transmitter IC

- +2.2 V to +3.6 V Power Supply
- Low Power consumption
 - 20 mA at 0 dBm Output
- Power Down Mode
- 24-pin TSSOP package
- Frequency bands
- Single Chip Low Power Transmitter

ANALOG

www.analog.com

PRELIMINARY DATA

AD9860/62 Mixed Signal Front-End (MxFE™) **Processor for Broadband Communications**

AD9860/62 Mixed Signal Front-End (MxFE™) Processor for Broadband Communications

- Mixed Signal Front-End Processor with Dual Receive and Dual Transmit Channels
- Delay-Locked Loop clock multiplier and Integrated Timing Generation circuitry allow for single crystal or clock operation
- Programmable Output Clocks
- Serial Programmable Interface
- Programmable Sigma Delta, three Auxiliary DAC outputs and two Auxiliary ADCs with dual multiplexed inputs

AD9860/62 Mixed Signal Front-End (MxFE™) Processor for Broadband Communications

- Dual Receive channel includes:
 - Dual 10/12-Bit, 64 MSPS Sampling A/D Converter with Internal or External Independent References,
 - Input Buffers
 - Programmable Gain Amplifiers (RxPGA)
 - Low-Pass Decimation Filters and a Digital Hilbert Block
- Dual Transmit channel include:
 - Dual 12/14-bit, 128 MSPS D/A Converter with Programmable Full Scale Output Current (TxPGA)
 - Channel Independent fine gain and offset control
 - Digital Hilbert and Interpolation Filters
 - Digital I/Q or Real-Signal Up-Converters
 - Coarse and Fine Digital Up-Converters

AD9860 Wireless LAN Application

www.analog.com

AD9860/2 MxFE™ Transmit Path

DAC output of OFDM signal using various AD9862 digital processing features:

- 1.) 0 to 96 MHz spectrum of "Real" output, 2.) with 4x Interpolation, Block C,
- 3.) with Fs/4 Up-conversion, Block B, 4.) with Hilbert Filter, Block E, enabled 5.) Fine Tuned Modulation, Block D, enabled shifted by 6MHz

ANALOG DEVICES

www.analog.com

8-73

Simple Analog Interface Between TxDAC's and ADI Quadrature Modulators

No Active DC Level Shifting Components Required!!!

AD9860/2 MxFETM Receive Path

www.analog.com

N ANALOG DEVICES

www.analog.com

SECTION 9

FREQUENCY SYNTHESIS

DDS

PLL

Direct Digital Synthesis

www.analog.com

What is Direct Digital Synthesis?

Direct Digital Synthesis (DDS) is a technique that allows one to generate high-frequency, spectrally pure sinewaves of varying frequencies.

Start: 0 Hz

Stop = 10 MHz

f_{CLOCK} = 20 MHz f_{OUT} = 7 MHz

www.analog.com

Where is Direct Digital Synthesis Used?

- Synthesis:
 - Sine/cosine waveform generation
 - Excitation Frequency, Resonance Frequency Tracking
 - Network Analysis.... Stimulus and Response
 - Very Fine Frequency and phase adjustments
- Modulation: Bewaves of varying frequencies.
 - Quadrature: I and Q ynthesis (DDS) is a technique that
 - Frequency
 - Phase
 - Amplitude

Basic Waveform Generator

- On Each Cycle of the Clock, the Phase Accumulator Is Incremented and the Desired Signal Amplitude Is Computed from the Resulting Phase, Which Yields a Sine Wave of Constant Frequency.
- But How Can We Vary the Output Frequency Without Having to Vary the Clock Speed?

Phase to Amplitude Conversion

Phase Accumulator

The frequency of the sine wave depends on the step size of the phase accumulator, so we actually write a phase increment to the device (not a frequency).

Advantages of Direct Digital Synthesis

- Provides Fast and Continuous Frequency Tuning Digital Control Varies Output Frequency
- DDS Yields Sine Waves, Which Have Very Low Distortion and High Spurious-Free Dynamic Range (SFDR)
- Highly Accurate and Stable Frequency Source Frequency Resolution is Very High
- Allows for Simple Modulation Schemes
- Provides a Simple Method to Generate and Track Frequencies for Resonance & Network Analysis... Stimulus and Response
- Can Provide Quadrature Frequency Outputs

AD9833 Low Power (20mW) 25 MSPS Frequency Synthesizer meuch ombrie

AD9834 Low Power (25mW), 50 MSPS DDS Synthesizer

AD9833/34 Features

- Low Power (20-35mW)
- 10-Lead µSOIC (AD9833) or 20-Lead TSSOP (AD9834)
- 10-Bit DAC
- 28-Bit Phase Accumulator
- 2.3 V to 5.5 V Operation
- Two Frequency Registers and Two-Phase Registers
- Low Jitter Clock Output
- Narrow Band SFDR >72 dB
- 40 Mhz Serial Interface

AD9859 Low Power 400 MSPS 10-Bit DDS Synthesizer

AD9859 Low Power 400 MSPS 10-Bit DDS Synthesizer

- 400 MSPS Internal Clock Speed
- Multi-chip Synchronization
- Integrated 10-bit DAC
- 14-Bit Amplitude Modulation
- 32-bit Programmable Frequency Register
- On-chip Oscillator / Buffer
- 4x 20x Programmable Reference Clock Multiplier
- SPI Serial Control Interface
- Power Dissipation < 250 mW @ 400 MSPS
- Small 48-lead TQFP Packaging

AD9951 Low Power 400 MSPS 14-Bit DDS Synthesizer

AD9951 Low Power 400 MSPS 14-Bit DDS Synthesizer

- 400 MSPS Internal Clock Speed
- Integrated 14-bit DAC
- 14-Bit Amplitude Modulation
- 32-bit Programmable Frequency Register
- On-chip Oscillator / Buffer
- 4x 20x Programmable Reference Clock Multiplier
- SPI Serial Control Interface
- Power Dissipation < 250 mW @ 400 MSPS
- Small 48-lead TQFP Packaging

AD9952 Low Power 400 MSPS 14-Bit DDS Synthesizer w/ Comparator

AD9952 Low Power 400 MSPS 14-Bit DDS Synthesizer w/ Comparator

- 400 MSPS Internal Clock Speed
- Integrated 14-bit DAC
- 14-Bit Amplitude Modulation
- 32-bit Programmable Frequency Register
- On-chip Oscillator / Buffer
- 4x 20x Programmable Reference Clock Multiplier
- SPI Serial Control Interface
- High-Speed Comparator
- Power Dissipation < 250 mW @ 400 MSPS
- Small 48-lead TQFP Packaging

AD9858 1 GSPS DDS with Phase Detector and Analog Multiplier

www.analog.com

AD9858 1 GSPS DDS with Phase Detector and Analog Multiplier

- 1 GSPS Internal Clock Speed
- Integrated 10-Bit D/A Converter
- Phase Noise <130 dBc/Hz @ 1 kHz Offset (DAC Output)
- 32-Bit Programmable Frequency Register
- Simplified 8-Bit Parallel and SPI Serial Control Interface
- Automatic Frequency Sweeping Capability
- Power Dissipation < 2 Watts @ 1 GHz
- 100-Lead LQFP Surface-Mount Package
- Integrated Programable Charge Pump and Phase/Frequency Detector with Fast Lock Circuit
- Frequency Detector and Integrated Mixer

AD9953 Low Power 400 MSPS 14-Bit FSK Modulator w/ Frequency Sweep

AD9953 Low Power 400 MSPS 14-Bit FSK Modulator w/ Frequency Sweep

- 400 MSPS Internal Clock Speed
- Integrated 14-bit DAC
- RAM: 1K, 32 Bit
- 14-Bit Amplitude Modulation
- 32-Bit Programmable Frequency Register
- On-chip Oscillator / Buffer
- 4x 20x Programmable Reference Clock Multiplier
- SPI Serial Control Interface
- Power Dissipation < 250 mW @ 400 MSPS
- Small 48-lead TQFP Packaging

AD9954 Low Power 400 MSPS 14-Bit Advanced FSK Modulator w/ Comparator

AD9954 Low Power 400 MSPS 14-Bit Advanced FSK Modulator w/ Comparator

- 400 MSPS Internal Clock Speed
- Integrated 14-bit DAC
- RAM: 1K, 32-bit
- 14-Bit Amplitude Modulation
- 32-bit Programmable Frequency Register
- On-chip Oscillator / Buffer
- 4x 20x Programmable Reference Clock Multiplier
- High-Speed Comparator
- SPI Serial Control Interface
- Automatic Frequency Sweeping
- Power Dissipation < 250 mW @ 400 MSPS
- Small 48-lead TQFP Packaging

DDS Product Roadmap

Synthesizers

AD9850 C-DDS 125 MHz 10-Bit DAC

AD9851 C-DDS 180 MHz 10-Bit DAC

with 6x REFCLK

AD9852 C-DDS 300 MHz 12-Bit DAC

with CLK PLL

AD9854 C-DDS 300 MHz 12-Bit I/Q

DACs with CLK PLL

Modulators

AD9853 QPSK/16-QAM Modulator

AD9856 12-Bit Quadrature Digital Upconverter

SYNTHESIZERS 0.35m CMOS AD9858 C-DDS 0.25m CMOS 900 MHz/10-Bit DAC with CLK PLL AD9852 0.35m BiCMOS AD9859 400 MSPS DDS Low Power **MODULATORS** AD9857 AD98xx 14-Bit Quadrature **High-Speed Quadrature**

Digital Upconverter

RELEASED

www.analog.com

Digital Upconverter

Low Power, Precision Frequency Synthesizer Roadmap

hase Locked Loops

Are PLLSWCOS

www.analog.com

Where Are PLLs/VCOs Used?

- Any Receiver/Transmitter System Using RF
 - Wireless handsets
 - Receivers
 - Transmitters
- Wireless Base Stations
- Wireless LAN Cards
- Instrumentation

Dual Conversion Superheterodyne Receiver

www.analog.com

www.analog.com

Phase Locked Loop (PLL) Concept

$$e(s) = F_{REF} - \frac{F_o}{N}$$

When
$$e(s) = 0$$
 $\frac{F_0}{N} = F_{REF}$

$$F_o = N.F_{REF}$$

PLL Performance Issues

www.analog.com

What is a Mixer?

THE IDEAL MIXER

Channel Spacing for Integer N PLL

Channel Spacing for Integer N PLL

- DF = F_{REF}
- For GSM, F_{REF} = 200 kHz
- F_{RF} = 925 MHz–960 MHz for the Receiver
- If First IF is Set at 240 MHz, LO Must Go from 685 MHz–720 MHz
- This Means N Must Vary from 3425–3600

Effects of Phase Noise On Cellular Systems

- GSM Phase Accuracy Specification:
 - The RMS phase error shall not be greater than 5° with a maximum peak deviation during the useful part of the burst less than 20°.
 - In a cellular handset/base station, the three main contributors to the RMS phase error are:
 - Q Synt—the integrated phase error due to the LO PLL synthesizer
 - Q Baseband—the integrated phase error due to the baseband converter
 - Q (I and Q)—the integrated phase error due to the IQ
 modulator

Phase Noise

An oscillator frequency is equal to the time derivative of phase. Constant oscillator phase slope equates to unique frequency in the frequency domain.

IDEAL

FREQ

In practice, oscillator noise exists on the phase slope (Phase Noise). An oscillator frequency spectrum "spreads" in the presence of phase noise.

Signal desensitization is a natural result of frequency translation with practical oscillators due to adjacent channel "frequency spreading," amplification causes spectral "growth."

www.analog.com

GSM — Phase Noise

www.analog.com

DCS GSM — Phase Noise

www.analog.com

Measured ADI Phase Noise vs. Industry

ADF4112 (900 MHz) Phase Noise –92 dBc/Hz

www.analog.com

Integrated Phase Noise (GSM)

ADF4112

Center Freq: 902MHz Integrated PN: 0.5° 100Hz to 100kHz

VCO: REF:

Vari-L 902T

LPF BW:

200kHz 20kHz

VDD: VCP:

5V 5V

ICP:

Lo setting

R_{SET}: P:

 $4.7k\Omega$ 32/33

Lock Time

Settling Time Is Proportional to F_{REF} and the Loop Bandwidth

Comparing Locked and Oper PLL LO Noise Performance

www.analog.com

Comparing Locked and Open PLL LO Noise Performance

LO WITH ADF4xxx

www.analog.com

Using a Reference Divider

Prescaler

Dual Modulus Prescaler

Fractional-N PLL

Achieved by means of two or more integral feedback divider ratios with different duty cycles such that a weighted average of the divider ratio is created.

Fractional-N PLL

Fractional-N PLL

- Advantage of Fractional-N
 - Reference can be multiple times the channel spacing (smaller N hence lower phase noise)
 - Loop filter bandwidth can be increased (faster lock time)
- Challenges
 - Fractional divide ratios create spurs
- Several Methods of Dealing with Fractional Spurs
 - Spur compensation
 - Noise shaping
 - Combination of both

Integer-N PLL Synthesizer: Limitations

Large N = >Large phase noise gain inside loop bandwidth

Quantization Noise Spurs

www.analog.com

► (f)

www.analog.com

3RD order roll-off from loop filter

F-N Using High Order Modulator

ADF4106 PLL Frequency Synthesizer

ADF4106 PLL Frequency Synthesizer

- 6 GHz Bandwidth
- +2.7 V to +3.3 V Power Supply
- Separate Charge Pump Supply (VP) Allows Extended Tuning Voltage in 3V Systems
- Programmable Dual Modulus Prescaler 8/9, 16/17, 32/33, 64/65
- Programmable Charge Pump Currents
- Programmable Anti-Backlash Pulse Width
- 3-Wire Serial Interface
- Analog and Digital Lock Detect
- Hardware and Software Power Down Mode

ADF4212L Dual Low Power PLL Frequency Synthesizer

ADF4212L Dual Low Power PLL Frequency Synthesizer

- 2.5 GHz RF 500 MHz IF
- +1.8 V to +3.3 V Power Supply
- Separate Vp Allows Extended Tuning Voltage
- Programmable Dual Modulus Prescaler
- RF & IF: 8/9, 16/17, 32/33, 64/65
- Programmable Charge Pump Currents
- 3-Wire Serial Interface
- 5 mA Total Supply Current
- Power Down Mode

ADF4217L/18L/19L Dual Low Power **Frequency Synthesizer**

www.analog.com

PRELIMINARY DATA

ADF4217L/18L/19L Dual Low Power Frequency Synthesizer

- Bandwidth:
 - RF 2.5 GHz
 - IF 1.2 GHz
- Selectable Dual Modulus Prescaler
 - ADF4217L/ADF4218L:
 - IF: 8/9 or 16/17
 - RF: 32/33 or 64/65
 - ADF4219L:
 - IF: 8/9 or 16/17
 - RF: 16/17 or 32/33

ADF4217L/18L/19L Dual Low Power Frequency Synthesizer

- Total IDD: 7.0 mA
- +2.6 V to +3.3 V Power Supply
- 1.8 V Logic Compatibility
- Separate Vp Allows Extended Tuning Voltage
- Selectable Charge Pump Currents
- 3-Wire Serial Interface
- Power Down Mode

ADF4252 Dual Fractional N / Integer N Frequency Synthesizer

ADF4252 Dual Fractional N / Integer N Frequency Synthesizer

- ADF4252: 1.0 GHz / 3.0 GHz
- +2.7 V to +3.3 V Power Supply
- Separate Vp Allows Extended Tuning Voltage
- Programmable Dual Modulus Prescaler
 - RF: 4/5, 8/9
 - IF: 8/9, 16/17, 32/33, 64/65
- Programmable Charge Pump Currents
- 3-Wire Serial Interface
- Digital Lock Detect
- Power Down Mode
- Programmable Modulus Interpolator

ADF4156 Fractional-N Frequency Synthesizer

ADF4156 Fractional-N Frequency Synthesizer

- 6 GHz Fractional-N Frequency Synthesizer
- +2.7 V to +3.3 V Power Supply
- 1.8 V to +3.3 V Sigma-Delta Power Supply
- Separate Vp Allows Extended Tuning Voltage
- Programmable Dual Modulus Prescaler
 - **4/5**, 8/9
- Programmable Charge Pump Currents
- 3-Wire Serial Interface
- Digital Lock Detect
- Power Down Mode
- Pin Compatible With The ADF4110/1/2/3 Integer N

1st Silicon Results on ADF4156

Base-Station / WLAN Roadmap

Mobile Platform Roadmap

ANALOGDEVICES

www.analog.com

RFIC Roadmap

www.analog.com

RFIC Evolution Roadmap Summary

ANALOGDEVICES

www.analog.com

PLL Design Software

ADI SimPLL™

PLL Design & Simulation for Analog Devices PLL's

ADIsimPLL

PLL DESIGN AND SIMULATION SOFTWARE

This software has been developed for the sole purpose of optimizing PLL designs, making it faster and easier to accomplish individual goals. From the entry-level engineer to the seasoned veteran, ADIsimPLL has an arsenal of onboard tools and options that are guaranteed to maximize the efficiency of PLL circuit design.

ADI SIMPLIM

PLL Design Software

ADIsimPLL - Tutorial Opening Screen

www.analog.com

ADIsimPLL - Specification Instructions

ADIsimPLL - Frequency Specifications

ADIsimPLL - Chip Selection

ADIsimPLL - VCO Selection

ADIsimPLL - Reference Selection

PLL Reference Selection	×
Reference frequency must be between 25.00kHz and 100.0MHz and a multiple of 25.00kHz	
To use a crystal oscillator choose "custom" and enter the crystal frequency. For an external reference oscillator select it from the library, or use custom and enter the	
O From Library	
Ref. Library user	
Ref. Model TCX010	
Custom Frequency 10.000MHz	
For a custom Reference, enter the desired frequency in Hz. For example, to enter 10MHz simply enter '10M' or '10e6' Phase noise details can be entered later.	
< Back Next > Cancel Help	

ADIsimPLL - Loop Filter Selection

ANALOGDEVICES

ADIsimPLL - VCO Results

ADIsimPLL - Frequency Domain Results

ADIsimPLL - Time Domain Results

ADIsimPLL - Scematic

- 2. Voc1 Analog Voc
- 3. Voc2 Digital Voc
- 4. Vp Charge Pump power supply
- 5. Vcc1 = Vcc2, Vp >= Vcc1,2
- 6. CE = OV powers down chip
- 7. Consult manufacturer's data sheet for full details

ADIsimPLL - Frequency Domain Report

Design1 analysed at 07/23/02 07:02:53

PLL Chip is ADF4116 VCO is custom Reference is custom

Frequency Domain Analysis of PLL

Analysis at PLL output frequency of 114MHz

Phase No	ise Table				
Freq	Total	VCO	Ref	Chip	Filter
100	-93.73	merto i en e	ed to Transfer	-93.81	-111.5
1.00k	-88.97	London to A Mill of	age to 1 disease	-91.73	-92.25
10.0k	-106.0	India 10.0 d	en is 1 21 ms	-110.5	-107.9
100k	-145.7	nelding (VCO	Output Phase	-150.3	-147.6
1.00M	-185.7			-190.3	-187.6

Phase jitter using brick wall filter

from 10.0kHz to 100kHz Phase Jitter **0.02 degrees rms**

Carrier Recovery phase jitter A STORMS

Carrier recovery bandwidth 6.40kHz damping factor 0.7071
Symbol Filter cutoff 32.0kHz Butterworth with 3 poles
Phase Jitter 0.09 degrees rms

Residual FM

from 300 Hz to 5.00kHz is 8.52 Hz

EM SNR

sinusoidal modulation with 10.0kHz peak deviation Signal to Noise Ratio = **58.4 dB**

ACP - Channel 1

Channel 1 is centred 25.0kHz from carrier with bandwidth 15.0kHz
Power in channel = -78.6dBc

---- End of Frequency Domain Results ----

www.analog.com

ADIsimPLL - Time Domain Report

Transient Analysis of PLL

Frequency change from 100MHz to 130MHz

Frequency Locking

Time to lock to 1.00kHz is 1.21ms Time to lock to 10.0 Hz is 1.60ms

Phase Locking (VCO Output Phase)

Time to lock to 10.0 deg is 1.21ms Time to lock to 1.00 deg is 1.48ms

Lock Detect Threshold

Time to lock detect exceeds 2.50 V is 1.42ms

---- End of Time Domain Results ----

ADISIMPLL - Frequency Domain Report

9-85

ADISIMPLL

- Support
- User's Forum:
- http://www.radiolab.com.au/Forums/

www.analog.com

ANALOG

http://www.ladiolab.com.au/Forum

og.com

POSGISVE SECTION 10 HCH-SEREOBWVICE

Networking Circuits

ANALOG

Current DSL Line Driver Positioning

ANALOGDEVICES

www.analog.com

AD8391 xDSL Line Driver

Ideal xDSL line driver for V_0 DSL or low power applications such as USB, PCMCIA, or PCI-based Customer Premise Equipment (CPE).

Thermal Coastline 8-Pin SOIC

AD8391 xDSL Line Driver 3 V to 12 V with Power-Down

- High Output Voltage and Current Drive
 - 340 mA Output Drive Current
- Low Power Operation
 - 3 V to 12 V Power Supply Range
 - 1-Pin Logic Controlled Standby, Shutdown
 - Low Supply Current of 19 mA (Typical)
- Low Distortion
 - -82 dBc SFDR, 8 V p-p into Differential 21 @ 100 kHz
 - 4.5 nV/√Hz Input Voltage Noise Density, 100 kHz
 - Out-of-Band SFDR = -72 dBc, 144 kHz to 500 kHz, Z_{LINE} = 100, P_{LINE} = 13.5 dBm
- High Speed
 - 40 MHz Bandwidth (-3 dB)
 - 375 V/µs Slew Rate

AD8393 Adaptive Linear Power™ +12V ADSL-CO Line Driver

- Analog Devices' Adaptive Linear Power™ architecture
- Low power consumption for DSL line driver applications
- Enables high port density Central Office modems.
- Allows single +12 V supply (or ±6 V supplies) and a transformer ratio of 1:1.2
- Total Power consumption of 575 mW (including line power) for non-overlapped applications (19.8 dBm line power)
- Total Power consumption of 624 mW (including line power) for overlapped applications (20.4 dBm line power).
- MTPR of –67.4 dBc (526 KHz, 5.3 Crest Factor, non-overlapped, RL= 70 Ω)
- Available in 32L 5 x 5 mm LFCSP and 28L TSSOP and packages.

AD8393 Adaptive Linear Power™ +12V ADSL-CO Line Driver and 28 L280 and

AD8393 single +12V supply operation showing Adaptive Linear Power[™] supplies and driver outputs. Internally, the supplies (Vccp, Veep) are brought outside the rails to accommodate peaks above 12 V and below GND.

CALA Logarer and Meiding Lower System Bit Error Rate

- Value Proposition
- Continued Focus on Solution Cost Reduction for DOCSIS Cable Modems and Set-Top Boxes
 - CMOS driver (AD8328) will have lowest "solution cost" in the market available
 - BiCMOS driver (AD8329) will have a higher output power while maintaining a low cost

CATV Line Driver Positioning Output Power Performance vs. Solution Cost

- AD8327 Provides Added Headroom in Support of DOCSIS
 Distortion Performance
- Low Distortion Results in Reduced "Adjacent Channel Power"
 (ACP) "Splatter" and Yielding Lower System Bit Error Rate

AD8326 High Output Power Programmable CATV Line Driver

AD8326 High Output Power Programmable CATV Line Driver

- Supports DOCSIS Standard for Reverse Path Transmission
- Gain Programmable in 0.75 dB Steps over 53.5 dB Range
- Low Distortion at 65 dBmV Output
 - -62 dBc SFDR @ 21 MHz
 - -58 dBc SFDR @ 65 MHz
- 1 dB Compression of 25 dBm at 10 MHz
- Output Noise Level –45 dBmV in 160 kHz
- Maintains 75 Ω Output Impedance in Power-Up and Power-Down Condition
- Upper Bandwidth: 100 MHz (Full Gain Range)
- Single- or Dual-Supply Operation

AD8327 5 V CATV Line Driver Coarse Step Output Power Control

AD8327 5 V CATV Line Driver Coarse Step Output Power Control

- Supports DOCSIS Standard for Reverse Path Transmission
- Gain Programmable in 6.02 dB Steps over a 48.16 dB Range
- Low Distortion at 60 dBmV Output
 - -63 dBc SFDR @ 21 MHz
 - -57 dBc SFDR @ 42 MHz
- Output Noise Level –47 dBmV in 160 kHz
- Maintains 75 Ω Output Impedance
- Transmit Enable and Transmit Disable Modes
- 5 V Supply Operation
- Supports SPI Interfaces

AD8328 Low-Cost 5 V CATV Line Driver

- Supports DOCSIS and EuroDOCSIS Standard for Reverse Path Transmission
- Gain Programmable in 1 dB Steps over a 59 dB Range
- Low Distortion at 60 dBmV Output
 - -54 dBc SFDR @ 21 MHz
 - -52 dBc SFDR @ 65 MHz
- Available in Both 20-Pin QSOP and LFCSP
- Targeted for Low Cost Cable Modem Applications
- 5 V Supply Operation
- Supports SPI Interfaces

AD9873 Analog Front End Converter for Set-Top Box, Cable Modem

AD9873 Analog Front End Converter for Set-Top Box, Cable Modem

- Low-Cost 3.3 V CMOS Analog Front End Converter for MCNS-DOCSIS, DVB, DAVIC-Compliant Set-Top Box, Cable Modem Applications
- 232 MHz Quadrature Digital Upconverter
 - DC to 65 MHz Output Bandwidth
 - 12-Bit Direct IF D/A Converter (TxDAC+®)
 - Programmable Reference Clock Multiplier (PLL)
 - Direct Digital Synthesis
 Algeo Jubat Malliblexet
 - Interpolator
 - SIN(x)/x Compensation Filter
 - Four Programmable, Pin-Selectable Modulator Profiles
 - Single-Tone Mode for Frequency Synthesis Applications

AD9873 Analog Front End Converter for Set-Top Box, Cable Modem

- 12-Bit, 33 MSPS Sampling Direct IF A/D Converter with Auxiliary Automatic Clamp Video Input Multiplexer
- 10-Bit, 33 MSPS Sampling Direct IF A/D Converter
- Dual 8-Bit, 16.5 MSPS Sampling IQ A/D Converter
- Two Independently Programmable Sigma-Delta Converters
- Direct Interface to AD8321/23 PGA Cable Driver
- Programmable Frequency Output
- Power-Down Modes

AD9879 Mixed Signal Front End Set Top Box & Cable Modem

www.analog.com

PRELIMINARY DATA

- Low Cost 3.3 V MxFETM for DOCSIS, EURO-DOCSIS, DVB, DAVIC Compliant Set Top Box & Cable Modem Applications
- 232 MHz Quadrature Digital Upconverter
 - 12-Bit Direct IF DAC (TxDAC+TM)
 - Up to 65 MHz Carrier Frequency DDS
 - Programmable Sampling Clock Rates
 - 16x Upsampling Interpolation LPF
 - Single Tone Frequency Synthesis
 - Analog Tx Output Level Adjust
 - Direct Cable Amp Interface
- 12-Bit, 33 MSPS Direct IF ADC with Optional Video Clamping Input
- 10-Bit, 33 MSPS Direct IF ADC
- Dual 7-Bit, 16.5 MSPS Sampling I/Q ADC
- 12-Bit Sigma Delta Auxiliary DAC

AD9873/79 Cable Modem - Set-Top Box

ANALOG DEVICES

www.analog.com

Differences Between AD9879 and AD9873

Performance:

- Improved under-sampling performance of 10-bit and 12-bit ADCs.
- DDS Frequency tuning resolution improved to 3.2 Hz from 12.8 Hz.
- Improved Tx Path SNR and carrier leakage performance (No DC offset on I and Q channels).
- Lower power consumption in digital blocks.
- IQ ADC resolutions are now 7 bits

Functions:

- Fine gain control added to DAC output to support direct connect to AD8321/23 or AD8322/27.
- One sigma delta DAC output changed to a digital control output
- Buffered OSCIN output functionality added to programmable MCLK divider pin.
- RX_SYNC control added.
- Programmable Output Edge Rate on Rx port.
- 12x Interpolation mode (N=3) no longer supported
 - Number of Profile registers reduced from 4 to 2.

www.analog.com

Differences Between AD9879 and AD9873

Operation:

- Reset sequence changed.
- Single tone mode doesn't require TX SYNC pulse.
- RX output timing for 10/12-bit muxing is changed.

