Foundation of Cryptography, Spring 2014	Iftach Haitner
Problem set 1	
March 4, 2014	Due: March 18

- Please submit the handout in class, or email me, in case you write in LATEX
- Write clearly and shortly using sub claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- In it ok to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")
- The notation we use appear in the introduction part of the first lecture (*Notation* section).

- 1. Let P and Q be distributions over a finite set \mathcal{U} .
 - (a) Prove that $SD(P,Q) = \max_{S \subseteq \mathcal{U}} (P(S) Q(S))$ (recall that $SD(P,Q) := \frac{1}{2} \sum_{u \in \mathcal{U}} |P(u) Q(u)|$).
 - (b) Use (a) to prove that $SD(P,Q) = \max_{D} \{ Pr_{x \leftarrow P}[D(x) = 1] Pr_{x \leftarrow Q}[D(x) = 1] \}$, where the max is take *over* all deterministic algorithms.¹
- 2. Let $\mathbb{Q} = \{Q_n\}_{n \in \mathbb{N}}$, $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ and $\mathcal{R} = \{R_n\}_{n \in \mathbb{N}}$ be distribution ensembles.
 - (a) Given that $\mathbb{Q} \stackrel{c}{=} \mathcal{P}$ (i.e., \mathbb{Q} is computationally indistinguishable from \mathcal{P}) and $\mathcal{P} \stackrel{c}{=} \mathcal{R}$, prove that $\mathbb{Q} \stackrel{c}{=} \mathcal{R}$.
 - (b) Give an example for ensemble \mathbb{Q} and \mathcal{P} such that:
 - i. $\operatorname{Supp}(Q_n) = \operatorname{Supp}(P_n)$ for every $n \in \mathbb{N}$, and
 - ii. $SD(Q_n, P_n) = 1 \text{neg}(n)$; i.e., $\forall p \in \text{poly}, \exists n' \in \mathbb{N} \text{ such that } SD(Q_n, P_n) > 1 \frac{1}{p(n)}$ for every n > n'.
- 3. Refute the following conjecture:

For every length-preserving one-way function f, the function $f'(x) = f(x) \oplus x$ is one-way.

- 4. Prove that the existence of pseudorandom generators implies the existence of one-way functions.
- 5. (a) Let $\{X_n, Z_n\}_{n \in \mathbb{N}}$ be distribution ensemble, where $\operatorname{Supp}(X_n) = \{0, 1\}$ and $\operatorname{Supp}(Z_n) = \{0, 1\}^n$ (i.e., X_n is a bit and Z_n is an n-bit string). Assume there exists a PPT A, function $\varepsilon \colon \mathbb{N} \mapsto [0, 1]$ and set $\mathcal{I} \subseteq \mathbb{N}$, such that

$$\Pr[\mathsf{A}(Z_n) = X_n] \ge \frac{1}{2} + \varepsilon(n)$$

for every $n \in \mathcal{I}$. Prove there exists PPT B such that

$$\Pr[\mathsf{B}(Z_n, X_n) = 1] - \Pr[\mathsf{B}(Z_n, U_1) = 1] \ge \varepsilon(n)$$

for every $n \in \mathcal{I}$, where U_1 is uniformly distributed over $\{0,1\}$ (independently, of (X_n, Z_n) .

- (b) Use (a) to show that if b is *not* an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, then $(f(U_n),b(U_n))$ is computationally *distinguishable* from $(f(U_n),b(U_1))$ there exists a PPT that distinguishes between $\{\{(f(x),b(x))\}_{x\leftarrow\{0,1\}^n}\}_{n\in\mathbb{N}}$ and $\{\{(f(x),c)\}_{x\leftarrow\{0,1\}^n,c\leftarrow\{0,1\}}\}_{n\in\mathbb{N}}$ with 1/p(n) advantage, for some $p\in \text{poly}$, for infinitely many n's.
- 6. Let f be a one-way function. Prove that for any PPT A, it holds that

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} \left[\mathsf{A}(f(x), i) = x_i \right] \le 1 - \frac{1}{2n},$$

for large enough $n \in \mathbb{N}$, where x_i is the *i*'th bit of x.

Bonus* : prove the above when replacing the term $1 - \frac{1}{2n}$ with $1 - \frac{1}{n}$.

¹The statement holds also for randomized algorithms, but require an additional step.