

w: wiki.merionet.ru

e: contact@merionet.ru

теория и настройка на Cisco

Border Gateway Protocol (BGP)

самое важное

Вводная

Друг, этот документ написали инженеры нашей компании - Мерион Нетворкс. Мы любим технологии и наше сообщество. Прочитав это руководство, ты научишься основам BGP, поймешь процесс построения маршрутов, формирования соседства и масштабирования, а также узнаешь про NLRI и политики маршрутизации BGP.

Кстати, мы не обошли стороной работу BGP с IPv6 🙂

Сохрани себе, отправь коллегам.

Вводная	1
Основы протокола Border Gateway Protocol (BGP)	3
OБЗОР BGP	3
ТИПЫ СООБЩЕНИЙ BGP, ФОРМАТЫ И СОСЕДНИЕ ТИПЫ СООБЩЕН СОСЕДСТВА BGP	ИЙ СОСТОЯНИЯ 7
ФОРМАТЫ СООБЩЕНИЙ BGP	10
СОСЕДСТВО BGP	15
Построение маршрута протоколом BGP	19
BGP- АТРИБУТЫ ПУТИ (PATH ATTRIBUTES)	19
ATPИБУT ORIGIN	20
АТРИБУТ AS PATH	21
АТРИБУТ NEXT HOP	23
АТРИБУТ BGP WEIGHT (BECA)	24
BGP BEST PATH (ВЫБОР ЛУЧШЕГО ПУТИ)	25
Формирование соседства в BGP	28
BGP-ПИРИНГ	28
IBGP-ПИРИНГ	32
EBGP MULTIHOP	34
BGP АУТЕНТИФИКАЦИЯ	35
Оповещения NLRI и политики маршрутизации BGP	38
ОПОВЕЩЕНИЯ NLRI	38
НАСТРОЙКА ПОЛИТИКИ МАРШРУТИЗАЦИИ BGP	44
Масштабируемость протокола BGP	52
МЕХАНИЗМЫ МАСШТАБИРУЕМОСТИ BGP	52
Работа протокола BGP c IPv6	66
BGP C IPV6	66

Основы протокола Border Gateway Protocol (BGP)

ОБЗОР ВGP

Давайте посмотрим правде в глаза - **Border Gateway Protocol** невероятно уникален, особенно когда мы сравниваем его с другими протоколами маршрутизации. Самое первое, что делает BGP таким уникальным, - это то, что он наш единственный внешний шлюзовой протокол (EGP), широко используемый сегодня. Мы знаем, что у нас есть Interior Gateway Protocols (IGPs), и похожий на OSPF, работающий внутри автономной системы. Но BGP - это EGP, а это означает, что он (как правило) будет принимать префиксы, которые находятся внутри автономной системы, и отправлять их в другие автономные системы.

На рисунке 1 показан пример топологии BGP.

Именно поэтому протокол BGP является протоколом, который обеспечивает функционирование сети. Интернет-провайдеры (ISP) могут использовать BGP для перемещения префиксной информации между другими Интернет-провайдерами. Однако уникальные характеристики BGP на этом не

заканчиваются. Одна из вещей, которая очень уникальна в протоколе, заключается в том, что он формирует пиринги (*равноправный информационный обмен) точка-точка с другими спикерами BGP, и вы должны создавать эти пиринги вручную.

С протоколом пограничного шлюза (BGP) нет такой вещи, как автоматическое формирование соседства с целой кучей устройств на одном сегменте. Для каждого из устройств, с которыми BGP должен пиринговать, он делает это с помощью одного однорангового отношения, которое мы предпочитаем называть пирингом BGP.

Еще одно очень уникальное свойство заключается в том, что BGP - это протокол прикладного уровня. По общему признанию, большинство сетевых инженеров поспорили бы, что это протокол сетевого уровня – и они проиграли бы этот спор!

Как компонент прикладного уровня, BGP делает что-то блестящее. Он использует протокол управления передачей (TCP) для своих операций. Если мы рассмотрим EIGRP в качестве примера, то создателям пришлось приложить большие усилия, чтобы встроить надежность в сам протокол. Например, спикер EIGRP будет передавать многоадресные передачи, и, если это не сработает, он вернется к одноадресным передачам, чтобы попытаться обеспечить надежность.

С помощью Border Gateway Protocol разработчики решили не включать в протокол все эти типы контроля надежности. Они просто полагаются на чудесную надежность коммуникаций ТСР. В частности, **BGP использует ТСР-порт 179.**

Когда мы думаем о наших протоколах маршрутизации, мы знаем, что будет некоторое значение, которое будет служить метрическим значением для измерения расстояния. Например, в случае OSPF мы знаем, что метрикой является стоимость, а стоимость напрямую зависит от пропускной способности.

ВGР не работает таким образом. Протокол BGP использует атрибуты, а не только одного показателя. Одним из главных атрибутов протокола BGP называется атрибута **AS_PATH**. Это список всех автономных систем (AS), которые префикс должен был передать на своем пути, скажем, в вашу автономную систему.

AS_PATH - это фактически запись всей информации о пути AS. Путь AS настолько важен для функции BGP, что протокол часто называют протоколом маршрутизации вектора пути. Обратите внимание, что это не протокол вектора расстояния (Distance Vector), а вектор пути (Path Vector). AS_PATH используется не только для определения наилучшего пути к месту назначения (т.е. более короткого пути AS), но и в качестве механизма предотвращения петель.

Когда автономная система видит свой собственный номер **AS** в **AS_PATH**, она очень обеспокоена тем, что в коммуникациях может быть петля. Что- то еще, что делает BGP невероятно уникальным, - это тот факт, что, когда мы формируем пиринги внутри автономной системы, они называются внутренними пирингами BGP, а правила, которым следуют, являются внутренними правилами **BGP** (**IBGP**).

Когда мы формируем пиринг между автономными системами, это называется протоколом внешнего пограничного шлюза (EBGP). (Примечание: в

некоторых литературных источниках EBGP пишется как eBGP.) Помните, что причина, по которой BGP различает пиринг IBGP и пиринг EBGP, заключается в том, что эксплуатационные характеристики должны изменяться в зависимости от того, как выполняется пиринг. Например, мы заявили, что существует путь AS, который записывает автономные системы, которые передаются. Очевидно, что при пиринге EBGP, когда префикс передается от одного AS к другому AS, отправляющий AS должен поместить свою автономную систему в путь. Но с IBGP, префикс остается в AS, поэтому протокол BGP не обновляет значение AS. Вы можете вернуться к рисунку 1, чтобы увидеть эти различные типы пиринга в действии.

Таким образом, правила меняются, когда мы говорим о **IBGP** против **EBGP**, чтобы быть последовательным и безошибочными. И уникальные свойства BGP просто не заканчиваются на этом.

типы сообщений вдр, форматы и соседние типы сообщений состояния соседства вдр

Многие люди описывают протокол пограничного шлюза (BGP) как чрезвычайно сложный протокол, но я не согласна с этим. Видите ли, установка политик BGP и контроль распространения префиксов внутри BGP-это может быть довольно сложно. Но сам протокол, хотя и уникален, в основном прост в своей работе.

В этом части статьи мы рассмотрим типы сообщений BGP. На рисунке 2 показаны различные типы сообщений BGP.

BGP типы сообщений

Open

Keepalive

Update

Notification

*Route Refresh

Запомните первый шаг. Когда два спикера BGP хотят сформировать пиринг, они будут полагаться на протокол управления передачей (**TCP**). И, конечно, мы знаем, что будет **three-way handshake** (трехстороннее рукопожатие) с TCP, чтобы начать этот надежный сеанс связи.

Что же происходит дальше? Так это то, что эти устройства будут обмениваться открытыми сообщениями. Открытое сообщение содержит очень важную информацию, основным компонентом которой является номер автономной системы однорангового узла. Это будет определять, является ли это пиринг IBGP или пиринг EBGP.

Когда происходит обмен открытыми сообщениями, то спикеры BGP далее начинают обмениваться сообщениями **Keepalive**. Это, простой механизм, чтобы убедиться, что другой прибор жив, счастлив и здоров, и что **пиринг** в

состоянии up. После этого спикеры BGP получают обновления для совместного использования, называемое сообщением Update.

Если в какой-то момент времени что-то пойдет не так, спикеры BGP могут использовать простое сообщение Notification. Данное сообщение прерывает пиринг в результате ошибки, которая может произойти с BGP.

Одним из очень интересных типов сообщений BGP является тип сообщения **Route Refresh** (обновления маршрута). Хотя этот тип сообщений не был включен в исходный стандарт BGP, большинство наших основных сетевых вендоров поддерживают Route Refresh. Route Refresh позволяют соседям обновлять, скажем, информацию о маршруте BGP или даже обновлять вещи после довольно серьезной реконфигурации политики, не разрушая пиринг и не влияя на пиринг каким- либо большим негативным образом.

Рисунок 3 показывает эти типы сообщений в действии благодаря захвату **Wireshark'ом** обмена сообщениями BGP в нашем примере топологии из рисунка 1.

