Problem Set 3 Solutions

- 1. (6 points) Answer each of the following questions about a variable that is the result of a linear transformation of another variable. (These do not require the use of Stata).
 - (a) If each value in a distribution with mean equal to 5 has been tripled, what is the new mean? **15 (the mean also triples)**
 - (b) If each value in a distribution with standard deviation equal to 5 has been tripled, what is the new standard deviation? 15 (the standard deviation also triples). In general if one multiplies a variable by b the standard deviation of the transformed variable is |b| times the old standard deviation.
 - (c) If each value in a distribution with skewness equal to 1.14 has been tripled, what is the new skewness? 1.14 (the skewness is unchanged unless multiplying by a negative number)
 - (d) If each value in a distribution with mean equal to 5 has the constant 6 added to it, what is the new mean? 11 (the original mean +6)
 - (e) If each value in a distribution with standard deviation equal to 5 has the constant 6 added to it, what is the new standard deviation? Adding a constant to a variable has no effect on the standard deviation (5).
 - (f) If each value in a distribution with skewness equal to 1.14 has the constant 6 added to it, what is the new skewness? 1.14 (the skewness is unchanged unless multiplying by a negative number)
 - (g) If each value in a distribution with mean equal to 5 has been multiplied by -2, what is the new mean? -10. In general if one multiplies a variable by b the mean of the transformed variable is b times the old mean.
 - (h) If each value in a distribution with standard deviation equal to 5 has been multiplied by -2, what is the new standard deviation? 10. In general if one multiplies a variable by b the standard deviation of the transformed variable is |b| times the old standard deviation.
 - (i) If each value in a distribution with skewness equal to 1.14 has been multiplied by -2, what is the new skewness? -1.14. When multiplying a variable by a negative number, the skewness of the transformed variable is -1 times the old skewness.
 - (j) If each value in a distribution with mean equal to 5 has had a constant equal to 6 subtracted from it, what is the new mean? -1 (the original mean minus 6)

- (k) If each value in a distribution with standard deviation equal to 5 has had a constant equal to 6 subtracted from it, what is the new standard deviation? Adding/subtracting a constant to a variable has no effect on the standard deviation (5).
- (l) If each value in a distribution with skewness equal to 1.14 has had a constant equal to 6 subtracted from it, what is the new skewness? 1.14. The skewness is unaffected unless the original variable has been multiplied by a negative value.
- 2. (60 points) For this problem use the file mepssample.dta on Github. These data are an extract from the Medical Expenditures Panel Survey, a large-scale survey of households about their health and health expenditures. (See https://www.meps.ahrq.gov/mepsweb/). Each observation is a person (N=19,386); in some cases there are multiple persons within the same household.

See the attached log file

```
. // ***********************
. // LPO.8800 Problem Set 3 - Solution to Question 2
. // Last updated: September 16, 2021
. // ***********************
. /* QUESTION #2: For this problem use the file mepssample.dta on Github.
> These data are an extract from the Medical Expenditures Panel Survey, a
> large-scale survey of households about their health and health expenditures.
> (See https://www.meps.ahrq.gov/mepsweb/). Each observation is a person
> (N=19,386); in some cases there are multiple persons within the same household
. use https://github.com/spcorcor18/LPO-8800/raw/main/data/mepssample.dta, ///
> clear
(Sample of MEPS 2004 data)
. // ******
. // Part a
. // ******
. // 4 POINTS
. /* The variables mcs12 and pcs12 are summary scores of well-being. MCS is the
> Mental Component Summary, and PCS is the Physical Component Summary. What are
> the mean and standard deviation of these variables in the data? Provide a
> "five number summary" (min, Q1, median, Q3, max) for these two variables and
> include the IQR.*/
. summ mcs12 pcs12
               Obs Mean Std. Dev. Min
   Variable |
                                                          Max
     mcs12 | 19,386 50.22171 10.19464 1.35 75.06
```

4.56

72.17

. tabstat mcs12 pcs12, stat(min p25 p50 p75 max igr)

19,386 49.01453 11.01185

stats		mcs12	pcs12
min		1.35	4.56
p25		44.3	43.77
p50		52.65	52.99
p75		57.33	56.71
max		75.06	72.17
iqr		13.03	12.94

pcs12 |

```
. // ******
. // Part b . // ******
. // 6 POINTS
```

. /* Create a new ordinal variable called highested that contains the highest > education completed by the individual. Use the four variables beginning in > ed to do this. For example, highested=0 if ed hs=0 (no high school completed) > highested=1 if ed hs=1 (high school completed but no more), etc. Repeat part > (a), but separately by highest level of education completed. How do the MCS > and PCS distributions compare across levels of educational attainment? For > example, how do their measures of central tendency compare? Their variation?*/

