

학습목차

01 신경망 개요

02 다층 퍼셉트론

1

신경망 개요

인공지능 접근 방법

이미지 from https://images.app.goo.gl/

SYMBOLIC AI

부울 논리

규칙 기반 지식 표현

PROLOG: Language for Al

IBM Deep Blue, Chess Al

ARTIFICIAL INTELLIGENCE

뇌에서 영감을 받은 계산 모형

CONNECTIONIST AI: Artificial Neural Networks

신경망과 딥러닝

- 신경망 신경회로망, neural networks
 - □ 생물학적 신경회로망을 모델링한 수학적 함수
 - □ 원하는 입출력 매핑 함수의 형태를 스스로 찾는 학습 능력을 가짐
 - □ 데이터를 이용하여 학습이 수행되므로 데이터 분석 툴로 사용
 - □ 학습 방식(데이터 분석 용도)에 따라 다양한 모델이 존재
- 심층 신경망 deep networks
 - □ 가장 발전된 형태의 신경망 모델들
- O 딥러닝 deep learning
 - □ 심층 신경망을 이용하여 데이터를 분석하는 머신러닝 기술

신경망?

인간 뇌의 구조와 뇌에서 수행되는 정보처리 방식을 모방함으로써 인간이 지능적으로 처리하는 복잡한 정보처리 능력을 기계를 통해 실현하고자 하는 연구

- 신경세포 → 100억 개 이상
- 세포간 연결 → 60조 이상

https://images.app.goo.gl/yQTpAR8hRbJrwd3b7

Rethinking the Brain: New Insights into Early Development by Rima Shore (NY: Families and Work Institute, 1997)

- ✓ 적응성 adaptation
- ✓ 학습 learning

생물학적 신경망

신경세포 neuron의 구조와 연결

생물학적 신경망

신경세포의 연결 구조

- 인공 신경망 artificial neural networks
 - □ 인간 뇌의 정보처리 방식을 모델링하는 방법
- 1. 신경세포
- 2. 신경망의 구조
- 3. 학습 메커니즘

생물학적 신경망에서 인공 신경망으로

- 인공신경망의 구성 요소
 - □ 신경세포 neuron, node, unit
 - ✓ 하나의 신경세포가 수행하는 기능을 수학적 함수로 정의
 - □ 신경망 구조 network structure
 - ✓ 신경세포들이 서로 정보를 전달하는 연결 구조
 - □ 학습 알고리즘 learning algorithm
 - ✓ 신경망이 원하는 기능을 수행할 수 있도록 신경세포들 간의 연결 강도를 조정하는 방법

신경망의 구성 요소: 인공 신경세포

신경망의 구성 요소: 인공 신경세포

- 활성화 함수
 - □ 뉴런의 핵심 → 하나의 뉴런의 특성을 결정하는 역할

$$\emptyset_{step}(u) = \begin{cases} 1 & \text{if } u \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 $\emptyset_{sign}(u) = \begin{cases} 1 & \text{if } u \ge 0 \\ -1 & \text{otherwise} \end{cases}$

부호함수

$$\emptyset_{sign}(u) = \begin{cases} 1 & \text{if } u \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

선형함수

$$\emptyset_{linear}(u) = u$$

신경망의 구성 요소: 인공 신경세포

○ 활성화 함수

시그모이드 함수

$$\emptyset_{sigmoid}(u) = \frac{1}{1 + e^{-u}}$$

하이퍼탄젠트 함수

$$\emptyset_{tanh}(u) = \frac{1 - e^{-2u}}{1 + e^{-2u}}$$

ReLU 함수

$$\emptyset_{relu}(u) = \max(0, u)$$

신경망의 구성 요소: 연결 구조

- 신경세포들의 대표적 연결 방식
 - □ 다층 전방향 신경망 multi-layer feed forward neural network

층상 구조

정보의 흐름: 한쪽 방향(입력층→출력층)

Fully connected network, dense network

은닉층의 존재 여부

- 단층 single layer 신경망
- 다층 multilayer 신경망 → 심층 신경망

정보 흐름의 방향

- 전방향 feed-forward 신경망
- 회귀 recurrent 신경망 (RNN)

다양한 연결 구조 - 층수의 변화

심층 신경망

1. 신경망 개요

다양한 연결 구조 – 정보 흐름의 방향

전방향 신경망

회귀 신경망

신경망의 구성 요소: 학습

- 인간 뇌의 학습
 - □ 성장하면서 뇌 세포들 간의 연결이 형성되어 여러가지 기능을 수행하게 되는 과정
 - □ 세포들 간의 연결 형성 규칙
 - ✓ 연결된 두 신경세포가 동시에 활성화되면 연결 강도는 강해짐

파블로프의 개 실험

http://www.age-of-the-sage.org/psychology/pavlov.html

신경망의 구성 요소: 학습

- 인공신경망의 학습이란?
 - □ 신경망이 원하는 기능을 수행할 수 있도록 만드는 것
 - □ 신경망에 어떤 입력 x가 주어졌을 때, 최종적을 내는 출력 y가 원하는 값이 되도록 가중치 w를 조정하는 것
 - 기중치 조정식 가중치 변화량 $w^{(\tau+1)} = w^{(\tau)} + \Delta w^{(\tau)}$ 학습후 가중치 현재 가중치
 - □ 가중치 변화량을 결정하는 방법
 - ✓ 학습 데이터 사용
 - □ 반복적인 가중치 수정을 통해 점점 원하는 기능에 근접해 감

