

Description

The VSM25P14 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =-150V,I_D =-25A

 $R_{DS(ON)}$ <150m Ω @ V_{GS} =-10V (Typ.=120mR)

 $R_{DS(ON)}$ <160m Ω @ V_{GS} =-4.5V (Typ.=131mR)

- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

Portable equipment and battery powered systems

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25P14-T2	VSM25P14	TO-252	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-145	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-25	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	-17	Α	
Pulsed Drain Current	I _{DM}	-140	А	
Maximum Power Dissipation	P _D	160	W	
Derating factor		1.3	W/℃	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	$R_{ heta Jc}$	0.8	°C/W
Thermal Resistance,Junction-to-Ambient (Note 2)	$R_{\theta JA}$	40	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics			•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-145	-155	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-145V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±10	μA	
On Characteristics (Note 3)			•				
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-1.9	-3	V	
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-20A	-	120	150	m0	
Diani-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-20A	-	131	160	mΩ	
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-20A	5	-	-	S	
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	V _{DS} =-75V,V _{GS} =0V,	-	7650	-	PF	
Output Capacitance	C _{oss}		-	148	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	131	-	PF	
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}		-	17	-	nS	
Turn-on Rise Time	t _r	V_{DD} =-75 V , I_{D} =-20 A	-	80	-	nS	
Turn-Off Delay Time	t _{d(off)}	$V_{GS}\text{=-}10V, R_{GEN}\text{=}9.1\Omega$	-	45	-	nS	
Turn-Off Fall Time	t _f		-	65	-	nS	
Total Gate Charge	Qg	\/ - 75\/ - 204	-	137	-	nC	
Gate-Source Charge	Q _{gs}	V_{DS} =-75V, I_{D} =-20A, V_{GS} =-10V	-	25	-	nC	
Gate-Drain Charge	Q _{gd}	V _{GS} =-10V	-	28	-	nC	
Drain-Source Diode Characteristics			•				
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-25A	-	-	-1.2	V	
Diode Forward Current (Note 2)	Is	-	-	-	-25	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-25A	-	90	-	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	105	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The the maximum allowed junction temperature of 150° C
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=-75V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

(V) the discrete of the discre

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance