BC0207 Energia: Origem, conversão e uso

Profa. Denise Criado

E-mail: <u>denise.criado@ufabc.edu.br</u>

Sala: 614–3, Torre 3 Bloco A

Aula 3

Cap. 4 - Calor e Trabalho: A, B, C, D, E, F.

Cap. 5 - Conservação de Energia Residencial e Controle de

Transferência de Calor: A, B, C, D, F, H

Cap. 6 - Energia solar: Características e Aquecimento: A, B,

C, D, E, F, G

Calor e Trabalho

Nos Estados Unidos aproximadamente ¼ da energia utilizada é empregada no aquecimento e refrigeração de edifícios. Nas residências, uma média de 50% é usada no aquecimento. Podemos melhorar esta situação?

1 Quad = 10^{15} Btu

United States Energy Information Administration, USEIA, 2001

Consumo domestico de energia nos EUA por uso final.

Podemos agrupar diferentes formas de energia e termos uma "energia total".

$$E = EC + EP + ET + energia _química + energia _elétrica$$

Calor e trabalho são as únicas maneiras pelas quais se pode adicionar ou retirar energia de um sistema, se nenhuma massa for adicionada.

$$W + Q = \Delta(EC + EP + ET) = \Delta E$$

Lei da conservação da energia: e energia colocada em um sistema é igual a energia de saída mais a energia armazenada.

$$W + Q = \Delta(EC + EP + ET) = \Delta E$$

Unidades de energia

1 Btu = 1.055 J = 778 ft-lb = 252 cal

1 ft-lb = 1.356 J = 0.33 cal

1 caloria = 4,184 J

1 caloria alimento = 1.000 cal = 1 kcal 1 hp-hr = 2,68 × 10⁶ J = 0,746 kWh

 $1 \text{kWh} = 3.61 \times 10^6 \text{ J} = 3.413 \text{ Btu} = 2.65 \times 10^6 \text{ ft-lb}$

1 Quad = 1015 Btu

1 GJ = 109 J = 948,000 Btu

Experimento de James Joule

FIGURA 4.2

Relação entre calor e trabalho. Uma variação de temperatura na água pode ser causada tanto deixando-se o peso cair (fazendo com que as pás girem) ou pela adição de calor por meio de uma chama.

Calor não está contido em um corpo, é uma manifestação da interação desse corpo com a vizinhança.

Afirmação da Primeira Lei da Termodinâmica: afirmação da lei de conservação de energia: a energia colocada em um sistema é igual a energia de saída mais a energia armazenada.

O trabalho realizado *sobre* um sistema somado ao calor *adicionado* a ele é igual à variação na energia total do sistema.

$$W_{sobre} + Q_{sobre} = \Delta(EC + EP + ET) = \Delta E$$

$$\Delta E_{\text{int}\,erna} = Q + W$$

Temperatura é uma propriedade de um corpo, assim como a sua cor ou sua forma e não informa a quantidade de calor nela contida.

Quando adicionamos calor a um corpo pode ocorrer variação da temperatura. A relação entre a quantidade de calor e a variação da temperatura é dada por:

$$Q = mc\Delta T$$
 ou $\Delta T = \frac{Q}{mc}$ Onde: m=massa c = calor específico

Calor específico: quantidade de calor adicionada (ou removida) por unidade de massa por grau de aumento (ou diminuição) de temperatura. (J/kg.°C ou Btu/lb.°F)

Material	Calor Específico (J/kg-ºC)	Calor Específico (Btu/lb-ºF)			
Água	4.186	1,00			
Aluminio	900	0,22			
Ferro	448	0,12			
Cobre	387	0,093			
Concreto	960	0,23			
Vidro	840	0,20			
Pinho branco	2.800	0,67			
Gelo	2.090	0,50			
Ar	1.004	0,24			
Rocha	840	0,20			

No sistema métrico é o número de calorias necessário para aumentar a temperatura de um grama de um material em 1°C.

