Práctica 2

Anabel Gómez Ríos

1. Modelos Lineales

1. Gradiente Descendente. Implementar el algoritmo de gradiente descendente.

PREGUNTAR SI CONDICIÓN DE PARADA CUANDO SE MUEVA POCO (DIFERENCIA ENTRE VALORES DE LA FUNCIÓN E) Y CUÁL ES ESE POCO

```
# Algoritmo del gradiente descendente. Le pasamos a la función la función de
# error, su gradiente (que serán funciones), el punto en el que se empieza, la
# tasa de aprendizaje, el número máximo de iteraciones a realizar, y el mínimo
# error al que queremos llegar, en orden.
# Devuelve los valores de la función de error por los que pasa junto con la
gradienteDescendente <- function(ferror, gradiente, pini, tasa, maxiter, tope) {</pre>
  w <- pini
  i <- 1
  valoresError <- c(i, ferror(pini[1], pini[2]))</pre>
  mostrar <- TRUE
  while (i <= maxiter) {</pre>
    g <- gradiente(w[1], w[2])
    # Le cambiamos la dirección al gradiente para ir hacia abajo
    v <- -g
    # Nos movemos tanto como indique la tasa
    w <- w + tasa*v
    valoresError <- rbind(valoresError, c(i, ferror(w[1], w[2])))</pre>
    if (((abs(ferror(w[1], w[2])) < tope) || (i==maxiter)) && mostrar) {</pre>
      cat("He necesitado", i, "iteraciones para llegar al error", ferror(w[1], w[2]),"\n")
      cat("con valores de u y v:", w[1],",", w[2])
      mostrar <- FALSE
    }
    i <- i+1
  return(valoresError)
```

- a) Considerar la función no lineal de error $E(u,v)=(ue^v-2ve^{-u})^2$. Usar gradiente descendente y minimizar esta función de error, comenzando desde el punto (u,v)=(1,1) y usando una tasa de aprendizaje $\eta=0.1$
 - 1) Calcular analíticamente y mostrar la expresión del gradiente de la función E(u,v)

```
Calculamos el gradiente de E(u,v): \nabla E(u,v) = (\frac{\partial E}{\partial u}, \frac{\partial E}{\partial v}) = (2(ue^v - 2ve^{-u})(e^v + 2ve^{-u}), 2(ue^v - 2e^{-u})(ue^v - 2e^{-u})) = 2(ue^v - 2ve^{-u})(e^v + 2ve^{-u}, ue^v - 2e^{-u})
```

2) ¿Cuántas iteraciones tarda el algoritmo en obtener por primera vez un valor de E(u,v) inferior a 10^{-14} ? (Usar flotantes de 64 bits)

```
## He necesitado 10 iteraciones para llegar al error 1.208683e-15 ## con valores de u y v: 0.04473629 , 0.02395871
```

3) ¿Qué valores de (u,v) obtuvo en el apartado anterior cuando alcanzó el error de 10^{-14}

Como podemos ver en la salida por pantalla anterior, el valor de u ha sido 0.04473628 y el de v ha sido 0.02395873

- b) Considerar ahora la función $f(x,y) = x^2 + 2y^2 + 2 * sin(2\pi x) * sin(2\pi y)$
 - 1) Usar gradiente descendente para minimizar esta función. Usar como valores iniciales $x_0 = 1$, $y_0 = 1$, la tasa de aprendizaje $\eta = 0.01$ y un máximo de 50 iteraciones. Generar un gráfico de cómo desciende el valor de la función con las iteraciones. Repetir el experimento pero usando $\eta = 0.1$. Comentar las diferencias.

Calculamos primero su gradiente: $\nabla f = (2x + 4\pi * sin(2\pi y) * cos(2\pi x), 4y + 4\pi * sin(2\pi x) * cos(2\pi y))$

```
## He necesitado 50 iteraciones para llegar al error 0.5932694 ## con valores de u y v: 1.21807 , 0.712812
```

```
plot(val[,1], val[,2], type="p", xlab="num iteración", ylab="f(x)", main="Gradiente Descendente")
```

Gradiente Descendente

Repetimos con $\eta = 0.1$:

```
val <- gradienteDescendente(f, gradF, c(1,1), 0.1, 50, 0)</pre>
```

He necesitado 50 iteraciones para llegar al error 2.173886 ## con valores de u y v: 0.6882825 , -0.1732115

plot(val[,1], val[,2], type="p", xlab="num iteración", ylab="f(x)", main="Gradiente Descendente")

Gradiente Descendente

2) Obtener el valor mínimo y los valores de las variables que lo alcanzan cuando el punto de inicio se fija: (0.1,0.1), (1,1), (-0.5, -0.5), (-1, -1). Generar una tabla con los valores obtenidos. ¿Cuál sería su conclusión sobre la verdadera dificultad de encontrar el mínimo global de una función arbitraria?

