

INSTRUCTION DIVISION FIRST SEMESTER 2018-19 Course Handout (Part II)

Date: 02/08/2018

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. :ME F211/MF F211
Course Name :Mechanics of Solids
Instructor-in-charge :SharadShrivastava

Tutorial Instructor: Sharad Shrivastava, J.S. Rathore, Rajesh Mishra, Gourav Watts

1. Course Description:

Fundamental principles of mechanics; Introduction to the mechanics of deformable bodies; Forces and Moments transmitted by slender members; Stress-Strain; Stress-Strain Temperature relations; Torsion; stresses and deflections due to bending; Stability of equilibrium; Static failure criteria, ductile and brittle material; Dynamic failure criteria.

2. Scope and Objective:

- Determination of strength, deformation and stability of structural and machine elements.
- Understand the material properties and Idealization of stress-strain curves.
- Understand different loading conditions and to analyse the results.
- Understand combine load conditions on a body and to analyse the results
- Understand the failure theories.

At the end of the course the student will be in a position to design and analyze simple structural elements, which involve calculation of stress, strain and deformation. This is an essential feature in any design process.

3. Text Book:

1. Crandall, Dahl and Lardner, An Introduction to Mechanics of Solids, McGraw-Hill International edition, 1978.

4. Reference Books:

- 1. Mechanics of Materials, Gere and Timshenko. Latest Edition.
- 2. Mechanics of Materials; F. P. Beer, E. R. Johnston and J. T. DeWolf, Third Edition, 2002, McGraw-Hill International Edition.

- 3. Introduction to Solid Mechanics by I. H. Shames, 2nd Edition, 1980, Prentice Hall of India Private Ltd. New Delhi.
- 4. Engineering Mechanics of Solids by E. P. Popov, 2nd Edition, PHI, New Delhi.

5. Course Plan

Module Number	Lecture session/Tutorial Session.	Reference	Learning Outcome	
1.Fundamental principles of mechanics	L1.1. Introduction, principles of mechanics, concept of force & moment, equilibrium conditions L 1.2. concept of two & three force members, free body diagram, friction, trusses	TB Chapter 1 TB Chapter 1	Fundamental priniciples of mechanics and to an exposition of the requirements of equilibrium	
	T1.1. Practice Problems	TB/RB	or equinorium	
2.Introduction to mechanics of deformable bodies	L2.1. Analysis of deformable bodies, uniaxial loading & deformation	TB Chapter 2	To attack problems of	
	L2.2. Statical Determinate Truss	TB Chapter 2	applied mechanics	
	L2.3. Problems on trusses	TB Chapter 2	by applying three	
	L2.4. hoop stresses in thin cylindrical shells	TB Chapter 2	steps . The analysis of truss	
	L2.5. Castiglione's Theorem	TB Chapter 2	for both statically	
	L2.6.Problems	TB Chapter 2	indeterminate and	
	T2. Problems on truss streuture	TB/RB	determinate conditions will be understood	
3. Forces & moments	L3.1. Introduction of forces &	TB Chapter 3	In this the study	
transmitted by slender members	moments acting on a section of a member		of forces and equilibrium	
	L3.2.Shear force and BM diagram	TB Chapter 3	requirements will	
	L3.3 Problems	TB Chapter 3	be applied to	
	L3.4 Distributed loads & resultant of distributed loads, Differential equilibrium approach, Singularity	TB Chapter 3	slender members. The importance of shear force and	
	functions	TD Ch42	bemding moment	
	L3.5. Differential equilibrium approach, Singularity functions	TB Chapter 3	variation along the length of	
	T3. Problems	TB/RB	slender members will be understood	
4. Stress & Strain	L4.1. Introduction, stress, plane	TB Chapter 4	The investigation	

