Assignment 9 120100093

FTCS dt=1 and dx=dy=dz=.1

ADI
dt=1 and dx=dy=dz=0.1

0

0.2

0.4

0.6

Z

0.8

400

ADI Crank Nicholson

dt=1 and dx=dy=dz=0.1

dt=0.1 and dx=dy=dz=0.

Conclusions

- 1) All the solution gave similar solutions as seen from the graph
- 2) FTCS is stable for ($\alpha \Delta t/\Delta x^2 > 0.5$)
- 3) ADI and ADI with crank Nicholson methods gave better solution as compared to FTCS method
- 4) FTCS is fastest among the three methods followed by ADI and ADI crank Nicholson.
- 5) The time taken was proportional to the square of space step. Hence for ds=0.01 took enormous amount of time.
- 6) For smaller values of dt and dx=dy=dz the time taken by ADI and ADI crank Nicholson method was very large due to which the code couldn't be run upto required accuracy.