Report of Software Implementation Project for "Convex Optimization"

Hanju Wu Sun Yat-Sen University wuhj29@mail2.sysu.edu.cn 2022 年 9 月 19 日

目录

1	Background							
2	Cor	njugate Function	4					
3	Proximal Operator							
	3.1	Some method to calculate Proximal Operator	5					
	3.2	Proximal Operator of $h(x)$	7					
		3.2.1 General functions	7					
		3.2.2 Indicator functions	9					
4	Gradient of $f(x)$							
	4.1	Least squares	12					
	4.2	Variant of Huber loss	12					
	4.3	Logistic regression	12					
5	Function 1							
	5.1	f(x)	13					
	5.2	h(x)	13					
		5.2.1 general function	13					
		5.2.2 indicator function	13					
6	Model 14							
	6.1	logistic_regression_l1 and logistic_regression_l2	14					
		6.1.1 code	14					
		6.1.2 test	14					
7	Solver 15							
	7.1	FISTA	15					
		7.1.1 Code	15					
		7.1.2 Calculate y^k	15					
		7.1.3 Compute BB step size	15					
		7.1.4 Line search	16					

7.2	Nester	cov's 2nd method	16
	7.2.1	Code	16
	7.2.2	iteration	16
7.3	Nume	rical test	17
	7.3.1	Code	17
	7.3.2	Result	18

1 Background

Consider the composite optimization problem

$$\min_{x} f(x) + h(x)$$

where f(x) is differentiable and h(x) is a function whose proximal operator is easily available.

Both f(x) and h(x) may be nonconvex.

Let h(x) be a proper and close function, and $\inf_{x \in \text{dom } h} h(x) > -\infty$.

The proximal operator of h(x) is defined as

$$prox_h(x) = \underset{x}{\arg\min} h(u) + \frac{1}{2} ||u - x||_2^2$$

2 Conjugate Function

Definition 2.1. conjugate function of a proper function

$$f^*(y) = \sup_{x \in \text{dom } f} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

Example 2.2. Indicative functions of convex sets

$$I_C(x) = \begin{cases} 0, & x \in C, \\ +\infty, & x \notin C \end{cases}$$

$$I_C^*(y) = \sup_{x} \{ y^{\mathrm{T}} x - I_C(x) \} = \sup_{x \in C} y^{\mathrm{T}} x.$$

where $I_C^*(y)$ call the support function of convex set C

Example 2.3. Norm

$$f(x) = ||x||, f^*(y) = \begin{cases} 0, & ||y||_* \le 1\\ +\infty, & ||y||_* > 1 \end{cases}$$

where $||y||_* = \sup_{||x|| \leqslant 1} x^{\mathrm{T}} y$

Example 2.4. operation rules of conjugate function

(1)
$$f(x_1, x_2) = g(x_1) + h(x_2), \quad f^*(y_1, y_2) = g^*(y_1) + h^*(y_2)$$

(2)
$$f(x) = \alpha g(x), \quad f^*(y) = \alpha g^*(y/\alpha)$$

3 Proximal Operator

3.1 Some method to calculate Proximal Operator

Theorem 3.1. h is a proper and close convex function defined on \mathbb{R}^n , then we have:

$$u = \operatorname{prox}_h(x) \Longleftrightarrow x - u \in \partial h(u).$$

Lemma 3.2. (Moreau) f is a proper and close convex function defined on \mathbb{R}^n , $x \in \mathbb{R}^n$,

$$x = \operatorname{prox}_{f}(x) + \operatorname{prox}_{f^{*}}(x);$$

$$x = \operatorname{prox}_{\lambda f}(x) + \lambda \operatorname{prox}_{\lambda^{-1} f^*} \left(\frac{x}{\lambda} \right) = \operatorname{prox}_{\lambda f}(x) + \operatorname{prox}_{\lambda f^* \left(\frac{x}{\lambda} \right)} \left(x \right) (\lambda > 0)$$

if the proximal operator of conjugate function is easy to calculate, there we have

$$\operatorname{prox}_{f}(x) = x - \operatorname{prox}_{f^{*}}(x);$$

Example 3.3. (operation rules of proximal operator)

(1)
$$h(x) = g(\lambda x + a), \quad \operatorname{prox}_h(x) = \frac{1}{\lambda} \left(\operatorname{prox}_{\lambda^2 g}(\lambda x + a) - a \right); (\lambda \neq 0)$$

