Ecuaciones Diferenciales -1° cuatrimestre 2017

Práctica 7: Espacios de Sobolev & Soluciones débiles

Ejercicio 1. Sea $U \subset \mathbb{R}^n$ abierto y sean $u, v \in W^{k,p}(U), |\alpha| \leq k$. Entonces:

- 1. $D^{\alpha}u \in W^{k-|\alpha|,p}(U)$ y $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$ para todo par de multiíndices $\alpha, \beta \in \mathbb{N}_0^n$ tales que $|\alpha| + |\beta| \le k$.
- 2. Para cada $\lambda, \mu \in \mathbb{R}, \lambda u + \mu v \in W^{k,p}(U)$ y $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha}u + \mu D^{\alpha}v$.
- 3. Si $V \subset U$, entonces $u \in W^{k,p}(V)$
- 4. Si $\zeta \in C_c^{\infty}(U)$, entonces $\zeta u \in W^{k,p}(U)$ y

$$D^{\alpha}(\zeta u) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\alpha} \zeta D^{\alpha - \beta} u.$$

Ejercicio 2. Sea $I = (a, b) \subset \mathbb{R}$ un intervalo.

- 1. Probar que si $u \in W^{1,p}(I)$, $1 \le p < \infty$ entonces $u \in AC(I)$.
- 2. Probar que si $u \in W^{1,p}(I), p > 1$, entonces

$$|u(x) - u(y)| \le \left(\int_a^b |u'|^p dt\right)^{1/p} |x - y|^{1 - \frac{1}{p}}.$$

Ejercicio 3. Sea $f \in H^1(\mathbb{R})$, probar que $h^{-1}(\tau_h f - f)$ converge a f' en $L^2(\mathbb{R})$ cuando $h \to 0$, donde $\tau_h f(x) = f(x+h)$.

Sugerencia: escribir $h^{-1}(\tau_h f - f)$ como $f' * \varphi_h$.

Ejercicio 4. Sea $I = (a, b) \subset \mathbb{R}$ un intervalo.

1. Probar que existe una constante C tal que para toda $f \in H^1(I)$,

$$|f(x)| \le C||f||_{1,2}.$$

2. Probar que existe una constante C tal que para toda $f \in H_0^1(I)$,

$$|f(x)| \le C||f'||_2.$$

- 3. Concluir que $||f'||_2$ es una norma equivalente a $||f||_{1,2}$ en $H_0^1(I)$.
- 4. Mostrar que el ítem 1 es falso en $U \subset\subset \mathbb{R}^2$.
- 5. Usando el teorema de Arzela-Ascoli, probar que un conjunto acotado de $H^1(I)$ es precompacto en $C(\bar{I})$, y por lo tanto en $L^2(I)$.

Ejercicio 5. Sea $I=(a,b)\subset\mathbb{R}$ un intervalo y sea $f\in L^2(I)$. Probar que $f\in H^1(I)$ si y sólo \sin

$$\sum_{k=1}^{\infty} k^2 |\hat{f}(k)|^2 < \infty,$$

donde $\hat{f}(k)$ son los coeficientes del desarrollo de f en series de Fourier.

Ejercicio 6. Sea $u \in W^{k,p}(U)$, $1 \le p < \infty$. Definimos $u^{\varepsilon} \equiv \rho_{\varepsilon} * u$ en U_{ε} , donde ρ es el núcleo regularizante, ρ_ε las aproximaciones de la identidad y

$$U_{\varepsilon} := \{ x \in U : \operatorname{dist}(x, \partial U) > \varepsilon \}.$$

Entonces:

- 1. $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$, para cada $\varepsilon > 0$. 2. $u^{\varepsilon} \to u$ en $W_{\text{loc}}^{k,p}(U)$ cuando $\varepsilon \to 0$.

Ejercicio 7. Probar que si $u \in H^2(U) \cap H^1_0(U)$ entonces

$$\int_{U} |Du|^{2} dx \le C \left(\int_{U} |u|^{2} dx \right)^{\frac{1}{2}} \left(\int_{U} |\Delta u|^{2} dx \right)^{\frac{1}{2}}.$$

Concluir que en $H_0^2(U)$, $||\Delta u||_2$ es una norma equivalente a la usual.

Ejercicio 8. Sea $u \in W^{1,p}(U)$ tal que $\nabla u = 0$ a.e. en U. Probar que u es constante en cada componente conexa de U.

Ejercicio 9 (Desigualdad de Poincaré). Sea U un abierto conexo y acotado de \mathbb{R}^n con borde C^1 . Probar que existe una constante C>0 que depende sólo de n y U tal que

$$||u - (u)_U||_2 \le C||\nabla u||_2$$

para cada $u \in H^1(U)$, donde

$$(u)_U = \oint_U u \, dx.$$

Sugerencia: Razonar por el absurdo y usar la compacidad de la inclusión $W^{1,p}(U) \subset\subset$ $L^p(U)$.

