Luna's Magic Reference

Suzune Nisiyama

July 25, 2018

MIT License

Copyright (c) 2018 Nisiyama-Suzune

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents			8	8 Tips 8.1 Java		
1	Environment	2		8.2 Random numbers		
_	1.1 Vimrc	2		8.3 Read hack		
	THE VIEW OF THE PROPERTY OF TH	_		8.4 Stack hack		
2	Data Structure	2		8.5 Time hack		
	2.1 KD tree	2		8.6 Builtin functions		
	2.2 Splay	$\overline{2}$		8.7 Prufer sequence		
	2.3 Link-cut tree	$\overline{2}$		8.8 Spanning tree counting		
	Zimi cac cree	_		8.9 Mobius inversion		
3	Formula	2		8.10 2-SAT		
	3.1 Zeller's congruence	2		8.11 Interesting numbers		
	3.2 Lattice points below segment	$\overline{2}$		one inversely numbers		
	3.3 Adaptive Simpson's method	3	9	Appendix		
	3.4 Neural network	3		9.1 Calculus table		
	on notice howers and a second	•		9.2 Regular expression		
4	Number theory	3				
	4.1 Fast power module	3				
	4.2 Euclidean algorithm	3				
	4.3 Discrete Fourier transform	3				
	4.4 Fast Walsh-Hadamard transform	3				
	4.5 Number theoretic transform	3				
	4.6 Polynomial operation	4				
	4.7 Chinese remainder theorem	4				
	4.8 Linear Recurrence	4				
	4.9 Berlekamp Massey algorithm	4				
	4.10 Baby step giant step algorithm	4				
	4.11 Pell equation	5				
	4.12 Quadric residue	5				
	4.13 Miller Rabin primality test	5				
	4.14 Pollard's Rho algorithm	5				
	4.14 Tollard S Tello algorithm	9				
5	Geometry	5				
	5.1 Point	5				
	5.2 Line	5				
	5.3 Circle	6				
	5.4 Centers of a triangle	6				
	5.5 Fermat point	6				
	5.6 Convex hull	6				
	5.7 Half plane intersection	6				
	5.8 Nearest pair of points	6				
	5.9 Minimum circle	7				
	5.10 Intersection of a polygon and a circle	7				
	5.11 Union of circles	7				
	5.12 3D point	7				
	5.13 3D line	7				
	5.14 3D convex hull	7				
6	Graph	8				
	6.1 Hopcoft-Karp algorithm	8				
	6.2 Kuhn-Munkres algorithm	8				
	6.3 Blossom algorithm	8				
	6.4 Weighted blossom algorithm	8				
	6.5 Maximum flow	9				
	6.6 Minimum cost flow	9				
	6.7 Stoer Wagner algorithm	10				
	6.8 DN maximum clique	10				
	6.9 Dominator tree	10				
	6.10 Tarjan	11				
7	String	11				
	7.1 Manacher	11				
	7.2 Suffix Array	11				
	7.3 Suffix Automaton	11				
	7.4 Palindromic tree	11				

7.5 Regular expression

Environment

1.1 Vimrc

```
set ru nu ts=4 sts=4 sw=4 si sm hls is ar bs=2 mouse=a syntax on nm <F3> :vsplit %<.in <CR>
nm <F4> :!gedit % <CR>
s au BufEnter *.cpp set cin
au BufEnter *.cpp nm <F5> :!time ./%< <CR>|nm <F7> :!
    gdb ./%< <CR>|nm <F8> :!time ./%< < %<.in <CR>|nm <F9> :!g++ % -o %< -g -std=gnu++14 -O2 -DLOCAL && size %< <CR>
```

Data Structure

2.1 KD tree

```
/* kd_tree : finds the k-th closest point in O(kn^{1-\frac{1}{k}}). Usage : Stores the data in p[]. Call function init (n, k). Call min_kth (d, k). (or max_kth) (k is 1-based)
 2 Usage
3 Note
                     Switch to the commented code for Manhattan
               distance.
21
23 //
28
               | ]));
ret += 111 * tmp * tmp; }
  ret += std::max (std::abs (rhs.data[i] - dmax.
data[i]) + std::abs (rhs.data[i] - dmin.data[i]));
       return ret; } tree[MAXN * 4];
struct result {
long long dist; point d; result() {}
result (const long long &dist, const point &d) :
    dist (dist), d (d) {}
bool operator > (const result &rhs) const { return
32
34
     35
38
          if ("tree[rt].r) tree[rt].merge (tree[tree[rt].r], k
      if ("tree[rt].r) tree[rt].merge (tree[tree[tree]...,
); }
std::priority_queue<result, std::vector<result>, std
::less <result>> heap_1;
std::priority_queue<result, std::vector<result>, std
::greater <result>> heap_r;
void _min_kth (const int &depth, const int &rt, const
    int &m, const point &d) {
  result tmp = result (sqrdist (tree[rt].p, d), tree[
    rt].p);
if ((int)heap_l.size() < m) heap_l.push (tmp);
else if (tmp < heap_l.top()) {
  heap_l.pop();
  heap_l.push (tmp); }</pre>
55
```

```
62
74
75
80
```

Splay 2.2

```
void push_down (int x) {
   if ( n[x].c[0]) push (n[x].c[0], n[x].t);
   if ( n[x].c[1]) push (n[x].c[1], n[x].t);
   if ( n[x].t = tag (); }
   void update (int x) {
      n[x].m = gen (x);
   if ( n[x].c[0]) n[x].m = merge (n[n[x].c[0]].m, n[x].
   if ("n[x].c[1]) n[x].m = merge (n[x].m, n[n[x].c[1]].
  11
12
```

2.3Link-cut tree

```
void access (int x)
int u = x, v = -1;
while (u != -1) {
  = u;

n[u].c[1] = v;

if (~v) n[v].f = u, n[v].p = -1;

update (u); u = n[v = u].p; }

splay (x); }
```

Formula

Zeller's congruence 3.1

```
/* Zeller's congruence : converts between a calendar
```

3.2 Lattice points below segment

```
1 /* Euclidean-like algorithm : computes the sum of
     \sum_{i=0}^{n-1} \left[ \frac{a+bi}{m} \right] . \star /
```

3.3 Adaptive Simpson's method

3.4 Neural network

```
1 /* Neural network : machine learning. */
2 template <int ft = 6, int n = 6, int MAXDATA = 100000>
3 struct network {
     network
      for (int i = 0; i < ft + 1; ++i) avg[i] = sig[i] =
    0; }
double compute (double *x) {
  for (int i = 0; i < n; ++i) {
    val[i] = 0; for (int j = 0; j < ft; ++j) val[i] +=
        wp[i][j] * x[j];
    val[i] = 1 / (1 + exp (-val[i])); }
double res = 0; for (int i = 0; i < n; ++i) res +=
    val[i] * w[i];
/ return 1 / (1 + exp (-res));
return res; }
roid desc (double *x, double t, double eta) {</pre>
     double
    void desc (double *x, double t, double eta) {
  double o = compute (x), del = (o - t); // * o * (1 -
       o)
for (int i = 0; i < n; ++i) for (int j = 0; j < ft;
21
        wp[i][j] -= eta * del * val[i] * (1 - val[i]) * w[i
    ] * x[j];
      22
     26
                       ++j)
      33
     return compute (x) * sig[ft] + avg[ft]; }
std::string to_string () {
  std::ostringstream os; os.precision (20); os << std</pre>
      std::ostrlings:ream os, till
    ::fixed;
for (int i = 0; i < n; ++i) for (int j = 0; j < ft;
    ++j) os << wp[i][j] << "_";
for (int i = 0; i < n; ++i) os << w[i] << "_";
for (int i = 0; i < ft + 1; ++i) os << avg[i] << "_"</pre>
42
       for (int i = 0; i < ft + 1; ++i) os << sig[i] << "_"
    return os.str (); }
void read (const std::string &str) {
    std::istringstream is (str);
    for (int i = 0; i < n; ++i) for (int j = 0; j < ft;
        ++j) is >> wp[i][j];
    for (int i = 0; i < n; ++i) is >> w[i];
    for (int i = 0; i < ft + 1; ++i) is >> avg[i];
    for (int i = 0; i < ft + 1; ++i) is >> sig[i]; } };
```

4 Number theory

4.1 Fast power module

```
1 /* Fast power module : x^n */ 2 int fpm (int x, int n, int mod) {
```

```
int ans = 1, mul = x; while (n) {
   if (n & 1) ans = int (111 * ans * mul % mod);
   mul = int (111 * mul * mul % mod); n >>= 1; }
   return ans; }

long long mul_mod (long long x, long long y, long long mod) {
      long long t = (x * y - (long long) ((long double) x / mod * y + 1E-3) * mod) % mod;
      return t < 0 ? t + mod : t; }

long long lifpm (long long x, long long n, long long mod) {
      long long ans = 1, mul = x; while (n) {
         if (n & 1) ans = mul_mod (ans, mul, mod);
         mul = mul_mod (mul, mul, mod); n >>= 1; }
      return ans; }
```

4.2 Euclidean algorithm

```
/* Euclidean algorithm : solves for ax + by = gcd (a, b). */
void euclid (const long long &a, const long long &b, long long &x, long long &y) {
  if (b == 0) x = 1, y = 0;
  else euclid (b, a % b, y, x), y -= a / b * x; }
  6 long long inverse (long long x, long long m) {
    long long a, b; euclid (x, m, a, b); return (a % m + m) % m; }
```

4.3 Discrete Fourier transform

```
/* Discrete Fourier transform : the nafarious you-know -what thing.

Usage : call init for the suggested array size, and solve for the transform. (use f!=0 for the inverse ) */

template <int MAXN = 1000000>

struct dft {

typedef std::complex <double> complex;
    complex e[2][MAXN];
    int init (int n) {
    int len = 1;
    for (; len <= 2 * n; len <<= 1);
    for (int i = 0; i < len; ++i) {
        e[0][i] = complex (cos (2 * PI * i / len), sin (2 * PI * i / len));
        return len; }

void solve (complex *a, int n, int f) {
    for (int i = 0, j = 0; i < n; ++i) {
        if (i > j) std::swap (a[i], a[j]);
        for (int i = 0; j < n; j += i)
        for (int j = 0; j < n; j += i)
        for (int j = 0; j < n; j += i)
        for (int b = 0; j < n; j += i)
        for (int b = 0; j < n; j += i)
        for (int j = 0; j < n; j += i)
        for (int j = 0; j < n; j += i)
        if (f == 1) {
            for (int i = 0; i < n; ++i) a[i] = complex (a[i]. real () / n, a[i].imag ()); } };

**PI ** i / len)

**PI ** i / len

**PI ** i
```

