SOLUCIONARIO EXAMEN FINAL MB545 CICLO 2021-2

```
PREGUNTA 1
class estadisticas {
protected:
       int* nVector, * nModa, PI, moda;
       float media, mediana, desv_estd;
public:
       void ParImpar(int N);
       void leevector(int N);
       void escribirvector(int N);
       void ordenavector(int N);
       void mostrarvector(int N);
       double Media(int N);
       float Mediana(int N);
       void Moda(int N);
       double DesvEstd(int N);
void estadisticas::ParImpar(int N) {
       if (N % 2 == 0) PI = 2;
       else PI = 1;
void estadisticas::leevector(int N) {
       nVector = new int[N];
       cout << "Simulando Estaturas:\n ";</pre>
       for (int i = 0; i < N; i++)</pre>
              nVector[i] = rand() % 36 + 150;
              //cin >> nVector[i];
};
void estadisticas::escribirvector(int N) {
       cout << "Estaturas simuladas " << endl;</pre>
       cout << '{';
       for (int i = 0; i < N; i++)</pre>
              cout << *(nVector + i) << ' ';</pre>
       cout << '}';
}
void estadisticas::ordenavector(int N) {
       int aux;
       for (int i = 0; i < N; i++) {
              for (int j = 0; j < N; j++) {
                     if (nVector[i] < nVector[j]) {</pre>
                             aux = nVector[i];
                             nVector[i] = nVector[j];
                             nVector[j] = aux;
                     }
              }
       }
void estadisticas::mostrarvector(int N) {
       cout << "\nAlumnos Ordenados de menor a mayor estatura: " << endl;</pre>
       for (int i = 0; i < N; i++) {</pre>
              cout << *(nVector+i) << ' ';</pre>
       }
double estadisticas::Media(int N) {
       int S = 0;
       for (int i = 0; i < N; i++)</pre>
              S = S + nVector[i];
       media = S * 1.0 / N;
       return(media);
}
```

```
float estadisticas::Mediana(int N) {
       if (PI == 1) { mediana = (nVector[N / 2]) * 1.0; }
       else { mediana = (nVector[N / 2 - 1] + nVector[N / 2]) * 1.0 / 2; }
       return(mediana);
}
void estadisticas::Moda(int N) {
       nModa = new int[N];//cuenta cuantas veces se repite cada numero
       for (int i = 0; i < N; i++) {
              nModa[i] = 0;
       for (int i = 0; i < N; i++) {
              for (int j = 0; j < N; j++) {
                     if (nVector[i] == nVector[j]) nModa[i] = nModa[i] + 1;
       //Hallando el mayor número de veces que se repite un valor
       int Mayor = 0;
       for (int i = 0; i < N; i++) {</pre>
              if (Mayor < nModa[i]) Mayor = nModa[i];</pre>
       }
       for (int i = 0; i < N; i++) {</pre>
              int v = 0;
              if (nModa[i] == Mayor) {
                     for (int j = 0; j < i; j++) {</pre>
                            if (nVector[i] == nVector[j]) v = 1;
                     if (v == 0) cout << nVector[i] << " ";</pre>
              }
       }
double estadisticas::DesvEstd(int N) {
       float S2 = 0, VarMuestral;
       for (int i = 0; i < N; i++)</pre>
              S2 = (S2 + powf(nVector[i], 2)) * 1.0;
       VarMuestral = (S2 - N * media * media) * 1.0 / (N - 1);
       desv estd = powf(VarMuestral, 1.0 / 2);
       return(desv estd);
void main() {
       int N;
       estadisticas mb545;
       cout << "Ingrese la cantidad de Alumnos: "; cin >> N;
       mb545.ParImpar(N);
       mb545.leevector(N);
       mb545.escribirvector(N);
       mb545.ordenavector(N);
       mb545.mostrarvector(N);
       cout << "\nLa media es: " << mb545.Media(N);</pre>
       cout << "\nLa mediana es: " << mb545.Mediana(N);</pre>
       cout << "\nLa moda es: ";</pre>
       mb545.Moda(N);
       cout << "\nLa desviacion estandar es: " << mb545.DesvEstd(N) << endl;</pre>
       system("pause");
}
//PREGUNTA 2
