

Chest Tube Securing Device

Pre-manufacturing line

Andres Tovar Ph.D, Edwin N. Prieto Ph.D(c). Shantanu Shinde M.Sc(c)

Indiana University-Purdue University Indianapolis

Table of contents

- 1. Objectives
- 2. 3D printing process
- 3. Plastic Injection Molding
- 4. Numerical Analysis process
- 5. Testing process
- 6. Schedule

1/17

Main objective

Main Goal

The goal of this project is to finalize the prototype for chest tube securing device which can be used to secure the chest tube to the patient's chest wall without the need of sutures.

Specific Objectives

• Evaluation of the clinical benefits of the prototype.

INDIANA UNIVERSITY PURDUE UNIVERSITY INDIANAPOLIS

Specific Objectives

- Evaluation of the clinical benefits of the prototype.
- Definition and testing of the Good Manufacturing Practices (GMP).

Specific Objectives

- Evaluation of the clinical benefits of the prototype.
- Definition and testing of the Good Manufacturing Practices (GMP).
- Three material combinations per CTSD part (retainer, base, and receptacle) will be produced.

Specific Objectives

- Evaluation of the clinical benefits of the prototype.
- Definition and testing of the Good Manufacturing Practices (GMP).

3/17

- Three material combinations per CTSD part (retainer, base, and receptacle) will be produced.
- 100 pre-production prototypes.

Engineering targets

Top part

- Flexibility for opening the snaps.
- Not exceed the maximum elastic zone.

Bottom part

• The adherence with the tape.

Flexible part

- Adherence.
- Maximum friction.

INDIANA UNIVERSITY PURDUE UNIVERSITY INDIANAPOLIS

Engineering targets

Whole part

- The adherence with the rubber part.
- The product life (fatigue).
- The proper snap-fit.

Figure 1: Half-section view complete CTSD

INDIANA UNIVERSITY PURDUE UNIVERSITY INDIANAPOLIS

According to the design requirements, perform the comparison between 3D printing and plastic injection, in terms of mechanical strength, manufacturing viability, price.

6/17

Research Plan

• Evaluation of the 3D printing process.

According to the design requirements, perform the comparison between 3D printing and plastic injection, in terms of mechanical strength, manufacturing viability, price.

Research Plan

- Evaluation of the 3D printing process.
- Evaluation of the Plastic injection process.

According to the design requirements, perform the comparison between 3D printing and plastic injection, in terms of mechanical strength, manufacturing viability, price.

Research Plan

- Evaluation of the 3D printing process.
- Evaluation of the Plastic injection process.
- Numerical analysis process.

INDIANA UNIVERSITY PURDUE UNIVERSITY INDIANAPOLIS

According to the design requirements, perform the comparison between 3D printing and plastic injection, in terms of mechanical strength, manufacturing viability, price.

Research Plan

- Evaluation of the 3D printing process.
- Evaluation of the Plastic injection process.
- Numerical analysis process.
- Testing protocol.

INDIANA UNIVERSITY PURDUE UNIVERSITY INDIANAPOLIS

3D printing process

Design of experiments (Part I)

		Top part					
		ABS	PC/ABS	Nylon	PC	PLA	SLA
	ABS	✓	✓	✓	/	✓	/
part	PC/ABS	✓	✓	✓	/	✓	/
	Nylon	✓	✓	✓	/	✓	/
Bottom	PC	✓	✓	✓	✓	✓	/
Boi	PLA	✓	✓	✓	/	✓	/
	SLA	✓	✓	/	✓	✓	/

Table 1: Design of Experiments for 3D printing.

Design of experiments (Part I)

		Top part					
		ABS	PC/ABS	Nylon	PC	PLA	SLA
	ABS	~	~	~	~	~	
part	PC/ABS		~	~	~	~	
	Nylon)	~ \	~	~	~	~
Bottom	PC)	\ \ \	~ \	~	~	
Boi	PLA	~	~	~	~ \	~	
	SLA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	~	~	~	

Table 2: Full factorial DOE for 3D printing.

Design of experiments (Part I)

		Top part					
		ABS	PC/ABS	Nylon		PLA	SLA
Bottom part	ABS	✓	✓	~	✓	✓	
	PC/ABS		✓	✓	✓	/	
	Nylon			✓	✓	✓	
	PC				/	✓	
Bot	PLA					✓	
	SLA						✓

Table 3: Total number of combinations.

Flexible part

Flexible materials	Printing Method
TPE	FDM
TPU	FDM
Flexible	SLA

Figure 2: Receptacle CAD

Total number of experiments

ID	No.		
Top - Base	16		
Flexible	3		
Total	48		

Table 4: Total Number of experiments

Figure 3: Render of the CTSD

What do we want to figure out?

Manufacturability

- Printing quality.
- Time.
- Printing complexity.

Mechanical properties

- Bonding force.
- Sliding force.
- Snapping.

Plastic Injection Molding

Design mold process

13/17

Methodology

Numerical Analysis process

Finite Element Analysis

Purpose I

- To determine max stresses.
- To determine the product life (fatigue).
- To make structural optimization.

Purpose II

- CTSD experiments.
- To avoid mold trials.

Figure 5: Explicit Simulation CTSD

Testing process

Sliding force

Figure 6: Sliding force testing.

16/17

Figure 7: Force Displacement curvature

Schedule

Schedule

Questions?