ERRATA

Exercício	onde se lê	leia-se			
2.34	sem o fato de que $J_n(1) \to 0$	com o fato que $J_n(1) \to 0$			
3.38	1º grau	$2^{ m o}$ grau			
3.47	$x^2 - 0.0001x - 3.999$	$t^2 - 0.0001t - 3.999$			
4.20	a)dois dígitosb)Refine a solução obtida em a).	 a)três dígitos b) Refine uma vez a solução obtida em a). 			
4.36	matriz simétrica A é	matriz simétrica A , positiva definida, é			
8.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
9.18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_{1}^{2} \frac{dx}{2(x+1)\sqrt{-x^{2}+3x-2}}$			
$\boldsymbol{9.29}$	0.45970	0.9460830704			
$\boldsymbol{9.45}$	$\int_{-2}^{0} \frac{dx}{x+3} dx$ $x \in [0, 0.4], h = 0.1$	$\int_{-2}^{0} \frac{dx}{x+3}$ $x \in [0, 0.1] , h = 0.05$ $y(1) = 1$ $y''' x^{2}y'' + (y')^{2}y = 0$			
10.16	$x \in [0, 0.4] , h = 0.1$	$x \in [0, 0.1] , h = 0.05$			
	y(1) = 0	y(1) = 1			
10.29	$ y(1) = 0 $ $ xy''' x^2y'' + (y')^2y = 0 $	$\int_{-}^{} y''' - x^2 y'' + (y')^2 y = 0$			

- 1.1) a) É espaço vetorial.
 - b) Não é espaço vetorial, pois não vale $(\alpha + \beta)u = \alpha u + \beta u$.
- 1.2) É combinação linear.
- 1.3) É combinação linear.
- **1.4**) a) Os vetores são LI.
 - b) Os vetores são LI.
- **1.5)** $v = (4, -1, -1)^t$.
- 1.6) $v = 2f_1 10f_2 + 7f_3$.

1.7)
$$P_3(x) = \frac{19}{5} 5 + 20 x 1 + 4 x^2 5x + 3 + 2 x^3 4 .$$

 $5 \{ \} \{ - \} \{ - \} \} \{ - \}$
1.8) a) $(x,y) = 1$.

1.8) a)
$$(x,y) = 1$$
.

b)
$$(x,y) = 8$$
.

1.9) a)
$$(f,g) = \frac{1}{4}$$
.

b)
$$(x,y) = -\frac{1}{12}$$
.

- 1.11) a) Os vetores são ortogonais.
 - b) Os vetores são ortogonais.
 - c) Os vetores não são ortogonais.
- 1.12) m=7.

1.13)
$$m = \frac{-3 \pm \sqrt{14}}{5}$$
.

1.14)
$$f(x) = P_2(x) = k(-\frac{2}{3} + x^2).$$

1.15)
$$m=2$$
.

1.16)
$$||x||_1 = 16$$
, $||x||_{\infty} = 10$ e $||x||_E = \sqrt{110}$. $||y||_1 = 24$, $||y||_{\infty} = 12$ e $||y||_E = 6\sqrt{5}$.

1.17)
$$(x,y) = 7$$
, $||x|| = \sqrt{6}$, $||y|| = \sqrt{30}$, $d(x,y) = \sqrt{22}$ e
$$\frac{x+y}{||x+y||} = \frac{\sqrt{2}}{10} (4, 3, 4, 3)^t.$$

1.19)
$$(u, v) = -1$$
.

1.20)
$$||A||_1 = 5$$
, $||A||_{\infty} = 5$ e $||x||_E = 3\sqrt{2}$.
 $||B||_1 = 8$, $||B||_{\infty} = 8$ e $||B||_E = \sqrt{43}$.
 $||C||_1 = 21$, $||C||_{\infty} = 24$ e $||C||_E = \sqrt{305}$.

1.21)
$$e_1^* = \frac{\sqrt{3}}{3} (1, 1, 1)^t, \quad e_2^* = \frac{\sqrt{6}}{4} \left(\frac{2}{3}, -\frac{4}{3}, \frac{2}{3}\right)^t, \quad e_3^* = \frac{\sqrt{2}}{2} (-1, 0, 1)^t.$$

1.22)
$$e_1^* = \frac{\sqrt{5}}{5} (0, 2, 1, 0)^t$$
, $e_2^* = \frac{\sqrt{30}}{6} \left(1, -\frac{1}{5}, \frac{2}{5}, 0 \right)^t$, $e_3^* = \frac{\sqrt{10}}{5} \left(\frac{1}{2}, \frac{1}{2}, -1, -1 \right)^t$, $e_4^* = \frac{\sqrt{15}}{4} \left(\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5} \right)^t$.

1.23)
$$P_0^*(x) = \frac{\sqrt{2}}{2}, \ P_1^*(x) = \frac{\sqrt{3}}{2} \ x, \ P_2^*(x) = \frac{3\sqrt{10}}{4} \ \left(x^2 - \frac{1}{3}\right), \ \dots$$

1.24)
$$Q_0^*(x) = 1$$
, $Q_1^*(x) = 2\sqrt{3}\left(x - \frac{3}{2}\right)$, $Q_2^*(x) = \sqrt{180}\left(x^2 - 3x + \frac{13}{6}\right)$,

1.25)
$$x_0 = \begin{pmatrix} -\frac{1}{3}, & \frac{25}{3}, & \frac{25}{3} \end{pmatrix}^t$$
.

1.26)
$$P_2(x) = \frac{29}{35}\{3\} + \frac{4}{5}\{x-3\} + \frac{12}{7}\{x^2 - x\}.$$

1.29) Para a matriz
$$A: P(\lambda) = \lambda^2 - 5\lambda - 2; \ \lambda_1 \simeq -0.3723 \ e \ \lambda_2 \simeq 5.3723.$$

Para $\lambda_1 \Rightarrow v \simeq (1, -0.6862)^t$ e para $\lambda_2 \Rightarrow v \simeq (1, 2.1862)^t$.

Para a matriz $B\colon P(\lambda)=-\lambda^3-2\lambda+2;$ $\lambda_1\simeq 0.7709,\ \lambda_2\simeq -0.3855+1.5639i$ e $\lambda_3\simeq -0.3855-1.5639i$.

Para $\lambda_1 \Rightarrow v \simeq (0.6740, 0.4228, 1)^t$,

para
$$\lambda_2 \Rightarrow v \simeq (-3.6827 + 0.3581i, 1.3855 - 1.5639i, -1.7710 + 3.1278i)^t$$
 e

para $\lambda^3 \Rightarrow v \simeq (1.2089 - 1.5639i, \ 1.3855 + 1.5639i, \ -1.7710 - 3.1278i)$.

1.30) Os autovalores de A são: 4 e 1, de A^2 são: 16 e 1 e de A^3 são: 64 e 1.

1.31)
$$P(A) = \begin{pmatrix} 14 & -6 \\ -6 & 20 \end{pmatrix}$$
 e $Q(A) = \Theta$.

1.32)
$$P_3(x) = 4Q_0(x) - 2Q_1(x) + 5Q_2(x) - 3Q_3(x)$$
.

1.33)
$$P_2(x) = \frac{143}{30} \{8\} - \frac{16}{15} \{3x+2\} + \frac{3}{5} \{5x^2 - 3x\}.$$

1.34) a)
$$(x,y) = 4$$
.

b)
$$||x|| = \sqrt{30}, ||y|| = \sqrt{14}.$$

1.36) b)
$$||x|| = \sqrt{13}$$
.

1.38)
$$e_1^* = \frac{\sqrt{2}}{2} (1, 1, 0)^t, \ e_2^* = \frac{\sqrt{6}}{3} \left(-\frac{1}{2}, \frac{1}{2}, 1 \right)^t, \ e_3^* = \frac{\sqrt{3}}{2} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3} \right)^t.$$

1.39)
$$L_0(x) = 1$$
, $L_1(x) = \sqrt{12}(x - \frac{1}{2})$, $L_2(x) = \sqrt{180}(x^2 - x + \frac{1}{6})$,...

1.40)
$$P_0(x) = 3$$
, $P_1(x) = x - \frac{1}{2}$, $P_2(x) = x^2 - x + \frac{1}{6}$.

1.41)
$$v_0 = (1, 1, 0)^t$$
.

1.42)
$$P_1(x) = -2.2214 + 4.5948x.$$

1.43)
$$P_2(x) = \frac{1}{15} \{3\} + \frac{4}{15} \{x - \frac{1}{2}\} + \frac{12}{7} \{x^2 - x + \frac{1}{6}\}.$$

- **1.44)** Para a matriz $A: P(\lambda) = \lambda^2 \lambda + 1$, e para a matriz $B: P(\lambda) = -\lambda^3 + 3\lambda^2 + 2\lambda 5$.
- **1.45)** $\lambda_1 q, \ \lambda_2 q, \ \dots, \ \lambda_n q.$
- 1.48) Para as matrizes A e C os autovalores são reais e estão nos intervalos [0,4] e [-1,5], respectivamente.

Para a matriz B os autovalores estão na reunião dos círculos C_1 e C_2 de centro em 1 e raio 2 e, centro em 4 e raio 1, respectivamente.

Para a matriz D os autovalores estão na reunião dos círculos C_1 , C_2 e C_3 de centro em 3 e raio 1, centro em 2 e raio 2 e centro em 0 e raio 1, respectivamente.

- **2.1)** $x_1 = 0.4321 \times 10^4$, $x_2 = -0.1352 \times 10^{-2}$, $x_3 = 0.1256 \times 10^3$, x_4 (overflow) e $x_5 = 0.3400 \times 10^{-3}$.
- **2.2)** x_1 (overflow), x_2 (underflow), $x_3 = 0.125 \times 10^3$, x_4 (overflow), x_5 (underflow).
- **2.3)** $x_1 = (100010)_2, x_2 = (0.0010)_2, x_3 = (100001.00111...)_2.$
- **2.4)** $x_1 = (55)_{10}, x_2 = (0.34375)_{10}, x_3 = (3.3125)_{10}.$
- **2.5)** $x_1 = (30)_5, x_2 = (0.2132...)_5, x_3 = (24.02331...)_5.$
- 2.6) a) 145 números. As formas da mantissa são:

As formas de β^e são: 3^{-2} , 3^{-1} , 3^0 , 3^1 .

- **b)** $x_1 = 0.101 \times 3^0, \ x_2 = 0.221 \times 3^1.$
- **2.7**) a) 161 números.
 - **b)** (1.9375)₁₀.
- **2.8**) a) $0.099995 \le s < 0.99995$.
 - **b)** $x_1 = 0.1239 \times 10^4$, $x_2 = -0.5501 \times 10^{-3}$, $x_3 = 0.1004 \times 10^1$, x_4 (overflow), x_5 (underflow).
- **2.9**) **a)** 8.05 e 8.05.
 - **b)** -0.153 e -0.152.
- **2.10**) **a**) 18.546449.
 - **b**) 18.5.
- **2.11**) a) 8.7412863.
 - **b**) 8.7.
- **2.12**) **a**) $y_0 = 0.0953102$.
 - b) Faça integração por partes.
 - c) Usando a fórmula (2.8) com $y_0 = 0.0953102$, obtemos:

$__y_n$	y_n	y_n	y_n
$y_0 = 0.0953102$	$y_3 = 0.0231535$	$y_6 = 0.0131667$	$y_9 = -0.0198449$
$y_1 = 0.0468982$	$y_4 = 0.018465$	$y_7 = 0.0111901$	$y_{10} = 0.2987489$
$y_2 = 0.031018$	$y_5 = 0.01535$	$y_8 = 0.0130986$	

Não, pois o algoritmo é extremamente instável.

2.13) Considerando $y_{20} = 0$ e usando a fórmula (2.9), obtemos:

$__$	y_n	y_n	y_n
$y_{19} = 0.005$	$y_{14} = 0.0060954$	$y_9 = 0.0091672$	$y_4 = 0.0184646$
$\begin{array}{c} y^{18} = 0.0047632 \\ y_{17} = 0.0050792 \end{array}$	$\begin{array}{c} y^{13} = 0.0065333\\ y_{12} = 0.007039 \end{array}$	$y^8 = 0.0101944 y_7 = 0.0114806$	$y^3 = 0.0231535 y_2 = 0.031018$
$y_{16} = 0.0053744$	$y_{11} = 0.0076294$	$y_6 = 0.0131371$	$y_1 = 0.0468982$
$y_{15} = 0.0057126$	$y_{10} = 0.008328$	$y_5 = 0.015353$	$y_0 = 0.0953102$

com todos os dígitos corretos. Considere y_n a solução exata e $y_n^{(m)}$ a solução aproximada. Mostre que: $|y_n^{(m)} - y_n| \le a^{-11}$. Como a = 10 então o erro é menor que uma unidade no décimo primeiro dígito.