Pins:

- Pin 35 (PROFILE1) becomes No Connect. Two profile registers removed.
- Pin 67 (SDELTA1) becomes FLAG1.
- Pins 75, 76 (REFTIQ, REFBIQ) become No Connects. 6bit and 10-bit ADCs share reference.
- Pin1 (AVDD) becomes No Connect.
- Pins 77 & 80 (AGND IQ) become No Connects.

AD9877 Mixed-Signal Front End (MxFE™) For Cable Modems and Set-Top Boxes

AD9877 Mixed-Signal Front End (MxFE™) For Cable Modems and Set-Top Boxes

- Compliant With Standards Including MCNS-DOCSIS, DVB, DAVIC
- 232 MHz Quadrature Digital Upconverter, DC to 70 MHz Output Bandwidth
- Four Programmable, Pin Selectable Modulator Profiles
- Fine Gain Adjust
- TxDACTM 12-Bit Direct IF D/A Converter
- 12-Bit, 33 MSPS Sampling Direct IF A/D Converter
- Dual 8-Bit, 16.5 MSPS Sampling A/D Converters
- Direct Interface to AD8321/3 or AD8322/7 PGA Cable Driver
- Programmable Frequency Output
- Power-Down Modes

AD9877 Cable Modem Application

AD9875/76 Mixed-Signal Front End (MxFE™)

AD9875/76 Mixed-Signal Front End (MxFE™)

- Low-Cost 3.3 V-CMOS Mixed-Signal Front End for Broadband Modems
- AD9875: 10-Bit, 50 MSPS ADC and 128 MSPS DAC
- AD9876: 12-Bit, 50 MSPS ADC and 128 MSPS DAC
- 64 MSPS/32 MSPS Input Word Rate
- 2x/4x Interpolation LP or BP Transmit Filter
- 26 MHz Transmit Bandwidth
- 4TH Order 12 MHz or 29 MHz Low-Pass Filter (with Bypass)
- -6 dB to +36 dB PGA on Receive Channel
- Two Internal x4 Clock Multiplier PLLs
- Power-Down Mode
- 48-Lead LQFP Package

Home Networking and Wired BBA

Key Segments:

- ■HomePNA Home Network Over Internal Phone Lines
- ■HomePlug™ Home Network Over Internal Power Lines

PLC Forum-European Version of HomePlug+Access

- Cable Modem Internet Access via Cable
- ■VDSL Short Range/High Rate DSL

HomePNA Modem Application

Home
Phoneline
Network
CERTIFIED W

Technology:

- Rate Adaptive (4 Mbps–32 Mbps)
- Modulation Scheme: QAM/FDQAM
- Half-Duplex
- Spectral Band: 4 MHz-10 MHz
- Tx Power: 0.5 V p-p, 160 mV_{RMS}

Implementation:

- Design-In: AD9875
- 3.3 V, No Driver, No Receive Amp
- Cheap, Small, Low Component Count

www.analog.com

10-29

Technology:

- Modulation Scheme: OFDM
- Rate Adaptive (Up to 13.75 Mbps)
- Half-Duplex
- Spectral Band: 4.5 MHz 20.7 MHz
- Tx Power: 2.7 V_{RMS} , into 50 Ω

Implementation:

- Design-In: AD9875/6, AD8016, AD8022
- 12 V, Needs Driver, Might Need Receive Amp

VDSL Key Points

Technology:

- Modulation Scheme: QAM/DMT/FMT
- Rate Adaptive (Up to 51 Mbps/ 6.5 Mbps)
- Full-Duplex
- Spectral Band: 0.1 MHz 12 MHz
- Tx Power: 1.0 V_{RMS} , into 100 Ω

Implementation:

- Design-In: AD9876, AD8012 or AD8018, AD8022
- 5 V, Low Power

AD9878 Mixed-Signal Front End (MxFE) for Set-Top Box, Cable Modem

AD9878 Mixed-Signal Front End (MxFE) for Set-Top Box, Cable Modem

- Low Cost 3.3 V-CMOS MxFE for DOCSIS, EURO-DOCSIS, DVB, DAVIC Compliant Set-Top Box and Cable Modem Applications
- 232 MHz Quadrature Digital Upconverter
 - 12-Bit Direct IF D/A Converter (TxDAC+®)
 - Up to 65 MHz Carrier Frequency DDS
 - Programmable Sampling Clock Rates
 - Selectable Interpolation Filter
 - Analog Tx Output Level Adjust
- Dual 12-Bit, 29 MSPS Direct IF ADCs w/ Video Clamp I
- 10-Bit, 29 MSPS Sampling ADC
- 8-Bit Σ-Δ Auxiliary DAC
- Direct Interface to AD8321/23 or AD8322/27 PGA Cable Driver

ADN2841 AnyRate to OC-48/SDH-16 Dual-Loop Laser Diode Drivers

www.analog.com

ADN2841 AnyRate to OC-48/SDH-16 Dual-Loop Laser Diode Drivers

- 50 Mbps to 2.7 Gbps Operation
- 80 pS Rise and Fall Times (Typ)
- Modulation Current Range 5 mA to 80 mA
- Closed-Loop Control of Power and Extinction Ratio
 - Maintains optimal laser diode performance over temperature, lifetime, diode process variations, and diode supplier
 - Reduces diode tuning time required at assembly
- Full Current Parameter Monitoring
- Laser Fail and Laser Degrade Alarms
- Automatic Laser Shutdown, ALS
- Dual MPD Functionality for DWDM
- Optional Clocked Data
- Available in Two Package Sizes:
 - 32-Lead CSP 5 mm x 5 mm
 - 48-Lead CSP 7 mm x 7 mm

www.analog.com

Dual-Loop Control Quick Tutorial: Understanding Laser Diode Transfer Function

Laser Diode Characteristics Change Over Temperature (and Time)

In an uncooled environment, a laser diode driver must compensate for these changes to maintain a constant optical output.

www.analog.com

The ADN2841/47 maintains constant optical output power levels for the "optical 1" and "optical 0."

Extinction Ratio and Average Optical Power Continously Maintained Over a Wide Temperature Range

ADN2841 Optical Performance

Temperature (°C)	Extinction Ratio (dB)	Average Optical Power (dBm)
-10	9.86	-3.59
0	9.84	-3.44
25	9.64	-3.06
40	9.55	-3.03
70	10.16	-3.35

Extinction Ratio Range = 0.61 dB Average Power Range = 0.56 dB

Notes

Laser used = Mitsubishi FU-445, (typical tracking error = 0.5 dB). Measurement taken from ADN2841 Optical Demo Board Rev C.

ADN2841 Optical Eye Diagram — 5 V Operation

2.5 Gbps filtered optical eye at 25°C, Mitsubishi FU-445 laser diode and ADN2841

www.analog.com

ADN2847 3V DUAL LOOP 50 Mbps to 3.3 Gbps LASER DIODE DRIVER

ADN2847 3V DUAL LOOP 50 Mbps to 3.3 Gbps LASER DIODE DRIVER

- Closed loop control of Power and Extinction Ratio
- 50 Mbps to 3.3 Gbps Operation
 - Single 3.3 V operation
 - Typical rise/fall time 80 ps
- Bias Current range 2 to 100 mA
- Modulation Current range 5 to 80 mA
- Monitor Photo Diode current 50 to 1100 uA
- Dual MPD functionality for DWDM
- 55 mA Supply Current at +3.3 V

ADN2847 3V DUAL LOOP 50Mbps to 3.3Gbps LASER DIODE DRIVER

- Bias Current and Modulation Current Monitors
- Laser Fail and Laser Degrade alarms
- Automatic Laser Shutdown, ALS
- Optional Clocked Data
- Supports FEC Rates
- Full Current Parameter Monitoring
- 48 pin (7 mm x 7 mm) LFCSP package
- 32 pin (5 mm x 5 mm) LFCSP package
 - (reduced functionality)

ADN2847 3V DUAL LOOP 50Mbps to 3.3Gbps LASER DIODE DRIVER

ANALOG DEVICES

www.analog.com

PRELIMINARY DATA

10-46

ADN2848 OC-3/12 SDH-1/4 Laser Diode Driver

- 3.3 V Operation
- Data rates from 155 Mbps to 622 Mbps

- Closed-Loop Control of Laser Diode Average-Power and Extinction-Ratio
- High-Current Drive Capability:
 - I_{MOD} up to 80 mA
- Available in 32-Lead 5 mm x 5 mm CSP Package

ADN2830 Average Power Controller for Continuous Wave (CW) Lasers

ANALOGDEVICES

www.analog.com

PRELIMINARY DATA

ADN2830 Average Power Controller for Continuous Wave (CW) Lasers

- Bias Current Range 4 mA to 200 mA
- Monitor Photo Diode Current 50 μA to 1200 μA
- Closed Loop Control of Average Power
- Laser Fail and Laser Degrade Alarms
- Automatic Laser Shutdown, ALS
- Full Current Monitoring
 - +5 V Operation
 - -40° C to 85° C Temperature Operation
 - 5 mm x 5 mm 32 pin LFCSP Package

ANALOGDEVICES

www.analog.com

PRELIMINARY DATA

ADN2843 10.709 Gb/s Laser Diode Driver Chipset

- Data Rates from 50 Mb/s to 10.709 Gb/s
- Typical Rise/ Fall Time 30 ps
- Bias Current Range 3 mA to 80 mA
- Modulation Current Range 5 mA to 80 mA
- Monitor Photo Diode Range 50 mA to 1100 mA
- Closed Loop Control of both Average Optical Power and Extinction Ratio
- Programmable Loop BW for Both Loops
- Laser Fail and Laser Degrade Alarms
- Automatic Laser Shutdown, ALS

ADN2843 10.709 Gb/s Laser Diode Driver Chipset

- Dual MPD functionality for wavelength control
- CML data inputs ontrol of both Average Optical Power and
- 50 Ω internal data terminations of my to 1100 my
- +3.3 V single supply operation W∀ 10 80 W∀
- Driver supplied in dice format.
 - ADN2844 Also Available in Packaged Form (5 mm x 5mm LFCSP)

ADN2850 Dual Programmable Resistors

- Enables Automated Setup of Laser Bias and Modulation Current Levels
 - Programmable laser calibration, minimizes setup time during assembly
 - Nonvolatile memory for set-point storage
- Industry's Lowest Temperature Coefficient by 10x (35 ppm/°C Typical)
- 10-Bit Resolution: Largest Range Available. Full-Scale Values:
 - 25 kΩ
 - = 250 kΩ
- Available in Two Package Types:
 - LFCSP: 5 mm x 5 mm, 16-Lead
 - TSSOP: 5 mm x 6.5 mm, 16-Lead

www.analog.com

ADN2819 Multirate to 2.7 Gbps Clock and Data Recovery with Limiting Amplifier

- Single Reference Clock Frequency for All Rates
- Internal MUX to Bypass CDR

ADN2819 Multirate to 2.7 Gbps Clock and Data Recovery with Limiting Amplifier

- SONET OC-3/12/48, SDH STM-1/4/16, and All Associated FEC Rates
- Meets All SONET/SDH Requirements for Jitter Transfer, Generation, and Tolerance
- Integrated Limiting Amplifier with User-Programmable Threshold (Slice) Adjust
 - Limiting amplifier sensitivity: 4 mV typical
 - Adjustable slice level: ±100 mV
- One Supply +3.3 V ± 10%
- Low Power: 540 mW Typical
- Small Footprint: 48-Lead LFCSP Package (7 x 7 mm Overall)

Recovery with Limiting Amplifier

ADN2819 Multirate to 2.7 Gbps Clock and Data Recovery with Limiting Amplifier

- Loss of Lock Indicator 「LCSB Backage (7 x 7 mm Overall)
- Loop-back Mode for High-Speed Test Data
- Squelch and Bypass Features
- Single-Supply Operation: 3.3 V
- Patented Clock Recovery Architecture

www.analog.com

PRELIMINARY DATA

ADN2819 Slice Adjust Capability Minimizes Effects of P1 Noise

- Typically the data slicing level (the determination point of whether the sampled signal is at '0' or '1') is set at 50%
- Laser diodes used in fiber optic systems typically induce more noise on the optical '1' signal level than on the '0'
- In such systems the "optimal" slice level is below 50% in order to avoid false detects generated by excessive noise

- Optical transmission can also distort the optical eye, resulting in "fat zero's" and "thin ones".
- Again slice adjust capability again allows for setting an "optimal" slice level

ADN2819 Slice Level Adjust Provides Optimal System Performance

- By providing the ability to externally adjust the 0/1 slicing level, the ADN2819 allows customers to optimize overall system performance
 - The Slicing Level can be offset by +/-100mV for enhanced flexibility

ADN2819 Measured Performance

www.analog.com

PRELIMINARY DATA

10-60

ADN2811 OC-48 (FEC) CDR for WDM Transponders

Loss of lock Slice Level coarse Ref freq Loop Freq/Lock Clock tune Filter Detector Loop Phase Phase Ouantizer Filter Shifter Det Xtal Data fine OSC Input freq Data tune Level Fractional Retiming Divider Detect LOS Thradi Output Clock Output

ADN2811 OC-48 (FEC) CDR for WDM Transponders

- Meets SONET Requirements for Jitter Transfer / Generation / Tolerance
- 1.9 GHz minimum Bandwidth
- Quantizer Sensitivity: 4 mV
- Adjustable Slice Level: ±100 mV
- Loss of Signal Detect Range: 2 mV to 15 mV
- Single Reference Clock Frequency for both rates Including 15/14 (7 %) Wrapper Rate
 - Choice of 19.44, 38.88, 77.76 or 155.52 MHz
- LVPECL / LVDS / LVCMOS compatible inputs

ADN2811 OC-48 (FEC) CDR for WDM Transponders

- 19.44 MHz Crystal Oscillator for Module apps
- Single Supply Operation: 3.3 Volts
- Low Power: 570 mW Typical
- Loss of Lock indicator
 - Loopback mode for High Speed Test Data
 - Squelch & Bypass features
 - Patented Clock Recovery Architecture
 - 7 x 7 mm 48 pin LFCSP Package

ADN8810 Programmable Precision Current Source for Tunable Laser

ADN2811 OC-48 (FEC) CDR

ADN8810 Programmable Precision Current Source for Tunable Laser

- High precision programmable current source.
- High output current capability.
- Very Low noise
- Long term stability
- Current output from 0 to 250 mA
- External shutdown
- Output fault indication
- Programmable maximum current from 50 mA to 250 mA
- Lead Frame Chip Scale Package (LFCSP) (4 mm x 4 mm)

ADN8830 Thermoelectric Cooler Controller

ADN8830 Thermoelectric Cooler Controller

- High Efficiency
- Small Size: 5 mm x 5 mm LFCSP
- Low Noise: <0.5 % TEC Current Ripple</p>
- Long-Term Temperature Stability: ±0.01° C
- Temperature Lock Indication
- Temperature Monitoring Output
- Oscillator Synchronization with an External Signal
- Clock Phase Adjustment for Multiple Controllers
- Programmable Switching Frequency up to 1 MHz
- Thermistor Failure Alarm
- Maximum TEC Voltage Programmability

AD8304 160 dB Range Logarithmic Converter

Optimized for photo-diode interfacing

AD8304 160 dB Range Logarithmic Converter

- Optimized for Fiber-Optic Photo-Diode Interfacing
- Eight Full Decades of Range (to 1 dB Error Points) Law Conformance 0.1 dB Error from 1 nA to 1 mA
- Single-Supply Operation (4.5 V 8 V) or Dual-Supply
- Temperature Stable over Industrial Temperature Range
- Accurately Calibrated Scaling:
 - Logarithmic slope of 10 mV/dB (at VLOG pin)
 - Basic logarithmic intercept at 100 pA
 - Easy adjustment of slope and intercept
- Output Bandwidth of 10 MHz, 15 V/µs Slew Rate
- 1-, 2-, or 3-Pole Low Pass Filtering at Output
- Miniature 14-Lead Package (TSSOP)
- Low Power: ~3 mA Quiescent Current (Enabled)

AD8305 100dB-range (50nA-5mA) Logarithmic Converter

AD8305 100dB-range (50nA-5mA) Logarithmic Converter

- Optimized for Fiber-Optic Photodiode Interfacing Over Five Decades of Range
- Law Conformance 0.3 dB from 50 nA to 5 mA
- Single Supply Operation (2.7 V 5.5 V)
- Complete and Temperature Stable
- Nominal slope of 10 mV/dB (200 mV/decade)
- Nominal Intercept of 1 nA set by external resistor
- Optional Adjustment of Slope and Intercept
- Minimal Response Time at all Current Levels
- Miniature 16 pin Chip Scale Package (LFCSP 3 x 3 mm)
- Low Power: ~4 mA Quiescent Current

DEET BURNESA DVIN

www.smalede.com

MANAGE PARTIES

SECTION 11 Digital Signal Processors

16-Bit 32-Bit Tools Solutions

16-Bit Processors

ADSP-21xx DSP Family Blackfin™ DSP Family

16-Bit General-Purpose DSP Portfolio

- Blackfin™ DSP blicenous
 - High performance, dual-MAC, 16-bit fixed-point DSPs featuring the ADI/Intel microsignal architecture. Products target high performance, power efficient, and cost conscious applications.\
- ADSP-21xx DSP
 - Continuing the ADSP-21xx code-compatible family, the ADSP-218xn and ADSP-219x reduce power consumption and integrate system-level peripherals into low cost DSPs.

16-Bit General-Purpose DSP Portfolio

16-Bit General-Purpose DSP Portfolio

- Blackfin DSPs Focus on Moderate to High Performance, Low Power Applications
 - Consumer Video, Audio
 - Internet, Networking **Appliances**
 - Automotive Telematics
- ADSP-21xx DSPs Focus on Lower Cost, Moderate Performance Applications
 - Wired/Wireless Voice
 - VolP/VoN
- Industrial Control
 - **Automotive Control**

Blackfin DSP Core Values

Blackfin DSP Architectural Benefits

- Simplifying Real-Time Hardware and Software Design
 - High Performance Architecture with support for Video Processing
 - Single Processor supports **DSP** and Control Functions
 - Dynamic Power Management through Optimized Companion Products and integration

Blackfin DSP Roadmap to Performance and Integration

www.analog.com

11-7

Blackfin DSP Processor Core Review

Two 16-Bit Multipliers
Two 40-Bit ALUs, Four 8-Bit Video
ALUs Barrel Shifter
Sixteen 16-Bit, Eight 32-Bit Math
Registers

Two DAGs, Byte Addressing Eight 32-Bit Pointer Registers Four Sets of 32-Bit Index, Modify, Length, Base

16-Bit Instructions, 32-Bit Instructions Multi-Issue, 64-Bit Instructions

Interlocked Pipeline Micro Signal Architecture, Developed with Intel

Blackfin DSP ADSP-21535: Architecture Overview

Blackfin DSP ADSP-21535 Key Features/Benefits

- 300 MHz Processor Core
- 54 KBytes L1 Memory
- 256 KBytes L2 Memory
- FLASH, SRAM, SDRAMExternal Interfaces (133 MHz)
- PCI V2.2 Master and Slave
- USB V1.1 Device
- Two Serial Ports
- Two UARTS (1 with IrDA)
- Two SPI-Compatible Ports
- Real-Time Clock
- Watchdog Timer

- Industrial Temperature Range
- High Performance Core Enables Concurrent Audio and Video Processing
- Large On-Chip Memories Minimize Accesses to Slower Off-chip Memory
- Dynamic Power Management
 Optimizes Power Consumption to a Particular Task
- Multiple System Interfaces Enable Flexible and High Bandwidth Data Throughput
- Highly Integrated Peripheral SetMinimizes System BOM Costs.

Blackfin DSP ADSP-21532: Architecture Overview

Blackfin DSP ADSP-21532 Key Features/Benefits

- 300MHz Processor Core
- 84KBytes L1 SRAM
- 32KBytes L1 ROM
- FLASH, SRAM, SDRAM External Interfaces (133MHz)
- Parallel Peripheral Interface with Support for ITU-R 656 Video Formats
- Two Dual-Channel Serial Ports Supporting Eight Stereo I²S Channels
- UART with IrDA
- SPI, Real-Time Clock, Watchdog Timer
- On-chip Core Coltage Regulator

- High Performance Core Enables Multichannel Audio and CIF Video Processing at a Low \$10 Price Point
- Application-Tuned Peripherals Interface Directly to Audio and Video Converters
- On-Chip ROM, Voltage Regulator, and Peripherals Minimize Total System Costs
- Dynamic Power Management
 Enhancements Extend Battery
 Life in Portable Applications
- Industrial Temperature Range

Blackfin DSP ADSP-21535 Example System: Low Cost Video Surveillance

- Single Chip Video Encoder for Surveillance Systems
 - Video capture example Omnivision integrated lens/ sensor
 - SPORT1 connects microphone
 - MPEG4 CIF video encoding
 - MPEG4 audio encoding optional
 - Video transport over Ethernet

www.analog.com

Blackfin DSP ADSP-21532 Example System: Video Display system

- Single Chip Audio and Video Decoder for Entertainment System
 - Video transport over local bus, connected through SPORT0 and SPI control
 - SPORT1 connects to stereo speakers and microphones
 - MPEG2 Video Decoding
 - MPEG2 Audio Decoding
 - Speech Recognition command and control with noise canceling array microphone input
 - Reduced existing BOM by 50%

Blackfin DSP Competitive Comparison: Low Cost Products

- ADSP—21532 Announced in September 2001 for Samples in Summer 2002
- C5502 Announced in July 2001 for Samples in 1Q02
- ADSP-21532 Positioned at Same Price as C5502
 - With on-chip regulator, further reducing system cost
 - I²S and Video ITU-R 656 interfaces
- ADSP-21532 Positioned at > 50% Higher Performance than C5502

	7.201 2.002	320C5502		
Speed	300 MHz,	200 MHz, 400 MMAC		
SRAM SIAI D	84 KB	64 KB		
Ext. Memory Interface	16-Bit	32-Bit		
Serial Ports, Watchdog , RTC	Y ITU-R 656	Y Host Port		
Core Voltage	2.25V–3.6 V Regulated	1.5 V		
10Kų Price	\$9.95	\$9.95		

www.analog.com

ADSP-21xx Overview

- ADSP-218xN DSPs Released at 80 MHz, Commercial and Industrial Temperature Ranges
 - ADSP-2184, ADSP-2186, ADSP-2185, ADSP-2187, ADSP-2189, ADSP-2188 pin-pin compatible
- ADSP-219x Family Introduced with Three Members at 160 MHz
 - ADSP-2196, ADSP-2195, ADSP-2191 pin-pin compatible
- ADSP-2196 Achieves 160 MIPS for under \$10
- ADSP-2195, ADSP-2196 On-Chip ROM Reduces System Cost in High Volume Applications
 - Low Risk development path, with full RAM ADSP-2191

www.analog.com

218x/9x Core Architecture

ADSP-219x Product Features

- 160 MIPS
- Up to 64 KWords RAM
- Boot ROM
- Multichannel Serial Ports
- SPI and UART Ports
- Three 32-bit Timers with PWM Outputs
- 8- or 16-bit Host Port Interface
- External Memory Interface
- Up to 16 General-Purpose I/Os
- 11-Channel DMA Controller
- On-Chip Oscillator with PLL
- **Flexible Power Management**
- JTAG Port for System Test and Debug
- Industrial Grade
- 144 BGA and QFP Packages

www.analog.com

11-19

ADSP-219x Memory Maps

- Simple Migration from RAM Device to ROM Production Device
- Pin-Pin Compatible Models Allow Users to:
 - **■** migrate to smaller memory to reduce system costs or
 - move to larger memory models to increase end-product functionality

Telephony Algorithms

- Off-the-Shelf Voice and Data Algorithms Available Now for Complete Telephony System Solutions
- Algorithms are Optimized for Maximum Channel Capacity per DSP
- Customer Specific
 Algorithms Available on
 Request

Vocoders	Description	Peak MIPS		
Voice Coders – (Choice of speech compression algorithms)	G.729AB G.723.1A G.728 G.726 G.722 G.711	13.5 21.7 29 9.7 12.9 0.2		
Auxiliary				
Jitter Buffer Tone Detection System Echo Cancellation VAD	Adaptive Voice/Fax/Data G.168 (16 ms) G.168 (32 ms) Voice Activity Detection	1 2.5 5.4 8.5 CS		
Signalling Detection and Generation	Call Progress Caller ID DTMF E&M Signalling	CS CS <1 <0.5		

ADSP-ADI 219x Competitive Advantages

- High Level of System Integration Lowers System Cost
- Efficient C/C++
 Compiler Maximizes
 Code Density and
 Reduces Develop-ment Time
- Code-compatible Roadmap beyond 300 MIPS

		TI C54x	MOT 5T 00
MHz	160	160	15
MIPS	160 //	160	15/1
DMA Channels			6
External Address Space	16M Word	8M Word	16M V rd
UART	103	0	0 1!
Timers	Three 32- bit	One 16-bit	Three 4-
GPIO Pins	16	0	16/1
Compiled Code	0.7	1	

ADSP-219x vs. C54x/C55x Compiler Benchmarks

- 219x Compiler
 Outperforms C54x
 and C55x in five of
 seven Benchmarks
- Fewer Clock Cycles
 Per DSP Function
 Reduces Code
 Size and System
 Power
 Consumption

Source: Analog Devices

ADSP-218x Product Features

- 80 MIPS
- Up to 104K Words RAM
- Two Synchronous Serial Ports
- UART Emulation through Software
- 16-bit Interval Timer with Pre-scaler
- Host Port Interface
- External Memory Interface
- Up to 13 General Purpose I/O
- DMA Controller
- On-chip Oscillator with PLL
- Flexible Power Management
- EZ ICE Port for System Test and Debug
- Industrial Grade
- 144 BGA and QFP Packages

ADSP-218xN Series

All Models

- Operate at 80 MHz/MIPS and down to 1.8 V for low power applications
- Are power efficient as low as 0.31 mA/MIPS for the series
 - Are pin-compatible with memory sizes from 40 Kbytes to 256 Kbytes
 - Integrate dual serial ports, byte-wide DMA, and 16-bitwide host DMA

ADSP-218xN Series Memory Options

Models Mag poer 1	Program RAM	Data RAM		
ADSP-2184N	4K	4K		
ADSP-2186N	npatible with memory sizes	rom 40 Kbyrcs		
ADSP-2185N	efficient as1eK as 0.31 m	AMIPS fo 16K		
ADSP-2187N	32K GOMEN	32K		
ADSP-2189N	32K	48K		
ADSP-2188N	48K	56K		

Features and Benefits

Features	Benefits	219x	218x	
Large on-chip RAM	Reduces system cost, allows DSP to sustain a higher performance	X		
Glueless 8- or 16-bit Host Port Interface	Allows an external host device to boot the DSP and access the DSP's on-chip memory space		X	
Multichannel synchronous serial ports	Supports T1/E1/H.100 standards with A-law and μ-law companding in hardware	X		
2 Serial Peripheral Interface (SPI) Ports	Compatible with low cost SPI devices	X		
UART Interface	Provides simplified serial communication to peripherals and host processors	X		
General-Purpose I/O pins	User programmable I/O pins for application specific requirements	X	X	
Programmable PLL supports 1x to 32x frequency multiplication	Enables full speed operation from low speed input clocks	X	X	
On-chip boot ROM with multiple boot strapping modes	Flexible boot methods: Boot from EEPROM, UART, SPI, or HPI 8/16 bit host ports or execute from Ext Mem	X		
144 BGA/LQFP Package	10mm x 10mm Small package option for space constrained applications	X	X	

www.analog.com

							nt	
							0	
				Compatible with low cost SPI devices	A risk adaptists out for the product as well as well as the west as a substantial in the west as a subs	-Bit/40-Bit	and Fixed-Point	Rec DS PS shows belt to
	ensbhud modes			2 Sorial Feripheral briarisce (SPI)	Botts Botts synchronous const	3	Floating	MAR girls-roo sgrad

estines and Benefits

SHARC Roadmap— 10 Years of Code Compatibility

Strategies Driving SHARC Roadmap

- Lower Costs: Two Strategies
 - System cost reduction through integration of memory and peripherals
 - Overall lower DSP costs with a target of \$5 for SHARC
- Extensive Algorithm Support
 - Developing solutions internally and with third parties
- Large Number of Product Offerings
 - Goal is to leverage a reuse strategy to design and offer more new SHARC products than ever before
 - SHARCs can be used for high, mid, and low end systems
 - Allows for one instruction set architecture to be used in various products
 - Many SHARCs for many different applications
- Higher Performance
 - With the latest CMOS processes and improvements to the architecture, new performance levels will be achieved

ADSP-21160 Features

- 80 MHz/95 MHz; 480 MFLOPS/570 MFLOPS; SIMD Core
 - 1024-point, complex FFT benchmark: 97 ms
- 4 Mbits On-Chip SRAM
- 14 Zero Overhead DMA Channels
- Sustained 665 Mbyte/s Over IOP Bus
- Two Synchronous Serial Ports up to 47.5 Mbits/s
- Six Link Ports up to 95 Mbyte/s
- 64-Bit Synchronous External Port
- Cluster Multiprocessing Support

ADSP-21160 Internal Architecture

ADSP-21160 Benchmarks

	ADSP-21060	ADSP-21160 SISD	ADSP-21160 SIMD (Multichannel)
Clock Cycle	40 MHz	95 MHz	95 MHz
Instruction Cycle Time	25 ns	10.4 ns	10.4 ns
MFLOPS Sustained	80 MFLOPS	190 MFLOPS	380 MFLOPS
MFLOPS Peak	120 MFLOPS	285 MFLOPS	570 MFLOPS
1024 Point Complex FFT (Radix 4, with Bit Reversal)	460 µs 9 UC 9 AMIU.	460 µs	460 µs
FIR Filter (per Tap)	25 ns	10.4 ns	5.2 ns
IIR Filter (per Biquad)	100 ns	42 ns	21 ns
Matrix Multiply (Pipelined) [3 x 3] x [3 x 1] [4 x 4] x [4 x 1]	225 ns a grou ot 400 ns	94 ns 166 ns	47 ns 83 ns
Divide (y/x)	150 ns	62 ns	31 ns
Inverse Square Root	225 ns	94 ns	47 ns

ADSP-2116x Family

- Start of a New Generation of SHARCs
 - Code-Compatible with ADSP-2106x SHARC
- Increased Performance with:
- Higher clock rate
- SIMD architecture
- Higher data bus bandwidth
 - ADSP-21160 was First Family Member
 - ADSP-21161 Extends SHARC Performance and Value

ADSP-2116x SHARC Core

- SIMD Core Provides Significant Performance Increases on Key Signal Processing Benchmarks
- Designed and Optimized for Signal Processing
- Code-Compatible with First-Generation SHARC
 - One instruction now does twice the work
- Size and Power Consumption
- Doubles Processor Performance while Minimizing Code

SIMD Architecture Optimized for Signal Processing

SIMD Architecture Optimized for Signal Processing

- Doubles Processor Performance while Minimizing Code Size and Power Consumption
 - One instruction now does twice the work
- Adds Second Set of Computational Units
 - Two ALUs, two multipliers, two shifters, two register files
- Two Sets of Computational Units Operate in Parallel to Decrease Benchmark Times Up to 2x
 - A 50 TAP FIR filter in a non-SIMD machine takes 50 processor cycles
 - A 50 TAP FIR filter in a SIMD machine takes 25 cycles

ADSP-2116x SIMD Architecture

- Enabled by Mode Bit
- Increased Internal Bus Width to 64 Bits
 - Enables access of four 32-bit words in a processor cycle
 - Two words accessed using a DM bus and two accessed using a PM bus
- f11 = f1 3 f7, f3 = f9 + f14, f9 = f9 f14, dm (i2, m0) = f13, f7 = pm (i8, m8)
- Flexible Memory Addressing Modes
 - Supports two DAGs (Data Address Generators)
 - When fetching four 32-bit words, two pointers are used, and each pointer is used for two words
 - 64 bits to/from each register file can travel over one bus or be split between PM and DM

The ADSP-21161 Architecture Block Diagram

ADSP-21161 Features and Benefits

FEATURE	-Purpose I/O BENELL our IRQ lines.	
600 MFLOP Core	Enables the fast execution of highly complex signal processing algorithms	
1 Mbit Dual-Ported SRAM	Dual-ported nature increases data bandwidth and processing speed	
14 Channels of Zero Overhead DMA	No cycles stolen from the core to move data on and off chip	
Two 100Mbyte/second Link Ports	Simplifies connection and communication in multiprocessing systems	
Cluster Multiprocessing Support	Enables universally addressable multiprocessing memory system	
Host Interface through SPI and Parallel Bus	Allows for low and high bandwidth host processor communications	
SDRAM Controller	Mechanism for controlling large banks of fast, inexpensive SDRAM	
Four Serial Ports	Allows for 16 channels of data to be transferred in and out of the DSP	

ADSP-21161N Features one jot 19 channels of date to be

- ADSP-2116x SHARC SIMD Core 3.3 V External/1.8 V Internal
- SPORT Pins: 5 V Tolerant I/O
- 100 MIPs, 600 MFLOPs Peak
- 1 MB On-Chip SRAM
- 14 Zero-Overhead DMA Channels
- SDRAM Controller for Glueless Interface to Low Cost Memory
- External Instruction Cache Mode
- SPI-Compatible Port for Host and Peripheral Control
- Two Link Ports, 12 General-Purpose I/O Lines, Four IRQ lines, One Timer
- Four SPORTs Supporting 128-Channel TDM and I²S

ADSP-21161 Performance Benchmarks

	ADSP-21060	AD21161 SISD	AD21161 SIMD (MultiChannel)
Clock Cycle	40 MHz	100 MHz	100 MHz
Instruction Cycle Time	25 ns	10 ns	10 ns
MFLOPS Sustained	80 MFLOPS	200 MFLOPS	400 MFLOPS
MFLOPS Peak	120 MFLOPS	300 MFLOPS	600 MFLOPS
1024 Point Complex FFT (Radix 4, with Bit Reversal)	92 μs	92 µs	92 µs
FIR Filter (per Tap)	25 ns	10 ns	5 ns
IIR Filter (per Biquad)	100 ns	40 ns	20 ns
Matrix Multiply (Pipelined) [3 x 3] x [3 x 1] [4 x 4] x [4 x 1]	225 ns 400 ns	90 ns 160 ns	45 ns 80 ns
Divide (y/x)	150 ns	60 ns	30 ns
Inverse Square Root	225 ns	90 ns	45 ns

TigerSHARC® Static Superscalar Architecture: Blend of Proven Architectures

- Load/store architecture
- Deeply pipelined for high clock rates
- Branch prediction
- Large interlocked register file
- Compiler friendly

- Instruction level parallelism determined prior to run time in multi-instruction lines
- Code efficiency
- Determinism and real-time execution
- Fast and responsive interrupt system
- I/O and internal memory capable of sustaining core rates
- Fast multiply accumulates, HW support for circular buffers
- Bit reverse, zero overhead looping

- Execution of 1 to 4 32-Bit Instructions per Clock Cycle
- Single-Instruction Multiple Data (SIMD) Operations Supported by Two Computation Blocks
- Multiple Data Type Computation Blocks
 - Each with register file, MAC, ALU, shifter
 - 32-/40-bit floating or 32-bit fixed-point operations (six per cycle)
 - 16-bit (24 per cycle) or 8-bit (32 per cycle) operations
- Static Branch Prediction Mechanism, with 128 Entry BTB
- Internal Bandwidth of 8.64 GBytes/s
- Simple and Fully Interruptible Programming Model

TigerSHARC Block Diagram

TigerSHARC: First DSP to Support Multiple Data Types on One Chip

- The TigerSHARC Natively Supports Multiple Data Types
 - 8-bit, 16-bit, 32-bit fixed-point and floating-point
 - Native support scales performance to the task

Note: Up to 256 bits of data can be transferred to and from internal memory in the same cycle

TigerSHARC Features

- Core
 - 1440 MMACs/s @ 180 MHz 16-bit fixed point
 - 360 MMACs/s @ 180 MHz 32-bit floating point
 - 1080 MFLOPS 32-bit floating point
- Memory
 - 6 Mbits of on-chip SRAM organized in a unified memory map
- I/O, Peripherals, and Package
 - 720 Mbytes/s transfer rate through external bus.
 - 720 Mbytes/s aggregate transfer rate through four link ports
 - Glueless MP cluster support for up to eight TigerSHARCs
 - SDRAM controller
 - 19 mm x 19 mm, 484-Ball, PBGA, ADSP-TS101SKB1180x
 - 27 mm x 27 mm, PBGA package, ADSP-TS101SKB2180x

TigerSHARC Supports High I/O Rates and Glueless Multiprocessing

- Cluster Bus—720M Bytes/s Bandwidth (64-Bit Data Bus)
 - Up to eight TigerSHARCs, host, memory, and other peripherals sharing parallel bus and global memory map
 - Built-in bus arbitration
 - Built-in SDRAM controller
- Link Ports—720M Bytes/s Bandwidth
 - Four full duplex point to point connections
 - Connect other TigerSHARCs, ASICs, FPGAs
- DMA Engine
 - 14 channels
 - Zero overhead DMA

via Link Ports and Cluster Bus

TigerSHARC Benchmarks @ 180 MHz

■ 16-Bit Performance — 1440 MMACs/s Peak Performance

OZA-POINT Co ylacithm adix 2) 10 Tap FiR on 1024 input	Execution Time	Cycle to Execute
256-Point Complex FFT (Radix 2)	6.1 µs	1100
50 Tap FIR on 1024 inputs	40 µs	7200
Single FIR MAC	0.78 ns	0.14
Single Complex FIR MAC	3.17 ns	0.57
Single FFT Butterfly	5.6 ns	1.0

TigerSHARC Benchmarks @ 180 MHz

■ 32-Bit Performance — 360M MACs/s Peak Performance

20 190 FIR on 1034 lubrice Algorithm	Execution Time	Cycle to Execute
1024-Point Complex FFT (Radix 2)	68 µs	12300
50 Tap FIR on 1024 Input	153 µs	27500
Single FIR MAC	3.1 ns	0.55
Single FFT Butterfly	11.1 ns	2.0
Single Complex FIR MAC	11.1 ns	2.0
Divide Performance — 1440 MMAC	16.7 ns	3.0
Square Root	27.8 ns	5.0
Viterbi Decode (per Add/Compare/Select)	2.8 ns	0.5

TigerSHARC Positioning

- Product Positioning 32-Bit Segment
 - Highest performance floating point DSP from ADI
 - Fastest floating point DSP shipping today
 - Build on market leadership in multiprocessor space
 - Largest amount on on-chip memory integration
 - Performance stressed over price
 - Where cost is a major driver lead with ADSP-21160 and ADSP-21161
- Product Positioning 16-Bit Segment
 - We are working on benchmarks against TI 64xx.
 - 16-bit space is a different market space and the TigerSHARC will be priced to compete here.

TigerSHARC Roadmapustker abace and the Lider 2HVBC

Time

ANALOG

malagreem

www.analog.com

At least one for all platforms

collegion Boards

DSP Development Tools CROSSCORETM

N ANALOG DEVICES

O

>

Emulators

* USB

* PCI

Evaluation Boards

EZ-KIT Lites

At least one for all platforms

What is VisualDSP++™

- VisualDSP++ is an integrated development environment that delivers efficient project management so programmers can easily move between editing, building, and debugging.
 - Key Features Include:
 - The VisualDSP++ Kernel (VDK)
 - C++ compiler
 - Advanced plotting tools enabling programmers to visually measure software performance
 - Statistical profiling to easily identify programming bottlenecks
- VisualDSP++ offers programmers a powerful programming tool with flexibility that significantly decreases the time required to port software code to a DSP, reducing time to market.

Features of VisualDSP++

VisualDSP++ 3.0 blodisimmers a bowering

- Expert Linker Common to easily identify programming
- VisualDSP Component Software Engineering (VCSE)
- Cache and Pipeline Viewer
- VisualDSP++ RTOS/Kernel/Scheduler (VDK)
- High Level Language Including C++
- Rich Debug Ability Including MP Support
- Advanced Plotting and Profiling Features
- Interfacing to VisualDSP++
 - Easy to Test and Verify Applications with TCL Scripts
- Easy to Learn with Online Help

Expert Linker

- Graphical Alternative to Linker Definition File (LDF) Text
 Format
 - Though powerful, the LDF format is intimidating to new users, especially those with limited experience in embedded programming
- Graphical Tools to Create a Memory Map, Place Objects, Create Overlays, etc.
 - LDF autogenerated for linker consumption
 - "Round tripping" possible (GUI will consume existing LDF)
 - Will support pre-link visualization

"VCSE" VisualDSP++ Component Software Engineering

- Component-based Algorithm/Device Driver Development Approach with Tool's Support
 - Widely used in PC application development, now emerging in embedded development
- VisualDSP++ GUI Support for Component Creation, Browsing, and Utilization

Cache Visualization (Blackfin DSP)

- Statistics Gathered by PC Address/Source Line and Cache Line/set
 - Total cache accesses
 - Cache hits
 - Cache misses
 - Compulsory
 - Conflict
 - Ello Capacity doing of Applications with Kernel Analysis
- Visualization within VisualDSP++ at Run-Time
 - Histogram by source, cache line display, summary

VisualDSP++ Kernel (VDK)

VisualDSP++ Kernel (VDK)

- Faster Time to Market, No Need to Develop or Maintain Homemade Kernel
- Efficient Debugging of Applications with Kernel Analysis
 Tools
- Reduce Cost of Software Maintenance with Code Reuse and Standardized Software
- Standardized Code Enables Rapid Migration Across All DSP Platforms
- Royalty and NRE Free (No Risk to Use) ce plue sug
- Embedded in the IDE (Nothing Else to Install)

High Level Language Compilation

- C/C++ subbout not groups of processor together
 - High level languages (HLL) can shorten customers' time to market. HLLs are more common, allowing for a greater talent pool to take advantage of the real-time processing performance offered by DSPs.
 - "Don't just do it, do it well!" ADI purchased Edinburgh Portable Compilers for their expertise in DSP compilation technology. They are intimately aware of the DSP architectures and the target applications, which leads to optimized C and C++ compilers.
 - ADI's C++ is based on superset of Embedded C++ standard that adds the code reuse aspect of C++ without bloating the complied code.
 - Object-oriented programming shortens time to market.

Debug Features and MP Support we to warken

- Deprid Learnies sed on superset of Embedded C++ standard
 - Setting breakpoints and watchpoints allows user to halt the processor on various conditions
 - For instance, a watchpoint can be set on a location in memory, but if the memory location is written to or read from the processor will halt.
- Multiprocessor Support Features
 - Supports memory sharing among processors
 - Simple visual feedback for focusing on particular processor
 - Processor Status windows
 - Ability to control groups of processor together

Statistical Profiling

- Non-Intrusive Statistical Profiling (Patent Pending)
 - Does not halt the DSP
 - No extra coded added to the application
- The Debugger has the ability to randomly sample the target processors PC and then present the user with a graphical display of the resultant samples. This will let the user easily see where their application in spending most of its time. Since the JTAG sampling is completely non-intrusive, this process will not incur any additional run-time overhead.
- Allows Developer to Passively Gather Important Metrics without Interrupting the Real-Time Characteristics
- Programmer Can Focus on Those Areas in the Program that Impact Performance and Take Corrective Action

Advanced Plotting Capabilities

- Visualize Application Results
 - Plot various types of plots
 - Includes special plot types for communications such as Constellation Plots and Eye Diagrams
 - Settings for data processing on plot data. Convert to Db, FFT. . .

Advanced Plotting

Easy to Test and Verify Application with TCL Scripts

- Tool Control Language (TCL)
 - An industry standard scripting language
 - TCL syntax is a high level language (easy to write and understand)
 - Can be used to automate both verification testing and code development
 - Widely used and well documented, since it is an industry standard documentation. Can be found at local book stores and code examples are readily available on the Web.

Advanced Plotting

Easy to Learn with Online Help

- Fully Searchable and Indexed Online Help
- Includes Quick Overviews on Using VisualDSP++ and All of Its Features.
- Excellent Supplement to the Manual for Things That are Better Represented Visually Such as What Various Plot Windows Should Look Like.

16-Bit Family: vbsP-21XX-PC-FULL

Customizable by Using the "Favorites" Window

Processors and Platforms Supported

▼ 16-Bit Family: VDSP-21XX-PC-FULL

VisualDSP++ SHARC DSP Family: VDSP-SHARC-PC-FULL

Blackfin DSP Family: VDSP-BLKFN-PC-FULL

TigerSHARC DSP Family: VDSP-TS-PC-FULL

■ Hall A se Platforms Supported Help

mxcellent Supplement to the Manual for Things That are

- Windows 98, 2000
- **Window NT**

www.analog.com

11 - 68

Packages Available for VisualDSP++

Product consider the Softwal	Part Number	Price	
VisualDSP++Test Drive: 30-day free trial of VisualDSP++	VDSP-SHARC-PC-TEST VDSP-TS-PC-TEST VDSP-21XX-PC-TEST VDSP-BLKFN-PC-TEST	\$0.00	
VisualDSP++:IDE, Debugger, C/C++Compiler, Assembler, Linker, VDK, VCSE, with Emulation and Simulation Support	VDSP-SHARC-PC-FULL VDSP-TS-PC-FULL VDSP-21XX-PC-FULL VDSP-BLKFN-PC-FULL	\$3500.00	
VisualDSP++ Floating License	VDSP-SHARC-PCFLOAT VDSP-TS-PCFLOAT VDSP-21XX-PCFLOAT	\$4250.00	
	VDSP-BLKFN-PCFLOAT		

VisualDSP** Test Drive

VisualDSP Test Drive**

- The Test Drive is a Free 30-day Trial of VisualDSP++.
 The Test Drive is a Full Version of VisualDSP++,
 No Limitations Other Than the Time Limit and contains
 PDFs of the VisualDSP++ Manuals.
- Test Drive CDs May Be Ordered from the Web Site or User May Download the Test Drives from the DSP Tools Web Site at: http://www.analog.com/dsp/tools/
- Test Drives Require Registration Online to Receive a
 Serial Number
 that Activates the Software:

http://forms.analog.com/Form_Pages/DSP/tools/visualDSPTestDrive.asp.

The Test Drive Expires 30 Days from the Install.

Emulators for Analog Devices DSPs

Abex-ICE IN DOR FIRMING

N ANALOG DEVICES

Apex-ICE™ USB Emulator

- Universal Serial Bus (USB)-Based Emulator for Analog Devices JTAG DSPs
- Portable Solution
- Small Hand-Held Unit
- Small Diameter Cable, 5
 Meters in Length, for Hard to Reach Targets
- Powered Externally
- Windows 98, Windows 2000
- Software Sold Separately, Visual DSP++
- Part # ADDS-APEX-ICE Available Now for \$4995.00

Summit-ICE™ PCI Emulator

- 32-bit PCI interface Add-in Card
- Four-Inch, Flexible Shielded Target Board Cable for Easy Access to a 14-pin JTAG Header
- Embedded ICEPAC Technology
 Provides a Rugged and Reliable
 Solution
- Remote 3 V/5 V JTAG Pod with Extended, Shielded Cable (1.5 m)
- For Analog Devices JTAG DSPs
- Windows 98, Windows 2000
- Software sold Separately, VisualDSP++
- Part # ADDS-SUMMIT-ICE

Available now for \$4995

EZ-ICE® for the ADSP-218x DSP Family

- Serial Port Interface, Printed Circuit Board and 14-Pin Header
- Controls Equipment for Testing, Observing, and Debugging a Target System
- 6-Foot Cable
- Hardware Switch to Accommodate2.5 V, 3.3 V, and 5 V
- Shielded Enclosure to Cover Bare Circuit Board
- Performance Increase via Faster Data Transfer
- Windows 9x, Windows 2000
- Software Solds\Separately,VisualDSP++
- Part # ADDS-218X-ICE-2.5V

Available now for \$1,995

was golding year

694 # VDD2-51235-EXFILE

Shibboure Aniu 88 of Aniu 5000

Software Features

Desktop standalone operation

TAGICE 14-EZ-KIT LITESTA

for Analog Devices DSPs

XX KX16-bit FLASH memory

MARGRIDGE KM

VD86-51232 D26

Hardware Features

VD26-S1232 EX-KIL Pite.

