萃取物成分組成之影響要因

- 成長、飢餓
- 季節性變動 2
- 智 3
- 組織部位別 4
- 雄雌性 Э.
- 養殖魚介類 9
- 種類

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Table 1. Body Weight (Grams), Body Length (Centimeters), and Proximate Composition (Percent) in White Muscle of Milkfish during the Period of 8-Month Growth

	weight	length	moisture	crude fat	crude protein	ash
-	39 ± 0.24	4.72 ± 0.37	80.78 ± 1.49^{a}	$1.56 \pm 0.10^{\circ}$	16.31 ± 0.91^{b}	1.29 ± 0.07 a
5	57.53 ± 4.66	14.60 ± 0.58	75.03 ± 1.09^{6}	2.45 ± 0.18^{b}	20.89 ± 0.67 a	1.28 ± 0.08^{a}
55	.44±37.14	22.72 ± 1.18	74.99 ± 0.72^{b}	2.83 ± 0.27^{ab}	19.81 ± 1.53	1.25 ± 0.09
422	422.36 ± 50.69	28.58 ± 1.20	74.38 ± 0.78^{b}	3.21 ± 0.33^{8}	20.98 ± 0.71a	1.22 ± 0.11^{b}
47	7.82 ± 70.62	30.32 ± 1.21	74.10 ± 0.64^{b}	3.40 ± 0.24^{a}	19.94 ± 0.87 a	1.25 ± 0.07^{al}
88	587.32 ± 85.26	32.38 ± 0.37	74.63 ± 0.66^{b}	3.43 ± 0.14^a	21.04 ± 0.66^{a}	1.21 ± 0.08^{b}

^a Expressed as mean \pm standard deviation (n = 12). Expressed as mean \pm standard deviation (n = 6). Means followed by the same letter within each column are not significantly different at P = 0.05.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

成長(growth)與飢餓(starvation)

J. Agric. Food Chem. 1997, 45, 2103-2106

2103

Effect of Growth on the Levels of Free Histidine and Amino Acids in White Muscle of Milkfish (Chanos chanos)

Chyuan-Yuan Shiau,* Yu-Jane Pong, Tze-Kuei Chiou, and Tuu-jyi Chai

Department of Marine Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, Taiwan, Republic of China

(1.4 g). After 8 months of growth, milkfish contained 59 µmol/g, which was responsible for 72% of during the period of 8-month growth were investigated. Histidine, taurine, and glycine were the predominant FAAs. An increase in histidine was observed during growth. The level present in the 1-month-reared fish (mean weight = 58 g) was about 5 times higher than that in the initial fish In contrast, taurine decreased with increasing rearing time. The glycine level was not correlated well with fish size. The total relative amounts of histidine, taurine, and glycine remained about the same, although the individual contributions varied considerably in the FAA pool during the Accumulation patterns of free amino acids (FAAs) in white muscle of milkfish (Chanos chanos) the total FAAs. There was a positive correlation between the histidine content and fish body weight. period of cultivation.

Table 2. Free Amino Acids (Micromoles per Gram of Wet Weight)° in White Muscle of Milkfish during the Period of 國立台灣海洋大學會品科學系:水產化學将課資料(一)- 苯即物成分組成之影響- 低思數1060203 8-Month Growth

			ош	month		
	0	1.0	2.5	4.5	6.5	8.0
phosphoserine	0.25 ± 0.01a	0.08 ± 0.01 ^b	0.07 ± 0.02 ^b	0.07 ± 0.01 ^b	0.05 ± 0.00°	0.05 ± 0.01°
taurine	8.45 ± 1.99	15.81 ± 1.10^{a}	$12.84 \pm 1.60^{\circ}$	$7.54 \pm 1.93^{\circ}$	$6.37 \pm 2.75^{\circ}$	2.80 ± 0.83^{d}
aspartic acid	1.81 ± 0.23^{a}	0.19 ± 0.07^{b}	0.19 ± 0.06^{b}	0.23 ± 0.08^{b}	0.20 ± 0.22^{6}	0.06 ± 0.02^{b}
threonine	1.72 ± 0.17^a	$0.74 \pm 0.09^{\circ}$	0.56 ± 0.07^{cd}	0.49 ± 0.11^{d}	0.60 ± 0.28^{cd}	0.98 ± 0.24^{b}
serine	2.64 ± 0.25^a	1.61 ± 0.29^{b}	0.94 ± 0.15^{cd}	$1.09 \pm 0.31^{\circ}$	$0.63 \pm 0.13^{\circ}$	$0.74\pm0.16^{\mathrm{de}}$
asparagine	0.82 ± 0.08^a	0.35 ± 0.05^{10}	0.44 ± 0.15^{b}	0.40 ± 0.09 ke	$0.27 \pm 0.18^{\circ}$	0.36 ± 0.03
glutamic acid	6.27 ± 1.05^a	2.88 ± 0.64^{b}	$1.63 \pm 0.10^{\circ}$	1.07 ± 0.15^{c}	$1.10 \pm 0.40^{\circ}$	$1.41 \pm 0.82^{\circ}$
glutamine	0.92 ± 0.06^{a}	0.98 ± 0.11 a	0.42 ± 0.10^{b}	0.39 ± 0.10^{b}	0.51 ± 0.11^{b}	0.48 ± 0.21^{b}
proline	3.46 ± 0.96^{a}	3.00 ± 0.67^{ab}	2.18 ± 2.03^{bc}	1.24 ± 0.41^{cd}	1.18 ± 0.29^{cd}	0.83 ± 0.14^{d}
glycine	6.92 ± 1.80^{a}	4.16 ± 1.08^{b}	2.95 ± 0.75^{b}	3.52 ± 1.44^{b}	8.39 ± 2.27 a	7.88 ± 1.91^{8}
alanine	6.53 ± 0.90^{a}	$1.83 \pm 0.09^{\circ}$	$2.11 \pm 0.50^{\circ}$	$1.64 \pm 0.13^{\circ}$	$1.58 \pm 0.50^{\circ}$	3.77 ± 1.54^{b}
valine	1.69 ± 0.60^a	0.76 ± 0.18^{b}	0.65 ± 0.10^{bc}	0.40 ± 0.15^{cd}	0.46 ± 0.06 bod	0.27 ± 0.13^{d}
methionine	0.84 ± 0.13^{a}	0.19 ± 0.11^{b}	0.12 ± 0.07^{bc}	$0.08 \pm 0.04^{\circ}$	$0.10 \pm 0.03^{\circ}$	$0.09 \pm 0.02^{\circ}$
isoleucine	1.49 ± 0.10^a	0.36 ± 0.07^{b}	$0.28 \pm 0.08^{\circ}$	0.17 ± 0.03^{d}	0.17 ± 0.03^{d}	0.13 ± 0.03^{d}
leucine	2.84 ± 0.21^a	0.71 ± 0.08^{b}	$0.48 \pm 0.13^{\circ}$	0.31 ± 0.09^{d}	0.27 ± 0.04^{d}	0.21 ± 0.03^{d}
tyrosine	1.10 ± 0.17 a	0.27 ± 0.02^{b}	0.22 ± 0.06^{bc}	$0.17 \pm 0.03^{\circ}$	$0.13 \pm 0.05^{\circ}$	$0.12 \pm 0.02^{\circ}$
phenylalanine	1.20 ± 0.15 a	0.30 ± 0.03^{b}	$0.19 \pm 0.06^{\circ}$	0.13 ± 0.04^{cd}	0.10 ± 0.03^{d}	0.06 ± 0.03^{d}
β -alanine	0.24 ± 0.05^a	$0.05 \pm 0.06^{\circ}$	0.13 ± 0.05^{b}	0.06 ± 0.02 °	$0.06 \pm 0.01^{\circ}$	0.02 ± 0.02
ornithine	0.32 ± 0.02^{b}	1.16 ± 0.12^{a}	0.40 ± 0.13^{b}	0.21 ± 0.07^{c}	0.12 ± 0.01^{cd}	0.09 ± 0.05^{d}
lysine	5.13 ± 0.29^{a}	1.87 ± 0.16^{cd}	1.78 ± 0.45^{cd}	1.41 ± 0.41^{d}	2.76 ± 1.82^{bc}	3.09 ± 0.66^{6}
histidine	7.16 ± 1.54^{e}	37.38 ± 3.15^{d}	40.41 ± 6.15^{cd}	46.17 ± 3.76^{bc}	47.90 ± 2.68^{b}	59.19 ± 8.73^{a}
arginine	-2.12 ± 0.29 a	2.25 ± 0.14^{a}	0.75 ± 0.30^{b}	0.94 ± 0.38^{b}	$0.30 \pm 0.08^{\circ}$	$0.23 \pm 0.05^{\circ}$
total	63.23 ± 7.49^{d}	76.76 ± 4.38^{ab}	$69.74 \pm 4.38^{\text{bod}}$	67.74 ± 3.79^{cd}	73.24 ± 4.39^{5c}	82.68 ± 9.42^{a}

*Expressed as mean \pm standard deviation (n=6). Means followed by the same letter within each row are not significantly different at P=0.05.

omparative Biochemistry and Physiology Part B 128 (2001) 501-506

Effect of starvation on free histidine and amino acids in white muscle of milkfish *Chanos chanos*

Chyuan-Yuan Shiau"*, Yu-Jane Pong", Tze-Kuei Chiou", Yun-Yuen Tin^b

"Department of Pools Science, National Talman Court Distriction, Receiving Thomas, ROC

"Department of Pools Science, National Televis Court Distriction, Science, British, ROC

Received 10 March 2000; received in revised form 26 October 2000; accepted 4 December 2000

rance 1 Changes in body weight, body length, condition factor and hepatosomatic index of milkfish during 60 days of starvation*

Day	Weight (g)	Length (cm)	Condition factor	(%) ISH
0	46.7±3.2 ^b	14.6 ± 0.3 ^b	15.0 ± 0.2^a	1.9 ± 0.1^{a}
10	42.9 ± 1.4^{bc}	$14.3 \pm 0.4^{\rm b}$	14.5 ± 1.2^{ab}	$1.2 \pm 0.1^{\circ}$
25	40.2 ± 1.9^{cd}	14.3 ± 0.3^{b}	$13.7 \pm 0.9^{\circ}$	1.0 ± 0.2^{d}
40	35.1 ± 2.2^{d}	$14.2 \pm 0.2^{\rm b}$	12.2 ± 0.8^{d}	0.8 ± 0.1^{c}
09	$27.6 \pm 4.1^{\circ}$	14.2 ± 0.2^{b}	9.5 ± 1.2^{c}	0.7 ± 0.1^{c}
Control	198.4 ± 25.2^a	24.0 ± 1.2^{3}	14.4 ± 1.0^{b}	1.6 ± 0.5^{b}

*Data are means \pm S.D. (n = 12). Means followed by the same letter within each column are not significantly different at P > 0.05. Condition factor = weight/length³ \times 10³, HSI, hepatosomatic index = liver weight/body weight \times 100%; Control, fish fed on a diet for

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Table 3 Changes in free amino acids (µmole/g of wet weight) in white muscle of milkfish during 60-days of starvation*

	Day					Control
	0	10	25	40	09	
Phosphoserine	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0
Taurine	22.7 ± 1.1^{3}	21.7 ± 0.4^{a}	22.8 ± 2.5^{a}	24.1 ± 4.8^{a}	23.9 ± 4.6^{a}	12.8 ± 2.8^{b}
Aspartic acid	0.3 ± 0.1^{bc}	$0.2 \pm 0.1^{\circ}$	0.3 ± 0.1^{bc}	0.4 ± 0.1^{ab}	0.4 ± 0.1^{3}	0.2 ± 0.1^{cd}
Threonine	0.5 ± 0.2^{bc}	$0.6 \pm 0.2^{\rm b}$	0.8 ± 0.1^{3}	0.8 ± 0.2^{a}	0.9 ± 0.2^a	0.3 ± 0.1^{c}
Serine	$0.6\pm0.1^{\mathrm{bc}}$	$0.5 \pm 0.1^{\circ}$	0.6 ± 0.2^{bc}	0.6 ± 0.2^{ab}	0.7 ± 0.3^{a}	$0.5 \pm 0.1^{\rm bc}$
Asparagine	1.3 ± 0.4^{a}	$0.8\pm0.4^{\mathrm{b}}$	$0.7 \pm 0.3^{\rm b}$	$0.6 \pm 0.1^{\rm b}$	0.5 ± 0.2^{b}	0.1 ± 0.2^{c}
Glutamic acid	$1.0 \pm 0.2^{\mathrm{bc}}$	$0.8 \pm 0.1^{\circ}$	$1.0 \pm 0.3^{\rm bc}$	0.8 ± 0.5^{c}	1.3 ± 0.4^{a}	$1.1 \pm 0.4^{\rm bc}$
Glutamine	1.2 ± 0.2^{a}	$1.0\pm0.1^{\rm b}$	0.9 ± 0.1^{cd}	0.7 ± 0.1^{de}	0.6 ± 0.1^{c}	1.0 ± 0.1^{bc}
Proline	1.8 ± 1.5^{ab}	1.6 ± 1.1^{abc}	0.7 ± 0.0	0.6 ± 0.1^{c}	0.8 ± 0.1^{bc}	2.6 ± 1.0^{a}
Glycine	6.8 ± 0.9^{b}	$6.7 \pm 1.6^{\rm b}$	7.3 ± 0.9^{b}	$7.5 \pm 1.5^{\rm b}$	7.8 ± 1.3^{b}	12.0 ± 1.6^{a}
Alanine	2.3 ± 0.8^{4}	1.9 ± 0.5^{ab}	$2.5 \pm 0.7^{\text{a}}$	2.6 ± 0.6^{a}	2.3 ± 0.7^a	$1.4 \pm 0.4^{\rm b}$
Valine	0.5 ± 0.1^{ab}	0.6 ± 0.0^{3}	0.6 ± 0.1^{a}	0.6 ± 0.1^{a}	0.6 ± 0.2^a	0.4 ± 0.1^{b}
Methionine	0.1 ± 0.0^{ab}	$0.1\pm0.0^{\mathrm{ab}}$	0.1 ± 0.1^{a}	0.1 ± 0.0^{a}	0.1 ± 0.1^{3}	0.0 ± 0.0^{b}
Isoleucine	$0.1\pm0.1^{\mathrm{ab}}$	0.2 ± 0.1^{ab}	0.3 ± 0.1^{a}	0.2 ± 0.1^{ab}	0.3 ± 0.1^{a}	0.1 ± 0.0^{c}
Leucine	0.2 ± 0.1^{bc}	0.3 ± 0.1^{ab}	0.4 ± 0.2^{ab}	0.4 ± 0.1^{ab}	0.4 ± 0.3^{a}	0.1 ± 0.0^{c}
Tyrosine	0.2 ± 0.1	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.1 ± 0.1
Phenylalanine	0.1 ± 0.0^{5c}	0.1 ± 0.1^{ab}	$0.1 \pm 0.1^{\mathrm{bc}}$	$0.1 \pm 0.1^{\rm bc}$	0.1 ± 0.1	0.0 ± 0.0
β-Alanine	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0
Ornithine	0.4 ± 0.4^{a}	0.3 ± 0.3^{ab}	0.1 ± 0.0^{b}	0.1 ± 0.0^{b}	$0.1\pm0.0^{\mathrm{b}}$	0.5 ± 0.3^{4}
Lysine	2.1 ± 0.7^{b}	2.5 ± 0.8^{ab}	2.5 ± 0.4^{ab}	2.4 ± 0.8^{ab}	2.0 ± 0.7^{b}	3.5 ± 1.4^{a}
Histidine	31.1 ± 3.1^{ab}	$30.1 \pm 3.3^{\rm b}$	26.6 ± 2.9^{bc}	$16.8 \pm 6.6^{\circ}$	$16.3 \pm 4.9^{\circ}$	35.5 ± 3.0^{2}
Arginine	$0.6 \pm 0.4^{\rm b}$	0.6 ± 0.3^{b}	$0.5 \pm 0.1^{\rm b}$	$0.4\pm0.1^{\mathrm{b}}$	$0.5 \pm 0.2^{\rm b}$	1.1 ± 1.7^a
Total	$74.0 \pm 3.5^{\circ}$	70.7 ± 7.0^{3}	$68.8 \pm 3.6^{\circ}$	$60.2 \pm 10.4^{\rm b}$	60.1 ± 6.1^{b}	$72.3 \pm 4.6^{\circ}$

