Correction du contrôle de mathématiques nº 3

Exercice 1 (4 points)

On donne ci-dessous la courbe représentative d'une fonction f définie et dérivable sur $]0;+\infty[$. On a tracé les tangentes à la courbe de f aux points A et B.

1. Lire graphiquement f(1) et f(2).

$$f(1) = 2$$
 et $f(2) = 3$.

- 2. Déterminer deux nombres dérivés de f à l'aide du graphique. Justifier.
 - f'(1) est le coefficient directeur de la tangente au point A(1;2). On lit f'(1)=3.
 - f'(2) est le coefficient directeur de la tangente en B. Comme elle est parallèle à l'axe des abscisses, son coefficient directeur est nul et donc f'(2) = 0.
- 3. On admet désormais que pour tout x > 0, $f(x) = -x + 7 \frac{4}{x}$.
 - (a) Justifier que pour tout x > 0, $f'(x) = \frac{(2-x)(2+x)}{x^2}$.

Pour tout x > 0,

$$f'(x) = -1 - 4 \times \frac{-1}{x^2} = -1 + \frac{4}{x^2} = \frac{4 - x^2}{x^2} = \frac{(2 - x)(2 + x)}{x^2}.$$

(b) Vérifier que
$$f'(4) = -\frac{3}{4}$$
.
 $f'(4) = -1 + \frac{4}{4^2} = -1 + \frac{1}{4} = -\frac{3}{4}$.

(c) Tracer la tangente à la courbe de f au point d'abscisse 4. Aucune justification n'est attendue.

Exercice 2 (6 points)

Soit f la fonction dérivable définie sur \mathbb{R} par $f(x) = -x^2 + 4x + 1$. On note \mathscr{C} sa courbe représentative dans un repère.

1. Calculer la dérivée f'(x) de f pour tout $x \in \mathbb{R}$.

Comme toute fonction polynôme, f est dérivable sur \mathbb{R} .

Pour tout
$$x \in \mathbb{R}$$
, $f'(x) = -2x + 4$.

2. Montrer que la tangente à la courbe \mathscr{C} au point d'abscisse 1 est la droite d'équation y=2x+2.

La tangente au point d'abscisse 1 a pour équation y = f'(1)(x-1) + f(1).

$$f'(1) = -2 + 4 = 2$$
, et $f(1) = -1 + 4 + 1 = 4$.

$$y = f'(1)(x-1) + f(1)$$

$$y = 2(x-1) + 4$$
$$y = 2x + 2$$

1

$$y = 2x + 2$$

La tangente à \mathscr{C} au point d'abscisse 1 a bien pour équation y=2x+2.

3. Pour tout nombre réel a, on note T_a la tangente à $\mathscr C$ au point d'abscisse a.

(a) Déterminer a pour que T_a soit parallèle à la droite (d) d'équation

$$y = -4x + 1.$$

Les droites T_a et (d) sont parallèles ssi elles ont le même coefficient directeur, ce qui revient à f'(a)

D'où
$$-2a + 4 = -4$$
, $-2a = -8$, et $a = 4$.

Il y a une unique tangente parallèle à (d), c'est la tangente au point d'abscisse 4.

(b) Justifier que pour tout $a \in \mathbb{R}$, la tangente T_a a pour équation

$$y = (-2a + 4)x + a^2 + 1.$$

Soit $a \in \mathbb{R}$.

$$y = f'(a)(x-a) + f(a)$$

$$y = (-2a+4)(x-a) + (-a^2+4a+1)$$

$$y = (-2a+4)x + 2a^2 - 4a - a^2 + 4a + 1$$

$$y = (-2a+4)x + a^2 + 1$$

Pour tout $a \in \mathbb{R}$, T_a a pour équation $y = (-2a + 4)x + a^2 + 1$.

(c) En déduire qu'il existe 2 tangentes à \mathscr{C} passant par le point K(3;8).

