AMENDMENTS TO THE CLAIMS

1. (Previously presented): A selective herbicidal composition comprising, in addition to customary inert formulation assistants, as the active ingredient a mixture of a) a herbicidally effective amount of a compound of formula I

wherein

 R_1 and R_3 independently of one another are C_1 - C_4 -alkyl, C_2 - C_4 -alkinyl, C_1 - C_4 -halogenalkyl, C_1 - C_6 -alkoxy, or C_1 - C_2 -halogenalkoxy;

R₄ and R₅ together signify a group

$$-C-R_{14}(R_{15})-C-R_{16}(R_{17})-O-C-R_{18}(R_{19})-C-R_{20}(R_{21})-$$
 (Z₂),

wherein R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , and R_{21} , independently of one another are hydrogen G is hydrogen, $-C(X_1)-R_{30}$, $-C(X_2)-X_3-R_{31}$, $-C(X_4)-N(R_{32})-R_{33}$, $-SO_2-R_{34}$, an alkaline, alkaline earth, sulfonium or ammonium cation or $-P(X_5)(R_{35})-R_{36}$ or $-CH_2-X_6-R_{37}$;

 X_1 , X_2 , X_3 , X_4 , X_5 and X_6 independently of one another, are oxygen or sulfur;

R₃₀, R₃₁, R₃₂ and R₃₃ independently of one another, are hydrogen,

C₁-C₁₀-alkyl, C₁-C₁₀-halogenalkyl, C₁-C₁₀-cyanoalkyl, C₁-C₁₀-nitroalkyl, C₁-C₁₀-aminoalkyl, C₁-C₅alkylamino-C₁-C₅-alkyl, C₂-C₈-dialkylamino- C₁-C₅-alkyl, C₃-C₇-cyclalkyl-C₁-C₅-alkyl, C₂-C₁₀alkoxy-alkyl, C_4 - C_{10} -alkenyloxy-alkyl, C_4 - C_{10} -alkinyloxy-alkyl, C_2 - C_{10} -alkylthio-alkyl, C_1 - C_5 alkysulfoxyl- C_1 - C_5 -alkyl, C_1 - C_5 -alkylsulfonyl- C_1 - C_5 -alkyl, C_2 - C_8 -alkylideneamino-oxy- C_1 - C_5 -alkyl, C_1 - C_5 -alkylcarbonyl- C_1 - C_5 -alkyl, C_1 - C_5 -alkoxycarbonyl- C_1 - C_5 -alkyl, C_1 - C_5 -amino-carbonyl- C_1 - C_5 -alkyl, C_1 - C_5 alkyl, C₂-C₈-dialkylamino-carbonyl-C₁-C₅-alkyl, C₁-C₅-alkylcarbonylamino-C₁-C₅-alkyl, C₂-C₅alkylcarbonyl- $(C_1-C_5-alkyl)$ -aminoalkyl, C_3-C_6 -trialkylsilyl- C_1-C_5 -alkyl, C₁-C₅-alkyl, phenylheteroaryl-C₁-C₅-alkyl, phenoxy- C₁-C₅-alkyl, heteroaryloxy- C₁-C₅-alkyl, C₂-C₅-alkenyl, C₂-C₅-alkyl, halogenalkenyl, C₃-C₈-cycloalkyl, phenyl, or phenyl substituted by C₁-C₃-alkyl, C₁-C₃halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; or heteroaryl or heteroarylamino; heteroarylamino substituted by C_1 - C_3 -alkyl, C_1 - C_3 -halogenalkyl, C_1 - C_3 -alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; diheteroarylamino, diheteroarylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; phenylamino, phenylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-

halogenalkoxy, halogen, cyano or nitro; diphenylamino, diphenylamino substituted by C_1 - C_3 -alkyl, C_1 - C_3 -halogenalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 -halogenalkoxy, halogen, cyano or nitro; C_3 - C_7 -cycloalkylamino, C_3 - C_7 -cycloalkylamino substituted by C_1 - C_3 -alkyl, C_1 - C_3 -halogenalkoxy, halogen, cyano or nitro; di- C_3 - C_7 -cycloalkylamino, di- C_3 - C_7 -cycloalkylamino substituted by C_1 - C_3 -alkyl, C_1 - C_3 -halogenalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 -halogenalkoxy, halogen, cyano or nitro; C_3 - C_7 -cycloalkoxy or C_3 - C_7 -cycloalkoxy substituted by C_1 - C_3 -alkyl, C_1 - C_3 -halogenalkyl, C_1 - C_3 - C_1 - C_3 -halogenalkyl, C_1 - C_3 - C_1 - C_2 - C_1 - C_3 - $C_$

