Strojové učení s využitím umělých neuronových sítí

Strojové učení

Strojové účení je podoblastí oboru umělé inteligence, který se zabývá vývojem algoritmů schopných učit se z dat. Občas není možné pro daný problém vytvořit algoritmus, předpovědi, rozpoznání obličejů nebo věcí atd... Na rozdíl od tradičního programování, kde explicitně definujeme pravidla, u strojového učení necháváme samotný počítač, aby si pravidla odvodil sám na základě příkladů (data - správně i špatně)

Princip

Hlavním principem strojvého učení je hledání funkce, která mapuje vstupy a výstupy. Počítač na základě trénovacích dat snaží nalézt takovou funkci, která dobře funguje na trénovacích datech a zároveň dokáže správně předpovídat i pro nová data (generilazce)

Každý algoritmus pro strojové učení má využití a každý může být lepší na něco jiného. K nejvýznamnějším algoritmům patří Lineární regrese, Neuronová síť, Rozhodovací stromy atd...

Typy strojového učení

1. Supervised Learning

Pracuje s označenými daty, kde je znám správný výstup. Algoritmus se učí mapovat vstupy na známe výstupy. Dělí se na:

Klasifikace - zařazení do kategorií (rozpoznání objektu na obrázku)

Regrese - predikce číselné hodnoty (předpověď ceny nemovitosti)

Lineární regrese, rozhodovací stromy, neuronové sítě

2. Unsupervised Learning

Pracuje s neoznačenými daty, není definován správný výstup. Algoritmus sám hledá skryté vzory, struktury v datech. Detekce anomálií, Klastrování, Redukce

3. Reinforcement Learing

Neučí se z existujících dat, ale učí se z interakcí. Algoritmus provádí akce v prostředí a získává odměny/tresty. Učí se strategii, která maximalizuje celkovou odměnu. Robotika, autonomní vozidla, hraní her

Proces strojového učení

Základní proces zahrnuje:

- 1. Sběr trénovacích a testovacích dat
- 2. Příprava dat čištění, transformace
- 3. Výběr modelu volba vhodného algoritmu
- 4. Trénování modelu učení z trénovacích dat
- 5. Evaluace ověření kvality modelu na testovacích datech
- 6. Nasazení a monitoring použití modelu v praxi

Umělé neuronové sítě

Výpočetní modely inspirované fungováním lidského mozku. Skládají se z neuronů propojených do vrstev, které společně dokážou rozpoznat složité vzory v datech. Každý neuron je jednoduchá výpočetní technika, ale jejich spojením vzniká nástroj pro řešení komplexních problémů

Struktura neuronové sítě

Každá vrstva se skládá z několika neuronů, které jsou propojeny. Vstupní vrstva - přijímá data (neuron reprezentuje jeden vstupní parametr) Skryté vrstvy - zpracovávají vstupy, extrahují vzory a abstrakce, více skrytých vrstev umožňuje rozpoznávát složitější vzory

Výstupní vrstva - generuje výsledek (predikce, klasifikace)

Neuron

Jednoduchá výpočetní jednotka vykonávající několik operací:

- 1. Přijímá vstupy hodnoty z předchozí vrstvy nebo vstupní data
- 2. Zpracovává výstupy každému vstupu přiřazuje váhu, počítá vážený součet a přičítá bias
- 3. Aplikuje aktivační funkci transformuje vážený součet na výstup

Perceptron

Je to nejjednodušší typ neuronové sítě - obsahuje pouze jeden neuron. Přijímá vstupy, přiřazuje jim váhy a generuje binární výstup. Dokáže řešit pouze lineárně separovatelné problémy (AND, OR)

- 1. Příjmá n vstupů a má jeden výstup, vezme každý vstup a pronásobí váhou a výsledky sečte
- 2. Výsledné číslo ještě projde aktivační funkcí

Aktivační funkce

Rozhodují, jestli se neuron aktivuje nebo ne. Bez aktivačních funkcí by byla síť jedna lineární funkce (zavádí nelinearitu). Umožňují nám modelovat složité vztahy v datech

- 1. Sigmoid (logistická funkce)
 - vrací hodnoty mezi 1 a 0
 - vhodná pro binární klasifikaci (negativní výsledky blíž k 0, pozitivní výsledky blíž k 1)
- 2. Tanh (hyperbolický tangens)
 - vrací hodnoty mezi 1 a -1
 - normalizace dat mezi vrstvami

Trénování neuronových sítí

Snaha o nalezení optimální váhy a biasu, které mají nejmenší chybovost. Iterativní proces postupného upravování sítě. Používá se zpětné šíření chyby, algoritmus který aktualizuje váhy na základě výstupu

Deep learning se říká neuronové síti s velkém množství neuronů a vrstev s nimi. Využívá velký výpočetní

výkon. Používá se jiné aktivační funkce či algoritmy oprav.