



# NHIỆT HỌC- Khí Lý Tưởng

# PGS.TS. Lê Công Hảo







# 1.KHÍ LÝ TƯỞNG

# + Khí lý tưởng:

Các phân tử khí rất xa nhau  $\rightarrow$  coi như không tương tác nhau.

+ Trạng thái một hệ (khối) khí được xác định bởi các thông số

trạng thái: P,V,T

# a/Ap suất

$$P = \frac{F_n}{S}$$

$$\overline{S} = Pascal(Pa)$$

-Định luật Dalton:

$$\begin{vmatrix} 1at = 9,81.10^{4} \left(\frac{N}{m^{2}}\right) = 736mmHg \\ 1atm = 1,01.10^{5} \left(\frac{N}{m^{2}}\right) mmHg = Torr \\ 1bar = 105N/m^{2} \text{ Torr} = 133 \text{ N/m}^{3} \\ 1mmHg = \frac{1}{736}at = \frac{1}{760}atm \end{vmatrix}$$

"Ap suất một hỗn hợp khí bằng tổng áp suất riêng phần của từng chất khí thành phần "  $\sum_{n=1}^{n} p_{n}$ 

b/ Nhiệt độ:Đại lượng vật lý thể hiện mức độ chuyển động hỗn loan của các phân tử của vật (hay hệ vật) đang xét.

# -Các nhiệt giai:

nước đá và điểm sôi của nước tinh khiết ở áp suấp 1 atm.  $t^{0}C$ 

của nước đá và điểm sôi của nước tinh khiết ở áp suất 1 atm - Nhiệt giai Celsius :Điểm tan của tương ứng là :  $32^{0}F$   $212^{0}F$ 

- Nhiệt giai Kelvin: 
$$T = t_C^0 + 273(K)$$

$$t^{0}C = \frac{5}{9} \left( T^{0}F - 32 \right)$$

$$\frac{t^0c}{100} = \frac{T^0F - 32}{180}$$

Nhiệt giai Fahrenheit: Điểm tan

$$T^{0}F = \frac{9}{5}(t^{0}C + 32)$$

# c. Thể tích

- + Các phân tử chuyển động trong miền không gian → V.
- + Khí lý tưởng: thể tích bình chứa = thể tích khối khí

$$+ 11 = 1 \text{ dm}^3 = 10^{-3} \text{ m}^3$$



Nhận xét

——— Với mọi lọai khí, đường ngọai suy  $P\rightarrow 0$  với mọi lọai khí đều gặp nhau tại -273,15  $^{0}$  C.

# 2. Phương trình trạng thái khí lý tưởng

$$f(P,V,T) = 0$$

$$\frac{PV}{T} = const$$
(1.1)

### Với 1 kmol khí:

<u>Với m (kg) khí :</u>

 $\mu$ : khối lượng của 1 kmol

$$V_0 = 22,4m^3$$
  $N_A = 6,023.10^{26} pt$ 

Trong điều kiện tiêu chuẩn: p=1atm;  $0^0$  C

g điều kiện tiêu chuẩn: p=1atm; 
$$0^{0}$$
 C  $\longrightarrow \frac{M}{\mu}(kmol)$ 

$$\frac{PV}{T} = R \qquad (1.2) \qquad \longrightarrow PV = \frac{M}{\mu}RT \qquad (1.3)$$

Hằng số khí lý tưởng : 
$$\begin{cases} R = 8,31.10^{3} \left( \frac{Joule}{kmol.K} \right) = 8,31 \left( \frac{J}{mol.K} \right) \\ 0,0848 \left( \frac{at.m^{3}}{kmol.K} \right) = 0,0848 \left( \frac{lit.at}{mol.K} \right) \end{cases}$$

N: Tổ số phân tử chứa trong khối khí

 $N_{\Delta}$ : Số phân tử trong 1 kmol.

$$\frac{N}{N_A} = \frac{M}{\mu} \qquad PV = \frac{M}{\mu} RT = \frac{N}{N_A} RT$$
i chất khí đậm đặc như au: Chất khí nào có T lớn 
$$\frac{R}{N_A} = k_B : \text{Hằng số Bolzman}$$

