Contents

1	Secuencias de números			2
	1.1	El espacio vectorial de las secuencias infinitas $(\mathbb{R}^{\mathbb{Z}},+,\cdot)$		
		1.1.1		2
		1.1.2	Características de algunas secuencias	3
		1.1.3	Subespacios de $(\mathbb{R}^{\mathbb{Z}},+,\cdot)$	3
	1.2	Produ	cto convolución	4
	1.3	Anillo	s conmutativos y cuerpos	4
		1.3.1	Clasificación de algunos subconjuntos de sucesiones	4
		1.3.2	Inversas de secuencias con principio	5
		1.3.3	Inversas de secuencias con final	6
		1.3.4	Inversas de polinomios	6
		1.3.5	Cuerpo de fracciones de polinomios	7
	1.4 Operador retardo B y suma de los elementos de una secuencia		dor retardo B y suma de los elementos de una secuencia.	8
		1.4.1	Polinomios y secuencias en el operador retardo $a(B)$ actuando sobre	
			secuencias	8
2	Procesos estocásticos			8
	2.1	Funció	ón de autocovarianzas y función de autocorrelación	9

Econometría Aplicada. Lección 4

Marcos Bujosa

August 14, 2024

En esta lección veremos algunos conceptos algebraicos relacionados con la modelización de series temporales.

1 Secuencias de números

1.1 El espacio vectorial de las secuencias infinitas $\left(\mathbb{R}^{\mathbb{Z}},+,\cdot\right)$

Consideremos el conjunto $\mathbb{R}^{\mathbb{Z}}$ de secuencias infinitas de números reales

$$\mathbf{x} = (\ldots, x_{-2}, x_{-1}, x_0, x_1, x_2, \ldots) = (x_t \mid t \in \mathbb{Z})$$

Las secuencias se pueden sumar y también se pueden multiplicar por escalares. Si $x, y \in \mathbb{R}^{\mathbb{Z}}$ y $a \in \mathbb{R}$, entonces

$$\boldsymbol{x} + \boldsymbol{y} = (x_t + y_t \mid t \in \mathbb{Z})$$

У

$$a\mathbf{x} = (a(x_t) \mid t \in \mathbb{Z}).$$

El conjunto $\mathbb{R}^{\mathbb{Z}}$ junto con la suma elemento a elemento y el producto por escalares constituyen un espacio vectorial.

1.1.1 Notación mediante funciones generatrices

En la expresión $\boldsymbol{x}=(\ldots,\,x_{-2},\,x_{-1},\,x_0,\,x_1,\,x_2,\ldots)$ separamos los elementos por comas, e indicamos la posición con un subíndice. Pero en

$$a = (\ldots, 0, 1, 4, 9, 2, 0, \ldots)$$

£qué posición ocupan estos números en la secuencia?

Las funciones generatrices resuelven este problema. En ellas los elementos se separan con el símbolo "+" y la posición es indicada con la potencia del símbolo "z"

$$a = \cdots + 0z^{-2} + 1z^{-1} + 4z^{0} + 9z + 0z^{2} + \cdots$$

Así, podemos denotar la secuencia x de manera muy compacta del siguiente modo

$$x = \sum_{t=-\infty}^{\infty} x_t z^t \equiv x(z)$$

aPero esta expresión no es una suma! es solo un modo de expresar una secuencia denominada función generatriz.

1.1.2 Características de algunas secuencias

En una sucesión \boldsymbol{a} no nula llamamos

Grado al menor índice entero que verifica la propiedad:

$$j > grado(\boldsymbol{a}) \Rightarrow a_i = 0$$

Para la sucesión, $\mathbf{0}$, diremos que su grado es menos infinito $(grado(\mathbf{0}) = -\infty)$.

Cogrado al mayor índice entero que verifica la propiedad:

$$j < grado(\boldsymbol{a}) \Rightarrow a_i = 0$$

Para la sucesión, $\mathbf{0}$, diremos que su cogrado es infinito $(cogrado(\mathbf{0}) = \infty)$.

Una sucesión \boldsymbol{a} es

Absolutamente sumable (l_1) si $\sum_{t=-\infty}^{\infty} |a_t| < \infty$

De cuadrado sumable (l_2) si $\sum_{t=-\infty}^{\infty} a_t^2 < \infty$

Una sucesión absolutamente sumable siempre es de cuadrado sumable, $l_1 \subset l_2$.

