Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Recall order- and set-based definitions of Shapley values in ML
- Interpret predictions via additive Shapley decomposition
- Understand SHAP as surrogate-based model
- Understand SHAP properties

Interpretable Machine Learning

- Recall order- and set-based definitions of Shapley values in ML
- Interpret predictions via additive Shapley decomposition
- Understand SHAP as surrogate-based model
- Understand SHAP properties

SHAPLEY VALUES IN ML - A SHORT RECAP

Shapley values (order definition): Average over marginal contributions across all permutations of feature indices $\tau \in \Pi$:

$$\phi_j(\mathbf{x}) = \frac{1}{\rho!} \sum_{\tau \in \Pi} \hat{f}_{\mathcal{S}_j^{\tau} \cup \{j\}}(\mathbf{x}_{\mathcal{S}_j^{\tau} \cup \{j\}}) - \hat{f}_{\mathcal{S}_j^{\tau}}(\mathbf{x}_{\mathcal{S}_j^{\tau}})$$
marginal contribution of feature j

- For each permutation τ , determine coalition S_i^{τ} : features before j in τ
- In \hat{f}_S , features not in S are marginalized (e.g., replaced by random imputations)
- Compute marginal contribution of adding j to S_i^{τ} via the difference above
- Average over all p! permutations (in practice, over $M \ll p!$)

SHAPLEY VALUES IN ML - A SHORT RECAP

Shapley values (order definition): Average over marginal contributions across all permutations of feature indices $\tau \in \Pi$:

$$\phi_j(\mathbf{x}) = \frac{1}{\rho!} \sum_{\tau \in \Pi} \hat{f}(\mathbf{x}) - \hat{f}(\mathbf{x})$$
marginal contribution of feature *i*

- ullet For each permutation au, determine coalition : features before i in au
- In \hat{f}_S , features not in S are marginalized (e.g., randomly imputed)
- Compute marginal contribution of adding *j* to via the difference above
- Average over all p! permutations (in practice, over M << p!)

SHAPLEY VALUES IN ML - A SHORT RECAP

Shapley values (order definition): Average over marginal contributions across all permutations of feature indices $\tau \in \Pi$:

$$\phi_j(\mathbf{x}) = rac{1}{
ho!} \sum_{ au \in \Pi} \hat{f}_{\mathcal{S}_j^ au \cup \{j\}}(\mathbf{x}_{\mathcal{S}_j^ au \cup \{j\}}) - \hat{f}_{\mathcal{S}_j^ au}(\mathbf{x}_{\mathcal{S}_j^ au})}{rac{1}{marginal contribution of feature } j}$$

- In \hat{f}_S , features not in S are marginalized (e.g., replaced by random imputations)
- Compute marginal contribution of adding j to S_i^{τ} via the difference above
- Average over all p! permutations (in practice, over $M \ll p!$)

Alternative (set definition): Average marginal contribution over all subsets, weighted by their relative number of appearances in permutations:

$$\phi_j(\mathbf{x}) = \sum_{S \subseteq \{1, \dots, \rho\} \setminus \{j\}} \frac{|S|!(p-|S|-1)!}{\rho!} \left[\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_S(\mathbf{x}_S) \right].$$

SHAPLEY VALUES IN ML - A SHORT RECAP

Shapley values (order definition): Average over marginal contributions across all permutations of feature indices $\tau \in \Pi$:

$$\phi_j(\mathbf{x}) = \frac{1}{\rho!} \sum_{\tau \in \Pi} \underbrace{\hat{f}(\mathbf{x}) - \hat{f}(\mathbf{x})}_{\text{marginal contribution of feature } i}$$

- For each permutation τ , determine coalition : features before j in τ
- In \hat{f}_S , features not in S are marginalized (e.g., randomly imputed)
- Compute marginal contribution of adding *j* to via the difference above
- Average over all p! permutations (in practice, over $M \ll p!$)

Alternative (set definition): Average marginal contribution over all subsets, weighted by their relative number of appearances in permutations:

$$\phi_j(\mathbf{x}) = \sum_{S \subseteq \{1,...,p\} \setminus \{j\}} \frac{|S|!(p-|S|-1)!}{p!} \left[\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_S(\mathbf{x}_S) \right].$$

SHAPLEY VALUES IN ML - EXAMPLE

Example (Bike sharing data):

