CORRIGE TP7 QUELQUES ANOMALIES DE LA MEIOSE ET LEURS CONSEQUENCES

B) Expliquer la formation d'une famille multigénique à partir de documents et du logiciel PHYLOGENE

A partir du logiciel PHYLOGENE (voir consignes page3) et des documents suivants :

Précisez le mécanisme à l'origine d'une duplication de gènes à partir d'un gène unique Montrer que les gènes de la globine forment une famille multigénique et proposer une explication schématique permettant d'aboutir à la formation de ces gènes chez L'Homme à partir d'un gène ancestral commun (captures d'écran ou impression possible avec PHYLOGENE).

Précisez le mécanisme à l'origine d'une duplication de gènes à partir d'un gène unique

Document 4:

Au cours de la prophase 1 de méiose, un crossing over inégal peut donner naissance à un gamète avec 2 fois le même gène (2 locus différents) → duplication du gène A

Montrer que les gènes de la globine forment une famille multigénique et proposer une explication schématique permettant d'aboutir à la formation de ces gènes chez L'Homme à partir d'un gène ancestral commun (captures d'écran ou impression possible avec PHYLOGENE).

<u>Compétence travaillée ici</u>: savoir exploiter des documents afin de répondre à un problème posé. Il faut donc partir des documents (« ce que je vois »), puis les relier les uns aux autres éventuellement (mise en relation) pour pouvoir répondre à la question (« ce que je déduis). On peut apporter des connaissances dans le strict but de répondre au problème (du genre : je sais qu'un gène code pour une protéine...)

Document 1:

Les globines sont des protéines qui fixent et permettent le transport du dioxygène dans le sang ou les muscles

Dans une molécule d'hémoglobine: il y a 4 globines identiques 2 à 2 et leur nature varie au cours de la vie

Document 2:

6 gènes répartis sur 2 chromosomes permettent la synthèse des 6 globines humaines

Document 3:

A partir d'un gène ancestral, une **duplication** (crossing over inégal) donne 2 nouveaux gènes identiques au départ: le duplicata reste sur le même chromosome (**transposition**) ou est **transloqué** sur un autre chromosome. Puis au cours du temps, le duplicata **mute** ce qui donne 2 gènes différents. Puis le mécanisme duplication; transposition (ou translocation); mutation se répète et on aboutit à l'apparition de plusieurs gènes issus d'un même gène ancestral = FAMILLE MULTIGENIQUE.

Il reste à vérifier que les gènes codant pour les différentes globines chez les vertébrés forment bien une famille multigénique c'est à dire présentent un % non négligeable de similitudes ce qui signifie qu'ils dériveraient d'un gène ancestral commun

On utilise le logiciel PHYLOGENE qui va nous aider à faire le schéma de l'histoire évolutive de cette famille de gènes.

Matrice des distances (% de différences) entre les différentes globines

	alpha1	zeta	gammaA	epsilon	delta	beta	myoglobine
alpha1	0	39.3	57.9	60.7	55.7	55	72.9
zeta		0	59.3	59.3	60.7	62.1	71.4
gammaA			0	19.3	28.6	26.4	75.7
epsilon				0	27.1	23.6	76.4
delta					0	6.43	74.3
beta						0	74.3
myoglobine							0

Moins il y a de différences (mutations des gènes) entre 2 globines, plus elles sont apparentées

Par exemple: beta et delta ont plus de 93% de ressemblances : le faible % de différences traduit une parenté très étroite étroite.

Au contraire, la myoglobine a plus de 70% de différences avec les autres globines: ce serait la plus ancienne

L'arbre de parenté construit à partir de la matrice permet de mieux comprendre

Arbre qui traduit les liens de parenté entre les différentes globines

Plus de 20% de similitudes entre les différentes molécules - liens de parenté (origine commune)

la longueur des branches traduit le nombre de mutations en % qui distinguent les différentes séquences

A partir de cet arbre et des documents 2 et 3, on peut faire le schéma de l'histoire évolutive de cette famille de gènes codant pour les globines

	alpha1	zeta	gammaA	epsilon	delta	beta	myoglobine
alpha1	0	39.3	57.9	60.7	55.7	55	72.9
zeta		0	59.3	59.3	60.7	62.1	71.4
gammaA			0	19.3	28.6	26.4	75.7
epsilon				0	27.1	23.6	76.4
delta					0	6.43	74.3
beta						0	74.3
myoglobine							0

Groupes de Vertébrés	Type de globine présente	Date d'apparition du groupe (MA = Millions d'années) 500		
Poissons sans mâchoire	Myoglobine			
Poissons à mâchoires	Myoglobine, globines α et β	450		
Amphibiens	Myoglobine, globines α , β et ζ	370		
Reptiles	Myoglobine, globines α , β , ζ et γ	300		
Mammifères (sauf primates)	Myoglobine, globines α , β , ζ , γ et ϵ	200		
Primates (dont l'Homme)	Myoglobine, globines α , β , γ , δ , ϵ et ζ	40		

Gène codant pour la myoglobine : localisé sur le chromosome 22

	Chr	om	OS	om	e	11
--	-----	----	----	----	---	----

ε γ	δ	β	
-----	---	---	--

Ch	ma	-	00			1	-
L.n		m		nn	10		n

α	ζ	

Histoire évolutive de la formation de la famille multigénique des globines

CORRIGE TP7 QUELQUES ANOMALIES DE LA MEIOSE ET LEURS CONSEQUENCES

Objectifs:

A) Expliquer par des schémas une origine possible de la trisomie 21 ou du syndrome de Turner

A partir des documents suivants, réalisez des schémas légendés de méiose et de fécondation permettant d'expliquer une origine possible de la naissance d'enfants atteints de trisomie 21 **OU** du syndrome de Turner.

Il faudra représenter bien sûr la paire de chromosomes subissant des anomalies de méiose et également une autre paire (par exemple la paire n°5) ayant un comportement normal.

