Optimization Model for Biogas Power Plant Feedstock Mixture Considering Feedstock and Transportation Costs Using a Differential Evolution Algorithm

指導老師:林聖泉報告者林秉科時間 20200617

## 目錄

- 前言
- 模型建立
- 優化方法
- 結果與討論

### 前言

- 本文提出了一種利用差分進化算法(DEA)針對原料和運輸成本優化沼氣發電廠原料混合物的模型。提出了數學模型和優化問題,並將提出的模型引入了沼氣發電廠中不同原料組合的最佳混合物,並告知每種原料的最大運輸距離。
- 在案例研究中,建議的模型適用於克羅地亞和匈牙利沼氣發電廠的五種最常用原料。該研究是針對沼氣發電廠不是農場主而是第三方擁有的情況進行的。針對每種情況執行優化程序,其甲烷生產成本在1M Webiogas發電廠中的成本不超過0.75 EUR/m³。結果顯示了每種原料所需的年用量和最大運輸距離。

沼氣管

biogas

出口

digestate 發酵 expansion chamber 膨順室

### 模型建立

目標函式

產生體積1m3的甲烷所需的最小花費

花費(
$$C_{methane}$$
)= 
$$\frac{\sum_{i=1}^{n}$$
購買原物料的成本( $c_{i}$  $m_{i}$ )+原物料的運輸成本( $c_{ti}$  $V_{i}$  $d_{i}$ ) 生產的甲烷的總體積( $V_{methane}$ )

Table 3. Input data for the model of different feedstocks.

| Type of the<br>Feedstock | Biogas Yield of the Feedstock (m $^3$ /t of Input)— $v_i$ | Share of<br>Methane in<br>Biogas—x <sub>i</sub> | Specific<br>Density<br>(t/m³)— $ ho_{ m i}$ | Cost of the<br>Feedstock<br>(EUR/t)—c <sub>i</sub> | Cost of the<br>Feedstock<br>Transport<br>(EUR/m³)—c <sub>ti</sub> |
|--------------------------|-----------------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|
| cow's manure             | 50.07                                                     | 60.0%                                           | 0.6                                         | 3.00                                               | $0.0094 \cdot d^{1} + 2.4$                                        |
| cow's slurry             | 28.08                                                     | 60.0%                                           | 1.0                                         | 2.00                                               | $0.0214 \cdot d + 3.0$                                            |
| pig's slurry             | 30.08                                                     | 65.0%                                           | 1.0                                         | 1.20                                               | $0.0187 \cdot d + 2.8$                                            |
| millet silage            | 153.12                                                    | 54.0%                                           | 0.7                                         | 17.00                                              | $0.04 \cdot d + 3.5$                                              |
| corn silage              | 204.75                                                    | 55.0%                                           | 0.75                                        | 34.00                                              | $0.04 \cdot d + 3.5$                                              |

### 模型建立

原

物

料

的

總

和

根據論文中的Table 3 提供的參數 得到目標函式模型

|      | m <sub>i</sub> | d <sub>i</sub> |
|------|----------------|----------------|
| 牛的糞便 | m1             | d1             |
| 牛的淤漿 | m2             | d2             |
| 豬的淤漿 | m3             | d3             |
| 小米青貯 | m4             | d4             |
| 玉米青貯 | m5             | d5             |



28.08 \* 1.0 \* m<sub>2</sub>

 $30.08 * 1.0 * m_3$ 

153.12 \* 0.7 \* m<sub>4</sub>

 $204.75 * 0.75 * m_5$ 

### 模型建立

#### 限制式

- 1. 原物料的使用量  $m_i < 20000, i \in (1,5)$
- 2. 運輸距離  $d_i < 100, i \in (1,5)$
- 3. 單種原物料的使用量在全部原物料所佔的比重  $0.1 < d_i < 0.5, i \in (1,5)$
- 4. 原物料的固體比重  $\frac{0.25*m_1+0.08*m_2+0.07*m_3+0.294*m_4+0.35*m_5}{m_1+m_2+m_3+m_4+m_5}<0.2$
- 5. 花費  $0.21 < C_{methane} < 0.75$

Table 2. Input data for the calculation of biogas yield [43,46–52].

