# Assignment 4

October 21, 2022

# 1 Assignment 4

Matthias Rathbun, Mir Khan, Jay Nagabhairu, Jason Ng, Phoebe Collins  $10/21/2022\,$ 

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import statsmodels.api as sm
     import statsmodels.formula.api as smf
     import scipy.stats
[2]: df = pd.read_csv("ACT_04_Data.csv")
[3]:
    df.head()
[3]:
                   Х1
                       Х2
                             X12
                                    X1SQ
                                          X2SQ
     0
            2010
                  201
                       75
                           15075
                                   40401
                                           5625
     1
            1850
                  205
                       50
                           10250
                                   42025
                                          2500
     2
            2400
                  355
                          26625
                                  126025 5625
                       75
     3
            1575
                  208
                       30
                            6240
                                   43264
                                           900
     4
            3550
                  590
                       75 44250
                                 348100 5625
[4]: df = df.rename(columns = {" Y
                                        ":"Y"})
[5]: df.plot.scatter(x = "X1", y = "Y")
[5]: <AxesSubplot:xlabel='X1', ylabel='Y'>
```



[6]: df.plot.scatter(x = "X2", y = "Y")

[6]: <AxesSubplot:xlabel='X2', ylabel='Y'>



```
[7]: lm1 = smf.ols(formula = "Y~X1+X2", data = df).fit() lm1.summary()
```

[7]: <class 'statsmodels.iolib.summary.Summary'>

#### OLS Regression Results

Dep. Variable: Y R-squared: 0.900 Model: OLS Adj. R-squared: 0.888 Method: F-statistic: Least Squares 76.28 Date: Fri, 21 Oct 2022 Prob (F-statistic): 3.23e-09 Time: -146.2913:21:12 Log-Likelihood: No. Observations: AIC: 298.6 20 Df Residuals: BIC: 301.6 17

Df Model: 2
Covariance Type: nonrobust

|                 | coef                | std err          | t               | P> t           | [0.025             | 0.975]          |
|-----------------|---------------------|------------------|-----------------|----------------|--------------------|-----------------|
| Intercept<br>X1 | -566.4182<br>2.5509 | 312.265<br>0.267 | -1.814<br>9.564 | 0.087<br>0.000 | -1225.240<br>1.988 | 92.404<br>3.114 |
| X2              | 34.2847             | 4.680            | 7.326           | 0.000          | 24.410             | 44.159          |
| Omnibus:        |                     | 3                | .525 Durk       | oin-Watson:    |                    | 1.870           |
| Prob(Omnibu     | ıs):                | 0                | .172 Jaro       | ue-Bera (JI    | 3):                | 1.410           |
| Skew:           |                     | 0                | .191 Prob       | (JB):          |                    | 0.494           |
| Kurtosis:       |                     | 1                | .756 Cond       | l. No.         |                    | 2.77e+03        |
|                 |                     |                  |                 |                |                    |                 |

## Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.77e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [8]: sm.stats.anova\_lm(lm1, typ=1)
- [8]: df sum\_sq mean\_sq F PR(>F)
   X1 1.0 1.537060e+07 1.537060e+07 98.894347 1.679621e-08
   X2 1.0 8.340715e+06 8.340715e+06 53.664106 1.185020e-06
   Residual 17.0 2.642216e+06 1.554245e+05 NaN NaN
- [9]: lm2 = smf.ols(formula = "Y~X1+X2+X12", data = df).fit()
  lm2.summary()

[9]: <class 'statsmodels.iolib.summary.Summary'>

## OLS Regression Results

| Dep. Variable:   |           | Y                | R-squared: |                     |         | 0.978   |          |  |
|------------------|-----------|------------------|------------|---------------------|---------|---------|----------|--|
| Model:           |           | OLS              |            | Adj. R-squared:     |         |         | 0.974    |  |
| Method:          |           | Least Squares    |            | F-statistic:        |         |         | 239.4    |  |
| Date:            |           | Fri, 21 Oct 2022 |            | Prob (F-statistic): |         | :):     | 1.68e-13 |  |
| Time:            |           | 13:21:12         |            | Log-Likelihood:     |         |         | -131.03  |  |
| No. Observa      | ations:   |                  | 20         | AIC:                |         |         | 270.1    |  |
| Df Residuals:    |           |                  | 16         | BIC:                |         |         | 274.0    |  |
| Df Model:        |           |                  | 3          |                     |         |         |          |  |
| Covariance Type: |           | nonro            | bust       |                     |         |         |          |  |
| ========         |           | :                | :=====     |                     | D. L. L | [0.005  | 0.075    |  |
|                  | coei      | f std err        |            | t<br>               | P> t    | [0.025  | 0.975]   |  |
| Intercept        | 1340.1506 | 5 292.598        |            | 4.580               | 0.000   | 719.870 | 1960.431 |  |
| X1               | -0.173    | 0.381            | -(         | 0.455               | 0.655   | -0.981  | 0.634    |  |
| X2               | -2.8062   | 5.379            | -(         | 0.522               | 0.609   | -14.210 | 8.598    |  |
| X12              | 0.0529    | 0.007            | •          | 7.590               | 0.000   | 0.038   | 0.067    |  |
| ========         |           |                  |            |                     |         |         |          |  |

 Skew:
 -0.457
 Prob(JB):
 0.453

 Kurtosis:
 1.969
 Cond. No.
 3.01e+05

2.452

0.294

Durbin-Watson:

Jarque-Bera (JB):

1.397

1.582

#### Notes:

Omnibus:

Prob(Omnibus):

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.01e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
[10]: sm.stats.anova_lm(lm2, typ=1)
```

