

통계분석B 1강

2022.02.15 (화) 14:30 ~ 16:30 chwhint@gmail.com

목차

 EDA (Exploratory Data Analysis, 탐색적 데이터 분석)

 예제로 시작하기

 대한 민국의 국민의 키 분포 통계

 EDA는 무엇인가

 데이터의 종류

 데이터 속성에 따른 분류

 데이터 형식에 따른 분류

 EDA의 중요 포인트

 데이터에 대한 정확한 이해

 데이터 확인

 시각화 방법

 관상과 데이터

EDA (Exploratory Data Analysis, 탐색적 데이터 분석)

예제로 시작하기

관상은 과학이다!

대한 민국의 국민의 키 분포 통계

- (예상) 상식적으로 대부분이 대략 $0.5\sim 2m$ 사이로 일 것이므로, 대략 $1.5\sim 1.8m$ 사이로 추정 가능
- (확인) <u>통계청 성인 신장 자료</u>
 - 。 (분석) 19세 이하 평균 = 1.6949m → 통계가 잘못되었나?
- (의문 확인) 연령대별 인구 분포
 - 。 19세 이하 인구 숫자 , 10세 이상이 더 많음
 - 。 평균 계산시 다음과 같은 수식을 사용하게 됨
 - 19세 이하 평균 = (작은키 * 작은 인구수 + 큰키 * 많은 인구수)/전체 인구수
 - 평균이 큰 키에 가깝게 분포하게 될 것.
- (가정) 만약 수치값 범위가 1694.9 이라고 표현 되었다면?
 - ∘ (가설1) mm 단위로 표현되었다. —> 400 ~ 1800 사이에 값들이 위치
 - (가설2) 수집된 데이터가 이상하다 → 데이터가 널뛰기 할 것
- 기타 데이터 확인 프로세스(빈 데이터, out-lier 등 확인)
- (QA 완료 시) 다음 프로세스 진행
 - 。 결측치 값 처리
 - 。 없는 데이터에 대해 추정 수치로 사용 등

EDA는 무엇인가

- 데이터의 관상 보기
- 최종적인 데이터의 분석, 시각화, 커뮤니케이션 에는 상당히 많은 Trial & Error

- 。 결과의 Grand opening 이 아닌 짧은 결과를 여러번 도출하여 엮기
- 최소한의 노력으로 일단 데이터의 분포와 경향성을 파악
- 기초적인 데이터 QA(Quality Assurance) 실시하고, 어떤 전략으로 접근할지 결정
- 데이터를 수집한 직 후 뿐만 아니라 데이터 가공, 변형, 저장 후 등 필요할 때 마다 사용

데이터의 종류

데이터 속성에 따른 분류

- 연속형(Continuous data)
 - 。 ex) 센서가 측정하는 물리량, 국가별 GDP 데이터
- 범주형 데이터(Categorical data)
 - 。 범주형 데이터 (Multi-class)
 - ex) 국가를
 - 。 순서형 데이터(Ordinal)
 - ex) 영화 평점 등
 - cf) Python 에서는 Sci-kit learn 라이브러리의 Sklearn.preprocessing.OrdinalEncoder 로 순서형 데이터 셋을 지원한다.
 - 。 이산형 데이터 (Binary)
 - ex) 참/거짓으로 나타낼 수 있는 모든 데이터

• 연도별 국가별 인당 GDP

- 。 연속형 데이터
 - 연도별 GDP
- 。 범주형 데이터
 - 대륙별 색깔 구분

 $\frac{\text{https://www.gapminder.org/tools/\#\$model\$markers\$line\$data\$filter\$dimensions\$country\$/\$in@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/\#\$model\$markers\$line\$data\$filter\$dimensions\$country\$/\$in@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/\#\$model\$markers\$line\$data\$filter\$dimensions\$country\$/\$in@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/#\$model\$markers\$line\$data\$filter\$dimensions\$country\$/sin@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/#\$model\$markers\$line\$data\$filter\$dimensions\$country\$/sin@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/#\$model\$markers\$line\$data\$filter\$dimensions\$country\$/sin@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/#$model\$markers\$line\$data\$filter\$dimensions\$country\$/sin@=usa\&=chn\&=nga\&=kor\&=prk\&=jpn\&=chtps://www.gapminder.org/tools/#$model\$markers\$line\$data\$filters\&=https://www.gapminder.org/tools/#$model\$markers\&=https://www.gapminder.org/tools/#$model\fools/#$model\fools/#$model\fools/#$model\fools/#$model\fools/#$$

데이터 형식에 따른 분류

- Table 데이터 (=Rectangular data)
 - pandas.DataFrame 과 같은 형태의 데이터
 - 。 사건을 나타내는 행(row)
 - 。 변수를 나타내는 열(column)
- Table 데이터가 아닌 데이터
 - 。 표로 표현하기 어려운 다소 추상적인 데이터