Vo.		Time	Source	Destination	Protocc A	Length	Info
	41	59.461243	10.10.10.1	10.10.10.2	BGP	102	OPEN Message
	43	59.461810	10.10.10.2	10.10.10.1	BGP	102	OPEN Message
	44	59.471556	10.10.10.1	10.10.10.2	BGP	68	NOTIFICATION Message
	45	59.471618	10.10.10.2	10.10.10.1	BGP	68	NOTIFICATION Message
	59	67.657270	10.10.10.2	10.10.10.1	BGP	102	OPEN Message
	60	67.667379	10.10.10.1	10.10.10.2	BGP	102	OPEN Message
	61	67.667432	10.10.10.1	10.10.10.2	BGP	63	KEEPALIVE Message
	62	67.677751	10.10.10.2	10.10.10.1	BGP	63	KEEPALIVE Message
	63	67.677774	10.10.10.2	10.10.10.1	BGP	63	KEEPALIVE Message
	64	67.687894	10.10.10.2	10.10.10.1	BGP	67	UPDATE Message
	66	67.923125	10.10.10.1	10.10.10.2	BGP	63	KEEPALIVE Message
	67	67.923182	10.10.10.1	10.10.10.2	BGP	67	UPDATE Message
	78	111.437262	10.10.10.2	10.10.10.1	BGP	98	UPDATE Message
			l Protocol, Src Port: ocol – UPDATE Message	51812, Dst Port: 17	9, Seq: 12	0, Ack	: 120, Len: 54

Length: 54

Type: UPDATE Message (2) Withdrawn Routes Length: 0 Total Path Attribute Length: 27

▼ Path attributes

▶ Path Attribute - ORIGIN: IGP ▶ Path Attribute - AS_PATH: 200

▶ Path Attribute - NEXT_HOP: 10.10.10.2 ▶ Path Attribute - MULTI_EXIT_DISC: 0

▼ Network Layer Reachability Information (NLRI)

▶ 100.100.100.0/24

ФОРМАТЫ СООБЩЕНИЙ ВСР

В этом части статьи мы еще больше узнаем об эксплуатационных характеристиках Border Gateway Protocol, более подробно рассмотрев типы сообщений BGP.

Каждый тип сообщения имеет заголовок BGP. Этот заголовок показан на рисунке 4. Вы видите, что заголовок BGP имеет большое поле маркера. Можно подумать, что это чрезвычайно важно. Он имеет размер 16 октетов. Как оказалось, это поле будет заполнено у всех.

Mark	(er	
Length	Туре	

Это связано с тем, что использование этого поля маркера было прописано в устаревшем стандарте. Первоначальная идея этого поля состояла в том, что его можно было бы использовать для обнаружения таких событий, как потеря синхронизации между двумя одноранговыми узлами, и также считалось, что это будет область, в которой может храниться аутентификационная информация.

Почему это поле вообще имеется в BGP? Иногда, в очень редком случае, когда необходимо иметь обратную поддержку с каким-то действительно старым устройством BGP, которое ожидает эту информацию из поля маркера.

Важными полями в заголовке, будут длина (Length) (то есть длина всего сообщения) и поля типа (Type). Поле Тип указывает, с каким типом сообщения ВGP мы имеем дело.

Если, например, в этом поле 1, вы имеете дело с открытым (Open) сообщением BGP. Значение 2 указывает на сообщение об обновлении (Update). А 3

означает уведомление (Notification). Значение 4 будет иметь сообщение Keepalive. 5 указывает на необязательное Route Refresh.

То, что следует за информацией заголовка, конечно же, является данными, за одним важным исключением- это сообщение Keepalive. По определению, в сообщении Keepalive нет никаких данных.

Теперь я надеюсь вы понимаете, что, когда ваша система хочет сформировать BGP-пиринг с другим устройством, она собирается отправить открытое сообщение. На рисунке 5 показан формат этих сообщений.

Когда мы смотрим на формат открытого (Open) сообщения, мы замечаем, что там есть номер версии. Именно так BGP указывает на версию BGP, которую вы используете.

Ваша система также отправит свой номер AS в открытом сообщении. Это очень важно для такого поведения IBGP по сравнению с EBGP. Существует значение Hold Time. Что же такое Hold Time? Когда маршрутизатор, с которым вы хотите свериться, получает Open сообщение, он смотрит время удержания

(Hold Time), смотрит на свое собственное настроенное Hold Time, а затем использует меньшее из двух значений. Hold Time должно быть либо нулевым, либо не менее трех секунд.

Есть поле BGP Identifier. Это Ваш BGP Router ID, и это уникальное значение, которое будет однозначно отличать вашу систему в пирингах BGP.

Наконец, у нас есть дополнительные параметры (Optional Parameter), которые можно задать с помощью открытого сообщения. Там есть необязательная длина параметра (Optional Parameter Length), а затем сами параметры, дающие дополнительную гибкость работы с протоколом.

Еще одно действительно важное сообщение, которое у нас есть, - это сообщение об обновлении (Update) BGP. На рисунке 6 показана эта структура сообщения.

Withdrawn Routes Length
Withdrawn Routes
Total Path Attribute Length
Path Attributes
NLRI

Сообщение об обновлении BGP содержит индикатор длины отозванных маршрутов (Withdrawn Routes Length). Это гарантирует, что сообщение обновления является средством для маршрутов, которые будут удалены из

таблицы BGP соседа. Примечание: затем в сообщение об обновлении вставляется список изъятых маршрутов.

Сообщение об обновлении содержит поля, которые используются для обмена информацией о префиксах сети с соседями и включают в себя очень важную атрибутивную информацию, связанную с префиксами. Помните, что эти атрибуты позволяют Вам принимать важные решения о том, как ВGР будет фактически маршрутизировать информацию в сети.

Хорошо известный атрибут, о котором мы уже упоминали, - это путь. Вы помните, что это список автономных систем, которые префикс передал на своем пути по всей инфраструктуре BGP. AS Path будет примером атрибута, который должен быть в сообщении об обновлении, когда он используется для отправки префиксов. Там может быть много атрибутов, которые мы используем, и это является причиной для **Total Path Attribute Length** в сообщении об обновлении.

Сама информация о префиксе сети находится в поле **NLRI**. Это означает информацию о достижимости сетевого уровня (**Network Layer Reachability Information**). Вы можете вернуться к рисунку 3 и увидеть эти поля в реальном пакете, а также их содержимое.

Создатели BGP сделали гениальную вещь. Они создали протокол для передачи NLRI таким образом, чтобы он был гибким по мере изменения сетей и необходимости передачи новой информации. BGP создан для того, чтобы сразу же запускать для нас такие вещи, как IPv6. Он также может легко переносить префиксы VPN IPv4 внутри чего-то вроде MPLS VPN.

На рисунке 7 показаны поля сообщения уведомления (Notification).

Error Code Error Subcode

Data

Самое первое поле - это код ошибки (**Error Code**). Затем поле Подкод ошибки (**Error Subcode**). Эти поля дают нам общий тип ошибки, а затем еще больше информации. Например, если в Error Code у нас есть значение 3, а затем в Error Subcode у нас есть значение 3, это указывает на то, что существует сообщение об ошибке обновления.

СОСЕДСТВО ВGР

Точно так же, как мы можем многое узнать о работе BGP, изучая сообщения BGP и их форматы, мы также можем многое узнать о BGP, изучая различные состояния, через которые проходит пиринг BGP. На самом деле, они имеют решающее значение при устранении неполадок. Когда вы проанализируете протокол BGP, вы не удивитесь, узнав, что существует множество встроенных механизмов для обеспечения стабильности.

Многие IGP спроектированы так, чтобы быть максимально быстро сходящимися. Это происходит потому, что в момент, когда происходит изменение внутри сети вашей организации, мы хотим **sub-second** сходимости

других устройств, чтобы мы знали об этом изменении. ВGP спроектирован по-другому. Таймеры имеют гораздо большую продолжительность, чем мы привыкли бы с нашим IGP, потому что мы хотим стабильности, жертвуя скоростью сходимости. В конце концов, BGP имеет дело с общедоступными таблицами маршрутизации интернета в развертываниях поставщиков услуг. Эти таблицы маршрутизации очень массивны. Нестабильность в этой среде приведет к катастрофе всего публичного Интернета.

Когда вы изучите состояние соседства BGP, вы поймете для чего это. Относительно большое число состояний соседства BGP, показанных на рисунке 8, свидетельствует о тщательных усилиях по обеспечению стабильности протокола маршрутизации.

BGP состояние соседства
Idle
Connect
Active
OpenSent
OpenConfirm
Established

Обратите внимание, что есть состояние простоя, когда устройство не инициирует ни одно из других состояний, и есть установленное состояние, когда оно полностью установлено со своим узлом. Что несколько удивительно, так это то, что есть все эти "промежуточные" состояния подключения, активного, открытого подтверждения (OpenConfirm) и активного.

Состояние — подключения-это состояние, в котором устройство BGP ожидает завершения TCP- соединения с соседним устройством.

В активном состоянии он пытается инициировать TCP - соединение со своим соседом. В состоянии **OpenSent**, как вы можете догадаться, он отправляет свое открытое сообщение и ждет ответа от своего соседа с его открытым сообщением. В режиме OpenConfirm, спикер BGP на самом деле ждет, Кеераlive на основе успешного обмена открытыми сообщениями. Будем надеяться, что устройство BGP получит Кеераlive. Если будет ошибка, он получит уведомление.

Используя в Cisco CLI специальные команды, можно узнать все о состоянии BGP. Пример 1 показывает использование команды show ip bgp summary для проверки соседнего состояния.

