

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02219 - Probabilidade e Estatística - 2021/2

Plano Aula 23 e 24

(...cont.) Testes de Hipóteses para média(s)

Testes para a média de uma população (com variância conhecida) (Bussab e Morettin - seção 12.5)

Sob H_0 , supomos que X_1, \ldots, X_n são uma amostra aleatória de $X \sim Normal(\mu_0, \sigma^2)$ \$ então

$$Z_{calc} = \frac{\overline{X} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} \sim Normal(0, 1)$$

- Como construir a região crítica RC? (Depende das hipóteses, $H_1: \mu < \mu_0, H_1: \mu > \mu_0$ ou $H_1: \mu \neq \mu_0$)
- Para quais valores de Z_{calc} rejeitamos H_0 ? (Respectivamente $RC=\{z_{calc}<-z_{tab}\}$, ou $RC=\{|z_{calc}|>z_{tab}\}$)
- Como encontrar z_{tab} para α fixado?

Testes para a média de uma população, com variância desconhecida

Sob H_0 , supomos que X_1, \ldots, X_n são uma amostra aleatória de $X \sim Normal(\mu_0, \sigma^2)$ com σ^2 desconhecida, então

$$T_{calc} = \frac{\overline{X} - \mu_0}{\sqrt{\frac{S^2}{n}}} \sim t(n-1)$$

- Na semana passada vimos testes para a média de uma população
 - com variância conhecida
 - com variância desconhecida
- Exemplo: o salário médio, μ , na empresa A é superior a 2 salários mínimos (s.m.), teste essas hipóteses ao nível de confiança 5%. (Assuma que X seja o salário de cada trabalhador e observamos uma amostra aleatória X_1, \ldots, X_n de $X \sim Normal(\mu, 1)$, variância conhecida.)
 - Nesse caso, $H_0: \mu \leq 2s.m.$ contra $H_1: \mu > 2s.m.$
 - A região crítica é dada por

Região crítica usando \overline{X}	ou usando Z_{calc}
$\overline{RC} = \{\overline{X} > \overline{x}_{crítico}\},$	$RC = \{Z_{calc} \ge z_{tab}\},$
para $\overline{x}_{crítico} = 2 + z_{tab} \cdot \frac{1}{\sqrt{n}}$	para $Z_{calc} = \frac{\overline{X} - 2}{\frac{1}{\sqrt{n}}}$

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02219 - Probabilidade e Estatística - 2021/2

Valor p (ou p valor) (Bussab e Morettin - seção 12.8)

"É a probabilidade de observarmos um valor de estatística de teste mais extremo do que o observado na amostra coletada (conforme as hipóteses definidas)."

• Região crítica \times valor p

Testes para (comparação de) duas médias populacionais

Amostras independentes (Bussab e Morettin - seção 13.3.1)

Amostras dependentes (Bussab e Morettin - seção 13.4.1)

REFERÊNCIAS EXTRAS

- Página 'Probabilidade e Estatística (EaD)' da UFRGS
 - Capítulo 5 Inferência para dados numéricos
- Excelente página com teoria, exemplos e diversos recursos, exercícios resolvidos, atividades, sobre testes da UFMG
 - https://pmg-dest-ufmg-exatas.shinyapps.io/teste_de_hipoteses/

Ler slides e ver vídeos da semana 12.

Fazer lista de exercícios 3-2.

Fazer o Quiz da semana 12 - VALE NOTA!!!

2