ANALOG

ADSP-21535 EZ-KIT Lite™

- Hardware Features
 - ADSP-21535 DSP
 - 4 M x 32-bit SDRAM
 - 272 Kx16-bit FLASH memory
 - AD1885 48 kHz AC'97 SoundMax® codec
 - ADP3088 Analog Devices switching regulator for core power management
 - JTAG ICE 14-Pin header
 - CE-compliant PCB and external power supply
 - Desktop standalone operation
- Software Features
 - Supports Win 98 or Win2000
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface. VisualDSP++ limited to use with EZ-KIT Lite hardware.
- Part # ADDS-21532-EZLITE

ADSP-2191 EZ-KIT LiteTM EX REPORTED IN FILE PRINCES

- Hardware Features and Muscoom
 - Single ADSP-2191
 - AD1885 48 kHz AC'97 SoundMAX® codec
 - AD1803 low power modem codec
 - AD3338 and AD3339 voltage regulators
 - 4 Mbits of flash memory
 - Jumper selectable line-in or mic-In 1/8" stereo jack and line-out 1/8" stereo jack
 - USB version 1.1-compliant interface
 - 14-pin emulator connector for JTAG interface
- Software Features
 - Support for Win98 and Win2000
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface. VisualDSP++ limited to use with EZ-KIT Lite hardware.
- Part # ADDS-2191-EZLITE

ADSP-21990 EZ-KIT Lite

- Hardware Features (susing 22 11: compiler, assembler, linker,
 - ADSP-21990 DSP
 - 64K x 16-bit static RAM
 - 4 Mbits of flash memory
 - Analog input circuitry
 - Two 4-channel 12-bit DACs (AD5327) on SPI Interface
 - Encoder interface circuitry wic-ju ing stelled lack and jue-ont
 - UART interface (RS-232)
 - External CAN controller IC on SPI interface
 - USB version 1.1-compliant interface
 - 14-Pin emulator connector for JTAG interface
- Software
 - Support for Win98 and Win2000
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface. VisualDSP++ limited to use with EZ-KIT Lite hardware.
- Part# ADDS-21990-EZLITE

ADSP-TS101S EZ-KIT Lite™

- Hardware Features rom splitter (loader), VisualDSP4+
 - Dual ADSP-TS101S DSP
 - 90MHz oscillator and buffer logic
 - ST Microelectronics DSM2150F5V combination FLASH (512K x 8) and programmable logic
 - MT4LSDT464A (4M x 64) 32 MB Synchronous Dynamic RAM (SDRAM)
 - DIMM expandable up to 128 MB
 - Three 90-pin connectors for analyzing and interfacing with the expansion port
 - USB version 1.1-compliant interface
 - JTAG ICE 14-pin header
- Software Features VKC D2b
 - Support for Win98 or Win2000
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface. VisualDSP++ limited to use with EZ-KIT Lite hardware.
- Part# ADDS-TS101S-EZLITE

ADSP-21161N EZ-KIT Lite

- Hardware Features
 - ADSP-21161N SHARC DSP
 - 48 Mbits of SDRAM
 - AD1836 96 kHz audio codec
 - AD1852 96 kHz auxiliary DAC
 - 4 Mbits of flash memory
 - USB version 1.1-compliant interface
 - 14-pin emulator connector for JTAG interface
- Software Features
 - Support for Win98 or Win2000
 - Evaluation suite of VisualDSP++: compiler,
 assembler,linker, prom splitter (loader), VisualDSP++
 debugger interface. VisualDSP++ limited to use with EZ-KIT
 Lite hardware.
- Part # ADDS-21161N-EZLITE

ADSP-21160M/N EZ-KIT Lite

- Hardware Features
 - ADSP-21160 DSP
 - AD1881A SoundMAX audio codec
 - USB debug interface with host PC
 - 128K x 64-bits SBSRAM
 - 512K x 8-bit flash memory
 - JTAG ICE 14-pin header
 - Two link port connectors
- Software Features Milling Software Features
 - Support for Win98 or Win2000
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface. VisualDSP++ limited to use with EZ-KIT Lite hardware.
- Part # ADDS-21160-EZLITE
- Part # ADDS-21160N-EZLITE, Available Fall 2002 for \$495

ADSP-21065L EZ-KIT Lite

- Hardware Features Alansida Hardware
 - ADSP-21065L SHARC DSP running at 60MHz
 - Full Duplex, 16-Bit audio codec
 - RS-232 interface with UART
 - JTAG emulation connector
 - EMAFE connector
 - SDRAM
 - Socketed EPROM
- Software Features
 - Support for Win9x, Win2000 and WinNT
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface. VisualDSP++ limited to use with EZ-KIT Lite hardware
 - Demonstrations: Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT), Band Pass Filter, Pluck String Themes, Talk Through13
- Part# ADDS-21065L-EZLITE

ADSP-21061 EZ-KIT Lite

- Hardware Features
 - ADSP-21061 40 MHz SHARC DSP
 - RS-232 interface with UART ____ combined sees up led in link
 - AD1847 SoundPort® 16-bit, full-duplex audio codec
 - Line in and line out with stereo jacks
 - MIC In (battery powered) with stereo jack
 - Socketed EPROM, 128K x 8 (27C010) firmware includes a power-on self-test with audio report and an RS-232 based bootstrap loader
 - Emulation header
 - Power LED and 4 flag LEDs
- Software Features
 - Support for Win9x, Win2000 and WinNT
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP++ debugger interface.
 VisualDSP++ limited to use with EZ-KIT Lite hardware
- Part# ADDS-21061-EZLITE

ADSP-2189M EZ-KIT Lite

- Hardware Features
 - ADSP-2189M 75 MIPS processor
 - DSP-programmable CODEC gain
 - RS-232 interface port, and one PF/I/O
 - ADSP-218x EZ-ICE emulator port connector
 - Expansion connector includes all signal I/O plus 2.5 V, 3.3 V, and GND connections LED indicators for master power
 - CE certified > powered) with stereo lack
- Software Features Mill are so lacks
 - Windows 98 and Windows 2000 bear and codec
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP debugger interface, application size limited to 8k, VisualDSP++ limited to use with EZ-KIT Lite hardware
 - Application Examples: DTMF Generator, Echo Cancellation, FFT, etc. (similar to 2181 EZ-KIT Lite) Email Support
- Part # ADDS-2189M-EZLITE

ADSP-2181 EZ-KIT LiteTM LIAG AMEDI

- Hardware Features P++ Test Drive please contact your local ADI
 - ADSP-2181, 33 MIPS DSP
 - AD1847 stereo codec sisple ou rue vpi pab 100/2 Mep aire si
 - RS-232 interface
 - Socketed EPROM
 - User push buttons
 - Power supply regulation
 - Expansion connectors
 - User configurable jumper
- Software Features aby oola selection unum
 - Windows 98 and Windows 2000
 - Evaluation suite of VisualDSP++: compiler, assembler, linker, prom splitter (loader), VisualDSP debugger interface, application size limited to 8K, VisualDSP++ limited to use with EZ-KIT Lite hardware
- Part #: ADDS-2181-EZLITE

DSP Tools Resources

- A complete DSP Tools Selection guide is found on the ADIDSP Tools Web site at: www.analog.com/dsp/tools/selection.html
- DSP Connection: Yearly "mag-a-log" that contains information on all the DSP Tools Products, application notes, contact information, interviews with top DSP professionals in the industry, and third party information.
- For technical support please contact: DSPtools.support@analog.com
- VisualDSP++ Demo available on the ADI DSP Tools Web site at: http://www.analog.com/industry/dsp/tools/v_dsp_tutorial.html.
- For a free VisualDSP++ Test Drive please contact your local ADI Sales or Distributor or email DSPtools@analog.com with your complete mailing information and which ADI DSP architecture you would like to take your test drive with.

ADI Third Party Network: The DSP CollaborativeTM

- The DSP Collaborative is ADI's Third Party Network
 - Over 180 partners
 - Goal: Shorten customer time to market
- Over 600 Products for ADI DSP Solutions
 - Algorithms
 - Real-time operating systems
 - Debuggers
 - MATLAB® DSP support
- Focused Applications
 - Audio/Video
 - Cameras Coule IIII 291/1092
 - Industrial inspection and control
 - Medical instrumentation/Imaging
 - Military/Aerospace
- http://www.analog.com/dsp/3rdparty

en Emulators na rowers

Hardware development

boards

Graphical S/W programs

Consulting services

Motor/Motion Control Radar/Sonar

Telecom/Telephony

Sound processing Speech processing

www.analog.com

11 - 87

Why the DSP Collaborative?

- To help shorten customer time to market through Third Party Products and Consulting Services
 - Real-time operating systems/Kernels
 - Algorithms
 - Development and evaluation hardware
 - Application specific products and services
- To drive the creation of value-added resources for customers
 - Reference designs
 - Turnkey solutions
 - System expertise
 - Applications knowledge and support
- To Help Customers Easily Identify Third Party Products and Services
- To learn more: http://www.analog.com/dsp/3rdparty

Analog Devices, Inc. (ADI) SPA Technology Centre

SPA DSP Software Products "New Products Guide"

ADI SPA Technology Centre

- Digital Signal Processing (DSP) Software for Voice Over Network (VON), TRAU, Telecommunications and Multimedia Applications.
 - Software development
 - Systems engineering
 - Applications engineering
 - Sales and marketing
 - Customer support

SPA DSP Software Algorithms

- ADSP-218x and ADSP-219x Code Modules
 - Speech coders (comfort Noise Generator)
 - Echo cancellation
 - VON function blocks
 - Telephony
 - Fax and data modem pumps
 - Voice/fax/data relay
 - TRAU MARIAR (8 KDIVS)
- Echo Cancellation (2/3/6/3 kpl/s)
 - G.168 2000 (line echo cancellation: 4 ms 64 ms, sparse 128 ms)
- G.165 (line echo cancellation)
 - AEC variable span (acoustic echo cancellation)

SPA DSP Software Code Modules

- Speech Coders (Speech Compression)
 - G.723.1/A (5.3/6.3 kbit/s)
 - G.729/A/B/AB (8 kbit/s)
 - G.728 (16 kbit/s)
 - G.722 (64/56/48 kbit/s)
 - G.711/ II (64/56/48 kbit/s)
 - G.726/G.727 (40/32/24/16 kbit/s)
 - Auxiliary:
 - VAD (Voice Activity Detector)
 - CNG (Comfort Noise Generator)

SPA DSP Software Code Modules

- Telephony
 - Voice/fax/data relay
 - Voice Activity Detection (VAD)
 - Comfort Noise Generation (CNG)
- A SSPI® DTMF encoder/decoder
- Tone detection/generation
 - Ring detection ALLS)
 - Caller ID
 - Call progress
 - E and M signaling
 - Forward Error Correction (FEC)
- VoN Function Blocks
 - Jitter Buffer (JIB)
 - RTP/RTCP
 - UDP/IP

SPA DSP Software Code Modules

Data Modem Pumps

■ V.33

- (14,400 bps 4-wire)
- V.32bis (14,400 bps)
- V.32 (9,600 bps)
- V.29 (9,600 bps 4-wire)
- V.27ter (4,800 bps 4-wire)
- V.22bis (2,400 bps)
- V.22 (1,200 bps)
- V.23 (1,200/75 bps)
- Bell212A (1,200 bps)
- Bell103 (300 bps)
- V.21 (300 bps)

- Facsimile Modems
 - V.17 (14,400 bps)
 - V.33 (14,400 bps)
 - V.29 (9,600 bps)
 - V.27ter (4,800 bps)
 - V.21 (300 bps)

SPA Software Features

- Compliant to International Standards (ITU, etc)
- Extensively Tested
- Efficient Implementations (Optimized MIPS and Memory)
- Multichannel (Multiple Instance) Capable (High Channel Density)
- Used by Numerous Companies Worldwide (Proven Interoperability)
- Common API (Memory Mapped Interface)
- Detailed Developer's Guides
- Excellent Technical Support by Engineers
- Supplied As Integrated Solutions or Individual Modules
- On-Going Development (New DSPs (ADSP-219x, Blackfin) and Tools (Visual DSP++ Ver 2.0)

MIPS and Memory Summary (VD26-518X BISCKUU)

Vocoders	Description	Peak MIPS	Average MIPS	PM (words)	DM (words)	PM+ (words)	DM+ (words)
G.723.1	5.3 kbit/s	18.4	16.9	9558	11679	0	951
G.723.1	6.3 kbit/s	18.9	17.6	9558	11679	0	951
G.723.1A	5.3 kbit/s + VAD/CNG	18.6	17	9558	11679	0	951
G.723.1A	6.3 kbit/s + VAD/CNG	19.1	17.6	9558	11679	0	951
G.729	8 kbit/s	19.9	18.9	8844	4634	0	1432
G.729A	8 kbit/s (low MIPS)	10.8	10.4	7932	4677	0 1911116	1532
G.729B	8 kbit/s + VAD/CNG	20.1	19.3	12064	5405	0	1603
G.729AB	8 kbit/s (low MIPS AD/CNG)	12.9	11.6	11965	6426	0	1821
G.728	16 kbit/s	29	27	7947	2272	930	1743
G.726	40/32/24/16 kbit/s	8.59 10 115	8 Stanc	1466	240	47	100
G.727	40/32/24/16 kbit/s	9.9	N/A	1262	252	N/A	N/A
G.722	64/56/48 kbit/s	12.9	N/A	1458	217	N/A	N/A
G.711	64 kbit/s	0.5	0.4	111	6	0	0

PM = Program Memory (24-Bit), DM = Data Memory (16-Bit), PM+/DM+ = Memory per extra channel

MIPS and Memory Summary

Echo Cancellation	Description	Peak MIPS	Average MIPS	PM (Words)	DM (Words)	PM+ (Words)	DM+ (Words)
G.165/G.168	16 ms, ECD On	6.7/7.03	N/A	1100/121	354/412	276	340
G.165/G.168	16 ms, ECD Off	4.5/4.97	N/A	1100/121	354/412	276	340
G.165/G.168	32 ms, ECD On	9.2/N/A	N/A	1100/121	354/412	276	340
G.165/G.168	32 ms, ECD Off	7.1/8.57	N/A	1100/121	354/412	276	340
AEC 64 ms span	Acoustic Echo Canceller	5.2	N/A	3153	3059	N/A	N/A
AEC 128 ms span	Acoustic Echo Canceller	7.2	N/A	3153	3059	N/A	N/A
AEC 256 ms span	Acoustic Echo Canceller	11.2	N/A	3153	3059	N/A	N/A
AEC 384 ms span	Acoustic Echo Canceller	15.2	N/A	3153	3059	N/A	N/A
Telephony			M. C.	The second second			
DTMF	Encoder	0.5	N/A	68	78	2	0
DTMF	Decoder	1 6	N/A	1300	320	0	256

PM = Program Memory (24-Bit), DM = Data Memory (16-Bit), PM+/DM+ = Memory per extra channel

ADI DSP Channel Capacity Examples

		2188-80	2191-160	MOD980-640	MR4-1400 (4 x 219x)	
66 ms span Cancell		(48k/56k)	(32k/32k)	(8 x 2188)		
DTMF (det)	63	80 MW	124	640	854	
G.168 (16 ms)	16	23 16 MV	32	128	256	
G.729AB	6	7.1/8.57 6 N/A	12	48 339	100	
G.723.1A	m ou 4	ereneral 4 mily	8	24	64	
VoN (G.711)	6	6		48	104	
VoN (G.729AB)	3	3	6	6 24		
VoN (G.723.1A)	2	2	5	16	44	

SPA Code Module Applications Include:

- VoN (VoIP, VoDSL, VoATM, VoCABLE, etc.)
- FoN (FoIP, etc)
- H.32x (H.324, H.323, H.320, etc)
- Internet Telephony
- Audioconferencing, Videophones, Feature Phones
- Digital Voice Storage
- Wireless, Mobile
- TRAU, Transcoders, Base Stations, Cellphones, MS, BSC, MSC
- Server and Client Products (Gateways, CO, CPE, IAD, SOHO, etc.)
- Pair Gain, DCME
- RAS, DSVD
- ISDN, ATM, Frame Relay
- Satellite, Microwave, Rural Radio Networks

Typical Product Applications

Typical VoIP System Layout

SPA Software — Licensing Benefits

- Benefits of Licensing SPAs Software Compared to In-House Development
 - Improved time to market
 - Experienced support
 - Reduced risk
 - Controlled cost
 - Ability to allocate resources to other projects
 - Access to latest (optimized) software and tools

Typical VolP System Layout

SPA Software Design-in Cycle

- Preliminary Information and evaluation
 - Web site, email, phone, fax
 - Product summary sheets, specification sheets, technical support
- Demonstration Software
 - Executable file for EZ-Kit Development boards
 - Application Note
- Evaluation Software
 - Time-Out Library file (re-settable)
 - Developer's Guide (comprehensive)
 - Source host file (example)
 - Common API (simplifies code integration)
 - Architecture file (Ver 6.1) (Ver 2.0, VDSP++)
 - Plus all other files and documentation required for linking our software into customer application

SPA Software Design-in Cycle

- Production Object Code
 - Evaluation Software with time-out removed
 - One-time NRE (comprehensive)
 - Unlimited channels for product application
- Production Source Code
 - Algorithm source code plus object code package
 - One time NRE
 - Unlimited channels for product application
- Licensing Agreements
 - NDA/MOU for demonstration and evaluation
 - SLA for production code (object or source)
- Maintenance program available
 - Flexible pricing and licensing arrangements

Pario-Defect Decoder and Boar-Brocessor Biggious with

Melody Floating-Point Audio Solution

- Industry First 32-Bit Floating Point, Multichannel Audio Encoder, Decoder, and Post-Processor Reference Designs
 - For use in home theater systems, and high end car audio
- Dynamic Decoder and Post-Processor Platform with Auto-Detect
 - Dolby Digital, Prologic, Pro-Logic II, Dolby headphone
 - DTS-ES extended surround, DTS Neo: 6
 - MPEG 2 audio layers 1 and 2, AAC
 - MPEG 1 layer 3 (MP3)
 - THXSelect, THXUltra, THXSurround EX
 - WaveSurround and SRS 3D surround
 - DVD MLP, HDCD

Melody Fixed-Point Audio Solution

- High Quality Low Cost Audio Reference Designs
 - 16-bit fixed-point stereo audio encoder and decoder
- MPEG1 Layer 1, 2, and 3 Encoders and Decoders
 - Decoders support all bit rates (32 Kbps 448 Kbps), all full and half sampling frequencies (16 kHz, 22.1 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz)
 - Software rate conversion eliminates external rate converters
 - Auto-detects and displays bit-stream information
 - Preset graphics equalizers: jazz, pop, rock, classical
- ADSST-MPEG-xxxx Chipset: ADSP-218x + Object Code
 - 10 K pricing: US \$12.00
- ADSST-MELODY-EVAL01 Available (US \$650)

Digital Audio Player Solution

- DAP1.0 Turnkey Portable MP3 Player Reference Design
 - Supports all bit rates and sampling frequencies
 - Memory: 32 MB built-in flash plus 32 MB removable flash
 - Displays messages and song information on three-line LCD
 - Full operation controls (playback, volume, record)
 - Preset equalizer functions
 - Rock, jazz, pop, classical, and bass boost (5 dB)
 - Parallel port PC interface for MP3 file downloads
 - PC download manager software provided
 - Supports MP3 encoding of CD audio
 - Thirty minute memo recorder with built-in mic
 - Does not use up music storage memory

Embedded Modem Solution

- Integrated Standalone Modem Solution
 - Compact socket modem design (1" x 2.5" PCB)
 - Very low power consumption (< 200 mW)
 - Supports multiple speeds (14.4 Kbps to 56 Kbps)
 - Tested in many countries (FCC, CTR21, ...)
- ADSST-VxxATS Chipset (Complete AT Modem)
 - ADSP218x + AD1803/04+ object code
 - 10 K pricing: US \$22.00

NAV 2K GPS Receiver Solution

- ADSST-NAV-2300 Chipset (40 mm x 50 mm)
 - ADSP-2189M+GPS object code
 - 10 K pricing: US \$16.50
- ADSST-NAV-2300-SDK Available (US \$350)

Embedded Modem Solution

NAV 2K GPS Receiver Solution

- ADSST-NAV-2300F Chipset
 - GSM-SMS and GSM-AT interface to GSM handsets
 - Allows configuration and transmission of position information
 - Used for fleet management, security, tracking...
 - ADSP2189M + GPS object code (with GSM Interface)
 - 10 K pricing: US \$18.50
- ADSST-NAV-2300F SDK Available (US \$1250)

DEVICES

www.analog.com

11-111

Mixed-Signal DSP

Mixed-Signal DSP Strategy

DSP Cores Mixed-Signal DSP Embedded Embedded Control Applications Signal Processing Applications

ADSP-2199x Total Product Roadmap Meeting the Full Range of Customer Needs

The ADSP-2199x Family

- Next Generation, ADSP-219x DSP-Based
 - Computational capability to 160 MIPS
 - Architectural enhancements for C/C++ compiler
 - Increased address-ability to 16 Mwords
 - Products with on-chip RAM today
 - Roadmap to integration of flash memory
- A Platform for Mixed-Signal Integration
 - 14-bit, 20 MSPS ADC, on-chip reference, POR today
 - Roadmap for further mixed-signal integration
- Next Generation Hardware and Software Development Tools
 - CROSSCORE development tools (JTAG Emulation and VisualDSP++™ 2.0)
- Enhancements to On-Chip Peripheral Set
 - Enhanced control peripherals today (PWM, EIU, SPI, etc.)
- Roadmap to different application-specific peripherals (CAN, etc.)
- Based on 0.25 μm CMOS Technology

ADSP-2199x Family Architecture subjects (CAN, etc.)

219x - Next Generation DSP Core Extending the ADSP-21xx Product Portfolio

- 16-bit Fixed-Point DSP Core, Code- Compatible with ADSP-21xx
- 160 MIPS (6.25 ns) Peak
 Performance, with Single Cycle
 Instruction Execution
- Fully Transparent Instruction Cache
- Independent ALU/MAC and Barrel Shifter with Dual 40-bit Accumulators
- Flexible Interrupt Interface to Peripheral Interrupt Controller
- Single-Cycle Context Switch between Two Register Sets (Computational and DAG)
- Register File Computations
- Architectural Enhancements for Compiled C Code Efficiency
- Up to 16 MWord Addressability
- Flexible Power Management and Power-Down Control
- JTAG Tools Interface

The ADSP-21990/ADSP-2199 Chip Architectu

ADSP-21992 - Advance Information

- 160 MIPS, 219x DSP Core
- 32K PM RAM, 16K DM RAM
- 14-Bit 20 MSPS ADC
- Integrated CAN (2.0 B) Interface
- Other Peripherals Identical to ADSP-21990/ADSP-21991
- 176-pin QFP Package Initially
- Initial Sampling August 2002
- -40° C to +125° C Ambient Temperature

The ADSP-21992 – Advance Information

CAN Interface

- Conforms to CAN V2.0B (Active)
 - Standard (11-bit) and extended (29-bit) identifiers
- Data Rates to 1 MBits/sec (and Higher)
- 16 Configurable Mailboxes (All Receive or Transmit)
- Dedicated Acceptance Mask for Each Mailbox
- Data Filtering (First 2 Bytes) Can Be Used for Acceptance Filtering
- Error Status and Warning Registers
- Transmit Priority by Identifier
- Universal Counter Module
- Power-Down/Sleep Mode
- Readable Transmit and Receive Counters

ADSP-21990/91/92 ADC Architecture

Pipeline ADC Architecture of ADSP-21990/91/92

- 14-bit Pipeline Architecture (Similar to ADMC401)
 - 14-bit data bus => 14-bit resolution
 - Typical Signal to Noise Performance of 71 dB (11.5 ENOB)
- Programmable ADC Clock Rate up to 20 MSPS (1/4 of Peripheral Clock)
- 6-Stage ADC Pipeline
 - Latency to first conversion complete is 400 ns approx.
 - 8 Channels converted in < 800 ns</p>
- 2 V p-p Input Voltage Range with Pseudo-Differential Structures for Increased Noise Immunity
- Dual Sample and Hold Amplifiers (SHA) for Simultaneous Sampling
- Automatic DMA Data Transfer Capability from 1, 2, 4, or 8 Channels
- Variety of Programmable CONVST Sources
- Timed Latching of ADC Results Relative to CONVST
- Integrated Precision 1.0 V Voltage Reference

ADSP-21990/ADSP-2199 Control Peripherals

- Control Peripherals Lisualet Cabapit
 - 3-Phase PWM generation unit
 - ADC control module
 - 32-Bit encoder interface unit
 - Dual auxiliary PWM outputs
 - 16-bit watchdog timer
- General-Purpose Peripherals
 - Three, 32-bit general purpose timers
 - 16-bit digital IO Port (Flag IO)
 - Peripheral interrupt controller
- Serial Communications (2) Serial Communications
 - SPORT
 - SPI
 - JTAG

ADC Architectur

Boot Loading Options for ADSP-21990/ADSP-21991

Variety of Boot Modes Supported

- Serial boot load via SPI port (from SPI EEPROM)
- Parallel boot load via EMI port (8-/16-bit)
 - Dedicated ST flash boot chip DSM2190F4V available for 219x
- ➤ Offers glueless connection to EMI of DSP
 - > 256k x 8 main flash memory acts as boot memory for DSP
 - > 32k x 8 secondary flash memory
 - > Additional PLD functionality (3k gates) with 16 I/O pins
 - No-Boot => Execute from external memory
 - 8-bit external memory
 - 16-bit external memory

DSP System Memory (DSM) from ST

- Content security
- Low power operation
- Simple development software tools... download at no cost

ADSP-21990/91/92 Product Details

- 160 MIP 219X Core
- 14-Bit 8-Channel 20 MSPS ADC
 - Vref 24-Bit (ADSP-21991)
 - Power on Reset
- Embedded Peripherals
 - 3-Phase PWM
 - Dual 16-Bit Auxiliary PWM
 - 32-Bit Encoder Interface
- Other Peripherals
 - 3 32-Bit Timers
 - 16-Bit Watchdog Timer
 - Programmable Interrupt Control
- 2.5 V Core 3.3 V I/O
- 196-Pin BGA or 176-Pin TQFR Packages

ADSP-21990/91/92 Product Details

- 16 Digital I/Ocuque I I I I I
- Ports 32-Bit Timers
 - 1 20 Mbaud SPI
 - 1 40 Mbaud SPORT
 - 1 CAN Interface (ADSP-21992 only)
- Memory ad Peripherals
 - 4 K by 24-Bit (ADSP-21990)
 - 8 K by 24-Bit (ADSP-21991)
 - 16 K by 24-Bit (ADSP-21992)
- 1 M Word External Memory Interface
- -40° C to +85° C Temperature Range
 - -40° C to +125° C (ADSP-21992 only)

ADI Mixed-Signal DSP Web Site: http://www.analog.com/DSP/Mixedsignal

Home | Buy | Order Samples | Technical Support | myAnalog

ADI Site Navigation

ADI Home > Digital Signal Processing >

Mixed Signal DSPs

Mixed Signal DSPs

Selection Guide

Architectural Overview

Benchmarks

Roadmap

Development Tools

Technical Library

Contact Mixed Signal DSP

Subscribe to eNewsletters

Digital Signal Processing

Digital Signal Processing

ADI Design Resources

Product Selection...

Technical Library..

Design Tools.

Mixed Signal DSPs

The <u>ADSP-2199x family</u> of mixed-signal DSPs provides single-chip, high-performance solutions for embedded control and signal processing applications.

The ADSP-2199x family represents the highest-performance mixed-signal DSPs generally available today. These products combine the 160 MIPS, ADSP-219x DSP core with an 8-Channel, 14-bit, 20 MSPS analog to digital conversion system as well as the right mix of embedded control peripherals and comprehensive development tools. The various pin-for-pin compatible models provide different on-chip memory sizes and peripherals, allowing users to select the optimal memory and peripheral mix for a given application.

