Dérivation - exercices supplémentaires

Exercice 1 ()

Soit f une application dérivable de \mathbb{R} dans \mathbb{R} .

- 1) Montrer que si f est paire, alors f' est impaire.
- 2) Montrer que si f est impaire, alors f' est paire.
- 3) Montrer que si f est périodique de période $T \in \mathbb{R}$, alors f' est aussi périodique de période T.

Exercice 2 ($^{\circ}$) On pose, pour tout $x \in \mathbb{R}$, $f(x) = Arcsin \frac{x}{\sqrt{1+x^2}}$. Montrer que f est dérivable sur \mathbb{R} , calculer sa dérivée et en déduire une expression plus simple de f.

Exercice 3 ($^{\otimes}$) Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable et bornée telle que $f'(x) \xrightarrow[x \to +\infty]{} \ell$. Montrer que $\ell = 0$.

Exercice 4 ()

À l'aide du théorème des accroissements finis déterminer $\lim_{x\to +\infty} ((x+1)e^{x+1} - xe^x)$.

Exercice 5 ()

- 1) Soit $f: \mathbb{R}_+ \to \mathbb{R}$ convexe et bornée. Montrer que f est décroissante.
- 2) Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et bornée. Montrer que f est constante.

Exercice 6 (Soit f définie sur \mathbb{R} , continue en 0, telle que $\frac{f(2x) - f(x)}{x} \xrightarrow[x \to 0]{} \ell \in \mathbb{R}$. Montrer que f est dérivable en 0. Que vaut alors f'(0)?

Exercice 7 (Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables, vérifiant f(0) = 0, f'(0) > 0 et pour tout $x \in \mathbb{R}: f'(x)f'(f(x)) = 1$.

Exercice 8 ($\stackrel{\triangleright}{\longrightarrow}$) Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et dérivable. Soit $n \in \mathbb{N}^*$. Montrer que

$$0 \leqslant \frac{1}{2}f(0) + f(1) + \dots + f(n-1) + \frac{1}{2}f(n) - \int_0^n f(t) dt \leqslant \frac{f'(n) - f'(0)}{8}.$$

 $\begin{array}{l} \text{Indication : on pourra commencer par montrer que pour tout } k \in \llbracket 0, n-1 \rrbracket, \, \frac{f(k+1)+f(k)}{2} - \frac{f'(k+1)-f'(k)}{8} \leqslant \int_k^{k+1} f(t) \, \mathrm{d}t \leqslant \frac{f(k+1)+f(k)}{2}. \end{array}$

Et pour ceux qui veulent une petite révision sur les recollements de solutions d'équations différentielles :

Exercice 9

- 1) On cherche à déterminer les solutions $y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ de l'équation $x^2y' + xy = 1$.
 - a) Déterminer les solutions de cette équation qui sont définies et dérivables sur \mathbb{R}_+^{\star} (resp. \mathbb{R}_-^{\star}).
 - **b)** Conclure.
- 2) Même question avec l'équation $x^3y' = 2y$.