Les questions de cours portent sur ce qui est entre accolades et en gras. On attend une maîtrise de l'intégralité des notions de ce chapitre.

Cours: analyse asymptotique

Même si les relations de comparaisons asymptotiques ont été définies dans le cas le plus général, toutes les démonstrations peuvent être faites sous l'hypothèse de non-annulation au voisinage de l'infini, ou de non annulation sur un voisinage épointé d'un réel.

Comparaison asymptotique de suites

Relation de domination u = O(v). Caractérisation via le caractère borné de u/v. Réflexivité, transitivité. Compatibilité avec l'addition à gauche, le produit, les fonctions puissances positives. Composition à droite.

Relation de prépondérance u = o(v). Caractérisation via $u/v \to 0$. Transitivité. Compatibilité avec l'addition à gauche, le produit, les fonctions puissances strictement positives. Traduction des croissances comparées. [Comparaison des suites géométriques, de la factorielle et de n^n]. Composition à droite.

Relation d'équivalence $u \sim v$. Caractérisation via $u/v \to 1$. Réflexivité, symétrie, transitivité. Compatibilité avec le produit, les fonctions puissances. Théorème d'encadrement pour les équivalents. Si $u \sim v$ et u > 0 àpcr, alors v > 0 àpcr. Si $u \sim v$ et $u \to \ell$, alors $v \to \ell$. [Passage au logarithme dans les équivalents]. Composition à droite.

Exemples de développements asymptotiques de suites (récurrentes, implicites).

Comparaison locale de fonctions

Transposition du chapitre précédent pour des fonctions au voisinage d'un point réel a.

Développements limités

Notion de développement limité à l'ordre n d'une fonction en a. [Unicité en cas d'existence]. Partie régulière. Troncature d'un développement limité. Cas des fonctions paires, impaires pour un développement limité en 0. [Formule de Taylor-Young, sous hypothèse de classe C^{n-1} sur l, n dérivabilité en a.]

Exercices

Les exercices porteront sur la décomposition en éléments simples des fractions rationnelles et le début de l'analyse asymptotique, les développements limités ont été peu pratiqués.

* * * * *