...Parametriskās statistikas uzdevumu klasifikācija.

Gadījuma lielums ξ , blīvuma funkcija $p(x,\theta)$, nezināmie parametri $\theta = (\theta_1,\theta_2,...,\theta_k)$. Dota izlase $\vec{x} = \{x_1,x_2,...,x_n\} \in X$.

- 1. Nezināmo sadalījuma parametru punktveida novērtējumi.
- 2. Nezināmo sadalījuma parametru intervālie novērtējumi.
- 3. Statistisko hipotēžu pārbaude par nezināmajiem sadalījuma parametriem.

Pieņemsim, ka nezināmais sadalījumu klases parametrs $\theta \in \Theta$ ir skalārs. Kopu Θ sadalīsim divās nešķeļošās apakškopās, t.i., $\Theta_0\Theta_1=\varnothing$, tā lai $\Theta=\Theta_0\cup\Theta_1$.

Izvirzīsim divas hipotēzes par parametra θ patiesās vērtības piederību:

 $h_0: \theta \in \Theta_0$ – nulles hipotēze,

 $h_1: \theta \in \Theta_1$ – alternatīva (konkurējošā hipotēze)

Ja $|\Theta_i| = 1$, hipotēzi sauc par vienkāršu, ja $|\Theta_i| > 1$ – par saliktu.

Šeit apskatīsim tikai vienkāršas hipotēzes $h_0: \theta = \theta_0$, $h_1: \theta = \theta_1$

Zaudējumi. Ja jāpieņem lēmums par θ piederību vienai vai otrai apakškopai, var kļūdīties. Lēmums atkarīgs no zaudējumu lieluma, ko ciešam katrā gadījumā.

Zaudējumu funkcija $L(\theta, h, n) = L(\theta, h) + cn$

$$L(\theta, h) = \begin{cases} l, & \theta = \theta_0, h = h_1, \\ 1 - l, \theta = \theta_1, h = h_0, \\ 0, & \theta = \theta_0, h = h_0, \\ 0, & \theta = \theta_1, h = h_1. \end{cases} \qquad l \in [0, 1]$$

Abas iespējamās kļūdas var maksāt dažādi. Konkrētības dēļ tās būs jāprot atšķirt.

Nepareizo lēmumu – nepareizi noraidīt 0-hipotēzi: $\{\theta = \theta_0, h = h_1\}$ sauksim par <u>I veida</u>

<u>kļūdu.</u> Nepareizo lēmumu – nepareizi noraidīt alternatīvu: $\{\theta = \theta_1, h = h_0\}$ sauksim par <u>II veida kļūdu</u>.

Vispār, analizējot katru izlasi, var pieņemt vienu no trim lēmumiem: pieņemt 0-hipotēzi, pieņemt alternatīvu vai turpināt novērošanu. Šeit turpmāk uzskatām, ka izlases apjoms n ir fiksēts.

Stratēģija
$$h = \delta(\vec{x})$$
. Iespējamās vērtības: $\delta(\vec{x}) = \begin{cases} h_0, \\ h_1 \end{cases}$.

Ja eksperimentu rezultātā iegūta izlase \vec{x} , tad ar varbūtību $\varphi(\vec{x}) = P(\delta(\vec{x}) = h_1)$ tiek pieņemta alternatīva, ar varbūtību $1 - \varphi(\vec{x}) = P(\delta(\vec{x}) = h_0)$ tiek pieņemta 0-hipotēze.

Funkciju $\varphi(\vec{x})$, t.i., alternatīvas pieņemšanas varbūtību, sauc par <u>kritēriju</u>.

Ar $\varphi(\vec{x})$ palīdzību ģenerālkopas X tiek sadalīta trijās nešķeļošās daļās:

$$X_0 = \{\vec{x} : \varphi(\vec{x}) = 0\}$$
 – hipotēzes pieņemšanas apgabals

$$X_1 = \{\vec{x} : \varphi(\vec{x}) = 1\}_{-\text{kritiskais apgabals}}$$

$$X_R = X \setminus (X_0 \cup X_1)$$
 – randomizācijas apgabals

Var gadīties, ka $\varphi(\vec{x})$ ir tāds, ka $X_R = \emptyset$, tad stratēģiju un kritēriju sauc par tīru, ja randomizācijas apgabals $X_R \neq \emptyset$ — par randomizētu.

