Homework #2

September 10, 2021

Problem 1

Part a

The statement we want to negate is $(p \land q)$, we do by negating each of its parts as follows:

STATEMENT 1:
$$(p \land q)$$

NEGATION: $\neg (p \land q) = \neg p \lor \neg q$ (1)

Building up the truth table, we notice that the end result aligns with equation (1) as seen below:

Table 1: Statement one truth table

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
T	Т	Т	${f F}$	F	F	\mathbf{F}
Т	F	F	T	F	Т	T
F	Т	F	T	Т	F	\mathbf{T}
F	F	F	${f T}$	Т	Т	T

Thus, we can state that:

$$\boxed{\neg(p \land q) = \neg p \lor \neg q \quad \Box}$$

Part b

The statement we want to negate is $(p \lor q)$, we do by negating each of its parts as follows:

STATEMENT 2:
$$(p \lor q)$$

NEGATION: $\neg (p \lor q) = \neg p \land \neg q$ (2)

Building up the truth table, we notice that the end result aligns with equation (2) as seen below:

Table 2: Statement one truth table

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	Т	Т	\mathbf{F}	F	F	\mathbf{F}
Т	F	Т	${f F}$	F	Т	\mathbf{F}
F	Т	Т	\mathbf{F}	Т	F	\mathbf{F}
F	F	F	${f T}$	Т	Т	${f T}$

Thus, we can state that:

$$| \neg (p \lor q) = \neg p \land \neg q \quad \Box$$

Problem 2

Part a

$$\neg(\forall n \in \mathbb{Z}, 2n+1 \text{ is odd}) = \exists n \in \mathbb{Z}, 2n+1 \text{ is even}$$

Part b

$$\neg(\exists n \in \mathbb{Z}, 2n+1 \text{ is prime}) = \forall n \in \mathbb{Z}, 2n+1 \text{ is composite}$$

Part c

$$\neg (\exists v \in \mathbb{R}^n, v \neq 0 \text{ s.t. } Av = \lambda v) = \forall v \in \mathbb{R}^n, v \neq 0 \text{ s.t. } Av \neq \lambda v$$

Part d

$$\neg(\forall \eta>0, \exists \delta>0 \quad \text{s.t.} \quad |x|\leq \delta \implies |f(x)|\leq \eta|x|) = \exists \eta>0, \forall \delta>0 \quad \text{s.t.} \quad |x|\leq \delta \quad \land \quad |f(x)|>\eta|x|$$

Problem 3

To prove that $\sqrt{7}$ is irrational, we resort to a proof by contradiction, that is, our statement is denoted by p and we show that $\neg p$ is false.

STATEMENT: $\sqrt{7}$ is irrational **NEGATION**: $\sqrt{7}$ is rational

The negation of this statement implies by definition that $\sqrt{7}$ can be written as a ratio of two integers m and n as follows:

 $\sqrt{7}$ is rational : $\{\sqrt{7} \in \mathbb{Q} \mid m, n \in \mathbb{Z}, n \neq 0 \text{ with no common factors s.t. } \sqrt{7} = \frac{m}{n}\}$

Then we can write:

$$\sqrt{7} = \frac{m}{n}$$

$$\implies n^2 = \frac{m^2}{7}$$
(3)

With $n \in \mathbb{Z}$, we can say that 7 divides m^2 and thus 7 divides m. We can then write that $m = 7k_1$ with $k_1 \in \mathbb{Z}$. Plugging in this result in equation (3) we obtain:

$$n^{2} = \frac{m^{2}}{7} = \frac{(7k_{1})^{2}}{7} = 7k_{1}^{2}$$

$$\implies k_{1}^{2} = \frac{n^{2}}{7}$$

With $k \in \mathbb{Z}$, we can say that 7 divides n^2 and thus 7 divides n. We can then write that $n = 7k_2$ with $k_2 \in \mathbb{Z}$. Thus, there is a contradiction in the negation of our statement since m and n have 7 as a common factor showing that the negation of our statement if false, and that our statement that $\sqrt{7}$ is rational is true since $\neg p$ is false $\implies p$ is true.