4.4 Fast Walsh-Hadamard transform

4.5 Number theoretic transform

```
24
                  for (int i = 0; i < 3; ++1) ror (int j = 0, j ++j)
inv[i][j] = (int) inverse (MOD[i], MOD[j]);
static int x[3];
for (int i = 0; i < 3; ++i) { x[i] = a[i];
  for (int j = 0; j < i; ++j) {
    int t = (x[i] - x[j] + MOD[i]) % MOD[i];
    if (t < 0) t += MOD[i];
    x[i] = int (1LL * t * inv[j][i] % MOD[i]); }
int sum = 1, ret = x[0] % mod;
for (int i = 1; i < 3; ++i) {
    sum = int (1LL * sum * MOD[i - 1] % mod);
    ret += int (1LL * x[i] * sum % mod);
    if (ret >= mod) ret -= mod; }
return ret; };
```

4.6 Polynomial operation

```
template <int MAXN = 1000000>
2 struct polynomial {
3 ntt <MAXN> tr;
4 /* inverse : finds a polynomial b so that
a(x)b(x) \equiv 1 \mod x^n \mod mod.
   Note: n must be a power of 2. 2x max length. */
void inverse (int *a, int *b, int n, int mod, int prt
25
      /* divide : given polynomial a(x) and b(x) with degree n and m respectively, finds a(x) = d(x)b(x) + r(x) with deg(d) \leq n - m and deg(r) < m. 4x max length required. */
     with aeg(a) \leq n-m and deg(r) < m. 4x max length required. */
void divide (int *a, int n, int *b, int m, int *d, int *r, int mod, int prt) {
  static int u[MAXN], v[MAXN]; while (!b[m - 1]) --m; int p = 1, t = n - m + 1; while (p < t << 1) p <<= 1;
27
        32
        prt);
for (int i = 0; i < p; ++i) u[i] = 1LL * u[i] * v[i]</pre>
                   % mod:
        % mod;
tr.solve (u, p, 1, mod, prt); std::reverse (u, u + t
); std::copy (u, u + t, d);
for (p = 1; p < n; p <<= 1); std::fill (u + t, u + p
, 0);
tr.solve (u, p, 0, mod, prt); std::copy (b, b + m, v
        std::fill (v + m, v + p, 0); tr.solve (v, p, 0, mod,
        prt);
for (int i = 0; i < p; ++i) u[i] = 1LL * u[i] * v[i]</pre>
                   % mod:
        tr.solve (u, p, 1, mod, prt);
for (int i = 0; i < m; ++i) r[i] = (a[i] - u[i] +
    mod) % mod;
std::fill (r + m, r + p, 0); } };</pre>
```

Chinese remainder theorem 4.7

```
if ((in[i].first - out.first) % divisor) return
    false;
n *= (in[i].first - out.first) / divisor;
n = fix (n, in[i].second);
out.first += out.second * n;
out.second *= in[i].second / divisor;
out.first = fix (out.first, out.second); }
return true; } };
```

4.8 Linear Recurrence

```
1 /* Linear recurrence : finds the n-th element of a
 linear recurrence.

2 Usage : vector <int> - first n terms, vector <int> - transition function, calc (k) : the kth term mod
 MOD. 3 Example: In: {2, 1}, {2, 1}: a_1 = 2, a_2 = 1, a_n = 2a_{n-1} + a_{n-2}, \text{ Out: calc (3) = 5, calc (10007) = 959155122 (MOD 1E9+7) */}
   calc (10007) = 959155122 (MOD 1E9+7) */
struct linear_rec {
  const int LOG = 30, MOD = 1E9 + 7; int n;
  std::vector <int> first, trans;
  std::vector <std::vector <int> bin;
  std::vector <int> add (std::vector <int> &a, std::
      vector <int> &b) {
    std::vector <int> result(n * 2 + 1, 0);
    for (int i = 0; i <= n; ++i) for (int j = 0; j <= n;
      ++i)</pre>
        20
24
```

4.9

```
Berlekamp Massey algorithm
  /* Berlekamp Massey algorithm : Complexity: O(n^2)
Requirement: const MOD, inverse(int)
Input: the first elements of the sequence
Output: the recursive equation of the given sequence
Example In: {1, 1, 2, 3}
Example Out: {1, 1000000006, 1000000006} (MOD = 1e9+7)
        struct berlekamp-massey {
  struct Poly { std::vector <int> a; Poly() { a.clear()}
                Poly (std::vector <int> &a) : a (a) {}
int length () const { return a.size(); }
Poly move (int d) { std::vector <int> na (d, 0);
na.insert (na.end (), a.begin (), a.end ());
return Poly (na); }
                  return Poly (na); }
int calc(std::vector <int> &d, int pos) { int ret =
    0;
13
         if (int i = 0; 1 < (int) a.size (); ++i) {
   if ((ret += 1LL * d[pos - i] * a[i] % MOD) >= MOD)

   ret -= MOD; }
   return ret; }

Poly operator - (const Poly &b) {
   std::vector <int> na (std::max (this -> length (), b.length ()));
   for (int i = 0; i < (int) na.size (); ++i) {
      int aa = i < this -> length () ? this -> a[i] : 0, bb = i < b.length () ? b.a[i] : 0; na[i] = (aa + MOD - bb) % MOD; }
   return Poly (na); };

Poly operator * (const int &c, const Poly &p) {
   std::vector <int> na (p.length ()); for (int i = 0; i < (int) na.size (); ++i) {
   na[i] = 1LL * c * p.a[i] % MOD; }
   return na; }
   std::vector <int> solve(vector<int> a) {
   int n = a.size (); Poly s, b; s.a.push_back (1); for (int i = 0; i < int n.a.push_back (1);</pre>
                      for (int i = 0; i < (int) a.size (); ++i) {
  if ((ret += 1LL * d[pos - i] * a[i] % MOD) >= MOD)
                std::vector <int> solve(vector<int> a) {
   int n = a.size (); Poly s, b;
   s.a.push_back (1), b.a.push_back (1);
   for (int i = 0, j = -1, ld = 1; i < n; ++i) {
    int d = s.calc(a, i); if (d) {
      if ((s.length () - 1) * 2 <= i) {
        Poly ob = b; b = s;
        s = s - 1LL * d * inverse (ld) % MOD * ob.move (i - i);
    }
}</pre>
31
                - j);

j = i; ld = d;

} else {

s = s - 1LL * d * inverse (ld) % MOD * b.move (i

- j); } }

return s.a; } };
```

4.10 Baby step giant step algorithm

```
a \mid /* Baby step_giant step algorithm : Solves a^x = b \mod c
        in O(\sqrt{c}). */
struct bsgs {
3 int solve (int a, int b, int c) {
```

```
std::unordered_map <int, int> bs;
int m = (int) sqrt ((double) c) + 1, res = 1;
for (int i = 0; i < m; ++i) {
   if (bs.find (res) == bs.end ()) bs[res] = i;
   res = int (1LL * res * a % c); }
int mul = 1, inv = (int) inverse (a, c);
for (int i = 0; i < m; ++i) mul = int (1LL * mul * inv % c);
res = b % c;
for (int i = 0; i < m; ++i) {
   if (bs.find (res) != bs.end ()) return i * m + bs[
        res];
   res = int (1LL * res * mul % c); }
return -1; };</pre>
```

4.11 Pell equation

```
/* Pell equation : finds the smallest integer root of x^2 - ny^2 = 1 when n is not a square number, with the solution set x_{k+1} = x_0x_k + ny_0y_k, y_{k+1} = x_0y_k + y_0x_k.

*/

template <int MAXN = 100000>
struct pell {
std::pair <long long, long long> solve (long long n)
{
    static long long p[MAXN], q[MAXN], g[MAXN], h[MAXN], a[MAXN],
    p[1] = q[0] = h[1] = 1; p[0] = q[1] = g[1] = 0;
    a[2] = (long long) (floor (sqrt1 (n) + le-7L));
    for (int i = 2; ++i) {
        g[i] = -q[i - 1] + a[i] * h[i - 1];
        h[i] = (n - g[i] * g[i]) / h[i];
        p[i] = a[i] * p[i - 1] + p[i - 2];
        q[i] = a[i] * p[i] - 1 + q[i - 2];
        if (p[i] * p[i] - n * q[i] * q[i] == 1)
        return { p[i], q[i] }; } };
```

4.12 Quadric residue

4.13 Miller Rabin primality test

4.14 Pollard's Rho algorithm

```
std::vector <long long> solve (const long long &n) {
   std::vector <long long> ans;
   if (n > thr) search (n, ans);
   else {
      long long rem = n;
      for (long long i = 2; i * i <= rem; ++i)
      while (!(rem % i)) { ans.push_back (i); rem /= i;
      }
   if (rem > 1) ans.push_back (rem); }
   return ans; } ;
```

${f 5}$ Geometry

```
#define cd const double &
const double EPS = 1E-8, PI = acos (-1);
int sgn (cd x) { return x < -EPS ? -1 : x > EPS; }
int cmp (cd x, cd y) { return sgn (x - y); }
double sqr (cd x) { return x * x; }
```

5.1 Point

5.2 Line

5.3 Circle

```
#define cc const circle &
struct circle {
   point c; double r;
   explicit circle (point c = point (), double r = 0) :
        c (c), r (r) {} };
   bool operator == (cc a, cc b) { return a.c == b.c &&
        cmp (a.r, b.r) == 0; }
   bool operator != (cc a, cc b) { return ! (a == b); }
   bool in_circle (cp a, cc b) { return cmp (dis (a, b.c)
        , b.r) <= 0; }
   circle make_circle (cp a, cp b) { return circle ((a +
        b) / 2, dis (a, b) / 2); }
   circle make_circle (cp a, cp b, cp c) { point p =
        circumcenter (a, b, c); return circle (p, dis (p,
        a)); }
</pre>
     #define cc const circle &
a)); }

//In the order of the line vector.

std::vector <point> line_circle_intersect (cl a, cc b)
     if (cmp (point_to_line (b.c, a), b.r) > 0) return std
    ::vector <point> ();
12
      48  return ret; }
49 //Counter-clockwise with respect of point Oa.
50 std::vector <line> intangent (cc c1, cc c2) {
51  std::vector <line> ret;
52  point p = (b.c * a.r + a.c * b.r) / (a.r + b.r);
53  std::vector <point> pp = tangent (p, a), qq = tangent (p, b);
54  if (pp.size () == 2 && qq.size () == 2) {
55  ret.push_back (line (pp[0], qq[0]));
56  ret.push_back (line (pp[1], qq[1])); }
57  return ret; }
```

