See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/13608326

Several New Isoprenoids from the Soft Coral Sinularia e recta

ARTICLE in JOURNAL OF NATURAL PRODUCTS · AUG	SUST 1998
Impact Factor: 3.8 \cdot DOI: 10.1021/np9705064 \cdot Source: PubMed	
CITATIONS	READS

23

5 AUTHORS, INCLUDING:

24

Emile M Gaydou

Aix-Marseille Université

347 PUBLICATIONS 3,873 CITATIONS

SEE PROFILE

Several New Isoprenoids from the Soft Coral Sinularia erecta

Amira Rudi,† Tal Lev-Ari Dayan,† Maurice Aknin,‡ Emile M. Gaydou,§ and Yoel Kashman*,†

School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Israel, IUEM, Allié des Aigues Marines, 97487 Saint-Denis La Reunion, France, and Université de Droot, d'Economie et des Sciences d'Aix, Marseille III, France

Received November 14, 1997

Eight compounds were isolated from the Indo-Pacific soft coral Sinularia erecta (Tixier-Durivault, 1945) collected from the lagoon of Mayotte, Comoros Islands, northwest of Madagascar. Four of the compounds, namely the sesquiterpene germacrene D, the diterpenoids nephthenol and decaryiol, and norcembrene, are known. The other four are the new secondary metabolites germacrene E (1), epi-norcembrene (3), and two bis-pukalide diterpenes, mayotolides A and B (4 and 5). The structure of each of the compounds was determined by means of 1D and 2D NMR and MS spectroscopy in addition to some chemical transformations.

Marine organisms, especially soft corals, provide many secondary metabolites that exhibit varying degrees of biological activities.1 Among the most abundant soft coral genera on many coral reefs are Sinularia and Sarcophyton, which tend to form large monospecific "carpets" of up to several square meters.^{2,3} Both genera contain sesqui- and diterpenes. 1,3-5 All known Sinularia diterpenoid metabolites are based on the cembrane nucleus, mainly 14-membered rings but also 13- and 15membered ones.3 Among the first diterpenes isolated from the genus Sinularia^{3,5} were the sinulariolides from the Indonesian S. flexibilis and pukalide from the Hawaiian S. abrupta.8 The stereochemistry of pukalide, vide infra, was later determined by an X-ray crystallography study9 together with the disclosure of other related compounds. 10

Results and Discussion

We now report the investigation of the soft coral Sinularia erecta (Tixier-Durivault, 1945, family Alcyoniidae) from the lagoon of Mayotte, Comoros Islands, northwest of Madagascar. The specimen was collected at a depth of 10 m and kept frozen until use. Eight compounds were isolated from the CHCl₃-MeOH (1:2) extract of the soft coral, namely the known diterpenoids nephthenol,11 decaryiol,12 and norcembrene13 and the sesquiterpene germacrene D,14 as well as four new compounds (1 and 3-5). Earlier investigation of the Red Sea S. erecta resulted only in high yields (1.5%) of the sesquiterpene $\Delta^{9(15)}$ -africanene⁶ and no significant amounts of other sesqui- or diterpenoids. The nonpolar hexane fraction from a solvent partition of the crude extract of the coral afforded two C₁₅H₂₄ sesquiterpene olefins, the known germacrene D14 and a new one, designated germacrene E (1). The NMR data of 1 pointed clearly to three double bonds, i.e., -CH=C- (CH_3) – $(\delta 5.08 d, 1.55 s (3H), 130.7 d, 131.4 s, and 17.0$ q), trans $-CH=CH-(\delta 5.02 \text{ dd}, 5.58 \text{ dd}, 139.3 \text{ d}, \text{ and})$ 126.4 d), and $-C(CH_3)=CH_2$ (δ 4.64 s, 4.66 s, 1.69 s (3H), 108.1 t, 150.0 s, and 21.4 g), as well as a methine (δ

