EECS 489 Computer Networks

Fall 2020

Mosharaf Chowdhury

Material with thanks to Aditya Akella, Sugih Jamin, Philip Levis, Sylvia Ratnasamy, Peter Steenkiste, and many other colleagues.

Agenda

- Introductions
- Class policies, logistics, and roadmap
- Overview of the basics
 - How is the network shared?
 - How do we evaluate a network?
 - What is a network made of?

GSIs

Jie You

Joseph Buiteweg

• Office hours: See course webpage

Mosharaf Chowdhury

- At Michigan since 2016
- Research focus on application-infrastructure symbiosis in large-scale networked systems
- Office hours: Wednesday 2PM 3:15PM in 4820 BBB
 - Queue: https://officehours.it.umich.edu/queue/421
 - Also, by appointment (pre-scheduled via email)
- Lectures will be recorded (but not discussions)
- Ask questions in chat

489 in EECS curriculum

EECS 281

- □ High-level logic ⇒ Programs
- Coding skills learned in 281 are critical for 489 assignments

• EECS 482

- How do machines work?
- Execute programs, interact with users, etc.

5

Prior 482 experience is not needed

What is missing?

- How do we access most services?
 - Examples include search engines, social networks, video streaming, etc.
- How do two machines communicate?
 - When they are directly connected
 - When they are not directly connected
- Using a network

What is a network?

 A system of "links" that interconnect "nodes" in order to move "information" between nodes

We will focus primarily on the Internet

What is EECS 489 about?

- To learn about (at a high level)
 - How the Internet works
 - Why it works the way it does
 - How to reason about complicated design problems

- What it's not about
 - How to write web services
 - How to design web pages
 - **...**

Class workload

- Four assignments
 - First one is an individual assignment
 - The rest are in groups of 3
- Exams:
 - Midterm: October 19
 - □ Final: December 16 8 AM 10 AM

Grading

	Allocation
Assignment 1	5%
Assignment 2	15%
Assignment 3	15%
Assignment 4	15%
Midterm	25%
Final	25%

The ALL-NEW* assignments

- Assignment 1: measure end-to-end throughput and delay of networks (i.e., simple speed test)
- Assignment 2: video streaming from CDNs (i.e., simple Netflix)
- Assignment 3: reliable transport (i.e., how to transfer data over an unreliable network)
- Assignment 4: router design (i.e., how do internal elements of the network work)

All on (emulated) realistic networks using *mininet*

Bonus Quizzes

- 10 MCQ and solution key for each of the 20 lectures
- Made online sometime after the lecture; live for 48 hours
- Participation counts for 0.1
 on top of your final grade
 Max 2.0
- How well you do doesn't matter
- Prepared over the summer by Tejaswi

Tejaswi Worlikar

Enrollment and wait list

Wait-listed students will be admitted in the order of wait list

If you're planning to drop, please do so soon!

Communication protocol

- Course website: http://mosharaf.com/eecs489/
 - Assignments, lecture slides
- Confidential content on canvas
- Piazza for all communication
 - Sign up if you haven't already
 - https://piazza.com/umich/fall2020/eecs489/

- Assignment submission via Github
 - Start forming groups
 - Details will be sent out soon

Policies on late submission, re-grade request, cheating ...

- Detailed description in the course webpage
- Don't cheat!

LET'S TALK INTERNET

The Internet consists of many end-systems

- car navigator
- heart pacemaker

smartphone

end-system

iPad

Linux server

MAC laptop

Connected by switches

And links

Managed by many parties

Transfers data

A federated system

- The Internet ties together different networks by the IP protocol
 - A common interface binds them all together

Switched networks

- End-systems and networks connected by switches instead of directly connecting them
 Why?
- Allows us to scale
 - For example, directly connecting N nodes to each other would require N² links!

When do we need to share the network?

Shared among many services

Two ways to share switched networks

- Circuit switching
 - Resource reserved per connection
 - Admission control: per connection
- Packet switching via statistical multiplexing
 - Packets treated independently, on-demand
 - Admission control: per packet

Circuit switching

- src sends
 reservation request
 to dst
- 2. Switches create circuit *after* admission control
- 3. src sends data
- 4. src sends teardown request

More details in backup

Circuit switching

Reservation establishes a "circuit" within a switch

Circuit switching

Pros

- Predictable performance
- Simple/fast switching (once circuit established)

Cons

- Complexity of circuit setup/teardown
- Inefficient when traffic is bursty
- Circuit setup adds delay
- □ Switch fails → its circuit(s) fails

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently
- With buffers to absolve transient overloads

Packet switching

Pros

- Efficient use of network resources
- Simpler to implement
- Robust: can "route around trouble"

Cons

- Unpredictable performance
- Requires buffer management and congestion control

Statistical multiplexing

- Allowing more demands than the network can handle
 - Hoping that not all demands are required at the same time
 - Results in unpredictability
 - Works well except for the extreme cases

5-MINUTE BREAK!

HOW DO WE EVALUATE A NETWORK?

Performance metrics

- Delay
- Loss
- Throughput

Delay

 How long does it take to send a packet from its source to destination?

Delay

Consists of four components

- Transmission delay
- Propagation delay
- Queuing delay
- Processing delay

due to link properties

due to traffic mix and switch internals

A network link

- Link bandwidth
 - Number of bits sent/received per unit time (bits/sec or bps)
- Propagation delay
 - Time for one bit to move through the link (seconds)

1. Transmission delay

- How long does it take to push all the bits of a packet into a link?
- Packet size / Transmission rate of the link
 - \blacksquare E.g., 1000 bits / 100 Mbits per sec = 10^{-5} sec

2. Propagation delay

- How long does it take to move one bit from one end of a link to the other?
- Link length / Propagation speed of link
 - □ E.g., 30 kilometers / 3*10⁸ meters per sec = 10⁻⁴ sec

Packet delay Sending a 100-byte packet

Packet delay Sending a 100-byte packet

Sending a large file using 100-byte packets

August 31, 2020

Pipe view of a link

Transmission delay decreases as bandwidth increases

3. Queuing delay

 How long does a packet have to sit in a buffer before it is processed?

Persistent overload leads to packet drop/loss

Queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Depends on traffic pattern
 - Arrival rate at the queue
 - Nature of arriving traffic (bursty or not?)
 - Transmission rate of outgoing link

Queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Characterized with statistical measures
 - Average queuing delay
 - Variance of queuing delay
 - Probability delay exceeds a threshold value

Basic queueing theory terminology

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time"

- L: average number of packets waiting in the queue
 - L for "length of queue"

Little's Law (1961)

L = A x W

Compute L: count packets in queue every second

- Why do you care?
 - Easy to compute L, harder to compute W

4. Processing Delay

- How long does the switch take to process a packet?
 - Negligible

End-to-end delay

Round Trip Time (RTT)

 Time for a packet to go from a source to a destination and to come back

- Why do we care?
 - Measuring delay is hard from one end

- RTT/2 equals average end-to-end delay
 - Why not exact?

Loss

 What fraction of the packets sent to a destination are dropped?

Throughput

 At what rate is the destination receiving data from the source

Throughput

Transmission rate R bits/sec

File of size F bits
Packets of size L bits

Transfer time (T) = F/R + propagation delay

Average throughput = F/T ≈ R

End-to-end throughput

Average throughput = $min\{R, R'\} = R$

Summary

- How is the network shared?
 - On-demand or via reservation
- How do we evaluate a network?
 - Bandwidth, delay, loss, ...
- What is a network made of?
 - Whatever physical infrastructure exist
 - See backup slides

WHAT IS THE NETWORK MADE OF?

What is a network made of?

What is a network made of?

What is a network made of?

The last hop

How do we connect?

Digital Subscriber Line (DSL)

- Twisted pair copper
- 3 separate channels
 - downstream data channel
 - upstream data channel
 - 2-way phone channel
- up to 25 Mbps downstream
- up to 2.5 Mbps upstream

How about an cable provider as an ISP?

Connecting via cable

Cable

- Coaxial copper & fiber
- Up to 42.8 Mbps downstream
- Up to 30.7 Mbps upstream
- Shared broadcast medium

Any other means?

Ethernet

Ethernet

- Twisted pair copper
- 100 Mbps, 1 Gbps, 10 Gbps (each direction)

Many other ways

- Cellular (smart phones)
- Satellite (remote areas)
- Fiber to the Home (home)
- Optical carrier (Internet backbone)

Where is WiFi?

MASSIVE Scale

- 4.6 Billion users
- >1.8 Billion websites
- >200 Billion emails sent per day
- >2.5 Billion smartphones
- >2.7 Billion Facebook users
- >1 Billion hours of YouTube watched per day
- Routers that switch 10 Terabits/second
- Links that carry 100 Gigabits/second

Have we found the right solution?

We don't really know

- What we do know
 - The early Internet pioneers came up with a solution that was successful beyond all imagining
 - Several enduring architectural principles and practices emerged from their work
- Still, it is just one design with many questions

The Internet is a lesson

- In how to reason through the design of a <u>very</u> complex system
 - What are our goals and constraints?
 - What's the right prioritization of goals?
 - How do we decompose a problem?
 - Who does what? How?
 - What are the interfaces between components?
 - What are the tradeoffs between design options?

DETAILS ON CIRCUIT SWITCHING

Many kinds of circuits

- Time division multiplexing
 - divide time in time slots
 - separate time slot per circuit

- Frequency division multiplexing
 - divide frequency spectrum in frequency bands
 - separate frequency band per circuit

August 31, 2020

Why the delays?

August 31, 2020

A network link: BDP

- Link bandwidth
 - Number of bits sent/received per unit time (bits/sec or bps)
- Propagation delay
 - Time for one bit to move through the link (seconds)
- Bandwidth-Delay Product (BDP)
 - Number of bits "in flight" at any time
- BDP = bandwidth × propagation delay

BDP Examples

- Same city over a slow link:
 - Bandwidth: ~100Mbps
 - □ Propagation delay: ~0.1msec
 - BDP: 10,000bits (1.25KBytes)

- Cross-country over fast link:
 - Bandwidth: ~10Gbps
 - □ Propagation delay: ~10msec
 - □ BDP: 108bits (12.5MBytes)