计算机问题求解 - 论题2-1

• 算法问题与解题的算法

课程研讨

• TC第1、2、3章

问题1: 计算问题与算法

- 什么是a well-specified computational problem?
- 问题和问题的实例有什么区别?
- 什么是an algorithm?
- 你能举一组例子吗?

- a well-specified computational problem
 - input + output + their relationship
- an algorithm
 - well-defined computational procedure for achieving an input-output relationship

- 回忆一下, 你设计过哪些糟糕的算法? 糟糕在什么地方?
- 你觉得什么是一个"好"算法?

- 回忆一下, 你设计过哪些糟糕的算法? 糟糕在什么地方?
- 你觉得什么是一个"好"算法?
 - 正确的: 总能停止且结果正确
 - 高效的:运行速度快、占用空间少
 - 易实现的: 描述清晰、简单

• 你能不能总结一下,算法设计的一般步骤是什么?

• 你能不能总结一下,算法设计的一般步骤是什么?

理清思路 写清过程 分析正确性 分析效率

问题2: 算法的正确性分析

- 你还记得如何证明算法的正确性吗?
 - 什么是partially correct? 如何证明?
 - 什么是totally correct? 如何证明?

问题2: 算法的正确性分析(续)

- 如何证明算法是partially correct?
 - 1. 设置checkpoint
 - start后和end前各一个
 - 每个回路上至少一个(通常是第一次进入回路时)
 - 2. 为每个checkpoint设置invariant(最后一个invariant是算法期望的结果)
 - 3. 检查所有checkpoint之间的路径,说明为什么路径起点的 invariant成立时,路径终点的invariant也成立
- 如何证明算法是totally correct?
 - partially correct + termination

举例:回文检测算法 start $X \leftarrow S$ E**←**true N $X \neq \Lambda$ and E is true? Y N eq(head(X), last(X))? return E Y end $X \leftarrow all-but-last(tail(X))$ E**←**false

问题3: 算法的效率分析

- 分析算法的效率时,为什么要先定义计算模型?
- Random-Access Machine有哪些要素?

问题3: 算法的效率分析

- 分析算法的效率时,为什么要先定义计算模型?
- Random-Access Machine有哪些要素?
 - 数据
 - 支持的类型
 - 存储的方式
 - 指令
 - 支持的类型
 - 执行的方式

PALINDROME-TEST (S)

- 1. X=S
- 2. E=true
- 3. while $X \neq \Lambda$ and E = true
- 4. if eq(head(X), last(X)) = true
- X=all-but-last(tail(X))
- 6. else
- 7. E=false
- 8. return E

- · input size是什么?
- 如何计算它的running time?
- best/worst/average case分别是多少?

```
PALINDROME-TEST (S)
                                           times
                                   cost
     X=S
                                   C_1
                                                   input size是什么?
     E=true
                                   C_2
                                                • 如何计算它的running time?
3.
     while X \neq \Lambda and E=true
                                   C_3
                                                   best/worst/average case分别是多少?
       if eq(head(X), last(X)) = true
4.
                                           p-1
         X=all-but-last(tail(X))
5.
                                           q
                                   C_5
                                          p-1-q
       else
6.
```

p-1-q

running time =
$$c_1 + c_2 + c_3 \cdot p + c_4 \cdot (p-1) + c_5 \cdot q + c_6 \cdot (p-1-q) + c_7 \cdot (p-1-q) + c_8$$

 C_7

 C_8

7.

8.

E=false

return E

PALINDROME-TEST (S) cost times

1.
$$X=S$$
 c_1 1

2. $E=true$ c_2 1

3. while $X\neq \Lambda$ and $E=true$ c_3 p

4. if eq(head(X),last(X))=true c_4 $p-1$

5. $X=$ all-but-last(tail(X)) c_5 q

6. else c_6 $p-1-q$

7. $E=$ false c_7 $p-1-q$

8. return E c_8 1

input size是什么?如何计算它的running time?

