# РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

Практикум по математической статистике

Лабораторная работа №5

Тема: «Дискриминантный анализ»

Вариант 10

Выполнил

Студент: Феоктистов Владислав

Группа: НПМбд-01-19б

№ c/б: 1032192939

Преподаватель: Матюшенко Сергей Иванович

**Цель работы:** приобрести практические навыки применения дискриминантного анализа для решения конкретных задач с использованием статистического пакета SPSS.

### Ход работы:

- 1. Изучил теоретические основы дискриминантного анализа, используя материалы учебного пособия.
- 2. Разобрал пример использования SPSS для реализации дискриминантного анализа.
- 3. Запустим программу SPSS и введем исходные данные по обучающей выборке.





|    | X1 | X2   | ХЗ | X4  | X5 | Х6 | X7 |
|----|----|------|----|-----|----|----|----|
| 1  | 1  | 27,6 | 7  | 140 | 4  | 46 |    |
| 2  | 1  | 25,6 | 8  | 190 | 5  | 37 |    |
| 3  | 1  | 32,8 | 8  | 170 | 6  | 43 |    |
| 4  | 1  | 36,5 | 7  | 290 | 4  | 52 |    |
| 5  | 1  | 26,5 | 6  | 200 | 3  | 44 |    |
| 6  | 1  | 38,8 | 9  | 390 | 5  | 49 |    |
| 7  | 1  | 24,4 | 6  | 150 | 3  | 53 |    |
| 8  | 2  | 23,3 | 7  | 380 | 3  | 43 |    |
| 9  | 1  | 32,3 | 6  | 180 | 2  | 49 |    |
| 10 | 2  | 19,6 | 4  | 240 | 3  | 29 |    |
| 11 | 1  | 38,0 | 7  | 190 | 5  | 45 |    |
| 12 | 1  | 37,2 | 6  | 220 | 4  | 42 |    |
| 13 | 2  | 21,9 | 4  | 270 | 2  | 43 |    |
| 14 | 1  | 25,9 | 5  | 140 | 3  | 57 |    |
| 15 | 2  | 19,9 | 3  | 110 | 4  | 55 |    |
| 16 | 2  | 17,3 | 6  | 160 | 3  | 59 |    |
| 17 | 2  | 19,4 | 4  | 150 | 2  | 56 |    |
| 18 | 2  | 22,9 | 3  | 170 | 2  | 38 |    |
| 19 | 2  | 26,5 | 6  | 240 | 4  | 34 |    |
| 20 | 1  | 35,3 | 8  | 180 | 5  | 46 |    |
| 21 | 2  | 20,4 | 4  | 180 | 2  | 46 |    |
| 22 | 2  | 28,8 | 2  | 140 | 2  | 58 |    |
| 23 | 2  | 29,8 | 9  | 500 | 2  | 37 |    |
| 24 | 2  | 18,8 | 11 | 420 | 5  | 45 |    |
| 25 | 4  | 33.3 | n  | 270 | A  | EA |    |



Далее проделаем дискриминантный анализ.





После нажатия на кнопку «ОК» получаем следующий вывод:

Сводка результатов обработки наблюдений

| Невзвешенные | наблюдения                                                                                                                             | N  | Процент |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| Валидные     |                                                                                                                                        | 30 | 100,0   |
| Исключенные  | Пропущенные или<br>лежащие вне диапазона<br>коды группирующей<br>переменной                                                            | 0  | 0,      |
|              | По крайней мере одна<br>пропущенная<br>дискриминантная<br>переменная                                                                   | 0  | 0,      |
|              | Оба групповых кода<br>пропущены или лежат<br>вне диапазона, и<br>отсутствует по крайней<br>мере одна<br>дискриминантная<br>переменная. | 0  | 0,      |
|              | Итого искл.                                                                                                                            | 0  | ,0      |
| Всего набл.  |                                                                                                                                        | 30 | 100,0   |

