Transformata Fouriera

Mateusz Kojro

1 Podstawa teoretyczna

1.1 Transformata Fouriera

Transformacje Fourierowskie to dziedzina transformacji pozwalających na przekształcanie funkcji z dziedziny czasu (np. przebiegi natężenia dźwięku w czasie) na funkcje w dziedzinie częstotliwości (np. natężenia dźwięku dla poszczególnych częstotliwości). Jednowymiarową transformatę możemy zapisać jako funkcje $f: \mathbb{R} \to \mathbb{C}$ za pomocą wzoru[3]:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-i\omega x) \, dx, \quad \forall \omega \in \mathbb{R}$$
 (1)

gdzie i oznacza jednostkę urojoną a jeżeli x oznacza wartości należące do dziedziny badanej funkcji (W przykładzie badania natężenia dźwięku od czasu będzie miał jednostkę czasu), f(x) jest wartością badanej funkcji dla danego x a ω oznacza częstotliwość (w przypadku gdy x jest czasem mierzonym w sekundach ω będzie miało jednostkę Hz) q

1.2 Odwrotna transformata Fouriera

W niektórych sytuacjach możliwe jest odwrócenie transformaty w celu uzyskania oryginalnego sygnału za pomocą tzw. odwrotnej transformaty Fouriera opisanej wzorem[3]:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \exp(i\omega x) \ d\omega, \ \forall x \in \mathbb{R}$$
 (2)

gdzie \hat{f} oznacza wynik transformaty f ouriera dla funkcji f

1.3 Dyskretne transformaty Fouriera

Dyskretyzacja transformaty Fouriera pozwala na zastosowanie tradycyjnej transformaty do analizy sygnalów mierzonych przez instrumenty (instrument pomiarowy generować będzie dyskretne próbki danych a nie ciągłą funkcje). Dyskretna transformatę możemy opisać za pomocą sumy przekształcającej ciąg próbek jakiegoś sygnału $[x_0, x_1, \ldots, x_{N-1}]$ gdzie $x_i \in \mathbb{R}$ w ciąg harmonicznych tego sygnału oznaczanych: $[X_0, X_1, \ldots, X_{N-1}]$ gdzie $X_n \in \mathbb{C}$ danej wzorem [5]:

$$X_k = \sum_{n=0}^{N-1} x_n \exp\left(\frac{-ikn2\pi}{N}\right), \ 0 \le k \le N-1$$
 (3)

gdzie k to numer badanej harmonicznej a N to liczba próbek w sygnale.

1.4 Transformaty wielowymiarowe

Transformata Fouriera może zostać uogólniona do n wymiarów korzystając z wzoru [3]:

$$\hat{f}(k) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int f(r) \exp\left(-ikr\right) d^n r \tag{4}$$

w którym $k = [k_1, k_2, \dots, k_n]$ a jej odwrotność do

$$f(r) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int \hat{f}(k) \exp(ikr) d^n k$$
(5)

1.5 Szybka transformata Fouriera

Tzw szybkie transformacje Fouriera to zbiór algorytmów majacych na celu przspieszenie działania standardowej DFT [2]. Najczęściej stosowanym algorytmem z tej rodziny jest algorytm Cooley'aTukey'a umożliwiający poprawienie złożoności czasowej DFT z $O(n^2)$ do $O(n\log n)$ [4] wykorzystując jej wewnętrzną symetrię i uzywając standardowej DFT tylko dla próbek o długości mniejszej od pewnego zadanego maksimum. Jego ograniczeniem jest wymaganie aby długość sygnału była potęgą 2[5].