- 관계
- 그래프(수학에서의 graph data)
- 객체와 필드 값을 표현

ex) json 데이터 (혹은 이의 변형) 형태 (:=python dictionary)

https://opensource.adobe.com/Spry/samples/data_region/JSONDataSetSample.html#Example9

https://www.scylladb.com/resources/nosql-vs-sql/

EDA의 중요 포인트

- 1. 데이터에 대한 정확한 이해
 - Domain Specific Knowlege 필요
 - 각 row, column 의 의미는 무엇인가?
 - 데이터 값의 Feasibility를 정량/정성적으로 판단할 수 있는 기술 (대한 민국 사람의 신장 통계 예시) 신장의 범위는 적절한가?
 - ▼ ex) 가속도 측정
 - (선험 지식) 중력가속도 g = 10 m/s^2
 - (선험 지식) 자동차가 최대 3~5g 정도, 전투기가 9g 정도

 $\underline{https://lilliesystems.com/products/inertial-measurement-unit-imu-with-can-bus-a2c-imu-c/}$

- What if, 데이터에 이상이 있다??
 - 。 측정 주기의 문제?
 - 장비 설계/ 스펙
 - 。 측정 단위의 문제?
 - 센서 스펙과 통신 프로토콜
 - 。 센서의 문제?
 - 다른 센서와 비교
 - 。 통신의 문제?
 - (유선통신) 접촉불량, (무선통신) 전파 간섭 문제
 - 그외 기기 고장이 있는지 확인
 - HW(보드 고장, 전원 등)
 - 전원 확인 및 전력 측정 장비 활용

- 。 데이터 저장의 문제?
 - raw 데이터의 패턴 확인
 - 단계별 저장 데이터 비교 분석

2. 결측치에 대한 합리적인 처리

- Domain Specific Knowlege 필요
- 다른 관측치를 활용
 - o pandas.DataFrame.interpolate() 활용 (외삽/내삽 모두 가능)
 - 。 내삽(interpolation)
 - o 외삽(extrapolation)
 - 오류의 가능성이 있음(인당 GDP 통계 예시) 1990년대 초반까지의 아시아 데이터, 2021년 이후의 데이터?
- 한가지 값으로 처리
 - o ex) 시계열 데이터 padding
- 결측치 버리기
 - 。 결측치를 버려도 상관없는 경우에만 사용

3. 시각화

- 목적
 - 。 데이터에 대한 통찰
 - 。 커뮤니케이션
- 대상
 - 。 데이터 처리자를 위해서 나도 오해/착각 할수 있다.
 - 기본적인 것은 꼭 표시하자
 - legend, 축, 단위 등
 - 청자/독자를 위해서 사소한 것 까지 알려줘야 한다. 저들은 모른다.
 - 누구나 이해하기 쉽도록 시각화 하기
 - 초등 학생 정도가 들어도 이해할 수 있도록
 - 시간이 꽤 많이 소요됨

데이터에 대한 정확한 이해

데이터 확인

- 대표 위치 값 (산술, 기하, 조화, 가중 평균, 중앙, 최빈값 or its variation)
- 분산 (표준편차 or its variation)
- outlier 숫자와 분포 확인

시각화 방법

• AndrewAbela 의 Choosing the right chart page

https://www.techprevue.com/decision-tree-perfect-visualisation-data/

- 。 시각화에 대한 카테고리
 - 보여주고 싶은 것
 - 분포
 - 비교
 - 관계
 - 구성
 - 변인의 개수
 - 변인이 하나
 - 변인이 둘
 - 변인이 셋 이상
 - 변인의 특성
 - 순환적
 - 계층적
 - 데이터의 숫자
 - 많음
 - 적음
- 위 도표가 모든 방법을 나타내지는 않음
 - 。 다양한 루트를 통해 적절한 방법을 탐구/개발할 필요
 - 。 주로 많이 쓰이는 시각화 라이브러리
 - matplotlib
 - Matplotlib Tutorial 파이썬으로 데이터 시각화하기
 - <u>seaborn 통계적, 확률적 데이터</u>
 - Plotly

- 。 시각화 방법 references
 - Datavizcatalogue
 - The Python Graph Gallery
 - <u>변성윤님 블로그</u>
 - Google it!

관상과 데이터

관상은 과학이다!

- 얼굴의 종횡비 가로/세로 수치가 높은 (납작한) 관상의 경우 사회적으로 지배자적 위치로 가고자 하는 성취지향성이 대단히 크다고 합니다.
- 경영학계 최신 연구에 의하면 이 비율이 넓은 CEO들이 M&A 를 많이 하고, ROA가 높으며, 차입경영을 많이 합니다. 또한 해당 CEO가 소속된 기업의 주가변동성이 높다고 합니다.
- 그리고, 이 비율 넓은 헤지펀드 매니저들은 너무 과욕을 부려 서 펀드 성과 (alpha)가 낮다고 하는 Yan Lu와 Melvyn Teo 의 연구논문이 최근 Finance 탑저널인 JFQA에 게재됐습니다

http://www.fwhrmeasuring.com/

