Exercise 2-3 - Model Selection for mpg Data Set

Table of Contents

```
Felix Wittich, 01.06.2021
clear all
close all
rng(1)
a)
%Load the carsmall data set and choose the displacement, weight, horsepower,
%acceleration as potential input variables to predict mpg. Store all variables
%matrix and use data(any(isnan(data),2),:) = [] to get rid of NaN values. Plot
the correlation between predictors and output and determine the corresponding
%correlation coefficients using corrcoef(). What can be concluded from the
results?
load carsmall
data = [Displacement, Weight, Horsepower, Acceleration, MPG];
data(any(isnan(data),2),:) = [];
X = data(:,1:end-1);
Y = data(:,end);
figure
% plot correlation
[\sim,ax] = plotmatrix([Y X]);
% set labels (optional)
ylabel(ax(1,1),'MPG')
ylabel(ax(2,1),'Disp')
ylabel(ax(3,1),'Weight')
ylabel(ax(4,1),'Horse')
ylabel(ax(5,1),'Accel')
xlabel(ax(5,1),'MPG')
xlabel(ax(5,2),'Disp')
xlabel(ax(5,3),'Weight')
xlabel(ax(5,4),'Horse')
```

```
xlabel(ax(5,5),'Accel')
% determine correlation coefficients
R = corrcoef([Y X])
R =
                       -0.8591
    1.0000
                                 -0.8028
                                            0.4631
             -0.8048
                                  0.9102
   -0.8048
              1.0000
                        0.8860
                                            -0.6719
   -0.8591
              0.8860
                        1.0000
                                  0.8656
                                            -0.4642
   -0.8028
              0.9102
                        0.8656
                                  1.0000
                                            -0.6836
    0.4631
             -0.6719
                       -0.4642
                                 -0.6836
                                            1.0000
```


b)

choose model type

```
type = 'linear';

% perform stepwise selection using different criteria
myModelAIC = stepwiselm(X,Y,type,'Upper','linear','Criterion','AIC')
myModelBIC = stepwiselm(X,Y,type,'Upper','linear','Criterion','BIC')
myModelRsquared = stepwiselm(X,Y,type,'Upper','linear','Criterion','Rsquared')
% use lasso for selection
```

```
Phi = x2fx(X,'linear'); % generate regression matrix
[B, Stats] = lasso(Phi(:,2:end),Y,'CV',10); % estimate using lasso
lassoPlot(B, Stats, 'PlotType', 'CV') % plot CV results
lassoPlot(B, Stats, 'PlotType', 'Lambda', 'XScale', 'log') % plot coefficient
path
ylabel('value of beta')
beta_0_Lasso = Stats.Intercept(Stats.IndexMinMSE);
BetaLasso = [beta 0 Lasso B(:,Stats.IndexMinMSE)']';
% re-estimate model selected by lasso in order to obtain unbiased estimate
myModelLasso = fitlm(X(:,BetaLasso(2:end)~=0),Y)
% estimate full model
myModel = fitlm(X,Y)
% evaluate models in CV
yFit = @(XTrain, yTrain, XTest)(XTest*regress(yTrain, XTrain));
Xtest = [ones(length(Y), 1) X];
Ytest = Y;
cvMSEmyModelAIC = crossval('MSE',...
    Xtest(:,[true; myModelAIC.VariableInfo.InModel(1:end-1)]),...
    Ytest, 'predfun', yFit);
cvRMSEmyModelAIC = sqrt(cvMSEmyModelAIC);
cvMSEmyModelBIC = crossval('MSE',...
    Xtest(:,[true; myModelBIC.VariableInfo.InModel(1:end-1)]),...
    Ytest,'predfun',yFit);
cvRMSEmyModelBIC = sqrt(cvMSEmyModelBIC);
cvMSEmyModelRsquared = crossval('MSE',...
    Xtest(:,[true; myModelRsquared.VariableInfo.InModel(1:end-1)]),...
    Ytest,'predfun',yFit);
cvRMSEmyModelRsquared = sqrt(cvMSEmyModelRsquared);
cvMSEmyModelLasso = crossval('MSE',...
    Xtest(:,BetaLasso~=0),Ytest,'predfun',yFit);
cvRMSEmyModelLasso = sqrt(cvMSEmyModelLasso);
cvMSEmyModel = crossval('MSE',...
    Xtest,Ytest,'predfun',yFit);
cvRMSEmyModel = sqrt(cvMSEmyModel);
% compare models
RowNames = {'myModelfull','myModelAIC','myModelBIC',...
    'myModelRsquared','myModelLasso'};
RMSE = [myModel.RMSE;myModelAIC.RMSE;myModelBIC.RMSE;...
    myModelRsquared.RMSE;myModelLasso.RMSE];
```

