

IPTABLES FÁCIL E FUNCIONAL:

GUIA PRÁTICO DO MINI-CURSO DE FIREWALL COM NETFILTER/IPTABLES

LAVRAS – MG ABR/2019

DIEGO NATIVIDADE

IPTABLES FÁCIL E FUNCIONAL:

GUIA PRÁTICO DO MINI-CURSO DE FIREWALL COM NETFILTER/IPTABLES

Material didático utilizado como guia prático do mini-curso de firewall com netfilter/iptables. Este material é gratuito, não podendo ser vendido e seu conteúdo não pode ser alterado. Quaisquer sugestões, como erros ou críticas, devem ser encaminhadas ao autor.

Contato: natividade@bol.com.br

Versão 1.2

LAVRAS – MG ABR/2019

APOIO:

quantum tecnologia da informação

AGRADECIMENTOS

Agradeço primeiramente a CONNECTIVA REDES DE COMPUTADORES, empresa que fui fundador e que hoje presto consultorias regularmente. Agradeço também a Universidade Federal de Lavras e professores pelos ensinamentos. Em particular, agradeço a minha tia Rita pela ajuda no início de minha vida acadêmica e todo apoio e suporte que tem me dado durante todos esses anos. Agradeço ainda a CAPES, pela bolsa e apoio no mestrado.

Por fim, agradeço ao Universo, que sempre conspira ao nosso favor...

Meus sinceros agradecimentos.

```
"A desconfiança é a mãe da segurança."
                                   (Madeleine Scudéry)
"Aquele que se eleva nas pontas dos pés não está seguro."
                                             (Lao-Tsé)
     "A segurança não é um produto, ela é um processo."
                                       (Bruce Schneier)
      "O fator humano é o elo mais fraco da segurança."
                                        (Kevin Mitnick)
                        "Quis custodiet ipsos custodes?"
                                     (Romano Juvenal)
```

LISTA DE FIGURAS

Figura 2.1 –	Exemplo clássico de um <i>firewall</i>	9
Figura 3.1 –	Chains do iptables	12
Figura 3.2 –	Datapath completo do iptables	14
Figura 4.1 –	Topologia de rede dos testes	16
Figura 4.2 –	Cabeçalho padrão para scripts de firewall	17
Figura 4.3 –	Regras de bloqueio padrão	18
Figura 4.4 –	Permitir acesso a 10, conexões estabelecidas e relatadas	18
Figura 4.5 –	Permitir acesso ao firewall (INPUT)	19
Figura 4.6 –	Fazer NAT para a rede local	20
Figura 4.7 –	Permitir acesso da rede local para a Internet	20
Figura 4.8 –	Permitir acesso entre as sub-redes	21
Figura 4.9 –	Fazer DNAT para IP da rede local	21

LISTA DE TABELAS

Tabela 3.1 –	iptables:	tablelas	e suas	chains		 •				 •	 •		13	,

LISTA DE SIGLAS

DHCP Dynamic Host Configuration Protocol

DNAT Destination NAT

DNS Domain Name System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

MAC address Medium Access Control address

MAC Mandatory Access Control

NAT Network Address Translation

NGFW Next Generation Firewall

QoS Quality of Service

SNAT Source NAT

SPI Stateful Packet Inspection

SSH Secure Shell

TCP Transmission Control Protocol

UTM Unified Threat Management

UDP User Datagram Protocol

ÍNDICE

1	INTRODUÇÃO	8
1.1	Objetivo	8
1.2	Organização do trabalho	8
2	FIREWALL	9
3	netfilter	11
3.1	iptables	11
3.1.1	Chains	11
3.1.2	Tabelas	12
3.1.3	Alvos/ações	15
4	Caso de uso com iptables	16
4.1	Inicio das regras	17
4.2	Regra de bloqueio padrão	17
4.3	Permitir acesso a 10 e conexões estabelecidas/relatadas	18
4.4	Permitir acesso ao firewall (INPUT)	18
4.5	Compartilhar Internet para a rede local	19
4.6	Permitir acessos da rede local	20
5	CONCLUSÃO	22
	REFERENCIAS	23
	APENDIX A – Script de firewall completo usado no mini-curso	24
	APENDIX B – Script de um firewall para uso pessoal	28
	APENDIX C – Exemplo de um <i>script</i> de <i>firewall</i> completo (para ser adaptado)	30

1 INTRODUÇÃO

Manter uma rede de computadores 100% SEGURA, é um ideal, inatingível e utópico. Firewall, proxy, Intrusion Detection System (IDS), Intrusion Prevention System (IPS) e antivírus, são alguns dos sistemas que compõem a segurança de uma rede de computadores.

A implantação de um *firewall* em uma rede é o básico que se pode fazer para conseguir um mínimo de segurança. Sistemas operacionais GNU/Linux, desde o *Kernel* 2.4, vêm por padrão com um sistema de filtragem de pacotes denominado netfilter. A ferramenta utilizada para acessar suas configurações é o iptables.

Neste mini-curso, serão apresentados os conceitos básicos de um *firewall*, o funcionamento do netfilter/iptables e um caso de uso, como prática.

1.1 Objetivo

O objetivo deste mini-curso é dar ao aluno a capacidade de entender o que é um *firewall*, o funcionamento, o fluxo e as regras do iptables, além de capacitá-lo a montar suas próprias políticas e dar manutenção em sistemas de *firewall* já em produção.

