E9 241: Digital Image Processing - Assignment 02 Report

Name: Kartikeyan Iyer

SRN: 04-03-01-10-42-25-1-25922

1. Spatial Filtering and Binarisation

In this section, a box blur was applied to the image <u>'moon_noisy.png'</u> with varying filter sizes, followed by Otsu's binarization.

Original Image

Results for Varying Filter Sizes

The following are the results for filter sizes m = 5, 29, and 129.

Analysis and Inferences

The optimal filter size that minimizes the within-class variance (σ_w^2) was found to be **m = 176.676**³

- **Effect of Blurring**: As the filter size *m* increases, the degree of blurring becomes more significant. This smoothing effect merges the noise with the foreground and background, which is reflected in the histograms.
- **Histogram Changes**: For a small filter size (m=5), the histogram of the noisy image likely still shows a less distinct separation between modes. As *m* increases, the Box blur averages out the noise, causing the two peaks

corresponding to the moon and the background to become more distinct and narrower, leading to a deeper valley between them.

• **Optimal Variance**: Otsu's method works best when the histogram is clearly bimodal. A moderate amount of blurring (like m=29) is expected to produce the best separation, thus minimizing the within-class variance. An excessively large filter (m=129) might blur the edges of the moon too much, causing the modes to merge again and increasing the variance.

2. Scaling and Rotation with Interpolation

This section explores the effect of the order of operations—specifically upsampling and rotation—on the final image quality.

Results

Operation 1: Upsample First, then Rotate

The original 'flowers.png' image was first upsampled by a factor of 2 and then rotated by 45°.

Operation 2: Rotate First, then Upsample

The original 'flowers.png' image was first rotated by 45° and then upsampled by a factor of 2.

Difference Image

The difference between the two results (Result 1 - Result 2) was computed and is shown below.

Analysis and Inferences

- Range of Difference Values: The minimum and maximum values of the difference image were found to be -31.8815 and 113.8857, respectively.
- **Visual Analysis**: When plotted, the difference image highlights the edges and fine-textured areas of the flowers and grass. This indicates that the primary differences between the two methods occur in regions of high detail.
- **Discussion on Differences**: The two results are **not identical**. The haziness in the "Rotate First, then Upsample" image demonstrates that the order of operations matters significantly.
 - Upsample First (Clearer Result): Upsampling the image first creates a high-resolution canvas. The subsequent rotation has more pixel information to work with during its interpolation step, which preserves details and edges more effectively.
 - Rotate First (Hazy Result): Rotating the low-resolution image first introduces interpolation artifacts and blurring. When this already-degraded image is upsampled, these artifacts and the blurriness are magnified, resulting in a less sharp final image.
 This is why it appears hazy.

3. Image Sharpening Concept

A function **sharpenAdjust(img, p)** was designed to control image sharpness based on the principles of unsharp masking.

study.png

Methodology

The sharpening effect was achieved using the following formula, which is a variation of the unsharp mask:

Sharpened Image = Original Image + p * (Original Image - Blurred Image)

Here, (Original Image - Blurred Image) creates a high-pass filter that isolates the details. The parameter p controls how much of this detail is added back to the original.

Results on 'study.png'

The function was tested on 'study.png' with different values of p.

Analysis and Inferences

- **p = 0**: The output is identical to the input, as the detail mask is multiplied by zero.
- **0** < **p** < **1**: As p increases, the edges and textures in the image become more pronounced. The sharpening effect is noticeable but generally appears natural.
- **p = 1**: Strong sharpening is applied. This results in a very crisp image, but it also introduces

artifacts known as "halos" along high-contrast edges. These are the bright and dark outlines visible around objects, which occur due to the over-emphasis of the detail mask.