Proofs – Functional-Analytic Preliminaries

Dustyn Stanley

May 2025

1 Function-space setup & notation

Throughout, we work on the three-dimensional torus $\mathbb{T}^3 = (\mathbb{R}/2\pi\mathbb{Z})^3$ with spatial coordinate $x \in \mathbb{T}^3$ and Fourier modes $k \in \mathbb{Z}^3$. For a (mean-zero) function $f: \mathbb{T}^3 \to \mathbb{R}$ we write its Fourier series

$$f(x) = \sum_{k \in \mathbb{Z}^3} \widehat{f}(k) e^{ik \cdot x}, \qquad \widehat{f}(k) = \frac{1}{(2\pi)^3} \int_{\mathbb{T}^3} f(x) e^{-ik \cdot x} dx.$$

1.1 Sobolev and Bessel-potential spaces

For $s \in \mathbb{R}$ the (periodic) L^2 -based Sobolev space $H^s(\mathbb{T}^3)$ is

$$H^s(\mathbb{T}^3) = \Big\{\, f: \mathbb{T}^3 \to \mathbb{R} \; \Big| \; \|f\|_{H^s}^2 \; = \; \sum_{k \in \mathbb{Z}^3} (1 + |k|^2)^s \, |\widehat{f}(k)|^2 \; < \; \infty \Big\}.$$

More generally, for $s \geq 0$ and $1 \leq p < \infty$, the Bessel-potential (or Sobolev–Slobodeckiĭ) space $W^{s,p}(\mathbb{T}^3)$ is defined by

$$W^{s,p}(\mathbb{T}^3) = \left\{ f: \mathbb{T}^3 \to \mathbb{R}: \ (1-\Delta)^{s/2} f \in L^p(\mathbb{T}^3) \right\}, \quad \|f\|_{W^{s,p}} = \|(1-\Delta)^{s/2} f\|_{L^p}.$$

When $s \in (0,1)$ one may also use the equivalent Gagliardo seminorm:

$$[f]_{W^{s,p}}^p = \int_{\mathbb{T}^3} \int_{\mathbb{T}^3} \frac{|f(x) - f(y)|^p}{|x - y|^{3 + sp}} \, dx \, dy, \quad \|f\|_{W^{s,p}}^p = \|f\|_{L^p}^p + [f]_{W^{s,p}}^p.$$

1.2 BMO space

A locally integrable function $f: \mathbb{T}^3 \to \mathbb{R}$ is in BMO(\mathbb{T}^3) if

$$||f||_{\text{BMO}} = \sup_{Q \subset \mathbb{T}^3} \frac{1}{|Q|} \int_Q |f(x) - f_Q| dx < \infty, \quad f_Q = \frac{1}{|Q|} \int_Q f(x) dx,$$

where the supremum is taken over all cubes $Q \subset \mathbb{T}^3$.

1.3 Gevrey classes

For $s \geq 1$ and $\sigma > 0$, the Gevrey class $G^{s,\sigma}(\mathbb{T}^3)$ consists of all $f \in C^{\infty}(\mathbb{T}^3)$ such that

$$||f||_{G^{s,\sigma}} = ||e^{\sigma|D|^{1/s}} f||_{L^{2}(\mathbb{T}^{3})} = \left(\sum_{k \in \mathbb{Z}^{3}} e^{2\sigma|k|^{1/s}} |\widehat{f}(k)|^{2}\right)^{1/2} < \infty.$$

Equivalently, $f \in G^{s,\sigma}$ if there exist C, M > 0 so that

$$||D^{\alpha}f||_{L^{2}} \leq C M^{|\alpha|} (\alpha!)^{s} \quad \forall \text{ multi-indices } \alpha.$$

All constants C appearing below may depend on fixed parameters such as $s, p, \text{ or } \sigma$, which will be indicated explicitly when needed.