Ejercicio 10. Sea $F: \mathbb{R} \to \mathbb{R}$ una función de clase C^1 con F' acotada. Sean $U \subset \mathbb{R}^n$ abierto acotado y $u \in W^{1,p}(U)$ con 1 . Probar que

$$F(u) \in W^{1,p}(U)$$
 y $\partial_i F(u) = F'(u)\partial_i u \ (i = 1, \dots, n).$

Ejercicio 11. Sea $1 y <math>U \subset \mathbb{R}^n$ abierto acotado.

- 1. Probar que si $u \in W^{1,p}(U)$, entonces $|u| \in W^{1,p}(U)$.
- 2. Probar que si $u \in W^{1,p}(U)$, entonces $u^+, u^- \in W^{1,p}(U)$ y

$$\nabla u^+ = \begin{cases} \nabla u & \text{c.t.p. en } \{u > 0\} \\ 0 & \text{a.e. en } \{u \le 0\}, \end{cases}$$

$$\nabla u^{-} = \begin{cases} 0 & \text{c.t.p. en } \{u \ge 0\} \\ -\nabla u & \text{c.t.p. en } \{u < 0\}. \end{cases}$$

Sugerencia: $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$ para

$$F_{\varepsilon}(t) = \begin{cases} \sqrt{t^2 + \varepsilon^2} - \varepsilon & \text{si } t \ge 0\\ 0 & \text{si } t < 0. \end{cases}$$

- 3. Probar que si $u \in W_0^{1,p}(U)$ entonces $u^+, u^- \in W_0^{1,p}(U)$. 4. Probar que si $u \in W^{1,p}(U)$, entonces

$$\nabla u = 0$$
 c.t.p. en $\{u = 0\}$.

Ejercicio 12. Usar la transformada de Fourier para probar que si $u \in H^k(\mathbb{R}^n)$ con k > n/2, entonces $u \in L^{\infty}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$ v

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le C||u||_{H^k(\mathbb{R}^n)}$$

donde C es una constante que depende de k y n.

Ejercicio 13. Una función $u \in H_0^2(U)$ se dice una solución débil del siguiente problema de valores de contorno para el operador bilaplaciano

(1)
$$\begin{cases} \Delta^2 u = f & \text{en } U \\ u = \partial_{\mathbf{n}} u = 0 & \text{en } \partial U, \end{cases}$$

si verifica

$$\int_{U} \Delta u \Delta v \, dx = \int_{U} f v \, dx$$

para toda $v \in H_0^2(U)$. $(\Delta^2 u = \Delta(\Delta u))$.

- 1. Probar que $u \in C^4(U) \cap C^1(\overline{U})$ es solución clásica de (1) si y sólo si es solución débil de (1).
- 2. Probar que dada $f \in L^2(U)$ existe una única solución débil de (1). Sugerencia: Usar el Ejercicio 7 de la práctica 7 para probar que $\|\Delta u\|_{L^2(U)}$ define una norma equivalente a la usual en $H_0^2(U)$.

Ejercicio 14. Consideremos el problema de Neumann

$$\begin{cases} -\Delta u + u = f & \text{en } U \\ \partial_{\mathbf{n}} u = 0 & \text{en } \partial U \end{cases}$$

donde $\partial U \in C^1$ y $f \in L^2(U)$.

1. Mostrar que $u \in C^2(U) \cap C^1(\overline{U})$ es solución del problema de Neumann si y sólo si verifica la siguiente formulación débil:

$$\int_{U} \nabla u \cdot \nabla \varphi \, dx + \int_{U} u \varphi \, dx = \int_{U} f \varphi \, dx$$

para toda $\varphi \in C^1(U) \cap C(\overline{U})$.

2. Mostrar que para toda $f \in L^2(U)$ existe una única $u \in H^1(U)$ solución débil de este problema.

Ejercicio 15. Consideremos el siguiente operador elíptico

$$\mathcal{L}u = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij}(x)u_{x_j}) + \sum_{i=1}^{n} b_j(x)u_{x_j} + c(x)u,$$

donde $\lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \leq \Lambda |\xi|^2 \ \forall \xi \in \mathbb{R}^n \ \text{y} \ x \in \Omega; \ c \in L^{\infty}, \ c \geq 0 \ \text{y} \ c_j \in L^{\infty}(\Omega) \cap C^1(\bar{\Omega})$ con div(b) = 0 en Ω .

Probar que para toda $f \in L^2(\Omega)$ existe una única $u \in H_0^1(\Omega)$ solución débil del problema.

Ejercicio 16. Consideremos el problema de Neumann

$$\begin{cases} -\Delta u = f & \text{en } U \\ \partial_{\mathbf{n}} u = 0 & \text{en } \partial U, \end{cases}$$

donde $\partial U \in C^1$ y $f \in L^2(U)$.