Problem 4

To prove that if det(A) = 0 then A is not invertible, we resort to a proof by contradiction as such:

if
$$det(A) = 0$$
 then A is not invertible
$$p : det(A) = 0$$

$$q : A \text{ is not invertible}$$

$$p \iff q$$

$$(p \implies q) \land (q \implies p)$$

$$(p \implies q) \iff \neg(p \land (\neg q))$$

$$(q \implies p) \iff \neg(q \land (\neg p))$$

It suffices to show either of the two statements below since they are equivalent:

$$p \wedge (\neg q)$$
 is false $q \wedge (\neg p)$ if false

We will show the former:

$$p \wedge (\neg q) : (det(A) = 0) \wedge (A \text{ is invertible})$$

We have:

$$A \text{ is invertible} \implies AA^{-1} = I$$

$$det(AA^{-1}) = det(I)$$

$$det(A)det(A^{-1}) = det(I) = 1, \text{ since } A \in \mathbb{R}^{n \times n}$$

$$0 * det(A^{-1}) = 1$$

$$0 = 1$$

Thus we reached a contradiction, implying that $p \land (\neg q)$ is false, therefore $(p \implies q)$ is true.

Problem 5

To show that $\forall n \geq 1, \ P(n): \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$, we resort to a proof by induction:

Base Case:
$$P(1): \sum_{k=1}^{1} \frac{1}{1(1+1)} = \frac{1}{2} = \frac{n}{n+1} = \frac{1}{1+1} = \frac{1}{2}$$
, True

Induction Step :
$$P(j)$$
 : $\sum_{k=1}^{j} \frac{1}{k(k+1)} = \frac{j}{j+1}$

Show:
$$P(j+1)$$
: $\sum_{k=1}^{j+1} \frac{1}{k(k+1)} = \frac{j+1}{j+2}$

Proof:

$$\sum_{k=1}^{j+1} \frac{1}{k(k+1)} = \sum_{k=1}^{j} \frac{1}{k(k+1)} + \frac{1}{(j+1)(j+2)}$$

$$= \frac{j}{j+1} + \frac{1}{(j+1)(j+2)}$$

$$= \frac{j(j+2)+1}{(j+1)(j+2)}$$

$$= \frac{j^2+2j+1}{(j+1)(j+2)}$$

$$= \frac{(j+1)^2}{(j+1)(j+2)}$$

$$= \frac{j+1}{j+2}$$

Therefore:

$$\forall n \ge 1, \ P(n): \ \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1} \quad \Box$$

Problem 6

Part a

To show that $\forall n \geq 12, \ n \in \mathbb{Z}, \ \exists k_{1,2} \in \mathbb{Z}^+ \ \text{s.t.} \ n = 4k_1 + 5k_2$, we resort to a proof by strong induction:

Base Case: P(12): 12 = 4 * 3 + 5 * 0

Induction Step: $12 \le j \le k$, P(j): $j = 4k_1 + 5k_2$

Show: $\forall k+1 \geq 13, \ P(k+1): \ k+1 = 4k_1 + 5k_2$

For n = 13, ..., 15:

$$13 = 4 * 2 + 5 * 1$$

$$14 = 4 * 1 + 5 * 2$$

$$15 = 4 * 0 + 5 * 3$$

Now we show that $\forall k+1 \geq 16$, P(k+1): $k+1=4k_1+5k_2$ as follows:

$$k+1 \ge 16$$

$$k+1-4 \ge 12$$

$$k+1-4 = 4k_1 + 5k_2$$

$$k+1 = 4(k_1+1) + 5k_2$$

$$k+1 = 4k_3 + 5k_2, \exists k_{2,3} \in \mathbb{Z}^+$$

Thus we have:

$$\forall n \ge 12, \ n \in \mathbb{Z}, \ \exists k_{1,2} \in \mathbb{Z}^+ \text{ s.t. } n = 4k_1 + 5k_2 \quad \Box$$

To show that $\forall n \geq 8, \ n \in \mathbb{Z}, \ \exists k_{1,2} \in \mathbb{Z}^+ \ \text{s.t.} \ n = 4k_1 + 5k_2$, we only prove the cases where n = 8, ..., 11 since we have proved the statement $\forall n \geq 12$:

$$8 = 4 * 2 + 5 * 0$$

$$9 = 4 * 1 + 5 * 1$$

$$10 = 4 * 0 + 5 * 2$$

$$11 \neq 4k_1 + 5k_2, \ \forall k_{1,2} \in \mathbb{Z}^+$$

Thus, the statement is not true $\forall n \geq 8$.

