4-H-R Diagram

11/9/2023

Attempt 1 ~	In Progress NEXT UP: Submit Assignmen
-------------	---------------------------------------

Add Comment

Unlimited Attempts Allowed

10/26/2023

∨ Details

The <u>Geneva stellar evolutionary tracks</u> (https://www.unige.ch/sciences/astro/evolution/en/research/geneva-grids-stellar-evolution-models/#grids92) provide a model grid of stellar parameters in different stages of a stars evolution.

The different models contain information for

- isochrones (same age, different masses) and
- evolutionary tracks (one mass over time).

Getting the Data:

For this assignment, we will use Grids of Stellar Models with Rotation, primarily using solar abundance models (Z = 0.014).

You can download the tracks and isochrone grid on <u>VizieR</u> \Rightarrow (http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/A%2bA/537/A146&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa).

To limit the output, you will need to specify:

- Z = 0.014 (and select it)
- · Specify rotation models
- For isochrones: enter the age as log(t) in years. Example: for a 3 Myr isochrone, enter 6.5
- · For evolutionary tracks: enter the initial mass in solar masses
- Output the information in some plain text/ASCII friendly format (e.g. Tab separated, ; separated, ascii text/plain) that will be downloaded. The default is an HTML table

Assignment:

With this information, I would like you to create one H-R diagram with the following:

- 1. The ZAMS over the mass range provided (0.8-120 M_{sun})
- 2. Denote where the Sun is located on the H-R diagram
- 3. Isochrones over a sampling of the available ages (e.g. log (t) = 6.5, 7.5, 8.5, 9.5, 10.1 yr), showing how the Main Sequence changes over time.
- 4. Choose the evolutionary track of one star with M < $8M_{sun}$ and another with M > $8M_{sun}$, plot and label the tracks of these stars. Some accepted values for masses are: 0.8, 0.9, 1, 1.1, 1.25, 1.35, 1.5, 3, 4, 7, 20, 25, 32, 85, 120

Here is the Jupyter notebook ⊕ (https://drive.google.com/file/d/1WssGOFCsTnR66wHuPvpj1CHhfeKfyZWP/view?

uen-charing) to get you started. Make sure to include any references you use in creating this plot (e.g. solar values for

(https://erau.instructure.com/courses/163207/moc

∨ View Rubric

HR Rubric		
Criteria	Ratings	Pts
ZAMS view longer description		/ 1 pts
Sun view longer description		/ 1 pts
Isochrones view longer description		/ 1 pts
2 evolutionary tracks view longer description		/ 2 pts
Label & Legend view longer description		/ 1 pts
Legibility view longer description		/ 1 pts
Accuracy view longer description		/ 2 pts
Citations view longer description		/ 1 pts
		Total Points: 0

Enter Web URL

https://