哈尔滨工业大学计算机科学与技术学院 2017年秋季学期《软件工程》

Lab 1: 结对编程

姓名	连名 班级/学号 联系方式	
彭诗笑	4 班/1150310415	18845787871
龚玉贤	4 班/1150310422	18846142095

目 录

1	实验要求	<u> </u>	1
2	待求解问	· 引题描述与数学模型	1
3	算法与数	女据结构设计	2
	3.1	设计思路与算法流程图	2
	3.2	数据结构设计	9
	3.3	算法时间复杂度分析	9
4	实验与测]试	9
	4.1	读取文本文件并展示有向图	10
	4.2	查询桥接词	13
	4.3	根据桥接词生成新文本	
	4.4	计算最短路径	14
	4.5	随机游走	15
5	编程语言	[与开发环境	17
6		Ē	
	6.1	分组依据	17
	6.2	角色切换与任务分工	17
	6.3	工作照片	18
	6.4	工作日志	
7	小结		

1 实验要求

练习结对编程,体验敏捷开发中的两人合作;

两人一组,自由组合;

使用一台计算机共同编码,完成实验要求;

在工作期间两人的角色至少切换 6 次;

使用 java+eclipse 编程,练习对 java 基本算法和数据结构的应用:

开发一个 java 命令行程序,实现从文本中读取数据并根据要求生成图结构,输出该图结构,并在其上进行一系列计算操作,实时展示各操作的结果。

2 待求解问题描述与数学模型

输入 1: 用户提供文本并输入或选择文本文件的位置。

输入 2: 用户输入任意两个图中的英文单词。

输入 3: 用户输入一段新的文本。

输入 4: 用户输入任意两个图中的英文单词。

输出 1: 输出用户所提供文本生成的有向图;

输出 2: 输出用户所输入单词的桥接词或反馈无桥接词。

输出 3: 将桥接词插入用户输入的新文本的两个单词之间并输出。

输出 4:输出用户提供单词的最短路径或显示不可达。

输出 5; 随机游走并将遍历的节点生成文本存入磁盘。

3 算法与数据结构设计

3.1设计思路与算法流程图

设计思路:

对每一个函数独立的思考设计,然后合在一起形成一个完整的程序,最后设计 GUI 框架,并将程序放入框架中,实现一个可视化的程序。

文件读取及处理: 利用 JAVA 的文件读取先将内容存到一个字符串中,然后对字符串进行正则匹配消除干扰的字符,最终得到一个标准的字符串。

生成展示图:在这里考虑到后面的最短路径,因此采用了邻接矩阵的方式来存储图,因此在这里生成两个哈希表,HashMap1 键值分别存的是字符串(由第一个函数得到的字符串按照空格切割成一个字符串数组)和在哈希表的位置,HashMap2 则与 HashMap1 相反,这是为了便于后续的操作。由此邻接矩阵建立完毕,然后调用第三方库 graphViz 进行作图生成图片。

桥接词: 因为采用邻接矩阵的存储方式,因此首先获得用户的输入,将其在哈希表中的位置通过哈希表获得(分别为 ch, ch2),对 G[ch][i]进行遍历,找到一个不为权值不为 0 的点 p,对 G[p][ch2]判断是否权值不为 0. 若不为 0 则将 p 对应的字符串加入到桥接词字符串 blank 中,若为 0 则跳过。

桥接词文本:调用一个找桥接词的函数,对输入的文本按照空格切割得到一个字符串数组,然后循环,每次都调用找桥接词函数,如果有桥接词则加入两者中间再加入blank字符串,没有则直接加入新的字符串 blank,最后返回 blank字符串。

最短路径:运用 floyd 算法得到任意两点间的最短路径,然后调用 graphViz 进行作图,得到一个带有特殊标记的路径。

随机游走:随机产生一个数(在有效范围内),生成一个路径矩阵,如果路径 H → I 走过则 P[H][I]则变为 0,每次游走都会判断是否该路径走过,同时如果没有出口则终止循环。每次找到一条边则输出,然后用户判定是否继续,如果停止则将路径字符串 blank 写入文本文件 tete. txt;

算法流程图:

文本生成图:

展示生成的图:

最短路径:

找桥接词:

在新文本中加入桥接词:

随机游走:

Lab1: 结对编程

3.2数据结构设计

图:图是由结点的有穷集合 V 和边的集合 E 组成。其中,为了与树形结构加以区别,在 图的结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表 示这两个顶点具有相邻关系。本次实验采用了二维数组的方式存储图,即邻接表。

散列表:若结构中存在关键字和 K 相等的记录,则必定在 f(k)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系 f 为散列函数,按这个思想建立的表为散列表。

3.3算法时间复杂度分析

文本生成图:在这里用到一个循环读取文件内容,同是建立两个哈希表,最后生成以邻接矩阵存储的图,因为已经建立哈希表,因此可以通过哈希表的到一个数字序列(即字符串在哈希表中的位置),因此一个循环即可,时间复杂度 O(n).

展示图:调用第三方的库 graphViz 进行画图,一次循环即可,时间复杂度 O(n).

查询桥接词:起点终点确定,因此只需要对起点那行进行遍历找不为 0 的点,再对不为 0 的点那列进行判定即可,时间复杂度 O(n).

根据桥接词生成新文本:外层对文本的每一个单词进行循环,内层需要调用桥接词函数,因此时间复杂度 $O(n^2)$.

最短路径:这里需要用到 floyd 算法,时间复杂度为 O(n^3).

随机游走:因为每次游走需要用户的判定,加上只是对某行进行查询,时间复杂度 O(n).

