

Functions

Exercise

By: AMMI Tutors

27/01/2021

1 Exercise:

Bisection Method

Let f be a continuous function and monotone function on the closed interval [a,b] such that f(a)f(b)<0. We are trying to find a solution r pf the equation f(x)=0 in the interval [a,b]. Here is how we do it:

We compute $f\left(\frac{a+b}{2}\right)$. Then, exactly, one of the following is true:

- If $f\left(\frac{a+b}{2}\right)=0$ then we are done. We found a solution $r=\frac{a+b}{2}$.
- Otherwise, if $f(a)f\left(\frac{a+b}{2}\right)<0$, then we repeat this process and search again for a solution, in the interval $\left[a,\frac{a+b}{2}\right]$
- Otherwise, $f\left(\frac{a+b}{2}\right)f(b)<0$, we repeat this process and search again for a solution, in the interval $\left[\frac{a+b}{2},b\right]^2$.

We then keep repeating these iterations until either we found a solution, or the length of the interval is less than some predefined bound.

- 1. Implement the above bisection method in the function Bisection1 (lower, upper, error).
- 2. Check your function by looking for the roots of the function x^2-1 in the interval $(-\infty,0]$ and $[0,\infty]$.
- 3. Use your previous function to look for the roots of the following function: $e^x 5x^2$. Hint: Kindly study and plot the function e^x and $5x^2$ on the same graph in order to find the interval [a,b] where the roots exists.

2 Exercise

Consider a sphere of radium x.

- 1. What is the volume of the sphere.
- 2. Compute the derivative of the volume $w.r.t\ x$.
- 3. Write that expression as function of the area of the sphere.
- 4. write a function named myArea that compute the volume of the sphere and deduce its area.