

Project Machine Learning

4th Year Data Science 9

Our Team

1

Business Understanding

Intrusion Detection System: Introduction

The rapid evolution of technology has led to a significant increase in cybersecurity threats.

Intrusion attacks, whether external or internal, have become increasingly sophisticated, jeopardizing the confidentiality, integrity, and availability of data.

Intrusion Detection System: Introduction

In this context, implementing an Intrusion Detection System (IDS) using machine learning techniques becomes crucial to prevent, detect, and respond to potential malicious activities.

This project aims to apply various supervised and unsupervised machine learning algorithms to detect these malicious intrusions.

Intrusion Detection System: Families

1. NETWORK Intrusion detection system

- The most widespread IDS
- Very Useful to the administrator to understand his network in real time.
- Can be placed in different points in the network

Intrusion Detection System: Families

1. HOST Intrusion detection system

- Deployed directly on the hosts being monitored
- The analyses are strictly limited to the host on which the HIDS is installed
- Act similarly to antivirus software.

Intrusion Detection System: Objectifs

- Detection of suspicious activities
- Classification of Attacks

Intrusion Detection System: Statistics

Data Understanding

Data Understanding: Categories of Data

Data Understanding: Categories of Attacks

ATTACKS

- Normal
- Dos
- R2L
- Probe
- U2R

Data Understanding: Outliers

We notice the presence of some outliers in the 'duration' and 'src_bytes' variables.

Colonnes

Data Understanding: Missing Values

We notice that there are NO missing data in our dataset

Data Understanding: Categorical Variables

Our dataset contains only three categorical variables: Protocol, Service, and Flag.

Data Understanding: Dataset Balance

- Dataset imbalance regarding attack categories.
- Very few data points for R2L and U2R attacks.

Data Preparation

Data preparation: Encoding

Encoding variable Attack

Before Encoding

Data preparation: Encodage

Encodage Protocol_type

Before Encoding

Data preparation: Encodage

Encoding variable Flag

Before Encoding

Data preparation: Encodage

Encoding variable Service

Before Encoding

Data preparation: Standardization

	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment	urgent	hot	num_failed_logins	logged_in	num_compr
0	0.000000	0.5	0.289855	0.9	3.558064e-07	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	
1	0.000000	1.0	0.637681	0.9	1.057999e-07	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.000000	0.5	0.710145	0.5	0.000000e+00	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.000000	0.5	0.347826	0.9	1.681203e-07	6.223962e-06	0.0	0.0	0.0	0.0	0.0	1.0	
4	0.000000	0.5	0.347826	0.9	1.442067e-07	3.206260e-07	0.0	0.0	0.0	0.0	0.0	1.0	
	***				***		444				944	5	
125968	0.000000	0.5	0.710145	0.5	0.000000e+00	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	
125969	0.000139	1.0	0.710145	0.9	7.608895e-08	1.106923e-07	0.0	0.0	0.0	0.0	0.0	0.0	
125970	0.000000	0.5	0.782609	0.9	1.616709e-06	2.931438e-07	0.0	0.0	0.0	0.0	0.0	1.0	
125971	0.000000	0.5	0.434783	0.5	0.000000e+00	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	
125972	0.000000	0.5	0.289855	0.9	1.094232e-07	0.000000e+00	0.0	0.0	0.0	0.0	0.0	1.0	
125973	rows × 43 c	columns											

Data preparation: Feature selection

ANOVA F-TEST

According to the ANOVA test, we observed that 26 variables are significant, showing a high F-score

Modeling

Modeling and Evaluation: KNN Before Split

Modeling and Evaluation: KNN

Modeling and Evaluation: KNN After split

	precision	recall	f1-score	suppo
Normal	0.99	0.99	0.99	154
DoS	1.00	1.00	1.00	1068
Probe	0.98	0.99	0.98	274
R2L	0.91	0.91	0.91	79
U2R	0.53	0.36	0.43	2
accuracy			0.99	2976
macro avg	0.88	0.85	0.86	2976
weighted avg	0.99	0.99	0.99	2976

Modeling and Evaluation: DECISION TREE

Criterion: entropy max depth: 19

	precision	recall	f1-score	support
Normal	0.99	0.99	0.99	15450
DoS	1.00	1.00	1.00	10688
Probe	0.98	0.99	0.98	2749
R2L	0.91	0.91	0.91	792
U2R	0.53	0.36	0.43	25
accuracy			0.99	29704
macro avg	0.88	0.85	0.86	29704
weighted avg	0.99	0.99	0.99	29704

Modeling and Evaluation: SVM

	precision	recall	f1-score	support
Normal	0.97	0.98	0.98	15450
DoS	0.99	0.97	0.98	10688
Probe	0.96	0.97	0.97	2749
R2L	0.79	0.77	0.78	792
U2R	0.62	0.20	0.30	25
accuracy			0.97	29704
macro avg	0.87	0.78	0.80	29704
eighted avg	0.97	0.97	0.97	29704

Modeling and Evaluation: RANDOM FOREST

max_depth=30 min_samples_split=2 n_estimators = 1600

	precision	recall	f1-score	support
Normal	0.99	0.99	0.99	15450
DoS	1.00	1.00	1.00	10688
Probe	0.99	0.99	0.99	2749
R2L	0.94	0.91	0.93	792
U2R	0.64	0.28	0.39	25
accuracy			0.99	29704
macro avg	0.91	0.84	0.86	29704
weighted avg	0.99	0.99	0.99	29704

Modeling and Evaluation: LOGISTIC REGRESSION

penalty="I2" ridge max_iter=767

	precision	recall	f1-score	support
Normal	0.93	0.95	0.94	15450
DoS	0.97	0.97	0.97	10688
Probe	0.85	0.86	0.86	2749
R2L	0.55	0.25	0.35	792
U2R	0.77	0.40	0.53	25
accuracy			0.93	29704
macro avg	0.81	0.69	0.73	29704
weighted avg	0.93	0.93	0.93	29704

Modeling: Comparison

Modeling: Comparison

Modeling: Comparison

- All models have very satisfactory performances
- Random Forest and Decision Tree yield the best results
- We choose Random Forest because it is more robust as it circumvents the issue of overfitting.

Modeling: Voting (Paper 2)

Seuil: 5% Consensus: 3

Modeling: Voting (Paper 2)

Modeling: K means anomaly detection (Paper 2)

Modeling: K means anomaly detection (Paper 2)

Modeling: K means clusters (Paper 2)

Clustering

With All Obeservations

Classification

We calculate the dominant class of each cluster:

0: Normal

1: Anomaly

Prediction

K Means determines the cluster to which the observation belongs, and afterward, we determine its class

Modeling: K means clusters (Paper 2)

Modeling: SVM (Paper2)

OneClassSVM

error train: 20/200; errors novel regular: 9/40; errors novel abnormal: 2/40

Modeling: SVM (Paper2)

Deployment

Deployment : Django

THANK YOU