

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@anhanguera.com

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM					
CURSO: Ciência da Computação					
Disciplina:	Período Letivo:	Série:	Periodo:	Semestre de	Ano de Ingresso:
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011
C.H. Teórica:		C.H. Outras:	s: C.H. Total:		tal:
40		20	60		

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

Cronograma de Aulas			
Semana nº.	Tema		
1	Estrutura básica de um computador pessoal		
2	Estrutura e Funcionamento da CPU: conjunto de instruções		
3	Estrutura e Funcionamento da CPU: ciclo de instruções		
4	Arquitetura RISC e CISC		
5	Registradores: tipos de registradores		
6	Registradores mais utilizados em computadores pessoais		
7	Arquitetura Pipeline		
8	Atividades de Avaliação.		
9	Memorias: principal		
10	Memorias: Secundária, cache		
11	Dispositivos de entradas e saída		
12	Barramento: Tipos, arquitetura, adaptadores		
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D		
14	Sistema multimídia		
15	Análise de desempenho de computadores (Benchmark)		
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.		
17	Computadores dedicados e embarcados		
18	Prova Escrita Oficial		
19	Exercícios de Revisão.		
20	Prova Substitutiva		

Sistema de Avaliação			
1° Avaliação - PESO 4,0	2° Avaliação - PESO 6,0		
Atividades Avaliativas a Critério do Professor	Prova Escrita Oficial		
Práticas: 3	Práticas: 3		
Teóricas: 7	Teóricas: 7		
Total: 10	Total: 10		

HENNESSY, J. L.. **Arquitetura de Computadores** : Uma Abordagem Quantitativa. 4ª ed. São Paulo: Campus - Elsevier, 2009.

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2º etapa.

- Memorias: principal;
- Memorias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Classificação de Computadores

- Até a década de 60
 - Uso restrito (sem detalhamento e configuração)
- Década de 70
 - Mini, Midi e Maxi (pequeno, médio e grande porte)
- 1971
 - INTEL lança o processador 4004

- 1979
 - INTEL lança o processador 8088 e 8086

- 1981
 - A IBM produz o seu PC (Desktop)

Comparação entre processadores

	8088	80386	Pentium	Pentium 4
Transistores	29.000	275.000	3,1 milhões	42 milhões
Clock	5 MHz	16 MHz	60 MHz	1,5 GHz
MIPS*	0,33	5	100	1.170

RISC versus CISC

RISC (reduced instruction set computer)

- •Surgiram na segunda metade da década de 80, os processadores RISC, com alta velocidade e ideais para estações de trabalho;
- Possuem um conjunto restrito de instruções

CISC (complex instruction set computer)

•Usual nos equipamentos pessoais, são mais lentos e muito mais baratos.

Registradores e Barramentos

Registradores

 São pequenos elementos de memória que armazenam os operandos.

Barramento

- •São responsáveis pelo transporte dos operandos, instruções, endereços de memória e periféricos;
- •Barramentos de 8 bits de dados transportam 1 byte de cada vez, barramentos de 16 bits transportam 2 bytes a cada transferência.

- A velocidade com que o microprocessador realiza suas pequenas atividades internas (operações aritméticas e lógicas, transferência entre registradores, cálculo do endereço de operandos, etc.);
- É determinado por um relógio (clock). O relógio nada mais é que um oscilador externo ao microprocessador, que gera pulsos a intervalos regulares de tempo. A cada pulso, uma operação é executada.

• Medidas:

1015	peta	Р
1012	tera	T
109	giga	G
106	mega	M
103	quilo	k
100		

Memória Virtual

O termo memória virtual refere-se a uma grande capacidade de endereçamento do micro (muito maior que a memória física disponível) e às funções de mapeamento (segmentação e paginação);

Para o funcionamento desse recurso é necessário um componente de hardware interno ao chip que permite o gerenciamento dessa memória.

