

S-t cut: A cut (5, VS) 5, t. 565 & t6 VS

capacity of a cut:

$$C(S) = C(S, VS) = \sum_{u \in S} \sum_{v \in S} C(u,v)$$

$$(= capacity of eclyss leaving S)$$

I met plan f across the cut:

$$f(S) = f(S, VS) = \sum_{u \in S} \sum_{v \in S} f(u,v)$$

Note:

$$f(S) \leq C(S) \text{ for any flow}$$

$$(by feasilibity)$$

Minimum s-t cut problem; Given $G = (V, E, S, t, c)$,

$$find an s-t cut of minimum capacity$$

Claim: For any s-t cut S, and any flan f

(Powed last time)

$$|f| = f(S)$$

If S^* is a minimum s-t cut and f^* is a max flan,

then $F^* = |f^*| = f^*(S^*) \stackrel{(S)}{\leq} C(S^*)$

Usek duality of flows & s-t cuts

[Mass in Lecture 3]

	How to find a max Plou?
	Residual network: Gp = (V, Ep, s, t, Cp) of flow f in network G
	-> residual capacities
	$C_{\theta}(u,v) = C(u,v) - f(u,v)$
	(= has much extra met u-> v flor can re directly send)
	Note: By feasibility of f, O < Cp (u,v) < c(u,v) + c(v,u),
	-> edge (u,u) & Eq whenever cp (u,u) > 0 Captures the
	(discords saturated, edges) pushing some
	Augmenting path = directed s-+ path in Gp Plas " back".
	-> Can be used to push additional flow on such path P up to (residual) bottlemeck capacity
	(i.e., after the push
	$C_{\mathbf{p}}(\mathbf{p}) = \min_{(\mathbf{u}, \mathbf{v}) \in \mathbf{p}} (\mathbf{u}, \mathbf{v})$ $(\mathbf{u}, \mathbf{v}) \in \mathbf{p} \text{(if incress by C_{\mathbf{p}}(\mathbf{u}))}$
	Note: Cp(P)>0 since Gp contains only
	edges with positive co
	Also: If f is an s-t plas in G& _ f + f is an s-t plas in G&
	Also: If f is an s-t plas in G& => f + f is an s-t plas in G& => 1++f' = f + f'
	Ford-Fulkerson alg. [1956]
	1000 700 the second the second to the
	Just keep in creasing the plas with alignmenting perks
	A(g.: -> f(u,u) & 0 min zero flow) iteration!
Each ite	dea: Just keep increasing the plas with augmenting paths Alg: -> f(u,u) & 0 will zero plas) restion (-> While an augmenting path P exists in Gp: (as f change E) time (Augment f along P (increasing the value by Cp(P)) -> Output f
(via DE	E) time? Augment & along P' (increasing the value by Cg(P))
V V V V	-> Output f

Max Flus Min Cut Theorem	(5)
The following statements are equivalent:	
1) f = c(s) for some s-t cut S	
2) f is a max flux (i.e., F*=191)	
3) f admits no augmenting path (i.e., there is no s-t path in Gp)	
Note: -> 3 => @ implies that F-F alg. is along	
-> (1) (=> (2) implies that if S' is the m	m s-tail
then $F^* = c(S^*)$	
Strong duality	
of plans & s-+ cuts => s-+ cuts are +	
(implies week duality) bottleneck for	pushing
Plous in net	rovic 3
Proof of the MFMC Thun:	
UiU show ()=>(2)=>(3)=>(1)	
(1) => (2): By weak duality, we know that	
$ O \leq F^* \leq C(s^*) \leq C(s) = f $	
$ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $ $ \rho \leq F^* \leq c(s^*) \leq c(s) = \rho $	
=> 101 = = * of \$*	
(2) => (3): Will show Not (3) => Not (2)	. 0

	From now on: Assume capacities integral (8)	
	F-F rentime: O(V·E·C)	
	-> OK-ish hen C = max c(e) smell, e.g., C=1	
	but not so much otherwise unit-capacity	
	Com ve get a better algorithm for large C?	
	Idea: Ford-Fulkerson alg. just picks any augmenting path. 15 there a smart choice of augmenting path?	
	Maximum bottleneck path = augmenting path P that maximizes bottleneck capacity Cp(P)	
	Exercise: Mex bottleneck path can be found in O(E log V) time	
	(Do binary search to find the max capacity c*	
	Note: C & C* iff I s-+ poth in Gp after remaing all edges (u,v) with Cp(u,v) < C)	
	Maximum bottleneck path (MBP) algorithm:	
3	-> 1(4,y) = 0 \ \	
7	(-> While 3 augmenting path:	
3	-> While I argmenting path: -> Find argmenting path poith maximum bottleneck capacity $C_{4}^{*} = c_{4}(P)$	<u> </u>
) (E	-> Augment the Place with P (so, IPI increases by Cp)	
	> Output f	
	Uhat is the running time?	

~)	Runt	ime th	st is	poly	nomie	l in	690	is us	ually	(II)
	Sulficia	nt 6.	t can	ر الح	have	NO .	lepen	dence	on C	2
Ye	s! Again	n: USE a	"Smay	f" choic	ce (:	= stro	ngly	polynos	rial r	untine)
	of a	ugmente	ng pal	th in 1	FF als.		00			
	•		0 1		0					
E	dmonds.	-Kanp	alg.:	Von	iont d	of F-F	elg.	in which	4	[1972]
U	umber	s choose	the o	augm	entine	buth	14.	lours	+	
~	umber	of eda	25 /:		test 1	ath il	ac.ch			
		1 7 8		ha	s len	141	ear.	eage ()	1 64	
Not.		0		41						4.
Jee 1,3	e: Can	pma s	ua p	wh i	n U(m) +1	me V	ia DF	S expl.	relion
-	-1				60	w_c	ξ.	-Kalg.	(& MB	Pals.!)
- l	his choice	e avoids	the	- > (35 11	7.4) n			iterations
	and unst	ance for	- F-1- a	15.	k		to	find .	mex Plo	u here
	Claim:	Edm	mds-k	Larp	aly.	runs	in C	1 m2 m) time	E
	Proof: S.	ce app	endix	of x	citation	s metas			dene	, mo dency on C.
		u ore							repens	cency and:
	("	or orc	7001	CJP 0.	770 <	F 0,				
1	1	0 1	4.				01	0 11		
7	lighlight	s of C	aler	COH	on i	mex	phes c	Lgents	vms:	
-	-> Strom	yly pol	morri	al tin	me:					
		<i>D</i> 0 1		101	7. A			~ \		
		King Ra	o lanja	m 94	J: 0	(mm	Log m			
					(-	()(.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	m=	4+6	
							n) if	ms	n	(0(
	- Σ	Orlin	13]:	0(mm)					
-	-> (Veak	by) pol	moun	al ti	me:					
		0 - 1		lant	_	<i>r</i> .	(3	3,2	1 m2	1, (
		Gold ber	g ICas	رلان		[mm	7 m z,	m n ')	ug m	~j~)
	 	Lee Sid	ford '	14]:	0(m va	log m)		
	- 0	Goldber Lee Sid mit-ca	pacity;	EM.	idny	13]:	01	م الم	7 ~)	