^{*}Data are means \pm S.D. (n = 6). Means followed by the same letter within each row are not significantly different at P > 0.05. Control refers to Table 1.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Table 2

Changes in proximate composition (%) in white muscle of milkfish during 60 days of starvation*

Day	Moisture	Protein	Crude fat	Ash
0	76.0 ± 0.8 ^b	$20.1\pm0.5^{\rm a}$	$2.6\pm0.2^{\rm b}$	1.2 ± 0.1
10	$77.0 \pm 0.6^{\rm b}$	20.0 ± 0.6^{a}	$2.4 \pm 0.1^{ m b}$	1.2 ± 0.1
25	$77.6 \pm 0.9^{\rm b}$	19.3 ± 0.4^{ab}	1.8 ± 0.1^{c}	1.3 ± 0.0
40	79.5 ± 0.7^{a}	$18.7\pm0.6^{\rm bc}$	1.7 ± 0.2^{c}	1.2 ± 0.1
09	79.8 ± 0.6^{a}	$18.0 \pm 0.6^{\mathrm{c}}$	1.2 ± 0.1^{d}	1.2 ± 0.1
Control	74.6 ± 0.7^{c}	$20.1 \pm 0.6^{\mathrm{a}}$	$3.2 \pm 0.3^{\rm a}$	1.2 ± 0.1

*Data are means \pm S.D. (n = 6). Means followed by the same letter within each column are not significantly different at P > 0.05. Control, refers to Table 1.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

餌料、季節性變動

魚介類的體成分在不同季節,尤其產卵期的前後 常有相當明顯的變動。

- 生理狀態:授精、產卵等
- 棲息環境:水溫、餌料來源等

FISHERIES SCIENCE 2002; 68: 388-394

Original Article

Comparison of taste components in cooked meats of small abalone fed different diets

FZE-KUEI CHIOU* AND MENG-MEI LAI

Department of Food Science, National Taiwan Ocean University, Kee1ung, Taiwan 202

cooked meats was significantly higher for A-small abalone than for G-small abalone. Results of ABSTRACT: Differences in taste preference and the levels of extractive components and glycogen were compared between cooked meats of small abalone Haliotis diversicolor fed either gracilar (G-small abalone) or an artificial diet (A-small abalone). Using sensory tests, taste preference of clustering analysis and principal component analysis of chemical data also revealed that the two cooked meats differed from each other in terms of their measured constituent compositions irrespective of sampling periods. Compared with G-small abalone, A-small abalone meats were adenosine monophosphate (AMP), and glycogen. It is concluded that the discrepancy in the levels of taste-active components of abalone, such as Gly, Glu, and AMP, is likely to be responsible for the lower in taurine and arginine, but higher in glycine (Gly), glutamic acid (Glu), alanine, serine, proline, differences in taste preference between G- and A-small abalone cooked meats. KEY WORDS: abalone, amino acid, artificial diet, extractive component, Haliotis diversicolor,

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Jul. 21 1998 its (mg/100 g) in the cooked meats of G- and A-small abalone fable 4 Levels of chemical cor tamic acid irtic acid llycine lanine itrulline -ABA aline

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

Table 2 Results of paired comparison test for taste of
 the cooked meats of G- and A-small abalone

	No. p	anelists	
Date of sampling	(<u>S</u>)	(G) (A)	Level of significance
Sep. 101997	14	26	P < 0.10
Jan. 13 1998	12	28	P < 0.05
Mar. 181998	11	29	P < 0.01
May 8 1998	4	36	P < 0.001
July 21 1998	11	29	P < 0.01
Sep. 9 1998	11	29	P < 0.01

Cluster analysis of all chemical data of the G- and A-small abalone meat samples. G, G-small abalone; A, Asmall abalone; 1-6, sampling dates from September 1997 to September 1998.

¹⁵Means in a row from the same samy α -AAA, α -amino adipic acid; α -ABA, α

Levels of chemical constituents (mg/100 g) in the cooked meats of (G) G- and (A) A-small abalone

												37
	1997 S	Sep. 10	1998 Jan. 13	an. 13	Mar. 18	18	May 8		Jul. 21	21	Sep.	6
	(C)	(A)	(9)	(A)	(9)	(A)	(B)	(A)	(9)	(A)	(9)	(A)
Taurine	1578ª	1148b	1333ª	€96	1351ª	1213a	1322a	1074b	1531ª	1152b	1263	1211ª
Serine	366	534	33	53a	40p	55	366	28g	276	57a	286	40a
Glutamic acid	996	125a	200	75a	339	59a	25	739	266	100€	49	60₀
Proline	296	619	296	833	386	1119	256	949	216	55a	18ª	23ª
Glycine	1296	294ª	370b	455a	334b	393a	266₺	403а	187	358ª	186₺	307a
Alanine	48b	769	404	589	216	45a	170	72ª	20°	98ª	41a	49ª
Arginine	585a	506b	446a	376₺	549₽	469b	511a	493а	605a	480b	467a	501a
Total FAA	2649₃	2481ª	2485ª	2319ª	2547ª	2575a	2367₃	2550₃	2653ª	2560₽	2192a	2392ª
ADP	276	53a	45ª	39a	29ª	33ª	436	62a	999	₽96	43ª	46ª
AMP	906	126a	100a	118a	160₃	177a	1226	162a	111a	131a	68 _a	73a
Total ARC	124b	193ª	150ª	162a	197ª	216a	1716	231ª	217ª	236ª	122a	130ª
Glycinebetaine	426ª	4229	413a	380₃	3886	476ª	353ª	383ª	429a	460₃	382	428₃
Glycogen	57.1b	4167a	2066b	5638a	21216	7818ª	1408b	7313a	21736	7028ª	1993b	5125a
Total	3769b	7264	5114b	8499	5253b	11085a	4299b	10473 ⁸	5471b	10280a	4689b	8075ª

 $_{a,b}$ Means in the rows from the same sampling date with different superscript differ significantly (p < 0.05)

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Table 1. Body weight, body length and proximate composition* of milkfish 或目魚之體重、體長及其普通肉之一般成分

sample (g) (cm) Moisture Proiten Fat A 12 497.2±51.7 30.2±0.7 73.0 24.1 2.3 12 524.5±28.0 30.7±0.7 74.3 22.0 1.0 8 473.2±34.6 29.4±0.8 74.4 22.3 0.7 12 470.4±41.3 29.4±1.3 73.3 22.7 1.2 12 453.0±41.8 29.0±1.5 74.8 22.6 1.6 12 364.4±16.5 27.1±1.2 73.8 22.9 1.7	Date of	No. of	Body weight	ğ	Proxin	Proximate composition(%)	ition(%	,
12 497.2±51.7 30.2±0.7 73.0 24.1 2.3 12 524.5±28.0 30.7±0.7 74.3 22.0 1.0 8 473.2±34.6 29.4±0.8 74.4 22.3 0.7 12 470.4±41.3 29.4±1.3 73.3 22.7 1.2 12 453.0±41.8 29.0±1.5 74.8 22.6 1.6 12 44.4±16.5 27.1±1.2 73.8 22.9 1.7	sampling	sample	(8)		Moisture	Proiten	Fat	Ash
12 524.5±28.0 30.7±0.7 74.3 22.0 1.0 8 473.2±34.6 29.4±0.8 74.4 22.3 0.7 12 470.4±41.3 29.4±1.3 73.3 22.7 1.2 453.0±41.3 29.0±1.5 74.8 22.6 1.6 12 453.0±41.6 20.0±1.5 73.8 22.6 1.6 12 364.4±16.5 27.1±1.2 73.8 22.9 1.7	92 Jun. 16	12	497.2±51.7	30.2±0.7	73.0	24.1	2.3	1.3
8 473.2±34.6 29.4±0.8 74.4 22.3 0.7 12 470.4±41.3 29.4±1.3 73.3 22.7 1.2 12 453.0±41.8 29.0±1.5 74.8 22.6 1.6 12 364.4±16.5 27.1±1.2 73.8 22.9 1.7	Aug. 22	12	524.5±28.0	30.7±0.7	74.3	22.0	1.0	1.4
12 470.4±41.3 29.4±1.3 73.3 22.7 1.2 12 453.0±41.8 29.0±1.5 74.8 22.6 1.6 12 364.4±16.5 27.1±1.2 73.8 22.9 1.7	Oct. 27	80	473.2±34.6	29.4±0.8	74.4	22.3	0.7	1.3
12 453.0±41.8 29.0±1.5 74.8 22.6 1.6 12 364.4±16.5 27.1±1.2 73.8 22.9 1.7	Dec. 2	12	470.4±41.3	29.4±1.3	73.3	22.7	1.2	1.4
12 364.4±16.5 27.1±1.2 73.8 22.9 1.7	93 Feb. 28	12	453.0±41.8	29.0±1.5	74.8	22.6	1.6	1.3
	Apr. 26	12	364.4±16.5	27.1 ± 1.2	73.8	22.9	1.7	1.9

Ordinary muscles.

Seasonal variation of the contents of ATP-related compounds and other constituents in the muscle extracts of milkfish 表三 取目魚普通肉核苷酸相關化合物及其徐成分含量之季節變化 Table 3.

	.92 Jun.	Aug.	Oct.	Dec.	.93 Feb.	Apr.
ATP-Related Compounds (µmole/g)	spui					
ATP	0.12±0.01*	0.07±0004	10.0€ ±0.01	0.12±0.01* 0.07±0004 0.06±0.01 0.06±0.01 0.10±0.01 0.12±0.02	0.10±0.01	0.12±0.02
ADP	0.20±0.04	0.16±0.01	0.13±0.02	0.20±0.04 0.16±0.01 0.13±0.02 0.17±0.03 0.08±0.02	0.08±0.02	0.12±0.02
AMP	0.09±0.02	0.17±0.06	0.16±0.01	0.09 ± 0.02 0.17 ± 0.06 0.16 ± 0.01 0.10 ± 0.04 0.14 ± 0.01	0.14±0.01	0.28±0.10
IMP	9.33±0.37	10.43±0.53	11.17±0.73	9.33±0.37 10.43±0.53 11.17±0.73 10.33±0.52	8.79±0.22	9.80+10.28
Inosine	1.19±0.10	1.04 ± 0.33	0.51±0.07	1.19±0.10 1.04±0.33 0.51±0.07 0.66±0.04 0.81±0.05 0.78±0.08	0.81±0.05	0.78±0.08
Hypoxanthine	0.16±0.04	0.16±0.04 0.15±0.04 0.25±0.07	0.25±0.07	0.8±0.01	0.8±0.01 0.17±0.04 0.20±0.03	0.20±0.03
Total	11.07±0.49 ^b	12.02±0.27*	12.29+074*	11.38±0.49	10.08±0.22*	11.07±0.49 12.02±0.27 12.29+074 11.38±0.49 10.08±0.22 11.30±0.21
Other Constituents (mg/100g)						
Creatine	494.4±18.9*	389.3±12.2°	344.8±16.9	392.7±12.1	486.1±31.3	494.4±18.9" 389.3±12.2" 344.8±16.9" 392.7±12.1" 486.1±31.3" 483.4±23.4"
Creatinine	8.4±1.2	6.3±0.8	3.4±1.7	8.2±3.5	4.3±1.3	3.7±0.3
TMAO	8.5±0.8	5.0±0.3	2.3±1.7	9.6±2.1	5.9±2.1	7.7±0.9
TMA	1.5±0.2	1.3±0.1	1.0±0.4	2.0±0.2	1.6±0.1	1.2±0.2

Mean±standard deviation of four determinations.
 Means with the same superscript letterin a row did not vary significantly from each other (ρ>0.05).

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

養殖虱目魚普通肉含氮萃取物成分之季節變化

泉 國立臺灣海洋大學水產食品科學系 为1 昭 渋 急* 的 軍

海

月間每二個月採樣,取其普通內分析。一般成分組成之季節變動小,但主要含氮萃取物成分 包括組胶酸、牛磺酸、 紮胺酸、 攤胺酸、 甘胺酸及丙胺酸等游離胺基酸 (FAA)、 肌苷酸 (inosinic acid) 與肌酸 (creatine) 之季節性變化則有顯著差異 (p<0.05)。 游離胺基酸 總量 (878~1,129 mg/100g) 以 12 月份為最高,各主要敗基酸則分別在 12 至4月份間較 高。核苷酸及相關化合物總量(10~12 mmole/g)在 10 及 8 月份最高,2 月份最低; 肌酸 含量 (345~494 mg/100 g) 則以 2~6 月份最高而 10 月份最低。虱目魚呈味成分之組成特 徵與青甘鮱等紅肉魚類似,肌苷酸雖因季節而有所變動,但含量比一般魚肉高,推測多季生 為瞭解本省養殖虱目魚含氮萃取物成分含量之季節變化,自民國 81 年6月至 82 年4 產虱目魚之 FAA 含量較豐富而呈味性較佳。

關鍵詞:虱目魚,萃取物成分,呈味成分,游離胺基酸,核苷酸,肌酸,季節變化。

邱思魁、游昭玲、蕭泉源,1995,養殖虱目魚普通肉含氮萃取物成分之季節變化。 食品科學,22(4): 387-394。

虱目魚普通肉萃取物氮之季節變化及其中氮的分佈 1

Fig. 1. Seasonal variation of extractive nitrogen (EN) and the distribution of nitrogen in the muscle extracts of milkfish.

表二 取目魚普通內游雕胺基酸含量之季節變化

Seasonal variation of the content of free amino acids in the muscle extracts of milkfish Table 2.