1.2 Organização do trabalho

Este trabalho está organizado da seguinte maneira: o Capítulo 2, traz um *background* sobre *firewalls* e seus tipos. No Capítulo 3 é apresentado o netfilter e iptables, bem como suas principais opções. No Capítulo 4 são apresentados vários exemplos práticos de uso, de forma detalhada e em um sequência lógica para ser implementado em um *firewall* de verdade. No Capítulo 5, uma breve conclusão. Por fim, as referências utilizadas neste trabalho e três apêndices com o *script* de *firewall* utilizado em toda prática deste mini-curso, um exemplo de *firewall* para uso em computador pessoal e um *script* de *firewall* completo e funcional, que pode ser adaptado pelo aluno para uso no dia a dia.

2 FIREWALL

O *firewall* é uma das primeiras linhas de defesa de uma rede ou *host* (CHEN et al., 2016). Consiste basicamente em um filtro de pacotes colocado em um ponto de entrada de uma rede, no qual, cada pacote que passa por ele é verificado a fim de determinar se o pacote será aceito ou não (Acharya; Joshi; Gouda, 2010). Um *firewall* permite que os administradores do sistema criem controles de acesso entre uma rede confiável e uma não confiável (Murthy et al., 1998).

A Figura 2.1 ilustra o funcionamento e posicionamento de um *firewall* na rede. O mesmo está localizado entre a Internet e a rede local, liberando ou bloqueando os acessos, tanto de entrada, quanto de saída.

Figure 2.1 – Exemplo clássico de um firewall

Fonte: do autor (2019)

Os firewalls são normalmente classificados nas seguintes categorias:

- Packet filtering firewall: os pacotes que chegam ou saem são liberados ou bloqueados
 de acordo com as retrições de *Internet Protocol* (IP), porta, protocolo, etc., sem abrir e
 inspecionar o conteúdo do pacote;
- Circuit-level gateway: opera na camada de sessão, os pacotes *Transmission Control Protocol* (TCP) são abertos e o *handshake* é inspecionado (Compuquip Cyber Security, 2019), (Comodo Antivirus, 2019);
- Stateful Packet Inspection (SPI): combinação do packet filtering e circuit-level, onde os cabeçalhos e o estado dos pacotes são analisados (Compuquip Cyber Security, 2019);

- **Proxy firewall**: trabalham com a camada de aplicação, provendo segurança diretamente para serviços suportados (Comodo Antivirus, 2019);
- Unified Threat Management (UTM) e Next Generation Firewall (NGFW): UTM é uma solução centralizada de firewall, antimaware, IDS/IPS, entre outras ferramentas. NGFW trata-se de uma solução UTM aprimorada, garantindo mais performance e escalabilidade. Alguns autores classificam ambos como uma só solução.

O netfilter é um *firewall* que pode trabalhar desde *stateless* à *statefull*, abrangendo as funcionalidades das três primeiras categorias descritas. A seguir, ver-se-á mais detalhes do netfilter e sua principal ferramenta de manipulação, e objeto de estudo deste trabalho, o iptables.

3 NETFILTER

netfilter é um *framework* composto por vários módulos que permitem fazer *Network Address Translation* (NAT), mascaramento, filtragem de pacotes, marcação entre outras manipulações de pacotes de rede. Ele é utilizado em sistemas GNU/Linux desde o *Kernel* 2.4 (netfilter, 2019b), e funciona da seguinte maneira:

- cada pacote que chega no *Kernel* é verificado se ele "casa"dá (*match*) com alguma das regras criadas;
- as regras são testadas linha a linha, da primeira até a última;
- quando um pacote dá *match*, ele processa a regra e não continua a verificação das demais regras, exceto em situações especiais, como quando utilizado o alvo LOG ou RETURN, por exemplo;
- caso algum pacote não satisfaça aos critérios de nenhuma das regras, o mesmo será tratado pela "política padrão" (este assunto erá visto mais adiante).

O software utilizado para a manipulação do netfilter é o iptables (netfilter, 2019b), que será visto em detalhes a seguir.

3.1 iptables

O iptables é a principal ferramenta utilizada para a manipulação do netfilter. Muitas vezes os dois termos são confundidos. Neste curso, serão utilizados os termos netfilter e iptables arbitrariamente. A sintaxe padrão para uso do iptables é a seguinte:

iptables [-t tabela] [opção] [CHAIN] [regra] -j [ALVO/AÇÃO]

A seguir, as tabelas e chains built-in do iptables.

3.1.1 *Chains*

O iptables faz uso de *chains* (cadeias), que armazenam as regras e indicam o sentido do fluxo de dados. Existem cinco *chains built-in* (*chains* que já vêm no *Kernel*), mas também é possível a criação de *chains* customizadas, para melhor organização das regras. A seguir as cinco *chains built-in* disponíveis:

- INPUT: manipula pacotes que são originados no Kernel do firewall (na máquina local);
- OUTPUT: trata pacotes que são destinados ao *firewall* (destinados a máquina local);
- **FORWARD** lida com pacotes que atravessam o *Kernel* do *firewall* (pacotes que saem de uma maquina para outra na rede, passando pelo *firewall*);
- **PREROUTING**: manipula pacotes que acabaram de chegar ao *Kernel*, antes de qualquer roteamento;
- **POSTROUTING**: manipula pacotes que estão prestes a sair do *Kernel*, após o roteamento.

A Figura 3.1 apresenta as *chains built-in* do iptables, bem como o sentido de fluxo dos pacotes que chegam no *Kernel*. As *chains* PREROUTING e POSTROUTING, são sempre executadas, respectivamente, antes e depois de qualquer outra (chain) ou processamento. Todo tráfego destinado ao próprio *firewall* (vindo da rede ou da Internet) é manipulado pela *chain* INPUT. Todo tráfego que parte do *firewall*, em direção a um *host* na rede ou a Internet é tratado pela *chain* OUTPUT. Já o trafego que sai da rede para Internet, da Internet para rede, ou entre as sub-redes (ou seja, todo o tráfego que **passa** pelo firewall, mas não o tem como origem ou destino) são manipulados pela *chain* FORWARD.

