

高考数学提升讲义

——实战经验和思维提升

作者: 孙宇轩

时间: December 14, 2022

版本: 1.3

前言

The content of introduction

目录

第1章	自然的解题流程	1
1.1	简洁优美的解法来自哪里	1
1.2	示例	2
第2章	解题的最后一招	4
2.1	几何: 坐标系与向量语言	4
2.2	代数:函数与导数语言	4
2.3	逻辑:	4
第3章	题目中的控制关系	5
3.1	函数形式的控制关系	5
3.2	几何形式的控制关系	5
3.3	变量可求的判断	5
第4章	题目中的自由变量	6
4.1	赋予自由度	6
4.2	自由变量的选取	6
4.3	无关自由变量	6

第1章 自然的解题流程

导言

在系列开始, 我希望依靠具体题目的分析先给出整个体系的概览。我选取了 2022 年全国 乙卷中部分题目作为例题, 在旅程的最开始就攀登上最困难的高峰, 可以给我们一种"一览众山小"的信心。在本章中我不会使用任何二级结论, 仅通过定义与对自然语言的理解解题。

1.1 简洁优美的解法来自哪里

例题 1.1 嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列 $\{b_n\}: b_1 = 1 + \frac{1}{\alpha_1}, b_2 = 1 + \frac{1}{\alpha_1 + \frac{1}{\alpha_2}}, b_3 = 1 + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \frac{1}{\alpha_2}}}$, 依此类推,其中 $\alpha_k \in \mathbf{N}^*(k = 1, 2, \cdots)$. 则

A.
$$b_1 < b_5$$

B.
$$b_3 < b_8$$

C.
$$b_6 < b_2$$

D.
$$b_4 < b_7$$

\mathbf{\widetilde{R}}: \quad \forall i = 2k+1, n > i, (n, k \in \mathbb{N}),

$$b_{n} = 1 + \frac{1}{\alpha_{1} + \frac{1}{\alpha_{2} + \dots \frac{1}{\alpha_{n}}}} = \frac{1}{\alpha_{1} + \frac{1}{\alpha_{2} + \dots \frac{1}{\alpha_{i} + \beta_{n}}}} \} (\mathring{\sigma}_{\Delta} + \mathring{\sigma}_{\Delta}) < \frac{1}{\alpha_{1} + \frac{1}{\alpha_{2} + \dots \frac{1}{\alpha_{i}}}} = b_{i} (\beta_{n} > 0)$$

同理, $\forall i = 2k, n > i, (n, k \in \mathbb{N}), b_i < b_n$, 所以选 C。

1.1.1 思路分析

直接接触这个答案可能会有些突兀,原因是用温习写出来的答案都是思考的结果,想要真正提高能力,需要的是思考的过程,下面我将尽力展示这一过程:

1.1.1.1 从题目要求出发

题目要求比较 b_n 的大小 \longrightarrow 试图确定 b_n $\xrightarrow{\text{难以准确计算}}$ 理解生成过程 $\xrightarrow{\text{分类讨论}}$ 得出大小关系

如此解题需要的经验和能力:

- 目标明确
- 熟悉分式比较大小
- 理解数列的递推思想

这种解法对题目的理解要求较高,更加节省时间,更加严谨。

1.1.1.2 从题目条件出发

题目的障碍主要来自两个数列难以控制,所以可以从这两个条件入手: a_n 限制条件单 \longrightarrow 不影响比较大小 $\xrightarrow{\Diamond a_n=1$ 观察} 确定 b_n 的大致形态 \longrightarrow 得出结果

如此解题需要的经验和能力:

- 能够分析题目中的控制关系
- 能够从特殊结论中找到一般解法

适用于无法一眼看出解法的题目,为确保严谨性,通常在找到思路后用前一种方式推理 一遍,这样也能提高下次遇到同种题目直接想到解法的概率。

1.1.2 总结

实际上,能够在考试中灵活运用第一种解法,依靠的是第二种解法的不断训练。只有经 过了各种错误的试探,体会各种概念间的关系,才能在多种不同的路径中准确选出快速解题 的路径。而在面对一时超出认知的新题时,第二种方法仍然是唯一的路径。

1.2 示例

1.2.1 运用经验快速解题的示例

例题 1.2 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为 p_1, p_2, p_3 , 且 $p_3 > p_2 > p_1 > 0$. 记该棋手连胜两盘的概率为 p_1, p_2

