МЕТОДЫ ОПТИМИЗАЦИИ

Задача 1

Рассмотрим задачу определения сторон прямоугольника, вписанного в окружность радиуса R и имеющего наибольшую площадь S.

Диагонали вписанного в окружность прямоугольника являются диаметрами окружности и имеют фиксированную длину. Площадь прямоугольника S равна $2R^2 sin \varphi$. Очевидно, что эта площадь будет наибольшей при $sin \varphi = 1$. Это возможно, если $\varphi = \frac{\pi}{2}$. В этом случае диагонали перпендикулярны, а сам прямоугольник превращается в квадрат. Сторона квадрата будет равна $R\sqrt{2}$.

Рассмотрим иной способ решения задачи. Пусть стороны прямоугольника равны a и b соответственно. Тогда его площадь S = ab. Сами параметры при этом должны удовлетворять условиям $\sqrt{a^2 + b^2} = 2R$, a > 0, b > 0. В результате

приходим к следующей задачи оптимизации:

Задача поиска условного экстремума

Целевая функция

Множество допустимых решений

Задача 2

Пусть предприятие выпускает два вида продукции P_1 и P_2 . Для производства продукции используют три типа сырья S_1 , S_2 , S_3 . Расход сырья на каждый вид продукции, стоимость единицы продукции и запасы сырья приведены в таблице.

Виды сырья	Расходы сырья н	Запасы сырья	
	P_{1}	P_{2}	
S_{1}	3	4	70
S_{2}	5	7	80
$S_{\overline{3}}$	8	6	90
Стоимость ед.	20	30	
продукции			

 x_1 - объем выпуска первого вида продукции

 $x_2\,$ - объем выпуска второго вида продукции

'Задача линейного _программирования Целевая функция

$$20x_1 + 30x_2 \rightarrow max$$

$$3x_1 + 4x_2 \le 70$$

$$5x_1 + 7x_2 \le 80$$
,

$$8x_1 + 6x_2 \le 90$$

$$x_1, x_2 \ge 0$$

Множество допустимых решений

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ.

основные положения

Постановка задачи поиска минимума функций содержит:

- *целевую функцию* f(x), где $x = (x_1, ..., x_n)^T$, определенную на n-мерном евклидовом пространстве R^n . Ее значения характеризуют степень достижения цели, во имя которой поставлена или решается задача;
- множество допустимых решений $X \subseteq \mathbb{R}^n$, среди элементов которого осуществляется поиск.

Требуется найти такой вектор x^* из множества допустимых решений, которому соответствует минимальное значение целевой функции на этом множестве:

$$f(x^*) = \min_{X \in X} f(x).$$

Классификация оптимизационных задач

Виды оптимизационных задач

Целевая функция	Ограничения	Вид 3О	
Линейная	Линейные	Задача линейного	
		программирования	
Линейная/Нелинейная	Нелинейные/Линейные	Задача нелинейного	
		программирования	
Квадратичная	Линейные	Задача квадратичного	
		программирования	
Выпуклая	Выпуклые	Задача выпуклого	
		программирования	
Произвольная	Произвольные	Задача	
		математического	
		программирования	

Задачи целочисленного программирования

Оптимизационные задачи теории управления

Литература

- 1. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление.- М.: Наука, 1979.
- 2. Васильев Ф.П. Линейное программирование. М.: Факториал Пресс, 2008.
- 3. Васильев Φ .П. Методы оптимизации. Т. І и ІІ. М.: МЦНМО, 2011.
- 4. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983
- 5. Летова Т.А., Пантелеев А.В. Экстремум функций в примерах и задачах. М.:Изд-во МАИ, 1998
- 6. *Пантелеев А.В.* Применение эволюционных методов глобальной оптимизации в задачах оптимального управления детерминированными системами. М.: Изд-во МАИ, 2013.
- 7. Нестеров Ю.Е. Введение в выпуклую оптимизацию. М.: МЦНМО, 2010.
- 8. Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение. М: ДМК Пресс, 2018.
- 9. *Бахвалов Н.*С. Численные методы. М.: Наука, 1973.
- 10. Формалев В.Ф., Ревизников Д.Л. Численные методы. М.: Физматлит, 2006
- 11. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1966.
- 12. Вержбицкий В.М. Основы численных методов. М.: Высшая школа, 2002.
- 13. Пантелеев А.В., Кудрявцева И.А. Численные методы. Практикум.- М.: ИНФРА-М, 2017.