class serie {
protected:
    float X;
```

```
int N;
public:
    serie();
    serie(float, int);
       double factor();
    double senx();
};
//Implementacion
serie::serie() {
    X = 54;
    N = 6;
}
serie::serie(float Y, int M) {
    X = Y;
    N = M;
double serie::factor() {
      return(k / pi);
double serie::senx() {
    double sum = 0, Ang = 0, ser;
    int fact = 1, prod;
       Ang = factor();//X * k;
    for (int i = 1; i <= N; i++) {
        int term = i;
        for (int i = 1; i \leftarrow (2 * term - 1); i++) {
            prod = i;
            fact = fact * prod;
        ser = (powf(-1, i + 1) * powf(Ang, 2 * i - 1)) / fact;
        sum = sum + ser;
    }
       return(sum);
}
class Simpson :public serie {
protected:
    float* func;
    public:
    Simpson(); //constructor
    Simpson(int);//constructor
    void generav();
};
//Implementacion
Simpson::Simpson()
    N = 18;
Simpson::Simpson(int Q)
    N = Q;
void Simpson::generav()
    float simp;
    func = new float[N];
    for (int i = 0; i < N; i++)
        func[i] = 0.5 + i * (1.0 / 3);
    for (int i = 0; i < N; i++) {
```

```
func[i] = powf(func[i], 1.0 / 2) - powf(func[i] - func[i] / 5, 1.0 / 3) +
func[i];
    }
    simp = (3.0 / 8) * (1.0 / 3) * (func[0] + 3 * func[1] + 3 * func[2] +
func[3]);
    cout << simp;</pre>
}
void main() {
    //Para simpson(N), el 'N' debe ser igual a 4 a más obligatoriamente
    serie d; Simpson D;
    cout << "La serie: " << d.senx() << endl;</pre>
    cout << "La funcion: "; D.generav();</pre>
    cout << endl;</pre>
    system("pause");
}
//PREGUNTA 3
 void Cestrellas::OnBnClickedRadio1()
     CClientDC q(this);
     CPen k; CBrush I; CFont
tl;
k.CreatePen(PS SOLID, 5,
RGB(0, 0, 255));
        q.SelectObject
        (k);
        I.CreateSolidBru
        sh(RGB(255,
        250, 240));
        q.SelectObject
        (I);
        q.SetBkMode(
        TRANSPARE
        NT):
        q.SetTextColor(RGB(255, 0, 0));
        _T("Arial Black"));q.SelectObject(tl);
        q.TextOutW(20, 10, _T("ESTRELLA DE 4 PUNTAS"));
        C
        C
        е
        n
        D
```

```
C
р
CBrush f;
t.CreatePen(PS_SOLID, 5, RGB(0, 0, 255));
p.SelectObject
(t);
f.CreateSolidBru
sh(RGB(0, 255,
0));
p.SelectObject
(f);
POINT v[100];
float pi = atan(1.0) * 4;//Definimos el valor de pi
int r, ri = 50, re = 100;//Radio interno y externo de la estrella
int corini_x = 170, corini_y = 150;//Coordenadas iniciales del origen
for (int i = 0; i <= 7; i++) {
        е
```

```
=
                r
                v[i]x =
                corini_x + r *
                cos(i * (pi /
                4));v[i].y =
                corini_y + r *
                sin(i * (pi /
                4));
        p.Polygon(v, 8);
}
Radio Button 2
void Cestrellas::OnBnClickedRadio2()
        CClientDC q(this);
        CPen k; CBrush I;
        CFont tl;
       k.CreatePen(PS_SO
       LID, 5, RGB(0, 0,
        255));
        q.SelectObject
        (k);
        I.CreateSolidBru
        sh(RGB(255,
        250, 240));
        q.SelectObject
        (I);
        q.SetBkMode(
        TRANSPARE
        NT);
       q.SetTextColor(RGB(255, 0, 0));
       tl.CreateFontW(30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        _T("Arial Black"));q.SelectObject(tl);
       q.TextOutW(20, 10, _T("ESTRELLA DE 5 PUNTAS"));
        C
        C
        е
        n
        D
```

```
C
р
h
C
CBrush f;
t.CreatePen(PS_SOLID, 5, RGB(255, 0, 0));
p.SelectObject
(t);
f.CreateSolidBru
sh(RGB(0, 0,
255));
p.SelectObject
(f);
POINT v[100];
float pi = atan(1.0) * 4;//Definimos
el valor de pi=3.1415... int r, ri =
50, re = 100;//Radio interno y
externo de la estrella
int corini_x = 170, corini_y = 150;//Coordenadas iniciales del origen
