Neural CAPTCHA Recognition System

Technical Report

Executive Summary - Task Completion

Task	Status	Performance
Task 0: Dataset Generation	COMPLETE	3,000 images generated
Task 1: Classification	✓ COMPLETE	Easy: 95.5% Hard: 4.5% Bonus: 5.0%
Task 2: Text Extraction	✓ COMPLETE	Easy: 90.5% Hard: 4%
Task 3: Conditional Rendering	✓ COMPLETE	11% exact match

Key Achievement:

All required tasks completed. No OCR libraries used - everything trained from scratch as required.

Dataset Generation (Task 0)

Easy Dataset (1,000 images)

- Fixed DejaVu Sans font
- · White background
- 28-32pt font size
- Difficulty: 0.253

Hard Dataset (1,000 images)

- 6 font families
- · Noise: Gaussian, Salt-pepper
- Distortions: ±5° rotation
- Difficulty: 0.780

Bonus Dataset (1,000 images)

- Innovation: Conditional rendering based on background color
- Green background: Normal text | Red background: Reversed text
- Labels remain unchanged regardless of display
- Difficulty: 0.869

Model Architectures

Classification Models (Task 1)

```
LightweightCNN (Easy): Conv(3→32→64→128) → AdaptivePool → FC(512→256→100) ImprovedCNN (Hard/Bonus): ResBlock(64→128→256→512) + SpatialAttention → GlobalPool → Classifier
```

Seq2Seq Model (Task 2)

```
CNN Encoder: Conv(3\rightarrow64\rightarrow128\rightarrow256\rightarrow512) \rightarrow AdaptivePool(4,16) LSTM Decoder: Embedding(256) + LSTM(512, 2 layers) + Bahdanau Attention
```

Training Config: Adam optimizer, LR=1e-3, Batch=32, 100 epochs

Experimental Results

Classification Performance (Task 1)

Dataset	Best Val Accuracy	Train Accuracy	Training Time
Easy	95.5%	91.25%	10s
Hard	4.5%	66.25%	169s
Bonus	5.0%	97.75%	170s

OCR Performance (Task 2)

Dataset	Exact Match	CER	WER
Easy	90.5%	0.041	0.095
Hard	4.0%	0.846	0.960

Key Finding: The Complexity Barrier

91% Performance Drop

Easy → Hard: Classification accuracy drops from 95.5% to 4.5%

Evidence of Overfitting:

Easy: Train=91%, Val=95% (Healthy generalization) Hard: Train=66%, Val=4.5% (Severe overfitting) Bonus: Train=97%, Val=5% (Extreme

Root Causes:

- Limited dataset size (800 training samples)
- High variability in fonts and distortions
- CNN architecture insufficient for invariant feature extraction
- · Loss plateaus at epoch 85 no further learning

Conditional Rendering Analysis (Task 3)

The Challenge:

Green background: "hello" → "hello" (normal)

Red background: "olleh" → "hello" (reversed display, normal label)

Performance Breakdown:

- Overall exact match: 11%
- Green (normal): ~18% accuracy
- Red (reversed): ~4% accuracy
- CER: 78.8% | WER: 89%

Why It Fails:

- Unidirectional LSTM: Can't process reversed text effectively
- Catastrophic forgetting: Model alternates between patterns
- Architecture mismatch: Need bidirectional or transformer models

Surprising Discoveries

1. Easy CAPTCHAs Are Trivially Broken

95.5% accuracy with simple CNN → Modern CAPTCHAs must use complexity

2. Attention Mechanism Ineffectiveness

Attention weights remain uniform - noise overwhelms focusing ability

3. Frequency Bias in Errors

"elephant" → "freedom" - Model defaults to high-frequency training words

67% of errors have correct first character

Training Anomaly:

Proposed Improvements

Immediate Solutions:

• Curriculum Learning: Start easy, increase difficulty

• Data Augmentation: 10x synthetic data

• Early Stopping: Prevent overfitting

Architecture Changes:

• Transformers: Better than LSTM for bidirectional

• Multi-task Learning: Predict color + text

• Ensemble Methods: Combine multiple models

Expected Improvements:

Curriculum learning: +20-30% on hard dataset

• Transformer architecture: +40% on bonus dataset

• Data augmentation: +15-20% across all datasets

10 / 10

Conclusions

Achievements:

- Complete CAPTCHA pipeline implementation
- 95.5% accuracy demonstrates neural networks can break simple CAPTCHAs
- Comprehensive failure analysis with evidence
- · Novel conditional rendering dataset created

Key Insights:

- Complexity creates exponential barriers: 91% performance drop
- Current architectures inadequate: CNN+LSTM fail on complex patterns
- Conditional logic needs specialization: Transformers required

Research Contributions:

- Benchmark for CAPTCHA difficulty levels
- Empirical evidence of neural OCR limitations
- Actionable improvement strategies