

Trajectory Analysis of CO₂ Concentration Increase Events in the Nocturnal Atmospheric Boundary Layer Observed by the Differential Absorption Lidar

Makoto Abo, Chikao Nagasawa, Yasukuni Shibata Tokyo Metropolitan University

Introduction

- Inverse techniques using atmospheric transport models are developed to estimate CO_2 sources and sinks based on the observed data.
- The accurate vertical CO₂ profiles in the troposphere are highly desirable in the inverse techniques to improve quantification.
- Lidar instruments are thought to be one of the best methods for observing the vertical distribution of greenhouse gasses.
- We have performed vertical profile measurement of the CO_2 mixing ratio at Tokyo Metropolitan University (TMU) using a differential absorption lidar (DIAL) with a wavelength of 1.6 μ m.
- Trajectory analysis was performed using a 3D atmospheric transport model to obtain information on the sources of increased CO₂ at night.

C

Three Wavelength CO₂ DIAL System and TMU Lidar Site

System parameters for the three-wavelength DIAL

Wavelengths	1572.992 nm (λ_{on})
	1573.137 nm (λ _{off})
	1573.040 nm ($λ$ _T)
Pulse energy	6 mJ
Repetition rates	400 Hz (Total)
	200 Hz (λ_{on}), 100 Hz (λ_{off} and λ_{T})
Vertical resolution	300 m
Time resolution	30 min
Telescope diameter	250 mm
Quantum efficiency	8%
Interference filter	1.0 nm (FWHM) $^{\perp}$
	,

Typical Diurnal Variation of CO₂ Profiles on Clear Days

Daytime

- CO₂ concentration decreases 2-3 hours after sunrise
- The sink for CO₂ reduction is plants (photosynthesis)

Night

- CO₂ concentration may increase sharply after midnight
- Increase in mixing ratio is 20 to 50ppm
- The peak time of concentration increase is not constant
- No seasonal dependence
- Cannot be explained by human activity or forest breathing

Back Trajectory Analysis

Meso-Scale Model (Original)

Map Area: $78 \text{km} \times 78 \text{km}$

Horizontal Mesh: ~11km

Vertical Resolution: 200~500m

Time Interval: 3 Hour

Interpolation

Horizontal Mesh: 1km

Vertical Resolution: 105m

Time Interval: 20 min

Local Three-dimensional Dispersion Analysis

 CO_2 emissions : $4x10^7$ [ppm/s] (estimated from public data)

Gaussian plume model

Gaussian plume model
$$C(x,y,z) = \frac{Q}{2\pi U \sigma_y \sigma_z} e^{\left(-\frac{y^2}{2\sigma_y^2}\right)} e^{\left(-\frac{z^2}{2\sigma_z^2}\right)}$$

C: mean concentration of diffusing substance at (x, y, z)

x: downwind distance

y: crosswind distance

z : vertical distance above ground

u: mean wind velocity in downwind direction

Q: mean concentration of diffusing substance from source σy , σz : lateral and vertical dispersion coefficient function

Backward Trajectory Analysis at 10 Altitudes, Start of Run at 21H and 3H

Local Three-dimensional Dispersion Analysis (2020/12/7-8)

Two factories were set up as sources. It can be seen that the dispersed CO₂ had reached above the lidar site (0-3H).

Local Time

- (a) Time-height cross-section of CO₂ mixing ratio at the TMU lidar site.
- (b) Time-height cross-section of the increase in the CO₂ mixing ratio at the TMU lidar site calculated by local three-dimensional dispersion analysis at 12 altitudes.

Compared with observation results and three-dimensional dispersion analysis, the increase in the CO₂ mixing ratio is in good agreement in both time and altitude.

Conclusion

- Local three-dimensional dispersion analysis was used to reproduce the rapid increase in CO₂ mixing ratio in the lower layer at night.
- The source of this CO_2 is estimated to be a factory to the north of the observation site, and it is thought that high concentrations of CO_2 were transported to the lidar site due to local wind convergence during the night.
- It has been shown that CO₂ -DIAL is useful for identifying the source of CO₂ and monitoring the amount of CO₂ emissions.