6

7

8

9

1

2

2

2

3

4

1

2

3

4

5 6

1 2

3

WHAT IS CLAIMED IS:

_		_		•
1	A locar	cuctom	compri	CITIO
1.	A lasti	2 4 2 (CIII	COMPLI	21115
		- 9 -		_

a laser generating a laser beam with a first frequency;

a non-linear optic disposed in an optical path of the beam, the non-linear optic effecting a conversion of the first frequency to a second frequency, the conversion varying with an angle of the non-linear optic relative to the optical path; and

a first member having a first thermal coefficient of expansion, the first member thermally coupled to the non-linear optic so that thermal expansion in a dimension of the first member with a change in temperature of the non-linear optic effects a change in the angle of the non-linear optic.

- 2. The laser system of claim 1, wherein the thermal expansion of the member effects a predetermined change in the angle of the non-linear optic when the non-linear optic undergoes the change in temperature, and wherein the predetermined change in the angle effects a desired adjustment in the conversion.
- 3. The laser system of claim 2, wherein the conversion provided by the non-linear optic also varies with a temperature of the non-linear optic, and wherein the angle-induced adjustment in the conversion compensates for temperature-induced changes in the conversion by the non-linear optic.
- 4. The laser system of claim 3, wherein the non-linear optic is pivoted by the member within the optical path so that the second frequency remains within a desired range when a temperature of the non-linear optic varies throughout a predetermined temperature range during operation of the laser system.
- 5. The laser system of claim 1, further comprising a second member attached to the first member, the second member having a second coefficient of thermal expansion, the second expansion coefficient being different than the first expansion coefficient, wherein differential thermal expansion alters a bend angle of the attached first and second members, the angle of the non-linear optic being mechanically coupled to the bend angle.
- 6. The laser system of claim 1, further comprising a beam control system for selectively directing the beam onto a cornea of a patient so as to effect a desired refractive change, the laser system comprising a laser eye surgery system.

		7. The laser system of claim 6, wherein the laser comprises a solid				
	2	state laser, and wherein a frequency of the beam incident on the cornea is in a range from				
	3	about 180 to about 210 nm.				
	1	8. A laser eye surgery system comprising:				
	2	a laser generating a laser beam with a first frequency;				
	3	a non-linear optic disposed in an optical path of the beam so as to define				
	4.	an angle relative to the beam, the non-linear optic effecting a conversion of the first				
	5	frequency to a second frequency, wherein the conversion has an angle-induced change in				
	6	with a change in the angle, and wherein the conversion has a temperature-induced change				
	7	with a change in a temperature of the non-linear optic;				
	8	a compensator including a first member having a thermal coefficient of				
	9	expansion, the first member thermally coupled to the non-linear optic so that the change				
	10	in temperature of the non-linear optic effects a change in a dimension of the first member				
		the first member mechanically coupled to the non-linear optic, the change in dimension of				
		the first member effecting the change in angle of the non-linear optic so that the angle-				
	13	induced change in the conversion compensates for the temperature-induced change in the				
	14	conversion; and				
	15	a beam directing system in the optical path from the non-linear optic, the				
	16	beam directing system selectively directing the beam toward portions of a cornea so as to				
		effect a desired change in a refractive characteristic of the cornea.				
	1	9. A method comprising:				
	2	generating a laser beam at a first frequency with a laser;				
	3	converting the beam to a second frequency with a non-linear optic,				
	4 .	wherein the converting step varies with a temperature of the non-linear optic and with an				
	5	angle defined by the non-linear optic and the laser beam;				
	6	passively compensating for temperature-induced variations in the non-				
	7	linear optic by transferring heat to a member from the non-linear optic so that thermal				
	8	expansion of the member adjusts the angle of the non-linear optic.				