Mangfoldigheter

Fredrik Meyer

May 21, 2015

1 Mangfoldigheter

Mangfoldigheter er topologiske rom som er konstruert ved å lime sammen kopier av \mathbb{R}^n på et kontinuerlig vis.

Presist:

Definition 1.1. Et Hausdorff, parakompakt, topologisk rom M er en **topologisk mangfoldighet** hvis det for hver $p \in M$ finnes en åpen mengde $U \ni p$ og en homeomorfi $\varphi_{p,U}: U \to \mathbb{R}^n$.

Vi kan utstyre mangfoldigheter med mer struktur. I dette kurset er vi interessert i "differensiable strukturer". Èn måte å introdusere dette på er ved hjelp av et maksimalt atlas.

[kan dette ekvivalent gjøres vha et knippe av funksjoner?]

Definition 1.2 (Glatt maksimalt atlas). Et **kart** er en homeomorfi $\varphi: U \to V$ fra en åpen mengde $U \subset \mathbb{R}^n$ til en åpen delmengde $V \subset M$. Et **atlas** er en mengde kompatible kart, i betydningen at hvis $x: U \to M$ og $y: V \to M$ er to kart, så er $y^{-1} \circ x: U \to V$ glatt. Atlaset skal dekke mangfoldigheten, slik at hvert punkt $p \in M$ er dekket av et kart.

Et **maksimalt atlas** er et atlas som ikke kan utvides med flere kompatible kart.

Av tekniske grunner definerer vi så en **differensiabel mangfoldighet** (heretter bare kalt "mangfoldighet") til å være en topologisk mangfoldighet utstyrt med et glatt maksimalt kart.