Gradient Descent. Convergence for quadratics; smooth convex case; PL case. Lower bounds.

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

Let's consider a linear approximation of the differentiable function f along some direction $h, \|h\|_2 = 1$:

Let's consider a linear approximation of the differentiable function f along some direction $h, ||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

Gradient Descent

Let's consider a linear approximation of the differentiable function f along some direction $h, \|h\|_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

Let's consider a linear approximation of the differentiable function f along some direction $h, ||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \leq 0$$

Let's consider a linear approximation of the differentiable function f along some direction $h, ||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \leq 0$$

Also from Cauchy–Bunyakovsky–Schwarz inequality:

$$|\langle f'(x), h \rangle| \le ||f'(x)||_2 ||h||_2$$

 $\langle f'(x), h \rangle \ge -||f'(x)||_2 ||h||_2 = -||f'(x)||_2$

 $f \to \min_{x,y,z}$ Gradient Descent

Let's consider a linear approximation of the differentiable function f along some direction h, $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want h to be a decreasing direction:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \leq 0$$

 ${\bf Also\ from\ Cauchy-Bunyakovsky-Schwarz\ inequality:}$

$$|\langle f'(x), h \rangle| \le ||f'(x)||_2 ||h||_2$$

 $\langle f'(x), h \rangle \ge -||f'(x)||_2 ||h||_2 = -||f'(x)||_2$

Thus, the direction of the antigradient

$$h = -\frac{f'(x)}{\|f'(x)\|_2}$$

gives the direction of the ${\it steepest local}$ decreasing of the function f.

Let's consider a linear approximation of the differentiable function f along some direction h, $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle f'(x), h \rangle + o(\alpha)$$

We want
$$h$$
 to be a decreasing direction:

we want n to be a decreasing direction

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle f'(x), h \rangle + o(\alpha) < f(x)$$

and going to the limit at $\alpha \to 0$:

$$\langle f'(x), h \rangle \le 0$$

Also from Cauchy–Bunyakovsky–Schwarz inequality:

$$|\langle f'(x), h \rangle| \le ||f'(x)||_2 ||h||_2$$

 $\langle f'(x), h \rangle \ge -||f'(x)||_2 ||h||_2 = -||f'(x)||_2$

Thus, the direction of the antigradient

$$h = -\frac{f'(x)}{\|f'(x)\|_2}$$

gives the direction of the **steepest local** decreasing of the function f.

The result of this method is

$$x_{k+1} \equiv x_k - \alpha f'(x_k)$$

⊕ o a

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

where $x_k \equiv x(t_k)$ and $\alpha = t_{k+1} - t_k$ - is the grid step.

From here we get the expression for x_{k+1}

$$x_{k+1} = x_k - \alpha f'(x_k),$$

which is exactly gradient descent.

Open In Colab 🐥

 $f \to \min_{x,y,z}$ Gradient Descent

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t))$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

where $x_k \equiv x(t_k)$ and $\alpha = t_{k+1} - t_k$ - is the grid step.

From here we get the expression for x_{k+1}

$$x_{k+1} = x_k - \alpha f'(x_k),$$

which is exactly gradient descent.

Open In Colab 🌲

Trajectories with Contour Plot

Figure 1: Gradient flow

Gradient Descent

Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate α :

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. Interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. Interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. Interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

$$\nabla f(x_{k+1})^{\top} \nabla f(x_k) = 0$$

Figure 2: Steepest Descent

Open In Colab 🌲

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

Strongly convex quadratics

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

 \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x-x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A(Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x-x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$
$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

$$= \frac{1}{2} \hat{x}^T \Lambda \hat{x}$$

Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} \boldsymbol{x}^{k+1} &= \boldsymbol{x}^k - \alpha^k \nabla f(\boldsymbol{x}^k) = \boldsymbol{x}^k - \alpha^k \Lambda \boldsymbol{x}^k \\ &= (I - \alpha^k \Lambda) \boldsymbol{x}^k \\ \boldsymbol{x}_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) \boldsymbol{x}_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{n+1} = (1-lpha^n\lambda_{(i)})x_{(i)}^n$$
 For i -th coordinat

