Normalisation

1-Adhérent (id_adh, nom, prénom, adresse)

Dépendances fonctionnelles de la relation

 Chaque adhérent est identifié par un id unique qui est associé donc à un seul nom, prénom et une adresse. Id_adh est donc la clé de la relation

Id_adh→ Nom Id_adh → Prénom Id_adh → adresse

Intuition sur les dépendances fonctionnelles non selectionnées

- ◆ adresse → Nom, Prénom,ld_adh(dépendance invalide car plusieurs adhérents peuvent habiter à la même adresse) X
- Nom → Prenom,ld_adh,adresse (dépendance invalide car plusieurs adhérents peuvent avoir le même Nom (valable pour prénom aussi)) X
- Nom,Prenom,adresse → Id_adh (dépendance non certaine, on est pas sur que cette dépendance soit unique pour tous les adhérents) X
- **•** ...

٠

Ces analyses nous mènent donc à conclure que le l'ID_adh est l'unique clé nous permettant d'obtenir une bonne correspondance dans la table Adhérent.

Normalisation

1NF: Toutes les valeurs (id_adh, nom, prénom, adresse) sont des valeurs atomiques.

2NF: Tous les attributs non-clés (nom, prénom, adresse) dépendent entièrement de id_adh.

3NF : Il n'y a **aucune dépendance transitive** entre les attributs non-clés.

BNCF : Toutes les dépendances fonctionnelles ont une partie gauche qui est la clé primaire (Id_adh) donc la relation est déjà BNCF

2-Auteur (id_auteur, nom, prénom)

Dépendances fonctionnelles de la relation

On conserve pour chaque auteur son nom et prenom et son id. id_auteur est donc la clé de la relation

Id_auteur→ Nom

Id_auteur → Prénom

Normalisation

1NF : Toutes les valeurs (id_auteur, nom, prénom) sont des valeurs atomiques.

2NF: Tous les attributs non-clés (nom, prénom) dépendent entièrement de ID.

3NF : Il n'y a **aucune dépendance transitive** entre les attributs non-clés.

BNCF: Toutes les dépendances fonctionnelles ont une partie gauche qui est la clé (Id_Auteur),

donc la relation est déjà BNCF

3-Livre (Id_Livre, ISBN, titre, genre, #id_auteur)

(Dans l'énoncé il nous ait mentionné que chaque livre a un auteur donc dans notre modèle chaque livre est écrit par un seul auteur)

Dépendances fonctionnelles de la relation

- O Puisque ISBN est unique à tous les livres internationalement, le titre , le genre et l'auteur dépendent fonctionnellement de ISBN.
- Il peut exister plusieurs exemplaire physique pour chaque Livre au même ISBN, donc ID représente le numéro d'identification unique pour chaque exemplaire physique

Id_Livre → ISBN
ISBN → titre, genre, id_auteur

Intuition sur les dépendances fonctionnelles non selectionnées

- ◆ titre → id_auteur (dépendance invalide car un même titre peut être utilisé par plusieurs auteurs différents)
- ♦ id_auteur → titre (dépendance invalide car un auteur peut écrire plusieurs livre)
- ◆ titre,id_auteur → genre (dépendance invalide car un auteur peut sortir pour un même livre différentes versions de genre)
- **•** ...

Normalisation

1NF: Toutes les valeurs (ISBN, titre, genre, #id_auteur) sont des valeurs atomiques.

2NF: Tous les attributs non-clés (titre,genre,#id_auteur) dépendent entièrement de ISBN.

3NF: Il y a dépendance transitive entre les attributs non clé.

En effet : Id_Livre → ISBN → titre, genre, id_auteur

(Titre genre et id_auteur dépendent de ld_Livre par transivité de ISBN .)

Algorithme de Bernstein

1. Initialiser P à l'ensemble vide (et i = 1)

 $P = \emptyset, i = 1$

2. Fixer Gune couverture minimale de F

 $\mathcal{F} = \{ \text{Id_Livre} \rightarrow \text{ISBN}, \text{ISBN} \rightarrow \text{titre}, \text{genre}, \text{id_auteur} \}$

Décomposition:

Id Livre → ISBN

ISBN → titre,

ISBN → genre,

ISBN → id_auteur

Il n'y a pas d'attributs en surnombre a gauche et aucune redondances

3. Pour chaque partie gauche X distincte dans G, créer une relation :

• *Reunion des atibuts*

 $\mathcal{F}=\{\text{Id Livre} \rightarrow \text{ISBN}, \text{ISBN} \rightarrow \text{titre}, \text{ genre, id auteur}\}$

• *Pour X=ID Livre :*

$$\circ Y = \{ISBN\}$$

$$\circ P = \{R_I(\underline{ID \ Livre, ISBN})\}$$

o
$$i = 2$$

0

• Pour X=ISBN:

o
$$Y = \{ \text{ titre, genre, id_auteur} \}$$

o
$$P = \{R_2(ISBN, titre, genre, id_auteur)\}$$

$$o$$
 $i=3$

0

On obtient donc les deux relations

$$R_1(ID_Livre, ISBN)$$
 et $R_2(ISBN, titre, genre, id_auteur)$ ID_Livre \rightarrow ISBN \rightarrow titre, genre, id_auteur

Cette decomposition respecte également la forme normale de Boyce-Codd (BCNF).

