The man who asks a question is a fool for a minute. the man who does not ask is a fool for life.

Qu21:

Sum of first N natural no's

Quiz.2:

$$N \rightarrow N_2 \rightarrow N_4 \rightarrow N_8 \rightarrow \frac{N}{16} \rightarrow N_{32} - \frac{1}{2} + \frac{\log N}{\log N}$$

$$1024 \xrightarrow{7} 512 \xrightarrow{7} 256 \xrightarrow{72} 129 \xrightarrow{72} 64 \xrightarrow{72} 32 \xrightarrow{72} 16 \xrightarrow{72} 8$$

$$1 \xrightarrow{72} 2 \xrightarrow{72} 4$$

Quiz 3.

wize:

How many nots one there in this range [3,10]?

[3,10]
$$\rightarrow$$
 3, 4, 5, 6, 7, 8, 9, 10 [ans \rightarrow 8]

[
$$\rightarrow$$
 inclusive [a,b] = $b-a+1$
(\rightarrow exclusive [a,b) = $b-a$
(a,b) = $b-a-1$.

Arithmetic Progression [A.P]

and difference blu any two consecutive terms is fixed.

a and a+2d a+3d a+4d -- - a+(n-1)d

first term = a Common diff = d

Sum of N terms in $A \cdot P = \frac{n}{2} \left[2a + (n-1) d \right]$

Geometric Progression (G.P) 3 6 12 24 48 96 -q ar qr^2 qr^3 qr^5 ---- qr^{n-1} Sum of N terms of crop = $a[\mu^n-1]$ $\mu>1$. $a = \frac{1-n^{n}}{n-1}$ $a = \frac{1-n^{n}}{n-1}$ first terms -> a common ratio -> 8 $\frac{a(\lambda^{n}-1)\times -1}{(\lambda^{n}-1)\times -1} = a(1-\lambda^{n})$

```
void fun (Poit N) \S

S = 0;

S
Noid func (Int N, int M) \S

S=0;

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            # no. of iteration = N+M.
```

```
N=18.
1=1357911
6[2]
1=1357911
1=1357911
1=1357911
1=1357911
                                                                                                                                                                                                                                                                                   \# no of Pterations = \frac{n+1}{a}.
ind fun (int N) \S

S = 0;

S =
```

void fun (int N)
$$\begin{cases} 1 = N; \\ while (i > 1) \end{cases}$$
 $i = i/2;$

void fun (int N)
$$\{$$
 iterations value of $\frac{1}{2}$

While $(i > 1)$ 2
 $i = i/2;$
 3
 $9/8$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/16$
 $9/1$

$$i = N \rightarrow N_{2} \rightarrow N_{2} \rightarrow N_{3} \rightarrow N_{4} \rightarrow \cdots$$

$$\frac{N}{2} \rightarrow \frac{N}{2} \rightarrow \frac{N}{2} \rightarrow \frac{N}{2} \rightarrow N_{4} \rightarrow \cdots$$

After K-iterations,
$$\Rightarrow \frac{N}{2^k} = 1$$

$$= 0 \quad |N = 2^{k} = 0 \log N = \log_{2} 2^{k}$$

$$= 0 \quad |\log_{2} N = k|$$

void
$$fun(int N)$$
?

 $S=0;$
 $S=0;$

$$i = 2', 4, 8, 16, 32, 64, --$$

After K iterations, loop breaks.

 $i = 2^{k} = N$
 $k = \log_{2} N$

$$i = 2^k = N$$

$$k = \log_2 N$$

no. of iterations = logoN.

$$i = 3', 3^2, 3^3, 3^4, ---$$

Affer K-iteration, loop breaks.

 $i = [3^k = N]$

$$i = [3^k = N]$$

$$log_3^k = log_2^N$$

$$k = log_3^N$$

$$+ no. of iteration = log_3^N$$

Nested loops

2	j	iterations.
1 ,	[1, N]	N ~
2	[1, w]	ベッ
3	[1,N]	NY
ч	[1,N]	NV
1		,
i	,	/ !
10	[1/4]	N

If total no. of Herations = 10 N

table

crations
2 +
→
N +
\sim
+ + 1

If total no of iteration = N*N

1	j	· Herations
0	[0,0]	1
1	[0-1]	2
2	[0-2]	3
3	[0-3]	4
1		1 \ \ \
N-1	(0-11)	N

$$\frac{1}{n} = \frac{n(n+1)}{2}$$

$$= \frac{n^2 + n}{2}$$

#table.

i	j	Pfirations
1	[146]	Log N
2	[I - N]	1032N
3	[\ →N)	Joj-61
1	1	
1	}	2
7	[1-0]	1.920

total no of steration = N log_N.

Vold fun (int N)
$$\{$$
 $\{i=1, i=2^{N}, i+1\} \}$
 $\{i=1, 2, 3, 4, 5, --- 2^{N}\}$
 $\{i=1, 2^{N}\}$

total no g iterations =
$$2^{1} + 2^{2} + 2^{3} + - - 2^{N}$$

= $2 \left[2^{N} - 1 \right] = 2 \left[2^{N} - 1 \right]$
 $\frac{a(4^{N} - 1)}{(4 - 1)}$

Jor (
$$i=N$$
; $i>0$; $i=i/2$) $i=i/2$ $i=i/2$

$$\frac{1}{2} = N$$

$$\frac{1}{2} = N = \frac{\text{Assumptions}}{2 \log_2 N}$$

$$\Rightarrow 1 = \frac{N}{2 \log_2 N}$$

total nor of iterations =
$$N + \frac{N}{2} + \frac{N}{4} + \frac{N}{8} + - \frac{N}{2^{\log_2 n}}$$

$$= N + N \left[\frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + - - - \frac{1}{2^{10} \partial_{2}^{2}} \right]$$

table

Sum =
$$\alpha = \frac{1 - \alpha^{n}}{1 - \alpha^{n}}$$

$$= \frac{1}{2} \left[1 - \left(\frac{1}{2}\right)^{\log_{2} N}\right]$$

$$= 1 - \frac{1}{2^{\log_{2} N}} = 1 - \frac{1}{N} = \frac{N-1}{N}$$

Here of iterations =
$$N + N \left[\frac{N-1}{N} \right] = \frac{2N-1}{2N-1}$$

for very large value N .

Compare N and N = $N = N = N$

Compare $N = N = N = N$

Compare $N = N = N = N$

Compare $N = N = N = N$

$$\left\{ log_2N \leq JN \leq N \leq N log_2N \leq NJN \leq N^2 \leq 2^N . \right\}.$$

- 1) Calculate no. of iterations.
- @ Neglect lower order terms.
- 3 Neglect constant/co-efficients.

$$J(N) = \frac{10 N^{2} + 100 N' + 10^{3} \cdot N'}{\alpha}$$

$$= 10 N^{2}$$

$$= \frac{10 N^{2}}{\sqrt{N^{2}}}$$

$$10^{2} + 30 = 10^{6} \rightarrow 0(N^{2})$$