NETWORK INTERFACE FORWARD LOCAL PROCESS

Fonte: do autor (2019)

Figure 3.1 – *Chains* do iptables

3.1.2 Tabelas

As *chains*, vistas nas sessão anterior, estão contidas em tabelas do iptables. O iptables possui atualmente, cinco tabelas: filter, nat, mangle, raw e security. Destas, as duas últimas são relativamente novas, sendo a tabela security usada somente em ambientes que utilizem o módulo SELinux. A seguir, uma breve descrição de cada uma dessas tabelas, retiradas de netfilter (2019a), DigitalOcean (2019) e Boolean World (2019)

- filter: é a tabela padrão do iptables, quando nenhuma tabela é especificada; é responsável pela filtragem de pacotes, como aceitar ou descartar um pacote, por exemplo;
- nat: é consultada toda vez que que criada uma nova conexão; usada para fazer mascaramento e redirecionamentos de IPs e portas;
- mangle: é utilizada para marcação de pacotes, para que estas marcações possam ser usadas posteriormente em regras de *Quality of Service* (QoS) ou roteamento, por exemplo;
- raw: esta tabela fica antes da *connection tracking*, permitindo utilizar o *firewall* em *stateless*; utilizada para marcar ou mesmo bloquear um pacote, antes que ele passe por qualquer tipo processamento, reduzindo a carga do *firewall*.
- security: é utilizada em regras de Mandatory Access Control (MAC) em conjunto com módulos de segurança do GNU/Linux, como o SELinux; cria marcações nos pacotes ou conexões para serem manipuladas posteriormente pelo SELinux;

A Tabela 3.1 mostra as tabelas do iptables e suas *chains*. Na Figura 3.2, temos o fluxo de dados completo do iptables, mostrando todas as tabelas e suas *chains*.

Tabela 3.1 – iptables: tablelas e suas chains

Tabela	Descrição	Cadeia
filter	Filtragem de pacotes	INPUT, FORWARD, OUTPUT
nat	Mascaramento e redirecionamento de IPs/portas	PREROUTING, OUTPUT, POSTROUTING
mangle	Marcação de pacotes	Todas as chains built-in
raw	Stateless; antes do processamento dos pacotes	PREROUTING, OUTPUT
security	Mandatory Access Control (uso com SELinux)	INPUT, FORWARD, OUTPUT

Fonte: do autor (2019)

Figure 3.2 – Datapath completo do iptables

Fonte: Hagen (2019)

3.1.3 Alvos/ações

Os alvos (*target*) ou ações, tratam do que será feito com o pacote, caso o mesmo dê *match* na regra. Usando a opção –j, pode-se especificar uma ação diretamente, ou saltar para uma *chain* customizada. Neste mini-curso, não abordaremos *chains* customizadas, estando ete assunto fora de nosso escopo. A seguir veremos os principais alvos do iptables, que são: ACCEPT, DROP, REJECT, LOG, DNAT, SNAT e MASQUERADE.

- ACCEP: aceita um pacote ou conexão;
- DROP: descarta um pacote ou conexão, sem enviar qualquer informação para o remetente;
- **REJECT** rejeita um pacote ou conexão, enviando uma confirmação para o remetente;
- LOG: registra um *log* do pacote ou conexão, mas continua percorrendo as próximas regras, ou seja, não termina o processamento;
- **DNAT**: altera o IP/porta de destino de um pacote, com IP/porta especificados por -to IP:PORT (para fazer um redirecionamento de portas, por exemplo);
- **SNAT**: altera o IP/porta de origem de um pacote, com IP/porta especificados por -to IP:PORT (para fazer o NAT para um IP fixo, por exemplo);
- MASQUERADE: caso particular de Source NAT (SNAT), no qual altera o IP/porta de origem de um pacote, com IP/porta do firewall, afim de fazer NAT quando não se tem um IP fixo.

4 CASO DE USO COM IPTABLES

Com o iptables é possível criar uma grande variedade regras, devido a grande quantidade de módulos e parâmetros que ele aceita. Agora, serão vistos vários exemplos de regras do iptables, começando pelas regras padrão, passando por regras de filtragem, mascaramento e por fim regras de redirecionamento de IPs e portas.

A Figura 4.1, exibe a topologia de rede utilizada em nosso teste, na qual são criadas duas sub-redes: sub-rede1, endereço 192.168.1.0/24, com um servidor server1, configurado com o IP 192.168.1.100/24; sub-rede2, endereço 172.16.0.0/12, com duas estações de trabalho, client2 e client3, com IPs 172.16.0.100/12 e 172.16.20.200/12, respectivamente. O *firewall* é um computador com três *interfaces* de rede: enp0s3, recebendo IP dinamicamente (por *Dynamic Host Configuration Protocol* (DHCP)) e voltada para a Internet; enp0s8, com IP 192.168.1.1/24 e conectada com o *switch* da sub-rede1; enp0s3, com IP 172.16.0.1/12 conectada com o *switch* da sub-rede2.

Figure 4.1 – Topologia de rede dos testes

Fonte: do autor (2019)

4.1 Inicio das regras

Para os testes, recomenda-se a criação de um arquivo de *script*, contendo todas as regras que iremos utilizar em nosso *firewall* (uma regra por linha do arquivo).

