Learning with Noise: Improving Distantly-Supervised Fine-grained Entity Typing via Automatic Relabeling

Haoyu Zhang*, Dingkun Long*, Guangwei Xu Muhua Zhu, Pengjun Xie, Fei Huang, Ji Wang

Background

Fine-Grained Entity Typing (FET):

- A pre-defined type hierarchy.
- Given sentence c with entity mention m.
- Answer one most appropriate fine-grained entity type y.

c: He is interred at Forest Lawn Memorial Park in Hollywood Hills, Los Angeles, CA.

m: Hollywood Hills

y:/entity/geography/mountain

distant supervision: Construct supervised corpus for FET

- o entity mention link > knowledge base nodes
- o node types ---> the distant labels
- o provide supervision & NOISE

Amazon unveiled its Japanese language website.

Attalea speciosa, which grows in the Amazon region of South America.

| Company | Compan

Figure from (Chen et al. Hierarchical Entity Typing via Multi-level Learning to Rank. 2020.)

Recent Approaches

NDP (Wu et al. 2019):

- Weight out noisy samples.
- Assumption: distant labels always contain the correct type <- Overly Strong

NFETC-CLSC (Chen et al. 2019):

- o Classification objective on "clean" samples
- o Unsupervised cluster objective on "clean" + "noisy" samples <- Not always valid
- o Prerequisites: judgeable "clean" training set
- o Assumption: samples with one type label contains no noise <- Overly Strong

Recent Approaches

NDP (Wu et al. 2019):

- Weight out noisy samples.
- Assumption: distant labels always contain the correct type

NFETC-CLSC (Chen et al. 2019):

- o Classification objective on "clean" samples
- o Unsupervised cluster objective on "clean" + "noisy" samples
- o Prerequisites: judgeable "clean" training set
- o Assumption: samples with one type label contains no noise

In a word:

- -> Rely on Overly Strong assumptions/prerequisites
- -> \times x false positive one type "clean" samples \times x

Our Method

Use *NFETC* with parameters θ as the backbone network.

Pseudo Label Distribution Estimation:

- \circ \widetilde{p} : Continuous pseudo distribution $\overset{\text{assign}}{---}$ each training sample
- o Trainable, update through BP.

o
$$\theta^* = \operatorname{argmin}_{\theta} \mathcal{L}(m, c, y; \theta) \longrightarrow \theta^*, \tilde{p}^* = \operatorname{argmin}_{\theta, \tilde{p}} \mathcal{L}(m, c, y; \theta, \tilde{p})$$

$\tilde{p} \leftarrow \kappa \mathcal{L} \rightarrow p$

Automatic Relabeling (AR) Process:

- o Assumption: each sample has exact one true type label
- o Objective: $\mathcal{KL}(\tilde{p}||p)$

Confirmation Bias!
Ignore the noisy labels

Our Method

Automatic Relabeling (AR) Process:

- o Assumption: each sample has exact one true type label
- o Main Objective: $\mathcal{KL}(\tilde{p}||p)$
- o Information in noisy labels:
 - o $\times \times$ Totally different from noisy labels $\times \times$: $L_d = \mathcal{CE}(\tilde{p}, y)$
 - o Noisy labels contain valuable information, using it for pseudo distribution initialization
 - o keep predictive distribution reasonable: $L_{ce} = \mathcal{CE}(p, y)$
- o Distribution Sharpen Constraint:
- o Estimated distribution \tilde{p} -> one-hot pseudo labels \hat{y}

Our Method

Three phrase Training:

- O Preliminary Training, use y, update θ .
- Automatic Relabeling.
- o Fine-Tuning, use \hat{y} , update θ .

NFETC-AR Framework

Exp: Baselines & Evaluation

Baselines:

- NFETC (Xu et al., 2018, our backbone). [variants w/wo hier loss]
- NDP (Wu et al., 2019).
- NFETC-CLSC (Chen et al., 2019).
- NFETC-AR w/o KL/Noisy-Info/Sharpen (ablation study).