- Train random forest using humidity (hum), temperature (temp), windspeed (ws)
- Consider observation of interest **x** with prediction $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction $\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})] = 4515$
- Compute exact Shapley value for **x** for feature hum:

S	$S \cup \{j\}$	$\hat{f}_{\mathcal{S}}$	$\mid \hat{\mathit{f}}_{\mathcal{S} \cup \{j\}} \mid$	weight
Ø	hum	4515	4635	2/6
temp	temp, hum	3087	3060	1/6
WS	ws, hum	4359	4450	1/6
temp, ws	temp, ws, hum	2623	2573	2/6

$$\Rightarrow \phi_{\text{hum}}(\mathbf{x}) = \frac{2}{6}(4635-4515) + \frac{1}{6}(3060-3087) + \frac{1}{6}(4450-4359) + \frac{2}{6}(2573-2623) = 34$$

$$\Rightarrow$$
 Analogously $\phi_{\text{temp}}(\mathbf{x}) = -1654$, $\phi_{\text{ws}}(\mathbf{x}) = -322$

SHAPLEY VALUES IN ML - EXAMPLE

Example (Bike sharing data):

- Train random forest using humidity (hum), temperature (temp), windspeed (ws)
- Consider observation of interest **x** with prediction $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction $\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})] = 4515$
- Compute exact Shapley value for **x** for feature hum:

S	$\mathcal{S} \cup \{j\}$	\hat{f}_{S}	$\hat{f}_{\mathcal{S}\cup\{j\}}$	weight
Ø	hum	4515	4635	2/6
temp	temp, hum	3087	3060	1/6
ws	ws, hum	4359	4450	1/6
temp ws	temp ws hum	2623	2573	2/6

$$\Rightarrow \phi_{\mathsf{hum}}(\mathbf{x}) = \tfrac{2}{6}(4635 - 4515) + \tfrac{1}{6}(3060 - 3087) + \tfrac{1}{6}(4450 - 4359) + \tfrac{2}{6}(2573 - 2623) = 34$$

$$\Rightarrow$$
 Analogously $\phi_{\text{temp}}(\mathbf{x}) = -1654$, $\phi_{\text{ws}}(\mathbf{x}) = -322$

Interpretable Machine Learning - 2 / 6 © Interpretable Machine Learning - 10 (Interpretable Machine Learning - 10 (Interpr

FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

- hum (+34) pushes prediction *above* baseline (= average prediction).
- temp (-1654) and ws (-322) pull prediction *below* baseline.
- Together, they explain full deviation from average prediction.

FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

- hum (+34) pushes pred. above baseline (= average prediction).
- temp (-1654) and ws (-322) pull prediction *below* baseline.
- Together, they explain full deviation from average prediction.

Interpretable Machine Learning - 3 / 6 © Interpretable Machine Learning - 3 / 6

FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

- hum (+34) pushes prediction *above* baseline (= average prediction).
- temp (-1654) and ws (-322) pull prediction *below* baseline.
- Together, they explain full deviation from average prediction.

Shapley-based additive decomposition of prediction for **x** gives insights on how features shift prediction from baseline $\mathbb{E}(\hat{f})$:

$$\frac{\hat{f}(\mathbf{x})}{\text{actual prediction}} = \underbrace{\phi_0}_{\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{X})]} + \sum_{j \in \{\text{hum,temp,ws}\}} \phi_j(\mathbf{x})$$

$$2573 = 4515 + (34 - 1654 - 322) = 4515 - 1942$$

 \rightarrow Like a LM evaluated at **x**: global intercept ϕ_0 plus per-feature contributions $\phi_i(\mathbf{x})$.

SHAP Motivation: Can we efficiently estimate this Shapley-based additive decomposition of $\hat{f}(\mathbf{x})$ using a surrogate model (while preserving Shapley axioms)?

FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

- hum (+34) pushes pred. *above* baseline (= average prediction).
- temp (−1654) and ws (−322)
 pull prediction below baseline.
- Together, they explain full deviation from average prediction.

Shapley-based additive decomposition of prediction for **x** gives insights on how features shift prediction from baseline $\mathbb{E}(\hat{f})$:

$$\hat{f}(\mathbf{x}) = \underbrace{\phi_0}_{\text{Ex}[\hat{f}(\mathbf{X})]} + \sum_{j \in \{\text{hum,temp,ws}\}} \phi_j(\mathbf{x})$$

$$2573 = 4515 + (34 - 1654 - 322) = 4515 - 1942$$

 \rightarrow Like a LM evaluated at **x**: global intercept ϕ_0 plus per-feature contribs $\phi_i(\mathbf{x})$.