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

$$|1 - \alpha \mu| < 1$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$k+1$$
 $(1, k)$ $(1, k)$ $(2, k)$ $(3, k)$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$|1 - \alpha \mu| < 1$$
$$-1 < 1 - \alpha \mu < 1$$

 $f \to \min_{x,y,z}$ Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For *i*-th coordinate

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinat $x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $a(a) = \max_{a \in A} 1$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$|1 - \alpha \mu| < 1$$

$$-1 < 1 - \alpha \mu < 1$$

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k) \times x^k \text{ For } i \text{ th coord} i$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate $x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\alpha \lambda_{(i)} | < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$\begin{aligned} |1-\alpha\mu| &< 1 & |1-\alpha L| &< 1 \\ -1 &< 1-\alpha\mu &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha\mu > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k) \times x^k \quad \text{for } i \text{ th coord}$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate
$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

 $\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1

$$\alpha < \frac{2}{\mu}$$
 $\alpha \mu > 0$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k \lambda x) x^k$$
For *i*-th coordinates

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate
$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\alpha \lambda_{(i)} | < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$\begin{aligned} |1 - \alpha \mu| &< 1 & |1 - \alpha L| &< 1 \\ -1 &< 1 - \alpha \mu &< 1 & -1 &< 1 - \alpha L &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha \mu &> 0 & \alpha &< \frac{2}{L} & \alpha L &> 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k \lambda x) x^k$$
For *i*-th coordinates

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate
$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\alpha \lambda_{(i)} | < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$\begin{aligned} |1 - \alpha \mu| &< 1 & |1 - \alpha L| &< 1 \\ -1 &< 1 - \alpha \mu &< 1 & -1 &< 1 - \alpha L &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha \mu &> 0 & \alpha &< \frac{2}{L} & \alpha L &> 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $f \to \min_{x,y,z}$ Strongly convex quadratics

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

= $(I - \alpha^k \Lambda) x^k$
 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$\begin{array}{ll} -1<1-\alpha\mu<1 & -1<1-\alpha L<1 \\ \alpha<\frac{2}{\mu} & \alpha\mu>0 & \alpha<\frac{2}{L} & \alpha L>0 \\ \alpha<\frac{2}{T} \text{ is needed for convergence.} \end{array}$$

 $|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$=(I-\alpha^k\Lambda)x^k$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha$. Convergence

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

condition: $\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$

Remember, that
$$\lambda_{\mathsf{min}} = \mu > 0, \lambda_{\mathsf{max}} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$$

$$\alpha<\frac{2}{L} \quad \text{is needed for convergence}.$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha)$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\begin{split} \rho(\alpha) &= \max_i |1 - \alpha \lambda_{(i)}| < 1 \\ \text{Remember, that } \lambda_{\min} &= \mu > 0, \lambda_{\max} = L \geq \mu. \\ \\ |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ - 1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

condition:

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\rho(\alpha)=\max_i|1-\alpha\lambda_{(i)}|<1$$
 Remember, that $\lambda_{\min}=\mu>0, \lambda_{\max}=L>\mu.$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

$$\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$$

$$\alpha<\frac{2}{L} \text{ is needed for convergence}.$$

Now we would like to choose
$$\alpha$$
 in order to choose the best (lowest) convergence rate

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \end{split}$$

$$= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\}$$

condition:

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize
$$\alpha^k=\alpha$$
. Convergence condition:
$$\rho(\alpha)=\max|1-\alpha\lambda_{(i)}|<1$$

