

Poisson Algebras I, Non-commutative Algebra

Maram Alossaimi (Supervisor: Prof. Vladimir Bavula)

School of Mathematics and Statistics, malossaimi1@sheffield.ac.uk\maram.alosaimi@gmail.com

1. Introduction

A commutative algebra D over a field K is called a *Poisson algebra* if there exists a bilinear product $\{\cdot,\cdot\}:D\times D\to D$, called a *Poisson bracket*, such that

1. $\{a,b\} = -\{b,a\}$ for all $a,b \in D$ (anti-commutative),

2. $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$ for all $a, b, c \in D$ (Jacobi identity), and

3. $\{ab,c\} = a\{b,c\} + \{a,c\}b$ for all $a,b,c \in D$ (Leibniz rule).

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a *Poisson ideal* of D if $\{D,I\}\subseteq I$. We denote by $\langle a \rangle$ the Poisson ideal of D generated by the element a. Moreover, a Poisson ideal P of the algebra D is a *Poisson prime ideal* of D provided

$$IJ \subseteq P \Rightarrow I \subseteq P$$
 or $J \subseteq P$

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by $\mathsf{PSpec}(D)$.

Definition. Let D be a Poisson algebra over a field K. A K-linear map $\alpha: D \to D$ is a *Poisson derivation* of D if α is a K-derivation of D and

$$\alpha(\{a,b\}) = \{\alpha(a),b\} + \{a,\alpha(b)\} \quad \text{for all } a,b \in D.$$

A set of all Poisson derivations of D is denoted by $\operatorname{PDer}_K(D)$.

2. How do we get our Poisson algebra class A?

Lemma. [Oh] Let D be a Poisson algebra over a field K, $c \in K$, $u \in D$ and α , $\beta \in PDer_K(D)$ such that

$$\alpha\beta = \beta\alpha \quad and \quad \{d, u\} = (\alpha + \beta)(d)u \quad for \, all \, d \in D.$$
 (1)

Then the polynomial ring D[x,y] becomes a Poisson algebra with Poisson bracket

$$\{d,y\}=\alpha(d)y,\quad \{d,x\}=\beta(d)x\quad \ \ \, \text{and}\quad \{y,x\}=cyx+u \ \ \text{for all}\ \ d\in D.$$

The Poisson algebra D[x,y] with Poisson bracket (2) is denoted by $(D;\alpha,\beta,c,u)$.

3. How do we classify A?

We aim to classify all the Poisson algebra's $\mathcal{A}=(K[t];\alpha,\beta,c,u)$, where K is an algebraically closed field of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson bracket, i.e. $\{a,b\}=0$ for all $a,b\in K[t]$). Notice that, it follows from the second part of equality (1) that

$$0 = \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in K[t],$$

which implies that precisely one of the three cases holds:

(Case I:
$$\alpha + \beta = 0$$
 and $u = 0$), (Case II: $\alpha + \beta = 0$ and $u \neq 0$) or (Case III: $\alpha + \beta \neq 0$ and $u = 0$).

4. What have we done so far?

The next lemma states that in order to complete the classification of Poisson algebra class \mathcal{A} . This lemma describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and $\alpha, \beta \in PDer_K = Der_K(K[t]) = K[t] \partial_t$ such that $\alpha = f \partial_t$ and $\beta = g \partial_t$, where $f, g \in K[t] \setminus \{0\}$, $\partial_t = d/dt$ then

$$\alpha\beta = \beta\alpha$$
 if and only if $g = \frac{1}{\lambda}f$ for some $\lambda \in K^{\times} := K \setminus \{0\}.$ (3)

By using the previous lemma, we can assume that $\alpha = f\partial_t$, $\beta = \frac{1}{\lambda}f\partial_t$, $c \in K$, $u \in K[t]$, where $f \in K[t]$ and $\lambda \in K^{\times}$. Then we have the class of Poisson algebras $\mathcal{A} = K[t][x,y] = (K[t]; \alpha = f\partial_t, \beta = \frac{1}{\lambda}f\partial_t, c, u)$ with Poisson bracket defined by the rule:

$$\{t, y\} = fy,$$
 $\{t, x\} = \frac{1}{\lambda}fx$ and $\{y, x\} = cyx + u.$ (4)

The next diagram shows the first case (Case I) of Poisson algebra class A.