PARA QUÉ TASA DE APRENDIZAJE

```
val <- gradienteDescendente(f, gradF, c(0.1,0.1), 0.01, 50, 0)

## He necesitado 50 iteraciones para llegar al error -1.820079
## con valores de u y v: 0.243805 , -0.2379258

val <- gradienteDescendente(f, gradF, c(1,1), 0.01, 50, 0)

## He necesitado 50 iteraciones para llegar al error 0.5932694
## con valores de u y v: 1.21807 , 0.712812

val <- gradienteDescendente(f, gradF, c(-0.5,-0.5), 0.01, 50, 0)

## He necesitado 50 iteraciones para llegar al error -1.332481
## con valores de u y v: -0.7313775 , -0.2378554</pre>
```

```
val <- gradienteDescendente(f, gradF, c(-1,-1), 0.01, 50, 0)</pre>
```

```
## He necesitado 50 iteraciones para llegar al error 0.5932694 ## con valores de u y v: -1.21807 , -0.712812
```

2. Coordenada descendente. En este ejercicio comparamos la eficiencia de la técnica de optimización de "coordenada descendente" usando la misma función del ejercicio 1.1.a. En cada iteración, tenemos dos pasos a lo largo de dos coordenadas. En el paso 1 nos movemos a lo largo de la coordenadas u para reducir el error (suponer que se verifica una aproximación de primer orden como en gradiente descendente), y el paso 2 es para reevaluar y movernos a lo largo de la coordenada v para reducir el error (hacer la misma hipótesis que en el paso 1). Usar una tasa de aprendizaje de $\eta=0.1$.

```
# Algoritmo de coordenada descendente. Le pasamos a la función la función de
# error, su gradiente (que serán funciones), el punto en el que se empieza, la
# tasa de aprendizaje, el número máximo de iteraciones a realizar, y el mínimo
# error al que queremos llegar, en orden.
coordenadaDescendente <- function(ferror, gradiente, pini, tasa, maxiter, tope) {</pre>
  w <- pini
 i <- 1
  mostrar <- TRUE
  while (i <= maxiter) {
    # Paso 1
    g <- gradiente(w[1], w[2])
    # Le cambiamos la dirección al gradiente para ir hacia abajo
    v <- -g
    w[1] \leftarrow w[1] + tasa*v[1]
    # Paso 2
    g <- gradiente(w[1], w[2])
    # Le cambiamos la dirección al gradiente para ir hacia abajo
    v <- -g
    w[2] \leftarrow w[2] + tasa*v[2]
    if (((abs(ferror(w[1], w[2])) < tope) || (i==maxiter)) && mostrar) {
      cat("He necesitado", i, "iteraciones para llegar al error", ferror(w[1], w[2]),"\n")
      cat("con valores de u y v:", w[1],",", w[2])
      mostrar <- FALSE
    }
    i <- i+1
  }
```

a) ¿Qué error E(u,v) se obtiene después de 15 iteraciones completas (i.e. 30 pasos)?

```
val <- coordenadaDescendente(E, gradE, c(1,1), 0.1, 15, 0)</pre>
```

```
## He necesitado 15 iteraciones para llegar al error 0.1398138 ## con valores de u y v: 6.297076 , -2.852307
```

b) Establezca una comparación entre esta técnica y la técnica de gradiente descendente.

POR HACER

3. Método de Newton. Implementar el algoritmo de minimización de Newton y aplicarlo a la función f(x,y) dada en el ejercicio 1.b. Desarrolle los mismos experimentos usando los mismos puntos de inicio.