5.4 Centers of a triangle

```
point incenter (cp a, cp b, cp c) {
   double p = dis (a, b) + dis (b, c) + dis (c, a);
   return (a * dis (b, c) + b * dis (c, a) + c * dis (a, b)) / p; }

   point circumcenter (cp a, cp b, cp c) {
      point p = b - a, q = c - a, s (dot (p, p) / 2, dot (q, q) / 2);
   return a + point (det (s, point (p.y, q.y)), det (point (p.x, q.x), s)) / det (p, q); }

   point orthocenter (cp a, cp b, cp c) { return a + b + c - circumcenter (a, b, c) * 2; }
```

5.5 Fermat point

```
/* Fermat point : finds a point P that minimizes |PA| + |PB| + |PC| \cdot \star / 2 point fermat_point (cp a, cp b, cp c) {    if (a == b) return a; if (b == c) return b; if (c == a) return c;    double ab = dis (a, b), bc = dis (b, c), ca = dis (c, a);    double cosa = dot (b - a, c - a) / ab / ca;
```

5.6 Convex hull

5.7 Half plane intersection

```
/* Online half plane intersection : complexity O(n) each operation. */

std::vector <point> cut (const std::vector<point> &c, line p) {

std::vector <point> ret;

if (c.empty ()) return ret;

for (int i = 0; i < (int) c.size (); ++i) {

int j = (i + 1) % (int) c.size ();

if (turn_left (p.s, p.t, c[i])) ret.push_back (c[i])
   if (two_side (c[i], c[j], p)) ret.push_back (
    line_intersect (p, line (c[i], c[j]))); }
return ret; }
/* Offline half plane intersection : complexity
         O(n \log n)
std::vector <point> half_plane_intersect (std::vector
    e> h)
    else return cmp (a.first, b.first) < 0; });
h.resize (std::unique (g.begin (), g.end (), [] (
    const polar &a, const polar &b) { return cmp (a.
    first, b.first) == 0 }) - g.begin ());
for (int i = 0; i < (int) h.size (); ++i) h[i] = g[i] |
   l second:</pre>
    fore;
    fore;
                  - fore < 2) return std::vector <point> ();
    std::vector <point> ans; ans.resize (rear + 1);
for (int i = 0; i < rear + 1; ++i) ans[i] =
    line_intersect (ret[i], ret[(i + 1) % (rear + 1)</pre>
    ]);
return ans; }
```

5.8 Nearest pair of points

```
/* Nearest pair of points : [1, r), need to sort p first. */
2 double solve (std::vector <point> &p, int 1, int r) {
3 if (1 + 1 >= r) return INF;
4 int m = (1 + r) / 2; double mx = p[m].x; std::vector <point> v;
5 double ret = std::min (solve(p, 1, m), solve(p, m, r)
);
6 for (int i = 1; i < r; ++i)
7 if (sqr (p[i].x - mx) < ret) v.push_back (p[i]);
8 sort (v.begin (), v.end (), [&] (cp a, cp b) { return a.y < b.y; } );
```

```
g for (int i = 0; i < v.size (); ++i)
of for (int j = i + 1; j < v.size (); ++j) {
   if (sqr (v[i].y - v[j].y) > ret) break;
   z ret = min (ret, dis2 (v[i] - v[j])); }
   return ret; }
```

5.9 Minimum circle

5.10 Intersection of a polygon and a circle

5.11 Union of circles

5.12 3D point

5.13 3D line

5.14 3D convex hull

12

33

40

47

49

18

23

```
if (sgn (volume (p[0], p[1], p[2], p[j]))) {
    std::swap (p[j], p[3]); return; } } }
void build_convex () {
    reorder (); face.clear ();
    face.emplace_back (0, 1, 2);
    face.emplace_back (0, 2, 1);
    for (int i = 3; i < n; ++i) add(i); } };</pre>
```

6 Graph

```
template <int MAXN = 100000, Inc .____
struct edge_list {
   int size, begin[MAXN], dest[MAXM], next[MAXM];
   void clear (int n) { size = 0; std::fill (begin, begin + n, -1); }
   edge_list (int n = MAXN) { clear (n); }
   void add_edge (int u, int v) { dest[size] = v; next[ size] = begin[u]; begin[u] = size++; } };
   template <int MAXN = 100000, int MAXM = 100000>
   struct cost_edge_list {
        int size begin[MAXN], dest[MAXM], next[MAXM], cost[
 | template <int MAXN = 100000, int MAXM = 100000>
struct cost_edge_list {
size, begin[MAXN], dest[MAXM], next[MAXM], cost[
        int size, MAXM];
       MAXM];
void clear (int n) { size = 0; std::fill (begin,
    begin + n, -1); }
cost_edge_list (int n = MAXN) { clear (n); }
void_add_edge (int u, int v, int c) { dest[size] = v;
    next[size] = begin[u]; cost[size] = c; begin[u]
    = size++; } };
```

6.1 Hopcoft-Karp algorithm

```
1 /* Hopcoft-Karp algorithm : unweighted maximum matching for bipartition graphs with complexity
       O(m\sqrt{n})
  template <int MAXN = 100000, int MAXM = 100000>
| struct hopcoft_karp {
| using edge_list = std::vector <int> [MAXN];
  15
25
```

6.2Kuhn-Munkres algorithm

```
/* Kuhn Munkres algorithm : weighted maximum matching on bipartition graphs.

Note: the graph is 1-based. */
template <int MAXN = 500>

template <int MAXN = 500>

ktruct kuhn_munkres {
   int n, w[MAXN] [MAXN], lx[MAXN], ly[MAXN], m[MAXN],
   way[MAXN], sl[MAXN];

bool u[MAXN];

toid hungary(int x) {
   m[0] = x; int j0 = 0;
   std::fill (sl, sl + n + 1, INF); std::fill (u, u + n + 1, false);

do {
                     + 1, false);
do {
  u[j0] = true; int i0 = m[j0], d = INF, j1 = 0;
  for (int j = 1; j <= n; ++j)
  if (u[j] == false) {
    int cur = -w[i0][j] - lx[i0] - ly[j];
    if (cur < sl[j]) { sl[j] = cur; way[j] = j0; }
    if (sl[j] < d) { d = sl[j]; j1 = j; } }
  for (int j = 0; j <= n; ++j) {
    if (u[j]) { lx[m[j]] += d; ly[j] -= d; }
    else sl[j] -= d; }
    j0 = j1; } while (m[j0] != 0);
do {
  int j1 = way[j0]; m[j0] = m[j1]; j0 = j1;</pre>
                do {
  int j1 = way[j0]; m[j0] = m[j1]; j0 = j1;
  } while (j0); }
int solve() {
  for (int i = 1; i <= n; ++i) m[i] = lx[i] = ly[i] =
      way[i] = 0;
  for (int i = 1; i <= n; ++i) hungary (i);
  int sum = 0; for (int i = 1; i <= n; ++i) sum += w[m
      fill[i];</pre>
                       [i]][i];
return sum; } };
```

6.3Blossom algorithm

```
1 /* Blossom algorithm : maximum match for general graph
 template <int MAXN = 500, int MAXM = 250000>
| struct blossom {
| int match[MAXN], d[MAXN], fa[MAXN], c1[MAXN], c2[MAXN], | ], v[MAXN], q[MAXN];
| int *qhead, *qtail;
```

```
struct
    ufs.merge (i, b);
if (d[i] == 1) { c1[i] = x; c2[i] = y; *qtail++ = i
   bool bfs
32
                   std::fill (d, d + MAXN, -1); std::fill
       match[dest] - loc, local
} else {
  fa[dest] = loc; fa[match[dest]] = dest;
  d[dest] = 1; d[match[dest]] = 0;
  *qtail++ = match[dest];
} else if (d[ufs.find (dest)] == 0) {
  int b = lca (loc, dest, root);
  contract (loc, dest, b); contract (dest, loc, b)
   ;
  }
}
  ; } } return 0; } int solve (int n, const edge_list <MAXN, MAXM> &e) { std::fill (fa, fa + n, 0); std::fill (c1, c1 + n, 0)
    53
```

Weighted blossom algorithm

```
/* Weighted blossom algorithm (vfleaking ver.) : maximum matching for general weighted graphs with
complexity O(n^3). Usage : Set n to the size of the vertices. Run init () . Set g[][].w to the weight of the edge. Run solve
().

The first result is the answer, the second one is the number of matching pairs. Obtain the matching with match[].

Note: 1-based. */

struct weighted_blossom {
    static const int INF = INT_MAX, MAXN = 400;
    struct edge{ int u, v, w; edge (int u = 0, int v = 0, int w = 0): u(u), v(v), w(w) {} };
    int n, n_x;
    edge g[MAXN * 2 + 1][MAXN * 2 + 1];
    int lab[MAXN * 2 + 1], match[MAXN * 2 + 1], slack[
        MAXN * 2 + 1], st[MAXN * 2 + 1], pa[MAXN * 2 + 1];
```

```
} else return pr; }
void set_match (int u, int v) {
  match[u] = g[u][v].v; if (u > n) {
  edge e = g[u][v]; int xr = flower_from[u][e.u], pr
  = get_pr (u, xr);
  for (int i = 0; i < pr; ++i) set_match (flower[u][i
      ], flower[u][i ^ 1]);
  set_match (xr, v); std::rotate (flower[u].begin (),
      flower[u].begin () + pr, flower[u].end ()); }
}</pre>
  29
   30

}
void augment (int u, int v) {
for (; ; ) {
   int xnv = st[match[u]]; set_match (u, v);
   if (!xnv) return; set_match (xnv, st[pa[xnv]]);
   u = st[pa[xnv]], v = xnv; }
int get_lca (int u, int v) {
   static int t = 0;
   for (++t; u || v; std::swap (u, v)) {
      if (u == 0) continue; if (vis[u] == t) return u;
      vis[u] = t; u = st[match[u]]; if (u) u = st[pa[u]];
   }
return 0: }

                     52
                               = 0;
for (int x = 1; x <= n; ++x) flower_from[b][x] = 0;
for (size_t i = 0; i < flower[b].size (); ++i) {
  int xs = flower[b][i];
  for (int x = 1; x <= n_x; ++x) if (g[b][x].w == 0
                   for (int x = 1; x <= n_x; ++x) if (g[b][x].w == 0
    || e_delta(g[xs][x]) < e_delta(g[b][x]))
    g[b][x] = g[xs][x], g[x][b] = g[x][xs];
    for (int x = 1; x <= n; ++x) if (flower_from[xs][x])
        flower_from[b][x] = xs; }
    set_slack (b); }
void expand blossom (int b) {
    for (size_t i = 0; i < flower[b][i]; flower[b][i]);
    int xr = flower_from[b][g[b][pa[b]].u], pr = get_pr(b, xr);
    for (int i = 0; i < pr; i += 2) {
        int xs = flower[b][i], xns = flower[b][i + 1];
        pa[xs] = g[xns][xs].u; S[xs] = 1, S[xns] = 0;
        slack[xs] = 0, set_slack(xns); q_push(xns); }
    S[xr] = 1, pa[xr] = pa[b];
    for (size_t i = pr + 1; i < flower[b].size (); ++i)
        full times the content of the content o
    63
                     int xs = flower[b][i]; S[xs] = -1, set_slack(xs); }
st[b] = 0; }
bool on_found_edge (const edge &e) {
  int u = st[e.u], v = st[e.v];
  if (S[v] == -1) {
    pa[v] = e.u, S[v] = 1; int nu = st[match[v]];
    slack[v] = slack[nu] = 0; S[nu] = 0, q_push(nu);
} else if(S[v] == 0) {
  int lca = get_lca(u, v);
  if (!lca) return augment(u, v), augment(v, u), true
                  99
100
                                    if(lab[u] <= d) return 0;
lab[u] -= d;
} else if (S[st[u]] == 1) lab[u] += d; }
for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b) {
   if (S[st[b]] == 0) lab[b] += d * 2;
   else if (S[st[b]] == 1) lab[b] -= d * 2; }
q = std::queue <int> ();
for (int x = 1; x <= n_x; ++x)
if (st[x] == x && slack[x] && st[slack[x]] != x && e_delta(g[slack[x]][x]) == 0)
   if(on_found_edge (g[slack[x]][x]))return true;
for (int b = n + 1; b <= n_x; ++b) if (st[b] == b
   && S[b] == 1 && lab[b] == 0) expand_blossom(b);
}</pre>
105
```

```
return false; }

std::pair <long long, int> solve () {

memset (match + 1, 0, sizeof (int) * n); n_x = n;

int n_matches = 0; long long tot_weight = 0;

for (int u = 0; u <= n; ++u) st[u] = u, flower[u].

clear();

int w_max = 0;

for (int u = 1; u <= n; ++u) for (int v = 1; v <= n;

++v) {

flower_from[u][v] = (u == v ? u : 0); w_max = std::

    max (w_max, g[u][v].w); }

for (int u = 1; u <= n; ++u) lab[u] = w_max;

while (matching ()) ++n_matches;

for (int u = 1; u <= n; ++u) if (match[u] && match[u]

] < u) tot_weight += g[u][match[u]].w;

return std::make_pair (tot_weight, n_matches); }

void init () { for (int u = 1; u <= n; ++u) for (int v = 1; v <= n; ++v) g[u][v] = edge (u, v, 0); }

};
```

6.5 Maximum flow

```
/* Sparse graph maximum flow : isap.*/
2 template <int MAXN = 1000, int MAXM = 100000>
   template <int MAXN = 1000, 1...
struct isap {
  struct flow_edge_list {
    int size, begin[MAXN], dest[MAXM], next[MAXM], flow[
        MAXM];
  void clear (int n) { size = 0; std::fill (begin,
        begin + n, -1); }
  flow_edge_list (int n = MAXN) { clear (n); }
  void add_edge (int u, int v, int f) {
    dest[size] = v; next[size] = begin[u]; flow[size] =
        f; begin[u] = size++;
    dest[size] = u; next[size] = begin[v]; flow[size] =</pre>
      25
43
50
52
         int ans = 0; n = n_; s = s_; dinic::t = t_;
while (bfs (e)) {
  for (int i = 0; i < n; ++i) w[i] = e.begin[i];
    ans += dfs (e, s, INF); }
return ans; };</pre>
```

6.6 Minimum cost flow

```
/* Sparse graph minimum cost flow : EK. */
template <int MAXN = 1000, int MAXM = 100000>
struct minimum cost_flow {
struct cost_flow_edge_list {
int size, begin[MAXM], dest[MAXM], next[MAXM], cost[
MAXM], flow[MAXM];
```

```
int nead = U; nead < (int)queue.size(); fread)
int x = queue[head];
for (int i = e.begin[x]; ~i; i = e.next[i]) {
   int y = e.dest[i];
   if (e.flow[i] && dist[y] > dist[x] + e.cost[i]) {
      dist[y] = dist[x] + e.cost[i]; prev[y] = i;
      if (!occur[y]) {
       occur[x] = true; queue.push_back (y); } }
   occur[x] = false; }
   return dist[t] < INF; }
std::pair <int, int> solve (cost_flow_edge_list &e,
   int n_, int s_, int t_) {
   n = n_; s = s_; t = t_; std::pair <int, int> ans =
      std::make_pair (0, 0);
while (augment (e)) {
   int num = INF;
   for (int i = t; i != s; i = e.dest[prev[i] ^ 1]) {
      num = std::min (num, e.flow[prev[i]]); }
   ans.first += num;
   for (int i = t; i != s; i = e.dest[prev[i] ^ 1]) {
      e.flow[prev[i]] -= num; e.flow[prev[i]]; } }
ans.second += num * e.cost[prev[i]]; } }
                 slack[i] = INF;
              slack[i] = INF; }
if (delta == INF) return 1;
for (int i = 0; i < n; i++) if (visit[i]) dis[i] +=</pre>
          delta;
return 0; }
int dfs (cost_flow_edge_list &e, int x, int flow) {
  if (x == t) { tf += flow; tc += flow * (dis[s] - dis
      [t]); return flow; }
  visit[x] = 1; int left = flow;
  for (int i = e.begin[x]; ~i; i = e.next[i])
  if (e.flow[i] > 0 && !visit[e.dest[i]]) {
    int y = e.dest[i];
    if (dis[y] + e.cost[i] == dis[x]) {
      int delta = dfs (e, y, std::min (left, e.flow[i])
      ):
                       e.flow[i] -= delta; e.flow[i ^ 1] += delta; l
    -= delta;
if_(!left) { visit[x] = false; return flow; }
                                                       -= delta; e.flow[i ^ 1] += delta; left
```

6.7 Stoer Wagner algorithm

```
if (k == -1) return mincut;
s = t; t = k; mincut = maxc; vis[k] = true;
for (j = 1; j <= n; j++) if (!bin[j] && !vis[j])
dist[j] += edge[k][j]; }
return mincut; }
int solve () {
   int mincut, i, j, s, t, ans;
   for (mincut = INF, i = 1; i < n; i++) {
      ans = contract (s, t); bin[t] = true;
   if (mincut > ans) mincut = ans;
   if (mincut > ans) mincut = ans;
   if (mincut = 0) return 0;
   for (j = 1; j <= n; j++) if (!bin[j])
   edge[s][j] = (edge[j][s] += edge[j][t]); }
return mincut; };
}</pre>
```

6.8 DN maximum clique

```
/* DN maximum clique : n <= 150 */
typedef bool BB[N]; struct Maxclique {
3 const BB *e; int pk, level; const float Tlimit;
4 struct Vertex { int i, d; Vertex (int i) : i(i), d(0)
{ } ;
5 typedef std::vector <Vertex> Vertices; Vertices V;
6 typedef std::vector <int> ColorClass; ColorClass QMAX,
      Q;
std::vector <ColorClass> C;
std::vector desc_degree (const Vertex &vi,const Vertex &vj) { return vi.d > vj.d; }
stoid init_colors (Vertices &v) {
const int max_degree = v[0].d;
if for (int i = 0; i < (int) v.size(); ++i) v[i].d = std
::min (i, max_degree) + 1; }
void set_degrees (Vertices &v) {
stor (int i = 0, j i < (int) v.size(); ++i)
for (v[i].d = j = 0; j < (int) v.size(); ++i)
stor (v[i].d = j = 0; j < (int) v.size(); ++j)
struct StepCount { int i1, i2; StepCount(): i1 (0), i2
(0) {} };
Q.push_back (R.back ().i); Vertices Rp; cut2 (R, Rp
);

if ((int) Rp.size ()) {
    if ((float) S[level].il / ++pk < Tlimit)
        degree_sort (Rp);

    color_sort (Rp); ++S[level].il, ++level;

    expand_dyn (Rp); --level;

} else if ((int) Q.size () > (int) QMAX.size ())
    QMAX = Q;

Q.pop_back (); } else return; R.pop_back (); } }

7 void mcqdyn (int *maxclique, int &sz) {
    set_degrees (V); std::sort(V.begin (), V.end (),
        desc_degree); init_colors (V);

for (int i = 0; i < (int) V.size () + 1; ++i) S[i].il
    = S[i].i2 = 0;

expand_dyn (V); sz = (int) QMAX.size ();

for (int i = 0; i < (int) QMAX.size ();

for (int i = 0; i < sint) QMAX.size ();

st for (int i = 0; i < sint) QMAX.size ();

st for (int i = 0; i < lint) QMAX.size ();

st set_degrees(R); std::sort(R.begin(), R.end(),
    desc_degree);

st Maxclique (const BB *conn, const int sz, const float
    tt = .025) : pk (0), level (1), Tlimit (tt) {
    sf for (int i = 0; i < sz; i++) V.push_back (Vertex (i));
    se = conn, C.resize (sz + 1), S.resize (sz + 1); };

st BBB e[N]; int ans, sol[N]; for (...) e[x][y] = e[y][x]
    std::endl;
```

6.9 Dominator tree

```
/* Dominator tree : finds the immediate dominator (
    idom[]) of each node, idom[x] will be x if x does
    not have a dominator, and will be -1 if x is not
    reachable from s. */
template <int MAXN = 100000, int MAXM = 100000>
struct dominator_tree {
    using edge_list = std::vector <int> [MAXN];
    int dfn[MAXN], sdom[MAXN], idom[MAXN], id[MAXN], f[
         MAXN], fa[MAXN], smin[MAXN], stamp;
    void predfs (int x, const edge_list <MAXN, MAXM> &
         succ) {
    id[dfn[x] = stamp++] = x;
    for (int i = succ.begin[x]; ~i; i = succ.next[i]) {
        int y = succ.dest[i];
}
```

