TRAFFIC PREDICTOR

Group Members

Anushka Singh (B22AlOO8)

Hari Shubha (B22AIO21)

Mohanshi Jain (B22ES014)

Aastha Bhore (B22EE002)

Pari Sharma (B22CSO39)

Pranaya Jayaprakash (B22EE086)

PROBLEM STATEMENT

Traffic prediction involves forecasting traffic volume and density to manage vehicle movement, reduce congestion, and generate optimal routes in terms of time or energy efficiency. This predictive task is crucial for detecting traffic patterns for the upcoming days or weeks, enabling authorities to implement proactive measures for congestion alleviation and enhancing commuting experiences.

PROJECT TIMELINE

KNN

Hyperparameter

Tuning

Data Analysis

SOME SAMPLES FROM THE DATASET

DateTime	Junction	Vehicles	ID
2015-11-01 00:00:00	1	15	20151101001
2015-11-01 01:00:00	1	13	20151101011
2015-11-01 02:00:00	1	10	20151101021
2015-11-01 03:00:00	1	7	20151101031

SOME SAMPLES FROM THE DATASET

DATASET AFTER PREPROCESSING

Junctions	Year	Month	DayOfMonth	Hour	Weekday	Vehicles
1	2015	11	1	0	7	15
1	2015	11	1	1	7	13
1	2015	11	1	2	7	10
	2015	11	1	3	7	7

DATASET

SIGNIFICANT FEATURES

YEAR

MONTH

DAY OF MONTH

DAY OF WEEK

HOUR

TARGET VARIABLE VEHICLES

PROPOSED APPROACHES FOR PREDICTION

LINEAR REGRESSION

DECISION TREE

KNN

GRADIENT BOOSTING

RANDOM FOREST

R-SQUARED SCORES

LINEAR REGRESSION

KNN REGRESSION

R-SQUARED SCORES

COMPARISION

CONCLUSION

The results indicate that Random Forest and Gradient Boosting along with KNN Regressor and Decision Tree surpassed Linear Regression in predictive accuracy, suggesting their superiority in capturing complex data dependencies. These ensemble methods showcased their effectiveness in modeling intricate relationships within the dataset, leading to more accurate traffic predictions compared to Linear Regression.

THANK YOU