 $K(3;8) \in T_a \text{ ssi } 8 = (-2a+4) \times 3 + a^2 + 1, \text{ soit } a^2 - 6a + 5 = 0.$

C'est une équation du second degré avec pour inconnue a.

$$\Delta = 36 - 4 \times 5 = 16 > 0.$$

Il y a 2 solutions.

$$a_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{6 - 4}{2} = 1.$$

$$a_1 = \frac{-b + \sqrt{\Delta}}{-b + \sqrt{\Delta}} = \frac{6 - 4}{6 + 4} = 1.$$

$$a_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{6+4}{2} = 5.$$

Il y a 2 tangentes à \mathscr{C} qui passent par le point K(3;8), ce sont T_1 et T_5 .

- (d) Pour chacune de ces tangentes, donner une équation et les coordonnées du point de contact avec la courbe.
 - Pour la tangente T_1 au point d'abscisse 1, f(1) = -1 + 4 + 1 = 4. Le point de contact entre $\mathscr C$ et T_1 est A(1;4).

On a déjà vu à la question 2 que T_1 a pour équation y = 2x + 2. Pour la tangente T_5 au point d'abscisse 5, $f(5) = -5^2 + 5 \times 5 + 1 = -25 + 20 + 1 = -4$.

Le point de contact est B(5; -4).

En remplaçant a par 5 dans l'équation de T_a , il vient

$$y = (-2 \times 5 + 4)x + 5^2 + 1 = -6x + 26.$$

 T_5 a pour équation $y = -6x + 26.$

$$T_5$$
 a pour équation $y = -6x + 26$.

Exercice 3 (6 points)

Soit (u_n) la suite définie par $u_0 = 2$ et pour tout n de \mathbb{N} , $u_{n+1} = u_n - \frac{1}{(u_n)^2 + 1}$

1. Calculer, en précisant vos calculs,
$$u_1$$
 et u_2 (on donnera des valeur exactes).
$$u_1 = u_0 - \frac{1}{(u_0)^2 + 1} = 2 - \frac{1}{4+1} = 2 - \frac{1}{5} = \frac{9}{5}$$
$$u_1 = u_1 - \frac{1}{(u_1)^2 + 1} = \frac{9}{5} - \frac{1}{\frac{81}{25} + 1} = \frac{9}{5} - \frac{25}{106} = \frac{829}{530}$$

2. Sur le graphique ci-dessous, on a représenté la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = x - \frac{1}{x^2 + 1}$.

2

Représenter sur ce graphique les 6 premiers termes de la suite (u_n) .

3. Déterminer le sens de variation de la suite
$$(u_n)$$
 (On démontrera sa réponse).
Pour tout entier $n \ge 0$, $u_{n+1} - u_n = u_n - \frac{1}{(u_n)^2 + 1} - u_n = -\frac{1}{(u_n)^2 + 1} < 0$ (car $(u_n)^2 + 1 > 0$).

Donc (u_n) est décroissante.

4. Écrire un algorithme qui calcule et affiche la valeur de u_n pour un entier n supérieur ou égal à 1 donné en entrée.

> DÉBUT Entrer N

U prend la valeur ${\bf 2}$

Pour K allant de ${\bf 1}$ à N

U prend la valeur $U-1/(U^2+1)$

Fin Pour

Afficher U

FIN

- 5. Donner une valeur approchée de u_{50} arrondie à 10^{-2} . $u_{50}=-4,98$
- 6. Compléter l'algorithme suivant qui qui détermine et affiche le plus petit entier p tel que $u_p < -6$.

variable U est un réel. n est un entier

entrée

n prend la valeur 0

U prend la valeur 2

traitement

Tant que $U \geqslant -6$ faire

N prend la valeur N+1

U prend la valeur $U - 1/(U^2 + 1)$

Fin Tant que

sortie afficher N

- 7. Programmer cet algorithme à la calculatrice et donner la valeur de p. le plus petit entier p tel que $u_p < -6$ est p = 82.
- 8. Peut-on affirmer que pour tout $n \ge p$, $u_n < -6$? Justifier.

Comme $u_{82} < -6$ et (u_n) est décroissante, pour tout $n \ge 82$, $u_n \le u_{82} < -6$.

Oui, on peut affirmer que u_n est strictement inférieur à -6 pour tout entier n à partir de 82.

Exercice 4 (4 points)

Dire si les affirmations suivantes sont vraies ou fausses et justifier votre réponse.