TPA1#show ip bgp summary

BGP router identifier 10.10.10.1, local AS number 100

BGP table version is 3, main routing table version 3

Neighbor	V	AS	MsgRo	cvd	MsgSent		TblVer InQ		QutQ	Up/down	
State/PfxRcd											
10.10.10.2	4	200	0	0	1	0	0	00:00:	00	Idle	

Обратите внимание на пример 1. Этот пиринг BGP находится в состоянии ожидания (параметр **State/PfxRcd** в состоянии Idle). Как только произойдет соединение значение IDLE заменится на 1 (Если **ATL** использует только один префикс с TPA 1).

Построение маршрута протоколом BGP

BGP- АТРИБУТЫ ПУТИ (PATH ATTRIBUTES)

Когда ваш спикер BGP получает BGP префикс, к нему будет прикреплено множество атрибутов пути, и мы знаем, что они будут иметь решающее значение, когда речь заходит о том, чтобы BGP выбрал самый лучший путь к месту назначения.

Все атрибуты BGP- маршрута, делятся на четыре основные категории.

- Well-Known Mandatory
- Well-Known Discretionary
- Optional Transitive
- Optional Non-Transitive

Обратите внимание, что две категории начинаются с термина **Well-Known**. Well-Known означает, что все маршрутизаторы должны распознавать этот атрибут пути. Две другие категории начинаются с термина **Optional**. Optional означает, что реализация BGP на устройстве вообще не должна распознавать этот атрибут.

Тогда у нас есть термины **mandatory** и **discretionary**, связанные с термином Well-Known. Mandatory означает, что обновление должно содержать этот атрибут. Если атрибута нет, тогда появится сообщение об ошибке уведомления, и пиринг будет удален. Discretionary, конечно, будет означать, что атрибута не должно быть в обновлении.

У необязательных категорий атрибутов есть- транзитивные и нетранзитивные. Если он транзитивен, то устройство должно передать этот атрибут пути своему

следующему соседу. Если он не является транзитивным, то может просто игнорировать это значение атрибута.

Пример 1 показывает проверку нескольких атрибутов пути для префикса, который был получен маршрутизатором ТРА1 от маршрутизатора ATL. Обратите внимание, что мы используем команду show ip bgp для просмотра этой информации, которая хранится в базе данных маршрутизации BGP. В частности, этот вывод показывает атрибуты Next Hop, Metric (MED), LocPrf (Local Preference), Weight, И Path (AS Path).

```
TPA1#show ip bgp

BGP table version is 4, local router ID is 10.10.10.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale

Origin codes^ I - IGP, e - EGP, ? - incomplete

Network Next Hop MetricLocPrfWeightPath

*> 100.100.100.0/24 10.10.10.2 0 200 i
```

АТРИБУТ ORIGIN

Атрибут **ORIGIN** в BGP-это попытка записать, откуда пришел префикс. Существует три возможности, когда речь заходит о происхождении этого атрибута: **IGP**, **EGP** и **Incomplete**. Как видно из легенды примера 1, коды, используемые Cisco для этих источников, являются і, е, и ?. Для префикса, показанного в примере 1, можно увидеть, что источником является IGP. Это указывает на то, что префикс вошел в эту топологию благодаря сетевой команде внутри конфигурации этого исходного устройства. Далее в этой статье мы рассмотрим сетевую команду во всей ее красе. Термин IGP здесь предполагает,

что префикс произошел от записи протокола внутреннего шлюза (**Gateway Protocol**). Допустим, у нас есть префикс в нашей таблице маршрутизации OSPF, а затем мы используем сетевую команду внутри BGP, чтобы поместить его в экосистему BGP. Конечно, IGP - не единственный источник префиксов, которые могут нести этот атрибут. Например, вы можете создать локальный интерфейс обратной связи на устройстве, а затем использовать сетевую команду для объявления этого локального префикса в BGP.

EGP ссылается на ныне устаревший протокол внешнего шлюза (Exterior Gateway Protocol), предшественник BGP. В результате вы не увидите этот исходный код.

Incomplete означает, что BGP не уверен в том, как именно префикс был введен в топологию. Наиболее распространенным сценарием здесь является то, что префикс был перераспределен в Border Gateway Protocol из какого-то другого протокола, обычно IGP.

Возникает вопрос, почему исходный код имеет такое значение. Ответ заключается в том, что это ключевой фактор, когда BGP использует свой алгоритм для выбора наилучшего пути к месту назначения в сети. Он может разорвать «связи» между несколькими альтернативными путями в сети. Мы также уделяем этому атрибуту большое внимание, потому что это действительно один из хорошо известных, обязательных атрибутов, которые должны существовать в наших обновлениях.

АТРИБУТ AS PATH

AS Path - это well-known mandatory атрибут. Он очень важен для наилучшего поиска пути, а также для предотвращения петель внутри Border Gateway Protocol.

Рассматривая нашу топологию, показанную на рисунке 1, рассмотрим префикс, возникший в ТРА. Обновление отправляется в ТРА1, и ТРА не добавляет свой собственный AS 100 в AS Path, так как сосед, которому он отправляет обновление, находится в своем собственном AS в соответствии с пирингом iBGP.

Когда ТРА1 отправляет обновления на ATL, он добавляет номер 100 в обновления. Следуя этой логике, ATL отправит обновления на ATL2 и не будет добавлять свой собственный номер в качестве AS. Это будет работать до тех пор, пока ATL2 не отправит обновления на какой-то другой AS, предшествующий AS 200. Это означает, что, когда мы рассматриваем образец AS path, как показано в примере 2, крайним правым в пути является AS, который первым создал префикс (100), а крайним левым- AS, который доставил префикс на локальное устройство (342).

Пример 2: Пример BGP AS Path

[342 435 200 100]

АТРИБУТ NEXT HOP

На самом деле нет ничего удивительного в том, что префикс BGP имеет атрибут под названием **Next Hop**. В конце концов, маршрутизатор должен знать, куда отправлять трафик для этого префикса. Next Hop атрибут удовлетворяет эту потребность. Интересным моментом здесь, однако, является тот факт, что Next Hop в BGP работает не так же, как это происходит в большинстве IGP. Также следует отметить, что правила меняются, когда вы рассматриваете iBGP в сравнении с eBGP.

При рассмотрении протокола внутреннего шлюза, когда устройство отправляет обновление своему соседу, значением Next Hop по умолчанию является IP-адрес интерфейса, с которого отправляется обновление. Этот параметр продолжает сбрасываться каждым маршрутизатором по мере прохождения обновления через топологию. Next Hop принимает простую парадигму «hop-by-hop».

С помощью BGP, когда у нас есть пиринг eBGP и отправляется префикс, Next Hop действительно будет (по умолчанию) IP-адресом спикера eBGP, отправляющего обновление. Однако IP-адрес этого спикера eBGP будет сохранен в качестве Next Hop, поскольку префикс передается от спикера iBGP к спикеру iBGP. Очень часто мы видим атрибут Next Hop, являющийся IP-адресом, который не является устройством, передавшим нам обновление. Это действительно адрес, который

представляет собой соседний AS, который предоставил нам префикс. Таким образом, правильно думать о BGP как о протоколе «**AS-to-AS**» вместо протокола «hop-to-hop».

Это может вызвать определенные проблемы. Основной вывод состоит в том, что вы должны гарантировать, что все ваши спикеры BGP могут достичь значения Next Hop указанного в атрибуте, чтобы путь считался допустимым. Иначе говоря, спикеры BGP будут считать префикс недопустимым, если они не смогут достичь значения Next Hop.

К счастью, эту проблему можно обойти. Вы можете взять устройство iBGP и проинструктировать его, установив себя в качестве значения Next Hop всякий раз, когда вам это нужно. Это делается с помощью манипуляции пирингом командой neighbor, как показано в примере 3.

```
ATL (config) # router bgp 200

ATL (config-router) # neighbor 10.10.10.1 next-hop-self
```

ATPИБУТ BGP WEIGHT (BECA)

Weight (вес) - это очень интересный атрибут BGP, так как он специфичен для Cisco. Хорошая новость заключается в том, что, поскольку Cisco является гигантом в отрасли сетей, то многие другие производители будут поддерживать использование Weight в качестве атрибута.

Weight также является одним из самых уникальных атрибутов, поскольку это значение не передается другим маршрутизаторам. Weight - это значение, которое присваивается нашим префиксам как локально значимое значение. Weight - это

простое число в диапазоне от 0 до 65535, и чем выше значение веса, тем выше предпочтение этого пути. Когда префикс генерируется локально, он будет иметь вес 32768. В противном случае вес префикса по умолчанию равен 0.

Как можно использовать вес? Поначалу это покажется странным, так как он не передается другим спикерам BGP. Однако все просто. Допустим, ваш маршрутизатор получает один и тот же префикс от двух разных автономных систем, с которыми он работает. Если администратор хочет предпочесть один из путей по какой-либо причине, он может манипулировать локальным значением веса на предпочтительном пути и мгновенно влиять на процесс принятия решения о наилучшем пути BGP.

BGP BEST PATH (ВЫБОР ЛУЧШЕГО ПУТИ)

Как было сказано ранее, мы знаем, что у IGP есть метрическое значение, которое является ключевым для определения наилучшего пути к месту назначения. В случае с OSPF эта метрика основана на стоимости, которая основана на пропускной способности. У BGP существует множество атрибутов пути, которые может иметь префикс. Все они поддаются алгоритму выбора наилучшего пути BGP. На рисунке 2 показаны шаги (начиная сверху), которые используются в выборе наилучших путей Cisco BGP.

