Udacity Data
Welcome to AI Programming with Python Nanodegree
1 video
2-video
3- quiz(1)
4-quiz(2)
Why Python Programming
Vid1
Vid2
Data types and Operators
Vid1
Vid2
Quiz1
Quiz2

Transpose

\[
\begin{align*}
\text{q_1} & \quad \text{q_2} & \quad \text{q_3} & \quad \quad \text{q_3} \\
\text{q_n} & \quad \text{q_n} & \quad \text{q_n} & \quad \text{q_n} \\
\text{q_n} & \quad \text{q_n} & \quad \text{q_n} \\
\text{q_n} & \quad \text{q_n} & \quad \text{q_n} & \quad \text{q_n} \\
\text{q_n} & \quad \text{q_n} & \quad \text{q_n} & \quad \text{q_n} \\
\text{q_n} & \quad \text{q_n} & \quad \text{q_n} & \quad \text{q_n} \\
\text{q_n} & \quad \text{q_n} & \quad \text{q_n} & \quad \text{q_n} \\
\text{q_n} & \quad \text{

Operations in the Field

Operations are

- Addition
- Multipication

- Associative
- Commutative
- Distributive
- Identity (defining zero addition and multpication by one)
- Inverse

Scalar by Vector Multipication

2 and Jarrette "basis voctors".
It the my coordinate 5 yelow.

Linear Combination

Vectors Vs Points

Linear Combination and Span = Theoretical Definition

The Stan of Pondis is the sol of all Herr livear combitedron

$$\begin{cases}
-14a + 5b = -13 \\
2a - b = 3 \Rightarrow x5
\end{cases}$$

$$= \begin{cases}
-(4a + 5b = -13) \\
-(4a + 5b = -13) \\
-(4a + 0b = 15)
\end{cases}$$

$$= \begin{cases}
-(4a + 5b = -13) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

$$= \begin{cases}
-(4a + 0b = 2) \\
-(4a + 0b = 2)
\end{cases}$$

Matrix

Matrix- is a two dimensional array that contains the same elements as the vector

M rows and n columns

$$A = \begin{cases} 911 & 912 & 911 \\ 921 & 931 \\ 631 & 9mn \end{cases}$$

Matrix Addition

Scalar Multiplication of a Matrix

Matrix Multiplication

2xZ modrix. $\begin{bmatrix} a b \\ C d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 9 \\ 4 \end{bmatrix} + y \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ = [Ox +by]