Ecole Supérieure en Informatique Sidi Bel Abbes 2ème année CPI

ANALYSE 3 TD : SÉRIES NUMÉRIQUES

Exercice 1

En utilisant les suites $(u_n)_n$ et $(v_n)_n$ définies par :

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 ; $v_n = u_n + \frac{1}{n \cdot n!}$

montrer que la série $\left(\sum \frac{1}{n!}\right)$ est convergente.

Exercice 2

Montrer que la série $\left(\sum \frac{1}{n^2}\right)$ est de Cauchy puis en déduire que la série $\left(\sum \frac{1}{n^a}\right)$ est convergente pour $a \ge 2$ et divergente pour a < 1

Exercice 3

Soient $(u_n)_n$ et $(v_n)_n$ 2 suites réelles ou complexes vérifiant $u_n = v_n - v_{n+1}$. Établir :

$$\left(\sum u_n\right)$$
 converge $\Leftrightarrow (v_n)_n$ converge

Application : Montrer que les séries suivantes sont convergentes et calculer leur somme :

$$\frac{1}{(1) \sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right)}; \quad (2) \quad \sum_{n=0}^{+\infty} \frac{1}{n^2 + 2ni - 2}; \quad (3) \quad \sum_{n=1}^{+\infty} \left((n+1)^{\frac{1}{n+1}} - n^{\frac{1}{n}}\right)$$

Exercice 4

Soit $(v_n)_n$ une suite réelle ou complexe. Soit $(\sum u_n)$ une série définie par

$$u_n = av_{n-1} + bv_n + cv_{n+1};$$
 avec $a + b + c = 0$

- 1. Montrer : $(v_n)_n$ converge $\Longrightarrow (\sum u_n)$ converge. En déduire la somme.
- 2. Que pensez-vous de la réciproque?

Exercice 5

Montrer que les séries suivantes sont convergentes et calculer somme :

(1)
$$\sum_{n=0}^{+\infty} \frac{n^2 - 5n + 1}{n!}; \quad (2) \quad \sum_{n=0}^{+\infty} \pi^{2n} e^{\pi - 5n}; \quad (3) \quad \sum_{n=0}^{+\infty} \frac{(-1)^n}{t^{n+1}}; |t| > 1$$

Exercice 6

Soit $(\sum u_n)$ une série dont la somme partielle d'ordre n est $\mathbb{U}_n = \frac{1}{n^2 + 1}$.

- 1. Trouver la série $(\sum u_n)$
- 2. En déduire que la série $\sum_{n=0}^{+\infty} \frac{2n-1}{(n^2+1)(n^2-2n+2)}$ est convergent et trouver sa somme.

Exercice 7

Donner la nature des séries suivantes :

$$\sum_{n=0}^{+\infty} \sin\left(\frac{n!\pi}{8}\right) \quad ; \quad \sum_{n=0}^{+\infty} \cos\left(\frac{n!\pi}{8}\right)$$

Exercice 8

Soient $(\sum u_n)$ et $(\sum v_n)$ 2 séries à termes positifs convergentes

- 1. Montrer alors que la série $(\sum \sqrt{u_n v_n})$ est convergente.
- 2. Montrer que la série $\left(\sum \frac{\sqrt{u_n}}{n}\right)$ est convergente.
- 3. Soient $(\sum u_n)$ et $(\sum v_n)$ 2 séries définies par :

$$u_n = \begin{cases} u_{2p} = 1 \\ u_{2p+1} = \frac{1}{(2p+1)^4} \end{cases}; \qquad v_n = \begin{cases} v_{2p} = \frac{1}{(2p)^4} \\ u_{2p+1} = 1 \end{cases}$$

Etudier la convergence des séries $(\sum u_n)$, $(\sum v_n)$ et $(\sum \sqrt{u_n v_n})$

Exercice 9

Etudier la convergence des séries suivantes :

(1)
$$\sum_{n=0}^{+\infty} \frac{2^n}{3^n + 1}; \quad (2) \quad \sum_{n=0}^{+\infty} \left(\frac{n+a}{n+b}\right)^n; \quad (3) \quad \sum_{n=0}^{+\infty} \left(\frac{(n+a)}{n+b}\right)^{n^2}$$

(4)
$$\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}; \qquad (5) \qquad \sum_{n=0}^{+\infty} n e^{-\sqrt{n}}; \qquad (6) \qquad \sum_{n=2}^{+\infty} \ln(1 - \frac{1}{n^{\alpha}})$$

