Ma/CS 6a

Class 16: Permutations

By Adam Sheffer

The 15 Puzzle

 Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right.

The 15 Puzzle (cont.)

- The game became a craze in the U.S. in 1880.
- Sam Loyd, a famous chess player and puzzle composer, offered a \$1,000 prize for anyone who could provide a solution.

Reminder: Permutations

- **Problem.** Given a set $\{1,2,...,n\}$, in how many ways can we order it?
- The case n = 3. Six distinct orders / permutations: 123, 132, 213, 231, 312, 321.
- The general case.

The 15 Puzzle and Permutations

- How a configuration of the puzzle can be described as a permutation?
 - Denote the missing tile as 16.
 - The board below corresponds to the permutation

1 16 3 4 6 2 11 10 5 8 7 9 14 12 15 13

Permutations as Functions

 We can consider a permutation as a bijection from the set {1,2, ..., n} to itself.

- Denote the bijection as α .
 - $\alpha(1) = 5.$
 - $\alpha(3) = 3.$

The Permutation Set S_n

- S_n The set of permutations of $N_n = \{1,2,3,...,n\}$.
- We have $|S_n| = n!$
- The set S_3 :

1	2	3	1	2	3	1	2	3
\downarrow								
1	2	3	1	3	2	2	1	3
1	2	3	1	2	3	1	2	3
\downarrow								
2	3	1	3	1	2	3	2	1

Combining Two Permutations

•
$$\alpha(1) = 2$$
, $\alpha(2) = 4$, $\alpha(3) = 5$, $\alpha(4) = 1$, $\alpha(5) = 3$.

•
$$\beta(1) = 3$$
, $\beta(2) = 5$, $\beta(3) = 1$, $\beta(4) = 4$, $\beta(5) = 2$.

• What is the function $\beta \alpha$. First apply α and then β

Closure of S_n

- Claim. If α and β are in S_n , so does $\alpha\beta$.
- By definition, $\alpha\beta$ is a function from \mathbb{N}_n to itself.
- It remains to show that for every $i \in \mathbb{N}_n$ there is a unique $j \in \mathbb{N}_n$ such that $i = \alpha \beta(j)$.
 - Since $\alpha \in S_n$, there is a unique k such that $i = \alpha(k)$.
 - Since $\beta \in S_n$, there is a unique j such that $k = \beta(j)$.

Symmetry

- Is it true that for every $\alpha, \beta \in S_n$, we have $\alpha\beta = \beta\alpha$?
- No!

Associativity

• Is it true that for every $\alpha, \beta, \gamma \in S_n$, we have

$$(\alpha\beta)\gamma = \alpha(\beta\gamma)?$$

 Yes. In both cases the product looks like:

The Identity Element of S_n

• Identity. The *identity permutation* is defined as $\mathrm{id}(r) = r$ for every $r \in \mathbb{N}_n$. For any $\alpha \in S_n$, we have $\mathrm{id} \cdot \alpha = \alpha \cdot \mathrm{id} = \alpha$.

Inverse

• Is it true that for every $\alpha \in S_n$, there exists an *inverse permutation* $\alpha^{-1} \in S_n$ satisfying

$$\alpha \alpha^{-1} = \alpha^{-1} \alpha = id.$$

Yes:

Cycle Notation

 We can consider a permutation as a set of cycles.

• We write this permutation as (15)(264)(3).

Converting to Cycle Notation

- $\alpha(1) = 2$, $\alpha(2) = 4$, $\alpha(3) = 5$, $\alpha(4) = 1$, $\alpha(5) = 3$.
- We start with 1 and construct its cycle: $1 \rightarrow 2 \rightarrow 4 \rightarrow 1$.
- We then choose a number that was not considered yet: 3 → 5 → 3.
- We've dealt with every number of \mathbb{N}_5 , so the cycle notation is $(1\ 2\ 4)(3\ 5)$.

Counting Cycles

- **Problem.** How many distinct cycles of length k exist in S_n ?
- Solution.
 - There are $\binom{n}{k}$ ways of choosing k elements for the cycle.
 - There are k! ways to order this elements.
 - Each cycle has **k** different representations.

$$\binom{n}{k}k!\frac{1}{k} = \frac{n!}{k \cdot (n-k)!}.$$

Card Shuffling

 Problem. Cards numbered 1 to 12 are picked up in row order and re-dealt in column order:

1	2	3	1	5	9
4	5	6	2	6	10
7	8	9	3	7	10 11
10	11	12	4	8	12

How many times do we need to repeat this procedure until the cards return to their original positions?

Finding a Permutation

1	2	3	1	5	9
4	5	6	2	6	10
7	8	9	3	7	10 11
10	11	12	4	8	12

- A reshuffling corresponds to a permutation.
- For example, after each reshuffling 6 will move to the previous position of 5.

