TADA: TALK ABOUT DATA ANALYTICS | WEEK 11

Attention is All You Need (2017)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Hannah Do | Feb 19th, 2022

ATTENTION IS ALL YOU NEED

Development of Sequence Transduction Models

Fixed size of context vectors

Extracting information from the entire input sequence

Transformer, the first sequence transduction model based entirely on **attention**, replaced the recurrent layers most commonly used in encoder-decoder architectures with **multi-headed self-attention**.

Sentence is converted into an **input embedding matrix**. The dimension of such matrix is # of tokens in a sentence x # of embedding columns.

Positional Encoding allows a transformer to record the position of each token in a sentence.

Residual Learning skips a layer to keep the previous information, allowing easier access to global optimization.

The **Encoder Layers** are composed of the multi-head attention, residual connection and normalization, and the output of the last encoder layer is passed on to the decoder.

Part 2: Decoder

Decoder layer contains two multi-head attention. The purpose of the first attention layer serves similar purpose to that of an encoder, however the second multi-head attention gets information from the encoder layer to determine the correlation between the current output token and the previously computed encoder outputs.

ATTENTION IS ALL YOU NEED

Part 3: Multi-Head Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-Head Attention uses different key, value, and queries for linear transformation, computes attention scores, and concatenates to create an output.

ATTENTION IS ALL YOU NEED

Part 3 : **Multi-Head Attention**

1. Multi-Head Attention (Encoder)

Finding relationship between a word and its surrounding context

2. Masked Multi-Head Attention

Masking 'future' words in a sentence, leaving context of current and previous words

3. Multi-Head Attention (Encoder-Decoder)

Computes scaled-dot product using context information from both the encoder and decoder

Summary

Significantly faster than architectures based on recurrent or convolutional layers.

On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, the transformer achieved a new state of the art in 2017.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

References

- 1. **Attention Is All You Need** Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin (2017)
- 2. Transformer: Attention is All You Need https://www.youtube.com/ watch?v=AA621UofTUA
- 3. **The Illustrated Transformer** Jay Alammar https://jalammar.github.io/illustrated-transformer/