8.10

Due conduttori cilindrici molto lunghi di raggio R, paralleli tra loro a notevole distanza l'uno dall'altro, sono percorsi dalle correnti i_1 e i_2 in versi opposti. La circuitazione del campo magnetico lungo i percorsi chiusi C_1 e C_2 indicati in figura vale rispettivamente $\Gamma_1(B)=0$ e $\Gamma_2(B)=-20\pi*10^{-7}\ Tm$. Calcolare i_1 e i_2 .

Formule utilizzate

$$\oint \vec{B} d\vec{s} = \mu_0 \ i_{conc}$$

Soluzione punto a

Sappiamo che $C_1=\oint \vec{B} d\vec{s}=0$ e $C_2=\oint \vec{B} d\vec{s}=-20\pi*10^{-7}~Tm$ $i_{conc}=i_A+i_B$ utilizzando una proporzione $i_A*\frac{1}{2}\pi\left(R^2-\frac{R^2}{4}\right)=i_1\pi R^2$ $i_A=i_1*\frac{3}{8}$ e $i_B=\frac{3}{16}i_2$ i_A avrà segno negativo, invece i_B ha segno positivo ottenitamo: $\Gamma_1(\vec{B})=\mu_0\left(-i_A+i_B\right)=-\frac{3}{8}\mu_0\left(i_1-\frac{i_2}{2}\right)=0$ Stesso procedimento per la seconda situazione: $i_A=\frac{13}{16}i_1$ negativo. $i_B=\frac{1}{4}i_2$ positivo. La corrente è proporzionale alla superficie.

Soluzione punto b