Trust-Region Methods

Oswin Krause, NO, 2022

KØBENHAVNS UNIVERSITET

Last-Week: Line-Search based Gradient Descent

- 1. Set $m(p) = f(x) + p^T \nabla f(x)$
- 2. Pick $p = -\nabla f(x)$
- 3. Find α such, that $f(x + \alpha p)$ fulfills Wolfe conditions
- 4. Set $x \to x + \alpha p$ and go to 1.

This week: Trust-Region Newton (Idea)

- 1. Set $m(p) = f(x) + p^T \nabla f(x) + \frac{1}{2} p^T \nabla^2 f(x) p$ (second order Taylor)
- 2. $p = \min_{p'} m(p')$ such, that $\|p\| \leq \Delta$
- 3. Adjust Δ based on how well m(p) approximates f(x+p)
- 4. If f(x+p) sufficiently better than f(x)4.1 Set $x \rightarrow x + p$
- 5. Go to 1.

Adapting Δ

- In Trust-Region algorithms, the trust-region replaces the line-search.
- Δ represents the radius in which we trust our model to approximate the function sufficiently well.
- We need to adapt Δ if our model under-performed in the past

$\rho(p)$ a measure for model quality

$$\rho = \underbrace{\frac{f(x) - f(x + p)}{m(0) - m(p)}}_{\text{Expected decrease}}$$

- Expected decrease should always be positive: we solve for the minimum.
- $\rho < 0$: Model predicts decrease where function increases.
- $\rho \approx 1$: Model approximates function well
- But: $\rho = 1$ is not a good target for adapting Δ
 - Too small steps.
 - Goal: adapt Δ such that it prevents bad steps $(\rho \lesssim 0)$ but does not shorten good steps.

$\rho(p)$ a measure for model quality

Adapting $\rho(p)$

```
1: function ADJUSTTRUSTREGION(\Delta, \rho, ||p||)
      if \rho < 1/4 then
                                                                     \Delta \leftarrow 1/4\Delta

⊳ shrink region

3:
      else if \rho > 3/4 and \|p\| = \Delta then
                                                     ▷ if a good step wants to leave the region
4.
           \Delta \leftarrow \min(2\Delta, \Delta_{\max})
                                                                                  ▷ increase region
5.
       end if
6.
7:
       return \Delta

    b otherwise do nothing

8: end function
```

The Trust-Region Problem

We need to solve the trust-region problems

$$\min_{oldsymbol{p} \in \mathbb{R}^n} f + oldsymbol{g}^T oldsymbol{p} + rac{1}{2} oldsymbol{p}^T B oldsymbol{p}$$
 s.t. $\|oldsymbol{p}\| \leq \Delta$

Here, f, g, B are parameters of the local model approximation, for example

- f = f(x) function-value
- $g = \nabla f(x)$ gradient
- $B = \nabla^2 f(x)$ Hessian

How do these problems look like?

Trust-Region Problem: Positive Definite Hessian

Trust-Region Problem: Positive Definite Hessian, Large Radius

Trust-Region Problem: Indefinite Hessian

- Approach 1: Cauchy Point
 - Find the optimum of m in direction $p^{C} = -\alpha g$
 - Good: Cheap, Simple, line-search.
 - Bad: We could as well just do a line-search on f instead.

- Approach 1: Cauchy Point
 - Find the optimum of m in direction $p^{C} = -\alpha g$
 - Good: Cheap, Simple, line-search.
 - Bad: We could as well just do a line-search on f instead.
- Approach 2: Dog-Leg
 - Define a path that first goes through p^{C} and then towards optimum $p^{N} = -B^{-1}g$
 - Good: At least as much progress as Cauchy, and might get as good as Newton step.
 - Bad: Newton step only defined for positive definite Hessian.

