CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

- 1. What are examples of ways to implement functions?
- 2. What properties should implementations have?

Logistics

- TA Office hours starting this week (see webpage soon for when/where)
- Course registration survey was due Thursday
 - Didn't complete it? No problem! Just do it soon
- Exercise 0_2 due today
 - Didn't complete it? No problem (this time)! Just request an extension
- Exercise 0_3 due Thursday
 - Pick one of python/java
 - Decided to enroll late and need to catch up? No problem! Just request an extension if you can't get it in on time
- Exercise due/release dates will be more "batched" going forward, staggered this time to test out the submission system
- First Quiz
 - Released Friday, due Tuesday

Last Class

- What is a String?
 - What is a String?

 A finite sequence of characters (an element of Σ^*)
- What are we implementing?
 - A function mapping strings to strings ($\Sigma^* \to \Sigma^*$)

Computing a Function

- To define a computing model (which will implement functions):
 - Define how to receive an input
 - Define how to produce an output
 - Define the steps taken to convert input into output

Implementing a Function

1) • Examples of ways to implement a function:

Python, Human marbles, logic gates, plant

Book micronave in Confequent Pencilot paper, Bissuse

Properties we want of implementations:

· how to take in, give out deterministic

Are all functions computable?

How could we approach this question?

```
what can we do

it something is missing are there
function > that need it?

Here your trunction > the implementations
```

1-1, Injective Functions

INJECTIVE FUNCTION

NON-INJECTIVE FUNCTION

Nothing in Co-Domain "receives" two things $|D| \le |C|$

Onto, Surjective Functions

SURJECTIVE FUNCTION

NON-SURJECTIVE FUNCTION

Everything in Co-Domain "receives" something $|D| \ge |C|$

Bijective Functions

BIJECTIVE FUNCTION

Because Onto:

Everything in Co-Domain "receives" something

 $|D| \ge |C|$

Because 1-1:

Nothing in Co-Domain "receives" two things

$$|D| \leq |C|$$

Conclusion:

Things in the Domain exactly "partner" with things in Co-Domain

$$|D| = |C|$$

Cardinality

- The number of elements in a set
- Two sets have the same cardinality if there is a def
- What does it mean for a set to have cardinality 5?
 - It has a bijection with the set $[5] = \{0,1,2,3,4\}$
- A finite set has cardinality k if it has a bijection with the set $[k] = \{n : n \in \mathbb{N} \land n < k\}$
- An infinite set has no bijections with any set [k] for $k \in \mathbb{N}$

How many length-n binary strings

How many binary strings are there of length

$$n? - |\underbrace{\{0,1\}^n}| = 2^n \leftarrow$$

- How to prove this?
 - Induction
 - Bijection with $[2^n] = \{0,1,...,2^n 1\}$

Principle of Induction

- If something is true for x = 0 (base case),
- And when it's true for x = n (inductive hypothesis), it must be true for x = n + 1 (inductive step)
- It must be that it's true for all $x \in \mathbb{N}$

$\rightarrow |\{0,1\}^n| = 2^n$ via induction

- Base case: $|\{0,1\}^0| = 1 = 2^\circ$
 - Proof: $\{0,1\}^0 = \{""\}$
- Inductive hypothesis: $-|\{0,1\}^{n-1}| = 2^{n-1}$

$$- |\{0,1\}^{n-1}| = 2^{n-1}$$

- Inductive step:
- $\overline{}$ For each binary string of length n-1, we can make two different binary strings of length n by concatenating either a 0 or a 1.
 - Therefore $|\{0,1\}^n| = 2 \cdot |\{0,1\}^{n-1}| = 2 \cdot 2^{n-1} = 2^n$

$|\{0,1\}^n|=2^n$ via bijection

- Proof idea:
 - Find a bijection $\underline{f_n}$: $\{0,1\}^n \leftrightarrow [2^n]$

10 ⁵	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰
3	0	1	2	2	0

- Given $b \in \{0,1\}^n$, what is $f_n(b) \in [2^n]$?
 - $f_n(b) = \sum_{i=0}^{n-1} b_i \cdot 2^i$
 - E.g. $1101 = 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 = 13$