A. p 与该棋手和甲、乙、丙比赛次序无关 B. 该棋手在第二盘与甲比赛,p 最大

C. 该棋手在第二盘与乙比赛, p 最大 D. 该棋手在第二盘与丙比赛, p 最大

解: 分析题目可知, 第二场胜率与结果唯一正相关, 因此选 B。

分析: 连续获胜两局的情况有两种,第一、二场或第二、三场获胜。由于、三场的对称性,能 够影响最终概率的只有第二场的胜率,这也和选项的提示一致。

此时实际上可以选出选项,A 必然不对,CD 必然同对或同错,单选题中必然同错,所以

关于这一答案的严谨推理可以用假设实验:补全对称性,如果第一、三场获胜也可以称 为连胜的话,三场完全对称,与选择无关,设为 p'。因此原始状态下连胜的概率是 p' 减去一、 三场获胜,第二场败的概率 p_0 。想要让 p_0 最小,显然应该让第二场胜率最大。

有些参考书中会列出六种情况再比较大小,实际上是忽略了对称关系而导致问题复杂化, 即使想不到假设实验的做法,至少要看出一三场对称,减少一半的计算量。

注 关于对称性的利用将会在后文详细讲解,本题主要是用于感受经验对做题速度的影响。

1.2.2 分析问题找出思路的示例

例题 1.3 已知 $x = x_1$ 和 $x = x_2$ 分别是函数 $f(x) = 2a^x - ex^2$ $(a > 0 且 a \neq 1)$ 的极小值点和极大值点. 若 $x_1 < x_2$, 则 a 的取值范围是

解: 对 f(x) 求导得

$$f'(x) = 2a^x \ln a - 2ex$$
, $f''(x) = 2a^x \ln^2 a - 2e$

则 f'(x) 有两个零点 x_1, x_2 且 $x \in (x_1, x_2)$ 时 f'(x) > 0

$$\begin{cases} 0 < a < 1 \\ f''(x_0) = 0 \\ f'(x_0) > 0 \end{cases} \implies \begin{cases} t := \ln a < 0 \\ 2\frac{e}{t} - \frac{2e(1 - 2\ln(-t))}{t} > 0 \end{cases} \implies a \in (\frac{1}{e}, 1)$$

分析: 条件中对函数共有两种描述: 几何上给出了极大值点和极小值点的位置关系, 代数上给出了函数带一个参数的解析式。

分析几何描述,函数的整体趋势大致是(考虑到其形式较为简单,实际上一定是)减 \rightarrow 增 \rightarrow 减(见1.1)。

分析解析式,对其求导,发现 f'(x) 是指数函数减去正比例函数的形式,定性的分析,其图像有四种情况, 1.2 和 1.3 中画出的两种和二者分别对应的直线与曲线不相交的情形。考虑到几何描述,显然只有1.3对应的情况符合题意,因此题目对 a 的限制条件就能总结为

$$\begin{cases} 0 < a < 1 \\ f'(x)$$
有两个零点 $\iff \exists x_1, s.t. f'(x_1) > 0 \iff \max f'(x) > 0 \iff \begin{cases} f''(x_0) = 0 \\ f'(x_0) > 0 \end{cases}$ $0 < a < 1$ 这一条件保证了在 1.2 和 1.3 中只能选择 1.3,另一条件保证 $f(x)$ 只能就

0 < a < 1 这一条件保证了在 1.2 和 1.3 中只能选择 1.3,另一条件保证 f(x) 只能选择 1.2 和 1.3 中的一个。关于第二个条件可以通过对 a 赋予自由度作临界分析简化运算,将在【4: 题目中的自由变量】一章中详细介绍,此处我们用最直接的方法,只要找到一个函数值大于 0 的点,即可确定函数有两个零点,(这是由于排除了 a > 1 情况的干扰)。

注 在这道题中, 我们将两个不同的条件统一到图像上, 再进一步列出了方程。

第2章 解题的最后一招

导言

第二章的核心目的是搭建起一个信念: 题目一定是可以解出来的。这并不是一句废话,我的意思是,不论题目出的有多新颖离奇,我们都有这样一种方法,尽管有可能非常繁琐,我们知道通过这样的方法一定能解出这道题目,考试时只要基于此再对方法进行一定的优化,而不会陷入无头苍蝇乱撞的情境中。而通常这也是我面对一道题目时,最先想到的解法。

2.1 几何: 坐标系与向量语言

2.2 代数:函数与导数语言

2.3 逻辑:

第3章 题目中的控制关系

- 3.1 函数形式的控制关系
- 3.2 几何形式的控制关系
- 3.3 变量可求的判断

第4章 题目中的自由变量

- 4.1 赋予自由度
- 4.2 自由变量的选取
- 4.3 无关自由变量
- 4.3.1 对称、全等和相似
- 4.3.2 * 仿射变换
- 4.3.3 * 射影变换