

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 26

Manuel A. Sánchez 2024.12.11

Motivación

Sistemas hiperbólicos de ecuaciones diferenciales pueden ser usados para modelar una amplia variedad de fenómenos que involucran movimiento de ondas y transporte de substancias.

Ejemplo:

$$\frac{\partial q}{\partial t}(x,t) + A \frac{\partial q}{\partial x}(x,t) = 0.$$

Obtenemos la ecuación de advección:

□ Concentración o densidad de un contaminante: $\frac{\partial q}{\partial t}(x,t) + a \frac{\partial q}{\partial x}(x,t) = 0$.

Motivación

- Onda de sonido propagándose en una dirección: $\frac{\partial w}{\partial t}(x,t) + c \frac{\partial q}{\partial x}(x,t) = 0.$
- Onda de sonido propagándose en dos direcciones:

$$\begin{cases} \frac{\partial p}{\partial t} + K \frac{\partial u}{\partial x} = 0, \\ \frac{\partial u}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0. \end{cases}$$

Tenemos que K el módulo de bulk de compresibilidad y ρ_0 la densidad de ambiente.

Una clase importante de ecuaciones hiperbólicas homogéneas son las leyes de conservación. Estas se escriben como f, función de flujo:

$$\frac{\partial q}{\partial t}(x,t) + \nabla \cdot f(q(x,t)) = 0.$$

Como ejemplo podemos mencionar el caso unidimensional escalar:

$$\frac{\partial q}{\partial t}(x,t) + \frac{\partial}{\partial x}f(q(x,t)) = 0.$$

La forma cuasi-lineal está dada por

$$\frac{\partial q}{\partial t}(x,t) + f'(q)\frac{\partial q}{\partial x}(x,t) = 0$$

mientras que la ecuación de advección es f(q) = aq.

Derivación desde la forma integral: Considere un sistema físico en el cual la masa por unidad de longitud, densidad $\rho(x,t)$ de un material (gas o líquido) es distribuido a lo largo de $x \in [x_1,x_2] = \Omega_x$. La masa total está dada por

$$M(t) = \int_{\Omega_x} \rho(x, t) dx.$$

Si v(x, t) es la velocidad local del gas en una posición xy, tiempo t, entonces la conservación de masa m se expresa por:

$$\frac{d}{dt} \int_{\Omega_{x}} \rho(x,t) \, dx = \rho(x_{1},t) v(x_{1},t) - \rho(x_{2},t) v(x_{2},t), \tag{1}$$

en donde $\rho(x_1, t)v(x_1, t)$ es la masa que entra y $\rho(x_2, t)v(x_2, t)$ es la masa que sale.

Denotaremos el dominio temporal $\Omega_t = [t_1, t_2]$. Por lo tanto:

$$\int_{\Omega_x} \rho(x_2, t) dx - \int_{\Omega_x} \rho(x, t_1) dx = \int_{\Omega_t} [\rho(x_1, t) v(x_1, t) - \rho(x_2, t) v(x_2, t)] dt.$$

Recordemos que la masa no puede crearse o desaparecerse por si misma. Si asumimos que tanto la densidad y la velocidad son ambas diferenciables en (x, t) tenemos:

$$\rho(x,t_2) - \rho(x,t_1) = \frac{d}{dt} \int_{\Omega_t} \rho(x,t) dt = \int_{\Omega_t} \frac{\partial}{\partial t} \rho(x,t) dt.$$

Y similarmente:

$$\rho(x_2,t)v(x_2,t)-\rho(x_1,t)v(x_1,t)=\frac{d}{dx}\int_{\Omega}\rho(x,t)v(x,t)\,dx=\int_{\Omega}\frac{\partial}{\partial x}(\rho(x,t)v(x,t))\,dx.$$

De esta manera, la ecuación (1) puede reescribirse como:

$$\int_{\Omega_x} \int_{\Omega_t} \left[\frac{\partial \rho}{\partial t}(x,t) + \frac{\partial}{\partial x} (\rho(x,t) v(x,t)) \right] dt dx.$$

Por lo tanto,

$$\frac{\partial \rho}{\partial t}(x,t) + \frac{\partial}{\partial x}(\rho(x,t)v(x,t)) = 0$$

para todo $(x, t) \in \Omega_x \times \Omega_t$. Así, $u = \rho$, $f(u) = f(v) = \rho v$.

La ecuación de advección

Es del tipo escalar lineal, con coeficientes constantes e hiperbólica. Está dada por:

$$\frac{\partial q}{\partial t}(x,t) + a \frac{\partial q}{\partial x}(x,t) = 0.$$

Tenemos que $q(x,t) = \widetilde{q}(x-at)$ satisface la ecuación de advección. Esto implica que q(x,t) es constante a lo largo de la línea $x(t) = x_0 + at$ y su valor es $q(x(t),t) = \widetilde{q}(x_0)$. Estas líneas o rayos x(t) se conocen como curvas características.

