

Tecniche di Programmazione

01FYZOA A.A. 2020/2021

INTRODUZIONE AL CORSO

Docenti

Lezioni:

- Prof. Sara Vinco, e-mail: <u>sara.vinco@polito.it</u>
- Prof. Paolo Camurati, e-mail: paolo.camurati@polito.it

Laboratori:

• Eng. Davide Cannizzaro, e-mail: davide.cannizzaro@polito.it

Programma dell'Insegnamento

 Secondo passo (solo per Ingegneria Informatica) nel percorso di avvio alla programmazione come strumento per la risoluzione di problemi reali

Argomenti principali:

- Consolidamento di problem-solving
- Caratterizzazione delle principali tipologie di problemi e strategie di soluzione
- o Introduzione a strutture dati e algoritmi
- Introduzione allo studio della complessità degli algoritmi
- Introduzione al linguaggio C come secondo linguaggio di programmazione

Programma dell'Insegnamento

- Approccio didattico molto diverso dal corso di Informatica del primo semestre: basato su apprendimento per esperienza e imitazione
 - Meno tempo dedicato ai costrutti sintattici e ai dettagli del linguaggio
 - Possono essere appresi individualmente e facendo riferimento a materiale esistente...
 - Assumiamo lavoro autonomo di studio del linguaggio e programmazione

Programma dell'Insegnamento

- Divisione oraria degli argomenti (indicativa):
 - Nozioni elementari di architettura e di logica (10 h)
 - Il C come secondo linguaggio (20 h)
 - Puntatori e allocazione dinamica in C (10 h)
 - Problem-solving elementare (20 h)
- Per maggiori dettagli: <u>https://didattica.polito.it/pls/portal30/gap.pkg_guide.view</u> <u>Gap?p_cod_ins=01FYZOA&p_a_acc=2021&p_header=S&p_lang=IT</u>

Libri

- G. Cabodi, P. Camurati, P. Pasini, D. Patti, D. Vendraminetto, 'Dal problema al programma: introduzione al problem-solving in linguaggio C'
 - Apogeo, II edizione, 2016
 - o ISBN 9788891616661
 - http://www.apogeoeducation.com/dal-problema-al-programma.html

Libri

- G. Cabodi, P. Camurati, P. Pasini, D. Patti, D. Vendraminetto, 'Dal problema al programma: introduzione al problem-solving in linguaggio C'
 - Apogeo, II edizione, 2016
 - o ISBN 9788891616661
 - http://www.apogeoeducation.com/dal-problema-al-programma.html
 - Suggerito per il linguaggio C
 come testo di riferimento

Materiale del corso

- Il materiale sarà caricato sul portale della didattica
 - PDF delle slide
 - Video delle lezioni
 - Esercizi/tutorial/...
- Materiale aggiuntivo:
 - Potete usare qualsiasi materiale riteniate utile: manuali, slide, tutorial, forum online per risolvere dubbi o approfondire gli argomenti del corso

	Lunedì	Martedì	Mercoledì	Giovedì	Venerdì
08:30-10:00	LEZIONE				LAB (SQ. 1)
10:00-11:30	LEZIONE	LEZIONE (*)			LAB (SQ. 2)
11:30-13:00					LAB (SQ. 3)

- 4.5 ore a settimana, 14 settimane in totale
- Corso in remoto, mediante VC/Zoom e/o lezioni pre-registrate
 - (*) Solo in caso di recupero o no lab, lezione il Martedì
 - o Prima settimana no lab → lezione Martedì 02/03/2021
- Verificare sempre Portale della Didattica per possibili aggiornamenti e/o modifiche!!

- Lezioni in parte dal vivo e in parte registrate
 - Lezioni live:
 - Virtual classroom dal portale all'orario previsto
 - Vengono registrate (il video è disponibile sul portale dopo qualche giorno)
 - Lezioni pre-registrate:
 - Disponibili prima dello slot associato alla lezione (sul portale della didattica)
 - Potete interagire col docente su Virtual Classroom (oppure Zoom) di "supporto" di massima alla fine dell'orario previsto per la lezione (comunicazioni su slack)
 - Fare riferimento al calendario riportato sul portale della didattica
 - Controllare avvisi e slack per cambiamenti dell'ultimo minuto

Laboratori

- 10 in totale a partire dal 12/03
- Pubblicati su base settimanale (portale della didattica)
 - Possibili VC o Zoom
 - Possibilità di fare domande durante e dopo il laboratorio su slack
- 3 squadre
 - 1. BOVONE MELLUSO \rightarrow ore 08:30 10:00
 - 2. MESITI PRISACARU \rightarrow ore 10:00 11:30
 - 3. QCHOHI ZICCARDI \rightarrow ore 11:30 13:00
 - Si prega di rispettare l'assegnazione dei turni di laboratorio
 - E' possibile concordare in autonomia scambi di orario estemporanei con altri colleghi, garantendo la stessa numerosità delle squadre originali