5.1±1.5 4.9±1.0 35.6±4.4 665.1 ± 36.6^{b} 31.1±6.5 22.7±2.2° 35.8±7.6° 0.5±0.1 15.2±7.4 5.7±1.9 3.0±0.4 2.1 ± 0.3 2.6±1.2 3.1 ± 0.5 1.8±0.6 1.1±0.3 0.6±0.1 1.3 ± 0.4 3.4 ± 0.8 Apr. ,046.0±46.4** 24.4±10.8° 11.7±6.5 27.5±3.8 734.2±63.3° 52.2±6.9° 36.0±5.4° 0.9±0.2 7.0±0.4 9.0∓8.9 2.4±0.5 5.2±0.8 3.6±0.8 2.3±0.8 6.0±1.0 5.2±2.4 8.4±3.1 2.8±0.4 0.9±0.2 7.7 ±8.1 2.3±0.7 12.7±0.8 5.6±0.5 23.5±5.0^b 10.6±6.8 59.8±11.7* 329.4±90.3* 77.8±9.1 8.2±1.0 39.2±1.4* 6.2±1.0 27.5±6.9° 1.3±0.6 2.2±0.1 3.1 ± 0.8 5.1±1.2 1.8±0.5 2.5±0.8 3.5±0.4 0.7±0.2 1.0 ± 0.3 4.3 ± 0.4 7.4±1.2 4.8±0.8 5.8±1.2 997.4±61.7° 912.0±90.0° 878.5±83.5° 669.1±62.9° 670.7±61.5° 27.9±6.4° 7.2±2.1° 18.9±8.9 7.8±1.3 24.5±5.3b 15.8±3.0 2.2±0.6 11.8±1.6 9.3±0.8 1.7±0.3 1.2±0.2 3.0±1.9 1.3±0.3 2.1 ± 0.6 2.8±0.6 0.4 ± 0.1 0.1 ± 0.1 3.3±0.4 97.1±18.5b 26.4±2.3°° 23.8±6.4b 10.9±2.7° 5.8±2.7 10.7±1.3 9.0∓6.0 12.0±6.2 4.1 ± 1.2 5.8±1.5 16.4±5.6° 0.8±0.5 2.0±0.6 1.5±0.4 0.8±0.4 1.8±0.6 1.0 ± 0.4 3.5±0.7 9.8±1.0 3.2±0.4 1.0 ± 0.1 4.0 ± 1.3 104.5±16.7° 18.8±2.6 ** 1.0±0.1* 28.1±3.6b 20.1±3.7° 22.8±3.4b 710.7±55.7° 6.7±0.3 11.7±2.9 2.9±1.0 10.5±2.3 11.2±1.8 9.9±1.4 1.1 ± 0.3 2.5±0.6 4.4±0.4 2.6±0.2 3.0±0.2 4.5±0.5 4.4±1.0 1.6±0.2 3.0±0.7 3-Methylhistidine Hydroxylproline Phosphoserine Aspartic acid Glutamic acid Phenylalanine Methionine Glutamine Threonine 8-Alanine Isoleucine Ornithine Histidine Arginine **Tyrosine** Alanine Glycine Leucine Proline Valine Serine Lysine

Mean±standard deviation of four determinations.
 Means with the same superscript letter in a row did not vary significantly from each other (P>0.05).

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

採樣蜆之體重、殼長及採肉率

Table 1. Body weight, shell length and meat yield of freshwater clam

Meat yield $(\%)$ $(n = 3)$	19.0±0.7 ^b	18.5±0.3 ^b	12.0±0.4 ^d	15.7±0.1°	11.8±0.2 ^d	21.0±0.1	21.0±0.4ª
Date of sampling Body weight (g) $(n = 60)$ Shell length $(cm) (n = 60)$ Meat yield $(\%) (n = 3)$	2.0±0.1	2.1±0.2	2.1±0.1	2.2±0.1	2.1±0.1	2.1±0.2	2.3±0.2
Body weight (g) $(n = 60)$	2.4±0.3	2.5±0.5	3.0±0.4	2.8±0.4	2.6±0.5	2.7±0.5	3.0±0.5
Date of sampling	1995 Aug. 29	1995 Oct. 27	1995 Dec. 30	1996 Feb. 28	1996 Apr. 30	1996 Jun. 25	1996 Aug. 26

^{**} Mean with the same superscript letter in a column did not significantly differ from each other (p>0.05)

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

食品科學(中華民國八十六年八月/第二十四卷第四期:第四六九至四七八頁) Food Science (August, 1997) 24(4):469-478

養殖台灣蜆化學成分之季節變化

松 惠 國立台灣海洋大學水產食品科學系 源一藍 2台灣省水產試驗所水產加工系 泉 思魁"蕭 田田

樣呈現夏、秋季高而多、春季低之趨勢。游離眩基酸 (FAA) 總量在 87.8 ~ 147.9 mg/100 g 白及灰分量則變動不大,採內率 (11.8~21.0%)及肝離含量 (1,171~4,216 mg/100g)同 ATP 相關化合物總量 (2.43 ~ 3.75 mmole/g) 以 2 及 4 月份最高, 12 月份則爲最低值 化,民國 84 年 8 月至 85 年 8 月間每二個月自花蓮壽豐養殖區採樣與分析。一般成分的季 與多數 FAA 的含量均以 8 及 10 月份較高,而 12 及 2 月份之 FAA 總量最低 (p<0.05)。 (b<0.05)。萃取物氮量 (151 ~ 187 mg/100 g) 大抵以 2 及 4 月份較高。從以上結果,採肉 率、粗脂肪、星味胺基酸、核苷酸、肝醣等含量以夏秋兩季之蜆明顯較高,推測此季節 本研究探討本省養殖台灣規 (Corbicula fluminea Muller) 可食部位化學成分之季節變 節變化大,水分含量以 12 至 4 月份明顯較高,但此期間之粗脂肪量較低 (p<0.05),粗蛋 間,麩胺酸、麩胺醯胺、丙胺酸、鳥胺酸、聯胺酸及精胺酸等爲主要胺基酸, FAA 總量 間生產蜆之風味較佳。

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

蜆一般成分及肝醣含量之季節變動

Table 2. Seasonal variation in proximate composition and glycogen of freshwater clam

Date of		Proximate composition (%)	mosition (%)		Glycogen
sampling	Moisture	Protein	Fat	Ash	(mg/100g)
1995 Aug. 29	82.2±0.1 ^d	10.5±0.4 ^{ab}	1.7±0.3 ^b	0.8±0.1€	4,216±182ª
1995 Oct. 27	82.7±0.4 ^d	11.1±0.4	1.6±0.1 ^b	1.1±0.1	2,533±254°
1995 Dec. 30	88.3±0.2ª	8.7±0.1°	0.5 ± 0.0^{d}	1.1±0.1 ^{ab}	1,171±38 ^d
1996 Feb. 28	85.2±0.1 ^b	10.7±0.6ªb	0.9±0.0 ^{cd}	1.0±0.1ªb	2,303±114°
1996 Apr. 30	85.4±0.3 ^b	10.2 ± 0.6^{b}	0.7±0.0€	0.9±0.1 ^{bc}	2,309±254°
1996 Jun. 25	83.6±0.3°	10.6±0.3ªb	1.8±0.1 ^b	1.0±0.1ªb	$3,284\pm160^{b}$
1996 Aug. 26	82.1 ± 0.8^{d}	10.5±0.3ab	2.4±0.1ª	1.0±0.1°	3,588±336 ^b

Mean \pm standard deviation (n = 3).

** Mean with the same superscript letter in a column did not significantly differ from each other (p>0.05)

473

処游雕版基酸合果 (mg/100g) 之零酌體助 on in free amino acids (mg/100g) in the extract

Amino acids		1995			1996	91	
	Aug.	Oct.	Dec.	Feb.	Apr.	Jun.	Aug.
Phosphoserine	29±03	24±0.1	3.0±0.1	3.0±0.5	4.3±0.7	29±0.5	28±03
Taurine	2.4 ± 0.7°	27±0.0	24±0.1°	3.1±0.5	53±02	3.1±05°	26±02
Aspartic acid	3,4±0.1	26±03°	1.7±02 ^d	1.9±0.1	21±03°	28±02	3.6±03
Threonine	29±0.1°	3.6±03°	1.9±03°	1.9±02 ^d	27±03°	3.4±0.5°	45±03
Serine	42±0.1	3.7±03*	43±05°	3.6±0.3°	1.8±0.3°	32±04°	3.8±03
Asparagine	15±02	0.9±03 ^d	1.0±02	1.0±02	1.5±0.3	1.4±02 to	1.6±03
Glutamic acid	13.5±0.1	129±0.7	88±12ª	7.9±0.8	10.3 ± 1.0^{4}	115±134	17.1 ± 1.5
Glutamine	17.4±05	17.9±0.5	7.0± 1.0 ^d	9.4±0.1°	15.6±0.5	3.8±0.4°	42±03
a-AAA	1.0±03°	05±02	0.5±0.1°	02±00	0.4±0.1 ^{cd}	0.8±0.1	1.4±02
Proline	3.0±0.1	45±0.1	22±02	23±02 ^d	3.0±03°	3.6±0.4°	5.5±0.5
Glycine	28±02b	3.6±0.4	23±04b	23±04°	29±05	24±02	3.8±02
Alanine	15.1 ± 0.1°	20.4±0.4°	7.5±1.0°	11.4 ± 0.4^{d}	127±13 ^d	15.8±1.7°	265±07
a-ABA	02±00	13±0.1	0.7±03	12±0.1	1.7±0.1	0.6±02°	1.7±0.1
Valine	3.4 ± 0.1	5.0±02	29±03	3.1±02	3.7 ± 0.3^{44}	4.0± 0.3°	5.6±02
Cystine	02±00	13±0.1	1.4 ± 0.1	1.1 ± 0.1	1.9±03	12±0.1	1.6±0.1
Methionine	12±00ª	20± 0.1 ^b	1.7±02°	1.6±0.1	0.5±02	1.8±0.1	27±0.1
Isoleucine	23±0.1	3.1±02	1.6±02	1.8±02	21±02	25±02°	4.6± 02
Leucine	33±0.1	4.6±03°	21±03	25±02	27±02ª	$3.4 \pm 0.3^{\circ}$	62±04
Tyrosine	24±0.1	29±02	1.7±03°	1.7±02	24±0.7m	22±02	3.9±03
Phenylalanine	1.6±0.0	2.1 ± 0.1	1.1 ± 0.2^d	13±02	1.7±0.6 ^E	1.8±0.1	33±0.6
b-Alanine	1.8±03 ^{tc}	25±04°	1.4±0.5°	13±05°	20±09E	1.4±0.1°	32±02
b-AiBA	02±00	0.4±0.0°	03±00E	02±00g	03±0.1	03±0.1 ¹²	0.9 ± 0.1
Y-ABA	02±0.1°	0.5±0.1	0.4±0.1	0.4±0.1	0.3 ± 0.1	03±0.1	0.6±0.1
Tryptophan	1.6±00	14±0.1	1.0±0.1	0.6±02	0.7±0.1 ^d	0.5±0.1	0.5±02
Ethanolamine	45±08	3.4±02°	63±08	4.6±0.4	32±04°	26±02°	3.0±05°
Ornithine	9.4 ± 21	11.7±35	89±34°	73±29°	153±64	5.6±03°	10.1 ± 0.4
Lysine	72±0.1	7.6±0.4°	43±0.7°	$42 \pm 03^{\circ}$	53±0.7ª	65±0.7°	87±03
Histidine	1.8±03	1.7±0.1	09±0.1°	0.9±0.1°	1.4±0.1	1.0±02°	1.9±0.1
Arginine	11.4±0.1	10.5±0.3	8.7±0.8°	102±08	105±05	121 ± 22	11.6±0.6
Total	1229±3.4 th	137.8± 7.1	87.8± 12.5°	920±89°	1186± 128	1022± 100	147.9±7.8
Ammonia	3.4 ± 0.2	4.0±0.1	32±02ª	32±02	3.7±03	3.1±03	45±0.6

a-AAA, a-Aminoadipic acid; a-ABA,

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Fig. 1. Seasonal variation in extractive nitrogen and taste components of freshwater clam. TAA, taste amino acids (glutamic acid + alanine + glycine + arginine); 蜆萃取物氮與呈味成分含量之季節變動 Nu, nucleotides (ATP + ADP + AMP + IMP).

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

蜆 ATP 相關化合物含量 (mmole/g) 之季節變動

Table 4. Seasonal variation in ATP-related compounds (µmole/g) in the extract of freshwater clam

Oct. Dec. Feb. Apr. Jun. 027±009 028±009 044±005 0.46±005 0.34±005 0.34±005 056±008 0.56±008 0.58±008 0.70±005 0.91±019 0.91±019 045±0.12 0.33±0.01 0.41±0.07 0.60±0.05 0.73±0.10 0.91±0.19 081±0.08 0.49±0.02 0.54±0.05 0.43±0.01 0.20±0.02 0.00±0.02 0.04±0.01 0.02±0.00 0.03±0.01 0.04±0.01 0.04±0.00 0.00±0.00 0.16±0.05 0.10±0.02 0.18±0.05 0.24±0.02 0.07±0.02 0.04±0.00 0.49±0.06 0.63±0.02 1.14±0.20 1.14±0.09 0.75±0.13 0.00±0.00 0.05±0.06 0.13±0.02 0.13±0.01 0.31±0.01 <			1995			15	9661	
0.44±0.14 0.27±0.09 0.28±0.09 0.44±0.05 0.46±0.06 0.34±0.05 0.44±0.05 0.46±0.06 0.34±0.05 0.44±0.09 0.46±0.09 0.46±0.09 0.45±0.08 0.56±0.08 0.56±0.08 0.58±0.08 0.70±0.05 0.91±0.19 0.48±0.10 0.81±0.08 0.49±0.02 0.54±0.05 0.43±0.01 0.20±0.02 0.48±0.10 0.48±0.10 0.40±0.01 0.40±0.01 0.40±0.01 0.40±0.01 0.40±0.01 0.40±0.00 0.40±0.01 0.40±0.02 0.40±0.00 0.40±0	The second secon	Aug.	Oct.	Dec.	Feb.	Apr.	Jun.	Aug.
0.69±0.00 color of co	ATP	0.44±0.14	027±0.09°	028±0.09	0.44±0.05	0.46±0.06	034±0.05	038±0.14
0.58±0.05 0.45±0.12 0.33±0.01 0.41±0.07 0.60±0.05 0.73±0.10 0.48±0.10 0.81±0.08 0.49±0.02 0.54±0.05 0.43±0.01 0.20±0.02 0.51±0.00 0.63±0.01 0.04±0.01 0.02±0.00 0.63±0.01 0.04±0.01 0.02±0.00 0.63±0.01 0.04±0.01 0.02±0.00 0.03±0.01 0.04±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0	ADP	0.69±0.09	_	0.56±0.08	0.58±0.08	0.70±0.05	091±0.19	083±0.08
osine 0.03±0.01 0.04±0.01 0.02±0.00 0.03±0.01 0.04±0.01 0.02±0.00 0.03±0.01 0.04±0.01 0.02±0.00 0.03±0.01 0.04±0.01 0.04±0.01 0.00±0.00 0.03±0.01 0.04±0.01 0.04±0.00 0.03±0.01 0.04±0.00 0.03±0.00	AMP	0.58±0.05°	0.45±0.12	033±0.01	0.41 ± 0.07^{d}	0.60±0.05°	0.73±0.10°	095±002
osine $0.03\pm0.01^{\circ}$ $0.04\pm0.01^{\circ}$ $0.02\pm0.00^{\circ}$ $0.03\pm0.01^{\circ}$ $0.04\pm0.01^{\circ}$ $0.04\pm0.01^{\circ}$ $0.04\pm0.00^{\circ}$ re $0.10\pm0.02^{\circ}$ 0.16 ± 0.06 $0.10\pm0.02^{\circ}$ 0.18 ± 0.05 $0.24\pm0.02^{\circ}$ $0.07\pm0.02^{\circ}$ $0.05\pm0.00^{\circ}$ $0.06\pm0.01^{\circ}$ $0.13\pm0.02^{\circ}$ $0.13\pm0.01^{\circ}$ $0.14\pm0.09^{\circ}$ $0.75\pm0.13^{\circ}$ sine $0.05\pm0.00^{\circ}$ $0.06\pm0.01^{\circ}$ $0.13\pm0.02^{\circ}$ $0.13\pm0.01^{\circ}$	IMP	0.48±0.10	_	0.49±0.02	0.54±0.06	0.43±0.01°	020±002°	030±000g
ne 0.10±0.02 0.16±0.06 0.10±0.02 0.18±0.05 0.24±0.02 0.07±0.02	Adenosine	0.03 ± 0.01^{1}	0.04±0.01	0.02±0.00	0.03±0.01	0.04±0.01	0.04±0.00	005±001
xanthine 0.59±0.00 ⁴ 0.49±0.00 ⁵ 0.63±0.00 ² 1.41±0.20 1.14±0.09 0.75±0.13 ⁵ ine 0.05±0.00 ¹ 0.06±0.01 0.13±0.00 ² 0.13±0.01 0.14±0.01 0.28±0.00 0.297±0.00 ² 2.83±0.07 2.43±0.03 3.72±0.15 3.75±0.21 3.31±0.19	Inosine	0.10±0.02°	0.16±0.06	0.10±0.02°	0.18±0.05	0.24±0.02	0.07±0.02°	0.06±0.01°
ine 0.05 ± 0.00^d 0.06 ± 0.01^d 0.13 ± 0.02^c 0.13 ± 0.01^c 0.14 ± 0.01^d 0.28 ± 0.00^b 2.97 ± 0.02^c 2.83 ± 0.07^c 2.43 ± 0.03^d 3.72 ± 0.15^s 3.75 ± 0.21^s 3.31 ± 0.19^b	Hypoxanthine	0.59±0.04	0.49±0.06	0.63±0.02 ^{dd}	1.41±0.20	1.14±0.09	0.75±0.13°	0.48±0.06
297±0.00° 2.83±0.00° 2.43±0.00° 3.72±0.15° 3.75±0.21° 3.31±0.19°	Xanthine	0.05±0.00	000±000	0.13±0.02°	0.13±0.01°	0.14±0.01°	028±000°	031±0.01
	Total	297±0.02°	283±0.07°	243±0.03	3.72±0.15	3.75±021	331±0.19°	336±0.04°

Mean \pm standard deviation (n = 3).

