POLITECHNIKA ŚWIĘTOKRZYSKA Wydział Elektrotechniki, Automatyki i Informatyki

KRZYSZTOF DRAGAN

Numer albumu: 083524

Aplikacja internetowa do wyszukiwania połączeń lotniczych

Praca dyplomowa inżynierska na kierunku Informatyka

Opiekun pracy dyplomowej: dr inż. Arkadiusz CHROBOT Katedra Systemów Informatycznych

POLITECHNIKA ŚWIĘTOKRZYSKA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Zatwierdzam:

PROBZZERAN

ds. Kształcenia i Suzw Studenckich
na Studiach Zacjonarnych

Wydziału Elektrotegopy, Automatyki i Informatyki

Rok akademicki: 2018/19

Temat nr. 30/1539/2018//3

Dnia: 21 marca 2018

dr ing. Andrzej Stoblecki

ZADANIE NA PRACĘ DYPLOMOWĄ

Studiów pierwszego stopnia na kierunku INFORMATYKA

Wydano dla studenta: Krzysztof Dragan

I. Temat pracy:

Aplikacja internetowa do wyszukiwania połączeń lotniczych

- II. Plan pracy:
 - 1. Wstęp
 - 2. Opis rozwiązywanego zagadnienia
 - 3. Przegląd istniejących rozwiązań
 - 4. Projekt aplikacji
 - 5. Implementacja
 - 6. Testy
 - 7. Uwagi i wnioski

III. Cel pracy:

Celem pracy jest stworzenie aplikacji internetowej, która będzie zbierała informacje o dostępnych połączeniach lotniczych i umożliwiała użytkownikowi zaplanowanie na ich podstawie podróży. Źródłem informacji o dostępnych połączeniach lotniczych, które aplikacja będzie pobierała automatycznie, powinny być strony internetowe agregujące dane o lotach lub serwisy przewoźników. Opracowane oprogramowanie powinno pozwalać na określenie takich parametrów wyszukiwania lotów, jak: czas podróży, termin i miejsce jej rozpoczęcia i zakończenia, liczba przesiadek, cena przelotów i gabaryty oraz waga zabieranego bagażu. Aplikacja powinna się składać z części serwerowej oraz klienckiej i być zaimplementowana w języku Java oraz przy użyciu technologii związanych z tym językiem.

IV. Uwagi dotyczące pracy:	****
V. Termin oddania pracy: 30 stycznia 2019	
VI. Konsultant:	
Kierownik Zakładu Zakładu Informatyki	Opiekun pracy dyplomowej
Katedry Systemów Informatycznych Wydziału Elektrotechniki. Witopfatyki i Informatyki	Maolium Chull (podpis)
dr hab. Inż. Roman Szorkaw Deniziak, prof. PŚk (pieczęć i podpis)	(podpis) (imię i nazwisko)

Temat pracy dyplomowej celem jej wykonania otrzymałem:

Kielce, dnia 21:03.2018 r Dragam Kyzysz 10 f

Kielce, dnia
Krzysz to f Dyagon 083524 Imię i nazwisko studenta nr albumu
W. Denokowska 83 , Ostrowiec Swietokrzyski. Adres zamieszkania
In formatyka, Systemy Informacy me, IV rok, staciomanne. Kierunek, specjalność, rok studiów, rodzaj studiów (stacjonarne, niestacjonarne)
dn inż. Ankadiusz Chrobot Opiekun pracy dyplomowej inżynierskiej/magisterskiej*
OŚWIADCZENIE
Przedkładając w roku akademickim 20.18./.49. opiekunowi pracy dyplomowej inżynierskiej/magisterskiej*, powołanemu przez Dziekana Wydziału Elektrotechniki Automatyki i Informatyki Politechniki Świętokrzyskiej, pracę dyplomową inżynierską/magisterską* pod tytułem:
Aplikacja internetowa do wyszukiwania połączeni lotniczych
 przedstawiona praca dyplomowa inżynierska/magisterska* została opracowana przeze mnie samodzielnie, stosownie do wskazówek merytorycznych opiekuna pracy, przy wykonywaniu pracy dyplomowej inżynierskiej/magisterskiej* wykorzystano materiały źródłowe, w granicach dozwolonego użytku wymieniając autora, tytuł pozycji i miejsce jej publikacji, praca dyplomowa inżynierska/magisterska* nie zawiera żadnych danych, informacji i materiałów, których publikacja nie jest prawnie dozwolona, przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem stopnia zawodowego/naukowego w wyższej uczelni, niniejsza wersja pracy jest identyczna z załączoną treścią elektroniczną (na CD i w systemie Archiwum Prac Dyplomowych).
Przyjmuję do wiadomości, iż w przypadku ujawnienia naruszenia przepisów ustawy o prawie autorskim i prawach pokrewnych, praca dyplomowa inżynierska/magisterska* może być unieważniona przez Uczelnię, nawet po przeprowadzeniu obrony pracy.
 Zostałem uprzedzony: o odpowiedzialności karnej wynikającej z art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t. j. Dz. U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystyczne wykonanie albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t. j. Dz. U. z 2012 r. poz. 572, z późn. zm.) "Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej sądem koleżeńskim"
Prawdziwość powyższego oświadczenia potwierdzam własnoręcznym podpisem.
Dvagam Knzysztof czytelny podpis studenta

Aplikacja internetowa do wyszukiwania połączeń lotniczych

Streszczenie

Celem niniejszej pracy było opracowanie aplikacji internetowej która pozwoliłaby na wyszukiwanie połączeń lotniczych korzystając z danych zawartych na stronach internetowych przewoźników bądź z innych centr danych. Aplikacja została podzielona na część kliencką oraz serwerową. Klient został napisany przy użyciu technologii Angular 6, natomiast część serwerowa w technologii Java 10. W pracy znajduje się opis architektury stworzonej aplikacji, modułu wyszukiwania połączeń lotniczych a także zagadnień teoretycznych związanych z projektowaniem interfejsu użytkownika dla przeglądarki internetowej.

Słowa kluczowe: Java, Angular 6, REST, programowanie obiektowe, protokół HTTP, programowanie funkcyjne

A web application to search for flight connections

Summary

The purpose of thesis was to build a web application, which will be able to search flight connections using data included on air websites or others data sources. Application was divided into two parts: client and server. Client was implemented using technology of Angular 6, whereas server in Java 10 technology. Description of architecture built application, module of air connections searching and theoretical issues related to building user interface for web application are included in this thesis.

