Schreibe alle Beispiele in das Schulübungsheft und vervollständige die Beispiele durch Berechnungen oder Zeichnungen.

Kursiv Geschriebenes sind nur Bemerkungen, die du nicht abschreiben musst. Zu jeder Stunde wird eine Schulübung <u>auf Moodle</u> sein – mit Hausübung. Fragen können per e-Mail gestellt werden!! (Oder am Ende der Hausübung.) Während der "Stunde" auch auf Skype.

84. Schulübung

21.05.2020

Formeln - Funktionen

Nachtrag zur letzten Schulübung. Ich wollte, dass ihr zuerst selber das Koordinatensystem zeichnet.

UND: Ausdrucken und ausschneiden und einkleben. Beim Kopieren des Textes ist mir ein abscheulicher Fehler passiert!!!!

Lies bei den folgenden Aufgaben aus dem Graph ab und berechne die Aufgaben auch.

1) Stelle die Fliehkraft in Abhängigkeit vom Radius der Kurve dar und zeichne den Graph für

$$F(r) = m \cdot \frac{v^2}{r}$$
 (m = 70 kg, v = 100 km/h \rightarrow ??? m/s). x-Achse: 20 m = 1 cm,

500 N = 1 cm (bis 4000 N). Wertetabelle (z.B. r = 10; 20; 40; 60; 80; 100; 120)

- a) Bei welchem Kurvenradius r (ungefähr) wirkt 1 g (einfache Erdbeschleunigung; F = 700 N!!, $F = m \cdot g = 70 \cdot 10 = 700$; 3g = 2100 N)?
- b) Bei welchem Kurvenradius r wirken 2 g, 3 g, 4 g?

a) v = 100 km/h = 27,8 m/s
$$\rightarrow$$
 700 = 70 $\cdot \frac{27,8^2}{r} \rightarrow$ r = 77,1 m Kurvenradius

Überprüfe im Diagramm, ob bei verschiedenen Massen andere Werte als Ergebnis herauskommen. Verschiedene Massen haben unterschiedliche Kurven!

$$F(r) = m \cdot \frac{v^2}{r}$$
 Auch wenn v gleich ist, ist die Kurve für unterschiedliche m anders!!

Überprüfe a) und b) durch einzeichnen, ob bei unterschiedlichen Massen für die Fliehkräfte andere Werte herauskommen.

Die rote Kurve ist für eine Masse von 50 kg, die dunklere für eine Masse von 70 kg.

- 2) Stelle die Fliehkraft in Abhängigkeit von der Geschwindigkeit dar und zeichne den Graph für $F(v)=m\cdot\frac{v^2}{r}$ (m = 70 kg, r = 30 m; die äußere Spur der Straße Chotkova von der Haltestelle Malostranská zur Burg hinauf). x-Achse: 10 m/s = 2 cm, 500 N = 1 cm (bis 4000 N). Wertetabelle (z.B. v = 10; 20; 30; 40)
 - a) Bei welcher Geschwindigkeit v (ungefähr) wirkt 1 g (einfache Erdbeschleunigung; F = 700 N!!)?
 - b) Bei welcher Geschwindigkeit v wirken 2 g, 3 g, 4 g? (v wird in m/s abgelesen; v in km/h angeben → umrechnen!)

Auf einen Formel 1 - Rennfahrer wirken in Kurven schon einmal 4 g. Wie schnell würde er durch diese Kurve fahren?

Buch auch im Internet mit der Adresse: https://www.scook.at/produkt/c70d3910-fb8d-4fda-909f-b0cdc7b5fc2a