10年 10年 2017			
	stress, equilibrium of an element in plane stress,		of three basic principles will be
	L4.2. Mohr circle representation of a	TB Chapter 4	applied to the
	plane stress, general state of stress		localized behavior
	L4.3 Problems	TB Chapter 4	of the materials at
	L4.4 Analysis of deformations, strain	TB Chapter 4	a point within a
	components, relation between strain		deformable body.
	& displacement	mp ct	Concept of stress
	L4.5. Strain component associated	TB Chapter 4	and strain and its
	with arbitrary set of axis, Mohr circle		variation at a
	representation of plane strain, general state of strain		point in different
	L4.6.Problems	TB Chapter 4	planes will be understood.
	T4 Problems	TB/RB	understood.
5. Stress-Strain-Temperature	L5.1. Introduction, tensile test,	TB Chapter 5	The relation
relations	idealization of stress strain curve,	12 chapter c	between stress
	L5.2. elastic stress strain relation,	TB Chapter 5	and strain will be
	Thermal strain,	-	studied. Also their
	L5.3. complete equations of	TB Chapter 5	relation with
	elasticity, strain energy in a elastic	1	temperature will
	body		be analysed.
	L5.4. criteria of initial yielding	TB Chapter 5	Different material
	L5.5 Problems	TB Chapter 5	properties and
	T5.Problems	TB/RB	yielding criterian
			for ductile
			materials will be understood.
(m :	L6.1. Introduction, geometry of	TB Chapter 6	In this chapter
6. Torsion	deformation of a twisted circular	1 D Chapter 0	student will apply
	shaft, stress strain relations, ,		the fundamental
	L6.2 equilibrium requirements,	TB Chapter 6	principles to
	stresses & deformations in twisted		consider the
	elastic circular shaft		problem of
	L6.3. torsion of elastic hollow	TB Chapter 6	twisting. The
	circular shaft,		stress developed
	L6.4, combined stresses, strain	TB Chapter 6	due to torsion will
	energy due to torsion, yielding in		be analysed and
	torsion	TD Chapter 6	corresponding
	L6.5.Problems	TB Chapter 6	deformation will
	T6. Problems	TB/RB	also be
7 Stranger due to bending	I 7.1 Introduction Jefermentias is	TD Ch47	understood.
7.Stresses due to bending	L7.1.Introduction, deformation in	TB Chapter 7	Here the slender

	T		
	pure bending, stress-strain relations, equilibrium requirements,		member subjected to transverse
	L7.2 stresses & deformations in pure bending.	TB Chapter 7	loading would be analysed. The
	L7.3. Stresses due to shear force and bending moment,	TB Chapter 7	stresses and deformation
	L7.4. combined stresses, strain energy due to bending, yielding in bending	TB Chapter 7	would be analysed .
	L7.5.Problems	TB Chapter 7	
	T7.Problems	TB/RB	
8. Deflections due to bending	L8.1.Introduction, moment-curvature-relations, integration of moment-curvature relations, Numerical problems	TB Chapter 8	The deflection of slender members which transmit bending moments
	L8.2. superposition, Load-deflection	TB Chapter 8	would be
	L8.3 differential equation, Energy Methods, Problems	TB Chapter 8	analysed, which would be helpful
	T8.Problems	TB/RB	while designing hifh speed machinery with close tolerances, leaf springs etc.
9. Stability of equilibrium buckling	L9.1 Introduction, elastic stability, examples of instability,	TB Chapter 9	In this chapter student will
	L9.2 elastic stability of flexible columns	TB Chapter 9	analyse the body when it is deviated from
	L9.3Problems	TB Chapter 9	deviated from equilibrium conditions. The analysis of columns would be done to predict the stability of structure.

6. Evaluation Scheme:

EC	Evaluation	Duration	Waightaga	Date, Time &Venue	Nature of
LU	L vaiuation	Duranon	weightage	Date, Time & Venue	Tratule of

No.	Component				Component
1.	Mid sem. Exam.	1.5 Hrs	30% (60)	10/10 2:00 - 3:30 PM	CB
2	Tutorial		20%(40)		OB
3	Quiz		10%(20)		CB
3.	Compre. Exam.	3 Hrs	40%(80)	5/12 FN	CB+OB

- 7. Tutorial: Will be announced in the class. There will be total 6 evaluative tutorial. 3 will be conducted before midsem (out of which best 2 will be considered) and 3 will be conducted after midsem(again out of which best 2 will be considered). There will be no makeup in any circumstances for evaluative tutorials.
- 8. There will be 1 quiz exam most probably in the last week of November after the completion of course. There will be no makeup in any circumstances for Quiz exam
- **9. Chamber Consultation Hour:** Will be announced by instructors individually in the class.
- **10. Make up Policy:** Make-up will be granted only to genuine cases. For cases related to illness, proper documentary evidence is essential. Prior permission is necessary if student is out of station on the test date.
- 11. **Notices:** Notice, if any, concerning the course will be displayed on the Notice Board of Mechanical Engineering Department.

Instructor-in-charge ME F211/ MF F211