Keywords: - Java, Angular 6, REST, Object Oriented Programming, HTTP Protocol, Functional Programming

Spis treści

W	stęp		11	
1	Opis	s rozwiązywanego zagadnienia	12	
	1.1	Źródła danych o połączeniach lotniczych	12	
	1.2	Parsowanie różnych rodzajów danych	14	
		1.2.1 Język znaczników XML	14	
		1.2.2 Notacja JSON	15	
		1.2.3 Język HTML	16	
	1.3	Wydajność wyszukiwania	17	
2	Prze	egląd istniejących rozwiązań	18	
	2.1	Wyszukiwarka lotów Skyscanner	18	
	2.2	Wyszukiwarka lotów Google Flights	20	
	2.3	Porównanie aplikacji	22	
3	Proj	rojekt aplikacji		
	3.1	Ogólna architektura aplikacji	23	
	3.2	Baza danych	24	
	3.3	Część kliencka	25	
	3.4	Część serwerowa	26	
	3.5	Moduł wyszukiwania połączeń lotniczych	27	
	3.6	Komunikacja między komponentami aplikacji	28	
		3.6.1 Protokół HTTP	28	
		3.6.2 JDBC	29	
		3.6.3 I/O	29	
4	Imp	lementacja	30	
	4.1	Oprogramowanie po stronie klienta	30	
		4.1.1 Podział strukturalny	30	
		4.1.2 Moduły pobierania danych	31	
	4.2	Oprogramowanie po stronie serwera	33	
5	Test	V	34	

6 Uwagi i wnioski

Wstęp

Branża lotnicza to jedna z głównych gałęzi dzisiejszego transportu. Za jej początek uznaje się pierwszy pomyślny lot braci Wright 17 grudnia 1903 roku na polach Kitty Hawk. To wydarzenie zapoczątkowało proces tworzenia się przemysłu lotniczego. W dzisiejszych czasach transport lotniczy uznaje się za najszybszy i najbardziej bezpieczny. Obecnie wykorzystuje się go między innymi w transporcie osób, towarów czy celach militarnych. Warto wspomnieć też o jego roli jako prekursora lotów kosmicznych. Dzięki niemu powstała nieosiągalna wcześniej możliwość podróżowania po całym świecie w najkrótszym możliwe czasie.

W niniejszej pracy podjęto się stworzenia aplikacji internetowej umożliwiającej wyszukiwanie realnych połączeń lotniczych. Aplikacja ta składa się z części klienckiej oraz serwerowej. Dla zwiększenia jej wydajności do architektury została dodana relacyjna baza danych oraz mechanizmy cachowania danych. Jej główną funkcjonalnością jest zbieranie danych o połączeniach lotniczych z zewnętrznych serwisów oraz zasobów internetowych. Pozwala ona na uzyskanie informacji o lotach uwzględniając dane o ich cenie, linii lotniczej go obsługującej, wymiarów i wagi dozwolonego bagażu, czasu podróży czy też liczby przesiadek.

Praca została podzielona na 6 rozdziałów. Rozdział pierwszy przedstawia zagadnienie wyszukiwania połączeń lotniczych wraz z opisem najważniejszych problemów które podjęto rozwiązaniu podczas powstawania aplikacji. Drugi rozdział opisuje obecnie istniejące rozwiązania na rynku. Jest to opis dwóch komercyjnych aplikacji które zyskały duże uznanie od ich użytkowników. Zakończony został podsumowującym porównaniem obu aplikacji ze stworzoną w ramach tej pracy. Rozdział trzeci przedstawia projekt aplikacji. Znajdują się w nim schematyczne rysunki z opisem które przestawiają architekturę powstałej aplikacji. Obrazuje podział funkcjonalności między bazą danych, warstwą logiki biznesowej czy też warstwą prezentacji. Opisane zostały również ścieżki komunikacji pomiędzy tymi warstwami. Rozdział czwarty przedkłada implementację aplikacji. W rozdziałe tym zostaną przedstawione najważniejsze fragmenty oprogramowania tworzące funkcjonalność aplikacji. Można będzie w nim znaleźć informacje o użytych technologiach jak i zewnętrznych bibliotekach którymi się posłużono.Piąty rozdział poświęcony jest opisowi testów oprogramowania które potwierdzają prawidłowe działanie aplikacji. Ostatni rozdział przedstawia uwagi i wnioski odnoszące się do tematu pracy oraz stworzonej aplikacji.

1 Opis rozwiązywanego zagadnienia

Głównym zagadnieniem podjętym w pracy było znalezienie sposobu na pozyskanie realnych danych o połączeniach lotniczych które można by było zaprezentować w kompleksowym interfejsie oraz we względnie optymalnym czasie dla użytkownika powstałej aplikacji. Zagadnienie to można podzielić na 3 części:

- Znalezienie źródeł danych o połączeniach lotniczych
- Parsowanie różnych rodzajów danych
- Zapewnienie dobrej wydajności podczas wyszukiwania połączeń lotniczych

Części te zostaną opisane w podrozdziałach bieżącego rozdziału.

1.1 Źródła danych o połączeniach lotniczych

Największą trudnością podczas pisania pracy było znalezienie odpowiednich zasobów danych który nie byłyby płatne oraz które zapewniałyby rzetelne i sprawdzone dane lotnicze. Poszukiwania zaczęto od złożenia podań do centr danych o dostęp do ich zasobów. Większość z nich wymagała opłaty za swoje usługi które sięgały nawet 10 000\$. Niektóre z nich oferowały jednak darmowy dostęp do ich zasobów jednak był to dostęp limitowany. Na potrzeby pracy wybrano serwis FlightLookup jako głównego dostawcę danych, informacje przez niego dostarczone stanowiły lwią część odpowiedzi serwera. Darmowy dostęp jest limitowany 500 zapytaniami w trakcie miesiąca.

Rysunek 1.1.1: Portal serwisu FlightLookup

Dodatkowymi źródłami danych były:

- Skyscanner serwis udostępniające średnie ceny przelotów w określonym przedziale czasowym oraz informacje dotyczące dozwolonego bagażu
- Aviation Edge usługa chmurowa udostępniające dane o liniach lotniczych
- ourairports.com strona internetowa umożliwiające pobranie danych o większości lotnisk na świecie

Skyscanner jest komercyjną aplikacją zbierającą wiele rodzajów danych lotniczych. Jej szczegółowa funkcjonalność zostanie opisana w następnym rozdziale z przeglądem istniejących rozwiązań. W tej części pracy zostanie opisane użycie zasobów tego produktu. Zasoby Skyscanner'a dostarczyły danych o aktualnych cenach wyszukiwanych lotów oraz danych dotyczących dozwolonego bagażu podczas podróży. Ceny lotów zostały pobrane z serwisu RapidApi korzystającego wewnętrznie z zasobów aplikacji Skyscanner. Znajduje się on pod adresem sieciowym: https://rapidapi.com/skyscanner/api/skyscanner-flight-search. Użycie jego serwisów wymagało podania miejsca jak i daty wylotu oraz przylotu. Dodatkowym wymaganym parametrem był unikalny kod walutowy który umożliwiał zwrócenie poprawnych wyników. Oprócz cen przelotów Skyscanner posiada też stronę internetową z tabelą opisującą dozwolone wymiary oraz wagę bagażu podczas przelotu. Adres tej strony to: www.skyscanner.net/news/tips/check-in-luggage-size-and-weight-restrictions Zawartość tej strony jest parsowana przez część serwerową jednak to zagadnienie zostanie opisane szerzej w następnym podrozdziale.

