Série C - session 2015 : problème 2 - corrigé

Partie A : Equations différentielles

1) Recherche du polynôme P

g est solution de (E) si g" + 2g' - 3g = P(x)

on a:
$$g(x) = e^x + x + 1$$

 $g'(x) = e^x + 1$

$$g''(x) = e^{x}$$

alors
$$g'' + 2g' - 3g = (e^x) + 2(e^x + 1) - 3(e^x + x + 1) = -3x - 1$$

d'où $P(x) = -3x - 1$

2) Résolution de (E') : y'' + 2y' - 3y = 0

L'équation caractéristique associée à (E') est $r^2 + 2r - 3 = 0$

Les racines de cette équation sont $r_1 = 1$ et $r_2 = -3$,

$$y_1 = e^{r_1 x} = e^x$$
 et $y_2 = e^{r_2 x} = e^{-3x}$ sont des solutions particulières de (E')

La solution générale de (E') est $y = C_1 e^x + C_2 e^{-3x}$ où C_1 et C_2 sont des constantes arbitraires.

3) Ensemble des solutions de (E)

La solution générale de (E) s'obtient en ajoutant à une solution particulière de (E) la solution générale de (E').

Alors h = g + y

$$h(x) = e^x + x + 1 + C_1 e^x + C_2 e^{-3x}$$
 où C_1 et C_2 sont des constantes arbitraires.

Détermination de la solution de (E) qui satisfait aux conditions h(0) = 1 et h'(0) = 5

On a
$$h(0) = 1$$
 donne $C_1 + C_2 = -1$

Et h'(0) = 5 donne
$$C_1$$
 - 3 C_2 = 3

D'où
$$C_1 = 0$$
 et $C_2 = -1$, et la solution est $h(x) = e^x + x + 1 - e^{-3x}$

Partie B

I - 1) Etude de la continuité et de la dérivabilité de f en O

- f est continue en 0 si
$$\lim_{x\to 0^+} f(x) = f(0)$$

on a
$$f(0) = 0$$
 et $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x \ln x}{x + 1} = 0$

alors f est continue en 0

- f est dérivable en 0 si
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0}$$
 existe et est finie.

On a
$$\lim_{x\to 0^+} \frac{f(x)-0}{x} = \lim_{x\to 0^+} \frac{\ln x}{x+1} = -\infty$$

Donc f n'est pas dérivable en 0

2. a) variations de $\varphi: x \mapsto \varphi(x) = -\ln x - x - 1$

La dérivée de
$$\phi$$
 est $\ \phi'(x) = -\frac{1}{x} - 1$

Pour tout $x \in \left]0 \right.$; $+ \infty \left[\right.$, $\phi \left. \left(x \right) < 0 \right.$; alors ϕ est strictement décroissante sur $\left] 0 \right.$; $+ \infty \left[\right.$

b) Montrons que φ (x) = 0 admet une solution unique β

$$\text{on a } \lim_{x \rightarrow 0^+} \phi(x) = \lim_{x \rightarrow 0^+} (-\ln x - x - 1) = +\infty \quad \text{et } \lim_{x \rightarrow +\infty} \phi(x) = \lim_{x \rightarrow +\infty} (-\ln x - x - 1) = -\infty$$

Comme φ est continue strictement croissante sur]0; $+\infty$ [, c'est donc une bijection de $0; +\infty [dans] -\infty; +\infty [,$

Alors pour tout y_0 appartenant $]-\infty$; $+\infty[$, il existe un unique x_0 de]0; $+\infty[$ tel que $\phi(x_0)=y_0$. En particulier, pour $y_0 = 0$ il existe un unique β de 0; $+\infty$ tel que ϕ (β) = 0.

Vérifions que $\beta \in]0,27;0,28[$

On a
$$\varphi(0,27) = 0.03$$
 et $\varphi(0,28) = -0.08$.

 φ est continue, strictement décroissante [0,27;0,28], φ (0,27). φ (0,28) = -0,0024 < 0 Alors il existe un unique $\beta \in [0.27; 0.28]$ tel que $\phi(\beta) = 0$.

Signe de φ suivant les valeurs de x

Le tableau de variation de φ est

Pour
$$x \in]0; \beta[, \phi(x) > 0]$$

Pour
$$x \in \beta$$
; + ∞ [, ϕ (x) < 0

Montrons que f (β) = - β

On a
$$\varphi(\beta) = 0$$
, i.e. $-\ln \beta - \beta - 1 = 0$, d'où $\ln \beta = -\beta - 1$.

On a
$$\varphi$$
 (β) = 0, i.e. - ln β - β - 1 = 0, d'où ln β = - β - 1. Alors f(β) = $\frac{\beta \ ln \beta}{\beta + 1}$ = $\frac{\beta \ (-\beta - 1)}{\beta + 1}$, d'où f(β) = - β .

