Unit 2 Pre-Test Review – Factor Theorem and Inequalities

ection 1: 2.1 - Long and Synthetic Division / Remainder Theorem

1) What is the remainder when $x^4 - 4x^2 - 2x + 3$ is divided by x + 1? Do not divide. Support your answer with an explanation.

$$P(-1) = (-1)^4 - 4(-1)^2 - 2(-1) + 3$$

= 1 - 4 + 2 + 3
= 2

Based on the renainder theorem, the renainder will be 2.

2) Is x-3 a factor of the polynomial $3x^2-8x-3$? Do not divide. Support your answer with an explanation.

$$f(3) = 3(3)^{2} - 8(3) - 3$$
$$= 27 - 24 - 3$$
$$= 0$$

Yes because the renainder is O.

3) Divide $\frac{f(x)}{a(x)}$ and state the answer in quotient form. Use synthetic division where possible.

a)
$$f(x) = x^4 - 4x^2 - 2x + 3$$
, $g(x) = x - 2$

a)
$$f(x) = x^4 - 4x^2 - 2x + 3$$
, $g(x) = x - 2$ **b)** $f(x) = x^5 - x^4 + 2x^3 + 3x - 2$, $g(x) = x^2 + 2$

$$\frac{x^{4}-4x^{2}-2x+3}{x-2}=x^{3}+2x^{2}-2-\frac{1}{x-2}$$

$$x^{3} - 1x^{2} + 0x + 2$$

$$x^{3} - 1x^{2} + 0x + 2$$

$$x^{5} - x^{4} + 3x^{3} + 0x^{2} + 3x - 2$$

$$x^{5} + 0x^{4} + 2x^{3} + 0x^{2}$$

$$-1x^{4} + 0x^{3} + 0x^{2}$$

$$-1x^{4} + 0x^{3} - 2x^{2}$$

$$0x^{3} + 2x^{2} + 3x$$

$$0x^{3} + 0x^{2} + 0x$$

$$2x^{2} + 3x - 2$$

$$2x^{2} + 0x + 4$$

$$R = 3x - 6$$

$$\frac{\chi^{5} - \chi^{4} + 2\chi^{3} + 3\chi - 2}{\chi^{2} + 2} = \chi^{3} - \chi^{2} + 2 + \frac{3\chi - 6}{\chi^{2} + 2}$$

4) Perform each division. Express the answer in quotient form and write the statement that could be used to check the division.

a)
$$x^3 + 9x^2 - 5x + 3$$
 divided by $x - 2$

As product:

c)
$$-8x^4 - 4x + 10x^3 - x^2 + 15$$
 divided by $2x - 1$

$$\begin{array}{r}
-4\chi^{3} + 3\chi^{2} + 1\chi - \frac{3}{2} \\
-4\chi^{4} + 10\chi^{3} - \chi^{2} - 4\chi + 15 \\
-4\chi^{4} + 4\chi^{3} \\
\hline
-4\chi^{2} - 4\chi \\
\hline
-3\chi + 15 \\
-3\chi + \frac{3}{2}
\end{array}$$

b)
$$12x^3 - 2x^2 + x - 11$$
 divided by $3x + 1$

Product:

d)
$$x^3 + 4x^2 - 3$$
 divided by $x - 2$

Product:

Q.f.:
$$-8x^4 + 10x^3 - x^2 - 4x + 15 = -4x^3 + 3x^2 + x - \frac{3}{2} + \frac{27}{2(2x-1)}$$

5) Determine the value of k such that when $f(x) = x^4 + kx^3 - 3x - 5$ is divided by x - 3, the remainder is -10

$$f(3) : (3)^{4} + k(3)^{3} - 3(3) - 5$$

$$-10 = 81 + 27k - 9 - 5$$

$$-10 = 27k + 67$$

$$-77 = 27k$$

$$k = -77$$

$$27$$

Section 2: 2.2 - Factor Theorem

6) Suppose the cubic polynomial $8x^3 + mx^2 + nx - 6$ has both 2x + 3 and x - 1 as factors. Find m and n. Do not divide.

$$0 = 8(\frac{3}{3})^{3} + m(\frac{3}{2})^{2} + n(\frac{3}{2}) - 6 \qquad 0 = 8(1)^{3} + m(1)^{2} + n(1) - 6$$

$$0 = -27 + \frac{9}{4}m - \frac{3}{2}n - 6$$

$$0 = 8 + m + n - 6$$

$$0 = 8 + m + n - 6$$

$$0 = -2 = m + n$$

$$0 = -2 = m + n$$

$$0 = -2 = m + n$$

$$0 = -2 = 6m + 6n + 3 = -2 = 8 + n$$

$$120 = 16m$$

$$m = 8$$

7) Factor each of the following

= (x-2)(x-3)(x+1)

b)
$$3x^3 - 5x^2 - 26x - 8$$

Possible factors: $\pm 1, \pm \frac{1}{3}, \pm 2, \pm \frac{2}{3}, \pm 4, \pm 8, \pm \frac{4}{3}, \pm \frac{8}{3}$
 $f(-2) = 0$ so $x+2$ is a factor

