Graph

Graph structure and tree structure by diagram

Left - Graph, right - Binary tree

Graph structure and tree structure by data flow

Tree: Based on linked list structure

Data flow of tree structure (Linked list)

Graph: Based on array (matrix)

	A	В	С	D	Е
A	0	1	1	0	0
В	1	0	0	0	0
C	1	0	0	1	0
D	0	0	-1	0	1
Е	0	0	0	1	0

Data flow of graph structure (Array, Matrix)

Mark:

- Orange boxes equal to line arrow (C only go to D but D do not go back to C).
- Can use {} or dictionary for mapping depends on coding style.

Arrow types for digraph (Direct graph)

Conversion from graph diagram into other forms Graph diagram

CE312: Data Structure & Algorithm Laboratory – Basic graph structure

Matrix diagram (Adjacency matrix)

- Show every node even connect or disconnect

	A	В	С	D	Е	F	G
A	0	1	1	0	0	0	0
В	1	0	1	1	0	0	0
C	1	1	0	0	1	0	0
D	0	1	0	0	1	0	0
Е	0	0	1	1	0	1	0
F	0	0	0	0	1	0	1
G	0	0	0	0	0	1	0

Matrix - Adjacency matrix

Matrix diagram (Adjacency list)

- Show every node but only connect

A:	В	С	
B:	A	С	D
C:	A	В	Е
D:	В	Е	
E:	С	D	F
F:	Е	G	
G:	F		

Matrix - Adjacency list

Matrix diagram (Edge list)

- Show node connected for each line

0:	A	В	A/B
1:	A	С	A/C
2:	В	С	B/C
3:	В	D	B/D
4:	С	Е	C/E
5:	D	Е	D/E
6:	E	F	E/F
7:	F	G	F/G

Matrix - Edge list

Graph diagram with edge list

Graph diagram with edge list

Example

Create graph

Insert edge (result)

TableA.create_edge("A")

	'Α'
٠A,	,0,

TableA.create_edge("B")

	٠A,	,В,
٠A,	,0,	٠0,
·Β,	,0,	,0,

TableA.create_edge("C")

	·Α [,]	,В,	.С,
٠A,	,0,	,0,	,0,
·В,	,0,	٠0,	٠0,
٠C,	,0,	٠0,	٠0,

CE312: Data Structure & Algorithm Laboratory – Basic graph structure

Connect edge (result)

TableA.connect("A","B")

	·Α,	,В,	٠C,
٠A,	,0,	·1·	٠0,
·В,	·1·	٠0,	,0,
·С,	,0,	٠0,	٠0,

TableA.connect("A","C")

	·Α,	,В,	٠C,
·Α [,]	,0,	·1·	·1·
·Β,	·1·	٠0,	,0,
٠C,	·1·	٠0,	,0,

TableA.connect("B","C")

	·Α'	,В,	٠C,
٠A,	,0,	·1·	'1'
·Β,	·1·	٠0,	·1·
٠C,	·1·	·1·	٠0,

Disconnect edge (result)

TableA.disconnect("B","C")

	·Α [,]	'nВ,	٠C,
·Α [,]	,0,	·1·	·1·
·Β,	·1·	٠0,	,0,
٠C,	·1·	٠0,	٠0,

CE312: Data Structure & Algorithm Laboratory – Basic graph structure

Exercise 1

🗌 ให้นักศึกษาแสดง adjacency matrix, adjacency list และ edge list จาก graph structure ที่กำหนดให้

Exercise 2

🗌 ให้นักศึกษาแสดง adjacency matrix, adjacency list และ edge list จาก graph structure ที่กำหนดให้

Exercise 3

ให้นักศึกษาแก้ไขโปรแกรมใน assignment สร้าง graph โดยกำหนดข้อมูล node ตามลำดับต่อไปนี้ A, B, C, D, E, F
ให้นักศึกษาแก้ไขโปรแกรม connect: AB, AC, CD, CF, EF พร้อมทั้งแสดงผลลัพธ์ adjacent matrix
ให้นักศึกษาแก้ไขโปรแกรม โดยสร้างฟังก์ชันแสดงผลลัพธ์ Edge list
ให้นักศึกษาแก้ไขโปรแกรม โดยสร้างฟังก์ชันแสดงผลลัพธ์ Adjacency list
ให้นักศึกษาแก้ไขโปรแกรม โดยสร้างฟังก์ชัน disconnect: CF, AB, CD พร้อมทั้งแสดงผลลัพธ์ adjacent matrix,
Edge list และ Adjacency list ตามลำดับ

🗌 ให้นักศึกษาแก้ไขโปรแกรม โดยสร้างฟังก์ชัน connect: AE, BC, DF adjacent matrix, Edge list และ Adjacency

list ตามลำดับ