BRAM (50K bits LUT)

```
Verilog code:
module BRAM_50K #(
  parameter WIDTH = 32,
  parameter DEPTH = 1600,
  parameter ADDR_WIDTH = 11
)(
 input clk,
 input we,
 input [ADDR_WIDTH-1:0] addr,
 input [WIDTH-1:0] din,
 output [WIDTH-1:0] dout
);
 reg [WIDTH-1:0] mem [0:DEPTH-1];
 always @(posedge clk) begin
    if (we)
      mem[addr] <= din;
  end
 assign dout = mem[addr];
endmodule
```

RTL schematic:

Synthesis schematic:

Slice Logic

1	Site Type	ı	Used	Ī	Fixed	İ	Prohibited	I	Available	İ	Util%	
i	Slice LUTs*	i	904		0	•	0	•	53200	i	1.70	i
I	LUT as Logic	I	104	1	0	I	0	I	53200	1	0.20	1
I	LUT as Memory	I	800	I	0	I	0	I	17400	I	4.60	1
I	LUT as Distributed RAM	I	800	I	0	I		I		I		1
I	LUT as Shift Register	I	0	1	0	I		I		I		1
I	Slice Registers	I	0	I	0	I	0	I	106400	I	0.00	1
I	Register as Flip Flop	I	0	I	0	I	0	I	106400	I	0.00	1
I	Register as Latch	I	0	I	0	I	0	I	106400	1	0.00	1
I	F7 Muxes	I	384	I	0	I	0	I	26600	1	1.44	1
I	F8 Muxes	I	192	I	0	I	0	I	13300	I	1.44	1
+-		+-		+		+		+		+		+

BRAM (50K bits uses block memory)

```
Verilog code:
module BRAM_2 #(
  parameter WIDTH = 32,
  parameter DEPTH = 1600,
  parameter ADDR_WIDTH = 11
)(
  input clk,
  input we,
  input [ADDR_WIDTH-1:0] addr,
  input [WIDTH-1:0] din,
  output reg [WIDTH-1:0] dout
);
  (* ram_style = "block" *)
  reg [WIDTH-1:0] mem [0:DEPTH-1];
  always @(posedge clk) begin
    if (we) begin
      mem[addr] <= din;
    end
    dout <= mem[addr];</pre>
  end
endmodule
```

RTL schematic:

Synthesis schematic:

	2.	M	e	m	0	r	У	
--	----	---	---	---	---	---	---	--

Site Type | Used | Fixed | Prohibited | Available | Util% | | Block RAM Tile | 2 | 0 | 0 | 140 | 1.43 | RAMB36/FIFO* | 2 | 140 | 1.43 | 0 | 0 | 1 RAMB36El only | 2 | 1 1 1 RAMB18 1 0 1 0 1 0 1 280 | 0.00 |

* Motor Fach Block DAM Tile only has one FTFO logic available and them