Analysis

With an emphasis on probability theory

Sudip Sinha

October 07, 2019

1

Contents

Part 1 Anticipating integrals	1
1.1 Elementary ideas	2
Part 2 Large deviations theory	3
2.1 Friedlin-Wentzell theorem	4
2.2 Friedlin-Wentzell theorem for anticipating initial condition with extension of filtration	5
Bibliography	6

i

Part 1

Anticipating integrals

1.1 Elementary ideas

ABCD

Part 2

Large deviations theory

2.1 Friedlin-Wentzell Theorem

7

2.2 Friedlin-Wentzell Theorem for anticipating initial condition with extension of filtration

Our aim is to formulate a large deviations principle for an SDE with anticipating initial conditions. We start of with a very simple case

$$X_t^\varepsilon = B_T + \sqrt{\varepsilon} \int_0^t \sigma(X_t^\varepsilon) \, \mathrm{d}B_t,$$

where $t \in [0,T]$ for some $T < \infty$, and conditions on σ shall be imposed as necessary. We shall look at the method of enlargement of filtration by [<Itô1978>]. We denote the enlarged filtration by $\tilde{\mathscr{F}}_t = \mathscr{F}_t \vee \sigma(B_T)$. Then

$$B_t = \tilde{B}_t + \int_0^t \frac{B_T - B_s}{T - s} \, \mathrm{d}s,$$

where \tilde{B}_{\cdot} is a Brownian motion w.r.t. $\tilde{\mathscr{F}}_{\cdot}$. Using this, we write our original SDE as

$$X_t^\varepsilon = B_T + \sqrt{\varepsilon} \int\limits_0^t \sigma(X_t^\varepsilon) \; \mathrm{d}\tilde{B}_t + \sqrt{\varepsilon} \int\limits_0^t \sigma(X_t^\varepsilon) \frac{B_T - B_s}{T - s} \, \mathrm{d}s.$$

Now, let $Y_t^{\varepsilon} = \sqrt{\varepsilon} (B_T - B_t)$. Then X_t^{ε} is given by

$$X_t^\varepsilon = B_T + \sqrt{\varepsilon} \int\limits_0^t \sigma(X_t^\varepsilon) \; \mathrm{d} \tilde{B}_t + \int\limits_0^t \sigma(X_t^\varepsilon) \frac{Y_s^\varepsilon}{T-s} \, \mathrm{d} s.$$

Moreover,

$$\begin{split} Y_t^\varepsilon &= \sqrt{\varepsilon} B_T - \sqrt{\varepsilon} B_t \\ &= \sqrt{\varepsilon} B_T - \sqrt{\varepsilon} \left(\tilde{B}_t + \int_0^t \frac{B_T - B_s}{T - s} \, \mathrm{d}s \right) \\ &= \sqrt{\varepsilon} B_T - \sqrt{\varepsilon} \tilde{B}_t - \int_0^t \frac{Y_s^\varepsilon}{T - s} \, \mathrm{d}s \end{split}$$

BIBLIOGRAPHY