DEL/CT/UFES

Disciplina: Eletrônica Básica I - ELE08497

Professor: André Ferreira

3ª Avaliação Parcial de Eletrônica Básica I - 2020/1 (EARTE)

Aluno: Data: 08/12/2020

Importante: Caso tenha que assumir alguma hipótese, não esqueça de verificá-la.

1. Para o circuito abaixo, responda as seguintes questões.

- a) Considere $V_t=1V$, $k_n=2mA/V^2$ e calcule os seguintes parâmetros de polarização: V_{GS} , I_D e V_D . **(1,5 pontos)**
- b) Em qual modo de operação o transistor se encontra? Justifique. **(0,5 ponto)**
- c) Apresente o circuito completo com o modelo de pequenos sinais do transistor. **(1,0 ponto)**
- d) Descreva expressões literais para cada um dos seguintes parâmetros do amplificador: R_{in} , R_o , A_{vo} , A_v , v_i/v_{sig} e G_v . (3,0 pontos)
- e) Calcule o valor numérico dos parâmetros do item anterior. **(1,5 ponto)**
- f) O que é carga ativa, como pode ser implementada com MOSFETs e qual sua importância na fabricação de circuitos integrados? (0,75 ponto)

2. No circuito abaixo, Q_1 e Q_2 são MOSFETs de enriquecimento idênticos com $\mu_n C_{ox}$ =20 μ A/V², V_t =2V, L=10 μ m e W=100 μ m. Despreze o efeito de modulação do canal e considere V_{DD} =10V.

- a) Determine o valor de R_1 para que a corrente no dreno de Q_1 seja de 0,4 mA. (0,75 ponto)
- b) Determine o valor da tensão de dreno de Q_2 para $R_2 = 12k\Omega$. (0,5 ponto)
- c) Determine o valor de R_2 para colocar Q_2 no limite para saturação. **(0,5 ponto)**