FIGURA 4.4

Energia térmica. (a) Se os dois conjuntos de tijolos forem aquecidos em uma fornalha por várias horas, eles possuirão a mesma temperatura, mas o conjunto maior irá conter nove vezes mais energia térmica do que o arranjo menor. (b) Uma amostra de água de 1 lb armazena aproximadamente cinco vezes mais energia térmica do que 1 lb de rochas, pois a água tem um calor específico maior.

$$Q = mc\Delta T$$

Ex.1: Quanto calor é necessário para aquecer 8 kg de água de 60°C a 90°C?

Quando se adiciona calor a um corpo, sua temperatura não irá necessariamente aumentar sua temperatura; pode ocorrer uma

mudança de fase.

FIGURA 4.5 Mudanças de fase para a água.

Calor (latente) de vaporização: quantidade de calor adicionada a um líquido em seu ponto de ebulição, por unidade de massa, para convertê-lo totalmente em um gás na mesma temperatura. Para água: 540 calorias por grama ou 540 Kcal por kg ou 2.260kJ por kg ou 970 Btu por lb.

Calor (latente) de fusão: quantidade de calor adicionada a um sólido, em seu ponto de fusão, por unidade de massa, para convertê-lo totalmente em um líquido na mesma temperatura.

Para água: 80 calorias por grama ou 335kJ por kg ou 140 Btu por lb.

Ex.2: Quanto de calor é necessário para ferver um litro (1 kg) de água partindo de 20°C? Quanto calor é necessário para vaporizar totalmente esta quantia de água?

Princípios de Transferência de Calor

O calor sempre irá fluir do corpo quente para o mais frio.

O calor pode ser transferido por: condução, convecção e radiação.

Condução

O calor é transferido mediante colisões das moléculas do corpo quente para o frio.

FIGURA 4.7

O calor é transferido por condução, através da colher de metal, do café quente para os dedos mais frios.

Fluxo de calor por condução através de uma parede. A taxa Q_c/t com que o calor é transferido através do material depende das temperaturas em ambos os lados (T_1 e T_2), da área A da parede, da sua espessura δ e da sua condutividade térmica k.

FIGURA 4.8

Taxa de transferência de calor por condução

$$\frac{Q_{c}}{t} = \frac{calor_transferido_por_condução}{tempo_decorrido} = \frac{kA(T_{2} - T_{1})}{\delta}$$

Onde: A: área da superfície

 δ : espessura do material

T: temperatura de cada lado do material

k: condutividade térmica do material

Convecção

Em um gás ou líquido, as moléculas estão muito distantes para que o calor seja transferido por condução. Em fluidos, o calor é transferido mediante o movimento do gás ou líquido. Ex. panela aquecendo água.

Esse sistema pode mudar a temperatura de -12°C para -6°C em um dia ensolarado.

Radiação

Não necessita de um meio para que haja propagação. A radiação é emitida de um corpo na forma de ondas eletromagnéticas.

FIGURA 4.13 Ondas geradas pela movimentação da ponta de uma corda.

No vácuo, v=3E8 m/s

$$\upsilon(m/s) = \lambda(m).f(s^{-1})$$

FIGURA 4.14

O espectro eletromagnético, mostrado como função do comprimento de onda.

EXEMPLO

Qual é o comprimento de onda da radiação eletromagnética emitida por uma estação de rádio que transmite em 1.500 kHz?

No vácuo

Radiação

FIGURA 4.16

A temperatura de equilibrio de um corpo é mantida se a entrada de energia é igual à saída de energía.

FIGURA 4.17

Um radiador de água quente é um bom exemplo de transferência de calor por condução, convecção e radiação.

Máquinas Térmicas

Calor convertido em trabalho útil.

O fluxo de calor ocorre por um meio fluido, como um líquido ou um gás. Este meio é chamado "fluido de trabalho".

FIGURA 4.18

Uma máquina térmica transforma calor em trabalho.

Ciclo aberto: descarte da energia após realizar trabalho.

Ciclo fechado: reutiliza a energia restante.

Máquinas Térmicas

 $\Delta T = 25 - 5 = 20$ °C. Eficiência de 3-4%. Potencial de aplicação por nações formadas por ilhas. Desvantagem: custo e corrosão pela água do mar.

FIGURA 4.19

Conversão de Energia
Térmica do Oceano (Otec). A
diferença de temperatura
entre as águas na superficie
e no fundo do mar permitem
que se construa uma
máquina térmica.

