A Template for Academic Presentations

Adam Smith^{a, c} Janet Smith^{b, c} Jeremiah Smith^a

- ^a University of Bonn, Germany
- ^b University of Cologne, Germany
- ^c Collaborative Research Center Transregio 224

Name of the Inviting Institution/Seminar Series

March 24, 2019

Outline

- 1 Introduction
- 2 Study Design
- **3** Results
- **4** Discussion
- **5** References

Introduction 1: Choice of a Reasonable Aspect Ratio

When preparing a presentation, we often do not know whether the native aspect ratio of the projector in the seminar room/lecture hall will be 4:3 or 16:9 (or 16:10).

In this case, it may be a good idea to choose an **intermediate aspect ratio**, see https://github.com/josephwright/beamer/issues/497. The idea behind this recommendation is that it minimizes the average loss of available space.

Hence, these templates include a presentation in the **14:9** aspect ratio (see https://en.wikipedia.org/wiki/14:9_aspect_ratio): while it is imperfect for probably every projector that you will encounter, it is good on average for all of them.

(Please note that 14:9 \doteq 1.556, which is pretty close to the "officially" recommended 20:13 \doteq 1.5385.)

Great Minds Discuss Ideas. Average Minds Discuss Events. Small Minds Discuss People.

-https://quoteinvestigator.com/2014/11/18/great-minds/

Background

- Temporal discounting is key concept in economics.
- Normative model: exponential discounting. However, observed decisions are hard to explain (e.g., Dohmen et al., 2012).
- One alternative: the "focusing model" by Kőszegi and Szeidl (2013).

Research Question

- The composition of latex and of typical rubbers is given below.
- Is it true that trees are regularly tapped and the coagulated latex which exudes is collected and worked up into rubber?

Research Question

- The composition of latex and of typical rubbers is given below.
- Is it true that trees are regularly tapped and the coagulated latex which exudes is collected and worked up into rubber?

Preview of the Results

- There is no feasible method at present known of preventing the inclusion of the resin of the latex with the rubber during coagulation.
- ⇒ Although the separation of the resin from the solid caoutchouc by means of solvents is possible, it is not practicable or profitable commercially.

Introduction 4: Beamer block Environments

Block title example: 0123456789 äöü ß ÄÖÜ officially finding flowers in fjords

The block environment. Block title example: 0123456789 äöü ß ÄÖÜ officially finding flowers in fjords

An Exemplary Example

I am the exampleblock environment. Use me for examples. I am really exemplary.

Summary: Things to remember

The alertblock environment. Use this environment for really important stuff. The alertblock environment.

Introduction 5: Beamer definition and theorem Environments

Definition (A Very, Very, Very, Very, Very, Very Long Name of a Concept that Spans Two Lines)

The definition environment. Upright.

Theorem (Theorem's Name)

The theorem environment. Italic.

Lemma (Lemma's Name)

The lemma environment. Italic.

Corollary (Corollary's Name)

The corollary environment. Italic.

Proof of Theorem's Name

The proof environment. Upright.

Study Design

Study Design 1: Design of the Study

- The latex of the best rubber plants furnishes from 20% to 50% of rubber.
- As the removal of the impurities of the latex is one of the essential points to be aimed at, it was thought that the use of a centrifugal machine to separate the caoutchouc as a cream from the watery part of the latex would prove to be a satisfactory process.

Study Design 2: Design of the Study

The watery portion of the latex soaks into the trunk, and the soft spongy rubber which remains is kneaded and pressed into lumps or balls:

 $BAL_{1:1}^{I}$, $BAL_{1:1}^{II}$: Each payment transferred on single day.

UNBAL $_{1:n}^{I}$: Earlier payoff concentrated, while later payoff dispersed over n = 2, 4, or 8 dates.

UNBAL_{n:1}: Earlier payoff dispersed over n = 2, 4, or 8 dates, while later payoff concentrated.</sub>

Study Design 3: Control Experiment

- · Control for alternative explanations.
- Many of the example sentences were taken from http://sentence.yourdictionary.com/latex.