(2)
$$h(x) = \lambda g\left(\frac{x}{\lambda}\right), \quad \operatorname{prox}_{h}(x) = \lambda \operatorname{prox}_{\lambda^{-1}g}\left(\frac{x}{\lambda}\right); (\lambda > 0)$$

(3)
$$h(x) = g(x) + a^{\mathrm{T}}x, \quad \operatorname{prox}_h(x) = \operatorname{prox}_g(x - a).$$

(4)
$$h(x) = g(x) + \frac{u}{2} ||x - a||_2^2, \operatorname{prox}_h(x) = \operatorname{prox}_{\theta g}(\theta x + (1 - \theta)a), \theta = \frac{1}{1 + u}, (u > 0)$$

(5)
$$h\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \varphi_1(x) + \varphi_2(y), \quad \operatorname{prox}_h\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} \operatorname{prox}_{\varphi_1}(x) \\ \operatorname{prox}_{\varphi_2}(y) \end{bmatrix}.$$

(6)
$$h(x) = ag(x) + b, a > 0, \operatorname{prox}_h(x) = \operatorname{prox}_{ag}(x)$$

$$h(x) = g(Ax + b)$$

if

$$AA^{\mathrm{T}} = \frac{1}{\alpha}I$$

we have

$$\operatorname{prox}_h(x) = (I - \alpha A^{\mathrm{T}} A) x + \alpha A^{\mathrm{T}} \left(\operatorname{prox}_{\alpha^{-1} q} (Ax + b) - b \right)$$

Example 3.4. (Projection on a closed convex set)

$$I_C(x) = \begin{cases} 0, & x \in C, \\ +\infty, & else \end{cases}$$

$$\operatorname{prox}_{I_C}(x) = \operatorname*{arg\,min}_{u} \left\{ I_C(u) + \frac{1}{2} \|u - x\|^2 \right\}$$
$$= \operatorname*{arg\,min}_{u \in C} \|u - x\|^2 = \mathcal{P}_C(x)$$

Lemma 3.5. (KKT Condition)

$$\min_{x \in \mathcal{X}} f(x)$$

with

$$\mathcal{X} = \{ x \in \mathbb{R}^n \mid c_i(x) \leqslant 0, i \in \mathcal{I} \perp c_i(x) = 0, i \in \mathcal{E} \}.$$

if x^* is a local optimal solution, and $T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$,

then there exist λ_i^* satisfy the following condition:

$$\nabla_{x}L\left(x^{*},\lambda^{*}\right) = \nabla f\left(x^{*}\right) + \sum_{i\in\mathcal{I}\cup\mathcal{E}}\lambda_{i}^{*}\nabla c_{i}\left(x^{*}\right) = 0$$

$$c_{i}\left(x^{*}\right) = 0, \forall i\in\mathcal{E}$$

$$c_{i}\left(x^{*}\right) \leqslant 0, \forall i\in\mathcal{I}$$

$$\lambda_{i}^{*} \geqslant 0, \forall i\in\mathcal{I}$$

$$\lambda_{i}^{*}c_{i}\left(x^{*}\right) = 0, \forall i\in\mathcal{I}$$

3.2 Proximal Operator of h(x)

3.2.1 General functions

Example 3.6. (General functions)

(1) $\ell_0 - norm$:

$$h(x) = ||x||_0, \quad \operatorname{prox}_{th}(x) = \begin{cases} 0 & \text{if } x^2 < 2t \\ \{x, 0\} & \text{if } x^2 = 2t \\ x & \text{otherwise} \end{cases}$$

(2) sum-of-norms (for group lasso):

$$h(x) = \sum_{g \in \mathcal{G}} \left\| x_g \right\|_2, \mathcal{G} \text{ is a division of } [n]$$

$$(\operatorname{prox}_{th}(x))_g = \left(1 - \frac{t}{\|x_g\|_2}\right)_+ x_g$$

 $x_+ = \max\{x, 0\}$

(3) elastic-net:

$$h(x) = ||x||_1 + (\lambda/2)||x||_2^2$$
, $\operatorname{prox}_{th}(x) = \frac{1}{1 + \lambda t} \operatorname{prox}_{t||x||_1}(x)$

(4) log-barrier and its variant:

$$h(x) = -\sum_{i=1}^{n} \ln x_i$$
, $(\operatorname{prox}_{th}(x))_i = \frac{x_i + \sqrt{x_i^2 + 4t}}{2}$, $i = 1, 2, \dots, n$.