The other six isolated compounds were diterpenoids or diterpenoid derivatives. Besides nephthenol¹¹ and decaryiol, 12 a mixture of two closely related compounds, 2 and 3, which analyzed for C₁₉H₂₄O₅ by combined spectral methods, have been isolated. Attempts to separate the mixture of 2 and 3 failed. However, the ratio of 2 to 3 changed upon various chromatographies from about 3:1 in the natural extract16 to about 2:1, confirming the existence of two isomers rather than two conformers.¹⁷ Prolonged mild basic treatment (0.1% K₂-CO₃ in MeOH for several weeks) led to a 2:3 mixture of compounds 2 and 3, respectively. The natural 3:1 mixture of the two isomers enabled the identification of compound 2 by means of MS and 1D and 2D NMR spectra in C₆D₆ as used for norcembrene reported previously from Sinularia numerosa. 13 Comparison of the NMR data of compound 3 (Experimental Section) with those of 2 and especially the slow transformation of compound 2 to 3, indicated that 3 is a stereoisomer of 2 (Scheme 1). From the structure of 2 and 3 it is clear that epimerization can occur on both sides of the THF ethereal bond: at C-5, which is α to C(6)=O and also β to C(3)=O (enabling a retro-Michael addition), and C-8, which is β to C(6)=O and can also undergo a retro-Michael addition. Indeed, the major observed proton chemical shift changes in 3 are in the THF

^{2.83} m, 54.5 d) and four methylenes (δ 24.0, 33.3, 26.0, and 41.5, all triplets). 2D-NMR experiments, COSY, HMQC, and HMBC (Table 1), established the structure of 1 unequivocally as 4,10-dimethyl-7-(methylethenyl)-1(10),5-cyclodecadiene, an unprecedented marine germacrene. Germacrenes A, C, and D were previously reported independently from Eunicea mamosa, 15 Sinularia polydactyla, Lithophyton arboreum, Stereonephthea cundabiluensis,4 and Sinularia mayi.14 Finding germacrenes in the Mayotte S. erecta as opposed to africanene, the major sesquiterpene in the northern Red Sea coral, supports the notion that sesquiterpenes in Sinularia are produced by symbionts or by a symbiotic relationship with microorganisms. Thus, the use of sesquiterpene character as an aid to taxonomic discrimination, as suggested previously and based on GC derived fingerprints,4 seems to be limited to soft corals from a single habitat.

^{*} To whom correspondence should be addressed: Tel.: +972-3-6408419. Fax: +972-3-6409293. E-mail: kashman@post.tau.ac.il.

[†] Tel Aviv University.

[‡] IUEM, Allié des Aigues Marines.

[§] Université de Droot.

Table 1. ¹H (500 MHz) and ¹³C NMR (125 MHz) Data of Germacrene E (1)a

no.	13 C	$^{1}\mathrm{H}$	HMBC C to H	COSY
1	130.7 d	5.08 d (11)	2b, 15	2a, 2b, 15
2a	24.0 t	1.90 brd (14)		1, 2b, 3a, 3b
b		2.42 m		1, 2a, 3a, 3b
3a	33.3 t	1.68 m	5, 6, 14	2a, 2b, 3b, 4
b		1.52 m		2a, 2b, 3a, 4
4	33.9 d	2.42 m	14	3a, 3b, 5, 14
5	139.3 d	5.58 dd (15.8, 3.5)	3b, 14	4, 6
6		5.02 dd (15.8, 1.9)		
7	54.5 d	2.83 brt (10)	6, 9b, 12a, 12b, 13a	6, 8a, 8b, 12a, 12b
8a	26.0 t	1.47 m	6	7, 9a, 9b
b		1.47 m		
9a	41.5 t	2.29 m	1, 15	8a, 8b
b		2.29 m		
10	$131.4 \mathrm{s}$		8a, 8b, 9a, 9b, 15	
11	$150.0 \mathrm{s}$		13a	
12a	108.1 t	4.66 s	13a	7, 13b
b		4.64 s		7, 13a
13	21.4 q	1.69 s	12a, 12b	7, 12a, 12b
14	15.0 q	1.10 d (6.9)	5	4
15	17.0 q	1.56 s	1, 9a, 9b	1

^a Spectra taken in CDCl₃.

Scheme 1

surroundings, i.e., H-5 and CH₃-18. However, because of changes in the macrocycle conformation and, hence, of the transannular interactions, chemical shift changes of H-11 and even H-16a,16b could also clearly be observed. The suggested difference between compounds 2 and 3 is based on d-NOE measurements. In case of norcembrene (2), there is a strong (6%) NOE between CH_3 -18 and H-5, which are both on the same (α) side of the THF ring. A weaker effect, observable between CH₃-18 and H-16a (1%), points clearly to a puckered conformation of the macrocycle, which brings H-16a into

proximity with CH₃-18. In 3, on the other hand, there is no NOE between CH₃-18 and H-5; therefore, they have to be on opposite sides of the THF ring. A weak NOE between H-5 and H-11 (0.5%) (not existing in 2) is in better agreement with epimerization at C-5. Thus, tentatively, compound 3 is suggested to be 5-epinorcembrene.

