Marcus Anderson

Homework 1

CS 6515: Introduction to Graduate Algorithms

1.) Define the entries of your table in words. E.g., T(i) or T(i, j) is ...

Let T(i) = the maximum total profit that can be achieved at i-th house (p_i) from inputs $p_1, p_2,...,p_n$.

2.) State a recurrence for the entries of your table in terms of smaller subproblems.

Base Case(s):
$$T(0) = 0$$
, $T(1) = p[1]$
Recurrence: $T(i) = max\{T(i-1), T(i-2) + p[i]\}$, where $1 < i \le n$

3.) Write pseudocode for your algorithm to solve this problem.

$$T(0) = 0$$

 $T(1) = p[1]$
for $i = 2$ to n do
 $T(i) = max\{T(i-1), T(i-2) + p[i]\}$
return $max\{T(.)\}$

4.) State and analyze the running time of your algorithm.

We have one for-loop and max function that establishes values for T (both are O(n)), and the maximum value for T is returned at the end (O(n)). The overall runtime is O(n).

References:

- https://www.geeksforgeeks.org/maximum-sum-such-that-no-two-elements-are-adjacent/#

Collaborators:

- Matharoo, Harpreet Singh: hmatharoo3@gatech.edu
- Lilley, Zachary J: zlilley3@gatech.edu
- Bertrand, James M: jbertrand9@gatech.edu
- Ramasamy, Veerajothi: vramasamy9@gatech.edu

- Acker, Joshua R: jacker7@gatech.edu
- Halim, Muhammad A: mhalim9@gatech.edu
- Xian, Bryan B: bxian3@gatech.edu
- Edwards, Anthony D: aedwards89@gatech.edu
- Gerrald, Heath W: hgerrald3@gatech.edu
- Dharamshi, Kalpan P: kdharamshi3@gatech.edu
- Jahan, Tanweer: tjahan7@gatech.edu
- Kour, Zinnia: zkour3@gatech.edu
- Pons, Justin G: jpons@gatech.edu
- Shah, Jeet Hemant: jshah328@gatech.edu