01_Introduction

1. Introduction

Control Process with Fault Tolerance

Redundancy

Definitions

Models

Dynamical System Models

Faults Model

2. Fault Diagnosis Approaches

Feature Extraction

Signal-Based Method

Model-Based Method

Symptoms Generation

Symptoms Evaluation

Diagnosis

Fault Tolerance Approaches

Approaches

Behavior Diagram View

Summary

1. Introduction

Control Process with Fault Tolerance

Redundancy

• Hardware Redundancy: switching or major voting logic

• Physical Redundancy: over-design

• Analytical Redundancy: model, observer ...

Hardware Pro SAME PERFORMANCE	Physical NO OFFUNE TME BEST PERF.	Analytical MOST EFFICIENT
Cons COST BACKUPS CAN BE BROKEN	COST	LOSS OF FERFORMANCE

Definitions

Definition: Faults

A <u>fault</u> in a dynamical system is a **deviation** of the system **structure** or the system **parameters** from the **nominal** situation

Definition: Failure:

A <u>failure</u> is a **permanent interruption** of a system's ability to **perform** a **required function** under specified operating conditions

Definition: Reliability

Ability of a system to **perform a required function** under stated conditions, within a given scope, during a given period of time

$$ext{MTTF} = rac{1}{\lambda}$$

• MTTF: mean time to failure

• λ : average number of failure per unit time

Definition: Availability

Probability that a system or equipment will operate satisfactorily and effectively at any period of time

$$A = rac{ ext{MTTF}}{ ext{MTTF} + ext{MTTR}}$$

• MTTR: mean time to repair

Definition: Fault Detection

Fault detection consists in determining the presence of a fault in a given system at a given time

Definition: Fault Diagnosis

Fault diagnosis consists in determining the **presence, type, size and location** of a fault in a given system at a **given time**, assuming the knowledge of the possible faults affecting that given system

Definition: Fault Tolerance

<u>Fault tolerance</u> is defined as the **possibility** of **achieving** a given (set of) **objective**(s) in the presence of a given (set of) faults

Models

Dynamical System Models

$$\dot{x} = g(x, u, w,
ho)$$

 $y = h(x, u, v)$

• w, v are uncertainty

• ho is the fault appearance: $ho \in [0,1]$

Faults Model

• Magnitude

• Location

Actuator Plant Sensor
$$\ddot{u} = u \left(1 + 1 \right)$$
 $\dot{x} = g(x, u, ..., p)$ $\ddot{x} = y \left(1 + 1 \right)$

• Analytical Model

Additive Multiplicative General
$$\widetilde{Y} = Y + P$$
 $\widetilde{Y} = Y + P$ $\widetilde{Y} = Y + P$ $\widetilde{Y} = Y + P$ $\widetilde{Y} = Y + P$

2. Fault Diagnosis Approaches

Feature Extraction

Signal-Based Method

- Raw value
- Mean, Std in a time window
- Peak values
- · Fourier analysis
- Cepstrum

Model-Based Method

- Estimation error of observer (compared to expected value)
- ullet Parity space relation: $\dot{x}=v$
- ullet Estimate Parameter: for example, for a spring, estimate K based on $x,\dot{x},\ddot{x},$ if $K
 eq K_0$, fault

Symptoms Generation

Definition: Symptom

In FD, a **<u>symptom</u>** is a measure of the **difference** between **actual** value of **features** extracted from observations, and **nominal** ones

01_Introduction 5

Symptoms Evaluation

- Physiological changes shall be ignored, pathological changes should be evaluated
- A measure of a symptom is so compared against a known pathological threshold
- In general, this is a **change detection problem**

Diagnosis

1. Detection

Testing the null hypothesis:

 \mathcal{H}_0 : "Is the system behaving in a nominal way?"

2. Isolation

Testing N faulty hypotheses:

 \mathcal{H}_i : "Is the system behaving as if the *i*-th fault is present?"

- 3. Identification/Estimation
 - ullet If \mathcal{H}_0 and every but one \mathcal{H}_i are falsfied: estimate parameters of i-th fault
 - ullet If \mathcal{H}_0 and every \mathcal{H}_i are falsfied, identify model a new fault

Fault Tolerance Approaches

Approaches

• By design

• By switching

· By adaptive

Behavior Diagram View

Change the controller to set the behavior under fault to a normal range.

Summary

- Process of Fault Tolerance Control: FDI+ FAR → new operating conditions
- Redundancy: hardware, physical, analytical
- Definitions: fault, failure, reliability, availability
- Models: fault model (transient, incipient, intermittent)
- Fault Diagnosis Approach
 - Feature Extraction: signal-based, model-based
 - Symptoms Generation

• Symptoms Evaluation: pathological evaluated

o Diagnosis: Test Hypotheses

• Fault Tolerance Approaches

• Approaches: design, switch, adaptive

• Behavior Graph

01_Introduction