 $-I > \mu$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\rho^* : 1 - \rho^* \mu = \rho^* L - 1$$

$$\mu - \alpha \, E$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize
$$\alpha^k=\alpha$$
. Convergence condition:
$$\rho(\alpha)=\max|1-\alpha\lambda_{(i)}|<1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

$$|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$$

$$\begin{array}{ll} -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \\ \alpha < \frac{2}{r} \text{ is needed for convergence.} \end{array}$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\rho^* : 1 - \rho^* \mu = \rho^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L}$$

$$f \to \min_{x,y,z}$$
 Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize
$$\alpha^k=\alpha$$
. Convergence condition:
$$\rho(\alpha)=\max|1-\alpha\lambda_{(i)}|<1$$

$$i$$
 $-u > 0$
 $-I > u$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{\mu} & \alpha L > 0 \end{aligned}$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha.$ Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\rho(\alpha)=\max_i|1-\alpha\lambda_{(i)}|<1$$
 Remember, that $\lambda_{\min}=\mu>0, \lambda_{\max}=L\geq\mu.$

 $|1 - \alpha u| < 1$ $|1 - \alpha L| < 1$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{L} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$x^{k+1} = \left(\frac{L-\mu}{L+\mu}\right)^k x^0$$

 $\alpha < \frac{2}{L}$ is needed for convergence. $f \to \min_{x,y,z}$ Strongly convex quadratics

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

 $\alpha < \frac{2}{\mu}$ $\alpha \mu > 0$ $\alpha < \frac{2}{L}$ $\alpha L > 0$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^*: 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$\alpha = \frac{1}{\mu + L} \quad \rho = \frac{1}{L + \mu}$$

$$x^{k+1} = \left(\frac{L - \mu}{L + \mu}\right)^k x^0 \quad f(x^{k+1}) = \left(\frac{L - \mu}{L + \mu}\right)^{2k} f(x^0)$$

$$lpha < rac{2}{L}$$
 is needed for convergence.

So, we have a linear convergence in domain with rate $\frac{\kappa-1}{\kappa+1}=1-\frac{2}{\kappa+1}$, where $\kappa=\frac{L}{\mu}$ is sometimes called *condition number* of the quadratic problem.

κ	ho	Iterations to decrease domain gap $10\ \mathrm{times}$	Iterations to decrease function gap $10\ \mathrm{times}$
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. **PL**ink to the code

$$f(x) = x^2 + 3\sin^2(x)$$

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. **Link** to the code

$$f(x) = x^2 + 3\sin^2(x)$$

Function, that satisfies
Polyak- Lojasiewicz condition $f(x) = x^2 + 3sin^2(x)$

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is μ -Polyak-Lojasiewicz and L-smooth, for some $L \ge \mu > 0$.

Consider $(x^k)_{k\in\mathbb{N}}$ a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0 < \alpha \leq \frac{1}{L}$. Then:

$$f(x^k) - f^* \le (1 - \alpha \mu)^k (f(x^0) - f^*).$$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$
$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ &= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ &= f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \\ &\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split}$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

We can use L-smoothness, together with the update rule of the algorithm, to write

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

We can now use the Polvak-Loiasiewicz property to write:

$$f(x^{k+1}) \le f(x^k) - \alpha \mu (f(x^k) - f^*).$$

The conclusion follows after subtracting f^* on both sides of this inequality, and using recursion.

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$f \to \min_{x,y,z}$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$
$$= \left(\nabla f(x)^T - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$x||_{2}^{2} =$$

$$=\left(\nabla f(x)^{T}-\frac{\mu}{2}(x^{*}-x)\right)^{T}(x-x^{*})=$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$x||_{2}^{2} =$$

$$=\left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

Putting
$$y = x^*$$
:

 $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

$$b =$$

Let
$$a=\frac{1}{\sqrt{\mu}}\nabla f(x)$$
 and $b=\sqrt{\mu}(x-x^*)-\frac{1}{\sqrt{\mu}}\nabla f(x)$

$$x^* - x||_2^2$$

$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

 $= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^{T} - \sqrt{\mu} (x^{*} - x) \right)^{T} \sqrt{\mu} (x - x^{*}) =$

$$f o \min_{x,y,z}$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

Putting
$$y = x^*$$
:

 $f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$

$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^T - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) =$$

