Estimation des retards des lignes de train en Pologne

Objectif

Construire un modèle d'IA capable de mieux prédire en avance les retards que l'outil actuel

Aucune connaissance sur le fonctionnement du modèle de prédiction actuel

Non-connaissance de l'arrivée exacte du train

Historique de 2 semaines seulement

Non utilisation des prédictions intermédiaires du prestataire actuel

Etapes projet

- Mise en forme et nettoyage des données
- Feature preprocessing
- Choix de la loss function
- Choix et construction du modèle
- Comparaison de nos résultats avec le modèle de prédiction actuel

Mise en forme des données

Création d'un identifiant unique des trains

- Utilisation d'un regex afin d'extraire les différentes parties de l'id
- Similarité des voyages en se basant sur la première partie

Identification de cycles de voyages

- Parcours d'un train pouvant varier même si celui-ci conserve le même id
- Cas d'arrêts du scraping avant la gare d'arrivée

Retard au passage de la gare

- Identifié en utilisant la dernière ligne du dataset avant changement de gare
- On part du principe qu'elle correspond au retard réel

Mise en forme des données

- Conserver seulement les informations d'un train au moment où celui-ci est en gare
 - Id_train
 - Transporteur
 - Date_depart
 - Depart_destination
 - Arrivee_prevue
 - Nom_station

Carte des arrivées et départs

- Format des données :
 - ▶ Informations propres au train
 - ▶ Identifiant du train
 - Nom du transporteur
 - Informations propres à la station de prédiction
 - ► Nom de la station
 - Heure d'arrivée prévue
 - Météo
 - Localisation
 - Nombre de trains ayant traversé la station pendant l'heure et la journée
 - Informations sur la dernière station parcourue
 - Nom de la station
 - Heure d'arrivée prévue
 - Météo
 - Localisation
 - Nombre de trains ayant traversé la station pendant l'heure et la journée
 - Retard
 - Informations relatives au parcours restant
 - Durée du trajet entre les deux stations
 - ▶ Distance entre les deux stations

- Extraction départ destination
 - Utilisation d'API pour obtenir la longitude et la latitude
 - Utilisation d'API pour obtenir la météo de la journée à cette localisation
 - Si données indisponibles, météo de la grande ville la plus proche

gare	tsun	pres	wpgt	wspd	wdir	snow	prcp	tmax	tmin	tavg	time
Opole Wschodnie	0.0	1019.7	14.8	4.7	68.0	0.0	0.0	24.5	4.9	15.6	2022-05-16
Opole Wschodnie	0.0	1018.9	22.2	6.8	24.0	0.0	0.0	18.5	11.5	15.7	2022-05-17
Opole Wschodnie	0.0	1027.9	16.7	6.5	74.0	0.0	0.0	19.6	6.2	13.0	2022-05-18
Opole Wschodnie	0.0	1024.9	27.8	9.8	155.0	0.0	0.0	25.5	3.3	16.0	2022-05-19
Opole Wschodnie	0.0	1018.3	29.6	8.9	217.0	0.0	0.0	28.4	14.3	21.6	2022-05-20

- Identification des 3 gares précédents la gare concernée du trajet
 - Retard dans chacune de ces gares
 - ▶ Distance km depuis ces gares (vol d'oiseau)
 - ▶ Distance temporelle depuis ces gares

- Gare concernée
 - Nombre de passage de train dans cette gare depuis le début de la journée
 - Nombre de passage de train dans cette gare depuis le début de l'heure
 - Nombre de passage de ce train dans cette gare depuis le début de la journée

- Retard Moyen dans la gare concernée
 - Expanding windows (moyenne sur historique total)
 - Rolling windows (moyenne locale)

- Heure
- Minute
- Jour de la semaine
- Numéro du jour dans le mois

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Loss function

- MAE : moyenne des écarts absolus entre nos prédictions et les retards réels
- Résultat que l'on souhaite minimiser

Stratégie 1 > Prédiction du retard une station à l'avance

- Information très récente
- Peu de changements d'une station à une autre

Prédictions parfois tardives:

- Prochaine station dans quelques minutes
- Trajets courts

Résultats Stratégie 1

Gradient Boosting

Random Forest

Gradient boosting

MAE: 1.3971694139680957 Accuracy 0.783970508254172

Random Forest

MAE: 1.0020446274007333

Accuracy: 0.7551763150361899

Stratégie 2 ► Prédiction du retard 30 minutes à l'avance

- Possibilité de généraliser à d'autres fenêtres de temps
- Plus proche du système actuel

précises à court terme:

 Moins d'informations sur le trajet en cours

Résultats Stratégie 2

Deep Learning

DataFrame de 200 000 lignes

Split train-test de 75-25

51 features

X_train shape : (158365, 51)
y_train shape : (158365,)
X_test shape : (52789, 51)
y_test shape : (52789,)

Total params: 1,530,861 Trainable params: 1,530,605 Non-trainable params: 256

Résultats à 30 minutes

Baseline - Résultats de l'ancien prestataire

Données enregistrées toutes les 5 minutes pour chaque station à partir du

départ du train.

MAE: 3.5762492391852656

Accuracy: 0.7920202173032963

► En prévoyant 5 * n minutes à l'avance :

Minutes	MAE IA	MAE Pologne	Accuracy	Minutes	MAE IA	MAE Pologne	Accuracy
0		0.00	1.00	50.00	1.15	2.02	0.55
5		0.17	0.92	55.00		2.27	0.53
10		0.36	0.85	60.00	1.21	2.51	0.51
15		0.54	0.78	65.00		2.72	0.51
20		0.72	0.72	70.00		2.98	0.50
25		0.88	0.69	75.00		3.23	0.48
30	1.18	1.08	0.66	80.00		3.53	0.47
35		1.30	0.63	85.00		3.78	0.46
40	1.21	1.56	0.59	90.00		4.11	0.44
45		1.78	0.57	95.00		4.44	0.43

Pistes d'amélioration

- ► Feature preprocessing
 - ► Ajout de variables :
 - ► Données sur les stations parcourues
 - ► Nombre de stations parcourues
- Modèles :
 - ► LSTM
 - Optimisation des hypers paramètres
- Analyse des erreurs