SAI

- ¿Qué es un SAI o sistema de alimentación ininterrumpida?
- Es un equipo eléctrico de seguridad que:
 - o Proporciona energía cuando existe un corte en el suministro eléctrico
 - o Protege otros equipos de alteraciones en el suministro eléctrico
- Tiene reguladores y rectificadores de tensión para poder proteger al equipo de las subidas y bajadas de tensión que se producen en la red

En castellano se conoce como SAI, mientras que en inglés se llaman UPS

Sistemas de alimentación ininterrumpida

- ¿Cuándo debemos de instalar un SAI?
- Un SAI se puede instalar siempre. Es especialmente recomendado cuando:
 - o Se trabaja con un volumen alto de información y evitar pérdidas
 - o Zonas donde se producen cortes de electricidad repentinos
 - Necesitamos alimentar equipos sensibles
- ¿En qué equipos instalar un SAI?
- Principalmente en servidores que trabajan 24/7
- En equipos domésticos (zonas inestables)
- En pequeñas y medianas empresas (TPV)

Defectos de la señal eléctrica

La señal eléctrica no siempre es perfecta

Una señal eléctrica de calidad es aquella que es generada con el formato más parecido a lo que teóricamente es una señal perfecta.

Esto no siempre es así y por lo tanto se utilizan entre otros, sistemas como los SAI

Problemas habituales

Cortes de suministro y microcortes

Sobrevoltaje y voltaje bajos, cortos o largos

Cambios en la frecuencia

Defectos de la señal eléctrica

Defectos de la señal eléctrica

Cambio en la frecuencia

Tipos de SAI

Medida de parámetros eléctricos

SAI _ offline _ pasivos o standby

Entra en funcionamiento cuando no hay suministro eléctrico o la energía baja de los 220 V

Cambio a batería produce un __pequeño corte __ de energía, no percibido por la mayoría de equipos

SPS = "Stand-by Power Supply". Se denominan a los UPS Off Line

Ventaja: tiene un costo reducido y es el más extendido.

__Desventaja: __ no protege de cambios en la señal

SAI online

- CA se convierte a CC (con la que carga las baterías) y la CC se convierte entonces en CA a través de un *inversor*, y se lleva entonces a los aparatos conectados. (CC a CA)
- La señal sale regenerada y libre de fluctuaciones siempre (aunque no esté en modo batería)
- Ventajas:
 - Salida de corriente del SAI limpia y con unos niveles regulados
 - No hay tiempo de conmutación entre modos
 - o Proporcionan el mejor aislamiento de la red
- Desventajas
 - Las baterías están constantemente descargándose y cargándose

SAI offline interactivos o line interactive

Suministran alimentación incluso cuando la corriente eléctrica fluye normalmente

Permiten compensar los picos de tensión

Utilizados en la mayoría de empresas y a nivel domestico

Consejos de utilización

- Componentes a proteger
- Elegir qué componentes son los más elementales a la hora de proteger:
 - o PC, modem router y monitor
 - Se recomienda no conectar la impresora por riesgos a que se queme el motor.
- · Potencia requerida
- Se recomienda utilizar como máximo un 75% de la capacidad del SAI dejando un 25% como porcentaje de crecimiento.
- Otros factores
- La zona donde se va a utilizar (zonas industriales sufren mayores alteraciones eléctricas)
- El grado de autonomía o tiempo de funcionamiento requerido, según la aplicación
- Si el SAI irá alojado en rack o no

Cálculo de carga en un SAI

- En corriente alterna no medimos la potencia en vatios, sino en voltamperios (VA)
- La carga de un SAI no se mide en W, se mide en VA
 - Para pasar de W a VA, dividimos por 0,7
 - Para pasar de VA a W, multiplicamos por 0,7
- Ejemplos
- Si los equipos a proteger consumen 500 W, necesitaré un SAI de 714 VA
- Con un SAI de 1500 VA, puedo proteger equipos que consuman 1050 W

Potencia Aparente (VA)	500	800	1000	1500	2000	3000
Potencia Activa (W)	350	560	700	1050	1400	2100

- Autonomía del SAI
- La autonomía de un SAI es el **tiempo** que el SAI puede alimentar a los equipos conectados a él.
- Suele expresarse en minutos y dependerá del % de carga que tiene conectado el SAI.
- Cuanto durará la batería
- En función de la carga que esté conectada al SAI
- Un equipo que ofrece 10 minutos a un nivel de carga máximo (100%)
 - Al 50%: suministrará 20 minutos de corriente
 - Al 25%: suministrará 40 minutos de corriente

Cálculo de carga en un SAI

Software de gestión de SAIs

Administración de SAIs por software

El uso de software adicional me permite

Gestionar SAIs remotamente

Guardar un log de eventos o un log de mediciones

Recibir **email** avisando de posibles fallos

Habilitar o deshabilitar funciones (alarma sonora)

Comprobar el **estado** de las baterías y la carga del SAI

Apagar el ordenador automáticamente al detectar un fallo de alimentación

Para ello es necesario

Conectar el SAI a un ordenador con conexión de red (USB)

Conectar a un switch si dispone de conexión de red (RJ-45)

Otros elementos de protección

Alternativas a los SAI

Regleta con protector de sobretensiones

Tienen un mecanismo de protección contra sobretensiones, picos de la red o los efectos de los rayos.

Conviene comprar un modelo que tenga algún tipo de **indicador** que avise que los componentes están dañados.

Hay algunas de estas regletas que una vez que sus componentes están dañados dejan de proteger a los equipos que están conectados a ellas.

Suelen tener conectores hembra RJ45 (red) y RJ11 (teléfono) que actúan como filtros de la señal.

Una regleta con protección de sobretensiones nunca sustituye a un SAI. Es una solución muy barata cuando no se puede afrontar la compra de un SAI.

