Question 1:

For every day, if I want to know how Covid-19 impacts us, or if I want to make some investment, we need some data to know these. So, here is Covid-19 updated information and stock price updated information.

Data source for Covid-19 data:

The following 3 datasets includes province/states, country/region, latitude and longitude of the region, and daily reports.

https://raw.githubusercontent.com/CSSEGISandData/COVID-

19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_globa l.csv

In each day, this dataset will be updated with the total number of confirmed people in the world during Covid-19.

https://raw.githubusercontent.com/CSSEGISandData/COVID-

19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.cs v

In each day, this dataset will be updated with the total number of deaths in the world during Covid-19.

https://raw.githubusercontent.com/CSSEGISandData/COVID-

19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_globa l.csv

In each day, this dataset will be updated with the total number of recovered people in the world during Covid-19.

Data source for Yahoo stock price:

Load the data

```
import pandas_datareader as web
df = web.DataReader('AAPL', data_source = 'yahoo', start = '2010-01-01', end = '2020-09-09')
#df.head(5)
df.tail(12)
#df.shape
```

Out[5]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2020-08-24	128.785004	123.937500	128.697495	125.857498	345937600.0	125.857498
2020-08-25	125.180000	123.052498	124.697502	124.824997	211495600.0	124.824997
2020-08-26	126.992500	125.082497	126.180000	126.522499	163022400.0	126.522499
2020-08-27	127.485001	123.832497	127.142502	125.010002	155552400.0	125.010002
2020-08-28	126.442497	124.577499	126.012497	124.807503	187630000.0	124.807503
2020-08-31	131.000000	126.000000	127.580002	129.039993	225702700.0	129.039993
2020-09-01	134.800003	130.529999	132.759995	134.179993	152470100.0	134.179993
2020-09-02	137.979996	127.000000	137.589996	131.399994	200119000.0	131.399994
2020-09-03	128.839996	120.500000	126.910004	120.879997	257599600.0	120.879997
2020-09-04	123.699997	110.889999	120.070000	120.959999	332607200.0	120.959999
2020-09-08	118.989998	112.680000	113.949997	112.820000	230220200.0	112.820000
2020-09-09	118.470001	115.260002	117.260002	118.190002	68463412.0	118.190002

In each day, the dataset will be updated with highest stock price, lowest stock price, opening price of the stock, closing price of the stock, daily volume.

In summary, I captured Covid-19 disease information and yahoo stock price in each day of this week.

Question 2:

My workflow overview:

Explanation:

First, read data by file Reader node. I used the allmargin.csv dataset on OnQ for all processes below. By right click the node, click file table, then I got the following picture:

Then, we need to explore the dataset. Since there is nearly 2000 rows of data, I calculate mean and standard deviation, calculate min and max's differences, and use plots to visualize distributions.

First, for mean and standard deviation, I found several ways:

By groupby node \rightarrow settings \rightarrow manual aggregation \rightarrow aggregation, we can calculate mean and standard deviation for each columns.

By column aggregator, setting \rightarrow options \rightarrow , we can select mean and standard deviation

The result is the mean and standard deviations for each rows

For calculate the difference between maximum and minimum value, I used math formula node:

Then setting the formula like this:

The result is difference between minimum and maximum value for each column. After filtering row, it shows like this:

Ovv,			- 11	L			3110773				IIIC				tilis.	
Table "default"	- Rows: 1 Spec		Properties	Flow Variabl	les											
Row ID			D Totgam		D FGA	D FGM3	D FGA3	D FTM	D FTA	D OR	D DR	D Ast	D TO	D Sti	D Blk	D PF
Row0	20	2	126	33	51	18	38	38	47	26	35	27	25	20	15	28

By box plot and histogram, boxplot visualize the outlier and range of data. Histogram counts data by groups. For example, I divided margin column into 5 groups with same intervals.

Compare with all steps above, data explorer is simpler and convenient.

It includes minimum, maximum, mean, median, standard deviation, variance, skewness, total sum, number of missing values, and histogram for each columns.

Statistics node does the similar thing:

For correlation graphs, Linear Correlation and Rank Correlation nodes works well.

Correlation matrix graph:

Correlation matrix:

Other useful nodes:

These nodes are common for use.

Prediction

I am trying to use KNIME for predictions. I used allmargin.csv as original dataset, then used outliers, partitioning, random forest Regressor, scoring and line plot.

The comments are below each node.

Input:

Outputs:

File

Table "Scores" - Rows: 6 Spec - Column: 1 Properties Flow Variables									
Column: 1	Column Type	Column Index	Color Handler	Size Handler	Shape Han	Filter Handler	Lower Bound	Upper Bound	
Prediction (margin)	Number (double)	0					-0.066	61.283	