$$h(x) = -\sum_{i=1}^{n} \ln x_i - (\lambda/2) ||x||_2^2, (\operatorname{prox}_{th}(x))_i = \frac{x_i + \sqrt{x_i^2 + 4t(1 - \lambda t)}}{2(1 - \lambda t)}, \quad i = 1, 2, \dots, n.$$

(5) ReLU function:

$$h(x) = \sum_{i=1}^{n} \max(0, x_i), (\operatorname{prox}_{th}(x))_i = \begin{cases} x_i & \text{if } x_i < 0\\ 0 & \text{if } 0 \le x \le t\\ x_i - t & \text{otherwise} \end{cases}$$

(6) quadratic function:

$$h(x) = \frac{1}{2}x^{\mathrm{T}}Ax + b^{\mathrm{T}}x + c, \quad \text{prox}_{th}(x) = (I + tA)^{-1}(x - tb).$$

where A is positive semidefinite

(7) maximal function:

$$h(x) = \max_{i} x_i, \quad (\operatorname{prox}_{th}(x))_i = \min\{x_i, \lambda\}$$

where $\lambda \in \mathbb{R}$ is such that $\sum_{i=1}^{n} \max\{0, x_i - \lambda\} = t$

Algorithm 1: Proximal Operator of maximal function

Input: $\mathbf{x} \in \mathbb{R}^n$, t

1 Descending sort of $\mathbf{x} \longrightarrow \boldsymbol{\mu} : \mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$

2 Find $\rho(\mu) = \max \left\{ j \in [n] : \mu_j - \frac{1}{j} \left(\sum_{r=1}^j \mu_r - t \right) > 0 \right\}$

3 Defined $\theta = \frac{1}{\rho} \left(\sum_{i=1}^{\rho} \mu_i - t \right)$

Output: $(\text{prox}_{th}(x))_i = \min\{x_i, \theta\}$

(8) conjugate of a proper closed function:

$$h(x) = f^*, \operatorname{prox}_{th}(x) = x - t \operatorname{prox}_{t^{-1}f}\left(\frac{x}{t}\right) = x - \operatorname{prox}_{tf\left(\frac{x}{t}\right)}(x)$$

(9) $\ell_1 - norm$:

$$h(x) = ||x||_1, \quad \text{prox}_{th}(x) = \text{sign}(x) \max\{|x| - t, 0\}.$$

(10) $\ell_2 - norm$:

$$h(x) = \|x\|_2, \quad \operatorname{prox}_{th}(x) = \left\{ \begin{array}{ll} \left(1 - \frac{t}{\|x\|_2}\right)x, & \|x\|_2 \geqslant t, \\ 0, & \hbox{\sharp} \mathfrak{A}. \end{array} \right.$$

(11) $\ell_{\infty} - norm$:

$$h(x) = ||x||_{\infty}, (\operatorname{prox}_{th}(x))_i = (\operatorname{sign}(x_i) \min\{|x_i|, \lambda\})_{1 \le i \le n}$$

where $\lambda \in \mathbb{R}$ is such that $\sum_{i=1}^{n} \max \{0, |x_i| - \lambda\} = t$

Algorithm 2: Proximal Operator of $\ell_{\infty} - norm$

Input: $\mathbf{x} \in \mathbb{R}^n$, t

1 $u_i = |x_i|$, Descending sort of $\mathbf{u} \longrightarrow \boldsymbol{\mu} : \mu_1 \ge \mu_2 \ge \ldots \ge \mu_n$

2 Find
$$\rho(t, \mu) = \max \left\{ j \in [n] : \mu_j - \frac{1}{j} \left(\sum_{r=1}^j \mu_r - t \right) > 0 \right\}$$

3 Defined $\theta = \frac{1}{\rho} \left(\sum_{i=1}^{\rho} \mu_i - t \right)$

Output: $(\operatorname{prox}_{th}(x))_i = (\operatorname{sign}(x_i) \min\{|x_i|, \theta\})_{1 \le i \le n}$

or

$$prox_{th}(x) = x - prox_{I_C}(x)$$

where

$$I_C(x) = \begin{cases} 0, & \|x\|_1 \leqslant t \\ +\infty, & \|x\|_1 > t \end{cases}$$

