# **CMOSTEK**

# **CMT2189B**

## 240 – 960 MHz SoC OOK Transmitter

#### **Features**

- High-Performance RISC CPU
  - PIC16-likeInstruction-set
  - · Only 37 instructions to learn:
    - All Single-Cycle Except Branches
  - · Operating speed:
    - Up to 16 MHz Clock
    - 125nsinstruction cycle
    - F<sub>SYS</sub> = 8MHz @ 2.0V~3.6V
    - F<sub>SYS</sub> = 16MHz @ 2.7V~3.6V
  - · Interrupt capability
  - · 8-level deep hardware stack
  - 2048 Words Flash / 128B SRAM / 256B EEPROM
  - · 2 x 8-bit timers/counters with programmable prescaler
  - · 8 I/O pins with individual direction control:
    - Interrupt-on-pin change
    - Individually programmable weak pull-ups
    - Push-pull output except PA5

## **Applications**

- Remote Keyless Entry (RKE)
- Garage and gate door openers
- Home/Building Automation and Security
- Industrial Monitoring and Controls
- Remote Lighting Control
- Wireless Alarm and Security Systems
- Consumer Electronics Applications

## **Descriptions**

The CMT2189B devices are fully integrated, highly flexible, high performance, SoC OOK transmitters with embedded RISC microcontroller core for various 240 to 960 MHz wireless applications. They are part of the CMOSTEK NextGenRF<sup>TM</sup> family, which includes a complete line of transmitters, receivers and transceivers. The CMT2189B uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize the BOM counts. The device can deliver up to +13 dBm output power and the single-ended PA output. The device operates from 2.0 V to 3.6 V. Its low power design enables superior operation life for battery powered application. The CMT2189B transmitter together **CMOSTEK** with NextGenRF<sup>™</sup> receiver enables a highly flexible, low cost RF link.

- High-Performance OOK Transmitter
  - · All Features Configurable
  - · Frequency Range: 240 to 960 MHz
  - OOK Modulation
  - · Symbol Rate up to 40 kbps
  - Single-Ended PA Output
  - Output Power: 0 to +13 dBm
- Supply Voltage: 2.0 to 3.6 V
- FCC / ETSI Compliant
- RoHS Compliant

## **Ordering Information**

| Part Number                     | Frequency  | Package Option | MOQ       |  |  |  |  |  |
|---------------------------------|------------|----------------|-----------|--|--|--|--|--|
| CMT2189B-ESR                    | 433.92 MHz | T&R            | 2,500 pcs |  |  |  |  |  |
| CMT2189B-ESB                    | 433.92 MHz | Tube           | 1,000 pcs |  |  |  |  |  |
| More Ordering Info: See Page 30 |            |                |           |  |  |  |  |  |





## **Typical Application**



Figure 1.CMT2189B Typical Application with Single-Ended PA Output

Table 1.BOM of 315/433.92 MHz Application with Single-Ended PA Output

| Designator | Descriptions                                | Value<br>315MHz | Value<br>433.92MHz | Unit | Manufacturer |
|------------|---------------------------------------------|-----------------|--------------------|------|--------------|
| U1         | CMT2189B, 240 – 960 MHz SoC OOK transmitter |                 | -                  | -    | CMOSTEK      |
| X1         | ±20 ppm, SMD32*25 mm crystal                | 26.25           | 26.2982            | MHz  | EPSON        |
| L1         | ±10%, 0603 multi-layer chip inductor        | 220             | 180                | nH   | Sunlord      |
| L2         | ±10%, 0603 multi-layer chip inductor        | 33              | 27                 | nH   | Sunlord      |
| C1         | ±0.25 pF, 0402 NP0, 50 V                    | 82              | 68                 | pF   |              |
| C2         | ±0.25 pF, 0402 NP0, 50 V                    | 2               | NC                 | pF   |              |
| C3         | ±0.25 pF, 0402 NP0, 50 V                    | NC              | 2.2                | pF   |              |
| C4         | ±0.25 pF, 0402 NP0, 50 V                    | 4               | <b>1</b> 70        | pF   |              |
| C5         | ±20%, 0603 X7R, 25 V                        |                 | 0.1                | uF   |              |
| C6         | ±20%, 0603 X7R, 25 V                        |                 | 0.1                | uF   |              |
| R1         | ±5%, 0402                                   |                 | 10                 | Ω    |              |
| R2         | ±5%, 0402                                   |                 | 10                 | Ω    |              |

## **Abbreviations**

Abbreviations used in this data sheet are described below

| AN     | Application Notes                            | NP0     | Negative-Positive-Zero              |
|--------|----------------------------------------------|---------|-------------------------------------|
| BOM    | Bill of Materials                            | OBW     | Occupied Bandwidth                  |
| BSC    | Basic Spacing between Centers                | OOK     | On-Off Keying                       |
| BW     | Bandwidth                                    | PA      | Power Amplifier                     |
| DC     | Direct Current                               | PC      | Personal Computer                   |
| EEPROM | Electrically Erasable Programmable Read-Only | PCB     | Printed Circuit Board               |
|        | Memory                                       | PLL     | Phase Lock Loop                     |
| ESD    | Electro-Static Discharge                     | PN      | Phase Noise                         |
| ESR    | Equivalent Series Resistance                 | RBW     | Resolution Bandwidth                |
| ETSI   | European Telecommunications Standards        | RCLK    | Reference Clock                     |
|        | Institute                                    | RF      | Radio Frequency                     |
| FCC    | Federal Communications Commission            | RFPDK   | RF Product Development Kit          |
| FSK    | Frequency Shift Keying                       | RoHS    | Restriction of Hazardous Substances |
| GFSK   | Gauss Frequency Shift Keying                 | Rx      | Receiving, Receiver                 |
| GUI    | Graphical User Interface                     | SOT     | Small-Outline Transistor            |
| IC     | Integrated Circuit                           | TBD     | To Be Determined                    |
| LDO    | Low Drop-Out                                 | Tx      | Transmission, Transmitter           |
| Max    | Maximum                                      | Тур     | Typical                             |
| MCU    | Microcontroller Unit                         | XO/XOSC | Crystal Oscillator                  |
| Min    | Minimum                                      | XTAL    | Crystal                             |
| MOQ    | Minimum Order Quantity                       |         |                                     |
|        |                                              |         |                                     |

