考试说明: 本课程为闭卷考试, 共 2 页, 可携带考场规定的必需用品。

题号	_	=	Ξ	四	总分
得分	0				

一、填空题(共 7 题, 每题 3 分, 共 21 分)

1. 计算
$$\lim_{x \to 0} \frac{\ln(1+x)}{\sqrt{1+x}-1} =$$
______.

2. 函数
$$y = x^x$$
 ($x > 0$) 的微分 $dy = ______$

3. 设
$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5)$$
,则在(1,5)内 $f''(x) = 0$ 有_____个实根.

4. 曲线
$$y = \sin x$$
 在点 $(\frac{\pi}{2}, 1)$ 处的曲率是______.

5. 函数
$$f(x) = e^x$$
 带有皮埃诺型余项的 n 阶麦克劳林公式是

6. 设函数
$$f(x) = \int_{0}^{x^2} e^t dt$$
,则 $f'(x) =$ ______.

7. 与两直线
$$\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{1}$$
 及
$$\begin{cases} x = 1 \\ y = -1 + t \text{ 都 平 行 , 且 过 原 点 的 平 面 方 程} \\ z = 2 + t \end{cases}$$

二、选择题(共 5 题, 每题 4 分, 共 20 分)

A. 在
$$x = 0$$
, $x = 1$ 处间断; B. 在 $x = 0$, $x = 1$ 处连续; C. 在 $x = 0$ 处间断, 在 $x = 1$ 处连续; D. 在 $x = 0$ 处连续, 在 $x = 1$ 处间断.

B. 在
$$x = 0$$
, $x = 1$ 处连续;

$$C.$$
 在 $x=0$ 处间断, 在 $x=1$ 处连续:

D.
$$\alpha x = 0$$
 处连续, $\alpha x = 1$ 处间断.

2. 设
$$f(x)$$
 在 $x = a$ 的某个邻域内有定义,则 $f(x)$ 在 $x = a$ 处可导的一个充分条件是 ()

A.
$$\lim_{h\to+\infty} h[f(a+\frac{1}{h})-f(a)]$$
存在;

A.
$$\lim_{h\to +\infty} h[f(a+\frac{1}{h})-f(a)]$$
存在; B. $\lim_{h\to 0} \frac{f(a+2h)-f(a+h)}{h}$ 存在;

C.
$$\lim_{h\to 0} \frac{f(a+2h)-f(a-h)}{h}$$
存在; D. $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在.

3. 设函数 y = f(x) 单调且有二阶导数, x = g(y) 是它的反函数, f(1) = 2, f'(1) = 2,

$$f''(1) = 1$$
, $\bigcup g''(2) = ($

A.
$$-\frac{1}{8}$$
; B. $-\frac{1}{4}$; C. 1; D. $\frac{1}{2}$.

4. 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$,且 f'(0) = 0,则(

A. f(0) 是 f(x) 的极大值;

B. f(0)是 f(x)的极小值;

C. (0, f(0)) 是曲线 y = f(x) 的拐点;

D. f(0) 不是 f(x) 的极值, f(0) 也不是曲线 y = f(x) 的拐点.

5. 曲线 $y = \sin^{\frac{3}{2}} x$ $(0 \le x \le \pi)$ 与 x 轴围成的平面图形绕 x 轴旋转而成的旋转体体积为 ()

A.
$$\frac{4}{3}$$
; B. $\frac{4}{3}\pi$; C. $\frac{2}{3}\pi^2$; D. $\frac{2}{3}\pi$.

三、计算题(共 6 题, 每题 8 分, 共 48 分)

- 1. 已知由 $x^2 xy + y^2 = 1$ $(y \ge 0)$ 确定了函数y = y(x), 求 $y'|_{x=0}$.
- 2. 求曲线 $y = x \ln(e + \frac{1}{x})$ 的渐近线方程.
- 3. 计算广义积分 $\int_{1}^{+\infty} \frac{dx}{x\sqrt{x-1}}$.

4. 设函数 $f(x) = \begin{cases} \sin 2x, & x \le 0 \\ \ln(x+1), & x > 0 \end{cases}$, 求 f(x) 的一个原函数 F(x).

- 5. 求曲线 $\rho = \theta^2$ 从 $\theta = 0$ 到 $\theta = \pi$ 这段的弧长.
- 6. 求曲线 $y^2 = 4x$ 在点 (1,2) 处的法线与该曲线所围成的平面图形的面积.