2 Poincaré inequality on \mathbb{T}^3

Lemma 1 (Poincaré inequality on \mathbb{T}^3). Let $f: \mathbb{T}^3 \to \mathbb{R}$ be a smooth function with zero mean,

$$\int_{\mathbb{T}^3} f(x) \, dx = 0.$$

Then

$$||f||_{L^2(\mathbb{T}^3)} \le C_P ||\nabla f||_{L^2(\mathbb{T}^3)},$$

where one may take $C_P = 1$ when $\mathbb{T}^3 = (\mathbb{R}/2\pi\mathbb{Z})^3$.

Proof. Expand f in its Fourier series,

$$f(x) = \sum_{k \in \mathbb{Z}^3 \setminus \{0\}} \widehat{f}(k) e^{ik \cdot x}, \qquad \widehat{f}(k) = \frac{1}{(2\pi)^3} \int_{\mathbb{T}^3} f(x) e^{-ik \cdot x} dx.$$

The zero-mean condition means $\widehat{f}(0) = 0$. Then

$$||f||_{L^2}^2 = \sum_{k \neq 0} |\widehat{f}(k)|^2, \qquad ||\nabla f||_{L^2}^2 = \sum_{k \neq 0} |k|^2 |\widehat{f}(k)|^2.$$

Since for every $k \neq 0$ we have $|k|^2 \geq 1$, it follows that

$$||f||_{L^2}^2 = \sum_{k \neq 0} |\widehat{f}(k)|^2 \le \sum_{k \neq 0} |k|^2 |\widehat{f}(k)|^2 = ||\nabla f||_{L^2}^2.$$

Taking square-roots gives the claimed inequality with $C_P = 1$.

${f 3}$ Sobolev embeddings on ${\Bbb T}^3$

Lemma 2 (Sobolev embedding on \mathbb{T}^3). Let $1 \leq p \leq \infty$ and suppose

$$s > \frac{3}{2} - \frac{3}{p}.$$

Then there exists a constant C = C(s, p) so that for every $f \in H^s(\mathbb{T}^3)$,

$$||f||_{L^p(\mathbb{T}^3)} \le C ||f||_{H^s(\mathbb{T}^3)}.$$

In particular, if $s > \frac{3}{2}$ then $H^s(\mathbb{T}^3) \hookrightarrow L^\infty(\mathbb{T}^3)$.

Proof. Fix $N \geq 1$. Decompose f into low and high Fourier modes:

$$f = P_{\leq N} f + P_{>N} f, \quad P_{\leq N} f(x) = \sum_{|k| \leq N} \widehat{f}(k) e^{ik \cdot x}, \quad P_{>N} = I - P_{\leq N}.$$

1. Low-frequency part. By Cauchy–Schwarz and the fact there are $O(N^3)$ modes with $|k| \leq N$,

$$||P_{\leq N}f||_{L^p} \leq ||P_{\leq N}f||_{L^2} |\mathbb{T}^3|^{\frac{1}{p}-\frac{1}{2}} \lesssim N^{\frac{3}{2}-\frac{3}{p}} ||f||_{L^2}.$$

2. High-frequency part. Since $(1+|k|^2)^{s/2} \ge (1+N^2)^{s/2}$ for |k| > N,

$$\|P_{>N}f\|_{L^2}^2 = \sum_{|k|>N} |\widehat{f}(k)|^2 \le (1+N^2)^{-s} \sum_{|k|>N} (1+|k|^2)^s |\widehat{f}(k)|^2 = (1+N^2)^{-s} \|f\|_{H^s}^2.$$

Hence for any $p \geq 2$,

$$||P_{>N}f||_{L^p} \le ||P_{>N}f||_{L^2} \le (1+N^2)^{-s/2} ||f||_{H^s}.$$

Combining these,

$$||f||_{L^p} \le C \left(N^{\frac{3}{2} - \frac{3}{p}} + (1 + N^2)^{-s/2}\right) ||f||_{H^s}.$$

Since $s > \frac{3}{2} - \frac{3}{p}$, we may choose N sufficiently large so that

$$N^{\frac{3}{2} - \frac{3}{p}} \approx (1 + N^2)^{-s/2},$$

whence

$$N^{\frac{3}{2} - \frac{3}{p}} + (1 + N^2)^{-s/2} \le 2 N^{\frac{3}{2} - \frac{3}{p}} \le C(s, p).$$

Thus $||f||_{L^p} \leq C(s,p)||f||_{H^s}$, as claimed.

