第10课次习题

练习1. 在相应点对下列函数展开Taylor级数(前四项即可),并指出收敛半径:

(1).
$$\tan z$$
, $z_0 = \frac{\pi}{4}$, (2). $e^{\frac{z}{z-1}}$, $z_0 = 0$.

练习2. 求下列幂级数在复平面上和函数:

$$\sum_{n=0}^{\infty} \frac{z^{3n}}{(3n)!}.$$

练习3. 求值: $\ln^{(2n)}(1+iz^2)|_{z=0}$ $(n \ge 1)$. (此处为2n阶导数)

练习4. 设整函数f(z)在复平面 \mathbb{C} 上处处满足 $|f(z)| \leq |z|^s$, 此处s为正常数但 $s \notin \mathbb{Z}$, 求证: $f(z) \equiv 0$. **(提示: 证明Taylor展开式的所有系数为0)**

练习5. 证明解析函数唯一性定理: 设函数f(z), g(z)在区域D上解析, $a \not\in \{z_n\}_{n=0}^{\infty} \subset D$, $a \in D$, 若

(1)
$$\lim_{n \to \infty} z_n = a$$
, (2) $f(z_n) = g(z_n)$, $n \in \mathbb{N}$,

则 $f(z) \equiv g(z)$.