1.1.3 Subespacios de $(\mathbb{R}^{\mathbb{Z}}, +, \cdot)$

Secuencias con final tienen grado (a partir de cierto índice son cero).

$$\mathbf{a}(z) = (\ldots, a_{p-3}, a_{p-2}, a_{p-1}, a_p, 0, 0, 0, \ldots) = \sum_{t=-\infty}^{p} a_t z^t$$

Secuencias con principio tienen cogrado (antes de cierto índice son cero).

$$\mathbf{a}(z) = (\dots, 0, 0, 0, a_k, a_{k+1}, a_{k+2}, a_{k+3}, \dots) = \sum_{t=k}^{\infty} a_t z^t$$

Secuencias o sucesiones formales tienen cogrado ≥ 0 .

$$\mathbf{a}(z) = (\dots, 0, 0, 0, a_0, a_1, a_2, a_3, \dots) = \sum_{t=k}^{\infty} a_t z^t \qquad k \ge 0$$

Polinomios son sucesiones formales con grado

$$\mathbf{a}(z) = (\dots, 0, 0, 0, a_0, a_1, \dots, a_p, 0, 0, 0, \dots) = \sum_{t=k}^{p} a_t z^t \qquad k \ge 0$$

(p.e. $a_0 + a_1 z + a_2 z^2$ es un polinomio de grado 2).

1.2 Producto convolución

Sean a y b sucesiones con principio (con cogrado).

Definimos la sucesión producto convolución () de a con b como:

$$(\boldsymbol{a} * \boldsymbol{b})_t = \sum_{r+s=t} a_r b_s$$

El producto convolución entre dos sucesiones con cogrado está bien definido.

El cogrado de a * b es la suma de los respectivos cogrados.

Además, el producto convolución está bien definido entre dos sucesiones:

- con final (con grado). El grado del producto es la suma de los respectivos grados.
- absolutamente sumables.

1.3 Anillos conmutativos y cuerpos

Un **anillo conmutativo** es un conjunto S equipado con dos operaciones binarias, la suma + y el producto * que satisfacen tres conjuntos de axiomas.

En cuanto a la suma

- (a+b)+c=a+(b+c) para todo a,b,c en S (i.e. + es asociativa).
- a + b = b + a para todo a, b en S (i.e. + es conmutativa).
- Existe un elemento $\mathbf{0}$ tal que $\mathbf{a} + \mathbf{0} = \mathbf{a}$ para todo $\mathbf{a} \in \mathsf{S}$.
- Para cada $a \in S$ existe $-a \in S$ tal que a + (a) = 0.

En cuanto al producto

- (a * b) * c = a * (b * c) para todo a, b, c en S (i.e. * es asociativo).
- a * b = b * a para todo a, b en S (i.e. * es conmutativo).
- Existe un elemento 1 tal que a * 1 = a para todo $a \in S$.

El producto es distributivo respecto de la suma: Para todo a, b, c en S

- a*(b+c) = (a*b) + (a*c)
- (b+c)*a = (b*a) + (c*a)

Un cuerpo es un anillo conmutativo que adicionalmente satisface:

Para cada a ∈ S no nulo (a ≠ 0), existe b ∈ S tal que a * b = 1.
 (Todo elemento no nulo del conjunto tiene una inversa en dicho conjunto)

1.3.1 Clasificación de algunos subconjuntos de sucesiones

Son anillos el conjunto de sucesiones formales (cogrado ≥ 0), polinomios y l_1 .

Para algunas sucesiones (no nulas) de estos subconjuntos o no existe inversa o, cuando existe, es una sucesión de otro tipo (p.e. las inversas de un polinomio no son polinomios en general).

Son cuerpos el conjunto de secuencias con principio, secuencias con final (y el Cuerpo de fracciones de polinomios)

1.3.2 Inversas de secuencias con principio

Supongamos que $a \neq 0$ y que k = cogrado(a). Definimos **b** del siguiente modo:

$$b_{j} = \begin{cases} 0 & \text{si } j < -k \\ \frac{1}{a_{k}} & \text{si } j = -k \\ \frac{-1}{a_{k}} \sum_{r=-k}^{j-1} b_{r} a_{j+k-r} & \text{si } j > -k \end{cases}$$

Por construcción, $cogrado(\mathbf{b}) = -k$ y en consecuencia si j < 0, $(\mathbf{a} * \mathbf{b})_j = 0$. Obviamente, $(\mathbf{a} * \mathbf{b})_0 = 1$; y si j > 0, $(\mathbf{a} * \mathbf{b})_j = 0$.

