Correzione del primo compitino di strutture discrete

April 24, 2008

Exercise 1. Dimostrare che per ogni numero intero $n \geq 3$ risulta

$$n^4 > 9n^2 + n - 4$$

Solution 1. Procediamo per induzione su n. Il caso base, n=3, va bene perché $3^4>9\cdot 3^2+3-4$. Chiaramente abbiamo che

$$(n+1)^4 = n^4 + 4n^3 + 6n^2 + 4n + 1$$

 \mathbf{e}

$$9(n+1)^2 + (n+1) - 4 = 9n^2 + 18n + 9 + n + 1 - 4$$

Assumiamo ora che la disequazione

$$n^4 > 9n^2 + n - 4 \tag{1}$$

valga per un certo n > 3. Per concludere l'induzione dobbiamo mostrare che

$$n^4 + 4n^3 + 6n^2 + 4n + 1 > 9n^2 + 18n + 9 + n + 1 - 4$$

Per l'ipotesi induttiva, è sufficente dimostrare che

$$4n^3 + 6n^2 + 4n + 1 > 18n + 10$$
 (2)

che è una disequazione piú semplice di (1).

Riscriviamo (2) come segue

$$4n^3 + 6n^2 > 14n + 9$$
 (3)

Chiaramente $4n^3+6n^2>6n^2$ per ogni n>0. Quindi per dimostrare (3) basta dimostrare

$$6n^2 > 14n + 9$$
 (4)

per n > 3. La disequazione (4) si può riscrivere come

$$6n^2 - 14n - 9 > 0 (5)$$

Con qualche semplice passaggio di algebra elementare si scopre che la più piccola soluzione intera positiva alla disequazione (5) è proprio n=3 e che tutti i numeri maggiori di 3 sono anch'essi soluzioni.

Exercise 2. Dimostrare, ragionando per induzione su k, che per ogni $k \in \mathbb{N}$, se $n \geq k$ allora

$$2^k + \sum_{i=k}^n 2^i = 2^{n+1}$$

Solution 2. Il caso base è k=0. In questo caso dobbiamo dimostrare che

$$1 + \sum_{i=0}^{n} 2^{i} = 2^{n+1} \quad (1)$$

Possiamo procedere per induzione su n. Il caso base, n=0, va bene. Assumiamo ora che la formula sia verificata per un certo n>0.

$$1 + \sum_{i=0}^{n+1} 2^{i} = 1 + \sum_{i=0}^{n} 2^{i} + 2^{n+1}$$

$$= 2^{n+1} + 2^{n+1}, \text{ per ip. ind.},$$

$$= 2 \cdot 2^{n+1}$$

$$= 2^{n+2}$$

Procediamo ora con il passo induttivo e supponiamo che (1) sia vera per un certo k>0. Vogliamo dimostrare che

$$2^{k+1} + \sum_{i=k+1}^{n} 2^{i} = 2^{n+1}$$

dove $n \ge k + 1$.

$$\begin{array}{rcl} 2^{k+1} + \sum_{i=k+1}^n 2^i & = & 2^k + 2^k + \sum_{i=k}^n 2^i - 2^k \\ & = & 2^k + 2^{n+1} - 2^k \; , \; \mathrm{per \; ip. \; ind.}, \\ & = & 2^{n+1} \end{array}$$

Exercise 3. Sia $S = \{2^n \mid n \in \mathbb{N}\}$ e definiamo l'insieme $\mathcal{F}(S)$ delle parti finite di S ponendo:

$$\mathcal{F}(S) = \{ X \in \mathcal{P}(S) \mid X \text{ finito } \}$$

Dimostrare che la funzione

$$\beta: \mathcal{F}(S) \to \mathbb{N}$$

definita da

$$\beta(X) = \sum_{a \in X} a$$

è biiettiva. Dedurne che $|\mathcal{F}(\mathbb{N})| < |\mathcal{P}(\mathbb{N})|$.

Solution 3. La suriettività di β corrisponde al fatto (ben noto in informatica) che ogni numero naturale può essere codificato come una stringa di bit. Infatti ogni numero $n \in \mathbb{N}$ può essere convertito in binario. Chiaramente l'insieme $X = \{2^m \mid 1 \text{'m-esimo bit è uguale a 1}\}$ è finito ed è tale che $\beta(X) = m$.

L'iniettività di β corrisponde al fatto (anche questo ben noto) che tale codifica è unica. Siano $X = \{2^{a_1}, \dots, 2^{a_n}\}, Y = \{2^{b_1}, \dots, 2^{b_m}\} \in \mathcal{F}(S)$ e supponiamo $\beta(X) = \beta(Y)$. Dimostriamo che $\{a_1, \dots, a_n\} = \{b_1, \dots, b_m\}$. Possiamo assumere che

$$a_1 < \cdots < a_n \in b_1 < \cdots < b_m$$

Supponiamo per assurdo che $X \neq Y$. Vi sono tre casi possibili

(Caso 1: $a_n < b_m$) In tal caso abbiamo

$$\sum_{i=1}^{m} 2^{b_i} \ge 2^{b_m} \ge 2^{a_n+1} > \sum_{j=1}^{a_n} 2^j \ge \sum_{i=1}^{n} 2^{a_i}.$$

Quindi $\beta(X) > \beta(Y)$. Assurdo.

(Caso 2: $a_n > b_m$) Come il caso 1.

(Caso 3: $a_n = b_m$) In tal caso ripetiamo il ragionamento su a_{n-1}, b_{m-1} , e così via. Man mano che retrocediamo vedremo che i casi 1 e 2 sono sempre contraddittori.

Exercise 4. Sia $S = \{1, 2, 3, 4, 8, 8, 72\}$. Definiamo la relazione $\prec \subseteq S \times S$

$$x \prec y$$
 sse $y \mid x$

Dimostrare che (S, \prec) è un ordine parziale. Dire se (S, \prec) è un reticolo e, in caso affermativo, se è distributivo.

Solution 4. Abbiamo che 72 \prec 8 \prec 4 \prec 2 \prec 1 e 72 \prec 9 \prec 3 \prec 1. (S, \prec) è un reticolo ma non è un reticolo distributivo, in quanto contiene un sottoreticolo isomorfo al reticolo $(\{a,b,c,d,e\}, \sqsubset)$, dove $a \sqsubset b \sqsubset c \sqsubset e$ e $a \sqsubset d \sqsubset e$.