Cisco BGP Best Path Selection

Highest Weight

Highest LOCAL_PREF

Prefer locally originated

Shortest AS_PATH

Lowest origin type

Lowest MED

Prefer eBGP over iBGP

Lowest IGP metric to the BGP NEXT_HOP

Oldest path

Lowest Router ID source

Minimum cluster list length

Lowest neighbor address

Изучая эти критерии выбора пути, вы можете сразу же задаться вопросом, почему он должен быть таким сложным. Помните, когда мы имеем дело с чем-то вроде интернета, мы хотим, чтобы было как можно больше регулировок для политики BGP. Мы хотим иметь возможность контролировать, насколько это возможно, как

префиксы используются совместно и предпочтительно в такой большой и сложной
сети.

Формирование соседства в **BGP**

BGP-ПИРИНГ

Учитывая, что BGP является протоколом маршрутизации **AS-to-AS**, вполне логично, что внешний BGP (т.е. **eBGP**) является ключевым компонентом в его операциях. Самое первое, что нам нужно учитывать при работе с eBGP, - это то, что стандарты построены таким образом, что требуется прямое подключение. Это требование конечно можно обойти, но этот момент необходимо рассмотреть. Поскольку предполагается прямое соединение, протокол BGP выполняет две вещи:

- Он будет проверять значение времени жизни (TTL), и что значение time-to-live установлено в 1. Это означает прямую связь между одноранговыми узлами EBGP.
- Осуществляется проверка, что два устройства находятся в одной подсети.

Еще один важный момент рассмотрения пирингов eBGP - это TCP-порты, которые будут использоваться. Это особенно важно для конфигураций брандмауэров, которые защищают автономные системы. Первый спикер BGP, который инициирует изменения состояния, приходящие по мере формирования соседства, будет получать трафик из случайного TCP-порта, а конечным портом будет TCP-порт 179. Отвечающий спикер BGP будет получать трафик с TCP-порта 179, а порт назначения будет случайным портом. Брандмауэры должны быть перенастроены с учетом изменений в коммуникации. На основе этих изменений спикер BGP инициирует сеанс, и это, вносит изменения для будущего сеанса. Некоторые администраторы даже создают механизмы для обеспечения того, чтобы сформированные пиринги были получены из известного направления.

А как насчет **IPv6**? Ну, как было сказано ранее в предыдущей статье, BGP очень гибок и работает с IPv6, поскольку протокол был изначально спроектирован с учетом IPv6. Вы можете формировать пиринги eBGP (и iBGP) с использованием IPv6- адресации, даже если вы используются префиксы IPv4 для информации о достижимости сетевого уровня. Чтобы сформировать в нашей сети пиринг eBGP, необходимо выполнить следующие действия:

- Запустите процесс маршрутизации для BGP и укажите локальный AS (router bgp local as number).
- Предоставить удаленному спикеру eBGP IP- адрес и удаленному AS номер (neighbor ip- of neighbor remote-as remote as number).

Пример 1 демонстрирует конфигурацию и проверку EBGP пиринга между маршрутизаторами TPA1 и ATL.

Пример 1: Настройка пиринга eBGP

ATL#conf t

Enter configuration commands, one per line. End with CNTL/Z.

ATL(config) #router bgp 220

```
ATL(config-router) #neighbor 30.30.30.1 remote-as 110
ATL(config-router) #end
ATL#
TPAl#conf t
Enter configuration commands, one per line. End with CNTL/Z.
TPA1 (config) router bgp 110
TPA1 (config-router) #neighbor 30.30.30.2 remote-as 220
TPA1 (config-router) #end
TPA1#
TPAl#show ip bgp summary
BGP router identifier 30.30.30.1, local AS number 110
BGP table version is 4, main routing table version 4
1 network entries using 120 bytes of memory
1 path entries using 52 bytes of memory
1/1 BGP path/bestpath attribute entries using 124 bytes of memory
1 BGP AS-PATH entries using 24 bytes of memory
O BGP route-map cache entries using O bytes of memory
O BGP filter-list cache entries using O bytes of memory
BGP using 320 total bytes of memory
BGP activity 2/1 prefixes, 2/1 paths, scan interval 60 secs
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
30.30.30.2 4 220 413 414 4 0
06:12:46
```

TPA1#

Примечание: чтобы облегчить понимание BGP, вы можете включить функцию debug ip bgp, при настройке пиринга. Это позволит увидеть переходные состояния в соседстве. Кроме того, чтобы получить больше информации о соседствах, вы можете использовать команду show ip bgp neighbors.

Создание eBGP пиринга, на основе IPv6, выполняется также очень просто, как и на основе IPv4. Единственное изменение заключается в том, что мы заменяем адресацию в IPv4 на IPv6 и активируем соседство. Семейства адресов в маршрутизаторах Cisco для BGP позволяют запускать множество различных схем информирования о достижимости сетевого уровня (**NLRI**) в рамках одного и того же общего процесса BGP. Пример 2 демонстрирует подход к пирингу IPv6.

Пример 2: конфигурация пиринга EBGP с использованием IPv6

```
Enter configuration commands, one per line. End with CNTL/Z.

ATL(config) #router bgp 220

ATL(config-router) #neighbor 2201:1212:1212::2 remote-as 110

ATL(config-router-af) #neighbor 2201:1212:1212::2 activate

ATL(config-router-af) #end

ATL#
```

IBGP-ПИРИНГ

Если вы внимательно посмотрите на топологию, вы можете заметить, что что-то выглядит необычно. Видно, что есть iBGP-пиринг. Почему существует пиринг iBGP, созданный между TPA1 и TPA2? Это выглядит совершенно неуместно. В данном случае, как говорится, внешность может быть обманчива. Главное, что вы должны усвоить относительно BGP, является тот факт, что существует нечто, называемое правилом разделения горизонта (**Split Horizon Rule**) iBGP. Это правило гласит, что ни один спикер iBGP не может принять обновление и затем отправить это же обновление другому узлу iBGP. Так же в требовании говориться, о полном объединении наших спикеров iBGP для обеспечения полной осведомленности о префиксах.

Еще одним важным аспектом, связанным с iBGP, является избыточность. Мы хотим установить несколько физических связей между устройствами, но что произойдет, если связь, используемая для BGP, прервется? Как мы автоматически переключимся к пирингу, используя альтернативное подключение?

Простой способ решить эту проблему заключается в реализации **loopback-адресов** и использовании этих адресов для однорангового соединения. Это то, что мы часто делаем с нашими пирингами BGP, и это может потребовать, дополнительной настройки при использовании подключения к провайдеру. Например, в Cisco мы должны специально указать, что источником пиринга является loopback IP- адрес.

Примечание: еще одним важным аспектом при пиринге между петлевыми адресами в iBGP является то, что loopback-адреса фактически доступны между

спикерами BGP. Именно здесь очень удобно использовать протокол внутреннего шлюза (IGP), такой как OSPF или EIGRP.

Пример 3 показывает конфигурацию пиринга iBGP между устройствами TPA и TPA1. Обратите внимание, что мы используем петлевой подход в том случае, если мы хотим добавить избыточные связи между устройствами в будущем.

Пример 3: Настройка пиринга iBGP

```
TPA#conf t

Enter configuration commands, one per line. End with CNTL/Z.

TPA(config)router bgp 110

TPA(config-router)#neighbor 8.8.8.8 remote-as 110

TPA(config-router)#neighbor 8.8.8.8 update-source loopbackO

TPA(config-router)#end

TPA#

TPAH#conf t

Enter configuration commands, one per line. End with CNTL/Z.

TPA1(config)#router bgp 110

TPA1(config-router)#neighbor 5.5.5.5 remote-as 110

TPA1(config-router)#neighbor 5.5.5.5 update-source loopbackO

TPA1(config-router)#end

TPA1(config-router)#end

TPA1#
```

EBGP MULTIHOP

В разделе eBGP-пиринг этой статьи, обсуждалось, что ваши соседи будут связаны напрямую. В разделе iBGP мы обсуждали преимущество пиринга между loopback для избыточности. Теперь пришло время ответить на вопрос: Что делать, если ваши спикеры eBGP не подключены напрямую? На самом деле, если мы хотим пиринговать между loopback с eBGP, чтобы воспользоваться потенциальной избыточностью. Как сделать это, поскольку интерфейсы loopback не связаны напрямую друг с другом?

ВGР решает эту проблему с помощью опции **eBGP multihop**. С помощью настройки eBGP multihop вы указываете максимальное количество допустимых прыжков. Это пропускает проверку BGP для TTL на значение равное 1, рассмотренное ранее в этой статье. Но как насчет требования прямого подключения? BGP отключает эту проверку в фоновом режиме автоматически, при использовании функции eBGP multihop. Пример 4 демонстрирует настройку eBGP multihop между TPA1 и ATL. Здесь нужен multihop, потому что мы настраиваем пиринг между loopback устройств.

