International IOR Rectifier

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

IRF5210PbF

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V	-40	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V	-29	Α
I _{DM}	Pulsed Drain Current ①	-140	
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	780	mJ
I _{AR}	Avalanche Current①	-21	Α
E _{AR}	Repetitive Avalanche Energy®	20	mJ
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		∞
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{eJA}	Junction-to-Ambient		62	

IRF5210PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		•				
	Parameter	Min.	Тур.	Max.	Units	Conditions
(BR)DSS	Drain-to-Source Breakdown Voltage	-100			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$I_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.11		V/°C	Reference to 25°C, I _D = -1mA
DS(on)	Static Drain-to-Source On-Resistance			0.06	Ω	V _{GS} = -10V, I _D = -24A ④
GS(th)	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$
s	Forward Transconductance	10			S	V _{DS} = -50V, I _D = -21A
I _{DSS}	Drain-to-Source Leakage Current			-25	μA	V _{DS} = -100V, V _{GS} = 0V
SS	Drain-to-oddree Leakage Garrent			-250	μΑ	$V_{DS} = -80V$, $V_{GS} = 0V$, $T_{J} = 150$ °C
	Gate-to-Source Forward Leakage			100	nΑ	V _{GS} = 20V
SS	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
g	Total Gate Charge			180		I _D = -21A
gs	Gate-to-Source Charge			25	nC	$V_{DS} = -80V$
gd	Gate-to-Drain ("Miller") Charge			97		V_{GS} = -10V, See Fig. 6 and 13 \oplus
(on)	Turn-On Delay Time		17			V _{DD} = -50V
	Rise Time		86			I _D = -21A
(off)	Turn-Off Delay Time		79		115	$R_G = 2.5\Omega$
	Fall Time		81			R_D = 2.4 Ω , See Fig. 10 \oplus
	Internal Drain Industance		15			Between lead,
)	Internal Drain Inductance		4.5		nu	6mm (0.25in.)
L _S	Internal Source Inductance		7.5		'''	from package
						and center of die contact
iss	Input Capacitance		2700			V _{GS} = 0V
oss	Output Capacitance		790		pF	$V_{DS} = -25V$
rss	Reverse Transfer Capacitance		450			f = 1.0MHz, See Fig. 5
(on) (off) Consists	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance		86 79 81 4.5 7.5 2700 790		ns nH pF	$V_{DD} = -50V$ $I_D = -21A$ $R_G = 2.5\Omega$ $R_D = 2.4\Omega, \text{ See Fig. 10 } \oplus$ Between lead, $6\text{mm } (0.25\text{in.})$ from package and center of die contact $V_{GS} = 0V$ $V_{DS} = -25V$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions									
Is	Continuous Source Current			40		MOSFET symbol									
	(Body Diode)		-40	О А	showing the										
I _{SM}	Pulsed Source Current		4.4		4.40	4.40	4.40	4.40	4.40	1.40	1.40	4.40	1.40	, ,	integral reverse
	(Body Diode) ①		140		p-n junction diode.										
V _{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25$ °C, $I_S = -21$ A, $V_{GS} = 0$ V \oplus									
t _{rr}	Reverse Recovery Time		170	260	ns	T _J = 25°C, I _F = -21A									
Q _{rr}	Reverse RecoveryCharge		1.2	1.8	μC	di/dt = -100A/µs									
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)													

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② V_{DD} = -25V, starting T_J = 25°C, L = 3.5mH R_G = 25 Ω , I_{AS} = -21A. (See Figure 12)
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

I⇔R

IRF5210PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

I≎R

IRF5210PbF

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

IRF5210PbF

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 2 CONTROLLING DIMENSION: INCH
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

> ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 06/04