3.2.2 Indicator functions

Example 3.7. (Indicator functions)

(1) $\ell_{\infty} - ball$:

$$I_C(x) = \begin{cases} 0, & \|x\|_{\infty} \leqslant t \\ +\infty, & \|x\|_{\infty} > t \end{cases}$$
$$\operatorname{prox}_{I_C}(x) = x - \operatorname{prox}_{t\|x\|_1}(x) = \operatorname{sign}(x) \min \left\{ |x|, t \right\}$$

(2) $\ell_2 - ball$:

$$I_C(x) = \begin{cases} 0, & ||x||_2 \le t \\ +\infty, & ||x||_2 > t \end{cases}$$

$$\mathrm{prox}_{I_C}(x) = x - \mathrm{prox}_{t \|x\|_2}(x) = \frac{t}{\max{\{t, \|x\|_2\}}} x = \left\{ \begin{array}{l} \frac{t}{\|x\|_2} x, & \|x\|_2 \geqslant t, \\ x, & \text{ \sharp \'e.} \end{array} \right.$$

(3) simple box:

$$I_C(x) = \begin{cases} 0, & l \le x_i \le u, 1 \le i \le n \\ +\infty, & else \end{cases}$$

$$(\operatorname{prox}_{I_C}(x))_i = [\max\left\{l, \min\left\{x_i, u\right\}\right\}]_{1 \leq i \leq n}$$

(4) hyperplane:

$$I_C(x) = \begin{cases} 0, & a^T x = b \\ +\infty, & else \end{cases}$$
$$\operatorname{prox}_{I_C}(x) = x + \frac{b - a^T x}{\|a\|_2^2} a$$

(5) half space:

$$I_C(x) = \begin{cases} 0, & a^T x \le b \\ +\infty, & else \end{cases}$$

$$\operatorname{prox}_{I_C}(x) = \begin{cases} x + \frac{b - a^T x}{\|a\|_2^2} a & \text{if } a^T x > b \\ x & \text{if } a^T x \le b \end{cases}$$

(6) affine set:

$$I_C(x) = \begin{cases} 0, & Ax = b \\ +\infty, & else \end{cases}$$
$$\operatorname{prox}_{I_C}(x) = x + A^T (AA^T)^{-1} (b - Ax)$$

(7) probability simplex:

$$I_C(x) = \begin{cases} 0, & \sum_{i=1}^n x_i = 1, x_i \ge 0 \\ +\infty, & else \end{cases}$$

 $(\operatorname{prox}_{I_C}(x))_i = \max\{0, x_i - \lambda\}_{1 \le i \le n} \text{ with } \lambda \in \mathbb{R} \text{ such that } \sum_{i=1}^n \max\{0, x_i - \lambda\} = 1$

Algorithm 3: Projection to simplex

Input: $\mathbf{x} \in \mathbb{R}^n$

1 Descending sort of $\mathbf{x} \longrightarrow \boldsymbol{\mu} : \mu_1 \ge \mu_2 \ge \ldots \ge \mu_n$

2 Find
$$\rho(\boldsymbol{\mu}) = \max \left\{ j \in [n] : \mu_j - \frac{1}{j} \left(\sum_{r=1}^j \mu_r - 1 \right) > 0 \right\}$$

3 Defined $\theta = \frac{1}{\rho} \left(\sum_{i=1}^{\rho} \mu_i - 1 \right)$

Output: $(\operatorname{prox}_{I_C}(x))_i = \max\{x_i - \theta, 0\}$

(8) $\ell_1 - ball$:

$$I_C(x) = \begin{cases} 0, & ||x||_1 \le t \\ +\infty, & ||x||_1 > t \end{cases}$$
$$\text{prox}_{I_C}(x) = x - \text{prox}_{t||x||_{\infty}}(x)$$

Algorithm 4: Projection to $\ell_1 - ball$

Input: $\mathbf{x} \in \mathbb{R}^n$ and t

1 if $||x||_1 \leqslant t$ then

$$\mathbf{2} \quad | \quad \operatorname{prox}_{I_C}(x) = x$$

з else

$$u_i = |x_i|, \text{Descending sort of } \mathbf{u} \longrightarrow \boldsymbol{\mu} : \mu_1 \ge \mu_2 \ge \dots \ge \mu_n$$

$$\text{Find } \rho(t, \boldsymbol{\mu}) = \max \left\{ j \in [n] : \mu_j - \frac{1}{j} \left(\sum_{r=1}^j \mu_r - t \right) > 0 \right\}$$

