HA : 1. First check necessory condition: $||R(\beta)^-R(\gamma)||=||\beta-\gamma||$ $R: |R^3 \rightarrow |R^3|$, $f\in |R^3|$, $\gamma\in |R^3|$, $R\in |R^{3\times3}|$ $R\in SO(3) \implies RR^{T}=I$, $\det(R)=|$ The norm for this necessary condition is Euclidean norm, ||R(p) - R(q)|| = ||R(p-q)||=[R(p-q)(p-q)TRT]"/2 (since (p-q)(p-q) (ER) = 1/p-9/1 ·[RRT]"/2 = 116-911 The necessory condition holds. Next, check the sufficient condition: R(pxq)=RpxRq By definition: R(pxq)=R(11p11-11q11-sin0-n) (Rp x Rg=||Rp11./|Rg11.sing.n' O is the angle between p and 7 N is a unit vector perpendicular to the surface that contains pand 9

We first show
$$||R\beta|| \cdot ||R\gamma|| = ||p|| \cdot ||\gamma||$$
 $||R\beta|| = (R\beta)^{T}R^{T})^{1/2} = ||\beta||$
 $||R\gamma|| = (R\gamma)^{T}R^{T})^{1/2} = ||\beta||$
 $||R\gamma|| = (R\gamma)^{T}R^{T})^{1/2} = ||\gamma||$
 $||R\gamma|| = (R\gamma)^{T}R^{T})^{1/2} = ||\gamma||$
 $||R\gamma|| = ||\gamma|| \cdot ||\gamma|| \cdot \cos \theta$
 $||R\beta|| \cdot ||R\beta|| \cdot ||\gamma|| \cdot \cos \theta$
 $||R\beta|| \cdot ||R\beta|| \cdot ||R\gamma|| \cdot \cos \theta$
 $||R\beta|| \cdot ||R\beta|| \cdot ||R\gamma|| \cdot \cos \theta$
 $||R\beta|| \cdot ||R\beta|| \cdot ||R\gamma|| \cdot \cos \theta$
 $||R\beta|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot \sin \theta$
 $||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot \sin \theta$
 $||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|| \cdot \sin \theta$
 $||R\gamma|| \cdot ||R\gamma|| \cdot ||R\gamma|$

2.
$$V=3-r$$
 $g(v)=g(3-r)=g(s)-g(r)$
 $=\beta+Rs-(\beta+Rr)$
 $=Rs-Rr$
 $=R(s-r)$

3, a) Let
$$w = [w, w_1, w_3]^T$$

$$\hat{w} = \begin{bmatrix} 0 & -w_3 & w_1 \\ w_3 & 0 & -w_1 \\ -w_2 & w_3 & 0 \end{bmatrix}$$

$$\lambda I - \hat{w} = \begin{bmatrix} \lambda & -w_3 & w_2 \\ w_3 & \lambda & -w_1 \end{bmatrix}$$

$$-w_2 & w_1 & \lambda \end{bmatrix}$$

$$det(\lambda I - \hat{w}) = \lambda (\lambda^2 + w_1^2 + w_3^2 + \lambda w_2^2 + \lambda w_2^2$$

Since
$$||\omega|| = |$$
, $|\omega_1' + \omega_2' + \omega_3' = |$

$$\lambda(\lambda^2 + 1) = 0$$

$$\lambda_1 = 0, \lambda_2 = \hat{1}, \lambda_3 = -\hat{1}$$

$$\lambda_1, \lambda_2 = \hat{\omega} \lambda_1$$

$$\hat{\omega} \lambda_1 = \begin{bmatrix} 0 & -\omega_1 & \omega_2 \\ -\omega_2 & \omega_2 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1' \\ \lambda_2' \\ -\omega_2 & \omega_3 \end{bmatrix} \begin{bmatrix} \lambda_1' \\ \lambda_2' \\ -\omega_2 & \omega_3 \end{bmatrix} \begin{bmatrix} \lambda_2' \\ \lambda_1' \\ -\omega_2 & \omega_3 \end{bmatrix}$$

$$\hat{\omega} \lambda_2 = \begin{bmatrix} 0 & -\omega_1 & \omega_2 \\ -\omega_2 & \omega_3 & 0 \end{bmatrix} \begin{bmatrix} \lambda_2' \\ \lambda_1' \\ -\omega_2 & \omega_3 \end{bmatrix} \begin{bmatrix} \lambda_2' \\ \lambda_1' \\ -\omega_1' \end{bmatrix} \begin{bmatrix} \lambda_1' \\ \lambda_2' \\ -\omega_2' \end{bmatrix}$$

