

"branching ratio"

Transition probability

Paz = P(5'=54|az,5)

Next state

- values

- · actual reward at time t: 1/4
- expected reward for this "branch"

$$R_{s \to s_4} = E(K_E | s' = s_4, \alpha_2, s)$$

$$revocal$$

$$revocal$$

$$take \alpha_2$$

$$end up in s_4$$

e expected reward for action a_2 $Q(S, a_2) = E(I_2 \mid a_2, S)$

Blackboard 8.2 = Exercise 1

 $Q = \exp{\text{exted}} \text{ rewood } \approx \exp{\text{irical mean } r.} = \hat{Q}$

2 (1) (s,a) after k-1 trials (playing action a)

 $\widehat{Q}^{(k-1)}(S,\alpha) = \frac{1}{k-1} \left(\Gamma_1 + \Gamma_2 + \dots \Gamma_{k-1} \right)$ $\sum_{k=1}^{\infty} 2nd \text{ time action } \alpha$

after k trials

$$\widehat{Q}^{(k)}(s,a) = \frac{1}{k} \left(\Gamma_1 + \Gamma_2 + \dots + \Gamma_k \right)$$

$$=\frac{k-1}{(k)}\cdot\hat{Q}^{(k-1)}(s,\alpha)+\frac{1}{k}r_k$$

=
$$\frac{1}{k} \hat{Q}^{(k-1)} + \frac{1}{k} r_k - \frac{1}{k} \hat{Q}^{(k-1)} (s, \alpha)$$

$$\Delta \hat{Q}(s,\alpha) = \hat{Q}^{(k)}(s,\alpha) - \hat{Q}^{(k-1)}(s,\alpha) = \frac{1}{k} \left[\Gamma_k - \hat{Q}^{(k-1)} \right]$$

$$=$$
 $=$ $\frac{1}{k}$

Blackboard 8.3

Convergence en expectation 3

theorem(i): if $E[\Delta Q(S,\alpha)] = 0$ (H)

then $E[Q|S,\alpha] = ZP^{\alpha}_{s\rightarrow s'}R^{\alpha}_{s\rightarrow s'}$ expectation

proof: (H) $\epsilon_{q,(1)}$ $E[\Delta Q(s,q)] = 0 = E[\tau_t - Q(s,a)]$ fluctuates $0 = E[\tau_t] - E[Q(s,a)]$ $\alpha = \sum_{s'} P_{s \rightarrow s'}^{\alpha} R_{s \rightarrow s'}^{\alpha} - E[Q(s,a)]$

(ii) Fluctuations: role of y is qualitatively obvious.

Blackboard 8.4 - Exercise 2

Update with
$$\Delta Q(s,a) = 0.2 \cdot [T_t - Q(s,a)](x)$$

2.1. initialise
$$Q(s, \alpha_n) = Q(s, \alpha_2) = 0$$

 $t=1$, action α_i , $\Gamma_t = 1 \Rightarrow Q(s, \alpha_i) = 0.2$
 $t=2$, action α_i , $\Gamma_t = 0.4 \Rightarrow Q(s, \alpha_i) = 0.08$

2.2.
$$t=3$$
, best action = α_1 ; $r_t=0$
 $Q(s,\alpha_1) \leftarrow Q(s,\alpha_1) + 0.2[0-0.2]$; $Q(s,\alpha_1) = 0.16$

$$t=4$$
, best action a_1 , $t_1=0$
 $Q(s,a_1) \leftarrow Q(s,a_1) + 0.2[0-0.16]$
 $0.16 - 0.032$ $Q(s,a_1) = 0.128$

t=5, best action
$$\alpha_1$$
; $t_t = 0$
 $Q(s,\alpha_1) \leftarrow 0.128 - 0.2 \cdot 0.128$; $Q(s,\alpha) = 0.102$.

2.3 actual values
$$Q(s, a_1) = 0.25$$

$$Q(s, a_2) = 0.30$$

$$= 0.30$$

we start here

total reward collected in stugle trial starting in s with action qu

$$R(S_{t}, a_{t}) = \Gamma_{t} + 8 \Gamma_{t+1} + 8^{2} \Gamma_{t+2} + 8^{3} \Gamma_{t+3} + ...$$

$$= \Gamma_{t} + 8 \Gamma_{t+1} + 8 \Gamma_{t+2} + 8^{2} \Gamma_{t+3} + ...$$

Tt + 8 - R (Str, atr)
total rewood (single trial)
storting from s' = Str with atr

look at diagram to calculate expectation

$$E(R(S_{t,\alpha_t})) = E(I_t + g R(S_{t+1}, \alpha_{t+1}))$$

$$= ZP_{s\rightarrow s'}^{\alpha_t} \left[R_{s\rightarrow s'}^{\alpha_t} + 8 E(R|s') \right]$$

$$= ZP_{s\rightarrow s'}^{\alpha_t} \left[R_{s\rightarrow s'}^{\alpha_t} + 8 \cdot Z T(a',s') ER(s',a') \right]$$

$$Q(S_{b,ab}) = \overline{Z} P_{s \to s'}^{a_b} \left[R_{s \to s'}^{a_b} + 8 \overline{Z} \pi_{a',s'} \right] Q(s',a')$$

Blackboard 86 - SARSA

6

from diagram $Q(s,a) \approx Y_t + 8 \cdot Q(s',a')$ $Q(s',a') = Y_t + 8 \cdot Q(s',a') - Q(s,a)$ $Q(s,a) = Y_t + 8 \cdot Q(s',a') - Q(s,a)$ $Q(s,a) = Y_t + 8 \cdot Q(s',a') - Q(s,a)$

check:

if $\Gamma_t > g(s,a') - Q(s,a) = increase$ Q(s,a)expected reward
actual for this transition

Blackboard 8.7 - Convergence week | Blackboard of SARSA update $DQ(s,a) = 7 [t_t + 8 Q(s',a') - Q(s,a)]$ hypothesis $E[DQ(s,a)] = 0 = E[t_t + 8 Q(s',a') - Q(s,a)]$ stating in squith a $0 = 2P_{s-s'}^a [R^a_{s-s'} + YTT(s',a') Q(s'-a')] - Q(s,a)$ in order to evaluate expectations:

• look at graph!

- · if I am in S, all remaining expectations are "givens"
- o if I am in a branch (s, a)
 all remaing expectation are
 given s and a