- **2.14)** $x_1 = (11011)_2, x_2 = (0.0010001...)_2, x_3 = (101101.001000...)_2.$
- **2.15)** $x_1 = (59)_{10}, x_2 = (0.28125)_{10}, x_3 = (2.4375)_{10}.$
- **2.16)** $x_1 = (1000)_2, x_2 = (0.01100...)_2, x_3 = (1001.1010...)_2.$
- **2.17)** Sim, o número $(31.202)_4$.
- **2.18)** O número x_1 .
- 2.19) a) Os números representáveis no sistema dado são:

$$\pm 0.10 \times \begin{cases} 2^{-2} &= (0.125)_{10} \\ 2^{-1} &= (0.25)_{10} \\ 2^{0} &= (0.5)_{10} \\ 2^{1} &= (1.0)_{10} \\ 2^{2} &= (2.0)_{10} \\ 2^{3} &= (4.0)_{10}, \end{cases} \pm 0.11 \times \begin{cases} 2^{-2} &= (0.1875)_{10} \\ 2^{-1} &= (0.375)_{10} \\ 2^{0} &= (0.75)_{10} \\ 2^{1} &= (1.5)_{10} \\ 2^{2} &= (3.0)_{10} \\ 2^{3} &= (6.0)_{10}, \end{cases}$$

Para colocá-los no eixo ordenado, basta considerar os números na base 10.

- **b)** $(6.0)_{10}$.
- **c)** $(0.125)_{10}$.
- **2.20)** $x_1 = 0.10110101 \times 2^2, x_2 = 0.11101100 \times 2^3$ e $x_3 = 0.11100100 \times 2^2$. Nenhum possui representação exata.
- **2.23**) a) 7.9 e 7.9,
 - **b)** 34.6,
 - $\mathbf{c}) 0.177,$
 - d) 369 e 368,
 - **e)** 10.9.
- **2.24)** a) 3.10,
 - **b**) 3.10.

Sim.

- **2.25**) a) 0.5975×10^3 ,
 - **b)** 0.5375×10^{-1} ,
 - **c)** $0.1399 10^5$,
 - **d)** 0.2548×10^3 .
- **2.26)** Trabalhando com arredondamento para cinco dígitos em todas as operações, obtemos:
 - a) 6×10^{1} .
 - **b)** 10×10^{1} .

Não.

- 2.27) Os itens a), e) e f) estão corretos.
 - **b)** 0.100×3^0 .
 - **c)** (overflow).
 - 0.000 × 2
 - **d)** 0.222×3 .
- **2.28**) **a**) $e^{-0.15} = 0.8607079764$.
 - **b)** $e^{-0.15} = 0.8607080154$ e $\frac{1}{e^{0.15}} = 0.8607079962$.

O resultado usando $\frac{1}{e^{0.15}}$ é mais preciso.

- **2.29**) a) 50076×10^1 ,
 - **b)** 49900×10^{1} .

2.30) a) (I)
$$\begin{cases} x_1 = 10^5, \\ x_2 = 0. \end{cases}$$
 (II)
$$\begin{cases} x_1 = 10^5, \\ x_2 = 10^{-5}. \end{cases}$$
 (III)
$$\begin{cases} x_1 = 10^5, \\ x_2 = 10^{-5}. \end{cases}$$

b)
$$(I)$$
 $\begin{cases} x^1 & \simeq & 2.0003 \,, \\ x_2 & \simeq & 1.9997 \,. \end{cases}$ (II) $\begin{cases} x^1 & \simeq & 2.0003 \,, \\ x_2 & \simeq & 1.9997 \,. \end{cases}$ (III) $\begin{cases} x^1 & \simeq & 2.0003 \,, \\ x_2 & \simeq & 1.9997 \,. \end{cases}$

c) (I)
$$\begin{cases} x_1 = 0.5, \\ x_2 \simeq -1.3333. \end{cases}$$
 (II)
$$\begin{cases} x_1 \simeq -1.3333, \\ x_2 = 0.5. \end{cases}$$
 (III)
$$\begin{cases} x_1 = 0.5, \\ x_2 = 0.5. \end{cases}$$

- **2.31)** 0.0189. Não. Observe que: $(\sqrt{x+1} \sqrt{x})(\sqrt{x+1} \sqrt{x}) = 1 \Rightarrow 0.0188915$, com todos os algarismos corretos.
- **2.32)** $x_1 = 59.99$ e $x_2 = 0.005$. Não. Observe que: $x_1 \times x_2 = 1 \Rightarrow x_2 = 0.0166694$, com todos os algarismos corretos.

2.33) Com a expressão dada, obtemos:
$$-0.06$$
. Observe que: $\frac{\frac{1}{\sqrt{x}} - \frac{1}{2}}{x - 4} = -\frac{1}{4\sqrt{x} + 2x} \Rightarrow$

-0.0637755, com todos os algarismos corretos.

2.34) Considerando:

$$J_0(1) = 0.7652, J_1(1) = 0.4401 \text{ e } J_0(1) = 0.76519769, J_1(1) = 0.44005059,$$

e usando a relação de recorrência:

$$J_{n+1}(x) - \frac{2n}{x}J_n(x) + J_{n-1}(x) = 0$$
, obtemos:

$J_n(1)$	$J_n(1)$
$J_0(1) = 0.7652$	$J_0(1) = 0.76519769$
$J_1(1) = 0.4401$	$J_1(1) = 0.44005059$
$J_2(1) = 0.115$	$J_2(1) = 0.11490349$
$J_3(1) = 0.0199$	$J_3(1) = 0.01956337$
$J_4(1) = 0.0044$	$J_4(1) = 0.00247673$
$J_5(1) = 0.0153$	$J_5(1) = 0.00025047$
$J_6(1) = 0.1486$	$J_6(1) = 0.00002797$
$J_7(1) = 1.7679$	$J_7(1) = 0.00008517$
$J_8(1) = 24.602$	$J_n(8) = 0.00116441$
$J_9(1) = 391.8641$	$J_n(9) = 0.01854539$
$J_{10}(1) = 7028.9518$	$\int J_n(10) = 0.33265261$

Os resultados obtidos mostram que a fórmula de recorrência é extremamente instável.

2.35) Considerando $J_{10}(1) = 0$, $J_{9}(1) = \mu$ e usando a relação de recorrência:

$$J_{n-1}(1) = 2 n J_n(1) - J_{n+1}(1), n = 9, ..., 1$$
, obtemos:

De $J_0(x) + 2 J_2(x) + 2 J_4(x) + 2 J_6(x) + \dots = 1 \implies \mu = 5.234584502 \times 10^{-9}$. Assim:

$$J_9(1) = 5.234584502 \times 10^{-9}$$

$$J_8(1) = 9.422252104 \times 10^{-8}$$

$$J_7(1) = 1.502325752 \times 10^{-6}$$

$$J_6(1) = 2.093833801 \times 10^{-5}$$

$$J_5(1) = 2.4975773031 \times 10^{-4}$$

$$J_4(1) = 2.476638966 \times 10^{-3}$$

$$J_3(1) = 0.01956335399$$

$$J_2(1) = 0.114903485$$

$$J_1(1) = 0.4400505856$$

$$J_0(1) = 0.7651976862$$

Os resultados possuem agora todos os dígitos corretos.

- **3.1)** a) Existe apenas uma raiz real e está localizada no intervalo (0,0.5).
 - b) Existem duas raízes reais. Uma raiz é $\bar{x} = 0$ e a outra raiz $\bar{x} \in (0.5, 1)$.
- **3.2)** Temos: $f(-1) \simeq -0.0546$, $f(0) \simeq 0.0177$, $f(1) \simeq -0.0005$. Pelo Teorema 3.1, existe uma raiz em (-1,0) e outra em (0,1).
- **3.3)** Temos: f(0) = -1, $f(1) \simeq 1.2817$, $f(2) \simeq 0.6109$, $f(3) \simeq -8.0855$. Pelo Teorema 3.1, existe uma raiz em (0,1) e outra em (2,3).
- **3.4)** a) $|\psi'(x)| < 1 \text{ para } -1.25 < x < 1.25,$
 - **b)** $|\psi'(x)| < 1 \text{ para } x > 1.025.$

Assim, utilizaria o processo definido em a), pois $|\psi'(x)| < 1$ num intervalo que contém a raiz.

- **3.5)** a) $\psi'(x) = 2$ que nunca será menor do que 1, | | | | | | b) $|\psi'(x)| < 1$ para $\frac{1}{2} < x < \frac{3}{2}$,
 - c) $|\psi'(x)| < 1$ para 1 < x < 2.

Assim, utilizaria o processo definido em **b**). Tomando $x_0 = 1.2$ e o processo definido em **b**), segue que: $\bar{x}_1 \simeq 1.04$, $\bar{x}_2 \simeq 1.0016$, $\bar{x}_3 \simeq 1.0000026$,....

- **3.6)** Para que haja convergência devemos impor que: $a < \frac{1}{2b}$ ou $b < \frac{1}{2a}$, pois $|\psi'(x)| < 1$ se e somente se |2bx| < 1 e o máximo ocorre para x = a.
- **3.7)** Impondo $|\psi'(x)| < 1$, vemos que para qualquer vizinhança de \sqrt{a} existirá um ponto onde $|\psi'(x)| = 1$.
- **3.8)** a) Com $x_0 = 0$, obtemos:
 - i) $\bar{x}_7 \simeq -0.4590$,
 - ii) $\bar{x}_7 \simeq 0.9074$.
 - **b)** Basta mostrar que: $|\psi'(x)| < 1$ para x < 2.4849.
- 3.9) Trabalhando com arredondamento para seis casas decimais, usando o método de Newton com $x_0 = 1.0$; a fórmula (3.7) e considerando que a solução exata seja: x = 0.90478822, obtemos a tabela:

Ī	k	x_k	$e_{m{k}}$	p
	0	1.0	0.09521178	
	1	0.908439	0.00365078	
	$\mid 2 \mid$	0.904794	0.00000578	1.97729852
	3	0.904788	0.00000022	0.50688325

Assim, $\bar{x} \simeq 0.904788$ com a precisão exigida. Entretanto, observando a tabela

anterior vemos que não conseguimos mostrar que a ordem de convergência do Método de Newton é 2. Para mostrar a ordem de convergência precisamos trabalhar com mais casas decimais, pois de x_2 para x_3 deveria ter dobrado o número de casas decimais corretas, e isto não ocorreu, pois estamos trabalhando

gendom and a residential x of x

k	$x_{m{k}}$	$e_k = x - x_k $	p
0	1.0	0.095211782126981	
1	0.908438950177070	0.003650732304051	
2	0.904794061672366	0.000005843800347	1.97729852
3	0.904788217888044	0.000000000015025	1.999467599

Da tabela anterior podemos observar que:

- 1) \bar{x}_3 possui 10 casas decimais corretas,
- 2) o valor de p está convergindo para 2,
- 3) trabalhando com 15 casas decimais devemos interromper o processo, pois o resultado de x_4 terá 20 casas decimais corretas.
- **3.10**) a) $\bar{x} \simeq 1.1656$,
 - **b)** $\bar{x} \simeq 1.7319$,
 - c) $\bar{x} \simeq -3.1829$,
 - **d)** $\bar{x} \simeq 1.6818$.
- **3.11)** a) Considere a função $f(x) = x^3 Q = 0$ e aplique o método de Newton a esta função. Observe que não podemos considerar $f(x) = x \sqrt[3]{Q}$, pois estaríamos usando o que se pede para calcular.
 - b) Fazendo o gráfico, podemos tomar $x_0=1.6$. Com este valor, obtemos: $\sqrt[3]{4} \simeq 1.5874$.
- **3.12)** Trabalhando com arredondamento para seis casas decimais, usando o método das secantes com $x_0 = 1.4$ e $x_1 = 1.5$; a fórmula (3.7) e considerando que a solução exata seja: x = 1.43044509, obtemos a tabela:

k	x_k	e_{k}	p
0	1.4	0.03044509	
1	1.5	0.06955491	
2	1.431328	0.00088291	-5.28527229
3	1.430419	0.00002609	0.806492959
4	1.430445	0.00000009	1.6098844

Assim, $\bar{x} \simeq 1.430445$ com a precisão exigida. Observando a tabela anterior vemos que p está convergindo para 1.618, que é aproximadamente a ordem de convergência do método das secantes. Entretanto, para mostrar a ordem de convergência, precisamos trabalhar com mais casas decimais. Ver explicação na resolução do exercício **3.9**).