## **Table of Contents**

| Ty | pical  | Application                                      | 2  |
|----|--------|--------------------------------------------------|----|
| 1. | Elec   | ctrical Characteristics                          | 6  |
|    | 1.1    | Recommended Operating Conditions                 | 6  |
|    | 1.2    | Absolute Maximum Ratings                         | 6  |
|    | 1.3    | Transmitter Specifications                       | 7  |
|    | 1.4    | RF Crystal Oscillator                            | 8  |
|    | 1.5    | Internal High Frequency Oscillator               |    |
|    | 1.6    | Internal Low Frequency Oscillator                | 8  |
|    | 1.7    |                                                  |    |
|    | 1.8    | POR                                              |    |
|    |        | I/O PAD                                          |    |
|    |        | ) MCU Supply Current                             |    |
| _  |        | Descriptions                                     |    |
| 2. | Pin    | ical Performance Characteristics                 | 10 |
| 3. | Турі   | ical Performance Characteristics                 | 11 |
| 4. | Fun    | ctional Descriptions                             |    |
|    | 4.1    | Overview                                         | 12 |
|    |        | Modulation, Frequency, Deviation and Symbol Rate |    |
|    |        |                                                  |    |
|    | 4.4    |                                                  |    |
|    |        | Working States                                   |    |
|    |        |                                                  |    |
| 6. |        | C Microcontroller Core                           |    |
|    | 6.1    | Memory Organization                              | 16 |
|    |        | 6.1.1 Program Memory Organization                | 16 |
|    |        | 6.1.2 Data Memory Organization                   | 16 |
|    |        | 6.1.2.1 General Purpose Register File            | 16 |
|    |        | 6.1.2.2 Special Function Register File           |    |
|    | 6.2    | Port A                                           |    |
|    |        | 6.2.1 PORTA and the CPIOA Registers              |    |
|    |        | 6.2.2 Additional Pin Functions                   |    |
|    |        | 6.2.2.1 Pull-up                                  |    |
|    | 0.0    | 6.2.2.2 Interrupt-On-Change                      |    |
|    | 6.4    | PORTC                                            |    |
|    | 0.4    | Timer0 Module                                    |    |
|    |        | 6.4.1 Timer0 Operation                           |    |
|    |        | 6.4.3 Using Timer0 with an External Clock        |    |
|    |        | 6.4.4 Prescaler                                  |    |
|    | 6.5    | Timer2 Module                                    |    |
| 7  | Ord    | ering Information                                | 24 |
|    | O i ui | *2*                                              | 27 |

| 8. | Package Outline          | 25   |
|----|--------------------------|------|
| 9. | Top Marking              | 26   |
|    | 9.1 CMT2189B Top Marking | . 26 |
| 10 | . Other Documentations   | 27   |
| 11 | . Document Change List   | 28   |
| 12 | Contact Information      | 29   |

#### 1. Electrical Characteristics

 $V_{DD}$  = 3.3 V,  $T_{OP}$  = 25  $^{\circ}$ C,  $F_{RF}$  = 433.92 MHz, OOK modulation, output power is +10 dBm terminated in a matched 50  $\Omega$  impedance with single-ended PA output, unless otherwise noted.

#### 1.1 Recommended Operating Conditions

**Table 2. Recommended Operation Conditions** 

| Parameter                | Symbol          | Conditions | Min | Тур | Max | Unit       |
|--------------------------|-----------------|------------|-----|-----|-----|------------|
| Operation Voltage Supply | $V_{DD}$        |            | 2.0 |     | 3.6 | V          |
| Operation Temperature    | T <sub>OP</sub> |            | -40 |     | 85  | $^{\circ}$ |
| Supply Voltage Slew Rate |                 |            | 1   |     |     | mV/us      |

### 1.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings<sup>[1]</sup>

| Parameter             | Symbol           | Conditions                | Min  | Max                  | Unit         |
|-----------------------|------------------|---------------------------|------|----------------------|--------------|
| Supply Voltage        | $V_{DD}$         |                           | -0.3 | 3.6                  | V            |
| Interface Voltage     | V <sub>IN</sub>  |                           | -0.3 | V <sub>DD</sub> +0.3 | V            |
| Junction Temperature  | TJ               |                           | -40  | 125                  | $^{\circ}$ C |
| Storage Temperature   | T <sub>STG</sub> |                           | -50  | 150                  | $^{\circ}$ C |
| Soldering Temperature | T <sub>SDR</sub> | Lasts at least 30 seconds |      | 255                  | $^{\circ}$ C |
| ESD Rating            |                  | Human Body Model (HBM)    | -2   | 2                    | kV           |
| Latch-up Current      |                  | @ 85 ℃                    | -100 | 100                  | mA           |

#### Note:

[1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.



