AiSD

Rafał Włodarczyk

$\mathrm{INA}\ 4,\ 2025$

Contents

1	\mathbf{Lec}	ture I - Sortowanie	3		
	1.1	Worst-case analysis	3		
	1.2	Average-case analysis	3		
	1.3	Analiza losowego sortowania	3		
	1.4	Insertion Sort (A, n)	3		
		1.4.1 Worst-case analysis - Insertion Sort (A, n)	4		
		1.4.2 Average-case analysis - Insertion Sort (A, n)	4		
	1.5	Przykład złożoności	5		
2	Lecture II - Merge Sort				
	2.1	Merge sort $(A, 1, n)$	5		
3	Lecture III - Narzędzia do analizy algorytmów 7				
	3.1	Notacja asymptotyczna	7		
	3.2	Notacja Big-O	7		
	3.3	Notacja Big- Ω	8		
	3.4	Notacja Big- Θ	8		
	3.5	Notacja small-o	9		
	3.6	Notacja small- ω	9		
	3.7	Metody rozwiązywania rekurencji	9		
	3.8	Rozwiązywanie rekurencji	10		
	3.9	Metoda podstawiania - Metoda dowodu indukcyjnego	10		
4	Lec	ture IV - Metoda drzewa rekursji	11		
	4.1	Metoda drzewa rekursji	11		
	4.2	Metoda iteracyjna			
	4.3	Master Theorem			
	4.4	Divide and Conquer			
	4.5	Wyszukiwanie elementów w portowanej tablicy			
	4.6	Binary search			

5	Lec	ture V - Divide and Conquer	16
	5.1	Potęgowanie liczby	16
	5.2	Wyliczenie n-tej liczby Fibonacciego	17
	5.3	Mnożenie Liczb	17
	5.4	Mnożenie macierzy	18
	5.5	Quick Sort	19
6	Lec	ture VI - Quicksort	20
	6.1	Lomuto Partition	20
	6.2	Hoare Partition	21
	6.3	Worst Case Analysis for QS	22
	6.4	Best case Analysis for QS	22
	6.5	Specific case analysis for QS	23
	6.6	Best/Worst case analysis for QS - Intuition	23
	6.7	Average case analysis for QS	23

I welcome you on the path to insanity.

 $Good\ luck\ :)$

1 Lecture I - Sortowanie

Definiujemy problem:

- 1. Input: $A = (a_1, \ldots, a_n), |A| = n$
- 2. Output: Permutacja tablicy wyjściowej $(a'_1, a'_2, \dots, a'_n)$, takie że: $a'_1 \leqslant a'_2 \leqslant \dots \leqslant a'_n$.

1.1 Worst-case analysis

$$T(n) = \max_{\text{wszystkie wejścia}} \{ \text{#operacji po wszystkich |n|-wejściach} \}$$
 (1)

1.2 Average-case analysis

Zakładamy pewien rozkład prawdopodobieństwa na danych wejściowych. Z reguły myślimy o rozkładzie jednostajnym. Niech T - zmienna losowa liczby operacji wykonanych przez badany algorytm.

$$\mathbf{E}(T)$$
 – wartość oczekiwana T (2)

Później możemy badać wariancję, oraz koncentrację.

1.3 Analiza losowego sortowania

Dla poprzedniego algorytmu zobaczmy, że: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left[\text{czyli } f(n) \sim g(n) \equiv \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1\right]$. To jest tragiczna złożoność.

1.4 Insertion Sort (A, n)

Przykład: A = (8, 2, 4, 9, 3, 6), n = 6

- $8_i, 2_i, 4, 9, 3, 6$ j = 2, i = 1, key = 2 while
- $2, 8_i, 4, 9, 3, 6$
- $2, 8_i, 4_i, 9, 3, 6$ j = 3, i = 2, key = 4 while

- 2, 4, 8, 9, 3, 6
- $2, 4, 8_i, 9_i, 3, 6$ j = 4, i = 3, key = 9 no while
- $2, 4, 8, 9_i, 3_i, 6$ j = 5, i = 4, key = 3 while
- 2, 3, 4, 8, 9, 6
- $2, 3, 4, 8, 9_i, 6_i$ j = 6, i = 5, key = 6 while
- 2, 3, 4, 6, 8, 9

Porównujemy element ze wszystkim co jest przed nim - wszystko przed j-tym elementem będzie posortowane. Insertion sort nie swapuje par elementów w tablicy, a przenosi tam gdzie jest jego miejsce.

1.4.1 Worst-case analysis - Insertion Sort (A, n)

Odwrotnie posortowana tablica powoduje najwięcej przesunięć. Ponieważ ustaliśmy że liczba operacji w while zależy od j, wtedy:

$$T(n) = \sum_{j=2}^{n} O(j-1) = \sum_{j=1}^{n-1} O(j) = O\left(\sum_{j=1}^{n-1} j\right) =$$
(3)

$$= O\left(\frac{1+n-1}{2} \cdot (n-1)\right) = O\left(\frac{(n-1)\cdot (n)}{2}\right) = O\left(\frac{n^2}{2}\right) = O(n^2)$$
 (4)

 \mathbf{c}

1.4.2 Average-case analysis - Insertion Sort (A, n)

Policzmy dla uproszczenia, że na wejściu mamy n-elementowe permutacje, z których każda jest jednakowo prawdopodobna $p=\frac{1}{n!}$. Spróbujmy wyznaczyć \mathbf{E} , korzystając z inwersji permutacji. Wartość oczekiwana liczby inwersji w losowej permutacji wynosi:

$$\mathbf{E} \sim \frac{n^2}{4} \tag{5}$$

Pominęliśmy stałe wynikające z innych operacji niż porównywanie. W average-case będziemy około połowę szybiciej niż w worst-case.