- **3.13)** a) $\bar{x} \simeq 0.7558$, com $\epsilon < 10^{-3}$.
 - **b)** $\bar{x} \simeq 1.4180, \text{com } \epsilon < 10^{-3}.$
 - c) \bar{x} 1.5949, com $\epsilon < 10^{-3}$.
- **3.14)** Trabathando com arredondamento para seis casas decimais, usando o método regula falsi com $x_0 = 0.7$ e $x_1 = 0.8$; a fórmula (3.7) e considerando que a solução exata seja: x = 0.73908513, obtemos a tabela:

-		I	
k	$ x_k $	e_{k}	p
0	0.7	0.03908513	
1	0.8	0.06091487	
2	0.738563	0.000552213	- 10.7255762
3	0.739078	0.00000713	0.902147571
4	0.739085	0.00000013	0.932673528

Assim, $\bar{x} \simeq 0.739085$ com a precisão exigida. Entretanto, observando a tabela anterior vemos que não conseguimos mostrar que a ordem de convergência do método regula falsi é aproximadamente 1.618. Para mostrar a ordem de convergência, precisamos trabalhar com mais casas decimais. Ver explicação na resolução do exercício 3.9).

- **3.15)** a) $\bar{x} \simeq -2.9907$, com $\epsilon < 10^{-3}$.
 - **b)** $\bar{x} \simeq -1.2927$, com $\epsilon < 10^{-3}$.
- **3.16**) $\bar{x} \simeq 1.8951$.
- **3.17)** $(\bar{x}, \bar{y}) \simeq (0.5198, 0.5109), \text{com } \epsilon < 10^{-2}.$
- **3.18)** $(\bar{x}, \bar{y}) \simeq (0.8220, 1.2694).$
- **3.19)** i) $(\bar{x}, \bar{y}) \simeq (-0.9013, -2.0866)$.
 - ii) $(\bar{x}, \bar{y}) \simeq (0.5, 0.8660)$.
 - iii) $(\bar{x}, \ \bar{y}) \sim (1.8228, \ 1.8229).$
- **3.20)** P(5) = 1290, P'(5) = 1642.
- **3.21)** Fazendo o gráfico vemos que podemos tomar: $x_0=1.6 \Rightarrow \bar{x} \simeq 1.6146$. As outras duas raízes de P(x) são: $\bar{x} \simeq 0.8727$ e $\bar{x}=4.2581$.
- **3.22)** Fazendo o gráfico vemos que podemos tomar: $x_0 = -0.9$ e $x_1 = -0.8 \Rightarrow \bar{x} \simeq -0.8202$.
- **3.23)** $\bar{x} \simeq 0.7928$.
- **3.24**) $x^6 3x^5 + 4x^2 5 = (x^2 3x + 1)(x^4 x^2 3x 4) 9(x 3) 28$.
- **3.25)** $P(x) = (x^2 2x + 1)(x 4) \Rightarrow \bar{x} = 1$ de multiplicidade 2 e $\bar{x} = 4$.
- **3.26)** Aplicando o algoritmo Q-D obtemos que um dos $q^{(1)}=0$. Assim o algoritmo não pode ser aplicado.

- **3.27)** As raízes de P(x) são:
 - a) $-0.3333333 \pm 0.333333i$ e $1 \pm 0.333333i$.
 - **b)** 0.03801, 0.3087, 0.6913 e 0.9619.
- 3.28) Para mostrar que existe exatamente uma raiz faça o gráfico.
 - **a)** $\bar{x} \simeq 0.6531$.
 - **b)** $\bar{x} \simeq 0.5688$.
- **3.29)** Usando o método da bissecção e regula falsi, obtemos: $\bar{x} \simeq 2.6484$ e $\bar{x} \simeq 2.6456$, respectivamente.
- 3.30) Fazendo o gráfico vemos que podemos tomar:
 - a) $x_0 = 0.6 \text{ e } x_1 = 0.7 \implies \bar{x} \simeq 0.6188, \text{com } \epsilon < 10^{-3}.$
 - **b)** $x_0 = -0.9 \text{ e } x_1 = -0.8 \implies \bar{x} \simeq -0.8687, \text{ com } \epsilon < 10^{-2}.$
- **3.31)** a) $|\psi'(x)| < 1 \text{ para } |x| > 1$.
 - **b)** $|\psi'(x)| < 1 \text{ para } x > 0$.

Portanto, apenas o processo definido em b) é convergente.

- **3.32)** a) $|\psi'(x)| < 1 \text{ para } -2.5 < x < 2.5,$
 - **b)** $|\psi'(x)| < 1 \text{ para } |x| > 1,$
 - c) $|\psi'(x)| < 1 \text{ para } x < -1.05.$

Portanto, apenas o processo definido em a) é convergente.

- **3.33)** Os limites para a fórmula convergir são dados por: $\frac{1}{2a} < x < \frac{3}{2a}$ se a > 0 e $\frac{3}{2a} < x < \frac{1}{2a}$ se a < 0.
 - a) O processo converge, e $\bar{x}_2 \simeq 0.1111$.
 - **b)** x_0 não pertence ao intervalo para convergência. Logo, o processo não converge.
- **3.34)** Fazendo o gráfico vemos que as curvas se interceptam em apenas um ponto o que indica que existe uma única raiz real. Assim, $\bar{x} \simeq 2.8297$.
- **3.35)** Basta considerar f(x) = 3x 1 = 0. Assim, $\bar{x} \simeq 0.33333$. Observe que não podemos tomar $f(x) = x \frac{1}{3} = 0$, pois estaríamos usando o que se pede para calcular.
- **3.36)** a) A raiz está no intervalo (1,2), pois: f(0) < 0, f(1) < 0, f(2) > 0 e f(3) > 0.
 - **b)** Uma raiz é $\bar{x} = -1$ e a outra raiz encontra-se no intervalo (-1, -0.5), desde que: f(0) < 0, f(-0.5) < 0, f(-1) = 0, f(-1.5) < 0 e f(-2.0) < 0.
 - c) \bar{x} 0.613, com $\epsilon < 10^{-2}$.

- **3.37)** Temos: $det(A) = -t^3 + 0.4t 0.141 = 0$. Fazendo o gráfico vemos que as curvas se interceptam apenas uma vez. Assim, $\bar{t} \simeq -0.7646$.
- **3.38)** $\bar{x} \simeq -0.6691$. As demais raízes de $P_2(x)$ são: $\bar{x} \simeq 2.5240$ e $\bar{x} \simeq 4.1451$, ambas com $\epsilon < 10^{-3}$.
- **3.39)** Basta considerar $f(x) = sen \ x = 0$. Assim, $\bar{x} \simeq 3.1425$. Observe que a função $f(x) = cos \ x + 1 = 0$ também poderia fornecer o valor de π . Entretanto, neste caso o processo de Newton não converge pois $f'(x) = -sen \ x$ que tende a zero quando $x \to \pi$.
- **3.40)** b) Tomando $x_0 = 1 \implies \bar{x} \simeq 1.2093$.
- **3.41**) $\bar{x} \simeq 4.4934$.
- **3.42)** a) Reescrevendo o sistema dado na forma:

$$\begin{cases} x = \frac{x^3 + 1}{y^3} \\ y = \frac{y^3}{3x^2} \end{cases}$$

observamos que o processo não converge. A não convergência se deve ao fato das desigualdades:

$$|F_x| + |F_y| \simeq 1.5895 \not< 1$$
,

$$|G_x| + |G_y| \simeq 6.1185 \not< 1$$
,

não serem satisfeitas para o ponto (0.51, 0.85) que pertence à uma vizinhança V de (\bar{x}, \bar{y}) .

- **b)** $(\bar{x}, \bar{y}) \simeq (0.49996, 0.86603).$
- **3.43)** Para mostrar que existem exatamente quatro soluções, observe que ambas as equações do sistema dado são equações de elipses. Assim, faça o gráfico. As quatro soluções são: $(\bar{x}, \bar{y}) \simeq (1.0009, 0.9896); (\bar{x}, \bar{y}) \simeq (0.8651, -0.9960);$ $(\bar{x}, \bar{y}) = (4.0127, 0.7435)$ e $(\bar{x}, \bar{y}) = (3.9094, 0.7859)$.
- **3.44**) $(\bar{x}, \bar{y}) \simeq (1.9365, 0.5).$
- **3.45)** Aplicando o processo descrito, obtemos o seguinte sistema linear:

$$\begin{cases} x^2 - y^2 - 2x + 3 = 0 \\ 2xy - 2y = 0 \end{cases}$$

cuja solução é: $(\bar{x}, \bar{y}) = (1.0141, 1.4134)$ com $\epsilon < 10^{-2}$. Logo, as raízes de P(z) são: $1.0141 \pm 1.4134i$.

- **3.46)** $P(x) = (x^2 4x + 5)(x^2 1)$ cujas raízes são: 1, -1, 2 + i, 2 i.
- **3.47)** $P(t) = (t^2 4)(2t^2 + 8)$ cujas raízes são: 2, -2, 2i, -2i.
- **3.48)** As raízes de P(x) são: $1, \sqrt{2} i, -\sqrt{2} i$.

4.1)
$$A = \begin{pmatrix} 2 & -1 & 3 & 5 \\ 4 & -1 & 10 & 8 \\ 6 & -3 & 12 & 11 \\ 0 & -2 & -5 & 10 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & -2 & 1 & 1 \end{pmatrix}, U = \begin{pmatrix} 2 & -1 & 3 & 5 \\ 0 & 1 & 4 & -2 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & 10 \end{pmatrix}.$$

4.2) **a)** $x = (-4, 3, 2)^t$.

b)
$$det(A) = 5(\frac{22}{5})(\frac{253}{22}) = 253.$$

4.4)

$$\begin{cases} \ell_{\mathbf{ij}} &= a_{ij} - \sum_{k=1}^{j-1} \ell_{ik} u_{kj}, & i \leq j, \\ \mathbf{u} &= a & \ell u / \ell, & i > j. \\ \begin{pmatrix} ij & - k \end{pmatrix} \begin{pmatrix} ij & -k \end{pmatrix} \begin{pmatrix} ij & -k \end{pmatrix} \begin{pmatrix} ij & k \end{pmatrix} \begin{pmatrix} ij & k$$

- **4.5)** $x = (1, 1, 1)^t$.
- **4.9)** a) $x = (1, 2, -1)^t$.
 - b) $det(A) = (2)(\frac{7}{2})(-3) = -21$. Observe que se calcularmos na matriz dada, obtemos: det(A) = 21. A troca de sinal ocorreu pois para resolver por Eliminação de Gauss trocamos duas linhas de posição e neste caso: det(A) = -det(B) (propriedade de determinante).
- **4.10)** Aplicando o método de Eliminação de Gauss, obtemos: $0 x_3 = -7$ e assim o sistema linear não tem solução.
- **4.11)** Aplicando o método de Eliminação de Gauss ao sistema dado, obtemos: $(1-\alpha^2)$ $x^3=2-2\alpha$. Assim:
 - a) quando $\alpha = 0 \Rightarrow x_3 = 2$ e portanto a solução é única,
 - **b)** quando $\alpha = 1 \Rightarrow 0$ $x_3 = 0$ e portanto existem infinitas soluções,
 - c) quando $\alpha = -1 \Rightarrow 0$ $x_3 = 4$ e portanto o sistema não admite solução.

4.12) a)
$$\begin{pmatrix} 3 & 2 & 1 & -1 & | & 5 \\ 6 & 1 & 0 & 3 & | & 10 \\ 3 & -3 & -5 & 7 & | & 2 \\ 9 & 0 & -2 & -1 & | & 6 \end{pmatrix} \sim \begin{pmatrix} 3 & 2 & 1 & -1 & | & 5 \\ 2 & 1 & -2 & 5 & | & 0 \\ 1 & 5/3 & -8/3 & -1/3 & | & -3 \\ 3 & 2 & 3/8 & -63/8 & | & -63/8 \end{pmatrix}.$$
b) $x_3 = x_4 = 1$.

- **4.13)** Para o sistema (I): $x = (1, 1, 1)^t$ e para o sistema (II): $x = (1, 2, -1)^t$.
- **4.14)** $x = (-1, -1, -1)^t$, $y = \frac{1}{55}(70, 42, 4)^t$ e $z = (0, 2, 2)^t$.

4.15)
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 8 & 10 & -8 \\ 3 & 10 & 14 & -5 \\ 0 & -8 & -5 & 29 \end{pmatrix}, G = \begin{pmatrix} 1 & & \bigcirc \\ 2 & 2 & \\ 3 & 2 & 1 \\ 0 & -4 & 3 & 2 \end{pmatrix}.$$

4.16)
$$\det(B) < 0$$
. Para $Ax = b$, $x \neq (1, 1, 2)^t < 0$

4.17) Aplicando-se a técnica descrita no exercício, obtemos:

$$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix} \Rightarrow x = (1, 1, 1)^t.$$

- **4.18)** Para resolver o problema utilize um programa de computador, em qualquer linguagem, com **precisão dupla**, para obter:
 - a) $x_1 = 0.99995780$, $x_2 = 0.98997176$, $x_3 = 1.25858438$, $x_4 = -0.85509437$, $x_5 = 6.27343702$, $x_6 = -4.55956507$, $x_7 = 0.69713902$, $x_8 = 3.62047052$, $x_9 = -0.69895703$, $x_{10} = 10.33367443$, $x_{11} = -12.57125568$ e $x_{12} = 6.51285839$.
 - **b)** $x_1 = 1.00000001$, $x_2 = 0.99999831$, $x_3 = 1.00005376$, $x_4 = 0.99926099$, $x_5 = 1.00544809$, $x_6 = 0.97597823$, $x_7 = 1.06707059$, $x_8 = 0.87845898$, $x_9 = 1.14255225$, $x_{10} = 0.89560306$, $x_{11} = 1.04338830$ e $x_{12} = 0.99218741$.