- Approach 1: Cauchy Point
 - Find the optimum of \emph{m} in direction $\emph{p}^{\textit{C}} = -\alpha \emph{g}$
 - Good: Cheap, Simple, line-search.
 - Bad: We could as well just do a line-search on f instead.
- Approach 2: Dog-Leg
 - Define a path that first goes through p^C and then towards optimum $p^N = -B^{-1}g$
 - Good: At least as much progress as Cauchy, and might get as good as Newton step.
 - Bad: Newton step only defined for positive definite Hessian.
- Approach 3: Two-Dimensional Subspace minimization
 - $\min_{\alpha,\beta} m(\alpha p^C + \beta p^N)$, such, that $\|\alpha p^C + \beta p^N\| \leq \Delta$
 - Good: At least as good as Dog-Leg and still easy to compute
 - Bad: Also requires PD Hessian

- Approach 1: Cauchy Point
 - Find the optimum of m in direction $p^{C} = -\alpha g$
 - Good: Cheap, Simple, line-search.
 - Bad: We could as well just do a line-search on f instead.
- Approach 2: Dog-Leg
 - Define a path that first goes through p^{C} and then towards optimum $p^{N} = -B^{-1}g$
 - Good: At least as much progress as Cauchy, and might get as good as Newton step.
 - Bad: Newton step only defined for positive definite Hessian.
- Approach 3: Two-Dimensional Subspace minimization
 - $\min_{\alpha,\beta} m(\alpha p^C + \beta p^N)$, such, that $\|\alpha p^C + \beta p^N\| \leq \Delta$
 - Good: At least as good as Dog-Leg and still easy to compute
 - Bad: Also requires PD Hessian
- Can we find a solution that works for indefinite Hessians?

Intuition: Solving the Trust-Region Problem

• An infeasible solution p has $||p|| > \Delta$

Intuition: Solving the Trust-Region Problem

- An infeasible solution p has $||p|| > \Delta$
- Idea: Add penalisation term based on $||p||^2 = p^T p$

Intuition: Solving the Trust-Region Problem

- An infeasible solution p has $||p|| > \Delta$
- Idea: Add penalisation term based on $\|p\|^2 = p^T p$
- Adapt model:

$$\hat{m}(p) = m(p) + \frac{\lambda}{2} p^{T} p$$

- Does this idea work?
 - Clearly: Steps must become shorter as λ increases
 - if m has indefinite hessian, a large λ can give positive curvature.
 - Which $\lambda > 0$ leads to the right solution?
 - Is this the global optimum?

Penalized solution paths: Indefinite Hessian

KØBENHAVNS UNIVERSITET

After Visualisation: Might this be correct?

- In both examples, our set of solutions seemed to have passed through the optimum
- We will show, the global optimum lies on this set.

The core Theorem of this algorithm

Theorem (4.1)

Let

$$\min_{p \in \mathbb{R}^d} f + g^T p + \frac{1}{2} p^T B p$$

$$s.t. ||p|| \le \Delta$$

The vector p is a global solution of the optimization problem if and only if p is feasible and there is a scalar $\lambda > 0$ such, that the following conditions are satisfied:

$$(B + \lambda I)p^* = -g$$
 $\lambda \cdot (\|p^*\| - \Delta) = 0$ $(B + \lambda I)$ is positive semi-definite

Complementary condition

• We call

$$\lambda \cdot (\|\boldsymbol{p}^*\| - \Delta) = 0$$

A complementary Condition

Complementary condition

We call

$$\lambda \cdot (\|\mathbf{p}^*\| - \Delta) = 0$$

A complementary Condition

- This can only be fulfilled, if
 - Either, $\lambda = 0$
 - Or $\|p^*\| = \Delta$
 - Both might hold simultaneously under rare conditions.
- The book uses a theorem from chapter 12 to proof Theorem 4.1. We will provide an elementary proof for a slightly weaker version.

Theorem (4.1, (weak))

Let

$$\min_{p \in \mathbb{R}^n} f + g^T p + \frac{1}{2} p^T B p$$

$$s.t. ||p|| \le \Delta$$

such that for the eigenvector q_n of the smallest eigenvalue λ_n of B, either $\lambda_n > 0$ or $g^T q_n \neq 0$.