|             |         | і руп   | повые статисти     | 31                                |            |  |
|-------------|---------|---------|--------------------|-----------------------------------|------------|--|
|             |         |         |                    | Кол-во валидных (искі<br>целиком) |            |  |
| Вероятность |         | Среднее | Стд.<br>отклонение | Невзвешенн<br>ые                  | Взвешенные |  |
| Низкая      | История | 2,000   | ,0000              | 9                                 | 9,000      |  |
|             | Доход   | 20,444  | 3,0025             | 9                                 | 9,000      |  |
|             | Срок    | 5,444   | 2,4552             | 9                                 | 9,000      |  |
|             | Кредит  | 218,889 | 94,7951            | 9                                 | 9,000      |  |
|             | Семья   | 3,111   | 1,0541             | 9                                 | 9,000      |  |
|             | Возраст | 44,778  | 12,0807            | 9                                 | 9,000      |  |
| Средняя     | История | 1,417   | ,5149              | 12                                | 12,000     |  |
|             | Доход   | 26,242  | 3,4670             | 12                                | 12,000     |  |
|             | Срок    | 5,333   | 2,0597             | 12                                | 12,000     |  |
|             | Кредит  | 211,667 | 76,3763            | 12                                | 12,000     |  |
|             | Семья   | 3,750   | 1,6026             | 12                                | 12,000     |  |
|             | Возраст | 45,750  | 7,1748             | 12                                | 12,000     |  |
| Высокая     | История | 1,111   | ,3333              | 9                                 | 9,000      |  |
|             | Доход   | 34,089  | 4,2316             | 9                                 | 9,000      |  |
|             | Срок    | 7,222   | 1,3944             | 9                                 | 9,000      |  |
|             | Кредит  | 262,222 | 116,8094           | 9                                 | 9,000      |  |
|             | Семья   | 3,778   | 1,2019             | 9                                 | 9,000      |  |
|             | Возраст | 47,889  | 6,1734             | 9                                 | 9,000      |  |
| Итого       | История | 1,500   | ,5085              | 30                                | 30,000     |  |
|             | Доход   | 26,857  | 6,4137             | 30                                | 30,000     |  |
|             | Срок    | 5,933   | 2,1324             | 30                                | 30,000     |  |
|             | Кредит  | 229,000 | 94,6263            | 30                                | 30,000     |  |
|             | Семья   | 3,567   | 1,3309             | 30                                | 30,000     |  |
|             | Возраст | 46,100  | 8,4786             | 30                                | 30,000     |  |

Из данных таблицы «Критерий равенства групповых средних» следует, что переменные «Кредит» («Размер кредита»), «Семья» («Состав семьи заемщика»), «Возраст» («Возраст заемщика») незначимо различаются по группам, поскольку для них уровень значимости Знч. > 0.05, поэтому классификацию заемщиков целесообразно проводить по первым двум переменным: «История» («Брался ли кредит») и «Доход» («Среднемесячный доход семье заемщика»).

Критерий равенства групповых средних

|         | Лямбда<br>Уилкса | F      | ст.св1 | ст.св2 | Знч. |
|---------|------------------|--------|--------|--------|------|
| История | ,507             | 13,106 | 2      | 27     | ,000 |
| Доход   | ,291             | 32,831 | 2      | 27     | ,000 |
| Срок    | ,838             | 2,619  | 2      | 27     | ,091 |
| Кредит  | ,944             | ,796   | 2      | 27     | ,461 |
| Семья   | ,948             | ,741   | 2      | 27     | ,486 |
| Возраст | ,978             | ,305   | 2      | 27     | ,740 |

Анализ матрицы коэффициентов в таблице «Объединенные внутригрупповые матрицы» свидетельствует об отсутствии мультиколлинеарности, поэтому коэффициенты корреляции малы.

#### Объединенные внутригрупповые матрицы

|            |         | История | Доход | Срок  | Кредит | Семья | Возраст |
|------------|---------|---------|-------|-------|--------|-------|---------|
| Корреляция | История | 1,000   | -,455 | -,141 | ,486   | -,626 | -,234   |
|            | Доход   | -,455   | 1,000 | ,026  | -,176  | ,621  | ,053    |
|            | Срок    | -,141   | ,026  | 1,000 | ,583   | ,341  | -,352   |
|            | Кредит  | ,486    | -,176 | ,583  | 1,000  | -,037 | -,469   |
|            | Семья   | -,626   | ,621  | ,341  | -,037  | 1,000 | ,099    |
|            | Возраст | -,234   | ,053  | -,352 | -,469  | ,099  | 1,000   |

Данные таблицы «Собственные значения» показывают, что первая функция учитывает 95,2% дисперсии, а корреляция между исходными данными и данными, полученными по модели, высокая и составляет 0,929. Для второй функции эти значения намного меньше.