Observe que se o sistema anterior for de ordem 17, usando os mesmos métodos do exercício 4.18, obtemos:

- a) $x_1 = 1.00254011$, $x_2 = 0.88968432$, $x_3 = 2.11744547$, $x_4 = -3.13239670$, $x_5 = 6.15067577$, $x_6 = 3.23791933$, $x_7 = -5.87475491$, $x_8 = -1.93051946$, $x_9 = 9.19924164$, $x_{10} = -0.34137794$, $x_{11} = -2.15992117$, $x_{12} = 5.38079834$, $x_{13} = -2.22254539$, $x_{14} = 4.54888916$, $x_{15} = -1.96166575$, $x_{16} = -1.72872913$ e $x_{17} = 3.82594728$.
- b) $x_1 = 0.99999989$, $x_2 = 1.00001530$, $x_3 = 0.99945210$, $x_4 = 1.00839289$, $x_5 = 0.93287758$, $x_6 = 1.30018679$, $x_7 = 0.29468658$, $x_8 = 1.37441894$, $x_{12}^9 = 3.58161473124^{10}, x_{13}^{-} = 6.81390162006^{11}, x_{14}^{-} = 103549502010$, $x_{15} = -6.93618076$, $x_{16} = 3.62033728$ e $x_{17} = 0.64636351$.
- 4.19) Trabalhando com arredondamento para dois dígitos significativos, obtemos:
 - a) $\bar{x} = (2.1, 2.7, -3.8)^t$.
 - **b)** $x = (2, 3, -4)^t$.
- **4.20)** Trabalhando com arredondamento para três dígitos significativos, obtemos:
 - a) $\bar{x} \simeq (1.53, -0.665, -0.763)^t$.
 - **b)** $\bar{x} = (1.52, -0.667, -0.761)^t$.
- **4.22)** Usando norma linha, obtemos: $cond(A) = 3.9601 \times 10^4$ e assim o sistema linear é muito mal condicionado.

4.23) Usando norma linha, obtemos: $cond(A) = 1.9413229879045816 \times 10^{18}$ e assim o sistema linear é extremamente mal condicionado.

4.24)
$$A^{-1} = \frac{1}{2}$$
 $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 2 \\ 2 & -1 & 1 & -1 \end{pmatrix}$

4.25)
$$A^{-1} = \frac{1}{54} \begin{pmatrix} 36 & -6 & 12 \\ -6 & 7 & -5 \\ 12 & -5 & 19 \end{pmatrix}$$
.

4.26)
$$A^{-1} = \frac{1}{130} \begin{pmatrix} 208 & 94 & -70 \\ 26 & -2 & -40 \\ -65 & -30 & 50 \end{pmatrix}$$
.

4.27)
$$A^{-1} = \frac{1}{10} \begin{pmatrix} 2 & -2 & 2 \\ 5 & 10 & -5 \\ -1 & 6 & -1 \end{pmatrix}$$
.

4.28)
$$B = \begin{pmatrix} 1 & & \bigcirc \\ 2/3 & 1 & \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ & 2/3 & 1/3 \end{pmatrix} = LU.$$

$$C = \begin{pmatrix} 1 & 3/2 & 1 \\ 1 & \bigcirc \\ 2 & 1 \\ 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} \bigcirc \\ 2 & 1 & 3 \\ 1 & 2 \\ \bigcirc & 0 \end{pmatrix} = LU.$$

- **4.30)** a) Sim, para $\alpha \neq \pm 1$, desde que $det(A_1) = 1 \neq 0$ e $det(A_2) = 1 \alpha^2 \neq 0$.
 - b) Não, pois a matriz dos coeficientes não é simétrica.

c)
$$x = (1, 0, -1)^t$$
.

4.31)
$$\begin{cases} 2x_1 + x_2 - x_3 = 3 \\ x_1 + 10x_2 + 2x_3 = 6 \Rightarrow x = (0, 1, -2)^t. \\ -x_1 + 2x_2 + 4x_3 = -6 \end{cases}$$

4.32)
$$-2 < \alpha = \beta < 4$$
.

- **4.33)** I) Cholesky, pois a matriz é simétrica positiva definida. A solução de (I) é: $x = (-2, 3, 0)^t$.
 - II) Gauss-Compacto, pois a matriz não é simétrica. A solução de (II) é: $x = (0, -8, 22)^t$.

4.34)
$$(x, y)^t = (1+i, 2-i)^t$$
.

4.35)
$$(x_r, x_i, y_r, y_i)^t = (1, 1, 2, -1)^t.$$

4.36) Observe que
$$LU = A = GG^t$$
.

4.37)
$$x = (-3, 5, 7)^t$$
 e $y = (-7, 5, 9)^t$

4.38)
$$u \simeq (0, 0.2006, 0.1975, 0.2190, 0.1738, 1)^t$$
.

4.39) a)
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 13 & 1 \\ -1 & 1 & 4 \end{pmatrix} = GG^t$$
 onde $G = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ -1 & 1 & \sqrt{2} \end{pmatrix}$.

b)
$$A^{-1} = \frac{1}{6} \begin{pmatrix} 17 & 3 & 5 \\ -3 & -1 & -1 \\ 5 & -1 & 3 \end{pmatrix}.$$

4.40) a)
$$A^{-1} = \begin{pmatrix} 7 & -11 & 1 \\ -11 & 18 & -2 \\ 1 & -2 & 1/2 \end{pmatrix}$$
.

- **b)** Fazendo $x = A^{-1}b$, obtemos: $x = (-3, 1, 5/2)^t$.
- **c)** $x = (-3, 1, 5/2)^t$.
- **4.41) A)** com (I), **B)** com (III), **C)** com (II).
- **4.42)** Aplicando o método de Eliminação de Gauss, vemos que matriz dos coeficientes continua esparsa. De fato:

$$\begin{pmatrix} 2 & -1 & & & & & & & 2 \\ & 3/2 & -1 & & & & & & 0 \\ & 4/3 & -1 & & & & 7 \\ & & 5/4 & -1 & & & 41/4 \\ & \bigcirc & 6/5 & -1 & & 61/5 \\ & & & 7/6 & & 161/14 \end{pmatrix}$$

A solução do sistema linear é:

 $x \simeq (8.7143, 15.4286, 23.1429, 23.8571, 19.5714, 11.2857)^t$

- **4.43)** a) $\bar{x} \simeq (0.98, 0.024, 2.1)^t$.
 - **b)** $x = (1.0, 0.0, 2.0)^t$, é a solução exata do sistema linear dado.
- **4.45)** a) Se $\epsilon \ll 1$ então $condA \simeq 3.075$.
 - b) E necessário usar Eliminação de Gauss com pivotamento parcial.
 - **c)** $x \simeq (0.5, -0.7503, 1.2503)^t$.

4.46) a)
$$A^{-1} = \begin{pmatrix} 0.500 & -0.251 \\ -0.502 & 0.752 \end{pmatrix}$$

b)
$$A^{-1} = \begin{pmatrix} 0.500 & -0.250 \\ -0.502 & 0.751 \end{pmatrix}$$
.

c)
$$x = (-4.00, 1.98)^t$$
.

4.47) **b**) $v^t A^{-1} u \neq 1$.

c)
$$B^{-1} = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 29 & 18 \\ 1 & 18 & 11 \end{pmatrix}$$
.

- **5.1)** $\bar{x} = (1.0002, 0.9999, 0.9995)^t$.
- **5.2)** a) Vale o critério das colunas, com $\max_{1 \le j \le n} \sum_{\substack{i=1 \ i \ne j}}^n |a_{ij}^*| = 0.9 < 1$.
 - **b)** $\bar{x} = (1.2108, 0.0391, 2.1484)^t$.
- 5.3) Troque a primeira com a terceira linha e depois a primeira com a segunda coluna, para obter: $\begin{cases} 5y_1 y_2 + 3y_3 = 3 \\ -y_1 + 4y_2 + 3y_3 = 2 \\ 2y_1 + 4y_2 + 6y_3 = 1 \end{cases}$

onde
$$y_1=x_2,\ y_2=x_1$$
 e $y_3=x_3$. Para este sistema $\max_{\substack{1\leq i\leq n\\j\neq i}}\sum_{\substack{j=1\\j\neq i}}^n|a_{ij}^*|=1$ e $\max\beta_i=0.95<1$.

- **5.4)** a) $max\beta_i = 0.75 < 1$, portanto o processo converge.
 - **b)** $\bar{x} = (0.9996, 0.9997, 0.00001)^t$.
- **5.5**) a) 0 < a < 1.
 - **b)** Tomando $v^{(0)} = (0,0,0)^t$, obtemos $v^{(7)} = (-3.3342, -1.6638, 12.4984)^t$.
- **5.6)** Tomando $v^{(0)} = (0,0)^t$, obtemos $v^{(3)} = (1.0008, 0.9992)^t$.
- **5.8)** Para o sistema linear do exercício 5.5, tomando $v^{(0)} = (0,0,0)^t$, obtemos: $v^{(3)} = (-3.3329, -1.6657, 12.4991)^t$, e para o sistema linear do exercício 5.6, tomando $v^{(0)} = (0,0)^t$, obtemos $v^{(2)} = (0.9999, 0.9999)^t$.
- **5.9)** Para $-0.5 < \alpha < 0.5$. Basta utilizar o critério das linhas.
- **5.10)** O método de Gauss-Seidel, pois vale apenas o critério de Sassenfeld, com $max\beta_i = 0.95 < 1$. Após cinco iterações: $\bar{x} = (1.0003, 1.0003, 1.00004)^t$ com $\epsilon < 10^{-3}$.
- **5.11)** Aplicando o critério de Sassenfeld, obtemos: $max\beta_i = 0.182 << 1$. Após três iterações, obtemos: $\bar{x} = (0.99999, 1.00001, -1.000002)^t$ com $\epsilon < 10^{-4}$.

Este converge mais rapidamente, pois quanto menor o valor da norma da matriz de iteração mais rápida é a convergência.

- **5.12)** Para o sistema (I) vale o critério de Sassenfeld com $max\beta_i = 0.6 < 1$. Portanto, podemos aplicar o método de Gauss-Seidel. Para o sistema (II) não vale nenhum critério.
- **5.13)** Troque a primeira com a segunda linha, para obter:

$$\begin{cases} 2x_1 - x_2 & = 1 \\ -x_1 + 2x_2 - x_3 & = 1 \\ - x_2 + 2x_3 - x_4 & = 1 \\ - x_3 + x_4 & = 1 \end{cases}$$

Portanto, $max\beta_i = 0.875 < 1$ e $\bar{x} = (3.9912, 6.9975, 8.99946, 9.9916)^t$, com $\epsilon < 10^{-2}$.

- **5.14)** $(\bar{x}, \ \bar{y}, \ \bar{z})^t = (0.6598, \ 004414, \ 1.093)^t.$
- 5.15) Aplicando a técnica descrita no exercício, obtemos:

$$x_{k+1} = \frac{-7y_k + 64}{26}$$

$$\begin{cases} y_{k+1} = \frac{-7x_k - 5}{13} \end{cases}$$

Tomando $(x_0, y_0)^t = (0, 0)^t \Rightarrow (\bar{x}, \bar{y})^t = (2.9990, -1.9994)^t \text{ com } \epsilon < 10^{-3}.$

- **5.16)** a) $\parallel I + A \parallel < 1$, para alguma norma.
 - **b)** Tomando $x^{(0)} = (0,0)^t \Rightarrow x^{(10)} = (-0.9927, -0.9393)^t, \text{ com } \epsilon < 10^{-1}.$
- **5.17**) a) Para o sistema I).

Aplicando o método de Jacobi, obtemos:

k	0	1	2	3	4
x_1	1.01	1.0768	1.0270	1.2863	1.0476
x_2	2.01	2.0001	2.030	1.9773	1.9474
x_3	3.01	2.9885	2.8902	2.9699	2.5844

Aplicando o método de Gauss-Seidel, obtemos:

-						
	k	0	1	2	3	4
	x_1	1.01	0.9868	0.9577	0.8629	0.5546
	x_2	2.01	2.0040	2.0105	2.0339	2.1086
	$\mid x_3 \mid$	3.01	3.0199	3.0633	3.2054	3.6672

Para o sistema II).

