## Grundbegriffe der Informatik Tutorium 36

Termin 10 | 13.01.2017 Thassilo Helmold



## Inhalt

Graphen

Aufgaben

Repräsentation von Graphen











I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

In the previous episode of GBI...

## Rückblick: Algorithmen

Siehe letztes Tutorium

### Wahr oder Falsch?

- Die Korrektheit eines Algorithmus kann man durch Testen beweisen Nein, nein, nein! Testen kann nur vorhandene Fehler aufzeigen, aber niemals die Fehlerfreiheit garantieren.
- Sinnvolle Schleifeninvarianten kann man "nach Kochrezept" aufstellen. Nein, das Aufstellen sinnvoller Schleifeninvarianten erfordert viel Übung und kann insbesondere noch nicht von einem Rechner durchgeführt werden.
- Ein Algorithmus ist ein (compilierbares/ausführbares) Programm Nein, der Algorithmus selbst ist nur die Beschreibung der (Rechen-)Vorschriften, nicht die tatsächliche Umsetzung.

Graphen

## Graphen - Wofür?

- Straßennetze und andere Verkehrsnetze (Kürzeste Wege)
- Kabelnetze (Minimale Spannbäume)
- Rohrnetze (Maximaler Fluss)

#### **Zitat**

"Egal für wie wichtig du Graphen in der Informatik hältst, sie sind mindestens doppelt so wichtig!"

Ein Google-Manager über Einstellungsgespräche bei Google

## Graphen

#### Definition

Ein **gerichteter Graph** ist ein Paar G = (V, E) mit einer *endlichen*, nicht leeren Menge an **Knoten** V und einer Menge an **Kanten**  $E \subseteq V \times V$ .

E enthält also Paare (geordnet) von Elementen aus V.

#### Definition

Ein **ungerichteter Graph** ist ein Paar G = (V, E) mit einer *endlichen*, nicht leeren Menge an **Knoten** V und einer Menge an **Kanten**  $E \subseteq \{\{x, y\} \mid x \in V \land y \in V\}.$ 

E enthält also Mengen (ungeordnet) mit je ein oder zwei Elementen aus V!

## Graphen

### Hinweis

Häufig wählt man  $V = \mathbb{Z}_k = \{0, 1, 2, ..., k-1\}$ 

Da *V* immer endlich ist, muss auch *E* endlich sein.

 $E = \emptyset$  ist aber erlaubt!

#### Definition

Zwei Knoten x und y in einem Graphen G heißen **adjazent**, wenn sie durch eine Kante verbunden sind.

Achtung: Im gerichteten Fall ist diese Aussage nicht symmetrisch!

### Definition

Eine Kante mit identischem Start- und Endpunkt nennt man Schlinge.

Also  $(x, x) \in E$  bzw.  $\{x\} \in E$ 

## **Beispiel**

Wir betrachten den gerichteten Graphen G = (V, E) mit  $V = \{0, 1, 2, 3, 4, 5\}$  und  $E = \{(0, 1), (1, 0), (1, 2), (3, 4), (4, 3), (4, 5)\}$ 



## Aufgabe: Graphen Zeichnen

```
Zeichnet die Graphen G_i = (V, E_i) mit V = \mathbb{Z}_4 und E_1 = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 2), (2, 3), (3, 2)\} E_2 = \{\{0, 1\}, \{0, 2\}, \{0, 3\}\} E_3 = \emptyset E_4 = V \times V E_5 = \{(0, 1), (1, 2), (1, 3)\}
```

## Lösung: Graphen Zeichnen

Zeichnet den Graphen G = (V, E) mit

$$V = \mathbb{Z}_4$$
  $E = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 2), (2, 3), (3, 2)\}$ 



## **Teilgraphen**

### Definition

Ein **Teilgraph** T = (V', E') von G ist ein Graph bei dem Knoten- und Kantenmenge Teilmengen des Graphens G sind und deren Kanten nicht aus dem Teilgraph hinausführen. Also (für gerichtete Graphen):

$$V' \subseteq V$$
  $E' \subseteq E \cap (V' \times V')$ 

Hinweis: Natürlich dürfen wir auch Kanten aus E' "weglassen"!

# Teilgraphen: Beispiel



## Knotengrade

Im gerichteten Graphen:

### Definition

Der **Eingangsgrad** eines Knoten k ist die Anzahl der Knoten x, die mit einer Kante zum Knoten k verbunden sind. Also

$$d^{-}(k) = |\{x \mid (x, k) \in E\}|$$

Der **Ausgangsgrad**  $d^+$  wird analog definiert.