Pseudokod bez przykładu jest słaby.

1.5 Przykład złożoności

Patrzymy na wiodący czynnik.

$$13n^{2} + 91n\log n + 4n + 13^{10} = O(n^{2})$$

$$= 13n^{2} + O(n\log n)$$
(6)

Chcielibyśmy gdzie to konieczne, zapisać lower order terms.

Pytanie o dzielenie liczb - istnieją algorytmy, które ze względu na arytmetyczne właściwości liczb sprawiają, że mniejsze liczby mogą dzielić się dłużej niż większe. Podczas tego kursu nie omawiamy złożoności dla takich algorytmów.

2 Lecture II - Merge Sort

2.1 Merge sort (A, 1, n)

```
Niech złożoność T(n) - złożność algorytmu. Funkcja merge sort
```

```
0(1)
               | if |A[1...n]| == 1 return A[1...n]
               | else
T(floor(n/2)) |
                     B = MERGE\_SORT(A, 1, floor(n/2))
T(ceil(n/2))
                     C = MERGE\_SORT(A,floor(n/2)+1, n)
O(n)
               return MERGE(B,C)
Funkcja merge
MERGE(X[1...k], Y[1...1])
if k = 0 return Y[1...1]
if l = 0 return X[1...k]
if X[1] <= Y[1]
    return X[1] o MERGE(X[2...k], Y[1...l])
else
    return Y[1] o MERGE(X[1...k], Y[2...1])
MERGE(A,B)
2 1 ---> [1] + MERGE(A,B (bez 1))
7 9
13 10
19 11
20 14
2 9 ---> [1,2] + MERGE(A (bez 2),B)
7 10
13 11
19 14
20 .
```

```
... ---> [1,2,7,9,10,11,13,14]

19 .

20 .

... ---> [1,2,7,9,10,11,13,14,19,20]

[10], [2], [5], [3], [7], [13], [1], [6]

[2, 10], [3,5], [7,13], [1,6]

[2,3,5,10], [1,6,7,13]

[1,2,3,5,6,7,10,13]
```

Złożoność obliczeniowa merge-a wynosi O(k+l) - w najgorszym przypadku bierzemy najpierw z jednej strony, potem z drugiej i na zmianę.

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n) \tag{8}$$

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n) \tag{9}$$

Rozpiszmy tzw drzewo rekursji:

Musimy dodać wszystkie koszty, które pojawiły się w drzewie. Dodajmy piętra, a następnie zsumumjmy. Żeby znać wysokość drzewa interesuje nas dla jakiego h zajdzie $\frac{n}{2^h}=1$

$$\frac{n}{2^h} = 1 \implies 2^h = n \implies h = \log_2 n \tag{10}$$

Zatem złożność:

$$\sum_{i=1}^{\log n} cn = cn \log n \sim O(n \log n)$$
(11)

3 Lecture III - Narzędzia do analizy algorytmów

Dzisiejszy wykład prowadzi GODfryd

3.1 Notacja asymptotyczna

- Big-O (O-duże) $f: \mathbb{N} \to \mathbb{R}$
- Big- Ω (Ω -duże) $f: \mathbb{N} \to \mathbb{R}$
- Big- Θ (Θ -duże) $f: \mathbb{N} \to \mathbb{R}$
- Small-o (o-małe) $f: \mathbb{N} \to \mathbb{R}$

3.2 Notacja Big-O

Definition. Notacja Big-O**.** Funkcja $f(n) \in O(g(n))$, gdy:

$$f(n) = O(g(n)) \equiv (\exists c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| \leqslant c \cdot |g(n)|)$$

Przykład: $2n^2 = O(n^3)$, dla $n_0 = 2, c = 1$ definicja jest spełniona.

Pomijamy tutaj stałe - interesuje nas rząd wielkości

$$O(g(n)) = \{ f \in \mathbb{N}^{\mathbb{R}} : \text{f spełnia definicję} \}$$

O(g(n)) jest klasą funkcji, ale jako informatycy możemy zapisywać f=O(g), zamiast $f\in O(g)$. Notacja nie ma symetrii, to znaczy $f=O(g) \nrightarrow g=O(f)$

Fact. Definicja Big-O za pomocą granicy. Możemy zapisać alternatywnie:

$$f(n) = O(g(n)) \equiv \limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \le \infty$$

Uwaga. Jeśli $\lim_{n\to\infty} \left| \frac{f(n)}{g(n)} \right| < \infty$ (istnieje), to:

$$\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right|$$

Przykłady:
$$\begin{cases} f(n) = n^2 \\ g(n) = (-1)^n n^2 \end{cases}$$
 Granica nie istnieje, ale $\limsup = 1$

$$\begin{cases} \frac{f(n)}{g(n)} = \begin{cases} 1, & 2 & | & n \\ \frac{1}{n}, & 2 & | & n \end{cases} \end{cases}$$
Granica nie istnieje.

