Homework 6 for Math 2371

Zhen Yao

Problem 1. Let A be a 2×2 complex matrix. Show that ||A|| = r(A) if and only if A is normal. Show that the statement is not true if A is an $n \times n$ matrix with $n \ge 3$.

Proof.

- (1) Suppose $A_{2\times 2}$ is complex matrix and $AA^* = A^*A$.
 - a) $r(A) \leq ||A||$. Indeed, for eigenvalue λ_j and the corresponding eigenvector x_j , we have $Ax_j = \lambda_j x_j$ and

$$||Ax_j|| = |\lambda_j| ||x_j|| \le ||A|| ||x_j||.$$

Hence, $\max |\lambda_i| = r(A) \le ||A||$.

b) A is normal, then there exists orthogonal basis of X consisting of eigenvectors of A. For any $x \in X$, $x = \sum_{i=1}^{n} c_{i}x_{j}$, applying A to x gives

$$Ax = \sum_{i=1}^{n} c_j \lambda_j x_j.$$

Then we have

$$\frac{\|Ax\|}{\|x\|} = \left(\frac{\sum_{i=1}^n c_j^2 \lambda_j^2}{\sum_{i=1}^n c_i^2}\right)^{\frac{1}{2}} \le \max \lambda_j = r(A).$$

Hence, $||A|| = \frac{||Ax||}{||x||} \le r(A)$.

Thus, ||A|| = r(A).

- (2) If ||A|| = r(A), then we set $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Also, we have $||A|| = \sqrt{A^*A}$. Then after computing, we have b = c, which implies A is normal.
- (3) Now take $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, then $||A|| = 2 = \sqrt{r(A^*A)}$. However, $AA^* A^*A \neq 0$, which implies A is not normal.

Problem 2. Construct a continuous matrix function A(t) where A(t) is an anti-symmetric real 3×3 matrix for each t such that the unique solution to

$$\begin{cases}
M_t = A(t)M, \\
M(0) = I,
\end{cases}$$

is not give by $\exp\left(\int_0^t A(s) ds\right)$.

Proof. We can set A as

$$A = \begin{pmatrix} 0 & t & 0 \\ -t & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and we can solve for M, which is

$$M = \begin{pmatrix} \sin\frac{t^2}{2} + \cos\frac{t^2}{2} & \sin\frac{t^2}{2} & 0\\ \cos\frac{t^2}{2} - \sin\frac{t^2}{2} & \cos\frac{t^2}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Also, we have

$$e^{\int_0^t A(s) \, ds} = \begin{pmatrix} 1 & \frac{1}{2}t^2 & 0 \\ -\frac{1}{2}t^2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then when A depends on t and A(t) does not commute with $\int_0^t A(s) ds$, the solution cannot be represented by $e^{\int_0^t A(s) ds}$.

Problem 3. Let

$$K = \left\{ (x,y) \in \mathbb{R}^2 : |x| \! < 1, |y| \! < 1 \right\}.$$

Show that K is convex and find its gauge function p_K .

Proof.

(1) For any $x = (x_1, x_2), y = (y_1, y_2) \in K$ and $t \in (0, 1)$, we define $z = (tx_1 + (1 - t)y_1, tx_2 + (1 - t)y_2)$. And we have

$$|tx_1 + (1-t)y_1| \le t|x_1| + (1-t)|x_2| \le \max\{x_1, x_2\} < 1,$$

similarly, $|tx_2 + (1-t)y_2| < 1$. Thus we have $z \in K$, and hence K is convex.

(2) $p_K = \max\{x, y\}.$