6.10 Tarjan

7 String

7.1 Manacher

```
/* Manacher : Odd parlindromes only. */
2 for (int i = 1, j = 0; i != (n << 1) - 1; ++i) {
3  int p = i >> 1, q = i - p, r = ((j + 1) >> 1) + 1[j] - 1;
4  l[i] = r < q ? 0 : std::min (r - q + 1, 1[(j << 1) - i]);
5  while (p - 1[i] != -1 && q + 1[i] != n && s[p - 1[i]] == s[q + 1[i]]) 1[i]++;
7  if (q + 1[i] - 1 > r) j = i;
8  a += 1[i]; }
```

7.2 Suffix Array

```
/* Suffix Array : sa[i] - the beginning position of the ith smallest suffix, rk[i] - the rank of the suffix beginning at position i. height[i] - the longest common prefix of sa[i] and sa[i - 1]. */

template <int MAXN = 1000000, int MAXC = 26>

struct suffix_array {

int rk[MAXN], height[MAXN], sa[MAXN];

int cmp (int *x, int a, int b, int d) {

return x[a] == x[b] && x[a + d] == x[b + d]; }

void doubling (int *a, int n) {

static int sRank[MAXN], tmpA[MAXN], tmpB[MAXN];

int m = MAXC, *x = tmpA, *y = tmpB;

for (int i = 0; i < m; ++i) sRank[i] = 0;

for (int i = 0; i < n; ++i) sRank[i] += sRank[i - 1;

for (int i = 1; i < m; ++i) sRank[i] += sRank[i - 1;

for (int d = 1, p = 0; p < n; m = p, d <<= 1) {

p = 0; for (int i = n - d; i < n; ++i) y[p++] = i;

for (int i = 0; i < n; ++i) if (sa[i] >= d) y[p++]

= sa[i] - d;

for (int i = 0; i < m; ++i) sRank[i] = 0;
```

7.3 Suffix Automaton

7.4 Palindromic tree

```
/* Palindromic tree : extend () - returns whether the tree has generated a new node. odd, even - the root of two trees. last - the node representing the last char. node::len - the palindromic string length of the node. */

template <int MAXN = 1000000, int MAXC = 26>

struct palindromic_tree {

struct node {

node *child[MAXC], *fail; int len;

node (int len) : fail (NULL), len (len) {

memset (child, NULL, sizeof (child)); }

} node_pool[MAXN * 2], *tot_node;

int size, text[MAXN];

node *match (node *now) {

for (; text[size - now -> len - 1] != text[size];

now = now -> fail);

return now; }

bool extend (int token) {

text[++size] = token; node *now = match (last);

if (now -> child[token])

return last = now -> child[token], false;

last = now -> child[token] = new (tot_node++) node (

now -> len + 2);

if (now == odd) last -> fail = even;

else {

now = match (now -> fail);

last -> fail = now -> child[token]; }

return true; }

void init() {

text[size = 0] = -1; tot_node = node_pool;

last = even = new (tot_node++) node (0); odd = new (

tot_node++) node (-1);

even -> fail = odd; }

palindromic_tree () { init (); } };
```

7.5 Regular expression

```
match = *i;
match = *i;
/* The word is match[0], backreferences are match[i]
    up to match.size ().
match.prefix () and match.suffix () give the prefix
    and the suffix.
and the surfix.

match.length () gives length and match.position ()
gives position of the match. */ }

std::regex_replace (str, pattern, "sh$1");

//$n is the backreference, $& is the entire match, $`
is the prefix, $' is the suffix, $$ is the $ sign.
```

Tips 8 8.1 Java

```
1 /* Java reference : References on Java IO, structures,
   doubleValue () / toPlainString () : converts to other
 doublevalue () / torialisting () . Contest types.

20 Arrays : Arrays.sort (T [] a); Arrays.sort (T [] a, int fromIndex, int toIndex); Arrays.sort (T [] a, int fromIndex, int toIndex, Comperator <? super T>
 int fromIndex, int toIndex, Comperator <? super 1 comperator);
21 LinkedList <E> : addFirst / addLast (E) / getFirst /
    getLast / removeFirst / removeLast () / clear () /
    add (int, E) / remove (int) / size () / contains
    / removeFirstOccurrence / removeLastOccurrence (E)
22 ListIterator <E> listIterator (int index) : returns an
iterator:

iterator:

E next / previous (): accesses and iterates.

hasNext / hasPrevious (): checks availablity.

nextIndex / previousIndex (): returns the index of a subsequent call.

add / set (E) / remove (): changes element.

PriorityQueue <E> (int initcap, Comparator <? super E> comparator): add (E) / clear () / iterator () / peek () / poll () / size ()

E TreeMap <K, V> (Comparator <? super K> comparator):

Map.Entry <K, V> ceilingEntry / floorEntry / higherEntry / lowerEntry (K): getKey / getValue () / setValue (V): entries.

clear () / put (K, V) / get (K) / remove (K) / size ()

StringBuilder: StringBuilder (string) / append (int.)
                        iterator
 ()

StringBuilder: StringBuilder (string) / append (int, string, ...) / insert (int offset, ...) charAt (int) / setCharAt (int, char) / delete (int, int) / reverse () / length () / toString ()

String: String.format (String, ...) / toLowerCase / toUpperCase () */

32 /* Examples on Comparator:
33 public class Main {
34  public static class Point {
35  public int x; public int y;
36  public Point () {
37  x = 0;
             public Folia
x = 0;
y = 0; }
public Point (int xx, int yy) {
x = xx;
v = yy; } };
           public static class Cmp implements Comparator <Point>
```

```
|53| */
|54| /* or :
            public static class Point implements Comparable <
                 Point> {
public int x; public int y;
public Point () {
                 x = 0;
y = 0; }
public Point (int xx, int yy) {
x = xx;
                x = xx;
y = yy;
public int compareTo (Point p) {
  if (x < p.x) return -1;
  if (x == p.x) {
    if (y < p.y) return -1;
    if (y == p.y) return 0; }
  return 1; }
public boolean equalTo (Point p) {
  return (x == p.x && y == p.y); }
public int hashCode () {
  return x + y; } };
//</pre>
try {
   String line = reader.readLine();
   tokenizer = new StringTokenizer (line);
} catch (IOException e) {
   throw new RuntimeException (e); }
return tokenizer.nextToken(); }
whis RigInteger nextRigInteger() {
            return tokenizer.nextToken(); }
public BigInteger nextBigInteger() {
  return new BigInteger (next (), 10); /* radix */ }
  public int nextInt() {
    return Integer.parseInt (next()); }
  public double nextDouble() {
    return Double.parseDouble (next()); }
  public static void main (String[] args) {
    InputReader in = new InputReader (System.in);
    InputReader in = new InputReader (System.in);
}
```

8.2 Random numbers

```
std::mt19937_64 mt (time (0));
std::uniform_int_distribution <int> uid (1, 100);
std::uniform_real_distribution <double> urd (1, 100);
std::cout << uid (mt) << "_" << urd (mt) << "\n";
```

8.3Read hack

Stack hack

```
#pragma comment (linker, "/STACK:36777216")
//G++
int __size__ = 256 << 20.
   nt __size__ = 256 << 20;
har *_p_ = (char*) malloc(__size__) + __size__;
_asm__ ("movl_%0,_%%esp\n" :: "r"(_p__));
```

Time hack 8.5

```
1 clock_t t = clock ();
2 std::cout << 1. * t / CLOCKS_PER_SEC << "\n";</pre>
```

Builtin functions

- _builtin_clz: Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is
- undefined. _builtin_ctz: Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is
- undefined.__builtin_clrsb: Returns the number of leading redundant sign bits in x, i.e. the number of bits following the most significant bit that are identical to it. There are no special cases for 0 or
- other values.
 _builtin_popcount: Returns the number of 1-bits in x.
- _builtin.parity: Returns the parity of x, i.e. the number of 1-bits in x modulo 2. _builtin.bswap16, _builtin.bswap32, _builtin.bswap64:
- Returns x with the order of the bytes (8 bits as a group) reversed.
- bitset::_Find_first(), bitset::_Find_next(idx): bit-set built-in functions.

8.7 Prufer sequence

In combinatorial mathematics, the Prufer sequence of a labeled tree is a unique sequence associated with the tree. The sequence for a tree on n vertices has length n-2.

One can generate a labeled tree's Prufer sequence by iteratively removing vertices from the tree until only two vertices remain. Specifically, consider a labeled tree T with vertices 1, 2, ..., n. At step i, remove the leaf with the smallest label and set the ith element of the Prufer sequence to be the label of this leaf's neighbour.

One can generate a labeled tree from a sequence in three steps. The tree will have n+2 nodes, numbered from 1 to n+2. For each node set its degree to the number of times it appears in the sequence plus 1. Next, for each number in the sequence a[i], find the first (lowest-numbered) node, j, with degree equal to 1, add the edge (j, a[i]) to the tree, and decrement the degrees of j and a[i]. At the end of this loop two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u, v) to the tree.

The Prufer sequence of a labeled tree on n vertices is a unique sequence of length n-2 on the labels 1 to n - this much is clear. Somewhat less obvious is the fact that for a given sequence S of length n-2 on the labels 1 to n, there is a unique labeled tree whose Prufer sequence is S.

8.8 Spanning tree counting

Kirchhoff's Theorem: the number of spanning trees in a graph G is equal to *any* cofactor of the Laplacian matrix of G, which is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)-matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).

The number of edges with a certain weight in a minimum spanning tree is fixed given a graph. Moreover, the number of its arrangements can be obtained by finding a minimum spanning tree, compressing connected components of other edges in that tree into a point, and then applying Kirrchoff's theorem with only edges of the certain weight in the graph. Therefore, the number of minimum spanning trees in a graph can be solved by multiplying all numbers of arrangements of edges of different weights together.

8.9 Mobius inversion

8.9.1 Mobius inversion formula

$$[x = 1] = \sum_{d|x} \mu(d)$$
$$x = \sum_{d|x} \mu(d)$$

8.9.2 Gcd inversion

$$\begin{split} \sum_{a=1}^{n} \sum_{b=1}^{n} gcd^{2}(a,b) &= \sum_{d=1}^{n} d^{2} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} [gcd(i,j) = 1] \\ &= \sum_{d=1}^{n} d^{2} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{t \mid gcd(i,j)} \mu(t) \\ &= \sum_{d=1}^{n} d^{2} \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} [t|i] \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} [t|j] \\ &= \sum_{d=1}^{n} d^{2} \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \lfloor \frac{n}{dt} \rfloor^{2} \end{split}$$

The formula can be computed in O(nlogn) complexity. Moreover, let l = dt, then

$$\sum_{d=1}^n d^2 \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \lfloor \frac{n}{dt} \rfloor^2 = \sum_{l=1}^n \lfloor \frac{n}{l} \rfloor^2 \sum_{d|l} d^2 \mu(\frac{l}{d})$$

Let $f(l)=\sum_{d|l}d^2\mu(\frac{l}{d})$. It can be proven that f(l) is multiplicative. Besides, $f(p^k)=p^{2k}-p^{2k-2}$.