Risks. Patiesā parametra θ vērtība nav zināma. Optimāla būtu tāda stratēģija, kas sagādātu vismazākos zaudējumus pie visām iespējamajām θ vērtībām. Parasti tas nav reāli iespējams. Ja stratēģija tiek radīta masveida izmantošanai, tai vajadzētu minimizēt vidējos zaudējumus. Vidējos zaudējumus sauksim par <u>risku</u> $R(\theta, \delta) = ML(\theta, \delta(\vec{x}))$

$$R(\theta, \delta) = ML(\theta, \delta(\vec{x})) = L(\theta, h_0) P(\delta(\vec{x}) = h_0) + L(\theta, h_1) P(\delta(\vec{x}) = h_1) = 0$$

Pieraksta vienkāršošanai pieņemsim, ka izlase sastāv no viena elementa no diskrēta gadījuma lieluma ģenerālkopas $X=\{a_1,a_2,\ldots\}$

$$=L(\theta,h_0)\sum_{k=1}^{\infty}P(\delta(a_k)=h_0)p(a_k,\theta)+L(\theta,h_1)\sum_{k=1}^{\infty}P(\delta(a_k)=h_1)p(a_k,\theta)=$$

Turpmākais pieraksts diskrētam un nepārtrauktam gadījumam:

$$= \begin{cases} L(\theta, h_0) \sum_{k=1}^{\infty} (1 - \varphi(a_k)) p(a_k, \theta) + L(\theta, h_1) \sum_{k=1}^{\infty} \varphi(a_k) p(a_k, \theta) = \\ L(\theta, h_0) \int_X (1 - \varphi(x)) p(x, \theta) dx + L(\theta, h_1) \int_X \varphi(x) p(x, \theta) dx = \end{cases}$$

Ja $\theta = \theta_0$, zaudējumus cieš tikai, ja pieņem alternatīvu, ja $\theta = \theta_1$ – tikai, ja pieņem 0-hipotēzi.

$$= \begin{cases} l \int_X \varphi(x) p(x, \theta_0) dx, & \theta = \theta_0, \\ (1-l) \int_X (1-\varphi(x)) p(x, \theta_1) dx, & \theta = \theta_1, \end{cases} = \begin{cases} l \int_X \varphi(x) p(x, \theta_0) dx, & \theta = \theta_0, \\ (1-l) \left(1 - \int_X \varphi(x) p(x, \theta_1) dx\right), & \theta = \theta_1, \end{cases} = \begin{cases} l \alpha(\varphi), & \theta = \theta_0, \\ (1-l) \left(1 - \int_X \varphi(x) p(x, \theta_0) dx \right), & \theta = \theta_1, \end{cases} = \begin{cases} l \alpha(\varphi), & \theta = \theta_0, \\ (1-l) \left(1 - \beta(\varphi)\right), & \theta = \theta_1, \end{cases} \text{ kur } \alpha(\varphi) = \int_X \varphi(x) p(x, \theta_0) dx \text{ un } \beta(\varphi) = \int_X \varphi(x) p(x, \theta_1) dx \end{cases}$$

$$\alpha(\varphi) = \int_{X} \varphi(x)p(x,\theta_0)dx - \text{alternatīvas pieņemšanas varbūtība, ja pareiza ir 0-hipotēze.}$$

$$\beta(\varphi) = \int_{X} \varphi(x)p(x,\theta_1)dx - \text{pareizas alternatīvas pieņemšanas varbūtība.}$$

$$\beta(\varphi) = \int_{X} \varphi(x)p(x,\theta_1)dx - \text{pareizas alternatīvas pieņemšanas varbūtība.}$$

Redzams, ka faktiski risks ir atkarīgs tikai no θ un φ : $R(\theta, \delta) = R(\theta, \varphi)$

 $\alpha(\varphi)$, kas ir kritērija φ I veida kļūdas varbūtība, sauc arī par <u>kritērija izmēru</u> vai <u>līmeni</u> $\beta(\varphi)$ sauc par kritē<u>rija jaudu</u>, $1-\beta(\varphi)$ ir kritērija φ II veida kļūdas varbūtība.

Kritēriju kopa.

$$\varphi: X \to [0,1]$$

Teorēma. Kritēriju kopa Φ ir :

1) izliekta (ja
$$\varphi_1, \varphi_2 \in \Phi$$
 un $\gamma \in [0,1]$, tad $\gamma \varphi_1 + (1-\gamma)\varphi_2 \in \Phi$)

2) ja
$$\varphi \in \Phi$$
, tad $1 - \varphi \in \Phi$

Ja uzdevums ir izvēlēties hipotēzi, kas minimizē vidējos zaudējumu, t.i., risku, bet risku pilnīgi nosaka kritērijs, tad jāmāk salīdzināt kritēriji.