 $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$

$$= \left(\nabla f(x)^{T} - \frac{1}{2} (x^{T} - x) \right) (x - x^{T}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^{T} - \sqrt{\mu} (x^{*} - x) \right)^{T} \sqrt{\mu} (x - x^{*}) =$$

Let $a = \frac{1}{\sqrt{\mu}} \nabla f(x)$ and $b = \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}}\nabla f(x)$

Then
$$a+b=\sqrt{\mu}(x-x^*)$$
 and $a-b=\frac{2}{\sqrt{\mu}}\nabla f(x)-\sqrt{\mu}(x-x^*)$

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$
$$f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|_2^2,$$

 $f \to \min_{x,y,z}$ Polyak-Lojasiewicz smooth case

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$
$$f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|_2^2,$$

 $f \to \min_{x,y,z}$ Polyak-Lojasiewicz smooth case

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$
$$f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|_2^2,$$

which is exactly PL-condition. It means, that we already have linear convergence proof for any strongly convex function.

Smooth convex case

Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is convex and L-smooth, for some L > 0.

Let $(x^k)_{k\in\mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0<\alpha\leq \frac{1}{L}$. Then, for all $x^*\in \operatorname{argmin} f$, for all $k\in\mathbb{N}$ we have that

$$f(x^k) - f^* \le \frac{\|x^0 - x^*\|^2}{2\alpha k}.$$

• As it was before, we firstly use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \leq \frac{1}{L}$$

$$(1)$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use
$$\alpha = \frac{1}{2}$$

That is why we often will use $\alpha = \frac{1}{L}$.

• As it was before, we firstly use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$
(1)

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.

That is why we often will use $\alpha = \frac{1}{\tau}$. After it we add convexity:

(2)

• As it was before, we firstly use smoothness:

$$f(x^{k+1}) \leq f(x^{k}) + \langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle + \frac{L}{2} \|x^{k+1} - x^{k}\|^{2}$$

$$= f(x^{k}) - \alpha \|\nabla f(x^{k})\|^{2} + \frac{L\alpha^{2}}{2} \|\nabla f(x^{k})\|^{2}$$

$$= f(x^{k}) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^{k})\|^{2}$$

$$\leq f(x^{k}) - \frac{\alpha}{2} \|\nabla f(x^{k})\|^{2},$$
(1)

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use $\alpha = \frac{1}{L}$.

• After it we add convexity:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

 $f o \min_{x,y,z}$ Smooth convex case

(2)

• As it was before, we firstly use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$
(1)

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \le \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use $\alpha = \frac{1}{4}$.

After it we add convexity:

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle$$
 with $y = x^*, x = x^k$

 $f \to \min_{x,y,z}$ Smooth convex case

(2)

• As it was before, we firstly use smoothness:

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$= f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2$$

$$= f(x^k) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^k)\|^2$$

$$\leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2,$$
(1)

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \|\nabla f(x^k)\|^2 \text{ if } \alpha \leq \frac{1}{L}$$

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence. That is why we often will use $\alpha = \frac{1}{r}$.

After it we add convexity:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle \text{ with } y = x^*, x = x^k$$

$$f(x^k) - f^* \le \langle \nabla f(x^k), x^k - x^* \rangle$$
(2)

 $f \to \min_{x,y,z}$ Smooth convex case

⊕ ೧ ⊕

Now we put Equation 2 to Equation 1:

$$\begin{split} f(x^{k+1}) & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \leq f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \\ & = f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle \\ & = f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle \\ & \qquad \qquad f(x^{k+1}) \leq f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right] \\ & \leq f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right] \\ & \qquad \qquad 2\alpha \left(f(x^{k+1}) - f^* \right) \leq \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \end{split}$$

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a = x^k - x^*$ and $b = x^k - x^* - \alpha \nabla f(x^k)$.

$$\begin{split} f(x^{k+1}) & \leq f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right] \\ & \leq f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right] \\ & 2\alpha \left(f(x^{k+1}) - f^* \right) \leq \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \end{split}$$

Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a=x^k-x^*$ and $b=x^k-x^*-\alpha\nabla f(x^k)$. Then $a+b=\alpha\nabla f(x^k)$ and $a-b=2\left(x^k-x^*-\frac{\alpha}{2}\nabla f(x^k)\right)$.

$$f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$$

$$\le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$$

$$2\alpha \left(f(x^{k+1}) - f^*\right) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2$$

• Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2\alpha} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a = x^k - x^*$ and $b = x^k - x^* - \alpha \nabla f(x^k)$. Then $a + b = \alpha \nabla f(x^k)$ and $a - b = 2\left(x^k - x^* - \frac{\alpha}{2}\nabla f(x^k)\right)$. $f(x^{k+1}) \le f^* + \frac{1}{2\alpha}\left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2\right]$

$$f(x^{-}) \le f + \frac{1}{2\alpha} \left[\|x^{k} - x^{*}\|_{2}^{2} - \|x^{k+1} - x^{*}\|_{2}^{2} \right]$$

$$\le f^{*} + \frac{1}{2\alpha} \left[\|x^{k} - x^{*}\|_{2}^{2} - \|x^{k+1} - x^{*}\|_{2}^{2} \right]$$

$$2\alpha \left(f(x^{k+1}) - f^* \right) \le \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2$$

• Now suppose, that the last line is defined for some index i and we sum over $i \in [0, k-1]$. Almost all summands will vanish due to the telescopic nature of the sum:

• Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a = x^k - x^*$ and $b = x^k - x^* - \alpha \nabla f(x^k)$. Then $a + b = \alpha \nabla f(x^k)$ and $a - b = 2\left(x^k - x^* - \frac{\alpha}{2}\nabla f(x^k)\right)$. $f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$

$$\leq f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$$
$$2\alpha \left(f(x^{k+1}) - f^* \right) \leq \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2$$

• Now suppose, that the last line is defined for some index i and we sum over $i \in [0, k-1]$. Almost all summands will vanish due to the telescopic nature of the sum:

$$2\alpha \sum_{i=0}^{k-1} \left(f(x^{i+1}) - f^* \right) \le \|x^0 - x^*\|_2^2 - \|x^k - x^*\|_2^2$$

(3)

• Now we put Equation 2 to Equation 1:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2 \le f^* + \langle \nabla f(x^k), x^k - x^* \rangle - \frac{\alpha}{2} \|\nabla f(x^k)\|^2$$

$$= f^* + \langle \nabla f(x^k), x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \rangle$$

$$= f^* + \frac{1}{2} \left\langle \alpha \nabla f(x^k), 2 \left(x^k - x^* - \frac{\alpha}{2} \nabla f(x^k) \right) \right\rangle$$

Let $a = x^k - x^*$ and $b = x^k - x^* - \alpha \nabla f(x^k)$. Then $a + b = \alpha \nabla f(x^k)$ and $a - b = 2\left(x^k - x^* - \frac{\alpha}{2}\nabla f(x^k)\right)$. $f(x^{k+1}) \le f^* + \frac{1}{2\alpha} \left[\|x^k - x^*\|_2^2 - \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \right]$

 $\leq f^* + \frac{1}{2} \left[\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2 \right]$

$$2\alpha \left(f(x^{k+1}) - f^* \right) \le \|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2$$

• Now suppose, that the last line is defined for some index i and we sum over $i \in [0, k-1]$. Almost all summands will vanish due to the telescopic nature of the sum:

$$2\alpha \sum_{i=1}^{k-1} \left(f(x^{i+1}) - f^* \right) \le \|x^0 - x^*\|_2^2 - \|x^k - x^*\|_2^2 \le \|x^0 - x^*\|_2^2$$

(3)

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \le \sum_{i=0}^{k-1} f(x^{i+1})$$

• Due to the monotonic decrease at each iteration $f(x^{i+1}) < f(x^i)$:

$$kf(x^k) \le \sum_{i=0}^{k-1} f(x^{i+1})$$

Now putting it to Equation 3:

$$2\alpha k f(x^k) - 2\alpha k f^* \le 2\alpha \sum_{i=0}^{k-1} \left(f(x^{i+1}) - f^* \right) \le \|x^0 - x^*\|_2^2$$
$$f(x^k) - f^* \le \frac{\|x^0 - x^*\|_2^2}{2\alpha k} \le \frac{L\|x^0 - x^*\|_2^2}{2k}$$

How optimal is $\mathcal{O}\left(\frac{1}{k}\right)$?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of problem and this class of algorithms?