#### Собственные значения

| Функция | Собственное<br>значение | %<br>объясненной<br>дисперсии | Кумулятивны<br>й % | Каноническа<br>я<br>корреляция |
|---------|-------------------------|-------------------------------|--------------------|--------------------------------|
| 1       | 6,327ª                  | 95,2                          | 95,2               | ,929                           |
| 2       | ,318ª                   | 4,8                           | 100,0              | ,491                           |

 а. В анализе использовались первые 2 канонические дискриминантные функции.

Оценка значимости дискриминантных функций проводится по коэффициенту Уилкса ( $\lambda$ ). Из данных таблицы «Лямбда Уилкса» видно, что для первой функции значимость Знч. < 0,001, следовательно, она позволяет значимо и надежно дискриминировать наблюдения. В то же время значимость второй функции составляет лишь 0,239. Поэтому в дальнейшем для классификации целесообразно использовать только первую дискриминантную функцию.

Лямбда Уилкса

| Проверка функции(й) | Лямбда<br>Уилкса | Хи-квадрат | CT.CB. | Знч. |
|---------------------|------------------|------------|--------|------|
| от 1 до 2           | ,104             | 55,549     | 12     | ,000 |
| 2                   | ,759             | 6,757      | 5      | ,239 |

#### Нормированные коэффициенты канонической дискриминантной функции

|         | Функция |       |  |
|---------|---------|-------|--|
|         | 1       | 2     |  |
| История | -,963   | 1,235 |  |
| Доход   | 1,039   | ,543  |  |
| Срок    | ,019    | 1,276 |  |
| Кредит  | ,807    | -,837 |  |
| Семья   | -1,177  | -,310 |  |
| Возраст | ,281    | ,383  |  |

| Структурная | матрица |
|-------------|---------|
|-------------|---------|

|         | Функция |        |  |
|---------|---------|--------|--|
|         | 1       | 2      |  |
| Доход   | ,620*   | -,012  |  |
| Возраст | ,059*   | ,036   |  |
| История | -,375   | ,507*  |  |
| Срок    | ,152    | ,388*  |  |
| Кредит  | ,080    | ,244   |  |
| Семья   | ,076    | -,243* |  |

Объединенные внутригрупповые курригрупповые корреляции между дискриминантными переменными и нормированными каноническими дискриминантными теременными дискриминантными теременные упорядочены по абсолотной величине корреляций внутри функции.

\* Максимальная по абсолотной величине корреляций внутри объркительными и дискриминантными и дискриминантными и дискриминантными и

Формально по данным таблицы «Коэффициенты канонической дискриминантной функции» можно построить две дискриминантные функции:

$$D_1(X) = -4,286 - 2,566x_1 + 0,290x_2 + 0,009x_3 + 0,008x_4 - 0,876x_5 + 0,032x_6;$$
  

$$D_2(X) = -11,943 + 3,291x_1 + 0,151x_2 + 0,631x_3 - 0,009x_4 - 0,231x_5 + 0,044x_6;$$

# Коэффициенты канонической дискриминантрой функции

|             | Функция |         |  |
|-------------|---------|---------|--|
|             | 1       | 2       |  |
| История     | -2,566  | 3,291   |  |
| Доход       | ,290    | ,151    |  |
| Срок        | ,009    | ,631    |  |
| Кредит      | ,008    | -,009   |  |
| Семья       | -,876   | -,231   |  |
| Возраст     | ,032    | ,044    |  |
| (Константа) | -4,286  | -11,943 |  |

Ненормированные коэффициенты

Однако поскольку значимость второй функции более 0,001, ее для дискриминации использовать нецелесообразно.

Координаты центроидов по группам приведены в таблице «Функции в центроидах групп». Они используются для нанесения центроидов на карту восприятия.

