

SLIDER I

Engenharia de Software EDGE COMPUTING & COMPUTER SYSTEMS

02 – Sistemas de Numeração e Representação

Prof. Airton Y. C. Toyofuku

profairton.toyofuku@fiap.com.br

Agenda

- Como nós contamos?
- Como o Computador conta?
- Bits e Bytes;
- Simplificando Bytes com Hexadecimal;
- Conversão de Bases;.
- Exercícios de Sistemas de Numeração;
- Tabela ASCII;
- Exercícios de tabela ASCII;
- Canais RGB para imagens;
- Representação de vídeo;
- Laboratório;
- Exercícios;

Como nós contamos?

É o primeiro sistema de representação que aprendermos, conhecido como **SISTEMA UNÁRIO**

Contando até 5

Quando crianças, aprendemos a contar até dez usando nossos dedos... É chamado dessa forma por possuir apenas **UM SÍMBOLO** (Dedo) para representar os números

Com esse sistemas conseguimos representar os **NÚMEROS NATURAIS** (inteiros positivos)

Como nós contamos?

324

122.15

4

Símbolos

Mais tarde, nos são apresentados os Algarismos! Sendo um conjunto de DEZ símbolos, cada um representando um Número.

Combinação

Com esses símbolos, nós aprendemos a combina-los para representar valores muito maiores que os dez que estávamos limitados antes.

324

Base Numérica

100 unidades = 1 centena

2.000 unidades = 2 unidades de milhar

20.000 unidades = 2 dezenas de milhar

100.000 unidades = 1 centena de milhar

Desta forma, nos foi apresentado o sistema DECIMAL, em que cada símbolo representa um número, e a "casa" em que ele está, representa um multiplicador de base 10

Como o Computador

Mas... Apesar de podermos "ver" os números na tela do computador, não é dessa forma que ele conta...

O Computador é composto de muitos transistores, que operam com eletricidade e só entendem duas coisas: **Ligado** e **Desligado**.

10010110

Desta forma, o computador usa um sistema de numeração com apenas dois Símbolos, 1 e 0, chamado **Sistema Binário.**

Como o Computador Conta?

FIMP

1 = Ligado

0010 1010

0 = Desligado

1010 0101

Resultant decimal number= 0+2+0+8+0+32 = 42

Símbolos

A diferença entre nós e o computador, é que ele possui apenas **Dois** símbolos para contar: 1 (ligado) e 0 (Desligado).

Combinação

Da mesma forma que nós, o computador combina esses dois símbolos para gerar números.

Base Numérica

Semelhante a base decimal, a **BASE BINÁRIA** atribui cada "casa" com o valor de base 2.

Bits e Bytes

Um **BIT** é a unidade fundamental de informação em sistemas computacionais, representando um dígito binário que pode ser 0 ou 1.

É a menor unidade de armazenamento e processamento de dados em um computador, sendo a base para todas as operações digitais.

Um **BYTE** é uma unidade de armazenamento de dados que consiste em 8 bits. Ele é usado para medir o tamanho ou capacidade de memória, sendo capaz de representar um único caractere alfanumérico ou um pequeno conjunto de números. O byte é amplamente utilizado para descrever o tamanho de arquivos, a capacidade de armazenamento de dispositivos e a taxa de transferência de dados.

Computer Bit

Computer Byte

ComputerHope.com

Simplificando Bytes com Hexadecimal

Já aprendemos que um byte são 8 bits, então esse número tem 5 bytes, ou 32 bits

Dá para ver que quanto mais bits tiver um número, mais complicado é para entendermos o que ele significa. Por isso, podemos usar uma outra base numérica, muito comum em sistemas computacionais: A Base Hexadecimal.

O principio é o mesmo que a Base Decimal e a Base Binária, porém, na Hexadecimal usamos 16 símbolos.

0	1	2	3
4	5	6	7
8	9	Α	В
С	D	Ε	F

Cada Símbolo representa um valor de 4 Bits

Simplificando Bytes com Hexadecimal

0	1	2	3
4	5	6	7
8	9	Α	В
С	D	E	F

0x12AB5

0XA2F7

Símbolos

No sistema
Hexadecimal, temos
16 símbolos, sendo
as letras representam
os valores 10(A),
11(B), 12(C), 13(D),
14(E) e 15(F).

Combinação

É uma forma simplificada de podermos representar valores binários, sendo que cada Símbolo representa 4 Bits.

Base Numérica

Semelhante a base decimal, a BASE HEXADECIMAL atribui cada "casa" com o valor de base 16.

Conversão de Bases

Como representar o número 45 em binário, e depois converte-lo novamente para decimal?

Decimal

45							
0	0	1	0	1	1	0	1
2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	64	32	16	8	4	2	1

Para converter um número de Binário para Decimal, precisamos atribuir os valores de cada "casa", multiplicar o valor do bit pelo valor da casa, e por fim somar todos os valores obtidos. Para converter um número de Decimal para Binário, basta fazer divisões sucessivas por 2, e "subir" o resto:

 $45_D = 0010 \, 1101_B$

Conversão de Bases

16

Como representar o número 438 decimal em hexadecimal e em binário?

