

#### **Presentation of the team**





Julian Valencia
Programmer



Marco Gomez
Programmer



Andrea Serna Literature review



**Mauricio Toro**Data preparation





#### **Problem Statement**





Streets of Medellín, Origin and Destination

Three paths that reduce both the risk of harassment and distance





# **Solution Algorithm**









### **Explanation of the algorithm**









### Dijkstra's algorithm

We used python dictionaries to create the graph, and in our case, we have the key which is the unique origins (in polar cords), and the content which are all the adjacent nodes of the vertex. In that way, we can define a graph.





# **Complexity of the algorithm**



|            | Time<br>complexity    | Complexity of memory |
|------------|-----------------------|----------------------|
| Dijkstra's | O((V + E) *<br>log V) | O(V + E) = O<br>(V)  |
| None       |                       |                      |

Time and memory complexity of the algorithm name. V is the number of the vertex and E is the number of edges.





## First path minimizing d = time



| Origin           | Destination         | Distance (meters) | Risk of harassment (between 0 and 1) |
|------------------|---------------------|-------------------|--------------------------------------|
| EAFIT University | National University | 7,510 m           | 0.7440296981960772                   |

Distance and risk of harassment for the path that minimizes d = time. Execution time of 7.514 seconds.

The distance between EAFIT University and National University is 7,510 m and have ab average time of arrive in 1 hour y 30 minutes, at 5 km/h



## **Second path minimizing d = harassment**



| Origin           | Destination         | Distance (meters) | Risk of harassment (between 0 and 1) |
|------------------|---------------------|-------------------|--------------------------------------|
| EAFIT University | National University | 10,430 m          | 0.4736598772496898                   |

Distance and risk of harassment for the path that minimizes d = harassment. Execution time of 7.514 seconds.

The distance between EAFIT University and National University is 10,430 m and have an average time of arrive in 2 hours y 5 minutes, at 5 km/h



### Third path minimizing d = average of both



| Origin           | Destination         | Distance (meters) | Risk of harassment (between 0 and 1) |
|------------------|---------------------|-------------------|--------------------------------------|
| EAFIT University | National University | 10,050            | 0.5957425859642945                   |

Distance and risk of harassment for the path that minimizes d = average of both. Execution time of 7.514 seconds.

The distance between EAFIT University and National University is 10,050 m and have an average time of arrive in 2 hours, at 5 km/h



# Visual comparison of the three paths







#### **Future work directions**



#### **Databases**



In a future we would like to add some databases and optimize the way we input the manage the dates

# **Project 1**



It's true possible that in the future we must upload a web application 100% functional for our users

#### Software Engineering



As well that we like to with a web application we also need to create a mobile application, to have more reach with the users and have more portability



#### Report accepted in OSF.IO



Gomez, Marco, Julian E. V. Bolaños, Samuel Rico, Isabel Mora, Valeria C. Velasquez, Gregorio Bermúdez, Julian D. R. Lopera, et al. 2022. "SEARCH ALGORITHMS APPLIED TO CITIZEN SAFETY AND HARASSMENT PREVENTION." OSF Preprints. November 8. osf.io/cw9y8.