四、证明题(共 2 题, 其中第一题 5 分, 第二题 6 分, 共 11 分)

- 1. 证明: $0 < x < \frac{\pi}{2}$ 时, $\sin x > \frac{2}{\pi}x$.
- 2. 设 f(x) 在区间[a, b]上有连续的导数,且 f(x) 不恒等于零, f(a) = f(b) = 0,

证明:
$$\int_a^b x f(x) f'(x) dx < 0.$$

一、填空题(共 7 题, 每题 3 分, 共 21 分)

- 1. 已知曲线 y = f(x) 在点 (1,0) 处的切线在 y 轴上的截距为 -1 ,则极限 $\lim_{n \to \infty} [1 + f(1 + \frac{1}{n})]^n = \underline{\hspace{1cm}}.$
- 2. $\lim_{x\to 0} (\frac{1}{x} \frac{1}{e^x 1}) = \underline{\hspace{1cm}}$
- 3. 曲线 $y = x \ln(e + \frac{1}{x})$ 的渐近线有_____条.
- 4. 曲线 $y = x^2(1-x)$ 在点 (1,0) 处的曲率是_____
- 5. 已知函数 $f(x) = \sin x^2$,则 $f^{(6)}(0) = _____$
- 6. 质点以速度 $t\sin t^2$ 米/秒作直线运动,则从时刻 $t_1=\sqrt{\frac{\pi}{2}}$ 秒到 $t_2=\sqrt{\pi}$ 秒内所经过的路程是 米.
- 7. 直线 $\begin{cases} x + y = 1 \\ x y z = 1 \end{cases}$ 与平面 x y + z = 0 的夹角是______.

二、选择题(共 5 题, 每题 3 分, 共 15 分)

- 1. 下列结论正确的是()
 - A. 数列 $\{a_n\}$ 与 $\{b_n\}$ 都发散,则数列 $\{a_n+b_n\}$ 必发散;
 - B. 已知 $\lim_{n\to\infty} a_n = 0$,则对任意数列 $\{b_n\}$ 必有 $\lim_{n\to\infty} a_n b_n = 0$;
 - C. 数列 $\{a_n\}$ 与 $\{b_n\}$ 都发散,则数列 $\{a_nb_n\}$ 必发散;
 - D. 已知 $\lim_{n\to\infty} \frac{a_n}{b_n} = 2$ 且 $\lim_{n\to\infty} b_n = 0$,则必有 $\lim_{n\to\infty} a_n = 0$.

2. 方程 $\ln x = ax a > \frac{1}{a}$ 时的实根个数为 ()

3. 下列等式中正确的是()

A. $\int f'(x)dx = f(x)$; B. $\int df(x) = f(x)$;

C. $\frac{d}{dx} \int f(x)dx = f(x)$; D. $d \int f(x)dx = f(x)$.

4. 设在区间[a,b]上函数f(x) > 0, f'(x) < 0, f''(x) > 0.

A. $S_1 < S_2 < S_3$; B. $S_2 < S_1 < S_3$; C. $S_3 < S_1 < S_2$; D. $S_2 < S_3 < S_1$.

5. 曲线 $\rho\theta = 1$ 从 $\theta = \frac{3\pi}{4}$ 到 $\theta = \frac{4\pi}{3}$ 的一段弧长为 (

A.
$$\int_{\frac{3\pi}{4}}^{\frac{4\pi}{3}} \sqrt{1 + (\frac{1}{\theta})^2} d\theta$$
; B. $\int_{\frac{3\pi}{4}}^{\frac{4\pi}{3}} \sqrt{1 + (-\frac{1}{\theta})^2} d\theta$; C. $\int_{\frac{3\pi}{4}}^{\frac{4\pi}{3}} \frac{1}{\theta^2} \sqrt{1 + \theta^2} d\theta$; D. $\int_{\frac{3\pi}{4}}^{\frac{4\pi}{3}} \sqrt{1 + \theta^2} d(\frac{1}{\theta})$.

三、计算题(共 5 题, 共 48 分, 其中 1-4 题每题 9 分, 第 5 题 12 分)

- 1. 设函数 y = y(x) 由方程 $\begin{cases} x = \arctan t, \\ 2y ty^2 + e^t = 5 \end{cases}$ 所确定,求 $\frac{dy}{dx}$.
- 2. 求函数 $f(x) = \begin{cases} x^{2x}, & x > 0, \\ x + 1, & x \le 0 \end{cases}$ 的极值.
- 3. 已知 $\int_{-x}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$, 计算广义积分 $\int_{-x}^{+\infty} \frac{\sin^2 x}{x^2} dx$.
- 4. 设 $f(x) = \begin{cases} \sin x, & 0 \le x < \pi, \\ 2, & \pi \le x \le 2\pi \end{cases}$ 求函数 $F(x) = \int_{0}^{x} f(t)dt$ 在[0,2 π] 上的表达式, 并讨论 F(x) 在 $x = \pi$ 处的连续性及可导性.
- 5. 设有曲线 $y = \sqrt{x-1}$, 过原点作其切线,求由此曲线、切线及 x 轴所围成的平面图形绕 x 轴 旋转一周所得的旋转体的表面积.

