1

SI231 - Matrix Computations, 2021 Fall

Homework Set #1

Prof. Yue Qiu

Acknowledgements:

- 1) Deadline: 2021-10-12 23:59:59
- 2) Late Policy details can be found on piazza.
- 3) Submit your homework in **Homework 1** on **Gradscope**. Entry Code: **2RY68R**. Make sure that you have correctly select pages for each problem. If not, you probably will get 0 point.
- 4) No handwritten homework is accepted. You need to write LaTeX. (If you have difficulties in using LaTeX, you are allowed to use **MS Word or Pages** for the first and the second homework to accommodate yourself.)
- 5) Use the given template and give your solution in English. Solution in Chinese is not allowed.
- 6) Your homework should be uploaded in the PDF format, and the naming format of the file is not specified.

I. VECTOR SPACE AND SUBSPACE

Problem 1. (6 points \times 3)

- 1) Let $\mathcal X$ and $\mathcal Y$ be two subspaces of a vector space $\mathcal V$:
 - a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V} .
 - b) Show that the union of $\mathcal{X} \cup \mathcal{Y}$ need not to be a subspace of \mathcal{V} .
- 2) Prove or give a counterexample:
 - a) If \mathcal{U}_1 , \mathcal{U}_2 , and \mathcal{W} are subspaces of \mathcal{V} such that $\mathcal{U}_1 + \mathcal{W} = \mathcal{U}_2 + \mathcal{W}$, then $\mathcal{U}_1 = \mathcal{U}_2$.
 - b) If \mathcal{U}_1 , \mathcal{U}_2 , and \mathcal{W} are subspaces of \mathcal{V} such that $\mathcal{V} = \mathcal{U}_1 \oplus \mathcal{W}$ and $\mathcal{V} = \mathcal{U}_2 \oplus \mathcal{W}$, then $\mathcal{U}_1 = \mathcal{U}_2$.
- 3) Let $\mathbf{U} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r\}$ and $\mathbf{V} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r, \mathbf{v}\}$ be two sets of vectors from the same vector space, prove that $span(\mathbf{U}) = span(\mathbf{V})$ if and only if $\mathbf{v} \in span(\mathbf{U})$.

Solution:

¹Let S_1 and S_2 be two subspaces of \mathbb{R}^n , if $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^n$, we define the **direct sum** $\mathbb{R}^n = S_1 \oplus S_2$.

II. BASIS, DIMENSION AND RANK

Problem 1. (5 points \times 2) For matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\mathcal{V} = \{\mathbf{X} \in \mathbb{R}^{n \times n} | \mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A} \}$,

- 1) Prove that V is a linear subspace of the linear space $\mathbb{R}^{n \times n}$;
- 2) If $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$, please give a basis and the dimension of \mathcal{V} .

Problem 2. (5 points) The linear space S contains the following polynomials: $f_1(t) = 1 + 4t - 2t^2 + t^3$, $f_2(t) = -1 + 9t - 3t^2 + 2t^3$, $f_3(t) = -5 + 6t + t^3$, $f_4(t) = 5 + 7t - 5t^2 + 2t^3$. Please give the rank of the quadruple $(f_1(t), f_2(t), f_3(t), f_4(t))$ and its maximal linearly independent set.

Problem 3. (5 points \times 2) For any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathcal{S}_1 = \{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}^T = \mathbf{A}\}$ and $\mathcal{S}_2 = \{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}^T = -\mathbf{A}\}$ are two subspaces of $\mathbb{R}^{n \times n}$,

- 1) Prove that $\mathbb{R}^{n \times n} = \mathcal{S}_1 \oplus \mathcal{S}_2$.
- 2) If n = 3, please give a basis of S_1 and the dimension of S_2 .

III. FOUR FUNDAMENTAL SUBSPACES

Problem 1. (2 points + 5 points) For an $n \times m$ real matrix **A**.

- 1) Determine the relationship of $dim(\mathcal{R}(\mathbf{A}))$, $dim(\mathcal{N}(\mathbf{A}))$, and $rank(\mathbf{A})$.
- 2) Prove that $\mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T) = \mathbb{R}^m$.

Problem 2. (3 points + 5 points \times 3) Given matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ and $rank([\mathbf{A}, \mathbf{B}]) = n$.

- 1) Determine the relationship between $dim(\mathcal{N}(\mathbf{A}^T))$ and $dim(\mathcal{R}(\mathbf{B}))$.
- 2) If $\mathbf{A}^T \mathbf{B} = 0$, determine the relationship between $\mathcal{N}(\mathbf{A}^T)$ and $\mathcal{R}(\mathbf{B})$.
- 3) Please determine the rank of $\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}$.
- 4) Please determine the **Supremacy** and **Infimum** of the rank of $\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}$ using m or n. (All Matrix **A**'s, and **B**'s that satisfy the mentioned condition)

IV. VECTOR NORM AND MATRIX NORM

Problem 1. (5 points \times 3) The Frobenius norm of a $\mathbb{R}^{n \times m}$ matrix **A** defined as the square root of the sum of the absolute squares of its elements,

$$\|\mathbf{A}\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2},$$

it also equal to the square root of the matrix trace of A^TA , where A^T is the transpose of A,

$$\|\mathbf{A}\|_F = \sqrt{\mathbf{Tr}(\mathbf{A}^T\mathbf{A})}.$$

1) Show that Frobenius norm is a matrix norm.

Hint: You may use the Cauchy-Schwarz inequality

$$\|\mathbf{A}\mathbf{B}\|_F \le \|\mathbf{A}\|_F \|\mathbf{B}\|_F$$

2) The spectral norm of a matrix A is the largest singular value of A (the square root of the largest eigenvalue of the matrix AA^T ,

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{max}(\mathbf{A}\mathbf{A}^T)}.$$

Show that $\|{\bf A}\|_2 \le \|{\bf A}\|_F \le \sqrt{n} \|{\bf A}\|_2$

3) Suppose $\mathbf{A} = \mathbf{x}\mathbf{y}^T$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, show that

$$\|\mathbf{A}\|_F^2 = \|\mathbf{x}\|_2^2 \|\mathbf{y}\|_2^2$$

V. PROJECTOR AND PROJECTION

Problem 1. (2 points+5 points \times 3) A rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix $(\mathbf{R}\mathbf{R}^T = \mathbf{I_n})$.

- 1) According to the above definition, find all rotation matrices in $\mathbb{R}^{2\times 2}$.
- 2) Let \mathbf{R}_1 and \mathbf{R}_2 be the rotation matrices in $\mathbb{R}^{2\times 2}$, if \mathbf{R}_1 is rotation through α_1 and \mathbf{R}_2 is rotation through α_2 . Consider: is $\mathbf{R}_1\mathbf{R}_2$ the rotation matrix. If the answer is "yes", what is the angle of rotation, or else explain why the answer is "no".
- 3) For arbitrarily rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$, if $\mathbf{S} = (\mathbf{R} \mathbf{I_n})(\mathbf{R} + \mathbf{I_n})^{-1}$, show that \mathbf{S} is a skew symmetric matrix ($\mathbf{S}^T = -\mathbf{S}$)
- 4) If $\mathbf{S} \in \mathbb{R}^{n \times n}$ is a skew symmetric matrix, show that $\mathbf{R} = (\mathbf{I_n} \mathbf{S})^{-1}(\mathbf{I_n} + \mathbf{S})$ is a rotation matrix.

 $^{^2\}mathbf{I_n}$ is the identity matrix of size $n \times n$