4 Littlewood–Paley decomposition on \mathbb{T}^3

Fix nonnegative radial cutoffs $\chi, \varphi \in C_c^{\infty}(\mathbb{R}^3)$ such that

$$\chi(\xi) = \begin{cases} 1, & |\xi| \le 1, \\ 0, & |\xi| \ge 2, \end{cases} \qquad \varphi(\xi) = \chi(\xi/2) - \chi(\xi),$$

so that

$$\varphi \subset \{\frac{1}{2} \le |\xi| \le 2\}, \quad \chi(\xi) + \sum_{j \ge 0} \varphi(2^{-j}\xi) \equiv 1, \quad \forall \, \xi \in \mathbb{R}^3.$$

View these as functions on the integer lattice \mathbb{Z}^3 .

Definition 1. For each $j \geq 0$, define the Fourier projections on \mathbb{T}^3 by

$$\widehat{\Delta_j f}(k) = \varphi(2^{-j}k) \, \widehat{f}(k), \qquad \widehat{S_j f}(k) = \chi(2^{-j}k) \, \widehat{f}(k), \quad k \in \mathbb{Z}^3.$$

Also set $\Delta_{-1} = S_0$. Then

$$S_j f = \sum_{m=-1}^{j-1} \Delta_m f, \qquad f = \sum_{j=-1}^{\infty} \Delta_j f,$$

with convergence in $\mathcal{D}'(\mathbb{T}^3)$.

Proposition 1 (Properties of Δ_j , S_j).

- 1. Frequency-support orthogonality: $\Delta_j \Delta_{j'} f \equiv 0$ if $|j j'| \ge 2$.
- 2. L^p -boundedness: For every $1 \le p \le \infty$ there is C_p with

$$\|\Delta_i f\|_{L^p} \le C_p \|f\|_{L^p}, \quad \|S_i f\|_{L^p} \le C_p \|f\|_{L^p}.$$

3. Bernstein-type derivative bound: For every multi-index α ,

$$||D^{\alpha}\Delta_{j}f||_{L^{p}} \leq C_{\alpha,p} 2^{j|\alpha|} ||\Delta_{j}f||_{L^{p}}.$$

4. Sobolev-norm equivalence: For any $s \in \mathbb{R}$,

$$c\sum_{j=-1}^{\infty} 2^{2js} \|\Delta_j f\|_{L^2}^2 \leq \|f\|_{H^s}^2 \leq C\sum_{j=-1}^{\infty} 2^{2js} \|\Delta_j f\|_{L^2}^2,$$

where c, C > 0 depend only on s.

Proof. (1) Orthogonality. If $|j-j'| \geq 2$ then the supports of $\varphi(2^{-j}\cdot)$ and $\varphi(2^{-j'}\cdot)$ in \mathbb{R}^3 are disjoint. Hence for each k, at least one factor in $\varphi(2^{-j}k) \varphi(2^{-j'}k)$ vanishes, so $\Delta_j \Delta_{j'} f \equiv 0$.

(2) L^p -boundedness. Each Δ_j is a Fourier multiplier with symbol $m_j(k) = \varphi(2^{-j}k)$, which is C^{∞} and compactly supported away from the origin. Likewise S_j has symbol $\chi(2^{-j}k)$. By the periodic Mikhlin theorem, these multipliers satisfy $||T_{m_j}f||_{L^p} \leq C_p||f||_{L^p}$. Hence $||\Delta_j f||_{L^p} \leq C_p||f||_{L^p}$ and similarly $||S_j f||_{L^p} \leq C_p||f||_{L^p}$.

(3) Derivative bounds. Note

$$D^{\alpha} \Delta_j f = T_{m_{j,\alpha}} f, \qquad m_{j,\alpha}(k) = (ik)^{\alpha} \varphi(2^{-j}k).$$

On the support of $\varphi(2^{-j}\cdot)$ we have $|k| \sim 2^j$, so $|\partial^{\beta} m_{j,\alpha}(k)| \lesssim 2^{j|\alpha|} |k|^{-|\beta|}$ for all β . Again by Mikhlin,

$$||D^{\alpha}\Delta_{j}f||_{L^{p}} = ||T_{m_{j,\alpha}}f||_{L^{p}} \leq C_{p,\alpha} 2^{j|\alpha|} ||f||_{L^{p}}.$$

Restricting f to $\Delta_j f$ on the right gives the stated form.

