TWITER SENTIMENT ANALYSIS

APPLE & GOOGLE PRODUCTS

OBJECTIVE

Build a sentiment analysis model to automatically classify tweets as positive, negative, or neutral.

STAKEHOLDERS

Product Team

Marketing and Brand managers

Data Scientist

Understand user feedback

Tracking brand perception

Monitor sentiment trends

Binary Classification

B E S T MODEL: SVM with 89.1% Accuracy

Multi-Class model

Best Model: Tuned SVM with 69.1% accuracy.

INSIGHTS

Because key words are great for catching your audience's attention

iPad had the most tweets, showing high public interest and sentiment. Apple, iPad/iPhone apps, and Google followed, while other Apple products and Google services had fewer mentions.

MULTI-CLASS MODEL PERFORMANCE

SVM performed best (69.1% accuracy).

Logistic Regression followed (67.5%), ahead of Naive Bayes (62%). SVM & Logistic Regression had more false positives, while Naive Bayes had more false negatives.

SUMMARY OF MODELLING RESULTS

BINARY: NAIVE BAYES ACHIEVED THE HIGHEST ACCURACY (85.3%) TUNED LINEARSVC: 85% TRAINING AND 69% TESTING ACCURACY, EFFECTIVELY BALANCING BIAS AND VARIANCE.

THANKS

Do you have any questions?

GROUP 2 PRESENTATION

Neema Naledi, Henia June, Morgan Amwai, Brian Kimathi, Mark Muriithi