## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the Application:

## **Listing of Claims:**

1. (Currently Amended) An apparatus for compensating differential picture brightness efas to an optical image of a target site due to uneven illumination of the target site from an endoscope, the optical image being imaged onto a video camera so as to produce a video signal representing the optical image, the apparatus comprising:

a <u>compensating</u> device for generating a compensating signal substantially representing at least one parameter of a compensating waveform, the <u>compensating waveform being</u> <u>determined based on the uneven illumination of the target site from the endoscope required for the differential picture brightness of an optical image to produce a video signal representing an optical image having a substantially uniform brightness; and</u>

a logic device operatively coupled to said compensating signal generating device and athe video signal for adding the compensating signal and the video signal to produce an output video signal, the output video signal having its gain both vertically and horizontally compensated so as to represent an optical image of the target site were the target site to have having a substantially uniform brightness illumination from the endoscope.

- 2. (Currently Amended) The apparatus of Claim 1, wherein said compensating signal device further includes a <u>sawtooth waveform</u> device for generating a sawtooth waveform having a predetermined rising slope, a predetermined falling slope and a controlled amplitude; and a <u>parabolic waveform</u> device for generating a <u>parabolic parabola</u> waveform having a controlled amplitude and orientation.
- 3. (Currently Amended) The apparatus of Claim 2, wherein said logic device further-includes an adder operatively coupled to and adding said sawtooth waveform device, said parabolic waveform device and athe video signal to produce a compensating signal which is applied to an adder together with a video signal used as an input to a video signal processor adjusting its gain both vertically and herizontally-so as to add said sawtooth waveform, said parabolic waveform and the video signal to produce the output video signal (a) by increasing the gain of the video

Page 2 - PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

signal representing that part of the optical image which is less bright relative to a reference and (b) reducing the gain of the video signal representing that part of the optical image which is brighter than relative to a reference and wherein said video signal representing an optical image having a substantially uniform brightness.

Claims 4 - 15 (Cancelled)

16. (Currently Amended) An apparatus for compensating differential picture brightness of as to an optical image of a target site due to uneven illumination of the target site from an endoscope, the optical image being imaged onto a video camera so as to produce a video signal representing the optical image, the apparatus comprising:

a device for generating a sawtooth waveform having a predetermined rising slope, a predetermined falling slope and a controlled amplitude,

a device for generating a <u>parabolic</u><del>parabola</del> waveform having a controlled amplitude and orientation; and

a logic device operatively coupled to the video signal, and adding said sawtooth waveform device, and said parabolic waveform device so as to add said sawtooth waveform, said parabolic waveform and athe video signal to produce a compensating video signal which, is applied to an adder together with a video signal used as an input to a video signal processor adjusting its gain both vertically and horizontally by compensating video signal has its gain compensated by (a) increasing the gain of the video signal representing that part of the optical image which is less bright relative to a reference and (b) reducing the gain of the video signal representing that part of the optical image which is brighter than relative to a reference, and wherein said video signal representing an optical image having a substantially uniform brightness so that the compensating video signal represents an optical image of the target site were the target site to have a substantially uniform illumination from the endoscope.

- 17. (Currently Amended) The apparatus of claim 16 further comprising a control device operatively coupled to said logic device to increase the brightness of the compensating <u>video</u> signal to a level which is greater than the average of the differential <u>picture</u> brightness efas to the optical image due to the uneven illumination <u>from the endoscope</u>.
- 18. (Currently Amended) The Apparatus of claim 16 further including comprising a video driver
- Page 3 PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

amplifier operatively coupled to said logic device to apply the compensating <u>video</u> signal to the <u>a</u> video signal processor at a low impedance.

## 19. (Cancelled)

20. (Currently Amended) A video signal compensator for compensating for differential picture brightness of as to an optical image of a target site due to uneven illumination of the target site from an endoscope, the optical image being imaged onto a video sensor so as to produce a video signal representing the optical image, the video signal compensator comprising:

means for generating a compensating signal, the compensating signal substantially representing at least one parameter of a compensating waveform, the compensating waveform being determined based on required for the differential picture brightness of an optical image the uneven illumination of the target site from the endoscope to produce a video signal representing an optical image having a substantially uniform brightness; and

a compensating signal, generating means and a video signal and to said means for generating signal and the video signal to produce a compensating video signal, which is applied to an input to video signal processor having its gain both vertically and horizontally the compensating video signal having its gain compensated by (a) increasing the gain of the video signal representing that part of the optical image from an endoscope which is less bright than a reference and (b) reducing the gain of the video signal representing that part of the optical image from the endoscope which is brighter than a reference, so that the and compensating said video signal to represents an optical image of the target site were the target site to have a substantially uniform illumination from the endoscopethe optical image having a substantially uniform-brightness.

