

What we will learn today?

- Introduction to object recognition
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline

What are the different visual recognition tasks?

Classification:

Does this image contain a building? [yes/no]

Classification:

Is this a beach?

Image Search

Organizing photo collections

Detection:

Does this image contain a car? [where?]

Detection:

Which object does this image contain? [where?]

Detection:

Accurate localization (segmentation)

Detection: Estimating object semantic & geometric attributes

Categorization vs Single instance recognition

Does this image contain the Chicago Macy's building?

Categorization vs Single instance recognition

Where is the crunchy nut?

Applications of computer vision

•Recognizing landmarks in mobile platforms

+ GPS

Activity or Event recognition

What are these people doing?

Visual Recognition

- Design algorithms that have the capability to:
 - Classify images or videos
 - Detect and localize objects
 - Estimate semantic and geometrical attributes
 - Classify human activities and events

Why is this challenging?

How many object categories are there? 10,000 to 30,00

Challenges: viewpoint variation

Challenges: illumination

Challenges: scale

Challenges: deformation

Challenges: occlusion

Magritte, 1957

Challenges: background clutter

Kilmeny Niland. 1995

Challenges: intra-class variation

What we will learn today?

- Introduction
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline

The machine learning framework

- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

Slide credit: L. Lazebnik

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

Source: N. Goyal

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

partitioning of feature space for two-category 2D and 3D data

Source: D. Lowe

K-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{\bigcirc}_{i=1}^{D} (X_i^n - X_i^m)}^2$$

1-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{\bigcirc}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

3-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{\bigcirc}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

5-nearest neighbor

x2

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{\bigcirc}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

K-NN: a very useful algorithm

- Simple, a good one to try first
- Very flexible decision boundaries

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!

Cross validation

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)

Euclidean measure

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)
 - Solution: normalize the vectors to unit length

Many classifiers to choose from

K-nearest neighbor

Which is the best one?

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- RBMs
- Etc.

Slide credit: D. Hoiem

Generalization

Training set (labels known)

Test set (labels unknown)

 How well does a learned model generalize from the data it was trained on to a new test set?

Bias-Variance Trade-off

 Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

 Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Slide credit: D. Hoiem

Bias versus variance

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Bias versus variance trade off

No Free Lunch Theorem

In a supervised learning setting, we can't tell which classifier will have best generalization

Slide credit: D. Hoiem

Remember...

 No classifier is inherently better than any other: you need to make assumptions to generalize

- Three kinds of error
 - Inherent: unavoidable
 - Bias: due to over-simplifications
 - Variance: due to inability to perfectly estimate parameters from limited data

Slide credit: D. Hoiem

How to reduce variance?

Choose a simpler classifier

Regularize the parameters

Get more training data

Last remarks about applying machine learning methods to object recognition

- There are machine learning algorithms to choose from
- Know your data:
 - How much supervision do you have?
 - How many training examples can you afford?
 - How noisy?
- Know your goal (i.e. task):
 - Affects your choices of representation
 - Affects your choices of learning algorithms
 - Affects your choices of evaluation metrics
- Understand the math behind each machine learning algorithm under consideration!

What we will learn today?

- Introduction
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline

Object recognition: a classification framework

 Apply a prediction function to a feature representation of the image to get the desired output:

Dataset: ETH-80, by B. Leibe

Slide credit: L. Lazebnik

Training Images

Image features

Input image

Color: Quantize RGB values

Global shape: PCA

Texture: Filter banks

Classifiers: Nearest neighbor

Classifiers: Nearest neighbor

Results

	Color	D_xD_y	Mag-Lap	PCA Masks	PCA Gray	Cont. Greedy	Cont. DynProg	Avg.
apple	57.56%	85.37%	80.24%	78.78%	88.29%	77.07%	76.34%	77.66%
pear	66.10%	90.00%	85.37%	99.51%	99.76%	90.73%	91.71%	89.03%
tomato	98.54%	94.63%	97.07%	67.80%	76.59%	70.73%	70.24%	82.23%
cow	86.59%	82.68%	94.39%	75.12%	62.44%	86.83%	86.34%	82.06%
dog	34.63%	62.44%	74.39%	72.20%	66.34%	81.95%	82.93%	67.84%
horse	32.68%	58.78%	70.98%	77.80%	77.32%	84.63%	84.63%	69.55%
cup	79.76%	66.10%	77.80%	96.10%	96.10%	99.76%	99.02%	87.81%
car	62.93%	98.29%	77.56%	100.0%	97.07%	99.51%	100.0%	90.77%
total	64.85%	79.79%	82.23%	83.41%	82.99%	86.40%	86.40%	80.87%

Dataset: ETH-80, by B. Leibe, 2003

What we have learned today?

- Introduction
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline