Space Science: Atmospheres Part-7b

Venus, Earth and Mars
Where is the H₂O on Venus?
Planetary Escape
Isotope Fractionation
Hydrodynamic Escape

Result of Simple Model

Mars

The Ice Planet
Water primarily in ice caps and regolith as a permafrost?

Earth

The Water Planet?

Venus

The Water Vapor Planet
Run away Greenhouse Effect?
Where is the water?
Since H_2O does not condense
and is lighter than N_2 or CO_2 it can reach regions
where UV can dissociate $H_2O + hv \rightarrow OH + H + K.E.$ $\rightarrow O + H_2 + K.E.$

Large scale heights

Vertical Structure Exosphere??

Planetary Escape

Define Exobase: Top of Atmosphere
If an atom or molecule has an energy
sufficient to escape + is moving upward
it will have a high probability of escaping

Probability of escape is high if collision probability is small; mean free path for a collision $\lambda_{col} \approx 1 \, / \, n_x \, \sigma_{col}$ $\sigma_{col} = collision \, cross \, section$ $n_x = density \, at \, exobase$

Exobase altitude occurs when scale height \sim mean free path $H_x \sim \lambda_{col} \\ H_x \sim 1 \, / \, n_x \, \sigma_{col}$ since $n_x H = N_x$ column density $N_x \sigma_{col} \sim 1$

$$N_x \approx 1$$
 / σ_{col}

Exobase

Exobase: $N_x \sigma_{col} \sim 1$ $N_x = column \text{ of atmosphere}$ $\sigma_{col} \sim molecular \text{ size } \sim 10^{-15} \text{ cm}^2$ Therefore, $N_x \approx \sigma_{col}^{-1} \approx 10^{15} \text{ atom / cm}^2$ or, $n_x \approx [H_x \sigma_{col}]^{-1}$

Earth: ~1000K, O: g_x ~850cm/s²; $H_x \sim 1000$ km $n_x \sim 10^7$ O/cm³; $z_x \sim 550$ km

Escape (continued)

Escape Energy =
$$E_{es} = \frac{1}{2} \text{ m } v_{es}^2$$

= $mg_x R_x$

 g_x = acceleration of gravity at exobase R_x = distance of exobase from *center of planet* [surface v_{es} : V 10.4; E 11.2, M 4.8 km/s]

At Earth $T_x \approx 1000 \text{ K}$, v=1 km/s!! (no escape???)

BUT, for a given T_x there is a distribution of v

For a given T_x there is a distribution of v

$$f(\vec{v}) = \frac{1}{[2\pi kT/m]^{3/2}} \exp \left[-\frac{mv^2}{2kT} \right]$$
$$= f(v_x) f(v_y) f(v_z) ;$$
$$\iiint f(\vec{v}) d^3v = 1$$

Can Focus on the z component only!

$$f(v_z) = \frac{1}{[2\pi KT/m]^{1/2}} \exp\left[-\frac{mv_z^2}{2kT}\right];$$

$$\int_{-\infty}^{+\infty} f(v_z) dv_z = 1$$

Need: Flux of molecules across exobase in the +z direction

$$\Phi_{es} = \int \int \int [n_x v_z] f(\vec{v}) d^3v; \quad v_z > 0, \quad v > v_{es}$$

Escape (continued)

Things are often written in terms of the mean speed

$$\bar{v} = \int \int \int v f(\bar{v}) d^3v$$

Problem: Verify that the mean speed is

$$\bar{v} = \sqrt{\frac{8 K T}{\pi m}}$$

Flux across a surface $v_z > 0$, (all v)

$$\Phi_{+} = \int \int \int n_{x} v_{z} f(\vec{v}) d^{3}v$$

$$= n_{x} \int_{0}^{\infty} \frac{v_{z}}{[2 \pi kT/m]^{1/2}} exp \left[-\frac{mv_{z}^{2}}{2KT} \right] dv_{z}$$

$$= n_{x} (kT/m)/[2 \pi kT/m]^{1/2} = n_{x} \left[\frac{kT}{2\pi m} \right]^{1/2}$$

$$\Phi_{+} = \frac{1}{4} n_x \overline{v}$$
; 1/4 due to isotropic assumption

This is in the absence of gravity

Escape Flux (cont.)

$$\frac{-\sqrt{8 kT}}{\sqrt{\pi m}} \qquad ; \qquad n_x = density$$

Probablity of Escape

$$P_{es} = \int_{mgR}^{\infty} f_{+}(E) dE$$

 $f_{+}(E)$ = energy distribution of flux at exobase

Escape (continued)