Therefore, with linear sieve the formula can be computed in O(n) complexity.

8.10 2-SAT

In terms of the implication graph, two literals belong to the same strongly connected component whenever there exist chains of implications from one literal to the other and vice versa. Therefore, the two literals must have the same value in any satisfying assignment to the given 2-satisfiability instance. In particular, if a variable and its negation both belong to the same strongly connected component, the instance cannot be satisfied, because it is impossible to assign both of these literals the same value. As Aspvall et al. showed, this is a necessary and sufficient condition: a 2-CNF formula is satisfiable if and only if there is no variable that belongs to the same strongly connected component as its negation.

This immediately leads to a linear time algorithm for testing satisfiability of 2-CNF formulae: simply perform a strong connectivity analysis on the implication graph and check that each variable and its negation belong to different components. However, as Aspvall et al. also showed, it also leads to a linear time algorithm for finding a satisfying assignment, when one exists. Their algorithm performs the following steps:

Construct the implication graph of the instance, and find its strongly connected components using any of the known linear-time algorithms for strong connectivity analysis.

Check whether any strongly connected component contains both a variable and its negation. If so, report that the instance is not satisfiable and halt

and halt.

Construct the condensation of the implication graph, a smaller graph that has one vertex for each strongly connected component, and an edge from component i to component j whenever the implication graph contains an edge uv such that u belongs to component i and v belongs to component j. The condensation is automatically a directed acyclic graph and, like the implication graph from which it was formed, it is skew-symmetric.

Topologically order the vertices of the condensation. In practice this may be efficiently achieved as a side effect of the previous step, as components are generated by Kosaraju's algorithm in topological order and by Tarjan's algorithm in reverse topological order.

For each component in the reverse topological order, if its variables do not already have truth assignments, set all the literals in the component to be true. This also causes all of the literals in the complementary component to be set to false.

8.11 Interesting numbers

8.11.1 Binomial Coefficients

$$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \quad \sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

$$\sum_{k=0}^n \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sqrt{1+z} = 1 + \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k \times 2^{2k-1}} \binom{2k-2}{k-1} z^k$$

$$\sum_{k=0}^r \binom{r-k}{m} \binom{s+k}{n} = \binom{r+s+1}{m+n+1}$$

$$C_{n,m} = \binom{n+m}{m} - \binom{n+m}{m-1}, n \ge m$$

$$\binom{n}{k} \equiv [n\&k = k] \pmod{2}$$

$$\binom{n_1 + \dots + n_p}{m} = \sum_{k_1 + \dots + k_p = m} \binom{n_1}{k_1} \dots \binom{n_p}{k_p}$$

8.11.2 Fibonacci Numbers

$$F(z) = \frac{z}{1 - z - z^2}$$

$$f_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \phi = \frac{1 + \sqrt{5}}{2}, \hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

$$\sum_{k=1}^n f_k = f_{n+2} - 1, \quad \sum_{k=1}^n f_k^2 = f_n f_{n+1}$$

$$\sum_{k=0}^n f_k f_{n-k} = \frac{1}{5}(n-1)f_n + \frac{2}{5}nf_{n-1}$$

$$\frac{f_{2n}}{f_n} = f_{n-1} + f_{n+1}$$

$$f_1 + 2f_2 + 3f_3 + \dots + nf_n = nf_{n+2} - f_{n+3} + 2]$$

$$\gcd(f_m, f_n) = f_{\gcd(m, n)}$$

$$f_n^2 + (-1)^n = f_{n+1}f_{n-1}$$

$$f_{n+k} = f_n f_{k+1} + f_{n-1} f_k$$

$$f_{2n+1} = f_n^2 + f_{n+1}^2$$

$$(-1)^k f_{n-k} = f_n f_{k-1} - f_{n-1} f_k$$
Modulo $f_n, f_{mn+r} \equiv \begin{cases} f_r, & m \bmod 4 = 0; \\ (-1)^{r+1} f_{n-r}, & m \bmod 4 = 2; \\ (-1)^{r+1+n} f_{n-r}, & m \bmod 4 = 2; \end{cases}$
2. Lease Numbers

8.11.3 Lucas Numbers

$$L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2} = \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1-\sqrt{5}}{2}\right)^n$$
$$L(x) = \frac{2-x}{1-x-x^2}$$

8.11.4 Catlan Numbers

$$c_1 = 1, c_n = \sum_{i=0}^{n-1} c_i c_{n-1-i} = c_{n-1} \frac{4n-2}{n+1} = \frac{\binom{2n}{n}}{n+1}$$
$$= \binom{2n}{n} - \binom{2n}{n-1}, c(x) = \frac{1-\sqrt{1-4x}}{2x}$$

8.11.5 Stirling Cycle Numbers

Divide n elements into k non-empty cycles.

$$s(n,0) = 0, s(n,n) = 1, s(n+1,k) = s(n,k-1) - ns(n,k)$$

$$s(n,k) = (-1)^{n-k} {n \brack k}$$

$${n+1 \brack k} = n {n \brack k} + {n \brack k-1}, {n+1 \brack 2} = n!H_n$$

$$x^{\underline{n}} = x(x-1)...(x-n+1) = \sum_{k=0}^{n} {n \brack k} (-1)^{n-k} x^k$$

$$x^{\overline{n}} = x(x+1)...(x+n-1) = \sum_{k=0}^{n} {n \brack k} x^k$$

8.11.6Stirling Subset Numbers

Divide n elements into k non-empty subsets.

$${n+1 \choose k} = k {n \choose k} + {n \choose k-1}$$

$$x^n = \sum_{k=0}^n {n \choose k} x^{\underline{k}} = \sum_{k=0}^n {n \choose k} (-1)^{n-k} x^{\overline{k}}$$

$$m! {n \choose m} = \sum_{k=0}^m {m \choose k} k^n (-1)^{m-k}$$

$$\sum_{k=1}^n k^p = \sum_{k=0}^p {p \choose k} (n+1)^{\underline{k}}$$

For a fixed k, generating functions

$$\sum_{n=0}^{\infty} {n \brace k} x^{n-k} = \prod_{r=1}^{k} \frac{1}{1 - rx}$$

Motzkin Numbers

Draw non-intersecting chords between n points on a circle.

Pick n numbers $k_1,k_2,...,k_n \in \{-1,0,1\}$ so that $\sum_i^a k_i (1 \le a \le n)$ is non-negative and the sum of all numbers is 0.

$$M_{n+1} = M_n + \sum_{i=0}^{n-1} M_i M_{n-1-i} = \frac{(2n+3)M_n + 3nM_{n-1}}{n+3}$$

$$M_n = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} Catlan(k)$$

$$M(X) = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$

Eulerian Numbers

Permutations of the numbers 1 to n in which exactly k elements are greater than the previous element.

8.11.9 Harmonic Numbers

Sum of the reciprocals of the first n natural numbers.

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

$$\sum_{k=1}^{n} kH_k = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}$$

$$\sum_{k=1}^{n} {n \choose k} H_k = {n+1 \choose m+1} (H_{n+1} - \frac{1}{m+1})$$

8.11.10 Pentagonal Number Theorem

$$\prod_{n=1}^{\infty} (1-x^n) = \sum_{n=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}$$

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$

$$f(n,k) = p(n) - p(n-k) - p(n-2k) + p(n-5k) + p(n-7k) - \cdots$$

8.11.11 Bell Numbers

Divide a set that has exactly n elements

$$B_{n} = \sum_{k=1}^{n} {n \choose k}, \quad B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_{k}$$

$$B_{p^{m}+n} \equiv mB_{n} + B_{n+1} \pmod{p}$$

$$B(x) = \sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n} = e^{e^{x} - 1}$$

8.11.12 Bernoulli Numbers

$$B_n = 1 - \sum_{k=0}^{n-1} \binom{n}{k} \frac{B_k}{n-k+1}$$

$$G(x) = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k = \frac{1}{\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} B_k n^{m-k+1}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = (\frac{n(n+1)}{2})^2$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

8.11.14 Sum of Squares

Denote $r_k(n)$ the ways to form n with k squares. If:

$$n = 2^{a_0} p_1^{2a_1} \cdots p_r^{2a_r} q_1 b_1 \cdots q_s b_s$$

where $p_i \equiv 3 \mod 4$, $q_i \equiv 1 \mod 4$, then

$$r_2(n) = \begin{cases} 0 & \text{if any } a_i \text{ is a half-integer} \\ 4 \prod_1^r (b_i + 1) & \text{if all } a_i \text{ are integers} \end{cases}$$

 $r_3(n) > 0$ when and only when n is not $4^a(8b+7)$.

