RACHUNEK ZDAŃ, TAUTOLOGIE

Składnia rachunku zdań: zmienne zdaniowe, funktory, znaki pomocnicze (nawiasy)

FUNKTORY (spójniki)

Alternatywa

Negacja " nieprawda, że p"			
	р	~p	
	0	1	
	1	0	

Koniunkcja "p i q"			
p	q	pΛq	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

"p lub q"				
р	q	p V q		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

"jeżeli p to q"				
р	q	$p \Rightarrow q$		
0	0	1		
0	1	1		
1	0	0		
1	1	1		

Implikacja

"p wtedy i tylko wtedy, gdy q"				
р	q	p ⇔ q		
0	0	1		
0	1	0		
1	0	0		
1	1	1		

Równoważność

Przykład: p – Ala ma kota. q – Ala ma psa. r – Ala ma 2 zwierzęta.

Jeśli Ala ma kota i psa, to ma 2 zwierzęta. $(p \land q) \Rightarrow r$

Tautologia – wyrażenie, które jest prawdziwe bez względu na wartościowanie zmiennych zdaniowych

Przykłady: (p V ~p), (~p \land ~q) \Rightarrow (~p V ~q)

Jak sprawdzić czy zdanie logiczne jest tautologią? Sprawdzamy, czy podane zdanie jest zawsze prawdziwe, np. za pomocą tabelki. Przykład: \sim (\sim $p \land \sim$ q)

p	q	p V q	~(p V q)	~p	~q	~p	\sim (p \vee q) \Leftrightarrow (\sim p \wedge \sim q)
0	0	0	1	1	1	1	1
0	1	1	0	1	0	0	1
1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	1

Najbardziej przydatne tautologie:

Rozdzielność koniunkcji względem alternatywy: $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ Rozdzielność alternatywy względem koniunkcji: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

Pierwsze prawo De Morgana: $\sim (p \lor q) \Leftrightarrow (\sim p \land \sim q)$ Drugie prawo De Morgana: $\sim (p \land q) \Leftrightarrow (\sim p \lor \sim q)$ Eliminacja implikacji: $(p \Rightarrow q) \Leftrightarrow (\sim p \lor q)$ Zaprzeczenie implikacji: $\sim (p \Rightarrow q) \Leftrightarrow p \land \sim q$ Prawo kontrapozycji: $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$

Prawo przechodniości: $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$

Te prawa (np. zaprzeczenie implikacji) można zastosować np. przeprowadzając dowód nie wprost – dowodzimy zaprzeczenie naszej tezy; jeśli dojdziemy do sprzeczności – teza jest prawdziwa

Oceń wartość logiczną wyrażenia, gdy p=0, q=1:

$$\sim \!\! (\ p \Rightarrow q) \Rightarrow (p \land (q \lor p)) \\ \sim \!\! (\ 0 \Rightarrow 1) \Rightarrow (0 \land (1 \lor 0) \Longrightarrow \sim \!\! (1) \Rightarrow (0) \Longrightarrow 0 \Rightarrow 0 - prawda$$

Przedstaw implikację za pomocą koniunkcji i negacji:

 $(p \Rightarrow q) \Leftrightarrow (\sim p \lor q) \Leftrightarrow \sim (p \land \sim q)$ (eliminacja implikacji + pierwsze prawo De Morgana)