Study Design 4: An Example enumerate List

- 1. First item in a list
 - a. First item in a list
 - i. First item in a list
 - ii. Second item in a list
 - iii. Third item in a list
 - iv. Fourth item in a list
 - **b.** Second item in a list
 - c. Third item in a list
 - d. Fourth item in a list
- 2. Second item in a list
- 3. Third item in a list
- 3. Illifu itelli ili a tis
- 4. Fourth item in a list

Study Design 5: An Example itemize List

- · First item in a list
 - First item in a list
 - First item in a list
 - Second item in a list
 - ► Third item in a list
 - Fourth item in a list
 - Second item in a list
 - Third item in a list
 - Fourth item in a list
- Second item in a list
- Third item in a list
- Fourth item in a list

Study Design 6: Some Example Text

Let's include some Greek letters: α , β

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[q]{a} = \sqrt[q]{a}$. There is no need for special content, but the length of words should match the language. $a\sqrt[q]{b} = \sqrt[q]{a^n}b$.

Study Design 7: Some Example Formulas

Let's include some additional Greek letters: γ , ϕ

$$p(R,\phi) \sim \int_{-\infty}^{\infty} \frac{\tilde{W}_n(\gamma) \exp\left[iR/a\left(\sqrt{k^2a^2 - \gamma^2}\cos\phi\right)\right]}{(k^2a^2 - \gamma^2)^{3/4}H'_n^{(1)}\left(\sqrt{k^2a^2 - \gamma^2}\right)} d\gamma$$

Let's also include some upright Latin letters: d, e

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

Study Design 8: Additional Example Formulas (with upright π)

Only variables are set in italics according to ISO style—hence, we use upright "d," "e," and " π " (\mathup{d}, \mathup{e}, and \mathup{\pi}, respectively).

Theorem (Simplest form of the Central Limit Theorem)

Let X_1, X_2, \cdots be a sequence of i.i.d. random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \le y\right) \to \mathfrak{N}(y) := \int_{-\infty}^{y} \frac{e^{-v^2/2}}{\sqrt{2\pi}} dv \quad as \quad n \to \infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E} f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^{\infty} f(v) \frac{\mathrm{e}^{-v^2/2}}{\sqrt{2\pi}} \, \mathrm{d}v \quad \text{as } n \to \infty, \text{ for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$

Study Design 9: An siunitx Example Table

Table. Overview of the choice lists presented to subjects (adapted from Gerhardt, Schildberg Hörisch, and Willrodt, 2017).

		Alternative A			Alternative B			
	C _{A,1}	$\rho_{A,1}$	C _{A,2}	P _{A,2}	C _{B,1}	$\rho_{{\it B},1}$	C _{B,2}	р _{в,2}
Choice List I: risky/risky (x = €2	2.00, r = €7.50, k =	€11.50; 2	5 rows)					
Top row	€ 3.00	50%	€22.00	50%	€ 3.00	50%	€ 7.00	509
Center row	€ 3.00	50%	€22.00	50%	€ 9.00	50%	€13.00	50%
Row with $m = 0$	€ 3.00	50%	€22.00	50%	€10.50	50%	€14.50	50%
Bottom row	€ 3.00	50%	€22.00	50%	€15.00	50%	€19.00	50%
Choice List II: safe/risky (x = €1	.6.00, r = €5.00, k =	€5.00; 19	rows)					
Top row	€11.00	100%			€11.00	50%	€21.00	50%
Center row	€11.00	100%			€ 6.50	50%	€16.50	509
Row with $m = 0$	€11.00	100%			€ 6.00	50%	€16.00	509
Bottom row	€11.00	100%			€ 2.00	50%	€12.00	50%
Choice List III: "long shot" (x = :	€14.00, r = -€36.00,	k = €7.0	0; 21 rows)					
Top row	€ 7.00	90%	€50.00	10%	€ 7.00	90%	€10.00	10%
Row with $m = 0$	€ 7.00	90%	€50.00	10%	€11.00	90%	€14.00	10%
Center row	€ 7.00	90%	€50.00	10%	€12.00	90%	€15.00	109
Bottom row	€ 7.00	90%	€50.00	10%	€17.00	90%	€20.00	10%
Choice List IV: delayed payoffs (:	x = €18.00, r = €6.00	, k = €8	.50, paid in	one wee	k; 20 rows)			
Top row	€ 9.50	50%	€12.00	50%	€ 9.50	50%	€24.00	50%
Above-center row	€ 9.50	50%	€12.00	50%	€ 5.00	50%	€19.50	509
Below-center row	€ 9.50	50%	€12.00	50%	€ 4.50	50%	€19.00	509
Row with $m = 0$	€ 9.50	50%	€12.00	50%	€ 3.50	50%	€18.00	509
Bottom row	€ 9.50	50%	€12.00	50%	€ 0.00	50%	€14.50	509