21. (Currently Amended) The video signal compensator of claim 20, wherein said compensating signal generating means further comprising comprises:

a sawtooth wave generator for generating a sawtooth waveform having a predetermined rising slope, a predetermined falling slope and controlled amplitude;

a parabola parabolic wave generator for generating a parabolic parabola waveform having a controlled amplitude and orientation; and

an analog signal adder operatively coupled to said sawtooth wave generator and said parabolic wave generator to add the sawtooth waveform and the <u>parabolic parabolic waveform</u> to produce a compensating signal.

22. (Currently Amended) The video signal compensator of claim 20, further comprising:

a control device operatively coupled to said adding means to increase the brightness of the <u>output-compensating</u> video signal to a level which is greater than the average of the differential <u>picture</u> brightness of the optical image due to the uneven illumination from the endoscope.

## 23. (Cancelled)

24. (Withdrawn) A medical imaging system comprising:

an endoscope having a proximal end and a distal end;

a light guide, said light guide being adapted to receive light energy, to transmit light energy therealong, and to direct the light energy from its distal end so as to illuminate a target site:

an optical image transferring structure located within the endoscope and extending from the proximal end to the distal end of the endoscope;

a video sensor operatively coupled to the optical image transferring structure at the distal end of the endoscope for imaging an optical image of the target site, the optical image having differential picture brightness due to uneven illumination of the target site;

a compensating apparatus operatively coupled to said video sensor, the compensating apparatus comprising

a sawtooth wave generator for generating a sawtooth waveform having a controlled amplitude and at least one of a predetermined rising slope and a predetermined falling slope;

a parabolic wave generator for generating a parabolic waveform having a controlled amplitude and orientation; and

an adder operatively coupled to said sawtooth wave generator, said parabolic wave generator and a video signal, the adder adding said sawtooth waveform, said parabolic waveform and said video signal to produce a compensating video signal; and

a video signal processor coupled to the compensating apparatus so as to receive the compensating video signal, the compensating video signal adjusting the video signal

Page 5 - PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2008 Serial No. 09/384,926 processor's gain both vertically and horizontally, such that the video signal is compensated by increasing the gain of the video signal representing that part of the optical image which is less bright than a reference and reducing the gain of the video signal representing that part of the optical image which is brighter than a reference, so as to facilitate production of a compensated video signal.

- 25. (Withdrawn) The system of claim 24, wherein said light guide is a fiber optic light guide disposed in the endoscope, said light guide resulting in differential picture brightness so that the optical image is brighter at its center than at its edges, and wherein said compensating apparatus produces a compensating signal used as an input to the video signal processor, the compensating signal adjusting the video signal processor's gain both vertically and horizontally, such that the video signal is compensated by increasing, in response to the sawtooth waveform, the gain of the video signal representing the periphery of the optical image and reducing, in response to the parabolic waveform, the gain of the video signal representing the center of the optical image.
- 26. (Withdrawn) The system of claim 24, further comprising an amplifier for amplifying the compensated video signal; and a sensing device operatively coupled to the amplifier for receiving the compensated video signal and for sensing and removing noise therefrom.

Claims 27-34 (Cancelled)

(Withdrawn) An endoscope, comprising:
an elongate housing having a proximal end and a distal end;

a light guide extending from the proximal end to the distal end of the housing, said light guide being adapted to receive light energy, to transmit the light energy therealong and to direct the light energy from the distal end of the housing so as to illuminate a target site wherein the target site is illuminated with uneven illumination;

an optical image transferring structure extending from the proximal end to the distal end of the housing, the optical image transferring structure transferring an optical image of the illuminated target site to said proximal end;

Page 6 - PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

a video sensor operatively coupled to the proximal end of the endoscope in association with the optical image transferring structure, the video sensor producing a video signal representing the optical image having differential picture brightness due to said uneven illumination;

a compensating apparatus operatively coupled to said video sensor, the compensating apparatus generating a compensating signal; and

an application component, coupled to the compensating apparatus to receive the compensating signal, the application component providing for application of the compensating signal to the video signal so as to produce a compensated video signal.

