Question 1

```
In [1]:
         from DnaUtils import readFasta
         import matplotlib.pyplot as plt
         import pandas as pd
         pd.options.display.max_rows = 999
         import re
         import numpy as np
         ids,seqs = readFasta("Q1.fasta")
         s = "A: 13.85 D: 11.61 C: 15.37 E: 11.38 F: 13.93 G: 13.34 H: 13.82 I: 15.28 K: 11.58 L: 14.13 \
         M: 13.86 N: 13.02 P: 12.35 Q: 12.61 R: 13.10 S: 13.39 T: 12.70 V: 14.56 W: 15.48 Y: 13.88"
          \text{hydro} = \text{dict}(\text{zip}([x[0] \text{ for } x \text{ in } s.\text{split}(' ')[::2]], \text{map}(\text{float}, s.\text{split}(' ')[1::2]))) 
         calc = lambda x : hydro[x]
         binary = lambda x : int(hydro[x] > mean)
In [2]:
         aseqs = []
         bseqs = []
         for i,seq in zip(ids,seqs):
             mean = np.mean(list(hydro.values()))
             fig,axs = plt.subplots(2,1,sharex=True, figsize = (20,5))
             axs[0].set_title(i[1:])
             axs[0].set_ylabel("Profile")
             axs[0].plot(list(map(calc,seq)), '-ok')
             axs[0].plot([mean]*len(seq), '--k')
             axs[1].plot(list(map(binary, seq)), '-ob')
             axs[1].plot([0.5]*len(seq), '--b')
             axs[1].set_ylabel("Periodicity")
             axs[1].set_xticks(range(0,len(seq),5))
             plt.show()
             bin_seq = (''.join(map(str,(map(binary, seq)))))
             helices = re.finditer('(0011)\{2,\}|(1100)\{2,\}',bin\_seq)
             sheets = re.finditer('(01){3,}|(10){3,}',bin_seq)
             helices = [f'{x.start()}-{x.end()}' for x in list(helices)]
             sheets = [f'{x.start()}-{x.end()}' for x in list(sheets)]
             helix\_seqs = [seq[int(x.split('-')[0]):int(x.split('-')[1])]  for x in helices if len(x) > 0 ]
             sheet_seqs = [seq[int(x.split('-')[0]):int(x.split('-')[1])] for x in sheets if len(x) > 0 ]
             asegs.append(helix segs)
             bseqs.append(sheet_seqs)
             print("Alpha Helices:")
             print(f"Positions : {helices}")
             print(f"Sequences {helix seqs}\n")
             print("Beta Sheets:")
             print(f"Positions : {sheets}")
             print(f"Sequences {sheet_seqs}\n")
```

Positions: ['9-17']
Sequences ['AATGFVKK']
Beta Sheets:

Question 2

Positions : []
Sequences []

To calculate the amphiphatic index, we take absolute difference between the average hydrophobicity values above and below the dotted black line in the above graphs, for alpha helices and beta sheets

```
In [3]:
         for i,seq,alpha,beta in zip(ids,seqs,aseqs,bseqs):
             print(i)
             print("1. Alpha Helix")
             for helix in alpha:
                 for i in range(len(helix)-7):
                     temp = np.resize(list(map(calc,helix[i:i+8])),(4,2))
                     print(f"{helix[i:i+8]} : {abs(np.round(np.mean(temp[::2].flatten())-np.mean(temp[1::2].flatten()),3))}
             print()
             print("2. Beta Sheet")
             for sheet in beta:
                 for i in range(len(sheet)-5):
                     temp = list(map(calc,sheet[i:i+6]))
                     print(f"{sheet[i:i+6]} : {np.round(abs(np.mean(temp[::2])-np.mean(temp[1::2])),3)}")
        >seq1
        1. Alpha Helix
        TGIVSSFF : 1.22
        2. Beta Sheet
        YEVSMK : 1.983
        QWEIDI : 3.48
        WEIDIE : 3.89
        EIDIEF : 3.373
        KVQFNY : 1.72
        ISLGFD : 1.667
        SLGFDA: 1.19
        LGFDAS : 1.19
        >seq2
        1. Alpha Helix
        EDLVKKHA : 2.553
        KPLAQSHA: 1.43
        PLAQSHAT: 0.17
        LAQSHATK: 1.342
        AQSHATKA: 0.093
        QSHATKAH : 1.265
        SHATKAHK: 0.173
        HATKAHKN : 1.615
        ATKAHKNI: 0.445
        TKAHKNIF : 2.0
        QGAMNKAL: 1.285
        2. Beta Sheet
        HEAELK : 2.487
        DFGADA: 1.69
        >seq3
        1. Alpha Helix
        AATGFVKK : 1.748
        2. Beta Sheet
```

