CS771 Report

Question 1:

Theorem 1. For any arbiter PUF, there exists a linear model $(\mathbf{w}, b) \in \mathbb{R}^{32} \times \mathbb{R}$ such that the delay Δ of the PUF on the challenge \mathbf{c} is given by

$$\Delta = \mathbf{w}^T \mathbf{x} + b$$

where $\mathbf{x} \in \mathbb{R}^{32}$ is the feature vector defined by:

$$x_i = (1 - 2c_i)(1 - 2c_{i+1})(1 - 2c_{i+2})\dots(1 - 2c_{32})$$

for each i = 1, 2, ..., 32.

We show how to extend this to the 2-arbiter case.

Theorem 2. For a CAR-PUF, there exists a linear model $(\mathbf{W}, b) \in \mathbb{R}^{528} \times \mathbb{R}$ such that the response of the CAR-PUF on challenge \mathbf{c} is given by:

$$y = \frac{1 + \operatorname{sgn}\left(\mathbf{W}^{T}\phi(c) + b\right)}{2}$$

Where,

$$\phi(\mathbf{c}) = (z_{1,1}, z_{1,2}, \dots, z_{1,32}, z_{2,2}, \dots, z_{2,32}, \dots, z_{32,32})$$

And

$$z_{i,j} = \prod_{l=i}^{j} (1 - 2c_l)$$

Proof. By Theorem 1, there must exist models (\mathbf{u}, p) , (\mathbf{v}, q) which perfectly model the response of the working and reference PUFs exactly.

Thus, we can predict the difference of their delays by a linear model as follows:

$$\Delta_w - \Delta_r = \mathbf{u}^T \mathbf{x} + p - \mathbf{v}^T \mathbf{x} - q = (\mathbf{u} - \mathbf{v})^T x + (p - q) = \mathbf{m}^T x + r$$

where $\mathbf{m} = \mathbf{u} - \mathbf{v}$ and r = p - q.

Now, notice that the response of the CAR-PUF is 1 exactly when

$$|\Delta_w - \Delta_r| > \tau \Longleftrightarrow (\Delta_w - \Delta_r)^2 - \tau^2 > 0$$

Simplifying this expression:

$$(\Delta_w - \Delta_r)^2 - \tau^2 = \left(\mathbf{m}^T \mathbf{x} + r\right)^2 - \tau^2$$

$$= \left(\sum_{i=1}^{32} m_i x_i + r\right)^2 - \tau^2$$

$$= \left(\sum_{i=1}^{32} m_i x_i\right)^2 + 2r \left(\sum_{i=1}^{32} m_i x_i\right) + r^2 - \tau^2$$

$$= \sum_{i=1}^{32} m_i^2 x_i^2 + 2 \sum_{1 \le i \le j \le 32} m_i m_j x_i x_j + 2r \left(\sum_{i=1}^{32} m_i x_i\right) + r^2 - \tau^2$$

Since $x_i \in \{-1, 1\}, x_i^2 = 1$.

$$= \sum_{i=1}^{32} m_i^2 + 2 \sum_{1 \le i < j \le 32} m_i m_j x_i x_j + 2r \left(\sum_{i=1}^{32} m_i x_i \right) + r^2 - \tau^2$$

Let $z_{i,j} = \prod_{l=i}^{j} (1 - 2c_l)$, for all $j \ge i$. Then, we note the following:

$$x_i = z_{i,32}$$

And,

$$x_i x_j = \prod_{l=i}^{32} (1 - 2c_l) \prod_{l=j}^{32} (1 - 2c_l)$$

$$= \prod_{l=i}^{j-1} (1 - 2c_l) \prod_{l=j}^{32} (1 - 2c_l)^2$$

$$= \prod_{l=i}^{j-1} (1 - 2c_l)$$

$$= z_{i,j-1}$$

Thus, letting $\alpha_{i,j-1}=2m_im_j$, $\alpha_{i,32}=2rm_i$, $\gamma=\sum_{i=1}^{32}m_i^2+r^2-\tau^2$, we have:

$$\begin{split} (\Delta_w - \Delta_r)^2 - \tau^2 &= \sum_{1 \le i < j \le 32} 2m_i m_j x_i x_j + \sum_{i=1}^{32} 2r m_i x_i + \sum_{i=1}^{32} m_i^2 + r^2 - \tau^2 \\ &= \sum_{1 \le i < j \le 32} \alpha_{i,j-1} z_{i,j-1} + \sum_{1 \le i \le 32} \alpha_{i,32} z_{i,32} + \gamma \\ &= \sum_{1 \le i \le j \le 31} \alpha_{i,j} z_{i,j} + \sum_{1 \le i \le 32} \alpha_{i,32} z_{i,32} + \gamma \\ &= \sum_{1 \le i,j \le 32} \alpha_{i,j} z_{i,j} + \gamma \end{split}$$

Which is a linear model in $\phi(\mathbf{c})$. There are $\binom{32}{2} + 32 = 528 \, z_{i,j}$'s. For the linear model (\mathbf{W},b) defined by $\alpha_{i,j}$'s and γ , the response for a challenge is precisely $\frac{1+\mathrm{sgn}\left(\mathbf{W}^T\phi(\mathbf{c})+b\right)}{2}$.

Question 3:

a	LinearSVC		
	loss hyperparameter	Accuracy	Time (sec)
	hinge	0.98864	15.700767
	squared hinge	0.99116	17.999646

b	Changing C			
i	LinearSVC			
	C Value		Accuracy	Time (sec)
		0.1	0.98990	20.783399
		1.0	0.99172	17.527513
		10.0	0.98974	17.341398
		100.0	0.98996	17.572503

ii	LogisticRegression		
	C Value	Accuracy	Time (sec)
	0.1	0.98710	2.004277
	1.0	0.99070	2.509324
	10.0	0.99220	2.880717
	100.0	0.99310	4.015238

d	Changing Penalty/Regularization		
i	LinearSVC		
	Penalty	Accuracy	Time (sec)
	11	0.99124	163.014093
	12	0.99190	17.716546

ii	LogisticRegression		
	Penalty	Accuracy	Time (sec)
	11	0.99180	246.677855
	12	0.99070	3.020177