(7)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3^n + 1}; \quad (8) \qquad \sum_{n=0}^{+\infty} \frac{1}{1 + \alpha^n}; \quad (9) \qquad \sum_{n=1}^{+\infty} \frac{\ln n}{\sqrt{n}}$$

$$(4) \quad \sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}; \quad (5) \quad \sum_{n=0}^{+\infty} ne^{-\sqrt{n}}; \quad (6) \quad \sum_{n=2}^{+\infty} \ln(1 - \frac{1}{n^{\alpha}})$$

$$(7) \quad \sum_{n=0}^{+\infty} \frac{(-1)^n}{3^n + 1}; \quad (8) \quad \sum_{n=0}^{+\infty} \frac{1}{1 + \alpha^n}; \quad (9) \quad \sum_{n=1}^{+\infty} \frac{\ln n}{\sqrt{n}}$$

$$(10) \quad \sum_{n=2}^{+\infty} \frac{1}{(\ln n)^n}; \quad (11) \quad \sum_{n=0}^{+\infty} \left(\frac{10}{n!}\right)^n; \quad (12) \quad \sum_{n=2}^{+\infty} \frac{1}{n} \left(\frac{1}{\ln n}\right)^{\frac{3}{2}}$$

Exercice 10

Soit $(\sum u_n)$ une série à termes positifs.

- 1. Etablir : $(\sum u_n)$ converge $\Longrightarrow (\sum u_n^p)$ converge $\forall p \in \mathbb{N}^*$
- 2. Donner un exemple montrant que cette implication est fausse si $(\sum u_n)$ n'est pas à termes positifs.
- 3. Donner un exemple d'une série $(\sum a_n)$ divergente et $(\sum a_n^2)$ converge.
 - 4. Donner un exemple de 2 séries $(\sum a_n)$ et $(\sum b_n)$ divergentes et $(\sum a_n b_n)$ converge.
 - 5. Montrer que la somme d'une série convergente et d'une série divergente est divergente.
 - 6. Donner un exemple de séries $(\sum a_n)$ et $(\sum b_n)$ divergentes telles que :
 - a) $(\sum (a_n + b_n))$ diverge
 - b) $\left(\sum (a_n + b_n)\right)$ converge

Exercice 11 Soit $u_n = \frac{1}{n} - \frac{1}{an+1}$ le terme général d'une série $(\sum u_n)$.

- 1. Etudier la convergence de $(\sum u_n)$
- 2. Calculer la somme $(\sum_{n=1}^{+\infty} u_n)$ si a=1

Exercice 12

Soit $(\sum u_n)$ une série à termes positifs et soient $(\sum a_n)$ et $(\sum b_n)$ 2 séries telles que $a_n =$ $\ln(1+u_1) \text{ et } b_n = \frac{a_n}{1+u_n}.$

Montrer que les 3 séries $(\sum u_n)$ $(\sum a_n)$ $(\sum b_n)$ sont de même nature.

Exercice 13

Etudier la convergence des séries suivantes :

(1)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n}; \quad (2) \quad \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}; \quad (3) \quad \sum_{n=1}^{+\infty} (-1)^n \frac{n}{2n+1}$$

(4)
$$\sum_{n=0}^{+\infty} \frac{1}{n! x^n}; \qquad (5) \qquad \sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^x}; \qquad (6) \qquad \qquad \sum_{n=1}^{+\infty} \frac{1}{n^{\ln n}}$$

(7)
$$\sum_{n=0}^{+\infty} \frac{\cos(nx)}{e^{nx}}; \quad (8) \quad \sum_{n=0}^{+\infty} (-1)^n e^{\sin(nx)}; \quad (9) \quad \sum_{n=0}^{+\infty} \frac{4 + (-1)^n}{a^n}; a \neq 0$$

Exercice 14

Utiliser la règle de Raab-Duhamel pour étudier la convergence des séries suivantes

$$\sum_{n=0}^{+\infty} \frac{n^n}{n!e^n} ; \qquad \sum_{n=0}^{+\infty} \frac{1.4.7....(3n+1)}{3^n n!}$$

Exercice 15

Soit $\alpha \in \mathbb{R}$.

- 1. Etudier la convergence de la série $\sum_{n=0}^{+\infty} (-1)^n \ln(1-\frac{1}{n^{\alpha}})$.
- 2. Etudier la convergence absolue.