Segunda Lei da Termodinâmica

- 1. O calor somente pode fluir espontaneamente de uma fonte quente para uma fonte fria.
- 2. Nenhuma máquina térmica, na qual a fonte de calor seja transformada inteiramente em trabalho, pode ser construída. Parte do calor deve ser descartada para um sorvedouro à temperatura mais baixa.

Segunda Lei da Termodinâmica

Uma quantidade que é utilizada para a medida da desordem de um sistema é chamada entropia. Qualquer processo espontâneo, a entropia pode apenas aumentar ou permanecer igual.

$$Eficiência = \frac{trabalho_útil_na_saída}{entrada_de_energia} \times 100\%$$

$$Eficiência = \left(\frac{calor_que_entra - calor_que_sai}{calor_que_entra}\right) \times 100\%$$

$$= \left(1 - \frac{calor_que_sai}{calor_que_entra}\right) \times 100\%$$

Se parte do calor é transferida a um sorvedouro frio, como exige a segunda lei, jamais teremos 100% de eficiência.

Eficiência Máxima Possível

Eficiência de Carnot: eficiência máxima possível em uma máquina ideal.

$$Eficiência _máxima(Carnot) = \left(1 - \frac{T_C}{T_H}\right) \times 100\%$$

$$= \left(\frac{T_H - T_C}{T_H}\right) \times 100\%$$

As temperaturas devem ser expressas na escala absoluta ou Kelvin.

EXEMPLO

Em uma usina geradora de energia a ciclo de vapor convencional, a temperatura do vapor que entra na turbina é de 540°C ou 813 K. A temperatura do reservatório frio (a água de refrigeração) é de 20°C ou 293 K. Qual é a eficiência máxima possível desta máquina térmica?

Isolamento da casa e cálculos de aquecimento.

Nos Estados Unidos, reduções de pelo menos 15% das demandas de aquecimento e refrigeração poderiam ser obtidas se todas as casas atendessem aos padrões federais mínimos:

RECOMENDAÇÕES DE ISOLAMENTO MÍNIMO DA FHA (AGÊNCIA FEDERAL DE HABITAÇÃO DOS EUA).				
	Antes de 1978	Novo		
THE RESIDENCE	R-19	R-38 (fibra de vidro de 12"		
Teto	R-11	R-19 (fibra de vidro de 6")		
Paredes	K-11	R-22 (fibra de vidro de 7")		
Piso	R-11	R-22 (fibra de vidro de 7 7		

Isolamento da casa e cálculos de aquecimento.

Taxa de transferência de calor por condução

$$\frac{Q_{c}}{t} = \frac{calor_transferido_por_condução}{tempo_decorrido} = \frac{kA(T_{2} - T_{1})}{\delta}$$

Onde: A: área da superfície

 δ : espessura do material

T: temperatura de cada lado do material

k: condutividade térmica do material

Uma medida da resistência do material ao fluxo de calor é a resistência térmica R (valor R), dado por $R=\delta/k$.

$$\frac{Q_c}{t} = \frac{1}{R} A(\Delta T)$$

R é uma função tanto do tipo do material como da espessura.

Esses valores consideram uma velocidade do ar de 16 km/h.

Material	Espessura	Valor <i>R</i> (pés²-h-°F/Btu)*	
Madeira dura	1"	0,91	
Madeira mole	1"	1,25	
Madeira compensada	1"	0,62	
Bloco de concreto	8"	1,04	
Tijolo de concreto	1"	0,20	
Placa de reboco (gipsita)	1"	0,45	
Isolamento de fibra de vidro	3 1"	10,9	
Isolamento de fibra de vidro	6"	19,0	
Placa de poliestireno expandido	1"	4,0	
Placa de poliuretano expandido	1"	6,3	
Isolamento de celulose	1"	3,7	
Revestimento "thermax" ou "alto R"	1"	8,0	
Vidro plano	1/8"	0,88	
Vidro isolante	espaço de ar de 4"	1,54	
Vidro isolante	espaço de ar de $\frac{1}{2}$ "	1,72	
Entrepiso de madeira	25" 32	0,98	
Piso de madeira dura	3" 4	0,68	
Carpete de náilon	1"	2,0	
Telha		0,05	
Telha de asfalto		0,44	
Telha de amianto		0,21	
Aço	1"	0,0032	
Cobre	1"	0,004	
Laterais de madeira (polida)	1"	0,81	

^{*} No sistema métrico, as unidades de R são m²-oC/W; R (métrico) = R (inglês) × 0,57.