$$\hat{\lambda}_2 = \begin{bmatrix} -\omega_1 + \omega_1 \omega_2 \\ -\omega_1 + \omega_1 \omega_3 \end{bmatrix}$$

$$\hat{\lambda}_3 \text{ is the complex conjugate of } \hat{\lambda}_2 = \begin{bmatrix} -\omega_3 - \omega_1 \omega_2 \\ -\omega_1 - \omega_2' \end{bmatrix} \begin{bmatrix} -\omega_3 - \omega_1 \omega_2 \\ \omega_1 - \omega_2 \end{bmatrix}$$

$$\hat{\lambda}_3 = \begin{bmatrix} -\omega_3 - \omega_1 \omega_2 \\ -\omega_1 - \omega_2' \end{bmatrix} \begin{bmatrix} -\omega_3 - \omega_2 \omega_3 \\ -\omega_1 - \omega_2 \end{bmatrix}$$

From Taylor expansion: $R = e^{\hat{W}\theta} = I + \hat{W}\theta + \frac{\theta^2}{2!}\hat{W}^2 + \frac{\theta^3}{3!}\hat{W}^3 + \cdots$ The eigenvalue of R satisfies: $RV_i = 0$

The eigenvalue of R satisfies $RV_i = \lambda_i V_i$ $RV_i = e^{\hat{w}o}V_i = IV_i + \hat{w}V_iO + \frac{O^2\hat{w}^2}{2!}\hat{w}^2V_i + \cdots$

 $= (I \mathcal{V}_{i} + \lambda_{i} \mathcal{V}_{i} \mathcal{O} + \frac{\mathcal{O}^{2}}{2!} \hat{\omega} \lambda_{i} \mathcal{V}_{i} + \cdots)$

 $= (I + \lambda_i O + \frac{O^*}{2!} \vec{\omega} \lambda_i v_i + \cdots) v_i$

 $= (I + \lambda_i O + \frac{O^2}{2!} \lambda_i^2 v_i + \cdots) v_i$

 $=e^{\lambda i\theta}U_{i}$

Thus, $e^{\lambda_i 0}$ is the eigenvalue of R $\lambda_i = e^{0} = 1, \quad \lambda_z = e^{i0}, \quad \lambda_z = e^{-i0}$

 V_1 corresponding to λ_0 is $\begin{bmatrix} w_1 \\ w_3 \end{bmatrix}$

Physical interpretation: the eigenvector corresponding to 1=1
Physical interpretation: the eigenvector corresponding to λ^{-1} is a unit vector pointing in the direction of of w. This
means that the votation matrix preserves the entity
means that the votation matrix preserves the entity along the axis of sotation, which is expected.
4, a)

Q. $P = (2, \beta_0 - 2, \beta_1, -2, \beta_2 - 2, \beta_3) + (2, \beta_1 + 2, \beta_0 + 2, \beta_2 - 2, \beta_1)$ $+ (2, \beta_2 - 2, \beta_3 + 2, \beta_0 + 2, \beta_1)$ $+ (2, \beta_3 + 2, \beta_2 - 2, \beta_1)$ $+ (2, \beta_2 + 2, \beta_$

Thus, 11Q.PII is also a unit quaternion

$$P = \beta_0 + \beta_1, 1 + \beta_2, 1 + \beta_3, 1$$

Let $P = Q^{-1}$ be the inverse of Q

Q.
$$P = (2 p_0 - 2, p_1, -2, p_2 - 2, p_3) + (2 p_1, +2, p_0 + 2, p_3 - 2, p_3) + (2 p_2 - 2, p_3 + 2, p_0 + 2, p_0 + 2, p_1) + (2 p_3 + 2, p_2 - 2, p_3 + 2, p_0 + 2, p_0 + 2, p_1) + (2 p_3 + 2, p_0 + 2, p_1 + 2, p_0 + 2, p_1) + (2 p_3 + 2, p_0 + 2, p_0$$

b) Let
$$x = x, 1 + x, 2 + x, \hat{x}$$
 $x = (0, x) = x, 1 + x, 1 + x, \hat{x}$
 $Q = 2x + 2, 1 + 2, 1 + 2x, \hat{x}$
 $Q = 2x + 2, 1 + 2x, 1 + 2x, \hat{x}$
 $Q = -2x + 2x, 1 + 2x, 2 + 2$

$$R_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

$$R_{y}(0) = \begin{bmatrix} \cos 0 & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

$$R_{z}(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \end{bmatrix}$$

Let
$$C$$
 denotes COS , C and S denotes S in

 $R_{XYZ}(Y,O,\phi) = R_X(P)R_Y(O)R_Z(Y)$
 $COCY$
 $COSY$
 C