The ADSP-219x core architecture has also been optimized for high C/C++ compiler efficiency, resulting in increased code density and ease of use. All products are supported by CROSSCORE™, ADI's award-winning DSP development tools.

Digital Signal Processing

Featured

Request a FREE Mixed Signal VisualDSP++ Test Drive and Register To Qualify For a Complete Mixed Signal DSP Development Tools Package.

Download New <u>Mixed Signal DSP Application</u> <u>Code Examples</u> for the ADSP-2199x Products.

ADSP-2199x EZ-KIT Lite™ Now Available.

Software Development Tools ADSP-2199x Hardware and

ADSP-2199x Family Development Tools

- Supported by ADI's Award-Winning CROSSCORE Development Tools
- VisualDSP++ 2.0 Integrated Development Environment
 - The VisualDSP++ Kernel (VDK)
 - C/C++ high level language compiler
 - Advanced plotting tools
 - Statistical profiling to easily identify programming bottlenecks
- JTAG In-Circuit Emulation (ICE) Capabilities
 - On-chip emulation and debug support
 - PCI emulation => Summit ICE
 - USB emulation => Apex-ICE
- EZ-KIT Lite for ADSP-2199x g development environment man
 - Low cost evaluation platform for ADSP-2199x silicon
 - Expandable as development platform via JTAG emulator connector
 - ADSP-21990 EZ-KIT available

www.analog.com

11-131

What is VisualDSP++

- VisualDSP++ is an integrated development environment that delivers efficient project management so programmers can move easily between editing, building, and debugging.
- Key Features Include:
 - The VisualDSP++ Kernel (VDK)
 - C++ compiler
 - Advanced plotting tools enabling programmers to visually measure software performance
 - Statistical profiling to easily identify programming bottlenecks
- VisualDSP++ offers programmers a powerful programming tool with flexibility that significantly decreases the time required to port software code to a DSP, reducing time to market

Features of VisualDSP++

- VisualDSP++ RTOS/Kernel/Scheduler (VDK)
- High Level Language Including C++
- Rich Debug Ability Including MP Support
- Advanced Profiling Features
- High Quality Visualization/Plot Capability
- Expandable with ActiveXTM
- Easy to Test and Verify Applications with Tcl Scripts
- Easy to Learn with Online Help
- New Flexible Licensing Mechanism

11-13

Integrated Development and Debugging Environment (IDE)

High Level Language Compilation

- C/C++ Snbbout to passively gather important metrics
 - High level languages (HLL) can shorten the customers time to market. HLLs are more common, allowing for a greater talent pool to take advantage of the real-time processing performance offered by DSPs.
 - "Don't just do it, do it well!" ADI purchased Edinburgh Portable Compilers for their expertise in DSP compilation technology. They are intimately aware of the DSP architectures and the target applications, which leads to optimized C and C++ compilers.
 - ADI's C++ is based on superset of Embedded C++ standard that adds the code reuse aspect of C++ without bloating the complied code.
 - Object-oriented programming shortens time to market.

Statistical Profiling assuming shortens time to market

- Non-Intrusive Statistical Profiling (Patent Pending)
 - Does not halt the DSP
 - No extra coded added to the application
- The Debugger has the ability to randomly sample the target processors PC and then present the user with a graphical display of the resultant samples. This will let the user easily see where their application is spending most of its time. Since the JTAG sampling is completely non-intrusive, this process will not incur any additional run-time overhead.
- Allows developer to passively gather important metrics without interrupting the real-time characteristics
- Programmer can focus on those areas in the program that impact performance and take corrective action

ADI Delivers the Whole DSP Product

Debugger, RT Libraries, Simulators, Assem/Link Development Boards, SDK, Kernels, Algorithms Emulators, Evaluation Boards, Compilers Special Processing Libraries, R-TOS, IDE Architecture **VisuaIDSP®** APIS DSP

ADI Core Competency

EPC Core Competency

White Mountain Core Competency

Independent Development Partners

www.analog.com

ANALOG DEVICES

11-137

ADMC34x / ADMCF34x: DashDSP with I_{SENSE}

The ADMC(F)34x family is an enhanced version of the ADMC(F)32x. The cores are similar, but numerous product enhancements have been made.

ADMC(F)34x Product Enhancements

- The ADMC(F)32x ADC System Has Been Augmented:
 - Addition of sample-and-hold circuits for timed sampling
 - Up to three bipolar current sense amplifiers
 - Over-current protection on bipolar limits
 - Flexibility for operation from single dc link shunt or three low-side shunts
 - Filtered PWMTRIP to prevent accidental PWM tripping
 - Addition of more analog channels
- Enhancements will Further Reduce Total System Cost by Eliminating Components from the Design.
- Two Serial Ports Available Now with SPI Emulation
- Extra I/O Ports (up to 25 on ADMC(F)340)
- 16-Bit Aux PWM (Wider Frequency Range)

ADMC(F)34x Product Selection Guide

ADMC PART #	PACKAGE	GPIO	ADC I _{SENSE} INPUTS	ADC VOLTAGE INPUTS	FEATURES
	64-LQFP	25 U	om sir 3 lie de		SR Mode, PWM Polarity
341	28-SOIC	8 le-and-f ar curre	old circuits for the sense amp	y timed sam	

Embedded DSP Applications Support

- Dedicated Product Line Website Providing Latest Product Information, Articles, Third Party Contact Information, Application Notes and Product Support.
- Worldwide Applications Support: mcgapps@analog.com

SECTION 12 MicroConverters

MICLOCOLLAGIGE

Flash/EE Memory

High Performance Analog IV

OCONVERTER® Def

► ANALOG DEVICES

www.analog.com

MicroConverter® Definition

3 Microcontroller

MicroConverter®

MicroConverter® Product Roadmap

SAR • 1

ADuC812

52-PQFP

8-Channel

12-Bit ADC 8 KByte Flash/EE 23

ADuC814

28-TSSOP

12-Bit resolution

10-Bit accurate

ADC

8 KByte Flash/EE

ADuC831/832

52-PQFP

8-Channel

12-Bit ADC

62 KByte Flash/EE

 Σ - Δ

23

ADuC824

52-PQFP

Dual 24-/16-Bit

 Σ - Λ ADC

8 KByte Flash/EE

ADuC816

52-PQFP

Dual 16-Bit

 Σ - Λ ADC

0 1/0

8 KByte

Flash/EE

ADuC834

52-PQFP

Dual 24-/16-Bit

 Σ - Λ ADC

62 KByte Flash/EE

TIME

Introducing the ADuC814

- 12-Bit, 6-Channel ADC and Dual 12-Bit DAC
 - 2 8 Kbyte Program and 640 byte Data Flash EEPROM
 - Industry Standard 8052

ADuC814

- 12-Bit ADC Tested to 1-Bit Accuracy
- 2 x 12-Bit Voltage Output DACs
- 2.5 V Precision Band Gap Ref
- Temperature Sensor
- Simple ADC and DAC Control
- 8 K/ 640 bytes Program/Data Memory
- Industry Standard 8052 Core
- Serial Interface
- Watchdog Timer
- Power Supply Monitor
- On-Chip PLL
- 28-TSSOP

- ANALOG I/O LASI CONUTEL (LIC
 - 6-channel 247 kSPS ADC 12-bit resolution
 - High-speed ADC to serial RAM capture
 - Dual voltage output DACs
 - 12-bit resolution, 15 us settling time
- Memory
 - 8 Kbytes on-chip Flash/EE program memory
 - 640 Bytes on-chip Flash/EE data memory
 - Flash/EE, 100-year retention, 100 K cycles endurance
 - 256 Bytes on-chip data RAM
- Power passag cole
 - Specified for 3 V and 5 V operation
 - Normal: 3 mA @ 3 V (core CLK = 2.1 MHz)
 - Power-Down: 15 μA (32 kHz oscillator running)

- 8051-Based Core
 - 8051-compatible instruction set (16.78 MHz max)
 - 32 kHz external crystal, on-chip programmable PLL
 - Three 16-bit timer/counters
 - 11 programmable I/O lines
 - 11 interrupt sources, two priority levels
- On-Chip Peripherals
 - On-chip temperature monitor
 - Precision voltage reference
 - Time Interval Counter (TIC)
 - UART serial I/O
 - I²C[®] -compatible and SPI[®] serial I/O
 - Watchdog Timer (WDT), Power Supply Monitor (PSM)

Introducing the ADuC834

- **1** Dual 24-/16-Bit Σ - Δ ADC and Single 12-Bit DAC
 - 2 62 Kbyte Program and 4 Kbyte Data Flash EEPROM
 - Industry Standard 8052

ADuC834

ADUC834 MicroConverter®, Dual 16-/24-Bit ADCs with Embedded 62 KB FLASH MCU

ADUC834 MicroConverter®, Dual 16-/24-Bit ADCs with Embedded 62 KB FLASH MCU

- High-Resolution Sigma-Delta ADCs
 - Two independent ADCs (16- and 24-bit resolution)
 - 24-bit no missing codes, primary ADC
 - 13-bit p-p resolution @ 20 Hz, 20 mV range
 - 16-bit p-p resolution @ 20 Hz, 2.56 V range
- Memory erval Counter (TIC)
 - 62 Kbytes on-chip Flash/EE program memory
 - 4 KBytes on-chip Flash/EE data memory
 - Flash/EE, 100-year retention, 100 K cycles endurance
 - 2304 bytes on-chip data RAM
- 8051-Based Core
- 8051-compatible instruction set (12.58 MHz max)
 - 32 kHz external crystal, on-chip programmable PLL
 - 11 interrupt sources, two priority levels
 - Dual data pointer
 - Extended 11-bit stack pointer

ADuC834 MicroConverter®, Dual 16-/24-Bit ADCs with Embedded 62 KB FLASH MCU

- Ou-Chip Peripherals instruction set (12.58 MHz max)
 - 12-bit voltage output DAC
 - Dual 16-bit Σ-Δ DACs/PWMs
 - On-chip temperature sensor
 - Dual excitation current sources
 - Time Interval Counter (TIC)
 - Flexible Serial I/O
 - Watchdog Timer (WDT), Power Supply Monitor (PSM)
- Power
 - Specified for 3 V and 5 V Operation
 - Normal: 3 mA @ 3 V (Core CLK = 1.5 MHz)
 - Power-down: 20 μA max with wake-up CCT running

ADUC834 MicroConverter®, Dual 16-/24-Bit ADCs with Embedded 62 KB FLASH MCU

100% Identical to ADuC824 (hardware & software), except....

- 62K of Flash/EE Code Space (versus 8K)
- 4K of Flash/EE Data Space (versus 640bytes)
- 2K of Additional on-chip RAM (plus normal 256bytes)
- Flexible Dual PWM
- Flexible High-Speed UART Baud Rate Generator (up to 230kbaud)
- "U-Load Mode" Allows User Implemented Remote Download (among other things)

Introducing the ADuC836

2 62 Kbyte Program and 4 Kbyte Data Flash EEPROM

Industry Standard 8052

ADuC836

ADUC836 MicroConverter®, Dual 16-Bit ADCs with Embedded 62 KB FLASH MCU

ADUC836 MicroConverter®, Dual 16-Bit ADCs with Embedded 62 KB FLASH MCU

100% Identical to ADuC816 (hardware & software), except....

- 62K of Flash/EE Code Space (versus 8K)
- 4K of Flash/EE Data Space (versus 640bytes)
- 2K of Additional on-chip RAM (plus normal 256bytes)
- Flexible Dual PWM
- Flexible High-Speed UART Baud Rate Generator (up to 230kbaud)
- "U-Load Mode" Allows User Implemented Remote Download (among other things)

100% Identical to ADuC834 (hardware & software), except....

Primary ADC is 16 Bits rather than 24 Bits

Introducing the ADuC831/ADuC832

- 12-Bit, 8-Channel ADC and Dual 12-Bit DAC
 - 2 62 Kbyte Program and 4 Kbyte Data Flash EEPROM
 - Industry Standard 8052

ADuC831 / ADuC832

ADUC831 MicroConverter®, 8-Channel 12-Bit ADC with Embedded 62 KB FLASH MCU

ADuC832 MicroConverter®, 8-Channel 12-Bit ADC with Embedded 62 KB FLASH MCU

ADUC831/32 MicroConverter®, 8-Channel 12-Bit ADC with Embedded 62 KB FLASH MCU

- High-Resolution Multichannel SAR ADC
 - 8-Channel / 12-Bit SAR ADC
 - True 12-Bit Performance (INL / DNL)
 - Self-Calibrating
- Memory
 - 62 Kbytes on-chip Flash/EE program memory
 - 4 KBytes on-chip Flash/EE data memory
 - Flash/EE, 100-year retention, 100 K cycles endurance
 - 2304 bytes on-chip data RAM
- 8051-Based Core
 - 8051-compatible instruction set
 - 32 kHz external crystal, on-chip programmable PLL (ADuC832 only)
 - 11 interrupt sources, two priority levels
 - Dual data pointer
 - Extended 11-bit stack pointer

ADUC831/32 MicroConverter®, 8-Channel 12-Bit ADC with Embedded 62 KB FLASH MCU

- On-Chip Peripherals
 - Dual 12-bit voltage output DACs
 - Dual 16-bit Σ-Δ DACs/PWMs
 - On-chip temperature monitor
 - Dual excitation current sources
 - Time Interval Counter (TIC) (ADuC832 only)
 - Flexible Serial I/O
 - Watchdog Timer (WDT), Power Supply Monitor (PSM)
- Power
 - Specified for 3 V and 5 V Operation
 - Normal: 3 mA @ 3 V (Core CLK = 2 MHz)
 - Power-down: 20 µA max with wake-up CCT running (ADuC832 only)

ADUC831/32 MicroConverter®, 8-Channel 12-Bit ADC with Embedded 62 KB FLASH MCU

100% Identical to ADuC812 (hardware and software) except...

- 62K of Flash/EE Code Space (Versus 8 K)
- 4K of Flash/EE Data Space (Versus 640 Bytes)
- 2K of Additional On-Chip RAM (Plus Normal 256 Bytes)
- Flexible Dual PWM
- Flexible High-Speed UART Baud Rate Generator (up to 230 k Baud)
- "U-Load Mode"—Allows User-Implemented Remote Download (Among Other Things)
- Some Minor Register Differences
 (i.e., Can not Claim 100% Software Backward Compatibility)
- PLL and Time-Interval-Counter (ADuC832 Only)

MicroConverter® Product Line Status Summary

ADuC812

Released

ADuC814

Released

ADuC816

Released

ADuC824

Released

ADuC831

(Sampling)

ADuC832

(Sampling)

ADuC834

(Sampling)

ADuC836

(Sampling)

"Sampling" Means That
QuickStart™ Kits
are also Available
for \$199

New Product Developments — More Memory

New Product Developments — Smaller Packages

- Chip Scale Packages (CSP)
- ADuC812, ADuC816, ADuC824...
 - 56-CSP versions released or soon to come
- ADuC834, ADuC836, ADuC831, ADuC832...
 - Will release in both 56-CSP and 52-PQFP

MicroConverter — Design Support

ANALOGDEVICES

www.analog.com

12-26

MicroConverter — Website

www.analog.com/MicroConverter

- Data Sheets, Technical Notes
- Example Code
- 8051 Reference Material
- Free Tools Downloads/Upgrades
- Links to Third Party Sites
- Articles and Press Releases

MicroConverter Development Kit

- Documentation Bank Sites
- Evaluation Board
- Regulated Power Supply
- Serial Port
- Software Peets, Technical Notes
 - Metalink <u>Assembler</u>
 - Windows Simulator
- Serial <u>Downloader</u>
 - Windows <u>Debugger</u>
 - Example Code

www.analog.com

12-28

MicroConverter Third Parties

Third Party Tools

COMPILERS

EMULATORS

PROGRAMMERS

www.analog.com

ANALOG DEVICES

SECTION 13

MICROPROCESSOR SUPPORT

INTERFACE

INTERFACE

THERMAL MANAGEMENT

SYSTEM MANAGEMENT

www.analog.com

13-2

SASLEM MVMVOEMENL

MIEKEVCE

INTERFACE

SECTION 13

ADIs "E" Series Of Interface Chips

- Provides 15 KV ESD Protection
 - Protection diodes on-chip
 - Eliminates TransZorbs
- Fom EWI * EMC Compatibility
- Meets European "CE" Requirements
 - IEC 1000-4-2 (ESD)
 - IEC 1000-4-3 (Immunity)
 - IEC 1000-4-4 (EFT)
 - EN55022/CISPR22 (EMC)

European Requirements — The CE Mark

ets Europea F.C.F. Requirements IEC 1000-4-7 (ESE) IEC 1000-4-3 (Immanity)

- EMC Compatibility
 - E EM Emissions
 - EM Immunity orection
 - ESD
 - EFT

ESD/EFT Protection

TRANSMITTER OUTPUT
PROTECTION STRUCTURE

RECEIVER INPUT
PROTECTION STRUCTURE

The Green Idle Architecture slows the charge pump during periods of inactivity to reduce the power dissipation. One receiver is left active to trigger the regulator back to full power.

ADM3302E RS-232E Line Driver/Receiver

Notes

- * INTERNAL 400k Ω PULL-UP RESISTOR ON EACH CMOS INPUT
- ** INTERNAL 5k \O PULL-DOWN RESISTOR ON EACH RS-232 INPUT

www.analog.com

PRELIMINARY DATA

ADM3302E RS-232E Line Driver/Receiver

- Two Drivers, Two Receivers: Complements the ADM3311
- 230 Kbps Data Rate
- Meets EIA-232E and CCITT V.28 Specifications
- Small 0.1 μF Charge Pump Capacitors
- Only 1 mA Supply Current 3 V Supply
- "Green Idle" Power Reduction
- 15 kV ESD Protection on Both the TTL and RS-232 Sides
- 20-Lead TSSOP Package
- −40° C to +85° C Operation

ADM3307E RS-232E Line Driver/Receiver

* INTERNAL 400k Ω pull-up resistor on each cmos input

** INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

www.analog.com

ADM3307E RS-232E Line Driver/Receiver

- Five Drivers, Three Receivers: Complements the ADM3311
- 230 Kbps Data Rate
- Meets EIA-232E and CCITT V.28 Specifications
- Small 0.1 µF Charge Pump Capacitors
- Only 1 mA Supply Current on a 3 V Supply
- "Green Idle" Power Reduction
- 15 kV ESD Protection on Both the TTL and RS-232 Sides
- 28-Lead TSSOP and LFCSP Packages
- -40° C to +85° C Operation

ADM3310E 15 kV ESD Protected, Serial Port Transceivers with Green-IdleTM

ADM3310E 15 kV ESD Protected, Serial Port Transceivers with Green-IdleTM

- Green Idle TM Power Saving Mode
- Full RS-232 Compliance
- Operates with 3V Logic
- Low EMI
- Ultra Low Power CMOS: 250 µA Operation
- Low Power Shutdown: 20 nA
- 460 kbits/s Data rate
- 0.1 μF to 1 μF Charge Pump Capacitors
- Single +2.7 V to +3.6 V Power Supply
- Two Receivers Active in Shutdown
- ESD >15 kV

ADM3312E 15 kV ESD Protected Serial Port Transceiver with Green Idle™

www.analog.com

ADM3312E 15 kV ESD Protected Serial Port Transceiver with Green Idle™

- Three Drivers and Three Receivers
- Full RS232 Compliance
 - 230 kB/s data rate
- Single 2.7 V to 3.6 V Supply
 - 450 µA operational
 - 20 nA shutdown
- Green Idle
 - One receiver active in shutdown
- Low EMI

www.analog.com

ADM3315E 15 kV ESD Protected Serial Port Transceivers with Green-IdleTM

ADM3315E 15 kV ESD Protected Serial Port Transceivers with Green-IdleTM

- Green Idle TM Power Saving Mode
- Full RS-232 Compliance
- Operates with 3 V Logic
- Low EMI
- Ultra Low Power CMOS: 250 μA Operation
- Low Power Shutdown: 20 nA
- 460 kbits/s Data rate
- 0.1 μF to 1 μF Charge Pump Capacitors
- Single +2.7 V to +3.6 V Power Supply
- One Receiver Active in Shutdown
- ESD >15 kV

ADM1486 PROFIBUS 5 V, 0.5 mA RS-485 Transceiver

ADM1486 PROFIBUS 5 V, 0.5 mA RS-485 Transceiver

- Meets and Exceeds EIA RS-485 and EIA RS-422
- 40 Mb/s Data Rate
- Recommended for PROFIBUS Applications
- 2.1 V Minimum Differential Output with 54 Ω Termination
- Low Power 0.5 mA I_{cc}
- Thermal Shutdown and Short Circuit Protection
- Zero Skew Driver and Receiver
- Driver Propagation Delay: 8 ns
- Receiver Propagation Delay: 12 ns
- High Impedance Outputs with Drivers Disabled or Power Off
- Superior Upgrade for SN65ALS1176

RS-485 Roadmap

RS-485 Roadmap

- Ongoing TSMC Process Transfer of RS-485 Family
 - ADM485/1485, ADM483/488/489, ADM3485
- 4P's : Improvements
 - Price : Low Cost BiCMOS Design for Reduced Cost & Footprint.
 - Power : Industry's Lowest Supply Currents: 60uA max for ADM483
- Package : Industry's Smallest Packaging: 8-uSOIC (MSOP)
 - Performance : Fast Data Rates: up to 40Mbps
- ADM1486 crosses the SN65ALS1176 in PROFIBUS designs and enables next gen PROFIBUS with <2ns matched Tx enable/disable switching
- ADM483 will expand to include ADM1487/3082/85/88 with Output Slew Rate Limiting, True Fail Safe and 1/8 unit load inputs and 1uA Shutdown.

www.analog.com

ADM1072 Dual 1 A High-Side Switchwith Current Limit and Thermal Shutdown

www.analog.com

PRELIMINARY DATA

ADM1072 Dual 1 A High-Side Switch with Current Limit and Thermal Shutdown

- 135 mΩ On Resistance
- 1 A Load Current 200 mA in Standby Mode
- Switchable Current Limits
- Short Circuit Protection
- Thermal Shutdown
- FLT Output
- 50 mA (Typ) Supply Current 10 nA in Shutdown
- 40 nA (Typ) Switch-Off Leakage

ADM1072 Used In a Portable System

ADM1070 -48V Hot Swap Controller

ADM1070 -48V Hot Swap Controller

- Allows Safe Board Insertion and Removal from a Live 48V Backplane
- Typically Operates from -36 V to -80 V
- Tolerates Transients up to –200 V (limited by external components)
- Accurate Programmable Linear Current Limit for Inrush Control and Short Circuit Protection
- Programmable Time-out In Current Limit
- Limited Consecutive Retry:
 - Auto-restart After Current Limit Time-out
 - Shutdown after 7 Consecutive Auto-restarts
- Provides Immunity from Step Induced Current Spikes

ADM1070 -48V Hot Swap Controller

- Default Timing Provided with No TIMER Capacitor
- Single Pin Undervoltage/ Overvoltage Detection
- Programmable Operating Voltage Window
- Programmable Undervoltage/ Overvoltage Time Filter
- Small 6-Pin SOT-23 Package
- APPLICATIONS
 - Central Office Switching
 - -48V Distributed Power Systems
 - Negative Power Supply Control
 - Hot Board Insertion
 - Electronic Circuit Breaker
 - High Availability Servers
 - Programmable Current Limiting Circuit
 - -48V Power Supply Modules

ADM1014 Dual PCI Hot Plug Controller

CHANNEL B IDENTICAL

www.analog.com

PRELIMINARY DATA

ADM1014 Dual PCI Hot Plug Controller

- Dual Version of the ADM1011A
- Controls All Four PCI Voltages Plus 3.3 V Aux
 - +3.3 V, +5 V, +12 V, -12 V
- Adjustable Overcurrent Protection for All Outputs
- Undervoltage Protection
 - 3.3 V, 5 V, 12 V
- Fault Output with Adjustable Delay
- Logic Control of Outputs
- Adjustable Soft Start

Dual PCI Hot Plug Control

HOT SWAP CONTROLLERS

www.analog.com

13-30

Simplified PCI Power Supply Hot Plug Controller

Hot Swap & Sequencing Roadmap

BUS SWITCHES

www.analog.com

ADG3245 2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch

ADG3245 2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch

- 175 ps Propagation Delay through the switch
- 3.5 Ω Switch Connection between Ports
- 2.5 V/ 3.3 V Supply Operation
- Selectable Level Shifting/Translation
- Level Translation
 - 3.3 V to 2.5 V
 - 3.3 V to 1.8 V
 - 2.5 V to 1.8 V
- 20 Lead TSSOP & CSP Packages

2.5 V/ 3.3 V, 10 Bit, 2 Port

ADG3246 2.5 V/ 3.3 V, 10 Bit, 2 Port Level Translator, Bus Switch

ADG3246 2.5 V/ 3.3 V, 10 Bit, 2 Port Level Translator, Bus Switch

- 175 ps Propagation Delay through the switch
- 3.5 Ω Switch Connection between Ports
- 2.5 V/ 3.3 V Supply Operation
- Selectable Level Shifting/Translation
- Level Translation:
 - 3.3 V to 2.5 V
 - 3.3 V to 1.8 V
 - 2.5 V to 1.8 V
- 24 Lead TSSOP and CSP Packages

ADG3247 2.5 V/ 3.3 V, 16 Bit, 2 Port Level Translator, Bus Switch

- 175 ps Propagation Delay through the switch
- 3.5 Ω Switch Connection between Ports
- 2.5 V/ 3.3 V Supply Operation
- Selectable Level Shifting/Translation
- Level Translation
 - 3.3 V to 2.5 V
 - 3.3 V to 1.8 V
 - 2.5 V to 1.8 V
- 40 Lead 6 x 6 mm Chip Scale and 38 Lead TSSOP Packages

ow Voltage, Uni-Directional

ADG3233 Low Voltage, Uni-Directional (Up/Down) Level Translation, Bypass Switch

ADG3233 Low Voltage, Uni-Directional (Up/Down) Level Translation, Bypass Switch

- Operates from 1.65 V to 3.6 V Supply Rails
- Up/Down Level Translation
- 8 lead SOT-23 and µSOIC Packages
- Bypass or Normal Operation
- LVTTL/CMOS-Compatible Inputs
- APPLICATIONS
 - JTAG Chain Bypassing
 - Daisychain Bypassing
 - Digital Switching

