XÜ LÝ ÅNH (Image Processing)

BÀI 6: PHÁT HIỆN BIÊN (tt)

(Edge detection)

Content

- Mục đích của lọc sắc nét
- Đạo hàm bậc 1, 2
- Bộ lọc đạo hàm bậc 1
 - Bô loc Robert Cross Gradient
 - Bô lọc Sobel
 - Bộ lọc Prewitt
- Bộ lọc đạo hàm bậc 2
 - Bộ lọc Laplacian

Nhắc lại bài trước

- Bộ lọc đạo hàm bậc 1
 - Bô loc Robert Cross Gradient
 - Bô lọc Sobel
 - Bộ lọc Prewitt

Bô lọc Robert

Robert cross gradient kích thước 3 x 3

Bô lọc Robert

- Loc sắc nét Loc đạo hàm bậc 1 Bộ loc Robert Cross Gradient
- Các bước thực hiện

Bô lọc Robert – kết quả

Bô lọc Sobel

$$\begin{aligned} \left| G_x \right| = & \left| \left(f(x-l,y+l) + 2f(x,y+l) + f(x+l,y+l) \right) \\ - & \left(f(x-l,y-l) + 2f(x,y-l) + f(x+l,y-l) \right) \right| \\ & \qquad \qquad \bullet \quad \text{Theo hu\'ong x} \end{aligned}$$

-1	-2	-1
0	0	0
1	2	1

f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

Theo hướng y

$$|G_y| = |(f(x+1,y-1) + 2f(x+1,y) + f(x+1,y+1)) - (f(x-1,y-1) + 2f(x-1,y) + f(x-1,y+1))|$$

Bô lọc Sobel

Lọc sắc nét - Lọc đạo hàm bậc 1 - Toán tử (bộ lọc) Sobel

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Theo hướng X Theo hướng Y

- Tổng các phần tử quanh điểm trung tâm bằng 0
- Để lọc ảnh, chúng ta sử dụng cả 2 toán tử và kết hợp (cộng) kết quả lại với nhau

Bô lọc Sobel

- · Lọc sắc nét Lọc đạo hàm bậc 1 Toán tử (bộ lọc) Sobel
- Các bước thực hiện

Bô lọc Sobel – kết quả

Kỹ thuật Prewitt

Sử dụng 2 mặt nạ và xấp xỉ đạo hàm theo
 2 hướng x và y là:

$$H_{x} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

$$H_{y} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

- Bước 1: Tính I ⊗ H_x và I ⊗ H_y
- Bước 2: Tính I \otimes H_x + I \otimes H_v

Image gradient

f

 $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

 $\frac{\partial f}{\partial y}$

NỘI DUNG

- Bộ lọc đạo hàm bậc 2
 - Bộ lọc Laplacian

Bộ lọc đạo hàm bậc 2- Phương pháp Laplacian

- Phương pháp đạo hàm bậc 1 làm việc khá tốt khi mà độ sáng thay đổi rõ nét.
- Toán tử Laplace được xây dựng trên cơ sở đạo hàm bậc
 2 của hàm biến đổi mức xám.

$$\Delta^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• Khi mức xám thay đổi chậm, miền chuyển tiếp trải rộng, phương pháp đạo hàm bậc 2 Laplace, cho hiệu quả tốt hơn.

Đạo hàm bậc 2 - Phương pháp Laplacian

Laplacian được định nghĩa như sau:

$$\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial^2 x} + \frac{\partial^2 f(x, y)}{\partial^2 y}$$

Trong đó đạo hàm riêng bậc 2 theo phương x được định nghĩa như sau:

$$\frac{\partial^2 f(x,y)}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

· Và theo phương y như sau:

$$\frac{\partial^2 f(x,y)}{\partial^2 y} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Xét giá trị trước, sau và giá trị hiện tại

• Do vậy, Laplacian được viết lại như sau:

$$\Delta^2 f \approx f(x+1,y) + f(x-1,y) - 4f(x,y) + f(x,y+1) + f(x,y-1)$$

Chúng ta dễ dàng xây dựng bộ lọc:

f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

0	1	0
1	-4	1
0	1	0

Vùng ảnh

 Áp dụng Laplacian vào một ảnh, chúng ta nhận được một ảnh làm nổi biên và các đường nét không liên tục khác

- · Kết quả của lọc Laplacian không phải là một ảnh cải thiện
- Chúng ta phải thực hiện thêm thao tác để có được ảnh cuối cùng
- Trừ ảnh ban đầu cho ảnh Laplacian để được ảnh sau cùng ⇒ ảnh cải thiện sắc nét

$$g(x, y) = f(x, y) - \nabla^2 f$$

$$f(x,y) - \nabla^2 f = g(x,y)$$

Ảnh gốc

Ånh sau khi sử dụng bộ lọc Laplacian Ånh kết quả sắc nét (nổi biên)

Đơn giản hóa việc cải thiện ảnh bằng toán tử Laplacian bằng cách

$$g(x, y) = f(x, y) - \nabla^2 f$$

= $f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)]$
= $5f(x, y) - f(x+1, y) - f(x-1, y) - f(x, y+1) - f(x, y-1)$

Một số biến thể:

Kết quả - phương pháp Laplacian

Lọc sắc nét

- So sánh đạo hàm bậc 1 và bậc 2, chúng ta đi đến kết luận:
 - Các đạo hàm bậc 1 thường tạo ra các biên mỏng hơn
 - Các đạo hàm bậc 2 có đáp ứng mạnh hơn với các chi tiết nét, chẳng hạn như các đường mảnh
 - Đạo hàm bậc 1 có đáp ứng mạnh hơn với bước thay đổi độ sáng
 - Đạo hàm bậc 2 tạo ra đáp ứng kép ở bước thay đổi độ xám
 - Đạo hàm bậc 2 thường được sử dụng hơn đạo hàm bậc 1
 - Đáp ứng mạnh hơn với các chi tiết nét
 - Cài đặt đơn giản hơn
 - Thành công của cải thiện ảnh không thể đạt được với một phương pháp đơn lẻ
 - Chúng ta kết hợp các kỹ thuật khác nhau để đạt được kết quả cuối cùng

Combining Spatial Enhancement Methods

Successful image enhancement is typically not achieved using a single operation

Rather we combine a range of techniques in order to achieve a final result

This example will focus on enhancing the bone scan to the right

Combining Spatial Enhancement Methods (cont...)

Combining Spatial Enhancement Methods (cont...)

Image (d) smoothed with a 5*5 averaging filter

Combining Spatial Enhancement Methods (cont...)

Compare the original and final images