PREGUNTAR SI ESTO ESTÁ BIEN

```
# Algoritmo del método de Newton. Le pasamos a la función la función de
# error, su gradiente y la matriz hessiana (que serán funciones), el punto
# en el que se empieza, la tasa de aprendizaje, el número máximo de iteraciones a
# realizar, y el mínimo error al que queremos llegar, en orden.
# Devuelve los valores de la función de error por los que pasa junto con la
metodoNewton <- function(ferror, gradiente, hessiana, pini, tasa, maxiter, tope) {</pre>
  w <- pini
  i <- 1
  valoresError <- c(i, ferror(pini[1], pini[2]))</pre>
  mostrar <- TRUE
  while (i <= maxiter) {</pre>
    hg <- solve(hessiana(w[1], w[2]))%*%gradiente(w[1], w[2])
    # Le cambiamos la dirección al gradiente para ir hacia abajo
    v <- -hg
    # Nos movemos tanto como indique la tasa
    w <- w + tasa*v
    valoresError <- rbind(valoresError, c(i, ferror(w[1], w[2])))</pre>
    if (((abs(ferror(w[1], w[2])) < tope) || (i==maxiter)) && mostrar) {</pre>
      cat("He necesitado", i, "iteraciones para llegar al error", ferror(w[1], w[2]),"\n")
      cat("con valores de u y v:", w[1],",", w[2])
      mostrar <- FALSE
    }
    i <- i+1
  return(valoresError)
```

Calculamos la matriz hessiana de la f. Recordemos que las derivadas parciales cruzadas (de existir y ser continuas, como es nuestro caso) son iguales, por el teorema de Schwarz.

```
hess <- function(x,y) rbind(c(d11(x,y), d12(x,y)), c(d12(x,y), d22(x,y)))
val <- metodoNewton(f, gradF, hess, c(1,1), 0.01, 50, 0)</pre>
```

He necesitado 50 iteraciones para llegar al error 2.937804 ## con valores de u y v: 0.9803919 , 0.9904148

```
val2 <- metodoNewton(f, gradF, hess, c(1,1), 0.1, 50, 0)</pre>
```

He necesitado 50 iteraciones para llegar al error 2.900408 ## con valores de u y v: 0.9494086 , 0.9747153

ES ESTO O LO DE DESPUÉS TAMBIÉN?

a) Generar un gráfico de cómo desciende el valor de la función con las iteraciones.

```
plot(val[,1], val[,2], type="p", xlab="num iteración", ylab="f(x)", main="Método Newton")
```

Método Newton

plot(val2[,1], val2[,2], type="p", xlab="num iteración", ylab="f(x)", main="Método Newton")

Método Newton

b) Extraer conclusiones sobre las conductas de los algoritmos comparando la curva de decrecimiento de la función calculada en el apartado anterior y la correspondiente obtenida con gradiente descendente.

POR HACER

4. Regresión Logística. En este ejercicio crearemos nuestra propia función objetivo f (probabilidad en este caso) y nuestro conjunto de datos D para ver cómo funciona regresión logística. Supondremos por simplicidad que f es una probabilidad con valores 0/1 y por tanto que g es una función determinista de x.

Consideremos d=2 para que los datos sean visualizables, y sea $X=[-1,1]\times[-1,1]$ con probabilidad uniforme de elegir cada $x\in X$. Elegir una línea en el plano como la frontera entre f(x)=1 (donde y toma valores +1) y f(x)=0 (donde y toma valores -1), para ello seleccionar dos puntos aleatorios del plano y calcular la línea que pasa por ambos. Seleccionar N=100 puntos aleatorios $\{x_n\}$ de X y evaluar las respuestas de todos ellos $\{y_n\}$ respecto de la frontera elegida.

- a) Implementar Regresión Logística (RL) con Gradiente Descendente Estocástico (SGD) bajo las siguientes condiciones:
 - 1. Inicializar el vector de pesos con valores 0.
 - 2. Parar el algoritmo cuando $||w^{(t-1)} w^{(t)}|| < 0.01$, donde $w^{(t)}$ denota el vector de pesos al final de la época t. Una época es un pase completo a través de los N datos.
 - 3. Aplicar una permutación aleatoria de $1,2,\ldots,N$ a los datos antes de usarlos en cada época del algoritmo.
 - 4. Usar una tasa de aprendizaje de $\eta = 0.01$.
- b) Usar la muestra de datos etiquetada para encontrar g y estimar E_{out} (el error de entropía cruzada) usando para ello un número suficientemente grande de nuevas muestras.

QUÉ NARICES ES EL ERROR DE ENTROPÍA CRUZADA

- c) Repetir el experimento 100 veces con diferentes funciones frontera y calcule el promedio.
 - 1) ¿Cuál es el valor de E_{out} para N=100?
 - 2) ¿Cuántas épocas tada en promedio RL en converger para N=100, usando todas las condiciones anteriormente especificadas?