<u>Definīcija.</u> Kritērijs φ_1 dominē pār kritēriju φ_2 ($\varphi_1 \succ \varphi_2$), ja visiem $\theta \in \Theta$:

$$R(\theta, \varphi_1) \le R(\theta, \varphi_2)$$
, bet eksistē arī tāds $\tilde{\theta} \in \Theta$, kuram $R(\tilde{\theta}, \varphi_1) < R(\tilde{\theta}, \varphi_2)$

Definīcija. Kritēriju φ sauc par pieļaujamu, ja kopā Φ neeksistē pār to dominējoši kritēriji.

Apzīmēsim Φ_0 pieļaujamo kritēriju kopu.

Konstruēsim pieļaujamo kritēriju kopu. Tā kā $\alpha(\varphi)$ un $\beta(\varphi)$ ir svarīgākie kritērija kvalitātes rādītāji, konstruēsim kritērijus kā punktus α , β plaknē.

- 1. Punktam (0,0) atbilst kritērijs $\varphi(x) \equiv 0$. T.i., neatkarīgi no novērojumu datiem alternatīvu pieņem ar 0 varbūtību. Tātad vienmēr pieņem 0—hipotēzi. Tātad I veida kļūdu izdarīt nav iespējams, bet arī kritērija jauda vienāda ar 0.
- 2. Punktam (1,1) atbilst kritērijs $\varphi(x) \equiv 1$. T.i., neatkarīgi no novērojumu datiem alternatīvu pieņem ar varbūtību 1. Tātad kritērija jauda vienāda ar 1, bet, ja 0— hipotēze ir pareiza, tā vienalga netiek pieņemta, tātad I veida kļūdas varbūtība ir 1.
- 3. Kopa Φ ir simetriska pret punktu $\left(\frac{1}{2}, \frac{1}{2}\right)$.

 Tas seko no teorēmas. Ja $\varphi \in \Phi$, tad $1 \varphi \in \Phi$
- 4. Kopa Φ ir izliekta.

Secinājums. Vienlaicīgi minimizēt $\alpha(\varphi)$ un $\beta(\varphi)$ nav iespējams. Iespējama pieeja. Atrast maksimālās jaudas Kritēriju, kura līmenis nepārsniedz uzdotu α_0

Kritērija forma.

<u>Lemma.</u> Ja $\alpha(\varphi) \in (0,1)$, tad $\alpha(\varphi) < \beta(\varphi)$

Teorēma (Neimana – Pīrsona lemma). Hipotēzes $h_0: \theta = \theta_0$, pārbaudei pie alternatīvas $h_1: \theta = \theta_1$ katram kritērija līmenim α_0 var atrast kritēriju φ^* formā:

$$\varphi^{*}(x) = \begin{cases} 1, \ p(x, \theta_{1}) > Kp(x, \theta_{0}) \\ c, \ p(x, \theta_{1}) = Kp(x, \theta_{0}) \\ 0, \ p(x, \theta_{1}) < Kp(x, \theta_{0}) \end{cases}$$

kur $0 \le c \le 1$, K ir konstante un $\int_X \varphi^*(x) p(x, \theta_0) dx = \alpha_0$

Baijesa kritēriji.

Ja ir papildu informācija par hipotēžu pareizību. Uzskatīsim parametru θ par kāda gadījuma lieluma θ realizāciju. Tas nozīmē, ka kopā $\Theta = \{\theta_0, \theta_1\}$ eksistē kāds apriors sadalījums $\pi = \{p, 1-p\}$. T.i., $P(\theta = \theta_0) = p$ un $P(\theta = \theta_1) = 1-p$. Aprēķināsim risku.

Zinām, ka risks
$$R(\theta, \varphi) = ML(\theta, \delta(\vec{x}))$$
 un zaudējumi
$$L(\theta, h) = \begin{cases} l, & \theta = \theta_0, h = h_1, \\ 1 - l, \theta = \theta_1, h = h_0, \\ 0, & \theta = \theta_i, h = h_i. \end{cases}$$

$$r(p,\varphi) = ML(\mathcal{G}, \mathcal{S}(\vec{x})) = R(\theta_0, \varphi) p + R(\theta_1, \varphi) (1-p) \text{ un } R(\theta, \varphi) = \begin{cases} l\alpha(\varphi), & \theta = \theta_0, \\ (1-l)(1-\beta(\varphi)), \theta = \theta_1. \end{cases}$$

Tad risku var pārrakstīt

$$r(p, \varphi) = R(\theta_0, \varphi) p + R(\theta_1, \varphi) (1-p) = \alpha(\varphi) pl + (1-\beta(\varphi)) (1-p) (1-l)$$

Kritēriju, kas minimizē šo risku, sauc par Baijesa kritēriju.