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

食品科學(中華民國八十五年十二月/第二十三卷第六期:第七百七十九至七百八十七頁) Food Science (December, 1996) 23(6): 779-787

名 變 篼 州 Ŋ 今 成 女蛤化學 殖

海 泉 國立臺灣海洋大學水產食品科學系 震 君 米 魁* 的

7月份較高, 肝醣含量 (1,103~1,432 mg/100 g) 以7月份較高。游離胺基酸 (FAA) 總量 班珀酸較高。萃取物氮量大抵呈現由春季往冬季逐漸上升之趨勢,從以上結果顯示夏、秋季生 為瞭解本省不同季節生產養殖文蛤之化學成分,民國 82 年 11 月至 83 年 11 月間每 二個月自雲林臺西養殖戸採樣與分析。 —般成分之變動小,採肉率 (11.3~16.7%) 以 5 及 在 913~1,299 mg/100g 間,以牛磺酸含量最多,另包括丙胺酸、紫胺酸、精胺酸及甘胺 酸等五種主要 FAA 即佔總量之 84~91%,且和 FAA 總量均以7及9月份高於其他月份 。核苷酸及相關化合物總量 (3.74~4.57 mmole/g) 在 5 及 7 月份較高, 有機酸 (234~504 mg/100g)中以琥珀酸量較多,蘋果酸及檸檬酸其次,在夏及秋季生產之文蛤有機酸總量及 產文蛤之肝醣、呈味胺基酸、琥珀酸等含量較豐富,推測此季節生產之文蛤風味可能較佳。 關鍵詞:文蛤,萃取物成分,肝醣,游離胺基酸,核苷酸,有機酸,季節變化。

γ-aminobutric acid.

Mean ± standard deviation (n = 3). " Means with the same

^{**}Means with the same superscript letter in a row did not significantly differ from each other (p>0.05).

表一 採樣文蛤之體重、殼長及採肉率

Table 1. Body weight, shell length and meat yield of the examined

Date of sampling	Body weight (g)	Shell length (cm)	Meat yield (%)
1993 Nov. 26	17.2±4.0	4.1±0.4	12.2
1994 Jan. 27	15.0±2.6	4.0±0.2	11.8
1994 Mar. 26	15.6±2.8	4.2±0.3	13.9
1994 May 27	14.2±3.3	4.2±0.3	16.7
1994 Jul. 26	14.0±2.8	4.1±0.4	15.0
1994 Sep. 29	12.9±2.5	3.9±0.3	11.3
1994 Nov. 11	12.5±2.2	3.9±0.2	13.0
		The second secon	The second secon

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

1

表三 文始游離胶基酸含量之季節變動 Table 3. Seasonal variation in the content of free amino acids in the meat extract of hard clam (mg/100g)

anom.	meat cattact of maid claim					=	(mg/100g)
7	1993			19	1994		
Amino acids	Nov.	Jan.	Mar.	May	Jul.	Sep.	Nov.
Phosphoserine	7	7	7	80	80	6	6
Taurine	512	533	638	395	460	652	469
Aspartic acid	19	23	53	30	32	22	19
Threonine	9	6	80	4	9	7	6
Serine	4	7	4	4	9	8	7
Glutamic acid	108	131	132	138	159	150	105
Glutamine	е	S	4	4	4	S	3
Sarcosine	7	3	2	0	0	8	2
a-Amino adipic acid	6	6	s	4	80	11	13
Proline	s	9	7	9	9	7	6
Glycine	22	37	26	59	87	09	52
Alanine	85	121	106	136	274	206	205
a-Amino-n-butyric acid	2	4	3	п	3	4	3
Valine	00	14	6	80	80	10	13
Cystine	4	9	-	0	0	-	-
Methionine	0	9	3	4	1	4	4
Cystathionine	-	3	2	0	0	1	-
Isoleucine	S	8	4	4	4	S	00
Leucine	9	11	9	7	9	7	12
Tyrosine	s	80	9	9	9	9	6
Phenylalanine	е	S	s	'n	4	4	7
B-Alanine	7	7	3	3	3	3	4
β-Amino-n-butyric acid	0	0	-	0	3	-	-
Ornithine	9	9	00	7	4	9	'n
Lysine	13	19	18	18	20	12	15
Histidine	Э	S	2	4	4	4	23
Arginine	74	68	46	80	74	68	71
Total	913	1,069	1,132	936	1,189	1,299	1,059
Ammonia	9	9	4	9	7	7	80

表二 文蛤之一般成分及肝離含量之季節變動

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Table 2. Seasonal variation in proximate composition and glycogen content of hard clam

٠		Proximate composition (%)	position (%)		Glycogen
Date of sampling	Moisture	Protein	Fat	Ash	(mg/100g)
1993 Nov. 26	83.0	12.6	0.3	2.0	1,103
1994 Jan. 27	80.3	11.1	0.7	2.4	1,275
1994 Mar. 26	82.0	11.3	0.2	2.5	1.192
1994 May 27	81.4	11.0	0.2	2.2	1,145
1994 Jul. 26	81.3	10.5	0.5	2.3	1,432
1994 Sep. 29	81.4	10.5	3.9	2.4	1,222
1994 Nov. 11	9.18	12.3	0.7	2.5	1,132

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

素四 文给核苷酸及相關化合物含量之等簡變動 Table 4. Seasonal variation in the content of nucleotides and related compounds in the meat extract of hard clam

	1993			19	1994		
	Nov.	Jan.	Mar.	May	Jul.	Sep.	Nov.
ATP	1.05	1.12	1.23	66.0	06.0	0.05	1.14
ADP	08.0	0.97	0.79	96.0	0.59	0.39	1.06
AMP	0.87	0.77	0.85	0.97	2.01	1.74	0.70
IMP	0.17	0.13	0.03	0.17	0.21	0.17	0.03
GMP	0.07	0.08	0.04	60.0	0.16	0.23	0.05
CMP	0.27	0.34	0.34	0.29	0.16	0.29	0.38
UMP	0.12	0.13	0.13	0.29	0.05	0.12	0.13
Adenosine	0.03	0.02	0.05	0.04	0.03	0.05	0.02
Inosine	0.16	0.20	0.10	0.10	0.11	0.14	90.0
Guanosine	0.03	0.03	0.01	0.03	0.03	0.30	0.02
Uridine	0.04	0.05	0.04	90.0	0.10	0.13	0.02
Hypoxanthine	0.29	0.23	60.0	0.25	0.20	0.16	0.17
Xanthine	0.03	0.03	0.02	0.02	0.02	0.10	0.02
Total	3.04	4.08	3.74	4.26	4.57	3.87	3.80

表五、文岭有機酸、氧化三甲基胺及三甲基胺含量之季節變動 Table 5. Seasonal variation in the content of organic acids, trimethylamine oxide (TMAO) and trimethylamine (TMA) in the meat extract of hard clam

naro Cram						5	(mg/100 g)
	1993			19	1994		
	Nov.	Jan.	Mar.	May	Jul.	Sep.	Nov.
a-Ketoglutaric acid	4	3	4	10	10	00	
Citric acid	53	48	64	4	28	63	3
Succinic acid	140	212	109	204	265	271	23
Lactic acid	80	7	1	3	10	7	
Malic acid	70	79	26	83	72	149	11
Pyroglutamic acid	1	1	1	1	1	=	
Total	275	349	234	344	385	504	39
TMAO	9	3		6	7	9	5
TMA	7	=	7	v	7	7	_

-, not detected.

Fig. 1. Seasonal variation in the contents of extractive nitrogen (A) and taste components 圖一 文蛤萃取物氮(A)及呈味成分含量(B)之季節變動 (B) of hard clam meat.

FAA, free amino acids; NRC, nucleotides and related compounds; Others, unidentished compounds; TAA, taste amino acids (alanine+glutamic acid+arginine+ glycine); Nu, nucleotides (ATP+ADP+AMP+IMP+GMP); Suc, succinic acid.

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響 FISHERIES SCIENCE 2001; 67: 146-156

muscle and viscera of small abalone fed different diets Seasonal variations of chemical constituents in the

Original Article

FEE-KUEI CHIOU,* MENG-MEI LAI AND CHYUAN-YUAN SHIAU

Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, ROC

in the muscles of the two specimens were considerably high in December to March. This finding suggested that small abalone produced in winter and early spring might be more SUMMARY: The seasonal changes in levels of chemical constituents in the muscle and viscera of small abalone *Haliotis diversicolor* fed gracilar and an artificial diet were investigated. Muscle yields were higher in winter and spring. In October specimens, total adenosine 5'-triphosphate (ATP)-related compounds (ARC), total free amino acids (FAA), and glycogen in both muscle and viscera decreased markedly. The artificial diet fed to small abalone had much higher glycogen in the muscle than those fed on gracilar, and showed a great seasonal change. Total amounts of ARC in the muscles were glycine, glutamic acid, and alanine were the major FAA in both tissues, accounting for 81-94% of the total FAA. Total amounts of FAA in the muscles were higher in the samples collected from winter and early spring than in other seasons. Glycine, glutamic acid, and adenosine monophosphate higher through March to July, while those in the viscera were maximal in January. Taurine, arginine might be the most important taste components related to the palatability of small abalone. total amounts palatable

KEY WORDS: diet, extractive component, Haliotis diversicolor, seasonal variation, small

abalone.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

- 甘物等 苷酸雖因季節而有所變動,但含 **纪氮萃取物成分**之 呈味成分之組成特徵與青 季生産虱 图 普通 ・推測を 0 呈味性較佳 倒 100 匣 養殖 $\overline{\mathbb{K}}$ 僶 釵
- 風味較 台灣蜆化學成分之季節變化:採 包 生產蜆之 肝酷等 ,推測此季節間 / 呈味胺基酸、核苷酸 顯較高 養殖
- 量較豐 0 蛤之肝醣、呈味胺基酸、琥珀酸等含 推測此季節生產之文蛤風味可能較佳 養殖文蛤化學成分之季節變化:

Seasonal changes in muscle and viscera yields of (a) G-small abalone and (b) A-small abalone. Data are mean and SD of six specimens. (■) muscle; (□) viscera.

viscera (----) of (a) G-small tion and glycogen in the muscle and SD of two determinations.

Table 1 Seasonal changes in levels of free amino acids (mg/100 g) in the muscle of G-small abalone

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

	0			0				
Amino acids				Date of	Date of sampling			
	1997			1998				
	Sep. 10	Oct. 1	Dec. 20	Jan. 13	Mar. 18	May 8	Jul. 21	Sep. 9
Phosphoserine	11 (0)	*(0) 6	(0) 6	(0) 9	(0) 9	(0) 9	8 (0)	6 (1)
Taurine	1313 (16)	1425 (43)	1351 (49)	1214 (42)	1218 (111)	1339 (57)	1300 (35)	1321 (96)
Aspartic acid	5(2)	8 (2)	5 (2)	2 (0)	7 (1)	2 (0)	7 (2)	(0) 6
Threonine	10 (0)	11(1)	18 (0)	20 (0)	17 (3)	24(2)	15(2)	17(1)
Serine	26(0)	21(1)	35 (1)	34(1)	42 (11)	36 (6)	23 (6)	39 (6)
Glutamic acid	70(1)	47 (2)	34 (2)	30 (0)	54 (20)	39 (2)	47 (6)	(9) 99
Glutamine	15(0)	14(0)	37 (3)	22(1)	42 (23)	18 (3)	25 (2)	32 (1)
α-AAA	2 (3)	5(2)	6 (2)	7 (1)	10 (4)	(0) 9	10 (0)	8 (2)
Proline	19(2)	15(2)	24(2)	29(1)	39 (2)	21(1)	16(2)	21 (4)
Glycine	74 (1)	131 (7)	350 (3)	399 (14)	438 (61)	238 (35)	162 (79)	195 (20)
Alanine	45 (0)	41 (1)	37 (1)	31 (0)	50 (22)	23 (1)	41 (3)	47 (4)
Citrulline	6(1)	8 (0)	6(1)	5 (0)	(0) 9	1 (0)	1(1)	0 (0)
α-ABA	3(2)	0 (0)	3(1)	2 (0)	2(1)	4(2)	2 (0)	(0) 9
Valine	8(1)	7 (1)	11 (1)	10 (0)	14(2)	11 (1)	9 (2)	10 (1)
Cystine	0 (0)	1(1)	1(1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Methionine	4(1)	2 (0)	5 (1)	4(1)	4(2)	4 (1)	5 (2)	4 (0)
Cystathionine	3(3)	1(1)	5 (0)	8 (0)	7 (1)	5 (0)	1 (0)	4 (1)
Isoleucine	8 (3)	6(2)	10 (0)	7 (0)	10(1)	(0) 9	6 (2)	7 (0)
Leucine	11 (2)	10 (1)	12(0)	6 (0)	15 (4)	11 (0)	12(1)	11 (2)
Tyrosine	10 (6)	12 (0)	20 (2)	16(1)	22 (10)	10(1)	10(2)	10(2)
Phenylalanine	4 (0)	4(1)	7 (1)	8 (0)	13 (5)	6 (1)	(1)	7 (0)
β-Alanine	4 (3)	3 (2)	3 (3)	1 (0)	2(1)	1 (0)	3 (0)	1 (0)
β-AiBA	2(3)	1 (2)	2(2)	2(0)	2 (0)	2(1)	2 (0)	2 (0)
y-ABA	0 (0)	0 (0)	1 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Tryptophan	6(2)	7 (8)	8 (6)	3 (0)	(0) 6	0 (0)	0 (0)	(0) 0
Ethanol amine	0 (1)	0 (1)	0 (0)	1 (0)	0 (0)	1 (0)	1 (0)	0 (0)
Ornithine	2 (0)	4 (0)	(0) 9	11 (0)	4 (0)	2 (0)	3(1)	2(1)
Lysine	6 (0)	6 (0)	18 (0)	16(0)	21 (3)	17(1)	14 (3)	18 (2)
Histidine	8 (0)	9 (1)	12 (0)	15(1)	24 (6)	16(1)	13 (4)	17 (2)
Arginine	458 (10)	421 (8)	405 (17)	431 (11)	498 (27)	488 (11)	525 (20)	471 (31)
Total	2133 (10)	2236 (67)	2443 (78)	2351 (70)	2576 (22)	2342 (16)	2266 (165)	2332 (122)

α-AAA, α-amino adipic acid; α-ABA, α-amino-n-buyric acid; β-AiBA, β-amino-isobutyric acid; γ-ABA, γ-amino-n-buyric acid.

