Computational Microelectronics Lecture 21 Continuity Equation

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Scharfetter-Gummel Scheme

Bernoulli function, B

A nonlinear function

$$B(x) = \frac{x}{\exp x - 1}$$

- -0) B(x) > 0 everywhere
- -1) B(0) = 1
- $-2) B(x) \sim x \exp(-x)$ when $x \to \infty$
- $-3) B(x) \sim -x \text{ when } x \rightarrow -\infty$
- -4) Monotonically decreasing
- $-5) B'(0) = -\frac{1}{2}$
- Careful implementation is needed.

Its derivative, B'

We also need its derivative.

$$B'(x) = \frac{1}{\exp x - 1} - B(x) \frac{\exp x}{\exp x - 1}$$

- It can be implemented with B(x) and $\frac{1}{\exp x - 1}$.

Jacobian, electron dependence

Electron current density

$$J_n(x_{i+0.5}) = \frac{qD_n}{x_{i+1} - x_i} \left[n_{i+1} B\left(\frac{\phi_{i+1} - \phi_i}{V_T}\right) - n_i B\left(-\frac{\phi_{i+1} - \phi_i}{V_T}\right) \right]$$

- Components of Jacobian matrix are given as

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial n_{i+1}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[B\left(\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) \right] > 0$$

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial n_{i}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[-B\left(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) \right] < 0$$

Jacobian, potential dependence

Electron current density

$$J_n(x_{i+0.5}) = \frac{qD_n}{x_{i+1} - x_i} \left[n_{i+1}B \left(\frac{\phi_{i+1} - \phi_i}{V_T} \right) - n_i B \left(-\frac{\phi_{i+1} - \phi_i}{V_T} \right) \right]$$

- Components of Jacobian matrix are given as

$$\begin{split} &\frac{\partial J_{n}(x_{i+0.5})}{\partial \phi_{i+1}} \\ &= \frac{qD_{n}}{x_{i+1} - x_{i}} \bigg[n_{i+1}B' \bigg(\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) + n_{i}B' \bigg(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) \bigg] \frac{1}{V_{T}} \\ &\frac{\partial J_{n}(x_{i+0.5})}{\partial \phi_{i}} \\ &= \frac{qD_{n}}{x_{i+1} - x_{i}} \bigg[-n_{i+1}B' \bigg(\frac{\phi_{i+1} - \phi_{i}}{V_{T_{GIST \ Lecture}}} \bigg) - n_{i}B' \bigg(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) \bigg] \frac{1}{V_{T}} \end{split}$$

Improved Results

Electron density at equilibrium, again

- 41 mesh points
 - Excellent agreement with the nonlinear Poisson result

1 2.3322320401031856e-14

Doping dependence, again

- Spacing of 3.125 nm and 4X10¹⁷ cm⁻³
 - Excellent agreement with the nonlinear Poisson result

Forward IV, again

- Anode current at V_{anode} = 0.1 V
 - -101, 129, 161, 201, 251, 321, 401, and 801 mesh points
 - Even for 41 mesh points, we have 3.168X10⁻¹⁶ A/um².

HW#15

- Due: AM08:00, November 27
- Problem#1
 - In the previous HW#13 and HW#14, three PN junctions were simulated with the nonlinear Poisson equation.
 - In this problem, using the drift-diffusion simulator (Scharfetter-Gummel), simulate the same devices.
- Problem#2
 - Calculate the forward and reverse IV characteristics of the PN junctions, by using the drift-diffusion simulator (Scharfetter-Gummel).

Lecture plan

- We have five remaining lectures. My plan is...
 - -L22 (Nov. 22): Transient simulation (1)
 - -L23 (Nov. 27): Transient simulation (2)
 - -L24 (Nov. 29): Transient simulation (3)
 - -L25 (Dec. 4): Small-signal analysis (1)
 - -L26 (Dec. 6): Small-signal analysis (2)
 - -(Of course, it may change.)
- Term project
 - Due: AM08:00, December 18, 2023 (Submit a recorded video via email.)

Thank you!