2 Analiza sygnału za pomocą transformaty Fouriera

Jednowymiarowa sykretna transformata Fouriera moze zostac wykorzystana do analizy i modyfikacji funkcji przebiegu czasowego sygnalu. Dobry przykładem takiego zastosowania jest wykorzystanie DFT podczas analizy i obróbki sygnalu dźwiękowego. Umozliwia ona miedzy innymi na analize spektrum czestotliwosci w celu separacji sygnalow składowych. Natomiast w polaczeniu z IDFT moze zostac wykorzytana w celu zmiany sygnalu wejsciowgo (np. w celu usuniecia szumu na danej czestotliwosci lub wzmocnienia sygnalu na innej)

2.1 Analiza sprawności implementacji DFT i IDFT

2.1.1 Wykorzystane narzędzia

W celu analizy sygnalu podanego w zadaniu zaimplementowane zostały DFT i IDFT. Wykorzystano język programowania C++ w standardzie 14 (ISO/IEC 14882) kompilowany za pomocą kompilatora MSVC w wersji 19.29.30136

2.1.2 Badanie sygnału o znanych składowych

W celu zbadania poprawnosci implementacji DFT wygenerowano 3 testowe sygnaly na przedziale od 0 do 10π kazdy z nich zawiera 100 probek (ich przebiegi czasowe przedstawione zostały na rysunku)

- 1. Funkcja określona wzorem $f(t) = \sin(t)$
- 2. Funkcja określona wzorem $f(t) = \sin(2t)$
- 3. Złożenie funkcji 1 i funkcji 2

powinnismy wiec otrzymac maxima transformaty sygnałów w x=5 dla sygnalu 1 i x=10 dla sygnalu 2 o wartości około f(x)=0.5. Dla ich zlozenia transformata powinna natomiast wygladac jak sum tych wykresow. Wyniki przedstawione na rysunku ? Z duza dokłdanoscia zgadzaja sie z oczekiwanymi wynikami. Co argumentuje poprawnosc implementacji dft.

W celu sprawdzenia poprawnosci IDFT wyniki tej ww. transformacji zostana nastepnie poddane transfomacji odwrotnej a uzyskany sygnal powinien byc zblizony do sygnalu oryginalnego. Wyniki IDFT porownane z sygnalem orginlanym przedstawiono na

$2.1.3\,$ Porównanie wyników z implementacja biblioteki SciPy

Droga zastosowana metoda badania poprawnosci implementacji jest porownanie wynikow wygenerowanych dla danego zestawu danych z wynikiami otrzymanymi po aplikowaniu implementacji dft i idft znajdujacych sie w bibilotece SciPy [1]. Wykorzytsany do tego zostanie plik dane_10.in.

Plik dane_10.in

Rysunki? jasno obrazuja bardzo wysoki stopien podobienstwa pomiedzy wynikami testowanej implementacji i implementacji i implementacji w bibilotece python (wyniki fft w pythonie poddane zostały normalizaci poprzez podzielnie wszystkich wartości przez ilosc probek poniewaz testowana implementacja stosuje taki zabieg)

IDFT Testowana implementacja

2.2 Analiza zadanego sygnału

Na rysunkach ? przedstawiono przebiegi czasowe zadanych sygnalow (10, 33 i dwu wymiarowy 6) ktore nastepnie poddane zostana analizie.

Plik dane_33.in

DFT dla pliku dane_33.in

Plik dane_33.in

DFT dla pliku dane_33.in

- 2.2.1 Sygnal 1 wymiarowy
- 2.2.2 Sygnal 2 wymiarowy
- 2.3 Wnioski i podsumowanie

References

- [1] The SciPy community. Fourier Transforms. URL: https://www.scipy.org/doc/scipy/reference/fft.html.
- [2] Cooley Tukey FFT algorithm. URL: https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm.
- [3] S.J Bence K.F Riley M.P Hobson. *Mathematical Methods for Physics and Engineering*. Cambridge University Press, 2018.
- [4] M. Marchewczyk. Transformacje Fouriera. URL: https://home.agh.edu.pl/~zobmat/2020/II_mich_mar/.
- [5] A. Bayen Q. Kong T. Siauw. *Python Programming and Numerical Methods*. URL: https://pythonnumericalmethods.berkeley.edu/notebooks/chapter24.02-Discrete-Fourier-Transform.html.