My title goes here*

And there can be a subtitle

Firstname Lastname DD.MM.YYYY · Conference for Things 2099 · or other info

Slide Title

- edit title using ctrl-P
- add new textfield with F10
- change name and title for the footer in the document properties ctrl-shift-P
- use \hl command to highlight

Hongrui Cui · MP Auth PCG

Multiparty PCG for Authenticated Triple

Achieving $O(\log(N))$ communication size

Practical MPC 2021 12 12

Authenticated Triples Functionality

- \blacksquare Parties $P_1,...,P_m$
- Each P_i holds $x^i[j], y^i[j], z^i[j], m^i_x[j], m^i_y[j], m^i_z[j], \Delta^j$ for $j \in \{0,...,N-1\}$
- Constraint 1: $\forall j \in [N]$,

$$(\sum_{i \in [m]} x^{i}[j]) \cdot (\sum_{i \in [m]} y^{i}[j]) = (\sum_{i \in [m]} z^{i}[j])$$

Constraint 2: $\forall j \in [N], \forall a \in \{x, y, z\},\$

$$(\sum_{i \in [m]} a^{i}[j]) \cdot (\sum_{i \in [m]} \Delta^{i}) = (\sum_{i \in [m]} m_{a}^{i}[j])$$

Building Blocks

- Semi-Honest Ring-LPN OLE
- Malicious LPN sVOLE (Wolverine)
- FLIOP

Idea:

- 1. Run SH-OLE to get unauthenticated triples
- 2. Run Wolverine to get MAC (deg-3)
- 3. Run FLIOP to check consistency

Building Blocks

- Semi-Honest Ring-LPN OLE
- Malicious LPN sVOLE (Wolverine)
- FLIOP

Requirements:

Communication Complexity: $O(\log N)$

Idea:

- 1. Run SH-OLE to get unauthenticated triples
- 2. Run Wolverine to get MAC (deg-3)
- 3. Run FLIOP to check consistency

Step 1: Unauthenticated Triples

Ring-LPN parameters:

- Ring $R = \mathbb{Z}_p[X]/f(X)$, $\deg f = N$
- $\vec{a} = (a_0, ..., a_{c-1})$
- $\vec{e} = (e_0, ..., e_{c-1})$ where each e_i is t-regular
- lacksquare Isomorphism Map: $M: \mathbb{Z}_p^N o \mathbb{Z}_p^N$

Step 1a: Each P_i generates $\{x^i[j], y^i[j]\}_{j \in [N]}$ as follows:

- lacksquare Samples $ec{e}^i, ec{f}^i$ from t-regular distribution
- lacksquare Define $x^i:=M\cdot\langle \vec{a},\vec{e}^i
 angle$, $y^i:=M\cdot\langle \vec{a},\vec{f}^i
 angle$

Step 1b: Each pairwise P_i, P_j computes $\vec{e}^i \otimes \vec{f}^j$:

- lacktriangle Interpret results as a len-2N truth table
- Sum of $(ct)^2$ -point functions
- Use 2-DPF $(ct)^2$ times

A In-depth Look of 2-DPF

 P_i

