

T1130(E)(A2)T

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3

(8190373)

2 August 2019 (X-Paper) 09:00-12:00

This question paper consists of 6 pages, 1 formula sheet and 4 tables.

(8190373) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
MECHANOTECHNOLOGY N3
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

(8190373) -3-

QUESTION 1: POWER TRANSMISSION; CLUTCHES; COUPLING OF SHAFTS

1.1 A 16 N SPN wedge belt operates between a compressor and a 15 kW electric motor with a speed ratio of 1,8:1. The speed of the compressor pulley is 700 r/min and that of the electric motor is 1 440 r/min. The approximate centre distance between the drives is ±760 mm. The service factor is 1,1.

Refer to the attached TABLES and answer the questions.

	1.1.1	Determine the pulley pitch diameters.		(1)
	1.1.2	Calculate the belt length.		(2)
	1.1.3	Determine the correction factor.		(1)
	1.1.4	Calculate the design power.		(2)
1.2	Explain t	he purpose of each of the following aspects in belt drives:		
	1.2.1	Service factor		
	1.2.2	Idler pulley	(0 1)	(0)
			(2 × 1)	(2)
1.3	Explain <i>l</i>	belt deflection.		(1)
1.4	Name F	OUR main clutch categories.		(4)
1.5	State FI\	/E advantages of a hydraulic clutch.		(5)

QUESTION 2: BRAKES

1.6

List FIVE disadvantages of an internal drum and shoe brake system. [5]

(2) [**20**]

Name TWO examples of permanent couplings.

(8190373) -4-

QUESTION 3: BEARINGS

3.1.1

3.1 FIGURE 1 shows an antifriction bearing.

FIGURE 1

(1)

3.1.2 State the type of load handled by the bearing. (1)
3.1.3 Identify the indicated parts of the bearing by writing the answers next to the letter (A–C) in the ANSWER BOOK. (3)

3.2 State FIVE factors to consider when choosing an antifriction bearing. (5)

[10]

QUESTION 4: COOLING AND LUBRICATION

Name the bearing.

- 4.1 Give FIVE reasons for the lubrication of internal combustion engines. (5)
- 4.2 Discuss the difference between *direct* and *indirect air cooling*. (5)
- 4.3 State FOUR advantages of the impeller-assisted cooling system over the thermo syphon cooling system. (4)

 [14]

(8190373) -5-

QUESTION 5: HYDRAULICS AND PNEUMATICS

5.1 A force exerted on a cylinder develops an internal pressure of 680 kPa inside the cylinder with a diameter of 200 mm.

Calculate each of the following:

- 5.1.1 The magnitude of the force exerted on the cylinder in kN
- 5.1.2 The total volume developed if THREE hydraulic cylinders are used. Take the distance moved by the plunger to be 50 mm.

 (2×3) (6)

5.2 State TWO types of pressure acting on fluid.

- (3)
- 5.3 Name THREE categories under which hydraulic valves are classified.

(2)

5.4 Make a sketch of reasonable size of an hydraulic adjustable flow-control valve.

(2) [**13**]

QUESTION 6: INTERNAL COMBUSTION ENGINES

FIGURE 2 shows a component found in a combustion engine.

FIGURE 2

6.1 Name the component. (1)

Name the indicated parts of the component by writing the answer next to the letter (A–D) in the ANSWER BOOK. (4)

[5]

(8190373) -6-

QUESTION 7: CRANES AND LIFTING MACHINES

7.1	State FO	OUR factors to consider when choosing a steel rope.	(4)
7.2	Explain e	each of the following movements of a multipurpose crane:	
	7.2.1	Swivel motion	
	7.2.2	Long travel motion (2 × 2)	(4) [8]
QUES1	TION 8: MA	ATERIALS AND MATERIAL PROCESSESS	
8.1	State the	e difference between thermoplastics and thermosetting plastics.	(2)
8.2	Name T process.	HREE properties that can be obtained through the heat treatment	(3) [5]
QUEST	TION 9: INI	DUSTRIAL ORGANISATION AND PLANNING	
9.1	Discuss	the purpose of requisition cards in a workplace.	(3)
9.2	Efficienc	y is necessary to sustain production.	
	State SIX	X technological factors that help increase productivity in a workplace.	(6)
9.3	State TH	IREE limitations of downward communication.	(3) [12]
QUES1	TION 10: E	NTREPRENEURSHIP	
10.1	Explain 6	entrepreneurship	(3)
10.2	State FI\	/E guidelines to follow when brainstorming for ideas.	(5) [8]

TOTAL:

100

MECHANOTECHNOLOGY N3

FORMULA SHEET

Any other applicable formula may also be used.

