

Capturing Discriminative Attributes

Project Proposal HLE Fall 2022

Lucía Urcelay Rasmus Siljander UPC - Master in Artificial Intelligence

Motivation

- 1. Find methods to model semantic representations of word vectors
- 2. Issues with similarity approaches [1]
 - a. inter-annotator agreement tends to be low
 - b. the small size of some of the most popular datasets
 - c. subjective similarity scores have limitations when it comes to task-specific applications
- Goal: find another way to approach the semantic representation task other than similarity computation

Semantic difference detection

- A system for basic language understanding should be able to detect when concepts are similar to each other, but also in what way concepts differ from each other
- Modelling semantic difference between two (related) words can help capture individual aspects of meaning

Semantic difference detection

- Applications of semantic difference task:
 - Automated lexicography (automatically generating features to include in dictionary definitions)
 - Conversational agents (choosing lexical items with contextually relevant differential features to create human-like dialogs)
 - Machine translation (where explicitly taking into account semantic differences between translation variants can improve the quality of the output)

Word 1	Word 2	Attribute	Discriminative?
Apple	Banana	Red	

Word 1	Word 2	Attribute	Discriminative?
Apple	Banana	Red	✓

Word 1	Word 2	Attribute	Discriminative?
Apple	Banana	Red	✓
Gloves	Pants	Wool	

Word 1	Word 2	Attribute	Discriminative?
Apple	Banana	Red	✓
Gloves	Pants	Wool	X

Word 1	Word 2	Attribute	Discriminative?
Apple	Banana	Red	✓
Gloves	Pants	Wool	X
Spider	Elephant	Wings	

Word 1	Word 2	Attribute	Discriminative?
Apple	Banana	Red	✓
Gloves	Pants	Wool	X
Spider	Elephant	Wings	X

Dataset structure

Instance	Word 1	Word 2	Attribute	Label
1	Apple	Banana	Red	1
2	Gloves	Pants	Wool	0
3	Spider	Elephant	Wings	0
n				

Total n. of instances: 22884

Training set: 17782Validation set: 2722

• Test set: 2340

aining set
74,9%
•

	training	validation	testing
positive	6591	1364	1047
negative	11191	1358	1293
total	17782	2722	2340

Table 4: Total size of the final dataset.

Evaluation

- Binary classification task evaluated on F1 score
- Baselines:
 - Random classifier: 0.517 (test set is slightly unbalanced)
 - Vector cosine baseline: 0.607
- Human upper bound:
 - Positive cases: 0.89
 - Negative cases: 0.91

SemEval 2018 Task 10 Top Performances

Rank	Team	Features	Classifier	F1 Score
1	SUNNYNLP	Pre-trained word embeddings + Probase information	SVM	0.75
2	Luminoso	ConceptNet word-embeddings + ConceptNet information	LinearSVC	0.74
3	BomJi	Pre-trained word embeddings + info. from graph-based distributional model (JoBimText)	XGBoost	0.73
4	NTU NLP	Pre-trained word embeddings + point wise mutual info. + ConceptNet edge information	MLP	0.73

SemEval 2018 Task 10 Observations

- Exploiting information from knowledge base resources like
 WordNet does improve the performance on average
- Traditional machine learning systems that entered competition were much more likely to make use of knowledge bases
- Many different systems and knowledge bases were used

Resource type	Average F1
WE + KB	0.678
WE	0.638

SemEval 2018 Task 10 Observations

Exploiting information from knowledge base resources like
 WordNet does improve the performance on average

Resource type	Average F1
WE + KB	0.678
WE	0.638

- Traditional machine learning systems that entered competition were much more likely to make use of knowledge bases
- Many different systems and knowledge bases were used

combining neural approaches with knowledge bases may well lead to improved performances

Limitations

Data

Word 1	Word 2	Attribute	Label
Apple	Banana	Red	1
Gloves	Pants	Wool	0
Spider	Elephant	Wings	0

Tabular Data (isolated words)

Lack of contextual information (no sentences)

Proposed Approach

Feature Computation

- Word Embeddings (GloVe, Word2Vec)
- Knowledge Bases
 - WordNet
 - ConceptNet
- Other features (POS Tags, lemmas, distance, dissimilarity and similarity measures...)

System Type

- Support Vector Machine (SVM)
- 2. Convolutional Neural Network (CNN)
 - a. Different feature combinations
 - b. Different architectures
 - c. + Attention layers

Capturing Discriminative Attributes

Final Project - Proposal HLE Fall 20222

Lucía Urcelay Rasmus Siljander UPC - Master in Artificial Intelligence

Observations

- 1. "Easy" triples were easy for both the human and model to discriminate.
- 2. "Hard" triples were harder for the models than it was for humans.
- 3. There were triplets that were failed by all systems.

Observations

- 1. "Easy" triples were easy for both the human and model to discriminate
- 2. "Hard" triples were harder for the models than it was for humans
- 3. There were triplets that were failed by all systems

