CHIMIE DES SOLUTIONS AQUEUSES

TD nº 1 : Équilibres acido-basiques

Exercice 1 : Glycine (1)

Extrait d'agrégation de physique-chimie option physique 2012

- 1. Tracer le diagramme de prédominance des espèces de la glycine en fonction du pH de la solution. On notera GH^{\pm} l'espèce $H_2C(NH_3^+)COO^-$. Comment appelle-t-on généralement ce type d'espèce ?
- **2.** On prépare une solution (S) de glycine en dissolvant le corps pur solide dans l'eau. Quelle est l'espèce majoritairement présente en solution quand de la glycine solide est dissoute dans de l'eau distillée ?
- 3. En faisant les approximations utiles, calculer le pH d'une solution aqueuse de glycine, de concentration molaire $c = 0.050 \ mol.L^{-1}$.

<u>Données</u>: La glycine, H_2CNH_2COOH , notée GH, est engagée dans deux couples acidobasiques dont les pK_a sont : 2.4 et 9.6.

Exercice 2: Vitamine C

La vitamine C, dont le nom est acide ascorbique, est un diacide noté $AscH_2$.

- 1. Dresser le diagramme de prédominance des espèces acido-basiques issues de l'acide ascorbique en fonction du pH de la solution.
- **2.** On dissout dans l'eau un comprimé contenant 500 mg d'acide ascorbique dans une fiole jaugée de volume $V = 200 \, mL$. Déterminer l'état d'équilibre de la solution obtenue.
- 3. La vitamine C existe aussi en comprimé tamponné, réalisé en mélangeant l'acide ascorbique $AscH_2$ et de l'ascorbate de sodium AscHNa. Un comprimé de vitamine C tamponnée de masse m en principe actif (c'est-à-dire en acide ascorbique, sous ses deux formes : diacide et monoacide) est dissous dans $V' = 100 \ mL$ d'eau distillée. La solution obtenue a un pH égal à 4,4. Déterminer la masse d'acide ascorbique et la masse d'ascorbate de sodium contenues dans ce cachet. On prendra $m = 500 \ mg$ pour les applications numériques.

<u>Données à 298 K</u>: $pK_{a1}(AscH_2/AscH^-) = 4,2$; $pK_{a2}(AcH^-/Asc^{2-}) = 11,6$. Masses molaires: $M(AscH_2) = 176 \text{ g.mol}^{-1}$; $M(AscHNa) = 198 \text{ g.mol}^{-1}$.

Exercice 3: Indicateurs colorés (1)

Extrait d'agrégation de physique-chimie option physique 2013

Pour comprendre les processus chimiques et connaître les espèces prédominantes d'un couple acide-base à un pH donné, on utilise des courbes de distribution fournies par les calculs de simulation. Pour établir ces courbes on étudie un couple acide-base noté AH/A^- , caractérisé par son pK_a .

- **1.** On utilise une solution de concentration totale constante C et AH et A^- dont on fait varier le pH. Exprimer en fonction de $h = [H_3O^+]$, de C de de K_a les concentrations [AH] et $[A^-]$.
- **2.** Calculer le pourcentage de la forme acide et le pourcentage de la forme basique pour les valeurs suivantes du pH: $pK_a 3$; $pK_a 1$; $pK_a 0.9$; $pK_a 0.5$; pK_a ; $pK_a + 0.5$; $pK_a + 0.9$; $pK_a + 1$; $pK_a + 2$ et $pK_a + 3$.
- **3.** Tracer les courbes de distribution, donnant le pourcentage des espèces en fonction du pH. Ces courbes sont-elles accessibles directement par l'expérience ? Justifier.

Données : $pK_a(CH_3COOH/CH_3COO^-) = 4,7$.

