名词

第一章 概述

- ADSL 非对称数字用户线路
- DSL 数字用户线路
- ISDN 综合业务数字网
- ISP 因特网服务提供商
- LAN 局域网
- WAN 广域网
- MAN 城域网
- 协议数据单元 (PDU)
- 服务数据单元 (SDU)
- 协议控制信息 (PCI)
- 因特网的标准: RFC

第二章 应用层

- URL 统一资源定位符(WWW用)
- HTTP 超文本传输协议
- SMTP 简单邮件传输协议
- DNS 域名系统
- SNMP 简单网络管理协议
- FTP 文件传输协议: 21/20
- TFTP 简单文件传输协议
- TCP 传输控制协议
- UDP 用户数据报协议
- ARP 地址解析协议
- DNSSEC 域名系统安全扩展
- SSL 安全套接字层
- 邮件传输协议 SMTP: 25
- 邮件访问协议 POP3: 110 或 IMAP: 143
- MIME 多媒体因特网邮件扩展
- TELNET 远程登录协议: 23

- NVT 网络虚拟终端
- 代理服务器 (Proxy Server)
- 用户代理 (UA)

第三章 传输层

- RDT 可靠数据传输
- ARQ 自动重传请求
- TCP 传输控制协议
- UDP 用户数据报协议
- DHCP 动态主机配置协议

UDP端口

端口号	应用协议名称	功能描述
7	Echo	将接收到的数据报原样发回发送端
13	Daytime	服务器端返回当前的日期和时间
53	DNS	域名服务
67	Bootps	DHCP的服务器端口
68	Bootpc	DHCP的客户端口
69	TFTP	简单文件传输协议
111	RPC	远程过程调用
123	NTP	网络时间协议
161	SNMP	简单网络管理协议, 代理在此端口
		接收请求消息
162	SNMP	简单网络管理协议,管理者在此端口
		接收trap(差错报告)消息

TCP端口

端口号	应用协议名称	功能描述
7	Echo	将接收到的数据报原样发回发送端
13	Daytime	服务器端返回当前的日期和时间
20	FTP	文件传输协议, 数据连接的端口号
21	FTP	文件传输协议,控制连接的端口号
23	TELNET	终端仿真协议
25	SMTP	简单邮件传输协议
53	DNS	域名服务
80	НТТР	超文本传输协议
110	POP3	邮局协议

- ICMP 因特网控制报文协议(差错处理)
- IGMP 因特网组管理协议
- IGP 内部网关协议
 - OSPF 开放最短路径优先协议
 - RIP 路由信息协议
- EGP 外部网关协议
 - BGP 边界网关协议
- IPSec IP安全协议
- AH 身份认证包头
- ESP 封装安全有效载荷
- IPv4 因特网协议第四版
- IPv6 因特网协议第六版
- CIDR 无类别域间路由
- DVR 距离矢量选路
- LSR 链路状态选路
- LSP 链路状态包
- QoS 服务质量
- NAT 网络地址翻译
- AS 自治系统
- CIDR 无类别域间选路

第五章 数据链路层

- PPP 点对点协议
- PPPoE 以太网上的点对点协议
- HDLC 高级数据链路控制规程
- ARP 地址解析协议
- MAC 介质访问控制
- LLC 逻辑链路控制

第六章 局域网LAN

- CSMA/CD 载波侦听多路访问/冲突检测
- CSMA/CA 载波侦听多路访问/冲突避免
 - RTS 请求发送
 - CTS 清除发送
- VLAN 虚拟局域网
- IFG 帧间最小间隔

第七章 物理层

- NRZ-L 不归零编码
- NRZI 不归零反向编码
- PCM 脉冲编码调制
- FDM 频分复用
- WDM 波分复用
- **TDM** 时分复用
- STDM 统计时分复用

- (1) 浏览器分析超链接, 如 http://www.abc.com/example.html
- (2) 浏览器使用通过DNS获得服务器(www.abc.com)的IP地址
- (3) 浏览器建立到服务器的TCP连接
- (4) 浏览器发送HTTP 请求: GET /example.html HTTP/1.0
- (5) 服务器发送HTTP响应
- (6) 释放TCP连接
- (7) 浏览器显示网页example.html