Question 3

```
ids, (seq,) = readFasta("Q2.fasta")
temp = (list(map(calc,seq)))
def rolling_window(seq,window):
    temp = (list(map(calc,seq)))
    n = window//2
    return [np.mean(temp[i-n:i+n+1]) if n <= i <= len(seq)-n-1 else temp[i] for i in range(len(seq))]
for window in [9,19]:
    plt.figure(figsize = (20,10))
    plt.plot(rolling_window(seq,window),'o-b')
    mean = np.mean(list(hydro.values()))
    plt.plot([mean]*len(seq), '--k')
    plt.title(f'Window Size = {window}')
    plt.xticks(range(0,len(seq),10))
    plt.show()</pre>
```


Transmembrane segments are highly hydrophobic, so from the graphs above, regions with high hydrophobicity are likely to be hydrophobic.

```
In [5]:
    print(f"20 to 50 : {seq[20:50]}")
    print(f"82 to 100 : {seq[82:100]}")
    print(f"115 to 130 : {seq[115:130]}")
    print(f"225 to 240 : {seq[225:240]}")

20 to 50 : LFDFWVGPYFVGFFGVSAIFFIFLGVSLIG
82 to 100 : GGFWQAITVCALGAFISW
```

Question 4

- 1. Pattern 1: 10406 hits in 10000 sequences
- 2. Pattern 2: 3814 hits in 3751 sequences

115 to 130 : HVPLAFCVPIFMFCV 225 to 240 : ALSIHRLGLFLASNI

Question 5

```
In [6]:
         ids, seqs = readFasta("Q4.fasta")
         p1, p2 = "[SV]-T-[VT]-[DERK](2)-{IL}", "[FILV]Qxxx{RK}Gxxx[RK]xx[FILVWY]"
         def convert_to_regex(pattern):
             pattern = pattern.replace('{','[^')}
             pattern = pattern.replace('}',']')
             pattern = pattern.replace('(','{'})
             pattern = pattern.replace(')','}')
             pattern = pattern.replace('x','.')
             pattern = pattern.replace('-','')
             return pattern
         data = []
         used = set()
         for i,seq in zip(ids,seqs):
             if i not in used:
                 temp = list(re.finditer(convert_to_regex(p1),seq))
                 if temp:
                     for x in temp:
                         data.extend([[i.split('|')[0][1:],x.start(),x.end()]])
                 used.add(i)
         df = pd.DataFrame(data, columns = ['id', 'start', 'stop'])
         df.index = df.id
         df.drop(['id'],axis = 1, inplace = True)
In [7]:
         df
Out[7]:
                  start stop
              id
         4A0C_2
                       670
                  664
          4A0K_1
                        671
                  665
          5F0J_3
                   69
                        75
          5F0L_3
                   69
                        75
         5F0M_3
                   69
                        75
          5F0P_3
                   69
                        75
          5N69_1
                        74
                   68
          5N6A_1
                   68
                        74
          5TBY_1
                   68
                        74
          6FSA_1
                   68
                        74
          6X5Z_3
                        74
                   68
```