- . gen highested=0 if ed_hs==0 (5,764 missing values generated)
- . replace highested=1 if ed_hs==1
 (5,764 real changes made)
- . replace highested=2 if ed_hsplus==1
 (5,017 real changes made)
- . replace highested=3 if ed_col==1
 (3,307 real changes made)
- . replace highested=4 if ed_colplus==1
 (2,467 real changes made)
- . label define hed 0 "no HS" 1 "HS" 2 "some college" 3 "college" 4 "college+",re > place
- . label values highested hed
- . fre highested

highested

		Freq.	Percent	Valid	Cum.
Valid	0 no HS 1 HS 2 some college 3 college 4 college+ Total	2831 5764 5017 3307 2467 19386	14.60 29.73 25.88 17.06 12.73 100.00	14.60 29.73 25.88 17.06 12.73 100.00	14.60 44.34 70.22 87.27 100.00

- . /* when creating variables like highested above it pays to verify how the > component ed_* variables are coded. As a check to see whether individuals are > coded a "1" more than once in the ed_* variables, I used the code below.
- > There are no such cases--variables $\bar{\text{seem}}$ mutually exclusive).*/
- . egen check=rowtotal(ed_*)
- . tabulate check

check	Freq.	Percent	Cum.
0 1	2,831 16,555	14.60 85.40	14.60 100.00
Total	19,386	100.00	

. drop check

. tabstat mcs12, by(highested) stat(mean sd min p25 p50 p75 max iqr)

Summary for variables: mcs12 by categories of: highested

highested	mean	sd	min	p25	p50	p75
no HS HS some college college college+	47.52533 49.6437 50.57164 51.403 52.37128	11.34479 10.61426 10.11016 9.061986 8.492424	1.9 4.73 1.35 12.45 11.71	39.96 43.215 45.15 46.98 48.84	48.77 52 53.35 54.1 54.37	56.94 57.33 57.33 57.16 57.63
Total	50.22171	10.19464	1.35	44.3	52.65	57.33

highested	max	iqr
no HS HS some college college+	74.15 75.06 74.84 72.43 70.48	16.98 14.115 12.18 10.18 8.790001
Total	75.06	13.03

. tabstat pcs12, by(highested) stat(mean sd min p25 p50 p75 max iqr)

Summary for variables: pcs12 by categories of: highested

highested	mean	sd	min	p25	p50	p75
no HS HS some college college college+	45.16709 47.97236 49.26236 51.44491 52.1027	12.34802 11.20774 10.84113 9.687731 9.092791	6.08 7.57 4.56 7.33 11.29	36.68 41.98 44.27 48.18 49.46	48.75 51.93 53.18 54.8 55.13	55.09 56.15 56.71 57.57 57.76
Total	49.01453	11.01185	4.56	43.77	52.99	56.71

highested	max	iqr
no HS HS some college college college+	65.73 72.17 70.87 71.7 69.86	18.41 14.17 12.44 9.389999 8.299999
Total	72.17	12.94

name $(\overline{b}oxoffice, replace)$

```
(file boxoffice.pdf written in PDF format)
. // ********************
. // The lower whisker extends to the minimum value in this case (0). Because
. // there are outlier values at the top of the distribution, the upper whisker
. // extends to the upper adjacent value -- the last value observed in the data
. // before the threshold used to determine outliers (1.5 \mbox{IQR} above the . // 75th percentile).
. // note, to see without outliers:
. graph box use off, nooutsides
. // ******
. // Part d
. // ******
. // 5 POINTS
. /* Now create a boxplot that shows the distribution of PCS separately by
> highest level of education completed. How do these distributions compare? */
. graph box pcs12, over(highested) name(boxpcs, replace)
 graph export boxpcs.pdf, name(boxpcs) as(pdf) replace
(file boxpcs.pdf written in PDF format)
. // *********************
. // ********************
. // The figures show visually what was found in part (a) -- the distribution
. // ******
. // Part e
. // *******
. // 5 POINTS
. /* Based on a visual inspection of the graphs above, how would you describe
> the skewness of the variables you have examined thus far (MCS, PCS, and
> doctor's office visits)? */
. // *********************
. // *******************
. // The doctor's office visit distribution was clearly very positively
. // skewed. Most respondents had zero or very few visits, while a small
. // share of respondents had comparably very large numbers of office visits.
. // The PCS and MCS distributions appear negatively skewed. There is a long
. // tail (and some outlying values) toward the bottom of the distribution.
```

