

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 4

по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы ИКБО-13-22	Руденко Алексей Дмитриевич
Принял преподаватель кафедры ВТ	Рыжова Анастасия Андреевна
Практическая работа выполнена	«»2023 г.
«Зачтено»	«»2023 г.

СОДЕРЖАНИЕ

1	BB	ВЕДЕНИЕ	3
	1.1	Цель работы	3
	1.2	Задание	3
2	XC	Д РАБОТЫ	4
	2.1	Таблица перекодировки состояний автомата и их двоичный код	4
	2.2	Новые значения в графе состояний	5
	2.3	Таблица истинности автомата	6
	2.4	Функциональная схема	7
	2.5	Временная диаграмма схемы	7
	2.6	Описание схемы на языке AHDL	8
	2.7	Временная диаграмма описания	8
3	ВЬ	ІВОД	9

1 ВВЕДЕНИЕ

1.1 Цель работы

Ознакомиться с САПР QUARTUS II фирмы Altera, получить практические навыки создания проектов по схемотехнике ЭВМ в САПР (ввод схем, компиляция и моделирование).

1.2 Задание

- 1) Согласно своему варианту графа состояний автомата разработать функциональную электрическую схему цифрового программируемого устройства преобразования кодов.
 - 2) Включить ЭВМ и запустить САПР QUARTUS II.
- 3) Создать проект, ввести разработанную схему, откомпилировать и смоделировать её.
- 4) Проверить полученные результаты, сверив их с таблицей истинности устройства.

2 ХОД РАБОТЫ

Вариант 26:

Таблица 1. Состояния графа согласно индивидуальному варианту

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
7	8	14	2	9	1	12	11	3	0	5	15	10	13	4	6

2.1 Таблица перекодировки состояний автомата и их двоичный код

№ состояния	№ состояния из Таблица 1	Двоичный код q3, q2, q1, q0
0	7	0111
1	8	1000
2	14	1110
3	2	0010
4	9	1001
5	1	0001
6	12	1100
7	11	1011
8	3	0011
9	0	0000
10	5	0101
11	15	1111
12	10	1010
13	13	1101
14	4	0100
15	6	0110

2.2 Новые значения в графе состояний

Рисунок 1. Граф, полученный с учетом таблицы перекодировки

2.3 Таблица истинности автомата

Старое с	остояние	Условие	Новое состояние		
№	код		№	код	
7	0111	-	8	1000	
8	1000	A = 0	3	0011	
8	1000	A = 1	14	1110	
3	0011	-	0	0000	
0	0000	-	5	0101	
5	0101	B = 0	10	1010	
5	0101	B = 1	15	1111	
10	1010	-	11	1011	
11	1101	-	13	1101	
13	1101	-	4	0100	
4	0100	-	6	0110	
6	0110	-	7	0111	
14	1110	-	2	0010	
2	0010	B = 0	9	1001	
2	0010	B = 1	1	0001	
9	1001	-	12	1100	
12	1100	-	11	1011	
15	1111	-	11	1011	
1	0001	-	12	1100	

2.4 Функциональная схема

2.5 Временная диаграмма схемы

2.6 Описание схемы на языке AHDL

```
🔷 Text Editor - C:/_gitHub/MIREA/AVM/Q42/Q42 - Q42 - [Q42.tdf]
File Edit View Project Processing Tools Window Help
SUBDESIGN 'Q42'
   2
      □ (
   3
            a, b, clock : input;
   4
            q[3..0] : output;
   5
   6
        VARIABLE
        st[0..15], r[0..5], newq[0..3], na, nb, nq[3..0]: NODE;
        reg[0..3] : DFF;
   9
  10
  11
       BEGIN
  12
        na= (not(a));
        nb= (not(b));
  13
  14
        nq[3..0] = (not(q[3..0]));
  15
        st0= (ng0 and ng1 and ng2 and ng3);
        stl= (q0 and nql and nq2 and nq3);
  16
  17
         st2= (ng0 and gl and ng2 and ng3);
        st3= (q0 and q1 and nq2 and nq3);
  18
         st4= (nq0 and nq1 and q2 and nq3);
  19
         st5= (q0 and nq1 and q2 and nq3);
  20
  21
         st6= (nq0 and q1 and q2 and nq3);
         st7= (q0 and q1 and q2 and nq3);
  22
         st8= (nq0 and nq1 and nq2 and q3);
  23
         st9= (q0 and nq1 and nq2 and q3);
  24
  25
         stl0= (nq0 and ql and nq2 and q3);
         stll= (q0 and q1 and nq2 and q3);
  26
         st12= (nq0 and nq1 and q2 and q3);
  27
  28
         st13= (q0 and nq1 and q2 and q3);
  29
         st14= (nq0 and q1 and q2 and q3);
  30
         st15= (q0 and q1 and q2 and q3);
  31
         r0= (na and st8);
        rl= (a and st8);
         r2= (nb and st5);
  34
        r3= (b and st5);
  35
  36
         r4= (nb and st2);
        r5= (b and st2);
  37
  38
        newq0= (r0 or st0 or r3 or st10 or st11 or st6 or r4 or r5 or st12 or st15);
  39
        newgl= (r0 or r1 or r2 or r3 or st10 or st4 or st6 or st14 or st12 or st15);
  40
        newq2= (rl or st0 or r3 or st11 or st13 or st4 or st6 or st9 or st1);
  41
        newq3= (st7 or rl or r2 or r3 or st10 or st11 or r4 or st9 or st12 or st15 or st1);
  42
  43
        q0= DFF(newq0, clock,,);
  44
        q1= DFF(newq1, clock,,);
  45
  46
         q2= DFF(newq2, clock,,);
  47
         q3= DFF(newq3, clock,,);
  48
        END:
```

2.7 Временная диаграмма описания

3 ВЫВОД

Ознакомление с САПР QUARTUS II фирмы Altera и получение практических навыков создания проектов по схемотехнике ЭВМ является важным шагом в понимании и применении цифровой электроники и разработке цифровых систем. QUARTUS II представляет собой мощное программное обеспечение, которое позволяет инженерам и студентам проектировать, анализировать и моделировать цифровые схемы и компоненты с высокой степенью гибкости и точности.

В процессе ознакомления с CAПР QUARTUS II, пользователи получают возможность создавать проекты с использованием графического интерфейса, вводя схемы, задавая параметры компонентов и соединения между ними. Это позволяет визуально описывать структуру цифровых систем, что является важным элементом при проектировании и анализе сложных электронных устройств.

Компиляция и моделирование в CAПР QUARTUS II предоставляют возможность анализа созданных проектов, проверки их правильности и производительности. Этот этап позволяет пользователю убедиться в том, что цифровая схема работает корректно и соответствует заданным требованиям.

Полученные практические навыки в работе с САПР QUARTUS II могут быть применены в различных областях цифровой электроники, включая проектирование микропроцессоров, программируемых логических устройств, цифровых систем связи, счетно-измерительных устройств и многих других приложений. Эти навыки оказываются ценными как для студентов, обучающихся в области электроники и компьютерных наук, так и для инженеров, занимающихся разработкой и анализом цифровых систем. Поэтому ознакомление с САПР QUARTUS II и приобретение соответствующих навыков является важным шагом на пути к успешной карьере в области цифровой электроники и САПР.