Ya que

$$(\mathbf{a} * \mathbf{b})_{j} = \sum_{r+s=j} a_{r} b_{s} = \sum_{r=-k}^{j-k} a_{j-r} b_{r}$$

$$= \sum_{r=-k}^{j-k-1} a_{j-r} b_{r} + a_{k} b_{j-k}$$

$$= \sum_{r=-k}^{j-k-1} a_{j-r} b_{r} + a_{k} \left(\frac{-1}{a_{k}} \sum_{r=-k}^{j-k-1} b_{r} a_{j-k+k-r}\right)$$

$$= \sum_{r=-k}^{j-k-1} a_{j-r} b_{r} - \sum_{r=-k}^{j-k-1} b_{r} a_{j-r} = 0$$

Ejemplo: Para el polinomio 1 - az

$$(1-az)^{-\triangleright} = \text{inversa con principio de } (1-az) = \begin{cases} 0 & \text{si } j < 0 \\ 1 & \text{si } j = 0 \\ a^{-1} & \text{si } j > 0 \end{cases}$$

es decir $(\ldots,0,\ \boxed{1},\ a,\ a^2,\ a^3,\ldots)=\sum_{j=0}^{\infty}a^jz^j$

Comprobación:

$$(1 - az) \sum_{j=0}^{\infty} a^{j} z^{j} = \sum_{j=0}^{\infty} a^{j} z^{j} - az \sum_{j=0}^{\infty} a^{j} z^{j}$$
$$= \sum_{j=0}^{\infty} a^{j} z^{j} - \sum_{j=1}^{\infty} a^{j} z^{j}$$
$$= a^{0} z^{0} + \sum_{j=1}^{\infty} (a^{j} - a^{j}) z^{j}$$
$$= 1z^{0} + \sum_{j=1}^{\infty} 0z^{j} = \mathbf{1}$$

1.3.3 Inversas de secuencias con final

Supongamos que $a \neq 0$ y que p = grado(a). Definimos **b** del siguiente modo:

$$b_{j} = \begin{cases} 0 & \text{si } j > -p \\ \frac{1}{a_{p}} & \text{si } j = -p \\ \frac{-1}{a_{p}} \sum_{r=j-1}^{-p} b_{r} a_{j+p-r} & \text{si } j < -p \end{cases}$$

Por construcción, $grado(\mathbf{b}) = -p$.

Ejemplo: Para el polinomio 1 - az

$$(1-az)^{\blacktriangleleft -} = \text{inversa con final de } (1-az) = \begin{cases} 0 & \text{si } j > -1 \\ \frac{-1}{a} & \text{si } j = -1 \\ \frac{-1}{a^j} & \text{si } j < -1 \end{cases}$$

es decir $(\ldots, \frac{-1}{a^3}, \frac{-1}{a^2}, \frac{-1}{a}, \boxed{0}, \ldots) = \sum_{j=-\infty}^{-1} -a^j z^j$

Comprobación:

$$(1 - az) \sum_{j = -\infty}^{-1} -a^{j} z^{j} = \sum_{j = -\infty}^{-1} -a^{j} z^{j} + (-az) \sum_{j = -\infty}^{-1} -a^{j} z^{j}$$

$$= \sum_{j = -\infty}^{-1} -a^{j} z^{j} + \sum_{j = -\infty}^{0} a^{j} z^{j}$$

$$= \sum_{j = -\infty}^{-1} -a^{j} z^{j} + \sum_{j = -\infty}^{-1} a^{j} z^{j} + a^{0} z^{0}$$

$$= \sum_{j = -\infty}^{-1} (a^{j} - a^{j}) z^{j} + 1z^{0} = \mathbf{1}$$

1.3.4 Inversas de polinomios

Ahora sabemos que todo polinomio

por tener cogrado tiene una inversa con cogrado (con principio)

por tener grado tiene una inversa con grado (con final)

y generalmente dichas inversas no son polinomios.

Por el ejemplo anterior sabemos que para 1-az ambas inversas son

•
$$(1-az)^{-\triangleright} = \sum_{j=0}^{\infty} a^j z^j = (\dots, 0, \boxed{1}, a, a^2, a^3, \dots)$$

•
$$(1-az)^{\blacktriangleleft -} = \sum_{j=-\infty}^{-1} -a^j z^j = (\dots, \frac{-1}{a^3}, \frac{-1}{a^2}, \frac{-1}{a}, \boxed{0}, \dots)$$

Es evidente que si $|a| \neq 1$ una de las inversas está en l_1 y la otra no.

