1 Brackets

The distributive property states that a(b+c)=ab+ac, for all $a,b,c\in\mathbb{R}.$

The equivalence class of a is [a]

The set A is defined to be 1,2,3. Here the curly brackets are not shown. Curly bracket is a reserved word. So if you want to show the curly brackets, just type a slash in front of it. Like $\{1,2,3\}$

The movie ticket costs \$11.50.

$$2(\tfrac{1}{x^2-1})$$

$$2\left(\frac{1}{x^2-1}\right)$$

$$2\left\{\frac{1}{x^2-1}\right\}$$

$$2\left\lceil \frac{1}{x^2 - 1} \right\rceil$$

$$2\left\langle \frac{1}{x^2-1}\right\rangle$$

$$2\left|\frac{1}{x^2-1}\right|$$

$$\frac{\frac{dy}{dx}\Big|_{x=1}}{\left(\frac{1}{1+\left(\frac{1}{1+x}\right)}\right)}$$

2 Tables

x	1	2	3	4	5
f(x)	10	11	12	13	14

x	1	2	3	4	5
f(x)	$\frac{1}{2}$	11	12	13	14

Table 1: These values represent the function f(x)

Table 2: The relationship between and f and f'

f(x)	f'(x)		
x > 0	The function $f(x)$ is increasing		

Table 3: The relationship between and f and f'

f(x)	$\int f'(x)$
x > 0	The function $f(x)$ is increasing.

3 Equation arrays

$$5x^2$$
 place your words here. (1)

$$5x^2$$
 place your words here. (2)

$$5x^{2} - 9 = x + 3$$
$$5x^{2} - x - 12 = 0$$
$$= 12 + x - 5x^{2}$$

$$5x^2 - 9 = x + 3 \tag{3}$$

$$5x^2 - x - 12 = 0 (4)$$

$$= 12 + x - 5x^2 \tag{5}$$