PROBLEM. A subset $S \subset \mathbb{N}$ is said to be in arithmetic progression if

$$S = \{a, a + d, a + 2d, \dots\},\$$

where $a, d \in \mathbb{N}$. Here d is called the step of S. Show that \mathbb{N} cannot be partitioned into a finite number of subsets that are in arithmetic progression with distinct steps (except for the trivial case a = d = 1).

SOLUTION. Suppose that $\mathbb{N} = S_{a_1,d_1} \sqcup \cdots \sqcup S_{a_r,d_r}$, where

$$S_{a_k,d_k} = \{a_k, a_k + d_k, a_k + 2d_k, \dots\}$$

and $a_k, d_k \in \mathbb{N}$ and d_k are all distinct. Then note that we have

(0.1)
$$\frac{1}{1-z} = \sum_{n \in \mathbb{N}} z^n = \sum_{k=1}^r \sum_{n \in S_k} z^n = \sum_{k=1}^r \sum_{\ell=0}^\infty z^{a_k + \ell d_k} = \sum_{k=1}^r \frac{z^{a_k}}{1 - z^{d_k}}$$

for |z| < 1 since the series $\sum_{n \in \mathbb{N}} z^n$ converges absolutely and so we can rearrange the terms. Without loss of generality assume that $d_1 < d_2 < \cdots < d_r$ (as d_k are all distinct).

Note that if r=1, then we have we have the trivial case $a_1=d_1=1$. Now suppose for the sake of contradiction that r>1. Let $\rho=e^{2\pi i/d_r}$ and observe that $\rho\neq 1$ as $d_r>1$. Finally, we note that

$$\lim_{t \to 1^{-}} \left(\frac{1}{1 - t\rho} - \sum_{k=1}^{r-1} \frac{(t\rho)^{a_k}}{1 - (t\rho)^{d_k}} \right) = \frac{1}{1 - \rho} - \sum_{k=1}^{r-1} \frac{\rho^{a_k}}{1 - \rho^{d_k}}.$$

as $\rho^{d_k} \neq 1$ for every $1 \leqslant k < r$. However, the limit

$$\lim_{t \to 1^-} \frac{(t\rho)^{a_r}}{1 - (t\rho)^{d_r}}$$

does not exist since $|\rho^{a_k}| = 1$ and $\rho^{d_r} = 1$. This is a contradiction as

$$\frac{1}{1-t\rho} - \sum_{k=1}^{r-1} \frac{(t\rho)^{a_k}}{1-(t\rho)^{d_k}} = \frac{(t\rho)^{a_r}}{1-(t\rho)^{d_r}}$$

for every 0 < t < 1 due to (0.1).