Scalable Machine Learning Agenda

```
1:30 - 3:00 - R in HPC
```

3:15 - 3:30 - Break

3:15 - 3:40 - Intro to Spark

3:45 - 4:15 – ML with pySpark

4:15 - 4:45 - Spark R

4:45 - 5:00 - Wrap-up

(or subtract 5 hrs for 8:30-12)

R, Scaling R, Parallel R

- A Glimpse of R (recap)
- R and Scaling
- Parallel options for R
- R on Comet exercise

A typical R development workflow

 R studio: An Integrated development environment for R on your local machine – good for development

Environment
Information on
variables and
command history

Plots, help docs, package lists

R commands in brief

A typical R code workflow:

```
#READ DATA (housing mortage cases)
              =read.csv('hmda aer.csv',header=T,stringsAsFactors=T)
#SUBSET DATA
indices_2keep =which(X[,'s13'] %in% c(3,4,5)))
              =X[unique(indices_2keep),]
#CREATE/TRANSFORM VARIABLES
              = as.numeric(X[,'s46']/100)
                                             #debt2income ratio
pi rat
              = as.numeric(X[,'s13'] %in% c(3,4)) #make race values 1-4 into values 0 or 1
race
              = as.numeric(X[,'s7']==3)
                                              #make deny values into 0 or 1,
deny
                                                 1 only for deny='3'
#RUN MODEL and SHOW RESULTS
Im result
              =lm(deny~race+pi_rat)
                                          #lm is 'linearmodel'
summary(Im result)
```


R strengths for HPC

- Sampling/bootstrap methods
- Data Wrangling
- Particular Statistical procedures that you won't find implemented anywhere else, e.g.
 - Multiple Imputation methods,
 - Instrument Variable (2 stage) Regression
 - Matching subjects for pairwise analysis
 - MCMC routines

Scaling, practically

- Scaling (with or without more data):
 - more complex analysis (ie optimizations)
 - more sampling (ie more trees in Random Forest)
- Sometimes easy to parallelize (like with sampling)
- Sometimes too much communication between parts (matrix inversion)

R Scaling In a nutshell

- R takes advantage of math libraries for vector operations
- R packages provide multicore, multimode, or distributed data (SparkR) options
- However, model implementations not necessarily built to use parallel backends
 - Some models more amenable to parallel versions

Consider Regression Computations

- Linear Model: Y = X * B where Y=outcomes, X=data matrix
- Algebraically, we could:
 - take "inverse" of X * Y = B (time consuming)
 - use derivatives to search for solutions (very general)
- Or, better:
 - QR decomposition of X into triangular matrices (easier to solve but more memory)

Consider Regression models in R

Related Models and Functions :

All these work on system of equations

Solving Linear Systems Performance with R, 1 compute node

R: glm(Y~X,family=gaussian) #gaussn regrssn (like lm) glm(Y~X,family=binomial) # logistic regrssn (Y=0 or 1)

Machine learning models: Performance on 1 compute node

- 'doParallel' package provides the back end to the 'for each' parallel processing command
- uses threads across cpu cores to pass data & commands

 Updates and combines the previous 'snow' and 'multicore' packages, so that is also works for multinode.

See https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

Run loop iterations on separate cores

install.packages(doParallel) library(doParallel) registerDoParallel(cores=24) allocate workers

Run loop iterations on separate cores

%dopar% puts loops across cores, (loops are independent) %do% runs it serially

Run loop iterations on separate cores

```
%dopar% puts loops
                                                     allocate workers
               install.packages(doParallel)
                                                                             across cores,
               library(doParallel)
                                                                             (loops are independent)
               registerDoParallel(cores=24)
                                                                             %do% runs it serially
                    my_data_frame = .....
                    my results = foreach(i=1:24,.combine=rbind) %dopar%
                           vour code here
returned items
                                                                  specify to combine results into
                        return( a variable or object)
'combined' into list
                                                                  array with row bind
by default
```

Run loop iterations on separate cores

```
%dopar% puts loops
BEWARE:
                                                     allocate workers
               install.packages(doParallel)
                                                                             across cores,
foreach will
               library(doParallel)
                                                                             (loops are independent)
copy data it
               registerDoParallel(cores=24)
                                                                             %do% runs it serially
thinks is need to
every core
                    my data frame = .....
                    my results = foreach(i=1:24,.combine=rbind) %dopar%
                           vour code here
returned
           ems
                                                                 specify to combine results into
                        return( a variable or object)
'combined
                                                                 array with row bind
by default
```