 R_{34} , R_{35} and R_{36} independently of one another, are hydrogen, C_1 - C_{10} -alkyl, C_1 - C_{10} halogenalkyl, C₁- C₁₀-cyanoalkyl, C₁-C₁₀-nitroalkyl, C₁-C₁₀-aminoalkyl, C₁-C₅-alkylamino-C₁-C₅alkyl, C₂-C₈-dialkylamino- C₁-C₅-alkyl, C₃-C₇-cyclalkyl-C₁-C₅-alkyl, C₂-C₁₀-alkoxy-alkyl, C₄- C₁₀alkenyloxy-alkyl, C_4 - C_{10} -alkinyloxy-alkyl, C_2 - C_{10} -alkylthio-alkyl, C_1 - C_5 -alkysulfoxyl- C_1 - C_5 -alkyl, C₁-C₅-alkylsulfonyl-C₁-C₅-alkyl, C₂-C₈-alkylideneamino-oxy-C₁-C₅-alkyl, C₁-C₅-alkylcarbonyl-C₁-C₁-C₅-alkoxycarbonyl-C₁-C₅-alkyl, C₁-C₅-amino-carbonyl-C₁-C₅-alkyl, C₅-alkyl, dialkylamino-carbonyl-C₁-C₅-alkyl, C₁-C₅-alkylcarbonylamino-C₁-C₅-alkyl, C₂-C₅-alkylcarbonyl- $(C_1-C_5-alkyl)$ -aminoalkyl, C_3-C_6 -trialkylsilyl- C_1-C_5 -alkyl, phenyl- C_1-C_5 -alkyl, heteroaryl- C_1-C_5 alkyl, phenoxy- C₁-C₅-alkyl, heteroaryloxy- C₁-C₅-alkyl, C₂-C₅-alkenyl, C₂-C₅-halogenalkenyl, C₃-C₈-cycloalkyl, phenyl; or phenyl substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; or heteroaryl or heteroarylamino; heteroarylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; diheteroarylamino, diheteroarylamino substituted by C₁-C₃-alkyl, C₁-C₃halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; phenylamino, phenylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; diphenylamino, diphenylamino substituted by C₁-C₃-alkyl, C₁-C₃halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; cycloalkylamino, C₃-C₇-cycloalkylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; di-C₃-C₇-cycloalkylamino, di-C₃-C₇cycloalkylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃halogenalkoxy, halogen, cyano or nitro; C₃-C₇-cycloalkoxy or C₃-C₇-cycloalkoxy substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; C₁-C₁₀-alkoxy, C₁-C₁₀-halogenalkoxy, C₁-C₅-alkylamino, C₂-C₆-dialkylamino as well as benzyloxy or phenoxy, whereby the benzyl and phenyl groups in turn may be substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano, formyl, acetyl, propionyl, carboxyl, C₁-C₅-alkoxycarbonyl, methylthio, ethylthio, or nitro; and

 R_{37} is C_1 - C_{10} -alkyl, C_1 - C_{10} -halogenalkyl, C_1 - C_{10} -cyanoalkyl, C_1 - C_{10} -nitroalkyl, C_1 - C_{10} -aminoalkyl, C_1 - C_5 -alkylamino- C_1 - C_5 -alkyl, C_2 - C_8 -dialkylamino- C_1 - C_5 -alkyl, C_3 - C_7 -cyclalkyl- C_1 - C_5 -alkyl, C_2 - C_{10} -alkoxy-alkyl, C_4 - C_{10} -alkenyloxy-alkyl, C_4 - C_{10} -alkinyloxy-alkyl, C_2 - C_{10} -alkylthio-alkyl,

