

5.2 Convolutional Neural Networks

Machine Learning 1: Foundations

Marius Kloft (TUK)

- 1 The Core Idea in a Nutshell
- Natural Neural Networks
- Artificial Neural Networks
- 4 Convolutional Neural Networks

Example: Image Processing

- For many types of images it makes sense to process portions of the image (patches)
 - ► This is because content could be in any position
- Typically one wants to apply filters to the patches to detect "interesting" properties of the images

source: http://pages.cs.wisc.edu/~andrzeje

Convolution Filter

Many image filters are based on convolutions...

image source: http://stats.stackexchange.com/

Examples of Convolution Filters

original blur Kuwahara

boulce. http://stats.statkexthange.com/

Can we learn such filters?

Convolutional Neural Networks (CNNs)

 Each layer consists of multiple vertical planes (five planes in the example shown here)

Convolutional Neural Networks (CNNs)

Each vertical plane acts as a convolution filter as follows:

- ▶ We cover the image with overlapping patches
- Each patch corresponds to five neurons on the same horizontal level
- Every pixel in a patch is connected with any of the five neurons in the corresponding level
 - Each of these neurons thus defines a filter on the pixels in the patch

Recursion: higher layers convolute output of earlier layers

Weight Sharing

- ► In CNNs, neurons of the same plane are forced to share the same weights w_{ij} (weight sharing)
- ▶ Hence, the very same five filters are applied to every patch, no matter where in the image the patch is
 - ⇒ invariance against translation of objects in image & drastic reduction in number of parameters

Stride

The **stride** determines how far apart the patches are:

7 x 7 Input Volume

5 x 5 Output Volume

Stride = 1

Stride

The **stride** determines how far apart the patches are:

Stride = 2

Pooling Layers

- In CNNs, convolution layers are alternated with pooling layers
 - these aggregate values in a patch
 - e.g., max pooling (computing in each patch the maximum entry)
 - ⇒ adds robustness against noise and changes in relative positions

CNN - Summary

Resulting architecture:

- input layer
- alternating convolution and pooling layers
- typically 2-3 dense layers (to capture non-linearities)
- output layer

Conclusion

Convolutional neural networks (CNN)

- instead of handcrafting image features
- let the learning machine (logistic regression) figure out a good representation
- wrap the learning machine around a CNN and learn a prediction model and an image representation at the same time

Conclusion

Convolutional neural networks (CNN)

- instead of handcrafting image features
- let the learning machine (logistic regression) figure out a good representation
- wrap the learning machine around a CNN and learn a prediction model and an image representation at the same time

Next week: deep learning and how to train ANNs.

References I

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning applied to document recognition, *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.