Логика высказываний Исчисление аналитических таблиц

Перязев Николай Алексеевич

Отмеченные формулы

```
\Phi = \sigma — отмеченная формула, \sigma \in \{0,1\}, \sigma — отметка (спецификация) формулы.
```

Разобьем все отмеченные формулы на две группы:

- α -формулы: $\neg = 0$, $\neg = 1$, &=1, $\vee = 0$, $\rightarrow = 0$;
- β -формулы: &=0, \vee =1, \rightarrow =1.

Ниже правила построения таблиц называем lpha-правилами или eta-правилами, если они применяются к соответствующим отмеченным формулам.

Правила построения таблиц

$$\neg = 1$$
) $\frac{\neg \Phi = 1}{\Phi = 0}$

$$\neg = 0$$
) $\frac{\neg \Phi = 0}{\Phi = 1}$

&=1)
$$\frac{\Phi \& \Psi = 1}{\Phi = 1}$$

 $\Psi = 1$

&=0)
$$\Phi \& \Psi = 0$$

 $\Phi = 0 \mid \Psi = 0$

$$\vee \! = \! 1) \, \frac{ \Phi \vee \Psi \! = \! 1}{\Phi \! = \! 1 \mid \Psi \! = \! 1}$$

$$\vee=0) \frac{ \Phi \vee \Psi=0}{\Phi=0}$$

$$\Psi=0$$

$$\rightarrow = 1) \; \frac{ \; \Phi \rightarrow \Psi \! = \! 1 \;}{ \; \Phi \! = \! 0 \; | \; \Psi \! = \! 1 \;}$$

$$\rightarrow=0)\frac{\begin{array}{c} \Phi \rightarrow \Psi=0 \\ \hline \Phi=1 \\ \Psi=0 \end{array}$$

Исчисление аналитических таблиц

Аналитической таблицей называется:

- а) $\Phi = \sigma$ аналитическая таблица с одной веткой.
- b) Пусть \sum аналитическая таблица с n ветками. К ветке, в которой есть $\Psi = \tau$ достраивается таблица по правилам построения таблиц.

Аналитическая таблица по существу является деревом.

Пример

$$(A \lor B)\&C \rightarrow A=0$$

$$(A \lor B)\&C=1$$

$$A=0$$

$$A \lor B=1$$

$$C=1$$

$$A=1 \mid B=1$$

Исчисление аналитических таблиц

- Ветка аналитической таблицы называется *замкнутой*, если содержит $\Phi = 0$ и $\Phi = 1$, иначе она называется *открытой*. Замкнутые ветки будем отмечать двойной горизонтальной линией.
- Применение правила построения таблицы называется избыточным, если хотя бы в одной новой ветке нет новых отмеченных формул.
- Ветка таблицы называется финальной, если применение любого правила построения таблиц к формулам этой ветки избыточно.
- Аналитическая таблица называется финальной, если все ветки у нее либо замкнутые, либо финальные.
- Аналитическая таблица называется *замкнутой*, если все ее ветки замкнуты.

Теорема адекватности исчисления аналитических таблиц для языка высказываний

Теорема (Адекватность исчисления аналитических таблиц)

Формула Φ языка высказываний тождественно равна σ тогда и только тогда, когда для отмеченной формулы $\Phi = \bar{\sigma}$ существует замкнутая таблица в исчислении аналитических таблиц.

Теорема адекватности разбивается на две теоремы - теорему полноты и теорему корректности, которые рассматриваются далее.

Пример решения задачи

Условие:

Пятеро друзей Антон, Витя, Сергей, Дима и Миша являются полевыми игроками одной хоккейной команды. Определить их амплуа, если известно следующее:

Если Антон защитник, то Витя тоже защитник.

Среди Димы и Миши хоть один защитник.

Витя и Сергей имеют разные амплуа.

Дима и Сергей одного амплуа.

Если Миша защитник, то защитники также Антон и Дима.

Пример решения задачи

Условие:

Пятеро друзей Антон, Витя, Сергей, Дима и Миша являются полевыми игроками одной хоккейной команды. Определить их амплуа, если известно следующее:

Если Антон защитник, то Витя тоже защитник.

Среди Димы и Миши хоть один защитник.

Витя и Сергей имеют разные амплуа.

Дима и Сергей одного амплуа.

Если Миша защитник, то защитники также Антон и Дима.

Решение:

Множество высказываний $\{A, B, C, D, M\}$ Интерпретация:

$$f(X) = 1$$
, если X — защитник.

Модель условия задачи в языке высказываний

Если Антон защитник, то Витя тоже защитник.

$$\mathsf{A}\to\mathsf{B}=1$$

Среди Димы и Миши хоть один защитник.

$$\mathsf{D} \lor \mathsf{M} = \mathsf{1}$$

Витя и Сергей имеют разные амплуа.

$$B\&\neg C \vee \neg B\&C = 1$$

Дима и Сергей одного амплуа.

$$D\&C \lor \neg D\&\neg C = 1$$

Если Миша защитник, то защитники также Антон и Дима.

$$\mathsf{M} \to \mathsf{A\&D} = 1$$

$$(A \to B)\&(D \lor M)\&(B\&\neg C \lor \neg B\&C)\&(D\&C \lor \neg D\&\neg C)\&\&(M \to A\&D) = 1$$
 $A \to B = 1$
 $D \lor M = 1$
 $B\&\neg C \lor \neg B\&C = 1$
 $D\&C \lor \neg D\&\neg C = 1$
 $M \to A\&D = 1$

Ответ: Дима и Сергей — защитники,

Антон, Витя и Миша — нападающие.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♥Q♥

Теорема корректности исчисления аналитических таблиц для языка высказываний

Теорема (Корректность исчисления аналитических таблиц)

Если для отмеченной формулы $\Phi = \bar{\sigma}$ существует замкнутая таблица в исчислении аналитических таблиц, тогда формула Φ тождественно равна σ .