- [10]: df sum\_sq mean\_sq F PR(>F) Х1 1.0 1.537060e+07 1.537060e+07 428.222921 5.653519e-13 X2 1.0 8.340715e+06 8.340715e+06 232.371222 5.998742e-11 X12 1.0 2.067913e+06 2.067913e+06 57.611787 1.089461e-06 Residual 16.0 5.743028e+05 3.589392e+04 NaNNaN
- [11]: lm3 = smf.ols(formula = "Y~X1+X2+X12+X1SQ+X2SQ", data = df).fit()
  lm3.summary()
- [11]: <class 'statsmodels.iolib.summary.Summary'>

## OLS Regression Results

| ========       | =======   | =======                 | =====           | ===== | =======               | ======== | =======  |
|----------------|-----------|-------------------------|-----------------|-------|-----------------------|----------|----------|
| Dep. Varial    | ble:      |                         | Y               | R-sq  | uared:                |          | 0.986    |
| Model:         |           |                         | OLS             | Adj.  | R-squared:            |          | 0.981    |
| Method:        |           | Least Sq                | uares           | F-st  | atistic:              |          | 199.4    |
| Date:          |           | Fri, 21 Oct             | 2022            | Prob  | (F-statisti           | c):      | 1.71e-12 |
| Time:          |           | 13:                     | 21:12           | Log-  | Likelihood:           |          | -126.50  |
| No. Observa    | ations:   |                         | 20              | AIC:  |                       |          | 265.0    |
| Df Residua     | ls:       |                         | 14              | BIC:  |                       |          | 271.0    |
| Df Model:      |           |                         | 5               |       |                       |          |          |
| Covariance     | Type:     | nonr                    | obust           |       |                       |          |          |
| ========       |           |                         |                 |       |                       |          |          |
|                | coef      | std err                 |                 | t     | P> t                  | [0.025   | 0.975]   |
| Intercept      | 2405.7779 | 495.491                 |                 | 1.855 | 0.000                 | 1343.055 | 3468.501 |
| X1             | -1.5734   | 0.680                   | -2              | 2.315 | 0.036                 | -3.031   | -0.115   |
| X2             | -32.4259  | 17.270                  | -1              | 1.878 | 0.081                 | -69.466  | 4.614    |
| X12            | 0.0542    | 0.006                   | Ş               | 9.092 | 0.000                 | 0.041    | 0.067    |
| X1SQ           | 0.0010    | 0.000                   | 2               | 2.379 | 0.032                 | 9.37e-05 | 0.002    |
| X2SQ           | 0.2684    | 0.158                   | 1               | 1.695 | 0.112                 | -0.071   | 0.608    |
| Omnibus:       | =======   |                         | ======<br>0.504 | Durb: | =======<br>in-Watson: | ======== | 1.835    |
| Prob(Omnibus): |           | 0.777 Jarque-Bera (JB): |                 |       | 0.589                 |          |          |

#### Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.295

2.402

Prob(JB):

Cond. No.

0.745

1.06e+07

[2] The condition number is large, 1.06e+07. This might indicate that there are strong multicollinearity or other numerical problems.

```
[12]: sm.stats.anova_lm(lm3, typ=1)
```

| [12]:    | df   | sum_sq       | mean_sq      | F          | PR(>F)       |
|----------|------|--------------|--------------|------------|--------------|
| X1       | 1.0  | 1.537060e+07 | 1.537060e+07 | 589.561805 | 7.645837e-13 |
| X2       | 1.0  | 8.340715e+06 | 8.340715e+06 | 319.920281 | 4.860083e-11 |
| X12      | 1.0  | 2.067913e+06 | 2.067913e+06 | 79.317822  | 3.844920e-07 |
| X1SQ     | 1.0  | 1.343881e+05 | 1.343881e+05 | 5.154650   | 3.950402e-02 |
| X2SQ     | 1.0  | 7.491751e+04 | 7.491751e+04 | 2.873570   | 1.121613e-01 |
| Residual | 14.0 | 3.649972e+05 | 2.607123e+04 | NaN        | NaN          |
|          |      |              |              |            |              |

```
[13]: lm4 = smf.ols(formula = "Y~X1+X2+X12+X1SQ", data = df).fit()
lm4.summary()
```

# [13]: <class 'statsmodels.iolib.summary.Summary'>

## OLS Regression Results

| ============      | :==========      |                     | ========= |
|-------------------|------------------|---------------------|-----------|
| Dep. Variable:    | Y                | R-squared:          | 0.983     |
| Model:            | OLS              | Adj. R-squared:     | 0.979     |
| Method:           | Least Squares    | F-statistic:        | 220.9     |
| Date:             | Fri, 21 Oct 2022 | Prob (F-statistic): | 3.91e-13  |
| Time:             | 13:21:12         | Log-Likelihood:     | -128.36   |
| No. Observations: | 20               | AIC:                | 266.7     |
| Df Residuals:     | 15               | BIC:                | 271.7     |
| Df Model:         | 4                |                     |           |
| Covariance Type:  | nonrobust        |                     |           |

Covariance Type: nonrobust

| ========    |           | ========= |                        |                      | ======== | =======  |
|-------------|-----------|-----------|------------------------|----------------------|----------|----------|
|             | coef      | std err   | t                      | P> t                 | [0.025   | 0.975]   |
| Intercept   | 1746.3777 | 325.522   | 5.365                  | 0.000                | 1052.544 | 2440.211 |
| X1          | -1.5279   | 0.720     | -2.121                 | 0.051                | -3.063   | 0.008    |
| X2          | -4.2211   | 4.907     | -0.860                 | 0.403                | -14.681  | 6.238    |
| X12         | 0.0545    | 0.006     | 8.616                  | 0.000                | 0.041    | 0.068    |
| X1SQ        | 0.0009    | 0.000     | 2.141                  | 0.049                | 3.89e-06 | 0.002    |
| Omnibus:    |           | 0.4       | ========<br>481 Durbir | =======<br>n-Watson: |          | 1.617    |
| Prob(Omnibu | ıs):      | 0.        | 786 Jarque             | e-Bera (JB)          | :        | 0.590    |
| Skew:       |           | 0.:       | 255 Prob(3             | JB):                 |          | 0.745    |
| Kurtosis:   |           | 2.3       | 330 Cond.              | No.                  |          | 6.54e+06 |
| ========    |           | ========  |                        |                      | ======== | =======  |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.54e+06. This might indicate that there are strong multicollinearity or other numerical problems.