Studenti della sede di Biella

 Vista la modalità totalmente remota, il corso si tiene esattamente come per i colleghi della sede di Torino

Per comunicazioni off-line

- Avvisi sul Portale della Didattica
- Email all'indirizzo di posta istituzionale Smatricola@studenti.polito.it
 - o I vostri indirizzi personali <u>non</u> devono essere usati per comunicazioni coi docenti

- Workspace Slack per il corso
 - Domande e comunicazioni veloci
 - Supporto per i laboratori da parte di esercitatore e borsisti
 - Riceverete/avete ricevuto un invito ad iscrivervi

Strumenti di programmazione

Si può usare l'IDE per programmazione C che si preferisce

- Si suggerisce CLion:
 - Un prodotto JetBrains (quindi simile a PyCharm)
 - Cross-platform (c'è per Windows, MAC e Linix)
 - Licenza Educational disponibile per students (la stessa di PyCharm)
 - Si assume che, dopo il corso Python, lo studente sia in grado di installare e configurare un IDE in modo autonomo: https://www.jetbrains.com/clion/
 - Trovate un tutorial sul Portale della Didattica
 - Deve essere installato entro il primo laboratorio (12/03)

Esame: regole preliminari (è la prima edizione)

- Esame scritto, 90 min. su piattaforma exam, che comprenderà:
 - Domande a risposta aperta e/o quiz a scelta multipla
 - Esercizi di Programmazione/problem solving in C
 - Maggiori dettagli/logistica/esempi saranno forniti più avanti, durante il corso
- Lo studente riceve (alla fine dell'esame) un file .pdf contenente il suo elaborato, e dovrà caricare entro tre giorni sul Portale (sezione elaborati):
 - Una breve relazione (max 1 pagina) che descriva, per gli esercizi di programmazione, la soluzione adottata (strutture dati, algoritmi, ...)
 - Una copia del programma corretto (deve poter essere compilato/eseguito in modo corretto), evidenziando modifiche e/o correzioni rispetto alla versione originale
 - La non consegna del materiale richiesto viene intesa come ritiro dall'esame (non si ottiene valutazione)

Laboratori

- Gli esercizi di laboratorio possono essere consegnati e valutati
 - La valutazione può portare fino a 2 punti aggiuntivi sul voto finale di esame
 - Validità del laboratorio ai fini del punteggio: 28 febbraio 2022
- Le scadenze per le consegne saranno comunicate
 - Di massima ci saranno 3 scadenze per 3 gruppi di laboratori
- Si tratta di un extra: non è obbligatorio
 - Si consiglia COMUNQUE DI SVOLGERE I LABORATORI (anche se in ritardo) perché servono a preparare l'esame

Consigli per affrontare il corso

- Non solo SAPERE (lezioni, comprensione, studio)
- Ma anche SAPER FARE (capire, applicare, esercizi, laboratori)
- DAL SAPERE AL SAPER FARE: per risolvere i problemi di programmazione:
 - atteggiamento **errato**: illudersi di risolvere un problema come se si ponesse per la prima volta, senza conoscere quanto già scoperto
 - atteggiamento corretto: conoscere e capire la teoria sottostante per poi applicarla.
- SAPER FARE BENE: non basta che il programma «funzioni»:
 - deve essere efficiente, leggibile, manutenibile, affidabile etc etc

Cosa serve per il corso?

- Prerequisiti:
 - o capacità di programmare in un altro linguaggio (Python)
 - Il C viene insegnato come SECONDO linguaggio
 - Capacità logiche: comprensione del problema, identificazione di una strategia risolutiva
 - Capacità pratiche: trasformare la strategia in un programma funzionante e, per quanto possibile, comprensibile ed efficiente

- Impegno personale continuo sul semestre:
 - Seguire le lezioni per capire e conoscere
 - Affrontare i laboratori e svolgere gli esercizi, programmare implementando i concetti capiti (richiede tempo!)
 - Non rinunciare a metà corso, non basta «svegliarsi» 2 settimane prima dell'appello

IN PRATICA...

NO: studio solo teorico senza provare a programmare

NO: limitarsi alla comprensione di programmi altrui

NO: approccio puramente «smanettone»: «non so cosa ho fatto, ma funziona»

NO: essere fuori dal contesto del corso: seguire il percorso proposto con le proprie tempistiche

IN PRATICA...

SI': mettere in pratica le nozioni apprese

SI': cimentarsi con un problema senza cercare di adattare soluzioni altrui («scopiazzare» in Rete)

SI': frequentare i laboratori e svolgere gli esercizi

SI': atteggiamento attivo/responsabile (il programma fa tutto e solo quello che il programmatore scrive, <u>specialmente in C!</u>)

SI': uso intelligente degli strumenti disponibili (materiale, rete, compilatore, debugger, etc.)

SI': tempo dedicato: studio e pratica, preparazione all'esame

