Sterowanie adaptacyjne i estymacja

Maciej Cebula Kajetan Piertusa Daniel Rubak

Spis treści

1	Wst	ęp	2
	1.1	Cel zajęć	4
0	тл	461	
2	laei	ntyfikacja	•
	2.1	Model obiektu	,
	2.2	Optymalizacja nastaw regulatora	
		2.2.1 Zestawy parametrów	,
		2.2.2 Optymalizacja nastaw regulatorów	•

Wstęp

1.1 Cel zajęć

Identyfikacja

2.1 Model obiektu

Obiekt opisany jest transmitancją:

$$G(s) = \frac{K_0}{(T_0 \cdot s + 1)^n} \cdot e^{-\tau \cdot s}$$
 (2.1)

2.2 Optymalizacja nastaw regulatora

Do optymalizacji nastaw regulatorów wykorzystana została funkcja *fmincon* z pakietu MATALB. Badania przeprowadzone zostały dla różnych zestawów parametrów opisujących właściwości rozważanego systemu.

2.2.1 Zestawy parametrów

W tabeli 2.1 zamieszczono przyjęte zestawy parametrów.

2.2.2 Optymalizacja nastaw regulatorów

Dla kolejnych zestawów parametrów opisujących system przeprowadzano procedurę optymalizacji nastaw regulatorów minimalizując wskaźnik jakości opisany zależnością ??. Proces

Tabela 2.1: Zestawy parametrów dla których przeprowadzano optymalizację nastaw regulatorów.

Nr zestawu\ Parametr	1	2	
K_{w1}	10		
K_{w2}	5		
T_{w2}	0.1		
T_0	1		
K_0	10		
n	3		
τ	1		

Tabela 2.2: Parametry regulatorów dla pierwszego zestawu zmiennych systemowych z tabeli 2.1.

· 1 ·							
Parametr regulatora\	<i>P</i> 1	<i>D</i> 1	P2	D2	P3	I3	Kr
Wart. zadana					- 0		
5	0,212	0,515	0,324	2,42	0,024	2,98e-09	0,641
10	0,101	1,73	0,098	90,34	0,013	1,81e-07	0,538
20	0,113	13,74	0,202	26,67	3,661e-07	2,17e-07	0,580
50	0,123	99,99	0,109	0,347	0,0074	5,60e-07	0,076
70	0,0028	99,99	0,0061	7,301	0,0761	0,0261	0,7111

Tabela 2.3: Wartości wskaźnika jakości dla różnych wartości zadanych i różnych zestawów parametrów opisujących system.

Nr zestawu\ Wart. zadana	1	2	
5	48.64		
10	65.63		
20	95.05		
50	185.35		
70	272.80		

optymalizacji przeprowadzany był dla różnych wartości zadanych w obecności znanego zakłócenie z_2 (zakłócenie skokowo zmieniające swoją wartość).

Bibliografia