

Artificial & Computational Intelligence DSE CLZG557

M3: Game Playing & Constraint Satisfaction

BITS Pilani

Pilani Campus

Raja vadhana P Assistant Professor, **BITS - CSIS**

Course Plan

 M2 Problem Solving Agent using Search M3 Game Playing, Constraint Satisfaction Problem M4 Knowledge Representation using Logics M5 Probabilistic Representation and Reasoning M6 Reasoning over time, Reinforcement Learning 	M1	Introduction to AI
M4 Knowledge Representation using Logics M5 Probabilistic Representation and Reasoning	M2	Problem Solving Agent using Search
M5 Probabilistic Representation and Reasoning	М3	Game Playing, Constraint Satisfaction Problem
	M4	Knowledge Representation using Logics
M6 Reasoning over time, Reinforcement Learning	M5	Probabilistic Representation and Reasoning
	M6	Reasoning over time, Reinforcement Learning

Module 3: Part -1

innovate achieve lead

Searching to play games

- A. Minimax Algorithm
- B. Alpha-Beta Pruning
- C. Making imperfect real time decisions

innovate achieve lead

Games as Search Problem

INITIAL STATE: SO

PLAYER(s)

ACTIONS(s)

RESULT(s, a)

TERMINAL-TEST(s)

UTILITY(s, p)

Eg., Tic Tac Toe

Assumption Task Environment:

Static

Strategic

Multi agent

Fully observable

Sequential

Discrete

Making imperfect real time decisions

How to reduce the re-computation of the evaluators even with Alpha-Beta Pruning?

What if my capacity to look ahead is relatively shallow?

Squares represent MAX nodes Circles represent MIN nodes

How to reduce the re-computation of the evaluators even with Alpha-Beta Pruning?

What if my capacity to look ahead is relatively shallow?

<u>Idea:</u>

Use heuristics to identify the state/node in which a move might bring drastic change in the value of the static evaluation function. Then keep the depth limit fix after the level thus delaying the generation of static value till that level.

How to reduce the re-computation of the evaluators even with Alpha-Beta Pruning?

What if my capacity to look ahead is relatively shallow?

How to reduce the move generations better along while doing Alpha-Beta Pruning?

After Move Ordering

Before Move Ordering

How to reduce the re-computation of the evaluators even with Alpha-Beta Pruning?

What if my capacity to look ahead is relatively shallow?

How to reduce the move generations better along while doing Alpha-Beta Pruning?

<u>Idea:</u>

Use heuristic of the game and prioritize game changing moves to be ordered as leftmost branch in the game tree.

How to reduce the re-computation of the evaluators even with Alpha-Beta Pruning?

What if my capacity to look ahead is relatively shallow?

How to reduce the move generations better along while doing Alpha-Beta Pruning?

How games can be designed to handle imperfect decisions in real-time?

<u>Idea: Chance Node:</u>

Holds the expected values that are computed as a sum of all outcomes weighted by their probability (of dice roll)

Credit Assignment Problem:

The credit assignment problem concerns determining how the success of a system's overall performance is due to the various contributions of the system's components

Is it possible to reduce the game tree size further in cases where the number of possible moves are large but still finite & game is finish able?

Monte Carlo Tree Search:

For each possible legal moves, simulate k random games. Select the move that has most number of wins

Idea:

Source Credit: MCTS algorithm, diagram from Chaslot (2006)

- A Formulating a CSP problem
- B. Constraint propagation
- C. Local search for CSP

A problem is solved when each variable has a value that satisfies all the constraints on that variable

Problem Definition:

A Constraint Satisfaction Problem consists of three components X, D and C

- $X \text{set of all variables } \{X_1, X_2, X_3, \dots, X_n\}$
- D set of domains, one for each variable $\{D_1, D_2, D_3, ..., D_n\}$
- Non empty domain of possible values for each variable
- C set of constraints that specify allowable combinations of values

- Each domain would have a set of values that are allowed
 - D_1 would have $\{1, 2, 4, 5, 7\}$ meaning X_1 can take only those values
- Each Constraint is a pair of <scope, relation>
 - Where scope = tuple of variables
 - Relation = relation defining the possible values of that variables
 - E.g., if variable X₁ and X₂ cannot take same values
 - $-<(X_1, X_2), X_1 \neq X_2>$
 - E.g., If (SA = blue), then its five neighbors cannot have "blue"
 - Reducing the possible search space to $2^5 = 32$ instead of the original $3^5 = 243$

- A state is defined as an assignment of values to some or all variables.
- Assignment
 - Consistent assignment: assignment does not violate the constraints
 - An assignment is complete when every variable is assigned a value.
 - A solution to a CSP is a complete assignment that satisfies all constraints.
- Some CSPs require a solution that maximizes an objective function.