• best/worst/average case分别是多少?

$$running\ time = c_1 + c_2 + c_3 \cdot p + c_4 \cdot (p-1) + c_5 \cdot q + c_6 \cdot (p-1-q) + c_7 \cdot (p-1-q) + c_8 \cdot (p-1-q)$$

best case: $c_1 + c_2 + c_3 \cdot 2 + c_4 \cdot 1 + c_5 \cdot 0 + c_6 \cdot 1 + c_7 \cdot 1 + c_8$

worst case:
$$c_1 + c_2 + c_3 \cdot \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right) + c_4 \cdot \left\lceil \frac{n}{2} \right\rceil + c_5 \cdot \left\lceil \frac{n}{2} \right\rceil + c_6 \cdot 0 + c_7 \cdot 0 + c_8$$

average case?

问题3: 算法的效率分析(续)

• 为什么我们通常最关注worst case?

问题3: 算法的效率分析(续)

- 为什么我们通常最关注worst case?
 - Gives us an upper bound on the running time for any input.
 - Occurs fairly often.
 - The "average case" is often roughly as bad as the worst case.

Worst Case Measure

• For each input size we select the worst case.

Running Time not Monotonic

• Actual running time may not be monotonic in *n*.

问题4: 算法效率的渐进表示法

- Θ, O和Ω的数学本质是什么?
 - 例如, Θ(n²)在数学上是一个什么?
- 你能严格说出 $\Theta(g(n))$, O(g(n))和 $\Omega(g(n))$ 的数学定义吗?

问题4: 算法效率的渐进表示法

- Θ, O和Ω的数学本质是什么?
 - 例如, Θ(n²)在数学上是一个什么?
- 你能严格说出 $\Theta(g(n))$, O(g(n))和 $\Omega(g(n))$ 的数学定义吗?

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

有没有觉得似曾相识? 你能改写成更简洁的形式吗?

问题4: 算法效率的渐进表示法

- Θ, O和Ω的数学本质是什么?
 - 例如, $\Theta(n^2)$ 在数学上是一个什么?
- 你能严格说出 $\Theta(g(n))$, O(g(n))和 $\Omega(g(n))$ 的数学定义吗?

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \in (0, \infty)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>$$

To use a "simple" Function

问题4: 算法效率的渐进表示法(续)

• 你能用Θ来表示它们的running time吗?

best case:
$$c_1 + c_2 + c_3 \cdot 2 + c_4 \cdot 1 + c_5 \cdot 0 + c_6 \cdot 1 + c_7 \cdot 1 + c_8$$

worst case: $c_1 + c_2 + c_3 \cdot \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right) + c_4 \cdot \left\lceil \frac{n}{2} \right\rceil + c_5 \cdot \left\lceil \frac{n}{2} \right\rceil + c_6 \cdot 0 + c_7 \cdot 0 + c_8$

- 你能不能证明 $\Theta(n^2)=\Theta(an^2+bn+c)$?
- 尽管严格来说是bn+c ∈ Θ(n),但有时候也写成 bn+c=Θ(n),因此 $an^2+bn+c=an^2+Θ(n)$,这种写法有什么好处?
- 如果改用O而不是Θ, 优缺点分别是什么?

问题4: 算法效率的渐进表示法(续)

• O和o在数学上的区别是什么?

• 你是如何理解这个比喻的?

```
\begin{split} f(n) &= O(g(n)) & \text{is like} \quad a \leq b \;, \\ f(n) &= \Omega(g(n)) & \text{is like} \quad a \geq b \;, \\ f(n) &= \Theta(g(n)) & \text{is like} \quad a = b \;, \\ f(n) &= o(g(n)) & \text{is like} \quad a < b \;, \\ f(n) &= \omega(g(n)) & \text{is like} \quad a > b \;. \end{split}
```

问题4: 算法效率的渐进表示法(续)

• O和o在数学上的区别是什么?

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\} \text{ .}
o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0\} \text{ .}
\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
```

• 你是如何理解这个比喻的?

```
f(n) = O(g(n)) is like a \le b,

f(n) = \Omega(g(n)) is like a \ge b,

f(n) = \Theta(g(n)) is like a = b,

f(n) = o(g(n)) is like a < b,

f(n) = \omega(g(n)) is like a > b.
```