Пример 4: eBGP Multihop

```
ATL(config-router) #neighbor 8.8.8.8 update-source loopbackO

ATL(config-router) #neighbor 8.8.8.8 ebgp-multihop 2

ATL(config-router) #neighbor 8.8.8.8 ebgp-multihop 2
```



```
TPAl#conf t

Enter configuration commands, one per line. End with CNTL/Z.

TPAl(config)router bgp 110

TPAl(config-router)#neighbor 7.7.7.7 remote-as 220

TPAl(config-router)#neighbor 7.7.7.7 update-source loopbackO

TPAl(config-router)#neighbor 7.7.7.7 ebgp-multihop 2

TPAl(config-router)#end

TPAl#
```

BGP АУТЕНТИФИКАЦИЯ

Большинство организаций сегодня добавляют аутентификацию в свои настройки BGP, чтобы защитить их от различного рода атак. По общему признанию, аутентификацию немного сложнее настроить на BGP, чем с на других протоколах маршрутизации, поскольку конфигурация — пирингов- это ручной процесс, который должен выполнен на обоих устройствах. Даже с учетом вышесказанного, аутентификация устройств (eBGP или даже iBGP) - отличная идея.

В Сізсо настройка аутентификации осуществляется просто. Необходимо задать пароль (т.е. общий секрет) на каждое устройство, настроенное для пиринга. Обязательно усвойте, что этот пароль будет отображаться в открытом виде (по умолчанию) внутри вашей сети. Можно использовать команду service password-encryption для выполнения по крайней мере простого шифрования

тех незашифрованных текстовых паролей, которые появляются в конфигурации маршрутизатора.

Аутентификация с шифрованием **Message Digest 5 (MD5)** – это результат простого задания пароля на устройствах. Пример 5 отображает аутентификацию, добавленную в конфигурации для TPA1 и ATL.

Пример 5. Настройка аутентификации для BGP-пиринга

```
ATL#conf t
Enter configuration commands, one per line. End with CNTL/Z.
ATL(config) #router bgp 220
ATL(config-router) #neighbor 8.8.8.8 remote-as 110
ATL(config-router) #neighbor 8.8.8.8 update-source loopbackO
ATL(config-router) #neighbor 8.8.8.8 ebgp-multihop 2
ATL(config-router) #neighbor 8.8.8.8 password MySuperSecret121
ATL(config-router)#end
АТТ.#
TPAl#conf t
Enter configuration commands, one per line. End with CNTL/Z.
TPA1 (config) router bgp 110
TPA1 (config-router) #neighbor 7.7.7.7 remote-as 220
TPA1 (config-router) #neighbor 7.7.7.7 update-source loopback0
TPA1 (config-router) #neighbor 7.7.7.7 ebgp-multihop 2
ATL(config-router) #neighbor 7.7.7.7 password MySuperSecret121
```

TPA1 (config-router) #end
TPA1#

Оповещения NLRI и политики маршрутизации BGP

ОПОВЕЩЕНИЯ NLRI

Прежде чем мы начнем настраивать оповещения NLRI, используя различные команды, давайте сначала обсудим старую функцию BGP, которую Cisco отключает по умолчанию. Эта функция называется **синхронизацией BGP**. Для проверки того, что Cisco отключила эту функцию на вашем устройстве, выполните команду show running-configuration на одном из устройств ВGP, и в выводимой информации, под пунктом «процессы» BGP, вы увидите сообщение no synchronization. Если эта функция включена, функция синхронизации не позволяет спикеру BGP вводить префиксы в BGP, если нет коррелированной записи для префикса в базовом IGP (или статических маршрутах). Это помогает предотвратить ситуации типа "черная дыра" (black hole), когда устройства на маршруте не работают с BGP и не могут переадресовать префикс BGP, потому что у них нет маршрута к этому префиксу из их IGP. Эта функция отключена по умолчанию из-за создания множества различных механизмов масштабируемости, существующих в BGP, которые позволяют настроить топологию iBGP без требования полной сетки одноранговых узлов іВСР. Еще одна причина, по которой он отключен, заключается в том, что он поощряет перераспределение префиксов BGP в базовый IGP, и это не безопасно.

Существует причина, по которой Cisco уходит от использования команды network для настройки IGPs в CLI. Не очень хорошая идея в программировании, чтобы одна команда выполняла очень разные вещи, и когда она используется в разных областях. Это относится и к команде network. При использовании в IGP команда включает протокол на интерфейсе (а также влияете на то, какие префиксы

объявляются), но в BGP у команды network другое назначение. Она не включает BGP на определенных интерфейсах, вместо этого она объявляет префикс, который существует (каким-то образом) на локальном устройстве, и вводит его в BGP.

Хотя префикс, который вы могли бы объявить в BGP, чаще всего встречается в вашем IGPs в таблице маршрутизации. Вы можете использовать другие методы для создания префикса для оповещения. Например, вы можете создать интерфейс обратной связи, который обладает префиксом сети, который вы хотите объявить. Или вы можете создать статический маршрут или даже статический маршрут, указывающий на Nullo.

Одна маленькая хитрость, связанная с командой network в BGP, заключается в том, что, если ваша маска подсети для вашего префикса не находится на классовой границе IP- адреса (например, 10.0.0.0/8), то вам нужно не забыть использовать ключевое слово mask и указать правильную маску при использовании команды. Пример 1 показывает создание двух петлевых интерфейсов и объявление их префиксов в BGP. Обратите внимание, что этот пример также показывает проверку этих префиксных объявлений на маршрутизаторе ATL.

Пример 1: Использование команды Network в BGP

```
TPA1#conf t

Enter configuration commands, one per line. End with CNTL/Z.

TPA1 (config) #interface loopback 192

TPA1 (config-if) #ip address 192.168.1.1 255.255.255.0

TPA1 (config-if) #exit

TPA1 (config) #interface loopback 172

TPA1 (config-if) #ip address 172.16.10.1 255.255.255.0

TPA1 (config-if) #exit

TPA1 (config-if) #exit

TPA1 (config-router bgp 100

TPA1 (config-router) #network 192.168.1.0

TPA1 (config-router) #network 172.16.10.0 mask 255.255.255.0

TPA1 (config-router) #end

TPA1#

ATL#

ATL#
```

```
TPA1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
TPA1 (config) #interface loopback 192
TPA1 (config-if) #ip address 192.168.1.1 255.255.255.0
TPA1 (config-if) #exit
TPA1 (config) #interface loopback 172
TPA1 (config-if) #ip address 172.16.10.1 255.255.255.0
TPA1 (config-if) #exit
TPA1 (config) #router bgp 100
TPA1 (config-router) #network 192.168.1.0
TPA1 (config-router) #network 172.16.10.0 mask 255.255.255.0
TPA1 (config-router) #end
TPA1#
ATL#
ATL#show ip bgp
BGP table version is 5, local router ID is 100.100.100.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
        r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                                       Metric LocPrf Weight Path
   Network
                  Next Hop
*> 172.16.10.0/24 10.10.10.1
                                             0
                                                           0 100 i
*> 192.168.1.0 10.10.10.1
                                                            0 100 i
ATL#
```

Хотя команда network проста и удобна, она не была бы эффективной, если бы у вас было много префиксов для оповещения. Другой вариант- перераспределить префиксы в BGP из IGP или статических маршрутов. Пример 2 демонстрирует перераспределение префиксов, которые были получены через EIGRP, в BGP.

Обратите внимание при проверке, что исходный код для этих префиксов отображается как (?) указывает на неизвестность.

Пример 2: перераспределение префиксов в BGP

```
TPA1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

TPA1(config)router bgp 100

TPA1(config-router)#redistribute eigrp 100

TPA1(config-router)#end

TPA1#

ATL#show ip bgp
```

```
TPA1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
TPA1 (config) #router bgp 100
TPA1 (config-router) #redistribute eigrp 100
TPA1 (config-router) #end
TPA1#
ATL#show ip bgp
BGP table version is 9, local router ID is 100.100.100.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
       r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                                Metric LocPrf Weight Path
  Network
           Next Hop
*> 172.16.10.0/24 10.10.10.1
                                                         0 100 ?
*> 192.168.1.0 10.10.10.1
                                                         0 100 ?
                                           0
ATL#
```

Когда вы начинаете объявлять (оповещать) NLRI в BGP, вы можете столкнуться с префиксами в вашей таблице BGP (показанной с show ip bgp), которые имеют код состояния (r) вместо ожидаемого допустимого кода состояния (*). Код состояния (r) указывает на сбой **RIB**, означающий, что BGP попытался поместить префикс в таблицу BGP, но не смог из- за какой-то проблемы.

Наиболее распространенной причиной отказа RIB является административное расстояние (**AD**). Например, IBGP узнал префиксы несущие ужасные объявления AD из 200. Это означает, что если ваш маршрутизатор получил префикс через IGP (даже такой плохой, как RIP с AD 120), то он будет предпочтительнее префикса IBGP. В результате протокол BGP получивший это объявление AD, не отметит префикс как действующий. Обратите внимание, что это, как правило, не происходит с префиксами **EBGP-learned**, поскольку они имеют очень предпочтительное объявление 20 (по умолчанию).

Очень часто, если желательно иметь префикс в IGP и BGP, администраторы будут манипулировать значениями AD на своих маршрутизаторах, чтобы улучшить AD IBGP. Например, в случае RIP и BGP администратор мог бы установить AD изученных маршрутов IBGP на 119, чтобы сделать их предпочтительными по сравнению с используемым IGP.

В дополнение к выявлению сбоев RIB в результатах команды show ip bgp, вы можете использовать более прямую команду show ip bgp rib-failure, чтобы увидеть любые префиксы в этом состоянии. Это особенно полезно в случае массивных таблиц BGP.

