Data Structures and Algorithms

(資料結構與演算法)

Lecture 2: Linked List and Analysis Tools

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Polynomial Representation by Dense Array

Space Saving by Sparse Array

Sparse Array by Singly Linked List: Easier Insertion

Sparse Array by Doubly Linked List: Easier Removal

Circular Linked List

Two Elementary Data Structures

for "any" data

- array: efficient get(ByIndex)
- linked list: flexible operations "without moving data"

Properties of Good Programs

- meet requirements, correctness: basic
- clear usage document (external), readability (internal), etc.

Resource Usage (Performance)

- efficient use of computation resources (CPU, FPU, etc.)?
 time complexity
- efficient use of storage resources (memory, disk, etc.)?
 space complexity

Space Complexity of List Summing

LIST-SUM(float array *list*, integer length *n*)

```
tempsum \leftarrow 0
for i \leftarrow 0 to n - 1 do
tempsum \leftarrow tempsum + list[i]
end for
tempsum
```

- array list: size of pointer, commonly 4
- integer n: commonly 4
- float tempsum: 4
- integer i: commonly 4
- float return place: 4

total space 20 (constant), does not depend on n

Space Complexity of Recursive List Summing

RECURSIVE-LIST-SUM(float array *list*, integer length *n*)

```
if n = 0 then return 0 else return list[n]+ RECURSIVE-LIST-SUM(list, n-1) end if
```

- array list: size of pointer, commonly 4
- integer n: commonly 4
- float return place: 4

only 12, better than previous one? (NO, why?)

Time Complexity of Matrix Addition

MATRIX-ADD

(integer matrix a, b, result integer matrix c, integer rows, cols)

```
for i \leftarrow 0 to rows - 1 do
for j \leftarrow 0 to cols - 1 do
c[i][j] \leftarrow a[i][j] + b[i][j]
end for
end for
```

- inner for: $R = P \cdot cols + Q$
- total: (S + R) · rows + T

$$P \cdot rows \cdot cols + (Q + S) \cdot rows + T$$

Rough Time Complexity of Matrix Addition

$$P \cdot rows \cdot cols + (Q + S) \cdot rows + T$$

 P, Q, R, S, T hard to keep track and not matter much

MATRIX-ADD

(integer matrix a, b, result integer matrix c, integer rows, cols)

```
for i \leftarrow 0 to rows - 1 do
for j \leftarrow 0 to cols - 1 do
c[i][j] \leftarrow a[i][j] + b[i][j]
end for
end for
```

- inner for: $R = P \cdot cols + Q = \Theta(cols)$
- total: $(S + R) \cdot rows + T = \Theta(\Theta(cols) \cdot rows)$

rough total: $\Theta(rows \cdot cols)$

Asymptotic Notations: One Way for Rough Total

- goal: rough total rather than exact steps when input size large
- why rough total? constant not matter much

compare two complexity functions f(n) and g(n) when n large

growth of functions matters $-n^3$ would eventually be bigger than 1000n

- n² grows much faster than n
- n grows much slower than n^2 , which grows much slower than 2^n
- 3n grows "slightly faster" than n
 - —when constant not matter, 3n grows similarly to n

Asymptotic Notations: Symbols

- f(n) grows slower than or similar to g(n): f(n) = O(g(n))
- f(n) grows faster than or similar to g(n): $f(n) = \Omega(g(n))$
- f(n) grows similar to g(n): $f(n) = \Theta(g(n))$
- n = O(n); n = O(10n); n = O(0.3n); $n = O(n^2)$; $n = O(n^5)$; · · · · (note: = more like " \in ")
- $n = \Omega(n)$; $n = \Omega(0.2n)$; $n = \Omega(5n)$; $n = \Omega(\log n)$; $n = \Omega(\sqrt{n})$; · · ·
- $n = \Theta(n)$; $n = \Theta(0.1n + 4)$; $n = \Theta(7n)$; $n \neq \Theta(5^n)$

Asymptotic Notations: Definitions

• f(n) grows slower than or similar to g(n):

$$f(n) = O(g(n))$$
, iff exist c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

• f(n) grows faster than or similar to g(n):

$$f(n) = \Omega(g(n))$$
, iff exist c, n_0 such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$

• f(n) grows similar to g(n):

$$f(n) = \Theta(g(n))$$
, iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Analysis of Sequential Search

```
Sequential Search

for i ← 0 to n − 1 do

if list[i] == searchnum

then

return i

end if

end for

return −1
```

- best case (e.g. searchnum at 0): time $\Theta(1)$
- worst case (e.g. *searchnum* at last or not found): time $\Theta(n)$
- in general: time $\Omega(1)$ and O(n)

