Connection and Curvature

Hu Zheng Department of Mathematics, Zhejiang University

April 23, 2015

Contents

1	Affine Connections	1
2	Riemannian Connections	1
3	Curvature	1
4	Harmonic Forms	2

1 Affine Connections

Problem 1.1.

2 Riemannian Connections

3 Curvature

Problem 3.1. Prove the second Bianchi identity in the natural frame:

$$R_{ijkl,h} + R_{ijlh,k} + R_{ijhk}, l = 0$$

Problem 3.2. Suppose the Riemann curvature tensor R for a Riemannian manifold (M^m, g) satisfy the following:

$$R(X, Y, Z, W) = \frac{1}{m-1} \{ S(Y, Z)g(X, W) - S(Y, W)g(X, Z) \}$$

, where S is the Ricci tensor, and if $m \geq 3$, (M^m, g) has constant curvature.

Problem 3.3. Suppose (M^3, g) is a three-dimensional Riemannian manifold. At any $p \in M^3$, take the coordinate system $\{x^i\}$, s.t. at p we have $g_{ij} = \left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right\rangle = 0, i \neq j$. Prove that for $i, j, k \neq at$ p, the following holds:

$$R_{ij} = \frac{1}{g_k k} R_{ikjk}$$

$$R_{ii} = \frac{1}{g_{jj}} R_{ijij} + \frac{1}{g_{kk}} R_{ikjk}$$

$$R_{ijij} - g_{ii} R_{jj} - g_{jj} R_{ii} + \frac{1}{2} \rho g_{ii} g_{jj}$$

Problem 3.4. Suppose (M^m, g) is a connected Einstein manifold and $m \geq 3$,

- (i) if m = 3, then (M^m, g) has constant curvature.
- (ii) if the scalar curvature ρ of (M^m, g) does not vanish, then there is no parallel vector field on (M^m, g) .

Problem 3.5. Suppose $M^2 \subset \mathbb{R}^3$ is an immersed surface, and has the Riemannian metric induced by the Euclidean metric on \mathbb{R}^3 , prove that the sectional curvature on M^2 is the Gauss curvature.

Problem 3.6. Calculate the sectional curvature, Ricci curvature and scalar curvature of the sphere

$$S^{m}(r) = \left\{ x \in \mathbb{R}^{m+1} | \sum_{i} (x^{i})^{2} = r^{2}(\text{constant}) \right\}$$

. The Riemannian metric on $S^m(r)$ is induced by the Euclidean metric on \mathbb{R}^{m+1} .

Proof. Let's elaborate on the Riemann curvature tensor. \Box

4 Harmonic Forms

Problem 4.1. Suppose $\alpha \in A^1(M)$, then

$$\int_{M} (\delta \alpha) \eta = 0$$

.

Proof.

Problem 4.2. Suppose M is compact smooth Riemannian manifold without boundary, $h, f \in C^2(M)$. Prove the following Green formula:

$$\int_{M} (h\Delta f - f\Delta h)\eta = 0$$

.

Proof. Recall that $\Delta = -(d\delta + \delta d)$. $h\Delta$.

According to theorem 3.4.4, we have $(d\alpha, \beta) = (\alpha, \delta\beta)$. we have

$$\int_{D} (h\Delta f) \eta = -\int_{D} \langle \mathrm{d}h, \mathrm{d}f \rangle \eta$$

Problem 4.3. Take the geodesic polar coordinates on (M, g):

$$g = (\mathrm{d}r)^2 + g_{ij}(r,\theta)\mathrm{d}\theta^i\mathrm{d}\theta^j, 1 \le i, j, k \le m - 1$$

. Suppose f = f(r) is independent from $\{\theta^i\}$, prove that

$$\Delta f = f'' + \frac{m-1}{r}f' + f'\frac{\partial}{\partial r}\log\sqrt{G}$$

, where $G = \det(g_{ij})$ and ' denotes ordinary differentiation with respect to r.

Proof.