**Caution!** ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

## 1.3 Transmitter Specifications

**Table 4. Transmitter Specifications** 

| Parameter                | Symbol                | Conditions                                                | Min | Тур   | Max | Unit   |
|--------------------------|-----------------------|-----------------------------------------------------------|-----|-------|-----|--------|
| Frequency Range          | F <sub>RF</sub>       |                                                           | 240 |       | 960 | MHz    |
| Symbol Rate              | SR                    | оок                                                       | 0.5 |       | 40  | ksps   |
| Output Power             | P <sub>OUT</sub>      |                                                           | 0   |       | +13 | dBm    |
| Output Power Step Size   | P <sub>STEP</sub>     |                                                           |     | 1     |     | dB     |
|                          |                       | 0 dBm, 50% duty cycle                                     |     | 3.2   |     | mA     |
|                          | I <sub>DD-S-315</sub> | +10 dBm, 50% duty cycle                                   |     | 7.0   |     | mA     |
|                          |                       | +13 dBm, 50% duty cycle                                   |     | 8.0   |     | mA     |
|                          |                       | 0 dBm, 50% duty cycle                                     |     | 3.5   |     | mA     |
|                          | I <sub>DD-S-434</sub> | +10 dBm, 50% duty cycle                                   |     | 7.5   |     | mA     |
| Current Consumption,     |                       | +13 dBm, 50% duty cycle                                   |     | 8.6   |     | mA     |
| Single-ended             |                       | 0 dBm, 50% duty cycle                                     |     |       |     | mA     |
|                          | I <sub>DD-D-868</sub> | +10 dBm, 50% duty cycle                                   | 7/  |       |     | mA     |
|                          |                       | +13 dBm, 50% duty cycle                                   |     |       |     | mA     |
|                          |                       | 0 dBm, 50% duty cycle                                     | )   |       |     | mA     |
|                          | I <sub>DD-D-915</sub> | +10 dBm, 50% duty cycle                                   |     |       |     | mA     |
|                          |                       | +13 dBm, 50% duty cycle                                   | •   |       |     | mA     |
| Sleep Current            | I <sub>SLEEP</sub>    |                                                           |     | 1     |     | uA     |
|                          |                       | 100 kHz offset from F <sub>RF</sub>                       |     | -80   |     | dBc/Hz |
|                          |                       | 200 kHz offset from F <sub>RF</sub>                       |     | -83   |     | dBc/Hz |
| Phase Noise @434         | PN <sub>434</sub>     | 400 kHz offset from F <sub>RF</sub>                       |     | -91   |     | dBc/Hz |
|                          |                       | 600 kHz offset from F <sub>RF</sub>                       |     | -96   |     | dBc/Hz |
|                          |                       | 1.2 MHz offset from F <sub>RF</sub>                       |     | -105  |     | dBc/Hz |
|                          |                       | 100 kHz offset from F <sub>RF</sub>                       |     | -77   |     | dBc/Hz |
|                          |                       | 200 kHz offset from F <sub>RF</sub>                       |     | -79   |     |        |
| Phase Noise @868MHz      | PN <sub>868</sub>     | 400 kHz offset from F <sub>RF</sub>                       |     | -87   |     |        |
|                          |                       | 600 kHz offset from F <sub>RF</sub>                       |     | -91   |     | dBc/Hz |
|                          |                       | 1.2 MHz offset from F <sub>RFI</sub>                      |     | -100  |     | dBc/Hz |
| Harmonics Output for 315 | H2 <sub>315</sub>     | 2 <sup>nd</sup> harm @ 630 MHz, +13 dBm P <sub>OUT</sub>  |     | < -45 |     | dBm    |
| MHz                      | H3 <sub>315</sub>     | 3 <sup>rd</sup> harm @ 945 MHz, +13 dBm P <sub>OUT</sub>  |     | < -45 |     | dBm    |
| Harmonics Output for 434 | H2 <sub>434</sub>     | 2 <sup>nd</sup> harm @ 868MHz, +13 dBm P <sub>OUT</sub>   |     | < -45 |     | dBm    |
| MHz                      | H3 <sub>434</sub>     | 3 <sup>rd</sup> harm @ 1302 MHz, +13 dBm P <sub>OUT</sub> |     | < -45 |     | dBm    |
| Harmonics Output for 868 | H2 <sub>868</sub>     | 2 <sup>nd</sup> harm @ 1736 MHz, +13 dBm P <sub>OUT</sub> |     | < -36 |     | dBm    |
| MHz                      | H3 <sub>868</sub>     | 3 <sup>rd</sup> harm @ 2604 MHz, +13 dBm P <sub>OUT</sub> |     | < -36 |     | dBm    |
| Harmonics Output for 915 | H2 <sub>915</sub>     | 2 <sup>nd</sup> harm @ 1830 MHz, +13 dBm P <sub>OUT</sub> |     | < -36 |     | dBm    |
| MHz                      | H3 <sub>915</sub>     | 3 <sup>rd</sup> harm @ 2745 MHz, +13 dBm P <sub>OUT</sub> |     | < -36 |     | dBm    |
| OOK Extinction Ration    |                       |                                                           |     | 60    |     | dB     |

### 1.4 RF Crystal Oscillator

**Table 5. Crystal Oscillator Specifications** 

| Parameter                        | Symbol                  | Conditions | Min | Тур     | Max | Unit |
|----------------------------------|-------------------------|------------|-----|---------|-----|------|
| Crystal Frequency                | F <sub>XTAL315</sub>    |            |     | 26.25   |     | MHz  |
|                                  | F <sub>XTAL433.92</sub> |            |     | 26.2982 |     |      |
|                                  | F <sub>XTAL868</sub>    |            |     | 26.303  |     |      |
|                                  | F <sub>XTAL915</sub>    |            |     |         |     |      |
| Crystal Tolerance <sup>[1]</sup> |                         |            |     | ±20     |     | ppm  |
| Load Capacitance                 | C <sub>LOAD</sub>       |            |     | 15      | • C | pF   |
| Crystal ESR                      | Rm                      |            |     |         | 60  | Ω    |
| XTAL Startup Time <sup>[2]</sup> | t <sub>XTAL</sub>       |            |     | 400     |     | us   |

#### Notes:

## 1.5 Internal High Frequency Oscillator

**Table 6. IHRC Specifications** 

|                       |                   | -                |     |           |     |      |
|-----------------------|-------------------|------------------|-----|-----------|-----|------|
| Parameter             | Symbol            | Conditions       | Min | Тур       | Max | Unit |
| IHRC Frequency        | F <sub>IHRC</sub> | 3.3V, 27℃        |     | 15.99     |     | MHz  |
| Temperature-dependent |                   | -20℃~ +80℃, 3.3V |     | 4.2%/100℃ |     |      |
| Voltage-dependent     |                   | 2~3.6V           |     | ±3        |     | %/V  |
| Setup Time            |                   |                  |     | 2.2       | 10  | us   |
| Leakage Current       |                   |                  |     | 0.8       | 2   | nA   |
| Triming Range         |                   | Step 0.625%      |     | ±20%      |     |      |

### 1.6 Internal Low Frequency Oscillator

The ILRCsupport two frequency: 32KHz or 256KHz. It can be selected by LFMOD in OSCCON register, 0 is the 32KHz, and the 1 is the 256KHz.

**Table 7. ILRC Specifications** 

| Parameter             | Symbol            | Conditions       | Min | Тур        | Max | Unit |
|-----------------------|-------------------|------------------|-----|------------|-----|------|
| ILRC Frequency        |                   | 2.5V, 25℃, 32K   |     | 32.3       |     | KHz  |
|                       | F <sub>ILRC</sub> | 2.5V, 25℃, 256K  |     | 258.5      |     | KHz  |
| Temperature-dependent |                   | -20℃~ +80℃, 2.5V |     | 22.3%/100℃ |     |      |
| Voltage-dependent     |                   | 2~3.6V           |     | ±11.1      |     | %/V  |
| Setup Time            |                   | 2.5V, 25℃        |     | 4.6        | 10  | us   |
| Leakage Current       |                   | Disable          |     | 0.15       | 1   | nA   |

<sup>[1].</sup> This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.

