章节 08 函子

LATEX Definitions are here.

先规定几种特殊的范畴:

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: 集合范畴, 为局部小范畴, 满足
 - Set 中对象可以是任意集合
 - *Set* 中箭头便是集合间映射。
- C^{op}: **反范畴**,满足
 - C^{op} 中对象皆形如 c,
 c 为任意 C 中的对象;
 - $\mathcal{C}^{\mathrm{op}}$ 中箭头皆形如 $\phi^{\mathrm{op}}: \mathsf{c}_2 \xrightarrow{\mathcal{C}^{\mathrm{op}}} \mathsf{c}_1$, $\phi: \mathsf{c}_1 \xrightarrow{\mathcal{C}} \mathsf{c}_2$ 可为任意 \mathcal{C} 中的箭头 。
- $\mathcal{C}^{\mathcal{C}at} imes\mathcal{D}$: 积范畴 , 满足
- \mathcal{C}/c : **俯范畴**, 这里 c 为任意 \mathcal{C} 中对象;满足
 - C/c 中对象皆形如 $x \cdot 1 \cdot \phi$, 其中 x 和 ϕ : $x \xrightarrow{C} c$ 分别为 C 中对象和箭头;
 - c/C 中箭头皆形如 f_1 ____id 且满足下述交换图 , 其中 x_1 , x_2 为 C 中对象且 ϕ_1 , ϕ_2 , f_1 , $:_1$ id 皆为 C 中箭头 ;

- c/C: **仰范畴**, 这里 c 为任意 C 中对象;
 - c/C 中对象皆形如 $\underbrace{1 \cdot x \cdot \phi}$, 其中 \times 和 ϕ : $c \xrightarrow{C}$ x 分别为 C 中对象和箭头;
 - \mathcal{C}/c 中箭头皆形如 \mathcal{L} id . g_1 且满足下述交换图 , 其中 x_1 , x_2 为 \mathcal{C} 中对象且 ϕ_1 , ϕ_2 , \mathcal{L} id , g_1 皆为 \mathcal{C} 中箭头 ;

考虑范畴 C 和 D, 现提供函子定义:

- $\Phi: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ 为范畴当且仅当
 - 对任意 C 中对象 c
 cΦ 为 D 中对象且
 :cidΦ = :cΦid;
 - 对任意 \mathcal{C} 中箭头 ϕ_1 : $\mathbf{c}_1 \overset{\mathcal{C}}{\to} \mathbf{c}_2$ 和 ϕ_2 : $\mathbf{c}_2 \overset{\mathcal{C}}{\to} \mathbf{c}_3$, 始终都有等式 $(\phi_1 \circ \phi_2)\Phi = \phi_1 \Phi \overset{\mathcal{D}}{\circ} \phi_2 \Phi$ 成立。

假如 C, D 皆为**局部小范畴**, 并且刚才的 Φ 确实构成一个函子,则

- Φ 是**忠实的**当且仅当对任意 \mathcal{C} 中对象 \mathbf{c}_1 和 \mathbf{c}_2 $(\mathbf{c}_1 \overset{\mathcal{C}}{\to} \mathbf{c}_2)$ 与 $(\mathbf{c}_1 \Phi \overset{\mathcal{D}}{\to} \mathbf{c}_2 \Phi)$ 之间始终存在单射;
- Φ 是**完全的**当且仅当对任意 \mathcal{C} 中对象 c_1 和 c_2 $(c_1 \overset{\mathcal{C}}{\rightarrow} c_2)$ 与 $(c_1 \Phi \overset{\mathcal{D}}{\rightarrow} c_2 \Phi)$ 之间始终存在满射;
- Φ 是**完全忠实的**当且仅当 $\overset{c}{\rightarrow}$ 与 $\overset{\mathcal{D}}{\rightarrow}$ 间存在自然同构 , 即 $(\mathbf{c_1}\overset{c}{\rightarrow}_)$ 与 $(\mathbf{c_1}\overset{\mathcal{D}}{\rightarrow}_)$ 间存在自然同构

若还知道 $F_1, F_2, G_1, G_2: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ 为函子 , 则有

- \mathcal{C} 中的映射 : ϕ , \mathcal{C} 中对象 : \mathbf{c} \mathcal{D} 中的映射 : ψ , \mathcal{D} 中对象 : \mathbf{d} 映射的复合 : $\phi_1 \circ \phi_2$, $\psi_1 \circ \psi_2$
- 函子 $\Phi: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$, 函子 $\Psi: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$, 函子的复合: $\Phi_1 \circ \Phi_2$, $\Psi_1 \circ \Psi_2$
- 自然变换 $\natural:\Phi\to\Psi$, 自然变换 $\sharp:\Psi\to\Upsilon$ 自然变换 $\natural_1:\Phi_1\to\Phi_2$, 自然变换 $\natural_2:\Phi_2\to\Phi_3$ 自然变换的纵复合 : $\natural\circ\sharp$, 自然变换的横复合 : $\natural_1\circ_h\natural_2$,
- 函子 $\Phi_1: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ 函子 $\Phi_2: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ 函子的复合: $\Phi \circ \Psi \circ \Upsilon$,
- 自然变换 $\natural_1:\Phi_1\to\Phi_2$, 自然变换 $\natural_2:\Phi_1\to\Phi_2$ 自然变换的纵复合 : $\natural_1\circ\natural_2$,