3) expression de f '(x) en fonction de φ (x)

$$y = x \ln x$$
 et $y = x + 1$

$$u = x \ln x \quad \text{et} \quad v = x + 1$$

$$u' = \ln x + 1 \quad \text{et} \quad v' = 1$$

$$f'(x) = \frac{(\ln x + 1)(x + 1) - x \ln x}{(x + 1)^2} = \frac{\ln x + x + 1}{(x + 1)^2}$$

D'où
$$f'(x) = \frac{-\varphi(x)}{(x+1)^2}$$

Signe de f'(x)

Comme
$$(x + 1)^2 > 0$$
 sur $]0; +\infty[$, on a $sg[f'(x)] = sg[-\varphi(x)]$

D'où les variations de f

4. a) position relative de (C) par rapport à (Γ)

Etude du signe de f(x) - $\ln x$

On a f(x) -
$$\ln x = \frac{x \ln x}{x+1} - \ln x = -\frac{\ln x}{x+1}$$

Pour 0 < x < 1, (C) est au-dessus de (Γ)

Pour x > 1, (C) est au-dessous de (Γ)

Remarque : $\lim_{x \to +\infty} \left[f(x) - \ln x \right] = 0$, (Γ) est une courbe asymptote pour (\mathcal{C}).

b) représentation graphique unité graphique : 4 cm

(Γ) β -β

II - Etude de l'équation f(x) = n

1) Montrons que f(x) = n admet une solution unique

L'équation f(x) = n est l'équation aux abscisses des points d'intersection de (C) avec la famille de droites d'équation y = n.

Comme f est continue strictement croissante sur] 1 ; + ∞ [, c'est donc une bijection de] 1 ; + ∞ [dans] 0 ; + ∞ [,

Alors pour tout $n \in \]0$; + $\infty \ [$, il existe un unique α_n de $\]1$; + $\infty \ [$ tel que $\ f(\alpha_n)$ = n.

2. a) Montrons que $f(e^n) \le n$

On a
$$f(e^n) = \frac{e^n Ine^n}{e^n + 1} = \frac{e^n}{e^n + 1}n$$

$$\text{Or} \qquad \frac{e^n}{e^n+1} \ < \ 1 \ \text{ alors } \ f(e^n) = \frac{e^n}{e^n+1} n \le n$$

Montrons que $\alpha_n \ge e^n$

On a
$$f(\alpha_n) = n$$
 et $f(e^n) \le n$ donc $f(e^n) \le f(\alpha_n)$

Comme f est continue strictement croissante sur] 1; + ∞ [(i.e. une bijection), on a $\alpha_n \ge e^n$.

b) montrons que la relation $f(\alpha_n)$ = n peut s'écrire sous la forme $\ln\left(\frac{\alpha_n}{e^n}\right) = \frac{n}{\alpha_n}$

on a
$$f(\alpha_n) = n$$
 i.e. $\frac{\alpha_n \ln \alpha_n}{\alpha_n + 1} = n$

$$\frac{\alpha_n}{\alpha_n+1} ln \alpha_n = ln e^n$$

$$\alpha_n \ln \alpha_n = (\alpha_n + 1) \ln e^n$$

$$\alpha_n$$
 ($\ln \alpha_n - \ln e^n$) = $\ln e^n$

$$\alpha_n \ln \frac{\alpha_n}{e^n} = \ln e^n$$

Alors
$$\ln \frac{\alpha_n}{e^n} = \frac{n}{\alpha_n}$$

Limite de $\frac{\alpha_n}{e^n}$ lorsque n tend vers l'infini

On a
$$\alpha_n \ge e^n$$
 ce qui implique $\frac{1}{\alpha_n} \le \frac{1}{e^n}$ et $\frac{n}{\alpha_n} \le \frac{n}{e^n}$

On a
$$\frac{\alpha_n}{e^n} \ge 1$$
 ce qui implique $\ln \left(\frac{\alpha_n}{e^n} \right) \ge 0$

D'après
$$\ln \frac{\alpha_n}{e^n} = \frac{n}{\alpha_n} \quad \text{et} \quad \frac{n}{\alpha_n} \leq \frac{n}{e^n} \text{ , on a } \ln \frac{\alpha_n}{e^n} \leq \frac{n}{e^n}$$

Alors
$$0 \leq \lim_{x \to +\infty} \ln \frac{\alpha_n}{e^n} \leq \lim_{x \to +\infty} \frac{n}{e^n}$$

Or
$$\lim_{x \to +\infty} \frac{n}{e^n} = 0$$
, d'où $\lim_{x \to +\infty} \ln \frac{\alpha_n}{e^n} = 0$

Alors
$$\lim_{x \to +\infty} \frac{\alpha_n}{e^n} = 1$$

3) Expression de $(1+\epsilon_n)\ln(1+\epsilon_n)$ en fonction de n

On pose
$$\, \alpha_n \, = e^n \, \big(\, 1 + \epsilon_n \, \big) \,$$
 i.e. $\big(\, 1 + \epsilon_n \, \big) = \frac{\alpha_n}{e^n} \,$

$$\text{Alors} \quad \text{$(1+\epsilon_n)$ In$} (1+\epsilon_n) = \frac{\alpha_n}{e^n} \text{ In} \left(\frac{\alpha_n}{e^n}\right) = \frac{\alpha_n}{e^n} \frac{n}{\alpha_n}$$

$$\text{D'où} \quad (1+\epsilon_n) \text{In} (1+\epsilon_n) = \frac{n}{e^n} = n \, e^{-n}$$

4. a) Variation de $U: t \mapsto U(t) = (1+t) \ln(1+t) - t$

Pour $t \ge 0$ on a U '(t) = $\ln (1 + t)$

Pour $t \ge 0$, $U'(t) \ge 0$, donc U est strictement croissante.