Y si |a| = 1 ninguna de las inversas pertenece a l_1

Además, por el Teorema fundamental del Álgebra también sabemos que:

Todo polinomio univariante no nulo con coeficientes reales puede factorizarse como

$$c \cdot \boldsymbol{p}_1 * \cdots * \boldsymbol{p}_k$$

donde c es un número real y cada p_i es un polinomio mónico (i.e., el coeficiente de z^0 es 1) de grado a lo sumo dos con coeficientes reales. Más aún, se puede suponer que los factores de grado dos no tienen ninguna raíz real.

Considere que un polinomio a sin raíces de módulo 1; lo podemos factorizar

$$a = b * c$$

donde

- b es un polinomio con las raíces de módulo menor que 1 y
- \boldsymbol{c} es un polinomio con las raíces de módulo mayor que 1

Como tanto los polinomios a, b y c como las inversas $b^{\blacktriangleleft -}$ y $c^{-\triangleright}$ pertenecen al anillo l_1 ,

$$a*(b^{\blacktriangleleft-}*c^{-\triangleright})=(b*c)*(b^{\blacktriangleleft-}*c^{-\triangleright})=b*b^{\blacktriangleleft-}*c*c^{-\triangleright}=1*1=1.$$

La secuencia $(b^{\blacktriangleleft -} * c^{-\triangleright})$ es "la" inversa de a en l_1 .

En general, dicha inversa no tiene grado ni cogrado y se denota con $a^{-1} = \frac{1}{a}$. (es la inversa que aparece en los libros de series temporales)

Evidentemente dicha inversa no existe si a tiene alguna raíz de módulo 1.

En series temporales de un polinomio a se dice que es invertible si

$$a^{-\triangleright} = a^{-1}$$
.

(si sus raíces están fuera del círculo unidad.)

1.3.5 Cuerpo de fracciones de polinomios

El cuerpo más importante en la modelización ARIMA es el cuerpo de fracciones de polinomios

$$\{p*q^{^{\triangleright}} \mid p \text{ y } q \text{ son polinomios y } q \neq 0\};$$

es un subcuerpo del cuerpo de las sucesiones con principio (con cogrado)

Toda fracción de sucesiones con grado y cogrado (con principio y final) pertenece al cuerpo de fracciones de polinomios.

El razonamiento es simple: Toda sucesión con grado k y cogrado es de la forma $p*(z^k)^{-\triangleright}$, donde p es un polinomio.

Cuando las raíces del polinomio q están fuera del circulo unidad (i.e., $q^{-\triangleright}=q^{-1}$) es habitual denotar la secuencia $p*q^{-\triangleright}$ así

$$\frac{\boldsymbol{p}(z)}{\boldsymbol{q}(z)}$$

1.4 Operador retardo B y suma de los elementos de una secuencia.

Por conveniencia se usa el operador retardo B en la notación:

$$Bx_t = x_{t1}, \text{ para } t \in \mathbb{Z}.$$

Aplicando el operador B repetidamente tenemos

$$\mathsf{B}^k x_t = x_{tk}, \quad \text{para } t, z \in \mathbb{Z}$$

Así, si la secuencia $\boldsymbol{x}(z) = \sum_{t=-\infty}^{\infty} x_t z^t$ es sumable, entonces la expresión

$$\mathbf{x}(\mathsf{B}) = \sum_{t=-\infty}^{\infty} x_t \mathsf{B}^t = \dots + x_{-2} + x_{-1} + x_0 + x_1 + \dots$$

tiene sentido como suma.

1.4.1 Polinomios y secuencias en el operador retardo a(B) actuando sobre secuencias

Así, para el polinomio $a(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3$, y la secuencia y, tenemos

$$\mathbf{a}(\mathsf{B})y_{t} = (a_{0} + a_{1}\mathsf{B} + a_{2}\mathsf{B}^{2} + a_{3}\mathsf{B}^{3})y_{t}$$

$$= a_{0}y_{t} + a_{1}\mathsf{B}^{1}y_{t} + a_{2}\mathsf{B}^{2}y_{t} + a_{3}\mathsf{B}^{3}y_{t}$$

$$= a_{0}y_{t} + a_{1}y_{t-1} + a_{2}y_{t-2} + a_{3}y_{t-3}$$

$$= \sum_{r=0}^{3} a_{r}y_{t-r}$$

$$= (\mathbf{a} * \mathbf{u})_{t}$$

Y en general, si a e y son secuencias sumables, entonces

$$\mathbf{a}(\mathsf{B})y_t = (\dots + a_{-2}\mathsf{B}^{-2}, a_{-1}\mathsf{B}^{-1}, a_0 + a_1\mathsf{B} + a_2\mathsf{B}^2 + \dots)y_t$$

= \dots + a_{-2}y_{t-2} + a_{-1}y_{t-1} + a_0y_t + a_1y_{t-1} + a_2y_{t-2} + \dots
= (\mathbf{a} * \mathbf{y})_t

2 Procesos estocásticos

Las procesos estocásticos se pueden sumar y se pueden multiplicar por escalares.