## Функции в центроидах групп

|             | Функция |       |  |
|-------------|---------|-------|--|
| Вероятность | 1       | 2     |  |
| Низкая      | -2,873  | ,503  |  |
| Средняя     | -,289   | -,652 |  |
| Высокая     | 3,258   | ,366  |  |

Ненормированные канонические дискриминантные функции вычислены в центроидах групп.

# Классификационные статистики

# Обработано Исключенные 2 Пропущенные или лежащие вне диапазона коды группо По крайчей мере одна дискриминантная переменная пропущена. Используется в выводе 30

#### Априорные вероятности для групп

|             |           | Наблюдения,<br>использованные в анализе |            |  |  |
|-------------|-----------|-----------------------------------------|------------|--|--|
| Вероятность | Априорные | Невзвешенн<br>ые                        | Взвешенные |  |  |
| Низкая      | ,300      | 9                                       | 9,000      |  |  |
| Средняя     | ,400      | 12                                      | 12,000     |  |  |
| Высокая     | ,300      | 9                                       | 9,000      |  |  |
| Итого       | 1,000     | 30                                      | 30,000     |  |  |

Карта восприятий визуализирует разделение наблюдений функциями. Так, первая функция  $D_1(X)$  делит наблюдения на две группы: 1, 2 и 2, 3, вторая функция  $D_2(X)$  отделяет наблюдения 2 от всех остальных.

Поле графика разделено дискриминантными функциями на три области: в левой части находятся преимущественно наблюдения первой группы с низкой вероятностью своевременного погашения кредита; в правой части – третьей группы с высокой вероятностью и в нижней части – второй группы со средней вероятностью.



Символ Грп. Метка

1 1 Низкая 2 2 Средняя 3 3 Высокая

В таблице «Поточечные статистики» размещена информация о фактических (Actual Group) и предсказанных (Predicted Group) группах для каждого заемщика и соответствующие дискриминантные баллы (Discriminant Scores), полученные при подстановке значений переменных в уравнениях дискриминантных функций  $D_1(X)$  и  $D_2(X)$ .

