Лекция 20

Суммы и интегралы Дарбу Критерий Дарбу

Пусть функция f(x) определена на [a,b], P - некоторое разбиение этого отрезка. Обозначим $M_i = \sup_{x \in \Delta_i} f(x), m_i = \inf_{x \in \Delta_i} f(x)$. Составим суммы

$$s(f,P)=\sum_{i=1}^n m_i \Delta x_i,$$
 —нижняя сумма Дарбу, $S(f,P)=\sum_{i=1}^n M_i \Delta x_i$ — верхняя сумма Дарбу.

Поскольку $m_i \leqslant f(\xi_i) \leqslant M_i$, то $\sum_{i=1}^n m_i \Delta x_i \leqslant \sum_{i=1}^n f(\xi_i) \Delta x_i \leqslant \sum_{i=1}^n M_i \Delta x_i$, то

$$s(f, P) \leqslant \sigma(f; (P, \boldsymbol{\xi})) \leqslant S(f, P). \tag{20.1}$$

Теорема 20.1. Пусть $f:[a,b] \to \mathbb{R}$ - ограниченная функция. Тогда

$$S(f, P) = \sup_{\boldsymbol{\epsilon}} \sigma(f; (P, \boldsymbol{\xi})), \tag{20.2}$$

$$S(f, P) = \sup_{\boldsymbol{\xi}} \sigma(f; (P, \boldsymbol{\xi})), \tag{20.2}$$

$$s(f, P) = \inf_{\boldsymbol{\xi}} \sigma(f; (P, \boldsymbol{\xi})). \tag{20.3}$$

Доказательство. Поскольку в силу (20.1) $\forall (P, \xi)$ имеем $\sigma(f; (P, \xi)) \leqslant S(f, P)$, то остается показать, что $\forall \varepsilon > 0$, $\exists \xi : \sigma(f; (P, \xi)) > S(f, P) - \varepsilon$, или

$$S(f, P) < \sigma(f; (P, \xi)) + \varepsilon. \tag{20.4}$$

Так как $M_i = \sup_{x \in \Delta_i} f(x)$, то $\forall \varepsilon > 0$, $\exists \xi_i \in \Delta_i : M_i < f(\xi_i) + \frac{\varepsilon}{b-a}, \ i = 1, \dots, n$.

Отсюда находим

$$S(f,P) = \sum_{i=1}^{n} M_i \Delta x_i < \sum_{i=1}^{n} \left(f(\xi_i) + \frac{\varepsilon}{b-a} \right) \Delta x_i = \sigma(f;(P,\xi)) + \varepsilon \Rightarrow (20.4),$$

а, следовательно, и (20.2).

Неравенство (20.3) доказывается аналогично.

Определение 20.1.

$$\underline{J} = \lim_{\lambda(P) \to 0} s(f,P) - \text{нижний интеграл Дарбу},$$

$$\overline{J} = \lim_{\lambda(P) \to 0} S(f,P) - \text{верхний интеграл Дарбу}.$$

Теорема 20.2. (Дарбу). Пусть $f:[a,b] \to \mathbb{R}$ - ограниченная функция. Тогда $f \in$ $R[a,b] \Leftrightarrow \exists \underline{J}$ и \overline{J} . При этом $\underline{J} = \overline{J} = \int_a^b f(x) dx (=J)$.

Доказательство. Пусть $f \in R[a,b]$, то есть $\exists J$. Тогда из $(20.4) \Rightarrow \lim_{\lambda(P) \to 0} S(f,P) \leqslant J$, но из (20.1) получаем $\lim_{\lambda(P) \to 0} \sigma(f;(P,\pmb{\xi})) = J \leqslant \lim_{\lambda(P) \to 0} S(f,P)$. То есть $\overline{J} = \lim_{\lambda(P) \to 0} S(f,P) = J$. Аналогично доказываем, что $\underline{J} = J$.

Пусть $\exists \underline{J}$ и \overline{J} , и $\underline{J} = \overline{J}$. Тогда из (20.1) получаем

$$\lim_{\lambda(P)\to 0} s(f,P) \leqslant \lim_{\lambda(P)\to 0} \sigma(f;(P,\pmb{\xi})) \leqslant \lim_{\lambda(P)\to 0} S(f,P),$$

то есть $\underline{J} \leqslant J \leqslant \overline{J}$, то есть $\exists J = \underline{J} = \overline{J}$ (по теореме о трех последовательностях). \Box **Теорема 20.3.** Пусть $f: [a,b] \to \mathbb{R}$ - ограниченная функция. Тогда $f \in R[a,b] \Leftrightarrow$

$$\lim_{\lambda(P)\to 0} \sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i = 0.$$
 (20.5)

Доказательство. Достаточность доказана на предыдущей лекции (смотри теорему 19.03). Докажем необходимость. Отметим, что

$$\sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i = \sum_{i=1}^{n} \sup_{x_1, x_2 \in \Delta_i} |f(x_1) - f(x_2)| \Delta x_i =$$

$$= \sum_{i=1}^{n} \sup_{x \in \Delta_i} f(x) \Delta x_i - \sum_{i=1}^{n} \inf_{x \in \Delta_i} f(x) \Delta x_i = S(f, P) - s(f, P).$$

Из теоремы 20.2 имеем $S(f,P)-s(f,P)\to 0$ при $\lambda(P)\to 0$, то есть получаем (20.5).

Критерий Лебега интегрируемости функции

Определение 20.2. Множество $X \subset \mathbb{R}$ называется множеством Лебеговой меры нуль, если $\forall \varepsilon > 0 \; \exists$ не более чем счетное его покрытие $\{I_n\}$ такое, что $\sum_n |I_n| < \varepsilon$, где $|I_n|$ - длина интервала I_n .