- 1. Dar una formulación débil del problema y mostrar que si existe una solución débil, entonces $\int_U f \, dx = 0$.
- 2. Mostrar que si $f \in L^2(U)$ verifica que $\int_U f \, dx = 0$, entonces existe una única $u \in H^1(U)$ con $\int_U u \, dx = 0$ solución débil de este problema. Más aún, dicha solución es única en $H^1(U)$ salvo constante.

Ejercicio 17 (Principio débil del máximo). Sea $\mathcal{L}u = -\sum_{i,j=1}^n \partial_i(a_{ij}(x)\partial_j u)$ un operador uniformemente elíptico con $a_{ij} \in L^{\infty}(U)$.

Decimos que $u \in H^1(U)$ verifica $\mathcal{L}u \leq 0$ en sentido débil o, equivalentemente, que es una subsolución débil de $\mathcal{L}u = 0$ si

$$\int_{U} \sum_{i,j=1}^{n} a_{ij}(x) \partial_{j} u \partial_{i} v \, dx \leq 0, \quad \text{para toda } v \in H_{0}^{1}(U), \ v \geq 0.$$

- 1. Verificar que $u \in C^2(U)$ es subsolución débil de $\mathcal{L}u = 0$ si y sólo si $\mathcal{L}u \leq 0$.
- 2. Probar que si u es subsolución débil de $\mathcal{L}u = 0$ y $u^+ \in H_0^1(U)$ (es decir $u \leq 0$ en ∂U), se tiene que $u \leq 0$ en U.

Ejercicio 18. Consideremos el siguiente problema de autovalores

$$\begin{cases} -\Delta u = \lambda u & \text{en } U \\ \partial_{\mathbf{n}} u = 0 & \text{en } \partial U, \end{cases}$$

donde $\partial U \in C^1$.

Probar que existe una sucesión $0 = \lambda_1 < \lambda_2 \le \cdots \le \lambda_k \uparrow \infty$ de autovalores del problema con autofunciones $u_k \in H^1(U)$ donde $u_1 = cte$ y $\{u_k\}_{k=1}^{\infty}$ forman una base ortonormal de $L^2(U)$ y una base ortogonal de $H^1(U)$.

Ejercicio 19 (Lema de Cea). Se intenta construir una aproximación de la solución del siguiente problema

$$\begin{cases} -\Delta u = f & \text{en } U \\ u = 0 & \text{en } \partial U. \end{cases}$$

Para eso, se toma un subespacio de dimensión finita $\mathbb{V}\subset H^1_0(U), \mathbb{V}=\mathrm{gen}\{\phi_1,\ldots,\phi_d\}$ y se define la solución aproximada $\tilde{u}\in\mathbb{V}$ como la solución del problema

$$\int_{U} \nabla \tilde{u} \cdot \nabla \phi_{i} \, dx = \int_{U} f \phi_{i} \, dx \quad i = 1, \dots, d.$$

- 1. Probar que \tilde{u} está bien definida (es decir, existe una única solución del problema aproximado).
- 2. Probar que se tiene la siguiente estimación de error

$$\|u-\tilde{u}\|_{H^1_0(U)} \leq C \inf_{v \in \mathbb{V}} \|u-v\|_{H^1_0(U)},$$

donde C > 0 es una constante que depende únicamente de \mathbb{V} .

Esto dice que el método propuesto obtiene como resultado la $mejor\ aproximaci\'on$ que permite el subespacio $\mathbb V.$

Ejercicio 20. Se define el p-Laplaciano como $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ con p > 1 (cuando $p = 2, \Delta_p = \Delta$). Consideremos el siguiente problema

(2)
$$\begin{cases} -\Delta_p u = f & \text{en } U \\ u = 0 & \text{en } \partial U, \end{cases}$$

donde $U \subset \mathbb{R}^n$ es un abierto acotado y $f \in L^{p'}(U)$ $(\frac{1}{n} + \frac{1}{n'} = 1)$.

1. Probar que $u \in C_0^2(U)$ es solución de (2) si y sólo si verifica la siguiente formulación débil

$$\int_{U} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx = \int_{U} f \varphi \, dx,$$

para toda $\varphi \in W_0^{1,p}(U)$

2. Probar que si $u \in W_0^{1,p}(U)$ minimiza el siguiente funcional

$$\Psi \colon W_0^{1,p}(U) \to \mathbb{R}, \quad \Psi(u) := \frac{1}{p} \int_U |\nabla u|^p dx - \int_U fu dx,$$

entonces u es una solución débil de (2).

Ejercicio 21. Probar que existe una única solución débil de la ecuación del calor con condiciones de Neumann

$$\begin{cases} u_t - \Delta u = f & \text{en } U \times (0, T) \\ \partial_{\mathbf{n}} u = 0 & \text{en } \partial U \times (0, T) \\ u = u_0 & \text{en } U \end{cases}$$