Fonte: ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers

Handbook of Fundamentals, 1991.

Na construção sempre tem mais de uma material.

recursos de economia numa casa

Outros recursos de economia numa casa:

- Janela de com vidraça dupla: Vantagem: economia em torno de 1% de combustível por janela instalada. problema: são caras.
 Alternativa: uso de janela plástica com a janela de vidro único.
- Cortinas térmicas.
- Revestimento de baixa emissividade. Filme de metal fino transparente aplicado na parte interna. No inverno reflete o calor para dentro da casa. No verão, a baixa emissividade bloqueará a radiação solar infravermelha, reduzindo o calor.

Infiltração de ar

Outra perda é por infiltração de ar.

Seleção de local

Vento

Resfriamento

Resfriamento evaporativo em climas quentes e secos.

Barreiras irradiantes para climas quentes e úmidos.

Pode ser usada em parede também, porem mantendo uma distancia para não aquecer por condução.

Energia solar:características e aquecimento

Fontes renováveis fornecem aproximadamente 8% da energia mundial.

BELA 6.1 RECURSOS E	NERGÉTICOS RENOVÁVEIS E USOS.
Radiante (solar)	Aquecimento e refrigeração de ambientes (ativos ou passivos) Aquecimento doméstico de água, piscinas Eletricidade (fotovoltaica) Fornalhas solares, termoeletricidade
Vento (eólica)	Eletricidade (turbinas eólicas) Mecânica (bombeamento de água, moagem)
	Eletricidade, mecânica (rodas-d'água)
Hídrica Biomassa	Calor (combustão direta), eletricidade Combustíveis (gás, líquidos)
Geotérmica	Eletricidade, aquecimento distrital

Insolação: quantidade de radiação solar que chega a Terra; forma reduzida de dizer "radiação solar incidente".

FIGURA 5.2

Espectro da radiação solar que atinge o topo da atmosfera e o nível do solo da Terra. (Os mínimos no espectro ao nível do solo são resultantes da absorção pelo vapor d'água, CO₂, O₂, N₂ e ozônio (O₃).) Aproximadamente 40% da radiação solar está na região visível.

Com as tecnologias atuais, a luz solar que ilumina uma casa nos Estados Unidos pode suprir de 1/3 a metade da energia necessária para aquecer uma casa.

FIGURA 5.3

Balanço energético da Terra. O planeta recebe aproximadamente 50% da radiação solar incidente: 21% de radiação direta e 29% são dispersos através das nuvens. A energia que deixa a superfície terrestre vem da evaporação e da condução para a atmosfera (33%) e da radiação infravermelha (aqui denominada irradiação terrestre). A maior parte da radiação infravermelha (113%) é absorvida pela atmosfera e reirradiad de volta à superfície (o efeito estudia). Para se manter o equilíbrio térmico da superfície do planeta, a entrada de energia tem de ser igual à saída de energia. Nesta figura, 50% (energia incidente) = 3% (refletida) + 33% (evaporação) + 14% (irradiação terrestre líquida: 113% + 6% – 105%).

19% da radiação recebida pela atmosfera é absorvida pelas nuvens e outros gases e 31% é refletida pelas nuvens e pela atmosfera de volta para o espaço.

Os 50% restantes são quase que completamente absorvidos.

A maior parte da irradiação IR é absorvida pelo CO₂ e H₂O. Efeito estufa.

Com as tecnologias atuais, a luz solar que ilumina uma casa nos Estados Unidos pode suprir de 1/3 a metade da energia necessária para aquecer uma casa.