Exercise 2-3 - Model Selection for mpg Data Set

```
AIC = [myModel.ModelCriterion.AIC;...
    myModelAIC.ModelCriterion.AIC; myModelBIC.ModelCriterion.AIC; ...
    myModelRsquared.ModelCriterion.AIC;myModelLasso.ModelCriterion.AIC];
BIC = [myModel.ModelCriterion.BIC; ...
    myModelAIC.ModelCriterion.BIC;myModelBIC.ModelCriterion.BIC;...
    myModelRsquared.ModelCriterion.BIC; myModelLasso.ModelCriterion.BIC];
cvRMSE = [cvRMSEmyModel;cvRMSEmyModelBIC;...
    cvRMSEmyModelRsquared;cvRMSEmyModelLasso];
dimTheta = [1+size(X,2);...
    1+sum(myModelAIC.VariableInfo.InModel(1:end-1));...
    1+sum(myModelBIC.VariableInfo.InModel(1:end-1));...
    1+sum(myModelRsquared.VariableInfo.InModel(1:end-1));...
    1+sum(BetaLasso(2:end)~=0)];
Models = table(RMSE,AIC,BIC,cvRMSE,dimTheta,...
              'RowNames', RowNames)
1. Removing x4, AIC = 529.56
2. Removing x1, AIC = 527.83
myModelAIC =
Linear regression model:
   y \sim 1 + x2 + x3
Estimated Coefficients:
                   Estimate
                                  SE
                                             tStat
                                                          pValue
                     47.769
                                  1.7417
    (Intercept)
                                             27.427
                                                        1.751e-45
                                             -6.2484
   x2
                  -0.0065651
                                0.0010507
                                                        1.3519e-08
   x3
                   -0.042018
                                0.018671
                                             -2.2504
                                                          0.02686
Number of observations: 93, Error degrees of freedom: 90
Root Mean Squared Error: 4.07
R-squared: 0.752, Adjusted R-Squared: 0.747
F-statistic vs. constant model: 136, p-value = 5.57e-28
1. Removing x4, BIC = 539.69
2. Removing x1, BIC = 535.42
myModelBIC =
Linear regression model:
   y \sim 1 + x2 + x3
Estimated Coefficients:
                    Estimate
                                  CE
                                              tStat
                                                          nValue
```

	ESCIMACE	SE	LSLAL	pvalue
(Intercept)	47.769	1.7417	27.427	1.751e-45
<i>x2</i>	-0.0065651	0.0010507	-6.2484	1.3519e-08

x3

-0.042018 0.018671 -2.2504

0.02686

Number of observations: 93, Error degrees of freedom: 90

Root Mean Squared Error: 4.07

R-squared: 0.752, Adjusted R-Squared: 0.747

F-statistic vs. constant model: 136, p-value = 5.57e-28

1. Removing x4, Rsquared = 0.75277

2. Removing x1, Rsquared = 0.75205

3. Removing x3, Rsquared = 0.7381

myModelRsquared =

Linear regression model:

 $y \sim 1 + x2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	49.238	1.6504	29.834	9.0258e-49
x2	-0.0086118	0.00053775	-16.014	3.2405e-28