The last pair of compounds isolated from the coral were compounds 4 and 5, both of which analyzed for C₄₀H₄₄O₁₂Na by combined FAB-MS and NMR data. The NMR data of compound 4, mayotolide A (Table 2), suggested it to be assembled from two closely related 20 carbon halves. The presence in each half, of a methylethenyl (C-15-C-17), a quaternary methyl (C-19), and two conjugated lactone/ester functionalities (C-18 and -20), originating, most likely, biogenetically from methyl groups ($\delta_{\rm C}$ 145.5 s, 113.1 t, 18.1 q; 18.7 q; and 162.3 s and 174.7 s for the "left" part of 4, respectively, Table 2) suggested a diterpene structure for each half. The carbon atom resonances of the left half of 4 further suggested an epoxide (C-7,8) and that one of the abovementioned carbonyl groups is conjugated to a furan (C-3-C-6 and C-18) and the other is part of an unsaturated γ - lactone (C-10-C-12, and C-20) (Table 2).

For the "right" part, we see the same functionalities except for replacement of the 7,8 epoxide by an alcohol (on C-8') and an ester group (on C-7'). Comparison of the NMR data of mayotolide A (4) with known marine cembrane-derived diterpenoids showed a high similarity between the left part and pukalide.8 Indeed, mild basic methylation—methanolysis of 4 (K₂CO₃, MeI, MeOH)¹⁸ afforded two diterpenoids, 6 and 7 (Scheme 1), which were separated by silica gel chromatography. Compound 6 was found to be identical to pukalide (NMR, MS, IR)⁸ and **7** to be a pukalide derivative, namely, $7\alpha,8\beta$ -dihydroxy-18O-demethyldeepoxypukalide. The connection between the two halves of 4 became evident from a CH- connectivity (HMBC experiment) between CO₂(18) and H-7', that is, an ester linkage between the original left CO₂H group and the right C-7'- hydroxyl. The latter ester bond makes clear the biogenesis of this bispukalide 4, namely, acid-catalyzed or autocatalyzed opening of the epoxide of 18O-demethylpukalide (the acid of 6 before methylation) by the carboxylic group of a second 18O-demethyl pukalide molecule to form the dimeric bispukalide structure. Micro-CH₂N₂ methylation of 4 (1 mg) afforded the expected 18'-methyl ester (9) ($\delta_{\rm H}$ 3.82 s, 3H), confirming the 18'-carboxylic group of 4. Peculiar in the NMR spectrum of 4 (and 5) was the absence of the H-11' signal, which could, however, be deduced from the HMQC experiment, in contrast to the sharp singlet of H-11 in compound 7. This pointed clearly to the strong influence of the left pukalide molecule on the conformation of the macrocycle of the right part of mayotolide A (and B). Slow tumbling macrocycles resulting in strong broadening to total disappearance of proton signals are not uncommon within the 14-membered terpenoids.

While the stereochemistry of the left part of 4 was determined by its transformation to pukalide, a $7'\alpha$, $8'\beta$ dihydroxy stereochemistry (the methylethenyl defined as β) was suggested for the right part on the basis of measured NOE's of compound 7. Most significant were the observed NOE's of CH₃-19, of 7, with H-5, -7, and