电子邮件传输过程

- 1) Alice在我邮校园网内用UA (如Foxmail) 编辑邮件, 收件人是 bob@163.com
- 2) Foxmail把邮件发送到我邮的邮件服务器,邮件被放入消息队列
- 3) 我邮的邮件服务器建立到 163.com邮件服务器的 TCP连接

- 4) 我邮的邮件服务器把邮件转发给pop.163.com
- 5) 163邮件服务器把邮件 保存到Bob的邮箱
- 6) Bob使用UA(如 outlook)下载和查看 邮件

= Example

简述FTP的主要工作过程,主动数据连接和被动数据连接各起什么作用

- FTP的客户端首先与FTP服务器建立控制连接,客户端向服务器发送命令,服务器返回响应状态码,可以提供用户身份验证、目录转换、子目录的建立/删除/重命名、文件的删除/重命名等功能;当用户需要上传文件、下载文件、或者查看当前目录下的内容时,则需建立数据连接,在数据连接上传输文件数据,传输完毕,则释放数据连接。
- 主动/被动是从FTP服务器的角度出发。主动数据连接是由FTP服务器发起建立数据连接,而被动数据连接则是由FTP客户端发起建立数据连接。

- (1) 从收到的IP包的包头提取出目的 IP 地址 D。
- (2) 先检查直接相连的网络:用各网络的子网掩码和 D 逐位相 "与",看是否和对应的网络地址匹配。若匹配,则将包转发到对应接口;否则执行(3)
- (3) 若路由表中有目的地址为 D 的特定主机路由,则将 IP包转发给对应的下一跳路由器; 否则, 执行(4)。
- (4) 对路由表中的每一行的子网掩码和 *D* 逐位相"与",若其结果与该行的目的网络地址匹配,则将IP包转发给对应的下一跳路由器;否则,执行(5)。
- (5) 若路由表中有一个默认路由,则将IP包转发默认路由器。 否则,执行(6)。
- (6) 报告转发包出错

DHCP操作过程

Client广播请求,询问是否有可用的IP地址

DHCP服务器应答,提供可用的IP地址

Client选择DHCP服务器,请求IP地址

DHCP服务器分配IP地址

地址解析协议ARP过程

- LAN的每个站点都有一个ARP缓存表,记录MAC地址与IP地址的映射关系
- 在LAN内发送IP包之前,源节点**广播ARP请求**,包含目的节点的IP地址
- 目的节点将自己的MAC地址放到ARP响应中,单播发送给源节点
- 源节点将ARP映射关系加入ARP表
- ARP缓存表会定时删除无用的内容

ARP协议。

验证匹配

- ①源主机选路:主机A用目的印地址223.54.9.2和子网掩码/4进行按位与操作,得到目的网络地址223.54.9.0,与本网地址码,因此确定需要发送给路由器RI(210.23.6.10)
- 图主机A广播ARP请求,携带目标 印地址 20.23.6.10,路由器 RI返回ARP 响应,告知自己的MAC 地址 00ma.0062.c609
- ③ 主机A将此IP地址-MAC地址映射表填入ARP缓存

补充题 4. 在本讲义 45 页的图中, 主机 A 要发送一个 IP 包给主机 B, 假设主机 A 和路由器的 ARP 缓存表均为空,请写出这个 IP 包的传输过程。

答: 1) 主机A先 将目的

IP 地址与子网掩码相"与",求出目的网络地址,发现不在同一个子网内,确定要先转发给路由器:

- (2) 因为 ARP 缓存表为空,主机 A 不知道路由器的 MAC 地址,A 广播 ARP 请求(包含路由器的 IP 地址 111.111.110),路由器左边的接口回送 ARP 响应(对应 MAC 地址是 E6-E9-00-17-BB-4B), A 将 IP 包封装成帧并发送到 LAN1。
- (3)路由器收到帧,取出 IP包,上交网络层,网络层根据目的 IP 地址进行路由选择,确定应转发给右边的接口。
- (4) 路由器在 LAN2 广播 ARP 请求(包含 B的 IP 地址 222.222.222.222), 主机 B返回 ARP 响应(对应 MAC 地址是 49-BD-D2-C7-56-2A), 路由器将 IP 封装成帧并发送到 LAN2。
 - (5) 主机 B 接收到帧,取出 IP 包,交给网络层。

