Zápočtová úloha z předmětu KIV/ZSWI

DOKUMENT SPECIFIKACE POŽADAVKŮ

28. března 2017

Tým: Carel

Členové:

Kateřina Kopřivová kcermak@students.zcu.cz Jakub Šantora santoraj93@gmail.com

Valentin Horáček valentin.horacek@gmail.com

Eye tracker

DOKUMENT SPECIFIKACE POŽADAVKŮ

pro Software umožňující výběr předmětu na monitoru

Verze 1.1

Historie dokumentu

Datum	Verze	Popis	Autor
19. 3. 2017	1.0	Úvodní popis	Kateřina kopřivová
25. 3. 2017	1.1	Sepsání specifikace	Kateřina kopřivová

Obsah

1.	Úvod		1
	1.1	Předmět specifikace	1
	1.2	Typografické konvence	
	1.3	Cílové publikum, návod ke čtení	1
	1.4	Rozsah projektu	
	1.5	Odkazy	1
2.	Obec	ný popis	2
	2.1	Kontext systému	
	2.2	Funkce produktu	
	2.3	Třídy uživatelů	2
	2.4	Provozní prostředí	2
	2.5	Omezení návrhu a implementace	2
	2.6	Uživatelská dokumentace	2
	2.7	Předpoklady a závislosti	
3.	Funk	ce systému	3
	3.1	Nastavení kamery	3
	3.2	Kalibrace kamery	
	3.3	Funkce systému 3	
	3.4	Funkce systému 4	
	3.5	Funkce systému 5	
	3.6	Funkce systému 6	
4.	Požac	davky na vnější rozhranídavky na vnější rozhraní	6
	4.1	Uživatelská rozhraní	6
	4.2	Hardwarová rozhraní	
	4.3	Softwarová rozhraní	
	4.4	Komunikační rozhraní	
5.	Další	parametrické (mimofunkční) požadavky	8
	5.1	Výkonnostní požadavky	8
	5.2	Bezpečnostní požadavky	
	5.3	Kvalitativní parametry	
6.	Ostat	ní požadavky	8

1. Úvod

1.1 Předmět specifikace

Tato specifikace popisuje software pro Eye Tracker umožňující výběr předmětu na monitoru vytvářeného v rámci předmětu KIV/ZSWI.

1.2 Typografické konvence

Popište textové styly, způsob vyznačování nebo důležitější notace. Uveďte například, jestli se priorita obecných požadavků vztahuje i na všechny odvozené podrobné požadavky, nebo jestli má mít každý funkční požadavek svou vlastní prioritu.

Pro odlišení významných prvků v textu jsou použity následující konvence:

Názvy komponent grafického uživatelského rozhraní jsou psány kurzívou

1.3 Cílové publikum, návod ke čtení

Tato specifikace je určena pro zadavatele projektu a vývojový tým projektu. Tento dokument poskytuje základní popis toho, co má systém dělat a jak bude vypadat.

1.4 Rozsah projektu

Hlavním účelem programu je vybrat jeden z obrázků na monitoru pouze snímáním pohybu zorničky. Obrázky představují činnosti nebo potřeby člověka. Projekt má do budoucna za úkol pomoci lidem bez možnosti pohybu v komunikaci s okolním světem.

Software by měla být schopna ovládat sestřička nebo asistentka. Samotný Eye Tracker by měl reagovat pouze na pohyb oka a únikové tlačítko. Uživatelské rozhraní aplikace je blíže popsané v kapitole 4.1.

1.5 Odkazy

Veškeré informace k softwaru Pupil jsou k dispozici na uložišti GitHub:

Moritz Kassner, William Patera, Pupil Github Repository - https://github.com/pupil-labs/pupil

Obecný popis

1.6 Kontext systému

Tento systém rozšiřuje open-source platformu Pupil. Pupil je software určený ke sledování a nahrávání pohybu zorničky po zkalibrovaném prostoru. Systém rozšiřuje Pupil o jednoduché uživatelské rozhraní pro ovládání přidávané komponenty a komponentu pro výběr obrázku ze sítě.

