W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

- Zwycięzca eliminacji, nazywany graczem nr. 1 otrzymuje 10 losów,
- Osoba, która zajęła drugie miejsce w eliminacjach, nazywana graczem nr. 2, otrzymuje 9 losów,
- Osoba, która zajęła trzecie miejsce w eliminacjach, nazywana graczem nr. 3, otrzymuje 8 losów,
- •
- Osoba, która zajęła dziesiąte miejsce w eliminacjach, nazywana graczem nr. 10, otrzymuje 1 los.

Jeden spośród 55 losów przynosi wygraną. Oblicz wartość oczekiwaną numeru gracza, który posiada wygrywający los.

- (A) 4
- (B) 3
- (C) $\frac{10}{3}$
- (D) 5
- (E) 6

Niech zmienna losowa S_n będzie liczbą sukcesów w n próbach Bernoulliego z prawdopodobieństwem sukcesu p. O zdarzeniu losowym A wiemy, że

$$Pr(A | S_n = k) = a \frac{k}{n} dla k = 0,1,...,n,$$

gdzie a jest znaną liczbą, $0 < a \le 1$. Oblicz $E(S_n \mid A)$.

- (A) pn+1-p
- (B) ap(n+1)
- (C) p(n+1)
- (D) pn+1
- (E) apn+1

Rozważmy próbkę $X_1,...,X_n$ z rozkładu jednostajnego na odcinku $[0,\theta]$ (z nieznanym prawym końcem θ). Niech $M=\max(X_1,...,X_n)$. Należy zbudować przedział ufności dla θ na poziomie 90%. Chcemy, żeby ten przedział był postaci [aM,bM], gdzie liczby a i b są tak dobrane, żeby

$$Pr(\theta < aM) = Pr(\theta > bM) = 0.05$$
.

Podaj długość tego przedziału.

(A)
$$(\sqrt[n]{0.95} - \sqrt[n]{0.05})M$$

(B)
$$\left(\sqrt[n]{20}-1\right)M$$

(C)
$$\left(\sqrt[n]{20} - \sqrt[n]{\frac{20}{19}}\right)M$$

(D)
$$(\sqrt[n]{19})M$$

(E)
$$\left(\sqrt[n]{20} - \sqrt[n]{\frac{20}{19}}\right)\theta$$

Rozważmy sumę losowej liczby zmiennych losowych:

$$S = S_N = \sum_{i=1}^N X_i .$$

Przyjmijmy typowe dla kolektywnego modelu ryzyka założenia: składniki X_i mają jednakowy rozkład prawdopodobieństwa, są niezależne od siebie nawzajem i od zmiennej losowej N. Przyjmijmy oznaczenia:

$$E(X_i) = \mu$$
, $Var(X_i) = \sigma^2$, $E(N) = m$, $Var(N) = d^2$.

Podaj współczynniki a_*,b_* funkcji liniowej a_*S+b_* , która najlepiej przybliża zmienną losową N w sensie średniokwadratowym:

$$E\{(a_*S+b_*-N)^2\}=\min_{a,b}E\{(aS+b-N)^2\}$$

(A)
$$a_* = \frac{1}{\mu}, b_* = 0$$

(B)
$$a_* = \frac{\mu d^2}{\mu^2 d^2 + m\sigma^2}, b_* = \frac{m^2 \sigma^2}{\mu^2 d^2 + m\sigma^2}$$

(C)
$$a_* = \frac{\mu^2 d^2}{\mu^2 d^2 + m\sigma^2}, b_* = \frac{m\sigma^2}{\mu^2 d^2 + m\sigma^2}$$

(D)
$$a_* = \frac{md^2}{\mu^2 d^2 + m\sigma^2}, b_* = \frac{\mu^2 \sigma^2}{\mu^2 d^2 + m\sigma^2}$$

(E)
$$a_* = \frac{md^2}{m^2d^2 + \mu\sigma^2}$$
, $b_* = \frac{\mu^2\sigma^2}{m^2d^2 + \mu\sigma^2}$

Wskazówka: Oblicz Cov(N,S) i Var(S).

