Documents autorisés : cours, TD, notes manuscrites, calculatrice. Barème indicatif : 7 + 2 + 4 + 2 + 3 + 2 Durée : 1h 30.

Exercice 1

Calcul intégral

On note f la fonction définie sur \mathbb{R}_+ par $f(x) = xe^{-x}$.

- 1. Variations et représentation graphique
 - (a) Calculer f'(x) sur \mathbb{R}_+ .
 - (b) Préciser le tableau des variations de f.
 - (c) Représenter graphiquement f en précisant l'allure locale en 0, 1 et $+\infty$ (graphique \mathcal{G}).
- 2. Nature de $\int_0^{+\infty} te^{-t} dt$
 - (a) Soit $x \in [0, +\infty[$. Calculer $F(x) = \int_0^x te^{-t} dt$.

 Indication: utiliser une intégration par parties.
 - (b) Préciser $\lim_{x \to +\infty} F(x)$.
 - (c) En déduire la nature de $\int_0^{+\infty} te^{-t} dt$ et sa valeur si l'intégrale est convergente.
- 3. Variable aléatoire
 - (a) Montrer que la fonction f définie par $f(x) = xe^{-x}$ sur \mathbb{R}_+ et f(x) = 0 sur \mathbb{R}_-^* est une densité de probabilité.
 - (b) On note X une variable aléatoire telle que $P\left(X\leq x\right)=\int_{0}^{x}te^{-t}\,dt\ (x\geq0).$
 - i. Calculer $P (1 \le X \le 2)$. Le résultat sera donné avec trois chiffres significatifs.
 - ii. Interpréter graphiquement en reprenant le graphique \mathcal{G} .

Indications: $e^{-1} \approx 0,3679$; $e^{-2} \approx 0,1353$; $\lim_{x \to +\infty} \frac{x}{e^x} = 0$.

Exercice 2

Probabilité conditionnelle

80 % des habitants d'un pays ont été vaccinés contre une certaine maladie \mathcal{M} .

10 % des personnes vaccinées, ainsi que 60 % des personnes non-vaccinées ont contracté la maladie. Calculer la probabilité pour qu'un habitant pris au hasard

- 1. ait contracté la maladie.
- 2. ait été vacciné sachant qu'il a contracté la maladie.

Exercice 3

Variable aléatoire

La compagnie Envol affrête un avion de 300 places. La probabilité qu'une personne ayant réservé pour ce vol ne se présente pas à l'embarquement est q = 0,08.

- 1. Si la compagnie accepte n=310 réservations, quelle est la probabilité qu'au moins 301 passagers se présentent à l'embarquement? Indication: En notant X_i la variable aléatoire précisant la présence $(X_i=1)$ ou l'absence $(X_i=0)$ du i-ème passager $(1 \le i \le n)$, on peut supposer les X_i indépendantes et $S_n = \sum_{i=1}^n X_i \sim \mathcal{B}(n,p)$ avec p=1-q. Comme $n \ge 30$ et $np \ge 5$, $nq \ge 5$, on peut alors utiliser l'approximation $S_n \sim \mathcal{N}(np, \sqrt{npq})$ et calculer $P(S_{310} \ge 300, 5)$.
- 2. Combien la compagnie peut-elle vendre de places pour que la probabilité de devoir refuser l'embarquement à au moins un voyageur soit inférieure à 1 %?

Exercice 4

Intervalle de confiance

On observe la longueur des oreilles X de n = 10 lièvres vosgiens (en cm) pris au hasard :

X suit une loi normale $\mathcal{N}(\mu, \sigma)$, μ et σ étant inconnus.

Construire un intervalle de confiance de σ au niveau de confiance 95 %.

Indication: En notant X_i la variable aléatoire relevant la longueur des oreilles du lièvre i, on peut supposer $X_i \sim \mathcal{N}(\mu, \sigma)$ et les X_i indépendantes. On a alors $\frac{n-1}{\sigma^2}S^2 \sim \chi^2_{n-1}$ avec $S^2 = \frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2$ et $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$.

$$n = 1$$

Exercice 5

Test d'hypothèse

Le poids net X d'une boîte de conserve de champignons d'une marque donnée (en grammes) suit une loi normale $\mathcal{N}(\mu, \sigma)$ (μ et σ inconnus).

Une association de consommateurs prélève au hasard n = 10 boîtes :

L'étiquette des boîtes indique un poids net de $\mu_0 = 400$ grammes.

On veut tester l'hypothèse nulle $H_0: \mu = \mu_0$, contre l'hypothèse alternative $H_1: \mu < \mu_0$ au niveau 1 %.

En notant X_i le poids net d'une boîte donnée i, on peut supposer que $X_i \sim \mathcal{N}(\mu, \sigma)$ et les X_i indépendantes.

Sous l'hypothèse nulle $H_0: \mu = \mu_0, T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$, la loi de Student à n-1 degrés de

liberté, avec
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 et $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

- 1. Calculer \overline{x} et s.
- 2. Préciser le nombre t vérifiant $P(T \le t) = 0,99$ avec $T \sim \mathcal{T}_{n-1}$.
- 3. En déduire $P(T \le -t)$, puis la région de rejet $\mathcal{R} = \left[0, \mu_0 t \frac{s}{\sqrt{n}}\right]$.
- 4. Est-ce que $\overline{x} \in \mathcal{R}$?
- 5. En déduire la décision. Expliquer.
- 6. Préciser un encadrement de la p-value $P_c(\overline{X}) = P_{H_0}(\overline{X} \leq \overline{x})$.

Exercice 6

Test d'indépendance

Un échantillon aléatoire de n=200 jeunes de 18 à 25 ans est interrogé sur la pratique de la natation (régulière, occasionnelle, aucune) et le statut (étudiant ou non) :

Statut \Pratique	régulière n_{i1}	occasionnelle n_{i2}	aucune n_{i3}
étudiant n_{1j}	30	68	22
non-étudiant n_{2j}	10	42	28

En utilisant un test du χ^2 d'indépendance de niveau $\alpha = 0,05$, on souhaite savoir si la pratique de la natation est indépendante du statut (hypothèse nulle H_0) ou non (hypothèse alternative H_1).

1. Calculer
$$d = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{(n_{ij} - nq_{ij})^2}{nq_{ij}}$$
 avec $q_{ij} = \frac{1}{n} \sum_{i=1}^{2} n_{ij} \times \frac{1}{n} \sum_{j=1}^{3} n_{ij}$.

- 2. Préciser le nombre δ vérifiant $P\left(D \leq \delta\right) = 0,95$ avec $D \sim \chi^2_{(2-1)\times(3-1)}$.
- 3. Faire le test du χ^2 en expliquant la décision.
- 4. Donner un encadrement de la p-value $P_c(d) = P_{H_0}(D \ge d)$. En déduire le degré de signification du test (test significatif, très significatif, hautement significatif).