Tutorial 3

Yue Ju, Yanmeng Wang

School of Science and Engineering The Chinese University of Hong Kong, Shenzhen

September 26, 2020

Outline

Knowledge Review

Questions

Two-sample Location Problem

Two-sample data:

 X_1, \dots, X_m and Y_1, \dots, Y_n from two independent subjects (different from paired data)

Main problems:

- (1) Is there a significant difference between the distributions of X_1, \dots, X_m and Y_1, \dots, Y_n ?
- (2) What is the difference?

Two-sample Location Problem

Basic Assumptions

- X_1, \dots, X_m are i.i.d. with common cdf F; Y_1, \dots, Y_n are i.i.d. with common cdf G.
- X_1, \dots, X_m and Y_1, \dots, Y_n are mutually independent.
- X_1, \dots, X_m and Y_1, \dots, Y_n are continuous random variables.

Location-shift Model:

$$G(t) = F(t - \Delta)$$
 for all $t \in \mathbb{R}$
 $\iff Y \sim X + \Delta$ (Not $Y = X + \Delta$),

where Δ is known as location shift or treatment effect.

Δ = 0 represents no difference in treatment effects between X and Y; Δ > (<)0 represents a greater(smaller) effect of Y and X in the sense of stochastic order.

- Null hypothesis: $H_0: \Delta = 0$
- Y-Ranks:

Order N=n+m observations $X_1,\cdots,X_m,Y_1,\cdots,Y_n$ in ascending order. S_j denotes the rank of $Y_j, j=1,\cdots,n$. S_1,\cdots,S_n are referred as Y-ranks.

- **Test statistic:** $W = \sum_{j=1}^{n} S_j$ (the sum of Y-ranks)
- Exact distribution of W under H_0 :

$$\Pr(W = w) = \frac{No. \ of(s_1, \dots, s_n) : s_1 + \dots + s_n = w}{\binom{N}{n}},$$

where $M_1 \leq w \leq M_2$ with $M_1 = \frac{n(n+1)}{2}$ and $M_2 = mn + \frac{n(n+1)}{2}$.

• Mean and variance of W under H₀:

$$\mathsf{E}_0[W] = \frac{n(m+n+1)}{2}$$

$$\mathsf{Var}_0[W] = \frac{mn(m+n+1)}{12}.$$

Symmetry of W:

W is symmetric about $E_0[W]$, which is also the median of W under H_0 .

Rejection rule:

Let $\Pr(W \ge w_{\alpha}) = \alpha$ under H_0 . The Wilcoxon rank sum test rejects $H_0: \Delta = 0$ at the α level if

- $W \ge w_{\alpha}$ against $H_1 : \Delta > 0$
- $W \le n(m+n+1) w_{\alpha}$ against $H_1 : \Delta < 0$
- either $W \ge w_{\alpha/2}$ or $W \le n(m+n+1) w_{\alpha/2}$ against $H_1 : \Delta \ne 0$

Asymptotic distribution of W under H₀:

$$W^* = \frac{W - \mathsf{E}_0[W]}{\sqrt{\mathsf{Var}_0[W]}} = \frac{W - n(m+n+1)/2}{\sqrt{mn(m+n+1)/12}} \sim \mathcal{N}(0,1)$$

Approximate rejection rule:

Reject $H_0: \Delta = 0$ at the α level if

- $W^* \ge z_{\alpha}$ against $H_1 : \Delta > 0$
- $W^* \leq -z_{\alpha}$ against $H_1 : \Delta < 0$
- $|W^*| \ge z_{\alpha/2}$ against $H_1 : \Delta \ne 0$
- Ties:

Assign the average rank to tied values.

 $\mathsf{E}_0[W]$ is unchanged, while the variance is reduced to

$$Var_0[W] = \frac{mn(m+n+1)}{12} - \frac{mn}{12N(N-1)} \sum_{i=1}^g t_i(t_i-1)(t_i+1),$$

where g is the number of groups with tied ranks, t_j is the number of tied points in jth group.

- Equivalent test statistic: the Mann-Whitney statistic
 - No ties:

$$U = \sum_{i=1}^{m} \sum_{j=1}^{n} I_{\{X_i < Y_j\}} = W - \frac{n(n+1)}{2}$$

$$\mathsf{E}_0[U] = \frac{mn}{2}$$

$$\mathsf{Var}_0[U] = \frac{mn(m+n+1)}{12}$$

2 Ties occur among $X_1, \dots, X_m, Y_1, \dots, Y_n$:

$$U = \sum_{i=1}^{m} \sum_{j=1}^{n} \left(I_{\{X_i < Y_j\}} + \frac{1}{2} I_{\{X_i = Y_j\}} \right) = W - \frac{n(n+1)}{2}$$

Note that ties within X_1, \dots, X_m or Y_1, \dots, Y_n do not affect the value of U, neither they affect the value of W (but affect their variances).