Aplicando o método de Jacobi, obtemos:

k	0	1	2	3	4
x_1	1.01	0.93	1.8048	2.6739	5.039
$ x_2 $	2.01	1.6601	2.0318	1.7720	1.6810
$ x_3 $	3.01	2.975	2.6525	2.2834	-0.2338

Aplicando o método de Gauss-Seidel, obtemos:

k	0	1	2	3	4
x_1	1.01	0.93	0.2951	-5.9557	-67.6172
x_2	2.01	1.9901	2.1867	3.8796	20.5468
$\mid x_3 \mid$	3.01	3.1450	4.3165	15.9716	130.9610

b) Os sistemas lineares I) e II) podem ser reescritos da seguinte maneira:

$$(I) \begin{cases} 10x_1 & - & 2x_2 & + & 7x_3 & = & 27 \\ x_1 & + & 6x_2 & - & x_3 & = & 10 \\ 3x_1 & - & 3x_2 & + & 7x_3 & = & 18 \end{cases} (II) \begin{cases} 4x_1 & + & x_2 & + & 2x_3 & = & 12 \\ x_1 & + & 3x_2 & + & x_3 & = & 10 \\ x_1 & + & 2x_2 & + & 5x_3 & = & 20 \end{cases}$$

onde agora, para ambos, vale o critério das linhas. Assim, tanto o método de Jacobi como o método de Gauss-Seidel, convergem.

Para o sistema I).

Aplicando o método de Jacobi, obtemos:

k	0	1	2	3
x_1	1.01	0.995	1.00002	0.9999
x^2	2.01	2.0001	2.0009	2.0002
x_3	3.01	3.0000	3.0004	3.0004

e assim a solução do sistema dado é: $x=(0.9999,\ 2.0002,\ 3.0004)^t$ com $\epsilon<10^{-3}.$

Aplicando o método de Gauss-Seidel, obtemos:

k	0	1	2	3
x_1	1.01	0.995	0.9996	0.9999
$ x_2 $	2.01	2.0026	2.0004	2.0002
$\ x_3 \ $	3.01	3.0013	3.0003	3.0001

e assim a solução do sistema dado é: $x=(0.9999,\ 2.0002,\ 3.0001)^t$ com $\epsilon<10^{-3}.$

Para o sistema II).

Aplicando o método de Jacobi, obtemos:

k	0	1	2	3
x_1	1.01	0.9925	1.0047	0.9978
x_2	2.01	1.9954	2.0006	1.9972
x_3	3.01	2.9940	3.0041	2.9988

e assim a solução do sistema dado é: $x=(0.9978,\ 1.9972,\ 2.9988)^t$ com $\epsilon<10^{-2}.$

Aplicando o método de Gauss-Seidel, obtemos:

k	0	1	2	3
x_1	1.01	0.9925	0.9993	0.9999
$ x_2 $	2.01	1.9993	1.9997	2.0001
$ x_3 $	3.01	3.0018	3.0003	3.00002

e assim a solução do sistema dado é: $x=(0.9999,\ 2.0001,\ 3.00002)^t$ com $\epsilon<10^{-3}.$

- c) A solução exata dos sistemas lineares I) e II) é: $x = (1, 2, 3)^t$.
- 5.18) a) Não, pois não é válido nenhum dos critérios de convergência.
 - b) Podemos reescrever o sistema dado como:

$$\begin{pmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\begin{pmatrix}
2 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
x_3 \\
x_4
\end{pmatrix}
=
\begin{pmatrix}
9 \\
11
\end{pmatrix}.$$

Para este sistema linear, $max\beta_i = 0.875 < 1$. Logo, o método de Gauss-Seidel converge e $x \simeq (7.7954, 13.9932, 18.9975, 14.9931)^t$ com $\epsilon < 10^{-2}$.

- **5.19)** Pelo critério das linhas: $\alpha < -4$ ou $\alpha > 4$.
- **5.20)** Não. Os critérios de convergência são condição suficiente.
- **5.23)** Para $-5 < \alpha < -4$ ou $4 < \alpha < 5$.
- **5.24)** Para a matriz dada no exercício 5.23, não existe valor de a que satisfaça:

$$\| x^{(k)} - \bar{x} \|_{\infty} \le \frac{1}{2} \| x^{(k-1)} - \bar{x} \|_{\infty}$$
.

- **5.25)** b) $x = (0.9967, 0.9984)^t \text{ com } \epsilon < 10^{-2}$.
- **5.26)** a) Para o sistema I): $F(v) = \frac{1}{2} [9v_1^2 2v_1v_2 + 9v_2^2 14v_1 34v_2]$

Para o sistema II): $F(v) = \frac{1}{2} [31v_1^2 + 58v_1v_2 + 31v_2^2 - 66v_1 - 54v_2].$

- b) Para o sistema I): cond(A) = 1.25 e para o sistema II): cond(A) = 30.
- c) Assim, o sistema linear I) é bem condicionado e o sistema linear II) é mal condicionado.
- d) Para o sistema linear II), tomando $v^{(0)} = (0,0)^t$, obtemos ao fim de dois estágios que: $v^{(2)} = (2.0125, -0.9653)^t$.
- **5.27)** Tomando $v^{(0)} = (1, 0, -2, 1)^t$, obtemos: $v^{(4)} = (2.0, 1.0001, -3.0003, 1.9998)^t$.

6.1)
$$P(\lambda) = (-1)^3(\lambda^3 - 7\lambda^2 + 16\lambda - 12), \lambda_1 = \lambda_2 = 2, \lambda_3 = 3.$$

6.2)
$$P(\lambda) = (-1)^3(\lambda^3 - 12\lambda - 16), \lambda_1 = \lambda_2 = -2, \lambda_3 = 4.$$

6.3) a)
$$P(\lambda) = (-1)^3(\lambda^3 - 6\lambda^2 - 27\lambda)$$
.

b)
$$\lambda_1 = 0, \lambda_2 = 3, \ \lambda_3 = 9. \text{ Para } \lambda_1 = 0 \Rightarrow u = (-57, \ 0, \ 57)^t, \text{ para } \lambda_2 = 3 \Rightarrow u = (-39, \ 3, \ -75)^t \text{ e para } \lambda_3 = 9 \Rightarrow u = (-3, \ -9, \ -3)^t.$$

- c) Uma matriz possui inversa se e somente $\lambda \neq 0$. Portanto, A não possui inversa.
- **6.4**) $\lambda = 3$ de multiplicidade 2 e $u = (5, 0)^t$.
- **6.5)** $\lambda_1 = 9$ e $u = (1/3, 1/3, 1)^t$. Que o maior autovalor em módulo e seu correspondente autovetor foram obtidos.

6.6)
$$\lambda^1 \simeq 3.414 \text{ e } u^1 \simeq (0.9994, -1.414, 1)^t$$
.

6.7)
$$\lambda_3 \simeq -2.9997$$
.

6.8) a)
$$\lambda_3 \simeq 1.2992$$
 e $u_3 \simeq (0.4121, 1, -0.1129)^t$.

b)
$$\lambda_2 \simeq 3.4691 \text{ e } u_2 \simeq (1, 0.3196, -0.2121)^t.$$

- **6.9)** Para a matriz A:
 - a) Após 8 iterações,
 - b) Após 7 iterações,
 - c) Após 8 iterações, encontramos que os autovalores são: $\lambda_1 = 18, \ \lambda_2 = 3$ e $\lambda_3 = 6$.

Para
$$\lambda_1 = 18 \Rightarrow u_1 = (1, -1, -1/2)^t$$
, para $\lambda_2 = 3 \Rightarrow u_2 = (1, 1/2, 1)^t$ e para $\lambda_3 = 6 \Rightarrow u_3 = (1/2, 1, -1)^t$.

Para a matriz B:

- a) Após 3 iterações.
- b) Após 2 iterações.
- c) Após 2 iterações, encontramos que os autovalores de B são: $\lambda_1 = -3$, $\lambda_2 = \lambda_3 = 6$.

Para
$$\lambda_1 = -3 \Rightarrow u_1 = (36, -36, 18)^t$$
 e para $\lambda = 6 \Rightarrow u = (1, 3/2, 1)^t$.

6.10)
$$U^t A U = \begin{pmatrix} 5c^2 + 2s^2 - 2sc & -0.1s & c^2 - s^2 + 3sc \\ -3 & 0.1c \\ 5s^2 + 2c^2 + 2sc \end{pmatrix}$$

Os autovalores de A são: $\lambda_1 \simeq 5.3029$, $\lambda_2 \simeq 1.6973$ e $\lambda_3 = -3$.

Seus correspondentes autovetores são: $u_1 \simeq (0.9572, 0, 0.2899)^t$ $u_2 \simeq (-0.2899, 0, 0.9573)^t e u_3 = (0, 1, 0)^t.$

O máximo erro para os autovalores são, respectivamente, 0.0289, 0.0956 e 0.1247.

6.11) Os autovalores da matriz A são: $\lambda_1 \simeq 6.2491$, $\lambda_2 \simeq 2.8536$ e $\lambda_3 \simeq 0.8972$.

Os autovalores da matriz B são: $\lambda_1 \simeq 10.0833, \ \lambda_2 \simeq 4.6618 \ e \ \lambda_3 \simeq 3.2549.$

- **6.12)** Sim. Os autovalores são: $\lambda_1 = 6$, $\lambda_2 = 1$ e $\lambda_3 = 0$.
- **6.13)** Os autovalores da matriz A são: $\lambda_1 = -1.2138$, $\lambda_2 = 3.9997$ e $\lambda_3 \simeq 8.2154$.

Não é possível encontrar os autovalores da matriz B pelo método QR, pois existem autovalores complexos e a técnica descrita neste livro só pode ser aplicada se os autovalores são reais.

6.14) Não, desde que:
$$Q_1 = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \end{pmatrix} e R_1 = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

6.15) Para a matriz
$$A, P(\lambda) = (-1)^2(\lambda^2 + 5\lambda + 1).$$

6.15) Para a matriz
$$A, P(\lambda) = (-1)^2 (\lambda^2 + 5\lambda + 1)$$

Para a matriz B, $P(\lambda) = (-1)^3(\lambda^3 - 3\lambda^2 - 3\lambda + 5)$.

6.16) a)
$$P(\lambda) = (-1)^3(\lambda^3 - 4\lambda^2 + \lambda + 6)$$
.

b)
$$tr(A) = 14$$
.

c)
$$\lambda_1 = -1$$
, $\lambda_2 = \frac{1}{2} e \lambda_3 = \frac{1}{3}$.

- d) Não, pois não existe autovalor igual a zero.
- **6.17**) $\lambda_1 q, \ \lambda_2 q, \ \dots \lambda_n q.$
- **6.21)** b) Usando o método de Newton, obtemos: $\bar{\lambda} \simeq -0.6691$.

c)
$$u \simeq (8.7964, 2, -7.3392)^t$$
.

d)
$$A^{-1} = -\frac{1}{7} \begin{pmatrix} 5 & 2 & -6 \\ 2 & -2 & -1 \\ -6 & -1 & 3 \end{pmatrix}$$
.

6.22) Para a matriz A, $\lambda_1 = 6$ e $u_1 = (1, 1, 1)^t$.

Para a matriz $B, \lambda_1 \simeq 3.4146 \text{ e } u_1 \simeq (0.7073, 1, 0.7073)^t.$

6.23) a)
$$\lambda_1 = 8 e u_1 = (1/4, 1/4, 1)^t$$
.

b)
$$P(\lambda) = (-1)^3 (\lambda^3 - 10\lambda^2 + 16\lambda)$$

c)
$$\lambda_2 = 2, \ \lambda_3 = 0.$$

d) Tomando
$$e = (1, 0, 0)^t \Rightarrow u = (-2, 10, 4)^t$$
.

- **6.24**) $\lambda_1 \simeq 8.3$.
- **6.25)** Para a matriz A:

a)
$$P(\lambda) = \lambda^2 - 6\lambda + 8$$
 e as raízes são: $\lambda_1 = 4$ e $\lambda_2 = 2$,

b)
$$P(\lambda) = (-1)^2(\lambda^2 - 6\lambda + 8),$$

c)
$$\lambda_1 = 4 \text{ e } \lambda_2 = 2$$
; para $\lambda_1 = 4 \implies u_1 = (-1, -1)^t \text{ e para } \lambda_2 = 2 \implies u_2 = (-3, -1)^t$,

d)
$$\lambda_1 = 4$$
.

e)
$$\lambda_1 = 4.0238 \text{ e } \lambda_2 = 1.9792 \text{ com } \epsilon < 10^{-1}$$
.

f)
$$\lambda_1 = 3.9999 \text{ e } \lambda_2 = 2 \text{ com } \epsilon < 10^{-3}.$$

Para a matriz B:

a)
$$P(\lambda) = -\lambda^3 + 12\lambda + 16$$
 e as raízes são: $\lambda_1 = 4$ e $\lambda_2 = \lambda_3 = -2$,

b)
$$P(\lambda) = (-1)^3(\lambda^3 - 12\lambda - 16),$$

c) $\lambda^1 = 4$ e $\lambda^2 = \lambda^3 = -2$; para $\lambda^1 = 4 \Rightarrow u^1 = (18, 18, 36)$ e para $\lambda_2 = \lambda_3 = -2$ não é possível determinar os autovetores pelo método de Leverrier-Faddeev.

d)
$$\lambda_1 = 3.9954$$
, com $\epsilon < 10^{-2}$.

e)
$$\lambda_1 = 3.9842 \text{ e } \lambda_2 = -1.9736 \text{ e } \lambda_3 = -1.9948 \text{ com } \epsilon < 10^{-1}$$
.

f)
$$\lambda_1 = 3.9973 \text{ e } \lambda_2 = -1.9945 \text{ e } \lambda_3 = -1.9983 \text{ com } \epsilon < 10^{-2}$$
.

6.26) Usando o método de Leverrier-Faddeev, obtemos:

$$\lambda_1 = 12, \lambda_2 \simeq 7.5 + 0.8660i \text{ e } \lambda_3 \simeq 7.5 - 0.8660i; u_1 = (7, 7, 7)^t, u_2 \simeq (157 + 15.588i, 2.5 + 0.8660i, -2 + 1.372i)^t \text{ e} u_3 \simeq (157 - 15.588i, 2.5 - 0.8660i, -2 - 1.372i)^t, respectivemente.$$

- **6.27**) a) Após 7 iterações,
 - b) Após 6 iterações,
 - c) Após 6 iterações, encontramos que os autovalores são: $\lambda_1=3.4121, \lambda_2=2$ e $\lambda_3=0.5878.$
 - **d)** O máximo erro para os autovalores são, respectivamente: 0.0032, 0.0017 e 0.0056.
- **6.28)** a) Que as matrizes convirjam para uma matriz triangular superior.
 - **b)** Os autovalores de A são: $\lambda_1 \simeq 0.8295$, $\lambda_2 \simeq 2.3268$ e $\lambda_3 \simeq 9.4737$.

Não é possível encontrar os autovalores da matriz B pelo método LR, pois existem autovalores complexos e a técnica descrita neste livro só pode ser aplicada se os autovalores são reais.

6.29) Ver resolução dos exercícios 6.13) e 6.28).

7.1)
$$P(x) \simeq 0.4964 - 0.2958x + 0.1586x^2$$
.

7.2)
$$P(x) = 84x^2 - 99x^4$$
.

7.3) a)
$$P_1(x) = \frac{171}{140} - \frac{81}{70}x$$
.

b)
$$P_2(x) = \frac{107}{105} + \frac{2}{35}x - \frac{17}{14}x^2$$
.

7.4) a)
$$P_1(x) = \frac{17}{4}(1) - \frac{3\sqrt{12}}{40}[\sqrt{12}(x - \frac{1}{2})].$$

b)
$$P_2(x) = P_1(x) + \frac{\sqrt{180}}{120} \left[\sqrt{180} (x^2 - x + \frac{1}{6}) \right]$$

$$= \frac{17}{4} (1) \frac{3\sqrt{12}}{4} \left[\sqrt{12} (x \frac{1}{2}) \right] + \frac{\sqrt{180}}{120} \left[\sqrt{180} (x^2 x + \frac{1}{2}) \right].$$

7.5) a)
$$P_1(x) = \frac{251}{30}(1) - \frac{58}{5}(x - \frac{1}{2}).$$

b)
$$P_2(x) = P_1(x) + \frac{766}{5}(x^2 - x + \frac{1}{6}).$$

$$= \frac{251}{30}(1) - \frac{58}{5}(x - \frac{1}{2}) + \frac{766}{5}(x^2 - x + \frac{1}{6}).$$

7.6)
$$P_1(x) = \frac{1}{5}(6+7x).$$

7.7)
$$P_2(x) \simeq 0.9030 + 0.1157x - 0.1978x^2$$
.

7.8)
$$P(x) \simeq 1.7877 + 0.1839x^3$$
.

7.9)
$$P_2(x) = \frac{13}{35} + \frac{17}{14}x + \frac{1}{2}x^2$$

7.12)
$$f(x) \simeq 4.525 + 28.053 \cos x - 0.1317 \sin x - 2.367 \cos 2x - 12.499 \sin 2x$$
.

7.13) a)
$$Q = ||F(x) - (\frac{1}{b}x + \frac{1}{a}x^3)||^2$$
, onde $F(x) = e^{\{\frac{g(x)}{x^2}\}}$.

b)
$$\begin{pmatrix} (x,x) & (x,x^3) \\ (x^3,x) & (x^3,x^3) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} (F,x) \\ (F,x^3) \end{pmatrix}$$
, onde $a_0 = \frac{1}{b}$ e $a_1 = \frac{1}{a}$.

7.14) a)
$$a_0 = 1$$
 e $a_1 = 0$.

b)
$$Q = 0$$
.

7.15) Não. A transformação que deve ser feita é:
$$\frac{1}{g(x)} = \frac{1}{a} + \frac{b}{a} \cos x$$
.

7.16) a)
$$f(x) \simeq \sqrt{26.67 + 19.37x}$$
.

b)
$$Q = ||f^2 - (-26.67 + 19.37x)||^2 = \sum_{i=0}^{3} (f_i^2 - (-26.67 + 19.37x_i))^2$$
.

7.17) A função que melhor ajusta os dados é:
$$\frac{1}{a+bx} \Rightarrow f(x) \simeq \frac{1}{0.0085 + 0.00046x}$$
.

7.18)
$$x = (-1, 0)^t$$
.

7.19)
$$x \simeq (0.4128, 0.09840, -0.6257)^t$$
.

7.20) a)
$$g_1(x) \simeq 1.1176x^2 + 2x$$
 e $g_2(x) = 2x^2 - 3$.

b) $g_1(x)$ fornece o melhor ajuste, desde que o erro de truncamento é menor.

7.21)
$$g(x) \simeq 2.0198 \ e^x + 3.0193 \ e^{-x}$$

7.22)
$$y \simeq -1.494x^2 + 4.318 \Rightarrow y(0.5) \simeq 1.7855$$
.

7.23)
$$P_2(x) = \frac{8}{35} - \frac{4}{7}(\frac{3}{2}x^2 - \frac{1}{2})$$
.

7.24) Como 1, sen x, cos x e sen 3x são ortogonais em $[0, 2\pi]$, então: $P(x) \equiv \theta$.

7.25)
$$y(t) \simeq \frac{2}{\pi} + sen \ t = F(t).$$

7.26)
$$f(x)$$
 4.5 $\cos x = S_1(x)$.

7.27)
$$y \simeq 4.0731 \ x^{2.9349}$$
.

7.28)
$$y \simeq x \ln (1.116 x + 2.714).$$

7.29) a) Não. A transformação que deve ser feita é:
$$e^{\frac{x^2}{f(x)}} \simeq ax^4 + bx^2 + c$$
.

b)
$$Q = ||F(x) - (ax^4 + bx^2 + c)||^2$$
, onde $F(x) = e^{\frac{x^2}{f(x)}}$.

c) Fazendo: $a_0 = c, a_1 = b$ e $a_2 = a$, devemos resolver o seguinte sistema

$$\begin{pmatrix}
(1,1) & (x^{2},1) & (x^{4},1) \\
(1,x^{2}) & (x^{2},x^{2}) & (x^{4},x^{2}) \\
(1,x^{4}) & (x^{2},x^{4}) & (x^{4},x^{4}) & a_{2}
\end{pmatrix} = \begin{pmatrix}
(F,1) \\
(F,x^{2}) \\
(F,x^{4})
\end{pmatrix}.$$
7.30) Pela função a); $y(t) \simeq \frac{t}{0.1665 + 0.0565t}$.

7.31) A função
$$I$$
); $y \simeq 2.033x^2 - 2.607$.

7.32) i)
$$a = 0.7850$$
 e $c = -0.7342$.

ii)
$$b \simeq 1.00497$$
.

7.33)
$$a \simeq 1.9317 \text{ e } b \simeq 1.0630.$$

7.34)
$$M = 3 e N = 1.$$

7.35) a)
$$a \simeq 0.7558$$
 e $b \simeq -0.1570$.

b)
$$Q = ||E_i - (0.75581x_i - 0.15698y_i)||^2 \simeq 9.8$$
.

- **8.1)** a) $P_3(x) = x^3 3x^2 + 2x$.
 - **b)** $f(3.5) \simeq P_3(3.5) = 13.125.$
- **8.2)** $P_2(x) = -2.994x^2 + 3.497x$.
- **8.3)** $P_2(x) = 0.0005x^2 0.0003x + 1.5706 \implies K(2.5) \simeq P_2(2.5) = 1.5730.$
- **8.4)** Tomando $x_0 = 3, x_1 = 3.2$ e $x_2 = 3.4 \Rightarrow P_2(x) = 12.25x^2 53.7x + 70.93 \Rightarrow f(3.1) \simeq P_2(3.1) = 22.1825.$
- **8.5)** Tomando $x_0 = 0, x_1 = 0.5$ e $x_2 = 1.0 \Rightarrow P_2(x) = -0.31x^2 + 1.943x 1.$ Fazendo $P_2(x) = 0 \Rightarrow \bar{x} \simeq 0.5693$.
- **8.7)** a) O cálculo de f(x) nos pontos indicados fornece a tabela:

- **b)** $P_3(x) = \frac{104}{3}x^3 3x^2 \frac{83}{3}x 1.$
- c) $|R_3(-0.5)| \le 39.375$ e $|R_3(0.5)| \le 65.625$.
- **8.8)** Tomando $x_0 = 1.0, x_1 = 1.1, x_2 = 1.3$ e $x_3 = 1.5 \Rightarrow |R_3(x)| \simeq 1.453 \times 10^{-6}$.
- **8.9)** O menor valor de $n \in 9$.
- **8.10)** a) $P_1(x) = 0.49x + 0.5102 \Rightarrow \sqrt{1.035} \simeq P_1(1.035) = 1.01735$.
 - **b)** $R_1(x) \le 3 \times 10^{-6}$.
- **8.12)** a) Tomando $x_0 = 0.3$ e $x_1 = 0.4$ segue que: $P_1(x) = 1.169x 0.2292$ $f(0.35) \simeq 0.17995.$
 - **b)** $|R_1(x)| \simeq 7.012 \times 10^{-3}$.
- **8.13)** $P_2(u) = P_1(u) = 3u 4 \implies f(0.5) \simeq P_1(1.5) = 0.5.$
- **8.14)** O cálculo de f(x) nos pontos indicados fornece a tabela:

$$P_4(x) = P_3(x) = 20x^3 - 18x + 2$$

011

$$P_4(u) = P_3(u) = 20u^3 \quad 120u^2 + 222u \quad 122.$$

8.15)
$$P_3(x) = 5500x^3 - 10700x^2 + 6825x - 1423 \implies f(0.56) \simeq P_3(0.56) = 9.368,$$
 ou

$$P_3(u) = 5.5u^3$$
 $24.5u^2 + 25u + 2$ $f(0.56)$ $P_3(0.6) = 9.368$.

8.16) a) Tomando
$$x_0 = 2.25$$
 e $x_1 = 2.5$, obtemos: $f_0 = 6.93$ e $f_1 = 8.73 \Rightarrow P_1(x) = 7.2x - 9.27$.

Tomando $x_0 = 2.25, x_1 = 2.5$ e $x_2 = 2.75$, obtemos: $f_0 = 6.93, f_1 = 8.73$ e $f_2 = 10.89 \Rightarrow P_2(x) = 2.88x^2 - 6.48x + 6.93$.

b)
$$f(2.4) \simeq P_1(2.4) = 8.01, f(2.4) \simeq P_2(2.4) = 7.9668.$$

c)
$$|R_1(x)| \le 5 \times 10^{-2}$$
, $|R_2(x)| \le 3.789 \times 10^{-3}$.

8.17) **a)**
$$P_3(x) = \frac{1}{3}(x^3 - 4x)$$
.

b)
$$f(0.5) \simeq P_3(0.5) = -0.625$$
.

8.18) a) Tomando os pontos:
$$x_0 = 0$$
 e $x_1 = 1 \Rightarrow P_1(x) = -0.5x + 1$.

b) Acrescentando o ponto
$$x^2 = 1.5$$
, obtemos: $P^2(x) = P^1(x) + (x^2 - x)(0.2) \Rightarrow P_2(x) = 0.2x^2 - 0.7x + 1$.

c)
$$f(0.5) \simeq P_1(0.5) \simeq 0.75$$
, $f(0.5) \simeq P_2(0.5) \simeq 0.7$.

8.19) Tomando os pontos:
$$x_0 = 0.03$$
, $x_1 = 0.04$ e $x_2 = 0.05 \Rightarrow P_2(x) = 72x^2 - 27.82x + 3.7289$.
Para $x = 0.0378 \Rightarrow y \simeq P_2(0.0378) \simeq 2.7802$,

Acrescentando o ponto $x_3 = 0.06$, obtemos:

$$P_3(x) = P_2(x) + (x^3 - 0.12x^2 + 0.0047x - 0.00006)(4400) \Rightarrow$$

 $P_3(x) = 4400x^3 - 456x^2 - 7.14x + 3.4649.$

Para $x = 0.0378 \implies y \simeq P_3(0.0378) \simeq 2.7811$,.