Applications:

- Scheduling problems
- Job shop scheduling
- Map colouring

Map Coloring Problem

Variables

WA, NT, Q, NSW, V, SA, T

Domain

Constraints

Solution

Crypt arithmetic Problem

Crypt Arithmetic Problem – Example

1	1	0	1	
		E	A	Т
		8	1	9
	+ T	Н	A	Т
	9	2	1	9
= A	Р	Р	L	E
1	0	0	3	8

EAT THAT APPLE & Get the PLATE

PLATE: 03198

Map Coloring Problem

Variables

FTUWRO, X1 X2 X3

Domain

{0,1,2,3,4,5,6,7,8,9} {0,1}

Constraints

 $F \neq O \neq R \neq T \neq U \neq W$ $O + O = R + 10 \cdot X1$ $X1 + W + W = U + 10 \cdot X2$ $X2 + T + T = O + 10 \cdot X3$ $X3 = F, T \neq 0, F \neq 0$

Solution

Crypt arithmetic Problem

lead

Problem Formulation

N-Queen

Variables

[Xij]

Domain

 $\{0,1\}$

Constraints

$$\begin{aligned} &(\mathsf{X}i\mathsf{j},\,\mathsf{X}i\mathsf{k}) = \{(0,0),\,(0,1),\,(1,0)\} \\ &(\mathsf{X}i\mathsf{j},\,\mathsf{X}\mathsf{k}\mathsf{j}) = \{(0,0),\,(0,1),\,(1,0)\} \\ &(\mathsf{X}i\mathsf{j},\,\mathsf{X}i+\mathsf{k},\,\mathsf{j}+\mathsf{k}) = \{(0,0),\,(0,1),\,(1,0)\} \\ &(\mathsf{X}i\mathsf{j},\,\mathsf{X}i+\mathsf{k},\mathsf{j}-\mathsf{k}) = \{(0,0),\,(0,1),\,(1,0)\} \\ &\sum_{ij} Xij = N \end{aligned}$$

Solution

$$X_{3,1}=1, X_{2,2}=1, X_{4,3}=1, X_{1,4}=1$$

N-Queen

Variables

Q1, Q2, Q3, Q4.. QN

Domain

{1,2,....N}

Constraints

$$(Q1,Q2)=\{(1,3), (1,4), (2,4)...\}$$

Solution

Introduction to Constraint Propagation


```
Variables = \{1, 2, 3, 4, 5\}
Domain = { R , G, B, Y }
Constraints =
\{5 \neq R,
1 \neq 2, 1 \neq 3, 1 \neq 4, 1 \neq 5,
2^{4} \neq 3^{3}, 3^{4} \neq 4^{4}, 4^{4} \neq 5^{4}
                                       2
```


Objective: Color the marked states with available colors (from the domain set) such that no neighboring states share the same color.

Another restriction(constraint) is that state coded as 5 should not have Red(R) color

Variables =
$$\{1, 2, 3, 4, 5\}$$

Domain = $\{R, G, B, Y\}$
Constraints = $\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$

Problem Formulation

<u>Initial State</u>: Empty Assignment.

<u>Successor Function</u>: Consistent current assignment

Goal Test: Complete Consistent Assignment as of this state

Path Cost: Every backtracking = 10 penalty or Every Dead End

= 5

lead

Constraint Satisfaction Problem

1	2	3	4	5
				G

Constraints = $\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$

1	2	3	4	5
				G
			R	G

Constraints = $\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$

1	2	3	4	5
				G
			R	G
		В	R	G

Constraints = $\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$

1	2	3	4	5
				G
			R	G
		В	R	G
	5	В	R	G

Constraints =
$$\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$$

1	2	3	4	5
				G
			R	G
		В	R	G
	Υ	В	R (5
DEAD END	Y	В	R	6

1	2	3	4	5
				G
			R	G
		В	R	G
	Υ	В	R (5
DEAD END, BT	Υ	В	R	G
	G ¥	В	R 4	j (1)
Υ	G	В	R	G

Search Solution to CSP

Depth-first search for CSPs with single-variable assignments is called backtracking search

```
function BACKTRACKING-SEARCH(csp) return a solution or failure
   return RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
   if assignment is complete then return assignment
   var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
   for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
         if value is consistent with assignment according to CONSTRAINTS[csp] then
                   add {var=value} to assignment
                   result \leftarrow RECURSIVE-BACTRACKING(assignment, csp)
                   if result \neq failure then return result
                   remove {var=value} from assignment
   return failure
```

Avenues to Improve - Heuristics

Depth-first search for CSPs with single-variable assignments is called backtracking search

```
function BACKTRACKING-SEARCH(csp) return a solution or failure
   return RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
   if assignment is complete then return assignment
   var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
   for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
         if value is consistent with assignment according to CONSTRAINTS[csp] then
                   add {var=value} to assignment
                   result \leftarrow RECURSIVE-BACTRACKING(assignment, csp)
                   if result \neq failure then return result
                   remove {var=value} from assignment
   return failure
```