Number of observations: 93, Error degrees of freedom: 91

Root Mean Squared Error: 4.16

R-squared: 0.738, Adjusted R-Squared: 0.735

F-statistic vs. constant model: 256, p-value = 3.24e-28

myModelLasso =

Linear regression model:

 $y \sim 1 + x1 + x2 + x3$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	47.182	2.0973	22.497	1.7329e-38
<i>x</i> 1	-0.0053631	0.010574	-0.50719	0.61328
x2	-0.0062775	0.0011978	-5.2409	1.0646e-06
<i>x</i> 3	-0.034562	0.023824	-1.4507	0.15037

Number of observations: 93, Error degrees of freedom: 89

Root Mean Squared Error: 4.08

R-squared: 0.753, Adjusted R-Squared: 0.744

F-statistic vs. constant model: 90.3, p-value = 6.51e-27

myModel =

Linear regression model:

Exercise 2-3 - Model Selection for mpg Data Set

$y \sim 1 + x1 + x2 + x3 + x4$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	48.117	3.9008	12.335	6.9194e-21
<i>x</i> 1	-0.0066826	0.011594	-0.57638	0.56583
x2	-0.006084	0.0013823	-4.4014	3.01e-05
<i>x</i> 3	-0.037547	0.026139	-1.4364	0.15442
<i>x</i> 4	-0.060312	0.21167	-0.28493	0.77636

Number of observations: 93, Error degrees of freedom: 88

Root Mean Squared Error: 4.11

R-squared: 0.753, Adjusted R-Squared: 0.742

F-statistic vs. constant model: 67.1, p-value = 6.49e-26

Models =

5×5 table

	RMSE	AIC	BIC	CVRMSE	dimTheta
myModelfull	4.1054	531.47	544.14	4.3775	5
myModelAIC	4.0673	527.83	535.42	4.1023	3
myModelBIC	4.0673	527.83	535.42	4.1464	3
myModelRsquared	4.1571	530.92	535.98	4.2076	2
myModelLasso	4.0842	529.56	539.69	4.2813	4

