CNN Quantization Performance evaluation

Emanuele Ghelfi Emiliano Gagliardi

June 14, 2017

Politecnico di Milano

Contents

1 Purposes

2 Quantization

3 Our work

Project purpose

Using a machine learning framework with support for convolutional neural networks

- Define different kind of networks
- Train
- Quantize
- Evaluate the original and the quantized models
- Make a comparison in term of size of the model, cache misses, and inference time

What is quantization?

Developing this project we saw two different approaches:

- Tensorflow
- Caffe Ristretto

Tensorflow quantization

Unsupervised approach

- Get a trained network
- Obtain for each layer the min and the max of the weights value
- Represent the weights distributed linearly between the minimum and maximum with 8 bits precision
- The operations have to be reimplemented for the 8-bit format

The resulting data structure is composed by an array containing the quantized value, and the two float min and max

Caffe Ristretto quantization

Supervised approach

- Get a trained network
- Three different methods:
 - Dynamic fixed point: a modified fixed-point format
 - Minifloat: bit-width reduced floating point numbers
 - Power of two: layers with power-of-two parameters don't need any multipliers, when implemented in hardware
- During quantization evaluate the performance of the network keep the accuracy higher than a given threshold
- Support for training of quantized networks

Caffè Ristretto quantization

Weight Analysis **Activation Analysis Bit-Width Reduction** Fine-tuning Determine statistical Determine statistical Determine the required Retrain fixed point parameters for parameters for bit-width for different network parameters effective quantization effective quantization layers **Test the Accuracy Using Training Set** Review the effect

Why quantize?

Accuracy/inference speed trade-off

- Deep networks tend to cope very well with high levels of noise in their inputs.
- It seems that there is no need of floating point precision
- Training still needs floating point precision to work, it is an iteration of little modification of the weights

So deep networks are trained with floating point precision, then a quantization algorithm can be applied to obtain smaller models and speed up the inference phase

Caffe ristretto

The results obtained with Ristretto with a simple network on the Mnist dataset are not so satisfying...

network	accuracy	model size (MB)	Time (ms)	LL_d misses (10 ⁶)	L1_d misses (10 ⁶)
Orginal	0.9903	1.7	29.2	32.098	277.189
Dynamic f. p.	0.9829	1.7	126.41	42.077	303.209
Minifloat	0.9916	1.7	29.5	37.149	282.396
Power of two	0.9899	1.7	61.1	35.774	280.819

Linux running on macbook pro, cachegrind tool for cache statistics. Intel i5 2.9 GHz, L3 cache 3MB, 16 GB ram.

- The quantized values are stored in float size after the quantization
- The quantized layers implementation works with float variables:
 - perform the computation with low precision values stored in float variables
 - quantize the results, still stored in float variables

Tensorflow

- The quantization is better supported
 - The quantized model is stored with low precision weights
 - Some low precision operations are already implemented
- We tried different topologies of networks, to see how quantization affect these two different kind of layers
 - Some with more fully connected layers
 - Some with more convolution layers

How we used the tensorflow quantization tool

- We used python (with a bit OO, since we needed a way to use it with different networks)
- An abstract class define the pattern of the network that the main script can handle
- The core methods of the pattern are
 - prepare: build the computational graph of the network and the training step, load the data
 - train: iterate the train step
- The main script takes in input an instance and:
 - calls prepare and train
 - quantizes the obtained network
 - evaluates the accuracy
 - evaluates cache performance using linux-perf
 - plots the data

Topologies

Some data - accuracy

Some data - models size

Some data - data cache misses

Some data - inference time

Why is the inference time worst?

- We see an improvement in performance only for the size of the model, and so for the data cache misses
- Inference time and last level cache misses are worst in quantized networks

From the tensorflow github page:

Only a subset of ops are supported, and on many platforms the quantized code may actually be slower than the float equivalents, but this is a way of increasing performance substantially when all the circumstances are right.

Original net - tensorflow benchmark tool

[Node type]	[count]	[avg ms]	[avg %]
Conv2D	2	62.098	73.109%
MatMul	2	16.089	18.942%
Add	4	4.248	5.001%
MaxPool	2	1.453	1.711%
Relu	3	1.006	1.184%
Const	10	0.022	0.026%
Reshape	2	0.008	0.009%
Retval	1	0.004	0.005%
_ Arg	1	0.004	0.005%
No0p	1	0.004	0.005%
Identity	1	0.003	0.004%

Quantized net - tensorflow benchmark tool

[Node type]	[count]	[avg ms]	[avg %]
QuantizedConv2D	2	637.514	74.337%
QuantizedMatMul	2	188.589	21.990%
QuantizeV2	4	7.491	0.873%
RequantizationRange	4	5.128	0.598%
Dequantize	4	4.476	0.522%
Add	4	4.296	0.501%
Requantize	4	3.801	0.443%
QuantizedMaxPool	2	2.203	0.257%
QuantizedRelu	3	1.398	0.163%
Min	4	1.241	0.145%
Max	4	1.224	0.143%
NoOp	1	0.147	0.017%
Const	20	0.042	0.005%
Reshape	4	0.020	0.002%
QuantizedReshape	2	0.014	0.002%
Arg	1	0.007	0.001%
_Retval	1	0.005	0.001%

References

- Tensorflow: https://www.tensorflow.org
- Ristretto: http://lepsucd.com/?page_id=621
- Github repository of the project: https://github.com/EmilianoGagliardiEmanueleGhelfi/CNN-compression-performance