Kolejnym ważnym źródłem danych jest usługa chmurowa Aviation Edge. Serwis ten w prosty sposób udostępnia dane o liniach lotniczych wykorzystując do tego interfejs REST¹. Do użycia tej usługi wymagane było podanie unikalnego kodu linii lotniczej w celu jej zidentyfikowania oraz zwrócenia danych w postaci JSON. Aviation Edge jest bezpłatnym serwisem, do korzystania z jego zasobów wymagane jest tylko założenia konta w celu uzyskania klucza identyfikującego użytkownika.

Ostatnim źródłem danych jest strona internetowa ourairport.com znajdująca się pod adresem internetowm: http://ourairports.com/. Jej zasobem który został wykorzystany jako źródło danych jest plik csv zawierający ponad 50000 rekordów lotnisk. Zawiera dane z szerokiego przekroju typów lotnisk począwszy od małych lotnisk dla awionetek aż po największe lotniska świata takie jak London Heathrow Airport. Dane te zabrane są w całości w postaci pliku CSV który jest pobierany przez część serwerową. Poddawane są procesowi filtracji w celu wyeliminowania lotnisk obsługujących poniżej 4 tysięcy pasażerów rocznie.

¹Representational state transfer

1.2 Parsowanie różnych rodzajów danych

Dane dostarczone przez zewnętrzne serwisy prezentowały swoją treść w różnych formatach. Aby zebrać pełną odpowiedź serwera należało w pierwszym kroku sparsować pojedyncze elementy a następnie zbudować z nich obiekt języka Java.

1.2.1 Język znaczników XML

XML² to standard oznaczeń popierany przez organizację W3C. Definiuje on ogólną składnię, stosowaną przy oznaczaniu danych za pomocą prostych znaczników.[1] Ponadto oferuje standardowy format dokumentów komputerowych. Format ten można dostosowywać do dziedzin tak odmiennych jak witryny WWW, wymiana danych elektronicznych, grafika wektorowa, serializacja obiektów czy systemy poczty głosowej. Dane w dokumentach XML są zapisywane w postaci ciągów tekstowych, zawartych w oznaczeniu tekstowym opisującym te dane. Poszczególne jednostki danych i oznaczenia nazywane są elementami. Specyfikacja XML określa, jakie wymogi składniowe musi spełniać takie oznaczenie: w jaki sposób elementy są rozgraniczane przez znaczniki, jak wygląda znacznik, jakie nazwy elementów są akceptowanie, gdzie trzeba umieszczać atrybuty i tak dalej. Oznaczenia dokumentu XML są bardzo podobne do oznaczać dokumentów HTML, choć występują między nimi pewne różnice.

```
<FlightDetails TotalFlightTime="PT3H35M"</pre>
                TotalMiles="931"
                TotalTripTime="PT4H25M"
                FLSDepartureDateTime="2018-11-15T06:40:00"
                FLSDepartureTimeOffset="+0100"
                FLSDepartureCode="WAW"
                FLSDepartureName="Warsaw"
                FLSArrivalDateTime="2018-11-15T10:05:00"
                FLSArrivalTimeOffset="+0000"
                FLSArrivalCode="LHR"
10
                FLSArrivalName="London Heathrow"
11
                FLSFlightType="Connect"
                FLSFlightLegs="2"
13
                FLSFlightDays="...4..."
15
                FLSDayIndicator=""
```

Listing 1.2.1: Fragment danych w formacie XML

²eXtensible Markup Language

XML jest wyłącznie językiem znaczników, nie jest on ani językiem programowania, protokołem transportu sieciowego czy też bazą danych. XML oferuje możliwość formatowania danych, zapewnia to ich prawdziwą wieloplatformowość i odporność na upływ czasu. Dotych-czas dokument zapisany za pomocą jakiegoś oprogramowania na jednej platformie nie dawał się odczytywać na innej platformie ani na zbliżonej platformie za pomocą innego rodzaju oprogramowania.

Wyszukiwanie informacji o połączeniach lotniczych zaczynało się od odebrania danych z serwisu FlightLookup w postaci XML. Jest to najważniejsza operacja podczas procesu wyszukiwania połączeń lotniczych. Dane zebrane w tej części są parametrami wyszukiwania podczas korzystania z dalszych źródeł danych. Przykład odebranej treści znajduje się na listingu 1.2.1 załączonym na poprzedniej stronie.

Operacja parsowania obiektów XML na obiekty języka Java zostanie szerzej opisana w rodziale o implementacji. Załączony listing 1.2.1 przedstawia jeden z elementów danych XML o nazwie *FlightDetails*. Zawiera on przykładowe pola takie jak: *TotalMiles* czy *FLSFlightDays*. Elementy te zostały odwzorowane w postaci klas języka Java o takich samych nazwach jak nazwa elementu. Powstała klasa posiada też takie same pola jak obiekt w XML.

1.2.2 Notacja JSON

Notacja JSON³ jest modernistycznym sposobem prezentacji danych. Wywodzi się ona z języka JavaScript gdzie została głównym formatem prezentacji obiektów tej technologii. Notacja Json jest zbudowana na dwóch strukturach[2]:

- Kolekcji par nazwa/wartość, w zależności od języka programowania zrealizowana jako obiekt, rekord, struktura, słownik bądź kolekcja
- Posortowana lista wartości. W większości języków zrealizowana jako tablica, wektor, lista lub sekwencja

Są to uniwersalne struktury danych. Wirtualnie wszystkie nowoczesne języki programowania wspierają je w specyficznej dla siebie formie. Notacja JSON jest to format danych, który jest wymienny z językami programowania. Ta właściwość czyni ją najpopularniejszym formatem wymiany danych między aplikacjami oraz mikroserwisami. W stworzonej aplikacji dane w tym formacie dotyczyły liniach lotniczych oraz cen przelotów. W pierwszym przypadku obiekt JSON można było w prosty sposób skonwertować na obiekt języka Java. Przykładową strukturę zaprezentowano na listingu 1.2.3

Kod odpowiedzialny za konwersję tego obiektu zostanie przedstawiony w rozdziale piątym.