* Data are mean and SD (in parentheses) of two determinations.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Fig.3 Seasonal changes in levels of ATP-related compounds in the muscle and viscera of G-small abalone and A-small abalone. Data are mean and SD of two determinations. G-small abalone (a) muscle and (b) viscera. A-small abalone (c) muscle and (d) viscera.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Seasonal changes in levels of free amino acids (mg/100g) in the muscle of A-small abalone Table 2

Amino acids				Date of	Date of sampling			
	1997			1998				
	Sep. 10	Oct. 1	Dec. 20	Jan. 13	Mar. 18	May 8	Jul. 21	Sep. 9
Phosphoserine	*(0) 6	7 (0)	7 (0)	9 (1)	(0) 9	7 (1)	2 (0)	(0) 9
Taurine	897 (5)	1045 (5)	1020 (107)	1105 (73)	1150 (114)	986 (32)	1082 (31)	1257 (73)
Aspartic acid	5 (1)	(0) 9	11 (2)	7 (1)	5(1)	11 (0)	12(1)	8 (0)
Threonine	10 (0)	16(1)	11 (1)	15(1)	15 (4)	11 (1)	18(1)	15 (1)
Serine	46 (1)	26(2)	54 (6)	58 (3)	37 (2)	50 (1)	54 (1)	33 (2)
Glutamic acid	110(2)	46(1)	59 (8)	79 (2)	50 (5)	67(1)	109 (0)	71 (4)
Glutamine	23 (1)	29 (1)	75 (13)	(1)	35 (10)	55 (3)	52 (3)	43 (0)
oc-AAA	3(2)	6(2)	7 (1)	4 (2)	(0) 9	7 (0)	10 (0)	7 (3)
Proline	57 (6)	18 (4)	111 (14)	101 (4)	61 (4)	(1)	55 (0)	22 (1)
Glycine	224 (5)	278 (7)	484 (41)	448 (24)	362 (28)	335 (41)	329 (32)	257 (14)
Alanine	82 (1)	20 (0)	(2) 09	72 (4)	43 (12)	(0)	111 (10)	52 (3)
Citrulline	3 (1)	6 (3)	1(1)	1(1)	10 (4)	0 (0)	1(1)	9 (1)
α-ABA	4 (0)	2(3)	6(1)	2(1)	3(1)	2 (0)	3 (0)	(0) 0
Valine	9 (1)	11 (1)	20(1)	23 (2)	11 (1)	15(0)	15 (0)	15(1)
Cystine	0 (0)	1 (0)	1(1)	0 (1)	0 (0)	0 (0)	0 (0)	2(2)
Methionine	3 (2)	5(1)	3 (0)	2 (0)	4 (0)	2 (0)	2(1)	3 (1)
Cystathionine	4 (2)	3(2)	4 (0)	3(1)	5 (3)	2(1)	1 (0)	2 (0)
Isoleucine	8 (2)	9 (1)	14 (4)	14(0)	8 (0)	10 (0)	10 (0)	3 (0)
Leucine	15 (0)	12 (0)	25 (5)	23 (0)	13 (3)	21(1)	21(1)	7 (1)
Tyrosine	21 (1)	15 (0)	48 (8)	31 (1)	19 (3)	22 (0)	19 (1)	8 (0)
Phenylalanine	11 (1)	2 (0)	18(1)	(0) 61	11 (1)	16(1)	14(1)	(0) 9
8-Alanine	9 (1)	4(2)	4(1)	2 (0)	1 (1)	3 (0)	10 (1)	2 (0)
B-AiBA	5 (0)	2(2)	4 (0)	2(1)	2 (0)	2(1)	4 (0)	2 (0)
y-ABA	0 (0)	0 (0)	(0) 0	(0) 0	0 (0)	0 (0)	0 (0)	(0) 0
Tryptophan	4(2)	3 (4)	11 (0)	4 (5)	4 (6)	0 (0)	0 (0)	
Ethanol amine	1 (2)	0 (1)	0 (0)	(0) 0	0 (1)	1 (0)	1 (0)	
Ornithine	2 (0)	2 (0)	3(1)	4 (0)	14(0)	4 (0)	7 (2)	
Lysine	17 (0)	15 (0)	18 (2)	24 (2)	17 (8)	28 (1)	23 (2)	
Histidine	14(0)	(0) 6	12 (2)	25 (2)	20 (2)	(1) 61	16 (0)	
Arginine	412 (9)	395 (10)	387 (50)	375 (17)	454 (27)	405 (20)	432 (2)	
Total	2010 (13)	2032 (13)	2476 (278)	2517 (125)	2370 (104)	2212 (108)	2422 (68)	2323 (100)

 $[\]alpha$ -AAA, α -amino adipic acid; α -ABA, α -amino-n-butyric acid; β -AiBA, β -amino-isobutyric acid; γ -ABA, γ -amino-n-butyric acid. * Data are mean and SD (in parentheses) of two determinations.

FISHERIES SCIENCE 2003; 69: 597-604

Chemical constituents in the abdominal muscle of cultured mud crab Scylla serrata in relation to seasonal variation and maturation

FEE-KUEI CHIOU* AND JUI-PENG HUANG

Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan

ABSTRACT: Seasonal changes in levels of chemical constituents in the abdominal muscle of male and female mud crab Scylla serrata were investigated. The gonadosomatic index in the female crab was higher in October and August, of which the muscle yield, glycogen, and total amount of adenosine S-triphosphate (ATP)-related compounds (ARC) in the October sample were the highest throughout the year, but the total amount of free amino acids (FAA) was the lowest. The total FAA and individual FAA such as glycine, alanine, and arginine increased in the August and November female samples, while that in the male specimens was higher in other seasons whereas glycinebetaine crabs was lower in the samples collected from winter than in other seasons whereas glycinebetaine and adenosine monophosphate might be responsible for the taste of mud crab. Their level together was relatively higher in the August and January male samples, and in the August and November female specimens. However, the correlation between the taste component content and degree of gonad maluration was low.

KEY WORDS: crab, extractive component, gonad maturation, Scylla serrata, seasonal variation.

Fig. 1 Seasonal changes in muscle yield and gonadosomatic index of (\blacksquare) male and (\square) female mud crabs. Data are mean and SD (n=3). Different letters indicate significant difference (P < 0.05) among different sampling times.

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

Table 1 Seasonal variations of proximate composition and glycogen in the abdominal muscle of male and female

	Body	Carapace	P	Proximate composition‡ (%)	osition‡ (%)		Č
Date of sampling	weight† (g)	width† (cm)	Moisture	Protein	Fat	Ash	Glycogen‡ (mg/100 g)
Male crab							
19 March 1999	280±57	10.4 ± 0.8	80.8 ± 1.0^{abc}	17.1 ± 0.2^{bcd}	0.3 ± 0.1^{a}	1.7 ± 0.2^{b}	122 ± 19^{e}
6 May 1999	302 ± 49	11.0 ± 0.9	82.0 ± 0.9^{ab}	16.4 ± 0.9^{cd}	0.3 ± 0.0^{20}	1.7 ± 0.1^{b}	90±34€
12 August 1999	295±59	11.1 ± 0.3	80.7 ± 1.2^{abc}	16.5 ± 1.1^{cd}	0.2 ± 0.0^{c}	2.2 ± 0.2^{a}	194 ± 49^{cd}
25 October 1999	250±53	10.9 ± 0.6	78.8 ± 0.8°	19.1 ± 1.2^{ab}	0.2 ± 0.1^{c}	1.5 ± 0.0^{b}	391±11²
22 November 1999	228±41	10.3 ± 0.3	82.5±1.7ª	15.8 ± 1.5^{d}	0.2 ± 0.1^{abc}	1.6 ± 0.2^{b}	247 ± 73bc
7 January 7, 2000	348±45	11.5 ± 0.8	79.8 ± 1.2bc	18.1 ± 0.9^{abc}	0.2 ± 0.0^{bc}	1.6±0.1b	288±33 ^b
6 March 2000	286±50	10.9 ± 0.4	78.6±2.2°	19.2 ± 1.0^{4}	0.2 ± 0.0^{bc}	1.6 ± 0.0^{b}	145±8 ^{de}
Female crab							
19 March 1999	260±15	10.6 ± 0.3	77.6±1.7 ^{cd}	19.5 ± 0.6^{ab}	0.5±0.1²	1.8 ± 0.0^{b}	297±111°
6 May 1999	242±20	10.8 ± 0.4	81.3 ± 1.2	16.4±0.7⁴	0.3 ± 0.1^{b}	1.8 ± 0.3^{b}	181 ± 63°
12 August 1999	260±36	11.0 ± 0.7	75.8 ± 0.5^{d}	20.9 ± 0.7^{a}	$0.4\pm0.1^{\mathrm{bcd}}$	1.9 ± 0.0^{2}	485 ± 94^{b}
250ctober 1999	413 ± 56	12.9 ± 0.6	77.9 ± 1.1^{bc}	18.8 ± 1.0^{bc}	$0.4 \pm 0.1^{\rm b}$	1.5±0.1°	882±122ª
22 November 1999	353±43	11.8 ± 0.5	79.6 ± 0.9^{abc}	17.9 ± 0.8bcd	0.3 ± 0.1^{d}	$1.5 \pm 0.0^{\circ}$	274±83°
7 January 2000	265±37	11.1 ± 0.5	80.2 ± 1.7^{ab}	17.4 ± 1.2^{d}	0.4 ± 0.0^{bc}	1.4±0.1°	302 ± 51^{c}
6 March 2000	307 ± 49	11.3 ± 0.4	78.4±2.1bc	18.9 ± 2.0^{abc}	0.4 ± 0.1^{b}	$1.4 \pm 0.0^{\circ}$	324 ± 64°

 \pm Mean \pm SD (n = 9).

#Mean $\pm SD$ (n=3). Means in the same column not sharing the same superscripts are significantly different (P<0.05) among different sampling times.

Fig. 2 Seasonal changes in levels of adenosine triphosphate (ATP) and its related compounds in the abdominal muscle of (a) male and (b) female mud crabs. Data are mean and SD (n=3). Bars at the top of each columnidicate the SD of the total content. Different letters indicate significant difference (P < 0.05) among different sampling times. ADP adenosine diphosphate: AMP adenosine monophosphate; IMP, inosine monophosphose.

Seasonal variations of the major and total free amino acids (mg/100 g) in the abdominal muscle of male and Table 2 Seasonal female mud crabs

