PUSH DOWN AUTOMATA

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Design pushdown automata for any CFL (K3)
 - To understand what is PDA

INTRODUCTION

- The regular languages \rightarrow the finite automaton.
- Context free language
 push down automata.
- Finite automata cannot recognize all languages. Because some languages are not regular.
- Finite automata have strictly finite memories, whereas recognition of context free language may require storing an unbounded amount of information.
- Push down automata is a machine similar to finite automata that will accept context free languages, except more powerful.

EXAMPLE

- L={anbn: n≥0} CFL CFG
- $L = \{ww^R : w \in \{a,b\}^*\}$

}

CEI - PDA

Ablab 7A FC R

PUSH DOWN AUTOMATA

 Finite automaton with control of both an input tape and a stack (or) Last in-first out (Lifo) list.

COMPARE FA AND PDA

• $\delta(p, a) = q \rightarrow M$ is in state p, then on reading 'a' from input tape go to state q.

• $\delta(p, \varepsilon) = q \rightarrow M$ is in state p, goes to state q, without consuming input.

COMPARE FA AND PDA

- $\delta(p, a, \beta) = \{(q, \gamma)\} \rightarrow M$ is in state p, the symbol read from input tape is 'a',and β is on top of stack, goes to state q, and replace β by γ on top of stack.
- $\delta(s, a, \varepsilon) = \{(s, a)\} \rightarrow M$ is in state s, reads 'a', remains in state s and push a onto stack (e-empty stack).
- $\delta(s, c, \varepsilon) = \{(f, \varepsilon)\} \rightarrow \text{ if read 'c' in state s and stack is empty, goes to final state f and nothing to push onto stack.}$
- $\delta(s, \varepsilon, \varepsilon) = \{(f, \varepsilon)\}$
- PDA's are non-deterministic.

DEFINITION

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$, where
 - Q is a finite set of states.
 - $-\Sigma$ is finite set of alphabet
 - Γ is finite set of stack alphabet
 - $-q_0 \in Q$ is the start state (or) initial state
 - $-z_0$ in Γ is a particular stack symbol called start symbol. $\nearrow \bullet \vdash \Gamma$
 - $F \subseteq Q$ is the set of final (or) favorable states.

TRANSITION DIAGRAM

• $\delta(p, a, \beta) = \{(q, \gamma)\}$

INSTANTANEOUS DESCRIPTION (ID)

- An ID is a triple (q, w, γ) where
 - q is the current state
 - w is the remaining input
 - γ is the stack contents.
- $P = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$

 The instantaneous descriptions of pushdown automata is such that

 $(q_1, aw, bx) \mid -(q_2, w, yx) \text{ is possible if and only if } (q_2, y) \in \delta$ (q, a, b)

INSTANTANEOUS DESCRIPTION (ID)

• $(q, x, \alpha) \mid -\frac{*}{} (q_1, y, \beta)$ represents n moves, we write $(q, x, \alpha) \mid -\frac{n}{} (q_1, y, \beta)$

• In particular $(q, x, \alpha) \mid -\frac{0}{2}(q, x, \alpha)$.

TWO TYPES OF TRANSITIONS

• $\delta(q, a, z) = \{(p_1, \gamma_1), \dots, (p_m, \gamma_m)\}$ $q \text{ and } p_i, 1 \le i \le m \text{ are states,}$ $a \in \Sigma$ $z \in \Gamma$ $\gamma_i \in \Gamma^* \ 1 \le i \le m$,

12

TWO TYPES OF TRANSITIONS

• $\delta(q, \varepsilon, z) = \{(p_1, \gamma_1) (p_2, \gamma_2), (p_m, \gamma_m)\}$

PALINDROME L_{wwr}

- $Q = \{q0, q1, q2\} = No. of states$
- $\Sigma = \{0, 1\}$ = Input symbol alphabet
- $\Gamma = \{0, 1, z\}$
- Start state = q_0
- Start stack symbol = z
- Final state = $\{q_2\}$

PALINDROME L_{wwr}

1.
$$\delta(q_0, 0, Z) = \{(q_0, 0Z)\}$$

2.
$$\delta(q_0, 1, Z) = \{(q_0, 1Z)\}$$

3.
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}^{-1}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, \varepsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

7.

9.
$$\delta(q_0, \varepsilon, Z) = \{(q_1, Z)\}$$

10.
$$\delta(q_1,0,0) = \{(q_1,\epsilon)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11. $\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$

12.
$$\delta(q_1, \epsilon, Z) = \{(q_2, Z)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Enter acceptance state

15

EXAMPLE

- $\delta(q_0, 0, Z) = \{(q_0, 0Z)\}$ 1.
- $\delta(q_0, 1, Z) = \{(q_0, 1Z)\}$ 2.
- $\delta(q_0, 0, 0) = \{(q_0, 00)\}$ 3.
- $\delta(q_0, 0, 1) = \{(q_0, 01)\}$ 4.
- $\delta(q_0, 1, 0) = \{(q_0, 10)\}$
- $\delta(q_0, 1, 1) = \{(q_0, 11)\}$ 6.
- $\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$ 7.
- $\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$ 8.
- $\delta(q_0, \varepsilon, Z) = \{(q_1, Z)\}$ 9.
- $\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$ 10.
- $\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$ 11.
- $\delta(\mathbf{q_1}, \, \varepsilon, \, \mathsf{Z}) = \{(\mathbf{q_2}, \, \mathsf{Z})\}$ 12.

Check 1001

$$(90, 1001, Z)$$
 $(90, 1001, Z)$
 $(90, 001, 1Z)$
 $(90, 01, 01Z)$
 $(90, 01, 01Z$

Check 100001

EXAMPLE

Construct NPDA for

Palindrome L_{wwr}

$$\begin{bmatrix}
-\frac{1}{2} & \omega \omega^{R} & \omega E(OI) & \omega E \\
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{2} & 00, 11, 1001, 0116, ... & E
\end{bmatrix}$$

) push remaining symbols of a onto the of
$$\{v_0, 0, 0\} = \{(v_0, 0)\}$$

$$\{(v_0, 0, 0) = \{(v_0, 0)\}\}$$

$$\{(v_0, 0, 0, 0) = \{(v_0, 0)\}\}$$

$$\{(v_0, 0, 0, 0) = \{(v_0, 0)\}\}$$
Unit III

(ii) shifting the state to do the pop operation (ii)
$$S(9_0, E, 5_0) = \{(9_1, 0)\}$$

 $S(9_0, 2, 1) = \{(9_1, 1)\}$
 $S(9_0, E, 2) = \{(9_1, 2)\}$

$$((ii)|p_{0p}|p_{0p}|p_{0}) = \{(q_{1}, z)^{2}\}$$

$$S(q_{1}, 0, 0) = \{(q_{1}, z)^{2}\}$$

$$S(q_{1}, 1, 1) = \{(q_{1}, z)^{2}\}$$

1-(9,,10,102) 1-(9,,0,02)1-(91,2,2)

EXAMPLE

Construct NPDA for

$$L=\{0^n1^n/n>=1\}$$

$$\delta\left(9_{0}, 2, 0\right) = \left\{\left(2, 0\right)\right\}$$

i	Read 1st eymbol S(0,0,0,2) = 3(0,02)3
ñ.	Read remaining 8 (90,0,0) = 4 (90,00)3
111.	Switch state $S(a_0, \epsilon, 0) = \{(a_1, 0)\}$
iv. 1	Pop $S(Q_1, 1, 0) = \{(Q_1, E)\}$
٧.	Final state $S(\alpha_1, \epsilon, z) = \S(\alpha_2, z)$ §

EXAMPLE

LANGUAGES OF PDA

- Acceptance by empty stack
 - Let M = (Q, Σ, Γ, δ, q_0 , z_0 , F) be a PDA.
 - The language accepted by empty stack is denoted by $L_F(M)$

$$L_{\underline{E}}(\underline{M}) = \{ \underline{w} \mid (\underline{q}_0, \underline{w}, \underline{z}_0) \mid -- \underline{*} (\underline{p}, \underline{\varepsilon}, \underline{\varepsilon}) \text{ for some } \underline{p} \text{ in } \underline{Q} \}$$

LANGUAGES OF PDA

- Acceptance by final state
 - Let M = (Q, Σ, Γ, δ, q_0 , z_0 , F) be a PDA.
 - The language accepted by final state is denoted by $L_F(M)$

$$L_{F}(M) = \{\underline{w} \mid (q_0, w, z_0) \mid --* (p, \varepsilon, \gamma) \text{ for some p in F and } \gamma \text{ in } \Gamma^* \}$$

LANGUAGES OF PDA

- Acceptance by final state and empty stack
 - Let M = (Q, Σ, Γ, δ, q_0 , z_0 , F) be a PDA.
 - The language accepted by empty stack and final state is denoted L(M)

L(M) = {w |
$$(q_0, w, z_0)$$
 | $-*$ (p, ε , ε) for some p in F}

SUMMARY

- Discussion about PDA
- Language of a PDA
- ID for a string/word

TEST YOUR KNOWLEDGE

- What the does the given CFG defines?
 - S→aSbS|bSaS|e and w denotes terminal
 - a) wwr
 - b) wSw
 - c) Equal number of a's and b's
 - d) None of the mentioned
- A grammar G=(V, T, P, S) is _____ if every production taken one of the two forms:
 - $B \rightarrow aC$
 - $B \rightarrow a$
 - a) Ambiguous
 - b) Regular
 - c) Non Regular
 - d) None of the mentioned

25

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