³JavaScript Object Notation

```
{
        "airlineId": "1",
        "nameAirline": "American Airlines",
        "codeIataAirline": "AA",
        "iataPrefixAccounting": "1",
        "codeIcaoAirline": "AAL",
        "callsign": "AMERICAN",
        "type": "scheduled",
        "statusAirline": "active",
        "founding": "1934",
11
        "codeHub": "DFW",
        "nameCountry": "United States",
        "codeIso2Country": "US"
15
16
 ]
```

Listing 1.2.2: Przykładowy obiekt w notacji JSON

1.2.3 Język HTML

HTML⁴ jest standardowym językiem znaczników dla tworzenia stron internetowych[3]. Dokumenty HTML są podstawową treścią jaką generują przeglądarki internetowe. W pracy dyplomowej źródłem danych o wymiarach i wadze dozwolonych bagaży była strona internetowa aplikacji Skyscanner. Poniżej przedstawiono fragment danych zapisanych w formacie HTML które posłużyły do celów pracy.

Listing 1.2.3: Fragment dokumentu HTML

⁴Hypertext Markup Language

1.3 Wydajność wyszukiwania

Wyszukiwanie tak złożonych jak informacje o połączeniach lotniczych a następnie parsowanie ich niesie za sobą pewne konsekwencje. Są to konsekwencje czasownik, użytkownik powinien otrzymać interesującą go treść w czasie jak najkrótszym. W celu optymalizacji wydajności aplikacji wprowadzono mechanizmy skracające czas odpowiedzi części serwerowej. Dla zbierania danych dotyczących lotnisk oraz bagażów wprowadzono rozwiązania polegające na pobieraniu pełnych zasobów tych danów do bazy danych lub do pliku znajdującego się na serwerze. Pozwoliło to na pominięcie opóźnienia sieciowego związanego z potencjalną koniecznością pobierania tych danych ze stron lub zewnętrznych baz danych.

Kolejnym rozwiązaniem było wprowadzenia stylu programowania funkcyjnego w kluczowych elementach części serwerowej które odpowiadały za wyszukiwanie połączeń lotniczych. Programowanie funkcyjne wprowadzone w Javie 8 pozwala skrócić operacje po stronie wirtualnej maszyny Javy a więc też zaoszczędzić cenne milisekundy w trakcie wyszukiwania lotów. Implementacje tych rozwiązań znajdują się w rodziale Implementacja.

Ostatnim mechanizmem był rozwiązanie cachowania danych. Caching jest mechanizmem przyspieszającym działanie aplikacji oraz zwiększającym ogólną wydajność. Cześć danych która jest gromadzona w aplikacji o długich czasach dostępu i niższej przepustowości jest dodatkowo przechowywana w pamięci RAM o lepszych parametrach[4]. Pamięć RAM inaczej nazywana jest też pamięcią podręczną jest podstawą wszystkich nowoczesnych systemów informatycznych. Odczytywanie danych z tej pamięci jest najszybsze porównując go na przykład z odczytywaniem z dokumentów XML, JSON, bazy danych czy też zasobów sieciowych. Jego przeznaczeniem jest skracanie czasu odpowiedzi dla określonych zapytań do części serwerowej które sa zwielokrotnione i wywoływane przez wielu użytkowników. Wykonując operacje wyszukiwania lotów, moduł wyszukiwania sprawdza czy w cache'u znajdują się poszukiwanie operacje. Jeśli tak zwraca je użytkownikowi, jeśli nie wyszukuje loty standardowym sposobem a wynik zapisuje do cache'u. Dla danych o liniach lotniczych, bagażach oraz dla całego obiektu lotu w części serwerowej stworzono 3 kontenery cache'u. Czas przetrzymywanie danych w tych kontenerach wynosi odpowiednio: 7 dni, 3 dni oraz 3 godziny. Przy wyborze informacji które powinny znaleźć się w pamięci podręcznej sugerowano się temperaturą danych. Trzy wcześniej wymienione zasoby oceniono z największym prawdopodobieństem na ich użycie przez użytkowników aplikacji. Jednostki te wybrano uwzględniając wrażliwość tych danych na ciągłe zmiany w systemach lotniczych. Implementacja tych mechanizmów wraz z kodem źródłowym znajduje się w rodziale czwartym.

2 Przegląd istniejących rozwiązań

Analiza istniejących rozwiązań aplikacji wyszukujących połączeń lotniczych pozwoliła nadać pracy bardziej precyzyjne wymagania oraz zaprojektować jej ogólny przebieg. W internecie można znaleźć wiele aplikacji o podobnych lub takich samych funkcjonalnościach jak tworzona praca. W tym rodziale zostaną opisane najbardziej znane wyszukiwarki lotów dostępnych na rynku.

2.1 Wyszukiwarka lotów Skyscanner

Pierwszym przykładem została aplikacja internetowa Skyscanner. Jest to wyszukiwarka lotów, która umożliwia użytkownikom szukanie lotów według ceny i lokalizacji. Oprócz funkcji wyszukiwania lotów, Skyscanner oferuje opcje wyszukiwania hotelów blisko lotnisk oraz wypożyczenia auta w pobliżu lotniska docelowego. Aplikacja ta została stworzona oraz wdrożona w 2002 roku. Od tego czasu firma Ctrip która jest właścicielem tego produktu zatrudnia ponad 200 pracowników. Warto wspomnieć o jej innej usłudze która udostępnia dane o połączeniach lotniczym zewnętrznym firmom i deweloperom. Jej dane były brane pod uwagę w czasie szukania źródeł danych lecz Skyscanner wymaga dużych opłat za swoje usługi, w warunkach akademickich niemożliwe było z ich skorzystanie. Aplikacja ta jest dostępna w ponad 30 językach oraz używana przez 60 milionów użytkowników miesięcznie. Aplikacja wiele razy nagradzana była za swoją funkcjonalność i użyteczność użytkownikom. Skyscanner znajduje się pod adresem sieciowym: https://www.skyscanner.net/.

Opisywana aplikacja ma dla swoich użytkowników szereg przydatnych funkcjonalności. Korzystające z jej osoby mogą korzystać z kompleksowego modułu wyszukiwania połączeń lotniczych. W panelu wyboru parametrów lotów można wybrać lotnisko wylotu, lotnisko docelowe jak i daty wylotu. Skyscanner oferuje wyszukiwanie lotów na 3 sposoby: lot powrotny, lot w jedną stronę oraz podróż wieloetapowa. Dodatkowo użytkownik jest w stanie sprecyzować liczbę osób podczas podróży jak i klasę biletu lotniczego. Ciekawą funkcjonalnością jest możliwość dodanie pobliskich lotnisk do tych wybranych przez użytkownika. Znajduje ona zastosowanie gdy na przykład aplikacja nie może znaleźć lotów z wybranego lotniska, następuje wtedy wyszukiwanie lotów z pobliskich lotnisk o zadanym promieniu odległości. Oprócz bogatego interfejsu do wyboru parametrów lotów Skyscanner oferuje bardzo dobrą wydajność podczas wyszukiwania. Loty bezpośrednie wyszukiwane są natychmiastowo. Na loty z zaznaczoną z przesiadkami trzeba poczekać kilka sekund. Interfejs aplikacji Skyscanner zostanie zaprezentowany na następnej stronie.