- 36. (Withdrawn) The endoscope of claim 35, wherein the application component comprises a multiplier that multiplies the compensation signal and the video signal to produce a compensated video signal having its gain both vertically and horizontally compensated by increasing the gain of the video signal representing that part of the optical image which is less bright than a reference and reducing the gain of the video signal representing that part of the optical image which is brighter than a reference.
- 37. (Withdrawn) The endoscope of claim 35, wherein the application component applies the compensation signal to control the processing of the video signal.
- 38. (Withdrawn) An endoscope for imaging a target site, the target site being subject of non-uniform illumination, the endoscope having a proximal end and a distal end, comprising:
  - a video sensor producing a video signal representing an optical image of the target site; a compensating apparatus operatively coupled to said video sensor, the compensating

apparatus generating a compensating signal from at least part of the video; and

an application component coupled to the compensating apparatus to receive the compensating signal, the application component providing for application of the compensating signal to the video signal toward producing a compensated video signal.

39. (Withdrawn) The endoscope of claim 38 wherein the video sensor is disposed at the distal end of the endoscope.

Page 7 - PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

- 40. (Withdrawn) The endoscope of claim 38, wherein the video sensor is disposed at the proximal end of the endoscope and further comprising optical image transferring structure, the optical image transferring structure transferring an optical image of the illuminated target site from the distal end to said video sensor at the proximal end.
- 41. (Withdrawn) The endoscope of claim 38, wherein the compensating apparatus generates a digital compensating signal and the application component provides for applying the compensating signal digitally.
- 42. (Withdrawn) The endoscope of claim 38, wherein the compensating apparatus generates an analog compensating signal and the application component provides for applying the compensating signal digitally.
- 43. (Withdrawn) The endoscope of claim 38, wherein the compensating apparatus generates a compensating signal representing at least one parameter of a compensating waveform facilitating production of the compensated video signal.
- 44. (Withdrawn) The endoscope of claim 43, wherein the compensating apparatus and the application component are integral.
- 45. (Withdrawn) A video signal compensator for an endoscope comprising:

a compensating signal generator, the generator generating a compensating signal substantially representing at least one parameter of a compensating waveform for facilitating reduction of differential picture brightness of an optical image generated from an interior space as illuminated by an illumination system in an endoscope, the interior space being subject to uneven illumination, and the optical image being represented in a video signal; and

an application component operatively coupled to said compensating signal generator and receiving as inputs the video signal and the compensating signal, the component applying the compensating signal with the video signal so that the video signal has its gain both vertically and horizontally compensated, including by at least one of increasing the gain of the video signal representing that part of the optical image which is less bright than a reference and of reducing the gain of the video signal representing that part of the optical image which is

Page 8 - PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

brighter than a reference, so as to produce a compensated video signal representing an image having a substantially uniform brightness.

- 46. (Withdrawn) The video signal compensator of claim 44 wherein said compensating signal generator operates in the digital domain.
- 47. (Withdrawn) The video signal compensator of claim 44 wherein said compensating signal generator operates in the analog domain.
- 48. (Withdrawn) A medical instrument for use in imaging a target site in a medical procedure, the target site being subject to deficient illumination, and the target site having a target image selected respecting the deficient illumination, the medical instrument comprising:

an image acquisition component, the image acquisition component generating an acquired image of the target site;

an image output component, the image output component generating an output image of the target site; and

a conditioning component, the conditioning component being coupled to at least one of the image acquisition component and the image output component, the conditioning component providing for selective conditioning of at least one of the acquired image, the output image and an intermediate image derived from one or more of such acquired and output images, so as to enhance correlation of the output image to the target image.

- 49. (Withdrawn) A medical instrument as claimed in claim 48, wherein the image acquisition component comprises at least one of a video sensor and an optical image transferring structure.
- 50. (Withdrawn) A medical instrument as claimed in claim 49, wherein the image output component comprises at least one of an output device, a photonic device and interface technologies.
- 51. (Withdrawn) A medical instrument as claimed in claim 50, wherein the conditioning component provides selectively for at least one of amplification, attenuation, filtering, mixing,
- Page 9 PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting, such provision being to all or selected portions of at least one of the acquired image, the output image and the intermediate image.

