3.4 Generating functions

April 21, 2016

 $\mathbf{3}$

1.
$$d_n := \binom{N}{n} \binom{M}{0} + \binom{N}{n-1} \binom{M}{1} + \dots + \binom{N}{0} \binom{M}{n}$$

 \diamond À l'aide du théorème du binome, montrez que $(1+x)^N(1+x)^M$ est la fonction génératriec de d_n et montrez ensuite que $d_n=\binom{N+M}{n}$

On a que $(1+x)^N(1+x)^M=\left(\sum_{n=0}^N\binom{N}{n}x^n\right)\left(\sum_{n=0}^M\binom{M}{n}x^n\right)$ par le théorème du binome.

En présumant que $\binom{N}{N+1+j}=0$ pour tout $j\in\mathbb{N},$ on a

$$= \left(\sum_{i=1}^{N} {N \choose i} x^{i}\right) \left(\sum_{j=1}^{M} {M \choose j} x^{j}\right)$$

$$= \left(\sum_{i=1}^{N} {N \choose i} x^{i}\right) \left(\sum_{j=1}^{M} {M \choose j} x^{j}\right)$$

$$= \sum_{i=1}^{\infty} \left(\sum_{j=1}^{n} {N \choose n-i} {M \choose j} x^{n}\right)$$

par la formule de multiplication des séries entières.

On a donc que $\sum_{n=0}^{\infty} d_n x^n = (1+x)^N (1+x)^M$.

On développe alors $(1+x)^N(1+x)^M=(1+x)^{N+M}$ à l'aide du théorème du binome et l'on obtient

$$(1+x)^{N+M} = \sum_{n=0}^{\infty} {N+M \choose n} x^n$$

On a donc $\sum_{n=0}^{\infty} \binom{N+M}{n} x^n = \sum_{n=0}^{\infty} d_n x^n$ ce qui implique que $\sum_{n=0}^{\infty} (d_n - \binom{N+M}{n}) x^n = 0$ pour tout x. En posant x=0 et en remarquant que $d_n, \binom{N+M}{n} \geq 0$, on a l'égalité voulue.

4

 \diamond $\frac{1}{(1-x)^3}$ est la fonction génératrice de la série des nombres triangulaires $a_0=1,a_2=3,\cdots a_n=\binom{n+2}{2}$

En calculant la série de MacLaurin de $(1-x)^{-3}$, on obtient

$$\sum_{n=0}^{\infty} \frac{(2+n)!}{2!n!} x^n = \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2!} x^n$$

$$= \sum_{n=0}^{\infty} \binom{n+2}{2} x^n$$

Puisque l'expension en série de MacLaurin est unique, on a le résultat voulu.

5

 $\diamond \frac{x}{1-x-x^2}$ est la fonction génératrice de la séquence de Fibonacci

On montre que $(1 - x - x^2)f_F = x$. On a

$$f_F = \sum_{n=1}^{\infty} F_n x^n$$

$$=$$

$$x + x^2 + \sum_{n=3}^{\infty} F_{n-1} x^n + \sum_{n=3}^{\infty} F_{n-2} x^n$$

$$=$$

$$x + x^2 + x(f_F - x) + x^2 f_F$$

$$=$$

$$x + x f_F + x^2 f_F$$

$$\Rightarrow$$

$$f_F = x + x f_F + x^2 f_F$$

$$\Rightarrow$$

$$f_F - x f_F - x^2 f_F = x$$

$$\Rightarrow$$

$$(1 - x - x^2) f_F = x$$

6

 $\diamond \, \frac{1}{1-2x}$ est la fonction génératrice de la séquence $a_0=1,\cdots,a_n=2^n$

On a que $\sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} (2x)^n$ une série géométrique. On a donc $f_a = \frac{1}{1-2x}$ pour |x| > 2.