Домашно № 1 по дисциплината "Дискретни структури" за специалност "Компютърни науки", І курс, ІІ поток, зимен семестър на 2016/2017 уч. г. в СУ, ФМИ

Име: Факултетен № Група:

Задача	1	2	3	4	Овщо
получени точки					
максимум точки	10	10	10	10	40

Забележка 1: Всички отговори трябва да бъдат обосновани подробно.

Забележка 2: Не предавайте идентични решения дори когато работите заедно: идентичните решения ще бъдат анулирани!

Задача 1. Преценете дали е вярно следното твърдение:

$$\Big(\forall A\!\in\!2^{\,\mathbb{N}}\setminus\big\{\varnothing\big\}\Big)\Big(\exists\,x\!\in\!A\Big)\Big(x\ \ \mathrm{e}\ \ \mathrm{четно}\ \to (\,\forall y\!\in\!A)\,(\,y\ \ \mathrm{e}\ \ \mathrm{четнo}\,)\Big).$$

Задача 2. Едно семейство от множества се нарича верига относно релацията включване, ако за всеки две различни множества A и B от семейството е в сила включването $A \subset B$ или $B \subset A$. Постройте неизброима верига от подмножества на \mathbb{N} .

 $\mathit{Упar{o}mbahe}$: Използвайте множеството $\mathbb Q$ като посредник. Както е известно, $\mathbb Q$ притежава две противоположни свойства:

- \mathbb{Q} е изброимо, следователно е равномощно на \mathbb{N} (в този смисъл \mathbb{Q} е "малко" множество);
- \mathbb{Q} е гъсто в \mathbb{R} , т.е. между всеки две различни реални числа има поне едно рационално число (в този смисъл \mathbb{Q} е "голямо" множество).

Задача 3. Разглеждаме функциите $f: \mathbb{R} \to \mathbb{R}$ и $g: \mathbb{R} \to \mathbb{R}$.

а) Покажете с пример, че $f \cup g$ може да не е функция.

(3 точки)

б) Докажете, че $h = f \cap g$ е функция.

Какво представлява дефиниционното множество на функцията h? На колко е равно h(x)? Отговорете на горните два въпроса най-напред в общия случай, а после — в частния случай $f(x) = x^3$ и $g(x) = |x|^3$. Направете чертеж. (7 точки)

Задача 4. Нека A е множество от селища, а R е двучленна релация над A, дефинирана по следния начин: $xRy \iff$ от селището x до селището y може да се стигне по суша.

а) Докажете, че R е релация на еквивалентност.

(4 точки)

б) Нека множеството *A* се състои от следните гръцки селища: Антипата, Аргостоли, Гувия, Закинт, Катастари, Кери, Керкира, Лефкими, Лиападес, Ликсури, Периволи, Сами, Скала. Опишете класовете на еквивалентност чрез явно изброяване
и им дайте географско тълкуване.

(3 точки)

Упътване: Използвайте картата на Йонийско море (вж. следващата страница).

РЕШЕНИЯ

Задача 1. Твърдението $(\forall A \in 2^{\mathbb{N}} \setminus \{\emptyset\}) (\exists x \in A) (x$ е четно $\to (\forall y \in A) (y$ е четно)) е вярно. Действително, нека A е произволно непразно множество от естествени числа. Има два случая.

Първи случай: A съдържа само четни числа. Избираме за x произволно число от A (можем да направим това, понеже множеството A е непразно). Импликацията

$$x$$
 е четно \rightarrow ($\forall y \in A$) (y е четно)

е истина, защото консеквентът е истина: всички числа от множеството A са четни.

Втори случай: A съдържа поне едно нечетно число. Избираме за x някое нечетно число от A. Импликацията

$$x$$
 е четно \rightarrow ($\forall y \in A$) (y е четно)

е истина, защото антецедентът е неистина: x е нечетно, понеже така го избрахме.

И тъй, във всички случаи съществува подходящо $x \in A$. Този извод важи за произволно непразно множество A от естествени числа, а точно това гласи твърдението, което доказваме; следователно то е вярно.

Задача 2. Решението се състои от две стъпки: първо доказваме, че \mathbb{N} може да се замени с \mathbb{Q} в условието на задачата, после решаваме новата задача (за \mathbb{Q} вместо за \mathbb{N}).

Както е известно, $\mathbb Q$ е изброимо, тоест $\mathbb Q$ е равномощно на $\mathbb N$. С други думи, съществува биекция $n\leftrightarrow q_n$ между $\mathbb N=\left\{0\,;\,1\,;\,2\ldots\right\}$ и $\mathbb Q=\left\{q_0\,;\,q_1\,;\,q_2\ldots\right\}$. Тя поражда биекция f между $2^{\mathbb N}$ и $2^{\mathbb Q}$, а именно: $f(A)=\left\{q_n:\,n\!\in\!A\right\}\in 2^{\mathbb Q},\,\forall A\!\in\!2^{\mathbb N}.$ Например $f(\varnothing)=\varnothing,\,f(\mathbb N)=\mathbb Q$, $f\left(\left\{23\;;\,66\;;\,887\right\}\right)=\left\{q_{23}\;;\,q_{66}\;;\,q_{887}\right\}$. Биекцията f запазва релациите включване и строго включване, т.е. $A\subseteq B\iff f(A)\subseteq f(B),\,A\subset B\iff f(A)\subset f(B).$ Затова f^{-1} преобразува верига от подмножества на $\mathbb Q$ във верига от подмножества на $\mathbb N$, например веригата

$$\left\{q_{4}\; ;\; q_{7}\right\} \subset \left\{q_{4}\; ;\; q_{7}\; ;\; q_{23}\right\} \subset \left\{q_{4}\; ;\; q_{7}\; ;\; q_{23}\; ;\; q_{17}\; ;\; q_{8}\right\}$$

под действието на f^{-1} се преобразува във веригата

$$\{4; 7\} \subset \{4; 7; 23\} \subset \{4; 7; 23; 17; 8\}.$$

Понеже f^{-1} е биекция, f^{-1} запазва броя на множествата във веригата, тоест преобразува неизброима верига в неизброима верига. Затова е достатъчно да построим неизброима верига от подмножества на $\mathbb Q$ (вместо на $\mathbb N$).