Konstruējot attēlu α , β plaknē, jāminimizē $r = \alpha pl + (1-\beta)(1-p)(1-l)$. Izsaka β :

$$\beta = 1 + \alpha \frac{pl}{(1-p)(1-l)} - \frac{r}{(1-p)(1-l)}$$

Taisnes vienādojums. Virziena koeficients

$$\frac{pl}{(1-p)(1-l)}$$
. Jo augstāks krustpunkts ar

 β asi, jo mazāks risks r.

Baijesa kritērija līmenis ir α_p , jauda β_p . Formu uzdod Neimana – Pīrsona lemma:

$$\varphi_{p}(x) = \begin{cases} 1, \ p(x, \theta_{1}) > Kp(x, \theta_{0}) \\ c, \ p(x, \theta_{1}) = Kp(x, \theta_{0}) \\ 0, \ p(x, \theta_{1}) < Kp(x, \theta_{0}) \end{cases}$$

$$\operatorname{un} \int_{X} \varphi_{p}(x) p(x, \theta_{0}) dx = \alpha_{p}$$

Minimaksa kritēriji.

Nav zināmas apriorās hipotēžu pareizības varbūtības. Nav iespējams izvēlēties kritērija līmeni α_0 . Apskatīsim risku $R(\theta,\varphi)=ML(\theta,\delta(\vec{x}))$. Pieņemsim, ka no mums neatkarīgie apstākļi ir visnelabvēlīgākie (θ ir tāds, pie kura $R^*(\varphi)=\sup_{\theta}R(\theta,\varphi)$). Šajā gadījumā saprātīgi izvēlēties to φ_* , kurš nodrošina $\inf_{\varphi}R^*(\varphi)$. Šo kritēriju sauc par minimaksa kritēriju.

Risks ir
$$R(\theta, \varphi) = \begin{cases} l\alpha(\varphi), & \theta = \theta_0, \\ (1-l)(1-\beta(\varphi)), & \theta = \theta_1. \end{cases}$$
 Var rakstīt:

 $R^*(\varphi) = \max \left\{ R(\theta_0, \varphi), R(\theta_1, \varphi) \right\} = \max \left\{ l\alpha(\varphi), (1-l)(1-\beta(\varphi)) \right\}. \text{ Meklēsim } \varphi_*,$

kuram tiek sasniegts minimums izteiksmei $\max\{l\alpha, (1-l)(1-\beta)\} = R$

$$\begin{cases} R = \alpha l, & \alpha l \ge (1 - \beta)(1 - l) \\ R = (1 - \beta)(1 - l), & \alpha l < (1 - \beta)(1 - l) \end{cases}$$

$$\begin{cases} \alpha = \frac{R}{l}, & \alpha l \ge (1 - \beta)(1 - l) \\ \beta = 1 - \frac{R}{1 - l}, & \alpha l < (1 - \beta)(1 - l) \end{cases}$$

Robežtaisne $\alpha l = (1 - \beta)(1 - l)$, t.i., $\beta = 1 - \frac{\alpha l}{1 - l}$

Piemēri.

Vienu reizi novēro binomiāli sadalītu gadījuma lielumu $\xi \sim B(10,\theta)$, kur n=10, bet varbūtība p nav zināma. ξ var pieņemt vērtības no kopas $X = \{0,1,2,3,4,5,6,7,8,9,10\}$ Hipotēzes $h_0: \theta = 0.1$, $h_1: \theta = 0.4$.

Hipotētiskā sadalījuma blīvuma funkcija $p(x, \theta_0) = C_{10}^x (0.1)^x (0.9)^{10-x}$

Alternatīvā sadalījuma blīvuma funkcija $p(x, \theta_1) = C_{10}^x (0.4)^x (0.6)^{10-x}$.