. graph export boxoffice.pdf, name(boxoffice) as(pdf) replace

```
. // *******
. // Part f
. // *******
. // 5 POINTS
.
. /* Use the skewness statistic to assess the skewness of these variables (MCS, PCS, and doctor's office visits). In your do file, calculate the standard > error of the skewness (see the lecture notes for the formula) and determine > whether these distributions are significantly skewed or not. */
. summ mcs12, detail

Mental health component of SF12

Percentiles Smallest
1% 19.57 1.35
5% 30.31 1.9
10% 35.69 4.73 0bs 19.386
```

10% 35.69 4.73 Obs 19,386 6.4 Sum of Wgt. 19,386 4.73 25% 44.3 50.22171 50% 52.65 Mean Largest Std. Dev. 10.19464 57.33 61.12 62.49 75% 74.15 74.81 74.81 Variance 103.9306 74.84 Skewness -.9985878 75.06 Kurtosis 3.792512 90% 95% 99% 65.56

. scalar a=r(skewness)

- . scalar b=sqrt((6*r(N)*(r(N)-1))/((r(N)-2)*(r(N)+1)*(r(N)+3)))
- . display a
- -.99858779
- . display b .0175913
- . display a/b -56.766005

. summ pcs12, detail

Physical health component of SF12

1% 5% 10% 25%	Percentiles 17 24.69 31.5 43.77	Smallest 4.56 6.08 6.08 6.26	Obs Sum of Wgt.	19,386 19,386
50%	52.99	Tourse	Mean	49.01453
75%	56.71	Largest 70.87	Std. Dev.	11.01185
90%	58.96	70.89	Variance	121.2607
95%	60.45	71.7	Skewness	-1.237738
99%	63.43	72.17	Kurtosis	3.862569

