

Motivation

- A model's performance on in-distribution data is a poor indicator of its performance on data from unseen domains (a.k.a. transferability).
- Metrics that can assess a model's performance without labels can be used for gauging their performance at test time.
- ☐ Such metrics can be used to select the best pretrained model for an unseen domain or can assess model's performance on different unseen domains.

Contributions

- ☐ We propose TETOT, for assessing the transferability of classification models to unseen domains.
- ☐ TETOT is efficiently computable using unlabeled target data and requires only a small number of samples/statistics from the source domain.
- TETOT produces a better correlation with transferability compared to the popular entropy-based metric on practical problems.

Test-time Estimation of Transferability via Optimal Transport (TETOT)

Def. 1. (Transferability): Transferability of a model trained on the source domain *S* to an unseen target domain *T* is measured as the model's accuracy on *T* i.e.,

 $\mathbb{E}_{(x,y)\in P_T(x,y)}\big[accuracy\big(h\big(g(x)\big),y\big)\big],$ where $g\colon\mathcal{X}\to\mathcal{Z}$ is the encoder and $h\colon\mathcal{Z}\to\mathcal{Y}$ is the classifier.

Def. 2. (Base distance): The base distance c is defined as $c((x_S, y_S), (x_T, \widehat{y}_T)) \coloneqq c_{features}(x_S, x_T) + \lambda \cdot c_{labels}(y_S, \widehat{y}_T).$

 $OT_c(P_S, P_T) \coloneqq \inf_{\pi \in \Pi(P_S, P_T)} \mathbb{E}_{\pi}[c((x_S, y_S), (x_T, \widehat{y}_T))],$ where P_S/P_T is the distribution of S/T and c is the base

Algorithm to compute TETOT

Select samples from S and T.
Randomly sample m samples, $(x_S^i, y_S^i) \sim \mathcal{D}_S$ Randomly sample n samples, $(x_T^j) \sim \mathcal{D}_T$

Compute pairwise cost.

for i = 1, ..., m and j = 1, ..., n do $c_{features}^{ij} \coloneqq \|g(x_S^i) - g(x_T^j)\|_2$ $c_{labels}^{ij} \coloneqq \|y_S^i - h(g(x_T^j))\|_2$

 $c \coloneqq c_{features} + \lambda \cdot c_{labels}$ $TETOT \coloneqq min_{\pi \in \Pi(P_S, P_T)} \sum_{i,j} \pi^{ij} \cdot c^{ij}$ $s. t. \sum_{i} \pi^{ij} = \frac{1}{m} \ \forall i, \sum_{i} \pi^{ij} = \frac{1}{n} \ \forall j$

Best architecture selection for a target task

Dataset	Entropy	TETOT
PACS	-0.40	-0.62
VLCS	-0.29	-0.40
Average	-0.35	-0.51

Key Results

distance.

Def. 3. (TETOT): TETOT is defined as

Best source selection for a target task

Dataset	Entropy	TETOT
PACS	-0.47	-0.94
VLCS	-0.58	-0.92
Average	-0.53	-0.93

Correlation of transferability with TETOT

Dataset	Entropy	TETOT
PACS	-0.39	-0.93
VLCS	-0.34	-0.80
Average	-0.36	-0.86