Table 2. ¹H and ¹³C NMR Data of Mayotolides A and B (4 and 5)^a

	4			5	
no.	¹³ C	¹H	HMBC (C to H)	13C	¹H
1	40.4 d	3.45 t (10.7)	2a, 2b, 13a, 13b, 17	40.5 d	3.40 t (10.8)
2a	32.4 t	2.98 dd (18.3, 12.6)	1	32.7 t	2.98 dd (18.2, 12.5)
b		2.82 d (18.3)	_		2.75 d (18.2)
3	148.3 s	,	1, 5	$148.3 \; s$,
4	113.1 s		2a, 2b, 5	113.1 s	
5	106.1 d	6.25 s	7	106.1 d	$6.25 \mathrm{\ s}$
6	148.4 s	0.20 2	5, 7	148.3 s	0.23 5
7	54.8 d	3.96 s	9a, 19	54.8 d	3.95 s
		5.50 S	,		0.30 S
8	57.2 s	0.50	7, 9a, 9b, 10, 19	57.2 s	0.45
9a	$39.5 \mathrm{\ t}$	2.50 m	19	$39.7 \mathrm{\ t}$	2.45 m
b		2.08 m			2.05 m
10	78.2 d	5.07 bs	11	$78.0~\mathrm{d}$	$5.02 \mathrm{s}$
11	148.9 d	7.07 s	14a, 14b	148.5 d	7.04 s
12	137.1 s		11, 13a, 13b, 14b	137.1 s	
13a	22.5 t	2.33 m	,,,	22.7 t	2.32 m
b	22.0	2.33 m		22.10	2.32 m
	20 5 4			00.04	
14a	$32.5~\mathrm{t}$	1.80 m		$32.8 \mathrm{\ t}$	1.75 m
b		1.05 m			1.00 m
15	$145.5 \mathrm{\ s}$		17	$145.6 \mathrm{\ s}$	
16a	$113.0~\mathrm{t}$	5.03 s	17	$113.2 \mathrm{\ t}$	4.98 s
b		4.75 s			4.70 s
17	18.1 q	1.68 s		18.3 q	1.55 s
18	$162.3\mathrm{s}$	_,,,,	2a, 2b, 5, 7'	$162.3 \mathrm{s}$	
19	18.7 q	0.96 s	24, 25, 5, 1	18.8 q	0.90 s
20	174.7 s	0.50 \$	11 100 106	174.7 s	0.50 S
		0.10	11, 13a, 13b		9.05
1'	43.8 d	2.10 m	2'a, 2'b, 13'a, 13'b, 17'	43.9 d	2.05 m
2′a b	31.5 t	3.41 dd (17.5, 14.5) 2.61 d (17.5)	1'	31.7 t	3.55 dd (17.6, 14.4) 2.55 (17.6)
3′	149.6 s	2.01 d (17.0)	1', 5'	150.0 s	2.55 (17.0)
4'	118.0 s	0.40	2'b, 5'	118.1 s	0.40
5'	110.6 d	6.49 s	7'	110.5 d	6.46 s
6'	$148.4 \mathrm{\ s}$		5', 17'	$148.4 \mathrm{\ s}$	
7'	$75.5~\mathrm{d}$	5.56 s	9'a, 9'b, 19'	$75.1~\mathrm{d}$	5.52 s
8'	$71.9 \mathrm{\ s}$		7', 9'a, 9'b, 19'	$72.3 \mathrm{\ s}$	
9'a	43.6 t	2.46 m	19'	43.4 t	2.45 m
b		1.92 m			1.85 m
10′	78.9 d	4.86 d (10.5)	9'a, 9'b	78.7 d	4.82 d (10.0)
11'	148.9 d	5.85^{b}	7'	148.8 d	5.84^{b}
		5.65	•		5.64
12'	132.8 s	0.05	13'a, 13'b, 14'b	132.8 s	0.10
13'a	$21.4 \mathrm{\ t}$	2.25 m	1'	$21.6 \mathrm{\ t}$	2.18 m
b		2.05 m			2.02 m
14'a	$28.1 \mathrm{\ t}$	1.75 m		$28.1 \mathrm{\ t}$	1.65 m
b		1.53 m			1.43 m
15'	$146.5 \mathrm{\ s}$		17'	$148.5 \mathrm{\ s}$	
16'a	111.7 t	4.65 s	1', 17'	112.1 t	4.60 s
b	111.7	4.60 s	-, -:	112.1	4.55 s
	10 1 -			10.9 -	
17'	18.1 q	1.67 s	0/- 0/1- 5/	18.3 q	1.56 s
18′	158.0 s	4.40	2'a, 2'b, 5'	158.0 s	
19'	$19.5~\mathrm{q}$	$1.43 \mathrm{s}$		19.8 q	1.35 s
20'	174.1 s		11, 13a, 13b	$174.1 \mathrm{s}$	

^a Spectra taken in CDCl₃. ^b Signal deduced from the HMQC experiment.

