Feuille de TD n.3 de IPD 2020-2021, Ensimag 2A IF

H. Guiol

Exercice 1. Pont Brownien

Définition 1. Soit W_t un mouvement brownien standard. Le pont brownien entre 0 et 1 est le processus $B^{0,1} = (B_t^{0,1})_{t \in [0,1]}$ défini pour tous $t \in [0,1]$ par

$$B_t^{0,1} = W_t - tW_1.$$

Pour simplifier la notation dans ce qui suit on notera simplement B le pont brownien $B^{0,1}$ défini ci-dessus.

- 1. Caractéristiques du pont brownien entre 0 et 1.
- (a) Montrer que B est un processus gaussien à trajectoires continues vérifiant $\mathbb{E}(B_t) = 0$ et $Cov(B_t, B_s) = s(1-t)$ pour $s \leq t$. En déduire la loi de B_t pour $t \in [0,1]$.
- (b) Montrer que B_t est indépendant de W_1 .
- (c) Trouver la loi conditionnelle de W_t sachant $W_1 = 0$ et la comparer avec la loi de B_t .
- 2. Pont Brownien sur [u, v]. Soient $0 \le u \le v$, on définit le processus $B^{u,v} = (B^{u,v}_t)_{t \in [u,v]}$ par : pour tout $t \in [u,v]$

$$B_t^{u,v} = (W_t - W_u) - \frac{t - u}{v - u}(W_v - W_u).$$

- (a) Montrer que $B^{u,v}$ est un processus Gaussien centré, à trajectoires continues, indépendant de $\sigma(W_s, 0 \le s \le u)$ et de $\sigma(W_s, v \le s)$.
- (b) Soient $a, b \in \mathbb{R}$ montrer que W_t sachant $W_u = a$ et $W_v = b$ est de loi normale $\mathcal{N}(\mu, \sigma^2)$ de paramètres

$$\mu = a + \frac{t - u}{v - u}(b - a), \ \sigma^2 = \frac{(v - t)(t - u)}{v - u}$$

3. Simulation de $\max_{0 \le u \le t} W_u$ par la méthode du pont Brownien. Soit $M_t = \max_{0 \le u \le t} W_u$. On verra (on admet pour le moment ce résultat) que

$$P(M_t \ge y|W_t = x) = \exp\left(-2\frac{y(y-x)}{t}\right)$$

- (a) Proposer une méthode de simulation de W_t sur [0, T].
- (b) Simuler M_t par inversion.

Exercice 2. Continuité Hölderienne des trajectoires du Brownien

On admet le lemme (déterministe) suivant dû à Garsia-Rodemich-Rumsey:

Lemme 2. Pour toute fonction continue f si on pose

$$A_f = \int_0^1 \int_0^1 \frac{|f(s) - f(u)|^{\gamma}}{|s - u|^{m+2}} \ ds du$$

avec m > 0 et $\gamma > 0$ alors pour tous $s, t \in [0, 1]$ l'inégalité suivante est vérifiée

$$|f(t) - f(s)| \le 8A_f^{1/\gamma} \frac{m+2}{m} |t-s|^{m/\gamma}.$$

Soit (W_t) un mouvement Brownien standard.

- 1. Donner une condition suffisante sur m et γ pour que la variable aléatoire A_W prenne presque surement des valeurs finies.
- 2. En déduire que pour tout $\alpha < 1/2$ il existe une variable aléatoire C_{α} (positive et finie) telle que pour tous $s, t \in [0, 1]$

$$|W_t - W_s| < C_{\alpha} |t - s|^{\alpha}$$
.