Podskupina chrómu (chróm, molybdén, volfrám)

1		C convei bean con															
1A -	—U.S. c	onventi	on														
,	2											13	14	15	16	17	
H	2A											3B	4B	5B	6B	7B	
	2A	Í									í	3A	4A	5A	6A	7A	
3	4	1										5	6	7	8	9	
Li	Be	3	4	5	6	7	8	9	10	11	12	В	С	N	0	F]
11	12	3A	4A	5A	6A	7A	O	8A	10	1B	2B	13	14	15	16	17	
Na	Mg	3B	4B	5B	6B	7B		—8B—		1B	2B	Al	Si	P	S	Ci	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	100
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	3
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ī	
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At-	
87	88	89	104	105	106	107	108	109							1		
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D y	Ho	E r	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	L r

Skupina VI

Chróm, Molybdén, Volfrám

konfigurácia Cr 4s¹ 3d⁵

Mo $(n-1)d^5ns^1$ n=5

W $(n-1)d^4ns^2$ n=6

-najvyšší oxidačný stupeň je VI

-podobné atómové polomery → Mo a W sa navzájom podobajú a značne sa líšia od chrómu (lantanoidová kontrakcia).

Prvok	1	r ⁴⁺	<i>r</i> (pm)	ρ	b. t. (K)
Cr	653	55	127	7,14	2180
Мо	692	68	139	10,8 0	2840
W	770	68	139	19,3 0	3680

Chróm

všetky oxidačné stavy medzi -2 a +6, najbežnejšie sú +2, +3 a +6, z ktorých je +3 najstálejší.

Chrómové zlúčeniny - silné oxidačné činidlá a existujú len ako kyslíkaté zlúčeniny CrO_3 a $Cr_2O_7^{2-}$ ale nie ako halogenidy.

chromité zlúčeniny sú paramagnetické a sú kineticky inertné – vo vodnom roztoku len veľmi pomaly podliehajú substitučným reakciám.

Cr – tvrdý, lesklý kov, pokrýva sa vrstvičkou oxidu chromitého, ktorý zabraňuje korózii.

Hlavné použitie pri výrobe nehrdzavejúcej ocele a pri pochromovaní kovov (oxid chromitý sa rozpustí v kyseline sírovej a chróm sa potom elektrolyticky vylúči na povrch kovu).

Cr – kov – chemicky odolný FeO · Cr₂O₃ chromit, PbCrO₄ krokoit výroba:

vyroba. FeO ·
$$Cr_2O_3$$
 + 4C \longrightarrow Fe + 2Cr + 4CO ferochrom čistý $Na_2Cr_2O_7$ + C \longrightarrow Cr_2O_3 + Na_2CO_3 + CO Cr_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Cr

podobnosť zlúčenín medzi chrómom a sírou – sírany aj chrómany sú tetraedrické, ich niektoré soli sú izomorfné, CrO₂Cl₂, SO₂Cl₂....

vysoké oxidačné stavy stabilizované ligandami s vysokou elektronegativitou

Hexaakvachromitý katión $[Cr(H_2O)_6]^{3+}$ je zložkou mnohých chromitých solí, napr. kamenca chromitého $KCr(SO_4)_2 \cdot 12H_2O$.

Chromitý katión hydrolyzuje $[Cr(H_2O)_6]^{3+} + H_2O \rightarrow [Cr(OH)(H_2O)_5]^{2+}$ $[Cr(H_2O)_6]^{3+} + 3OH^- \rightarrow [Cr(OH)_3(H_2O)_3]$ hydratovaný hydroxid chromitý oxid chromitý, Cr_2O_3 – pigment, chrómová zeleň. Je to veľmi stabilný amfotérny oxid.

Chrómany – menej stále. Sú to silné oxidačné činidlá. Sú karcinogénne. Chrómanový anión ${\rm CrO_4^{2-}}$ je v roztoku stály len v zásaditom prostredí, okysľovaním vzniká dichróman

Cr₂O₇²⁻ (štruktúra dvoch tetraédrov spojených atómom kyslíka).

$$2CrO_4^{2-} + 2H_3O^+ \rightarrow Cr_2O_7^{2-} + 3H_2O$$

chróman olovnatý PbCrO₄– chrómová žltá.

