Tokenization

Vũ Việt Trung

Tokenization

Hiệp hội Vận tải hàng hóa VN chính thức có văn bản báo cáo và kiến nghị Văn phòng Quốc hội

Hiệp_1 hội_3 Vận_1 tải_3 hàng_1 hóa_3 VN_0 chính_1 thức_3 có_0 văn_1 bản_3 báo_1 cáo_3 và_0 kiến_1 nghị_3 Văn_1 phòng_3 Quốc_1 hội_3

• 0: outside (0)

• 1: start (S)

• 2: inside (I)

• 3: end (E)

Language model

Xác suất xuất hiện một cụm từ

$$P(w_{1}...w_{n}) = P(w_{1})P(w_{2}...w_{n} \mid w_{1}) \qquad P(x,y) = P(x)P(y \mid x)$$

$$= P(w_{1})P(w_{2} \mid w_{1})P(w_{3}...w_{n} \mid w_{1}w_{2})$$

$$= P(w_{1})P(w_{2} \mid w_{1})P(w_{3} \mid w_{1}w_{2})P(w_{4}...w_{n} \mid w_{1}w_{2}w_{3})$$

$$= ...$$

$$= \prod_{i=1}^{n} P(w_{i} \mid w_{1}...w_{i-1})$$

N-grams

- Markov assumption
 - history
- Maximum likelihood estimation (MLE)
 - Count f
- Unigram: $P(w_1...w_n) = \prod_{i=1}^n P(w_i \mid w_1...w_{i-1})$

$$\approx \prod_{i=1}^{n} P(w_i)$$

• Bigram:

$$P(w_{1}...w_{n}) = \prod_{i=1}^{n} P(w_{i} \mid w_{1}...w_{i-1})$$

$$\approx \prod_{i=1}^{n} P(w_{i} \mid w_{i-1})$$

Labeled-bigram

- Dựa trên ý tưởng N-grams:
 - Mỗi từ được gắn thêm nhãn (0-3):
 kiến_1 nghị_3

 - Tương tự giải thuật trong POS tagging (Viterbi)

Dynamic Programming

Tìm đường đi có xác suất lớn nhất (v_n)

Dùng log → nhân thành cộng, số không quá bé → tăng hiệu năng

Tính trọng số $p(w_{n-1,k} \mid w_{n,l})$

Unsmooth

$$P(w_k) = \frac{C(w_k)}{\sum_{w} C(w_k)}$$

$$P(w_k \mid w_{k-1}) = \frac{C(w_{k-1}w_k)}{C(w_{k-1})}$$

Smooth

- Nhiều phương pháp:
 - Add one, Good Turing, Interpolation, Katz (backoff), Absolute Discouting,...
- Kneser-Ney hiệu quả nhất

Modified Kneser-Ney Smoothing

$$p_{KN}(w_{i}|w_{i-n+1}^{i-1}) = \frac{c(w_{i-n+1}^{i}) - D(c(w_{i-n+1}^{i}))}{\sum_{w_{i}} c(w_{i-n+1}^{i})} + \gamma(w_{i-n+1}^{i-1})p_{KN}(w_{i}|w_{i-n+2}^{i-1})$$

$$p_{KN}(w_{i}) = \frac{N_{1+}(\bullet w_{i})}{N_{1+}(\bullet \bullet)}$$

$$p_{KN}(w_{i}) = \frac{N_{1+}(\bullet w_{i})}{N_{1+}(\bullet \bullet)}$$

$$p_{KN}(w_{i}) = \frac{N_{1+}(\bullet w_{i})}{N_{1+}(\bullet \bullet)}$$

$$N_{1+}(\bullet w_{i}) = |\{w_{i-1} : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet \bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) > 0\}|$$

$$N_{1+}(\bullet) = |\{(w_{i-1}, w_{i}) : c(w_{i-1}w_{i}) = |\{(w_{i-1}, w_{i}) : c(w_{i}$$

Kết hợp vào bài toán tokenize

Dictionary

- Theo từng topic, p_{dict}=1 nếu có xuất hiện
- $-p_{mix} = 0.5 p_{KN} + 0.5 p_{dict}$

Mix các corpus

- $-p_{KN} = w_1 * p_{KN1} + w_2 * p_{KN2} + ... + w_n * p_{KNn}$ $\cdot w_1 + w_2 + ... + w_n = 1$
- Trọng số w_i tỷ lệ với số quy mô của corpus i

Training & Test

- Chia dữ liệu thành:
 - -80% train (học mô hình p_{KN})
 - 10% held-out (điều chỉnh tham số)
 - 10% test
 - Thử gán nhãn từ
 - sau đó có thể sửa lại = heuristic để làm tập training mới
 - Đánh giá: perplexity
 - pp càng nhỏ càng tốt

Perplexity(W) =
$$2^{H(W)}$$

= $P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$
= $\sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$
= $\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 \dots w_{i-1})}}$

Giả thiết đầu vào – đầu ra

- Mỗi dòng là 1 câu
- Thêm 2 từ khóa START và BEGIN để đảm bảo phân bố xác suất
 - <BEGIN> Hôm nay trời đẹp <END>
- Thêm từ khóa <UNK> (xxx ?) cho các từ chưa có trong dictionary

Implementation