Exercice 16

Soit $\alpha \in \mathbb{R}$. Etudier la convergence des séries suivantes dont le terme général est :

(1)
$$u_n = \ln\left(1 + \frac{(-1)^n}{n^{\alpha}}\right);$$
 (2) $u_n = (-1)^n \frac{\ln n}{n^2};$ (3) $u_n = \frac{\alpha^n}{1 + \alpha^n + \ln n}$ (4) $u_n = (-1)^n \ln\left(1 + \frac{1}{n}\right);$ (5) $u_n = \frac{(-1)^n}{\sqrt[n]{n} \ln n};$ (6) $u_n = \frac{(-1)^n}{\sqrt{n^{\alpha} + (-1)^n}}$

(4)
$$u_n = (-1)^n \ln\left(1 + \frac{1}{n}\right);$$
 (5) $u_n = \frac{(-1)^n}{\sqrt[n]{n} \ln n};$ (6) $u_n = \frac{(-1)^n}{\sqrt{n^\alpha + (-1)^n}}$

(7)
$$u_n = \left(\sqrt{n+1} - \sqrt{n}\right)^{\alpha} \ln(\frac{n+1}{n-1});$$
 (8) $u_n = \ln\left(\frac{1}{\cos(\frac{1}{n})}\right);$ (9) $u_n = (-1)^n \frac{n^n}{n!}$

(10)
$$u_{n} = \frac{1}{n(n+\ln n)};$$

$$(11) \quad u_{n} = \sin^{2}\left(\pi(n+\frac{1}{n})\right);$$

$$(12) \quad u_{n} = \frac{1}{n^{n+1}};$$

$$(13) \quad u_{n} = e^{\sin n};$$

$$(14) \quad u_{n} = \frac{n+\cos n}{n^{3}+1};$$

$$(15) \quad u_{n} = \frac{\sin^{2}(n)}{n^{2}};$$

$$(16) \quad u_{n} = n^{2}\sin\left(\frac{\pi}{2^{n}}\right);$$

$$(17) \quad u_{n} = a^{\ln(n)}, a > 0;$$

$$(18) \quad u_{n} = \frac{a^{n}}{n^{\alpha}}, a > 0$$

(13)
$$u_n = e^{\sin n}; \qquad (14) \qquad u_n = \frac{n + \cos n}{n^3 + 1}; \qquad (15) \qquad u_n = \frac{\sin^2(n)}{n^2}$$

(16)
$$u_n = n^2 \sin\left(\frac{\pi}{2^n}\right);$$
 (17) $u_n = a^{\ln(n)}, a > 0;$ (18) $u_n = \frac{a^n}{n^\alpha}, a > 0$

(19)
$$u_n = e^{k(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})}; \qquad (20) \qquad u_n = \left(\frac{e^n n!}{n^n}\right)^{\alpha}; \qquad (21) \qquad u_n = \arctan(n\alpha)$$

1

Exercice 17 (libre)

Etudier la convergence des séries données par leur terme général u_n .

(1)
$$u_n = \left(\cos\left(\frac{1}{\sqrt{n}}\right)\right)^n - \frac{1}{\sqrt{e}}$$
(2)
$$u_n = \ln\left(\frac{n^2 + an + 1}{n^2 + bn + 2}\right)$$

(2)
$$u_n = \ln\left(\frac{n^2 + an + 1}{n^2 + bn + 2}\right)$$

(3)
$$u_n = \arctan\sqrt{1 + \frac{1}{n}} - \arctan\sqrt{1 - \frac{1}{n}}$$

(4)
$$u_n = \arccos\left(\frac{1}{\sqrt{2}} + \frac{1}{n^{\alpha}}\right) - \frac{\pi}{4}$$

(4)
$$u_n = \arccos\left(\frac{1}{\sqrt{2}} + \frac{1}{n^{\alpha}}\right) - \frac{\pi}{4}$$
(5)
$$u_n = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$$

(6)
$$u_n = \left(\sqrt{n+1} - \sqrt{n}\right)^{\alpha} \ln\left(\frac{n+1}{n-1}\right)$$

(7)
$$u_n = \frac{a^n + n^c}{b^n}, \ a > 0; \ b > 0$$

(8)
$$u_n = \frac{n^p}{\ln(\ln(n))}$$

(7)
$$u_{n} = \frac{a^{n} + n^{c}}{b^{n}}, \ a > 0; \ b > 0$$
(8)
$$u_{n} = \frac{n^{p}}{\ln(\ln(n))}$$
(9)
$$u_{n} = \sin\left(\frac{(-1)^{n}}{n^{\alpha}} + \frac{k}{n^{5\alpha}}\right)$$
(10)
$$u_{n} = \frac{k^{n}3^{\sqrt{n}}}{3^{\sqrt{n}} + t^{n}}$$

$$(10) u_n = \frac{k^n 3^{\sqrt{n}}}{3^{\sqrt{n}} + t^n}$$

^{1.} Formule de Stirling : $n! \simeq n^n e^{-n} \sqrt{2n\pi}$