Hai chất khí đậm đặc như nhau: Chất khí nào có T lớn hơn thì P cao hơn

on thi P cao hon 
$$PV = Nk_BT \tag{1.4}$$

 $P = \frac{N}{V} k_B T = n k_B T$ Hai chất khí cùng T nhau: Chất khí nào đậm đặc hơn thì P cao hon

$$k_B = \frac{8,31.10^3 (J / Kmol.K)}{6,02310.10^{26} (1 / Kmol)} = 1,38.10^{-23} (J / K)$$

(1.5)

$$\frac{PV}{T} = const$$

Các trường hợp riêng: Các định luật thực nghiệm.



# P Isotherm $P_{i} = \text{Constant}$ $P_{i} = \text{Constant}$ $V_{i} = \text{Constant}$

a/Đường đẳng nhiệt ,có dạng Hypecbol.

c/ Đường đẳng tích (Charles).

# b/Đường đẳng áp(Gay Lussac





# MỘT SỐ VÍ DỤ - NHIỆT HỌC

**<u>Câu 1.</u>** Một khối khí được nhốt trong một xilanh và pittông ở áp suất  $1,5.10^5$  Pa. Nén pittông để thể tích còn 1/3 thể tích ban đầu( nén đẳng nhiệt). Ap suất của khối khí trong bình lúc này là bao nhiêu?  $\underline{\mathbf{DS}}$ : **45.10**  ${}^4\mathbf{Pa}$  ( $\mathbf{T}_2 = \mathbf{T}_1$ )

$$p_1V_1 = p_2V_2 \rightarrow p_2 = \frac{p_1V_1}{V_2} = \frac{p_1V_1}{\frac{1}{3}V_1} = 3.p_1 = 4,5.10^4 at$$

<u>Câu 2</u>. Bơm không khí có áp suất p =1at vào một quả bóng có dung tích bóng không đổi là V=2,5 lít Mỗi lần bơm ta đưa được 125cm³ không khí vào trong quả bóng đó.Biết rằng trước khi bơm bóng chứa không khí ở áp suất 1at và nhiệt độ không đổi.Sau khi bơm 12 lần,áp suất bên trong quả bóng là bao nhiêu?

Ðs: **1,6 atm** 

$$\begin{cases} p_1 = 1at \\ V_1 = 2,5 + 125.12.10^{-3} = 4l \\ p_2 = ? \\ V_2 = 2,5l \end{cases}$$

$$p_1V_1 = p_2V_2 \rightarrow p_2 = \frac{p_1V_1}{V_2} = \frac{1.4}{2,5} = 1,6at$$

<u>Câu 3.</u> Một lượng khí có áp suất lớn được chứa trong một bình có thể tích không đổi. Nếu có 50% khối lượng khí ra khỏi bình và nhiệt độ tuyệt đối của bình tăng thêm 50% thì áp suất khí trong bình thay đổi như thế nào? **Đs: 0,75p** 

$$PTTTKLT: \begin{cases} p_1 V = \frac{m_1}{\mu} RT_1 \\ p_2 V = \frac{m_2}{\mu} RT_2 \end{cases} \Rightarrow \frac{p_1}{p_2} = \frac{m_1}{m_2} \frac{T_1}{T_2} = \frac{m_1}{0.5m_1} \frac{T_1}{1.5T_1} = \frac{1}{0.75} \\ \Rightarrow p_2 = 0.75p_1 \end{cases}$$

# MỘT SỐ VÍ DỤ - NHIỆT HỌC

<u>Câu 4:</u> Có 1g ôxy ở áp suất 3at sau khi hơ nóng đẳng áp, nó chiếm thể tích 1 lít. Tìm nhiệt độ sau khi hơ nóng. Coi khi oxy là khí lý tưởng. R=8,31 **J/mol.K** . **Đs:** 1155K

$$pV = \frac{m}{\mu}RT_2 \Rightarrow T_2 = \frac{pV\mu}{mR} = \frac{3.10^5.10^{-3}.32}{8,31} = 1155K$$

<u>Câu 5:</u> Một bình chứa khí ở 300K và áp suất 2.10<sup>5</sup>Pa, khi tăng nhiệt độ lên gấp đôi thì áp suất trong bình là bao nhiêu? <u>**ĐS**: 4.10<sup>5</sup>Pa</u>

$$\frac{p_1}{T_1} = \frac{p_2}{T_2} \Longrightarrow p_2 = 2p_1 = 4.10^5 Pa$$

# 3. Thuyết động học phân tử khí lý tưởng

# a. Các phân tử trong chất khí

Các phân tử chất khí luôn chuyển động hỗn loạn không ngừng, nhiệt độ càng cao các phân tử chuyển động càng nhanh.