<sup>[2].</sup> This parameter is to a large degree crystal dependent.

#### 1.7 LVD/LVR

Table 8. LVD/LVR Specifications

| Parameter   | Symbol | Conditions | Min | Тур | Max | Unit |
|-------------|--------|------------|-----|-----|-----|------|
|             |        |            |     | 2.0 |     |      |
| LVD Voltage |        |            |     | 2.2 |     | V    |
|             |        |            |     | 2.8 |     |      |
| LVR delay   |        |            |     | 125 | 157 | us   |

#### **1.8 POR**

### **Table 9. POR Specifications**

| Parameter             | Symbol           | Conditions | Min | Тур | Max | Unit |
|-----------------------|------------------|------------|-----|-----|-----|------|
| POR Current           | I <sub>POR</sub> | 3.3V       |     | 50  |     | nA   |
| Temperature-dependent |                  | 3.3V       |     | 2.0 | ·   | V    |

#### 1.9 I/O PAD

### Table 10. I/OPAD Specifications

| Parameter           | Symbol          | Conditions | Min | Тур  | Max | Unit |
|---------------------|-----------------|------------|-----|------|-----|------|
| Input Low Voltage   | VIL             |            |     |      | 0.3 | VDD  |
| Input High Voltage  | VIH             |            | 0.7 |      |     | VDD  |
| Output High Current | I <sub>OH</sub> | 3.3V, 25℃  |     | 10   |     | mA   |
| Output Low Current  | I <sub>OL</sub> | 3.3V, 25℃  |     | 15   |     | mA   |
| Weak Pull-up        |                 | 3.3V       |     | 41.7 |     | ΚΩ   |

## 1.10 MCU Supply Current

### **Table 11. Supply Current**

| Parameter               | Symbol | Conditions                     | Min | Тур | Max | Unit |
|-------------------------|--------|--------------------------------|-----|-----|-----|------|
| On anotion Made         |        | $3.3V$ , $F_{SYS} = 2MHz$      |     | 310 |     | uA   |
| Operation Mode          |        | 3.3V, F <sub>SYS</sub> = 32KHz |     | 50  |     | uA   |
| Sleep Mode with WDT_ON  |        | 3.3V                           |     | 3   |     | uA   |
| Sleep Mode with WDT_OFF |        | 3.3V                           |     | 0.8 |     | uA   |
| Sleep Mode with LVD_ON  |        | 3.3V                           |     | 15  |     | uA   |

#### Notes:

- 1. All the IO is input mode, and with pull-down resistance.
- 2.Comparator is disable, CM<2:0> = 111

## 2. Pin Descriptions



Figure 2. CMT2189B Pin Assignments

Table 12. CMT2189B Pin Descriptions

| Pin<br>Number | Name          | I/O |              | Descriptions                                                                |  |  |  |  |  |
|---------------|---------------|-----|--------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| 1             | DVDD          | I   | MCU power    | MCU power supply input                                                      |  |  |  |  |  |
| 2             | PC6           | Ю   | PORTC I/O    | PORTC I/O                                                                   |  |  |  |  |  |
| 3             | PC4           | Ю   | PORTC I/O    |                                                                             |  |  |  |  |  |
| 4             | XTAL          | I   | single-ende  | d crystal oscillator input or external reference clock input                |  |  |  |  |  |
| 5             | RFCTRL        | I   | RF's SPI int | erface enable control, internally pulled up to VDD, low active              |  |  |  |  |  |
| 6             | AVDD          | I   | RF power si  | upply input                                                                 |  |  |  |  |  |
| 7             | GND           | I   | Ground       |                                                                             |  |  |  |  |  |
| 8             | RFO           | 0   | The singled  | ended power amplifier output                                                |  |  |  |  |  |
| 9             | PA4           | Ю   | PORTA I/O    | w/programmable pull-up and interrupt-on-change                              |  |  |  |  |  |
| 10            | PA3           | Ю   | PORTA I/O    | w/programmable pull-up and interrupt-on-change                              |  |  |  |  |  |
| 11            | PA2/T0CKI/INT | 10  | PA2<br>T0CKI | PORTA I/O w/programmable pull-up and interrupt-on-change Timer0 clock input |  |  |  |  |  |
|               |               |     | INT          | External Interrupt                                                          |  |  |  |  |  |
|               | DANIOODONA    |     | PA0          | PORTA I/O w/programmable pull-up and interrupt-on-change                    |  |  |  |  |  |
| 12            | PA0/ICSPCLK   | 10  | ICSPCLK      | Serial Programming and debugging Data I/O                                   |  |  |  |  |  |
| 13            | PA1/ICSPDAT   | 10  | PA1          | PORTA I/O w/programmable pull-up and interrupt-on-change                    |  |  |  |  |  |
| 13            | PAT/ICSPDAT   | 10  | ICSPDAT      | Serial Programming and debugging Clock                                      |  |  |  |  |  |
| 14            | PA7/CLKI      | 10  | PA7          | PORTA I/O w/programmable pull-up and interrupt-on-change                    |  |  |  |  |  |
| 17            | TATOLIN       | 10  | CLKI         | External clock input/RC oscillator connection                               |  |  |  |  |  |
|               | PC0/RFDIN     | 10  | PC0          | PORTC I/O                                                                   |  |  |  |  |  |
|               | 1 CO/N DIN    | 10  | RFDIN        | RF data input                                                               |  |  |  |  |  |
|               | PC1/SDIO      | 10  | PC1          | PORTC I/O                                                                   |  |  |  |  |  |
| Internal      | 1 0 1/0010    |     | SDIO         | RF's serial interface data input/output                                     |  |  |  |  |  |
| pin           | PC2/SCLK IC   |     | PC2          | PORTC I/O                                                                   |  |  |  |  |  |
|               | . 02/002/1    |     | SCLK         | RF's serial interface clock input                                           |  |  |  |  |  |
|               | PC3/CSB       | 10  | PC3          | PORTC I/O                                                                   |  |  |  |  |  |
|               | . 55,552      |     | CSB          | RF's serial interface select enable input                                   |  |  |  |  |  |