Fact. Dokładność zapisu Big-O. Pomijamy składniki niższego rzędu jako mniej istotne, ale podkreślamy że istnieją:

$$f(n) = n^3 + O(n^2) \equiv (\exists h(n) = O(n^2)) (f(n) = n^3 + h(n))$$
(12)

Rozważmy następnie stwierdzenie:

$$n^{2} + O(n) = O(n^{2}) \equiv (\forall f(n) = O(n)) \left(\exists h(n) = O(n^{2}) \right) \left(n^{2} + f(n) = h(n) \right)$$
(13)

Rozumiemy to następująco - dodając dowolną funkcję z klasy funkcji liniowych do n^2 otrzymamy funkcję z klasy funkcji kwadratowych.

3.3 Notacja Big- Ω

Definition. Notacja Big- Ω . Funkcja $f(n) \in \Omega(q(n))$, gdy:

$$f(n) = \Omega(g(n)) \equiv (\exists c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| \geqslant c \cdot |g(n)|)$$
(14)

biorąc $c' = \frac{1}{c} > 0$ mamy: $(|g(n)| \le c' \cdot |f(n)|)$, czyli g(n) = O(f(n)). Przykład:

$$2n^2 = O(n^3) \tag{15}$$

$$n^3 = \Omega(2n^2) \tag{16}$$

$$n = \Omega(\log n) \tag{17}$$

Każda funkcja jest Omega od siebie samej.

3.4 Notacja Big- Θ

Definition. Notacja Big- Θ . Funkcja $f(n) \in \Theta(g(n))$, gdy:

$$f(n) = \Theta(g(n)) \equiv (\exists c_1, c_2 > 0) \, (\exists n_0 \in \mathbb{N}) \, (\forall n \ge n_0) \, (c_1 \cdot |g(n)| \le |f(n)| \le c_2 \cdot |g(n)|) \quad (18)$$

Przykład:

$$n^2 = \Theta(2n^2) \tag{19}$$

$$n^3 = \Theta(n^3) \tag{20}$$

$$n^4 + 3n^2 + \log n = \Theta(n^4) \tag{21}$$

Fact. Dokładność zapisu Theta.

$$f(n) = \Theta(g(n)) \equiv f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$
(22)

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)) \tag{23}$$

Rozważmy przypadek patologiczny

$$f(n) = n^{1+\sin\frac{\pi \cdot n}{2}}$$
 $g(n) = n$ (24)

$$f \neq O(g), g \neq O(f) \tag{25}$$

3.5 Notacja small-o

Definition. Notacja small-o. Funkcja $f(n) \in o(g(n))$, gdy:

$$f(n) = o(g(n)) \equiv (\forall c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| < c \cdot |g(n)|)$$

$$(26)$$

Równoważnie:

$$f(n) = o(g(n)) \equiv \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$$
 (27)

Przykład:

$$n = o(n^2) (28)$$

$$n^2 = o(n^3) \tag{29}$$

$$n^3 = o(2^n) \tag{30}$$

3.6 Notacja small- ω

Definition. Notacja small- ω . Funkcja $f(n) \in \omega(g(n))$, gdy:

$$f(n) = \omega(g(n)) \equiv (\forall c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| > c \cdot |g(n)|)$$
(31)

Równoważnie:

$$f(n) = \omega(g(n)) \equiv \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \infty$$
 (32)

Przykład:

$$3.14n^2 + n = O(n^3) = \omega(n) \tag{33}$$

3.7 Metody rozwiązywania rekurencji

- Metoda podstawienia (indukcji) Cormen
- Metoda drzewa rekursji
- Metoda master theorem

3.8 Rozwiązywanie rekurencji

- 1. Zgadnij odpowiedź (wiodący składnik)
- 2. Sprawdź przez indukcję, czy dobrze zgadliśmy
- 3. Wylicz stałe

Information. Historyjka. Dwóch przyjaciół zgubiło się podczas podróży balonem.

- "Gdzie jesteśmy?"
- "W balonie."

Osoba, którą spotkali, była matematykiem.

Odpowiedź była precyzyjna, dokładna i całkowicie bezużyteczna.

3.9 Metoda podstawiania - Metoda dowodu indukcyjnego

Przykład 1. Rozwiążmy równanie rekurencyjne:

$$T(n) = 4T\left(\frac{n}{2}\right) + n \quad T(1) = \Theta(1) \tag{34}$$

Załóżmy, że $T(n) = O(n^3)$ - pokazać, że $T(n) \le c \cdot n^3$. dla dużych n.

- 1. Krok początkowy $T(1) = \Theta(1) \leq c \cdot 1^3 = c$ ok.
- 2. Założmy, że $\forall_{k \leq n} T(k) \leqslant c \cdot k^3$ (zał. indukcyjne, nie $\Theta(k^3)$ chcemy konkretną stałą c)
- 3. $T(n) = 4T\left(\frac{n}{2}\right) + n \le 4c\left(\frac{n}{2}\right)^3 + n = \frac{1}{2}cn^3 + n = cn^3 \frac{1}{2}cn^3 + n \le cn^3$.
- 4. Wystarczy wskazać c,takie że $\frac{1}{2}cn^3-n\geqslant 0,$ np $c\geqslant 2$
- 5. Pokazaliśmy, że $T(n) = O(n^3)$

Załóżmy, że $T(n) = O(n^2)$ - pokazać, że $T(n) \leqslant c \cdot n^2.$ dla dużych n.