(4) Sobolev-norm equivalence. Write

$$||f||_{H^s}^2 = \sum_{k \in \mathbb{Z}^3} (1 + |k|^2)^s |\widehat{f}(k)|^2 = \sum_{j=-1}^\infty \sum_{k \in \mathbb{Z}^3} (1 + |k|^2)^s |\widehat{\Delta_j f}(k)|^2.$$

On the support of $\widehat{\Delta_{j}f}$, one has

$$2^{2j} \le 1 + |k|^2 \le C(1 + 2^{2j}),$$

so

$$2^{2js} \le (1 + |k|^2)^s \le C \, 2^{2js},$$

with C depending only on s. Therefore

$$c \, 2^{2js} \|\Delta_j f\|_{L^2}^2 \leq \sum_k (1 + |k|^2)^s |\widehat{\Delta_j f}(k)|^2 \leq C \, 2^{2js} \|\Delta_j f\|_{L^2}^2.$$

Summing over j gives the claimed two-sided bound.

5 Bernstein and periodic Mikhlin multiplier theorems

Lemma 3 (Bernstein inequalities). Let $1 \leq p \leq q \leq \infty$. For each Little-wood-Paley block Δ_j on \mathbb{T}^3 ,

$$\|\Delta_{j}f\|_{L^{q}(\mathbb{T}^{3})} \leq C 2^{3j\left(\frac{1}{p}-\frac{1}{q}\right)} \|\Delta_{j}f\|_{L^{p}(\mathbb{T}^{3})}, \quad \|D^{\alpha}\Delta_{j}f\|_{L^{p}(\mathbb{T}^{3})} \leq C 2^{j|\alpha|} \|\Delta_{j}f\|_{L^{p}(\mathbb{T}^{3})},$$

and for the low-frequency cutoff $S_j = \sum_{m \leq j-1} \Delta_m$,

$$||S_j f||_{L^q(\mathbb{T}^3)} \le C 2^{3j\left(\frac{1}{p} - \frac{1}{q}\right)} ||f||_{L^p(\mathbb{T}^3)}.$$

Proof. Recall that

$$\Delta_j f(x) = \sum_{k \in \mathbb{Z}^3} \varphi(2^{-j}k) \, \widehat{f}(k) \, e^{ik \cdot x} = (K_j * f)(x),$$

where the convolution kernel

$$K_j(x) = \sum_{k \in \mathbb{Z}^3} \varphi(2^{-j}k) e^{ik \cdot x} = 2^{3j} \sum_{m \in \mathbb{Z}^3} \check{\varphi} \left(2^j (x - 2\pi m) \right),$$

and $\check{\varphi} \in \mathcal{S}(\mathbb{R}^3)$ is the inverse-Fourier transform of φ . In particular,

$$|K_j(x)| \le 2^{3j} \sum_{m \in \mathbb{Z}^3} \frac{C_N}{(1 + 2^j |x - 2\pi m|)^N} \quad \forall N,$$

so for any $1 \le r \le \infty$,

$$||K_j||_{L^r(\mathbb{T}^3)} \le 2^{3j} \Big(\int_{\mathbb{T}^3} \Big| \sum_m \frac{C_N}{(1+2^j|x-2\pi m|)^N} \Big|^r dx \Big)^{1/r} \le C 2^{3j(1-\frac{1}{r})},$$

provided N>3. Now Young's convolution inequality on the compact group \mathbb{T}^3 gives, with $\frac{1}{p}+\frac{1}{r}=1+\frac{1}{q}$,

$$\|\Delta_j f\|_{L^q} = \|K_j * f\|_{L^q} \le \|K_j\|_{L^r} \|f\|_{L^p} \le C 2^{3j\left(\frac{1}{p} - \frac{1}{q}\right)} \|f\|_{L^p}.$$

To obtain the stated form, replace f by $\Delta_i f$.