НАСТРОЙКА ПОЛИТИКИ МАРШРУТИЗАЦИИ ВСР

Довольно часто встречаются топологии, в которых вы явно не хотите объявлять префиксы в своей таблице BGP, или вы не хотите получать определенные префиксы от узла BGP. К счастью, в вашем распоряжении есть много инструментов для этого. Например, вот только некоторые методы, которые вы могли бы использовать для фильтрации префиксов:

- Distribute lists
- Extended ACLs
- Prefix lists
- AS Path filters
- Route maps

Пример 3 демонстрирует один из методов фильтрации. Выбран подход route мар, потому что все (и это правильно) любят карты маршрутов.

Пример 3: Использование route map в качестве префиксного фильтра в BGP

```
Enter configuration commands, one per line. End with CNTL/Z.

ATL(config) #ip access-list standard MYPREFIX

ATL(config-std-nacl) #permit 192.168.1.0 0.0.0.255

ATL(config-std-nacl) #exit

ATL(config) #route-map MYMAP deny 10

ATL(config-route-map) #match ip address MYPREFIX

ATL(config-route-map) #exit
```

ATL(config) #route-map MYMAP permit 20

ATL(config-route-map) #exit

ATL(config) #router bqp 200

ATL(config-router) #neighbor 10.10.10.1 route-map MYMAP in

ATL(config-router) #end

ATL#

ATL# clear ip bqp * soft

ATL# show ip bqp

```
ATL#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
ATL(config) #ip access-list standard MYPREFIX
ATL(config-std-nacl) #permit 192.168.1.0 0.0.0.255
ATL (config-std-nacl) #exit
ATL(config) #route-map MYMAP deny 10
ATL (config-route-map) #match ip address MYPREFIX
ATL (config-route-map) #exit
ATL(config) #route-map MYMAP permit 20
ATL(config-route-map) #exit
ATL (config) #router bgp 200
ATL (config-router) #neighbor 10.10.10.1 route-map MYMAP in
ATL (config-router) #end
ATL#
ATL#clear ip bgp * soft
ATL#show ip bgp
BGP table version is 10, local router ID is 100.100.100.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
        r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                               Metric LocPrf Weight Path
  Network
             Next Hop
*> 172.16.10.0/24 10.10.10.1
                                             0
                                                           0 100 ?
ATL#
```

Обратите внимание, перед проверкой я запускаю команду clear ip bgp * soft. Это гарантирует, что устройство сразу же обновит информацию BGP для меня, так что мне не придется ждать истечения таймера, когда дело дойдет до конвергенции BGP на новых манипуляциях с политикой, которые мы сделали.

Помните, что BGP использует множество различных атрибутов пути вместо простой метрики, чтобы предоставить вам возможность легко настроить способ, по которому происходит маршрутизация. Ниже приведены некоторые из атрибутов пути, которыми вы могли бы манипулировать, чтобы настроить политику:

- Weight
- MFD
- Local Preference
- AS Path

Можно спросить себя, как AS Path могут быть использованы в целях маршрутизации. Поскольку манипуляция AS Path часто выполняется с помощью **AS Path Prepending**. Вы отравляете префикс, добавляя свой собственный номер AS к пути, чтобы сделать более длинным (менее предпочтительным) AS Path. Как и большинство наших манипуляций с атрибутом пути, это легко сделать с помощью карты маршрута.

Давайте рассмотрим пример использования Local Preference для манипулирования политикой. Мы часто используем Local Preference, чтобы повлиять на то, как мы будем направлять исходящий трафик к префиксу BGP. Мы делаем это, устанавливая значения Local Preference, входящие по нескольким путям. Прежде чем мы начнем, поймите, что Local Preference - это значение, которое рассматривается довольно высоко в процессе принятия решения о наилучшем пути BGP, более высокое значение предпочтительно, и значения передаются только в обновлениях IBGP. Именно так имя LOCAL вошло в название Local Preference.

Для начала я объявил тот же префикс в AS 200 (ATL и ATL2) от маршрутизаторов TPA1 и TPA2 AS 100. Глядя на пример 4, Вы можете видеть, что этот префикс (192.168.1.0) может быть достигнут с помощью следующего прыжка 10.10.10.1 и что это предпочтительный путь. Альтернативный путь, который будет использоваться в случае неудачи этого пути, будет проходить через следующий переход 10.21.21.1.

Пример 4: Подготовка к использованию Local Preference

ATL# show ip bqp

```
ATL#show ip bgp
BGP table version is 12, local router ID is 100.100.100.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
       r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                 Next Hop
                                     Metric LocPrf Weight Path
                                                        0 100 i
* 192.168.1.0 10.21.21.1
                                           0
                                                         0 100 i
*>
                  10.10.10.1
ATL#
```

Теперь пришло время поэкспериментировать и изменить данное поведение с помощью примера манипуляции атрибутом пути. Мой подход будет состоять в том, чтобы определить префикс, которым мы хотим манипулировать (192.168.1.0), и поднять значение локального предпочтения, чтобы оно было больше, чем

значение по умолчанию 100 для пути к ТРА2 на следующем прыжке 10.21.21.1. Я делаю это, манипулируя префиксом, когда он входит через путь 10.21.21.1.

Пример 5 показывает эту конфигурацию.

```
ATL# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
ATL(config) #ip access-list standard OURPREFIX
ATL(config-std-nacl) #permit 192.168.1.0 0.0.0.255
ATL(config-std-nacl)#exit
ATL(config) #route-map SETLOCALPREF permit 10
ATL(config-route-map) #match ip address OURPREFIX
ATL(config-route-map) #set local-preference 110
ATL(config-route-map)#exit
ATL(config) #route-map SETLOCALPREF permit 20
ATL(config-route-map)#exit
ATL(config) #router bqp 200
ATL(config-router) #neighbor 10.21.21.1 route-map SETLOCALPREF in
ATL(config-router) #end ATL#
ATL# clear ip bgp * soft
ATL# show ip bqp
```

```
ATL#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
ATL(config) #ip access-list standard OURPREFIX
ATL(config-std-nacl) #permit 192.168.1.0 0.0.0.255
ATL(config-std-nacl) #exit
ATL (config) #route-map SETLOCALPREF permit 10
ATL (config-route-map) #match ip address OURPREFIX
ATL (config-route-map) #set local-preference 110
ATL(config-route-map) #exit
ATL(config) #route-map SETLOCALPREF permit 20
ATL (config-route-map) #exit
ATL(config) #router bgp 200
ATL(config-router) #neighbor 10.21.21.1 route-map SETLOCALPREF in
ATL (config-router) #end
ATL#
ATL#clear ip bgp * soft
ATL#show ip bgp
BGP table version is 13, local router ID is 100.100.100.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
        r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                                     Metric LocPrf Weight Path
  Network
                  Next Hop
                  10.21.21.1
                                           0 110 0 100 i
*> 192.168.1.0
                                             0
                                                          0 100 i
                   10.10.10.1
ATL#
```

Обратите внимание, что предпочтительный путь теперь проходит через следующий переход 10.21.21.1, как мы и хотели. Для этого префикса также отображается значение Local Preference - 110. Это более высокое значение

является предпочтительным и изменяет выбор, сделанный процессом выбора наилучшего пути BGP.

Масштабируемость протокола BGP

МЕХАНИЗМЫ МАСШТАБИРУЕМОСТИ ВСР

Истощение доступных автономных системных номеров явилось проблемой точно так же, как было проблемой для интернета истощение IP-адресов. Чтобы решить эту проблему, инженеры обратились к знакомому решению.

Они обозначили диапазон номеров AS только для частного использования. Это позволяет вам экспериментировать с AS конструкцией и политикой, например, в лаборатории и использовать числа, которые гарантированно не конфликтуют с интернет-системами.

Помните, что число AS-это 16-разрядное число, допускающее до 65 536 чисел AS. Диапазон для частного использования: 64512-65535.

Еще одним решением проблемы дефицита, стало расширение адресного пространства имен. Было утверждено пространство, представляющее собой 32-разрядное число.

В течение длительного времени, с точки зрения масштабируемости, одноранговые группы Border Gateway Protocol считались абсолютной необходимостью. Мы настраивали одноранговые группы для уменьшения конфигурационных файлов. Так же мы настраивали одноранговые группы для повышения производительности.

Преимущества производительности были нивелированы с помощью значительно улучшенных механизмов, сейчас. Несмотря на это, многие организации все еще используют одноранговые группы, поскольку они поняты и легки в настройке.

Появились в BGP одноранговые группы для решения нелепой проблемы избыточности в BGP конфигурации. Рассмотрим простой (и очень маленький) пример 1. Даже этот простой пример отображает большое количество избыточной конфигурации.

Пример 1: типичная конфигурация BGP без одноранговых групп

```
ATL1(config) #router bgp 200

ATL1(config-router) #neiqhbor 10.30.30.5 remote-as 200

ATL1(config-router) #neiqhbor 10.30.30.5 update- source 100

ATL1(config= router) #neiqhbor 10.30.30.5 password S34Dfr112s1WP

ATL1(config-router) #neiqhbor 10.40.40.4 remote-as 200

ATL1(config-router) #neiqhbor 10.40.40.4 update- source 100

ATL1(config-router) #neiqhbor 10.40.40.4 password S34Dfr112s1WP
```

Очевидно, что все команды настройки относятся к конкретному соседу. И многие из ваших соседей будут иметь те же самые характеристики. Имеет смысл

сгруппировать их настройки в одноранговую группу. Пример 2 показывает, как можно настроить и использовать одноранговую группу BGP.