- 1. Krok początkowy $T(1) = \Theta(1) \leqslant c \cdot 1^2 = c$ ok.
- 2. Założmy, że $\forall_{k < n} T(k) \leqslant c \cdot k^2$ (zał. indukcyjne)
- 3. $T(n) = 4T(\frac{n}{2}) + n \le 4c(\frac{n}{2})^2 + n = cn^2 + n = cn^2 cn^2 + n \le cn^2$.
- 4. Tego się nie da pokazać nie jest prawdą, że $T(n) = O(n^2)$

Wzmocnijmy zatem założenie indukcyjne:

- 1. $T(n) \leq c_1 n^2 c_2 n$ (zał. indukcyjne)
- 2. $T(n) = 4T(\frac{n}{2}) + n \le 4(c_1 \frac{n^2}{2} c_2 \frac{n}{2}) + n$
- 3. $= c_1 n^2 2c_2 n + n = c_1 n^2 (2c_2 1)n \le$
- $4. \leqslant c_1 n^2 c_2 n$
- 5. Weźmy $c_1 = 1, c_2 = 2$, wtedy $T(n) \le n^2 2n = O(n^2)$

Przykład 2. Weźmy paskudną rekursję $T(n)=2T(\sqrt{n})+\log n$. Załóżmy, że n jest potęgą 2 oraz oznaczny $n=2^m, m=\log_2 n$.

$$T(2^m) = 2T((2^m)^{\frac{1}{2}}) + m \tag{35}$$

Oznaczmy $T(2^m) = S(m)$. Wtedy:

$$S(m) = 2S\left(\frac{m}{2}\right) + m\tag{36}$$

(dobrze znana rekurencja - $S(n) = O(m \log m)$) - patrz Lecture 2. Przejdźmy z powrotem na T, n:

$$T(2^m) = S(m) \tag{37}$$

$$T(2^m) = O(m\log m) \tag{38}$$

$$T(n) = O(\log n \log \log n) \tag{39}$$

Formalnie pokazaliśmy to tylko dla potęg 2 - musielibyśmy jeszcze indukcyjnie to udowodnić.

Kiedy podłogi i sufity mają znaczenie?

4 Lecture IV - Metoda drzewa rekursji

4.1 Metoda drzewa rekursji

W danym węźle wstawiamy koszt operacji. Sumujemy koszty węzłów na danym poziomie.

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + n^2, \quad T(1) = \Theta(1)$$

$$\tag{40}$$

Chcemy sumować koszty na danym poziomie, a potem napisać pełną sumę.

. . .

$$T^*(n) = \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k n^2 = \tag{41}$$

$$=n^2 \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k = \tag{42}$$

$$=n^2 \cdot \left(\frac{1}{1-\frac{5}{16}}\right) = \tag{43}$$

$$=\frac{16}{11}n^2\tag{44}$$

Nie mogłoby być mniej niż n^2 , bo już w pierwszym rzędzie jest n^2 . Nie jest to dokładne, ale dostaliśmy górne ograniczenie.

$$T(n) = O(n^2) \tag{45}$$

Wysokości różnia się o stała:

$$\frac{n}{2^H} = 1 \implies H = \log_2 n \tag{46}$$

$$\frac{n}{4^h} = 1 \implies h = \log_4 n \tag{47}$$

Za chwilę będę dodawał rzeczy, które nie istnieją

Pamiętajmy, że:

$$a^{\log_b n} = n^{\log_b a}$$

$$\hat{T}(n) = \sum_{k=0}^{H = \log_2(n)} \left(\frac{5}{16}\right)^k n^2 = \tag{48}$$

$$= n^2 \sum_{k=0}^{H} \left(\frac{5}{16}\right)^k = \tag{49}$$

$$= n^2 \cdot \frac{1}{11} \left(16 - 5 \left(\frac{5}{16} \right)^{\log_2 n} \right) = \tag{50}$$

$$=\frac{16}{11}n^2 - \frac{5}{11}n^{2-1.67} \tag{51}$$

Rozważmy ograniczenie dolne:

$$\check{T}(n) = \sum_{k=0}^{h=\log_4(n)} \left(\frac{5}{16}\right)^k n^2 = n^2 \frac{1}{11} \left(16 - C \cdot \left(\frac{5}{16}\right)^{\log_4 n}\right)$$
 (52)

Zatem wiemy, że:

$$T(n) = O(\hat{T}(n)) = O(T^*(n))$$
 (53)

$$T(n) = \Omega(\check{T}(n)) \tag{54}$$

$$T(n) = \Theta(n^2) = \frac{16}{11}n^2 + o(n^2)$$
 (55)

4.2 Metoda iteracyjna

$$T(n) = 3T(\left(\frac{n}{4}\right)) + n = \tag{56}$$

$$T(n) = 3\left(3T\left(\left(\frac{n}{16}\right)\right) + \left(\frac{n}{4}\right)\right) + n = 9T\left(\frac{n}{16}\right) + \frac{3}{4}n + n =$$

$$(57)$$

$$T(n) = n + \frac{3}{4}n + 9\left(3T\left(\frac{n}{64}\right) + \frac{n}{16}\right) = \tag{58}$$

$$T(n) = n + \frac{3}{4}n + \frac{9}{16}n + 27T\left(\frac{n}{64}\right) = \tag{59}$$

$$T(n) = n + \frac{3}{4}n + \left(\frac{3}{4}\right)^2 n + \left(\frac{3}{4}\right)^3 n + \dots + 3^j T\left(\frac{n}{4^j}\right) =$$
 (60)

(61)

