Geometria diferencial Curs 2017–18

Superfícies: Propietats de les geodèsiques

Exercici 1: Sigui $\alpha(t) = (u(t), v(t))$ una corba regular de \mathbb{R}^2 . Considereu la parametrització del cilindre $\varphi(u, v) = (\cos(v), \sin(v), u)$ i la corba $\beta(t) = \varphi(\alpha(t))$. Determineu, en termes dels invariants de α , la curvatura geodèsica de β .

Solució:

La parametrització del cilindre determina una isometria local entre el pla euclidià (u, v, 0) i la superfície ja que els vectors tangents són:

$$\varphi_u = (0, 0, 1)$$

$$\varphi_v = (-\sin(v), \cos(v), 0)$$

Com que els isometries local conserven la curvatura geodèsica, les de les corbes α i β coincideixen. Però la curvatura geodèsica de la corba α (en el pla z=0 de \mathbb{R}^3) serà igual a la seva curvatura.

Exercici 2: Siguin $S \subset \mathbb{R}^3$ una superfície regular i $C \subset S$ una corba regular continguda a S. Demostreu les següents afirmacions.

- (a) C és geodèsica de S i línia asimptòtica de S si i només si C està continguda en una recta de \mathbb{R}^3 .
- (b) Suposem que C és geodèsica de S. Aleshores C és línia de curvatura de S si i només si C és plana.
- (c) Podeu donar un exemple de línia curvatura plana però que no sigui geodèsica?

Solució:

- (a) (\Longrightarrow) Per ser C una geodèsica tenim que la curvatura geodèsica de C és nul·la. D'altra banda, per ser línia asimptòtica la curvatura normal de C és també nul·la. Per tant la curvatura de α com a corba de \mathbb{R}^3 és zero. I ja sabem que una corba regular amb curvatura zero està continguda en una recta de \mathbb{R}^3
 - (\iff) Recíprocament, si C està continguda a una recta de \mathbb{R}^3 la seva curvatura com a corba de \mathbb{R}^3 és nul·la. De la igualtat $k = \sqrt{k_n^2 + k_g^2}$ en deduïm que $k_n = k_g = 0$ i això ens diu respectivament que C és una línia asimptòtica i una geodèsica.
- (b) Les línies de curvatura són els vectors propis de l'aplicació de Weiergarten, és a dir, si donada una parametrització $\alpha(t)$ es compleix que $-d\nu(\alpha'(t))$ és múltiple de $\alpha'(t)$. Sigui $\alpha(t)$ una parametrització per l'arc de C. Per ser $\alpha(t)$ una geodèsica sabem que $\alpha''(t) = \lambda \cdot \nu(\alpha(t))$. Si $\lambda = 0$ la corba és una recta i en particular és plana. Si $\lambda \neq 0$, tenim $N = \nu$ sobre $\alpha(t)$ i

$$\langle -d\nu(\alpha'(t)),B(t)\rangle = \langle -\left.\frac{d}{dt}\right|_{t=0}\nu(\alpha(t)),B(t)\rangle = \langle \nu(\alpha(t)),\tau N(t)\rangle = \tau.$$

Com $d\nu(\alpha'(t))$ és un vector tangent a S tenim $d\nu(\alpha'(t))||\alpha'(t)$ si i només si $\langle d\nu(\alpha'(t)), B_{\alpha} \rangle = 0$, és a dir, si i només si $\tau = 0$. Ara bé, sabem que una corba amb curvatura mai nul·la és plana si i només si $\tau = 0$.

(c) En una superfície de revolució les corbes coordenades són les línies de curvatura però els *paral·lels* (que són sempre circumferències) només són geodèsiques si la tangent a la corba que gira per a generar la superfície és paral·lela a l'eix de rotació. En concret, tots els paral·lels d'una esfera són línies de curvatura planes que no són geodèsiques, fora del que correspon a l'equador.

Exercici 3: Sigui S una superfície connexa en la que totes les geodèsiques són corbes planes. Demostreu que S està continguda en un pla o en una esfera.

Solució:

El fet que les geodèsiques siguin planes implica que són línies de curvatura. L'única possibilitat que això passi és que totes les curvatures normals siguin iguals (hi ha una geodèsica tangent a cada vector tangent a la superfície i, per tant, tots els vectors són vectors propis de W). En aquest cas, es diu que tots els punts de S són umbilicals.

El fet que tota corba sobre la superfície és línia de curvatura és el que permet demostrar el resultat que es busca:

Notem en primer lloc que les línies coordenades són línies de curvatura i apliquem el teorema d'Olinde a les corbes $u={\rm ct.}$ i $v={\rm ct.}$ (suposem $\varphi(u,v)$ una parametrització local d'aquesta superfície), obtindrem

$$\nu_u(u, v) = \lambda(u, v) \varphi_u(u, v)$$
$$\nu_v(u, v) = \lambda(u, v) \varphi_v(u, v)$$

Observem que la hipòtesis que tots els punts són umbilicals és la que permet posar la mateixa funció $\lambda(u,v)$ tant a $\nu_u(u,v)$ com a $\nu_v(u,v)$. Escriurem abreujadament

$$\nu_u = \lambda \, \varphi_u$$
$$\nu_v = \lambda \, \varphi_v$$

Imposant $\nu_{uv} = \nu_{vu}$ s'obté

$$\lambda_u \, \varphi_v = \lambda_v \, \varphi_u.$$

Però com que φ_u i φ_v són linealment independents, ha de ser $\lambda_u = \lambda_v = 0$, i per tant $\lambda = \text{ct.}$ Si aquesta constant és zero estem en el cas del pla. Suposem a partir d'ara $\lambda \neq 0$. Integrant s'obté

$$\nu = \lambda \, \varphi + \vec{a}$$

on \vec{a} és un vector constant. Com que $\nu \cdot \nu = 1$ tenim

$$1 = \lambda^2 \varphi \cdot \varphi + 2 \lambda \varphi \cdot \vec{a} + \vec{a} \cdot \vec{a}.$$

Així

$$(\varphi + \frac{\vec{a}}{\lambda}) \cdot (\varphi + \frac{\vec{a}}{\lambda}) = \frac{1}{\lambda^2}.$$

Per tant, tots els punts de la forma $\varphi(u,v)$ pertanyen a l'esfera de centre $-\vec{a}/\lambda$ i radi $1/\lambda$.