## Activity test:

Based on the instructions in the Cathepsin D Activity Fluorometric Assay Kit, we designed the relevant experiments as follows:

- 1. Add 180ul CD Reaction Buffer into 15 wells(A1-A4 B1-B4, C1-C4) in a 96-well plate.
- 2. Add 0 (A1-C1), 2(A2-C2), 4 (A3-C3), 6 (A4-C4), 8 (A5-C5) of the 1mM CD Substrate into plate.
- 3. Add 20ul cathepsin D protein into each well.
- 4. Read sample in a fluorometer equipped with a 328-nm excitation filter and 460-nm emission filter. Measure every few seconds. The interval depends on the reaction rate.
- 5. Calculate the initial speed:

| substrate(ul)        | 0 | 2      | 4      | 6      | 8      |
|----------------------|---|--------|--------|--------|--------|
| concentration(mol/L) | 0 | 0.5    | 1      | 1.5    | 2      |
| V0(RFU/h)            | 0 | 136.63 | 270.93 | 386.44 | 403.17 |

Michaelis equation represents a velocity equation of the relationship between the initial rate of enzymatic reaction and the concentration of substrate. The formula is as follows

$$v_0 = \frac{V_{max}[S]}{K_m + [S]}$$

V0 represents the initial reaction velocity, Vmax is the reaction rate of enzymes saturated by substrates, and [S] is the concentration of substrate.

We determined Km and Vmax for our cathepsin B by performing non-linear regression using Michaelis-Menten model as below. The two parameters were:

 $Vmax=984.68468 \pm 310.2332$ 

 $Km = 2.65534 \pm 1.30479$ 

 $R^2 = 0.98522$ 

Adjusted R<sup>2</sup>= 0.98029

