Selected Problems 1

Chapter 1.2 Problem 9

Consider the following algorithm for finding the distance between the two closest elements in an array of numbers.

```
ALGORITHM MinDistance(A[0..n-1])

//Input: Array A[0..n-1] of numbers

//Output: Minimum distance between two of its elements dmin \leftarrow \infty

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

if i \neq j and |A[i] - A[j]| < dmin

dmin \leftarrow |A[i] - A[j]|

return dmin
```

Make as many improvements as you can in this algorithmic solution to the problem. If you need to, you may change the algorithm altogether; if not, improve the implementation given.

Chapter 2.2 Problem 5

List the following functions according to their order of growth from the lowest to the highest:

$$(n-2)!$$
, $5 \lg(n+100)^{10}$, 2^{2n} , $0.001n^4 + 3n^3 + 1$, $\ln^2 n$, $\sqrt[3]{n}$, 3^n .

Chapter 2.3 Problem 4

Consider the following algorithm.

ALGORITHM Mystery(n) //Input: A nonnegative integer n $S \leftarrow 0$ for $i \leftarrow 1$ to n do $S \leftarrow S + i * i$ return S

- **a.** What does this algorithm compute?
- **b.** What is its basic operation?
- **c.** How many times is the basic operation executed?
- **d.** What is the efficiency class of this algorithm?
- **e.** Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.

Chapter 2.4 Problem 1d

d.
$$x(n) = x(n/2) + n$$
 for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$)

Chapter 2.4 Problem 4

Consider the following recursive algorithm.

ALGORITHM Q(n)

```
//Input: A positive integer n if n = 1 return 1 else return Q(n-1) + 2 * n - 1
```

- **a.** Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.
- **b.** Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.
- **c.** Set up a recurrence relation for the number of additions/subtractions made by this algorithm and solve it.