Dans R_1 (<u>ID_Livre</u>, ISBN) avec comme df ID_Livre \rightarrow ISBN, ID est la clé primaire. Dans R_2 (<u>ISBN</u>, titre, genre, id_auteur) avec comme df ISBN \rightarrow titre, genre, id_auteur, ISBN est la clé primaire.

4- Emprunt (Id_Emprunt,#ID_Livre,#ID_adhérent,Date_d'Emprunt, Date de Retour)

Dépendances fonctionnelles de la relation

Id_Emprunt est un identifiant unique pour chaque emprunt, il permet de déterminer tous les autres attributs de la relation. Id_Emprunt est la clé primaire.

Id_Emprunt → Id_Livre , Id_adhérent , Date_d'Emprunt , Date_de_Retour , Statut

(Id_Livre, Date_d'Emprunt) est aussi une clé candidate car il n'est pas possible pour un livre (ISBN) d'être emprunté à la même date (Date_d'emprunt).

La même logique est applicable sur (Id_livre ,Date_de_Retour) qui est donc aussi une clé candidate. Dans l'énoncé il est mentionné qu'un livre ne peut pas être retourné le même jour que son emprunt, donc il n'est pas possible d'avoir pour un seul livre physique 2 dates de retour.

On a donc que

F= {(Id_Emprunt → Id_Livre, Id_adhérent, Date_d'Emprunt, Date_de_Retour, Statut), (Id_Livre, Date_d'Emprunt → Id_Emprunt, Date_de_Retour, Id_adhérent,), (Id_Livre, Date_de_Retour → Id_Emprunt, Date_d'Emprunt, Id_adhérent,)}

Normalisation

1NF: Toutes les valeurs (**Id_Livre**, **#Id_adhérent**, **Date_d'Emprunt**, **Date_de_Retour**) sont des valeurs atomiques.

2NF : Tous les attributs non-clés (Id_Livre, Id_adhérent, Date_d'Emprunt, Date_de_Retour) dépendent entièrement de la clé primaire Id_Emprunt.

3NF : Il n'y a **aucune dépendance transitive** entre les attributs non-clés.

BNCF: Toutes les dépendances fonctionnelles ont une partie gauche qui est clé candidate (Id_Emprunt,(Id_Livre,Date_de_Retour) et (Id_Livre,Date_d'Emprunt), donc la relation est déjà BNCF

5- Commande (Id_commande, #ISBN, #Id_adhérent, date_commande, statut)

(Dans notre modèle on considère qu'un adhérent commande un livre au sens bibliographique donc par son ISBN contrairement à la table Emprunt qui vise directement l'Id du livre physique)

Id_commande est un identifiant unique pour chaque commande, il permet de déterminer tous les autres attributs de la relation. Id_commande est la clé primaire.

<u>Dépendances fonctionnelles de la relation</u>

Id_commande → ISBN, Id_adhérent , date_commande, statut

(ISBN, Id_adhérent, date_commande) est une clé candidate car un adhérent ne peut pas commander un même livre à la même date, car la reservation pour ce livre est déjà lancé, on obtient donc que :

ISBN, Id_Adhérent, date_commande → Id_commande, statut.

Intuition sur les dépendances fonctionnelles non selectionnées

ISBN, date_commande → Id_commande, statut, Id_Adhérent

(Cette dépendance est invalide car plusieurs personnes peuvent commander un même livre a une même date)

ISBN, Id_Adhérent→ Id_commande, Statut, date_commande

(Cette dépendance est invalide car il est possible qu'un commande un même livre a une différente date)

Etc ...

On a donc que:

F = { Id_commande → ISBN, Id_adhérent, date_commande, statut_commande, (ISBN, Id_adhérent, date_commande) → Id_commande, statut }

Normalisation

1NF: Toutes les valeurs (Id_commande, #ISBN, #Id_adhérent, date_commande, statut) sont atomiques

2 NF: Tous les attributs non-clés dépendent entièrement de la clé primaire Id_commande.

3NF: Il n'y a aucune dépendance transitive entre les attributs non-clés.

BNCF: Toutes les dépendances fonctionnelles ont une partie gauche qui est une clé candidate (Id_Commande) et (ISBN, Id_adhérent, date_commande), donc la relation est BNCF

Shema Final

Adhérent (id_adh, nom, prénom, adresse)

Auteur (id_auteur, nom, prénom)

Livre (ISBN, titre, genre, #id_auteur)

Exemplaire(Id_Livre,#ISBN)

Emprunt (Id_Emprunt,#ID_Livre,#ID_adhérent,Date_d'Emprunt,

Date_de_Retour)

Commande (Id_commande, #ISBN, #Id_adhérent,

date_commande, statut)