Übungsblatt Ana 3

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

- Sie kennen die Begriffe Integral, Stammfunktion, partielle Integration und deren wichtigste Eigenschaften.
- > Sie können die partielle Integration anwenden, um bestimmte und unbestimmte Integrale zu berechnen.
- Sie können unbestimmte Integrale mit Python/Sympy berechnen.

1. Aussagen über partielle Integration

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Die Methode der partiellen Integration basiert auf der	Χ	
	Produktregel der Differentialrechnung.		
b)	Mit Hilfe der partiellen Integration kann jedes Produkt von 2		Χ
	Funktionen integriert werden.		
c)	Um ein Produkt von 2 Funktionen mit partieller Integration	Χ	
	integrieren zu können, muss man mindestens einen der		
	Faktoren allein integrieren können.		
d)	Mit Hilfe der partiellen Integration kann das Integral einer	Χ	
	beliebigen differenzierbaren Funktion $f(x)$ auf die Berechnung		
	des Integrals von $x \cdot f'(x)$ zurückgeführt werden und umgekehrt.		

2. Stammfunktionen mit partieller Integration bestimmen

Berechnen Sie die folgenden unbestimmten Integrale mit der Methode der partiellen Integration.

a)
$$\int xe^x dx$$

b) $\int x^2 e^x dx$
c) $\int x \sin x dx$
d) $\int x \cos x dx$
e) $\int x^2 \sin x dx$
f) $\int x^2 \cos x dx$
g) $\int (\sin x)^2 dx$
h) $\int (\cos x)^2 dx$
i) $\int (\cosh x)^2 dx$
j) $\int (\cosh x)^2 dx$

a)
$$\underline{F(x)} = \int_{-\infty}^{\infty} \mathbf{1} \cdot \mathbf{e}^x \, dx = x \, \mathbf{e}^x - \int_{-\infty}^{\infty} \mathbf{1} \cdot \mathbf{e}^x \, dx = \underline{x \, \mathbf{e}^x - \mathbf{e}^x + c = (x - 1) \, \mathbf{e}^x + c}.$$

b)
$$\underline{F(x)} = \int \overset{\downarrow}{x^2} \cdot \overset{\uparrow}{e^x} dx = x^2 e^x - \int 2x \cdot e^x dx = x^2 e^x - 2(x-1) e^x + c$$

$$= \underbrace{(x^2 - 2x + 2) e^x + c}.$$
c)
$$\underline{F(x)} = \int \overset{\downarrow}{x} \cdot \sin(x) dx = x \cdot (-\cos(x)) - \int 1 \cdot (-\cos(x)) dx$$

$$= -x \cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x) + c = \underline{\sin(x) - x \cos(x) + c}.$$
d)

$$\underline{\underline{F(x)}} = \int_{-\infty}^{\infty} \frac{1}{x} \cdot \cos(x) \, dx = x \cdot \sin(x) - \int_{-\infty}^{\infty} 1 \cdot \sin(x) \, dx = \underline{\underline{x} \cdot \sin(x) + \cos(x) + c}.$$

$$\underline{F(x)} = \int x^2 \cdot \sin(x) \, dx = x^2 \cdot \left(-\cos(x)\right) - \int 2x \cdot \left(-\cos(x)\right) \, dx$$

$$= -x^2 \cos(x) + 2 \int x \cos(x) \, dx = -x^2 \cos(x) + 2x \sin(x) + 2\cos(x) + c$$

$$= \underline{2x \sin(x) + (2 - x^2) \cos(x) + c}.$$

f)
$$\underline{F(x)} = \int x^2 \cdot \cos(x) \, dx = x^2 \cdot \sin(x) - \int 2x \cdot \sin(x) \, dx = x^2 \sin(x) - 2 \int x \sin(x) \, dx$$

$$= x^2 \sin(x) - 2\sin(x) + 2x \cos(x) + c = \underline{(x^2 - 2)\sin(x) + 2x \cos(x) + c}.$$

g)
$$F(x) = \int \sin^2(x) dx = \int \sin(x) \cdot \sin(x) dx$$

$$= \sin(x) \cdot (-\cos(x)) - \int \cos(x) \cdot (-\cos(x)) dx = -\sin(x) \cos(x) + \int \cos^2(x) dx$$

$$= -\sin(x) \cos(x) + \int (1 - \sin^2(x)) dx = -\sin(x) \cos(x) + \int 1 dx - \int \sin^2(x) dx$$

$$= -\sin(x) \cos(x) + x + b - F(x).$$

Es gilt also

$$F(x) = -\sin(x)\cos(x) + x + b - F(x) \qquad | + F(x)$$
$$2 \cdot F(x) = -\sin(x)\cos(x) + x + b \qquad | : 2.$$

Daraus erhalten wir

$$\underline{F(x)} = \frac{-\sin(x)\,\cos(x) + x + b}{2} = \frac{x - \sin(x)\,\cos(x)}{2} + c.$$

h)

$$F(x) = \int \cos^2(x) \, dx = \int \cos(x) \cdot \cos(x) \, dx$$

$$= \cos(x) \cdot \sin(x) - \int (-\sin(x)) \cdot \sin(x) \, dx = \cos(x) \sin(x) + \int \sin^2(x) \, dx$$

$$= \cos(x) \sin(x) + \int (1 - \cos^2(x)) \, dx = \cos(x) \sin(x) + \int 1 \, dx - \int \cos^2(x) \, dx$$

$$= \cos(x) \sin(x) + x + b - F(x).$$

Es gilt also

$$F(x) = \cos(x) \sin(x) + x + b - F(x) \qquad | + F(x)$$
$$2 \cdot F(x) = \cos(x) \sin(x) + x + b \qquad | : 2.$$

Daraus erhalten wir

$$\underline{F(x)} = \frac{\cos(x) \sin(x) + x + b}{2} = \underline{\frac{x + \cos(x) \sin(x)}{2} + c}.$$

$$\mathbf{i)}$$

$$F(x) = \int \sinh^2(x) \, \mathrm{d}x = \int \sinh(x) \cdot \sinh(x) \, \mathrm{d}x$$

$$= \sinh(x) \cdot \cosh(x) - \int \cosh(x) \cdot \cosh(x) \, \mathrm{d}x = \sinh(x) \, \cosh(x) - \int \cosh^2(x) \, \mathrm{d}x$$

$$= \sinh(x) \, \cosh(x) - \int \left(1 + \sinh^2(x)\right) \, \mathrm{d}x = \sinh(x) \, \cosh(x) - \int 1 \, \mathrm{d}x - \int \sinh^2(x) \, \mathrm{d}x$$

$$= \sinh(x) \, \cosh(x) - x + b - F(x).$$

Es gilt also

$$F(x) = \sinh(x) \cosh(x) - x + b - F(x) \qquad | + F(x)$$
$$2 \cdot F(x) = \sinh(x) \cosh(x) - x + b \qquad | : 2.$$

Daraus erhalten wir

$$\underline{\underline{F(x)}} = \frac{\sinh(x)\,\cosh(x) - x + b}{2} = \frac{\sinh(x)\,\cosh(x) - x}{2} + c.$$

j)

$$F(x) = \int \cosh^{2}(x) dx = \int \cosh(x) \cdot \cosh(x) dx$$

$$= \cosh(x) \cdot \sinh(x) - \int \sinh(x) \cdot \sinh(x) dx = \cosh(x) \sinh(x) - \int \sinh^{2}(x) dx$$

$$= \cosh(x) \sinh(x) - \int (\cosh^{2}(x) - 1) dx = \cosh(x) \sinh(x) - \int \cosh^{2}(x) dx + \int 1 dx$$

$$= \cosh(x) \sinh(x) - F(x) + x + b.$$

Es gilt also

$$F(x) = \cosh(x) \sinh(x) - F(x) + x + b \qquad | + F(x)$$
$$2 \cdot F(x) = \cosh(x) \sinh(x) + x + b$$

Daraus erhalten wir

$$\underline{\underline{F(x)}} = \frac{\cosh(x)\,\sinh(x) + x + b}{2} = \frac{\cosh(x)\,\sinh(x) + x}{2} + c.$$

3. Bestimmte Integrale mit partieller Integration berechnen

Berechnen Sie die folgenden bestimmten Integrale mit der Methode der partiellen Integration.

