

STUDENT ID NO						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

DCA5068 - FIELD THEORY

(Diploma in Electronic Engineering)

9 MARCH 2018 3:00 PM - 5:00 PM (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 5 pages (4 pages with 4 questions and 1 page for appendix).
- 2. Answer ALL questions. All necessary working steps must be shown.
- 3. Write all your answers in the answer booklet provided.

QUESTION 1 [25 Marks]

- a) Two points are located in a free space. If the coordinates are measured in meter, find the distance from point A (r = 4.4, $\phi = -115^{\circ}$, z = 2) to point B (x = -3.1, y = 2.6, z = -3).

 [6 marks]
- b) In Cartesian coordinate system, vector \vec{A} is directed from point K = (2,7,-5) to point L = (-5,-5,-3) and vector \vec{B} is directed from point M = (0,2,4) to point N = (1,4,5). Find:
 - i) Vector \vec{A} .

[2 marks]

ii) Vector \vec{B} .

[2 marks]

iii) $\vec{A} \times \vec{B}$.

[3 marks]

iv) $|\vec{A}|$ and $|\vec{B}|$.

[2 marks]

v) The angle between \vec{A} and \vec{B} .

[3 marks]

c) Transform the following vector to cylindrical coordinate system at the specified point:

$$\vec{A} = 2\hat{\imath} + \hat{\jmath} + \hat{k}$$
 at P(x = 2, y = 3, z = 4)

[7 marks]

QUESTION 2 [25 Marks]

a) A charge Q_T is located at the origin and acts as a point charge to create an electric field between three other point charges of $Q_1 = 20 \,\mu\text{C}$, $Q_2 = 30 \,\mu\text{C}$ and $Q_3 = 10 \,\mu\text{C}$ which are located at (3,0,5), (-2,0,3) and (2,0,1) respectively. Calculate the electric field strength at Q_T .

[11 marks]

b) By referring to Figure 1 below, calculate the total force, F_T on the point charge placed at the origin (0,0,0).

- c) Three capacitors with the value of 10 μF each are being connected in parallel with a 5 V voltage supply. Calculate:
 - i) The total capacitance, C_T of the circuit.

[2 marks]

ii) The charge stored on each of the capacitor.

[2 marks]

Continued...

QUESTION 3 [25 Marks]

- a) A single circular loop in the plane of the paper lies in a 0.90 T magnetic field pointing into the paper. If the loop's radius changes from 50 cm to 20 cm in 0.70 s, find:
 - i) The direction of the induced current.

[1 mark]

The magnitude of the average induced EMF.

[8 marks]

iii) The average induced current if the coil resistance is 15 Ω .

[2 marks]

b) Calculate the magnitude of the induced EMF in the loop, when 7 Wb/m² magnetic fields is directed perpendicular to the plane of a 150 turns loop, which has a diameter of 0.2 m. The loop is rotated through the 145° in 0.30 s.

[6 marks]

c) According to Faraday's law of induction, what are the factors that affect the magnitude of the induced current?

[3 marks]

d) How to calculate a magnetic field across any closed loop path? Justify your answer.

[2 marks]

e) If a bar magnet is being inserted into a coil of wire that conducts electricity, what is the direction of an induced current? Justify your answer.

[3 marks]

Continued...

QUESTION 4 [25 Marks]

a) Define Magnetomotive Force (MMF).

[3 marks]

b) State three differences between magnetic circuit and electric circuit.

[6 marks]

c) Briefly explain about Eddy currents.

[6 marks]

d) A transformer has a 1:10 voltage ratio. Find the current flow in the secondary winding if the current flow in the primary winding is equal to 60 mA.

[3 marks]

e) Given that the power delivered by the secondary winding is $P_{sec} = 10W$. What is the value of the power delivered by the primary winding P_{pri} in an ideal transformer?

[2 marks]

f) In an ideal transformer configuration, prove the following formula:

$$I_{sec} = \left[\frac{1}{n}\right] I_{pri}$$

[5 marks]

FORMULAE

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to Cylindrical	$r = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{r} = \hat{x}\cos\phi + \hat{y}\sin\phi$ $\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$ $\hat{z} = \hat{z}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_{\phi} = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ $z = z$	$\hat{x} = \hat{r}\cos\phi - \hat{\phi}\sin\phi$ $\hat{y} = \hat{r}\sin\phi + \hat{\phi}\cos\phi$ $\hat{z} = \hat{z}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to Spherical	$R = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}(\sqrt{x^2 + y^2} / z)$ $\phi = \tan^{-1}(y / x)$	$\hat{R} = \hat{x} \sin \theta \cos \phi$ $+ \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta$ $\hat{\theta} = \hat{x} \cos \theta \cos \phi$ $+ \hat{y} \cos \theta \sin \phi - \hat{z} \sin \theta$ $\hat{\phi} = -\hat{x} \sin \phi + \hat{y} \cos \phi$	$A_{R} = A_{x} \sin \theta \cos \phi$ $+ A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ $+ A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$
Spherical to Cartesian	$x = R\sin\theta\cos\phi$ $y = R\sin\theta\sin\phi$ $z = R\cos\theta$	$\hat{x} = \hat{R} \sin \theta \cos \phi$ $+ \hat{\theta} \cos \theta \cos \phi - \hat{\phi} \sin \phi$ $\hat{y} = \hat{R} \sin \theta \sin \phi$ $+ \hat{\theta} \cos \theta \sin \phi + \hat{\phi} \cos \phi$ $\hat{z} = \hat{R} \cos \theta - \hat{\theta} \sin \theta$	$A_x = A_R \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_z = A_R \cos \theta - A_{\theta} \sin \theta$
Cylindrical to Spherical	$R = \sqrt{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{R} = \hat{r} \sin \theta + \hat{z} \cos \theta$ $\hat{\theta} = \hat{r} \cos \theta - \hat{z} \sin \theta$ $\hat{\phi} = \hat{\phi}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_{\theta} = A_r \cos \theta - A_z \sin \theta$ $A_{\phi} = A_{\phi}$
Spherical to Cylindrical	$r = R\sin\theta$ $\phi = \phi$ $z = R\cos\theta$	$\hat{r} = \hat{R}\sin\theta + \hat{\theta}\cos\theta$ $\hat{\phi} = \hat{\phi}$ $\hat{z} = \hat{R}\cos\theta - \hat{\theta}\sin\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

Permittivity of free space, $\varepsilon_o = 8.854 \times 10^{-12} \, F/m$

Permeability of free space, $\mu_o = 4\pi \times 10^{-7} \, T.m \, / \, A$

i/i