- 1. $Design power = power (electrical motor) \times service factor$
- 2. Corrected power per $belt = (basic power per belt + power increment per belt) \times correction factor$
- 3. Belt length (L) = [(pitch diameter of larger pulley + pitch diameter of smaller pulley) \times 1,57] + (2 × centre distance)
- 4. Force $(F) = pressure(P) \times area(A)$
- 5. Work done (W) = force (F) \times distance (s)
- 6. Volume (V) = area of base (A) × perpendicular height $(\bot h)$

(8190373) -1-

TABLE 1
SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

	TYPES OF PRIME MOVERS											
	'S	oft' starts		'Heavy' starts								
	Hours	s per day du	ity	Hours per day duty								
TYPES OF DRIVEN MACHINES	10 and under	Over 10 to 16	Over 16	10 and under	Over 10 to 16	Over 16						
Class 1 - Light duty Blowers and fans Centrifugal compressors and pumps Belt conveyors (uniformly loaded)	1,0	1,1	1,2	1,1	1,2	1,3						
Class 2 - Medium duty Blowers and fans Rotary compressors and pumps Belt conveyors (not uniformly loaded) Generators	1,1	1,2	1,3	1,2	1,3	1,4						
Class 3 - Heavy duty Brick machinery Compressors and pumps (reciprocating) Conveyors (heavy duty) Hammer mills Punches and presses	1,2	1,3	1,4	1,4	1,5	1,6						
Class 4 - Extra heavy duty Crushers Mills	1,3	1,4	1,5	1,5	1,6	1,8						

(8190373) -2-

TABLE 2
CENTRE DISTANCES FOR 16 N SPB WEDGE BELT DRIVES

Combined arc and belt length						0,8			0,85			n	,9		1.05				
Correction factor						0,0		0,00				U	,9		1.00				
Pitch diameter of Power per Speed pulleys belt kW			BELT	LENG	TH														
ratio	Driver	Driven	960 r/min	1 440 r/min	1 260	1 340	1 410	1 590	1 800	1 900	2 020	2 150	2 280	2 400	4 560	4 820	5 070	5 380	
1,69	236	400	11,94	16,56	-	-	-	-	392	443	504	570	635	696	1 779	1 909	2 034	2 189	
1,75	160	280	6,45	8,92	278	319	355	446	551	602	662	727	792	852	-	-	-	-	
1,75	180	315	7,92	11,00	-	273	309	401	507	557	618	683	748	809	-	-	-	-	
1,78	200	355	9,38	13,03	-	-	-	351	458	508	569	635	700	760	1 843	1 973	2 098	-	
1,79	140	250	4,95	6,80	319	360	395	486	591	641	702	767	832	892	-	-	-	-	
1,79	224	400	11,10	15,41	-	-	-	-	400	452	513	578	644	705	1 788	1 918	2 043	2 198	

(8190373) -3-

TABLE 3
CENTRE DISTANCES FOR 22 N SPC WEDGE BELT DRIVES

Combined arc and belt length														0.05				
Correction factor						0,80		0,85					0,90	0,95				
Pitch diameter of Power per belt pulleys kW					BELT L	.ENGTH												
Speed ratio	Driver	Driven	960 r/min	1 440 r/min	2 000	2 120	2 240	2 360	2 500	2 650	2 800	3 000	3 150	3 350	3 550	3 750	4 000	4 250
1,58	400	630	37,85	49,15	-	-	-	-	-	-	580	682	758	859	960	1 060	1 186	1 311
1,58	300	475	25,19	33,63	-	443	504	565	636	711	787	887	963	1 063	1 163	1 264	1 389	1 514
1,58	224	355	14,82	19,80	542	602	662	723	793	868	943	1 043	1 119	1 219	1 319	1 419	1 544	1 669
1,59	315	500	27,16	36,17	-	-	471	532	603	679	755	855	931	1 031	1 131	1 232	1 357	1 482
1,59	236	375	16,50	22,09	516	576	637	697	767	842	918	1 018	1093	1 193	1 293	1 394	1 519	1 644
1,60	250	400	18,44	24,71	484	545	605	666	736	811	887	987	1 062	1 162	1 263	1 363	1 488	1 613
1,60	500	800	49,26	-	-	-	-	-	-	-	-	-	-	-	739	841	968	1 094

(8190373) -4-

TABLE 4
MINIMUM PULLEY DIAMETER (mm)

Speed of								M	inimum	n pulley	diame	eter (mr	n)							
faster									De	sign po	ower (k	W)								
shaft r/min	Up to 1	3,0	4,0	5,0	7,5	10	15	20	25	30	40	50	60	75	90	110	130	150	200	250
500	67	90	100	112	125	140	180	200	212	236	250	280	280	315	375	400	450	475	500	560
600	67	85	90	100	112	125	140	180	200	212	224	250	265	280	300	335	375	400	475	500
720	67	80	85	90	90	106	132	150	160	170	200	236	250	265	280	300	335	375	450	500
960	67	75	80	85	95	100	112	132	150	180	180	200	224	250	280	280	300	335	400	450
1 200	67	71	80	80	95	95	106	118	132	150	160	180	200	236	236	250	265	300	335	355
1 440	67	67	75	80	85	85	100	112	125	140	160	170	190	212	236	236	250	280	315	335
1 800	67	67	71	75	80	85	95	106	112	125	150	160	170	190	212	224	236	265	300	335
2 800	67	67	67	67	80	80	85	90	100	112	125	140	160	170	180	212	224	236	-	-