a)
$$\int_0^3 \frac{x}{2\sqrt{x+1}} dx$$

b)
$$\int_{1}^{2} x \sqrt{x-1} dx$$

c)
$$\int_{1}^{2} x \ln x \, dx$$

$$\underline{I} = \int_0^3 \frac{x}{2\sqrt{x+1}} \, \mathrm{d}x = \int_0^3 x \cdot \underbrace{\frac{1}{2\sqrt{x+1}}} \, \mathrm{d}x = \left[x \cdot \sqrt{x+1} \right]_0^3 - \int_0^3 \sqrt{x+1} \, \mathrm{d}x$$

$$= \left[x \cdot \sqrt{x+1} \right]_0^3 - \frac{2}{3} \cdot \left[(x+1)^{\frac{3}{2}} \right]_0^3$$

$$= 3 \cdot \sqrt{3+1} - 0 \cdot \sqrt{0+1} - \frac{2}{3} \cdot (3+1)^{\frac{3}{2}} + \frac{2}{3} \cdot (0+1)^{\frac{3}{2}} = 6 - 0 - \frac{2}{3} \cdot 8 + \frac{2}{3}$$

$$= \frac{18}{3} - \frac{16}{3} + \frac{2}{3} = \frac{4}{3}.$$

b)

$$\underline{I} = \int_{1}^{2} x \sqrt{x - 1} \, dx = \int_{1}^{2} x \cdot \sqrt{x - 1} \, dx = \left[x \cdot \frac{2}{3} \cdot (x - 1)^{\frac{3}{2}} \right]_{1}^{2} - \int_{1}^{2} 1 \cdot \frac{2}{3} \cdot (x - 1)^{\frac{3}{2}} \, dx$$

$$= \frac{2}{3} \cdot \left[x (x - 1)^{\frac{3}{2}} \right]_{1}^{2} - \frac{2}{3} \cdot \frac{2}{5} \cdot \left[(x - 1)^{\frac{5}{2}} \right]_{1}^{2}$$

$$= \frac{2}{3} \cdot 2 \cdot (2 - 1)^{\frac{3}{2}} - \frac{2}{3} \cdot 1 \cdot (1 - 1)^{\frac{3}{2}} - \frac{4}{15} \cdot (2 - 1)^{\frac{5}{2}} + \frac{4}{15} \cdot (1 - 1)^{\frac{5}{2}} = \frac{4}{3} - 0 - \frac{4}{15} + 0$$

$$= \frac{20}{15} - \frac{4}{15} = \frac{16}{15}.$$

c)

$$\begin{split} & \underline{\underline{I}} = \int_{1}^{2} \overset{\downarrow}{\ln(x)} \overset{\uparrow}{\cdot x} \, \mathrm{d}x = \left[\ln(x) \cdot \frac{1}{2} \cdot x^{2} \right] \Big|_{1}^{2} - \int_{1}^{2} \frac{1}{x} \cdot \frac{1}{2} \cdot x^{2} \, \mathrm{d}x = \frac{1}{2} \cdot \left[x^{2} \cdot \ln(x) \right] \Big|_{1}^{2} - \frac{1}{2} \int_{1}^{2} x \, \mathrm{d}x \\ & = \frac{1}{2} \cdot \left[x^{2} \cdot \ln(x) \right] \Big|_{1}^{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot \left[x^{2} \right] \Big|_{1}^{2} = \frac{1}{2} \cdot 2^{2} \cdot \ln(2) - \frac{1}{2} \cdot 1^{2} \cdot \ln(1) - \frac{1}{4} \cdot 2^{2} + \frac{1}{4} \cdot 1^{2} \\ & = 2 \cdot \ln(2) - 0 - 1 + \frac{1}{4} = 2 \ln(2) - \frac{3}{4} \, . \end{split}$$

4. Stammfunktionen bestimmen

Berechnen Sie die folgenden unbestimmten Integrale mit einer geeigneten Methode.

a)
$$\int \frac{x}{1+x^4} dx$$

b) $\int e^{at} \sin(\omega t) dt$

c)
$$\int r^3 (\cos r^2) dr$$

d)
$$\int \frac{x}{(\cos x)^2} dx$$

e)
$$\int \frac{e^{2x}}{1+e^x} dx$$

f)
$$\int \frac{(\ln x)^3}{x} dx$$

g)
$$\int \cos(\ln x) dx$$

a)

mittels Substitution lösen

$$u(x) := x^2 \implies u'(x) = 2x.$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 2x \iff \mathrm{d}u = 2x\,\mathrm{d}x \iff \mathrm{d}x = \frac{\mathrm{d}u}{2x} = \frac{1}{2x}\,\mathrm{d}u$$

und somit

$$\underline{F(x)} = \int \frac{x}{1+x^4} \, dx = \int \frac{x}{1+u^2} \cdot \frac{1}{2x} \, du = \frac{1}{2} \int \frac{1}{1+u^2} \, du = \frac{1}{2} \cdot \arctan(u) + c$$
$$= \underline{\frac{1}{2} \cdot \arctan(x^2) + c}.$$

