RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2020

Session principale		
Épreuve : Mathématiques	Section: Sciences de l'informatique	
Durée : 3h	Coefficient de l'épreuve: 3	

BBBBBB

Le sujet comporte 4 pages numérotées de 1/4 à 4/4 (la page 4 /4 est à rendre avec la copie)

Exercice 1: (5 points)

On considère dans \mathbb{C} l'équation (E): $z^2 - (3 + 3i\sqrt{3})z - 6 + 3i\sqrt{3} = 0$.

- 1) a) Vérifier que i $\sqrt{3}$ est une solution de l'équation (E).
 - b) En déduire l'autre solution de l'équation (E).
- 2) Le plan complexe est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) . On considère les points A, B et C d'affixes respectives $z_A = i\sqrt{3}$, $z_B = 3 + 2i\sqrt{3}$ et $z_C = 3 2i\sqrt{3}$.
 - a) Calculer $(z_B z_A)(\overline{z_C z_A})$.
 - b) En déduire que le triangle ABC est rectangle en A.
- 3) Dans la figure de l'annexe ci-jointe, on a placé le point A.
 - a) Soit D le point d'affixe $z_D = -3$. Montrer que le point A est le milieu du segment [DB].
 - b) Placer les points D, B et C.
 - c) Montrer que l'aire du triangle DCB est égale à $12\sqrt{3}$.

Exercice 2: (4,5 points)

Une enquête effectuée dans les laboratoires d'informatique d'un lycée équipés d'un lot d'ordinateurs de deux types D et L, achetés 5 ans plus tôt, montre que :

- 50% d'ordinateurs sont de type D.
- 59% d'ordinateurs de type D ont subi au moins une panne durant les 5 ans.
- 30% d'ordinateurs de type L n'ont subi aucune panne durant les 5 ans.

On choisit au hasard un ordinateur de ce lot et on considère les événements suivants :

- A: « L'ordinateur choisi est de type D ».
- B: « L'ordinateur choisi est de type L ».
- C: « L'ordinateur choisi a subi au moins une panne durant les 5 ans ».
- 1) Déterminer p(C/A) et $p(\overline{C}/B)$.

2) Recopier et compléter l'arbre probabiliste ci-contre :

Dans la suite de l'exercice, on donnera les résultats arrondis à 10⁻² près.

- 3) a) Montrer que la probabilité qu'un ordinateur n'a subi aucune panne durant les 5 ans est 0,36.
 - b) Déduire alors la probabilité que l'ordinateur choisi soit de type D sachant qu'il n'a subi aucune panne durant les 5 ans.
- 4) La durée de vie, exprimée en années, d'un ordinateur de type D (la durée de fonctionnement avant la première panne) est une variable aléatoire X qui suit une loi exponentielle de paramètre λ = 0,18.
 - a) Montrer que la probabilité qu'un ordinateur de type D ne subit aucune panne avant 6 ans est 0,34.
 - b) On veut équiper un nouveau laboratoire d'informatique d'un lot de 10 ordinateurs de type D. Quelle est la probabilité p que, dans ce lot, l'un au moins des ordinateurs ait une durée de vie supérieure à 6 ans ?

Exercice 3: (6 points)

- 1) Soit g la fonction définie sur \mathbb{R} par $g(x) = 1 (2x + 1)e^{-2x}$.
 - a) Montrer que pour tout $x \in \mathbb{R}$, $g'(x) = 4xe^{-2x}$.
 - b) Etudier le sens de variation de g et déduire que pour tout $x \in \mathbb{R}$, $g(x) \ge 0$.
- 2) Soit f la fonction définie sur \mathbb{R} par $f(x) = x + 1 + (x + 1)e^{-2x}$ et (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
 - a) Calculer $\lim_{x \to -\infty} f(x)$ et montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement le résultat.
 - b) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ et que la droite D: y = x+1 est une asymptote à la courbe (C) au voisinage de $(+\infty)$.
 - c) Etudier la position relative de la courbe (C) par rapport à la droite D.
- 3) Montrer que pour tout $x \in \mathbb{R}$, f'(x) = g(x) et dresser le tableau de variation de f.

- 4) a) Montrer que A (0,2) est un point d'inflexion pour la courbe (C).
 - b) Déterminer une équation de la tangente T à la courbe (C) au point A.
 - c) Tracer D, T et (C).
- 5) Soit α un réel strictement supérieur à (-1).

On désigne par A_{α} l'aire, en unité d'aire, de la partie du plan limitée par la courbe (C), la droite D et les droites d'équations x = -1 et $x = \alpha$.

- a) Par une intégration par parties, montrer que $A_{\alpha} = \frac{1}{4}e^2 \left(\frac{1}{2}\alpha + \frac{3}{4}\right)e^{-2\alpha}$.
- b) Calculer $\lim_{\alpha \to +\infty} A_{\alpha}$.

Exercice 4: (4,5 points)

On considère dans l'ensemble des entiers relatifs le système (S) : $\begin{cases} n \equiv 1[4] \\ n \equiv 3[5]. \end{cases}$

- 1) Vérifier que 13 est une solution de (S).
- 2) a) Montrer que si n est une solution de (S) alors (n-13) est divisible par 4 et par 5.
 - b) Montrer que si un entier p est divisible par 4 et par 5 alors p est divisible par 20.
 - c) En déduire que si n est une solution de (S) alors $n-13 \equiv 0[20]$.
- 3) a) Vérifier que pour tous entiers relatifs n et k on a :

$$n-13 = 20k$$
 si et seulement si $n-1 = 4(3+5k)$.

- b) Montrer que si $n-13\equiv 0\big[20\big]$ alors n est une solution du système (S).
- c) En déduire l'ensemble des solutions du système (S).
- 4) Un puzzle contient N pièces, si on les range par 4 il en reste une seule pièce et si on les range par 5 il en reste 3 pièces.

Déterminer N sachant qu'il est compris entre 40 et 60.

	Section :	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
×	J	

Épreuve: Mathématiques - Section : Sciences de l'informatique Session principale (2020) Annexe à rendre avec la copie