How optimal is $\mathcal{O}\left(\frac{1}{k}\right)$?

- Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of problem and this class of algorithms?
- The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

How optimal is $\mathcal{O}\left(\frac{1}{k}\right)$?

- Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of problem and this class of algorithms?
- The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

Consider a family of first order methods, where

$$x^{k+1} \in x^0 + \operatorname{span}\left\{\nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k)\right\} \tag{4}$$

 $f \to \min_{x,y,z}$

Smooth convex case

Theorem

There exists a function f that is L-smooth and convex such that any method 4 satisfies

$$\min_{i \in [1,k]} f(x^i) - f^* \ge \frac{3L||x^0 - x^*||_2^2}{32(1+k)^2}$$

Smooth convex case

Theorem

There exists a function f that is L-smooth and convex such that any method 4 satisfies

$$\min_{i \in [1,k]} f(x^i) - f^* \ge \frac{3L||x^0 - x^*||_2^2}{32(1+k)^2}$$

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as $\mathcal{O}\left(\frac{1}{k^2}\right)$.

Smooth convex case

Theorem

There exists a function f that is L-smooth and convex such that any method 4 satisfies

$$\min_{i \in [1,k]} f(x^i) - f^* \ge \frac{3L||x^0 - x^*||_2^2}{32(1+k)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- The key of the proof is to explicitly build a special function f.

• Let d = 2k + 1 and $A \in \mathbb{R}^{d \times d}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Lower bounds

େ ଚ ଚ

• Let d = 2k + 1 and $A \in \mathbb{R}^{d \times d}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[d]^{2} + \sum_{i=1}^{d-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's a simple to check $0 \prec A \prec 4I$.

• Let d = 2k + 1 and $A \in \mathbb{R}^{d \times d}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[d]^{2} + \sum_{i=1}^{d-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's a simple to check $0 \prec A \prec 4I.$

• Define the following *L*-smooth convex function

$$f(x) = \frac{L}{8}x^{T}Ax - \frac{L}{4}\langle x, e_1 \rangle.$$

• Let d = 2k + 1 and $A \in \mathbb{R}^{d \times d}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[d]^{2} + \sum_{i=1}^{d-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's a simple to check $0 \prec A \prec 4I.$

• Define the following *L*-smooth convex function

$$f(x) = \frac{L}{8}x^{T}Ax - \frac{L}{4}\langle x, e_1 \rangle.$$

• The optimal solution x^* satisfies $Ax^*=e_1$, and solving this system of equations gives

$$x^*[i] = 1 - \frac{i}{d+1},$$

• Let d = 2k + 1 and $A \in \mathbb{R}^{d \times d}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Notice, that

$$x^{T}Ax = x[1]^{2} + x[d]^{2} + \sum_{i=1}^{d-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's a simple to check $0 \prec A \prec 4I$.

• Define the following *L*-smooth convex function

$$f(x) = \frac{L}{8}x^{T}Ax - \frac{L}{4}\langle x, e_1 \rangle.$$

• The optimal solution x^* satisfies $Ax^* = e_1$, and solving this system of equations gives

$$x^*[i] = 1 - \frac{i}{d+1},$$

And the objective value is

$$f(x^*) = \frac{L}{8} x^{*T} A x^* - \frac{L}{4} \langle x^*, e_1 \rangle$$

= $-\frac{L}{8} \langle x^*, e_1 \rangle = -\frac{L}{8} \left(1 - \frac{1}{d+1} \right).$