8.11.15 Derangement

$$D_1 = 0, D_2 = 1, D_n = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$$
$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

8.11.16 Tetrahedron Volume

If U, V, W, u, v, w are lengths of edges of the tetrahedron (first three form a triangle; u opposite to U and so on)

$$V = \frac{\sqrt{4u^2v^2w^2 - \sum_{cyc} u^2(v^2 + w^2 - U^2)^2 + \prod_{cyc} (v^2 + w^2 - U^2)}}{12}$$

Appendix 9.1Calculus table

9.1.1
$$ax + b \ (a \neq 0)$$

2.
$$\int \frac{x^2}{ax+b} dx = \frac{1}{a^3} \left(\frac{1}{2} (ax+b)^2 - 2b(ax+b) + b^2 \ln|ax+b| \right) + C$$
3.
$$\int \frac{dx}{x(ax+b)} = -\frac{1}{b} \ln\left| \frac{ax+b}{x} \right| + C$$
4.
$$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{1}{b^2} \ln\left| \frac{ax+b}{x} \right| + C$$
5.
$$\int \frac{x}{(ax+b)^2} dx = \frac{1}{a^2} \left(\ln|ax+b| + \frac{b}{ax+b} \right) + C$$
6.
$$\int \frac{x^2}{(ax+b)^2} dx = \frac{1}{a^3} \left(ax+b-2b \ln|ax+b| - \frac{b^2}{ax+b} \right) + C$$
7.
$$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln\left| \frac{ax+b}{x} \right| + C$$

1. $\int \frac{x}{ax+b} dx = \frac{1}{a^2} (ax+b-b \ln |ax+b|) + C$

9.1.2 $\sqrt{ax+b}$

1.2
$$\sqrt{ax + b}$$

1. $\int \sqrt{ax + b} dx = \frac{2}{3a} \sqrt{(ax + b)^3} + C$

2. $\int x \sqrt{ax + b} dx = \frac{2}{15a^2} (3ax - 2b) \sqrt{(ax + b)^3} + C$

3. $\int x^2 \sqrt{ax + b} dx = \frac{2}{105a^3} (15a^2x^2 - 12abx + 8b^2) \sqrt{(ax + b)^3} + C$

4. $\int \frac{x}{\sqrt{ax + b}} dx = \frac{2}{3a^2} (ax - 2b) \sqrt{ax + b} + C$

5. $\int \frac{x^2}{\sqrt{ax + b}} dx = \frac{2}{15a^3} (3a^2x^2 - 4abx + 8b^2) \sqrt{ax + b} + C$

6. $\int \frac{dx}{x\sqrt{ax + b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax + b} - \sqrt{b}}{\sqrt{ax + b} + \sqrt{b}} \right| + C & (b > 0) \\ \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{ax + b}{ax + b}} - \frac{b}{\sqrt{ax + b}} + C & (b < 0) \end{cases}$

7. $\int \frac{dx}{x^2 \sqrt{ax + b}} = -\frac{\sqrt{ax + b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax + b}}$

Luna's Magic Reference			
8. $\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$ 9. $\int \frac{\sqrt{ax+b}}{x^2} dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}}$			
9.1.3 $x^2 \pm a^2$			
1. $\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$			
2. $\int \frac{\mathrm{d}x}{(x^2 + a^2)^n} = \frac{x}{2(n-1)a^2(x^2 + a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \int \frac{\mathrm{d}x}{(x^2 + a^2)^{n-1}}$ 3. $\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x-a}{x^2} \right + C$			
9.1.4 $ax^2 + b \ (a > 0)$			
1.			
2. $\int \frac{x}{ax^2 + b} dx = \frac{1}{2a} \ln ax^2 + b + C$			
3. $\int \frac{x^2}{ax^2+b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^2+b}$ 4. $\int \frac{dx}{x(ax^2+b)} = \frac{1}{2b} \ln \frac{x^2}{ ax^2+b } + C$			
5. $\int \frac{\mathrm{d}x}{x^2(ax^2+b)} = -\frac{1}{bx} - \frac{a}{b} \int \frac{\mathrm{d}x}{ax^2+b}$			
6. $\int \frac{dx}{x^3 (ax^2 + b)} = \frac{a}{2b^2} \ln \frac{ ax^2 + b }{x^2} - \frac{1}{2bx^2} + C$ 7. $\int \frac{dx}{(ax^2 + b)^2} = \frac{x}{2b(ax^2 + b)} + \frac{1}{2b} \int \frac{dx}{ax^2 + b}$			
9.1.5 $ax^2 + bx + c \ (a > 0)$			
1. $\frac{\mathrm{d}x}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} & \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} & \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right + C & (b^2 > 4ac) \end{cases}$			
1. $\frac{\mathrm{d}x}{ax^2 + bx + c} = \begin{cases} \frac{\mathrm{d}x}{\sqrt{h^2 - 4ac}} & \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right + C (b^2 > 4ac) \end{cases}$			
2. $\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln ax^2 + bx + c - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$			
9.1.6 $\sqrt{x^2 + a^2}$ $(a > 0)$			
1.			
$\sqrt{(x^2+a^2)^3} \qquad a^2\sqrt{x^2+a^2}$ 3. $\int \frac{x}{\sqrt{x^2+a^2}} dx = \sqrt{x^2+a^2} + C$			
4. $\int \frac{x}{\sqrt{2x^2+2x^2}} dx = -\frac{1}{\sqrt{2x^2+2x^2}} + C$			
5. $\int \frac{\sqrt{(x^2 + a^2)^3}}{\sqrt{x^2 + a^2}} dx = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$			
6. $\int \frac{x^2}{\sqrt{(x^2+a^2)^3}} dx = -\frac{x}{\sqrt{x^2+a^2}} + \ln(x+\sqrt{x^2+a^2}) + C$			
7.			
$8. \int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{a^2 x} + C$			
$x^{2}\sqrt{x^{2}+a^{2}}$ 9. $\int \sqrt{x^{2}+a^{2}} dx = \frac{x}{2}\sqrt{x^{2}+a^{2}} + \frac{a^{2}}{2}\ln(x+\sqrt{x^{2}+a^{2}}) + C$ 10. $\int \sqrt{(x^{2}+a^{2})^{3}} dx = \frac{x}{8}(2x^{2}+5a^{2})\sqrt{x^{2}+a^{2}} + \frac{3}{8}a^{4}\ln(x+\sqrt{x^{2}+a^{2}}) + C$			
11. $\int x\sqrt{x^2+a^2}dx = \frac{1}{3}\sqrt{(x^2+a^2)^3} + C$			
12. $\int x^2 \sqrt{x^2 + a^2} dx = \frac{x}{8} (2x^2 + a^2) \sqrt{x^2 + a^2} - \frac{a^4}{8} \ln(x + \sqrt{x^2 + a^2}) + C$			
13. $\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} + a \ln \frac{\sqrt{x^2 + a^2} - a}{ x } + C$ 14. $\int \frac{\sqrt{x^2 + a^2}}{x^2} dx = -\frac{\sqrt{x^2 + a^2}}{x} + \ln(x + \sqrt{x^2 + a^2}) + C$			
14. $\int \frac{\sqrt{x^2}}{x^2} dx = -\frac{\sqrt{x^2}}{x^2} + \ln(x + \sqrt{x^2 + a^2}) + C$ 9.1.7 $\sqrt{x^2 - a^2} (a > 0)$			
1. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \frac{x}{ x } \operatorname{arch} \frac{ x }{a} + C_1 = \ln x + \sqrt{x^2 - a^2} + C$			
2. $\int \frac{\mathrm{d}x}{\sqrt{(x^2 - a^2)^3}} = -\frac{x}{a^2 \sqrt{x^2 - a^2}} + C$			
3. $\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$			
4. $\int \frac{x}{\sqrt{(x^2 - a^2)^3}} dx = -\frac{1}{\sqrt{x^2 - a^2}} + C$ 5. $\int \frac{x^2}{\sqrt{x^2 - a^2}} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln x + \sqrt{x^2 - a^2} + C$			
5. $\int \frac{u}{\sqrt{x^2 - a^2}} dx = \frac{1}{2} \sqrt{x^2 - a^2} + \frac{1}{2} \ln x + \sqrt{x^2 - a^2} + C$			
6.			
$x\sqrt{x^2 - a^2} = \frac{ x }{x}$ 8. $\int \frac{dx}{x^2\sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2x} + C$			
6. $\int \frac{1}{x^2 \sqrt{x^2 - a^2}} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln x + \sqrt{x^2 - a^2} + C$ 9. $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln x + \sqrt{x^2 - a^2} + C$			
10. $\int \sqrt{(x^2 - a^2)^3} dx = \frac{x}{8} (2x^2 - 5a^2) \sqrt{x^2 - a^2} + \frac{3}{8} a^4 \ln x + \sqrt{x^2 - a^2} + C$ 11. $\int x \sqrt{x^2 - a^2} dx = \frac{1}{3} \sqrt{(x^2 - a^2)^3} + C$			
11. $\int x\sqrt{x^2 - a^2} dx = \frac{1}{3}\sqrt{(x^2 - a^2)^3 + C}$ 12. $\int x^2\sqrt{x^2 - a^2} dx = \frac{x}{8}(2x^2 - a^2)\sqrt{x^2 - a^2} - \frac{a^4}{8}\ln x + \sqrt{x^2 - a^2} + C$			
13. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x } + C$			
14. $\int \frac{\sqrt{x^2 - a^2}}{x^2} dx = -\frac{\sqrt{x^2 - a^2}}{x} + \ln x + \sqrt{x^2 - a^2} + C$			
9.1.8 $\sqrt{a^2 - x^2} \ (a > 0)$ 1. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$			
2. $\frac{\sqrt{a^2 - x^2}}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{a^2 \sqrt{a^2 - x^2}} + C$			
$\sqrt{(a^2 - x^2)^3} \qquad a^2 \sqrt{a^2 - x^2}$ 3. $\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$			
4.			
5.			
6. $\int \frac{x^2}{\sqrt{(a^2 - x^2)^3}} dx = \frac{x}{\sqrt{a^2 - x^2}} - \arcsin \frac{x}{a} + C$			

