CSE221 Data Structures Lecture 23 String Algorithms I

Antoine Vigneron antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

December 6, 2021

- Introduction
- Strings
- 3 STL Strings
- 4 Longest common subsequence
 - Brute-force approach
 - Structure of the solution
 - Recurrence relation
 - Computing the length of an LCS
 - Computing an LCS
 - Conclusion

Introduction

- Assignment 4 due on Friday.
- I will not check memory leaks, so you don't need to implement a destructor.
- In Dijkstra's algorithm implementation, you may assume that D[u] is always less than some large number such as 10^{10} .
- Final exam is on Wednesday 15 December, 20:00–22:00.
- This is a first lecture on algorithms for strings.
- We will also present another application of *dynamic programming*, which was already mentioned assignment 3.
- Reference for this lecture: Textbook Chapter 13.

Strings

Two strings

```
P = "CGTAAACTGCTTTAATCAAACGC"
```

S = "This is a string."

• A *string* is a sequence of characters taken from an alphabet Σ .

Examples

An English word is a string of characters in $\Sigma = \{a, b, c, ..., z\}$. For DNA sequences, the alphabet is $\Sigma = \{C, G, T, A\}$.

- We will assume that the alphabet is fixed, and thus $|\Sigma| = O(1)$.
- The *null string* is the string of length 0, which we may denote λ . (Often called *empty string*.)

Strings

a substillig of I

a suffix of ${\cal P}$

Strings

- We denote by $P = P[0]P[1] \dots P[m-1]$ a string of *length* m.
- We denote by P[i ... j] the *substring* P[i]P[i+1]...P[j] whenever $0 \le i \le j < m$.
- P[0...i] is called a *prefix* of P and P[j...m-1] is a *suffix*.
- When i > j, then $P[i \dots j]$ is the null string λ .
- A *proper substring* of P is a substring of P that is not equal to P. In other words, it means that i > 0 or j < m 1.

STL Strings

Operation	Output
S.size()	16
S.at(5)	'f'
S[5]	'f'
S + "qrs"	"abcdefghijklmnopqrs"
S == "abcdefghijklmnop"	true
S.find("ghi")	6
S.substr(4, 6)	" efghij"
S.erase(4, 6)	"abcdklmnop"
S.insert(1, "xxx")	"axxxbcdklmnop"
S += "xy"	"axxxbcdklmnopxy"
S.append("z")	"axxxbcdklmnopxyz"

• Operations performed on the STL string "abcdefghijklmnop"

Introduction

- Let X = CABCBDAB.
- We say that Z = BDA is a *subsequence* of Z.

Definition (subsequence)

A string $Z=z_0z_1\ldots z_k$) is a subsequence of $X=x_0x_1\ldots x_{m-1}$ if there is an increasing function φ such that $z_i=x_{\varphi_i}$ for all $i\in\{0,\ldots,k\}$.

• In the example above, $\varphi(1)=2$, $\varphi(2)=5$, $\varphi(3)=6$,

$$z_1 = x_{\varphi(1)} = x_2 = B$$

$$z_2 = x_{\varphi(2)} = x_5 = D$$

$$z_3 = x_{\varphi(3)} = x_6 = A$$

• So the elements of the subsequence Z are taken from X, and appear in the same order.

Introduction

Definition (Common subsequence)

Given two strings X and Y, we say that Z is a *common subsequence* of X and Y if Z is a subsequence of X and Y.

Example

Z = BCA is a common subsequence of

X = ABCBDAB and Y = BDCABA

• In the example above, there is a *longer* common subsequence: BDAB.

Problem Statement

Problem (Longest common subsequence)

Given two strings $X = x_0 \dots x_{m-1}$ and $Y = y_0 \dots y_{n-1}$, the longest common subsequence problem is to find a common subsequence Z of X and Y with maximum length. We say that Z is a longest common subsequence (LCS) of X and Y.

Motivation: Measuring how similar two DNA strands are.

Example

- Two given strands
 - $S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$
 - $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$
- Their LCS is
 - $S_3 = GTCGTCGGAAGCCGGCCGAA$.
- The longer the strand S_3 is, the more similar S_1 and S_2 are.

Brute-Force Approach

Brute-Force Approach

For each subsequence of X, check whether it is a subsequence of Y. Return the longest such subsequence of X and Y.

- What is the running time?
- There are 2^m subsequences of X, so the running time is $\Omega(2^m)$.
- This is exponential.
- It is too slow for DNA sequences, for instance.
- So we will use a different approach: dynamic programming.

Structure of the Solution

- We denote by X_i and Y_j the prefixes of X and Y of lengths i+1 and j+1, respectively. So $X_i = x_0x_1 \dots x_i$ and $Y_j = y_0 \dots y_j$.
- In order to solve the problem by dynamic programming, we need a better understanding of the structure of the optimal solutions.

Theorem (Optimal substructure of an LCS)

Let $Z_k = z_0 \dots z_k$ be an LCS of two sequences $X_i = x_0, \dots, x_i$ and $Y_j = y_0, \dots, y_j$.

- If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_{k-1} is an LCS of X_{i-1} and Y_{j-1} .
- ② If $x_i \neq y_j$, then Z_k is an LCS of X_i and Y_{j-1} , or an LCS of X_{i-1} and Y_j .

Structure of the Solution

Proof.

- (Case where x_i = y_j.) If z_k ≠ x_i, then we can append x_i to Z_k and obtain a longer subsequence of X_i and Y_j. It contradicts the optimality of Z_k.
 Now suppose that z_k = x_i. The prefix Z_{k-1} is a subsequence of X_{i-1} and Y_{i-1}. If it were not an LCS of X_{i-1} and Y_{i-1}, then there would
 - and Y_{j-1} . If it were not an LCS of X_{i-1} and Y_{j-1} , then there would be a common subsequence Z' of X_{i-1} and Y_{j-1} with length more than k. After appending x_i to Z', we obtain a common subsequence of X_i and Y_j which is longer than Z_k , a contradiction.
- ② As $x_i \neq y_j$, we must have $z_k \neq x_i$ or $z_k \neq y_j$. Without loss of generality, we assume that $z_k \neq x_i$. Therefore Z_k is a subsequence of X_{i-1} . We also know that Z_k is a subsequence of Y_j . Then Z_k must be an LCS of X_{i-1} and Y_j , as otherwise, there would be a longer subsequence of X_i and Y_j , contradicting the assumption that Z_k is an LCS of X_m and Y_n .

Structure of the Solution

- The theorem above is an *optimal substructure* property.
- We usually need this type of result in order to use dynamic programming.
- It gives a connection between the original problem and the subproblems whose solutions are recorded by the algorithm.

Recurrence Relation

- Let L[i,j] denote the length of an LCS of X_i and Y_j .
- The following recurrence relation follows from the theorem on Slide 12:

$$L[i,j] = \begin{cases} 0 & \text{if } i = -1 \text{ or } j = -1 \\ L[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(L[i-1,j], L[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$
(1)

 This formula allows us to compute the length of an LCS recursively. (See next slide.)

Computing the Length of an LCS

Naive Approach

```
1: procedure LCS(X, Y, i, j)

2: if i = -1 or j = -1 then \triangleright empty substring

3: return 0

4: if x_i = y_j then

5: return 1 + LCS(X, Y, i - 1, j - 1)

6: return max(LCS(X, Y, i - 1, j), LCS(X, Y, i, j - 1))
```

- The algorithm above runs in exponential time. (See next slide)
- So we will use a different approach, called dynamic programming.

Analysis by the Recursion Tree Method

total: $\Omega(2^n)$

Computing the Length of an LCS

Dynamic Programming Approach

```
1: procedure LCSLENGTH(X, Y)
         L[-1 \dots m, -1 \dots n] \leftarrow \text{new array}
 2:
        for i \leftarrow -1, m-1 do
 3:
 4:
             L[i,-1] \leftarrow 0
        for i \leftarrow -1, n-1 do
 5:
             L[-1, j] \leftarrow 0
 6:
        for i \leftarrow 0, m-1 do
 7:
 8.
             for i \leftarrow 0, n-1 do
                 if x_i = y_i then
 9.
                      L[i,j] \leftarrow L[i-1,j-1] + 1
10:
                  else
11:
                      L[i, j] \leftarrow \max(L[i-1, j], L[i, j-1])
12:
         return L[m-1, n-1]
13:
```

Computing the Length of an LCS

- Correctness of this algorithm follows from Equation (1), and the fact that at the time we compute L[i,j], the values of the subproblems L[i-1,j-1], L[i-1,j] and L[i,j-1] have already been computed.
- Analysis: This algorithm runs in $\Theta(mn)$ time due to the doubly-nested loops.
- This is called dynamic programming because we record solutions of subproblems, to avoid recomputing them during the course of the algorithm. (See CSE331: Introduction to Algorithms.)
- This procedure only computes the length of an LCS. How do we recover an optimal subsequence $Z = z_1 \dots z_k$?

	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i							
0	A							
1	В							
2	\mathbf{C}							
3	В							
4	D							
5	A							
6	В							

Table: L[-1...6, -1...5]

• LCSLENGTH computes the whole table $L[-1\ldots m-1,-1\ldots m-1]$ of the LCS lengths of (X_i,Y_j) for all $0\leqslant i\leqslant m-1$ and $0\leqslant j\leqslant n-1$.