 $-2 \mid 3 - 5 - 26 - 8$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8 + 6$
 $1 - 6 = 22 - 8$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 $1 - 6 = 22 + 6$
 1

$$3x^3-5x^2-26x-8=(x+2)(3x^2-11x-4)$$

$$=(x+2)(x-4)(3x+1)$$

c)
$$-4x^3 - 4x^2 + 16x + 16$$

= $-4(x^3 + x^2 - 4x - 4)$
= $-4(x^4 + 1) - 4(x + 1)$
= $-4(x + 1)(x^2 - 4)$
= $-4(x + 1)(x^2 - 4)$

DOC:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

d) $x^3 - 64 = x^3 - 4^3$
= $(x - 4)(x^2 + 4x + 4^2)$
= $(x - 4)(x^2 + 4x + 16)$

Section 3: 2.3&2.6 - Factoring to Solve Equations and Inequalities

8) Determine the real roots of each equation.

a)
$$(5x^2 + 20)(3x^2 - 48) = 0$$
 $5x^2 + 20 = 0$
 $5x^2 + 20 = 0$
 $5x^2 - 40 = 0$
 $5x^2 - 40 = 0$
 $3x^2 - 48 = 0$
 $3x^2 - 48 = 0$
 $3x^2 - 48 = 0$
 $x^2 = -40$
 $x^2 = -40$
 $x = \pm \sqrt{4}$
 $x = \pm \sqrt{16}$

3 No solutions

 $x = 4\sqrt{2} = -4\sqrt{2}$

b)
$$(2x^2 - x - 13)(x^2 + 1) = 0$$

NOT FOODDALL

So use $0 = 1^{\frac{1}{2}} \int_{-1}^{1} \frac{1}{\sqrt{2} - 1} \int_{-1}^{2} \frac{1}{\sqrt{2} -$

9) Solve the following polynomial equations.

a)
$$2x^{3} + 1 = x^{2} + 2x$$

$$2x^{3} - x^{2} - 2x + (=0)$$

$$x^{2}(2x - 1) - 1(2x - 1) = 0$$

$$(2x - 1)(x^{2} - 1) = 0$$

$$(2x - 1)(x - 1)(x + 1) = 0$$

$$x_{1} = \frac{1}{2} x_{2} = 1$$

$$x^{5} - 4x^{3} - x^{2} + 4 = 0$$

$$x^{3}(x^{2} - 4) - 1(x^{2} - 4) = 0$$

$$(x^{2} - 4)(x^{3} - 1) = 0$$

$$(x - 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

$$x - 2(x + 2)(x + 2)(x - 1)(x^{2} + 1x + 1) = 0$$

b)
$$x^3 + 6x^2 + 11x + 6 = 0$$

Possible factors: $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{5}$ 6
 $f(-1) = 0$, & $x+1$ is a factor
 $\frac{1}{1}$ 6 11 6
 $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{6}$ 0
 x^2 x # R
 $(x+1)(x^2+5x+6) = 0$
 $(x+1)(x+2)(x+3) = 0$

d)
$$3x^3 + 2x^2 - 11x - 10 = 0$$

Rossible factors: $\frac{1}{1}, \frac{1}{3}, \frac{1}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$

a)
$$2x^3 + 1 < x^2 + 2x$$

 $2x^3 - x^2 - 2x + 1 < 0$
 $(2x - 1)(x - 1)(x + 1) < 0$
 $x - 1 = 1, 2, 1$

+ L.C., add degree

21 - 1 0.5 1 00 -20 (0.79 2) 21 - - + + 2-1 - - + 2+1 - + + over 1) © + © +

b) $x^3 + 6x^2 + 11x + 6 > 0$
(2+1)(2+2)(2+3)>0
2-int at 2=-31-2,-1
+ L.C., add degree
03-3-04

	1 1
	1/1
A	

Solution: when $\chi < -1$ or $0.54\chi < 1$ or when $\chi \in (-a, -1) \cup (a.5, 1)$

SOLUTION:

when -3<26-2 OR 12>-1
when 76(-3,-2)U(-1,0)

11) Where is the polynomial $y = 8x^3 + 1$ positive? Justify your solution.

 $\frac{3}{8}$ $8x^{3} + 1 > 0$

 $(2x+1)[(2x)^{2}-(2x)(1)+(1)^{2}]>0$

 $(2x+1)(4x^{2}-2x+1)>0$

x = -12

chech 6^2 -4ac = $(-2)^2$ -4(4)(1) = -12

00 NO ROOTS

12) Solve $6x^3 + 13x^2 - 41x + 12 \le 0$ using a sign chart.

