```
dat2 = load("C:\Users\buing\Documents\MATLAB\CBE 562\isopropanol(1)-
water(2).dat")
dat2\_rand\_2 = dat2(4:40,2) + (-0.002 +
 (0.004).*rand(length(dat2(4:40,2)),1));
dat2\_rand\_3 = dat2(2:38,3) + (-0.002 +
 (0.004).*rand(length(dat2(2:38,3)),1));
dat2 rand = dat2;
dat2\_rand(4:40,2) = dat2\_rand\_2;
dat2\_rand(2:38,3) = dat2\_rand\_3;
dat = dat2_rand;
Psat1 = 58;
Psat2 = 32.01;
x1 = dat(:,2);
y1 = dat(:,3);
x2 = 1.- dat(:,2);
opt = optimoptions('fmincon','Display','off','Algorithm','sqp');
P 1 = dat(:,1).*750;
need to set equality of P = x1*exp(A12(x2)^2)*Psat1 +
x2*exp(A12(x1)^2)*Psat2
g1 = \exp(A12x2^2)
% \exp(A12x2^2)x1Psat1/y1 = P
% => \exp(A12x2^2) = y1P/x1Psat1
A12x2^2 = \log(y1P/x1Psat1) = Beq
Aeq = x2.^2;
Beq = log(y1.*P_1./(x1.*Psat1));
theta= fmincon(@func,2,[],[],Aeq,Beq,[],[],[],opt);
A12 = (theta);
theta est = A12
%back calculate g1 and g2
x1_pre = linspace(0.001, 0.999, 100);
x2_pre = 1.- x1_pre;
q1 pre = exp(A12*(x2 pre.^2));
g2_pre = exp(A12*(x1_pre.^2));
P1 pre = Psat1.*x1 pre.*q1 pre + Psat2.*x2 pre.*q2 pre;
y1_pre = g1_pre.*x1_pre.*Psat1./P1_pre;
%output
plot(x1,P_1,':xr')
hold on
plot(y1,P_1,':xb')
plot(x1_pre,P1_pre,'-r')
plot(y1_pre,P1_pre,'-b')
title('one-parameter model')
legend('online data x1', 'online data y1', 'model predict x1', 'model
predict y1','location','best')
ylabel('P(mmHq)')
xlabel('x1,y1')
function LogL1 = func(theta)
qlobal x2 x1
LogL1 = [(theta*sum(x2.^2))];
end
```

7	_	+	2	_	_
u	$\boldsymbol{\alpha}$	1.	/.	_	-

0.0437	0.0010	0.0213
0.0437	0.0010	0.0213
0.0446	0.0020	0.0413
0.0454	0.0030	0.0601
0.0463	0.0040	0.0778
0.0479	0.0060	0.1105
0.0494	0.0080	0.1398
0.0509	0.0100	0.1662
0.0573	0.0200	0.2667
0.0626	0.0300	0.3331
0.0668	0.0400	0.3797
0.0730	0.0600	0.4393
0.0771	0.0800	0.4744
0.0799	0.1000	0.4964
0.0834	0.1500	0.5240
0.0847	0.2000	0.5350
0.0853	0.2500	0.5406
0.0857	0.3000	0.5451
0.0861	0.3500	0.5504
0.0866	0.4000	0.5576
0.0870	0.4500	0.5673
0.0875	0.5000	0.5799
0.0878	0.5500	0.5958
0.0880	0.6000	0.6154
0.0881	0.6500	0.6391
0.0878	0.7000	0.6676
0.0872	0.7500	0.7015
0.0863	0.8000	0.7419
0.0849	0.8500	0.7899
0.0831	0.9000	0.8473
0.0822	0.9200	0.8733
0.0812	0.9400	0.9014
0.0801	0.9600	0.9317
0.0795	0.9700	0.9478
0.0789	0.9800	0.9645
0.0783	0.9900	0.9819
0.0782	0.9920	0.9854
0.0781	0.9940	0.9890
0.0779	0.9960	0.9927
0.0779	0.9970	0.9945
0.0778	0.9980	0.9963
0.0777	0.9990	0.9982

Published with MATLAB® R2020a