ADG3257 3.3 V/ 5 V, Quad 2:1 Mux/Demux Bus Switch

ADG3257 3.3 V/ 5 V, Quad 2:1 Mux/Demux Bus Switch

- 110 ps Propagation Delay through the switch
- 2.2 Ω Switches Connect Inputs to Outputs
- Single 3.3 V/ 5 V Supply Operation
- Level Translation Operation
- Ultra Low Quiescent Supply Current (1 nA Typical)
- Rapid 3 ns Switching
- Standard '3257 Type' Pinout
- 16 pin QSOP

DARFININGS OVIV

Indettd '3257 Type' Pinout

SUPERVISORY

ingle 3.3 W 5 V Supply Operation

DESSEL 3'3 AL

ADM6315 Open-Drain Microprocessor Supervisory Circuit in 4-Lead SOT-143

ANALOGDEVICES

ADM6315 Open-Drain Microprocessor Supervisory Circuit in 4-Lead SOT-143

- Superior Upgrade for MAX6315
- Specified Over Temperature
- Low Power Consumption (5 μA Typ)
- Precision Voltage Monitor of Voltages from 2.5 V to 5 V at 100 mV Increments
- Reset Assertion Down to VCC > 1 V
- Built-In Manual Reset
- Pin Compatible with the ADM811

ADM1060 Communications System Supervisory/Sequencing Circuit

ADM1060 Communications System Supervisory/Sequencing Circuit

- Faults detected on 7 independent supplies
 - 1 High Voltage supply (up to 14.4V)
 - 4 Positive Voltage Only Supplies (up to 6V)
 - 2 Positive/Negative Voltage supplies (up to +6V OR down to -6V)
- Watchdog Detector Input- Timeout delay programmable from 200ms to 12.8sec
- 4 General Purpose Logic Inputs
- Programmable Logic Block- combinatorial and sequencing logic control of all inputs and outputs

ADM1060 Communications System Supervisory/Sequencing Circuit

- 9 Programmable Output Drivers
 - Open Collector (external resistor required)
 - Open Collector with internal pull-up to VDD
 - Fast Internal pull-up to VDD
 - Open Collector with internal pull-up to VPn
 - Fast Internal pull-up to VPn
 - Internally charge pumped high drive (for use with external N- channel FETS- PDO's 1 to 4 only)
- EEPROM- 512 Bytes
- Industry Standard 2- Wire Bus Interface (SMBus)

EPROM- 512 Bytes

Management Products Thermal System

▼ ANALOG DEVICES

TSM Portfolio Summary

- Local, Remote and Multichannel Remote Digital Temperature Sensors
 - Local Detect and Measure Temperature
 - Remote External Sensor is Used to Detect Temperature and is Remotely Sensed and Measured
 - Multichannel Remote Up to Two External Sensors are Used
 - Note: All Remote Digital Temp Sensors also Provide Local Detection
- Stand Alone and Integrated Solutions
 - Standalone Measures Temperature
 - Integrated Combines Local/Remote Temperature Measurement with System Management Features
- Fan Speed Controllers Linear and PWM
- Serial, PWM, Ratiometric and Trip Point Output Formats

TSM Part Numbers Will Transition to ADT73XX, ADT74XX and ADT75XX

- Temperature Sensors Were Developed by Different Strategies and Therefore the Various Prefixes – AD5XX, AD22XXX, AD7XXX, ADT1X, ADM10XX, TMPXX. ADT Was Reserved for Temperature Sensors
- With the Exception of Next Generation PWM Devices (ie TMP03/04) Future TSM Products Will Use the Following Part Numbering Format:
 - ADT73XX scr and Measure Lemperature
 - ADT74XX
 - ADT75XX = \$10 Millichannel Remote Digital Temperature
- IIA Will Continue to Support AD5XX and AD22XXX Linear and Controller Sensors

TSM Competitive Advantage Summary

- Integrated Feature Set Thermal Sensors are Typically a Subset of a Larger System Management Architecture
- Temperature Accuracy Guaranteed Over Power Supply Tolerance and Wide Temperature Ranges
- Closed Loop Automatic Fan Speed Control Reduces Acoustic Pollution
- Standard Interfaces Competitive 1-Wire Solutions are Proprietary and Therefore Not Recommended for High Availability Designs
- ADI Market Leadership in Data Converters Core of Digital Temperature Sensors
- Design In Tools Evaluation Boards, Demo Software are Rated Industry Best for Ease of Use for Design In Confirmation

ature Set Expansion Supports All

Feature Set Expansion Supports All System Management Applications

Local Temperature Sensor with —— One Thermal Zone Serial Output

Remote/Multi-Channel Remote **Temperature Sensor**

Up to Three Thermal Zones

Multi-Channel Voltage Measurement -

Voltage Monitoring with Programmable Upper/Lower **Limit Windowing**

Multi-Channel Voltage Output (DAC Hardware Closed Loop Control or PWM) for Fan or Set Point Control with Fan Tachometer

EEPROM (up to 8kB), GPIO and **Power on Reset**

Stores System Configuration Status or Variables, Spare **GPIO Always Needed, POR For Hard System Reset**

Current Monitoring

Power Supply Load Monitoring and 240VI Safety

www.analog.com

13-54

Feature Set Expansion Supports All System Management Applications

Local Temperature Sensor with Serial
Output
+
Remote/Multi-Channel Remote
Temperature Sensor
+
Multi-Channel Voltage Measurement
(ADC)
+

AD7414, AD7415, AD7314

ADM1028, ADM1030 or
ADM1032

AD7816 or ADM1025

Multi-Channel Voltage Output (DAC or PWM) for Fan or Set Point Control with Fan Tachometer

→ ADT751X* or ADM1027*

EEPROM (up to 8kB), GPIO and Power on Reset

ADM1026

* New Products

TMP05/06 Serial Digital Output Temperature Sensor

TMP05/06 Serial Digital Output Temperature Sensor

- Small Low Cost 5-Pin SC-70 and SOT-23 Packages.
- Modulated Serial Digital Output Proportional to Temperature
- ± 1° C Accuracy from 25° C to 100° C
- ± 3° C over entire temperature range
 - Operation from -55° C to 125° C
 - Operation from 2.7 V to 5.5 V
 - CMOS/TTL-Compatible Output on TMP05
 - Flexible Open Drain output on TMP06

Digital Temperature Sensors

RELEASED

AD7414 SOT 6-pin (I2C/SMBus) with Alert

AD7415 SOT 5-pin (I2C/SMBus)

AD7314 µSO-8 (SPI) Equiv to Dallas 1722

COMING

ADT7316/7/8 Temp Sensor + Quad DAC (I2C/SMBus)

ADT7411 Temp Sensor +8 Chnl ADC (I2C/SMBus)

ADT7516/7/8 Temp Sensor + Quad DAC + ADC (4Chnls)

(I2C/SMBus)

ADT7301 ± 0.5° Accurate Temp Sensor (SPI)

(Pin Compatible with the AD7814)

AD7314 10-Bit Digital Temperature Sensor

AD7314 10-Bit Digital Temperature Sensor

- 10-Bit Temperature-to-Digital Converter
- ±0.25° Resolution
- ±2° C Accuracy
- -55° C to +125° C Operating Temperature Range
- Supply Voltage: 2.65 V to 3.3 V
- SPI- and DSP-Compatible Serial Interface
- Shutdown Mode
- 8-Lead µSOIC Package
- For Primary SPI Temperature Sensor Designs use the AD7814

AD7414 Digital Temperature Sensor with SMBus/ I²C Interface

AD7415 Digital Temperature Sensor with SMBus/ I²C Interface

AD7414/15 Digital Temperature Sensors with SMBus/ I²C Interface

- ±2° C Accuracy (±0.25° C Resolution) @ 3.3 V
- ±3° C Accuracy (±0.25° C Resolution) @ 5.5 V
- I²C/ SMBus Interface
 - AD7414: Four Modes Allow 8 I²C Addresses
 - AD7415: Two Modes Allow 6 I²C Addresses
- SOT-23 5-/6-Lead Packages
- Standby Mode with Current Consumption of 3 mA
- Temperature Conversion Takes 28 ms (Typ)
- AD7414: Overtemperature Indication
- AD7414: SMBus Alert Function
- Only One Grade
- -55° C to +125° C Operating Temperature Range

AD7414/15 10-Bit Temperature Sensors

ADT7463/60 *dB*COOL™ Remote Thermal Controller and Voltage Monitor

ADT7463/60 *dB*COOL™ Remote Thermal Controller and Voltage Monitor

- Monitors Up To 5 Supply Voltages
- Controls and Monitors Up To 4 Fan Speeds
- 1 On-Chip and 2 Remote Temperature Sensors
- Monitors Up To 6 Processor VID Bits
- Dynamic TMIN Control Mode Optimizes System Acoustics Intelligently
- Automatic Fan Speed Control Mode Controls System Cooling Based On Measured Temperature
- Enhanced Acoustic Mode Dramatically Reduces User Perception of Changing Fan Speeds
- Thermal Protection feature via THERM output

ADT7463/60 *dB*COOL™ Remote Thermal Controller and Voltage Monitor

- Monitors Performance Impact of Intel[®] Pentium[™] 4
 Processor Thermal Control Circuit via THERM input
- 2-wire and 3-wire Fan Speed Measurement
- Limit Comparison of all Monitored Values
- Meets SMBus 2.0 Electrical Specifications (Fully SMBus 1.1 Compliant)
- 24-Pin QSOP Package
- ADT7460: 16-Pin Version without All the Voltage Monitoring and VID Channels

ADT7301 12-Bit, ±0.5° C Accurate, **MicroPower Digital Temperature Sensor** in 6-Lead SOT-23

ADT7301 12-Bit, ±0.5° C Accurate, MicroPower Digital Temperature Sensor in 6-Lead SOT-23

- 12-Bit Temperature-to-Digital Converter
- -55° C to +150° C Operating Temperature Range
- ±0.5° C Accuracy
- Operating Current of 1 μA
- SPI- and DSP-Compatible Serial Interface
- Shutdown Mode
- Space-Saving SOT-23 Package

w Family of Digital Temperature Sensors with Multiple ADC and DAC Channels and a **Flexible Serial Interface**

ADT7316/17/18 Local Temperature Sensor and Quad DAC

All this functionality is packed into a 16-Lead QSOP

ADT7316/17/18 10-Bit Digital Temperature Sensor and Quad 12-/10-/8-Bit DAC

ADT7316/17/18 10-Bit Digital Temperature Sensor and Quad 12-/10-/8-Bit DAC

- ADT7316 Four 12-Bit DACs
- ADT7317 Four 10-Bit DACs D25-Comballple 2-Mile
- ADT7318 Four 8-Bit DACs
- Buffered Voltage Output
- Guaranteed Monotonic by Design Over All Codes
- 10-Bit Temperature to Digital Converter
- Temperature Range: -40° C to +125° C
- Temperature Sensor Accuracy of ±2° C
- Supply Range: 2.7 V to 5.5 V
- DAC Output Range: 0 V_{REF}

ADT7316/17/18 10-Bit Digital Temperature Sensor and Quad 12-/10-/8-Bit DAC

- Power-Down Current 1µA
- Double-Buffered Input Logic
- Internal 2.25 V_{REF} Option Option
- Buffered/Unbuffered Reference Input Option
- Power-On Reset to Zero Volts
- Simultaneous Update of Outputs (Function)
- On-Chip Rail-to-Rail Output Buffer Amplifier
- I²C, SPI, QSPI, MICROWIRE, and DSP-Compatible 5-Wire Serial Interface
- 16-Lead QSOP Package

ADT7411 10-Bit Temperature Sensor and Eight Channel ADC

All this functionality is packed into a 16-Lead QSOP

ADT7411 SPI/I²C[®] Compatible, 10-Bit Digital Temperature Sensor and Eight Channel ADC

ADT7411 SPI/I²C[®] Compatible, 10-Bit Digital Temperature Sensor and Eight Channel ADC

- 10-Bit Temperature to Digital Converter
- 10-Bit Eight Channel ADC :
 - DC Input Bandwidth
- Input Range: 0 V to 2.25 V and 0 V to VDD
- Temperature range: -40° C to +125° C
- Temperature Sensor Accuracy of ±0.5° C
- Supply Range: + 2.7 V to + 5.5 V
- Power-Down Current 1 μA
- Internal 2.25 V V_{REF} Option
- Double-Buffered Input Logic
- Buffered / Unbuffered Reference Input Option

ADT7411 SPI/I²C[®] Compatible, 10-Bit Digital Temperature Sensor and Eight Channel ADC

- Capable of measuring internal and external temperature sensors
- Two channels can be configured as a Differential Input Channel
- Can hardware select either I²C or SPI serial interface
- Interrupt output to indicate limits been exceeded
- ADC can select between Internal 2.25 V reference or V_{DD} as a reference
- Capable of monitoring it's own V_{DD} supply
- 16-Pin QSOP Package

ADT7516/17/18 10-Bit Temperature Sensor, Four Channel ADC and Quad DAC

ADT7516/17/18 SPI/I²C[®] Compatible, Temperature Sensor, Four Channel ADC and Quad Voltage Output DAC

ANALOGDEVICES

www.analog.com

PRELIMINARY DATA

13-80

ADT7516/17/18 SPI/I²C[®] Compatible, Temperature Sensor, Four Channel ADC and Quad Voltage Output DAC

- ADT7516 Four 12-Bit DACs
- ADT7517 Four 10-Bit DACs
- ADT7518 Four 8-Bit DACs
 - Buffered Voltage Output
- Guaranteed Monotonic By Design Over All Codes
 - 10-Bit Temperature to Digital Converter
 - 10-Bit Four Channel ADC:
 - DC Input Bandwidth
 - Input Range: 0 V to 2.25 V
 - DAC Output Range: 0 2 x V_{REF}
- On-Chip Rail-to-Rail Output Buffer Amplifier

ADT7516/17/18 SPI/I²C[®] Compatible, Temperature Sensor, Four Channel ADC and Quad Voltage Output DAC

- Temperature range: -40° C to +125° C
 - Temperature Sensor Accuracy of ±0.5° C
- Supply Range: + 2.7 V to + 5.5 V
 - Power-Down Current 1 μA
- Internal 2.25 V V_{Ref} Option
- Double-Buffered Input Logic
- Buffered / Unbuffered Reference Input Option
- Power-on Reset to Zero Volts
- Simultaneous Update of Outputs
- I²C[®], SPI[™], QSPI[™], MICROWIRE[™] and DSP-Compatible 4-wire Serial Interface
- 16-Lead QSOP Package

FUNCTIONAL BLOCK DIAGRAM

13-83

ADM1032 8-Pin, ±1°C Remote Thermal Diode Monitor with Programmable Thermal Trip Output

- ±1° C Remote and Local Temperature Sensors
- Up to 32 Conversions/ sec
- Thermal Output Drives Fan On/Off
- Programmable Over/ Under Thermal Limits on Remote Channel
- Programmable Thermal Hysteresis on Remote Channel
- Programmable I²C/ SMBus Addresses
- 8-Lead SOIC/µSOIC

ADM1026 Complete System Monitor with On-Chip Memory

ADM1026 Complete System Monitor with On-Chip Memory

- Up to 19 Analog Measurement Channels
- Up to Eight Fan Speed Measurement Channels
- Up to 17 GPIOs
- On Chip Temperature Sensor
- Up to Two Channels of Remote Thermal Diodes

omplete System <u>Wonitor</u>

- Linear and PWM Fan Speed Control
- 8 Kbytes of EEPROM on-chip
- Automatic Fan Speed Control
- Reset Inputs, Reset Outputs
- Chassis Intrusion Detector

ADM1026 Intelligent Platform Management Interface (IPMI) Configuration

ADM1027 – Application Configuration

ADM1027 System Monitor and Fan Controller For Low-Noise PCs

ADM1027 System Monitor and Fan Controller For Low-Noise PCs

- Monitors Up to 5 Supply Voltages
- Monitors up to 4 Fan Speeds
- Monitors 2 Remote And 1 On-Chip Temperature Sensor
- Monitors Processor VID Bits
- Automatic Fan Speed Control
- Enhanced Acoustic Mode
- Monitors CPU output
- 2-wire and 3-wire Fan Speed Measurement
- Limit Comparison of all Monitored Values
- PWM Fan Speed Control Outputs
- Serial System Management Bus (SMBus) Version 1.1 Compliant
- Meets SMBus 2.0 Electrical Specifications

Why Fan Control?

- Reduces System Acoustic Noise
 - ISO 7779 (noise emitted by computer and business equipment) and BLUE ANGEL (European Award) specifications must be adhered to.
 - Industry standards require that fan manufacturers achieve a target noise specification, e.g., 36 dBA for PC fans.
- Increases Battery Life by Reducing Fan Current Consumption

Automatic Fan Speed Control

Programmable Fan Spin-up Time

Variable Temp. To Fan Speed Slope, TRANGE

Program Fan Start Temperature, TMIN

5° C Hysteresis Prevents Fan Cycling

Increase Fan Speed When Temperature Increases

Fans on 100%

Automatic Fan Speed Control

www.analog.com

13-93

TSM Useful Tools

Temp-Sensor Design Handbook — Collection of articles providing tips and hints on how our parts may be used in many different applications. Order TEMP-SENS-DSGN-HB

Evaluation Kits

- Eval Board
- Software CD
- Interface Cable

Evaluation Software - Graphing Utility

System Characterization Software

- Automatic System Profiling
- Best Fit Calculation

www.analog.com

ANALOG

Dest Fit Calculation

www.singlog.com

DEVIOUS

SECTION 14 Power Management Circuits

Linear Low Dropout RegulatorsSwitch-Mode Power Circuits

Regulators **Linear Low Dropout**

Analog Devices anyCAP® LDO Regulators

Typical LDOs lack sufficient phase margin and, to remain stable, require output capacitors with a minimum ESR. To obtain the required ESR, designers are forced to use more costly and larger caps. Additionally, the ESR of a capacitor varies with temperature, requiring further circuit design analysis. Analog Devices' anyCAP LDOs use internal pole splitting to eliminate the need for minimum ESR. Analog Devices' anyCAP LDOs are stable with any type of capacitor, including MLCCs with values as low as 0.47 μF.

Typical LDOs vs. ADI's anyCAP LDO

Typical LDOs vs. ADI's anyCAP LDO

any CAP LDOs

- No Minimum ESR Requirement Minimum ESR Required

- Smaller Value Capacitor Larger Size Capacitor
- Less Board Space
- Lower Cost Capacitor

Conventional LDOs

- No Stability Problems
 Can Become Unstable
 - Less Design Effort and and More Design Effort du
- Smaller Size Capacitor
 Larger Value Capacitor

 - More Board Space
 - Higher Cost Capacitor

anyCAP Block Diagram

► ANALOG DEVICES

ADP3342 Ultralow I_Q 300 mA anyCAP LDO Regulator

Block Diagram

Typical Application

anyCAP Block Diagram

www.analog.com

14-6

ADP3342 Ultralow I_Q 300 mA anyCAP LDO Regulator

- Accuracy Over Line and Load: ±4.0 % @ 25° C, ±5 % Over Temperature
- Ultralow Dropout Voltage: 300 mV (Typ) @ 300 mA
- Requires Only C_o = 1.0 μF for Stability
- anyCAP = Stable with Any Type of Capacitor (Including MLCC)
- Current and Thermal Limiting
 Cabacitot (MCIDQING INTECT)
- Low Shutdown Current: < 2 μA
- 1.7 V ≤ V_{IN} ≤ 6 V voltage: 230 mV (Max) @ 300 mA
- 2.7 V ≤ VCC ≤ 6 V TITS to over temperature
- 0° C to +100° C Ambient Temperature Range
- Ultrasmall Thermally Enhanced 8-Lead µSOP Package

ADP3333 High-Accuracy, Ultralow I_Q, 300 mA anyCAP LDO Regulator of 8-resq halo backs as

- High Accuracy Over Line and Load:
 - ±0.8 % @ 25° C, ±1.8 % over temperature
- Ultralow Dropout Voltage: 230 mV (Max) @ 300 mA
- Requires Only C_o = 1.0 µF for Stability
- anyCAP: Stable with Any Type of Capacitor (Including MLCC)
- Current and Thermal Limiting of Cabacitot (Incline MECC)
- Low Noise
- Low Shutdown Current: <1 µA
- 2.6 V to 12 V Supply Range
- -40° C to +85° C Ambient Temperature Range
- Ultrasmall 8-Lead µSOP Package

ADP3334 High-Accuracy, Low I_Q, 500 mA anyCAP Adjustable LDO Regulator

- High Accuracy Over Line and Load: | Decirot (| Delinquo | NECC)
 - ±0.9 % @ 25° C, ±1.8 % over temperature
- Ultralow Dropout Voltage: 200 mV (Typ) @ 500 mA
- Requires Only C_o = 1.0 μF for Stability
- anyCAP = Stable with Any Type of Capacitor (Including MLCC)
- Current and Thermal Limiting
- Low Noise
- Low Shutdown Current: <1.0 μA (Typ) ≥ Λ 3 3 Λ sug 2 Λ
- 2.6 V to 11 V Supply Range
- 1.5 V to 10 V Output Range
- -40° C to +85° C Ambient Temperature Range
- Thermally-Enhanced 8-Lead SO Package

ADP3338 anyCAP 1 Amp High-Accuracy LDO Regulator

- High Accuracy: ±0.8 % at +25° C, ±1.4 % -40° C to +85° C
- Fixed Voltage Options: 1.8 V, 2.5 V, 2.85 V, 3.3 V, and 5 V
- Wide Input Voltage Range: 2.7 V to 8 V
- Ultralow Dropout: 190 mV, Typ at I_L = 1 A
- Ultralow I_Q: 110 µA Typ at Light Load Shacker (µcinqua NFCC)
- Ultrasmall Package: RT (SOT-223)
- Requires Only C_o = 1.0 µF for Stability
- anyCAP = Stable with Any Type of Capacitor (Including MLCC)
- Current and Thermal Limiting
- Flow Noise in stable LDO Regulator

ADP3339 anyCAP® 1.5 Amp High-Accuracy LDO Regulator

- High Accuracy: ±0.9 % at +25° C, ±1.5 % -40° C to +85° C
- Fixed Voltage Options: 1.8 V, 2.5 V, 2.85 V, 3.3 V, and 5 V
- Wide Input Voltage Range: 2.8 V to 6 V
- Ultralow Dropout: 230 mV, Typ at I_L = 1.5 Amp
- Ultralow I_Q: 130 μA Typ at Light Load
- Ultrasmall Package: RT (SOT-223)
- Requires Only C_o = 1.0 μF for Stability
- anyCAP = Stable with Any Type of Capacitor (Including MLCC)
- Current and Thermal Limiting
- Low Noise

LDO Product Road Map

ANALOGDEVICES

www.analog.com

Sample now

Switch-Mode Power Supply Circuits

www.analog.com

ANALOG

ADP3088 1 MHz Buck Regulator

ADP3088 1 MHz Buck Regulator

- 1 MHz PWM Frequency
- Automatic PWM to Hysteretic Control at Light Load
- Fully Integrated 1 A Current Limited Power Switch
- Fully Integrated Soft Start
- Cycle-by-Cycle Current Limit
- 3 % Output Regulation Accuracy over Temperature, Line, and Load
- Simple Compensation
- µSOP-8 Package
- Small Inductor and MLCC Capacitors
- Low Quiescent Current while Pulse Skipping
- Thermal Shutdown

ADP3088 Typical Application

ADP3089 1 MHz, 1A Buck Regulator

- 1 MHz PWM Frequency
- Automatic PWM to Hysteretic Control at Light Load
- Up to 1 A Continuous Output Current
- Up to 12 V Input Voltage
- Fully Integrated Soft Start
- Cycle-by-Cycle Current Limit
- 3% Output Regulation Accuracy over Temperature, Line, and Load
- Simple Compensation
- MSOP-8 Package
- Small Inductor and MLCC Capacitors
- Low Quiescent Current while Pulse Skipping
- Thermal Shutdown

ADP3089 1MHz 12 V @ 1 A Buck Converter

High Frequency + Smallest Package = Smallest Footprint

= \$pace \$aving + Cost \$aving

www.analog.com

PRELIMINARY DATA

14-19

ANALOG DEVICES

ADP3040 2 MHz PWM Boost Switching Regulator

- Up to 2 MHz PWM Frequency
- Fully Integrated 1.5 A Power Switch
- 3 % Output Regulation Accuracy
- Simple Compensation
- µSOP-8 Package
- Small Inductor and MLC Capacitors
- 300 μA Quiescent Supply Current
- 90 % Efficiency
- Undervoltage Lockout

ADP3031 2MHz PWM Boost Switching Regulator

- Up to 2 MHz PWM Frequency
- Fully Integrated 1.5 A Power Switch
- 3 % Output Regulation Accuracy
- Adjustable Output Voltage from 3 V to 12 V
- Simple Compensation
- Small Inductor and MLC Capacitors
- 90% Efficiency
- Under-voltage Lockout
- Shutdown

ADP3160/67 5-Bit Programmable 2-Phase Synchronous Buck Controller

ADP3160/67 5-Bit Programmable 2-Phase Synchronous Buck Controller

- ADOPT™ Optimal Positioning Technology for Superior Load Transient Response and Fewest Output Capacitors
- Complies with VRM 9.0 with Lowest System Cost
- Active Current Balancing Between Both Output Phases
- 5-Bit Digitally Programmable 1.1 V to 1.85 V Output
- Dual Logic-Level PWM Outputs for Interface to External High-Power Drivers
- Total Output Accuracy ± 0.8 % Over Temperature
- Current-Mode Operation
- Short Circuit Protection
- Power-Good Output
- Overvoltage Protection Crowbar Protects Microprocessors with No Additional External Components

ADP3168 6-Bit Programmable 2-/3-/4-Phase Synchronous Buck Controller

ADP3168 6-Bit Programmable 2-/3-/4-Phase Synchronous Buck Controller

- Selectable 2-, 3- or 4-Phase Operation at up to 1 MHz per Phase
- ±10 mV DAC Accuracy Over Temperature
- Logic-level PWM Outputs for Interface to External Highpower Drivers
- Active Current Balancing Between All Output Phases
- Built-in Power Good/Crowbar Blanking Supports On-thefly VID Code Changes
- 6-Bit Digitally Programmable 0.8375 V to 1.6 V Output
- Programmable Short Circuit Protection with Programmable Latch-off Delay

