

Outline

- SOP & POS Implementation
- Boolean function: Representation
- SOM (Sum of Minterms), Canonical form
- SOP (Sum of Product)
- Karnough map simplification
- 2, 3 variable KMap
- 4 variable karnaugh map

Implementation of SOP

$$F(X,Y,Z) = XZ + Y'Z + X'YZ$$

- Any SOP expression can be implemented using 2- levels of gates
- ullet The 1st level consists of AND gates, and the 2^{nd} level consists of a single OR gate
- Also called 2-level Circuit

Implementation of POS

$$F(X,Y,Z) = (X+Z)(Y'+Z)(X'+Y+Z)$$

- Any POS expression can be implemented using 2- levels of gates
- The 1st level consists of OR gates, and the 2nd level consists of a single AND gate
- Also called 2-level Circuit

Implementation of SOP

- Consider F = AB + C(D+E)
- This expression is NOT in the sum-of-products form
- Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in F = AB + CD + CE
- Logic Diagrams:

Canonical Forms

- It is useful to specify Boolean functions in a form that:
- -Allows comparison for equality.
- Has a correspondence to the truth tables
- Canonical Forms in common usage:
- Sum of Minterms (SOM)
- Product of Maxterms (POM)

Brute Force Method of Implementation

3-input even-parity function

• SOM implementation

A	В	C	F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	F
1	1	0	0	
1	1	1	1	

Brute Force Method of Implementation

3-input even-parity function

•	POM	imp	lementa	ation
---	------------	-----	---------	-------

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Simplification: Theorem method

$$\begin{split} E &= \sum m(0,1,2,4,5) \\ &= m_0 + m_1 + m_2 + m_4 + m_5 \\ &= m_5 + m_1 + m_4 + m_0 + m_2 + m_0 \\ &= \mathbf{XY'Z+X'Y'Z+XY'Z'+X'Y'Z'+X'YZ'+X'YZ'+X'Z'Y'} \\ &= (XY'+X'Y')(Z+Z') + X'YZ'+X'Z'Y' \\ &= Y'(X+X')(Z+Z') + X'Z'(Y+Y') \\ &= \mathbf{Y'} + \mathbf{X'Z'} \\ \\ &\text{Simplified one: Require less} \\ &\text{Gates and faster} \\ &\textbf{2 Level} \end{split}$$

Simplification of Boolean Functions

- An implementation of a Boolean Function requires the use of logic gates.
- A smaller number of gates, with each gate (other then Inverter) having less number of inputs, may reduce the cost of the implementation.
- There are 2 methods for simplification of Boolean functions.

Simplification of Boolean Functions: Two Methods

- Algebraic method by using Identities & Theorem
- Graphical method by using Karnaugh Map method
- -The K-map method is easy and straightforward.
- -A K-map for a function of n variables consists of 2^n cells, and,
- -in every row and column, two adjacent cells should differ in the value of only one of the logic Variables 9 variables.

Karnaugh Map Advantages

- Minimization can be done more systematically
- Much simpler to find minimum solutions
- Easier to see what is happening (graphical)
- Almost always used instead of boolean minimization.

Gray Codes

• Gray code is a binary value encoding in which adjacent values only differ by one bit

2-bit Gray Code
00
01
11
10

Truth Table Adjacencies

F = A'	A B F 0 0 1 1 1 1 1 0	These are adjacent in a gray code sense they differ by 1 bit We can apply XY + XY' = X A'B' + A'B = A'(B'+B) = A'(1) = A'
F = B	A B F 0 0 0 0 1 1* 1 0 0 1 1 1	Same idea: A'B + AB = B
77 .		D 11

Key idea:

Gray code adjacency allows use of simplification theorems

Problem:

Physical adjacency in truth table does not indicate gray code adjacency

Logical Equivalence

- Proving logical equivalence of two circuits
 - * Derive the logical expression for the output of each circuit
 - * Show that these two expressions are equivalent

» Two ways:

- You can use the truth table method
- For every combination of inputs, if both expressions
- yield the same output, they are equivalent Good for logical expressions with small number of variables
- You can also use algebraic manipulation
- Need Boolean identities

Logical Equivalence

- Derivation of logical expression from a circuit
 - * Trace from the input to output
 - » Write down intermediate logical expressions along the path

• Proving logical equivalence: Truth table method

A	В	F1 = A B	$F3 = (A + B) (\overline{A} + B) (A + \overline{B})$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Karnaugh Map Method

- The truth table values are placed in the K map.
- Adjacent K map square differ in only one variable both horizontally and vertically.
- The pattern from top to bottom and left to right must be in the form
- A SOP expression can be obtained by ORing all squares that contain a 1.
 A'B', A'B, AB, AB'
 00, 01, 11, 10

Filling of Karnaugh Map

Why not: A'B', A'B, AB', AB

00, 01, 10, 11

Only two adjacent can be grouped

Group Reduce a variable: AB'+AB=A(B'+B)=A

A'B', A'B, AB, AB' 00 01, 11 01

All 4 Adjacent can be grouped

2-Variable Karnaugh Map

Karnaugh Map

• In a K-map, physical adjacency **does** imply gray code adjacency

2-Variable Karnaugh Map

2-Variable K Map: Grouping

2-Variable Karnaugh Map

A	В	index	F
0	0	0	1
0	1	1	1
1	0	2	0
1	1	3	0

$$F = A'B' + A'B = A'$$

A	В	index	F
0	0	0	0
0	1	1	1
1	0	2	1
1	1	3	1

				Α
Α	В	index	F	B 0 1
0	0	0	0	
0	1	1	1	0 0 1
1	0	2	1	1 1 1 A = 1
1	1	3	1	B = 1 F = A + B
				1 - 7 1 0

Α	В	index	F
0	0	0	1
0	1	1	1
1	0	2	1
1	1	3	1

F = 1

Groups of more than two 1's can be combined

HALF ADDER: One bit adder

X	Y	S	С	X	Χ
0	0	0	0	V \ 0	
0	1	1	0	Y 0	1 Y 0 1
1	0	1	0	0 0	1 0 0 0
1	1	0	1	1 1	0 1 0 1
	X	Υ	,	•	
	Half A	dder		S = A'B + AB' = A XOR B	C = AB
	, c	s			

K-Map of three variable

3-Variable Karnaugh Map Showing Minterm Locations

Adjacencies

Adjacent squares differ by exactly one variable

Truth Table to Karnaugh Map

Minimization Example

Minterm Expansion to K-Map

Full Adder Example: Minterms

Ci	Х	Υ	index	S	Со
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	2	1	0
0	1	1	3	0	1
1	0	0	4	1	0
1	0	1	5	0	1
1	1	0	6	0	1
1	1	1	7	1	1

$$S = \sum_{m(1, 2, 4, 7)}$$

$$Co = \sum_{m(3, 5, 6, 7)}$$

Full Adder Output

Maxterm Expansion to KMap

Maxterms are the 0's, everything else is 1

The larger the group of 1's the simpler the resulting product term

Boolean Algebra to Karnaugh Map

Boolean Algebra to Karnaugh Map

Mapping Sum of Product Terms

The 3-variable map has 12 possible groups of 2 spaces
These become terms with 2 literals

Mapping Sum of Product Terms

The 3-variable map has 6 possible groups of 4 spaces
These become terms with 1 literal

4-Variable Karnaugh Map

F = AC'D + A'CD' + B Note the row and column orderings. Required for adjacency

Find a POS Solution

Find solutions to groups of 0's to find F' Invert to get F then use DeMorgan's

Thank You