

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General Purpose & High Capacitance

Class 2, X7R

6.3 V TO 50 V 100 pF to 22 μF

RoHS compliant & Halogen Free

YAGEO Phícomp

SCOPE

This specification describes X7R series chip capacitors with leadfree terminations.

APPLICATIONS

PCs, Hard disk, Game PCs DVDs, Video cameras Mobile phones Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

XXXX X X X7R X BB XXX (1) (2) (3)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $J = \pm 5\%$ (1)

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

NOTE

1. Tolerance $\pm 5\%$ is not available for full product range, please contact local sales force before ordering

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig.I.

DIMENSION

Table I For outlines see fig. 2

TVDF	(mama)	\ \ \(\(\(\(\) \) \)	T (MM)	$L_2 / L_3 $ (mm)		L ₄ (mm)
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03	=	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	=	0.15	0.30	0.40
0603	1.6 ±0.10 ⁽¹⁾ 1.6 ±0.15 ⁽²⁾	0.8 ±0.10 ⁽¹⁾ 0.8 ±0.15 ⁽²⁾		0.20	0.60	0.40
0805	2.0 ±0.10 ⁽¹⁾ 2.0 ±0.20 ⁽²⁾	1.25 ±0.10 ⁽¹⁾ 1.25 ±0.20 ⁽²⁾	Refer to	0.25	0.75	0.55
1206	3.2 ±0.15 ⁽¹⁾ 3.2 ±0.30 ⁽²⁾	1.6 ±0.15 ⁽¹⁾ 1.6 ±0.20 ⁽²⁾	table 2 to 4	0.25	0.75	1.40
1210	3.2 ±0.20 ⁽¹⁾ 3.2 ±0.40 ⁽²⁾	2.5 ±0.20 ⁽¹⁾ 2.5 ±0.30 ⁽²⁾	-	0.25	0.75	1,40
1812	4.5 ±0.20 ⁽¹⁾ 4.5 ±0.40 ⁽²⁾	3.2 ±0.20 ⁽¹⁾ 3.2 ±0.40 ⁽²⁾	-	0.25	0.75	2.20

OUTLINES

- 1. Dimension for size 0603, C < 2.2 μ F; 0805 to 1812, C \leq 100nF
- 2. Dimension for size 0603, $C = 1 \mu F$; 50V; 0805 to 1812, C > 100 nF

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 2 Sizes from 0201 to 0402

YAGEO Phicomp

CAP.	0201	01 10 0 102				0402				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
100 pF										
150 pF										
220 pF										
330 pF					0.3±0.03					
470 pF										
680 pF										
1.0 nF	0.3±0.03	0.3±0.03	0.3±0.03	0.3±0.03						
1.5 nF										
2.2 nF										0.5±0.05
3.3 nF						0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	
4.7 nF										
6.8 nF										
10 nF										
15 nF										
22 nF										
33 nF										
47 nF										
68 nF										
100 nF										0.5±0.05
150 nF										
220 nF						0.5±0.05	0.5±0.05	0.5±0.05		
330 nF										
470 nF						0.5±0.05	0.5±0.05			
680 nF										
Ι.0 μF						0.5±0.05				
2.2 µF										
4.7 µF										
ΙΟ μF										
22 µF										

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 3 Sizes from 0603 to 0805

CAP.	0603					0805				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
100 pF										
150 pF					,					
220 pF										
330 pF										
470 pF										
680 pF										
1.0 nF										
I.5 nF										
2.2 nF						0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
3.3 nF										
4.7 nF					0.8±0.1					
6.8 nF				0.8±0.1						
I0 nF	0.8±0.1	0.8±0.1	0.8±0.1	U.0±U.1						
I5 nF	0.0±0.1	0.0±0.1								
22 nF										
33 nF										
47 nF										
68 nF						0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1
100 nF						0,00 = 011	0,00 _ 01.	0,00 _ 01.	0,00=01.	
150 nF										
220 nF										
330 nF										
470 nF										1.25±0.2
680 nF									1.25±0.2	
Ι.0 μF					0.8±0.15	1.25±0.2	1.25±0.2	1.25±0.2	1120_012	
2.2 µF										
4.7 µF										
ΙΟ μF										
22 µF										

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 4 Size 1206

1206 CAP.

C/ ti .	6.3 V	10 V	16 V	25 V	50 V
100 pF					
150 pF					
220 pF					
330 pF					
470 pF					
680 pF					
I.O nF					
I.5 nF					
2.2 nF					
3.3 nF					
4.7 nF					0.85±0.1
6.8 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	
IO nF					
15 nF					
22 nF					
33 nF					
47 nF					
68 nF					
100 nF					
150 nF					0.85±0.1 / 1.15±0.1
220 nF					
330 nF				0.85±0.1 / 1.15±0.1	0.85±0.1
470 nF				0.85±0.1	1.0±0.1
680 nF					
Ι.Ο μΕ	1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1	
2,2 μF					1.6±0.2
4.7 µF			1.6±0.2	1.6±0.2	
10 μF	1.6±0.2	1.6±0.2			
22 µF					
47 µF					

