

Cours / TD sur les GSE Séance 2

Aurélien Couloumy, Head of Data Science Aurelien.Couloumy@reacfin.com

Contenu du cours

Séance 1 – Introduction aux GSE et Business cases

Séance 2 – Calibrage et suite des Business cases

Debrief de la séance précédente

Objectif du cours / TD

- Aborder de manière concrète la création et l'utilisation des Générateurs de Scénarios Economiques (GSE)
- Déterminer les cas d'usage d'un GSE
- Présenter et réaliser des business case métier

Création d'un GSE

Introduction au calibrage

 Le calibrage permet de définir les paramètres des modèles financiers de manière cohérente avec le marché ou les données historiques de l'entreprise

- Un calibrage s'effectue en général en 3 étapes

Introduction au calibrage

RN

- En univers risque neutre : un processus d'ajustement, cohérent avec les prix en vigueur sur le marché pour minimiser l'écart quadratique entre le prix théorique et le prix observé sur le marché

MR

- En univers monde réel : se rapprocher le plus possible des données historiques proposées en input à l'aide d'indicateurs statistiques

Introduction au calibrage

- **Produit dérivé**: instrument financier dont la valeur fluctue suivant l'évolution du taux ou du prix d'un sous-jacent

- **Option :**produit dérivé ou le porteur a le droit et non l'obligation d'acheter ou vendre un actif sous-jacent à un prix d'exercice fixé à une date donnée.

option d'achat qui permet à un détenteur d'acheter l'actif sous-jacent à un prix d'exercice fixé à l'avance contre le paiement d'une prime. Il permet de se couvrir contre la hausse du prix de l'actif

- **Put**:
option de vente qui donne le droit à son détenteur de vendre l'actif sous-jacent au prix d'exercice fixé à l'avance. Il permet de se couvrir contre la baisse du prix de l'actif

option de swap sur les taux d'intérêt. Il permet de mettre en place un swap à une échéance donnée suivant les conditions déterminées à priori

Swaption:

Choix des données

Exemples de **sous-jacents et type de produits dérivés** observables en fonction de la classe d'actif (observation des volatilités, des niveau de prix mais aussi de la pente et de la convexité)

ACTION

Sous-jacent:

- Eurostoxx 50
- Indice S&P 500
- Indice CAC 40

Produits dérivés:

- Option de vente (call)
- Option d'achat (put)

IMMO

Sous-jacent:

- NPI (représente prix immo Américain)
- IPD (représente prix immo Europe)

Produits dérivés:

- Swaps sur indice
- Swaps sur indices immobiliers contre spread
- Contrat forward sur indice immobilier

TAUX

Sous-jacent:

- Courbe de taux zero-coupon

Dérivés:

- Caps, Floor
- Swaptions

Choix des données

Plusieurs questions se posent :

- Quels sont les types d'instruments financiers qu'il faut sélectionner et pour quel modèle ?
- Est-ce que cela peut avoir une influence sur la qualité de la calibration?

Par exemple : on utilisera plutôt des captions pour un modèle à 2 facteurs du type G2++ (modèle de taux) car ils font apparaitre une imparfaite corrélation entre les deux facteurs du modèle

Problème d'optimisation en univers risque neutre

En risque neutre

 Minimise les écarts entre les prix observés sur le marché et les prix théoriques :

$$\Theta^* = Argmin \sum_{i=1}^{N} ||Prix Marché(i) - Prix Modèle(i)||^2$$

- Plus le modèle a des paramètres plus la fonction à minimiser est complexe.
- Exemples de méthodes numériques pour résoudre le problème
 - Algorithmes d'optimisation non linéaires
 - Algorithmes génétiques

Problème d'optimisation en univers monde réel

- **Méthodes statistiques** : méthode des moments, maximum de vraisemblance, ACP.
- Le calibrage est **très sensible au choix de la fenêtre** (profondeur, date de départ, pas de temps)
- L'utilisateur peut altérer lui-même certains paramètres durant le calibrage sur bases de ses propres anticipations sur l'évolution du marché (et à condition que le régulateur valide ce choix)

Validation en univers risque neutre

- Il faut vérifier que les conditions du marché sont répliquées (market consistency) : reconstitution de la courbe de taux initiale, réplication des volatilités implicites (par rapport aux données de marché initiales).
- Critère de martingalité : les prix projetés actualises doivent être martingales

Validation en univers monde réel

En monde réel

- Réfléxion sur la sélection de l'historique (date de début de l'historique, pas de temps, etc.)
- Analyse statistique des données historiques devant avoir des distributions marginales respectant les propriétés statistiques suivantes:
 - Asymétrie (étalement des queues de distribution)
 - Aplatissement (épaisseur des queues de distribution)
 - Retour à la moyenne
- Analyse des dépendances :
 - Corrélation
 - Dépendance plus importante en queue de distribution

Validations

Et si les modèles sont rejetés ?

En monde réel

Recalibrer les paramètres du modèle considéré, ou un changement de sous-jacent.

En risque neutre

Générer un plus grand nombre de trajectoires et filtrer les trajectoires problématiques (attention aux biais)

Applications

Exercice Excel – Calibrage d'un modèle B&S

On souhaite calibrer un modèle de Black & Scholes : $dS_t = \mu S_t dt + \sigma S_t dW_t$

- Calculer le prix d'un Call en utilisant les données du marché
- Faire de même en utilisant un futur paramètre variable σ
- Calculer la somme des erreurs quadratiques (absolue et relative)
- Minimiser cette erreur en utilisant le solveur Excel
- Discrétiser et créer 1000 scénarios à partir du modèle B&S
- Tester la martingalité sur l'accroissement des rendements actions simulés

```
Pour rappel : Date d'évaluation t Niveau du sous jacent, son cours S La valeur d'un call de maturité \tau = T - t est Prix d'exercice K C = exp(-q.\tau).S.N(d_1) - exp(-r.\tau).K.N(d_2) Taux d'intérêt continument composé r Taux de dividende / revenu continument composé q d_1 = [Ln(S/K) + ((r-q+0.5\sigma^2).\tau)]/(\sigma/\tau) Date d'échéance T d_2 = [Ln(S/K) + ((r-q-0.5\sigma^2).\tau)]/(\sigma/\tau) = d_1 - (\sigma/\tau) Volatilité du sous-jacent \sigma
```


Contact details

Thank you!

Do you have questions?

Aurélien Couloumy, Head of Data Science Aurelien.Couloumy@reacfin.com

Follow us on Linkedin:

About us

Reacfin is a consulting firm focused on setting up top quality, tailor-made risk management frameworks and offering state-of-art actuarial and financial techniques, methodologies and risk strategies.

Reacfin SA - Place de l'Université, 25 B-1348 Louvain-la-Neuve (Belgium) - 0032 0 10 84 07 50 - www.reacfin.com