CrCl₃ vo vode nerozpustný, vzniká priamou reakciou prvkov

- chromnaté zlúčeniny - nestále, redukčné činidlá, v roztoku sa oxidujú na soli chromité

Molybden, Volfram

Mo, W – litosféra 10⁻⁴ mol %

 MoS_2 molybdenit, (Fe, Mn) WO_4 wolframit $PbMoO_4$ wulferit, $CaWO_4$ – scheelit MoS_2 + 7/2 O_2 \longrightarrow MoO_3 + 2 SO_2 .

$$2 \text{ FeWO}_4 + 2 \text{ Na}_2 \text{CO}_3 + \frac{1}{2} \text{ O}_2 \longrightarrow 2 \text{ Na}_2 \text{WO}_4 + \text{Fe}_2 \text{O}_3 + 2 \text{ CO}_2$$

 $\text{Na}_2 \text{WO}_4 + 2 \text{ HCl} \longrightarrow \text{WO}_3 + \text{H}_2 \text{O} + 2 \text{ NaCl}$
 $\text{WO}_3 + 3 \text{H}_2 \longrightarrow \text{W} + 3 \text{H}_2 \text{O}$

Použitie: katalýza – Mo, oceľ, žiarovky

oxidačné čísla -II, 0, I, II; III; VI

Redukcia WO₄²⁻ volframové bronzy

 Na_nWO_3 $n \sim 0.9$ zlatožlté

 $n \sim 0.3 \mod r\acute{e}$

chemicky inertné;

Molybdénové a wolfrámové zlúčeniny nemajú také silné oxidačné vlastnosti ako chrómové zlúčeniny a vystupujú aj ako stabilné halogenidy (MoF₆, WBr₆..). U Mo a W sú najstabilnejšie kyslíkaté zlúčeniny molybdénové a volfrámové,

U Mo aj W je známa existencia polymolybdénanových (napr. $Mo_7O_{24}^{6-}$) a polywolfrámových (napr. $W_6O_{21}^{5-}$) aniónov, zložených z oktaédrov MO_6 .

pH=6 $7 \text{ MoO}_4^{2-} + 8H_3O^+ \rightarrow \text{Mo}_7O_{24}^{6-} + 12 H_2O$

pH=3 $8 \text{ Mo}_7\text{O}_{24}^{6-} + 20\text{H}_3\text{O}^+ \rightarrow 7\text{Mo}_8\text{O}_{26}^{4-} + 30\text{H}_2\text{O}$

W- väčšia tendencia tvoriť polyanióny ako molybdén (hexavolfrámany $HW_6O_{21}^{5-1}$, dodekawolfrámany $W_{12}O_{41}^{10-1}$, metawolfrámany $W_{12}O_{39}^{6-1}$

Molybdenany a wolframamy

izopolykyseliny – polyanióny MoO_{6} ; WO_{6} $Mo_{7}O_{24}^{6-}$; $HW_{6}O_{21}^{5-}$ $6 MoO_{4}^{2-} + 10 H^{+} \longleftrightarrow Mo_{6}O_{19}^{2-} + 5 H_{2}O$ $7 MoO_{4}^{2-} + 8 H^{+} \longleftrightarrow Mo_{7}O_{24}^{6-} + 4 H_{2}O$ $8 MoO_{4}^{2-} + 12 H^{+} \longleftrightarrow Mo_{8}O_{26}^{4-} + 6 H_{2}O$ $36 MoO_{4}^{2-} + 64 H^{+} \longleftrightarrow Mo_{36}O_{112}^{8-} + 32 H_{2}O$

$$[MoO_{4}]^{2-} \xrightarrow{pH \ 6} [Mo_{7}O_{24}]^{6-} \xrightarrow{pH \ 2} [Mo_{8}O_{26}]^{4-} \xrightarrow{pH \ < 1} MoO_{3} \cdot 2H_{2}O$$

$$[WO_4]^{2-} \xrightarrow{pH 6-7} [HW_6O_{21}]^{5-} \xrightarrow{pH 3,3} [H_3W_6O_{21}]^{3-} \xrightarrow{pH < 1} WO_3 \cdot 2H_2O$$

Molybdenany – príklad

 $[Mo_7O_{24}]^{6-}$

Väzba kov-kov Klastery

 $[Mo_2Cl_8]^4$.