|                                |                  |                       |                          |              | 1071      | е статистики |                                                     |                            | (10)         |                                                     |                       |             |
|--------------------------------|------------------|-----------------------|--------------------------|--------------|-----------|--------------|-----------------------------------------------------|----------------------------|--------------|-----------------------------------------------------|-----------------------|-------------|
|                                |                  |                       |                          |              | ероятнейш | ая группа    |                                                     | Вторая вероятнейшая группа |              |                                                     | Дискриминантные баллы |             |
|                                |                  |                       |                          | P(D>d        | G=g)      |              |                                                     |                            |              | 16                                                  |                       | ř –         |
|                                | Номер наблюдения | Фактическая<br>группа | Предсказанн<br>ая группа | n            | CT CR     | P(G=q I D=d) | Квадрат<br>расстояния<br>Махалонобис<br>а до центра | Группа                     | P(G=q I D=d) | Квадрат<br>расстояния<br>Махалонобис<br>а до центра | Функция 1             | Функция 2   |
| Исходные                       | 1                | 2                     | 2                        | ,721         | 2         | ,982         | ,655                                                | 3                          | ,014         | 8,635                                               | ,371                  | -,183       |
|                                | 2                | 2                     | 2                        | ,779         | 2         | ,949         | ,500                                                | 1                          | ,051         | 5,757                                               | -,942                 | -,922       |
|                                | 3                | 2                     | 2                        | ,506         | 2         | ,973         | 1,361                                               | 3                          | ,017         | 8,890                                               | ,276                  | ,36         |
|                                | 4                | 3                     | 3                        | ,497         | 2         | 1,000        | 1,398                                               | 2                          | ,000         | 22,681                                              | 4,412                 | ,11         |
|                                | 5                | 2                     | 2                        | ,202         | 2         | ,883         | 3,200                                               | 3                          | ,117         | 6,666                                               | 1,349                 | -1,37       |
|                                | 6                | 3                     | 3                        | ,235         | 2         | 1,000        | 2,896                                               | 2                          | ,000         | 28,771                                              | 4,956                 | ,47         |
|                                | 7                | 2                     | 2                        | ,655         | 2         | ,983         | ,845                                                | 3                          | ,016         | 8,509                                               | ,608                  | -,85        |
|                                | 8                | 2                     | 2                        | ,515         | 2         | ,895         | 1,326                                               | 1                          | ,104         | 5,046                                               | -,627                 | .44         |
|                                | 9<br>10          | 3                     | 3 1                      | ,794         | 2 2       | 1,000        | ,462                                                | 2                          | ,000         | 18,130                                              | 3,896                 | ,13         |
|                                | 10               | 3                     | 3                        | ,147<br>,890 | 2         | ,943<br>,996 | 3,833                                               | 2 2                        | ,057         | 10,012                                              | -3,365                | -1,39       |
|                                | 12               | 3                     | 3                        | .759         | 2         | ,999         | ,232<br>.552                                        | 2                          | .004         | 11,800<br>15,874                                    | 2,883<br>3,675        | ,66<br>-,24 |
|                                | 13               | 2                     | 2                        | ,697         | 2         | ,874         | ,722                                                | 1                          | ,126         | 4,012                                               | -1,116                | -,45        |
|                                | 14               | 3                     | 2***                     | ,365         | 2         | .927         | 2,018                                               | 3                          | .073         | 6,518                                               | 1,092                 | -,98        |
|                                | 15               | 1                     | 1                        | ,275         | 2         | ,999         | 2,585                                               | 2                          | ,001         | 17,638                                              | -4,424                | ,01         |
|                                | 16               | 1                     | 1                        | ,405         | 2         | ,999         | 1,810                                               | 2                          | ,001         | 16,613                                              | -3,720                | 1,5         |
|                                | 17               | 1                     | 1                        | ,403         | 2         | ,950         | ,257                                                | 2                          | ,050         | 6,730                                               | -2,451                | ,78         |
|                                | 18               | 2                     | 1**                      | ,433         | 2         | ,539         | 1,673                                               | 2                          | ,461         | 2,558                                               | -1,844                | -,28        |
|                                | 19               | 1                     | 1                        | ,675         | 2         | ,892         | ,787                                                | 2                          | ,108         | 5,593                                               | -2,078                | ,81         |
|                                | 20               | 3                     | 3                        | ,397         | 2         | ,952         | 1,847                                               | 2                          | ,048         | 8,404                                               | 2,072                 | 1,0:        |
|                                | 21               | 1                     | 1                        | ,778         | 2         | ,847         | ,503                                                | 2                          | ,153         | 4,502                                               | -2,216                | ,2          |
|                                | 22               | 2                     | 2                        | ,182         | 2         | ,944         | 3,403                                               | 3                          | ,030         | 9,720                                               | ,232                  | 1,1         |
|                                | 23               | 3                     | 3                        | ,447         | 2         | ,999         | 1,612                                               | 2                          | ,001         | 15,605                                              | 2,957                 | 1,6         |
|                                | 24               | 1                     | 1                        | ,531         | 2         | ,997         | 1,265                                               | 2                          | ,003         | 13,699                                              | -3,257                | 1,5         |
|                                | 25               | 3                     | 3                        | .982         | 2         | .999         | .036                                                | 2                          | .001         | 14,788                                              | 3,376                 | ,5          |
|                                | 26               | 2                     | 2                        | ,385         | 2         | ,598         | 1,907                                               | 1                          | ,402         | 2,122                                               | -1,587                | -,1         |
|                                | 27               | 1                     | 1                        | ,539         | 2         | ,832         | 1,238                                               | 2                          | ,168         | 5,007                                               | -1,854                | ,9          |
|                                | 28               | 1                     | 1                        | ,761         | 2         | ,882         | ,547                                                | 2                          | ,118         | 5,137                                               | -2,495                | -,1         |