## 3. Typical Performance Characteristics



Figure 4. Phase Noise, F<sub>RF</sub> = 433.92 MHz, P<sub>OUT</sub> = +13 dBm, Single Carrier



Figure 5. Tx power-Current-Voltage Characteristic Diagram  $F_{RF}$  = 433.92 MHz,  $P_{OUT}$  = +13 dBm, Single Carrier (No Encoding)

## 4. Functional Descriptions



Figure 6. CMT2189B Functional Block Diagram

#### 4.1 Overview

The CMT2189B devices are fully integrated, highly flexible, high performance, SoC OOK transmitters with an embedded RISC microcontroller designed for various 240 to 960 MHz wireless applications. They are part of the CMOSTEK NextGenRF<sup>TM</sup> family, which includes a complete line of transmitters, receivers and transceivers. The chip is optimized for the low system cost, low power consumption, battery powered application with its highly integrated and low power design.

The functional block diagram of the CMT2189B is shown in the figure above. The CMT2189B is based on direct synthesis of the RF frequency, and the frequency is generated by a low-noise integer-N frequency synthesizer. It uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize the number of external components. Every analog block is calibrated on each Power-on Reset (POR) to the reference voltage generated by Bandgap. The calibration can help the chip to finely work under different temperatures and supply voltages. The CMT2189B has a highly efficient PA built in, the PA can be configured as single-ended outputs, and the output power can be configured from 0 to +13 dBm in 1 dB step size.

The RISC microcontroller has 2048-word flash program space. Up to 8 I/O are supported with their functions customized by the user program. RF Frequency, PA output power, other product features and unique transmit IDs can be programmed into the registers. This saves the cost and simplifies the product development and manufacturing effort. Alternatively, in stock products of 433.92 MHz is available for immediate demands. The CMT2189B operates from 2.0 to 3.6 V, only consumes 7.5 mA with 1527 format code, when transmitting +10 dBm power under 3.3 V supply voltage. The device together with CMOSTEK NextGenRF<sup>TM</sup> receiver enables a highly flexible, low cost RF link.

#### 4.2 Modulation, Frequency, Deviation and Symbol Rate

The CMT2189B supports OOK modulation with the symbol rate up to 40 ksps. The CMT2189B continuously covers the frequency range from 240 to 960 MHz, including the license free ISM frequency band around 315 MHz, 433.92 MHz, 868.35 MHz and 915 MHz.

Table 13. Modulation, Frequency, Deviation and Symbol Rate

| Parameter       | Value      | Unit |
|-----------------|------------|------|
| Modulation      | ООК        | -    |
| Frequency       | 240 to 960 | MHz  |
| OOK Symbol Rate | 0.5 to 40  | ksps |

### 4.3 Power Amplifier

A highly efficient Power Amplifier (PA) is integrated in the CMT2189B to transmit the modulated signal out. Depending on the application, the user can design a matching network for the PA to exhibit optimum efficiency at the desired output power for a wide range of antennas, such as loop or monopole antenna. Typical application schematics and the required BOM are shown in Page 2. For the schematic, layout guideline and the other detailed information please refer to "AN170 CMT2110/17B Schematic and PCB Layout Design Guideline" and "AN159 CMT211xB\_215xL\_B Transmit Matching Guideline".

The output power of the PA can be configured by the user within the range from 0 dBm to +13 dBm in 1 dB step size, it can be configured by software using the RF's SPI.

#### 4.4 Crystal Oscillator and RCLK

The CMT2189B uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip. Figure 7 shows the configuration of the XTAL circuitry and the crystal model. The recommended specification for the crystal is about 26 MHz with  $\pm 20$  ppm, ESR (Rm) <  $60~\Omega$ , load capacitance  $C_{LOAD}$  ranging from 12 to 20 pF. To save the external load capacitors, a set of variable load capacitors  $C_L$  is built inside the CMT2189B to support the oscillation of the crystal.

To achieve the best performance, the user only needs to input the desired value of the XTAL load capacitance  $C_{LOAD}$  of the crystal (can be found in the datasheet of the crystal) to the RFPDK, then finely tune the required XO load capacitance according to the actual XO frequency.



Figure 7. XTAL Circuitry and Crystal Model

Figure 8. RCLK Circuitry

If a about 26 MHz RCLK (reference clock) is available in the system, the user can directly use it to drive the CMT2189B by feeding the clock into the chip via the XTAL pin. This further saves the system cost due to the removal of the crystal. A coupling capacitor is required if the RCLK is used. The recommended amplitude of the RCLK is 0.3 to 0.7 Vpp on the XTAL pin. Also, the user should set the internal load capacitor  $C_L$  to its minimum value. See Figure 8 for the RCLK circuitry.

## 5. RF Working States

The CMT2189B's RF has following 4 different working states: SLEEP, XO-STARTUP, TUNE and TRANSMIT.

#### **SLEEP**

When the CMT2189B is in the SLEEP state, all the internal blocks are turned off and the current consumption is minimized.

#### **XO-STARTUP**

Once the modulator of the CMT2189B detect valid signal on the  $D_{RAW}$  wire (see Figure 9), the RF section will go into the XO-STARTUP state, and the internal XO starts to work. The user has to wait for the  $t_{XTAL}$  to allow the XO to get stable. The  $t_{XTAL}$  is to a large degree crystal dependent. A typical value of  $t_{XTAL}$  is provided in the Table .

#### **TUNE**

The frequency synthesizer will tune the CMT2189B to the desired frequency in the time  $t_{\text{TUNE}}$ . The PA can be turned on to transmit the data only after the TUNE state is done, before that the data will not be transmitted. See 错误! 未找到引用源。9 for the details.

#### **TRANSMIT**

The CMT2189B starts to modulate and transmit the data ( $D_{RAW}$ ) generated by the microcontroller core responding to the push buttons, and as well as using the RF's SPI to send go\_tx command. The transmission can be ended in 2 methods: firstly, driving the DATA pin low for  $t_{STOP}$  time, where the  $t_{STOP}$  is 20 ms; secondly, issuing sleep command over the RF's SPI interface, this will stop the transmission immediately. More details for how to use the CMT2189B, please see "AN201 CMT2189B User Guide".