Wyznaczmy koniec iteracji:

$$\frac{n}{4^j} = 1 \implies j = \log_4 n \tag{62}$$

To jest nic innego jak:

$$\sum_{j=0}^{\log_4 n} \left(\frac{3}{4}\right)^j = O(n) \tag{63}$$

4.3 Master Theorem

Theorem. Master Theorem. Jeśli $T(n) = a \cdot T(\lceil \frac{n}{b} \rceil) + \Theta(n^d)$ dla pewnych stałych a > 0, b > 1, d > 0, oraz $T(1) = \Theta(1)$ to:

$$T(n) = \begin{cases} \Theta\left(n^{d}\right) & \text{jeśli} \quad d > \log_{b} a \\ \Theta\left(n^{d} \log n\right) & \text{jeśli} \quad d = \log_{b} a \\ \Theta\left(n^{log_{b}a}\right) & \text{jeśli} \quad d < \log_{b} a \end{cases}$$

$$\hat{T}(n) = a \cdot \hat{T}\left(\frac{n}{b} + 1\right) + \Theta(n^d) \tag{64}$$

$$\check{T}(n) = a \cdot \check{T}\left(\frac{n}{h}\right) \tag{65}$$

Dowód

wielkość . liczba podproblemów

. . .

koszt na poziomie 'k' = c $(n/b^k)^d$ liczba podproblemów na poziomie 'k' = a^k

suma kosztów 'k'-tym wierszu = c (a/b^d)^k * n^d

Wysokość drzewa rekursji

$$\frac{n}{b^h} = 1 \implies h = \log_b n \tag{66}$$

Zatem:

$$T(n) = \Theta\left(\sum_{k=0}^{\log_b n} \cdot \left(\frac{a}{b^d}\right)^k n^d\right) \tag{67}$$

Mogę wziąć thetę zamiast o, bo dość dokładnie robię - ale trochę nie

$$\sum_{k=0}^{h} q^k = \frac{1 - q^{h+1}}{1 - q} \quad \sum_{k=0}^{h} 1^k = (h+1)$$

$$T(n) = \Theta\left(n^d \sum_{k=0}^{\log_b n} \cdot \left(\frac{a}{b^d}\right)^k\right)$$
(68)

(1) Jeśli $\frac{a}{b^d} < 1$, to:

$$a < b^d \tag{69}$$

$$\log_b(a) < d \quad \text{zatem} \tag{70}$$

$$T(n) = \Theta(n^d) \tag{71}$$

(większość pracy dzieje się z korzenia - okolic korzenia)

(2) Jeśli $\frac{a}{b^d}=1,$ to:

$$a = b^d (72)$$

$$\log_b(a) = d \tag{73}$$

$$T(n) = \Theta(n^d \log n) \tag{74}$$

(suma kosztów w k-tym wierszu - każdy wiersz kontrybuuje równie mocno)

(3) Jeśli $\frac{a}{h^d} > 1$, to:

$$a > b^d \tag{75}$$

$$\log_b(a) > d \tag{76}$$

$$T(n) = \Theta(n^{\log_b a}) \tag{77}$$

(z każdym kolejnym poziomem koszt rośnie - większość złożoności kryje się na dole drzewa rekursji)

Z tego co dzieje się na początku... albo na końcu, bo to może być scalanie Stworzyliście za dużo podproblemów.

Co jeśli rekurencja nie ma $n^d,$ a ma $n\log(n)?$ - możemy przybliżać

Przykład

$$T(n) = 4T\left(\frac{n}{2}\right) + 11n \quad a = 4, b = 2, d = 1$$
 (78)

$$\log_b a = \log_2 4 = 2 > 1 = d \quad \text{to jest przypadek (3)}$$

$$T(n) = \Theta\left(n^{\log_a b}\right) = \Theta\left(n^{\log_2 4}\right) = \Theta\left(n^2\right) \tag{80}$$

Przykład

$$T(n) = 4T\left(\frac{n}{3}\right) + 3n^2 \quad a = 4, b = 3, d = 2$$
 (81)

$$\log_b a = \log_3 4 > 2 = d$$
 to jest przypadek (1) (82)

$$T(n) = \Theta\left(n^d\right) = \Theta\left(n^2\right) \tag{83}$$

Przykład

$$T(n) = 27T\left(\frac{n}{3}\right) + 0.(3)n^3 \quad a = 27, b = 3, d = 3$$
 (84)

$$\log_b a = \log_3 27 = 3 = d \quad \text{to jest przypadek (2)} \tag{85}$$

$$T(n) = \Theta\left(n^d \log n\right) = \Theta\left(n^3 \log n\right) \tag{86}$$

4.4 Divide and Conquer

- 1. Podział problemu na mniejsze podproblemy.
- 2. Rozwiąż rekurencyjnie mniejsze (rozłączne) podproblemy.
- 3. Połącz rozwiązania problemów w celu rozwiązania problemu wejściowego.

