Velegapudi Ramakrishna Siddhartha Engineering College::Vijayawada

(Autonomous)

II/IV B Tech Degree Examinations(Month/Year)
SEMESTER-III

Max Marks:70

Department of MATHEMATICS

MODEL QUESTION PAPER

Time:3Hrs

20BS3101B:Complex Analysis & Numerical Methods

		: Compulsory ne (01) question from each unit of Part – B				
		o any single question or its part shall be written at one place only				
		Cognitive Levels(K): K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-I	1			
Q.	No	Question	Marks	Course Outcome	Cog.	
Par	t - A		Outcome Level			
1	a	Write the Cauchy-Reimann Equations in Cartesian form.	1	CO1	K1	
	b	Define singular point.	1	CO1	K1	
	С	State Cauchy's integral formula.	1	CO1	K1	
	d	Determine the residues of $f(z) = \frac{z}{(z-1)(z-2)}$ at $z=1$.	1	CO2	K1	
	е	Write the condition for the transformation $w = \frac{az+b}{cz+d}$ to be bilinear.	1	CO2	K1	
	f	What is the order of convergence of Newton –Raphson Method.	1	CO3	K1	
	g	Write an example for Transcendental equation.	1	CO3	K1	
	h	What is the relation between \mathbf{E} and ∇ ?	1	CO3	K1	
	_	Write Newton's forward difference interpolation formula.	1	CO4	K1	
	j	State Simpson's $\frac{1}{3}$ rule.	1	CO4	K1	
Par	t – B			4X15 =60M		
		UNIT – I				
2	а	State and prove C-R equations in polar form.	8	CO1	К2	
_	b b	Show that $u = e^x \cos y$ is harmonic and hence find its conjugate.	7	CO1	K2	
	V	show that a cosy is narmonic and hence that itseonjugate.	,	CO1	I\Z	
		(OR)				
3	а	State and prove Cauchy's Integral theorem	7	CO1	K2	
	b	Evaluate $\oint_C \frac{z^3 e^{-z}}{(z-1)^3} dz$, where C: $ z = 2$ using Cauchy's integral	8	CO1	К3	
		formula.				
		Torributi	I			
		UNIT – II				
				T		
4	а	Find the Laurent's expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ in the region	8	CO2	К3	
		i z < 1, $ i 1 < z < 2$.				
	b	Using Residue theorem evaluate $\int_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)}$ where c is $ z = 3$	7	CO2	К3	
		$J_{c} = (z-1)^{2}(z-2)$				
		(OR)				
5	а	Evaluate by using contour integration $\int_0^{2\pi} \frac{d\theta}{5-4\sin\theta}$.	7	CO2	К3	
	b	Find the Bilinear transformation which maps the points $(0, i, 1)$ on to	8	CO2	К3	
		the points $(-1,0,1)$.				
		UNIT – III				
6	а	Using Newton-Raphson method, find the real root of $xsinx+cosx=0$.	7	CO3	К3	
		E OSING INCMION-NADUSON INCHIOL. HINO INC TEAL TOOL OF XXIIX±COXX=O.	7	i CU3	I K 🛪	

	b	Solve the following system of equations by using Gauss –Seidel iterative method $20x + y - 2z = 17$; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$								CO3	К3	
						(OR)						
7	а	Interpolate by means of Newton backward formula, the population of the town for the year 1984, given that						8	CO3	K4		
		Year	1939	1949	1959	1969	1979	1989				
		Popula tion ('000)	12	15	20	27	39	52				
	b								7	CO3	K3	
		x (1) f(x) 2		12								
					U.	NIT – IV	,					
											1.00	
8	а	Given that x 1.0	1.1	1.2	1.3	1.4	1.5	1.6	8 CO4 K3			
		y 7.989		8.781	9.129	9.451	9.750	10.031	1			
					7.127	7.431	7.730	10.031	_			
		Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1 b Using Taylor's method, solve $\frac{dy}{dx} = 2y + 3e^x$ with y(0) = 0 at x =										
ı	h		.X ²		lv -	- M			7	CO4	V2	
	b		's method	$\frac{d}{d}$, solve $\frac{d}{d}$	$\frac{dy}{dx} = 2y +$	- 3e ^x witl	y(0) = 0	at x =	7	CO4	К3	
	b	Using Taylor 0.2.	's method	$\frac{d}{d}$	$\frac{dy}{dx} = 2y +$	⊦ 3e ^x witl	y(0) = 0	at x =	7	CO4	К3	
	b		's method	$\frac{a}{a}$	$\frac{dy}{dx} = 2y + \frac{dy}{dx}$	+ 3 <i>e</i> * with	y(0) = 0	at x =	7	CO4	K3	
9	a	$\begin{array}{c} 0.2. \\ \hline \text{Evaluate } \int_0^6 \frac{1}{1} \end{array}$'s method	$\frac{1}{a}$, solve $\frac{a}{a}$		(OR)			7	CO4	K3	
9		0.2.	's method $\frac{1}{1+x^2}dx$, us	sing Sim	ipson's 1/	(OR)	rules by t	aking				