Diskrete Mathematik

Patrick Bucher

23. Februar 2017

Inhaltsverzeichnis

1	Logik und Beweise							
	1.1	Logisc	he Operationen	1				
		1.1.1	Negation	1				
		1.1.2	Konjunktion	2				
		1.1.3	Disjunktion	2				
			EXOR					
		1.1.5	Implikation	2				
		1.1.6	Bikonditional	2				

1 Logik und Beweise

- Proposition: eine Aussage oder ein Satz ist:
 - wahr (w: wahr, t: true, 1)
 - falsch (f: falsch/false, 0)
- Fragen und Gleichungen mit einer Unbekannten sind keine Aussagen
- Bezeichnung von Aussagen: p, q, r, s
- Beispiele für Präpositionen:
 - p =«Es regnet draussen.»
 - -q = «Der Platz draussen ist nass.»

1.1 Logische Operationen

1.1.1 Negation

 $\neg p$: «Es ist nicht der Fall, dass p gilt.» Wahrheitstabelle:

$$\begin{array}{c|c}
p & \neg p \\
\hline
w & f \\
f & w
\end{array}$$

1.1.2 Konjunktion

 $p \wedge q$: «Es gelten p und q.» Wahrheitstabelle:

p	q	$p \wedge q$
w	w	w
w	f	f
f	w	f
f	$\int f$	f

1.1.3 Disjunktion

 $p \vee q$: «Es gilt p oder q oder es gelten beide.» Wahrheitstabelle:

p	q	$p \lor q$
w	w	w
w	f	w
f	w	w
f	f	f

1.1.4 **EXOR**

 $p \oplus q$: «Es gilt p oder q aber nicht p und q.»

1.1.5 Implikation

 $p \to q$: «Wenn p gilt, dann gilt q.»

1.1.6 Bikonditional

 $p \Leftrightarrow q$: «Es gilt p genau dann, wann q gilt.»