Data Visualisation and Dashboarding

Week 10 – Networks and unstructured data

UNIVERSITY OF WESTMINSTER#

What shape is your data?

Rectangular data (key-value pairs, tables, matrix, etc.)

Hierarchical (org chart, etc)

Graphs (networks, processes, etc.)

Unstructured (Text, images, audio, film, etc.)

What's a graph?

Graph (noun): "a collection of vertices [nodes] and edges that join pairs of vertices"

Vertex (noun): "a point (as of [a...] graph [...]) that terminates a line [...]"

(Merriam-Webster)

What is a graph?

Nodes

What is a graph?

Edges

Complete Graph

Fully connected graph

Each node is connected to all other nodes

Directed Graph

Edges have a direction

Acyclic graph (tree)

Graph without any cycles

Can describe hierarchical relationships

Nodes have a parent/child relationship

Graphs in real-life

Graphs can exist anywhere that a relationship exists between two entities.

What types of graphs can you think of?

Social network

@uniwestminster tweets

Nodes are users

Edges are interactions (RT or mentions)

Helps to identify communities

Generated by SocioViz.net

Social Network

LinkedIn profile connections

Clusters are colour-coded

Strengths?

Weaknesses?

Visualisation shows the handover of work between various roles in a mental healthcare setting

Very complex scenario – almost a complete graph

Most work is handed over between Psychological Therapies, Nursing and Medical.

H.C. Beck original London Underground map

No immediate geospatial frame of reference when underground

Only interested in connections and stations

H.C. Beck designed map in 1933 inspired by electrical wiring diagrams

Drawback: No information about actual distance between stations.

254 people per day travel from Covent Garden to Leicester square (taking 6 minutes by train or 4 minutes walking)

Facebook connections

1.1 billion users and their connections (Facebook,2013)

Shows global dominance of FB as social media platform

Also shows areas where FB is not dominant (Russia, Belarus, North Korea)

Organisation charts

Organisation chart of the Prime Minister's Office (March 2022, Cabinet Office)

Treemaps

UNAIDS Treemap showing people with HIV infection

Each nested rectangle represents childnode of the enclosing rectangle

Size of rectangle is proportionate to value

Uses colour to group continents

Layered hierarchy

Sunburst Tree derived from Hierarchical data

Each concentric ring shows another layer of detail

Colours on outermost layer are selected by designer, inner layers are coloured using average colours

Coffee Flavour Wheel (jasondavies.com)

Sequence of events

Visualisation shows web site visits

Inner most circle represents first page visited, second circle the second page, etc.

Shows all navigation paths in one view (up to a certain depth)

Sequences sunburst - bl.ocks.org

Applications

Security & intelligence

Distilling complex connected data into critical intelligence and insight

Anti-fraud

Detecting or investigating fraud in finance, insurance or online activity

Cyber security

Tracking the behavior of cyber threats and analyzing incident forensics

Cambridge Intelligence (n.d.): The ultimate guide to graph visualization

Applications

Law enforcement

Enabling detailed pattern of life and behavioral analysis

Compliance

Ensuring regulatory compliance through effective data analysis

Infrastructure

Monitoring performance and faults plus root cause analysis

Cambridge Intelligence (n.d.): The ultimate guide to graph visualization

Applications

Customer 360

Understanding your customer behavior better

Pharmaceuticals

Analyzing connections between agents, diseases, drugs & trials

Social networks

Visualizing dynamic connections between social actors

Cambridge Intelligence (n.d.): The ultimate guide to graph visualization

Graph data modelling

Nodes are the fundamental units of your data

Links are relationships between nodes

Properties are descriptive characteristics of nodes and links, but aren't important enough to become nodes themselves

Graph data modelling example

Let's consider a healthcare graph visualisation with doctors, patients and appointments

We could model each entity as a node

What does the user want to know?

How many patients did a doctor see?

How many appointments has a patient had?

Is there an easier way?

Graph data modelling makeover

Modelling appointments reduces the number of nodes

Resulting graph is easier to read

Colours help separating doctors from patients

Visualising Business Processes

Visualising Business Processes

Most basic process modelling notation is a transition system

States are nodes, transitions are edges

Petri Nets

Petri Nets are the oldest process modelling language allowing concurrency.