Memória Cache

É uma memória de alta velocidade, geralmente pequena, cujo controle e utilização é completamente invisível tanto aos programas como ao sistema operacional;

A memória cache situa-se logicamente entre o processador e a memória principal;

Sua função é armazenar os blocos de memória mais utilizados pelo processador a cada momento, aumentando assim a velocidade de acesso à memória física.

Os mais famosos são os microprocessadores da família INTEL 8086 usados pelos computadores pessoais da IBM e todos os IBM compatíveis (8086, 8088, 80286, 80386, i486, Pentium, Pentium Pro, MMX, II, III e Pentium IV e os novos Core 2 Duo e a família i;

Outro exemplo são os microprocessadores da família Motorola 68000 e da família PowerPC, que eram encontrados nos computadores pessoais Macintosh.

Microprocessadores PowerPC

A Apple e a Motorola fizeram um acordo para o desenvolvimento de um microprocessador utilizando a tecnologia RISC, que se tornou disponível a partir de 1993.

Conhecido inicialmente como modelo 88000 na Motorola, esta família foi projetada e formou a família PowerPC (Perfornance Optimized With Enhanced RISC).

Macintosh versus IBM-PC

Computadores pessoais são os equipamentos computacionais mais difundidos atualmente.

Apresentam como vantagens o baixo custo, uma relativa facilidade de operação e a vasta gama de aplicações.

Como desvantagem podemos citar a sua insegurança (facilidade de perda de arquivos por erro ode operação, facilidade de intrusão por vírus e acesso irrestrito a qualquer usuário, inclusive os mal intencionados).

Macintosh versus IBM-PC

Apesar das semelhanças, as duas linhas são totalmente incompatíveis. Existem fabricantes de software que produzem programas para essas duas linhas tornando a operação similar nas duas máquinas;

Considerando a arquitetura desses micros, pode-se afirmar que os Macintosh apresentam arquitetura mais eficiente, devido os processadores Motorola;

Entretanto, existem muito mais IBM-PCs, devido sua arquitetura aberta, permitindo experimentações e programação de baixo nível.

Outros recursos do processador Intel

Bit de desativação da execução

Estado de repouso aprimorado

Não

Não

Guide

Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz

Utilitário para identificação do processador Intel®

Classificação do processador		Detalhes do processador	
Tipo da CPU	0	Cache nivel 3	4 MB
Família da CPU	6	Cache nível 2	2 x 256 KB
Modelo da CPU	3A	Cache de dados nível 1	2 x 32 KB
Número de revisão da CPU	9	Cache de instruções nível 1	2 x 32 KB
Versão da CPU	12	Encapsulamento	μPGA/BGA

Os números de processador Intel não são um indicativo de desempenho. Os números de processador indicam diferenças entre os processadores de uma mesma família, e não de uma família para outra. Visite o site http://www.intel.com/portugues/products/processor_number para obter detalbes

Novas Tecnologias de Processadores

Athlon

Evolução

Primeira Geração 1979

8088

Segunda Geração 1982

80286

Terceira Geração 1985

386

Quarta Geração 1991

486

Quinta Geração 1993

Pentium

K5

К6

6x86

M-II

Pentium Pro Pentium II Pentium III Celeron K6-2 K6-3

Sexta Geração 1995

Sétima Geração 1999

Athlon Duron Pentium 4 Celeron

Oitava Geração 2003

Itanium Opteron Athlon 64 Athlon 64FX

Processadores portáteis – Arquitetura

OMAP2420 - N90 e N95

Processadores portáteis – Arquitetura

Cortex-A9 - iPhone 4S / Galaxy SII

Links interessantes....

http://www.museudocomputador.com.br/encipro.php

http://www.formulapc.net/soapbox+article.articleID+25.htm

http://www.mansano.com/beaba/hist_comp.htm

http://www.formulapc.net/soapbox+article.articleID+23.htm

http://olhardigital.uol.com.br/noticia/39214/39214