SKETCH TEMP PROFICES

The plane wall $T(x=0) = T_h$, $T(x=2 + h) = T_c$ The properties $f(x) = T_h$, $f(x=2 + h) = T_c$ The properties $f(x) = T_h$, $f(x=2 + h) = T_c$ The properties $f(x) = T_h$, $f(x=2 + h) = T_c$ Fourier's: $f(x) = T_h$, $f(x=2 + h) = T_c$ Fourier's: $f(x) = T_h$, $f(x=2 + h) = T_c$ Fourier's: $f(x) = T_h$, $f(x=2 + h) = T_c$ $f(x) = T_h$, $f(x) = T_h$ $f(x) = T_h$

MATERIAL A:

$$10 + 660 = 000$$
 $\frac{dU}{dt} = 0$
 $10 + 660 = 000$ $\frac{dV}{dt} = 0$
 $\frac{dV}{dx} = 0$ $\frac{dV}{dx} = 0$

> FROM EQ (1): IF q=const, Ac const, > dT x x

SINCE
$$K_A = 2 \cdot K_B$$
,

$$\frac{dT}{dx} \Big|_{A} = \frac{1}{2} \cdot \frac{dT}{dx} \Big|_{B}$$

$$\frac{dT}{dx} = consT$$

b) PLANEWALL

COND. VARIES, 12(x) = C1x+(2) (1, 62 >0

Fran Fourier's Law:

$$\dot{q} = -\kappa(x)A_c \frac{dT}{dx}$$
 (1)

 $\frac{\dot{q} = -\kappa(x)A_c}{dx} \frac{dT}{dx} (1)$ BY EARLIER PROOF, $\frac{d\dot{q}x}{dx} = 0 \Rightarrow \ddot{q}_x = const$

EQ (1):
$$\frac{dT}{dx} = -\frac{q}{\kappa(x)Ac}$$

SINCE
$$\hat{q}$$
, A_c cons T , $\frac{dT}{dx} \propto -\frac{1}{\kappa(\kappa)}$

$$\Rightarrow \frac{dT}{d\kappa} \propto -\frac{1}{\kappa(\kappa)}$$

EQ (1):
$$\frac{dT}{dr} = -\frac{\hat{q}_r}{rA_c}$$

$$\Rightarrow \frac{dT}{dr} = -\frac{\hat{q}_r}{rA_c}$$

$$q_r, K, L \text{ WAST}$$

$$\dot{q} = -KA \cdot \frac{dT}{dx}$$

$$O = \frac{d}{d\kappa} \left(- KA_c \frac{d\tau}{d\kappa} \right)$$

$$J = \frac{dx}{kA_c} \int \frac{dx}{dx}$$

$$T(x) = -\frac{C_1 x}{kA_c} + C_2$$

$$B(2) = T_{x=24k} = T_{+k}$$

$$T(x=0) = C_2 = T_C$$

$$C = C_1 = C_2$$

$$T(x=2th) = \frac{-2(t+h)}{164c} + T_c = T_H \rightarrow (t-T_c) \times 4c$$

$$= \sqrt{T(x)} = \frac{(T_c - T_c)}{2th} \times + T_c$$

PLANE WALL

$$\hat{q} = -kA_{c}\frac{dT}{dx} = 0$$

f) ron

$$\hat{q} = -\mu \hat{q} \frac{dT}{dr} = 0$$

$$b = 5 cm = 0.05 [m]$$

$$X_{h} = 1 cm = 0.01 cm)$$

$$X_{b} = 4 cm = 0.04 (m)$$

$$A = b /$$

$$\Rightarrow \dot{q} = -KA_c \frac{dT}{dx}$$
 (1)

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} dx$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} dx$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} dx$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} dx$$

$$\mathring{\ell}_{\times} = \mathring{q}_{\times + d\kappa}$$
 : $\frac{d\mathring{q}_{\times}}{d\kappa} = 6$ (2)

(1)
$$\frac{1}{4}(2)$$
: $0 = \frac{d}{dx} \left(-\frac{k}{4} A_{\zeta} \frac{dT}{dx} \right)$

$$A_{\zeta} = \pi (r)^{2} \quad r = \chi \beta$$

$$A_{c} = \pi(r)^{c} \quad r = X$$

$$A_{c} = \pi \beta^{2} x^{2}$$

$$A_{c} = \pi \beta^{2} \times^{2}$$

$$A_{c$$

$$0 = x \frac{d^{2}T}{dx^{2}} + 2\frac{dT}{dx} \rightarrow \int 0 dx = \int \frac{d}{dx} \left(x^{2} \frac{dT}{dx}\right) dx$$

$$C_1 = x^2 \frac{dT}{dx} \Rightarrow \int \frac{dT}{dx} dx = \int \frac{c_1}{x^2} dx$$

$$T(x) = -\frac{C_1}{x} + C_2$$

BC1:
$$T(x=x_0)=T_n$$

BC2: $T(x=x_0)=T_c$

FROM BCI:
$$T(x_0) = \frac{C_1}{x_0} + C_2 = Th$$
 (1)

From BC2:
$$T(x_0) = \frac{C_1}{x_b} + C_2 = T_c$$
 (2)

FROM (1):
$$285[K] = -\frac{C_1}{0.01 \text{ [m]}} + (2 = -100 \text{ C}, + Cz = 285 (3)$$

From (2):
$$80[K] = \frac{C_1}{0.04(M)} + (2 = -25(1 + (2 = 80))$$

FROM (8):
$$(2 = 285 + 100)$$
,

SUB WTO (4): $-25(1 + (285 + 100)) = 80$

La $75(1 = -205)$
 $-3(1 = \frac{41}{15} \approx -2.733$

$$T(x) = \frac{2.733}{x} + 11.667$$

e)
$$\dot{q} = -KA_{c}\frac{dT}{dx}$$

$$\frac{dT}{dx} = -\frac{C_{1}}{x^{2}}$$

$$\frac{dT}{dx} = -\frac{C_{1}}{x^{2}}$$

3)
$$x = x_a$$
 convection $\rightarrow \overline{h}$, T_h

3c EQUATION: $\dot{q}_{conv} = \overline{h} \cdot A_5 \cdot (T_5 - T_\infty)$

EES Ver. 11.663: #100: For use only by Students and Faculty, College of Engineering University of Wisconsin - Madison

\$Load Incompressible

\$UNITSYS SI K Pa J mass rad

"Kyle Adler ME364 HW01"

"givens"

b = 0.05 [m]

x b=0.04 [m]

x_a=0.01[m]

beta = b/x_b

DOIG D//_D

 $T_h = 285 [K]$

 $T_c = 80 [K]$

k=conductivity(Stainless AISI310, T=average(T h,T c))

"calculated by hand"

 $C_1 = -41/15 [1/K-m]$

 $C_2 = 35/3 [1/K]$

"area and dTdx equations"

A = pi#*beta^2*x^2

 $dTdx = -C 1/x^2$

"value for x, qdot does not change with respect to x so any nonzero real value yields same answer"

c = x_a "commented for part f"

"e) heat transfer through support"

q dot = -k*A*dTdx

"f) plot of temp as function of x between x=x a and x=x b"

T=-C 1/x+C 2

SOLUTION

Unit Settings: SI K Pa J mass rad

 $T_h = 285 \text{ [K]}$ x = 0.01 [m] $x_a = 0.01 \text{ [m]}$ $x_b = 0.04 \text{ [m]}$

No unit problems were detected.

KEY VARIABLES

 \dot{q} = -121.7 [W] e) heat transfer through support