Definición

Las curvas características de una ecuación diferencial son curvas tales que a lo largo de estas, la ecuación se simplifica en alguna manera particular.

Para la ecuación de advección, tenemos que en (x(t), t):

$$\frac{d}{dt}q(x(t),t) = \frac{\partial}{\partial t}q(x(t),t) + x'(t)\frac{\partial}{\partial x}q(x(t),t) = 0.$$

La ecuación de advección

Condición inicial y de inflow

- Sean $-\infty < x < \infty$ y $t > t_0$ y $q(x, t_0) = q_0(x)$. Entonces $q(x, t) = q_0(x a(t t_0))$ para $t \ge t_0$.
- □ Sean $x_1 < x < x_2$, a > 0 y $t > t_0$. Con $q(x_1, t) = g(t)$, $t \ge t_0$ y $q(x, t) = q_0(x)$, $x_1 < x < x_2$. La solución está dada por:

La ecuación de advección

Método numérico - diferencias finitas. Podemos derivar un método de diferencias finitas siguiendo

$$\frac{\partial q}{\partial x} = \frac{q(x+h,t) - q(x-h,t)}{2h} + O(h^2),$$

$$\frac{\partial q}{\partial t} = \frac{q(x,t+\Delta t) - q(x,t)}{\Delta t} + O(\Delta t).$$

Estas aproximaciones implican que podemos proponer el siguiente método

$$egin{aligned} rac{q_{j}^{n+1}-q_{j}^{n}}{\Delta t} &= -rac{a}{2h}(q_{j+1}^{n}-q_{j-1}^{n}), \ \implies q_{j}^{n+1} &= q_{j}^{n}-rac{a\Delta t}{2h}(q_{j+1}^{n}-q_{j-1}^{n}). \end{aligned}$$

Un método alternativo, el método de Lax - Friedrichs, es el siguiente

$$q_{j}^{n+1} = \frac{1}{2}(q_{j-1}^{n} + q_{j+1}^{n}) - \frac{a\Delta t}{2h}(q_{j+1}^{n} - q_{j-1}^{n}),$$

Advección con coeficientes variables

Considere la ecuación:

$$\frac{\partial q}{\partial t}(x,t) + \frac{\partial}{\partial x}(u(x)q(x,t)),$$

con curvas características x'(t) = u(x). De esta manera:

$$\begin{split} \frac{d}{dt}q(x(t),t) &= \frac{\partial q}{\partial t}(x(t),t) + x'(t)\frac{\partial q}{\partial t}(x(t),t), \\ &= \frac{\partial q}{\partial t}(x(t),t) + \frac{\partial}{\partial t}(u(x(t))q(x(t),t)) - u'(x(t))q(x(t),t), \\ &= -u'(x(t))q(x(t),t). \end{split}$$

Si u no es constante, las líneas no son rectas y la solución q no es constante a lo largo de estas. Sin embargo, la EDP se ha reducido a resolver un conjunto de EDO's.

Advección con coeficientes variables

Ejemplo: Sea $\Omega_x = [-1, 1]$ con $q(x, 0) = \sin(\pi x)$ y q(1, t) = q(-1, t). Consideremos los siguientes casos

- \Box Coeficiente de advección constante a=-1.
- Coeficiente de advección variable $u(x) = \frac{1}{\pi} \sin(\pi x 1)$. Observe que la solución exacta en este caso es

$$q(x,t) = \sin\left(2\arctan\left(e^{-t}\tan\left(\frac{\pi x - 1}{2}\right)\right) + 1\right).$$

Advección con coeficientes no lineal

La Ecuación de Burgers invsicida (escalar, unidimensional, no lineal):

$$\frac{\partial q}{\partial t}(x,t) + \frac{\partial}{\partial t}\left(\frac{(q(x,t))^2}{2}\right) = 0.$$

Las curvas características son x'(t) = q(x(t), t). Note que

$$\frac{dq}{dt}(x(t),t) = \frac{\partial q}{\partial t}(x(t),t) + x'(t)\frac{\partial}{\partial x}(q(x(t),t)) = 0.$$

Tenemos que la solución es constante a lo largo de las curvas características si $q(x,0) = q_0(x)$. Entonces:

$$q(x,t) = q_0(x - q(x,t)t).$$

Del Teorema de la Función Implícita, se tendrá que:

$$\frac{\partial q}{\partial x} = \frac{-q_0'}{1 + q_0 t},$$
$$\frac{\partial q}{\partial t} = \frac{q_0' - q}{1 + q_0' t}.$$

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

,