6 Defined
$$\theta = \frac{1}{\rho} \left(\sum_{i=1}^{\rho} \mu_i - t \right)$$

7
$$\left| (\operatorname{prox}_{I_C}(x))_i = \operatorname{sign}(x_i) \max \left\{ |x_i| - \theta, 0 \right\} \right|$$

8 end

(9) $\ell_0 - ball$:

$$I_C(x) = \begin{cases} 0, & ||x||_0 \le t \\ +\infty, & ||x||_0 > t \end{cases}$$

Algorithm 5: Projection to $\ell_0 - ball$

Input: $\mathbf{x} \in \mathbb{R}^n$ and t

- 1 Descending sort of $\mathbf{x} \longrightarrow \boldsymbol{\mu} : \mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$
- 2 Set y = x
- **3** Set $y_k = 0$, where x_k is the one to one correspondence of $\mu_i \ \lfloor t \rfloor < i \leq n$

Output: $\operatorname{prox}_{I_C}(x) = \mathbf{y}$

4 Gradient of f(x)

4.1 Least squares

$$f(x) = \frac{1}{2} ||Ax - b||_2^2 \text{ or } f(x) = \frac{1}{2} ||Ax - b||_F^2$$
$$\nabla f(x) = A^{\mathrm{T}}(Ax - b)$$

4.2 Variant of Huber loss

$$(f(x))_i = \begin{cases} \frac{1}{2\delta} x_i^2, & |x_i| < \delta \\ |x_i| - \frac{\delta}{2}, & \text{otherwise} \end{cases}$$
$$(\nabla f(x))_i = \begin{cases} \frac{1}{\delta} x_i, & |x_i| < \delta \\ -1, & x_i \le -\delta \\ 1, & x_i \ge \delta \end{cases}$$

4.3 Logistic regression

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \ln\left(1 + \exp\left(-b_i a_i^T x\right)\right)$$
$$\nabla f(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{\exp\left(-b_i a_i^T x\right)}{1 + \exp\left(-b_i a_i^T x\right)} - b_i a_i$$

Due to computer byte limit, we have to calculate:

$$\ln (1 + \exp(x)) = \begin{cases} x + \ln (1 + \exp(-x)), & x \ge 0 \\ \ln (1 + \exp(x)), & x < 0 \end{cases}$$
$$\frac{\exp(x)}{1 + \exp(x)} = \begin{cases} \frac{1}{1 + \exp(-x)}, & x \ge 0 \\ \frac{\exp(x)}{1 + \exp(x)}, & x < 0 \end{cases}$$

5 Function

5.1 f(x)

- (1) Least squares
 head file in $include/OptSuite/Base/func/axmb_norm_sqr.h$ sourse codes in $src/Base/func/axmb_norm_sqr.cpp$
- (2) Logistic regression
 head file in include/OptSuite/Base/func/LogisticRegression.h
 sourse codes in src/Base/func/LogisticRegression.cpp

5.2 h(x)

5.2.1 general function

- (1) ℓ_0 and ℓ_∞ norm

 head file in $include/OptSuite/Base/func/shrinkage_lp.h$ sourse codes in $src/Base/func/shrinkage_lp.cpp$
- (2) maximal function
 head file in include/OptSuite/Base/func/maximal.h
 sourse codes in src/Base/func/maximal.cpp

5.2.2 indicator function

- (1) $\ell_0, \ell_1, \ell_2, \ell_\infty$ ball head file in $include/OptSuite/Base/func/ball_lp.h$ sourse codes in $src/Base/func/ball_lp.cpp$
- (2) probability simplex
 head file in $include/OptSuite/Base/func/probability_simplex.h$ sourse codes in $src/Base/func/probability_simplex.cpp$

6 Model

6.1 logistic_regression_l1 and logistic_regression_l2

6.1.1 code

Composite/Model/logistic_regression_l1.cpp
Composite/Model/logistic_regression_l2.cpp