Der Grad eines Knotens ist  $d = d^+ + d^-$ 

Im ungerichteten Graphen (bei uns!):

Knotengrad *d* ist Anzahl der adjazenten Knoten (ohne den Knoten selbst). Für Schlingen zählen wir 2 hinzu.

Also tatsächlich "Anzahl der Berührungen von Linien mit dem Kreis".

## Pfade und Wege

### Definition

Sei G ein gerichteter / ungerichteter Graph.

Ein **Pfad** / **Weg** ist eine Folge von Knoten, die jeweils über Kanten im Graphen erreichbar sind. Also eine nichtleere Liste

$$p = (v_0, v_1, \ldots, v_n)$$
  $(v_i, v_{i+1}) \in E$ 

Die Länge eines Pfades ist die Anzahl der Kanten (|p|-1)

### Beispiel

Sei G = (V, E) mit  $V = \mathbb{Z}_9$ ,  $E = V \times V$ 

 $p_1 = (7)$  ist ein Pfad der Länge 0.

 $p_2 = (0, 1, 2, 3, 0)$  ist ein Pfad der Länge 4.

15

### **Pfade**

```
Sei G ein gerichteter Graph. Ein Pfad p=(v_0,\ldots,v_n) heißt geschlossen wenn v_0=v_n gilt Zyklus wenn er geschlossen ist und Länge \geqslant 1 gilt wiederholungsfrei Wenn alle Knoten (mit Ausnahme des ersten und letzten) paarweise verschieden sind einfacher Zyklus wenn er ein wiederholungsfreier Zyklus ist Azyklischer Graph: Graph ohne Zyklen Oftmals auch DAG (Directed Acyclic Graph)
```

# Wege

```
Sei G ein ungerichteter Graph. Ein Weg p = (v_0, \ldots, v_n) heißt
```

geschlossen wenn  $v_0 = v_n$  gilt

Kreis wenn er geschlossen ist und Länge ≥ 1 gilt

wiederholungsfrei Wenn alle Knoten (mit Ausnahme des ersten und letzten) paarweise verschieden sind

einfacher Kreis wenn er ein wiederholungsfreier Kreis *mit mindestens 3*verschiedenen Knoten ist

## **Teilpfade**

#### Definition

Ein Teilpfad eines Pfades entsteht durch Streichen von Knoten am Anfang und Ende des Pfades.

#### Beachte

Mindestens ein Knoten muss übrig bleiben! (Sonst kein gültiger Pfad mehr) Es darf nicht aus der Mitte gestrichen werden! (Sonst evtl. kein Pfad mehr, wenn die entsprechenden Kanten nicht im Graphen vorhanden sind)

### Beispiel

Sei p = (1, 2, 3, 4, 5, 1) und G passend gewählt. (2, 3), (1, 2, 3, 4, 5), (4, 5, 1) sind Teilpfade (), (1, 2, 1), (1, 2, 3, 4, 5, 1, 2) sind keine Teilpfade.

## Isomorphie

Zwei Graphen heißen **isomorph**, wenn sie "bis auf eine Umbenennung der Knoten identisch sind", also die gleiche Struktur besitzen.

### Aufgabe (WS 2010)

Jeweils zwei der sechs Graphen sind isomorph zueinander. Geben Sie die Paare von isomorphen Graphen sowie den zugehörigen Isomorphismus in Tabellenform an.



Tipp: Nach "markanten" Knoten (Knoten mit hohem Grad) suchen. Oftmals hierdurch bereits Ausschluss möglich.



| $G_0$ : | 0 | 1 | 2 | 3 | 4 |
|---------|---|---|---|---|---|
| $G_2$ : | 2 | 3 | 1 | 0 | 4 |
| $G_3$ : | 0 | 1 | 2 | 3 | 4 |
| $G_4$ : | 4 | 0 | 2 | 1 | 3 |
| $G_1$ : | 0 | 1 | 2 | 3 | 4 |
| $G_5$ : | 0 | 2 | 1 | 4 | 3 |

Aufgaben

21

### **Maximale Kanten**

Sei G ein **gerichteter** Graph mit n Knoten. Wie viele Kanten kann G maximal haben...

Wenn Schlingen erlaubt sind?  $n^2$ 

Wenn er schlingenfrei ist?  $n^2 - n = n * (n - 1)$ 

### **Maximale Kanten**

Sei G ein **ungerichteter** Graph mit n Knoten. Wie viele Kanten kann G maximal haben...