 C_1 - C_5 -alkysulfoxyl- C_1 - C_5 -alkyl, C_1 - C_5 -alkylsulfonyl- C_1 - C_5 -alkyl, C_2 - C_8 -alkylideneamino-oxy- C_1 - C_5 -alkylsulfonyl- C_1 - C_5 alkyl, C_1 - C_5 -alkylcarbonyl- C_1 - C_5 -alkyl, C_1 - C_5 -alkoxycarbonyl- C_1 - C_5 -alkyl, C_1 - C_5 -amino-carbonyl- C_1-C_5 -alkyl, C_2-C_8 -dialkylamino-carbonyl- C_1-C_5 -alkyl, C_1-C_5 -alkyl, C_2 -alkyl, C_2 -alkyl, C_2 -alkyl, C_3 -alkyl, C_5 -alkylcarbonyl- $(C_1-C_5$ -alkyl)-aminoalkyl, C_3-C_6 -trialkylsilyl- C_1-C_5 -alkyl, phenyl- C_1-C_5 -alkyl, heteroaryl- C₁-C₅-alkyl, phenoxy-C₁-C₅-alkyl, heteroaryloxy- C₁-C₅-alkyl, C₂-C₅-alkenyl, C₂ halogenalkenyl, C₃-C₈-cycloalkyl, phenyl; or phenyl substituted by C₁-C₃-alkyl, C₁-C₃halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; or heteroaryl or heteroarylamino; heteroarylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; diheteroarylamino, diheteroarylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; phenylamino, phenylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃halogenalkoxy, halogen, cyano or nitro; diphenylamino, diphenylamino substituted by C₁-C₃alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; C₃-C₇cycloalkylamino, C₃-C₇-cycloalkylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; di-C₃-C₇-cycloalkylamino, di-C₃-C₇cycloalkylamino substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃halogenalkoxy, halogen, cyano or nitro; C₃-C₇-cycloalkoxy or C₃-C₇-cycloalkoxy substituted by C₁-C₃-alkyl, C₁-C₃-halogenalkyl, C₁-C₃-alkoxy, C₁-C₃-halogenalkoxy, halogen, cyano or nitro; or a C₁-C₁₀-alkylcarbonyl; as well as salts and diastereoisomers of the compounds of formula I, with the proviso that R₁ and R₃ are not simultaneously methyl; and;

- b) a herbicidally synergistic amount of at least one herbicide selected from the classes of phenoxy-phenoxypropionic acids, hydroxylamines, sulfonylureas, imidazolinones, pyrimidines, triazines, ureas, PPO, chloroacetanilides, phenoxyacetic acids, triazinones, dinitroanilines, azinones, carbamates, oxyacetamides, thiolcarbamates, azole-ureas, benzoic acids, anilides, nitriles, triones and sulfonamides, as well as from the herbicides amitrol, benfuresate, bentazone, cinmethylin, clomazone, chlopyralid, difenzoquat, dithiopyr, ethofumesate, flurochloridone, indanofane, isoxaben, oxaziclomefone, pyridate, pyridafol, quinchlorac, quinmerac, tridiphane, glufosinate and flamprop.
- 2. (Previously Presented): Composition according to claim 1, which contains, to antagonise the herbicide, an antidotally effective amount of a safener selected from the group consisting of cloquintocet, an alkali, alkaline earth, sulfonium or ammonium cation of cloquintocet, cloquintocet-mexyl, mefenpyr, an alkali, alkaline earth, sulfonium or ammonium cation of mefenpyr and mefenpyrdiethyl.

- 3. (Original): Composition according to claim 1, which contains an additive comprising an oil of vegetable or animal origin, a mineral oil, the alkylesters thereof or mixtures of these oils and oil derivatives.
- 4. (Original): A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, with a composition according to claim 1.
- 5. (Original): A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, with a composition according to claim 2.
- 6. (Original): A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, with a composition according to claim 3.
- 7. (Original): A method according to claim 4 wherein the cultivated plant is cereal or maize.