

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»		

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 по курсу «Моделирование»

«Изучение функций распределения и плотности распределения» Вариант №2

Студент:	ИУ7-73Б		М. Д. Маслова
	(группа)	(подпись, дата)	(И. О. Фамилия)
Руководители	:		И. В. Рудаков
		(подпись, дата)	(И. О. Фамилия)

СОДЕРЖАНИЕ

1	Зад	ание	4
2	Teo	ретическая часть	5
	2.1	Равномерное распределение	4
	2.2	Нормальное распределение	5
3	Пра	актическая часть	(
	3.1	Текст программы	6
	3.2	Полученный результат	ć

1 Задание

Разработать программное обеспечение, предоставляющее возможность построения графиков функции распределения и функции плотности распределения вероятностей случайных величин, распределенных по:

- равномерному
- и нормальному законам.

Реализовать графический интерфейс, предоставляющий возможность изменения параметров каждого из законов.

2 Теоретическая часть

2.1 Равномерное распределение

Случайная величина X имеет *равномерное распределение* на отрезке [a, b], если ее плотность распределения f(x) равна:

$$p(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (2.1)

При этом функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (2.2)

Обозначение: $X \sim R[a, b]$.

2.2 Нормальное распределение

Случайная величина X имеет *нормальное распределение* с параметрами m и σ , если ее плотность распределения f(x) равна:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad x \in \mathbb{R}, \sigma > 0.$$
 (2.3)

При этом функция распределения F(x) равна:

$$F(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt,$$
 (2.4)

или, что то же самое:

$$F(x) = \frac{1}{2} \cdot \left[1 + \operatorname{erf}\left(\frac{x - m}{\sigma\sqrt{2}}\right) \right],\tag{2.5}$$

где $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int\limits_0^x e^{-t^2} dt$ — функция вероятности ошибок.

Обозначение: $X \sim N(m, \sigma^2)$.

- 3 Практическая часть
- 3.1 Текст программы
- 3.2 Полученный результат