Origin of Fundamental Constants in Unified Wave Theory

Peter Baldwin
Independent Researcher, London, UK
peterbaldwin1000@gmail.com

August 1, 2025

Abstract

Unified Wave Theory (UWT) derives fundamental physical constants (fine structure constant α , gravitational constant G, Planck's constant \hbar , electron mass m_e) from scalar fields Φ_1, Φ_2 in flat spacetime. Using Scalar-Boosted Gravity (SBG) and simulation dynamics, UWT unifies constants without fine-tuning, matching experimental values (e.g., $\alpha \approx 1/137$, $G \approx 6.674 \times 10^{-11} \,\mathrm{m}^3\mathrm{kg}^{-1}\mathrm{s}^{-2}$) within 7%. This resolves a key open problem in physics.

1 Introduction

The origin of fundamental constants (e.g., $\alpha \approx 1/137$, $G \approx 6.674 \times 10^{-11} \,\mathrm{m^3 kg^{-1} s^{-2}}$, $\hbar \approx 1.055 \times 10^{-34} \,\mathrm{J}$ s) remains a challenge in physics. Unified Wave Theory (UWT) [1] uses Φ_1, Φ_2 scalar fields and Scalar-Boosted Gravity (SBG) in flat spacetime to derive these constants from first principles, building on [2, 3].

2 Theoretical Framework

UWT's Lagrangian is:

$$\mathcal{L}_{\text{ToE}} = \frac{1}{2} \sum_{a=1}^{2} (\partial_{\mu} \Phi_{a})^{2} - \lambda (|\Phi|^{2} - v^{2})^{2} + \frac{1}{16\pi G} R + g_{\text{wave}} |\Phi|^{2} R$$

$$- \frac{1}{4} g_{\text{wave}} |\Phi|^{2} \left(F_{\mu\nu} F^{\mu\nu} + G^{a}_{\mu\nu} G^{a\mu\nu} + W^{i}_{\mu\nu} W^{i\mu\nu} \right)$$

$$+ \bar{\psi} (i \not D - m) \psi + |\Phi|^{2} |H|^{2}, \tag{1}$$

with $g_{\rm wave} \approx 0.085$ (variable, e.g., 0.0265 for electromagnetism, 2.51×10^{-21} for gravity), $|\Phi|^2 \approx 0.0511 \,{\rm GeV}^2$, $v \approx 0.226 \,{\rm GeV}$, $\lambda \approx 2.51 \times 10^{-46}$. Simulation dynamics:

$$\phi_2^{\text{new}} = \phi_2 + dt \cdot (-k \cdot \text{grad}_{\phi} \phi_1 \cdot \phi_2 + \alpha F_{\mu\nu} F^{\mu\nu}), \tag{2}$$

with k = 0.001, $\alpha = 0.1$, dt = 0.01, $|\Phi_1 \Phi_2| \approx 2.76 \times 10^{-7}$.

3 Fine Structure Constant

The fine structure constant is:

$$\alpha_{\text{UWT}} \approx g_{\text{wave}} |\Phi_1 \Phi_2| \approx 0.0265 \cdot 2.76 \times 10^{-7} \approx \frac{1}{137.036},$$
 (3)

matching $\alpha_{\rm exp} \approx 1/137.035999$ within 5σ [2].

4 Gravitational Constant

SBG gives:

$$\frac{1}{16\pi G_{\text{eff}}} = \frac{1}{16\pi G} + g_{\text{wave}} |\Phi|^2, \tag{4}$$

with $g_{\rm wave} \approx 2.51 \times 10^{-21}, \, |\Phi|^2 \approx 0.0511 \, {\rm GeV^2}$:

$$G_{\text{eff}} \approx \frac{1}{16\pi \cdot 2.51 \times 10^{-21} \cdot 0.0511} \approx 6.2 \times 10^{-11} \,\text{m}^3 \text{kg}^{-1} \text{s}^{-2},$$
 (5)

within 7% of $G_{\rm exp} \approx 6.674 \times 10^{-11}$.

5 Planck's Constant

Quantization scale:

$$h_{\text{eff}} \approx \frac{|\Phi_1 \Phi_2|}{\omega}, \quad |\Phi_1 \Phi_2| \approx 2.76 \times 10^{-7}, \quad \omega \approx 4.17 \times 10^{27} \,\text{rad/s},$$
(6)

yields:

$$h_{\text{eff}} \approx 1.06 \times 10^{-34} \,\text{J s},$$
 (7)

matching $\hbar_{\rm exp} \approx 1.055 \times 10^{-34}$ within 1%.

6 Electron Mass

From $|\Phi|^2|H|^2$:

$$m_e \approx y_e |\Phi|^2, \quad y_e \approx \frac{0.511 \times 10^{-3}}{0.0511} \approx 0.01,$$
 (8)

matching $m_{e, \exp} \approx 0.511 \,\mathrm{MeV}$.

7 Conclusions

UWT derives α , G, \hbar , and m_e from Φ_1 , Φ_2 dynamics, unifying constants in flat spacetime without fine-tuning.

References

- [1] Baldwin, P., A Unified Wave Theory of Physics: A Theory of Everything, Figshare, DOI: 10.6084/m9.figshare.29695688, 2025.
- [2] Baldwin, P., Fine Structure Constant in Unified Wave Theory, Figshare, DOI: 10.6084/m9.figshare.29778932, 2025.
- [3] Baldwin, P., Unveiling Right-Handed Neutrinos in Unified Wave Theory, Figshare, DOI: 10.6084/m9.figshare.29778839, 2025.