R multinode: parallel backend

Run loop iterations on separate nodes

library(doParallel)

cl <- makeCluster(48)
registerDoParallel(cl)</pre>

allocate cluster as parallel backend

✓

R multinode: parallel backend

Run loop iterations on separate nodes

```
library(doParallel)

cl <- makeCluster(48)
registerDoParallel(cl)

my_data_frame = .....

results = foreach(i=1:48,.combine=rbind) %dopar%
{ ... your code here

return( a variable or object )
})
stopCluster(cl)

allocate cluster as
parallel backend

%dopar% puts loops
across cores and
nodes
```

R multinode: parallel backend

Run loop iterations on separate nodes

```
BEWARE:
                    library(doParallel)
                                                      allocate cluster as
foreach will
                                                      parallel backend
copy data it
                    cl <- makeCluster(48)
thinks is need to
                    registerDoParallel(cl)
                                                                                   %dopar% puts loops
every node -
                                                                                   across cores and
                    my_data_frame = .....
that can take a
                                                                                   nodes
long time!
                    results = foreach(i=1:48,.combine=rbind) %dopar%
                      { ... your code here
                         return( a variable or object)
                    stopCluster(cl)
```

Multiple Compute Nodes not always help

less nodes is better for inversion

1. Split up data into N parts

1. Split up data into N parts

In slurm batch script: ibrun -np processors My-perl-script

My-perl-script: get cpu-id & pass it to R

- Split up data into N parts
- 2. In slurm batch script: ibrun -np processors My-perl-script

Init MPI and get
My-perl-script:
get cpu-id &
pass it to R

No other MPI calls made

1. Split up data into N parts

2. In slurm batch script:

ibrun -np processors My-perl-script

CPU Core 1

CPU Core 2

My-perl-script: get cpu-id & pass it to R

My-perl-script: get cpu-id & pass it to R

My-perl-script: get cpu-id & pass it to R

CPU Core N

1. Split up 2. In slurm batch script: data into N ibrun -np processors My-perl-script parts CPU Core N CPU Core 1 CPU Core 2 My-perl-script: My-perl-script: My-perl-script: get cpu-id & get cpu-id & get cpu-id & pass it to R pass it to R pass it to R R script: R script: R script: process process process dataset 1 dataset 2 dataset N

1. Split up 2. In slurm batch script: data into N ibrun -np processors My-perl-script parts CPU Core N CPU Core 1 CPU Core 2 My-perl-script: My-perl-script: My-perl-script: get cpu-id & get cpu-id & get cpu-id & pass it to R pass it to R pass it to R R script: R script: R script: process process process dataset 1 dataset 2 dataset N Final R script: combine N outputs

More programming but more flexible


```
#!/bin/bash
                       # slurm script for a batch job on comet
                       # to run a task on individual cores
                       #SBATCH --job-name="packR"
                       #SBATCH --output="serial-pack.%j.%N.out"
                       #SBATCH --partition=compute
   Normal
                       #SBATCH --nodes=2
                       #SBATCH --ntasks-per-node=24
   batch
                       #SBATCH --export=ALL
   iob info
                       #SBATCH -t 1:00:00
                       #SBATCH -A sds164
                       bash
                       #Generate a hostfile from the slurm node list
                       export SLURM_NODEFILE=`generate_pbs_nodefile`
                       module load R
                       #launch 24x2=48 tasks on 48 cores,
ibrun the
                       # and start this perl script on each task
'bundler' perl
                       ibrun --npernode 24 --tpp 1 perl ./bundlerxP.pl
script on 24
cores per
                       #One can also run hybrid:
nodes, and 1
                       # launch 1 process per node, with 24 threads, and
                       # use doParallel
thread each
                       ibrun --npernode 1 --tpp 24 perl ./bundlerxP.pl
```



```
the
                    #!/usr/bin/perl
   'bundler'
                    use strict;
   Perl
                    use warnings;
                                                                           the backtick
   script
                                                                           executes system
                                                                           command
                    my ($myid, $numprocs) = split(/\s+/, `./getid`);
Get current
cpu id and
number of
                    # launch an R session for this task
processes
                    my $task_index = $myid+1;
                    `module load R;/opt/R/bin/Rscript Test_PackingR.R $task_index >
                                        Rstd_out.$task_index.txt`;
                               execute R
                               and pass the
                               rank id as an
```

argument

Scaling doParallel vs 'Packing' R sessions

- Packing independent R sessions onto cores is more flexible for:
 - data management
 - large number of separate models
 - large variation in time per model
 - large matrix operations repeated
 - hybrid multimode/multicore scripts

But requires more programming or preprocessing

Example: scaling MCMC

Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models, Frederico Bumbaca, UCIrvine, et al in print

- Probabilities of user web activity interdependent through a hierarchical model
- MCMC search for probabilities made independent through a phased approach.
- Ran on SDSC Comet with 'serial packing' parallelization

(Using rhierMnlRwMixturefunction in the R package, bayesm)

