Portfolio 7 – Gaussian process regression

Complete the following tasks and submit your work on Blackboard by 4pm on Friday 21/04/2023

Task 1 (30 marks)

Show the following results:

- 1. For any function $g: \mathcal{X} \to \mathbb{R}$, the function k(x, x') = g(x)g(x') is a kernel.
- 2. For any constant $a \ge 0$, the function k(x, x') = a is a kernel.
- 3. For any $m \in \mathbb{N}$, kernels $\{k_j\}_{j=1}^m$ and non-negative real numbers $\{c_j\}_{j=1}^m$, the function $k = \sum_{j=1}^m c_j k_j$ is a kernel.
- 4. If k is a kernel on \mathbb{R}^p and $\mathcal{X} \subset \mathbb{R}^p$ then the restriction of k to $\mathcal{X} \times \mathcal{X}$ is a kernel, i.e. the function $k(x, x') \mathbf{1}_{\mathcal{X} \times \mathcal{X}}(x, x')$ is a kernel on \mathcal{X} .
- 5. (**Optional**) For any $m \in \mathbb{N}$, kernels $\{k_j\}_{j=1}^m$ and non-negative real numbers $\{c_j\}_{j=1}^m$, the function $k = \prod_{j=1}^m c_j k_j$ is a kernel.

Hint: Recall that for a real symmetric positive semi-definite matrix M, the eigendecomposition of M gives a matrix A such that $M = AA^{\top}$.

Remark: In Gaussian process regression, the above properties of kernel functions are sometimes used to build a "good" kernel k for the GP prior (see Rasmusen's book, Section 4.2.4 and the example of Section 5.4.3).

Task 2 (70 marks)

Choose a dataset $\{(y_i^0, x_i^0)\}_{i=1}^n$, where $x_i^0 \in \mathbb{R}$, on which you can fit a Gaussian process regression model with known variance $\sigma^2 = \lambda$.

Then,

- Choose a kernel k with parameter ψ .
- Compute exactly the posterior distribution of f given the observations $y_{1:n}^0$ (if n is large do that for a subsample of your dataset). More precisely,
 - 1. Choose λ and at least one component of ψ using the empirical Bayes approach.
 - 2. Make a plot showing the function f_n , the corresponding credible sets at level 95% and the observations $\{(y_i^0, x_i^0)\}_{i=1}^n$
- Repeat 1. and 2. when the posterior distribution is approximated using the low rank approximation approach discussed in Chapter 12, with m < n. Assess the sensitivity of your results to the choice of the set $\{\tilde{x}_i^0\}_{i=1}^m$.

For this task you can for instance use the same dataset as in Portfolio 5 (Task 2), or be more ambitious and try a dataset with p>1 predictor (e.g. the ozone dataset used in Chapter 9). To the best of my knowledge there exists no R package which implement Gaussian process regression using the empirical Bayes approach to choose the hyper-parameters. To implement the empirical Bayes approach you can write a function that compute the marginal log-likelihood and then optimize it using optim. Be careful, maximizing the marginal log-likelihood is not a convex optimization problem. It is therefore a goof idea to perform the optimization for different starting values.