Meklēsim kritēriju
$$\varphi^*(x) = \begin{cases} 1, \ p(x, \theta_1) > Kp(x, \theta_0) \\ c, \ p(x, \theta_1) = Kp(x, \theta_0) \\ 0, \ p(x, \theta_1) < Kp(x, \theta_0) \end{cases} \text{ ar līmeni } \int_X \varphi^*(x) p(x, \theta_0) dx = \alpha_0$$

$$\frac{p(x,\theta_1)}{p(x,\theta_0)} > K$$
 Kritiskā apgabala nosacījums

$$\frac{C_{10}^{x}(0.4)^{x}(0.6)^{10-x}}{C_{10}^{x}(0.1)^{x}(0.9)^{10-x}} > K \qquad x \ln\left(4 \cdot \frac{3}{2}\right) + 10 \ln\frac{2}{3} > \ln K$$

$$\ln \frac{(0.4)^{x}(0.6)^{10-x}}{(0.1)^{x}(0.9)^{10-x}} > \ln K \qquad x \ln 6 + 10 \ln \frac{2}{3} > \ln K$$

$$x \ln 4 + (10 - x) \ln \frac{2}{3} > \ln K$$
 $x > \frac{\ln K - 10 \ln \frac{2}{3}}{\ln 6} = q$ $x > q$

Uzrakstīsim kritērija I veida kļūdas varbūtību:

$$\alpha(\varphi) = \sum_{p(x,\theta_1) > Kp(x,\theta_0)} p(x,\theta_0) + c \sum_{p(x,\theta_1) = Kp(x,\theta_0)} p(x,\theta_0) =$$

Hipotētisko blīvumu summē pa kritisko apgabalu (nepareizi noraida 0-hipotēzi).

Ja q nav vesels skaitlis, tad kritisko apgabalu x > q var pārrakstīt x = [q] + 1, [q] + 2, ..., 10.

Tad randomizācijas apgabals ir x = [q]. q veselā daļa [q] var mainīties no 0 līdz 9.

$$= \sum_{x=[q]+1}^{10} C_{10}^{x} (0.1)^{x} (0.9)^{10-x} + c C_{10}^{x} (0.1)^{[q]} (0.9)^{10-[q]}$$

Kritērija jauda:

$$\beta(\varphi) = \sum_{p(x,\theta_1) > Kp(x,\theta_0)} p(x,\theta_1) + c \sum_{p(x,\theta_1) = Kp(x,\theta_0)} p(x,\theta_1) =$$

$$= \sum_{x=[q]+1}^{10} C_{10}^x (0.4)^x (0.6)^{10-x} + c C_{10}^x (0.4)^{[q]} (0.6)^{10-[q]}$$

1) Pieņemsim, ka c = 0:

[q]	0	1	2	3	4	5	6	7	8	9
α	0.65	0.26	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.00
β	0.99	0.95	0.83	0.62	0.37	0.17	0.06	0.02	0.01	0.00

[q]	0	1	2	3	4	5	6	7	8	9
α	0.65	0.26	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.00
β	0.99	0.95	0.83	0.62	0.37	0.17	0.06	0.02	0.01	0.00

 $\alpha = \alpha(c)$ un $\beta = \beta(c)$ lineāras funkcijas, tad arī $\beta = \beta(\alpha)$ ir lineāra funkcija.

2) Pieņe<u>msim, ka c = 1:</u>

[q]	0	1	2	3	4	5	6	7	8	9
α	1.00	0.65	0.26	0.07	0.01	0.00	0.00	0.00	0.00	0.00
β	1.00	0.99	0.95	0.83	0.62	0.37	0.17	0.06	0.02	0.01

Ja $\alpha_0=0.01$, tad $\beta(\varphi^*)=0.62$, $1-\beta(\varphi^*)=0.38$. Atradīsim kritēriju no 1. tabulas (c=0). [q]=3 Tad kritiskais apgabals ir $\{x>q\}=\{x\in\{4,5,6,7,8,9,10\}\}$. Atradīsim kritēriju no 2. tabulas (c=1). [q]=4, un kritiskajā apgabalā nāk klāt viens saskaitāmais (ar reizinātāju c). Kritiskais apgabals tagad ir $\{x\geq q\}=\{x\in\{4,5,6,7,8,9,10\}\}$

Apgabali sakrīt! Tātad ir vienalga vai c = 0 vai c = 1.

Kritērijs ar līmeni
$$\alpha_0 = 0.01$$
 ir $\varphi^*(x) = \begin{cases} 1, & x \in \{4, 5, 6, 7, 8, 9, 10\} \\ 0, & x \in \{0, 1, 2, 3\} \end{cases}$

3) Ko darīt, ja jāmeklē kritērijs ar tādu līmeni α_0 , kāds nav atrodams tabulā? Piemēram, $\alpha_0 = 0.05$? Acīm redzot, tad c nevarēs ņemt ne 0, ne 1. Kritērijs būs randomizēts.