The vector p is a global solution of the optimization problem if and only if p is feasible and there is a scalar $\lambda \geq 0$ such, that the following conditions are satisfied:

$$(B + \lambda I)p^* = -g$$
 $\lambda \cdot (\|p^*\| - \Delta) = 0$ $(B + \lambda I)$ is positive **definite**

The pair p^* , λ is the unique global optimum.

Step 1: Show that if a feasible pair (λ, p^*) exists that fulfills the three conditions, then p^* is a solution of the optimization problem.

Step 1: Show that if a feasible pair (λ, p^*) exists that fulfills the three conditions, then p^* is a solution of the optimization problem.

Step 1.1: Show that p^* is the minimum of the penalized model:

$$\hat{m}(p) = m(p) + \frac{\lambda}{2} p^{\mathsf{T}} p = f + g^{\mathsf{T}} p + \frac{1}{2} p^{\mathsf{T}} (B + \lambda I) p$$

Step 1: Show that if a feasible pair (λ, p^*) exists that fulfills the three conditions, then p^* is a solution of the optimization problem.

Step 1.1: Show that p^* is the minimum of the penalized model:

$$\hat{m}(p) = m(p) + \frac{\lambda}{2} p^{\mathsf{T}} p = f + g^{\mathsf{T}} p + \frac{1}{2} p^{\mathsf{T}} (B + \lambda I) p$$

The gradient is given by $\nabla \hat{m}(p) = g + (B + \lambda I)p$

Step 1: Show that if a feasible pair (λ, p^*) exists that fulfills the three conditions, then p^* is a solution of the optimization problem.

Step 1.1: Show that p^* is the minimum of the penalized model:

$$\hat{m}(p) = m(p) + \frac{\lambda}{2} p^{\mathsf{T}} p = f + g^{\mathsf{T}} p + \frac{1}{2} p^{\mathsf{T}} (B + \lambda I) p$$

The gradient is given by $\nabla \hat{m}(p) = g + (B + \lambda I)p$

Inserting p^* fulfilling condition $(B + \lambda I)p^* = -g$ leads to

$$\nabla \hat{m}(p^*) = g + (B + \lambda I)p^* = g - g = 0$$

Step 1: Show that if a feasible pair (λ, p^*) exists that fulfills the three conditions, then p^* is a solution of the optimization problem.

Step 1.1: Show that p^* is the minimum of the penalized model:

$$\hat{m}(p) = m(p) + \frac{\lambda}{2} p^{T} p = f + g^{T} p + \frac{1}{2} p^{T} (B + \lambda I) p$$

The gradient is given by $\nabla \hat{m}(p) = g + (B + \lambda I)p$

Inserting p^* fulfilling condition $(B + \lambda I)p^* = -g$ leads to

$$\nabla \hat{m}(p^*) = g + (B + \lambda I)p^* = g - g = 0$$

Since $(B + \lambda I)$ is positive definite, p^* is the unique minimizer of \hat{m} .

Step 1.2: Show that p^* is global optimum of the original problem.

Step 1.2: Show that p^* is global optimum of the original problem.

Let $p \neq p^*$ with $||p|| \leq \Delta$. Since p^* is optimum of \hat{m} it holds

Step 1.2: Show that p^* is global optimum of the original problem.

Let $p \neq p^*$ with $||p|| \leq \Delta$. Since p^* is optimum of \hat{m} it holds

$$\hat{m}(p) - \hat{m}(p^*) > 0$$

$$m(p) - m(p^*) + \frac{\lambda}{2} (p^T p - (p^*)^T p^*) > 0$$

$$m(p) > m(p^*) + \frac{\lambda}{2} ((p^*)^T p^* - p^T p)$$

Step 1.2: Show that p^* is global optimum of the original problem.

Let $p \neq p^*$ with $||p|| \leq \Delta$. Since p^* is optimum of \hat{m} it holds

$$\hat{m}(p) - \hat{m}(p^*) > 0$$

$$m(p) - m(p^*) + \frac{\lambda}{2} (p^T p - (p^*)^T p^*) > 0$$

$$m(p) > m(p^*) + \frac{\lambda}{2} ((p^*)^T p^* - p^T p)$$

By complementary condition (2), $\lambda \cdot (\|\mathbf{p}^*\| - \Delta) = 0$.

Step 1.2: Show that p^* is global optimum of the original problem.

Let $p \neq p^*$ with $||p|| \leq \Delta$. Since p^* is optimum of \hat{m} it holds

$$\hat{m}(p) - \hat{m}(p^*) > 0$$

$$m(p) - m(p^*) + \frac{\lambda}{2} (p^T p - (p^*)^T p^*) > 0$$

$$m(p) > m(p^*) + \frac{\lambda}{2} ((p^*)^T p^* - p^T p)$$

By complementary condition (2), $\lambda \cdot (\|p^*\| - \Delta) = 0$. We have one of

•
$$\lambda = 0 \Rightarrow m(p) > m(p^*)$$

Step 1.2: Show that p^* is global optimum of the original problem.

Let $p \neq p^*$ with $||p|| \leq \Delta$. Since p^* is optimum of \hat{m} it holds

$$\hat{m}(p) - \hat{m}(p^*) > 0$$

$$m(p) - m(p^*) + \frac{\lambda}{2} (p^T p - (p^*)^T p^*) > 0$$

$$m(p) > m(p^*) + \frac{\lambda}{2} ((p^*)^T p^* - p^T p)$$

By complementary condition (2), $\lambda \cdot (\|p^*\| - \Delta) = 0$. We have one of

- $\lambda = 0 \Rightarrow m(p) > m(p^*)$
- $\|p^*\| = \Delta \Rightarrow m(p) > m(p^*) + \underbrace{\frac{\lambda}{2}}_{\geq 0} \underbrace{(\Delta^2 p^T p)}_{\geq 0}$

Step 1.2: Show that p^* is global optimum of the original problem.

Let $p \neq p^*$ with $||p|| \leq \Delta$. Since p^* is optimum of \hat{m} it holds

$$\hat{m}(p) - \hat{m}(p^*) > 0$$

$$m(p) - m(p^*) + \frac{\lambda}{2} (p^T p - (p^*)^T p^*) > 0$$

$$m(p) > m(p^*) + \frac{\lambda}{2} ((p^*)^T p^* - p^T p)$$

By complementary condition (2), $\lambda \cdot (\|p^*\| - \Delta) = 0$. We have one of

- $\lambda = 0 \Rightarrow m(p) > m(p^*)$
- $\|p^*\| = \Delta \Rightarrow m(p) > m(p^*) + \underbrace{\frac{\lambda}{2}}_{\geq 0} \underbrace{(\Delta^2 p^T p)}_{\geq 0}$

This shows Step 1 as $m(p) > m(p^*)$.

Proof: Intermezzo

Where are we?

- We have shown that if a pair p^*, λ exists, p^* is a solution of our penalized model.
- Further, p^* is the global optimum of the original problem
- We still need to show, that
 - Each problem can be solved by our penalization approach.
 - The solution is unique.

Step 2: Show that for all $\Delta > 0$ a unique pair λ, p^* exists, $\lambda > 0$, p^* feasible, that fulfills all three conditions.

Step 2: Show that for all $\Delta > 0$ a unique pair λ, p^* exists, $\lambda > 0$, p^* feasible, that fulfills all three conditions.

Lets have a look at the conditions

• Third condition, $B + \lambda I$ is PD

Step 2: Show that for all $\Delta > 0$ a unique pair λ, p^* exists, $\lambda > 0$, p^* feasible, that fulfills all three conditions.

- Third condition, $B + \lambda I$ is PD
 - Fulfilled for $\lambda > -\lambda_n$, where λ_n smallest eigenvalue of B

Step 2: Show that for all $\Delta > 0$ a unique pair λ, p^* exists, $\lambda > 0$, p^* feasible, that fulfills all three conditions.