Rysunek 2.1.1: Panel wyszukiwania lotów aplikacji Skyscanner

Po wybraniu odpowiednich parametrów należy nacisnąć zielony przycisk po prawej aby rozpocząć proces wyszukiwania lotów. Jego przykładowe wyniki zaprezentowano na rysunku 2.1.2, można na nim zauważyć wyszukane loty z dokładnymi informacjami o linii lotniczej obsługującej lot, miejsca wylotu oraz przylotu, czasie podróży jak i liczbie przesiadek. Z lewej strony dostępny jest panel dzięki któremu można dokonać różnego rodzaju filtracji na otrzymanych wynikach.

Rysunek 2.1.2: Wyniki wyszukiwania lotów aplikacji Skyscanner

Warto zwrócić uwagę na panel podróży wieloetapowej który jest dostępny po kliknięciu odpowiedniego przycisku powyżej pola do wyboru lotniska wylotowego. Można w nim wybrać do siedmiu osobnych połączeń lotniczych i na ich podstawie zaplanować swoją podróż. Każde z tych połączeń jest domyślnie połączeniem w jedną stronę.

Rysunek 2.1.3: Komponent podróży wieloetapowej

2.2 Wyszukiwarka lotów Google Flights

Kolejnym przedstawianym rozwiązaniem jest aplikacja internetowa Google Flights firmy Google. Jest to jeden z głównych internetowych produktów giganta Google, w pełni integruje się z innymi usługami tej firmy co czyni go bardzo praktycznym systemem. Google Flights zostało wdrożone 13 października 2011 roku. Ma zbliżone funkcjonalności do wcześniej opisywanego konkurenta Skyscanner. Oferuje jednak pewne innowacje. Pozwala użytkownikowi na wyszukiwanie lotów określając okres czasowy go interesujący oraz budżet na jaki pozwala jego portfel. Największą zaletą tej aplikacji jest jej szybkość. Dzięki spokrewnieniu z silnikiem Google Search szybkość wyszukiwania połączeń lotniczych jest bezkonkurencyjna na rynku wyszukiwarek lotów. Szybkość ta została uzyskana przez użycie wyspecjalizowanych algorytmów szukających firmy Google oraz specjalnemu indeksowaniu danych. Oprócz samej funkcjonalności aplikacja prezentuje czytelny i resposywny interfejs który zyskał aprobatę ze strony użytkowników.

Rysunek 2.2.1: Panel wyszukiwania lotów aplikacji Google Flights

Na rysunku 2.2.1 przedstawiono panel wyszukiwania lotów oferowany przez opisywaną aplikację. Dostępny jest też komponent podróży wieloetapowej który znalazł się też w poprzednio opisywanej aplikacji oraz w części praktycznej tej pracy.

Rysunek 2.2.2: Komponent podróży wieloetapowej aplikacji Google Flights

Wszystkie produkty firmy Google które można zobaczyć w przeglądarce internetowej charakteryzują się specyficznym stylem interfejsu. Jest to platforma Material Design która wyznacza specyfikację pojedynczych elementów aplikacji Google'a. Rysunek 2.2.3 przedstawia przykładowe wyniki wyszukiwania lotów. Wyszukane loty znajduje się rozwijanej liście. Po kliknięciu w wybrany element listy rozwija się panel z dokładniejszymi informacjami o locie. Każdy element zaprezentowany na poniższym rysunku jest zgodny z wcześniej wspomnianą platformą Material Design. Widać na przykład zaokręglenia przycisków charakterystyczne dla produktów marki Google.

Rysunek 2.2.3: Komponent podróży wieloetapowej aplikacji Google Flights

2.3 Porównanie aplikacji

Obie opisane aplikacje są rozwiązaniami komercyjnymi, stworzonymi przez wieloosobowe zespoły programistów. Są systemami sprawnie działającymi, z czytelnym oraz zrozumiałym interfejsem graficznym. Swoją funkcjonalnością są do siebie identyczne, posiadają tą samą ofertę dla użytkownika jednak różnią się jakością jej wykonania.

Zaletami aplikacji Skyscanner jest z pewnością rzetelność jej danych. Jest to potwierdzone ze strony linii lotniczych które wielokrotnie nagradzały tą aplikację. Warto też wspomnieć o jej systemie wyszukiwania lotów. Ilość wyszukanych lotów z przesiadkami często przekracza 100 wystąpień, świadczy to o zaawansowanym silniki wyszukującym i analizującym różne przypadki połączeń. Za wady można uznać dosyć prosty i nieresponsywny interfejs użytkownika. Nie reprezentuje on poziomu nowoczesnych aplikacji.

Druga wyszukiwarka jest bardzo dopracowanym produktem światowego giganta. Jak wcześniej już wspomniano jego szybkość wyszukiwania danych jest bezkonkurencyjna. Aplikacja Skyscanner znacznie jej ustępuje na tym polu. Google Flights jest sprzężona z systemami sprzedażowymi większości przewoźników lotniczych. Daje to możliwość kupna biletu bezpośrednio z jej poziomu bez konieczności przechodzenia na zewnętrzną stronę linii lotniczej. Jej dużą zaletą z pewnością jest dopracowany interfejs zgodny ze standardami reprezentowanymi w rodzimych produktach. Gwarantuje on pełną responsywność oraz czytelność prezentowanych danych.

Wyszukiwarka Google Flights prezentuje się lepiej od aplikacji Skyscanner jednak różnica je dzieląca nie jest duża. W opracowywanej aplikacji starano się w rzetelny sposób zrealizować podstawowe funkcjonalności obu opisywanych wcześniej aplikacji. Komercyjne aplikacje mają dużo przewagę biorąc pod uwagę szybkość wyszukiwania. W powstałej aplikacji czas odpowiedzi na żądania użytkownika jest zauważalnie większy. W warunkach akademickich trudno było o uzyskanie konkurencyjnych rezultatów.

3 Projekt aplikacji

Następnym krokiem po analizie zagadnienia oraz zaznajomieniem się z przykładami istniejących rozwiązań było opracowanie projektu aplikacji. Zadanie to jest mocno związane z dziedziną architektury oprogramowania. Dobrze zaprojektowany system pozwala na uniknięcie wielu kosztownych problemów w przyszłości. Projektowanie aplikacji wymusza na osobie to wykonującej dostatecznie wczesne rozważenia najważniejszych aspektów projektowania w odniesieniu do całego tworzonego systemu.[5]Wynikiem zrealizowania zadań analitycznych są wymagania postawione tworzonemu systemowi. Wynikiem tych działań mogą być takie elementy jak model dziedziny, model wymagań czy model organizacyjny. No podstawie projektu aplikacji ukierunkowuje się zadania implementacyjne, łącznie z projektowaniem detalicznym, tworzeniem kodu, scalaniem oraz testowaniem.

