Linear Algebra
Linear Independence
June 2018
Dr P Kathirgamanathan

Revision — in the context of LU factorisation.

Systems of linear equations do not always have a single solution.

For a 3x3 system we can represent the solution to a system with intersecting planes in 3D.

Case 1 – Unique solution:

This is the simple case where the 3 planes intersect at a point – giving a single solution.

Example

$$\begin{bmatrix} 2 & -1 & 3 \\ -8 & 3 & -8 \\ -2 & -2 & 7 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 5 \\ -18 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 5 \\ -18 \\ -1 \end{bmatrix}$$

Case 1 – Unique solution:

This is the simple case where the 3 planes intersect at a point – giving a single solution.

Example

$$L\mathbf{y} = \mathbf{b} \qquad \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -18 \\ -1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -2 \end{bmatrix}$$

Case 1 – Unique solution:

This is the simple case where the 3 planes intersect at a point – giving a single solution.

Example

$$U\mathbf{x} = \mathbf{y} \quad \Rightarrow \begin{bmatrix} 2 & -1 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$

Case 2 – Infinite solutions:

The three planes intersect along a line.

This gives an infinite number of solutions to the system.

- Case 2 Infinite solutions:
- Example

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ \hline 0 & 0 & 0 \end{bmatrix} \qquad L\mathbf{y} = \mathbf{b} \implies \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

- Case 2 Infinite solutions:
- Example

$$U\mathbf{x} = \mathbf{y} \qquad \Rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ \hline 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ \hline 0 \end{bmatrix}$$

consistent

2 equations (top 2 rows) in 3 unknowns (x_1 , x_2 , x_3).

This gives an infinite number of solutions to the system.

Case 3 – No solution:

In this case, there is no point at which all 3 planes intersect.

This corresponds to the intersecting lines being parallel.

This system is known as being inconsistent.

- Case 3 No solution:
- Example

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ \hline 0 & 0 & 0 \end{bmatrix} \qquad L\mathbf{y} = \mathbf{b} \implies \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ \hline -1 \end{bmatrix}$$

- Case 3 No solution:
- Example

inconsistent

This system cannot be solved, i.e. no solutions!

Rank of a matrix

The rank of a matrix is the number of non-zero rows in U.

If the rank of a square matrix is the same as the number of rows, we say that the matrix is of full rank.

A full rank matrix has a unique solution.

Example – Rank of a matrix

The matrix in Case 1 was:

$$A = L U
\begin{bmatrix} 2 & -1 & 3 \\ -8 & 3 & -8 \\ -2 & -2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & -2 \end{bmatrix}$$

- U has no zero rows, therefore A is of full rank, i.e. rank=3.
- Therefore, the system has a unique solution.

Example – Rank of a matrix

The matrix in Case 2 is:

- U has one zero row.
- Therefore, the A matrix has rank = 2, i.e. A is not of full rank.
- Therefore, system has no unique solution.

Determined and free variables

- For engineering applications, we usually expect the solution of a system to be unique.
- That means that each of the variables has a unique value – they are determined variables.
- However, if there is not a unique solution, then some variables will be expressed in terms of another group variables.
- The second group of variables do not have unique values – they are the free variables.

Determined and free variables

Look at the example system from

Linear combinations and (in)dependence of vectors

Linear combinations of vectors

A linear combination of the vectors:

$${\bf a}_1, {\bf a}_2, \dots, {\bf a}_n$$

is a sum of scalar multiples of the vectors:

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{b}$$

Linear combinations of vectors: graphical examples

Linear combinations:

$$1.\mathbf{a}_1 + 1.\mathbf{a}_2 = \mathbf{b}_1$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\frac{1}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 = \mathbf{b}_2$$

$$\frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

General form in 2D:
$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 = \mathbf{b}$$

or:
$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{b}$$
 $A\mathbf{x} = \mathbf{b}$

Linear combinations of vectors

A linear combination of the vectors:

$${\bf a}_1, {\bf a}_2, \dots, {\bf a}_n$$

is a sum of scalar multiples of the vectors:

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{b}$$

We can write this as a system of equations:

$$A\mathbf{x} = \mathbf{b}$$
 where $A = [\mathbf{a}_1 | \mathbf{a}_2 | \dots | \mathbf{a}_n]$

So, for a given solution vector x:
 b is a linear combination of the columns of A

Linear dependence of vectors

We say that the vectors: a₁, a₂,..., a_n are *linearly dependent* if:

