Dongjoon(DJ) Park

R315, 200 South 33rd Street, Philadelphia, PA

moon5756@gmail.com

215-240-2547

https://dj-park.github.io/

Updated: December 25, 2023

EDUCATION

Ph.D. in ESE, University of Pennsylvania

Aug'16-Jul'18, Aug'21-Present

Advisor: Prof. André DeHon

Research Interests: Tools for FPGAs, FPGA design methodology

B.S. in ECE, Carnegie Mellon University

Aug'12-Dec'15

Recipient of David Tuma Project Award – Best ECE Capstone Project Award Graduated with University Honors

ACADEMIC RESEARCH

Software-like FPGA Development [1]

Feb'23-Present

Advisor: Prof. André DeHon, University of Pennsylvania

- Novel incremental refinement for FPGA designs, iterating initial design points with separate compilations
- Created a multiple-clock system with a NoC (400MHz) and compute kernels (200–400MHz)
- Designed a runtime bottleneck identification for HLS dataflow designs using FIFO full/empty counters
- Utilized ML-based classifiers to reduce resource fragmentation for separate FPGA compile technique
- Showed 1.3–2.7× speedup in Design Space Exploration time and 2.2–12.7× in application latency

Network-on-a-Chip (NoC) on FPGA [2]

Sep'22-Jan'23

Advisor: Prof. André DeHon, University of Pennsylvania

- Designed a novel asymmetric Butterfly Fat Tree NoC in Verilog that excels in unbalanced traffic
- ullet Demonstrated up to 32% and 76% throughput benefit in realistic workloads and synthetic traffic patterns

Parallel FPGA Compilation using Hierarchical Partial Reconfiguration [4]

Jan'22-Aug'22

Advisor: Prof. André DeHon, University of Pennsylvania

- Open-sourced the Makefile/Python/Tcl based FPGA's parallel compilation framework (link)
- Utilized Xilinx Nested DFX to support flexible-sized slots for parallel FPGA compilations
- ullet Demonstrated 1.4–4.9× latency improvement for realistic HLS applications over the previous work

Accelerating FPGA Compilation using Partial Reconfiguration [6][7]

May'17-Aug'18

Advisor: Prof. André DeHon, University of Pennsylvania

- Designed packet parser, reassembly buffer, and FIFO modules for NoC interface in Verilog
- Analyzed Xilinx Vivado's compile speed with case studies to optimize separate FPGA compile strategy
- \bullet Demonstrated 4.5× compile time speedup for a multi-core design on FPGA over Xilinx Vivado

Detecting Voltage Anomalies in Scan-Testing Environment on FPGA

Dec'14-Oct'15

Advisor: Prof. Shawn Blanton, Carnegie Mellon University

- Implemented synthesizable voltage sensors on FPGA using carry chains and latches
- Analyzed voltage activities for different sizes of ISCAS circuits in at-speed scan testing environment

Industry Experience

AnaPass, South Korea

Jul'20-Jul'21

Sociation Soci

• RTL verification of Timing Controller IP for Samsung Tablet display

Korea Advanced Institute of Science and Technology (KAIST), South Korea Research Engineer

Aug'18-Jul'20

• Projects on Radar-based fall detector, FPGA-based beamforming system, IQ imbalance calibration

CoMira Solutions, Pittsburgh, PA

Jun'14-Aug'14

Hardware Engineering Intern

• Optimized RTL for CRC, multiplicative inverse and Reed–Solomon error correction in area and latency

Course Projects

HW/SW co-design for VGG16, University of Pennsylvania

Nov'21-Dec'21

- Designed a systolic array based FPGA kernel for 2D convolution function using HLS
- Integrated multiple FPGA kernels (on AWS EC2 F1 instance) with PyTorch using C++ extension
- Achieved 11–14.8× performance improvement over the SW baseline of 2D convolution function (report link)

Publications	[1] REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs D. Park, A. DeHon ACM Int. Symp. on Field-Programmable Gate Arrays (FPGA), 2024 – to appear
	[2] Asymmetry in Butterfly Fat Tree FPGA NoC D. Park, Z. Yao, Y. Xiao, A. DeHon IEEE Int. Conf. on Field-Programmable Technology (FPT), 2023
	[3] ExHiPR: Extended High-level Partial Reconfiguration for Fast Incremental FPGA Compilation Y. Xiao, <u>D. Park</u> , Z. Niu, A. Hota, A. DeHon ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2023
	[4] Fast and Flexible FPGA development using Hierarchical Partial Reconfiguration D. Park, Y. Xiao, A. DeHon IEEE Int. Conf. on Field-Programmable Technology (FPT), 2022 (acceptance rate: 25.2% = 31/123), Artifact Evaluated - Available, Functional, Reusable, Replicated
	[5] HiPR: High-level Partial Reconfiguration for Fast Incremental FPGA Compilation Y. Xiao, A. Hota, <u>D. Park</u> , A. DeHon IEEE Int. Conf. on Field-Programmable Logic and Applications (FPL), 2022 (<i>Best Paper Candidate</i> : 7.0% = 9/129)
	[6] Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks Y. Xiao, <u>D. Park</u> , A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi, R. Rubin, A. DeHon IEEE Int. Conf. on Field-Programmable Technology (FPT), 2019 (acceptance rate: 25.0% = 26/104)
	 [7] Case for Fast FPGA Compilation using Partial Reconfiguration <u>D. Park</u>, Y. Xiao, N. Magnezi, A. DeHon IEEE Int. Conf. on Field-Programmable Logic and Applications (FPL), 2018
TALKS	 Asymmetry in Butterfly Fat Tree FPGA NoC at FPT 2023, Yokohama, Japan (talk video, slides) Fast and Flexible FPGA development using Hierarchical Partial Reconfiguration
	 at FPT 2022, Hong Kong (talk video, slides) at ESE PhD seminar, University of Pennsylvania, Philadelphia, PA (slides) High-level Partial Reconfiguration for Fast Incremental FPGA Compilation at FPL 2022, Belfast, Northern Ireland (slides) Aug'22
	• Case for Fast FPGA Compilation using Partial Reconfiguration – at FPL 2018, Dublin, Ireland (slides) Aug'18
Awards/ Service	 Student Recognition Award, University of Pennsylvania Best Presentation Award, Penn ESE PhD seminar (F2022-S2023) Samsung Electronics Global Fellowship with post-graduation employment offer Best Paper Candidate, FPL2022 PhD Fellowship, University of Pennsylvania Best ECE Capstone Project Award (Project: NN on FPGA), Carnegie Mellon University University Honors, Carnegie Mellon University
	 Penn ESE PhD students seminar organizer Judge, Research Experience for Undergraduates, University of Pennsylvania Feb'23-Dec'23 Aug'23
TEACHING ASSISTANT	• SoC Architecture, University of Pennsylvania Fall 2021, Fall 2022 - Co-authored homework labs on multi-core, SIMD, HW acceleration, HLS, Xilinx Vitis - Held C/exam review sessions and weekly office hours for the graduate level course (20-40 students) - High TA rating for Fall 2022: 3.74/4, the best of all 7 offerings of the course's history
	 Mathematical Foundations of Electrical Engineering, Carnegie Mellon University Structure and Design of Digital Systems, Carnegie Mellon University Fall 2014 Spring 2014
SKILLS	Hardware Verilog, Xilinx FPGA (Vivado, Vitis HLS), Intel FPGA (Quartus), OpenCL Software C++, Python, PyTorch, scikit-learn, Tcl
RELEVANT COURSES	Computer Architecture Computer Organization SoC Architecture HW/SW Co-Design for ML Advanced Computer Arch. Big Data Analytics