Mo Mo Mo Mo

Nepovinné Rozširujúca informácia

Podskupina mangánu (mangán, technécium, rénium)

1-	7	C convei sean con															
1A-	The state of the s	convention															
1A _	2	VII	244									13	14	15	16	17	8
l H	2A											3B	4B	5B	6B	7B	F
11	2A										T.	3A	4A	5A	6A	7A	
3	4	ĺ	£1.									5	6	7	8	9	
Li	Be	2	4	5	6	7	8	0	10	1.1	1.2	В	С	N	0	F	ı
11	12	3 3A	4 4A	5 5A	6A	7A	8	9 8A	10	11 1B	12 2B	13	14	15	16	17	
Na	Mg	3B	4B	5B	6B	7B		— 8B —		1B	2B	Al	Si	P	S	Ci	I
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	112
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	11
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	7
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At -	1
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	P r	Nd	Pm	Sm	Eu	Gd	Tb	D y	H o	E r	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	Lr

Podskupina mangánu (Mn, Tc,Re)

 $(n-1)d^5ns^2$

Mn sa vlastnosťami líši od Tc a Re v dôsledku lantanoidovej kontrakcie. Maximálny oxidačný stav je VII.

Prvok	1	<i>r</i> (pm)	ρ	<i>b. t.</i> (K)
Mn	717	126	7,21	1517
Тс	703	136	11,50	2600
Re	760	137	21,00	3450

Manganistany majú silnejšie oxidačné vlastnosti ako technecistany a renistany. Najstálejším oxidačným číslom mangánu je +2. Zlúčeniny Tc a Re v oxidačnom stupni +2 nie sú známe.

Spoločné znaky:

- všetky tri prvky tvoria stabilné oxidy MO₂
- všetky tvoria anióny MO₄²⁻ (podobne ako Cr a Fe)

Mangán

ľahké odštiepenie dvoch elektrónov z orbitálu 4s →mimoriadna stálosť oxidačného čísla +2.

Mn - môže sa vyskytovať v oxidačných stavoch od -3 do +7. Najbežnejšie +2, +4 a +7, pričom oxidačné číslo +2 je stabilnejšie.

nízke oxidačné stavy sú stabilizované ligandami schopnými vytvárať datívne π-väzby (π-akceptorové ligandy ako CO), zatiaľ čo vysoké oxidačné stupne sú tvorené ligandami s vysokou elektronegativitou.

- zlúčeniny mangánaté sú paramagnetické (vysoko aj nízkospinové komplexy)
- vysokospinové oktaedrické zlúčeniny manganaté a manganité sú kineticky labilné a ľahko podliehajú vo vodnom roztoku substitučným reakciám. Naproti tomu nízkospinové oktaedrické komplexy Mn v ox. číslach +1, +2 a +3 sú kineticky inertné.

- všetky zlúčeniny Mn kto majú elektróny v d orbitáloch sú farebné, ale aj Mn VII , ktorý elektróny v d orbitáloch nemá.

Mn - neušľachtilý kov. Patrí medzi najelektropozitívnejšie kovy. V práškovom stave reaguje aj s vodou.

Na rozdiel od železa nie je feromagnetický. V tuhom stave je mangán lesklý, tvrdý, striebristý kov. Používa sa pri výrobe ocelí (feromangán). Oceľ obsahujúca 12 percent mangánu je veľmi tvrdá, používa sa na výrobu koľajníc a produktov, ktoré musia byť zvlášť odolné voči opotrebovaniu.

hlavným zdrojom je pyroluizit, MnO₂. Pripravuje sa termickým procesom. Najprv sa oxid manganičitý premení na Mn₃O₄

$$3MnO_2(s) \rightarrow Mn_3O_4(s) + O_2(g)$$

Pôsobením hliníka sa pripravuje tekutý mangán

$$3Mn_3O_4(s) + 8AI(s) \rightarrow 4AI_2O_3(s) + 9Mn(l)$$

Mangánaté zlúčeniny – najstálejšie ako v kyslom, tak aj neutrálnom prostredí.

Manganatý katión $[Mn(H_2O)_6]^{2+}$ - svetloružová farba roztoku.

V zásaditom prostredí nerozpustný Mn(OH)₂ existuje len za neprítomnosti kyslíka. V prítomnosti kyslíka sa oxiduje na tmavohnedý oxid manganitý alebo až čierny oxid manganičitý.