Solution

1	2	3	1	5	9
4	5	6	2	6	10
7	5 8	9	3	7	11
10	11	12	4	8	12

- The cycle structure of the permutation: $\alpha = (1)(2\ 5\ 6\ 10\ 4)(3\ 9\ 11\ 8\ 7)(12)$.
- Every cycle has length 1 or 5, so after five steps we return to the original position.

Classification of Permutations

- The *type of a permutation* of S_n is the number of cycles of each length in its cycle structure.
- Both (1 2 4)(3 5) and (1 2 3)(4 5) are of the same type: one cycle of length 3 and one of length 2.
 - We denote this type as [2 3]
- In general, we write a type as $[1^{\alpha_1}2^{\alpha_2}3^{\alpha_3}4^{\alpha_4}...].$

Counting Permutations of a Given Type

- **Problem.** How many permutations of S_{14} are of the type $[2^23^24]$?
- We need to insert the numbers 1,2, ..., 14 into the cycle pattern

$$(\cdot \cdot)(\cdot \cdot)(\cdot \cdot \cdot)(\cdot \cdot \cdot)(\cdot \cdot \cdot).$$

- We can place every permutation of \mathbb{N}_{14} into this pattern.
 - · (12 1)(3 5)(2 6 4)(13 14 3)(7 8 9 10)
 - Is the solution 14!?

Fixing the Solution

- The following permutations are identical:
 - · (121)(35)(264)(13143)(78910)
 - · (35)(121)(264)(13143)(78910)
 - So is the answer $\frac{14!}{2!2!}$?
- Another identical permutation:
 - (1 12)(3 5)(2 6 4)(13 14 3)(7 8 9 10)
 - \circ So is the answer $\frac{14!}{2!2!2\cdot2\cdot3\cdot3\cdot4}$?
 - Yes!

Counting Instances of a Type

• In general, the number of permutations of S_n of type $[1^{\alpha_1}2^{\alpha_2}3^{\alpha_3}4^{\alpha_4}\dots]$ is

$$\frac{n!}{\alpha_1! \alpha_2! \alpha_3! \alpha_4! \cdots 1^{\alpha_1} 2^{\alpha_2} 3^{\alpha_3} 4^{\alpha_4} \cdots}$$

Types of S_5

Туре	Example	Number	
[1 ⁵]	id	1	
$[1^32]$	$(1\ 2)(3)(4)(5)$	10	
$[1^23]$	(123)(4)(5)	20	
$[12^2]$	(12)(34)(5)	15	
[14]	(1234)(5)	30	
[23]	(123)(45)	20	
[5]	(1 2 3 4 5)	24	

Conjugate Permutations

- Permutations $\alpha, \beta \in S_n$ are said to be **conjugate** if there exists $\sigma \in S_n$ such that $\sigma \alpha \sigma^{-1} = \beta$.
- Let $\alpha=(1\ 2)(3)$ and $\beta=(1)(3\ 2)$. The two permutations are conjugate, since we can take $\sigma=(1\ 2\ 3)$ and $\sigma^{-1}=(3\ 2\ 1)$.

$$\begin{array}{ccccc}
 & 1 & 2 & 3 \\
 & 1 & 2 & 3 \\
 & 3 & 1 & 2 \\
 & \alpha & \downarrow & \downarrow & \downarrow \\
 & 3 & 2 & 1 \\
 & \sigma & \downarrow & \downarrow & \downarrow \\
 & 1 & 3 & 2
\end{array}$$

Conjugation and Types

• **Theorem.** Two permutations of S_n are conjugate iff they are of the same type.

$$\alpha = (1\ 2)(3), \ \beta = (1)(3\ 2), \ \sigma = (1\ 2\ 3).$$

$$\sigma \alpha \sigma^{-1} = \beta$$

Proof: One Direction

- Suppose that α , β are conjugate, so that $\sigma \alpha \sigma^{-1} = \beta$.
- Consider a cycle

$$\alpha(x_1) = x_2, \alpha(x_2) = x_3, ..., \alpha(x_k) = x_1.$$

• Set $y_i = \sigma(x_i)$. Then $\beta(y_i) = \sigma \alpha \sigma^{-1} \big(\sigma(x_i) \big) = \sigma(x_{i+1}) = y_{i+1}.$

Proof: One Direction (cont.)

- σ is a bijection between cycles of α and cycles of β .
- That is, α and β are of the same type.

Proof: The Other Direction

- Suppose α and β have the same type.
 - \circ To prove conjugation, we need to find σ .
 - $^{\circ}$ Set up a bijection between the cycles of α and β , so that corresponding cycles have the same length.
 - For every two such cycles $(x_1 \ x_2 \ ... \ x_k)$ and $(y_1 \ y_2 \ ... \ y_k)$, we set $\sigma(x_i) = y_i$. Then

$$\sigma\alpha\sigma^{-1}(y_i) = \sigma\alpha(x_i) = \sigma(x_{i+1}) = y_{i+1} = \beta(y_i)$$

 \circ That is, $\sigma \alpha \sigma^{-1} = \beta$.

The End

So how can we solve this?
In the next class, but you can try at home!