3.1 Ogólna architektura aplikacji

Projektowanie aplikacji wymagało stworzenia czytelnego schematu obrazującego poszczególne części aplikacji oraz sposoby komunikacji między nimi. Aplikację można podzielić na 3 logiczne części:

- Część serwerowa
- Część kliencka
- Baza danych

Każda część posiada unikalną dla siebie funkcjonalność. Ze względu na rozmiar pracy włożony w każde z nich, w tym rozdziale zostaną one krótko opisane. Część serwerowa w całym systemie jest odpowiedzialna za dostarczenie danych do interfejsu użytkownika inaczej nazywanego częścią kliencką. Znajduje się w nim złożony moduł wyszukiwania połączeń lotniczych. Moduł ten sam w sobie posiada złożoną architekturę, zostanie mu poświęcony dedykowany podrozdział. Część kliencka to internetowy interfejs użytkownika. Osadzony jest on w przeglądarce internetowej. W aplikacji nie zdecydowano się na podział względem ról użytkownika. Wynika to z braku takiej potrzeby, każdy użytkownik ją odwiedzający posiada takie same uprawnienia do jej zasobów. Oprócz dwóch wspomnianych wcześniej modułów w skład architektury aplikacji wchodzi relacyjna baza danych która jest nośnikiem danych dla tabeli lotnisk. Kluczowym zagadnieniem jest komunikacja między powyższymi komponentami. W stworzonej aplikacji istnieje kilka rodzajów transportu danych między częściami aplikacji. Każdy z nich zostanie szczegółowo opisany w dalszej części tego rozdziału.

Rysunek 3.1.1: Schemat architektury stworzonej aplikacji

Na rysunku 3.1.1 zamieszczony został schemat architektury stworzonego systemu. Przedstawia on rozdział strukturalny aplikacji oraz drogę jaką musi odbyć żądanie użytkownika w celu uzyskania pożądanej odpowiedzi. Użytkownik po wypełnieniu odpowiednich formularzy w części klienckiej rozpoczyna proces wyszukiwania połączeń lotniczych. Oprogramowanie klienta po pobraniu od użytkownika niezbędnych parametrów takich jak miejsce wylotu czy rodzaj lotu zwraca się do części serwerowej o wyszukanie lotów zgodnych z podanymi parametrami. Komunikacja między tymi modułami odbywa się protokołem HTTP. Po wywołaniu, część serwerowa zwraca się do modułu wyszukiwania lotów. Moduł ten sprawdza wszystkie źródła danych zamieszczone na schemacie 3.1.1 . Zebrane dane są odpowiednio parsowane i przekazywane modułowi wyszukiwania który z kolei zwraca je kontrolerowi wywołanemu przez użytkownika. Kontroler następnie przekazuje dane do części klienckiej która wyświetla je w graficznym interfejsie użytkownika.

3.2 Baza danych

Baza danych nie była sprecyzowana w wymaganiach pracy dyplomowej. Została ona użyta opcjonalnie jako miejsce dające szybki dostęp do danych o lotniskach. Użyto darmowego rozwiązania bazodanowego MySQL. MySQL to system zarządzania bazami danych rozwijany w przeszłości przez firmę MySQL AB, a obecnie przez korporację Oracle. Jest to szybki i obecnie jeden z popularniejszych serwerów baz danych dostępny na licencji GPL¹ jak i w wersjach komercyjnych [6].

¹General Public License

Rysunek 3.2.1: Tabela danych o lotniskach

Jedyna tabela znajdująca się w bazie danych to tabela lotnisk z parametrami wskazanymi powyżej.

3.3 Część kliencka

Aplikacja kliencka została zaimplementowana w technologii Angular 6, otwartym framework'u i platformie do tworzenia SPA². Angular został w całości napisany w języku Type-Script, opiekę nad jego rozwojem sprawuje firma Google. Platforma ta umożliwia tworzenia stron internetowych których treść jest dynamicznie zmieniana bez przeładowywania strony. Przynosi to ogromne korzyści w wydajności aplikacji. Całość kodu napisanego w tym framework'u jest kompilowana do języka JavaScript a następnie renderowana w przeglądarce internetowej. W skład stworzonej aplikacji klienckiej wchodzą dodatkowo dodane zewnętrzne biblioteki. Są to:

- Material Design pakiet oprogramowania od firmy Google do edytowania wyglądu strony
- MDBootstrap zestaw narzędzi z gotowymi komponentami do tworzenia stron internetowych
- NgxSpinner zewnętrzna biblioteka dodająca komponenty ładowania efektów wizualnych
- Bootstrap pakiet oprogramowania do tworzenia responsywnego interfejsu

Implementacja częśći klienckiej jak i jej logiczny podział strukturalny znajdzie się w następnym rodziale.

²Single Page Application

3.4 Część serwerowa

Do opracowania aplikacji serwerowej posłużono się językiem programowania Java w wersji 11 oraz pakietami oprogramowania Spring oraz Hibernate. Java jest w pełni obiektowym językiem programowania z ponad 20 letnią historią. Pierwotnie stworzona i rozwijana przez James Goslinga została przejęta przez korporację Oracle. Głównym założeniem tego języka jest sentencja "Napisz raz, uruchom wszędzie". Te słowa przemawiają za specjalnym mechanizmem kompilowania i uruchamiania kodu przez Javę. Proces zaczyna się od skompilowania plików o rozszerzeniu java do bytecode'u czyli specjalnej sekwencji bajtów rozumianej przez różne systemy operacyjne. Następnym krokiem jest uruchomienie bytecode'u przez virtualną maszynę Javy nazywaną JVM³.[7]

Powstałe oprogramowanie serwerowe jest w dużej mierze oparte na zewnętrznych bibliotekach platformy Spring Framework w wersji 5. Spring jest otwartym źródłowo frameworkiem bazującym na wirtualnej maszynie Javy. Jest zbiorem bibliotek których głównym celem jest rozwiązanie popularnych problemów programistycznych. Został stworzony w roku 2002 jako kandydat do zastąpienia oprogramowania spod znaku JavyEE⁴. W dzisiejszych czasach Spring jest rozwijany przez setki programistów z całego świata co czyni go stale nowoczesną technologią. W części serwerowej Sping Framework odpowiada za komunikację z bazą danych, udostępnienie danych o połączeniach lotniczych aplikacji klienckiej oraz za zabezpieczenia całej aplikacji.