For derivatives, observe

$$D^{\alpha} \Delta_j f(x) = \sum_{k} \varphi(2^{-j}k) (ik)^{\alpha} \widehat{f}(k) e^{ik \cdot x} = (D^{\alpha} K_j) * f,$$

and since $|(ik)^{\alpha}\varphi(2^{-j}k)| \lesssim 2^{j|\alpha|}$, the same kernel argument yields $||D^{\alpha}\Delta_j f||_{L^p} \leq C 2^{j|\alpha|} ||f||_{L^p}$.

Finally, for $S_j = \sum_{m \leq j-1} \Delta_m$, sum the above in m and use $\sum_{m \leq j-1} 2^{3m(\frac{1}{p}-\frac{1}{q})} \leq C 2^{3j(\frac{1}{p}-\frac{1}{q})}$.

Theorem 1 (Periodic Mikhlin multiplier theorem). Let $m: \mathbb{R}^3 \setminus \{0\} \to be$ smooth with

$$|\partial^{\alpha} m(\xi)| \le C_{\alpha} |\xi|^{-|\alpha|}, \quad |\alpha| \le 4, \ \xi \ne 0.$$

Define

$$T_m f(x) = \sum_{k \in \mathbb{Z}^3 \setminus \{0\}} m(k) \, \widehat{f}(k) \, e^{ik \cdot x}, \quad \widehat{f}(0) = 0.$$

Then for every $1 , there is <math>C_p$ such that $||T_m f||_{L^p(\mathbb{T}^3)} \le C_p ||f||_{L^p(\mathbb{T}^3)}$.

Proof. We show T_m is a Calderón–Zygmund operator on \mathbb{T}^3 . Its convolution kernel is

$$K(x) = \sum_{k \neq 0} m(k) e^{ik \cdot x}, \quad x \in \mathbb{T}^3 \setminus \{0\}.$$

By the smoothness and decay of m, one may decompose

$$K(x) = K_{loc}(x) + K_{rem}(x),$$

where K_{loc} is supported in $|x| \leq \delta$ and satisfies the standard singular-integral estimates:

$$|K_{loc}(x)| \le \frac{C}{|x|^3}, \quad |\nabla K_{loc}(x)| \le \frac{C}{|x|^4},$$

and $K_{\text{rem}} \in L^1(\mathbb{T}^3)$. Concretely, partition the sum over \mathbb{Z}^3 into dyadic shells and use Poisson summation paired with the derivative bounds on m to verify these pointwise kernel estimates.

Since $K_{\text{rem}} \in L^1$, convolution with it is bounded on all L^p . For K_{loc} , the size and smoothness estimates imply that $T_{\text{loc}}f = K_{\text{loc}} * f$ extends to a bounded operator on $L^p(\mathbb{T}^3)$ for 1 by the standard Calderón–Zygmund theorem (adapted to the compact setting).

Hence $T_m = T_{loc} + T_{rem}$ is bounded on $L^p(\mathbb{T}^3)$ for $1 , as required. <math>\square$

6 Calderón–Zygmund theorem on \mathbb{T}^3

Theorem 2 (Singular integrals on \mathbb{T}^3). Let $K_0 \in C^1(\mathbb{R}^3 \setminus \{0\})$ satisfy the size, smoothness, and cancellation conditions

$$|K_0(x)| \le \frac{A}{|x|^3}, \quad |\nabla K_0(x)| \le \frac{B}{|x|^4}, \quad \int_{|x|=r} K_0(x) \, dS(x) = 0 \quad (\forall r > 0).$$

Define the periodic kernel

$$K(x) = \sum_{m \in \mathbb{Z}^3} K_0(x - 2\pi m),$$

and the principal-value operator

$$Tf(x) = \text{p.v.} \int_{\mathbb{T}^3} K(x - y) f(y) dy.$$

Then:

- 1. T extends to a bounded operator $L^p(\mathbb{T}^3) \to L^p(\mathbb{T}^3)$ for every 1 .
- 2. T extends to a bounded operator $L^{\infty}(\mathbb{T}^3) \to BMO(\mathbb{T}^3)$.