Part b

To show that $\forall n \geq 6$, n = 2k, $k \in \mathbb{Z}$, $\exists k_{1,2} \in \mathbb{Z}^+$ s.t. $n = 3k_1 + 5k_2$, we resort to a proof by strong induction:

Base Case :
$$P(6)$$
 : $6 = 3 * 2 + 5 * 0$
Induction Step : $6 \le j \le k$, $P(j)$: $j = 3k_1 + 5k_2$
Show : $\forall k + 2 \ge 8$, $P(k + 1)$: $k + 2 = 3k_1 + 5k_2$

For n = 8, ..., 12:

$$8 = 3 * 1 + 5 * 1$$
$$10 = 3 * 0 + 5 * 2$$
$$12 = 3 * 4 + 5 * 0$$

Now we show that $\forall n \geq 14, \ n = 2k, \ k \in \mathbb{Z}, \ \exists k_{1,2} \in \mathbb{Z}^+ \text{ s.t. } n = 3k_1 + 5k_2 \text{ as follows:}$

$$k+2 \ge 14$$

$$k+2-8 \ge 6$$

$$k+2-8 = 3k_1 + 5k_2$$

$$k+2 = 3(k_1+1) + 5(k_2+1)$$

$$k+2 = 3k_3 + 5k_4, \exists k_{3,4} \in \mathbb{Z}^+$$

Thus we have:

$$\forall n \ge 6, \ n = 2k, \ k \in \mathbb{Z}, \ \exists k_{1,2} \in \mathbb{Z}^+ \text{ s.t. } n = 3k_1 + 5k_2 \quad \Box$$

Problem 7

Part a,b

We want to solve the following optimization problem using the Lagrange multipliers method for $x \in \mathbb{R}^n$ and $M \in \mathbb{S}^n$:

$$\max_{x} \text{ or } \min_{x} \quad x^{T} M x$$
s.t.
$$x^{T} x = 1$$

The Lagrangian function $\mathcal{L}(x_1, x_2, \lambda)$ is defined as follows:

$$\mathcal{L}(x,\lambda) = F(x) - G(x)$$

where F(x) is our optimization function and G(x) is the constraint function, both defined as follows:

$$F(x) = x^T M x$$
$$G(x) = x^T x - 1$$

Thus, we have:

$$\mathcal{L}(x,\lambda) = x^T M x - \lambda (x^T x - 1) = x^T M x + \lambda (1 - x^T x)$$

Now let us solve this minimization problem by first getting the partial derivatives of $\mathcal{L}(x,\lambda)$, we have:

$$\mathcal{L}_x(x,\lambda) = 2Mx - 2\lambda x$$
$$\mathcal{L}_\lambda(x,\lambda) = 1 - x^T x$$

Now equating each of these partial derivatives to 0, we get:

$$\mathcal{L}_x(x,\lambda) = 0 \implies Mx = \lambda x$$

 $\mathcal{L}_\lambda(x,\lambda) = 0 \implies G(x) = 0$

From the latter, we can see that $\mathcal{L}_x(x,\lambda) = 0$ leads to $Mx = \lambda x$, which implies that λ and x are the eigenvalues and their corresponding eigenvectors respectively. Since $M \in \mathbb{S}^n$, the eigenvalues and eigenvectors of M are real. Substituting the results obtained in our optimization function, we get:

$$F(x) = x^T M x = x^T \lambda x = \lambda x^T x = \lambda$$

Thus to maximize(minimize) our optimization function, we choose the largest(smallest) eigenvalue of M denoted by $\lambda_{max}(\lambda_{min})$. For the choice of x, we realize from the result of $\mathcal{L}_x(x,\lambda) = 0$ that x is the eigenvector of M corresponding to the eigenvalue λ . Thus a correct choice of x in this optimization problem is the eigenvector corresponding to $\lambda_{max}(\lambda_{min})$.