for (int i = 0; i \le 9; i++) {
        2
        0
        е
```

```
S
                е
                е
                v[i].x = corini_x + r^*
                cos((i * (pi / 5)) + (pi /
                2);v[i].y = corini_y + r
                * sin((i * (pi / 5)) + (pi /
                2)); }
        p.Polygon(v, 10);}
Radio Button 3
void Cestrellas::OnBnClickedRadio3()
{
        CClientDC q(this);
        CPen k; CBrush I;
        CFont tl;
        k.CreatePen(PS_SO
        LID, 5, RGB(0, 0,
        255));
        q.SelectObject
        (k);
        I.CreateSolidBru
        sh(RGB(255,
        250, 240));
        q.SelectObject
        (I);
        q.SetBkMode(
        TRANSPARE
        NT);
        q.SetTextColor(RGB(255, 0, 0));
        tl.CreateFontW(30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        _T("Arial Black"));q.SelectObject(tl);
        q.TextOutW(20, 10, _T("ESTRELLA DE 6 PUNTAS"));
        CClientDC p(this);
        C
        Ρ
        е
        n
        t
        C
        В
        r
        u
        S
```

```
h
f
t.CreatePen(PS_SOLID, 5, RGB(0, 255, 0));
p.SelectObject
(t);
f.CreateSolidBru
sh(RGB(255,0,
0));
p.SelectObject
(f);
POINT v[100];
float pi = atan(1.0) * 4;//Definimos
el valor de pi=3.1415... int r, ri =
50, re = 100;//Radio interno y
externo de la estrella
int corini_x = 170, corini_y = 150;//Coordenadas iniciales del origen
for (int i = 0; i <= 11; i++) {
        0
        v[i].x = corini_x + r^*
        cos((i * (pi / 6)) + (pi /
        2));v[i].y = corini_y + r
        * sin((i * (pi / 6)) + (pi /
        2));
}
```

```
p.Polygon(v, 12); }
Botón Limpiar
void Cestrellas::OnBnClickedButton2()
{ OnOK();}
Pru
eba
del
pro
gra
ma
Cor
rida
1
å
       ESTRELLA DE 4 PUNTAS
              ⊕5 Purtas
```

Corrida 2

//PREGUNTA 4

Solución

```
int fibo(int n)
{
     if (n == 1) return 1;
     else if (n == 2) return 1;
     else return fibo(n - 1) + fibo(n - 2);
}
```

```
int esprimo(int n)
       if (n == 1) return 0;
       for (int d = 2; d < n; d++)</pre>
              if (n % d == 0) return 0;
       return 1;
}
void CMFCApplication12Dlg::OnPrincipalSeriedefibonacci()
       m opcion = 0;
       UpdateData(0);
}
void CMFCApplication12Dlg::OnPrincipalSeriedeprimos()
{
       m_opcion = 1;
       UpdateData(0);
}
void CMFCApplication12Dlg::OnPrincipalEjecutar()
       UpdateData(true);
       CString cad; int s = 0;
       m_lis1.ResetContent();
       switch (m_opcion)
       {
       case 0: //1 1 2 3 5 8
       {
              for (int i = 1; i <= m_nt; i++)</pre>
                     if (m op1 == true)
                            cad.Format(_T("%d) %d"), i, fibo(i));
                     else
                            cad.Format(_T("%d"), fibo(i));
                     m lis1.AddString(cad);
                     s = s + fibo(i);
              }
       break;
       case 1:
       {
              for (int i = 1, c = 1; c <= m_nt; i++)</pre>
                     if (esprimo(i))
                            if (m_op1 == true)
                                   cad.Format(_T("%d) %d"), c, i);
                            else
                                   cad.Format(_T("%d"), i);
                            m_lis1.AddString(cad);
                            C++;
                            s = s + i;
                     }
              }
       break;
```

```
if (m_op2 == true)

{
    m_lis1.AddString(_T(""));
    m_lis1.AddString(_T("Reporte final"));
    cad.Format(_T("Suma de la serie: %d"), s);
    m_lis1.AddString(cad);

}
UpdateData(false);
}

void CMFCApplication12Dlg::OnPrincipalSalr()
{
    OnOK();
}

void CMFCApplication12Dlg::OnPrincipalBorrarlista()
{
    m_lis1.ResetContent();
}
```