Proof. We break the proof into four steps.

1. Weak-(1,1) estimate. Let $f \in L^1(\mathbb{T}^3)$ and $\alpha > 0$. By the classical Calderón–Zygmund decomposition, there exist disjoint cubes $\{Q_i\}$ and functions $g, b = \sum_i b_i$ with

$$f = g + b$$
, $||g||_{L^{\infty}} \le \alpha$, $\int_{Q_i} b_i = 0$, $b_i \subset Q_i$,

and
$$\sum_{i} |Q_{i}| \leq \frac{\|f\|_{L^{1}}}{\alpha}$$
, $\|g\|_{L^{1}} \leq \|f\|_{L^{1}}$, $\|b_{i}\|_{L^{1}} \leq 2\alpha |Q_{i}|$. Then

$${x: |Tf(x)| > 2\alpha} \subset {x: |Tg(x)| > \alpha} \cup {x: |Tb(x)| > \alpha}.$$

For the "good" part g, using the $L^2 \to L^2$ boundedness of T (Step 2 below) and Chebyshev:

$$|\{x: |Tg| > \alpha\}| \le \frac{1}{\alpha^2} ||Tg||_{L^2}^2 \le \frac{C}{\alpha^2} ||g||_{L^2}^2 \le \frac{C}{\alpha} ||g||_{L^1} \le \frac{C||f||_{L^1}}{\alpha}.$$

For the "bad" part $b = \sum b_i$, set $5Q_i$ the cube with same center and side-length 5 times that of Q_i . One shows for $x \notin \bigcup_i 5Q_i$:

$$|Tb_i(x)| = \left| \int_{Q_i} \left[K(x - y) - K(x - c_i) \right] b_i(y) \, dy \right| \leq C \frac{\ell(Q_i)}{|x - c_i|^4} \, ||b_i||_{L^1},$$

using the mean-zero of b_i and the smoothness of K_0 . Hence $\{x: |Tb| > \alpha\} \subset \bigcup_i 5Q_i$ and

$$|\{x: |Tb| > \alpha\}| \le \sum_{i} |5Q_{i}| \le 5^{3} \sum_{i} |Q_{i}| \le \frac{125 ||f||_{L^{1}}}{\alpha}.$$

Combining gives the weak-(1,1) bound:

$$|\{x: |Tf| > \lambda\}| \le \frac{C \|f\|_{L^1}}{\lambda}.$$

2. Strong-(2, 2) **estimate.** Since K has mean-zero on the torus and its Fourier transform (the multiplier $m(k) = \widehat{K}(k)$) is bounded, Plancherel's theorem yields

$$||Tf||_{L^2} = ||m(D)f||_{L^2} \le ||m||_{L^{\infty}(\mathbb{Z}^3)} ||f||_{L^2} \le C ||f||_{L^2}.$$

- **3.** Interpolation to L^p . By Marcinkiewicz interpolation between weak-(1,1) and strong-(2,2), T is bounded $L^p \to L^p$ for all 1 . Duality then covers <math>2 .
- **4.** $L^{\infty} \to \text{BMO}$. Let $f \in L^{\infty}$ and Q any cube. Write $f = f \mathbf{1}_{3Q} + f \mathbf{1}_{\mathbb{T}^3 \setminus 3Q}$, and correspondingly Tf = I + II.

(i) Local part
$$I = T(f \mathbf{1}_{3Q})$$
. Since $||f \mathbf{1}_{3Q}||_{L^2} \le |3Q|^{1/2} ||f||_{\infty}$,

$$\frac{1}{|Q|} \int_Q \left| I - (I)_Q \right| \; \leq \; \frac{2}{|Q|} \int_Q |I| \; \leq \; \frac{2}{|Q|^{1/2}} \|I\|_{L^2} \; \leq \; \frac{2C}{|Q|^{1/2}} \|f \, \mathbf{1}_{3Q}\|_{L^2} \; \leq \; C' \|f\|_{\infty}.$$