|                                | 29               | 2                     | 2                        | ,048         | 2         | ,999         | 6,064                                               | 1                          | ,000         | 20,750                                              | -,094                 | -3,10       |
|                                | 30               | 2                     | 2                        | ,214         | 2         | ,999         | 3,083                                               | 1                          | ,001         | 16,154                                              | -,089                 | -2,39       |
| (росс-проверенные <sup>а</sup> | 1                | 2                     | 2                        | ,554         | 6         | ,963         | 4,919                                               | 3                          | ,031         | 11,239                                              |                       |             |
|                                | 2                | 2                     | 2                        | ,244         | 6         | ,866         | 7,923                                               | 1                          | ,134         | 11,073                                              |                       |             |
|                                | 3                | 2                     | 2                        | ,074         | 6         | ,866         | 11,521                                              | 3                          | ,111         | 15,058                                              |                       |             |
|                                | 4                | 3                     | 3                        | ,853         | 6         | 1,000        | 2,637                                               | 2                          | ,000         | 23,888                                              |                       |             |
|                                | 5                | 2                     | 2                        | ,225         | 6         | ,631         | 8,188                                               | 3                          | ,369         | 8,687                                               |                       |             |
|                                | 6                | 3                     | 3                        | ,178         | 6         | 1,000        | 8,921                                               | 2                          | ,000         | 37,535                                              |                       |             |
|                                | 7                | 2                     | 2                        | ,277         | 6         | ,944         | 7,505                                               | 3                          | ,055         | 12,606                                              |                       |             |
|                                | 8                | 2                     | 2                        | ,437         | 6         | ,783         | 5,878                                               | 1                          | ,216         | 7,881                                               |                       |             |
|                                | 9                | 3                     | 3                        | ,459         | 6         | 1,000        | 5,686                                               | 2                          | ,000         | 22,461                                              |                       |             |
|                                | 10               | 1                     | 1                        | ,047         | 6         | ,729         | 12,743                                              | 2                          | ,271         | 15,297                                              |                       |             |
|                                | 11               | 3                     | 3                        | ,532         | 6         | ,990         | 5,093                                               | 2                          | ,010         | 14,869                                              |                       |             |
|                                | 12               | 3                     | 3 2                      | ,805         | 6         | ,999         | 3,033                                               | 2                          | ,001         | 17,355                                              |                       |             |
|                                | 13<br>14         | 2 3                   | 2"                       | ,670<br>.466 | 6         | ,794<br>.999 | 4,046<br>5.627                                      | 1                          | ,206<br>.000 | 6,168<br>21.429                                     |                       |             |
|                                | 14               | 1                     | 1                        | ,466         | 6         | ,999         | 8,381                                               | 2                          | ,000         | 21,429                                              |                       |             |
|                                | 16               | 1                     | 1                        | ,212         | 6         | ,999         | 8,755                                               | 2                          | ,001         | 23,699                                              |                       |             |
|                                | 17               | 1                     | 1                        | ,188         | 6         | ,912         | 3,901                                               | 2                          | ,088         | 9,146                                               |                       |             |
|                                | 18               | 2                     | 1**                      | ,529         | 6         | ,852         | 5,114                                               | 2                          | ,148         | 9,140                                               |                       |             |
|                                | 19               | 1                     | 1                        | .252         | 6         | ,702         | 7,820                                               | 2                          | ,146         | 10,112                                              |                       |             |
|                                | 20               | 3                     | 3                        | ,232         | 6         | ,807         | 7,939                                               | 2                          | ,193         | 11,378                                              |                       |             |
|                                | 21               | 1                     | 1                        | ,907         | 6         | ,796         | 2,129                                               | 2                          | ,204         | 5,425                                               |                       |             |
|                                | 22               | 2                     | 3**                      | ,003         | 6         | ,600         | 19,944                                              | 2                          | ,309         | 21,845                                              |                       |             |
|                                | 23               | 3                     | 3                        | ,003         | 6         | ,993         | 15,112                                              | 2                          | ,007         | 25,605                                              |                       |             |
|                                | 24               | 1                     | 1                        | ,000         | 6         | ,994         | 25,041                                              | 2                          | ,007         | 35,769                                              |                       |             |
|                                | 25               | 3                     | 3                        | .965         | 6         | ,999         | 1,419                                               | 2                          | ,001         | 15,394                                              |                       |             |
|                                | 26               | 2                     | 1"                       | ,686         | 6         | ,592         | 3,929                                               | 2                          | ,408         | 5,248                                               |                       |             |
|                                | 27               | 1                     | 1                        | ,675         | 6         | ,717         | 4,013                                               | 2                          | ,283         | 6,446                                               |                       |             |
|                                | 28               | 1                     | 1                        | ,103         | 6         | ,574         | 10,554                                              | 2                          | ,426         | 11,730                                              |                       |             |
|                                | 29               | 2                     | 2                        | ,004         | 6         | 1,000        | 19,379                                              | 3                          | ,000         | 35,465                                              |                       |             |
|                                | 30               | 2                     | 2                        | .081         | 6         | .998         | 11,247                                              | 1                          | .001         | 24,317                                              |                       |             |

