- 1) Which of the following statements is true with reference to an algorithm's runtime?
- a. The runtime of an algorithm is independent of the speed of the processor.
- b. The runtime of an algorithm is analyzed in terms of nanoseconds.
- *c. A single algorithm can execute more quickly on a faster processor.
- d. The runtime of an algorithm is independent of the input values.
- 2) A constant time operation is independent of _____.
- a. the programming language
- b. the output of the code
- *c. the input values of the code
- d. the hardware running the code
- 3) What is the runtime complexity notation for the following algorithm?

```
LowNum(listOfAgeGroups, listSize, myAge) {
  for (ctr = 0; ctr < listSize; ++ctr) {
    if (listOfAgeGroups[ctr] == myAge)
        return ctr
    }
  }
}
a. O(N²)
b. O(1)</pre>
```

- *c. *O(N)*
- d. $O(N \cdot log N)$

4) In a singly-linked list with 1 element, the tail pointer and the next pointer of the head node
a. points to the last node, points to the first node
b. is null, is null
c. is null, points to the head node
*d. points to the head node, is null
<pre>5) Identify the error in the following algorithm to search for a node in the singly-linked list of students. ListSearch(students, key) { curNode = students>head while (curNode is null) { if (curNode>data == key) { return curNode } curNode = curNode>next } return null</pre>
}
a. The if condition should beif (curNode → data != key).
b. The statementcurNode = students>headshould becurNode = students>tail.
c. The statementcurNode = curNode>nextshould becurNode = students>head.
*d. The while condition should bewhile (curNode is not null).
6) Given a doubly-linked list (2, 3, 4, 5, 6, 7), node 2's pointer(s) point(s) to
a. node 3
b. null
*c. node 3 and null
d. the head and node 3

- 7) Which of the following is an example of a recursive function?
- a. Hiking in the forest trail: Go 3 miles. Follow the path until you reach the 3-mile marker. Follow the same path back.
- b. Open MS Paint: Click on the start button. Click on All Apps. Scroll down to Windows Accessories. Select Microsoft Paint.
- c. Ride a bicycle: Find a flat surface. Put on a helmet. Test the brakes. Plant one foot on the ground and start gliding.
- *d. Trimming the hedges: Turn on the hedge trimmer. Run the hedge trimmer along the top and again on the sides for a section. Trim along each section of the hedge.
- 8) Assuming Fact(0) is 1 and Fact(n) returns n*n-1*n-2*..., which XXX is the base condition for the factorial function?

```
int Fact(int n) {
    XXX
        return 1;
    else
        return n * Fact(n - 1);
}
a. if(n == 1)
*b. if(n <= 1)
c. if(n >= 0)
```

9)How many recursive calls are made while computing the sum of 3, 6, 9, 12 and 15?

```
#include <iostream>
using namespace std;
int ArithSum(int num) {
   if (num == 1) {
      cout << num * 3 << " ";
      return num * 3;
   }
   else {
      cout << num * 3 << ", ";
      return (num * 3 + ArithSum(num - 1));
  }
}
int main() {
   cout << "Sum of ";</pre>
  cout << "is " << ArithSum(5);</pre>
  return 0;
}
a. 2
b. 3
*c. 4
d. 5
```