학습의 종류

- 지도학습 supervised learning
 - \square 입력값 x에 대한 목표 출력값 t이 함께 주어짐
 - \Box 주어진 입력 x에 대한 신경망의 출력값 y가 원하는 목표값 t에 가까워지도록 가중치 w를 수정
 - □ 오류 역전파 학습 error backpropagation learning 알고리즘
- 비지도학습 unsupervised learning
 - □ 입력값 x만 주어짐 \rightarrow 비슷한 입력에 대해 비슷한 출력을 내도록 학습
 - self-organizing feature map, Boltzmann machine
- 강화학습 reinforcement learning
 - \square 입력 x에 대한 신경망의 출력값 y의 보상이 최대가 되도록 가중치를 수정

응용 관점에서의 신경망에 대한 이해

- \Box 기능 → 입력 x를 받아 출력 y를 계산
- \Box 수학적 정의 $\rightarrow y = f(x)$
- 함수 *f* 를 결정하는 요소
 - □ 신경세포의 활성화 함수와 연결 구조 → 고정된 형태
 - □ 연결 가중치 \rightarrow 학습을 통해 함수 f의 형태를 조정
 - ✓ 신경망의 학습 \rightarrow 원하는 함수 f를 찾는 과정

왜 신경망인가?

- 표현 representation 능력
 - □ 신경망은 어떤 형태의 함수도 표현할 수 있음
- 학습 learning 능력
 - □ 데이터에 대한 학습을 통해 최적의 함수를 찾을 수 있음
- 일반화 generalization 능력
 - □ 데이터에 대한 단순한 암기가 아닌 데이터에서 일반화된 규칙을 찾음
 - → 새로운 데이터에 대해서도 처리 가능

2 다층 퍼셉트론

M-P 뉴런

- 1943. MaCulloch & Pitts
 - □ 단일 신경세포에 대한 첫 번째 모델

퍼셉트론 Perceptron

- 1958. Rosenblatt
 - □ M-P 뉴런을 여러 개 결합하여 네트워크 형태를 갖춘 신경망
 - ✓ 패턴인식을 수행하는 최초의 신경망 → 단층 전방향 신경망

바이어스

$$\square$$
 M-P 뉴런 \rightarrow 계단함수 $y_j = \emptyset_{step} \left(\sum_{i=1}^n w_{ij} x_i + w_{0j} \right)$

- 연결 구조
 - □ 단층, 전방향, 완전 연결 fully-connected
- 학습 규칙
 - □ 이진 입출력을 사용한 지도학습

2. 다층 퍼센트론

퍼셉트론

Mark 1 perceptron 하드웨어

C. Bishop, Pattern Recognition and Machine Learning. Springer (2006)

퍼셉트론의 한계

- 선형 판별함수
 - → 비선형 결정경계를 표현할 수 없음
- O XOR 문제
 - ☐ Minsky & Papert → XOR 문제의 해결 불가능을 지적

다층 퍼셉트론

- MLP, Multi-Layer Perceptron
 - □ 1개 이상의 은닉층을 가짐
- 뉴런
 - □ 출력은 입력에 대한 비선형 매핑

출력층

- 연결 구조 → 다층, 전방향, 완전연결
- 학습 알고리즘
 - □ 오류 역전파 error backpropagation 알고리즘 → 지도학습

다층 퍼셉트론의 입출력 관계

다층 퍼셉트론의 입출력 관계

k번째 출력 노드의 출력

$$y_{k} = f_{k}(x, \theta) = \phi_{o} \left(\sum_{j=1}^{m} v_{jk} z_{j} + v_{0k} \right)$$

$$= \phi_{o} \left(\sum_{j=1}^{m} v_{jk} \phi_{h} \left(\sum_{i=1}^{n} w_{ij} x_{i} + w_{0j} \right) + v_{0k} \right)$$

k번째 출력 노드의 출력

$$y_k = \phi_o(u_k^o)$$

$$y_k = \phi_o(u_k^o)$$
 $u_k^o = \sum_{j=1}^m v_{jk} z_j + v_{0k}$

 u_i^h

$$z_i = \phi_h(u_i^h)$$

$$j$$
번째 은닉 노드의 출력 $z_j = \phi_h(u_j^h)$ $u_j^h = \sum_{i=1}^n w_{ij} x_i + w_{0j}$

하나의 은닉층을 가진 MLP는 임의의 정확도로 모든 연속 함수의 근사가 가능

다층 퍼셉트론의 표현 능력

$$y = v_{11}z_1 + v_{21}z_2 + v_{01} = v_{11}\tanh(w_{11}x_1 + w_{01}) + v_{21}\tanh(w_{12}x_1 + w_{02}) + v_{01}$$

가중치의 변화에 따른 다양한 함수의 형태

$$f(x) = \tanh(x+1) - \tanh(x-1) + 1$$
2.6
2.4
(a)
1.8
1.6
1.4
1.2

2. 다층 퍼셉트론

다층 퍼셉트론의 표현 능력

○ 입력 1개 - 출력 1개

하나의 은닉층을 가진 MLP는 임의의 정확도로 모든 연속 함수의 근사가 가능 0개 은닉 뉴런

2개 은닉 뉴런

많은 은닉 뉴런

다음시간안내

제10강

신경망(2)