Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Previously Presented) A method for generating a luminosity
2	compensated image, the method comprising:
3	defining a luminosity texture having a plurality of luminosity texels;
4	converting pixel data for an underlying image to an image texture having a
5	plurality of image texels;
6	blending the image texture onto a target surface having a shape;
7	blending the luminosity texture onto the target surface, thereby generating
8	luminosity compensated pixel data for the image; and
9	providing a user interface enabling a user to modify the shape of the target
10	șurface,
11	wherein defining the luminosity texture includes automatically updating one or
12	more of the luminosity texels in response to a user modification of the shape of the target
13	surface.
1	2. (Original) The method of claim 1, wherein the target surface comprises a
2	polygon having a plurality of vertices, at least one of the vertices being associated with one of
3	the image texels of the image texture.
1	3. (Original) The method of claim 1, further comprising:
2	providing the luminosity compensated pixel data to a display device.
1	4. (Original) The method of claim 3, wherein providing the luminosity
2	compensated pixel data to the display device includes:
3	storing the luminosity compensated pixel data in a frame buffer; and

subsequently scanning out the frame buffer data, thereby providing data to the 4 5 display device. (Original) The method of claim 1, wherein each luminosity texel includes 5. 1 2 a scaling factor. (Original) The method of claim 5, wherein blending the luminosity 6. 1 texture onto the target surface includes: 2 selecting one of the luminosity texels; and 3 multiplying a pixel value from the target surface by the scaling factor of the 4 5 selected luminosity texel. (Original) The method of claim 5, wherein the scaling factors define a 7. 1 luminosity gradient to be applied across an area of the image. 2 8 - 9. (Canceled) (Previously Presented) The method of claim 1, wherein automatically 10. 1 updating one or more of the luminosity texels includes computing a luminosity scaling factor 2 based on a distance to a location on the target surface that maps to the texel. 3 (Original) The method of claim 10, wherein the distance is determined 11. 1 from a depth coordinate of the location on the target surface. 2 (Original) The method of claim 1, wherein the luminosity texture includes 12. 1 2 a low luminosity region. (Original) The method of claim 12, wherein the low luminosity region 1 13. corresponds to an overlap region in an image to be displayed using a plurality of display devices 2 3 configured to display overlapping image elements. (Original) The method of claim 1, wherein the luminosity texture includes 1 14. dark texels for forming a visible pattern superimposed on the underlying image. 2

1	15. (Currently Amended) The method of claim 14, wherein the visible pattern
2	corresponds to a textual message readable by a user.
	16 (O'' 1) The mathed of alive 1 footbox commissings
l	16. (Original) The method of claim 1, further comprising:
2	providing a user interface enabling a user to define the luminosity texture.
1	17. (Original) The method of claim 16, wherein the user interface further
2	enables the user to save the luminosity texture to a file.
	10 (Original). The mothed of claim 17 wherein the user interface further
1	18. (Original) The method of claim 17, wherein the user interface further
2	enables the user to select a previously saved luminosity texture file to be applied.
1	19. (Original) The method of claim 16, wherein the user interface further
2	enables the user to modify the luminosity texture.
_	co. (O.: 1) The set of the leave and the second included
1	20. (Original) The method of claim 1, wherein each luminosity texel includes
2	an independent scaling factor for each of a plurality of color components.
1	21. (Original) The method of claim 20, wherein the plurality of color
2	components includes a red component, a green component, and a blue component.
_	
1	22. (Previously Presented) A graphics processing system comprising:
2	a texture generation module configured to convert pixel data for an underlying
3	image to an image texture having a plurality of image texels;
4	a texture memory configured to store the underlying image texture and a
5	luminosity texture having a plurality of luminosity texels;
6	a multistage texture blending module configured to blend each of the image
7	texture and the luminosity texture onto a target surface having a shape, thereby generating
8	luminosity-compensated pixel data for an image;
9	a user interface module configured to receive a user instruction modifying the
0	shape of the target surface; and