总结:交换机的工作过程

- □ 交換机收到一帧后,先进行逆向学习,查找交 换表中是否有该帧的源地址
 - ◆ 若没有,就增加一个表项(源地址、进入端口和时间)
 - ◆ 若有,则更新原表项
- □ 转发帧: 查找交换表中是否有该帧的目的地址
 - ◆ 若没有,则洪泛转发,即转发到所有其他端口
 - ◆ 若有(且不是进入接口),则转发到表中的对应端口
 - ◆ 若有且等于进入接口,则丢弃这个帧(过滤)
- □ 自学习方法使得交换机能够即插即用
 - (5分)简述链路状态路由协议的基本工作过程。

答:主要包括以下5个步骤:

- (1) 发现邻居, 学习邻居的地址;
- (2) 测量到邻居的费用 (开销 cost);
- (3) 构造链路状态数据包 LSP;
- (4)扩散链路状态数据包 LSP 到网络中所有路由器;
- (5) 使用 Di jkstra 算法计算路由

系统化综合理解

一次Web请求的过程,目标是访问<u>www.baidu.com</u>

系统化综合理解

- 一次Web请求的过程,目标是访问www.baidu.com 🥏
 - 1. 连接到因特网: 客户端使用DHCP获取IP地址、子网掩码、路由器IP、DNS服务器IP。 🤣
- 2. ARP: 客户端需要获知路由器接口的MAC地址,广播ARP请求,路由器发送ARP应答。 🙋
- 3. **DNS**: 发送HTTP请求前,客户端需要获知www.baidu.com的IP地址。解析器产生DNS请求,封装成UDP数据报、IP包、以太网帧,发送给路由器。路由器根据路由表转发给ISP网络的DNS服务器。DNS服务器返回IP地址。
- 4. 建立TCP连接: 客户端与Web服务器进行三次握手建立TCP连接。
 - 客户端发送SYN。 ②
 - Web服务器返回SYN+ACK。
 - 客户端发送ACK。 ②

第一步: 连接到因特网

- 笔记本电脑首先要获得<mark>上网参数</mark>:IP地址、路由器地址、DNS服务器的IP地址→使用DHCP
 - DHCP请求: 封装在UDP数据报→IP包→以太网帧
 - 以太网帧在LAN上广播(目的MAC地址为FF-FF-FF-FF-FF)
 - DHCP服务器收到以太网帧,解封: IP包→UDP数据报→DHCP请求
- DHCP服务器返回DHCP ACK,包含所请求的上网相关参数
 - DHCP服务器将DHCP ACK封装成帧,通过LAN交换机转发给笔记本电脑
 - 解封,DHCP客户收到DHCP ACK

第二步: ARP

发送HTTP请求之前,客户端需要获知<u>www.baidu.com对应的IP地址→使用**DNS</u>**

- 解析器产生DNS请求,封装: UDP数据报→IP包→以太网帧
- 要把帧发送给路由器,需要MAC地址→使用ARP
- 客户端广播ARP请求,路由器收到后发送ARP应答,包含自己接口网卡的MAC地址
- 客户端获知<mark>路由器接口的MAC地址</mark>,可以发送包含DNS请求的帧

第三步: DNS

- 基于选路协议(OSPF/RIP/BGP)构造的路由表,路由器把IP包转发给ISP网络的DNS服务器
- 解封,DNS服务器返回www.baidu.com对应的IP地址

• 路由器收到包含DNS请求的IP包

第四步:建立TCP连接

要发送HTTP请求,客户端首先要与Web服务器建立TCP连接

- 客户端向Web服务器发送SYN报文段(第一次握手)
- Web服务器返回SYN+ACK (第二次握手)
- 客户端发送ACK(第三次握手)

第五步: HTTP请求/应答

- 浏览器在TCP连接上发送HTTP请求
- 包含HTTP请求的IP包被选路转发给Web服务器
- Web服务器返回包含网页数据的HTTP应答

• 包含HTTP应答的IP包被选路转发给浏览器

