

Detonation initiation by Shock Wave Refraction

Mathilde Dutreuilh¹

¹Mechanics - Modelling in Mechanics ENSTA Paris

Internship defense, August 31, 2020

Introduction

computations conducted method extending transition

detonation considerations thermodynamic Conditions

Introduction

Spark-ignition engines and super-knock

Figure 1: Schematic of super-knock initiation, inspired from Wang et al. [2018].

Introduction

Super-knock initiation by shock wave refraction

Figure 2: Schlieren photograph of a *Bound Precursor Refraction* at a CO₂-CH₄ interface, from Abd-El-Fattah et al. [1976].

Outline

- 1 Regime diagram for H_2 - O_2 /He interface
- 2 Study of regular patterns
- 3 Detonation initiation
- 4 Conclusions

Table of Contents

- 1 Regime diagram for H_2 - O_2 /He interface
- 2 Study of regular patterns
- 3 Detonation initiation
- 4 Conclusions

Figure 3: Regime diagram for H_2 - O_2 /He interface, from de Gouvello [2019].

Figure 4: Regime diagram for H₂-O₂/He interface, from de Gouvello [2019]; schematics from Abd-El-Fattah and Henderson [1978].

Figure 5: Regime diagram for H_2 - O_2 /He interface, from de Gouvello [2019]; schematics from Abd-El-Fattah and Henderson [1978].

Figure 6: Regime diagram for H₂-O₂/He interface, from de Gouvello [2019]; schematics from Abd-El-Fattah and Henderson [1978].

Figure 7: Regime diagram for H₂-O₂/He interface, from de Gouvello [2019]; schematics from Abd-El-Fattah and Henderson [1978].

Figure 8: Regime diagram for H_2 - O_2 /He interface, from de Gouvello [2019]; schematics from Abd-El-Fattah and Henderson [1978].

Figure 9: Regime diagram for H_2 - O_2 /He interface, from de Gouvello [2019]; schematics from Abd-El-Fattah and Henderson [1978].

Figure 10: Regime diagram for H_2 - O_2 /He interface, from de Gouvello [2019].

Table of Contents

- 1 Regime diagram for H_2 - O_2 /He interface
- 2 Study of regular patterns
- 3 Detonation initiation
- 4 Conclusions

Study of regular patterns

Figure 11: Schematic of a regular refraction pattern.

Study of regular patterns

A fundamental analysis tool : polar diagram

Figure 12: Polar diagram for a regular refraction pattern.

Study of regular patterns

Set of Lagrangian particles

Figure 13: Schematic of a regular refraction pattern, drawn to scale: path of several Lagrangian particles.

Table of Contents

- 1 Regime diagram for H_2 - O_2 /He interface
- 2 Study of regular patterns
- 3 Detonation initiation
- 4 Conclusions

Figure 14: Pressure history across a Regular Refraction with reflected Expansion pattern: Mach number of incident flow = 8; Strength of the shock = 4.55; Angle of incidence = 14.5° .

Figure 15: Pressure history across a Regular Refraction with Reflected shock pattern: Mach number of incident flow = 3.25; Strength of the shock = 1.49; Angle of incidence = 21.5° .

Figure 16: Pressure history across a Regular Refraction with reflected Expansion pattern: Ordinate = 1 cm; Angle of incidence = 14.5° .

Figure 17: Pressure history across a Regular Refraction with Reflected shock pattern: Ordinate = 2 cm; Angle of incidence = 21.5° .

Chemical simulation for regular patterns

Figure 18: Temperature history across a Regular Refraction with reflected Expansion pattern, after chemical simulation.

Chemical simulation for regular patterns

Figure 19: Temperature history across a Regular Refraction with Reflected shock pattern, after chemical simulation.

Table of Contents

- 1 Regime diagram for H_2 - O_2 /He interface
- 2 Study of regular patterns
- 3 Detonation initiation
- 4 Conclusions

Regular Refraction with reflected Expansion

Figure 20: Evolution of the critical Mach number with the position of the particle, for a Regular Refraction with reflected Expansion.

More generally...

■ For RRR patterns, incident shocks are not strong enough to cause detonation initiation;

More generally...

- For RRR patterns, incident shocks are not strong enough to cause detonation initiation;
- For RRE patterns, Mach numbers over 8 are rarely reached;

More generally...

- For RRR patterns, incident shocks are not strong enough to cause detonation initiation;
- For RRE patterns, Mach numbers over 8 are rarely reached;
- For irregular patterns, the method implemented here is not valid: CFD computation is needed.

Acknowledgements

- Dr. Rémy Mével, Professeur Associé,
 Tsinghua University
- Dr. Josué Melguizo-Gavilanes, Chargé de Recherche,
 Institut P'
- Yann de Gouvello, former intern,
 ENSTA Paris

Bibliography

- A.M. Abd-El-Fattah and L.F. Henderson. Shock waves at a slow-fast gas interface. *J. Fluid Mech.*, 89:79–95, 1978. doi: https://doi.org/10.1017/S0022112078002475.
- A.M. Abd-El-Fattah, L.F. Henderson, and A. Lozzi. Precursor shock waves at a slow-fast gas interface. *J. Fluid Mech.*, 76: 157–176, 1976. doi: https://doi.org/10.1017/S0022112076003182.
- Y. de Gouvello. Detonation initiation by shock wave refraction. Master's thesis, Tsinghua University and ENSTA Paris, 2019.
- Y. Wang, S. Xiang, Y. Qi, R. Mével, and Z. Wang. Shock wave and flame front induced detonation in rapid compression machine. *Shock Waves*, 28:1109–1116, 2018.