Analysis of Binary Search

Binary Search

```
left \leftarrow 0, right \leftarrow n - 1
while left < right do
   middle \leftarrow floor((left + right)/2)
   if list[middle] > searchnum
  then
     left \leftarrow middle + 1
  else if
   list[middle] < searchnum then
     right \leftarrow middle - 1
  else
     return middle
  end if
end while
return -1
```

- best case (e.g. searchnum at middle): time ⊖(1)
- worst case (e.g. searchnum not found):
 because (right left) is halved in each WHILE iteration, needs time Θ(log n) iterations if not found
- in general: time $\Omega(1)$ and $O(\log n)$

often care about the worst case (and thus see $O(\cdot)$ often)

Sequential and Binary Search

- Input: any integer array list with size n, an integer searchnum
- Output: if searchnum is not within list, -1; otherwise, othernum

(list, n, searchnum) for i ← 0 to n − 1 do if list[i] == searchnum then return i end if end for return −1

DIRECT-SEQ-SEARCH

SORT-AND-BIN-SEARCH (*list*, *n*, *searchnum*)

SEL-SORT(*list*, *n*) **return** BIN-SEARCH(*list*, *n*, *searchnum*)

- DIRECT-SEQ-SEARCH is O(n) time
- SORT-AND-BIN-SEARCH is $O(n^2)$ time for SEL-SORT (Why?) and $O(\log n)$ time for BIN-SEARCH

want: show asymptotic complexity of SORT-AND-BIN-SEARCH as its bottleneck

Some Properties of Big-Oh I

Theorem (封閉律)

if
$$f_1(n) = O(g_2(n))$$
, $f_2(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

- When $n \ge n_1$, $f_1(n) \le c_1 g_2(n)$
- When $n \ge n_2$, $f_2(n) \le c_2 g_2(n)$
- So, when $n \ge \max(n_1, n_2)$, $f_1(n) + f_2(n) \le (c_1 + c_2)g_2(n)$

Theorem (遞移律)

if
$$f_1(n) = O(g_1(n))$$
, $g_1(n) = O(g_2(n))$ then $f_1(n) = O(g_2(n))$

- When $n \ge n_1$, $f_1(n) \le c_1 g_1(n)$
- When $n \ge n_2$, $g_1(n) \le c_2 g_2(n)$
- So, when $n \ge \max(n_1, n_2)$, $f_1(n) \le c_1 c_2 g_2(n)$

Some Properties of Big-Oh II

Theorem (併吞律)

if
$$f_1(n) = O(g_1(n))$$
, $f_2(n) = O(g_2(n))$ and $g_1(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

Proof: use two theorems above.

Theorem

If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^m)$

Proof: use the theorem above.

similar proof for Ω and Θ

Some More on Big-Oh

RECURSIVE-BIN-SEARCH is $O(\log n)$ time and $O(\log n)$ space

- by 遞移律, time also O(n)
- time also $O(n \log n)$
- time also O(n²)
- also *O*(2ⁿ)
- . .

prefer the tightest Big-Oh!

Practical Complexity

some input sizes are time-wise infeasible for some algorithms

wnen 1-billion-steps-per-second							
n	n	n log ₂ n	n²	n ³	n ⁴	n ¹⁰	2 ⁿ
10	$0.01 \mu s$	$0.03 \mu s$	0.1 <i>μs</i>	1 μ s	10 <i>μs</i>	10 <i>s</i>	1 μ s
20	$0.02\mus$	$0.09 \mu s$	$0.4\mus$	8μ s	160 μ s	2.84 <i>h</i>	1 <i>ms</i>
30	$0.03 \mu s$	$0.15\mu s$	$0.9\mus$	27 μ s	810 μ ន	6.83 <i>d</i>	1 <i>s</i>
40	$0.04 \mu s$	$0.21\mu s$	1.6 μ s	64 μ s	2.56 <i>ms</i>	121 <i>d</i>	18 <i>m</i>
50	0.05μ s	$0.28 \mu s$	$2.5 \mu s$	125 <i>μs</i>	6.25 <i>ms</i>	3.1 <i>y</i>	13 <i>d</i>
100	0.10 <i>μs</i>	$0.66 \mu s$	10 μ s	1 <i>ms</i>	100 <i>ms</i>	3171 <i>y</i>	4 · 10 ¹³ <i>y</i>

1*s*

11.57*d*

32*v*

note: similar for space complexity,

1.66*ms*

19.92*ms*

e.g. store an N by N double matrix when N = 50000?

130*μs* 100*ms* 1000*s*

16.67*m*

10*s*

9.96 μ s 1*ms*

1 μ s

10 μ s

100μs

1*ms*

 10^{3}

 10^{4}

10⁵

 10^{6}

 $16.67m \quad 3 \cdot 10^{13} y \quad 3 \cdot 10^{284}$

115.7d 3 · 10²³v

 $3171y \quad 3 \cdot 10^{33}y$

 $3 \cdot 10^7 v$ $3 \cdot 10^{43} v$