FISH 621 Laboratory #5: Bayesian Mark-Recapture

Curry Cunningham 2022

Instructions

The purpose of this lab is to:

- Explore the Jolly-Seber mark-recapture model for open populations.
- Develop familiarity with implementing simple Bayesian analyses within the Stan platform.

If you have a question during the lab, please un-mute yourself and ask, or type it into the chat box. There is a high likelihood that someone else has the same question. It is more fun if we all learn together in our distance-learning world.

I have posted the lecture slides to the *Canvas site*, so you can reference this material as you work through the lab.

This and all other labs will be graded based on your attendance and participation.

Lab Contents

•	621_Lab 5_Bayes.pdf	(this file)
•	621_Lab 5_Bayes.R	R script with exercises.
•	Jolly Seber.csv	Example of Jolly-Seber analysis of Large-mouth bass at Par Pond from Hightower and Gilbert (1984)
•	Bristol Bay Spawner-Recruit Data.csv	Spawner-recruit data for Bristol Bay Alaska sockeye salmon

Exercise 1: Jolly-Seber

We will explore implementation of the Jolly-Seber model for a dataset of large-mouth bass at Par Pond from Hightower and Gilbert (1984). The sampling periods i in 1: s = 6 are subsequent weeks. The available data include:

- The number of bass captured during each sampling period: n_i
- The total number of sampled individuals returned to the population during each sampling event, with tags: R_i
- The matrix describing the number of individuals from each sample release that are captured during subsequent sampling events: m_{hi} . Recall in this type of experiment we mark individuals in

such a way that upon recapture we can tell in which sampling period they were originally marked (e.g. using differently colored tags during each sampling event).

- The rows *h* reference the release period (release cohorts)
- The columns *i* are the recovery periods
- \circ The elements of the m_{hi} matrix are the number of fish from release period h that are recaptured during period i

Please open the spreadsheet called **Jolly Seber.xlsx**. Green cells are data, and differently colored cells represent different derived parameters of the Jolly-Seber model. Please use the following steps to generate estimates:

- 1. Calculate m_i the total number of marked individuals observed during each sampling event (Cells B11:G11) for periods i = 1:6, as: $m_i = \sum_{h=1}^{i-1} m_{hi}$.
- 2. Calculate r_h , the number of R_i releases that are later recaptured (Cells I5:I9), for release groups h = 1:5, as: $r_h = \sum_{i=h+1}^{s} m_{hi}$.
- 3. Calculate the c_{hi} matrix (Cells B15:G19) where:
 - a. The first row of c_{hi} is equal to the first row of m_{hi} , or $c_{1i} = m_{1i}$
 - b. Remaining rows for each recapture period i are the sum of captures of all earlier release groups h, or $c_{hi} = c_{h-1,i} + m_{hi}$
- 4. Calculate the number of individuals for each release group h that before period i, that were not captured in period i, and are captured after period i, or z_{h+1} , based on the c_{hi} matrix.
 - a. Where z_{h+1} is calculated by summing each row of the c_{hi} matrix, as: $z_{h+1} = \sum_{i=h+2}^{s} c_{hi}$
- 5. Next, we will calculate summary statistics in Cells B24:O29
- 6. Begin by copying summary values calculated from your m_{hi} and c_{hi} matrices into the appropriate columns of the **Summary Statistics** table.
 - a. Copy the total marks observed in each sampling period m_i from Cells B11:G11, into Cells D24:D29.
 - b. Copy the total number of releases that are later recaptured r_h from Cells I5:I9, into Cells E24:E28.
 - c. Copy z_{h+1} from Cells I15:I18 into Cells F25:F28.
- 7. Calculate the mark fraction in each sampling event $\rho_i = m_i/n_i$, in Cells G24:G29.
- 8. Calculate the *unbiased* estimate for the total number of marks $M_i^* = \frac{(R_i+1)}{(r_i+1)}(z_i) + m_i$ for i=2:5, in Cells H25:H28.
- 9. Calculate the *unbiased* estimate for the total number of unmarked individuals in the population $U_i^* = \frac{M_i^*(n_i+2)}{m_i+1} M_i^*$ for i=2:5, in Cells I25:I28.
- 10. Calculate $M_i^* m_i$ for i = 2:5, in Cells J25:J28.
- 11. Calculate $M_i^* m_i + R_i$ for i = 2:5, in Cells K25:K28.
- 12. Calculate $(1/r_i) (1/R_i)$ for i = 1:5, in Cells L24:L28.
- 13. Calculate the **potentially biased** estimate of the total number of marked individuals in the population $\widehat{M}_i = \frac{R_i z_i}{r_i} + m_i$ for i = 2:5, in Cells M25:M28.
- 14. Calculate $\widehat{M}_i m_i$ for i = 2:5, in Cells N25:N28.
- 15. Finally, calculate $\widehat{M}_i m_i + R_i$ for i = 2:5, in cells O25:O28.
- 16. Now we have all of the pieces to calculate estimates for survival. Under the Population Estimates section please calculate