A Figura 4.2 mostra o cabeçalho do arquivo que utilizaremos nos testes. Nas primeiras linhas deste arquivo (linhas 5, 7 e 9), criaremos 3 variáveis IF_WAN, IF_LAN1 e IF_LAN2, referentes as interface de Internet, sub-rede1 e sub-rede2, respectivamente. Em seguida, das linhas 14 à 19, estão os comandos que permitem limpar as regras, contadores e *chains* customizadas, a fim de iniciar um *firewall* do zero, garantindo que não exista nenhuma regra previamente carregada.

Figure 4.2 – Cabeçalho padrão para scripts de firewall

```
#!/bin/bash
3 #VARIAVEIS
4 #Interface de Internet
5 IF WAN="enp0s3"
6 #Interface da "Rede Local 1" (192.168.1.0/24)
7 IF_LAN1="enp0s8"
8 #Interface da "Rede Local 2" (172.16.0.0/12)
9 IF LAN2="enp0s9"
^{11} #Limpa regras (-F),
12 #exclui cadeias customizadas (-X),
^{13} #zera contadores (-Z)
14 for TABLE in filter nat mangle raw security
      iptables -t $TABLE -F
16
      iptables -t $TABLE -X
17
      iptables -t $TABLE -Z
19 done
```

Fonte: do autor (2019)

4.2 Regra de bloqueio padrão

As regras padrões, são aquelas utilizadas para pacotes que não satisfazem a nenhuma das regras criadas. Caso não seja especificada uma regra padrão, ela será ACCEPT para todos os pacotes e conexões daquela *chain*. Neste exemplo vamos criar um *firewall* com a regra padrão para bloquear tudo, como na Figura 4.3.

Figure 4.3 – Regras de bloqueio padrão

```
#Politica padrao: DROP

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP
```

Fonte: do autor (2019)

4.3 Permitir acesso a 10 e conexões estabelecidas/relatadas

Com as regras padrão definidas como DROP para INPUT, OUTPUT e FORWARD, nada entra, sai ou passa pelo *firewall*. Portanto, devemos liberar as portas desejadas, para que a rede funcione corretamente. Mas antes de criar as regras de liberação de portas propriamente ditas, temos que liberar as conexões de entrada e saída da interface de localhost (lo) e permitir livre acesso as conexão já estabelecidas e relatadas, como mostra a Figura 4.4.

Figure 4.4 – Permitir acesso a 10, conexões estabelecidas e relatadas

```
#Libera acesso na interface de localhost (lo)

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

#libera acesso as conexoes ja estabelecidas e relatadas

iptables -A INPUT -m state -state ESTABLISHED, RELATED -j ACCEPT

iptables -A FORWARD -m state -state ESTABLISHED, RELATED -j ACCEPT

iptables -A OUTPUT -m state -state ESTABLISHED, RELATED -j ACCEPT

iptables -A OUTPUT -m state -state NEW, ESTABLISHED, RELATED -j

ACCEPT
```

Fonte: do autor (2019)

4.4 Permitir acesso ao *firewall* (INPUT)

Após realizar as configurações das sessões 4.1, 4.2 e 4.3, nosso *firewall* está pronto para receber as demais regras. Atente-se que as configurações anteriores são de extrema importância para o correto funcionamento do *firewall* que estamos configurando neste trabalho.

Com as regras anteriores já aplicadas, vamos liberar o acesso ao *firewall*, para pacotes *Internet Control Message Protocol* (ICMP) tipo 8 e 0, ICMP *request* e *replay* respectivamente, para uso do "ping". Daremos acesso a porta local 22/TCP (*Secure Shell* (SSH)) para todos e a porta 53/*User Datagram Protocol* (UDP) (*Domain Name System* (DNS)) somente para conexões provenientes da sub-rede 172.16.0.0/12 ou 192.168.1.0/24. Além disso, vamos

permitir o acesso a porta 80/TCP (*Hypertext Transfer Protocol* (HTTP)) somente para host com o IP 172.16.20.200, *Medium Access Control address* (MAC address) 01:23:45:0A:BC:DE e proveniente da interface IF_LAN2. Para isso, utiliza-se a *chain* INPUT, como mostra a Figura 4.5.

Figure 4.5 – Permitir acesso ao *firewall* (INPUT)

```
#Libera acesso ICMP request e reply (ping e pong)

iptables -A INPUT -p icmp —icmp-type 8 -j ACCEPT

iptables -A INPUT -p icmp —icmp-type 0 -j ACCEPT

#Libera acesso a porta 22/TCP para todos

iptables -A INPUT -p tcp —dport 22 -j ACCEPT

#Libera acesso a porta 53/UDP somente para as subredes especificadas

iptables -A INPUT -p udp —dport 53 -s 172.16.0.0/16 -j ACCEPT

#Libera acesso a porta 80/TCP somente para IP, MAC e interface

especificados

iptables -A INPUT -p tcp —dport 80 -s 172.16.20.200 -m mac —mac-

source 00:12:34:0A:BC:DE -i enp0s3 -j ACCEPT
```

Fonte: do autor (2019)

4.5 Compartilhar Internet para a rede local

A partir de agora, faremos as configurações do *firewall* para a rede local. Neste exemplo, o *firewall* atuará como o *gateway* das duas sub-redes. Portanto, precisamos compartilhar a Internet para a rede local, e para isso, precisamos habilitar o encaminhamento de pacotes no *Kernel* e fazer o NAT com mascaramento para as sub-redes.

sistemas Por GNU/Linux vêm encaminhamento padrão, com para habilitar, "1" pacotes desabilitado, precismos setar em o arquivo /proc/sys/net/ipv4/ip_forward. Para isso, basta digitar a seguinte linha de comando no shell:

```
echo 1 > /proc/sys/net/ipv4/ip_forward
```

Agora, podemos fazer o NAT com mascaramento para as sub-redes, como mostra a Figura 4.6.