8.20) a) Tomando os pontos:
$$x_0 = 1.10$$
, $x_1 = 1.15$ e $x_2 = 1.25 \Rightarrow P_2(x) = -0.13x^2 + 0.7725x + 0.3556 \Rightarrow \sqrt{1.12} \simeq P_2(1.12) = 1.057728$.

b)
$$|R^2(x)| \le 3.8 \times 10^{-6}$$
.

Observe que, apesar do erro garantir 5 casas decimais corretas no resultado, vemos que isto não é verdade, pois o resultado exato de $\sqrt{1.12}$ é 1.0583005. Para obter o resultado com 5 casas decimais corretas devemos trabalhar com mais casas decimais nos dados. Assim, tomando os mesmos pontos e $f_0 = 1.048809, f_1 = 1.072381$ e 1.118034, obtemos:

 $P_2(x) = -0.0994x^2 + 0.69509x + 0.404484 \Rightarrow \sqrt{1.12} \simeq P_2(1.12) = 1.0582974,$ com 5 casas decimais corretas.

8.21) Tomando
$$x_0 = 0, x_1 = 0.5$$
 e $x_2 = 1.0$ e calculando $f(x)$ nestes pontos, obtemos: $P_2(x) = 7.74x^2 - 0.75x - 1$. Fazendo $P_2(x) = 0 \Rightarrow \bar{x} \simeq 0.4108$.

8.22) a) O grau adequado é 1. Assim:
$$P_1(x) = 0.49x + 0.5102 \Rightarrow \sqrt{1.035} \simeq P_1(1.035) = 1.01735$$
.

b)
$$R_1(x) = 3 - 10^{-6}$$
.

8.23) a)
$$P_3(x) = P_1(x) = 2x$$
.

b)
$$P_3(x) = P_1(x) = 2x$$
.

8.24) Usando todos os pontos obtemos:

a)
$$P_3(x) = P_2(x) = -0.5x^2 + 1.55x - 0.21$$
.

b)
$$P_3(x) = P_2(x) = -0.5x^2 + 1.55x - 0.21.$$

c) sen
$$1.35 \simeq P_2(1.35) = 0.97125$$
.

d)
$$|R_2(x)| \le 2 \times 10^{-5}$$
. (Ver observação na resolução do exercício 8.20).

8.25)
$$\alpha = 14, \beta = -5 \text{ e } \gamma = 20.$$

8.26)
$$P_3(x) = -2x^3 + x^2 + 2x - 1 \Rightarrow f(0.5) \simeq P_3(0.5) = 0.$$

- **8.27**) b) Não. Basta verificar que o polinômio que interpola a função tabelada é o polinômio nulo.
- **8.28)** $P_3(x) = -x^3 + x^2 + x$.
- **8.30)** Tomando $x^0 = 2, x^1 = 3$ e $x^2 = 4 \Rightarrow P^2(x) = -0.065x^2 0.443x + 2.055$. Fazendo $P_2(x) = 0 \Rightarrow \bar{x} \simeq 3.1671$.
- **8.31)** Tomando $x_0 = 0, x_1 = 0.5$ e $x_2 = 1.0$ e calculando f(x) nestes pontos, obtemos: $P_2(x) = -2.5606x^2 0.9965x + 3$. Fazendo $P_2(x) = 0 \Rightarrow \bar{x} \simeq 0.9052$.
- **8.32)** As diferenças divididas de ordem 5 são constantes e portanto as diferenças divididas de ordem 6 são nulas.
- **8.33)** Tomando $x_0 = -1.23, x_1 = 0.63, x_2 = 0.79, f_0 = 1.2, f_1 = 1.5 e f_2 = 1.6 \Rightarrow P_2(x) = 0.2296x^2 + 0.2991x + 1.2206$. Calculando $P_2(0) \simeq f(0) \Rightarrow \bar{x} \simeq 1.2206$.
- **8.34)** Tabelando f(x) nos pontos $x_0 = 0, x_1 = 0.5$ e $x_2 = 1$, obtemos: $f_0 = -2$, $f_1 = -1.125$ e $f_2 = 2$. Tomando $x_0 = -2, x_1 = -1.125$ e $x_2 = 2 \Rightarrow P_2(x) = 0.10285x^2 + 0.75x + 0.9114$. Calculando $P_2(0) \simeq f(0) \Rightarrow \bar{x} \simeq 0.9114$.
- **8.35)** Tomando os pontos: $x_0 = 0.45, x_1 = 0.50$ e $x_2 = 0.55$, obtemos: $P_2(x) = -2x^2 + 1.5x + 1.22 \Rightarrow P'(x) = -4x + 1.5 \Rightarrow f'(0.52) \simeq P'_2(0.52) = -0.58$.

ou

$$P_2(u) = -0.005u^2 - 0.015u + 1.49 \Rightarrow P'(u) = \frac{-0.01u - 0.015}{h} \Rightarrow f'(0.52) \simeq P'_2(1.4) = -0.58.$$

- 8.36) A tabela deve ter 15 valores.
- **8.37)** O grau mínimo é 2.
- **8.38)** Com nenhuma precisão. $(|R_2(15)| \le 6.679 \times 10^{14}.)$
- **8.39)** Com duas casas decimais corretas. ($|R_1(x)| \le 1.569 \times 10^{-3}$.)

8.40) a) Tomando
$$x_0 = 0.2, x_1 = 0.3$$
 e $x_2 = 0.4$, obtemos: $P_2(x) = -5.85x^2 + 6.975x - 2.77 \Rightarrow ln(0.32) \simeq -1.1370$.

- **b)** h < 0.063.
- **8.41)** a) Forma de Newton do polinômio de interpolação, pois basta acrescentar um termo ao polinômio obtido na tabela do item i).

b)
$$P_4(x) = -0.0341x^4 + 1.2110x^3 - 7.1883x^2 + 16.4873x - 1.$$

 $P_5(x) = P_4(x) + (x^5 - 11.6x^4 + 47.39x^3 - 79.204x^2 + 43.758x)$
 $= -0.0607x^5 + 0.67002x^4 + 1.7556x^3 - 2.3806x^2 + 13.8312x - 1.$

- 8.42) As diferenças divididas de ordem 3 devem ser constantes.
- **8.43)** O grau do polinômio interpolador é 2, pois as diferenças de 2^a ordem são constantes e iguais a 2h.
- **8.44)** b) Tomando $x_i = 100, x_{i+1} = 123, y_j = 81.5$ e $y_{j+1} = 100.0$, obtemos: $\alpha = 0.4$ e $\beta = 0.8919$. Usando a fórmula dada em **a**), segue que: $f(110, 98) \simeq 59.7891$.

9.1)
$$\int_{1.00}^{1.30} \sqrt{x} \ dx \simeq 0.321463.$$

- **9.2)** Para h=0.4, 0.2 e 0.1, obtemos: $\int_0^{0.8} \cos x \ dx \simeq 0.7076, 0.7148$ e 0.7165, respectivamente.
- **9.3)** $\int_{1.2}^{1.6} sen \ x \ dx \simeq 0.39105.$
- **9.4)** $\int_0^{0.8} x \ e^x \ dx \simeq 0.564.$
- **9.6)** $\int_{1.00}^{1.30} \sqrt{x} \ dx \simeq 0.321475.$

Para h=0.4, 0.2 e 0.1, obtemos: $\int_0^{0.8} \cos x \ dx \simeq 0.71733, 0.71720$ e 0.71717, respectivamente.

$$\int_{1.2}^{1.6} sen \ x \ dx \simeq 0.391557.$$

$$\int_0^{0.8} x \ e^x \ dx \ \simeq 0.554133.$$

9.7)
$$\int_0^{20} v(t) dt \simeq 4162.33$$
 pés.

9.8)
$$\int_{1.0}^{1.6} \ln x \, dx \simeq 0.1518.$$

9.9)
$$\int_{1.00}^{1.30} \sqrt{x} \ dx \simeq 0.321476.$$

$$\int_{1.0}^{1.6} \ln x \ dx \simeq 0.1518.$$

9.10)
$$\int_0^{0.6} \cos x \, dx \simeq 0.564525.$$

9.11) Para
$$h = 0.4$$
 e $h = 0.2$, obtemos: $\int_0^{1.2} e^{-x} \ sen \ x \ dx \simeq 0.3046$ e 0.3050, respectivamente.

9.12)
$$h < 0.00245 \Rightarrow h = 0.002.$$

9.13)
$$N = 10$$
 subintervalos.

9.14)
$$h < 0.68 \Rightarrow h = 0.3$$
.

- 9.15) Calculando diretamente e usando quadratura de Gauss-Legendre sobre dois pontos, obtemos:

 - a) $z^3 + z^2 + z + 1$ $dz = \frac{8}{7}$ e 2.6666667, respectivamente. b) $\int_{-2}^{1} (x^2 1) dx = \frac{2}{3}$ e $\simeq 0.6666667$, respectivamente.
- **9.16)** $\int_{-1}^{1} (1-x^2)^{-1/2} x^2 dx \simeq 1.566$, exatamente, a menos de erros de arredondamento, usando quadratura de Gauss-Tchebyshev sobre dois pontos.
- **9.17**) $\int_{1}^{1} \left(\frac{1}{2+2x} + \frac{1}{2-2x}\right)^{1/2} dx \simeq 3.1416$, usando quadratura de Gauss-Tchebyshev sobre dois pontos.
- **9.18)** $\int_{1}^{2} \frac{dx}{2(x+1)\sqrt{x^2+3x-2}} \simeq 0.6411 \text{ e } 0.6413 \text{ usando quadratura de Gauss-}$ Tchebyshev sobre dois e três pontos, respectivamente.
- **9.19)** $\int_0^1 \left(\frac{1}{4x} + \frac{1}{4-4x}\right)^{1/2} dx \simeq 1.5708$, exatamente, a menos de erros de arredondamento, usando quadratura de Gauss-Tchebyshev sobre dois pontos
- **9.20)** $\int_{-\pi}^{\pi} \cos^4 \theta \ d\theta \simeq 2.3559$, exatamente, a menos de erros de arredondamento, usando quadratura de Gauss-Tchebyshev sobre dois pontos.
- **9.21)** $\int_0^\infty \left(\frac{x^3+4x+2}{e^{2x}}\right) e^x dx \simeq 11.9976$, exatamente, a menos de erros de arredondamento, usando quadratura de Gauss-Laguerre sobre dois pontos.
- **9.22)** $\Gamma(5) = \int_0^\infty e^{-x} x^4 dx \simeq 24.0171$, exatamente, a menos de erros de arredondamento, usando quadratura de Gauss-Laguerre sobre três pontos.
- **9.23)** $\int_{t}^{\infty} \frac{e^{-t}}{t} dt \simeq 0.22069$, usando quadratura de Gauss-Laguerre.
- **9.24)** $\int_{-\infty}^{\infty} e^{-x^2} sen x dx = 0$, usando quadratura de Gauss-Hermite.
- 9.25) A fórmula de Newton-Cotes do tipo fechado sobre cinco pontos é dada por:

$$\int_{x_0}^{x_4} f(x)dx \simeq \frac{2h}{45} [7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)].$$

Usando a fórmula obtida, segue que: $\int_2^3 x \ e^{\frac{x}{2}} \ dx \simeq 8.9776.$

9.26) Usando as regras do Trapézio, $\frac{1}{3}$ de Simpson e $\frac{3}{8}$ de Simpson, obtemos:

I)
$$\int_{1}^{2.5} x \ln x \, dx \simeq 1.5696, 1.5695 \text{ e } 1.5666, \text{ respectivamente.}$$

II)
$$\int_{-1.5}^{0} x e^{x} dx \simeq -0.4364, -0.4421 e -0.4421$$
, respectivamente.

9.27) Usando as regras do Trapézio, $\frac{1}{3}$ de Simpson e $\frac{3}{8}$ de Simpson, precisamos: para a integral I) do exercício **9.26**) de 200, 10 e 12 divisões, respectivamente, para a integral II) do exercício **9.26**) de 240, 12 e 12 divisões, respectivamente.

Observe que no caso da regra $\frac{3}{8}$ de Simpson obtemos N=10,mas com este número de intervalos não é possível aplicar a regra.