Datasets:

BBN, Wiki, OntoNotes

Evaluation:

- o Classification Accuracy
- o Macro F1
- o Micro F1

Exp: Results

		Macro F1	
NFETC-AR _{hier}	l	$\textbf{78.8} \pm \textbf{0.3}$	1
w/o \mathcal{L}_{kl}		76.6 ± 0.4	
w/o \mathcal{L}_d		78.4 ± 0.2	
w/o \mathcal{L}_{ce}	61.1 ± 0.3	76.1 ± 0.3	69.9 ± 0.5
w/o noisy label init	l		
w/o \mathcal{L}_s			72.3 ± 0.6
w/o AR	60.2 ± 0.2	76.4 ± 0.1	70.2 ± 0.2

ablation on OntoNotes

Model	Wiki		OntoNotes		BBN				
	Strict Acc	Macro F1	Micro F1	Strict Acc	Macro F1	Micro F1	Strict Acc	Macro F1	Micro F1
AFET	53.3	69.3	66.4	55.3	71.2	64.6	68.3	74.4	74.7
AAA	65.8	81.2	77.4	52.2	68.5	63.3	65.5	73.6	75.2
Attentive	59.7	80.0	75.4	51.7	71.0	64.91	48.4	73.2	72.4
NDP	67.7	81.8	78.0	58.0	71.2	64.8	72.7	76.4	77.7
NFETC	56.2 ± 1.0	77.2 ± 0.9	74.3 ± 1.1	54.8 ± 0.4	71.8 ± 0.4	65.0 ± 0.4	73.8 ± 0.6	78.4 ± 0.6	78.9 ± 0.6
\mathbf{NFETC}_{hier}	$\textbf{68.9} \pm \textbf{0.6}$	$\textbf{81.9} \pm \textbf{0.7}$	$\textbf{79.0} \pm \textbf{0.7}$	60.2 ± 0.2	76.4 ± 0.1	70.2 ± 0.2	73.9 ± 1.2	78.8 ± 1.2	$\textbf{79.4} \pm \textbf{1.1}$
NFETC-CLSC	-	-	-	59.6 ± 0.3	75.5 ± 0.4	69.3 ± 0.4	74.7 ± 0.3	80.7 ± 0.2	80.5 ± 0.2
$NFETC-CLSC_{hier}$	-	-	-	62.8 ± 0.3	$\textbf{77.8} \pm \textbf{0.3}$	$\textbf{72.0} \pm \textbf{0.4}$	73.0 ± 0.3	79.8 ± 0.4	79.5 ± 0.3
NFETC-AR	58.1 ± 1.1	79.0 ± 0.4	76.1 ± 0.4	62.8 ± 0.4	77.8 ± 0.4	71.8 ± 0.5	76.7 ± 0.2	81.4 ± 0.3	81.5 ± 0.3
NFETC-AR _{hier}	$\textbf{70.1} \pm \textbf{0.9}$	$\textbf{83.2} \pm \textbf{0.7}$	$\textbf{80.1} \pm \textbf{0.6}$	64.0 ± 0.3	$\textbf{78.8} \pm \textbf{0.3}$	73.0 ± 0.3	74.9 ± 0.6	80.4 ± 0.6	80.3 ± 0.6

Classification performances on three benchmark datasets

Exp: Analysis

Source	Type	Context & Mention	Original Label	After Relabeling
OntoNotes	Multi-to-one-in	Jennifer Laden , NPR News , Jerusalem	{/org/company/news, /person}	/org/company/news
Wiki	Multi-to-one-in	the Plains of Abraham in Quebec City, Quebec, Canada.	{/location/country, /person/director}	/location/country
BBN	Multi-to-one-in	Federal researchers said lung-cancer mortality rates for people under 45	{/person, /org/government}	/person
OntoNotes	Multi-to-one-out	Because along with Haditha comes Jesse Macbeth, allegedly	{/other/art/writing, /other/art/stage}	/person
OntoNotes	One-to-one-out	Alcee Hastings of Florida of eight impeachment articles ,	/other/health/malady	/other/art/writing

Three types of relabeling

0	multi-to-one-in:	97.49%
0	multi-to-one-out:	0.12%
0	one-to-one-out:	2.39%
0	<pre>Relabeling/All-Samples:</pre>	27.52%

Conclusion

Automatic Relabeling Process:

- Helps infer pseudo labels and use the corrected labels for fine-tuning.
- Verified on noisy label FET task.
- NOT rely any prerequisite or extra supervision. (robust)
- Backbone agnostic, noise agnostic. (general & flexible)

Thanks for listening!

For more details, please refer to our paper/slides/poster:

<u>Paper</u>

Slides

Poster