Entwicklung eines automatischen Timing-Messgeräts für Kameras

Bachelorthesis der Fachhochschule Graubünden

Inhaltsverzeichnis

- Aufgabenstellung
- Konzept
- Prototyp
- Hardware + Software
- Auswertung
- Resultate
- Demonstration
- Verteidigung

Aufgabenstellung

- Messsystem mit LEDs
- Kamera schaut auf Messsystem
- Messsystem verändert LEDs über Zeit
- Software kann aus Video Zeitverhalten analysieren
- Messsystem mit PC über serielle Schnittstelle verbinden

Konzept

- eine wandernde LED abgestimmt auf FPS der Kamera
- Position LEDs → Zeitstempel
- Anzahl LEDs → Beleuchtungszeit

Prototyp – PWM / Testkalibration

- Einzelne LED (Nucleo Board)
- Helligkeitsauswertung bei 10 Stufen

Prototyp – Schieberegister

- Aufbau auf Steckbrett
- Maximal 30MHz
- Ein Widerstand gibt LED Treiberstrom vor

Hardware – Schema & Layout

KiCAD

Hardware – PCB

Bestellt bei JLCPCB

Hardware – Gehäuse

- Programm: Autodesk Fusion 360
- Drucker: Prusa MK4

Software – Mikrokontroller (1)

- Software auf Kalibrationsgerät
- Programmiersprache: C
- Entwicklungsumgebung: STM32CubeIDE
- Steuerung über serielle Schnittstelle

Software – Mikrokontroller (2)

- Timer (Prescaler + Auto-Reload) $f_{timer} = \frac{f_{system}}{(PSC+1)\cdot(ARR+1)}$

- Schieberegister → eine LED
- (Demonstration)

Software – Komplette Ansteuerung

- (Beispiel) Software auf PC
- Programmiersprache: C/C++
- Ansteuerung von Kamera + Kalibrationsgerät
- Bibliotheken: opencv, ueye (Kamera)
- (Demonstration am Schluss)

Software – Auswertung

- Software auf PC
- Programmiersprache: Python
- Bibliotheken: opencv, numpy, scipy, matplotlib
- (Demonstration am Schluss)

Auswertung – Funktionsprinzip

- Änderung Position → Änderung FPS
- Breite der LEDs → Belichtungszeit
- Anordnung der LEDs "im Kreis"

Auswertung – Datengenerierung (1)

- FPS Kalibrationsgerät ≠ Kamera ^{n=1/(2·|1-f_K)}
 Maximal einstellbare FPS = 4.5kHz
- Ganzes LED-Feld ausgeschaltet aber im Bild der Kamera
- Beginnen mit Filmen

Auswertung – Datengenerierung (2)

Übertragung von Einstellungen → Video

- 1) Alle LEDs aus
- 2) Alle LEDs an
- 3) Orientierungsmuster
- 4) Systemfrequenz
- 5) Prescaler (Timer)

- 6) Auto-Reload (Timer)
- 7) Anzahl PWM Stufen
- 8) PWM Stufen
- 9) Alle LEDs aus
- **10) Wandernde LED**

Auswertung – Datengenerierung (3)

- Filmen beenden
- Messgerät evtl. Ausschalten
- Auswertung mit Python
- PC → Zugriff auf Video

Auswertung – Positionsdetektion (1)

Auswertung – Positionsdetektion (2)

Auswertung – Positionsdetektion (3)

Auswertung – Kalibration (1)

Auswertung – Kalibration (2)

Resultate – gut abgestimmt

Resultate – schlecht abgestimmt

Resultate – Rolling Shutter

(Video)

Open source

GitHub

• https://github.com/rseitz01/fhgr-bachelorthesis-camera-calibration

Demonstration

Entwicklung eines automatischen Timing-Messgeräts für Kameras

Vielen Dank für eure Aufmerksamkeit

Entwicklung eines automatischen Timing-Messgeräts für Kameras

Verteidigung

Entwicklung eines automatischen Timing-Messgeräts für Kameras