Nhập môn Kỹ thuật Truyền thông Bài 4: Lý thuyết ra quyết định (Decision Theory) 4.2 Các tiêu chuẩn MAP và ML

PGS. Ta Hải Tùng

Mô hình kênh truyền

Tạp âm trắng Gauss n(t)

- Tiến trình ngẫu nhiên «ergodic»
- Mỗi biến ngẫu nhiên là một biến ngẫu nhiên Gauss với giá trị TB bằng 0
- Mật độ phổ là hằng số $G_n(f)=N_0/2$

AWGN

$$G_n(f) = N_0 / 2 \qquad \qquad R_n(\tau) = \frac{N_0}{2} \delta(\tau)$$

AWGN

n(t) là một tiến trình «ergodic» (thuộc tính thời gian = thuộc tính thống kê)

AWGN

Xem xét hai thời điểm t_1 và t_2 Có tương ứng hai biến ngẫu nhiên

$$t_1 \longrightarrow n(t_1)$$

$$t_2 \longrightarrow n(t_2)$$

Là biến ngẫu nhiên Gauss với tính chất

$$E[n(t_1)n(t_2)] = \frac{N_0}{2}\delta(t_1 - t_2)$$

Độc lập thống kê (Statistically independent)

Vấn đề tại bộ thu

$$\underline{\mathbf{u}}_{\mathrm{T}} \longrightarrow s(t) \longrightarrow r(t) = s(t) + n(t)$$

Vấn đề:

cho $r(t) \rightarrow \text{khôi phục } s(t)$

Chia r(t) thành các đoạn tương ứng với khoảng thời gian T:

$$r(t) = (r[0](t) | r[1](t) | \dots | r[n](t) | \dots$$

$$T \qquad T \qquad T$$

Câu hỏi: liệu có thể phân tích một cách độc lập tín hiệu nhận được trong một khoảng thời gian bất kỳ?

$$r(t) = (r[0](t) | r[1](t) | ... | r[n](t) | ... |$$

$$T \qquad T$$

$$s(t) = (s[0](t) | s[1](t) | ... | s[n](t) | ... |$$

$$n(t) = (n[0](t) | n[1](t) | ... | n[n](t) | ... |$$

Ta có:

$$r(t) = s(t) + n(t)$$

Xem xét khoảng thời gian thứ n:

$$nT \le t < (n+1)T$$

$$r[n](t) = s[n](t) + n[n](t)$$

Mỗi r[n](t) phụ thuộc hoàn toàn vào:

- Tín hiệu đã được truyền đi: s[n](t)
- Tạp âm: n[n](t) là các biến ngẫu nhiên tồn tại trong khoảng thời gian:

$$nT \le t < (n+1)T$$

$$s(t) = (s[0](t) | s[1](t) | \dots | s[m](t) | \dots | s[n](t) | \dots$$

$$T \qquad T \qquad T \qquad T$$

Mỗi tín hiệu s[n](t)

- tồn tại trong khoảng thời gian T
- là độc lập thống kê với các tín hiệu ở các khoảng thời gian khác s[m](t), $m\neq n$

$$\rightarrow r[n](t)$$
 là độc lập với $s[m](t)$, $m \neq n$

$$\mathbf{n}(t) = (\mathbf{n}[0](t) | \mathbf{n}[1](t) | \dots | \mathbf{n}[m](t) | \dots | \mathbf{n}[n](t) | \dots$$

$$T \qquad T \qquad T \qquad T$$

Mỗi tạp âm $\mathbf{n}(t_i)$ cũng độc lập thống kê

$$\rightarrow r[n](t)$$
 độc lập với $n[m](t)$, $m \neq n$

Vấn đề tại bộ thu

Xem xét khoảng thời gian n: Tín hiệu nhận được

$$nT \le t < (n+1)T$$

$$r[n](t) = s[n](t) + n[n](t)$$

Chỉ phụ thuộc vào:

- Tín hiệu đã truyền s[n](t)
- Tạp âm n[n](t) trong khoảng thời gian n

$$nT \le t < (n+1)T$$

Mỗi khoảng thời gian có thể được phân tích độc lập

KHÔNG CÓ HIỆN TƯỢNG NHIỀU LIÊN KÝ TỰ (NO INTERSYMBOL INTERFERENCE (ISI))

$$r(t) = (r[0](t) | r[1](t) | \dots | r[n](t) | \dots$$

T 7

Mỗi khoảng thời gian được phân tích độc lập:

Giả thiết xem xét khoảng thời gian gốc, với $0 \le t < T$

$$r(t) = (r[0](t)) | r[1](t) | ... | r[n](t) | ...$$

Cùng xem xét khoảng tgian gốc $0 \le t < T$

$$s[0](t) \longrightarrow r[0](t) = s[0](t) + n[0](t)$$

Để đơn giản ta có thể bỏ chỉ số [0]

$$s(t) \longrightarrow r(t) = s(t) + n(t)$$

Vấn đề:

cho $r(t) \rightarrow \text{khôi phục } s(t)$

Tín hiệu đã truyền s(t) chắc chắn thuộc không gian tín hiệu S

Vậy tín hiệu nhận được r(t) có thuộc S?

$$r(t) = s(t) + n(t)$$

Điều này phụ thuộc vào n(t).

Tổng quát, n(t) là một tín hiệu không thuộc S: $n(t) \notin S$

Do vậy, tổng quát $r(t) \notin S$

Các biến ngẫu nhiên n_i

Ta biết rằng $n(t) \notin S$ Chiếu tín hiệu tạp âm này lên cơ sở trực chuẩn.

$$B = \left(b_j(t)\right)_{j=1}^d$$

Thành phần chiếu thứ j là:

$$n_{j} = \int_{0}^{T} n(t)b_{j}(t)dt$$

$$n_j = \int_0^T n(t)b_j(t)dt$$

Ta có thể chứng minh được thành phần n_j này là các biến ngẫu nhiên Gauss:

- trung bình
- phương sai
- độc lập thống kê

$$E[n_j] = 0$$

$$\sigma^2 = N_0/2$$

$$n_j = \int_0^T n(t)b_j(t)dt$$

là các biến ngẫu nhiên Gauss:

Đạt được thông qua biến đổi tuyến tính một tiến trình Gauss

$$n_j = \int_0^T n(t)b_j(t)dt$$

Trung bình

$$E[n_j] = 0$$

$$E\left[n_{j}\right] = E\left[\int_{0}^{T} n(t)b_{j}(t)dt\right] = \int_{0}^{T} E\left[n(t)\right]b_{j}(t)dt = 0$$

$$n_{j} = \int_{0}^{T} n(t)b_{j}(t)dt$$
$$\sigma^{2} = N_{0}/2$$

- phương sai
- độc lập tuyến tính

$$E\left[n_{j}n_{i}\right] = E\left[\int_{0}^{T} n(t)b_{j}(t)dt \int_{0}^{T} n(x)b_{i}(x)dx\right] = E\left[\int_{0}^{T} \int_{0}^{T} n(t)n(x)b_{j}(t)b_{i}(x)dtdx\right] =$$

$$= \int_{0}^{T} \int_{0}^{T} E\left[n(t)n(x)\right]b_{j}(t)b_{i}(x)dtdx = \int_{0}^{T} \int_{0}^{T} \frac{N_{0}}{2}\delta(t-x)b_{j}(t)b_{i}(x)dtdx =$$

$$= \frac{N_{0}}{2} \int_{0}^{T} b_{j}(t)b_{i}(t)dt =\begin{cases} N_{0}/2 & \text{if } j=i\\ 0 & \text{if } i \neq i \end{cases}$$

Tạp âm ngẫu nhiên trong không gian tín hiệu

cho n(t) ta có các thành phần chiếu lên hệ cơ sở trực chuẩn:

$$n_j = \int_0^T n(t)b_j(t)dt$$

Gọi

$$n_S(t) = \sum_j n_j b_j(t)$$

Rõ ràng, $n_S(t) \in S$: là phần tín hiệu của n(t) thuộc S

Tổng quát thì:

$$n(t) \neq n_S(t)$$

Ta có

$$n(t) = n_S(t) + e(t)$$

e(t) = là phần của n(t) không thuộc S

Chọn thời điểm $t = t^*$

 $n_S(t^*)$ và $e(t^*)$ Là độc lập thống kê

Chứng minh

$$E[n_S(t^*)e(t^*)] = 0 = E[n_S(t^*)]E[e(t^*)]$$

 $n_S(t^*)$ và $e(t^*)$ Là độc lập thống kê

Phần tạp âm ngoài không gian S là độc lập thống kê

Tín hiệu nhận được trong không gian tín hiệu

Ta đã chứng minh $r(t) \notin S$

Chiếu r(t) lên hệ trực chuẩn cơ sở:

$$B = \left(b_j(t)\right)_{j=1}^d$$

Ta có thành phần j là:

$$r_j = \int_0^T r(t)b_j(t)dt$$

Định nghĩa
$$r_S(t) = \sum_j r_j b_j(t)$$
 ta có $r_S(t) \in S$

Tổng quát $r(t) \neq r_S(t)$

Nhưng
$$r(t) = s(t) + n(t) = \underbrace{s(t) + n_s(t) + e(t)}_{\in S}$$
 $\notin S$