W części serwerowej w celu przyspieszenia prac programistycznych użyto szereg zewnętrznego oprogramowania. Należą do nich biblioteki:

- okhttp klient protokołu HTTP do pobierania zasobów internetowych
- gson biblioteka do parsowania obiektów w notacji JSON
- jackson-dataformat-xml biblioteka do parsowania języka znaczników XML
- jsoup biblioteka do parsowania dokumentów HTML
- ehcache oprogramowanie zarządzające danymi w pamięci podręcznej aplikacji
- commons-csv biblioteka do parsowania plików CSV
- jaxb-api biblioteka języka Java usunięta z głównej ścieżki modułowej w wersji JDK⁵ 9
 W skład części serwerowej wchodzi też cały moduł wyszukiwania połączeń lotniczych.

Ze względu na jego znaczenie zostanie mu poświęcony osobny podrozdział. Implementacja części serwerowej zostanie zaprezentowana w następnym rozdziale.

³Java Virtual Machine

⁴Java Enterprise Edition

⁵Java Development Kit

3.5 Moduł wyszukiwania połączeń lotniczych

Rozwiązanie problemu wyszukiwania połączeń lotniczych było zadaniem trudnym i skomplikowanym. Wymagało to poradzenia sobie z problemem przeszukiwania wielu źródeł danych oraz konwertowania informacji przez nie zwracany do formy zrozumiałem dla części serwerowej oraz klienckiej. Zagadnienie to wymagało stworzenia wyodrębnionego modułu wyszukiwania połączeń lotniczych który został osadzony jako część oprogramowania serwerowego powstałej aplikacji.

Rysunek 3.5.1: Schemat architektoniczny modułu wyszukiwania lotów

Na rysunku 3.5.1 przedstawiono schemat zaprojektowanego modułu wyszukiwania połączeń lotniczych. Zobrazowano na nim przebieg procesu wyszukiwania z uwzględnieniem źródeł danych, sposobów ich uzyskania oraz rodzajów odpowiedzi. Górny opis strzałek oznacza metodę zwrócenia się o dane, natomiast dolna opisuje rodzaj zwróconej treści. Wyszukiwanie rozpoczynało się od wysłania żądania z kontrolera serwerowego do omawianego modułu. Żądanie to musiało uwzględniać w sobie parametry wyszukiwania. Moduł swoją pracę rozpoczyna od pozyskania danych lotniczych z serwisu FlightLookup. Treść odpowiedzi stanowi lwią część

całego obiektu lotu który ma zostać zwrócony. Po otrzymaniu tych danych moduł zwraca się do lokalnej bazy danych o udostępnienie danych lotnisk podając przy tym ich unikalne kody IATA. Następnym krokiem jest pozyskanie cenu lotu. Czynność ta rozpoczyna się od sprawdzenia czy poszukiwana informacja nie znajduje się w cache'u. Jeśli takie dane są zwrócone, cache natychmiastowo zwraca odpowiedni zasób. Jeśli natomiast taka informacja nie jest dostępna, moduł zwraca się do serwisów firmy Skyscanner o udostępnienie cen na poszukiwany przelot. Analogiczna sytuacja dokonuje się w przypadku pozyskiwania danych o linii lotniczej obsługującej lot. Ostatnim etapem jest wyszukanie informacji o dozwolonym bagażu podczas lotu. Jest to zrealizowane przez zwrócenie się do strony internetowej aplikacji Skyscanner posiadającej aktualne i rzetelne dane. Jej adres został wspomniany w rodziale drugim. Po zebraniu wszystkich poszukiwanych informacji oraz sparsowaniu ich, obiekt lotu zwracany jest przez moduł wyszukiwania do kontrolera a następnie do części klienckiej gdzie użytkownik może obejrzeć wyniki całego procesu wyszukiwania.

3.6 Komunikacja między komponentami aplikacji

Opisane we wcześniejszych podrozdziałach komponenty narzucały sposoby komunikacji między nimi. Każde z nich zostanie w tym podrozdziale stosownie przedstawione.

3.6.1 Protokół HTTP

Protokół HTTP⁶ to jeden z najpopularniejszych i powszechnie przyjętych protokołów aplikacji w świecie internetu. Jest to wspólny język między serwerami a klientami umożliwiający modernistyczną sieć. Od prostego początku jako pojedynczego słowa i ścieżki dokumentu stał się protokołem nie tylko dla przeglądarek internetowych ale praktycznie też dla każdego oprogramowania i aplikacji sprzętowych[8]. Cechą protokołu HTTP jest pisanie i negocjowanie reprezentacji danych, co umożliwia budowę systemów niezależnych od przesyłanych danych. Początkowo protokół ten powstał z oznaczeniem wersji 0.9. Jest to obecnie dość stara wersja, używana jednak jeszcze przez niektóre serwery. HTTP 0.9 zostało podniesione do wersji 1.1 który jest najczęściej wykorzystywanym protokołem w internecie. Standard HTTP/1.1 rozwiązał wiele niejednoznaczności protokołu, które znaleziono we wcześniejszych wersjach i wdrożył szereg kluczowych optymalizacji wydajnościowych, dodatkowe mechanizmy buforowania oraz enkrypcję transferu. Jako odpowiedż na ciągle zwiekszajacą się liczbę urządzeń podłączonych do internetu oraz wymagnia wobec niego, w 2012 roku zainicjowano protokół HTTP/2. Głównym jego celem jest poprawa wydajności transportu i osiągnięcie zarówno mniejszych opóźnień i wyższej przepustowości.

⁶Hypertext Transfer Protocol

3.6.2 **JDBC**

JDBC⁷ to standardowy, niezależny od bazy danych interfejs do interakcji z dowolnym źródłem danych opartym na tabelaryczności. Przeważnie jest używany do współdziałania z relacyjnym systemem zarządzania bazami danych. Za pomocą tego interfejsu można też korzystać z dowolnego tabelarycznego źródła danych, takiego jak arkusz csv, plik tekstowy itd. Zazwyczaj używa się go do łączenia z bazą danych, wyszukiwania danych i ich aktualizowania. Umożliwia także wykonywanie procedur SQL w bazie danych przy użyciu składniej niezależnej od bazy danych.[9] Używanie JDBC zwalnia użytkownika z konieczności uczenia się nowej składni za każdym razem pracy na innej bazie danych. JDBC dostarcza zestaw oprogramowania w języku Java do przetwarzania zestawu wyników zapytań SQL w sposób niezależny od bazy danych. W opracowanej aplikacji interfejs JDBC pośredniczył pomiędzy relacyjną bazą danych MySQL a częścią serwerową aplikacji.

