DATA COLLECTION

```
In [1]: # import Libraries
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [2]: # To Import Dataset
sd=pd.read_csv(r"c:\Users\user\Downloads\18_world-data-20231.csv")
sd

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code
0	Afghanistan	60	AF	0.581	652230.0	323000.0	32.49	93.0
1	A l bania	105	AL	0.431	28748.0	9000.0	11.78	355.0
2	Algeria	18	DZ	0.174	2381741.0	317000.0	24.28	213.0
3	Andorra	164	AD	0.400	468.0	NaN	7.20	376.0
4	Angola	26	AO	0.475	1246700.0	117000.0	40.73	244.0
190	Venezuela	32	VE	0.245	912050.0	343000.0	17.88	58.0
191	Vietnam	314	VN	0.393	331210.0	522000.0	16.75	84.0
192	Yemen	56	YE	0.446	527968.0	40000.0	30.45	967.0
193	Zambia	25	ZM	0.321	752618.0	16000.0	36.19	260.0
194	Zimbabwe	38	ZW	0.419	390757.0	51000.0	30.68	263.0

195 rows × 35 columns

In [3]: # to display top 10 rows
sd.head(10)

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code
0	Afghanistan	60	AF	0.581	652230.0	323000.0	32.49	93.0
1	A l bania	105	AL	0.431	28748.0	9000.0	11.78	355.0
2	Algeria	18	DZ	0.174	2381741.0	317000.0	24.28	213.0
3	Andorra	164	AD	0.400	468.0	NaN	7.20	376.0
4	Angola	26	AO	0.475	1246700.0	117000.0	40.73	244.0
5	Antigua and Barbuda	223	AG	0.205	443.0	0.0	15.33	1.0
6	Argentina	17	AR	0.543	2780400.0	105000.0	17.02	54.0
7	Armenia	104	AM	0.589	29743.0	49000.0	13.99	374.0
8	Australia	3	AU	0.482	7741220.0	58000.0	12.60	61.0
9	Austria	109	AT	0.324	83871.0	21000.0	9.70	43.0
10 rows × 35 columns								

DATA CLEANING AND PRE_PROCESSING

In [4]: | sd.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 35 columns): Non-Null Count Dtype Column --------0 Country 195 non-null object 1 Density (P/Km2)195 non-null int64 Abbreviation 188 non-null object 2 3 Agricultural Land(%) float64 188 non-null 4 Land Area(Km2) 194 non-null float64 5 Armed Forces size 171 non-null float64 6 Birth Rate 189 non-null float64 7 Calling Code 194 non-null float64 8 Capital/Major City 192 non-null object 9 Co2-Emissions 188 non-null float64 10 CPI 178 non-null float64 11 CPI Change (%) 179 non-null float64 12 Currency-Code 180 non-null object 13 Fertility Rate 188 non-null float64 14 Forested Area (%) 188 non-null float64 15 Gasoline Price 175 non-null object 16 GDP 193 non-null object 17 Gross primary education enrollment (%) 188 non-null float64 18 Gross tertiary education enrollment (%) 183 non-null float64 19 Infant mortality float64 189 non-null 20 Largest city 189 non-null object 21 Life expectancy 187 non-null float64 22 Maternal mortality ratio float64 181 non-null 23 Minimum wage 150 non-null object 24 Official language object 194 non-null 25 Out of pocket health expenditure float64 188 non-null 26 Physicians per thousand 188 non-null float64 27 Population 194 non-null float64 28 Population: Labor force participation (%) 176 non-null float64 29 Tax revenue (%) 169 non-null float64 30 Total tax rate 183 non-null float64 float64 31 Unemployment rate 176 non-null 32 Urban_population 190 non-null float64 33 Latitude 194 non-null float64

194 non-null

float64

dtypes: float64(25), int64(1), object(9)

memory usage: 53.4+ KB

34 Longitude

```
In [5]: # to display summary of statistics
sd.describe()
```

Out[5]:

	Density\n(P/Km2)	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Eı
count	195.000000	188.000000	1.940000e+02	1.710000e+02	189.000000	194.000000	1.880
mean	356.764103	0.391176	6.896244e+05	1.592749e+05	20.214974	360.546392	1.777
std	1982.888967	0.217831	1.921609e+06	3.806288e+05	9.945774	323.236419	8.387
min	2.000000	0.006000	0.000000e+00	0.000000e+00	5.900000	1.000000	1.100
25%	35.500000	0.217000	2.382825e+04	1.100000e+04	11.300000	82.500000	2.304
50%	89.000000	0.396000	1.195110e+05	3.100000e+04	17.950000	255.500000	1.230
75%	216.500000	0.553750	5.242560e+05	1.420000e+05	28.750000	506.750000	6.388
max	26337.000000	0.826000	1.709824e+07	3.031000e+06	46.080000	1876.000000	9.893

8 rows × 26 columns

```
In [6]: #to display colums heading
sd.columns
```

EDA and visualization

```
In [ ]: sns.pairplot(sd)
Out[7]: <seaborn.axisgrid.PairGrid at 0x12f5d6d9a00>
In [ ]: sns.distplot(sd['Calling Code'])
```

```
In [ ]: sns.heatmap(sd.corr())
In [ ]: sd1=sd[[ 'Density\n(P/Km2)','Land Area(Km2)', 'Calling Code']]
```

TO TRAIN THE MODEL _MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [ ]: | x= sd1[['Density\n(P/Km2)','Land Area(Km2)']]
        y=sd1['Calling Code']
In [ ]: # To split my dataset into training data and test data
        from sklearn .model_selection import train_test_split
        x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [ ]: | from sklearn.linear model import LinearRegression
        lr=LinearRegression()
        lr.fit(x_train,y_train)
In [ ]: from sklearn.linear model import LinearRegression
        lr=LinearRegression()
        lr.fit(x_train,y_train)
In [ ]: |print(lr.intercept_)
In [ ]: |coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
        coeff
In [ ]: | prediction = lr.predict(x_test)
        plt.scatter(y_test,prediction)
In [ ]: |print(lr.score(x_test,y_test))
In [ ]: |lr.score(x_train,y_train)
In [ ]: from sklearn.linear_model import Ridge,Lasso
In [ ]: |dr=Ridge(alpha=10)
        dr.fit(x_train,y_train)
In [ ]: |dr.score(x_train,y_train)
```

```
In [ ]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
In [ ]: la.score(x_train,y_train)
```

ElasticNet