Figure 4.6 – Fazer NAT para a rede local

```
#Faz o NAT com mascaramento para rede local
iptables -t nat -A POSTROUTING -o $IF_WAN -j MASQUERADE
```

Fonte: do autor (2019)

Neste momento, mesmo com o NAT habilitado para a rede local, a Internet nos terminais não funcionará, pois nenhuma porta ainda foi liberada para acesso da rede local, que é o que veremos na sessão seguinte.

4.6 Permitir acessos da rede local

Faremos agora, algumas liberações da rede local para a Internet. Primeiramente, liberaremos o tráfego de pacotes ICMP request e *replay* para rede local (usado pelo "ping") e também o acesso às portas 80/TCP e 443/TCP, HTTP e *Hypertext Transfer Protocol Secure* (HTTPS) respectivamente (FIGURA 4.7).

Figure 4.7 – Permitir acesso da rede local para a Internet

```
#Libera acesso ao ICMP request e reply (ping e pong) para a Internet
iptables -A FORWARD -o $IF_WAN -p icmp —icmp—type 8 -j ACCEPT
iptables -A FORWARD -o $IF_WAN -p icmp —icmp—type 0 -j ACCEPT

#Libera acesso a porta 80/TCP e 443/TCP para a Internet
iptables -A FORWARD -o $IF_WAN -p tcp —dport 80 -j ACCEPT
iptables -A FORWARD -o $IF_WAN -p tcp —dport 80 -j ACCEPT
iptables -A FORWARD -o $IF_WAN -p tcp —dport 443 -j ACCEPT
iptables -A FORWARD -o $IF_WAN -p tcp —dport 443 -j ACCEPT
iptables -A FORWARD -o $IF_WAN -p tcp —dport 443 -j ACCEPT
```

Fonte: do autor (2019)

Vamos configurar o acesso entre as duas sub-redes, liberando o acesso a 1111/TCP (SSH) do server1 para todos da rede local e a porta 80/TCP (HTTP) somente para conexões provenientes do IP 172.16.20.200/16, conforme mostra a Figura 4.8.

Figure 4.8 – Permitir acesso entre as sub-redes

```
#Libera acesso ICMP request e reply (ping e pong) entre as subredes
iptables -A FORWARD -i $IF_LAN1 -o $IF_LAN2 -p icmp —icmp—type 8 -j
ACCEPT

iptables -A FORWARD -i $IF_LAN1 -o $IF_LAN2 -p icmp —icmp—type 0 -j
ACCEPT

iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -p icmp —icmp—type 8 -j
ACCEPT

iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -p icmp —icmp—type 0 -j
ACCEPT

#Libera acesso a porta 1111/TCP para a rede local
iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -d 192.168.1.100 -p tcp
—dport 1111 -j ACCEPT

#Libera acesso a porta 80/TCP para um IP da rede local
iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -s 172.16.20.200 -d
192.168.1.100 -p tcp —dport 80 -j ACCEPT
```

Fonte: do autor (2019)

Por fim, vamos fazer um *Destination NAT* (DNAT) (redirecionamento de portas), direcionando todo o tráfego que chegar na porta 8081/TCP do *firewall*, para a porta 80/TCP do server1 (FIGURA 4.9).

Figure 4.9 – Fazer DNAT para IP da rede local

```
#Faz DNAT para um IP da rede local

iptables -t nat -A PREROUTING -i $IF_WAN -p tcp --dport 8888 -j DNAT
--to 192.168.1.100:7777

iptables -t nat -A PREROUTING -i $IF_LAN2 -p tcp --dport 8888 -j DNAT
--to 192.168.1.100:7777

#Libera acesso a porta 7777/TCP para o IP da regra acima
iptables -A FORWARD -d 192.168.1.100 -p tcp --dport 7777 -j ACCEPT
```

Fonte: do autor (2019)

5 CONCLUSÃO

Manter a segurança da rede local, seja de uma grande organização, pequena empresa ou doméstica é um desafio que deve ser encarado pelo administrador. Seja ela que qual for o tamanho, a rede deve ter um cuidado especial no que se refere a segurança. Os diversos appliances de firewall que existem no mercado, sejam open source ou proprietárias, sem dúvuda facilitam muito na tarefa de administração. Mas conhecer o funcionamento do iptables, bem como dar manutenção ou montar regras customizadas, torna o adminstrador de rede mais versátil e apto a corrigir problemas do dia a dia, ou propor soluções que, por algum motivo, o appliance não ofereça.

Este trabalho está longe de ser um referencial completo de *firewalls* ou *netfilter/iptables*, mas fornece uma base para se iniciar os estudos e também contribui para o aperfeiçoamento do profissional interessado em iniciar nesta área do conhecimento. Acreditamos que, com os conhecimentos obtidos aqui, o aluno estará apto a dar manutenção em sistemas de *firewall* existentes e configurar sua própria solução, caso necessite. Mas somente com muita prática é que o administrador de rede, ou profissional de segurança, consegue a experiencia necessária para resolver os problemas do dia a dia.

REFERENCIAS

Acharya, H. B.; Joshi, A.; Gouda, M. G. Firewall modules and modular firewalls. In: **The 18th IEEE International Conference on Network Protocols**. [S.l.: s.n.], 2010. p. 174–182. ISSN 1092-1648. 5762766.

Boolean World. **An In-Depth Guide to iptables, the Linux Firewall**. 2019. Disponível em: https://www.booleanworld.com/depth-guide-iptables-linux-firewall/.