Trace Plot of Coefficients Fit by Lasso

c)

```
clc, close all
X = data(:,3);
% choose model type
type = 'poly9';
% perform stepwise selection using differenkt criteria
myModelAIC = stepwiselm(X,Y,type,'Criterion','AIC')
myModelBIC = stepwiselm(X,Y,type,'Criterion','BIC')
myModelRsquared = stepwiselm(X,Y,type,'Criterion','Rsquared')
% use lasso for selection
for li = 1:9
    PhiPoly(:,li) = X.^li; % generate regression matrix
X = PhiPoly;
[B, Stats] = lasso(X,Y,'CV',10); % estimate using lasso
lassoPlot(B, Stats, 'PlotType', 'CV') % plot CV results
lassoPlot(B, Stats, 'PlotType', 'Lambda', 'XScale', 'log',...
    'PredictorNames',{'x1','x2','x3','x4','x5','x6','x7','x8','x9'}) % plot
coefficient path
ylabel('value of beta')
beta_0_Lasso = Stats.Intercept(Stats.IndexMinMSE);
BetaLasso = [beta_0_Lasso B(:,Stats.IndexMinMSE)']';
% re-estimate model selected by lasso in order to obtain unbiased estimate
myModelLasso = fitlm(X(:,BetaLasso(2:end)~=0),Y);
% estimate full model
myModel = fitlm(X,Y)
% estimate linear model
myModelLinear = fitlm(X(:,1),Y)
% evaluate models in CV
yFit = @(XTrain,yTrain,XTest)(XTest*regress(yTrain,XTrain));
Xtest = [ones(length(Y), 1) X];
Ytest = Y;
inModelAIC = false(9,1);
inModelAIC(myModelAIC.Formula.Terms(2:end,1)) = true;
inModelBIC = false(9,1);
inModelBIC(myModelBIC.Formula.Terms(2:end,1)) = true;
inModelRsquared = false(9,1);
inModelRsquared(myModelRsquared.Formula.Terms(2:end,1)) = true;
```

```
cvMSEmyModelAIC = crossval('MSE',...
    Xtest(:,[true; inModelAIC]),...
    Ytest, 'predfun', yFit);
cvRMSEmyModelAIC = sqrt(cvMSEmyModelAIC);
cvMSEmyModelBIC = crossval('MSE',...
    Xtest(:,[true; inModelBIC]),...
    Ytest, 'predfun', yFit);
cvRMSEmyModelBIC = sqrt(cvMSEmyModelBIC);
cvMSEmyModelRsquared = crossval('MSE',...
    Xtest(:,[true; inModelRsquared]),...
    Ytest,'predfun',yFit);
cvRMSEmyModelRsquared = sqrt(cvMSEmyModelRsquared);
cvMSEmyModelLasso = crossval('MSE',...
    Xtest(:,BetaLasso~=0),Ytest,'predfun',yFit);
cvRMSEmyModelLasso = sqrt(cvMSEmyModelLasso);
cvMSEmyModel = crossval('MSE',...
    Xtest, Ytest, 'predfun', yFit);
cvRMSEmyModel = sqrt(cvMSEmyModel);
cvMSEmyModelLinear = crossval('MSE',...
    Xtest(:,[1,2]),Ytest,'predfun',yFit);
cvRMSEmyModelLinear = sqrt(cvMSEmyModelLinear);
% compare models
RowNames = {'myModelLinear','myModelfull','myModelAIC','myModelBIC',...
    'myModelRsquared','myModelLasso'};
RMSE = [myModelLinear.RMSE;myModel.RMSE;myModelAIC.RMSE;myModelBIC.RMSE;...
   myModelRsquared.RMSE;myModelLasso.RMSE];
AIC = [myModelLinear.ModelCriterion.AIC;myModel.ModelCriterion.AIC;...
    myModelAIC.ModelCriterion.AIC; myModelBIC.ModelCriterion.AIC;...
    myModelRsquared.ModelCriterion.AIC;myModelLasso.ModelCriterion.AIC];
BIC = [myModelLinear.ModelCriterion.BIC; myModel.ModelCriterion.BIC;...
    myModelAIC.ModelCriterion.BIC;myModelBIC.ModelCriterion.BIC;...
    myModelRsquared.ModelCriterion.BIC; myModelLasso.ModelCriterion.BIC];
cvRMSE = [cvRMSEmyModelLinear;cvRMSEmyModel;cvRMSEmyModelAIC;...
    cvRMSEmyModelBIC;cvRMSEmyModelRsquared;cvRMSEmyModelLasso];
dimTheta = [2;1+size(X,2);...
    1+sum(inModelAIC);...
    1+sum(inModelBIC);...
    1+sum(inModelRsquared);...
    1+sum(BetaLasso(2:end)~=0)];
Models = table(RMSE,AIC,BIC,cvRMSE,dimTheta,...
               'RowNames', RowNames)
1. Removing x1^9, AIC = 653.37
2. Removing x1^8, AIC = 578.88
3. Removing x1^7, AIC = 538.73
4. Removing x1^6, AIC = 534.65
```

myModelAIC =

Linear regression model:

 $y \sim 1 + x1 + x1^2 + x1^3 + x1^4 + x1^5$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-116.99	55.28	-2.1163	0.037179
x1	7.1711	2.5321	2.8321	0.0057444
x1^2	-0.12384	0.043688	-2.8346	0.0057036
x1^3	0.00096408	0.00035581	2.7096	0.0081136
x1^4	-3.526e-06	1.376e-06	-2.5624	0.012115
x1^5	4.929e-09	2.0343e-09	2.423	0.017466

Number of observations: 93, Error degrees of freedom: 87

Root Mean Squared Error: 4.16

R-squared: 0.75, Adjusted R-Squared: 0.735

F-statistic vs. constant model: 52.2, p-value = 9.82e-25

- 1. Removing $x1^9$, BIC = 676.16
- 2. Removing $x1^8$, BIC = 599.14
- 3. Removing $x1^7$, BIC = 556.46
- 4. Removing $x1^6$, BIC = 549.85

myModelBIC =

Linear regression model:

 $y \sim 1 + x1 + x1^2 + x1^3 + x1^4 + x1^5$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-116.99	55.28	-2.1163	0.037179
x1	7.1711	2.5321	2.8321	0.0057444
x1^2	-0.12384	0.043688	-2.8346	0.0057036
x1^3	0.00096408	0.00035581	2.7096	0.0081136
x1^4	-3.526e-06	1.376e-06	-2.5624	0.012115
x1^5	4.929e-09	2.0343e-09	2.423	0.017466

Number of observations: 93, Error degrees of freedom: 87

Root Mean Squared Error: 4.16

R-squared: 0.75, Adjusted R-Squared: 0.735

F-statistic vs. constant model: 52.2, p-value = 9.82e-25

- 1. Removing $x1^9$, Rsquared = 0.15942
- 2. Removing $x1^8$, Rsquared = 0.61445
- 3. Removing $x1^7$, Rsquared = 0.74419
- 4. Removing $x1^6$, Rsquared = 0.74985
- 5. Removing $x1^5$, Rsquared = 0.73297

- 6. Removing $x1^4$, Rsquared = 0.72113
- 7. Removing $x1^3$, Rsquared = 0.71719

myModelRsquared =

Linear regression model:

 $y \sim 1 + x1 + x1^2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	55.637	3.584	15.524	3.4677e-27
<i>x</i> 1	-0.42668	0.059821	-7.1327	2.3996e-10
x1^2	0.0010538	0.00021911	4.8097	6.0387e-06

Number of observations: 93, Error degrees of freedom: 90

Root Mean Squared Error: 4.34

R-squared: 0.717, Adjusted R-Squared: 0.711

F-statistic vs. constant model: 114, p-value = 2.08e-25

Warning: Regression design matrix is rank deficient to within machine precision.

Warning: Regression design matrix is rank deficient to within machine precision.

myModel =

Linear regression model:

 $y \sim 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	0	0	NaN	NaN
x1	0	0	NaN	NaN
x2	0	0	NaN	NaN
<i>x</i> 3	0	0	NaN	NaN
x4	0	0	NaN	NaN
<i>x</i> 5	8.197e-08	6.6973e-09	12.239	2.7926e-20
хб	-1.8226e-09	1.681e-10	-10.843	1.4192e-17
<i>x</i> 7	1.5108e-11	1.5433e-12	9.7896	1.7263e-15
<i>x8</i>	-5.5226e-14	6.1514e-15	-8.9777	7.2365e-14
x9	7.5061e-17	9.0032e-18	8.3371	1.3835e-12

Number of observations: 93, Error degrees of freedom: 88

Root Mean Squared Error: 10.5

R-squared: -0.615, Adjusted R-Squared: -0.688
F-statistic vs. constant model: -8.38, p-value = 0

myModelLinear =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	39.362	1.3169	29.889	7.7492e-49
x1	-0.143	0.011134	-12.844	3.7813e-22

Number of observations: 93, Error degrees of freedom: 91 Root Mean Squared Error: 4.84 R-squared: 0.644, Adjusted R-Squared: 0.641 F-statistic vs. constant model: 165, p-value = 3.78e-22 Warning: X is rank deficient to within machine precision.

Models =

6×5 table

	RMSE	AIC	BIC	cvRMSE	dimTheta
					
myModelLinear	4.8434	559.34	564.4	4.9176	2
myModelfull	10.498	716.1	741.42	10.69	10
myModelAIC	4.1552	534.65	549.85	4.2763	6
myModelBIC	4.1552	534.65	549.85	4.3851	6
myModelRsquared	4.3439	540.06	547.66	4.431	3
myModelLasso	13.134	754.82	775.08	13.287	8

Trace Plot of Coefficients Fit by Lasso

Exercise 2-3 - Model Selection for mpg Data Set

Published with MATLAB® R2021b	