Estimation of the location shift

$$\begin{split} \hat{\Delta} = & \text{median} \left\{ Y_j - X_i, & i = 1, \cdots, m \\ j = 1, \cdots, n \end{array} \right\} \\ = & \left\{ \begin{array}{ll} U_{((mn+1)/2)} & \text{if } mn \text{ is odd} \\ \frac{U_{(mn/2)} + U_{(mn/2+1)}}{2} & \text{if } mn \text{ is even} \end{array} \right. \end{split}$$

where $U_{(1)} \leq U_{(2)} \leq \cdots U_{(mn)}$ are ordered values of $(Y_j - X_i)$'s.

• A $100(1-\alpha)\%$ confidence interval for Δ is

$$(\Delta_L, \Delta_U) = (U_{(C_\alpha)}, U_{(mn+1-C_\alpha)}) = (U_{(C_\alpha)}, U_{(u_{\alpha/2})}),$$

Exact C_{α} :

$$C_{\alpha} = mn + 1 + \frac{n(n+1)}{2} - w_{\alpha/2} = mn + 1 - u_{\alpha/2}$$

For large m and n, the approximated C_{α} :

$$C_{\alpha} pprox rac{mn}{2} - z_{\alpha/2} \sqrt{\frac{mn(m+n+1)}{12}}.$$

 It is worth to note that the test statistic in R is the Mann-Whitney statistic U, not the Wilcoxon rank sum W.

```
Example 2. m = 10, n = 5:

x<-c(1.46, 0.80, 0.83, 1.64, 1.89, 1.04, 0.73, 1.91, 1.38, 1.45)

y<-c(0.88, 0.74, 1.15, 1.21, 0.90)

> wilcox.test(y, x, alternative = "less")

Wilcoxon rank sum test

data: y and x

W = 15, p-value = 0.1272

alternative hypothesis: true location shift is less than 0
```

U = 15, W = 15 + 15 = 30, p-value = $Pr(U \le 15) = Pr(W \le 30) = 0.1272$ for $H_1 : \Delta < 0$

Question 1

The following two samples are extracted from a study:

$$(X_1,...,X_m) = (41.7, 35.4, 34.3, 32.4, 29.1, 27.3, 18.9, 6.6, 5.2)$$

$$(Y_1,...,Y_n) = (100.0, 67.6, 65.9, 64.7, 39.6, 31.0)$$

Assume the location-shift model for the two samples with location shift Δ .

- (a) Calculate the approximate *p*-value of testing $H_0: \Delta = 0$ against $H_1: \Delta > 0$ by the Wilcoxon rank sum test, and explain its implication.
- (b) Determine the exact *p*-value of the problem in part (a) by counting the number of $(b_1,...,b_n)$ from the ranks of combined $X_1,...,X_m,Y_1,...,Y_n$ such that

$$b_1 + \dots + b_n \ge w =$$
 observed value of the Wilcoxon rank sum statistic W (or $b_1 + \dots + b_n \le 2E_0[W] - w$ due to the symmetric distribution of W).

Compare the exact *p*-value with the approximate *p*-value obtained in part (a).

- (c) Estimate the location-shift parameter Δ based on the differences between the two sample: $\{Y_i X_i, i = 1,...,m, j = 1,...,n\}$.
- (d) Find an approximate 95% confidence interval of Δ based on the Wilcoxon rank sum statistic.

Question1

The ordered values of $\{Y_j - X_i\}$ are shown in the following table,

$U_{(1)} \le U_{(2)} \le \dots \le U_{(54)}$											
1	-10.7	10	7.2	19	25.9	28	33.5	37	45.8	46	62.4
2	-4.4	11	10.5	20	29.3	29	34.4	38	47.0	47	64.6
3	-3.3	12	12.1	21	30.4	30	35.2	39	48.7	48	65.7
4	-2.1	13	12.3	22	30.5	31	35.6	40	58.1	49	67.6
5	-1.4	14	20.7	23	31.6	32	36.8	41	58.3	50	70.9
6	1.9	15	23.0	24	32.2	33	37.4	42	59.3	51	72.7
7	3.7	16	24.2	25	32.3	34	38.5	43	59.5	52	81.1
8	4.2	17	24.4	26	33.0	35	38.6	44	60.7	53	93.4
9	5.3	18	25.8	27	33.3	36	40.3	45	61.0	54	94.8