Exercice 4: Acide carbonique

 $CO_{2(g)}$ a un caractère acide : $CO_{2(g)}$ réagit sur l'eau pour former « l'acide carbonique », noté $CO_{2(aq)}$. On considère de l'eau de pluie en équilibre avec $CO_{2(g)}$ de l'atmosphère, à 298 K, la pression totale étant de 1 bar et la pression partielle de $CO_{2(g)}$ étant $P\left(CO_{2(g)}\right)=35.10^{-5}$ bar.

- 1. Calculer à 25°C, la concentration de $CO_{2(aq)}$ dans l'eau de pluie, sachant que $K=3,37.10^{-2}$ pour l'équilibre $CO_{2(g)}=CO_{2(aq)}$.
- **2.** Calculer à 25°C, le pH de l'eau de pluie, en considérant que le dioxyde de cabrone est le seul responsable de la valeur que prend le pH de l'eau de pluie.

On donne : $pK_{a1}(CO_{2(aq)}/HCO_3^-) = 6.3$ et $pK_{a2}(HCO_3^-/CO_3^{2-}) = 10.3$.

- 3. Citer d'autres molécules responsables des « pluies acides ».
- **4.** Au voisinage d'une zone industrielle, le pH des pluies est particulièrement acide. On réalise alors un épandage de chaud ou de potasse. Calculer le pH du mélange $CO_{2(aq)}$ à $1,0.10^{-4}$ $mol.L^{-1}$, HNO_3 à $1,0.10^{-4}$ $mol.L^{-1}$ (acide fort) et KOH à $2,0.10^{-4}$ $mol.L^{-1}$ (base forte).

2

E. Renouard

Exercice 5: pH sanguin

Le pH du sang est tamponné par le couple H_2CO_3/HCO_3^- . Dans le sang d'une personne au repos, les concentrations en HCO_3^- et H_2CO_3 sont respectivement de $C_b = 0.0270 \ mol.L^{-1}$ et $C_a = 0.0014 \ mol.L^{-1}$.

- **1.** Que signifie le terme *tamponné*? D'où proviennent, à votre avis, les espèces carbonées présentes dans le sang?
- 2. Calculer le pH du sang à l'état de repos.
- 3. Montrer que la concentration de l'espèce CO_3^{2-} est négligeable.
- **4.** Au cours d'efforts physiques importants, il se forme de l'acide lactique, noté *AH*, dans les muscles. Cet acide passe dans le sang. Écrire la réaction qui peut avoir lieu entre les espèces contenues dans le sang et l'acide lactique. Calculer sa constante d'équilibre.
- 5. Après un effort musculaire violent, de l'acide lactique passe dans le sang à raison de $C'_a = 0,0030 \ mol.L^{-1}$. Calculer à l'équilibre les concentration de H_2CO_3 , HCO_3^- , AH et A^- (en supposant que les concentrations initiales en acide carbonique H_2CO_3 et en ion hydrogénocarbonate HCO_3^- sont fixées dans le sang). Déduire la valeur du pH sanguin dans ces conditions.
- **6.** Ce pH est en fait régulé par les concentrations des espèces carbonées ; à votre avis, comment ?

Données à 298 K : L'acide lactique est un monoacide de constante d'acidité $K_a = 1,38.10^{-4}$.

L'acide carbonique H_2CO_3 (ou $CO_2.H_2O$ ou encore noté $CO_{2(aq)}$) est un diacide faible de constantes d'acidité $K_{a1} = 4, 3.10^{-7}$ et $K_{a2} = 5, 6.10^{-11}$.

Produit ionique de l'eau : $K_e = 10^{-14}$.

Exercice 6 : Acide acétique

Trois solutions on le même pH:

- * solution A: solution d'acide chlorhydrique à $6,0.10^{-4}$ mol. L^{-3} ;
- \star solution B : solution d'acide acétique ($pK_a = 4.8$);
- ★ solution C : solution d'acide formique HCOOH à $3,2.10^{-3}$ mol. L^{-1} ;

Calculer la concentration d'acide acétique de la solution B et le pK_a du couple de l'acide formique.