Пример 2: одноранговые группы BGP

```
ATL2 (config-router) #neighbor MYPEERGR1 peer-group

ATL2 (config-router) #neighbor MYPEERGR1 remote-as 200

ATL2 (config-router) #neighbor MYPEERGR1 update-source 100

ATL2 (config-router) #neighbor MYPEERGR1 next-hop-self

ATL2 (config-router) #neighbor 10.40.40 .4 peer-group MYPEERGR1

ATL2 (config-router) #neighbor 10.50.50 .5 peer-group MYPEERGR1
```

Имейте в виду, что, если у вас есть определенные настройки для конкретного соседа, вы все равно можете ввести их в конфигурацию, и они будут применяться в дополнение к настройкам одноранговой группы. Почему же так часто использовались одноранговые группы? Они улучшали производительность. Собственно говоря, это и было первоначальной причиной их создания.

Более современный (и более эффективный) подход заключается в использовании шаблонов сеансов для сокращения конфигураций. А с точки зрения повышения производительности теперь у нас есть (начиная с iOS 12 и более поздних версий) динамические группы обновлений. Они обеспечивают повышение производительности без необходимости настраивать что-либо в отношении одноранговых групп или шаблонов.

Когда вы изучаете одноранговую группу, вы понимаете, что все это похоже на шаблон для настроек. И это позволит вам использовать параметры сеанса, а

также параметры политики. Что ж, новая и усовершенствованная методология разделяет эти функциональные возможности на шаблоны сессий и шаблоны политики.

Благодаря шаблонам сеансов и шаблонам политик мы настраиваем параметры, необходимые для правильной установки сеанса, и помещаем эти параметры в шаблон сеанса. Те параметры, которые связаны с действиями политик, мы помещаем в шаблон политики.

Одна из замечательных вещей в использовании этих шаблонов сеансов или политик, а также того и другого, заключается в том, что они следуют модели наследования. У вас может быть шаблон сеанса, который выполняет определенные действия с сеансом. Затем вы можете настроить прямое наследование так, чтобы при создании другого наследования оно включало в себя вещи, созданные ранее. Эта модель наследования дает нам большую гибкость, и мы можем создать действительно хорошие масштабируемые проекты для реализаций ВGР.

Вы можете использовать шаблоны или одноранговые группы, но это будет взаимоисключающий выбор. Так что определитесь со своим подходом заранее. Вы должны заранее определиться, что использовать: использовать ли устаревший подход одноранговых групп или же использовать подход шаблонов сеанса и политики. После выбора подхода придерживайтесь его, так как, использовать оба подхода одновременно нельзя.

Теперь можно предположить, что конфигурация для шаблонов сеансов будет довольно простой, и это так. Помните, прежде всего, все что мы делаем здесь и сейчас, относится к конкретной сессии. Поэтому, если мы хотим установить

timers, нам нужно установить remote-as — и это будет считается параметром сеанса.

Например, мы делаем update source. Мы настраиваем eBGP multihop. Все это имеет отношение к текущему сеансу, и именно это мы будем прописывать в шаблоне сеанса. Обратите внимание, что мы начинаем с создания шаблона. Поэтому используем команду template peer-session, а затем зададим ему имя. И тогда в режиме конфигурации шаблона можем настроить наследование, которое позволит наследовать настройки от другого однорангового сеанса. Можем установить наш remote-as как и/или update source. После завершения, мы используем команду exit-peer-session, чтобы выйти из режима конфигурации для этого сеанса. Пример 3 показывает конфигурацию шаблона сеанса.

Пример 3: Шаблоны сеансов BGP

```
Enter configuration commands, one per line. End with CNTL/Z.

ATL2 (config) #router bgp 200

ATL2 (config-router) #template peer- session MYNAME

ATL2 (config-router-stmp) #inherit peer- session MYOTHERNAME

ATL2 (config-router-stmp) #remote-as 200

ATL2 (config-router-stmp) #password MySecrectPass123

ATL2 (config-router-stmp) #exit-peer-session

ATL2 (config-router) #neiqhbor 10.30.30 .10 inherit peer-session MYNAME

ATL2 (config-router) #neiqhbor 10.30.30 .10 inherit peer-session MYNAME
```

Это простой пример настройки соседства с помощью оператора neighbor и использования наследования однорангового сеанса. Затем присваивается имя однорангового сеанса, созданного нами для нашего шаблона сеанса. Это соседство наследует параметры сеанса.

Помните, что, если вы хотите сделать дополнительную настройку соседства, можно просто присвоить соседу IP-адрес, а затем выполнить любые настройки вне шаблона однорангового сеанса, которые вы хотите дать этому соседу. Таким образом, у вас есть та же гибкость, которую мы видели с одноранговыми группами, где вы можете настроить индивидуальные параметры для этого конкретного соседа вне шаблонного подхода этого соседства.

Вы можете подумать, что шаблоны политик будут иметь сходную конструкцию и использование с шаблонами сеансов, и вы будете правы. Помните, что если ваши шаблоны сеансов находятся там, где мы собираемся настроить параметры, которые будут относиться к сеансу BGP, то, конечно, шаблоны политик будут храниться там, где мы храним параметры, которые будут применяться к политике.

Пример 4 показывает настройку и использование шаблона политики BGP.

Пример 4: Шаблоны политики BGP

```
ATL2 (config-router-ptmp ) #route-map MYMAP out
```

```
ATL2 (config-router-ptmp ) #allowas-in

ATL2 (config-router-ptmp ) #exit-peer-policy

ATL2 (config-router) #neighbor 10.40.40.10 remote-as 200

ATL2 (config-router) #neighbor 10.40.40.10 inherit peer-policy MYNAME

ATL2 (config-router) #end

ATL2#
```

Да, все эти параметры, которые мы обсуждали при изучении манипуляций с политикой, будут тем, что мы будем делать внутри шаблона политики. Однако одним из ключевых отличий между нашим шаблоном политики и шаблоном сеанса является тот факт, что наследование здесь будет еще более гибким.

Например, мы можем перейти к семи различным шаблонам, от которых мы можем непосредственно наследовать политику. Это дает нам еще более мощные возможности наследования с помощью шаблонов политик по сравнению с шаблонами сеансов.

Опять же, если мы хотим сделать независимые индивидуальные настройки политики для конкретного соседа, мы можем сделать это, добавив соответствующие команды соседства.

Благодаря предотвращению циклов и правилу разделения горизонта (**split-horizon rule**) IBGP, среди прочих факторов, нам нужно придумать определенные решения масштабируемости для пирингов IBGP. Одним из таких решений является **router reflector**.

Рис. 1: Пример топологии router reflector

Конфигурация router reflector удивительно проста, поскольку все это обрабатывается на самом router reflector (R3). Клиенты route reflector – это R4, R5 и R6. Они совершенно не знают о конфигурации и настроены для пиринга IBGP с R3 как обычно. Пример 5 показывает пример конфигурации router reflector. Обратите внимание, что это происходит через простую спецификацию клиента router reflector.

Пример 5: BGP ROUTE REFLECTOR

```
R3#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R3 (config) #router bgp 200

R3 (config-router) #neighbor 10.50.50.10 remote -as 200

R3 (config-router) #neighbor 10.50.50.10 route-reflector-client
```

R3 (config-router) #end

Route reflector автоматически создает значение идентификатора (**ID**) кластера для кластера, и это устройство и эти клиенты будут частью того, что мы называем кластером route reflector. Сіѕсо рекомендует разрешить автоматическое назначение идентификатора кластера для идентификации клиента. Это 32-разрядный идентификатор, который BGP извлекает из route reflector.

Магия Route reflector заключается в том, как меняются правила IBGP. Например, если обновление поступает от клиента Route reflector (скажем, R4), то устройство R3 «отражает» это обновление своим другим клиентам (R5 и R6), а также своим неклиентам (R1 и R2). Это обновление происходит даже при том, что конфигурация для IBGP значительно короче полной сетки пирингов, которая обычно требуется.

А теперь что будет, если обновление поступит от не клиента Route reflector (R1)? Route reflector отправит это обновление всем своим клиентам Route reflector (R4, R5 и R6). Но тогда R3 будет следовать правилам IBGP, и в этом случае он не будет отправлять обновление через IBGP другому не клиенту Route reflector (R2).

Чтобы решить эту проблему, необходимо будет создать пиринг от R1 к устройству R2 с помощью IBGP. Или, можно добавить R2 в качестве клиента Route reflector R3.

Есть еще один способ, которым мы могли бы решить проблему с масштабируемостью IBGP- это манипулирование поведением EBGP. Мы делаем это с конфедерациями. Вы просто не замечаете, что конфедерации используются так же часто, как Route reflector. И причина состоит в том, что они усложняют нашу

топологию, и делают поиск неисправностей более сложным. На рис. 2 показан пример топологии конфедерации.

Рисунок 2: Пример топологии конфедерации

Мы имеем наш AS 100. Для создания конфедерации необходимо создать небольшие субавтономные системы внутри нашей основной автономной системы. Мы их пронумеруем с помощью, номеров автономных систем только для частного использования.

Что мы имеем, когда манипулируем поведением eBGP, что бы имеет конфедерацию EBGP пирингов? Это позволяет нам установить пиринги между соответствующими устройствами, которые хотим использовать в этих автономных системах. Как вы можете догадаться, они не будут следовать тем же правилам, что и наши стандартные пиринги EBGP. Еще один важный момент заключается в

том, что все это для внешнего неконфедеративного мира выглядит просто как единый AS 100.

