

Name and section: $oldsymbol{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$					
ID number:					
ib number				_	
E-mail·					
r-maii					

1. Implement the Gaussian elimination algorithm in MATLAB (or in any other programming language). Subsequently, create a function (or subroutine) stored as my_linsolver.m, which utilizes Gaussian elimination and backward substitution to solve a system consisting of n linear equations written in the form of

$$A\mathbf{x} = \mathbf{b}$$
,

with A being an $n \times n$ non-singular matrix, \mathbf{b} a given n-dimensional column vector, and \mathbf{x} the (n-dimensional) solution vector. Also, the first line of your function (in MATLAB) should read: function $\mathbf{x} = \mathbf{my_linsolver}(\mathbf{A}, \mathbf{b})$ and the inputs must be a square matrix A and rhs (right-hand-side) vector \mathbf{b} . Note that the output of your function is just the solution vector \mathbf{x} . Test your code with the 3×3 system:

$$3x_1 + x_2 + 4x_3 = 6,$$

$$x_2 - 2x_3 = -3,$$

$$x_1 + 2x_2 - x_3 = -2.$$

The exact solution is $\mathbf{x} = [1, -1, 1]^T$. Then, use your function in order to solve the 4×4 system:

$$x_1 + x_2 + x_4 = 2,$$

$$2x_1 + x_2 - x_3 + x_4 = 1,$$

$$4x_1 - x_2 - 2x_3 + 2x_4 = 0,$$

$$3x_1 - x_2 - x_3 + x_4 = -3.$$

Compute the l_2 -norm of the residual $||\mathbf{b} - A\hat{\mathbf{x}}||_2$ where $\hat{\mathbf{x}}$ is the solution computed for the 4×4 system. Attach all your codes and provide MATLAB output.

2. Write a MATLAB function (or subroutine) stored as my_linsolver_lu.m which utilizes the LU decomposition. The first line of your function (in MATLAB) should read: function x = my_linsolver_lu(A,b) and internally must employ Gaussian elimination (in order to convert A into U and L) together with forward and backward substitutions (recall the algorithm for solving a linear system by LU decomposition). Then, use your function to solve the 4 × 4 linear system of Question 1 only. Attach your codes and provide MATLAB output.

3. Write a MATLAB function called trisolve.m in order to solve the linear system $A\mathbf{x} = \mathbf{f}$ where A is a tridiagonal $n \times n$ matrix of the form of

$$A = \begin{bmatrix} a_1 & c_1 \\ b_2 & a_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & c_{n-1} \\ & & & b_n & a_n \end{bmatrix}.$$

Its first line should read: function $\mathbf{x} = \text{trisolve}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{f})$. The inputs here are the *n*-dimensional vectors: \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{f} , and the output is the solution vector \mathbf{x} . Test your code with the 5×5 system with $a_i = 2$, $b_i = -1$, $c_i = -1$, and rhs vector $\mathbf{f} = [1, 0, 0, 0, 1]^T$. The exact solution is $x = [1, 1, 1, 1, 1]^T$. Attach your code and provide MATLAB output.

4. Consider the second-order, non-homogeneous ordinary differential equation

$$u'' - u = x, (1)$$

where u = u(x) satisfies the boundary conditions: u(0) = u(1) = 0. Problems of this sort [cf. (1)] together with boundary conditions on the unknown function u(x) are called **boundary value problems** (BVPs) while the ODE given is called the *Helmholtz equation*.

(a) Use Taylor series to show that the second derivative of a function $u(x) \in C^4$ at a point x_0 can be approximated by:

$$u''(x_0) \approx \frac{u(x_0 + h) - 2u(x_0) + u(x_0 - h)}{h^2} + O(h^2).$$

This is called a **centered**, finite difference approximation of the second derivative.

(b) Use the approximation from part (a) and your trisolve.m function from question 2 in order to solve the BVP of Eq. (1) with n = 24 (see *Hints*, for details). If the exact solution to Eq. (1) is given by

$$u_{\text{exact}}(x) = \frac{e}{e^2 - 1} (e^x - e^{-x}) - x,$$

plot the numerical and exact solutions in the **same** figure using a different marker (say, open circles and solid line, respectively) and include a legend. Finally, calculate the l_2 -norm of the absolute error: $||u_{\text{exact}} - u_{\text{numerical}}||_2$.

Include your code, any figure and MATLAB output.

Hints:

- (a) Divide the interval [0,1] into n+1 equal subintervals and set $x_i = ih$, $i = 0,1,\ldots,n+1$ such that (n+1)h = 1 holds. This way, you create an one-dimensional computational grid (or mesh).
- (b) Then, we are interested in looking for the approximate solution $u(x_i) \equiv u_i$ with i = 1, ..., n using the boundary conditions $u_0 = u_{n+1} = 0$.

(c) To do so, the BVP at the discrete level is written as a difference equation:

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} - u_i = x_i, \Rightarrow$$

$$u_{i+1} - (2 + h^2) u_i + u_{i-1} = h^2 x_i, \quad i = 1, \dots, n.$$

Note that the latter equation is just a linear system of the form of $A\mathbf{x} = \mathbf{f}$ with A being a tridiagonal matrix.