四、证明题(共 2 题, 共 16 分, 每题 8 分)

- 1. 若函数 f(x) 在[a,b] 上连续,在(a,b) 内可导,且 $f'(x) \le 0$, $F(x) = \frac{1}{x-a} \int_{a}^{x} f(t) dt$,证明:在(a,b) 内 $F'(x) \le 0$.
- 2. 设函数 f(x) 在区间[0,1]上有三阶导数,且 f(0) = f(1) = 0,设 $F(x) = x^3 f(x)$,证明:在 (0,1) 内存在 ξ ,使得 $F'''(\xi) = 0$.

中国海洋大学全日制本科课程期末考试试卷

<u>2016__</u>年_秋__季学期 考试科目:__《高等数学 I 1》_ 学院: 数学科学学院

试卷类型: A 卷 命题人: 高等数学课题组 审核人:

考试说明:本课程为闭卷考试,共2页,除考场规定的必需用品外还可携带的文具

九_	o					
	题号	1	11	11	四	总分
	得分					

一、填空题(共 7 题, 每题 3 分, 共 21 分)

1.
$$\lim_{x \to 0} \left[\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{2}{x}}} + \frac{x}{|x|} \right] = \underline{\qquad} .+$$

- 2. 设 y = f(x) 由方程 $e^{2x+y} \cos(xy) = e 1$ 所确定,则 $dy|_{x=0} =$
- 4. 若曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点 (-1,0),则 $b = ______$.
- 5. 设 f(x) 是周期为4的可导奇函数,且 $f'(x)=2(x-1), x \in [0,2], 则 <math>f(7)=$ _____.
- 6. $\int_{-\pi}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) dx = \underline{\qquad}$
- 7. 点(2,1,0)到平面3x+4y+5z=0的距离为_____

二、选择题(共 5 题, 每题 3 分, 共 15 分)

- 1. 设函数 f(x)在 x = 0 处连续,下列命题错误的是(
- A. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0)=0; B. 若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 f(0)=0;
- C. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f'(0) 存在; D. 若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 f'(0) 存在.
- A. $\cos x + \frac{1}{2}\cos^2 x$; B. $\cos^2 x \frac{1}{2}\cos^4 x$; C. $x + \frac{1}{2}x^2$; D. $x \frac{1}{2}x^2$.

3. 设
$$f(x)$$
连续,则 $\frac{d}{dx}\int_0^x tf(x^2-t^2)dt = ($).

A.
$$xf(x^2)$$
;

B.
$$-xf(x^2)$$
;

A.
$$xf(x^2)$$
; B. $-xf(x^2)$; C. $2xf(x^2)$; D. $xf(0)$.

D.
$$xf(0)$$
.

4. 把 $x \to 0^+$ 时的无穷小量 $\alpha = \int_0^x \cos t^2 dt$, $\beta = \int_0^{x^2} \tan \sqrt{t} dt$, $\gamma = \int_0^{\sqrt{x}} \sin t^3 dt$, 使排在 后面的是前一个的高阶无穷小,则正确的排列次序是(

A.
$$\alpha, \beta, \gamma$$
;

B.
$$\alpha, \gamma, \beta$$

C.
$$\beta, \alpha, \gamma$$
;

A.
$$\alpha, \beta, \gamma$$
; B. α, γ, β ; C. β, α, γ ; D. β, γ, α .

5. 已知直线
$$L$$
: $\begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$ 及平面 Π : $x-2y+z-1=0$,则直线 L 与平面

Ⅱ的相对位置关系是(

A.
$$L \perp \Pi$$
 ;

B.
$$L // \Pi$$
;

A.
$$L \perp \Pi$$
; B. $L // \Pi$; C. $L 与 \Pi$ 斜交; D. L 在 Π 上.

三、计算题(共 5 题, 每题 9 分, 共 45 分)

1. 设函数 y = f(x) 由方程 $2y^3 - 2y^2 + 2xy - x^2 - 1 = 0$ 确定, 求 f(x) 的极值.

2. 设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
, 求 $\int f(x)dx$.