Results

Results 1: Overview

- **1.** As a secondary function we may recognize the power of closing wounds, which results from the rapid coagulation of exuded latex in contact with the air:
 - a. In some cases (Allium, Convolvulaceae, etc.) rows of cells with latex-like contents occur.
 - **b.** However, the walls separating the individual cells do not break down.
- **2.** The rows of cells from which the laticiferous vessels are formed can be distinguished (6.3 p.p. vs. 2.6 p.p.; p < 0.01).

Results 2: Our Main Results

The charts are taken from Dertwinkel-Kalt et al. (2017).

- (A) Difference between treatment and control condition.
- (B) Heterogeneity.

Results 3: Main vs. Control Experiment

Rule out some alternative explanations.

Results 4: Another siunitx Example Table

Table. Example of a regression table (adapted from Gerhardt, Schildberg Hörisch, and Willrodt, 2017).

Never forget to mention the dependent variable!

	(1)	(2)	(3)	(4)	(5)
Treatment	-0.390	-0.228	-0.729*	-0.449*	-0.453**
Treatment	(+0.352)	(-0.205)	[+0.377]	[-0.245]	{+0.204}
Female	0.948***	0.061	0.188	0.305	0.385*
	(0.354)	(0.233)	(0.372)	(0.226)	(0.222)
Female × Treatment	0.169	0.251	0.892*	0.454	0.439
	(0.514)	(0.325)	(0.533)	(0.341)	(0.307)
Final high school grade	-0.101	0.013	0.076	0.117	0.039
	(0.198)	(0.144)	(0.224)	(0.146)	(0.133)
Trait self-control	-0.016	0.002	-0.016	-0.000	-0.007
	(0.016)	(0.010)	(0.015)	(0.010)	(0.009)
Constant	2.357***	1.512***	-0.322	2.158***	1.437**
	(0.239)	(0.144)	(0.265)	(0.161)	(0.152)
Observations	303	289	295	304	1191
R ²	0.057	0.008	0.039	0.043	0.024
Treatment × (1 + Female)	-0.221	0.023	0.163	0.004	-0.014
$p_F[Treatment \times (1 + Female) = 0]$	0.327	0.008	0.192	0.000	0.003

Notes: Dependent variable: m_- , Robust standard errors (cluster-corrected for column 5) in parentheses. ***p < 0.05, *p < 0.1. Missing observations (N < 308) due to exclusion of trials in which subjects behaved irrationally (i.e., chose a dominated option). The regressors final high school grade and Trait self-control are mean-centered.

Results 5: Yet Another siunitx Example Table

Table. Figure grouping via siunitx in a table.

(1)	(2)	(3)
-0.100*	-0.10001*	-123456.444***
(2.871)	(2.87123)	[+50000.123]

Discussion

Discussion 1

- The latex exhibits a neutral, acid, or alkaline reaction, depending on the plant from which it
 was obtained.
- The latex is therefore usually allowed to coagulate on the tree (Kőszegi and Szeidl, 2013).
 - ⇒ The latex, which is usually coagulated by standing or by heating, is obtained from incisions.
- See also Bordalo, Gennaioli, and Shleifer (2013).

Discussion 2: Conclusion

- When exposed to air, the latex gradually undergoes putrefactive changes accompanied by coagulation.
- The addition of a small quantity of ammonia or of formalin to some latices has the effect of preserving them.
- There is, however, reason to believe the following.
- The coagulation of latex into rubber is not mainly of this character.

The automated transition to the next slide (= page in the PDF document) only works in full-screen mode.

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 1—Angle: 30.0°

The automated transition to the next slide (= page in the PDF document) only works in full-screen mode.

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 2—Angle: 60.0°

The automated transition to the next slide (= page in the PDF document) only works in full-screen mode.

