TCP 协议拥塞控制机制观察

一.实验目的

- 1.理解 tcp 拥塞控制的机制和拥塞控制的算法
- 2.熟悉 wireshark 上对流的图形显示处理

二.实验步骤

- 1. 利用 wireshark 记录 tcp 短流
- 2. 利用 wireshark 记录 tcp 长流
- 3. 得到 congestion window 时间曲线并分析慢启动、拥塞避免、快恢复等阶段
- 4. 画出每个 tcp 流的瞬时吞吐量,统计平均吞吐量和丢包率

三.实验过程

- 1. tcp 短流
 - (1) 打开 wireshark 后,设置好 ip 源目的进行过滤,并只查看还未 ack 的包
 - (2) 通过 cmd ping cslabcms.nju.edu.cn 知道教学平台的 ip 是 114.212.128.2
 - (3) 访问教学平台网站,可以刷新几次,会出现几次短流
 - (4) 然后分析过滤后的 tcp 短流

(4) 通过统计->io 图表可以获取 tcp 短流的图形 (可以看到好几次短流)

2.tcp 长流

(1) 通过发送邮件一个大文件分析长流

(2) 得到长流 tcp 包

(3) 获得 io 图表

3.分析拥塞控制机制 根据长流 tcp 的窗口图像,可以看到慢启动、拥塞避免和快速恢复几个阶段

分析这一段图形

开始窗口从 0 开始,一开始呈指数速率快速增长一段时间后线性增长,当发生丢包则拥塞避免阶段 ssthresh 减半 (遇到冗余的 ack) 或从开始 (接受延迟),然后从慢启动阶段或拥塞避免阶段进行。

4.瞬时吞吐量、平均吞吐量 以长流为例

瞬时吞吐量的图表在 wireshark 中统计->tcp 流图形->吞吐量中可以获取

平均吞吐量在统计->捕获文件属性中可以找到,平均吞吐率为484千字节每秒

统计			
<u>测量</u> 分组	<u>已捕获</u> 162217	<u>已显示</u> 124298(76.6%)	<u>标记</u> 一
时间跨度, s	374.538	374. 444	_
平均 pps	433.1	332.0	-
平均分组大小,B	1118	1438	_
字节	181287240	178734431 (98.6%)	0
平均 字节/秒	484 k	477 k	_
平均 比特/秒	3872 k	3818 k	_