Cuestiones práctica 1

Ampliación de análisis numérico

Cuestión 3:

Del programa practica1.m obtenemos la siguiente tabla

$\ \cdot\ _1$	$\ \cdot\ _2$	$\ \cdot\ _{\infty}$	$\ \cdot\ _F$
2.5000e-01	2.4884e-01	2.5000e-01	1.7370e-01
2.5000e-01	2.4971e-01	2.5000e-01	1.7527e-01
2.5000e-01	2.4993e-01	2.5000e-01	1.7603e-01
2.5000e-01	2.4998e-01	2.5000e-01	1.7641e-01
2.5000e-01	2.5000e-01	2.5000e-01	1.7659e-01
2.5000e-01	2.5000e-01	2.5000e-01	1.7668e-01

Observamos entonces que las tres primeras normas se multiplican por 0.25 y la de Frobenius por 0.176.

Cuestión 4: En primer lugar, fijado un $N \in \mathbb{N}$ y un intervalo [a, b], la matriz DD_{N-1} es de la forma

$$DD_{N-1} = \frac{N^2}{(b-a)^2} \begin{bmatrix} -2 & 1 & 0 & \dots & 0 \\ 1 & -2 & 1 & \dots & 0 \\ 0 & 1 & -2 & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & -2 & 1 \\ 0 & 0 & \dots & 1 & -2 \end{bmatrix}$$

Si consideramos las normas matriciales $\|\cdot\|_{\infty}$ y $\|\cdot\|_{F}$ con

$$||A||_{\infty} = \max_{j=1,\dots,N-1} \sum_{k=1}^{N-1} |a_{jk}|$$
 $y \qquad ||A||_F = \left[\sum_{i,j=1}^{N-1} |a_{ij}|^2\right]^{\frac{1}{2}}$

Para calcular las dos normas de la matriz se tiene en cuenta de que la primera y la segunda columna solo tienen los dos elementos y las N-3 restantes 3 elementos. Así

$$||DD_{N-1}|| = \frac{4N^2}{(b-a)^2}$$
 y $||DD_{N-1}||_F = \frac{N^2}{(b-a)^2} \sqrt{10 + 6(N-3)}$

luego

$$\lim_{N \to \infty} \frac{\|DD_{2N-1}\|_{\infty}}{\|DD_{N-1}\|_{\infty}} = \frac{\frac{4(2N)^2}{(b-a)^2}}{\frac{4N^2}{(b-a)^2}} = 4$$

$$\lim_{N \to \infty} \frac{\|DD_{2N-1}\|_F}{\|DD_{N-1}\|_F} = \frac{16N^2}{4N^2} \frac{\sqrt{10 + 6(2N - 3)}}{\sqrt{10 + 6(N - 3)}} = \begin{bmatrix} 10 + 6(N - 3) \sim_{\infty} 6N \\ 10 + 6(2N - 3) \sim_{\infty} 12N \end{bmatrix}$$

$$= \lim_{N \to \infty} 4\sqrt{\frac{12N}{6N}} = 4\sqrt{2}.$$