Diagram 1: Structure of the first case of Poisson algebra class ${\mathcal A}$

Case I:
$$\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$$
 and $u = 0$

Case I.1:

If f = 0, i.e. $\alpha = \beta = 0$ and u = 0 then $A_1 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = cyx.$$
 (5)

Case I.1.1: If c = 0 then the polynomial Poisson algebra $A_2 = (K[t]; 0, 0, 0, 0)$ has trivial Poisson structure and $PSpec(A_2)$ is the spectrum of the polynomial ring in three variables, i.e. Spec(K[t, x, y]).

Case I.1.2: If $c \in K^{\times}$ then $A_3 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket (5), we found $PSpec(A_3)$, see diagram 2.

 ${f Diagram~2:}$ The containment information between Poisson prime ideals of ${\cal A}_3$

Case I.2:

If $\lambda = -1$, i.e. $\beta = -\alpha = -f\partial_t$ for some $f \in K[t] \setminus \{0\}$ and u = 0 then $A_4 = (K[t]; f\partial_t, -f\partial_t, c, 0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\} = fy, \qquad \{t,x\} = -fx \qquad \text{and} \qquad \{y,x\} = cyx.$$
 (6)

Case I.2.1: If c=0 then $A_5=(K[t];f\partial_t,-f\partial_t,0,0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\} = fy, \qquad \{t,x\} = -fx \qquad \text{and} \qquad \{y,x\} = 0.$$
 (7)

Case I.2.1.1:

If $f \in K[t] \setminus K$ and $R_f = \{\lambda_1, \dots, \lambda_s\}$ is the set of distinct roots of f then $A_6 = (K[t]; f\partial_t, -f\partial_t, 0, 0)$ is a Poisson algebra with Poisson bracket (7), we found $PSpec(A_6)$, see diagram 3.

 ${f Diagram~3:}$ The containment information between Poisson prime ideals of ${\cal A}_6$

Case I.2.1.2:

If $f = a \in K^{\times}$, i.e. $R_a = \emptyset$ then $A_7 = (K[t]; a\partial_t, -a\partial_t, 0, 0)$ is a Poisson algebra with Poisson bracket $\{t, y\} = ay, \quad \{t, x\} = -ax \quad \text{and} \quad \{y, x\} = 0.$

We found PSpec(A_7), see diagram 4.

 ${f Diagram~4:}$ The containment information between Poisson prime ideals of ${\cal A}_7$

Case I.2.2: If $c \in K^{\times}$ then $A_8 = (K[t]; f\partial_t, -f\partial_t, c, 0)$ is a Poisson algebra with Poisson bracket (6). Case I.2.2.1:

If $f \in K[t] \setminus K$ and $R_f = \{\lambda_1, \dots, \lambda_s\}$ is the set of distinct roots of f then $A_9 = (K[t]; f\partial_t, -f\partial_t, c, 0)$ is a Poisson algebra with Poisson bracket (6), we found $PSpec(A_9)$, see diagram 5.

 ${f Diagram~5}:$ The containment information between Poisson prime ideals of ${\cal A}_9$

Case I.2.2.2:

If $f = a \in K^{\times}$, i.e. $R_a = \emptyset$ then $A_{10} = (K[t]; a\partial_t, -a\partial_t, c, 0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\}=ay, \qquad \{t,x\}=-ax \qquad \text{and} \qquad \{y,x\}=cyx.$$

The Poisson spectrum of A_{10} is a subset of $PSpec(A_9)$.

5. Conclusion / Future research

A classification of Poisson prime ideals of \mathcal{A} was obtained in 10 cases out of 22. We will complete the classification of \mathcal{A} . Then we aim to classify some simple finite dimension modules over the class \mathcal{A} .

Acknowledgements

I would like to thank my supervisor Vladimir for providing guidance and feedback throughout this research. Also, I would like to thank my sponsor the University of Imam Mohammad Ibn Saud Islamic.

References

[Bav] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105 - 119.

[GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1-85, 105-122 and 166-186.

Oniversity Press. (2004), pages 1 - 85, 105 - 122 and 100 - 180. [Oh] Sei-Qwon Oh, Poisson polynomial rings. Communications in Algebra, **34** (2006), 1265 - 1277.