# Individuals	Cores	Individ per Core	Total Minutes (I/O time)
100 million	1,7282 (max)	~ 58K	206 (38)

Example 2: scaling MCMC

Localizing social media hot spots (work in progress with UCIrvine)

- Individual spatial mixture models for users' geocoded social media use
- MCMC search for location probabilities are independent across users, but convergence time varies depending on user variations
- Ran on SDSC Comet with 'serial packing' parallelization, with many cores for short runs, then few cores for longer runs

(using Rgeoprofile package with MCMC)

# Individuals	Cores	Approx Hours
~3000	192-288	2-3
~2000	48-96	4-8
~100	24	12-24

Example 3: scaling likelihood estimation

Social network evolution (work in progress with UTDallas)

- A large model of users' connections with interdependent variance terms for different actions
- Optimization, with ~70M observations (5-8Gb), takes > 48 hours on 1 compute node.
- R parallel copies too much data across nodes or cores
- R-mpi not flexible enough with nodes and cores
- Ran with 'serial packing' parallelization on parts of data across nodes, with R parallel across cores (but not all cores),

(using Optim, doParallel, and send results back to main node through files)

# Connections	Nodes (Cores)	Approx Hours
~70M	12 (180 of 288)	2-3

Installing your own R Packages

• In R:

install.packages('package-name')

(see https://cran.r-project.org/ for package lists and reviews)

on Comet:

install.packages('ggmap',
 repos='http://cran.us.r- project.org',dependencies=TRUE)

If compiling is required and you get an error, call support

Other R packages:

- Rspark R interface to Spark
- pdbR higher level over R-MPI, distributed matrix support and other

(better for dense matrices vs Spark)

R openMP

(e.g. if you want to program your own foreach)

• Ff, bigmemory – map data to files (can help with foreach)

- HiPLAR GPU and multicore for linear algebra
- Rgputools GPU support

Matlab quickview

Distributed Toolbox:

- allocate distributed matrices using 'spmd' code
- MPI or threads under the hood
- You decide data/task set up

pause

R on Comet terminal window

1. Get a compute node:

```
[Unix]$: srun --partition=debug --pty --nodes=1 --ntasks-per-node=24 -t 00:30:00 --wait=0 --export=ALL -A your-account /bin/bash
```

2. Start R

```
[Unix]$ module load R
[Unix]$ R (this gets an interactive R session)
```

>quit() (to exit R)

[Unix]\$ exit (to exit the compute node)

R multicore exercise

- Login to comet
 - cd to this lecture folder
- Get an interactive compute node session
- Start notebook
 - jupyter notebook --no-browser --ip="*" &

R parallel exercises

- Open & run TestdoParallel Exercise 1,2,3
 - remember that foreach assumes independence between loops
 - Start with smallish N,P
- Look at memory usage in top command
- R does not well manage large data frames across cores
 - N=800000 P=2000, makes ~12Gb data frames, R fails
- Ex 3 will split up data for large data frames and have each core read a separate data

Starting jupyter notebook and copy paste URL into browser

Sample output

Pause

pbdR package

API on top of MPI and Scalapack Lin. Algebra library

Sets up virtual grid to handle large matrix multiplication

See https://pbdr.org/packages.html

pbdR sample code

```
library(pbdDMAT)
init.grid()
                  # <<< ---- pbdR will select grid sizes for you by default
myr =comm.rank()
mys =comm.size()
#Simple ways to print information
comm.print(paste("comm print myrank:",myr, " size:",mys),all=FALSE)
p=10000
dx < -ddmatrix(rnorm(p*p*10),p*10,p) # <<< --- you and indicate how to block data onto grid
comm.print(dx,all=F)
To run: edit Runpbd script and enter: sbatch Runpbd
```


Test 1

For 1 node 24 cores:

```
Using 6x4 for the default grid size

[1] "comm print myrank: 0 size: 24"

[1] " matrix width: 10000"

orterun noticed that process rank 0 with PID 26491 on node comet-18-56 exited on signal 9 (Killed).
```

But runs out of memory (2 nodes 24 cores also runs out of memory)

Test 2

For 1 node 12 cores:

Using 4x3 for the default grid size

[1] "comm print myrank: 0 size: 12"

[1] " matrix width: 10000"

COMM.RANK = 0

DENSE DISTRIBUTED MATRIX

data split up among cores

Process grid: 4x3

Global dimension: 100000x10000

(max) Local dimension:

25008x3344

Blocking: 16x16

BLACS ICTXT: 0

Runs in about 950 secs

Test 3

For 2 node 12 cores:

[1] "comm print myrank: 0 size: 24"[1] " matrix width: 10000"COMM.RANK = 0

DENSE DISTRIBUTED MATRIX

Process grid: 6x4
Global dimension: 100000x10000

(max) Local dimension: 16672x2512

Blocking: 16x16

BLACS ICTXT: 0

Runs in about 320 secs

THE END