Замечания.

1. Задача поиска максимума функции f(x) сводится к задаче поиска минимума путем замены знака перед функцией на противоположный (рис. 1):

$$f(x^*) = \max_{x \in X} f(x) = -\min_{x \in X} [-f(x)].$$

2. Задача поиска минимума и максимума целевой функции f(x) называется задачей поиска экстремума: $f(x^*) = \underset{x \in X}{\operatorname{extr}} f(x)$.

f(x) >> min

3. Если множество допустимых решений X задается ограничениями (условиями), накладываемыми на вектор x , то решается задача поиска условного экстремума. Если $X=R^n$, т.е. ограничения (условия) на вектор x отсутствуют, решается задача поиска безусловного экстремума.

4. Решением задачи поиска экстремума является пара $(x^*, f(x^*))$, включающая точку x^* и значение целевой функции в ней.

5. Множество точек минимума (максимума) целевой функции f(x) на множестве X обозначим X^* . Оно может содержать конечное число точек (в том числе одну), бесконечное число точек или быть пустым.

Определение 1. Точка $x^* \in X$ называется точкой глобального (абсолютного) минимума функции f(x) на множестве X, если функция достигает в этой точке своего наименьшего значения, т.е.

$$f(x^*) \le f(x) \quad \forall x \in X$$
.

Определение 2. Точка $x^* \in X$ называется точкой локального (относительного) минимума функции f(x) на множестве допустимых решений X, если существует $\varepsilon > 0$, такое, что если $x \in X$ и $\|x - x^*\| < \varepsilon$, то $f(x^*) \le f(x)$. Здесь $\|x\| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$ евклидова норма вектора x.

Определение 3. Поверхностью уровня функции f(x) называется множество точек, в которых функция принимает постоянное значение, т.е. f(x) = const. Если n = 2, поверхность уровня изображается линией уровня на плоскости R^2 .

Определение 4. Градиентом $\nabla f(x)$ непрерывно дифференцируемой функции f(x) в точке x называется векторстолбец, элементами которого являются частные производные первого порядка, вычисленные в данной точке:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}.$$

Градиент функции направлен по нормали к поверхности уровня (см. определение 3), т.е. перпендикулярно к касательной плоскости, проведенной в точке x, в сторону наибольшего возрастания функции в данной точке.

Определение 5. Матрицей Гессе H(x) дважды непрерывно дифференцируемой в точке x функции f(x) называется матрица частных производных второго порядка, вычисленных в данной точке:

$$H(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} \end{pmatrix},$$

где
$$h_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$
, $i, j = 1, ..., n$.

Определение 6. Квадратичная форма $\Delta x^T H(x) \Delta x$ (а также соответствующая матрица Гессе H(x)) называется:

- положительно определенной (H(x)>0), если для любого ненулевого Δx выполняется неравенство $\Delta x^T H(x) \Delta x > 0$;
- отрицательно определенной (H(x) < 0), если для любого ненулевого Δx выполняется неравенство $\Delta x^T H(x) \Delta x < 0$;
- *положительно полуопределенной* $(H(x) \ge 0)$, если для любого Δx выполняется неравенство $\Delta x^T H(x) \Delta x \ge 0$ и имеется отличный от нуля вектор Δx , для которого $\Delta x^T H(x) \Delta x = 0$;
- *отрицательно полуопределенной* $(H(x) \le 0)$, если для любого Δx выполняется неравенство $\Delta x^T H(x) \Delta x \le 0$ и имеется отличный от нуля вектор Δx , для которого $\Delta x^T H(x) \Delta x = 0$;
- *неопределенной* ($H(x) \gtrsim 0$), если существуют такие векторы Δx , $\Delta \tilde{x}$, что выполняются неравенства $\Delta x^T H(x) \Delta x > 0$, $\Delta \tilde{x}^T H(x) \Delta \tilde{x} < 0$;
- тождественно равной нулю $(H(x) \equiv 0)$, если для любого Δx выполняется равенство $\Delta x^T H(x) \Delta x = 0$.

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ БЕЗУСЛОВНОГО ЭКСТРЕМУМА

Постановка задачи

Дана дважды непрерывно дифференцируемая функция f(x), определенная на множестве $X=R^n$.