Figure 9. Transmission Enabled by DATA Pin Rising Edge

| Table 14. Timin | g in Different | Working States |
|-----------------|----------------|----------------|
|-----------------|----------------|----------------|

| Parameter                         | Symbol            | Min | Тур | Max | Unit |
|-----------------------------------|-------------------|-----|-----|-----|------|
| XTAL Startup Time [1]             | t <sub>XTAL</sub> |     | 400 |     | us   |
| Time to Tune to Desired Frequency | t <sub>TUNE</sub> |     | 370 |     | us   |
| Hold Time After Rising Edge       | t <sub>HOLD</sub> | 10  |     |     | ns   |
| Time to Stop The Transmission     | t <sub>STOP</sub> |     | 20  |     | ms   |

#### Notes:

[1]. This parameter is to a large degree crystal dependent.

#### 6. RISC Microcontroller Core

The embedded high-performance RISC Microcontroller has the following features:

#### **High-Performance RISC CPU**

- 2048 words Flash ROM, 128B SRAM
- 256B EEPROM
- All single-cycle instructions except branches
- Operating Speed
  - DC 16MHz oscillator
  - 125 ns instruction cycle
- Interrupt Capability
- 8-Level Deep Hardware Stack
- Power-Saving Sleep mode
- Power-on Reset (POR)
- Multiplexed MCLRB/Input Pin

#### **Peripheral Features**

- 8 I/O Pins
  - Individual Direction Control
  - Interrupt-on-Pin Change
  - Individual Programmable Weak Pull-ups
- Timer0: 8-bit timer with 3-bit prescaler
- Timer2: 8-bit timer with 3-bit prescaler
- Watchdog timer with on-chip RC oscillator



Figure 10. Microcontroller Core Block Diagram

#### 6.1 Memory Organization

#### 6.1.1 Program Memory Organization

The CMT2189B device has 2k x 14 (0000h-07FFh) space for program memory. Accessing a location above these boundaries will cause a wrap-around within the first 2k x 14 space. The Reset Vector is at 0000h and the Interrupt Vector is at 0004h (see figure below).



Figure 113. Program Memory Map and Stack

#### 6.1.2 Data Memory Organization

The data memory (see figure 11) is partitioned into two banks: The General-Purpose Registers and the Special Function Registers. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose Registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when being read. PAGE(STATUS<5>) is the bank select bit.

- PAGE0 = 0 Bank 0 is selected.
- PAGE0 = 1 Bank 1 is selected.

#### 6.1.2.1 General Purpose Register File

The register file is organized as 64 x 8 in the CMT2189B. Each register is accessed, either directly or indirectly, through the FSR.

#### 6.1.2.2 Special Function Register File

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device. These registers are static RAM. The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.



Figure 124. Data Memory Map of the CMT2189B

Table 15. CMT2189B Special Registers Summary Bank0

| ADDR | Name     | Bit7  | Bit6                                                                                           | Bit5        | Bit4             | Bit3            | Bit2             | Bit1          | Bit0     | POR reset |
|------|----------|-------|------------------------------------------------------------------------------------------------|-------------|------------------|-----------------|------------------|---------------|----------|-----------|
| 0    | INDF     | Addı  | Addressing this location uses contents of FSR to address data memory (not a physical register) |             |                  |                 |                  |               |          | xxxx xxxx |
| 1    | TMR0     |       | Timer0 Module's register, Timer0<7:0>                                                          |             |                  |                 |                  |               |          |           |
| 2    | PCL      |       | F                                                                                              | Program Cou | unter's (PC) Lea | ast Signific    | cant Byte, PC<7  | :0>           |          | 0000 0000 |
| 3    | STATUS   | 1     | 1                                                                                              | PAGE        | /TF              | /PF             | Z                | НС            | С        | 01 1xxx   |
| 4    | FSR      |       |                                                                                                | Indi        | rect Data Mem    | ory Addres      | ss Pointer       |               |          |           |
| 5    | PORTA    | PA7   | PA6                                                                                            | PA5         | PA4              | PA3             | PA2              | PA1           | PA0      | 00x0 0000 |
| 6    |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 7    | PORTC    | PC7   | PC6                                                                                            | PC5         | PC4              | PC3             | PC2              | PC1           | PC0      | 0000 0000 |
| 8    |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 9    |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| Α    | PCLATH   | 1     | 1                                                                                              | 1           | Write But        | ffer for upp    | er 5 bits of Pro | gram Counter, | PC<13:8> | 0 0000    |
| В    | INTCON   | GIE   | PEIE                                                                                           | TOIE        | INTE             | PAIE            | TOIF             | INTF          | PAIF     | 0000 0000 |
| С    | PIR1     | EEIF  | CKMEAIF                                                                                        | -           | C2IF             | C1IF            | OSFIF            | TMR2IF        | -        | 00-0 000- |
| D    |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| Е    |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| F    |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 10   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 11   | TMR2     |       |                                                                                                | Tim         | er2 Module reg   | gister, Tim     | er2<7:0>         |               |          | 0000 0000 |
| 12   | T2CON    | 1     |                                                                                                | TOUTPS      | <3:0>            | 1               | TMR2ON           | T2CKI         | PS<1:0>  | -000 0000 |
| 13   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 14   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 15   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 16   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 17   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 18   | WDTCON   | -     | -                                                                                              | -           |                  | WD <sup>-</sup> | TPS<3:0>         |               | SWDTEN   | 0 1000    |
| 19   | CMCON0   | C2OUT | C1OUT                                                                                          | C2INV       | C1INV            | CIS             |                  | CM<2:0>       |          | 0000 0000 |
| 1A   | PRO      |       |                                                                                                |             | PRO-             | <7:0>           |                  |               |          | 1111 1111 |
| 1B   | MSCKCON  | -     | -                                                                                              | -           | SLVREN           | -               | CKMAVG           | CKCNTI        | -        | 0 -00-    |
| 1C   | SOSCPPRL |       |                                                                                                |             | SOSCE            | PR<7:0>         |                  |               |          | 1111 1111 |
| 1D   | SOSCPRH  | -     | -                                                                                              | -           | -                |                 | sosc             | PR<11:8>      |          | 1111      |
| 1E   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |
| 1F   |          |       |                                                                                                |             |                  |                 |                  |               |          |           |