For Escape Use: $E > E_{es}$ where E_{es} is the escape energy

The escape flux is

$$\Phi_{es} = \iiint_{E>E_{es}} (n_x v_z) f(\vec{v}) d^3v$$

Rewrite as the flux across the exobase times a probability of escape

$$\Phi_{\rm es} = \frac{1}{4} (n_{\rm x} \overline{\rm v}) P_{\rm es}$$

Obtain **P**_{es} problem

Jeans (thermal) Escape

$$\mathbf{P}_{es} = \left[1 + \frac{\mathbf{E}_{es}}{\mathbf{k}T} \right] e^{-\mathbf{E}_{es}/\mathbf{k}T}$$

 E_{es}/kT : compares thermal energy to escape energy

OR: using,
$$E_{es} = mg_x R_x$$
,

$$E_{es/kT} = mg_x R_x/kT = R_x/H_x$$

In this form: Compares Radius at the top of the atmosphere to the scale height!

Total Loss by Jeans Escape

$$Flux_{+} x P_{es} x Area x Time$$

$$or$$

$$N_{es} = Column Lost = Flux_{+} x P_{es} x Time$$

$$(Pressure change = N_{es} m g)$$

Example:

H from the earth

Present escape flux $\sim 10^7 \text{H/cm}^2/\text{s}$

If constant:

 $t \sim (3x10^7 \text{ s/yr}) \text{ x } 4.5 \text{ } x10^9 \text{yr} \sim 1.4 \text{ } x10^{17} \text{ s}$

$$N_{es} \sim 1.4 \times 10^{24} \text{ H/cm}^2$$

 $\Delta p \sim 2 \times 10^3 \text{ dynes/cm}^2 \sim 2 \times 10^{-3} \text{bar}$

Total column at Earth

or

 $N \sim 2 \times 10^{25} \text{ mol.}(N_2,O_2)/\text{ cm}^2$ (~10 meters frozen)

Equivalent water loss: ~0.5 m!

Escape (cont.)

Problem: Jeans escape

Escape Energy

Venus 0.56 eV / u

*

Earth 0.65 eV / u

Mars 0.13 eV / u

Jupiter 18 eV / u

Titan 0.036 (0.024*) eV/u *(at exobase)

Assume $T_x = 1000 \text{ K}$ (not true on present Venus)

Use a time $t = 4.5 \text{ byr} \approx 4.5 \times 10^9 \times 3 \times 10^7 \text{ sec}$

Assume $N_x = 10^{15}$ atoms / cm²

Calculate the net column loss, N_{es} ,

of H, H₂(or D), N from

each planet assuming H = k T_x / m g_x

and the exobase is either all H, H₂, or N.

Approx. Present Values

 z_x : V 200km; E 500km, M 250km, T1500km T_x : V 275K, E 1000K, M 300K, T 160K Jupiter: no surface, use T_x =1000K

Isotope Fractionation

(preferential loss of lighter species)

Relative loss rate is determined by

- Masses of the escaping species therefore, (P_{es})_D << (P_{es})_H !!
- 2. But they must be present at the exobase! hence, depend on differences in diffusive separation !!

Compare loss of H to D:

H = lighter; D = heavier to learn about Loss of water

Isotope Fractionation

(preferential loss of lighter species)

Relative loss rate depend on differences in diffusive separation !!

Compare loss of H to D: H = lighter; D = heavier $N_H(z_h)$, $N_D(z_h)$: col densities below homopause (turbopause)

determined by atmospheric concentrations, same H--mixed

At homopause

Ratio: $R_{D/H}(z_h) = N_D(z_h)/N_H(z_h) = n_D(z_h)/n_H(z_h)$

At exobase

$$n_{H}(z_{x})$$
, $n_{D}(z_{x})$ densities at exobase: $\Delta z = z_{x} - z_{h}$
Different H =kT/mg
 $n_{H}(z_{x}) = n_{A}(z_{h}) \exp[-\Delta z/H_{H}]$; $n_{D}(z_{x}) = n_{B}(z_{h}) \exp[-\Delta z/H_{D}]$

Ratio:
$$R_{D/H}(z_x) = R_{D/H}(z_h) \exp[-\Delta z (1/H_B - 1/H_A)]$$

= $R_{D/H}(z_h) \exp[-\Delta z \Delta m g_x/kT_x]$

Rel. concentration. Height of exobase, Δz , + mass dif., Δm .

Isotope Fractionation (cont.)