# [14]: sm.stats.anova\_lm(lm4, typ=1)

```
[14]:
                                                        F
                                                                 PR(>F)
                df
                          sum_sq
                                       mean_sq
     X1
                1.0 1.537060e+07 1.537060e+07 524.099340 4.418034e-13
     Х2
                1.0 8.340715e+06 8.340715e+06
                                                284.397677 3.675408e-11
     X12
                1.0 2.067913e+06 2.067913e+06
                                                70.510704 4.718263e-07
                                                 4.582299 4.913919e-02
     X1SQ
                1.0 1.343881e+05 1.343881e+05
     Residual 15.0 4.399147e+05 2.932765e+04
                                                      {\tt NaN}
```

```
[15]: data = [[lm1.rsquared, lm1.mse_resid],[lm2.rsquared, lm2.mse_resid],[lm3.
      →rsquared, lm3.mse_resid],[lm4.rsquared, lm4.mse_resid]]
      results = pd.DataFrame(data, columns=['R Squared', 'MSE'])
```

```
results.index.name = 'Model'
      results.index += 1
[16]: results
[16]:
             R Squared
                                   MSE
      Model
      1
              0.899740
                        155424.460740
      2
              0.978208
                          35893.923075
      3
              0.986150
                          26071.228596
      4
              0.983307
                          29327.647321
[17]: q1 = scipy.stats.norm.ppf(0.0125)
[18]: q2 = scipy.stats.norm.ppf(0.99)
[19]: q3 = scipy.stats.t.ppf(0.0125, 333)
[20]: q4 = scipy.stats.t.ppf(0.99, 345)
[21]: q5 = scipy.stats.chi2.ppf(0.025, 125)
[22]: q6 = scipy.stats.t.ppf(0.975, 245)
[23]: q7 = scipy.stats.f.ppf(0.01, 12, 250)
[24]: q8 = scipy.stats.f.ppf(0.99, 24, 500)
[25]: data = [["Normal", None, None, 0.0125, q1], ["Normal", None, None, 0.99, [
       \rightarrowq2],["Student t",333,None, 0.0125, q3],["Student t",345,None, 0.99, q4],
               ["Chi-Square",125,None, 0.025, q5],["Chi-Square",245,None, 0.975,
       \hookrightarrowq6],["F",12,250, 0.01, q7],["F",24,500, 0.99, q8]]
[26]: quantiles = pd.DataFrame(data, columns=['Distribution', 'Degrees Freedom I', |
       →'Degrees Freedom II', 'Probability', 'Quantile'])
      quantiles = quantiles.set_index("Distribution")
[27]:
      quantiles
[27]:
                    Degrees Freedom I Degrees Freedom II Probability
                                                                            Quantile
      Distribution
      Normal
                                                        NaN
                                                                  0.0125 -2.241403
                                   NaN
                                                                  0.9900
      Normal
                                   NaN
                                                        NaN
                                                                            2.326348
      Student t
                                                                  0.0125 -2.251584
                                 333.0
                                                        NaN
      Student t
                                 345.0
                                                        NaN
                                                                  0.9900
                                                                            2.337205
                                 125.0
      Chi-Square
                                                        NaN
                                                                  0.0250 95.945725
      Chi-Square
                                 245.0
                                                        NaN
                                                                  0.9750
                                                                            1.969694
                                  12.0
                                                      250.0
                                                                  0.0100
                                                                            0.293798
```

F 24.0 500.0 0.9900 1.828539