α_0	0.01	0.05	0.07
[q]	3	?	3
С	0	?	1

Apskatīsim no abām tabulām veidotu tabulas fragmentu, kurā iekļauti abi meklējamajam kritērijam blakusesošie tīrie kritēriji. Acīm redzot α_0 pieaugumu no 0.01 līdz 0.07 mēs varam interpretēt kā konstantes c pieaugumu no 0 līdz 1, [q] paliekot nemainīgai, vienādai ar 3. Tiešām, jo lielāka daļa c no randomizācijas saskaitāmā ieiet α_0 izteiksmē, jo lielāka ir summa.

Konstanti
$$c$$
 atrod no nosacījuma:
$$0.05 = \sum_{x=4}^{10} C_{10}^{x} (0.1)^{x} (0.9)^{10-x} + c C_{10}^{3} (0.1)^{3} (0.9)^{7},$$

Jeb no tabulas:
$$0.05 = 0.01 + c(0.07 - 0.01). \qquad c = \frac{2}{3}.$$

Kritērijs ar līmeni
$$\alpha_0 = 0.05$$
 ir
$$\varphi^*(x) = \begin{cases} 1, & x \in \{4, 5, 6, 7, 8, 9, 10\} \\ \frac{2}{3}, & x = 3 \\ 0, & x \in \{0, 1, 2\} \end{cases}$$

Baijesa kritērijs.

Tas pats uzdevums. Uzskatīsim, ka 0-hipotēzes apriorā pareizības varbūtība p=0.2 un zaudējumi, ko ciešam I veida kļūdas gadījumā, l=0.5.

Atbalsta taisnes vienādojums:

$$\beta = 1 + \alpha \frac{pl}{(1-p)(1-l)} - \frac{r}{(1-p)(1-l)}$$

$$\beta = 1 + \frac{1}{4}\alpha - \frac{r}{(1-p)(1-l)}$$

$$\alpha_p = 0.26, \ \beta_p = 0.95$$
Tabulā $c = 0$ $[q] = 1$,

kritērijs

$$\varphi^*(x) = \begin{cases} 1, & x \in \{2, 3, 4, 5, 6, 7, 8, 9, 10\} \\ 0, & x \in \{0, 1\} \end{cases}$$

Minimaksa kritērijs.

Tas pats uzdevums. Uzskatīsim, ka zaudējumi, ko ciešam I veida kļūdas gadījumā, l = 0.5.

$$\frac{1-l}{l} = \frac{1-0.5}{0.5} = 1$$

Jāatrod krustpunkta koordinātas:

Pieļaujamo kritēriju kopas nogriežņa koordinātas:

α	0.07	0.26
β	0.83	0.95

Taisnes vienādojums:

$$\frac{\beta - 0.83}{0.95 - 0.83} = \frac{\alpha - 0.07}{0.26 - 0.07} \qquad \beta = 0.63\alpha + 0.79$$

$$\beta = 0.63\alpha + 0.79$$

Atbalsta taisnes vienādojums $\beta = 1 - \alpha$

$$\beta = 1 - \alpha$$

Krustpunkts:
$$\alpha^* = 0.13$$
 $\beta^* = 0.87$

 c_{12} aprēķins: 0.13 = 0.07 + c(0.26 - 0.07), c = 0.32,

kritērijs:
$$\varphi^*(x) = \begin{cases} 1, & x \in \{3, 4, 5, 6, 7, 8, 9, 10\} \\ 0.32, & x = 2 \\ 0, & x \in \{0, 1\} \end{cases}$$

Ārpus šī kursa programmas palikušie būtiskie statistikas jautājumi.

- Pakāpeniskās analīzes uzdevumi.
- Saliktu hipotēžu pārbaudes uzdevums, vienpusējas un divpusējas hipotēzes.
- Pietiekamās statistikas.
- Informācijas daudzuma, ko satur izlase, analīze. Novērtējumu kvalitātes analīze.
- Ticamības intervālu vispārīgie konstrukcijas principi un to eksistence (patvaļīgiem sadalījumiem)
- Saskaņas kritēriji.
- Regresiju un korelāciju analīzes jautājumi.
- Dispersiju analīze.
- Laikrindu analīze.
- Kategoriju datu apstrāde.
- Daudzdimensiju statistiskā analīze.
- Diskriminācija un klasifikācija.
- Eksperimentu plānošana.