3. 计算定积分
$$I = \int_{-4}^{3} \max\{1, x^2, x^3\} dx$$
.

4. 计算广义积分
$$\int_1^{+\infty} \frac{dx}{x(x^2+1)}$$
.

5. 求由曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(x \ge 0, y \ge 0)$ 及 x = 0, y = 0 所围成的曲边梯形绕 y 轴旋转 一周所形成的旋转体体积.

四、证明题(共 2 题,其中第一题 10 分,第二题 9 分,共 19 分)

- 1. 已知函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=0 , f(1)=1 ,证明:
 - (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
 - (2) 存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.
- 2. 设 f(x), g(x) 二阶可导, 当 x > 0 时 f''(x) > g''(x)且 f(0) = g(0), f'(0) = g'(0), 证明: 当x > 0时, f(x) > g(x).

学院: 数学科学学院

式巻类型: __A_巻 命题人:高等数学教学组 审核人: 起え

考试说明: 闭卷考试, 共2页, 不可携带其他任何与考试无关的物品进入考场

题号	 =	=	四	总分
得分				181

一、填空题(共8题,每题3分,共24分)

1. 已知
$$\lim_{x\to 0} \left(\frac{4+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}} + a \frac{\sin x}{|x|}\right)$$
 存在,则 $a =$ ______

2.
$$\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}} + \dots \sqrt{1 + \frac{n}{n}} \right) = \underline{\hspace{1cm}}$$

3. 已知
$$f'(2) = 3$$
,则 $\lim_{x \to 2} \frac{f(x) - f(2)}{\ln x - \ln 2} = _______$

4. 设
$$y = y(x)$$
 由方程 $\int_0^y e' dt + \int_0^x \cos t dt = 0$ 所确定,则 $dy|_{x=0} =$ ______

5. 曲线
$$y = x^2 - 2x + 3$$
 在 (2,3) 处的曲率为_____

6.
$$\int \frac{dx}{(1+2x)(1+x^2)} =$$

7.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin 2x}{1 + \cos x} + |\sin x| \right) dx = \underline{\qquad}$$

8. 平面
$$x-y+2z-1=0$$
 和 $2x+y+z-10=0$ 的夹角是_____

1. 求曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
 的渐近线.

2. 试确定
$$c$$
的值,使得 $\int_0^{+\infty} \left(\frac{1}{\sqrt{x^2+4}} - \frac{c}{x+2}\right) dx$ 收敛,并求出积分值.

- 3. 曲线 $y = \sin x (0 \le x \le \pi)$ 与 x 轴围成一平面图形, 求:
- (1). 图形绕x 轴旋转所形成的旋转体的体积; (2). 图形绕y 轴旋转所形成的旋转体的体积.

4. 设曲线方程
$$\begin{cases} x = t + \arctan t + 1 \\ y = t^3 + 6t - 2 \end{cases}$$
, 求: (1). $x = 1$ 处的切线方程; (2). $\frac{d^2 y}{dx^2}\Big|_{x=1}$

- 5. 设曲线 $F(x) = \int_0^{x^2} e^{-t^2} dt$, 求:
 - (1). F(x) 的极值; (2).该曲线的拐点的横坐标; (3). $\int_0^1 x^2 F'(x) dx$
- 6. 求曲线 $y = \sqrt{x}$ 上的一条切线 L ,使得该曲线与 L 及直线 x = 0 , x = 2 所围成的图形面积最小,并求该最小值。
- 7. 设连续函数 f(x) 在 x = 0 可导,且满足 f(0) = 0, f'(0) = 1,定义

$$F(x) = \begin{cases} \frac{\int_0^{2x} t f(t) dt}{1 - \cos x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- (1). F(x) 在 x = 0 是否连续? (2). F(x) 在 x = 0 是否可导?如可导,求其导数值.
- 三、证明题(共1题, 每题8分, 共8分)
- 1. 设 f(x) 在 [0,1] 上可微,且满足 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$,证明: 在 (0,1) 内至少存在一点 ξ ,使得: $\xi f'(\xi) + f(\xi) = 0$

四、应用题(共1题,每题8分,共8分)

1. 在某山区平面图(如下图示)上,从点(0,0)到 $(2\pi,0)$ 之间,有铁路、公路和盘山小路三种路线,它们的方程分别为:(1)铁路: $y=\sin x$;(2)公路: $y=\frac{1}{2}\sin 2x$;(3)盘山小路: $y=\frac{1}{3}\sin 3x$. 请对三条路线的长度进行排序.

--高等数学 1-1-

第 2 页 共 2