Mise en pratique : faire un modèle de météo simpliste

Quel modèle météo ?

Circulation de grande échelle, prévision à moyenne écheance

Observation satellite d'une dépression

Prévision modèle gfs résolution de 25km, prévision jusqu'à 2 semaines

Quel modèle météo ?

Phénomènes locaux, prévision haute résolution à court terme

Observation satellite de nuages locaux

Prévision modèle gfs résolution de 25km

Prévision modèle arome résolution de 1.3km

Intéressons nous aux cumulus de beau temps

Vidéo d'illustration du développement des cumulus par temps calme : https://www.youtube.com/watch?v=EM0HtxieJGo

Mettre l'atmosphère dans un ordinateur : _{15H00} discrétiser l'espace et le temps

Les prérequis : résolutions, ...

Nuages finement modélisés mais attention au temps de calcul!

Impossible de représenter les nuages

Conditions aux bords du domaine ...

Vent ? Température ?

Vent ? Température ?

Échanges avec la surface terrestre

Rayonnement solaire

Rayonnement solaire

Bilan d'énergie en surface : le moteur de la météo locale

Bilan d'énergie en surface : le moteur de la météo locale

Bilan d'énergie en surface : le moteur de la météo locale

Transport vertical / convection

Transport par le vent : advection

Transport par le vent : advection

Transport vertical / convection

Transport vertical / convection

- La transformation de la vapeur d'eau en eau liquide (condensation) libère de la chaleur (réchauffement)
- L'évaporation d'eau liquide en vapeur d'eau absorbe de la chaleur (refroidissement)
- Plus l'air est froid, moins il peut contenir de vapeur d'eau. Si l'air contient trop de vapeur d'eau, il est saturé, et commence à condenser

- La transformation de la vapeur d'eau en eau liquide (condensation) libère de la chaleur (réchauffement)
- L'évaporation d'eau liquide en vapeur d'eau absorbe de la chaleur (refroidissement)
- Plus l'air est froid, moins il peut contenir de vapeur d'eau. Si l'air contient trop de vapeur d'eau, il est saturé, et commence à condenser

Température -

- La transformation de la vapeur d'eau en eau liquide (condensation) libère de la chaleur (réchauffement)
- L'évaporation d'eau liquide en vapeur d'eau absorbe de la chaleur (refroidissement)
- Plus l'air est froid, moins il peut contenir de vapeur d'eau. Si l'air contient trop de vapeur d'eau, il est saturé, et commence à condenser

Température -

- La transformation de la vapeur d'eau en eau liquide (condensation) libère de la chaleur (réchauffement)
- L'évaporation d'eau liquide en vapeur d'eau absorbe de la chaleur (refroidissement)
- Plus l'air est froid, moins il peut contenir de vapeur d'eau. Si l'air contient trop de vapeur d'eau, il est saturé, et commence à condenser

Température -

- La transformation de la vapeur d'eau en eau liquide (condensation) libère de la chaleur (réchauffement)
- L'évaporation d'eau liquide en vapeur d'eau absorbe de la chaleur (refroidissement)
- Plus l'air est froid, moins il peut contenir de vapeur d'eau. Si l'air contient trop de vapeur d'eau, il est saturé, et commence à condenser

Température -

- La transformation de la vapeur d'eau en eau liquide (condensation) libère de la chaleur (réchauffement)
- L'évaporation d'eau liquide en vapeur d'eau absorbe de la chaleur (refroidissement)
- Plus l'air est froid, moins il peut contenir de vapeur d'eau. Si l'air contient trop de vapeur d'eau, il est saturé, et commence à condenser

Température -

Expérience avec un modèle préconstruit

Le corps du modèle est déjà codé. On va simplement changer :

- l'état initial (température, humidité, ... sol et atmosphère)
- l'environnement de la surface terrestre (nature du sol)
- les pas de discrétisation (dt, dx, dz)

Aller sous

https://colab.research.google.com/github/lutunl/TP-intro-modelisation/blob/main/Modele.ipynb

C'est un fichier de code python qui contient un modèle de couche limite atmosphérique, et quelques fonctions pour visualiser le résultat des simulations