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{0}$$

for some $x_i \neq 0$

This implies that one vector can be expressed in terms of the others, e.g.:

$$\mathbf{a}_1 = -(x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 + \dots + x_n \mathbf{a}_n) / x_1$$
 for $x_1 \neq 0$

 a_1 depends on the other columns

Linear dependence of vectors: graphical examples

Linear dependence:

$$\mathbf{a}_2 = 2.\mathbf{a}_1 \qquad \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$2.\mathbf{a}_1 + (-1).\mathbf{a}_2 = 0$$

General form in 2D:

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = 0$$

or:
$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $A\mathbf{x} = \mathbf{0}$

The only solution to $x_1\mathbf{a}_1+x_3\mathbf{a}_3=\mathbf{0}$ is when $x_1=x_3=0$ So we cannot express \mathbf{a}_3 in terms of \mathbf{a}_1

i.e. \mathbf{a}_1 and \mathbf{a}_3 are linearly independent.

Linear dependence of vectors

Test for vector dependence by making the vectors the columns of a matrix:

$$A = [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \dots \mid \mathbf{a}_n]$$

and looking for non-zero solutions to:

$$A\mathbf{x} = \mathbf{0}$$

- If there exists a solution where any x_i is not zero, the vectors are *linearly dependent*.
- Conversely, if the only solution is x = 0 then the vectors are linearly independent.

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

We can see by inspection that the columns are related, e.g.

$$\mathbf{a}_1 = \mathbf{a}_2 + \mathbf{a}_3$$
 i.e. A has linearly dependent columns (and rows)

or
$$(1)\mathbf{a}_1 + (-1)\mathbf{a}_2 + (-1)\mathbf{a}_3 = \mathbf{0}$$

i.e.
$$A\mathbf{x} = \mathbf{0}$$
 with $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \neq \mathbf{0}$

Does the A matrix in Case 2 have linearly independent columns?

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix} \implies \mathbf{U} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Solve:
$$A\mathbf{x} = \mathbf{0}$$

$$L\mathbf{y} = \mathbf{0} \qquad \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Does the A matrix in Case 2 have linearly independent columns?

$$U\mathbf{x} = \mathbf{y} \quad \Rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \Rightarrow \mathbf{x} = \begin{bmatrix} -\frac{2}{3}x_3 \\ \frac{4}{3}x_3 \\ x_3 \end{bmatrix}$$

e.g. choose
$$x_3 = 3$$
 $\Rightarrow \mathbf{x} = \begin{bmatrix} -2 \\ 4 \\ 3 \end{bmatrix}$ (choose anything except zero)

Does the A matrix in Case 2 have linearly independent columns? X no!

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix} \qquad \mathbf{A}\mathbf{X} = \mathbf{0} \qquad \Rightarrow \mathbf{x} = \begin{bmatrix} -2 \\ 4 \\ 3 \end{bmatrix}$$

$$x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2} + x_{3}\mathbf{a}_{3} = \mathbf{0}$$

$$-2\mathbf{a}_{1} + 4\mathbf{a}_{2} + 3\mathbf{a}_{3} = \mathbf{0} \qquad \mathbf{a}_{3} = \frac{2}{3}\mathbf{a}_{1} - \frac{4}{3}\mathbf{a}_{2}$$

$$-2\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 4\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} + 3\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} = \frac{2}{3}\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - \frac{4}{3}\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$

linearly dependent!

linear combination

Linear dependence – Properties of square matrices

Columns of A are linearly	independent	dependent
Rows of A are linearly	independent	Dependent
Solutions for $A\mathbf{x} = \mathbf{b}$	One unique	Many solutions or no solution
Rank of A	Full rank	Rank < number of rows
det(A)	≠ 0	= 0
Does A ⁻¹ exist?	Yes	No
Is A singular?	No	Yes

Key points: LU factorisation and properties of matrices

- Know how to compute the solution of A when rank is less then the number of rows
 - If RHS value is 0 then there are infinitely many solutions; we can give the general form.
 - If RHS value is not zero, then there is no solution
- The vectors a_i are linearly dependent if:

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{0}$$
 with some $x_i \neq 0$

We can get the components in x by inspection, or by solving

$$A\mathbf{x} = \mathbf{0}$$

Exercises

Determine whether the following sets of vectors are linearly dependent or linearly independent:

Determine whether the rows of the following matrices are linearly dependent or linearly independent.

(a)
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & -1 & 2 \\ 3 & 0 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 2 & 1 & 2 \\ -1 & 2 & 1 \\ 2 & -1 & 1 \end{bmatrix}$$