Прежде чем доказывать теорему, рассмотрим следующую лемму.

Лемма

Для заданной интерпретации f при применении правила построения аналитической таблицы хоть для одной из новых веток сохраняется выполнимость отметок формул.

Теорема корректности исчисления аналитических таблиц

Доказательство леммы.

Для доказательства достаточно рассмотреть правила построения таблиц для отмеченных формул.

а) α -правила:

 $f(\Phi_1\&\Phi_2)\!=\!1$ по определению интерпретации: $f(\Phi_1)\!=\!1$ и $f(\Phi_2)\!=\!1$ выполнимость отметки при интерпретации f будет сохраняться по каждой из веток. Остальные аналогично.

Доказательство леммы

б) β -правила:

$$\frac{\Phi_1 \vee \Phi_2 = 1}{\Phi_1 = 1 \mid \Phi_2 = 1},$$

$$\frac{\Phi_1 \& \Phi_2 = 0}{\Phi_1 = 0 \mid \Phi_2 = 0}$$
,

$$\begin{array}{c} \Phi_1 \to \Phi_2 = 1 \\ \hline \Phi_1 = 0 \mid \Phi_2 = 1 \end{array}$$

 $f(\Phi_1 \vee \Phi_2) = 1$ по определению интерпретации: $f(\Phi_1) = 1$ или $f(\Phi_2) = 1$, по одной из веток будет сохраняться выполнимость отметки при интерпретации f. Остальные аналогично.

Теорема корректности исчисления аналитических

Опираясь на доказанную лемму, докажем теорему корректности.

Доказательство теоремы.

Проведем доказательство от противного. Пусть $f(\Phi) = \bar{\sigma}$. Существует замкнутая таблица для $\Phi = \bar{\sigma}$. Все ветки таблицы замкнуты, но существует ветка, у которой, по доказанному выше, все отметки формул выполнимы при интерпретации f. А значит существует формула Ψ такая, что $\Psi = 0 \in W$ и $\Psi = 1 \in W$, и из леммы следует выполнимость $f(\Psi) = 0$ и $f(\Psi) = 1$. Получили противоречие, так как при любой интерпретации оба условия выполнятся не могут.

Теорема полноты исчисления аналитических таблиц для языка высказываний

Теорема (Полнота исчисления аналитических таблиц)

Если формула Φ тождественно равна σ , тогда для отмеченной формулы $\Phi = \bar{\sigma}$ существует замкнутая таблица в исчислении аналитических таблиц.

Прежде чем доказывать теорему, рассмотрим следующую лемму.

Лемма

Любая финальная открытая ветвь аналитической таблицы W выполнима, то есть существует интерпретация $f: S_i \to \{0,1\}$, такая что, если $\Psi = \sigma \in W$, то $f(\Psi) = \sigma$.

Теорема полноты исчисления аналитических таблиц

Доказательство леммы.

Так как ветвь W финальная, то для α -формул из W будет $\alpha_1,\alpha_2\in W$, а для β -формул из W будет $\beta_1\in W$ или $\beta_2\in W$. Определим интерпретацию f так: если $S_i\!=\!\tau\in W$, то $f(S_i)\!=\!\tau$; если $S_i\!=\!\tau\notin W$, то $f(S_i)\!=\!1$ (можно 0).

Доказательство утверждения леммы проведем индукцией по глубине формул, входящих в W.

Базис индукции. $\Psi = S_i$, то $f(\Psi) = \sigma$ по построению f.

Шаг индукции. а) Если $\Psi = \sigma - \alpha$ -формула. Например, $\Psi_1 \& \Psi_2 = 1$.

Тогда $\Psi_1 = 1 \in W$ и $\Psi_2 = 1 \in W$ по индуктивному предположению $f(\Psi_1) = 1$ и $f(\Psi_2) = 1$. Тогда по определению конъюнкции $f(\Psi) = 1$.

Аналогично для других lpha-формула.

6) Если $\Psi = \sigma - \beta$ -формула. Например $\Psi_1 \& \Psi_2 = 0$. Тогда $\Psi_1 = 0 \in W$ или $\Psi_2 = 0 \in W$ по индуктивному предположению, соответственно, $f(\Psi_1) = 0$ или $f(\Psi_2) = 0$. Тогда по определению конъюнкции $f(\Psi) = 0$. Аналогично для других β -формула.

Теорема полноты исчисления аналитических таблиц

Учитывая доказанную лемму, докажем теорему.

Доказательство теоремы

Проведем доказательство от противного. Пусть построили финальную таблицу для $\Phi = \bar{\sigma}$. По предположению она открытая. Тогда по лемме существует открытая финальная выполнимая ветвь. $\Phi = \bar{\sigma}$ - принадлежит всем веткам. Значит существует интерпретация f такая, что $f(\Phi) = \bar{\sigma}$. Это противоречит $\Phi \equiv \sigma$, то есть $f(\Phi) = \sigma$. (При интерпретации Φ не может быть одновременно истинна и ложна).