ADP3171 Synchronous Buck Controller with Dual Linear Regulators

ADP3171 Synchronous Buck Controller with Dual Linear Regulators

- Fixed 1.2 V N-Channel Synchronous Buck Driver Can Be Adjusted to Higher Output Voltages Using a Resistor Divider
- Two Linear Regulators (1.5 V and 1.8 V)
- Accuracy ±1 % over Temperature
- High Efficiency Current-Mode Operation
- Short Circuit Protection
- Power Good Output
- Overvoltage Protection Crowbar Protects Switching Output with No Additional Components

ADP3170 VRM 8.5-Compliant Single-Phase Controller

ADP3170 VRM 8.5-Compliant Single-Phase Controller

- ADOPT Optimal Positioning Technology for Superior Transient Response with Fewest Output Capacitors
- 5-Bit Digitally Programmed (VID) 1.05 V to 1.825 V Output Complies with Intel's VRM 8.5 Specification with Lowest System Cost
- High Efficiency Current-Mode Operation
- Output Accuracy ±0.8 % over Temperature Range
- Power Good Output
- 500 kHz Programmable Switching Frequency
- Overvoltage Crowbar for Microprocessor Protection
- Short Circuit Protected with User-Defined Current Limit
- On-board 1.8 V Linear Regulator

ADP3163 VRM 9.0/ VR Down-Compliant 2-/3-Phase Synchronous Buck Controller

ADP3163 VRM 9.0/ VR Down-Compliant 2-/3-Phase Synchronous Buck Controller

- ADOPT Optimal Positioning Technology for Superior Transient Response with Fewest Output Capacitors
- 5-Bit Digitally Programmed (VID) 1.1 V to 1.85 V Output Complies with Intel's VRM 9.0 and VR Down Specifications as well as AMD Athlon and Duron
- High Efficiency Current-Mode Operation
- Output Accuracy ±0.8 % over Temperature Range
- Enhanced Power Good Output Detects Open Outputs in Multi-VRM Power Systems
- Overvoltage Crowbar for Microprocessor Protection
- Short Circuit Protected with User-Defined Current Limit
- Digitally Selectable Two- or Three-Phase Operation at up to 500 kHz per Phase with Logic-Level PWM Outputs for Interface to External High-Power Drivers
- Active Current Balancing between All Phases
- Accurate Multiple VRM Module Current Sharing

ADP3164 VRM 9.0/ 9.1/ VR Down-Compliant 4-Phase Synchronous Buck Controller

ADP3164 VRM 9.0/ 9.1/ VR Down-Compliant 4-Phase Synchronous Buck Controller

- ADOPT Optimal Positioning Technology for Superior Transient Response with Fewest Output Capacitors
- 5-Bit Digitally Programmed (VID) 1.1 V to 1.85 V Output Complies with Intel's VRM 9.0/9.1/VR Down Specifications
- High Efficiency Current-Mode Operation
- Output Accuracy ±0.8 % over Temperature Range
- Enhanced Power Good Output Detects Open Outputs in Multi-VRM Power Systems
- Overvoltage Crowbar for Microprocessor Protection
- Short Circuit Protected with User-Defined Current Limit
- 4-Phase Operation at up to 500 kHz per Phase
- Logic-Level PWM Outputs for Interface to External High-Power Drivers
- Active Current Balancing between All Phases
- Accurate Multiple VRM Module Current Sharing

Intel's VRM Specifications

ADP3164 VRM 9.0/ 9.1/ VR Down-Compliant 4-Phase Synchronous Buck Controller

CPU Power Product History

www.analog.com

14-37

ADP3203 Multiphase IMVP-II and III-Compliant Core Controller for Mobile CPUs

ADP3203 Multiphase IMVP-II and III-Compliant Core Controller for Mobile CPUs

- Programmable Multiphase IMVP-III Controller for Mobile CPUs
- Backward-Compatible to IMVP-II
- Pin Selectable 1- or 2-Phase Operation
- Excellent Current Sharing Characteristics
- ADOPT Optimal Positioning Technology for Superior Load Transient Response
- Adaptive Noise-Blanking Enhancement for Speed and Stability
- Synchronous Rectifier Control Extends Battery Life
- Fast Smooth Output Transition During VID Code Change
- Cycle-by-Cycle Current Limit
- Hiccup Overload Protection
- Transient-Glitch-Free Power Good
- Low Supply Current in Shutdown
- Soft Start Eliminates Power-On In-Rush Current Surge
- Highly Redundant Overvoltage and Reverse-Voltage Protection

ADP3204 3-Phase IMVP-III & IMVP-III Core Controller for Mobile CPUs

► ANALOG DEVICES

ADP3204 3-Phase IMVP-III & IMVP-III Core Controller for Mobile CPUs

- Pin Selectable 1, 2, or 3-Phase Operation
- Excellent Current Sharing Characteristics
- Backward Compatible to IMVP-II
- Superior Load Transient Response with ADOPTTM Optimal Positioning Technology
- Noise-Blanking for Speed and Stability
- Synchronous Rectifier Control Extends Battery Life
- Smooth Output Transition During VID Code Change
- Cycle-by-Cycle Current Limiting
- Hiccup or Latched Overload Protection
- Transient-Glitch-Free Power Good
- Soft Start Eliminates Power-On In-Rush Current Surge
- Two-Level Over-Voltage and Reverse-Voltage Protection

ADP3422 IMVP-II-Compliant Core Controller for Mobile CPUs

ADP3422 IMVP-II-Compliant Core Controller for Mobile CPUs

- Certified IMVP-II Controller
- Excellent Transient Containment
- Minimum Number of Output Capacitors
- Fast Smooth Output Transition During VID Code Change
- Current Limit with Hiccup Protection
- Transient-Glitch-Free Power Good
- Low Shutdown Current
- Soft Start Eliminates In-Rush Current Surge
- Adaptive Noise-Blanking Enhancement for Speed and Stability
- Highly Redundant Overvoltage and Reverse-Voltage Protection
- Controls Synchronous Rectifier for Improved Battery Life

ADP3025 High-Efficiency Notebook Computer Power Supply Controller

ADP3025 High-Efficiency Notebook Computer Power Supply Controller

- Wide Input Voltage Range: 4.5 V to 25 V
- High Conversion Efficiency > 96 %
- Integrated Current Sense No External Resistor Required
- Low Shutdown Current: 14 µA (Typical)
- Voltage Mode PWM with Input Feed Forward for Fast Line Transient Response
- Programmable PWM Frequency
- Dual Synchronous Buck Controllers with Selectable PWM/Power-Saving Mode Operation
- Built-In Gate Drive Boost Circuit for Driving External N-Channel MOSFETs

ADP3025 High-Efficiency Notebook Computer Power Supply Controller

- Two Independently Programmable Output Voltages
 - Fixed 3.3 V or Adjustable (800 mV to VIN 0.5 V))
 - Fixed 5 V or Adjustable (800 mV to VIN 0.5 V))
- Integrated Linear Regulator Controller of Malo Louisian Files
- Extensive Circuit Protection Functions
- 38-Lead TSSOP Package
- APPLICATIONS
 - Notebook Computers and PDAs
 - Portable Instruments
 - General Purpose DC-DC Converters

ADP3026 High-Efficiency Notebook Computer Power Supply Controller

www.analog.com

PRELIMINARY DATA

ADP3026 High-Efficiency Notebook Computer Power Supply Controller

- Wide Input Voltage Range: 6.5 V to 25 V
- High Conversion Efficiency > 96 %
- Integrated Current Sense No External Resistor Required
- Low Shutdown Current: 14 µA (Typical)
- Voltage Mode PWM with Input Feed Forward for Fast Line Transient Response
- Dual Synchronous Buck Controllers with PWM/ Power-Saving Mode Operation
- Built-In Gate Drive Boost Circuit for Driving External N-Channel MOSFETs

ADP3026 High-Efficiency Notebook Computer Power Supply Controller

- Two Fixed Output Voltages: 3.3 V, 5 V
- PWM Frequency: 300 kHz
- Extensive Circuit Protection Functions
- 28-Lead TSSOP Package
- APPLICATIONS
 - Notebook Computers and PDAs
 - Portable Instruments
 - General Purpose DC-DC Converters

Switcher Coverage Iout & Freq

Switcher Coverage Iout & Vin max

Charge Pump Coverage Iout & Freq

<50 kHz

150 kHz

250 kHz

>250 kHz

www.analog.com

Freq

14-53

ADP3413 Dual MOSFET Driver with Bootstrapping and Output Disable

ADP3414 Dual MOSFET Driver with Bootstrapping

ADP3417 12 V Dual MOSFET Driver with Bootstrapping

ADP3413/14/17 Dual MOSFET Drivers with Bootstrapping

- All-In-One Synchronous Buck Drivers
- Bootstrapped High-Side Driver
- One PWM Signal Generates Both Drives
- Anticross Conduction Protection Circuitry
- Undervoltage Lockout
- ADP3413: Dual Driver with Output Disable
- ADP3414: Dual Driver
- ADP3417: 12 V Dual Driver

ADP3415 Dual MOSFET Driver with Bootstrapping

ADP3415 Dual MOSFET Driver with Bootstrapping

- All-In-One Synchronous Buck Driver
- One PWM Signal Generates Both Drives
- Anticross-Conduction Protection Circuitry
- Programmable Transition Delay
- Zero-Crossing Synchronous Drive Control
- Synchronous Override Control
- Undervoltage Lockout
- Shutdown Quiescent Current < 10 μA

ADP3418 Dual MOSFET Driver with Bootstrapping

ADP3418 Dual MOSFET Driver with Bootstrapping

- 8-pin single phase driver IC capable of running directly off a 5 V or 12 V supply
- Supplies high current drive to both main switch and synchronous rectifier MOSFETs using only a single control pulse
- Output disable function has been added to address Intel VRM 10 requirements
- Built-in anti-cross conduction circuitry

ADM1060 Communications System Supervisory/Sequencing Circuit

www.analog.com

PRELIMINARY DATA

14-62

ADM1060 Communications System Supervisory/Sequencing Circuit

- Seven Programmable Supply Fault Detectors
 - +12 V
 - Programmable –5 V to 0 V
 - Five programmable 0 V to 5 V
 - Programmable power fail input thresholds (0.9 V to 5.5 V, 19.5 mV resolution)
- Precision (±2.5 %) Monitoring of the Inputs
- Four General-Purpose Logic Inputs
- Nine Programmable Driver Outputs
- I²C-Compatible SMBus
- Device Powered by Highest of VH or VP_N Inputs
- Watchdog Detector
- 512 Bytes of EEPROM

ADM1060 Communications System Supervisory/Sequencing Circuit

- Programmable Sequencing of Seven Power Fail Outputs and Four General-Purpose Outputs for Both Power-Up and Power-Down
- Programmable Output Drive of Seven Power Fail Outputs
 - Open collector
 - Open collector with internal pull-up to VCC
 - Open collector with internal pull-up to PFI_X
 - Internally charged pumped high drive (for use with external N-channel FETS)
- Applications
 - Central office systems
 - Servers
 - Routers
 - Multisupply boards

ADM1060 Programmable Multisupply Supervisor/Sequencer

www.analog.com

PRELIMINARY DATA

ADP3408 GSM Power Management System

ADP3408 GSM Power Management System

- Handles All GSM Baseband Power Management
- Six LDOs Optimized for Specific GSM Subsystems
- Li-Ion and NiMH Battery Charge Function
- Optimized for the AD20msp430 Baseband Chipset
- Applications
 - GSM/DCS/PCS/CDMA handsets

ADP3510 CDMA Power Management System

ADP3510 CDMA Power Management System

- Handles all CDMA Baseband Power Management
- Six LDOs Optimized for Specific CDMA Subsystems
- Li-Ion and NiMH Battery Charge Function
- Ambient Temperature: -20° C to +85° C
- TSSOP 28-Lead Package
- Optimized for LSI Logic Baseband Chipset
- Deep Discharge UVLO Has Been Added to Protect the Battery from Fatal Discharge Damage

ADM8839 Charge Pump Regulator for Color TFT Panel

www.analog.com

PRELIMINARY DATA

ADM8839 Charge Pump Regulator for Color TFT Panel

- 3 Voltages (5 V, 15 V, -15 V) from one 3 V Supply
- Power Efficiency optimised for use with TFT in mobile phones
- Low Quiescent Current
- Low Shutdown Current (<1 uA)
- Shutdown Function
- Option to use external LDO

BATTERY CHARGERS

ADP3806 High-Frequency Switched-Mode Li-Ion Battery Charger

ADP3806 High-Frequency Switched-Mode Li-Ion Battery Charger

- Li-Ion Battery Charger
- Three Battery Voltage Options
 - Selectable 12.525 V/ 16.700 V
 - Selectable 12.600 V/ 16.800 V
 - Adjustable
- High End-of-Charge Voltage Accuracy
 - ±0.4 % @ +25° C
 - ±0.6 % @ 5° C to 55° C
 - ±0.7 % @ 0° C to 85° C
- Programmable Charge Current with Rail-to-Rail Sensing

ADP3806 High-Frequency Switched-Mode Li-Ion Battery Charger

- System Current Sense with Reverse Input Protection
- Softstart Charge Current
- Undervoltage Lockout
- Bootstrapped Synchronous Drive for External NMOS
- Programmable Oscillator Frequency
- Oscillator SYNC Pin
- Low Current Flag
- Trickle Charge

Solisian Charge Current

Lindervoltage Lockout

OSCIIISTOL SAMO SIU

Low Current Flag

Trickle Charge

MicroMachined Products SECTION 15

www.analog.com

Accelerometer with Duty

▼ ANALOG DEVICES

ADXL202E Low-Cost ±2 g Dual-Axis Accelerometer with Duty Cycle Output

ADXL202E Low-Cost ±2 g Dual-Axis Accelerometer with Duty Cycle Output

- 2-Axis Acceleration Sensor on a Single IC Chip
- 5 mm x 5 mm x 2 mm Ultrasmall Chip Scale Package
- 2 mg Resolution at 60 Hz
- Low-Power: <0.6 mA A ajudie anbbiA
- Direct Interface to Low-Cost Microcontrollers via Duty Cycle Output
- BW Adjustment with Single Capacitor
- 3 V to 5.25 V Single Supply Operation
- 1000 g Shock Survival

ADXL202E Low-Cost ±2 g Dual-Axis Accelerometer with Duty Cycle Output

- Features
 - 5 mg resolution
- Duty cycle output
 - 0.6 mA current consumption
- 3 V to 5.25 V single supply
- BW adjustment with single capacitor

A(g) = (T1/T2 - 0.5)/12.5% 0g = 50% DUTY CYCLE $T2 = R_{SET}/125M\Omega$

8-Terminal Ceramic Leadless Chip Carrier (E-8)

SECTION 16 Modules

High Performance "Multichip" ADC Solutions

What Are Multichip Solutions?

Multichip Solutions are subsystem or chipset solutions that address performance/functionality requirements not currently met by single-chip solutions. In our typical highly integrated modules, the embedded interconnect is essentially a "component" which helps in optimizing the overall chipset performance. Higher levels of performance from the component silicon devices are often possible after eliminating package parasitics, and by taking advantage of the high-speed interconnect characteristics. As well, density improvements of 50% or greater are achievable. From a test, characterization, or qualification point of view, modules are treated equally with monolithic components. Multichip Solutions are available as standard products or custom developments.

AD10201 Dual Channel 12-Bit 105 MSPS ADC with Input Signal Conditioning

AD10201 Dual Channel 12-Bit 105 MSPS ADC with Input Signal Conditioning

- Dual, 105 MSPS Minimum Sample Rate
- Channel-to-Channel Isolation, > 80 dB
- AC-Coupled Signal Conditioning Included
- Gain Flatness up to Nyquist: <0.2 dB
- Input VSWR 1.1:1 to Nyquist
- 80 dB Spurious-Free Dynamic Range
- Two's Complement Output Format
- 3.3 V or 5 V CMOS-Compatible Output Levels
- 0.850 W Per Channel
- Industrial and Military Grade

AD10226 Dual Channel, 12-Bit 125 MSPS IF Sampling A/D Converter

AD10226 Dual Channel, 12-Bit 125 MSPS IF Sampling A/D Converter

- Dual, 125 MSPS Minimum Sample Rate
- 350 MHz Input Bandwidth
- Input VSWR 1.1:1 to Nyquist
- Channel-channel Isolation, >80 dB
- Gain Flatness up to Nyquist: < 0.1 dB
- 80 dB Spurious-Free Dynamic Range
- Two's Complement Output Format
- 3.3 V or 5 V CMOS-Compatible Output Levels
- 1.3 W Per Channel
- Single Ended or Differential Input
 - AC Coupled Signal Conditioning Included
- Commercial Grade

AD10230 Dual Channel, 12-Bit 170 MSPS A/D Converter

AD10230 Dual Channel, 12-Bit 170 MSPS A/D Converter

- Dual, 170 MSPS Minimum Sample Rate
- SNR = 65 dB @ Fin up to 65 MHz at 170 MSPS
- ENOB of 10.3 @ Fin up to 65MHz at 170 MSPS (-1 dBFs)
- SFDR = -80 dBc @ Fin up to 65MHz at 170 MSPS (-1 dBFs)
- Input VSWR 1.1:1 to Nyquist
- Gain Flatness up to Nyquist: < 0.1 dB
- 400 MHz Full Power Analog Bandwidth
- Power dissipation = 1.3 W typical at 170 MSPS
- 1.5 V Input Voltage Range

AD10230 Dual Channel, 12-Bit 170 MSPS A/D Converter

- LVDS Digital Output Data
- Output Data Format Option
- Data Sync Input and Data Clock Output Provided
- Interleaved or Parallel Data Output Option
- ENOB of 10.3 @ Fin up to 65MHz at 170 MSPS (-1 dBFs)
- SNR = 65 dB @ Fin up to 65 MHz at 170 MSPS
- Dual, 170 MSPS Minimum Sample Rate

AD10235 Dual Channel, 12-Bit 215 MSPS A/D Converter

AD10235 Dual Channel, 12-Bit 215 MSPS A/D Converter

- Dual, 215 MSPS Minimum Sample Rate
- SNR = 65 dB @ Fin up to 65 MHz at 215 MSPS
- ENOB of 10.3 @ Fin up to 65MHz at 215 MSPS (-1 dBFs)
- SFDR = -80 dBc @ Fin up to 65MHz at 215 MSPS (-1 dBFs)
- Input VSWR 1.1:1 to Nyquist
- Gain Flatness up to Nyquist: < 0.1 dB
- 400 MHz Full Power Analog Bandwidth
- Power Dissipation = 1.3 W typical at 215 MSPS
- 1.5 V Input Voltage Range

AD10235 Dual Channel, 12-Bit 215 MSPS A/D Converter

- LVDS Digital Output Data
- Output Data Format Option
- Data Sync Input and Data Clock Output Provided
- Interleaved or Parallel Data Output Option

- 400 MSPS Sample Rate
- 300 MHz Full Power Analog Bandwidth
- Patent Pending Ultra-Wideband Input Signal Conditioning
- Enhanced Spurious Free Dynamic Range
- Single Ended or Differential Inputs
- Flexible Output Data Options

AD10677 16-Bit, 65 MSPS A/D Converter

ANALOGDEVICES

www.analog.com

PRELIMINARY DATA

16-16

AD10677 16-Bit, 65 MSPS A/D Converter

- 65 MSPS Guaranteed Sample Rate
- 80 MSPS Version Available
- 105 MSPS Version Available
- 7.7 W Power Dissipation
- Single-Ended, or Differential Analog Input
- Single PECL Clock Source
- Digital Outputs
- True Binary Format
- 3.3 V & 5 V CMOS-Compatible

AD15004 Quad, 14-Bit DAC, Serial-Input, High-Current-Output

www.analog.com

PRELIMINARY DATA

AD15004 Quad, 14-Bit DAC, Serial-Input, High-Current-Output

- Four Precision High-Current-Output DAC's
- 14-Bit Resolution
- ±253 mA Maximum Full-Scale Current
- User Settable Full-Scale Output Current Range
- ±3V Output Compliance with ±5 V Supplies
- Low Noise
- Four Separate 2-Quadrant Multiplying Reference Inputs
- SPI-Compatible 3-Wire Interface

AD15700 1 MSPS 16-/14-Bit Analog I/O Port

AD15700 1 MSPS 16-/14-Bit Analog I/O Port

- 16-Bit 1 MSPS A/D Converter
 - S/(N+D): 90 dB Typ @ 250 KHz
- 14-Bit D/A Converter
 - Settling Time: 1 µs
 - S/N: 92 dB Typ
- Two 80 MHz Amplifiers
- 30 V/µs Slew Rate
- Rail-to-Rail Input and Output
- Two Gain Setting Center Tapped Resistors
- Resistor Ratio Tracking: 2 ppm/°C
- Unipolar Operation
- 132 mW Typical Power Dissipation

TOGOT WORLD TO THE PLANT OF SERVICE TO THE TOTAL OF SE

	SECTION 1 Amplifiers		
	High-Speed Current Feedb	nack Amplifiers	
		OGR - June 2 T 2021 JCBAD + 9 Ct. FF1074	
	AD8007/08	Low Distortion High Speed Single/Dual Op Amp	1-3
	High-Speed Voltage Feedl		
	AD8021		1-5
	AD8029/30/40	Single/Dual/Quad Low Power, High Speed Rail-to-Rail Inout/Output Op Amp	
	AD8027/28	Single/Dual Low Distortion High Speed Rail-to-Rail Input/Output Op Amp	
	AD8065/66	Single/Dual High Performance High Speed [ast let Op amp	
	AD8067	High Gain Bandwidth Precision fast fet Op Amp	
	AD8091/92	Single/Dual Low Cost High Performance Op Amp	
	AD8033/34	Very Low Cost High Speed FET Input Amp	
	AD8038/39	Low Power High Speed Voltage Feedback Amp	
	AD8391	xDSL Line Driver	1-14
	Differential Amplifiers		
	Differential Amplifier Tutoria	La arriana anno anno anno anno anno anno anno	
	AD8130/31	Low-Cost High-Speed Differential Driver & Receiver	
	Using Differential Amps in A	ctive Filters	1-37
	Precision Amplifiers		
	Precision Amplifier Road M	aps	1-46
	AD8510/12/13	Single/Dual/Quad Precision Low Noise JFET Amplifier	1-48
	AD8625/26/27	single/Dual/Quad Precision Low Power Single Supply JFET Amp	1-49
	AD8610/20	Single/Dual Fast, Low Noise JFET Ultraprecision Amp	1-50
	AD8697/98/99	Single/Dual?Quad Very Low Input Bias Current Low Noise Rail-to Rail Op A	mp 1-51
	AD8565/66/67	Single/Dual/Quad High Current Output Amplifier	
	AD8568/69/70	Dual/Quad/Octal High Current Buffer Amplifier	
	OP1177/2177/4177	Single/Dual/Quad Precision Dual Supply Bipolar Amplifier	1-54
	AD8671/72/7	Single/Dual/Quad Low Noise Precision Dual Supply Bipolar Op Amp	
	AD8515/25	Single/Dual 1.8V Low Power CMOS Rail-to-Rail Input/Output Op amp	
	AD8605/06/08	Single/Dual/Quad Low Noise Precision CMOS DigiTrim Amplifier	
	AD8603/07/09	Single/Dual/Quad Pecision Micropower Low Noise CMOS Rail-to-Rail Op A	
	AD8615/16/18	Single/Dual/Quad Precision Fast Low Noise CMOS Rail-to-Rail Op Amp	
	AD8651/52/53	Single/Dual/Quad Very Fast Low Noise Precision CMOS Rail-to-Rail Op Ar	
	AD8628	Low Noise Auto-Zero Amp	1-63
	Intsrumentation Amplifiers		
888	AD628	High Common Mode Voltage Programmable Gain Difference Amplifier	1-67
	AD8225	Precision Gain of 5 Instrumentation Amplifier	1-69
	Comparators		
	AD53519	Daul Ultrafast Voltage Comparator	1.73
	7,500010	COA PRIMACE PROBLEM IN ST	
	SECTION 2 Angles to Dis	tal Canyartara	
	SECTION 2 Analog-to-Digi	tal Converters	
	High-Speed ADCs		
		egies	
		dmaps	
	AD9480	8-Bit 250 MSPS ADC	
	AD9215	10-Bit 65/60/105 MSPS ADC	
	AD9218 AD9235/36	Dual 10-Bit 65/80/105 MSPS ADC	2-11
	ALM/30/30	IZ-DUZU/4U/DOZOU WOPO AUT.	