# b. Thuyết động học phân tử

- -Các chất khí cấu tạo gián đoạn và bao gồm một số rất lớn các phân tử
- -Các phân tử chuyển động hỗn loạn. Khi chuyển động chúng va chạm vào nhau và va vào thành bình chứa.
- -Độ lớn chuyển động biểu hiện ở nhiệt độ của khối khí. Chuyển động phân tử càng mạnh thì nhiệt độ càng cao. Nhiệt độ tuyệt đối tỉ lệ với động năng trung bình của phân tử.
- -Kích thước các phân tử rất nhỏ so với khoảng cách. Bỏ qua kích thước của phân tử.
- -Các phân tử không tương tác trừ trường hợp chúng va chạm. Sự va chạm tuân theo quy luật va chạm đàn hồi.

### c. Phương trình cơ bản của thuyết động học phân tử Giả sử có N phân tử trong hộp có hình khối hộp các cạnh l<sub>x</sub>, l<sub>y</sub>, l<sub>z</sub>.

$$F_{x} = \frac{2mv_{x}}{t} = \frac{2mv_{x}}{2l_{x}} = \frac{mv_{x}^{2}}{l_{x}} \Rightarrow p_{x} = \frac{F_{x}}{l_{y}l_{z}} = \frac{mv_{x}^{2}}{l_{x}l_{y}l_{z}} = \frac{mv_{x}^{2}}{V}; p_{y} = \frac{mv_{y}^{2}}{V}; p_{z} = \frac{mv_{z}^{2}}{V}$$

$$P_{x} = p_{x1} + p_{x2} + \dots + p_{xN} = \frac{mv_{x1}^{2}}{V} + \frac{mv_{x2}^{2}}{V} + \dots + \frac{mv_{xN}^{2}}{V} = \frac{m}{V}(v_{x1}^{2} + v_{x2}^{2} + \dots + v_{xN}^{2})$$

$$P_{x} = \frac{Nm}{V} \langle v_{x}^{2} \rangle; \langle v_{x}^{2} \rangle = \frac{(v_{x1}^{2} + v_{x2}^{2} + \dots + v_{xN}^{2})}{N}$$

$$\Rightarrow P_{y} = \frac{Nm}{V} \langle v_{y}^{2} \rangle; P_{z} = \frac{Nm}{V} \langle v_{z}^{2} \rangle$$

$$\text{Ap suất gây trên mọi phương là như nhau nên:}$$

$$P_{x} = P_{y} = P_{z} = P \rightarrow \frac{Nm}{V} \langle v_{x}^{2} \rangle = \frac{Nm}{V} \langle v_{y}^{2} \rangle = \frac{Nm}{V} \langle v_{z}^{2} \rangle$$

$$\longleftrightarrow \left\langle v_x^2 \right\rangle = \left\langle v_y^2 \right\rangle = \left\langle v_z^2 \right\rangle$$

# c. Phương trình cơ bản của thuyết động học phân tử

c. Phương trình cơ bản của thuyết động học phân từ
$$v^{2} = v_{x}^{2} + v_{y}^{2} + v_{z}^{2} \rightarrow \frac{v^{2}}{N} = \frac{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}{N}$$

$$\Rightarrow v_{1}^{2} = v_{x1}^{2} + v_{y1}^{2} + v_{z1}^{2}$$

$$\Rightarrow \frac{v_{1}^{2} + v_{2}^{2} + ... + v_{N}^{2}}{N} = \frac{v_{x1}^{2} + v_{y1}^{2} + v_{z1}^{2} + v_{x2}^{2} + v_{y2}^{2} + v_{z2}^{2} + ... + v_{xN}^{2} + v_{yN}^{2} + v_{zN}^{2}}{N}$$

$$\frac{v_{x1}^{2} + v_{x2}^{2} + ... + v_{xN}^{2} + v_{y1}^{2} + v_{y2}^{2} + ... + v_{yN}^{2} + v_{z1}^{2} + v_{z2}^{2} + ... + v_{zN}^{2}}{N}$$

$$= \frac{v_{x1}^{2} + v_{x2}^{2} + ... + v_{xN}^{2}}{N} + \frac{v_{y1}^{2} + v_{y2}^{2} + ... + v_{yN}^{2}}{N} + \frac{v_{z1}^{2} + v_{z2}^{2} + ... + v_{zN}^{2}}{N}$$

$$\Leftrightarrow \langle v^{2} \rangle = \langle v_{x}^{2} \rangle + \langle v_{y}^{2} \rangle + \langle v_{z}^{2} \rangle = 3 \langle v_{x}^{2} \rangle \rightarrow \langle v_{x}^{2} \rangle = \frac{1}{3} \langle v^{2} \rangle$$

$$\Rightarrow P = P_x = \frac{Nm}{V} \langle v_x^2 \rangle = \frac{1}{3} \frac{Nm}{V} \langle v^2 \rangle = \frac{1}{3} \rho \langle v^2 \rangle$$

Số phân tử trong một đơn vị thể tích  $n = \frac{N}{V}$   $\Rightarrow P = \frac{1}{3}n.mv^2$ 

$$n = \frac{N}{V}$$

$$\Rightarrow P = \frac{1}{3} n.m v^2$$

### d. Động năng

$$\begin{split} E_{d} &= \frac{1}{2} m v_{1}^{2} + \frac{1}{2} m v_{2}^{2} + \ldots + \frac{1}{2} m v_{N}^{2} \\ &= \frac{1}{2} N m \left( \frac{v_{1}^{2} + v_{2}^{2} + \ldots + v_{N}^{2}}{N} \right) = \frac{1}{2} N m \left\langle v^{2} \right\rangle \\ &= Lythuyet : p = \frac{1}{3} \frac{Nm}{V} \left\langle v^{2} \right\rangle \Rightarrow pV = \frac{1}{3} Nm \left\langle v^{2} \right\rangle \\ &\Rightarrow \frac{1}{3} Nm \left\langle v^{2} \right\rangle = nRT \\ &PTTTKLT : pV = nRT \end{split}$$

$$Nm\langle v^2 \rangle = 3nRT \Leftrightarrow \frac{1}{2}m\langle v^2 \rangle = \frac{3nRT}{2N} = \frac{3nRT}{2nN_A} = \frac{3RT}{2N_A} \Rightarrow \frac{1}{2}m\langle v^2 \rangle = \frac{3}{2}k_BT$$

Nếu xem động năng tịnh tiến trung bình có giá trị như trên thì thực nghiệm và lý thuyết trùng nhau.

$$n = \frac{N}{V}$$

$$n = \frac{N}{V} \qquad p = \frac{2}{3}n\overline{E_d}$$

$$\overline{E_d} = \frac{3}{2} k_B T$$

# Luật phân bố điều năng lượng theo các bậc tự do

### Qui ước bậc tự do

- Phân tử khí 1 nguyên tử i = 3
- Phân tử khí 2 nguyên tử i = 5
- Phân tử khí 3 nguyên tử trở lên i = 6.
- Mỗi bật tự do của phân tử khí có năng lượng  $0.5 k_B T$
- Phân tử khí có bật tự do là i thì năng lượng là  $\frac{i}{2}k_{\scriptscriptstyle B}T$

Nội năng của khối khí lý tưởng chỉ phụ thuộc vào nhiệt độ của khối khí ấy theo công thức:

$$U = \frac{M}{\mu} \frac{i}{2} RT$$

Độ biến thiên nội năng

$$\Delta U = \frac{M}{\mu} \frac{i}{2} R \Delta T$$

$$\Delta T = T_2 - T_1$$

Vậy bậc tự do chỉ nhận

các giá trị i=3, 5 và 6