10 simultaneously (4.5, 2.5, and 6%, respectively), and the NOE's between CH₃-17 and H-7 (1%), together proving all the latter protons to be on the same β side of the molecule. The 7α ,8 β -dihydroxy configuration of 7 also defines, of course, the stereochemistry of these centers in (numbers with a prime) 4. Similar NOE's were also observed for 4, namely, CH₃-19' to H-5', -7', -10' (2.5% for all) and, in addition, an NOE between CH₃-19' of the "right" part to H-5 of the left part (4%).

The NMR data of compound 5, mayotolide B (Table 2), were very similar to those of mayotolide A (4) and, under the same basic methylation—methanolysis conditions, vide supra, 5 also gave pukalide (6) and an isomer of 7, compound 8 (Scheme 1). The major difference between the NMR data of 7 and 8 were differences in the d-NOE experiment. Irradiation of CH₃-19, of 8, exhibited NOE's with H-5, -7, and -10 (6, 2.5, and 6.5%, respectively), as in 7, but also to H-11 (4%) best

rationalized by an 8-epimeric structure. The still-existing NOE between CH_3 -17 and H-7 confirmed that the configuration of C-1 and C-7 remained unchanged. Therefore, compound 5 is the 8' α -hydroxy epimer of 4.

While mayotolide-A (4), as explained above, seems to be obtained directly from 18O-demethylpukalide, compound 5, mayotolide B, is assumed to be derived from 4 by acid-catalyzed epimerization of the tertiary 8-hydroxy group.

Experimental Section

General Experimental Procedures. IR spectra were recorded on a Nicolet 205 FT-IR spectrophotometer. LRMS and HRMS were recorded on a Fisons, Autospec Q instrument. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX-500 spectrometer. All chemical shifts are reported with respect to residual CHCl₃ (δ 7.25 for ¹H and 77 ppm for ¹³C). Optical rotations

were measured on a Perkin-Elmer Model 141 polarimeter using a 1 cm microcell.

Biological Material. The soft coral S. erecta was collected at the lagoon of Mayotte, Comoros Islands, northwest of Madagascar, by scuba at a depth of 10 m in May 1995. A youcher specimen is deposited at Tel-Aviv University (AMS-22).

Extraction and Isolation. The soft coral (300 g) was homogenized and extracted with CHCl₃/MeOH (1: 2) to give a brown gum (1 g) after evaporation. The gum (800 mg) was partitioned into aqueous MeOH and hexane, CCl₄, and CHCl₃. The hexane fraction (450 mg) was subjected to silica gel chromatography to give germacrene D (12 mg) and germacrene E (1, 9 mg). The CCl₄ fraction (160 mg) gave, upon silica gel chromatography, a 3:1 mixture of compounds 2 and 3 (25 mg). The CHCl₃ fraction (150 mg) afforded, upon repeated Sephadex LH-20 chromatography eluted with MeOH/CHCl₃ (1:1), mayotolide A (4, 20 mg) and mayotolide B (5, 8

Germacrene E (1): oil; $[\alpha]_D + 2.1^\circ$ (c 0.23, MeOH); ¹H and ¹³C NMR, see Table 1; HREIMS m/z 204.1892 $[M^+]$ (calcd for $C_{15}H_{24}$, 204.1897).

Norcembrene (2) and epi-norcembrene (3): oil (3:1 mixture). The ¹³C NMR (CDCl₃) and ¹H NMR (C₆D₆) of the major compound (2) were identical with the reported data for norcembrene.⁵

Compound 3: oil; ¹H NMR (C_6D_6) δ 0.92 (3H, s, Me-18), 1.03 (1H, dd, J = 15.3,3.0 Hz, H-9b), 1.47 (3H, s, Me-17), 1.52 (1H, m, H-9a), 2.00 (1H, m, H-13b), 2.11 (1H, dd, J = 14.2, 11.2 Hz, H-4b), 2.29 (1H, d, J = 14.2)Hz, H-4a), 2.38 (1H, m, H-13a), 4.08 (1H, d, J = 11.2Hz, H-5), 4.28 (1H, m, H-10), 4.78 (1H, s, H-16b), 4.81 (1H. s. H-16a), 6.41 (1H, s. H-11); 13 C NMR δ 212.0 (s. C-6), 207.9 (s, C-3), 151.6 (d, C-11), 145.2 (s, C-15), 130.8 (s, C-12), 113.0 (t, C-16), 78.6 (s, C-8), 78.4 (d, C-10), 74.7 (d, C-5), 51.0 (t, C-7), 50.1 (t, C-9), 43.9, 41.6 (t, C-2,4), 38.7 (d, C-1), 29.1, 17.9 (t, C-13,14), 27.8 (q, CH₃-18), 18.3 (q, CH₃-17).

Compound 4: oil; $[\alpha]_D + 43.0^{\circ}$ (c 0.33, MeOH); IR (KBr) ν_{max} 3423, 2950, 1742, 1620, 1223, 1066, 1037 cm⁻¹: ¹H and ¹³C NMR, see Table 2; correlations observed in a COSY experiment, H-1/2a,2b,14a,14b; H-5/7; H-10/9a,9b,11; H-13a/13b, 14a,14b; H-1'/2'a,2'b, 14'a,14'b; H-5'/7'; H-10'/9'a,9'b,11'; H-13'a/13'b, 14'a, 14'b; FABMS m/z 739 [C₄₀H₄₄O₁₂Na, M⁺ + Na].

Compound 5: oil; $[\alpha]_D$ +48.5° (c 0.23, MeOH); IR (KBr) ν_{max} 3420, 2950, 1742, 1621, 1066, 1040 cm⁻¹; ¹H and ¹³C NMR, see Table 2; FABMS m/z 739

 $[M^+ + Na].$

Basic Hydrolysis of Compounds 4 and 5. Mayotolide A (4, 20 mg) in a mixture of MeOH (1 mL), acetone (10 mL), and MeI (0.5 mL) in the presence of anhydrous K2CO3 (10 mg) was left at room temperature for 20 h. The carbonate was then filtered away, the solvent evaporated under vacuum, and the residue subjected to a silica gel column to afford pukalide (6, 3 mg) and compound 7 (4 mg). Hydrolysis of mayotolide B (5, 8 mg), under the same conditions as described for 4, afforded pukalide (6, 2 mg) and compounds 8 (3 mg) and 9 (2 mg).

Compound 7: oil; ¹H NMR (CDCl₃) δ 1.42 (3H, s, Me-19), 1.50 (1H, m, H-14b), 1.72 (3H, s, Me-17), 1.80 (1H, m, H-14a), 1.85 (1H, dd, J = 13.6, 12.0 Hz, H-9b),

2.08 (1 H. bd. J = 13.9 Hz. H-13b), 2.15 (1 H. t. J = 11.5)Hz, H-1), 2.37 (1H, t, J = 13.9 Hz, H-13a), 2.58 (1H, dd, J = 11.5, 4.3 Hz, H-9a), 2.65 (1H, dd, J = 14.5, 2.1 Hz. H-2b), 3.40 (1H, dd, J = 8.9.7.0 Hz, H-2a), 3.82 (3H, s, OCH₃), 4.49 (1H, s, H-7), 4.73 (1H, s, H-16b), 4.76 (1H. s. H-16a), 6.96 (1H. d. J = 11.4 Hz, H-10), 5.59 (1H, s, H-11), 6.70 (1H, s, H-5); ¹³C NMR δ 44.1 (d, C-1), 31.7 (t, C-2), 160.5 (s, C-3), 116.8 (s, C-4), 108.8 (d, C-5), 152.5 (s. C-6), 75.6 (d. C-7), 73.6 (s. C-8), 42.7 (t. C-9), 78.6 (d, C-10), 148.0 (d, C-11), 133.6 (s, C-12), 21.6 (t, C-13), 27.7 (t, C-14), 146.1 (s, C-15), 112.6 (t, C-16), 18.9 (q, C-17), 165.0 (s, C-18), 19.3 (q, C-19), 173.3 (s, C-20), 51.6 (q, OCH₃); EIMS m/z 372 [C₂₁H₂₄O₆, M⁺, 5], 340 (10), 223 (100), 168 (80).