Table 16. CMT2189B Special Function Registers Summary Bank1

| ADDR | Name   | Bit7  | Bit6               | Bit5          | Bit4            | Bit3            | Bit2            | Bit1             | Bit0         | POR reset |
|------|--------|-------|--------------------|---------------|-----------------|-----------------|-----------------|------------------|--------------|-----------|
| 80   | INDF   | Addr  | essing this locati | on uses conte | nts of FSR to a | address data m  | emory (not a p  | physical registe | er)          | xxxx xxxx |
| 81   | OPTION | /PAPU | INTEDG             | TOCS          | TOSE            | PSA             | PS2             | PS1              | PS0          | 1111 1111 |
| 82   | PCL    |       | Pr                 | rogram Counte | er's (PC) Least | Significant Byt | e, PC<7:0>      |                  |              | 0000 0000 |
| 83   | STATUS | -     | -                  | PAGE          | /TF             | /PF             | Z               | HC               | С            | 01 1xxx   |
| 84   | FSR    |       |                    | Indirect      | t Data Memory   | Address Point   | er              |                  |              |           |
| 85   | TRISA  | TRIS  | A<7:6>             |               |                 | -               | TRISA<4:0>      |                  |              | 11x1 1111 |
| 86   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 87   | TRISC  |       |                    |               | TRISC<7         | 7:0>            |                 |                  | <b>*</b> _ ( | 1111 1111 |
| 88   |        |       |                    |               |                 |                 |                 |                  |              | <b></b>   |
| 89   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 8A   | PCLATH | -     | -                  | -             | Write Buf       | fer for upper 5 | bits of Prograr | n Counter, PC    | <13:8>       | 0 0000    |
| 8B   | INTCON | GIE   | PEIE               | TOIE          | INTE            | PAIE            | TOIF            | INTF             | PAIF         | 0000 0000 |
| 8C   | PIE1   | EEIE  | CKMEAIE            | -             | C2IE            | C1IE            | OSFIE           | TMR2IE           | -            | 00-0 000- |
| 8D   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 8E   | PCON   |       |                    |               |                 |                 |                 | /POR             | /BOR         | qq        |
| 8F   | OSCCON | LFMOD |                    | IRCF[2:0]     |                 | OSTS            | HTS             | LTS              | SCS          | 0101 x000 |
| 90   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 91   |        |       |                    |               |                 |                 |                 |                  |              | 0000 0000 |
| 92   | PR2    |       |                    | PR2[          | [7:0], Timer2 p | period register |                 |                  |              | 1111 1111 |
| 93   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 94   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 95   | WPUA   | WPU   | JA<7:6>            | -             |                 | ١               | WPUA<4:0>       |                  |              | 11-1 1111 |
| 96   | IOCA   |       |                    |               | IOCA<7          | ':0>            |                 |                  |              |           |
| 97   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 98   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 99   | VRCON  | VREN  | -                  | VRR           | -               |                 | VR<3:           | 0>               |              | 0-0- 0000 |
| 9A   | EEDAT  |       |                    |               | EEDAT<          | 7:0>            |                 |                  |              | 0000 0000 |
| 9В   | EEADR  |       |                    |               | EEADR<          | 7:0>            |                 |                  |              | 0000 0000 |
| 9C   | EECON1 | -     | -                  | WREN3         | WREN2           | WRERR           | WREN1           | -                | RD           | 00 x0-0   |
| 9D   | EECON2 | -     | -                  | -             | -               | -               | -               | -                | WR           | 0         |
| 9E   |        |       |                    |               |                 |                 |                 |                  |              |           |
| 9F   |        |       |                    |               |                 |                 |                 |                  |              |           |

### 6.2 Port A

There have 6 general purpose I/O pins available, PA0~PA4, and PA7, as shown in the table below. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Table 17. Mapping from the GPIOs to the Pinouts

| GPIO | Pinout        |
|------|---------------|
| PA0  | PA0/ICSPCLK   |
| PA1  | PA1/ICSPDAT   |
| PA2  | PA2           |
| PA3  | PA3           |
| PA4  | PA4           |
| PA5  | ×             |
| PA6  | ×             |
| PA7  | PA7/OSC1/CLKI |

#### 6.2.1 PORTA and the CPIOA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin as input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin as output (i.e., put the contents of the output latch on the selected pin). The exception is PA5, which is input only and its TRISA bit will always read as '1'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read; this value is modified and then written to the PORT data latch. PA5 reads '0' when MCLRE = 1.

#### 6.2.2 Additional Pin Functions

Every PORTA pin on the CMT2189B has an interrupt-on-change(IOC) option and every PORTA pin has a pull-up option.

#### 6.2.2.1 Pull-up

Each of the PORTA pinshas an individually configurable internal pull-up. Control bits WPUA enable or disable each pull-up.

#### 6.2.2.2 Interrupt-On-Change

Each of the PORTA pins is individually configurable as an interrupt-on-change pin. Control bits IOCA enable or disable the interrupt function for each pin. The interrupt-on-change is disabled on a Power-on Reset. For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set, the PORTA Change Interrupt Flag bit (PAIF) in the INTCON register. This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt by:

- 1) Any read or write of PORTA. This will end the mismatch condition, then.
- 2) Clear the flag bit PAIF.

A mismatch condition will continue to set flag bit PAIF. Reading PORTA will end the mismatch condition and allow flag bit PAIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOD Reset. After these resets, the PAIF flag will continue to be set if a mismatch is present.

#### 6.3 PORTC

PORTC is a general purpose I/O port consisting of 8 bidirectional pins. The pins can be configured for either digital I/O, but only PC4 and PC6 has been pin out. PC0 is connected to the RFDIN, PC1 is connected to the SPI's SDIO, PC2 is connected to the SPI's SCLK, and PC3 is connected to the SPI's CSB, all this four pins are inside in the chip, are not pin out, and are

used to configuration the RF parameters.

**GPIO RF Part Pinout** PC0 **RFDIN**  $\times$ PC1 **SDIO**  $\times$ PC2 SCLK X PC3 CSB PC4 PC4 --PC5  $\times$ PC6 PC6 PC7

Table 18. Mapping from the SPI

#### 6.4 Timer0 Module

The Timer0 module timer/counter has the following features.

- 8-bit timer/counter
- · Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 13 is a block diagram of the Timer0 module and the prescaler shared with the WDT.