Определение 20.3. Говорят, что некоторое свойство *выполняется на множестве почти всюду*, если множество, на котором оно не выполняется имеет меру нуль. **Примеры.**

1. Точка является множеством меры нуль.

Напомним, что если I - промежуток с концами a и b, то |I|=b-a, a< b. Тогда для точки $x_0\in\mathbb{R}$ выбираем по заданному произвольному числу ε любой интервал $I\ni x_0: |I|<\varepsilon$.

2. Всякое конечное или счетное множество является множеством лебеговой меры нуль.

Пусть $X=\{x_n\}$ - конечное или счетное множество. Зададим произвольное $\varepsilon>0$. Система интервалов $\left(x_n-\frac{\varepsilon}{2^{n+2}},x_n+\frac{\varepsilon}{2^{n+2}}\right),\ n=1,2,\ldots$ покрывает множество X, а сумма их длин меньше ε :

$$\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{4} \frac{1}{1 - \frac{1}{2}} = \frac{\varepsilon}{2} < \varepsilon.$$

Теорема 20.4. (Лебег). Для того, чтобы ограниченная на отрезке [a, b] функция была на нем интегрируема, необходимо и достаточно, чтобы множество ее точек разрыва было множеством лебеговой меры нуль.

Свойства интеграла Римана

Теорема 20.5.

$$\int_{a}^{b} dx = b - a.$$

Доказательство. Подынтегральная функция $f(x) = 1, \ \forall x \in [a,b]$, тоэтому для любого разбиения P с отмеченными точками $\boldsymbol{\xi}$ $\sigma(f;(P,\boldsymbol{\xi})) = \sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n \Delta x_i = b-a$. То есть $\lim_{\lambda(P)\to 0} \sigma(f;(P,\boldsymbol{\xi})) = b-a$.

Теорема 20.6. Если $f \in R[a,b], g \in R[a,b],$ то $(\alpha f + \beta g) \in R[a,b], \forall \alpha, \beta \in \mathbb{R}.$ Доказательство. Для произвольного разбиения P с отмеченными точками $\boldsymbol{\xi}$ имеем

$$\sigma(\alpha f + \beta g; (P, \boldsymbol{\xi})) = \sum_{i=1}^{n} (\alpha f(\xi_i) + \beta g(\xi_i)) \Delta x_i = 0$$

$$= \alpha \sum_{i=1}^{n} f(\xi_i) \Delta x_i + \beta \sum_{i=1}^{n} g(\xi_i) \Delta x_i = \alpha \sigma(f; (P, \boldsymbol{\xi})) + \beta \sigma(g; (P, \boldsymbol{\xi})).$$

Поскольку $f,g\in R[a,b]$, то \exists предел правой части последнего равенства. Тогда \exists предел и левой части и при этом

$$\lim_{\lambda(H)\to 0} \sigma(\alpha f + \beta g; (P, \xi)) = \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Теорема 20.7. Если функция f интегрируема на [a,b], то она интегрируема на любом **хрузке** $[c,d]:[c,d]\subset [a,b].$

Домазательство. Если функция f ограничена на [a,b], то она ограничена и на [c,d]. Каково бы ни было разбиение P_1 отрезка [c,d] мелкости $\lambda(P_1)$, его всегда можно продолжить в разбиение P отрезка [a,b] той же мелкости, то есть $\lambda(P_1) = \lambda(P)$.

Положим $m_i^* = \inf_{x \in \Delta_i^*} f(x), \ M_i^* = \sup_{x \in \Delta_i^*} f(x)$, где Δ_i^* - отрезок разбиения P_1 , и, как обычно, $m_i = \inf_{x \in \Delta_i} f(x), \ M_i = \sup_{x \in \Delta_i} f(x), \ \Delta_i$ - отрезок разбиения P.

Каждое слагаемое суммы $\sum_{i=1}^{n^*} (M_i^* - m_i^*) \Delta x_i^*$ является и слагаемим суммы $\sum_{i=1}^{n} (M_i - m_i) \Delta x_i$. Кроме того, все слагаемые обеих сумм неотрицательны даже

$$0 \le S(f, P_1) - s(f, P_1) = \sum_{i=1}^{n^*} (M_i^* - m_i^*) \Delta x_i^* \le \sum_{i=1}^{n} (M_i - m_i^*) \Delta x_i = S(f, P) - s(f, P)$$
(20.6)

 $\lim_{\lambda(P)\to 0} s(f,P)$, то есть Если f интегрируема на [a,b], то $\lim_{\lambda(P)\to 0} S(f,P) =$ $\lim_{\lambda(P)\to 0} (S(f,P) - s(f,P)) = 0.$

Поскольку $\lambda(P) = \lambda(P_1)$, то из (20.6) следует, что $\lim_{\lambda(P_1) \to 0} S(f, P_1) = \lim_{\lambda(P_1) \to 0} s(f, P_1)$, то есть $f \in R[c,d]$.

Теорема 20.8. Если $f \in R[a,b]$ и a < c < b, то скраведливо равен

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$
 (20.7)

Существование интегралов в правой части (20.7) доказано в теореме 20.7. Для доказательства (20.7) воспользуемся равенствами

$$\sigma(f;(P,\boldsymbol{\xi})) = \sigma'(f;(P,\boldsymbol{\xi})) + \sigma''(f;(P,\boldsymbol{\xi})),$$

где $\sigma^{'}$ и $\sigma^{''}$ - интегральные суммы функции f на отрезках [a,c] и [c,b] соответственно, P - произвольное разбиение отрезка [a,b] с отмеченными точками ${\pmb \xi}$, причем cявляется точкой разбиения P.

Если $\lambda(P) \to 0$, то \exists пределы σ , σ' и σ'' и справедливо (20.7).