CL=CSCI 160

CLASS 4

HW from class 3: Why does this algorithm work?

Justification

n

$$N_{(r-1)c} = r^n - r^{-m} - N$$

1)
$$M + N_{(r-1)c} = M + r^n - r^{-m} - N$$

2) Whether we follow a) or b) depends on the presence of an e. a. c.

What is the magnitude of the e.a.c.? It's an 'overflow' for our representation above:

m

e.a.c.: 10 o = rn On <u>branch a</u>) there is an e. a. c., which means we have:

$$\langle -- \rangle M - N > 0$$
 or $M > N$

It also means, that the case when

M - N = 0 takes branch b), which means that 0 will be expressed as -0 by this Algorithm. We continue by justifying the computations in the branch a) and then branch b).

$$N_{(r-1)c} = r^n - r^{-m} - N$$

1)
$$M + N_{(r-1)c}$$

2)

branch a) - continued

Branch a) says: "add the e.a.c. to the l.s.d.". This means (s. ex) we have to subtract the value of the e.a.c., which is r^n and add a 1 to the l.s.d., which has the value r^{-m} to the value from 1):

Here it is: $M + r^n - r^{-m} - N - r^n + r^{-m} = M - N > 0$, which is what we wanted.

branch b) is taken when there is no e.a.c.. From the Hint (class 3) we know that this is the case when $M-N \le 0$

Branch b) says: compute the (r-1)'s complement from the result at 1) and give it a negative sign: $-(M+N_{(r-1)c})_{(r-1)c}=-(M+r^n-r^{-m}-N)_{(r-1)c}=-(r^n-r^{-m}-(M+r^n-r^{-m}-N))=$

$$= - (r^n - r^{-m} - M - r^n + r^{-m} + N) = - (-M + N) = - |M - N| \le 0 \text{ for } -M + N \ge 0.$$

This is what we wanted. Note: 0 will be expressed as -0 by this Alg., as mentioned before.

Example in decimal

Remember:

$$N_{(r-1)c} = r^n - r^{-m} - N$$

Alg (M-N):

1)
$$M + N_{(r-1)c}$$

- 2)
- a) e.a.c. -> add it to l.s.d.
- b) no e.a.c. \rightarrow compute -(r-1)'s compl. of 1)

i)
$$r = 10, n = 4, m = 2$$

ii) Swap M <-> N, to get to case 2-b)

$$r - 1 = 9$$

M: 32.1

N: .64

1) M: 0032.10 +

N_{9C}: 9999.35

e.a.c.= 1 0031.45 +

->case2-a) 1 0031.46

M: .64

N: 32.1

1) M: 0000.64 +

N_{9C}: 9967.89

9968.53 no e.a.c. ->case2-b)

-> -9's compl.:

-0031.46

NOTE: Use this table describing various binary codes, for the last 3 exercises on the next page.

TableFour Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

1.14	Obtain the 1's and 2's complements of the following binary numbers:						
	(a) 10000000	(b)	00000000				
	(c) 11011010	(d)	01110110				
	(e) 10000101	(f)	111111111.				
1.15	Find the 9's and the 10's complement of the following decimal numbers:						
	(a) 52,784,630	(b)	63,325,600				
	(c) 25,000,000	(d)	00,000,000.				
1.24	.24 Formulate a weighted binary code for the decimal digits, using weights						
	(a) *6, 3, 1, 1						
	(b) 6, 4, 2, 1						
1.25	Represent the decimal number 5 6311 code.	5,137 in (a) BCD,	(b) excess-3 code, (c) 2	2421 code, and (d) a			
1.33*	The state of a 12-bit register is 1	00010010111. Wha	at is its content if it repr	resents			
	(a) three decimal digits in BCD	?					
	(b) three decimal digits in the ex	cess-3 code?					
	(c) three decimal digits in the 84	4-2-1 code?					
	(d) a binary number?						

r's Complement-Representation

 $N_{(r-1)c} = r^n - r^{-m} - N$

n, m = number of locations

Definition

r = 2

How did you compute N_{2c} = 2's complement of N? By swapping 0 <-> 1, and adding 1 to l.s.d., which is equivalent to computing the 1's complement and adding a 1 to l.s.d., which equals 2-m

Remember:

$$N_{2c} = N_{1c} + 2^{-m} = 2^n - 2^{-m} - N + 2^{-m} = 2^n - N$$

Base r:

$$N_{rc} = r^n - N$$

In our base r representation, where we allocate n digits to the integer part and m digits to the fraction part, we define the r's complement of a number N as follows:

$$N_{rc} = r^n - N$$

Show that in the above representation, given two non-negative numbers M and N as inputs, the algorithm below computes the value of M-N, in the same representation. Compute all steps of the algorithm below in the boxes, as indicated. Justify each step in its box. Compare M-N to 0 in each of the branches of step 2) below, and show the exact inequality covered by each branch in the places indicated.

ALGORITHM to compute M - N:

- 1) Compute $M + N_{rc}$
- 2) (a) If there is an e.a.c. then ignore it. Stop.
 - (b) If there is no e.a.c. then compute:

$$-(M+N_{rc})_{rc}$$

where $(M + N_{rc})$ is already computed at step 1) above. Stop.

Justification

Step 1):

Step 2) (a): For this step you got: M - N = 0

Step 2) (b): For this step you got: M-N=0

Addendum to Q1.2

Answer this **Addendum to Q1.2** before you answer the other Quiz 1.2 questions.

Suppose M = N.

After we apply the two subtraction algorithms we studied:

- 1. (r-1)'s complement representation, and
- 2. r's complement representation, which sign (+, or –) should the exact result have in each of the above two algorithms?

Encircle the appropriate sign in spaces below:

1.
$$(r-1)$$
's complement

$$M - N = + - 0$$

$$M - N = + - 0$$