Machine Learning for Social Sciences Part 2: Factorisation

Felix Hagemeister

TUM School of Social Sciences and Technology April 2022

Dimensionality Reduction: find a lower-dimensional summary of a high-dimensional x.

- **Supervised:** Response variable y dictates direction of dimensionality reduction (e.g. regression finds \hat{y}).
- **Unsupervised:** There is no response or outcome, reduce **x** for its own sake.

Clustering: Represent data as outcome of a *mixture distribution*.

- Assume that \mathbf{x} is drawn from K different probability distributions $p_k(\mathbf{x})$ for k=1...K
- Properties of these distributions define the clusters
- Mixtures of distributions can yield all sorts of complicated distributions

$$p(\mathbf{x}) = \pi_i p_i(\mathbf{x}) + ... \pi_K p_K(\mathbf{x})$$

where π_K is the probability for component k in the population

K-Means: Estimate cluster membership across K components.

- Membership of observation x_i is in one single cluster.
- K-Means is indeterminate (running again might produce slightly different results).
- Could run K-Means mulitple times using different random starts and use solution with smallest deviance.
- Choose K subjectively, might choose K with smallest BIC.

K-means with K=3 for protein consumption data in EU countries

Factor Models and PCA: Allow for mixed membership in clusters.

$$E[x_{ij}] = \phi_{i1}\nu_{i1} + ... + \phi_{iK}\nu_{iK}, j = 1...p$$

- where ϕ_{ik} coefficients are called *loadings* or *rotations*,
- ν_{ik} are K factors (the lower-dimensional summary of \mathbf{x}_i).
- Interpretation of K can be bottom-up (using big individual ϕ_{ki} rotations) or top-down (using fitted ν_{ik} and domain knowledge)
- Use proportion of variance explained by each PC (screeplot) to choose K

Let's implement k-means and principal component analysis ourselves using data on protein consumption from EU countries.

Here is the coding example.

Principal Component Regression (PCR): Use factors from PCA as inputs in regression

- Could use PCA on unlabeled data (unsupervised) and then use results in (supervised) regression
- One tactic is to use both ν and x PCs and raw inputs in a lasso regression

Let's implement principal component regression (PCR) on television survey data.

Here is the coding example.