CIAA-RX

Manual de Proyecto

Control de versiones

Versión	Fecha	Modificación	Autor
0.0	19/04/2014	Creación	Jaime Aranguren

CIAA-RX: Manual de Proyecto

Tabla de Contenido

Control de versiones	1
Introducción	
Equipo de trabajo	
Material de referencia y recursos	
Hardware	3
Microcontrolador	3
CIAA base	4

Introducción

La CIAA-RX es una variante de la Computadora Industrial Argentina (CIAA) basada en microcontroladores de la familia RX de Renesas, en particular, en la subfamilia RX63N.

Equipo de trabajo

Las siguientes personas participan en el desarrollo de la CIAA-RX:

Nombre	Contacto	Responsabilidad
Jaime Aranguren	jaime.aranguren@gmail.com	• Líder
		Hardware
		Firmware
Esteban Menti	esteban.menti@gmail.com	Hardware
		Firmware

Tabla 1. Equipo de trabajo

Material de referencia y recursos

El material de referencia y recursos para el desarrollo e implementación de la CIAA-RX está relacionado en la Tabla 2.

Categoría	Recurso	Ubicación	
CIAA	Información general	http://www.proyecto-ciaa.com.ar/	
Renesas RX	Información general	http://am.renesas.com/products/mpumcu/rx/rx600/rx63n 631/index.jsp	
Renesas RX	Cursos online	http://www.renesasinteractive.com/course/category.php?id=235	
Renesas RX	Videos	https://www.youtube.com/playlist?list=PL0C7482BC6D27B776	
Renesas RX	Herramientas GNU	http://www.kpitgnutools.com/	
Renesas RX	IDE e2Studio	http://am.renesas.com/products/tools/ide/ide_e2studio/index.jsp	
CIAA-RX	Repositorio	https://svn.code.sf.net/p/ciaa-rx/code	

Tabla 2. Recursos CIAA-RX

Hardware

Microcontrolador

El microcontrolador candidato para la CIAA-RX es el R5F563NEDDFB, cuyas características principales son:

Encapsulado: LQFP-144
Memoria Flash: 2 MB
Memoria DataFlash: 32kB
Memoria RAM: 128 kB
Bus externo: 32 bits

Controlador DMA: 4 canalesControlador EXDMA: 2 canales

Controlador DTC

Controlador SDRAM

• Temporizadores TPU de 16 bits: 12 canales

CIAA-RX: Manual de Proyecto

- Temporizadores MTP: 6 canales
- Generador de pulsos programable: 2 canales
- Temporizadores de 8 bits: 4 canales
- Temporizadores/Comparadores: 4 canales
- Reloj de tiempo real
- Temporizador guardián (WDT)
- Temporizador guardián independiente (IWDT)
- Controlador Ethernet con DMA
- USB 2.0 Host/Function: 2 canales
- Interfaces de comunicación serial SCIc: 12 canales
- Interfaces de comunicación serial SCId: 1 canal
- Bus I2C: 4 canales
- Bus IEbus
- Interfaces SPI: 3 canales
- Módulo CAN: 3 canales
- Conversores ADC de 12 bits: 21 canales
- Conversores ADC de 10 bits: 8 canales
- Conversores DAC: 2 canales
- Sensor de temperatura
- Bloque de cálculo de CRC
- Oscilador sub-clock
- Función de respaldo por batería

Otro posible candidato es el R5F563NBDDFB, similar al R5F563NEDDFB, pero diferente en las siguientes especificaciones:

Memoria flash: 1 MBMódulo CAN: 2 canales

CIAA base

La versión CIAA base es la CIAA-NXP versión TBD, a partir de la cual se harán los cambios de hardware mínimos necesarios para integrar el microcontrolador RX63N, reutilizando diseño hardware preexistente, y en la medida de lo posible, la infraestructura de firmware de línea base de la CIAA.