- a. For survival during the first sampling period use the approximation: $\phi_{i=1}^* = M_{i+1}^*/R_i$ or $\phi_2^* = M_2^*/R_1$ in Cell F33.
- b. For subsequent sampling periods i=2: (s-2)=2: 4, calculate survival as $\phi_i^*=\frac{M_{i+1}^*}{\widehat{M}_i-m_i+R_i}$
- 17. Next, we can calculate our total population size estimates N_i^*
 - a. For periods i=2:5 calculate $M_i^*+U_i^*=\frac{M_i^*(n_i+2)}{m_i+1}$, in Cells B34:B37.
 - b. Set cells in the N_i^* column (B34:B37) for periods i=2:5, equal to the $M_i^*+U_i^*$ column (Cells C34:C37).
 - c. To estimate total abundance at the start ($N_{i=1}^*$ in Cell C33) of period i=1, we will use $N_{i=2}^*$ and the estimated survival rate ϕ_i^* , as: $N_{i=1}^* = \frac{N_{i=2}^*}{\phi_i^*}$.
 - d. Congratulations! You have estimated abundance at the start of each sampling period!
- 18. Now that we have point estimates for abundance, we will focus on uncertainty in our estimates.
 - a. Remember an estimate isn't all that useful if we don't have a sense of its precision.
- 19. First calculate the uncaptured number of individuals in the population at each time point $N_i^* n_i$ in Cells D33:D37.
- 20. We will first calculate the standard error in our estimate of N_i^* in Cells E33:E37, as

a.
$$SE(N_i^*) = \sqrt{N_i^* \left(N_i^* - n_i\right) \left(\left(\frac{M_i^* - m_i + R_i}{M_i^*}\right) \left(\frac{1}{r_i} - \frac{1}{R_i}\right) + \left(\frac{1 - \rho_i}{m_i}\right)\right)}$$
 For periods $i = 2:5$ in Cells E34:E37.

- 21. Calculate the coefficient of variation for the abundance estimates N_i^* as: $CV(N_i^*) = SE(N_i^*)/N_i^*$.
- 22. Next, we will calculate our estimate of recruitment B_i^* for periods i=2:4 in Cells I35:I37, using the formula $B_i^*=N_{i+1}^*-\phi_i^*(N_i^*-n_i+R_i)$.

Exercise 3: Bayesian Linear Regression

To familiarize ourselves with how we simulate data with R, and define and fit a Bayesian model with Stan we will start with a simple linear regression: $y_i = \alpha + \beta x_i + e_i$, where our observation errors are normally-distributed: $e_i \sim Normal(0, \sigma^2)$ with standard deviation σ .

Please follow through the R script as we simulate our data, and then open the *lin_reg.stan* script to see how we encode the Bayesian regression model using our Stan syntax.

The .stan Script

- data
 - · Define data inputs
 - · Including dimensionality
- parameters
 - · Define "free" or estimated (true) parameters
 - Names, dimensions, ect.
- transformed parameters
 - Define derived parameters
 - Quantities that depend on your estimated (true) parameters
 - · Do calculations
 - This is where the meat of your code is likely to exist!
- model
 - · Define priors for estimated parameters
 - · Define likelihoods for the data
 - Probability of the data, given the model
- · generated quantities
 - · Calculations you want to do based on your
 - · Estimated or derived parameters and data

Stan Data Types

I don't use these often

- Primitive types
 - real
 - Continuous values: 1.4, 0.9, -99.1, 100, ect.
 - int
 - Integer values: 1,2,3, ect.
- Vector and matrix types
 - Matrix-based types
 - vector, matrix, and row_vector
 - Examples
 - vector[3] myVect vector of length 3, named "myVect"
 - matrix[3,3] myMat matrix with 3 rows, 3 columns named "myMat"

- Array types
 - Any data type can be made into an array type
 - array[10] real x;
 - One-dimensional array of size 10 containing real values
 - array[6,7] matrix[3,3] m;
 - Declares "m" to be a two-dimensional array of size 6 x 7
 - Containing values that are *each* 3 x 3 matrices
- Alternative declarations
 - real x[10];
 - matrix[3,3] m[6,7];
- A vector of vectors
 - vector[N] pred[S];
 - A vector of length S where each element is a vector of length N
 - Accessed like a matrix or 2d-array: pred[s,n]

Exercise 4: Poisson Regression

R script

Poisson Regression in Stan

- ullet Estimate counts of peregrine falcons over n years
 - Linear predictor is a cubic polynomial
 - Random part of the response (statistical distribution)
 - $C_i \sim Poisson(\lambda_i)$
 - Link function of random and systematic part (log link)
 - $\log(\lambda_i) = \eta_i$
 - The systematic part of the response (linear predictor of η_i)
 - $\eta_i = \alpha + \beta_1 year_i + \beta_2 year_i^2 + \beta_3 year_i^3$

Binomial GLM for Bounded Counts or Proportions

- While the Poisson distribution is a standard model for unbounded count data
 - Frequently we have counts that are bounded by an upper limit
- Example: when modelling number of fish in a population
 - The number counted cannot exceed the total population size
 - $n \sim Binomial(N, p)$
- Special case: Binary
 - Outcome of independent survival events
 - $Survived_t \sim Binomial(N = 1, p)$
- Example: successful bird breeding pairs
 - Data:
 - Successful breeding pairs (C_i) out of some number of monitored pairs (N_i)
 - Goal:
 - Model the probability of successful breeding (p_i) as a function of time
- Random part of the response (statistical distribution)
 - $C_i \sim Binomial(N_i, p_i)$
- Link of random and systematic part (logit link function)
 - $logit(p_i) = log(\frac{p_i}{1-p_i}) = \eta_i$
- Systematic part of response (linear predictor η_i)
 - $\bullet \ \eta_i = \alpha + \beta_1 X_i + \beta_2 X_i^2$
 - Polynomial