REayer Anar Discrete Mathematics ID: 20190788 HW 2- Propositional Logic			
1) a) P Q PAQ PV(PAQ) T T T T F F F F F F F F F F F F F F F F			
P Q 7P Q¬P P\(Q¬P) 7P\(P\(Q¬P)) T T F T T T T T T T T T T T T T T T T			
P Q 7P P-7Q 7PAQ (P-7Q)-7(7PAQ)			
B) First statement is contingency, since PV (PAQ) obtains both T and F (neither tautology nor contradiction) The output consists of both T and F Second statement is tautology, because output consists of only T=7 app statements are true Third statement is contingency, as (P-Q)-7(7PAQ) achieves both T and F (neither tautology nor contradiction)			

a) P Q	9-19-19	19MP	7 (Q17P)	1	
TT	TF	F	7		
TF	7777	F	T		
1 1 1	TIT	F	T		
As we see p	from the t	ruth tappe	for each	statement Pand	
As we see from the truth toppe, for each statement pand Q (for each truth value of pand Q)=1 Q-7 pand					
T (QNTP) output the same truth values. Therefore,					
Q-7P=-	1 (QN7P))			
3) 9) P	Q P-1Q	17(P-7Q)	[PVQ]7	(PVQ) S	
T	TIT	F	T	F F F F	
F	一十	+	1-1	T F	
F	FT	F	IF L	T 1T,	
				that for each	
truth volup	op Pand	Q, 7Q0	end 8 have	some truth	
Q1791 3	S P	03.	1Q AR	re ofterve the	
TFF	T	TIF	F trut	h values for	
FIF	T	FF	F 70	and 8 are some	
中一十十	F	1= - -	T 179	三名图	
Q 79 S P Q S 79 As we observe, the T F F T T T T T T T					
prom implication, p-79=7py9=77(p-79)=7(7pv9) De Morgan's Lax and double negation=77(7pv9)=p179					
7 (PY9)=71	PAT9=7 8	= (P179)	LV(LDV)	9). Then,	

from commutativity and distributivity, we find (9179) V (7P19) = (9709T) V (9179) V (9179) Since py Tp=T for each truth value of p (negation) (P=T=) TVF=T; p=F=) FVT=T) 78=79 1 (PV7P)= = 79 AT = 79 from identity Par, S= 79 图 4) (X should be a multiple of 4) Assume that Statement P: X is a multiple of 4 statement Q: X is an even integer If Pistrue, then x is a multiple of 4=7 X=40 for some qet. = 20-even integer, meaning statement Q is true => The Pis True, then Q is also True Ke should construct truth telle for P-10 and observe xhether P-7Q is always True PQP-7Q regardless of truth refue for Q, if we have "P is False", then "P-7Q is True" From truth table, we can conclude that P-10 is always true and therefore, sufficient condition on X: X is a multiple of 4 pact if Pis papse, and & is true = 7 x is not a multiple of 4, * is an even integer, * = aq for some a & = 7 x = 4q or x is a muftiple of 4, meaning P is true * | & - passe

9 PQ Q10/P1(Q	10) P-10			
TTFT				
TFTF	E			
FITLE	1			
	The second second			
L(+)				
As we can see from trut	h table, T& F values for P-16			
and par(nan) am con	man Diagla Carried 1			
and Li(Ala) are con	respondingly equivolent for			
each values of P and a	=> P (O 1 Q) = P -> OB			
7) Statement				
1) DA(QUA)	Reasons			
a) 7(p/q) 3) 7p/7q 4) 7q/7p	given			
3) 70779	De Morgan's Laxe, 2			
4) 7QV7B	Commy Lativity, 3			
5) 9-775	Implication, 4			
9 1	Simplification, 1			
7(70)	Double negation, 6			
8) 79 9) (9 V r) A P	Modus toffens, 5,7			
10) qvr	Simplification, 3			
41) 1749	Commutativity, 10			
12) 7(71) 19	Double negation, 11			
13) 71->9	Implication, 12			
14) 7(71)	Modus tollens, 13,8			
150 p	Double negation, 14			
16) PAT	Conjunction, 6.15			
	1 0 1 0 1 0			
g) Assume a-779 is a contradiction. By the definition				
of contradiction, for each truth value of a, output will				
ofrays Be False. However, let a = False = F -> Toutputs				
afrays Be Fafse. However, fet 9= Fafse=7 F->T outputs True value (Because of truth table) But It is impossible (X) for conditional statement) since a -> 70 was contradiction				
for conditional 3	fatement) since a -> 70 was contradiction			

Therefore, our assumption	res knorg=7/9-79 is not contration			
Note: 49 9=F=7 79=T	end Because FIT is true.			
9-779 Becomes True	TF F Contradiction			
8) Statement	Reasons			
1) P->70	given			
	given			
a) ¬Q→¬R 3) PY¬R	given			
4) 7(7Q)V7R	Implication, a			
5) QVTR	Double negation, 4			
6) TRVQ	Commutativity, 5			
F) TRYP	Commutativity, 3			
8) (TRVP) A (TRVQ)	Conjunction, T.G			
9) TRY(P/Q)	Distributivity, 8			
10) R -7 (PAQ)	Implication, g			
11) 7PV7Q	Implication, 1			
12) 7 (PAQ)	De Morgan's Law, 11			
13) TR	Modus toffens, 10,12			
This table provides a proof sequence for the inference				
M.A				
U- U				