Adaptive Pipe Replacement Planning Using Graph Neural Networks: A Multi-Factor Predictive Model for Infrastructure Renewal

CIE 500 Research Project

Linyue Luo 02/20/2025

Background

Water distribution systems are critical infrastructures that require continuous maintenance to ensure reliable service. **Aging pipes, increasing roughness, and frequent pipe breaks** lead to reduced efficiency, higher maintenance costs, and potential health risks. Traditional pipe replacement strategies rely on heuristic methods or rule-based approaches, which may not be optimal in terms of cost-effectiveness and long-term system performance.

Motivation

Aging Water Infrastructure: Many water distribution systems worldwide are over **50–100 years old**, experiencing increasing failures.

High Cost & Limited Budgets: Pipe replacement is **expensive**, and utilities must optimize **where and when** to replace pipes for maximum impact.

Reactive vs. Predictive Strategies: Traditional maintenance focuses on fixing failures after they occur, rather than preventing them with data-driven insights.

Advances in Graph Neural Networks: GNN provide a network-aware learning framework, capturing topological dependencies and predicting failures before they occur.

Reference 1 - Convolutional Graph Neural Networks for Leak Detection

- Uses Convolutional GNN to detect leaks in water distribution networks.
- Combines node and pipe-segment features for improved leak detection accuracy.
- Achieves high precision even in sparse sensor networks.
- Synthetic and real-world leak data validate the model's robustness.

Figure 3. The process of fusing node features into segment features through convolutional layers. (a) Pipe segment 5 in the water supply network. (b) Convolutional layer connectivity. (c) Receptive field expansion of node 5. (d) Receptive field expansion of node 6. (e) Final receptive field of pipe segment 5.

Reference 2 – Decision Strategies for Pipe Maintenance

- Highlights the importance of values and trade-offs in pipe maintenance decisions.
- Uses Monte Carlo simulations to assess long-term pipe replacement strategies.
- Studies the impact of different operator priorities (e.g., cost, service reliability, sustainability).
- Finds that proactive pipe replacement reduces failures and improves service quality.

Fig. 1. Global flow diagram for the Monte Carlo pipe failure model.

Reference 3 – Leakage Detection and Water Loss Management Using NN

- Proposes a DBSCAN-MFCN model for leakage detection in water supply networks.
- Uses Density-Based Spatial Clustering (DBSCAN) to segment the water network into zones.
- Applies a Multiscale Fully Convolutional Network (MFCN) for detecting leaks within those zones.
- Uses hydraulic simulations from EPANET to train the detection model.

How The Project Advances the Field

- This model shifts from leak detection to **predictive pipe replacement**, incorporating **wear, roughness, and breaks**.
- Optimized pipe replacement schedules using multi-objective learning.
- Cost-effective planning strategies considering utility budgets and service reliability.

• Integrate real-time sensor data for improved forecasting?