Niech $X_1,...,X_{16}$ będzie próbką z rozkładu jednostajnego o gęstości danej wzorem:

$$f_{\theta}(x) = \begin{cases} 1/\theta & dla & 0 \le x \le \theta; \\ 0 & w & przeciwnym & przypadku. \end{cases}$$

Zmienne losowe $X_1,...,X_{16}$ nie są w pełni obserwowalne. Obserwujemy zmienne losowe $Y_i = \min(X_i,10)$. Oblicz estymator największej wiarogodności $\hat{\theta}$ parametru θ na podstawie następującej próbki:

$$(Y_1,...,Y_{16}) = (4, 8, 10, 5, 10, 9, 7, 5, 8, 10, 6, 10, 3, 10, 6, 10)$$

- (A) $\hat{\theta} = 13.333$
- (B) $\hat{\theta} = 16$
- (C) $\hat{\theta} = 10$
- (D) $\hat{\theta} = 20$
- (E) nie można zastosować metody największej wiarogodności do tych danych

Wskazówka: Zauważ, że w próbce jest 10 obserwacji mniejszych od 10 oraz 6 obserwacji o wartości równej 10.

Rozważmy następujące zagadnienie testowania hipotez statystycznych. Dysponujemy próbką $X_1,...,X_n$ z rozkładu normalnego o nieznanej średniej μ i znanej wariancji równej 1. Przeprowadzamy najmocniejszy test hipotezy $H_0: \mu=0$ przeciwko alternatywie $H_1: \mu=1$ na poziomie istotności $\alpha=1/2$. Oczywiście, moc tego testu zależy od rozmiaru próbki. Niech β_n oznacza prawdopodobieństwo błędu drugiego rodzaju, dla rozmiaru próbki n.

Wybierz poprawne stwierdzenie:

- (A) $\lim_{n\to\infty}\frac{\beta_n}{1/n}=1$ (wraz ze wzrostem n, prawdopodobieństwo β_n maleje do zera z podobną szybkością, jak ciąg 1/n).
- (B) $\lim_{n\to\infty} \frac{\beta_n}{1/n^2} = 1$ (wraz ze wzrostem n, prawdopodobieństwo β_n maleje do zera z podobną szybkością, jak ciąg $1/n^2$).
- (C) $\lim_{n\to\infty} \frac{\beta_n}{e^{-n^2/2}} = 1$ (wraz ze wzrostem n, prawdopodobieństwo β_n maleje do zera z podobną szybkością, jak ciąg $e^{-n^2/2}$).
- (D) $\lim_{n\to\infty} \frac{\beta_n}{e^{-n/2}/\sqrt{2\pi\cdot n}} = 1$ (wraz ze wzrostem n, prawdopodobieństwo β_n maleje do zera z podobną szybkością, jak ciąg $e^{-n/2}/\sqrt{2\pi\cdot n}$).
- (E) żadne z powyższych stwierdzeń nie jest prawdziwe

Wybieramy losowo 5 kart spośród 52. Rozważmy następujące zdarzenia losowe:

 $A_{\geq 1} = \{$ wśród wybranych kart jest przynajmniej 1 as $\};$ $A_{\geq 2} = \{$ wśród wybranych kart są przynajmniej 2 asy $\};$ $A_{pik} = \{$ wśród wybranych kart jest as pikowy $\}.$

Oblicz prawdopodobieństwa warunkowe $\Pr(A_{\geq 2} \mid A_{\geq 1})$ i $\Pr(A_{\geq 2} \mid A_{pik})$. Wybierz prawidłową odpowiedź:

(A)
$$Pr(A_{\geq 2} | A_{\geq 1}) = Pr(A_{\geq 2} | A_{pik}) = 0.1222$$

(B)
$$Pr(A_{\geq 2} | A_{\geq 1}) = 0.2214 \text{ i } Pr(A_{\geq 2} | A_{pik}) = 0.1222$$