9.28)
$$\int_{1.0}^{3.0} y(x) dx \simeq 9.428333.$$

- 9.29) $I \simeq 0.9461833$. O resultado ser surpreendente próximo se deve ao fato que $\max_{0 < t < 1} |f^{(IV)}(t)| \simeq 0.2 \text{ e assim com } h = 0.5 \text{ o erro \'e muito pequeno.}$
- **9.30)** No exercício anterior, $\max_{0 \le t \le 1} |f^{(IV)}(t)|$ era bastante pequeno. Neste caso, $\max_{0.1 \le t \le 1} |f^{(IV)}(t)| = 24 \times 10^5 \text{ e assim } h \text{ deve ser muito pequeno para conseguirmos uma boa precisão no resultado.}$

9.31) a)
$$I = \int_{-2}^{2} f(x) dx \simeq 25.3333.$$

- **b)** O erro é igual a zero. $(\max_{-2 \le t \le 2} f^{(IV)}(t) = 0.)$
- **9.33)** Tomando h = 0.25, obtemos:

$$\int_{0.34}^{b} \frac{1 + (y'(x))^2}{1 + (y'(x))^2} dx = \int_{0.34}^{1} \frac{10 - 48x + 64x^2}{10 - 48x + 64x^2} dx = 2.4496.$$
Simpson e tomando $h = 0.35, h = 0.175$ e $h = 0.0875, h = 0.175$ e $h = 0.0875, h = 0.175$ e $h = 0.0875, h = 0.175$ e $h = 0.0875$

- **9.34**) Usando a regra $\frac{1}{3}$ de Simpson e tomando h = 0.35, h = 0.175 e h = 0.0875, obtemos: $ln1.7 = \int_{1}^{1.7} \frac{dt}{t} \simeq 0.5309731$, 0.5306538 e 0.5306299, respectivamente.
- **9.35)** Usando a regra $\frac{1}{3}$ de Simpson e tomando h=0.5 e h=0.25, obtemos: $\int_{-1}^0 x \ e^x \ dx \simeq -0.26349 \ \mathrm{e} -0.26419$, respectivamente.
- 9.36) a) 4 subintervalos.

b)
$$\int_0^{0.8} (x^2 - \cos x) \, dx = -0.5390 \; .$$

- **9.37)** Devemos aplicar a regra $\frac{1}{3}$ de Simpson generalizada no intervalo [1,2] e a regra $\frac{3}{8}$ de Simpson no intervalo [2,3] ou a regra $\frac{3}{8}$ de Simpson no intervalo [1,1.7] e a regra $\frac{3}{8}$ de Simpson generalizada no intervalo [1.7,3].
- 9.38) a) i) para $\alpha=0.1,31$ intervalos, ii) para $\alpha=0.01,457$ intervalos, iii) para $\alpha=0$ não é possível aplicar a regra de Simpson.
 - b) $\int_0^1 x^{-\frac{1}{2}} dx \simeq 1.7509$, usando a fórmula de quadratura de Gauss-Legendre.
- 9.39) a) O grau adequado do polinômio é 2. $Tomando~t_0=1.5, t_1=2.5~e~t_2=3.0 \Rightarrow P_2(t)=-t^2+6t-5 \Rightarrow v(2)\simeq$ $P_2(2)=3.$
 - b) A área hachurada é 1.66667.
- **9.40)** b) N = 3750 subintervalos. c) $I = \Gamma(3) = \int_0^\infty e^{-x} x^2 dx \simeq 1.9999958.$
- **9.41)** a) Usando a regra $\frac{1}{3}$ de Simpson e tomando h=0.5 e h=0.25, obtemos: $I(1) = \int_0^1 x^2 e^{-x} dx \simeq 0.1624 \text{ e } 0.1607, \text{ respectivamente.}$
 - b) Usando a fórmula de Gauss-Laguerre sobre dois pontos, obtemos:

 $\int_0^\infty x^2 \ e^{-x} \ dx = 1.9999958, \text{ exatamente, a menos de erros de arredondamento.}$

- **9.42)** As duas pessoas obtiveram o resultado exato, desde que: $\max_{-1 \le t \le 1} f^{(IV)}(t) = 0$ e $2n + 1 = 3 \Rightarrow N = 2$.
- 9.43) Os dois pontos devem ser da tabela de Gauss-Tchebyshev.
- **9.44)** $w = 1.5 \text{ e } A = 3 \Rightarrow \int_0^3 f(x) \ dx = 4.5.$
- **9.45**) a) $A_0 = A_1 = 1.5$.

b)
$$\int_{-2}^{0} \frac{dx}{x+3} \simeq 1.0909.$$

9.46) $\int_0^1 x \ f(x) \ dx = 0.18196 f(0.35505) + 0.31804 f(0.84495).$

$$\int_{a}^{1} (x^4 + x \, sen \, x) \, dx \qquad 0.5011301.$$

9.47) a) Usando a regra $\frac{1}{3}$ de Simpson e tomando h=0.8,0.4 e h=0.2, obtemos:

$$I = \int_0^{1.6} x^{-x} dx \simeq 1.6674, 1.7129 \text{ e } 1.7204, \text{ respectivamente.}$$

b) Usando fórmula de quadratura de Gauss-Legendre com dois e três pontos, obtemos:

$$I = \int_0^{1.6} x^{-x} dx \simeq 1.7508$$
 e 1.7257, respectivamente.

9.48) b) $\int_0^1 \int_0^{0.5} \sqrt{x^2 + y^3} \ dy \ dx \simeq 0.2802.$

10.2) Para o (p.v.i.) I)

	a)	b)	$\mathbf{c})$	$\mathbf{d})$
x_n	y_n	y_n	y_n	y_n
0.0	0.0	0.0	0.0	0.0
0.2	0.2	0.2	0.2	0.2
0.4	0.408	0.4163	0.416	0.412
0.6	0.6413	0.6705	0.6692	0.6589
0.8	0.9236	0.9993	0.9951	0.9721
1.0	1.2942	1.4789	1.4653	1.4122

Para o (p.v.i.) II)

	$\mathbf{a})$	b)	c)	$\mathbf{d})$
n	n	n	n	n
€.0	y_{l}	y_1	y_1	$y_{ m l}$
0.3	1	0.91	0.91	0.91
0.6	0.82	0.6790	0.6721	0.6643

Para o (p.v.i.) III)

	$\mathbf{a})$	b)	$\mathbf{c})$	$\mathbf{d})$
x_n	y_n	y_n	y_n	y_n
0.0	2	2	2	2
0.1	2	1.99	1.99	1.99
0.2	1.98	1.9602	1.9602	1.9702
0.3	1.9404	1.9116	1.8818	1.9209

10.3) A ordem q e a constante do erro C_i são, respectivamente:

a)
$$q = 2 e C_3 = \frac{1}{3}$$
.

b)
$$q=4 \text{ e } C_5=-\frac{1}{90}.$$

c)
$$q=3 e C_5=-\frac{1}{24}$$
.

d)
$$q = 2 e C_4 = \frac{5}{12}$$
.

e)
$$q=4$$
 e $C_5=-\frac{3}{80}$.

10.4) O erro de truncamento é, respectivamente:

a)
$$\frac{h^3}{3} y'''(\xi)$$
, $x_n < \xi < x_{n+2}$.

b)
$$-\frac{h^5}{90} y^{(v)}(\xi), \quad x_n < \xi < x_{n+2}.$$

c)
$$-\frac{h^4}{24} y^{(iv)}(\xi)$$
, $x_n < \xi < x_{n+2}$.

d)
$$\frac{5h^3}{12} y'''(\xi)$$
, $x_n < \xi < x_{n+2}$.

e)
$$-\frac{3h^5}{80} y^{(v)}(\xi)$$
, $x_n < \xi < x_{n+3}$.

10.5) A ordem de consistência é, respectivamente:

- **a)** 2,
- **b)** 4,
- **c)** 3,
- **d)** 4.

10.6) Não. O método não é consistente. $(C_1 = \frac{5}{3} \neq 0.)$

10.7)
$$C_1 = \frac{1}{12} \neq 0.$$

10.8)
$$\begin{array}{c|cc} x_n & y_n \\ \hline 0.0 & 1 \\ 0.2 & 1.2264 \\ 0.4 & 1.5207 \end{array}$$

$$\begin{array}{c|cccc}
x_n & y_n \\
\hline
0.0 & 1 \\
0.15 & 1.0101 \\
0.3 & 1.0378
\end{array}$$

$$\begin{array}{c|cccc} x_n & y_n \\ \hline 0.0 & 1 \\ 0.1 & 0.99 \\ 0.2 & 0.9625 \\ 0.3 & 0.9138 \\ 0.4 & 0.8538 \\ 0.5 & 0.7785 \\ \end{array}$$

10.12) Usando o método de Euler Modificado para obter os valores iniciais necessários, segue que:

$$\begin{array}{c|cc} x_n & y_n \\ \hline 0.0 & 2 \\ 0.1 & 2.0050 \\ 0.2 & 2.0193 \\ 0.3 & 2.0417 \\ \end{array}$$

10.14)
$$\begin{array}{c|cccc} x_n & y_n \\ \hline 0.0 & 2 \\ 0.1 & 2.0048 \\ 0.2 & 2.0187 \\ \hline 0.3 & 2.0408 \\ \end{array}$$

10.15) Obtemos o seguinte método de Runge-Kutta:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 4k_2 + k_3)$$
, onde:
 $k_1 = f(x_n, y_n)$,
 $k_2 = f(x_n + \frac{1}{2}h, y_n + hk_1)$,
 $k_3 = f(x_n + h, y_n - hk_1 + 2hk_2)$.

$$x_n$$
 y_n z_n 0.0 1 2 0.05 1.0916 1.6717 0.1 1.1679 1.3837 0.15 1.2307 1.1320 0.2 1.2818 0.9128 0.25 1.3226 0.7228 0.3 1.3546 0.5588 0.35 1.3790 0.4182 0.4 1.3970 0.2981

10.19) O q adequado é 2. Assim, usando o método de Taylor de ordem 2, obtemos:

$$\begin{array}{c|cc}
x_n & y_n \\
\hline
0.0 & 1 \\
0.1 & 1.105 \\
0.2 & 1.2267
\end{array}$$

$$\begin{array}{c|cccc}
x_n & y_n \\
\hline
1 & 6 \\
3 & 12 \\
5 & 18 \\
7 & 24
\end{array}$$

A interpretação geométrica do método de Euler, figura a seguir, responde a pergunta feita.

Observe na figura anterior que o método de Euler fornece para cada ponto x_i o valor de y_i e que podemos traçar uma reta entre (x_n, y_n) e (x_{n+1}, y_{n+1}) . Assim, tal concordância era de se esperar, desde que o resultado exato do (p.v.i.) é uma reta.

- **10.21)** a) Ordem q = 6 e a constante do erro $C_7 = -\frac{6}{665}$.

b) Temos:
$$C_1=0$$
. O polinômio característico é:
$$\rho(\xi) = \xi^4 - \frac{8}{19}\xi^3 + \frac{8}{19}\xi - 1 = 0$$
, cujas raízes são: ± 1 e $\frac{3 \pm \sqrt{1380}i}{38}$.

Todas as raízes têm módulo 1 e são simples. Portanto o método de Quade é consistente e estável. Assim, o método pode ser aplicado com garantia de convergência.

- **10.23**) a) Se q = 3 então $b_0 = 10$ e $b_1 = 4$.
 - b) A constante do erro é $C_4 = \frac{1}{6}$.
 - c) O erro foi tão grande pois o método não é estável. Basta observar que as raízes do polinômio característico são: $\xi_1 = -5$ e $\xi_2 = 1$.

10.24)

		$\mathbf{a})$	b)	$\mathbf{c})$
x_n		y_n	y_n	y_n
0.0)	1	1	1
0.0)5	1	1.0012	1.0012
0.1	L	1.0025	1.0047	1.0047
0.1	$\lfloor 5 \rfloor$	1.0073	1.0102	1.0103
0.2	2	1.0217	1.0177	1.0178

onde no item c) foi usado o método de Heun para obter o valor de y_1 .

onde no item ${\bf c}$) foi usado o método de Taylor de ordem 3 para obter o valor de $y_1.$

10.28) a)
$$\begin{cases} y' = z \\ z' = \frac{3}{y} + 2xy - (sen \ x)y^3 \\ y(1) = 1 \\ z(1) = 15 \quad x \in [1, 1.2], \quad h = 0.1 \end{cases}$$

b) Usando o método de Euler Modificado, segue que:

$$\begin{array}{c|ccccc} xn & yn & zn \\ \hline 1 & 1 & 15 \\ 1.1 & 2.575 & 15.3492 \\ 1.2 & 4.1867 & 15.6698 \\ \end{array}$$

$$x_n$$
 y_n z_n w_n 0.0 1 2 3 0.1 1.214 2.2667 2.2907 0.2 1.4509 2.4607 1.6802 0.3 1.7043 2.5899 0.5392

onde foi usado o método de Taylor de ordem 3 para obter o valor de y_1 .

10.30)		a)		b)		$\mathbf{c})$	
_	x_n	y_n	z_n	y_n	z_n	y_n	z_n
	0.0	-1	0	-1	0	-1	0
	0.1	-1	0.4			-0.9890	
	0.2	-0.98	0.46			-0.9513	
	0.3	-0.934	0.794	-0.8756	0.9493	-0.8789	0.9420