- Third condition, $B + \lambda I$ is PD
 - Fulfilled for $\lambda > -\lambda_n$, where λ_n smallest eigenvalue of B
- First condition $(B + \lambda I)p^* = -g$

Step 2: Show that for all $\Delta > 0$ a unique pair λ, p^* exists, $\lambda > 0$, p^* feasible, that fulfills all three conditions.

- Third condition, $B + \lambda I$ is PD
 - Fulfilled for $\lambda > -\lambda_n$, where λ_n smallest eigenvalue of B
- First condition $(B + \lambda I)p^* = -g$
 - Can always be found from λ that fulfills third condition.

Step 2: Show that for all $\Delta > 0$ a unique pair λ, p^* exists, $\lambda > 0$, p^* feasible, that fulfills all three conditions.

- Third condition, $B + \lambda I$ is PD
 - Fulfilled for $\lambda > -\lambda_n$, where λ_n smallest eigenvalue of B
- First condition $(B + \lambda I)p^* = -g$
 - Can always be found from λ that fulfills third condition.
- Second condition $\lambda \cdot (\|p\| \Delta) = 0, \ \lambda \ge 0$
 - This and feasibility of p^* requires some work.

Step 2.1: Define λ -Path

 p^* is a function depending on λ :

$$p^*(\lambda) = -(B + \lambda I)^{-1}g$$

Step 2.1: Define λ -Path

 p^* is a function depending on λ :

$$p^*(\lambda) = -(B + \lambda I)^{-1}g$$

Let λ_i eigenvalues of B with eigenvectors q_i . Then

$$\|p^*(\lambda)\|^2 = \sum_{i=1}^n (q_i^T g)^2 \frac{1}{(\lambda_i + \lambda)^2}$$

Step 2.2: Need to show existence of solution:

- Case 1: *B* is PD
 - Either $\|p^*(0)\| \leq \Delta \Rightarrow$ unconstrained optimum is feasible
 - Or $\|p^*(\lambda)\| = \Delta$, for some $\lambda > 0 \Rightarrow$ we can find feasible p^*

Step 2.2: Need to show existence of solution:

- Case 1: *B* is PD
 - Either $\|p^*(0)\| \leq \Delta \Rightarrow$ unconstrained optimum is feasible
 - Or $\|p^*(\lambda)\| = \Delta$, for some $\lambda > 0 \Rightarrow$ we can find feasible p^*
- Case 2: B is not PD
 - Unconstrained optimum does not exist (due to our weaker condition $q_n^T g \neq 0$)
 - $\|p^*(\lambda)\| = \Delta$, for some $\lambda > -\lambda_n$

Step 2.2, Case 1: B PD.

Step 2.2, Case 1: *B* PD.

- $p^*(0) = -(B + \lambda I)^{-1}g = -B^{-1}g$ exists and is minimizer of m
- If $\|p^*(0)\| > \Delta$

Step 2.2, Case 1: *B* PD.

- $p^*(0) = -(B + \lambda I)^{-1}g = -B^{-1}g$ exists and is minimizer of m
- If $\|p^*(0)\| > \Delta$

Limit of $p^*(\lambda)$ as $\lambda \to \infty$:

$$\|p^*(\lambda)\|^2 = \sum_{i=1}^n (q_i^T g)^2 \frac{1}{(\lambda_i + \lambda)^2} \xrightarrow{\lambda \to \infty} 0$$

Step 2.2, Case 1: *B* PD.

- $p^*(0) = -(B + \lambda I)^{-1}g = -B^{-1}g$ exists and is minimizer of m
- If $\|p^*(0)\| > \Delta$

Limit of $p^*(\lambda)$ as $\lambda \to \infty$:

$$\|p^*(\lambda)\|^2 = \sum_{i=1}^n (q_i^T g)^2 \frac{1}{(\lambda_i + \lambda)^2} \xrightarrow{\lambda \to \infty} 0$$

Easy to show: $\|p^*(\lambda)\|^2$ continuous and strictly monotonous decreasing for $\lambda > 0$

Step 2.2. Case 1: *B* PD.

