Marine Control Systems II

Lecture 10: Adaptive control

Roger Skjetne

Department of Marine Technology Norwegian University of Science and Technology

TMR4243

Goals of lecture

- ► To understand the difference between *Direct adaptive control* and *Indirect adaptive control*.
- ▶ To be able to explain the concept of *Persistency of excitation* (PE).
- ► To understand the equivalence between UCO and PE
 - Show that UCO and PE implies UGES.
- Estimation by adaptive control.

Literature

Adaptive control:

- Lecture presentation.
- "Work note: Stability lemma"
- ► "Extract from Stability of Adaptive Systems (1977)" for deeper insight (technical)

Scalar plant

We consider the scalar linear plant:

$$\begin{split} \dot{x} &= ax + bu + c \\ &= bu + \varphi(x)^{\top} \theta \\ \theta^{\top} &= \begin{bmatrix} a & c \end{bmatrix}, \qquad \varphi(x)^{\top} = \begin{bmatrix} x & 1 \end{bmatrix} \end{split}$$

where a and c are unknown constant parameters, and b is known. Control objective: To regulate $x(t)\to 0$.

Indirect adaptive control

- ► In INDIRECT adaptive control, the estimated (adapted) parameters are used indirectly to calculate the control parameters.
- ► Typically this is designed by adaptively estimating model parameters, which are thereby used in a model-based control design.

An example follows for our scalar linear plant...

Direct adaptive control

► In DIRECT adaptive control, the feedback control gains are directly estimated (adapted).

An example follows for our scalar linear plant...

2.3, 15

Indirect adaptive control scalar plant

Let
$$\hat{a}$$
, \hat{c} be estimates of q , c , and $\tilde{a} = a - \hat{a}$
Let a CLF be

$$\hat{V} = bux + ax^2 + cx - \frac{1}{2} \tilde{a} \tilde{a} - \frac{1}{2} \tilde{c} \hat{c}$$

$$\tilde{a} + \hat{a} \qquad \tilde{c} + \hat{c}$$

=
$$(bu+\hat{a}x+\hat{c})x+\tilde{a}x^2+\tilde{c}x-\frac{1}{2}\tilde{a}\hat{a}-\frac{1}{2}\tilde{c}\hat{c}$$

Feedback control law:

Adaphive update laws:

$$\hat{a} = \gamma_1 x^2 \qquad \hat{c} = \gamma_2 x$$

V=-KpX < 0 (=> UGS or UGAS? Closed loop (enor) system:

$$\dot{X} = - k_{p} x + \tilde{\alpha} x + \tilde{c}$$

$$\dot{\tilde{\alpha}} = - \gamma_{1} x^{2}$$

$$\dot{\tilde{c}} = - \gamma_{2} x$$

Under what conditions can we guarantee that

~ 70 and ~ 70?

Indirect adaptive because we adapt the model parameters a c that the control oring depend upon

PE !

Direct adaptive control scalar plant

X = ax + bu + CControl X > 0

Since c is a constant matched bias, we know integral action is needed and proposes a PI control law.

An ideal control law is then

U=-kpX-k; 3 (where sign of kp. k; depends on sgnlb) Ideal closed-loop:

 $\dot{x} = -(bk_{p}-a)x - bkiz + C$

Let k = bkp-a>0 and l=bki>0 be the desired gains, and A= [0 1] be Hurwitz

⇒ i=-kx-lã Let = 3 - 5 = 3 - 6ki Z= 2 => Z= AZ

Problem: a is unknown, implying we cannot calculate Kp.

Thus, Let kp be an estimate of kp and Kp = kp - Kp

... Direct adaptive control

Also, select ki s.t. b=ki= L>0

We now apply the adaptive "Pi" control law.

$$\Rightarrow$$
 $\tilde{z} = x$

$$\frac{1}{2} = X$$

$$\frac{1}{2} = X$$

$$\frac{1}{2} = X$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{$$

$$= \sqrt{2x - kx^2 - \sqrt{2x + bkpx^2 - \sqrt{kpkp}}}$$

$$= -kx^2 + \sqrt{bx^2 - \sqrt{kp}} k_p$$

Adaptive update Law:

$$=> \dot{V} = -kx^2 \leq 0$$

Closed-loop!

$$\hat{\vec{x}} = -\gamma b x^{z}$$

$$\hat{\vec{x}} = X$$

$$\hat{\vec{x}} = -kx - L\tilde{\vec{z}} + b\tilde{k}_{p} \times$$

LaSalle-Yoshizawa: x4) - 0

Direct adaphve because we directly adapti the feedback control gain kp.