- a luminosity compensation module configured to automatically update the luminosity texture stored in the texture memory in response to the user instruction modifying the shape of the target surface.
- 1 23. (Original) The graphics processing system of claim 22, wherein the target 2 surface comprises a polygon having a plurality of vertices, at least one of the vertices being 3 associated with a texture coordinate of the image texture.
- 1 24. (Original) The graphics processing system of claim 22, further 2 comprising a frame buffer configured to store the luminosity-compensated pixel data.
- 1 25. (Original) The graphics processing system of claim 22, further 2 comprising scanout control logic configured to provide the luminosity-compensated pixel data to 3 a display device.
- 1 26. (Original) The graphics processing system of claim 22, wherein each 2 luminosity texel includes a scaling factor:

27 - 28. (Canceled)

- 1 29. (Previously Presented) The graphics processing system of claim 22, 2 wherein the luminosity compensation module is further configured to compute an updated value 3 for a texel of the luminosity texture based on a distance to a location on the target surface that 4 maps to the texel.
- 1 30. (Original) The graphics processing system of claim 29, wherein the 2 distance is determined from a depth coordinate of the location on the target surface.
- 1 31. (Original) The graphics processing system of claim 22, wherein the luminosity texture includes a low luminosity region.

1	32. (Original) The graphics processing system of claim 31, wherein the low
2	luminosity region corresponds to an overlap region in an image to be displayed using a plurality
3	of display devices configured to display overlapping image elements.
1	33. (Original) The graphics processing system of claim 22, wherein the
2	luminosity texture includes darkened texels forming a visible pattern.
	1 1 m 1 1 m 1 1 m 22
1	34. (Currently Amended) The graphics processing system of claim 33,
2	wherein the pattern corresponds to a <u>textual</u> message readable by a user.
1	35. (Original) The graphics processing system of claim 22, further
2	comprising a user interface module configured to enable a user to define the luminosity texture.
1	36. (Previously Presented) A computer program product comprising:
2	a computer readable medium encoded with program code, the program code
3	including:
4	program code for defining a luminosity texture that includes a scaling
5	factor for each of a plurality of luminosity texels;
6	program code for converting pixel color values of an underlying image to
7	an image texture having a plurality of image texels;
8	program code for blending the image texture onto a surface having a
9	shape;
10	program code for blending the luminosity texture onto the target surface,
11	thereby generating luminosity compensated pixel data for the image;
12	program code for providing a user interface enabling a user to modify the
13	shape of the target surface; and
14	program code for updating the scaling factor for each luminosity texel
15	based on the modified shape of the target surface.

1	37. (Original) The computer program product of claim 36, wherein the
2	computer readable medium comprises a magnetic storage medium encoded with the program
3	code.
1	38. (Original) The computer program product of claim 36, wherein the
2	computer readable medium comprises an optical storage medium encoded with the program
3	code.
1	39. (Original) The computer program product of claim 36, wherein the
2	computer readable medium comprises a carrier signal encoded with the program code and
3	adapted for transmission via a network.
	(O ' ' 1) The second of the second of the 26 wherein the
1	40. (Original) The computer program product of claim 36, wherein the
2	program code further includes program code for providing a user interface enabling a user to
3	define the luminosity texture.
1	41 - 42. (Canceled)
1	43. (New) The method of claim 2, wherein the user interface comprises a
2	handle for repositioning a vertex of the polygon.
1	44. (New) The method of claim 1, wherein the updated luminosity texels
2	provide a second image with a more uniform brightness from one edge of the second image to
3	another edge of the second image.
1	45. (New) The graphics processing system of claim 23, wherein the user
2	interface module is configured to receive a repositioning of at least one vertex of the polygon.
1	46. (New) The graphics processing system of claim 22, wherein the updated
2	luminosity texture provides a second image with a more uniform brightness from one edge of the
3	second image to another edge of the second image.

47. (New) The computer program product of claim 36, wherein the updated luminosity texels provide a second image with a more uniform brightness from one edge of the second image to another edge of the second image.