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 3—Angle: 90.0°

The automated transition to the next slide (= page in the PDF document) only works in full-screen mode.

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 4—Angle: 120.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 5—Angle: 150.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 6—Angle: 180.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 7—Angle: 210.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 8—Angle: 240.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 9—Angle: 270.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDF.

Figure. Step 10—Angle: 300.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDE.

Figure. Step 11—Angle: 330.0°

- The feature is available in Adobe Acrobat and Acrobat Reader.
- Unfortunately, it is (currently, March 24, 2019) not available in macOS Preview, Skim, and SumatraPDE.

Figure. Step 12—Angle: 360.0°

Discussion 4: Testing the allowframebreaks option

Let's test automatic numbering with the allowframebreaks option.

On this slide, **no** number should be included in the frame title.

Discussion 5: Testing the allowframebreaks option (1/3)

Let's test automatic numbering with the allowframebreaks option.

On this slide, "(1/3)" should appear in the frame title.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text *like this* gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[q]{a} = \sqrt[q]{a}$. There is no need for special content, but the length of words should match the language. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$.

Discussion 6: Testing the allowframebreaks option (2/3)

Hello, here is some text without a meaning. $d\Omega=\sin\vartheta d\vartheta d\varphi$. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text *like this* gives you information about the selected font, how the letters are written and an impression of the look. $\sin^2(\alpha) + \cos^2(\beta) = 1$. This text should contain *all letters of the alphabet* and it should be written in of the original language $E=mc^2$. There is no need for special content, but the length of words should match the language. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$.

Discussion 7: Testing the allowframebreaks option (3/3)

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text *like this* gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special content, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

References

References

- Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer. 2013. "Salience and Consumer Choice." Journal of Political Economy, 121(5): 803–843. DOI: 10.1086/673885.
- Dertwinkel-Kalt, Markus, Holger Gerhardt, Gerhard Riener, Frederik Schwerter, and Louis Strang. 2017. "Concentration Bias in Intertemporal Choice." University of Bonn et al., working paper, Bonn, Germany, et al. URL: https://www.dropbox.com/s/dv20mcu0qkygmjz/Concentration_Bias_in_Intertemporal_Choice.pdf.
- Dohmen, Thomas, Armin Falk, David Huffman, and Uwe Sunde. 2012. "Interpreting Time Horizon Effects in Inter-Temporal Choice." Maastricht University et al., IZA Discussion Paper 6385. URL: http://ftp.iza.org/dp6385.pdf.
- **Gerhardt, Holger, Hannah Schildberg Hörisch, and Jana Willrodt.** 2017. "Does self-control depletion affect risk attitudes?" *European Economic Review*, 100: 463–487. DOI: 10.1016/j.euroecorev.2017.09.004.
- Kőszegi, Botond, and Adam Szeidl. 2013. "A Model of Focusing in Economic Choice." Quarterly Journal of Economics, 128(1): 53–104. DOI: 10.1093/qje/qjs049.

AppendixBackup Slides

Appendix: Modeling Concentration Bias

Subjects consider a sequences of consequences \boldsymbol{c} from choice set \boldsymbol{c} .

• Standard discounted utility: Suppose that the instantaneous utility function u satisfies u' > 0 and $u'' \le 0$, and that earlier consequences are preferred over later consequences of the same magnitude, i.e., $D(t) \le 1$:

$$U(\mathbf{c}) := \sum_{t=1}^{T} D(t) u(c_t)$$
, where, e.g., $D(t) = \delta^t$ or $D(t) = \frac{1}{1+kt}$.

Focusing model (Kőszegi and Szeidl, 2013):

$$\begin{split} \tilde{\textit{U}}(\textbf{\textit{c}},\textbf{\textit{C}}) &:= \sum_{t=1}^{T} g_t \, \textit{D}(t) \, \textit{u}(c_t), \quad \text{where} \\ g_t &\equiv g[\max_{c' \in \textbf{\textit{C}}} \textit{u}(c_t') - \min_{c' \in \textbf{\textit{C}}} \textit{u}(c_t')] \end{split}$$

- Weighting function $g[\cdot]$ increases in difference of maximum and minimum possible utility at a point in time.
- Subjects overweight intertemporal consequences with a greater range.