(ii) Tail part $II = T(f \mathbf{1}_{\mathbb{T}^3 \setminus 3Q})$. For any $x, y \in Q$,

$$|II(x) - II(y)| \ \leq \ \int_{\mathbb{T}^3 \backslash 3Q} \left| K(x-z) - K(y-z) \right| \ \left| f(z) \right| dz \ \leq \ \|f\|_{\infty} \int_{|z-c_Q| \geq \frac{3}{2}\ell(Q)} \frac{C \ |x-y|}{|z-c_Q|^4} \ dz \ \leq \ C'' \|f\|_{\infty},$$

where c_Q and $\ell(Q)$ are the center and side-length of Q. Hence $\frac{1}{|Q|}\int_Q |II|$
$$\begin{split} (II)_Q| \leq \sup_{x,y \in Q} |II(x) - II(y)| \leq C'' \|f\|_{\infty}. \\ \text{Combining (i) and (ii) shows } \|Tf\|_{\text{BMO}} \leq C \, \|f\|_{\infty}. \end{split}$$

Thus T is bounded on L^p for $1 and maps <math>L^{\infty}$ into BMO, as claimed.

John-Nirenberg inequality

Lemma 4 (John-Nirenberg inequality). There exist universal constants $c_1, c_2 >$ 0 such that for any $f \in BMO(\mathbb{T}^3)$, any cube $Q \subset \mathbb{T}^3$, and any $\lambda > 0$,

$$\left|\left\{x \in Q : |f(x) - f_Q| > \lambda\right\}\right| \le c_1 |Q| \exp\left(-\frac{c_2 \lambda}{\|f\|_{\text{BMO}}}\right).$$

As a consequence, for each $1 \le p < \infty$ there is $C_p > 0$ so that

$$||f - f_Q||_{L^p(Q)} \le C_p ||f||_{\text{BMO}} |Q|^{1/p}.$$

Proof. Set $\alpha = ||f||_{BMO}$. Fix a cube Q and $\lambda > 0$. We first handle the case $\lambda = n\alpha$ for an integer $n \ge 1$.

Step 1: Decomposition for $\lambda = \alpha$. Consider the collection $\{Q_i^1\}$ of maximal dyadic subcubes of Q satisfying

$$\frac{1}{|Q_j^1|} \int_{Q_j^1} |f - f_Q| \, dx > \alpha.$$

By maximality these cubes are pairwise disjoint, and on the remaining set Ω^0 $Q \setminus \bigcup_i Q_i^1$ we have $|f(x) - f_Q| \leq \alpha$ almost everywhere. Moreover, by the BMO

$$\sum_{j} |Q_{j}^{1}| = \sum_{j} \frac{1}{\alpha} \int_{Q_{j}^{1}} |f - f_{Q}| \le \frac{1}{\alpha} \int_{Q} |f - f_{Q}| \le \frac{|Q| \alpha}{\alpha} = |Q|.$$

But each Q_j^1 satisfies $\int_{Q_j^1} |f - f_Q| > \alpha |Q_j^1|$, so $\sum_j |Q_j^1| \le \frac{1}{2} |Q|$. Hence

$$\left| \{ x \in Q : |f - f_Q| > \alpha \} \right| \le \sum_j |Q_j^1| \le \frac{1}{2} |Q|.$$

Step 2: Iteration for $\lambda = n\alpha$. On each bad cube Q_j^1 , apply the same argument with average $f_{Q_j^1}$. We obtain subcubes $\{Q_{j,k}^2\} \subset Q_j^1$ covering at most half of $\bigcup_j Q_j^1$, on whose complement $|f - f_{Q_j^1}| \leq \alpha$. By the triangle inequality,

$$\{x \in Q : |f - f_Q| > 2\alpha\} \subset \bigcup_{j,k} Q_{j,k}^2,$$

and $\left|\bigcup_{i,k} Q_{i,k}^2\right| \leq \frac{1}{2} \left|\bigcup_i Q_i^1\right| \leq \frac{1}{4} |Q|$. Iterating n times yields