Do đó
$$r(t) = r_S(t) + e(t)$$
 với $r_S(t) = s(t) + n_S(t)$

Vấn đề ra quyết định trong không gian tín hiệu

Vấn đề cơ bản ban đầu: cho $r(t)=s(t)+n(t) \rightarrow$ khôi phục s(t)

(P2)

Vấn đề tương đương: cho $r_S(t) = s(t) + n_S(t) \rightarrow \text{khôi phục } s(t)$

Sự khác biệt duy nhất là sự tồn tại của e(t): Thành phần tạp âm không thuộc S, và nó độc lập thống kê với $\operatorname{cd} s(t)$ và $n_S(t)$

- $r_S(t)$ là thống kê đủ để giải vấn đề
- Đủ để giải quyết vấn đề (xác định tín hiệu truyền đi) trong không gian S
- Các chiều không gian khác không chứa thông tin có ích mà chỉ chứa tạp âm mà thôi

Vấn đề ra quyết định: thiết lập vector

Vấn đề cho $r_S(t) = s(t) + n_S(t) \rightarrow$ khôi phục s(t)

Cả 3 tín hiệu đều thuộc S

Biểu diễn vector

$$r_S(t) = s(t) + n_S(t)$$

$$|\underline{r} = \underline{s}_T + \underline{n}|$$

$$\underline{r} = (r_1, ..., r_j, ..., r_d)$$

$$r_j = \int_0^T r(t)b_j(t)dt$$

$$\underline{s_T} = (s_1, ..., s_j, ..., s_d)$$

$$S_{j} = \int_{0}^{T} s(t)b_{j}(t)dt$$

$$\underline{n} = (n_1, ..., n_j, ..., n_d)$$

$$n_j = \int_0^t n(t)b_j(t)dt$$

Vector nhận được

Vector nhận được \underline{r} (trong không gian S) có biểu diễn:

$$\underline{r} = \underline{s}_T + \underline{n}$$

Với
$$\underline{s}_T = (s_1, ..., s_j, ..., s_d) \in M$$
 là tín hiệu truyền

và $\underline{n}=(n_1,...,n_j,...,n_d)$ là vector tạp âm trong không gian S

Với mỗi thành phần của vector ta có: $r_j = s_j + n_j$

$$r_j = s_j + n_j$$

Do đó thành phần r_j là

Các biến ngẫu nhiên Gauss với:

- trung bình
- phương sai
- độc lập thống kê

$$E[r_j] = s_j$$

$$\sigma^2[r_j] = N_0/2$$

$$\left(E[r_i r_j] = s_i s_j = E[r_i] E[r_j]\right)$$

Vấn đề:

cho $r_S(t) = s(t) + n_S(t) \rightarrow \text{khôi phục } s(t)$

Vấn đề:

cho $\underline{r} = \underline{s}_{\underline{T}} + \underline{n} \rightarrow \text{khôi phục } \underline{s}_{\underline{T}}$

Lưu ý quan trọng:

cho r(t), vector \underline{r} được tính toán dễ dàng (do các tín hiệu cơ sở trực chuẩn đã biết)

Tiêu chuẩn quyết định

Vấn đề:

cho $\underline{r} = \underline{s}_T + \underline{n} \rightarrow \text{ khôi hục } \underline{s}_T$

Tại phía bộ thu, cho \underline{r}

Ta muốn chọn ra tín hiệu nhận được

$$|\underline{s}_R \in M|$$

Mục tiêu: ra quyết định đúng: $\underline{s}_R = \underline{s}_T$

Tuy nhiên không phải lúc nào cũng làm được, do tồn tại của tạp âm.

cho \underline{r} chúng ta muốn tạo ra các tiêu chuẩn ra quyết định để xác định \underline{s}_R