Wenn Schlingen erlaubt sind? n(n+1)/2

Wenn er schlingenfrei ist? n(n-1)/2

### Aufgabe (WS 2008)

- Zeichnen Sie alle möglichen gerichteten Bäume mit genau vier Knoten, von denen keine zwei isomorph sind.
- Zeichnen Sie alle möglichen ungerichteten Bäume mit genau fünf Knoten, von denen keine zwei isomorph sind.

23

Zeichnen Sie alle möglichen gerichteten Bäume mit genau vier Knoten, von denen keine zwei isomorph sind.



Zeichnen Sie alle möglichen ungerichteten Bäume mit genau fünf Knoten, von denen keine zwei isomorph sind.



Aufgabe: Bäume (WS 2010)

Sei  $T_1=(V_1,E_1)$  ein gerichteter Baum mit Wurzel  $r_1,T_2=(V_2,E_2)$  ein gerichteter Baum mit Wurzel  $r_2$ , und es gelte  $V_1\cap V_2=\{\}$ . Sei  $r\not\in V_1\cup V_2$ . Zeigen Sie:

$$T_1 \circ_r T_2 = (V_1 \cup V_2 \cup r, E_1 \cup E_2 \cup \{(r, r_1), (r, r_2)\})$$

ist ein gerichteter Baum mit Wurzel r.

Zeigen Sie:

$$T_1 \circ_r T_2 = (V_1 \cup V_2 \cup r, E_1 \cup E_2 \cup \{(r, r_1), (r, r_2)\})$$

ist ein gerichteter Baum mit Wurzel r.

Zwei Dinge sind zu zeigen:

- Zu jedem  $v \in V_1 \cup V_2 \cup r$  gibt es einen Pfad von r aus
- Dieser Pfad ist eindeutig.

26

Wir zeigen zuerst, dass es von r zu jedem Knoten  $v \in V_1 \cup V_2 \cup \{r\}$  einen Pfad gibt.

- Es gibt offensichtlich einen Pfad (der Länge 0) von r nach r.
- Sei  $v \in V_1$ . Dann gibt es nach Definition einen Pfad von  $r_1$  nach v über den Baum  $T_1$  und dessen Kanten  $E_1$ . Da in  $T_1 \circ_r T_2$  auch der Pfad r nach  $r_1$  liegt, gibt es also einen Pfad von r nach v in  $T_1 \circ_r T_2$ .
- Analog zu  $v \in V_2$ .

Somit gibt es für alle Knoten  $v \in V_1 \cup V_2 \cup \{r\}$  einen Pfad von r nach v.

Wir zeigen nun noch, dass es für keinen Knoten zwei verschiedenen Pfade von r nach v gibt.

Für v=r gibt es offensichtlich keine zwei verschiedenen Pfade. Sei also exemplarisch  $v\in V_1$ . Da  $V_1\cap V_2=\{\}$ , sind von  $r_2$  nur Elemente aus  $V_2$  zu erreichen. Somit muss ein Pfad von r nach v über  $r_1$  gehen (weil von  $r_2$  kein Pfad zurück führt). Da  $T_1$  aber ein Baum ist, ist der Pfad von  $r_1$  nach v eindeutig. Der Pfad von r nach  $r_1$  ebenso. Also ist der Pfad von r nach v auch eindeutig. Analog zu  $v\in V_2$ .

## Aufgabe (WS 2009)

Eine Zahl n ist genau dann eine Primzahl, wenn sie eine positive ganze Zahl ist und genau zwei Teiler hat, nämlich 1 und n. Insbesondere ist 1 keine Primzahl. Für  $n \in \mathbb{N}^+$  sei der Graph  $G_n = (V_n, E_n)$  gegeben durch

$$V_n = \{ m \in \mathbb{N}^+ \mid m \text{ teilt } n \}$$

$$E_n = \{(k, m) \in V_n \times V_n \mid k \text{ teilt } m \text{ und } m/k \text{ ist eine Primzahl}\}$$

- **Teichnen Sie**  $G_{12}$ ,  $G_{16}$  und  $G_{30}$ .
- Zeigen Sie:

$$\forall n, m \in \mathbb{N}^+ : n \text{ teilt } m \implies G_n \text{ ist Teilgraph von } G_m$$

.

$$V_n = \{ m \in \mathbb{N}^+ \mid m \text{ teilt } n \}$$

 $E_n = \{(k, m) \in V_n \times V_n \mid k \text{ teilt } m \text{ und } m/k \text{ ist eine Primzahl}\}$ 

Zeichnen Sie  $G_{12}$  ,  $G_{16}$  und  $G_{30}$ .