b) mittels partieller Integration

$$F(t) = \int e^{at} \cdot \sin(\omega t) dt = \frac{1}{a} \cdot e^{at} \cdot \sin(\omega t) - \frac{\omega}{a} \int e^{at} \cdot \cos(\omega t) dt$$

$$= \frac{1}{a} \cdot e^{at} \cdot \sin(\omega t) - \frac{\omega}{a} \cdot \left(\frac{1}{a} \cdot e^{at} \cdot \cos(\omega t) - \frac{\omega}{a} \int e^{at} \cdot (-1) \cdot \sin(\omega t) dt\right)$$

$$= \frac{1}{a} \cdot e^{at} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot e^{at} \cdot \cos(\omega t) - \frac{\omega^2}{a^2} \int e^{at} \cdot \sin(\omega t) dt$$

$$= e^{at} \cdot \left(\frac{1}{a} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot \cos(\omega t) - \frac{\omega^2}{a^2} \cdot F(t)\right).$$

Es gilt also

$$F(t) = e^{at} \cdot \left(\frac{1}{a} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot \cos(\omega t)\right) - \frac{\omega^2}{a^2} \cdot F(t) \quad \left| + \frac{\omega^2}{a^2} \cdot F(t) \right|$$

$$F(t) + \frac{\omega^2}{a^2} \cdot F(t) = e^{at} \cdot \left(\frac{1}{a} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot \cos(\omega t)\right)$$

$$\left(1 + \frac{\omega^2}{a^2}\right) \cdot F(t) = e^{at} \cdot \left(\frac{1}{a} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot \cos(\omega t)\right) \quad \left| : \left(1 + \frac{\omega^2}{a^2}\right).$$

Daraus erhalten wir

$$\underline{F(t)} = \frac{e^{at} \cdot \left(\frac{1}{a} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot \cos(\omega t)\right)}{\left(1 + \frac{\omega^2}{a^2}\right)} + c = \frac{e^{at} \cdot \left(\frac{1}{a} \cdot \sin(\omega t) - \frac{\omega}{a^2} \cdot \cos(\omega t)\right) \cdot a^2}{\left(1 + \frac{\omega^2}{a^2}\right) \cdot a^2} + c$$

$$= \frac{e^{at} \cdot \left(a \cdot \sin(\omega t) - \omega \cdot \cos(\omega t)\right)}{a^2 + \omega^2} + c.$$

mittels Substitution

$$u(r) := r^2 \implies u'(r) = 2r.$$

 $\frac{\mathrm{d}u}{\mathrm{d}r} = 2r \iff \mathrm{d}u = 2r\,\mathrm{d}r \iff \mathrm{d}r = \frac{\mathrm{d}u}{2r} = \frac{1}{2r}\,\mathrm{d}u$

und somit

$$\underline{\underline{F(r)}} = \int r^3 \cos(r^2) dr = \int u \cdot r \cdot \cos(u) \cdot \frac{1}{2r} du = \frac{1}{2} \int u \cdot \cos(u) du$$

$$= \frac{1}{2} \cdot \left(u \cdot \sin(u) - \int 1 \cdot \sin(u) \, du \right) = \frac{1}{2} \cdot \left(u \cdot \sin(u) - \int \sin(u) \, du \right)$$

$$= \frac{1}{2} \cdot \left(u \cdot \sin(u) - (-1) \cdot \cos(u) + \tilde{c} \right) = \frac{1}{2} \cdot \left(u \cdot \sin(u) + \cos(u) \right) + c$$

$$= \frac{1}{2} \cdot \left(r^2 \cdot \sin(r^2) + \cos(r^2) \right) + c.$$

d)

Wir zerlegen den Integrand $f(x) = \frac{x}{\cos^2 x}$ wie folgt in ein *Produkt* aus zwei Faktoren u und v':

$$f(x) = \frac{x}{\cos^2 x} = \underbrace{x}_{u} \cdot \underbrace{\frac{1}{\cos^2 x}}_{v'} = uv'$$