Tối thiểu xác suất xảy ra lỗi xác định ký tự (tín hiệu)

$$\left| P_{S}(e) = P(\underline{s}_{R} \neq \underline{s}_{T}) \right|$$

Decision criterion

Giả sử nhận được $\underline{r} = \underline{\rho} \in \mathbb{R}^d$

 \rightarrow we choose $\underline{s}_R \in M$ sao cho $P_S(e)$ là nhỏ nhất

tiêu chuẩn ra quyết định:

C1
$$\underline{s}_R = \arg\min_{\underline{s}_i \in M} \left[P(\underline{s}_R \neq \underline{s}_T \mid \underline{r} = \underline{\rho}) \right]$$

Dò (detection)

Vấn đề quyết định khả năng nào, trong một tập các khả năng, là đúng.

- \succ Một biến ngẫu nhiên X với m giá trị có thể xảy ra với xác suất tiên nghiệm (a priori) P(X=x)
- > Ta quan sát bnn Y kết nối với X bởi các xác suất P(Y=y|X=x), được gọi là các **likelihoods**

Khi một thí nghiệm được thực hiện, ta thu được 2 mẫu: $x \in X$ and $y \in Y$.

Người ra quyết định sẽ quan sát giá trị của y chứ không phải x.

Cho y , người quan sát ra quyết định d(y)=x ' Quyết định này là đúng nếu x '=x

Tiêu chuẩn ra quyết định được chấp nhận để đưa ra quyết định d(y):

Tôi đa quyết định đúng P(x'=x)

Tối thiểu quyết định sai $P(x' \neq x)$

MAP criterion

Điều này tương đương với tiêu chuẩn: a MAXIMUM A POSTERIORI (MAP)

$$d(y) = \arg\max_{x} \left[P(X = x \mid Y = y) \right]$$

MAP criterion

Chứng minh:

$$P(X' \neq X) = \sum_{x} \sum_{y} P(X' \neq X, X = x, Y = y) =$$

$$= \sum_{x} \sum_{y} P(X' \neq X \mid X = x, Y = y) P(X = x, Y = y) =$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y) =$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y)$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y)$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y)$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y)$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y)$$

Tiệu chuẩn ML

Định lý Bayes
$$P(X = x | Y = y) = \frac{P(Y = y | X = x)P(X = x)}{P(Y = y)}$$

$$d(y) = \arg\max_{x} \left[P(X = x \mid Y = y) \right]$$

$$d(y) = \arg\max_{x} \left[P(Y = y \mid X = x) P(X = x) \right]$$

Với giả thuyết

$$P(X=x) = \frac{1}{m}$$

$$d(y) = \arg\max_{x} \left[P(Y = y \mid X = x) \right]$$

ML criterion

Tiêu chuẩn MAXIMUM LIKELIHOOD

$$d(y) = \arg\max_{x} \left[P(Y = y \mid X = x) \right]$$

Vấn đề ra quyết định tại bộ thu

BNN
$$X$$
 là tín hiệu truyền

$$\underline{s}_T \in M$$

BNN được quan sát
$$Y$$
 là tín hiệu nhận

$$\underline{r} = \underline{s}_T + \underline{n} \in S$$

 $\underline{r} = \underline{s}_T + \underline{n}$

Sự liên kết giữa \underline{r} và \underline{s}_T

 $f_{\underline{r}}(\underline{\rho} \,|\, \underline{s}_T = \underline{s}_i)$

Đây là một hàm mật độ phân bố Gauss trung vị \underline{s}_i với Phương sai $N_0/2$ trên mỗi chiều

Hàm mật độ phân bố Gauss

Ví dụ: r là bnn theo phân bố Gauss

trung bình

 μ

phương sai

 σ^2

hàm mật độ pbxs:

$$f_r(\rho) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(\rho - \mu)^2}{2\sigma^2})$$

Ví dụ: một cặp bnn Gauss $r_1 r_2$

- TB μ
- phương sai σ^2
- độc lập thống kê
- mật độ xác suất:

$$f_{r_1 r_2}(\rho_1 \ \rho_2) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(\rho_1 - \mu)^2}{2\sigma^2}) \quad \Box \quad \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(\rho_2 - \mu)^2}{2\sigma^2})$$

$$f_{r_1 r_2}(\rho_1 \ \rho_2) = \frac{1}{(\sqrt{2\pi}\sigma)^2} \exp(-\frac{(\rho_1 - \mu)^2 + (\rho_2 - \mu)^2}{2\sigma^2})$$