Activities are nodes

Graphical notation is intuitive but also executable

YAWL

Yet Another Workflow Language

Graphic from van der Aalst, 2016

BPMN

Business Process Modelling Notation

One of the most widely used language to model business processes

Atomic activities are tasks

Event-Driven Process Chains (EPCs)

Supported by ARIS and SAP R/3

Bipartite graph: Events are followed by functions, which are followed by events again

Can also have splits and joins between nodes

et amine thoroughly

or examine casually

examine casually

or exami

ticket

Graphic from van der Aalst, 2016

request

Process Mining

Typically, Processes are identified by Business Analysts using interviews and similar techniques

Error-prone, time-intense and costly

Process Mining uses event data by IT systems to discover processes

Discovers real & correct process models

Discovers process highways

Able to understand complex systems

Tools

ProM

Free

Research-driven

Not the most user-friendly tool

Disco

Commercial

Simple, good for ad-hoc process analyses

Celonis

Commercial

Industry leader

Fully fledged Process Mining suite

Real-world applications

Care pathway in a mental health

care setting

Highly complex behaviour

Most common paths clearly

identifiable

Not as formal as previously mentioned languages

Animate it!

Animation often helps with the understanding of a process

Keep it simple!

Visualising Text Data

Why visualising text data?

Vast amount of text data (Web Pages, emails, SMS, progress notes, transcribed calls, etc.)

To large to read all of it

Visualising text data can give a quick insight

A quick introduction to Text Mining

Text data needs to be transformed to be analysed.

The most commonly used model is the bag-of-words model.

We simply count the occurrence of each word.

Consider the sentence "John likes to watch movies. Mary likes movies too."

This can be represented structurally as a bag of words:

 $BoW_1 = \{John: 1, likes: 2, to: 1, watch: 1, movies: 2, Mary: 1, too: 1\}$

We may choose to ignore "stop-words", such as "to", "too", etc.

Multiple documents form a Document Term Matrix

Term	Doc 1	Doc 2	
John		1 0)
Likes	2	2 1	١
То		1 1	I
Watch		1 1	١
Movies	2	2 ()
Mary		1 1	١
Тоо		1 0)
Also	(0 1	1
Football	(0 1	I
games	(0 1	1

Working with text data: Challenges

Dimensionality: Each term is its own dimension

Sparsity: Many documents don't use all terms

Abstraction

Word variations

Stemming: truncate a word to leave only its stem.

Porter stemmer is the commonly used algorithm for English

Lemmatisation: uses a dictionary to look up the basic form of a word

```
> SnowballC::wordStem(c("are", "be", "walked", "walking"), "porter")
[1] "ar" "be" "walk" "walk"
> textstem::lemmatize_words(c("are", "be", "walked", "walking"))
[1] "be" "be" "walk" "walk"
>
```


Word count vs significance

Most basic Bag-of-Words model counts word occurrence (Term Frequency)

We often prefer to work with the term significance.

Tf-ldf can be used to calculate term signicifance

Term-frequency $tf_{t,d}$: Number of occurrences of a specific term

Document-frequency df_t : Number of documents a specific term occurs

Inverse-document-frequency $idf_t = log\left(\frac{N}{df_t}\right)$

The rarer the term, the higher is the idf, the more frequent the term, the lower it is

Tf-idf: $tf-idf_{t,d} = tf_{t,d} \times idf_t$

Word Cloud

Simplest way to visualise a document or a corpus

Shows most important/frequent terms bigger

Cloud shows the terms in the presenters' paper library and is generated by <u>Voyant</u>

<u>Tools</u>

Word nets

Which terms occur together

Hashtag map

Shows co-occurring hashtags Useful to identify hashtags Useful to identify similar topics

Beyond terms: Topic modelling

A topic is a collection of weighted terms

A document is a collection of weighted topics

A term is a collection of weighted topics

Paper topics over time

Stream graph shows number of papers by topic over time

Topics are identified by the most important terms

Please remember to submit the Student Module Evaluation!

UNIVERSITY OF WESTMINSTER#

Further Reading

Aalst, W. van der (2016) Process mining: data science in action. Second edition. Berlin, [Germany];: Springer.

Manning, C. D. et al. (2008) Introduction to information retrieval. Cambridge: Cambridge University Press.