CHEN, H. et al. Tri-modularization of firewall policies. In: **Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies**. New York, NY, USA: ACM, 2016. (SACMAT '16), p. 37–48. ISBN 978-1-4503-3802-8. Chen:2016:TFP:2914642.2914646. Disponível em: http://doi.acm.org/10.1145/2914642.2914646.

Comodo Antivirus. **What is Firewall and Types of Firewall**. 2019. Disponível em: https://antivirus.comodo.com/blog/comodo-news/types-of-firewall/.

Compuquip Cyber Security. **The Different Types of Firewall Architectures**. 2019. Disponível em: https://www.compuquip.com/blog/the-different-types-of-firewall-architectures.

DigitalOcean. A Deep Dive into Iptables and Netfilter Architecture. 2019. Disponível em: https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-architecture.

HAGEN, P. **iptables Processing Flowchart** (**Updated Often**). 2019. Disponível em: https://stuffphilwrites.com/2014/09/iptables-processing-flowchart/.

Murthy, U. et al. Firewalls for security in wireless networks. In: **Proceedings of the Thirty-First Hawaii International Conference on System Sciences**. [S.l.: s.n.], 1998. v. 7, p. 672–680 vol.7. 649269.

netfilter. **IPTABLES** (manual). 2019. Disponível em: http://ipset.netfilter.org/iptables.man. html>.

netfilter. **The netfilter.org project**. 2019. Disponível em: https://www.netfilter.org/>.

APENDIX A - Script de firewall completo usado no mini-curso

```
1 #!/bin/sh
3 ### BEGIN INIT INFO
4 # Provides:
                  f2.sh
5 # Required-Start:
                  $local_fs $remote_fs $network $syslog
6 # Required-Stop: $local_fs $remote_fs $network $syslog
7 # Default-Start:
                  2 3 4 5
# Default-Stop:
9 # Short-Description: Start firewall at boot time
10 # Description: Enable service provided by f2.sh.
11 ### END INIT INFO
12
13 # Serial: 2019050301 ## Mini-curso ##
14
17 #Autor: Diego Natividade #dn@at
18 #E-mail: diego@connectivaredes.com
19 #Github: /dnatividade
20 #
         Script de firewall usado no mini-curso
21 #Desc .:
25 #VARIAVEIS
26 #Interface de Internet
27 IF_WAN="enp0s3"
28 #Interface da "Rede Local 1" (192.168.1.0/24)
29 IF_LAN1="enp0s8"
30 #Interface da "Rede Local 2" (172.16.0.0/12)
31 IF LAN2="enp0s9"
_{33} #Limpa regras (-F),
```

```
34 #exclui cadeias customizadas (-X),
35 #zera contadores (-Z)
36 for TABLE in filter nat mangle raw security
37 do
    iptables -t $TABLE -F
    iptables -t $TABLE -X
    iptables -t $TABLE -Z
41 done
45 #Politica padrao: DROP
46 iptables -P INPUT DROP
47 iptables -P FORWARD DROP
48 iptables -P OUTPUT DROP
52 #Libera acesso na interface de localhost (10)
53 iptables -A INPUT -i lo -j ACCEPT
54 iptables -A OUTPUT -o lo -i ACCEPT
55 #libera acesso as conexoes ja estabelecidas e relatadas
iptables -A INPUT -m state -- state ESTABLISHED, RELATED -j ACCEPT
<sup>57</sup> iptables -A FORWARD -m state -- state ESTABLISHED, RELATED -j ACCEPT
iptables -A OUTPUT -m state -- state NEW, ESTABLISHED, RELATED -j
   ACCEPT
62 #Libera acesso ICMP request e reply (ping e pong)
iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT
64 iptables -A INPUT -p icmp -- icmp-type 0 -j ACCEPT
65 #Libera acesso a porta 22/TCP para todos
66 iptables -A INPUT -p tcp --- dport 22 -j ACCEPT
```

```
67 #Libera acesso a porta 53/UDP somente para as subredes especificadas
iptables -A INPUT -p udp --dport 53 -s 172.16.0.0/12 -j ACCEPT
69 iptables -A INPUT -p udp --dport 53 -s 192.168.1.0/24 -j ACCEPT
70 #Libera acesso a porta 80/TCP somente para IP, MAC e interface
    especificados
71 iptables -A INPUT -p tcp -- dport 80 -s 172.16.20.200 -m mac -- mac-
    source 00:12:34:0A:BC:DE -i enp0s3 -j ACCEPT
75 #Habilita o encaminhamento de pacotes no Kernel do Linux
76 echo 1 > /proc/sys/net/ipv4/ip_forward
77 #Faz o NAT com mascaramento para rede local
78 iptables -t nat -A POSTROUTING -o $IF_WAN -j MASQUERADE
82 #Libera acesso ao ICMP request e reply (ping e pong) para a Internet
183 iptables -A FORWARD -o $IF_WAN -p icmp -icmp-type 8 -j ACCEPT
184 iptables -A FORWARD -o $IF_WAN -p icmp -icmp-type 0 -j ACCEPT
85 #Libera acesso a porta 80/TCP e 443/TCP para a Internet
iptables -A FORWARD -o $IF_WAN -p tcp --dport 80 -j ACCEPT
87 iptables -A FORWARD -o $IF_WAN -p tcp --dport 80 -j ACCEPT
88 iptables -A FORWARD -o $IF_WAN -p tcp --dport 443 -j ACCEPT
89 iptables -A FORWARD -o $IF_WAN -p tcp --dport 443 -j ACCEPT
93 #Libera acesso ICMP request e reply (ping e pong) entre as subredes
94 iptables -A FORWARD - i $IF_LAN1 - o $IF_LAN2 - p icmp - icmp-type 8 - j
   ACCEPT
95 iptables -A FORWARD -i $IF_LAN1 -o $IF_LAN2 -p icmp -icmp-type 0 -j
   ACCEPT
```

```
96 iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -p icmp --icmp-type 8 -j
    ACCEPT
97 iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -p icmp --icmp-type 0 -j
    ACCEPT
98 #Libera acesso a porta 1111/TCP para a rede local
99 iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -d 192.168.1.100 -p tcp
    —dport 1111 -j ACCEPT
100 #Libera acesso a porta 80/TCP para um IP da rede local
iptables -A FORWARD -i $IF_LAN2 -o $IF_LAN1 -s 172.16.20.200 -d
    192.168.1.100 -р tcp — dport 80 -j ACCEPT
103
105 #Faz DNAT para um IP da rede local
iptables -t nat -A PREROUTING -i $IF_WAN -p tcp --dport 8888 -j DNAT
     ---to 192.168.1.100:7777
107 iptables -t nat -A PREROUTING -i $IF_LAN2 -p tcp --dport 8888 -j DNAT
     ---to 192.168.1.100:7777
108 #Libera acesso a porta 7777/TCP para o IP da regra acima
109 iptables -A FORWARD -d 192.168.1.100 -p tcp -dport 7777 -j ACCEPT
111
112
```