1999 12 August 25 October 22 November 199±25° 83±5° 97±32° 85±14° 57±10° 77±7° 74±4° 50±6° 305±7° 244±126° 248±21° 190±47° 227±124° 169±33° 345±84° 327±115° 74±158° 986±82° 697±10° 726±131° 191±8° 259±28° 171±26° 182±32° 615±106° 590±35° 539±24° 547±56° 221±68° 340±138° 231±37° 367±56° 2458±221° 2747±285°° 2458±221° 2747±285°° 246±23°° 241±12° 247±23°° 245±26° 355±46° 355±46° 355±46° 37±28°° 37±28				Ď	Date of sampling	56		
cacid 71±4 ^{ab} 57±10 ^{bc} 77±7 ^a 74±4 ^a 50±6 ^c ne 275±76 ^a 305±7 ^a 244±12 ^{bc} 74±4 ^a 50±6 ^c ne 275±76 ^a 305±7 ^a 244±12 ^{bc} 74±4 ^a 50±6 ^c ne 275±76 ^a 305±7 ^a 244±12 ^{bc} 248±21 ^a 190±47 ^a 296±18 ^{bc} 227±124 ^c 169±3 ^c 345±84 ^{bc} 327±115 ^{bc} 780±44 ^{bc} 742±186 ^{bc} 986±82 ^{ac} 697±10 ^{bc} 726±131 ^{bc} 237±42 ^{ab} 191±8 ^{bc} 259±28 ^a 171±26 ^c 182±32 ^{bc} 558±73 ^{ac} 615±106 ^c 590±35 ^{ac} 539±24 ^{ac} 547±56 ^{ac} 2682±79 ^{abc} 2458±221 ^{bc} 2747±285 ^{abc} 2401±122 ^c 2474±273 ^{bc} cacid 46±1 ^{bc} 73±10 ^{bc} 474±2 ^{cc} 67±8 ^{abc} 61±12 ^{abc} ne 289±29 ^{abc} 367±74 ^{ac} 376±73 ^{ac} 108±9 ^{cc} 67±8 ^{abc} 61±12 ^{abc} 558±148 ^{abc} 329±37 ^{ac} 361±37 ^{ac} 418±97 ^{bcd} 525±47 ^{abc} 558±148 ^{abc} 329±37 ^{ac} 361±37 ^{ac} 418±97 ^{bcd} 525±47 ^{abc} 572±30 ^{bc} 534±8 ^{bcc} 658±17 ^{ac} 483±150 ^{cc} 268±67 ^{bc} 34±93 ^{ac} 337±23 ^{bc} 234±13 ^{bc} 473±150 ^{cc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 2134±246 ^{dc} 281±203 ^{acc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 2134±246 ^{dc} 281±203 ^{acc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 2134±246 ^{dc} 281±203 ^{acc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 2134±246 ^{dc} 281±203 ^{acc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 2134±246 ^{dc} 281±203 ^{acc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 213±3243 ^{acc} 2683±86 ^{bcc} 2466±68 ^{cc} 3023±203 ^{acc} 2683±86 ^{cc} 2466±68 ^{cc} 3023±203 ^{acc} 2683±86 ^{cc} 2466±68 ^{cc} 3023±203 ^{acc} 2683±20 ^{cc} 2460±66 ^{cc} 3023±203 ^{acc} 2685±20 ^{cc} 2460±66 ^{cc} 2465 ^{cc} 260 ^{cc} 260 ^{cc} 2685±20 ^{cc} 2460 ^{cc} 260 ^{cc}				1999			2000	00
b	Amino acids	19 March	6 May	12 August	25 October	22 November	7 January	6 March
cacid 71±4.0 57±10* 77±7* 74±4* 50±6* 65±14** 77±7* 74±4* 50±6* 65±14** 77±7* 74±4* 50±6* 65±14** 77±7* 74±4* 50±6* 65±0* 225±18* 227±124* 169±37* 345±44* 327±115* 780±44* 742±189* 986±82* 697±10* 726±131* 237±42** 191±8** 259±28* 171±26* 182±32* 588±73* 615±106* 590±37* 539±24* 547±56* 182±32* 288±73* 615±106* 590±37* 231±37* 367±56* 2682±79** 2458±221* 2747±285** 2401±122* 2474±273** 26±10** 122±13** 107±13* 108±9* 116±13* 6±112** 6±112** 105±20* 122±13** 107±13* 108±9* 116±13* 6±112** 105±13** 107±13* 108±9* 116±13* 105±13** 107±13* 108±9* 116±13* 105±13** 107±13* 108±9* 116±13* 105±13** 107±13* 108±9* 116±13* 105±13** 105±13** 107±13* 108±9* 116±13* 105±13*	Male crab							
c acid 71±4 ^{ab} 57±10 ^{bc} 77±7 ^a 74±4 ^a 50±6 ^c ne 275±76 ^a 305±7 ^a 244±126 ^a 248±21 ^a 190±47 ^a 296±18 ^{bc} 227±124 ^c 169±33 ^c 345±84 ^{bc} 327±115 ^{bc} 780±44 ^{bc} 742±158 ^{bc} 986±82 ^a 697±10 ^b 726±131 ^b 237±42 ^{ab} 191±8 ^{bc} 259±28 ^a 171±26 ^c 182±32 ^b 598±73 ^a 615±106 ^a 590±35 ^a 539±24 ^a 547±56 ^a 328±50 ^a 221±68 ^a 340±138 ^c 231±37 ^a 367±56 ^a 2682±79 ^{abc} 2458±221 ^{bc} 2747±285 ^{abc} 2401±122 ^c 2474±273 ^{bc} c acid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{ab} 61±12 ^{ab} ne 289±29 ^{abc} 367±74 ^a 376±73 ^a 203±39 ^c 312±33 ^{ab} 519±134 ^{abc} 329±37 ^d 361±37 ^{cd} 418±97 ^{bcd} 525±47 ^{abc} 568±148 ^{abc} 434±26 ^{abc} 278±28 ^{abc} 155±36 ^d 197±28 ^{bcd} 572±30 ^{bc} 534±8 ^{bcc} 658±17 ^{ac} 463±54 ^{cc} 575±29 ^{abc} 288±67 ^{bcc} 344±93 ^{abcc} 337±23 ^{bcc} 231±34 ^{ccd} 281±203 ^{abccd} 288±86 ^{bcccdccccccccccccccccccccccccccccccccc}	Taurine	97 ± 29^{a}	$99 \pm 25^{\circ}$	83 ± 5^{a}	97 ± 32^{a}	$85 \pm 14^{\circ}$	85 ± 13^{a}	88 ± 30^{a}
ne 275±76 ^a 305±7 ^a 244±126 ^a 248±21 ^a 190±47 ^a 296±18 ^{bc} 227±124 ^c 169±33 ^c 345±84 ^{bc} 377±115 ^{bc} 780±44 ^b 742±156 ^b 986±82 ^a 697±10 ^b 726±131 ^b 237±42 ^{ab} 191±8 ^{bc} 259±28 ^a 171±26 ^c 182±32 ^b 328±73 ^a 615±10 ^{bc} 590±35 ^a 539±24 ^a 547±56 ^a 328±50 ^a 221±68 ^a 340±138 ^b 231±37 ^a 367±56 ^a 2682±79 ^{abc} 2458±221 ^{bc} 2747±285 ^{abc} 2401±122 ^c 2474±273 ^{bc} cacid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{ab} 61±12 ^{ab} ne 289±29 ^{abc} 367±74 ^a 376±73 ^a 203±39 ^c 312±33 ^{ab} 519±134 ^{abc} 329±37 ^d 361±37 ^d 410±9 ^{bc} 61±12 ^{ab} 526±10 ^{abc} 182±26 ^d 278±28 ^a 155±35 ^d 197±28 ^{bcd} 226±10 ^{abc} 182±26 ^d 278±28 ^a 155±35 ^d 197±28 ^{bcd} 226±10 ^{abc} 337±23 ^b 337±23 ^b 234±13 ^b 473±150 ^a 2683±86 ^{bc} 2466±68 ^c 3023±203 ^a 213±4246 ^{dc} 281±203 ^{abcd} 2683±86 ^{bc} 2466±68 ^c 3023±203 ^a 213±4246 ^{dc} 281±203 ^{abcd} 2683±86 ^{cc} 2466±68 ^{cc} 3023±203 ^{accd} 213±4246 ^{dc} 281±203 ^{abcd} 2683±86 ^{ccc} 2466±68 ^{ccc} 3023±203 ^{accd} 213±4246 ^{dc} 281±203 ^{abcd}	Glutamic acid	71 ± 4^{ab}	57 ± 10^{bc}	77 ± 7ª	74 ± 4^{a}	$50 \pm 6^{\circ}$	80 ± 22^{a}	52 ± 7^{c}
296±18 ¹⁶ 227±124 ⁴ 169±33° 345±84 ¹⁶ 327±115 ¹⁶ 780±44 ¹⁶ 742±158 ¹⁶ 996±82° 697±10 ¹⁶ 726±131 ¹⁶ 538±42 ¹⁶ 191±8 ¹⁶ 259±28° 171±28° 182±32 ¹⁶ 328±50 ¹⁶ 221±68° 340±138° 231±37 ¹⁶ 367±56 ¹⁶ 2262±79 ¹⁶ 248±221 ¹⁶ 2747±285 ²⁸ 221±37 ²⁸ 367±56 ²⁸ 268±279 ²⁸ 248±221 ¹⁶ 2747±285 ²⁸ 2401±122° 2474±273 ²⁶ c acid 46±1 ¹⁶ 73±10 ² 45±2 ²⁶ 67±8 ²⁶ 61±12 ²⁶ 116±13 ²⁶ 169±13 ²⁶ 519±134 ²⁶⁶ 367±74 ² 376±73 ²⁶ 203±39° 312±33 ²⁶ 519±134 ²⁶⁶ 394±26 ²⁶ 862±79° 487±69 ²⁶⁶ 555±46 ²⁶⁶ 226±10 ²⁶⁶ 148 ²⁶⁶ 484±26 ²⁶⁶ 862±79° 487±69 ²⁶⁶ 555±46 ²⁶⁶ 226±10 ²⁶⁶ 138±26 ²⁶⁶ 278±28° 155±35 ²⁶ 197±28 ²⁶⁶ 575±28 ²⁶ 575±28 ²⁶⁶ 278±28° 155±35 ²⁶ 197±28 ²⁶⁶ 575±28 ²⁶⁶ 278±28° 155±35 ²⁶ 197±28 ²⁶⁶ 278±28° 155±35 ²⁶ 197±28 ²⁶⁶ 278±28° 125±26 ²⁶⁶ 278±28° 234±13 ²⁶⁶ 473±150° 2683±86° 2466±68° 3023±203° 2134±246 ²⁶ 2812±203³ 2	Glutamine	275 ± 76 ^a	305 ± 7^{a}	244 ± 126"	248 ± 21^{a}	190 ± 47°	291 ± 8^{a}	214 ± 15^{a}
780 ± 44 ^b 742±158 ^b 986±82 ^a 697±10 ^b 726±131 ^b 237±42 ^{ab} 191±8 ^{bc} 259±28 ^a 171±26 ^c 182±32 ^b 598±73 ^a 615±106 ^c 590±35 ^a 539±24 ^a 547±56 ^a 328±50 ^a 221±68 ^a 340±138 ^a 231±37 ^a 367±56 ^a 2682±79 ^{abc} 2458±221 ^{bc} 2747±285 ^{abc} 2401±122 ^c 2474±273 ^{bc} 2 cacid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{ab} 61±12 ^{ab} 16 299±29 ^{abc} 367±74 ^a 376±73 ^a 203±39 ^c 312±33 ^{ab} 519±134 ^{abc} 229±137 ^{cd} 376±73 ^a 203±39 ^c 312±33 ^{ab} 519±134 ^{abc} 229±29 ^{abc} 367±46 ^b 862±79 ^{abc} 418±97 ^{bcd} 525±47 ^{abc} 572±30 ^b 534±46 ^b 572±20 ^{bcd} 572±30 ^{bcd} 572±30 ^{bcd} 572±30 ^{bcd} 374±93 ^{ab} 337±23 ^b 234±13 ^b 473±150 ^{bcd} 2683±86 ^{bc} 2466±6 ^{bc} 3023±203 ^a 213±246 ^{dc} 281±203 ^{ab} 2	Proline	296 ± 18^{bc}	227 ± 124^{c}	169±33€	345 ± 84^{bc}	327 ± 115^{bc}	472 ± 90^{ab}	$542 \pm 169^{\circ}$
237±42 ²⁰ 191±8 ^{3c} 259±28 ² 171±26 ^c 182±32 ⁰ 598±73 ² 615±106 ^c 590±35 ² 539±24 ² 547±56 ² 328±50 ² 221±68 ² 340±138 ² 231±37 ² 367±56 ² 2682±79 ^{20c} 2458±221 ^{3c} 2747±285 ^{20c} 2401±122 ^c 2474±273 ^{3c} 2 cacid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{2b} 61±12 ^{2b} ne 289±29 ^{20c} 367±74 ² 376±73 ² 203±39 ^c 312±33 ^{2b} 519±134 ^{20c} 329±37 ^a 361±37 ^a 418±97 ^{2cd} 525±47 ^{2bc} 568±148 ^a 444±26 ^b 882±79 ^a 418±97 ^{2cd} 525±47 ^{2bc} 226±10 ^{2bc} 183±26 ^{cd} 278±28 ^a 155±35 ^d 197±28 ^{2bcd} 572±30 ^b 534±8 ^{cc} 658±17 ^a 463±54 ^c 575±2 ^{3b} 268±67 ^b 374±93 ^{ab} 337±23 ^b 234±13 ^b 473±150 ^a 2683±86 ^{bc} 2466±68 ^c 3023±203 ^a 2134±246 ^d 2812±203 ^{ab} 2	Glycine	780 ± 44^{b}	742 ± 158^{b}	986 ± 82"	697 ± 10^{b}	726 ± 131^{b}	825 ± 47^{ab}	791 ± 128 ^b
598 ± 73* 615 ± 106* 590 ± 35* 539 ± 24* 547 ± 56* 328 ± 50* 221 ± 68* 340 ± 138* 231 ± 37* 367 ± 56* 2682 ± 79** 2428 ± 221** 2747 ± 285** 2401 ± 122* 2474 ± 273** 2 c acid 46 ± 1** 73 ± 10** 45 ± 2** 67 ± 8** 61 ± 12** 61 ±	Alanine	237 ± 42^{ab}	191 ± 8^{bc}	259 ± 28^{a}	$171 \pm 26^{\circ}$	182 ± 32^{b}	273 ± 19^{a}	189 ± 20^{bc}
328±50° 221±68° 340±138° 231±37° 367±56° 2682±79³³° 2458±221° 2747±285³³° 2401±122° 2474±273° 2 cacid 46±1° 73±10° 45±2° 67±8³° 61±12³° 6 ne 289±29³³° 387±74° 376±73° 203±39° 312±33³° 61±12³° 569±148° 484±26° 862±79° 487±69° 554±46° 226±10³³° 183±26° 278±28° 155±35° 197±28°° 572±30° 534±8° 688±17° 465±54° 554±46° 572±30° 534±30° 373±23° 234±13° 473±150° 268±67° 344±30° 337±23° 234±13° 473±150° 268±67° 346±66° 3023±203° 2134±246° 281±203³° 2	Arginine	598±73°	615 ± 106 ³	590±35ª	539 ± 24"	547 ± 56°	$612 \pm 64^{\circ}$	604 ± 53^{a}
2682±79 ^{abc} 2458±221 ^{bc} 2747±285 ^{abc} 2401±122 ^c 2474±273 ^{bc} 2 c acid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{ab} 61±12 ^{ab} 10±13 ^c c acid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{ab} 61±12 ^{ab} 116±13 ^c 519±134 ^{abc} 339±37 ^{cd} 418±97 ^{bcd} 525±47 ^{abc} 568±148 ^b 484±26 ^b 862±79 ^a 487±69 ^b 554±46 ^b 226±10 ^{abc} 183±2 ^{cd} 278±28 ^a 155±35 ^d 197±28 ^{bcd} 572±30 ^b 534±8 ^{bcd} 688±17 ^a 463±54 ^a 575±2 ^{bcd} 278±28 ^a 155±35 ^d 197±28 ^{bcd} 278±28 ^a 155±35 ^d 197±28 ^{bcd} 278±28 ^a 278±203 ^a 283±203 ^a 213±203 ^a 2	Others	328 ± 50^{a}	$221 \pm 68^{\circ}$	340±138ª	231 ± 37^{a}	$367 \pm 56^{\circ}$	333 ± 55^{a}	$320 \pm 103^{\circ}$
cacid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^a 61±12 ^{ab} ne 289±29 ^{abc} 367±7 ^a 376±73 ^a 203±39 ^c 312±33 ^{ab} 519±134 ^{abc} 329±37 ^a 361±37 ^{cd} 418±97 ^{bcd} 525±47 ^{abc} 568±148 ^b 484±26 ^b 862±79 ^a 487±69 ^b 554±46 ^b 226±10 ^{abc} 183±26 ^{ad} 278±28 ^a 155±35 ^d 197±28 ^{ad} 572±30 ^b 534±8 ^{bc} 658±17 ^a 463±54 ^c 575±23 ^b 298±67 ^b 374±93 ^{ab} 337±23 ^b 234±13 ^b 473±150 ^a 2683±86 ^{bc} 2466±68 3023±203 ^a 2134±246 ^d 2812±203 ^{ad} 2	Total	2682 ± 79^{abc}	2458 ± 221bc	$2747\pm285^{\rm abc}$	2401 ± 122^{c}	2474 ± 273^{bc}	2971 ± 92"	2800 ± 179^{ab}
c acid 46±1° 73±10° 45±2° 67±8° 116±13° c acid 46±1° 73±10° 45±2° 67±8°° 61±12°° ne 289±29°° 36±37° 47±8° 67±8°° 61±12°° 519±134°° 329±37° 36±37° 418±97° 52±47°° 568±148° 484±26° 862±79° 487±69° 55±47°° 256±10°° 183±26° 278±28° 155±35° 197±28°° 572±30° 534±8° 688±17° 463±54° 575±23°° 298±67° 374±93° 337±23° 234±13° 473±150° 2683±86° 246£±68° 3023±203° 2134±246° 2812±203°	Female crab							
c acid 46±1 ^b 73±10 ^a 45±2 ^b 67±8 ^{ab} 61±12 ^{ab} ne 289±29 ^{abc} 387±7 ^a 376±7 ^a 203±39 ^c 312±33 ^{ab} 519±134 ^{abc} 329±37 ^a 361±37 ^a 418±97 ^{bcd} 525±47 ^{abc} 568±148 ^b 484±26 ^b 862±79 ^a 487±69 ^b 554±46 ^b 226±10 ^{abc} 183±26 ^a 278±28 ^a 155±35 ^a 197±28 ^{bcd} 572±30 ^a 534±8 ^{bc} 68±17 ^a 463±54 ^c 575±2 ^{abcd} 298±67 ^b 374±93 ^{ab} 337±23 ^b 234±13 ^b 473±150 ^a 2683±86 ^{bc} 2466±68 ^c 3023±203 ^a 2134±246 ^d 2812±203 ^{abcd} 2	Taurine	$165 \pm 20^{\circ}$	122 ± 13^{bc}	$107 \pm 13^{\circ}$	108 ± 9°	116±13°	126 ± 9^{bc}	151 ± 27^{ab}
ne 289±29*** 367±74* 376±73* 203±39* 312±33** 519±134** 329±37** 361±37** 418±97*** 555±47*** 526±148** 484±26** 862±79** 487±69** 554±46** 526±10*** 130*** 278±28** 155±35** 197±28*** 572±30** 534±8*** 658±17** 463±54** 575±23** 298±67** 374±93*** 337±23** 234±13** 473±150** 2683±86** 2466±68** 3023±203** 2134±246** 2812±203*** 2	Glutamic acid	46 ± 1^{b}	$73 \pm 10^{\circ}$	45 ± 2^{b}	67 ± 8^{ab}	61 ± 12^{ab}	74 ± 10^{a}	63 ± 10^{ab}
519±134 ²⁰ × 329±37 ⁴ 361±37 ⁴ 418±97 ^{bcd} 525±47 ²⁰ × 568±148 ⁹ 494±26 ⁹ 882±79 ⁹ 487±69 ⁹ 554±46 ⁹ 226±10 ²⁰ × 183±26 ⁴ 278±28 ⁸ 155±35 ⁴ 197±28 ²⁰ × 572±30 ⁹ 534±8 ²⁰ × 688±17 ² 463±54 ² 575±23 ⁹ 298±67 ³ 337±23 ³ 234±13 ⁴ 473±150 ³ 2683±86 ³ × 2466±68 ² 3023±203 ² 2134±246 ⁴ 2812±203 ²⁰ 2	Glutamine	289 ± 29^{abc}	367 ± 74°	376±73 ^a	$203 \pm 39^{\circ}$	312 ± 33^{ab}	256 ± 24^{bc}	256 ± 46^{bc}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Proline	519 ± 134^{abc}		361 ± 37^{cd}	418 ± 97^{bcd}	525 ± 47^{abc}	572 ± 138^{ab}	600 ± 119 ^a
226±10 ^{nbc} 183±26 rd 278±28 ^a 155±35 ^d 197±28 ^{bcd} 572±30 ^b 534±8 ^{bc} 658±17 ^a 463±54 ^c 575±23 ^b 298±67 ^b 374±93 ^{ab} 337±23 ^b 234±13 ^b 473±150 ^a 2683±86 ^{bc} 2466±68 ^c 3023±203 ^a 2134±246 ^d 2812±203 ^{ab}	Glycine	568 ± 148^{b}	484 ± 26^{b}	862 ± 79^{a}	487 ± 69^{b}	554 ± 46^{b}	571 ± 158^{b}	511 ± 120^{b}
572±30° 534±8 ^{18°} 658±17° 463±54° 575±23° 298±67° 374±93°° 337±23° 234±13° 473±150° 2683±86 ^{18°} 2466±68° 3023±203° 2134±246° 2812±203°°	Alanine	226 ± 10^{abc}	183 ± 26^{cd}	278 ± 28 ^a	155 ± 35^{d}	197 ± 28^{bcd}	245 ± 51^{4b}	180 ± 10^{cd}
298 ± 67^{b} 374 ± 93^{4b} 337 ± 23^{b} 234 ± 13^{b} 473 ± 150^{a} 2683 ± 86^{bc} 2466 ± 68^{c} 3023 ± 203^{a} 2134 ± 246^{d} 2812 ± 203^{ab}	Arginine	572 ± 30^{b}	534 ± 8^{bc}	658 ± 17^{2}	$463 \pm 54^{\circ}$	575 ± 23^{b}	477 ± 54°	527 ± 54^{bc}
2683 ± 86^{bc} 2466 ± 68^{c} 3023 ± 203^{a} 2134 ± 246^{d} 2812 ± 203^{ab}	Others	298 ± 67^{b}	374 ± 93^{ab}	337 ± 23^{b}	234 ± 13^{b}	473 ± 150^{a}	321 ± 56^{b}	270 ± 42^{b}
	Total	$2683\pm86^{\mathrm{bc}}$	2466±68°	3023 ± 203 ^a	2134 ± 246^{d}	2812 ± 203^{ab}	2642 ± 119^{bc}	2560 ± 173^{bc}