Si X e Y son dos procesos estocásticos y $a \in \mathbb{R}$, entonces

$$\boldsymbol{X} + \boldsymbol{Y} = (X_t + Y_t \mid t \in \mathbb{Z})$$

У

$$a\mathbf{X} = (a(X_t) \mid t \in \mathbb{Z}).$$

El conjunto de procesos estocásticos junto con la suma elemento a elemento y el producto por escalares constituyen un espacio vectorial.

Consideremos el proceso estocástico

$$X = (X_t \mid t = 0, \pm 1, \pm 2, \ldots).$$

Al igual que con las secuencias, podemos denotar el proceso estocástico con una función generatriz

$$m{X} = \sum_{t=-\infty}^{\infty} X_t z^t \equiv m{X}(z)$$

Recuerde que la expresión de más arriba no es una suma, es una secuencia de variables aleatorias

$$\sum_{t=-\infty}^{\infty} X_t z^t = (\dots, X_{-2}, X_{-1}, X_0, X_1, X_2, \dots)$$

Sea $a \in l_1$ (una secuencia absolutamente sumable) y X un proceso estocástico. Definimos el producto convolución () de a con X como el proceso estocástico:

$$\boldsymbol{a} * \boldsymbol{X} = \left(\sum_{r+s=t} a_r X_s \middle| t \in \mathbb{Z}\right)$$

es decir

$$(\boldsymbol{a} * \boldsymbol{X})_t = \sum_{r+s=t} a_r X_s, \quad \text{para } t \in \mathbb{Z}.$$

Por tanto, cada elemento de (a * X) es una combinación de variables aleatorias de X Podemos aplicar el operador B sobre los elementos de un proceso estocástico X.

$$\mathsf{B}X_t = X_{t1}, \quad \text{para } t \in \mathbb{Z}.$$

Aplicando el operador B repetidamente tenemos

$$\mathsf{B}^k X_t = X_{tk}, \quad \text{para } t, z \in \mathbb{Z}$$

Así, para el polinomio $\boldsymbol{a}(z)=a_0+a_1z+a_2z^2+a_3z^3,$ y el proceso estocástico \boldsymbol{Y}

$$\mathbf{a}(\mathsf{B})Y_t = (a_0 + a_1\mathsf{B} + a_2\mathsf{B}^2 + a_3\mathsf{B}^3)Y_t$$

= $a_0Y_t + a_1Y_{t-1} + a_2Y_{t-2} + a_3Y_{t-3}$
= $(\mathbf{a} * \mathbf{Y})_t$, para $t \in \mathbb{Z}$

Y en general, si $a \in l_1$, entonces

$$\mathbf{a}(\mathsf{B})Y_{t} = (\dots + a_{-2}\mathsf{B}^{-2}, a_{-1}\mathsf{B}^{-1}, a_{0} + a_{1}\mathsf{B} + a_{2}\mathsf{B}^{2} + \dots)Y_{t}$$

$$= \dots + a_{-2}Y_{t-2} + a_{-1}Y_{t-1} + a_{0}Y_{t} + a_{1}Y_{t-1} + a_{2}Y_{t-2} + \dots$$

$$= (\mathbf{a} * \mathbf{y})_{t}, \quad \text{para } t \in \mathbb{Z}$$

2.1 Función de autocovarianzas y función de autocorrelación

- La secuencia (γ_k) con $k \in \mathbb{Z}$ se denomina función de autocovarianzas
- La secuencia $\{\rho_k\}$ con $k \in \mathbb{Z}$, donde

$$\rho_k = \frac{Cov(X_t, X_{t-k})}{\sqrt{Var(X_t)Var(X_{t-k})}} = \frac{\gamma_k}{\gamma_0}$$

se denomina función de autocorrelación (ACF).

Debido a la estacionariedad, la correlación entre X_t y X_{t+k} no depende de t; tan solo depende de la distancia temporal k entre ambas variables.