Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

12 Luglio 2021 - 9:00 ESAME IN PRESENZA

1.	Siano	assegnati i	punti del	piano di	coordinate	$(x_i, y_i), i = 1, \dots, 4 \text{ con}$

$$x_1 = 0,$$
 $x_2 = 4,$ $x_3 = 0,$ $x_4 = 5$
 $y_1 = 0,$ $y_2 = 0,$ $y_3 = 4,$ $y_4 = 6.$

Scrivere lo script Matlab/Python es1 in cui

a)) si costruisca il sistema lineare sovradeterminato ottenuto imponendo il passaggio del di equazione $x^2 + y^2 + a_1x + a_2y + a_3 = 0$ per i quattro punti assegnati, e si denotir	
	matrice dei coefficienti e il termine noto ottenuti;	
		Punti: 4
b)) si determinino le matrici ${\bf Q}$ e ${\bf R}$ della fattorizzazione QR della matrice ${\bf A}$ ottenuta al	punto a); Punti: 4
c)	si sfrutti la decomposizione QR ottenuta al punto b) per ottenere la soluzione \mathbf{a}^* ominimi quadrati $\min_{\mathbf{a} \in \mathbb{R}^3} \ \mathbf{A}\mathbf{a} - \mathbf{b}\ _2^2$;	del problema ai Punti: 4
d)	si calcoli il valore di $\ \mathbf{A}\mathbf{a}^* - \mathbf{b}\ _2^2$ e, dopo averne determinato centro e raggio, si rappr stessa figura la circonferenza di equazione $x^2 + y^2 + a_1^*x + a_2^*y + a_3^* = 0$ (individuata da	

del problema ai minimi quadrati) e i quattro punti assegnati dal problema.

Punti: 4