

Twitter Sentiment & External Factors

Projects in Data Science: Python

Zach Bogart, Josh Feldman, Joe Gamse, Ramy Jaber, Pit Kauffmann

INTRO

What external factors influence how people tweet?

Eg can we create a weekly 'emotion forecast' for Twitter based on the weather forecast?

DATA

TWEETS

- Use tweepy streamer to stream tweets from specified locations – running on Google Cloud
- ~200k total tweets from 3 cities
- 18500-word list with sentiment scores between -1 and 1

WEATHER

- Get weather data for specific weather stations from NOAA (<u>ftp.ncdc.noaa.gov</u>), corresponding with specified locations for Tweets
- Includes temperature, wind speed, cloud coverage, precipitation

METHODOLOGY

TWEETS - Stream in for each location

SENTIMENT SCORE calculate sentiment of each tweet using wordlist

WEATHER – add weather data for each tweet from closest weather station

TRAIN – train model on weather/tweet data using Random Forest, **Extra Trees and Bagging Classifiers**

PREDICT – use forecast weather data to predict change in sentiment by location

PRELIMINARY RESULTS

Goal: Classify each tweet as either positive, negative, or neutral sentiment

Features: Friend Count, Followers, Air Temp, Dew Point, Wind Speed, 1 hour precipitation, 6 hour precipitation

All Factor ∉ T	weets	Training Test A Accuracy	Accuracy	
Manhattan	~85K	0.845	0.425	
Chicago	~65K	0.818	0.4	
Detroit	~12K	0.815	0.405	

Weather Only		Training Accuracy	
Manhattan	~85K	0.400	0.394
Chicago	~65K	0.377	0.381
Detroit	~12K	0.388	0.377

PRELIMINARY RESULTS (cont'd)

PRELIMINARY RESULTS (cont'd)

Confusion Matrixes (Manhattan - testing on 25% of tweets)

ALL FACTORS	Predictions							
Actual		Neutral	Positive	Negative	Total			
	Neutral	1987	1966	1540	5493			
	Positive	1715	4129	2607	8451			
	Negative	1493	2977	2978	7448			
	Total	5195	9072	7125				
WEATHER ONLY	Duralisticus							
WEATHER ONLY	Predictions							
		Neutral	Positive	Negative	Total			
Actual	Neutral	0	5171	388	5559			
	Positive	0	7919	608	8527			
	Negative	0	6782	524	7306			
	Total	0	19872	1520				

CONCLUSION & NEXT STEPS

- Collect tweets for even more locations and across a longer time period
- Run each classifier with more parameters to find the best fit
- Run more classifiers: K-means, Support Vector Machines,
 K-nearest neighbours, Naive Bayes
- Make sentiment analysis more granular & precise -- Ex: n-grams
- How do other factors, such as crime rates, sports events, etc. affect overall sentiment?

QUESTIONS?