$t - s \cdot m$ (1) $\pi \cos \pi \epsilon 0$, $0 = i \frac{\pi \zeta}{T} \cos \pi v \frac{\pi \zeta}{T} = i \omega \cos \pi v \omega = v$ m {i} n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1

 $^{2}-s \cdot m \{i\}\pi \operatorname{nis}^{2}\pi \xi 0,0-=i\frac{\pi^{2}}{T}\operatorname{nis}_{m}\sqrt[2]{\frac{z_{\pi}t}{T}}-=i\omega \operatorname{nis}_{m}\sqrt[2]{\omega}-=a$

 $\begin{array}{c} \text{m } \{i\}\pi\hbar \operatorname{mis} 20, 0 = \text{ths} \operatorname{mis} \pi \psi = \text{with} \pi \psi = \psi \\ \text{1-s} \cdot \operatorname{m} \{i\}\pi\hbar \operatorname{soo} \pi 80, 0 = \text{ths} \operatorname{coo} \pi \psi \pi \zeta = \operatorname{iw} \operatorname{soo} \pi \psi \omega = \psi \\ \text{-s} \cdot \operatorname{m} \{i\}\pi\hbar \operatorname{mis}^2\pi \zeta \mathcal{E}_{\varepsilon}, 0 = \operatorname{ths} \operatorname{mis} \pi \psi^2 \mathcal{I}^2\pi \hbar - \operatorname{iw} \operatorname{mis} \pi \psi^2 \omega - \operatorname{n} \mu \varepsilon \mathcal{I} \\ \text{mis} \pi \psi^2 \mathcal{I} \pi \mathcal{I} = \operatorname{mis} \pi \psi^2 \mathcal{I} \pi \mathcal{I} + \operatorname{mis} \pi \psi^2 \mathcal{I} \pi \mathcal{I} + \operatorname{mis} \pi \psi^2 \mathcal{I} + \operatorname{mis} \pi \mathcal{I} \\ \text{mis} \pi \mathcal{I} = \operatorname{mis} \pi \mathcal{I} + \operatorname{mis}$

	Zrychlení a (m·s ⁻²)	Rychlost v (m · s ⁻¹)	у (m)	Amplituda výchylky y _m (m)	Úhlová frekvence (1-2·bs1) w	Frekvence \$\frac{1}{2}(\text{Hz})	Perioda T (s)	
	1π nis ² π+0,0—	1π 200 π 1 0,0	m nie 1-0,0	1 0,0	π	<u>z</u>	7	
-	1π8 nis ² π+0,0-	ът8 гоз т80,0	1π8 nie 10,0	10,0	π8	t	<u>†</u> I	
-	1370 mia ² 3780, L –	1170 soo 1181,0	1370 nia £0,0	£0,0	119	£	<u>ε</u> Ι	
	1nE nis ² n81,0—	1n & 200 n 30,0	1π£ mis 20,0	20,0	πξ	z E	<u>ε</u> ζ	
	Zrychlení (a. s · m) a	Rychlost v (m·s ⁻¹)	у (m) у	Amplituda výchylky y _m (m)	Úhlová frekvence w (rad·s⁻¹)	Текvепсе Д(Hz)	Perioda (s) T	

į					·		
	1π nis ² πΔ0,0—	3π soo π20,0	131 nie 20,0	20,0	п	<u>1</u>	τ
	1110 ais ² 1144, I —	1π∂ 205 π42,0	1π0 nie 1-0,0	b0°0	119	ε	<u>£</u> I
	1π8 піз ² π29, І—	1118 800 1142,0	π8 nis £0,0	60,0	π8	' Þ	<u>†</u> T
	1mE nis ² m72,0—	iπε 200 π90,0	1πε nia ε0,0	£0°0	πε	<u>2</u>	<u>ε</u> z
	Zrychlení a (m·s ⁻²)	Rychlost v (m·s ⁻¹)	у (m) Уусһу]ка	Amplituda výchylky ym (m)	Uhlová frekvence w (rad·s ⁻¹)	Frekvence Frekvence	Perioda (s) T

A $v = 0.04\pi \cos 2\pi \{t\} \text{ m} \cdot s^{-1}, \ a = -0.08\pi^2 \sin 2\pi \{t\} \text{ m} \cdot s^{-2}$ B $v = 0.06\pi \cos 2\pi \{t\} \text{ m} \cdot s^{-1}, \ a = -0.12\pi^2 \sin 2\pi \{t\} \text{ m} \cdot s^{-2}$

m 20,0 = 3s, t = 3; $\omega = \frac{2}{3}$ Hz, $\omega = \frac{2}{3}$ and $\omega = 1$, $\omega = 1$

B $m \in 3s$, f = 3s, $f = \frac{1}{5}$ Hz, $\omega = \frac{2}{5}\pi$ rad s^{-1} , $y_m = 0.03$ m