| Type of the<br>Feedstock | Dry Matter<br>(%)—A | Organic Matter (% of Dry Matter)—B | Specific Biogas Yield<br>from Organic Matter<br>(m³/t)—C | Biogas Yield of the<br>Feedstock (m <sup>3</sup> /t of<br>Input)—A/100 x B/100 x C |
|--------------------------|---------------------|------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|
| cow's manure             | 25.0                | 78.0                               | 260                                                      | 50.07                                                                              |
| cow's slurry             | 8.0                 | 78.0                               | 450                                                      | 28.08                                                                              |
| pig's slurry             | 7.0                 | 80.0                               | 550                                                      | 30.08                                                                              |
| millet silage            | 29.4                | 93.0                               | 560                                                      | 153.12                                                                             |
| corn silage              | 35.0                | 90.0                               | 650                                                      | 204.75                                                                             |

### 優化方法

- 該論文使用 Differential Evolution Algorithm (DEA)來進行優化
- 本次報告使用老師所提供的GA演算法來進行實作

#### 目標式dct

```
3m_1 + (0.0094 d_1 + 2.4) m_1 / 0.6

2m_2 + (0.0214 d_2 + 3.0) m_2 / 1.0

1.2m_3 + (0.0187 d_3 + 2.8)m_3 / 1.0

17m_1 + (0.04 d_1 + 3.5) m_4 / 0.7

34m_1 + (0.04 d_1 + 3.5) m_5 / 0.75
```

```
50.07 * 0.6 * m<sub>1</sub>

28.08 * 1.0 * m<sub>2</sub>

30.08 * 1.0 * m<sub>3</sub>

153.12 * 0.7 * m<sub>4</sub>

204.75 * 0.75 * m<sub>5</sub>
```

### 優化方法

#### 設計變數邊界條件

- 1. 原物料的使用量
- 2. 運輸距離

#### ▼原物料的使用量上限和下限<br/>

#### 運輸距離上線和下限

#### 限制式

- 1. 在全部原物料中,單種原物料所佔的百分比
- 2. 原物料總和中的固體佔的百分比

3. 花費

```
fungoalb[:,0]=0.1-x[:,0]
fungoalb[:,1]=0.1-x[:,1]
fungoalb[:,2]=0.1-x[:,2]
fungoalb[:,3]=0.1-x[:,3]
fungoalb[:,4]=0.1-x[:,4]
```

```
fungoalb[:,5]=x[:,0]-0.5
fungoalb[:,6]=x[:,1]-0.5
fungoalb[:,7]=x[:,2]-0.5
fungoalb[:,8]=x[:,3]-0.5
fungoalb[:,9]=x[:,4]-0.5
```

```
fungoalb[:,11]=0.21-fct(x)
fungoalb[:,12]=fct(x)-0.75
```

### 優化方法

適合度計算

該函數得到的數值越大,代表適合度越好

1000-(fct\*1000+違反限制條件\*100)

計算得到的生產甲烷最小花費

#### 運行次數設計

- 1. 基因序同時產生100組
- 2. 繁衍後代:1000代
- 3. 迴圈運行次數:1000次

# 結果與討論

| Type of the<br>Feedstock | Amounts<br>(t/a) | Maximum<br>Distance (km) | Objective Function Value<br>= Cost of Methane<br>(EUR/m <sup>3</sup> ) | Possible<br>Solutions |
|--------------------------|------------------|--------------------------|------------------------------------------------------------------------|-----------------------|
| cow's manure             | 12,137           | 4.7                      |                                                                        |                       |
| cow's slurry             | 2500             | 14.9                     |                                                                        |                       |
| pig's slurry             | 19,186           | 21.5                     | 0.235                                                                  | Solution 1            |
| millet silage            | 17,245           | 1.4                      |                                                                        |                       |
| corn silage              | 20               | 24.0                     |                                                                        |                       |
| cow's manure             | 13,266           | 41.0                     |                                                                        |                       |
| cow's slurry             | 1397             | 45.5                     |                                                                        |                       |
| pig's slurry             | 17,722           | 0.7                      | 0.235                                                                  | Solution 2            |
| millet silage            | 17,299           | 6.6                      |                                                                        |                       |
| corn silage              | 117              | 37.8                     |                                                                        |                       |

|       | 第一次    | 第二次    | 第三次    |
|-------|--------|--------|--------|
| m1    | 360.63 | 48.31  | 520.68 |
| m2    | 28.15  | 630.25 | 26.34  |
| m3    | 88.29  | 138.80 | 681.75 |
| m4    | 690.29 | 599.61 | 458.54 |
| m5    | 198.34 | 97.75  | 107.73 |
| dl    | 19.32  | 64.82  | 72.85  |
| d2    | 89.97  | 22.00  | 12.72  |
| d3    | 67.21  | 52.93  | 53.56  |
| d4    | 15.41  | 96.79  | 20.49  |
| d5    | 52.66  | 38.49  | 98.87  |
| 優化的花費 | 0.24   | 0.26   | 0.26   |

Thank you