2019年秋季学期微分几何(H)期末考试

主讲教师: 张希

2020年1月8日 14:30-16:30

- (1) 已知曲面Σ的第一基本形式为: I = dr² + f²(r)dθ²,
 f(r)>0。求其 Gauss 曲率。(15 分)
- (2) 假设曲面 Σ 的第一基本形式为 $I = \frac{dx^2 + dy^2}{y^2}$, y > 0。求其上的测地线。(15分)
- 二、在常 Gauss 曲率($K \equiv -1$)曲面上,计算:测地半径为 r_0 的测电图周其上每点的测地曲率。(15 分)
- 三、设 Σ 是一张局部光滑的正则曲面,C为 Σ 中的光滑简单闭曲线,其围成单连通区域 Ω 。假设曲面切向量 \vec{V} 是沿曲线 C定义的非零平行向量场,且 \vec{V} 和 C的切向量夹角成定角。证明: $\iint_{\Omega} K dA = 2\pi$,其中 K 是曲面 Σ 的 Gauss 曲率。(15 分)
- 四、设 S^2 是 E^3 中以原点为中心的单位球面, \vec{a} 为 E^3 中的一固定方向。定义 S^2 上的函数 $f(x) = (\vec{r}(x), \vec{a})$,其中 $\vec{r}(x)$ 为球面的位置向量。证明: $\Delta_{S^2}f = -2f$,其中 Δ_{S^2} 为单位球面的 Laplace 算子。(15 分)
 - 五、设C是 E^3 中的简单闭曲线,k是它的曲率函数。则 C的全曲率满足 $\int_C kds \ge 2\pi$ 。(15 分)

六、设 Σ 和 $\overline{\Sigma}$ 为 E^3 中的卵形面,设光滑映射 $f:\Sigma\to\overline{\Sigma}$ 是等距对应 (即 $f^*(I_{\overline{\Sigma}})=I_{\Sigma}$)。证明: f必是 1:1 映射。(10分)