Для исходных данных квадрат расстояния Махалонобиса вычисляется по канонической функции Для кросс-проверяемых данных квадрат расстояния Махалонобиса вычисляется по наблюдениям

На рисунках с 1го по 3ий ниже отражено расположение заемщиков каждой из трех групп на плоскости двух дискриминантных функций  $D_1(X)$  и  $D_2(X)$ . По этим графикам можно проводить детальный анализ вероятностей погашения кредита внутри каждой группы, судить о характере распределения заемщиков и оценивать степень их удаленности от соответствующего центроида.

Кроме того, на 4ом рисунке в той же системе координат приведен объединенный график распределения всех групп заемщиков вместе со своими центроидами; его можно использовать для проведения сравнительного визуального анализа характера взаимного расположения групп заемщиков банка с разными вероятностями погашения кредита. В левой части графика расположены заемщики с низкой вероятностью погашения кредита, в правой — с высокой, а в средней части — со средней вероятностью. Поскольку по результатам расчета вторая дискриминантная функция  $D_2(X)$  оказалась незначима, то различия координат центроидов по этой оси незначительны. Этот факт подтверждается картой восприятия, которая была расположена выше.

<sup>\*\*.</sup> Неправильно классифицированное наблюдение

а. Кросс-проверка проводится только для наблюдений в анализе. При кросс-проверке каждое наблюдение классифицируется функциями, выведенными по всем наблюдениям, за исключением ег самого.



Данные таблицы «Результаты классификации» свидетельствуют о том, что для 93,3% исходных и перекрестно-проверяемых 86,7% сгруппированных наблюдений классификация проведена корректно, высокая точность достигнута в каждой из групп, но в первой она максимальная -100%, а в третьей несколько ниже -88,9%.

Результаты классификации ь,с

|                                |         |             | Предсказанна |         |         |       |  |
|--------------------------------|---------|-------------|--------------|---------|---------|-------|--|
|                                |         | Вероятность | Низкая       | Средняя | Высокая | Итого |  |
| Исходные                       | Частота | Низкая      | 9            | 0       | 0       | 9     |  |
|                                |         | Средняя     | 1            | 11      | 0       | 12    |  |
|                                |         | Высокая     | 0            | 1       | 8       | 9     |  |
|                                | %       | Низкая      | 100,0        | 0,      | 0,      | 100,0 |  |
|                                |         | Средняя     | 8,3          | 91,7    | ,0      | 100,0 |  |
|                                |         | Высокая     | ,0           | 11,1    | 88,9    | 100,0 |  |
| Кросс-проверенные <sup>а</sup> | Частота | Низкая      | 9            | 0       | 0       | 9     |  |
|                                |         | Средняя     | 2            | 9       | 1       | 12    |  |
|                                |         | Высокая     | 0            | 1       | 8       | 9     |  |
|                                | %       | Низкая      | 100,0        | .0      | ,0      | 100,0 |  |
|                                |         | Средняя     | 16,7         | 75,0    | 8,3     | 100,0 |  |
|                                |         | Высокая     | ,0           | 11,1    | 88,9    | 100,0 |  |

а. Кросс-проверка проводится только для наблюдений в анализе. При кросс-проверке каждое наблюдение классифицируется функциями, выведенными по всем наблюдениям, за исключением его самого.

b. 93,3% исходных сгруппированных наблюдений классифицировано правильно.

с. 86,7% перекрестно-проверяемых сгруппированных наблюдений классифицировано правильно.

**Вывод:** приобрёл практические навыки применения дискриминантного анализа для решения конкретных задач с использованием статистического пакета SPSS.