Taller 3 - Análisis Numérico

Juan Camilo Chafloque Abel Santiago Cortes Juan Sebastian Osorio

27 de octubre de 2019

1. Punto A.

Para la función xcos(x). Encontrar el valor aproximado de su derivada para los siguientes valores de entrada:

- 1. Valor de x: 1,8
- 2. Valores de h: [0,1,0,01,0,001,0,0001]

Para cada valor de h se utilizó la siguiente ecuación para aproximar el valor de la derivada de f(x):

$$f'(x) = \frac{f(x+h_i) - f(x)}{f(h_i)} \tag{1}$$

h	Resultado
0.1	-2.063171328893267
0.01	-1.9878801603501752
0.001	-1.9808977805674546
0.0001	-1.9802047726913956

Cuadro 1: Tabla de aproximaciones.

2. Punto B.

Para calcular la cota de error del punto A, se tuvo que encontrar la segunda derivada de la función:

$$f''(x) = -2\sin(x) - x\cos(x) \tag{2}$$

Luego, hallar el valor de M que es una cota del valor de |f''(x)|, con un x igual a 1.8. La ecuación final para hallar el error es:

$$e = \frac{|h_i M|}{2} \tag{3}$$

h	Error
0.1	0.07693657456544167
0.01	0.0076936574565441675
0.001	0.0007693657456544167
0.0001	7.693657456544168e-05

Cuadro 2: Tabla de errores vs h.

3. Punto C.

1. Valor de x: 1,8

2. Valores inicial de h: 0,1

3. Número máximo de iteraciones: 100

4. **Precisión:** 10e - 4

Con los valores iniciales anteriores, se iteró utilizando la ecuación 1 hasta que el valor del error fuera menor a la precisión o hasta alcanzar el número máximo de iteraciones. Para cada iteración se disminuia el valor de h en un factor de 10.

El valor de h para garantizar un error menor a 10e-4 es: 0.001

4. Punto D.

1. **Valor de x:** 1,8

2. **Valor de** x_1 : x + h

3. **Valor de** x_2 : x + 2h

4. Valor de h: 0,001

Con los puntos x, x_1 y x_2 , se utilizó la siguiente ecuación para aproximar el resultado de la derivada de la función en x.

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} \tag{4}$$

La aproximación utilizando los puntos dados es igual a: -1.9801286426552878

5. Punto E.

En este punto se realizó una modificación a la ecuación 4, tomando valores entre (x - h) y (x + h). La ecuación modificada es la siguiente:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$
 (5)

En Wolfram Alpha, se calculó el valor exacto de la función f'(x) cuando x es igual a 1.8 para poder compararla con el resultado de la ecuación 4.

El error utilizando la ecuación modificada de tres puntos es igual a: 4.0575553073e-07

6. Punto F.

Para este punto se utilizó la ecuación de los cinco puntos alrededor de x_0 .

$$f'(x) = \frac{-f(x_4) + 8f(x_3) - 8f(x_2) + f(x_1)}{12h}$$
(6)

Donde:

1. x_0 : 1,8

2.
$$x_1$$
: $x_0 - 2h$

3. x_2 : $x_0 - h$

4. x_3 : $x_0 + h$

5. x_4 : $x_0 + 2h$

6. Valor de h: 0,001

La aproximación utilizando los 5 puntos es igual a: -1.980127830 El error utilizando la ecuación de 5 puntos es igual a: 4.021227795e-13

Se puede ver que el error para la ecuación de los 5 puntos es menor a los errores de las ecuaciones anteriores.

7. Punto G.

Para este punto se necesita hallar una aproxamiación al valor de f''(x) cuando x es igual a 1.8. Para realizar esta aproximación se utilizó la siguiente ecuación:

$$f'(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \tag{7}$$

En Wolfram Alpha, se calculó el valor exacto de la función f''(x) cuando x es igual a 1.8 para poder compararla con el resultado de la ecuación 7.

La aproximación es igual a: -1.5387312006 El error utlizando la ecuación es igual a: 2.9063012219e-07

8. Punto H.

Teniendo en cuenta que el error total (h)=Error de redondeo + Error de truncamiento dado por la función e(h). Encontrar el tamaño óptimo del paso.

Se tiene que:

$$e(h) = \frac{E}{h} + \frac{h^2}{6}M\tag{8}$$

.

Para obtener el valor óptimo de h se tiene que derivar la ecuación anterior y despejar dicho valor.

$$e'(h) = \frac{-E}{h^2} + \frac{2h}{6}M\tag{9}$$

Una vez se deriva la función, se iguala a cero y se despeja h.

$$\frac{E}{h^2} = \frac{2h}{6}M\tag{10}$$

Por lo tanto el valor óptimo del paso es igual a:

$$h = \sqrt[3]{\frac{6E}{2M}} \tag{11}$$

.

9. Punto I.

Para el siguiente problema se tenía que hallar una aproximación f'(1) a la función $f(x) = xe^x$.

Se realizaron 15 iteraciones disminuyendo el valor de h en un factor de 10 para graficar la variación de la precisión en función de h. La ecuación utilizada para realizar las aproximaciones fue la ecuación 1.

Figura 1: Grafica Precisión vs. h

10. Punto J.

En un circuito con un voltaje E(t) y una inductancia L se tiene que:

$$E(t) = L\frac{di}{dt} + Ri \tag{12}$$

Donde R es la resistencia e i es la corriente.

1. ValordeR: 0,142

 $2. \ ValordeL$: 0.98

3. *Valordeh*: 0,01

4. Valoresdet: [1,001,011,021,031,04]

5. Valoresdei: [3,103,123,143,183,24]

Primero, se realizó una interpolación para los valores de t
 e i utilizando la función de R $poly_calc.$ El polinomio fue:

$$-83333,33t^4 + 341666,7t^3 - 525191,7t^2 + 358719,9t - 91858,4$$
 (13)

Luego se hallaron aproximaciones a la derivada de la corriente para cada instante t.

t	di
1.00	2.114205
1.01	2.115966
1.02	4.117756
1.03	6.119573
1.04	6.121419

Cuadro 3: Tabla de di vs t.

Una vez se tenian los valores de di para cada instante t, se procedió a calcular una aproximación al valor de E(t).

t	E(t)
1.00	2.512121
1.01	2.516687
1.02	4.481280
1.03	6.448742
1.04	6.459071

Cuadro 4: Tabla de di vs t.

11. Referencias

- 1. Introducción a los Métodos Numéricos: Implementaciones en R $\,$ Walter Mora F. February 2015
- 2. Análisis Numérico Básico: Un enfoque algorítmico con el soporte de Python Luis Rodríguez Ojeda January 2014