

- a) S: $V_S = 50V \implies 10V 5V = V_{in} > V_S = 0.7V$ por tunto el diodo está en conducción y tiene una caida de potencial de V_S .

 Así $V_0 = V_S + 5V 5.7V$ y la corriente que atraviesa el diodo es $I = M_{in}$ intensidad que atraviesa la resistencia) y se puede calcular como $I = \frac{V_R}{R} = \frac{V_S V_S 5V}{500 \cdot 2} = 8,6 \text{ m A}$.
- b) Sabemos que el diodo este en sectote \Leftrightarrow Vin < V_s \Leftrightarrow V_s < 5,7 V

Por lando, si Vs < 5,7V => El diodo está en conte si Vs > 5,7V => El diodo está en conducción.

Tambien se tiene que

$$V_0 = \begin{cases} V_s & s: & V_s < 5,7V \\ 5,7V & s: & V_s > 5,7V \end{cases}$$

