Linear Algebra

[KOMS119602] - 2022/2023

3.1 - Linear System of Equations

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 7-11 February 2022

Motivating example

Motivating example

Rp 26.000,00

Rp 24.500,00

Rp 16.000,00

???

Part 1: System of linear equations

(We sometime call it "linear system")

Learning objectives

After this lecture, you should be able to:

- 1. analyze the components of a system of linear equations;
- 2. verify whether a given set is a solution of a linear system;
- 3. identify a homogeneous and non-homogeneous linear system;
- formulate the coefficient matrix and augmented matrix of a given linear system;
- showing that elementary row system gives an equivalent linear system;
- 6. analyze the geometric interpretation of a linear system with 1, 2, or 3 variables;
- apply the elimination and substitution algorithms to solve a linear system;
- 8. explain the concept of linear system written in triangular matrix or in echelon form.

Terminology and notation (1)

Given unknowns variables x_1, x_2, \dots, x_n , a linear equations on the variables is defined as:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$
 (1)

where $a_1, a_2, \ldots, a_n, b \in \mathbb{R}$ (this can be replaced by another *field*).

A solution of equation (1) is a list of values for the unknowns or a vector u in \mathbb{R}^n .

$$x_1 = r_1, x_2 = r_2, \dots, x_n = r_n \text{ or } u = (r_1, r_2, \dots, r_n)$$

This means that:

$$a_1r_1 + a_2r_2 + \cdots + a_nr_n = b$$
 is true

In this case, we say that u satisfies equation (1).

Terminology and notation (2)

In equation (1):

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b$$

We say that:

- the equation is written in the standard form
- the constant a_k is the coefficient of x_k
- b is the constant term of the equation

Note: If n is small, we use different letters to denote the variables, instead of using indexing.

Example: how many solutions are there?

Given an equation:

$$2x + 3y - z = 4$$

Can you find a solution for the equation?

How many solutions that you can find?

System of linear equations

A system of linear equations is a list of linear equations: $L_1, L_2, ..., L_m$ with the same variables $x_1, x_2, ..., x_n$.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \tag{1}$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \tag{2}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
 (4)

where a_{ij} and b_i are constants.

- The system of linear equations is written in standard form
- The system is called an $m \times n$ system
- a_{ij} is the coefficient of variable x_j in the equation L_i
- the number b_i is the constant of the equation L_i

What does the word "linear" mean???

Solution of "system of linear equations"

A solution of the system is a list of values for the unknowns or a vector u in \mathbb{R}^n .

Example: verifying solution of a linear system

Given the following system of linear equations:

$$\begin{cases} x_1 + x_2 + 4x_3 + 3x_4 = 5 \\ 2x_1 + 3x_2 + x_3 - 2x_4 = 1 \\ x_1 + 2x_2 - 5x_3 + 4x_4 = 3 \end{cases}$$

- What is the value of m and n in the system?
- Determine whether the following are solutions of the system!
 - 1. u = (-8, 6, 1, 1)
 - 2. v = (-10, 5, 1, 2)

Part 2: Types of system of linear equations

Augmented and coefficient matrices of a system

The system of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

can be written in matrix form:

$$\begin{bmatrix} a_{11}x_1 & a_{12}x_2 & \cdots & a_{1n}x_n \\ a_{21}x_1 & a_{22}x_2 & \cdots & a_{2n}x_n \\ \cdots & & & & \\ a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \cdots \\ b_m \end{bmatrix} \quad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \cdots \\ b_m \end{bmatrix}$$

Augmented and coefficient matrices of a system

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

- the left matrix is called the coefficient matrix of the system;
- the right matrix is called the augmented matrix of the system.

Furthermore, the vector

$$\left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight]$$

is called the constant vector (or constant matrix) of the system.

Example: augmented matrix and coefficient matrix

Given the following system of equations:

$$\begin{cases} x_1 + x_2 + 4x_3 + 3x_4 = 5 \\ 2x_1 + 3x_2 + x_3 - 2x_4 = 1 \\ x_1 + 2x_2 - 5x_3 + 4x_4 = 3 \end{cases}$$

The coefficient matrix and the augmented matrix are as follows:

$$\begin{bmatrix} 1 & 1 & 4 & 3 \\ 2 & 3 & 1 & -2 \\ 1 & 2 & -5 & 4 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 & 4 & 3 & 5 \\ 2 & 3 & 1 & -2 & 1 \\ 1 & 2 & -5 & 4 & 3 \end{bmatrix}$$

Homogeneous & non-homogeneous linear system

For the given system:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \cdots & & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

It is called homogeneous if $b_i = 0$, $\forall i$. Otherwise, it is called non-homogeneous.

Every homogeneous linear system always has a solution. Can you guess what it is?

Degenerate and non-degenerate linear equations

A linear equation is degenerate if all coefficients are zero

$$0x_1+0x_2+\cdots+0x_n=b$$

Can you guess, what is the condition s.t. the linear equation has a solution?