Begründung: Diese Zerlegung hat Aussicht auf Erfolg, da $v' = \frac{1}{\cos^2 x}$ bekanntlich die *Ableitung* von tan x ist. Mit der gewählten Zerlegung

$$u = x$$
, $v' = \frac{1}{\cos^2 x}$ und damit $u' = 1$, $v = \tan x$

führt die partielle Integration zu folgendem Ergebnis:

$$I = \int \frac{x}{\cos^2 x} dx = \int x \cdot \frac{1}{\cos^2 x} dx = \int uv' dx = uv - \int u'v dx = x \cdot \tan x - \int 1 \cdot \tan x dx =$$

$$= x \cdot \tan x - \int \tan x dx = x \cdot \tan x - I_1$$

Das "Hilfsintegral" I_1 ist zwar kein Grundintegral, lässt sich aber durch eine Substitution leicht lösen, wenn man die trigonometrische Beziehung $\tan x = \frac{\sin x}{\cos x}$ beachtet:

$$I_1 = \int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

Im Zähler steht – vom Vorzeichen abgesehen – die Ableitung des Nenners, das Integral I_1 ist daher durch die Substitution $u=\cos x$ wie folgt lösbar

$$u = \cos x$$
, $\frac{du}{dx} = -\sin x$, $dx = \frac{du}{-\sin x}$

$$I_1 = \int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = \int \frac{\sin x}{u} \cdot \frac{du}{-\sin x} = -\int \frac{1}{u} \, du = -\ln|u| + C = -\ln|\cos x| + C$$

Für das vorgegebene Integral I erhalten wir damit die Lösung

$$I = \int \frac{x}{\cos^2 x} \, dx = x \cdot \tan x - I_1 = x \cdot \tan x - (-\ln|\cos x| + C) = x \cdot \tan x + \ln|\cos x| - C =$$

$$= x \cdot \tan x + \ln|\cos x| + C^* \qquad (C^* = -C)$$

Wir "verifizieren" das Ergebnis, indem wir zeigen, dass die 1. Ableitung des unbestimmten Integrals zum Integranden führt. Dabei verwenden wir in der angedeuteten Weise die *Produktregel* (1. Summand) und die *Kettenregel* (2. Summand):

$$I = \underbrace{x \cdot \tan x}_{u} + \ln|\cos x| + C^{*} = uv + \ln|t| + C^{*}$$

$$I' = u'v + v'u + \frac{1}{t} \cdot t' = 1 \cdot \tan x + \frac{1}{\cos^2 x} \cdot x + \frac{1}{\cos x} \cdot (-\sin x) = \tan x + \frac{x}{\cos^2 x} - \tan x = \frac{x}{\cos^2 x}$$

(unter Verwendung der trigonometrischen Beziehung $\sin x/\cos x = \tan x$)

e)

Die Substitution $u = 1 + e^x$ führt zu einer Vereinfachung im Nenner des Integranden. Somit gilt (versuchsweise):

$$u = 1 + e^x$$
, $\frac{du}{dx} = e^x$, $dx = \frac{du}{e^x}$

Durchführung der Integralsubstitution:

$$I = \int \frac{e^{2x}}{1 + e^x} dx = \int \frac{e^{2x}}{u} \cdot \frac{du}{e^x} = \int \frac{e^x \cdot e^x}{u} \cdot \frac{du}{e^x} = \int \frac{e^x}{u} du$$

Um die alte Variable x vollständig aus dem Integral zu entfernen, lösen wir die Substitutionsgleichung $u = 1 + e^x$ nach e^x auf und setzen den gefundenen Ausdruck $e^x = u - 1$ ein. Das Integral I lässt sich jetzt leicht lösen:

$$I = \int \frac{e^x}{u} \, du = \int \frac{u - 1}{u} \, du = \int \left(1 - \frac{1}{u}\right) du = u - \ln|u| + C$$

Nach der Rücksubstitution $u = 1 + e^x$ erhält man die folgende Lösung:

$$I = \int \frac{e^{2x}}{1 + e^x} dx = (1 + e^x) - \ln|1 + e^x| + C = e^x - \ln(1 + e^x) + C^* \qquad (C^* = 1 + C)$$

f)

Mit der naheliegenden Substitution $u = \ln x$, $\frac{du}{dx} = \frac{1}{x}$, dx = x du erreichen wir unser Ziel:

$$I = \int \frac{(\ln x)^3}{x} \, dx = \int \frac{u^3}{x} \cdot x \, du = \int u^3 \, du = \frac{1}{4} \, u^4 + C$$

Die Lösung lautet somit nach vollzogener Rücksubstitution $u = \ln x$ wie folgt:

$$I = \int \frac{(\ln x)^3}{x} \, dx = \frac{1}{4} \, (\ln x)^4 + C$$

with substitution
$$z = \ln x$$
: $\frac{dz}{dx} = \frac{1}{x}$

$$\Rightarrow \int \cos z \frac{dz}{\frac{1}{x}} = \int \cos z \cdot x \, dz$$

$$= \int \cos z \cdot e^{z} \, dz$$

nutze pertielle Integration:
$$\int \cos z \cdot e^{z} = \cos z \cdot e^{z} - \int (-\sin z) \cdot e^{z} dz$$

$$= \cos z \cdot e^{z} + \int \sin z \cdot e^{z} dz$$

$$= \cos z \cdot e^{z} + \sin z \cdot e^{z} - \int \cos z \cdot e^{z} dz$$

$$\Rightarrow 2 \cdot \int \cos z \cdot e^{z} dz = e^{z} (\sin z + \cos z)$$

$$\int \cos z \cdot e^{z} dz = \frac{1}{2} e^{z} (\sin z + \cos z) + C$$
Rinksubstitution:
$$\int \cos (\ln x) dx = \frac{1}{2} x (\sin (\ln x) + \cos (\ln x)) + C$$

5. Aufleiten mit Python/Sympy

Berechnen Sie die unbestimmten Integrale aus Aufgabe 4 mit Python/Sympy.

```
a)
# Python initialisieren
import IPython.display as dp;
import sympy as sp;
sp.init_printing();
# Symbole
x=sp.symbols('x');
# Parameter
f=x/(1+x**4);
# Berechnungen:
F=sp.simplify(sp.integrate(f,x));
# Ausgabe
dp.display(f);
dp.display(F);
```

- b) -g) analog zu a), jedoch Funktion f und nach Bedarf die Symbole anpassen.
- → die Stammfunktion bei d) am besten mit WolframAlpha überprüfen Lösung in Python nicht korrekt.
- → die Stammfunktion bei g) sieht auf den ersten Blick verschieden zu der handschriftlichen Lösung aus. Durch Nutzung des Additionstheorems für den sin lässt sich jedoch die Python-Lösung in die handschriftliche Lösung umwandeln.

6. Fläche des Einheitskreises

Berechnen Sie die Fläche des Einheitskreises durch Integration, indem Sie einen geeigneten Teil des Kreisbogens als Graph einer Funktion auffassen und diesen integrieren.

Hinweis: Verwenden Sie die Substitution $x = \sin(u)$.

Wir wählen einen Viertelkreis, der im 1. Quadranten des kartesischen Koordinatensystems liegt, um die Fläche des Einheitskreises zu bestimmen.

Für die Punkte auf dem Einheitskreis gilt:

$$1 = x^2 + y^2 = x^2 + f^2(x)$$

$$\Rightarrow \qquad 1 - x^2 = f^2(x)$$

$$|\sqrt{\dots}|$$

$$f(x) = \sqrt{1 - x^2} \,.$$

Die Fläche des Einheitskreises entspricht 4 mal der grün markierten Fläche in der obigen Abbildung:

$$A_{\rm K} = 4 \cdot A = 4 \int_0^1 f(x) \, dx = 4 \int_0^1 \sqrt{1 - x^2} \, dx.$$

Um das Integral zu lösen, wählen wir die Methode der Substitution.

$$x := \sin(u) \qquad | (\dots)'$$

$$1 = \cos(u) \cdot u' \qquad | : \cos(u).$$

$$u' = \frac{1}{\cos(u)}$$

$$\frac{du}{dx} = \frac{1}{\cos(u)} \Leftrightarrow du = \frac{1}{\cos(u)} dx \Leftrightarrow dx = \cos(u) du$$

und somit

$$\underline{\underline{A_K}} = 4 \int_0^1 \sqrt{1 - x^2} \, dx = 4 \int_0^1 \sqrt{1 - \sin^2(u)} \, dx = 4 \int_0^1 \sqrt{\cos^2(u)} \, dx$$

$$= 4 \int_{\arcsin(0)}^{\arcsin(1)} |\cos(u)| \cdot \cos(u) \, du = 4 \int_0^{\frac{\pi}{2}} \cos(u) \cdot \cos(u) \, du = 4 \int_0^{\frac{\pi}{2}} \cos^2(u) \, du$$

$$= 4 \cdot \frac{1}{2} \cdot \left[\sin(u) \cdot \cos(u) + u \right]_0^{\frac{\pi}{2}} = 2 \cdot \left(\sin(\pi/2) \cdot \cos(\pi/2) + \frac{\pi}{2} - \sin(0) \cdot \cos(0) - 0 \right)$$

$$= 2 \cdot \left(0 + \frac{\pi}{2} - 0 - 0 \right) = 2 \cdot \frac{\pi}{2} = \underline{\pi}.$$