Compound 8: oil: ¹H NMR (CDCl₃) δ 1.42 (3H.s). 1.51 (1H, m), 1.71 (3H, s), 1.80 (1H, m), 1.89 (1H, dd, J = 14.8, 12.0 Hz), 2.08 (1H, bd, J = 14.5 Hz), 2.15 (1H, t, J = 11.0 Hz), 2.30 (1H, t, J = 14.5, 6.0 Hz), 2.58 (1H, dd, J = 14.9, 4.1 Hz), 2.64 (1H, dd, J = 14.5, 2.0 Hz), 3.46 (1H, dd, J = 8.9, 7.0 Hz), 3.85 (3H, s, OCH₃), 4.56(1H, s), 4.80 (1H, s), 4.83 (1H, s), 4.94 (1H, bd, J = 11.7)Hz), 5.66 (1H, s), 6.74 (1H, s); EIMS m/z 372 [C₂₁H₂₄O₆, M+, 101.

Compound 9: oil; $[\alpha]_D + 24.0^\circ$ (c 0.25, MeOH); ¹H NMR (CDCl₃) δ 1.04 (3H, s), 1.50 (3H, s), 1.75 (3H, s), 1.76 (3H, s), 3.82 (3H, s), 4.09 (1H, s), 4.80 (1H, s), 4.83 (1H, s), 4.92 (1H, s), 4.94 (1H, d, J = 4.9 Hz), 5.18 (1H, d, J = 4.9 Hz)s), 5.21 (1H, s), 5.70 (1H, s), 6.34 (1H, s), 6.60 (1H, s), 7.10 (1H, s); EIMS m/z 730 [C₄₁H₄₆O₁₂, M⁺, 15], 712 (20), 372 (C₂₁H₂₄O₆, 65), 340 (55), 208 (60), 153 (100).

Acknowledgment. Thanks are due to Dr. Y. Benavahu for the identification of the soft coral.

References and Notes

- (1) Faulkner, D. J. Nat. Prod. Rep. 1997, 14, 259-302 and earlier reports in this series.
- Benayahu, Y.; Loya, Y. Helgolander Wiss. Meeresunters. 1977, 30, 362-382.
- Coll, J. C. Chem. Rev. 1992, 92, 613-631.
- (4) Kashman, Y.; Loya, Y.; Bodner, M. Groweiss, A.; Benayahu, Y.,
- Naveh, N. Mar. Biol. 1980, 55, 255-259.
 (5) Fenical, W. In Marine Natural Products: Chemical and Biological Perspectives; Scheuer, P. J., Ed.; Academic Press: New York,
- 1978; Vol. II, pp 187-200.
 (6) Kashman Y.; Bodner, M.; Finer-Moore, J. S.; Clardy, J. Experientia 1980, 36, 891-892.
 (7) Tursch, B. Pure Appl. Chem. 1976, 48, 1-6.
 (8) Mission. R. C.; Parker, B. H. Schwar, R. I. Tatachedam
- (8) Missakian, M. G.; Burreson, B. J.; Scheuer, P. J. Tetrahedron 1975, 31, 2513-2525.
- Coll, J. C.; Bowden, B. F.; Heaton, A.; Scheuer, P. J.; Li, M. K. W.; Clardy, J., Schulte, G. K.; Finer-Moore, J. J. Chem. Ecol. 1989, 15, 1177-1179.
- (10) Bowden, B. F. Coll, J. C.; Wright, A. D. Aust. J. Chem. 1989, 42, 757-763.
- (11) Schmitz, F. J.; Vanderah, D. J.; Cierseszko, L. S. Chem. Commun. **1974,** 407–408.
- (12) Carmely, S.; Groweiss, A.; Kashman, Y. J. Org. Chem. 1981, 46, 4279-4284.
- (13) Sato, A.; Fenical, W.; Qi-tai, Z.; Clardy, J. Tetrahedron 1985, 41, 4303-4308.
- (14) Beechan, C. M.; Djerassi, C. Tetrahedron 1978, 34, 2503-2508. (15) Weinheimer, A. J.; Schmitz, F. J., Ciereszko, L. S. In Drugs from
- the Sea. Trans. Mar. Technol. Soc. 1967, 135. (16) The 3:1 ratio between 2 and 3 is seen already in the NMR spectrum of the crude extract. Moreover, as TFA does not equilibrate the isomers and the basic equilibration is very slow, both epimers are natural products.
- (17) Surprisingly, the mixture of compounds 2 and 3 was not stable on a RP-18 column.
- (18) Traces of the methyl ester of 4 were also obtained during the methylation-methanolysis reaction.
- (19) It is important to note that freeze-drying of soft corals should not be used if the content of sesquiterpenes is of interest, as the volatile compounds will be lost with the water.