High-Speed ADCs (cont)	+C82	
AD9238	12-Bit 20/40/65 MSPS ADC	2-16
AD9433	12-Bit 105/125 MSPS IF Sampler ADC	
AD9430	12-Bit 170/210 MSPS ADC	
AD9244	IF Sampling, Low Power CMOS 14-Bit 65 MSPS ADC	
AD6645	14-Bit 80 MSPS ADC.	
And the Management	High Speed ADC FIFO Evaluation Kit	
AD9874	IF Digitizing Subsystem	
AD9895	13-Bit CCS Signal Processor with Precision Timing Generator	
AD9824	14-Bit 30 MSPS Analog Front End for Digital Imaging Applications	
General-Purpose ADCs	ADROSSMA Versi and Persi year Super Services	
AD7466/67/68	8/10/12-Bit Micropower ADC	2.42
AD7476A/77A/78A	10/12-Bit 1MSPS ADC in SC-70.	2.46
AD7470A777A770A	12-Bit 1MSPS Differential Input 3/5V ADC.	
AD7450A/40	Differential Input, ! MSPS, 12-/10-Bit ADCs in 8-lead SOT-23	
AD7451/41	Pseudo Differential, 1 MSPS, 12-/10-Bit ADCs in 8-lead SOT-23	
AD7452/42	Differential Input, 600 kSPS, 12-/10-Bit ADCs in 8-lead SOT-23	
AD7453/43	Pseudo Differential, 600 kSPS, 12-/10-Bit ADCs in 8-lead SOT-23	
AD7910/20	200 kSPS, 12-/10-Bit ADCs in 6-lead SC70	
AD7456	Differential Input, 100 kSPS 12-Bit ADC in 8-lead Sot-23	
AD7482	12-Bit 3 MSPS ADC	
AD7866	Dual 2 channel 12-Bit ADC.	2-64
AD7940	3 V 3 mW 100 KSPS 14-Bit ADC in 6 lead SOT-23	
AD7485	14-Bit 1 MSPS Serial SAR ADC	2-68
AD7484	3 MSPS 14-Bit SAR ADC	
AD7680	3 V 3 mW 100 KSPS 16-Bit ADC in 6 lead SOT-23	2-72
AD7661	16-Bit 100 kSPS SAR Unipolar ADC	2-74
AD7651	16-Bit, 100 kSPS SAR Unipolar ADC with Ref	2-76
AD7685	16-Bit 100 KSPS CMOS ADC	2-78
AD7675	16-Bit 100 KSPS CMOS Differential ADC.	
AD7686	16-Bit 420 KSPS CMOS ADC	2-82
AD7666	16-Bit, 500 kSPS SAR Unipolar ADC with Ref	
AD7652	16-Bit 500 kSPS SAR Unipolar ADC	
AD7676	16-Bit 500 KSPS Differential ADC.	
AD7677	16-Bit 1MSPS 1 LSB INL Differential ADC	
AD7667	16-Bit 1 MSPS SAR Unipolar ADC	
AD7653	16-Bit 1 MSPS SAR Unipolar ADC	
AD7671	16-Bit 1MSPS/1.33MSPS ADC	
AD7662	Dual Channel Simultaneous Sampling Sampling 16-Bit 500 KSPS ADC	
AD7668	Dual 2-Channel 16-Bit 500 kSPS Simultaneous Sampling SAR ADC	
AD7654	Dual 2-Channel Simultaneous Sampling Sampling 16-Bit 500 kSPS SAR ADC	
AD7928/18/08	8-Channel, 1 MSPS, 12-/10-/8-Bit ADC with Sequencer	
AD7924/14/04	4 Channel 1 MCDC 12 /10 /0 Dit ADC with Sequencer	2-106
AD7924/14/04 AD7490	4-Channel, 1 MSPS, 12-/10-/8-Bit ADC with Sequencer	
	16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-lead TSSOP	
AD7927	8-Channel, 200kSPS, 12-/10-/8-Bit ADC with Sequencer	
AD7923	4-Channel, 200 kSPS, 12-Bit ADC with Sequencer in 16-lead TSSOP	2-114

Sigma-Delta ADCs		
AD7708/18	16-/24-Bit Sigma Delta ADCs	2-117
AD7709	16-Bit Sigma Delta ADC	
AD7719	Dual Channel 16-/24-Bit Sigma Delta ADC	2-121
AD7732	2 Channel ±10V Range High Trroughput 24-Bit Sigma Delta ADC	2-134
AD7734	4 Channel ±10V Range High Trroughput 24 -Bit Sigma Delta ADC	
AD7738	8 Channel ±10V Range High Trroughput 24 -Bit Sigma Delta ADC	
AD7725	16-Bit Sigma Delta ADC with PulseDSP* Post Processor	2-131
AD7782/83	Non-writeable Sigma Delta ADC	
Special Purpose ADCs	ABY4322 1 Lt ul Cost Audio Arollou Front End	
AD5520	Single Parametric Measurement Unit.	2-136
ADE7752	3 Phase Energy Metering IC	2-138
ADE7753	Single Phase Energy Metering IC with Serial Pulse Interface	
ADE7754	Three Phase Active Energy Metering IC	
ADE7759	Active Energy Metering IC	
ADE7757	Energy Metering IC with Intergrated Oscillator	
ABETTOT	Table 2 2 4 4 1292 annual and a 2 2 4 4 1292 annual	
SECTION 3 Digital-to-Ana	log Convertors	
	ling converters	
High Speed DACs		
AD9740/42/44	10-/12-/14-Bit, 150 MSPS TxDAC+	3-6
High Speed Interpolating L	D/A Converters	
AD9773/75/77	12-/14-/16-Bit, 160 MSPS 2x/4x/8x Interpolating Dual TxDAC+ Dac	
AD9782/84/86	12-/14-/16-Bit 160 MSPS 2X/4X/8X Interpolating Signal Processing TxDAC	3-17
General-Purpose DACs		
AD5308/18/28	Octal 8-/10-/12-Bit Micropower DAC	
AD5346/47/48	Octal 8-/10-/12-Bit 2.5 V - 5V, Parallel Interface Voltage Output DACs	
AD5424/33/45	High Bandwidth Parallel Interface 8-/10-/12-Bit CMOS Multiplying DACs	3-33
AD5426/32/43	High Bandwidth Parallel Interface 8-/10-/12-Bit CMOS Multiplying DACs	
AD5425	High Bandwidth Parallel Interface 8-Bit CMOS Multiplying DACs	
AD5582/83	Quad Parallel Voltage Output 12-/10-Bit DAC	
AD5399	Dual 12-Bit DAC, BiPolar Output.	3-41
AD5516	16 Channel 12-Bit Voltage Output DAC	
AD5530/31	Serial Input, VItage Output 12-/14-Bit DACs	3-45
AD5532HS	14-Bit 32-Channel D/A Converter	
AD5532B	14-Bit 32-Channel D/A Converter with Precision Sample & Hold Mode	
AD5543/53	16-/14-Bit DAC, Current Output Serial DAC	
AD5545/55	Dual Current Output Serial Input 16-/14-Bit Dac	3-54
AD5570	12 V/15 V 16-Bit DAC Serial Input Voltage Output	3-56
D. 11 D. 1		
Digital Pots		
Digital Pot Roadmap	ADDOLOR STATE Orogen Presidentia OVS 0V384	
AD5260/62	Single/Dual 8-Bit Serial RDAC	
AD5280/82	Single/Dual 8-Bit I2C RDAC	
AD5263	Quad +15 V 256-Step Digital Pot with Selectable Digital Interface	
AD5235	Dual 10-Bit SPI Digital POT.	
AD5231/32/33	Single 10-Bit/ Dual 8-Bit/ Quad 6-Bit Digital Pct with Nonvolatile Memory	
AD5255	Dual 10-Bit I2C RDAC with Nonvolatile Memory	3-75

SECTION 4 Codecs And		
AD9875/76	Mixed Signal Front End (MxFE)	4-2
AD9877	Mixed Signal Front End	4-4
AD9860/62	MxFE for Broadband Comms	
ASSP Mixed Signal From	nt-End Roadmap	4-9
AD1835	2 ADC 8 DAC 24 bit 96 kSPS Sigma Delta Codec (Differential Out)	4-10
AD1837	2 ADC 8 DAC 24 bit 96 kSPS Sigma Delta Codec (Single Ended Out)	
AD1838	2 ADC 6 DAC 24 bit 96 kSPS Sigma Delta Codec (Differetial Out)	4-16
AD1839	2 ADC 6 DAC 24 bit 96 kSPS Sigma Delta Codec (Single Ended Out)	4-19
AD74322	Low Cost Audio Analog Front End	4-22
AD74111	Low Cost Low Power Audio Analog Front End	4-25
MultiChannel Codec Roa	dmap	4-28
Next Generation Codec F	Roadmap	4-29
The second secon		
SECTION 5 Converter S	upport Southern August 1999 1990 1990 1990 1990 1990 1990 199	
CMOS Switches and Mu		
ADG601/02	Low Resistance SPST CMOS Switch.	5-3
ADG604	1 pC Charge Injection 4:1 MUX.	
ADG611/12/13	1 pC Charge Injection QUAL SPST CMOS Switch	
ADG619/620	Low Resistance 2:1 MUX.	
ADG621/22/23	Low Resistance Dual SPST CMOS Switch	
ADG636	1 pC Charge Injection Dual 2:1 MUX	
ADG731/725	32:1 Differential/Dual 16:1 MUX	
ADG732/726	Low Voltage 32:1Differential/Dual 16:1 MUX	
ADG779	2:1 MUX	
ADG786/88	Triple/Quad SPDT Switches in Chip Scale Package (CSP)	
ADG785/59	8-Ch./ Differential 4 Ch. Multiplexer in CSP	
ADG801/02	Low Resistance SPST CMOS Switch.	
ADG819/820	Low Resistance SPDT CMOS Switch	
ADG821/22/23	Low Resistance Dual SPST CMOS Switch.	
ADG919	Wideband 30 dB Isolation @ 1 GHZ, 1.65 V to 2.7 V 2:1 Mux/SPDT CMOS Sv	
Bus Switches	AUTHORS POUR ROBINS RESIDENCE PROPRIES AND AUTOMORS CONTRACTOR	
ADG3245	2.5 V/ 3.3 V 8 Bit 2 Port Level Translator Bus Switch	E 24
ADG3246	2.5 V/ 3.3 V 10 Bit 2 Port Level Translator Bus Switch	
ADG3247	2.5 V/ 3.3 V 16 Bit 2 Port Level Translator Bus Switch	
ADG3233	Low Voltage Uni-Directional (up/Down) Level Translation Bypass Switch	5-27
ADG3257	2.5 V/ 3.3 V 8 Bit Quad 2:1 Mux/ Demux Bus Switch	5-29
High Speed Buffered Mu	ultiplexers and Crosspoint Switches	
AD8186/87	480 Mhz Single Supply Triple 2:1 Multiplexer	5-31
High Speed Buffered Mu	Itiplexer Road Map	5-34
AD8152	Xstream™ 34x34 3.2 Gb/s Digital Crosspoint Switch	
Voltage References	Noted Pale	
ADR01/02	Ultra Compact Precision 10.0V/5.0V Ref.	5-39
ADR280	1.20 V Low Power Voltage Reference	
ADR318	References in Automotive Temp Range (-40 to +125)	
ADR392/95	Precision Low Drift Reference +4.096 V/ +5.0 V with Shutdown	
ADR42X	Low Noise Precision 2.048 V/ 2.5 V/ 3.0 V/ 5.0 V Reference	
ADR510	1.0 V Ultra-Precision Low Noise Shunt Voltage Refernce	
	nap	

SECTION 6 Audio Products Analog Audio Self Contained Audio Preamplifier... SSM2019 Microphone Preamp......6-5 SSM2167 Low Distortion 1.5 W Audio Preamplifier in CSP...... SSM2211CP Digital Audio AD1871 ADC Roadmap. Digital Audio (cont) High Performance Multibit ΣΔ DAC with SACD Playback..... AD1955 AD1957 24-Bit 192 KHz Low Power ΣΔ DAC AD1850 Audio DAC. PLL Multibit ΣΛ DAC... AD1958/59 AD1954 26-Bit Audio DSP with On-Board DAC. AD1953 3 Channel 24-Bit Signal Processing DAC... Sigma-DSP Roadmap AD1835 2 ADC 8 DAC 24 bit 96 kSPS ΣΔ Codec (Single Ended Out).......................6-50 AD1837 AD1838 2 ADC 6 DAC 24 bit 96 kSPS ΣΔ Codec (Differetial Out).......................6-53 AD1839 MultiChannel Codec Roadmap. Next Generation Codec Roadmap... AD1898 192 kHz Stereo Asychronous Sample Rate Converter with AES3 Transceiver................ 6-63 AD1897 192 kHz Stereo Asychronous Sample Rate Converter with AES3 Transceiver......6-66 Sample Rate Converter Roadmap. 6-70 AD1991 Class D H Bridge Amp. 6-71 Class D Product Roadmap. **SECTION 7 Video Products** Where ADI Participates..... Digital Video Decoders ADV7183/85 Digital Video Decoder System. ADV7183A Digital Video Encoders ADV7179/74 Chip Scal PAL/ NTSC Video Encoder with Advanced Power Management......7-15 ADV7196A ADV7300A/01A Multi-Format Standard/ Progressive Scan HDTV Encoder w. 6 NSV 12 -Bit DACs..... 7-23 ADV7302A/03A Multi-Format Standard/ Progressive Scan HDTV Encoder w. 6 NSV 11 -Bit DACs..... 7-27 ADV7304A/05A Multi-Format Standard/ Progressive Scan HDTV Encoder w. 6 NSV 14 -Bit DACs..... 7-31 Digital Video Codecs ADV7202 Video AFEs Mixed Signal Front End (MxFE).....7-42 AD9875/76 **Touch Screen Digitizers** AD7843 Touch Screen Digitizer......7-45 AD7873/77 Touch Screen Digitizer......7-47

	splay Interface	
Display Electronics A	Analog Interface Product Roadmap	
AD9883A	110 MSPS/ 140 MSPS Analog iInterface for Flat Panel Displays	
AD9888	Analog Interface for Flat Panel Displays	7-5
Dual Display Electron	nics Analog Interface Product Roadmap	7-5
AD9882	Dual Interface for Flat Panels	7-5
AD9887A	Dual Interface for Flat Panels	7-5
AD8380	6 Channel DEC-Driver LCD Panel Driver.	7-6
ADD8501	Reference Generator for Mobile LCD Panel.	7-6
ADD8502	Integrated LCD Grayscale Generator	7-6
ADM8831	Charge Pump Regulator for Color TFT LCDs	
SECTION 8 Commun	AD1857 High Performance Model La DAC will SAGD Playlo AD 1859 24-68 192 Yels Low Power TA DAC	
RF/IF	DAD GBBA	
	Law Cost DC 500 MHz Veriable Coin Assolitor	
AD8330	Low Cost DC-500 MHz Variable Gain Amplifier	
AD8331	VGA with Ultralow Noise Preamplifier and Programmable Rin	
AD8332	Dual VGA with Ultralow Noise Pramplifier and Programmable Rin	
AD8367	LF - 500MHz, 45-dB VGA w/ AGC Detector	
AD8369	Digital Control VGA	8-1
AD8349	900 MHz - 2.7 GHz Quadrature Modulator	8-2
AD8345	250 MHz - 1 GHz Quadrature Modulator	8-2
AD8347	2.5 GHz Direct Conversion Quadrature Demodulator.	8-2
AD8302	LF-3 GHz Gain Phase Detector.	8-3
AD8362	DC - 2.5 GHZ Tru-Power Detector.	8-3
AD8351	Low Distortion Differential Amplifier	8-4
AD8353/54	100 Mhz - 2.7 GHz RF Gain Block	
Communications Cir	cuits Roadmaps	
AD6623	Four Channel, 104 MSPS Digital Transmit Signal Processor (TSP)	8-5
AD6624A	Four-Channel, 100 MSPS Digital Receive Signal Processor	
AD6634/35	Dual/ Quad Channel 80 MSPS WCDMADigital Receive Signal Processor	
AD6526	GSM/GPRS Digital Baseband Processor	
RF/IF (cont)	Sollier No Digital Datobuila 1 10000001	
AD6652	(Cascade) IF to Baseband Diversity Receiver	8-8
AD6650	(Gemini) IF to Baseband Diversity Receiver	
ADF7010	High Perforfance ISM Band ASK/ FSK/ GFSK Transmitter IC	
AD9860/62	Mixed Signal Front End Processor for Broadband Communications	
Power Manageorant	ADV717974 Chip Seel PAL/1975C Video Budo et hits Advanced ADV717974	
	y Synthesis Products	
Direct Digital Synthes	sis Products	
DDS Tutorial	and the state of t	9-3
AD9833/34	50 MHz DDS System	
AD9859	Low Power (25 mW) 50 MSPS DDS Synthesizer	
AD9951	Low Power 400 MSPS 14-Bit DDS Synthesizer	
AD9952	Low Power 400 MSPS 14-Bit DDS Synthesizer w. Comparator	
AD9858	1 GHZ DDS/DAC	
AD9953	Low Power 400 MSPS 14-Bit FSK Modulator w. Frequency Sweep	
UD3300	Low Fower 400 Misrs 14-bit Fox Modulator W. Frequency Sweep	
AD9954	Low Power 400 MSPS 14-Bit FSK Modulator w. Comparator	0.2

	PLL Frequncy Synthesizer Dual Low Power PLL Frequency Synthesizer Dual Low Power PLL Frequency Synthesizer Dual Fractional N/ Integer N Frequency Synthesizer Fractiona-N Frequency Synthesizer.	9-53 9-55
ADF4106 ADF4212L ADF4217L/18L/19L ADF4252 ADF4156 PLL Selection Guide and R	PLL Frequncy Synthesizer Dual Low Power PLL Frequency Synthesizer Dual Low Power PLL Frequency Synthesizer Dual Fractional N/ Integer N Frequency Synthesizer	9-53 9-55
ADF4212L ADF4217L/18L/19L ADF4252 ADF4156 'LL Selection Guide and R	Dual Low Power PLL Frequency Synthesizer Dual Low Power PLL Frequency Synthesizer Dual Fractional N/ Integer N Frequency Synthesizer	9-55
ADF4217L/18L/19L ADF4252 ADF4156 PLL Selection Guide and R	Dual Low Power PLL Frequency Synthesizer Dual Fractional N/ Integer N Frequency Synthesizer	
ADF4252 ADF4156 PLL Selection Guide and R	Dual Fractional N/ Integer N Frequency Synthesizer	
ADF4156 PLL Selection Guide and R		
LL Selection Guide and R		
	Roadmaps	
MPLL	and the second s	
N 10 Networking (Circuits	
		10-2
AND THE RESERVE OF THE PARTY OF		
	activity and a compared property of the compared by the compa	
A CONTRACTOR OF THE PROPERTY OF THE PARTY OF		
	420 Isrm 8 tswild \$8892,4204	
		11.7
		14.45
	DSL Line Driver Roadmap AD8391 AD8393 CATV Product Roadmap AD8326 AD8327 AD8328 AD9873 AD9879 AD9877 AD9875/76 AD9878 ADN2841 Dual Loop Control Tutorial. ADN2843 ADN2843 ADN2840 ADN2843 ADN2840 ADN2849 ADN2841 ADN8810 ADN2841 ADN8810 ADN8830 AD8305 BN 11 DSP t Processors Blackfin Roamap	AD8393 Adaptive Linear Power +12 V ADSL CO Line Driver

32 bit SHARC Processors		
		11-29
	LINE OF THE COMPONENT O	
ADSP-21160	High Performance SHARC DSP	11-31
ADSP-21161	SHARC 32-Bit Fixed and Floating Point DSP with 1MBit On-Chip RAM	
ADSP-TS101N	Tiger SHARK Super Scalar DSP	11-42
ASSESS. To the contract of the	ADF 4252 Dust Fredienal Williager N Fesquoncy Synth	
CROSSCORE DSP Develo	pment Tools	
	C.	11-54
	VisualDSP++ 3.0	
	VisualDSP++ 3.0 Test Drivr	11-70
Emulators		
ADDS-APEX-ICE	APEX-ICE USB Emulator.	11-72
ADDS-SUMMIT-ICE	Summit-Ice PCI Emulator.	
ADDS-218X-ICE-2.5	Ice for ADSP218X Family	11-74
EZ-KIT LITEs	AND PROCESS AND	
ADDS-21535-EZLITE	EZ-KIT Lite for ADSP-21535	11.76
ADDS-2191-EZLITE	EZ-KIT Lite for ADSP-2191	
ADDS-21990-EZLITE	EZ-KIT Lite for ADSP-2189M DSP.	
ADDS-TS101S-EZLITE	EZ-KIT Lite for TS101S	
ADDS-21061N-EZLITE	EZ-KIT Lite for ADSP-21061	
	EEZ-KIT Lite for ADSP-21160M(N)	
ADDS-21065-EZLITE	EZ-KIT Lite for ADSP-21065.	
ADDS-21161-EZLITE	EZ-KIT Lite for ADSP-21161N	
ADDS-2189M-EZLITE	EZ-KIT Lite for ADSP-2189M	
ADDS-2181-EZLITE	EZ-KIT Lite for ADSP-2181	
SPA	Design Solutions	11-89
DSP Solutions		
ADSST-MELODY-SDK	Dolby Digital/DTS and THX-EX Decoder Chipset	11-106
DAP1.0	MP3 (MPEG1 Audio Layer 3) Decoder Reference Design	11-108
ADSST-VxxATS	Complete AT Modem	11-109
ADSST-NAV2K	Global Positioning System Receiver Chipset Reference Design	11-110
Mixed Signal DSP		
	ap	11-114
ADSP-21990/99	Mixed Signal DSP	
ADSP-21992	Mixed Signal DSP	
	Tools	11-130
ADMC(F)34X	DashDSP with Isense	11-138
000000000000000000000000000000000000000		
SECTION 12 MicroConverte		
Product Roadmap		
ADuC814	Microconverter Small Package 12 bit ADC with Embedded Flash MCU	
ADuC834	Microconverter Dual 16/24 ADCs with Embedded 62K Flash MCU	
AADuC836	MicroConverter Dual 16-Bit ADC w. Embedded 62K Flash MCU	
ADuC831/32	Microconverter, 12 bit ADC with Embedded 62KB Flash MPU	
MicroConverter Support		12-26

SECTION 13 Microprocessor Support Circuits Interface "E" Series and "Green Idle" ADM3302E ADM3307E ADM3210E ADM3312E ADM3315E PROFIBUS 5 V. 0.5 mA RS-485 Transceiver... ADM1486 RS-485 Roadmap Power Support ADM1072 Dual 1A High-Side P-Channel Switch with Current Limit and Thermal Shutdown....... 13-22 ADM1070 -48 V Hot Swap Controller... ADM1014 **Bus Switches** 2.5 V/ 3.3 V 8 Bit 2 Port Level Translator Bus Switch... ADG3245 2.5 V/3.3 V 10 Bit 2 Port Level Translator Bus Switch... ADG3246 2.5 V/3.3 V 16 Bit 2 Port Level Translator Bus Switch... ADG3247 ADG3233 Low Voltage Uni-Directional (up/Down) Level Translation Bypass Switch... 13-40 ADG3257 2.5 V/3.3 V 8 Bit Quad 2:1 Mux/ Demux Bus Switch... Supervisory Circuits Open Drain Microprossor Supervisory Circuit in 4 Lead SOT-143. ADM6315 13-45 Comminications Systems Supervisory Sequencing Circuit... ADM1060 13-47 Thermal System Management Products TMP05/06 Serial Digital Output Temperature Sensor... AD7314 10-Bit Digital Temperature Sensor in 8-Lead uSOIC....... Thermal System Management Products (cont) SMBus/I2C Compatible, 10-bit Digital Temperature Sensor W. SMBus Interface...... 13-61 AD7414/15 ADT7463/60 dB COOL Remote Thermal ontroller and Voltage Monitor 12-Bit +/-0.5 deg. Accurate Micropower Digital Temperature Sensor in SOT-23............ 13-68 ADT7301 ADT7316/17/18 ADT7411 10-Bit Temperature Sensor and 8 Channel ADC... ADT7516/17/18 10-Bit Temperature Sensor 4 Channel ADC and Quad DAC. ADM1026 Highly Integrated Thermal and System Monitor for Servers/High Reliability Systems.... 13-85 ADM1027 System Monitor and Fan Control for Low Noise PCs.. **SECTION 14 Power Management Circuits** Linear Low Drop Out Regulators ADP3342 Ultralow lg 300 mA AnyCap LDO Regulator......14-6 ADP3333 300 mA AnyCap LDO Regulator......14-8 ADP3334 500 mA AnyCap LDO Reguloator......14-9 ADP3338 Low Supply Current anyCAP 1A LDO in SOT-223......14-10 ADP3339 1.5A anvCAP LDO......14-11 LDO Roadmap. Switch Mode Power Supply Circuits ADP3088 1 MHz Buck Regulator.. ADP3089 1 MHz 1 A Buck Regulator.

Switch Mode Power Supp	ly Circuits (cont)	
ADP3040	2 MHz PWM Boost Switching Regulator	
ADP3031	2 MHz PWM Boost Switching Regulator.	14-22
ADP3160/67	5-Bit Programmable 2-Phase Synchronouos Buck Controller	14-24
ADP3168	5-Bit Programmable 2-/ 3-/ 4-Phase Synchronous Buck Controller	14-26
ADP31/1	1.2 V VTT Synchronous Buck Controller & 2 LDOs with PWRGD	14-28
ADP3170	VRM 8.5 Single Phase CPU Synchronous Buck Controller & LDO with PWRGD	14-30
ADP3163	VRM Compliant, 5-bit Programmable 2/3 Phase	
ADP3164	VRM Compliant, 5-bit Programmable 4 phase Controller	
VRM Switching Controller	History & Roadmap	
ADP3203	MultiPhase IMVP-!! & III Compliant Core Controller for Mobile CPUs	
ADP3204	3-Phase IMVP-II & IMVP-III Core Controller for Mobile CPUs	14-40
ADP3422	IMVP-II Compliant Core Controller for Intel CPUs.	14-43
ADP3025	High Efficiency Notebook Computer Power Supply Controller	14-44
ADP3026	High Efficiency Notebook Computer Power Supply Controller	
Switching Regulator Road	mapasalatiwa asa	
ADP 3413 /14/17	Dual MOSFET Driver with Bootstrapping and Output Disable	14-54
ADP3415	Dual MOSFET Driver with Bootstrapping	
ADP3418	Dual MOSFET Driver with Bootstrapping	
ADM1060	Communications Power Supply Supervisor & Sequencer	
ADP3408	GSM Power Management System	14-66
ADP3510	CDMA Power Management System	14-68
ADM8839	Charge Pump Regulator for Color TFT Panel	14-70
Battery Charger		
ADP3806	High Frequency Switch Mode Li-Ion Battery Charger	14-73
SECTION 15 Micromachi	ne Products	
ADXL202E	XL202 in ultra small package 5mm x 5mm x 2mm	15-2
SECTION 16 Modules		
AD10201	Dual Channel 12 bit 105 MSPS IF Sampling ADC	16.4
AD10201 AD10226	Dual Channel 12-bit 105 MSPS IF Sampling A/D Converter	
AD10226 AD10230	Dual Channel 12-Bit 173 MSPS IP Sampling A/D Converter	
AD10235 AD12400	Dual Channel 12-Bit 214 MSPS A/D Converter.	
	12-Bit 400 MSPS A/D Converter.	
AD10677	16-Bit 65 MSPS A/D Converter	
AD15004	Quad 14-Bit DAC Serial Input High Current Output	
AD15700	1 MSPS 16-/ 14-Bit Analog VO Port	16-20