Data are mean and SD (n=3). Means in the same row not sharing the same superscripts are significantly different (P < 0.05) among different sampling times

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

組織部位

- 背肉、腹肉;普通肉、血合肉之一般組成 魚類一百 •
- 萃取物氮:魚類-普通肉>血合肉
- ★游離胺基酸:魚類 普通肉>血合肉 組胺酸及鵜肌肽的差異更才
- ★核苷酸成分:普通肉>曲合肉
- 自合肉 日の图>> ★牛磺酸:

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

the abdominal muscle of (a) male and (b) female mud crabs. Data are mean and SD (n=3). Bars at the top of each column indicate the SD of the total content. among different sampling times. Taste amino acids: glutamic acid+glycine+ alanine+ arginine; AMP (adenosine monophosphate): adenosine triphosphate+ adenosine diphosphate+AMP+inosine monophosphate. Seasonal changes in level of taste components in Different letters indicate significant difference (P < 0.05)

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

Figure 2. Free amino acids in crab extracts

Figure 3. Nitrogenous components in crab extract.

Content (mg/100 g)

The content of glycine, proline, serine, and alanine in the muscle extracts of prawns and lobsters. They are arranged in decreasing order of palatability from left to right.

養殖與野生天然魚

• 影響化學組成之因素

飼料:飼料組成、異於天然餌料

運動量:肉質特性

養殖條件與環境因子

• 天然魚與養殖魚

脂質含量:天然魚<養殖魚

風味:天然魚>養殖魚

肉質:天然魚>養殖魚

,體色:天然魚>養殖魚

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

魚介類的滋味與萃取物成分

- 對整體滋味(風味)之貢獻或影響程度
- ◎萃取物成分的含量
- ◎呈际特性
- ◎閾値 (threshold)
- ◎交互作用(interaction):相加 相減 相乘
- ◎濃度的相對優勢
- · 官能試驗法(sensory test)
- O omission test
- addition test

98 水產商品學

萤光色因pH的不同而改變。現在已自鯉魚、蝴魚的鱗及泥鳅的皮膚中分離 喋呤(pterin)類是類似於嘌呤類之色素化合物,有許多喋呤類具有螢光, 出责嘌呤(xanthopterin)、鮖嘌呤(ichthyopterin)等成分。

符體色素(echinochrome)之紅、紫、藍色的萘醌色素(naphthoquinone),它 自海驇的棘、殼、生殖巢等分離得到而命名為棘色素(spinochrome)及 門在棘及微中可能係以鈣鹽或鎂鹽的狀態存在,而在生殖巣中可能以蛋白 質複合體的狀態存在。

4-2 魚介類的味

魚介類的風味差異甚大,不同的種類各具有獨特的原味,且一般被視 為美味者為數不少。今天,之所以廣泛地使用整胶酸納及肌苷酸钠作為調 味料,實專因於前人對水產物之海帶及柴魚鮮味成分的研究成果。不過, 這也和水產物中多美味,及人們經常食用各種水產物有密切關連。

觸覺)、鼻腔間到的氣味(嗅覺)及牙齒的咀嚼聲(聽覺)等之外,飲 食者的健康與生理狀態,甚至飲食習慣、飲食環境等許多的因素均有所影 評價食品的美味特性,除眼睛看到的外觀色澤(視覺)、舌頭的觸感 響。由此,若詢及爲何覺得食物鮮美或者不夠美味,欲以科學的見解作一

明確的回答,實非易事。

本節中,爲避冤重複第三章3-6節內容(魚介類肌肉的萃取物成分), 主要僅針對會刺激味覺產生之物質(呈味成分)加以關述7~10)。

1-2-1 主要的呈味成分

1) 胶基酸 魚介類,毫無例外地,其所含的游雕散基酸是呈味成分 中最為重要的成分。胺基酸各有其獨特的風味,而到底在食品中發揮怎樣 的呈味作用,基本上是受到各胺基酸的關值及含量,或者和其它成分之間 的相互作用等因素所決定。下面就將截至目前為止,已經報告過而和魚介 類的味道有關的主要胺基酸作一敘述。 整胺酸 它的一種的鹽(整胺酸的,monosodium glutamate, MSG)帶 有鲜味(*)之成分。所有的魚介類,沒有例外,都含有魅胺酸,只是含量大 多低於MSG的閱憶(0.03%)。可是由於和死後魚肉中所蓄積凱苷酸(IMP)之 間具有鮮味的相桑作用,因此於肌苷酸並存的情況下,即使含量低於閩值, 仍有助於呈味(參見核苷酸項)。

甘酸酸 烏帶有爽快甜味之散基酸。無脊椎動物,特別是甲殼類及鄉 扇貝貝柱中的含量高,其大部份的甜味即來自甘胺酸。蝦類的美味與甘胺 酸的含量之間也關係密切。

以起胺酸鈉(NSG)及肌苷酸(IMP)、烏嘌呤核苷草磷酸(GNP)等核苷酸鈉鹽所

成出鮮味之說法。但最近珠覺心理學的研究顯示,解煉乃是上述基本蛛所無 法合成之另一種獨立的味。另外,現在已經知道對較險嚴例具有特異為應之 受容體(receptor),也存在於經底及老鼠的化學為覺器官中,因此,將解除 解味些非本身即是鮮美的味道,而是解味的成分具有提高美味的作用;所以。 群解蛛與美珠子以區別,有其必要性。「解珠」(日語為「与玄珠」一知, 為日本人所創,外治中技不到通當的譯詞,所以外國的專家們也就直接使用 表现出来的珠辚肩鲜珠。雖然曾有以墓本珠如甜珠、暧珠、苦味及鹹味可合 現為基本味之一,乃更為安當之看法,此在國際上已逐漸得到認同。 诚何的日路径告"nmami"。

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

魚介類的色·魯·味 101

4) 次黃嘌呤 為具有苦味之嘌呤鹽基,由肌苷酸分解而生成。一般 認為它是造成冰藏鳕魚肉產生苦味之原因。

- 5) 甘胺甜菜鹼(glycinebetaine) 因具有甜味,一般認為它有助於含 但在其含量降為179mg時,其效果卻沒有太大的影響。另外,在海扇貝貝柱 合成萃取物的官能試驗結果,於100m.2 含237mg甘酸甜菜鹼時,其呈味效 量豐富之無脊椎動物肌肉甜味的產生。但是以慈愛蟹肉合成萃取物 (100 m 2 中含357mg甘胺甜菜鹼)所作的官能試驗,雖承認它對甜味有所助益, 果並不顯著,惟有趣的是合成萃取物中若再加入甘酸甜菜鹼,則會引出水 產物般的香味(seafood-like flavor)。
- 6) 氧化三甲基胺 因具有甜味,一般認爲它能夠對含量高的魚貝類 100m.2中含1.12g氧化三甲基胺)的官能試驗中,報告指出氧化三甲基胺之 加入可賴增強甜味。從上述的實驗結果,可知氣化三甲基胺唯有存在相當 提供甜味,但在慈愛蟹肉合成萃取物 (100m 2 中含169mg氧化三甲基酸 TMAO)的官能試驗中,被斷定不具呈味效果;而在鼠黨肉合成萃取物(多量時,始能顯現出呈味效果。
- 7) 有機酸 琥珀酸在蚬、蜊、海扇貝等貝類中的含量多,一直被認 為是貝類的重要呈味成分。但琥珀酸係貝類死後或在嫌氣狀態下活存時所 蓄積的,剛捕獲的貝類含量低。由於這樣的試料一定就不鮮美,故琥珀戲 在呈味上的作用有待檢討。乳酸在鰹柴魚煮汁中係提高緩衝能之要因,一 般認為有增強味道的作用。
- 然而鈉、鉀、氣、磷酸根等的雕子,特別是鈉及氣雕子對於風味的產生非 8) 無機成分 第三章中曾進及無機成分並不屬於一般的萃取物成分, 常重要·將於下節舉例說明
 - 4-2-2 數種魚介類的風味組成
- 照分析結果之組成,混合高純度的試劑,這樣就能夠得到充分再現該食品 自食品中製造其萃取物,詳細分析其中的組成成份及其含量之後,仿

102 水產資品學

原味之溶液,此溶液稱爲合成萃取物(synthetic extract)。從合成萃取物中 除去某個成分,然後採用官能試驗來檢討呈味性的變化情形,就能夠了解 該成分在呈味上的作用,這樣的方法稱為團除試驗(ommision test)。目前解 析魚介類風味之構成,即採用此種方法,以下就針對海蘭、慈愛蟹及海蘭 貝等的研究,逐一介紹。 1) 海鹽 牠的食用部分是生殖腺,除生食或蒸煮後食用,還有鹽醬 等加工製品,具有濃厚且獨特的風味。食用海膽包括數種類,其中列為高 級品之馬囊海瞻的萃取物成分組成如表43所示。根據其組成所製造的合成 萃取物,在經過刪除試驗後所得的結果,歸納如下。

表4-3 馬糞海鰕生滑腺萃取物的組成(mg/100g濕量)・

牛磺酸	105	丙胺酸	42	拖	
天冬胺酸	4	胺酸	39	歐	
蘇胺酸	89	散散	215	备	
絲嵌板	130	胺酸	54	御	
麩胺酸	103	胺酸	316	123	
開胺酸	26		14	語	
甘胺酸	842	胺甜茶鹼	8.9	75	
丙胺酸	261	苷三磷酸	4.2		
植形骸	154	苷酸	10.4	眠	
胱胺酸	12	苷酸	2.3	田	
硫胺	47	嘌呤核苷單磷酸	1.9	500	
異白胺酸	100		6.7	葡萄糖	-
白胺酸	176	苷酸	26.6		
酪胺酸	158	報告	1.4		

5.6 8.7 8.7 1.0 1.0 1.0 2.0 2.0 2.0 9.0 6.2

* 將自150g生海瞻駿得的萃取物中所含之上遠成份溶於500m g · 並添加 (小俣・1964) 0.3%的食鹽。

一般判定為重要呈味成分者,只包括甘胺酸、丙胺酸、糊胺酸、麸胺 酸、甲硫胺酸、肌苷酸及鳥嘌呤核苷單磷酸等7種成分,僅由這些成分調配

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503 100 水産食品學

第四章 魚介類的色、香、味 99

脊椎動物中則含相當多的量,在慈愛蟹(snow crab)及海扇貝已確知係提供 丙胺酸 烏帶有弱苦味之甜味胺基酸。其含量大抵低於甘胺酸,但無

組胺酸 紅肉魚肉中蓄積有多量的這種胺基酸,但有的報告指出它和 基(imidazole group)之類肌肽(anserine),輕柴魚中亦含有多量,今後,這 呈味有關,有的則認為無關,因此尚未獲得明確的結論。不過有報告指出 整柴魚中含量很高的組胺酸,和並存的多量的乳酸與磷酸二氫鉀(KH₂PO₄) 共同地提高緩衝能,而有增強呈味之作用。由於和組骸機一樣具有異吡唑 些成分的呈味作用有必要再詳細地探討。

精酸酸 烏帶有苦味之胺基酸。因而富含精胺酸的魚介類往往被認為 慈愛蟹及海扇貝貝柱合成萃取物的結果,發現精胺酸並沒發出苦味,反而 味道不佳,但相反地,含多量精胺酸的無脊椎動物則大多具有美味。探討 可增強風味的複雜性及濃厚性,具有提高整體美味之作用。

甲硫胺酸 它雖係苦味的胺基酸,卻是現出海贍的特有風味所不可欠 缺的成分。而且有報告指出微量的甲硫胺酸能夠使整胺酸鈉的星味感覺更

獅股酸 報告指出它與海騰特有的苦味有關。

即使在每100m 2 中含163mg脯胺酸這種相當多量情況下,對美味仍未能有 觸駁數 是帶有苦味之甜味胺基酸。因此有記載稱它對脯胺酸含量豐 富的魚貝類的風味有所助益:但是在慈愛蟹合成萃取物的官能試驗結果。 所幫助。附帶地說,L.輔胺酸的刺激閱值高達0.3%。