1. Soit (U_n) la suite définie pour tout entier $n \in \mathbb{N}$ par $U_n = \frac{6n-1}{n+2}$.

(a)
$$\ll U_2 = \frac{5}{2} \gg$$

Faux.
$$U_0 = \frac{6 \times 2 - 1}{4 \times 2} = \frac{6 \times 2$$

Faux. $U_2 = \frac{6 \times 2 - 1}{2 + 2} = \frac{11}{4} \neq \frac{5}{2}.$

(b) « (U_n) est majorée par 6 »

Pour tout $n \ge 0$, $U_n - 6 = \frac{6n - 1}{n + 2} - \frac{6n + 12}{n + 2} = \frac{-13}{n + 2} < 0$. Donc pour tout $n \in \mathbb{N}$, $U_n < 6$. (U_n) est majorée par 6.

(c) $\ll (U_n)$ est minorée \gg

Vrai.

En observant les premiers termes de la suite à la calculatrice, il semble que (U_n) soit croissante, minorée par son premier terme -0, 5.

Pour tout $n \geqslant 0$,

$$U_n - (-0,5) = \frac{6n-1}{n+2} + \frac{1}{2} = \frac{12n-2}{2(n+2)} + \frac{n+2}{2(n+2)} = \frac{13n}{2(n+2)} \ge 0.$$

Donc pour tout $n \in \mathbb{N}$, $U_n - (-0)$

 (U_n) est minorée par -0, 5.

- 2. Soit (V_n) la suite définie par $V_0 = 4$ et pour tout $n \ge 0$, $V_{n+1} = V_n 2n + 5$.
 - (a) $\ll V_2 = 12 \gg$

 $V_1 = V_0 - 2 \times 0 + 5 = 4 - 0 + 5 = 9.$ $V_2 = V_1 - 2 \times 1 + 5 = 9 - 2 + 5 = 12.$

(b) $\ll (V_n)$ est croissante. \gg

 $V_{n+1} - V_n = -2n + 5$ qui n'est pas toujours positif.

On va montrer que la suite n'est pas croissante en donnant un contre-exemple.

 $V_3 = V_2 - 2 \times 2 + 5 = 13.$

 $V_4 = V_3 - 2 \times 3 + 5 = 12.$

Comme $V_4 < V_3$, la suite (V_n) n'est pas croissante.

Exercice 5 (bonus, 2 points)

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x\sqrt{x}$.

1. Calculer l'expression de f'(x) pour tout x > 0.

Posons u(x) = x, et $v(x) = \sqrt{x}$.

Les fonctions u et v sont dérivables sur $]0; +\infty[$, donc f est dérivable sur $]0; +\infty[$ par produit de fonctions

Pour tout
$$x > 0$$
, $f'(x) = 1 \times \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2}\sqrt{x} = \frac{3\sqrt{x}}{2}$.

2. f est-elle dérivable en 0? Si oui donner son nombre dérivé en 0. Justifier.

Soit h > 0.

$$\frac{f(0+h) - f(0)}{h} = \frac{h\sqrt{h}}{h} = \sqrt{h}.$$
Donc $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 0.$

Donc f est dérivable en 0 et f'(0) = 0.

- 3. Vrai-Faux. Justifier si les affirmations suivantes sont vraies ou fausses.
 - (a) « La tangente au point d'abscisse 1 passe par B(3;4) »

$$y = f'(1)(x - 1) + f(1) = \frac{3}{2}(x - 1) + 1 = \frac{3}{2}x - \frac{1}{2}.$$
Or, en remplaçant x par 3, il vient :
$$\frac{3}{2} \times 3 - \frac{1}{2} = \frac{8}{2} = 4 = y_B.$$

$$\frac{3}{2} \times 3 - \frac{1}{2} = \frac{8}{2} = 4 = y_B.$$

Donc la tangente au point d'abscisse 1 passe par B.

(b) « Il existe au moins une tangente parallèle à la droite d'équation

$$y = -2x + 5 \gg$$

Faux.

La tangente est parallèle à cette droite si elle a le même coefficient directeur, -2.

On résout l'équation f'(x) = -2, soit $\frac{3}{2}\sqrt{x} = -2$.

Une racine carrée est toujours positive ou nulle, cette équation n'a pas de solution.

Il n'y a aucune tangente parallèle à la droite d'équation y = -2x + 5.