4.5 Wyszukiwanie elementów w portowanej tablicy

- Input posortowana tablica A[1..n], element x
- $\bullet\,$ Output indeks itaki, że A[i]=xlub błąd, gdy xnie występuje w A

4.6 Binary search

- 1. if n = 1, A[n] = x return n, else A does not contain x
- 2. porównujemy x z $A[\frac{n}{2}]$
- 3. jeśli $x = A[\frac{n}{2}]$ return $\frac{n}{2}$
- 4. jeśli $x < A[\frac{n}{2}],$ Binary
Search $(A[1..\frac{n}{2}-1],x)$
- 5. jeśli $x>A[\frac{n}{2}],$ Binary
Search $(A[\frac{n}{2}+1..n],x)$

Wy nie patrzcie na pseudokody na tablicy, tylko w książce

$$T(n) = 1 \cdot T\left(\frac{n}{2}\right) + \Theta(1) \tag{87}$$

$$T(n) = \Theta(\log n) \tag{88}$$

5 Lecture V - Divide and Conquer

5.1 Potęgowanie liczby

- $\bullet\,$ Input liczba x,liczba całkowita n
- Output x^n

Bazowo zachodzi n-1 mnożeń x przez siebie. (czyli $\Theta(n)$ operacji)

$$x \cdot x \cdot \dots \cdot x = x^n \tag{89}$$

Zróbmy to sprytniej:

$$x^{n} = \begin{cases} x^{\frac{n}{2}} \cdot x^{\frac{n}{2}} & \text{dla parzystego} \quad n \\ x^{\frac{n-1}{2}} \cdot x^{\frac{n-1}{2}} \cdot x & \text{dla nieparzystego} \quad n \end{cases}$$
(90)

Z liniowej liczby mnożeń zeszliśmy do logarytmicznej liczby mnożeń.

$$T(n) = 1 \cdot T\left(\frac{n}{2}\right) + \Theta(1) \tag{91}$$

$$T(n) = \Theta(\log n) \tag{92}$$

5.2 Wyliczenie *n*-tej liczby Fibonacciego

$$F_n = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F(n-1) + F(n-2), & n > 1 \end{cases}$$
(93)

Normalne wywołanie funkcji to $\Theta(\varphi^n)$

Wykorzystajmy podejście bottom-up, liczymy i zapamiętujmy każdorazowo F_2, F_3, \ldots, F_n Osiągnęliśmy złożoność liniową $\Theta(n)$

Istnieje jednak zwarty wzór na $F(n)=\frac{1}{\sqrt{5}}\left(\frac{\varphi^n+\varphi^n}{2}\right)$ a to możemy policzyć logarytmicznie.

 $\label{thm:constraint} \textit{Tu pojawiajq się liczby - jak one się nazywały - (z sali) niewymierne.}$

Istnieje macierz, która mnożona pozwala na policzenie n-tej liczby Fibonacciego.

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \tag{94}$$

Algorytm używający tego wzoru - połaczony z szybkim potegowaniem, ma złożoność $\Theta(\log n)$.

5.3 Mnożenie Liczb

• Input: x, y (liczby n-bitowe)

• Output: $x \cdot y$

Standardowe mnożenie w słupku to $\Theta(n^2)$ mnożeń i $\Theta(n)$ dodawań. Załóżmy, że n jest parzyste:

$$x = x_L \cdot 2^{\frac{n}{2}} + x_R \tag{95}$$

$$y = y_L \cdot 2^{\frac{n}{2}} + y_R \tag{96}$$

$$x \cdot y = (x_L \cdot 2^{\frac{n}{2}} + x_R) \cdot (y_L \cdot 2^{\frac{n}{2}} + y_R) = \tag{97}$$

$$= x_L \cdot y_L \cdot 2^n + (x_L y_R + x_R y_L) \cdot 2^{\frac{n}{2}} + x_R y_R \tag{98}$$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \tag{99}$$

$$a = 4, b = 2, d = 1 \tag{100}$$

$$\log_b a = \log_2 4 = 2 > 1 = d \tag{101}$$

$$T(n) = \Theta(n^2) \tag{102}$$

Asymptotycznie nie zyskaliśmy nic.

Ten przypadek pokazuje, że czasami nie wystarczy bezmyślnie podzielić a potem scalić.

A co o tym myślał Gauss - tu jest dużo mnożeń - cztery.

$$(a+ib)(c+id) = ac - bd + i(bc+ad)$$

$$(103)$$

$$bc + ad = (a+b)(c+d) - ac - bd$$
 (104)

Zobaczmy, że ac, bd są już policzone wyżej - zamiast 4 mnożeń, mamy 3 mnożenia.

$$x \cdot y = x_L y_L 2^n + ((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) + x_R y_R$$
(105)

Wykonujemy i zapamiętujemy mnożenia $x_L y_L, x_R y_R, (x_L + x_R)(y_L + y_R)$ - zamiast 4 mnożeń, mamy 3 mnożenia.

 $\Theta(n)$ - wynika z przeunięć bitowych oraz dodawań.

$$T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n) \tag{106}$$

$$a = 3, b = 2, d = 1$$
 (107)

$$\log_b a = \log_2 3 > 1 = d \tag{108}$$

$$T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.59}) \tag{109}$$

Najszybszy znany algorytm - na podstawie szybkiej transformaty fouriera $\sim O(n \cdot \log n \cdot \log \log n)$

```
mutiply(x, y)
    n = max {|x|, |y|}
    if n == 1 return x * y
    x_L, x_R = leftmost(ceil(n/2),x), rightmost(floor(n/2),x)
    y_L, y_R = leftmost(ceil(n/2),y), rightmost(floor(n/2),y)

p1 = multiply(x_L, y_L)
    p2 = multiply(x_R, y_R)
    p3 = multiply(x_L + x_R, y_L + y_R)

return p1 << n + (p3 - p1 - p2) << ceil(n/2) + p2</pre>
```

Podobnie możemy mnożyć macierze.