在鼠隊內合成萃取物中研究魏肌肽(anserine)的結果,加入該胜肽可稍增強 酸味及引出濃厚應。Balenine在蟷鯨內合成萃取物中的官能試驗結果,被認 為具有增強鮮味及濃厚感之作用。由於這3種胜肽在中性酸鹼度附近均具有 2) 胜肽 肌肽(carnosine)被認為與牛內萃取物的美味有關:而變魚肌 內中亦含有多量之此雙胜肽,但它與鰻魚的風味之間的關係尚無人探討。

甘強級衝能,其所以引出濃厚感,可能與此性質有關。

3) 核苷酸 為採討醛柴魚煮汁的鮮味成分,1913年小玉氏分離得到 肌苷酸組胺酸鹽,之後並了解其鈉雕可以呈現相同強度的鮮味。鳥嘌呤核 苷單磷酸為天然食品的鮮味成分一事,係由國中氏於1960年研究香菇的呈 味成分時最早發現的,鳥嘌呤核苷單磷酸在乾香菇及松茸中的含量高,魚 介類中亦有少量存在。 國中氏的研究並闡明核苷酸的化學構造與鮮味產生之間的關係,即噪 哈基的第6位置上結合羧基和核糖的SP位置上接上磷酸酯,乃產生鲜味之必 要條件。肌苷酸、鳥嘌呤核苷單磷酸及S-黃苷酸(xantbylic acid; XMP)都能 符合這個必要件,而腺苷酸(adenylic acid; AMP)則因第6位置上鍵結胺基 而幾乎無味。

核苷酸的閾值,IMP · Na₂ · 7.5H₂O函0.025%,GMP · Na₂ · 7H₂O函 0.0125 %, 都相當低, 和麩胶 酸鈉所不同的是其鮮味強度不

因用量增加而有明顯的提高。 是故以核苷酸作爲呈味成分之 意義,應是考慮其與整胺酸鈉

IMP OH CMP OH XMP OH AMP NH HOH HOH HO-P-O-C

之間所產生的鮮味相樂效果。該兩成分的相乘作用可以y =u +1200uv開係式 來表示,u及v分別代表混合液中墊胺酸鈉及即苷酸的濃度,y則是具有和混 合液相同的風味強度之整胶酸鈉單獨的濃度 (g/d2)。

麸胺酸钠和核苷酸間的相乘作用所產生的鮮味,構成魚貝類的主要風 味:但有趣的是本身幾乎無味的腺苷酸也能夠增強墊胺酸鈉的鮮味。雖異 於蓄積肌苷酸之魚肉、這個事實足以說明蓄積腺苷酸之無脊椎動物肌肉為 何也具有強鮮味之原因。像這樣的魅胺酸鈉和核苷酸間的相乘作用,不僅 是人類的感覺,從老鼠的味神經感應也獲得證明,亦即核苷酸結合於味受 容膜之後,可提高麩胺酸鈉對受容體的親和力之故。

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

而成的混合液,和包含全部的成分所組成的合成萃取物比較,除味道強度 **附弱之外,味道的性質非常類似**

則味道的強度與性質都顯得大不相同。甲硫胺酸的呈味作用也重要,除去 這些成分之中,甘胺酸對甜味貢獻很大,丙胺酸亦是如此,但程度上 該成分,海鹽獨特的風味與餘味均消失,而清淡無味。另外,含量亦高的 就會產生更類似於天然海膽味的風味;然而僅是肝髓的溶液則是無味的。 不及甘胺酸。繡胺酸賦與海蟾特有的苦味,合成萃取物中若缺少纈胺酸, 肝髓,具有使整體的風味更爲調和之作用,合成萃取物中如再加入肝髓,

味的雄性慈愛蟹(snow crab),將其顯肉合成萃取物(表4-4),採用刪除試驗 2) 慈愛蟹 蟹類係許多人喜好的海鮮類之一,其中一般認為最富美 的結果,計有10種成分被判定在味道的構成上屬於重要者。茲將分別刪除 各成分所引起呈味上的變化情形,歸納如下所述。

表4-4 慈愛蟹腳肉合成萃取物的組成 (mg/100mg)。

牛磺酸	243	胞苷酸	9
天冬胺酸	10	腺苷酸	35
蘇胺酸	14	馬嘌呤核苷單磷酸	4
新山田 光明	14	机苷酸	S
机粉糖	77	模节二磷酸	2
編散機	327	を配合	_
鉄路酸	19	級苷	26
甘粉酸	623	次黃嘌呤	
製造区	187	抻	==
a-胺基-n-丁酸	23	克服哈	
施の機	30	御	
田路路職	19	宏	353
調び発動	58	氧化三甲基胺	338
11年	30	2	9
の配合に対象	19		100
非 別的體	11	任	01
のおお	-	新布縣	17
起波蘭	25	校廳	4
おおち	00	無化聚	259
1-甲基組筋酸	00	養允能	376
在時間	10	版一組織	86
報告は	579	5日 記録	22

第自100g氣熱肉製得的萃取物中所含之上述成份溶於100ml,並調整pH為 6.60。刪除試驗時使用2倍稀釋液。

第四章 魚介類的色、香、味 103

甘胶酸:甜味及鮮味明顯減弱。丙酸酸:甜味梢爲減弱。精胺酸:蟹 组味及蟹般的風味也轉弱。腺苷酸-鳥嘌呤核苷單磷酸:分別使鮮味部份減 弱,但若除去全部的核苷酸,則鮮味變成非常弱。鈉離子:甜味及鲜味銳 策,蟹般的風味消失;相對地,苦味變強,並成爲不太能接受的味感。鉀 等有的風味變弱,同時整體的風味也變弱。麸胺酸:鮮味顯著地減弱之外。 離子:呈味變淡且不調和。氣離子:變成幾乎無味,在刪除單一成分所造 **成風味的變化中,它的變化最大。磷酸根離子:鹹味、甜味及鮮味均稍微** 除此之外,刪除S-馳苷酸(cytidic acid, CMP)的試驗液,在統計檢定上 **亦有1%水準的識別性,但所造成風味的變化並不太明確。甘胺甜茶鹼在刪** 除試驗結果中,被判定無效:惟僅由上述之有效成分所組成的合成萃取物 中,若再加入甘胺甜菜鹼(添加試驗,addition test),則有5%水準的識 J)性,除甜味增加外,一部份品龄员並指出能夠感覺出水產物特有的香氣。 而包括含量多的牛磺酸、脯胶酸、氧化三甲基胺在内,其它成分均被判定 無效;但僅包括上述有效成分之溶液,雖然在味道的性質上類似於包括所

育成分組成的合成萃取物,然而其味道的 強度只有合成萃取物的80%而已。由此可 但全部綜合起來就能發揮增強風味的效果。 知那些個別成分雖未單獨對風味有所質數,

Gly Glu Arg

Na+ CI-

ANP GMP

從以上的結果,慈愛蟹風味之構成如 圖45 所示,同心圓內圈中諸成分在蟹味的 形成上扮演核心的角色:加上外側的成分 則變得更近似蟹味:而再加入其它的成分 之後,就能夠增強整體的風味。

3) 海蝎貝 貝柱(開設肌)作為生 食或加工製成罐頭品及煮乾品(干員)等,

圖4.5 慈愛醫足味的類成模式 (*GB:glycinebetaine) 其他萃取物成分

第四章 魚介類的色、書、味 105 水産食品學

其胡味強,乃最美味的貝類之一。依其生鮮品的萃取物分析結果而得到的合成萃取物組成,如表4.5 所示,甘菔酸含量特别高為其特徵,而含有多量的精酸酸則與無脊椎動物為共通的性質;此外,線苷三磷酸的分解產物係以線苷酸的拔糖蓄積,肌苷酸則並未測出。

表4-5 海腦貝貝柱合成萃取物的組成 (mg/100m g).

- 理論	784	難的微	NO.
5.冬胎體	4	組胺酸	61
TREE TREE	16	新股際	323
福祉会	00	線苷酸二钠	195
東部階級・1分子水	179	10年	14
Ec.	23	次青嘌呤	2
1858	1925	部が開	339
	256	Homarine . HC1	100
開発を数	90	onelline.	40
美数数数	00	氧化三甲基胺·2分子水	30
甲醛胺酸	60	施	31
日路標	63	城田酸	10
1 路橋	67	氧化鈣	14
苯丙胺酸	.01	磷酸的·12分子水	127
8-丙胺酸	64	は関係	395
CL DC BROSE BROSE	-	-	6 05

將自100g員柱製得的萃取物中所含之上這成份,溶於100m1。 刪除試驗時度用1.4倍稀釋液。

4-2-3 主要呈味成分的作用

在前達幾種水產食品的呈珠成分之研究與其它研究所得到的結果中, 須特別強調的是魅散機和核苷酸兩種鮮味成分,以及精散酸與無機成分的 4cm 熟胶煅和核苷酸在各種場合中,在風味之構成上均粉汤著核心的作用。 該兩成分因相樂作用,不僅產生強烈的鮮味,並且膜與特顏性及複雜性, 促使濃厚性與調和性形成,而在整體的呈味上具有提高美味之作用。精胶酸本身雖帶有苦味,但即使含有相當多量也不會表現出苦味,反而顯示出和上述鮮味成分同樣地具有產生風味的持續性、複雜性及濃厚性等效果之作用,而值得重視。 無機成分,尤其是餘及氣雕子的作用,如削支所逃,它們的存在與否,會使得味道受到極大的影響。對於食品的呈味成分。一般常僅顧及有機成分而已,但可以設只有在無機成分並存的就態下,有機成分所產生的馬珠不才能被有效地發揮出來。

然而,截至目前寫止,針對水產無脊椎動物所機的探討,各萃取物中所含的成分在定性上,不論任何權類,均大抵相似,且呈味上判定為有效的成分,如慾基酸之甘酸酸、丙酸酸、墊酸酸及精酸酸,以及核苷酸之肌苷酸、鳥嘌呤核甘單磷酸及腺苷酸等鲜味成分,還有銷、鉀、藥、磷酸根等離子之無機成分都是共適的成分。但儘管如此,各種食品仍具有獨特的風味之事實,除成分的組成在量上不同之外,可能也包括香氣成分及物性等其它要素的緣故。關於這方面哪望今後能再加以研究。

4-2-4 旬(盛產期)

魚介類溫常每年有一段時期最高美味,並且邀獲量也很多之時期。此 時期稱路「句」(整產期),被認路是最適合食用的時期。「句」依魚小種類 的不同而異。例如,據按田中氏15)之稿告,東京所產魚類的「句」是:飛 魚、麵魚、蟲鰈等是在春天,雙、泥鳅、海鰻、核魚、鰹、黃鱸酮、缸肉

國立台灣海洋大學食品科學系:水產化學授課資料(二)- 萃取物成分組成之影響- 邱思魁1060503

. 主要呈味成分的作用

- 在前述幾種水產食品的呈味成分與其它研究所得到的結果中,須特別強調的是麩胺酸與核苷酸兩種鮮味成分,以及精胺酸與無機成分的作用。
- 麩胺酸和核苷酸在各場合,對風味之構成均扮演著核心的作用,該兩成分因相乘作用,不僅貢獻產生強烈的鮮味,並且賦與持續性及複雜性,促使濃厚性與調和性形成,而在整體的呈味上具有提高美味之作用。
- •精胺酸本身雖帶有苦味,但即使含有相當多量也不會表現出苦味,反而顯示出和上述鮮味成分同樣地促進味的持續性、複雜性及濃厚性等效果之作用,而值得重視。

國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃即物成分組成之影響-邱思魁1060503

第四章 魚介類的色、香、味 107

旗魚、幼瓣、資條輪、四碳魚、質餘、罐、三線雜魚、青沙糠、剝皮魚、 大眼點、六城輪、石靈等是在夏天。質羅、校刀魚、油餅、青花魚、巴鰹 等是在校天・吳內雖、柱、pond smetr、鯰、鯉、鰤、烏魚、馬加酪、鰤 蘇攤、比目魚、櫻蘇、蛇鱅等是在冬天。大部分是產稿點於和肝糖作為能量 那。在此時期因接近產卵而活潑地攝網,是大量養積點於和肝糖作為能量 不獨之時期。關於肝糖和珠道的關係,已如前所法。強與臭疾來之關係。 可能主要是基於咀嚼癌的問題。但是也有國例顯示其合量與臭疾來一定平 行。另外,因爲自攻魚的脂粉、並且至年之間其含量的變颜极少。所以 打也有所發者認為在向海詢,其是珠成分。 在均所發素或為在內時期,其是珠成分。 統划夏至初核之旬的時期,大部分的游離整整複和核生酸都有增加。 物類量地構加。又、一般認為班能報在多季因內貿繁點而成為來來,但取 時期據提高看後多與的。

4-3 魚介類的香

氣味(odor)和味道、色澤、物性等都是決定食品評價之要素。食物美味 與否或能否食用,常在不自量中判斷其氣味之後才入口食用,尤其是味道 和氣味的關係密切,英語中常使用的、flavor"即包含兩者。 魚介類的氣味,如生酵品的氣味、隨鲜度下降而生成的氣味、調理及 加工中生成的氣味等,以及有時生鮮魚介類帶有的異臭。食品的星味成分 在種類上較為有限,但臭氣成分的種類很多。在化學構造上亦分成許多的 成分群,甚且比起呈味成分,在極微量時即散發強烈氣味者為數不少。本 節中,針對與魚介類的氣味有關的主要揮發性成份,分為較類、凝基化合 物、含硫化合物、其它化合物(擀類、酯類、酚類、碳氮化合物)等項分 别予以證明18-20)。 國立台灣海洋大學食品科學系:水產化學授課資料(二)-萃取物成分組成之影響-邱思魁1060503

- 無機成分尤其鈉及氯離子的作用,如同在本節中所作的說明,它們的存在有否,會使得味道受到極大的影響。作為食品的呈味成分,一般常僅顧及有機成分而已,但可以說只有在無機成分並存的狀態下,有機成分所產生的風味才能被有效地發揮出來。
- •針對幾種水產物的探討,各主呈味成分的種類都很近似,如胺基酸之甘胺酸、丙胺酸、麸胺酸與精胺酸,核苷酸之IMb、GNP及AMP等鮮味成分,鈉鉀、氦、磷酸根等離子之無機成分**都是共適的**成分。
- •儘管如此,各食品仍具獨特的風味實,除成分的組成在含量上不同之外,可能也包括香氣成分及物性等其它要素也有所關聯,期待能再研究。

Taste-active components in five kinds of seafoods (mg/100g)

	Abalone	Sea-urchin	Snow crab	Scallop	Short-neck
					clam
Glu	109	103	19	140	06
Gly	174	842	623	1925	180
Ala	86	261	187	256	74
Val	37	154	30	8	4
Met	13	47	19	0	3
Arg	299	316	619	323	53
Iau	946	105	243	784	555
AMP	06	10	32	172	28
IMP	1	2	5	1	1
GMP		2	4	9	1
Glycinebetaine	975	7	357	339	42
Succinic acid	1	1.2	6	10	65
Na	YZ	YZ	191	73	244
t	Y	AN	197	218	273
<u>-</u>	X	YZ.	336	98	322
PO.3	AZ	AN	217	213	74

Taste-active components in dried skipjack and salted salmon eggs (mg/100g)

	Dried	Salted		Dried	Salted
	skipjack	salmon eggs		skipjack	salmon eggs
Glu	23	18.6	TMA	19	2
Lys	29	6	Creatinine	1150	1
His	1992	2.1	Lactic acid	3415	1
Carnosine	107	2.8	Glucose	9	8.4
IMP	474	2.7	Nat	434	117
HxR	186	7.8	¥	688	19
Adenosine	1	4.2	-	1600	106
Guanosine	ì	4.3	PO43	545	33
Uracil	(3.1			