Definition UCO

Definition

(Anderson et al., 1986) For a dynamic linear system

$$\dot{x} = F(t)x$$

 $y = N(t)^{\top}x, \qquad t \ge 0$

the pair [F(t), N(t)] is said to be Uniformly Completely Observable (UCO) if there exist positive constants α , β , and T such that

$$\alpha I \le \int_t^{t+T} \Phi(\tau, t)^\top N(\tau) N(\tau)^\top \Phi(\tau, t) d\tau \le \beta I$$

holds for all $t \ge 0$, where $\Phi(t,t_0)$ is the transition matrix for the above system, that is, $x(t) = \Phi(t,t_0)x(t_0)$.

Definition PE

Definition

(Anderson et al., 1986) Consider a matrix $Q(t) \in \mathbb{R}^{m \times n}$ for each $t \geq 0$. If there exist positive constants α , β , and T such that

$$\alpha I \le \int_{t}^{t+T} Q(\tau)Q(\tau)^{\top} d\tau \le \beta I$$

holds for all $t \ge 0$, then Q(t) is said to be Persistently Exciting (PE).

UCO implies UGES

Lemma

Consider the dynamic linear system

$$\dot{x} = F(t)x$$

where the matrix function $F(\cdot)$ is bounded and locally integrable. Suppose there exists a constant matrix $P = P^\top > 0$ such that

$$PF(t) + F(t)^{\top}P \le -N(t)N(t)^{\top},$$

for some matrix function $N(\cdot)$ and all $t \ge 0$. Then x = 0 of the above system is UGS. Moreover, if the pair [F(t), N(t)] is UCO, then x = 0 of the above system is UGES.

See (Anderson et al., 1986) for proof.

UCO is invariant under output feedback

Lemma

The pair [F(t), N(t)] is UCO if and only if the pair $[F(t) - K(t)N(t)^{\top}, N(t)]$, with $K(\cdot)$ bounded and locally integrable, is UCO.

See (Anderson et al., 1986) for proof.

PE implies UGES

Theorem

Consider the dynamic linear system

$$\dot{x} = -LQ(t)Q(t)^{\top}x,$$

where $L = L^{\top} > 0$. Suppose the matrix function $Q(\cdot)$ satisfies the following:

- $ightharpoonup t\mapsto Q(t)$ is piecewise continuous,
- $ightharpoonup \exists \mu > 0 \text{ such that } \|Q\|_{\infty} \leq \mu,$
- ightharpoonup Q(t) is PE according to the above definition.

Then x = 0 of the above system is UGES.

See (Anderson et al., 1986) for proof.

Parameter estimation

We are now ready to apply these results to estimation theory. Suppose we have a measured signal $y(t) \in \mathbb{R}^n$ given by

$$y(t) = \Phi(t)^{\top} c$$

where $c \in \mathbb{R}^p$ is a constant unknown coefficient vector, and $\Phi(t) \in \mathbb{R}^{p \times n}$ for each t > 0

The objective is to estimate c, and we will try our adaptive techniques.

Let \hat{c} be an estimate of c and $\tilde{c} := \hat{c} - c$. Similarly, we define

$$\hat{y}(t) = \Phi(t)^{\top} \hat{c}$$

$$\tilde{y}(t) := \hat{y}(t) - y(t) = \Phi(t)^{\top} \tilde{c}$$

To design a continuous-time estimator, let an instantaneous cost function to minimize be

$$J(t,\hat{c}) := \frac{1}{2}\tilde{y}(t)^{\top}W\tilde{y}(t) = \frac{1}{2}\left(\hat{c} - c\right)^{\top}\Phi(t)W\Phi(t)^{\top}\left(\hat{c} - c\right),$$

where $W=W^{\top}>0$ is a weight matrix putting cost on the individual measurements in y.

...Parameter estimation

Motivated by a gradient descent (or steepest descent), we propose an estimation algorithm that tries to minimize $J(t,\hat{c})$ along its fastest descent route. This happens to be in the negative direction of the gradient $J^{\hat{c}}(t,\hat{c})$.

The gradient is given by

$$J^{\hat{c}}(t,\hat{c}) = (\hat{c} - c)^{\top} \Phi(t) W \Phi(t)^{\top} = \tilde{y}(t)^{\top} W \Phi(t)^{\top}.$$

Then, letting $L = L^{\top} > 0$, the adaptive update law

$$\dot{\hat{c}} = -LJ^{\hat{c}}(t,\hat{c})^{\top}$$

gives the estimation error system

$$\begin{split} \dot{\tilde{c}} &= \dot{\hat{c}} = -LJ^{\hat{c}}(t,\hat{c})^{\top} \\ &= -L\Phi(t)W\tilde{y}(t) \\ &= -L\Phi(t)W\Phi(t)^{\top}\tilde{c}. \end{split}$$

We have then the result...