 $1B6_{H} = 0001\ 1011\ 0110_{R}$

DEC	BIN	HEX
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
	<u> </u>	

Para converter um número de Decimal para **Hexadecimal** Hexadecimal, basta fazer divisões sucessivas por 16, e "subir" o resto: 438 16 11 Binário

Para converter um número de Hexadecimal para Binário, precisamos lembrar que cada símbolo representa 4 bits, então podemos fazer uma associação simples com a ajuda de uma tabela.

$$438_{D} = 1B6_{H}$$

Obs: 11 -> B

Exercícios de Sistema Numérico

- Converta o número decimal 123 para binário.
- Converta o número binário 0010 1011 para decimal.
- Converta o número hexadecimal 0xAB para binário.
- 4. Converta o número binário 1101 0110 para hexadecima
- 5. Converta o número decimal 255 para hexadecimal.
- 6. Converta o número hexadecimal 0xFF para decimal.
- 7. Converta o número decimal 42 para binário.
- 8. Converta o número binário 1001 1010 para decimal.
- Converta o número hexadecimal 0x1F para decimal.
- 10. Converta o número decimal 567 para hexadecimal.
- 11. Converta o número hexadecimal FFFF para decimal.
- 12. Converta o número decimal 89 para binário.
- 13. Converta o número binário 1111 0011 para hexadecimal.
- 14. Converta o número hexadecimal 0x3C para binário.
- 15. Converta o número binário 1000 0001 para hexadecimal.

Tabela ASCII

Então, os computadores conseguem representar qualquer número usando o sistema binário

10010110

Mas e se quisermos representar **Letras**? E **Cores**? E **Emoticons**?

Como usar o mesmo sistema binário para representar a Letra "A"?

Tabela ASCII

E se a gente estipular uma combinação binária para cada símbolo?

Por exemplo, o Símbolo "A" = 0100 0001 -> 0x41 -> 65 decimal

Mas e como a gente representaria o número "65"?

São dois símbolos "6" e "5":

"6" = 0011 0110 -> 0x36 -> 54 decimal

"5" = 0011 0101 -> 0x35 -> 53 decimal

Portanto "65" = 0x3635

Tabela ASCII

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	11	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	8	70	46	F	102	66	f
7	7	(BELL)	39	27	10	71	47	G	103	67	q
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	1
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	12	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	IDEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	IDEVICE CONTROL 41	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	(SYNCHRONOUS IDLE)	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B	;	91	5B	I	123	7B	{
28	10	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	Ī
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	1
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

Fonte: https://pt.wikipedia.org/wiki/Ficheiro:ASCII-Table-wide.svg

Exercícios de tabela ASCII

- 1. Qual é o código ASCII para o caractere 'A'?
- 2. Qual é o caractere representado pelo código ASCII 97?
- 3. Qual é o código ASCII para o caractere '\$'?
- 4. Qual é o código ASCII para o caractere de espaço em branco?
- 5. Quais são os códigos ASCII para os dígitos de 0 a 9?
- 6. Qual é o código ASCII para o caractere de nova linha?
- 7. Quais são os códigos ASCII para as letras maiúsculas de A à Z?
- 8. Qual é o código ASCII para o caractere '%'?
- 9. Qual é o caractere representado pelo código ASCII 115?
- 10. Qual é o código ASCII para o caractere '#'?
- 11. Qual é o caractere representado pelo código ASCII 83 em minúso
- 12. Quais são os códigos ASCII para as letras minúsculas de a à z?
- 13. Qual é o código ASCII para o caractere de tabulação (tab)?
- 14. Qual é o código ASCII para o caractere '&'?
- 15. Qual é o código ASCII para o caractere '9' em vez do valor numérico 9?

Laboratório – TinkerCAD

O Objetivo deste laboratório é conhecer o aplicativo TinkerCad, um simulador de circuitos eletrônicos básicos. Usaremos esse simulador como ferramenta para testarmos e avaliarmos nossos projetos, antes de partirmos para a montagem prática, pois "Se no simulador funciona, e na montagem não, então tem algum fio solto..."

AUTODESKTinkercad

Acesse o https://www.tinkercad.com/, crie uma conta e vamos montar o nosso primeiro projeto!

Laboratório – Piscando LED

Agora que temos acesso ao **TinkerCad**, vamos montar o nosso primeiro circuito. **Um Pisca Led Simples.**

Nesse projeto vamos conhecer a interface de programação do Arduino e entender um poquinho como o hardware de prototipagem funciona.

Material necessário:

- 1 Arduino;
- 1 Resistor de 150;
- 1 Led (qualquer cor)
- 1 Protoboard;
- Jumpers cables.

Link: Projeto 01 – LED Flasher

Conhecendo o Hardware

Conhecendo o Hardware –

Protoboard – Matriz de Contatos

Elétricos

A linha Vermelha é toda interligada e serve para ligar o Positivo da fonte de alimentação: VCC, VDD, 3.3V, 5V, 12V, +

A linha Preta é toda interligada e serve para ligar o Negativo da fonte de alimentação: GND, VSS, 0V, Terra,

As linhas A, B, C, D e E estão ligadas na VERTICAL, em forma de colunas, e uma coluna não fala com a outra.