2 ⁵	2 ⁴	23	2 ²	21	2 ⁰
0	0	1	1	06,	150

- Given $x \in [2^n]$, what is $f_n^{-1}(x) \in \{0,1\}^n$?
 - Do n times: if x is even, make 0 the next bit of b, otherwise make it 1. Let $x = \begin{bmatrix} \frac{x}{2} \end{bmatrix}$ of y = 0 then y

Calculating binary of 13

• 13 is odd, so last bit is 1

$$-x = \left\lfloor \frac{13}{2} \right\rfloor = 6$$

• 6 is even, so next bit is 0

$$-x = \left| \frac{6}{2} \right| = 3$$

• 3 is odd, so next bit is 1

$$-x = \left|\frac{3}{2}\right| = 1$$

1 is odd, so next bit is 1

How many binary strings of any length?

- If we don't limit the length, how many strings are there?
 - $-\infty$?
- What naturals can/can't we represent
- What does it mean to "represent"?
 - A surjective mapping from a set of strings onto a set
 - Ideally a bijection, but not necessary
- Are there things we can't represent?

Representing N with binary strings

- For a binary string b, if $f_n(b) = x$, then $f_n(0b) = x$
 - Leading zeros don't change the value
 - Our procedure above gives an onto mapping from binary strings to the natural numbers
 - We can represent all natural numbers with binary strings

Countablility and Uncountability

- A set S is countable if $|S| \leq |\mathbb{N}|$
 - If $|S| = |\mathbb{N}|$, then S is "countably infinite"
- A set S is countable if there is an onto (surjective) function from \mathbb{N} to S

$\{0,1\}^*$ is countable

- We showed $|\{0,1\}^*| \ge |N|$
- Countable if $|\{0,1\}^*| \leq |\mathbb{N}|$
- Need to "represent" strings with naturals
- Idea: build a "list" of all strings, represent each string by its index in that list

Listing all strings

•
$$\{0,1\}^0 = \{""\}$$

•
$$\{0,1\}^1 = \{0,1\}$$

•
$$\{0,1\}^2 = \{00,01,10,11\}$$

•
$$\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$$
7 8 9 10 11 12 13 14

How Many Python/Java programs?

- How do we represent Java/Python programs?
- How many things can we represent using that method?

How many functions $\Sigma^* \to \Sigma^*$?

- Short answer: Too many!
 - Uncountable
 - $-\left|\left\{f\left|f:\Sigma^*\to\Sigma^*\right\}\right|>\left|\mathbb{N}\right|\right|$
- Conclusion: Some functions cannot be computed by any java/python program
- How to prove this?

Uncountably many functions

- If we show a subset of $\{f \mid f \colon \Sigma^* \to \Sigma^*\}$ is uncountable, then $\{f \mid f \colon \Sigma^* \to \Sigma^*\}$ is uncountable too
- Consider just the "yes/no" functions (decision problems): $\{f \mid f : \{0,1\}^* \rightarrow \{0,1\}\}$
- The right-hand column is an infinite binary string that represents that function

b	f(b)
un	1
0	0
1	0
00	1
01	1
10	1
11	1
000	0
001	0

$$|\{0,1\}^{\infty}| > |\mathbb{N}|$$

• Idea:

- show there is no way to "list" all finited binary strings
- Any list of binary strings we could ever try will be missing elements of $\{0,1\}^{\infty}$

$|\{0,1\}^{\infty}| > |\mathbb{N}|$

Attempt at mapping \mathbb{N} to $\{0,1\}^{\infty}$

 b_0 b_2 b_3 b_4 b_5 b_6 b_1

A string that our attempt missed

Derive by selecting each b_i as the opposite of the b_i from row i

$|\{0,1\}^{\infty}| > |\mathbb{N}|$ proof summary

- Assume towards reaching a contradiction that $\{0,1\}^{\infty}$ is countable
- This means we can find a bijection $f: \mathbb{N} \to \{0,1\}^{\infty}$
- Using f, we can find $s \in \{0,1\}^{\infty}$ which is not in the range of f:
 - let bit i of s be the opposite of bit i of f(i)
 - This is missing from the range because it must be different from every output (at the position indexed by the input)

Conclusion

- There are countably many strings
 - And therefore binary strings, programs, etc.
- We can't write down (or compute) all things from an uncountable set
- There are uncountably many functions
- Some functions can't be implemented

Other countable/uncountable sets

- Countable sets:
 - Integers
 - Rational numbers

- Uncountable Sets:
 - Real numbers