	1	2	3	4	5
	R, -G , B, Y	R, G, B, Y	R, G, B, Y	R, -G, B, Y	R, G, B, Y
R, G , B, Y					G

Forward Checking

L1: Add a <VAR=VAL>

IF Constraint is VIOLATED

DELETE the VAL from domain

IF Assignment is not complete

IF domain is empty for any unassigned VAR

BACKTRACK

Else

Go to L1

	1	2	3	4	5
	R, G , B, Y	R, G, B, Y	R, G, B, Y	R, -G, B, Y	R , G, B, Y
R, G , B, Y					G
R, G. B, Y				R	G

Constraints =
$$\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$$

	1	2	3	4	5
	R, G , B , Y	R, G , B, Y	R, G, B, Y	R, G, B, Y	R , G, B, Y
R, G , B, Y					G
R, G. B, Y				R	G
R , G. B , Y	<u></u>		В	R	G

Constraints =
$$\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$$

	1	2	3	4	5
	R, G , B , Y	R, G , B, Y	R, G, B, -Y	R, G, B, Y	R , G, B, Y
R, G , B, Y					G
R, G. B, Y				R	G
R , G. B , Y	5		В	R	G
R, G, B, Y		Υ	В	R	G

2

1

3

4

Constraints =

 $\{5 \neq R,$

 $1 \neq 2, 1 \neq 3, 1 \neq 4, 1 \neq 5,$

2` ≠ 3`, 3` ≠ 4`, 4` ≠ 5`}

	1	2	3	4	5
	R, G, B , Y	R, G , B, Y	R, G, B, -Y	R, G, B, Y	R , G, B, Y
R, G , B, Y					G
R, G. B, Y				R	G
R , G. B , Y			В	5	G
R, G, B, Y		R	В	R	G
	Υ	R	В	R	G

2 1

Constraint Satisfaction Problem - Graph

	1	2	3	4	5
	R, G, B , Y	R, G , B, Y	R, G , B, Y	R, G, B, Y	R , G, B, Y
R, G , B, Y					G
R, G. B, Y				R	G
R , G. B , Y			В	5	G
R, G, B, Y		G???	В	R	G
	Υ	R	В	R	G

Heuristics

- Frequent Techniques
 - Most constrained variable
 - Most constraining variable
 - Least constraining value
 - Forward checking
- MRV / Most constrained variable
 - choose the variable with the fewest legal values
- MCV / Most constraining variable
 - choose the variable with the most constraints on remaining variables
- LCV/ Least constraining value
 - Choose value that rules out the fewest values in the remaining variables
- Forward checking
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

1	2	3	4	5
R, -G , B, Y	R, G, B, Y	R, G, B, Y	R, G, B, Y	R, G, B, Y
				G

 $2^{4} \neq 3^{3}, 3^{4} \neq 4^{4}, 4^{4} \neq 5^{4}$

H1: MRV / Most constrained variable Choose the variable with the fewest legal values

1	2	3	4	5
R, -G , B, Y	R, G, B, Y	R, G, B, Y	R, G, B, Y	R, G, B, Y
				G

H2: MCV / Most constraining variable Choose the variable with the most constraints on remaining variables

$$\{5 \neq R, \\ 1` \neq 2`, 1` \neq 3`, 1` \neq 4`, 1` \neq 5`, \\ 2` \neq 3`, 3` \neq 4`, 4` \neq 5`\}$$

Heuristics

- Frequent Techniques
 - Most constrained variable
 - Most constraining variable
 - Least constraining value
 - Forward checking
- MRV / Most constrained variable
 - choose the variable with the fewest legal values
- MCV / Most constraining variable
 - choose the variable with the most constraints on remaining variables
- LCV/ Least constraining value
 - Choose value that rules out the fewest values in the remaining variables
- Forward checking
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

CSP in Vehicle Localization

Source Credit:

2018 -Localization of a Vehicle: A Dynamic Interval Constraint Satisfaction Problem-Based Approach

Local Search for CSP

Sudoku Problem

Constraint Satisfaction Graph - Subgraph

	1	2	3	4
Α	3	2	1	3
В	4	2	3	4
С	2	4	4	2
D	1	3	1	3

	1	2	3	4
Α	3	2	1	3
В	4	2	3	4
С	2	4	4	2
D	1	3	2	3

		_	5	4
Α	3	2	1	3
В	4	2	3	4
С	2	4	4	2
D	1	3	3	3

	Т		5	4
А	3	2	1	3
В	4	2	3	4
С	2	4	4	2
D	1	3	4	3

Next Class

CSP as Local Search Problem (Sudoku)

CSP AC-3 algorithm (Map Coloring Problem)

Inference & Reasoning using Logic (Shared few materials to refresh the concept of propositional & predicate logic & resolution methods over canvas page. Please refresh these before the next class)

Required Reading: AIMA - Chapter #5.1, #5.2, #5.3, #5.4

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials