

The complexity of proximity search

Given n data points in \mathbb{R}^d , how long does it take to find the nearest neighbor of a query point q?

The complexity of proximity search

What if d = 1? Is there a clever data structure that can be used? What is the preprocessing time and query time?

Data structures for proximity search

Given a data set of n points in \mathbb{R}^d (or in a more general distance space), build a data structure for efficiently answering subsequent nearest neighbor queries q.

- Data structure should take space O(n)
- Query time should be o(n)

Many data structures have been designed for this purpose, e.g.,

- **1** K-d trees
- 2 Ball trees
- 3 Locality-sensitive hashing

These are part of standard Python libraries for NN, and help a lot.

Spatial data structure: *k***-d tree**

A hierarchical, rectilinear spatial partition.

For data set $S \subset \mathbb{R}^d$:

- If $|S| \le n_o$: return leaf cell containing S
- Pick a coordinate $1 \le i \le d$
- $v = \text{median}(\{x_i : x \in S\})$
- Split *S* into two halves:

$$S_L = \{x \in S : x_i < v\}$$

$$S_R = \{x \in S : x_i \ge v\}$$

• Recurse on S_L, S_R

What is the height of the tree? And how long does it take to build?

Proximity search with a k-d tree

Defeatist search for query *q*:

- Move q down to its leaf-cell
- Return closest point in that cell
- Time: $O(\log(n/n_o)) + O(d \cdot n_o)$

Problem: Might not return the actual nearest neighbor.

Proximity search with a k-d tree

Comprehensive search for query *q*:

- Go to q's leaf cell, find closest point in that cell
- Backtrack up the tree, looking for closer points and using geometric reasoning (triangle inequality) to decide if a subtree can be ignored
- Always returns the nearest neigbor
- Worst case: look at all points, O(dn)

B: Tree-based search in metric spaces

Data structure: Ball tree

Instance space \mathcal{X} with metric d.

Ball tree for a set of points $S \subset \mathcal{X}$:

- ullet Hierarchical partition of S with cells organized in a tree
- Each node of the tree has an associated ball

$$B(z,r) = \{x \in \mathcal{X} : d(x,z) \le r\}$$

that contains all points in that node

Building a ball tree

Lots of flexibility in how to split a cell, e.g.

- Pick two points in the cell
- Partition the cell according to which of those two points is closer

Defeatist search with a ball tree

Given a query q, how do we move down the tree?

When you get to a leaf: return the nearest neighbor in that leaf.

Comprehensive search with a ball tree

Suppose the closest point we've found so far (to query q) is x. How to decide whether we need to explore a cell C?

Let the bounding ball of C be B(z, r). Then we need to go into C if:

C: The curse of dimension in proximity search

The curse of dimension in nearest neighbor search

Situation: n data points in \mathbb{R}^d .

- 1 Not good: Storage is O(nd)
- 2 Not good: Time to compute distance is O(d) for ℓ_p norms
- 3 But worst of all: Geometry It is possible to have $2^{O(d)}$ points that are roughly equidistant from each other.

The best current methods for exact nearest neighbor search have *worst-case* query time proportional to 2^d and $\log n$.

The nightmare scenario in proximity search

For any $0 < \epsilon < 1$,

- Pick $2^{O(\epsilon^2 d)}$ points uniformly from the unit sphere in \mathbb{R}^d
- With high probability, all interpoint distances are $(1\pm\epsilon)\sqrt{2}$

How can this bad case be defeated?

- 1 Most real data doesn't look like a uniform distribution on a sphere. Data is often "intrinsically" lower-dimensional that it appears (e.g. lies on a d_o -dimensional manifold in \mathbb{R}^d , for $d_o \ll d$). Many methods for exact search can replace dependence on d by d_o .
- 2 Approximate nearest neighbor search

Cover trees for metric spaces

- Hierarchical cover of an arbitrary metric space
- Space O(n), permits dynamic insertion and deletion of data points
- Query time O(poly(c) log n), for a dimension-related constant c

A finite set X in a metric space has **expansion rate** c if for any point x and any radius r > 0,

$$|B(x,2r) \cap X| \leq c \cdot |B(x,r) \cap X|.$$

D: Approximate nearest neighbor search

Approximate nearest neighbor

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$||x-q|| \le c \cdot \min_{z \in S} ||z-q||.$$

Complexity of approximate NN search in Euclidean space:

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}

This is based on locality-sensitive hashing.

Locality-sensitive hashing

Typical hash function h_i : random projection + binning

$$h_i(x) = \left| \frac{r_i \cdot x + b}{w} \right|$$

- r_i is a random unit vector
- b is a random offset
- w is the bin width
- For any data set x_1, \ldots, x_n , query q: probability < 1 of failing to return an approximate NN.
- To reduce this probability, make t tables. Space: O(nt).

Proximity data structures: an impressionistic history

- 1975: The *k*-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.
- 1980s-1990s: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.
- 1990s-: It's okay to fail sometimes (e.g. Clarkson, Kleinberg).
- Late 1990s-: Locality-sensitive hashing (Indyk, Motwani, Andoni). Hashing scheme with some failure probability, widely used.
- Recently: many variants of hashing; resurgence of trees.