113 #dn@at

APENDIX B - Script de um firewall para uso pessoal

```
1 #!/bin/sh
3 ### BEGIN INIT INFO
4 # Provides:
                  f2.sh
5 # Required-Start:
                  $local_fs $remote_fs $network $syslog
6 # Required-Stop:
                  $local_fs $remote_fs $network $syslog
7 # Default-Start:
                  2 3 4 5
8 # Default-Stop:
9 # Short-Description: Start firewall at boot time
10 # Description: Enable service provided by f2.sh.
11 ### END INIT INFO
12
13 # Serial: 2019050301 ## Mini-curso ##
17 #Autor: Diego Natividade #dn@at
18 #E-mail: diego@connectivaredes.com
19 #Github: /dnatividade
20 #
         Script de firewall pessoal - DROP ALL
21 #Desc .:
23
25 ### Variaveis ###############
26 IF_INT="eth0" # Colocar aqui o nome da placa de rede interna
28 ### Mensagem de inicializa o do Firewall ###
29 echo "Ativando Regras do Personal Firewall — #dnatividade"
32 for TABLE in filter nat mangle raw security
33 do
```

```
iptables −t $TABLE −F
     iptables −t $TABLE −X
     iptables -t $TABLE -Z
37 done
40 iptables -P INPUT DROP
41 iptables -P FORWARD DROP
42 iptables -P OUTPUT DROP
45 iptables -A INPUT -i lo -j ACCEPT
46 iptables -A OUTPUT -o lo -j ACCEPT
47 iptables -A INPUT -i $IF_INT -m state -- state ESTABLISHED, RELATED -j
    ACCEPT
48 iptables -A OUTPUT -o $IF_INT -m state -- state NEW, ESTABLISHED,
   RELATED -j ACCEPT
```