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- LCSLENGTH computes the whole table $L[-1\ldots m-1,-1\ldots m-1]$ of the LCSLengths of (X_i,Y_j) for all $0\leqslant i\leqslant m-1$ and $0\leqslant j\leqslant n-1$.
- We can use this information to construct an LCS backward.

abla	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

Table:
$$L[-1...6, -1...5]$$

• $x_6 = B$ and $y_5 = A$, so $x_6 \neq y_5$.

abla	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- $x_6 = B$ and $y_5 = A$, so $x_6 \neq y_5$.
- So an LCS of (X_6, Y_5) is an LCS of (X_5, Y_5) or (X_6, Y_4) by the Theorem on Slide 12.
- As L[5,5] = L[6,4] = 4, we can recurse on either side.

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- We recurse on X_5 , Y_5 .
- $x_5 = y_5 = A$.

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	$ig(\mathbf{A} ig)$	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- We recurse on X_5, Y_5 .
- $x_5 = y_5 = A$.
- So an LCS of (X₅, Y₅) is obtained by appending A to an LCS of (X₄, Y₄) by the Theorem on Slide 12.

abla	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- We recurse on X_4 , Y_4 .
- $x_4 = B$ and $y_4 = A$, so $x_4 \neq y_4$.

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	\mathbf{C}	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- We recurse on X_4 , Y_4 .
- $x_4 = D$ and $y_4 = B$, so $x_4 \neq y_4$.
- So an LCS of (X₄, Y₄) is an LCS of (X₃, Y₄) or (X₄, Y₃).
- As L[4,3] = 2 and L[3,4] = 3, it is an LCS of (X_3, Y_4)

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	В	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	В	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- We recurse on X_3 , Y_4 .
- $x_3 = B$ and $y_4 = B$, so $x_3 = y_4$.

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	B	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	B	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

Table: L[-1...6, -1...5]

• We recurse on X_2 , Y_3 .

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	C	A	B	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\mathbf{C}	0	1	1	2	2	2	2
3	B	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

Table: L[-1...6, -1...5]

• We recurse on X_2 , Y_2 .

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	\bigcirc	A	B	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	O	0	1	1	2	2	2	2
3	B	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

Table: L[-1...6, -1...5]

• We recurse on X_1 , Y_1 .

\setminus	j	-1	0	1	2	3	4	5
i		y_j	В	D	\bigcirc	A	B	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	В	0	1	1	1	1	2	2
2	\bigcirc	0	1	1	2	2	2	2
3	B	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

Table: L[-1...6, -1...5]

• We recurse on X_1 , Y_0 .

\setminus	j	-1	0	1	2	3	4	5
i		y_j	B	D	\bigcirc	A	B	A
-1	x_i	0	0	0	0	0	0	0
0	A	0	0	0	0	1	1	1
1	B	0	1	1	1	1	2	2
2	C	0	1	1	2	2	2	2
3	B	0	1	1	2	2	3	3
4	D	0	1	2	2	2	3	3
5	A	0	1	2	2	3	3	4
6	В	0	1	2	2	3	4	4

- We recurse on X_0, Y_{-1} .
- End of recursion.
- BCBA is an LCS.
- Remark: It is not the only LCS.
 BDAB is another LCS.

• The procedure below prints an LCS in forward order, given the array L[-1...m-1,-1...n-1] from LCSLENGTH.

Pseudocode

```
1: procedure PrintLCS(L, X, Y, i, j)
       if i = -1 or j = -1 then
2:
3:
          return
4:
       if x_i = y_i then
          PRINTLCS(L, X, Y, i-1, j-1)
5:
           Print xi
6:
       else if L[i-1,j] = L[i,j] then
7:
          PRINTLCS(L, X, Y, i - 1, i)
8:
9.
       else
          PRINTLCS(L, X, Y, i, j - 1)
10:
```

- What is the running time of PRINTLCS?
- It is O(m+n), because at each recursive call, j or i is decremented, sot there are at most m+n recursive calls.
- PRINTLCS only prints one LCS. What would happen if we tried to print all the LCS?
- In the worst case there are exponentially many LCS, so it would take exponential time.

Concluding Remarks

- Dynamic programming helped us bring down the running time from exponential to polynomial.
- We were able to easily reconstruct an optimal solution, given the optimal value (i.e. we could reconstruct an LCS after computing its length).
- In particular, computing the optimal length took quadratic time $\Theta(mn)$, but using the table computed by this procedure, we could print an LCS in linear time O(m+n).