Note 1: TOSE, TOCS, PSA, PS<2:0> are bits in the Option register, WDTPS<3:0> are bits in the WDTCON register.

Figure 135. Block Diagram of the Timer0/WDT Prescaler

#### 6.4.1 Timer0 Operation

Timer mode is selected by clearing the T0CS bit(OPTION<5>). In Timer mode, the Timer0module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is in habited for the following two instruction cycles. The

user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the ToCS bit(OPTION<5>). In this mode, the Timer0 module will increment either on every rising or falling edge of pin PA2/ToCKI. The incrementing edge is determined by the source edge (ToCE) control bit(OPTION<4>). Clearing the ToCE bit selects the rising edge.

#### 6.4.2 Timer0 Interrupt

A Timer0 interrupt is generated when the TMR0register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit(INTCON<2>) must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The Timer0 interrupt can not wake the processor from Sleep, since the timer is shutoff during Sleep.

#### 6.4.3 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 andQ4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2T<sub>OSC</sub>(and a small RC delay of 20 ns) and low for at least 2T<sub>OSC</sub>(and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

#### 6.4.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this Datasheet. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0 bits (OPTION<2:0>). The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRR 1, STWR 1,BSR 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer.

#### 6.5 Timer2 Module

Figure 14 shows the basic block diagram of the Timer2 module.



Figure 14. Timer2 Block Diagram



## 7. Ordering Information

Table 19. CMT2189B Ordering Information

| Part Number                 | Descriptions                         | Package<br>Type | Package<br>Option | Operating<br>Condition       | MOQ /<br>Multiple |
|-----------------------------|--------------------------------------|-----------------|-------------------|------------------------------|-------------------|
| CMT2189B-ESR <sup>[1]</sup> | 240 – 960 MHz SoC OOK<br>Transmitter | SOP14           | Tape & Reel       | 2.0 to 3.6 V,<br>-40 to 85 ℃ | 2,500             |
| CMT2189B-ESB <sup>[1]</sup> | 240 – 960 MHz SoC OOK<br>Transmitter | SOP14           | Tube              | 2.0 to 3.6 V,<br>-40 to 85 ℃ | 1,000             |

#### Notes:

Visit www.cmostek.com/products to know more about the product and product line.

Contact <a href="mailto:sales@cmostek.com">sales@cmostek.com</a> or your local sales representatives for more information.

<sup>[1]. &</sup>quot;E" stands for extended industrial product grade, which supports the temperature range from -40 to +85 ℃ "S" stands for the package type of SOP14.

<sup>&</sup>quot;R" stands for the tape and reel package option, the minimum order quantity (MOQ) for this option is 2,500 pcs. "B" stands for the tube package option, with the MOQ of 1,000 pcs.

## 8. Package Outline



Figure 15.14-Pin SOP Package

**Table 20.14-Pin SOP Package Dimensions** 

| Sumbal | Size (millimeters) |          |       |  |  |  |  |  |
|--------|--------------------|----------|-------|--|--|--|--|--|
| Symbol | Min                | Тур      | Max   |  |  |  |  |  |
| А      | -                  | -        | 1.75  |  |  |  |  |  |
| A1     | 0.05               | -        | 0.225 |  |  |  |  |  |
| A2     | 1.30               | 1.40     | 1.50  |  |  |  |  |  |
| A3     | 0.60               | 0.65     | 0.70  |  |  |  |  |  |
| b      | 0.39               | -        | 0.48  |  |  |  |  |  |
| С      | 0.21               | -        | 0.26  |  |  |  |  |  |
| D      | 8.45               | 8.65     | 8.85  |  |  |  |  |  |
| E      | 5.80               | 6.00     | 6.20  |  |  |  |  |  |
| E1     | 3.70               | 3.90     | 4.10  |  |  |  |  |  |
| е      |                    | 1.27 BSC |       |  |  |  |  |  |
| h      | 0.25               | -        | 0.50  |  |  |  |  |  |
| 4      | 0.30               | -        | 0.60  |  |  |  |  |  |
| L1     | ·                  | 1.05 BSC |       |  |  |  |  |  |
| θ      | 0                  | -        | 8°    |  |  |  |  |  |

## 9. Top Marking

## 9.1 CMT2189B Top Marking



Figure 16. CMT2189B Top Marking

Table 21. CMT2189B Top Marking Explanation

| Mark Method :    | Laser                                                                                      |  |  |
|------------------|--------------------------------------------------------------------------------------------|--|--|
| Pin 1 Mark :     | Circle's diameter = 1 mm.                                                                  |  |  |
| Font Size :      | 0.35 mm, right-justified.                                                                  |  |  |
| Line 1 Marking : | CMT2189B represents part number CMT2189B                                                   |  |  |
|                  | YYWW is the Date code assigned by the assembly house. YY represents the last two digits of |  |  |
| Line 2 Marking : | the mold year and WW represents the workweek.                                              |  |  |
|                  | ①②③④⑤⑥is the internal tracking number.                                                     |  |  |

## 10. Other Documentations

Table 22. Other Documentations for CMT2189B

| Brief | Name                                                   | Descriptions                                                                                                     |  |
|-------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| AN159 | CMT211xB/CMT215xL_B Transmit Matching Guide(CN)        | Details of CMT211xB, CMT215xL & CMT215xB RF matching network and other application layout design related issues. |  |
| AN201 | CMT2189B User Guide(CN)                                | Details of using the CMT2189B                                                                                    |  |
| AN204 | CMT2281F2/CMT2280F2/CMT2189B/CMT2189C<br>IDE Guide(CN) | Details of using the IDE                                                                                         |  |

## 11. Document Change List

**Table 23. Document Change List** 

| Rev. No. | Chapter | Description of Changes | Date     |
|----------|---------|------------------------|----------|
| 0.5      | All     | Initial Released       | 2018-1-1 |



#### 12. Contact Information

CMOSTEK Microelectronics Co., Ltd.

Room 202, Honghai Building, Qianhai Road. Nanshan District

Shenzhen, Guangdong, China PRC

Zip Code: 518000 Tel: 0755- 83235017 Fax: 0755- 82761326 Sales: sales@cmostek.com

Technical support: <a href="mailto:support@cmostek.com">support@cmostek.com</a>

www.cmostek.com

#### Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.