- 52. (Withdrawn) A medical instrument as claimed in claim 48, wherein the conditioning component selectively reduces differential picture brightness across all or selected portions of the output image.
- 53. (Withdrawn) A medical instrument as claimed in claim 48, wherein the conditioning component provides for conditioning by at least one of (i) selectively processing all or selected portions of at least one of the acquired image, the output image and the intermediate image, (ii) selectively controlling at least one the image acquisition component and the image output component, and (iii) a combination of such selective processing and controlling.
- 54. (Withdrawn) A medical instrument as claimed in claim 53, wherein the conditioning component processes or controls by providing selectively for at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting, such provision being to all or selected portions of at least one of the acquired image, the output image and the intermediate image.
- 55. (Withdrawn) A medical instrument as claimed in claim 53, wherein the image acquisition component has an acquisition area and has brightness sensitivity that is controllable as a function of acquisition area position, and wherein the conditioning component conditions the acquired image by selectively controlling the brightness sensitivity of the image acquisition component.
- 56. (Withdrawn) A medical instrument as claimed in claim 53, wherein the image output component has an output space and has brightness sensitivity that is controllable as a function of position in the output space, and wherein the conditioning component conditions the output image by selectively controlling the brightness sensitivity of the image output component.

- 57. (Withdrawn) A medical instrument as claimed in claim 53, wherein the conditioning component is integral, in whole or part, with at least one of the image acquisition component and the image output component.
- 58. (Withdrawn) A medical instrument as claimed in claim 48, wherein the conditioning component provides selectively for at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting, such provision being to all or selected portions of at least one of the acquired image, the output image and the intermediate image.
- 59. (Withdrawn) A medical instrument as claimed in claim 48, wherein the image acquisition component has an acquisition area and has brightness sensitivity that is controllable as a function of acquisition area position, and wherein the conditioning component conditions the acquired image by selectively controlling the brightness sensitivity of the image acquisition component.
- 60. (Withdrawn) A medical instrument as claimed in claim 59, wherein the conditioning component is integral, in whole or part, with the image acquisition component.
- 61. (Withdrawn) A medical instrument as claimed in claim 48, wherein the image output component has an output space and has brightness sensitivity that is controllable as a function of position in the output space, and wherein the conditioning component conditions the output image by selectively controlling the brightness sensitivity of the image output component.
- 62. (Withdrawn) A medical instrument as claimed in claim 61, wherein the conditioning component is integral, in whole or part, with the image output component.
- 63. (Withdrawn) A medical instrument as claimed in claim 48, wherein the conditioning component is integral, in whole or part, with at least one of the image acquisition component and the image output component.
- 64. (Withdrawn) A medical instrument as claimed in claim 48, wherein the image acquisition component generates the acquired image so as to comprise at least one of an optical signal and
- Page 11 PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

an electrical signal, and the conditioning component provides for conditioning of at least one of said signals.

- 65. (Withdrawn) A medical instrument as claimed in claim 48, wherein the image output component generates an output image comprising at least one of an optical signal and an electrical signal, and the conditioning component provides for conditioning of at least one of said signals.
- 66. (Withdrawn) A medical instrument as claimed in claim 48, wherein the conditioning component conditions in at least one of the digital and analog domains.
- 67. (Withdrawn) A medical instrument as claimed in claim 48, wherein the conditioning component provides for conditioning based on at least one of calibration previous to the medical procedure, manual calibration performed one or more times during the medical procedure, automatic calibration performed at regular intervals during the medical procedure, automatic calibration performed at intervals during the medical procedure based on selected triggering events, and dynamic calibration performed during the medical procedure.
- 68. (Withdrawn) A medical instrument as claimed in claim 67, wherein the conditioning component provides for conditioning based on calibration responsive to empirical information relevant to the medical procedure.
- 69. (Withdrawn) A medical system for use in imaging a target site in a medical procedure, the target site being subject to deficient illumination, and the target site having a target image selected respecting the deficient illumination, the medical system comprising:

an image acquisition component, the image acquisition component generating an acquired image of the target site;

an image output component, the image output component generating an output image of the target site; and

a conditioning component, the conditioning component being coupled to at least one of the image acquisition component and the image output component, the conditioning component providing for selective conditioning of at least one of the acquired image, the output image and

Page 12 - PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926 an intermediate image derived from one or more of such acquired and output images, so as to enhance correlation of the output image to the target image.

- 70. (Withdrawn) A medical system as claimed in claim 69, wherein the image acquisition component comprises at least one of a video sensor and an optical image transferring structure.
- 71. (Withdrawn) A medical system as claimed in claim 70, wherein the image output component comprises at least one of an output device, a photonic device and interface technologies.
- 72. (Withdrawn) A medical system as claimed in claim 71, wherein the conditioning component provides selectively for at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting, such provision being to all or selected portions of at least one of the acquired image, the output image and the intermediate image
- 73. (Withdrawn) A medical system as claimed in claim 69, wherein the conditioning component selectively reduces differential picture brightness across all or selected portions of the output image.
- 74. (Withdrawn) A medical system as claimed in claim 69, wherein the conditioning component provides for conditioning by at least one of (i) selectively processing all or selected portions of at least one of the acquired image, the output image and the intermediate image, (ii) selectively controlling at least one the image acquisition component and the image output component, and (iii) a combination of such selective processing and controlling.
- 75. (Withdrawn) A medical system as claimed in claim 74, wherein the conditioning component processes or controls by providing selectively for at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting, such provision being to all or selected portions of at least one of the acquired image, the output image and the intermediate image.

- 76. (Withdrawn) A medical system as claimed in claim 74, wherein the image acquisition component has an acquisition area and has brightness sensitivity that is controllable as a function of acquisition area position, and wherein the conditioning component conditions the acquired image by selectively controlling the brightness sensitivity of the image acquisition component.
- 77. (Withdrawn) A medical system as claimed in claim 74, wherein the image output component has an output space and has brightness sensitivity that is controllable as a function of position in the output space, and wherein the conditioning component conditions the output image by selectively controlling the brightness sensitivity of the image output component.
- 78. (Withdrawn) A medical system as claimed in claim 74, wherein the conditioning component is integral, in whole or part, with at least one of the image acquisition component and the image output component.
- 79. (Withdrawn) A medical system as claimed in claim 69, wherein the conditioning component provides selectively for at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting, such provision being to all or selected portions of at least one of the acquired image, the output image and the intermediate image.
- 80. (Withdrawn) A medical system as claimed in claim 69, wherein the image acquisition component is implemented as part of a medical imaging instrument and separate from the medical imaging instrument is at least one of the image output component and the conditioning component.
- 81. (Withdrawn) A medical system as claimed in claim 80, wherein the image output component is an interface technology which connects the medical imaging instrument with, separate from the medical imaging instrument, at least one output device, photonic device and interface technology.
- 82. (Withdrawn) A medical system as claimed in claim 69, wherein the image acquisition component, the image output component, and the conditioning component are integrated in a
- Page 14 PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

medical imaging instrument, and wherein the image output component is an interface technology which connects the medical imaging instrument with, separate from the medical imaging instrument, at least one output device, photonic device and interface technology.

83. (Withdrawn) A method for use in imaging a target site in a medical procedure, the target site being subject to deficient illumination, and the target site having a target image selected respecting the deficient illumination, the method comprising:

generating an acquired image of the target site; generating an output image of the target site; and

conditioning at least one of the acquired image, the output image and an intermediate image derived from one or more of acquired and output images, so as to enhance correlation of the output image to the target image.

- 84. (Withdrawn) A method as claimed in claim 83, wherein the conditioning is provided selectively via at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting to all or selected portions of at least one of an acquired image, an output image and an intermediate image.
- 85. (Withdrawn) A method as claimed in claim 83, wherein the conditioning selectively reduces differential picture brightness across all or selected portions of an output image.
- 86. (Withdrawn) A method as claimed in claim 83, wherein the conditioning is provided by at least one of (i) selectively processing all or selected portions of at least one of an acquired image, an output image and an intermediate image, (ii) selectively controlling at least one of the generating of an acquired image and the generating of an output image, and (iii) a combination of such processing and controlling.
- 87. (Withdrawn) A method as claimed in claim 86, wherein the processing or controlling is effected by providing selectively for at least one of amplification, attenuation, filtering, mixing, adding, multiplying, interpolating, extrapolating, phase shifting and frequency shifting to all or selected portions of at least one of an acquired image, an output image and an intermediate image.

- 88. (Withdrawn) A method as claimed in claim 86, wherein controlling the generating of an acquired image contemplates using an acquisition area having a brightness sensitivity that is controllable as a function of the acquisition area position, and wherein the conditioning of the acquired image comprises selectively controlling the brightness sensitivity respecting the acquisition area position.
- 89. (Withdrawn) A method as claimed in claim 86, wherein controlling the generating of an output image contemplates using an output space having a brightness sensitivity that is controllable as a function of position in the output space, and wherein the conditioning of the output image comprises selectively controlling the brightness sensitivity respecting the output area position.
- 90. (Withdrawn) A method as claimed in claim 83, wherein generating an acquired image contemplates using an acquisition area having a brightness sensitivity that is controllable as a function of the acquisition area position, and wherein the conditioning of the acquired image comprises selectively controlling the brightness sensitivity respecting the acquisition area position.
- 91. (Withdrawn) A method as claimed in claim 83, wherein generating an output image contemplates using an output space having a brightness sensitivity that is controllable as a function of position in the output space, and wherein the conditioning of the output image comprises selectively controlling the brightness sensitivity respecting the output space position.
- 92. (Withdrawn) A method as claimed in claim 83, wherein the generating of an acquired image comprises generating at least one of an optical signal and an electrical signal, and wherein the conditioning is of at least one of said signals.
- 93. (Withdrawn) A method as claimed in claim 83, wherein the generating of an output image comprises generating at least one of an optical signal and an electrical signal, and wherein the conditioning is of at least one of said signals.
- 94. (Withdrawn) A method as claimed in claim 83, wherein the conditioning is performed in at least one of the digital and analog domains.
- Page 16 PRELIMINARY AMENDMENT IN RCE FILED 4 OCTOBER 2006 Serial No. 09/384,926

- 95. (Withdrawn) A method as claimed in claim 83, wherein the conditioning is based on at least one of calibration previous to the medical procedure, manual calibration performed one or more times during the medical procedure, automatic calibration performed at regular intervals during the medical procedure, automatic calibration performed at intervals during the medical procedure based on selected triggering events, and dynamic calibration performed during the medical procedure.
- 96. (Withdrawn) A method as claimed in claim 95, wherein the conditioning is based on calibration responsive to empirical information relevant to the medical procedure.
- 97. (Withdrawn) A medical system for use in imaging a target site in a medical procedure, the target site being subject to deficient illumination, and the target site having a target image selected respecting the deficient illumination, the target image having an energy profile, the medical system comprising:

an image acquisition component, the image acquisition component generating an acquired image of the target site, the acquired image having an energy profile;

an image output component, the image output component generating an output image of the target site, the output image having an energy profile; and

a conditioning component, the conditioning component being coupled to at least one of the image acquisition component and the image output component, the conditioning component providing for selective conditioning of the energy profile of at least one of the acquired image, the output image and an intermediate image derived from one or more of such acquired and output images, so as to enhance correlation of the energy profile of the output image to energy profile of the target image in connection with and to improve performance in the medical procedure.

98. (Withdrawn) A medical system as claimed in claim 97, wherein the target site is illuminated, at least in part, using signals other than visible light, and wherein the image acquisition component generates a second acquired image of the target site based on the illumination using other then visible light.

- 99. (Withdrawn) A medical system as claimed in claim 98, wherein the illumination is electromagnetic radiation in the infrared spectrum and the image acquisition component generates a second acquired image based on reflections and absorptions of said radiation.
- 100. (Withdrawn) A medical system as claimed in claim 98, wherein the illumination is ultrasonic radiation and the image acquisition component generates a second acquired image based on reflections and absorptions of said radiation.
- 101. (Withdrawn) A medical system as claimed in claim 98, wherein the conditioning component provides for selective conditioning of the energy profile of at least one of the acquired image, the output image and an intermediate image based at least in part on the acquired image generated from the illumination other than visible light.
- 102. (Withdrawn) A medical system as claimed in claim 97, wherein the conditioning component provides for selective conditioning of the energy profile so as to reduce differential picture brightness across all or selected portions of the output image.