Ainsi $U(t) \ge U(0) = 0$ pour $t \ge 0$ i.e. $(1+t) \ln(1+t) - t \ge 0$

Variation de $V: t \mapsto V(t) = (1+t) \ln(1+t) - t - \frac{t^2}{2}$

On a
$$V'(t) = \ln(1+t) - t$$
 et $V''(t) = \frac{1}{1+t} - 1 = -\frac{t}{1+t}$

Donc $V''(t) \le 0$ pour tout $t \ge 0$, d'où V' est strictement décroissante sur] 0; + ∞ [Alors $V'(t) \le V'(0) = 0$.

V ' (t) étant négative sur] 0 ; + ∞ [, V est décroissante ;

Alors pour $t \in \]0; +\infty \ [V(t) \le V(0) = 0$

ou
$$(1+t)\ln(1+t)-t-\frac{t^2}{2} \le 0$$

Des inégalités $(1+t)\ln(1+t)-t\geq 0$ et $(1+t)\ln(1+t)-t-\frac{t^2}{2}\leq 0$, on déduit

$$0 \le (1+t) \ln(1+t) - t \le \frac{t^2}{2}$$

b) montrons que pour $n \ge 1$: $\epsilon_n \le n e^{-n} \le \epsilon_n + \frac{\epsilon_n^2}{2}$

 $\text{ D'après 4. a) on a } 0 \leq (1+t) \text{ln}(1+t) - t \leq \frac{t^2}{2} \text{ ou } t \leq (1+t) \text{ln}(1+t) \leq t + \frac{t^2}{2}$

 $\text{En posant} \quad t = \epsilon_n \text{ , on a } \quad \epsilon_n \leq \big(1 + \epsilon_n \,\big) \text{In} \big(1 + \epsilon_n \,\big) \leq \epsilon_n + \frac{{\epsilon_n}^2}{2}$

 $Or \qquad (1+\epsilon_n) \ln (1+\epsilon_n) = n \, e^{-n} \quad \text{alors} \quad \epsilon_n \leq n \, e^{-n} \leq \epsilon_n \, + \frac{\epsilon_n^2}{2}$

Montrons que pour $n \ge 1$: $0 \le n e^{-n} - \epsilon_n \le \frac{n^2}{2} e^{-2n}$

 $\text{ D'après } \quad \epsilon_n \leq n \, e^{-n} \leq \epsilon_n \, + \, \frac{\epsilon_n^2}{2} \ \, \text{ , on a } \, 0 \leq n \, e^{-n} - \epsilon_n \leq \frac{\epsilon_n^2}{2}$

 $\text{ De l'inégalité } 0 \leq \epsilon_n \leq n \, e^{-n} \quad \text{on a} \quad \epsilon_n^{\ 2} \leq n^2 \, e^{-2n} \, \text{, alors } 0 \leq n \, e^{-n} - \epsilon_n \leq \frac{\epsilon_n^2}{2} \leq \frac{n^2 \, e^{-2n}}{2}$

d'où, pour $n \ge 1$: $0 \le n e^{-n} - \epsilon_n \le \frac{n^2}{2} e^{-2n}$

Calcul de $\lim_{x\to +\infty} (e^n + n - \alpha_n)$

D'après 3) $\alpha_n = e^n \left(1 + \epsilon_n \right)$, i.e. $e^n - \alpha_n = -e^n \epsilon_n$

En ajoutant n aux deux membres : $e^n + n - \alpha_n = n - e^n \epsilon_n$

Ou encore $e^n + n - \alpha_n = e^n (n e^{-n} - \epsilon_n)$

 $\text{Comme } 0 \leq n \, e^{-n} - \epsilon_n \leq \frac{n^2}{2} \, e^{-2n} \, , \text{ on a } e^n + n - \alpha_n = e^n \, \big(n \, e^{-n} - \epsilon_n \big) \leq e^n \, \frac{n^2}{2} \, e^{-2n} \, .$

 $\text{D'où} \quad e^n + n - \alpha_n \le \frac{n^2}{2} e^{-n}$

Alors $0 \le \lim_{x \to +\infty} (e^n + n - \alpha_n) \le \lim_{x \to +\infty} \frac{1}{2} n^2 e^{-n} = 0$

Ainsi $\lim_{x\to +\infty}$ (eⁿ + n - α_n) = 0