MODIFICATION OF OPERATIONS IN CNN

FINAL PROJECT FINAL REPORT

第一組 許凱傑 B03901026

楊仲萱 B03901160

楊其昇 B03901101

Outline

- Model Introduction
- Simulation Results
 - Experiment Setup
 - Analysis
- Hardware-friendly Design
- Conclusion
- Reference

MODEL INTRODUCTION

AlexNet Architecture [1] 3 Fully connected layer

AVLSI_1061

VGG NETWORK [2]

- Simonyan and Zisserman, 2014
- Simplicity
- Small 3 x 3 filters

VGG Architecture [2]

AVLSI 1061

Inception v1 - Module [3]

Inception v1 - Architecture [3]

AVLSI_1061

Inception v2_[4]

 Reduce the needs for layers to continuously adapt to the new distribution:

Batch Normalization

Train faster and have better performance

Inception v3 [5]

Factorization into smaller convolutions

Inception v3_[5]

Spatial Factorization into Asymmetric Convolutions

Cost saving increases dramatically as n grows

ResNet Module [6]

- A intuitive implementation of deeper model with at least same performance with shallower counterpart is identical mapping of adding layers.
- A residual learning framework was proposed: Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these layers fit a residual mapping (Hypothesis of this paper).

[6] Fig. 2. residual learning block

Xception v.s. Inception

[7] Fig. 4. An "extreme" version of our Inception module, with one spatial convolution per output channel of the 1x1 convolution.

Difference:

(1) order: 1X1-spatial; spatial-1X1

(2) Non-linearity

Xception v.s. ResNet

[7] Fig. 5. The Xception architecture – middle flow

[7] Fig. 9. Training profile with and without residual connections.

SIMULATION RESULTS

Testing Data:

- ILVSRC 2012 validation data
- 50,000 images, 1000 classes

Experiment Setup

- Software
 - Python3
 - Tensorflow 1.4
 - Keras 2.0
- Hardware
 - 2 GHz 2 Cores Intel Core i5 CPU
 - Nvidia 1080 GPU

Analysis Topics

- Accuracy
 - Top-1 accuracy
 - Top-5 accuracy
- # of parameters
- # of operations (G-FLOPS)
- Inference time per image
- Power

Accuracy

of parameters & # of operations

Inference Time

Inference time are measured on 2 GHz 2 Cores Intel Core i5 CPU

Inference Time v.s. Accuracy

Inference time are measured on 2 GHz 2 Cores Intel Core i5 CPU

Inference time per image vs Top 1 accuracy∝ # of parameters

Power

Power are measured on Nvidia GeForce 1080

Power vs Operations ∝ # of parameters

HARDWARE-FRIENDLY DESIGN

Systolic Array [9]

Dense Linear Algebra Accelerator

Accelerate Matrix-Matrix and Matrix-Vector Operation

Quantization [9]

Systolic Array

Quantization

Pruning [9]

Systolic Array

Quantization

Pruning

AVLSI 1061

Memory access is a critical problem

AVLSI_1061

Data Reuse [10]

Systolic Array Quantization Pruning Data Reuse

Reuse: Filter weights

Filter Reuse

CONV and FC layers

(batch size > 1)

[10]

of parameters / GFLOPs in FC and CONV layers

- It is observed CONV layers in the AlexNet and VGG require less parameters but more computations and FC layers require more parameters but less computations.
- However, for very deep network (ResNet, Inception, Xception), the critical issue lies on CONV layers. (Since there will be only one FC layer)

Conclusion

	Top1 Acc	Тор5 Асс	# of Parameters	Power(W)	GFLOPs	Inference Time per Image(ms)
AlexNet	52.09%	76.06%	60,965,224		1.27	90.81
VGG16	64.27%	85.59%	138,357,544	200	31.06	818.54
VGG19	64.73%	85.88%	143,667,240	215	39.40	1010
ResNet50	67.99%	88.35%	25,636,712	145	7.80	332.2
ResNet152	70.63%	89.78%	60,495,656	155	22.83	808.51
InceptionV3	76.27%	93.75%	23,851,784	175	11.51	740.8
Xception	77.52%	93.03%	22,910,480	145	16.87	709.34

Conclusion

- [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", 2012
- [2] K. Simonyan, and A. Zisserman, "Very Deep Convolution Networks For Large-Scale Image Recognition," 2015
- [3] C. Szegedy, W. Liu, Y. Jia et al, "Going deeper with convolutions," IEEE conf. Computer Vision and Pattern Recognition, 2015
- [4] S. Loffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", 2015
- [5] S. Ioffe, V. Vanhoucke, C. Szegedy et al., "Rethinking the Inception Architecture for Computer Vision," 2015
- [6] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2015
- [7] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017
- [8] A. Canziani, E. Culurciello and A. Paszke, "An Analysis of Deep Neural Network Models For Practical Applications," 2017
- [9] Y. J. Lin and T. S. Chang, "Data and Hardware Efficient Design for Convolutional Neural Network," IEEE Trans. Circuits and Systems I: Regular Papers, 2017, pp. 1-10
- [10] Y. H. Chen, J. Emer and V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,"ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016, pp. 367-379
- [11] K. Kiningham, M. Graczyk and A. Ramkumar, "Design and Analysis of a Hardware CNN Accelerator"