SHAP Motivation: Can we efficiently estimate this Shapley-based additive decomp. of $\hat{f}(\mathbf{x})$ via a surrogate model (while preserving Shapley axioms)?

Interpretable Machine Learning - 3/6 © Interpretable Machine Learning - 3/6

SHAP FRAMEWORK • Lundberg et al. 2017

SHAP expresses the prediction of \mathbf{x} as a sum of contributions from each feature:

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

- $\mathbf{z}' \in \{0,1\}^p$: simplified binary input referring to a coalition (coalition vector)
- $z'_i = 1$: feature j is "present" \Rightarrow use x_i in model evaluation
- $z'_j = 0$: feature j is "absent" \Rightarrow influence of x_i is removed via marginalization over a reference distribution

SHAP FRAMEWORK LUNDBERG_2017

SHAP expresses the prediction of **x** as a sum of contribs from each feature:

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

- $\mathbf{z}' \in \{0, 1\}^p$: simplified binary input referring to a coalition (coal. vector)
- $z'_i = 1$: feature j is "present" \Rightarrow use x_i in model evaluation
- *z*_j' = 0: feature *j* is "absent"
 ⇒ influence of *x_i* is removed via marginalization over a reference distrib.

SHAP FRAMEWORK Lundberg et al. 2017

SHAP expresses the prediction of \mathbf{x} as a sum of contributions from each feature:

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

- $\mathbf{z}' \in \{0, 1\}^p$: simplified binary input referring to a coalition (coalition vector)
- $z'_i = 1$: feature j is "present" \Rightarrow use x_i in model evaluation
- $z'_j = 0$: feature j is "absent" \Rightarrow influence of x_i is removed via marginalization over a reference distribution

SHAP as a theoretical framework: Fit a surrogate model $g(\mathbf{z}')$ satisfying Shapley axioms and recovering $\hat{f}(\mathbf{x})$ when all features are "present":

$$\hat{f}(\mathbf{x}) = g(\mathbf{1}) = \phi_0 + \sum_{i=1}^{p} \phi_i$$

Evaluation of $g(\mathbf{z}')$: Let $S = \{j : z'_i = 1\}$ be the active coalition. Then:

- $g(\mathbf{z}') \approx \mathbb{E}[\hat{f}(\mathbf{X}) \mid \mathbf{X}_S = \mathbf{x}_S]$ (conditional expectation)
- $g(\mathbf{z}') \approx \mathbb{E}_{\mathbf{X}_{-S}}[\hat{f}(\mathbf{x}_{S}, \mathbf{X}_{-S})]$ (marginal expectation, i.e., PD function)
- Note: Practical implementations (e.g., KernelSHAP) use the marginal expectation, approximated via random imputations from background data.

SHAP FRAMEWORK LUNDBERG_2017

SHAP expresses the prediction of **x** as a sum of contribs from each feature:

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

- $\mathbf{z}' \in \{0,1\}^p$: simplified binary input referring to a coalition (coal. vector)
- $z'_i = 1$: feature j is "present" \Rightarrow use x_i in model evaluation
- $z'_j = 0$: feature j is "absent" \Rightarrow influence of x_i is removed via marginalization over a reference distrib.

SHAP as a theoretical framework: Fit a surrogate model $g(\mathbf{z}')$ satisfying Shapley axioms and recovering $\hat{f}(\mathbf{x})$ when all features are "present":

$$\hat{f}(\mathbf{x}) = g(\mathbf{1}) = \phi_0 + \sum_{i=1}^p \phi_i$$

Evaluation of $g(\mathbf{z}')$: Let $S = \{j : z'_i = 1\}$ be the active coalition. Then:

- ullet $g(\mathbf{z}') pprox \mathbb{E}[\hat{f}(\mathbf{X}) \mid \mathbf{X}_S = \mathbf{x}_S]$ (conditional expectation)
- $g(\mathbf{z}') \approx \mathbb{E}_{\mathbf{X}-\mathbf{s}}[\hat{f}(\mathbf{x}_S, \mathbf{X}_{-S})]$ (marginal expectation, i.e., PD function)
- Note: Practical implementations (e.g., KernelSHAP) use the marginal expectation, approximated via random imputations from background data.

