Abstract Algebra: An Integrated Approach by J.H. Silverman. Page 393-396: 12.10, 12.11, 12.12, 12.14, 12.15, 12.20, 12.26

Problem 1 (12.10). For each $pi \in \mathcal{S}_n$, we define a linear transformation $\rho(\pi) : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by

$$\rho(\pi)(e_i) = e_{\pi(i)}$$

By abuse of notation, we write $\rho(\pi)$ for the n-by-n matrix of $\rho(\pi)$ relative to the basis $\{e_1, \ldots, e_n\}$. The matrix $\rho(\pi)$, whose entries are all equal to 0 or 1, is called the permutation matrix associated to π .

(a) Prove that the matrix $\rho(\pi)$ can also be described by the following formula:

$$(i,j)$$
-entry of $\rho(\pi) = \begin{cases} 1 & \text{if } \pi(j) = i, \\ 0 & \text{if } \pi(j) \neq i \end{cases}$

- (b) Write down the six 3-by-3 matrices corresponding to the six elements of S_3 .
- (c) Prove that every row of $\rho(\pi)$ has exactly one entry equal to 1 and similarly that every column of $\rho(\pi)$ has exactly one entry equal to 1.
- (d) Prove that the map

$$\rho: \mathcal{S}_n \longrightarrow \operatorname{GL}_n \mathbb{Z}$$

is an injective group homomorphism; i.e., prove that ρ is injective and satisfies

$$\rho(\pi_1\pi_2) = \rho(\pi_i)\rho(\pi_2)$$
 for all $\pi_1, \pi_2 \in \mathcal{S}_n$

(e) Let $\pi \in \mathcal{S}_n$. Prove that

$$\operatorname{sign}(\pi) = \det \rho(\pi)$$

(f) Prove that the eigenvalues of $\rho(\pi)$ are roots of unity.

Problem 2 (12.11). Let G be a group, let $H \subset G$ be a subgroup of G, and let G/H be the collection of cosets of H.

(a) Prove that there is a well-defined group homomorphism

$$\pi_H: G \longrightarrow \mathcal{S}_{G/H}, \ \pi_H(g)(aH) = gaH$$

(*Hint.* Generalize the proof of Cayley's Theorem, which was the case $H = \{e\}$.)

- (b) Prove that the kernel of π_H is contained in H.
- (c) Let K be a normal subgroup of G, and suppose that K is contained in H. Prove that $K \subseteq \ker(\pi_H)$. Thus we may describe $\ker(\pi_H)$ as the largest normal subgroup of G that is contained in H.

Problem 3 (12.12). Let G be a group of order n, and let $H \nsubseteq G$ be a subgroup of order m, and suppose that n does nto divide (n/m)!. Prove that H contains a non-trivial normal subgroup of G. (*Hint.* Use Exercise 12.11.)

Problem 4 (12.14). Let G be a group. We say that a normal subgroup $N \not\subseteq G$ is a maximal normal subgroup of G if it has the following property:

$$N \subseteq N' \subseteq G \text{ and } N' \text{ normal in } G \implies N' = N \text{ or } N' = G$$

Prove that

N is a maximal normal subgroup \iff G/N is a simple group

Problem 5 (12.15). For this exercise, you may use the first part of Sylow's Theorem that says that *p*-Sylow subgroups exist but do not use the second and third parts.

- (a) Let p and q be distinct primes, and let G be a group of order pq. Prove that G is not a simple group.
- (b) Prove that a group of order 36 is not a simple group.
- (c) Let p and q be distinct primes, let $i, j \ge 1$, and suppose that $p^i < q$. Prove that a group of order $p^i < q^j$ is not a simple group.

(*Hint.* Use Exercise 12.12. We mention that we proved (a) using all three parts of Sylow's Theorem in Example 6.37.)

Problem 6 (12.20).

- (a) Prove that $Aut(\mathbb{Z})$ is a cyclic group of order 2.
- (b) More generally, prove that $\operatorname{Aut}(\mathbb{Z}^{\ltimes}) \cong \operatorname{GL}_n(\mathbb{Z})$.

Problem 7 (12.26). Let G be the set of affine linear maps on \mathbb{R} , which by definition is the group

$$G = \{ \text{maps } \phi : \mathbb{R} \longrightarrow \mathbb{R} \text{ of the form } \phi(x) = ax + b \text{ for some } a \in \mathbb{R}^* \text{ and } b \in \mathbb{R} \}$$

- (a) Prove that G is group, where the group law is composition of maps.
- (b) Prove that G is isomorphic to the semidirect product $\mathbb{R} \rtimes \mathbb{R}^*$. Be sure to describe the homomorphism from \mathbb{R}^* to $\operatorname{Aut}(\mathbb{R})$ used to define the semidirect product.