7JH7_2

1A8J_1

1ADQ_2

1AIV_1

1AQK_1

1BJM_1

1DCL_1

1DPU_1

1E8I_1

1FM2_2

1FM5_1

1FNT_15

1FO9_1

1FOA_1

1GPJ_1

1IQ7_1

1JT1_1

1JVK_1

1JVZ_2

1K07_1

1KEH_1

1KVD_2

1KVE_2

68

203

200

542

203

203

203

85

18

111

39

152

18

18

315

201

121

204

111

121

280

45

45

74

209

206

548

209

209

209

91

24

117

45

158

24

24

321

207

127

210

117

127

286

51

51

1L9Y_1	121	127
1LGV_1	204	210
1LHZ_1	204	210
1LIL_1	199	205
1MCB_1	203	209
1MCC_1	203	209
1MCE_1	203	209
1MCF_1	203	209
1MCH_1	203	209
1MCJ_1	203	209
1MCL_1	203	209
1MCO_1	203	209
1MCR_1	203	209
1MCS_1	203	209
1NL0_1	203	209
10VT_1	542	548
1Q1J_1	204	210
1R5M_1	11	17
1RP1_1	436	442
1RYX_1	542	548
1RZF_1	203	209
1S5J_1	603	609
1UYP_1	370	376
1VQT_1	71	77
1W72_5	201	207
1WF5_1	28	34
1Z1D_1	89	95
1Z7Q_15	152	158
1ZTM_1	227	233
1ZVO_1	201	207
2APC_1	12	18
2B0S_1	205	211
2B1A_1	205	211
2B1H_1	205	211
2BB0_1	113	119
2BB5_1	334	340
2DD8_2	200	206
2DVV_1	53	59
2E3K_1	53	59
2E7N_1	60	66
2ES7_1	24	30
2FB4_1	203	209
2FH6_1	521	527
2FH8_1	521	527
2FHB_1	521	527
2FHC_1	521	527
2FHF_1	521	527
2FL5_1	199	205
2G3F_1	113	119
2G4A_1	49	55
2G75_2	200	206
2GAN_1	10	16

2H32_2	100	114
2H3Z_2 2H3N_2		
2IDR_1	34	
2IDV_1	34	40
2IG2_1		
2J28_23		57
2J42_1		
2J6E_3		
2JB5_2		
_ 2JB6_1		
2JE8_1		
2JE8_1		
2JQ3_1	54	60
2KC8_1	22	28
2KC9_1	22	28
2LDX_1	0	6
2MCG_1	203	209
2MXC_1	74	80
20AJ_1	752	758
20AJ_1	824	830
20LD_1	204	210
20MB_1	204	210
20MN_1	204	210
2PI2_1	256	262
2QA2_1	165	171
2RCJ_2	201	207
2RDO_14	51	57
2RDO_34	56	62
2VJX_1	346	352
2VJX_1	472	478
2VL4_1	346	352
2VL4_1	472	478
2VMF_1	346	352
2VMF_1	472	478
2VO5_1	346	352
2VO5_1	472	478
2VOT_1	346	352
2VOT_1	472	478
2VQT_1	346	352
2VQT_1	472	478
2VQU_1	346	352
2VQU_1	472	478
2VR4_1	346	352
2VR4_1	472	478
1AA0_1	40	46
1FO8_1	13	19
1JKM_1	344	350
1JW0_2	111	117
1MCD_1	203	209
1MCI_1		
1MCK_1		209
1MCN_1	203	209

Question 6

-->20 sequences were loaded from uniport by searching "Beta barrel"

```
ids, seqs = readFasta("Q6.fasta")
ids = [x.split('|')[1] for x in ids]
df = pd.DataFrame(index = ids)
df["Server1"] = [1,0,0,0,1,0,0,0,0,1]
df["Server2"] = [1,0,0,0,1,0,0,0,0,1]
print("Number of matches for each server")
df
```

Number of matches for each server

	MUNDEL	OI macci	ies ioi
Out[48]:		Server1	Server2
	Q6UD73	1	1
	P06996	0	0
	P0A910	0	0
	018423	0	0
	P0A940	1	1
	P66948	0	0
	P9WIU5	0	0
	Q118U1	0	0
	Q2MJ20	0	0

H1A981

1

1