

Math93.com

TD 1 - NSI Première

Représentation binaire d'un entier relatif

Activité 1 : Opération sur les nombres en binaire

Exercice 1.
1. Représentation d'entiers naturels. Un ordinateur manipule des nombres binaires par groupe de 8 bits = un octet. On dispose de 8 bits, 16 bits, 3 bits, combien d'entiers naturels peut-on représenter?
2. Addition sur 8 bits.
2. a. Additionner sur 8 bits les nombres suivants et commenter le résultat obtenu :
$0101\ 0001_2\ \ {\rm et}\ \ 0111\ 0111_2$
Aide
2. b. Faire de même avec les nombres suivants sur 8 bits, quel problème se pose?
$0101\ 0001_2\ \ {\rm et}\ \ 1111\ 0111_2$

3. La négation sur n bits (ou complément à 1).

www.math93.com / M. Duffaud 1/5

Définition 1 (Négation ou complément à 1)

Si x est un nombre binaire écrit en n bits, sa négation (ou complément à 1) NON(x) est obtenue en transformant les 1 en 0 et les 0 en 1.

Exemple: $NON(0100\ 1001) = 1011\ 0110$

Calculer la somme d'un nombre écrit en base 2 et de son complément à 1 sur n bits sur quelques exemples. Que peut-on conjecturer?

Remarque Partie collaborative : discutions, et premier bilan.	

www.math93.com / M. Duffaud 2/5

Activité 2

Codage des nombres relatifs : une première méthode

Sur $n=8$ bits, on a : $0000\ 1000_2=8_{10}$. Proposer une méthode pour représenter (-8) en base 2 sur 8 bits, en n'utilisant que des 0 et des 1 sur 8 bits (pas cisigne - possible).	
Remarque Partie collaborative : discutions, problèmes et critique.	
	•
	•
Activité 3 Codage des nombres relatifs : le complément à 2	
1. Donner la définition de l'opposé d'un nombre x ?	
2. En déduire l'opposé de 1 ₂ sur 8 bits.	
3. On utilisant le résultat conjecturé de la question 3 de l'exercice 1 , que dire de l'écriture sur n bits de :	
x + NON(x) + 1	
4. On en déduit la méthode permettent d'obtenir l'opposé d'un entier en binaire.	

www.math93.com / M. Duffaud 3/5

Exercice 2. Un exemple si n = 4 bits.

1. Combien d'entiers positifs et négatifs peut-on représenter sur n=4 bits ?

2. Compléter le tableau suivants et observez le lien entre le bit de poids fort (le premier à gauche) et le signe du nombre :

	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Ī															0110	0111

Partie collaborative : discutions et bilan sur le bit de poids fort.

Exercice 3. Un exemple si n = 8 bits.

- 1. Sur l'ordinateur, utilisez la calculatrice en mode « programmer » et vérifier quelques résultats précédents.
- 2. Un exemple si n = 8 bits.

Après avoir donné les écritures en binaire sur 8 bits, donnez les opposés des entiers suivants (en binaire sur 8 bits) :

$$a = 1$$
; $b = 5$; $c = 10$; $d = 16$; $d = 32$; $e = 300$

3. Combien d'entiers positifs et négatifs peut-on représenter sur n=8 bits ?

Donner le plus petit et le plus grand en écriture décimale et binaire.

www.math93.com / M. Duffaud 4/5

Activité 4 : Les plus grands et plus petits entiers relatifs à coder sur n bits

1. Combien d'entiers positifs et négatifs peut-on représenter sur $n=16$ bits, $n=32$ bits?						
Donner le plus petit et le plus						
2. Généralisation : reprendre	la question précédente sur i					

Compléments (facultatif)

- 1. Quel est le plus grand nombre relatif positif utilisé par une machine en 64 bits?
- 2. Écrire un algorithme (en français) pour obtenir l'opposé d'un nombre binaire en complément à 2.
- **3.** Écrire un algorithme (en français) qui demande un nombre n entier différent de 0 de bits, et un nombre relatif x (en base 10) et le convertit en binaire sur n bits. Il faut tenir compte des dépassements de capacité.
- **4.** Écrire des algorithmes, en français et en Python permettant de passer d'un entier relatif à son écriture binaire sur n bits, et réciproquement.

 \leftarrow Fin du devoir \hookrightarrow

www.math93.com / M. Duffaud 5/5