1

2

1. (previously presented) A method for producing a pigment, comprising: 1 a) adding a phosphorus compound to an aqueous suspension of titanium dioxide base material, 2 3 then 4 b) adding a titanium compound; and 5 c) adding an aluminum compound, 6 7 wherein no significant amount of zirconium compound is or has been added to the aqueous 8 suspension of titanium dioxide base material; and then 9 d) adjusting the pH value of said suspension to a value of from 8 to 10; and then 10 e) adding a magnesium compound. 1 2. (Canceled) 3. (Original) The method of claim 1, wherein the added phosphorus compound is an inorganic 1 2 phosphorus compound. 1 4. (currently amended) The method of claim 3 claim 1, wherein the inorganic phosphorus 2 compound is selected from the group consisting of alkali phosphates, ammonium 3 phosphates, polyphosphates, and phosphoric acid. 1 5. (Original) The method of claim 1, wherein the added phosphorus compound is 0.4 to 6.0%

by weight calculated as P₂O₅, referred to TiO₂ base material in the suspension.

1

6. (Original) The method of claim 5, wherein the added phosphorus compound is 1.0 to 4.0% 1 2 by weight, calculated as P2O5, referred to TiO2 base material in the suspension. 7. (Original) The method of claim 6, wherein the added phosphorus compound is 1.6 to 2.8% 1 by weight, calculated as P2O5, referred to TiO2 base material in the suspension. 2 8. (Original) The method of claim 1, wherein the titanium compound added is a hydrolyzable 1 2 titanium compound. 9. (Original) The method of claim 8, wherein the titanium compound added is selected from the 1 2 group consisting of titanyl sulphate and titanyl chloride. 1 10. (Original) The method of claim 8, wherein the quantity of titanium compound added is 0.1 2 to 3.0% by weight, calculated as TiO2, referred to TiO2 base material in the suspension. 11. (Original) The method of claim 10, wherein the quantity of titanium compound added is 1 0.1 to 1.5% by weight, referred to TiO_2 base material in the suspension. 2 12. (Original) The method of claim 11, wherein the quantity of titanium compound added is 1 2 0.1 to 1.0% by weight, calculated as TiO2, referred to TiO2 base material in the 3 suspension. 1 13. (Original) The method of claim 1, wherein the quantity of titanium compound added is 0.1 2 to 1.0% by weight, calculated as TiO2, referred to TiO2 base material in the suspension.

14. (Original) The method of claim 1, wherein the aluminum compound added is alkaline.

1

l,	15. (Original) The method of claim 14, wherein the alkaline aluminum compound is selected
2	from the group consisting of sodium aluminate, alkaline aluminum chloride, and alkalin
3	aluminum nitrate.
1	16. (Original) The method of claim 14, further comprising
2	d) adjusting the pH value of the suspension to a value of from 8 to 10 after step c).
1	17. (Original) The method of claim 1, wherein the aluminum compound added is acidic.
1	18. (Original) The method of claim 17, further comprising:
2	d) adjusting the pH value to a value between 8 and 10 by adding an alkaline aluminum compound.
1	19. (Original) The method of claim 17, further comprising:
2	d) adjusting the pH value to a value between 8 and 10 by adding an alkaline aluminum compound in combination with a base.
1 2 3	20. (Original) The method of claim 1, wherein during the addition of the aluminum compound, the pH value of the suspension is maintained constant in the range from 2 to 10 by the simultaneous addition of a pH modifying compound.
1	21. (Original) The method of claim 20, wherein during the addition of the aluminum compound
3	the pH value of the suspension is maintained constant in the range from 4 to 9 by the simultaneous addition of a pH modifying compound.

22.(Original) The method of claim 21, wherein during the addition of the aluminum compound,

2	the pH value of the suspension is maintained constant in the range from 6 to 8 by the
3	simultaneous addition of a pH modifying compound.
1	23. (Original) The method of claim 1, wherein the total quantity of the aluminum compounds
2	added is 2.0 to 7.5% by weight, calculated as Al ₂ O ₃ , referred to TiO ₂ base material
1	24. (Original) The method of claim 23, wherein the total quantity of the aluminum compounds
2	added is 3.5 to 7.5% by weight, calculated as Al ₂ O ₃ , referred to TiO ₂ base material.
1	25. (Canceled)
1	26. (previously presented) The method of claim 1, wherein the magnesium compound added is
2	selected from the group consisting of magnesium sulphate and magnesium chloride.
1	27. (previously presented) The method of claim 1, wherein the quantity of magnesium
2	compound added is 0.1 to 1.0% by weight, calculated as MgO, referred to TiO ₂ base
3	material in the suspension.
1	28. (Original) The method of claim 27, wherein the quantity of magnesium compound added is
2	0.2 to 0.5% by weight, calculated as MgO, referred to TiO2 base material in the
3	suspension.
1	29. (previously presented) The method of claim 1, further comprising
2	f) treating the pigment with an added material in order to influence the final pH value of the
3	suspension wherein the final pH value of the pigment is controlled by the pH and the quantity of
4	the added material.
l	30. (Original) The method of claim 29, where the added material is a nitrate compound.