$$|\{x \in Q : |f - f_Q| > n\alpha\}| \le 2^{-n} |Q|.$$

Step 3: Exponential bound for general λ . Given arbitrary $\lambda > 0$, choose $n = |\lambda/\alpha|$. Then

$$2^{-n} = \exp \left(-n \ln 2\right) \le \exp \left(-\frac{\lambda - \alpha}{\alpha} \ln 2\right) \le c_1 \exp \left(-\frac{c_2 \lambda}{\alpha}\right),$$

with $c_1 = e^{\ln 2}$ and $c_2 = \ln 2$. Therefore

$$|\{x \in Q : |f - f_Q| > \lambda\}| \le 2^{-n}|Q| \le c_1|Q|e^{-c_2\lambda/\alpha}$$

which is the desired measure estimate.

Step 4: L^p -estimate. Finally, for $1 \le p < \infty$,

$$\int_{Q} |f - f_Q|^p = \int_{0}^{\infty} p\lambda^{p-1} \left| \left\{ x : |f - f_Q| > \lambda \right\} \right| d\lambda \le c_1 |Q| \int_{0}^{\infty} p\lambda^{p-1} e^{-c_2 \lambda / \alpha} d\lambda.$$

The integral converges and equals $C_p \alpha^p$. Taking the pth root gives $||f - f_Q||_{L^p(Q)} \le C_p ||f||_{\text{BMO}} |Q|^{1/p}$.

8 Bogovskiĭ operator on cubes

Lemma 5 (Bogovskiĭ operator on a cube). Let $Q \subset \mathbb{R}^3$ be a cube and, for $s \geq 1$, set

$$H^{s-1}_0(Q) = \big\{ f \in H^{s-1}(Q) : \int_Q f \, dx = 0 \big\}.$$

Then there is a bounded linear operator $\mathcal{B}: H_0^{s-1}(Q) \to H_0^s(Q)^3$ (where H_0^s is the closure of $C_c^{\infty}(Q)$ in H^s) such that for every $f \in H_0^{s-1}(Q)$,

$$\operatorname{div} \mathcal{B}[f] = f, \qquad \|\mathcal{B}[f]\|_{H^{s}(Q)} \le C \|f\|_{H^{s-1}(Q)},$$

with C depending only on s and the shape of Q (hence uniform over all cubes of comparable aspect-ratio).

Proof. We construct $\mathcal{B}[f]$ as the unique $u \in H^1_0(Q)^3$ solving the mixed (Stokes) problem

$$\begin{cases} -\Delta u + u + \nabla p = 0 & \text{in } Q, \\ \operatorname{div} u = f & \text{in } Q, \\ u = 0 & \text{on } \partial Q, \end{cases}$$

with the pressure $p \in L_0^2(Q)$. Define the spaces

$$V = H^1_0(Q)^3, \quad W = \big\{ q \in L^2(Q) : \int_Q q \, dx = 0 \big\},$$

and the bilinear forms

$$a(u,v) = \int_{Q} (\nabla u : \nabla v + u \cdot v) dx, \qquad b(v,q) = \int_{Q} q \operatorname{div} v dx.$$

The mixed formulation is: find $(u, p) \in V \times W$ such that

$$a(u,v) + b(v,p) = 0 \qquad \forall v \in V,$$

$$b(u,q) = \int_{Q} f q \, dx \quad \forall q \in W.$$

By standard Babuska–Brezzi theory on the convex domain Q, a is coercive on $\ker b = \{v \in V : \operatorname{div} v = 0\}$, and b satisfies the inf–sup condition. Hence there is a unique solution (u, p), with

$$||u||_{H^1(Q)} + ||p||_{L^2(Q)} \le C ||f||_{L^2(Q)}.$$

Elliptic regularity for the Stokes system on the convex cube then gives, for each integer $s \ge 1$,

$$||u||_{H^s(Q)} + ||p||_{H^{s-1}(Q)} \le C_s ||f||_{H^{s-1}(Q)}.$$

Setting $\mathcal{B}[f] = u$ yields div $\mathcal{B}[f] = f$, $\mathcal{B}[f]\big|_{\partial Q} = 0$, and the claimed H^s -estimate.