- $p^*(0) = -(B + \lambda I)^{-1}g = -B^{-1}g$ exists and is minimizer of m
- If $\|p^*(0)\| > \Delta$

Limit of $p^*(\lambda)$ as $\lambda \to \infty$:

$$\|\boldsymbol{\rho}^*(\lambda)\|^2 = \sum_{i=1}^n (\boldsymbol{q}_i^T \boldsymbol{g})^2 \frac{1}{(\lambda_i + \lambda)^2} \xrightarrow{\lambda \to \infty} 0$$

Easy to show: $\|p^*(\lambda)\|^2$ continuous and strictly monotonous decreasing for $\lambda > 0$

 \rightarrow there exists a unique λ with $\|p^*(\lambda)\| = \Delta$

- $\|p^*(0)\| < \Delta$
 - Unconstrained optimum is feasible.
 - Since $\|p^*(\lambda)\|^2$ is monotonous decreasing, this solution is unique.

Step 2.2, Case 2: B not PD.

Step 2.2: Case 2:B not PD.

- We have $\lambda_i + \lambda > 0$ for $\lambda > -\lambda_n$ and $q_n^T g \neq 0$ by assumption.
- Limit $\lambda \to \infty$

$$\|\boldsymbol{p}^*(\lambda)\|^2 \xrightarrow{\lambda \to \infty} 0$$

Step 2.2: Case 2:B not PD.

- We have $\lambda_i + \lambda > 0$ for $\lambda > -\lambda_n$ and $q_n^T g \neq 0$ by assumption.
- Limit $\lambda \to \infty$

$$\|\boldsymbol{p}^*(\lambda)\|^2 \xrightarrow{\lambda \to \infty} 0$$

• Limit $\lambda \to -\lambda_n$

$$\|p^*(\lambda)\|^2 = \underbrace{\sum_{i=1}^{n-1} (q_i^T g)^2 \frac{1}{(\lambda_i + \lambda)^2}}_{>0} + \underbrace{(q_n^T g)^2}_{>0} \underbrace{\frac{1}{(\lambda_n + \lambda)^2}}_{\rightarrow 0} \xrightarrow{\lambda \rightarrow -\lambda_n} \infty$$

Step 2.2: Case 2:B not PD.

- We have $\lambda_i + \lambda > 0$ for $\lambda > -\lambda_n$ and $q_n^T g \neq 0$ by assumption.
- Limit $\lambda \to \infty$

$$\|\boldsymbol{p}^*(\lambda)\|^2 \xrightarrow{\lambda \to \infty} 0$$

• Limit $\lambda \to -\lambda_n$

$$\|p^*(\lambda)\|^2 = \underbrace{\sum_{i=1}^{n-1} (q_i^T g)^2 \frac{1}{(\lambda_i + \lambda)^2}}_{>0} + \underbrace{(q_n^T g)^2}_{>0} \underbrace{\frac{1}{(\lambda_n + \lambda)^2}}_{>0} \xrightarrow{\lambda \to -\lambda_n} \infty$$

• $\|p^*(\lambda)\|^2$ continuous and monotonous decreasing for $\lambda > -\lambda_n$ leads to the result.

What is missing to the full Theorem?

Are there cases, which are not covered?

- There can be problems where the optimal solution is not unique due to $q_n^T g = 0$.
- The book calls this "the hard case"
- There is an assignment about this.

How to find λ ?

- We have shown a suitable λ exists under very broad conditions!
- How can we find it?
- Two approaches:
 - Bisection algorithm (see theoretical assignment)
 - Book gives another approach to quickly find λ

How to check correctness of solution?

- Once we found p^* , λ how do we know our solution is correct?
- Check, whether Theorem 4.1 holds!