Positive L.C. and odd degree.

when 2E (-1,00)

Possible zeros: 1, 15, 15, 16, 12, 13, 13, 13, 13, 13, 14, 14, 15, 16, 12

f(-4)=0; & x44 is a factor

-4/6/13-41/12 10-24/44-12+ x/6-11-3-0 x² x # R

 $(x+4)(6x^2-1)x+3)\leq 0$ $(x+4)(2x-3)(3x-1)\leq 0$

x-int at x=-4, \\ , \\ \\]

0.33							
-00 -4 1/3 3/2 00							
	-5	0	11	2			
x+4	-	+	+	+			
2-12-3	_	_		+			
3x-1	_	_	+	+			
Overall	0	+	9	+			

SOLUTION:

when x = -4 or 1/3 = x = 3/2

when XE (-00,-4] U[1/3,13/2]

Section 4: 2.4 - Families of Polynomials

13) Find the equation for the family of quartic polynomials that have real roots of 3 (order 2) and $2 \pm \sqrt{2}$.

14) A family of cubic polynomials has roots of -2, -3 and -5. Find the member of this family that passes through the point (2,-35). What is this polynomials y-intercept?

$$f(x) = K(x+2)(x+3)(x+5) \qquad f(0) = -\frac{1}{4}(0+2)(0+3)(0+5)$$

$$-35 = K(2+2)(2+3)(2+5) \qquad F(0) = -\frac{1}{4}(30)$$

$$-35 = K(4)(5)(7) \qquad f(0) = -\frac{15}{2}$$

$$-35 = 140K$$

$$K = -\frac{1}{4}$$
The equation is $f(x) = -\frac{1}{4}(x+2)(x+3)(x+5)$.

It has a y-intercept of $(0, -\frac{15}{2})$

15) Find an equation for each of the following functions

$$f(x) = K(x+2)^{2}(x-1)$$
 $12 = K(0+2)^{2}(0-1)$
 $12 = -4K$
 $K = -3$

$$f(x) = -3(x+2)^{2}(x-1)$$

ANSWER KEY

1) P(-1) = 2 =remainder. This was found using remainder theorem.

2) P(3) = 0, so x - 3 is a factor because remainder is 0 (Factor Theorem)

3)a)
$$\frac{x^4 - 4x^2 - 2x + 3}{x - 2} = x^3 + 2x^2 - 2 - \frac{1}{x - 2}$$
 b) $\frac{x^5 - x^4 + 2x^3 + 3x - 2}{x^2 + 2} = x^3 - x^2 + 2 + \frac{3x - 6}{x^2 + 2}$

4)a)
$$\frac{x^3+9x^2-5x+3}{x-2} = x^2 + 11x + 17 + \frac{37}{x-2}$$
; $x^3+9x^2-5x+3 = (x-2)(x^2+11x+17) + 37$

b)
$$\frac{12x^3-2x^2+x-11}{3x+1} = 4x^2-2x+1-\frac{12}{3x+1}$$
; $12x^3-2x^2+x-11=(3x+1)(4x^2-2x+1)-12$

c)
$$\frac{-8x^4 - 4x + 10x^3 - x^2 + 15}{2x - 1} = -4x^3 + 3x^2 + x - \frac{3}{2} + \frac{27}{2(2x - 1)}$$
; $-8x^4 - 4x + 10x^3 - x^2 + 15 = (2x - 1)\left(-4x^3 + 3x^2 + x - \frac{3}{2}\right) + \frac{27}{2}$

d)
$$\frac{x^3 + 4x^2 - 3}{x - 2} = x^2 + 6x + 12 + \frac{21}{x - 2}$$
; $x^3 + 4x^2 - 3 = (x - 2)(x^2 + 6x + 12) + 21$

5)
$$k = -\frac{77}{27}$$

6)
$$m = 8$$
, $n = -10$

7)a)
$$(x+1)(x-3)(x-2)$$
 b) $(x+2)(3x+1)(x-4)$ c) $-4(x+1)(x+2)(x-2)$ d) $(x-4)(x^2+4x+16)$

8)a) (-4, 0) and (4, 0) **b)**
$$\left(\frac{1-\sqrt{105}}{4}, 0\right)$$
 and $\left(\frac{1+\sqrt{105}}{4}, 0\right)$

9) a)
$$x = -1, 1, \frac{1}{2}$$
 b) $x = -1, -2, -3$ c) $x = 1, -2, 2$

d)
$$x = -1, -\frac{5}{3}, 2$$

10)a)
$$x \in (-\infty, -1) \cup (0.5, 1)$$
 b) $x \in (-3, -2) \cup (-1, \infty)$

11)
$$x \in \left(-\frac{1}{2}, \infty\right)$$

12)
$$x \in (-\infty, -4] \cup \left[\frac{1}{3}, \frac{3}{2}\right]$$

13)
$$P(x) = k(x-3)^2(x^2-4x+2)$$

14)
$$f(x) = -\frac{1}{4}(x+2)(x+3)(x+5)$$
, y-int is $\left(0, -\frac{15}{2}\right)$

15)a)
$$P(x) = -2x(x-1)(x+2)(2x+7)$$
 b) $P(x) = -3(x+2)^2(x-1)$