

Using Intel® Edison to Fuse Embedded Linux with Existing Drone Flight Controllers

Joel B. Rosenzweig (joel.b.rosenzweig at intel.com)

Mark F. Brown (mark.f.brown at intel.com)

1

Motivation

Build an extensible drone platform on top of an existing Low Level Flight Controller

What is Edison?

- Compute Module
- Atom Silvermont
- Dual Core 32-bit 500MHz
- 1GB RAM, 4GB eMMC
- Wi-Fi (802.11a/b/g/n), BT 4.0
- 70-pin Hirose Connector
- Quark 32-bit 100MHz Processor

Why Edison?

- Integrated Wireless Connectivity
- Small Form Factor (35.5 x 25 x 3.9 mm)
- Low Power Design
- Processing Power
- Stackable Design

Multirotor Drone

Multirotor Drone

Software Stack High Level Flight Controller

- Yocto Project Based Distribution
- Runs on Edison
- Reads waypoint mission data and commands from web server
- Reads sensor data from sensor hub
- Computes bearing to target
- Generates output to control desired throttle, pitch, roll and yaw
- Transmits output to LLFC via MUX
- Logs data to file system + transmits telemetry via radio

Sensor Hub

- Atmel ATMega 328P
- ADAFruit 10-DOF IMU
 - 3 axis Accelerometer
 - 3 axis Gyroscope
 - 3 axis Magnetometer
 - Barometer
- uBlox GPS
- Retrieves sensor data via I²C
- Transmits serial packet to Edison

GPS Serial to I²C Converter

- Atmel ATMega 328P
- uBlox 6M
- Initialize GPS module 5Hz at 57600 Baud
- Format GPS serial data to single packet
- Convert to I²C for Sensor Hub

MUX

- Propeller P8X32A
- Multiplexes:
 - Serial Commands from Edison
 - R/C RX inputs
 - MUX selector
 - Manual stick inputs (flight controls & bailout)
- Outputs PWM to Flight Controller

Navigation Planner

- Webserver on Edison
- node.js
 - Express
 - Socket I/O
- Arduino
- Google Maps v3 API
- Telemetry
- Waypoint Support

Navigation Planner Software Layout

Telemetry Visualization

Results (Highlights)

- Altitude Testing
- Yaw Testing
- Waypoint Navigation
- GEO Fencing
- Telemetry Data Visualization
- Bailout/Safety Switch
- GPS accuracy
- Short Development Time

Results (Pitfalls)

- Sensor Problems
 - Magnetometer
 - Barometer
 - Signal Noise
- Software Problems
 - Node.js error handling
 - Arduino IDE issues
 - Toolchain
 - File Syncing
 - Boot time

Results (Pitfalls Continued)

- Board Level Problems
 - Lack of Power Domain Control
- Power Supply Noise
- I/O Voltage Level Conversion

What is Next?

- Board Level Optimizations
- Navigation Tightening
 - Better Heading Estimation
 - Improved Flight Speed
 - Flight Simulation
- Object Detection, Avoidance, Following
 - Vision System
 - Terrain Avoidance

What is Next? (Continued)

- Drone Code protocol support
- Leverage Quark/RTOS
- Cellular Modem (Internet Connection)
- Weather Database Query En Route

Project Websites

- Project Page: (GitHub) http://goo.gl/hTVcDY
- YouTube Videos
 - Test Flight To Waypoint
 - https://www.youtube.com/watch?v=zwC07qLmMzQ
 - Test Flight Over Controlled Yaw
 - https://www.youtube.com/watch?v=OTQT48VxALY
- Edison Product Page
 - http://www.intel.com/content/www/us/en/do-it-yourself/edison.html

Special Thanks

- We wish to thank the following authors for their contributions to the open source community.
- Mikal Hart, for TinyGPS++, http://arduiniana.org/libraries/tinygps/
- Bill Porter, for EasyTransfer, http://www.billporter.info/2011/05/30/easytransfer-arduino-library/
- Adafruit's, Kevin Townsend, for the Sensor libraries, <u>https://learn.adafruit.com/adafruit-10-dof-imu-breakout-lsm303-l3gd20-bmp180/software</u>
- I.Kövesdi, for the Great Circle Distance and Great Circle Bearing calculation, http://obex.parallax.com/object/256

Questions?