1.7 Funkce produktu

- Grafické uživatelské rozhraní
- Výběr velikosti obrázkové sítě
- Výběr přednastavených nebo vlastních obrázků
- Vyhodnocení cílového obrázku podle souřadnic pohledu očí

1.8 Třídy uživatelů

Produkt je určen pro uživatele s tělesným postiženým. Tito uživatelé mohou potřebovat pomoct se spuštěním a kalibrací aplikace, v závislosti na jejich imobilitě. Je nutné přečtení uživatelské dokumentace. Ovládání aplikace nevyžaduje žádné specifické dovednosti.

1.9 Provozní prostředí

Notebook MSI GE72 2QC Apache, 8GB RAM, Intel Core i7 – 5700HQ CPU, frekvence 2.7 GHz. Operační systém Ubuntu 16.04.2 LTS (Xenial).

1.10 Omezení návrhu a implementace

Systém nelze vyvíjet pod OS Windows z důvodu nekompatibility knihoven s operačním systémem.

1.11 Uživatelská dokumentace

S projektem bude dodáván uživatelský manuál s popisem funkcí a návodem k použití. Ve spuštěné aplikaci bude tlačítko pro nápovědu k ovládání aplikace.

1.12 Předpoklady a závislosti

Aby nedošlo ke kolizím našeho systému se softwarem Pupil a jeho budoucími aktualizacemi, rozhodli jsme se použít stabilní verzi Pupilu z data 17. Března 2017 a neaktualizovat ji.

2. Funkce systému

2.1 Nastavení kamery

3.1.1 Popis a priorita

Funkce zobrazí pohled kamery, která snímá oko, a její možná nastavení jako obraz kamery, oblast zájmu a algoritmus. Celá tato funkce je převzatá od Pupil.

Priorita vysoká.

3.1.2 Události a odpovědi

Funkce se spustí tlačítkem *Camera Settings* v grafickém uživatelském rozhraní. Proces nastavení kamery lze spustit opakovaně, výsledný stav je trvalý a v dalším běhu programu jej nelze změnit.

Více informací lze nalézt v dokumentaci Pupilu.

2.2 Kalibrace kamery

3.2.1 Popis a priorita

Funkce zobrazí kalibrační proces přes celou plochu monitoru. Uživatel se dívá na jednotlivé kalibrační body. Funkce snímá jednou kamerou pohyb oka a zaměřenou oblast, druhou kamerou sleduje okolní svět (oblast, kterou před sebou uživatel skutečně má). Sjednocením kalibračních bodů s mapovanými koordináty se dosáhne optimální kalibrace.

Priorita vysoká.

3.2.2 Události a odpovědi

Funkce se spustí tlačítkem *Calibration* v grafickém uživatelském rozhraní. Proces kalibrace kamery lze spustit opakovaně, výsledný stav je trvalý a v dalším běhu programu jej nelze změnit.

Více informací lze nalézt v dokumentaci Pupilu.

2.3 Načtení nových obrázků do aplikace

3.3.1 Popis a priorita

Funkce otevře průzkumníka a uživatelem vybrané obrázky přidá do obrázkové galerie.

Priorita střední.

3.3.2 Události a odpovědi

- Uživatel vybere jeden nebo více obrázků vybrané obrázky se zobrazí v galerii
- Uživatel nevybere žádné obrázky galerie zůstává ve stejném stavu, nic se nevkládá
- Uživatel vloží nepodporovaný formát špatné soubory se do galerie nevloží a zobrazí se chybová hláška o nekompatibilitě souborů.

2.4 Výběr obrázků z galerie.

3.4.1 Popis a priorita

Pro spuštění aplikace je nutné vybrat stejný počet obrázků jako je obsah mřížky (pro mřížku 3x3 je nutno vybrat 9 obrázků). Vybraný obrázek se od ostatních liší symbolem v levém dolním rohu obrázku. Nad obrázkovou galerií se nachází počítadlo zvolených obrázků.

Priorita střední.

3.4.2 Události a odpovědi

- Uživatel klikne na obrázek, který není vybrán obrázek se označí symbolem Z a započítá se do celkového počtu vybraných obrázků.
- Uživatel klikne na obrázek, který je vybrán označení obrázku v levém dolním rohu zmizí a počítadlo celkového počtu vybraných obrázků se zmenší o 1.

2.5 Vykreslení mřížky.

3.5.1 Popis a priorita

Funkce z obrázků vybraných v galerii vytvoří mřížku požadované velikosti. Pozice obrázků jsou vybrány náhodně.

Priorita vysoká.