SHAP FRAMEWORK Lundberg et al. 2017

SHAP defines an additive surrogate $g(\mathbf{z}')$ over a binary simplified input $\mathbf{z}' \in \{0,1\}^p$:

$$\mathbf{z}^{\prime(k)}$$
: coalition vector subset of features $g\left(\mathbf{z}^{\prime(k)}\right) =$

 ϕ_0 : baseline $\mathbb{E}[\hat{f}(\mathbf{X})]$

SHAP FRAMEWORK • LUNDBERG_2017

SHAP defines an additive surrogate $g(\mathbf{z}')$ over a binary input $\mathbf{z}' \in \{0, 1\}^p$:

SHAP FRAMEWORK • Lundberg et al. 2017

SHAP defines an additive surrogate $g(\mathbf{z}')$ over a binary simplified input $\mathbf{z}' \in \{0,1\}^p$:

$$g(\mathbf{z}'^{(k)})$$
: approx. prediction for coalition $g\left(\mathbf{z}'^{(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j'^{(k)}$

Additive Feature Attribution

Next: How do we estimate the Shapley values ϕ_i efficiently?

SHAP FRAMEWORK LUNDBERG_2017

SHAP defines an additive surrogate $g(\mathbf{z}')$ over a binary input $\mathbf{z}' \in \{0,1\}^p$:

Next: How do we estimate the Shapley values ϕ_i efficiently?

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z_j'$$

Intuition: If the coalition includes all features $(\mathbf{z}' = (z'_1, \dots, z'_p)^\top = (1, \dots, 1)^\top)$, the attributions ϕ_i and the baseline ϕ_0 sum up to the original model output $\hat{f}(\mathbf{x})$

Local accuracy corresponds to the axiom of efficiency in Shapley game theory

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{r} \phi_j z_j'$$

Intuition: If coalition includes all features $(\mathbf{z}' = (z'_1, \dots, z'_p)^\top = (1, \dots, 1)^\top)$, the attributions ϕ_i and the baseline ϕ_0 sum up to the original model output $\hat{f}(\mathbf{x})$

Local accuracy corresponds to **axiom of efficiency** in Shapley game theory

Interpretable Machine Learning - 6 / 6 © Interpretable Machine Learning - 6 / 6

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z_j'$$

Missingness

$$z_i' = 0 \Longrightarrow \phi_i = 0$$

Intuition: A "missing" feature (whose value is imputed) gets an attribution of zero

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g\left(\mathbf{z}'
ight) = \phi_0 + \sum_{i=1}^p \phi_i z'_i$$

Missingness

$$z_i' = 0 \Longrightarrow \phi_i = 0$$

Intuition: A "missing" feature (whose value is imputed) gets zero attribution

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z'_j$$

Missingness

$$z_i' = 0 \Longrightarrow \phi_i = 0$$

Consistency (Let $\mathbf{z}_{-i}^{\prime(k)}$ refer to $z_i^{\prime(k)}=0$)

For any two models \hat{f} and \hat{f}' , if for all inputs $\mathbf{z}'^{(k)} \in \{0,1\}^p$

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-i}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-i}^{\prime(k)}\right) \Longrightarrow \phi_{j}\left(\hat{f}',\mathbf{x}\right) \geq \phi_{j}(\hat{f},\mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{i=1}^{P} \phi_i z'_i$$

Missingness

$$z_i' = 0 \Longrightarrow \phi_i = 0$$

Consistency (Let $\mathbf{z}_{-i}^{\prime(k)}$ refer to $z_i^{\prime(k)}=0$)

For any two models \hat{f} and \hat{f}' , if for all inputs $\mathbf{z}'^{(k)} \in \{0,1\}^p$

$$\hat{f}_x'\left(\mathbf{z}'^{(k)}
ight) - \hat{f}_x'\left(\mathbf{z}_{-i}'^{(k)}
ight) \geq \hat{f}_x\left(\mathbf{z}'^{(k)}
ight) - \hat{f}_x\left(\mathbf{z}_{-i}'^{(k)}
ight) \Longrightarrow \phi_j\left(\hat{t}',\mathbf{x}
ight) \geq \phi_j(\hat{t},\mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

Consistency implies Shapley's axioms of additivity, dummy, symmetry.