. scalar a=r(skewness)

```
. scalar b=sqrt((6*r(N)*(r(N)-1))/((r(N)-2)*(r(N)+1)*(r(N)+3)))
. display a
-1.2377382
. display b
.0175913
. display a/b
-70.360816
. summ use off, detail
             # office-based provider visits
     Percentiles
                 Smallest
1 %
      0
                           0
5%
             0
                           0
                                                19,386
19,386
            0
                                Obs
Sum of Wgt.
10%
                           Ω
25%
                           Ω
                                 Mean
            2
                                                5.802383
50%
                                  Std. Dev.
                                                10.86976
                     Largest
            7
75%
                       164
                        166 Variance 118.1518
167 Skewness 5.549091
187 Kurtosis 54.47084
90%
            15
95%
             23
99%
             51
. scalar a=r(skewness)
. scalar b=sqrt((6*r(N)*(r(N)-1))/((r(N)-2)*(r(N)+1)*(r(N)+3)))
. display a
5.5490914
. display b
.0175913
. display a/b
315.44522
. // *******************
. // In all three cases above, I divided the skewness statistic (saved as "a")
. // by the standard error of the skewness (calculated as "b"). r(N) is the
. // count of observations used in the previous command. The rule of thumb . // is that if this absolute value of the ratio is >2, the distribution is
. // significantly skewed. All three ratios exceed 2.
. // *******************************
. // ******
. // Part g
. // *****
. // 5 POINTS
. /* You are considering doing a log transformation of the doctor's office
> visits variable to reduce the skewness. Would this help? Why or why not?
> (Try it and see what happens). */
```

```
. gen lnoff=ln(use off)
(5,673 missing values generated)
. histogram lnoff
(bin=41, start=0, width=.12758802)
. summ lnoff
Variable | Obs Mean Std. Dev. Min Max
                                                             Max
     lnoff | 13,713 1.490513 1.078619 0 5.231109
. count if use off == 0
 5,673
. summ lnoff, detail
                         lnoff
    Percentiles Smallest
1% 0
5% 0
10% 0
25% .6931472
                     0
                           0
                                Obs 13,713
Sum of Wgt. 13,713
                           0
                           0
                                  Mean 1.490513
Std. Dev. 1.078619
50%
     1.386294
                     Largest
                5.099866
5.111988 Variance
5.117994 Skewness
5.231109 Kurtosis
    2.302585
2.944439
3.332205
75%
90%
                                                1.163419
                                                .3161302
95%
99%
      4.060443
                                                 2.42947
. scalar a=r(skewness)
. scalar b=sqrt((6*r(N)*(r(N)-1))/((r(N)-2)*(r(N)+1)*(r(N)+3)))
. display a
.31613018
. display b
.02091519
. display a/b
15.114858
. // *******************
. // ************************
. // The distribution of the logged doctor's visits appears less skewed, . // however, there are lots of zero values in the orginal variable and the
. // log transformation is not defined at zero.
. // *******
. // Part h
. // ******
```

```
. // 5 POINTS
. /* You are considering doing a log transformation of the PCS variable to
> reduce the skewness. Would this help? Why or why not? (Try it and see what
> happens). */
. gen lnpcs=ln(pcs12)
. histogram pcs12, nodraw name(orig, replace)
(bin=42, start=4.5599999, width=1.6097619)
. histogram lnpcs, nodraw name(logged, replace)
(bin=42, start=1.5173227, width=.06575481)
. graph combine orig logged, row(1) ysize(4) xsize(6)
. graph export lnpcs.pdf, as(pdf) replace
(file lnpcs.pdf written in PDF format)
. summ lnpcs, detail
                          lnpcs
    Percentiles Smallest
2.833213 1.517323
3.206398 1.805005
3.449988 1.805005 Obs 19,386
3.778949 1.83418 Sum of Wgt. 19,386
1%
5%
10%
25%
                                    Mean
50%
       3.970103
                                                   3.857338
                                    Std. Dev.
                                                   .2890377
     4.037951
                      Largest
75%
                      4.260847
                                 Variance .0835428
Skewness -2.048169
Kurtosis 7.933831
       4.076859
                      4.261129
90%
                     4.272491
95%
       4.101817
                     4.279025
99%
      4.149937
. scalar a=r(skewness)
. scalar b=sqrt((6*r(N)*(r(N)-1))/((r(N)-2)*(r(N)+1)*(r(N)+3)))
. display a
-2.0481687
. display b
.0175913
. display a/b
-116.43078
. // *******************
. // *********************
. // The distribution of the logged PCS is more skewed than before!
. // We typically do log transformations to make a distributions less right-
. // skewed. This distribution was left skewed. Translating the original
. // variable (*-1) and adding a constant to get all values above 1 helps
```

```
. qui summ pcs12
. gen lnpcs2=ln((-1*pcs12)+r(max)+1)
. histogram lnpcs2, nodraw name(logged2, replace)
(bin=42, start=0, width=.1006771)
. graph combine orig logged2, row(1) ysize(4) xsize(6)
. graph export lnpcs2.pdf, as(pdf) replace
(file lnpcs2.pdf written in PDF format)
. // ******
. // Part i
. // *******
. // 5 POINTS
. /* The variable exp tot reports the total amount of medical expenses incurred
> during the year. Use this variable to create a z-score for exp tot as shown in
> class. Run a full set of descriptive statistics to demonstrate this new
> variable has a mean of 0 and standard deviation of 1.*/
. egen zexp tot=std(exp tot)
. summ zexp tot
  Variable | Obs Mean Std. Dev. Min Max
-----
  zexp_tot | 19,386 -1.55e-09
                                      1 -.3772595 44.71924
. // *******************
. // The mean of the z-score is indeed zero (or very close to it--there is a . // small rounding difference) and the sd is 1.
. // ******
. // Part j
. // ******
. // 5 POINTS
. /* What level of medical expenditure corresponds to a z-score of 0.2 in this
> data? Of -0.2? Interpret these values in words.*/
. summ exp_tot
  Variable | Obs Mean Std. Dev. Min Max
   exp tot | 19,386 3685.25 9768.475 0 440524
 display r(mean) + 0.2*r(sd)
5638.9447
. display r(mean) - 0.2*r(sd)
1731.5548
```

```
. // *******************************
. // *******
. // Part k
. // *******
. // 5 POINTS
. /* What proportion of individuals have a z-score of medical expenditures
> between -1 and +1? Why isn't this value 68% (or at least closer to it), as
> the Empirical Rule would suggest?*/
. count if zexp tot>=-1 & zexp tot<=1
 18,237
. scalar a = r(N)
. count if zexp_tot~=.
 19,386
. scalar b = r(N)
. display a/b
.94073042
. // *********************
. // *********************
. // Results are above. First I count the observations with a z-score
. // between -1 and 1 and store it as "a". Then I count the number of non-
. // missing z-scores and store this as "b". The proportion is a/b, or 94.7%.
. // The Empirical Rule applies to **normal** distributions, which this is not.
. // (This distribution is in fact very skewed).
. // ******
. // Part l
. // ******
. // 5 POINTS
. /* What is the 43rd percentile for total medical expenses (exp tot)? Explain/
> show how you got your answer.*/
. centile exp_tot, centile(43)
                                     -- Binom. Interp. --
Variable | Obs Percentile Centile [95% Conf. Interval]
  exp tot | 19,386 43 622.41
                                    597
```