Gaussian density function

$$f_{\underline{r}}(\underline{\rho} \,|\, \underline{s}_T = \underline{s}_i)$$

r = mảng các bnn Gauss d

TB

$$\mu = S_{ij}$$

Phương sai

$$\mu = s_{ij}$$

$$\sigma^2 = N_0/2$$

- độc lập thống kê
- hàm mất đô pbxs

$$f_{\underline{r}}(\underline{\rho} \mid \underline{s}_{T} = \underline{s}_{i}) = \frac{1}{(\sqrt{\pi N_{0}})^{d}} \exp(-\frac{\sum_{j=1}^{a} (\rho_{j} - s_{ij})^{2}}{N_{0}})$$

Tiêu chuẩn ML

$$d(y) = \arg\max_{x} \left[P(Y = y \mid X = x) \right]$$

Trở thành:

given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s}_R = d(\underline{\rho}) = \arg\max_{\underline{s}_i \in M} \left[f_{\underline{r}}(\underline{\rho} | \underline{s}_T = \underline{s}_i) \right]$

ML criterion

Biểu diễn

$$f_{\underline{r}}(\underline{\rho} \,|\, \underline{s}_T = \underline{s}_i)$$

$$\underline{\underline{s_R}} = \arg\max_{\underline{s_i} \in M} \left[\frac{1}{(\sqrt{\pi N_0})^d} \exp\left(-\frac{\sum_{j=1}^d (\rho_j - s_{ij})^2}{N_0}\right) \right]$$

$$\underline{\underline{s_R}} = \arg\min_{\underline{s_i} \in M} \sum_{j=1}^d (\rho_j - s_{ij})^2$$

Tiêu chuẩn khoảng cách ngắn nhất

$$\underline{s_R} = \arg\min_{\underline{s_i} \in M} \sum_{j=1}^d (\rho_j - s_{ij})^2$$

Thông qua cách tính khoảng cách Euclide giữa các vectors trong \mathbb{R}^d :

$$d_E^2(\underline{\rho} - \underline{s}_i) = \sum_{j=1}^d (\rho_j - s_{ij})^2$$

$$\underline{s_R} = \arg\min_{\underline{s_i} \in M} d_E^2(\underline{\rho} - \underline{s_i})$$

Tiêu chuẩn ML tương ứng với tiêu chuẩn khoảng cách ngắn nhất minimum distance criterion

Given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s_R} = \arg\min_{\underline{s_i} \in M} d_E^2 (\underline{\rho} - \underline{s_i})$

Vùng Voronoi

given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s_R} = \arg\min_{\underline{s_i} \in M} d_E^2 (\underline{\rho} - \underline{s_i})$

Đây là tiêu chuẩn liên kết với bất kỳ vector $\underline{\rho} \in R^a$ đại diện tín hiệu nhận được $\underline{s_R} \in M$

Ta có Vùng (quyết định)

Voronoi (decision) $V(\underline{s}_i)$

= tập hợp tất cả các vector nhận được để xác định lựa chọn

$$\underline{s}_R = \underline{s}_i$$

$$V(\underline{s}_i) = \left\{ \underline{\rho} \in R^d : \underline{s}_R = \underline{s}_i \right\}$$

Vùng Voronoi

Tập hợp của các vector nhận được được dung để đưa ra lựa chọn $\underline{s}_R = \underline{s}_i$

Khi nào ta có $\underline{s}_R = \underline{s}_i$?

Khi $\rho \in \mathbb{R}^d$ là gần nhất với \underline{s} hơn tất cả các tín hiệu khác trong không gian tín hiệu

$$V(\underline{s_i}) = \{ \underline{\rho} \in R^d : d_E^2(\underline{\rho}, \underline{s_i}) \le d_E^2(\underline{\rho}, \underline{s}) \quad \forall \underline{s} \in M \}$$

Lưu ý:

Nếu ta nhận
$$\underline{\rho} \in V(\underline{s}_i)$$

Ta chọn

$$\underline{S_R} = \underline{S}_i$$

Tiêu chuẩn khoảng cách gần nhất

given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s_R} = \arg\min_{\underline{s_i} \in M} d_E^2(\underline{\rho} - \underline{s_i})$

Có thể được biểu diễn bởi tiêu chuẩn Vùng Voronoi

given $\underline{r} = \underline{\rho}$ if $\underline{\rho} \in V(\underline{s})$ Chọn $\underline{s}_R = \underline{s}$