(C)
$$Pr(A_{\geq 2} | A_{\geq 1}) = 0.1222 \text{ i } Pr(A_{\geq 2} | A_{nik}) = 0.2214$$

(D)
$$Pr(A_{\geq 2} | A_{\geq 1}) = Pr(A_{\geq 2} | A_{pik}) = 0.2214$$

(E)
$$Pr(A_{\geq 2} | A_{\geq 1}) = 0.3214 \text{ i } Pr(A_{\geq 2} | A_{pik}) = 0.4537$$

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach normalnych, przy tym E[X] = E[Y] = 0, Var[X] = 1 i Var[Y] = 3.

Oblicz Pr[|X| < |Y|].

- (A) Pr[|X| < |Y|] = 0.6333
- (B) Pr[|X| < |Y|] = 0.7500
- (C) Pr[|X| < |Y|] = 0.5000
- (D) Pr[|X| < |Y|] = 0.6667
- (E) Pr[|X| < |Y|] = 0.7659

Niech $X_1,...,X_n$ będzie próbką z rozkładu o gęstości danej wzorem:

$$f_{\theta}(x) = \begin{cases} \frac{x^{1/\theta - 1}}{\theta} & dla \quad 0 < x < 1; \\ 0 \quad w \quad przeciwnym \quad przypadku. \end{cases}$$

Znajdź estymator największej wiarogodności $\hat{\theta}$ parametru θ i oblicz błąd średniokwadratowy (ryzyko) tego estymatora,

$$R(\theta) = E_{\theta}[(\hat{\theta} - \theta)^2].$$

(A)
$$R(\theta) = \frac{1}{n^2} \left(\theta + \frac{1}{\theta} \right)$$

(B)
$$R(\theta) = \frac{\theta^2}{n}$$

(C)
$$R(\theta) = \frac{1}{n\theta}$$

(D)
$$R(\theta) = \frac{1}{n} \left(\theta + \frac{1}{\theta} \right)$$

(E)
$$R(\theta) = \frac{1}{n\theta^2}$$

Rozpatrzmy następujący model regresji liniowej bez wyrazu wolnego:

$$Y_i = \beta \cdot x_i + \varepsilon_i$$
 $(i = 1,...,n),$

gdzie x_i są znanymi liczbami, β jest nieznanym parametrem, zaś ε_i są błędami losowymi. Zakładamy, że

$$E[\varepsilon_i] = 0$$
 i $Var[\varepsilon_i] = x_i^2 \sigma^2$ $(i = 1,...,n)$.

Skonstruuj estymator $\hat{\beta}$ parametru β o następujących własnościach:

 $\hat{\beta}$ jest liniową funkcją obserwacji, tzn. jest postaci $\hat{\beta} = \sum_{i=1}^{n} c_i Y_i$,

 $\hat{\beta}$ jest nieobciążony, tzn. $E\hat{\beta} = \beta$,

 $\hat{\beta}$ ma najmniejszą wariancję spośród estymatorów liniowych i nieobciążonych.

(A)
$$\hat{\beta} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

(B)
$$\hat{\beta} = \frac{\sum (x_i - \overline{x})Y_i}{\sum (x_i - \overline{x})^2}$$
, gdzie $\overline{x} = \frac{1}{n}\sum x_i$

(C)
$$\hat{\beta} = \frac{\sum Y_i}{\sum x_i}$$

(D)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{x_i}$$

(E)
$$\hat{\beta} = \frac{\sum \sqrt{x_i} Y_i}{\sum x_i}$$

Wskazówka: Można wyprowadzić poprawny wzór rozwiązując zadanie minimalizacji, albo skorzystać z Twierdzenia Gaussa-Markowa.

Egzamin dla Aktuariuszy z 11 października 2003 r.

Prawdopodobieństwo i Statystyka

Arkusz odpowiedzi*

Imię i nazwisko	K L U C Z	ODPOWIED	Z I
PESEL			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	A	
3	C	
4	В	
5	В	
6	D	
7	С	
8	D	
9	В	
10	D	
_		

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.