Oxid manganičitý je tmavý prášok, ktorý sa v laboratóriu používa na katalytický rozklad peroxidu vodíka na kyslík. Je amfotérny.

Manganitý ión je v roztoku nestabilný a disproporcionuje na manganatý katión a oxid manganičitý.

Mangánany M_2MnO_4 sú stabilné len v zásaditom prostredí, v neutrálnom prostredí rýchlo disproporcionujú $3MnO_4^{2-} + 4H_3O^+ \rightarrow MnO_4^{-} + MnO_2 + 6H_2O$

Manganistany sú silné oxidačné činidlá ako v kyslom tak aj zásaditom prostredí v kyslom

 $MnO_4^- + 2H_2O + 8H^+ + 5e \rightarrow [Mn(H_2O)_6]^{2+}$

v zásaditom $MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 4OH^-$

na ich prípravu sú potrebné ox. činidlá, ktoré majú ešte silnejšie oxidačné vlastnosti, napr. chlorečnany

 $2MnO_2(s) + 2KOH(I) + KCIO_3(I) \rightarrow 2KMnO_4(I) + 2KCI(I) + H_2O(g)$ (alkalické tavenie)

manganistan draselný sa využíva v analytickej chémii – manganometria $2MnO_4^- + 5H_2O_2 + 6H_3O^+ \rightarrow 2[Mn(H_2O)_6]^{2+} + 5O_2 + 2H_2O$

Oxidy

MnO – manganosit (zelený), štruktúra NaCl

nestechiometrické; $MnCO_3 \longrightarrow MnO_{1,13}$

 $Mn(OH)_2$ (biely) $\longrightarrow MnO(OH) \longrightarrow Mn_2O_3$

 Mn_2O_3 – braunit; $MnO_2 \longrightarrow Mn_2O_3 200$ °C

 MnO_2 – štruktúra <u>rutilu</u> (\Rightarrow) $Mn(NO_3)_2$ \longrightarrow MnO_2

Mn₃O₄ – žihanie pri 1000 °C

Mn₂O₇ – zelená kvapalina 285 K, exploduje

MnO; Mn₂O₃ – <u>bázické</u>; hydroxidy MnO₂ – <u>amfotérne</u> MnO₂ + H₂O₂ + H₂SO₄ \longrightarrow MnSO₄ + H₂O + O₂ MnO₂ + 4 HCl \longrightarrow MnCl₄ + 2 H₂O MnCl₄ \longrightarrow MnCl₃ + ½ Cl₂ MnCl₃ \longrightarrow MnCl₂ + ½ Cl₂

Mangan - soli

```
Mn(II) MnS – štruktúra NaCl
MnCl_2; MnCl_2 \cdot 4H_2O; MnSO_4 \cdot 7H_2O (5H<sub>2</sub>O)
schoenity MnCO_3 \longrightarrow MnO + CO_2
Mn(III) MnF<sub>3</sub> najstálejší
Mn_2(SO_4)_3 \cdot H_2O \cdot H_2SO_4; H[Mn(SO_4)_2] \cdot 2H_2O
Mn(IV) – soli sú nestálé K_2[MnCl_6], Mn(SO_4)_2
Mn(V) Na_3[MnO_4] \cdot 10H_2O
Mn(VI) K_2MnO_4 zelený
Mn(VII) KMnO<sub>4</sub>
    MnO_4^- + 8 H^+ + 5 e^- \longrightarrow Mn^{2+} + 4 H_2O
  2 \text{MnO}_{4}^{-} + 4 \text{H}^{+} + 3 \text{e}^{-} \longrightarrow \text{MnO}_{2} + 2 \text{H}_{2}\text{O}
  4 \text{ MnO}_{4}^{-} + 4 \text{ OH}^{-} \longrightarrow 4 \text{ MnO}_{4}^{2-} + \text{ O}_{2} + 2 \text{ H}_{2} \text{ O}
```

Výskyt:

Mn - 0.085% Fe > Ti > Mn MnO_2 – pyrolusit techn. Fe + Mn (80%) zliatina feromangan výroba MnO_2 + Fe₂O₃ + dolomit + uhlie $Mn + S \longrightarrow MnS$ – zlepšuje vlastnosti ocelí Mn + S, N_2 , O_2 (Mn_3O_4)

Technecium, Rhenium

91Tc – štiepný produkt U (6%), 1939

 $^{99\text{m}}$ Tc z Mo; 100 MW \longrightarrow 2,5 g 99 Tc denne

Re – **1925 z molybdenitu** (20 ppm) z lietavých prachov MoS, (Re,O,)

Re₂O₃ – nestály

 $ReO_2 \longrightarrow Re_2O_7$

TcO, najstálejší, čierny stály, žltý Tc₂O₇ stály, žltý

HTcO₄ – červená kryštalická látka; Tc₂O₇ v H₂O

HReO₄ – žltozelená, slabé oxidačné vlastnosti

Halogenidy: Re₃Cl₉

Hydridy: K, ReH

Klastery typu M3:

Nepovinné Rozširujúca informácia

[Re₃Cl₉L₃] alebo [Re₃Cl₁₂]³⁻

 komplexy [Re₃Cl₉L₃] [Re₃Cl₁₂]³ ⇒ dvojitá väzba Re-Re. Ligandy L využívajú nehybridizované orbitály na Re.

1 —	_IUPA(C conver	ntion														18
1A-	— Europ	pean con	vention														0
1A -		convention	on													essag.	84
ı	2											13	14	15	16	17 - [2
Ĥ	2A											3B	4B	5B	6B	7B	H
	2A	í									7	3A	4A	5A	6A	7A	
3	4	ĺ									1	5	6	7	8	9	10
Li	Be	1 2	4	5	6	7	8	9	10	11	12	В	С	N	0	F	N
11	12	3 3A	4 4A	5 5A	6A	7A	8	8A	10	11 1B	2B	13	14	15	16	17	1
Na	Mg	3B	4B	5B	6B	7B		∘A —8B—		1B	2B 2B	Al	Si	P	S	CI	A
	20	21	1 1		24			27	28	29	1	21	22	22	34	35	2
19 K	Ca	Sc	Ti 22	23 V	Cr	25 Mn	26 Fe	Co	28 Ni	Cu	30 Zn	31 Ga	32 Ge	33 As	Se Se	Br	3 K
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	5
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	x
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	8
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At-	R
87	88	89	104	105	106	107	108	109	A								
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D y	Ho	E r	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	Lr

Skupina VIII

Fe	Co	Ni	triáda železa
Ru	Rh	Pd	ľahké Pt kovy
Os	Ir	Pt	ťažké Pt kovy

vysoké body topenia; zliatiny; intermetalické zlúčeniny katalyzátory; rozpúšťanie H₂; premenlivé oxidačné stavy

Prvok	r ²⁺ (pm)	<i>b. t.</i> (K)	Oxidačné stavy	Príklady
Fe	76	1810	-II, 0, II, III, +VI	[Fe(CO) ₆] ²⁻ , K ₂ FeO ₄
Co	74	1760	−I, II, III, +IV	[Co(CO) ₄] ⁻ , [CoF ₆] ²⁻
Ni	72	1720	0, II, +IV	K ₂ NiF ₆

Železo

Fe - 5,1%

Fe₂O₃ krveľ, Fe₃O₄ magnetit, FeS₂ – pyrit, FeCO₃

výroba:

čisté Fe – redukcia H₂ z oxidov

obsah 4 % C; 2,5 % Si; 2,5 % Mn 1 % P; 0,1 % S; ocel' C < 1 %

Korózia

$$4 \operatorname{Fe} + 2 \operatorname{H}_2 O + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 O_3 \cdot \operatorname{H}_2 O$$

s uhlíkom Fe₃C – karbid triželeza (cementit0, ktorý je súčasťou ocele a zvyšuje je tvrdosť.

Oxidy: FeO – čierna prášková látka. Pripravuje sa termickým rozkladom šťaveľanu železnatého za neprítomnosti vzduchu. Pri ochladzovaní dispropocionuje

$$4\text{FeO} \rightarrow \text{Fe}_3\text{O}_4 + \text{Fe}$$

FeO má štruktúru NaCl. Nestechiometria.

Fe₂O₃ – získava sa rozkladom hydrátu oxidu železitého, ktorý je známy vo viacerých formách, podľa toho, ako bol získaný. Oxid železitý je známy v dvoch formách – α-Fe₂O₃ – tmavočervený minerál hematit (izomorfný s korundom). γ-Fe₂O₃ – feromagnetické vlastnosti

Oxid železnato-železitý: Fe• Fe2O3 t.j. Fe3O4. Čierny feromagnetický minerál magnetit.

Hydroxidy: Fe(OH)₂ pôsobením hydroxidov alkalických kovov na vodné roztoky železnatých solí za neprístupu kyslíka. Biela zrazenina, ktorá sa ľahko oxiduje kyslíkom. Má slabé amfotérne vlastnosti.

Hydroxid železitý: pôsobením hydroxidov na roztoky železitých soli vzniká objemná hnedočervená zrazenina Fe₂O₃•xH₂O (v prírode minerál limonit – hnedeľ Fe₂O₃•H₂O t.j. FeO(OH)).

Sulfidy" FeS - čierna zrazenina, FeS2 - pyrit (východisková surovina pri príprave kyseliny sírovej).

Halogenidy" známe sú všetky halogenidy železnaté. Z halogenidov železitých sú okrem jodidu ostatné známe, najznámejší je chlorid železitý.

Soli:

heptahydrát síranu železnatého – zelená skalica FeSO₄•7H₂O. Pripravuje sa rozpúšťaním železa v zriedenej kyseline sírovej.

hexahydrát síranu železnato amónneho Mohrova soľ (NH₄)₂FeSO₄•6H₂O (skupina schönitov M^I₂ FeSO₄•6H₂O

FeCO₃ – minerál siderit

Fe(NO₃)₂ – rozpúšťaním železa v silne zriedenej kyseline dusičnej.

Fe₂(SO₄)₃ – rozpúšť aním oxidu železitého v koncentrovanej kyseline sírovej.

M¹Fe(SO₄)₂•12H₂O – železité kamence

Fe(NO₃)₃ – rozpúšť aním železa v stredne koncentrovanej kyseline dusičnej.

Zlúčeniny železa

zlúčeniny Fe^{2+} – stále v H^+ Fe³⁺ – stálejšie Fe²⁺ – FeO; FeS; FeS, FeO – (štruktúra NaCl) $[Fe(H_2O)_6]^{2+}$ – modrozelený FeSO₄ \cdot 7H₂O; FeCl₂ \cdot 4H₂O (Br⁻, I⁻) $Fe^{2+} + 2OH^{-} \longrightarrow Fe(OH)$, inertný $(NH_A)_{\uparrow}FeSO_A \cdot 6H_{\uparrow}O$ Mohrova sol' Fe^{3+} $[Fe(H_2O)_6]^{3+}$ $[Fe(OH)(H_2O)_5]^{2+}$ žltý až červený amoniak $Fe^{3+} + 3OH^{-} \longrightarrow Fe(OH)_{3}$; $Fe_2O_3 + KOH + Cl_2 \longrightarrow K_2FeO_4$

Koordinačné zlúčeniny

[FeCl₄]⁻ – tetraedrický

$$Fe^{3+} + [Fe(CN)_6]^{4-} \longrightarrow modrá zrazenina$$

Berlínska modrá

$$Fe^{2+} + [Fe(CN)_6]^{3-} \longrightarrow modrá zrazenina$$

Turnbullova modrá

$$Fe^{3+} + 6SCN^{-} \longrightarrow [Fe(SCN)_{6}]^{3-}$$

Hemoglobín

Obr. Štruktúra monoméru myoglobínu (vľavo) a tetraméru hemoglobínu (vpravo)

Kobalt a nikel

Co: 3d⁷4s² Ni: 3d⁸4s²

prevládajúci kovalentný charakter väzby

Vystupujú v rozdielnych oxidačných stupňoch, napr. –I v [Co(CO)₄], [Ni₂(CO)₆]², 0 v K₄[Co(CN)₄], [Ni(CN)₄]⁴, I K₄[Ni₂(CO)₆], III v Ni₂O₃•2H₂O, IV v [CoF₆]², K₂[NiF₆], tieto stupne sú zriedkavé a vyššie ako III za všeobecne netypické.

Pre kobalt sú typické oxidačné čísla II a III, pre nikel II.

U kobaltu je pre jednoduché zlúčeniny typickejší oxidačný stupeň +2, pre komplexy +3, nakoľko väčšina ligandov stabilizuje kobalt v oxidačnom čísle III.