As linhas F,G,H,I e J seguem o mesmo padrão, com a diferença que não falam com a coluna de cima

Conhecendo o Hardware – Protoboard – Matriz de Contatos Elétricos

FIMP

Conhecendo o Hardware –

O "LED" é um dispositivo emissor de luz

- As informações mais importantes são: Polaridade, Tensão Limite e a Corrente Máxima;
- O Led tem a posição correta de ser ligado, onde tem um chanfro ou terminal menor é o cátodo (**Negativo**) e o terminal maior é o ânodo (**Positivo**)
- Existe em diversos tamanhos e formatos redondo, quadrado, retangular, pequenos, grandes...

Conhecendo o Hardware –

Resistor

Componente eletrônico usado para limitar a passagem de correte elétrica;

Causam uma queda de tensão controlada no circuito eletrônico;

Sua medida é em **Ohms** (Ω) e são regidos pela Lei de Ohm;

Possuem muitos valores e são identificados por um Código de Cores;

Também são usados para esquentar alguma coisa (chuveiro);

Conhecendo o Hardware – Resistor

Os "resistores" são componentes com a finalidade de oferecer resistência à passagem da corrente elétrica.

A primeira faixa é sempre a mais próxima do terminal

3º Algarismo

Cores		Valores		Multiplicadores	Tolerância		
Cores	Faixa 1	1 Faixa 2 Faixa 3		X	%		
Prata	-	-	-	0,01	10%		
Ouro	-	-	-	0,1	5%		
Preto	-	0	0	1	-		
Marrom	1	1	1	10	1%		
Vermelho	2	2	2	100	2%		
Laranja	3	3	3	1000	-		
Amarelo	4	4	4	10000	-		
Verde	5	5	5	100000	5%		
Azul	6	6	6	1000000	0,25%		
Violeta	7	7	7	10000000	0,10%		
Cinza	8	8	8	-	-		
Branco	9	9	9	-	-		
Sem cor	-	-	-	-	20%		

Fonte: https://aprendendoeletrica.com/codigo-de-cores-para-resistores/

Quanto vale esse resistor?

1 ^a Faixa – Lara	ınja -> 3	
-----------------------------	-----------	--

2ª Faixa – Laranja -> 3

3ª Faixa – Branco -> 9

4ª Faixa – Preto -> Mult. 1

5^a Faixa – Marrom -> 1%

Resistor = $339 \times 1, 1\%$

Resistor = 339 Ohms +/- 1%

Conhecendo o Hardware – Resistor

28

Conhecendo o Software

- Primeiro declaramos em qual pino vamos ligar o Led, nesse caso, no pino 10;
- Depois, na função setup, é onde falamos que esse pino será uma saída.

E por fim, na função loop, é onde roda o nosso programa principal.

```
// Project 1 - LED Flasher
   int ledPin = 10;
   void setup() {
     pinMode(ledPin, OUTPUT);
   void loop() {
     digitalWrite(ledPin, HIGH);
     delay(1000);
     digitalWrite(ledPin, LOW);
12
     delay(1000);
13
   }
```

Exercícios de Resistores

- 1. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: amarelo, violeta, vermelho e ouro?
- Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: marrom, preto, amarelo e prata?
- 3. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: laranja, branco, verde e ouro?
- 4. Qual é o valor de resistência de um resistor que tem as seguintes em sua faixa de resistência: vermelho, vermelho, marrom e ouro?
- 5. Qual é o valor de resistência de um resistor que tem as seguintes em sua faixa de resistência: marrom, verde, marrom e prata?
- 6. Qual é o valor de resistência de um resistor que tem as seguintes em sua faixa de resistência: laranja, preto, verde e ouro?
- 7. Qual é o valor de resistência de um resistor que tem as seguintes em sua faixa de resistência: amarelo, violeta, amarelo e prata?
- 8. Qual é o valor de resistência de um resistor que tem as seguintes em sua faixa de resistência: verde, azul, marrom e prata?
- 9. Qual é o valor de resistência de um resistor que tem as seguintes em sua faixa de resistência: marrom, preto, verde e ouro?
- 10. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: cinza, vermelho, marrom e ouro?

Exercício Desafio

Vamos aplicar o que vimos nessa aula e montar no um contador em binário.

Use como base o código que vimos no laboratório e faça com que os LEDs apresentem os números de 0 a 255, em binário, com intervalos de 1 segundo.

Por onde você começaria a resolver esse exercício? Faça um esboço no papel com ideias e verifique se elas fazem sentido.

Pesquise na internet por problemas semelhantes e tente entender o racional para resolver esse exercício.

Material necessário:

- 1 Arduino;
- 8 Resistores de 220 Ohms;
- 8 Leds Vermelhos;
- 1 Protoboard;
- Jumpers cables.

Copyright © 2023 Prof. Airton Y. C. Toyofuku

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).

This presentation has been designed using images from Flaticon.com