Внутри мы видим реальные AS, и конфедеративные отношения EBGP между ними. Помимо устранения проблемы разделения горизонта IBGP, что же меняется с пирингами конфедерации EBGP? В следующем прыжке поведение должно измениться. Следующий прыжок не меняется тогда, когда мы переходим от одной из этих небольших конфедераций внутри нашей AC к другой конфедерации.

Вновь добавленные атрибуты обеспечивают защиту от цикла из-за конфедерации. Атрибут AS_confed_sequence и AS_confed_set используются в качестве механизмов предотвращения циклов.

Пример 6 показывает пример частичной настройки конфедерации BGP.

```
R3#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R3 (config) #router bgp 65501

R3 (config-router) #bgp confederation identifier 100

R3 (config-router) #bgp confederation peers 65502

R3 (config-router) #neighbor 10 .20.20.1 remote-as 65502

R3 (config-router) #end

R3#
```

Иногда возникает необходимость применения общих политик к большой группе префиксов. Это делается легко, если вы помечаете префиксы специальным значением атрибута, называемым сообществом (**community**). Обратите внимание, что сами по себе атрибуты сообщества ничего не делают с

префиксами, кроме как прикрепляют значение идентификатора. Это 32-разрядные значения (по умолчанию), которые мы можем именовать, чтобы использовать дополнительное значение.

Вы можете настроить значения сообщества таким образом, чтобы они были значимы только для вас или значимы для набора AS. Вы также можете иметь префикс, который содержит несколько значений атрибутов сообщества. Кроме того, можно легко добавлять, изменять или удалять значения сообщества по мере необходимости в вашей топологии BGP.

Атрибуты сообщества могут быть представлены в нескольких форматах. Более старый формат выглядит следующим образом:

- Decimal 0 to 4294967200 (в десятичном)
- Hexadecimal 0x0 to 0xffffffa0 (в шестнадцатеричном)

Более новый формат:

AA:NN

АА - это 16-битное число, которое представляет ваш номер AS, а затем идет 16-битное число, используемое для задания значимости своей политике AS. Таким образом, вы можете задать для AS 100 100:101, где 101- это номер внутренней политики, которую вы хотите применить к префиксам.

Есть также хорошо известные общественные значения. Это:

• No-export - префиксы не объявляются за пределами AS. Вы можете установить это значение, когда отправляете префикс в соседний AS. чтобы заставить его (соседний AS) не объявлять префикс за собственные границы.

- Local-AS префиксы с этим атрибутом сообщества никогда не объявляются
 за пределами локального AS
- No-advertise префиксы с этим атрибутом сообщества не объявляются ни на одном устройстве

Эти хорошо известные атрибуты сообщества просто идентифицируются по их зарезервированным именам.

Есть также расширенные сообщества, которые также можно использовать. Они предлагают 64-битную версию для идентификации сообществ! Задание параметров осуществляется настройкой TYPE:VALUE. Выглядит оно следующим образом:

• 65535:4294967295

Как вы можете догадаться, мы устанавливаем значения сообщества, используя **route maps**. Пример 7 показывает пример настроек. Обратите внимание, что в этом примере также используется список префиксов. Они часто используются в ВGР для гибкой идентификации многих префиксов. Они гораздо более гибки, чем списки доступа для этой цели.

Пример 7: Установка значений сообщества в ВСР

```
R3#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R3(config)#ip prefix-list MYLIST permit 172.16.0.0/16 le 32

R3(config)#route-map SETCOMM permit 10
```



```
R3(config-route-map) #match ip address prefix-list MYLIST

R3(config-route-map) #set community no-export

R3(config-route-map) #route-map SETCOMM permit 20

R3(config) #router bgp 100

R3(config-router) #neighbor 10.20.20.1 route-map SETCOMM out

R3 (config-router) #neighbor 10.20.20.1 send-community

R3(config-router) #end

R3#
```

Работа протокола BGP с IPv6

BGP C IPV6

ВGР настолько удивительно гибок, что, как обсуждалось ранее в этом цикле статей, можно использовать IPv4 в качестве «несущего» протокола для **IPv6 NLRI**. В данном случае мы рассматриваем IPv6 как «пассажирский» протокол. Давайте сначала рассмотрим конфигурацию и используем два простых маршрутизатора, как показано на рисунке 1.

Рисунок 1: Простая топология для IPv6 протокола BGP

Пример 1 показывает конфигурацию и проверку такой сети. Обратите внимание, что эта конфигурация требует установки соответствующего адреса следующего прыжка IPv6 для префиксного объявления. Это не требуется при использовании IPv6 как протокола «перевозчика», так и протокола «пассажира».

Пример 1: IPv4 «перевозящий» IPv6 NLRI

```
ATL#conf t
Enter configuration commands, one per line. End with CNTL/Z.
ATL ( config) #ipv6 unicast-routing
ATL(config) #route-map IPV6NH permit 10
ATL(config-route-map) #set ipv6 next-hop 2001:1212:1212::1
ATL(config-route-map)#exit
ATL(config) #int lo 100
ATL(config-if) #ipv6 address 2001:1111:1111: :/64 eui-64
ATL(config-if) #router bqp 200
ATL(config-router) #neighbor 10.10.10.2 remote-as 200
ATL(config-router) #address-family ipv4 unicast
ATL(config-router-af) #neighbor 10.10.10.2 activate
ATL(config-router-af) #address-family ipv6 unicast
ATL(config-router-af) #neighbor 10.10.10.2 activate
ATL(config-router-af) #neighbor 10.10.10.2 route-map IPV6NH out
ATL(config-router-af) #network 2001:1111:1111: :/64
ATL(config-router-af)#end
```

ATL#

Пример 2 показывает проверку этой конфигурации на ATL 2. Обратите внимание, что поскольку EUI-64 действует на интерфейсе обратной связи ATL, вам нужно будет скопировать полный IPv6-адрес из этого интерфейса, чтобы выполнить тестирование командой ping.

Пример 2: проверка настройки BGP IPv4/IPv6

ATL#show ip bgp ipv6 unicast

```
ATL2#show ip bgp ipv6 unicast
BGP table version is 2, local router ID is 10.10.10.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
    r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
   Network
                    Next Hop
                                        Metric LocPrf Weight Path
*>i2001:1111:1111::/64
                    2001:1212:1212::1
                                                            0 i
                                                   100
ATL2#ping 2001:1111:1111:0:C801:6FF:FEDB:0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:1111:1111:0:C801:6FF:FEDB:0,
timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/15/24 ms
ATL2#
```

```
ATL2#show ip bgp ipv6 unicast
BGP table version is 2, local router ID is 10.10.10.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
    r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                    Next Hop
                                        Metric LocPrf Weight Path
*>i2001:1111:1111::/64
                    2001:1212:1212::1
                                                  100 0 i
ATL2#ping 2001:1111:1111:0:C801:6FF:FEDB:0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:1111:1111:0:C801:6FF:FEDB:0,
timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/15/24 ms
ATL2#
```

Как вы можете догадаться, гораздо более «чистая» конфигурация заключается в использовании IPv6 для передачи информации IPv6 префикса. «Чистая» - это имеется в виду гораздо простая конфигурация. Пример 3 демонстрирует эту конфигурацию. Обратите внимание, что были удалены все IPv4 с устройств, поэтому необходимо установить 32-битный **router ID** для BGP, поскольку он не может установить его автоматически из интерфейса на устройстве.

Пример 3: проверка настройки BGP IPv4/IPv6

```
ATL1 (config) #router bgp 200

*Jan 9 03:31:21.039: %BGP-4-NORTRID: BGP could not pick a router-id.

Please configure manually.

ATL1 (config-router) #bgp router-id 1.1.1.1

ATL1 (config-router) #neighbor 2001:1212:1212::2 remote-as 200

ATL1 (config-router) #address-family ipv6 unicast

ATL1 (config-router-af) #neighbor 2001:1212:1212::2 activate

ATL1 (config-router-af) #network 2001:1111:1111::/64

ATL1 (config-router-af) #end

ATL1 (config-router-af) #end

ATL1 (config-router-af) #end
```

Возможно, вам будет интересно проверить соседство BGP после настройки IPv6.

Мы очень любим использовать команду show ip bgp summary для проверки

настроек в IPv4. Для IPv6 используйте команду show bgp ipv6 unicast summary.

Как вы помните из предыдущей части этой серии статей, существует много замечательных механизмов фильтрации, которые мы можем применить в IPv4 BGP. Замечательная новость заключается в том, что этот же набор методов, доступны и для IPv6. Ментоды включают в себя такие механизмы, как:

- Prefix lists
- AS Path Filtering
- Route maps

Пример 4 показывает пример конфигурации фильтрации с использованием списка префиксов. Обратите внимание, что эта конфигурация действительно не требует от вас повторного изучения каких-либо технологий.

Пример 4: фильтрация префиксов IPv6 в BGP

```
ATL#conf t

ATL(config) #ipv6 prefix-list MYTEST deny 2001:1111:1111::/64

ATL(config) #ipv6 prefix-list MYTEST permit ::/0 le 128

ATL(config) #router bgp 200

ATL(config-router) #address-family ipv6 unicast

ATL(config-router-af) #neighbor 2001:1212:1212:: 2 prefix-list MYTEST out

ATL(config-router-af) #end

ATL#

ATL#clear ip bgp *
```