 $\operatorname{m}\left(\frac{\pi}{\zeta} - \{i\}\pi\lambda\right)\operatorname{nis} \xi 0,0 = \operatorname{m}\left(\operatorname{SSI}_{i}0 \cdot \frac{\pi\zeta}{\zeta_{i}0} - \{i\}\frac{\pi\zeta}{\zeta_{i}0}\right)\operatorname{nis} \xi 0,0 = \left(\tau\frac{\pi\zeta}{T} - i\frac{\pi\zeta}{T}\right)\operatorname{nis} \pi \zeta = (\tau - i)\frac{\pi\zeta}{T}\operatorname{nis} \pi \zeta = \zeta$

 $v = 0,12\pi \cos\left(4\pi\{t\} - \frac{\pi}{2}\right) \text{ in } s^{2}\pi 8^{4}\sin^{2}\sin\left(4\pi\{t\} - \frac{\pi}{2}\right) \text{ in } s^{2}$

 $m\left(\frac{\pi}{4} - \{1\}\pi^{4}\right) \text{ mis } \neq 0, 0 = m\left(2 \le 0.0, 0 \cdot \frac{\pi S}{6.0} - \{1\}\frac{\pi S}{6.0}\right) \text{ mis } \neq 0, 0 = \left(\tau \frac{\pi S}{T} - i\frac{\pi S}{T}\right) \text{ mis } m = (\tau - 1)\frac{\pi S}{T} \text{ mis } m = \sqrt{3}$

 $s^{-2} \cdot m \left(\frac{\pi}{4} - \{i\}\pi^{4}\right) \operatorname{mis}^{2} \pi 8 h, 0 - = s, t^{-2} \cdot m \left(\frac{\pi}{4} - \{i\}\pi^{4}\right) \operatorname{soo} \pi \Omega I, 0 = v$

A T = 0.55, f = 0 Ax, $\omega = 4\pi$ rad s^{-1} , $y_m = 0.10$, $\omega = 7$

B $T = \frac{1}{3}s$, f = 3 Hz, $\omega = 6\pi$ rad s^{-1} , $\gamma_m = 0,01$ m, $\varphi_0 = \frac{\pi}{4}$

 $\pi\frac{1}{\xi} - = 0 \Leftrightarrow 0 \Leftrightarrow 0 + \frac{\pi}{2} = \frac{\pi}{6} \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right) \text{nis} = 0 \Leftrightarrow \left(0 \Leftrightarrow + \pi \frac{1}{2}\right)$

 $\pi \frac{\xi}{\zeta} - = 0 \Rightarrow \Leftrightarrow 0 \Rightarrow + \pi \frac{\xi}{\zeta} = 0 \Leftrightarrow \left(0 \Rightarrow + \pi \frac{\xi}{\zeta}\right) \text{ aris} = 0 \Leftrightarrow \left(0 \Rightarrow + \pi \frac{\xi}{\zeta}\right) \text{ aris} = 0 \Leftrightarrow \left(0 \Rightarrow + \pi \frac{\xi}{\zeta}\right) \text{ aris} \approx 0, 0 = 0$

Aýsledky

losti a zrychlení. chylka je rovna nule v čase 0,125 s. Napište rovnice pro velikost okamžité výchylky, rych-A Harmonický kmitavý pohyb, má amplitudu výchylky 3 cm, periodu 0,5 s a okamžitá vý-

losti a zrychlení. chylka je rovna nule v čase 0,0625 s. Napište rovnice pro velikost okamžité výchylky, rych-B Harmonický kmitavý pohyb má amplitudu výchylky 4 cm, periodu 0,5 s a okamžitá vý-

 $v = 0.04\pi \cos(4\pi \{t\} + \frac{\pi}{2}) \text{ m} \cdot \text{s}^{-1}$ Rovnice pro velikost okamžité rychlosti kmitavého pohybu je

Napište všechny vlastnosti daného kmitavého pohybu.

 1 - 2 s · m ($\frac{\pi}{h}$ + {1}m3)sos π 30,0 = 4 B Rovnice pro velikost okamžité rychlosti kmitavého pohybu je

Napište všechny vlastnosti daného kmitavého pohybu.

nutu. Vypočítejte počáteční fázi kmitání, jestliže v čase 0,125 s byla okamžitá výchylka $oldsymbol{A}$ Hmotný bod kmitá harmonicky s amplitudou výchylky 5 cm a vykoná 120 kmitů za mi-

vážnou polohou. nutu. Vypočítejte počáteční fázi kmitání, jestliže v čase 0,25 s procházel hmotný bod rovno-B Hmotný bod kmitá harmonicky s amplitudou výchylky 3 cm a vykoná 180 kmitů za mi-