Degenerate and non-degenerate linear equations

A linear equation is degenerate if all coefficients are zero

$$0x_1+0x_2+\cdots+0x_n=b$$

Can you guess, what is the condition s.t. the linear equation has a solution?

- If $b \neq 0$, then the equation has no solution.
- If b = 0, then every vector $u = (r_1, r_2, \dots, r_n)$ in \mathbb{R}^n is a solution.

Degenerate linear equations

Theorem

Let \mathcal{L} be a system of linear equations that contains a degenerate equation L, with constant vector b.

- 1. If $b \neq 0$, then the system \mathcal{L} has no solution.
- 2. If b = 0, then L may be deleted from \mathcal{L} without changing the solution set of \mathcal{L} .

Leading unknown in a nondegenerate linear equation

Given a **non-degenerate** linear equation *L*.

• What can you say about the coefficients of L?

Leading unknown in a nondegenerate linear equation

Given a **non-degenerate** linear equation L.

• What can you say about the coefficients of L?

L has at least one non-zero coefficient

Example

The following are non-degenerate linear equations.

$$0x_1 + 0x_2 + 5x_3 + 6x_4 + 0x_5 + 8x_6 = 7$$
 and $0x + 2y - 4z = 5$

The zero coefficients are usually omitted.

$$5x_3 + 6x_4 + 8x_6 = 7$$
 and $2y - 4z = 5$

Part 3: Elementary row operations

Linear combination

Given:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \tag{1}$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \tag{2}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \tag{4}$$

Multiply the m equations by constants c_1, c_2, \ldots, c_m :

$$(c_1a_{11}+\cdots+c_ma_{m1})x_1+\cdots+(c_1a_{1n}+\cdots+c_ma_{mn})x_n=c_1b_1+\cdots+c_mb_m$$

This is a linear combination of the equations in the system.

Example

Given a linear system:

$$\begin{cases} x_1 + x_2 + 4x_3 + 3x_4 = 5 \\ 2x_1 + 3x_2 + x_3 - 2x_4 = 1 \\ x_1 + 2x_2 - 5x_3 + 4x_4 = 3 \end{cases}$$

Then:

$$3L1: 3x_1 + 3x_2 + 12x_3 + 9x_4 = 15$$

 $-2L_2: -4x_1 - 6x_2 - 2x_3 + 4x_4 = -2$
 $4L_1: 4x_1 + 8x_2 - 20x_3 + 16x_4 = 12$

$$(Sum)L: 3x_1 + 5x_2 - 10x_3 + 29x_4 = 25$$

- L is a linear combination of L_1 , L_2 , and L_3
- Is u = (-8, 6, 1, 1) a solution of the system?
- Is u = (-8, 6, 1, 1) a solution of the linear combination?

Equivalent systems

Theorem

Given two systems of linear equations, say L_1 and L_2 . They have the same solutions iff each equation in L_1 is a linear combination of the equations in L_2 .

Definition

Two systems of linear equations are equivalent if they have the same solutions.

Elementary operations

Given a system of linear equations L_1, L_2, \ldots, L_m . The following operations are called elementary operations.

• **[E1]** Interchange two of the equations

Interchange
$$L_i$$
 and L_j or $L_i \leftrightarrow L_j$

• **[E2]** Replace an equation by a nonzero multiple of itself.

Replace
$$L_i$$
 by kL_i or $kL_i \rightarrow L_i$

• **[E3]** Replace an equation by the sum of a multiple of another equation and itself.

Replace
$$L_i$$
 by $kL_i + L_i$ or $kL_i + L_i \rightarrow L_i$

Theorem

Given a system \mathcal{L} . Let \mathcal{M} be the system obtained from \mathcal{L} by a finite sequence of elementary operations.

Then \mathcal{M} and \mathcal{L} have the same solutions.

Note: Sometimes E_2 and E_3 can be applied in one step:

[E] Replace equation L_j by $kL_i + k'L_j$ (where $k, k' \neq 0$)

$$kL_i + k'L_j \rightarrow L_j$$

How to find a solution of a linear equations system?

 Use elementary operations to transform the given system into an equivalent system whose solution can be easily obtained

This is called Gaussian Elimination (will be discussed later).

Part 4: Small square systems of linear equations

Linear equation in one variable

Example

Solve the following linear system of one variable:

- 4x 1 = x + 6
- 2x 5 x = x + 3
- 4 + x 3 = 2x + 1 x

What can you conclude?

Linear equation in one variable

Example

Solve the following linear system of one variable:

- 4x 1 = x + 6
- 2x 5 x = x + 3
- 4 + x 3 = 2x + 1 x

What can you conclude?

Theorem

Given the system of unique linear equation ax = b.

- 1. If $a \neq 0$, then $x = \frac{b}{a}$ is a unique solution of the system.
- 2. If a = 0, but $b \neq 0$, then the system has no solution.
- 3. If a = 0 and b = 0, then every scalar k is a solution of ax = b.

Example

Example

Solve the following linear system of one variable:

- 4x 1 = x + 6 (Theorem 7 (1)) In standard form: 3x = 7. Then $x = \frac{7}{3}$ is the unique solution.
- 2x 5 x = x + 3 (Theorem 7 (2)) In standard form: 0x = 8. The equation has no solution.
- 4 + x 3 = 2x + 1 x (Theorem 7 (3)) In standard form: 0x = 0. Then every scalar k is a solution.

System of two linear equations in two variables

Given a system of two non-degenerate linear equations in two variables:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

Example

Solve the following system of linear equations:

$$\begin{cases} L_1: \ x - y = -4 \\ L_2: \ 3x + 2y = 12 \end{cases} \begin{cases} L_1: \ x + 3y = 3 \\ L_2: \ 2x + 6y = -8 \end{cases} \begin{cases} L_1: \ x + 2y = 4 \\ L_2: \ 2x + 4y = 8 \end{cases}$$

What can you conclude?

The number of solutions of (2×2) -system

1. The system has exactly one solution.

$$L_1: x-y=-4$$

 $L_2: 3x+2y=12$

2. The system has no solution.

$$L_1: x + 3y = 3$$

 $L_2: 2x + 6y = -8$

3. The system has an infinite number of solutions.

$$L_1: x + 2y = 4$$

 $L_2: 2x + 4y = 8$

Geometric interpretation

1. System with exactly one solution

• Given:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

Both lines have distinct slopes

$$\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$$
 or $A_1B_2 - A_2B_1 \neq 0$

2. System with no solution

Given:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

• Both lines are parallel (have the same slope)

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$$
 here $A_1B_2 - A_2B_1 = 0$

3. System with infinitely many solutions

• Given:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

• Both lines have the same slopes and same *y*-intercepts

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$
 here $A_1B_2 - A_2B_1 = 0$

Recap

- The system has exactly one solution when $A_1B_2 A_2B_1 \neq 0$
- The system has no solution of infinitely many solutions when $A_1B_2-A_2B_1=\overline{0}$

The value $A_1B_2 - A_2B_1$ is called determinant of order two

$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$$

Q: Can you relate the solution of system of linear equations to determinant?

Recap

- The system has exactly one solution when $A_1B_2 A_2B_1 \neq 0$
- The system has no solution of infinitely many solutions when $A_1B_2-A_2B_1=\overline{0}$

The value $A_1B_2 - A_2B_1$ is called determinant of order two

$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$$

Q: Can you relate the solution of system of linear equations to determinant?

Remark: A system has a unique solution iff the determinant of its coefficients is not zero.

The number of solutions of (3×3) -system

Example 1: unique solution

$$\begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 2 & 3 & 1 & | & 1 \\ 3 & 1 & 2 & | & 1 \end{bmatrix} \xrightarrow{\mathsf{Gaussian \ elimination}} \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & -1 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

from which we can derive the set of solution:

$$x_1 = 1, \ x_2 = 0, \ x_3 = -1$$

Example 2: infinitely many solution

$$\begin{bmatrix} 1 & 1 & 2 & | & 4 \\ 2 & -1 & 1 & | & 2 \\ 1 & 2 & 3 & | & 6 \end{bmatrix} \xrightarrow{\mathsf{Gaussian \ elimination}} \begin{bmatrix} 1 & 1 & 2 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

From the last row, we can derive the equation:

$$0x_1 + 0x_2 + 0x_3 = 0$$

which can be satisfied by many value of x. The solution can be written in parametric form:

- Let $x_3 = k$, with $k \in \mathbb{R}$
- Then $x_2 = 2 k$ and $x_1 = 4 x_2 2x_3 = 4 (2 k) 2k = 2 k$

This means that there are an infinitely many solutions, because there are infinitely many possible values of k.

Example 3: no solution

$$\begin{bmatrix} 1 & 1 & 2 & | & 4 \\ 2 & -1 & 1 & | & 2 \\ 1 & 2 & 3 & | & 7 \end{bmatrix} \xrightarrow{\mathsf{Gaussian \ elimination}} \begin{bmatrix} 1 & 1 & 2 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

From the last row, we can derive the equation:

$$0x_1 + 0x_2 + 0x_3 = 1 (1)$$

Clearly, no possible value of $x_1, x_2, x_3 \in \mathbb{R}$ that can satisfy equation (1).

What about a system with more than 3 variables?

Remark

- For a linear system with more than 3 variables, it's hard to interpret it geometrically.
- However we can check the possible number of solutions by looking at the shape of the reduced echelon form.

Figure: Left (unique solution), middle (many solutions), right (no solution) — source: lecture notes of Rinaldi Munir, ITB

to be continued...