STAT 3690 Lecture 25

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Mar 30, 2022

Estimating L and Ψ (con'd)

- ML method
 - Further assumptions
 - * $\mathbf{F} \sim MVN_q(\mathbf{0}, \mathbf{I})$
 - * $\mathbf{E} \sim MVN_p(\mathbf{0}, \mathbf{\Psi})$
 - * $\mathbf{L}^{\top} \mathbf{\Psi}^{-1} \mathbf{L}$ is diagonal
 - factanal or psych::fa

-

- Comments on estimation of L and Ψ
 - Other methods
 - Different statistical softwares may apply different methods
 - * Have to look into help manuals to figure out what is going on for different
 - Compare the outputs of multiple estimation methods
 - * For a good fit, similar answers would be reached regardless of the method

Factor rotation

- L is not uniquely defined: if $\mathbf{Y} \boldsymbol{\mu} = \mathbf{LF} + \mathbf{E}$, then $\mathbf{Y} \boldsymbol{\mu} = \widetilde{\mathbf{LF}} + \mathbf{E}$, where
 - $-\widetilde{\mathbf{L}} = \mathbf{L}\mathbf{P}$ and $\widetilde{\mathbf{F}} = \mathbf{P}^{\top}\mathbf{F}$ with \mathbf{P} a $q \times q$ orthogonal matrix, i.e., $\mathbf{P}\mathbf{P}^{\top} = \mathbf{I}$
- A blessing to improve interpretation: pick up a $\bf P$ such that $\tilde{\bf F}$ is more interpretable; to ease interpretation, we want:
 - Each entry of \mathbf{Y} to have large loadings for merely one common factor and negligible loadings for the others
- ullet varimax: find rotation ${f P}$ to maximize the sum of variance of squared (scaled) loadings over all the common factors

$$\sum_{j=1}^{q} \left\{ \frac{1}{p} \sum_{i=1}^{p} \tilde{\ell}_{ij}^{*4} - \left(\frac{1}{p} \sum_{i=1}^{p} \tilde{\ell}_{ij}^{*2} \right)^{2} \right\}$$

– $\tilde{\ell}_{ij}^* = \tilde{\ell}_{ij}/\sum_{j=1}^q \tilde{\ell}_{ij}^2$ with $\tilde{\ell}_{ij}$ the (i,j)-th entry of $\widetilde{\mathbf{L}} = \mathbf{LP}$

- Comments on factor rotation
 - Especially useful with loadings obtained through ML
 - Sometimes used for PCA loadings

Factor scores

- Weighted least square (WLS) method
 - Given $\bar{\mathbf{Y}}$, $\hat{\mathbf{L}}$, and $\hat{\mathbf{\Psi}}$
 - For the *i*th observation \mathbf{Y}_i , to minimize $(\mathbf{Y}_i \bar{\mathbf{Y}} \hat{\mathbf{L}}\mathbf{F})^{\top} \hat{\mathbf{\Psi}}^{-1} (\mathbf{Y}_i \bar{\mathbf{Y}} \hat{\mathbf{L}}\mathbf{F})$ with respect to \mathbf{F}
 - $-\widehat{\mathbf{F}}_i = (\widehat{\mathbf{L}}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \widehat{\mathbf{L}})^{-1} \widehat{\mathbf{L}}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} (\mathbf{Y}_i \bar{\mathbf{Y}})$

• Regression method

- Under normality $\mathbf{F} \sim MVN_p(\mathbf{0}, \mathbf{I})$ and $\mathbf{E} \sim MVN_p(\mathbf{0}, \mathbf{\Psi})$
 - * $[\mathbf{Y}^{\top} \boldsymbol{\mu}^{\top}, \mathbf{F}^{\top}]^{\top}$ is of zero mean and normally distributed with covariance matrix

$$\left[\begin{array}{cc} \mathbf{L}\mathbf{L}^\top + \Psi & \mathbf{L} \\ \mathbf{L}^\top & \mathbf{I} \end{array}\right]$$

- * Hence $\mathbf{F} \mid \mathbf{Y}$ is normally distributed with mean $\mathbf{L}^{\top}(\mathbf{L}\mathbf{L}^{\top} + \mathbf{\Psi})^{-1}(\mathbf{Y} \boldsymbol{\mu})$ and covariance matrix $\mathbf{I} \mathbf{L}^{\top}(\mathbf{L}\mathbf{L}^{\top} + \mathbf{\Psi})^{-1}\mathbf{L}$
- Given $\bar{\mathbf{Y}}$, $\hat{\mathbf{L}}$, and $\hat{\boldsymbol{\Psi}}$,

$$\widehat{\mathbf{F}}_i = \widehat{\mathbf{L}}^{\top} (\widehat{\mathbf{L}} \widehat{\mathbf{L}}^{\top} + \widehat{\mathbf{\Psi}})^{-1} (\mathbf{Y}_i - \bar{\mathbf{Y}})$$

- * Sometimes replace $\widehat{\mathbf{L}}\widehat{\mathbf{L}}^{\top} + \widehat{\boldsymbol{\Psi}}$ with \mathbf{S}
- Comments on factor scores
 - More methods available
 - No uniformly superior way