 $G_{30}$ 

# Lösung

Zeigen Sie:

$$\forall$$
  $n, m \in \mathbb{N}^+$ :  $n$  teilt  $m \implies G_n$  ist Teilgraph von  $G_m$ 

Gelte also *n* teilt *m*. Zu zeigen sind zwei Dinge:

- $V_n \subseteq V_m$
- $\bullet \quad E_n \subseteq E_m \cap V_n \times V_n$

## Lösung

*Zuerst*  $V_n \subseteq V_m$ .

Sei  $v \in V_n$  beliebig. Nach Definition gilt: v teilt n. Da n aber m teilt, muss v auch m teilen, liegt also in  $V_m$ . Also gilt

$$V_n \subseteq V_m$$

*Jetzt*  $E_n \subseteq E_m \cap V_n \times V_n$ .

Sei p eine Kante mit  $p = (x, y) \in E_n$ . Wir haben gezeigt, dass dann  $x, y \in V_m$  gilt. Außerdem gilt nach der Definition von  $E_n$ :

x teilt y und y/x ist eine Primzahl

Somit ist p auch in  $E_m$  und es gilt

$$E_n \subseteq E_m$$

33

Graphen

Aufgaben

Repräsentation von Graphen

## Darstellung von Graphen

## Auf Papier

- Graphische Darstellung
- Mengendarstellung
- Textuelle Beschreibung

### Im Rechner

Systematisches abspeichern der Kanten notwendig. Knoten werden oftmals implizit verwendet.

- (Kantenliste)
- Adjazenzlisten
- Adjazenzmatrix

## Adjazenzlisten

#### Definition

In einer Adjazenzliste werden zu einem Knoten x alle Knoten eingetragen, die von x aus direkt mit einer Kante verbunden sind.

Für jeden Knoten existiert eine Liste, alle Listen werden meist in einem Feld gespeichert.

# Adjazenzlisten

## Beispiel



### Für die Adjazentenlisten gilt

| 0 | 1,2,3 |
|---|-------|
| 1 | 3     |
| 2 | 1,2,3 |
| 3 | 2     |

# Adjazenzmatrix

### Definition

Die **Adjazenzmatrix** eines Graphen (V, E) mit n Knoten ist die Matrix  $A \in \{0, 1\}^n \times \{0, 1\}^n$  mit

$$A_{ij} = \begin{cases} 0 & (i,j) \notin E \\ 1 & (i,j) \in E \end{cases}$$

Achtung: Bei dieser Definition müssen Matrix- und Knotenindizes mit dem gleichen Wert starten (0 oder 1)

## Adjazenzmatrix

### Beispiel



$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

## Adjazenzmatrix

## Besondere Eigenschaften der Adjazenzmatrix

- Schlingen lassen sich an einer 1 auf der Diagonalen erkennen (Wert von  $A_{ii}$ )
- Bei ungerichteten Graphen ist A immer symmetrisch (also  $A_{ii} = A_{ii}$ ).

## Vergleich der Darstellungen

- Adjazenzliste: Speicherplatz abhängig von Kanten (m)
  Besser bei dünn besetzten Graphen.
- Adjazenzmatrix: Immer gleich viel Speicherplatz  $(n^2)$ Besser bei dicht besetzten Graphen (kein Overhead für Listen nötig).

## Vergleich der Darstellungen

- Adjazenzliste: Nachbarn ermitteln in O(1)Ermitteln ob (i, j) adjazent sind in O(n)
- Adjazenzmatrix: Nachbarn ermitteln in O(n)Ermitteln ob (i, j) adjazent sind in O(1)

In der Praxis meistens (Varianten von) Adjazenzlisten verwendet. Denn: Die meisten Graphalgorithmen traversieren den Graphen, dafür sind Adjazenzlisten deutlich besser.

Viel mehr dazu in Algorithmen I

### Was ihr nun wissen solltet

- Grundbegriffe der Graphen
- Zentrale Eigenschaften von Graphen
- Verschiedene Darstellungen von Graphen und deren Vorteile

### Was nächstes Mal kommt

- Graphen schön und gut Aber jetzt wollen wir auch etwas damit machen!
- Warum dauert das so lange? Laufzeitbetrachtungen



Abbildung: http://www.xkcd.com/974

13.01.2017 Thassilo Helmold - GBI Tutorium, Woche 10

# Danksagung

Dieser Foliensatz basiert in Teilen auf Folien von:

Philipp Basler Nils Braun Dominik Doerner Ou Yue