Требуется исследовать функцию f(x) на экстремум, т.е. определить точки $x^* \in R^n$ ее локальных минимумов и максимумов на R^n :

$$f(x^*) = \min_{x \in \mathbb{R}^n} f(x); \quad f(x^*) = \max_{x \in \mathbb{R}^n} f(x). \tag{2}$$

Утверждение 1 (необходимые условия экстремума первого порядка).

Пусть $x^* \in R^n$ есть точка локального минимума (максимума) функции f(x) на множестве R^n и f(x) дифференцируема в точке x^* . Тогда градиент функции f(x) в точке x^* равен нулю, т.е.

$$\nabla f(x^*) = 0 \tag{3}$$

или

$$\frac{\partial f(x^*)}{\partial x_i} = 0, \quad i = 1, ..., n. \tag{4}$$

Определение 5. Точки x^* , удовлетворяющие условию (3) или (4), называются *стационарными*.

Утверждение 2 (необходимые условия экстремума второго порядка).

Пусть точка x^* есть точка локального минимума (максимума) функции f(x) на множестве R^n и функция f(x) дважды дифференцируема в этой точке. Тогда матрица Гессе $H(x^*)$ функции f(x), вычисленная в точке x^* , является положительно полуопределенной (отрицательно полуопределенной), т.е.

$$H(x^*) \ge 0, \tag{5}$$

$$(H(x^*) \le 0). \tag{6}$$

Утверждение 3 (достаточные условия экстремума).

Пусть функция f(x) в точке $x^* \in \mathbb{R}^n$ дважды дифференцируема, ее градиент равен нулю, а матрица Гессе является положительно определенной (отрицательно определенной), т.е.

$$\nabla f(x^*) = 0 \quad \text{if } H(x^*) > 0, \tag{7}$$

$$(H(x^*)<0).$$
 (8)

Тогда точка x^* есть точка локального минимума (максимума) функции f(x) на множестве R^n .

• Критерий проверки достаточных условий экстремума (критерий Сильвестра).

Для того чтобы матрица Гессе $H(x^*)$ была положительно определенной ($H(x^*) > 0$) и точка x^* являлась точкой локального минимума, необходимо и достаточно, чтобы знаки угловых миноров были строго положительны:

$$\Delta_1 > 0, \quad \Delta_2 > 0, \dots, \quad \Delta_n > 0. \tag{9}$$

Для того чтобы матрица Гессе $H(x^*)$ была отрицательно определенной ($H(x^*) < 0$) и точка x^* являлась точкой локального максимума, необходимо и достаточно, чтобы знаки угловых миноров чередовались, начиная с отрицательного:

$$\Delta_1 < 0, \ \Delta_2 > 0, \ \Delta_3 < 0, ..., \ \left(-1\right)^n \Delta_n > 0.$$
 (10)

- Критерий проверки необходимых условий экстремума второго порядка.
- 1. Для того чтобы матрица Гессе $H(x^*)$ была положительно полуопределенной $(H(x^*) \ge 0)$ и точка x^* может быть являлась точкой локального минимума, необходимо и достаточно, чтобы все главные миноры определителя матрицы Гессе были неотрицательны.
- 2. Для того чтобы матрица Гессе $H(x^*)$ была отрицательно полуопределенной $(H(x^*) \le 0)$ и точка x^* может быть являлась точкой локального максимума, необходимо и достаточно, чтобы все главные миноры четного порядка были неотрицательны, а все главные миноры нечетного порядка неположительны.

Таблица 1

пш/п	$\nabla f(x^*)$	$H(x^*)$	Первый способ	Тип стационарной точки <i>х</i> *
1	0	> 0	$\Delta_1 > 0, \Delta_2 > 0,, \Delta_n > 0$	Локальный минимум
2	0	< 0	$\Delta_1 < 0, \Delta_2 > 0,, (-1)^n \Delta_n > 0$	Локальный максимум
3	0	≥ 0	Все главные миноры определителя матрицы $H(x^*)$ неотрицательны	Может быть локальный минимум, требуется допол- нительное исследование
4	0	≤ 0	Все главные миноры четного порядка неотрицательны, а нечетного порядка неположительны	Может быть локальный максимум, требуется дополнительное исследование
5	0	= 0	Матрица Гессе состоит из нулевых элементов	Требуется дополнительное исследование
6	0	≥0	Не выполняются условия п. 1–5	Нет экстремума