## Analog Electronic Circuits Lab (EC2.103, Spring 2023)

TAs: Adithya, Shiva, Swarnim, Deeksha, Nitin, Prasanth; Lab Admin: Prashant Instructor: Prof. Abhishek Srivastava, CVEST, and Prof. P. Ubaidulla, SPCRC

#### Instructions:

- 1. Systematically record all your observations in the lab book (mandatory)
- 2. Save results in USB or take pictures
- 3. Make meaningful tables to summarize your findings and show it to the instructor(s) during the lab session only
- 4. Bring your calculators and DMM (if available)
- 5. Handle equipment carefully and report in case of any incidence
- 6. Enjoy your time in lab and strengthen your understanding about circuits

# Experiment-8 Operational Amplifiers

#### 1. CMOS inverter with feedback

- (a) Consider the circuits shown in Fig. 1, where coupling capacitor  $C_C = 10~\mu\text{F}$ ,  $R_{BIAS} \approx 1~\text{M}\Omega$  (very high value) and  $V_{DD} = 5~\text{V}$ . Use Fig. 1(a) to plot the voltage transfer characteristics ( $V_{OUT}$  vs  $V_{IN}$ ) and identify the valid input output region for the circuit to act as an amplifier. (Hint: use acquire function in DSO by giving a sinusoidal signal of amplitude 5~V at input; slope  $\left|\frac{dv_{out}}{dv_{in}}\right| > 1$ )
- (b) Connect the circuit as shown in Fig. 1(b). Find DC values at drain and gate terminals. Apply a sinusoidal signal  $(v_{in})$  with amplitude 100 mV  $v_{p-p}$  and frequency 1 KHz. Measure the gain by plotting  $v_{in}$  and  $v_{out}$  on DSO. Tabulate the value of gain for different input amplitudes  $(V_{gs})$  200 mV, 300 mV, 400 mV, 500 mV and 600 mV  $V_{p-p}$ . Do you observe any clipping of the output signal as the input is increased? State and explain the reason for the same.



Figure 1: (a) VTC (b) voltage amplifier

#### 2. Characterization of an operational amplifier

As depicted in Figure 2(a), an opamp is a differential amplifier, which has two input terminals non-inverting (IN+) and inverting (IN-). Opamp can amplify the difference between the two inputs. An ideal opamp has very high  $(\infty)$  open loop gain, very large  $(\infty)$  input impedance and small (0) output impedance.

- (a) Realise the circuit given in Figure 2(a), with  $V_{in}=12~\rm V$  peak-to-peak, frequency = 100 Hz, offset 0 V from the function generator,  $V_{DD}=10~\rm V$ ,  $V_{SS}=-10~\rm V$  (refer to opamp pin diagram in figure 3(b) for making connections). Probe the input and output nodes and observe the voltage transfer characteristic (VTC) using acquire function in DSO.
- (b) Connect the inverting and non-inverting terminals as shown in 2(b). Probe the output node using DSO and observe the output. Ideally, you should see 0 V at the output because input difference is 0 V. However, due to opamp imperfection (DC offset), you might observe some voltage at the output. Can you adjust input voltages such that  $V_{OUT}$  becomes zero. Show the setup and results.



Figure 2: Opamp open loop characteristics (b) offset measurement

#### 3. Non-inverting amplifier



Figure 3: a) Schematic of non-inverting amplifier and b) UA741 pin diagram

Consider the circuit shown in Fig. 3(a). Output is fed back to inverting terminal (IN-) at input through a resistor divider. This is called negative feedback. Due to the very high gain of the opamp, **in negative feedback**, voltages at inverting and non-inverting terminal become equal and hence they are considered as virtually shorted (no current flows between IN+ and IN- but voltages are same)

(a) Derive the gain of the non-inverting amplifier shown in Figure 3 (a).

(b) Realise the circuit given in Figure 3 (a), with  $V_{in}=250$  mV peak-to-peak, frequency = 5 kHz from the function generator,  $V_{DD}=12$  V,  $V_{SS}=-12$  V (refer to the pin diagram for making connections). Connect the resistors  $R_1$  and  $R_2$  according to Table 1 and note the gain obtained in each case. Compare the values with the calculated gain.

Table 1

| $R_1$ | $R_2$  | $V_{out}$ | Calculated Gain | Obtained Gain= $\frac{V_{out}}{V_{in}}$ |
|-------|--------|-----------|-----------------|-----------------------------------------|
| 10 kΩ | 10 kΩ  |           |                 |                                         |
| 10 kΩ | 4.7 kΩ |           |                 |                                         |

(c) Calculate  $R_1$  and  $R_2$  values to obtain gain of 4 and 5. Fill in Table 2 with  $v_{out}$  and gain obtained from circuit. Verify through measurements and report plots.

Table 2

| Expected Gain | $R_1$ | $R_2$ | $V_{out}$ | Obtained Gain= $\frac{V_{out}}{V_{in}}$ |
|---------------|-------|-------|-----------|-----------------------------------------|
| 4             |       |       |           |                                         |
| 5             |       |       |           |                                         |

(d) Now, remove  $R_1$  and  $R_2$  and connect  $V_{out}$  to the inverting input terminal directly. Report the gain and comment on possible uses of this circuit?

### 4. Inverting amplifier



Figure 4: Inverting amplifier

- (a) Derive the gain of the inverting amplifier shown in Figure 4.
- (b) Realise the circuit given in Figure 4, with  $V_{in}=250$  mV peak-to-peak from the function generator,  $V_{DD}=12$  V,  $V_{SS}=-12$  V (refer to the pin diagram for making connections). Connect the resistors  $R_1$  and  $R_2$  according to Table 3 and note the gain obtained in each case. Compare the values with the calculated gain.

Table 3

| 1  | $R_1$              | $R_2$                 | $V_{out}$ | Calculated Gain | Obtained Gain= $-\frac{V_{out}}{V_{in}}$ |
|----|--------------------|-----------------------|-----------|-----------------|------------------------------------------|
| 10 | $\mathbf{k}\Omega$ | 10 kΩ                 |           |                 |                                          |
| 10 | kΩ                 | $4.7 \text{ k}\Omega$ |           |                 |                                          |

(c) Find  $R_1$  and  $R_2$  values to obtain gain of 4 and 5 using the expression derived and fill in Table 4 with  $V_{out}$  and gain obtained from circuit.

Table 4

| Expected Gain | $R_1$ | $R_2$ | $V_{out}$ | Obtained Gain=- $\frac{V_{out}}{V_{in}}$ |
|---------------|-------|-------|-----------|------------------------------------------|
| 4             |       |       |           |                                          |
| 5             |       |       |           |                                          |