3.5.2 Události a odpovědi

Funkce se spouští tlačítkem Run v hlavní nabídce aplikace.

- Uživatel se pokusí spustit aplikaci se správným počtem zvolených obrázků přes
 celou plochu monitoru se vykreslí mřížka s obrázky a spustí se sledování zorničky.
- Uživatel se pokusí spustit aplikaci s méně nebo více zvolenými obrázky aplikace se nespustí a vyskočí chybová hláška.

2.6 Výběr sekce.

3.6.1 Popis a priorita

Funkce sleduje zorničku a podle sledované oblasti vybere příslušnou sekci a zvýrazní obrázek v sekci. Funkce vybere obrázek, pokud se oko zaměří na jednu oblast v časovém intervalu třiceti sekund. Zvýraznění bude trvat deset sekund, po té se mřížka vrátí zpět do původního stavu a znovu se spustí sledování oka. Tato akce se opakuje, dokud nedojde k vypnutí aplikace nebo návratu do menu.

Všechny časové intervaly budou vhodně upraveny během testování.

3.6.2 Události a odpovědi

V pravém horním menu bude možnost otevření možností, které podle výběru uživatele aplikaci vrátí do hlavního menu nebo celý proces ukončí. Více informací naleznete v části 4.1 Uživatelské rozhraní.

3. Požadavky na vnější rozhraní

3.1 Uživatelská rozhraní

Aplikace používá vlastní uživatelské rozhraní vytvořené knihovou Tkinter v programovacím jazyce Python. Návrh spouštěcího okna je na obrázku 1. Rozhraní se skládá z několika tlačítek a obrázkové galerie.

Obrázek 1 Návrh spouštěcího okna

Tlačítko *Camera Setting* otevře okno s přenosem kamery zaměřené na sledované oko. Slouží k nastavení zaměření na zorničku oka. Tlačítko *Calibration* spustí kalibraci kamery a softwaru na oblast monitoru na kterém aplikace běží. V rozbalovacím menu lze vybrat velikost mřížky s obrázky. Tlačítko *Add Pictures* otevře průzkumníka a umožní nahrání vlastních obrázků do aplikace. Největší prostor okna zabírá obrázková galerie, ve které je nutné vybrat přesný počet obrázků v mřížce. Tlačítkem *Run* se spustí obrázková mřížka, před spuštěním je nutné zařízení zkalibrovat. *Exit* celou aplikaci vypne. V pravém horním rohu se nachází tlačítko pro nápovědu.

Na obrazovce s mřížkou s obrázky je také malé rolovací menu s možnostmi pro ukončení aplikace a návrat do menu. Návrh zobrazení je na obrázku 2.

Obrázek 2 Návrh obrazovky s mřížkou obrázků

3.2 Hardwarová rozhraní

Pro spojení kamer Eye Trackeru se softwarem slouží rozhraní USB 3.0.

3.3 Softwarová rozhraní

Pro komunikaci s aplikací Pupil využíváme její IPC (Inter process communciation) Backbone. Pomocí PUBSUB Proxy Python modulu ZeroMQ, sloužícímu k asynchronnímu předávání zpráv získáváme data z aplikace pupil a odesíláme jí příkazy (například pro spuštění kalibrace atp.).

IPC Backbone má dvě síťové adresy, jejichž porty jsou náhodně voleny při startu a známy všem komponentám aplikace - PUB, umožňující odesílání zpráv a SUB, umožňující čtení vybraných zpráv ze streamu.

Všechny zprávy jsou složeny ze dvou rámců, první obsahuje řetězec nazývaný topic (téma), určující komu je zpráva určena, a druhý samotnou zprávu, která je dvojicemi klíč - hodnota, zakódovanými pomocí modulu Python modulu msgpack.

3.4 Komunikační rozhraní

Není.

4. Další parametrické (mimofunkční) požadavky

4.1 Výkonnostní požadavky

Pro správný běh program je nutný OS založený na linuxovém jádře, dedikovaná grafická karta, procesor s frekvencí větší než 2GHz a s minimálně třemi jádry, kvůli paralelismu vláken programu.

4.2 Bezpečnostní požadavky

Žádné.

4.3 Kvalitativní parametry

- nízký počet havárií během používání
- přesnost sledování a správnost výběru obrázku
- rychlé naučení ovládání programu

5. Ostatní požadavky

Žádné.