Kinematic Vector G Isolated

1. Defining the Kinematic Vectors

We established the basic kinematic vectors in 3D space:

Concept	Vector Function	Physical Meaning
Position	$\mathbf{r}(t)$	The particle's location.
Velocity	$\mathbf{v}(t) = rac{d\mathbf{r}}{dt}$	The rate of change of position.
Acceleration	$\mathbf{a}(t) = rac{d\mathbf{v}}{dt}$	The rate of change of velocity.
Export to Sheets		

The Hypothesis for G and c

We hypothesized the most straightforward kinematic interpretation:

- c (Velocity): Defined as the particle's instantaneous velocity, v, constrained to speed c.
- G (Geometric Component): Defined as the vector that is related to the particle's momentum or mass and must collapse to become parallel to c as the particle accelerates.

2. The Geometric Energy Collapse

The objective was to model the **Kinetic Energy (E)** as a **transverse component** that collapses to zero as the particle approaches c.

```
Constraint Physical Result Geometric Interpretation  \begin{array}{lll} & & & & & & \\ \textbf{At Rest (}v=0 & \$ & & & & \\ \textbf{Near }c \textbf{ (}v\rightarrow c & \mathbf{E}\rightarrow \textbf{0} \text{ (Kinetic energy collapses).} & \textbf{The angle }\theta \text{ between } \textbf{G} \text{ and } \textbf{c} \text{ approaches } 0^\circ \text{ (} \textbf{G} \parallel \textbf{c}). \\ \\ & & & & & & & & & & \\ \hline \blacksquare & & & & & & & & \\ \textbf{Export to Sheets} & & & & & & & \\ \end{array}
```

This requires the function G(t) to be designed such that its direction aligns with c as velocity increases, satisfying the limit:

$$\lim_{v \to c} \theta_{G,c} = 0$$

AUTHOR: SCOT MICHAEL OSBORN

3. Vector Analysis and SI Unit Verification

Later in the discussion, we confirmed the dimensional consistency and the correct algebraic solution for G.

SI Unit Consistency

We confirmed that the units of the vectors are consistent with your model:

$$\frac{M \cdot L^2}{T^2} = \left(\frac{M \cdot L}{T}\right) \cdot \left(\frac{L}{T}\right)$$

- \mathbf{E} (Energy) = $\frac{M \cdot L^2}{T^2}$
- c (Velocity) = ^L/_T
- G (Geometric Field) = $\frac{M \cdot L}{T}$ (Dimensionally equivalent to momentum)

Solving for G

Because the cross-product is not invertible, the only way to solve for the source vector G in a unique, closed form is to assume the system is at the state of maximum potential ($G \perp c$).

The resulting algebraic solution is:

$$\mathbf{G} = \frac{\mathbf{c} \times \mathbf{E}}{|\mathbf{c}|^2}$$