6.1.2 test

 $example/LogisticRegression_L1.cpp$ $example/LogisticRegression_L2.cpp$

```
int m = 256;
int n = 512;
int 1 = 1;
// set rng seed
rng(233);
Mat A = randn(n, m);
Mat b = randn(m, 1);
for (Index i = 0; i < m; i++){</pre>
    b.coeffRef(i,0) = (rand() \% 2 == 0 ? 1 : -1);
}
Scalar mu = 0.001;
Mat x0 = randn(n, 1);
Composite::Model::LogisticRegression_L1 model(A, b, mu);
//Composite::Model::LogisticRegression_L2 model(A, b, mu)
Composite::Solver::ProxGBB<> alg;
```

7 Solver

7.1 FISTA

7.1.1 Code

Composite/Solver/proxgbb_FISTA

7.1.2 Calculate y^k

$$y^{k} = x^{k-1} + \frac{k-2}{k+1} \left(x^{k-1} - x^{k-2} \right)$$

```
template < typename xtype = mat_wrapper_t >
mat_t getmat(var_t_ptr x) {
    xtype* sol = dynamic_cast < xtype* > (x.get());
    OPTSUITE_ASSERT(sol);
    return (*sol).mat();
}
```

```
template < typename dtype >
void ProxGBBFISTA < dtype > :: set_y(var_t_ptr x, var_t_ptr xp,
    var_t_ptr y, Scalar theta) {
    mat_t A = getmat(x) + theta * (getmat(x) - getmat(xp));
    const var_t& a = mat_wrapper_t(A);
    y -> assign(a);
}
```

7.1.3 Compute BB step size

calculate:

$$dyg = \langle y - yp, gy - gyp \rangle$$

$$= y_{-}gy + yp_{-}gyp - y_{-}gyp - yp_{-}gy$$

$$dy^{k} = y^{k+1} - y^{k}, dg^{k} = g^{k+1} - g^{k}$$

if (bb_variant == 0 and iter % 2 == 0) or bb_variant == 1

$$\tau = \frac{\left(\mathrm{d}y^k\right)^\top \mathrm{d}y^k}{\left(\mathrm{d}y^k\right)^\top \mathrm{d}g^k}$$

if (bb_variant == 0 and iter % 1 == 0) or bb_variant == 2

$$\tau = \frac{\left(\mathrm{d}y^k\right)^\top \mathrm{d}g^k}{\left(\mathrm{d}g^k\right)^\top \mathrm{d}g^k}$$

7.1.4 Line search

(1) "Zhang, Hager" Rule:

$$\psi(x^k) \le C_{k-1} - \frac{1}{2} t_k \rho \|x^k - y^k\|_2^2$$

with:

$$C^{0} = f(x^{0}), C^{k} = \frac{1}{Q^{k}} (\eta Q^{k-1} C^{k-1} + \psi(x^{k}))$$

where:

$$\left\{Q^k\right\}$$
 satisfy $Q^0=1, Q^{k+1}=\eta Q^k+1, \eta\in(0,1)$

(2) "Standard" Rule:

$$f(x^{k}) \leqslant f(y^{k}) + \langle \nabla f(y^{k}), x^{k} - y^{k} \rangle + \frac{1}{2t_{k}} \|x^{k} - y^{k}\|_{2}^{2}$$

7.2 Nesterov's 2nd method

7.2.1 Code

Composite/Solver/Nesterov_2nd

7.2.2 iteration

define
$$\gamma_k = \frac{2}{k+1}$$
, renew $\{x^k\}\{y^k\}\{z^k\}$
$$z^k = (1-\gamma_k)x^{k-1} + \gamma_k y^{k-1},$$

$$y^k = \operatorname{prox}_{(t_k/\gamma_k)h}(y^{k-1} - \frac{t_k}{\gamma_k}\nabla f(z^k)),$$

$$x^k = (1-\gamma_k)x^{k-1} + \gamma_k y^k.$$

7.3 Numerical test

7.3.1 Code

test/test.cpp

Power Method in Evaluating All the Maximum Modulus Eigenvalues of Square Matrix is include in "OptSuite/LinAlg/power_method.h"

If you use Nesterov_2nd, you need to calculate const step tau = 1/L(if possible)

7.3.2 Result

method	iter	message return	elapsed time	relative error
ProxGBB(BB step with line search)	382	optimal objdiff/Xdiff	$0.015747 \; \mathrm{sec}$	5.74019e-06
FISTA(BB step with line search)	456	optimal objdiff/Xdiff	$0.039219 \ \text{sec}$	5.73793e-06
Nesterov's 2nd(const step)	813	optimal objdiff/Xdiff	0.0493599 sec	5.75413e-06