5.4 Mnożenie macierzy

- \bullet Input: A, B n-wymiarowe macierze
- Output: $A \cdot B$

Naiwne mnożenie macierzy wykonuje $\Theta(n^3)$ mnożeń.

Podzielmy macierz na 4 równe częsci:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$
(110)

$$T(n) = 8T\left(\frac{n}{2}\right) + O(n^2) \tag{111}$$

$$T(n) = O(n^3) \tag{112}$$

Znowu nic nie zyskaliśmy. Jesteśmy w stanie wyeliminować jedno mnożenie - osiągając ostatecznie $\Theta(n^{\log_2 7}) \sim \Theta(n^{2.81})$.

Algorytmy state of the art - $\Theta(n^2 \text{polylog}(n))$.

5.5 Quick Sort

Algorytm na podział - scalanie już posortowanych. Pozwala na sortowanie w miejscu.

1. Podziel A[p..q] na dwie tablice: A[p..k-1], pivot, A[k+1..q] takie, że:

$$\forall_{i \in [p..k-1]} A[i] \leq pivot, \forall_{i \in [k+1..q]} A[j] > pivot$$

2. Quicksort
$$(A, p, k - 1)$$

Quicksort $(A, l - 1, q)$

Przykład - weźmy nieposortowaną tablicę:

6 Lecture VI - Quicksort

Rozważmy algorytmy służące do dzielenia tablicy w Quicksorcie

6.1 Lomuto Partition

```
Lomato Partition(A, p, q) # A[p..q]
   pivot = A[p]
    i = p
   for j = p + 1 to q
       if A[j] \le pivot # expensive |A[p..q]| = n, then (n-1) comparisons ~ Theta(n)
           swap (A[i], [j]) # expensive, but if dependent
    swap (A[i], A[p]) # pivot in between A[p..i] and A[i+1..q]
   return i
Α
|*| <= pivot |i| pivot < |j| ? |
We either put the ? element in the '<= pivot' part, or '> pivot' part
| <= pivot | * | pivot < |
                      q
Example
6, 10, 13, 5, 8, 3, 2, 11
* i
swap(5,10)
6, 5, 13, 10, 8, 3, 2, 11
* i
do nothing
6, 5, 13, 10, 8, 3, 2, 11
swap(3, 13)
6, 5, 3, 10, 8, 13, 2, 11
6, 5, 3, 2, 8, 13, 10, 11
* i
                  j
6, 5, 3, 2, 8, 13, 10, 11
```

```
* i j
swap(6, 2)
2, 5, 3, 6, 8, 13, 10, 11
* i j
return i = 3
```

Biorąc pod uwagę, że dokonujemy n-1 porównań, złożoność Lomuto Partition wynosi $\Theta(n).$

6.2 Hoare Partition

```
Hoare Partition(A, p, q) # A[p..q]
    pivot = A[floor((p+q)/2)]
    i = p - 1
    j = q + 1
    while True
        do
            i++
        while A[i] < pivot
        do
            j--
        while A[j] > pivot
        if i \ge j return j
        swap(A[i], A[j])
* - pivot
Example
  6, 10, 13, 5, 8, 3, 2, 11
iр
                                 # swap(6, 2)
  2, 10, 13, 5, 8, 3, 6, 11
i * j
                                 # swap(10, 3)
 2, 3, 13, 5, 8, 10, 6, 11
  2, 3, 13, 5, 8, 10, 6, 11
                                 # swap (13, 5)
  2, 3, 5, 13, 8, 10, 6, 11
```

W Hoare Partition tracimy pivot który może ulec przesunięciu. Porównań robimy więcej o stałą $n\pm c, c=1$. Złożoność $\Theta(n)$ - zdecydowanie mniej swapów, 2-3 razy mniej niż Lomuto partition.

```
QS(A,p,q)
    if p < q
        r = Partition(A,p,q)
        QS(A,p,r-1)
        QS(A,r+1,q)</pre>
```

6.3 Worst Case Analysis for QS

Najgorzej będzie jak każdorazowo będziemy nierówno dzielić po 1-szym elemencie (odwrotnie posortowana tablica).

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
(113)

$$T(n) = T(n-1) + \Theta(n) \le \sum_{i=0}^{n} c(n-i) + \Theta(1) =$$
 (114)

$$= c \sum_{i=0}^{n} (n-i) + \Theta(n) =$$
 (115)

$$= c\frac{(n)(n+1)}{2} + \Theta(n) =$$
 (116)

$$=O(n^2) \tag{117}$$

6.4 Best case Analysis for QS

Najlepiej będzie jak dzielimy na pół.

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + \Theta(n)$$

$$\tag{118}$$

$$T(n) = 2T(\frac{n}{2}) + \Theta(n) \tag{119}$$

$$T(n) = \Theta(n \log n) \tag{120}$$

6.5 Specific case analysis for QS

$$T(n) = T(\frac{n}{10}) + T(\frac{9n}{10}) + \Theta(n)$$
(121)

Po zsumowaniu każde piętro będzie miało koszt cn. Zchodzimy końca wysokości drzewa.

$$\left(\frac{9}{10}\right)^h n = 1\tag{122}$$

$$n = \left(\frac{10}{9}\right)^h \tag{123}$$

$$h = \log_{\frac{10}{9}} n \tag{124}$$

6.6 Best/Worst case analysis for QS - Intuition

$$L(n) = 2U\left(\frac{n}{2}\right) + \Theta(n) \tag{125}$$

$$U(n) = L(n-1) + L(0) + \Theta(n)$$
(126)