...Parameter estimation

Theorem

Suppose $\Phi(\,\cdot\,)$ is a bounded and piecewise continuous matrix function that satisfies the above PE condition. Then $\tilde{c}=0$ of

$$\dot{\tilde{c}} = -L\Phi(t)W\Phi(t)^{\top}\tilde{c},$$

where $L = L^{\top} > 0$ and $W = W^{\top} > 0$, is UGES.

Proof: Follows from the earlier theorem.

Example 1

Consider the Nomoto steering model for a ship

$$T\dot{r} + r = K\delta$$

where $r=\dot{\psi}$ is the rotation rate of the ship. Suppose we can measure $\delta(t),\,r(t),$ and $\dot{r}(t).$ Then we can represent this model as

$$y(t) = r(t) = \begin{bmatrix} -\dot{r}(t) & \delta(t) \end{bmatrix} \begin{bmatrix} T \\ K \end{bmatrix} = \Phi(t)^{\top} c.$$

A continous-time estimator is then

$$\begin{split} \dot{\hat{c}} &= -L\Phi(t) \left(\Phi(t)^{\top} \hat{c} - y(t) \right) \\ &= -L\Phi(t)\Phi(t)^{\top} \hat{c} + L\Phi(t)y(t) \\ &= -L \left[\begin{array}{cc} \dot{r}(t)^2 & -\dot{r}(t)\delta(t) \\ -\dot{r}(t)\delta(t) & \delta(t)^2 \end{array} \right] \hat{c} + L \left[\begin{array}{cc} -\dot{r}(t) \\ \delta(t) \end{array} \right] r(t). \end{split}$$

...Example 1

Obviously, $\dot{r}(t)$ and $\delta(t)$ are both continous and bounded. Hence, it follows that if there exists positive constants α , β such that

$$\alpha I \leq \int_{t}^{t+T} \begin{bmatrix} \dot{r}(\tau)^{2} & -\dot{r}(\tau)\delta(\tau) \\ -\dot{r}(\tau)\delta(\tau) & \delta(\tau)^{2} \end{bmatrix} d\tau \leq \beta I$$

holds for some T>0, then we are ensured that the estimation error $\tilde{c}(t)\to 0$.

See simulation study.

Adaptive DP control

Consider the Dynamic Positioning system

$$\dot{\eta} = R(\psi)\nu$$

$$M\dot{\nu} = -D\nu + R(\psi)^{\top}b + \tau$$

 $\eta = \operatorname{col}(x, y, \psi)$ the position/heading;

 $\nu = \operatorname{col}(u, v, r)$ the velocities;

b is assumed a constant unknown bias load;

Damping matrix D > 0; mass matrix $M = M^{\top} > 0$; τ the control force input. Notice in particular, for

$$R = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad S(r) = \begin{bmatrix} 0 & -r & 0 \\ r & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

that the following properties hold:

$$R(\psi)^{\top} R(\psi) = R(\psi) R(\psi)^{\top} = I, \quad \det R(\psi) = 1$$
$$\dot{R} = R(\psi) S(r), \quad \dot{R}^{\top} = -S(r) R(\psi)^{\top}, \quad S(r) = -S(r)^{\top}.$$

Adaptive DP control

Control design model

$$\dot{\eta} = R(\psi)\nu$$

$$M\dot{\nu} = -D\nu + R(\psi)^{\top}b + \tau$$

We let

$$z_1 := R(\psi)^{\top} (\eta - \eta_d(t))$$
$$z_2 := \nu - \alpha_1,$$

and \hat{b} an adaptive estimate of b with the error

$$\tilde{b} := b - \hat{b}$$
.

Then we do an adaptive backstepping DP control design on the blackboard...

Preparations for next lecture

Adaptive backstepping:

- Lecture presentation.
- Skjetne (2005). Ch. 4.2

Bibliography

Anderson, B. D. O., Bitmead, R. R., Johnson, Jr., C. R., Kokotović, P. V., Kosut, R. L., Mareels, I. M. Y., Praly, L., and Riedle, B. D. (1986). *Stability of adaptive systems*. MIT Press Series in Signal Processing, Optimization, and Control, 8. The MIT Press, Cambridge, MA, USA. Passivity and averaging systems.

Skjetne, R. (2005). *The Maneuvering Problem.* PhD thesis, Norwegian Univ. Sci. & Tech., Trondheim, Norway.