Kobalt a nikel sa navzájom veľmi podobajú. Sú to biele kovy s dobrými mechanickými vlastnosťami, pri izbovej teplote feromagnetické. Curieho bod je pri 1131 °C pre kobalt a 357 °C pre nikel.

rozpúšťajú sa v anorganických kyselinách, pasivujú sa v kyseline dusičnej. Jemne rozptýlené sú pyroforické.

na rozdiel od železa sú na vzduch podstatne stálejšie.

Kobalt

 $extbf{Co} - 10^{-3} \%$ $extbf{CoAs}_2$ smaltin $extbf{CoAsS}$ kobaltin

smalty CoSiO₄; zliatiny Co + Fe

<u>výroba</u>:

Co – rôznorodosť štruktúr – oktaedrické, tetraedrické, štvorcové, trigonálne-bipyramidálne, tetragonálno-pyramidálne...

[Ni(CN)₄]⁴⁻ - Ni⁰ – tetraedrické usporiadanie [Ni(CN)₄]²⁻ - Ni²⁺ – štvorcovo planárne usporiadanie

Rôznorodé spektrálne vlastnosti

hydráty kobaltnatých solí, ktoré obsahujú katión oktaedrický $[Co(H_2O)_6]^{2+}$ sú sfarbené do jasnoružova, bezvodý chlorid kobaltnatý ako aj tetraedrické zlúčeniny obsahujúce anión $[CoCl_4]^{2-}$ sú výrazne modré.

Oktaedrické vysokospinové kobaltnaté komplexy sú paramagnetické, oktaedrické kobaltité komplexy sú nízkospinové a diamagnetické.

Zlúčeniny kobaltu

```
Co^{2+} – oxid CoO; CoS
[Co(H_2O)_6]^{2+}
                                      [CoCl_4]^{2-}
                                       modrý
  ružový
CoCl_2 \cdot 6H_2O; CoSO_4 \cdot 7H_2O; Co(NO_3)_2 \cdot 6H_2O
Co^{3+} - Co_2O_3; CoF_3 \cdot 3.5H_2O
stabilizácia
                  [\text{Co(NH}_3)_6]^{2+} \xrightarrow{\text{O}_2} [\text{Co(NH}_3)_6]^{3+}
K_3[Co(NO_2)_6]; vitamin B-12 (kobalamín)
```

Vitamín B-12

CN: cyanocobalamin

(vitamin B₁₂)

OH: hydroxycobalamin

H₂O: aquacobalamin

R: 5'-deoxyadenosyl-

cobalamin (coenzyme B₁₂, AdoCbi or AdoB₁₂)

R = 5'-deoxyadenosyl

Nikel

Ni – 0,016% litosféry S^{2–}; As^{3–} (Ni, Fe)S pentlandit; NiS millerit

výroba:

NiO +
$$\frac{H_2 + CO}{\text{vodný plyn}}$$
 Ni + CO $\xrightarrow{330 \text{ K}}$ [Ni(CO)₄]

440 K

CO + Ni

CoO, NiO – nestechiometrické zloženie M^{II}_{1-3x}M^{III}_{2x}O.

Stechiometrické čisté oxidy (zelený nikelnatý a olivovozelený kobaltnatý) možno pripraviť termickým rozkladom hydroxidov.

Hydroxidy

Co(OH)₂ – modrá zrazenina (amfotérny), Ni(OH)₂ – zelená zrazenina (nie je amfotérny).

Sulfidy

CoS, NiS - čierne zrazeniny

Halogenidy

známe sú všetky halogenidy Co^{II} a Ni^{II}.

bezvodý chlorid kobaltnatý je silne hygroskopický. Hydratáciou sa mení farba. Od modrej bezvodej soli cez tmavofialový mono a hemihydrát, ružový dihydrát a červený tetrahydrát.

Kyslíkaté soli

Co(NO₃)₂•6H₂O, Ni(NO₃)₂•6H₂O – reakcia kyseliny dusičnej s kovom, hydroxidom, oxidom, uhličitanom

CoSO₄•7H₂O – kobaltnatá skalica

NiSO4•7H2O - nikelnatá skalica

uhličitany a hydroxid-uhličitany, MCO3•6H2O

Zlúčeniny niklu

Ni – oceľ, katalyzátory

 Ni^{2+} - NiO; Ni^{2+} + 2OH⁻ \longrightarrow Ni(OH)₂ NiS; NiCl₂·6H₂O Ni(NO₃)₂·6H₂O; NiSO₄·7H₂O

dimetylglyoxím