(127)

Zatem rozwiążmy układ równań:

$$L(n) = 2(L(\frac{n}{2} - 1) + \Theta(n)) + \Theta(n)L(n) = 2L(\frac{n}{2} - 1) + \Theta(n)L(n) = \Theta(n \log n)$$
 (128)

6.7 Average case analysis for QS

Rozkład T_n nie jest znany do dziś.

$$T_n = \#$$
 porównań elementów sortowanej tablicy, $|A| = n$ (129)

$$X_k(n) = \begin{cases} 1 & \text{jeśli partition podzieli tablicę n-elementową na (k, n-k-1)} \\ 0 & \text{w p.p.} \end{cases}$$
 (130)

$$0 \leqslant k \leqslant n - 1 \tag{131}$$

$$E(X_k) = 1 \cdot P(X_k = 1) + 0 \cdot P(X_k = 0) = 1 \cdot P(X_k = 1) = \frac{(n-1)!}{n!} = \frac{1}{n}$$
 (132)

Zapiszmy wobec tego równanie na T_n

$$T_{n} = ^{distr.} \begin{cases} T_{0} + T_{n-1} + n - 1 & \text{if } (0,\text{n-1}) - \text{split} \\ T_{1} + T_{n-2} + n - 1 & \text{if } (1,\text{n-2}) - \text{split} \\ \vdots & & \\ T_{k} + T_{n-1-k} + n - 1 & \text{if } (k,\text{n-k-1}) - \text{split} \\ T_{n-1} + T_{0} + n - 1 & \text{if } (\text{n-1},0) - \text{split} \end{cases}$$

$$(133)$$

$$T_n = ^{distr.} \sum_{k=0}^{n-1} X_k (T_k + T_{n-k-1} + n - 1)$$
(134)

$$E(T_n) = E\left(\sum_{k=0}^{n-1} X_k (T_k + T_{n-k-1} + n - 1)\right) =$$
(135)

$$E(T_n) = \sum_{k=0}^{n-1} E(X_k(T_k + T_{n-k-1} + n - 1)) =$$
(136)

$$E(T_n) = \sum_{k=0}^{n-1} E(X_k) \cdot E(T_k + T_{n-k-1} + n - 1) =$$
(137)

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} E(T_k) + E(T_{n-k-1}) + n - 1 =$$
(138)

$$E(T_n) = \frac{1}{n} \left(\sum_{k=0}^{n-1} E(T_k) + \sum_{k=0}^{n-1} E(T_{n-k-1}) + \sum_{k=0}^{n-1} n - 1 \right) =$$
 (139)

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} E(T_k) + \frac{1}{n} \sum_{k=0}^{n-1} E(T_{n-k-1}) + \frac{1}{n} \sum_{k=0}^{n-1} n - 1 =$$
 (140)

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} E(T_k) + \frac{1}{n} \sum_{k=0}^{n-1} E(T_{n-k-1}) + n - 1$$
(141)

$$E(T_n) = \frac{2}{n} \sum_{k=0}^{n-1} E(T_k) + n - 1$$
(142)

$$t_n = \frac{2}{n} \sum_{k=0}^{n-1} t_k + n - 1 \quad \text{rekurencja z pełną historią}$$
 (143)

(144)

Możemy usunąć historię pisząc:

$$nt_n = 2\sum_{k=0}^{n-1} t_k + (n-1)n \tag{145}$$

$$(n-1)t_{n-1} = 2\sum_{k=0}^{n-2} t_k + (n-2)(n-1)$$
(146)

$$nt_n - (n-1)t_{n-1} = 2\sum_{k=0}^{n-1} t_k + (n-1)n - 2\sum_{k=0}^{n-2} t_k - (n-2)(n-1)$$
(147)

$$nt_n - (n-1)t_{n-1} = 2t_{n-1} + 2(n-1)$$
(148)

$$nt_n = (n+1)t_{n-1} + 2(n-1) (149)$$

$$\frac{t_n}{n+1} = \frac{t_{n-1}}{n} + 2\frac{n-1}{n(n-1)} \tag{150}$$

$$f_n = f_{n-1} + 2\frac{n-1}{n(n+1)}, f_0, f_1 = 0$$
(151)

$$f_n = 2\sum_{k=1}^n \frac{k-1}{k(k+1)} = \tag{152}$$

$$f_n = 2\sum_{k=1}^n \frac{2}{k+1} - \frac{1}{k} = \tag{153}$$

$$f_n = 4\sum_{k=1}^n \frac{1}{k+1} + 2\sum_{k=1}^n \frac{1}{k} =$$
 (154)

$$f_n = 4(H_{n+1} - 1) + 2H_n (155)$$

$$f_n = 4H_{n+1} + 2H_n - 1 (156)$$

$$f_n = 2H_n - 4 + \frac{4}{n+1} \tag{157}$$

$$E(T_n) = t_n = (n+1)f_n = 2nH_n + 2H_n - 4(n+1) + 4$$
(158)

$$H_n = \ln n + \gamma + \frac{1}{2n} + \Theta\left(\frac{1}{n^2}\right) \tag{159}$$

Widzimy, że wiodący czynnik $T_n=2n\ln n+\Theta(n)$. Wiemy dlaczego QS jest dobry - średnio wykona $2n\ln n$ porównań asymptotycznie.