Loss rate of a column of atmosphere

$$\frac{dN_A}{dt} = -\Phi_{es}^A$$

For Jeans (thermal) Escape:

$$\Phi_{es}^{A} = -\frac{n_{A}\overline{v_{A}}}{4}P_{es}^{A}$$
with $P_{es}^{A} = \left[1 + \frac{E_{es}}{kT}\right]e^{-E_{es}/kT}$

Calculate

The fraction of species A still in the atmosphere is

$$f_A(t) \approx N_A/N_A^o = \exp(-t/t_A)$$

$$(t_A)^{-1} \approx \frac{[(v_A/4)P_{es}^A]}{H} \exp(-\Delta z/H_A)$$

Depends only on mass of A and the temperature at the exobase

Isotope Fractionation (cont.)

Two species A and B (e.g., H and D)

The ratio of total atmospheric concentrations vs. t is

$$r_{AB}(t) = \left[\frac{N_A(t)}{N_B(t)}\right] / \left[\frac{N_A^o}{N_B^o}\right] \approx \exp[-t\left(\frac{1}{t_A} - \frac{1}{t_B}\right)]$$

One can re write

$$\mathbf{r}_{AB}(\mathbf{t}) \approx [\mathbf{f}_{A}(\mathbf{t})]^{x}$$
 with $x = (1 - t_{A}/t_{B})$
and $f_{A}(t)$ the fraction of A remaining at time t.

Enrichment of Heavy Isotope Indicates Atmospheric Loss

D/H

SUN 1.5×10^{-5} COMETS $\sim 3 \times 10^{-4}$ EARTH'S WATER $\sim 1.6 \times 10^{-4}$ VENUS Atmosphere $\sim 2 \times 10^{-2}$

D enriched relative to Sun

So not only Venus
--but earth has also lost water!!

(unless you think comet pasting on of water is the starting point!)

Note: this does NOT depend on how much water we started with!!

D/H Ratio Earth and Venus

t_H << t_D (your problem)

$$(r_{HD})_{now} = \left(\frac{N_H}{N_D}\right)_{now} / \left(\frac{N_H}{N_D}\right)_{solar} \approx [f_H(t)]^x$$

Earth : D/H 1.6 × 10⁻⁴

$$r_{HD} = 1.5 \times 10^{-5} / 1.6 \times 10^{-4} \approx 0.09$$

 $x \sim 1; f_{H}(t) = 0.09$

That is, only $\sim 10\%$ of original water released is still in the atmosphere and oceans (assuming well mixed);

Disagrees with present loss rate must have been an earlier epoch of rapid loss

Venus: D/H 2×10^{-2}

 $f_{\rm H}(t) \approx 0.0008$!

or – -assuming the same original water budget as the Earth ≈ 0.008 of Earth's present water budget

present value of loss rate ($\sim 10^7 \text{ /s}$) too small

Need wet hot early atmosphere with H₂O well mixed (to hot to condense ar all altitudes inspite of lapse rate)

For both V and E:

did hotter (EUV) early Sun and/or T - Tauri caused blow - off

Enrichment of Heavy Isotope Indicates Atmospheric Loss

Other species

$$V$$
 E M S 36 Ar $/ ^{38}$ Ar 5.1 5.3 4 5.5

40
Ar / 36 Ar 1 296 3000 --- (40 K \rightarrow 40 Ar + e⁺ + e⁻ \sim 10⁸ years)

Xe, N, O and C are also fractionated

Need escape processes other than Jeans escape for heavy species

ESCAPE PROCESSES

- 1. Jeans Escape
- 2. Hydrodynamic Escape (Blow Off)
- 3. Photo Dissociation
- 4. Dissociative Recombination
- 5. Interaction with the Local Plasma
- 6. T Tauri Sweeping

Very heavy species 2?

When molecules are at the exobase 3 and 4 are important

Venus

$$H_2O + hv \rightarrow OH + H + KE$$

 $\rightarrow O + H_2 + KE$

Present Mars

$$CO_2^+ + e \rightarrow CO + O + KE$$

 $O_2^+ + e \rightarrow O + O + KE$

In the absence of a protecting magnetic field 5 and 6 are important

Fractionation: nonthermal escape processes

Diffusive separation gives an exobase ratio between a lighter (A) and heavier (B) species

If the *loss mechanism* is not strongly affected by the mass difference then:

Only their relative abundance at the exobase is important: Rayleigh fractionation law!

Applies to Mars for processes 3, 4, 5

Result (Ar and N arew fractionated)

³⁶Ar / ³⁵Ar no need for hydrodynamic episode 14N / ¹⁵N models give too mach loss (buffered by CO₂?)

BUT!

non-fractionation of ¹⁸O / ¹⁶O, ¹³C / ¹²C means there are large reservoirs!! carbonates and permafrost?

#7b Summary

Things you should know

Greenhouse Model for Terrestrial Planets
Venus vs. Earth vs. Mars
Water Loss from Venus
Planetary Escape
Energy Flux Distribution
Jeans Escape
Isotopic Fractionation
Other Escape Processes