1 2	31. (Original) The method of claim 30, where the finished pigment contains up to 1.0% by weight NO ₃ .
1	32. (canceled)
1	33. (canceled)
1 2	34. (Original) The method of claim 1, where the titanium dioxide base material is milled before step a).
1 2	35. (Original) The method of claim 34, where the titanium dioxide base material is wet-milled and where a dispersant is added during milling.
1	36-39. (canceled)
1	40. (previously presented) A material, comprising;
2	a titanium dioxide pigment material; the titanium dioxide comprising TiO ₂ particles, each particle having a surface;
4	phosphorus containing material attached to the surface of each particle;
5	titanium containing material additional to the titanium dioxide material of the surface attached to the phosphorus containing material; and
7 3	aluminum containing material attached to the titanium containing material additional to the titanium dioxide material of the surface, and;

9 magnesium containing material attached to the aluminum containing material. 1 41. (Canceled) 42. (previously presented) The material of claim 40, further comprising; 1 nitrate containing material attached to the aluminum containing material. 2 43.(previously presented) The material of claim 40, further comprising; 1 nitrate and magnesium containing material attached to the aluminum containing material. 2 1 44.(previously presented) The material of claim 40, wherein the resultant particles contain an 2 insignificant amount of zirconium. 45. (previously presented) The material of claim 40, wherein the titanium dioxide pigment 1 2 material is incorporated into a decorative laminated paper. 1 46. (canceled) 47. (previously presented) The material of claim 40, wherein the titanium dioxide pigment 1 2 material is incorporated into a decorative laminated paper. Ţ 48. (previously presented) The material of claim 42, wherein the titanium dioxide pigment 2 material is incorporated into a decorative laminated paper. 49. (previously presented) The material of claim 43, wherein the titanium dioxide pigment Ĭ

material is incorporated into a decorative laminated paper.

2

05/07/2005 12:26 9147624126 RODNEY T HODGSON PAGE 08

1 50. (previously presented) The material of claim 44, wherein the titanium dioxide pigment 2 material is incorporated into a decorative laminated paper. 1 51. (Canceled) 52. (previously presented) A method for producing a pigment, comprising: 1 2 a) adding a phosphorus compound to an aqueous suspension of titanium dioxide base material, 3 then 4 b) adding a titanium compound; and 5 c) adding an acidic aluminum compound wherein no significant amount of zirconium compound 6 is or has been added to the aqueous suspension of titanium dioxide base material; and then 7 d) adjusting the pH value of said suspension to a value of from 8 to 10; and then 8 e) adding a magnesium compound. 1 53. (previously presented The method of claim 52, further comprising: 2 f) adjusting the pH value to a value between 8 and 10 by adding an alkaline aluminum 3 compound. 1 54. (previously presented) The method of claim 52, further comprising: 2 d f) adjusting the pH value to a value between 8 and 10 by adding an alkaline aluminum

compound in combination with a base.

3

- ٠. ٠ 55. (previously presented) A method for producing a pigment, comprising: 1 a) adding a phosphorus compound to an aqueous suspension of titanium dioxide base material, 2 3 then 4 b) adding a titanium compound; and 5 c) adding an aluminum compound, and then d) adding a magnesium compound. 56.(previously presented) The method of claim 55, wherein the magnesium compound added is 1 2 selected from the group consisting of magnesium sulphate and magnesium chloride. 57. (previously presented) The method of claim 55, wherein the quantity of magnesium 1 2 compound added is 0.1 to 1.0% by weight, calculated as MgO, referred to TiO2 base 3 material in the suspension. 1 58. (previously presented) The method of claim 57, wherein the quantity of magnesium compound added is 0.2 to 0.5% by weight, calculated as MgO, referred to TiO_2 base 2 3 material in the suspension. 1 59. (previously presented) The method of claim 55, further comprising 2 e) treating the pigment with an added material in order to influence the final pH value of the 3 suspension wherein the final pH value of the pigment is controlled by the pH and the 4 quantity of the added material.
- 60. (previously presented) The method of claim 59, where the added material is a nitrate 1

- 2 compound.
- 1 61. (Previously presented) The method of claim 60, where the finished pigment contains up to
- 2 1.0% by weight NO₃.