Tabela 5.2 COEFICIENTES DE CONVERSÃO PARA INSOLAÇÃO

1 Btu/pé2/hora = 3,16 W/m2

 $1.000 \text{ W/m}^2 = 317 \text{ Btu/pe}^2/\text{hora}$

1 Langley = 1 cal/cm² = 3.69 Btu/pé²

 $1 \text{ Btu/pe}^2 = 11,35 \text{ kJ/m}^2$

Constante solar:*

1.354 W/m²

429 Btu/pé²/h

1,94 Langleys/min

4.870 kJ/m²/hora

1.52 HP/jarda

^{*}Radiação solar incidente sobre o topo da atmosfera terrestre por unidade perpendicular aos raios solares. Aproximadamente 50% desta insolação atinge a superficie da Terra.

FIGURA 5.4

Movimento da Terra
ao redor do Sol,
mostrando as
estações do ano e a
inclinação do eixo da
Terra.

FIGURA 5.7 Componentes da radiação solar.

Tabela 5.3	VARIAÇÕES NA	INSOLAÇÃO	EM CIDADES	SELECIONADAS
------------	--------------	-----------	------------	--------------

Cidade	Latitude	Dezembro		Março		Junho		Setembro	
		l _H *	17**	1 _H	1 _T	I _H	1 _T	l _H	17
Miami	26°N	1.292	1.770	1.829	2.012	1.992	1.753	1.647	1.691
Los Angeles	34°N	912	1.496	1.641	1.936	2.259	1.920	1.892	2.114
Washington, D.C.	38°N	632	1.068	1.255	1.493	2.081	1.790	1,446	1.605
Dodge City	38°N	874	1.652	1.566	1.942	2.400	2.040	1.842	2.106
East Lansing	42°N	380	638	1.086	1.347	1.914	1.646	1.303	1.498
Seattle	47°N	218	403	917	1.165	1.724	1.465	1.129	1.332

^{*}Insolação sobre uma superficie horizontal (em Btu/pé²/dia)

^{**}Insolação sobre uma superficie inclinada em um ângulo igual à latitude (em Btu/pé²/dia)

FIGURA 5.13

Aparato de cozimento solar de Adams, Índia, 1878. A luz do sol é refletida no recipiente escuro de metal, que contém a comida, como mostrado na figura. O recipiente de metal era inserido em outro recipiente, de vidro. (SCIENTRIC AMERICAN, 1878)

FIGURA 5.14

Forno de Telkes. O projeto apresenta uma panela de cozimento fixa e um refletor movel.

Aquecimento solar contemporâneo

O investimento de água quente domestica cresceu fortemente entre 1970 e 1980 pelo aumento do preço do petróleo e eletricidade.

do tipo escoamento lento

FIGURA 5.17

Placas absorvedoras de coletor de placa plana.

Aquecedores de água por lote ou batelada

São sistemas baratos e populares.

FIGURA 5.19

Aquecedor de água por lote ou batelada (bread-box) para obtenção de água quente doméstica.

FIGURA 5.20

Sistema de aquecimento doméstico de água por termossifonamento. A lata (tanque) deve estar acima dos coletores.

Sistemas solares passivos de aquecimento de ambientes

Nenhum tipo de bomba mecânica ou ventoinha é usado.

Elementos essenciais de um sistema solar passivo são:

- 1. um excelente isolamento térmico,
- 2. a coleta de energia solar (com janelas voltadas para o Sul), e
- estruturas de armazenamento térmico.

Os sistemas passivos podem ser categorizados em três tipos:

- 1. ganho direto,
- 2. ganho indireto, e
- estufa anexa.

Sistemas solares passivos de aquecimento de ambientes

Ganho direto

FIGURA 5.21

Sistema solar passivo — ganho direto. Janelas voltadas para o Sul funcionam como coletores solares. Isolamento térmico móvel é utilizado para cobrir as janelas à noite para reduzir a perda de calor. Um piso de concreto maciço funciona como armazenador e evita o superaquecimento. A projeção do telhado bloqueia o sol de verão.

Ganho indireto

FIGURA 5.23

Parede do tipo Trombe. A parede de concreto funciona como um coletor solar e um meio de armazenamento de calor.

FIGURA 5.24

Ganho indireto, utilizando uma estufa anexa. Como uma combinação dos sistemas de ganho direto e indireto, os tambores de água e o piso de alvenaria da estufa anexa fornecem armazenamento de calor.

estufa anexa

Sistemas solares ativos de aquecimento de ambientes

FIGURA 5.26 Sistema doméstico básico de aquecimento de ambiente e água.