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering
- 4. Please contact local sales force for special ordering code before ordering

CAPACITANCE RANGE & THICKNESS FOR X7R

 labl	e :	٠ ١	Sizes	trom	12	10	to	181	12

YAGEO Phicomp

CAP.	1210					1812
	6.3 V	10 V	16 V	25 V	50 V	50 V

	6.3 V	10 V	16 V	25 V	50 V	50 V
100 pF						
150 pF						
220 pF						
330 pF						
470 pF						
680 pF						
1.0 nF						
I.5 nF						
2.2 nF						
3.3 nF						
4.7 nF						
6.8 nF						
I0 nF						
15 nF					0.85±0.1	0.85±0.1
22 nF	0.05.10.1	0.05.10.1	0.05.10.1	0.05.10.1		0.85±0.1
33 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1		
47 nF						
68 nF						
100 nF						
150 nF						
220 nF					1.15±0.1	1.15±0.1
330 nF						
470 nF	1.15.01	1.15.0.1	1.15.0.1	1.15.10.1		
680 nF	1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1	1.25±0.2	17103
Ι.0 μF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		1.6±0.2
2,2 µF					1.9±0.2	
4.7 µF	1.9±0.2	1.9±0.2	1.9±0.2	1.9±0.2	25.02	
10 μF					2.5±0.3	
22 µF	25.02	25.02	2.5±0.2	2,5±0,2		
47 µF	2.5±0.2	2.5±0.2				

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering
- 4. Please contact local sales force for special ordering code before ordering

THICKNESS CLASSES AND PACKING QUANTITY

_	_			
7	Га	h	le	6

CIZE	TI II CIVA IFCC	TARE VAURETIA	Ø180 MM	/7 INCH	Ø330 MM	/ 13 INCH	OLIANITITY
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH – QUANTITY PER REEL	Paper	Blister	Paper	Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1200	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
_	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
_	0.85 ±0.1 mm	8 mm		4,000		10,000	
_	1.15 ±0.1 mm	8 mm		3,000		10,000	
_	1.15 ±0.15 mm	8 mm		3,000		10,000	
-	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
_	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
_	1.15 ±0.15 mm	I2 mm		3,000			
_	1.25 ±0.2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
1000	1.5 ±0.1 mm	I2 mm		2,000			
_	1.6 ±0.2 mm	I2 mm		2,000		8,000	
	2.0 ±0.2 mm	I2 mm		2,000			
_	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
_	1.15 ±0.1 mm	I2 mm		1,000			
_	1.25 ±0.2 mm	I2 mm		1,000			
1812	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

ELECTRICAL CHARACTERISTICS

YAGEO, Phicomp

X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

-	Table	7
1		•

DESCRIPTION								VALUE
Capacitance range							100 p	F to 47 µF
Capacitance tolerance							±5%, ±1	0%, ±20%
Dissipation factor (D.F.	.)							
	≤ 10 V	47pF ≤ 020	I ≤ I0nF	100 _P F ≤	0402 ≤ 100nF	100 _P F	≤ 0603 ≤ IµF	≤ 5%
		150pF ≤ 08	05 ≤ 2.2µF	220 pF ≤	1206 ≤ 2.2μF	2.2nF ≤	≤ 1210 ≤ 2.2µF	= 370
		Exception:	220nF≤ 04	02 ≤470nF	$0603 = 2.2 \mu F$	=	0805 ≥ 4.7 μF	≤ 10%
			1206 ≥ 4.7	μF	4.7µF≤ 1210	≤47µF	0201 ≥ 12 nF	
			0402 = I µl	F				≤ 12.5%
	16 V	47 pF≤ 020	I ≤I.2nF	I00 _P F≤	0402 ≤22nF	100 _P F	≤ 0603 ≤470nF	≤ 3.5%
		150 pF≤ 08	05 ≤560nF	220 _P F≤ I	206 ≤IµF	2.2nF≤	1210 ≤1µF	
		Exception:	I.5 nF≤ 02	.01 ≤10nF	27nF ≤ 0402	≤I00nF	680 nF≤ 0805 ≤2.2µF	≤ 5%
			1206 = 2.2	μF	2.2µF ≤ 1210) ≤10 μF	470 nF< 0603 ≤1uF	
			0402 = 220	0 nF	4.7 μF≤ 0805	5≤I0µF	$4.7\mu F \le 1206 \le 10\mu F$	≤ 10%
			1210 = 22	μF				
	25 V	47 _P F ≤ 020	I ≤ 470pF	100 _P F :	≤ 0402 ≤ 10nF	100)pF ≤ 0603 ≤39nF	≤ 2.5%
		150pF ≤ 08	05 ≤ 180nF	220 _P F :	≤ 1206 ≤ 680nl	F 2.2	nF≤ 1210 ≤1µF	
		Exception:	12 nF ≤ 04	02 ≤ 47nF	47nF ≤ 0603	≤220nF	220nF≤ 0805 ≤560 nF	≤ 3.5%
			1206 = Ιμ	F				
			560pF ≤ 02	201 ≤10nF	56 nF≤ 0402	≤100 nF	$680 nF \le 0805 \le I \mu F$	≤ 5%
			1206 = 2.2	μF	2.2µF ≤ 1210) ≤10 μF		
			270nF ≤ 06	603 ≤IuF	$2.2uF \le 0805$	5 ≤ 4.7uF	1206 ≥ 4.7uF	≤ 10%
			1210 ≥ 2	2uF				
	≥ 50 V							≤ 2.5%
		Exception:	020 I ≥47 _I	pF	IμF ≥1206 ≥	:680nF		≤ 3.5%
			0603 ≥47n	F	47nF≥ 0402	≥I2 nF	470nF≥ 0805 ≥330 nF	≤ 3.0%
			0402=100r	ηF	0805=680 nF			≤ 5%
			0603 ≥IµF		0805 ≥ IµF		I 206 ≥ 2.2μF	≤ 10%
			1210 ≥ 2.2	μF				
Insulation resistance aft	ter I minut	e at U _r (DC)		R	$k_{\text{ins}} \ge 10 \text{ G}\Omega \text{ or }$	$R_{ins} \times C_r$	≥ 500(100) seconds which	ever is less
Maximum capacitance of	_		mperature					
(temperature character	ristic/coeffic	ient):						±15%
Operating temperature	range:						−55 °C to	+125 °C

Surface-Mount Ceramic Multilayer Capacitors General Purpose & High Cap. X7R 6.3 V to 50 V

SOLDERING RECOMMENDATION

_	_			_
	2	h	Δ	×

SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 1210
METHOD	0402	0603	0603	1200	2 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 9 Test procedures and requirements

TEST	TEST METI	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance (1)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing $f=1$ KHz for $C \le 10$ µF, rated voltage >6.3 V, measuring at voltage 1 V_{rms} at 20 °C $f=1$ KHz, for $C \le 10$ µF, rated voltage ≤ 6.3 V, measuring at voltage 0.5 V _{rms} at 20 °C $f=120$ Hz for $f=120$ Hz	Within specified tolerance
voltage V_{rms} at 20 °C $f=$ KHz, for C \leq 10 μ F, rated voltage \leq 6 voltage 0.5 V_{rms} at 20 °C		At 20 °C, 24 hrs after annealing f = 1 KHz for C \leq 10 μ F, rated voltage $>$ 6.3 V, measuring at voltage 1 V _{rms} at 20 °C f = 1 KHz, for C \leq 10 μ F, rated voltage \leq 6.3 V, measuring at	In accordance with specification	
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification

NOTE:

1. For individual product specification, please contact local sales.

Surface-Mount Ceramic Multilayer Capacitors | General Purpose & High Cap. | X7R | 6.3 V to 50 V

Class2:

Class2:

X7R: Δ C/C: ±15% Y5V: ∆ C/C: 22~-82%

<High Capacitance series>

X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%

TEST TEST METHOD PROCEDURE REQUIREMENTS <General purpose series> IEC 60384-Capacitance shall be measured by the steps shown in the Temperature Class I: 21/22 following table. Characteristic Δ C/C: ± 30 ppm

The capacitance change should be measured after 5 min at each specified temperature stage.

Step	Temperature(°C)	
a	25±2	
b	Lower temperature±3°C	
С	25±2	
d	Upper Temperature±2℃	
е	25±2	

(I) Class I

Temperature Coefficient shall be calculated from the formula as below

Temp, Coefficient =
$$\frac{C2 - C1}{C1 \times \Delta T} \times 10^6$$
 [ppm/°C]

C1: Capacitance at step c

C2: Capacitance at 125°C

 ΔT : 100°C(=125°C-25°C)

(2) Class II

Capacitance Change shall be calculated from the formula as below

$$\Delta C = \frac{C2 - C1}{C1} \times 100\%$$

C1: Capacitance at step c

C2: Capacitance at step b or d

4.7 A force applied for 10 seconds to the line joining the Adhesion

terminations and in a plane parallel to the substrate

Force

size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N

Bond Strength

4.8 Mounting in accordance with IEC 60384-22 paragraph

> Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm

No visible damage

<General Purpose series>

 Δ C/C Class2:

X7R: ±10%

<High Capacitance series>

 $\Delta C/C$ Class2:

X7R: ±10%

Surface-Mount Ceramic Multilayer Capacitors | General Purpose & High Cap. | X7R | 6.3 V to 50 V

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering Heat		4.9	Precondition: 150 +0/-10 °C for I hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			Preheating: for size >1206: 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	<general purpose="" series=""> ΔC/C Class2: X7R: ±10% <high capacitance="" series=""></high></general>
				ΔC/C Class2: X7R: ±10%
			-	D.F. within initial specified value R _{ins} within initial specified value
Solderability	IEC 60384- 21/22	4.10	Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			Test conditions for lead containing solder alloy Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: I Test conditions for lead-free containing solder alloy Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: I	
Rapid Change of Temperature		4.11	Preconditioning I50 +0/-10 °C for I hour, then keep for	No visual damage
			24 ±1 hours at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature Recovery time 24 ±2 hours	<general purpose="" series=""> ΔC/C Class2: X7R: ±15% <high capacitance="" series=""> ΔC/C Class2: X7R: ±15%</high></general>
			-	D.F. meet initial specified value R _{ins} meet initial specified value

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Damp Heat with U _r Load	IEC 60384- 21/22	4.13	1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage after recovery
			24 ±1 hour at room temp	<general purpose="" series=""></general>
			2. Initial measure:	ΔC/C
			Spec: refer to initial spec C, D, IR	Class2:
			3. Damp heat test:	X7R: ±15%
			500 \pm 12 hours at 40 \pm 2 °C;	D.F.
			90 to 95% R.H. I.O U _r applied	Class2:
			4. Recovery:	X7R: ≤ 16V: ≤ 7%
			Class 2: 24 ±2 hours	≥ 25V: ≤ 5%
			5. Final measure: C, D, IR	R _{ins}
			D0 161	Class2:
			P.S. If the capacitance value is less than the	$X7R: \ge 500 \text{ M}\Omega \text{ or } R_{\text{ins}} \times C_r \ge 25s$
			minimum value permitted, then after the other measurements have been made the capacitor	whichever is less
			shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	<high capacitance="" series=""></high>
				ΔC/C
				Class2:
				X7R: ±20%
				D.F.
				Class2:
				X7R: 2 × initial value max
				R _{ins}
				Class2:
				X7R: 500 M Ω or $R_{ins} \times C_r \ge 25s$
				whichever is less

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
TEST Endurance	TEST METHOD IEC 60384- 4.14 21/22	PROCEDURE 1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: X7R: 125 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 × U _r for general products Applied 1.5(1.0) × U _r for high cap. products 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR	REQUIREMENTS No visual damage <pre> <general purpose="" series=""> $\Delta C/C$ Class2: $\times 7R: \pm 15\%$ D.F. Class2: $\times 7R: \le 16V: \le 7\%$ $\ge 25V: \le 5\%$ R_{ins} Class2:</general></pre>
		P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	\times 7R: \geq 1,000 M Ω or R _{ins} \times C _r \geq 50s whichever is less <high capacitance="" series=""> $\Delta C/C$ Class 2: \times7R: \pm20% D.F. Class 2: \times7R: 2 \times initial value max R_{ins} Class 2: \times7R: 1,000 MΩ or R_{ins} \times C_r \geq 50(10)s whichever is less</high>
Voltage Proof	IEC 60384- 4.6	Specified stress voltage applied for 1~5 seconds Ur ≦ 100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 10	Jul. 08, 2014	-	- Dimension updated
Version 9	Aug. 19, 2013	-	- Dimension updated
Version 8	Oct 13, 2011	-	- Dimension updated
Version 7	Jan 13, 2011	-	- Dimension updated
Version 6	Oct 13, 2010	-	- Rated voltage of 0201 extend to 50 V
			- Capacitance range of 0201 X7R 6.3V to 16V extend to 100 pF
			- Capacitance range of 0805 X7R 10V extend to 10 μF
			- Capacitance range of 0805 X7R 50V extend to 1 µF
			- Capacitance range of 1210 X7R 10V extend to 22 μF
			- Figures of impedance ESR updated
Version 5	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated
Version 4	Apr 21, 2010	-	- The statement of "Halogen Free" on the cover added
			- Dimension updated
Version 3	Oct 26, 2009	-	- Capacitance range of 0402 X7R 25 V extend to 100 nF
Version 2	May 11, 2009	-	- Product range updated
Version I	Apr 24, 2009	-	- Ordering code updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X7R series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: X7R_10V_9, X7R_16V-to-100V_9, X7R_16-to-500V_9, UP-X5R_X7R_HighCaps_6.3-to-25V_11, UY-X5R_X7R_HighCaps_6.3-to-25V_11
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NP0X5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated

