15

What is claimed is:

1. A method of driving an EL display device in which a plurality of pixels, each having a first TFT, a second TFT, a third TFT, and an organic EL element, are formed, wherein:

n+m display periods (where n and m are both natural numbers) appear in one frame period;

the n+m display periods each correspond to one bit of a digital video signal among n bits of the digital video signal;

a plurality of display periods, among the n + m display periods, correspond to the same bit of the digital video signal:

other display periods corresponding to other bits of the digital video signal, among the n-m display periods, appear between the plurality of display periods;

for each of the $n\pm m$ display periods, the corresponding bit of the digital video signal is input to a gate electrode of the second TFT by the first TFT turning on, and the respective display periods begin by the third TFT turning off:

after each of the n+m display periods begins, the respective display periods are completed by the beginning of another display period, or by the third TFT turning on; and

the organic EL element emits light when the second TFT is turned on, and does not emit light when the second TFT is turned off.

2. A method according to claim 1, wherein the first TFT and the second TFT have the same polarity.

3. A method according to claim 1, wherein Tr_1 , Tr_2 . Tr_3, $Tr_{n-1} = 2^0$. 2^1 . 2^2 , ..., 2^{n-2} , 2^{n-2} , where the lengths of the display periods, among the n + m display periods, corresponding to respective bits of the digital video signal are taken as Tr_1 , Tr_2 , Tr_3 , ..., Tr_{n-1} , Tr_n .

5

4. A method according to claim 1, wherein the first TFT functions as a switching TFT, the second TFT functions as a EL driver TFT, and the third TFT functions as a erasing TFT.

10

5. A method of driving an EL display device in which a plurality of pixels, each having a first TFT, a second TFT, a third TFT, and an organic EL element, are formed, wherein:

n+m display periods (where n and m are both natural numbers) appear in one frame period;

15

the n + m display periods each correspond to one bit of a digital video signal among n bits of the digital video signal;

a plurality of display periods, among the n + m display periods. correspond to the most significant bit of the digital video signal:

other display periods corresponding to other bits of the digital video signal, among the n + m display periods, appear between the plurality of display periods;

for each of the n+m display periods, the corresponding bit of the digital-video signal is input to a gate electrode of the second TFT by the first TFT turning on, and the respective display periods begin by the third TFT turning off:

after each of the n + m display periods begins, the respective display periods are completed by the beginning of another display period, or by the third TFT turning on; and

the organic EL element emits light when the second TFT is turned on, and does not emit light when the second TFT is turned off.

- 6. A method according to claim 5, wherein the first TFT and the second TFT have the same polarity.
- 7. A method according to claim 5, wherein Tr_1 , Tr_2 , Tr_3 , ..., $Tr_{n-1} = 2^0$, 2^1 , 2^2 , ..., 2^{n-2} , 2^{n-1} , where the lengths of the display periods, among the n + m display periods, corresponding to respective bits of the digital video signal are taken as Tr_1 , Tr_2 , Tr_3 , ..., Tr_{n-1} , Tr_n .
 - 8. A method according to claim 5, wherein the first TFT functions as a switching TFT, the second TFT functions as a EL driver TFT, and the third TFT functions as a erasing TFT.
- 9. A method of driving an EL display device in which a plurality of pixels. eachhaving a first TFT, a second TFT, a third TFT, and an organic EL element, are formed.wherein:
 - $\mathbf{n} + \mathbf{m}$ display periods (where n and m are both natural numbers) appearing one frame period;
- the n + m display periods each correspond to one bit of a digital video 25 signal among n bits of the digital video signal;

upper bits of the digital video signal correspond to a plurality of display periods among the n + m display periods;

other display periods corresponding to other bits of the digital video signal, among the n+m display periods, appear between the plurality of display periods;

for each of the n + m display periods, the corresponding bit of the digital video signal is input to a gate electrode of the second TFT by the first TFT turning on. and the respective display periods begin by the third TFT turning off;

after each of the n + m display periods begins, the respective display periods are completed by the beginning of another display period, or by the third TFT turning on; and

the organic EL element emits light when the second TFT is turned on, and does not emit light when the second TFT is turned off.

- 15 10. A method according to claim 9, wherein the first TFT and the second TFT have the same polarity.
 - 11. A method according to claim 9,wherein Tr_1 . Tr_2 , Tr_3 , $Tr_{n-1} = 2^0$, 2^1 , 2^2 , 2^{n-2} , 2^{n-1} , where the lengths of the display periods, among the n+m display periods. corresponding to respective bits of the digital video signal are taken as Tr_1 , Tr_2 , Tr_3 , Tr_{n-1} , Tr_n .
 - 12. A method according to claim 9, wherein the first TFT functions as a switching TFT, the second TFT functions as a EL driver TFT. and the third TFT functions as a erasing TFT.

15

13. A method of driving an EL display device in which a plurality of pixels, each having a first TFT, a second TFT and an organic EL element, are formed, wherein:

n + m display periods (where n and m are both natural numbers) appear in one frame period:

the n + m display periods each correspond to one bit of a digital video signal among n bits of the digital video signal;

a plurality of display periods, among the n + m display periods, correspond to the same bit of the digital video signal;

other display periods corresponding to other bits of the digital video signal, among the n + m display periods, appear between the plurality of display periods;

for each of the n+m display periods, the corresponding bit of the digital video signal is input to a gate electrode of the second TFT by the first TFT turning on:

after each of the n + m display periods begins, the respective display periods are completed by the beginning of another display period; and

the organic EL element emits light when the second TFT is turned on, and does not emit light when the second TFT is turned off.

- 14. A method according to claim 13, wherein the first TFT and the second TFT have the same polarity.
 - 15. A method according to claim 13, wherein Tr_1 , Tr_2 , Tr_3 , ..., $Tr_{n-1} = 2^0, 2^1, 2^2$, ...; 2^{n-2} , 2^{n-1} , where the lengths of the display periods, among the n-m display periods, corresponding to respective bits of the digital video signal are taken as Tr_1 , Tr_2 , Tr_3 ,

25 Tr_{n-1}, Tr_n.

15

- 16. A method according to claim 13, wherein the first TFT functions as a switching TFT and the second TFT functions as a EL driver TFT.
- 17. A method of driving an EL display device in which a plurality of pixels, each having a first TFT, a second TFT, and an organic EL element, are formed, wherein:

n+m display periods (where n and m are both natural numbers) appear in one frame period;

the n+m display periods each correspond to one bit of a digital video signal among n bits of the digital video signal;

a plurality of display periods, among the n + m display periods. correspond to the most significant bit of the digital video signal;

other display periods corresponding to other bits of the digital video signal, among the n+m display periods, appear between the plurality of display periods;

for each of the n+m display periods, the corresponding bit of the digital video signal is input to a gate electrode of the second TFT by the first TFT turning on;

after each of the n+m display periods begins, the respective display periods are completed by the beginning of another display period; and

the organic EL element emits light when the second TFT is turned on, and does not emit light when the second TFT is turned off.

18. A method according to claim 17, wherein the first TFT and the second TFT have the same polarity.

19. A method according to claim 17, wherein Tr_1 , Tr_2 , Tr_3 ,, $Tr_{n-1} = 2^0$, 2^1 , 2^2 ,
2 ⁿ⁻² , 2 ⁿ⁻¹ , where the lengths of the display periods, among the n + m display periods.
corresponding to respective bits of the digital video signal are taken as Tr ₁ , Tr ₂ , Tr ₃ ,
Tr_{n-1} , Tr_n .

15

- 20. A method according to claim 17, wherein the first TFT functions as a switching TFT and the second TFT functions as a EL driver TFT.
- 21. A method of driving an EL display device in which a plurality of pixels. each having a first TFT, a second TFT, and an organic EL element, are formed, wherein:

n+m display periods (where n and m are both natural numbers) appear in one frame period;

the n+m display periods each correspond to one bit of a digital video signal among n bits of the digital video signal;

upper bits of the digital video signal correspond to a plurality of display periods among the n+m display periods;

other display periods corresponding to other bits of the digital video signal, among the n + m display periods, appear between the plurality of display periods;

for each of the n+m display periods, the corresponding bit of the digital video signal is input to a gate electrode of the second TFT by the first TFT turning on:

after each of the n + m display periods begins, the respective display periods are completed by the beginning of another display period; and

the organic EL element emits light when the second TFT is turned on, and does not emit light when the second TFT is turned off.

- 22. A method according to claim 21, wherein the first TFT and the second TFT have the same polarity.
- 23. A method according to claim 21, wherein Tr_1 . Tr_2 . Tr_3 , ..., $Tr_{n-1} = 2^0$. 2^1 . 2^2 2^{n-2} , 2^{n-2} , 2^{n-1} , where the lengths of the display periods, among the n+m display periods. corresponding to respective bits of the digital video signal are taken as Tr_1 , Tr_2 , Tr_3 , ..., Tr_{n-1} , Tr_n .
- 24. A method according to claim 21, wherein the first TFT functions as a switching TFT and the second TFT functions as a EL driver TFT.