9. $\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$ 10. $\int \sqrt{(a^2 - x^2)^3} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3}{8} a^4 \arcsin \frac{x}{a} + C$ 11. $\int x \sqrt{a^2 - x^2} \, dx = -\frac{1}{3} \sqrt{(a^2 - x^2)^3} + C$ 12. $\int x^2 \sqrt{a^2 - x^2} dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a} + C$ 13. $\int \frac{\sqrt{a^2 - x^2}}{x} \, \mathrm{d}x = \sqrt{a^2 - x^2} + a \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C$ 14. $\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \arcsin \frac{x}{a} + C$ **9.1.9** $\sqrt{\pm ax^2 + bx + c}$ (a > 0)1. $\int \frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$ $2. \int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8\sqrt{a^3}} \ln|2ax| + b + \frac{a^2}{4a} \sqrt{ax^2 + bx + c}$ $2\sqrt{a}\sqrt{ax^{2} + bx + c}| + C$ 3. $\int \frac{x}{\sqrt{ax^{2} + bx + c}} dx = \frac{1}{a}\sqrt{ax^{2} + bx + c} - \frac{b}{2\sqrt{a^{3}}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^{2} + bx + c}| + C$ $C = \frac{C}{\sqrt{c+bx-ax^2}} = -\frac{1}{\sqrt{a}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$ 5. $\int \sqrt{c+bx-ax^2} dx = \frac{2ax-b}{4a} \sqrt{c+bx-ax^2} + \frac{b^2+4ac}{8\sqrt{a^3}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$ 6. $\int \frac{x}{\sqrt{c+bx-ax^2}} dx = -\frac{1}{a} \sqrt{c+bx-ax^2} + \frac{b}{2\sqrt{a^3}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$ **9.1.10** $\sqrt{\pm \frac{x-a}{x-b}}$ & $\sqrt{(x-a)(x-b)}$ $1. \quad \int \sqrt{\frac{x-a}{x-b}} \, \mathrm{d}x = (x-b) \sqrt{\frac{x-a}{x-b}} + (b-a) \ln(\sqrt{|x-a|} + \sqrt{|x-b|}) + C$ 2. $\int \sqrt{\frac{x-a}{b-x}} \, \mathrm{d}x = (x-b) \sqrt{\frac{x-a}{b-x}} + (b-a) \arcsin \sqrt{\frac{x-a}{b-x}} + C$ 3. $\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} \, = \, 2 \arcsin \sqrt{\frac{x-a}{b-x}} \, + \, C \, \left(\, a \, < \, b \right)$ 4. $\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-x}} + C$ 9.1.11 Triangular function 1. $\int \tan x dx = -\ln|\cos x| + C$ 2. $\int \cot x dx = \ln|\sin x| + C$ 3. $\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$ 4. $\int \csc x \, dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x - \cot x \right| + C$ $\int \sec^2 x dx = \tan x + C$ $\int \csc^2 x dx = -\cot x + C$ $\int \sec x \tan x dx = \sec x + C$ $\int \csc x \cot x dx = -\csc x + C$ 9. $\int \sin^2 x dx = \frac{x}{2} - \frac{1}{4} \sin 2x + C$ 10. $\int \cos^2 x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$ $\begin{array}{ll} \text{10.} & \int \cos^- x \, \mathrm{d}x = \frac{x}{2} + \frac{1}{4} \sin 2x + C \\ \text{11.} & \int \sin^n x \, \mathrm{d}x = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, \mathrm{d}x \\ \text{12.} & \int \cos^n x \, \mathrm{d}x = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, \mathrm{d}x \\ \text{13.} & \frac{\mathrm{d}x}{\sin^n x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{\mathrm{d}x}{\sin^{n-2} x} \\ \text{14.} & \frac{\mathrm{d}x}{\cos^n x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{\mathrm{d}x}{\cos^{n-2} x} \\ \text{15.} \end{array}$ $\int \cos^m x \sin^n x dx$
$$\begin{split} &= \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^{n} x \mathrm{d}x \\ &= -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+1} \int \cos^{m} x \sin^{n-2} x \mathrm{d}x \end{split}$$
16. $\int \sin ax \cos bx dx = -\frac{1}{2(a+b)} \cos(a+b)x - \frac{1}{2(a-b)} \cos(a-b)x + C$ 17. $\int \sin ax \sin bx dx = -\frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$ 17. $\int \sin ax \sin bx dx = -\frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$ 18. $\int \cos ax \cos bx dx = \frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$ 19. $\int \frac{dx}{a+b \sin x} = \begin{cases} \frac{2}{\sqrt{a^2-b^2}} \arctan \frac{a \tan \frac{x}{2} + b}{\sqrt{a^2-b^2}} + C & (a^2 > b^2) \\ \frac{1}{\sqrt{b^2-a^2}} \ln \left| \frac{a \tan \frac{x}{2} + b - \sqrt{b^2-a^2}}{a \tan \frac{x}{2} + b + \sqrt{b^2-a^2}} \right| + C & (a^2 < b^2) \end{cases}$ 20. $\int \frac{dx}{a+b \cos x} = \begin{cases} \frac{2}{a+b} \sqrt{\frac{a+b}{a-b}} \arctan \left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right) + C & (a^2 < b^2) \\ \frac{1}{a+b} \sqrt{\frac{a+b}{a-b}} \ln \left| \frac{\tan \frac{x}{2} + \sqrt{\frac{a+b}{b-a}}}{\tan \frac{x}{2} - \sqrt{\frac{a+b}{b-a}}} \right| + C & (a^2 < b^2) \end{cases}$ 21. $\int \frac{\mathrm{d}x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C$ 22. $\int \frac{\mathrm{d}x}{a^2\cos^2x - b^2\sin^2x} = \frac{1}{2ab}\ln\left|\frac{b\tan x + a}{b\tan x - a}\right| + C$ $a^{2}\cos^{2}x - b^{2}\sin^{2}x = 2ab \quad |b \tan x - a|$ 23. $\int x \sin ax dx = \frac{1}{a^{2}}\sin ax - \frac{1}{a}x\cos ax + C$ 24. $\int x^{2}\sin ax dx = -\frac{1}{a}x^{2}\cos ax + \frac{2}{a^{2}}x\sin ax + \frac{2}{a^{3}}\cos ax + C$ 25. $\int x\cos ax dx = \frac{1}{a^{2}}\cos ax + \frac{1}{a}x\sin ax + C$ 26. $\int x^{2}\cos ax dx = \frac{1}{a}x^{2}\sin ax + \frac{2}{a^{2}}x\cos ax - \frac{2}{a^{3}}\sin ax + C$ 9.1.12 Inverse triangular function (a > 0)1. $\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C$ 1. $\int \arcsin \frac{x}{a} \, dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2 + C}$ 2. $\int x \arcsin \frac{x}{a} \, dx = (\frac{x^2}{2} - \frac{a^2}{4}) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 - x^2} + C$ 3. $\int x^2 \arcsin \frac{x}{a} \, dx = \frac{x}{3} \arcsin \frac{x}{a} + \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 - x^2} + C$ 4. $\int \arccos \frac{x}{a} \, dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C$ 5. $\int x \arccos \frac{x}{a} \, dx = (\frac{x^2}{2} - \frac{a^2}{4}) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C$ 6. $\int x^2 \arccos \frac{x}{a} \, dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 - x^2} + C$ 7. $\int \arctan \frac{x}{a} \, dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2) + C$ 8. $\int x \arctan \frac{x}{a} \, dx = \frac{1}{2} (a^2 + x^2) \arctan \frac{x}{a} - \frac{a}{2} x + C$

9. $\int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} - \frac{a}{6}x^2 + \frac{a^3}{6} \ln(a^2 + x^2) + C$

9.1.13 Exponential function

1. $\int a^{x} dx = \frac{1}{\ln a} a^{x} + C$ 2. $\int e^{ax} dx = \frac{1}{a} a^{ax} + C$ 3. $\int xe^{ax} dx = \frac{1}{a^{2}} (ax - 1)a^{ax} + C$ 4. $\int x^{n} e^{ax} dx = \frac{1}{a^{2}} (ax - 1)a^{ax} + C$ 5. $\int xa^{x} dx = \frac{1}{\ln a} a^{x} - \frac{1}{(\ln a)^{2}} a^{x} + C$ 6. $\int x^{n} a^{x} dx = \frac{1}{\ln a} x^{n} a^{x} - \frac{n}{\ln a} \int x^{n-1} a^{x} dx$ 7. $\int e^{ax} \sin bx dx = \frac{1}{a^{2} + b^{2}} e^{ax} (a \sin bx - b \cos bx) + C$ 8. $\int e^{ax} \cos bx dx = \frac{1}{a^{2} + b^{2}} e^{ax} (b \sin bx + a \cos bx) + C$ 9. $\int e^{ax} \sin^{n} bx dx = \frac{1}{a^{2} + b^{2}} e^{ax} \sin^{n-1} bx (a \sin bx - nb \cos bx) + \frac{n(n-1)b^{2}}{a^{2} + b^{2}n^{2}} \int e^{ax} \sin^{n-2} bx dx$ 10. $\int e^{ax} \cos^{n} bx dx = \frac{1}{a^{2} + b^{2}n^{2}} e^{ax} \cos^{n-1} bx (a \cos bx + nb \sin bx) + \frac{n(n-1)b^{2}}{a^{2} + b^{2}n^{2}} \int e^{ax} \sin^{n-2} bx dx$

$rac{n(n-1)b^2}{a^2+b^2n^2}\int \mathrm{e}^{ax}\cos^{n-2}bx\mathrm{d}x$ 9.1.14 Logarithmic function

1. $\int \ln x dx = x \ln x - x + C$ 2. $\int \frac{dx}{x \ln x} = \ln |\ln x| + C$ 3. $\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x - \frac{1}{n+1}) + C$ 4. $\int (\ln x)^n dx = x (\ln x)^n - n \int (\ln x)^{n-1} dx$ 5. $\int x^m (\ln x)^n dx = \frac{1}{m+1} x^{m+1} (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$

9.2 Regular expression

9.2.1 Special pattern characters

Characters	Description
	Not newline
\t	Tab (HT)
\n	Newline (LF)
/^	Vertical tab (VT)
\f	Form feed (FF)
\r	Carriage return (CR)
\cletter	Control code
\xhh	ASCII character
\uhhhh	Unicode character
\0	Null
\int	Backreference
\d	Digit
\D	Not digit
\s	Whitespace
\S	Not whitespace
\W	Word (letters, numbers and the underscore)
\W	Not word
\character	Character
[class]	Character class
[^class]	Negated character class

9.2.2 Quantifiers

Characters	Times
*	0 or more
+	1 or more
?	0 or 1
{int}	int
{int,}	int or more
{min,max}	Between min and max

By default, all these quantifiers are greedy (i.e., they take as many characters that meet the condition as possible). This behavior can be overridden to ungreedy (i.e., take as few characters that meet the condition as possible) by adding a question mark (?) after the quantifier.

9.2.3 Groups

Characters	Description
(subpattern)	Group with backreference
(?:subpattern)	Group without backreference

9.2.4 Assertions

Characters	Description
^	Beginning of line
\$	End of line
\b	Word boundary
\B	Not a word boundary
(?=subpattern)	Positive lookahead
(?!subpattern)	Negative lookahead

9.2.5 Alternative

A regular expression can contain multiple alternative patterns simply by separating them with the separator operator (|): The regular expression will match if any of the alternatives match, and as soon as one does.

9.2.6 Character classes

Class	Description
[:alnum:]	Alpha-numerical character
[:alpha:]	Alphabetic character
[:blank:]	Blank character
[:cntrl:]	Control character
[:digit:]	Decimal digit character
[:graph:]	Character with graphical representation
[:lower:]	Lowercase letter
[:print:]	Printable character
[:punct:]	Punctuation mark character
[:space:]	Whitespace character
[:upper:]	Uppercase letter
[:xdigit:]	Hexadecimal digit character
[:d:]	Decimal digit character
[:W:]	Word character
[:s:]	Whitespace character

Please note that the brackets in the class names are additional to those opening and closing the class definition. For example:

 $\mbox{\tt [[:alpha:]]}$ is a character class that matches any alphabetic character.

[abc[:digit:]] is a character class that matches a, b, c, or a digit.

 $[\,\hat{}\,\, [\,:\, \text{space}\,:\,]\,]$ is a character class that matches any character except a white space.