3.6.3 I/O

Operacje zapisu oraz odczytu są podstawowymi częściami systemów operacyjnych wraz z językami programowania oraz ich bibliotekami. Prawie wszystkie programy komputerowe wykonują pewne operacje zapisu/odczytu inaczej zwanymi operacjami wejściowymi i wyjściowymi. W opracowanej aplikacji za wykonywanie tych operacji odpowiadał język Java która przez system operacyjny zwracała się do zasobów plikowych lub pamięci podręcznej. Operacje I/O dotyczą systemu plików, który jest elementarnym składnikiem każdego systemu operacyjnego. Zarządza on archiwizacją danych oraz ich poźniejszym odzyskiwaniem. System plików przetrzymuje dane w plikach, które zaś są przechowywane w katalogach. Dostęp do plików oraz katalogów uzyskuje się przez zdefiniowanie ścieżek dostępu, które lokalizują obiektu systemu plików.[10]

⁷Java Database Connectivity

4 Implementacja

Następstwem stworzenia projektu aplikacji jest implementacja oprogramowania zawartego w założeniach pracy dyplomowej. Zostanie ona szczegółowo opisana w tym rozdziale. Jego treść została stworzona na podstawie projektu aplikacji oraz zagadnień poruszonych w poprzednich rozdziałach. Stworzona aplikacja została podzielona według założonych wymagań opisanych na stronie 3. Została podzielona na dwie logiczne części: stronę serwerową oraz kliencką. Zostały one ogólnie opisane w poprzednim rozdziale, w tej części pracy skupiono się zagadnieniach związanych z implementacją zaimplementowanego oprogramowania.

4.1 Oprogramowanie po stronie klienta

Część kliencka to osobna aplikacja osadzona w przeglądarce internetowej. Został w niej stworzony graficzny interfejs użytkownika oraz serwis odbierający dane od części serwerowej.

4.1.1 Podział strukturalny

Aplikacja kliencka została logicznie podzielona na cztery pakiety:

```
    I app
    I app
    I ayout
    I model
    I pages
    I services
    TS app-routing.module.ts
    I app.component.html
    I app.component.scss
    I app.component.ts
    I app.module.ts
```

Rysunek 4.1.1: Struktura plików części klienckiej

Pakiet *layout* przechowuje komponenty o wielokrotnym użyciu w aplikacji klienckiej. Katalog *model* zawiera odpowiedniki klas modelowych z części serwerowej. Kolejnym elementem jest pakiet *pages*. Znajdują się w nim komponenty renderujące kompletne strony internetowe. Zostały zbudowane z segmentów stworzonych w katalogu *layout*. Ostatnią częścią aplikacji klienckiej jest pakiet *services*. Zawiera on oprogramowanie odpowiedzialne za komunikowanie się z serwerem.

4.1.2 Moduły pobierania danych

W części klienckiej zaimplementowano serwisy odbierające dane z części serwerowej. Pierwszym z nich jest odpowiedzialny za połączenie z modułem wyszukiwania po stronie serwera. Zawiera on dane adresu sieciowego serwera udostępniającego zebrane wyniki wyszukiwania połączeń lotniczych.

```
import { Injectable } from '@angular/core';
 import { baseUrl } from '../../environments/environment';
 import { HttpClient } from '@angular/common/http';
 import { Observable } from 'rxjs';
 import { MultiFlight } from 'src/app/model/interfaces/MultiFlight';
 @Injectable({
  providedIn: 'root'
 })
10 export class FlightsService {
11
12
   getFlightsURL: string = baseUrl + 'api/flights/';
13
   constructor(private http: HttpClient) {
   }
15
16
   getFlights(originAirport: string, destinationAirport: string,
      departureDate: string, typeOfConnection: string, currency: string) :
      Observable<MultiFlight[]>{
    var requestUrl = this.getFlightsURL + originAirport + '/' +
        destinationAirport + '/' + departureDate + '/' + typeOfConnection + '
        /' + currency;
    return this.http.get<MultiFlight[]>(requestUrl);
19
   }
20
21
22 }
```

Listing 4.1.1: Kod źródłowy funkcji pobierającej wyniki z serwera

Na powyższym listingu przedstawiono fragment oprogramowania pobierający wyniki wyszukiwania. Funkcja *getFlights* przyjmuje 5 parametrów które zapewnia jej użytkownik. Pierwszym procesem tej funkcji jest zbudowanie adresu URL który posłuży do zbudowania żądania pobrania danych. Jej działanie polega na złączeniu wcześniej wspomnianych parametrów oddzielając je znakiem "/" w roli separatora. Ostatnim krokiem jest stworzenia żądania GET protokołu HTTP.

Drugim zaimplementowanym serwisem jest prosta funkcja pobierające dane o lotniskach. Jej działanie zostanie przedstawione na kolejnym listingu.

```
import { Injectable } from '@angular/core';
 import { HttpClient, HttpErrorResponse } from '@angular/common/http';
 import { baseUrl } from '../../environments/environment';
 import { Airport } from '../../model/interfaces/Airport';
 import { Observable, throwError } from 'rxjs';
 import { catchError, retry } from 'rxjs/operators';
 export class AirportsService {
   getAirportsUsingIncompletePhraseURL: string = baseUrl + 'api/airports/
      getAirportsStartingWith/';
11
   getAirportsStartingWithPhrase(phrase: string): Observable<Airport[]>{
12
    return this.http.get<Airport[]>(this.getAirportsUsingIncompletePhraseURL
13
         + phrase).pipe(catchError(this.handleError));
   }
14
 }
```

Listing 4.1.2: Kod źródłowy funkcji pobierającej wyniki z serwera

Działanie przedstawionego kodu źródłowego rozpoczyna się od stworzenia adresu URL pod którym część serwerowa udostępnia poszukiwane dane. Do zmiennej *baseUrl* oznaczającej domenę serwera zostaje dodana część sparametryzowana dla danych o lotniskach. Funkcja zwraca obiekty typu *Airport* oraz dodatkowo obsługuje błędy zwrócone z drugiej części aplikacji.

4.0		•	4	
4.2	Oprogramo	wanie bo	stronie	serwera

test

5 Testy

test

6 Uwagi i wnioski

test

Bibliografia

- [1] XML. Almanach, Elliotte Rusty Harold, W.Scott Means, Wydawnictwo O'REILLY
- [2] https://www.json.org/ Stan na dzień 03.01.2019
- [3] https://en.wikipedia.org/wiki/HTML Stan na dzień 04.01.2019
- [4] Instant Effective Caching with Ehcache, Daniel Wind, Packt Publishing
- [5] tworzenie architektury oprogramowania, Christine Hofmeister, Robert Nord, Wydawnictwo Naukowo-Techniczne Warszawa
- [6] MySQL Darmowa baza danych Ćwiczenia praktyczne, Marcin Lis, Wydawnictwo Helion
- [7] Java Programming Basics, Simon Roberts, Addison-Wesley Professional
- [8] HTTP Protocols, Ilya Grigorik, wydawnictwo O'REILLY
- [9] Beginning Java 8 APIs, Extensions and Libraries Swing, JavaFX, JavaScript, JDBC and Network Programming APIs, Altamash Shaikh
- [10] Java I/O, NIO, NIO.2, Jeff Friesen