APENDIX C – Exemplo de um *script* de *firewall* completo (para ser adaptado)

```
1 #!/bin/sh
3 ### BEGIN INIT INFO
4 # Provides:
                   f2.sh
5 # Required-Start:
                  $local_fs $remote_fs $network $syslog
6 # Required-Stop:
                   $local_fs $remote_fs $network $syslog
7 # Default-Start:
                   2 3 4 5
8 # Default-Stop:
9 # Short-Description: Start firewall at boot time
10 # Description: Enable service provided by f2.sh.
11 ### END INIT INFO
12
13 # Serial: 2019050301 ## Mini-curso ##
14
17 #Autor: Diego Natividade #dn@at
18 #E-mail: diego@connectivaredes.com
19 #Github: /dnatividade
20 #
         Script de firewall completo para estudos
21 #Desc .:
24 ### Variaveis ###############
25 #interfaces de rede
_{26} IF_WAN=eth0
_{27} IF_LAN=eth 1
_{28} IF_DMZ=eth2
30 #redes
31 REDE LAN=192.168.0.0/24
```

```
34 #IPs de servidores
35 SERVER=192.168.0.11
36 DVR=192.168.0.21
37 CONTABIL=192.168.0.22
38 ###
40 LOGDATA= 'date +%d/%m/%Y' '%T'
43 ### Mensagem de inicializa o do Firewall ###
44 echo "Ativando Regras do Firewall — #dnatividade"
46 ### Carregando modulos ###
47 modprobe ip_nat_ftp
48 modprobe ip_conntrack
49 modprobe ip_conntrack_ftp
51 modprobe ip_nat_pptp
52 modprobe pptp
 for TABLE in filter nat mangle raw security
 do
56
      iptables -t $TABLE -F #Exclui todas as regras
      iptables -t $TABLE -X #Exclui cadeias customizadas
      iptables -t $TABLE -Z #Zera os contadores das cadeias
60 done
 63 ### Define a pol tica padr o do firewall
64 iptables -P INPUT DROP
65 iptables -P OUTPUT DROP
66 iptables -P FORWARD DROP
```

```
69 #
70 ##
71 ###
72 ### Regras PREROUTING -- Redirecionamento de portas ###
13 iptables -t nat -A PREROUTING -i $IF_WAN -p tcp --dport 5541 -j DNAT
    ---to $SERVER
14 iptables -t nat -A PREROUTING -i $IF_WAN -p tcp --dport 9000 -j DNAT
    ---to $DVR
76 #
77 ##
78 ###
79 ### Regras INPUT ###
80 iptables -A INPUT -m state -- state ESTABLISHED, RELATED - j ACCEPT
81 iptables -A INPUT -i lo -j ACCEPT
82 iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
83 iptables -A INPUT -p icmp --- icmp-type 8 -j ACCEPT
84 iptables -A INPUT -p tcp -- dport 22 -j ACCEPT
85 iptables -A INPUT -p tcp -- dport 53 -j ACCEPT
86 iptables -A INPUT -p udp ---dport 53 -j ACCEPT
87
89 ##
90 ###
91 ### Regras FORWARD ###
92 iptables -A FORWARD -m state -- state ESTABLISHED, RELATED -j ACCEPT
94 #da interface "IF_LAN" para "IF_WAN"
95 iptables -A FORWARD -i $IF_LAN -p icmp --icmp-type 0 -j ACCEPT #Ping
96 iptables -A FORWARD -i $IF_LAN -p icmp --icmp-type 8 -j ACCEPT #Ping
97 ###
98 iptables -A FORWARD -i $IF_LAN -m mac --mac-source 01:23:45:AA:BB:CC
    -p tcp --dport 80 -j ACCEPT #libera MAC para acessar porta 80/TCP
```

```
99 iptables -A FORWARD -i $IF_LAN -m mac --mac-source 01:23:45:AA:BB:CC
     -p tcp --dport 443 -j ACCEPT #libera MAC para acessar porta 443/
     TCP
100 ###
iptables -A FORWARD -i $IF_LAN -s $SERVER -p tcp --dport 80
     ACCEPT #Libera IP do servidor para acessar porta 80/TCP
102 iptables -A FORWARD -i $IF_LAN -s $SERVER -p tcp --dport 443
     ACCEPT #Libera IP do servidor para acessar porta 443/TCP
103 iptables -A FORWARD -i $IF_LAN -s $SERVER -p udp --dport 5000 -j
     ACCEPT #ACCEPT #Libera IP do servidor para acessar porta 5000/UDP
104 ###
105 iptables -A FORWARD -i $IF_LAN -p tcp --dport 22 -j ACCEPT #Libera
     todos da rede para acessar porta 22/TCP
iptables -A FORWARD -i $IF_LAN -p tcp --dport 21 -j ACCEPT #Libera
     todos da rede para acessar porta 21/TCP
107 iptables -A FORWARD -i $IF_LAN -p tcp --dport 20 -j ACCEPT #Libera
     todos da rede para acessar porta 20/TCP
108 ###
109 iptables -A FORWARD -i $IF_LAN -s $CONTABIL -d 1.2.3.4 -p tcp --dport
      80 -j ACCEPT #Permite um IP interno acessar um IP externo na
     porta 80
iptables -A FORWARD -i $IF_LAN -s $DVR -d 1.2.3.0/24 -j ACCEPT #
     Permite um IP interno acessar um bloco de IPs /24 externo, em
     qualquer porta/protocolo
111 ###
iptables -A FORWARD -i $IF_LAN -i $IF_WAN -s $CONTABIL -- sport 8817 -
     d 1.2.3.5 — dport 1393 — p udp — j ACCEPT #Permite um IP/porta
     interno acessar um IP/porta externo
113
#da interface "IF_WAN" para "IF_LAN"
iptables -A FORWARD -i $IF_WAN -o $IF_LAN -d $SERVER -p tcp --dport
     5541 - j ACCEPT
iptables -A FORWARD -i $IF_WAN -o $IF_LAN -d $DVR -p tcp --dport
     9000 - j ACCEPT
```

```
117
#da interface "IF_LAN" para "IF_DMZ"
119 #iptables -A FORWARD -i $IF_LAN -o $DMZ -p icmp --icmp-type 0 -j
     ACCEPT
120 #iptables -A FORWARD -i $IF_LAN -o $DMZ -p icmp --icmp-type 8 -j
     ACCEPT
121 #iptables -A FORWARD -i $IF_LAN -o $DMZ -p tcp --dport 3389 -j ACCEPT
122 #iptables -A FORWARD -i $IF_LAN -o $DMZ -p tcp --dport 139 -j ACCEPT
123
#da interface "IF_DMZ" para "IF_LAN"
125 #iptables -A FORWARD -i $IF_DMZ -o $IF_LAN -p icmp --icmp-type 0 -j
     ACCEPT
126 #iptables -A FORWARD -i $IF_DMZ -o $IF_LAN -p icmp --icmp-type 8 -j
     ACCEPT
127 #iptables -A FORWARD -i $IF_DMZ -o $IF_LAN -p tcp --dport 3389 -j
     ACCEPT
128 #iptables -A FORWARD -i $IF_DMZ -o $IF_LAN -p tcp --dport 139 -j
     ACCEPT
129
130 #
131 ##
132 ###
133 ### Regras OUTPUT ###
iptables -A OUTPUT -m state -- state NEW, ESTABLISHED, RELATED -j ACCEPT
135
136 #
137 ##
138 ###
139 ### Regras POSTROUTING ###
echo 1 > /proc/sys/net/ipv4/ip_forward
142 #Configurando NAT
iptables -t nat -A POSTROUTING -s $REDE_IF_LAN -o $IF_WAN -i
     MASQUERADE #NAT: mascaramento (compartilhar Internet)
```

```
#iptables -t nat -A POSTROUTING -o $IF_WAN -j MASQUERADE #NAT:
mascaramento (compartilhar Internet)

145

146 #dn@at
```