TD/TP: surfaces paramétriques

Exercice 1:

- ⇒ Faire une fonction qui trace une surface cylindrique :
 - o en entrée : une courbe de Bézier et une droite ;
 - \circ en sortie : un ensemble de courbes iso-paramétriques, le nombre de ces courbes doit être paramétrable en u et v;
 - tracer cet ensemble de courbes iso-paramétriques pour représenter la surface cylindrique.

Exercice 2:

- ⇒ Faire une fonction qui trace une surface réglée :
 - o en entrée : deux courbes de Bézier;
 - \circ en sortie : un ensemble de courbes iso-paramétriques, le nombre de ces courbes doit être paramétrable en u et v;
 - tracer cet ensemble de courbes iso-paramétriques pour représenter la surface réglée.

Exercice 3:

- ⇒ Faire une fonction qui trace une surface de Bézier par les polynômes de Bernstein, signature :

 *Point[] BezierSurfaceByBernstein(*Point[][]GrilleControlPoint*, *long* nbControlPointU*, *long* nbControlPointV*, *long* nbU*, *long* nbU*,
 - tracer un ensemble de courbe reliant les points pour représenter la surface de Bézier.