

Jing Liu

Jing.liu@it.uu.se

Find me at Room 2304

Topics in LA

- Solve linear equations
- Matrices operations
 - Matrices addition/ multiplication / transformation
 - Eigenvalue/ Eigenvector
 - Transpose, projection ...
- Vector space
- **...**

Loops

- LA operations are often basic building blocks in scientific applications
- Three basic types of loops
 - Perfectly parallel loops
 - Reduction loops
 - Recursive loops
 - Combination of different loops

Perfectly parallel loops

```
■ Example Z_m = \lambda X_m + Y_m
for ( i = 0; i < m; i ++ ){
Z[i] = \lambda * X[i] + Y[i];}
```

MPI Scatter and MPI Gather

Reduction loops

- Limited parallelism
- Example: Dot production s = X•Y^T

```
for ( i = 0; i < m; i ++ ) {
    s += X[i] + Y[i];
}
```

```
X P1 P2 P3 P4 P5 P6 .... Pn
Y P1 P2 P3 P4 P5 P6 .... Pn
```

MPI_Reduce, MPI_Allreduce

Recursive loops

- Each iteration depends on the previous one
- Hardly parallelize, "serial" loop
- Example

Nested loops

- Often the order of loops can be interchanged → for maximal parallelism, choose the perfectly-parallel loops as outmost, and parallelize over it.
- Example: Matrix-Vector multiplication

```
for ( <u>i</u> = 0; <u>i</u> < m; <u>i</u>++){

for ( <u>j</u> = 0; <u>j</u> < m; <u>j</u>++){

Y[i] += A[i][j] * X[j];

}
```


Nested loops – Alt 1

Row-wise partition

All processors have a copy of X, one piece of A and Y.

Nested loop – Alt. 2

Block algorithm with 1D partition

- Step 1: Compute Y[i] = A[i][i] * X[i] in process i, and then shift X[i] circular one step up.
- Step 2: Compute again, in which j=(i+1) mod p, shift X circular one step up.
- Repeat, in total (p-1) step

Nested loop – Alt. 2 cont.

- Non-blocking communication to shift X, before computation. MPI_Isend, MPI_Irecv, MPI_wait
- Which one is more efficient?
 - * Alt. 2 is more memory efficient.
 - * CPU efficient is all depends on the problem size, computer systems, implementations of MPI functions, etc.

Nested loop – Alt. 3

- Block algorithm 2D partition
- Processor block $\sqrt{p} * \sqrt{p}$,
- Step 1: Divide A_{mn} to √p * √p blocks, X to √p parts
- Step 2: Processor P_{ij} get block A_{ij} and X_{j} , and hold $Y_{i}^{(j)} = \mathbf{0}$
- Step 3: P_{ij} computes $Y_i^{(j)} = A_{ij} * X_j$
- Step 4: Accumulate Y_i in each row.

Nested loop – Alt. 3

Y_0	$\left[\begin{array}{c} \sum_{j} \end{array}\right]$	$Y_0^0 = A_{00} X_0$	$Y_0^1 = A_{01}^* X_1$	$Y_0^2 = A_{02} X_2$	$Y_0^3 = A_{03}^* X_3$
Y_1	$\begin{bmatrix} \leftarrow \frac{Z_j}{\nabla} \end{bmatrix}$	$Y_1^0 = A_{01}^* X_0$		•••	
Y_2	$-\frac{Z_{j}}{\nabla}$	$Y_2^0 = A_{02} X_0$		•••	
Y_3] ← ∠ j	$Y_3^0 = A_{03} X_0$	$Y_3^1 = A_{13}^* X_1$	$Y_3^2 = A_{23}^* X_2$	$Y_3^3 = A_{33}^* X_3$

- Efficient for large matrices.
- Scalability? 2D > 1D. For many processors, 1D partition strips become so thin and communications increases faster.

Matrix-Matrix Multi.

$$C(i,j) = \Sigma_k A(i,k) B(k,j)$$

More nested Loops

- Example : Matrix-Matrix Multiplication
- i and j are perfectly parallel loops, k is reduction loop

Matrix-Matrix Multi.

■ 1D partitioning – choose j as the outmost loop → partition data column wise

 A_0 A_1 A_2 A_3

B ₀₀	B ₀₁	B ₀₂	B ₀₃
B ₁₀			
B ₂₀			
B ₃₀			B ₃₃

$$C_0 = A_0 * B_{00} + A_1 * B_{10} + A_2 * B_{20} + A_3 * B_{30}$$

C = A*B, 1D partition

- A is needed in every processor.
- Alt. 1 : Every processor has completed A,
 - → Not scalable (memory?!)
- Alt. 2: Shift A around.
- → Similar idea to matrix-vector alt. 2.
 - For many processors, the stripes (block-columns) become thin and comm. overhead becomes large.

Institutionen för informationsteknologi | www.it.uu.se

C = A*B, 2D partition

- Choose both i and j outmost.
- √p * √p blocks, each processor gets one block of each matrix.
- In processor P_{ij} , compute $C_{ij} = \sum_{k=0}^{\sqrt{p}-1} A_{ik} * B_{kj}$
 - ightharpoonup P_{ij} need all blocks A_{ik} in block row i, and B_{ki} in block column j
 - → Communications needed.

C = A*B, 2D partition, Alt. 1

- Simple and naïve method.
- Simply distribute A in each block row, and distribute of B in each block column, using MPI_functions
 - limited scalability due to memory.
 - → Bad performance if data don't fit in catch

C = A*B, 2D partition, Alt. 2 Cannon's Algorithm (1969)

- Shift and compute. M*M mesh (√p * √p blocks processors, data).
- Phase 1: shift
 - Shift the i th block row of A i steps cyclically to the left.
 - Shift the j th block column of B j steps cyclically upwards

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₁			A ₁₀
A ₂₂	A ₂₃		A ₂₁
A ₃₃	A ₃₀	A ₃₁	A ₃₂

B ₀₀	B ₁₁	B ₂₂	B ₃₃
B ₁₀			B ₀₃
			B ₁₃
			B ₂₃

Institutionen för informationsteknologi | www.it.uu.se

C = A*B, 2D partition, Alt. 2 Cannon's Algorithm Cont.

- Phase 2: Compute and shift
- For each iteration do:
 - * Compute $C_{ij} = A_{ik} * B_{kj}$ in each processor P_{ij} , where k = (i+j+l) mod M, where l is the number of iterations (start from 0).
 - Shift A one step left, B one step upwards
- In total, M-1 steps. We can do shift with nonblocking communication, and compute while sending.
- Read more on-line <u>Cannon's algorithm</u>.

C = A*B, 2D partition, Alt. 3 Fox's Algorithm

- In total M-1 step.
- For each step k (k = 0,1,..., M-1)
 - Broadcast block n of A within each block row i (n = (i+k) mod M)
 - Multiply the broadcasted block with B-block in each processor (C_{ii} += A_{in}*B_{ni})
 - * Shift blocks of B, one step upwards.

C = A*B, 2D partition

- Both Cannon's and fox's algorithm is scalable.
- Which is more efficient?
 - Depends on problem size, computer system, efficiency of MPI, etc
- Read more about efficient on Fox and Cannon.

Advanced Topic: Recursive loop

Example:

Assignment 1

- Dense matrix-matrix multiplication.
- Fortran/C/C++ and MPI.
- Two parameters:
 - The number of process
 - The size of matrices
- Randomly generate A and B
- Distribute data
- Implement Fox's algorithm
- Collect data and output.

Assignment 1, cont.

- Data generation (at rank 0): srand(), rand() / CALL RANDOM_SEED(), CALL RANDOM_NUMBER()
- Data distribution: use MPI_Type_vector, MPI_Cart_rank, MPI_Isend, MPI_Recv
- Data Collection: MPI_Probe, MPI_Cart_coords, MPI_Recv, MPI_wait

Assignment 1, cont.

- C structure / C++ class is helpful to make a nicer code.
 - Name space works for large project.
- Good <u>coding style</u> makes your code more understandable and maintainable.
- Write comments in your code to help yourself and others.

More Advanced Topic: BLAS

CPUs:

- Armadillo: Matlab style, C++ coding.
- * CBLAS : GNU supported.
- Support: AMD -> ACML; IBM -> ESSL;
 Apple -> Accelerate framework; HP -> MLIB;
 SUN -> Sun Performance Library,
 Intel Math Kernel Library
- GPUs: NVIDIA -> CuBLAS

OPENCL: third part support.

More Advanced Topic: Sparse Matrix

A sparse matrix is a matrix populated primarily with zeros.

- Save sparse matrix:
 - Dictionary of keys
 - List of lists
 - Coordinate list
 - Yale format
 - * Etc.

More Advanced Topic: Application using LA

- PageRank: imaging incredible large matrix
- Modern <u>Digital imaging</u>.
 - Video tracking: Xbox Kinect
- Genetics
- Cryptography
- Economic
- More ...

More Advanced Topic: Application using LA

- Schedule & auto tuning
 - Test cases and pre-determined
 - Dynamically schedule
- Kernel and Convolution
 - Performs in parallel computers, edges of each blocks need to fix, according to the size of the kernel

Questions?

■ Find me at room P2304, or email: jing.liu@it.uu.se

Thanks.