4 实验与测试

设计1个至少包含50个单词的输入文本文件,使之可覆盖本题目中关于输入文件和功能的各种特殊情况,作为你开发的程序的输入。

针对在有向图上操作的每项功能,为其设计各种可能的输入数据。输入数据的数量不限, 以测试程序的充分性为评判标准(下面各节中的表格的行数请自行扩展)。

记录程序的输出结果,判断输出结果是否与期望一致,并记录程序运行截图。

4.1 读取文本文件并展示有向图

文本文件中包含的内容:

The way @ she came into place I knew miss like.

The life #is so happy if she stalked dog cat.

The girl is bad and dangrous deed apple peal.

I love life and love girl so much!

The lab is helpful and wonderful and I study some thing from it.

下面第一张为手工计算所得的图,第二张为代码所画的图,二者一致,证明所写程序满足题目要求。

给出实际运行得到结果的界面截图

4.2 查询桥接词

序号	输入(2个单词)	期望输出	实际输出	运行是否
				正确
1	is and	The bridge words from is The bridge words from is		是
		to and are bad helpful	to and are bad helpful	
2	is one	No one in the graph	No one in the graph	是
3	so wonderful	No bride words from so No bride words from so to		是
		to wonderful	wonderful	

给出实际运行得到结果的界面截图

4.3 根据桥接词生成新文本

序号	输入 (一行文本)	期望输出	实际输出	运行是否正确
1	The is helpful wonderful	The lab is helpful	The lab is helpful	是
	very much and wonderful v		and wonderful very	
		much	much	

4.4计算最短路径

序号	输入(两个单词、	期望输出	实际输出	运行是否正确
	或一个单词)			

1	the bad	the->life->is->bad	the->life->is->bad	是
---	---------	--------------------	--------------------	---

给出实际运行得到结果的界面截图。

4.5 随机游走

该功能无输入,让你的程序执行多次,分别记录结果。

序号	实际输出	程序运行是否正确
1	came->into into->place place->i	是
2	and->i i->knew knew->miss miss->like like->the the->way	是
	way->she she->came came->into into->place place->i i->love	
	love->life life->is is->so so->happy happy->if if->she	
	she->stalked stalked->dog dog->cat cat->the the->life	
	life->and and->dangrous dangrous->deed deed->apple	
	apple->peal peal->i i->study study->some some->thing	
	thing->from from->it	
3	way->she she->came came->into into->place place->i	是
	i->knew knew->miss miss->like like->the the->way	

给出实际运行得到结果的界面截图。 仅序号一有截图(图太多就不全放了)

5 编程语言与开发环境

Java DK: java version "1.8.0_144" Eclipse IDE: Oxygen Release (4.7.0)

Graphviz -2.38

6 结对编程

6.1 分组依据

彭诗笑的特点:做事认真仔细;算法数据结构扎实;执行力强。 我的特点:勤奋认真;善于沟通交流;不够细致。 我们可以优势互补,共同学习进步

6.2角色切换与任务分工

该表格可自行增加更多的行。

日期	时间(HH:MM	" 驾 驶	" 领 航	本段时间的任务
	HH:MM)	员"	员"	
9-15	14: 00-17: 00	彭诗笑	龚玉贤	建立图
9-16	18: 00-21: 00	龚玉贤	彭诗笑	找桥接词
9-17	15: 00-18: 00	彭诗笑	龚玉贤	在文本中加桥接词
9-17	19: 00-21: 00	龚玉贤	彭诗笑	随机游走
9-18	14: 30-15: 00	彭诗笑	龚玉贤	展示图
9-18	15: 00-18: 00	龚玉贤	彭诗笑	最短路径
9-19	14: 00-17: 00	彭诗笑	龚玉贤	GUI 用户界面

6.3工作照片

6.4工作日志

由领航员负责记录,记录结对编程期间的遇到的问题、两人如何通过交流合作解决每个问题的。可增加表格的行。

日期/时间	问题描述	最终解决方法	两人如何通过交流找到解
			决方法
9-18	随机游走时部分路径未	找到函数中出现的问	先多次测试文本, 找到错
	能游走到本应能走到的	题,将其修改正确	误的点,再不断调整函数,
	结点		进行调试
9-19	图形的展示方法不够理	利用 Graphviz 软件制	互相交流方法,并查阅资
	想	图	料,选取简单有效的方法

7 小结

结对编程这个概念还是第一次接触,通过这次实验发现它确实可以帮助 我们共同学习,提高我们的编程能力,交流能力以及团队合作能力。

我能明显感觉到两人编程效率和质量的提升,我们可以相互交流,学习 彼此在编程中所具有的优秀品质,也能发现自己的不足,并努力去提高,同 时还增强了两人的团队协作能力。

结对编程能让我们注意到更多的细节,交换对代码的理解,也能让我们相互竞争,展现自己的编程能力,但可能会存在理解和使用方法难以统一,工作节奏不协调的问题。

我认为倡导结对编程是因为相较于一个人编程,它具有很多优势。举个例子:即便是最复杂的设计,只要是你自己想出来的,你都觉得它简单无比,里面充满了直白且显而易见的理由。可惜不幸的是,我们要的简单,是对 team 里所有人的简单。如果你的 pair 不能理解你的设计,那么说明你的设计复杂了;如果你们两个人懂,但是 swith pair 的时候,换过来的人不懂,说明你的设计复杂了。在这个相互交流的过程中能够互相提高,并且提升效率。

我期待着下一次的结对编程,既可以在小伙伴面前露一手,又能在此过程中学到不少知识,并且提高自己的编程能力。