За целта на всяко реално число x съпоставяме $B_x = \mathbb{Q} \cap (-\infty; x]$, т.е. множеството от рационалните числа, ненадвишаващи x. Съвкупността от тези множества $\{B_x: x \in \mathbb{R}\}$ е верига, защото, ако $x \leq y$, то $B_x \subseteq B_y$, т.е. всеки две множества са сравними относно включването. Нещо повече, ако x < y, то $B_x \subset B_y$, защото \mathbb{Q} е гъсто в \mathbb{R} , поради което между x и y има поне едно рационално число (то принадлежи на B_y , но не и на B_x). Веригата изглежда така:

$$\ldots \subset B_{-1} \subset \ldots \subset B_{-0,4} \subset \ldots \subset B_{\sqrt{2}} \subset \ldots$$

Веригата е безкрайна в двете посоки и между всеки две множества има безброй други. На различни $x\in\mathbb{R}$ съответстват различни B_x , следователно веригата е равномощна на \mathbb{R} , значи е неизброима.

Понеже f е биекция, запазваща релацията включване, то съвкупността $\{f^{-1}(B_x): x \in \mathbb{R}\}$ е неизброима верига от подмножества на \mathbb{N} .

Задача 3.

- а) Нека $f(x)=x^2,\ g(x)=x^3.$ Тогава $f(10)=10^2=100$ и $g(10)=10^3=1000.$ С други думи, $(10\,;\,100)\in f$ и $(10\,;\,1000)\in g$. Значи $(10\,;\,100)$ и $(10\,;\,1000)$ принадлежат на обединението $f\cup g$, поради което то не може да бъде функция: на една и съща стойност на аргумента (10) не може да съответстват две функционални стойности (100 и 1000).
- б) Нека $h=f\cap g$. Да допуснем, че h не е функция, т.е. h не е еднозначно определена. Тогава съществуват реални числа $x,\ y_1$ и y_2 , такива, че $y_1\neq y_2,\ (x\,;y_1)\in h,\ (x\,;y_2)\in h$. Щом f и g са функции (т.е. еднозначно определени), то $(x\,;y_1)\in f,\ (x\,;y_2)\in g$ или $(x\,;y_1)\in g,\ (x\,;y_2)\in f$. И в двата случая $f(x)\neq g(x)$, защото $y_1\neq y_2$.

И така, h не е дефинирана за тези реални числа x, за които $f(x) \neq g(x)$. За всички други x функцията h е дефинирана. Окончателно, $h = f \cap g$ е функция с дефиниционно множество $D = \left\{ x \in \mathbb{R} : f(x) = g(x) \right\}$. За всяко x от множеството D стойността на h(x) е общата стойност на f(x) и g(x), т.е. h(x) = f(x) = g(x).

В частния случай $f(x)=x^3$ и $g(x)=|x|^3$ решаваме уравнението $f(x)=g(x)\iff x^3=|x|^3\iff x=|x|\iff x\geq 0$, тоест $D\equiv \begin{bmatrix}0;+\infty\end{pmatrix}$ е дефиниционното множество на функцията $h=f\cap g$. Тази функция е определена чрез равенството $h(x)=x^3$ за всяко $x\geq 0$.

Трите функции са изобразени на чертежа. Графиката на f се състои от зелената и синята линия, а графиката на g — от розовата и синята. Графиката на h е синята линия — сечението на графиките на f и g.

Задача 4.

а) От всяко селище x може да се стигне по суша до същото селище x: изобщо не е нужно да се излиза от селището (път с дължина нула). Следователно xRx за $\forall x \in A$, т.е. релацията R е рефлексивна.

Ако от селището x може да се стигне по суша до селището y, то и от y може да се стигне по суша до x — по обратния път. Следователно от xRy следва yRx за $\forall x \in A$ и $\forall y \in A$, т.е. релацията R е симетрична.

Ако от селището x може да се стигне по суша до селището y, а от селището y може да се стигне по суша до селището z, то от x може да се стигне по суша до z: първо — от x до y, после — от y до z. Следователно от xRy и yRz следва xRz за $\forall x \in A, \ \forall y \in A$ и $\forall z \in A, \ \text{т.е.}$ релацията R е транзитивна.

 \coprod ом R е рефлексивна, симетрична и транзитивна, то тя е релация на еквивалентност.

б) От географската карта е видно, че множеството A се разбива на три класа на еквивалентност:

$$A_1 = \left\{ \text{ Лефкими, Керкира, Гувия, Периволи, Лиападес} \right\},$$

$$A_2 = \left\{ \text{ Ликсури, Антипата, Сами, Аргостоли, Скала} \right\},$$

$$A_3 = \left\{ \text{ Катастари, Закинт, Кери} \right\}.$$

Всеки клас на еквивалентност съответства на един остров: A_1 — на о-в Корфу; A_2 — на о-в Кефалония; A_3 — на о-в Закинт.