UNIVERSITY OF WESTMINSTER#

DEPARTMENT OF COMPUTER SCIENCE

MSc Big Data Technologies

MODULE CODE:7BUIS010W

MODULE TITLE : DATA WAREHOUSING AND BUSINESS INTELLIGENCE

MODULE LEADER: DR. PANAGIOTIS CHOUNTAS

COURSEWORK (2020/21)

SUBMISSION DATE: 25 March 2021

STUDENT ID: w1813148

STUDENT NAME: PATEL BHAUMIKKUMAR SHAILESH

- 1. Merge the database schemas depicted in Figure-1 and Figure-2 into a single schema (integrated schema) so that can store data from both the original databases. State any assumptions you may have considered while developing the integrated schema.
 - ❖ Integrated relational schema from Hotel room booking OLTP system and e-Ticket Data Source

The **primary keys are underlined and the **foreign keys** are followed by the sharp sign (#) and the name of the referenced table.

Room (RoomID, RoomTypesID#: RoomTypes, RoomBandID#: RoomBand,

RoomFacilityID#: RoomFacilities, Price, Floor, AdditionalNotes)

RoomTypes (RoomTypeID, TypeDesc)

RoomBands (RoomBandID, BrandDesc)

RoomFacilities (RoomFacilityID, FacilityDesc)

Payments (PaymentID, CustomerID#: Customer, PaymentMethodID#:

PaymentMethods, PaymentAmount, PaymentComments)

PaymentMethods (PaymentMethodID, PaymentMethod)

Bookings (CustomerID#: Customer, DateBookingMade, TimebookingMade,

RoomID#: Room, BookedStartDate, BookedEndDate, TotalPaymentDueDate,

TotalPaymentDueAmount, BookingComments)

Customer (CustomerID, CustomerForenames, CustomerSurnames,

Customer DOB, Customer Home Phone, Customer Work Phone, Customer Mobile Phone,

CustomerEmail, CityID#:City)

County(CountyID, CountyName)

State(<u>StateID</u>, StateName, CountyID#: County)

City(CityID, CityName, StateID#:State)

Singer(SingerID, SingerForenames, SingerSurnames)

Concert(ConcertID, ConcertName, CityID#:City, SingerID: Singer**)**

Buy(CustomerID#:Customer,ConcertID#:Concert,BuyDate, ConcertDate,

TotalPaymentB)

- 2. Based on the integrated relational schema, design a data warehouse model (DFM); in particular, the designated data mart must promptly answer to all the frequent queries 1-3.
 - I. Build the Attribute Tree from the integrated relational schema

(Construction of the Attribute Tree)

(Pruning of the Attribute Tree)

II. Build the Fact Schema from Attribute Tree

3. Map the DFM model to a logical model (i.e., relational). Clearly display the main fact table(s) and dimensions.

Table.1 Facts and measures for the integrated schema issued from hotel room booking OLTP system and e-Ticket Data Source

Fact	Relevance level	Measure		
F-Room	Second	Price		
F-Payments	Second	PaymentAmount		
F-Bookings	First	TotalPaymentDueAmount TotalPaymentDueDate		
F-Buy	First	TotalPaymentB		

Table.2 Dimensions for the extracted facts

Fact	Dimension	Identifier		
F-Room	D-RoomTypes	RoomTypeID		
	D-RoomBands	RoomBandID		
	D-Facilities	RoomFacilityID		
F-Payments	D-Customer	CustomerID		
	D-PaymentMethods	PaymentMethodID		
F-Bookings	D-Customer	CustomerID		
	D-DateBookingMade	DateBookingMade		
	D-TimebookingMade	TimebookingMade		
	D-Room	RoomID		
	D-BookedStartDate	BookedStartDate		
	D-BookedEndDate	BookedEndDate		
F-Buy	D-Customer	CustomerID		
	D-Concert	ConcertID		
	D-BuyDate	BuyDate		
	D-ConcertDate	ConcertDate		

Table.3 Parameters for the dimensions of table 2

Dimension	Hierarchy parameters (From finest to coarsest)				
D-Customer	CityID	StateID	CountyID		
	CustomerDOB				
D-Room	RoomTypeID				
	RoomBandID				
	RoomFacilityID)			
D-Concert	SingerID				
	CityID	StateID	CountyID		

4. Implement the above logical as a working data warehouse schema, under MySQL/R, or any ither suitable DBMS. Provide the DDL statements to create the proposed datawarehouse schema.

5. Considering the designed data warehouse and its cardinalities, decide whether and which materialized views are convenient to improve response time of the frequent queries (consider all the frequent queries). Explain the reasons for your choices.

```
CREATE MATERIALIZED VIEW ROOMID
BUILD IMMEDIATE
REFRESH FORCE
ON COMMIT
AS
SELECT rb.RoomBandsID,r.AdditionalNotes, b.BookingID, count(r.RoomID) as Room,
'Free' as Room_type from `Room` as r
left join `Bookings` as b on r.RoomID = b.RoomID
left join `RoomBands` as rb on rb.RoomBandsID = r.RoomBandsID
where b.RoomID is null group by rb.RoomBandsID;
```

- 6. Provide and implement a materialized view(s) to answer the director's frequent queries'1-3'
 - I. For each room band and month, derive the portion of rooms which are reserved, free and unavailable.

II. For each room band, derive the portion of rooms which are reserved. Associate a rank to each country according to the portion of checkout rooms for that country in a particular year with respect to all reserved rooms for that country. The country with the highest ratio of checkout rooms in a particular year must rank first.

III.	For each rooms.	room	band	and	concert,	produce	the	cumulative	income	of 4-st